diff --git a/README.md b/README.md
index 6c4097af..b5b8b147 100644
--- a/README.md
+++ b/README.md
@@ -15,11 +15,11 @@ It enables users to configure hardware / software setups for easily repeating te
It serves as the **orchestrator** [2] for distributed parallel benchmarking experiments in a Kubernetes Cloud.
This has been tested at Amazon Web Services, Google Cloud, Microsoft Azure, IBM Cloud, Oracle Cloud, and at Minikube installations,
-running with Citus Data (Hyperscale), Clickhouse, CockroachDB, Exasol, IBM DB2, MariaDB, MariaDB Columnstore, MemSQL (SingleStore), MonetDB, MySQL, OmniSci (HEAVY.AI), Oracle DB, PostgreSQL, SQL Server, SAP HANA, TimescaleDB, and Vertica.
+running with Citus Data (Hyperscale), Clickhouse, CockroachDB, Exasol, IBM DB2, MariaDB, MariaDB Columnstore, MemSQL (SingleStore), MonetDB, MySQL, OmniSci (HEAVY.AI), Oracle DB, PostgreSQL, SQL Server, SAP HANA, TimescaleDB, Vertica and YugabyteDB.
Benchmarks included are YCSB, TPC-H and TPC-C (HammerDB and Benchbase version).
-The basic workflow is [1,2]: start a containerized version of the DBMS, install monitoring software, import existing data, run benchmarks and shut down everything with a single command.
+The basic workflow is [1,2]: start a containerized version of the DBMS, install monitoring software, import data, run benchmarks and shut down everything with a single command.
A more advanced workflow is: Plan a sequence of such experiments, run plan as a batch and join results for comparison.
It is also possible to scale-out drivers for generating and loading data and for benchmarking to simulate cloud-native environments as in [4].
@@ -37,17 +37,41 @@ If you encounter any issues, please report them to our [Github issue tracker](ht
* (Also make sure to have access to a running Kubernetes cluster - for example [Minikube](https://minikube.sigs.k8s.io/docs/start/))
* (Also make sure, you can create PV via PVC and dynamic provisioning)
1. Adjust [configuration](https://bexhoma.readthedocs.io/en/latest/Config.html)
- 1. Rename `k8s-cluster.config` to `cluster.config`
+ 1. Copy `k8s-cluster.config` to `cluster.config`
1. Set name of context, namespace and name of cluster in that file
-1. Install result folder: Run `kubectl create -f k8s/pvc-bexhoma-results.yml`
+ 2. Make sure the `resultfolder` is set to a folder that exists on your local filesystem
+1. Other components like the shared data and result directories, the message queue and the evaluator are installed automatically when you start an experiment. Before that, you might want to adjust
+ * Result directory: https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/blob/master/k8s/pvc-bexhoma-results.yml
+ * `storageClassName`: must be an available storage class of type `ReadWriteMany` in your cluster
+ * `storage`: size of the directory
+ * Data directory: https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/blob/master/k8s/pvc-bexhoma-data.yml
+ * `storageClassName`: must be an available storage class of type `ReadWriteMany` in your cluster
+ * `storage`: size of the directory
## Quickstart
+### YCSB
-1. Run `python ycsb.py -ms 1 -dbms PostgreSQL -workload a run`. This installs PostgreSQL and runs YCSB workload A with varying target. The driver is monolithic with 64 threads. The experiments runs a second time with the driver scaled out to 8 instances each having 8 threads.
+1. Run `python ycsb.py -ms 1 -dbms PostgreSQL -workload a run`.
+ This installs PostgreSQL and runs YCSB workload A with varying target. The driver is monolithic with 64 threads. The experiments runs a second time with the driver scaled out to 8 instances each having 8 threads.
1. You can watch status using `bexperiments status` while running. This is equivalent to `python cluster.py status`.
-1. After benchmarking has finished, run `bexperiments dashboard` to connect to a dashboard. You can open dashboard in browser at `http://localhost:8050`. This is equivalent to `python cluster.py dashboard`. Alternatively you can open a Jupyter notebook at `http://localhost:8888`.
+1. After benchmarking has finished, you will see a summary.
+ For further inspections, run `bexperiments dashboard` to connect to a dashboard. You can open dashboard in browser at `http://localhost:8050`. This is equivalent to `python cluster.py dashboard`. Alternatively you can open a Jupyter notebook at `http://localhost:8888`.
+
+See more details at https://bexhoma.readthedocs.io/en/latest/Example-YCSB.html
+
+### TPC-H
+
+1. Run `python tpch.py -ms 1 -dbms PostgreSQL run`.
+ This installs PostgreSQL and runs TPC-H at scale factor 1. The driver is monolithic.
+1. You can watch status using `bexperiments status` while running. This is equivalent to `python cluster.py status`.
+1. After benchmarking has finished, you will see a summary.
+ For further inspections, run `bexperiments dashboard` to connect to a dashboard. This is equivalent to `python cluster.py dashboard`. You can open a Jupyter notebook at `http://localhost:8888`.
+
+See more details at https://bexhoma.readthedocs.io/en/latest/Example-TPC-H.html
+
+
## More Informations
diff --git a/TPCTC23/evaluator.py b/TPCTC23/evaluator.py
index 01e0bd87..07dcd5f1 100644
--- a/TPCTC23/evaluator.py
+++ b/TPCTC23/evaluator.py
@@ -571,7 +571,7 @@ def benchmarking_aggregate_by_parallel_pods(self, df):
:param df: DataFrame of results
:return: DataFrame of results
"""
- column = "connection"
+ column = ["connection","experiment_run"]
df_aggregated = pd.DataFrame()
for key, grp in df.groupby(column):
#print(key, len(grp.index))
@@ -646,9 +646,12 @@ def benchmarking_aggregate_by_parallel_pods(self, df):
}}
#print(grp.agg(aggregate))
dict_grp = dict()
- dict_grp['connection'] = key
- dict_grp['configuration'] = grp['configuration'][0]
- dict_grp['experiment_run'] = grp['experiment_run'][0]
+ dict_grp['connection'] = key[0]
+ dict_grp['configuration'] = grp['configuration'].iloc[0]
+ dict_grp['experiment_run'] = grp['experiment_run'].iloc[0]
+ #dict_grp['connection'] = key
+ #dict_grp['configuration'] = grp['configuration'][0]
+ #dict_grp['experiment_run'] = grp['experiment_run'][0]
#dict_grp['client'] = grp['client'][0]
#dict_grp['pod'] = grp['pod'][0]
dict_grp = {**dict_grp, **grp.agg(aggregate)}
@@ -756,8 +759,8 @@ def loading_aggregate_by_parallel_pods(self, df):
#print(grp.agg(aggregate))
dict_grp = dict()
dict_grp['connection'] = key[0]
- dict_grp['configuration'] = grp['configuration'][0]
- dict_grp['experiment_run'] = grp['experiment_run'][0]
+ dict_grp['configuration'] = grp['configuration'].iloc[0]
+ dict_grp['experiment_run'] = grp['experiment_run'].iloc[0]
#dict_grp['client'] = grp['client'][0]
#dict_grp['pod'] = grp['pod'][0]
#dict_grp['pod_count'] = grp['pod_count'][0]
diff --git a/bexhoma/clusters.py b/bexhoma/clusters.py
index d8924cee..f4fb091e 100644
--- a/bexhoma/clusters.py
+++ b/bexhoma/clusters.py
@@ -268,29 +268,38 @@ def set_experiment(self, instance=None, volume=None, docker=None, script=None):
if script is not None:
self.s = script
self.initscript = self.volumes[self.v]['initscripts'][self.s]
- def wait(self, sec):
+ def wait(self, sec, silent=False):
"""
Function for waiting some time and inform via output about this
:param sec: Number of seconds to wait
+ :param silent: True means we do not output anything about this waiting
"""
- print("Waiting {} s...".format(sec), end="", flush=True)
- intervals = int(sec)
- time.sleep(intervals)
- print("Done waiting {} s".format(sec))
- #print("Waiting "+str(sec)+"s")
+ #if not silent:
+ # print("Waiting "+str(sec)+"s...", end="", flush=True)
#intervals = int(sec)
- #intervalLength = 1
- #for i in tqdm(range(intervals)):
- # time.sleep(intervalLength)
- def delay(self, sec):
+ #time.sleep(intervals)
+ #if not silent:
+ # print("done")
+ intervals = int(sec)
+ for x in [1]:
+ if not silent:
+ print("{:30s}: ".format("- waiting {}s -".format(sec)), end="", flush=True)
+ #print('wait {}s'.format(intervals), end='\r')
+ time.sleep(intervals)
+ if not silent:
+ print("done")
+ #if not silent:
+ # print("")
+ def delay(self, sec, silent=False):
"""
Function for waiting some time and inform via output about this.
Synonymous for wait()
:param sec: Number of seconds to wait
+ :param silent: True means we do not output anything about this waiting
"""
- self.wait(sec)
+ self.wait(sec, silent)
def delete_deployment(self, deployment):
"""
Delete a deployment given by name.
@@ -359,7 +368,7 @@ def get_pods(self, app='', component='', experiment='', configuration='', status
field_selector = 'status.phase='+status
else:
field_selector = ''
- self.logger.debug('get_pods label='+label)
+ self.logger.debug('get_pods label({})'.format(label))
try:
api_response = self.v1core.list_namespaced_pod(self.namespace, label_selector=label, field_selector=field_selector)
#pprint(api_response)
@@ -518,7 +527,7 @@ def get_services(self, app='', component='', experiment='', configuration=''):
label += ',experiment='+experiment
if len(configuration)>0:
label += ',configuration='+configuration
- self.logger.debug('get_services'+label)
+ self.logger.debug('get_services({})'.format(label))
try:
api_response = self.v1core.list_namespaced_service(self.namespace, label_selector=label)#'app='+self.appname)
#pprint(api_response)
@@ -584,7 +593,7 @@ def get_pvc(self, app='', component='', experiment='', configuration=''):
label += ',experiment='+experiment
if len(configuration)>0:
label += ',configuration='+configuration
- self.logger.debug('get_pvc'+label)
+ self.logger.debug('get_pvc({})'.format(label))
try:
api_response = self.v1core.list_namespaced_persistent_volume_claim(self.namespace, label_selector=label)#'app='+self.appname)
#pprint(api_response)
@@ -972,6 +981,25 @@ def pod_log(self, pod, container=''):
#print(stdout.decode('utf-8'), stderr.decode('utf-8'))
#return "", stdout.decode('utf-8'), stderr.decode('utf-8')
return output
+ def get_pod_containers(self, pod):
+ """
+ Return all containers and initcontainers of a pod
+
+ :param pod: name of the pod
+ :return: list of names of (init)containers
+ """
+ fullcommand = "get pods "+pod+" -o jsonpath='{.spec.containers[*].name}'"
+ #print(fullcommand)
+ output = self.kubectl(fullcommand)
+ #print("get_pod_containers", output)
+ containers = output.split(" ")
+ fullcommand = "get pods "+pod+" -o jsonpath='{.spec.initContainers[*].name}'"
+ #print(fullcommand)
+ output = self.kubectl(fullcommand)
+ #print("get_pod_containers", output)
+ initContainers = output.split(" ")
+ self.logger.debug("Pod {} has container {}".format(pod, containers + initContainers))
+ return containers + initContainers
def downloadLog(self):
print("downloadLog")
self.kubectl('cp --container dbms '+self.activepod+':/data/'+str(self.code)+'/ '+self.config['benchmarker']['resultfolder'].replace("\\", "/").replace("C:", "")+"/"+str(self.code))
@@ -998,7 +1026,7 @@ def get_jobs(self, app='', component='', experiment='', configuration='', client
label += ',configuration='+configuration
if len(client)>0:
label += ',client='+client
- self.logger.debug('getJobs '+label)
+ self.logger.debug('getJobs({})'.format(label))
try:
api_response = self.v1batches.list_namespaced_job(self.namespace, label_selector=label)#'app='+appname)
#pprint(api_response)
@@ -1089,15 +1117,15 @@ def get_job_status(self, jobname='', app='', component='', experiment='', config
jobname = jobs[0]
api_response = self.v1batches.read_namespaced_job_status(jobname, self.namespace)#, label_selector='app='+cluster.appname)
#pprint(api_response)
- print("api_response.spec.completions", api_response.spec.completions)
- print("api_response.status.succeeded", api_response.status.succeeded)
+ self.logger.debug("api_response.spec.completions {}".format(api_response.spec.completions))
+ self.logger.debug("api_response.status.succeeded {}".format(api_response.status.succeeded))
# returns number of completed pods (!)
#return api_response.status.succeeded
# we want status of job (!)
#self.logger.debug("api_response.status.succeeded = {}".format(api_response.status.succeeded))
#self.logger.debug("api_response.status.conditions = {}".format(api_response.status.conditions))
if api_response.status.succeeded is not None and api_response.spec.completions <= api_response.status.succeeded:
- print("Number of completions reached")
+ self.logger.debug("Number of completions reached")
return True
if api_response.status.succeeded is not None and api_response.status.succeeded > 0 and api_response.status.conditions is not None and len(api_response.status.conditions) > 0:
self.logger.debug(api_response.status.conditions[0].type)
@@ -1226,6 +1254,19 @@ def create_dashboard_name(self, app='', component='dashboard'):
#print(name)
self.logger.debug('testbed.create_dashboard_name({})'.format(name))
return name
+ def create_messagequeue_name(self, app='', component='messagequeue'):
+ """
+ Creates a suitable name for the message queue component.
+
+ :param app: app the messagequeue belongs to
+ :param component: Component name, should be 'messagequeue' typically
+ """
+ if len(app) == 0:
+ app = self.appname
+ name = "{app}_{component}".format(app=app, component=component)
+ #print(name)
+ self.logger.debug('testbed.create_messagequeue({})'.format(name))
+ return name
def dashboard_is_running(self):
"""
Returns True, iff dashboard is running.
@@ -1240,7 +1281,7 @@ def dashboard_is_running(self):
self.logger.debug('testbed.dashboard_is_running()=exists')
#pod_dashboard = pods_dashboard[0]
status = self.get_pod_status(pod_dashboard)
- print(pod_dashboard, status)
+ #print("{:30s}: {} in pod {}".format("Dashboard", status, pod_dashboard))
if status == "Running":
self.logger.debug('testbed.dashboard_is_running() is running')
return True
@@ -1255,12 +1296,18 @@ def start_dashboard(self, app='', component='dashboard'):
"""
if len(self.get_dashboard_pod_name()):
# there already is a dashboard pod
+ print("{:30s}: is running".format("Dashboard"))
return
else:
+ print("{:30s}: is starting...".format("Dashboard"), end="", flush=True)
deployment = 'deploymenttemplate-bexhoma-dashboard.yml'
name = self.create_dashboard_name(app, component)
self.logger.debug('testbed.start_dashboard({})'.format(deployment))
self.kubectl('create -f '+self.yamlfolder+deployment)
+ while (not self.dashboard_is_running()):
+ self.wait(10, silent=True)
+ print("done")
+ return
def start_monitoring_cluster(self, app='', component='monitoring'):
"""
Starts the monitoring component and its service.
@@ -1272,17 +1319,37 @@ def start_monitoring_cluster(self, app='', component='monitoring'):
self.monitor_cluster_active = True
endpoints = self.get_service_endpoints(service_name="bexhoma-service-monitoring-default")
if len(endpoints) > 0:
- # dashboard exists
+ # monitoring exists
self.logger.debug('testbed.start_monitoring_cluster()=exists')
+ print("{:30s}: is running".format("Cluster monitoring"))
return
else:
self.logger.debug('testbed.start_monitoring_cluster()=deploy')
deployment = 'daemonsettemplate-monitoring.yml'
- #name = self.create_dashboard_name(app, component)
- #self.logger.debug('testbed.start_monitoring_general({})'.format(deployment))
self.kubectl('create -f '+self.yamlfolder+deployment)
- #deployment = 'deploymenttemplate-bexhoma-prometheus.yml'
- #self.kubectl('create -f '+self.yamlfolder+deployment)
+ print("{:30s}: starting...".format("Cluster monitoring"))
+ while (not len(self.get_service_endpoints(service_name="bexhoma-service-monitoring-default"))):
+ self.wait(10, silent=True)
+ print("done")
+ return
+ def messagequeue_is_running(self, component='messagequeue'):
+ """
+ Returns True, iff message queue is running.
+
+ :return: True, iff message queue is running
+ """
+ pods_messagequeue = self.get_pods(component=component)
+ if len(pods_messagequeue) > 0:
+ # message queue exists
+ pod_messagequeue = pods_messagequeue[0]
+ self.logger.debug('testbed.messagequeue_is_running()=exists')
+ #pod_dashboard = pods_dashboard[0]
+ status = self.get_pod_status(pod_messagequeue)
+ #print("{:30s}: {} in pod {}".format("Message Queue", status, pod_messagequeue))
+ if status == "Running":
+ self.logger.debug('testbed.messagequeue_is_running() is running')
+ return True
+ return False
def start_messagequeue(self, app='', component='messagequeue'):
"""
Starts the message queue.
@@ -1293,14 +1360,61 @@ def start_messagequeue(self, app='', component='messagequeue'):
"""
pods_messagequeue = self.get_pods(component=component)
if len(pods_messagequeue) > 0:
- # dashboard exists
+ # message queue exists
self.logger.debug('testbed.start_messagequeue()=exists')
+ print("{:30s}: is running".format("Message Queue"))
return
else:
+ print("{:30s}: is starting...".format("Message Queue"), end="", flush=True)
deployment = 'deploymenttemplate-bexhoma-messagequeue.yml'
- name = self.create_dashboard_name(app, component)
+ name = self.create_messagequeue_name(app, component)
self.logger.debug('testbed.start_messagequeue({})'.format(deployment))
self.kubectl('create -f '+self.yamlfolder+deployment)
+ while (not self.messagequeue_is_running()):
+ self.wait(10, silent=True)
+ print("done")
+ return
+ def start_datadir(self):
+ """
+ Starts the data directory in a shared filesystem.
+ This is where data generator pods can store generated data and where loading pods can read the data from.
+ Manifest is expected in 'pvc-bexhoma-data.yml'
+ """
+ app = self.appname
+ # get data directory
+ pvcs = self.get_pvc(app=app, component='data-source', experiment='', configuration='')
+ if len(pvcs) > 0:
+ print("{:30s}: is running".format("Data Directory"))
+ return
+ else:
+ print("{:30s}: is starting...".format("Data Directory"), end="", flush=True)
+ deployment = 'pvc-bexhoma-data.yml'
+ self.kubectl('create -f '+self.yamlfolder+deployment)
+ while (not len(self.get_pvc(app=app, component='data-source', experiment='', configuration=''))):
+ self.wait(10, silent=True)
+ print("done")
+ return
+ def start_resultdir(self):
+ """
+ Starts the result directory in a shared filesystem.
+ This is where benchmark execution pods can store result data and where the evaluation pods can read results from.
+ Also collected metrics will be stored there.
+ Manifest is expected in 'pvc-bexhoma-results.yml'
+ """
+ app = self.appname
+ # get result directory
+ pvcs = self.get_pvc(app=app, component='results', experiment='', configuration='')
+ if len(pvcs) > 0:
+ print("{:30s}: is running".format("Result Directory"))
+ return
+ else:
+ print("{:30s}: is starting...".format("Result Directory"), end="", flush=True)
+ deployment = 'pvc-bexhoma-results.yml'
+ self.kubectl('create -f '+self.yamlfolder+deployment)
+ while (not len(self.get_pvc(app=app, component='results', experiment='', configuration=''))):
+ self.wait(10, silent=True)
+ print("done")
+ return
def get_dashboard_pod_name(self, app='', component='dashboard'):
"""
Returns the name of the dashboard pod.
@@ -1357,7 +1471,7 @@ def stop_maintaining(self, experiment='', configuration=''):
# status per job
for job in jobs:
success = self.get_job_status(job)
- print(job, success)
+ self.logger.debug("Job and status {} {}".format(job, success))
self.delete_job(job)
# all pods to these jobs - automatically stopped?
#self.get_job_pods(app, component, experiment, configuration)
diff --git a/bexhoma/configurations.py b/bexhoma/configurations.py
index 493a0340..2ddcc382 100644
--- a/bexhoma/configurations.py
+++ b/bexhoma/configurations.py
@@ -115,6 +115,7 @@ def __init__(self, experiment, docker=None, configuration='', script=None, alias
self.code = self.experiment.cluster.code
self.path = self.experiment.path
self.resources = {}
+ self.storage = {}
self.pod_sut = '' #: Name of the sut's master pod
self.set_resources(**self.experiment.resources)
self.set_ddl_parameters(**self.experiment.ddl_parameters)
@@ -145,6 +146,7 @@ def __init__(self, experiment, docker=None, configuration='', script=None, alias
self.prometheus_timeout = experiment.prometheus_timeout
self.maintaining_active = experiment.maintaining_active
self.loading_active = experiment.loading_active
+ self.monitor_loading = True #: Fetch metrics for the loading phase, if monĂtoring is active - this is set to False when loading is skipped due to PV
self.jobtemplate_maintaining = ""
self.jobtemplate_loading = ""
#self.parallelism = 1
@@ -200,20 +202,22 @@ def wait(self, sec, silent=False):
:param sec: Number of seconds to wait
:param silent: True means we do not output anything about this waiting
"""
- if not silent:
- print("Waiting "+str(sec)+"s...", end="", flush=True)
- intervals = int(sec)
- time.sleep(intervals)
- if not silent:
- print("done")
- def delay(self, sec):
+ #if not silent:
+ # print("Waiting "+str(sec)+"s...", end="", flush=True)
+ #intervals = int(sec)
+ #time.sleep(intervals)
+ #if not silent:
+ # print("done")
+ return self.experiment.cluster.wait(sec, silent)
+ def delay(self, sec, silent=False):
"""
Function for waiting some time and inform via output about this.
Synonymous for wait()
:param sec: Number of seconds to wait
+ :param silent: True means we do not output anything about this waiting
"""
- self.wait(sec)
+ self.wait(sec, silent)
def OLD_get_items(self, app='', component='', experiment='', configuration=''):
if len(app) == 0:
app = self.experiment.cluster.appname
@@ -259,7 +263,8 @@ def set_storage(self, **kwargs):
:param kwargs: Dict of meta data, example 'storageSize' => '100Gi'
"""
- self.storage = kwargs
+ self.storage = {**self.storage, **kwargs}
+ #self.storage = kwargs
def set_additional_labels(self, **kwargs):
"""
Sets additional labels, that will be put to K8s objects (and ignored otherwise).
@@ -599,7 +604,7 @@ def start_loading(self, delay=0):
# print(pod_sut, status)
# self.wait(10)
# status = self.experiment.cluster.get_pod_status(pod_sut)
- print("check if {} is running".format(pod_sut))
+ self.logger.debug("check if {} is running".format(pod_sut))
services = self.experiment.cluster.get_services(app, component, self.experiment.code, configuration)
service = services[0]
ports = self.experiment.cluster.get_ports_of_service(app, component, self.experiment.code, configuration)
@@ -720,7 +725,7 @@ def start_monitoring(self, app='', component='monitoring', experiment='', config
#if not os.path.isfile(self.yamlfolder+self.deployment):
name = self.create_monitoring(app, component, experiment, configuration)
name_sut = self.create_monitoring(app, 'sut', experiment, configuration)
- print("start_monitoring of {}".format(name_sut))
+ print("{:30s}: start monitoring with prometheus pod".format(configuration))
deployment_experiment = self.experiment.path+'/{name}.yml'.format(name=name)
with open(self.experiment.cluster.yamlfolder+deployment) as stream:
try:
@@ -869,21 +874,31 @@ def stop_maintaining(self, app='', component='maintaining', experiment='', confi
print(pod, status)
#if status == "Running":
# TODO: Find names of containers dynamically
- container = 'datagenerator'
- stdout = self.experiment.cluster.pod_log(pod=pod, container=container)
- #stdin, stdout, stderr = self.pod_log(client_pod_name)
- filename_log = self.path+'/'+pod+'.'+container+'.log'
- f = open(filename_log, "w")
- f.write(stdout)
- f.close()
+ containers = self.experiment.cluster.get_pod_containers(pod)
+ for container in containers:
+ stdout = self.experiment.cluster.pod_log(pod=pod, container=container)
+ #stdin, stdout, stderr = self.pod_log(client_pod_name)
+ filename_log = self.path+'/'+pod+'.'+container+'.log'
+ f = open(filename_log, "w")
+ f.write(stdout)
+ f.close()
+ #container = 'datagenerator'
+ #if container in containers:
+ # stdout = self.experiment.cluster.pod_log(pod=pod, container=container)
+ # #stdin, stdout, stderr = self.pod_log(client_pod_name)
+ # filename_log = self.path+'/'+pod+'.'+container+'.log'
+ # f = open(filename_log, "w")
+ # f.write(stdout)
+ # f.close()
#
- container = 'sensor'
- stdout = self.experiment.cluster.pod_log(pod=pod, container='sensor')
- #stdin, stdout, stderr = self.pod_log(client_pod_name)
- filename_log = self.path+'/'+pod+'.'+container+'.log'
- f = open(filename_log, "w")
- f.write(stdout)
- f.close()
+ #container = 'sensor'
+ #if container in containers:
+ # stdout = self.experiment.cluster.pod_log(pod=pod, container='sensor')
+ # #stdin, stdout, stderr = self.pod_log(client_pod_name)
+ # filename_log = self.path+'/'+pod+'.'+container+'.log'
+ # f = open(filename_log, "w")
+ # f.write(stdout)
+ # f.close()
self.experiment.cluster.delete_pod(pod)
def stop_loading(self, app='', component='loading', experiment='', configuration=''):
"""
@@ -982,9 +997,12 @@ def start_sut(self, app='', component='sut', experiment='', configuration=''):
name = self.generate_component_name(app=app, component=component, experiment=experiment, configuration=configuration)
name_worker = self.generate_component_name(app=app, component='worker', experiment=experiment, configuration=configuration)
if self.storage['storageConfiguration']:
- name_pvc = self.generate_component_name(app=app, component='storage', experiment=self.storage_label, configuration=self.storage['storageConfiguration'])
+ storageConfiguration = self.storage['storageConfiguration']
+ #name_pvc = self.generate_component_name(app=app, component='storage', experiment=self.storage_label, configuration=self.storage['storageConfiguration'])
else:
- name_pvc = self.generate_component_name(app=app, component='storage', experiment=self.storage_label, configuration=configuration)
+ storageConfiguration = configuration
+ #name_pvc = self.generate_component_name(app=app, component='storage', experiment=self.storage_label, configuration=configuration)
+ name_pvc = self.generate_component_name(app=app, component='storage', experiment=self.storage_label, configuration=storageConfiguration)
self.logger.debug('configuration.start_sut(name={})'.format(name))
deployments = self.experiment.cluster.get_deployments(app=app, component=component, experiment=experiment, configuration=configuration)
if len(deployments) > 0:
@@ -1033,7 +1051,7 @@ def start_sut(self, app='', component='sut', experiment='', configuration=''):
#self.service = dep['metadata']['name']
dep['metadata']['labels']['app'] = app
dep['metadata']['labels']['component'] = 'storage'
- dep['metadata']['labels']['configuration'] = configuration
+ dep['metadata']['labels']['configuration'] = storageConfiguration
dep['metadata']['labels']['experiment'] = self.storage_label
dep['metadata']['labels']['dbms'] = self.docker
dep['metadata']['labels']['volume'] = self.volume
@@ -1049,26 +1067,34 @@ def start_sut(self, app='', component='sut', experiment='', configuration=''):
dep['spec']['resources']['requests']['storage'] = self.storage['storageSize']
#print(dep['spec']['accessModes']) # list
#print(dep['spec']['resources']['requests']['storage'])
- pvcs = self.experiment.cluster.get_pvc(app=app, component='storage', experiment=self.storage_label, configuration=configuration)
+ pvcs = self.experiment.cluster.get_pvc(app=app, component='storage', experiment=self.storage_label, configuration=storageConfiguration)
#print(pvcs)
if len(pvcs) > 0:
- print("Storage {} exists".format(name_pvc))
+ print("{:30s}: storage exists {}".format(configuration, name_pvc))
+ #print("Storage {} exists".format(name_pvc))
yaml_deployment['spec']['template']['metadata']['labels']['storage_exists'] = "True"
- pvcs_labels = self.experiment.cluster.get_pvc_labels(app=app, component='storage', experiment=self.storage_label, configuration=configuration)
+ pvcs_labels = self.experiment.cluster.get_pvc_labels(app=app, component='storage', experiment=self.storage_label, configuration=storageConfiguration)
self.logger.debug(pvcs_labels)
if len(pvcs_labels) > 0:
pvc_labels = pvcs_labels[0]
- if 'loaded' in pvc_labels:
- yaml_deployment['spec']['template']['metadata']['labels']['loaded'] = pvc_labels['loaded']
- if 'timeLoading' in pvc_labels:
- yaml_deployment['spec']['template']['metadata']['labels']['timeLoading'] = pvc_labels['timeLoading']
- if 'timeLoadingStart' in pvc_labels:
- yaml_deployment['spec']['template']['metadata']['labels']['timeLoadingStart'] = pvc_labels['timeLoadingStart']
- if 'timeLoadingEnd' in pvc_labels:
- yaml_deployment['spec']['template']['metadata']['labels']['timeLoadingEnd'] = pvc_labels['timeLoadingEnd']
+ copy_labels = ['loaded', 'timeLoading', 'timeLoadingStart', 'timeLoadingEnd', 'indexed', 'time_generated', 'time_indexed', 'time_ingested', 'time_initconstraints', 'time_initindexes', 'time_initschema', 'time_initstatistics', 'time_loaded']
+ for label in copy_labels:
+ if label in pvc_labels:
+ yaml_deployment['spec']['template']['metadata']['labels'][label] = pvc_labels[label]
+ #if 'loaded' in pvc_labels:
+ # yaml_deployment['spec']['template']['metadata']['labels']['loaded'] = pvc_labels['loaded']
+ #if 'timeLoading' in pvc_labels:
+ # yaml_deployment['spec']['template']['metadata']['labels']['timeLoading'] = pvc_labels['timeLoading']
+ #if 'timeLoadingStart' in pvc_labels:
+ # yaml_deployment['spec']['template']['metadata']['labels']['timeLoadingStart'] = pvc_labels['timeLoadingStart']
+ #if 'timeLoadingEnd' in pvc_labels:
+ # yaml_deployment['spec']['template']['metadata']['labels']['timeLoadingEnd'] = pvc_labels['timeLoadingEnd']
del result[key]
# we do not need loading pods
+ #print("Loading is set to finished")
+ print("{:30s}: loading is set to finished".format(configuration))
self.loading_active = False
+ self.monitor_loading = False
if dep['kind'] == 'StatefulSet':
if self.num_worker == 0:
del result[key]
@@ -1351,7 +1377,7 @@ def start_sut(self, app='', component='sut', experiment='', configuration=''):
stream.write(yaml.dump_all(result))
except yaml.YAMLError as exc:
print(exc)
- print("Deploy "+deployment_experiment)
+ self.logger.debug("Deploy "+deployment_experiment)
self.experiment.cluster.kubectl('create -f '+deployment_experiment)
#if self.experiment.monitoring_active:
# self.start_monitoring()
@@ -1379,9 +1405,13 @@ def stop_sut(self, app='', component='sut', experiment='', configuration=''):
use_storage = self.use_storage()
if use_storage:
# remove the storage
- name_pvc = self.generate_component_name(app=app, component='storage', experiment=self.storage_label, configuration=configuration)
+ if self.storage['storageConfiguration']:
+ storageConfiguration = self.storage['storageConfiguration']
+ else:
+ storageConfiguration = configuration
+ name_pvc = self.generate_component_name(app=app, component='storage', experiment=self.storage_label, configuration=storageConfiguration)
self.experiment.cluster.delete_pvc(name_pvc)
- worker_pvcs = self.experiment.cluster.get_pvc(app=app, component='worker', experiment=experiment, configuration=configuration)
+ worker_pvcs = self.experiment.cluster.get_pvc(app=app, component='worker', experiment=experiment, configuration=storageConfiguration)
for name_pvc in worker_pvcs:
self.experiment.cluster.delete_pvc(name_pvc)
deployments = self.experiment.cluster.get_deployments(app=app, component=component, experiment=experiment, configuration=configuration)
@@ -1788,52 +1818,6 @@ def get_connection_config(self, connection, alias='', dialect='', serverip='loca
c['JDBC']['url'] = c['JDBC']['url'].format(serverip=serverip, dbname=self.experiment.volume, DBNAME=self.experiment.volume.upper(), timout_s=c['connectionmanagement']['timeout'], timeout_ms=c['connectionmanagement']['timeout']*1000)
#print(c)
return c#.copy()
- def OLD_fetch_metrics_loading(self, connection=None, configuration=''):
- self.logger.debug('configuration.fetch_metrics()')
- # set general parameter
- resultfolder = self.experiment.cluster.config['benchmarker']['resultfolder']
- experiments_configfolder = self.experiment.cluster.experiments_configfolder
- if connection is None:
- connection = self.configuration
- if len(configuration) == 0:
- configuration = connection
- code = self.code
- # get connection config (sut)
- monitoring_host = self.generate_component_name(component='monitoring', configuration=configuration, experiment=self.code)
- service_name = self.get_service_sut(configuration=configuration)#self.generate_component_name(component='sut', configuration=configuration, experiment=self.code)
- service_namespace = self.experiment.cluster.contextdata['namespace']
- service_host = self.experiment.cluster.contextdata['service_sut'].format(service=service_name, namespace=service_namespace)
- pods = self.experiment.cluster.get_pods(component='sut', configuration=configuration, experiment=self.code)
- self.pod_sut = pods[0]
- c = self.get_connection_config(connection, serverip=service_host, monitoring_host=monitoring_host)
- print(c)
- connection_data = c
- connection_name = connection
- time_start = int(self.timeLoadingStart)
- time_end = int(self.timeLoadingEnd)
- query = "loading"
- # store configuration
- basepath_local = self.path+'/'
- basepath_remote = '/results/'+str(self.code)+'/'
- file = c['name']+'.config'
- file_local = basepath_local+file
- file_remote = basepath_remote+file
- with open(file_local, 'w') as f:
- f.write(str([c]))
- # find dashboard pod
- pods = self.experiment.cluster.get_pods(component='dashboard')
- if len(pods) > 0:
- pod_dashboard = pods[0]
- # copy to dashboard
- stdout = self.experiment.cluster.kubectl('cp '+file_local+" "+pod_dashboard+':'+file_remote)
- self.logger.debug('copy configuration.config: {}'.format(stdout))
- cmd = {}
- cmd['fetch_loading_metrics'] = 'python metrics.py -r /results/ -cf {} -c {} -e {} -ts {} -te {}'.format(file, connection, self.code, self.timeLoadingStart, self.timeLoadingEnd)
- stdin, stdout, stderr = self.experiment.cluster.execute_command_in_pod(command=cmd['fetch_loading_metrics'], pod=pod_dashboard, container="dashboard")
- print(stdin, stdout, stderr)
- #for m, metric in connection_data['monitoring']['metrics'].items():
- # print("Metric", m)
- # monitor.metrics.fetchMetric(query, m, connection_name, connection_data, time_start, time_end, '{result_path}/{code}/'.format(result_path=resultfolder, code=code))
def run_benchmarker_pod(self,
connection=None,
alias='',
@@ -1898,6 +1882,11 @@ def run_benchmarker_pod(self,
#service_port = config_K8s['port']
c = self.get_connection_config(connection, alias, dialect, serverip=service_host, monitoring_host=monitoring_host)#config_K8s['ip'])
#c['parameter'] = {}
+ # add parameters to connection
+ if len(self.loading_parameters):
+ self.connection_parameter['loading_parameters'] = self.loading_parameters
+ if len(self.benchmarking_parameters):
+ self.connection_parameter['benchmarking_parameters'] = self.benchmarking_parameters
c['parameter'] = self.eval_parameters
c['parameter']['parallelism'] = parallelism
c['parameter']['client'] = client
@@ -1926,6 +1915,7 @@ def run_benchmarker_pod(self,
#self.benchmark.code = '1611607321'
self.code = self.benchmark.code
#print("Code", self.code)
+ print("{:30s}: benchmarking results in folder {}".format(configuration, self.benchmark.path))
self.logger.debug('configuration.run_benchmarker_pod(Code={})'.format(self.code))
# read config for benchmarker
# empty template:
@@ -2012,7 +2002,7 @@ def run_benchmarker_pod(self,
client_pod_name = pods[0]
status = self.experiment.cluster.get_pod_status(client_pod_name)
self.logger.debug('Pod={} has status={}'.format(client_pod_name, status))
- print("Waiting for job {}: ".format(client_pod_name), end="", flush=True)
+ print("{:30s}: benchmarking is waiting for job {}: ".format(configuration, client_pod_name), end="", flush=True)
while status != "Running" and status != "Succeeded":
self.logger.debug('Pod={} has status={}'.format(client_pod_name, status))
print(".", end="", flush=True)
@@ -2061,8 +2051,9 @@ def run_benchmarker_pod(self,
self.logger.debug('copy config protocol.json: {}'.format(stdout))
"""
# get monitoring for loading
- if self.monitoring_active:
+ if self.monitoring_active and self.monitor_loading:
cmd = {}
+ print("{:30s}: collecting loading metrics of SUT".format(connection))
#cmd['fetch_loading_metrics'] = 'python metrics.py -r /results/ -c {} -cf {} -f {} -e {} -ts {} -te {}'.format(connection, c['name']+'.config', '/results/'+self.code, self.code, self.timeLoadingStart, self.timeLoadingEnd)
cmd['fetch_loading_metrics'] = 'python metrics.py -r /results/ -db -ct loading -c {} -cf {} -f {} -e {} -ts {} -te {}'.format(
connection,
@@ -2084,6 +2075,7 @@ def run_benchmarker_pod(self,
endpoints_cluster = self.experiment.cluster.get_service_endpoints(service_name="bexhoma-service-monitoring-default")
if len(endpoints_cluster)>0:
# data generator container
+ print("{:30s}: collecting metrics of data generator".format(connection))
cmd['fetch_loader_metrics'] = 'python metrics.py -r /results/ -db -ct datagenerator -cn datagenerator -c {} -cf {} -f {} -e {} -ts {} -te {}'.format(
connection,
c['name']+'.config',
@@ -2100,6 +2092,7 @@ def run_benchmarker_pod(self,
stdout = self.experiment.cluster.kubectl(cmd['upload_connection_file'])
self.logger.debug(stdout)
# data injector container "sensor"
+ print("{:30s}: collecting metrics of data injector".format(connection))
cmd['fetch_loader_metrics'] = 'python metrics.py -r /results/ -db -ct loader -cn sensor -c {} -cf {} -f {} -e {} -ts {} -te {}'.format(
connection,
c['name']+'.config',
@@ -2230,7 +2223,7 @@ def check_load_data(self):
jobs = self.experiment.cluster.get_jobs(app, component, self.code, configuration)
# status per job
for job in jobs:
- print("Found running job", job)
+ self.experiment.cluster.logger.debug("Found running job {}".format(job))
success = self.experiment.cluster.get_job_status(job)
self.experiment.cluster.logger.debug('job {} has success status {}'.format(job, success))
#print(job, success)
@@ -2238,15 +2231,22 @@ def check_load_data(self):
pods = self.experiment.cluster.get_job_pods(app=app, component=component, experiment=experiment, configuration=configuration)
for pod in pods:
status = self.experiment.cluster.get_pod_status(pod)
- print(pod, status)
+ self.experiment.cluster.logger.debug("Pod {} has status {}".format(pod, status))
if status == "Succeeded":
- container = 'datagenerator'
- if not self.experiment.cluster.pod_log_exists(pod_name=pod, container=container):
- print("Store logs of job {} pod {}".format(job, pod))
- self.experiment.cluster.store_pod_log(pod_name=pod, container=container)
- container = 'sensor'
- if not self.experiment.cluster.pod_log_exists(pod_name=pod, container=container):
- self.experiment.cluster.store_pod_log(pod_name=pod, container=container)
+ containers = self.experiment.cluster.get_pod_containers(pod)
+ for container in containers:
+ if not self.experiment.cluster.pod_log_exists(pod_name=pod, container=container):
+ self.experiment.cluster.logger.debug("Store logs of job {} pod {} container {}".format(job, pod, container))
+ self.experiment.cluster.store_pod_log(pod_name=pod, container=container)
+ #container = 'datagenerator'
+ #if container in containers:
+ # if not self.experiment.cluster.pod_log_exists(pod_name=pod, container=container):
+ # self.experiment.cluster.logger.debug("Store logs of job {} pod {}".format(job, pod))
+ # self.experiment.cluster.store_pod_log(pod_name=pod, container=container)
+ #container = 'sensor'
+ #if container in containers:
+ # if not self.experiment.cluster.pod_log_exists(pod_name=pod, container=container):
+ # self.experiment.cluster.store_pod_log(pod_name=pod, container=container)
if success:
self.experiment.cluster.logger.debug('job {} will be suspended and parallel loading will be considered finished'.format(job, success))
# get labels (start) of sut
@@ -2270,15 +2270,21 @@ def check_load_data(self):
#pods = self.experiment.cluster.get_job_pods(app=app, component=component, experiment=experiment, configuration=configuration)
for pod in pods:
status = self.experiment.cluster.get_pod_status(pod)
- print(pod, status)
- print("Store logs of job {} pod {}".format(job, pod))
+ self.experiment.cluster.logger.debug("Pod {} has status {}".format(pod, status))
+ self.experiment.cluster.logger.debug("Store logs of job {} pod {}".format(job, pod))
#if status == "Running":
# TODO: Find names of containers dynamically
- container = 'datagenerator'
- self.experiment.cluster.store_pod_log(pod_name=pod, container=container)
- container = 'sensor'
- self.experiment.cluster.store_pod_log(pod_name=pod, container=container)
+ containers = self.experiment.cluster.get_pod_containers(pod)
+ for container in containers:
+ self.experiment.cluster.store_pod_log(pod_name=pod, container=container)
self.experiment.cluster.delete_pod(pod)
+ #container = 'datagenerator'
+ #if container in containers:
+ # self.experiment.cluster.store_pod_log(pod_name=pod, container=container)
+ #container = 'sensor'
+ #if container in containers:
+ # self.experiment.cluster.store_pod_log(pod_name=pod, container=container)
+ # self.experiment.cluster.delete_pod(pod)
self.experiment.end_loading(job)
self.experiment.cluster.delete_job(job)
loading_pods_active = False
@@ -2304,6 +2310,7 @@ def check_load_data(self):
#self.experiment.cluster.logger.debug(float(self.timeLoadingEnd))
#self.experiment.cluster.logger.debug(float(self.timeLoadingStart))
#self.timeLoading = float(self.timeLoading) + float(timeLoading)
+ print("{:30s}: showing loader times".format(self.configuration))
timing_datagenerator, timing_sensor, timing_total = self.experiment.get_job_timing_loading(job)
generator_time = 0
loader_time = 0
@@ -2313,27 +2320,27 @@ def check_load_data(self):
self.loading_timespans['sensor'] = timing_sensor
self.loading_timespans['total'] = timing_total
if len(timing_datagenerator) > 0:
- print([end-start for (start,end) in timing_datagenerator])
+ self.experiment.cluster.logger.debug("Generator times (duration per pod [s]): {}".format([end-start for (start,end) in timing_datagenerator]))
timing_start = min([start for (start,end) in timing_datagenerator])
timing_end = max([end for (start,end) in timing_datagenerator])
total_time = timing_end - timing_start
generator_time = total_time
- print("Generator", total_time)
+ print("{:30s}: generator timespan (first to last [s]) = {}".format(self.configuration, total_time))
#timing_sensor = extract_timing(jobname, container="sensor")
if len(timing_sensor) > 0:
- print([end-start for (start,end) in timing_sensor])
+ self.experiment.cluster.logger.debug("Loader times (duration per pod [s]): {}".format([end-start for (start,end) in timing_sensor]))
timing_start = min([start for (start,end) in timing_sensor])
timing_end = max([end for (start,end) in timing_sensor])
total_time = timing_end - timing_start
loader_time = total_time
- print("Loader", total_time)
+ print("{:30s}: loader timespan (first to last [s]) = {}".format(self.configuration, total_time))
if len(timing_datagenerator) > 0 and len(timing_sensor) > 0:
timing_total = timing_datagenerator + timing_sensor
- print(timing_total)
+ self.experiment.cluster.logger.debug("Total times (start/end per pod and container): {}".format(timing_total))
timing_start = min([start for (start,end) in timing_total])
timing_end = max([end for (start,end) in timing_total])
total_time = timing_end - timing_start
- print("Total", total_time)
+ print("{:30s}: total timespan (first to last [s]) = {}".format(self.configuration, total_time))
now = datetime.utcnow()
now_string = now.strftime('%Y-%m-%d %H:%M:%S')
time_now = str(datetime.now())
@@ -2442,10 +2449,18 @@ def check_load_data(self):
self.timeLoadingEnd = int(pod_labels[pod]['timeLoadingEnd'])
if 'timeLoading' in pod_labels[pod]:
self.timeLoading = float(pod_labels[pod]['timeLoading'])
+ if 'time_loaded' in pod_labels[pod]:
+ self.timeSchema = float(pod_labels[pod]['time_loaded']) # stays at pre-ingestion total, even after ingestion and post-ingestion?
+ if 'time_generated' in pod_labels[pod]:
+ self.timeGenerating = float(pod_labels[pod]['time_generated'])
+ if 'time_ingested' in pod_labels[pod]:
+ self.timeIngesting = float(pod_labels[pod]['time_ingested'])
for key, value in pod_labels[pod].items():
if key.startswith("time_"):
time_type = key[len("time_"):]
self.times_scripts[time_type] = float(value)
+ # timeLoadingEnd="{}" timeLoadingStart="{}" time_ingested={} timeLoading={} time_generated={}'.format(self.timeLoadingEnd, self.timeLoadingStart, loader_time, self.timeLoading, generator_time)
+ #self.timeLoading = int(self.timeLoadingEnd) - int(self.timeLoadingStart) + self.timeLoading
else:
# if there are no labels at this pod, loading has not been started or finished
# maybe sut has been restarted? then loading may have been stared though
@@ -2471,11 +2486,15 @@ def load_data(self, scripts, time_offset=0, time_start_int=0, script_type='loade
use_storage = self.use_storage()
if use_storage:
#storage_label = 'tpc-ds-1'
- name_pvc = self.generate_component_name(app=self.appname, component='storage', experiment=self.storage_label, configuration=self.configuration)
+ if self.storage['storageConfiguration']:
+ storageConfiguration = self.storage['storageConfiguration']
+ else:
+ storageConfiguration = self.configuration
+ name_pvc = self.generate_component_name(app=self.appname, component='storage', experiment=self.storage_label, configuration=storageConfiguration)
volume = name_pvc
else:
volume = ''
- print("start loading asynch {}".format(self.pod_sut))
+ print("{:30s}: start asynch loading scripts of type {}".format(self.configuration, script_type))
self.logger.debug("load_data_asynch(app="+self.appname+", component='sut', experiment="+self.code+", configuration="+self.configuration+", pod_sut="+self.pod_sut+", scriptfolder="+scriptfolder+", commands="+str(commands)+", loadData="+self.dockertemplate['loadData']+", path="+self.experiment.path+", volume="+volume+", context="+self.experiment.cluster.context+", service_name="+service_name+", time_offset="+str(time_offset)+", time_start_int="+str(time_start_int)+", script_type="+str(script_type)+")")
#result = load_data_asynch(app=self.appname, component='sut', experiment=self.code, configuration=self.configuration, pod_sut=self.pod_sut, scriptfolder=scriptfolder, commands=commands, loadData=self.dockertemplate['loadData'], path=self.experiment.path)
thread_args = {'app':self.appname, 'component':'sut', 'experiment':self.code, 'configuration':self.configuration, 'pod_sut':self.pod_sut, 'scriptfolder':scriptfolder, 'commands':commands, 'loadData':self.dockertemplate['loadData'], 'path':self.experiment.path, 'volume':volume, 'context':self.experiment.cluster.context, 'service_name':service_name, 'time_offset':time_offset, 'script_type':script_type, 'time_start_int':time_start_int}
@@ -2492,7 +2511,7 @@ def get_patched_yaml(self, file, patch=""):
"""
if len(patch) > 0:
merged = hiyapyco.load([file, patch], method=hiyapyco.METHOD_MERGE)
- print(hiyapyco.dump(merged, default_flow_style=False))
+ self.logger.debug(hiyapyco.dump(merged, default_flow_style=False))
stream = StringIO(hiyapyco.dump(merged)) # convert string to stream
result = yaml.safe_load_all(stream)
result = [data for data in result]
@@ -2700,6 +2719,7 @@ def create_manifest_benchmarking(self, connection, app='', component='benchmarke
now_string = now.strftime('%Y-%m-%d %H:%M:%S')
start = now + timedelta(seconds=240)
start_string = start.strftime('%Y-%m-%d %H:%M:%S')
+ # store parameters in connection for evaluation
e = {'DBMSBENCHMARKER_NOW': now_string,
'DBMSBENCHMARKER_START': 0,#start_string, # wait until (=0 do not wait)
'DBMSBENCHMARKER_CLIENT': str(parallelism),
@@ -2792,7 +2812,7 @@ def create_manifest_loading(self, app='', component='loading', experiment='', co
#print("self.loading_parameters", self.loading_parameters)
#env = self.loading_parameters
env = {**env, **self.loading_parameters}
- print("create_manifest_loading:env=", env)
+ self.logger.debug("create_manifest_loading:env={}".format(env))
template = "jobtemplate-loading.yml"
if len(self.experiment.jobtemplate_loading) > 0:
template = self.experiment.jobtemplate_loading
diff --git a/bexhoma/evaluators.py b/bexhoma/evaluators.py
index 82c5993d..cc7a12ef 100644
--- a/bexhoma/evaluators.py
+++ b/bexhoma/evaluators.py
@@ -31,6 +31,8 @@
import pickle
import json
import traceback
+import ast
+from dbmsbenchmarker import monitor
def natural_sort(l):
convert = lambda text: int(text) if text.isdigit() else text.lower()
@@ -144,7 +146,7 @@ def end_benchmarking(self, jobname):
directory = os.fsencode(path)
for file in os.listdir(directory):
filename = os.fsdecode(file)
- if filename.startswith("bexhoma-benchmarker-"+jobname) and filename.endswith(".log"):
+ if filename.startswith("bexhoma-benchmarker-"+jobname) and filename.endswith(".dbmsbenchmarker.log"):
#print(filename)
df = self.log_to_df(path+"/"+filename)
#print(df)
@@ -223,11 +225,11 @@ def transform_all_logs_benchmarking(self):
directory = os.fsencode(self.path)
for file in os.listdir(directory):
filename = os.fsdecode(file)
- if filename.startswith("bexhoma-benchmarker") and filename.endswith(".log"):
+ if filename.startswith("bexhoma-benchmarker") and filename.endswith(".dbmsbenchmarker.log"):
#print("filename:", filename)
pod_name = filename[filename.rindex("-")+1:-len(".log")]
#print("pod_name:", pod_name)
- jobname = filename[len("bexhoma-benchmarker-"):-len("-"+pod_name+".log")]
+ jobname = filename[len("bexhoma-benchmarker-"):-len("-"+pod_name+".dbmsbenchmarker.log")]
#print("jobname:", jobname)
self.end_benchmarking(jobname)
def transform_all_logs_loading(self):
@@ -273,7 +275,10 @@ def get_df_loading(self):
:return: DataFrame of loading results
"""
filename = "bexhoma-loading.all.df.pickle"
- df = pd.read_pickle(self.path+"/"+filename)
+ if os.path.isfile(self.path+"/"+filename):
+ df = pd.read_pickle(self.path+"/"+filename)
+ else:
+ df = pd.DataFrame()
#df#.sort_values(["configuration", "pod"])
return df
def plot(self, df, column, x, y, plot_by=None, kind='line', dict_colors=None, figsize=(12,8)):
@@ -378,16 +383,92 @@ def test_results(self):
try:
if self.include_benchmarking:
df = self.get_df_benchmarking()
- print(df)
+ if not df.empty:
+ print("Benchmarking", df)
self.workflow = self.reconstruct_workflow(df)
- print(self.workflow)
+ if not len(self.workflow) == 0:
+ print("Workflow", self.workflow)
if self.include_loading:
df = self.get_df_loading()
- print(df)
+ if not df.empty:
+ print("Loading", df)
return 0
except Exception as e:
print(e)
return 1
+ def transform_monitoring_results(self, component="loading"):
+ """
+ Creates combined metrics.csv.
+ For example
+ query_datagenerator_metric_total_cpu_util_MonetDB-NIL-1-1.csv
+ query_datagenerator_metric_total_cpu_util_MonetDB-NIL-1-2.csv
+ are combined to
+ query_datagenerator_metric_total_cpu_util.csv
+ """
+ connections_sorted = self.get_connection_config()
+ list_metrics = self.get_monitoring_metrics()
+ #print(c['name'], list_metrics)
+ for m in list_metrics:
+ df_all = None
+ for connection in connections_sorted:
+ if 'orig_name' in connection:
+ connectionname = connection['orig_name']
+ else:
+ connectionname = connection['name']
+ filename = "query_{component}_metric_{metric}_{connection}.csv".format(component=component, metric=m, connection=connectionname)
+ #print(self.path++"/"+filename)
+ df = monitor.metrics.loadMetricsDataframe(self.path+"/"+filename)
+ if df is None:
+ continue
+ #print(df)
+ df.columns=[connectionname]
+ if df_all is None:
+ df_all = df
+ else:
+ df_all = df_all.merge(df, how='outer', left_index=True,right_index=True)
+ #print(df_all)
+ filename = '/query_{component}_metric_{metric}.csv'.format(component=component, metric=m)
+ #print(self.path+filename)
+ monitor.metrics.saveMetricsDataframe(self.path+"/"+filename, df_all)
+ def get_monitoring_metric(self, metric, component="loading"):
+ """
+ Returns list of names of metrics using during monitoring.
+
+ :return: List of monitoring metrics
+ """
+ filename = '/query_{component}_metric_{metric}.csv'.format(component=component, metric=metric)
+ if os.path.isfile(self.path+"/"+filename):
+ df = pd.read_csv(self.path+"/"+filename).T
+ #print(df)
+ df = df.reindex(index=natural_sort(df.index))
+ return df.T
+ else:
+ return pd.DataFrame()
+ def get_monitoring_metrics(self):
+ """
+ Returns list of names of metrics using during monitoring.
+
+ :return: List of monitoring metrics
+ """
+ connections_sorted = self.get_connection_config()
+ for c in connections_sorted:
+ if 'monitoring' in c and 'metrics' in c['monitoring']:
+ list_metrics = list(c['monitoring']['metrics'].keys())
+ else:
+ list_metrics = []
+ break
+ return list_metrics
+ def get_connection_config(self):
+ """
+ Returns connection.config as Python dict.
+ Items are sorted by connection name.
+
+ :return: Python dict of all connection informations
+ """
+ with open(self.path+"/connections.config",'r') as inf:
+ connections = ast.literal_eval(inf.read())
+ connections_sorted = sorted(connections, key=lambda c: c['name'])
+ return connections_sorted
@@ -421,6 +502,13 @@ def log_to_df(self, filename):
target = re.findall('YCSB_TARGET (.+?)\n', stdout)[0]
threads = re.findall('YCSB_THREADCOUNT (.+?)\n', stdout)[0]
workload = re.findall('YCSB_WORKLOAD (.+?)\n', stdout)[0]
+ operations = re.findall('YCSB_OPERATIONS (.+?)\n', stdout)[0]
+ batchsize = re.findall('YCSB_BATCHSIZE:(.+?)\n', stdout)
+ if len(batchsize)>0:
+ # information found
+ batchsize = int(batchsize[0])
+ else:
+ batchsize = -1
#workload = "A"
pod_count = re.findall('NUM_PODS (.+?)\n', stdout)[0]
result = []
@@ -434,7 +522,7 @@ def log_to_df(self, filename):
#print(result)
#return
list_columns = [value[0]+"."+value[1] for value in result]
- list_values = [connection_name, configuration_name, experiment_run, client, pod_name, pod_count, threads, target, sf, workload]
+ list_values = [connection_name, configuration_name, experiment_run, client, pod_name, pod_count, threads, target, sf, workload, operations, batchsize]
list_measures = [value[2] for value in result]
#list_values = [connection_name, configuration_name, experiment_run, pod_name].append([value[2] for value in result])
#print(list_columns)
@@ -445,7 +533,7 @@ def log_to_df(self, filename):
#print(list_values)
df = pd.DataFrame(list_values)
df = df.T
- columns = ['connection', 'configuration', 'experiment_run', 'client', 'pod', 'pod_count', 'threads', 'target', 'sf', 'workload']
+ columns = ['connection', 'configuration', 'experiment_run', 'client', 'pod', 'pod_count', 'threads', 'target', 'sf', 'workload', 'operations', 'batchsize']
columns.extend(list_columns)
#print(columns)
df.columns = columns
@@ -540,7 +628,7 @@ def benchmarking_aggregate_by_parallel_pods(self, df):
:param df: DataFrame of results
:return: DataFrame of results
"""
- column = "connection"
+ column = ["connection","experiment_run"]
df_aggregated = pd.DataFrame()
for key, grp in df.groupby(column):
#print(key, len(grp.index))
@@ -614,13 +702,13 @@ def benchmarking_aggregate_by_parallel_pods(self, df):
}}
#print(grp.agg(aggregate))
dict_grp = dict()
- dict_grp['connection'] = key
- dict_grp['configuration'] = grp['configuration'][0]
- dict_grp['experiment_run'] = grp['experiment_run'][0]
+ dict_grp['connection'] = key[0]
+ dict_grp['configuration'] = grp['configuration'].iloc[0]
+ dict_grp['experiment_run'] = grp['experiment_run'].iloc[0]
#dict_grp['client'] = grp['client'][0]
#dict_grp['pod'] = grp['pod'][0]
dict_grp = {**dict_grp, **grp.agg(aggregate)}
- df_grp = pd.DataFrame(dict_grp, index=[key])#columns=list(dict_grp.keys()))
+ df_grp = pd.DataFrame(dict_grp, index=[key[0]])#columns=list(dict_grp.keys()))
#df_grp = df_grp.T
#df_grp.set_index('connection', inplace=True)
#print(df_grp)
@@ -722,8 +810,8 @@ def loading_aggregate_by_parallel_pods(self, df):
#print(grp.agg(aggregate))
dict_grp = dict()
dict_grp['connection'] = key[0]
- dict_grp['configuration'] = grp['configuration'][0]
- dict_grp['experiment_run'] = grp['experiment_run'][0]
+ dict_grp['configuration'] = grp['configuration'].iloc[0]
+ dict_grp['experiment_run'] = grp['experiment_run'].iloc[0]
#dict_grp['client'] = grp['client'][0]
#dict_grp['pod'] = grp['pod'][0]
#dict_grp['pod_count'] = grp['pod_count'][0]
@@ -736,6 +824,19 @@ def loading_aggregate_by_parallel_pods(self, df):
#print(df_grp)
df_aggregated = pd.concat([df_aggregated, df_grp])
return df_aggregated
+ def get_df_loading(self):
+ """
+ Returns the DataFrame that containts all information about the loading phase.
+
+ :return: DataFrame of loading results
+ """
+ filename = "bexhoma-loading.all.df.pickle"
+ if os.path.isfile(self.path+"/"+filename):
+ df = pd.read_pickle(self.path+"/"+filename)
+ else:
+ df = pd.DataFrame()
+ #df#.sort_values(["configuration", "pod"])
+ return df
diff --git a/bexhoma/experiments.py b/bexhoma/experiments.py
index c31b3450..9b0573f2 100644
--- a/bexhoma/experiments.py
+++ b/bexhoma/experiments.py
@@ -140,24 +140,27 @@ def __init__(self,
self.configurations = []
self.storage_label = ''
self.evaluator = evaluators.base(code=self.code, path=self.cluster.resultfolder, include_loading=True, include_benchmarking=True)
- def wait(self, sec):
+ def wait(self, sec, silent=False):
"""
Function for waiting some time and inform via output about this
:param sec: Number of seconds to wait
+ :param silent: True means we do not output anything about this waiting
"""
- print("Waiting "+str(sec)+"s...", end="", flush=True)
- intervals = int(sec)
- time.sleep(intervals)
- print("done")
- def delay(self, sec):
+ #+print("Waiting "+str(sec)+"s...", end="", flush=True)
+ #intervals = int(sec)
+ #time.sleep(intervals)
+ #print("done")
+ return self.cluster.wait(sec, silent)
+ def delay(self, sec, silent=False):
"""
Function for waiting some time and inform via output about this.
Synonymous for wait()
:param sec: Number of seconds to wait
+ :param silent: True means we do not output anything about this waiting
"""
- self.wait(sec)
+ self.wait(sec, silent)
def set_queryfile(self, queryfile):
"""
Sets the name of a query file of the experiment.
@@ -536,6 +539,8 @@ def evaluate_results(self, pod_dashboard=''):
self.cluster.execute_command_in_pod(command=cmd['evaluate_results'], pod=pod_dashboard, container="dashboard")
print("done!")
# download evaluation cubes
+ #print("{:30s}: downloading partial results".format("Experiment"))
+ #print("{:30s}: uploading full results".format("Experiment"))
filename = 'evaluation.json'
cmd['download_results'] = 'cp {from_file} {to} -c dashboard'.format(from_file=pod_dashboard+':/results/'+str(self.code)+'/'+filename, to=self.path+"/"+filename)
self.cluster.kubectl(cmd['download_results'])
@@ -551,6 +556,10 @@ def evaluate_results(self, pod_dashboard=''):
filename = 'protocol.json'
cmd['download_results'] = 'cp {from_file} {to} -c dashboard'.format(from_file=pod_dashboard+':/results/'+str(self.code)+'/'+filename, to=self.path+"/"+filename)
self.cluster.kubectl(cmd['download_results'])
+ # download complete result folder of experiment from pod
+ # this includes all measures like times and monitoring data
+ cmd['download_results'] = 'cp {from_file} {to} -c dashboard'.format(from_file=pod_dashboard+':/results/'+str(self.code)+'/', to=self.path+"/")
+ self.cluster.kubectl(cmd['download_results'])
############ HammerDB
#self.path = "/home/perdelt/benchmarks/1668286639/"
directory = os.fsencode(self.path)
@@ -733,42 +742,45 @@ def work_benchmark_list(self, intervals=30, stop=True):
#print("{} is not running".format(config.configuration))
if not config.experiment_done:
if not config.sut_is_pending():
- print("{} is not running yet - ".format(config.configuration))#, end="", flush=True)
+ #print("{:30s}: is not running yet".format(config.configuration))#, end="", flush=True)
if self.cluster.max_sut is not None or self.max_sut is not None:
we_can_start_new_sut = True
if self.max_sut is not None:
- print("In experiment: {} running and {} pending pods: max is {} pods)".format(num_pods_running_experiment, num_pods_pending_experiment, self.max_sut))#, end="", flush=True)
+ #print("In experiment: {} running and {} pending pods: max is {} pods)".format(num_pods_running_experiment, num_pods_pending_experiment, self.max_sut))#, end="", flush=True)
+ #print("{:30s}: {} running and {} pending pods: max is {} pods per experiment".format(config.configuration, num_pods_running_experiment, num_pods_pending_experiment, self.max_sut))#, end="", flush=True)
if num_pods_running_experiment+num_pods_pending_experiment >= self.max_sut:
- print("{} has to wait".format(config.configuration))
+ print("{:30s}: has to wait - {} running and {} pending pods: max is {} pods per experiment".format(config.configuration, num_pods_running_experiment, num_pods_pending_experiment, self.max_sut))#, end="", flush=True)
+ #print("{:30s}: has to wait".format(config.configuration))
we_can_start_new_sut = False
if self.cluster.max_sut is not None:
- print("In cluster: {} running and {} pending pods: max is {} pods".format(num_pods_running_cluster, num_pods_pending_cluster, self.cluster.max_sut))#, end="", flush=True)
+ #print("{:30s}: {} running and {} pending pods: max is {} pods per cluster".format(config.configuration, num_pods_running_cluster, num_pods_pending_cluster, self.cluster.max_sut))#, end="", flush=True)
if num_pods_running_cluster+num_pods_pending_cluster >= self.cluster.max_sut:
- print("{} has to wait".format(config.configuration))
+ print("{:30s}: has to wait - {} running and {} pending pods: max is {} pods per cluster".format(config.configuration, num_pods_running_cluster, num_pods_pending_cluster, self.cluster.max_sut))#, end="", flush=True)
+ #print("{:30s}: has to wait".format(config.configuration))
we_can_start_new_sut = False
if we_can_start_new_sut:
- print("{} will start now".format(config.configuration))
+ print("{:30s}: will start now".format(config.configuration))
config.start_sut()
num_pods_pending_experiment = num_pods_pending_experiment + 1
num_pods_pending_cluster = num_pods_pending_cluster + 1
else:
- print("{} will start now".format(config.configuration))
+ print("{:30s}: will start now".format(config.configuration))
config.start_sut()
num_pods_pending_experiment = num_pods_pending_experiment + 1
num_pods_pending_cluster = num_pods_pending_cluster + 1
#self.wait(10)
else:
- print("{} is pending".format(config.configuration))
+ print("{:30s}: is pending".format(config.configuration))
continue
# check if loading is done
config.check_load_data()
# start loading
if not config.loading_started:
if config.sut_is_running():
- print("{} is not loaded yet".format(config.configuration))
+ print("{:30s}: is not loaded yet".format(config.configuration))
if len(config.benchmark_list) > 0:
if config.monitoring_active and not config.monitoring_is_running():
- print("{} waits for monitoring".format(config.configuration))
+ print("{:30s}: waits for monitoring".format(config.configuration))
if not config.monitoring_is_pending():
config.start_monitoring()
continue
@@ -781,7 +793,7 @@ def work_benchmark_list(self, intervals=30, stop=True):
else:
config.start_loading()
else:
- print("{} will start loading but not before {}".format(config.configuration, config.loading_after_time.strftime('%Y-%m-%d %H:%M:%S')))
+ print("{:30s}: will start loading but not before {}".format(config.configuration, config.loading_after_time.strftime('%Y-%m-%d %H:%M:%S')))
continue
else:
delay = 60
@@ -789,33 +801,48 @@ def work_benchmark_list(self, intervals=30, stop=True):
# config demands other delay
delay = config.dockertemplate['delay_prepare']
config.loading_after_time = now + timedelta(seconds=delay)
- print("{} will start loading but not before {} (that is in {} secs)".format(config.configuration, config.loading_after_time.strftime('%Y-%m-%d %H:%M:%S'), delay))
+ print("{:30s}: will start loading but not before {} (that is in {} secs)".format(config.configuration, config.loading_after_time.strftime('%Y-%m-%d %H:%M:%S'), delay))
continue
# check if maintaining
if config.loading_finished and len(config.benchmark_list) > 0:
if config.monitoring_active and not config.monitoring_is_running():
- print("{} waits for monitoring".format(config.configuration))
+ print("{:30s}: waits for monitoring".format(config.configuration))
if not config.monitoring_is_pending():
config.start_monitoring()
continue
if config.maintaining_active:
if not config.maintaining_is_running():
- print("{} is not maintained yet".format(config.configuration))
+ print("{:30s}: is not maintained yet".format(config.configuration))
if not config.maintaining_is_pending():
config.start_maintaining(parallelism=config.num_maintaining, num_pods=config.num_maintaining_pods)
else:
- print("{} has pending maintaining".format(config.configuration))
+ print("{:30s}: has pending maintaining".format(config.configuration))
# start benchmarking, if loading is done and monitoring is ready
if config.loading_finished:
+ now = datetime.utcnow()
+ # when loaded from PVC, system may not be ready yet
+ if config.loading_after_time is None:
+ # we have started from PVC
+ delay = 60
+ if 'delay_prepare' in config.dockertemplate:
+ # config demands other delay
+ delay = config.dockertemplate['delay_prepare']
+ config.loading_after_time = now + timedelta(seconds=delay)
+ print("{:30s}: will start benchmarking but not before {} (that is in {} secs)".format(config.configuration, config.loading_after_time.strftime('%Y-%m-%d %H:%M:%S'), delay))
+ continue
+ elif not now >= config.loading_after_time:
+ # system might not be ready yet
+ print("{:30s}: will start benchmarking but not before {}".format(config.configuration, config.loading_after_time.strftime('%Y-%m-%d %H:%M:%S')))
+ continue
# still benchmarks: check loading and maintaining
if len(config.benchmark_list) > 0:
if config.monitoring_active and not config.monitoring_is_running():
- print("{} waits for monitoring".format(config.configuration))
+ print("{:30s}: waits for monitoring".format(config.configuration))
if not config.monitoring_is_pending():
config.start_monitoring()
continue
if config.maintaining_active and not config.maintaining_is_running():
- print("{} waits for maintaining".format(config.configuration))
+ print("{:30s}: waits for maintaining".format(config.configuration))
continue
app = self.cluster.appname
component = 'benchmarker'
@@ -823,7 +850,7 @@ def work_benchmark_list(self, intervals=30, stop=True):
pods = self.cluster.get_job_pods(app, component, self.code, configuration=config.configuration)
if len(pods) > 0:
# still pods there
- print("{} has running benchmarks".format(config.configuration))
+ print("{:30s}: has running benchmarks".format(config.configuration))
continue
else:
if len(config.benchmark_list) > 0:
@@ -831,7 +858,7 @@ def work_benchmark_list(self, intervals=30, stop=True):
parallelism = config.benchmark_list.pop(0)
client = str(config.client)
config.client = config.client+1
- print("Done {} of {} benchmarks. This will be client {}".format(config.num_experiment_to_apply_done, config.num_experiment_to_apply, client))
+ print("{:30s}: benchmarks done {} of {}. This will be client {}".format(config.configuration, config.num_experiment_to_apply_done, config.num_experiment_to_apply, client))
if len(config.benchmarking_parameters_list) > 0:
benchmarking_parameters = config.benchmarking_parameters_list.pop(0)
print("We will change parameters of benchmark", benchmarking_parameters)
@@ -840,13 +867,13 @@ def work_benchmark_list(self, intervals=30, stop=True):
connection=config.configuration+'-'+str(config.num_experiment_to_apply_done+1)+'-'+client
else:
connection=config.configuration+'-'+client
- print("Running benchmark {}".format(connection))
+ print("{:30s}: start benchmarking".format(connection))
config.run_benchmarker_pod(connection=connection, configuration=config.configuration, client=client, parallelism=parallelism)
#config.run_benchmarker_pod_hammerdb(connection=connection, configuration=config.configuration, client=client, parallelism=parallelism)
else:
# no list element left
if stop:
- print("{} can be stopped".format(config.configuration))
+ print("{:30s}: can be stopped".format(config.configuration))
app = self.cluster.appname
component = 'sut'
pods = self.cluster.get_pods(app, component, self.code, config.configuration)
@@ -856,7 +883,7 @@ def work_benchmark_list(self, intervals=30, stop=True):
config.stop_sut()
config.num_experiment_to_apply_done = config.num_experiment_to_apply_done + 1
if config.num_experiment_to_apply_done < config.num_experiment_to_apply:
- print("{} starts again".format(config.configuration))
+ print("{:30s}: starts again".format(config.configuration))
config.benchmark_list = config.benchmark_list_template.copy()
# wait for PV to be gone completely
self.wait(60)
@@ -868,7 +895,7 @@ def work_benchmark_list(self, intervals=30, stop=True):
else:
print("{} can be stopped, be we leave it running".format(config.configuration))
else:
- print("{} is loading".format(config.configuration))
+ print("{:30s}: is loading".format(config.configuration))
# all jobs of configuration - benchmarker
#app = self.cluster.appname
#component = 'benchmarker'
@@ -890,16 +917,21 @@ def work_benchmark_list(self, intervals=30, stop=True):
status = self.cluster.get_pod_status(p)
self.cluster.logger.debug('job-pod {} has status {}'.format(p, status))
#print(p,status)
- if status == 'Succeeded':
- print("Store logs of job {} pod {}".format(job, p))
- #if status != 'Running':
- self.cluster.store_pod_log(p)
- #self.cluster.delete_pod(p)
- if status == 'Failed':
- print("Store logs of job {} pod {}".format(job, p))
- #if status != 'Running':
- self.cluster.store_pod_log(p)
- #self.cluster.delete_pod(p)
+ if status == 'Succeeded' or status == 'Failed':
+ containers = self.cluster.get_pod_containers(p)
+ for container in containers:
+ self.cluster.logger.debug("Store logs of job {} pod {} container {}".format(job, p, container))
+ self.cluster.store_pod_log(p, container)
+ #if status == 'Succeeded':
+ # self.cluster.logger.debug("Store logs of job {} pod {}".format(job, p))
+ # #if status != 'Running':
+ # self.cluster.store_pod_log(p)
+ # #self.cluster.delete_pod(p)
+ #if status == 'Failed':
+ # self.cluster.logger.debug("Store logs of job {} pod {}".format(job, p))
+ # #if status != 'Running':
+ # self.cluster.store_pod_log(p)
+ # #self.cluster.delete_pod(p)
success = self.cluster.get_job_status(job)
self.cluster.logger.debug('job {} has success status {}'.format(job, success))
#print(job, success)
@@ -908,19 +940,25 @@ def work_benchmark_list(self, intervals=30, stop=True):
for p in pods:
status = self.cluster.get_pod_status(p)
self.cluster.logger.debug('job-pod {} has status {}'.format(p, status))
- #print(p,status)
- if status == 'Succeeded':
- #if status != 'Running':
- if not self.cluster.pod_log_exists(p):
- print("Store logs of job {} pod {}".format(job, p))
- self.cluster.store_pod_log(p)
- self.cluster.delete_pod(p)
- if status == 'Failed':
- #if status != 'Running':
- if not self.cluster.pod_log_exists(p):
- print("Store logs of job {} pod {}".format(job, p))
- self.cluster.store_pod_log(p)
+ if status == 'Succeeded' or status == 'Failed':
+ containers = self.cluster.get_pod_containers(p)
+ for container in containers:
+ self.cluster.logger.debug("Store logs of job {} pod {} container {}".format(job, p, container))
+ self.cluster.store_pod_log(p, container)
self.cluster.delete_pod(p)
+ #print(p,status)
+ #if status == 'Succeeded':
+ # #if status != 'Running':
+ # if not self.cluster.pod_log_exists(p):
+ # self.cluster.logger.debug("Store logs of job {} pod {}".format(job, p))
+ # self.cluster.store_pod_log(p)
+ # self.cluster.delete_pod(p)
+ #if status == 'Failed':
+ # #if status != 'Running':
+ # if not self.cluster.pod_log_exists(p):
+ # self.cluster.logger.debug("Store logs of job {} pod {}".format(job, p))
+ # self.cluster.store_pod_log(p)
+ # self.cluster.delete_pod(p)
self.end_benchmarking(job, config)
self.cluster.delete_job(job)
if len(pods) == 0 and len(jobs) == 0:
@@ -943,6 +981,8 @@ def benchmark_list(self, list_clients):
:param list_clients: List of (number of) benchmarker instances
"""
+ print("benchmark_list() DEPRECATED")
+ exit()
for i, parallelism in enumerate(list_clients):
client = str(i+1)
for config in self.configurations:
@@ -1024,25 +1064,29 @@ def get_job_timing(filename):
directory = os.fsencode(self.path)
#print(jobname)
timing = []
+ self.cluster.logger.debug("Looking for files {jobname}*.{container}.log".format(jobname=jobname, container=container))
for file in os.listdir(directory):
filename = os.fsdecode(file)
#if filename.startswith("bexhoma-loading-"+jobname) and filename.endswith(".{container}.log".format(container=container)):
if filename.startswith(jobname) and filename.endswith(".{container}.log".format(container=container)):
- #print(filename)
+ self.cluster.logger.debug("Found jobcontainer file {filename}".format(filename=filename))
(timing_start, timing_end) = get_job_timing(self.path+"/"+filename)
- #print(df)
+ self.cluster.logger.debug("Found times {times}".format(times=(timing_start, timing_end)))
if (timing_start, timing_end) == (0,0):
print("Error in "+filename)
else:
timing.append((timing_start, timing_end))
+ # when log does not contain container name (when is it true?)
+ """
elif filename.startswith(jobname) and filename.endswith(".log"):
- #print(filename)
+ self.cluster.logger.debug("Found job file {filename}".format(filename=filename))
(timing_start, timing_end) = get_job_timing(self.path+"/"+filename)
- #print(df)
+ self.cluster.logger.debug("Found times {times}".format(times=(timing_start, timing_end)))
if (timing_start, timing_end) == (0,0):
print("Error in "+filename)
else:
timing.append((timing_start, timing_end))
+ """
#print(timing)
return timing
def end_benchmarking(self, jobname, config=None):
@@ -1075,6 +1119,9 @@ def end_benchmarking(self, jobname, config=None):
now_string = now.strftime('%Y-%m-%d %H:%M:%S')
time_now = str(datetime.now())
end_time = int(datetime.timestamp(datetime.strptime(time_now,'%Y-%m-%d %H:%M:%S.%f')))
+ print("{:30s}: showing benchmarker times".format(connection))
+ print("{:30s}: benchmarker timespan (start to end single container [s]) = {}".format(connection, end_time-start_time))
+ print("{:30s}: benchmarker times (start/end per pod and container) = {}".format(connection, timing_benchmarker))
self.cluster.logger.debug("BENCHMARKING LABELS")
self.cluster.logger.debug("connection: "+str(connection))
self.cluster.logger.debug("start_time: "+str(start_time))
@@ -1104,7 +1151,7 @@ def end_benchmarking(self, jobname, config=None):
#print(c['name'])
if c['name'] == config.connection:
config.benchmark.connections[k]['hostsystem']['benchmarking_timespans'] = config.benchmarking_timespans
- print(c['name'], "found and updated times:", config.benchmarking_timespans)
+ print("{:30s}: found and updated times {}".format(c['name'], config.benchmarking_timespans))
break
#print(config.benchmark.connections)
with open(connectionfile, 'w') as f:
@@ -1115,6 +1162,7 @@ def end_benchmarking(self, jobname, config=None):
self.cluster.logger.debug(stdout)
# get monitoring for loading
if self.monitoring_active:
+ print("{:30s}: collecting execution metrics of SUT".format(connection))
cmd['fetch_benchmarking_metrics'] = 'python metrics.py -r /results/ -db -ct stream -c {} -cf {} -f {} -e {} -ts {} -te {}'.format(connection, connection+'.config', '/results/'+self.code, self.code, start_time, end_time)
#cmd['fetch_loading_metrics'] = 'python metrics.py -r /results/ -db -ct loading -c {} -cf {} -f {} -e {} -ts {} -te {}'.format(connection, c['name']+'.config', '/results/'+self.code, self.code, self.timeLoadingStart, self.timeLoadingEnd)
stdin, stdout, stderr = self.cluster.execute_command_in_pod(command=cmd['fetch_benchmarking_metrics'], pod=pod_dashboard, container="dashboard")
@@ -1129,6 +1177,7 @@ def end_benchmarking(self, jobname, config=None):
# only if general monitoring is on
endpoints_cluster = self.cluster.get_service_endpoints(service_name="bexhoma-service-monitoring-default")
if len(endpoints_cluster)>0:
+ print("{:30s}: collecting metrics of benchmarker".format(connection))
cmd['fetch_benchmarker_metrics'] = 'python metrics.py -r /results/ -db -ct benchmarker -cn dbmsbenchmarker -c {} -cf {} -f {} -e {} -ts {} -te {}'.format(connection, connection+'.config', '/results/'+self.code, self.code, start_time, end_time)
#cmd['fetch_loading_metrics'] = 'python metrics.py -r /results/ -db -ct loading -c {} -cf {} -f {} -e {} -ts {} -te {}'.format(connection, c['name']+'.config', '/results/'+self.code, self.code, self.timeLoadingStart, self.timeLoadingEnd)
stdin, stdout, stderr = self.cluster.execute_command_in_pod(command=cmd['fetch_benchmarker_metrics'], pod=pod_dashboard, container="dashboard")
@@ -1149,6 +1198,9 @@ def end_loading(self, jobname):
"""
self.cluster.logger.debug('default.end_loading({})'.format(jobname))
self.evaluator.end_loading(jobname)
+ def show_summary(self):
+ self.cluster.logger.debug('default.show_summary()')
+ pass
@@ -1247,6 +1299,135 @@ def set_queries_full(self):
self.set_queryfile('queries-tpch.config')
def set_queries_profiling(self):
self.set_queryfile('queries-tpch-profiling.config')
+ def show_summary(self):
+ self.cluster.logger.debug('tpch.show_summary()')
+ print("\n## Show Summary")
+ pd.set_option("display.max_rows", None)
+ pd.set_option('display.max_colwidth', None)
+ pd.set_option('display.max_rows', 500)
+ pd.set_option('display.max_columns', 500)
+ pd.set_option('display.width', 1000)
+ resultfolder = self.cluster.config['benchmarker']['resultfolder']
+ code = self.code
+ evaluate = inspector.inspector(resultfolder)
+ evaluate.load_experiment(code=code, silent=False)
+ #####################
+ print("\n### Errors")
+ print(evaluate.get_total_errors().T)
+ #####################
+ print("\n### Warnings")
+ print(evaluate.get_total_warnings().T)
+ #####################
+ print("\n### Latency of Timer Execution [ms]")
+ df = evaluate.get_aggregated_query_statistics(type='latency', name='execution', query_aggregate='Mean')
+ if not df is None:
+ print(df.sort_index().T.round(2))
+ #####################
+ print("\n### Loading [s]")
+ times = {}
+ for c, connection in evaluate.benchmarks.dbms.items():
+ times[c]={}
+ if 'timeGenerate' in connection.connectiondata:
+ times[c]['timeGenerate'] = connection.connectiondata['timeGenerate']
+ if 'timeIngesting' in connection.connectiondata:
+ times[c]['timeIngesting'] = connection.connectiondata['timeIngesting']
+ if 'timeSchema' in connection.connectiondata:
+ times[c]['timeSchema'] = connection.connectiondata['timeSchema']
+ if 'timeIndex' in connection.connectiondata:
+ times[c]['timeIndex'] = connection.connectiondata['timeIndex']
+ if 'timeLoad' in connection.connectiondata:
+ times[c]['timeLoad'] = connection.connectiondata['timeLoad']
+ df = pd.DataFrame(times)
+ df = df.reindex(sorted(df.columns), axis=1)
+ print(df.round(2).T)
+ #####################
+ print("\n### Geometric Mean of Medians of Timer Run [s]")
+ df = evaluate.get_aggregated_experiment_statistics(type='timer', name='run', query_aggregate='Median', total_aggregate='Geo')
+ df = (df/1000.0).sort_index()
+ df.columns = ['Geo Times [s]']
+ print(df.round(2))
+ #####################
+ print("\n### TPC-H Power@Size")
+ df = evaluate.get_aggregated_experiment_statistics(type='timer', name='execution', query_aggregate='Median', total_aggregate='Geo')
+ df = (df/1000.0).sort_index().astype('float')
+ df = float(parameter.defaultParameters['SF'])*3600./df
+ df.columns = ['Power@Size [~Q/h]']
+ print(df.round(2))
+ #####################
+ # aggregate time and throughput for parallel pods
+ print("\n### TPC-H Throughput@Size")
+ df_merged_time = pd.DataFrame()
+ for connection_nr, connection in evaluate.benchmarks.dbms.items():
+ df_time = pd.DataFrame()
+ c = connection.connectiondata
+ connection_name = c['name']
+ orig_name = c['orig_name']
+ eva = evaluate.get_experiment_connection_properties(c['name'])
+ df_time.index = [connection_name]
+ #df_time['SF'] = int(SF)
+ #print(c)
+ df_time['orig_name'] = orig_name
+ df_time['SF'] = int(c['parameter']['connection_parameter']['loading_parameters']['SF'])
+ df_time['pods'] = int(c['parameter']['connection_parameter']['loading_parameters']['PODS_PARALLEL'])
+ #df_time['threads'] = int(c['parameter']['connection_parameter']['loading_parameters']['MYSQL_LOADING_THREADS'])
+ df_time['num_experiment'] = int(c['parameter']['numExperiment'])
+ df_time['num_client'] = int(c['parameter']['client'])
+ df_time['benchmark_start'] = eva['times']['total'][c['name']]['time_start']
+ df_time['benchmark_end'] = eva['times']['total'][c['name']]['time_end']
+ df_merged_time = pd.concat([df_merged_time, df_time])
+ df_time = df_merged_time.sort_index()
+ benchmark_start = df_time.groupby(['orig_name', 'SF', 'num_experiment', 'num_client']).min('benchmark_start')
+ benchmark_end = df_time.groupby(['orig_name', 'SF', 'num_experiment', 'num_client']).max('benchmark_end')
+ df_benchmark = pd.DataFrame(benchmark_end['benchmark_end'] - benchmark_start['benchmark_start'])
+ df_benchmark.columns = ['time [s]']
+ benchmark_count = df_time.groupby(['orig_name', 'SF', 'num_experiment', 'num_client']).count()
+ df_benchmark['count'] = benchmark_count['benchmark_end']
+ df_benchmark['SF'] = df_benchmark.index.map(lambda x: x[1])
+ df_benchmark['Throughput@Size [~GB/h]'] = (22*3600*df_benchmark['count']/df_benchmark['time [s]']*df_benchmark['SF']).round(2)
+ index_names = list(df_benchmark.index.names)
+ index_names[0] = "DBMS"
+ df_benchmark.rename_axis(index_names, inplace=True)
+ print(df_benchmark)
+ #####################
+ if (self.monitoring_active or self.cluster.monitor_cluster_active):
+ #####################
+ df = evaluate.get_loading_metrics('total_cpu_util_s')
+ df = df.T.max().sort_index() - df.T.min().sort_index() # compute difference of counter
+ df1 = pd.DataFrame(df)
+ df1.columns = ["SUT - CPU of Ingestion (via counter) [CPUs]"]
+ ##########
+ df = evaluate.get_loading_metrics('total_cpu_memory')/1024
+ df = df.T.max().sort_index()
+ df2 = pd.DataFrame(df).round(2)
+ df2.columns = ["SUT - Max RAM of Ingestion [Gb]"]
+ ##########
+ if not df1.empty or not df2.empty:
+ print("\n### Ingestion")
+ if not df1.empty and not df2.empty:
+ print(pd.concat([df1, df2], axis=1).round(2))
+ elif not df1.empty:
+ print(df1.round(2))
+ elif not df2.empty:
+ print(df2.round(2))
+ #####################
+ df = evaluate.get_streaming_metrics('total_cpu_util_s')
+ df = df.T.max().sort_index() - df.T.min().sort_index() # compute difference of counter
+ df1 = pd.DataFrame(df)
+ df1.columns = ["SUT - CPU of Execution (via counter) [CPUs]"]
+ ##########
+ df = evaluate.get_streaming_metrics('total_cpu_memory')/1024
+ df = df.T.max().sort_index()
+ df2 = pd.DataFrame(df)
+ df2.columns = ["SUT - Max RAM of Execution [Gb]"]
+ ##########
+ if not df1.empty or not df2.empty:
+ print("\n### Execution")
+ if not df1.empty and not df2.empty:
+ print(pd.concat([df1, df2], axis=1).round(2))
+ elif not df1.empty:
+ print(df1.round(2))
+ elif not df2.empty:
+ print(df2.round(2))
"""
@@ -1502,31 +1683,9 @@ def __init__(self,
name = 'YCSB Queries SF='+str(SF),
info = 'This experiment performs some YCSB inspired workloads.'
)
- self.storage_label = 'tpch-'+str(SF)
+ self.storage_label = 'ycsb-'+str(SF)
self.jobtemplate_loading = "jobtemplate-loading-ycsb.yml"
self.evaluator = evaluators.ycsb(code=self.code, path=self.cluster.resultfolder, include_loading=False, include_benchmarking=True)
- def OLD_log_to_df(self, filename):
- try:
- with open(filename) as f:
- lines = f.readlines()
- stdout = "".join(lines)
- connection_name = re.findall('BEXHOMA_CONNECTION:(.+?)\n', stdout)
- result = []
- #for line in s.split("\n"):
- for line in lines:
- line = line.strip('\n')
- cells = line.split(", ")
- #print(cells)
- if len(cells[0]) and cells[0][0] == "[":
- result.append(line.split(", "))
- #print(result)
- df = pd.DataFrame(result)
- df.columns = ['category', 'type', 'value']
- df.index.name = connection_name[0]
- return df
- except Exception as e:
- print(e)
- return pd.DataFrame()
def test_results(self):
"""
Run test script locally.
@@ -1541,222 +1700,6 @@ def test_results(self):
print("Result workflow complete")
else:
print("Result workflow not complete")
- def OLD_get_result_sum(self, df, category='[OVERALL]', type='Throughput(ops/sec)'):
- try:
- df2=df[df['type'] == type]
- s=df2[df2['category'] == category]
- total = s.drop(columns=['category','type']).apply(pd.to_numeric).sum(axis=1)
- return total.iloc[0]
- except Exception as e:
- print(e)
- print(df)
- return 0.0
- def OLD_get_result_max(self, df, category='[OVERALL]', type='Throughput(ops/sec)'):
- try:
- df2=df[df['type'] == type]
- s=df2[df2['category'] == category]
- total = s.drop(columns=['category','type']).apply(pd.to_numeric).max(axis=1)
- return total.iloc[0]
- except Exception as e:
- print(e)
- print(df)
- return 0.0
- def OLD_get_result_avg(self, df, category='[OVERALL]', type='Throughput(ops/sec)'):
- try:
- df2=df[df['type'] == type]
- s=df2[df2['category'] == category]
- total = s.drop(columns=['category','type']).apply(pd.to_numeric).mean(axis=1)
- return total.iloc[0]
- except Exception as e:
- print(e)
- print(df)
- return 0.0
- def OLD_get_parts_of_name(self, name):
- parts_name = re.findall('{(.+?)}', self.name_format)
- parts_values = re.findall('-(.+?)-', "-"+name.replace("-","--")+"--")
- return dict(zip(parts_name, parts_values))
- def OLD_get_overview_loading(self, dfs={}):
- tps = []
- if len(dfs) == 0:
- dfs = self.get_result(component="loading")
- for connection, df in dfs.items():
- #print(connection)
- if df.empty:
- print(connection, "is empty")
- continue
- #parts = re.findall('-(.+?)-', connection.replace("-","--")+"--")
- parts = self.get_parts_of_name(connection)
- #print(parts)
- #threads = int(parts[0])
- #pods = int(parts[1])
- #worker = int(parts[2])
- #target = int(parts[2])
- insert_Operations = float(self.get_result_sum(df, category='[INSERT]', type='Operations'))
- insert_OK = float(self.get_result_sum(df, category='[INSERT]', type='Return=OK'))
- overall_Throughput = float(self.get_result_sum(df, category='[OVERALL]', type='Throughput(ops/sec)'))
- overall_RunTime = float(self.get_result_max(df, category='[OVERALL]', type='RunTime(ms)'))
- insert_AverageLatency = float(self.get_result_avg(df, category='[INSERT]', type='AverageLatency(us)'))
- insert_95thPercentileLatency = float(self.get_result_avg(df, category='[INSERT]', type='95thPercentileLatency(us)'))
- insert_99thPercentileLatency = float(self.get_result_avg(df, category='[INSERT]', type='99thPercentileLatency(us)'))
- list_values_name = list(parts.values())
- num_pods = len(df.columns)-2
- #print(list_values_name)
- list_values_df = [
- connection,
- num_pods,
- overall_Throughput/int(parts['pods']),
- overall_Throughput,
- overall_RunTime,
- insert_Operations,
- insert_OK,
- insert_AverageLatency,
- insert_95thPercentileLatency,
- insert_99thPercentileLatency,
- ]
- #print(list_values_df)
- list_values_name.extend(list_values_df)
- #print('combined', list_values_name)
- tps.append(list_values_name)
- #print(target, worker, pods, overall_Throughput, overall_RunTime, overall_Throughput, total_tps/pods)
- #print(tps)
- df_totals = pd.DataFrame(tps)
- #print(list(parts.keys()))
- columns = list(parts.keys())
- columns.extend([
- 'connection',
- 'num_pods',
- 'total_tps_per_pod',
- 'overall_Throughput',
- 'overall_RunTime',
- 'insert_Operations',
- 'insert_OK',
- 'insert_AverageLatency',
- 'insert_95thPercentileLatency',
- 'insert_99thPercentileLatency',
- ])
- #print(columns)
- df_totals.columns = columns
- #list(parts.keys()).extend(['overall_Throughput', 'insert_Operations', 'insert_OK', 'overall_RunTime', 'insert_AverageLatency', 'insert_95thPercentileLatency', 'insert_99thPercentileLatency', 'total_tps_per_pod'])
- df_totals = df_totals.astype({'target':'float','pods':'int'})
- df_totals = df_totals.sort_values(['target','pods'])
- return df_totals
- def OLD_get_overview_benchmarking(self, dfs={}):
- tps = []
- if len(dfs) == 0:
- dfs = self.get_result(component="benchmarking")
- for connection, df in dfs.items():
- #print(connection)
- if df.empty:
- print(connection, "is empty")
- continue
- parts = self.get_parts_of_name(connection)
- #parts = re.findall('-(.+?)-', connection.replace("-","--")+"--")
- #print(parts)
- #threads = int(parts[1])
- #pods = int(parts[1])
- #worker = int(parts[2])
- #target = int(parts[3])
- #print(df)
- # read
- read_Operations = float(self.get_result_sum(df, category='[READ]', type='Operations'))
- read_OK = float(self.get_result_sum(df, category='[READ]', type='Return=OK'))
- read_AverageLatency = float(self.get_result_avg(df, category='[READ]', type='AverageLatency(us)'))
- read_95thPercentileLatency = float(self.get_result_avg(df, category='[READ]', type='95thPercentileLatency(us)'))
- read_99thPercentileLatency = float(self.get_result_avg(df, category='[READ]', type='99thPercentileLatency(us)'))
- # update
- update_Operations = float(self.get_result_sum(df, category='[UPDATE]', type='Operations'))
- update_OK = float(self.get_result_sum(df, category='[UPDATE]', type='Return=OK'))
- update_AverageLatency = float(self.get_result_avg(df, category='[UPDATE]', type='AverageLatency(us)'))
- update_95thPercentileLatency = float(self.get_result_avg(df, category='[UPDATE]', type='95thPercentileLatency(us)'))
- update_99thPercentileLatency = float(self.get_result_avg(df, category='[UPDATE]', type='99thPercentileLatency(us)'))
- # overall
- overall_Throughput = float(self.get_result_sum(df, category='[OVERALL]', type='Throughput(ops/sec)'))
- overall_RunTime = float(self.get_result_max(df, category='[OVERALL]', type='RunTime(ms)'))
- # inserts
- insert_Operations = float(self.get_result_sum(df, category='[INSERT]', type='Operations'))
- insert_OK = float(self.get_result_sum(df, category='[INSERT]', type='Return=OK'))
- insert_AverageLatency = float(self.get_result_avg(df, category='[INSERT]', type='AverageLatency(us)'))
- insert_95thPercentileLatency = float(self.get_result_avg(df, category='[INSERT]', type='95thPercentileLatency(us)'))
- insert_99thPercentileLatency = float(self.get_result_avg(df, category='[INSERT]', type='99thPercentileLatency(us)'))
- # scan
- scan_Operations = float(self.get_result_sum(df, category='[SCAN]', type='Operations'))
- scan_OK = float(self.get_result_sum(df, category='[SCAN]', type='Return=OK'))
- scan_AverageLatency = float(self.get_result_avg(df, category='[SCAN]', type='AverageLatency(us)'))
- scan_95thPercentileLatency = float(self.get_result_avg(df, category='[SCAN]', type='95thPercentileLatency(us)'))
- scan_99thPercentileLatency = float(self.get_result_avg(df, category='[SCAN]', type='99thPercentileLatency(us)'))
- # extract from naming (DEPRCATED?)
- list_values_name = list(parts.values())
- num_pods = len(df.columns)-2
- #print(list_values_name)
- list_values_df = [
- connection,
- num_pods,
- overall_Throughput,
- overall_RunTime,
- overall_Throughput/int(parts['pods']),
- read_Operations,
- read_OK,
- read_AverageLatency,
- read_95thPercentileLatency,
- read_99thPercentileLatency,
- update_Operations,
- update_OK,
- update_AverageLatency,
- update_95thPercentileLatency,
- update_99thPercentileLatency,
- insert_Operations,
- insert_OK,
- insert_AverageLatency,
- insert_95thPercentileLatency,
- insert_99thPercentileLatency,
- scan_Operations,
- scan_OK,
- scan_AverageLatency,
- scan_95thPercentileLatency,
- scan_99thPercentileLatency,
- ]
- #print(list_values_df)
- list_values_name.extend(list_values_df)
- #print('combined', list_values_name)
- tps.append(list_values_name)
- #tps.append(list(parts.values()).extend([target, worker, pods, overall_Throughput, overall_RunTime, read_Operations, read_OK, read_AverageLatency, read_95thPercentileLatency, read_99thPercentileLatency,
- # update_Operations, update_OK, update_AverageLatency, update_95thPercentileLatency, update_99thPercentileLatency, overall_Throughput/pods]))
- #print(target, worker, pods, overall_Throughput, overall_RunTime, overall_Throughput, total_tps/pods)
- #print(tps)
- df_totals = pd.DataFrame(tps)
- columns = list(parts.keys())
- columns.extend([
- 'connection',
- 'num_pods',
- 'overall_Throughput',
- 'overall_RunTime',
- 'total_tps_per_pod',
- 'read_Operations',
- 'read_OK',
- 'read_AverageLatency',
- 'read_95thPercentileLatency',
- 'read_99thPercentileLatency',
- 'update_Operations',
- 'update_OK',
- 'update_AverageLatency',
- 'update_95thPercentileLatency',
- 'update_99thPercentileLatency',
- 'insert_Operations',
- 'insert_OK',
- 'insert_AverageLatency',
- 'insert_95thPercentileLatency',
- 'insert_99thPercentileLatency'
- 'scan_Operations',
- 'scan_OK',
- 'scan_AverageLatency',
- 'scan_95thPercentileLatency',
- 'scan_99thPercentileLatency',
- ])
- #print(columns)
- df_totals.columns = columns
- df_totals = df_totals.astype({'target':'float','pods':'int'})
- df_totals = df_totals.sort_values(['target','pods'])
- return df_totals
def evaluate_results(self, pod_dashboard=''):
"""
Build a DataFrame locally that contains all benchmarking results.
@@ -1788,77 +1731,94 @@ def evaluate_results(self, pod_dashboard=''):
#self.logger.debug('copy config connections.config: {}'.format(stdout))
#cmd['upload_config'] = 'cp {from_file} {to} -c dashboard'.format(to=pod_dashboard+':/results/'+str(self.code)+'/connections.config', from_file=self.path+"/connections.config")
#self.cluster.kubectl(cmd['upload_config'])
+ print("{:30s}: downloading partial results".format("Experiment"))
cmd['download_results'] = 'cp {from_file} {to} -c dashboard'.format(from_file=pod_dashboard+':/results/'+str(self.code)+'/', to=self.path+"/")
self.cluster.kubectl(cmd['download_results'])
+ print("{:30s}: uploading full results".format("Experiment"))
cmd['upload_results'] = 'cp {from_file} {to} -c dashboard'.format(to=pod_dashboard+':/results/', from_file=self.path+"/")
#cmd['upload_results'] = 'cp {from_file} {to} -c dashboard'.format(to=pod_dashboard+':/results/'+str(self.code)+'/', from_file=self.path+"/")
self.cluster.kubectl(cmd['upload_results'])
- def OLD_get_result(self, component='loading'):
- #path = self.cluster.config['benchmarker']['resultfolder'].replace("\\", "/").replace("C:", "")+'/{}'.format(self.code)
- path = self.path
- df_prev = pd.DataFrame()
- #pod_numbers = {}
- if component == "loading":
- ending = "sensor.log"
- else:
- component = "benchmarker"
- ending = ".log"
- connections = dict()
- #path = self.cluster.config['benchmarker']['resultfolder'].replace("\\", "/").replace("C:", "")+'/{}'.format(self.code)
- directory = os.fsencode(path)
- for file in os.listdir(directory):
- filename = os.fsdecode(file)
- if filename.startswith("bexhoma-"+component) and filename.endswith(".df.pickle"):
- #print(filename)
- #experiment_number = re.findall('{}(.+?).{}'.format(name, ending), filename)
- #print(experiment_number)
- c = re.findall('bexhoma-{}-(.+?)-{}'.format(component, self.code), filename)
- if len(c) == 0:
- #print("empty")
- continue
- connection = c[0]
- if connection in connections:
- connections[connection].append(filename)
- else:
- connections[connection] = [filename]
- #print(connections)
- dfs = dict()
- for connection, files in connections.items():
- #print(connection)
- #dfs[connection] = pd.DataFrame()
- for filename in files:
- #print(filename)
- #experiment_number = re.findall('bexhoma-{}-{}-{}-(.+?).{}'.format(component, connection, self.code, ending), filename)
- experiment_components = re.findall('bexhoma-{}-{}-{}-(.+?)-(.+?)-(.+?).{}'.format(component, connection, self.code, ending), filename)
- if len(experiment_components) == 0:
- #print("empty")
- continue
- #print("experiment_components", experiment_components)
- #experiment_number = experiment_number[0]
- # turns bexhoma-loading-postgresql-8-1-1024-1672704339-1-1-22gkq.sensor.log.df.pickle
- # into 1-1
- connection_number = experiment_components[0][0]+"-"+experiment_components[0][1]#experiment_number#+"-"+client_number
- #print("connection_number", connection_number)
- #if connection_name in pod_numbers:
- # pod_numbers[connection_name] = pod_numbers[connection_name] + 1
- #else:
- # pod_numbers[connection_name] = 1
- try:
- df = pd.read_pickle(path+"/"+filename)
- if not df.empty:
- connection_name = df.index.name+"-"+connection_number
- #print("found", connection_name, df)
- df.columns = ['category', 'type', connection_name]#+"-"+str(pod_numbers[connection_name])]
- if not connection_name in dfs or dfs[connection_name].empty:
- dfs[connection_name] = df
- else:
- dfs[connection_name] = pd.merge(dfs[connection_name], df, how='left', left_on=['category','type'], right_on = ['category','type'])
- except Exception as e:
- print(e)
- #print("### All DataFrames ###")
- #print(dfs)
- return dfs
-
+ def show_summary(self):
+ #print('ycsb.show_summary()')
+ print("\n## Show Summary")
+ pd.set_option("display.max_rows", None)
+ pd.set_option('display.max_colwidth', None)
+ pd.set_option('display.max_rows', 500)
+ pd.set_option('display.max_columns', 500)
+ pd.set_option('display.width', 1000)
+ resultfolder = self.cluster.config['benchmarker']['resultfolder']
+ code = self.code
+ #evaluate = inspector.inspector(resultfolder) # no evaluation cube
+ #evaluate.load_experiment(code=code, silent=False)
+ evaluation = evaluators.ycsb(code=code, path=resultfolder)
+ #####################
+ df = evaluation.get_df_loading()
+ if not df.empty:
+ print("\n### Loading")
+ df = df.sort_values(['configuration','experiment_run','client'])
+ df = df[df.columns.drop(list(df.filter(regex='FAILED')))]
+ #print(df)
+ #print(df.columns)
+ df_plot = evaluation.loading_set_datatypes(df)
+ df_aggregated = evaluation.loading_aggregate_by_parallel_pods(df_plot)
+ df_aggregated.sort_values(['experiment_run','target','pod_count'], inplace=True)
+ df_aggregated = df_aggregated[['experiment_run',"threads","target","pod_count","[OVERALL].Throughput(ops/sec)","[OVERALL].RunTime(ms)","[INSERT].Return=OK","[INSERT].99thPercentileLatency(us)"]]
+ print(df_aggregated)
+ #####################
+ df = evaluation.get_df_benchmarking()
+ if not df.empty:
+ print("\n### Execution")
+ df.fillna(0, inplace=True)
+ df_plot = evaluation.benchmarking_set_datatypes(df)
+ df_aggregated = evaluation.benchmarking_aggregate_by_parallel_pods(df_plot)
+ df_aggregated = df_aggregated.sort_values(['experiment_run','target','pod_count']).round(2)
+ df_aggregated_reduced = df_aggregated[['experiment_run',"threads","target","pod_count"]].copy()
+ columns = ["[OVERALL].Throughput(ops/sec)","[OVERALL].RunTime(ms)","[INSERT].Return=OK","[INSERT].99thPercentileLatency(us)","[INSERT].99thPercentileLatency(us)","[READ].Return=OK","[READ].99thPercentileLatency(us)","[READ].99thPercentileLatency(us)","[UPDATE].Return=OK","[UPDATE].99thPercentileLatency(us)","[UPDATE].99thPercentileLatency(us)","[SCAN].Return=OK","[SCAN].99thPercentileLatency(us)","[SCAN].99thPercentileLatency(us)"]
+ for col in columns:
+ if col in df_aggregated.columns:
+ df_aggregated_reduced[col] = df_aggregated.loc[:,col]
+ print(df_aggregated_reduced)
+ #evaluation = evaluators.ycsb(code=code, path=path)
+ #####################
+ if (self.monitoring_active or self.cluster.monitor_cluster_active):
+ #####################
+ evaluation.transform_monitoring_results(component="loading")
+ #####################
+ df = evaluation.get_monitoring_metric('total_cpu_util_s', component='loading').max() - evaluation.get_monitoring_metric('total_cpu_util_s', component='loading').min()
+ df1 = pd.DataFrame(df)
+ df1.columns = ["SUT - CPU of Ingestion (via counter) [CPUs]"]
+ ##########
+ df = evaluation.get_monitoring_metric('total_cpu_memory', component='loading').max()/1024
+ df2 = pd.DataFrame(df)
+ df2.columns = ["SUT - Max RAM of Ingestion [Gb]"]
+ ##########
+ if not df1.empty or not df2.empty:
+ print("\n### Ingestion")
+ if not df1.empty and not df2.empty:
+ print(pd.concat([df1, df2], axis=1).round(2))
+ elif not df1.empty:
+ print(df1.round(2))
+ elif not df2.empty:
+ print(df2.round(2))
+ #####################
+ evaluation.transform_monitoring_results(component="stream")
+ #####################
+ df = evaluation.get_monitoring_metric('total_cpu_util_s', component='stream').max() - evaluation.get_monitoring_metric('total_cpu_util_s', component='stream').min()
+ df1 = pd.DataFrame(df)
+ df1.columns = ["SUT - CPU of Execution (via counter) [CPUs]"]
+ ##########
+ df = evaluation.get_monitoring_metric('total_cpu_memory', component='stream').max()/1024
+ df2 = pd.DataFrame(df)
+ df2.columns = ["SUT - Max RAM of Execution [Gb]"]
+ ##########
+ if not df1.empty or not df2.empty:
+ print("\n### Execution")
+ if not df1.empty and not df2.empty:
+ print(pd.concat([df1, df2], axis=1).round(2))
+ elif not df1.empty:
+ print(df1.round(2))
+ elif not df2.empty:
+ print(df2.round(2))
"""
@@ -1869,7 +1829,7 @@ def OLD_get_result(self, component='loading'):
class benchbase(default):
"""
- Class for defining an YCSB experiment.
+ Class for defining a Benchbase experiment.
This sets
* the folder to the experiment - including query file and schema informations per dbms
diff --git a/bexhoma/scripts/experimentsmanager.py b/bexhoma/scripts/experimentsmanager.py
index 3b447953..39d18f1c 100644
--- a/bexhoma/scripts/experimentsmanager.py
+++ b/bexhoma/scripts/experimentsmanager.py
@@ -36,7 +36,7 @@ def manage():
print(description)
# argparse
parser = argparse.ArgumentParser(description=description)
- parser.add_argument('mode', help='manage experiments: stop, get status, connect to dbms or connect to dashboard', choices=['stop','status','dashboard', 'master'])
+ parser.add_argument('mode', help='manage experiments: stop, get status, connect to dbms or connect to dashboard', choices=['stop','status','dashboard','localdashboard','jupyter','master'])
parser.add_argument('-db', '--debug', help='dump debug informations', action='store_true')
parser.add_argument('-e', '--experiment', help='code of experiment', default=None)
parser.add_argument('-c', '--connection', help='name of DBMS', default=None)
@@ -75,12 +75,46 @@ def manage():
elif args.mode == 'dashboard':
cluster = clusters.kubernetes(clusterconfig, context=args.context)
cluster.connect_dashboard()
+ elif args.mode == 'localdashboard':
+ cluster = clusters.kubernetes(clusterconfig, context=args.context)
+ import sys
+ resultfolder = cluster.config['benchmarker']['resultfolder']
+ sys.argv += ['-r',resultfolder]
+ sys.argv.remove('localdashboard')
+ from dbmsbenchmarker.scripts import dashboardcli
+ dashboardcli.startup()
+ elif args.mode == 'jupyter':
+ import subprocess
+ cmd = ["jupyter","notebook","--notebook-dir","images/evaluator_dbmsbenchmarker/notebooks","--NotebookApp.ip","0.0.0.0","--no-browser","--NotebookApp.allow_origin","*"]
+ subprocess.Popen(cmd)
elif args.mode == 'master':
cluster = clusters.kubernetes(clusterconfig, context=args.context)
cluster.connect_master(experiment=args.experiment, configuration=connection)
elif args.mode == 'status':
cluster = clusters.kubernetes(clusterconfig, context=args.context)
app = cluster.appname
+ # check dashboard
+ dashboard_name = cluster.get_dashboard_pod_name()
+ if len(dashboard_name) > 0:
+ status = cluster.get_pod_status(dashboard_name)
+ print("Dashboard: {}".format(status))
+ # check message queue
+ messagequeue_name = cluster.get_pods(component='messagequeue')
+ if len(messagequeue_name) > 0:
+ status = cluster.get_pod_status(messagequeue_name[0])
+ print("Message Queue: {}".format(status))
+ # get data directory
+ pvcs = cluster.get_pvc(app=app, component='data-source', experiment='', configuration='')
+ if len(pvcs) > 0:
+ print("Data directory: {}".format("Running"))
+ else:
+ print("Data directory: {}".format("Missing"))
+ # get result directory
+ pvcs = cluster.get_pvc(app=app, component='results', experiment='', configuration='')
+ if len(pvcs) > 0:
+ print("Result directory: {}".format("Running"))
+ else:
+ print("Result directory: {}".format("Missing"))
# get all storage volumes
pvcs = cluster.get_pvc(app=app, component='storage', experiment='', configuration='')
#print("PVCs", pvcs)
@@ -299,4 +333,13 @@ def manage():
df.index.name = experiment
#print(df)
h = [df.index.name] + list(df.columns)
- print(tabulate(df, headers=h, tablefmt="grid", floatfmt=".2f", showindex="always"))
+ if args.verbose:
+ # this shows all columns even if empty
+ print(tabulate(df, headers=h, tablefmt="grid", floatfmt=".2f", showindex="always"))
+ else:
+ df_empty = df.eq('')
+ df_short = df.drop(df_empty.columns[df_empty.all()].tolist(), axis=1)
+ h_short = [df_short.index.name] + list(df_short.columns)
+ # this shows only columns with not all empty
+ print(tabulate(df_short, headers=h_short, tablefmt="grid", floatfmt=".2f", showindex="always"))
+ benchmarker.logger.setLevel(logging.ERROR)
diff --git a/build.sh b/build.sh
index 3e54f0b7..c4ee3b22 100644
--- a/build.sh
+++ b/build.sh
@@ -5,18 +5,16 @@ cd images
###########
cd evaluator_dbmsbenchmarker
-#docker build -f Dockerfile_v0.13.1 -t bexhoma/evaluator_dbmsbenchmarker:v0.13.1 --no-cache .
python create_Dockerfiles.py
-#docker build -f Dockerfile_v0.13.2 -t bexhoma/evaluator_dbmsbenchmarker:v0.13.2 .
-#docker push bexhoma/evaluator_dbmsbenchmarker:v0.13.2 &
+#docker build -f Dockerfile_v0.13.6 -t bexhoma/evaluator_dbmsbenchmarker:v0.13.6 --no-cache .
+#docker build -f Dockerfile_v0.13.6 -t bexhoma/evaluator_dbmsbenchmarker:v0.13.6 .
docker push bexhoma/evaluator_dbmsbenchmarker:v0.13.6 &
cd ..
cd benchmarker_dbmsbenchmarker
-#docker build -f Dockerfile_v0.13.1 -t bexhoma/benchmarker_dbmsbenchmarker:v0.13.1 --no-cache .
python create_Dockerfiles.py
-#docker build -f Dockerfile_v0.13.2 -t bexhoma/benchmarker_dbmsbenchmarker:v0.13.2 .
-#docker push bexhoma/benchmarker_dbmsbenchmarker:v0.13.2 &
+#docker build -f Dockerfile_v0.13.6 -t bexhoma/benchmarker_dbmsbenchmarker:v0.13.6 --no-cache .
+#docker build -f Dockerfile_v0.13.6 -t bexhoma/benchmarker_dbmsbenchmarker:v0.13.6 .
docker push bexhoma/benchmarker_dbmsbenchmarker:v0.13.6 &
cd ..
@@ -32,6 +30,17 @@ docker build -f Dockerfile -t bexhoma/loader_tpch_postgresql:latest .
docker push bexhoma/loader_tpch_postgresql:latest &
cd ..
+cd loader_mysql
+docker build -f Dockerfile -t bexhoma/loader_tpch_mysql:latest .
+docker push bexhoma/loader_tpch_mysql:latest &
+cd ..
+
+cd loader_monetdb
+docker build -f Dockerfile -t bexhoma/loader_tpch_monetdb:latest .
+docker push bexhoma/loader_tpch_monetdb:latest &
+cd ..
+cd ..
+
###########
cd monitoring
docker build -f Dockerfile -t bexhoma/monitoring:latest .
diff --git a/cluster.py b/cluster.py
index 9c52310e..eeb14f8b 100644
--- a/cluster.py
+++ b/cluster.py
@@ -26,6 +26,7 @@
import pandas as pd
from tabulate import tabulate
from datetime import datetime
+import multiprocessing as mp
urllib3.disable_warnings()
logging.basicConfig(level=logging.ERROR)
@@ -36,7 +37,7 @@
"""
# argparse
parser = argparse.ArgumentParser(description=description)
- parser.add_argument('mode', help='profile the import or run the TPC-H queries', choices=['stop','status','dashboard', 'master'])
+ parser.add_argument('mode', help='manage experiments: stop, get status, connect to dbms or connect to dashboard', choices=['stop','status','dashboard','localdashboard','jupyter','master'])
parser.add_argument('-db', '--debug', help='dump debug informations', action='store_true')
parser.add_argument('-e', '--experiment', help='code of experiment', default=None)
parser.add_argument('-c', '--connection', help='name of DBMS', default=None)
@@ -75,12 +76,46 @@
elif args.mode == 'dashboard':
cluster = clusters.kubernetes(clusterconfig, context=args.context)
cluster.connect_dashboard()
+ elif args.mode == 'localdashboard':
+ cluster = clusters.kubernetes(clusterconfig, context=args.context)
+ import sys
+ resultfolder = cluster.config['benchmarker']['resultfolder']
+ sys.argv += ['-r',resultfolder]
+ sys.argv.remove('localdashboard')
+ from dbmsbenchmarker.scripts import dashboardcli
+ dashboardcli.startup()
+ elif args.mode == 'jupyter':
+ import subprocess
+ cmd = ["jupyter","notebook","--notebook-dir","images/evaluator_dbmsbenchmarker/notebooks","--NotebookApp.ip","0.0.0.0","--no-browser","--NotebookApp.allow_origin","*"]
+ subprocess.Popen(cmd)
elif args.mode == 'master':
cluster = clusters.kubernetes(clusterconfig, context=args.context)
cluster.connect_master(experiment=args.experiment, configuration=connection)
elif args.mode == 'status':
cluster = clusters.kubernetes(clusterconfig, context=args.context)
app = cluster.appname
+ # check dashboard
+ dashboard_name = cluster.get_dashboard_pod_name()
+ if len(dashboard_name) > 0:
+ status = cluster.get_pod_status(dashboard_name)
+ print("Dashboard: {}".format(status))
+ # check message queue
+ messagequeue_name = cluster.get_pods(component='messagequeue')
+ if len(messagequeue_name) > 0:
+ status = cluster.get_pod_status(messagequeue_name[0])
+ print("Message Queue: {}".format(status))
+ # get data directory
+ pvcs = cluster.get_pvc(app=app, component='data-source', experiment='', configuration='')
+ if len(pvcs) > 0:
+ print("Data Directory: {}".format("Running"))
+ else:
+ print("Data Directory: {}".format("Missing"))
+ # get result directory
+ pvcs = cluster.get_pvc(app=app, component='results', experiment='', configuration='')
+ if len(pvcs) > 0:
+ print("Result Directory: {}".format("Running"))
+ else:
+ print("Result Directory: {}".format("Missing"))
# get all storage volumes
pvcs = cluster.get_pvc(app=app, component='storage', experiment='', configuration='')
#print("PVCs", pvcs)
@@ -299,4 +334,14 @@
df.index.name = experiment
#print(df)
h = [df.index.name] + list(df.columns)
- print(tabulate(df, headers=h, tablefmt="grid", floatfmt=".2f", showindex="always"))
+ if args.verbose:
+ # this shows all columns even if empty
+ print(tabulate(df, headers=h, tablefmt="grid", floatfmt=".2f", showindex="always"))
+ else:
+ df_empty = df.eq('')
+ df_short = df.drop(df_empty.columns[df_empty.all()].tolist(), axis=1)
+ h_short = [df_short.index.name] + list(df_short.columns)
+ # this shows only columns with not all empty
+ print(tabulate(df_short, headers=h_short, tablefmt="grid", floatfmt=".2f", showindex="always"))
+ benchmarker.logger.setLevel(logging.ERROR)
+
diff --git a/docs/Concept.md b/docs/Concept.md
index c4342d9a..50407c94 100644
--- a/docs/Concept.md
+++ b/docs/Concept.md
@@ -3,24 +3,22 @@
An **experiment** is a benchmark of a DBMS in a certain **host setting** and a specific **benchmark setting**.
A **host setting** consists of
-* an instance (a virtual machine)
* a DBMS (as a docker image)
* a volume (containing some data)
-* an init script (telling the dbms how to store the data)
+* init scripts (for pre-loading and post-loading)
A **benchmark setting** consists of
* a number of client processes
* a number of runs per connection
* a maximum timeout
-* a lot more, depending on the [benchmark tool](https://github.com/Beuth-Erdelt/DBMS-Benchmarker)
+* a lot more, depending on the benchmark tool, e.g. [DBMSBenchmarker](https://github.com/Beuth-Erdelt/DBMS-Benchmarker)
## Workflow
The **management** roughly means
-* [configure](Config.html#how-to-configure-an-experiment-setup), [set up](Config.html#example-setup-different-dbms-on-same-instance) and [start](API.html#prepare-experiment) a virtual machine environment
-* [start](API.html#start-experiment) a DBMS and load raw data
-* [run](API.html#run-benchmarks) some benchmarks, fetch metrics and do reporting
-* [shut](API.html#stop-experiment) down environment and [clean up](API.html#clean-experiment)
+* start a DBMS and load raw data
+* run some benchmarks, fetch metrics and do reporting
+* shut down environment and clean up
@@ -28,40 +26,16 @@ The **management** roughly means
In more detail this means
1. **Prepare Experiment**
- 1. **Start Virtual Machine**
- AWS: Start Instance EC2
- k8s: Create Deployment
- 1. **Attach Network**
- AWS: Attach EIP
- k8s: Create Service, Port Forwarding
- 1. **Attach Data Storage Volume**
- AWS: Attach and Mount EBS
- k8s: Attach PVC
- 1. **Start Monitoring**
- Start Prometheus Exporter Docker Container
+ 1. Use Virtual Machines provided as K8s nodes - create deployment
+ 1. Attach Network - create service
+ 1. Attach Data Storage Volume - attach PVC
+ 1. Start Monitoring - start node exporters and Prometheus as docker containers
1. **Start Experiment**
- 1. Start DBMS Docker Container
- Upload and run Init Scripts
- Load Data from Data Storage Volume
+ 1. Start DBMS Docker Container, upload and run pre-loading init scripts (e.g., create schema), load data, upload and run post-loading init scripts (e.g., create indexes)
1. **Run Benchmarks**
1. **Report**
- 1. **Pull Logs**
- From DBMS Container
- 1. **Pull Metrics**
- From Grafana Monitoring Server
-1. **Stop Experiment**
-AWS: Stop DBMS Docker Container, Remove Docker Remnants
+ 1. Pull Logs from containers
+ 1. Pull Metrics from Prometheus monitoring server
+1. **Stop Experiment**
1. **Clean Experiment**
-AWS: Unmount and Detach EBS Volume, Detach EIP, Stop Instance EC2
-k8s: Stop Port Forwarding, Delete Deployment and Services
-
-## Prerequisits
-
-This tool relies on
-* [dbms benchmarker](https://github.com/Beuth-Erdelt/DBMS-Benchmarker) for the actual benchmarks
-* a [configuration file](#clusterconfig)
-* [boto](http://boto.cloudhackers.com/en/latest/) for AWS management
-* [paramiko](http://www.paramiko.org/) for SSH handling
-* [scp](https://pypi.org/project/scp/) for SCP handling
-* [kubernetes](https://github.com/kubernetes-client/python) for k8s management
-* and some more [python libraries](https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/blob/master/requirements.txt)
+ 1. Delete deployment and services
diff --git a/docs/DBMS.md b/docs/DBMS.md
index b19ac2db..4327589a 100644
--- a/docs/DBMS.md
+++ b/docs/DBMS.md
@@ -97,19 +97,19 @@ https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/blob/master/k8
**Configuration**
```
'MonetDB': {
- 'loadData': 'cd /home/monetdb;mclient db < {scriptname}',
+ 'loadData': 'cd /home/monetdb;echo "user=monetdb\npassword=monetdb" > .monetdb;mclient demo < {scriptname}',
'template': {
- 'version': 'v11.31.7',
- 'alias': 'In-Memory C',
- 'docker_alias': 'In-Memory C',
+ 'version': '11.37.11',
+ 'alias': 'Columnwise',
+ 'docker_alias': 'Columnwise',
'JDBC': {
'auth': ['monetdb', 'monetdb'],
'driver': 'nl.cwi.monetdb.jdbc.MonetDriver',
- 'jar': './monetdb-jdbc-2.29.jar',
- 'url': 'jdbc:monetdb://{serverip}:9091/db'
+ 'jar': 'monetdb-jdbc-3.2.jre8.jar',
+ 'url': 'jdbc:monetdb://{serverip}:9091/demo?so_timeout=0'
}
},
- 'logfile': '',
+ 'logfile': '/var/monetdb5/dbfarm/merovingian.log',
'datadir': '/var/monetdb5/',
'priceperhourdollar': 0.0,
},
@@ -117,7 +117,8 @@ https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/blob/master/k8
***DDL Scripts***
-Example for [TPC-H](https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/tree/master/experiments/tpch/MonetDB)
+Example for
+* [TPC-H](https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/tree/master/experiments/tpch/MonetDB)
## OmniSci
@@ -156,6 +157,48 @@ Example for [TPC-H](https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Ma
https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/blob/master/k8s/deploymenttemplate-PostgreSQL.yml
+As of bexhoma version `v0.7.0` this contains
+```
+ args: [
+ "-c", "max_worker_processes=64",
+ "-c", "max_parallel_workers=64",
+ "-c", "max_parallel_workers_per_gather=64",
+ "-c", "max_parallel_maintenance_workers=64", # only for PostgreSQL > 10 (?)
+ "-c", "max_wal_size=32GB",
+ "-c", "shared_buffers=64GB",
+ #"-c", "shared_memory_size=32GB", # read-only
+ "-c", "max_connections=1024",
+ "-c", "autovacuum_max_workers=10",
+ "-c", "autovacuum_vacuum_cost_limit=3000",
+ "-c", "vacuum_cost_limit=1000",
+ "-c", "checkpoint_completion_target=0.9",
+ "-c", "cpu_tuple_cost=0.03",
+ "-c", "effective_cache_size=64GB",
+ "-c", "maintenance_work_mem=2GB",
+ #"-c", "max_connections=1700",
+ #"-c", "random_page_cost=1.1",
+ "-c", "wal_buffers=1GB",
+ "-c", "work_mem=32GB",
+ #"-c", "huge_pages=on",
+ "-c", "temp_buffers=4GB",
+ "-c", "autovacuum_work_mem=-1",
+ "-c", "max_stack_depth=7MB",
+ "-c", "max_files_per_process=4000",
+ "-c", "effective_io_concurrency=32",
+ "-c", "wal_level=minimal",
+ "-c", "max_wal_senders=0",
+ "-c", "synchronous_commit=off",
+ "-c", "checkpoint_timeout=1h",
+ "-c", "checkpoint_warning=0",
+ "-c", "autovacuum=off",
+ "-c", "max_locks_per_transaction=64",
+ "-c", "max_pred_locks_per_transaction=64",
+ "-c", "default_statistics_target=1000",
+ "-c", "random_page_cost=60"
+ ]
+```
+as default settings.
+
**Configuration**
```
@@ -163,16 +206,16 @@ https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/blob/master/k8
'loadData': 'psql -U postgres < {scriptname}',
'template': {
'version': 'v11.4',
- 'alias': 'GP D',
- 'docker_alias': 'GP D',
- 'JDBC': {
+ 'alias': 'General-B',
+ 'docker_alias': 'GP-B',
+ 'JDBC': {
'driver': "org.postgresql.Driver",
'auth': ["postgres", ""],
- 'url': 'jdbc:postgresql://{serverip}:9091/postgres',
- 'jar': './postgresql-42.2.5.jar'
+ 'url': 'jdbc:postgresql://{serverip}:9091/postgres?reWriteBatchedInserts=true',
+ 'jar': 'postgresql-42.5.0.jar'
}
},
- 'logfile': '',
+ 'logfile': '/usr/local/data/logfile',
'datadir': '/var/lib/postgresql/data/',
'priceperhourdollar': 0.0,
},
@@ -180,4 +223,85 @@ https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/blob/master/k8
***DDL Scripts***
-Example for [TPC-H](https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/tree/master/experiments/tpch/PostgreSQL)
+Example for
+* [TPC-H](https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/tree/master/experiments/tpch/PostgreSQL)
+* [YCSB](https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/tree/master/experiments/ycsb/PostgreSQL)
+
+## MySQL
+
+**Deployment**
+
+https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/blob/master/k8s/deploymenttemplate-MySQL.yml
+
+As of bexhoma version `v0.7.0` this contains
+```
+ args: [
+ # Some of these need restart
+ # The comments come from 8.3 docs
+ # https://dev.mysql.com/doc/refman/8.3/en/optimizing-innodb-logging.html
+ # https://dev.mysql.com/doc/refman/8.3/en/innodb-performance-multiple_io_threads.html
+ "--innodb-write-io-threads=64", # https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_write_io_threads
+ "--innodb-read-io-threads=64", # https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_read_io_threads
+ # https://dev.mysql.com/doc/refman/8.3/en/innodb-linux-native-aio.html
+ "--innodb-use-native-aio=0", # https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_use_native_aio
+ # https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_page_size
+ # "--innodb-page-size=4K", # Small for OLTP or similar to filesystem page size
+ # https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_buffer_pool_chunk_size
+ # To avoid potential performance issues, the number of chunks (innodb_buffer_pool_size / innodb_buffer_pool_chunk_size) should not exceed 1000.
+ "--innodb-buffer-pool-chunk-size=500M", # Small when size of pool changes often
+ # https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_buffer_pool_instances
+ # https://releem.com/docs/mysql-performance-tuning/innodb_buffer_pool_size
+ "--innodb-buffer-pool-instances=64", # Parallelizes reads, but may lock writes
+ "--innodb-buffer-pool-size=32G", # Buffer pool size must always be equal to or a multiple of innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances.
+ # https://dev.mysql.com/doc/refman/8.3/en/innodb-configuring-io-capacity.html
+ "--innodb-io-capacity=1000", # Faster SSD assumed
+ # https://dev.mysql.com/doc/refman/8.0/en/innodb-redo-log-buffer.html
+ "--innodb-log-buffer-size=32G", # The size in bytes of the buffer that InnoDB uses to write to the log files on disk
+ "--innodb-redo-log-capacity=8G", # Defines the amount of disk space occupied by redo log files
+ "--innodb-flush-log-at-trx-commit=0", # The default setting of 1 is required for full ACID compliance. With a setting of 0, logs are written and flushed to disk once per second.
+ # https://dev.mysql.com/doc/refman/8.3/en/online-ddl-parallel-thread-configuration.html
+ "--innodb-parallel-read-threads=64", # https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_parallel_read_threads
+ "--innodb-ddl-threads=64", # https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_ddl_threads
+ "--innodb-ddl-buffer-size=128M", # https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_ddl_buffer_size
+ # https://dev.mysql.com/doc/refman/8.3/en/server-system-variables.html#sysvar_tmp_table_size
+ "--tmp-table-size=1GB", # Defines the maximum size of internal in-memory temporary tables
+ "--max-heap-table-size=1GB", # Maximum size to which user-created MEMORY tables are permitted to grow
+ # https://dev.mysql.com/doc/refman/8.3/en/innodb-doublewrite-buffer.html
+ "--innodb-doublewrite=0",
+ "--innodb-change-buffer-max-size=50", # You might increase this value for a MySQL server with heavy insert, update, and delete activity
+ ]
+```
+as default settings.
+
+**Configuration**
+
+```
+ 'MySQL': {
+ 'loadData': 'mysql --local-infile < {scriptname}',
+ 'delay_prepare': 300,
+ 'template': {
+ 'version': 'CE 8.0.22',
+ 'alias': 'General-C',
+ 'docker_alias': 'GP-C',
+ 'dialect': 'MySQL',
+ 'JDBC': {
+ 'driver': "com.mysql.cj.jdbc.Driver",
+ 'auth': ["root", "root"],
+ 'url': 'jdbc:mysql://{serverip}:9091/{dbname}?rewriteBatchedStatements=true',
+ 'jar': ['mysql-connector-j-8.0.31.jar', 'slf4j-simple-1.7.21.jar']
+ }
+ },
+ 'logfile': '/var/log/mysqld.log',
+ 'datadir': '/var/lib/mysql/',
+ 'priceperhourdollar': 0.0,
+ },
+```
+
+This uses `delay_prepare` to make bexhoma wait 5 minutes before starting to query the dbms.
+This is because configuring InnoDB takes a while and the server might restart during that period.
+
+***DDL Scripts***
+
+Example for
+* [TPC-H](https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/tree/master/experiments/tpch/MySQL)
+* [YCSB](https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/tree/master/experiments/ycsb/MySQL)
diff --git a/docs/Example-TPC-H.md b/docs/Example-TPC-H.md
index d81f9814..29a50208 100644
--- a/docs/Example-TPC-H.md
+++ b/docs/Example-TPC-H.md
@@ -1,77 +1,298 @@
# Example: TPC-H
+
+
This example shows how to benchmark 22 reading queries Q1-Q22 derived from TPC-H in MonetDB and PostgreSQL.
> The query file is derived from the TPC-H and as such is not comparable to published TPC-H results, as the query file results do not comply with the TPC-H Specification.
Official TPC-H benchmark - http://www.tpc.org/tpch
-## Prerequisites
+## Perform Benchmark - Power Test
-For basic execution of benchmarking we need
-* a Kubernetes (K8s) cluster
- * a namespace `my_namespace` in the cluster
- * `kubectl` usable, i.e. access token stored in a default vault like `~/.kube`
- * a persistent volume named `vol-benchmarking` containing the raw TPC-H data in `/data/tpch/SF1/`
-* JDBC driver `./monetdb-jdbc-2.29.jar` and `./postgresql-42.2.5.jar`
+For performing the experiment we can run the [tpch file](https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/blob/master/tpch.py).
-We need configuration files containing the following informations in a predefined format, c.f. [demo file](https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/tree/master/k8s-cluster.config).
-The demo also includes the necessary settings for some [DBMS](DBMS.html): MariaDB, MonetDB, MySQL, OmniSci and PostgreSQL.
+Example: `python tpch.py -ms 1 -dt -nlp 8 -nlt 8 -sf 1 -ii -ic -is run`
-We may adjust the configuration to match the actual environment.
-This in particular holds for `imagePullSecrets`, `tolerations` and `nodeSelector` in the [YAML files](Deployments.html).
+This
+* starts a clean instance of PostgreSQL, MonetDB, MySQL
+ * data directory inside a Docker container
+ * with a maximum of 1 DBMS per time (`-ms`)
+* creates TPC-H schema in each database
+* starts 8 loader pods per DBMS (`-nlp`)
+ * with a data generator (init) container each
+ * each generating a portion of TPC-H data of scaling factor 1 (`-sf`)
+ * storing the data in a distributed filesystem (shared disk)
+ * if data is already present: do nothing
+ * with a loading container each
+ * importing TPC-H data from the distributed filesystem
+ * MySQL: only one pod active and it loads with 8 threads (`-nlt`)
+* creates contraints (`-ic`) and indexes (`-ii`) and updates table statistics (`-is`) in each DBMS after ingestion
+* runs 1 stream of TPC-H queries per DBMS
+ * all DBMS use the same parameters
+ * data transfer is also measured (`-dt`)
+* shows a summary
+### Status
+You can watch the status while benchmark is running via `bexperiments status`
-For also enabling monitoring we need
-* a monitoring instance Prometheus / Grafana that scrapes metrics from `localhost:9300`
-* an access token and URL for asking Grafana for metrics
- https://grafana.com/docs/grafana/latest/http_api/auth/#create-api-token
+```
+Dashboard: Running
+Message Queue: Running
+Data directory: Running
+Result directory: Running
++------------------+--------------+--------------+---------------+
+| 1706255897 | sut | loaded [s] | loading |
++==================+==============+==============+===============+
+| MonetDB-BHT-8 | (1. Running) | 253.23 | |
++------------------+--------------+--------------+---------------+
+| MySQL-BHT-8-8 | (1. Running) | 0.61 | (8 Succeeded) |
++------------------+--------------+--------------+---------------+
+| PostgreSQL-BHT-8 | (1. Running) | 219.08 | |
++------------------+--------------+--------------+---------------+
+```
+The code `1706255897` is the unique identifier of the experiment.
+You can find the number also in the output of `tpch.py`.
-## Perform Benchmark
+### Cleanup
-For performing the experiment we can run the [tpch file](https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/blob/master/tpch.py).
+The script is supposed to clean up and remove everything from the cluster that is related to the experiment after finishing.
+If something goes wrong, you can also clean up manually with `bexperiment stop` (removes everything) or `bexperiment stop -e 1706255897` (removes everything that is related to experiment `1706255897`).
-The actual configurations to benchmark are added by
-```
-config = configurations.default(experiment=experiment, docker='MonetDB', configuration='MonetDB-{}'.format(cluster_name), alias='DBMS 1')
-config = configurations.default(experiment=experiment, docker='PostgreSQL', configuration='PostgreSQL-{}'.format(cluster_name), alias='DBMS 2')
+## Evaluate Results
+
+At the end of a benchmark you will see a summary like
+
+```bash
+## Show Summary
+Read results
+Connections:
+MonetDB-BHT-8-1-1
+MySQL-BHT-8-8-1-1
+PostgreSQL-BHT-8-1-1
+Queries:
+0: Q1 = Pricing Summary Report (TPC-H Q1)
+1: Q2 = Minimum Cost Supplier Query (TPC-H Q2)
+2: Q3 = Shipping Priority (TPC-H Q3)
+3: Q4 = Order Priority Checking Query (TPC-H Q4)
+4: Q5 = Local Supplier Volume (TPC-H Q5)
+5: Q6 = Forecasting Revenue Change (TPC-H Q6)
+6: Q7 = Forecasting Revenue Change (TPC-H Q7)
+7: Q8 = National Market Share (TPC-H Q8)
+8: Q9 = Product Type Profit Measure (TPC-H Q9)
+9: Q10 = Forecasting Revenue Change (TPC-H Q10)
+10: Q11 = Important Stock Identification (TPC-H Q11)
+11: Q12 = Shipping Modes and Order Priority (TPC-H Q12)
+12: Q13 = Customer Distribution (TPC-H Q13)
+13: Q14 = Forecasting Revenue Change (TPC-H Q14)
+14: Q15 = Top Supplier Query (TPC-H Q15)
+15: Q16 = Parts/Supplier Relationship (TPC-H Q16)
+16: Q17 = Small-Quantity-Order Revenue (TPC-H Q17)
+17: Q18 = Large Volume Customer (TPC-H Q18)
+18: Q19 = Discounted Revenue (TPC-H Q19)
+19: Q20 = Potential Part Promotion (TPC-H Q20)
+20: Q21 = Suppliers Who Kept Orders Waiting Query (TPC-H Q21)
+21: Q22 = Global Sales Opportunity Query (TPC-H Q22)
+Load Evaluation
+
+### Errors
+ MonetDB-BHT-8-1-1 MySQL-BHT-8-8-1-1 PostgreSQL-BHT-8-1-1
+Q1 False False False
+Q2 False False False
+Q3 False False False
+Q4 False False False
+Q5 False False False
+Q6 False False False
+Q7 False False False
+Q8 False False False
+Q9 False False False
+Q10 False False False
+Q11 False False False
+Q12 False False False
+Q13 False False False
+Q14 False False False
+Q15 False False False
+Q16 False False False
+Q17 False False False
+Q18 False False False
+Q19 False False False
+Q20 False False False
+Q21 False False False
+Q22 False False False
+
+### Warnings
+ MonetDB-BHT-8-1-1 MySQL-BHT-8-8-1-1 PostgreSQL-BHT-8-1-1
+Q1 False False False
+Q2 False False False
+Q3 False False False
+Q4 False False False
+Q5 False False False
+Q6 False False False
+Q7 False False False
+Q8 False False False
+Q9 False False False
+Q10 False False False
+Q11 False False False
+Q12 False False False
+Q13 False False False
+Q14 False False False
+Q15 False False False
+Q16 False False False
+Q17 False False False
+Q18 False False False
+Q19 False False False
+Q20 False False False
+Q21 False False False
+Q22 False False False
+
+### Latency of Timer Execution [ms]
+DBMS MonetDB-BHT-8-1-1 MySQL-BHT-8-8-1-1 PostgreSQL-BHT-8-1-1
+Q1 2404.64 33934.30 2612.67
+Q2 30.12 361.71 441.01
+Q3 151.54 3897.70 794.99
+Q4 52.34 1882.83 1311.89
+Q5 73.99 3639.32 698.28
+Q6 33.68 4465.72 539.06
+Q7 95.63 7349.12 810.43
+Q8 449.77 6828.98 656.06
+Q9 111.96 5704.00 1145.25
+Q10 175.70 3128.08 1321.12
+Q11 31.90 363.01 258.32
+Q12 67.53 7294.59 1069.99
+Q13 555.90 8787.78 2008.54
+Q14 41.45 5265.07 596.09
+Q15 60.05 22688.57 583.01
+Q16 116.17 1057.91 591.68
+Q17 72.47 799.00 2024.25
+Q18 964.94 6488.35 7099.96
+Q19 91.28 387.99 1595.01
+Q20 97.20 586.58 668.23
+Q21 3185.97 16793.11 932.27
+Q22 67.00 512.73 253.11
+
+### Loading [s]
+ timeGenerate timeIngesting timeSchema timeIndex timeLoad
+MonetDB-BHT-8-1-1 1.0 22.0 8.80 34.36 102.16
+MySQL-BHT-8-8-1-1 1.0 435.0 3.78 1793.84 2262.63
+PostgreSQL-BHT-8-1-1 1.0 25.0 0.61 88.96 139.58
+
+### Geometric Mean of Medians of Timer Run [s]
+ Geo Times [s]
+DBMS
+MonetDB-BHT-8-1-1 0.16
+MySQL-BHT-8-8-1-1 3.11
+PostgreSQL-BHT-8-1-1 0.95
+
+### TPC-H Power@Size
+ Power@Size [~Q/h]
+DBMS
+MonetDB-BHT-8-1-1 27011.62
+MySQL-BHT-8-8-1-1 1187.97
+PostgreSQL-BHT-8-1-1 3924.04
+
+### TPC-H Throughput@Size
+ time [s] count SF Throughput@Size [~GB/h]
+DBMS SF num_experiment num_client
+MonetDB-BHT-8-1 1 1 1 13 1 1 6092.31
+MySQL-BHT-8-8-1 1 1 1 147 1 1 538.78
+PostgreSQL-BHT-8-1 1 1 1 33 1 1 2400.00
+
+### Ingestion
+ SUT - CPU of Ingestion (via counter) [CPUs] SUT - Max RAM of Ingestion [Gb]
+DBMS
+MonetDB-BHT-8-1 139.25 1.23
+MySQL-BHT-8-8-1 3015.80 47.16
+PostgreSQL-BHT-8-1 150.89 3.74
+
+### Execution
+ SUT - CPU of Execution (via counter) [CPUs] SUT - Max RAM of Execution [Gb]
+DBMS
+MonetDB-BHT-8-1 17.13 1.57
+MySQL-BHT-8-8-1 130.73 47.31
+PostgreSQL-BHT-8-1 63.62 3.78
```
+This gives a survey about the errors and warnings (result set mismatch) and the latencies of execution per query.
+Moreover the loading times (schema creation, ingestion and indexing), the geometric mean of query execution times and the TPC-H metrics power and throughput are reported.
+Please note that the results are not suitable for being published as official TPC-H results.
+In particular the refresh streams are missing.
+
+To see the summary of experiment `1706255897` you can simply call `python tpch.py -e 1706255897 summary`.
+
+### Detailed Evaluation
+
+Results are transformed into pandas DataFrames and can be inspected in more detail.
+Detailed evaluations can be done using DBMSBenchmarker
+* [Dashboard](https://dbmsbenchmarker.readthedocs.io/en/latest/Dashboard.html)
+* [Jupyter Notebooks](https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/tree/master/images/evaluator_dbmsbenchmarker/notebooks/)
+
+You can connect to an evaluation server in the cluster by `bexperiments dashboard`.
+This forwards ports, so you have
+* a DBMSBenchmarker dashboard in browser at http://localhost:8050
+* a Jupyter notebook server at http://localhost:8888 containing the example notebooks
+
+You can connect to a local evaluation server by `bexperiments localdashboard`.
+This forwards ports, so you have
+* a DBMSBenchmarker dashboard in browser at http://localhost:8050
+
+You can connect to a local jupyter server by `bexperiments jupyter`.
+This forwards ports, so you have
+* a Jupyter notebook server at http://localhost:8888 containing the example notebooks
+
+
+## Adjust Parameters
+
+The script supports
+* exact repetitions for statistical confidence
+* variations to scan a large parameters space
+* combine results for easy evaluation
+
+There are various ways to change parameters.
-### Adjust Parameter
+### Manifests
+
+The YAML manifests for the components can be found in https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/tree/master/k8s
+
+### SQL Scrips
+
+The SQL scripts for pre and post ingestion can be found in https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/tree/master/experiments/tpch
+
+### Dockerfiles
+
+The Dockerfiles for the components can be found in https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/tree/master/images/tpch
+
+### Command line
You maybe want to adjust some of the parameters that are set in the file: `python tpch.py -h`
-```
-usage: tpch.py [-h] [-db] [-c CONNECTION] [-cx CONTEXT] [-e EXPERIMENT] [-d] [-m] [-ms MAX_SUT] [-dt]
- [-md MONITORING_DELAY] [-nr NUM_RUN] [-nc NUM_CONFIG] [-ne NUM_QUERY_EXECUTORS] [-sf SCALING_FACTOR]
- [-t TIMEOUT] [-rr REQUEST_RAM] [-rc REQUEST_CPU] [-rct REQUEST_CPU_TYPE] [-rg REQUEST_GPU]
- [-rgt REQUEST_GPU_TYPE] [-rst {None,,local-hdd,shared}] [-rss REQUEST_STORAGE_SIZE]
- [-rnn REQUEST_NODE_NAME]
- {profiling,run,start,load}
-
-Perform TPC-H inspired benchmarks in a Kubernetes cluster. This either profiles the imported data in several DBMS and
-compares some statistics, or runs the TPC-H queries. Optionally monitoring is actived. User can choose to detach the
-componenten of the benchmarking system, so that as much as possible is run inside a Kubernetes (K8s) cluster. User can
-also choose some parameters like number of runs per query and configuration and request some resources.
+```bash
+usage: tpch.py [-h] [-aws] [-dbms {PostgreSQL,MonetDB,MySQL}] [-lit LIMIT_IMPORT_TABLE] [-db] [-cx CONTEXT] [-e EXPERIMENT] [-d] [-m] [-mc] [-ms MAX_SUT] [-dt] [-md MONITORING_DELAY] [-nr NUM_RUN] [-nc NUM_CONFIG] [-ne NUM_QUERY_EXECUTORS] [-nls NUM_LOADING_SPLIT] [-nlp NUM_LOADING_PODS] [-nlt NUM_LOADING_THREADS]
+ [-sf SCALING_FACTOR] [-t TIMEOUT] [-rr REQUEST_RAM] [-rc REQUEST_CPU] [-rct REQUEST_CPU_TYPE] [-rg REQUEST_GPU] [-rgt REQUEST_GPU_TYPE] [-rst {None,,local-hdd,shared}] [-rss REQUEST_STORAGE_SIZE] [-rnn REQUEST_NODE_NAME] [-tr] [-ii] [-ic] [-is] [-rcp] [-shq]
+ {profiling,run,start,load,empty}
+
+Performs a TPC-H experiment. Data is generated and imported into a DBMS from a distributed filesystem (shared disk).
positional arguments:
- {profiling,run,start,load}
- profile the import of TPC-H data, or run the TPC-H queries, or start DBMS and load data, or
- just start the DBMS
+ {profiling,run,start,load,empty}
+ profile the import or run the TPC-H queries
-optional arguments:
+options:
-h, --help show this help message and exit
+ -aws, --aws fix components to node groups at AWS
+ -dbms {PostgreSQL,MonetDB,MySQL}
+ DBMS to load the data
+ -lit LIMIT_IMPORT_TABLE, --limit-import-table LIMIT_IMPORT_TABLE
+ limit import to one table, name of this table
-db, --debug dump debug informations
- -c CONNECTION, --connection CONNECTION
- name of DBMS
-cx CONTEXT, --context CONTEXT
context of Kubernetes (for a multi cluster environment), default is current context
-e EXPERIMENT, --experiment EXPERIMENT
sets experiment code for continuing started experiment
-d, --detached puts most of the experiment workflow inside the cluster
-m, --monitoring activates monitoring
+ -mc, --monitoring-cluster
+ activates monitoring for all nodes of cluster
-ms MAX_SUT, --max-sut MAX_SUT
maximum number of parallel DBMS configurations, default is no limit
-dt, --datatransfer activates datatransfer
@@ -83,6 +304,12 @@ optional arguments:
number of runs per configuration
-ne NUM_QUERY_EXECUTORS, --num-query-executors NUM_QUERY_EXECUTORS
comma separated list of number of parallel clients
+ -nls NUM_LOADING_SPLIT, --num-loading-split NUM_LOADING_SPLIT
+ portion of loaders that should run in parallel
+ -nlp NUM_LOADING_PODS, --num-loading-pods NUM_LOADING_PODS
+ total number of loaders per configuration
+ -nlt NUM_LOADING_THREADS, --num-loading-threads NUM_LOADING_THREADS
+ total number of threads per loading process
-sf SCALING_FACTOR, --scaling-factor SCALING_FACTOR
scaling factor (SF)
-t TIMEOUT, --timeout TIMEOUT
@@ -103,17 +330,99 @@ optional arguments:
request persistent storage of certain size
-rnn REQUEST_NODE_NAME, --request-node-name REQUEST_NODE_NAME
request a specific node
+ -tr, --test-result test if result fulfills some basic requirements
+ -ii, --init-indexes adds indexes to tables after ingestion
+ -ic, --init-constraints
+ adds constraints to tables after ingestion
+ -is, --init-statistics
+ recomputes statistics of tables after ingestion
+ -rcp, --recreate-parameter
+ recreate parameter for randomized queries
+ -shq, --shuffle-queries
+ have different orderings per stream
```
-The hardware requirements are set via
+## Monitoring
+
+[Monitoring](Monitoring.html) can be activated for DBMS only (`-m`) or for all components (`-mc`).
+
+If monitoring is activated, the summary also contains a section like
+```bash
+### Ingestion
+ SUT - CPU of Ingestion (via counter) [CPUs] SUT - Max RAM of Ingestion [Gb]
+DBMS
+MonetDB-BHT-8-1 142.81 1.21
+MySQL-BHT-8-8-1 3046.31 47.20
+PostgreSQL-BHT-8-1 137.44 3.94
+
+### Execution
+ SUT - CPU of Execution (via counter) [CPUs] SUT - Max RAM of Execution [Gb]
+DBMS
+MonetDB-BHT-8-1 34.85 1.76
+MySQL-BHT-8-8-1 132.57 47.37
+PostgreSQL-BHT-8-1 116.69 3.84
```
-# pick hardware
-cpu = str(args.request_cpu)
-memory = str(args.request_ram)
-cpu_type = str(args.request_cpu_type)
+
+This gives a survey about CPU (in CPU seconds) and RAM usage (in Mb) during loading and execution of the benchmark.
+
+## Perform Benchmark - Throughput Test
+
+For performing the experiment we can run the [tpch file](https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/blob/master/tpch.py).
+
+Example: `python tpch.py -dt -nlp 8 -ii -ic -is -ne 1,2 -dbms PostgreSQL -t 1200 run`
+
+This runs 3 streams (`-ne`), the first one as a single stream and the following 2 in parallel.
+
+```bash
+### Geometric Mean of Medians of Timer Run [s]
+ Geo Times [s]
+DBMS
+PostgreSQL-BHT-8-1-1 0.96
+PostgreSQL-BHT-8-2-1 0.99
+PostgreSQL-BHT-8-2-2 0.97
+
+### TPC-H Power@Size
+ Power@Size [~Q/h]
+DBMS
+PostgreSQL-BHT-8-1-1 3990.33
+PostgreSQL-BHT-8-2-1 3867.48
+PostgreSQL-BHT-8-2-2 3937.01
+
+### TPC-H Throughput@Size
+ time [s] count SF Throughput@Size [~GB/h]
+DBMS SF num_experiment num_client
+PostgreSQL-BHT-8-1 1 1 1 38 1 1 2084.21
+PostgreSQL-BHT-8-2 1 1 2 38 2 1 4168.42
```
-## Evaluate Results in Dashboard
+Per default, all 3 streams use the same random parameters (like DELTA in Q1) and run in ordering Q1-Q22.
+You can change this via
+* `-rcp`: Each stream has it's own random parameters
+* `-shq`: Use the ordering per stream as required by the TPC-H specification
-Evaluation is done using DBMSBenchmarker: https://github.com/Beuth-Erdelt/DBMS-Benchmarker/blob/master/docs/Dashboard.html
+## Use Persistent Storage
+
+The default behaviour of bexhoma is that the database is stored inside the ephemeral storage of the Docker container.
+If your cluster allows dynamic provisioning of volumes, you might request a persistent storage of a certain type (storageClass) and size.
+
+Example: `python tpch.py -dt -nlp 8 -nlt 8 -sf 1 -ii -ic -is -nc 2 -dbms PostgreSQL -rst local-hdd -rss 50Gi run`
+
+The following status shows we have a volumes of type `local-hdd`.
+Every experiment running TPC-H of SF=1 at PostgreSQL will take the database from this volume and skip loading.
+In this example `-nc` is set to two, that is the complete experiment is repeated twice for statistical confidence.
+The first instance of PostgreSQL mounts the volume and generates the data.
+All other instances just use the database without generating and loading data.
+
+```
++-----------------------------------+-----------------+--------------+--------------+-------------------+------------+----------------------+-----------+----------+
+| Volumes | configuration | experiment | loaded [s] | timeLoading [s] | dbms | storage_class_name | storage | status |
++===================================+=================+==============+==============+===================+============+======================+===========+==========+
+| bexhoma-storage-postgresql-tpch-1 | postgresql | tpch-1 | True | 185.41 | PostgreSQL | local-hdd | 50Gi | Bound |
++-----------------------------------+-----------------+--------------+--------------+-------------------+------------+----------------------+-----------+----------+
++------------------+--------------+--------------+---------------+
+| 1707740320 | sut | loaded [s] | benchmarker |
++==================+==============+==============+===============+
+| PostgreSQL-BHT-8 | (1. Running) | 185.41 | (1. Running) |
++------------------+--------------+--------------+---------------+
+```
diff --git a/docs/Example-YCSB.md b/docs/Example-YCSB.md
new file mode 100644
index 00000000..a83b7da6
--- /dev/null
+++ b/docs/Example-YCSB.md
@@ -0,0 +1,335 @@
+# Example: YCSB
+
+
+
+References:
+1. https://github.com/brianfrankcooper/YCSB/wiki/Running-a-Workload
+
+## Perform Benchmark
+
+For performing the experiment we can run the [ycsb file](https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/blob/master/ycsb.py).
+
+Example: `python ycsb.py -ms 1 -dbms PostgreSQL -workload a -tr run`
+
+This
+* loops over `n` in [1,8] and `t` in [1,2,3,4,5,6,7,8]
+ * starts a clean instance of PostgreSQL (`-dbms`)
+ * data directory inside a Docker container
+ * creates YCSB schema in each database
+ * starts `n` loader pods per DBMS
+ * with a loading container each
+ * threads = 64/`n`
+ * target throughput is `t` * 16384
+ * generates YCSB data = 1.000.000 rows (i.e., SF=1)
+ * imports it into the DBMS
+ * runs `n` parallel streams of YCSB queries per DBMS
+ * 1.000.000 operations
+ * workload A = 50% read / 50% write (`-workload`)
+ * target throughput is `t` * 16384
+ * with a maximum of 1 DBMS per time (`-ms`)
+* tests if results match workflow (`-tr`)
+* shows a summary
+
+### Status
+
+You can watch the status while benchmark is running via `bexperiments status`
+
+```
+Dashboard: Running
+Message Queue: Running
+Data directory: Running
+Result directory: Running
++------------------------+--------------+--------------+-------------+--------------+
+| 1706264335 | sut | loaded [s] | loading | monitoring |
++========================+==============+==============+=============+==============+
+| PostgreSQL-64-1-131072 | (1. Running) | 0.64 | (1 Running) | (Running) |
++------------------------+--------------+--------------+-------------+--------------+
+```
+
+The code `1706264335` is the unique identifier of the experiment.
+You can find the number also in the output of `ycsb.py`.
+
+### Cleanup
+
+The script is supposed to clean up and remove everything from the cluster that is related to the experiment after finishing.
+If something goes wrong, you can also clean up manually with `bexperiment stop` (removes everything) or `bexperiment stop -e 1706264335` (removes everything that is related to experiment `1706264335`).
+
+## Evaluate Results
+
+At the end of a benchmark you will see a summary like
+
+```bash
+### Loading
+ threads target pod_count [OVERALL].Throughput(ops/sec) [OVERALL].RunTime(ms) [INSERT].Return=OK [INSERT].99thPercentileLatency(us)
+PostgreSQL-64-1-16384 64 16384 1 16285.849226 61403.0 1000000 1283.00
+PostgreSQL-64-8-16384 64 16384 8 16189.808395 62334.0 1000000 1029.25
+PostgreSQL-64-1-32768 64 32768 1 32334.206357 30927.0 1000000 2993.00
+PostgreSQL-64-8-32768 64 32768 8 32487.310483 30788.0 1000000 2362.50
+PostgreSQL-64-1-49152 64 49152 1 47429.330298 21084.0 1000000 4343.00
+PostgreSQL-64-8-49152 64 49152 8 48401.920774 20850.0 1000000 3848.50
+PostgreSQL-64-1-65536 64 65536 1 63881.436055 15654.0 1000000 6127.00
+PostgreSQL-64-8-65536 64 65536 8 64436.143011 15540.0 1000000 4843.00
+PostgreSQL-64-1-81920 64 81920 1 71078.257161 14069.0 1000000 6219.00
+PostgreSQL-64-8-81920 64 81920 8 72415.868804 14361.0 1000000 5296.00
+PostgreSQL-64-1-98304 64 98304 1 81586.032471 12257.0 1000000 5027.00
+PostgreSQL-64-8-98304 64 98304 8 86657.160474 11681.0 1000000 5571.00
+PostgreSQL-64-1-114688 64 114688 1 74693.755602 13388.0 1000000 5923.00
+PostgreSQL-64-8-114688 64 114688 8 80616.643342 13037.0 1000000 5275.50
+PostgreSQL-64-1-131072 64 131072 1 81766.148814 12230.0 1000000 6087.00
+PostgreSQL-64-8-131072 64 131072 8 80708.979092 12469.0 1000000 5656.00
+
+### Execution
+ threads target pod_count [OVERALL].Throughput(ops/sec) [OVERALL].RunTime(ms) [READ].Return=OK [READ].99thPercentileLatency(us) [UPDATE].Return=OK [UPDATE].99thPercentileLatency(us)
+PostgreSQL-64-1-16384-1 64 16384 1 16281.61 61419.0 499663 540.00 500337 743.00
+PostgreSQL-64-8-16384-1 64 16384 8 16313.68 61310.0 500621 544.75 499379 759.38
+PostgreSQL-64-1-32768-1 64 32768 1 32171.93 31083.0 500316 570.00 499684 925.00
+PostgreSQL-64-8-32768-1 64 32768 8 32481.38 30794.0 500704 594.88 499296 839.75
+PostgreSQL-64-1-49152-1 64 49152 1 48351.22 20682.0 499465 808.00 500535 1395.00
+PostgreSQL-64-8-49152-1 64 49152 8 48521.04 20624.0 500275 946.75 499725 1554.88
+PostgreSQL-64-1-65536-1 64 65536 1 62468.77 16008.0 499253 1069.00 500747 1656.00
+PostgreSQL-64-8-65536-1 64 65536 8 64434.09 15541.0 500305 1056.00 499695 1617.00
+PostgreSQL-64-1-81920-1 64 81920 1 78659.64 12713.0 500203 1313.00 499797 2055.00
+PostgreSQL-64-8-81920-1 64 81920 8 79285.81 12740.0 500409 1337.38 499591 2126.25
+PostgreSQL-64-1-98304-1 64 98304 1 89421.44 11183.0 499133 1425.00 500867 2767.00
+PostgreSQL-64-8-98304-1 64 98304 8 87541.47 11748.0 500122 1363.75 499878 2414.00
+PostgreSQL-64-1-114688-1 64 114688 1 101770.81 9826.0 500000 1351.00 500000 2213.00
+PostgreSQL-64-8-114688-1 64 114688 8 104663.23 9835.0 500450 1515.62 499550 2866.25
+PostgreSQL-64-1-131072-1 64 131072 1 88354.83 11318.0 499788 1566.00 500212 3451.00
+PostgreSQL-64-8-131072-1 64 131072 8 115356.26 9250.0 500084 1526.75 499916 3356.75
+```
+
+We can see that the overall throughput is close to the target and that scaled-out drivers (8 pods with 8 threads each) have similar results as a monolithic driver (1 pod with 64 thread).
+The runtime is between 8 seconds and 1 minute.
+
+To see the summary of experiment `1706264335` you can simply call `python ycsb.py -e 1706264335 summary`.
+
+### Detailed Evaluation
+
+Results are transformed into pandas DataFrames and can be inspected in detail.
+See for example
+* [Jupyter Notebooks](https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/tree/master/images/evaluator_dbmsbenchmarker/notebooks/)
+
+You can connect to an evaluation server in the cluster by `bexperiments dashboard`.
+This forwards ports, so you have
+* a Jupyter notebook server at http://localhost:8888
+
+You can connect to an evaluation server locally by `bexperiments jupyter`.
+This forwards ports, so you have
+* a Jupyter notebook server at http://localhost:8888
+
+## Adjust Parameters
+
+The script supports
+* exact repetitions for statistical confidence
+* variations to scan a large parameters space
+* combine results for easy evaluation
+
+There are various ways to change parameters.
+
+### Manifests
+
+The YAML manifests for the components can be found in https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/tree/master/k8s
+
+### SQL Scrips
+
+The SQL scripts for pre and post ingestion can be found in https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/tree/master/experiments/ycsb
+
+### Dockerfiles
+
+The Dockerfiles for the components can be found in https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/tree/master/images/ycsb
+
+### Command line
+
+You maybe want to adjust some of the parameters that are set in the file: `python ycsb.py -h`
+
+```bash
+usage: ycsb.py [-h] [-aws] [-dbms {PostgreSQL,MySQL}] [-workload {a,b,c,d,e,f}] [-db] [-cx CONTEXT] [-e EXPERIMENT] [-d] [-m] [-mc] [-ms MAX_SUT] [-dt] [-md MONITORING_DELAY] [-nr NUM_RUN] [-nc NUM_CONFIG] [-ne NUM_QUERY_EXECUTORS] [-nl NUM_LOADING] [-nlp NUM_LOADING_PODS] [-sf SCALING_FACTOR]
+ [-sfo SCALING_FACTOR_OPERATIONS] [-su SCALING_USERS] [-sbs SCALING_BATCHSIZE] [-ltf LIST_TARGET_FACTORS] [-tb TARGET_BASE] [-t TIMEOUT] [-rr REQUEST_RAM] [-rc REQUEST_CPU] [-rct REQUEST_CPU_TYPE] [-rg REQUEST_GPU] [-rgt REQUEST_GPU_TYPE] [-rst {None,,local-hdd,shared}] [-rss REQUEST_STORAGE_SIZE]
+ [-rnn REQUEST_NODE_NAME] [-rnl REQUEST_NODE_LOADING] [-rnb REQUEST_NODE_BENCHMARKING] [-tr]
+ {run,start,load}
+
+Perform YCSB benchmarks in a Kubernetes cluster. Number of rows and operations is SF*1,000,000. This installs a clean copy for each target and split of the driver. Optionally monitoring is activated.
+
+positional arguments:
+ {run,start,load} import YCSB data or run YCSB queries
+
+options:
+ -h, --help show this help message and exit
+ -aws, --aws fix components to node groups at AWS
+ -dbms {PostgreSQL,MySQL}
+ DBMS to load the data
+ -workload {a,b,c,d,e,f}
+ YCSB default workload
+ -db, --debug dump debug informations
+ -cx CONTEXT, --context CONTEXT
+ context of Kubernetes (for a multi cluster environment), default is current context
+ -e EXPERIMENT, --experiment EXPERIMENT
+ sets experiment code for continuing started experiment
+ -d, --detached puts most of the experiment workflow inside the cluster
+ -m, --monitoring activates monitoring for sut
+ -mc, --monitoring-cluster
+ activates monitoring for all nodes of cluster
+ -ms MAX_SUT, --max-sut MAX_SUT
+ maximum number of parallel DBMS configurations, default is no limit
+ -dt, --datatransfer activates datatransfer
+ -md MONITORING_DELAY, --monitoring-delay MONITORING_DELAY
+ time to wait [s] before execution of the runs of a query
+ -nr NUM_RUN, --num-run NUM_RUN
+ number of runs per query
+ -nc NUM_CONFIG, --num-config NUM_CONFIG
+ number of runs per configuration
+ -ne NUM_QUERY_EXECUTORS, --num-query-executors NUM_QUERY_EXECUTORS
+ comma separated list of number of parallel clients
+ -nl NUM_LOADING, --num-loading NUM_LOADING
+ number of parallel loaders per configuration
+ -nlp NUM_LOADING_PODS, --num-loading-pods NUM_LOADING_PODS
+ total number of loaders per configuration
+ -sf SCALING_FACTOR, --scaling-factor SCALING_FACTOR
+ scaling factor (SF) = number of rows in millions
+ -sfo SCALING_FACTOR_OPERATIONS, --scaling-factor-operations SCALING_FACTOR_OPERATIONS
+ scaling factor (SF) = number of operations in millions (=SF if not set)
+ -su SCALING_USERS, --scaling-users SCALING_USERS
+ scaling factor = number of total threads
+ -sbs SCALING_BATCHSIZE, --scaling-batchsize SCALING_BATCHSIZE
+ batch size
+ -ltf LIST_TARGET_FACTORS, --list-target-factors LIST_TARGET_FACTORS
+ comma separated list of factors of 16384 ops as target - default range(1,9)
+ -tb TARGET_BASE, --target-base TARGET_BASE
+ ops as target, base for factors - default 16384 = 2**14
+ -t TIMEOUT, --timeout TIMEOUT
+ timeout for a run of a query
+ -rr REQUEST_RAM, --request-ram REQUEST_RAM
+ request ram
+ -rc REQUEST_CPU, --request-cpu REQUEST_CPU
+ request cpus
+ -rct REQUEST_CPU_TYPE, --request-cpu-type REQUEST_CPU_TYPE
+ request node having node label cpu=
+ -rg REQUEST_GPU, --request-gpu REQUEST_GPU
+ request number of gpus
+ -rgt REQUEST_GPU_TYPE, --request-gpu-type REQUEST_GPU_TYPE
+ request node having node label gpu=
+ -rst {None,,local-hdd,shared}, --request-storage-type {None,,local-hdd,shared}
+ request persistent storage of certain type
+ -rss REQUEST_STORAGE_SIZE, --request-storage-size REQUEST_STORAGE_SIZE
+ request persistent storage of certain size
+ -rnn REQUEST_NODE_NAME, --request-node-name REQUEST_NODE_NAME
+ request a specific node
+ -rnl REQUEST_NODE_LOADING, --request-node-loading REQUEST_NODE_LOADING
+ request a specific node
+ -rnb REQUEST_NODE_BENCHMARKING, --request-node-benchmarking REQUEST_NODE_BENCHMARKING
+ request a specific node
+ -tr, --test-result test if result fulfills some basic requirements
+```
+
+## Monitoring
+
+[Monitoring](Monitoring.html) can be activated for DBMS only (`-m`) or for all components (`-mc`).
+
+If monitoring is activated, the summary also contains a section like
+
+```bash
+### Ingestion
+ SUT - CPU of Ingestion (via counter) [CPUs] SUT - Max RAM of Ingestion [Gb]
+PostgreSQL-64-1-16384-1 211.08 3.56
+PostgreSQL-64-1-32768-1 208.34 3.51
+PostgreSQL-64-1-49152-1 43.55 2.78
+PostgreSQL-64-1-65536-1 95.57 3.16
+PostgreSQL-64-1-81920-1 224.71 3.50
+PostgreSQL-64-1-98304-1 208.72 3.50
+PostgreSQL-64-1-114688-1 39.80 2.74
+PostgreSQL-64-1-131072-1 142.15 3.47
+PostgreSQL-64-8-16384-1 192.93 3.51
+PostgreSQL-64-8-32768-1 185.90 3.50
+PostgreSQL-64-8-49152-1 191.40 3.81
+PostgreSQL-64-8-65536-1 189.31 3.77
+PostgreSQL-64-8-81920-1 141.00 3.46
+PostgreSQL-64-8-98304-1 117.22 3.28
+PostgreSQL-64-8-114688-1 209.95 3.50
+PostgreSQL-64-8-131072-1 208.55 3.50
+
+### Execution
+ SUT - CPU of Execution (via counter) [CPUs] SUT - Max RAM of Execution [Gb]
+PostgreSQL-64-1-16384-1 158.03 4.02
+PostgreSQL-64-1-32768-1 171.52 4.02
+PostgreSQL-64-1-49152-1 131.15 3.98
+PostgreSQL-64-1-65536-1 185.56 3.68
+PostgreSQL-64-1-81920-1 0.00 3.50
+PostgreSQL-64-1-98304-1 0.00 3.50
+PostgreSQL-64-1-114688-1 0.00 3.50
+PostgreSQL-64-1-131072-1 0.00 3.50
+PostgreSQL-64-8-16384-1 122.51 3.98
+PostgreSQL-64-8-32768-1 110.22 3.97
+PostgreSQL-64-8-49152-1 163.70 4.00
+PostgreSQL-64-8-65536-1 0.00 3.50
+PostgreSQL-64-8-81920-1 169.54 4.00
+PostgreSQL-64-8-98304-1 66.88 3.92
+PostgreSQL-64-8-114688-1 190.45 3.69
+PostgreSQL-64-8-131072-1 146.15 4.02
+```
+
+This gives a survey about CPU (in CPU seconds) and RAM usage (in Mb) during loading and execution of the benchmark.
+
+In this example, metrics are very instable. Metrics are fetched every 30 seconds.
+This is too coarse for such a quick example.
+
+## Perform Execution Benchmark
+
+The default behaviour of bexhoma is that several different settings of the loading component are compared.
+We might only want to benchmark the workloads of YCSB in different configurations and have a fixed loading phase.
+
+For performing the experiment we can run the [ycsb file](https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/blob/master/ycsb.py).
+
+Example: `python ycsb.py -ms 1 -m -workload a -tr -nlp 1 -dbms PostgreSQL -ne 1,2 -nc 2 -ltf 2 run`
+
+This loads a YCSB data set with 1 pod (`-lnp`) of 64 threads.
+There are two executions (`-ne`) run against the database, the first with 1 driver and the second with two drivers.
+Each of the drivers has 64 threads and a target of twice (`-ltf`) the base, that is 16384 per default.
+The experiment is run twice (`-nc`).
+
+
+```
+## Show Summary
+
+### Loading
+ experiment_run threads target pod_count [OVERALL].Throughput(ops/sec) [OVERALL].RunTime(ms) [INSERT].Return=OK [INSERT].99thPercentileLatency(us)
+PostgreSQL-64-1-32768 1 64 32768 1 32337.343164 30924.0 1000000 2913.0
+PostgreSQL-64-1-32768 2 64 32768 1 32355.129906 30907.0 1000000 2705.0
+
+### Execution
+ experiment_run threads target pod_count [OVERALL].Throughput(ops/sec) [OVERALL].RunTime(ms) [READ].Return=OK [READ].99thPercentileLatency(us) [UPDATE].Return=OK [UPDATE].99thPercentileLatency(us)
+PostgreSQL-64-1-32768-1-1 1 64 32768 1 32369.79 30893.0 499162 888.0 500838 1467.0
+PostgreSQL-64-1-32768-1-2 1 128 65536 2 55616.72 36454.0 999790 1446.0 1000210 11679.0
+PostgreSQL-64-1-32768-2-1 2 64 32768 1 32371.89 30891.0 499548 542.0 500452 829.0
+PostgreSQL-64-1-32768-2-2 2 128 65536 2 64706.09 30926.0 999404 1392.0 1000596 3480.0
+```
+
+## Use Persistent Storage
+
+The default behaviour of bexhoma is that the database is stored inside the ephemeral storage of the Docker container.
+If your cluster allows dynamic provisioning of volumes, you might request a persistent storage of a certain type (storageClass) and size.
+
+Example: `python ycsb.py -ms 1 -m -dbms MySQL -workload a -tr -nc 2 -rst local-hdd -rss 50Gi run`
+
+The following status shows we have two volumes of type `local-hdd`. Every experiment running YCSB of SF=1, if it's MySQL or PostgreSQL, will take the databases from these volumes and skip loading.
+In this example `-nc` is set to two, that is the complete experiment is repeated twice for statistical confidence.
+The first instance of MySQL mounts the volume and generates the data.
+All other instances just use the database without generating and loading data.
+
+```
++-----------------------------------+-----------------+--------------+--------------+-------------------+------------+----------------------+-----------+----------+
+| Volumes | configuration | experiment | loaded [s] | timeLoading [s] | dbms | storage_class_name | storage | status |
++===================================+=================+==============+==============+===================+============+======================+===========+==========+
+| bexhoma-storage-mysql-ycsb-1 | mysql | ycsb-1 | True | 2398.11 | MySQL | local-hdd | 50Gi | Bound |
++-----------------------------------+-----------------+--------------+--------------+-------------------+------------+----------------------+-----------+----------+
+| bexhoma-storage-postgresql-ycsb-1 | postgresql | ycsb-1 | True | 61.82 | PostgreSQL | local-hdd | 50Gi | Bound |
++-----------------------------------+-----------------+--------------+--------------+-------------------+------------+----------------------+-----------+----------+
++------------------+--------------+--------------+--------------+---------------+
+| 1706957093 | sut | loaded [s] | monitoring | benchmarker |
++==================+==============+==============+==============+===============+
+| MySQL-64-1-16384 | (2. Running) | 2398.11 | (Running) | (1. Running) |
++------------------+--------------+--------------+--------------+---------------+
+```
+
+
+
+
diff --git a/docs/_OLD_Example-TPC-H.md b/docs/_OLD_Example-TPC-H.md
new file mode 100644
index 00000000..d81f9814
--- /dev/null
+++ b/docs/_OLD_Example-TPC-H.md
@@ -0,0 +1,119 @@
+# Example: TPC-H
+
+This example shows how to benchmark 22 reading queries Q1-Q22 derived from TPC-H in MonetDB and PostgreSQL.
+
+> The query file is derived from the TPC-H and as such is not comparable to published TPC-H results, as the query file results do not comply with the TPC-H Specification.
+
+Official TPC-H benchmark - http://www.tpc.org/tpch
+
+## Prerequisites
+
+For basic execution of benchmarking we need
+* a Kubernetes (K8s) cluster
+ * a namespace `my_namespace` in the cluster
+ * `kubectl` usable, i.e. access token stored in a default vault like `~/.kube`
+ * a persistent volume named `vol-benchmarking` containing the raw TPC-H data in `/data/tpch/SF1/`
+* JDBC driver `./monetdb-jdbc-2.29.jar` and `./postgresql-42.2.5.jar`
+
+We need configuration files containing the following informations in a predefined format, c.f. [demo file](https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/tree/master/k8s-cluster.config).
+The demo also includes the necessary settings for some [DBMS](DBMS.html): MariaDB, MonetDB, MySQL, OmniSci and PostgreSQL.
+
+We may adjust the configuration to match the actual environment.
+This in particular holds for `imagePullSecrets`, `tolerations` and `nodeSelector` in the [YAML files](Deployments.html).
+
+
+
+For also enabling monitoring we need
+* a monitoring instance Prometheus / Grafana that scrapes metrics from `localhost:9300`
+* an access token and URL for asking Grafana for metrics
+ https://grafana.com/docs/grafana/latest/http_api/auth/#create-api-token
+
+
+## Perform Benchmark
+
+For performing the experiment we can run the [tpch file](https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/blob/master/tpch.py).
+
+The actual configurations to benchmark are added by
+```
+config = configurations.default(experiment=experiment, docker='MonetDB', configuration='MonetDB-{}'.format(cluster_name), alias='DBMS 1')
+config = configurations.default(experiment=experiment, docker='PostgreSQL', configuration='PostgreSQL-{}'.format(cluster_name), alias='DBMS 2')
+```
+
+### Adjust Parameter
+
+You maybe want to adjust some of the parameters that are set in the file: `python tpch.py -h`
+
+```
+usage: tpch.py [-h] [-db] [-c CONNECTION] [-cx CONTEXT] [-e EXPERIMENT] [-d] [-m] [-ms MAX_SUT] [-dt]
+ [-md MONITORING_DELAY] [-nr NUM_RUN] [-nc NUM_CONFIG] [-ne NUM_QUERY_EXECUTORS] [-sf SCALING_FACTOR]
+ [-t TIMEOUT] [-rr REQUEST_RAM] [-rc REQUEST_CPU] [-rct REQUEST_CPU_TYPE] [-rg REQUEST_GPU]
+ [-rgt REQUEST_GPU_TYPE] [-rst {None,,local-hdd,shared}] [-rss REQUEST_STORAGE_SIZE]
+ [-rnn REQUEST_NODE_NAME]
+ {profiling,run,start,load}
+
+Perform TPC-H inspired benchmarks in a Kubernetes cluster. This either profiles the imported data in several DBMS and
+compares some statistics, or runs the TPC-H queries. Optionally monitoring is actived. User can choose to detach the
+componenten of the benchmarking system, so that as much as possible is run inside a Kubernetes (K8s) cluster. User can
+also choose some parameters like number of runs per query and configuration and request some resources.
+
+positional arguments:
+ {profiling,run,start,load}
+ profile the import of TPC-H data, or run the TPC-H queries, or start DBMS and load data, or
+ just start the DBMS
+
+optional arguments:
+ -h, --help show this help message and exit
+ -db, --debug dump debug informations
+ -c CONNECTION, --connection CONNECTION
+ name of DBMS
+ -cx CONTEXT, --context CONTEXT
+ context of Kubernetes (for a multi cluster environment), default is current context
+ -e EXPERIMENT, --experiment EXPERIMENT
+ sets experiment code for continuing started experiment
+ -d, --detached puts most of the experiment workflow inside the cluster
+ -m, --monitoring activates monitoring
+ -ms MAX_SUT, --max-sut MAX_SUT
+ maximum number of parallel DBMS configurations, default is no limit
+ -dt, --datatransfer activates datatransfer
+ -md MONITORING_DELAY, --monitoring-delay MONITORING_DELAY
+ time to wait [s] before execution of the runs of a query
+ -nr NUM_RUN, --num-run NUM_RUN
+ number of runs per query
+ -nc NUM_CONFIG, --num-config NUM_CONFIG
+ number of runs per configuration
+ -ne NUM_QUERY_EXECUTORS, --num-query-executors NUM_QUERY_EXECUTORS
+ comma separated list of number of parallel clients
+ -sf SCALING_FACTOR, --scaling-factor SCALING_FACTOR
+ scaling factor (SF)
+ -t TIMEOUT, --timeout TIMEOUT
+ timeout for a run of a query
+ -rr REQUEST_RAM, --request-ram REQUEST_RAM
+ request ram
+ -rc REQUEST_CPU, --request-cpu REQUEST_CPU
+ request cpus
+ -rct REQUEST_CPU_TYPE, --request-cpu-type REQUEST_CPU_TYPE
+ request node having node label cpu=
+ -rg REQUEST_GPU, --request-gpu REQUEST_GPU
+ request number of gpus
+ -rgt REQUEST_GPU_TYPE, --request-gpu-type REQUEST_GPU_TYPE
+ request node having node label gpu=
+ -rst {None,,local-hdd,shared}, --request-storage-type {None,,local-hdd,shared}
+ request persistent storage of certain type
+ -rss REQUEST_STORAGE_SIZE, --request-storage-size REQUEST_STORAGE_SIZE
+ request persistent storage of certain size
+ -rnn REQUEST_NODE_NAME, --request-node-name REQUEST_NODE_NAME
+ request a specific node
+```
+
+The hardware requirements are set via
+```
+# pick hardware
+cpu = str(args.request_cpu)
+memory = str(args.request_ram)
+cpu_type = str(args.request_cpu_type)
+```
+
+## Evaluate Results in Dashboard
+
+Evaluation is done using DBMSBenchmarker: https://github.com/Beuth-Erdelt/DBMS-Benchmarker/blob/master/docs/Dashboard.html
+
diff --git a/docs/index.rst b/docs/index.rst
index 18689446..49739cbd 100644
--- a/docs/index.rst
+++ b/docs/index.rst
@@ -12,6 +12,7 @@
:hidden:
../README.md
+ ./Example-YCSB.md
./Example-TPC-H.md
./Example-custom.md
./Concept.md
diff --git a/experiments/tpch/MySQL/initconstraints-tpch.sql b/experiments/tpch/MySQL/initconstraints-tpch.sql
index c296d340..9fd1ddd9 100644
--- a/experiments/tpch/MySQL/initconstraints-tpch.sql
+++ b/experiments/tpch/MySQL/initconstraints-tpch.sql
@@ -1,6 +1,40 @@
-- sccsid: @(#)dss.ri 2.1.8.1
-- tpcd benchmark version 8.0
+
+-- for table region
+alter table tpch.region
+add primary key (r_regionkey);
+
+-- for table nation
+alter table tpch.nation
+add primary key (n_nationkey);
+
+-- for table part
+alter table tpch.part
+add primary key (p_partkey);
+
+-- for table supplier
+alter table tpch.supplier
+add primary key (s_suppkey);
+
+-- for table partsupp
+alter table tpch.partsupp
+add primary key (ps_partkey,ps_suppkey);
+
+-- for table customer
+alter table tpch.customer
+add primary key (c_custkey);
+
+-- for table lineitem
+alter table tpch.lineitem
+add primary key (l_orderkey,l_linenumber);
+
+-- for table orders
+alter table tpch.orders
+add primary key (o_orderkey);
+
+
-- for table nation
alter table tpch.nation
add foreign key (n_regionkey) references tpch.region(r_regionkey);
diff --git a/experiments/tpch/MySQL/initschema-tpch.sql b/experiments/tpch/MySQL/initschema-tpch.sql
index ef5fdcd5..b3bcb3b2 100644
--- a/experiments/tpch/MySQL/initschema-tpch.sql
+++ b/experiments/tpch/MySQL/initschema-tpch.sql
@@ -17,9 +17,24 @@ SET sql_mode='';
SET GLOBAL sql_mode='';
-- speed up import
-SET GLOBAL innodb_buffer_pool_size = 32*1024*1024*1024;
-SET GLOBAL innodb_log_buffer_size = 16*1024*1024*1024;
-SET GLOBAL innodb_flush_log_at_trx_commit =0;
+-- SET GLOBAL innodb_buffer_pool_size = 32*1024*1024*1024;
+-- SET GLOBAL innodb_log_buffer_size = 16*1024*1024*1024;
+-- SET GLOBAL innodb_flush_log_at_trx_commit =0;
+
+-- the server performs a DNS lookup every time a client connects, not tested
+-- SET GLOBAL host_cache_size=0
+
+-- Defines the amount of disk space occupied by redo log files.
+-- SET GLOBAL innodb_redo_log_capacity=1024*1024*1024;
+
+SHOW GLOBAL STATUS;
+
+SELECT @@innodb_buffer_pool_size/1024/1024/1024, @@innodb_buffer_pool_chunk_size/1024/1024/1024, @@innodb_buffer_pool_instances;
+
+SELECT @@innodb_redo_log_capacity/1024/1024, @@innodb_log_buffer_size/1024/1024;
+
+SELECT @@innodb_ddl_threads, @@innodb_ddl_buffer_size/1024/1024;
+
CREATE DATABASE tpch;
@@ -92,36 +107,3 @@ create table tpch.lineitem ( l_orderkey integer not null,
l_shipinstruct char(25) not null,
l_shipmode char(10) not null,
l_comment varchar(44) not null);
-
--- for table region
-alter table tpch.region
-add primary key (r_regionkey);
-
--- for table nation
-alter table tpch.nation
-add primary key (n_nationkey);
-
--- for table part
-alter table tpch.part
-add primary key (p_partkey);
-
--- for table supplier
-alter table tpch.supplier
-add primary key (s_suppkey);
-
--- for table partsupp
-alter table tpch.partsupp
-add primary key (ps_partkey,ps_suppkey);
-
--- for table customer
-alter table tpch.customer
-add primary key (c_custkey);
-
--- for table lineitem
-alter table tpch.lineitem
-add primary key (l_orderkey,l_linenumber);
-
--- for table orders
-alter table tpch.orders
-add primary key (o_orderkey);
-
diff --git a/experiments/tpch/queries-tpch-profiling-keys.config b/experiments/tpch/queries-tpch-profiling-keys.config
new file mode 100644
index 00000000..40b1093f
--- /dev/null
+++ b/experiments/tpch/queries-tpch-profiling-keys.config
@@ -0,0 +1,2173 @@
+{'connectionmanagement': {'numProcesses': 1,
+ 'runsPerConnection': 1,
+ 'timeout': 1200},
+ 'factor': 'mean',
+ 'intro': 'We compute for all columns: Minimum, maximum, average, count, count '
+ 'distinct, count NULL and non NULL entries and coefficient of '
+ 'variation.',
+ 'name': 'Data Profiling TPC-DS - per column',
+ 'queries': [{'DBMS': {'OmniSci': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_custkey) cnn,\n'
+ ' COUNT(DISTINCT c_custkey) di,\n'
+ ' MIN(c_custkey) mi,\n'
+ ' MAX(c_custkey) ma,\n'
+ ' AVG(CAST(c_custkey AS '
+ 'DECIMAL(16,2))) av\n'
+ ' FROM customer) SELECT * FROM stats '},
+ 'active': True,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_custkey) cnn,\n'
+ ' COUNT(DISTINCT c_custkey) di,\n'
+ ' MIN(c_custkey) mi,\n'
+ ' MAX(c_custkey) ma,\n'
+ ' AVG(CAST(c_custkey AS DECIMAL(16,2))) av\n'
+ ' FROM customer) SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about customer.c_custkey - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT c_name v, '
+ 'CAST(COUNT(c_name) AS DECIMAL(16,2)) c FROM '
+ 'customer GROUP BY c_name), stats AS '
+ '(SELECT COUNT(*) co,\n'
+ ' COUNT(c_name) cnn,\n'
+ ' COUNT(DISTINCT c_name) di\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT c_name v, CAST(COUNT(c_name) AS '
+ 'DECIMAL(16,2)) c FROM customer GROUP BY c_name), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_name) cnn,\n'
+ ' COUNT(DISTINCT c_name) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about customer.c_name - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT c_address v, '
+ 'CAST(COUNT(c_address) AS DECIMAL(16,2)) c '
+ 'FROM customer GROUP BY c_address), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_address) cnn,\n'
+ ' COUNT(DISTINCT c_address) di\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT c_address v, CAST(COUNT(c_address) '
+ 'AS DECIMAL(16,2)) c FROM customer GROUP BY c_address), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_address) cnn,\n'
+ ' COUNT(DISTINCT c_address) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about customer.c_address - all'},
+ {'DBMS': {'OmniSci': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_nationkey) cnn,\n'
+ ' COUNT(DISTINCT c_nationkey) '
+ 'di,\n'
+ ' MIN(c_nationkey) mi,\n'
+ ' MAX(c_nationkey) ma,\n'
+ ' AVG(CAST(c_nationkey AS '
+ 'DECIMAL(16,2))) av\n'
+ ' FROM customer) SELECT * FROM stats '},
+ 'active': True,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_nationkey) cnn,\n'
+ ' COUNT(DISTINCT c_nationkey) di,\n'
+ ' MIN(c_nationkey) mi,\n'
+ ' MAX(c_nationkey) ma,\n'
+ ' AVG(CAST(c_nationkey AS DECIMAL(16,2))) '
+ 'av\n'
+ ' FROM customer) SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about customer.c_nationkey - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT c_phone v, '
+ 'CAST(COUNT(c_phone) AS DECIMAL(16,2)) c '
+ 'FROM customer GROUP BY c_phone), stats '
+ 'AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_phone) cnn,\n'
+ ' COUNT(DISTINCT c_phone) di\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT c_phone v, CAST(COUNT(c_phone) AS '
+ 'DECIMAL(16,2)) c FROM customer GROUP BY c_phone), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_phone) cnn,\n'
+ ' COUNT(DISTINCT c_phone) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about customer.c_phone - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT c_acctbal v, '
+ 'CAST(COUNT(c_acctbal) AS DECIMAL(16,2)) c '
+ 'FROM customer GROUP BY c_acctbal), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_acctbal) cnn,\n'
+ ' COUNT(DISTINCT c_acctbal) di\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT c_acctbal v, CAST(COUNT(c_acctbal) '
+ 'AS DECIMAL(16,2)) c FROM customer GROUP BY c_acctbal), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_acctbal) cnn,\n'
+ ' COUNT(DISTINCT c_acctbal) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about customer.c_acctbal - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT c_mktsegment v, '
+ 'CAST(COUNT(c_mktsegment) AS DECIMAL(16,2)) '
+ 'c FROM customer GROUP BY c_mktsegment), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_mktsegment) cnn,\n'
+ ' COUNT(DISTINCT c_mktsegment) '
+ 'di\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT c_mktsegment v, '
+ 'CAST(COUNT(c_mktsegment) AS DECIMAL(16,2)) c FROM '
+ 'customer GROUP BY c_mktsegment), stats AS (SELECT '
+ 'COUNT(*) co,\n'
+ ' COUNT(c_mktsegment) cnn,\n'
+ ' COUNT(DISTINCT c_mktsegment) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about customer.c_mktsegment - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT c_comment v, '
+ 'CAST(COUNT(c_comment) AS DECIMAL(16,2)) c '
+ 'FROM customer GROUP BY c_comment), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_comment) cnn,\n'
+ ' COUNT(DISTINCT c_comment) di\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT c_comment v, CAST(COUNT(c_comment) '
+ 'AS DECIMAL(16,2)) c FROM customer GROUP BY c_comment), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_comment) cnn,\n'
+ ' COUNT(DISTINCT c_comment) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about customer.c_comment - all'},
+ {'DBMS': {'OmniSci': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_custkey) cnn,\n'
+ ' COUNT(DISTINCT c_custkey) di,\n'
+ ' MIN(c_custkey) mi,\n'
+ ' MAX(c_custkey) ma,\n'
+ ' AVG(CAST(c_custkey AS '
+ 'DECIMAL(16,2))) av\n'
+ ' FROM customer) SELECT * FROM stats '},
+ 'active': True,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_custkey) cnn,\n'
+ ' COUNT(DISTINCT c_custkey) di,\n'
+ ' MIN(c_custkey) mi,\n'
+ ' MAX(c_custkey) ma,\n'
+ ' AVG(CAST(c_custkey AS DECIMAL(16,2))) av\n'
+ ' FROM customer) SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about customer.c_custkey - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT c_name v, '
+ 'CAST(COUNT(c_name) AS DECIMAL(16,2)) c FROM '
+ 'customer GROUP BY c_name), stats AS '
+ '(SELECT COUNT(*) co,\n'
+ ' COUNT(c_name) cnn,\n'
+ ' COUNT(DISTINCT c_name) di\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT c_name v, CAST(COUNT(c_name) AS '
+ 'DECIMAL(16,2)) c FROM customer GROUP BY c_name), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_name) cnn,\n'
+ ' COUNT(DISTINCT c_name) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about customer.c_name - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT c_address v, '
+ 'CAST(COUNT(c_address) AS DECIMAL(16,2)) c '
+ 'FROM customer GROUP BY c_address), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_address) cnn,\n'
+ ' COUNT(DISTINCT c_address) di\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT c_address v, CAST(COUNT(c_address) '
+ 'AS DECIMAL(16,2)) c FROM customer GROUP BY c_address), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_address) cnn,\n'
+ ' COUNT(DISTINCT c_address) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about customer.c_address - all'},
+ {'DBMS': {'OmniSci': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_nationkey) cnn,\n'
+ ' COUNT(DISTINCT c_nationkey) '
+ 'di,\n'
+ ' MIN(c_nationkey) mi,\n'
+ ' MAX(c_nationkey) ma,\n'
+ ' AVG(CAST(c_nationkey AS '
+ 'DECIMAL(16,2))) av\n'
+ ' FROM customer) SELECT * FROM stats '},
+ 'active': True,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_nationkey) cnn,\n'
+ ' COUNT(DISTINCT c_nationkey) di,\n'
+ ' MIN(c_nationkey) mi,\n'
+ ' MAX(c_nationkey) ma,\n'
+ ' AVG(CAST(c_nationkey AS DECIMAL(16,2))) '
+ 'av\n'
+ ' FROM customer) SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about customer.c_nationkey - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT c_phone v, '
+ 'CAST(COUNT(c_phone) AS DECIMAL(16,2)) c '
+ 'FROM customer GROUP BY c_phone), stats '
+ 'AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_phone) cnn,\n'
+ ' COUNT(DISTINCT c_phone) di\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT c_phone v, CAST(COUNT(c_phone) AS '
+ 'DECIMAL(16,2)) c FROM customer GROUP BY c_phone), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_phone) cnn,\n'
+ ' COUNT(DISTINCT c_phone) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about customer.c_phone - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT c_acctbal v, '
+ 'CAST(COUNT(c_acctbal) AS DECIMAL(16,2)) c '
+ 'FROM customer GROUP BY c_acctbal), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_acctbal) cnn,\n'
+ ' COUNT(DISTINCT c_acctbal) di\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT c_acctbal v, CAST(COUNT(c_acctbal) '
+ 'AS DECIMAL(16,2)) c FROM customer GROUP BY c_acctbal), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_acctbal) cnn,\n'
+ ' COUNT(DISTINCT c_acctbal) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about customer.c_acctbal - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT c_mktsegment v, '
+ 'CAST(COUNT(c_mktsegment) AS DECIMAL(16,2)) '
+ 'c FROM customer GROUP BY c_mktsegment), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_mktsegment) cnn,\n'
+ ' COUNT(DISTINCT c_mktsegment) '
+ 'di\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT c_mktsegment v, '
+ 'CAST(COUNT(c_mktsegment) AS DECIMAL(16,2)) c FROM '
+ 'customer GROUP BY c_mktsegment), stats AS (SELECT '
+ 'COUNT(*) co,\n'
+ ' COUNT(c_mktsegment) cnn,\n'
+ ' COUNT(DISTINCT c_mktsegment) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about customer.c_mktsegment - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT c_comment v, '
+ 'CAST(COUNT(c_comment) AS DECIMAL(16,2)) c '
+ 'FROM customer GROUP BY c_comment), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_comment) cnn,\n'
+ ' COUNT(DISTINCT c_comment) di\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT c_comment v, CAST(COUNT(c_comment) '
+ 'AS DECIMAL(16,2)) c FROM customer GROUP BY c_comment), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(c_comment) cnn,\n'
+ ' COUNT(DISTINCT c_comment) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM customer)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about customer.c_comment - all'},
+ {'DBMS': {'OmniSci': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(l_orderkey) cnn,\n'
+ ' COUNT(DISTINCT l_orderkey) di,\n'
+ ' MIN(l_orderkey) mi,\n'
+ ' MAX(l_orderkey) ma,\n'
+ ' AVG(CAST(l_orderkey AS '
+ 'DECIMAL(16,2))) av\n'
+ ' FROM lineitem) SELECT * FROM stats '},
+ 'active': True,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(l_orderkey) cnn,\n'
+ ' COUNT(DISTINCT l_orderkey) di,\n'
+ ' MIN(l_orderkey) mi,\n'
+ ' MAX(l_orderkey) ma,\n'
+ ' AVG(CAST(l_orderkey AS DECIMAL(16,2))) av\n'
+ ' FROM lineitem) SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about lineitem.l_orderkey - all'},
+ {'DBMS': {'OmniSci': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(l_partkey) cnn,\n'
+ ' COUNT(DISTINCT l_partkey) di,\n'
+ ' MIN(l_partkey) mi,\n'
+ ' MAX(l_partkey) ma,\n'
+ ' AVG(CAST(l_partkey AS '
+ 'DECIMAL(16,2))) av\n'
+ ' FROM lineitem) SELECT * FROM stats '},
+ 'active': True,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(l_partkey) cnn,\n'
+ ' COUNT(DISTINCT l_partkey) di,\n'
+ ' MIN(l_partkey) mi,\n'
+ ' MAX(l_partkey) ma,\n'
+ ' AVG(CAST(l_partkey AS DECIMAL(16,2))) av\n'
+ ' FROM lineitem) SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about lineitem.l_partkey - all'},
+ {'DBMS': {'OmniSci': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(l_suppkey) cnn,\n'
+ ' COUNT(DISTINCT l_suppkey) di,\n'
+ ' MIN(l_suppkey) mi,\n'
+ ' MAX(l_suppkey) ma,\n'
+ ' AVG(CAST(l_suppkey AS '
+ 'DECIMAL(16,2))) av\n'
+ ' FROM lineitem) SELECT * FROM stats '},
+ 'active': True,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(l_suppkey) cnn,\n'
+ ' COUNT(DISTINCT l_suppkey) di,\n'
+ ' MIN(l_suppkey) mi,\n'
+ ' MAX(l_suppkey) ma,\n'
+ ' AVG(CAST(l_suppkey AS DECIMAL(16,2))) av\n'
+ ' FROM lineitem) SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about lineitem.l_suppkey - all'},
+ {'DBMS': {'OmniSci': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(l_linenumber) cnn,\n'
+ ' COUNT(DISTINCT l_linenumber) '
+ 'di,\n'
+ ' MIN(l_linenumber) mi,\n'
+ ' MAX(l_linenumber) ma,\n'
+ ' AVG(CAST(l_linenumber AS '
+ 'DECIMAL(16,2))) av\n'
+ ' FROM lineitem) SELECT * FROM stats '},
+ 'active': True,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(l_linenumber) cnn,\n'
+ ' COUNT(DISTINCT l_linenumber) di,\n'
+ ' MIN(l_linenumber) mi,\n'
+ ' MAX(l_linenumber) ma,\n'
+ ' AVG(CAST(l_linenumber AS DECIMAL(16,2))) '
+ 'av\n'
+ ' FROM lineitem) SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about lineitem.l_linenumber - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT l_quantity v, '
+ 'CAST(COUNT(l_quantity) AS DECIMAL(16,2)) c '
+ 'FROM lineitem GROUP BY l_quantity), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(l_quantity) cnn,\n'
+ ' COUNT(DISTINCT l_quantity) di\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT l_quantity v, '
+ 'CAST(COUNT(l_quantity) AS DECIMAL(16,2)) c FROM '
+ 'lineitem GROUP BY l_quantity), stats AS (SELECT '
+ 'COUNT(*) co,\n'
+ ' COUNT(l_quantity) cnn,\n'
+ ' COUNT(DISTINCT l_quantity) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about lineitem.l_quantity - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT l_extendedprice v, '
+ 'CAST(COUNT(l_extendedprice) AS '
+ 'DECIMAL(16,2)) c FROM lineitem GROUP BY '
+ 'l_extendedprice), stats AS (SELECT '
+ 'COUNT(*) co,\n'
+ ' COUNT(l_extendedprice) cnn,\n'
+ ' COUNT(DISTINCT l_extendedprice) '
+ 'di\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT l_extendedprice v, '
+ 'CAST(COUNT(l_extendedprice) AS DECIMAL(16,2)) c FROM '
+ 'lineitem GROUP BY l_extendedprice), stats AS '
+ '(SELECT COUNT(*) co,\n'
+ ' COUNT(l_extendedprice) cnn,\n'
+ ' COUNT(DISTINCT l_extendedprice) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about lineitem.l_extendedprice - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT l_discount v, '
+ 'CAST(COUNT(l_discount) AS DECIMAL(16,2)) c '
+ 'FROM lineitem GROUP BY l_discount), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(l_discount) cnn,\n'
+ ' COUNT(DISTINCT l_discount) di\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT l_discount v, '
+ 'CAST(COUNT(l_discount) AS DECIMAL(16,2)) c FROM '
+ 'lineitem GROUP BY l_discount), stats AS (SELECT '
+ 'COUNT(*) co,\n'
+ ' COUNT(l_discount) cnn,\n'
+ ' COUNT(DISTINCT l_discount) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about lineitem.l_discount - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT l_tax v, '
+ 'CAST(COUNT(l_tax) AS DECIMAL(16,2)) c FROM '
+ 'lineitem GROUP BY l_tax), stats AS '
+ '(SELECT COUNT(*) co,\n'
+ ' COUNT(l_tax) cnn,\n'
+ ' COUNT(DISTINCT l_tax) di\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT l_tax v, CAST(COUNT(l_tax) AS '
+ 'DECIMAL(16,2)) c FROM lineitem GROUP BY l_tax), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(l_tax) cnn,\n'
+ ' COUNT(DISTINCT l_tax) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about lineitem.l_tax - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT l_returnflag v, '
+ 'CAST(COUNT(l_returnflag) AS DECIMAL(16,2)) '
+ 'c FROM lineitem GROUP BY l_returnflag), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(l_returnflag) cnn,\n'
+ ' COUNT(DISTINCT l_returnflag) '
+ 'di\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT l_returnflag v, '
+ 'CAST(COUNT(l_returnflag) AS DECIMAL(16,2)) c FROM '
+ 'lineitem GROUP BY l_returnflag), stats AS (SELECT '
+ 'COUNT(*) co,\n'
+ ' COUNT(l_returnflag) cnn,\n'
+ ' COUNT(DISTINCT l_returnflag) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about lineitem.l_returnflag - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT l_linestatus v, '
+ 'CAST(COUNT(l_linestatus) AS DECIMAL(16,2)) '
+ 'c FROM lineitem GROUP BY l_linestatus), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(l_linestatus) cnn,\n'
+ ' COUNT(DISTINCT l_linestatus) '
+ 'di\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT l_linestatus v, '
+ 'CAST(COUNT(l_linestatus) AS DECIMAL(16,2)) c FROM '
+ 'lineitem GROUP BY l_linestatus), stats AS (SELECT '
+ 'COUNT(*) co,\n'
+ ' COUNT(l_linestatus) cnn,\n'
+ ' COUNT(DISTINCT l_linestatus) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about lineitem.l_linestatus - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT CAST(l_shipdate AS DATE) '
+ 'v, CAST(COUNT(l_shipdate) AS DECIMAL(16,2)) '
+ 'c FROM lineitem GROUP BY CAST(l_shipdate AS '
+ 'DATE)), stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(l_shipdate) cnn,\n'
+ ' COUNT(DISTINCT l_shipdate) di\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT CAST(l_shipdate AS DATE) v, '
+ 'CAST(COUNT(l_shipdate) AS DECIMAL(16,2)) c FROM '
+ 'lineitem GROUP BY CAST(l_shipdate AS DATE)), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(l_shipdate) cnn,\n'
+ ' COUNT(DISTINCT l_shipdate) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about lineitem.l_shipdate - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT CAST(l_commitdate AS '
+ 'DATE) v, CAST(COUNT(l_commitdate) AS '
+ 'DECIMAL(16,2)) c FROM lineitem GROUP BY '
+ 'CAST(l_commitdate AS DATE)), stats AS '
+ '(SELECT COUNT(*) co,\n'
+ ' COUNT(l_commitdate) cnn,\n'
+ ' COUNT(DISTINCT l_commitdate) '
+ 'di\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT CAST(l_commitdate AS DATE) v, '
+ 'CAST(COUNT(l_commitdate) AS DECIMAL(16,2)) c FROM '
+ 'lineitem GROUP BY CAST(l_commitdate AS DATE)), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(l_commitdate) cnn,\n'
+ ' COUNT(DISTINCT l_commitdate) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about lineitem.l_commitdate - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT CAST(l_receiptdate AS '
+ 'DATE) v, CAST(COUNT(l_receiptdate) AS '
+ 'DECIMAL(16,2)) c FROM lineitem GROUP BY '
+ 'CAST(l_receiptdate AS DATE)), stats AS '
+ '(SELECT COUNT(*) co,\n'
+ ' COUNT(l_receiptdate) cnn,\n'
+ ' COUNT(DISTINCT l_receiptdate) '
+ 'di\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT CAST(l_receiptdate AS DATE) v, '
+ 'CAST(COUNT(l_receiptdate) AS DECIMAL(16,2)) c FROM '
+ 'lineitem GROUP BY CAST(l_receiptdate AS DATE)), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(l_receiptdate) cnn,\n'
+ ' COUNT(DISTINCT l_receiptdate) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about lineitem.l_receiptdate - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT l_shipinstruct v, '
+ 'CAST(COUNT(l_shipinstruct) AS '
+ 'DECIMAL(16,2)) c FROM lineitem GROUP BY '
+ 'l_shipinstruct), stats AS (SELECT '
+ 'COUNT(*) co,\n'
+ ' COUNT(l_shipinstruct) cnn,\n'
+ ' COUNT(DISTINCT l_shipinstruct) '
+ 'di\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT l_shipinstruct v, '
+ 'CAST(COUNT(l_shipinstruct) AS DECIMAL(16,2)) c FROM '
+ 'lineitem GROUP BY l_shipinstruct), stats AS '
+ '(SELECT COUNT(*) co,\n'
+ ' COUNT(l_shipinstruct) cnn,\n'
+ ' COUNT(DISTINCT l_shipinstruct) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about lineitem.l_shipinstruct - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT l_shipmode v, '
+ 'CAST(COUNT(l_shipmode) AS DECIMAL(16,2)) c '
+ 'FROM lineitem GROUP BY l_shipmode), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(l_shipmode) cnn,\n'
+ ' COUNT(DISTINCT l_shipmode) di\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT l_shipmode v, '
+ 'CAST(COUNT(l_shipmode) AS DECIMAL(16,2)) c FROM '
+ 'lineitem GROUP BY l_shipmode), stats AS (SELECT '
+ 'COUNT(*) co,\n'
+ ' COUNT(l_shipmode) cnn,\n'
+ ' COUNT(DISTINCT l_shipmode) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about lineitem.l_shipmode - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT l_comment v, '
+ 'CAST(COUNT(l_comment) AS DECIMAL(16,2)) c '
+ 'FROM lineitem GROUP BY l_comment), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(l_comment) cnn,\n'
+ ' COUNT(DISTINCT l_comment) di\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT l_comment v, CAST(COUNT(l_comment) '
+ 'AS DECIMAL(16,2)) c FROM lineitem GROUP BY l_comment), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(l_comment) cnn,\n'
+ ' COUNT(DISTINCT l_comment) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM lineitem)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about lineitem.l_comment - all'},
+ {'DBMS': {'OmniSci': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(n_nationkey) cnn,\n'
+ ' COUNT(DISTINCT n_nationkey) '
+ 'di,\n'
+ ' MIN(n_nationkey) mi,\n'
+ ' MAX(n_nationkey) ma,\n'
+ ' AVG(CAST(n_nationkey AS '
+ 'DECIMAL(16,2))) av\n'
+ ' FROM nation) SELECT * FROM stats '},
+ 'active': True,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(n_nationkey) cnn,\n'
+ ' COUNT(DISTINCT n_nationkey) di,\n'
+ ' MIN(n_nationkey) mi,\n'
+ ' MAX(n_nationkey) ma,\n'
+ ' AVG(CAST(n_nationkey AS DECIMAL(16,2))) '
+ 'av\n'
+ ' FROM nation) SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about nation.n_nationkey - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT n_name v, '
+ 'CAST(COUNT(n_name) AS DECIMAL(16,2)) c FROM '
+ 'nation GROUP BY n_name), stats AS '
+ '(SELECT COUNT(*) co,\n'
+ ' COUNT(n_name) cnn,\n'
+ ' COUNT(DISTINCT n_name) di\n'
+ ' FROM nation)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT n_name v, CAST(COUNT(n_name) AS '
+ 'DECIMAL(16,2)) c FROM nation GROUP BY n_name), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(n_name) cnn,\n'
+ ' COUNT(DISTINCT n_name) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM nation)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about nation.n_name - all'},
+ {'DBMS': {'OmniSci': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(n_regionkey) cnn,\n'
+ ' COUNT(DISTINCT n_regionkey) '
+ 'di,\n'
+ ' MIN(n_regionkey) mi,\n'
+ ' MAX(n_regionkey) ma,\n'
+ ' AVG(CAST(n_regionkey AS '
+ 'DECIMAL(16,2))) av\n'
+ ' FROM nation) SELECT * FROM stats '},
+ 'active': True,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(n_regionkey) cnn,\n'
+ ' COUNT(DISTINCT n_regionkey) di,\n'
+ ' MIN(n_regionkey) mi,\n'
+ ' MAX(n_regionkey) ma,\n'
+ ' AVG(CAST(n_regionkey AS DECIMAL(16,2))) '
+ 'av\n'
+ ' FROM nation) SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about nation.n_regionkey - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT n_comment v, '
+ 'CAST(COUNT(n_comment) AS DECIMAL(16,2)) c '
+ 'FROM nation GROUP BY n_comment), stats '
+ 'AS (SELECT COUNT(*) co,\n'
+ ' COUNT(n_comment) cnn,\n'
+ ' COUNT(DISTINCT n_comment) di\n'
+ ' FROM nation)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT n_comment v, CAST(COUNT(n_comment) '
+ 'AS DECIMAL(16,2)) c FROM nation GROUP BY n_comment), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(n_comment) cnn,\n'
+ ' COUNT(DISTINCT n_comment) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM nation)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about nation.n_comment - all'},
+ {'DBMS': {'OmniSci': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(o_orderkey) cnn,\n'
+ ' COUNT(DISTINCT o_orderkey) di,\n'
+ ' MIN(o_orderkey) mi,\n'
+ ' MAX(o_orderkey) ma,\n'
+ ' AVG(CAST(o_orderkey AS '
+ 'DECIMAL(16,2))) av\n'
+ ' FROM orders) SELECT * FROM stats '},
+ 'active': True,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(o_orderkey) cnn,\n'
+ ' COUNT(DISTINCT o_orderkey) di,\n'
+ ' MIN(o_orderkey) mi,\n'
+ ' MAX(o_orderkey) ma,\n'
+ ' AVG(CAST(o_orderkey AS DECIMAL(16,2))) av\n'
+ ' FROM orders) SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about orders.o_orderkey - all'},
+ {'DBMS': {'OmniSci': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(o_custkey) cnn,\n'
+ ' COUNT(DISTINCT o_custkey) di,\n'
+ ' MIN(o_custkey) mi,\n'
+ ' MAX(o_custkey) ma,\n'
+ ' AVG(CAST(o_custkey AS '
+ 'DECIMAL(16,2))) av\n'
+ ' FROM orders) SELECT * FROM stats '},
+ 'active': True,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(o_custkey) cnn,\n'
+ ' COUNT(DISTINCT o_custkey) di,\n'
+ ' MIN(o_custkey) mi,\n'
+ ' MAX(o_custkey) ma,\n'
+ ' AVG(CAST(o_custkey AS DECIMAL(16,2))) av\n'
+ ' FROM orders) SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about orders.o_custkey - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT o_orderstatus v, '
+ 'CAST(COUNT(o_orderstatus) AS DECIMAL(16,2)) '
+ 'c FROM orders GROUP BY o_orderstatus), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(o_orderstatus) cnn,\n'
+ ' COUNT(DISTINCT o_orderstatus) '
+ 'di\n'
+ ' FROM orders)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT o_orderstatus v, '
+ 'CAST(COUNT(o_orderstatus) AS DECIMAL(16,2)) c FROM '
+ 'orders GROUP BY o_orderstatus), stats AS (SELECT '
+ 'COUNT(*) co,\n'
+ ' COUNT(o_orderstatus) cnn,\n'
+ ' COUNT(DISTINCT o_orderstatus) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM orders)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about orders.o_orderstatus - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT o_totalprice v, '
+ 'CAST(COUNT(o_totalprice) AS DECIMAL(16,2)) '
+ 'c FROM orders GROUP BY o_totalprice), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(o_totalprice) cnn,\n'
+ ' COUNT(DISTINCT o_totalprice) '
+ 'di\n'
+ ' FROM orders)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT o_totalprice v, '
+ 'CAST(COUNT(o_totalprice) AS DECIMAL(16,2)) c FROM '
+ 'orders GROUP BY o_totalprice), stats AS (SELECT '
+ 'COUNT(*) co,\n'
+ ' COUNT(o_totalprice) cnn,\n'
+ ' COUNT(DISTINCT o_totalprice) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM orders)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about orders.o_totalprice - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT CAST(o_orderdate AS '
+ 'DATE) v, CAST(COUNT(o_orderdate) AS '
+ 'DECIMAL(16,2)) c FROM orders GROUP BY '
+ 'CAST(o_orderdate AS DATE)), stats AS '
+ '(SELECT COUNT(*) co,\n'
+ ' COUNT(o_orderdate) cnn,\n'
+ ' COUNT(DISTINCT o_orderdate) di\n'
+ ' FROM orders)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT CAST(o_orderdate AS DATE) v, '
+ 'CAST(COUNT(o_orderdate) AS DECIMAL(16,2)) c FROM '
+ 'orders GROUP BY CAST(o_orderdate AS DATE)), stats '
+ 'AS (SELECT COUNT(*) co,\n'
+ ' COUNT(o_orderdate) cnn,\n'
+ ' COUNT(DISTINCT o_orderdate) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM orders)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about orders.o_orderdate - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT o_orderpriority v, '
+ 'CAST(COUNT(o_orderpriority) AS '
+ 'DECIMAL(16,2)) c FROM orders GROUP BY '
+ 'o_orderpriority), stats AS (SELECT '
+ 'COUNT(*) co,\n'
+ ' COUNT(o_orderpriority) cnn,\n'
+ ' COUNT(DISTINCT o_orderpriority) '
+ 'di\n'
+ ' FROM orders)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT o_orderpriority v, '
+ 'CAST(COUNT(o_orderpriority) AS DECIMAL(16,2)) c FROM '
+ 'orders GROUP BY o_orderpriority), stats AS '
+ '(SELECT COUNT(*) co,\n'
+ ' COUNT(o_orderpriority) cnn,\n'
+ ' COUNT(DISTINCT o_orderpriority) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM orders)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about orders.o_orderpriority - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT o_clerk v, '
+ 'CAST(COUNT(o_clerk) AS DECIMAL(16,2)) c '
+ 'FROM orders GROUP BY o_clerk), stats '
+ 'AS (SELECT COUNT(*) co,\n'
+ ' COUNT(o_clerk) cnn,\n'
+ ' COUNT(DISTINCT o_clerk) di\n'
+ ' FROM orders)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT o_clerk v, CAST(COUNT(o_clerk) AS '
+ 'DECIMAL(16,2)) c FROM orders GROUP BY o_clerk), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(o_clerk) cnn,\n'
+ ' COUNT(DISTINCT o_clerk) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM orders)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about orders.o_clerk - all'},
+ {'DBMS': {'OmniSci': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(o_shippriority) cnn,\n'
+ ' COUNT(DISTINCT o_shippriority) '
+ 'di,\n'
+ ' MIN(o_shippriority) mi,\n'
+ ' MAX(o_shippriority) ma,\n'
+ ' AVG(CAST(o_shippriority AS '
+ 'DECIMAL(16,2))) av\n'
+ ' FROM orders) SELECT * FROM stats '},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(o_shippriority) cnn,\n'
+ ' COUNT(DISTINCT o_shippriority) di,\n'
+ ' MIN(o_shippriority) mi,\n'
+ ' MAX(o_shippriority) ma,\n'
+ ' AVG(CAST(o_shippriority AS DECIMAL(16,2))) '
+ 'av\n'
+ ' FROM orders) SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about orders.o_shippriority - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT o_comment v, '
+ 'CAST(COUNT(o_comment) AS DECIMAL(16,2)) c '
+ 'FROM orders GROUP BY o_comment), stats '
+ 'AS (SELECT COUNT(*) co,\n'
+ ' COUNT(o_comment) cnn,\n'
+ ' COUNT(DISTINCT o_comment) di\n'
+ ' FROM orders)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT o_comment v, CAST(COUNT(o_comment) '
+ 'AS DECIMAL(16,2)) c FROM orders GROUP BY o_comment), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(o_comment) cnn,\n'
+ ' COUNT(DISTINCT o_comment) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM orders)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about orders.o_comment - all'},
+ {'DBMS': {'OmniSci': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(p_partkey) cnn,\n'
+ ' COUNT(DISTINCT p_partkey) di,\n'
+ ' MIN(p_partkey) mi,\n'
+ ' MAX(p_partkey) ma,\n'
+ ' AVG(CAST(p_partkey AS '
+ 'DECIMAL(16,2))) av\n'
+ ' FROM part) SELECT * FROM stats '},
+ 'active': True,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(p_partkey) cnn,\n'
+ ' COUNT(DISTINCT p_partkey) di,\n'
+ ' MIN(p_partkey) mi,\n'
+ ' MAX(p_partkey) ma,\n'
+ ' AVG(CAST(p_partkey AS DECIMAL(16,2))) av\n'
+ ' FROM part) SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about part.p_partkey - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT p_name v, '
+ 'CAST(COUNT(p_name) AS DECIMAL(16,2)) c FROM '
+ 'part GROUP BY p_name), stats AS '
+ '(SELECT COUNT(*) co,\n'
+ ' COUNT(p_name) cnn,\n'
+ ' COUNT(DISTINCT p_name) di\n'
+ ' FROM part)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT p_name v, CAST(COUNT(p_name) AS '
+ 'DECIMAL(16,2)) c FROM part GROUP BY p_name), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(p_name) cnn,\n'
+ ' COUNT(DISTINCT p_name) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM part)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about part.p_name - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT p_mfgr v, '
+ 'CAST(COUNT(p_mfgr) AS DECIMAL(16,2)) c FROM '
+ 'part GROUP BY p_mfgr), stats AS '
+ '(SELECT COUNT(*) co,\n'
+ ' COUNT(p_mfgr) cnn,\n'
+ ' COUNT(DISTINCT p_mfgr) di\n'
+ ' FROM part)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT p_mfgr v, CAST(COUNT(p_mfgr) AS '
+ 'DECIMAL(16,2)) c FROM part GROUP BY p_mfgr), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(p_mfgr) cnn,\n'
+ ' COUNT(DISTINCT p_mfgr) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM part)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about part.p_mfgr - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT p_brand v, '
+ 'CAST(COUNT(p_brand) AS DECIMAL(16,2)) c '
+ 'FROM part GROUP BY p_brand), stats AS '
+ '(SELECT COUNT(*) co,\n'
+ ' COUNT(p_brand) cnn,\n'
+ ' COUNT(DISTINCT p_brand) di\n'
+ ' FROM part)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT p_brand v, CAST(COUNT(p_brand) AS '
+ 'DECIMAL(16,2)) c FROM part GROUP BY p_brand), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(p_brand) cnn,\n'
+ ' COUNT(DISTINCT p_brand) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM part)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about part.p_brand - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT p_type v, '
+ 'CAST(COUNT(p_type) AS DECIMAL(16,2)) c FROM '
+ 'part GROUP BY p_type), stats AS '
+ '(SELECT COUNT(*) co,\n'
+ ' COUNT(p_type) cnn,\n'
+ ' COUNT(DISTINCT p_type) di\n'
+ ' FROM part)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT p_type v, CAST(COUNT(p_type) AS '
+ 'DECIMAL(16,2)) c FROM part GROUP BY p_type), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(p_type) cnn,\n'
+ ' COUNT(DISTINCT p_type) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM part)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about part.p_type - all'},
+ {'DBMS': {'OmniSci': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(p_size) cnn,\n'
+ ' COUNT(DISTINCT p_size) di,\n'
+ ' MIN(p_size) mi,\n'
+ ' MAX(p_size) ma,\n'
+ ' AVG(CAST(p_size AS '
+ 'DECIMAL(16,2))) av\n'
+ ' FROM part) SELECT * FROM stats '},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(p_size) cnn,\n'
+ ' COUNT(DISTINCT p_size) di,\n'
+ ' MIN(p_size) mi,\n'
+ ' MAX(p_size) ma,\n'
+ ' AVG(CAST(p_size AS DECIMAL(16,2))) av\n'
+ ' FROM part) SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about part.p_size - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT p_container v, '
+ 'CAST(COUNT(p_container) AS DECIMAL(16,2)) c '
+ 'FROM part GROUP BY p_container), stats '
+ 'AS (SELECT COUNT(*) co,\n'
+ ' COUNT(p_container) cnn,\n'
+ ' COUNT(DISTINCT p_container) di\n'
+ ' FROM part)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT p_container v, '
+ 'CAST(COUNT(p_container) AS DECIMAL(16,2)) c FROM part '
+ 'GROUP BY p_container), stats AS (SELECT COUNT(*) '
+ 'co,\n'
+ ' COUNT(p_container) cnn,\n'
+ ' COUNT(DISTINCT p_container) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM part)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about part.p_container - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT p_retailprice v, '
+ 'CAST(COUNT(p_retailprice) AS DECIMAL(16,2)) '
+ 'c FROM part GROUP BY p_retailprice), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(p_retailprice) cnn,\n'
+ ' COUNT(DISTINCT p_retailprice) '
+ 'di\n'
+ ' FROM part)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT p_retailprice v, '
+ 'CAST(COUNT(p_retailprice) AS DECIMAL(16,2)) c FROM '
+ 'part GROUP BY p_retailprice), stats AS (SELECT '
+ 'COUNT(*) co,\n'
+ ' COUNT(p_retailprice) cnn,\n'
+ ' COUNT(DISTINCT p_retailprice) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM part)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about part.p_retailprice - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT p_comment v, '
+ 'CAST(COUNT(p_comment) AS DECIMAL(16,2)) c '
+ 'FROM part GROUP BY p_comment), stats '
+ 'AS (SELECT COUNT(*) co,\n'
+ ' COUNT(p_comment) cnn,\n'
+ ' COUNT(DISTINCT p_comment) di\n'
+ ' FROM part)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT p_comment v, CAST(COUNT(p_comment) '
+ 'AS DECIMAL(16,2)) c FROM part GROUP BY p_comment), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(p_comment) cnn,\n'
+ ' COUNT(DISTINCT p_comment) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM part)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about part.p_comment - all'},
+ {'DBMS': {'OmniSci': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(ps_partkey) cnn,\n'
+ ' COUNT(DISTINCT ps_partkey) di,\n'
+ ' MIN(ps_partkey) mi,\n'
+ ' MAX(ps_partkey) ma,\n'
+ ' AVG(CAST(ps_partkey AS '
+ 'DECIMAL(16,2))) av\n'
+ ' FROM partsupp) SELECT * FROM stats '},
+ 'active': True,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(ps_partkey) cnn,\n'
+ ' COUNT(DISTINCT ps_partkey) di,\n'
+ ' MIN(ps_partkey) mi,\n'
+ ' MAX(ps_partkey) ma,\n'
+ ' AVG(CAST(ps_partkey AS DECIMAL(16,2))) av\n'
+ ' FROM partsupp) SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about partsupp.ps_partkey - all'},
+ {'DBMS': {'OmniSci': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(ps_suppkey) cnn,\n'
+ ' COUNT(DISTINCT ps_suppkey) di,\n'
+ ' MIN(ps_suppkey) mi,\n'
+ ' MAX(ps_suppkey) ma,\n'
+ ' AVG(CAST(ps_suppkey AS '
+ 'DECIMAL(16,2))) av\n'
+ ' FROM partsupp) SELECT * FROM stats '},
+ 'active': True,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(ps_suppkey) cnn,\n'
+ ' COUNT(DISTINCT ps_suppkey) di,\n'
+ ' MIN(ps_suppkey) mi,\n'
+ ' MAX(ps_suppkey) ma,\n'
+ ' AVG(CAST(ps_suppkey AS DECIMAL(16,2))) av\n'
+ ' FROM partsupp) SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about partsupp.ps_suppkey - all'},
+ {'DBMS': {'OmniSci': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(ps_availqty) cnn,\n'
+ ' COUNT(DISTINCT ps_availqty) '
+ 'di,\n'
+ ' MIN(ps_availqty) mi,\n'
+ ' MAX(ps_availqty) ma,\n'
+ ' AVG(CAST(ps_availqty AS '
+ 'DECIMAL(16,2))) av\n'
+ ' FROM partsupp) SELECT * FROM stats '},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(ps_availqty) cnn,\n'
+ ' COUNT(DISTINCT ps_availqty) di,\n'
+ ' MIN(ps_availqty) mi,\n'
+ ' MAX(ps_availqty) ma,\n'
+ ' AVG(CAST(ps_availqty AS DECIMAL(16,2))) '
+ 'av\n'
+ ' FROM partsupp) SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about partsupp.ps_availqty - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT ps_supplycost v, '
+ 'CAST(COUNT(ps_supplycost) AS DECIMAL(16,2)) '
+ 'c FROM partsupp GROUP BY ps_supplycost), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(ps_supplycost) cnn,\n'
+ ' COUNT(DISTINCT ps_supplycost) '
+ 'di\n'
+ ' FROM partsupp)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT ps_supplycost v, '
+ 'CAST(COUNT(ps_supplycost) AS DECIMAL(16,2)) c FROM '
+ 'partsupp GROUP BY ps_supplycost), stats AS '
+ '(SELECT COUNT(*) co,\n'
+ ' COUNT(ps_supplycost) cnn,\n'
+ ' COUNT(DISTINCT ps_supplycost) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM partsupp)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about partsupp.ps_supplycost - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT ps_comment v, '
+ 'CAST(COUNT(ps_comment) AS DECIMAL(16,2)) c '
+ 'FROM partsupp GROUP BY ps_comment), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(ps_comment) cnn,\n'
+ ' COUNT(DISTINCT ps_comment) di\n'
+ ' FROM partsupp)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT ps_comment v, '
+ 'CAST(COUNT(ps_comment) AS DECIMAL(16,2)) c FROM '
+ 'partsupp GROUP BY ps_comment), stats AS (SELECT '
+ 'COUNT(*) co,\n'
+ ' COUNT(ps_comment) cnn,\n'
+ ' COUNT(DISTINCT ps_comment) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM partsupp)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about partsupp.ps_comment - all'},
+ {'DBMS': {'OmniSci': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(r_regionkey) cnn,\n'
+ ' COUNT(DISTINCT r_regionkey) '
+ 'di,\n'
+ ' MIN(r_regionkey) mi,\n'
+ ' MAX(r_regionkey) ma,\n'
+ ' AVG(CAST(r_regionkey AS '
+ 'DECIMAL(16,2))) av\n'
+ ' FROM region) SELECT * FROM stats '},
+ 'active': True,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(r_regionkey) cnn,\n'
+ ' COUNT(DISTINCT r_regionkey) di,\n'
+ ' MIN(r_regionkey) mi,\n'
+ ' MAX(r_regionkey) ma,\n'
+ ' AVG(CAST(r_regionkey AS DECIMAL(16,2))) '
+ 'av\n'
+ ' FROM region) SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about region.r_regionkey - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT r_name v, '
+ 'CAST(COUNT(r_name) AS DECIMAL(16,2)) c FROM '
+ 'region GROUP BY r_name), stats AS '
+ '(SELECT COUNT(*) co,\n'
+ ' COUNT(r_name) cnn,\n'
+ ' COUNT(DISTINCT r_name) di\n'
+ ' FROM region)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT r_name v, CAST(COUNT(r_name) AS '
+ 'DECIMAL(16,2)) c FROM region GROUP BY r_name), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(r_name) cnn,\n'
+ ' COUNT(DISTINCT r_name) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM region)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about region.r_name - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT r_comment v, '
+ 'CAST(COUNT(r_comment) AS DECIMAL(16,2)) c '
+ 'FROM region GROUP BY r_comment), stats '
+ 'AS (SELECT COUNT(*) co,\n'
+ ' COUNT(r_comment) cnn,\n'
+ ' COUNT(DISTINCT r_comment) di\n'
+ ' FROM region)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT r_comment v, CAST(COUNT(r_comment) '
+ 'AS DECIMAL(16,2)) c FROM region GROUP BY r_comment), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(r_comment) cnn,\n'
+ ' COUNT(DISTINCT r_comment) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM region)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about region.r_comment - all'},
+ {'DBMS': {'OmniSci': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(s_suppkey) cnn,\n'
+ ' COUNT(DISTINCT s_suppkey) di,\n'
+ ' MIN(s_suppkey) mi,\n'
+ ' MAX(s_suppkey) ma,\n'
+ ' AVG(CAST(s_suppkey AS '
+ 'DECIMAL(16,2))) av\n'
+ ' FROM supplier) SELECT * FROM stats '},
+ 'active': True,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(s_suppkey) cnn,\n'
+ ' COUNT(DISTINCT s_suppkey) di,\n'
+ ' MIN(s_suppkey) mi,\n'
+ ' MAX(s_suppkey) ma,\n'
+ ' AVG(CAST(s_suppkey AS DECIMAL(16,2))) av\n'
+ ' FROM supplier) SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about supplier.s_suppkey - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT s_name v, '
+ 'CAST(COUNT(s_name) AS DECIMAL(16,2)) c FROM '
+ 'supplier GROUP BY s_name), stats AS '
+ '(SELECT COUNT(*) co,\n'
+ ' COUNT(s_name) cnn,\n'
+ ' COUNT(DISTINCT s_name) di\n'
+ ' FROM supplier)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT s_name v, CAST(COUNT(s_name) AS '
+ 'DECIMAL(16,2)) c FROM supplier GROUP BY s_name), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(s_name) cnn,\n'
+ ' COUNT(DISTINCT s_name) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM supplier)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about supplier.s_name - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT s_address v, '
+ 'CAST(COUNT(s_address) AS DECIMAL(16,2)) c '
+ 'FROM supplier GROUP BY s_address), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(s_address) cnn,\n'
+ ' COUNT(DISTINCT s_address) di\n'
+ ' FROM supplier)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT s_address v, CAST(COUNT(s_address) '
+ 'AS DECIMAL(16,2)) c FROM supplier GROUP BY s_address), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(s_address) cnn,\n'
+ ' COUNT(DISTINCT s_address) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM supplier)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about supplier.s_address - all'},
+ {'DBMS': {'OmniSci': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(s_nationkey) cnn,\n'
+ ' COUNT(DISTINCT s_nationkey) '
+ 'di,\n'
+ ' MIN(s_nationkey) mi,\n'
+ ' MAX(s_nationkey) ma,\n'
+ ' AVG(CAST(s_nationkey AS '
+ 'DECIMAL(16,2))) av\n'
+ ' FROM supplier) SELECT * FROM stats '},
+ 'active': True,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(s_nationkey) cnn,\n'
+ ' COUNT(DISTINCT s_nationkey) di,\n'
+ ' MIN(s_nationkey) mi,\n'
+ ' MAX(s_nationkey) ma,\n'
+ ' AVG(CAST(s_nationkey AS DECIMAL(16,2))) '
+ 'av\n'
+ ' FROM supplier) SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about supplier.s_nationkey - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT s_phone v, '
+ 'CAST(COUNT(s_phone) AS DECIMAL(16,2)) c '
+ 'FROM supplier GROUP BY s_phone), stats '
+ 'AS (SELECT COUNT(*) co,\n'
+ ' COUNT(s_phone) cnn,\n'
+ ' COUNT(DISTINCT s_phone) di\n'
+ ' FROM supplier)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT s_phone v, CAST(COUNT(s_phone) AS '
+ 'DECIMAL(16,2)) c FROM supplier GROUP BY s_phone), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(s_phone) cnn,\n'
+ ' COUNT(DISTINCT s_phone) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM supplier)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about supplier.s_phone - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT s_acctbal v, '
+ 'CAST(COUNT(s_acctbal) AS DECIMAL(16,2)) c '
+ 'FROM supplier GROUP BY s_acctbal), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(s_acctbal) cnn,\n'
+ ' COUNT(DISTINCT s_acctbal) di\n'
+ ' FROM supplier)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT s_acctbal v, CAST(COUNT(s_acctbal) '
+ 'AS DECIMAL(16,2)) c FROM supplier GROUP BY s_acctbal), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(s_acctbal) cnn,\n'
+ ' COUNT(DISTINCT s_acctbal) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM supplier)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about supplier.s_acctbal - all'},
+ {'DBMS': {'OmniSci': 'WITH gp AS (SELECT s_comment v, '
+ 'CAST(COUNT(s_comment) AS DECIMAL(16,2)) c '
+ 'FROM supplier GROUP BY s_comment), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(s_comment) cnn,\n'
+ ' COUNT(DISTINCT s_comment) di\n'
+ ' FROM supplier)\n'
+ ' SELECT * FROM stats, '
+ '(SELECT MIN(c) mi, MAX(c) ma, AVG(c) av '
+ 'FROM gp) tmp'},
+ 'active': False,
+ 'delay': 0,
+ 'numCooldown': 0,
+ 'numRun': 1,
+ 'numWarmup': 0,
+ 'query': 'WITH gp AS (SELECT s_comment v, CAST(COUNT(s_comment) '
+ 'AS DECIMAL(16,2)) c FROM supplier GROUP BY s_comment), '
+ 'stats AS (SELECT COUNT(*) co,\n'
+ ' COUNT(s_comment) cnn,\n'
+ ' COUNT(DISTINCT s_comment) di,\n'
+ ' (SELECT MIN(c) mi FROM gp) mi,\n'
+ ' (SELECT MAX(c) ma FROM gp) ma,\n'
+ ' (SELECT AVG(c) av FROM gp) av\n'
+ ' FROM supplier)\n'
+ ' SELECT * FROM stats ',
+ 'timer': {'connection': {'active': False, 'delay': 0},
+ 'datatransfer': {'active': False,
+ 'compare': 'result',
+ 'precision': 0,
+ 'sorted': True,
+ 'store': 'dataframe'}},
+ 'title': 'stats about supplier.s_comment - all'}],
+ 'reporting': {'queryparameter': 10,
+ 'resultsetPerQuery': 10,
+ 'resultsetPerQueryConnection': 10,
+ 'rowsPerResultset': 10},
+ 'timeout': 600}
diff --git a/experiments/tpch/queries-tpch.config b/experiments/tpch/queries-tpch.config
index 8b79c402..5fec2151 100644
--- a/experiments/tpch/queries-tpch.config
+++ b/experiments/tpch/queries-tpch.config
@@ -5,13 +5,8 @@
'connectionmanagement': {
'timeout': 1200,
'numProcesses': 1,
- 'runsPerConnection': 0
- },
- 'reporting':
- {
- 'resultsetPerQuery': True,
- 'resultsetPerQueryConnection': "differing",
- 'queryparameter': True,
+ 'runsPerConnection': 0,
+ 'singleConnection': True
},
'stream_ordering': {1: [21, 3, 18, 5, 11, 7, 6, 20, 17, 12, 16, 15, 13, 10, 2, 8, 14, 19, 9, 22, 1, 4], 2: [6, 17, 14, 16, 19, 10, 9, 2, 15, 8, 5, 22, 12, 7, 13, 18, 1, 4, 20, 3, 11, 21], 3: [8, 5, 4, 6, 17, 7, 1, 18, 22, 14, 9, 10, 15, 11, 20, 2, 21, 19, 13, 16, 12, 3], 4: [5, 21, 14, 19, 15, 17, 12, 6, 4, 9, 8, 16, 11, 2, 10, 18, 1, 13, 7, 22, 3, 20], 5: [21, 15, 4, 6, 7, 16, 19, 18, 14, 22, 11, 13, 3, 1, 2, 5, 8, 20, 12, 17, 10, 9], 6: [10, 3, 15, 13, 6, 8, 9, 7, 4, 11, 22, 18, 12, 1, 5, 16, 2, 14, 19, 20, 17, 21], 7: [18, 8, 20, 21, 2, 4, 22, 17, 1, 11, 9, 19, 3, 13, 5, 7, 10, 16, 6, 14, 15, 12], 8: [19, 1, 15, 17, 5, 8, 9, 12, 14, 7, 4, 3, 20, 16, 6, 22, 10, 13, 2, 21, 18, 11], 9: [8, 13, 2, 20, 17, 3, 6, 21, 18, 11, 19, 10, 15, 4, 22, 1, 7, 12, 9, 14, 5, 16], 10: [6, 15, 18, 17, 12, 1, 7, 2, 22, 13, 21, 10, 14, 9, 3, 16, 20, 19, 11, 4, 8, 5], 11: [15, 14, 18, 17, 10, 20, 16, 11, 1, 8, 4, 22, 5, 12, 3, 9, 21, 2, 13, 6, 19, 7], 12: [1, 7, 16, 17, 18, 22, 12, 6, 8, 9, 11, 4, 2, 5, 20, 21, 13, 10, 19, 3, 14, 15], 13: [21, 17, 7, 3, 1, 10, 12, 22, 9, 16, 6, 11, 2, 4, 5, 14, 8, 20, 13, 18, 15, 19], 14: [2, 9, 5, 4, 18, 1, 20, 15, 16, 17, 7, 21, 13, 14, 19, 8, 22, 11, 10, 3, 12, 6], 15: [16, 9, 17, 8, 14, 11, 10, 12, 6, 21, 7, 3, 15, 5, 22, 20, 1, 13, 19, 2, 4, 18], 16: [1, 3, 6, 5, 2, 16, 14, 22, 17, 20, 4, 9, 10, 11, 15, 8, 12, 19, 18, 13, 7, 21], 17: [3, 16, 5, 11, 21, 9, 2, 15, 10, 18, 17, 7, 8, 19, 14, 13, 1, 4, 22, 20, 6, 12], 18: [14, 4, 13, 5, 21, 11, 8, 6, 3, 17, 2, 20, 1, 19, 10, 9, 12, 18, 15, 7, 22, 16], 19: [4, 12, 22, 14, 5, 15, 16, 2, 8, 10, 17, 9, 21, 7, 3, 6, 13, 18, 11, 20, 19, 1], 20: [16, 15, 14, 13, 4, 22, 18, 19, 7, 1, 12, 17, 5, 10, 20, 3, 9, 21, 11, 2, 6, 8], 21: [20, 14, 21, 12, 15, 17, 4, 19, 13, 10, 11, 1, 16, 5, 18, 7, 8, 22, 9, 6, 3, 2], 22: [16, 14, 13, 2, 21, 10, 11, 4, 1, 22, 18, 12, 19, 5, 7, 8, 6, 3, 15, 20, 9, 17], 23: [18, 15, 9, 14, 12, 2, 8, 11, 22, 21, 16, 1, 6, 17, 5, 10, 19, 4, 20, 13, 3, 7], 24: [7, 3, 10, 14, 13, 21, 18, 6, 20, 4, 9, 8, 22, 15, 2, 1, 5, 12, 19, 17, 11, 16], 25: [18, 1, 13, 7, 16, 10, 14, 2, 19, 5, 21, 11, 22, 15, 8, 17, 20, 3, 4, 12, 6, 9], 26: [13, 2, 22, 5, 11, 21, 20, 14, 7, 10, 4, 9, 19, 18, 6, 3, 1, 8, 15, 12, 17, 16], 27: [14, 17, 21, 8, 2, 9, 6, 4, 5, 13, 22, 7, 15, 3, 1, 18, 16, 11, 10, 12, 20, 19], 28: [10, 22, 1, 12, 13, 18, 21, 20, 2, 14, 16, 7, 15, 3, 4, 17, 5, 19, 6, 8, 9, 11], 29: [10, 8, 9, 18, 12, 6, 1, 5, 20, 11, 17, 22, 16, 3, 13, 2, 15, 21, 14, 19, 7, 4], 30: [7, 17, 22, 5, 3, 10, 13, 18, 9, 1, 14, 15, 21, 19, 16, 12, 8, 6, 11, 20, 4, 2], 31: [2, 9, 21, 3, 4, 7, 1, 11, 16, 5, 20, 19, 18, 8, 17, 13, 10, 12, 15, 6, 14, 22], 32: [15, 12, 8, 4, 22, 13, 16, 17, 18, 3, 7, 5, 6, 1, 9, 11, 21, 10, 14, 20, 19, 2], 33: [15, 16, 2, 11, 17, 7, 5, 14, 20, 4, 21, 3, 10, 9, 12, 8, 13, 6, 18, 19, 22, 1], 34: [1, 13, 11, 3, 4, 21, 6, 14, 15, 22, 18, 9, 7, 5, 10, 20, 12, 16, 17, 8, 19, 2], 35: [14, 17, 22, 20, 8, 16, 5, 10, 1, 13, 2, 21, 12, 9, 4, 18, 3, 7, 6, 19, 15, 11], 36: [9, 17, 7, 4, 5, 13, 21, 18, 11, 3, 22, 1, 6, 16, 20, 14, 15, 10, 8, 2, 12, 19], 37: [13, 14, 5, 22, 19, 11, 9, 6, 18, 15, 8, 10, 7, 4, 17, 16, 3, 1, 12, 2, 21, 20], 38: [20, 5, 4, 14, 11, 1, 6, 16, 8, 22, 7, 3, 2, 12, 21, 19, 17, 13, 10, 15, 18, 9], 39: [3, 7, 14, 15, 6, 5, 21, 20, 18, 10, 4, 16, 19, 1, 13, 9, 8, 17, 11, 12, 22, 2], 40: [13, 15, 17, 1, 22, 11, 3, 4, 7, 20, 14, 21, 9, 8, 2, 18, 16, 6, 10, 12, 5, 19]},
'queries':
@@ -2397,38 +2392,8 @@ revenue{numRun}{STREAM}
)
order by
s_suppkey""",
-"""drop view revenue{numRun}{STREAM}"""],
- 'PostgreSQL': """with revenue (supplier_no, total_revenue) as (
-select
-l_suppkey,
-sum(l_extendedprice * (1-l_discount))
-from
-lineitem
-where
-l_shipdate >= date('{DATE}')
-and l_shipdate < date('{DATE}') + interval '3' month
-group by
-l_suppkey)
-select
-s_suppkey,
-s_name,
-s_address,
-s_phone,
-total_revenue
-from
-supplier,
-revenue
-where
-s_suppkey = supplier_no
-and total_revenue = (
-select
-max(total_revenue)
-from
-revenue
-)
-order by
-s_suppkey""",
- 'DB2': ["""create view revenue{numRun}{STREAM} as
+"""drop view revenue{numRun}"""],
+ 'DB2': ["""create view revenue{numRun} as
select
l_suppkey supplier_no,
sum(l_extendedprice * (1 - l_discount)) total_revenue
@@ -2521,7 +2486,18 @@ revenue{numRun}{STREAM}
order by
s_suppkey""",
"""drop view revenue{numRun}{STREAM}"""],
- 'MonetDB-NoVIEW': ["""select
+ 'MonetDB': """with revenue (supplier_no, total_revenue) as (
+select
+l_suppkey,
+sum(l_extendedprice * (1-l_discount))
+from
+lineitem
+where
+l_shipdate >= date '{DATE}'
+and l_shipdate < date '{DATE}' + interval '3' month
+group by
+l_suppkey)
+select
s_suppkey,
s_name,
s_address,
@@ -2529,35 +2505,17 @@ s_phone,
total_revenue
from
supplier,
-(select
-l_suppkey supplier_no,
-sum(l_extendedprice * (1 - l_discount)) total_revenue
-from
-lineitem
-where
-l_shipdate >= date '{DATE}'
-and l_shipdate < date '{DATE}' + interval '3' month
-group by
-l_suppkey) vw
+revenue
where
s_suppkey = supplier_no
and total_revenue = (
select
max(total_revenue)
from
-(select
-l_suppkey supplier_no,
-sum(l_extendedprice * (1 - l_discount)) total_revenue
-from
-lineitem
-where
-l_shipdate >= date '{DATE}'
-and l_shipdate < date '{DATE}' + interval '3' month
-group by
-l_suppkey) tmp
+revenue
)
order by
-s_suppkey"""],
+s_suppkey""",
'SAPHANA': ["""create view revenue{numRun}{STREAM} as
select
l_suppkey supplier_no,
diff --git a/images/benchmarker_dbmsbenchmarker/benchmarker.sh b/images/benchmarker_dbmsbenchmarker/benchmarker.sh
index b6d95cf6..54e79b37 100644
--- a/images/benchmarker_dbmsbenchmarker/benchmarker.sh
+++ b/images/benchmarker_dbmsbenchmarker/benchmarker.sh
@@ -51,7 +51,10 @@ echo "Querying message queue bexhoma-benchmarker-$BEXHOMA_CONNECTION-$BEXHOMA_EX
CHILD="$(redis-cli -h 'bexhoma-messagequeue' lpop bexhoma-benchmarker-$BEXHOMA_CONNECTION-$BEXHOMA_EXPERIMENT)"
if [ -z "$CHILD" ]
then
+ echo "No entry found in message queue. I assume this is the first child."
CHILD=1
+else
+ echo "Found entry number $CHILD in message queue."
fi
######################## Wait until all pods of job are ready ########################
@@ -64,7 +67,7 @@ while : ; do
echo "Found $PODS_RUNNING / $NUM_PODS running pods"
if test "$PODS_RUNNING" == $NUM_PODS
then
- echo "OK"
+ echo "OK, found $NUM_PODS ready pods."
break
elif test "$PODS_RUNNING" -gt $NUM_PODS
then
@@ -94,6 +97,26 @@ then
git pull
fi
+######################## Convert parameters ###################
+# values come from Python, will be set as string ENV and must be converted
+if test "$DBMSBENCHMARKER_SHUFFLE_QUERIES" == "True"
+then
+ DBMSBENCHMARKER_SHUFFLE_QUERIES=1
+else
+ DBMSBENCHMARKER_SHUFFLE_QUERIES=0
+fi
+
+if test "$DBMSBENCHMARKER_RECREATE_PARAMETER" == "True"
+then
+ DBMSBENCHMARKER_RECREATE_PARAMETER=1
+else
+ DBMSBENCHMARKER_RECREATE_PARAMETER=0
+fi
+
+######################## Show more parameters ########################
+echo "DBMSBENCHMARKER_SHUFFLE_QUERIES $DBMSBENCHMARKER_SHUFFLE_QUERIES"
+echo "DBMSBENCHMARKER_RECREATE_PARAMETER $DBMSBENCHMARKER_RECREATE_PARAMETER"
+
######################## Execute workload ###################
# run dbmsbenchmarker
if test $DBMSBENCHMARKER_VERBOSE -gt 0
@@ -101,7 +124,6 @@ then
python ./benchmark.py run -b -w connection \
-f /results/$DBMSBENCHMARKER_CODE \
-r /results/$DBMSBENCHMARKER_CODE \
- -mps \
-cs -sf $DBMSBENCHMARKER_CONNECTION \
-ms $DBMSBENCHMARKER_CLIENT \
-c "$DBMSBENCHMARKER_CONNECTION" \
@@ -115,6 +137,8 @@ then
-vs \
-sid $CHILD \
-ssh $DBMSBENCHMARKER_SHUFFLE_QUERIES \
+ $( (( DBMSBENCHMARKER_DEV == 1 )) && printf %s '-db' ) \
+ -mps \
| tee /tmp/dbmsbenchmarker.log
#-sl $DBMSBENCHMARKER_SLEEP \
#-st "$DBMSBENCHMARKER_START" \
@@ -122,7 +146,6 @@ else
python ./benchmark.py run -b -w connection \
-f /results/$DBMSBENCHMARKER_CODE \
-r /results/$DBMSBENCHMARKER_CODE \
- -mps \
-cs -sf $DBMSBENCHMARKER_CONNECTION \
-ms $DBMSBENCHMARKER_CLIENT \
-c "$DBMSBENCHMARKER_CONNECTION" \
@@ -131,6 +154,8 @@ else
-rcp $DBMSBENCHMARKER_RECREATE_PARAMETER \
-sid $CHILD \
-ssh $DBMSBENCHMARKER_SHUFFLE_QUERIES \
+ $( (( DBMSBENCHMARKER_DEV == 1 )) && printf %s '-db' ) \
+ -mps \
| tee /tmp/dbmsbenchmarker.log
#-sl $DBMSBENCHMARKER_SLEEP \
#-st "$DBMSBENCHMARKER_START" \
diff --git a/images/evaluator_dbmsbenchmarker/Dockerfile_template b/images/evaluator_dbmsbenchmarker/Dockerfile_template
index a94cc74b..fdae6cfe 100644
--- a/images/evaluator_dbmsbenchmarker/Dockerfile_template
+++ b/images/evaluator_dbmsbenchmarker/Dockerfile_template
@@ -35,6 +35,10 @@ RUN git clone https://github.com/Beuth-Erdelt/DBMS-Benchmarker --branch {version
WORKDIR /usr/src/app/DBMS-Benchmarker
+RUN mkdir /usr/src/app/DBMS-Benchmarker/notebooks
+
+COPY ./notebooks /usr/src/app/DBMS-Benchmarker/notebooks
+
# RUN git pull
CMD git pull; python ./dashboard.py -r /results
diff --git a/images/evaluator_dbmsbenchmarker/notebooks/Evaluation-Demo.html b/images/evaluator_dbmsbenchmarker/notebooks/Evaluation-Demo.html
new file mode 100644
index 00000000..6968342d
--- /dev/null
+++ b/images/evaluator_dbmsbenchmarker/notebooks/Evaluation-Demo.html
@@ -0,0 +1,14686 @@
+
+
+
+
+
+Evaluation-Demo
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[2]:
+
+
+
+
+
+
+
+connections
+info
+intro
+name
+queries
+time
+
+
+
+
+1625255968
+8
+This experiment compares run time and resource consumption of TPC-H queries in different DBMS.
+This includes the reading queries of TPC-H.
+TPC-H Queries SF=10
+22
+2022-06-01 11:55:45
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Benchmarking in folder docresult//1625255968
+Connections:
+MariaDB-2-1
+PostgreSQL-1-1
+MonetDB-1-1
+MySQL-1-1
+MariaDB-1-1
+MySQL-2-1
+PostgreSQL-2-1
+MonetDB-2-1
+Queries:
+0: Q1 = Pricing Summary Report (TPC-H Q1)
+1: Q2 = Minimum Cost Supplier Query (TPC-H Q2)
+2: Q3 = Shipping Priority (TPC-H Q3)
+3: Q4 = Order Priority Checking Query (TPC-H Q4)
+4: Q5 = Local Supplier Volume (TPC-H Q5)
+5: Q6 = Forecasting Revenue Change (TPC-H Q6)
+6: Q7 = Forecasting Revenue Change (TPC-H Q7)
+7: Q8 = National Market Share (TPC-H Q8)
+8: Q9 = Product Type Profit Measure (TPC-H Q9)
+9: Q10 = Forecasting Revenue Change (TPC-H Q10)
+10: Q11 = Important Stock Identification (TPC-H Q11)
+11: Q12 = Shipping Modes and Order Priority (TPC-H Q12)
+12: Q13 = Customer Distribution (TPC-H Q13)
+13: Q14 = Forecasting Revenue Change (TPC-H Q14)
+14: Q15 = Top Supplier Query (TPC-H Q15)
+15: Q16 = Parts/Supplier Relationship (TPC-H Q16)
+16: Q17 = Small-Quantity-Order Revenue (TPC-H Q17)
+17: Q18 = Large Volume Customer (TPC-H Q18)
+18: Q19 = Discounted Revenue (TPC-H Q19)
+19: Q20 = Potential Part Promotion (TPC-H Q20)
+20: Q21 = Suppliers Who Kept Orders Waiting Query (TPC-H Q21)
+21: Q22 = Global Sales Opportunity Query (TPC-H Q22)
+Load Evaluation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
TPC-H Queries SF=10
+This experiment compares run time and resource consumption of TPC-H queries in different DBMS.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Properties of MonetDB-1-1¶
+
+
+
+
+
+
name:MonetDB-1-1
+script:SF10-index
+docker:MonetDB
+docker_alias:Columnwise
+version:11.37.11
+info:[]
+connectionmanagement
+ numProcesses:1
+ runsPerConnection:Unlimited
+ timeout:3600
+hostsystem
+ RAM:1082007052288
+ CPU:AMD EPYC 7742 64-Core Processor
+ GPU:
+ GPUIDs:[]
+ Cores:256
+ host:5.4.0-74-generic
+ node:cl-worker28
+ disk:623220008
+ datadisk:10687696
+ cuda:
+ requests_cpu:4
+ requests_memory:16Gi
+ limits_cpu:0
+ limits_memory:0
+worker:[]
+times
+ load_ms:251632.57140340284
+ benchmark_ms:316155.41979367845
+prices
+ perHour_usd:0.0
+ benchmark_usd:0.0
+hardwaremetrics
+ total_cpu_memory:0
+ total_cpu_memory_cached:0
+ total_cpu_util:0
+ total_gpu_util:0
+ total_gpu_power:0
+ total_gpu_memory:0
+ total_cpu_throttled:0
+ total_cpu_util_others:0
+ total_cpu_util_s:0
+ total_cpu_util_user_s:0
+ total_cpu_util_sys_s:0
+ total_cpu_throttled_s:0
+ total_cpu_util_others_s:0
+ total_network_rx:0
+ total_network_tx:0
+ total_fs_read:0
+ total_fs_write:0
+ total_gpu_energy:0.0
+metrics
+ totaltime_ms:3470.0931945159236
+ throughput_run_total_ps:0.8645300952554098
+ throughput_run_total_ph:3112.308342919476
+ throughput_session_total_ps:0.28817669841846993
+ throughput_session_total_ph:1037.436114306492
+ throughput_run_mean_ps:0.924158961737484
+ throughput_run_mean_ph:3326.972262254943
+ latency_run_mean_ms:1082.0649275747212
+ throughput_session_mean_ps:0.30805298724582797
+ throughput_session_mean_ph:1108.990754084981
+ latency_session_mean_ms:3246.194782724164
+ queuesize_run:0.9354776949087117
+ queuesize_run_percent:93.54776949087119
+ queuesize_session:0.9354776949087117
+ queuesize_session_percent:93.54776949087118
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[7]:
+
+
+
+
+
+
+
+0
+
+
+
+
+MariaDB-1-1
+
+
+
+MariaDB-2-1
+
+
+
+MonetDB-1-1
+
+
+
+MonetDB-2-1
+
+
+
+MySQL-1-1
+
+
+
+MySQL-2-1
+
+
+
+PostgreSQL-1-1
+
+
+
+PostgreSQL-2-1
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[8]:
+
+
+
+
+
+
+
+0
+
+
+
+
+MariaDB-1-1
+
+
+
+MariaDB-2-1
+
+
+
+MonetDB-1-1
+Different at run #1
+
+
+MonetDB-2-1
+Different at run #1
+
+
+MySQL-1-1
+
+
+
+MySQL-2-1
+
+
+
+PostgreSQL-1-1
+
+
+
+PostgreSQL-2-1
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Show Query Template 1 - Pricing Summary Report (TPC-H Q1)¶
+
+
+
+
+
+
select
+l_returnflag,
+l_linestatus,
+cast(sum(l_quantity) as bigint) as sum_qty,
+sum(l_extendedprice) as sum_base_price,
+sum(l_extendedprice*(1-l_discount)) as sum_disc_price,
+sum(l_extendedprice*(1-l_discount)*(1+l_tax)) as sum_charge,
+avg(l_quantity) as avg_qty,
+avg(l_extendedprice) as avg_price,
+avg(l_discount) as avg_disc,
+count(*) as count_order
+from
+lineitem
+where
+l_shipdate <= date '1998-12-01' - interval '{DELTA}' day
+group by
+l_returnflag,
+l_linestatus
+order by
+l_returnflag,
+l_linestatus
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Show Parameters of Query 1 - Pricing Summary Report (TPC-H Q1)¶
+
+
+
+
Out[10]:
+
+
+
+
+
+
+
+DELTA
+numRun
+
+
+
+
+1
+71
+0
+
+
+2
+97
+1
+
+
+3
+73
+2
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Show Query 1 as run by MariaDB-1-1 - Run number 0¶
+
+
+
+
+
+
select
+l_returnflag,
+l_linestatus,
+cast(sum(l_quantity) as unsigned int) as sum_qty,
+sum(l_extendedprice) as sum_base_price,
+sum(l_extendedprice*(1-l_discount)) as sum_disc_price,
+sum(l_extendedprice*(1-l_discount)*(1+l_tax)) as sum_charge,
+avg(l_quantity) as avg_qty,
+avg(l_extendedprice) as avg_price,
+avg(l_discount) as avg_disc,
+count(*) as count_order
+from
+lineitem
+where
+l_shipdate <= date('1998-12-01') - interval '71' day
+group by
+l_returnflag,
+l_linestatus
+order by
+l_returnflag,
+l_linestatus
+limit 10000000
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Show Query 1 as run by MonetDB-1-1 - Run number 0¶
+
+
+
+
+
+
select
+l_returnflag,
+l_linestatus,
+cast(sum(l_quantity) as unsigned int) as sum_qty,
+sum(l_extendedprice) as sum_base_price,
+sum(l_extendedprice*(1-l_discount)) as sum_disc_price,
+sum(l_extendedprice*(1-l_discount)*(1+l_tax)) as sum_charge,
+avg(l_quantity) as avg_qty,
+avg(l_extendedprice) as avg_price,
+avg(l_discount) as avg_disc,
+count(*) as count_order
+from
+lineitem
+where
+l_shipdate <= date('1998-12-01') - interval '71' day
+group by
+l_returnflag,
+l_linestatus
+order by
+l_returnflag,
+l_linestatus
+limit 10000000
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Show Result Set of Query 1 as run by MariaDB-1-1 - Run number 0¶
+
+
+
+
Out[13]:
+
+
+
+
+
+
+
+L_RETURNFLAG
+L_LINESTATUS
+SUM_QTY
+SUM_BASE_PRICE
+SUM_DISC_PRICE
+SUM_CHARGE
+AVG_QTY
+AVG_PRICE
+AVG_DISC
+COUNT_ORDER
+
+
+
+
+1
+A
+F
+377518399
+566065727797.0
+537759104278.0
+559276670892.0
+26.0
+38237.0
+0.0
+14804077
+
+
+2
+N
+F
+9851614
+14767438399.0
+14028805792.0
+14590490998.0
+26.0
+38258.0
+0.0
+385998
+
+
+3
+N
+O
+751203243
+1126406784135.0
+1070081467451.0
+1112897846350.0
+25.0
+38234.0
+0.0
+29460795
+
+
+4
+R
+F
+377732830
+566431054976.0
+538110922665.0
+559634780885.0
+26.0
+38251.0
+0.0
+14808183
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Show Result Set of Query 1 as run by MonetDB-1-1 - Run number 0¶
+
+
+
+
Out[14]:
+
+
+
+
+
+
+
+L_RETURNFLAG
+L_LINESTATUS
+SUM_QTY
+SUM_BASE_PRICE
+SUM_DISC_PRICE
+SUM_CHARGE
+AVG_QTY
+AVG_PRICE
+AVG_DISC
+COUNT_ORDER
+
+
+
+
+1
+A
+F
+377518399
+566065727797.0
+537759104278.0
+559276670892.0
+26.0
+38237.0
+0.0
+14804077
+
+
+2
+N
+F
+9851614
+14767438399.0
+14028805792.0
+14590490998.0
+26.0
+38258.0
+0.0
+385998
+
+
+3
+N
+O
+751203243
+1126406784135.0
+1070081467451.0
+1112897846350.0
+26.0
+38234.0
+0.0
+29460795
+
+
+4
+R
+F
+377732830
+566431054976.0
+538110922665.0
+559634780885.0
+26.0
+38251.0
+0.0
+14808183
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[15]:
+
+
+
+
+
+
+
+query
+title
+
+
+
+
+total_cpu_memory
+(node_memory_MemTotal_bytes-node_memory_MemFree_bytes-node_memory_Buffers_bytes-node_memory_Cached_bytes)/1024/1024
+CPU Memory [MiB]
+
+
+total_cpu_memory_cached
+(node_memory_Cached_bytes)/1024/1024
+CPU Memory Cached [MiB]
+
+
+total_cpu_util
+100 - (avg by (instance) (irate(node_cpu_seconds_total{mode="idle"}[5m])) * 100)
+CPU Util [%]
+
+
+total_gpu_util
+sum(dcgm_gpu_utilization)
+GPU Util [%]
+
+
+total_gpu_power
+sum(dcgm_power_usage)
+GPU Power Usage [W]
+
+
+total_gpu_memory
+sum(dcgm_fb_used)
+GPU Memory [MiB]
+
+
+total_cpu_throttled
+sum(rate(container_cpu_cfs_throttled_seconds_total{{job="monitor-node", container_label_io_kubernetes_container_name="dbms"}}[1m]))
+CPU Throttle [%]
+
+
+total_cpu_util_others
+sum(irate(container_cpu_usage_seconds_total{{job="monitor-node", container_label_io_kubernetes_container_name!="dbms",id!="/"}}[1m]))
+CPU Others [%]
+
+
+total_cpu_util_s
+sum(container_cpu_usage_seconds_total{{job="monitor-node", container_label_io_kubernetes_container_name="dbms"}})
+CPU Util [s]
+
+
+total_cpu_util_user_s
+sum(container_cpu_user_seconds_total{{job="monitor-node", container_label_io_kubernetes_container_name="dbms"}})
+CPU Util User [s]
+
+
+total_cpu_util_sys_s
+sum(container_cpu_system_seconds_total{{job="monitor-node", container_label_io_kubernetes_container_name="dbms"}})
+CPU Util Sys [s]
+
+
+total_cpu_throttled_s
+sum(container_cpu_cfs_throttled_seconds_total{{job="monitor-node", container_label_io_kubernetes_container_name="dbms"}})
+CPU Throttle [s]
+
+
+total_cpu_util_others_s
+sum(container_cpu_usage_seconds_total{{job="monitor-node", container_label_io_kubernetes_container_name!="dbms",id!="/"}})
+CPU Util Others [s]
+
+
+total_network_rx
+sum(container_network_receive_bytes_total{{container_label_app="dbmsbenchmarker", job="monitor-node"}})
+Net Rx [b]
+
+
+total_network_tx
+sum(container_network_transmit_bytes_total{{container_label_app="dbmsbenchmarker", job="monitor-node"}})
+Net Tx [b]
+
+
+total_fs_read
+sum(container_fs_reads_bytes_total{{job="monitor-node", container_label_io_kubernetes_container_name="dbms"}})
+FS Read [b]
+
+
+total_fs_write
+sum(container_fs_writes_bytes_total{{job="monitor-node", container_label_io_kubernetes_container_name="dbms"}})
+FS Write [b]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
CPU of Ingestion (via counter)¶
+
+
+
+
Out[16]:
+
+
+
+
+
+
+
+0
+
+
+DBMS
+
+
+
+
+
+MariaDB-1
+1526.198404
+
+
+MariaDB-2
+1526.198404
+
+
+MonetDB-1
+1931.119997
+
+
+MonetDB-2
+1931.119997
+
+
+MySQL-1
+1963.867765
+
+
+MySQL-2
+1963.867765
+
+
+PostgreSQL-1
+472.864693
+
+
+PostgreSQL-2
+472.864693
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
CPU of Ingestion (via rate)¶
+
+
+
+
Out[17]:
+
+
+
+
+
+
+
+0
+
+
+DBMS
+
+
+
+
+
+MariaDB-1
+1526.761004
+
+
+MariaDB-2
+1526.761004
+
+
+MonetDB-1
+1887.024304
+
+
+MonetDB-2
+1887.024304
+
+
+MySQL-1
+1962.119638
+
+
+MySQL-2
+1962.119638
+
+
+PostgreSQL-1
+464.746812
+
+
+PostgreSQL-2
+464.746812
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
CPU of Stream (via counter)¶
+
+
+
+
Out[18]:
+
+
+
+
+
+
+
+0
+
+
+DBMS
+
+
+
+
+
+MariaDB-1-1
+5564.712371
+
+
+MariaDB-2-1
+5497.702421
+
+
+MonetDB-1-1
+1356.184954
+
+
+MonetDB-2-1
+1218.550218
+
+
+MySQL-1-1
+3011.705555
+
+
+MySQL-2-1
+2896.443679
+
+
+PostgreSQL-1-1
+1436.189579
+
+
+PostgreSQL-2-1
+1278.603392
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
CPU of Stream (via rate)¶
+
+
+
+
Out[19]:
+
+
+
+
+
+
+
+0
+
+
+DBMS
+
+
+
+
+
+MariaDB-1-1
+5580.313389
+
+
+MariaDB-2-1
+5519.121645
+
+
+MonetDB-1-1
+1508.432769
+
+
+MonetDB-2-1
+1368.634461
+
+
+MySQL-1-1
+3029.972219
+
+
+MySQL-2-1
+2915.922365
+
+
+PostgreSQL-1-1
+1492.224116
+
+
+PostgreSQL-2-1
+1331.659788
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Mean of Means of Timer Run [s]¶
+
+
+
+
Out[20]:
+
+
+
+
+
+
+
+total_timer_run
+
+
+DBMS
+
+
+
+
+
+MariaDB-1-1
+84.432242
+
+
+MariaDB-2-1
+83.348424
+
+
+MonetDB-1-1
+4.717192
+
+
+MonetDB-2-1
+4.458597
+
+
+MySQL-1-1
+45.625206
+
+
+MySQL-2-1
+43.901729
+
+
+PostgreSQL-1-1
+14.941245
+
+
+PostgreSQL-2-1
+11.454957
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[21]:
+
+
+
+
+
+
+
+total_timer_run
+
+
+DBMS
+
+
+
+
+
+MariaDB-1-1
+31.517934
+
+
+MariaDB-2-1
+31.257281
+
+
+MonetDB-1-1
+0.752332
+
+
+MonetDB-2-1
+0.792416
+
+
+MySQL-1-1
+23.157694
+
+
+MySQL-2-1
+22.424075
+
+
+PostgreSQL-1-1
+7.769965
+
+
+PostgreSQL-2-1
+7.347514
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Means of Timer Runs [ms]¶
+
+
+
+
Out[24]:
+
+
+
+
+
+
+DBMS
+MariaDB-1-1
+MariaDB-2-1
+MonetDB-1-1
+MonetDB-2-1
+MySQL-1-1
+MySQL-2-1
+PostgreSQL-1-1
+PostgreSQL-2-1
+
+
+
+
+Q1
+115989.630678
+113481.054475
+5563.435273
+4517.950883
+139965.852845
+139650.894833
+20039.383417
+19866.305729
+
+
+Q2
+13202.835330
+13171.131305
+423.855536
+351.280993
+1790.965649
+1577.399513
+7225.602556
+17500.866503
+
+
+Q3
+58803.801925
+55998.118738
+1121.951630
+286.680120
+60652.883762
+60329.661458
+15167.515143
+19752.016812
+
+
+Q4
+10906.610491
+10700.938849
+167.959029
+157.038979
+10353.898270
+10227.802497
+63276.056357
+3660.092083
+
+
+Q5
+43173.049879
+41958.968865
+369.634689
+383.102751
+44849.054096
+40186.950882
+5783.143584
+6885.665454
+
+
+Q6
+19219.394048
+19288.650417
+1785.649381
+129.628404
+24070.415718
+24026.994607
+2917.860596
+2886.094683
+
+
+Q7
+35227.129593
+33578.747254
+2198.463472
+3050.601307
+27260.769050
+24198.993758
+11244.580511
+13545.375023
+
+
+Q8
+74788.585443
+73309.150578
+1092.181380
+3154.597746
+117483.457010
+106573.850883
+12783.577640
+13338.918216
+
+
+Q9
+141097.449787
+139187.680818
+4918.470218
+3963.573644
+124488.035032
+112492.537863
+44068.426727
+42587.264411
+
+
+Q10
+141403.858324
+142090.442053
+908.977431
+803.503769
+20992.730243
+20748.897447
+20831.573940
+16731.910749
+
+
+Q11
+4148.042627
+4293.732452
+567.795084
+415.515498
+5663.032641
+5696.939546
+3892.319345
+2169.532531
+
+
+Q12
+132080.983062
+128807.095058
+3773.747000
+191.421537
+34564.011301
+34269.547826
+15897.897638
+7168.397244
+
+
+Q13
+114272.807927
+115454.660663
+3590.687924
+3181.238493
+161980.722418
+160750.343010
+18784.685568
+7771.261669
+
+
+Q14
+511364.874354
+497102.462734
+181.559546
+136.743135
+29699.836106
+29359.513897
+8136.222391
+3260.906603
+
+
+Q15
+38717.798192
+38992.169477
+270.773724
+282.713636
+53015.246627
+52652.230879
+10828.831254
+7963.955605
+
+
+Q16
+4946.922447
+4957.202488
+1839.745415
+1857.860934
+5847.584373
+5991.898077
+7068.259177
+6408.576533
+
+
+Q17
+1276.979283
+1253.035080
+1891.926599
+2360.170470
+13071.677511
+12453.737342
+11935.246834
+13523.998653
+
+
+Q18
+126016.121606
+129203.891398
+479.290318
+490.452279
+30790.192968
+30442.444819
+33132.461344
+29488.654058
+
+
+Q19
+2384.714820
+2344.720237
+251.887020
+248.384294
+3420.121102
+3349.518520
+568.638627
+492.559332
+
+
+Q20
+20530.713325
+20667.318521
+263.041606
+233.055218
+10182.912607
+9965.629668
+7626.458291
+9463.541198
+
+
+Q21
+246130.899464
+245986.749306
+71514.882144
+70924.262200
+81238.430244
+78553.948823
+6737.272611
+6798.701014
+
+
+Q22
+1826.111431
+1837.417374
+602.300994
+969.356511
+2372.703644
+2338.294653
+761.376779
+744.457357
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Maximum of Run Throughput [1/s]¶
+
+
+
+
Out[25]:
+
+
+
+
+
+
+DBMS
+MariaDB-1-1
+MariaDB-2-1
+MonetDB-1-1
+MonetDB-2-1
+MySQL-1-1
+MySQL-2-1
+PostgreSQL-1-1
+PostgreSQL-2-1
+
+
+
+
+Q1
+0.008810
+0.008846
+0.220207
+0.231232
+0.007174
+0.007189
+0.050163
+0.050691
+
+
+Q2
+0.076588
+0.076907
+2.789275
+3.175859
+0.566798
+0.639963
+0.139435
+0.061638
+
+
+Q3
+0.017364
+0.018087
+3.736227
+3.912092
+0.016533
+0.016633
+0.082372
+0.052391
+
+
+Q4
+0.092310
+0.094059
+6.605401
+6.746199
+0.097566
+0.098876
+0.407549
+0.294164
+
+
+Q5
+0.023296
+0.023917
+3.608333
+3.462481
+0.022400
+0.024953
+0.247183
+0.159519
+
+
+Q6
+0.052784
+0.052485
+7.631666
+8.164754
+0.041805
+0.041873
+0.344342
+0.349700
+
+
+Q7
+0.028540
+0.029938
+0.563871
+0.485066
+0.038508
+0.043290
+0.099798
+0.078069
+
+
+Q8
+0.013432
+0.013729
+0.959255
+0.387856
+0.008518
+0.009407
+0.091922
+0.087958
+
+
+Q9
+0.007132
+0.007206
+0.782999
+0.323114
+0.008129
+0.009099
+0.023413
+0.023625
+
+
+Q10
+0.007085
+0.007049
+1.238689
+1.262583
+0.047705
+0.048243
+0.050442
+0.068517
+
+
+Q11
+0.243337
+0.234186
+1.938101
+2.797194
+0.177257
+0.177560
+0.306996
+0.467223
+
+
+Q12
+0.007574
+0.007771
+4.941322
+5.652018
+0.029141
+0.029371
+0.075461
+0.145088
+
+
+Q13
+0.008790
+0.008695
+0.322902
+0.343424
+0.006207
+0.006254
+0.054629
+0.138944
+
+
+Q14
+0.001958
+0.002015
+7.144495
+7.884286
+0.034125
+0.034448
+0.160541
+0.309416
+
+
+Q15
+0.025941
+0.025866
+3.821016
+3.587965
+0.019004
+0.019073
+0.117023
+0.126468
+
+
+Q16
+0.205247
+0.203905
+0.555683
+0.565030
+0.173094
+0.169006
+0.147405
+0.156668
+
+
+Q17
+0.788392
+0.809581
+0.695906
+0.457047
+0.081641
+0.084269
+0.083890
+0.075591
+
+
+Q18
+0.007945
+0.007753
+2.198075
+2.107396
+0.032550
+0.033012
+0.032164
+0.036029
+
+
+Q19
+0.429370
+0.433899
+4.087997
+4.146425
+0.300284
+0.304113
+2.180537
+2.117862
+
+
+Q20
+0.048879
+0.048549
+4.019059
+4.688444
+0.098711
+0.100542
+0.132065
+0.106847
+
+
+Q21
+0.004067
+0.004068
+0.014502
+0.014320
+0.012437
+0.012804
+0.148926
+0.149333
+
+
+Q22
+0.550611
+0.550844
+1.988697
+1.171185
+0.429374
+0.434330
+1.372679
+1.436696
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Latency of Timer Execution [ms]¶
+
+
+
+
Out[26]:
+
+
+
+
+
+
+DBMS
+MariaDB-1-1
+MariaDB-2-1
+MonetDB-1-1
+MonetDB-2-1
+MySQL-1-1
+MySQL-2-1
+PostgreSQL-1-1
+PostgreSQL-2-1
+
+
+
+
+Q1
+115984.029097
+113477.396985
+5559.138363
+4515.038655
+139963.454816
+139644.360665
+20034.833936
+19861.297945
+
+
+Q2
+13189.844139
+13157.687652
+413.282013
+340.652305
+1782.370459
+1560.817159
+7211.191122
+17486.172169
+
+
+Q3
+58800.386259
+55994.774677
+1118.389753
+283.285230
+60650.473856
+60324.399922
+15162.580179
+19747.151356
+
+
+Q4
+10906.366797
+10700.690025
+167.731983
+156.817029
+10353.680159
+10227.460235
+63275.764168
+3659.762128
+
+
+Q5
+43172.769596
+41958.683499
+369.404377
+382.882849
+44848.791658
+40186.573100
+5782.834073
+6885.320396
+
+
+Q6
+19219.304236
+19288.558926
+1785.574434
+129.571968
+24070.314904
+24026.849064
+2917.765952
+2885.997845
+
+
+Q7
+35226.790069
+33578.401355
+2198.102969
+3050.271067
+27260.520071
+24198.575423
+11244.196273
+13544.882668
+
+
+Q8
+74788.269761
+73308.950132
+1091.897862
+3154.334292
+117483.286765
+106573.598974
+12783.235100
+13338.417255
+
+
+Q9
+141087.924653
+139178.495053
+4908.692492
+3954.063788
+124482.944844
+112482.017125
+44059.743012
+42577.751900
+
+
+Q10
+141401.555155
+142088.174021
+906.461463
+801.192185
+20991.290802
+20745.993865
+20828.577831
+16729.723187
+
+
+Q11
+3943.081469
+4038.932427
+260.222192
+114.384230
+5474.876384
+5460.062068
+3688.202220
+1934.406897
+
+
+Q12
+132080.785154
+128806.873278
+3773.600698
+191.276890
+34563.874573
+34269.322594
+15897.675939
+7168.201096
+
+
+Q13
+114271.550681
+115453.225490
+3589.015730
+3179.584549
+161979.926707
+160748.794775
+18783.155397
+7769.695470
+
+
+Q14
+511364.784783
+497102.376689
+181.431396
+136.607647
+29699.769745
+29359.402171
+8135.799106
+3260.492730
+
+
+Q15
+38717.798192
+38992.169477
+270.773724
+282.713636
+53015.246627
+52652.230879
+10828.831254
+7963.955605
+
+
+Q16
+4027.831425
+4120.540270
+686.746840
+691.220624
+5078.042286
+5088.938285
+6058.316758
+5587.771454
+
+
+Q17
+1276.899524
+1252.970511
+1891.844391
+2360.095346
+13071.609235
+12453.614161
+11934.943291
+13523.710171
+
+
+Q18
+126002.332541
+129191.025399
+465.953219
+477.032062
+30781.519091
+30425.720738
+33115.222733
+29473.692810
+
+
+Q19
+2384.642124
+2344.654581
+251.829252
+248.328930
+3420.048188
+3349.401808
+568.557070
+492.506636
+
+
+Q20
+20484.981706
+20624.654693
+230.338829
+208.398596
+10160.403924
+9924.714682
+7587.395355
+9418.309655
+
+
+Q21
+246127.850226
+245983.909848
+71511.727077
+70921.302693
+81236.928218
+78550.780588
+6734.338372
+6795.589572
+
+
+Q22
+1825.728476
+1837.013443
+600.653826
+967.767178
+2372.459627
+2337.835912
+761.021456
+744.030803
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Mean of Latency of Timer Execution per DBMS [ms]¶
+
+
+
+
Out[27]:
+
+
+
+
+
+
+
+MariaDB
+MonetDB
+MySQL
+PostgreSQL
+
+
+
+
+Q1
+114730.713041
+5037.088509
+139803.907740
+19948.065941
+
+
+Q2
+13173.765895
+376.967159
+1671.593809
+12348.681645
+
+
+Q3
+57397.580468
+700.837491
+60487.436889
+17454.865768
+
+
+Q4
+10803.528411
+162.274506
+10290.570197
+33467.763148
+
+
+Q5
+42565.726548
+376.143613
+42517.682379
+6334.077235
+
+
+Q6
+19253.931581
+957.573201
+24048.581984
+2901.881899
+
+
+Q7
+34402.595712
+2624.187018
+25729.547747
+12394.539471
+
+
+Q8
+74048.609946
+2123.116077
+112028.442870
+13060.826178
+
+
+Q9
+140133.209853
+4431.378140
+118482.480984
+43318.747456
+
+
+Q10
+141744.864588
+853.826824
+20868.642333
+18779.150509
+
+
+Q11
+3991.006948
+187.303211
+5467.469226
+2811.304559
+
+
+Q12
+130443.829216
+1982.438794
+34416.598583
+11532.938518
+
+
+Q13
+114862.388085
+3384.300139
+161364.360741
+13276.425433
+
+
+Q14
+504233.580736
+159.019522
+29529.585958
+5698.145918
+
+
+Q15
+38854.983834
+276.743680
+52833.738753
+9396.393429
+
+
+Q16
+4074.185848
+688.983732
+5083.490285
+5823.044106
+
+
+Q17
+1264.935018
+2125.969868
+12762.611698
+12729.326731
+
+
+Q18
+127596.678970
+471.492640
+30603.619914
+31294.457771
+
+
+Q19
+2364.648353
+250.079091
+3384.724998
+530.531853
+
+
+Q20
+20554.818200
+219.368712
+10042.559303
+8502.852505
+
+
+Q21
+246055.880037
+71216.514885
+79893.854403
+6764.963972
+
+
+Q22
+1831.370959
+784.210502
+2355.147769
+752.526129
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
CV of Latency of Timer Execution per DBMS [%]¶
+
+
+
+
Out[28]:
+
+
+
+
+
+
+
+MariaDB
+MonetDB
+MySQL
+PostgreSQL
+
+
+
+
+Q1
+1.092398
+10.364119
+0.114122
+0.434969
+
+
+Q2
+0.122047
+9.633426
+6.627008
+41.603555
+
+
+Q3
+2.444016
+59.579042
+0.269539
+13.132645
+
+
+Q4
+0.951896
+3.363114
+0.613280
+89.064814
+
+
+Q5
+1.426131
+1.791666
+5.482682
+8.702817
+
+
+Q6
+0.179846
+86.468714
+0.090371
+0.547371
+
+
+Q7
+2.395733
+16.236802
+5.950250
+9.281048
+
+
+Q8
+0.998884
+48.570977
+4.869160
+2.125372
+
+
+Q9
+0.681291
+10.771239
+5.064431
+1.710566
+
+
+Q10
+0.242202
+6.164557
+0.587717
+10.913312
+
+
+Q11
+1.200837
+38.930983
+0.135477
+31.191841
+
+
+Q12
+1.254913
+90.351435
+0.427921
+37.845840
+
+
+Q13
+0.514387
+6.048979
+0.381476
+41.477505
+
+
+Q14
+1.414266
+14.093788
+0.576316
+42.779761
+
+
+Q15
+0.353071
+2.157215
+0.343545
+15.244549
+
+
+Q16
+1.137759
+0.324665
+0.107170
+4.040372
+
+
+Q17
+0.945859
+11.012643
+2.421115
+6.240577
+
+
+Q18
+1.249520
+1.174869
+0.581301
+5.818171
+
+
+Q19
+0.845528
+0.699843
+1.043606
+7.167377
+
+
+Q20
+0.339757
+5.000766
+1.173452
+10.766471
+
+
+Q21
+0.029250
+0.414528
+1.681073
+0.452709
+
+
+Q22
+0.308102
+23.406557
+0.735065
+1.128908
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Latency of Timer Connection [ms]¶
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Latency of Timer Data Transfer [ms]¶
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Latency of Timer Run - normalized to 1 per Query¶
+
+
+
+
Out[31]:
+
+
+
+
+
+
+DBMS
+MariaDB-1-1
+MariaDB-2-1
+MonetDB-1-1
+MonetDB-2-1
+MySQL-1-1
+MySQL-2-1
+PostgreSQL-1-1
+PostgreSQL-2-1
+
+
+
+
+Q1
+25.6731
+25.1178
+1.2314
+1.0000
+30.9799
+30.9102
+4.4355
+4.3972
+
+
+Q2
+37.5848
+37.4946
+1.2066
+1.0000
+5.0984
+4.4904
+20.5693
+49.8201
+
+
+Q3
+205.1199
+195.3331
+3.9136
+1.0000
+211.5699
+210.4424
+52.9075
+68.8992
+
+
+Q4
+69.4516
+68.1419
+1.0695
+1.0000
+65.9320
+65.1291
+402.9322
+23.3069
+
+
+Q5
+116.7992
+113.5147
+1.0000
+1.0364
+121.3335
+108.7207
+15.6456
+18.6283
+
+
+Q6
+148.2653
+148.7996
+13.7751
+1.0000
+185.6878
+185.3529
+22.5094
+22.2644
+
+
+Q7
+16.0235
+15.2737
+1.0000
+1.3876
+12.3999
+11.0072
+5.1147
+6.1613
+
+
+Q8
+68.4763
+67.1218
+1.0000
+2.8883
+107.5677
+97.5789
+11.7046
+12.2131
+
+
+Q9
+35.5985
+35.1167
+1.2409
+1.0000
+31.4080
+28.3816
+11.1184
+10.7447
+
+
+Q10
+175.9841
+176.8386
+1.1313
+1.0000
+26.1265
+25.8230
+25.9259
+20.8237
+
+
+Q11
+9.9829
+10.3335
+1.3665
+1.0000
+13.6289
+13.7105
+9.3674
+5.2213
+
+
+Q12
+690.0006
+672.8976
+19.7143
+1.0000
+180.5649
+179.0266
+83.0518
+37.4482
+
+
+Q13
+35.9209
+36.2924
+1.1287
+1.0000
+50.9175
+50.5307
+5.9048
+2.4428
+
+
+Q14
+3739.6018
+3635.3011
+1.3277
+1.0000
+217.1943
+214.7056
+59.5000
+23.8469
+
+
+Q15
+142.9895
+144.0028
+1.0000
+1.0441
+195.7917
+194.4510
+39.9922
+29.4118
+
+
+Q16
+2.6889
+2.6945
+1.0000
+1.0098
+3.1785
+3.2569
+3.8420
+3.4834
+
+
+Q17
+1.0191
+1.0000
+1.5099
+1.8836
+10.4320
+9.9389
+9.5251
+10.7930
+
+
+Q18
+262.9223
+269.5733
+1.0000
+1.0233
+64.2412
+63.5157
+69.1282
+61.5257
+
+
+Q19
+9.6009
+9.4399
+1.0141
+1.0000
+13.7695
+13.4852
+2.2894
+1.9831
+
+
+Q20
+88.0938
+88.6799
+1.1287
+1.0000
+43.6931
+42.7608
+32.7238
+40.6064
+
+
+Q21
+36.5327
+36.5113
+10.6148
+10.5271
+12.0581
+11.6596
+1.0000
+1.0091
+
+
+Q22
+3.0319
+3.0507
+1.0000
+1.6094
+3.9394
+3.8823
+1.2641
+1.2360
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Size of Result Sets per Query¶
+
+
+
+
Out[32]:
+
+
+
+
+
+
+
+MariaDB-1-1
+MariaDB-2-1
+MonetDB-1-1
+MonetDB-2-1
+MySQL-1-1
+MySQL-2-1
+PostgreSQL-1-1
+PostgreSQL-2-1
+
+
+
+
+Q1
+1344
+1344
+1344
+1344
+1344
+1344
+1344
+1344
+
+
+Q2
+19584
+19584
+19584
+19584
+19584
+19584
+19584
+19584
+
+
+Q3
+1344
+1344
+1344
+1344
+1344
+1344
+1344
+1344
+
+
+Q4
+624
+624
+624
+624
+624
+624
+624
+624
+
+
+Q5
+624
+624
+624
+624
+624
+624
+624
+624
+
+
+Q6
+408
+408
+408
+408
+408
+408
+408
+408
+
+
+Q7
+768
+768
+768
+768
+768
+768
+768
+768
+
+
+Q8
+480
+480
+480
+480
+480
+480
+480
+480
+
+
+Q9
+12984
+12984
+12984
+12984
+12984
+12984
+12984
+12984
+
+
+Q10
+4224
+4224
+4224
+4224
+4224
+4224
+4224
+4224
+
+
+Q11
+455728
+455728
+455728
+455728
+455728
+455728
+455728
+455728
+
+
+Q12
+528
+528
+528
+528
+528
+528
+528
+528
+
+
+Q13
+2544
+2544
+2544
+2544
+2544
+2544
+2544
+2544
+
+
+Q14
+408
+408
+408
+408
+408
+408
+408
+408
+
+
+Q15
+0
+0
+0
+0
+0
+0
+0
+0
+
+
+Q16
+2746656
+2746656
+2746656
+2746656
+2746656
+2746656
+2746656
+2746656
+
+
+Q17
+408
+408
+408
+408
+408
+408
+408
+408
+
+
+Q18
+13488
+13488
+13488
+13488
+13488
+13488
+13488
+13488
+
+
+Q19
+408
+408
+408
+408
+408
+408
+408
+408
+
+
+Q20
+85568
+85568
+85568
+85568
+85568
+85568
+85568
+85568
+
+
+Q21
+5184
+5184
+5184
+5184
+5184
+5184
+5184
+5184
+
+
+Q22
+888
+888
+888
+888
+888
+888
+888
+888
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Size of Result Sets per Query - normalized to 1¶
+
+
+
+
Out[33]:
+
+
+
+
+
+
+
+Q1
+Q2
+Q3
+Q4
+Q5
+Q6
+Q7
+Q8
+Q9
+Q10
+...
+Q13
+Q14
+Q15
+Q16
+Q17
+Q18
+Q19
+Q20
+Q21
+Q22
+
+
+
+
+MariaDB-1-1
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+...
+1.0
+1.0
+NaN
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+
+
+MariaDB-2-1
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+...
+1.0
+1.0
+NaN
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+
+
+MonetDB-1-1
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+...
+1.0
+1.0
+NaN
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+
+
+MonetDB-2-1
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+...
+1.0
+1.0
+NaN
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+
+
+MySQL-1-1
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+...
+1.0
+1.0
+NaN
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+
+
+MySQL-2-1
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+...
+1.0
+1.0
+NaN
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+
+
+PostgreSQL-1-1
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+...
+1.0
+1.0
+NaN
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+
+
+PostgreSQL-2-1
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+...
+1.0
+1.0
+NaN
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+
+
+
+
8 rows Ă— 22 columns
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[34]:
+
+
+
+
+
+
+
+MariaDB-1-1
+MariaDB-2-1
+MonetDB-1-1
+MonetDB-2-1
+MySQL-1-1
+MySQL-2-1
+PostgreSQL-1-1
+PostgreSQL-2-1
+
+
+
+
+Q1
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q2
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q3
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q4
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q5
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q6
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q7
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q8
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q9
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q10
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q11
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q12
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q13
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q14
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q15
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q16
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q17
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q18
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q19
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q20
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q21
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q22
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[35]:
+
+
+
+
+
+
+
+MariaDB-1-1
+MariaDB-2-1
+MonetDB-1-1
+MonetDB-2-1
+MySQL-1-1
+MySQL-2-1
+PostgreSQL-1-1
+PostgreSQL-2-1
+
+
+
+
+Q1
+False
+False
+True
+True
+False
+False
+False
+False
+
+
+Q2
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q3
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q4
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q5
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q6
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q7
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q8
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q9
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q10
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q11
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q12
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q13
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q14
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q15
+True
+False
+True
+True
+True
+True
+True
+True
+
+
+Q16
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q17
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q18
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q19
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q20
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q21
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+Q22
+False
+False
+False
+False
+False
+False
+False
+False
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Total Time [s] per Query¶
+
+
+
+
Out[36]:
+
+
+
+
+
+
+
+MariaDB-1-1
+MariaDB-2-1
+MonetDB-1-1
+MonetDB-2-1
+MySQL-1-1
+MySQL-2-1
+PostgreSQL-1-1
+PostgreSQL-2-1
+
+
+
+
+Q1
+347.973955
+340.447334
+16.845194
+13.651159
+419.900614
+418.959277
+60.128597
+59.610011
+
+
+Q2
+39.615576
+39.520509
+1.823718
+1.384478
+5.376375
+4.740327
+21.686897
+52.512813
+
+
+Q3
+176.414484
+167.996884
+3.498522
+0.976042
+181.960522
+180.991944
+45.508243
+59.262894
+
+
+Q4
+32.722405
+32.105238
+0.549320
+0.513998
+31.063408
+30.685955
+189.832833
+10.984629
+
+
+Q5
+129.521532
+125.879449
+1.155652
+1.228914
+134.548819
+120.563560
+17.351747
+20.659699
+
+
+Q6
+57.660592
+57.868211
+5.364403
+0.395960
+72.212753
+72.083435
+8.756129
+8.660637
+
+
+Q7
+105.684266
+100.738883
+6.706806
+12.678075
+81.784196
+72.600099
+33.736559
+40.639116
+
+
+Q8
+224.372421
+219.930033
+3.325128
+9.827672
+352.452032
+319.723975
+38.353090
+40.019183
+
+
+Q9
+423.299235
+417.569854
+15.697046
+15.665570
+373.467877
+337.484744
+132.212075
+127.769052
+
+
+Q10
+424.215546
+426.275221
+3.142779
+3.154876
+62.980595
+62.250786
+62.501992
+50.201007
+
+
+Q11
+12.636782
+13.036927
+1.998065
+1.483094
+17.120079
+17.255366
+11.835612
+6.707820
+
+
+Q12
+396.245450
+386.423815
+11.375542
+0.624792
+103.693792
+102.811258
+47.698360
+21.510053
+
+
+Q13
+342.821134
+346.367399
+10.778061
+9.548804
+485.944128
+482.254182
+56.357074
+23.317058
+
+
+Q14
+1534.097118
+1491.309947
+0.554613
+0.420054
+89.101176
+88.081257
+24.410784
+9.784663
+
+
+Q15
+116.154487
+116.977704
+0.821195
+0.856493
+159.046659
+157.957757
+32.487656
+23.893080
+
+
+Q16
+15.720677
+15.581426
+6.722981
+6.640638
+18.174277
+18.795835
+22.066576
+19.974487
+
+
+Q17
+3.832843
+3.760958
+5.683618
+7.087494
+39.216798
+37.363785
+35.808117
+40.574290
+
+
+Q18
+378.056357
+387.620047
+1.627102
+3.110095
+92.376161
+91.482406
+99.406812
+88.473750
+
+
+Q19
+7.156457
+7.036084
+0.770288
+0.758979
+10.261899
+10.050805
+1.708093
+1.479426
+
+
+Q20
+61.613432
+62.027928
+0.891396
+0.792113
+30.721453
+30.143051
+23.013910
+28.578599
+
+
+Q21
+738.396596
+737.964908
+214.951881
+214.146436
+243.717694
+235.666268
+20.215939
+20.400054
+
+
+Q22
+5.480514
+5.514622
+1.872112
+3.753415
+7.119875
+7.017448
+2.286109
+2.236404
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Total Time per Query - normalized to 100%¶
+
+
+
+
Out[37]:
+
+
+
+
+
+
+
+MariaDB-1-1
+MariaDB-2-1
+MonetDB-1-1
+MonetDB-2-1
+MySQL-1-1
+MySQL-2-1
+PostgreSQL-1-1
+PostgreSQL-2-1
+
+
+
+
+Q1
+20.743404
+20.294728
+1.004175
+0.813772
+25.031092
+24.974977
+3.584383
+3.553469
+
+
+Q2
+23.770197
+23.713155
+1.094270
+0.830717
+3.225941
+2.844298
+13.012605
+31.508817
+
+
+Q3
+21.603285
+20.572486
+0.428420
+0.119524
+22.282439
+22.163829
+5.572828
+7.257189
+
+
+Q4
+9.962439
+9.774540
+0.167242
+0.156488
+9.457352
+9.342435
+57.795200
+3.344305
+
+
+Q5
+23.510497
+22.849393
+0.209772
+0.223070
+24.423041
+21.884463
+3.149655
+3.750109
+
+
+Q6
+20.374615
+20.447978
+1.895534
+0.139914
+25.516683
+25.470988
+3.094016
+3.060273
+
+
+Q7
+23.249385
+22.161455
+1.475424
+2.789038
+17.991631
+15.971230
+7.421675
+8.940162
+
+
+Q8
+18.573822
+18.206075
+0.275258
+0.813547
+29.176407
+26.467139
+3.174915
+3.312837
+
+
+Q9
+22.965884
+22.655039
+0.851635
+0.849927
+20.262309
+18.310062
+7.173099
+6.932045
+
+
+Q10
+38.750956
+38.939101
+0.287084
+0.288190
+5.753109
+5.686443
+5.709390
+4.585728
+
+
+Q11
+15.396863
+15.884406
+2.434475
+1.807026
+20.859386
+21.024221
+14.420704
+8.172919
+
+
+Q12
+37.019032
+36.101451
+1.062754
+0.058371
+9.687540
+9.605090
+4.456195
+2.009566
+
+
+Q13
+19.507426
+19.709218
+0.613300
+0.543352
+27.651502
+27.441534
+3.206866
+1.326802
+
+
+Q14
+47.381440
+46.059934
+0.017130
+0.012974
+2.751939
+2.720438
+0.753941
+0.302205
+
+
+Q15
+19.098230
+19.233584
+0.135022
+0.140825
+26.150602
+25.971563
+5.341651
+3.928523
+
+
+Q16
+12.711086
+12.598494
+5.435923
+5.369344
+14.694965
+15.197531
+17.842116
+16.150540
+
+
+Q17
+2.211325
+2.169851
+3.279113
+4.089067
+22.625785
+21.556705
+20.659177
+23.408978
+
+
+Q18
+33.100333
+33.937672
+0.142459
+0.272301
+8.087899
+8.009647
+8.703460
+7.746228
+
+
+Q19
+18.246015
+17.939112
+1.963916
+1.935083
+26.163610
+25.625407
+4.354933
+3.771925
+
+
+Q20
+25.911744
+26.086061
+0.374880
+0.333126
+12.920014
+12.676765
+9.678580
+12.018829
+
+
+Q21
+30.443572
+30.425774
+8.862315
+8.829107
+10.048309
+9.716354
+0.833489
+0.841080
+
+
+Q22
+15.534117
+15.630793
+5.306365
+10.638782
+20.180767
+19.890444
+6.479809
+6.338923
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Total Time per Query - normalized to 100%¶
+
+
+
+
Out[38]:
+
+
+
+
+
+
+
+MariaDB-1-1
+MariaDB-2-1
+MonetDB-1-1
+MonetDB-2-1
+MySQL-1-1
+MySQL-2-1
+PostgreSQL-1-1
+PostgreSQL-2-1
+
+
+
+
+Q1
+165.947234
+162.357822
+8.033398
+6.510177
+200.248739
+199.799819
+28.675061
+28.427749
+
+
+Q2
+190.161578
+189.705241
+8.754162
+6.645734
+25.807525
+22.754386
+104.100838
+252.070536
+
+
+Q3
+172.826279
+164.579890
+3.427363
+0.956189
+178.259513
+177.310635
+44.582622
+58.057509
+
+
+Q4
+79.699508
+78.196322
+1.337938
+1.251906
+75.658813
+74.739478
+462.361598
+26.754437
+
+
+Q5
+188.083977
+182.795146
+1.678173
+1.784561
+195.384324
+175.075706
+25.197243
+30.000868
+
+
+Q6
+162.996918
+163.583822
+15.164276
+1.119312
+204.133462
+203.767902
+24.752124
+24.482184
+
+
+Q7
+185.995083
+177.291640
+11.803393
+22.312305
+143.933047
+127.769837
+59.373398
+71.521296
+
+
+Q8
+148.590573
+145.648602
+2.202065
+6.508373
+233.411259
+211.737113
+25.399323
+26.502692
+
+
+Q9
+183.727070
+181.240313
+6.813082
+6.799420
+162.098471
+146.480499
+57.384788
+55.456357
+
+
+Q10
+310.007644
+311.512811
+2.296676
+2.305516
+46.024871
+45.491542
+45.675118
+36.685822
+
+
+Q11
+123.174905
+127.075251
+19.475797
+14.456209
+166.875087
+168.193769
+115.365632
+65.383349
+
+
+Q12
+296.152257
+288.811606
+8.502034
+0.466967
+77.500324
+76.840721
+35.649562
+16.076527
+
+
+Q13
+156.059409
+157.673743
+4.906400
+4.346817
+221.212014
+219.532272
+25.654928
+10.614417
+
+
+Q14
+379.051518
+368.479474
+0.137036
+0.103789
+22.015514
+21.763508
+6.031525
+2.417638
+
+
+Q15
+152.785842
+153.868675
+1.080173
+1.126603
+209.204813
+207.772505
+42.733208
+31.428182
+
+
+Q16
+101.688692
+100.787949
+43.487385
+42.954751
+117.559722
+121.580250
+142.736932
+129.204320
+
+
+Q17
+17.690600
+17.358810
+26.232903
+32.712534
+181.006278
+172.453643
+165.273412
+187.271821
+
+
+Q18
+264.802664
+271.501376
+1.139674
+2.178409
+64.703193
+64.077179
+69.627684
+61.969821
+
+
+Q19
+145.968117
+143.512895
+15.711325
+15.480666
+209.308878
+205.003257
+34.839461
+30.175402
+
+
+Q20
+207.293950
+208.688491
+2.999039
+2.665008
+103.360114
+101.414122
+77.428642
+96.150635
+
+
+Q21
+243.548577
+243.406191
+70.898518
+70.632855
+80.386472
+77.730835
+6.667912
+6.728639
+
+
+Q22
+124.272938
+125.046343
+42.450923
+85.110253
+161.446139
+159.123549
+51.838470
+50.711385
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Measures of Execution Times - 3 Runs of Query 4¶
+
+
+
+
Out[43]:
+
+
+
+
+
+
+
+0
+1
+2
+
+
+DBMS
+
+
+
+
+
+
+
+MariaDB-1-1
+10832.749509
+10974.072207
+10912.278674
+
+
+MariaDB-2-1
+10631.296530
+10786.618634
+10684.154912
+
+
+MonetDB-1-1
+188.181439
+151.178077
+163.836433
+
+
+MonetDB-2-1
+167.151919
+148.022101
+155.277067
+
+
+MySQL-1-1
+10249.201583
+10490.168055
+10321.670839
+
+
+MySQL-2-1
+10113.206561
+10378.973982
+10190.200162
+
+
+PostgreSQL-1-1
+184856.501106
+2517.352709
+2453.438690
+
+
+PostgreSQL-2-1
+3520.991707
+3399.093443
+4059.201233
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Statistics of Execution Times - 3 Runs of Query 4¶
+
+
+
+
Out[44]:
+
+
+
+
+
+
+
+factor
+n
+Mean
+Std Dev
+cv [%]
+Median
+iqr
+qcod [%]
+Min
+Max
+Range
+Geo
+1st
+Last
+Sum
+P25
+P75
+P90
+P95
+
+
+DBMS
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+MariaDB-1-1
+69.5484
+3.0
+10906.366797
+57.845996
+0.530387
+10912.278674
+70.661349
+0.323902
+10832.749509
+10974.072207
+141.322698
+10906.213308
+10832.749509
+10912.278674
+32719.100390
+10872.514091
+10943.175440
+10961.713500
+10967.892854
+
+
+MariaDB-2-1
+68.2368
+3.0
+10700.690025
+64.478919
+0.602568
+10684.154912
+77.661052
+0.363019
+10631.296530
+10786.618634
+155.322104
+10700.496044
+10631.296530
+10684.154912
+32102.070076
+10657.725721
+10735.386773
+10766.125890
+10776.372262
+
+
+MonetDB-1-1
+1.0696
+3.0
+167.731983
+15.355643
+9.154869
+163.836433
+18.501681
+5.547461
+151.178077
+188.181439
+37.003362
+167.041877
+188.181439
+163.836433
+503.195949
+157.507255
+176.008936
+183.312438
+185.746938
+
+
+MonetDB-2-1
+1.0000
+3.0
+156.817029
+7.885265
+5.028322
+155.277067
+9.564909
+3.057209
+148.022101
+167.151919
+19.129818
+156.620432
+167.151919
+155.277067
+470.451087
+151.649584
+161.214493
+164.776949
+165.964434
+
+
+MySQL-1-1
+66.0240
+3.0
+10353.680159
+100.944399
+0.974962
+10321.670839
+120.483236
+0.582288
+10249.201583
+10490.168055
+240.966472
+10353.189470
+10249.201583
+10321.670839
+31061.040476
+10285.436211
+10405.919447
+10456.468611
+10473.318333
+
+
+MySQL-2-1
+65.2191
+3.0
+10227.460235
+111.652184
+1.091690
+10190.200162
+132.883710
+0.650234
+10113.206561
+10378.973982
+265.767421
+10226.852806
+10113.206561
+10190.200162
+30682.380705
+10151.703362
+10284.587072
+10341.219218
+10360.096600
+
+
+PostgreSQL-1-1
+403.5006
+3.0
+63275.764168
+85970.567510
+135.866502
+2517.352709
+91201.531208
+94.831370
+2453.438690
+184856.501106
+182403.062416
+10451.645460
+184856.501106
+2453.438690
+189827.292505
+2485.395700
+93686.926907
+148388.671427
+166622.586266
+
+
+PostgreSQL-2-1
+23.3378
+3.0
+3659.762128
+286.796671
+7.836484
+3520.991707
+330.053895
+4.552380
+3399.093443
+4059.201233
+660.107790
+3648.851839
+3520.991707
+4059.201233
+10979.286383
+3460.042575
+3790.096470
+3951.559328
+4005.380280
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/images/evaluator_dbmsbenchmarker/notebooks/Evaluation-Demo.ipynb b/images/evaluator_dbmsbenchmarker/notebooks/Evaluation-Demo.ipynb
new file mode 100644
index 00000000..1cb19ed1
--- /dev/null
+++ b/images/evaluator_dbmsbenchmarker/notebooks/Evaluation-Demo.ipynb
@@ -0,0 +1,21810 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "9ff75f1a",
+ "metadata": {
+ "toc": true
+ },
+ "source": [
+ "Table of Contents \n",
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d18a3400",
+ "metadata": {},
+ "source": [
+ "# Load Evaluation of Benchmarks\n",
+ "\n",
+ "Import some libraries"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "4f885ad5",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from dbmsbenchmarker import *\n",
+ "import pandas as pd\n",
+ "pd.set_option(\"display.max_rows\", None)\n",
+ "pd.set_option('display.max_colwidth', None)\n",
+ "\n",
+ "# Some plotly figures\n",
+ "import plotly.graph_objects as go\n",
+ "import plotly.figure_factory as ff\n",
+ "\n",
+ "# Some nice output\n",
+ "from IPython.display import display, Markdown\n",
+ "\n",
+ "import logging\n",
+ "logging.basicConfig(level=logging.INFO)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "23fd5d80",
+ "metadata": {},
+ "source": [
+ "## Inspect Result Folder"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "66d4fb27",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " connections \n",
+ " info \n",
+ " intro \n",
+ " name \n",
+ " queries \n",
+ " time \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1625255968 \n",
+ " 8 \n",
+ " This experiment compares run time and resource consumption of TPC-H queries in different DBMS. \n",
+ " This includes the reading queries of TPC-H. \n",
+ " TPC-H Queries SF=10 \n",
+ " 22 \n",
+ " 2022-06-01 11:55:45 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " connections \\\n",
+ "1625255968 8 \n",
+ "\n",
+ " info \\\n",
+ "1625255968 This experiment compares run time and resource consumption of TPC-H queries in different DBMS. \n",
+ "\n",
+ " intro name \\\n",
+ "1625255968 This includes the reading queries of TPC-H. TPC-H Queries SF=10 \n",
+ "\n",
+ " queries time \n",
+ "1625255968 22 2022-06-01 11:55:45 "
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# path of folder containing experiment results\n",
+ "resultfolder = \"/results/\"\n",
+ "\n",
+ "# create evaluation object for result folder\n",
+ "evaluate = inspector.inspector(resultfolder)\n",
+ "\n",
+ "# list of all experiments in folder\n",
+ "# evaluate.list_experiments\n",
+ "# dataframe of experiments\n",
+ "evaluate.get_experiments_preview()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f500d40e",
+ "metadata": {},
+ "source": [
+ "## Pick an Experiment and load it"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "8c672bca",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Benchmarking in folder docresult//1625255968\n",
+ "Connections:\n",
+ "MariaDB-2-1\n",
+ "PostgreSQL-1-1\n",
+ "MonetDB-1-1\n",
+ "MySQL-1-1\n",
+ "MariaDB-1-1\n",
+ "MySQL-2-1\n",
+ "PostgreSQL-2-1\n",
+ "MonetDB-2-1\n",
+ "Queries:\n",
+ "0: Q1 = Pricing Summary Report (TPC-H Q1)\n",
+ "1: Q2 = Minimum Cost Supplier Query (TPC-H Q2)\n",
+ "2: Q3 = Shipping Priority (TPC-H Q3)\n",
+ "3: Q4 = Order Priority Checking Query (TPC-H Q4)\n",
+ "4: Q5 = Local Supplier Volume (TPC-H Q5)\n",
+ "5: Q6 = Forecasting Revenue Change (TPC-H Q6)\n",
+ "6: Q7 = Forecasting Revenue Change (TPC-H Q7)\n",
+ "7: Q8 = National Market Share (TPC-H Q8)\n",
+ "8: Q9 = Product Type Profit Measure (TPC-H Q9)\n",
+ "9: Q10 = Forecasting Revenue Change (TPC-H Q10)\n",
+ "10: Q11 = Important Stock Identification (TPC-H Q11)\n",
+ "11: Q12 = Shipping Modes and Order Priority (TPC-H Q12)\n",
+ "12: Q13 = Customer Distribution (TPC-H Q13)\n",
+ "13: Q14 = Forecasting Revenue Change (TPC-H Q14)\n",
+ "14: Q15 = Top Supplier Query (TPC-H Q15)\n",
+ "15: Q16 = Parts/Supplier Relationship (TPC-H Q16)\n",
+ "16: Q17 = Small-Quantity-Order Revenue (TPC-H Q17)\n",
+ "17: Q18 = Large Volume Customer (TPC-H Q18)\n",
+ "18: Q19 = Discounted Revenue (TPC-H Q19)\n",
+ "19: Q20 = Potential Part Promotion (TPC-H Q20)\n",
+ "20: Q21 = Suppliers Who Kept Orders Waiting Query (TPC-H Q21)\n",
+ "21: Q22 = Global Sales Opportunity Query (TPC-H Q22)\n",
+ "Load Evaluation\n"
+ ]
+ }
+ ],
+ "source": [
+ "# last Experiment\n",
+ "code = evaluate.list_experiments[len(evaluate.list_experiments)-1]\n",
+ "\n",
+ "# Specific Experiment\n",
+ "code = '1625255968'\n",
+ "\n",
+ "# load it\n",
+ "evaluate.load_experiment(code)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "04612525",
+ "metadata": {},
+ "source": [
+ "## Load general Properties into Variables"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "7e8d991c",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "TPC-H Queries SF=10\n",
+ "This experiment compares run time and resource consumption of TPC-H queries in different DBMS.\n"
+ ]
+ }
+ ],
+ "source": [
+ "# get experiment workflow\n",
+ "df = evaluate.get_experiment_workflow()\n",
+ "#print(df)\n",
+ "\n",
+ "# get workload properties\n",
+ "workload_properties = evaluate.get_experiment_workload_properties()\n",
+ "print(workload_properties['name'])\n",
+ "print(workload_properties['info'])\n",
+ "\n",
+ "# list queries\n",
+ "list_queries = evaluate.get_experiment_list_queries()\n",
+ "\n",
+ "# list connections\n",
+ "list_nodes = evaluate.get_experiment_list_nodes()\n",
+ "list_dbms = evaluate.get_experiment_list_dbms()\n",
+ "list_connections = evaluate.get_experiment_list_connections()\n",
+ "list_connections_node = evaluate.get_experiment_list_connections_by_node()\n",
+ "list_connections_dbms = evaluate.get_experiment_list_connections_by_dbms()\n",
+ "list_connections_clients = evaluate.get_experiment_list_connections_by_connectionmanagement('numProcesses')\n",
+ "list_connections_gpu = evaluate.get_experiment_list_connections_by_hostsystem('GPU')\n",
+ "list_connections_dockerimage = evaluate.get_experiment_list_connections_by_parameter('dockerimage')\n",
+ "\n",
+ "# colors by dbms\n",
+ "list_connections_dbms = evaluate.get_experiment_list_connections_by_dbms()\n",
+ "connection_colors = evaluate.get_experiment_list_connection_colors(list_connections_dbms)\n",
+ "\n",
+ "# fix some examples:\n",
+ "# first connection, first query, first run\n",
+ "connection = list_connections[0]\n",
+ "numQuery = 1\n",
+ "numRun = 0"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "df0bc0d6",
+ "metadata": {},
+ "source": [
+ "# Show Properties of the Workload\n",
+ "\n",
+ "## Show Properties of a DBMS "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "d177b119",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### Properties of MonetDB-1-1"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "name:MonetDB-1-1\n",
+ "script:SF10-index\n",
+ "docker:MonetDB\n",
+ "docker_alias:Columnwise\n",
+ "version:11.37.11\n",
+ "info:[]\n",
+ "connectionmanagement\n",
+ " numProcesses:1\n",
+ " runsPerConnection:Unlimited\n",
+ " timeout:3600\n",
+ "hostsystem\n",
+ " RAM:1082007052288\n",
+ " CPU:AMD EPYC 7742 64-Core Processor\n",
+ " GPU:\n",
+ " GPUIDs:[]\n",
+ " Cores:256\n",
+ " host:5.4.0-74-generic\n",
+ " node:cl-worker28\n",
+ " disk:623220008\n",
+ " datadisk:10687696\n",
+ " cuda:\n",
+ " requests_cpu:4\n",
+ " requests_memory:16Gi\n",
+ " limits_cpu:0\n",
+ " limits_memory:0\n",
+ "worker:[]\n",
+ "times\n",
+ " load_ms:251632.57140340284\n",
+ " benchmark_ms:316155.41979367845\n",
+ "prices\n",
+ " perHour_usd:0.0\n",
+ " benchmark_usd:0.0\n",
+ "hardwaremetrics\n",
+ " total_cpu_memory:0\n",
+ " total_cpu_memory_cached:0\n",
+ " total_cpu_util:0\n",
+ " total_gpu_util:0\n",
+ " total_gpu_power:0\n",
+ " total_gpu_memory:0\n",
+ " total_cpu_throttled:0\n",
+ " total_cpu_util_others:0\n",
+ " total_cpu_util_s:0\n",
+ " total_cpu_util_user_s:0\n",
+ " total_cpu_util_sys_s:0\n",
+ " total_cpu_throttled_s:0\n",
+ " total_cpu_util_others_s:0\n",
+ " total_network_rx:0\n",
+ " total_network_tx:0\n",
+ " total_fs_read:0\n",
+ " total_fs_write:0\n",
+ " total_gpu_energy:0.0\n",
+ "metrics\n",
+ " totaltime_ms:3470.0931945159236\n",
+ " throughput_run_total_ps:0.8645300952554098\n",
+ " throughput_run_total_ph:3112.308342919476\n",
+ " throughput_session_total_ps:0.28817669841846993\n",
+ " throughput_session_total_ph:1037.436114306492\n",
+ " throughput_run_mean_ps:0.924158961737484\n",
+ " throughput_run_mean_ph:3326.972262254943\n",
+ " latency_run_mean_ms:1082.0649275747212\n",
+ " throughput_session_mean_ps:0.30805298724582797\n",
+ " throughput_session_mean_ph:1108.990754084981\n",
+ " latency_session_mean_ms:3246.194782724164\n",
+ " queuesize_run:0.9354776949087117\n",
+ " queuesize_run_percent:93.54776949087119\n",
+ " queuesize_session:0.9354776949087117\n",
+ " queuesize_session_percent:93.54776949087118\n"
+ ]
+ }
+ ],
+ "source": [
+ "connection = 'MonetDB-1-1'\n",
+ "\n",
+ "display(Markdown(\"### Properties of {}\".format(connection)))\n",
+ "\n",
+ "evaluator.pretty(evaluate.get_experiment_connection_properties(connection))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "198e1058",
+ "metadata": {},
+ "source": [
+ "## Show Properties of a Query"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "c2ff3582",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "connection = list_connections[0]\n",
+ "numQuery = 1\n",
+ "numRun = 0"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "91a5fdd1",
+ "metadata": {},
+ "source": [
+ "### Show Errors"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "6aa1e18c",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### Errors of Query 1"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " MariaDB-1-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " MariaDB-2-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " MonetDB-1-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " MonetDB-2-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " MySQL-1-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " MySQL-2-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " PostgreSQL-1-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " PostgreSQL-2-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0\n",
+ "MariaDB-1-1 \n",
+ "MariaDB-2-1 \n",
+ "MonetDB-1-1 \n",
+ "MonetDB-2-1 \n",
+ "MySQL-1-1 \n",
+ "MySQL-2-1 \n",
+ "PostgreSQL-1-1 \n",
+ "PostgreSQL-2-1 "
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "list_errors = evaluate.get_error(numQuery)\n",
+ "\n",
+ "display(Markdown(\"### Errors of Query {}\".format(numQuery)))\n",
+ "pd.DataFrame.from_dict(list_errors, orient='index').sort_index()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6ec0ea46",
+ "metadata": {},
+ "source": [
+ "### Show Warnings"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "6e877a8c",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### Warnings of Query 1"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " MariaDB-1-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " MariaDB-2-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " MonetDB-1-1 \n",
+ " Different at run #1 \n",
+ " \n",
+ " \n",
+ " MonetDB-2-1 \n",
+ " Different at run #1 \n",
+ " \n",
+ " \n",
+ " MySQL-1-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " MySQL-2-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " PostgreSQL-1-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " PostgreSQL-2-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0\n",
+ "MariaDB-1-1 \n",
+ "MariaDB-2-1 \n",
+ "MonetDB-1-1 Different at run #1\n",
+ "MonetDB-2-1 Different at run #1\n",
+ "MySQL-1-1 \n",
+ "MySQL-2-1 \n",
+ "PostgreSQL-1-1 \n",
+ "PostgreSQL-2-1 "
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "list_errors = evaluate.get_warning(numQuery)\n",
+ "\n",
+ "display(Markdown(\"### Warnings of Query {}\".format(numQuery)))\n",
+ "pd.DataFrame.from_dict(list_errors, orient='index').sort_index()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9cd96e00",
+ "metadata": {},
+ "source": [
+ "### Show Query Template"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "099f0020",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "#### Show Query Template 1 - Pricing Summary Report (TPC-H Q1)"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "select\n",
+ "l_returnflag,\n",
+ "l_linestatus,\n",
+ "cast(sum(l_quantity) as bigint) as sum_qty,\n",
+ "sum(l_extendedprice) as sum_base_price,\n",
+ "sum(l_extendedprice*(1-l_discount)) as sum_disc_price,\n",
+ "sum(l_extendedprice*(1-l_discount)*(1+l_tax)) as sum_charge,\n",
+ "avg(l_quantity) as avg_qty,\n",
+ "avg(l_extendedprice) as avg_price,\n",
+ "avg(l_discount) as avg_disc,\n",
+ "count(*) as count_order\n",
+ "from\n",
+ "lineitem\n",
+ "where\n",
+ "l_shipdate <= date '1998-12-01' - interval '{DELTA}' day\n",
+ "group by\n",
+ "l_returnflag,\n",
+ "l_linestatus\n",
+ "order by\n",
+ "l_returnflag,\n",
+ "l_linestatus\n"
+ ]
+ }
+ ],
+ "source": [
+ "query_properties = evaluate.get_experiment_query_properties()\n",
+ "\n",
+ "display(Markdown(\"#### Show Query Template {} - {}\".format(numQuery, query_properties[str(numQuery)]['config']['title'])))\n",
+ "print(query_properties[str(numQuery)]['config']['query'])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a22fff30",
+ "metadata": {},
+ "source": [
+ "### Show Query Parameters"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "3261797a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "#### Show Parameters of Query 1 - Pricing Summary Report (TPC-H Q1)"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " DELTA \n",
+ " numRun \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 71 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 97 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 73 \n",
+ " 2 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " DELTA numRun\n",
+ "1 71 0\n",
+ "2 97 1\n",
+ "3 73 2"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "display(Markdown(\"#### Show Parameters of Query {} - {}\".format(numQuery, query_properties[str(numQuery)]['config']['title'])))\n",
+ "\n",
+ "df = evaluate.get_parameter_df(numQuery)\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1d39a906",
+ "metadata": {},
+ "source": [
+ "### Show Query as being Run"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "b3249384",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "#### Show Query 1 as run by MariaDB-1-1 - Run number 0"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "select\n",
+ "l_returnflag,\n",
+ "l_linestatus,\n",
+ "cast(sum(l_quantity) as unsigned int) as sum_qty,\n",
+ "sum(l_extendedprice) as sum_base_price,\n",
+ "sum(l_extendedprice*(1-l_discount)) as sum_disc_price,\n",
+ "sum(l_extendedprice*(1-l_discount)*(1+l_tax)) as sum_charge,\n",
+ "avg(l_quantity) as avg_qty,\n",
+ "avg(l_extendedprice) as avg_price,\n",
+ "avg(l_discount) as avg_disc,\n",
+ "count(*) as count_order\n",
+ "from\n",
+ "lineitem\n",
+ "where\n",
+ "l_shipdate <= date('1998-12-01') - interval '71' day\n",
+ "group by\n",
+ "l_returnflag,\n",
+ "l_linestatus\n",
+ "order by\n",
+ "l_returnflag,\n",
+ "l_linestatus\n",
+ "limit 10000000\n"
+ ]
+ }
+ ],
+ "source": [
+ "display(Markdown(\"#### Show Query {} as run by {} - Run number {}\".format(numQuery, connection, numRun)))\n",
+ "\n",
+ "query_string = evaluate.get_querystring(numQuery, connection, numRun)\n",
+ "print(query_string)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c5b9e5cc",
+ "metadata": {},
+ "source": [
+ "### Show Query as being Run by another DBMS"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "b8d84448",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "#### Show Query 1 as run by MonetDB-1-1 - Run number 0"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "select\n",
+ "l_returnflag,\n",
+ "l_linestatus,\n",
+ "cast(sum(l_quantity) as unsigned int) as sum_qty,\n",
+ "sum(l_extendedprice) as sum_base_price,\n",
+ "sum(l_extendedprice*(1-l_discount)) as sum_disc_price,\n",
+ "sum(l_extendedprice*(1-l_discount)*(1+l_tax)) as sum_charge,\n",
+ "avg(l_quantity) as avg_qty,\n",
+ "avg(l_extendedprice) as avg_price,\n",
+ "avg(l_discount) as avg_disc,\n",
+ "count(*) as count_order\n",
+ "from\n",
+ "lineitem\n",
+ "where\n",
+ "l_shipdate <= date('1998-12-01') - interval '71' day\n",
+ "group by\n",
+ "l_returnflag,\n",
+ "l_linestatus\n",
+ "order by\n",
+ "l_returnflag,\n",
+ "l_linestatus\n",
+ "limit 10000000\n"
+ ]
+ }
+ ],
+ "source": [
+ "display(Markdown(\"#### Show Query {} as run by {} - Run number {}\".format(numQuery, \"MonetDB-1-1\", numRun)))\n",
+ "\n",
+ "query_string = evaluate.get_querystring(numQuery, connection, numRun)\n",
+ "print(query_string)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b50a1d94",
+ "metadata": {},
+ "source": [
+ "### Show Result Set"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "498d35d3",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "#### Show Result Set of Query 1 as run by MariaDB-1-1 - Run number 0"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " L_RETURNFLAG \n",
+ " L_LINESTATUS \n",
+ " SUM_QTY \n",
+ " SUM_BASE_PRICE \n",
+ " SUM_DISC_PRICE \n",
+ " SUM_CHARGE \n",
+ " AVG_QTY \n",
+ " AVG_PRICE \n",
+ " AVG_DISC \n",
+ " COUNT_ORDER \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " A \n",
+ " F \n",
+ " 377518399 \n",
+ " 566065727797.0 \n",
+ " 537759104278.0 \n",
+ " 559276670892.0 \n",
+ " 26.0 \n",
+ " 38237.0 \n",
+ " 0.0 \n",
+ " 14804077 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " N \n",
+ " F \n",
+ " 9851614 \n",
+ " 14767438399.0 \n",
+ " 14028805792.0 \n",
+ " 14590490998.0 \n",
+ " 26.0 \n",
+ " 38258.0 \n",
+ " 0.0 \n",
+ " 385998 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " N \n",
+ " O \n",
+ " 751203243 \n",
+ " 1126406784135.0 \n",
+ " 1070081467451.0 \n",
+ " 1112897846350.0 \n",
+ " 25.0 \n",
+ " 38234.0 \n",
+ " 0.0 \n",
+ " 29460795 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " R \n",
+ " F \n",
+ " 377732830 \n",
+ " 566431054976.0 \n",
+ " 538110922665.0 \n",
+ " 559634780885.0 \n",
+ " 26.0 \n",
+ " 38251.0 \n",
+ " 0.0 \n",
+ " 14808183 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "0 L_RETURNFLAG L_LINESTATUS SUM_QTY SUM_BASE_PRICE SUM_DISC_PRICE \\\n",
+ "1 A F 377518399 566065727797.0 537759104278.0 \n",
+ "2 N F 9851614 14767438399.0 14028805792.0 \n",
+ "3 N O 751203243 1126406784135.0 1070081467451.0 \n",
+ "4 R F 377732830 566431054976.0 538110922665.0 \n",
+ "\n",
+ "0 SUM_CHARGE AVG_QTY AVG_PRICE AVG_DISC COUNT_ORDER \n",
+ "1 559276670892.0 26.0 38237.0 0.0 14804077 \n",
+ "2 14590490998.0 26.0 38258.0 0.0 385998 \n",
+ "3 1112897846350.0 25.0 38234.0 0.0 29460795 \n",
+ "4 559634780885.0 26.0 38251.0 0.0 14808183 "
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "display(Markdown(\"#### Show Result Set of Query {} as run by {} - Run number {}\".format(numQuery, connection, numRun)))\n",
+ "\n",
+ "df = evaluate.get_datastorage_df(numQuery, numRun)\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "59e24597",
+ "metadata": {},
+ "source": [
+ "### Show Result Set from another DBMS"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "1f08b604",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "#### Show Result Set of Query 1 as run by MonetDB-1-1 - Run number 0"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " L_RETURNFLAG \n",
+ " L_LINESTATUS \n",
+ " SUM_QTY \n",
+ " SUM_BASE_PRICE \n",
+ " SUM_DISC_PRICE \n",
+ " SUM_CHARGE \n",
+ " AVG_QTY \n",
+ " AVG_PRICE \n",
+ " AVG_DISC \n",
+ " COUNT_ORDER \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " A \n",
+ " F \n",
+ " 377518399 \n",
+ " 566065727797.0 \n",
+ " 537759104278.0 \n",
+ " 559276670892.0 \n",
+ " 26.0 \n",
+ " 38237.0 \n",
+ " 0.0 \n",
+ " 14804077 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " N \n",
+ " F \n",
+ " 9851614 \n",
+ " 14767438399.0 \n",
+ " 14028805792.0 \n",
+ " 14590490998.0 \n",
+ " 26.0 \n",
+ " 38258.0 \n",
+ " 0.0 \n",
+ " 385998 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " N \n",
+ " O \n",
+ " 751203243 \n",
+ " 1126406784135.0 \n",
+ " 1070081467451.0 \n",
+ " 1112897846350.0 \n",
+ " 26.0 \n",
+ " 38234.0 \n",
+ " 0.0 \n",
+ " 29460795 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " R \n",
+ " F \n",
+ " 377732830 \n",
+ " 566431054976.0 \n",
+ " 538110922665.0 \n",
+ " 559634780885.0 \n",
+ " 26.0 \n",
+ " 38251.0 \n",
+ " 0.0 \n",
+ " 14808183 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "0 L_RETURNFLAG L_LINESTATUS SUM_QTY SUM_BASE_PRICE SUM_DISC_PRICE \\\n",
+ "1 A F 377518399 566065727797.0 537759104278.0 \n",
+ "2 N F 9851614 14767438399.0 14028805792.0 \n",
+ "3 N O 751203243 1126406784135.0 1070081467451.0 \n",
+ "4 R F 377732830 566431054976.0 538110922665.0 \n",
+ "\n",
+ "0 SUM_CHARGE AVG_QTY AVG_PRICE AVG_DISC COUNT_ORDER \n",
+ "1 559276670892.0 26.0 38237.0 0.0 14804077 \n",
+ "2 14590490998.0 26.0 38258.0 0.0 385998 \n",
+ "3 1112897846350.0 26.0 38234.0 0.0 29460795 \n",
+ "4 559634780885.0 26.0 38251.0 0.0 14808183 "
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "display(Markdown(\"#### Show Result Set of Query {} as run by {} - Run number {}\".format(numQuery, \"MonetDB-1-1\", numRun)))\n",
+ "\n",
+ "df = evaluate.get_resultset_df(numQuery, \"MonetDB-1-1\", numRun)\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "85b251d5",
+ "metadata": {},
+ "source": [
+ "# Some Measures of the Workload\n",
+ "\n",
+ "## Hardware Metrics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3ca378a7",
+ "metadata": {},
+ "source": [
+ "### List all available Metrics"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "43a7b65c",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### Hardware Metrics"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " query \n",
+ " title \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " total_cpu_memory \n",
+ " (node_memory_MemTotal_bytes-node_memory_MemFree_bytes-node_memory_Buffers_bytes-node_memory_Cached_bytes)/1024/1024 \n",
+ " CPU Memory [MiB] \n",
+ " \n",
+ " \n",
+ " total_cpu_memory_cached \n",
+ " (node_memory_Cached_bytes)/1024/1024 \n",
+ " CPU Memory Cached [MiB] \n",
+ " \n",
+ " \n",
+ " total_cpu_util \n",
+ " 100 - (avg by (instance) (irate(node_cpu_seconds_total{mode=\"idle\"}[5m])) * 100) \n",
+ " CPU Util [%] \n",
+ " \n",
+ " \n",
+ " total_gpu_util \n",
+ " sum(dcgm_gpu_utilization) \n",
+ " GPU Util [%] \n",
+ " \n",
+ " \n",
+ " total_gpu_power \n",
+ " sum(dcgm_power_usage) \n",
+ " GPU Power Usage [W] \n",
+ " \n",
+ " \n",
+ " total_gpu_memory \n",
+ " sum(dcgm_fb_used) \n",
+ " GPU Memory [MiB] \n",
+ " \n",
+ " \n",
+ " total_cpu_throttled \n",
+ " sum(rate(container_cpu_cfs_throttled_seconds_total{{job=\"monitor-node\", container_label_io_kubernetes_container_name=\"dbms\"}}[1m])) \n",
+ " CPU Throttle [%] \n",
+ " \n",
+ " \n",
+ " total_cpu_util_others \n",
+ " sum(irate(container_cpu_usage_seconds_total{{job=\"monitor-node\", container_label_io_kubernetes_container_name!=\"dbms\",id!=\"/\"}}[1m])) \n",
+ " CPU Others [%] \n",
+ " \n",
+ " \n",
+ " total_cpu_util_s \n",
+ " sum(container_cpu_usage_seconds_total{{job=\"monitor-node\", container_label_io_kubernetes_container_name=\"dbms\"}}) \n",
+ " CPU Util [s] \n",
+ " \n",
+ " \n",
+ " total_cpu_util_user_s \n",
+ " sum(container_cpu_user_seconds_total{{job=\"monitor-node\", container_label_io_kubernetes_container_name=\"dbms\"}}) \n",
+ " CPU Util User [s] \n",
+ " \n",
+ " \n",
+ " total_cpu_util_sys_s \n",
+ " sum(container_cpu_system_seconds_total{{job=\"monitor-node\", container_label_io_kubernetes_container_name=\"dbms\"}}) \n",
+ " CPU Util Sys [s] \n",
+ " \n",
+ " \n",
+ " total_cpu_throttled_s \n",
+ " sum(container_cpu_cfs_throttled_seconds_total{{job=\"monitor-node\", container_label_io_kubernetes_container_name=\"dbms\"}}) \n",
+ " CPU Throttle [s] \n",
+ " \n",
+ " \n",
+ " total_cpu_util_others_s \n",
+ " sum(container_cpu_usage_seconds_total{{job=\"monitor-node\", container_label_io_kubernetes_container_name!=\"dbms\",id!=\"/\"}}) \n",
+ " CPU Util Others [s] \n",
+ " \n",
+ " \n",
+ " total_network_rx \n",
+ " sum(container_network_receive_bytes_total{{container_label_app=\"dbmsbenchmarker\", job=\"monitor-node\"}}) \n",
+ " Net Rx [b] \n",
+ " \n",
+ " \n",
+ " total_network_tx \n",
+ " sum(container_network_transmit_bytes_total{{container_label_app=\"dbmsbenchmarker\", job=\"monitor-node\"}}) \n",
+ " Net Tx [b] \n",
+ " \n",
+ " \n",
+ " total_fs_read \n",
+ " sum(container_fs_reads_bytes_total{{job=\"monitor-node\", container_label_io_kubernetes_container_name=\"dbms\"}}) \n",
+ " FS Read [b] \n",
+ " \n",
+ " \n",
+ " total_fs_write \n",
+ " sum(container_fs_writes_bytes_total{{job=\"monitor-node\", container_label_io_kubernetes_container_name=\"dbms\"}}) \n",
+ " FS Write [b] \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " query \\\n",
+ "total_cpu_memory (node_memory_MemTotal_bytes-node_memory_MemFree_bytes-node_memory_Buffers_bytes-node_memory_Cached_bytes)/1024/1024 \n",
+ "total_cpu_memory_cached (node_memory_Cached_bytes)/1024/1024 \n",
+ "total_cpu_util 100 - (avg by (instance) (irate(node_cpu_seconds_total{mode=\"idle\"}[5m])) * 100) \n",
+ "total_gpu_util sum(dcgm_gpu_utilization) \n",
+ "total_gpu_power sum(dcgm_power_usage) \n",
+ "total_gpu_memory sum(dcgm_fb_used) \n",
+ "total_cpu_throttled sum(rate(container_cpu_cfs_throttled_seconds_total{{job=\"monitor-node\", container_label_io_kubernetes_container_name=\"dbms\"}}[1m])) \n",
+ "total_cpu_util_others sum(irate(container_cpu_usage_seconds_total{{job=\"monitor-node\", container_label_io_kubernetes_container_name!=\"dbms\",id!=\"/\"}}[1m])) \n",
+ "total_cpu_util_s sum(container_cpu_usage_seconds_total{{job=\"monitor-node\", container_label_io_kubernetes_container_name=\"dbms\"}}) \n",
+ "total_cpu_util_user_s sum(container_cpu_user_seconds_total{{job=\"monitor-node\", container_label_io_kubernetes_container_name=\"dbms\"}}) \n",
+ "total_cpu_util_sys_s sum(container_cpu_system_seconds_total{{job=\"monitor-node\", container_label_io_kubernetes_container_name=\"dbms\"}}) \n",
+ "total_cpu_throttled_s sum(container_cpu_cfs_throttled_seconds_total{{job=\"monitor-node\", container_label_io_kubernetes_container_name=\"dbms\"}}) \n",
+ "total_cpu_util_others_s sum(container_cpu_usage_seconds_total{{job=\"monitor-node\", container_label_io_kubernetes_container_name!=\"dbms\",id!=\"/\"}}) \n",
+ "total_network_rx sum(container_network_receive_bytes_total{{container_label_app=\"dbmsbenchmarker\", job=\"monitor-node\"}}) \n",
+ "total_network_tx sum(container_network_transmit_bytes_total{{container_label_app=\"dbmsbenchmarker\", job=\"monitor-node\"}}) \n",
+ "total_fs_read sum(container_fs_reads_bytes_total{{job=\"monitor-node\", container_label_io_kubernetes_container_name=\"dbms\"}}) \n",
+ "total_fs_write sum(container_fs_writes_bytes_total{{job=\"monitor-node\", container_label_io_kubernetes_container_name=\"dbms\"}}) \n",
+ "\n",
+ " title \n",
+ "total_cpu_memory CPU Memory [MiB] \n",
+ "total_cpu_memory_cached CPU Memory Cached [MiB] \n",
+ "total_cpu_util CPU Util [%] \n",
+ "total_gpu_util GPU Util [%] \n",
+ "total_gpu_power GPU Power Usage [W] \n",
+ "total_gpu_memory GPU Memory [MiB] \n",
+ "total_cpu_throttled CPU Throttle [%] \n",
+ "total_cpu_util_others CPU Others [%] \n",
+ "total_cpu_util_s CPU Util [s] \n",
+ "total_cpu_util_user_s CPU Util User [s] \n",
+ "total_cpu_util_sys_s CPU Util Sys [s] \n",
+ "total_cpu_throttled_s CPU Throttle [s] \n",
+ "total_cpu_util_others_s CPU Util Others [s] \n",
+ "total_network_rx Net Rx [b] \n",
+ "total_network_tx Net Tx [b] \n",
+ "total_fs_read FS Read [b] \n",
+ "total_fs_write FS Write [b] "
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "display(Markdown(\"### Hardware Metrics\"))\n",
+ "\n",
+ "pd.DataFrame(monitor.metrics.metrics).T"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d9a9ccfe",
+ "metadata": {},
+ "source": [
+ "### Get Hardware Metrics for Loading Test"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "ed4ede12",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### CPU of Ingestion (via counter)"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " DBMS \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " MariaDB-1 \n",
+ " 1526.198404 \n",
+ " \n",
+ " \n",
+ " MariaDB-2 \n",
+ " 1526.198404 \n",
+ " \n",
+ " \n",
+ " MonetDB-1 \n",
+ " 1931.119997 \n",
+ " \n",
+ " \n",
+ " MonetDB-2 \n",
+ " 1931.119997 \n",
+ " \n",
+ " \n",
+ " MySQL-1 \n",
+ " 1963.867765 \n",
+ " \n",
+ " \n",
+ " MySQL-2 \n",
+ " 1963.867765 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-1 \n",
+ " 472.864693 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-2 \n",
+ " 472.864693 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0\n",
+ "DBMS \n",
+ "MariaDB-1 1526.198404\n",
+ "MariaDB-2 1526.198404\n",
+ "MonetDB-1 1931.119997\n",
+ "MonetDB-2 1931.119997\n",
+ "MySQL-1 1963.867765\n",
+ "MySQL-2 1963.867765\n",
+ "PostgreSQL-1 472.864693\n",
+ "PostgreSQL-2 472.864693"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluate.get_loading_metrics('total_cpu_memory')\n",
+ "df = evaluate.get_loading_metrics('total_cpu_util_s')\n",
+ "df = df.T.max().sort_index() - df.T.min().sort_index() # compute difference of counter\n",
+ "\n",
+ "display(Markdown(\"### CPU of Ingestion (via counter)\"))\n",
+ "pd.DataFrame(df)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "58be460c",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### CPU of Ingestion (via rate)"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " DBMS \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " MariaDB-1 \n",
+ " 1526.761004 \n",
+ " \n",
+ " \n",
+ " MariaDB-2 \n",
+ " 1526.761004 \n",
+ " \n",
+ " \n",
+ " MonetDB-1 \n",
+ " 1887.024304 \n",
+ " \n",
+ " \n",
+ " MonetDB-2 \n",
+ " 1887.024304 \n",
+ " \n",
+ " \n",
+ " MySQL-1 \n",
+ " 1962.119638 \n",
+ " \n",
+ " \n",
+ " MySQL-2 \n",
+ " 1962.119638 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-1 \n",
+ " 464.746812 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-2 \n",
+ " 464.746812 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0\n",
+ "DBMS \n",
+ "MariaDB-1 1526.761004\n",
+ "MariaDB-2 1526.761004\n",
+ "MonetDB-1 1887.024304\n",
+ "MonetDB-2 1887.024304\n",
+ "MySQL-1 1962.119638\n",
+ "MySQL-2 1962.119638\n",
+ "PostgreSQL-1 464.746812\n",
+ "PostgreSQL-2 464.746812"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluate.get_loading_metrics('total_cpu_util')\n",
+ "df = df.T.sum().sort_index() # computer sum of rates\n",
+ "\n",
+ "display(Markdown(\"### CPU of Ingestion (via rate)\"))\n",
+ "pd.DataFrame(df)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8f4627e2",
+ "metadata": {},
+ "source": [
+ "### Get Hardware Metrics per Stream"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "42ba3577",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### CPU of Stream (via counter)"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " DBMS \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " MariaDB-1-1 \n",
+ " 5564.712371 \n",
+ " \n",
+ " \n",
+ " MariaDB-2-1 \n",
+ " 5497.702421 \n",
+ " \n",
+ " \n",
+ " MonetDB-1-1 \n",
+ " 1356.184954 \n",
+ " \n",
+ " \n",
+ " MonetDB-2-1 \n",
+ " 1218.550218 \n",
+ " \n",
+ " \n",
+ " MySQL-1-1 \n",
+ " 3011.705555 \n",
+ " \n",
+ " \n",
+ " MySQL-2-1 \n",
+ " 2896.443679 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-1-1 \n",
+ " 1436.189579 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-2-1 \n",
+ " 1278.603392 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0\n",
+ "DBMS \n",
+ "MariaDB-1-1 5564.712371\n",
+ "MariaDB-2-1 5497.702421\n",
+ "MonetDB-1-1 1356.184954\n",
+ "MonetDB-2-1 1218.550218\n",
+ "MySQL-1-1 3011.705555\n",
+ "MySQL-2-1 2896.443679\n",
+ "PostgreSQL-1-1 1436.189579\n",
+ "PostgreSQL-2-1 1278.603392"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluate.get_streaming_metrics('total_cpu_memory')\n",
+ "df = evaluate.get_streaming_metrics('total_cpu_util_s')\n",
+ "df = df.T.max().sort_index() - df.T.min().sort_index() # compute difference of counter\n",
+ "\n",
+ "display(Markdown(\"### CPU of Stream (via counter)\"))\n",
+ "pd.DataFrame(df)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "d826ce2d",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### CPU of Stream (via rate)"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " DBMS \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " MariaDB-1-1 \n",
+ " 5580.313389 \n",
+ " \n",
+ " \n",
+ " MariaDB-2-1 \n",
+ " 5519.121645 \n",
+ " \n",
+ " \n",
+ " MonetDB-1-1 \n",
+ " 1508.432769 \n",
+ " \n",
+ " \n",
+ " MonetDB-2-1 \n",
+ " 1368.634461 \n",
+ " \n",
+ " \n",
+ " MySQL-1-1 \n",
+ " 3029.972219 \n",
+ " \n",
+ " \n",
+ " MySQL-2-1 \n",
+ " 2915.922365 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-1-1 \n",
+ " 1492.224116 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-2-1 \n",
+ " 1331.659788 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0\n",
+ "DBMS \n",
+ "MariaDB-1-1 5580.313389\n",
+ "MariaDB-2-1 5519.121645\n",
+ "MonetDB-1-1 1508.432769\n",
+ "MonetDB-2-1 1368.634461\n",
+ "MySQL-1-1 3029.972219\n",
+ "MySQL-2-1 2915.922365\n",
+ "PostgreSQL-1-1 1492.224116\n",
+ "PostgreSQL-2-1 1331.659788"
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluate.get_streaming_metrics('total_cpu_util')\n",
+ "df = df.T.sum().sort_index() # computer sum of rates\n",
+ "\n",
+ "display(Markdown(\"### CPU of Stream (via rate)\"))\n",
+ "pd.DataFrame(df)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "18b451b8",
+ "metadata": {},
+ "source": [
+ "## Timing Measures\n",
+ "\n",
+ "### Mean of Means of Timer Run"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "id": "4a21da2f",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### Mean of Means of Timer Run [s]"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " total_timer_run \n",
+ " \n",
+ " \n",
+ " DBMS \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " MariaDB-1-1 \n",
+ " 84.432242 \n",
+ " \n",
+ " \n",
+ " MariaDB-2-1 \n",
+ " 83.348424 \n",
+ " \n",
+ " \n",
+ " MonetDB-1-1 \n",
+ " 4.717192 \n",
+ " \n",
+ " \n",
+ " MonetDB-2-1 \n",
+ " 4.458597 \n",
+ " \n",
+ " \n",
+ " MySQL-1-1 \n",
+ " 45.625206 \n",
+ " \n",
+ " \n",
+ " MySQL-2-1 \n",
+ " 43.901729 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-1-1 \n",
+ " 14.941245 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-2-1 \n",
+ " 11.454957 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " total_timer_run\n",
+ "DBMS \n",
+ "MariaDB-1-1 84.432242\n",
+ "MariaDB-2-1 83.348424\n",
+ "MonetDB-1-1 4.717192\n",
+ "MonetDB-2-1 4.458597\n",
+ "MySQL-1-1 45.625206\n",
+ "MySQL-2-1 43.901729\n",
+ "PostgreSQL-1-1 14.941245\n",
+ "PostgreSQL-2-1 11.454957"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluate.get_aggregated_experiment_statistics(type='timer', name='run', query_aggregate='Mean', total_aggregate='Mean')\n",
+ "df = (df/1000.0).sort_index()\n",
+ "\n",
+ "display(Markdown(\"### Mean of Means of Timer Run [s]\"))\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7253f3f1",
+ "metadata": {},
+ "source": [
+ "### Geometric Mean of Medians of Timer Run"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "id": "bb141ba2",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### Geometric Mean of Medians of Timer Run [s]"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " total_timer_run \n",
+ " \n",
+ " \n",
+ " DBMS \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " MariaDB-1-1 \n",
+ " 31.517934 \n",
+ " \n",
+ " \n",
+ " MariaDB-2-1 \n",
+ " 31.257281 \n",
+ " \n",
+ " \n",
+ " MonetDB-1-1 \n",
+ " 0.752332 \n",
+ " \n",
+ " \n",
+ " MonetDB-2-1 \n",
+ " 0.792416 \n",
+ " \n",
+ " \n",
+ " MySQL-1-1 \n",
+ " 23.157694 \n",
+ " \n",
+ " \n",
+ " MySQL-2-1 \n",
+ " 22.424075 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-1-1 \n",
+ " 7.769965 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-2-1 \n",
+ " 7.347514 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " total_timer_run\n",
+ "DBMS \n",
+ "MariaDB-1-1 31.517934\n",
+ "MariaDB-2-1 31.257281\n",
+ "MonetDB-1-1 0.752332\n",
+ "MonetDB-2-1 0.792416\n",
+ "MySQL-1-1 23.157694\n",
+ "MySQL-2-1 22.424075\n",
+ "PostgreSQL-1-1 7.769965\n",
+ "PostgreSQL-2-1 7.347514"
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluate.get_aggregated_experiment_statistics(type='timer', name='run', query_aggregate='Median', total_aggregate='Geo')\n",
+ "df = (df/1000.0).sort_index()\n",
+ "\n",
+ "display(Markdown(\"### Geometric Mean of Medians of Timer Run [s]\"))\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5995836c",
+ "metadata": {},
+ "source": [
+ "## Plots"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "id": "9e74a811",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "id": "130ba990",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ " \n",
+ " "
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "marker": {
+ "color": "#ff0000"
+ },
+ "name": "MariaDB-1-1",
+ "type": "bar",
+ "x": [
+ "MariaDB-1-1"
+ ],
+ "y": [
+ 31517.933657907426
+ ]
+ },
+ {
+ "marker": {
+ "color": "#fecccc"
+ },
+ "name": "MariaDB-2-1",
+ "type": "bar",
+ "x": [
+ "MariaDB-2-1"
+ ],
+ "y": [
+ 31257.28115851841
+ ]
+ },
+ {
+ "marker": {
+ "color": "#006600"
+ },
+ "name": "MonetDB-1-1",
+ "type": "bar",
+ "x": [
+ "MonetDB-1-1"
+ ],
+ "y": [
+ 752.3320325356686
+ ]
+ },
+ {
+ "marker": {
+ "color": "#cbffcb"
+ },
+ "name": "MonetDB-2-1",
+ "type": "bar",
+ "x": [
+ "MonetDB-2-1"
+ ],
+ "y": [
+ 792.4156929738261
+ ]
+ },
+ {
+ "marker": {
+ "color": "#000066"
+ },
+ "name": "MySQL-1-1",
+ "type": "bar",
+ "x": [
+ "MySQL-1-1"
+ ],
+ "y": [
+ 23157.69430894382
+ ]
+ },
+ {
+ "marker": {
+ "color": "#cbcbff"
+ },
+ "name": "MySQL-2-1",
+ "type": "bar",
+ "x": [
+ "MySQL-2-1"
+ ],
+ "y": [
+ 22424.074795332705
+ ]
+ },
+ {
+ "marker": {
+ "color": "#666500"
+ },
+ "name": "PostgreSQL-1-1",
+ "type": "bar",
+ "x": [
+ "PostgreSQL-1-1"
+ ],
+ "y": [
+ 7769.964819615938
+ ]
+ },
+ {
+ "marker": {
+ "color": "#ffffcb"
+ },
+ "name": "PostgreSQL-2-1",
+ "type": "bar",
+ "x": [
+ "PostgreSQL-2-1"
+ ],
+ "y": [
+ 7347.51414526666
+ ]
+ }
+ ],
+ "layout": {
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Geometric Mean of Medians of Timer Run [s]"
+ }
+ }
+ },
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = evaluate.get_aggregated_experiment_statistics(type='timer', name='run', query_aggregate='Median', total_aggregate='Geo')\n",
+ "df = df.sort_index()\n",
+ "\n",
+ "fig = go.Figure()\n",
+ "for i in range(len(df.index)):\n",
+ " t = fig.add_trace(go.Bar(x=[df.index[i]], y=df.iloc[i], name=df.index[i], marker=dict(color=connection_colors[df.index[i]])))\n",
+ "\n",
+ "fig.update_layout(title_text='Geometric Mean of Medians of Timer Run [s]')\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a2b77aa0",
+ "metadata": {},
+ "source": [
+ "# Some Measures per Query"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "68ccc15d",
+ "metadata": {},
+ "source": [
+ "## Timing Measures\n",
+ "\n",
+ "### Means of Timer Runs"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "id": "cbb546ff",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### Means of Timer Runs [ms]"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " DBMS \n",
+ " MariaDB-1-1 \n",
+ " MariaDB-2-1 \n",
+ " MonetDB-1-1 \n",
+ " MonetDB-2-1 \n",
+ " MySQL-1-1 \n",
+ " MySQL-2-1 \n",
+ " PostgreSQL-1-1 \n",
+ " PostgreSQL-2-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Q1 \n",
+ " 115989.630678 \n",
+ " 113481.054475 \n",
+ " 5563.435273 \n",
+ " 4517.950883 \n",
+ " 139965.852845 \n",
+ " 139650.894833 \n",
+ " 20039.383417 \n",
+ " 19866.305729 \n",
+ " \n",
+ " \n",
+ " Q2 \n",
+ " 13202.835330 \n",
+ " 13171.131305 \n",
+ " 423.855536 \n",
+ " 351.280993 \n",
+ " 1790.965649 \n",
+ " 1577.399513 \n",
+ " 7225.602556 \n",
+ " 17500.866503 \n",
+ " \n",
+ " \n",
+ " Q3 \n",
+ " 58803.801925 \n",
+ " 55998.118738 \n",
+ " 1121.951630 \n",
+ " 286.680120 \n",
+ " 60652.883762 \n",
+ " 60329.661458 \n",
+ " 15167.515143 \n",
+ " 19752.016812 \n",
+ " \n",
+ " \n",
+ " Q4 \n",
+ " 10906.610491 \n",
+ " 10700.938849 \n",
+ " 167.959029 \n",
+ " 157.038979 \n",
+ " 10353.898270 \n",
+ " 10227.802497 \n",
+ " 63276.056357 \n",
+ " 3660.092083 \n",
+ " \n",
+ " \n",
+ " Q5 \n",
+ " 43173.049879 \n",
+ " 41958.968865 \n",
+ " 369.634689 \n",
+ " 383.102751 \n",
+ " 44849.054096 \n",
+ " 40186.950882 \n",
+ " 5783.143584 \n",
+ " 6885.665454 \n",
+ " \n",
+ " \n",
+ " Q6 \n",
+ " 19219.394048 \n",
+ " 19288.650417 \n",
+ " 1785.649381 \n",
+ " 129.628404 \n",
+ " 24070.415718 \n",
+ " 24026.994607 \n",
+ " 2917.860596 \n",
+ " 2886.094683 \n",
+ " \n",
+ " \n",
+ " Q7 \n",
+ " 35227.129593 \n",
+ " 33578.747254 \n",
+ " 2198.463472 \n",
+ " 3050.601307 \n",
+ " 27260.769050 \n",
+ " 24198.993758 \n",
+ " 11244.580511 \n",
+ " 13545.375023 \n",
+ " \n",
+ " \n",
+ " Q8 \n",
+ " 74788.585443 \n",
+ " 73309.150578 \n",
+ " 1092.181380 \n",
+ " 3154.597746 \n",
+ " 117483.457010 \n",
+ " 106573.850883 \n",
+ " 12783.577640 \n",
+ " 13338.918216 \n",
+ " \n",
+ " \n",
+ " Q9 \n",
+ " 141097.449787 \n",
+ " 139187.680818 \n",
+ " 4918.470218 \n",
+ " 3963.573644 \n",
+ " 124488.035032 \n",
+ " 112492.537863 \n",
+ " 44068.426727 \n",
+ " 42587.264411 \n",
+ " \n",
+ " \n",
+ " Q10 \n",
+ " 141403.858324 \n",
+ " 142090.442053 \n",
+ " 908.977431 \n",
+ " 803.503769 \n",
+ " 20992.730243 \n",
+ " 20748.897447 \n",
+ " 20831.573940 \n",
+ " 16731.910749 \n",
+ " \n",
+ " \n",
+ " Q11 \n",
+ " 4148.042627 \n",
+ " 4293.732452 \n",
+ " 567.795084 \n",
+ " 415.515498 \n",
+ " 5663.032641 \n",
+ " 5696.939546 \n",
+ " 3892.319345 \n",
+ " 2169.532531 \n",
+ " \n",
+ " \n",
+ " Q12 \n",
+ " 132080.983062 \n",
+ " 128807.095058 \n",
+ " 3773.747000 \n",
+ " 191.421537 \n",
+ " 34564.011301 \n",
+ " 34269.547826 \n",
+ " 15897.897638 \n",
+ " 7168.397244 \n",
+ " \n",
+ " \n",
+ " Q13 \n",
+ " 114272.807927 \n",
+ " 115454.660663 \n",
+ " 3590.687924 \n",
+ " 3181.238493 \n",
+ " 161980.722418 \n",
+ " 160750.343010 \n",
+ " 18784.685568 \n",
+ " 7771.261669 \n",
+ " \n",
+ " \n",
+ " Q14 \n",
+ " 511364.874354 \n",
+ " 497102.462734 \n",
+ " 181.559546 \n",
+ " 136.743135 \n",
+ " 29699.836106 \n",
+ " 29359.513897 \n",
+ " 8136.222391 \n",
+ " 3260.906603 \n",
+ " \n",
+ " \n",
+ " Q15 \n",
+ " 38717.798192 \n",
+ " 38992.169477 \n",
+ " 270.773724 \n",
+ " 282.713636 \n",
+ " 53015.246627 \n",
+ " 52652.230879 \n",
+ " 10828.831254 \n",
+ " 7963.955605 \n",
+ " \n",
+ " \n",
+ " Q16 \n",
+ " 4946.922447 \n",
+ " 4957.202488 \n",
+ " 1839.745415 \n",
+ " 1857.860934 \n",
+ " 5847.584373 \n",
+ " 5991.898077 \n",
+ " 7068.259177 \n",
+ " 6408.576533 \n",
+ " \n",
+ " \n",
+ " Q17 \n",
+ " 1276.979283 \n",
+ " 1253.035080 \n",
+ " 1891.926599 \n",
+ " 2360.170470 \n",
+ " 13071.677511 \n",
+ " 12453.737342 \n",
+ " 11935.246834 \n",
+ " 13523.998653 \n",
+ " \n",
+ " \n",
+ " Q18 \n",
+ " 126016.121606 \n",
+ " 129203.891398 \n",
+ " 479.290318 \n",
+ " 490.452279 \n",
+ " 30790.192968 \n",
+ " 30442.444819 \n",
+ " 33132.461344 \n",
+ " 29488.654058 \n",
+ " \n",
+ " \n",
+ " Q19 \n",
+ " 2384.714820 \n",
+ " 2344.720237 \n",
+ " 251.887020 \n",
+ " 248.384294 \n",
+ " 3420.121102 \n",
+ " 3349.518520 \n",
+ " 568.638627 \n",
+ " 492.559332 \n",
+ " \n",
+ " \n",
+ " Q20 \n",
+ " 20530.713325 \n",
+ " 20667.318521 \n",
+ " 263.041606 \n",
+ " 233.055218 \n",
+ " 10182.912607 \n",
+ " 9965.629668 \n",
+ " 7626.458291 \n",
+ " 9463.541198 \n",
+ " \n",
+ " \n",
+ " Q21 \n",
+ " 246130.899464 \n",
+ " 245986.749306 \n",
+ " 71514.882144 \n",
+ " 70924.262200 \n",
+ " 81238.430244 \n",
+ " 78553.948823 \n",
+ " 6737.272611 \n",
+ " 6798.701014 \n",
+ " \n",
+ " \n",
+ " Q22 \n",
+ " 1826.111431 \n",
+ " 1837.417374 \n",
+ " 602.300994 \n",
+ " 969.356511 \n",
+ " 2372.703644 \n",
+ " 2338.294653 \n",
+ " 761.376779 \n",
+ " 744.457357 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "DBMS MariaDB-1-1 MariaDB-2-1 MonetDB-1-1 MonetDB-2-1 MySQL-1-1 \\\n",
+ "Q1 115989.630678 113481.054475 5563.435273 4517.950883 139965.852845 \n",
+ "Q2 13202.835330 13171.131305 423.855536 351.280993 1790.965649 \n",
+ "Q3 58803.801925 55998.118738 1121.951630 286.680120 60652.883762 \n",
+ "Q4 10906.610491 10700.938849 167.959029 157.038979 10353.898270 \n",
+ "Q5 43173.049879 41958.968865 369.634689 383.102751 44849.054096 \n",
+ "Q6 19219.394048 19288.650417 1785.649381 129.628404 24070.415718 \n",
+ "Q7 35227.129593 33578.747254 2198.463472 3050.601307 27260.769050 \n",
+ "Q8 74788.585443 73309.150578 1092.181380 3154.597746 117483.457010 \n",
+ "Q9 141097.449787 139187.680818 4918.470218 3963.573644 124488.035032 \n",
+ "Q10 141403.858324 142090.442053 908.977431 803.503769 20992.730243 \n",
+ "Q11 4148.042627 4293.732452 567.795084 415.515498 5663.032641 \n",
+ "Q12 132080.983062 128807.095058 3773.747000 191.421537 34564.011301 \n",
+ "Q13 114272.807927 115454.660663 3590.687924 3181.238493 161980.722418 \n",
+ "Q14 511364.874354 497102.462734 181.559546 136.743135 29699.836106 \n",
+ "Q15 38717.798192 38992.169477 270.773724 282.713636 53015.246627 \n",
+ "Q16 4946.922447 4957.202488 1839.745415 1857.860934 5847.584373 \n",
+ "Q17 1276.979283 1253.035080 1891.926599 2360.170470 13071.677511 \n",
+ "Q18 126016.121606 129203.891398 479.290318 490.452279 30790.192968 \n",
+ "Q19 2384.714820 2344.720237 251.887020 248.384294 3420.121102 \n",
+ "Q20 20530.713325 20667.318521 263.041606 233.055218 10182.912607 \n",
+ "Q21 246130.899464 245986.749306 71514.882144 70924.262200 81238.430244 \n",
+ "Q22 1826.111431 1837.417374 602.300994 969.356511 2372.703644 \n",
+ "\n",
+ "DBMS MySQL-2-1 PostgreSQL-1-1 PostgreSQL-2-1 \n",
+ "Q1 139650.894833 20039.383417 19866.305729 \n",
+ "Q2 1577.399513 7225.602556 17500.866503 \n",
+ "Q3 60329.661458 15167.515143 19752.016812 \n",
+ "Q4 10227.802497 63276.056357 3660.092083 \n",
+ "Q5 40186.950882 5783.143584 6885.665454 \n",
+ "Q6 24026.994607 2917.860596 2886.094683 \n",
+ "Q7 24198.993758 11244.580511 13545.375023 \n",
+ "Q8 106573.850883 12783.577640 13338.918216 \n",
+ "Q9 112492.537863 44068.426727 42587.264411 \n",
+ "Q10 20748.897447 20831.573940 16731.910749 \n",
+ "Q11 5696.939546 3892.319345 2169.532531 \n",
+ "Q12 34269.547826 15897.897638 7168.397244 \n",
+ "Q13 160750.343010 18784.685568 7771.261669 \n",
+ "Q14 29359.513897 8136.222391 3260.906603 \n",
+ "Q15 52652.230879 10828.831254 7963.955605 \n",
+ "Q16 5991.898077 7068.259177 6408.576533 \n",
+ "Q17 12453.737342 11935.246834 13523.998653 \n",
+ "Q18 30442.444819 33132.461344 29488.654058 \n",
+ "Q19 3349.518520 568.638627 492.559332 \n",
+ "Q20 9965.629668 7626.458291 9463.541198 \n",
+ "Q21 78553.948823 6737.272611 6798.701014 \n",
+ "Q22 2338.294653 761.376779 744.457357 "
+ ]
+ },
+ "execution_count": 24,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluate.get_aggregated_query_statistics(type='timer', name='run', query_aggregate='Mean').sort_index().T\n",
+ "\n",
+ "display(Markdown(\"### Means of Timer Runs [ms]\"))\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "30c49bb5",
+ "metadata": {},
+ "source": [
+ "### Maximum of Run Throughput"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "id": "d6528932",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### Maximum of Run Throughput [1/s]"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " DBMS \n",
+ " MariaDB-1-1 \n",
+ " MariaDB-2-1 \n",
+ " MonetDB-1-1 \n",
+ " MonetDB-2-1 \n",
+ " MySQL-1-1 \n",
+ " MySQL-2-1 \n",
+ " PostgreSQL-1-1 \n",
+ " PostgreSQL-2-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Q1 \n",
+ " 0.008810 \n",
+ " 0.008846 \n",
+ " 0.220207 \n",
+ " 0.231232 \n",
+ " 0.007174 \n",
+ " 0.007189 \n",
+ " 0.050163 \n",
+ " 0.050691 \n",
+ " \n",
+ " \n",
+ " Q2 \n",
+ " 0.076588 \n",
+ " 0.076907 \n",
+ " 2.789275 \n",
+ " 3.175859 \n",
+ " 0.566798 \n",
+ " 0.639963 \n",
+ " 0.139435 \n",
+ " 0.061638 \n",
+ " \n",
+ " \n",
+ " Q3 \n",
+ " 0.017364 \n",
+ " 0.018087 \n",
+ " 3.736227 \n",
+ " 3.912092 \n",
+ " 0.016533 \n",
+ " 0.016633 \n",
+ " 0.082372 \n",
+ " 0.052391 \n",
+ " \n",
+ " \n",
+ " Q4 \n",
+ " 0.092310 \n",
+ " 0.094059 \n",
+ " 6.605401 \n",
+ " 6.746199 \n",
+ " 0.097566 \n",
+ " 0.098876 \n",
+ " 0.407549 \n",
+ " 0.294164 \n",
+ " \n",
+ " \n",
+ " Q5 \n",
+ " 0.023296 \n",
+ " 0.023917 \n",
+ " 3.608333 \n",
+ " 3.462481 \n",
+ " 0.022400 \n",
+ " 0.024953 \n",
+ " 0.247183 \n",
+ " 0.159519 \n",
+ " \n",
+ " \n",
+ " Q6 \n",
+ " 0.052784 \n",
+ " 0.052485 \n",
+ " 7.631666 \n",
+ " 8.164754 \n",
+ " 0.041805 \n",
+ " 0.041873 \n",
+ " 0.344342 \n",
+ " 0.349700 \n",
+ " \n",
+ " \n",
+ " Q7 \n",
+ " 0.028540 \n",
+ " 0.029938 \n",
+ " 0.563871 \n",
+ " 0.485066 \n",
+ " 0.038508 \n",
+ " 0.043290 \n",
+ " 0.099798 \n",
+ " 0.078069 \n",
+ " \n",
+ " \n",
+ " Q8 \n",
+ " 0.013432 \n",
+ " 0.013729 \n",
+ " 0.959255 \n",
+ " 0.387856 \n",
+ " 0.008518 \n",
+ " 0.009407 \n",
+ " 0.091922 \n",
+ " 0.087958 \n",
+ " \n",
+ " \n",
+ " Q9 \n",
+ " 0.007132 \n",
+ " 0.007206 \n",
+ " 0.782999 \n",
+ " 0.323114 \n",
+ " 0.008129 \n",
+ " 0.009099 \n",
+ " 0.023413 \n",
+ " 0.023625 \n",
+ " \n",
+ " \n",
+ " Q10 \n",
+ " 0.007085 \n",
+ " 0.007049 \n",
+ " 1.238689 \n",
+ " 1.262583 \n",
+ " 0.047705 \n",
+ " 0.048243 \n",
+ " 0.050442 \n",
+ " 0.068517 \n",
+ " \n",
+ " \n",
+ " Q11 \n",
+ " 0.243337 \n",
+ " 0.234186 \n",
+ " 1.938101 \n",
+ " 2.797194 \n",
+ " 0.177257 \n",
+ " 0.177560 \n",
+ " 0.306996 \n",
+ " 0.467223 \n",
+ " \n",
+ " \n",
+ " Q12 \n",
+ " 0.007574 \n",
+ " 0.007771 \n",
+ " 4.941322 \n",
+ " 5.652018 \n",
+ " 0.029141 \n",
+ " 0.029371 \n",
+ " 0.075461 \n",
+ " 0.145088 \n",
+ " \n",
+ " \n",
+ " Q13 \n",
+ " 0.008790 \n",
+ " 0.008695 \n",
+ " 0.322902 \n",
+ " 0.343424 \n",
+ " 0.006207 \n",
+ " 0.006254 \n",
+ " 0.054629 \n",
+ " 0.138944 \n",
+ " \n",
+ " \n",
+ " Q14 \n",
+ " 0.001958 \n",
+ " 0.002015 \n",
+ " 7.144495 \n",
+ " 7.884286 \n",
+ " 0.034125 \n",
+ " 0.034448 \n",
+ " 0.160541 \n",
+ " 0.309416 \n",
+ " \n",
+ " \n",
+ " Q15 \n",
+ " 0.025941 \n",
+ " 0.025866 \n",
+ " 3.821016 \n",
+ " 3.587965 \n",
+ " 0.019004 \n",
+ " 0.019073 \n",
+ " 0.117023 \n",
+ " 0.126468 \n",
+ " \n",
+ " \n",
+ " Q16 \n",
+ " 0.205247 \n",
+ " 0.203905 \n",
+ " 0.555683 \n",
+ " 0.565030 \n",
+ " 0.173094 \n",
+ " 0.169006 \n",
+ " 0.147405 \n",
+ " 0.156668 \n",
+ " \n",
+ " \n",
+ " Q17 \n",
+ " 0.788392 \n",
+ " 0.809581 \n",
+ " 0.695906 \n",
+ " 0.457047 \n",
+ " 0.081641 \n",
+ " 0.084269 \n",
+ " 0.083890 \n",
+ " 0.075591 \n",
+ " \n",
+ " \n",
+ " Q18 \n",
+ " 0.007945 \n",
+ " 0.007753 \n",
+ " 2.198075 \n",
+ " 2.107396 \n",
+ " 0.032550 \n",
+ " 0.033012 \n",
+ " 0.032164 \n",
+ " 0.036029 \n",
+ " \n",
+ " \n",
+ " Q19 \n",
+ " 0.429370 \n",
+ " 0.433899 \n",
+ " 4.087997 \n",
+ " 4.146425 \n",
+ " 0.300284 \n",
+ " 0.304113 \n",
+ " 2.180537 \n",
+ " 2.117862 \n",
+ " \n",
+ " \n",
+ " Q20 \n",
+ " 0.048879 \n",
+ " 0.048549 \n",
+ " 4.019059 \n",
+ " 4.688444 \n",
+ " 0.098711 \n",
+ " 0.100542 \n",
+ " 0.132065 \n",
+ " 0.106847 \n",
+ " \n",
+ " \n",
+ " Q21 \n",
+ " 0.004067 \n",
+ " 0.004068 \n",
+ " 0.014502 \n",
+ " 0.014320 \n",
+ " 0.012437 \n",
+ " 0.012804 \n",
+ " 0.148926 \n",
+ " 0.149333 \n",
+ " \n",
+ " \n",
+ " Q22 \n",
+ " 0.550611 \n",
+ " 0.550844 \n",
+ " 1.988697 \n",
+ " 1.171185 \n",
+ " 0.429374 \n",
+ " 0.434330 \n",
+ " 1.372679 \n",
+ " 1.436696 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "DBMS MariaDB-1-1 MariaDB-2-1 MonetDB-1-1 MonetDB-2-1 MySQL-1-1 \\\n",
+ "Q1 0.008810 0.008846 0.220207 0.231232 0.007174 \n",
+ "Q2 0.076588 0.076907 2.789275 3.175859 0.566798 \n",
+ "Q3 0.017364 0.018087 3.736227 3.912092 0.016533 \n",
+ "Q4 0.092310 0.094059 6.605401 6.746199 0.097566 \n",
+ "Q5 0.023296 0.023917 3.608333 3.462481 0.022400 \n",
+ "Q6 0.052784 0.052485 7.631666 8.164754 0.041805 \n",
+ "Q7 0.028540 0.029938 0.563871 0.485066 0.038508 \n",
+ "Q8 0.013432 0.013729 0.959255 0.387856 0.008518 \n",
+ "Q9 0.007132 0.007206 0.782999 0.323114 0.008129 \n",
+ "Q10 0.007085 0.007049 1.238689 1.262583 0.047705 \n",
+ "Q11 0.243337 0.234186 1.938101 2.797194 0.177257 \n",
+ "Q12 0.007574 0.007771 4.941322 5.652018 0.029141 \n",
+ "Q13 0.008790 0.008695 0.322902 0.343424 0.006207 \n",
+ "Q14 0.001958 0.002015 7.144495 7.884286 0.034125 \n",
+ "Q15 0.025941 0.025866 3.821016 3.587965 0.019004 \n",
+ "Q16 0.205247 0.203905 0.555683 0.565030 0.173094 \n",
+ "Q17 0.788392 0.809581 0.695906 0.457047 0.081641 \n",
+ "Q18 0.007945 0.007753 2.198075 2.107396 0.032550 \n",
+ "Q19 0.429370 0.433899 4.087997 4.146425 0.300284 \n",
+ "Q20 0.048879 0.048549 4.019059 4.688444 0.098711 \n",
+ "Q21 0.004067 0.004068 0.014502 0.014320 0.012437 \n",
+ "Q22 0.550611 0.550844 1.988697 1.171185 0.429374 \n",
+ "\n",
+ "DBMS MySQL-2-1 PostgreSQL-1-1 PostgreSQL-2-1 \n",
+ "Q1 0.007189 0.050163 0.050691 \n",
+ "Q2 0.639963 0.139435 0.061638 \n",
+ "Q3 0.016633 0.082372 0.052391 \n",
+ "Q4 0.098876 0.407549 0.294164 \n",
+ "Q5 0.024953 0.247183 0.159519 \n",
+ "Q6 0.041873 0.344342 0.349700 \n",
+ "Q7 0.043290 0.099798 0.078069 \n",
+ "Q8 0.009407 0.091922 0.087958 \n",
+ "Q9 0.009099 0.023413 0.023625 \n",
+ "Q10 0.048243 0.050442 0.068517 \n",
+ "Q11 0.177560 0.306996 0.467223 \n",
+ "Q12 0.029371 0.075461 0.145088 \n",
+ "Q13 0.006254 0.054629 0.138944 \n",
+ "Q14 0.034448 0.160541 0.309416 \n",
+ "Q15 0.019073 0.117023 0.126468 \n",
+ "Q16 0.169006 0.147405 0.156668 \n",
+ "Q17 0.084269 0.083890 0.075591 \n",
+ "Q18 0.033012 0.032164 0.036029 \n",
+ "Q19 0.304113 2.180537 2.117862 \n",
+ "Q20 0.100542 0.132065 0.106847 \n",
+ "Q21 0.012804 0.148926 0.149333 \n",
+ "Q22 0.434330 1.372679 1.436696 "
+ ]
+ },
+ "execution_count": 25,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = (evaluate.get_aggregated_query_statistics(type='throughput', name='run', query_aggregate='Max')).sort_index().T\n",
+ "\n",
+ "display(Markdown(\"### Maximum of Run Throughput [1/s]\"))\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "15f6147f",
+ "metadata": {},
+ "source": [
+ "### Latency of Timer Execution"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "id": "d8beda05",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### Latency of Timer Execution [ms]"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " DBMS \n",
+ " MariaDB-1-1 \n",
+ " MariaDB-2-1 \n",
+ " MonetDB-1-1 \n",
+ " MonetDB-2-1 \n",
+ " MySQL-1-1 \n",
+ " MySQL-2-1 \n",
+ " PostgreSQL-1-1 \n",
+ " PostgreSQL-2-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Q1 \n",
+ " 115984.029097 \n",
+ " 113477.396985 \n",
+ " 5559.138363 \n",
+ " 4515.038655 \n",
+ " 139963.454816 \n",
+ " 139644.360665 \n",
+ " 20034.833936 \n",
+ " 19861.297945 \n",
+ " \n",
+ " \n",
+ " Q2 \n",
+ " 13189.844139 \n",
+ " 13157.687652 \n",
+ " 413.282013 \n",
+ " 340.652305 \n",
+ " 1782.370459 \n",
+ " 1560.817159 \n",
+ " 7211.191122 \n",
+ " 17486.172169 \n",
+ " \n",
+ " \n",
+ " Q3 \n",
+ " 58800.386259 \n",
+ " 55994.774677 \n",
+ " 1118.389753 \n",
+ " 283.285230 \n",
+ " 60650.473856 \n",
+ " 60324.399922 \n",
+ " 15162.580179 \n",
+ " 19747.151356 \n",
+ " \n",
+ " \n",
+ " Q4 \n",
+ " 10906.366797 \n",
+ " 10700.690025 \n",
+ " 167.731983 \n",
+ " 156.817029 \n",
+ " 10353.680159 \n",
+ " 10227.460235 \n",
+ " 63275.764168 \n",
+ " 3659.762128 \n",
+ " \n",
+ " \n",
+ " Q5 \n",
+ " 43172.769596 \n",
+ " 41958.683499 \n",
+ " 369.404377 \n",
+ " 382.882849 \n",
+ " 44848.791658 \n",
+ " 40186.573100 \n",
+ " 5782.834073 \n",
+ " 6885.320396 \n",
+ " \n",
+ " \n",
+ " Q6 \n",
+ " 19219.304236 \n",
+ " 19288.558926 \n",
+ " 1785.574434 \n",
+ " 129.571968 \n",
+ " 24070.314904 \n",
+ " 24026.849064 \n",
+ " 2917.765952 \n",
+ " 2885.997845 \n",
+ " \n",
+ " \n",
+ " Q7 \n",
+ " 35226.790069 \n",
+ " 33578.401355 \n",
+ " 2198.102969 \n",
+ " 3050.271067 \n",
+ " 27260.520071 \n",
+ " 24198.575423 \n",
+ " 11244.196273 \n",
+ " 13544.882668 \n",
+ " \n",
+ " \n",
+ " Q8 \n",
+ " 74788.269761 \n",
+ " 73308.950132 \n",
+ " 1091.897862 \n",
+ " 3154.334292 \n",
+ " 117483.286765 \n",
+ " 106573.598974 \n",
+ " 12783.235100 \n",
+ " 13338.417255 \n",
+ " \n",
+ " \n",
+ " Q9 \n",
+ " 141087.924653 \n",
+ " 139178.495053 \n",
+ " 4908.692492 \n",
+ " 3954.063788 \n",
+ " 124482.944844 \n",
+ " 112482.017125 \n",
+ " 44059.743012 \n",
+ " 42577.751900 \n",
+ " \n",
+ " \n",
+ " Q10 \n",
+ " 141401.555155 \n",
+ " 142088.174021 \n",
+ " 906.461463 \n",
+ " 801.192185 \n",
+ " 20991.290802 \n",
+ " 20745.993865 \n",
+ " 20828.577831 \n",
+ " 16729.723187 \n",
+ " \n",
+ " \n",
+ " Q11 \n",
+ " 3943.081469 \n",
+ " 4038.932427 \n",
+ " 260.222192 \n",
+ " 114.384230 \n",
+ " 5474.876384 \n",
+ " 5460.062068 \n",
+ " 3688.202220 \n",
+ " 1934.406897 \n",
+ " \n",
+ " \n",
+ " Q12 \n",
+ " 132080.785154 \n",
+ " 128806.873278 \n",
+ " 3773.600698 \n",
+ " 191.276890 \n",
+ " 34563.874573 \n",
+ " 34269.322594 \n",
+ " 15897.675939 \n",
+ " 7168.201096 \n",
+ " \n",
+ " \n",
+ " Q13 \n",
+ " 114271.550681 \n",
+ " 115453.225490 \n",
+ " 3589.015730 \n",
+ " 3179.584549 \n",
+ " 161979.926707 \n",
+ " 160748.794775 \n",
+ " 18783.155397 \n",
+ " 7769.695470 \n",
+ " \n",
+ " \n",
+ " Q14 \n",
+ " 511364.784783 \n",
+ " 497102.376689 \n",
+ " 181.431396 \n",
+ " 136.607647 \n",
+ " 29699.769745 \n",
+ " 29359.402171 \n",
+ " 8135.799106 \n",
+ " 3260.492730 \n",
+ " \n",
+ " \n",
+ " Q15 \n",
+ " 38717.798192 \n",
+ " 38992.169477 \n",
+ " 270.773724 \n",
+ " 282.713636 \n",
+ " 53015.246627 \n",
+ " 52652.230879 \n",
+ " 10828.831254 \n",
+ " 7963.955605 \n",
+ " \n",
+ " \n",
+ " Q16 \n",
+ " 4027.831425 \n",
+ " 4120.540270 \n",
+ " 686.746840 \n",
+ " 691.220624 \n",
+ " 5078.042286 \n",
+ " 5088.938285 \n",
+ " 6058.316758 \n",
+ " 5587.771454 \n",
+ " \n",
+ " \n",
+ " Q17 \n",
+ " 1276.899524 \n",
+ " 1252.970511 \n",
+ " 1891.844391 \n",
+ " 2360.095346 \n",
+ " 13071.609235 \n",
+ " 12453.614161 \n",
+ " 11934.943291 \n",
+ " 13523.710171 \n",
+ " \n",
+ " \n",
+ " Q18 \n",
+ " 126002.332541 \n",
+ " 129191.025399 \n",
+ " 465.953219 \n",
+ " 477.032062 \n",
+ " 30781.519091 \n",
+ " 30425.720738 \n",
+ " 33115.222733 \n",
+ " 29473.692810 \n",
+ " \n",
+ " \n",
+ " Q19 \n",
+ " 2384.642124 \n",
+ " 2344.654581 \n",
+ " 251.829252 \n",
+ " 248.328930 \n",
+ " 3420.048188 \n",
+ " 3349.401808 \n",
+ " 568.557070 \n",
+ " 492.506636 \n",
+ " \n",
+ " \n",
+ " Q20 \n",
+ " 20484.981706 \n",
+ " 20624.654693 \n",
+ " 230.338829 \n",
+ " 208.398596 \n",
+ " 10160.403924 \n",
+ " 9924.714682 \n",
+ " 7587.395355 \n",
+ " 9418.309655 \n",
+ " \n",
+ " \n",
+ " Q21 \n",
+ " 246127.850226 \n",
+ " 245983.909848 \n",
+ " 71511.727077 \n",
+ " 70921.302693 \n",
+ " 81236.928218 \n",
+ " 78550.780588 \n",
+ " 6734.338372 \n",
+ " 6795.589572 \n",
+ " \n",
+ " \n",
+ " Q22 \n",
+ " 1825.728476 \n",
+ " 1837.013443 \n",
+ " 600.653826 \n",
+ " 967.767178 \n",
+ " 2372.459627 \n",
+ " 2337.835912 \n",
+ " 761.021456 \n",
+ " 744.030803 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "DBMS MariaDB-1-1 MariaDB-2-1 MonetDB-1-1 MonetDB-2-1 MySQL-1-1 \\\n",
+ "Q1 115984.029097 113477.396985 5559.138363 4515.038655 139963.454816 \n",
+ "Q2 13189.844139 13157.687652 413.282013 340.652305 1782.370459 \n",
+ "Q3 58800.386259 55994.774677 1118.389753 283.285230 60650.473856 \n",
+ "Q4 10906.366797 10700.690025 167.731983 156.817029 10353.680159 \n",
+ "Q5 43172.769596 41958.683499 369.404377 382.882849 44848.791658 \n",
+ "Q6 19219.304236 19288.558926 1785.574434 129.571968 24070.314904 \n",
+ "Q7 35226.790069 33578.401355 2198.102969 3050.271067 27260.520071 \n",
+ "Q8 74788.269761 73308.950132 1091.897862 3154.334292 117483.286765 \n",
+ "Q9 141087.924653 139178.495053 4908.692492 3954.063788 124482.944844 \n",
+ "Q10 141401.555155 142088.174021 906.461463 801.192185 20991.290802 \n",
+ "Q11 3943.081469 4038.932427 260.222192 114.384230 5474.876384 \n",
+ "Q12 132080.785154 128806.873278 3773.600698 191.276890 34563.874573 \n",
+ "Q13 114271.550681 115453.225490 3589.015730 3179.584549 161979.926707 \n",
+ "Q14 511364.784783 497102.376689 181.431396 136.607647 29699.769745 \n",
+ "Q15 38717.798192 38992.169477 270.773724 282.713636 53015.246627 \n",
+ "Q16 4027.831425 4120.540270 686.746840 691.220624 5078.042286 \n",
+ "Q17 1276.899524 1252.970511 1891.844391 2360.095346 13071.609235 \n",
+ "Q18 126002.332541 129191.025399 465.953219 477.032062 30781.519091 \n",
+ "Q19 2384.642124 2344.654581 251.829252 248.328930 3420.048188 \n",
+ "Q20 20484.981706 20624.654693 230.338829 208.398596 10160.403924 \n",
+ "Q21 246127.850226 245983.909848 71511.727077 70921.302693 81236.928218 \n",
+ "Q22 1825.728476 1837.013443 600.653826 967.767178 2372.459627 \n",
+ "\n",
+ "DBMS MySQL-2-1 PostgreSQL-1-1 PostgreSQL-2-1 \n",
+ "Q1 139644.360665 20034.833936 19861.297945 \n",
+ "Q2 1560.817159 7211.191122 17486.172169 \n",
+ "Q3 60324.399922 15162.580179 19747.151356 \n",
+ "Q4 10227.460235 63275.764168 3659.762128 \n",
+ "Q5 40186.573100 5782.834073 6885.320396 \n",
+ "Q6 24026.849064 2917.765952 2885.997845 \n",
+ "Q7 24198.575423 11244.196273 13544.882668 \n",
+ "Q8 106573.598974 12783.235100 13338.417255 \n",
+ "Q9 112482.017125 44059.743012 42577.751900 \n",
+ "Q10 20745.993865 20828.577831 16729.723187 \n",
+ "Q11 5460.062068 3688.202220 1934.406897 \n",
+ "Q12 34269.322594 15897.675939 7168.201096 \n",
+ "Q13 160748.794775 18783.155397 7769.695470 \n",
+ "Q14 29359.402171 8135.799106 3260.492730 \n",
+ "Q15 52652.230879 10828.831254 7963.955605 \n",
+ "Q16 5088.938285 6058.316758 5587.771454 \n",
+ "Q17 12453.614161 11934.943291 13523.710171 \n",
+ "Q18 30425.720738 33115.222733 29473.692810 \n",
+ "Q19 3349.401808 568.557070 492.506636 \n",
+ "Q20 9924.714682 7587.395355 9418.309655 \n",
+ "Q21 78550.780588 6734.338372 6795.589572 \n",
+ "Q22 2337.835912 761.021456 744.030803 "
+ ]
+ },
+ "execution_count": 26,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluate.get_aggregated_query_statistics(type='latency', name='execution', query_aggregate='Mean').sort_index().T\n",
+ "\n",
+ "display(Markdown(\"### Latency of Timer Execution [ms]\"))\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6e55f415",
+ "metadata": {},
+ "source": [
+ "### Mean of Latency of Timer Execution per DBMS"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "id": "200b7f9f",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### Mean of Latency of Timer Execution per DBMS [ms]"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " MariaDB \n",
+ " MonetDB \n",
+ " MySQL \n",
+ " PostgreSQL \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Q1 \n",
+ " 114730.713041 \n",
+ " 5037.088509 \n",
+ " 139803.907740 \n",
+ " 19948.065941 \n",
+ " \n",
+ " \n",
+ " Q2 \n",
+ " 13173.765895 \n",
+ " 376.967159 \n",
+ " 1671.593809 \n",
+ " 12348.681645 \n",
+ " \n",
+ " \n",
+ " Q3 \n",
+ " 57397.580468 \n",
+ " 700.837491 \n",
+ " 60487.436889 \n",
+ " 17454.865768 \n",
+ " \n",
+ " \n",
+ " Q4 \n",
+ " 10803.528411 \n",
+ " 162.274506 \n",
+ " 10290.570197 \n",
+ " 33467.763148 \n",
+ " \n",
+ " \n",
+ " Q5 \n",
+ " 42565.726548 \n",
+ " 376.143613 \n",
+ " 42517.682379 \n",
+ " 6334.077235 \n",
+ " \n",
+ " \n",
+ " Q6 \n",
+ " 19253.931581 \n",
+ " 957.573201 \n",
+ " 24048.581984 \n",
+ " 2901.881899 \n",
+ " \n",
+ " \n",
+ " Q7 \n",
+ " 34402.595712 \n",
+ " 2624.187018 \n",
+ " 25729.547747 \n",
+ " 12394.539471 \n",
+ " \n",
+ " \n",
+ " Q8 \n",
+ " 74048.609946 \n",
+ " 2123.116077 \n",
+ " 112028.442870 \n",
+ " 13060.826178 \n",
+ " \n",
+ " \n",
+ " Q9 \n",
+ " 140133.209853 \n",
+ " 4431.378140 \n",
+ " 118482.480984 \n",
+ " 43318.747456 \n",
+ " \n",
+ " \n",
+ " Q10 \n",
+ " 141744.864588 \n",
+ " 853.826824 \n",
+ " 20868.642333 \n",
+ " 18779.150509 \n",
+ " \n",
+ " \n",
+ " Q11 \n",
+ " 3991.006948 \n",
+ " 187.303211 \n",
+ " 5467.469226 \n",
+ " 2811.304559 \n",
+ " \n",
+ " \n",
+ " Q12 \n",
+ " 130443.829216 \n",
+ " 1982.438794 \n",
+ " 34416.598583 \n",
+ " 11532.938518 \n",
+ " \n",
+ " \n",
+ " Q13 \n",
+ " 114862.388085 \n",
+ " 3384.300139 \n",
+ " 161364.360741 \n",
+ " 13276.425433 \n",
+ " \n",
+ " \n",
+ " Q14 \n",
+ " 504233.580736 \n",
+ " 159.019522 \n",
+ " 29529.585958 \n",
+ " 5698.145918 \n",
+ " \n",
+ " \n",
+ " Q15 \n",
+ " 38854.983834 \n",
+ " 276.743680 \n",
+ " 52833.738753 \n",
+ " 9396.393429 \n",
+ " \n",
+ " \n",
+ " Q16 \n",
+ " 4074.185848 \n",
+ " 688.983732 \n",
+ " 5083.490285 \n",
+ " 5823.044106 \n",
+ " \n",
+ " \n",
+ " Q17 \n",
+ " 1264.935018 \n",
+ " 2125.969868 \n",
+ " 12762.611698 \n",
+ " 12729.326731 \n",
+ " \n",
+ " \n",
+ " Q18 \n",
+ " 127596.678970 \n",
+ " 471.492640 \n",
+ " 30603.619914 \n",
+ " 31294.457771 \n",
+ " \n",
+ " \n",
+ " Q19 \n",
+ " 2364.648353 \n",
+ " 250.079091 \n",
+ " 3384.724998 \n",
+ " 530.531853 \n",
+ " \n",
+ " \n",
+ " Q20 \n",
+ " 20554.818200 \n",
+ " 219.368712 \n",
+ " 10042.559303 \n",
+ " 8502.852505 \n",
+ " \n",
+ " \n",
+ " Q21 \n",
+ " 246055.880037 \n",
+ " 71216.514885 \n",
+ " 79893.854403 \n",
+ " 6764.963972 \n",
+ " \n",
+ " \n",
+ " Q22 \n",
+ " 1831.370959 \n",
+ " 784.210502 \n",
+ " 2355.147769 \n",
+ " 752.526129 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " MariaDB MonetDB MySQL PostgreSQL\n",
+ "Q1 114730.713041 5037.088509 139803.907740 19948.065941\n",
+ "Q2 13173.765895 376.967159 1671.593809 12348.681645\n",
+ "Q3 57397.580468 700.837491 60487.436889 17454.865768\n",
+ "Q4 10803.528411 162.274506 10290.570197 33467.763148\n",
+ "Q5 42565.726548 376.143613 42517.682379 6334.077235\n",
+ "Q6 19253.931581 957.573201 24048.581984 2901.881899\n",
+ "Q7 34402.595712 2624.187018 25729.547747 12394.539471\n",
+ "Q8 74048.609946 2123.116077 112028.442870 13060.826178\n",
+ "Q9 140133.209853 4431.378140 118482.480984 43318.747456\n",
+ "Q10 141744.864588 853.826824 20868.642333 18779.150509\n",
+ "Q11 3991.006948 187.303211 5467.469226 2811.304559\n",
+ "Q12 130443.829216 1982.438794 34416.598583 11532.938518\n",
+ "Q13 114862.388085 3384.300139 161364.360741 13276.425433\n",
+ "Q14 504233.580736 159.019522 29529.585958 5698.145918\n",
+ "Q15 38854.983834 276.743680 52833.738753 9396.393429\n",
+ "Q16 4074.185848 688.983732 5083.490285 5823.044106\n",
+ "Q17 1264.935018 2125.969868 12762.611698 12729.326731\n",
+ "Q18 127596.678970 471.492640 30603.619914 31294.457771\n",
+ "Q19 2364.648353 250.079091 3384.724998 530.531853\n",
+ "Q20 20554.818200 219.368712 10042.559303 8502.852505\n",
+ "Q21 246055.880037 71216.514885 79893.854403 6764.963972\n",
+ "Q22 1831.370959 784.210502 2355.147769 752.526129"
+ ]
+ },
+ "execution_count": 27,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluate.get_aggregated_query_statistics(type='latency', name='execution', query_aggregate='Mean').sort_index()\n",
+ "df = evaluate.get_aggregated_by_connection(df, list_connections_dbms, connection_aggregate='Mean').T\n",
+ "\n",
+ "display(Markdown(\"### Mean of Latency of Timer Execution per DBMS [ms]\"))\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "30af3602",
+ "metadata": {},
+ "source": [
+ "### Coefficient of Variation of Latency of Timer Execution per DBMS"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "id": "75909212",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### CV of Latency of Timer Execution per DBMS [%]"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " MariaDB \n",
+ " MonetDB \n",
+ " MySQL \n",
+ " PostgreSQL \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Q1 \n",
+ " 1.092398 \n",
+ " 10.364119 \n",
+ " 0.114122 \n",
+ " 0.434969 \n",
+ " \n",
+ " \n",
+ " Q2 \n",
+ " 0.122047 \n",
+ " 9.633426 \n",
+ " 6.627008 \n",
+ " 41.603555 \n",
+ " \n",
+ " \n",
+ " Q3 \n",
+ " 2.444016 \n",
+ " 59.579042 \n",
+ " 0.269539 \n",
+ " 13.132645 \n",
+ " \n",
+ " \n",
+ " Q4 \n",
+ " 0.951896 \n",
+ " 3.363114 \n",
+ " 0.613280 \n",
+ " 89.064814 \n",
+ " \n",
+ " \n",
+ " Q5 \n",
+ " 1.426131 \n",
+ " 1.791666 \n",
+ " 5.482682 \n",
+ " 8.702817 \n",
+ " \n",
+ " \n",
+ " Q6 \n",
+ " 0.179846 \n",
+ " 86.468714 \n",
+ " 0.090371 \n",
+ " 0.547371 \n",
+ " \n",
+ " \n",
+ " Q7 \n",
+ " 2.395733 \n",
+ " 16.236802 \n",
+ " 5.950250 \n",
+ " 9.281048 \n",
+ " \n",
+ " \n",
+ " Q8 \n",
+ " 0.998884 \n",
+ " 48.570977 \n",
+ " 4.869160 \n",
+ " 2.125372 \n",
+ " \n",
+ " \n",
+ " Q9 \n",
+ " 0.681291 \n",
+ " 10.771239 \n",
+ " 5.064431 \n",
+ " 1.710566 \n",
+ " \n",
+ " \n",
+ " Q10 \n",
+ " 0.242202 \n",
+ " 6.164557 \n",
+ " 0.587717 \n",
+ " 10.913312 \n",
+ " \n",
+ " \n",
+ " Q11 \n",
+ " 1.200837 \n",
+ " 38.930983 \n",
+ " 0.135477 \n",
+ " 31.191841 \n",
+ " \n",
+ " \n",
+ " Q12 \n",
+ " 1.254913 \n",
+ " 90.351435 \n",
+ " 0.427921 \n",
+ " 37.845840 \n",
+ " \n",
+ " \n",
+ " Q13 \n",
+ " 0.514387 \n",
+ " 6.048979 \n",
+ " 0.381476 \n",
+ " 41.477505 \n",
+ " \n",
+ " \n",
+ " Q14 \n",
+ " 1.414266 \n",
+ " 14.093788 \n",
+ " 0.576316 \n",
+ " 42.779761 \n",
+ " \n",
+ " \n",
+ " Q15 \n",
+ " 0.353071 \n",
+ " 2.157215 \n",
+ " 0.343545 \n",
+ " 15.244549 \n",
+ " \n",
+ " \n",
+ " Q16 \n",
+ " 1.137759 \n",
+ " 0.324665 \n",
+ " 0.107170 \n",
+ " 4.040372 \n",
+ " \n",
+ " \n",
+ " Q17 \n",
+ " 0.945859 \n",
+ " 11.012643 \n",
+ " 2.421115 \n",
+ " 6.240577 \n",
+ " \n",
+ " \n",
+ " Q18 \n",
+ " 1.249520 \n",
+ " 1.174869 \n",
+ " 0.581301 \n",
+ " 5.818171 \n",
+ " \n",
+ " \n",
+ " Q19 \n",
+ " 0.845528 \n",
+ " 0.699843 \n",
+ " 1.043606 \n",
+ " 7.167377 \n",
+ " \n",
+ " \n",
+ " Q20 \n",
+ " 0.339757 \n",
+ " 5.000766 \n",
+ " 1.173452 \n",
+ " 10.766471 \n",
+ " \n",
+ " \n",
+ " Q21 \n",
+ " 0.029250 \n",
+ " 0.414528 \n",
+ " 1.681073 \n",
+ " 0.452709 \n",
+ " \n",
+ " \n",
+ " Q22 \n",
+ " 0.308102 \n",
+ " 23.406557 \n",
+ " 0.735065 \n",
+ " 1.128908 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " MariaDB MonetDB MySQL PostgreSQL\n",
+ "Q1 1.092398 10.364119 0.114122 0.434969\n",
+ "Q2 0.122047 9.633426 6.627008 41.603555\n",
+ "Q3 2.444016 59.579042 0.269539 13.132645\n",
+ "Q4 0.951896 3.363114 0.613280 89.064814\n",
+ "Q5 1.426131 1.791666 5.482682 8.702817\n",
+ "Q6 0.179846 86.468714 0.090371 0.547371\n",
+ "Q7 2.395733 16.236802 5.950250 9.281048\n",
+ "Q8 0.998884 48.570977 4.869160 2.125372\n",
+ "Q9 0.681291 10.771239 5.064431 1.710566\n",
+ "Q10 0.242202 6.164557 0.587717 10.913312\n",
+ "Q11 1.200837 38.930983 0.135477 31.191841\n",
+ "Q12 1.254913 90.351435 0.427921 37.845840\n",
+ "Q13 0.514387 6.048979 0.381476 41.477505\n",
+ "Q14 1.414266 14.093788 0.576316 42.779761\n",
+ "Q15 0.353071 2.157215 0.343545 15.244549\n",
+ "Q16 1.137759 0.324665 0.107170 4.040372\n",
+ "Q17 0.945859 11.012643 2.421115 6.240577\n",
+ "Q18 1.249520 1.174869 0.581301 5.818171\n",
+ "Q19 0.845528 0.699843 1.043606 7.167377\n",
+ "Q20 0.339757 5.000766 1.173452 10.766471\n",
+ "Q21 0.029250 0.414528 1.681073 0.452709\n",
+ "Q22 0.308102 23.406557 0.735065 1.128908"
+ ]
+ },
+ "execution_count": 28,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluate.get_aggregated_query_statistics(type='latency', name='execution', query_aggregate='Mean').sort_index()\n",
+ "df = evaluate.get_aggregated_by_connection(df, list_connections_dbms, connection_aggregate='cv [%]').T\n",
+ "\n",
+ "display(Markdown(\"### CV of Latency of Timer Execution per DBMS [%]\"))\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3a1087a0",
+ "metadata": {},
+ "source": [
+ "### Latency of Timer Connection"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "id": "2ac7ba25",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "No data\n"
+ ]
+ },
+ {
+ "data": {
+ "text/markdown": [
+ "### Latency of Timer Connection [ms]"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: []\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 29,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluate.get_aggregated_query_statistics(type='timer', name='connection', query_aggregate='Mean').T\n",
+ "\n",
+ "display(Markdown(\"### Latency of Timer Connection [ms]\"))\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "16754d69",
+ "metadata": {},
+ "source": [
+ "### Latency of Timer Data Transfer"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "id": "d0700990",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "No data\n"
+ ]
+ },
+ {
+ "data": {
+ "text/markdown": [
+ "### Latency of Timer Data Transfer [ms]"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: []\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 30,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluate.get_aggregated_query_statistics(type='timer', name='datatransfer', query_aggregate='Mean').T\n",
+ "\n",
+ "display(Markdown(\"### Latency of Timer Data Transfer [ms]\"))\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6a0cbd6a",
+ "metadata": {},
+ "source": [
+ "### Latency of Timer Run - normalized to 1 per Query"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "id": "ac5c1e42",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### Latency of Timer Run - normalized to 1 per Query"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " DBMS \n",
+ " MariaDB-1-1 \n",
+ " MariaDB-2-1 \n",
+ " MonetDB-1-1 \n",
+ " MonetDB-2-1 \n",
+ " MySQL-1-1 \n",
+ " MySQL-2-1 \n",
+ " PostgreSQL-1-1 \n",
+ " PostgreSQL-2-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Q1 \n",
+ " 25.6731 \n",
+ " 25.1178 \n",
+ " 1.2314 \n",
+ " 1.0000 \n",
+ " 30.9799 \n",
+ " 30.9102 \n",
+ " 4.4355 \n",
+ " 4.3972 \n",
+ " \n",
+ " \n",
+ " Q2 \n",
+ " 37.5848 \n",
+ " 37.4946 \n",
+ " 1.2066 \n",
+ " 1.0000 \n",
+ " 5.0984 \n",
+ " 4.4904 \n",
+ " 20.5693 \n",
+ " 49.8201 \n",
+ " \n",
+ " \n",
+ " Q3 \n",
+ " 205.1199 \n",
+ " 195.3331 \n",
+ " 3.9136 \n",
+ " 1.0000 \n",
+ " 211.5699 \n",
+ " 210.4424 \n",
+ " 52.9075 \n",
+ " 68.8992 \n",
+ " \n",
+ " \n",
+ " Q4 \n",
+ " 69.4516 \n",
+ " 68.1419 \n",
+ " 1.0695 \n",
+ " 1.0000 \n",
+ " 65.9320 \n",
+ " 65.1291 \n",
+ " 402.9322 \n",
+ " 23.3069 \n",
+ " \n",
+ " \n",
+ " Q5 \n",
+ " 116.7992 \n",
+ " 113.5147 \n",
+ " 1.0000 \n",
+ " 1.0364 \n",
+ " 121.3335 \n",
+ " 108.7207 \n",
+ " 15.6456 \n",
+ " 18.6283 \n",
+ " \n",
+ " \n",
+ " Q6 \n",
+ " 148.2653 \n",
+ " 148.7996 \n",
+ " 13.7751 \n",
+ " 1.0000 \n",
+ " 185.6878 \n",
+ " 185.3529 \n",
+ " 22.5094 \n",
+ " 22.2644 \n",
+ " \n",
+ " \n",
+ " Q7 \n",
+ " 16.0235 \n",
+ " 15.2737 \n",
+ " 1.0000 \n",
+ " 1.3876 \n",
+ " 12.3999 \n",
+ " 11.0072 \n",
+ " 5.1147 \n",
+ " 6.1613 \n",
+ " \n",
+ " \n",
+ " Q8 \n",
+ " 68.4763 \n",
+ " 67.1218 \n",
+ " 1.0000 \n",
+ " 2.8883 \n",
+ " 107.5677 \n",
+ " 97.5789 \n",
+ " 11.7046 \n",
+ " 12.2131 \n",
+ " \n",
+ " \n",
+ " Q9 \n",
+ " 35.5985 \n",
+ " 35.1167 \n",
+ " 1.2409 \n",
+ " 1.0000 \n",
+ " 31.4080 \n",
+ " 28.3816 \n",
+ " 11.1184 \n",
+ " 10.7447 \n",
+ " \n",
+ " \n",
+ " Q10 \n",
+ " 175.9841 \n",
+ " 176.8386 \n",
+ " 1.1313 \n",
+ " 1.0000 \n",
+ " 26.1265 \n",
+ " 25.8230 \n",
+ " 25.9259 \n",
+ " 20.8237 \n",
+ " \n",
+ " \n",
+ " Q11 \n",
+ " 9.9829 \n",
+ " 10.3335 \n",
+ " 1.3665 \n",
+ " 1.0000 \n",
+ " 13.6289 \n",
+ " 13.7105 \n",
+ " 9.3674 \n",
+ " 5.2213 \n",
+ " \n",
+ " \n",
+ " Q12 \n",
+ " 690.0006 \n",
+ " 672.8976 \n",
+ " 19.7143 \n",
+ " 1.0000 \n",
+ " 180.5649 \n",
+ " 179.0266 \n",
+ " 83.0518 \n",
+ " 37.4482 \n",
+ " \n",
+ " \n",
+ " Q13 \n",
+ " 35.9209 \n",
+ " 36.2924 \n",
+ " 1.1287 \n",
+ " 1.0000 \n",
+ " 50.9175 \n",
+ " 50.5307 \n",
+ " 5.9048 \n",
+ " 2.4428 \n",
+ " \n",
+ " \n",
+ " Q14 \n",
+ " 3739.6018 \n",
+ " 3635.3011 \n",
+ " 1.3277 \n",
+ " 1.0000 \n",
+ " 217.1943 \n",
+ " 214.7056 \n",
+ " 59.5000 \n",
+ " 23.8469 \n",
+ " \n",
+ " \n",
+ " Q15 \n",
+ " 142.9895 \n",
+ " 144.0028 \n",
+ " 1.0000 \n",
+ " 1.0441 \n",
+ " 195.7917 \n",
+ " 194.4510 \n",
+ " 39.9922 \n",
+ " 29.4118 \n",
+ " \n",
+ " \n",
+ " Q16 \n",
+ " 2.6889 \n",
+ " 2.6945 \n",
+ " 1.0000 \n",
+ " 1.0098 \n",
+ " 3.1785 \n",
+ " 3.2569 \n",
+ " 3.8420 \n",
+ " 3.4834 \n",
+ " \n",
+ " \n",
+ " Q17 \n",
+ " 1.0191 \n",
+ " 1.0000 \n",
+ " 1.5099 \n",
+ " 1.8836 \n",
+ " 10.4320 \n",
+ " 9.9389 \n",
+ " 9.5251 \n",
+ " 10.7930 \n",
+ " \n",
+ " \n",
+ " Q18 \n",
+ " 262.9223 \n",
+ " 269.5733 \n",
+ " 1.0000 \n",
+ " 1.0233 \n",
+ " 64.2412 \n",
+ " 63.5157 \n",
+ " 69.1282 \n",
+ " 61.5257 \n",
+ " \n",
+ " \n",
+ " Q19 \n",
+ " 9.6009 \n",
+ " 9.4399 \n",
+ " 1.0141 \n",
+ " 1.0000 \n",
+ " 13.7695 \n",
+ " 13.4852 \n",
+ " 2.2894 \n",
+ " 1.9831 \n",
+ " \n",
+ " \n",
+ " Q20 \n",
+ " 88.0938 \n",
+ " 88.6799 \n",
+ " 1.1287 \n",
+ " 1.0000 \n",
+ " 43.6931 \n",
+ " 42.7608 \n",
+ " 32.7238 \n",
+ " 40.6064 \n",
+ " \n",
+ " \n",
+ " Q21 \n",
+ " 36.5327 \n",
+ " 36.5113 \n",
+ " 10.6148 \n",
+ " 10.5271 \n",
+ " 12.0581 \n",
+ " 11.6596 \n",
+ " 1.0000 \n",
+ " 1.0091 \n",
+ " \n",
+ " \n",
+ " Q22 \n",
+ " 3.0319 \n",
+ " 3.0507 \n",
+ " 1.0000 \n",
+ " 1.6094 \n",
+ " 3.9394 \n",
+ " 3.8823 \n",
+ " 1.2641 \n",
+ " 1.2360 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "DBMS MariaDB-1-1 MariaDB-2-1 MonetDB-1-1 MonetDB-2-1 MySQL-1-1 \\\n",
+ "Q1 25.6731 25.1178 1.2314 1.0000 30.9799 \n",
+ "Q2 37.5848 37.4946 1.2066 1.0000 5.0984 \n",
+ "Q3 205.1199 195.3331 3.9136 1.0000 211.5699 \n",
+ "Q4 69.4516 68.1419 1.0695 1.0000 65.9320 \n",
+ "Q5 116.7992 113.5147 1.0000 1.0364 121.3335 \n",
+ "Q6 148.2653 148.7996 13.7751 1.0000 185.6878 \n",
+ "Q7 16.0235 15.2737 1.0000 1.3876 12.3999 \n",
+ "Q8 68.4763 67.1218 1.0000 2.8883 107.5677 \n",
+ "Q9 35.5985 35.1167 1.2409 1.0000 31.4080 \n",
+ "Q10 175.9841 176.8386 1.1313 1.0000 26.1265 \n",
+ "Q11 9.9829 10.3335 1.3665 1.0000 13.6289 \n",
+ "Q12 690.0006 672.8976 19.7143 1.0000 180.5649 \n",
+ "Q13 35.9209 36.2924 1.1287 1.0000 50.9175 \n",
+ "Q14 3739.6018 3635.3011 1.3277 1.0000 217.1943 \n",
+ "Q15 142.9895 144.0028 1.0000 1.0441 195.7917 \n",
+ "Q16 2.6889 2.6945 1.0000 1.0098 3.1785 \n",
+ "Q17 1.0191 1.0000 1.5099 1.8836 10.4320 \n",
+ "Q18 262.9223 269.5733 1.0000 1.0233 64.2412 \n",
+ "Q19 9.6009 9.4399 1.0141 1.0000 13.7695 \n",
+ "Q20 88.0938 88.6799 1.1287 1.0000 43.6931 \n",
+ "Q21 36.5327 36.5113 10.6148 10.5271 12.0581 \n",
+ "Q22 3.0319 3.0507 1.0000 1.6094 3.9394 \n",
+ "\n",
+ "DBMS MySQL-2-1 PostgreSQL-1-1 PostgreSQL-2-1 \n",
+ "Q1 30.9102 4.4355 4.3972 \n",
+ "Q2 4.4904 20.5693 49.8201 \n",
+ "Q3 210.4424 52.9075 68.8992 \n",
+ "Q4 65.1291 402.9322 23.3069 \n",
+ "Q5 108.7207 15.6456 18.6283 \n",
+ "Q6 185.3529 22.5094 22.2644 \n",
+ "Q7 11.0072 5.1147 6.1613 \n",
+ "Q8 97.5789 11.7046 12.2131 \n",
+ "Q9 28.3816 11.1184 10.7447 \n",
+ "Q10 25.8230 25.9259 20.8237 \n",
+ "Q11 13.7105 9.3674 5.2213 \n",
+ "Q12 179.0266 83.0518 37.4482 \n",
+ "Q13 50.5307 5.9048 2.4428 \n",
+ "Q14 214.7056 59.5000 23.8469 \n",
+ "Q15 194.4510 39.9922 29.4118 \n",
+ "Q16 3.2569 3.8420 3.4834 \n",
+ "Q17 9.9389 9.5251 10.7930 \n",
+ "Q18 63.5157 69.1282 61.5257 \n",
+ "Q19 13.4852 2.2894 1.9831 \n",
+ "Q20 42.7608 32.7238 40.6064 \n",
+ "Q21 11.6596 1.0000 1.0091 \n",
+ "Q22 3.8823 1.2641 1.2360 "
+ ]
+ },
+ "execution_count": 31,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluate.get_aggregated_query_statistics(type='timer', name='run', query_aggregate='factor').sort_index().T\n",
+ "\n",
+ "display(Markdown(\"### Latency of Timer Run - normalized to 1 per Query\"))\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3a2d4f94",
+ "metadata": {},
+ "source": [
+ "### Size of Result Sets per Query"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "id": "ff52364a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### Size of Result Sets per Query"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " MariaDB-1-1 \n",
+ " MariaDB-2-1 \n",
+ " MonetDB-1-1 \n",
+ " MonetDB-2-1 \n",
+ " MySQL-1-1 \n",
+ " MySQL-2-1 \n",
+ " PostgreSQL-1-1 \n",
+ " PostgreSQL-2-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Q1 \n",
+ " 1344 \n",
+ " 1344 \n",
+ " 1344 \n",
+ " 1344 \n",
+ " 1344 \n",
+ " 1344 \n",
+ " 1344 \n",
+ " 1344 \n",
+ " \n",
+ " \n",
+ " Q2 \n",
+ " 19584 \n",
+ " 19584 \n",
+ " 19584 \n",
+ " 19584 \n",
+ " 19584 \n",
+ " 19584 \n",
+ " 19584 \n",
+ " 19584 \n",
+ " \n",
+ " \n",
+ " Q3 \n",
+ " 1344 \n",
+ " 1344 \n",
+ " 1344 \n",
+ " 1344 \n",
+ " 1344 \n",
+ " 1344 \n",
+ " 1344 \n",
+ " 1344 \n",
+ " \n",
+ " \n",
+ " Q4 \n",
+ " 624 \n",
+ " 624 \n",
+ " 624 \n",
+ " 624 \n",
+ " 624 \n",
+ " 624 \n",
+ " 624 \n",
+ " 624 \n",
+ " \n",
+ " \n",
+ " Q5 \n",
+ " 624 \n",
+ " 624 \n",
+ " 624 \n",
+ " 624 \n",
+ " 624 \n",
+ " 624 \n",
+ " 624 \n",
+ " 624 \n",
+ " \n",
+ " \n",
+ " Q6 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " \n",
+ " \n",
+ " Q7 \n",
+ " 768 \n",
+ " 768 \n",
+ " 768 \n",
+ " 768 \n",
+ " 768 \n",
+ " 768 \n",
+ " 768 \n",
+ " 768 \n",
+ " \n",
+ " \n",
+ " Q8 \n",
+ " 480 \n",
+ " 480 \n",
+ " 480 \n",
+ " 480 \n",
+ " 480 \n",
+ " 480 \n",
+ " 480 \n",
+ " 480 \n",
+ " \n",
+ " \n",
+ " Q9 \n",
+ " 12984 \n",
+ " 12984 \n",
+ " 12984 \n",
+ " 12984 \n",
+ " 12984 \n",
+ " 12984 \n",
+ " 12984 \n",
+ " 12984 \n",
+ " \n",
+ " \n",
+ " Q10 \n",
+ " 4224 \n",
+ " 4224 \n",
+ " 4224 \n",
+ " 4224 \n",
+ " 4224 \n",
+ " 4224 \n",
+ " 4224 \n",
+ " 4224 \n",
+ " \n",
+ " \n",
+ " Q11 \n",
+ " 455728 \n",
+ " 455728 \n",
+ " 455728 \n",
+ " 455728 \n",
+ " 455728 \n",
+ " 455728 \n",
+ " 455728 \n",
+ " 455728 \n",
+ " \n",
+ " \n",
+ " Q12 \n",
+ " 528 \n",
+ " 528 \n",
+ " 528 \n",
+ " 528 \n",
+ " 528 \n",
+ " 528 \n",
+ " 528 \n",
+ " 528 \n",
+ " \n",
+ " \n",
+ " Q13 \n",
+ " 2544 \n",
+ " 2544 \n",
+ " 2544 \n",
+ " 2544 \n",
+ " 2544 \n",
+ " 2544 \n",
+ " 2544 \n",
+ " 2544 \n",
+ " \n",
+ " \n",
+ " Q14 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " \n",
+ " \n",
+ " Q15 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " Q16 \n",
+ " 2746656 \n",
+ " 2746656 \n",
+ " 2746656 \n",
+ " 2746656 \n",
+ " 2746656 \n",
+ " 2746656 \n",
+ " 2746656 \n",
+ " 2746656 \n",
+ " \n",
+ " \n",
+ " Q17 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " \n",
+ " \n",
+ " Q18 \n",
+ " 13488 \n",
+ " 13488 \n",
+ " 13488 \n",
+ " 13488 \n",
+ " 13488 \n",
+ " 13488 \n",
+ " 13488 \n",
+ " 13488 \n",
+ " \n",
+ " \n",
+ " Q19 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " 408 \n",
+ " \n",
+ " \n",
+ " Q20 \n",
+ " 85568 \n",
+ " 85568 \n",
+ " 85568 \n",
+ " 85568 \n",
+ " 85568 \n",
+ " 85568 \n",
+ " 85568 \n",
+ " 85568 \n",
+ " \n",
+ " \n",
+ " Q21 \n",
+ " 5184 \n",
+ " 5184 \n",
+ " 5184 \n",
+ " 5184 \n",
+ " 5184 \n",
+ " 5184 \n",
+ " 5184 \n",
+ " 5184 \n",
+ " \n",
+ " \n",
+ " Q22 \n",
+ " 888 \n",
+ " 888 \n",
+ " 888 \n",
+ " 888 \n",
+ " 888 \n",
+ " 888 \n",
+ " 888 \n",
+ " 888 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " MariaDB-1-1 MariaDB-2-1 MonetDB-1-1 MonetDB-2-1 MySQL-1-1 MySQL-2-1 \\\n",
+ "Q1 1344 1344 1344 1344 1344 1344 \n",
+ "Q2 19584 19584 19584 19584 19584 19584 \n",
+ "Q3 1344 1344 1344 1344 1344 1344 \n",
+ "Q4 624 624 624 624 624 624 \n",
+ "Q5 624 624 624 624 624 624 \n",
+ "Q6 408 408 408 408 408 408 \n",
+ "Q7 768 768 768 768 768 768 \n",
+ "Q8 480 480 480 480 480 480 \n",
+ "Q9 12984 12984 12984 12984 12984 12984 \n",
+ "Q10 4224 4224 4224 4224 4224 4224 \n",
+ "Q11 455728 455728 455728 455728 455728 455728 \n",
+ "Q12 528 528 528 528 528 528 \n",
+ "Q13 2544 2544 2544 2544 2544 2544 \n",
+ "Q14 408 408 408 408 408 408 \n",
+ "Q15 0 0 0 0 0 0 \n",
+ "Q16 2746656 2746656 2746656 2746656 2746656 2746656 \n",
+ "Q17 408 408 408 408 408 408 \n",
+ "Q18 13488 13488 13488 13488 13488 13488 \n",
+ "Q19 408 408 408 408 408 408 \n",
+ "Q20 85568 85568 85568 85568 85568 85568 \n",
+ "Q21 5184 5184 5184 5184 5184 5184 \n",
+ "Q22 888 888 888 888 888 888 \n",
+ "\n",
+ " PostgreSQL-1-1 PostgreSQL-2-1 \n",
+ "Q1 1344 1344 \n",
+ "Q2 19584 19584 \n",
+ "Q3 1344 1344 \n",
+ "Q4 624 624 \n",
+ "Q5 624 624 \n",
+ "Q6 408 408 \n",
+ "Q7 768 768 \n",
+ "Q8 480 480 \n",
+ "Q9 12984 12984 \n",
+ "Q10 4224 4224 \n",
+ "Q11 455728 455728 \n",
+ "Q12 528 528 \n",
+ "Q13 2544 2544 \n",
+ "Q14 408 408 \n",
+ "Q15 0 0 \n",
+ "Q16 2746656 2746656 \n",
+ "Q17 408 408 \n",
+ "Q18 13488 13488 \n",
+ "Q19 408 408 \n",
+ "Q20 85568 85568 \n",
+ "Q21 5184 5184 \n",
+ "Q22 888 888 "
+ ]
+ },
+ "execution_count": 32,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluate.get_total_resultsize().T\n",
+ "\n",
+ "display(Markdown(\"### Size of Result Sets per Query\"))\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c1e2eaf5",
+ "metadata": {},
+ "source": [
+ "### Size of Result Sets per Query - normalized to 1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3fafdb6b",
+ "metadata": {},
+ "source": [
+ "### Size of Result Sets per Query - normalized to 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "id": "87f1883d",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### Size of Result Sets per Query - normalized to 1"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Q1 \n",
+ " Q2 \n",
+ " Q3 \n",
+ " Q4 \n",
+ " Q5 \n",
+ " Q6 \n",
+ " Q7 \n",
+ " Q8 \n",
+ " Q9 \n",
+ " Q10 \n",
+ " ... \n",
+ " Q13 \n",
+ " Q14 \n",
+ " Q15 \n",
+ " Q16 \n",
+ " Q17 \n",
+ " Q18 \n",
+ " Q19 \n",
+ " Q20 \n",
+ " Q21 \n",
+ " Q22 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " MariaDB-1-1 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " ... \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " NaN \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " \n",
+ " \n",
+ " MariaDB-2-1 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " ... \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " NaN \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " \n",
+ " \n",
+ " MonetDB-1-1 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " ... \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " NaN \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " \n",
+ " \n",
+ " MonetDB-2-1 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " ... \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " NaN \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " \n",
+ " \n",
+ " MySQL-1-1 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " ... \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " NaN \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " \n",
+ " \n",
+ " MySQL-2-1 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " ... \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " NaN \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-1-1 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " ... \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " NaN \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-2-1 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " ... \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " NaN \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
8 rows Ă— 22 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 ... Q13 \\\n",
+ "MariaDB-1-1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ... 1.0 \n",
+ "MariaDB-2-1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ... 1.0 \n",
+ "MonetDB-1-1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ... 1.0 \n",
+ "MonetDB-2-1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ... 1.0 \n",
+ "MySQL-1-1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ... 1.0 \n",
+ "MySQL-2-1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ... 1.0 \n",
+ "PostgreSQL-1-1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ... 1.0 \n",
+ "PostgreSQL-2-1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ... 1.0 \n",
+ "\n",
+ " Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 \n",
+ "MariaDB-1-1 1.0 NaN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 \n",
+ "MariaDB-2-1 1.0 NaN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 \n",
+ "MonetDB-1-1 1.0 NaN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 \n",
+ "MonetDB-2-1 1.0 NaN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 \n",
+ "MySQL-1-1 1.0 NaN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 \n",
+ "MySQL-2-1 1.0 NaN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 \n",
+ "PostgreSQL-1-1 1.0 NaN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 \n",
+ "PostgreSQL-2-1 1.0 NaN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 \n",
+ "\n",
+ "[8 rows x 22 columns]"
+ ]
+ },
+ "execution_count": 33,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluate.get_total_resultsize_normalized()\n",
+ "\n",
+ "display(Markdown(\"### Size of Result Sets per Query - normalized to 1\"))\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3359cc7d",
+ "metadata": {},
+ "source": [
+ "### Table of Errors"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "id": "df4ea05a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### Table of Errors"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " MariaDB-1-1 \n",
+ " MariaDB-2-1 \n",
+ " MonetDB-1-1 \n",
+ " MonetDB-2-1 \n",
+ " MySQL-1-1 \n",
+ " MySQL-2-1 \n",
+ " PostgreSQL-1-1 \n",
+ " PostgreSQL-2-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Q1 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q2 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q3 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q4 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q5 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q6 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q7 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q8 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q9 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q10 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q11 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q12 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q13 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q14 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q15 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q16 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q17 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q18 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q19 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q20 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q21 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q22 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " MariaDB-1-1 MariaDB-2-1 MonetDB-1-1 MonetDB-2-1 MySQL-1-1 MySQL-2-1 \\\n",
+ "Q1 False False False False False False \n",
+ "Q2 False False False False False False \n",
+ "Q3 False False False False False False \n",
+ "Q4 False False False False False False \n",
+ "Q5 False False False False False False \n",
+ "Q6 False False False False False False \n",
+ "Q7 False False False False False False \n",
+ "Q8 False False False False False False \n",
+ "Q9 False False False False False False \n",
+ "Q10 False False False False False False \n",
+ "Q11 False False False False False False \n",
+ "Q12 False False False False False False \n",
+ "Q13 False False False False False False \n",
+ "Q14 False False False False False False \n",
+ "Q15 False False False False False False \n",
+ "Q16 False False False False False False \n",
+ "Q17 False False False False False False \n",
+ "Q18 False False False False False False \n",
+ "Q19 False False False False False False \n",
+ "Q20 False False False False False False \n",
+ "Q21 False False False False False False \n",
+ "Q22 False False False False False False \n",
+ "\n",
+ " PostgreSQL-1-1 PostgreSQL-2-1 \n",
+ "Q1 False False \n",
+ "Q2 False False \n",
+ "Q3 False False \n",
+ "Q4 False False \n",
+ "Q5 False False \n",
+ "Q6 False False \n",
+ "Q7 False False \n",
+ "Q8 False False \n",
+ "Q9 False False \n",
+ "Q10 False False \n",
+ "Q11 False False \n",
+ "Q12 False False \n",
+ "Q13 False False \n",
+ "Q14 False False \n",
+ "Q15 False False \n",
+ "Q16 False False \n",
+ "Q17 False False \n",
+ "Q18 False False \n",
+ "Q19 False False \n",
+ "Q20 False False \n",
+ "Q21 False False \n",
+ "Q22 False False "
+ ]
+ },
+ "execution_count": 34,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluate.get_total_errors().T\n",
+ "\n",
+ "display(Markdown(\"### Table of Errors\"))\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "21d75990",
+ "metadata": {},
+ "source": [
+ "### Table of Warnings"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "id": "74b60c96",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### Table of Warnings"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " MariaDB-1-1 \n",
+ " MariaDB-2-1 \n",
+ " MonetDB-1-1 \n",
+ " MonetDB-2-1 \n",
+ " MySQL-1-1 \n",
+ " MySQL-2-1 \n",
+ " PostgreSQL-1-1 \n",
+ " PostgreSQL-2-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Q1 \n",
+ " False \n",
+ " False \n",
+ " True \n",
+ " True \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q2 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q3 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q4 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q5 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q6 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q7 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q8 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q9 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q10 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q11 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q12 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q13 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q14 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q15 \n",
+ " True \n",
+ " False \n",
+ " True \n",
+ " True \n",
+ " True \n",
+ " True \n",
+ " True \n",
+ " True \n",
+ " \n",
+ " \n",
+ " Q16 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q17 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q18 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q19 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q20 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q21 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ " Q22 \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " False \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " MariaDB-1-1 MariaDB-2-1 MonetDB-1-1 MonetDB-2-1 MySQL-1-1 MySQL-2-1 \\\n",
+ "Q1 False False True True False False \n",
+ "Q2 False False False False False False \n",
+ "Q3 False False False False False False \n",
+ "Q4 False False False False False False \n",
+ "Q5 False False False False False False \n",
+ "Q6 False False False False False False \n",
+ "Q7 False False False False False False \n",
+ "Q8 False False False False False False \n",
+ "Q9 False False False False False False \n",
+ "Q10 False False False False False False \n",
+ "Q11 False False False False False False \n",
+ "Q12 False False False False False False \n",
+ "Q13 False False False False False False \n",
+ "Q14 False False False False False False \n",
+ "Q15 True False True True True True \n",
+ "Q16 False False False False False False \n",
+ "Q17 False False False False False False \n",
+ "Q18 False False False False False False \n",
+ "Q19 False False False False False False \n",
+ "Q20 False False False False False False \n",
+ "Q21 False False False False False False \n",
+ "Q22 False False False False False False \n",
+ "\n",
+ " PostgreSQL-1-1 PostgreSQL-2-1 \n",
+ "Q1 False False \n",
+ "Q2 False False \n",
+ "Q3 False False \n",
+ "Q4 False False \n",
+ "Q5 False False \n",
+ "Q6 False False \n",
+ "Q7 False False \n",
+ "Q8 False False \n",
+ "Q9 False False \n",
+ "Q10 False False \n",
+ "Q11 False False \n",
+ "Q12 False False \n",
+ "Q13 False False \n",
+ "Q14 False False \n",
+ "Q15 True True \n",
+ "Q16 False False \n",
+ "Q17 False False \n",
+ "Q18 False False \n",
+ "Q19 False False \n",
+ "Q20 False False \n",
+ "Q21 False False \n",
+ "Q22 False False "
+ ]
+ },
+ "execution_count": 35,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluate.get_total_warnings().T\n",
+ "\n",
+ "display(Markdown(\"### Table of Warnings\"))\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "407491f1",
+ "metadata": {},
+ "source": [
+ "### Total Time [s] per Query"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "id": "dabebcf1",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### Total Time [s] per Query"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " MariaDB-1-1 \n",
+ " MariaDB-2-1 \n",
+ " MonetDB-1-1 \n",
+ " MonetDB-2-1 \n",
+ " MySQL-1-1 \n",
+ " MySQL-2-1 \n",
+ " PostgreSQL-1-1 \n",
+ " PostgreSQL-2-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Q1 \n",
+ " 347.973955 \n",
+ " 340.447334 \n",
+ " 16.845194 \n",
+ " 13.651159 \n",
+ " 419.900614 \n",
+ " 418.959277 \n",
+ " 60.128597 \n",
+ " 59.610011 \n",
+ " \n",
+ " \n",
+ " Q2 \n",
+ " 39.615576 \n",
+ " 39.520509 \n",
+ " 1.823718 \n",
+ " 1.384478 \n",
+ " 5.376375 \n",
+ " 4.740327 \n",
+ " 21.686897 \n",
+ " 52.512813 \n",
+ " \n",
+ " \n",
+ " Q3 \n",
+ " 176.414484 \n",
+ " 167.996884 \n",
+ " 3.498522 \n",
+ " 0.976042 \n",
+ " 181.960522 \n",
+ " 180.991944 \n",
+ " 45.508243 \n",
+ " 59.262894 \n",
+ " \n",
+ " \n",
+ " Q4 \n",
+ " 32.722405 \n",
+ " 32.105238 \n",
+ " 0.549320 \n",
+ " 0.513998 \n",
+ " 31.063408 \n",
+ " 30.685955 \n",
+ " 189.832833 \n",
+ " 10.984629 \n",
+ " \n",
+ " \n",
+ " Q5 \n",
+ " 129.521532 \n",
+ " 125.879449 \n",
+ " 1.155652 \n",
+ " 1.228914 \n",
+ " 134.548819 \n",
+ " 120.563560 \n",
+ " 17.351747 \n",
+ " 20.659699 \n",
+ " \n",
+ " \n",
+ " Q6 \n",
+ " 57.660592 \n",
+ " 57.868211 \n",
+ " 5.364403 \n",
+ " 0.395960 \n",
+ " 72.212753 \n",
+ " 72.083435 \n",
+ " 8.756129 \n",
+ " 8.660637 \n",
+ " \n",
+ " \n",
+ " Q7 \n",
+ " 105.684266 \n",
+ " 100.738883 \n",
+ " 6.706806 \n",
+ " 12.678075 \n",
+ " 81.784196 \n",
+ " 72.600099 \n",
+ " 33.736559 \n",
+ " 40.639116 \n",
+ " \n",
+ " \n",
+ " Q8 \n",
+ " 224.372421 \n",
+ " 219.930033 \n",
+ " 3.325128 \n",
+ " 9.827672 \n",
+ " 352.452032 \n",
+ " 319.723975 \n",
+ " 38.353090 \n",
+ " 40.019183 \n",
+ " \n",
+ " \n",
+ " Q9 \n",
+ " 423.299235 \n",
+ " 417.569854 \n",
+ " 15.697046 \n",
+ " 15.665570 \n",
+ " 373.467877 \n",
+ " 337.484744 \n",
+ " 132.212075 \n",
+ " 127.769052 \n",
+ " \n",
+ " \n",
+ " Q10 \n",
+ " 424.215546 \n",
+ " 426.275221 \n",
+ " 3.142779 \n",
+ " 3.154876 \n",
+ " 62.980595 \n",
+ " 62.250786 \n",
+ " 62.501992 \n",
+ " 50.201007 \n",
+ " \n",
+ " \n",
+ " Q11 \n",
+ " 12.636782 \n",
+ " 13.036927 \n",
+ " 1.998065 \n",
+ " 1.483094 \n",
+ " 17.120079 \n",
+ " 17.255366 \n",
+ " 11.835612 \n",
+ " 6.707820 \n",
+ " \n",
+ " \n",
+ " Q12 \n",
+ " 396.245450 \n",
+ " 386.423815 \n",
+ " 11.375542 \n",
+ " 0.624792 \n",
+ " 103.693792 \n",
+ " 102.811258 \n",
+ " 47.698360 \n",
+ " 21.510053 \n",
+ " \n",
+ " \n",
+ " Q13 \n",
+ " 342.821134 \n",
+ " 346.367399 \n",
+ " 10.778061 \n",
+ " 9.548804 \n",
+ " 485.944128 \n",
+ " 482.254182 \n",
+ " 56.357074 \n",
+ " 23.317058 \n",
+ " \n",
+ " \n",
+ " Q14 \n",
+ " 1534.097118 \n",
+ " 1491.309947 \n",
+ " 0.554613 \n",
+ " 0.420054 \n",
+ " 89.101176 \n",
+ " 88.081257 \n",
+ " 24.410784 \n",
+ " 9.784663 \n",
+ " \n",
+ " \n",
+ " Q15 \n",
+ " 116.154487 \n",
+ " 116.977704 \n",
+ " 0.821195 \n",
+ " 0.856493 \n",
+ " 159.046659 \n",
+ " 157.957757 \n",
+ " 32.487656 \n",
+ " 23.893080 \n",
+ " \n",
+ " \n",
+ " Q16 \n",
+ " 15.720677 \n",
+ " 15.581426 \n",
+ " 6.722981 \n",
+ " 6.640638 \n",
+ " 18.174277 \n",
+ " 18.795835 \n",
+ " 22.066576 \n",
+ " 19.974487 \n",
+ " \n",
+ " \n",
+ " Q17 \n",
+ " 3.832843 \n",
+ " 3.760958 \n",
+ " 5.683618 \n",
+ " 7.087494 \n",
+ " 39.216798 \n",
+ " 37.363785 \n",
+ " 35.808117 \n",
+ " 40.574290 \n",
+ " \n",
+ " \n",
+ " Q18 \n",
+ " 378.056357 \n",
+ " 387.620047 \n",
+ " 1.627102 \n",
+ " 3.110095 \n",
+ " 92.376161 \n",
+ " 91.482406 \n",
+ " 99.406812 \n",
+ " 88.473750 \n",
+ " \n",
+ " \n",
+ " Q19 \n",
+ " 7.156457 \n",
+ " 7.036084 \n",
+ " 0.770288 \n",
+ " 0.758979 \n",
+ " 10.261899 \n",
+ " 10.050805 \n",
+ " 1.708093 \n",
+ " 1.479426 \n",
+ " \n",
+ " \n",
+ " Q20 \n",
+ " 61.613432 \n",
+ " 62.027928 \n",
+ " 0.891396 \n",
+ " 0.792113 \n",
+ " 30.721453 \n",
+ " 30.143051 \n",
+ " 23.013910 \n",
+ " 28.578599 \n",
+ " \n",
+ " \n",
+ " Q21 \n",
+ " 738.396596 \n",
+ " 737.964908 \n",
+ " 214.951881 \n",
+ " 214.146436 \n",
+ " 243.717694 \n",
+ " 235.666268 \n",
+ " 20.215939 \n",
+ " 20.400054 \n",
+ " \n",
+ " \n",
+ " Q22 \n",
+ " 5.480514 \n",
+ " 5.514622 \n",
+ " 1.872112 \n",
+ " 3.753415 \n",
+ " 7.119875 \n",
+ " 7.017448 \n",
+ " 2.286109 \n",
+ " 2.236404 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " MariaDB-1-1 MariaDB-2-1 MonetDB-1-1 MonetDB-2-1 MySQL-1-1 \\\n",
+ "Q1 347.973955 340.447334 16.845194 13.651159 419.900614 \n",
+ "Q2 39.615576 39.520509 1.823718 1.384478 5.376375 \n",
+ "Q3 176.414484 167.996884 3.498522 0.976042 181.960522 \n",
+ "Q4 32.722405 32.105238 0.549320 0.513998 31.063408 \n",
+ "Q5 129.521532 125.879449 1.155652 1.228914 134.548819 \n",
+ "Q6 57.660592 57.868211 5.364403 0.395960 72.212753 \n",
+ "Q7 105.684266 100.738883 6.706806 12.678075 81.784196 \n",
+ "Q8 224.372421 219.930033 3.325128 9.827672 352.452032 \n",
+ "Q9 423.299235 417.569854 15.697046 15.665570 373.467877 \n",
+ "Q10 424.215546 426.275221 3.142779 3.154876 62.980595 \n",
+ "Q11 12.636782 13.036927 1.998065 1.483094 17.120079 \n",
+ "Q12 396.245450 386.423815 11.375542 0.624792 103.693792 \n",
+ "Q13 342.821134 346.367399 10.778061 9.548804 485.944128 \n",
+ "Q14 1534.097118 1491.309947 0.554613 0.420054 89.101176 \n",
+ "Q15 116.154487 116.977704 0.821195 0.856493 159.046659 \n",
+ "Q16 15.720677 15.581426 6.722981 6.640638 18.174277 \n",
+ "Q17 3.832843 3.760958 5.683618 7.087494 39.216798 \n",
+ "Q18 378.056357 387.620047 1.627102 3.110095 92.376161 \n",
+ "Q19 7.156457 7.036084 0.770288 0.758979 10.261899 \n",
+ "Q20 61.613432 62.027928 0.891396 0.792113 30.721453 \n",
+ "Q21 738.396596 737.964908 214.951881 214.146436 243.717694 \n",
+ "Q22 5.480514 5.514622 1.872112 3.753415 7.119875 \n",
+ "\n",
+ " MySQL-2-1 PostgreSQL-1-1 PostgreSQL-2-1 \n",
+ "Q1 418.959277 60.128597 59.610011 \n",
+ "Q2 4.740327 21.686897 52.512813 \n",
+ "Q3 180.991944 45.508243 59.262894 \n",
+ "Q4 30.685955 189.832833 10.984629 \n",
+ "Q5 120.563560 17.351747 20.659699 \n",
+ "Q6 72.083435 8.756129 8.660637 \n",
+ "Q7 72.600099 33.736559 40.639116 \n",
+ "Q8 319.723975 38.353090 40.019183 \n",
+ "Q9 337.484744 132.212075 127.769052 \n",
+ "Q10 62.250786 62.501992 50.201007 \n",
+ "Q11 17.255366 11.835612 6.707820 \n",
+ "Q12 102.811258 47.698360 21.510053 \n",
+ "Q13 482.254182 56.357074 23.317058 \n",
+ "Q14 88.081257 24.410784 9.784663 \n",
+ "Q15 157.957757 32.487656 23.893080 \n",
+ "Q16 18.795835 22.066576 19.974487 \n",
+ "Q17 37.363785 35.808117 40.574290 \n",
+ "Q18 91.482406 99.406812 88.473750 \n",
+ "Q19 10.050805 1.708093 1.479426 \n",
+ "Q20 30.143051 23.013910 28.578599 \n",
+ "Q21 235.666268 20.215939 20.400054 \n",
+ "Q22 7.017448 2.286109 2.236404 "
+ ]
+ },
+ "execution_count": 36,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluate.get_total_times().T/1000.0\n",
+ "\n",
+ "display(Markdown(\"### Total Time [s] per Query\"))\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e966d41a",
+ "metadata": {},
+ "source": [
+ "### Total Time per Query - normalized to 100%"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "id": "dc313665",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### Total Time per Query - normalized to 100%"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " MariaDB-1-1 \n",
+ " MariaDB-2-1 \n",
+ " MonetDB-1-1 \n",
+ " MonetDB-2-1 \n",
+ " MySQL-1-1 \n",
+ " MySQL-2-1 \n",
+ " PostgreSQL-1-1 \n",
+ " PostgreSQL-2-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Q1 \n",
+ " 20.743404 \n",
+ " 20.294728 \n",
+ " 1.004175 \n",
+ " 0.813772 \n",
+ " 25.031092 \n",
+ " 24.974977 \n",
+ " 3.584383 \n",
+ " 3.553469 \n",
+ " \n",
+ " \n",
+ " Q2 \n",
+ " 23.770197 \n",
+ " 23.713155 \n",
+ " 1.094270 \n",
+ " 0.830717 \n",
+ " 3.225941 \n",
+ " 2.844298 \n",
+ " 13.012605 \n",
+ " 31.508817 \n",
+ " \n",
+ " \n",
+ " Q3 \n",
+ " 21.603285 \n",
+ " 20.572486 \n",
+ " 0.428420 \n",
+ " 0.119524 \n",
+ " 22.282439 \n",
+ " 22.163829 \n",
+ " 5.572828 \n",
+ " 7.257189 \n",
+ " \n",
+ " \n",
+ " Q4 \n",
+ " 9.962439 \n",
+ " 9.774540 \n",
+ " 0.167242 \n",
+ " 0.156488 \n",
+ " 9.457352 \n",
+ " 9.342435 \n",
+ " 57.795200 \n",
+ " 3.344305 \n",
+ " \n",
+ " \n",
+ " Q5 \n",
+ " 23.510497 \n",
+ " 22.849393 \n",
+ " 0.209772 \n",
+ " 0.223070 \n",
+ " 24.423041 \n",
+ " 21.884463 \n",
+ " 3.149655 \n",
+ " 3.750109 \n",
+ " \n",
+ " \n",
+ " Q6 \n",
+ " 20.374615 \n",
+ " 20.447978 \n",
+ " 1.895534 \n",
+ " 0.139914 \n",
+ " 25.516683 \n",
+ " 25.470988 \n",
+ " 3.094016 \n",
+ " 3.060273 \n",
+ " \n",
+ " \n",
+ " Q7 \n",
+ " 23.249385 \n",
+ " 22.161455 \n",
+ " 1.475424 \n",
+ " 2.789038 \n",
+ " 17.991631 \n",
+ " 15.971230 \n",
+ " 7.421675 \n",
+ " 8.940162 \n",
+ " \n",
+ " \n",
+ " Q8 \n",
+ " 18.573822 \n",
+ " 18.206075 \n",
+ " 0.275258 \n",
+ " 0.813547 \n",
+ " 29.176407 \n",
+ " 26.467139 \n",
+ " 3.174915 \n",
+ " 3.312837 \n",
+ " \n",
+ " \n",
+ " Q9 \n",
+ " 22.965884 \n",
+ " 22.655039 \n",
+ " 0.851635 \n",
+ " 0.849927 \n",
+ " 20.262309 \n",
+ " 18.310062 \n",
+ " 7.173099 \n",
+ " 6.932045 \n",
+ " \n",
+ " \n",
+ " Q10 \n",
+ " 38.750956 \n",
+ " 38.939101 \n",
+ " 0.287084 \n",
+ " 0.288190 \n",
+ " 5.753109 \n",
+ " 5.686443 \n",
+ " 5.709390 \n",
+ " 4.585728 \n",
+ " \n",
+ " \n",
+ " Q11 \n",
+ " 15.396863 \n",
+ " 15.884406 \n",
+ " 2.434475 \n",
+ " 1.807026 \n",
+ " 20.859386 \n",
+ " 21.024221 \n",
+ " 14.420704 \n",
+ " 8.172919 \n",
+ " \n",
+ " \n",
+ " Q12 \n",
+ " 37.019032 \n",
+ " 36.101451 \n",
+ " 1.062754 \n",
+ " 0.058371 \n",
+ " 9.687540 \n",
+ " 9.605090 \n",
+ " 4.456195 \n",
+ " 2.009566 \n",
+ " \n",
+ " \n",
+ " Q13 \n",
+ " 19.507426 \n",
+ " 19.709218 \n",
+ " 0.613300 \n",
+ " 0.543352 \n",
+ " 27.651502 \n",
+ " 27.441534 \n",
+ " 3.206866 \n",
+ " 1.326802 \n",
+ " \n",
+ " \n",
+ " Q14 \n",
+ " 47.381440 \n",
+ " 46.059934 \n",
+ " 0.017130 \n",
+ " 0.012974 \n",
+ " 2.751939 \n",
+ " 2.720438 \n",
+ " 0.753941 \n",
+ " 0.302205 \n",
+ " \n",
+ " \n",
+ " Q15 \n",
+ " 19.098230 \n",
+ " 19.233584 \n",
+ " 0.135022 \n",
+ " 0.140825 \n",
+ " 26.150602 \n",
+ " 25.971563 \n",
+ " 5.341651 \n",
+ " 3.928523 \n",
+ " \n",
+ " \n",
+ " Q16 \n",
+ " 12.711086 \n",
+ " 12.598494 \n",
+ " 5.435923 \n",
+ " 5.369344 \n",
+ " 14.694965 \n",
+ " 15.197531 \n",
+ " 17.842116 \n",
+ " 16.150540 \n",
+ " \n",
+ " \n",
+ " Q17 \n",
+ " 2.211325 \n",
+ " 2.169851 \n",
+ " 3.279113 \n",
+ " 4.089067 \n",
+ " 22.625785 \n",
+ " 21.556705 \n",
+ " 20.659177 \n",
+ " 23.408978 \n",
+ " \n",
+ " \n",
+ " Q18 \n",
+ " 33.100333 \n",
+ " 33.937672 \n",
+ " 0.142459 \n",
+ " 0.272301 \n",
+ " 8.087899 \n",
+ " 8.009647 \n",
+ " 8.703460 \n",
+ " 7.746228 \n",
+ " \n",
+ " \n",
+ " Q19 \n",
+ " 18.246015 \n",
+ " 17.939112 \n",
+ " 1.963916 \n",
+ " 1.935083 \n",
+ " 26.163610 \n",
+ " 25.625407 \n",
+ " 4.354933 \n",
+ " 3.771925 \n",
+ " \n",
+ " \n",
+ " Q20 \n",
+ " 25.911744 \n",
+ " 26.086061 \n",
+ " 0.374880 \n",
+ " 0.333126 \n",
+ " 12.920014 \n",
+ " 12.676765 \n",
+ " 9.678580 \n",
+ " 12.018829 \n",
+ " \n",
+ " \n",
+ " Q21 \n",
+ " 30.443572 \n",
+ " 30.425774 \n",
+ " 8.862315 \n",
+ " 8.829107 \n",
+ " 10.048309 \n",
+ " 9.716354 \n",
+ " 0.833489 \n",
+ " 0.841080 \n",
+ " \n",
+ " \n",
+ " Q22 \n",
+ " 15.534117 \n",
+ " 15.630793 \n",
+ " 5.306365 \n",
+ " 10.638782 \n",
+ " 20.180767 \n",
+ " 19.890444 \n",
+ " 6.479809 \n",
+ " 6.338923 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " MariaDB-1-1 MariaDB-2-1 MonetDB-1-1 MonetDB-2-1 MySQL-1-1 MySQL-2-1 \\\n",
+ "Q1 20.743404 20.294728 1.004175 0.813772 25.031092 24.974977 \n",
+ "Q2 23.770197 23.713155 1.094270 0.830717 3.225941 2.844298 \n",
+ "Q3 21.603285 20.572486 0.428420 0.119524 22.282439 22.163829 \n",
+ "Q4 9.962439 9.774540 0.167242 0.156488 9.457352 9.342435 \n",
+ "Q5 23.510497 22.849393 0.209772 0.223070 24.423041 21.884463 \n",
+ "Q6 20.374615 20.447978 1.895534 0.139914 25.516683 25.470988 \n",
+ "Q7 23.249385 22.161455 1.475424 2.789038 17.991631 15.971230 \n",
+ "Q8 18.573822 18.206075 0.275258 0.813547 29.176407 26.467139 \n",
+ "Q9 22.965884 22.655039 0.851635 0.849927 20.262309 18.310062 \n",
+ "Q10 38.750956 38.939101 0.287084 0.288190 5.753109 5.686443 \n",
+ "Q11 15.396863 15.884406 2.434475 1.807026 20.859386 21.024221 \n",
+ "Q12 37.019032 36.101451 1.062754 0.058371 9.687540 9.605090 \n",
+ "Q13 19.507426 19.709218 0.613300 0.543352 27.651502 27.441534 \n",
+ "Q14 47.381440 46.059934 0.017130 0.012974 2.751939 2.720438 \n",
+ "Q15 19.098230 19.233584 0.135022 0.140825 26.150602 25.971563 \n",
+ "Q16 12.711086 12.598494 5.435923 5.369344 14.694965 15.197531 \n",
+ "Q17 2.211325 2.169851 3.279113 4.089067 22.625785 21.556705 \n",
+ "Q18 33.100333 33.937672 0.142459 0.272301 8.087899 8.009647 \n",
+ "Q19 18.246015 17.939112 1.963916 1.935083 26.163610 25.625407 \n",
+ "Q20 25.911744 26.086061 0.374880 0.333126 12.920014 12.676765 \n",
+ "Q21 30.443572 30.425774 8.862315 8.829107 10.048309 9.716354 \n",
+ "Q22 15.534117 15.630793 5.306365 10.638782 20.180767 19.890444 \n",
+ "\n",
+ " PostgreSQL-1-1 PostgreSQL-2-1 \n",
+ "Q1 3.584383 3.553469 \n",
+ "Q2 13.012605 31.508817 \n",
+ "Q3 5.572828 7.257189 \n",
+ "Q4 57.795200 3.344305 \n",
+ "Q5 3.149655 3.750109 \n",
+ "Q6 3.094016 3.060273 \n",
+ "Q7 7.421675 8.940162 \n",
+ "Q8 3.174915 3.312837 \n",
+ "Q9 7.173099 6.932045 \n",
+ "Q10 5.709390 4.585728 \n",
+ "Q11 14.420704 8.172919 \n",
+ "Q12 4.456195 2.009566 \n",
+ "Q13 3.206866 1.326802 \n",
+ "Q14 0.753941 0.302205 \n",
+ "Q15 5.341651 3.928523 \n",
+ "Q16 17.842116 16.150540 \n",
+ "Q17 20.659177 23.408978 \n",
+ "Q18 8.703460 7.746228 \n",
+ "Q19 4.354933 3.771925 \n",
+ "Q20 9.678580 12.018829 \n",
+ "Q21 0.833489 0.841080 \n",
+ "Q22 6.479809 6.338923 "
+ ]
+ },
+ "execution_count": 37,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluate.get_total_times_normalized().T\n",
+ "\n",
+ "display(Markdown(\"### Total Time per Query - normalized to 100%\"))\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4b6ece2c",
+ "metadata": {},
+ "source": [
+ "### Total Time per Query - normalized to 100%"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "id": "98b91145",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### Total Time per Query - normalized to 100%"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " MariaDB-1-1 \n",
+ " MariaDB-2-1 \n",
+ " MonetDB-1-1 \n",
+ " MonetDB-2-1 \n",
+ " MySQL-1-1 \n",
+ " MySQL-2-1 \n",
+ " PostgreSQL-1-1 \n",
+ " PostgreSQL-2-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Q1 \n",
+ " 165.947234 \n",
+ " 162.357822 \n",
+ " 8.033398 \n",
+ " 6.510177 \n",
+ " 200.248739 \n",
+ " 199.799819 \n",
+ " 28.675061 \n",
+ " 28.427749 \n",
+ " \n",
+ " \n",
+ " Q2 \n",
+ " 190.161578 \n",
+ " 189.705241 \n",
+ " 8.754162 \n",
+ " 6.645734 \n",
+ " 25.807525 \n",
+ " 22.754386 \n",
+ " 104.100838 \n",
+ " 252.070536 \n",
+ " \n",
+ " \n",
+ " Q3 \n",
+ " 172.826279 \n",
+ " 164.579890 \n",
+ " 3.427363 \n",
+ " 0.956189 \n",
+ " 178.259513 \n",
+ " 177.310635 \n",
+ " 44.582622 \n",
+ " 58.057509 \n",
+ " \n",
+ " \n",
+ " Q4 \n",
+ " 79.699508 \n",
+ " 78.196322 \n",
+ " 1.337938 \n",
+ " 1.251906 \n",
+ " 75.658813 \n",
+ " 74.739478 \n",
+ " 462.361598 \n",
+ " 26.754437 \n",
+ " \n",
+ " \n",
+ " Q5 \n",
+ " 188.083977 \n",
+ " 182.795146 \n",
+ " 1.678173 \n",
+ " 1.784561 \n",
+ " 195.384324 \n",
+ " 175.075706 \n",
+ " 25.197243 \n",
+ " 30.000868 \n",
+ " \n",
+ " \n",
+ " Q6 \n",
+ " 162.996918 \n",
+ " 163.583822 \n",
+ " 15.164276 \n",
+ " 1.119312 \n",
+ " 204.133462 \n",
+ " 203.767902 \n",
+ " 24.752124 \n",
+ " 24.482184 \n",
+ " \n",
+ " \n",
+ " Q7 \n",
+ " 185.995083 \n",
+ " 177.291640 \n",
+ " 11.803393 \n",
+ " 22.312305 \n",
+ " 143.933047 \n",
+ " 127.769837 \n",
+ " 59.373398 \n",
+ " 71.521296 \n",
+ " \n",
+ " \n",
+ " Q8 \n",
+ " 148.590573 \n",
+ " 145.648602 \n",
+ " 2.202065 \n",
+ " 6.508373 \n",
+ " 233.411259 \n",
+ " 211.737113 \n",
+ " 25.399323 \n",
+ " 26.502692 \n",
+ " \n",
+ " \n",
+ " Q9 \n",
+ " 183.727070 \n",
+ " 181.240313 \n",
+ " 6.813082 \n",
+ " 6.799420 \n",
+ " 162.098471 \n",
+ " 146.480499 \n",
+ " 57.384788 \n",
+ " 55.456357 \n",
+ " \n",
+ " \n",
+ " Q10 \n",
+ " 310.007644 \n",
+ " 311.512811 \n",
+ " 2.296676 \n",
+ " 2.305516 \n",
+ " 46.024871 \n",
+ " 45.491542 \n",
+ " 45.675118 \n",
+ " 36.685822 \n",
+ " \n",
+ " \n",
+ " Q11 \n",
+ " 123.174905 \n",
+ " 127.075251 \n",
+ " 19.475797 \n",
+ " 14.456209 \n",
+ " 166.875087 \n",
+ " 168.193769 \n",
+ " 115.365632 \n",
+ " 65.383349 \n",
+ " \n",
+ " \n",
+ " Q12 \n",
+ " 296.152257 \n",
+ " 288.811606 \n",
+ " 8.502034 \n",
+ " 0.466967 \n",
+ " 77.500324 \n",
+ " 76.840721 \n",
+ " 35.649562 \n",
+ " 16.076527 \n",
+ " \n",
+ " \n",
+ " Q13 \n",
+ " 156.059409 \n",
+ " 157.673743 \n",
+ " 4.906400 \n",
+ " 4.346817 \n",
+ " 221.212014 \n",
+ " 219.532272 \n",
+ " 25.654928 \n",
+ " 10.614417 \n",
+ " \n",
+ " \n",
+ " Q14 \n",
+ " 379.051518 \n",
+ " 368.479474 \n",
+ " 0.137036 \n",
+ " 0.103789 \n",
+ " 22.015514 \n",
+ " 21.763508 \n",
+ " 6.031525 \n",
+ " 2.417638 \n",
+ " \n",
+ " \n",
+ " Q15 \n",
+ " 152.785842 \n",
+ " 153.868675 \n",
+ " 1.080173 \n",
+ " 1.126603 \n",
+ " 209.204813 \n",
+ " 207.772505 \n",
+ " 42.733208 \n",
+ " 31.428182 \n",
+ " \n",
+ " \n",
+ " Q16 \n",
+ " 101.688692 \n",
+ " 100.787949 \n",
+ " 43.487385 \n",
+ " 42.954751 \n",
+ " 117.559722 \n",
+ " 121.580250 \n",
+ " 142.736932 \n",
+ " 129.204320 \n",
+ " \n",
+ " \n",
+ " Q17 \n",
+ " 17.690600 \n",
+ " 17.358810 \n",
+ " 26.232903 \n",
+ " 32.712534 \n",
+ " 181.006278 \n",
+ " 172.453643 \n",
+ " 165.273412 \n",
+ " 187.271821 \n",
+ " \n",
+ " \n",
+ " Q18 \n",
+ " 264.802664 \n",
+ " 271.501376 \n",
+ " 1.139674 \n",
+ " 2.178409 \n",
+ " 64.703193 \n",
+ " 64.077179 \n",
+ " 69.627684 \n",
+ " 61.969821 \n",
+ " \n",
+ " \n",
+ " Q19 \n",
+ " 145.968117 \n",
+ " 143.512895 \n",
+ " 15.711325 \n",
+ " 15.480666 \n",
+ " 209.308878 \n",
+ " 205.003257 \n",
+ " 34.839461 \n",
+ " 30.175402 \n",
+ " \n",
+ " \n",
+ " Q20 \n",
+ " 207.293950 \n",
+ " 208.688491 \n",
+ " 2.999039 \n",
+ " 2.665008 \n",
+ " 103.360114 \n",
+ " 101.414122 \n",
+ " 77.428642 \n",
+ " 96.150635 \n",
+ " \n",
+ " \n",
+ " Q21 \n",
+ " 243.548577 \n",
+ " 243.406191 \n",
+ " 70.898518 \n",
+ " 70.632855 \n",
+ " 80.386472 \n",
+ " 77.730835 \n",
+ " 6.667912 \n",
+ " 6.728639 \n",
+ " \n",
+ " \n",
+ " Q22 \n",
+ " 124.272938 \n",
+ " 125.046343 \n",
+ " 42.450923 \n",
+ " 85.110253 \n",
+ " 161.446139 \n",
+ " 159.123549 \n",
+ " 51.838470 \n",
+ " 50.711385 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " MariaDB-1-1 MariaDB-2-1 MonetDB-1-1 MonetDB-2-1 MySQL-1-1 \\\n",
+ "Q1 165.947234 162.357822 8.033398 6.510177 200.248739 \n",
+ "Q2 190.161578 189.705241 8.754162 6.645734 25.807525 \n",
+ "Q3 172.826279 164.579890 3.427363 0.956189 178.259513 \n",
+ "Q4 79.699508 78.196322 1.337938 1.251906 75.658813 \n",
+ "Q5 188.083977 182.795146 1.678173 1.784561 195.384324 \n",
+ "Q6 162.996918 163.583822 15.164276 1.119312 204.133462 \n",
+ "Q7 185.995083 177.291640 11.803393 22.312305 143.933047 \n",
+ "Q8 148.590573 145.648602 2.202065 6.508373 233.411259 \n",
+ "Q9 183.727070 181.240313 6.813082 6.799420 162.098471 \n",
+ "Q10 310.007644 311.512811 2.296676 2.305516 46.024871 \n",
+ "Q11 123.174905 127.075251 19.475797 14.456209 166.875087 \n",
+ "Q12 296.152257 288.811606 8.502034 0.466967 77.500324 \n",
+ "Q13 156.059409 157.673743 4.906400 4.346817 221.212014 \n",
+ "Q14 379.051518 368.479474 0.137036 0.103789 22.015514 \n",
+ "Q15 152.785842 153.868675 1.080173 1.126603 209.204813 \n",
+ "Q16 101.688692 100.787949 43.487385 42.954751 117.559722 \n",
+ "Q17 17.690600 17.358810 26.232903 32.712534 181.006278 \n",
+ "Q18 264.802664 271.501376 1.139674 2.178409 64.703193 \n",
+ "Q19 145.968117 143.512895 15.711325 15.480666 209.308878 \n",
+ "Q20 207.293950 208.688491 2.999039 2.665008 103.360114 \n",
+ "Q21 243.548577 243.406191 70.898518 70.632855 80.386472 \n",
+ "Q22 124.272938 125.046343 42.450923 85.110253 161.446139 \n",
+ "\n",
+ " MySQL-2-1 PostgreSQL-1-1 PostgreSQL-2-1 \n",
+ "Q1 199.799819 28.675061 28.427749 \n",
+ "Q2 22.754386 104.100838 252.070536 \n",
+ "Q3 177.310635 44.582622 58.057509 \n",
+ "Q4 74.739478 462.361598 26.754437 \n",
+ "Q5 175.075706 25.197243 30.000868 \n",
+ "Q6 203.767902 24.752124 24.482184 \n",
+ "Q7 127.769837 59.373398 71.521296 \n",
+ "Q8 211.737113 25.399323 26.502692 \n",
+ "Q9 146.480499 57.384788 55.456357 \n",
+ "Q10 45.491542 45.675118 36.685822 \n",
+ "Q11 168.193769 115.365632 65.383349 \n",
+ "Q12 76.840721 35.649562 16.076527 \n",
+ "Q13 219.532272 25.654928 10.614417 \n",
+ "Q14 21.763508 6.031525 2.417638 \n",
+ "Q15 207.772505 42.733208 31.428182 \n",
+ "Q16 121.580250 142.736932 129.204320 \n",
+ "Q17 172.453643 165.273412 187.271821 \n",
+ "Q18 64.077179 69.627684 61.969821 \n",
+ "Q19 205.003257 34.839461 30.175402 \n",
+ "Q20 101.414122 77.428642 96.150635 \n",
+ "Q21 77.730835 6.667912 6.728639 \n",
+ "Q22 159.123549 51.838470 50.711385 "
+ ]
+ },
+ "execution_count": 38,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluate.get_total_times_relative().T\n",
+ "\n",
+ "display(Markdown(\"### Total Time per Query - normalized to 100%\"))\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6f646c5f",
+ "metadata": {},
+ "source": [
+ "## Plots"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "id": "f8b84101",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "colorscale": [
+ [
+ 0,
+ "rgb(255,245,240)"
+ ],
+ [
+ 0.125,
+ "rgb(254,224,210)"
+ ],
+ [
+ 0.25,
+ "rgb(252,187,161)"
+ ],
+ [
+ 0.375,
+ "rgb(252,146,114)"
+ ],
+ [
+ 0.5,
+ "rgb(251,106,74)"
+ ],
+ [
+ 0.625,
+ "rgb(239,59,44)"
+ ],
+ [
+ 0.75,
+ "rgb(203,24,29)"
+ ],
+ [
+ 0.875,
+ "rgb(165,15,21)"
+ ],
+ [
+ 1,
+ "rgb(103,0,13)"
+ ]
+ ],
+ "reversescale": false,
+ "showscale": true,
+ "type": "heatmap",
+ "x": [
+ "MonetDB-2-1",
+ "MonetDB-1-1",
+ "PostgreSQL-2-1",
+ "PostgreSQL-1-1",
+ "MariaDB-2-1",
+ "MariaDB-1-1",
+ "MySQL-2-1",
+ "MySQL-1-1"
+ ],
+ "xgap": 1,
+ "y": [
+ "Q1",
+ "Q2",
+ "Q3",
+ "Q4",
+ "Q5",
+ "Q6",
+ "Q7",
+ "Q8",
+ "Q9",
+ "Q10",
+ "Q11",
+ "Q12",
+ "Q13",
+ "Q14",
+ "Q15",
+ "Q16",
+ "Q17",
+ "Q18",
+ "Q19",
+ "Q20",
+ "Q21",
+ "Q22"
+ ],
+ "ygap": 1,
+ "z": [
+ [
+ 4.52,
+ 5.56,
+ 19.87,
+ 20.04,
+ 113.48,
+ 115.99,
+ 139.65,
+ 139.97
+ ],
+ [
+ 0.35,
+ 0.42,
+ 17.5,
+ 7.23,
+ 13.17,
+ 13.2,
+ 1.58,
+ 1.79
+ ],
+ [
+ 0.29,
+ 1.12,
+ 19.75,
+ 15.17,
+ 56,
+ 58.8,
+ 60.33,
+ 60.65
+ ],
+ [
+ 0.16,
+ 0.17,
+ 3.66,
+ 63.28,
+ 10.7,
+ 10.91,
+ 10.23,
+ 10.35
+ ],
+ [
+ 0.38,
+ 0.37,
+ 6.89,
+ 5.78,
+ 41.96,
+ 43.17,
+ 40.19,
+ 44.85
+ ],
+ [
+ 0.13,
+ 1.79,
+ 2.89,
+ 2.92,
+ 19.29,
+ 19.22,
+ 24.03,
+ 24.07
+ ],
+ [
+ 3.05,
+ 2.2,
+ 13.55,
+ 11.24,
+ 33.58,
+ 35.23,
+ 24.2,
+ 27.26
+ ],
+ [
+ 3.15,
+ 1.09,
+ 13.34,
+ 12.78,
+ 73.31,
+ 74.79,
+ 106.57,
+ 117.48
+ ],
+ [
+ 3.96,
+ 4.92,
+ 42.59,
+ 44.07,
+ 139.19,
+ 141.1,
+ 112.49,
+ 124.49
+ ],
+ [
+ 0.8,
+ 0.91,
+ 16.73,
+ 20.83,
+ 142.09,
+ 141.4,
+ 20.75,
+ 20.99
+ ],
+ [
+ 0.42,
+ 0.57,
+ 2.17,
+ 3.89,
+ 4.29,
+ 4.15,
+ 5.7,
+ 5.66
+ ],
+ [
+ 0.19,
+ 3.77,
+ 7.17,
+ 15.9,
+ 128.81,
+ 132.08,
+ 34.27,
+ 34.56
+ ],
+ [
+ 3.18,
+ 3.59,
+ 7.77,
+ 18.78,
+ 115.45,
+ 114.27,
+ 160.75,
+ 161.98
+ ],
+ [
+ 0.14,
+ 0.18,
+ 3.26,
+ 8.14,
+ 497.1,
+ 511.36,
+ 29.36,
+ 29.7
+ ],
+ [
+ 0.28,
+ 0.27,
+ 7.96,
+ 10.83,
+ 38.99,
+ 38.72,
+ 52.65,
+ 53.02
+ ],
+ [
+ 1.86,
+ 1.84,
+ 6.41,
+ 7.07,
+ 4.96,
+ 4.95,
+ 5.99,
+ 5.85
+ ],
+ [
+ 2.36,
+ 1.89,
+ 13.52,
+ 11.94,
+ 1.25,
+ 1.28,
+ 12.45,
+ 13.07
+ ],
+ [
+ 0.49,
+ 0.48,
+ 29.49,
+ 33.13,
+ 129.2,
+ 126.02,
+ 30.44,
+ 30.79
+ ],
+ [
+ 0.25,
+ 0.25,
+ 0.49,
+ 0.57,
+ 2.34,
+ 2.38,
+ 3.35,
+ 3.42
+ ],
+ [
+ 0.23,
+ 0.26,
+ 9.46,
+ 7.63,
+ 20.67,
+ 20.53,
+ 9.97,
+ 10.18
+ ],
+ [
+ 70.92,
+ 71.51,
+ 6.8,
+ 6.74,
+ 245.99,
+ 246.13,
+ 78.55,
+ 81.24
+ ],
+ [
+ 0.97,
+ 0.6,
+ 0.74,
+ 0.76,
+ 1.84,
+ 1.83,
+ 2.34,
+ 2.37
+ ]
+ ]
+ }
+ ],
+ "layout": {
+ "annotations": [
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "4.52",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "5.56",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "19.87",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "20.04",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "113.48",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "115.99",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "139.65",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "139.97",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.35",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.42",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "17.5",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "7.23",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "13.17",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "13.2",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.58",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.79",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.29",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.12",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "19.75",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "15.17",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "56.0",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "58.8",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "60.33",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "60.65",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.16",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.17",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "3.66",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "63.28",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "10.7",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "10.91",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "10.23",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "10.35",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.38",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.37",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "6.89",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "5.78",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "41.96",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "43.17",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "40.19",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "44.85",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.13",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.79",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "2.89",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "2.92",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "19.29",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "19.22",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "24.03",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "24.07",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "3.05",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "2.2",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "13.55",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "11.24",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "33.58",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "35.23",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "24.2",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "27.26",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "3.15",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.09",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "13.34",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "12.78",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "73.31",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "74.79",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "106.57",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "117.48",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "3.96",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "4.92",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "42.59",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "44.07",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "139.19",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "141.1",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "112.49",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "124.49",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.8",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.91",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "16.73",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "20.83",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "142.09",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "141.4",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "20.75",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "20.99",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.42",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.57",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "2.17",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "3.89",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "4.29",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "4.15",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "5.7",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "5.66",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.19",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "3.77",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "7.17",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "15.9",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "128.81",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "132.08",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "34.27",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "34.56",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "3.18",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "3.59",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "7.77",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "18.78",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "115.45",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "114.27",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "160.75",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "161.98",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.14",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.18",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "3.26",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "8.14",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#FFFFFF"
+ },
+ "showarrow": false,
+ "text": "497.1",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#FFFFFF"
+ },
+ "showarrow": false,
+ "text": "511.36",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "29.36",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "29.7",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.28",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.27",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "7.96",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "10.83",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "38.99",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "38.72",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "52.65",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "53.02",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.86",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.84",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "6.41",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "7.07",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "4.96",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "4.95",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "5.99",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "5.85",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "2.36",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.89",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "13.52",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "11.94",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.25",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.28",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "12.45",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "13.07",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.49",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.48",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "29.49",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "33.13",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "129.2",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "126.02",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "30.44",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "30.79",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.25",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.25",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.49",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.57",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "2.34",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "2.38",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "3.35",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "3.42",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.23",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.26",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "9.46",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "7.63",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "20.67",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "20.53",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "9.97",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "10.18",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "70.92",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "71.51",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "6.8",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "6.74",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "245.99",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "246.13",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "78.55",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "81.24",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.97",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.6",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.74",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.76",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.84",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.83",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "2.34",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "2.37",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ }
+ ],
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Timer Run - Mean per Query [s]"
+ },
+ "xaxis": {
+ "dtick": 1,
+ "gridcolor": "rgb(0, 0, 0)",
+ "side": "top",
+ "ticks": "",
+ "type": "category"
+ },
+ "yaxis": {
+ "dtick": 1,
+ "ticks": "",
+ "ticksuffix": " ",
+ "type": "category"
+ }
+ }
+ },
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = (evaluate.get_aggregated_query_statistics(type='timer', name='run', query_aggregate='Mean').T/1000.0).round(2)\n",
+ "#.sort_index(ascending=False)\n",
+ "#df=df.T\n",
+ "#df=df.round(2)\n",
+ "\n",
+ "fig1 = ff.create_annotated_heatmap(\n",
+ " x=list(df.columns),\n",
+ " y=list(df.index),\n",
+ " z=df.values.tolist(),\n",
+ " showscale=True,\n",
+ " colorscale='Reds',\n",
+ " xgap=1,\n",
+ " ygap=1,\n",
+ " )\n",
+ "\n",
+ "fig1.update_layout(title_text='Timer Run - Mean per Query [s]')\n",
+ "fig1.layout.xaxis.type = 'category'\n",
+ "fig1.layout.yaxis.type = 'category'\n",
+ "\n",
+ "fig1.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "id": "2cec3261",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "colorscale": [
+ [
+ 0,
+ "rgb(255,245,240)"
+ ],
+ [
+ 0.125,
+ "rgb(254,224,210)"
+ ],
+ [
+ 0.25,
+ "rgb(252,187,161)"
+ ],
+ [
+ 0.375,
+ "rgb(252,146,114)"
+ ],
+ [
+ 0.5,
+ "rgb(251,106,74)"
+ ],
+ [
+ 0.625,
+ "rgb(239,59,44)"
+ ],
+ [
+ 0.75,
+ "rgb(203,24,29)"
+ ],
+ [
+ 0.875,
+ "rgb(165,15,21)"
+ ],
+ [
+ 1,
+ "rgb(103,0,13)"
+ ]
+ ],
+ "reversescale": false,
+ "showscale": true,
+ "type": "heatmap",
+ "x": [
+ "MonetDB-2-1",
+ "MonetDB-1-1",
+ "PostgreSQL-2-1",
+ "PostgreSQL-1-1",
+ "MariaDB-2-1",
+ "MariaDB-1-1",
+ "MySQL-2-1",
+ "MySQL-1-1"
+ ],
+ "xgap": 1,
+ "y": [
+ "Q1",
+ "Q2",
+ "Q3",
+ "Q4",
+ "Q5",
+ "Q6",
+ "Q7",
+ "Q8",
+ "Q9",
+ "Q10",
+ "Q11",
+ "Q12",
+ "Q13",
+ "Q14",
+ "Q15",
+ "Q16",
+ "Q17",
+ "Q18",
+ "Q19",
+ "Q20",
+ "Q21",
+ "Q22"
+ ],
+ "ygap": 1,
+ "z": [
+ [
+ 0.21,
+ 1.44,
+ 0.12,
+ 0.09,
+ 0.33,
+ 2.86,
+ 0.39,
+ 0.41
+ ],
+ [
+ 0.03,
+ 0.07,
+ 0.99,
+ 0.06,
+ 0.12,
+ 0.12,
+ 0.01,
+ 0.03
+ ],
+ [
+ 0.02,
+ 1.19,
+ 0.63,
+ 2.29,
+ 0.71,
+ 0.93,
+ 0.18,
+ 0.16
+ ],
+ [
+ 0.01,
+ 0.02,
+ 0.29,
+ 85.97,
+ 0.06,
+ 0.06,
+ 0.11,
+ 0.1
+ ],
+ [
+ 0.1,
+ 0.07,
+ 0.75,
+ 2.05,
+ 0.11,
+ 0.23,
+ 0.08,
+ 0.16
+ ],
+ [
+ 0.01,
+ 2.34,
+ 0.02,
+ 0.02,
+ 0.17,
+ 0.2,
+ 0.1,
+ 0.11
+ ],
+ [
+ 0.85,
+ 0.31,
+ 0.54,
+ 1.17,
+ 0.12,
+ 0.14,
+ 1.46,
+ 1.59
+ ],
+ [
+ 0.81,
+ 0.05,
+ 1.47,
+ 1.38,
+ 0.52,
+ 0.42,
+ 0.2,
+ 0.07
+ ],
+ [
+ 1,
+ 4.66,
+ 0.19,
+ 1.2,
+ 0.3,
+ 0.88,
+ 1.91,
+ 1.16
+ ],
+ [
+ 0.01,
+ 0.1,
+ 1.69,
+ 0.9,
+ 0.18,
+ 0.23,
+ 0.02,
+ 0.04
+ ],
+ [
+ 0.04,
+ 0.04,
+ 0.03,
+ 0.59,
+ 0.03,
+ 0.03,
+ 0.05,
+ 0.02
+ ],
+ [
+ 0.01,
+ 5.03,
+ 0.21,
+ 2.46,
+ 0.08,
+ 0.05,
+ 0.24,
+ 0.25
+ ],
+ [
+ 0.21,
+ 0.44,
+ 0.43,
+ 0.5,
+ 0.32,
+ 0.37,
+ 0.66,
+ 0.61
+ ],
+ [
+ 0.01,
+ 0.05,
+ 0.03,
+ 1.52,
+ 1.05,
+ 0.78,
+ 0.39,
+ 0.44
+ ],
+ [
+ 0.01,
+ 0.01,
+ 0.04,
+ 2.92,
+ 0.3,
+ 0.19,
+ 0.2,
+ 0.44
+ ],
+ [
+ 0.06,
+ 0.06,
+ 0.03,
+ 0.22,
+ 0.04,
+ 0.06,
+ 0.07,
+ 0.05
+ ],
+ [
+ 0.13,
+ 0.46,
+ 0.21,
+ 0.02,
+ 0.02,
+ 0.01,
+ 0.44,
+ 0.77
+ ],
+ [
+ 0.01,
+ 0.02,
+ 1.77,
+ 1.95,
+ 0.18,
+ 0.1,
+ 0.11,
+ 0.05
+ ],
+ [
+ 0.01,
+ 0.01,
+ 0.02,
+ 0.15,
+ 0.03,
+ 0.04,
+ 0.04,
+ 0.06
+ ],
+ [
+ 0.01,
+ 0.02,
+ 0.1,
+ 0.05,
+ 0.07,
+ 0.07,
+ 0.03,
+ 0.04
+ ],
+ [
+ 0.91,
+ 2.08,
+ 0.08,
+ 0.02,
+ 0.1,
+ 0.25,
+ 0.45,
+ 0.59
+ ],
+ [
+ 0.14,
+ 0.07,
+ 0.04,
+ 0.04,
+ 0.02,
+ 0.01,
+ 0.03,
+ 0.05
+ ]
+ ]
+ }
+ ],
+ "layout": {
+ "annotations": [
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.21",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.44",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.12",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.09",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.33",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "2.86",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.39",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.41",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.03",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.07",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.99",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.06",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.12",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.12",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.01",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.03",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.02",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.19",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.63",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "2.29",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.71",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.93",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.18",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.16",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.01",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.02",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.29",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#FFFFFF"
+ },
+ "showarrow": false,
+ "text": "85.97",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.06",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.06",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.11",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.1",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.1",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.07",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.75",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "2.05",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.11",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.23",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.08",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.16",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.01",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "2.34",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.02",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.02",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.17",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.2",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.1",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.11",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.85",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.31",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.54",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.17",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.12",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.14",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.46",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.59",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.81",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.05",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.47",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.38",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.52",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.42",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.2",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.07",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.0",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "4.66",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.19",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.2",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.3",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.88",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.91",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.16",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.01",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.1",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.69",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.9",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.18",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.23",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.02",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.04",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.04",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.04",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.03",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.59",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.03",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.03",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.05",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.02",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.01",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "5.03",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.21",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "2.46",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.08",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.05",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.24",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.25",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.21",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.44",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.43",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.5",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.32",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.37",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.66",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.61",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.01",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.05",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.03",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.52",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.05",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.78",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.39",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.44",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.01",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.01",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.04",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "2.92",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.3",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.19",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.2",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.44",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.06",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.06",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.03",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.22",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.04",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.06",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.07",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.05",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.13",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.46",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.21",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.02",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.02",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.01",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.44",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.77",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.01",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.02",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.77",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.95",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.18",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.1",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.11",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.05",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.01",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.01",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.02",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.15",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.03",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.04",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.04",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.06",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.01",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.02",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.1",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.05",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.07",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.07",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.03",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.04",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.91",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "2.08",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.08",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.02",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.1",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.25",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.45",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.59",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.14",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.07",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.04",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.04",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.02",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.01",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.03",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "0.05",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ }
+ ],
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Timer Run - Std Dev per Query [s]"
+ },
+ "xaxis": {
+ "dtick": 1,
+ "gridcolor": "rgb(0, 0, 0)",
+ "side": "top",
+ "ticks": "",
+ "type": "category"
+ },
+ "yaxis": {
+ "dtick": 1,
+ "ticks": "",
+ "ticksuffix": " ",
+ "type": "category"
+ }
+ }
+ },
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = (evaluate.get_aggregated_query_statistics(type='timer', name='run', query_aggregate='Std Dev').T/1000.0).round(2)\n",
+ "#.sort_index(ascending=False)\n",
+ "#df=df.T\n",
+ "#df=df.round(2)\n",
+ "\n",
+ "fig1 = ff.create_annotated_heatmap(\n",
+ " x=list(df.columns),\n",
+ " y=list(df.index),\n",
+ " z=df.values.tolist(),\n",
+ " showscale=True,\n",
+ " colorscale='Reds',\n",
+ " xgap=1,\n",
+ " ygap=1,\n",
+ " )\n",
+ "\n",
+ "fig1.update_layout(title_text='Timer Run - Std Dev per Query [s]')\n",
+ "fig1.layout.xaxis.type = 'category'\n",
+ "fig1.layout.yaxis.type = 'category'\n",
+ "\n",
+ "fig1.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "id": "1eaf1fb3",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "colorscale": [
+ [
+ 0,
+ "rgb(255,245,240)"
+ ],
+ [
+ 0.125,
+ "rgb(254,224,210)"
+ ],
+ [
+ 0.25,
+ "rgb(252,187,161)"
+ ],
+ [
+ 0.375,
+ "rgb(252,146,114)"
+ ],
+ [
+ 0.5,
+ "rgb(251,106,74)"
+ ],
+ [
+ 0.625,
+ "rgb(239,59,44)"
+ ],
+ [
+ 0.75,
+ "rgb(203,24,29)"
+ ],
+ [
+ 0.875,
+ "rgb(165,15,21)"
+ ],
+ [
+ 1,
+ "rgb(103,0,13)"
+ ]
+ ],
+ "reversescale": false,
+ "showscale": true,
+ "type": "heatmap",
+ "x": [
+ "MariaDB-1-1",
+ "MariaDB-2-1",
+ "MonetDB-1-1",
+ "MonetDB-2-1",
+ "MySQL-1-1",
+ "MySQL-2-1",
+ "PostgreSQL-1-1",
+ "PostgreSQL-2-1"
+ ],
+ "xgap": 1,
+ "y": [
+ "Q1",
+ "Q2",
+ "Q3",
+ "Q4",
+ "Q5",
+ "Q6",
+ "Q7",
+ "Q8",
+ "Q9",
+ "Q10",
+ "Q11",
+ "Q12",
+ "Q13",
+ "Q14",
+ "Q15",
+ "Q16",
+ "Q17",
+ "Q18",
+ "Q19",
+ "Q20",
+ "Q21",
+ "Q22"
+ ],
+ "ygap": 1,
+ "z": [
+ [
+ 25.67,
+ 25.12,
+ 1.23,
+ 1,
+ 30.98,
+ 30.91,
+ 4.44,
+ 4.4
+ ],
+ [
+ 37.58,
+ 37.49,
+ 1.21,
+ 1,
+ 5.1,
+ 4.49,
+ 20.57,
+ 49.82
+ ],
+ [
+ 205.12,
+ 195.33,
+ 3.91,
+ 1,
+ 211.57,
+ 210.44,
+ 52.91,
+ 68.9
+ ],
+ [
+ 69.45,
+ 68.14,
+ 1.07,
+ 1,
+ 65.93,
+ 65.13,
+ 402.93,
+ 23.31
+ ],
+ [
+ 116.8,
+ 113.51,
+ 1,
+ 1.04,
+ 121.33,
+ 108.72,
+ 15.65,
+ 18.63
+ ],
+ [
+ 148.27,
+ 148.8,
+ 13.78,
+ 1,
+ 185.69,
+ 185.35,
+ 22.51,
+ 22.26
+ ],
+ [
+ 16.02,
+ 15.27,
+ 1,
+ 1.39,
+ 12.4,
+ 11.01,
+ 5.11,
+ 6.16
+ ],
+ [
+ 68.48,
+ 67.12,
+ 1,
+ 2.89,
+ 107.57,
+ 97.58,
+ 11.7,
+ 12.21
+ ],
+ [
+ 35.6,
+ 35.12,
+ 1.24,
+ 1,
+ 31.41,
+ 28.38,
+ 11.12,
+ 10.74
+ ],
+ [
+ 175.98,
+ 176.84,
+ 1.13,
+ 1,
+ 26.13,
+ 25.82,
+ 25.93,
+ 20.82
+ ],
+ [
+ 9.98,
+ 10.33,
+ 1.37,
+ 1,
+ 13.63,
+ 13.71,
+ 9.37,
+ 5.22
+ ],
+ [
+ 690,
+ 672.9,
+ 19.71,
+ 1,
+ 180.56,
+ 179.03,
+ 83.05,
+ 37.45
+ ],
+ [
+ 35.92,
+ 36.29,
+ 1.13,
+ 1,
+ 50.92,
+ 50.53,
+ 5.9,
+ 2.44
+ ],
+ [
+ 3739.6,
+ 3635.3,
+ 1.33,
+ 1,
+ 217.19,
+ 214.71,
+ 59.5,
+ 23.85
+ ],
+ [
+ 142.99,
+ 144,
+ 1,
+ 1.04,
+ 195.79,
+ 194.45,
+ 39.99,
+ 29.41
+ ],
+ [
+ 2.69,
+ 2.69,
+ 1,
+ 1.01,
+ 3.18,
+ 3.26,
+ 3.84,
+ 3.48
+ ],
+ [
+ 1.02,
+ 1,
+ 1.51,
+ 1.88,
+ 10.43,
+ 9.94,
+ 9.53,
+ 10.79
+ ],
+ [
+ 262.92,
+ 269.57,
+ 1,
+ 1.02,
+ 64.24,
+ 63.52,
+ 69.13,
+ 61.53
+ ],
+ [
+ 9.6,
+ 9.44,
+ 1.01,
+ 1,
+ 13.77,
+ 13.49,
+ 2.29,
+ 1.98
+ ],
+ [
+ 88.09,
+ 88.68,
+ 1.13,
+ 1,
+ 43.69,
+ 42.76,
+ 32.72,
+ 40.61
+ ],
+ [
+ 36.53,
+ 36.51,
+ 10.61,
+ 10.53,
+ 12.06,
+ 11.66,
+ 1,
+ 1.01
+ ],
+ [
+ 3.03,
+ 3.05,
+ 1,
+ 1.61,
+ 3.94,
+ 3.88,
+ 1.26,
+ 1.24
+ ]
+ ]
+ }
+ ],
+ "layout": {
+ "annotations": [
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "25.67",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "25.12",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.23",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.0",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "30.98",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "30.91",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "4.44",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "4.4",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q1",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "37.58",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "37.49",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.21",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.0",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "5.1",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "4.49",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "20.57",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "49.82",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q2",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "205.12",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "195.33",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "3.91",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.0",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "211.57",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "210.44",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "52.91",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "68.9",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q3",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "69.45",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "68.14",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.07",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.0",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "65.93",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "65.13",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "402.93",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "23.31",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q4",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "116.8",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "113.51",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.0",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.04",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "121.33",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "108.72",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "15.65",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "18.63",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q5",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "148.27",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "148.8",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "13.78",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.0",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "185.69",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "185.35",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "22.51",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "22.26",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q6",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "16.02",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "15.27",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.0",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.39",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "12.4",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "11.01",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "5.11",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "6.16",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q7",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "68.48",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "67.12",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.0",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "2.89",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "107.57",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "97.58",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "11.7",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "12.21",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q8",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "35.6",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "35.12",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.24",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.0",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "31.41",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "28.38",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "11.12",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "10.74",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q9",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "175.98",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "176.84",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.13",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.0",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "26.13",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "25.82",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "25.93",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "20.82",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q10",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "9.98",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "10.33",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.37",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.0",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "13.63",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "13.71",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "9.37",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "5.22",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q11",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "690.0",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "672.9",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "19.71",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.0",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "180.56",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "179.03",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "83.05",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "37.45",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q12",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "35.92",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "36.29",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.13",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.0",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "50.92",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "50.53",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "5.9",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "2.44",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q13",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#FFFFFF"
+ },
+ "showarrow": false,
+ "text": "3739.6",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#FFFFFF"
+ },
+ "showarrow": false,
+ "text": "3635.3",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.33",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.0",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "217.19",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "214.71",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "59.5",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "23.85",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q14",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "142.99",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "144.0",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.0",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.04",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "195.79",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "194.45",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "39.99",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "29.41",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q15",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "2.69",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "2.69",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.0",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.01",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "3.18",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "3.26",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "3.84",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "3.48",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q16",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.02",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.0",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.51",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.88",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "10.43",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "9.94",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "9.53",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "10.79",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q17",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "262.92",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "269.57",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.0",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.02",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "64.24",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "63.52",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "69.13",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "61.53",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q18",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "9.6",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "9.44",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.01",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.0",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "13.77",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "13.49",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "2.29",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.98",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q19",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "88.09",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "88.68",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.13",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.0",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "43.69",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "42.76",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "32.72",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "40.61",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q20",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "36.53",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "36.51",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "10.61",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "10.53",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "12.06",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "11.66",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.0",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.01",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q21",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "3.03",
+ "x": "MariaDB-1-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "3.05",
+ "x": "MariaDB-2-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.0",
+ "x": "MonetDB-1-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.61",
+ "x": "MonetDB-2-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "3.94",
+ "x": "MySQL-1-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "3.88",
+ "x": "MySQL-2-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.26",
+ "x": "PostgreSQL-1-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ },
+ {
+ "font": {
+ "color": "#000000"
+ },
+ "showarrow": false,
+ "text": "1.24",
+ "x": "PostgreSQL-2-1",
+ "xref": "x",
+ "y": "Q22",
+ "yref": "y"
+ }
+ ],
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Timer Run - Factor per Query [s]"
+ },
+ "xaxis": {
+ "dtick": 1,
+ "gridcolor": "rgb(0, 0, 0)",
+ "side": "top",
+ "ticks": "",
+ "type": "category"
+ },
+ "yaxis": {
+ "dtick": 1,
+ "ticks": "",
+ "ticksuffix": " ",
+ "type": "category"
+ }
+ }
+ },
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = evaluate.get_aggregated_query_statistics(type='timer', name='run', query_aggregate='factor').round(2)\n",
+ "df=df.sort_index(ascending=True).T\n",
+ "#df=df.T\n",
+ "#df=df.round(2)\n",
+ "\n",
+ "fig1 = ff.create_annotated_heatmap(\n",
+ " x=list(df.columns),\n",
+ " y=list(df.index),\n",
+ " z=df.values.tolist(),\n",
+ " showscale=True,\n",
+ " colorscale='Reds',\n",
+ " xgap=1,\n",
+ " ygap=1,\n",
+ " )\n",
+ "\n",
+ "fig1.update_layout(title_text='Timer Run - Factor per Query [s]')\n",
+ "fig1.layout.xaxis.type = 'category'\n",
+ "fig1.layout.yaxis.type = 'category'\n",
+ "\n",
+ "fig1.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8ec32e49",
+ "metadata": {},
+ "source": [
+ "# Inspect Single Queries\n",
+ "\n",
+ "## Measures"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "id": "187a3480",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "numQuery = 4"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "42df9415",
+ "metadata": {},
+ "source": [
+ "### Measures of Execution Times"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "id": "1c1ad4ad",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### Measures of Execution Times - 3 Runs of Query 4"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 1 \n",
+ " 2 \n",
+ " \n",
+ " \n",
+ " DBMS \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " MariaDB-1-1 \n",
+ " 10832.749509 \n",
+ " 10974.072207 \n",
+ " 10912.278674 \n",
+ " \n",
+ " \n",
+ " MariaDB-2-1 \n",
+ " 10631.296530 \n",
+ " 10786.618634 \n",
+ " 10684.154912 \n",
+ " \n",
+ " \n",
+ " MonetDB-1-1 \n",
+ " 188.181439 \n",
+ " 151.178077 \n",
+ " 163.836433 \n",
+ " \n",
+ " \n",
+ " MonetDB-2-1 \n",
+ " 167.151919 \n",
+ " 148.022101 \n",
+ " 155.277067 \n",
+ " \n",
+ " \n",
+ " MySQL-1-1 \n",
+ " 10249.201583 \n",
+ " 10490.168055 \n",
+ " 10321.670839 \n",
+ " \n",
+ " \n",
+ " MySQL-2-1 \n",
+ " 10113.206561 \n",
+ " 10378.973982 \n",
+ " 10190.200162 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-1-1 \n",
+ " 184856.501106 \n",
+ " 2517.352709 \n",
+ " 2453.438690 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-2-1 \n",
+ " 3520.991707 \n",
+ " 3399.093443 \n",
+ " 4059.201233 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0 1 2\n",
+ "DBMS \n",
+ "MariaDB-1-1 10832.749509 10974.072207 10912.278674\n",
+ "MariaDB-2-1 10631.296530 10786.618634 10684.154912\n",
+ "MonetDB-1-1 188.181439 151.178077 163.836433\n",
+ "MonetDB-2-1 167.151919 148.022101 155.277067\n",
+ "MySQL-1-1 10249.201583 10490.168055 10321.670839\n",
+ "MySQL-2-1 10113.206561 10378.973982 10190.200162\n",
+ "PostgreSQL-1-1 184856.501106 2517.352709 2453.438690\n",
+ "PostgreSQL-2-1 3520.991707 3399.093443 4059.201233"
+ ]
+ },
+ "execution_count": 43,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df1, df2 = evaluate.get_measures_and_statistics(numQuery, type='timer', name='execution')\n",
+ "\n",
+ "display(Markdown(\"### Measures of Execution Times - {} Runs of Query {}\".format(len(df1.columns), numQuery)))\n",
+ "df1.sort_index()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ccebe21b",
+ "metadata": {},
+ "source": [
+ "## Statistics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b6873045",
+ "metadata": {},
+ "source": [
+ "### Statistics of Execution Times"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "id": "3bcc538c",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/markdown": [
+ "### Statistics of Execution Times - 3 Runs of Query 4"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " factor \n",
+ " n \n",
+ " Mean \n",
+ " Std Dev \n",
+ " cv [%] \n",
+ " Median \n",
+ " iqr \n",
+ " qcod [%] \n",
+ " Min \n",
+ " Max \n",
+ " Range \n",
+ " Geo \n",
+ " 1st \n",
+ " Last \n",
+ " Sum \n",
+ " P25 \n",
+ " P75 \n",
+ " P90 \n",
+ " P95 \n",
+ " \n",
+ " \n",
+ " DBMS \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " MariaDB-1-1 \n",
+ " 69.5484 \n",
+ " 3.0 \n",
+ " 10906.366797 \n",
+ " 57.845996 \n",
+ " 0.530387 \n",
+ " 10912.278674 \n",
+ " 70.661349 \n",
+ " 0.323902 \n",
+ " 10832.749509 \n",
+ " 10974.072207 \n",
+ " 141.322698 \n",
+ " 10906.213308 \n",
+ " 10832.749509 \n",
+ " 10912.278674 \n",
+ " 32719.100390 \n",
+ " 10872.514091 \n",
+ " 10943.175440 \n",
+ " 10961.713500 \n",
+ " 10967.892854 \n",
+ " \n",
+ " \n",
+ " MariaDB-2-1 \n",
+ " 68.2368 \n",
+ " 3.0 \n",
+ " 10700.690025 \n",
+ " 64.478919 \n",
+ " 0.602568 \n",
+ " 10684.154912 \n",
+ " 77.661052 \n",
+ " 0.363019 \n",
+ " 10631.296530 \n",
+ " 10786.618634 \n",
+ " 155.322104 \n",
+ " 10700.496044 \n",
+ " 10631.296530 \n",
+ " 10684.154912 \n",
+ " 32102.070076 \n",
+ " 10657.725721 \n",
+ " 10735.386773 \n",
+ " 10766.125890 \n",
+ " 10776.372262 \n",
+ " \n",
+ " \n",
+ " MonetDB-1-1 \n",
+ " 1.0696 \n",
+ " 3.0 \n",
+ " 167.731983 \n",
+ " 15.355643 \n",
+ " 9.154869 \n",
+ " 163.836433 \n",
+ " 18.501681 \n",
+ " 5.547461 \n",
+ " 151.178077 \n",
+ " 188.181439 \n",
+ " 37.003362 \n",
+ " 167.041877 \n",
+ " 188.181439 \n",
+ " 163.836433 \n",
+ " 503.195949 \n",
+ " 157.507255 \n",
+ " 176.008936 \n",
+ " 183.312438 \n",
+ " 185.746938 \n",
+ " \n",
+ " \n",
+ " MonetDB-2-1 \n",
+ " 1.0000 \n",
+ " 3.0 \n",
+ " 156.817029 \n",
+ " 7.885265 \n",
+ " 5.028322 \n",
+ " 155.277067 \n",
+ " 9.564909 \n",
+ " 3.057209 \n",
+ " 148.022101 \n",
+ " 167.151919 \n",
+ " 19.129818 \n",
+ " 156.620432 \n",
+ " 167.151919 \n",
+ " 155.277067 \n",
+ " 470.451087 \n",
+ " 151.649584 \n",
+ " 161.214493 \n",
+ " 164.776949 \n",
+ " 165.964434 \n",
+ " \n",
+ " \n",
+ " MySQL-1-1 \n",
+ " 66.0240 \n",
+ " 3.0 \n",
+ " 10353.680159 \n",
+ " 100.944399 \n",
+ " 0.974962 \n",
+ " 10321.670839 \n",
+ " 120.483236 \n",
+ " 0.582288 \n",
+ " 10249.201583 \n",
+ " 10490.168055 \n",
+ " 240.966472 \n",
+ " 10353.189470 \n",
+ " 10249.201583 \n",
+ " 10321.670839 \n",
+ " 31061.040476 \n",
+ " 10285.436211 \n",
+ " 10405.919447 \n",
+ " 10456.468611 \n",
+ " 10473.318333 \n",
+ " \n",
+ " \n",
+ " MySQL-2-1 \n",
+ " 65.2191 \n",
+ " 3.0 \n",
+ " 10227.460235 \n",
+ " 111.652184 \n",
+ " 1.091690 \n",
+ " 10190.200162 \n",
+ " 132.883710 \n",
+ " 0.650234 \n",
+ " 10113.206561 \n",
+ " 10378.973982 \n",
+ " 265.767421 \n",
+ " 10226.852806 \n",
+ " 10113.206561 \n",
+ " 10190.200162 \n",
+ " 30682.380705 \n",
+ " 10151.703362 \n",
+ " 10284.587072 \n",
+ " 10341.219218 \n",
+ " 10360.096600 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-1-1 \n",
+ " 403.5006 \n",
+ " 3.0 \n",
+ " 63275.764168 \n",
+ " 85970.567510 \n",
+ " 135.866502 \n",
+ " 2517.352709 \n",
+ " 91201.531208 \n",
+ " 94.831370 \n",
+ " 2453.438690 \n",
+ " 184856.501106 \n",
+ " 182403.062416 \n",
+ " 10451.645460 \n",
+ " 184856.501106 \n",
+ " 2453.438690 \n",
+ " 189827.292505 \n",
+ " 2485.395700 \n",
+ " 93686.926907 \n",
+ " 148388.671427 \n",
+ " 166622.586266 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-2-1 \n",
+ " 23.3378 \n",
+ " 3.0 \n",
+ " 3659.762128 \n",
+ " 286.796671 \n",
+ " 7.836484 \n",
+ " 3520.991707 \n",
+ " 330.053895 \n",
+ " 4.552380 \n",
+ " 3399.093443 \n",
+ " 4059.201233 \n",
+ " 660.107790 \n",
+ " 3648.851839 \n",
+ " 3520.991707 \n",
+ " 4059.201233 \n",
+ " 10979.286383 \n",
+ " 3460.042575 \n",
+ " 3790.096470 \n",
+ " 3951.559328 \n",
+ " 4005.380280 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " factor n Mean Std Dev cv [%] \\\n",
+ "DBMS \n",
+ "MariaDB-1-1 69.5484 3.0 10906.366797 57.845996 0.530387 \n",
+ "MariaDB-2-1 68.2368 3.0 10700.690025 64.478919 0.602568 \n",
+ "MonetDB-1-1 1.0696 3.0 167.731983 15.355643 9.154869 \n",
+ "MonetDB-2-1 1.0000 3.0 156.817029 7.885265 5.028322 \n",
+ "MySQL-1-1 66.0240 3.0 10353.680159 100.944399 0.974962 \n",
+ "MySQL-2-1 65.2191 3.0 10227.460235 111.652184 1.091690 \n",
+ "PostgreSQL-1-1 403.5006 3.0 63275.764168 85970.567510 135.866502 \n",
+ "PostgreSQL-2-1 23.3378 3.0 3659.762128 286.796671 7.836484 \n",
+ "\n",
+ " Median iqr qcod [%] Min \\\n",
+ "DBMS \n",
+ "MariaDB-1-1 10912.278674 70.661349 0.323902 10832.749509 \n",
+ "MariaDB-2-1 10684.154912 77.661052 0.363019 10631.296530 \n",
+ "MonetDB-1-1 163.836433 18.501681 5.547461 151.178077 \n",
+ "MonetDB-2-1 155.277067 9.564909 3.057209 148.022101 \n",
+ "MySQL-1-1 10321.670839 120.483236 0.582288 10249.201583 \n",
+ "MySQL-2-1 10190.200162 132.883710 0.650234 10113.206561 \n",
+ "PostgreSQL-1-1 2517.352709 91201.531208 94.831370 2453.438690 \n",
+ "PostgreSQL-2-1 3520.991707 330.053895 4.552380 3399.093443 \n",
+ "\n",
+ " Max Range Geo 1st \\\n",
+ "DBMS \n",
+ "MariaDB-1-1 10974.072207 141.322698 10906.213308 10832.749509 \n",
+ "MariaDB-2-1 10786.618634 155.322104 10700.496044 10631.296530 \n",
+ "MonetDB-1-1 188.181439 37.003362 167.041877 188.181439 \n",
+ "MonetDB-2-1 167.151919 19.129818 156.620432 167.151919 \n",
+ "MySQL-1-1 10490.168055 240.966472 10353.189470 10249.201583 \n",
+ "MySQL-2-1 10378.973982 265.767421 10226.852806 10113.206561 \n",
+ "PostgreSQL-1-1 184856.501106 182403.062416 10451.645460 184856.501106 \n",
+ "PostgreSQL-2-1 4059.201233 660.107790 3648.851839 3520.991707 \n",
+ "\n",
+ " Last Sum P25 P75 \\\n",
+ "DBMS \n",
+ "MariaDB-1-1 10912.278674 32719.100390 10872.514091 10943.175440 \n",
+ "MariaDB-2-1 10684.154912 32102.070076 10657.725721 10735.386773 \n",
+ "MonetDB-1-1 163.836433 503.195949 157.507255 176.008936 \n",
+ "MonetDB-2-1 155.277067 470.451087 151.649584 161.214493 \n",
+ "MySQL-1-1 10321.670839 31061.040476 10285.436211 10405.919447 \n",
+ "MySQL-2-1 10190.200162 30682.380705 10151.703362 10284.587072 \n",
+ "PostgreSQL-1-1 2453.438690 189827.292505 2485.395700 93686.926907 \n",
+ "PostgreSQL-2-1 4059.201233 10979.286383 3460.042575 3790.096470 \n",
+ "\n",
+ " P90 P95 \n",
+ "DBMS \n",
+ "MariaDB-1-1 10961.713500 10967.892854 \n",
+ "MariaDB-2-1 10766.125890 10776.372262 \n",
+ "MonetDB-1-1 183.312438 185.746938 \n",
+ "MonetDB-2-1 164.776949 165.964434 \n",
+ "MySQL-1-1 10456.468611 10473.318333 \n",
+ "MySQL-2-1 10341.219218 10360.096600 \n",
+ "PostgreSQL-1-1 148388.671427 166622.586266 \n",
+ "PostgreSQL-2-1 3951.559328 4005.380280 "
+ ]
+ },
+ "execution_count": 44,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "display(Markdown(\"### Statistics of Execution Times - {} Runs of Query {}\".format(len(df1.columns), numQuery)))\n",
+ "df2.sort_index()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5caeb257",
+ "metadata": {},
+ "source": [
+ "## Plots"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "76650c3d",
+ "metadata": {},
+ "source": [
+ "### Timer Run - Line Plot"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "id": "dd03cc49",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "line": {
+ "color": "#ff0000",
+ "width": 1
+ },
+ "name": "MariaDB-1-1",
+ "type": "scatter",
+ "x": [
+ 0,
+ 1,
+ 2
+ ],
+ "y": [
+ 10833.034123061223,
+ 10974.291878985241,
+ 10912.505469983444
+ ]
+ },
+ {
+ "line": {
+ "color": "#fecccc",
+ "width": 1
+ },
+ "name": "MariaDB-2-1",
+ "type": "scatter",
+ "x": [
+ 0,
+ 1,
+ 2
+ ],
+ "y": [
+ 10631.587456096895,
+ 10786.846601986324,
+ 10684.382489067502
+ ]
+ },
+ {
+ "line": {
+ "color": "#006600",
+ "width": 1
+ },
+ "name": "MonetDB-1-1",
+ "type": "scatter",
+ "x": [
+ 0,
+ 1,
+ 2
+ ],
+ "y": [
+ 188.42912395484746,
+ 151.39126707799733,
+ 164.056695997715
+ ]
+ },
+ {
+ "line": {
+ "color": "#cbffcb",
+ "width": 1
+ },
+ "name": "MonetDB-2-1",
+ "type": "scatter",
+ "x": [
+ 0,
+ 1,
+ 2
+ ],
+ "y": [
+ 167.39692899864167,
+ 148.23161403182894,
+ 155.4883939679712
+ ]
+ },
+ {
+ "line": {
+ "color": "#000066",
+ "width": 1
+ },
+ "name": "MySQL-1-1",
+ "type": "scatter",
+ "x": [
+ 0,
+ 1,
+ 2
+ ],
+ "y": [
+ 10249.509504064918,
+ 10490.337723866107,
+ 10321.84758130461
+ ]
+ },
+ {
+ "line": {
+ "color": "#cbcbff",
+ "width": 1
+ },
+ "name": "MySQL-2-1",
+ "type": "scatter",
+ "x": [
+ 0,
+ 1,
+ 2
+ ],
+ "y": [
+ 10113.65952109918,
+ 10379.248296958394,
+ 10190.49967394676
+ ]
+ },
+ {
+ "line": {
+ "color": "#666500",
+ "width": 1
+ },
+ "name": "PostgreSQL-1-1",
+ "type": "scatter",
+ "x": [
+ 0,
+ 1,
+ 2
+ ],
+ "y": [
+ 184856.8571439246,
+ 2517.621263046749,
+ 2453.690663096495
+ ]
+ },
+ {
+ "line": {
+ "color": "#ffffcb",
+ "width": 1
+ },
+ "name": "PostgreSQL-2-1",
+ "type": "scatter",
+ "x": [
+ 0,
+ 1,
+ 2
+ ],
+ "y": [
+ 3521.348245907575,
+ 3399.4601210579276,
+ 4059.4678829656914
+ ]
+ }
+ ],
+ "layout": {
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Timer Run [ms] - Query 4 (3 Measures)"
+ }
+ }
+ },
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df1,df2=evaluate.get_measures_and_statistics(numQuery, type='timer', name='run', warmup=0)\n",
+ "df1 = df1.sort_index()\n",
+ "\n",
+ "# Plots\n",
+ "fig = go.Figure()\n",
+ "for i in range(len(df1.index)):\n",
+ " t = fig.add_trace(go.Scatter(x=df1.T.index, y=df1.iloc[i], name=df1.index[i], line=dict(color=connection_colors[df1.index[i]], width=1)))\n",
+ "\n",
+ "fig.update_layout(title_text='Timer Run [ms] - Query {} ({} Measures)'.format(numQuery, len(df1.columns)))\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ffcff42d",
+ "metadata": {},
+ "source": [
+ "### Mean of Timer Run - Bar Plot"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "id": "d8ea8963",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "marker": {
+ "color": "#ff0000"
+ },
+ "name": "MariaDB-1-1",
+ "type": "bar",
+ "x": [
+ "MariaDB-1-1"
+ ],
+ "y": [
+ 10906.610490676636
+ ]
+ },
+ {
+ "marker": {
+ "color": "#fecccc"
+ },
+ "name": "MariaDB-2-1",
+ "type": "bar",
+ "x": [
+ "MariaDB-2-1"
+ ],
+ "y": [
+ 10700.93884905024
+ ]
+ },
+ {
+ "marker": {
+ "color": "#006600"
+ },
+ "name": "MonetDB-1-1",
+ "type": "bar",
+ "x": [
+ "MonetDB-1-1"
+ ],
+ "y": [
+ 167.95902901018658
+ ]
+ },
+ {
+ "marker": {
+ "color": "#cbffcb"
+ },
+ "name": "MonetDB-2-1",
+ "type": "bar",
+ "x": [
+ "MonetDB-2-1"
+ ],
+ "y": [
+ 157.0389789994806
+ ]
+ },
+ {
+ "marker": {
+ "color": "#000066"
+ },
+ "name": "MySQL-1-1",
+ "type": "bar",
+ "x": [
+ "MySQL-1-1"
+ ],
+ "y": [
+ 10353.89826974521
+ ]
+ },
+ {
+ "marker": {
+ "color": "#cbcbff"
+ },
+ "name": "MySQL-2-1",
+ "type": "bar",
+ "x": [
+ "MySQL-2-1"
+ ],
+ "y": [
+ 10227.802497334778
+ ]
+ },
+ {
+ "marker": {
+ "color": "#666500"
+ },
+ "name": "PostgreSQL-1-1",
+ "type": "bar",
+ "x": [
+ "PostgreSQL-1-1"
+ ],
+ "y": [
+ 63276.05635668928
+ ]
+ },
+ {
+ "marker": {
+ "color": "#ffffcb"
+ },
+ "name": "PostgreSQL-2-1",
+ "type": "bar",
+ "x": [
+ "PostgreSQL-2-1"
+ ],
+ "y": [
+ 3660.092083310398
+ ]
+ }
+ ],
+ "layout": {
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Mean of Timer Run [s] - Query 4"
+ }
+ }
+ },
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Bar\n",
+ "df1, df2 = evaluate.get_measures_and_statistics(numQuery, type='timer', name='run')\n",
+ "df = tools.dataframehelper.collect(df2, 'Mean', 'timer_run_mean').sort_index()\n",
+ "\n",
+ "fig = go.Figure()\n",
+ "for i in range(len(df.index)):\n",
+ " t = fig.add_trace(go.Bar(x=[df.index[i]], y=df.iloc[i], name=df.index[i], marker=dict(color=connection_colors[df.index[i]])))\n",
+ "\n",
+ "fig.update_layout(title_text='Mean of Timer Run [s] - Query {}'.format(numQuery))\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7626c952",
+ "metadata": {},
+ "source": [
+ "### Timer Run - Boxplot"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "id": "9e5c889e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "boxmean": "sd",
+ "line": {
+ "color": "#ff0000",
+ "width": 1
+ },
+ "name": "MariaDB-1-1",
+ "type": "box",
+ "y": [
+ 10833.034123061223,
+ 10974.291878985241,
+ 10912.505469983444
+ ]
+ },
+ {
+ "boxmean": "sd",
+ "line": {
+ "color": "#fecccc",
+ "width": 1
+ },
+ "name": "MariaDB-2-1",
+ "type": "box",
+ "y": [
+ 10631.587456096895,
+ 10786.846601986324,
+ 10684.382489067502
+ ]
+ },
+ {
+ "boxmean": "sd",
+ "line": {
+ "color": "#006600",
+ "width": 1
+ },
+ "name": "MonetDB-1-1",
+ "type": "box",
+ "y": [
+ 188.42912395484746,
+ 151.39126707799733,
+ 164.056695997715
+ ]
+ },
+ {
+ "boxmean": "sd",
+ "line": {
+ "color": "#cbffcb",
+ "width": 1
+ },
+ "name": "MonetDB-2-1",
+ "type": "box",
+ "y": [
+ 167.39692899864167,
+ 148.23161403182894,
+ 155.4883939679712
+ ]
+ },
+ {
+ "boxmean": "sd",
+ "line": {
+ "color": "#000066",
+ "width": 1
+ },
+ "name": "MySQL-1-1",
+ "type": "box",
+ "y": [
+ 10249.509504064918,
+ 10490.337723866107,
+ 10321.84758130461
+ ]
+ },
+ {
+ "boxmean": "sd",
+ "line": {
+ "color": "#cbcbff",
+ "width": 1
+ },
+ "name": "MySQL-2-1",
+ "type": "box",
+ "y": [
+ 10113.65952109918,
+ 10379.248296958394,
+ 10190.49967394676
+ ]
+ },
+ {
+ "boxmean": "sd",
+ "line": {
+ "color": "#666500",
+ "width": 1
+ },
+ "name": "PostgreSQL-1-1",
+ "type": "box",
+ "y": [
+ 184856.8571439246,
+ 2517.621263046749,
+ 2453.690663096495
+ ]
+ },
+ {
+ "boxmean": "sd",
+ "line": {
+ "color": "#ffffcb",
+ "width": 1
+ },
+ "name": "PostgreSQL-2-1",
+ "type": "box",
+ "y": [
+ 3521.348245907575,
+ 3399.4601210579276,
+ 4059.4678829656914
+ ]
+ }
+ ],
+ "layout": {
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Timer Run [ms] - Query 4"
+ }
+ }
+ },
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Boxplots\n",
+ "df1, df2 = evaluate.get_measures_and_statistics(numQuery, type='timer', name='run')\n",
+ "df1 = df1.sort_index()\n",
+ "\n",
+ "fig = go.Figure()\n",
+ "for i in range(len(df1.index)):\n",
+ " t = fig.add_trace(go.Box(y=df1.iloc[i], name=df1.index[i], line=dict(color=connection_colors[df1.index[i]], width=1), boxmean='sd'))\n",
+ "\n",
+ "fig.update_layout(title_text='Timer Run [ms] - Query {}'.format(numQuery))\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "69ce0d41",
+ "metadata": {},
+ "source": [
+ "### Timer Run Histogram"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "id": "b200304f",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "marker": {
+ "color": "#ff0000"
+ },
+ "name": "MariaDB-1-1",
+ "opacity": 0.75,
+ "type": "histogram",
+ "x": [
+ 119995.57886400726,
+ 113505.99293899724,
+ 114467.32023102231
+ ]
+ },
+ {
+ "marker": {
+ "color": "#fecccc"
+ },
+ "name": "MariaDB-2-1",
+ "opacity": 0.75,
+ "type": "histogram",
+ "x": [
+ 113834.41502903588,
+ 113046.91848310176,
+ 113561.8299129419
+ ]
+ },
+ {
+ "marker": {
+ "color": "#006600"
+ },
+ "name": "MonetDB-1-1",
+ "opacity": 0.75,
+ "type": "histogram",
+ "x": [
+ 7603.894409025087,
+ 4541.180852917023,
+ 4545.230556977913
+ ]
+ },
+ {
+ "marker": {
+ "color": "#cbffcb"
+ },
+ "name": "MonetDB-2-1",
+ "opacity": 0.75,
+ "type": "histogram",
+ "x": [
+ 4426.2617219937965,
+ 4324.668616056442,
+ 4802.922310074791
+ ]
+ },
+ {
+ "marker": {
+ "color": "#000066"
+ },
+ "name": "MySQL-1-1",
+ "opacity": 0.75,
+ "type": "histogram",
+ "x": [
+ 140339.38287571073,
+ 139398.2365923002,
+ 140159.93906743824
+ ]
+ },
+ {
+ "marker": {
+ "color": "#cbcbff"
+ },
+ "name": "MySQL-2-1",
+ "opacity": 0.75,
+ "type": "histogram",
+ "x": [
+ 139935.72673702144,
+ 139094.70348083414,
+ 139922.2542810021
+ ]
+ },
+ {
+ "marker": {
+ "color": "#666500"
+ },
+ "name": "PostgreSQL-1-1",
+ "opacity": 0.75,
+ "type": "histogram",
+ "x": [
+ 20152.130282018334,
+ 19935.1423199987,
+ 20030.877649085596
+ ]
+ },
+ {
+ "marker": {
+ "color": "#ffffcb"
+ },
+ "name": "PostgreSQL-2-1",
+ "opacity": 0.75,
+ "type": "histogram",
+ "x": [
+ 20019.547944073565,
+ 19727.37258009147,
+ 19851.99666302651
+ ]
+ }
+ ],
+ "layout": {
+ "barmode": "overlay",
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Timer Run Histogram - Query 1"
+ }
+ }
+ },
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Histogram\n",
+ "numQuery = 1\n",
+ "\n",
+ "df1, df2 = evaluate.get_measures_and_statistics(numQuery, type='timer', name='run')\n",
+ "df1=df1.sort_index()\n",
+ "\n",
+ "fig = go.Figure(layout = go.Layout(barmode='overlay'))\n",
+ "for i in range(len(df1.index)):\n",
+ " t = fig.add_trace(go.Histogram(x=df1.iloc[i], name=df1.index[i], opacity=0.75, marker=dict(color=connection_colors[df1.index[i]])))\n",
+ "\n",
+ "fig.update_layout(title_text='Timer Run Histogram - Query {}'.format(numQuery))\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "4d20bb65",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.12"
+ },
+ "toc": {
+ "base_numbering": 1,
+ "nav_menu": {},
+ "number_sections": false,
+ "sideBar": true,
+ "skip_h1_title": false,
+ "title_cell": "Table of Contents",
+ "title_sidebar": "Contents",
+ "toc_cell": true,
+ "toc_position": {
+ "height": "calc(100% - 180px)",
+ "left": "10px",
+ "top": "150px",
+ "width": "512px"
+ },
+ "toc_section_display": true,
+ "toc_window_display": true
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/images/evaluator_dbmsbenchmarker/notebooks/Evaluation-TPC-H-Throughput.html b/images/evaluator_dbmsbenchmarker/notebooks/Evaluation-TPC-H-Throughput.html
new file mode 100644
index 00000000..c6a6dd86
--- /dev/null
+++ b/images/evaluator_dbmsbenchmarker/notebooks/Evaluation-TPC-H-Throughput.html
@@ -0,0 +1,17788 @@
+
+
+
+
+
+Evaluation-TPC-H-Throughput
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Results in folder .//1686234009
+Read results
+Load Evaluation
+Results in folder .//1686236492
+Read results
+Load Evaluation
+Results in folder .//1686228050
+Read results
+Load Evaluation
+Results in folder .//1686238015
+Read results
+Load Evaluation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[5]:
+
+
+
+
+
+
+
+PostgreSQL-AWS-4-1-1
+PostgreSQL-AWS-4-10-1
+PostgreSQL-AWS-4-10-10
+PostgreSQL-AWS-4-10-2
+PostgreSQL-AWS-4-10-3
+PostgreSQL-AWS-4-10-4
+PostgreSQL-AWS-4-10-5
+PostgreSQL-AWS-4-10-6
+PostgreSQL-AWS-4-10-7
+PostgreSQL-AWS-4-10-8
+...
+PostgreSQL-AWS-4-8-8
+PostgreSQL-AWS-4-9-1
+PostgreSQL-AWS-4-9-2
+PostgreSQL-AWS-4-9-3
+PostgreSQL-AWS-4-9-4
+PostgreSQL-AWS-4-9-5
+PostgreSQL-AWS-4-9-6
+PostgreSQL-AWS-4-9-7
+PostgreSQL-AWS-4-9-8
+PostgreSQL-AWS-4-9-9
+
+
+
+
+benchmark_geo
+0.626844
+0.632627
+0.620555
+0.6372
+0.634936
+0.64451
+0.650121
+0.641237
+0.636856
+0.636409
+...
+14.997548
+17.628742
+17.099679
+16.880599
+16.835358
+16.865565
+17.149394
+16.856538
+15.694917
+14.790488
+
+
+benchmark_mean
+0.87009
+0.900167
+0.871424
+0.911793
+0.902629
+0.905444
+0.92747
+0.911566
+0.897627
+0.901916
+...
+28.315948
+30.449043
+30.662218
+30.583163
+30.53988
+30.480332
+31.575404
+31.704748
+32.871015
+32.638396
+
+
+generate
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+...
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+
+
+ingest
+17.0
+17.0
+17.0
+17.0
+17.0
+17.0
+17.0
+17.0
+17.0
+17.0
+...
+672.0
+672.0
+672.0
+672.0
+672.0
+672.0
+672.0
+672.0
+672.0
+672.0
+
+
+initconstraints
+29.036005
+29.036005
+29.036005
+29.036005
+29.036005
+29.036005
+29.036005
+29.036005
+29.036005
+29.036005
+...
+1354.0928
+1354.0928
+1354.0928
+1354.0928
+1354.0928
+1354.0928
+1354.0928
+1354.0928
+1354.0928
+1354.0928
+
+
+initindexes
+7.205218
+7.205218
+7.205218
+7.205218
+7.205218
+7.205218
+7.205218
+7.205218
+7.205218
+7.205218
+...
+205.071821
+205.071821
+205.071821
+205.071821
+205.071821
+205.071821
+205.071821
+205.071821
+205.071821
+205.071821
+
+
+initschema
+1.211485
+1.211485
+1.211485
+1.211485
+1.211485
+1.211485
+1.211485
+1.211485
+1.211485
+1.211485
+...
+1.118685
+1.118685
+1.118685
+1.118685
+1.118685
+1.118685
+1.118685
+1.118685
+1.118685
+1.118685
+
+
+initstatistics
+20.242573
+20.242573
+20.242573
+20.242573
+20.242573
+20.242573
+20.242573
+20.242573
+20.242573
+20.242573
+...
+43.233445
+43.233445
+43.233445
+43.233445
+43.233445
+43.233445
+43.233445
+43.233445
+43.233445
+43.233445
+
+
+load
+76.836504
+76.836504
+76.836504
+76.836504
+76.836504
+76.836504
+76.836504
+76.836504
+76.836504
+76.836504
+...
+2277.665694
+2277.665694
+2277.665694
+2277.665694
+2277.665694
+2277.665694
+2277.665694
+2277.665694
+2277.665694
+2277.665694
+
+
+loaded
+2.288853
+2.288853
+2.288853
+2.288853
+2.288853
+2.288853
+2.288853
+2.288853
+2.288853
+2.288853
+...
+2.153249
+2.153249
+2.153249
+2.153249
+2.153249
+2.153249
+2.153249
+2.153249
+2.153249
+2.153249
+
+
+max_load
+16.0
+16.0
+16.0
+16.0
+16.0
+16.0
+16.0
+16.0
+16.0
+16.0
+...
+671.0
+671.0
+671.0
+671.0
+671.0
+671.0
+671.0
+671.0
+671.0
+671.0
+
+
+mean_load
+16.0
+16.0
+16.0
+16.0
+16.0
+16.0
+16.0
+16.0
+16.0
+16.0
+...
+662.5
+662.5
+662.5
+662.5
+662.5
+662.5
+662.5
+662.5
+662.5
+662.5
+
+
+min_load
+16.0
+16.0
+16.0
+16.0
+16.0
+16.0
+16.0
+16.0
+16.0
+16.0
+...
+649.0
+649.0
+649.0
+649.0
+649.0
+649.0
+649.0
+649.0
+649.0
+649.0
+
+
+schema
+2.288853
+2.288853
+2.288853
+2.288853
+2.288853
+2.288853
+2.288853
+2.288853
+2.288853
+2.288853
+...
+2.153249
+2.153249
+2.153249
+2.153249
+2.153249
+2.153249
+2.153249
+2.153249
+2.153249
+2.153249
+
+
+span_benchmark
+22.0
+25.0
+23.0
+24.0
+24.0
+24.0
+25.0
+24.0
+24.0
+23.0
+...
+4203.0
+4249.0
+4252.0
+4250.0
+4250.0
+4248.0
+4270.0
+4274.0
+4299.0
+4294.0
+
+
+span_generate
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+...
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+
+
+span_load
+17.0
+17.0
+17.0
+17.0
+17.0
+17.0
+17.0
+17.0
+17.0
+17.0
+...
+672.0
+672.0
+672.0
+672.0
+672.0
+672.0
+672.0
+672.0
+672.0
+672.0
+
+
+SF
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+...
+30
+30
+30
+30
+30
+30
+30
+30
+30
+30
+
+
+dbms
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+...
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+
+
+TPCH_TABLE
+
+
+
+
+
+
+
+
+
+
+...
+
+
+
+
+
+
+
+
+
+
+
+
+pods
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+...
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+
+
+num_experiment
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+...
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+
+
+num_client
+1
+10
+10
+10
+10
+10
+10
+10
+10
+10
+...
+8
+9
+9
+9
+9
+9
+9
+9
+9
+9
+
+
+benchmark_start
+1686234318
+1686235691
+1686235750
+1686235694
+1686235699
+1686235704
+1686235707
+1686235713
+1686235720
+1686235724
+...
+1686271082
+1686275411
+1686275414
+1686275415
+1686275422
+1686275425
+1686275428
+1686275448
+1686275458
+1686275467
+
+
+benchmark_end
+1686234340
+1686235716
+1686235773
+1686235718
+1686235723
+1686235728
+1686235732
+1686235737
+1686235744
+1686235747
+...
+1686275285
+1686279660
+1686279666
+1686279665
+1686279672
+1686279673
+1686279698
+1686279722
+1686279757
+1686279761
+
+
+mem_max_load
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+...
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+
+
+cpu_total_load
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+...
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+
+
+mem_max_stream
+7128.3125
+8032.226562
+8032.226562
+8032.226562
+8032.226562
+8032.226562
+8032.226562
+8032.226562
+8032.226562
+8032.226562
+...
+1269540.585938
+1282160.914062
+1282160.914062
+1282160.914062
+1282160.914062
+1282160.914062
+1282160.914062
+1282160.914062
+1282160.914062
+1282160.914062
+
+
+cpu_total_stream
+80.012976
+809.336122
+809.336122
+809.336122
+809.336122
+809.336122
+809.336122
+809.336122
+809.336122
+809.336122
+...
+58838.671861
+66750.954151
+66750.954151
+66750.954151
+66750.954151
+66750.954151
+66750.954151
+66750.954151
+66750.954151
+66750.954151
+
+
+mem_max_loader
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+...
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+
+
+cpu_total_loader
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+...
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+
+
+mem_max_datagenerator
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+...
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+
+
+cpu_total_datagenerator
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+...
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+
+
+mem_max_benchmarker
+208.652344
+3894.109375
+3894.109375
+3894.109375
+3894.109375
+3894.109375
+3894.109375
+3894.109375
+3894.109375
+3894.109375
+...
+3035.449219
+3449.035156
+3449.035156
+3449.035156
+3449.035156
+3449.035156
+3449.035156
+3449.035156
+3449.035156
+3449.035156
+
+
+cpu_total_benchmarker
+6.357339
+61.253136
+61.253136
+61.253136
+61.253136
+61.253136
+61.253136
+61.253136
+61.253136
+61.253136
+...
+98.604956
+110.060736
+110.060736
+110.060736
+110.060736
+110.060736
+110.060736
+110.060736
+110.060736
+110.060736
+
+
+
+
35 rows Ă— 220 columns
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[6]:
+
+
+
+
+
+
+
+PostgreSQL-AWS-4-1-1
+PostgreSQL-AWS-4-10-1
+PostgreSQL-AWS-4-10-10
+PostgreSQL-AWS-4-10-2
+PostgreSQL-AWS-4-10-3
+PostgreSQL-AWS-4-10-4
+PostgreSQL-AWS-4-10-5
+PostgreSQL-AWS-4-10-6
+PostgreSQL-AWS-4-10-7
+PostgreSQL-AWS-4-10-8
+...
+PostgreSQL-AWS-4-8-8
+PostgreSQL-AWS-4-9-1
+PostgreSQL-AWS-4-9-2
+PostgreSQL-AWS-4-9-3
+PostgreSQL-AWS-4-9-4
+PostgreSQL-AWS-4-9-5
+PostgreSQL-AWS-4-9-6
+PostgreSQL-AWS-4-9-7
+PostgreSQL-AWS-4-9-8
+PostgreSQL-AWS-4-9-9
+
+
+
+
+benchmark_geo
+5743.059573
+5690.559545
+5801.257852
+5649.719574
+5669.866608
+5585.640919
+5537.427447
+5614.148176
+5652.773429
+5656.741898
+...
+7201.176956
+6126.359039
+6315.907996
+6397.877399
+6415.070037
+6403.580297
+6297.598488
+6407.009574
+6881.208745
+7301.99031
+
+
+benchmark_mean
+4137.501667
+3999.257534
+4131.167805
+3948.264563
+3988.347981
+3975.949458
+3881.525131
+3949.24657
+4010.576062
+3991.500646
+...
+3814.105044
+3546.909561
+3522.250063
+3531.354808
+3536.359665
+3543.268525
+3420.383738
+3406.429901
+3285.569354
+3308.9861
+
+
+generate
+inf
+inf
+inf
+inf
+inf
+inf
+inf
+inf
+inf
+inf
+...
+inf
+inf
+inf
+inf
+inf
+inf
+inf
+inf
+inf
+inf
+
+
+ingest
+211.764706
+211.764706
+211.764706
+211.764706
+211.764706
+211.764706
+211.764706
+211.764706
+211.764706
+211.764706
+...
+160.714286
+160.714286
+160.714286
+160.714286
+160.714286
+160.714286
+160.714286
+160.714286
+160.714286
+160.714286
+
+
+initconstraints
+123.984
+123.984
+123.984
+123.984
+123.984
+123.984
+123.984
+123.984
+123.984
+123.984
+...
+79.758197
+79.758197
+79.758197
+79.758197
+79.758197
+79.758197
+79.758197
+79.758197
+79.758197
+79.758197
+
+
+initindexes
+499.637925
+499.637925
+499.637925
+499.637925
+499.637925
+499.637925
+499.637925
+499.637925
+499.637925
+499.637925
+...
+526.64476
+526.64476
+526.64476
+526.64476
+526.64476
+526.64476
+526.64476
+526.64476
+526.64476
+526.64476
+
+
+initschema
+2971.56034
+2971.56034
+2971.56034
+2971.56034
+2971.56034
+2971.56034
+2971.56034
+2971.56034
+2971.56034
+2971.56034
+...
+96541.908009
+96541.908009
+96541.908009
+96541.908009
+96541.908009
+96541.908009
+96541.908009
+96541.908009
+96541.908009
+96541.908009
+
+
+initstatistics
+177.843008
+177.843008
+177.843008
+177.843008
+177.843008
+177.843008
+177.843008
+177.843008
+177.843008
+177.843008
+...
+2498.066013
+2498.066013
+2498.066013
+2498.066013
+2498.066013
+2498.066013
+2498.066013
+2498.066013
+2498.066013
+2498.066013
+
+
+load
+46.85273
+46.85273
+46.85273
+46.85273
+46.85273
+46.85273
+46.85273
+46.85273
+46.85273
+46.85273
+...
+47.416967
+47.416967
+47.416967
+47.416967
+47.416967
+47.416967
+47.416967
+47.416967
+47.416967
+47.416967
+
+
+loaded
+1572.840147
+1572.840147
+1572.840147
+1572.840147
+1572.840147
+1572.840147
+1572.840147
+1572.840147
+1572.840147
+1572.840147
+...
+50156.751785
+50156.751785
+50156.751785
+50156.751785
+50156.751785
+50156.751785
+50156.751785
+50156.751785
+50156.751785
+50156.751785
+
+
+max_load
+225.0
+225.0
+225.0
+225.0
+225.0
+225.0
+225.0
+225.0
+225.0
+225.0
+...
+160.9538
+160.9538
+160.9538
+160.9538
+160.9538
+160.9538
+160.9538
+160.9538
+160.9538
+160.9538
+
+
+mean_load
+225.0
+225.0
+225.0
+225.0
+225.0
+225.0
+225.0
+225.0
+225.0
+225.0
+...
+163.018868
+163.018868
+163.018868
+163.018868
+163.018868
+163.018868
+163.018868
+163.018868
+163.018868
+163.018868
+
+
+min_load
+225.0
+225.0
+225.0
+225.0
+225.0
+225.0
+225.0
+225.0
+225.0
+225.0
+...
+166.409861
+166.409861
+166.409861
+166.409861
+166.409861
+166.409861
+166.409861
+166.409861
+166.409861
+166.409861
+
+
+schema
+1572.840147
+1572.840147
+1572.840147
+1572.840147
+1572.840147
+1572.840147
+1572.840147
+1572.840147
+1572.840147
+1572.840147
+...
+50156.751785
+50156.751785
+50156.751785
+50156.751785
+50156.751785
+50156.751785
+50156.751785
+50156.751785
+50156.751785
+50156.751785
+
+
+span_benchmark
+163.636364
+144.0
+156.521739
+150.0
+150.0
+150.0
+144.0
+150.0
+150.0
+156.521739
+...
+25.695931
+25.417745
+25.399812
+25.411765
+25.411765
+25.423729
+25.29274
+25.269069
+25.122121
+25.151374
+
+
+span_generate
+inf
+inf
+inf
+inf
+inf
+inf
+inf
+inf
+inf
+inf
+...
+inf
+inf
+inf
+inf
+inf
+inf
+inf
+inf
+inf
+inf
+
+
+span_load
+211.764706
+211.764706
+211.764706
+211.764706
+211.764706
+211.764706
+211.764706
+211.764706
+211.764706
+211.764706
+...
+160.714286
+160.714286
+160.714286
+160.714286
+160.714286
+160.714286
+160.714286
+160.714286
+160.714286
+160.714286
+
+
+SF
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+...
+30
+30
+30
+30
+30
+30
+30
+30
+30
+30
+
+
+dbms
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+...
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+PostgreSQL
+
+
+TPCH_TABLE
+
+
+
+
+
+
+
+
+
+
+...
+
+
+
+
+
+
+
+
+
+
+
+
+pods
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+...
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+
+
+num_experiment
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+...
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+
+
+num_client
+1
+10
+10
+10
+10
+10
+10
+10
+10
+10
+...
+8
+9
+9
+9
+9
+9
+9
+9
+9
+9
+
+
+benchmark_start
+1686234318
+1686235691
+1686235750
+1686235694
+1686235699
+1686235704
+1686235707
+1686235713
+1686235720
+1686235724
+...
+1686271082
+1686275411
+1686275414
+1686275415
+1686275422
+1686275425
+1686275428
+1686275448
+1686275458
+1686275467
+
+
+benchmark_end
+1686234340
+1686235716
+1686235773
+1686235718
+1686235723
+1686235728
+1686235732
+1686235737
+1686235744
+1686235747
+...
+1686275285
+1686279660
+1686279666
+1686279665
+1686279672
+1686279673
+1686279698
+1686279722
+1686279757
+1686279761
+
+
+mem_max_load
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+...
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+
+
+cpu_total_load
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+...
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+
+
+mem_max_stream
+7128.3125
+8032.226562
+8032.226562
+8032.226562
+8032.226562
+8032.226562
+8032.226562
+8032.226562
+8032.226562
+8032.226562
+...
+1269540.585938
+1282160.914062
+1282160.914062
+1282160.914062
+1282160.914062
+1282160.914062
+1282160.914062
+1282160.914062
+1282160.914062
+1282160.914062
+
+
+cpu_total_stream
+80.012976
+809.336122
+809.336122
+809.336122
+809.336122
+809.336122
+809.336122
+809.336122
+809.336122
+809.336122
+...
+58838.671861
+66750.954151
+66750.954151
+66750.954151
+66750.954151
+66750.954151
+66750.954151
+66750.954151
+66750.954151
+66750.954151
+
+
+mem_max_loader
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+...
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+
+
+cpu_total_loader
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+...
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+
+
+mem_max_datagenerator
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+...
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+
+
+cpu_total_datagenerator
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+...
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+
+
+mem_max_benchmarker
+208.652344
+3894.109375
+3894.109375
+3894.109375
+3894.109375
+3894.109375
+3894.109375
+3894.109375
+3894.109375
+3894.109375
+...
+3035.449219
+3449.035156
+3449.035156
+3449.035156
+3449.035156
+3449.035156
+3449.035156
+3449.035156
+3449.035156
+3449.035156
+
+
+cpu_total_benchmarker
+6.357339
+61.253136
+61.253136
+61.253136
+61.253136
+61.253136
+61.253136
+61.253136
+61.253136
+61.253136
+...
+98.604956
+110.060736
+110.060736
+110.060736
+110.060736
+110.060736
+110.060736
+110.060736
+110.060736
+110.060736
+
+
+
+
35 rows Ă— 220 columns
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[7]:
+
+
+
+
+
+
+SF
+1
+3
+10
+30
+
+
+pods
+
+
+
+
+
+
+
+
+4.0
+211.764706
+192.857143
+175.609756
+160.714286
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[8]:
+
+
+
+
+
+
+SF
+1
+3
+10
+30
+
+
+pods
+
+
+
+
+
+
+
+
+4.0
+17.0
+56.0
+205.0
+672.0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[12]:
+
+
+
+
+
+
+
+
+
+benchmark_geo
+benchmark_mean
+generate
+ingest
+initconstraints
+initindexes
+initschema
+initstatistics
+load
+loaded
+...
+mem_max_load
+cpu_total_load
+mem_max_stream
+cpu_total_stream
+mem_max_loader
+cpu_total_loader
+mem_max_datagenerator
+cpu_total_datagenerator
+mem_max_benchmarker
+cpu_total_benchmarker
+
+
+SF
+num_experiment
+num_client
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+1
+1
+1
+0.626844
+0.870090
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+7.128312e+03
+80.012976
+0.000000
+0.000000
+0
+0
+208.652344
+6.357339
+
+
+2
+0.624912
+0.877594
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+4.038180e+03
+160.696836
+0.000000
+0.000000
+0
+0
+611.730469
+12.480364
+
+
+3
+0.629116
+0.888116
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+4.229605e+03
+241.310310
+0.000000
+0.000000
+0
+0
+1212.539062
+21.294983
+
+
+4
+0.621419
+0.871111
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+8.228980e+03
+320.818782
+0.000000
+0.000000
+0
+0
+1863.578125
+28.945682
+
+
+5
+0.625231
+0.882196
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+7.845113e+03
+402.095493
+0.000000
+0.000000
+0
+0
+2465.582031
+35.623551
+
+
+6
+0.620819
+0.873909
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+3818.800781
+89.863155
+7.161371e+03
+480.793733
+705.457031
+2.415629
+0
+0
+3037.617188
+41.721285
+
+
+7
+0.625912
+0.886332
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+7.329809e+03
+564.956015
+0.000000
+0.000000
+0
+0
+2742.273438
+17.090795
+
+
+8
+0.616898
+0.867791
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+7.848301e+03
+643.013221
+0.000000
+0.000000
+0
+0
+3084.117188
+48.048381
+
+
+9
+0.616639
+0.869442
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+7.971777e+03
+721.034614
+0.000000
+0.000000
+0
+0
+3462.558594
+61.486374
+
+
+10
+0.620555
+0.871424
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+8.032227e+03
+809.336122
+0.000000
+0.000000
+0
+0
+3894.109375
+61.253136
+
+
+3
+1
+1
+1.637411
+2.337024
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+1.352643e+04
+254.895022
+0.000000
+0.000000
+0
+0
+204.019531
+7.368385
+
+
+2
+1.615564
+2.381898
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+2.088032e+04
+513.052090
+0.000000
+0.000000
+0
+0
+660.550781
+14.698020
+
+
+3
+1.627704
+2.399394
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+3.279666e+04
+774.232907
+0.000000
+0.000000
+0
+0
+1125.523438
+16.856276
+
+
+4
+1.639990
+2.407944
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+4.267620e+04
+1035.374460
+0.000000
+0.000000
+0
+0
+1840.070312
+21.739376
+
+
+5
+1.653012
+2.422681
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+3.664088e+04
+1301.766807
+0.000000
+0.000000
+0
+0
+2354.382812
+25.390574
+
+
+6
+1.657783
+2.457802
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+6624.316406
+270.958437
+4.626659e+04
+1580.428484
+2910.578125
+7.351115
+0
+0
+2808.136719
+26.741739
+
+
+7
+1.684695
+2.477245
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+3.284285e+04
+1896.309787
+0.000000
+0.000000
+0
+0
+2807.425781
+49.581324
+
+
+8
+1.713946
+2.509459
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+3.728577e+04
+2195.282286
+0.000000
+0.000000
+0
+0
+3293.394531
+67.042332
+
+
+9
+1.740239
+2.512901
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+4.183903e+04
+2532.981222
+0.000000
+0.000000
+0
+0
+3753.957031
+75.274546
+
+
+10
+1.779724
+2.656800
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+4.240661e+04
+2927.611783
+0.000000
+0.000000
+0
+0
+4150.222656
+84.710041
+
+
+10
+1
+1
+4.249538
+6.697040
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+6.326941e+04
+786.669466
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+2
+4.241509
+6.733446
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+1.054058e+05
+1587.744005
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+3
+4.319135
+6.866624
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+1.392845e+05
+2417.887925
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+4
+4.357608
+6.910564
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+1.786093e+05
+3275.796691
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+5
+4.444132
+7.157446
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+1.869333e+05
+4246.551481
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+6
+4.556069
+7.458999
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+17342.320312
+952.253322
+2.032445e+05
+5265.466408
+2608.453125
+8.310315
+0
+0
+0.000000
+0.000000
+
+
+7
+4.759533
+8.017166
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+2.027020e+05
+6528.646610
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+8
+4.936151
+8.304516
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+2.320173e+05
+7860.367871
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+9
+5.231177
+8.596706
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+2.130519e+05
+9147.668042
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+10
+5.392703
+8.895940
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+2.305828e+05
+10593.564916
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+30
+1
+1
+11.848516
+20.773472
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+2.428011e+05
+6184.898335
+0.000000
+0.000000
+0
+0
+238.613281
+13.309727
+
+
+2
+11.560896
+20.736863
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+4.072534e+05
+12370.134032
+0.000000
+0.000000
+0
+0
+653.542969
+15.027941
+
+
+3
+11.551032
+20.878200
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+5.741196e+05
+18572.865874
+0.000000
+0.000000
+0
+0
+1076.601562
+27.752162
+
+
+4
+12.034596
+21.469454
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+7.415082e+05
+25137.664373
+0.000000
+0.000000
+0
+0
+1478.449219
+42.074733
+
+
+5
+12.992434
+22.567123
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+8.108165e+05
+32702.073946
+0.000000
+0.000000
+0
+0
+1880.527344
+56.977909
+
+
+6
+13.718017
+25.209100
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+45615.996094
+2947.725295
+9.121772e+05
+40614.352894
+31904.496094
+69.471757
+0
+0
+2268.343750
+62.487400
+
+
+7
+14.459409
+26.819507
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+1.086867e+06
+49626.594767
+0.000000
+0.000000
+0
+0
+2668.695312
+81.235520
+
+
+8
+14.997548
+28.170066
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+1.269541e+06
+58838.671861
+0.000000
+0.000000
+0
+0
+3035.449219
+98.604956
+
+
+9
+14.790488
+30.449043
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+1.282161e+06
+66750.954151
+0.000000
+0.000000
+0
+0
+3449.035156
+110.060736
+
+
+10
+16.690499
+30.843552
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+1.405335e+06
+73239.706541
+0.000000
+0.000000
+0
+0
+3723.453125
+123.735284
+
+
+
+
40 rows Ă— 30 columns
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[13]:
+
+
+
+
+
+
+
+
+
+benchmark_geo
+benchmark_mean
+generate
+ingest
+initconstraints
+initindexes
+initschema
+initstatistics
+load
+loaded
+...
+mem_max_load
+cpu_total_load
+mem_max_stream
+cpu_total_stream
+mem_max_loader
+cpu_total_loader
+mem_max_datagenerator
+cpu_total_datagenerator
+mem_max_benchmarker
+cpu_total_benchmarker
+
+
+SF
+num_experiment
+num_client
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+1
+1
+1
+0.626844
+0.870090
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+7.128312e+03
+80.012976
+0.000000
+0.000000
+0
+0
+208.652344
+6.357339
+
+
+2
+0.627641
+0.879075
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+4.038180e+03
+160.696836
+0.000000
+0.000000
+0
+0
+611.730469
+12.480364
+
+
+3
+0.632130
+0.899522
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+4.229605e+03
+241.310310
+0.000000
+0.000000
+0
+0
+1212.539062
+21.294983
+
+
+4
+0.630736
+0.888230
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+8.228980e+03
+320.818782
+0.000000
+0.000000
+0
+0
+1863.578125
+28.945682
+
+
+5
+0.636013
+0.924576
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+7.845113e+03
+402.095493
+0.000000
+0.000000
+0
+0
+2465.582031
+35.623551
+
+
+6
+0.640728
+0.908141
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+3818.800781
+89.863155
+7.161371e+03
+480.793733
+705.457031
+2.415629
+0
+0
+3037.617188
+41.721285
+
+
+7
+0.640812
+0.916236
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+7.329809e+03
+564.956015
+0.000000
+0.000000
+0
+0
+2742.273438
+17.090795
+
+
+8
+0.632665
+0.904015
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+7.848301e+03
+643.013221
+0.000000
+0.000000
+0
+0
+3084.117188
+48.048381
+
+
+9
+0.639336
+0.914431
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+7.971777e+03
+721.034614
+0.000000
+0.000000
+0
+0
+3462.558594
+61.486374
+
+
+10
+0.650121
+0.927470
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+8.032227e+03
+809.336122
+0.000000
+0.000000
+0
+0
+3894.109375
+61.253136
+
+
+3
+1
+1
+1.637411
+2.337024
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+1.352643e+04
+254.895022
+0.000000
+0.000000
+0
+0
+204.019531
+7.368385
+
+
+2
+1.629153
+2.392267
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+2.088032e+04
+513.052090
+0.000000
+0.000000
+0
+0
+660.550781
+14.698020
+
+
+3
+1.659287
+2.451833
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+3.279666e+04
+774.232907
+0.000000
+0.000000
+0
+0
+1125.523438
+16.856276
+
+
+4
+1.660253
+2.438937
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+4.267620e+04
+1035.374460
+0.000000
+0.000000
+0
+0
+1840.070312
+21.739376
+
+
+5
+1.679546
+2.461815
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+3.664088e+04
+1301.766807
+0.000000
+0.000000
+0
+0
+2354.382812
+25.390574
+
+
+6
+1.701831
+2.497585
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+6624.316406
+270.958437
+4.626659e+04
+1580.428484
+2910.578125
+7.351115
+0
+0
+2808.136719
+26.741739
+
+
+7
+1.783129
+2.628219
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+3.284285e+04
+1896.309787
+0.000000
+0.000000
+0
+0
+2807.425781
+49.581324
+
+
+8
+1.827464
+2.639318
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+3.728577e+04
+2195.282286
+0.000000
+0.000000
+0
+0
+3293.394531
+67.042332
+
+
+9
+1.885180
+2.698596
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+4.183903e+04
+2532.981222
+0.000000
+0.000000
+0
+0
+3753.957031
+75.274546
+
+
+10
+2.000874
+2.866765
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+4.240661e+04
+2927.611783
+0.000000
+0.000000
+0
+0
+4150.222656
+84.710041
+
+
+10
+1
+1
+4.249538
+6.697040
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+6.326941e+04
+786.669466
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+2
+4.256660
+6.792321
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+1.054058e+05
+1587.744005
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+3
+4.344926
+7.031578
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+1.392845e+05
+2417.887925
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+4
+4.403455
+7.250765
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+1.786093e+05
+3275.796691
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+5
+4.604848
+7.543895
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+1.869333e+05
+4246.551481
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+6
+4.858891
+7.775989
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+17342.320312
+952.253322
+2.032445e+05
+5265.466408
+2608.453125
+8.310315
+0
+0
+0.000000
+0.000000
+
+
+7
+5.170702
+8.477382
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+2.027020e+05
+6528.646610
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+8
+5.374004
+8.769735
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+2.320173e+05
+7860.367871
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+9
+5.676579
+9.179535
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+2.130519e+05
+9147.668042
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+10
+6.060483
+9.544057
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+2.305828e+05
+10593.564916
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+30
+1
+1
+11.848516
+20.773472
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+2.428011e+05
+6184.898335
+0.000000
+0.000000
+0
+0
+238.613281
+13.309727
+
+
+2
+11.590215
+21.159031
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+4.072534e+05
+12370.134032
+0.000000
+0.000000
+0
+0
+653.542969
+15.027941
+
+
+3
+11.807706
+21.721130
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+5.741196e+05
+18572.865874
+0.000000
+0.000000
+0
+0
+1076.601562
+27.752162
+
+
+4
+12.315965
+22.365024
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+7.415082e+05
+25137.664373
+0.000000
+0.000000
+0
+0
+1478.449219
+42.074733
+
+
+5
+13.244481
+24.931526
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+8.108165e+05
+32702.073946
+0.000000
+0.000000
+0
+0
+1880.527344
+56.977909
+
+
+6
+14.096852
+26.204070
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+45615.996094
+2947.725295
+9.121772e+05
+40614.352894
+31904.496094
+69.471757
+0
+0
+2268.343750
+62.487400
+
+
+7
+15.398105
+28.600618
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+1.086867e+06
+49626.594767
+0.000000
+0.000000
+0
+0
+2668.695312
+81.235520
+
+
+8
+16.289964
+30.197897
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+1.269541e+06
+58838.671861
+0.000000
+0.000000
+0
+0
+3035.449219
+98.604956
+
+
+9
+17.628742
+32.871015
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+1.282161e+06
+66750.954151
+0.000000
+0.000000
+0
+0
+3449.035156
+110.060736
+
+
+10
+19.279709
+41.397282
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+1.405335e+06
+73239.706541
+0.000000
+0.000000
+0
+0
+3723.453125
+123.735284
+
+
+
+
40 rows Ă— 30 columns
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[14]:
+
+
+
+
+
+
+
+
+
+span_benchmark
+
+
+SF
+num_experiment
+num_client
+
+
+
+
+
+1
+1
+1
+22
+
+
+2
+25
+
+
+3
+32
+
+
+4
+45
+
+
+5
+48
+
+
+6
+55
+
+
+7
+59
+
+
+8
+69
+
+
+9
+81
+
+
+10
+82
+
+
+3
+1
+1
+56
+
+
+2
+62
+
+
+3
+75
+
+
+4
+75
+
+
+5
+82
+
+
+6
+87
+
+
+7
+102
+
+
+8
+114
+
+
+9
+117
+
+
+10
+123
+
+
+10
+1
+1
+153
+
+
+2
+160
+
+
+3
+173
+
+
+4
+185
+
+
+5
+202
+
+
+6
+213
+
+
+7
+223
+
+
+8
+247
+
+
+9
+254
+
+
+10
+269
+
+
+30
+1
+1
+4044
+
+
+2
+4056
+
+
+3
+4066
+
+
+4
+4100
+
+
+5
+4156
+
+
+6
+4199
+
+
+7
+4235
+
+
+8
+4283
+
+
+9
+4350
+
+
+10
+4550
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[15]:
+
+
+
+
+
+
+
+
+
+benchmark_geo
+benchmark_mean
+generate
+ingest
+initconstraints
+initindexes
+initschema
+initstatistics
+load
+loaded
+...
+mem_max_load
+cpu_total_load
+mem_max_stream
+cpu_total_stream
+mem_max_loader
+cpu_total_loader
+mem_max_datagenerator
+cpu_total_datagenerator
+mem_max_benchmarker
+cpu_total_benchmarker
+
+
+SF
+num_experiment
+num_client
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+...
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+
+
+2
+2
+2
+2
+2
+2
+2
+2
+2
+2
+2
+...
+2
+2
+2
+2
+2
+2
+2
+2
+2
+2
+
+
+3
+3
+3
+3
+3
+3
+3
+3
+3
+3
+3
+...
+3
+3
+3
+3
+3
+3
+3
+3
+3
+3
+
+
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+...
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+
+
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+...
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+
+
+6
+6
+6
+6
+6
+6
+6
+6
+6
+6
+6
+...
+6
+6
+6
+6
+6
+6
+6
+6
+6
+6
+
+
+7
+7
+7
+7
+7
+7
+7
+7
+7
+7
+7
+...
+7
+7
+7
+7
+7
+7
+7
+7
+7
+7
+
+
+8
+8
+8
+8
+8
+8
+8
+8
+8
+8
+8
+...
+8
+8
+8
+8
+8
+8
+8
+8
+8
+8
+
+
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+...
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+
+
+10
+10
+10
+10
+10
+10
+10
+10
+10
+10
+10
+...
+10
+10
+10
+10
+10
+10
+10
+10
+10
+10
+
+
+3
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+...
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+
+
+2
+2
+2
+2
+2
+2
+2
+2
+2
+2
+2
+...
+2
+2
+2
+2
+2
+2
+2
+2
+2
+2
+
+
+3
+3
+3
+3
+3
+3
+3
+3
+3
+3
+3
+...
+3
+3
+3
+3
+3
+3
+3
+3
+3
+3
+
+
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+...
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+
+
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+...
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+
+
+6
+6
+6
+6
+6
+6
+6
+6
+6
+6
+6
+...
+6
+6
+6
+6
+6
+6
+6
+6
+6
+6
+
+
+7
+7
+7
+7
+7
+7
+7
+7
+7
+7
+7
+...
+7
+7
+7
+7
+7
+7
+7
+7
+7
+7
+
+
+8
+8
+8
+8
+8
+8
+8
+8
+8
+8
+8
+...
+8
+8
+8
+8
+8
+8
+8
+8
+8
+8
+
+
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+...
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+
+
+10
+10
+10
+10
+10
+10
+10
+10
+10
+10
+10
+...
+10
+10
+10
+10
+10
+10
+10
+10
+10
+10
+
+
+10
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+...
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+
+
+2
+2
+2
+2
+2
+2
+2
+2
+2
+2
+2
+...
+2
+2
+2
+2
+2
+2
+2
+2
+2
+2
+
+
+3
+3
+3
+3
+3
+3
+3
+3
+3
+3
+3
+...
+3
+3
+3
+3
+3
+3
+3
+3
+3
+3
+
+
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+...
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+
+
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+...
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+
+
+6
+6
+6
+6
+6
+6
+6
+6
+6
+6
+6
+...
+6
+6
+6
+6
+6
+6
+6
+6
+6
+6
+
+
+7
+7
+7
+7
+7
+7
+7
+7
+7
+7
+7
+...
+7
+7
+7
+7
+7
+7
+7
+7
+7
+7
+
+
+8
+8
+8
+8
+8
+8
+8
+8
+8
+8
+8
+...
+8
+8
+8
+8
+8
+8
+8
+8
+8
+8
+
+
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+...
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+
+
+10
+10
+10
+10
+10
+10
+10
+10
+10
+10
+10
+...
+10
+10
+10
+10
+10
+10
+10
+10
+10
+10
+
+
+30
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+...
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+
+
+2
+2
+2
+2
+2
+2
+2
+2
+2
+2
+2
+...
+2
+2
+2
+2
+2
+2
+2
+2
+2
+2
+
+
+3
+3
+3
+3
+3
+3
+3
+3
+3
+3
+3
+...
+3
+3
+3
+3
+3
+3
+3
+3
+3
+3
+
+
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+...
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+
+
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+...
+5
+5
+5
+5
+5
+5
+5
+5
+5
+5
+
+
+6
+6
+6
+6
+6
+6
+6
+6
+6
+6
+6
+...
+6
+6
+6
+6
+6
+6
+6
+6
+6
+6
+
+
+7
+7
+7
+7
+7
+7
+7
+7
+7
+7
+7
+...
+7
+7
+7
+7
+7
+7
+7
+7
+7
+7
+
+
+8
+8
+8
+8
+8
+8
+8
+8
+8
+8
+8
+...
+8
+8
+8
+8
+8
+8
+8
+8
+8
+8
+
+
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+...
+9
+9
+9
+9
+9
+9
+9
+9
+9
+9
+
+
+10
+10
+10
+10
+10
+10
+10
+10
+10
+10
+10
+...
+10
+10
+10
+10
+10
+10
+10
+10
+10
+10
+
+
+
+
40 rows Ă— 32 columns
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[16]:
+
+
+
+
+
+
+
+
+
+span_benchmark
+count
+
+
+SF
+num_experiment
+num_client
+
+
+
+
+
+
+1
+1
+1
+22
+1
+
+
+2
+25
+2
+
+
+3
+32
+3
+
+
+4
+45
+4
+
+
+5
+48
+5
+
+
+6
+55
+6
+
+
+7
+59
+7
+
+
+8
+69
+8
+
+
+9
+81
+9
+
+
+10
+82
+10
+
+
+3
+1
+1
+56
+1
+
+
+2
+62
+2
+
+
+3
+75
+3
+
+
+4
+75
+4
+
+
+5
+82
+5
+
+
+6
+87
+6
+
+
+7
+102
+7
+
+
+8
+114
+8
+
+
+9
+117
+9
+
+
+10
+123
+10
+
+
+10
+1
+1
+153
+1
+
+
+2
+160
+2
+
+
+3
+173
+3
+
+
+4
+185
+4
+
+
+5
+202
+5
+
+
+6
+213
+6
+
+
+7
+223
+7
+
+
+8
+247
+8
+
+
+9
+254
+9
+
+
+10
+269
+10
+
+
+30
+1
+1
+4044
+1
+
+
+2
+4056
+2
+
+
+3
+4066
+3
+
+
+4
+4100
+4
+
+
+5
+4156
+5
+
+
+6
+4199
+6
+
+
+7
+4235
+7
+
+
+8
+4283
+8
+
+
+9
+4350
+9
+
+
+10
+4550
+10
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[17]:
+
+
+
+
+
+
+
+
+
+span_benchmark
+count
+SF
+tpx
+
+
+SF
+num_experiment
+num_client
+
+
+
+
+
+
+
+
+1
+1
+1
+22
+1
+1
+3600.000000
+
+
+2
+25
+2
+1
+6336.000000
+
+
+3
+32
+3
+1
+7425.000000
+
+
+4
+45
+4
+1
+7040.000000
+
+
+5
+48
+5
+1
+8250.000000
+
+
+6
+55
+6
+1
+8640.000000
+
+
+7
+59
+7
+1
+9396.610169
+
+
+8
+69
+8
+1
+9182.608696
+
+
+9
+81
+9
+1
+8800.000000
+
+
+10
+82
+10
+1
+9658.536585
+
+
+3
+1
+1
+56
+1
+3
+4242.857143
+
+
+2
+62
+2
+3
+7664.516129
+
+
+3
+75
+3
+3
+9504.000000
+
+
+4
+75
+4
+3
+12672.000000
+
+
+5
+82
+5
+3
+14487.804878
+
+
+6
+87
+6
+3
+16386.206897
+
+
+7
+102
+7
+3
+16305.882353
+
+
+8
+114
+8
+3
+16673.684211
+
+
+9
+117
+9
+3
+18276.923077
+
+
+10
+123
+10
+3
+19317.073171
+
+
+10
+1
+1
+153
+1
+10
+5176.470588
+
+
+2
+160
+2
+10
+9900.000000
+
+
+3
+173
+3
+10
+13734.104046
+
+
+4
+185
+4
+10
+17124.324324
+
+
+5
+202
+5
+10
+19603.960396
+
+
+6
+213
+6
+10
+22309.859155
+
+
+7
+223
+7
+10
+24860.986547
+
+
+8
+247
+8
+10
+25651.821862
+
+
+9
+254
+9
+10
+28062.992126
+
+
+10
+269
+10
+10
+29442.379182
+
+
+30
+1
+1
+4044
+1
+30
+587.537092
+
+
+2
+4056
+2
+30
+1171.597633
+
+
+3
+4066
+3
+30
+1753.074274
+
+
+4
+4100
+4
+30
+2318.048780
+
+
+5
+4156
+5
+30
+2858.517806
+
+
+6
+4199
+6
+30
+3395.094070
+
+
+7
+4235
+7
+30
+3927.272727
+
+
+8
+4283
+8
+30
+4438.010740
+
+
+9
+4350
+9
+30
+4915.862069
+
+
+10
+4550
+10
+30
+5221.978022
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[18]:
+
+
[<matplotlib.axis.XTick at 0x1e1bc59d6a0>,
+ <matplotlib.axis.XTick at 0x1e1bc59deb0>,
+ <matplotlib.axis.XTick at 0x1e1bc571250>,
+ <matplotlib.axis.XTick at 0x1e1c44bb460>,
+ <matplotlib.axis.XTick at 0x1e1c44c6220>,
+ <matplotlib.axis.XTick at 0x1e1c4504640>,
+ <matplotlib.axis.XTick at 0x1e1c44ba850>,
+ <matplotlib.axis.XTick at 0x1e1c44e8340>,
+ <matplotlib.axis.XTick at 0x1e1c4504eb0>,
+ <matplotlib.axis.XTick at 0x1e1c44e8a90>]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[20]:
+
+
+
+
+
+
+
+
+
+benchmark_geo
+benchmark_mean
+generate
+ingest
+initconstraints
+initindexes
+initschema
+initstatistics
+load
+loaded
+...
+mem_max_load
+cpu_total_load
+mem_max_stream
+cpu_total_stream
+mem_max_loader
+cpu_total_loader
+mem_max_datagenerator
+cpu_total_datagenerator
+mem_max_benchmarker
+cpu_total_benchmarker
+
+
+SF
+num_experiment
+num_client
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+1
+1
+1
+0.626844
+0.870090
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+7.128312e+03
+80.012976
+0.000000
+0.000000
+0
+0
+208.652344
+6.357339
+
+
+2
+0.627641
+0.879075
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+4.038180e+03
+160.696836
+0.000000
+0.000000
+0
+0
+611.730469
+12.480364
+
+
+3
+0.632130
+0.899522
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+4.229605e+03
+241.310310
+0.000000
+0.000000
+0
+0
+1212.539062
+21.294983
+
+
+4
+0.630736
+0.888230
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+8.228980e+03
+320.818782
+0.000000
+0.000000
+0
+0
+1863.578125
+28.945682
+
+
+5
+0.636013
+0.924576
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+7.845113e+03
+402.095493
+0.000000
+0.000000
+0
+0
+2465.582031
+35.623551
+
+
+6
+0.640728
+0.908141
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+3818.800781
+89.863155
+7.161371e+03
+480.793733
+705.457031
+2.415629
+0
+0
+3037.617188
+41.721285
+
+
+7
+0.640812
+0.916236
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+7.329809e+03
+564.956015
+0.000000
+0.000000
+0
+0
+2742.273438
+17.090795
+
+
+8
+0.632665
+0.904015
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+7.848301e+03
+643.013221
+0.000000
+0.000000
+0
+0
+3084.117188
+48.048381
+
+
+9
+0.639336
+0.914431
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+7.971777e+03
+721.034614
+0.000000
+0.000000
+0
+0
+3462.558594
+61.486374
+
+
+10
+0.650121
+0.927470
+0.0
+17.0
+29.036005
+7.205218
+1.211485
+20.242573
+76.836504
+2.288853
+...
+0.000000
+0.000000
+8.032227e+03
+809.336122
+0.000000
+0.000000
+0
+0
+3894.109375
+61.253136
+
+
+3
+1
+1
+1.637411
+2.337024
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+1.352643e+04
+254.895022
+0.000000
+0.000000
+0
+0
+204.019531
+7.368385
+
+
+2
+1.629153
+2.392267
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+2.088032e+04
+513.052090
+0.000000
+0.000000
+0
+0
+660.550781
+14.698020
+
+
+3
+1.659287
+2.451833
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+3.279666e+04
+774.232907
+0.000000
+0.000000
+0
+0
+1125.523438
+16.856276
+
+
+4
+1.660253
+2.438937
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+4.267620e+04
+1035.374460
+0.000000
+0.000000
+0
+0
+1840.070312
+21.739376
+
+
+5
+1.679546
+2.461815
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+3.664088e+04
+1301.766807
+0.000000
+0.000000
+0
+0
+2354.382812
+25.390574
+
+
+6
+1.701831
+2.497585
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+6624.316406
+270.958437
+4.626659e+04
+1580.428484
+2910.578125
+7.351115
+0
+0
+2808.136719
+26.741739
+
+
+7
+1.783129
+2.628219
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+3.284285e+04
+1896.309787
+0.000000
+0.000000
+0
+0
+2807.425781
+49.581324
+
+
+8
+1.827464
+2.639318
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+3.728577e+04
+2195.282286
+0.000000
+0.000000
+0
+0
+3293.394531
+67.042332
+
+
+9
+1.885180
+2.698596
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+4.183903e+04
+2532.981222
+0.000000
+0.000000
+0
+0
+3753.957031
+75.274546
+
+
+10
+2.000874
+2.866765
+0.0
+56.0
+96.297798
+17.512669
+1.261016
+29.401657
+202.647463
+2.343093
+...
+0.000000
+0.000000
+4.240661e+04
+2927.611783
+0.000000
+0.000000
+0
+0
+4150.222656
+84.710041
+
+
+10
+1
+1
+4.249538
+6.697040
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+6.326941e+04
+786.669466
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+2
+4.256660
+6.792321
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+1.054058e+05
+1587.744005
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+3
+4.344926
+7.031578
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+1.392845e+05
+2417.887925
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+4
+4.403455
+7.250765
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+1.786093e+05
+3275.796691
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+5
+4.604848
+7.543895
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+1.869333e+05
+4246.551481
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+6
+4.858891
+7.775989
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+17342.320312
+952.253322
+2.032445e+05
+5265.466408
+2608.453125
+8.310315
+0
+0
+0.000000
+0.000000
+
+
+7
+5.170702
+8.477382
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+2.027020e+05
+6528.646610
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+8
+5.374004
+8.769735
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+2.320173e+05
+7860.367871
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+9
+5.676579
+9.179535
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+2.130519e+05
+9147.668042
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+10
+6.060483
+9.544057
+0.0
+205.0
+405.726116
+58.959765
+1.237707
+36.520368
+709.609962
+2.295420
+...
+0.000000
+0.000000
+2.305828e+05
+10593.564916
+0.000000
+0.000000
+0
+0
+0.000000
+0.000000
+
+
+30
+1
+1
+11.848516
+20.773472
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+2.428011e+05
+6184.898335
+0.000000
+0.000000
+0
+0
+238.613281
+13.309727
+
+
+2
+11.590215
+21.159031
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+4.072534e+05
+12370.134032
+0.000000
+0.000000
+0
+0
+653.542969
+15.027941
+
+
+3
+11.807706
+21.721130
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+5.741196e+05
+18572.865874
+0.000000
+0.000000
+0
+0
+1076.601562
+27.752162
+
+
+4
+12.315965
+22.365024
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+7.415082e+05
+25137.664373
+0.000000
+0.000000
+0
+0
+1478.449219
+42.074733
+
+
+5
+13.244481
+24.931526
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+8.108165e+05
+32702.073946
+0.000000
+0.000000
+0
+0
+1880.527344
+56.977909
+
+
+6
+14.096852
+26.204070
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+45615.996094
+2947.725295
+9.121772e+05
+40614.352894
+31904.496094
+69.471757
+0
+0
+2268.343750
+62.487400
+
+
+7
+15.398105
+28.600618
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+1.086867e+06
+49626.594767
+0.000000
+0.000000
+0
+0
+2668.695312
+81.235520
+
+
+8
+16.289964
+30.197897
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+1.269541e+06
+58838.671861
+0.000000
+0.000000
+0
+0
+3035.449219
+98.604956
+
+
+9
+17.628742
+32.871015
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+1.282161e+06
+66750.954151
+0.000000
+0.000000
+0
+0
+3449.035156
+110.060736
+
+
+10
+19.279709
+41.397282
+0.0
+672.0
+1354.092800
+205.071821
+1.118685
+43.233445
+2277.665694
+2.153249
+...
+0.000000
+0.000000
+1.405335e+06
+73239.706541
+0.000000
+0.000000
+0
+0
+3723.453125
+123.735284
+
+
+
+
40 rows Ă— 32 columns
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[21]:
+
+
+
+
+
+
+
+
+span_benchmark
+
+
+SF
+num_client
+
+
+
+
+
+1
+1
+22.0
+
+
+2
+23.0
+
+
+3
+24.0
+
+
+4
+24.0
+
+
+5
+24.0
+
+
+6
+24.0
+
+
+7
+25.0
+
+
+8
+24.0
+
+
+9
+25.0
+
+
+10
+25.0
+
+
+3
+1
+56.0
+
+
+2
+57.0
+
+
+3
+59.0
+
+
+4
+58.0
+
+
+5
+59.0
+
+
+6
+60.0
+
+
+7
+62.0
+
+
+8
+63.0
+
+
+9
+64.0
+
+
+10
+68.0
+
+
+10
+1
+153.0
+
+
+2
+154.0
+
+
+3
+160.0
+
+
+4
+165.0
+
+
+5
+172.0
+
+
+6
+176.0
+
+
+7
+192.0
+
+
+8
+198.0
+
+
+9
+207.0
+
+
+10
+215.0
+
+
+30
+1
+4044.0
+
+
+2
+4052.0
+
+
+3
+4064.0
+
+
+4
+4078.0
+
+
+5
+4132.0
+
+
+6
+4159.0
+
+
+7
+4209.0
+
+
+8
+4242.0
+
+
+9
+4299.0
+
+
+10
+4477.0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
(1, 1)
+(1, 2)
+(1, 3)
+(1, 4)
+(1, 5)
+(1, 6)
+(1, 7)
+(1, 8)
+(1, 9)
+(1, 10)
+(3, 1)
+(3, 2)
+(3, 3)
+(3, 4)
+(3, 5)
+(3, 6)
+(3, 7)
+(3, 8)
+(3, 9)
+(3, 10)
+(10, 1)
+(10, 2)
+(10, 3)
+(10, 4)
+(10, 5)
+(10, 6)
+(10, 7)
+(10, 8)
+(10, 9)
+(10, 10)
+(30, 1)
+(30, 2)
+(30, 3)
+(30, 4)
+(30, 5)
+(30, 6)
+(30, 7)
+(30, 8)
+(30, 9)
+(30, 10)
+
+
+
+
+
Out[22]:
+
+
(0.0, 4924.700000000001)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[23]:
+
+
+
+
+
+
+
+
+benchmark_geo
+benchmark_mean
+generate
+...
+cpu_total_datagenerator
+mem_max_benchmarker
+cpu_total_benchmarker
+
+
+
+SF
+1
+3
+10
+30
+1
+3
+10
+30
+1
+3
+...
+10
+30
+1
+3
+10
+30
+1
+3
+10
+30
+
+
+num_experiment
+num_client
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+1
+1
+0.626844
+1.637411
+4.249538
+11.848516
+0.870090
+2.337024
+6.697040
+20.773472
+0.0
+0.0
+...
+0
+0
+208.652344
+204.019531
+0.0
+238.613281
+6.357339
+7.368385
+0.0
+13.309727
+
+
+2
+0.627641
+1.629153
+4.256660
+11.590215
+0.879075
+2.392267
+6.792321
+21.159031
+0.0
+0.0
+...
+0
+0
+611.730469
+660.550781
+0.0
+653.542969
+12.480364
+14.698020
+0.0
+15.027941
+
+
+3
+0.632130
+1.659287
+4.344926
+11.807706
+0.899522
+2.451833
+7.031578
+21.721130
+0.0
+0.0
+...
+0
+0
+1212.539062
+1125.523438
+0.0
+1076.601562
+21.294983
+16.856276
+0.0
+27.752162
+
+
+4
+0.630736
+1.660253
+4.403455
+12.315965
+0.888230
+2.438937
+7.250765
+22.365024
+0.0
+0.0
+...
+0
+0
+1863.578125
+1840.070312
+0.0
+1478.449219
+28.945682
+21.739376
+0.0
+42.074733
+
+
+5
+0.636013
+1.679546
+4.604848
+13.244481
+0.924576
+2.461815
+7.543895
+24.931526
+0.0
+0.0
+...
+0
+0
+2465.582031
+2354.382812
+0.0
+1880.527344
+35.623551
+25.390574
+0.0
+56.977909
+
+
+6
+0.640728
+1.701831
+4.858891
+14.096852
+0.908141
+2.497585
+7.775989
+26.204070
+0.0
+0.0
+...
+0
+0
+3037.617188
+2808.136719
+0.0
+2268.343750
+41.721285
+26.741739
+0.0
+62.487400
+
+
+7
+0.640812
+1.783129
+5.170702
+15.398105
+0.916236
+2.628219
+8.477382
+28.600618
+0.0
+0.0
+...
+0
+0
+2742.273438
+2807.425781
+0.0
+2668.695312
+17.090795
+49.581324
+0.0
+81.235520
+
+
+8
+0.632665
+1.827464
+5.374004
+16.289964
+0.904015
+2.639318
+8.769735
+30.197897
+0.0
+0.0
+...
+0
+0
+3084.117188
+3293.394531
+0.0
+3035.449219
+48.048381
+67.042332
+0.0
+98.604956
+
+
+9
+0.639336
+1.885180
+5.676579
+17.628742
+0.914431
+2.698596
+9.179535
+32.871015
+0.0
+0.0
+...
+0
+0
+3462.558594
+3753.957031
+0.0
+3449.035156
+61.486374
+75.274546
+0.0
+110.060736
+
+
+10
+0.650121
+2.000874
+6.060483
+19.279709
+0.927470
+2.866765
+9.544057
+41.397282
+0.0
+0.0
+...
+0
+0
+3894.109375
+4150.222656
+0.0
+3723.453125
+61.253136
+84.710041
+0.0
+123.735284
+
+
+
+
10 rows Ă— 128 columns
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[24]:
+
+
<matplotlib.legend.Legend at 0x1e1cad28bb0>
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[25]:
+
+
SF
+1 8.036114
+3 15.060738
+10 22.657937
+30 45.746578
+dtype: float64
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Results in folder .//1686234009
+Read results
+Load Evaluation
+Results in folder .//1686236492
+Read results
+Load Evaluation
+Results in folder .//1686228050
+Read results
+Load Evaluation
+Results in folder .//1686238015
+Read results
+Load Evaluation
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[27]:
+
+
+
+
+
+
+
+1
+3
+10
+30
+
+
+DBMS
+
+
+
+
+
+
+
+
+1
+2.925197
+6.325603
+7.290536
+9.000576
+
+
+2
+7.373190
+12.891595
+14.601075
+18.001615
+
+
+3
+9.825474
+15.766660
+20.998972
+26.572984
+
+
+4
+9.916559
+20.264882
+27.996150
+34.870364
+
+
+5
+13.846226
+21.572946
+35.011020
+43.971000
+
+
+6
+13.035102
+27.996733
+40.438248
+52.016224
+
+
+7
+15.284197
+35.329831
+46.495163
+61.151688
+
+
+8
+18.066155
+37.752712
+53.969259
+63.825899
+
+
+9
+16.729748
+36.465671
+56.431668
+63.813964
+
+
+10
+16.241658
+41.544776
+57.952377
+63.836050
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Results in folder .//1686234009
+Read results
+Load Evaluation
+Results in folder .//1686236492
+Read results
+Load Evaluation
+Results in folder .//1686228050
+Read results
+Load Evaluation
+Results in folder .//1686238015
+Read results
+Load Evaluation
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[29]:
+
+
+
+
+
+
+
+1
+3
+10
+30
+
+
+DBMS
+
+
+
+
+
+
+
+
+1
+7.128312
+13.526434
+63.269414
+242.801102
+
+
+2
+4.038180
+20.880320
+105.405840
+407.253375
+
+
+3
+4.229605
+32.796660
+139.284535
+574.119574
+
+
+4
+8.228980
+42.676199
+178.609262
+741.508152
+
+
+5
+7.845113
+36.640883
+186.933273
+810.816473
+
+
+6
+7.161371
+46.266586
+203.244477
+912.177176
+
+
+7
+7.329809
+32.842848
+202.702039
+1086.867223
+
+
+8
+7.848301
+37.285773
+232.017277
+1269.540586
+
+
+9
+7.971777
+41.839031
+213.051941
+1282.160914
+
+
+10
+8.032227
+42.406613
+230.582828
+1405.334891
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Results in folder .//1686234009
+Read results
+Load Evaluation
+Results in folder .//1686236492
+Read results
+Load Evaluation
+Results in folder .//1686228050
+Read results
+Load Evaluation
+Results in folder .//1686238015
+Read results
+Load Evaluation
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[31]:
+
+
+
+
+
+
+
+1
+3
+10
+30
+
+
+DBMS
+
+
+
+
+
+
+
+
+1
+8.785402
+18.434281
+79.560328
+265.305297
+
+
+2
+5.695270
+25.788168
+121.696754
+429.757570
+
+
+3
+5.886695
+37.704508
+155.575449
+596.623770
+
+
+4
+9.886070
+47.584047
+194.900176
+764.012348
+
+
+5
+9.502203
+41.548730
+203.224187
+833.320668
+
+
+6
+8.818461
+51.174434
+219.535391
+934.681371
+
+
+7
+8.986898
+37.750695
+218.992953
+1109.371418
+
+
+8
+9.505391
+42.193621
+248.308191
+1292.044781
+
+
+9
+9.628867
+46.746879
+229.342855
+1304.665109
+
+
+10
+9.689316
+47.314461
+246.873742
+1427.839086
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Results in folder .//1686234009
+Read results
+Load Evaluation
+Results in folder .//1686236492
+Read results
+Load Evaluation
+Results in folder .//1686228050
+Read results
+Load Evaluation
+Results in folder .//1686238015
+Read results
+Load Evaluation
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[33]:
+
+
+
+
+
+
+
+1
+3
+10
+30
+
+
+DBMS
+
+
+
+
+
+
+
+
+1
+80.012976
+254.895022
+786.669466
+6184.898335
+
+
+2
+160.696836
+513.052090
+1587.744005
+12370.134032
+
+
+3
+241.310310
+774.232907
+2417.887925
+18572.865874
+
+
+4
+320.818782
+1035.374460
+3275.796691
+25137.664373
+
+
+5
+402.095493
+1301.766807
+4246.551481
+32702.073946
+
+
+6
+480.793733
+1580.428484
+5265.466408
+40614.352894
+
+
+7
+564.956015
+1896.309787
+6528.646610
+49626.594767
+
+
+8
+643.013221
+2195.282286
+7860.367871
+58838.671861
+
+
+9
+721.034614
+2532.981222
+9147.668042
+66750.954151
+
+
+10
+809.336122
+2927.611783
+10593.564916
+73239.706541
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Results in folder .//1686234009
+Read results
+Load Evaluation
+Results in folder .//1686236492
+Read results
+Load Evaluation
+Results in folder .//1686228050
+Read results
+Load Evaluation
+Results in folder .//1686238015
+Read results
+Load Evaluation
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[35]:
+
+
+
+
+
+
+
+1
+3
+10
+30
+
+
+DBMS
+
+
+
+
+
+
+
+
+1
+0.351637
+0.452132
+0.0
+0.453909
+
+
+2
+0.274562
+0.450193
+0.0
+0.906511
+
+
+3
+0.594639
+0.875783
+0.0
+1.369124
+
+
+4
+0.692282
+1.736767
+0.0
+0.482500
+
+
+5
+1.875298
+1.333599
+0.0
+0.672106
+
+
+6
+1.182135
+1.504793
+0.0
+2.428322
+
+
+7
+2.707533
+2.880599
+0.0
+0.553262
+
+
+8
+1.685111
+2.234767
+0.0
+2.064222
+
+
+9
+1.876792
+3.372648
+0.0
+3.292659
+
+
+10
+2.563882
+2.562248
+0.0
+3.452518
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Results in folder .//1686234009
+Read results
+Load Evaluation
+Results in folder .//1686236492
+Read results
+Load Evaluation
+Results in folder .//1686228050
+Read results
+Load Evaluation
+Results in folder .//1686238015
+Read results
+Load Evaluation
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[37]:
+
+
+
+
+
+
+
+1
+3
+10
+30
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Results in folder .//1686234009
+Read results
+Load Evaluation
+Results in folder .//1686236492
+Read results
+Load Evaluation
+Results in folder .//1686228050
+Read results
+Load Evaluation
+Results in folder .//1686238015
+Read results
+Load Evaluation
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[39]:
+
+
+
+
+
+
+
+1
+3
+10
+30
+
+
+DBMS
+
+
+
+
+
+
+
+
+1
+0.208652
+0.204020
+0.0
+0.238613
+
+
+2
+0.611730
+0.660551
+0.0
+0.653543
+
+
+3
+1.212539
+1.125523
+0.0
+1.076602
+
+
+4
+1.863578
+1.840070
+0.0
+1.478449
+
+
+5
+2.465582
+2.354383
+0.0
+1.880527
+
+
+6
+3.037617
+2.808137
+0.0
+2.268344
+
+
+7
+2.742273
+2.807426
+0.0
+2.668695
+
+
+8
+3.084117
+3.293395
+0.0
+3.035449
+
+
+9
+3.462559
+3.753957
+0.0
+3.449035
+
+
+10
+3.894109
+4.150223
+0.0
+3.723453
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Results in folder .//1686234009
+Read results
+Load Evaluation
+Results in folder .//1686236492
+Read results
+Load Evaluation
+Results in folder .//1686228050
+Read results
+Load Evaluation
+Results in folder .//1686238015
+Read results
+Load Evaluation
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[41]:
+
+
+
+
+
+
+
+1
+3
+10
+30
+
+
+DBMS
+
+
+
+
+
+
+
+
+1
+0.211746
+0.208016
+0.0
+0.244414
+
+
+2
+0.619078
+0.672410
+0.0
+0.664113
+
+
+3
+1.226977
+1.140477
+0.0
+1.095809
+
+
+4
+1.886910
+1.864305
+0.0
+1.503844
+
+
+5
+2.497164
+2.385965
+0.0
+1.914688
+
+
+6
+3.078094
+2.848871
+0.0
+2.304051
+
+
+7
+2.780430
+2.859117
+0.0
+2.710203
+
+
+8
+3.129750
+3.352691
+0.0
+3.082242
+
+
+9
+3.511543
+3.821375
+0.0
+3.505238
+
+
+10
+3.947219
+4.223957
+0.0
+3.785199
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Results in folder .//1686234009
+Read results
+Load Evaluation
+found 55 connections
+Results in folder .//1686236492
+Read results
+Load Evaluation
+found 55 connections
+Results in folder .//1686228050
+Read results
+Load Evaluation
+found 55 connections
+Results in folder .//1686238015
+Read results
+Load Evaluation
+found 55 connections
+ 1 3 10 30
+DBMS
+1 6.357339 7.368385 0.0 13.309727
+2 12.480364 14.698020 0.0 15.027941
+3 21.294983 16.856276 0.0 27.752162
+4 28.945682 21.739376 0.0 42.074733
+5 35.623551 25.390574 0.0 56.977909
+6 41.721285 26.741739 0.0 62.487400
+7 17.090795 49.581324 0.0 81.235520
+8 48.048381 67.042332 0.0 98.604956
+9 61.486374 75.274546 0.0 110.060736
+10 61.253136 84.710041 0.0 123.735284
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[43]:
+
+
+
+
+
+
+
+1
+3
+10
+30
+
+
+DBMS
+
+
+
+
+
+
+
+
+1
+6.357339
+7.368385
+0.0
+13.309727
+
+
+2
+12.480364
+14.698020
+0.0
+15.027941
+
+
+3
+21.294983
+16.856276
+0.0
+27.752162
+
+
+4
+28.945682
+21.739376
+0.0
+42.074733
+
+
+5
+35.623551
+25.390574
+0.0
+56.977909
+
+
+6
+41.721285
+26.741739
+0.0
+62.487400
+
+
+7
+17.090795
+49.581324
+0.0
+81.235520
+
+
+8
+48.048381
+67.042332
+0.0
+98.604956
+
+
+9
+61.486374
+75.274546
+0.0
+110.060736
+
+
+10
+61.253136
+84.710041
+0.0
+123.735284
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/images/evaluator_dbmsbenchmarker/notebooks/Evaluation-TPC-H-Throughput.ipynb b/images/evaluator_dbmsbenchmarker/notebooks/Evaluation-TPC-H-Throughput.ipynb
new file mode 100644
index 00000000..dda53499
--- /dev/null
+++ b/images/evaluator_dbmsbenchmarker/notebooks/Evaluation-TPC-H-Throughput.ipynb
@@ -0,0 +1,12555 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "toc": true
+ },
+ "source": [
+ "Table of Contents \n",
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Evaluation of TPC-H Benchmarking Throughput\n",
+ "\n",
+ " \n",
+ "\n",
+ "## Import some libraries"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from dbmsbenchmarker import *\n",
+ "import pandas as pd\n",
+ "pd.set_option(\"display.max_rows\", None)\n",
+ "pd.set_option('display.max_colwidth', None)\n",
+ "\n",
+ "# Some plotly figures\n",
+ "import plotly.graph_objects as go\n",
+ "import plotly.figure_factory as ff\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "# Some nice output\n",
+ "from IPython.display import display, Markdown\n",
+ "\n",
+ "import logging\n",
+ "logging.basicConfig(level=logging.INFO)\n",
+ "\n",
+ "import re\n",
+ "\n",
+ "def natural_sort(l): \n",
+ " convert = lambda text: int(text) if text.isdigit() else text.lower()\n",
+ " alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]\n",
+ " return sorted(l, key=alphanum_key)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# path of folder containing experiment results\n",
+ "resultfolder = \"./\"\n",
+ "\n",
+ "# create evaluation object for result folder\n",
+ "evaluate = inspector.inspector(resultfolder)\n",
+ "\n",
+ "# list of experiments to be combined\n",
+ "codes = [1686234009,1686236492,1686228050,1686238015]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Load Results"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import ast\n",
+ "import json\n",
+ "import statistics\n",
+ "import pandas as pd\n",
+ "\n",
+ "def generate_df(code):\n",
+ " global SF, dbms, imported, portion_of_data\n",
+ " path=resultfolder\n",
+ " with open(path+str(code)+\"/connections.config\",'r') as inf:\n",
+ " connections = ast.literal_eval(inf.read())\n",
+ " #print(\"found\", len(connections), \"connections\")\n",
+ " connections_sorted = sorted(connections, key=lambda c: c['name'])\n",
+ " # loading\n",
+ " evaluate.load_experiment(code)\n",
+ " df = evaluate.get_loading_metrics('total_cpu_memory')\n",
+ " df = df.T.max().sort_index()\n",
+ " df = pd.DataFrame(df)\n",
+ " hw_memory = df[0]\n",
+ " df = evaluate.get_loading_metrics('total_cpu_util_s')\n",
+ " df = df.T.max().sort_index() - df.T.min().sort_index()\n",
+ " df = pd.DataFrame(df)\n",
+ " hw_cpu = df[0]\n",
+ " # benchmarking\n",
+ " df = evaluate.get_streaming_metrics('total_cpu_memory')\n",
+ " df = df.T.max().sort_index()\n",
+ " df = pd.DataFrame(df)\n",
+ " hw_memory_stream = df[0]\n",
+ " df = evaluate.get_streaming_metrics('total_cpu_util_s')\n",
+ " df = df.T.max().sort_index() - df.T.min().sort_index()\n",
+ " df = pd.DataFrame(df)\n",
+ " hw_cpu_stream = df[0]\n",
+ " # data generator\n",
+ " df = evaluate.get_datagenerator_metrics('total_cpu_memory')\n",
+ " df = df.T.max().sort_index()\n",
+ " df = pd.DataFrame(df)\n",
+ " hw_memory_datagenerator = df[0]\n",
+ " #print(hw_memory_datagenerator)\n",
+ " df = evaluate.get_datagenerator_metrics('total_cpu_util_s')\n",
+ " df = df.T.max().sort_index() - df.T.min().sort_index()\n",
+ " df = pd.DataFrame(df)\n",
+ " hw_cpu_datagenerator = df[0]\n",
+ " # loader\n",
+ " df = evaluate.get_loader_metrics('total_cpu_memory')\n",
+ " df = df.T.max().sort_index()\n",
+ " df = pd.DataFrame(df)\n",
+ " hw_memory_loader = df[0]\n",
+ " df = evaluate.get_loader_metrics('total_cpu_util_s')\n",
+ " df = df.T.max().sort_index() - df.T.min().sort_index()\n",
+ " df = pd.DataFrame(df)\n",
+ " hw_cpu_loader = df[0]\n",
+ " # benchmarker\n",
+ " df = evaluate.get_benchmarker_metrics('total_cpu_memory')\n",
+ " df = df.T.max().sort_index()\n",
+ " df = pd.DataFrame(df)\n",
+ " hw_memory_benchmarker = df[0]\n",
+ " df = evaluate.get_benchmarker_metrics('total_cpu_util_s')\n",
+ " df = df.T.max().sort_index() - df.T.min().sort_index()\n",
+ " df = pd.DataFrame(df)\n",
+ " hw_cpu_benchmarker = df[0]\n",
+ " # benchmark\n",
+ " df = evaluate.get_aggregated_experiment_statistics(type='timer', name='run', query_aggregate='Mean', total_aggregate='Mean')\n",
+ " df_mean = (df/1000.0).sort_index()\n",
+ " #print(df_mean)\n",
+ " df = evaluate.get_aggregated_experiment_statistics(type='timer', name='run', query_aggregate='Median', total_aggregate='Geo')\n",
+ " df_geo = (df/1000.0).sort_index()\n",
+ " #print(df_geo)\n",
+ " #df_metric[0]['PostgreSQL-BHT-1-1-1']\n",
+ " #df_metric.plot()\n",
+ " #pretty_connections = json.dumps(connections, indent=2)\n",
+ " df_merged_time = pd.DataFrame()\n",
+ " df_merged_tpx = pd.DataFrame()\n",
+ " for c in connections_sorted:\n",
+ " #print(c)\n",
+ " connection_name = c['name']\n",
+ " orig_name = c['orig_name']\n",
+ " #print(connection_name, orig_name)\n",
+ " properties = evaluate.get_experiment_connection_properties(connection_name)\n",
+ " dbms = properties['docker']\n",
+ " #print(properties)\n",
+ " # load\n",
+ " if orig_name in hw_cpu:\n",
+ " hw_cpu_c = hw_cpu[orig_name]\n",
+ " else:\n",
+ " hw_cpu_c = 0\n",
+ " if orig_name in hw_memory:\n",
+ " hw_memory_c = hw_memory[orig_name]\n",
+ " else:\n",
+ " hw_memory_c = 0\n",
+ " # stream\n",
+ " if orig_name in hw_cpu_stream:\n",
+ " hw_cpu_stream_c = hw_cpu_stream[orig_name]\n",
+ " else:\n",
+ " hw_cpu_stream_c = 0\n",
+ " if orig_name in hw_memory_stream:\n",
+ " hw_memory_stream_c = hw_memory_stream[orig_name]\n",
+ " else:\n",
+ " hw_memory_stream_c = 0\n",
+ " # loader\n",
+ " if orig_name in hw_cpu_loader:\n",
+ " hw_cpu_loader_c = hw_cpu_loader[orig_name]\n",
+ " else:\n",
+ " hw_cpu_loader_c = 0\n",
+ " if orig_name in hw_memory_loader:\n",
+ " hw_memory_loader_c = hw_memory_loader[orig_name]\n",
+ " else:\n",
+ " hw_memory_loader_c = 0\n",
+ " # data generator\n",
+ " if orig_name in hw_cpu_datagenerator:\n",
+ " hw_cpu_datagenerator_c = hw_cpu_datagenerator[orig_name]\n",
+ " else:\n",
+ " hw_cpu_datagenerator_c = 0\n",
+ " if orig_name in hw_memory_datagenerator:\n",
+ " hw_memory_datagenerator_c = hw_memory_datagenerator[orig_name]\n",
+ " else:\n",
+ " hw_memory_datagenerator_c = 0\n",
+ " # benchmarker\n",
+ " if orig_name in hw_cpu_benchmarker:\n",
+ " hw_cpu_benchmarker_c = hw_cpu_benchmarker[orig_name]\n",
+ " else:\n",
+ " hw_cpu_benchmarker_c = 0\n",
+ " if orig_name in hw_memory_benchmarker:\n",
+ " hw_memory_benchmarker_c = hw_memory_benchmarker[orig_name]\n",
+ " else:\n",
+ " hw_memory_benchmarker_c = 0\n",
+ " results = dict()\n",
+ " eva = evaluate.get_experiment_connection_properties(c['name'])\n",
+ " SF = int(c['parameter']['connection_parameter']['loading_parameters']['SF'])\n",
+ " if 'TPCH_TABLE' in c['parameter']['connection_parameter']['loading_parameters']:\n",
+ " TPCH_TABLE = c['parameter']['connection_parameter']['loading_parameters']['TPCH_TABLE']\n",
+ " else:\n",
+ " TPCH_TABLE = ''\n",
+ " imported = TPCH_TABLE\n",
+ " if len(c['hostsystem']['loading_timespans']['sensor']) == 0:\n",
+ " continue\n",
+ " timespan_load = max([end for (start,end) in c['hostsystem']['loading_timespans']['sensor']]) - min([start for (start,end) in c['hostsystem']['loading_timespans']['sensor']])\n",
+ " timespan_benchmark = eva['times']['total'][c['name']]['time_end']-eva['times']['total'][c['name']]['time_start']\n",
+ " results[connection_name] = {\n",
+ " 'load':eva['times']['load_ms']/1000.,\n",
+ " 'ingest':eva['times']['ingest_ms']/1000.,\n",
+ " 'generate':eva['times']['generate_ms']/1000.,\n",
+ " 'schema':eva['times']['schema_ms']/1000.,\n",
+ " #'index':eva['times']['index_ms']/1000.,\n",
+ " 'loaded':eva['times']['script_times']['loaded'],\n",
+ " 'initschema':eva['times']['script_times']['initschema'],\n",
+ " 'span_load':timespan_load,\n",
+ " 'span_benchmark':timespan_benchmark,\n",
+ " #'mean_generate': statistics.mean([end-start for (start,end) in c['hostsystem']['loading_timespans']['datagenerator']]),\n",
+ " #'max_generate': max([end-start for (start,end) in c['hostsystem']['loading_timespans']['datagenerator']]),\n",
+ " #'min_generate': min([end-start for (start,end) in c['hostsystem']['loading_timespans']['datagenerator']]),\n",
+ " 'mean_load': statistics.mean([end-start for (start,end) in c['hostsystem']['loading_timespans']['sensor']]),\n",
+ " 'max_load': max([end-start for (start,end) in c['hostsystem']['loading_timespans']['sensor']]),\n",
+ " 'min_load': min([end-start for (start,end) in c['hostsystem']['loading_timespans']['sensor']]),\n",
+ " 'span_generate': c['timeGenerate'],\n",
+ " #'pods': int(c['parameter']['connection_parameter']['loading_parameters']['PODS_PARALLEL']),\n",
+ " #'indexed':eva['times']['script_times']['indexed'],\n",
+ " 'initindexes':eva['times']['script_times']['initindexes'],\n",
+ " 'initconstraints':eva['times']['script_times']['initconstraints'],\n",
+ " 'initstatistics':eva['times']['script_times']['initstatistics'],\n",
+ " 'benchmark_mean':df_mean.loc[connection_name]['total_timer_run'],\n",
+ " 'benchmark_geo':df_geo.loc[connection_name]['total_timer_run'],\n",
+ " }\n",
+ " # DataFrame of time\n",
+ " df = pd.DataFrame(results).T\n",
+ " df_time = df.copy()\n",
+ " df_tpx = df.copy()\n",
+ " # Compute DataFrame of throughput (Tpx)\n",
+ " df_tpx = 3600*int(SF)/df_tpx * portion_of_data\n",
+ " # Set Values that are same for time and tpx\n",
+ " df_time['SF'] = int(SF)\n",
+ " df_tpx['SF'] = int(SF)\n",
+ " df_time['dbms'] = dbms\n",
+ " df_tpx['dbms'] = dbms\n",
+ " df_time['TPCH_TABLE'] = TPCH_TABLE\n",
+ " df_tpx['TPCH_TABLE'] = TPCH_TABLE\n",
+ " df_time['pods'] = int(c['parameter']['connection_parameter']['loading_parameters']['PODS_PARALLEL'])\n",
+ " df_tpx['pods'] = int(c['parameter']['connection_parameter']['loading_parameters']['PODS_PARALLEL'])\n",
+ " #df_time['threads'] = int(c['parameter']['connection_parameter']['loading_parameters']['MYSQL_LOADING_THREADS'])\n",
+ " #df_tpx['threads'] = int(c['parameter']['connection_parameter']['loading_parameters']['MYSQL_LOADING_THREADS'])\n",
+ " df_time['num_experiment'] = int(c['parameter']['numExperiment'])\n",
+ " df_tpx['num_experiment'] = int(c['parameter']['numExperiment'])\n",
+ " df_time['num_client'] = int(c['parameter']['client'])\n",
+ " df_tpx['num_client'] = int(c['parameter']['client'])\n",
+ " df_time['benchmark_start'] = eva['times']['total'][c['name']]['time_start']\n",
+ " df_time['benchmark_end'] = eva['times']['total'][c['name']]['time_end']\n",
+ " df_tpx['benchmark_start'] = eva['times']['total'][c['name']]['time_start']\n",
+ " df_tpx['benchmark_end'] = eva['times']['total'][c['name']]['time_end']\n",
+ " df_time['mem_max_load'] = hw_memory_c\n",
+ " df_tpx['mem_max_load'] = hw_memory_c\n",
+ " # load\n",
+ " df_time['mem_max_load'] = hw_memory_c\n",
+ " df_tpx['mem_max_load'] = hw_memory_c\n",
+ " df_time['cpu_total_load'] = hw_cpu_c\n",
+ " df_tpx['cpu_total_load'] = hw_cpu_c\n",
+ " # stream\n",
+ " df_time['mem_max_stream'] = hw_memory_stream_c\n",
+ " df_tpx['mem_max_stream'] = hw_memory_stream_c\n",
+ " df_time['cpu_total_stream'] = hw_cpu_stream_c\n",
+ " df_tpx['cpu_total_stream'] = hw_cpu_stream_c\n",
+ " # loader\n",
+ " df_time['mem_max_loader'] = hw_memory_loader_c\n",
+ " df_tpx['mem_max_loader'] = hw_memory_loader_c\n",
+ " df_time['cpu_total_loader'] = hw_cpu_loader_c\n",
+ " df_tpx['cpu_total_loader'] = hw_cpu_loader_c\n",
+ " # data generator\n",
+ " df_time['mem_max_datagenerator'] = hw_memory_datagenerator_c\n",
+ " df_tpx['mem_max_datagenerator'] = hw_memory_datagenerator_c\n",
+ " df_time['cpu_total_datagenerator'] = hw_cpu_datagenerator_c\n",
+ " df_tpx['cpu_total_datagenerator'] = hw_cpu_datagenerator_c\n",
+ " # benchmarker\n",
+ " df_time['mem_max_benchmarker'] = hw_memory_benchmarker_c\n",
+ " df_tpx['mem_max_benchmarker'] = hw_memory_benchmarker_c\n",
+ " df_time['cpu_total_benchmarker'] = hw_cpu_benchmarker_c\n",
+ " df_tpx['cpu_total_benchmarker'] = hw_cpu_benchmarker_c\n",
+ " df_merged_time = pd.concat([df_merged_time, df_time])\n",
+ " df_merged_tpx = pd.concat([df_merged_tpx, df_tpx])\n",
+ " return df_merged_time, df_merged_tpx\n",
+ "\n",
+ "def merge_experiments(df_time, df_tpx, code):\n",
+ " df_time_tmp, df_tpx_tmp = generate_df(code)\n",
+ " df_time = pd.concat([df_time, df_time_tmp])\n",
+ " df_tpx = pd.concat([df_tpx, df_tpx_tmp])\n",
+ " return df_time, df_tpx"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Load Results and Generate Common DataFrame"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Results in folder .//1686234009\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686236492\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686228050\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686238015\n",
+ "Read results\n",
+ "Load Evaluation\n"
+ ]
+ }
+ ],
+ "source": [
+ "df_time = pd.DataFrame()\n",
+ "df_tpx = pd.DataFrame()\n",
+ "\n",
+ "portion_of_data = 1.0 # for lineitem table = 0.7, for all tables = 1.0\n",
+ "\n",
+ "for code in codes:\n",
+ " df_time, df_tpx = merge_experiments(df_time, df_tpx, code)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Results in Format \"time\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " PostgreSQL-AWS-4-1-1 \n",
+ " PostgreSQL-AWS-4-10-1 \n",
+ " PostgreSQL-AWS-4-10-10 \n",
+ " PostgreSQL-AWS-4-10-2 \n",
+ " PostgreSQL-AWS-4-10-3 \n",
+ " PostgreSQL-AWS-4-10-4 \n",
+ " PostgreSQL-AWS-4-10-5 \n",
+ " PostgreSQL-AWS-4-10-6 \n",
+ " PostgreSQL-AWS-4-10-7 \n",
+ " PostgreSQL-AWS-4-10-8 \n",
+ " ... \n",
+ " PostgreSQL-AWS-4-8-8 \n",
+ " PostgreSQL-AWS-4-9-1 \n",
+ " PostgreSQL-AWS-4-9-2 \n",
+ " PostgreSQL-AWS-4-9-3 \n",
+ " PostgreSQL-AWS-4-9-4 \n",
+ " PostgreSQL-AWS-4-9-5 \n",
+ " PostgreSQL-AWS-4-9-6 \n",
+ " PostgreSQL-AWS-4-9-7 \n",
+ " PostgreSQL-AWS-4-9-8 \n",
+ " PostgreSQL-AWS-4-9-9 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " benchmark_geo \n",
+ " 0.626844 \n",
+ " 0.632627 \n",
+ " 0.620555 \n",
+ " 0.6372 \n",
+ " 0.634936 \n",
+ " 0.64451 \n",
+ " 0.650121 \n",
+ " 0.641237 \n",
+ " 0.636856 \n",
+ " 0.636409 \n",
+ " ... \n",
+ " 14.997548 \n",
+ " 17.628742 \n",
+ " 17.099679 \n",
+ " 16.880599 \n",
+ " 16.835358 \n",
+ " 16.865565 \n",
+ " 17.149394 \n",
+ " 16.856538 \n",
+ " 15.694917 \n",
+ " 14.790488 \n",
+ " \n",
+ " \n",
+ " benchmark_mean \n",
+ " 0.87009 \n",
+ " 0.900167 \n",
+ " 0.871424 \n",
+ " 0.911793 \n",
+ " 0.902629 \n",
+ " 0.905444 \n",
+ " 0.92747 \n",
+ " 0.911566 \n",
+ " 0.897627 \n",
+ " 0.901916 \n",
+ " ... \n",
+ " 28.315948 \n",
+ " 30.449043 \n",
+ " 30.662218 \n",
+ " 30.583163 \n",
+ " 30.53988 \n",
+ " 30.480332 \n",
+ " 31.575404 \n",
+ " 31.704748 \n",
+ " 32.871015 \n",
+ " 32.638396 \n",
+ " \n",
+ " \n",
+ " generate \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " \n",
+ " \n",
+ " ingest \n",
+ " 17.0 \n",
+ " 17.0 \n",
+ " 17.0 \n",
+ " 17.0 \n",
+ " 17.0 \n",
+ " 17.0 \n",
+ " 17.0 \n",
+ " 17.0 \n",
+ " 17.0 \n",
+ " 17.0 \n",
+ " ... \n",
+ " 672.0 \n",
+ " 672.0 \n",
+ " 672.0 \n",
+ " 672.0 \n",
+ " 672.0 \n",
+ " 672.0 \n",
+ " 672.0 \n",
+ " 672.0 \n",
+ " 672.0 \n",
+ " 672.0 \n",
+ " \n",
+ " \n",
+ " initconstraints \n",
+ " 29.036005 \n",
+ " 29.036005 \n",
+ " 29.036005 \n",
+ " 29.036005 \n",
+ " 29.036005 \n",
+ " 29.036005 \n",
+ " 29.036005 \n",
+ " 29.036005 \n",
+ " 29.036005 \n",
+ " 29.036005 \n",
+ " ... \n",
+ " 1354.0928 \n",
+ " 1354.0928 \n",
+ " 1354.0928 \n",
+ " 1354.0928 \n",
+ " 1354.0928 \n",
+ " 1354.0928 \n",
+ " 1354.0928 \n",
+ " 1354.0928 \n",
+ " 1354.0928 \n",
+ " 1354.0928 \n",
+ " \n",
+ " \n",
+ " initindexes \n",
+ " 7.205218 \n",
+ " 7.205218 \n",
+ " 7.205218 \n",
+ " 7.205218 \n",
+ " 7.205218 \n",
+ " 7.205218 \n",
+ " 7.205218 \n",
+ " 7.205218 \n",
+ " 7.205218 \n",
+ " 7.205218 \n",
+ " ... \n",
+ " 205.071821 \n",
+ " 205.071821 \n",
+ " 205.071821 \n",
+ " 205.071821 \n",
+ " 205.071821 \n",
+ " 205.071821 \n",
+ " 205.071821 \n",
+ " 205.071821 \n",
+ " 205.071821 \n",
+ " 205.071821 \n",
+ " \n",
+ " \n",
+ " initschema \n",
+ " 1.211485 \n",
+ " 1.211485 \n",
+ " 1.211485 \n",
+ " 1.211485 \n",
+ " 1.211485 \n",
+ " 1.211485 \n",
+ " 1.211485 \n",
+ " 1.211485 \n",
+ " 1.211485 \n",
+ " 1.211485 \n",
+ " ... \n",
+ " 1.118685 \n",
+ " 1.118685 \n",
+ " 1.118685 \n",
+ " 1.118685 \n",
+ " 1.118685 \n",
+ " 1.118685 \n",
+ " 1.118685 \n",
+ " 1.118685 \n",
+ " 1.118685 \n",
+ " 1.118685 \n",
+ " \n",
+ " \n",
+ " initstatistics \n",
+ " 20.242573 \n",
+ " 20.242573 \n",
+ " 20.242573 \n",
+ " 20.242573 \n",
+ " 20.242573 \n",
+ " 20.242573 \n",
+ " 20.242573 \n",
+ " 20.242573 \n",
+ " 20.242573 \n",
+ " 20.242573 \n",
+ " ... \n",
+ " 43.233445 \n",
+ " 43.233445 \n",
+ " 43.233445 \n",
+ " 43.233445 \n",
+ " 43.233445 \n",
+ " 43.233445 \n",
+ " 43.233445 \n",
+ " 43.233445 \n",
+ " 43.233445 \n",
+ " 43.233445 \n",
+ " \n",
+ " \n",
+ " load \n",
+ " 76.836504 \n",
+ " 76.836504 \n",
+ " 76.836504 \n",
+ " 76.836504 \n",
+ " 76.836504 \n",
+ " 76.836504 \n",
+ " 76.836504 \n",
+ " 76.836504 \n",
+ " 76.836504 \n",
+ " 76.836504 \n",
+ " ... \n",
+ " 2277.665694 \n",
+ " 2277.665694 \n",
+ " 2277.665694 \n",
+ " 2277.665694 \n",
+ " 2277.665694 \n",
+ " 2277.665694 \n",
+ " 2277.665694 \n",
+ " 2277.665694 \n",
+ " 2277.665694 \n",
+ " 2277.665694 \n",
+ " \n",
+ " \n",
+ " loaded \n",
+ " 2.288853 \n",
+ " 2.288853 \n",
+ " 2.288853 \n",
+ " 2.288853 \n",
+ " 2.288853 \n",
+ " 2.288853 \n",
+ " 2.288853 \n",
+ " 2.288853 \n",
+ " 2.288853 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 2.153249 \n",
+ " 2.153249 \n",
+ " 2.153249 \n",
+ " 2.153249 \n",
+ " 2.153249 \n",
+ " 2.153249 \n",
+ " 2.153249 \n",
+ " 2.153249 \n",
+ " 2.153249 \n",
+ " 2.153249 \n",
+ " \n",
+ " \n",
+ " max_load \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " ... \n",
+ " 671.0 \n",
+ " 671.0 \n",
+ " 671.0 \n",
+ " 671.0 \n",
+ " 671.0 \n",
+ " 671.0 \n",
+ " 671.0 \n",
+ " 671.0 \n",
+ " 671.0 \n",
+ " 671.0 \n",
+ " \n",
+ " \n",
+ " mean_load \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " ... \n",
+ " 662.5 \n",
+ " 662.5 \n",
+ " 662.5 \n",
+ " 662.5 \n",
+ " 662.5 \n",
+ " 662.5 \n",
+ " 662.5 \n",
+ " 662.5 \n",
+ " 662.5 \n",
+ " 662.5 \n",
+ " \n",
+ " \n",
+ " min_load \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " 16.0 \n",
+ " ... \n",
+ " 649.0 \n",
+ " 649.0 \n",
+ " 649.0 \n",
+ " 649.0 \n",
+ " 649.0 \n",
+ " 649.0 \n",
+ " 649.0 \n",
+ " 649.0 \n",
+ " 649.0 \n",
+ " 649.0 \n",
+ " \n",
+ " \n",
+ " schema \n",
+ " 2.288853 \n",
+ " 2.288853 \n",
+ " 2.288853 \n",
+ " 2.288853 \n",
+ " 2.288853 \n",
+ " 2.288853 \n",
+ " 2.288853 \n",
+ " 2.288853 \n",
+ " 2.288853 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 2.153249 \n",
+ " 2.153249 \n",
+ " 2.153249 \n",
+ " 2.153249 \n",
+ " 2.153249 \n",
+ " 2.153249 \n",
+ " 2.153249 \n",
+ " 2.153249 \n",
+ " 2.153249 \n",
+ " 2.153249 \n",
+ " \n",
+ " \n",
+ " span_benchmark \n",
+ " 22.0 \n",
+ " 25.0 \n",
+ " 23.0 \n",
+ " 24.0 \n",
+ " 24.0 \n",
+ " 24.0 \n",
+ " 25.0 \n",
+ " 24.0 \n",
+ " 24.0 \n",
+ " 23.0 \n",
+ " ... \n",
+ " 4203.0 \n",
+ " 4249.0 \n",
+ " 4252.0 \n",
+ " 4250.0 \n",
+ " 4250.0 \n",
+ " 4248.0 \n",
+ " 4270.0 \n",
+ " 4274.0 \n",
+ " 4299.0 \n",
+ " 4294.0 \n",
+ " \n",
+ " \n",
+ " span_generate \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " \n",
+ " \n",
+ " span_load \n",
+ " 17.0 \n",
+ " 17.0 \n",
+ " 17.0 \n",
+ " 17.0 \n",
+ " 17.0 \n",
+ " 17.0 \n",
+ " 17.0 \n",
+ " 17.0 \n",
+ " 17.0 \n",
+ " 17.0 \n",
+ " ... \n",
+ " 672.0 \n",
+ " 672.0 \n",
+ " 672.0 \n",
+ " 672.0 \n",
+ " 672.0 \n",
+ " 672.0 \n",
+ " 672.0 \n",
+ " 672.0 \n",
+ " 672.0 \n",
+ " 672.0 \n",
+ " \n",
+ " \n",
+ " SF \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " ... \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " \n",
+ " \n",
+ " dbms \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " ... \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " \n",
+ " \n",
+ " TPCH_TABLE \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " pods \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " ... \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " \n",
+ " \n",
+ " num_experiment \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " ... \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " num_client \n",
+ " 1 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " ... \n",
+ " 8 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " \n",
+ " \n",
+ " benchmark_start \n",
+ " 1686234318 \n",
+ " 1686235691 \n",
+ " 1686235750 \n",
+ " 1686235694 \n",
+ " 1686235699 \n",
+ " 1686235704 \n",
+ " 1686235707 \n",
+ " 1686235713 \n",
+ " 1686235720 \n",
+ " 1686235724 \n",
+ " ... \n",
+ " 1686271082 \n",
+ " 1686275411 \n",
+ " 1686275414 \n",
+ " 1686275415 \n",
+ " 1686275422 \n",
+ " 1686275425 \n",
+ " 1686275428 \n",
+ " 1686275448 \n",
+ " 1686275458 \n",
+ " 1686275467 \n",
+ " \n",
+ " \n",
+ " benchmark_end \n",
+ " 1686234340 \n",
+ " 1686235716 \n",
+ " 1686235773 \n",
+ " 1686235718 \n",
+ " 1686235723 \n",
+ " 1686235728 \n",
+ " 1686235732 \n",
+ " 1686235737 \n",
+ " 1686235744 \n",
+ " 1686235747 \n",
+ " ... \n",
+ " 1686275285 \n",
+ " 1686279660 \n",
+ " 1686279666 \n",
+ " 1686279665 \n",
+ " 1686279672 \n",
+ " 1686279673 \n",
+ " 1686279698 \n",
+ " 1686279722 \n",
+ " 1686279757 \n",
+ " 1686279761 \n",
+ " \n",
+ " \n",
+ " mem_max_load \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " \n",
+ " \n",
+ " cpu_total_load \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " \n",
+ " \n",
+ " mem_max_stream \n",
+ " 7128.3125 \n",
+ " 8032.226562 \n",
+ " 8032.226562 \n",
+ " 8032.226562 \n",
+ " 8032.226562 \n",
+ " 8032.226562 \n",
+ " 8032.226562 \n",
+ " 8032.226562 \n",
+ " 8032.226562 \n",
+ " 8032.226562 \n",
+ " ... \n",
+ " 1269540.585938 \n",
+ " 1282160.914062 \n",
+ " 1282160.914062 \n",
+ " 1282160.914062 \n",
+ " 1282160.914062 \n",
+ " 1282160.914062 \n",
+ " 1282160.914062 \n",
+ " 1282160.914062 \n",
+ " 1282160.914062 \n",
+ " 1282160.914062 \n",
+ " \n",
+ " \n",
+ " cpu_total_stream \n",
+ " 80.012976 \n",
+ " 809.336122 \n",
+ " 809.336122 \n",
+ " 809.336122 \n",
+ " 809.336122 \n",
+ " 809.336122 \n",
+ " 809.336122 \n",
+ " 809.336122 \n",
+ " 809.336122 \n",
+ " 809.336122 \n",
+ " ... \n",
+ " 58838.671861 \n",
+ " 66750.954151 \n",
+ " 66750.954151 \n",
+ " 66750.954151 \n",
+ " 66750.954151 \n",
+ " 66750.954151 \n",
+ " 66750.954151 \n",
+ " 66750.954151 \n",
+ " 66750.954151 \n",
+ " 66750.954151 \n",
+ " \n",
+ " \n",
+ " mem_max_loader \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " \n",
+ " \n",
+ " cpu_total_loader \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " \n",
+ " \n",
+ " mem_max_datagenerator \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " cpu_total_datagenerator \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " mem_max_benchmarker \n",
+ " 208.652344 \n",
+ " 3894.109375 \n",
+ " 3894.109375 \n",
+ " 3894.109375 \n",
+ " 3894.109375 \n",
+ " 3894.109375 \n",
+ " 3894.109375 \n",
+ " 3894.109375 \n",
+ " 3894.109375 \n",
+ " 3894.109375 \n",
+ " ... \n",
+ " 3035.449219 \n",
+ " 3449.035156 \n",
+ " 3449.035156 \n",
+ " 3449.035156 \n",
+ " 3449.035156 \n",
+ " 3449.035156 \n",
+ " 3449.035156 \n",
+ " 3449.035156 \n",
+ " 3449.035156 \n",
+ " 3449.035156 \n",
+ " \n",
+ " \n",
+ " cpu_total_benchmarker \n",
+ " 6.357339 \n",
+ " 61.253136 \n",
+ " 61.253136 \n",
+ " 61.253136 \n",
+ " 61.253136 \n",
+ " 61.253136 \n",
+ " 61.253136 \n",
+ " 61.253136 \n",
+ " 61.253136 \n",
+ " 61.253136 \n",
+ " ... \n",
+ " 98.604956 \n",
+ " 110.060736 \n",
+ " 110.060736 \n",
+ " 110.060736 \n",
+ " 110.060736 \n",
+ " 110.060736 \n",
+ " 110.060736 \n",
+ " 110.060736 \n",
+ " 110.060736 \n",
+ " 110.060736 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
35 rows Ă— 220 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " PostgreSQL-AWS-4-1-1 PostgreSQL-AWS-4-10-1 \\\n",
+ "benchmark_geo 0.626844 0.632627 \n",
+ "benchmark_mean 0.87009 0.900167 \n",
+ "generate 0.0 0.0 \n",
+ "ingest 17.0 17.0 \n",
+ "initconstraints 29.036005 29.036005 \n",
+ "initindexes 7.205218 7.205218 \n",
+ "initschema 1.211485 1.211485 \n",
+ "initstatistics 20.242573 20.242573 \n",
+ "load 76.836504 76.836504 \n",
+ "loaded 2.288853 2.288853 \n",
+ "max_load 16.0 16.0 \n",
+ "mean_load 16.0 16.0 \n",
+ "min_load 16.0 16.0 \n",
+ "schema 2.288853 2.288853 \n",
+ "span_benchmark 22.0 25.0 \n",
+ "span_generate 0.0 0.0 \n",
+ "span_load 17.0 17.0 \n",
+ "SF 1 1 \n",
+ "dbms PostgreSQL PostgreSQL \n",
+ "TPCH_TABLE \n",
+ "pods 4 4 \n",
+ "num_experiment 1 1 \n",
+ "num_client 1 10 \n",
+ "benchmark_start 1686234318 1686235691 \n",
+ "benchmark_end 1686234340 1686235716 \n",
+ "mem_max_load 0.0 0.0 \n",
+ "cpu_total_load 0.0 0.0 \n",
+ "mem_max_stream 7128.3125 8032.226562 \n",
+ "cpu_total_stream 80.012976 809.336122 \n",
+ "mem_max_loader 0.0 0.0 \n",
+ "cpu_total_loader 0.0 0.0 \n",
+ "mem_max_datagenerator 0 0 \n",
+ "cpu_total_datagenerator 0 0 \n",
+ "mem_max_benchmarker 208.652344 3894.109375 \n",
+ "cpu_total_benchmarker 6.357339 61.253136 \n",
+ "\n",
+ " PostgreSQL-AWS-4-10-10 PostgreSQL-AWS-4-10-2 \\\n",
+ "benchmark_geo 0.620555 0.6372 \n",
+ "benchmark_mean 0.871424 0.911793 \n",
+ "generate 0.0 0.0 \n",
+ "ingest 17.0 17.0 \n",
+ "initconstraints 29.036005 29.036005 \n",
+ "initindexes 7.205218 7.205218 \n",
+ "initschema 1.211485 1.211485 \n",
+ "initstatistics 20.242573 20.242573 \n",
+ "load 76.836504 76.836504 \n",
+ "loaded 2.288853 2.288853 \n",
+ "max_load 16.0 16.0 \n",
+ "mean_load 16.0 16.0 \n",
+ "min_load 16.0 16.0 \n",
+ "schema 2.288853 2.288853 \n",
+ "span_benchmark 23.0 24.0 \n",
+ "span_generate 0.0 0.0 \n",
+ "span_load 17.0 17.0 \n",
+ "SF 1 1 \n",
+ "dbms PostgreSQL PostgreSQL \n",
+ "TPCH_TABLE \n",
+ "pods 4 4 \n",
+ "num_experiment 1 1 \n",
+ "num_client 10 10 \n",
+ "benchmark_start 1686235750 1686235694 \n",
+ "benchmark_end 1686235773 1686235718 \n",
+ "mem_max_load 0.0 0.0 \n",
+ "cpu_total_load 0.0 0.0 \n",
+ "mem_max_stream 8032.226562 8032.226562 \n",
+ "cpu_total_stream 809.336122 809.336122 \n",
+ "mem_max_loader 0.0 0.0 \n",
+ "cpu_total_loader 0.0 0.0 \n",
+ "mem_max_datagenerator 0 0 \n",
+ "cpu_total_datagenerator 0 0 \n",
+ "mem_max_benchmarker 3894.109375 3894.109375 \n",
+ "cpu_total_benchmarker 61.253136 61.253136 \n",
+ "\n",
+ " PostgreSQL-AWS-4-10-3 PostgreSQL-AWS-4-10-4 \\\n",
+ "benchmark_geo 0.634936 0.64451 \n",
+ "benchmark_mean 0.902629 0.905444 \n",
+ "generate 0.0 0.0 \n",
+ "ingest 17.0 17.0 \n",
+ "initconstraints 29.036005 29.036005 \n",
+ "initindexes 7.205218 7.205218 \n",
+ "initschema 1.211485 1.211485 \n",
+ "initstatistics 20.242573 20.242573 \n",
+ "load 76.836504 76.836504 \n",
+ "loaded 2.288853 2.288853 \n",
+ "max_load 16.0 16.0 \n",
+ "mean_load 16.0 16.0 \n",
+ "min_load 16.0 16.0 \n",
+ "schema 2.288853 2.288853 \n",
+ "span_benchmark 24.0 24.0 \n",
+ "span_generate 0.0 0.0 \n",
+ "span_load 17.0 17.0 \n",
+ "SF 1 1 \n",
+ "dbms PostgreSQL PostgreSQL \n",
+ "TPCH_TABLE \n",
+ "pods 4 4 \n",
+ "num_experiment 1 1 \n",
+ "num_client 10 10 \n",
+ "benchmark_start 1686235699 1686235704 \n",
+ "benchmark_end 1686235723 1686235728 \n",
+ "mem_max_load 0.0 0.0 \n",
+ "cpu_total_load 0.0 0.0 \n",
+ "mem_max_stream 8032.226562 8032.226562 \n",
+ "cpu_total_stream 809.336122 809.336122 \n",
+ "mem_max_loader 0.0 0.0 \n",
+ "cpu_total_loader 0.0 0.0 \n",
+ "mem_max_datagenerator 0 0 \n",
+ "cpu_total_datagenerator 0 0 \n",
+ "mem_max_benchmarker 3894.109375 3894.109375 \n",
+ "cpu_total_benchmarker 61.253136 61.253136 \n",
+ "\n",
+ " PostgreSQL-AWS-4-10-5 PostgreSQL-AWS-4-10-6 \\\n",
+ "benchmark_geo 0.650121 0.641237 \n",
+ "benchmark_mean 0.92747 0.911566 \n",
+ "generate 0.0 0.0 \n",
+ "ingest 17.0 17.0 \n",
+ "initconstraints 29.036005 29.036005 \n",
+ "initindexes 7.205218 7.205218 \n",
+ "initschema 1.211485 1.211485 \n",
+ "initstatistics 20.242573 20.242573 \n",
+ "load 76.836504 76.836504 \n",
+ "loaded 2.288853 2.288853 \n",
+ "max_load 16.0 16.0 \n",
+ "mean_load 16.0 16.0 \n",
+ "min_load 16.0 16.0 \n",
+ "schema 2.288853 2.288853 \n",
+ "span_benchmark 25.0 24.0 \n",
+ "span_generate 0.0 0.0 \n",
+ "span_load 17.0 17.0 \n",
+ "SF 1 1 \n",
+ "dbms PostgreSQL PostgreSQL \n",
+ "TPCH_TABLE \n",
+ "pods 4 4 \n",
+ "num_experiment 1 1 \n",
+ "num_client 10 10 \n",
+ "benchmark_start 1686235707 1686235713 \n",
+ "benchmark_end 1686235732 1686235737 \n",
+ "mem_max_load 0.0 0.0 \n",
+ "cpu_total_load 0.0 0.0 \n",
+ "mem_max_stream 8032.226562 8032.226562 \n",
+ "cpu_total_stream 809.336122 809.336122 \n",
+ "mem_max_loader 0.0 0.0 \n",
+ "cpu_total_loader 0.0 0.0 \n",
+ "mem_max_datagenerator 0 0 \n",
+ "cpu_total_datagenerator 0 0 \n",
+ "mem_max_benchmarker 3894.109375 3894.109375 \n",
+ "cpu_total_benchmarker 61.253136 61.253136 \n",
+ "\n",
+ " PostgreSQL-AWS-4-10-7 PostgreSQL-AWS-4-10-8 ... \\\n",
+ "benchmark_geo 0.636856 0.636409 ... \n",
+ "benchmark_mean 0.897627 0.901916 ... \n",
+ "generate 0.0 0.0 ... \n",
+ "ingest 17.0 17.0 ... \n",
+ "initconstraints 29.036005 29.036005 ... \n",
+ "initindexes 7.205218 7.205218 ... \n",
+ "initschema 1.211485 1.211485 ... \n",
+ "initstatistics 20.242573 20.242573 ... \n",
+ "load 76.836504 76.836504 ... \n",
+ "loaded 2.288853 2.288853 ... \n",
+ "max_load 16.0 16.0 ... \n",
+ "mean_load 16.0 16.0 ... \n",
+ "min_load 16.0 16.0 ... \n",
+ "schema 2.288853 2.288853 ... \n",
+ "span_benchmark 24.0 23.0 ... \n",
+ "span_generate 0.0 0.0 ... \n",
+ "span_load 17.0 17.0 ... \n",
+ "SF 1 1 ... \n",
+ "dbms PostgreSQL PostgreSQL ... \n",
+ "TPCH_TABLE ... \n",
+ "pods 4 4 ... \n",
+ "num_experiment 1 1 ... \n",
+ "num_client 10 10 ... \n",
+ "benchmark_start 1686235720 1686235724 ... \n",
+ "benchmark_end 1686235744 1686235747 ... \n",
+ "mem_max_load 0.0 0.0 ... \n",
+ "cpu_total_load 0.0 0.0 ... \n",
+ "mem_max_stream 8032.226562 8032.226562 ... \n",
+ "cpu_total_stream 809.336122 809.336122 ... \n",
+ "mem_max_loader 0.0 0.0 ... \n",
+ "cpu_total_loader 0.0 0.0 ... \n",
+ "mem_max_datagenerator 0 0 ... \n",
+ "cpu_total_datagenerator 0 0 ... \n",
+ "mem_max_benchmarker 3894.109375 3894.109375 ... \n",
+ "cpu_total_benchmarker 61.253136 61.253136 ... \n",
+ "\n",
+ " PostgreSQL-AWS-4-8-8 PostgreSQL-AWS-4-9-1 \\\n",
+ "benchmark_geo 14.997548 17.628742 \n",
+ "benchmark_mean 28.315948 30.449043 \n",
+ "generate 0.0 0.0 \n",
+ "ingest 672.0 672.0 \n",
+ "initconstraints 1354.0928 1354.0928 \n",
+ "initindexes 205.071821 205.071821 \n",
+ "initschema 1.118685 1.118685 \n",
+ "initstatistics 43.233445 43.233445 \n",
+ "load 2277.665694 2277.665694 \n",
+ "loaded 2.153249 2.153249 \n",
+ "max_load 671.0 671.0 \n",
+ "mean_load 662.5 662.5 \n",
+ "min_load 649.0 649.0 \n",
+ "schema 2.153249 2.153249 \n",
+ "span_benchmark 4203.0 4249.0 \n",
+ "span_generate 0.0 0.0 \n",
+ "span_load 672.0 672.0 \n",
+ "SF 30 30 \n",
+ "dbms PostgreSQL PostgreSQL \n",
+ "TPCH_TABLE \n",
+ "pods 4 4 \n",
+ "num_experiment 1 1 \n",
+ "num_client 8 9 \n",
+ "benchmark_start 1686271082 1686275411 \n",
+ "benchmark_end 1686275285 1686279660 \n",
+ "mem_max_load 0.0 0.0 \n",
+ "cpu_total_load 0.0 0.0 \n",
+ "mem_max_stream 1269540.585938 1282160.914062 \n",
+ "cpu_total_stream 58838.671861 66750.954151 \n",
+ "mem_max_loader 0.0 0.0 \n",
+ "cpu_total_loader 0.0 0.0 \n",
+ "mem_max_datagenerator 0 0 \n",
+ "cpu_total_datagenerator 0 0 \n",
+ "mem_max_benchmarker 3035.449219 3449.035156 \n",
+ "cpu_total_benchmarker 98.604956 110.060736 \n",
+ "\n",
+ " PostgreSQL-AWS-4-9-2 PostgreSQL-AWS-4-9-3 \\\n",
+ "benchmark_geo 17.099679 16.880599 \n",
+ "benchmark_mean 30.662218 30.583163 \n",
+ "generate 0.0 0.0 \n",
+ "ingest 672.0 672.0 \n",
+ "initconstraints 1354.0928 1354.0928 \n",
+ "initindexes 205.071821 205.071821 \n",
+ "initschema 1.118685 1.118685 \n",
+ "initstatistics 43.233445 43.233445 \n",
+ "load 2277.665694 2277.665694 \n",
+ "loaded 2.153249 2.153249 \n",
+ "max_load 671.0 671.0 \n",
+ "mean_load 662.5 662.5 \n",
+ "min_load 649.0 649.0 \n",
+ "schema 2.153249 2.153249 \n",
+ "span_benchmark 4252.0 4250.0 \n",
+ "span_generate 0.0 0.0 \n",
+ "span_load 672.0 672.0 \n",
+ "SF 30 30 \n",
+ "dbms PostgreSQL PostgreSQL \n",
+ "TPCH_TABLE \n",
+ "pods 4 4 \n",
+ "num_experiment 1 1 \n",
+ "num_client 9 9 \n",
+ "benchmark_start 1686275414 1686275415 \n",
+ "benchmark_end 1686279666 1686279665 \n",
+ "mem_max_load 0.0 0.0 \n",
+ "cpu_total_load 0.0 0.0 \n",
+ "mem_max_stream 1282160.914062 1282160.914062 \n",
+ "cpu_total_stream 66750.954151 66750.954151 \n",
+ "mem_max_loader 0.0 0.0 \n",
+ "cpu_total_loader 0.0 0.0 \n",
+ "mem_max_datagenerator 0 0 \n",
+ "cpu_total_datagenerator 0 0 \n",
+ "mem_max_benchmarker 3449.035156 3449.035156 \n",
+ "cpu_total_benchmarker 110.060736 110.060736 \n",
+ "\n",
+ " PostgreSQL-AWS-4-9-4 PostgreSQL-AWS-4-9-5 \\\n",
+ "benchmark_geo 16.835358 16.865565 \n",
+ "benchmark_mean 30.53988 30.480332 \n",
+ "generate 0.0 0.0 \n",
+ "ingest 672.0 672.0 \n",
+ "initconstraints 1354.0928 1354.0928 \n",
+ "initindexes 205.071821 205.071821 \n",
+ "initschema 1.118685 1.118685 \n",
+ "initstatistics 43.233445 43.233445 \n",
+ "load 2277.665694 2277.665694 \n",
+ "loaded 2.153249 2.153249 \n",
+ "max_load 671.0 671.0 \n",
+ "mean_load 662.5 662.5 \n",
+ "min_load 649.0 649.0 \n",
+ "schema 2.153249 2.153249 \n",
+ "span_benchmark 4250.0 4248.0 \n",
+ "span_generate 0.0 0.0 \n",
+ "span_load 672.0 672.0 \n",
+ "SF 30 30 \n",
+ "dbms PostgreSQL PostgreSQL \n",
+ "TPCH_TABLE \n",
+ "pods 4 4 \n",
+ "num_experiment 1 1 \n",
+ "num_client 9 9 \n",
+ "benchmark_start 1686275422 1686275425 \n",
+ "benchmark_end 1686279672 1686279673 \n",
+ "mem_max_load 0.0 0.0 \n",
+ "cpu_total_load 0.0 0.0 \n",
+ "mem_max_stream 1282160.914062 1282160.914062 \n",
+ "cpu_total_stream 66750.954151 66750.954151 \n",
+ "mem_max_loader 0.0 0.0 \n",
+ "cpu_total_loader 0.0 0.0 \n",
+ "mem_max_datagenerator 0 0 \n",
+ "cpu_total_datagenerator 0 0 \n",
+ "mem_max_benchmarker 3449.035156 3449.035156 \n",
+ "cpu_total_benchmarker 110.060736 110.060736 \n",
+ "\n",
+ " PostgreSQL-AWS-4-9-6 PostgreSQL-AWS-4-9-7 \\\n",
+ "benchmark_geo 17.149394 16.856538 \n",
+ "benchmark_mean 31.575404 31.704748 \n",
+ "generate 0.0 0.0 \n",
+ "ingest 672.0 672.0 \n",
+ "initconstraints 1354.0928 1354.0928 \n",
+ "initindexes 205.071821 205.071821 \n",
+ "initschema 1.118685 1.118685 \n",
+ "initstatistics 43.233445 43.233445 \n",
+ "load 2277.665694 2277.665694 \n",
+ "loaded 2.153249 2.153249 \n",
+ "max_load 671.0 671.0 \n",
+ "mean_load 662.5 662.5 \n",
+ "min_load 649.0 649.0 \n",
+ "schema 2.153249 2.153249 \n",
+ "span_benchmark 4270.0 4274.0 \n",
+ "span_generate 0.0 0.0 \n",
+ "span_load 672.0 672.0 \n",
+ "SF 30 30 \n",
+ "dbms PostgreSQL PostgreSQL \n",
+ "TPCH_TABLE \n",
+ "pods 4 4 \n",
+ "num_experiment 1 1 \n",
+ "num_client 9 9 \n",
+ "benchmark_start 1686275428 1686275448 \n",
+ "benchmark_end 1686279698 1686279722 \n",
+ "mem_max_load 0.0 0.0 \n",
+ "cpu_total_load 0.0 0.0 \n",
+ "mem_max_stream 1282160.914062 1282160.914062 \n",
+ "cpu_total_stream 66750.954151 66750.954151 \n",
+ "mem_max_loader 0.0 0.0 \n",
+ "cpu_total_loader 0.0 0.0 \n",
+ "mem_max_datagenerator 0 0 \n",
+ "cpu_total_datagenerator 0 0 \n",
+ "mem_max_benchmarker 3449.035156 3449.035156 \n",
+ "cpu_total_benchmarker 110.060736 110.060736 \n",
+ "\n",
+ " PostgreSQL-AWS-4-9-8 PostgreSQL-AWS-4-9-9 \n",
+ "benchmark_geo 15.694917 14.790488 \n",
+ "benchmark_mean 32.871015 32.638396 \n",
+ "generate 0.0 0.0 \n",
+ "ingest 672.0 672.0 \n",
+ "initconstraints 1354.0928 1354.0928 \n",
+ "initindexes 205.071821 205.071821 \n",
+ "initschema 1.118685 1.118685 \n",
+ "initstatistics 43.233445 43.233445 \n",
+ "load 2277.665694 2277.665694 \n",
+ "loaded 2.153249 2.153249 \n",
+ "max_load 671.0 671.0 \n",
+ "mean_load 662.5 662.5 \n",
+ "min_load 649.0 649.0 \n",
+ "schema 2.153249 2.153249 \n",
+ "span_benchmark 4299.0 4294.0 \n",
+ "span_generate 0.0 0.0 \n",
+ "span_load 672.0 672.0 \n",
+ "SF 30 30 \n",
+ "dbms PostgreSQL PostgreSQL \n",
+ "TPCH_TABLE \n",
+ "pods 4 4 \n",
+ "num_experiment 1 1 \n",
+ "num_client 9 9 \n",
+ "benchmark_start 1686275458 1686275467 \n",
+ "benchmark_end 1686279757 1686279761 \n",
+ "mem_max_load 0.0 0.0 \n",
+ "cpu_total_load 0.0 0.0 \n",
+ "mem_max_stream 1282160.914062 1282160.914062 \n",
+ "cpu_total_stream 66750.954151 66750.954151 \n",
+ "mem_max_loader 0.0 0.0 \n",
+ "cpu_total_loader 0.0 0.0 \n",
+ "mem_max_datagenerator 0 0 \n",
+ "cpu_total_datagenerator 0 0 \n",
+ "mem_max_benchmarker 3449.035156 3449.035156 \n",
+ "cpu_total_benchmarker 110.060736 110.060736 \n",
+ "\n",
+ "[35 rows x 220 columns]"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_time.T"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Results in Format \"Throughput\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " PostgreSQL-AWS-4-1-1 \n",
+ " PostgreSQL-AWS-4-10-1 \n",
+ " PostgreSQL-AWS-4-10-10 \n",
+ " PostgreSQL-AWS-4-10-2 \n",
+ " PostgreSQL-AWS-4-10-3 \n",
+ " PostgreSQL-AWS-4-10-4 \n",
+ " PostgreSQL-AWS-4-10-5 \n",
+ " PostgreSQL-AWS-4-10-6 \n",
+ " PostgreSQL-AWS-4-10-7 \n",
+ " PostgreSQL-AWS-4-10-8 \n",
+ " ... \n",
+ " PostgreSQL-AWS-4-8-8 \n",
+ " PostgreSQL-AWS-4-9-1 \n",
+ " PostgreSQL-AWS-4-9-2 \n",
+ " PostgreSQL-AWS-4-9-3 \n",
+ " PostgreSQL-AWS-4-9-4 \n",
+ " PostgreSQL-AWS-4-9-5 \n",
+ " PostgreSQL-AWS-4-9-6 \n",
+ " PostgreSQL-AWS-4-9-7 \n",
+ " PostgreSQL-AWS-4-9-8 \n",
+ " PostgreSQL-AWS-4-9-9 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " benchmark_geo \n",
+ " 5743.059573 \n",
+ " 5690.559545 \n",
+ " 5801.257852 \n",
+ " 5649.719574 \n",
+ " 5669.866608 \n",
+ " 5585.640919 \n",
+ " 5537.427447 \n",
+ " 5614.148176 \n",
+ " 5652.773429 \n",
+ " 5656.741898 \n",
+ " ... \n",
+ " 7201.176956 \n",
+ " 6126.359039 \n",
+ " 6315.907996 \n",
+ " 6397.877399 \n",
+ " 6415.070037 \n",
+ " 6403.580297 \n",
+ " 6297.598488 \n",
+ " 6407.009574 \n",
+ " 6881.208745 \n",
+ " 7301.99031 \n",
+ " \n",
+ " \n",
+ " benchmark_mean \n",
+ " 4137.501667 \n",
+ " 3999.257534 \n",
+ " 4131.167805 \n",
+ " 3948.264563 \n",
+ " 3988.347981 \n",
+ " 3975.949458 \n",
+ " 3881.525131 \n",
+ " 3949.24657 \n",
+ " 4010.576062 \n",
+ " 3991.500646 \n",
+ " ... \n",
+ " 3814.105044 \n",
+ " 3546.909561 \n",
+ " 3522.250063 \n",
+ " 3531.354808 \n",
+ " 3536.359665 \n",
+ " 3543.268525 \n",
+ " 3420.383738 \n",
+ " 3406.429901 \n",
+ " 3285.569354 \n",
+ " 3308.9861 \n",
+ " \n",
+ " \n",
+ " generate \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " ... \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " \n",
+ " \n",
+ " ingest \n",
+ " 211.764706 \n",
+ " 211.764706 \n",
+ " 211.764706 \n",
+ " 211.764706 \n",
+ " 211.764706 \n",
+ " 211.764706 \n",
+ " 211.764706 \n",
+ " 211.764706 \n",
+ " 211.764706 \n",
+ " 211.764706 \n",
+ " ... \n",
+ " 160.714286 \n",
+ " 160.714286 \n",
+ " 160.714286 \n",
+ " 160.714286 \n",
+ " 160.714286 \n",
+ " 160.714286 \n",
+ " 160.714286 \n",
+ " 160.714286 \n",
+ " 160.714286 \n",
+ " 160.714286 \n",
+ " \n",
+ " \n",
+ " initconstraints \n",
+ " 123.984 \n",
+ " 123.984 \n",
+ " 123.984 \n",
+ " 123.984 \n",
+ " 123.984 \n",
+ " 123.984 \n",
+ " 123.984 \n",
+ " 123.984 \n",
+ " 123.984 \n",
+ " 123.984 \n",
+ " ... \n",
+ " 79.758197 \n",
+ " 79.758197 \n",
+ " 79.758197 \n",
+ " 79.758197 \n",
+ " 79.758197 \n",
+ " 79.758197 \n",
+ " 79.758197 \n",
+ " 79.758197 \n",
+ " 79.758197 \n",
+ " 79.758197 \n",
+ " \n",
+ " \n",
+ " initindexes \n",
+ " 499.637925 \n",
+ " 499.637925 \n",
+ " 499.637925 \n",
+ " 499.637925 \n",
+ " 499.637925 \n",
+ " 499.637925 \n",
+ " 499.637925 \n",
+ " 499.637925 \n",
+ " 499.637925 \n",
+ " 499.637925 \n",
+ " ... \n",
+ " 526.64476 \n",
+ " 526.64476 \n",
+ " 526.64476 \n",
+ " 526.64476 \n",
+ " 526.64476 \n",
+ " 526.64476 \n",
+ " 526.64476 \n",
+ " 526.64476 \n",
+ " 526.64476 \n",
+ " 526.64476 \n",
+ " \n",
+ " \n",
+ " initschema \n",
+ " 2971.56034 \n",
+ " 2971.56034 \n",
+ " 2971.56034 \n",
+ " 2971.56034 \n",
+ " 2971.56034 \n",
+ " 2971.56034 \n",
+ " 2971.56034 \n",
+ " 2971.56034 \n",
+ " 2971.56034 \n",
+ " 2971.56034 \n",
+ " ... \n",
+ " 96541.908009 \n",
+ " 96541.908009 \n",
+ " 96541.908009 \n",
+ " 96541.908009 \n",
+ " 96541.908009 \n",
+ " 96541.908009 \n",
+ " 96541.908009 \n",
+ " 96541.908009 \n",
+ " 96541.908009 \n",
+ " 96541.908009 \n",
+ " \n",
+ " \n",
+ " initstatistics \n",
+ " 177.843008 \n",
+ " 177.843008 \n",
+ " 177.843008 \n",
+ " 177.843008 \n",
+ " 177.843008 \n",
+ " 177.843008 \n",
+ " 177.843008 \n",
+ " 177.843008 \n",
+ " 177.843008 \n",
+ " 177.843008 \n",
+ " ... \n",
+ " 2498.066013 \n",
+ " 2498.066013 \n",
+ " 2498.066013 \n",
+ " 2498.066013 \n",
+ " 2498.066013 \n",
+ " 2498.066013 \n",
+ " 2498.066013 \n",
+ " 2498.066013 \n",
+ " 2498.066013 \n",
+ " 2498.066013 \n",
+ " \n",
+ " \n",
+ " load \n",
+ " 46.85273 \n",
+ " 46.85273 \n",
+ " 46.85273 \n",
+ " 46.85273 \n",
+ " 46.85273 \n",
+ " 46.85273 \n",
+ " 46.85273 \n",
+ " 46.85273 \n",
+ " 46.85273 \n",
+ " 46.85273 \n",
+ " ... \n",
+ " 47.416967 \n",
+ " 47.416967 \n",
+ " 47.416967 \n",
+ " 47.416967 \n",
+ " 47.416967 \n",
+ " 47.416967 \n",
+ " 47.416967 \n",
+ " 47.416967 \n",
+ " 47.416967 \n",
+ " 47.416967 \n",
+ " \n",
+ " \n",
+ " loaded \n",
+ " 1572.840147 \n",
+ " 1572.840147 \n",
+ " 1572.840147 \n",
+ " 1572.840147 \n",
+ " 1572.840147 \n",
+ " 1572.840147 \n",
+ " 1572.840147 \n",
+ " 1572.840147 \n",
+ " 1572.840147 \n",
+ " 1572.840147 \n",
+ " ... \n",
+ " 50156.751785 \n",
+ " 50156.751785 \n",
+ " 50156.751785 \n",
+ " 50156.751785 \n",
+ " 50156.751785 \n",
+ " 50156.751785 \n",
+ " 50156.751785 \n",
+ " 50156.751785 \n",
+ " 50156.751785 \n",
+ " 50156.751785 \n",
+ " \n",
+ " \n",
+ " max_load \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " ... \n",
+ " 160.9538 \n",
+ " 160.9538 \n",
+ " 160.9538 \n",
+ " 160.9538 \n",
+ " 160.9538 \n",
+ " 160.9538 \n",
+ " 160.9538 \n",
+ " 160.9538 \n",
+ " 160.9538 \n",
+ " 160.9538 \n",
+ " \n",
+ " \n",
+ " mean_load \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " ... \n",
+ " 163.018868 \n",
+ " 163.018868 \n",
+ " 163.018868 \n",
+ " 163.018868 \n",
+ " 163.018868 \n",
+ " 163.018868 \n",
+ " 163.018868 \n",
+ " 163.018868 \n",
+ " 163.018868 \n",
+ " 163.018868 \n",
+ " \n",
+ " \n",
+ " min_load \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " 225.0 \n",
+ " ... \n",
+ " 166.409861 \n",
+ " 166.409861 \n",
+ " 166.409861 \n",
+ " 166.409861 \n",
+ " 166.409861 \n",
+ " 166.409861 \n",
+ " 166.409861 \n",
+ " 166.409861 \n",
+ " 166.409861 \n",
+ " 166.409861 \n",
+ " \n",
+ " \n",
+ " schema \n",
+ " 1572.840147 \n",
+ " 1572.840147 \n",
+ " 1572.840147 \n",
+ " 1572.840147 \n",
+ " 1572.840147 \n",
+ " 1572.840147 \n",
+ " 1572.840147 \n",
+ " 1572.840147 \n",
+ " 1572.840147 \n",
+ " 1572.840147 \n",
+ " ... \n",
+ " 50156.751785 \n",
+ " 50156.751785 \n",
+ " 50156.751785 \n",
+ " 50156.751785 \n",
+ " 50156.751785 \n",
+ " 50156.751785 \n",
+ " 50156.751785 \n",
+ " 50156.751785 \n",
+ " 50156.751785 \n",
+ " 50156.751785 \n",
+ " \n",
+ " \n",
+ " span_benchmark \n",
+ " 163.636364 \n",
+ " 144.0 \n",
+ " 156.521739 \n",
+ " 150.0 \n",
+ " 150.0 \n",
+ " 150.0 \n",
+ " 144.0 \n",
+ " 150.0 \n",
+ " 150.0 \n",
+ " 156.521739 \n",
+ " ... \n",
+ " 25.695931 \n",
+ " 25.417745 \n",
+ " 25.399812 \n",
+ " 25.411765 \n",
+ " 25.411765 \n",
+ " 25.423729 \n",
+ " 25.29274 \n",
+ " 25.269069 \n",
+ " 25.122121 \n",
+ " 25.151374 \n",
+ " \n",
+ " \n",
+ " span_generate \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " ... \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " inf \n",
+ " \n",
+ " \n",
+ " span_load \n",
+ " 211.764706 \n",
+ " 211.764706 \n",
+ " 211.764706 \n",
+ " 211.764706 \n",
+ " 211.764706 \n",
+ " 211.764706 \n",
+ " 211.764706 \n",
+ " 211.764706 \n",
+ " 211.764706 \n",
+ " 211.764706 \n",
+ " ... \n",
+ " 160.714286 \n",
+ " 160.714286 \n",
+ " 160.714286 \n",
+ " 160.714286 \n",
+ " 160.714286 \n",
+ " 160.714286 \n",
+ " 160.714286 \n",
+ " 160.714286 \n",
+ " 160.714286 \n",
+ " 160.714286 \n",
+ " \n",
+ " \n",
+ " SF \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " ... \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " \n",
+ " \n",
+ " dbms \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " ... \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " PostgreSQL \n",
+ " \n",
+ " \n",
+ " TPCH_TABLE \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " pods \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " ... \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " \n",
+ " \n",
+ " num_experiment \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " ... \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " num_client \n",
+ " 1 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " ... \n",
+ " 8 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " \n",
+ " \n",
+ " benchmark_start \n",
+ " 1686234318 \n",
+ " 1686235691 \n",
+ " 1686235750 \n",
+ " 1686235694 \n",
+ " 1686235699 \n",
+ " 1686235704 \n",
+ " 1686235707 \n",
+ " 1686235713 \n",
+ " 1686235720 \n",
+ " 1686235724 \n",
+ " ... \n",
+ " 1686271082 \n",
+ " 1686275411 \n",
+ " 1686275414 \n",
+ " 1686275415 \n",
+ " 1686275422 \n",
+ " 1686275425 \n",
+ " 1686275428 \n",
+ " 1686275448 \n",
+ " 1686275458 \n",
+ " 1686275467 \n",
+ " \n",
+ " \n",
+ " benchmark_end \n",
+ " 1686234340 \n",
+ " 1686235716 \n",
+ " 1686235773 \n",
+ " 1686235718 \n",
+ " 1686235723 \n",
+ " 1686235728 \n",
+ " 1686235732 \n",
+ " 1686235737 \n",
+ " 1686235744 \n",
+ " 1686235747 \n",
+ " ... \n",
+ " 1686275285 \n",
+ " 1686279660 \n",
+ " 1686279666 \n",
+ " 1686279665 \n",
+ " 1686279672 \n",
+ " 1686279673 \n",
+ " 1686279698 \n",
+ " 1686279722 \n",
+ " 1686279757 \n",
+ " 1686279761 \n",
+ " \n",
+ " \n",
+ " mem_max_load \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " \n",
+ " \n",
+ " cpu_total_load \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " \n",
+ " \n",
+ " mem_max_stream \n",
+ " 7128.3125 \n",
+ " 8032.226562 \n",
+ " 8032.226562 \n",
+ " 8032.226562 \n",
+ " 8032.226562 \n",
+ " 8032.226562 \n",
+ " 8032.226562 \n",
+ " 8032.226562 \n",
+ " 8032.226562 \n",
+ " 8032.226562 \n",
+ " ... \n",
+ " 1269540.585938 \n",
+ " 1282160.914062 \n",
+ " 1282160.914062 \n",
+ " 1282160.914062 \n",
+ " 1282160.914062 \n",
+ " 1282160.914062 \n",
+ " 1282160.914062 \n",
+ " 1282160.914062 \n",
+ " 1282160.914062 \n",
+ " 1282160.914062 \n",
+ " \n",
+ " \n",
+ " cpu_total_stream \n",
+ " 80.012976 \n",
+ " 809.336122 \n",
+ " 809.336122 \n",
+ " 809.336122 \n",
+ " 809.336122 \n",
+ " 809.336122 \n",
+ " 809.336122 \n",
+ " 809.336122 \n",
+ " 809.336122 \n",
+ " 809.336122 \n",
+ " ... \n",
+ " 58838.671861 \n",
+ " 66750.954151 \n",
+ " 66750.954151 \n",
+ " 66750.954151 \n",
+ " 66750.954151 \n",
+ " 66750.954151 \n",
+ " 66750.954151 \n",
+ " 66750.954151 \n",
+ " 66750.954151 \n",
+ " 66750.954151 \n",
+ " \n",
+ " \n",
+ " mem_max_loader \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " \n",
+ " \n",
+ " cpu_total_loader \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " \n",
+ " \n",
+ " mem_max_datagenerator \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " cpu_total_datagenerator \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " mem_max_benchmarker \n",
+ " 208.652344 \n",
+ " 3894.109375 \n",
+ " 3894.109375 \n",
+ " 3894.109375 \n",
+ " 3894.109375 \n",
+ " 3894.109375 \n",
+ " 3894.109375 \n",
+ " 3894.109375 \n",
+ " 3894.109375 \n",
+ " 3894.109375 \n",
+ " ... \n",
+ " 3035.449219 \n",
+ " 3449.035156 \n",
+ " 3449.035156 \n",
+ " 3449.035156 \n",
+ " 3449.035156 \n",
+ " 3449.035156 \n",
+ " 3449.035156 \n",
+ " 3449.035156 \n",
+ " 3449.035156 \n",
+ " 3449.035156 \n",
+ " \n",
+ " \n",
+ " cpu_total_benchmarker \n",
+ " 6.357339 \n",
+ " 61.253136 \n",
+ " 61.253136 \n",
+ " 61.253136 \n",
+ " 61.253136 \n",
+ " 61.253136 \n",
+ " 61.253136 \n",
+ " 61.253136 \n",
+ " 61.253136 \n",
+ " 61.253136 \n",
+ " ... \n",
+ " 98.604956 \n",
+ " 110.060736 \n",
+ " 110.060736 \n",
+ " 110.060736 \n",
+ " 110.060736 \n",
+ " 110.060736 \n",
+ " 110.060736 \n",
+ " 110.060736 \n",
+ " 110.060736 \n",
+ " 110.060736 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
35 rows Ă— 220 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " PostgreSQL-AWS-4-1-1 PostgreSQL-AWS-4-10-1 \\\n",
+ "benchmark_geo 5743.059573 5690.559545 \n",
+ "benchmark_mean 4137.501667 3999.257534 \n",
+ "generate inf inf \n",
+ "ingest 211.764706 211.764706 \n",
+ "initconstraints 123.984 123.984 \n",
+ "initindexes 499.637925 499.637925 \n",
+ "initschema 2971.56034 2971.56034 \n",
+ "initstatistics 177.843008 177.843008 \n",
+ "load 46.85273 46.85273 \n",
+ "loaded 1572.840147 1572.840147 \n",
+ "max_load 225.0 225.0 \n",
+ "mean_load 225.0 225.0 \n",
+ "min_load 225.0 225.0 \n",
+ "schema 1572.840147 1572.840147 \n",
+ "span_benchmark 163.636364 144.0 \n",
+ "span_generate inf inf \n",
+ "span_load 211.764706 211.764706 \n",
+ "SF 1 1 \n",
+ "dbms PostgreSQL PostgreSQL \n",
+ "TPCH_TABLE \n",
+ "pods 4 4 \n",
+ "num_experiment 1 1 \n",
+ "num_client 1 10 \n",
+ "benchmark_start 1686234318 1686235691 \n",
+ "benchmark_end 1686234340 1686235716 \n",
+ "mem_max_load 0.0 0.0 \n",
+ "cpu_total_load 0.0 0.0 \n",
+ "mem_max_stream 7128.3125 8032.226562 \n",
+ "cpu_total_stream 80.012976 809.336122 \n",
+ "mem_max_loader 0.0 0.0 \n",
+ "cpu_total_loader 0.0 0.0 \n",
+ "mem_max_datagenerator 0 0 \n",
+ "cpu_total_datagenerator 0 0 \n",
+ "mem_max_benchmarker 208.652344 3894.109375 \n",
+ "cpu_total_benchmarker 6.357339 61.253136 \n",
+ "\n",
+ " PostgreSQL-AWS-4-10-10 PostgreSQL-AWS-4-10-2 \\\n",
+ "benchmark_geo 5801.257852 5649.719574 \n",
+ "benchmark_mean 4131.167805 3948.264563 \n",
+ "generate inf inf \n",
+ "ingest 211.764706 211.764706 \n",
+ "initconstraints 123.984 123.984 \n",
+ "initindexes 499.637925 499.637925 \n",
+ "initschema 2971.56034 2971.56034 \n",
+ "initstatistics 177.843008 177.843008 \n",
+ "load 46.85273 46.85273 \n",
+ "loaded 1572.840147 1572.840147 \n",
+ "max_load 225.0 225.0 \n",
+ "mean_load 225.0 225.0 \n",
+ "min_load 225.0 225.0 \n",
+ "schema 1572.840147 1572.840147 \n",
+ "span_benchmark 156.521739 150.0 \n",
+ "span_generate inf inf \n",
+ "span_load 211.764706 211.764706 \n",
+ "SF 1 1 \n",
+ "dbms PostgreSQL PostgreSQL \n",
+ "TPCH_TABLE \n",
+ "pods 4 4 \n",
+ "num_experiment 1 1 \n",
+ "num_client 10 10 \n",
+ "benchmark_start 1686235750 1686235694 \n",
+ "benchmark_end 1686235773 1686235718 \n",
+ "mem_max_load 0.0 0.0 \n",
+ "cpu_total_load 0.0 0.0 \n",
+ "mem_max_stream 8032.226562 8032.226562 \n",
+ "cpu_total_stream 809.336122 809.336122 \n",
+ "mem_max_loader 0.0 0.0 \n",
+ "cpu_total_loader 0.0 0.0 \n",
+ "mem_max_datagenerator 0 0 \n",
+ "cpu_total_datagenerator 0 0 \n",
+ "mem_max_benchmarker 3894.109375 3894.109375 \n",
+ "cpu_total_benchmarker 61.253136 61.253136 \n",
+ "\n",
+ " PostgreSQL-AWS-4-10-3 PostgreSQL-AWS-4-10-4 \\\n",
+ "benchmark_geo 5669.866608 5585.640919 \n",
+ "benchmark_mean 3988.347981 3975.949458 \n",
+ "generate inf inf \n",
+ "ingest 211.764706 211.764706 \n",
+ "initconstraints 123.984 123.984 \n",
+ "initindexes 499.637925 499.637925 \n",
+ "initschema 2971.56034 2971.56034 \n",
+ "initstatistics 177.843008 177.843008 \n",
+ "load 46.85273 46.85273 \n",
+ "loaded 1572.840147 1572.840147 \n",
+ "max_load 225.0 225.0 \n",
+ "mean_load 225.0 225.0 \n",
+ "min_load 225.0 225.0 \n",
+ "schema 1572.840147 1572.840147 \n",
+ "span_benchmark 150.0 150.0 \n",
+ "span_generate inf inf \n",
+ "span_load 211.764706 211.764706 \n",
+ "SF 1 1 \n",
+ "dbms PostgreSQL PostgreSQL \n",
+ "TPCH_TABLE \n",
+ "pods 4 4 \n",
+ "num_experiment 1 1 \n",
+ "num_client 10 10 \n",
+ "benchmark_start 1686235699 1686235704 \n",
+ "benchmark_end 1686235723 1686235728 \n",
+ "mem_max_load 0.0 0.0 \n",
+ "cpu_total_load 0.0 0.0 \n",
+ "mem_max_stream 8032.226562 8032.226562 \n",
+ "cpu_total_stream 809.336122 809.336122 \n",
+ "mem_max_loader 0.0 0.0 \n",
+ "cpu_total_loader 0.0 0.0 \n",
+ "mem_max_datagenerator 0 0 \n",
+ "cpu_total_datagenerator 0 0 \n",
+ "mem_max_benchmarker 3894.109375 3894.109375 \n",
+ "cpu_total_benchmarker 61.253136 61.253136 \n",
+ "\n",
+ " PostgreSQL-AWS-4-10-5 PostgreSQL-AWS-4-10-6 \\\n",
+ "benchmark_geo 5537.427447 5614.148176 \n",
+ "benchmark_mean 3881.525131 3949.24657 \n",
+ "generate inf inf \n",
+ "ingest 211.764706 211.764706 \n",
+ "initconstraints 123.984 123.984 \n",
+ "initindexes 499.637925 499.637925 \n",
+ "initschema 2971.56034 2971.56034 \n",
+ "initstatistics 177.843008 177.843008 \n",
+ "load 46.85273 46.85273 \n",
+ "loaded 1572.840147 1572.840147 \n",
+ "max_load 225.0 225.0 \n",
+ "mean_load 225.0 225.0 \n",
+ "min_load 225.0 225.0 \n",
+ "schema 1572.840147 1572.840147 \n",
+ "span_benchmark 144.0 150.0 \n",
+ "span_generate inf inf \n",
+ "span_load 211.764706 211.764706 \n",
+ "SF 1 1 \n",
+ "dbms PostgreSQL PostgreSQL \n",
+ "TPCH_TABLE \n",
+ "pods 4 4 \n",
+ "num_experiment 1 1 \n",
+ "num_client 10 10 \n",
+ "benchmark_start 1686235707 1686235713 \n",
+ "benchmark_end 1686235732 1686235737 \n",
+ "mem_max_load 0.0 0.0 \n",
+ "cpu_total_load 0.0 0.0 \n",
+ "mem_max_stream 8032.226562 8032.226562 \n",
+ "cpu_total_stream 809.336122 809.336122 \n",
+ "mem_max_loader 0.0 0.0 \n",
+ "cpu_total_loader 0.0 0.0 \n",
+ "mem_max_datagenerator 0 0 \n",
+ "cpu_total_datagenerator 0 0 \n",
+ "mem_max_benchmarker 3894.109375 3894.109375 \n",
+ "cpu_total_benchmarker 61.253136 61.253136 \n",
+ "\n",
+ " PostgreSQL-AWS-4-10-7 PostgreSQL-AWS-4-10-8 ... \\\n",
+ "benchmark_geo 5652.773429 5656.741898 ... \n",
+ "benchmark_mean 4010.576062 3991.500646 ... \n",
+ "generate inf inf ... \n",
+ "ingest 211.764706 211.764706 ... \n",
+ "initconstraints 123.984 123.984 ... \n",
+ "initindexes 499.637925 499.637925 ... \n",
+ "initschema 2971.56034 2971.56034 ... \n",
+ "initstatistics 177.843008 177.843008 ... \n",
+ "load 46.85273 46.85273 ... \n",
+ "loaded 1572.840147 1572.840147 ... \n",
+ "max_load 225.0 225.0 ... \n",
+ "mean_load 225.0 225.0 ... \n",
+ "min_load 225.0 225.0 ... \n",
+ "schema 1572.840147 1572.840147 ... \n",
+ "span_benchmark 150.0 156.521739 ... \n",
+ "span_generate inf inf ... \n",
+ "span_load 211.764706 211.764706 ... \n",
+ "SF 1 1 ... \n",
+ "dbms PostgreSQL PostgreSQL ... \n",
+ "TPCH_TABLE ... \n",
+ "pods 4 4 ... \n",
+ "num_experiment 1 1 ... \n",
+ "num_client 10 10 ... \n",
+ "benchmark_start 1686235720 1686235724 ... \n",
+ "benchmark_end 1686235744 1686235747 ... \n",
+ "mem_max_load 0.0 0.0 ... \n",
+ "cpu_total_load 0.0 0.0 ... \n",
+ "mem_max_stream 8032.226562 8032.226562 ... \n",
+ "cpu_total_stream 809.336122 809.336122 ... \n",
+ "mem_max_loader 0.0 0.0 ... \n",
+ "cpu_total_loader 0.0 0.0 ... \n",
+ "mem_max_datagenerator 0 0 ... \n",
+ "cpu_total_datagenerator 0 0 ... \n",
+ "mem_max_benchmarker 3894.109375 3894.109375 ... \n",
+ "cpu_total_benchmarker 61.253136 61.253136 ... \n",
+ "\n",
+ " PostgreSQL-AWS-4-8-8 PostgreSQL-AWS-4-9-1 \\\n",
+ "benchmark_geo 7201.176956 6126.359039 \n",
+ "benchmark_mean 3814.105044 3546.909561 \n",
+ "generate inf inf \n",
+ "ingest 160.714286 160.714286 \n",
+ "initconstraints 79.758197 79.758197 \n",
+ "initindexes 526.64476 526.64476 \n",
+ "initschema 96541.908009 96541.908009 \n",
+ "initstatistics 2498.066013 2498.066013 \n",
+ "load 47.416967 47.416967 \n",
+ "loaded 50156.751785 50156.751785 \n",
+ "max_load 160.9538 160.9538 \n",
+ "mean_load 163.018868 163.018868 \n",
+ "min_load 166.409861 166.409861 \n",
+ "schema 50156.751785 50156.751785 \n",
+ "span_benchmark 25.695931 25.417745 \n",
+ "span_generate inf inf \n",
+ "span_load 160.714286 160.714286 \n",
+ "SF 30 30 \n",
+ "dbms PostgreSQL PostgreSQL \n",
+ "TPCH_TABLE \n",
+ "pods 4 4 \n",
+ "num_experiment 1 1 \n",
+ "num_client 8 9 \n",
+ "benchmark_start 1686271082 1686275411 \n",
+ "benchmark_end 1686275285 1686279660 \n",
+ "mem_max_load 0.0 0.0 \n",
+ "cpu_total_load 0.0 0.0 \n",
+ "mem_max_stream 1269540.585938 1282160.914062 \n",
+ "cpu_total_stream 58838.671861 66750.954151 \n",
+ "mem_max_loader 0.0 0.0 \n",
+ "cpu_total_loader 0.0 0.0 \n",
+ "mem_max_datagenerator 0 0 \n",
+ "cpu_total_datagenerator 0 0 \n",
+ "mem_max_benchmarker 3035.449219 3449.035156 \n",
+ "cpu_total_benchmarker 98.604956 110.060736 \n",
+ "\n",
+ " PostgreSQL-AWS-4-9-2 PostgreSQL-AWS-4-9-3 \\\n",
+ "benchmark_geo 6315.907996 6397.877399 \n",
+ "benchmark_mean 3522.250063 3531.354808 \n",
+ "generate inf inf \n",
+ "ingest 160.714286 160.714286 \n",
+ "initconstraints 79.758197 79.758197 \n",
+ "initindexes 526.64476 526.64476 \n",
+ "initschema 96541.908009 96541.908009 \n",
+ "initstatistics 2498.066013 2498.066013 \n",
+ "load 47.416967 47.416967 \n",
+ "loaded 50156.751785 50156.751785 \n",
+ "max_load 160.9538 160.9538 \n",
+ "mean_load 163.018868 163.018868 \n",
+ "min_load 166.409861 166.409861 \n",
+ "schema 50156.751785 50156.751785 \n",
+ "span_benchmark 25.399812 25.411765 \n",
+ "span_generate inf inf \n",
+ "span_load 160.714286 160.714286 \n",
+ "SF 30 30 \n",
+ "dbms PostgreSQL PostgreSQL \n",
+ "TPCH_TABLE \n",
+ "pods 4 4 \n",
+ "num_experiment 1 1 \n",
+ "num_client 9 9 \n",
+ "benchmark_start 1686275414 1686275415 \n",
+ "benchmark_end 1686279666 1686279665 \n",
+ "mem_max_load 0.0 0.0 \n",
+ "cpu_total_load 0.0 0.0 \n",
+ "mem_max_stream 1282160.914062 1282160.914062 \n",
+ "cpu_total_stream 66750.954151 66750.954151 \n",
+ "mem_max_loader 0.0 0.0 \n",
+ "cpu_total_loader 0.0 0.0 \n",
+ "mem_max_datagenerator 0 0 \n",
+ "cpu_total_datagenerator 0 0 \n",
+ "mem_max_benchmarker 3449.035156 3449.035156 \n",
+ "cpu_total_benchmarker 110.060736 110.060736 \n",
+ "\n",
+ " PostgreSQL-AWS-4-9-4 PostgreSQL-AWS-4-9-5 \\\n",
+ "benchmark_geo 6415.070037 6403.580297 \n",
+ "benchmark_mean 3536.359665 3543.268525 \n",
+ "generate inf inf \n",
+ "ingest 160.714286 160.714286 \n",
+ "initconstraints 79.758197 79.758197 \n",
+ "initindexes 526.64476 526.64476 \n",
+ "initschema 96541.908009 96541.908009 \n",
+ "initstatistics 2498.066013 2498.066013 \n",
+ "load 47.416967 47.416967 \n",
+ "loaded 50156.751785 50156.751785 \n",
+ "max_load 160.9538 160.9538 \n",
+ "mean_load 163.018868 163.018868 \n",
+ "min_load 166.409861 166.409861 \n",
+ "schema 50156.751785 50156.751785 \n",
+ "span_benchmark 25.411765 25.423729 \n",
+ "span_generate inf inf \n",
+ "span_load 160.714286 160.714286 \n",
+ "SF 30 30 \n",
+ "dbms PostgreSQL PostgreSQL \n",
+ "TPCH_TABLE \n",
+ "pods 4 4 \n",
+ "num_experiment 1 1 \n",
+ "num_client 9 9 \n",
+ "benchmark_start 1686275422 1686275425 \n",
+ "benchmark_end 1686279672 1686279673 \n",
+ "mem_max_load 0.0 0.0 \n",
+ "cpu_total_load 0.0 0.0 \n",
+ "mem_max_stream 1282160.914062 1282160.914062 \n",
+ "cpu_total_stream 66750.954151 66750.954151 \n",
+ "mem_max_loader 0.0 0.0 \n",
+ "cpu_total_loader 0.0 0.0 \n",
+ "mem_max_datagenerator 0 0 \n",
+ "cpu_total_datagenerator 0 0 \n",
+ "mem_max_benchmarker 3449.035156 3449.035156 \n",
+ "cpu_total_benchmarker 110.060736 110.060736 \n",
+ "\n",
+ " PostgreSQL-AWS-4-9-6 PostgreSQL-AWS-4-9-7 \\\n",
+ "benchmark_geo 6297.598488 6407.009574 \n",
+ "benchmark_mean 3420.383738 3406.429901 \n",
+ "generate inf inf \n",
+ "ingest 160.714286 160.714286 \n",
+ "initconstraints 79.758197 79.758197 \n",
+ "initindexes 526.64476 526.64476 \n",
+ "initschema 96541.908009 96541.908009 \n",
+ "initstatistics 2498.066013 2498.066013 \n",
+ "load 47.416967 47.416967 \n",
+ "loaded 50156.751785 50156.751785 \n",
+ "max_load 160.9538 160.9538 \n",
+ "mean_load 163.018868 163.018868 \n",
+ "min_load 166.409861 166.409861 \n",
+ "schema 50156.751785 50156.751785 \n",
+ "span_benchmark 25.29274 25.269069 \n",
+ "span_generate inf inf \n",
+ "span_load 160.714286 160.714286 \n",
+ "SF 30 30 \n",
+ "dbms PostgreSQL PostgreSQL \n",
+ "TPCH_TABLE \n",
+ "pods 4 4 \n",
+ "num_experiment 1 1 \n",
+ "num_client 9 9 \n",
+ "benchmark_start 1686275428 1686275448 \n",
+ "benchmark_end 1686279698 1686279722 \n",
+ "mem_max_load 0.0 0.0 \n",
+ "cpu_total_load 0.0 0.0 \n",
+ "mem_max_stream 1282160.914062 1282160.914062 \n",
+ "cpu_total_stream 66750.954151 66750.954151 \n",
+ "mem_max_loader 0.0 0.0 \n",
+ "cpu_total_loader 0.0 0.0 \n",
+ "mem_max_datagenerator 0 0 \n",
+ "cpu_total_datagenerator 0 0 \n",
+ "mem_max_benchmarker 3449.035156 3449.035156 \n",
+ "cpu_total_benchmarker 110.060736 110.060736 \n",
+ "\n",
+ " PostgreSQL-AWS-4-9-8 PostgreSQL-AWS-4-9-9 \n",
+ "benchmark_geo 6881.208745 7301.99031 \n",
+ "benchmark_mean 3285.569354 3308.9861 \n",
+ "generate inf inf \n",
+ "ingest 160.714286 160.714286 \n",
+ "initconstraints 79.758197 79.758197 \n",
+ "initindexes 526.64476 526.64476 \n",
+ "initschema 96541.908009 96541.908009 \n",
+ "initstatistics 2498.066013 2498.066013 \n",
+ "load 47.416967 47.416967 \n",
+ "loaded 50156.751785 50156.751785 \n",
+ "max_load 160.9538 160.9538 \n",
+ "mean_load 163.018868 163.018868 \n",
+ "min_load 166.409861 166.409861 \n",
+ "schema 50156.751785 50156.751785 \n",
+ "span_benchmark 25.122121 25.151374 \n",
+ "span_generate inf inf \n",
+ "span_load 160.714286 160.714286 \n",
+ "SF 30 30 \n",
+ "dbms PostgreSQL PostgreSQL \n",
+ "TPCH_TABLE \n",
+ "pods 4 4 \n",
+ "num_experiment 1 1 \n",
+ "num_client 9 9 \n",
+ "benchmark_start 1686275458 1686275467 \n",
+ "benchmark_end 1686279757 1686279761 \n",
+ "mem_max_load 0.0 0.0 \n",
+ "cpu_total_load 0.0 0.0 \n",
+ "mem_max_stream 1282160.914062 1282160.914062 \n",
+ "cpu_total_stream 66750.954151 66750.954151 \n",
+ "mem_max_loader 0.0 0.0 \n",
+ "cpu_total_loader 0.0 0.0 \n",
+ "mem_max_datagenerator 0 0 \n",
+ "cpu_total_datagenerator 0 0 \n",
+ "mem_max_benchmarker 3449.035156 3449.035156 \n",
+ "cpu_total_benchmarker 110.060736 110.060736 \n",
+ "\n",
+ "[35 rows x 220 columns]"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_tpx.T"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Loading Phase\n",
+ "\n",
+ "## Plot Throughput"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " SF \n",
+ " 1 \n",
+ " 3 \n",
+ " 10 \n",
+ " 30 \n",
+ " \n",
+ " \n",
+ " pods \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 4.0 \n",
+ " 211.764706 \n",
+ " 192.857143 \n",
+ " 175.609756 \n",
+ " 160.714286 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "SF 1 3 10 30\n",
+ "pods \n",
+ "4.0 211.764706 192.857143 175.609756 160.714286"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAI7CAYAAABWXBl/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABRZElEQVR4nO3deVyUVf//8fcgsgiCC5JoBqhkluaSaH5xLRPX0nIvb3fb1MwWtSw1y+22LK27VHLLNsvUFk3KBBVzSy1bb3PLtVwSBBVQzu8PfzO34wyyXMCgvZ6PB4+HnOvMmc81G2+v61xnbMYYIwAAgHzy8nQBAADg6kaYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmLhERESEbDab04+vr69uuOEGde/eXevWrfN0iVeVI0eOaNSoUapbt65Kly4tHx8fVapUSfXq1dOgQYM0f/58XbhwIdvbb9y4UQMHDlRUVJQCAwMVEBCg6tWra8CAAdqwYUO2t9u3b5/j+du3b1++62/RooXL6yE3P8XNuHHjZLPZNG7cOE+Xck3YsGGDWrdurXLlysnLy0s2m03z58/3dFkFzt3rPyAgQGFhYYqJidHQoUP1zTff6EqLKPft27dAHh/7Z7OV9/OlLt+vgQMHZtv3/PnzWrRokbp27aqIiAgFBgbK19dXFStW1B133KHnn39eP/744xXvx4p58+bJZrNp6tSpkqT58+fLZrOpb9++eRrn6NGjLvtdkJ8J3gU20jUkJiZG1atXlySdOnVKW7du1eLFi/XRRx9p2rRpGjFiRJHWY38xXk0rn2/YsEHt27fXqVOnFBgYqIYNG+q6665Tamqqdu7cqbi4OMXFxalLly4KDAx0um1GRoYefvhhzZ07V5JUrVo1xcbGymaz6YcfftDcuXM1d+5c9evXT2+99ZZ8fHwKZR/atGmjiIgIl/YFCxZIkmJjY1WxYsVCuW/kX4sWLZSYmKg1a9aoRYsWBTr24cOH1b59eyUnJ6tJkyaKiIiQl5eX4/PiWlSnTh3VrVtX0sX35okTJ/T9999rw4YNev3113Xrrbdq/vz5qlevnmcLzYc+ffpIuviZ78727dvVtWtX7d69WzabTTfffLPq1asnf39/HT9+XFu3btWaNWs0YcIEDR8+XNOnTy/wGpcsWSJJuu+++yyN4+/v79jfHTt26Pvvv7dcmxMDh/DwcCPJzJs3z6n97Nmz5l//+peRZEqUKGF+++23Iq1Lkrmanqpz586ZypUrG0mmV69eJjk52aXPL7/8Yp566ilz5swZl22dO3c2kkz58uXNZ5995rJ9xYoVpkKFCkaSuffee12279271/GY7d27t0D26VL2sdesWVPgYxeGY8eOmV9++cUcO3bM06UUiebNmxfa8zNv3jzH6/paZ38cx44d63b72rVrTcOGDY0kU6pUKbNlyxaXPocPHza//PKLOXXqlKVa7J/NBfV+zs1n6tatW02pUqWMJNOhQwfz3//+16XPhQsXTHx8vGnZsqWJjY3N1/1cSXJysvHx8TF16tRxtNlfg3369Mn3uGPHjr3ic5sfnObIBT8/P73xxhsKCAjQhQsX9Mknn3i6pGJt/fr1OnTokLy9vTV79mwFBQW59Lnppps0depU+fv7O7XPmTNHS5cuVcmSJfXll1+qQ4cOLrdt27atVq1apZIlS+qTTz5xHMGAeyEhIbrpppsUEhLi6VKuen/88YckKSoqysOVeF7Tpk21bt06NWnSRGfOnFGvXr1cTluGhYXppptuUnBwsIeqzJ/MzEx17dpVZ86cUZcuXbR8+XK3z7mXl5fuuusuffPNN5owYUKB1/H5558rIyND9957b4GPXdAIE7kUGBioGjVqSJLLebtVq1apQ4cOCg0NdcwL6N69u7Zu3ep2rOTkZI0ZM0a1a9dWQECAfH19ValSJcXExOj5559XZmampP+d67a7/HzXpXUYYzR37lw1aNBApUqVUvny5dW2bVtt2LBBCQkJstlsLod8L20/c+aMnn/+edWsWVOlSpVyObz/3Xff6f7779cNN9wgX19flStXTrGxsVqxYoXL/v3555+OxywgICA3D69jHyZNmiRJeuihh9SgQYNs+9arV08PP/ywJGnixInF8hTQpedL58yZo9tuu00BAQEqU6aM2rVrp40bN7rc5uWXX5bNZtONN96o06dPu2yfM2eObDabqlSpouPHj+eqjuzmTFx67jUtLU2jR49W9erVHeeD+/Tpo0OHDmU77vLly9W0aVOVLl1awcHBat68ub744gvHnBV3p4gk6e+//9bYsWMdc2lKlSql2rVr68UXX9SZM2dc+mdlZWn27NmKiYlRmTJlVLJkSYWGhqpOnToaOnSo431gfz0nJiZKklq2bOn0frFy3t7+WI0dO1aSNH78eMe4l+7npc/5vHnz1LhxYwUHB7u8Xzdv3qxu3bqpUqVK8vHxUWhoqDp27KivvvrK7f1fOvfgt99+U/fu3RUaGqqAgABFR0dr+fLljr6bNm3S3XffrQoVKsjf31+NGzfW6tWr873vV+Lj46O33npLkrRr1y4tW7Ys27ovldvnNDdefPFFx3ti586dFvfoonfffVd79+6Vr6+v/vOf/8jLK+c/ldHR0VfcntvPgEvZ/+Oa3SmO/LxvC02BHeO4BmR3msOuevXqRpIZNmyYo23MmDFGkrHZbCYmJsb07NnT1K1b13FK5O2333YaIy0tzdSqVctIMhUqVDAdO3Y0PXr0MC1atDAVK1Y0kszff/9tjDFm6dKlpk+fPo5DZX369HH6ufSw9cMPP2wkGS8vL9O8eXPTo0cPc8stt5gSJUqYJ554wkgyzZs3d6plzZo1RpJp1KiRiY6ONgEBAaZt27ame/fuplWrVo5+r776qvHy8jKSTN26dU2XLl1MkyZNjI+Pj5Fkxo8f7zTuunXrHDVn91i6s2PHDsft3B0yvdzWrVsd/Xfu3OloLy6nOez9Hn/8cWOz2UyTJk1Mz549Hc+/t7e3+eSTT1xud/fddxtJpkePHk7tO3bsMH5+fsbb29skJSXlut7sDmnaD5d26tTJ3HrrraZMmTKmY8eO5p577jGhoaFGkgkPD3d7iHrKlCmO/WvUqJHp2bOniY6ONpLM008/7bjt5X766SdTpUoVI8mEhYWZNm3amI4dO5rrrrvO8fq6/P769etnJBk/Pz/TqlUr07NnTxMbG2uioqKMJLN06VJjzMVTZ3369HGMFRsb6/R+WbduXa4fs8utW7fO9OnTx9SpU8dIMnXq1HGM+8QTTzj62R+TIUOGGC8vL8dz3qhRI7Nv3z5jjDGzZ892vJ/q1atnevbsaf7v//7Pcdtx48a53L/9c2Do0KEmICDA1KhRw/To0cM0btzY8fnz0UcfmaVLl5qSJUuaevXqme7duzvq9fb2zvP+53Sa41L16tUzksyDDz7otu7LPwdy+5zauTvNkZGR4Rinbt265tChQ7neN/tjnZ1OnToZSebuu+/O9ZhXup+8fgYYc/FvRalSpUyNGjWc2q28b+0K4zQHYeISVwoT33//veMDYO7cucYYY1auXOl4Q8THxzv1j4uLM5JMyZIlzY8//uhoX7BggZFk2rZtazIyMpxuc+HCBZOQkGDS09Od2nN64S9fvtxIMoGBgS5/ZF5++WXH7bMLE5LMrbfeao4cOeIy9pdffmlsNpsJCQkxiYmJTtt++OEHc/311xtJJiEhwWk/7B8ukkx0dLR59tlnzdKlS82BAwey3Y+3337bSDI+Pj4mMzMz2352mZmZjkBz6XNW3MKEv7+/Wb16tdO2qVOnGkkmODjY/Pnnn07b/v77bxMREWEkmTfffNMYY0xKSorjg/bf//53nurNKUzY//BeOrfl5MmTjlA8ceJEp9tt27bNlChRwpQoUcLlg3Dx4sWO98nlYeLMmTOmWrVqRpIZM2aM0+s8LS3N9OzZ00gy/fr1c7Tv37/fSDLXX3+929fnzz//bPbv3+/UVphzJnL6ELY/nkFBQebbb7912f7DDz8Yb29vY7PZzMKFC522rVixwvF6vvzz5NL/VLz44osmKyvLsW3GjBmOx6hs2bIu4w4fPtxIcvoPQm7kJUwMHDjQSDJNmjRxW/el78/8PKeXh4lTp06ZVq1aOT5LT58+nad9y+kz1R54J0yYkKdxs7ufvH4GGGPMkiVLjCTzzDPPOLXn9317KcJEIXMXJk6dOmW++OILx4dgpUqVTGpqqjHGmDvvvNNIMiNGjHA7XocOHYwkM2jQIEeb/QX0yiuv5LqunF74d9xxh5FkRo8e7Xa7/X+MVwoTa9eudXvbRo0aGUnm448/drt98eLFRpK57777nNoPHz5s2rZt6xj/0p8bb7zRTJ482WXy5eTJk40kU7FixWz39XL2ozlTp051tBW3MDF8+HC32xs0aGAkmZdeesll2+bNm42Pj4/x9fU127dvN926dTOSTMeOHZ3+kORGTmEiICDAHD582OV2H3zwgZFk7rjjDqf2/v37G0mmZ8+ebu+vS5cubsPEm2++aaSLk9ncOX36tAkNDTXe3t7m5MmTxpiLj0Ne/4dYHMLECy+84Hb7gAEDjOR+4rAxxgwZMsRIMnfddZdTu/2PcsOGDV2e/8zMTFOuXDkjyXTt2tVlzOPHjztC+uX/gbmSvISJUaNGGUmmZs2abuu+9DM1P8/ppWFi//79jv/ZP/jgg+b8+fO5Hscup89Uf39/I8m89dZbbrd/8MEHLkeKLz9afOn95OczoFevXkaS2bp1q1N7ft+3l2ICZhHp16+f49xnmTJl1L59e+3evVvVqlXTihUrFBAQoPPnzyspKUmSsr3ed8CAAZKkNWvWONrs59WmTp2qhQsX6uTJk5ZqPX/+vGPNhfvvv99tn169el1xjNDQUDVt2tSl/fjx49q8ebP8/f3VsWNHt7e1z8O4fN2HsLAwrVixQj/++KMmTpyojh07qnLlypKk//73vxo1apQaN26sU6dOXbG2nJj/P1fiSutVeJr9cqzL/etf/5J08Vz/5aKjozVt2jSlp6erRYsWWrx4scLDw7VgwYICX8uiQYMGCgsLc2mvWbOmJLmcf7XPScju9ZZd+xdffCFJ6t69u9vtgYGBatCggc6fP68tW7ZIujhRt3Tp0lqxYoVeeukl7d27Nxd75HldunRx225/rnP6zFi3bp3b13Tbtm1dnn9vb29FRkZKktq1a+dym/Lly6tcuXKOyzoLQ1ZWliTl6rVp5Tndtm2bbr/9dv3000+aPHmy3nrrLZUoUSLfdefXli1btGDBApef1NRUt/3z+hmQkZGhL774QhEREbrtttvc3jav79vCRphwIyYmRn369FGfPn00aNAgPfvss/rss8/066+/qk6dOpKkEydO6Ny5c5LkeCNfrlq1apKcn9QWLVpo5MiR+uuvv9SnTx+FhISoRo0a6t+/v5YvX+54U+bW8ePHHXVkN+Etu/actu/du1fGGJ09e1a+vr5uF2gKDQ2VJB07dsztGLfccotGjx6tTz/9VAcPHtTPP/+sIUOGyGaz6fvvv9ezzz7r6Gu/2uDkyZM6f/78FWuWLgYpexirUKFCjv09JbvXh7394MGDbrcPHTpUrVu3VnJysmw2mz744AOVLVu2wOu74YYb3Lbbr8Kxv77s7PXm9fW2Z88eSVLv3r2zXfDLPqHX/noqXbq05s2bJ39/f40ZM0ZVq1ZVpUqVdO+992r27NnZfnh7WnaPgf2zIKfPjHPnzrn9w5/dc2VfqyW77aVLl3aMWxjsk4HLlSuXY18rz2n37t115MgRTZgwQSNHjiyw+i9n/yzK7nNt2rRpMheP7MsYk2OgyetnwNdff63k5OQrXsWR1/dtYWPRKjcGDhyY59XF8mLy5Ml66KGH9Nlnn2n9+vVKSkrSvHnzNG/ePEVHR2vNmjV5ugoiJzn9b+HyyzPt7MEmMDDQ8oIpdjVr1tTMmTPl5eWlGTNmaNmyZXrjjTckyZHAMzIytH379hxnR+/YscNx5cvVuGCOnf3oyuV27dqlb7/91tFn8+bNuv322wv8/nMzU92d7F5X2bXbX09t2rTRddddd8Wxw8PDHf++77771KpVK3366adat26dkpKStHTpUi1dulTPP/+8vvrqK9WuXTtf+1BYsntPWZXTc5Xf59Kqbdu2SVKun4f8Pqd9+vTR22+/renTp6tNmzbZ/q/dqvr16+vAgQPZXpFX0C7/DMjNQlWeeq6zQ5jIp/Lly8vX11fp6enas2ePbr31Vpc+9v+J2Q/vXyoiIkJDhw7V0KFDJV08bPbAAw9oy5Ytmjp1qsaPH5/nOvbv36+bb77ZpU9+l6CtUqWKpIt/HObOnVugL97WrVtrxowZTpc31qlTRxEREdq3b58WLlyYY5hYuHChpIuPZXEOE3v37nWsIHgp+/Ny/fXXu2w7d+6cunXrptOnT+v+++/Xxx9/rKeeekr/93//d8VLZotC5cqVtWfPHu3bty9Pr7cqVaro119/1YABA7I9DZCd4OBg9e7dW71795YkHThwQEOHDtXy5cs1ZMgQx6mX4q5y5cravXu39uzZo1q1arlst39m+Pn55ep/+cXBTz/9pB07dki6+L7Orfw8p2PGjNHNN9+sJ554QnfccYe++OILNWnSpED241J33323li9frlWrVun48eOW12jJy2fAhQsXtHz5coWFhalx48aW7rcoFa9ocxXx9vZ2vIizu37dvphSy5YtcxwvOjpajzzyiCQ53ph2JUuWlCS3h/5LlizpeMG99957bsd+//33c7x/dypVqqRbb71Vp0+f1pdffpnr22X3P+1L2Rf/ufRNZLPZNGrUKEnSrFmzrvi/gu3btzuub3/22WeL5Xdi2L3zzjtXbHe35PNjjz2mHTt2qGXLllq4cKFefvllZWRkqFu3bpbnmVjVrFkzSdm/3rJrb9u2rSRp8eLFlmuoUqWKI3Bf/n6xL6+em1NlRc3+XOf0mdG0aVN5exf//+tlZGTooYceknRxLsTdd9+d77Gu9JxeasSIEY7TIbGxsdmuzWHFAw88oPDwcJ07d06PPvqo5XVs8vIZkJiYqBMnTqhz587F+nPtcoQJC5544glJ0ptvvumyKMz8+fP16aefqmTJknrssccc7UuXLtXatWtd5kZkZmY6/mBfeohX+t8f3J9++sltHcOGDZMkzZgxw2URlNdee02bNm3K6645vPjii5IuTkr97LPPXLYbY7Rp0ybFx8c72j777DN16tRJX331ldtJZAkJCY4FlHr06OG0bfDgwbr77ruVmZmpNm3a6PPPP3e5/ZdffqnY2FhlZmaqX79+V/ySnuLgzTffdJlgNX36dG3evFmlS5d2TLqze++99zR79mxdd911eu+99+Tl5aVHH31UXbp00d69e9W/f/8irN7VkCFD5OXlpQ8++MBpsSTp4iI79kO0lxs8eLDCw8P10UcfaeTIkW4X5Tp69KjmzJnj+H379u368MMPdfbsWZe+9tdjXt8vnvTYY4/J29tby5Yt06JFi5y2xcfHa9asWZKkJ5980hPl5UlSUpKaNm2q9evXKzAwUO+++26ujl7m5zm93KBBg7Ro0SJlZGSoY8eOLotlWeXj46OPPvpIfn5+Wrx4sTp37qzff//dbd8NGzbkGDby8hlQUN/FUeQK7LqQa0BOi1a5c+miVU2aNDG9evUy9evXN5L7Rasee+wxI8mEhISYu+66y9x///3m7rvvdiw2UrlyZZe1GJ588knHbbp162YGDBhgBgwYYI4fP+7oM3jwYMd9tmjRwrEwSokSJczjjz/u9nIz+6Whl18yernXXnvNeHt7G0mmevXqpn379qZXr17mrrvuctQ9cuRIR/+lS5c6LokKDg42LVu2ND179jR33323uemmmxzbWrVqZdLS0lzu79y5c47vQrHf53333We6dOniWGvBy8vLPProoy5rchjjfGlo3bp1TaNGjbL9yQ/72Hm5NNRms5lmzZqZnj17mtq1azueq48++sjpNr/++qsJDAw0Xl5eLtelnzp1ylStWtVIMq+++mqu683p0tDs1vi3P47uFp+aOHGiY/9uv/1206tXL8f3NNgXSYuKinK53Y8//uhYQ6NMmTKmWbNmplevXqZTp07m5ptvNjabzVx33XWO/vbXkr+/v4mJiTE9evQwXbp0MTVq1HBc7rhy5Uqn+/j8888d2zp06GD69+9vBgwYkKeFvrKT20tDr2TWrFmOtTjq169vevXqZWJiYozNZjPSlRetyu6zKafLYfPz3Rb2MS9doKtXr16mTZs2jkuy7du3b9/udgx3defnOc2u/uXLlxtfX1/j7e1tFi1alOt9y83zZIwxW7ZsMZGRkY7P+Fq1apnOnTubBx54wHTs2NFRl/7/ZduXr3eR18+ArKwsExYWZkJCQrK95NXK+9aOdSYKWX7ChDEXF69q166dKV++vPH29jYVK1Y0Xbt2NZs2bXLpu337djNq1CjTpEkTU7lyZePj42MqVKhgbrvtNjNx4kSngGB39uxZ8/TTT5vq1as7FrW5/I2VlZVl5syZY+rXr2/8/PxMmTJlTOvWrc3atWvNwoUL3a4LkNswYYwxO3fuNIMHDzZRUVHGz8/PlCpVylStWtXExsaaGTNmOK0+d/bsWbNq1Srz9NNPm5iYGBMeHm78/PyMn5+fueGGG0ynTp3Mhx9+mON6CUlJSaZfv36matWqjuu+7T/vvfdetre7NEzk9JMfeQ0TxlxcY6Fu3brG39/fBAUFmTZt2rj8cTtz5ozjQya7N/nWrVuNr6+v8fHxMZs3b85VvYURJowx5pNPPjExMTEmICDAlC5d2jRp0sQsW7bMrF271kgyjRs3dnu7lJQUM3XqVNO4cWNTpkwZU7JkSRMWFmaio6PNU089ZTZs2ODoe+TIETN58mTTrl07ExkZaUqVKmWCgoLMzTffbB599FHz66+/ur0P+3vB/kVN+Xlfu1MQYcIYYzZu3Gi6dOliKlasaLy9vU358uVN+/btXRarsvNkmLj0x9/f31SsWNE0btzYDBkyxKxevfqK72N3defnOb1S/V9//bUJCAgwXl5eZtasWbnat7y8/zMyMsyCBQvMvffea2644Qbj7+9vfHx8TGhoqGnWrJkZPXq00wq82d1Pbj4D1q9fbySZ/v37Z1sPYQIeY19y9uWXX/Z0KZZkZWU5Fky64YYbXFbJK26sBJar2fjx4410celnoDgqru/NESNGGEnmiy++KNT7KYwwUfxn+CBXfvrpJ0VERDhdUpqVlaW3335b8+fPl5+fn3r27OnBCq2z2WyaM2eO0tLS9OGHH+rOO+/U2rVr3S7cgsK1a9cuhYSEuKx78emnn2rSpEmy2WzZLtQDFBf2JQCaN2+ufv36ebYYXZzEOm7cOLVq1arAx05OTnbM37vSBNf8IkxcI/79739r8eLFqlevnipXrqy0tDT9/PPP2rdvn0qUKKH//Oc/18QfXS8vL73zzju67bbblJaWprVr12a7oiIKz7vvvquJEyeqXr16qlKlijIzM/Xbb7/pt99+k3Txm0oLaw0AoKAsWLBA0sWr84pDmBg0aFChjX327FnH/hYGmzHF8LubkWcrV67UnDlz9N133+n48eM6f/68QkNDFRMTo+HDhxfKYke4MvtlXdfiW2zjxo2aOXOmNm7cqGPHjuncuXMqX7684xLnNm3aeLpEAEWIMAEAACxhnQkAAGAJYQIAAFhyzU/AzMrK0uHDh1W6dOmramlSAAA8zRij06dPq1KlSldc4fSaDxOHDx92fGEVAADIuwMHDrj9UkK7az5MlC5dWtLFB8L+Pe8AACBnKSkpqlKliuNvaXau+TBhP7URFBREmAAAIB9ymibABEwAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWHLNXxoKALg6XLhwQZmZmZ4u45rm7e2tEiVKFPiK0IQJAIBHGWN09OhRnTp1ytOl/COUKFFCoaGhCg4OLrBQQZgAAHiUPUiEhoaqVKlSfI9SITHG6Pz580pJSdGRI0d09uxZhYWFFcjYhAkAgMdcuHDBESTKly/v6XL+EUqXLi1fX18dP35coaGhKlGihOUxmYAJAPAY+xyJUqVKebiSf5aAgAAZYwpsjgphAgDgcZzaKFoF/XgTJgAAgCWECQAAYAlhAgAAWEKYAAAAlnBpKACg2IoY9YWnS8jWvsntC2ScRYsWad26dfruu++0c+dOZWRkaN68eerbt2+BjF8UCBMAAHjQmDFjtH//foWEhCgsLEz79+/3dEl5xmkOAAA8KC4uTvv27dOxY8f00EMPebqcfOHIBAAAHtSqVStPl2AZRyYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlrBoFQAAHhQXF6f169dLknbu3OloS0hIkCQ1adJEAwcO9FR5uUKYAAAUWwX1ZVrF2fr167VgwQKntqSkJCUlJTl+J0wAAIBszZ8/X/Pnz/d0GZYwZwIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCYtW4aoTMeoLT5dQJP4JK/8BuDZwZAIAAFhCmAAAAJYQJgAAgCWECQAAYAkTMAEAxde4YE9XkL1xyZ6uoNjgyAQAAB5y7tw5jRgxQs2aNVOlSpXk5+enihUrKiYmRvPmzVNmZqanS8wVwgQAAB6SmpqqN998UzabTe3bt9eIESPUuXNnHTp0SP3791eHDh2UlZXl6TJzxGkOAAA8pFy5ckpOTpaPj49T+/nz53XXXXcpPj5eK1euVPv2xXvdGY5MAADgIV5eXi5BQpK8vb3VuXNnSdLvv/9e1GXlGWECAIBiJisrS19++aUkqVatWh6uJmec5gAAwMMyMjI0ceJEGWN04sQJrV69Wr/++qv69eunO++809Pl5YgwAQCAh2VkZGj8+PGO3202m5588klNmjTJg1XlHqc5AADwsMDAQBljdOHCBR04cEBvvPGG4uLi1KJFC6WkpHi6vBwRJgAAKCa8vLx0/fXX6+GHH9bs2bOVlJSkl156ydNl5YgwAQBAMdS6dWtJUkJCgmcLyQXCBAAAxdDhw4clSSVLlvRwJTnLc5g4dOiQXn31VbVu3Vo33HCDfHx8VLFiRd13333atGmT29ukpKRoxIgRCg8Pl6+vryIiIvTUU08pNTXVbf+srCzNnDlTtWvXlr+/vypUqKCePXtqz549eS0XAIBi6+eff9aZM2dc2s+cOaMRI0ZIktq1a1fUZeVZnq/mmDlzpqZMmaJq1aqpdevWqlChgnbt2qVly5Zp2bJleu+999S9e3dH/7S0NDVv3lw7duxQ69at1bNnT23fvl3Tpk1TYmKi1q5dKz8/P6f7ePDBBxUXF6dbbrlFw4YN0+HDh7V48WLFx8dr48aNioqKsr7nAAB42OLFi/XKK6+oSZMmioiIUFBQkA4dOqSVK1fqxIkTatq0qR5//HFPl5mjPIeJhg0bKiEhQc2bN3dqX7dune688049/PDD6tSpk3x9fSVJU6dO1Y4dOzRy5EhNnjzZ0X/UqFGaMmWKpk+frtGjRzva16xZo7i4ODVr1kxfffWVY2WwXr16qV27dhoyZIhWrVqVr50FAFxlrvFv5uzQoYMOHz6sDRs26Ntvv1VqaqqCg4N16623qkePHurfv7+8vYv/Kg42Y4wpqMFiY2MVHx+vLVu2qEGDBjLG6Prrr1dKSoqOHj2qgIAAR9+0tDRVrFhRoaGh2r17t6O9V69eev/995WYmKhmzZo5jd+yZUslJCRo//79uuGGG3JVU0pKioKDg5WcnKygoKCC2VF4VMSoLzxdQpHYN7l4r8UPFIRz585p7969ioyMdDlKjcKT28c9t39DC3QCpn2SiD1F7dq1S4cPH1ZMTIxTkJCkgIAAxcTEaM+ePTpw4ICjPSEhwbHtcrGxsZKkxMTEgiwbAABYUGBh4o8//tDXX3+tsLAw1a5dW9LFMCEp2zkO9nZ7v7S0NB05ckSRkZEqUaJEjv3dSU9PV0pKitMPAAAoPAUSJjIzM9W7d2+lp6drypQpjiCQnHzxXFdwcLDb29kPmdj75bW/O5MmTVJwcLDjp0qVKvnYIwAAkFuWw0RWVpb69u2rtWvXatCgQerdu3dB1JVvo0ePVnJysuPn0lMoAACg4FmaIpqVlaX+/fvrvffe0wMPPKC33nrLabv9CEN2RxLspyDs/fLa3x1fX1/HlSQAAKDw5fvIRFZWlvr166cFCxaoZ8+emj9/vry8nIfLaY7D5XMqAgICFBYWpr179+rChQs59gcAAJ6XrzBhDxILFy5U9+7d9c4772Q7YbJSpUpKSkpSWlqa07a0tDQlJSUpMjLSaV5D8+bNHdsuZ19f4vJLRgEAgOfkOUzYT20sXLhQXbt21aJFi9wGCeni97EPHDhQqampmjBhgtO2CRMmKDU1VYMGDXJqHzx4sCTpueeeU0ZGhqN95cqVSkhIUOvWrRUeHp7XsgEAQCHJ85yJF154QQsWLFBgYKBuvPFGvfjiiy59OnXqpLp160qSnn76aS1fvlxTpkzR9u3bVb9+fW3btk3x8fGKjo7W8OHDnW7bsmVLDRw4UHFxcapfv77at2+vI0eO6MMPP1S5cuU0c+bMfO0oAAAoHHkOE/v27ZMkpaamZvsd6xEREY4wERAQoMTERI0bN05LlizRmjVrFBYWpieeeEJjx46Vv7+/y+1nzZql2rVra/bs2XrttdcUGBiozp0766WXXlK1atXyWjIAAChEBbqcdnHEctrXHpbTBq4dLKftGcV6OW0AAPDPQ5gAAACWFP/vNQUA/GPVXlDb0yVka2efnQUyzqJFi7Ru3Tp999132rlzpzIyMjRv3jz17dvXbf+UlBTHPMSjR48qLCxMXbt21dixYxUYGFggNeUVYQIAAA8aM2aM9u/fr5CQEIWFhWn//v3Z9k1LS1Pz5s21Y8cOtW7dWj179tT27ds1bdo0JSYmau3atR6Ze8JpDgAAPCguLk779u3TsWPH9NBDD12x79SpU7Vjxw6NHDlSq1at0uTJk7Vq1SqNHDlSW7Zs0fTp04uoamccmQCKq3HZfwfNNWVc9t8CDPwTtGrVKlf9jDGKi4tTYGCgnnvuOadtzz33nN544w3FxcVp9OjRhVHmFXFkAgCAq8CuXbt0+PBhxcTEKCAgwGlbQECAYmJitGfPHo98WzZhAgCAq0BOX3aZ05drFibCBAAAV4Hk5IunBIOD3Z8CtS8qZe9XlAgTAADAEsIEAABXAfsRieyOPKSkpDj1K0qECQAArgI5zYnIaU5FYSJMAABwFYiKilKlSpWUlJSktLQ0p21paWlKSkpSZGSkqlSpUuS1ESYAALgK2Gw2DRw4UKmpqZowYYLTtgkTJig1NVWDBg3ySG0sWgUAgAfFxcVp/fr1kqSdO3c62hISEiRJTZo00cCBAyVJTz/9tJYvX64pU6Zo+/btql+/vrZt26b4+HhFR0dr+PDhntgFwgQAAJ60fv16LViwwKktKSlJSUlJjt/tYSIgIECJiYmOL/pas2aNwsLC9MQTT2js2LHy9/cv0trtbMYY45F7LiIpKSkKDg5WcnKy4xpcXN0iRn3h6RKKxD6/Xp4uoWiwnPY/2rlz57R3715FRkZ65Auq/qly+7jn9m8ocyYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGCJt6cLAAAgO7/cVNPTJWSr5q+/WB7j3LlzeuaZZ7R161b9/vvvOnnypMqUKaNq1app4MCBeuCBB1SyZEmn26SkpGjcuHFasmSJjh49qrCwMHXt2lVjx45VYGCg5ZrygyMTAAB4SGpqqt58803ZbDa1b99eI0aMUOfOnXXo0CH1799fHTp0UFZWlqN/WlqamjdvrunTp+umm27S448/rho1amjatGm64447dO7cOY/sB0cmAADwkHLlyik5OVk+Pj5O7efPn9ddd92l+Ph4rVy5Uu3bt5ckTZ06VTt27NDIkSM1efJkR/9Ro0ZpypQpmj59ukaPHl2k+yBxZAIAAI/x8vJyCRKS5O3trc6dO0uSfv/9d0mSMUZxcXEKDAzUc88959T/ueeeU2BgoOLi4gq/aDcIEwAAFDNZWVn68ssvJUm1atWSJO3atUuHDx9WTEyMAgICnPoHBAQoJiZGe/bs0YEDB4q8Xk5zAADgYRkZGZo4caKMMTpx4oRWr16tX3/9Vf369dOdd94p6WKYkKSoqCi3Y0RFRWnVqlXatWuXqlSpUmS1S4QJAAA8LiMjQ+PHj3f8brPZ9OSTT2rSpEmOtuTkZElScHCw2zGCgoKc+hUlTnMAAOBhgYGBMsbowoULOnDggN544w3FxcWpRYsWSklJ8XR5OSJMAABQTHh5een666/Xww8/rNmzZyspKUkvvfSSpP8dkcjuyIM9dGR35KIwcZoDgEfVXlDb0yUUiZ19dnq6BFxlWrduLUlKSEiQ9L+5Eva5E5fLaU5FYeLIBAAAxdDhw4clybECZlRUlCpVqqSkpCSlpaU59U1LS1NSUpIiIyOLfPKlRJgAAMBjfv75Z505c8al/cyZMxoxYoQkqV27dpIuTsocOHCgUlNTNWHCBKf+EyZMUGpqqgYNGlT4RbvBaQ4AADxk8eLFeuWVV9SkSRNFREQoKChIhw4d0sqVK3XixAk1bdpUjz/+uKP/008/reXLl2vKlCnavn276tevr23btik+Pl7R0dEaPny4R/aDMAEAgId06NBBhw8f1oYNG/Ttt98qNTVVwcHBuvXWW9WjRw/1799f3t7/+1MdEBCgxMRExxd9rVmzRmFhYXriiSc0duxY+fv7e2Q/CBMAgGKrIL6Zszhr0KCBGjRokKfbBAcHa/r06Zo+fXohVZV3zJkAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQCAxxljPF3CP0pBP96ECQCAx9gXZDp//ryHK/lnyczMlCSVKFGiQMYjTAAAPKZEiRIqUaKE4+uzUfiMMUpOTpavr6/jS8SsYgVMAIDH2Gw2hYaG6siRI/L19VVAQIBsNpuny7omGWOUmZmp5ORkpaamqnLlygU2NmECAOBRwcHBOnv2rI4fP65jx455upxrnq+vrypXrqygoKACG5MwAQDwKJvNprCwMIWGhjrO5aNwlChRosBObVyKMAEAKBbs8ydw9WECJgAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACxhOW0AKAK/3FTT0yUUmZq//uLpElDEODIBAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABL8hwmFi1apAcffFANGjSQr6+vbDab5s+f77bvuHHjZLPZsv3Zt2+f29utWrVKzZs3V+nSpRUUFKSWLVtq9erVeS0VAAAUAe+83mDMmDHav3+/QkJCFBYWpv379+d4mz59+igiIsKlvUyZMi5tixYtUu/evVWhQgX17dtXkvThhx/qrrvu0uLFi9WlS5e8lgwAAApRnsNEXFycoqKiFB4ersmTJ2v06NE53qZv375q0aJFjv3+/vtvDR06VCEhIdq2bZuuv/56SdLIkSNVr149Pfzww4qNjVXp0qXzWjYAACgkeT7N0apVK4WHhxdGLfroo4906tQpDR061BEkJOn666/XkCFDdPz4cS1durRQ7hsAAORPkUzAXLt2raZMmaJ///vfWrZsmVJTU932S0hIkCS1bt3aZVtsbKwkKTExsdDqBAAAeZfn0xz5MXbsWKffy5Qpo9dee03/+te/nNp37dolSYqKinIZw95m75Od9PR0paenO35PSUnJV80AACB3CvXIRJ06dTR37lzt2bNHZ8+e1d69ezVz5kzZbDb17dtXn376qVP/5ORkSVJwcLDLWEFBQU59sjNp0iQFBwc7fqpUqVJAewMAANwp1DDRuXNn9evXT5GRkfLz81NERISGDBmijz76SNLFK0MK2ujRo5WcnOz4OXDgQIHfBwAA+J8iOc1xuTvvvFPVqlXTzp07lZKS4jjqYD8ikZycrPLlyzvdxn66wt1Ri0v5+vrK19e3EKoGAADueGwFzJCQEEnSmTNnHG1XmhdxpfkUAADAczwSJtLS0vTTTz8pICDAESokqXnz5pKk+Ph4l9usWrXKqQ8AACgeCi1MnD59Wv/9739d2s+ePatBgwbp9OnT6tatm7y9/3empVu3bgoODtbMmTN18OBBR/vBgwf1+uuvKyQkRJ07dy6skgEAQD7kawXM9evXS5J27tzpaLOvEdGkSRMNHDhQJ06c0E033aTo6GjVrFlTFStW1J9//qmvv/5aBw8eVO3atfXvf//baeyyZcvq9ddfV+/evVW/fn11795d0sXltE+cOKEPP/yQ1S8BAChm8hwm1q9frwULFji1JSUlKSkpyfH7wIEDVa5cOT3yyCPavHmzVqxYob///lv+/v6qWbOmhg0bpiFDhsjf399l/AceeEAhISGaOHGi5s2bJ5vNpttuu01jxoxRq1at8rGLAACgMNmMMcbTRRSmlJQUBQcHKzk52XHVCK5uEaO+8HQJRWKfXy9Pl1Akakfe4OkSisTiSec9XUKRqfnrL54uAQUkt39DPXY1BwAAuDYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFiS5zCxaNEiPfjgg2rQoIF8fX1ls9k0f/78bPunpKRoxIgRCg8Pl6+vryIiIvTUU08pNTXVbf+srCzNnDlTtWvXlr+/vypUqKCePXtqz549eS0VAAAUgTyHiTFjxmj27Nnav3+/wsLCrtg3LS1NzZs31/Tp03XTTTfp8ccfV40aNTRt2jTdcccdOnfunMttHnzwQQ0bNkzGGA0bNkxt2rTRJ598oujoaO3atSuv5QIAgEKW5zARFxenffv26dixY3rooYeu2Hfq1KnasWOHRo4cqVWrVmny5MlatWqVRo4cqS1btmj69OlO/desWaO4uDg1a9ZM27Zt05QpU/TOO+9o2bJlOnnypIYMGZLXcgEAQCHLc5ho1aqVwsPDc+xnjFFcXJwCAwP13HPPOW177rnnFBgYqLi4OKf2OXPmSJImTJggHx8fR3vbtm3VokULxcfH648//shryQAAoBAV2gTMXbt26fDhw4qJiVFAQIDTtoCAAMXExGjPnj06cOCAoz0hIcGx7XKxsbGSpMTExMIqGQAA5EOhhglJioqKcrvd3m7vl5aWpiNHjigyMlIlSpTIsT8AACgevAtr4OTkZElScHCw2+1BQUFO/fLaPzvp6elKT093/J6SkpKHqgEAQF5dc+tMTJo0ScHBwY6fKlWqeLokAACuaYUWJuxHGLI7kmA/YmDvl9f+2Rk9erSSk5MdP5fOyQAAAAWv0E5z5DTH4fI5FQEBAQoLC9PevXt14cIFl3kTOc3BsPP19ZWvr6+l2gEAQO4V2pGJqKgoVapUSUlJSUpLS3PalpaWpqSkJEVGRjqdhmjevLlj2+VWrVolSWrWrFlhlQwAAPKh0MKEzWbTwIEDlZqaqgkTJjhtmzBhglJTUzVo0CCn9sGDB0u6uA5FRkaGo33lypVKSEhQ69atc7XGBQAAKDp5Ps0RFxen9evXS5J27tzpaEtISJAkNWnSRAMHDpQkPf3001q+fLmmTJmi7du3q379+tq2bZvi4+MVHR2t4cOHO43dsmVLDRw4UHFxcapfv77at2+vI0eO6MMPP1S5cuU0c+ZMC7sKAAAKQ57DxPr167VgwQKntqSkJKdTE/YwERAQoMTERI0bN05LlizRmjVrFBYWpieeeEJjx46Vv7+/y/izZs1S7dq1NXv2bL322msKDAxU586d9dJLL6latWp5LRcAABQymzHGeLqIwpSSkqLg4GAlJyc71qrA1S1i1BeeLqFI7PPr5ekSikTtyBs8XUKRWDzpvKdLKDI1f/3F0yWggOT2b+g1t84EAAAoWoQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJUUSJiIiImSz2dz+tGjRwqV/enq6XnjhBUVFRcnPz0+VKlXS4MGD9ddffxVFuQAAIA+8i+qOgoODNXz4cJf2iIgIp9+zsrJ0zz33aNWqVbr99tt13333adeuXYqLi9Pq1au1ceNGVahQoWiKBgAAOSqyMFGmTBmNGzcux34LFizQqlWr1LNnT7377ruy2WySpLfeeksPP/ywxowZo1mzZhVytQAAILeK3ZyJOXPmSJImTZrkCBKS9OCDD6pq1ap69913dfbsWU+VBwAALlNkYSI9PV3z58/XxIkT9frrr2vTpk0ufc6dO6dNmzapRo0aCg8Pd9pms9l01113KS0tTVu3bi2qsgEAQA6K7DTH0aNH1a9fP6e26Ohovf/++6pWrZokaffu3crKylJUVJTbMeztu3btUtOmTd32SU9PV3p6uuP3lJSUgigfAABko0iOTPTr10+rV6/Wn3/+qbS0NG3fvl29e/fWli1bdOedd+r06dOSpOTkZEkXJ2u6ExQU5NTPnUmTJik4ONjxU6VKlQLeGwAAcKkiCRNjx47VHXfcodDQUJUqVUp169bVwoUL1bt3b+3fv98xT6IgjB49WsnJyY6fAwcOFNjYAADAlUcnYD744IOSpKSkJEn/OyKR3ZEH+ymL7I5cSJKvr6+CgoKcfgAAQOHxaJgICQmRJKWlpUmSqlatKi8vL+3atcttf3t7dnMqAABA0fNomLBf0WFfuMrf318NGzbUb7/9pv379zv1Ncboq6++UkBAgBo0aFDUpQIAgGwUepj49ddfdebMGbftI0eOlCT16tXL0T548GBJF+c+GGMc7bNmzdKePXt0//33y9/fv5CrBgAAuVXol4Z+8MEHeuWVV9SsWTOFh4crICBA//3vf7VixQplZmZq9OjRatasmaN/nz599OGHH+r999/X3r171bx5c/3+++/65JNPFBkZqRdffLGwSwYAAHlQ6GGiZcuW+uWXX7R9+3atW7dOZ86cUUhIiNq1a6dHHnlErVu3durv5eWl5cuXa/LkyXrnnXc0ffp0lStXTgMGDNCLL77I93IAAFDM2Myl5xKuQSkpKQoODlZycjJXdlwjIkZ94ekSisQ+v145d7oG1I68wdMlFInFk857uoQiU/PXXzxdAgpIbv+GFrvv5gAAAFcXwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLim2Y2LJli9q1a6cyZcooICBAt99+uxYvXuzpsgAAwGW8PV2AO2vWrFFsbKz8/PzUo0cPlS5dWkuWLFH37t114MABPfHEE54uEQAA/H/F7sjE+fPnNWjQIHl5eWnt2rWaPXu2Xn75ZX3//fe68cYb9cwzz2j//v2eLhMAAPx/xS5MfPPNN9q9e7d69eqlunXrOtqDg4P1zDPPKCMjQwsWLPBcgQAAwEmxCxMJCQmSpNatW7tsi42NlSQlJiYWZUkAAOAKit2ciV27dkmSoqKiXLZVrFhRgYGBjj7upKenKz093fF7cnKyJCklJaWAK4WnZKWf8XQJRSLFZjxdQpG4cPaCp0soEqkX/hn7KfF5ey2xP5fGXPnzqNiFCfsf/+DgYLfbg4KCHH3cmTRpksaPH+/SXqVKlYIpECgi7t8B16JfPF1AkWjo6QKKUjaf37h6nT59Otu/y1IxDBNWjR49WiNGjHD8npWVpZMnT6p8+fKy2WwerAzA5VJSUlSlShUdOHBAQUFBni4HwGWMMTp9+rQqVap0xX7FLkzYk092Rx9SUlJUtmzZbG/v6+srX19fp7YyZcoUWH0ACl5QUBBhAiimrnREwq7YTcC0z5VwNy/i6NGjSk1NdTufAgAAeEaxCxPNmzeXJMXHx7tsW7VqlVMfAADgeTaT0xTNInb+/HnVqFFDhw4d0saNGx1rTSQnJ6thw4bat2+ffvvtN0VERHi0TgDWpaena9KkSRo9erTL6UkAV49iFyak7JfT3r9/v6ZNm8Zy2gAAFCPFMkxI0ubNmzV27Fht2LBBmZmZql27tkaMGKHu3bt7ujQAAHCJYhsmAADA1aHYTcAEAABXF8IEAACwhDABAAAsIUwAAABLit1y2gCuXQcPHlRiYqJ27drl9KV+UVFRatasGV/IB1ylCBMACt3u3bs1ZMgQx8q2l19EZv8SvtjYWM2YMUPVq1cv8hoB5B+XhgIoVHv37lXDhg114sQJtWjRQrGxsYqKinJ8sVdKSop27dqlL7/8UomJiQoJCdGmTZsUGRnp4coB5BZhAkCh6tWrlz755BMtW7ZMbdq0uWLflStXqnPnzrrvvvv07rvvFlGFAKwiTAAoVKGhoWrbtq0WLFiQq/7/+te/9OWXX+qvv/4q5MoAFBSu5gBQqFJTU1WpUqVc969UqZJSU1MLsSIABY0jEwAK1a233ipJ2rZtm7y9rzznOzMzU/Xr15fNZtMPP/xQFOUBKAAcmQBQqAYNGqQff/xRrVu3VlJSksuVHNLFqzvWr1+v1q1b6+eff9bgwYM9UCmA/OLIBIBCZYzR4MGD9fbbb8tmsykgIECRkZEKDg6WJCUnJ2vv3r1KS0uTMUYDBw7U7NmzPVw1gLwgTAAoEmvWrNGcOXOUmJioI0eOOG0LCwtT8+bNNXjwYLVo0cIzBQLIN8IEgCJ35swZpxUwS5Uq5eGKAFhBmAAAAJYwARMAAFjCd3MAKDZOnDihN954QzabTc8995ynywGQS5zmAFBs/Pbbb6pZs6ZsNpsuXLjg6XIA5BJHJgAUGyEhIXr++ecd3yIK4OrAkQkAAGAJEzABeNynn37K8tnAVYwwAcDjOnXqpDfeeMPTZQDIJ+ZMAChUmzdvzlW/v/76y6lvw4YNC6skAAWMORMACpWXl1e+JlRyNQdw9eDIBIBCFxAQoE6dOqlEiRIu24wxWrhwoaKiovR///d/HqgOgFUcmQBQqKZMmaJx48apXr16mjt3rm666SaXPl5eXnxbKHAVYwImgEI1cuRIbdmyRenp6apfv76mTp0q/g8DXFsIEwAKXa1atbRp0yY9/fTTGjNmjBo3bqxffvnF02UBKCCECQBFwtvbW+PGjdPGjRuVmpqq+vXra+LEiUy0BK4BhAkARap+/fratm2bhg0bpueff14NGzZk+WzgKkeYAFDkfHx8NGXKFK1bt06nT59mDgVwleNqDgAedeHCBaWmpsrX11d+fn6eLgdAPhAmAACAJZzmAAAAlhAmAACAJYQJAABgCWECKCJ9+/aVzWbTvn37PF1KgYiPj1dMTIzKli0rm82mTp06ebqkApWQkCCbzaZx48Y5tbdo0cLypazZjV0c7du3TzabTX379vV0KSjGCBO46tg/3Gw2m2JjY9322bhxIx+AhWjfvn265557tGfPHvXr109jx45Vjx49PF0WAA/hW0NxVYuPj9c333yjO+64w9Ol/KN8/fXXOnfunF5++WX16tXL0+UA8DCOTOCqFRERIS8vL40cOZJFj4rY4cOHJUmVKlXycCUAigPCBK5aNWrUUO/evbV161YtXrw4V7eJiIhQRESE223uzoWPGzdONptNCQkJmjdvnmrXri1/f39FRkZqxowZkiRjjF5++WXVqFFDfn5+ioqK0sKFC7OtISsrS1OnTlVUVJT8/PwUGRmpF154QZmZmW77r127Vh07dlRISIh8fX0VFRWlMWPG6MyZM079Lj0Pv2HDBrVu3VplypTJ9fn9H3/8Ud26dVNoaKh8fX0VGRmp4cOH68SJE44+9lNMY8eOlSS1bNnSccopISHhiuPb54zs2bMnV/ufkZGhmTNnKjY2VlWqVJGvr69CQ0N17733avv27S7jz58/XzabTfPnz9dnn32mmJgYlS5d2vF853W8/Fi+fLnuvPNOlS1bVn5+fqpVq5amTZtm+ftH8vrY2c2bN0+NGjVSYGCgAgMD1ahRI82fP99t3wsXLmjKlCmqXr26/Pz8VL16dU2aNElZWVlu++/atUv9+vVTZGSkfH19Va5cOdWpU0fDhw8n3P8DcZoDV7UXXnhBH3zwgcaMGaN7771XJUuWLJT7efXVV5WQkKB77rlHd9xxh5YsWaLHHntMpUqV0vbt27VkyRJ16NBBd955pz744AP16dNHERERatasmctYw4cPV1JSkrp166bAwEB99tlnGjt2rH744Qd9/PHHTn3ffPNNPfrooypTpow6duyo0NBQbd26VS+99JLWrFmjNWvWyMfHx+k2GzZs0MSJE9WyZUsNHjxYf/zxR477t379esXGxiojI0NdunRRRESEvv32W7322mv6/PPPtXHjRoWEhKhMmTIaO3asEhISlJiY6NhPSdmGtPzu/8mTJzV8+HA1bdpU7dq1U9myZbVnzx59+umnWrlypdauXavo6GiX8T/66CPFx8erQ4cOeuSRR5SSkmJpvNwaPXq0Jk+erMqVK+vee+9VcHCw1q1bp6eeekqbNm3SRx99lO+x7fLy2hk2bJhmzpypypUra8CAAZKkJUuWqF+/ftq+fbtee+01p/6DBw/W3LlzFRkZqUcffVTnzp3TK6+8og0bNrjUcfjwYTVs2FBpaWlq3769unfvrrS0NO3atUv/+c9/NG3aNHl78+flH8UAV5m9e/caSSY2NtYYY8yTTz5pJJmZM2c6+nz77bdGkunTp4/TbcPDw014eLjbcZs3b24uf0uMHTvWSDLlypUzu3fvdrT/8ccfxsfHxwQHB5sbb7zR/PXXX45tGzduNJJMx44dncbq06ePkWQqVKhgDhw44GhPT083zZo1M5LMxx9/7Gj/6aefjLe3t6lTp445fvy401iTJk0yksy0adMcbWvWrDGSjCQzd+5ct/vozoULF0y1atWMJPPll186bXvqqaeMJNO/f3+3j8uaNWtyfT953f9z586ZgwcPuozz448/msDAQNOqVSun9nnz5hlJxsvLy3z11Vcut8vrePbHc+zYsU7t7l4n8fHxjtdkamqqoz0rK8s89NBDLvuW3djZyetjl5iYaCSZmjVrmlOnTjnaT548aW688UYjyaxdu9alnjp16jjVf/DgQRMSEuLyXpoxY4aRZF599VWXWk+cOJGrfcK1hdMcuOo988wzKlOmjCZMmKDU1NRCuY/HHntMVatWdfxepUoVNWnSRMnJyXr22WdVoUIFx7ZGjRqpatWq+v7777Md6/rrr3f87uPjo5deekmSnA5Bz5o1S+fPn9fMmTNVvnx5pzGefvppVahQQe+//77L+PXr11e/fv1yvW9JSUnavXu32rZt63J1zPPPP69y5crpvffeU0ZGRq7HvJLc7r+vr68qV67scvtbbrlFLVu21Nq1a90e3r/nnnvUqlUrl/b8jpcbr7/+uiRp9uzZCggIcLTbbDZNnjxZNpvN7XOVV7l97BYsWCDp4mm64OBgR3vZsmUdp6gu7W8/Lff888871V+5cmU99thj2dbj7+/v0lauXLk87BGuFRyHwlWvbNmyGjVqlEaNGqVp06YVyrX7devWdWkLCwu74rZNmza5Hatp06YubY0bN5a3t7fTufuNGzdKklatWqXVq1e73KZkyZL69ddfXdrzeqjefp8tWrRw2RYYGKgGDRooPj5ev/32m2rXrp2nsd3J7f5L0o4dOzR16lStX79eR48edfljf/z4ccfzYNewYcNs7zs/4+XGxo0bFRAQoLlz57rd7u/v7/a5yqvcPnZXek5btmwp6eJjYWcPvu7Gd9fWsWNHjR49Wo8++qhWr16tNm3aqHnz5k6BG/8shAlcE4YNG6bXX39dL7/8sh555JECHz8oKMilzX5OOLtt58+fdzvWdddd59JWokQJlS9fXsnJyY62kydPSpLjf5655W78K7HPKcjudvY/rvZ+VuV2/zds2OC45Ld169aKiopSYGCgbDabli1bpu+//17p6em5Gt/KeLlx8uRJnT9/XuPHj8+2T1paWr7GvlRuH7uUlBR5eXk5HTG7dAybzeb0fCYnJ8vLy0shISG5us+IiAht3LhR48aN04oVKxwToG+66Sa98MIL6tq1a772D1cvwgSuCf7+/ho/frwGDBig8ePHq3fv3m77eXl5ZXu4/tIP48L0559/qkaNGk5tFy5c0IkTJ5w+uO0hJSUlRaVLl871+HldndF+P3/++afb7UePHnXqZ1Vu9/+ll15Senq61q1bpyZNmjj137hxY7ankbLb//yOlxtBQUGy2Ww6fvx4vsfIjby8drKysnTs2DGFhoY69f/rr79kjHF6PoODg5WVlaXjx4+7BJDsXhe1atXSxx9/rMzMTH333XdauXKlZsyYoe7du6tSpUqKiYmxuru4ijBnAteMPn366JZbbtGcOXP0+++/u+1TtmxZ/fXXXy5HDewz0YvCunXrXNq+/fZbnT9/XvXq1XO0NWrUSNL/TncUFvt9uru0My0tTVu3bpW/v7/LH7H8yu3+7969W+XKlXP5w3/mzBlt27Ytz/db0ONdqlGjRjpx4kShv4Zy+9hd6Tm1t116eq5OnTrZju+u7VIlS5bU7bffrvHjx2vGjBkyxujzzz/PaVdwjSFM4JpRokQJTZw4UZmZmdnOm4iOjlZmZqbeffddR5sxRqNHjy6Qw9C58dprr+ngwYOO3zMyMvTss89KktPy34888oi8vb01dOhQt5d3njp1qkDWR4iJiVG1atW0cuVKff31107bXnzxRZ04cUI9e/Z0uQQ1v3K7/+Hh4fr777/1008/OdouXLigJ598UseOHcvz/Rb0eJcaNmyYJKl///5O63LYHT16VL/88oul+5By/9j16dNHkjR+/HiX0xn2UzH2PpIcR/JeeOEFp/fBoUOHXC4hlaTvvvvO7Wkv+1EMPz+/PO8brm6c5sA15e6771aTJk20fv16t9uHDBmiefPmaeDAgfrqq69UoUIFrVu3TqdOnVKdOnUsHerOrdtvv1116tRR9+7dFRAQoM8++0y//fab7r33Xt13332OfrVq1dJ//vMfPfzww6pRo4batWunatWq6fTp09qzZ48SExPVt29fvfXWW5bq8fLy0vz58xUbG6t27dqpa9euCg8P17fffquEhARVq1ZNkydPtrrbDrnd/6FDhyo+Pl5NmjRRt27d5Ofnp4SEBB06dEgtWrTIcZGsyxX0eJdq06aNnnvuOU2YMEHVq1dXmzZtFB4erhMnTuj333/XunXr9OKLL6pmzZr5vg8p949ds2bNNHToUM2cOVO1atXSfffdJ2OMlixZooMHD2rYsGFOa6C0bNlS/fr1cyzM1rlzZ6Wnp+vDDz/U7bff7nKk4Z133tGsWbPUrFkzVatWTUFBQfr555+1YsUKlStXLk9XE+Ea4dkrU4G8u3ydicslJSU51lu4fJ0JY4z55ptvTKNGjYyvr68pX7686d27t/nzzz+vuM6Eu/UU7Nf+792712Wbu7Hs/Xfv3m0mT55sqlevbnx8fEx4eLgZN26cSU9Pd7s/mzdvNj169DCVKlUyJUuWNCEhIaZ+/fpm1KhR5pdffnH0y+vaBZf74YcfTJcuXUxISIgpWbKkCQ8PN4899pg5duyYS18r60zkZf8//vhjU79+fVOqVCkTEhJiunXrZnbv3u32sbevMzFv3rxsa8jLeHlZZ8Luq6++Mh07djQVKlQwJUuWNBUrVjSNGzc2EyZMMH/88UeOY2cnv6+duXPnmujoaFOqVClTqlQpEx0dne0aJOfPnzeTJk0yVatWNT4+PqZq1apm4sSJ5vfff3d5L23cuNE8+OCDplatWqZMmTLG39/fREVFmSFDhpj9+/fnap9wbbEZw7qnAApf3759tWDBAu3duzfXq2XiIh47FHfMmQAAAJYQJgAAgCWECQAAYAlzJgAAgCUcmQAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACW/D8i3nYPFEqK8gAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "\n",
+ "df_tpx = df_tpx.astype({'pods':'int', 'span_load': 'float'})\n",
+ "df_tpx2 = df_tpx.drop(['dbms','TPCH_TABLE'], axis=1)\n",
+ "\n",
+ "df_tpx_pivot = df_tpx2.groupby(['SF', 'num_experiment']).mean()\n",
+ "df_tpx_pivot.reset_index(inplace=True)\n",
+ "df_tpx_pivot = df_tpx_pivot.pivot(index='pods', columns='SF', values='span_load')\n",
+ "\n",
+ "df_tpx_pivot.plot.bar(column='span_load', style='.-', figsize=(6,6), fontsize=14)#, logx=True)\n",
+ "plt.legend(fontsize=14)\n",
+ "plt.xlabel('Number of parallel pods', fontsize=14)\n",
+ "plt.ylim(0, df_tpx_pivot.max().max()*1.1)\n",
+ "plt.title(\"{dbms} Tpx ingest {imported} from Disk [Gb/h]\".format(dbms=dbms, imported=imported), fontsize=16)\n",
+ "\n",
+ "df_tpx_pivot"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Plot Time"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " SF \n",
+ " 1 \n",
+ " 3 \n",
+ " 10 \n",
+ " 30 \n",
+ " \n",
+ " \n",
+ " pods \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 4.0 \n",
+ " 17.0 \n",
+ " 56.0 \n",
+ " 205.0 \n",
+ " 672.0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "SF 1 3 10 30\n",
+ "pods \n",
+ "4.0 17.0 56.0 205.0 672.0"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAI0CAYAAACnCquqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABO+UlEQVR4nO3de1xU1f7/8feAisjIkImhoYAGXinTtAwDvASZ9VXzVOopL6V0KrPSk0onUlND7WJmZRodNbuolVrnWwpmgkleU6xMPXiNEi+ZgoyJCvv3h9+ZnyOoDBsYrdfz8ZhHzdpr7/nMoM6btdde22IYhiEAAIBy8vJ0AQAA4MpGmAAAAKYQJgAAgCmECQAAYAphAgAAmEKYAAAAphAmAACAKYQJAABgCmECAACYQpgArnCxsbGKjY31dBlOc+bMkcVi0d69ez1dSpV76aWX1LhxY3l7e6t169aeLqfChYaGauDAgW7tM3DgQFmt1nK9XmxsrCwWiywWi+666y639l2yZIlzX4vFoo0bN5arBpQNYQKlcnwhOB41a9ZURESEhg4dqoMHD1b46504cUJjx45Venp6hR/bXXv37tWgQYPUpEkT1axZU0FBQYqOjtaYMWNK9DUMQ/PmzVN0dLQCAgJUq1YtRUZGasKECTpx4kSJ/rGxsWrVqpXbNf30008aO3bsX/ILuiq89dZbmjNnjqljpKWlaeTIkYqKitLs2bP14osvVkxxleTcL2ovLy/5+/uradOmevDBB7V8+XJPl+fUrFkzzZs3T//85z/d2u+mm27SvHnzlJCQUEmV4VzVPF0ALm8vvPCCwsLCdPLkSa1evVozZszQl19+qR9//FG1atWqsNc5ceKExo0bJ0ke/S17586dateunXx9ffXQQw8pNDRUubm52rRpkyZPnuysUZKKiorUr18/LVy4ULfddpvGjh2rWrVq6ZtvvtGYMWO0cOFCffXVV6pXr57pun766SeNGzdOsbGxCg0NddmWlpZm+vgV6cEHH1SfPn3k4+Pj6VLK7K233lLdunXd/q37XF9//bW8vLz07rvvqkaNGhVXXCUKDg5WcnKyJMlut2vnzp1atGiR3n//fd133316//33Vb16dWf/HTt2yMuran8Hveaaa/TAAw+4vV9wcLAeeOABnTlzRrNmzaqEynAuwgQuqlu3brrpppskSYMHD9bVV1+tV199VZ999pn69u3r4eou7cyZMyouLi7zP+5Tp05VQUGBsrKyFBIS4rLt0KFDLs+nTJmihQsX6p///KdeeuklZ3tCQoLuu+8+9ezZU4MGDdIXX3xh/o1cxOX2xeXt7S1vb29Pl1HlDh06JF9f30v+PIqLi3Xq1CnVrFmziiq7MJvNVuKLetKkSRo2bJjeeusthYaGavLkyc5tV1JARNXiNAfc0rlzZ0nSnj17JJ39sh4/fryaNGkiHx8fhYaG6tlnn1VhYaHLfhs3blR8fLzq1q0rX19fhYWF6aGHHpJ09rRCYGCgJGncuHHOodexY8c69//444/VokUL1axZU61atdLixYs1cOBAl9/S9+7dK4vFopdfflmvvfaas6affvpJkrR9+3b97W9/U506dVSzZk3ddNNN+vzzz13q3LVrl4KDg0sECUkuIwx//PGHXnrpJUVERDh/szvX3XffrQEDBujLL7/U+vXry/rxlmrOnDm69957JUmdOnVyfj6OU0Lnz5lIT0+XxWLRwoULNW7cOF177bWqXbu2/va3vykvL0+FhYV66qmnVK9ePVmtVg0aNKjEz0uS3n//fbVt21a+vr6qU6eO+vTpo5ycnDLVe/6cidDQUN11111avXq12rdvr5o1a6px48Z67733Suz//fffKyYmRr6+vgoODtaECRM0e/bsUudhLF26VLfddpv8/PxUu3Ztde/eXVu3bnXpc+DAAQ0aNEjBwcHy8fFR/fr11aNHD+exQkNDtXXrVmVkZDg/W3dHxywWi2bPni273e48huO0icVi0dChQ/XBBx+oZcuW8vHx0bJlyyRJmzdvVrdu3eTv7y+r1aouXbpo7dq1pX6eq1ev1rBhwxQYGKiAgAA98sgjOnXqlI4dO6b+/fvrqquu0lVXXaWRI0fKzM2gvb299frrr6tFixZ64403lJeX59x2/pyJ06dPa9y4cQoPD1fNmjV19dVXq2PHjpc8TZKVlaXAwEDFxsaqoKCgXHXOnz9fbdu2Ve3ateXv76/IyEhNmzatXMeCeYxMwC27du2SJF199dWSzo5WzJ07V3/72980YsQIrVu3TsnJydq2bZsWL14s6exvbHFxcQoMDNTo0aMVEBCgvXv3atGiRZKkwMBAzZgxQ48++qh69eqle+65R5J0/fXXS5K++OIL3X///YqMjFRycrKOHj2qhx9+WNdee22pNc6ePVsnT55UQkKCfHx8VKdOHW3dulVRUVG69tprNXr0aPn5+WnhwoXq2bOnPv30U/Xq1UuSFBISoq+++kpff/21MziVZvXq1Tp69KiefPJJVatW+l+j/v37a/bs2frPf/6j9u3bu/tRO0VHR2vYsGF6/fXX9eyzz6p58+aS5PzvhSQnJ8vX11ejR4/Wzp07NX36dFWvXl1eXl46evSoxo4dq7Vr12rOnDkKCwvT888/79x34sSJSkpK0n333afBgwfr8OHDmj59uqKjo7V582YFBAS4/T527typv/3tb3r44Yc1YMAA/fvf/9bAgQPVtm1btWzZUpL066+/OgNTYmKi/Pz8lJKSUupvxPPmzdOAAQMUHx+vyZMn68SJE5oxY4Y6duyozZs3O4Nm7969tXXrVj3xxBMKDQ3VoUOHtHz5cv38888KDQ3Va6+9pieeeEJWq1X/+te/JJ0dWnfHvHnzNGvWLK1fv14pKSmSpFtvvdW5/euvv9bChQs1dOhQ1a1b1xlgbrvtNvn7+2vkyJGqXr26Zs6cqdjYWGVkZOjmm292eY0nnnhCQUFBGjdunNauXatZs2YpICBA3377rRo1aqQXX3xRX375pV566SW1atVK/fv3d+s9nMvb21t9+/ZVUlKSVq9ere7du5fab+zYsUpOTtbgwYPVvn175efna+PGjdq0aZNuv/32UvfZsGGD4uPjddNNN+mzzz6Tr6+v2/UtX75cffv2VZcuXZwjJ9u2bVNmZqaefPJJt4+HCmAApZg9e7Yhyfjqq6+Mw4cPGzk5Ocb8+fONq6++2vD19TV++eUXIysry5BkDB482GXff/7zn4Yk4+uvvzYMwzAWL15sSDI2bNhwwdc7fPiwIckYM2ZMiW2RkZFGcHCwcfz4cWdbenq6IckICQlxtu3Zs8eQZPj7+xuHDh1yOUaXLl2MyMhI4+TJk8624uJi49ZbbzXCw8OdbT/++KPh6+trSDJat25tPPnkk8aSJUsMu93ucrzXXnvNkGQsXrz4gu/p999/NyQZ99xzj7MtJibGaNmy5QX3uZCPP/7YkGSsXLmyxLaYmBgjJibG+XzlypWGJKNVq1bGqVOnnO19+/Y1LBaL0a1bN5f9O3To4PI57t271/D29jYmTpzo0u+HH34wqlWrVqL9fI4/O3v27HG2hYSEGJKMVatWOdsOHTpk+Pj4GCNGjHC2PfHEE4bFYjE2b97sbDty5IhRp04dl2MeP37cCAgIMIYMGeLy2gcOHDBsNpuz/ejRo4Yk46WXXrpozS1btnT5DMtjwIABhp+fX4l2SYaXl5exdetWl/aePXsaNWrUMHbt2uVs279/v1G7dm0jOjra2eb4POPj443i4mJne4cOHQyLxWL84x//cLadOXPGCA4OLtN7udSfRcff22nTpjnbQkJCjAEDBjif33DDDUb37t0v+jrnfi6rV682/P39je7du7v8XbxYjaW9lyeffNLw9/c3zpw5c8ljOD6/i/37A/M4zYGL6tq1qwIDA9WwYUP16dNHVqtVixcv1rXXXqsvv/xSkjR8+HCXfUaMGCFJzrkCjt9i//d//1enT5926/X379+vH374Qf3793e5vCwmJkaRkZGl7tO7d2/naRNJ+v333/X111/rvvvu0/Hjx/Xbb7/pt99+05EjRxQfH6/s7Gz9+uuvkqSWLVsqKytLDzzwgPbu3atp06apZ8+euuaaa/TOO+84j3n8+HFJUu3atS9Yu2Obo29V69+/v8vkuZtvvlmGYThPL53bnpOTozNnzkiSFi1apOLiYt13333Oz+q3335TUFCQwsPDtXLlynLV06JFC912223O54GBgWratKl2797tbFu2bJk6dOjgclllnTp19Pe//93lWMuXL9exY8fUt29flxq9vb118803O2t0zGFIT0/X0aNHy1V3RYiJiVGLFi2cz4uKipSWlqaePXuqcePGzvb69eurX79+Wr16tfLz812O8fDDD8tisTifO36eDz/8sLPN29tbN910k8tnWl6Ov28X+/MbEBCgrVu3Kjs7+5LHW7lypeLj49WlSxctWrTI1PyLgIAA2e32y+qqk786wgQu6s0339Ty5cu1cuVK/fTTT9q9e7fi4+MlSfv27ZOXl5euu+46l32CgoIUEBCgffv2STr7D2nv3r01btw41a1bVz169NDs2bNLPU9/Pscxzn+NC7VJUlhYmMvznTt3yjAMJSUlKTAw0OXhuNzz3MmVERERmjdvnn777Td9//33evHFF1WtWjUlJCToq6++klS2oODYVhFXc5RHo0aNXJ7bbDZJUsOGDUu0FxcXO8+NZ2dnyzAMhYeHl/i8tm3bVmIiannrkaSrrrrK5Ut+3759ZfpZO768OnfuXKLGtLQ0Z40+Pj6aPHmyli5dqmuuuUbR0dGaMmWKDhw4UK73UF7n/5k8fPiwTpw4oaZNm5bo27x5cxUXF5eYn+LOz7MigpNjLsPFAvMLL7ygY8eOKSIiQpGRkXrmmWf0/fffl+h38uRJde/eXTfeeKMWLlxoetLwY489poiICHXr1k3BwcF66KGHnPNQ4BnMmcBFtW/f3nk1x4Wc+9vShbZ/8sknWrt2rf7zn/8oNTVVDz30kF555RWtXbu23AvaXMj552CLi4slSf/85z+dQeh8pX2BeXt7KzIyUpGRkerQoYM6deqkDz74QF27dnX+lvn999+rZ8+epR7T8Y/qub95VqULXVFxoXbj/ybtFRcXy2KxaOnSpaX2Le/P61Kv6w7Hz3TevHkKCgoqsf3ceSxPPfWU7r77bi1ZskSpqalKSkpScnKyvv76a914441uv3Z5lGdewPnc+XmW5zM9348//ijpwqFdOjufZ9euXfrss8+UlpamlJQUTZ06VW+//bYGDx7s7Ofj46M777xTn332mZYtW+b2AlTnq1evnrKyspSamqqlS5dq6dKlmj17tvr376+5c+eaOjbKhzCBcgsJCVFxcbGys7NdJgMePHhQx44dK3FFxC233KJbbrlFEydO1Icffqi///3vmj9/vgYPHnzBQOI4xs6dO0tsK62tNI4v8+rVq6tr165l2ud8jkCVm5srSYqKilJAQIA+/PBD/etf/yr1H3THlQqOKzHMuFRgq0hNmjSRYRgKCwtTRERElb2udPbnXZafdZMmTSSd/VIpy8+0SZMmGjFihEaMGKHs7Gy1bt1ar7zyit5//31JVfv5SmdP8dSqVUs7duwosW379u3y8vIqMeJQlYqKivThhx+qVq1a6tix40X71qlTR4MGDdKgQYNUUFCg6OhojR071iVMWCwWffDBB+rRo4fuvfdeLV261PR6MjVq1NDdd9+tu+++W8XFxXrsscc0c+ZMJSUlXTQAoXJwmgPlduedd0qSXnvtNZf2V199VZKcM8CPHj1a4jclxzlxx6kOxwJYx44dc+nXoEEDtWrVSu+9957LJWQZGRn64YcfylRnvXr1FBsbq5kzZzrDwLkOHz7s/P9vvvmm1HkdjvkhjmHpWrVqaeTIkdqxY4fzCoBzffHFF5ozZ47uvvvuC87tcIefn5+kkp9PZbjnnnvk7e2tcePGlfi5GYahI0eOVNprx8fHa82aNcrKynK2/f777/rggw9K9PP399eLL75Y6s/L8TM9ceKETp486bKtSZMmql27tstpNj8/vyr5bB28vb0VFxenzz77zOVy14MHD+rDDz9Ux44d5e/vX2X1nKuoqEjDhg3Ttm3bNGzYsIvWcf6fBavVquuuu67UU5g1atTQokWL1K5dO919992mLpk+/3W9vLycV3+V5fQpKh4jEyi3G264QQMGDNCsWbN07NgxxcTEaP369Zo7d6569uypTp06SZLmzp2rt956S7169VKTJk10/PhxvfPOO/L393cGEl9fX7Vo0UILFixQRESE6tSpo1atWqlVq1Z68cUX1aNHD0VFRWnQoEE6evSo3njjDbVq1arM16i/+eab6tixoyIjIzVkyBA1btxYBw8e1Jo1a/TLL79oy5YtkqTJkyfru+++0z333OP8x2nTpk167733VKdOHT311FPOY44cOVJZWVmaPHmy1qxZo969e8vX11erV6/W+++/r5YtW5a6RPPhw4c1YcKEEu1hYWElJho6tG7dWt7e3po8ebLy8vLk4+Ojzp07V8p8jCZNmmjChAlKTEzU3r171bNnT9WuXVt79uzR4sWLlZCQ4PbSxmU1cuRIvf/++7r99tv1xBNPOC8NbdSokX7//XfnCIK/v79mzJihBx98UG3atFGfPn0UGBion3/+WV988YWioqL0xhtv6L///a+6dOmi++67Ty1atFC1atW0ePFiHTx4UH369HG+btu2bTVjxgxNmDBB1113nerVq3fRS4MrwoQJE7R8+XJ17NhRjz32mKpVq6aZM2eqsLBQU6ZMqdTXdsjLy3OOzpw4ccK5AuauXbvUp08fjR8//qL7t2jRQrGxsWrbtq3q1KmjjRs36pNPPtHQoUNL7e/r66v//d//VefOndWtWzdlZGSUa3n5wYMH6/fff1fnzp0VHBysffv2afr06WrduvUlL5lGJfHQVSS4zJX1cqrTp08b48aNM8LCwozq1asbDRs2NBITE10u+9q0aZPRt29fo1GjRoaPj49Rr14946677jI2btzocqxvv/3WaNu2rVGjRo0Sl4nOnz/faNasmeHj42O0atXK+Pzzz43evXsbzZo1c/ZxXBp6ocsAd+3aZfTv398ICgoyqlevblx77bXGXXfdZXzyySfOPpmZmcbjjz9utGrVyrDZbEb16tWNRo0aGQMHDnS5hM+huLjYmDNnjhEVFWXUrl3bkGRIMrp27WoUFhaW6B8TE+Psc/6jS5cuF/2s33nnHaNx48aGt7e3y2WiF7o09OOPP3bZ/0I/0zFjxhiSjMOHD7u0f/rpp0bHjh0NPz8/w8/Pz2jWrJnx+OOPGzt27LhonRe6NLS0SwhLu/Rv8+bNxm233Wb4+PgYwcHBRnJysvH6668bkowDBw649F25cqURHx9v2Gw2o2bNmkaTJk2MgQMHOv9s/fbbb8bjjz9uNGvWzPDz8zNsNptx8803GwsXLnQ5zoEDB4zu3bs7f4bluUz0YpeGPv7446Xus2nTJiM+Pt6wWq1GrVq1jE6dOhnffvutSx93f24XquN85/9ZtFqtRnh4uPHAAw8YaWlppe5z/qWhEyZMMNq3b28EBAQYvr6+RrNmzYyJEye6XJJcWj2//fab0aJFCyMoKMjIzs6+aI2l/Sw++eQTIy4uzqhXr55Ro0YNo1GjRsYjjzxi5ObmlujLpaFVw2IYFTBTB/CA1q1bKzAw8LK6POz06dO6++67tWLFCv3nP//RHXfc4emS/hSeeuopzZw5UwUFBX/Jpbr/qmJjY3X69Gl99tlnqlGjhlunfk6dOqX8/HzNnz9fTzzxhDZs2HDJyeQoP+ZM4LJ3+vRp5xoIDunp6dqyZctldett6ewkz08//VStW7fWvffeq02bNnm6pCvOH3/84fL8yJEjmjdvnjp27EiQ+Av69ttvFRgYqH79+rm135dffqnAwEA98cQTlVQZzsXIBC57e/fuVdeuXfXAAw+oQYMG2r59u95++23ZbDb9+OOPzqW98efQunVrxcbGqnnz5jp48KDeffdd7d+/XytWrFB0dLSny0MV+u6775xrZgQGBuqGG24o876HDx92zoWSzi7ydbE1M2AOYQKXvby8PCUkJCgzM1OHDx+Wn5+funTpokmTJjkvEcSfx7PPPqtPPvlEv/zyiywWi9q0aaMxY8aU+7JeAJWPMAEAAExxe86E43a4F3t06dLFZZ/8/HwNHz5cISEhzttUP/PMMxe8rK+4uFjTp09XZGSkfH19FRgYqL59+1bIevMAAKBiuT0ykZWVpSVLlpS67ZNPPtHWrVs1efJkjRw5UpJkt9vVsWNHZWVlKS4uTjfeeKM2b96stLQ0tWvXTqtWrVLNmjVdjjNkyBClpKSoZcuW6t69u/bv36+FCxfKarVq7dq1Cg8PL9+7BQAAFa7CTnOcOnVKDRo0UF5enn755Rddc801kqQxY8bohRde0KhRozRp0iRn/9GjR2vy5Ml68cUXlZiY6GxfuXKlOnfurOjoaC1fvtx5Q5ilS5fqzjvvVFxcnFJTU8tcV3Fxsfbv36/atWtX+ZK5AABcyQzD0PHjx9WgQQN5eV3kZEZFLVixYMECQ5LRs2dPZ1txcbHRoEEDw2q1GgUFBS79CwoKDKvVajRu3NilvW/fvoYkIyMjo8RrxMbGGpKMffv2lbmunJycCy4SxIMHDx48ePC49CMnJ+ei37UVtpx2SkqKJLnc3CU7O1v79+9XfHy8894CDn5+foqKilJqaqpycnKcN7VJT093bjtffHy80tPTlZGRoQcffLBMdTkuBcrJyfHYWvcAAFyJ8vPz1bBhw0teVlshYWLfvn1asWKFgoODXVb8y87OlqQLznEIDw9XamqqsrOz1bBhQ9ntduXm5qpVq1alLk7jOI7juGVx7lr+hAkAANx3qWkCFRImZs+ereLiYg0cONAlBOTl5UmSbDZbqfs5vtwd/dztX5rCwkKXu8bl5+eX9W0AAIByML2cdnFxsWbPni2LxaKHHnqoImoyJTk5WTabzflwnD4BAACVw3SY+Oqrr/Tzzz+rc+fOCgsLc9nmGGG40EiCY9TA0c/d/qVJTExUXl6e85GTk+PGuwEAAO4yfZqjtImXDpea43D+nAo/Pz/Vr19fe/bsUVFRUYl5E5eagyFJPj4+8vHxcfNdAAD+ioqKinT69GlPl+Ex1atXr5Ab6JlaZ+LIkSNq0KCBrFar9u/fX+JL3DAMBQcHKz8/XwcOHHC5osNutysoKEiBgYEuK1v27dtX8+fPV0ZGRomb+nTq1Enp6enau3evQkJCylRjfn6+bDab8vLymIAJAJB09vvpwIEDOnbsmKdL8biAgAAFBQWVOsmyrN+hpkYm5s2bp1OnTumBBx4odTTAYrFo8ODBeuGFFzR+/HiXRavGjx+vgoICPfvssy77JCQkaP78+UpKSiqxaFV6erri4uLKHCQAACiNI0jUq1dPtWrV+ksuamgYhk6cOKFDhw5JkurXr1/uY5kamYiMjNSPP/6o77//XpGRkaX2sdvtioqK0pYtWxQXF6c2bdpo06ZNzuW0MzIy5Ovr67LP+ctp5+bmasGCBbJarVqzZo0iIiLKXCMjEwCAcxUVFem///2v6tWrp6uvvtrT5XjckSNHdOjQIUVERJQ45VHW79ByT8Bcv369fvzxR7Vv3/6CQUI6Ow8iIyNDTz31lLZt26ZXXnlF27dv14gRI7RixYoSQUKSZs6cqWnTpkmSpk2bpi+//FK9evXS+vXr3QoSAACczzFHolatWh6u5PLg+BzMzB3509+CnJEJAMC5Tp48qT179igsLKzEjSb/ii72eVT6yAQAAIBEmAAAACYRJgAAqESHDx/Wo48+qkaNGsnHx0dBQUGKj49XZmamJCk0NFQWi8XlERwc7OGq3VNhdw0FAAAl9e7dW6dOndLcuXPVuHFjHTx4UCtWrNCRI0ecfV544QUNGTLE+bwiFpKqSoQJAAAqybFjx/TNN98oPT1dMTExkqSQkBC1b9/epV/t2rUVFBTkiRIrBKc5AACoJFarVVarVUuWLHG5o/WfDWECAIBKUq1aNc2ZM0dz585VQECAoqKi9Oyzz+r777936Tdq1Chn8LBarXr99dc9VHH5ECYAAKhEvXv31v79+/X555/rjjvuUHp6utq0aaM5c+Y4+zzzzDPKyspyPvr37++5gsuBMAEAQCWrWbOmbr/9diUlJenbb7/VwIEDNWbMGOf2unXr6rrrrnM+AgICPFdsORAmAACoYi1atJDdbvd0GRWGqzkAoApsa9bc0yVUiebbt3m6hMvKkSNHdO+99+qhhx7S9ddfr9q1a2vjxo2aMmWKevTo4enyKgxhAgCASmK1WnXzzTdr6tSp2rVrl06fPq2GDRtqyJAhevbZZz1dXoUhTAAAUEl8fHyUnJys5OTkC/bZu3dv1RVUSZgzAQAATCFMAAAAUwgTAADAFMIEAAAwhTABAABMIUwAAABTCBMAAMAUwgQAADCFMAEAAEwhTAAAAFNYThsAgP8TOvqLKnutvZO6u73PqlWr9NJLL+m7775Tbm6uFi9erJ49e1Z8cW5iZAIAgCuE3W7XDTfcoDfffNPTpbhgZAIAgCtEt27d1K1bN0+XUQIjEwAAwBTCBAAAMIUwAQAATCFMAAAAUwgTAADAFK7mAADgClFQUKCdO3c6n+/Zs0dZWVmqU6eOGjVq5LG6CBMAAPyf8iwkVZU2btyoTp06OZ8PHz5ckjRgwADNmTPHQ1URJgAAuGLExsbKMAxPl1ECcyYAAIAphAkAAGAKYQIAAJhCmAAAAKYQJgAAgCmECQAAYAphAgAAmEKYAAAAphAmAACAKYQJAABgCstpAwDgMNZWha+V5/YuM2bM0IwZM7R3715JUsuWLfX888+rW7duFVycexiZAADgChEcHKxJkybpu+++08aNG9W5c2f16NFDW7du9WhdjEwAAHCFuPvuu12eT5w4UTNmzNDatWvVsmVLD1VFmAAA4IpUVFSkjz/+WHa7XR06dPBoLYQJAACuID/88IM6dOigkydPymq1avHixWrRooVHa2LOBAAAV5CmTZsqKytL69at06OPPqoBAwbop59+8mhNjEwAAHAFqVGjhq677jpJUtu2bbVhwwZNmzZNM2fO9FhNpkYmFi9erNtvv11XX321atasqbCwMPXt21c5OTku/fLz8zV8+HCFhITIx8dHoaGheuaZZ1RQUFDqcYuLizV9+nRFRkbK19dXgYGB6tu3r3bv3m2mXAAA/nSKi4tVWFjo0RrKNTJhGIb+8Y9/aNasWWrSpIn69Omj2rVra//+/crIyNC+ffvUsGFDSZLdbldMTIyysrIUFxenvn37avPmzXr55ZeVkZGhVatWqWbNmi7Hf+SRR5SSkqKWLVtq2LBh2r9/vxYuXKi0tDStXbtW4eHh5t85AABXmMTERHXr1k2NGjXS8ePH9eGHHyo9PV2pqakeratcYeL111/XrFmz9Nhjj+n111+Xt7e3y/YzZ844/3/KlCnKysrSqFGjNGnSJGf76NGjNXnyZE2dOlWJiYnO9pUrVyolJUXR0dFavny5atSoIUnq16+f7rzzTg0dOtTjHxoA4E+qHAtJVaVDhw6pf//+ys3Nlc1m0/XXX6/U1FTdfvvtHq3LYhiG4c4Of/zxh6699lpdddVV2rFjh6pVu3AeMQxDwcHBys/P14EDB+Tn5+fcZrfbFRQUpHr16mnXrl3O9n79+umjjz5SRkaGoqOjXY7XqVMnpaena9++fWrUqFGZ6s3Pz5fNZlNeXp78/f3deasAUGG2NWvu6RKqRPPt2zxdwiWdPHlSe/bsUVhYWImR8b+ii30eZf0OdXvORFpamo4ePaqePXuqqKhIixYt0qRJk/T2229r586dLn2zs7O1f/9+RUVFuQQJSfLz81NUVJR2797tMsciPT3due188fHxkqSMjAx3ywYAAJXE7dMc3333nSTJ29tb119/vf773/86t3l5eenpp5/Wyy+/LOlsmJB0wTkO4eHhSk1NVXZ2tho2bCi73a7c3Fy1atWqxKmTc4/jOG5pCgsLXSai5Ofnu/kOAQCAO9wemTh06JAk6dVXX5XNZtP69et1/PhxrVq1ShEREXrllVc0Y8YMSVJe3tlzTzZb6TdOcQyZOPq52780ycnJstlszodjIigAAKgcboeJ4uJiSWevc12yZInatWsnq9Wq2267TR9//LG8vLz0yiuvVHihZZWYmKi8vDzn4/zLVAEAQMVy+zSHY9TgpptuUoMGDVy2tWrVSo0bN9bOnTt17NgxZ98LjSQ4TkE4+rnbvzQ+Pj7y8fEp69sBAAAmuT0y0bRpU0lSQEBAqdsd7X/88ccl5zicP6fCz89P9evX1549e1RUVHTJ/gAAwPPcDhOdOnWSJG3bVvLyn9OnT2vnzp3y8/NTYGCgwsPD1aBBA2VmZsput7v0tdvtyszMVFhYmMu8hpiYGOe28znWlzj/klEAAOA5boeJJk2aKC4uTjt37lRKSorLtkmTJunYsWPq1auXqlWrJovFosGDB6ugoEDjx4936Tt+/HgVFBRoyJAhLu0JCQmSpKSkJJ06dcrZvnTpUqWnpysuLk4hISHulg0AACqJ24tWSdKuXbt066236tChQ+revbuaNWumzZs36+uvv1ZISIjWrl2roKAgSWdHIKKiorRlyxbFxcWpTZs22rRpk9LS0tSuXTtlZGTI19fX5fhDhgxxLqfdvXt35ebmasGCBbJarVqzZo0iIiLKXCuLVgG4HLBo1eWDRatcVcSiVeUKE5KUk5Oj559/XsuWLdORI0cUFBSk//mf/9Hzzz+vevXqufTNy8vT2LFj9emnn+rAgQOqX7++7r33Xo0ZM0a1a9cucezi4mK98cYbmjVrlnbu3Cmr1aquXbtq4sSJatKkiVt1EiYAXA4IE5ePi315Rs6NrLI6fhjwQ5W91sV4NExcKQgTAC4HhInLx5UcJlatWqWXXnpJ3333nXJzc7V48WL17NnTud0wDI0ZM0bvvPOOjh07pqioKM2YMeOiFy54ZDltAADgGXa7XTfccIPefPPNUrdPmTJFr7/+ut5++22tW7dOfn5+io+P18mTJyu1rnLdNRQAAFS9bt26qVu3bqVuMwxDr732mp577jn16NFDkvTee+/pmmuu0ZIlS9SnT59Kq4uRCQAA/gT27NmjAwcOqGvXrs42m82mm2++WWvWrKnU1yZMAADwJ3DgwAFJ0jXXXOPSfs011zi3VRbCBAAAMIUwAQDAn4BjfaeDBw+6tB88eNC5rbIQJgAA+BMICwtTUFCQVqxY4WzLz8/XunXr1KFDh0p9ba7mAADgClFQUKCdO3c6n+/Zs0dZWVmqU6eOGjVqpKeeekoTJkxQeHi4wsLClJSUpAYNGrisRVEZCBMAAPyfy2VVygvZuHGj84abkjR8+HBJ0oABAzRnzhyNHDlSdrtdCQkJOnbsmDp27Khly5ZV+rLhhAkAAK4QsbGxutjC1RaLRS+88IJeeOGFKqyKORMAAMAkwgQAADCFMAEAAEwhTAAAAFMIEwAAwBTCBAAAMIUwAQAATCFMAAAAUwgTAADAFFbABADg/2xr1rzKXqv59m1V9lqVjZEJAACuEDNmzND1118vf39/+fv7q0OHDlq6dKlz+8mTJ/X444/r6quvltVqVe/evUvckrwyECYAALhCBAcHa9KkSfruu++0ceNGde7cWT169NDWrVslSU8//bT+85//6OOPP1ZGRob279+ve+65p9Lr4jQHAABXiLvvvtvl+cSJEzVjxgytXbtWwcHBevfdd/Xhhx+qc+fOkqTZs2erefPmWrt2rW655ZZKq4uRCQAArkBFRUWaP3++7Ha7OnTooO+++06nT59W165dnX2aNWumRo0aac2aNZVaCyMTAABcQX744Qd16NBBJ0+elNVq1eLFi9WiRQtlZWWpRo0aCggIcOl/zTXX6MCBA5VaE2ECAIArSNOmTZWVlaW8vDx98sknGjBggDIyMjxaE2ECAIArSI0aNXTddddJktq2basNGzZo2rRpuv/++3Xq1CkdO3bMZXTi4MGDCgoKqtSamDMBAMAVrLi4WIWFhWrbtq2qV6+uFStWOLft2LFDP//8szp06FCpNTAyAQDAFSIxMVHdunVTo0aNdPz4cX344YdKT09XamqqbDabHn74YQ0fPlx16tSRv7+/nnjiCXXo0KFSr+SQCBMAADhd7qtSHjp0SP3791dubq5sNpuuv/56paam6vbbb5ckTZ06VV5eXurdu7cKCwsVHx+vt956q9LrIkwAAHCFePfddy+6vWbNmnrzzTf15ptvVlFFZzFnAgAAmEKYAAAAphAmAACAKYQJAABgCmECAPCXZBiGp0u4LFTE50CYAAD8pVSvXl2SdOLECQ9XcnlwfA6Oz6U8uDQUAPCX4u3trYCAAB06dEiSVKtWLVksFg9XVfUMw9CJEyd06NAhBQQEyNvbu9zHIkwAAP5yHPeqcASKv7KAgADT9+4gTAAA/nIsFovq16+vevXq6fTp054ux2OqV69uakTCgTABAPjL8vb2rpAv0786JmACAABTCBMAAMAUwgQAADCFMAEAAEwhTAAAAFMIEwAAwBTCBAAAMIUwAQAATCFMAAAAU8oVJkJDQ2WxWEp9xMbGluhfWFioF154QeHh4apZs6YaNGighISEi66J/sEHH6h9+/by8/PTVVddpbvuukubNm0qT7kAAKASlXs5bZvNpqeeeqpEe2hoqMvz4uJi9ejRQ6mpqbrlllvUu3dvZWdnKyUlRStWrNDatWsVGBjoss/EiRP13HPPKSQkRP/4xz90/PhxzZ8/X7feeqtWrFihqKio8pYNAAAqmMUwDMPdnRyBYe/evZfsO3v2bD300EPq27evPvjgA+dtXt9++209+uijSkhI0MyZM539s7Oz1aJFCzVu3Fjr16+XzWaTJGVlZemWW25R48aN9eOPP8rLq2yDKvn5+bLZbMrLy5O/v797bxQAKsi2Zs09XUKVaL59m6dLQAUq63dopc+ZeOeddyRJycnJLveLf+SRR9S4cWN98MEH+uOPP5zts2fP1pkzZ/Svf/3LGSQkqXXr1urbt6+2bdum1atXV3bZAACgjModJgoLCzVnzhy9+OKLeuONN7Ru3boSfU6ePKl169apadOmCgkJcdlmsVh0++23y263a+PGjc729PR0SVJcXFyJ48XHx0uSMjIyyls2AACoYOWeM3HgwAENGjTIpa1du3b66KOP1KRJE0nSrl27VFxcrPDw8FKP4WjPzs7Wbbfd5vx/q9WqoKCgi/a/kMLCQhUWFjqf5+fnu/GuAACAu8o1MjFo0CCtWLFCBw8elN1u1+bNm/Xggw9qw4YN6tKli44fPy5JysvLkySX0xXncpx/cfRz/L87/c+XnJwsm83mfDRs2ND9NwgAAMqsXGFizJgx6ty5s+rVq6datWqpdevWeu+99/Tggw9q3759znkSnpCYmKi8vDznIycnx2O1AADwV1ChEzAfeeQRSVJmZqak/z8icaGRBMcpiHNHIhyzRsva/3w+Pj7y9/d3eQAAgMpToWGibt26kiS73S5Jaty4sby8vC44x8HRfu6civDwcBUUFOjAgQNl6g8AADyrQsOE44oOxzoUvr6+at++vXbs2KF9+/a59DUMQ8uXL5efn59uuukmZ3tMTIwkKS0trcTxU1NTXfoAAADPcztMbN++XSdOnCi1fdSoUZKkfv36OdsTEhIknZ3LcO76WDNnztTu3bv197//Xb6+vs72QYMGqVq1apo4caLL6Y6srCx99NFHat68uTp27Ohu2QAAoJK4fWno/Pnz9eqrryo6OlohISHy8/PTf//7X3355Zc6ffq0EhMTFR0d7ew/YMAALViwQB999JH27NmjmJgY7dy5U4sWLVJYWJgmTJjgcvyIiAiNHTtWzz33nG644Qb17t3buZy2dHYRrLKufgkAACqf28tpZ2Rk6K233tLmzZt18OBBnThxQnXr1tXNN9+sxx57rNTFpgoLCzVp0iTNmzdPOTk5qlOnju666y5NmDBB11xzTamv88EHH+i1117T1q1bVaNGDUVFRWn8+PFq06aNW2+Q5bQBXA5YThtXorJ+h5br3hxXEsIEgMsBYQJXosvm3hwAAODPjTABAABMIUwAAABTCBMAAMAUwgQAADCFMAEAAEwhTAAAAFMIEwAAwBTCBAAAMIUwAQAATCFMAAAAUwgTAADAFMIEAAAwhTABAABMIUwAAABTCBMAAMAUwgQAADCFMAEAAEwhTAAAAFMIEwAAwBTCBAAAMIUwAQAATCFMAAAAUwgTAADAFMIEAAAwhTABAABMIUwAAABTCBMAAMAUwgQAADCFMAEAAEwhTAAAAFMIEwAAwBTCBAAAMIUwAQAATCFMAAAAUwgTAADAFMIEAAAwhTABAABMIUwAAABTCBMAAMAUwgQAADCFMAEAAEwhTAAAAFMIEwAAwBTCBAAAMIUwAQAATCFMAAAAUwgTAADAFMIEAAAwhTABAABMIUwAAABTKiRMTJ48WRaLRRaLRWvXri2xPT8/X8OHD1dISIh8fHwUGhqqZ555RgUFBaUer7i4WNOnT1dkZKR8fX0VGBiovn37avfu3RVRLgAAqECmw8SPP/6oMWPGyM/Pr9TtdrtdMTExmjp1qpo1a6ann35aTZs21csvv6zOnTvr5MmTJfZ55JFHNGzYMBmGoWHDhumOO+7QokWL1K5dO2VnZ5stGQAAVCBTYeL06dMaMGCAWrdurV69epXaZ8qUKcrKytKoUaOUmpqqSZMmKTU1VaNGjdKGDRs0depUl/4rV65USkqKoqOjtWnTJk2ePFnz5s3TkiVL9Pvvv2vo0KFmSgYAABXMVJiYOHGitm7dqn//+9/y9vYusd0wDKWkpMhqtSopKcllW1JSkqxWq1JSUlza33nnHUnS+PHjVaNGDWd7t27dFBsbq7S0NP38889mygYAABWo3GFi06ZNmjhxosaMGaMWLVqU2ic7O1v79+9XVFRUidMgfn5+ioqK0u7du5WTk+NsT09Pd247X3x8vCQpIyOjvGUDAIAKVq4wUVhYqP79+6t169YaOXLkBfs55jeEh4eXut3R7uhnt9uVm5ursLCwUkc6zu9/odry8/NdHgAAoPKUK0w8//zzys7O1uzZs0v90nfIy8uTJNlstlK3+/v7u/Rzt39pkpOTZbPZnI+GDRte4t0AAAAz3A4Ta9as0csvv6znnntOrVq1qoyaTElMTFReXp7zce4pFAAAUPGqudP5zJkzGjBggK6//nqNHj36kv0dIwwXGklwnIJw9HO3f2l8fHzk4+NzydoAAEDFcCtMFBQUOOcrnHulxbk6dOggSVq8eLFzYuaF5jicP6fCz89P9evX1549e1RUVFTiFMql5mAAAICq51aY8PHx0cMPP1zqtlWrVik7O1v/8z//o8DAQIWGhio8PFwNGjRQZmam7Ha7yxUddrtdmZmZCgsLc5nXEBMTo/nz5yszM1PR0dEur5GamipJJdoBAIDnuBUmfH19S6wL4TBw4EBlZ2crMTFRt9xyi7N98ODBeuGFFzR+/HhNmjTJ2T5+/HgVFBTo2WefdTlOQkKC5s+fr6SkJC1fvtw5ArJ06VKlp6crLi5OISEh7pQNAAAqkVthojxGjhypzz77TJMnT9bmzZvVpk0bbdq0SWlpaWrXrp2eeuopl/6dOnXS4MGDlZKSojZt2qh79+7Kzc3VggULVKdOHU2fPr2ySwYAAG6o9LuG+vn5KSMjQ0899ZS2bdumV155Rdu3b9eIESO0YsUK+fr6lthn5syZmjZtmiRp2rRp+vLLL9WrVy+tX79eERERlV0yAABwg8UwDMPTRVSm/Px82Ww25eXlOdepAICqtq1Zc0+XUCWab9/m6RJQgcr6HVrpIxMAAODPjTABAABMIUwAAABTCBMAAMAUwgQAADCFMAEAAEwhTAAAAFMIEwAAwBTCBAAAMIUwAQAATCFMAAAAUwgTAADAFMIEAAAwhTABAABMIUwAAABTCBMAAMAUwgQAADCFMAEAAEwhTAAAAFMIEwAAwBTCBAAAMIUwAQAATCFMAAAAUwgTAADAFMIEAAAwhTABAABMIUwAAABTCBMAAMAUwgQAADCFMAEAAEwhTAAAAFMIEwAAwBTCBAAAMIUwAQAATCFMAAAAUwgTAADAFMIEAAAwhTABAABMIUwAAABTCBMAAMAUwgQAADCFMAEAAEwhTAAAAFMIEwAAwBTCBAAAMIUwAQAATCFMAAAAUwgTAADAFMIEAAAwhTABAABMcTtMnDx5UsOHD1d0dLQaNGigmjVrKigoSFFRUZo9e7ZOnz5dYp/8/HwNHz5cISEh8vHxUWhoqJ555hkVFBSU+hrFxcWaPn26IiMj5evrq8DAQPXt21e7d+92/x0CAIBKZTEMw3Bnh99++00NGzZU+/btFRERocDAQB09elRLly7Vvn37FBcXp6VLl8rL62xOsdvt6tixo7KyshQXF6cbb7xRmzdvVlpamtq1a6dVq1apZs2aLq8xZMgQpaSkqGXLlurevbv279+vhQsXymq1au3atQoPDy9zvfn5+bLZbMrLy5O/v787bxUAKsy2Zs09XUKVaL59m6dLQAUq63doNXcPXKdOHeXl5alGjRou7WfOnNHtt9+utLQ0LV26VN27d5ckTZkyRVlZWRo1apQmTZrk7D969GhNnjxZU6dOVWJiorN95cqVSklJUXR0tJYvX+58nX79+unOO+/U0KFDlZqa6m7ZAACgkrh9msPLy6tEkJCkatWqqVevXpKknTt3SpIMw1BKSoqsVquSkpJc+iclJclqtSolJcWl/Z133pEkjR8/3uV1unXrptjYWKWlpennn392t2wAAFBJKmwCZnFxsZYtWyZJatWqlSQpOztb+/fvV1RUlPz8/Fz6+/n5KSoqSrt371ZOTo6zPT093bntfPHx8ZKkjIyMiiobAACY5PZpDodTp07pxRdflGEYOnLkiFasWKHt27dr0KBB6tKli6SzYULSBec4hIeHKzU1VdnZ2WrYsKHsdrtyc3PVqlUreXt7l9r/3OOWprCwUIWFhc7n+fn55X2LAACgDEyFiXHjxjmfWywW/fOf/1RycrKzLS8vT5Jks9lKPYZjMoejn7v9S5OcnOxSFwAAqFzlPs1htVplGIaKioqUk5OjN998UykpKYqNjfXoaEBiYqLy8vKcj3NPoQAAgIpnes6El5eXgoOD9eijj2rWrFnKzMzUxIkTJf3/EYYLjSQ4Qoejn7v9S+Pj4yN/f3+XBwAAqDwVugJmXFycpLOTKKVLz3E4f06Fn5+f6tevrz179qioqOiS/QEAgOdVaJjYv3+/JKl69eqSzn7pN2jQQJmZmbLb7S597Xa7MjMzFRYWpoYNGzrbY2JinNvO51hfIjo6uiLLBgAAJrgdJn766SedOHGiRPuJEyc0fPhwSdKdd94p6eykzMGDB6ugoEDjx4936T9+/HgVFBRoyJAhLu0JCQmSzq5DcerUKWf70qVLlZ6erri4OIWEhLhbNgAAqCRuL6c9duxYvfrqq+rYsaNCQ0Pl7++vX3/9VUuXLtWRI0d02223KTU1Vb6+vpLOjkBERUVpy5YtiouLU5s2bbRp0ybnctoZGRnOvg7nL6edm5urBQsWyGq1as2aNYqIiChzvSynDeBywHLauBKV9TvU7TCxceNGzZo1S99++61+/fVXFRQUyGaz6frrr1efPn300EMPqVo11ytO8/LyNHbsWH366ac6cOCA6tevr3vvvVdjxoxR7dq1S7xGcXGx3njjDc2aNUs7d+6U1WpV165dNXHiRDVp0sSdcgkTAC4LhAlciSotTFxpCBMALgeECVyJyvodWqETMAEAwF8PYQIAAJhCmAAAAKYQJgAAgCmECQAAYAphAgAAmEKYAAAAphAmAACAKYQJAABgCmECAACYQpgAAACmECYAAIAphAkAAGAKYQIAAJhCmAAAAKYQJgAAgCmECQAAYAphAgAAmEKYAAAAphAmAACAKYQJAABgCmECAACYQpgAAACmECYAAIAphAkAAGAKYQIAAJhCmAAAAKYQJgAAgCmECQAAYAphAgAAmEKYAAAAphAmAACAKYQJAABgCmECAACYQpgAAACmECYAAIAphAkAAGAKYQIAAJhCmAAAAKYQJgAAgCmECQAAYAphAgAAmEKYAAAAphAmAACAKYQJAABgCmECAACYQpgAAACmECYAAIAphAkAAGAKYQIAAJhCmAAAAKa4HSZ+/fVXvfbaa4qLi1OjRo1Uo0YNBQUFqXfv3lq3bl2p++Tn52v48OEKCQmRj4+PQkND9cwzz6igoKDU/sXFxZo+fboiIyPl6+urwMBA9e3bV7t373a3XAAAUMncDhPTp0/X008/rd27dysuLk4jRoxQx44d9dlnn+nWW2/VggULXPrb7XbFxMRo6tSpatasmZ5++mk1bdpUL7/8sjp37qyTJ0+WeI1HHnlEw4YNk2EYGjZsmO644w4tWrRI7dq1U3Z2dvnfLQAAqHDV3N2hffv2Sk9PV0xMjEv7N998oy5duujRRx9Vz5495ePjI0maMmWKsrKyNGrUKE2aNMnZf/To0Zo8ebKmTp2qxMREZ/vKlSuVkpKi6OhoLV++XDVq1JAk9evXT3feeaeGDh2q1NTUcr1ZAABQ8SyGYRgVdbD4+HilpaVpw4YNuummm2QYhoKDg5Wfn68DBw7Iz8/P2ddutysoKEj16tXTrl27nO39+vXTRx99pIyMDEVHR7scv1OnTkpPT9e+ffvUqFGjMtWUn58vm82mvLw8+fv7V8wbBVBhIudGerqEKrEw+YynS6gSzbdv83QJqEBl/Q6t0AmY1atXlyRVq3Z2wCM7O1v79+9XVFSUS5CQJD8/P0VFRWn37t3Kyclxtqenpzu3nS8+Pl6SlJGRUZFlAwAAEyosTPz888/66quvVL9+fUVGnv1NwzG/ITw8vNR9HO2Ofna7Xbm5uQoLC5O3t/cl+5emsLBQ+fn5Lg8AAFB5KiRMnD59Wg8++KAKCws1efJkZxDIy8uTJNlstlL3cwyZOPq52780ycnJstlszkfDhg3L8Y4AAEBZmQ4TxcXFGjhwoFatWqUhQ4bowQcfrIi6yi0xMVF5eXnOx7mnUAAAQMVz+2qOcxUXF+uhhx7Shx9+qAceeEBvv/22y3bHCMOFRhIcpyAc/dztXxofHx/nlSQAAKDylXtkori4WIMGDdLcuXPVt29fzZkzR15eroe71ByH8+dU+Pn5qX79+tqzZ4+Kioou2R8AAHheucKEI0i89957uv/++zVv3rwLTphs0KCBMjMzZbfbXbbZ7XZlZmYqLCzMZV5DTEyMc9v5HOtLnH/JKAAA8By3w4Tj1MZ7772ne++9V++//36pQUKSLBaLBg8erIKCAo0fP95l2/jx41VQUKAhQ4a4tCckJEiSkpKSdOrUKWf70qVLlZ6erri4OIWEhLhbNgAAqCRuL1o1duxYjRs3TlarVU8++aRzTYlz9ezZU61bt5Z0dgQiKipKW7ZsUVxcnNq0aaNNmzYpLS1N7dq1U0ZGhnx9fV32HzJkiFJSUtSyZUt1795dubm5WrBggaxWq9asWaOIiIgy18uiVcDljUWr/lxYtOrPpazfoW5PwNy7d68kqaCgQBMnTiy1T2hoqDNM+Pn5KSMjQ2PHjtWnn36qlStXqn79+hoxYoTGjBlTIkhI0syZMxUZGalZs2Zp2rRpslqt6tWrlyZOnKgmTZq4WzIAAKhEFbqc9uWIkQng8sbIxJ8LIxN/Lh5ZThsAAPz1ECYAAIAphAkAAGAKYQIAAJhCmAAAAKYQJgAAgCmECQAAYAphAgAAmEKYAAAAphAmAACAKYQJAABgCmECAACYQpgAAACmECYAAIAphAkAAGAKYQIAAJhCmAAAAKYQJgAAgCmECQAAYAphAgAAmEKYAAAAphAmAACAKYQJAABgCmECAACYQpgAAACmECYAAIAphAkAAGAKYQIAAJhCmAAAAKYQJgAAgCmECQAAYAphAgAAmEKYAAAAphAmAACAKYQJAABgCmECAACYQpgAAACmECYAAIAphAkAAGAKYQIAAJhCmAAAAKYQJgAAgCmECQAAYAphAgAAmEKYAAAAphAmAACAKYQJAABgCmECAACYQpgAAACmECYAAIApboeJ999/X4888ohuuukm+fj4yGKxaM6cORfsn5+fr+HDhyskJEQ+Pj4KDQ3VM888o4KCglL7FxcXa/r06YqMjJSvr68CAwPVt29f7d69291SAQBAFXA7TDz33HOaNWuW9u3bp/r161+0r91uV0xMjKZOnapmzZrp6aefVtOmTfXyyy+rc+fOOnnyZIl9HnnkEQ0bNkyGYWjYsGG64447tGjRIrVr107Z2dnulgsAACqZ22EiJSVFe/fu1eHDh/WPf/zjon2nTJmirKwsjRo1SqmpqZo0aZJSU1M1atQobdiwQVOnTnXpv3LlSqWkpCg6OlqbNm3S5MmTNW/ePC1ZskS///67hg4d6m65AACgkrkdJrp27aqQkJBL9jMMQykpKbJarUpKSnLZlpSUJKvVqpSUFJf2d955R5I0fvx41ahRw9nerVs3xcbGKi0tTT///LO7JQMAgEpUaRMws7OztX//fkVFRcnPz89lm5+fn6KiorR7927l5OQ429PT053bzhcfHy9JysjIqKySAQBAOVRqmJCk8PDwUrc72h397Ha7cnNzFRYWJm9v70v2v5DCwkLl5+e7PAAAQOWptDCRl5cnSbLZbKVu9/f3d+nnbv8LSU5Ols1mcz4aNmzofvEAAKDM/nTrTCQmJiovL8/5OPc0CgAAqHjVKuvAjhGGC40kOE4/OPq52/9CfHx85OPj437BAACgXCptZOJScxzOn1Ph5+en+vXra8+ePSoqKrpkfwAAcHmo1DDRoEEDZWZmym63u2yz2+3KzMxUWFiYy5yGmJgY57bzpaamSpKio6Mrq2QAAFAOlRYmLBaLBg8erIKCAo0fP95l2/jx41VQUKAhQ4a4tCckJEg6uw7FqVOnnO1Lly5Venq64uLiyrTGBQAAqDoWwzAMd3ZISUnR6tWrJUk//PCDNm3apKioKF133XWSpI4dO2rw4MGSzo5AREVFacuWLYqLi1ObNm20adMmpaWlqV27dsrIyJCvr6/L8YcMGaKUlBS1bNlS3bt3V25urhYsWCCr1ao1a9YoIiLCrTeYn58vm82mvLw85xUhAC4fkXMjPV1ClViYfMbTJVSJ5tu3eboEVKCyfoe6PQFz9erVmjt3rktbZmamy6kJR5jw8/NTRkaGxo4dq08//VQrV65U/fr1NWLECI0ZM6ZEkJCkmTNnKjIyUrNmzdK0adNktVrVq1cvTZw4UU2aNHG3XAAAUMncHpm40jAyAVzeGJn4c2Fk4s+lrN+hf7p1JgAAQNUiTAAAAFMIEwAAwBTCBAAAMIUwAQAATCFMAAAAUwgTAADAFMIEAAAwhTABAABMIUwAAABTCBMAAMAUwgQAADCFMAEAAEwhTAAAAFMIEwAAwBTCBAAAMIUwAQAATCFMAAAAUwgTAADAFMIEAAAwpZqnCwBwAWNtnq6gaoQ18nQFAExiZAIAAJhCmAAAAKYQJgAAgCmECQAAYAphAgAAmEKYAAAAphAmAACAKYQJAABgCmECAACYQpgAAACmECYAAIAphAkAAGAKYQIAAJhCmAAAAKYQJgAAgCmECQAAYAphAgAAmEKYAAAAphAmAACAKYQJAABgCmECAACYQpgAAACmECYAAIAphAkAAGAKYQIAAJhSzdMFAO4KHf2Fp0uoEntreroCACgbRiYAAIAphAkAAGAKYQIAAJhCmAAAAKZctmFiw4YNuvPOOxUQECA/Pz/dcsstWrhwoafLAgAA57ksr+ZYuXKl4uPjVbNmTfXp00e1a9fWp59+qvvvv185OTkaMWKEp0sEAAD/57IbmThz5oyGDBkiLy8vrVq1SrNmzdIrr7yiLVu2KCIiQs8++6z27dvn6TIBAMD/uezCxNdff61du3apX79+at26tbPdZrPp2Wef1alTpzR37lzPFQgAAFxcdmEiPT1dkhQXF1diW3x8vCQpIyOjKksCAAAXcdnNmcjOzpYkhYeHl9gWFBQkq9Xq7FOawsJCFRYWOp/n5eVJkvLz8yu4UnhKceEJT5dQJfIthqdLqBJFfxR5uoQqUVD013if/Fv75+L4eRrGxf89uuzChOPL32azlbrd39/f2ac0ycnJGjduXIn2hg0bVkyBQBUp/W/An9E2TxdQJdp7uoCqcoF/u3FlO378+AW/l6XLMEyYlZiYqOHDhzufFxcX6/fff9fVV18ti8XiwcoAnC8/P18NGzZUTk6O/P39PV0OgPMYhqHjx4+rQYMGF+132YUJR/K50OhDfn6+rrrqqgvu7+PjIx8fH5e2gICACqsPQMXz9/cnTACXqYuNSDhcdhMwHXMlSpsXceDAARUUFJQ6nwIAAHjGZRcmYmJiJElpaWkltqWmprr0AQAAnmcxLjVFs4qdOXNGTZs21a+//qq1a9c615rIy8tT+/bttXfvXu3YsUOhoaEerROAeYWFhUpOTlZiYmKJ05MArhyXXZiQLryc9r59+/Tyyy+znDYAAJeRyzJMSNL69es1ZswYffvttzp9+rQiIyM1fPhw3X///Z4uDQAAnOOyDRMAAODKcNlNwAQAAFcWwgQAADCFMAEAAEwhTAAAAFMuu+W0Afx5/fLLL8rIyFB2drbLTf3Cw8MVHR3NDfmAKxRhAkCl27Vrl4YOHepc2fb8i8gcN+GLj4/X66+/ruuuu67KawRQflwaCqBS7dmzR+3bt9eRI0cUGxur+Ph4hYeHO2/slZ+fr+zsbC1btkwZGRmqW7eu1q1bp7CwMA9XDqCsCBMAKlW/fv20aNEiLVmyRHfcccdF+y5dulS9evVS79699cEHH1RRhQDMIkwAqFT16tVTt27dNHfu3DL179+/v5YtW6ZDhw5VcmUAKgpXcwCoVAUFBWrQoEGZ+zdo0EAFBQWVWBGAisbIBIBKdf3110uSNm3apGrVLj7n+/Tp02rTpo0sFou+//77qigPQAVgZAJApRoyZIh+/PFHxcXFKTMzs8SVHNLZqztWr16tuLg4/fTTT0pISPBApQDKi5EJAJXKMAwlJCTo3XfflcVikZ+fn8LCwmSz2SRJeXl52rNnj+x2uwzD0ODBgzVr1iwPVw3AHYQJAFVi5cqVeuedd5SRkaHc3FyXbfXr11dMTIwSEhIUGxvrmQIBlBthAkCVO3HihMsKmLVq1fJwRQDMIEwAAABTmIAJAABM4d4cAC4bR44c0ZtvvimLxaKkpCRPlwOgjDjNAeCysWPHDjVv3lwWi0VFRUWeLgdAGTEyAeCyUbduXT3//PPOu4gCuDIwMgEAAExhAiYAj/v8889ZPhu4ghEmAHhcz5499eabb3q6DADlxJwJAJVq/fr1Zep36NAhl77t27evrJIAVDDmTACoVF5eXuWaUMnVHMCVg5EJAJXOz89PPXv2lLe3d4lthmHovffeU3h4uG699VYPVAfALEYmAFSqyZMna+zYsbrxxhv173//W82aNSvRx8vLi7uFAlcwJmACqFSjRo3Shg0bVFhYqDZt2mjKlCnidxjgz4UwAaDStWrVSuvWrdPIkSP13HPPqUOHDtq2bZunywJQQQgTAKpEtWrVNHbsWK1du1YFBQVq06aNXnzxRSZaAn8ChAkAVapNmzbatGmThg0bpueff17t27dn+WzgCkeYAFDlatSoocmTJ+ubb77R8ePHmUMBXOG4mgOARxUVFamgoEA+Pj6qWbOmp8sBUA6ECQAAYAqnOQAAgCmECQAAYAphAgAAmEKYAHBZmjNnjgICAjxdBoAyIEwAAABTCBMAAMAUwgQA02JjYzV06FANHTpUNptNdevWVVJSknMxqqNHj6p///666qqrVKtWLXXr1k3Z2dkux5gzZ44aNWqkWrVqqVevXjpy5IjL9i1btqhTp06qXbu2/P391bZtW23cuLHK3iOACyNMAKgQc+fOVbVq1bR+/XpNmzZNr776qlJSUiRJAwcO1MaNG/X5559rzZo1MgxDd955p06fPi1JWrdunR5++GENHTpUWVlZ6tSpkyZMmOBy/L///e8KDg7Whg0b9N1332n06NGqXr16lb9PACWxaBUA02JjY3Xo0CFt3brVeZ+N0aNH6/PPP9dnn32miIgIZWZm6tZbb5UkHTlyRA0bNtTcuXN17733ql+/fsrLy9MXX3zhPGafPn20bNkyHTt2TJLk7++v6dOna8CAAVX+/gBcHCMTACrELbfc4nLDrg4dOig7O1s//fSTqlWrpptvvtm57eqrr1bTpk2dtyHftm2by3bH/ucaPny4Bg8erK5du2rSpEnatWtXJb4bAO4gTAC4IowdO1Zbt25V9+7d9fXXX6tFixZavHixp8sCIMIEgAqybt06l+dr165VeHi4WrRooTNnzrhsP3LkiHbs2KEWLVpIkpo3b17q/ueLiIjQ008/rbS0NN1zzz2aPXt2JbwTAO4iTACoED///LOGDx+uHTt26KOPPtL06dP15JNPKjw8XD169NCQIUO0evVqbdmyRQ888ICuvfZa9ejRQ5I0bNgwLVu2TC+//LKys7P1xhtvaNmyZc5j//HHHxo6dKjS09O1b98+ZWZmasOGDWrevLmn3i6AczABE4BpsbGxatmypYqLi/Xhhx/K29tbjz76qCZMmCCLxaKjR4/qySef1Oeff65Tp04pOjpa06dPV3h4uPMY//73vzVmzBgdOXJEXbt2VUxMjMaPH69jx47p1KlTGjBggDIzM3Xw4EHVrVtX99xzj1566SVuWw5cBggTAEyLjY1V69at9dprr3m6FAAewGkOAABgCmECAACYwmkOAABgCiMTAADAFMIEAAAwhTABAABMIUwAAABTCBMAAMAUwgQAADCFMAEAAEwhTAAAAFMIEwAAwJT/B8HJb7XNrtZbAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "\n",
+ "df_time = df_time.astype({'pods':'int', 'span_load': 'float'})\n",
+ "df_time2 = df_time.drop(['dbms','TPCH_TABLE'], axis=1)\n",
+ "\n",
+ "#df_time_pivot = df_time.pivot(index='pods', columns='SF', values='span_load')\n",
+ "df_time_pivot = df_time2.groupby(['SF', 'num_experiment']).mean()\n",
+ "df_time_pivot.reset_index(inplace=True)\n",
+ "df_time_pivot = df_time_pivot.pivot(index='pods', columns='SF', values='span_load')\n",
+ "\n",
+ "df_time_pivot.plot.bar(style='.-', title='{dbms} time ingest {imported} from Disk [s]'.format(dbms=dbms, imported=imported), figsize=(6,6), fontsize=14)#, logx=True)\n",
+ "\n",
+ "df_time_pivot"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Plot Indexing"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAASkAAAFECAYAAAB788gGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxhUlEQVR4nO3deVhU9f4H8PewDZsMYsBICm6oIGiGhXMzl0RJyR8mLXpdwGtaCGVyLaXH/adB2C1zCetmYotXw5uaihhZ6lURhdJQ0TQxKB0gDQY3FOb7+6Mf53oElWGZOcL79TzzPM73LN/PGeHNOd9z5hyVEEKAiEihrCxdABHR3TCkiEjRGFJEpGgMKSJSNIYUESkaQ4qIFI0hRUSKxpAiIkVjSBGRojWLkNq9ezdUKhU2btxo6VLq5dy5c1CpVHj77bctXUqdDBw4EAMHDqzXslFRUejQoUOd5p0/fz5UKlW9+jHnOs2pun6VSgVnZ+cGr0+lUiE2Nrbey3fo0AFPPfXUPefbvHmzVLdKpUJ2dnad+1BsSN26QXd77d6929Kl3vfS0tIwf/58i/R99epVzJ8/n/+PJvr000+xevXqWqdt3boVI0aMgKenJ+zs7ODm5ob+/fvjH//4BwwGQ4P6NRqNcHd3R1JSkknL9enTB59++immTJlicp82Ji9hJp9++qns/SeffIKMjIwa7X5+fsjLyzNnac1OWloaVq5cWeeg+vrrr+vd1z//+U8YjUbp/dWrV7FgwQIAqLF3Nnv2bMyaNavefTVn48aNq9FmNBoxadIkpKSkIDAwEFOnTkX79u1RXl6OzMxMzJ49G2lpadi1a1e9+z106BB+//13hIWFmbRcu3btMG7cOFRWVuLDDz80aVnFhtTt/wkHDx5ERkZGrf85DQ2pq1evwtHRsUHraEns7OzqvaytrW2d57WxsYGNjWJ/RBUnKSkJKSkpmD59Ov7xj3/IDmunTZuGCxcu4JNPPmlQH2lpafDx8UGPHj0aWm6dKfZwrz6MRiMWL16Mdu3awd7eHoMHD8aZM2dk8wwcOBABAQHIyclB//794ejoiDfeeAMAUFxcjEmTJsHT0xP29vbo1asX1q5dK1u+evzr9sOT6nGllJQUWXtqair8/f1hb2+PgIAAbNq06a7jMh9++CE6d+4MtVqNRx55BIcPH5ZNj4qKgrOzM86ePYvQ0FA4OTnBy8sLCxcuxK03tKhrnVFRUVi5ciUA+SH23dw+JlXd1xdffHHPz//WbT937hzc3d0BAAsWLJD6rt6jq238qHoMZfPmzQgICIBarUaPHj2Qnp5eo859+/bhkUcegb29PTp37owPPvjgjtv02WefISgoCA4ODnBzc8Po0aNRWFgoTV+zZg1UKhU+/vhj2XJvvvkmVCoV0tLSpLaTJ0/imWeegZubG+zt7dGnTx989dVXsuVu3ryJBQsWwNfXF/b29mjTpg369euHjIyMO9Z4N1evXsVbb72FHj16YMmSJbX+H7Zt2xYzZ86sdfnPP/8c3bp1g729PYKCgrB3795a59u+fXute1H79u3Do48+Cnt7e3Tq1KnBYXirZvVnKjExEVZWVpgxYwbKysqQlJSEsWPHIisrSzbfxYsXMWzYMIwePRrjxo2Dp6cnrl27hoEDB+LMmTOIjY1Fx44dkZqaiqioKJSWlmLatGkm17N9+3Y8//zzCAwMREJCAv744w9MmjQJDz74YK3zr1u3DuXl5XjxxRehUqmQlJSEUaNG4ezZs7I9kKqqKjz55JPo27cvkpKSkJ6ejnnz5qGyshILFy40qcYXX3wR58+fr/VQ2lR1/fyrubu7Izk5GdHR0Xj66acxatQoAEDPnj3v2s++ffvw5ZdfYurUqWjVqhWWLVuGiIgIFBQUoE2bNgCA3NxcDB06FO7u7pg/fz4qKysxb948eHp61ljf4sWLMWfOHDz33HN44YUXUFJSguXLl6N///744Ycf4OrqiokTJ+LLL79EXFwchgwZgvbt2yM3NxcLFizApEmTMHz4cADA8ePH8dhjj+HBBx/ErFmz4OTkhC+++AIjR47Ev//9bzz99NMA/gzghIQEvPDCC3j00UdhMBiQnZ2N77//HkOGDDH5s9+3bx9KS0sxY8YMWFtbm7Tsnj17sGHDBrzyyitQq9V4//338eSTT+LQoUMICAiQ5tPr9fjhhx9q/IydOXMGzzzzDCZNmoTIyEh8/PHHiIqKQlBQUOPscYn7RExMjLhTud99950AIPz8/ERFRYXU/t577wkAIjc3V2obMGCAACBWrVolW8fSpUsFAPHZZ59JbTdu3BA6nU44OzsLg8Eg6+u7776TLZ+fny8AiDVr1khtgYGBol27dqK8vFxq2717twAgfHx8aizbpk0bcenSJal9y5YtAoDYunWr1BYZGSkAiJdffllqMxqNIiwsTNjZ2YmSkhKT67zbZ1ubAQMGiAEDBkjvTfn8IyMjZdteUlIiAIh58+bV6GfevHk16gIg7OzsxJkzZ6S2o0ePCgBi+fLlUtvIkSOFvb29+OWXX6S2EydOCGtra9k6z507J6ytrcXixYtl/eTm5gobGxtZ+4ULF4Sbm5sYMmSIqKioEL179xbe3t6irKxMmmfw4MEiMDBQXL9+XWozGo3iL3/5i/D19ZXaevXqJcLCwmps873U9pkI8d/PevPmzbL2yspKUVJSInsZjUZpOgABQGRnZ0ttv/zyi7C3txdPP/20bF2rV68WDg4O4urVq1Kbj4+PACD27t0rtRUXFwu1Wi3+/ve/16hzzZo1AoA4fPhwnbe5WR3uTZw4UTZe8vjjjwMAzp49K5tPrVZj4sSJsra0tDRotVqMGTNGarO1tcUrr7yCy5cvY8+ePSbVcv78eeTm5mLChAmyU8UDBgxAYGBgrcs8//zzaN269T3rByA7bVx9CHTjxg188803JtXZmOr6+TdUSEgIOnfuLL3v2bMnXFxcpH6qqqqwc+dOjBw5Et7e3tJ8fn5+CA0Nla3ryy+/hNFoxHPPPYfff/9demm1Wvj6+uK7776T5tVqtVi5ciUyMjLw+OOP48iRI/j444/h4uICALh06RK+/fZbPPfccygvL5fWdfHiRYSGhuL06dP47bffAACurq44fvw4Tp8+3SifSfVZu9svS8jNzYW7u7vsdfHiRdk8Op0OQUFB0ntvb2+Eh4dj586dqKqqktrT0tIwaNAgODg4yJb39/eX/q+BP/eQu3Xr1mj/780qpG79gQQg/cL/8ccfsvYHH3ywxuDvL7/8Al9fX1hZyT8SPz8/abopqufv0qVLjWm1tQF1r9/KygqdOnWStXXt2hXAn+M8llLX+hu7n+q+qvspKSnBtWvX4OvrW2O+bt26yd6fPn0aQgj4+vrW+GXOy8tDcXGxbP7Ro0cjLCwMhw4dwuTJkzF48GBp2pkzZyCEwJw5c2qsa968eQAgrW/hwoUoLS1F165dERgYiNdeew0//vhjvT+TVq1aAQAuX74sa+/SpQsyMjKQkZGB8ePH17psbZ9T165dcfXqVZSUlAD4cwwtIyOj1vGoe/1/NFSzGpO607G4uO0Oybf/JTDFnQaVb/2LU191rb8umrLOO2nM+s3Vj9FohEqlwo4dO2pd7+17JhcvXpQuRDxx4gSMRqP0h6360ooZM2bU2GOrVv0Hqn///vj555+xZcsWfP311/joo4/w7rvvYtWqVXjhhRdM3o7u3bsDAI4dO4bw8HBZ/SEhIQD+HLeqr3379sFgMEhjb7dq6v/3ZhVSDeHj44Mff/xR9kMH/Hmmpno68N+9g9LSUtnyt+9pVc9/+9mtO7WZwmg04uzZs9LeEwD89NNPACCdOatrncCdA80cmqJvd3d3ODg41HooderUKdn7zp07QwiBjh07yj7PO4mJiUF5eTkSEhIQHx+PpUuXIi4uDgCkvVtbW1spGO7Gzc0NEydOxMSJE3H58mX0798f8+fPr1dIPf7449BoNFi/fj3i4+NrHBHcTW2f008//QRHR0fp7Ov27dvh7+9f528LNKZmdbjXEMOHD4der8eGDRuktsrKSixfvhzOzs4YMGAAgD/Dx9rausYp2vfff1/23svLCwEBAfjkk09ku+B79uxBbm5ug+tdsWKF9G8hBFasWAFbW1vp8KOudQKAk5MTgJqBZg7V16c1Zt/W1tYIDQ3F5s2bUVBQILXn5eVh586dsnlHjRoFa2trLFiwoMZffiGEbPxm48aN2LBhAxITEzFr1iyMHj0as2fPlv5AeHh4YODAgfjggw9w4cKFGnVVHzoBqDEu5OzsjC5duqCioqJe2+zo6IjXX38dx44dw6xZs2rdi7nTnk1mZia+//576X1hYSG2bNmCoUOHSntJaWlpJl/A2Vi4J/X/pkyZgg8++ABRUVHIyclBhw4dsHHjRuzfvx9Lly6Vjvk1Gg2effZZLF++HCqVCp07d8a2bdtqjF0Af15DEx4ejsceewwTJ07EH3/8gRUrViAgIKDG2IEp7O3tkZ6ejsjISAQHB2PHjh3Yvn073njjDekvnyl1Vg+avvLKKwgNDYW1tTVGjx5d7/pM4eDgAH9/f2zYsAFdu3aFm5sbAgICZKe+62PBggVIT0/H448/jqlTp0p/cHr06CEb++ncuTMWLVqE+Ph4nDt3DiNHjkSrVq2Qn5+PTZs2YcqUKZgxYwaKi4sRHR2NQYMGSSctVqxYge+++w5RUVHYt28frKyssHLlSvTr1w+BgYGYPHkyOnXqhKKiImRmZuLXX3/F0aNHAfw52Dxw4EAEBQXBzc0N2dnZ2LhxY4O+Rzdr1izk5eVhyZIl+PrrrxEREYF27drhjz/+wPfff4/U1FR4eHjA3t5etlxAQABCQ0NllyBUf4YAkJ+fj7y8PCQnJ9e7tgap83lAC6vLJQipqamy9tpOtw8YMED06NGj1vUUFRWJiRMnigceeEDY2dmJwMBA2bLVSkpKREREhHB0dBStW7cWL774ojh27FiNvoQQYv369aJ79+5CrVaLgIAA8dVXX4mIiAjRvXv3GnUuWbKkRl+47fR8ZGSkcHJyEj///LMYOnSocHR0FJ6enmLevHmiqqqqXnVWVlaKl19+Wbi7uwuVSnXPyxHudAlCXT7/2y9BEEKIAwcOiKCgIGFnZyfb3jtdghATE1OjJh8fHxEZGSlr27Nnj7TeTp06iVWrVt3xFP6///1v0a9fP+Hk5CScnJxE9+7dRUxMjDh16pQQQohRo0aJVq1aiXPnzsmWq75M5K233pLafv75ZzFhwgSh1WqFra2tePDBB8VTTz0lNm7cKM2zaNEi8eijjwpXV1fh4OAgunfvLhYvXixu3LhRo7Zb3an+W23atEkMHz5cuLu7CxsbG+Hq6ir69esnlixZIkpLS2XzVn+en332mfD19RVqtVr07t1bdunKihUrhEajETdv3qzRl4+PT62XUtz+M1KtPpcg3Dch1Zz06tVLhISE1GvZ6pCilqk6pEpKSsTvv/9ulj6HDRsmnn322Qato6KiQpSUlIjly5ebHFI83GtCN2/ehEqlkn3/bPfu3Th69CgWLVpkwcrofufu7g4nJ6cGDRvU1cCBA2XXQdVHWlqadLW9qVRC8AnGTeXcuXMICQnBuHHj4OXlhZMnT2LVqlXQaDQ4duyY9BUOU0RFRWHjxo1m+eEk5Tl79qx0kaSNjU297+tlbiUlJdJ4HAAEBwdL47z3wj2pJtS6dWsEBQXho48+QklJCZycnBAWFobExMR6BRRRp06dalzIez9wd3ev02UZteGeFBEpGq+TIiJFY0gRkaLdl2NSRqMR58+fR6tWre7rm+oTNVdCCJSXl8PLy8ukr+jU5r4MqfPnz6N9+/aWLoOI7qGwsBDt2rVr0Druy5CqPnVZWFgo3cuHiJTDYDCgffv2db7M4G7uy5CqPsRzcXFhSBEpWGMMx3DgnIgUjSFFRIrGkCIiRbsvx6SILK2qqgo3b960dBkWY2tra/Kjs+qLIUVkAiEE9Hq9Re5iqjSurq7QarVNfq0iQ4rIBNUB5eHhAUdHxxZ5MbEQAlevXpXu8tq2bdsm7Y8hRVRHVVVVUkC19LtYVD9xqbi4GB4eHk166MeBc6I6qh6Dqn54REtX/Tk09dgcQ4rIRC3xEK825vocGFJEpGgMKSJSNIYUkUKVlJQgOjoa3t7eUKvV0Gq1CA0Nxf79+wH8+bRqlUolezX0jgNKxLN7RAoVERGBGzduYO3atdJDRnft2iV7+vHChQsxefJk6b25LrA0J4YUkQKVlpbiP//5D3bv3o0BAwYAAHx8fPDoo4/K5mvVqhW0Wq0lSjQbHu4RKZCzszOcnZ2xefNmVFRUWLoci2JIESmQjY0NUlJSsHbtWri6uuKxxx7DG2+8gR9//FE238yZM6VAc3Z2xrJlyyxUcdNhSBEpVEREBM6fP4+vvvoKTz75JHbv3o2HH34YKSkp0jyvvfYajhw5Ir0mTJhguYKbCEOKSMHs7e0xZMgQzJkzBwcOHEBUVBTmzZsnTX/ggQfQpUsX6eXq6mq5YpsIQ4roPuLv748rV65Yugyz4tk9IgW6ePEinn32Wfztb39Dz5490apVK2RnZyMpKQnh4eGWLs+sTN6T+u233zBu3Di0adMGDg4OCAwMRHZ2tjRdCIG5c+eibdu2cHBwQEhICE6fPi1bx6VLlzB27Fi4uLjA1dUVkyZNwuXLlxu+NUTNhLOzM4KDg/Huu++if//+CAgIwJw5czB58mSsWLHC0uWZlzDBpUuXhI+Pj4iKihJZWVni7NmzYufOneLMmTPSPImJiUKj0YjNmzeLo0ePiv/5n/8RHTt2FNeuXZPmefLJJ0WvXr3EwYMHxX/+8x/RpUsXMWbMmDrXUVZWJgCIsrIyU8onapBr166JEydOyH6WW7K7fR6N+TtqUkjNnDlT9OvX747TjUaj0Gq1YsmSJVJbaWmpUKvV4l//+pcQQogTJ04IAOLw4cPSPDt27BAqlUr89ttvdaqDIUWWwJCSM1dImXS499VXX6FPnz549tln4eHhgd69e+Of//ynND0/Px96vR4hISFSm0ajQXBwMDIzMwEAmZmZcHV1RZ8+faR5QkJCYGVlhaysrFr7raiogMFgkL2IqGUwKaTOnj2L5ORk+Pr6YufOnYiOjsYrr7yCtWvXAvjz1qoA4OnpKVvO09NTmqbX6+Hh4SGbbmNjAzc3N2me2yUkJECj0UgvPmKdqOUwKaSMRiMefvhhvPnmm+jduzemTJmCyZMnY9WqVU1VHwAgPj4eZWVl0quwsLBJ+yMi5TAppNq2bQt/f39Zm5+fHwoKCgBA+qJjUVGRbJ6ioiJpmlarlW7gXq2yshKXLl264xcl1Wq19Eh1PlqdqGUxKaQee+wxnDp1Stb2008/wcfHBwDQsWNHaLVa7Nq1S5puMBiQlZUFnU4HANDpdCgtLUVOTo40z7fffguj0Yjg4OB6bwgRNVOmjLIfOnRI2NjYiMWLF4vTp0+Lzz//XDg6OorPPvtMmicxMVG4urqKLVu2iB9//FGEh4fXeglC7969RVZWlti3b5/w9fXlJQikeDy7J6fISxCEEGLr1q0iICBAqNVq0b17d/Hhhx/KphuNRjFnzhzh6ekp1Gq1GDx4sDh16pRsnosXL4oxY8YIZ2dn4eLiIiZOnCjKy8vrXANDiiyBISVnrpBSCSGEZfflTGcwGKDRaFBWVsbxKTKb69evIz8/Hx07doS9vb2ly7G4u30ejfk7yi8YE5Gi8QvGRI2gw6ztZuvrXGKYycvs3bsXS5YsQU5ODi5cuIBNmzZh5MiRjV9cE+CeFFELcOXKFfTq1QsrV660dCkm454UUQswbNgwDBs2zNJl1Av3pIhI0RhSRKRoDCkiUjSGFBEpGkOKiBSNZ/eIWoDLly/jzJkz0vv8/HwcOXIEbm5u8Pb2tmBl98aQImoE9bnA0pyys7MxaNAg6X1cXBwAIDIyUvawUSViSBG1AAMHDsR9+DVdAByTIiKFY0gRkaIxpIhI0RhSRKRoDCkiUjSGFBEpGkOKiBSNIUVEisaQIiJFY0gRkaLxazFEjWG+xox9lZm8SHJyMpKTk3Hu3DkAQI8ePTB37tz74pbCJu1JzZ8/HyqVSvbq3r27NP369euIiYlBmzZt4OzsjIiICBQVFcnWUVBQgLCwMDg6OsLDwwOvvfYaKisrG2driKhW7dq1Q2JiInJycpCdnY0nnngC4eHhOH78uKVLuyeT96R69OiBb7755r8rsPnvKqZPn47t27cjNTUVGo0GsbGxGDVqFPbv3w8AqKqqQlhYGLRaLQ4cOIALFy5gwoQJsLW1xZtvvtkIm0NEtRkxYoTs/eLFi5GcnIyDBw+iR48eFqqqbkwOKRsbG2i12hrtZWVlWL16NdatW4cnnngCALBmzRr4+fnh4MGD6Nu3L77++mucOHEC33zzDTw9PfHQQw/hf//3fzFz5kzMnz8fdnZ2Dd8iIrqrqqoqpKam4sqVK9DpdJYu555MHjg/ffo0vLy80KlTJ4wdOxYFBQUAgJycHNy8eRMhISHSvN27d4e3tzcyMzMBAJmZmQgMDISnp6c0T2hoKAwGw113OysqKmAwGGQvIjJNbm4unJ2doVar8dJLL2HTpk3w9/e3dFn3ZFJIBQcHIyUlBenp6UhOTkZ+fj4ef/xxlJeXQ6/Xw87ODq6urrJlPD09odfrAQB6vV4WUNXTq6fdSUJCAjQajfRq3769KWUTEYBu3brhyJEjyMrKQnR0NCIjI3HixAlLl3VPJh3u3XomoGfPnggODoaPjw+++OILODg4NHpx1eLj46U7CQKAwWBgUBGZyM7ODl26dAEABAUF4fDhw3jvvffwwQcfWLiyu2vQdVKurq7o2rUrzpw5A61Wixs3bqC0tFQ2T1FRkTSGpdVqa5ztq35f2zhXNbVaDRcXF9mLiBrGaDSioqLC0mXcU4NC6vLly/j555/Rtm1bBAUFwdbWFrt27ZKmnzp1CgUFBdLgnE6nQ25uLoqLi6V5MjIy4OLicl8cGxPdr+Lj47F3716cO3cOubm5iI+Px+7duzF27FhLl3ZPJh3uzZgxAyNGjICPjw/Onz+PefPmwdraGmPGjIFGo8GkSZMQFxcHNzc3uLi44OWXX4ZOp0Pfvn0BAEOHDoW/vz/Gjx+PpKQk6PV6zJ49GzExMVCr1U2ygURmUY8LLM2puLgYEyZMwIULF6DRaNCzZ0/s3LkTQ4YMsXRp92RSSP36668YM2YMLl68CHd3d/Tr1w8HDx6Eu7s7AODdd9+FlZUVIiIiUFFRgdDQULz//vvS8tbW1ti2bRuio6Oh0+ng5OSEyMhILFy4sHG3iohkVq9ebekS6k0l7sNHSBgMBmg0GpSVlXF8iszm+vXryM/PR8eOHWFvb2/pcizubp9HY/6O8gvGRKRoDCkiUjSGFBEpGkOKiBSNIUVEisaQIiJFY0gRkaIxpIhI0XiPc6JGELg20Gx95Ubmmq0vJeCeFFELsHfvXowYMQJeXl5QqVTYvHmzbLoQAnPnzkXbtm3h4OCAkJAQnD592jLF3oYhRdQCXLlyBb169cLKlStrnZ6UlIRly5Zh1apVyMrKgpOTE0JDQ3H9+nUzV1oTD/eIWoBhw4bd8fFVQggsXboUs2fPRnh4OADgk08+gaenJzZv3ozRo0ebs9QauCdF1MLl5+dDr9fLnk+g0WgQHBwsPZ/AkhhSRC1c9fMFanv+wN2ePWAuDCkiUjSGFFELV/18gdqeP3C3Zw+YC0OKqIXr2LEjtFqt7PkEBoMBWVlZinh4KM/uEbUAly9fxpkzZ6T3+fn5OHLkCNzc3ODt7Y1XX30VixYtgq+vLzp27Ig5c+bAy8sLI0eOtFzR/48hRdQIlH4VeHZ2NgYNGiS9r36OZWRkJFJSUvD666/jypUrmDJlCkpLS9GvXz+kp6cr4jbJvMc5UR3xHudyvMc5EREYUkSkcAwpIlK0BoVUYmIiVCoVXn31Vant+vXriImJQZs2beDs7IyIiIga118UFBQgLCwMjo6O8PDwwGuvvYbKysqGlEJEzVS9Q+rw4cP44IMP0LNnT1n79OnTsXXrVqSmpmLPnj04f/48Ro0aJU2vqqpCWFgYbty4gQMHDmDt2rVISUnB3Llz678VRNR8iXooLy8Xvr6+IiMjQwwYMEBMmzZNCCFEaWmpsLW1FampqdK8eXl5AoDIzMwUQgiRlpYmrKyshF6vl+ZJTk4WLi4uoqKiok79l5WVCQCirKysPuUT1cu1a9fEiRMnxLVr1yxdiiLc7fNozN/Reu1JxcTEICwsTPataQDIycnBzZs3Ze3du3eHt7e39G3qzMxMBAYGyr7MGBoaCoPBgOPHj9faX0VFBQwGg+xFRC2DyRdzrl+/Ht9//z0OHz5cY5per4ednR1cXV1l7bd+m1qv19f6bevqabVJSEjAggULTC2ViJoBk/akCgsLMW3aNHz++edmvZgtPj4eZWVl0quwsNBsfRORZZm0J5WTk4Pi4mI8/PDDUltVVRX27t2LFStWYOfOnbhx4wZKS0tle1O3fptaq9Xi0KFDsvVWn/270zeu1Wo11Gq1KaUSmVVedz+z9eV3Ms9sfSmBSXtSgwcPRm5uLo4cOSK9+vTpg7Fjx0r/trW1lX2b+tSpUygoKJC+Ta3T6ZCbm4vi4mJpnoyMDLi4uMDf37+RNouIbpWcnIyePXvCxcUFLi4u0Ol02LFjhzS9LpcOWYpJe1KtWrVCQECArM3JyQlt2rSR2idNmoS4uDi4ubnBxcUFL7/8MnQ6Hfr27QsAGDp0KPz9/TF+/HgkJSVBr9dj9uzZiImJ4d4SURNp164dEhMT4evrCyEE1q5di/DwcPzwww/o0aMHpk+fju3btyM1NRUajQaxsbEYNWoU9u/fb+nSG/8uCO+++y6srKwQERGBiooKhIaG4v3335emW1tbY9u2bYiOjoZOp4OTkxMiIyOxcOHCxi6FiP7fiBEjZO8XL16M5ORkHDx4EO3atcPq1auxbt06PPHEEwCANWvWwM/PDwcPHpR2MCylwSG1e/du2Xt7e3usXLnyjo/OAQAfHx+kpaU1tGsiqoeqqiqkpqbiypUr0Ol097x06L4PKSK6P+Tm5kKn0+H69etwdnbGpk2b4O/vjyNHjtzz0iFLYkgRtRDdunXDkSNHUFZWho0bNyIyMhJ79uyxdFn3xJAiaiHs7OzQpUsXAEBQUBAOHz6M9957D88///w9Lx2yJN6qhaiFMhqNqKioQFBQ0D0vHbIk7kkRtQDx8fEYNmwYvL29UV5ejnXr1mH37t3YuXMnNBrNPS8dsiSGFFEjUPpV4MXFxZgwYQIuXLgAjUaDnj17YufOnRgyZAiAe186ZEl8EANRHfFBDHJ8EAMRERhSRKRwDCkiUjSGFBEpGkOKyET34bmmJmGuz4EhRVRHtra2AICrV69auBJlqP4cqj+XpsLrpIjqyNraGq6urtINGx0dHaFSqSxclfkJIXD16lUUFxfD1dUV1tbWTdofQ4rIBNXfZbv1zrItlaurq1m+28eQIjKBSqVC27Zt4eHhgZs3b1q6HIuxtbVt8j2oagwponqwtrY22y9pS8eBcyJSNIYUESkaQ4qIFI0hRUSKxpAiIkVjSBGRopkUUo3xqOaCggKEhYXB0dERHh4eeO2111BZWdk4W0NEzY5JIVX9qOacnBxkZ2fjiSeeQHh4OI4fPw4AmD59OrZu3YrU1FTs2bMH58+fx6hRo6Tlq6qqEBYWhhs3buDAgQNYu3YtUlJSMHfu3MbdKiJqPkQDtW7dWnz00UeitLRU2NraitTUVGlaXl6eACAyMzOFEEKkpaUJKysrodfrpXmSk5OFi4uLqKioqHOfZWVlAoAoKytraPlE1AQa83e03mNSVVVVWL9+fZ0f1QwAmZmZCAwMhKenpzRPaGgoDAaDtDdWm4qKChgMBtmLiFoGk0MqNzcXzs7OUKvVeOmll6RHNev1+ns+qlmv18sCqnp69bQ7SUhIgEajkV7t27c3tWwiuk+ZHFLVj2rOyspCdHQ0IiMjceLEiaaoTRIfH4+ysjLpVVhY2KT9EZFymPwF44Y8qlmr1eLQoUOy9VWf/bvbLR/UajXUarWppRJRM9Dg66RMeVSzTqdDbm6u7F48GRkZcHFxgb+/f0NLIaJmyKQ9qYY+qnno0KHw9/fH+PHjkZSUBL1ej9mzZyMmJoZ7SkRUK5NCqqGPara2tsa2bdsQHR0NnU4HJycnREZGYuHChY27VUTUbPAx60TU6PiYdSJqMRhSRKRoDCkiUjSGFBEpGkOKiBSNIUVEisaQIiJFY0gRkaIxpIhI0RhSRKRoDCkiUjSGFBEpGkOKiBSNIUVEisaQIiJFY0gRkaIxpIhI0RhSRKRoDCkiUjSGFBEpGkOKiBSNIUVEisaQIiJFM+nhoAkJCfjyyy9x8uRJODg44C9/+QveeustdOvWTZrn+vXr+Pvf/47169fLHhDq6ekpzVNQUIDo6Gh89913cHZ2RmRkJBISEmBjY1I5LUKHWdvN3ue5xDCz90l0JybtSe3ZswcxMTE4ePAgMjIycPPmTQwdOhRXrlyR5pk+fTq2bt2K1NRU7NmzB+fPn8eoUaOk6VVVVQgLC8ONGzdw4MABrF27FikpKZg7d27jbRURNRsNeoJxSUkJPDw8sGfPHvTv3x9lZWVwd3fHunXr8MwzzwAATp48CT8/P2RmZqJv377YsWMHnnrqKZw/f17au1q1ahVmzpyJkpIS2NnZ3bPflvQEY+5J0f1IMU8wLisrAwC4ubkBAHJycnDz5k2EhIRI83Tv3h3e3t7IzMwEAGRmZiIwMFB2+BcaGgqDwYDjx4/X2k9FRQUMBoPsRUQtQ71Dymg04tVXX8Vjjz2GgIAAAIBer4ednR1cXV1l83p6ekKv10vz3BpQ1dOrp9UmISEBGo1GerVv376+ZRPRfabeIRUTE4Njx45h/fr1jVlPreLj41FWVia9CgsLm7xPIlKGep1Oi42NxbZt27B37160a9dOatdqtbhx4wZKS0tle1NFRUXQarXSPIcOHZKtr6ioSJpWG7VaDbVaXZ9SqT7mayzQZ5n5+6T7gkl7UkIIxMbGYtOmTfj222/RsWNH2fSgoCDY2tpi165dUtupU6dQUFAAnU4HANDpdMjNzUVxcbE0T0ZGBlxcXODv79+QbSGiZsikPamYmBisW7cOW7ZsQatWraQxJI1GAwcHB2g0GkyaNAlxcXFwc3ODi4sLXn75Zeh0OvTt2xcAMHToUPj7+2P8+PFISkqCXq/H7NmzERMTw70lIqrBpJBKTk4GAAwcOFDWvmbNGkRFRQEA3n33XVhZWSEiIkJ2MWc1a2trbNu2DdHR0dDpdHByckJkZCQWLlzYsC0homapQddJWQqvk2pa5+z/avY+OSbVvCjmOikioqbGL8uRIgSuDTR7n7mRuWbvk0zHPSkiUjSGFBEpGkOKiBSNIUVEisaBc2qx8rr7mb1Pv5N5Zu/zfsc9KSJSNIYUESkaQ4qIFI0hRUSKxpAiIkVjSBGRojGkiEjRGFJEpGgMKSJSNIYUESkaQ4qIFI0hRUSKxpAiIkVjSBGRojGkiEjRGFJEpGgmh9TevXsxYsQIeHl5QaVSYfPmzbLpQgjMnTsXbdu2hYODA0JCQnD69GnZPJcuXcLYsWPh4uICV1dXTJo0CZcvX27QhhBR82RySF25cgW9evXCypUra52elJSEZcuWYdWqVcjKyoKTkxNCQ0Nx/fp1aZ6xY8fi+PHjyMjIwLZt27B3715MmTKl/ltBRM2WybcPHjZsGIYNG1brNCEEli5ditmzZyM8PBwA8Mknn8DT0xObN2/G6NGjkZeXh/T0dBw+fBh9+vQBACxfvhzDhw/H22+/DS8vrwZsDhE1N406JpWfnw+9Xo+QkBCpTaPRIDg4GJmZmQCAzMxMuLq6SgEFACEhIbCyskJWVlat662oqIDBYJC9iKhlaNSQ0uv1AABPT09Zu6enpzRNr9fDw8NDNt3GxgZubm7SPLdLSEiARqORXu3bt2/MsolIwe6Ls3vx8fEoKyuTXoWFhZYuiYjMpFFDSqvVAgCKiopk7UVFRdI0rVaL4uJi2fTKykpcunRJmud2arUaLi4ushcRtQyNGlIdO3aEVqvFrl27pDaDwYCsrCzodDoAgE6nQ2lpKXJycqR5vv32WxiNRgQHBzdmOUTUDJh8du/y5cs4c+aM9D4/Px9HjhyBm5sbvL298eqrr2LRokXw9fVFx44dMWfOHHh5eWHkyJEAAD8/Pzz55JOYPHkyVq1ahZs3byI2NhajR4/mmT0iqsHkkMrOzsagQYOk93FxcQCAyMhIpKSk4PXXX8eVK1cwZcoUlJaWol+/fkhPT4e9vb20zOeff47Y2FgMHjwYVlZWiIiIwLJlyxphc4iouVEJIYSlizCVwWCARqNBWVlZsx+f6jBru9n7PGf/V7P3GdjR2+x9fpFQafY+W8pj1hvzd/S+OLtHRC0XQ4qIFI0hRUSKxpAiIkVjSBGRojGkiEjRGFJEpGgMKSJSNIYUESkaQ4qIFI0hRUSKxpAiIkVjSBGRojGkiEjRGFJEpGgMKSJSNIYUESkaQ4qIFI0hRUSKxpAiIkVjSBGRojGkiEjRGFJEpGgWC6mVK1eiQ4cOsLe3R3BwMA4dOmSpUohIwSwSUhs2bEBcXBzmzZuH77//Hr169UJoaCiKi4stUQ4RKZhFQuqdd97B5MmTMXHiRPj7+2PVqlVwdHTExx9/bIlyiEjBbMzd4Y0bN5CTk4P4+HipzcrKCiEhIcjMzKx1mYqKClRUVEjvy8rKAPz5KOfmzlhx1ex9GlTC7H1WXasye5+Xq8zfZ0v4mQX+u51CNPxnyewh9fvvv6Oqqgqenp6ydk9PT5w8ebLWZRISErBgwYIa7e3bt2+SGls6jUV6zTN7j4+avUcAGst8upZSXl4OTQO32ewhVR/x8fGIi4uT3huNRly6dAlt2rSBSqWyYGXUGAwGA9q3b4/CwkK4uLhYuhxqBEIIlJeXw8vLq8HrMntIPfDAA7C2tkZRUZGsvaioCFqtttZl1Go11Gq1rM3V1bWpSiQLcXFxYUg1Iw3dg6pm9oFzOzs7BAUFYdeuXVKb0WjErl27oNPpzF0OESmcRQ734uLiEBkZiT59+uDRRx/F0qVLceXKFUycONES5RCRglkkpJ5//nmUlJRg7ty50Ov1eOihh5Cenl5jMJ1aBrVajXnz5tU4pCcCAJVojHOERERNhN/dIyJFY0gRkaIxpIhI0RhSRKRoDCkiUjSGFBEpGkOKzO7EiROYOnUqevfujbZt26Jt27bo3bs3pk6dihMnTli6PFIYXidFZrVjxw6MHDkSDz/8MEJDQ6ULeIuKipCRkYGcnBxs2bIFoaGhFq6UlIIhRWbVq1cvhIeHY+HChbVOnz9/Pr788kv8+OOPZq6MlIohRWbl4OCAI0eOoFu3brVOP3XqFB566CFcu3bNzJWRUnFMisyqQ4cO2L59+x2nb9++HT4+PmasiJTuvrjpHTUfCxcuxF//+lfs3r0bISEhsjGpXbt2IT09HevWrbNwlaQkPNwjsztw4ACWLVuGzMxM6PV6AIBWq4VOp8O0adN4XzGSYUgRkaJxTIqIFI0hRYryxhtv4G9/+5ulyyAF4cA5Kcpvv/2GwsJCS5dBCsIxKVIEIQQfT0a14uEeKYJarUZenvkfEErKx8M9MqtbH/J6q6qqKiQmJqJNmzYAgHfeececZZGCMaTIrJYuXYpevXrVeLirEAJ5eXlwcnLiYR/JcEyKzCoxMREffvghPvroIzzxxBNSu62tLY4ePQp/f38LVkdKxDEpMqtZs2Zhw4YNiI6OxowZM3Dz5k1Ll0QKx5Ais3vkkUeQk5ODkpIS9OnTB8eOHeMhHt0Rx6TIIpydnbF27VqsX78eISEhqKqqsnRJpFAckyKL+/XXX5GTk4OQkBA4OTlZuhxSGIYUESkax6SISNEYUkSkaAwpIlI0hhQpWkpKSo2r06llYUgRkaIxpIhI0RhS1GgGDhyI2NhYxMbGQqPR4IEHHsCcOXNQfZXLH3/8gQkTJqB169ZwdHTEsGHDcPr0adk6UlJS4O3tDUdHRzz99NO4ePGibPrRo0cxaNAgtGrVCi4uLggKCkJ2drbZtpHMjyFFjWrt2rWwsbHBoUOH8N577+Gdd97BRx99BACIiopCdnY2vvrqK2RmZkIIgeHDh0vf38vKysKkSZMQGxuLI0eOYNCgQVi0aJFs/WPHjkW7du1w+PBh5OTkYNasWbC1tTX7dpIZCaJGMmDAAOHn5yeMRqPUNnPmTOHn5yd++uknAUDs379fmvb7778LBwcH8cUXXwghhBgzZowYPny4bJ3PP/+80Gg00vtWrVqJlJSUpt0QUhTuSVGj6tu3r+zLwjqdDqdPn8aJEydgY2OD4OBgaVqbNm3QrVs36Y6ceXl5sunVy98qLi4OL7zwAkJCQpCYmIiff/65CbeGlIAhRfeV+fPn4/jx4wgLC8O3334Lf39/bNq0ydJlURNiSFGjysrKkr0/ePAgfH194e/vj8rKStn0ixcv4tSpU9KN7vz8/Gpd/nZdu3bF9OnT8fXXX2PUqFFYs2ZNE2wJKQVDihpVQUEB4uLicOrUKfzrX//C8uXLMW3aNPj6+iI8PByTJ0/Gvn37cPToUYwbNw4PPvggwsPDAQCvvPIK0tPT8fbbb+P06dNYsWIF0tPTpXVfu3YNsbGx2L17N3755Rfs378fhw8fhp+fn6U2l8zB0oNi1HwMGDBATJ06Vbz00kvCxcVFtG7dWrzxxhvSQPqlS5fE+PHjhUajEQ4ODiI0NFT89NNPsnWsXr1atGvXTjg4OIgRI0aIt99+Wxo4r6ioEKNHjxbt27cXdnZ2wsvLS8TGxopr166Ze1PJjHirFmo0AwcOxEMPPYSlS5dauhRqRni4R0SKxpAiIkXj4R4RKRr3pIhI0RhSRKRoDCkiUjSGFBEpGkOKiBSNIUVEisaQIiJFY0gRkaIxpIhI0f4PDV//YLJK+FAAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "column = 'initindexes'\n",
+ "if df_time[column].max() > 0:\n",
+ " df_tpx_pivot.plot.bar(column=column, figsize=(3,3), grid=False)\n",
+ " plt.title('Throughput '+column+' [Gb/h]')\n",
+ " plt.suptitle('')\n",
+ " plt.ylim(0, df_tpx[column].max()*1.1)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Plot Constraints"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAATcAAAFECAYAAABClHldAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAuqklEQVR4nO3deVQUZ7oG8KcRaNbuFkSQCEhcIbhETJSogWgrUcdBZeIyGHEZTVQ00ZtEceJGYlDjKK6oiaNmRqKS647BEAwyUVzAcVdcIspoWKICCooI3/0jlxpbUAF7geL5nVPn2F9tbzXdj1VfVVcphBACREQyY2bqAoiIDIHhRkSyxHAjIlliuBGRLDHciEiWGG5EJEsMNyKSJYYbEckSw42IZKnWhFtSUhIUCgW+++47U5dSIxkZGVAoFFi0aJGpS6mSgIAABAQE1GjekSNHolmzZnqtR27mzJkDhUJh6jIA/PezWT686Hds5MiRsLOzq/H85e/Nb7/99txpNRqNVHdYWFi11mPQcHv8DX3WkJSUZMgy6oW9e/dizpw5Jll3UVER5syZU6f+jrW55kOHDmHOnDnIy8vT63LHjRuHf/zjH3j99dcrjLt69SrCwsLQqlUr2NjYwMbGBt7e3pg4cSJOnTr1wuv+n//5H3h7e1d7vrVr1+If//hHjdZpXqO5qujJor755hskJCRUaPfy8sL58+cNWYrs7d27FytXrqxywP3www81XtdXX32FsrIy6XVRURHmzp0LADXeGzQ2Q9f86aefYvr06TWa99ChQ5g7dy5GjhwJjUajt5r8/PwwfPjwCu179uzBkCFDYG5ujpCQELRv3x5mZma4cOECtm3bhujoaFy9ehUeHh41XndcXBz69+9f7fkGDx4MAHj33XerPa9Bw+3JN/Lw4cNISEio9A1+0XArKiqCjY3NCy2jPrG0tKzxvBYWFnqspG4oLCyEra1tlac3NzeHublBv156ceXKFQwdOhQeHh5ITExEkyZNdMYvWLAAq1atgplZzQ/yfvnlF6Snp2P16tUvWm611Jo+t3JlZWWYN28emjZtCisrK/Ts2ROXL1/WmSYgIAA+Pj5IS0vDm2++CRsbG8yYMQMAkJOTgzFjxsDZ2RlWVlZo3749Nm7cqDN/ef/ek4ck5X0TGzZs0GmPjY2Ft7c3rKys4OPjg+3btz+z32nt2rVo3rw5lEolXnvtNRw7dkxnfHmfxS+//ILAwEDY2trC1dUVERERePwmLVWtc+TIkVi5ciUA3a6AZ3myz618XVu3bn3u+//4tmdkZMDJyQkAMHfuXGndj+9BXrhwAYMHD4aTkxOsra3RunVr/PWvf9VZ5r///W/06dMHKpUKdnZ26NmzJw4fPqwzzYYNG6BQKHDw4EFMnToVTk5OsLW1xcCBA5Gbm6szbWpqKgIDA9GoUSNYW1vD09MTo0ePrlLN5X+fK1euoG/fvrC3t0dISAgA4F//+hfeeecduLu7Q6lUws3NDVOmTMH9+/d11l9Zn1t5v9GOHTvg4+MDpVKJV155BfHx8TrzffzxxwAAT09PqbaMjAwAQEJCArp16waNRgM7Ozu0bt1a+uzXxMKFC1FYWIj169dXCDbg95CePHky3NzcKox73ue3XFxcHNRqNbp166bTnpeXJ+2dqtVqjBo1CkVFRTXelgq1621JejJ//nyYmZnho48+Qn5+PhYuXIiQkBAcOXJEZ7pbt26hT58+GDp0KIYPHw5nZ2fcv38fAQEBuHz5MsLCwuDp6YnY2FiMHDkSeXl5+OCDD6pdT1xcHIYMGYK2bdsiMjISd+7cwZgxY/DSSy9VOn1MTAzu3r2L9957DwqFAgsXLsSgQYPwyy+/6OzxlJaW4u2330aXLl2wcOFCxMfHY/bs2Xj06BEiIiKqVeN7772HmzdvVnrIX11Vff/LOTk5ITo6GuPHj8fAgQMxaNAgAEC7du0AAKdOnUL37t1hYWGBcePGoVmzZrhy5Qp2796NefPmAQDOnj2L7t27Q6VS4ZNPPoGFhQXWrFmDgIAAHDhwAJ07d9ZZ56RJk9CwYUPMnj0bGRkZiIqKQlhYGLZs2QLg9//gevfuDScnJ0yfPh0ajQYZGRnYtm1blWoGgEePHiEwMBDdunXDokWLpKOC2NhYFBUVYfz48XB0dMTRo0exfPly/Oc//0FsbOxz39+ff/4Z27Ztw4QJE2Bvb49ly5YhODgY169fh6OjIwYNGoSLFy/i22+/xZIlS9CoUSOp5rNnz+IPf/gD2rVrh4iICCiVSly+fBkHDx6s2h+3Env27EGLFi0qvMfPU53P7969e9GrV68Ke7KDBw+Gp6cnIiMjcfz4cXz99ddo3LgxFixYUOPt0SGMaOLEieJpq/zpp58EAOHl5SWKi4ul9qVLlwoA4vTp01Kbv7+/ACBWr16ts4yoqCgBQPzzn/+U2h4+fCj8/PyEnZ2dKCgo0FnXTz/9pDP/1atXBQCxfv16qa1t27aiadOm4u7du1JbUlKSACA8PDwqzOvo6Chu374tte/cuVMAELt375baQkNDBQAxadIkqa2srEz069dPWFpaitzc3GrX+az3tjL+/v7C399fel2d9z80NFRn23NzcwUAMXv27ArrefPNN4W9vb24du2aTntZWZn07wEDBghLS0tx5coVqe3mzZvC3t5evPnmm1Lb+vXrBQCh1Wp15p8yZYpo0KCByMvLE0IIsX37dgFAHDt27Knb/6yay/8+06dPrzCuqKioQltkZKRQKBQ62zh79uwKfw8AwtLSUly+fFlqO3nypAAgli9fLrV9+eWXAoC4evWqzvxLliwRAKTPR1VV9nkRQoj8/HwBQAwYMKDCPHfu3BG5ubnS8Ph2V/XzK4QQhYWFwsrKSmfd5e/N6NGjddY5cOBA4ejoWOk2ABATJ06szmaLWndYOmrUKJ3+oO7duwP4fRf4cUqlEqNGjdJp27t3L1xcXDBs2DCpzcLCApMnT8a9e/dw4MCBatVy8+ZNnD59GiNGjNA59e3v74+2bdtWOs+QIUPQsGHD59YPQOfUdvkhy8OHD/Hjjz9Wq059qur7XxW5ublITk7G6NGj4e7urjOu/JCttLQUP/zwAwYMGICXX35ZGt+kSRP8+c9/xs8//4yCggKdeceNG6dzyNe9e3eUlpbi2rVrACB1wu/ZswclJSXVrrvc+PHjK7RZW1tL/y4sLMRvv/2GN954A0II/Pvf/37uMrVaLZo3by69bteuHVQqVZXe3/Lt2rlzp84JnZoqf18ru6wjICAATk5O0lDe7fG4qnx+9+/fj+LiYvTp06fC/O+//77O6+7du+PWrVsV/t41VevC7ckvQXlQ3LlzR6f9pZdeqtApfu3aNbRs2bJC56eXl5c0vjrKp2/RokWFcZW1AVWv38zMTOfLDACtWrUCAKl/xRSqWn9VlH9hfXx8njpNbm4uioqK0Lp16wrjvLy8UFZWhszMzGrV6O/vj+DgYMydOxeNGjVCUFAQ1q9fj+Li4irXbm5ujqZNm1Zov379OkaOHAkHBwfY2dnByckJ/v7+AID8/PznLvfJ2svrr8r7O2TIEHTt2hV/+ctf4OzsjKFDh2Lr1q01Djp7e3sAwL179yqMW7NmDRISEvDPf/6z0nmr+vmNi4tDp06d4OzsXGEZ+vysVVqjXpaiRw0aNKi0XTzRUfn4/6DV9bTO9tLS0hovs1xV668KQ9b5NPqs31CeV2P5haopKSkICwvDjRs3MHr0aPj6+lb6Ra6MUqms8J9kaWkpevXqhbi4OEybNg07duxAQkKCdGKnKiHzIu+vtbU1kpOT8eOPP+Ldd9/FqVOnMGTIEPTq1atGnwm1Wo0mTZrgzJkzFcZ17twZWq0WXbt2rfZyH7d371707du30nGG/qzVunB7ER4eHrh06VKFD9mFCxek8cB//4d48iLJJ/fsyqd/8mzh09qqo6ysrMKhyMWLFwFAOhNZ1TqBpwehMTxt3eX/s1f25Snn5OQEGxsbpKenVxh34cIFmJmZVXqmriq6dOmCefPmITU1FZs2bcLZs2exefPmZ9b8LKdPn8bFixfxt7/9DdOmTUNQUBC0Wi1cXV1rVN/TPKs2MzMz9OzZE4sXL8a5c+cwb9487N+/Hz/99FON1tWvXz9cvnwZR48erdZ8Vfn8njlzBtevX0e/fv1qVNuLklW49e3bF1lZWdJZM+D3s17Lly+HnZ2ddPjg4eGBBg0aIDk5WWf+VatW6bx2dXWFj48PvvnmG53/8Q8cOIDTp0+/cL0rVqyQ/i2EwIoVK2BhYYGePXtWq04A0jVY+r6qvSrKzyQ+uW4nJye8+eab+Pvf/47r16/rjCv/37lBgwbo3bs3du7cqXM4k52djZiYGHTr1g0qlapa9dy5c6fC//4dOnQAAOnQ9Gk1P0v5nsbjyxZCYOnSpdWq73me9re8fft2hWmf3K7q+uSTT2BjY4PRo0cjOzu7wvhn7UU97/O7d+9eODs7o1OnTjWq7UXVuktBXsS4ceOwZs0ajBw5EmlpaWjWrBm+++47HDx4EFFRUVIfg1qtxjvvvIPly5dDoVCgefPm2LNnD3Jycios84svvkBQUBC6du2KUaNG4c6dO1ixYgV8fHyqfIhTGSsrK8THxyM0NBSdO3fG999/j7i4OMyYMUO6Bqs6dfr6+gIAJk+ejMDAQDRo0ABDhw6tcX3VYW1tDW9vb2zZsgWtWrWCg4MDfHx84OPjg2XLlqFbt27o2LEjxo0bB09PT2RkZCAuLg4nTpwAAHz++efS9VsTJkyAubk51qxZg+LiYixcuLDa9WzcuBGrVq3CwIED0bx5c9y9exdfffUVVCqVdIj0rJqfpk2bNmjevDk++ugj3LhxAyqVCv/7v/+rtz6icuV/y7/+9a8YOnQoLCws0L9/f0RERCA5ORn9+vWDh4cHcnJysGrVKjRt2rTCNWRV1bJlS8TExGDYsGFo3bq19AsFIQSuXr2KmJgYmJmZVeh/rMrnNy4uDn369DHdUUW1zq2+oKpcChIbG6vTXtlpbH9/f/HKK69Uupzs7GwxatQo0ahRI2FpaSnatm1b4RS4EL9fChAcHCxsbGxEw4YNxXvvvSfOnDlT6SnzzZs3izZt2gilUil8fHzErl27RHBwsGjTpk2FOr/88ssK68ITlxyEhoYKW1tbceXKFdG7d29hY2MjnJ2dxezZs0VpaWmN6nz06JGYNGmScHJyEgqF4rmXhTztUpCqvP9PXgoihBCHDh0Svr6+wtLSssL2njlzRgwcOFBoNBphZWUlWrduLWbOnKkz//Hjx0VgYKCws7MTNjY24q233hKHDh3Smab8UpAnL/F48pKZ48ePi2HDhgl3d3ehVCpF48aNxR/+8AeRmppapZrL/z6VOXfunNBqtcLOzk40atRIjB07Vrqco7LLHR6Hp1zO4OHhIUJDQ3XaPvvsM/HSSy8JMzMz6bKQxMREERQUJFxdXYWlpaVwdXUVw4YNExcvXqy01nJPuxTkcZcvXxbjx48XLVq0EFZWVsLa2lq0adNGvP/+++LEiRM601bl85uXlyfMzc3F1q1bK6yr/L158pKW8r/vk5fACFGzS0GMGm5y0r59e6HVams077O+PET6Vh5uy5cvF7m5uTrXMRrKli1bhLm5uXTtYU3dunVLuiaxzl/nVtuUlJTg0aNHOm1JSUk4efJknfmROBHw+y87nJycsGvXLoOvS6PRYNmyZVCr1S+0nJdfflk6zK0uWfW5GcKNGzeg1WoxfPhwuLq64sKFC1i9ejVcXFwqXIRIVBu5uLggISFBev34z8wMpXfv3npZzs6dO6ULsat71pzh9hwNGzaEr68vvv76a+Tm5sLW1hb9+vXD/Pnz4ejoaOryiJ7LysoKWq3W1GXUSPkVDjWhEKIWXZ1JRKQn7HMjIlliuBGRLNXJPreysjLcvHkT9vb2teYhHET0X0II3L17F66uri90F98XUSfD7ebNmzX+vSERGU9mZmald1cxhjoZbuU/o8rMzKz27w7rGp/Z+4y+zjNWY4y+zi4exv8CbPzbo+dPpGet01KNvk5TKCgogJubm/RdNYU6GW7lh6IqlUr24WamNP5Db1RK4x/qN7Cu/PY3hmTXwPgXCsj98/okU3Yb8YQCEckSw42IZInhRkSyVCf73IhMTVhZQWg0QDX7lB48eGCYgozMwsLiqbcJry0YbkTVIBQKPPrjHyEC/KGwsKh2uF29etVAlRmfRqOBi4tLrb3WlOFGVA2P/vhHKPr0gVNDDawUClT3a23l6WmQuoxJCIGioiLpjtCVPam+NmC4EVWRsLaGCPCHU0MNNDU8JLOystJzVaZR/vS5nJwcNG7cuFYeovKEAlEVCbUaCgsLWNXSwzBjK3/Izos8+NqQGG5EVaVQADU4FJWr2trXVo7hRkSyxHAjIlliuBHVUrm5uRg/fjzc3d2hVCrh4uKCwMBAHDx4EMDvT3ZXKBQ6g6nuwFEb8WwpUS0VHByMhw8fYuPGjXj55ZeRnZ2NxMRE3Lp1S5omIiICY8eOlV7XxrOWpsJwI6qF8vLy8K9//QtJSUnSQ1I8PDzw+uuv60xnb28PFxcXU5RY6/GwlKgWsrOzg52dHXbs2IHi4mJTl1MnMdyIaiFzc3Ns2LABGzduhEajQdeuXTFjxgycOnVKZ7pp06ZJQWhnZ4dly5aZqOLah+FGVEsFBwfj5s2b2LVrF95++20kJSWhY8eO2LBhgzTNxx9/jBMnTkjDiBEjTFdwLcNwI6rFrKys0KtXL8ycOROHDh3CyJEjMXv2bGl8o0aN0KJFC2nQaDSmK7aWYbgR1SHe3t4oLCw0dRl1As+WEtVCt27dwjvvvIPRo0ejXbt2sLe3R2pqKhYuXIigoCBTl1cnMNyIaiE7Ozt07twZS5YswZUrV1BSUgI3NzeMHTsWM2bMMHV5dUK1D0uTk5PRv39/uLq6QqFQYMeOHdK4kpISTJs2DW3btoWtrS1cXV0xYsQI3Lx5U2cZt2/fRkhICFQqFTQaDcaMGYN79+698MYQyYVSqURkZCTS0tKQl5eHwsJCXLhwAZ999pl0u6GMjAx8+OGHpi20Fqt2uBUWFqJ9+/ZYuXJlhXFFRUU4fvw4Zs6ciePHj2Pbtm1IT0/HH//4R53pQkJCcPbsWSQkJGDPnj1ITk7GuHHjar4VRERPqPZhaZ8+fdCnT59Kx6nVaiQkJOi0rVixAq+//jquX78Od3d3nD9/HvHx8Th27Bg6deoEAFi+fDn69u2LRYsWwdXVtQabQUSky+BnS/Pz86FQKKRT1CkpKdBoNFKwAYBWq4WZmRmOHDlS6TKKi4tRUFCgMxARPYtBw+3BgweYNm0ahg0bJj1pOysrC40bN9aZztzcHA4ODsjKyqp0OZGRkVCr1dLg5uZmyLKJSAYMFm4lJSUYPHgwhBCIjo5+oWWFh4cjPz9fGjIzM/VUJRHJlUEuBSkPtmvXrmH//v3SXhsAuLi4SE/NKffo0SPcvn37qXc3UCqVUCqVhiiViGRK73tu5cF26dIl/Pjjj3B0dNQZ7+fnh7y8PKSlpUlt+/fvR1lZGTp37qzvcoionqr2ntu9e/dw+fJl6fXVq1dx4sQJODg4oEmTJvjTn/6E48ePY8+ePSgtLZX60RwcHGBpaQkvLy+8/fbbGDt2LFavXo2SkhKEhYVh6NChPFNKRHpT7XBLTU3FW2+9Jb2eOnUqACA0NBRz5szBrl27AAAdOnTQme+nn35CQEAAAGDTpk0ICwtDz549YWZmhuDgYN6qhYj0qtrhFhAQACHEU8c/a1w5BwcHxMTEVHfVRERVxt+WEumB1z+vVXHKqk73dBnz+1V7nuTkZHz55ZdIS0vDr7/+iu3bt2PAgAEvXEttxlseEdUDz/rZpFxxz42oHnjWzyblintuRCRLDDcikiWGGxHJEsONiGSJ4UZEssSzpUT1wLN+Nunu7m7CygyH4UakB+eHe1RpOmsfHwNXUrln/Wzy8Yc8ywnDjageeN7PJuWIfW5EJEsMNyKSJYYbEckSw42IZInhRkSyxHAjIlliuBGRLDHciEiWGG5EJEsMNyKSJf78ikgPrL/rWrUJv9PDyubkV3uW6OhoREdHIyMjAwDwyiuvYNasWbK+9Xi199ySk5PRv39/uLq6QqFQYMeOHTrjhRCYNWsWmjRpAmtra2i1Wly6dElnmtu3byMkJAQqlQoajQZjxozBvXv3XmhDiOjpmjZtivnz5yMtLQ2pqano0aMHgoKCcPbsWVOXZjDVDrfnPUVn4cKFWLZsGVavXo0jR47A1tYWgYGBePDggTRNSEgIzp49i4SEBOzZswfJyckYN25czbeCiJ6pf//+6Nu3L1q2bIlWrVph3rx5sLOzw+HDh01dmsFU+7D0WU/REUIgKioKn376KYKCggAA33zzDZydnbFjxw4MHToU58+fR3x8PI4dO4ZOnToBAJYvX46+ffti0aJFcHV1fYHNIaLnKS0tRWxsLAoLC+Hn52fqcgxGrycUrl69iqysLGi1WqlNrVajc+fOSElJAQCkpKRAo9FIwQYAWq0WZmZmOHLkSKXLLS4uRkFBgc5ARNVz+vRp2NnZQalU4v3338f27dvh7e1t6rIMRq/hlpWVBQBwdnbWaXd2dpbGZWVloXHjxjrjzc3N4eDgIE3zpMjISKjVamlwc3PTZ9lE9ULr1q1x4sQJHDlyBOPHj0doaCjOnTtn6rIMpk5cChIeHo78/HxpyMzMNHVJRHWOpaUlWrRoAV9fX0RGRqJ9+/ZYunSpqcsyGL2Gm4uLCwAgOztbpz07O1sa5+LigpycHJ3xjx49wu3bt6VpnqRUKqFSqXQGInoxZWVlKC4uNnUZBqPXcPP09ISLiwsSExOltoKCAhw5ckTquPTz80NeXh7S0tKkafbv34+ysjJ07txZn+UQ0f8LDw9HcnIyMjIycPr0aYSHhyMpKQkhISGmLs1gqn229HlP0fnwww/x+eefo2XLlvD09MTMmTPh6uqKAQMGAAC8vLzw9ttvY+zYsVi9ejVKSkoQFhaGoUOH8kwp1Vn3/3SwStOZ6gExOTk5GDFiBH799Veo1Wq0a9cO+/btQ69evUxSjzFUO9ye9xSdTz75BIWFhRg3bhzy8vLQrVs3xMfHw8rKSppn06ZNCAsLQ8+ePWFmZobg4GAsW7ZMD5tDRJVZt26dqUswumqH2/OeoqNQKBAREYGIiIinTuPg4ICYmJjqrpqIqMrqxNlSIqLqYrgRkSwx3IhIlhhuRCRLDDcikiWGGxHJEsONiGSJ4UZEssRnKBDpwetpw6o2YdrzJ3me06GnX3wh9QD33IjqAX08+6SuYbgR1QP6ePZJXcPDUqJ64EWffVIXcc+NqJ6ryrNP6iKGG1E9V5Vnn9RFDDcikiWGG1E9V5Vnn9RFDDeieq4qzz6pi3i2lKgeeNFnn9RFDDciPTjq+22VpjPVA2L08eyTuobhRlQP6OPZJ3UN+9yISJYYbkQkSww3IpIlvYdbaWkpZs6cCU9PT1hbW6N58+b47LPPdI735XgHAiKqXfQebgsWLEB0dDRWrFiB8+fPY8GCBVi4cCGWL18uTSPHOxAQUe2i97Olhw4dQlBQEPr16wcAaNasGb799lscPXoUgHzvQEBEtYve99zeeOMNJCYm4uLFiwCAkydP4ueff5Zut1KTOxAUFxejoKBAZyAieha977lNnz4dBQUFaNOmDRo0aIDS0lLMmzcPISEhAGp2B4LIyEjMnTtX36USkYzpfc9t69at2LRpE2JiYnD8+HFs3LgRixYtwsaNG2u8zPDwcOTn50tDZmamHismIjnS+57bxx9/jOnTp0t9Z23btsW1a9cQGRmJ0NBQnTsQNGnSRJovOzsbHTp0qHSZSqUSSqVS36US6U3Gn94x2rq8Lpw32rrqMr3vuRUVFcHMTHexDRo0QFlZGQD53oGAqDaLjo5Gu3btoFKpoFKp4Ofnh++//14a/+DBA0ycOBGOjo6ws7NDcHBwhVsg1TV6D7f+/ftj3rx5iIuLQ0ZGBrZv347Fixdj4MCBAH7/DVv5HQh27dqF06dPY8SIEXX+DgREtVnTpk0xf/58pKWlITU1FT169EBQUBDOnj0LAJgyZQp2796N2NhYHDhwADdv3sSgQYNMXPWL0fth6fLlyzFz5kxMmDABOTk5cHV1xXvvvYdZs2ZJ08jxDgREtVn//v11Xs+bNw/R0dE4fPgwmjZtinXr1iEmJgY9evQAAKxfvx5eXl44fPgwunTpYoqSX5jew83e3h5RUVGIiop66jRyvAMBUV1RWlqK2NhYFBYWws/PD2lpaSgpKdG5PKtNmzZwd3dHSkoKw42IarfTp0/Dz88PDx48gJ2dHbZv3w5vb2+cOHEClpaW0Gg0OtPX9QfEMNyI6onWrVvjxIkTyM/Px3fffYfQ0FAcOHDA1GUZDMONqJ6wtLREixYtAAC+vr44duwYli5diiFDhuDhw4fIy8vT2XvjA2KIqE4qKytDcXExfH19YWFhoXN5Vnp6Oq5fv16nL8/inhtRPRAeHo4+ffrA3d0dd+/eRUxMDJKSkrBv3z6o1WqMGTMGU6dOhYODA1QqFSZNmgQ/P786ezIBYLgR6UWz72KrNJ2pHhCTk5ODESNG4Ndff4VarUa7du2wb98+9OrVCwCwZMkSmJmZITg4GMXFxQgMDMSqVatMUqu+MNyI6oF169Y9c7yVlRVWrlyJlStXGqkiw2OfGxHJEsONiGSJ4UZEssRwIyJZYrgRVZUQgBB4+nPb65dnPcG+NmC4EVWRIj8foqQED2r5l9pYioqKAAAWFhYmrqRyvBSEqIoU9+9DkXQAv/XpAzTUwEqhgKK6y5DB4yuFECgqKkJOTg40Gg0aNGhg6pIqxXAjqgbzXbvwCEBOgD8UFhaAonrxVlv3cmpCo9HU6t+eMtyIqkEhBCx27oTYtw9Co6l2uHl+v9cwhRmZhYVFrd1jK8dwI6oBxYMHUNTgXme827Tx8IQCEckSw42IZInhRkSyxHAjIlliuBGRLDHciEiWDBJuN27cwPDhw+Ho6Ahra2u0bdsWqamp0nghBGbNmoUmTZrA2toaWq0Wly5dMkQpRFRP6T3c7ty5g65du8LCwgLff/89zp07h7/97W9o2LChNM3ChQuxbNkyrF69GkeOHIGtrS0CAwPxQAY/TSGi2kHvF/EuWLAAbm5uWL9+vdTm6ekp/VsIgaioKHz66acICgoCAHzzzTdwdnbGjh07MHToUH2XRET1kN733Hbt2oVOnTrhnXfeQePGjfHqq6/iq6++ksZfvXoVWVlZ0Gq1UptarUbnzp2RkpJS6TKLi4tRUFCgMxARPYvew+2XX35BdHQ0WrZsiX379mH8+PGYPHkyNm7cCADI+v+frDg7O+vM5+zsLI17UmRkJNRqtTS4ubnpu2wikhm9h1tZWRk6duyIL774Aq+++irGjRuHsWPHYvXq1TVeZnh4OPLz86UhMzNTjxUTkRzpPdyaNGkCb29vnTYvLy9cv34dAKRbpGRnZ+tMk52d/dTbpyiVSqhUKp2BiOhZ9B5uXbt2RXp6uk7bxYsX4eHhAeD3kwsuLi5ITEyUxhcUFODIkSPw8/PTdzlEVE/p/WzplClT8MYbb+CLL77A4MGDcfToUaxduxZr164FACgUCnz44Yf4/PPP0bJlS3h6emLmzJlwdXXFgAED9F0OEdVTeg+31157Ddu3b0d4eDgiIiLg6emJqKgohISESNN88sknKCwsxLhx45CXl4du3bohPj6e97oiIr1RiNr+CJtKFBQUQK1WIz8/X/b9b82mxxl9nRlWfzb6Ott6uht9nVsjHxl9nV4Xzht9naZQG76j/G0pEckSw42IZInhRkSyxHAjIlliuBGRLDHciEiWGG5EJEsMNyKSJYYbEckSw42IZInhRkSyxHAjIlliuBGRLDHciEiWGG5EJEsMNyKSJYYbEckSw42IZInhRkSyxHAjIlliuBGRLDHciEiWGG5EJEsGD7f58+dLT5kv9+DBA0ycOBGOjo6ws7NDcHAwsrOzDV0KEdUjBg23Y8eOYc2aNWjXrp1O+5QpU7B7927ExsbiwIEDuHnzJgYNGmTIUoionjFYuN27dw8hISH46quv0LBhQ6k9Pz8f69atw+LFi9GjRw/4+vpi/fr1OHToEA4fPmyocoionjFYuE2cOBH9+vWDVqvVaU9LS0NJSYlOe5s2beDu7o6UlJRKl1VcXIyCggKdgYjoWcwNsdDNmzfj+PHjOHbsWIVxWVlZsLS0hEaj0Wl3dnZGVlZWpcuLjIzE3LlzDVEqEcmU3vfcMjMz8cEHH2DTpk2wsrLSyzLDw8ORn58vDZmZmXpZLhHJl97DLS0tDTk5OejYsSPMzc1hbm6OAwcOYNmyZTA3N4ezszMePnyIvLw8nfmys7Ph4uJS6TKVSiVUKpXOQET0LHo/LO3ZsydOnz6t0zZq1Ci0adMG06ZNg5ubGywsLJCYmIjg4GAAQHp6Oq5fvw4/Pz99l0NE9ZTew83e3h4+Pj46bba2tnB0dJTax4wZg6lTp8LBwQEqlQqTJk2Cn58funTpou9yiKieMsgJhedZsmQJzMzMEBwcjOLiYgQGBmLVqlWmKIWIZMoo4ZaUlKTz2srKCitXrsTKlSuNsXoiqof421IikiWGGxHJEsONiGSJ4UZEssRwIyJZYrgRkSwx3IhIlhhuRCRLDDcikiWGGxHJEsONiGSJ4UZEssRwIyJZYrgRkSwx3IhIlhhuRCRLDDcikiWGGxHJEsONiGSJ4UZEssRwIyJZYrgRkSwx3IhIlvQebpGRkXjttddgb2+Pxo0bY8CAAUhPT9eZ5sGDB5g4cSIcHR1hZ2eH4OBgZGdn67sUIqrH9B5uBw4cwMSJE3H48GEkJCSgpKQEvXv3RmFhoTTNlClTsHv3bsTGxuLAgQO4efMmBg0apO9SiKge0/sT5+Pj43Veb9iwAY0bN0ZaWhrefPNN5OfnY926dYiJiUGPHj0AAOvXr4eXlxcOHz6MLl266LskIqqHDN7nlp+fDwBwcHAAAKSlpaGkpARarVaapk2bNnB3d0dKSkqlyyguLkZBQYHOQET0LAYNt7KyMnz44Yfo2rUrfHx8AABZWVmwtLSERqPRmdbZ2RlZWVmVLicyMhJqtVoa3NzcDFk2EcmAQcNt4sSJOHPmDDZv3vxCywkPD0d+fr40ZGZm6qlCIpIrvfe5lQsLC8OePXuQnJyMpk2bSu0uLi54+PAh8vLydPbesrOz4eLiUumylEollEqloUolIhnS+56bEAJhYWHYvn079u/fD09PT53xvr6+sLCwQGJiotSWnp6O69evw8/PT9/lEFE9pfc9t4kTJyImJgY7d+6Evb291I+mVqthbW0NtVqNMWPGYOrUqXBwcIBKpcKkSZPg5+fHM6VEpDd6D7fo6GgAQEBAgE77+vXrMXLkSADAkiVLYGZmhuDgYBQXFyMwMBCrVq3SdylEVI/pPdyEEM+dxsrKCitXrsTKlSv1vXoiIgD8bSkRyRTDjYhkieFGRLLEcCMiWWK4EZEsMdyISJYYbkQkSww3IpIlhhsRyRLDjYhkieFGRLLEcCMiWWK4EZEsMdyISJYYbkQkSww3IpIlhhsRyRLDjYhkieFGRLLEcCMiWWK4EZEsMdyISJYYbkQkSyYLt5UrV6JZs2awsrJC586dcfToUVOVQkQyZJJw27JlC6ZOnYrZs2fj+PHjaN++PQIDA5GTk2OKcohIhkwSbosXL8bYsWMxatQoeHt7Y/Xq1bCxscHf//53U5RDRDJkbuwVPnz4EGlpaQgPD5fazMzMoNVqkZKSUuk8xcXFKC4ull7n5+cDAAoKCgxbbC1QVlxk9HUWKITR11l6v9To67xXavx11ofPLPDf7RTC+J+lckYPt99++w2lpaVwdnbWaXd2dsaFCxcqnScyMhJz586t0O7m5maQGus7tUnWet7oa3zd6GsEoDbNu2sqd+/ehdpE22z0cKuJ8PBwTJ06VXpdVlaG27dvw9HREQqFwoSVkT4UFBTAzc0NmZmZUKlUpi6H9EAIgbt378LV1dVkNRg93Bo1aoQGDRogOztbpz07OxsuLi6VzqNUKqFUKnXaNBqNoUokE1GpVAw3GTHVHls5o59QsLS0hK+vLxITE6W2srIyJCYmws/Pz9jlEJFMmeSwdOrUqQgNDUWnTp3w+uuvIyoqCoWFhRg1apQpyiEiGTJJuA0ZMgS5ubmYNWsWsrKy0KFDB8THx1c4yUD1g1KpxOzZsyt0PRC9CIUw5blaIiID4W9LiUiWGG5EJEsMNyKSJYYbEckSw42IZInhRkSyxHAjozt37hwmTJiAV199FU2aNEGTJk3w6quvYsKECTh37pypyyOZ4HVuZFTff/89BgwYgI4dOyIwMFC6cDs7OxsJCQlIS0vDzp07ERgYaOJKqa5juJFRtW/fHkFBQYiIiKh0/Jw5c7Bt2zacOnXKyJWR3DDcyKisra1x4sQJtG7dutLx6enp6NChA+7fv2/kykhu2OdGRtWsWTPExcU9dXxcXBw8PDyMWBHJVZ24WSXJR0REBP785z8jKSkJWq1Wp88tMTER8fHxiImJMXGVJAc8LCWjO3ToEJYtW4aUlBRkZWUBAFxcXODn54cPPviA9/UjvWC4EZEssc+NiGSJ4Ua1yowZMzB69GhTl0EywBMKVKvcuHEDmZmZpi6DZIB9blQrCCH4mEbSKx6WUq2gVCpx/rzxH8xM8sXDUjKqxx+u/bjS0lLMnz8fjo6OAIDFixcbsyySIYYbGVVUVBTat29f4aHaQgicP38etra2PDwlvWCfGxnV/PnzsXbtWnz99dfo0aOH1G5hYYGTJ0/C29vbhNWRnLDPjYxq+vTp2LJlC8aPH4+PPvoIJSUlpi6JZIrhRkb32muvIS0tDbm5uejUqRPOnDnDQ1HSO/a5kUnY2dlh48aN2Lx5M7RaLUpLS01dEskM+9zI5P7zn/8gLS0NWq0Wtra2pi6HZILhRkSyxD43IpIlhhsRyRLDjYhkieFGtdqGDRsq/JqBqCoYbkQkSww3IpIlhhvpTUBAAMLCwhAWFga1Wo1GjRph5syZKL/a6M6dOxgxYgQaNmwIGxsb9OnTB5cuXdJZxoYNG+Du7g4bGxsMHDgQt27d0hl/8uRJvPXWW7C3t4dKpYKvry9SU1ONto1UdzDcSK82btwIc3NzHD16FEuXLsXixYvx9ddfAwBGjhyJ1NRU7Nq1CykpKRBCoG/fvtLvS48cOYIxY8YgLCwMJ06cwFtvvYXPP/9cZ/khISFo2rQpjh07hrS0NEyfPh0WFhZG306qAwSRnvj7+wsvLy9RVlYmtU2bNk14eXmJixcvCgDi4MGD0rjffvtNWFtbi61btwohhBg2bJjo27evzjKHDBki1Gq19Nre3l5s2LDBsBtCssA9N9KrLl266PwI3s/PD5cuXcK5c+dgbm6Ozp07S+McHR3RunVr6Q6858+f1xlfPv/jpk6dir/85S/QarWYP38+rly5YsCtobqM4UZ1ypw5c3D27Fn069cP+/fvh7e3N7Zv327qsqgWYriRXh05ckTn9eHDh9GyZUt4e3vj0aNHOuNv3bqF9PR06QaVXl5elc7/pFatWmHKlCn44YcfMGjQIKxfv94AW0J1HcON9Or69euYOnUq0tPT8e2332L58uX44IMP0LJlSwQFBWHs2LH4+eefcfLkSQwfPhwvvfQSgoKCAACTJ09GfHw8Fi1ahEuXLmHFihWIj4+Xln3//n2EhYUhKSkJ165dw8GDB3Hs2DF4eXmZanOpNjN1px/Jh7+/v5gwYYJ4//33hUqlEg0bNhQzZsyQTjDcvn1bvPvuu0KtVgtra2sRGBgoLl68qLOMdevWiaZNmwpra2vRv39/sWjRIumEQnFxsRg6dKhwc3MTlpaWwtXVVYSFhYn79+8be1OpDuAtj0hvAgIC0KFDB0RFRZm6FCIelhKRPDHciEiWeFhKRLLEPTcikiWGGxHJEsONiGSJ4UZEssRwIyJZYrgRkSwx3IhIlhhuRCRLDDcikqX/A8K5NrJCkJTAAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "column = 'initconstraints'\n",
+ "if df_time[column].max() > 0:\n",
+ " df_tpx_pivot.plot.bar(column=column, figsize=(3,3), grid=False)\n",
+ " plt.title('Throughput '+column+' [Gb/h]')\n",
+ " plt.suptitle('')\n",
+ " plt.ylim(0, df_tpx[column].max()*1.1)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Plot Statistics"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAS4AAAFECAYAAACZL9N/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsRklEQVR4nO3de1xUZf4H8A/XARkYRLmGCN7Be1g4eQGRRDQXV7bU1RXIVRfFVHIr3byxtahrecVL5YqWroq/n2ZqGGlgKaLQ4j3vpoVcQrkIcn9+f+xr5ucIKIPDDMf5vF+vedWc2/M9w/DxnOc8nGMihBAgIpIQU0MXQESkLQYXEUkOg4uIJIfBRUSSw+AiIslhcBGR5DC4iEhyGFxEJDkMLiKSHEkFV0pKCkxMTLBnzx5Dl9Ikt27dgomJCVasWGHoUholICAAAQEBTVo3IiICnp6eOq2nuei61mf53LSl+p1QvTIyMp5pewEBAejRo0eT14+IiIBcLn/qcoWFhRp1a/s7YfDgerT4J71SUlIMXarkHTp0CIsXLzZI22VlZVi8eHGTf47r169HQkJCk9vPzs7G4sWLkZWV1eRtPOrixYtYvHgxbt26pZPtPav58+fj888/R4cOHerMO3v2LCIjI+Hl5QUrKyvI5XL06dMH77zzDm7cuPHMbYeFhWHEiBFarWNjY4PPP/8cK1eubFKb5k1aS4c+//xzjffbtm1DcnJynene3t64dOmSPkt77hw6dAjx8fGNDq9vvvmmyW19+umnqK2tVb8vKyvDkiVLAKBJRyPr169H27ZtERER0aR6srOzsWTJEnh6eqJPnz5PrLUxLl68iCVLliAgIKDO0dqzfG5N9eqrr9b7uX766aeIiopC27ZtMWHCBHTr1g3V1dU4f/48tm3bhlWrVuHhw4cwMzNrUrtVVVVITk5GXFycVutZWFhg4sSJuHXrFubMmaN1uwYProkTJ2q8P3nyJJKTk+tMB/DMwVVWVoZWrVo90zaMiaWlZZPXtbCw0GElzUvXtT7L56ZLJ06cQFRUFAYMGIADBw7A1tZWY/5HH32EDz/88Jna+P7771FSUoKRI0c+03a0ZfBTxaaora3Fhx9+CHd3d1hZWWHo0KG4du2axjKqc/XMzEwMHjwYrVq1wvz58wEAeXl5mDx5MpydnWFlZYXevXtj69atGuur+g4eP7VR9VM9ftqSmJgIHx8fWFlZoUePHti7d+8T+04++eQTdOzYETKZDC+99BJOnz6tMV/VV3Djxg0EBwfDxsYGbm5uiI2NxaM39GhsnREREYiPjwegeXr+JI/31aja2r1791M//0f3/datW3B0dAQALFmyRN226sgvJycHkZGRcHd3h0wmg6urK0JDQ9WnYZ6enrhw4QJSU1PV66rqunfvHubOnYuePXtCLpfDzs4OISEhOHPmjEbdL730EgAgMjJSvY1HP5vHf047d+6Er68vbG1tYWdnh549e2L16tUAgISEBLz++usAgCFDhtTpzqivj6u8vByLFy9Gly5dYGVlBVdXV4wZMwbXr19vVJtNofqst2/fXie0AMDKygp///vf6z3ayszMxCuvvAJra2t4eXlh48aN9bZx8OBB+Pj41Pn8fv31V4wePRpyuRyOjo6YO3cuampqmrwvjzP4EVdTLF26FKamppg7dy6KioqwfPlyTJgwAenp6RrLFRQUICQkBOPGjcPEiRPh7OyMhw8fIiAgANeuXUN0dDS8vLyQmJiIiIgIFBYWYtasWVrXc/DgQYwdOxY9e/ZEXFwc7t+/j8mTJ+OFF16od/kdO3agpKQE06ZNg4mJCZYvX44xY8bgxo0bGv/619TUYPjw4ejfvz+WL1+OpKQkLFq0CNXV1YiNjdWqxmnTpiE7O7ve03BtNfbzV3F0dMSGDRsQFRWF3//+9xgzZgwAoFevXgD+20dy4cIFzJw5E56ensjLy0NycjJu374NT09PrFq1CjNnzoRcLsff/vY3AICzszMA4MaNG9i3bx9ef/11eHl5ITc3F5s2bYK/vz8uXrwINzc3eHt7IzY2FgsXLsTUqVMxaNAgAMArr7xSb73JyckYP348hg4dimXLlgH479H+8ePHMWvWLAwePBhvvfUW1qxZg/nz58Pb2xsA1P99XE1NDV577TUcOXIE48aNw6xZs1BSUoLk5GScP38eHTt2fGqb2iorK8PRo0cREBAAd3d3rda9f/8+RowYgTfeeAPjx4/H7t27ERUVBUtLS7z55psayx46dAivvfZanf0NDg6Gn58fVqxYgW+//RYfffQROnbsiKioKK33pV6ihZkxY4ZoqKzvvvtOABDe3t6ioqJCPX316tUCgDh37px6mr+/vwAgNm7cqLGNVatWCQDiiy++UE+rrKwUSqVSyOVyUVxcrNHWd999p7H+zZs3BQCxZcsW9bSePXsKd3d3UVJSop6WkpIiAIj27dvXWbdNmzbi3r176ulffvmlACC++uor9bTw8HABQMycOVM9rba2VowcOVJYWlqK/Px8ret80mdbH39/f+Hv769+r83nHx4errHv+fn5AoBYtGiRRhv3798XAMQ///nPJ9bSvXt3jVpUysvLRU1Njca0mzdvCplMJmJjY9XTTp8+XefzaKjWWbNmCTs7O1FdXd1gPYmJifV+7kLU/dz+9a9/CQDi448/rrNsbW1to9usT0M//zNnzggAYvbs2XXWKSgoEPn5+erXoz9L1e/NRx99pJ5WUVEh+vTpI5ycnERlZaV6+o0bN+q0rfrePvrZCyFE3759ha+vb51aVN/Tp/38HyfJU8XIyEiNfgTVv6CPXyGRyWSIjIzUmHbo0CG4uLhg/Pjx6mkWFhZ466238ODBA6SmpmpVS3Z2Ns6dO4dJkyZpXAb29/dHz549611n7NixaN269VPrB4Do6Gj1/5uYmCA6OhqVlZX49ttvtapTlxr7+TeGtbU1LC0tkZKSgvv372u9vkwmg6npf7/GNTU1KCgogFwuR9euXfHjjz9qvT0AsLe3R2lpKZKTk5u0/uP+53/+B23btsXMmTPrzFOdruu6zeLiYgCod2hChw4d4OjoqH7t379fY765uTmmTZumfm9paYlp06YhLy8PmZmZ6ukHDx6EQqHAwIED67Txl7/8ReP9oEGDdHIFU0WSweXh4aHxXhUCj3/xX3jhhTodpT///DM6d+6s/rKrqA7zf/75Z61qUS3fqVOnOvPqmwY0vn5TU9M6l7e7dOkCAAa9DN/Y+htDJpNh2bJl+Prrr+Hs7IzBgwdj+fLlyMnJadT6tbW1WLlyJTp37gyZTIa2bdvC0dERZ8+eRVFRkdb1AMD06dPRpUsXhISEwN3dHW+++SaSkpKatC0AuH79Orp27Qpz84Z7ZnTdpqpP68GDB3Xmffnll0hOTm5w7JSbmxtsbGw0ptX3vTt48CCGDRtWZ7+srKzUfZoqrVu3btL3oyGSDK6GLt2Kx+5CbW1t3eQ2Guq41kUHY2Prb4zmrLMhuqwfAGbPno0rV64gLi4OVlZWWLBgAby9vfGf//znqev+4x//QExMDAYPHowvvvgChw8fRnJyMrp37671EAcVJycnZGVlYf/+/fjd736H7777DiEhIQgPD2/S9gzRZqdOnWBubo7z58/Xmefv74+goCD4+vo2ud6ysjKkpKTUO36rqUMrtCHJ4HoW7du3x9WrV+t8qX/66Sf1fOD/jyIKCws1lnv8iEy1/ONX1Rqapo3a2to6h9dXrlwBAPVVnMbWCTQccvrwtLY7duyIt99+G9988w3Onz+PyspKfPTRR09df8+ePRgyZAg2b96McePGYdiwYQgKCqrzeWi775aWlhg1ahTWr1+P69evY9q0adi2bZv6Z6rN9jp27IjLly+jqqrqmdrUho2NDQICApCamopff/1Vq3Wzs7NRWlqqMe3x793Ro0dRUVGBkJAQrWvTBaMLrhEjRiAnJwe7du1ST6uursbatWshl8vh7+8P4L+BZGZmhmPHjmmsv379eo33bm5u6NGjB7Zt26ZxWJ6amopz5849c73r1q1T/78QAuvWrYOFhQWGDh2qVZ0A1If/j/9S64Nq/NzjbZeVlaG8vFxjWseOHWFra4uKigr1NBsbm3rrNjMzq3Okl5iYWOeXVZt9Lygo0HhvamqqvgKqqkmb7YWFheG3337T+FmqqGpvTJvaWrhwIWpqajBx4sR6TxkbOkKurq7Gpk2b1O8rKyuxadMmODo6qo/SDh06hH79+qmv7uqbJIdDPIupU6di06ZNiIiIQGZmJjw9PbFnzx4cP34cq1atUvcNKBQKvP7661i7di1MTEzQsWNHHDhwAHl5eXW2+Y9//AOhoaEYMGAAIiMjcf/+faxbtw49evSo9wvTWFZWVkhKSkJ4eDj8/Pzw9ddf4+DBg5g/f766D0GbOlVfurfeegvBwcEwMzPDuHHjmlyfNqytreHj44Ndu3ahS5cucHBwQI8ePVBdXY2hQ4fijTfegI+PD8zNzbF3717k5uZq1Obr64sNGzbggw8+QKdOneDk5ITAwEC89tpriI2NRWRkJF555RWcO3cO27dvr9M32LFjR9jb22Pjxo2wtbWFjY0N/Pz84OXlVafWP//5z7h37x4CAwPh7u6On3/+GWvXrkWfPn3UfaF9+vSBmZkZli1bhqKiIshkMgQGBsLJyanO9iZNmoRt27YhJiYGp06dwqBBg1BaWopvv/0W06dPR2hoaKPa1NagQYOwbt06zJw5E507d1aPnK+srMSVK1ewfft2WFpawsXFRWM9Nzc3LFu2DLdu3UKXLl2wa9cuZGVl4ZNPPlEP1zl06FCdC196pdU1SD1ozHCIxMREjen1Xfr39/cX3bt3r3c7ubm5IjIyUrRt21ZYWlqKnj171nuZPD8/X4SFhYlWrVqJ1q1bi2nTponz58/Xe1l9586dolu3bkImk4kePXqI/fv3i7CwMNGtW7c6ddZ36RePDRUIDw8XNjY24vr162LYsGGiVatWwtnZWSxatKjO5f/G1lldXS1mzpwpHB0dhYmJyVOHRjQ0HKIxn//jQwyEEOLEiRPC19dXWFpaqvf3t99+EzNmzBDdunUTNjY2QqFQCD8/P7F7926NdXNycsTIkSOFra2tAKCuq7y8XLz99tvC1dVVWFtbiwEDBoi0tLQ6tQvx32EnPj4+wtzcXKPex2vds2ePGDZsmHBychKWlpbCw8NDTJs2Tdy9e1dje59++qno0KGDMDMz0xgWUF/bZWVl4m9/+5vw8vISFhYWwsXFRfzhD38Q169f16rNxzU0HOJR//nPf8SkSZOEh4eHsLS0FDY2NqJXr17i7bffFteuXdNYVvV7k5GRIZRKpbCyshLt27cX69atUy+j+m6dOnWqTluq7+3jFi1aVO/3ranDIVpccD1PevfuLYKCgpq0bkNfAKJHqYJr3759Ij8/X1RVVTV7m8uWLRPOzs7qMWhNUVtbK/Lz88WPP/5oPOO4WpqqqipUV1drTEtJScGZM2f0dnsTMm6jR4+Go6Ojzu5+8SSenp5YuXLlM13sKSoqgqOjI1588cUmrW90fVzN4ddff0VQUBAmTpwINzc3/PTTT9i4cSNcXFzqDMQj0qXevXtrDFrt2rVrs7f5xhtvPPM25HK5Rt2qcWKNxeDSgdatW8PX1xefffYZ8vPzYWNjg5EjR2Lp0qVo06aNocuj51jr1q0RFBRk6DK0Zm5u/kx1mwjRxFGDREQGwj4uIpIcBhcRSY4k+7hqa2uRnZ0NW1tbg/4ZCxHVTwiBkpISuLm51bmhgS5IMriys7PRrl07Q5dBRE9x584drW9k2BiSDC7Vn+XcuXMHdnZ2Bq6GiB5XXFyMdu3a1XvLaF2QZHCpTg/t7OwYXEQtWHN15bBznogkh8FFRJLD4CIiyZFkHxeRodXU1Dz1jqbPMwsLC73corkhDC4iLQghkJOTY5C7yLY09vb2cHFxMchYSgYXkRZUoeXk5IRWrVoZ5QBoIQTKysrUd9l1dXXVew0MLqJGqqmpUYeWsd/1Q/UErby8PDg5Oen9tJGd80SNpOrTUj34w9ipPgdD9PXxiKuF83zvoN7bvLV0pN7blBJjPD2sjyE/Bx5xEZHkMLiISHIYXEQtVH5+PqKiouDh4QGZTAYXFxcEBwfj+PHjAP770AoTExONV3PciaElYh8XUQsVFhaGyspKbN26FR06dEBubi6OHDmi8dTr2NhYTJkyRf3ekINC9YnBRdQCFRYW4vvvv0dKSgr8/f0BAO3bt8fLL7+ssZytrW2dJ1EbA54qErVAcrkccrkc+/btQ0VFhaHLaXEYXEQtkLm5ORISErB161bY29tjwIABmD9/Ps6ePaux3LvvvqsOOblcjjVr1hioYv3SKrji4uLw0ksvwdbWFk5OThg9ejQuX76ssUx5eTlmzJiBNm3aQC6XIywsDLm5uRrL3L59GyNHjkSrVq3g5OSEv/71r3WeBE1k7MLCwpCdnY39+/dj+PDhSElJwYsvvoiEhAT1Mn/961+RlZWlfk2aNMlwBeuRVsGVmpqKGTNm4OTJk0hOTkZVVRWGDRuG0tJS9TJz5szBV199hcTERKSmpiI7OxtjxoxRz6+pqcHIkSNRWVmJEydOYOvWrUhISMDChQt1t1dEzwkrKyu8+uqrWLBgAU6cOIGIiAgsWrRIPb9t27bo1KmT+mVvb2+4YvVIq875pKQkjfcJCQlwcnJCZmYmBg8ejKKiImzevBk7duxAYGAgAGDLli3w9vbGyZMn0b9/f3zzzTe4ePEivv32Wzg7O6NPnz74+9//jnfffReLFy+GpaWl7vaO6Dnj4+ODffv2GboMg3umPq6ioiIAgIODAwAgMzMTVVVVGo/W7tatGzw8PJCWlgYASEtLQ8+ePeHs7KxeJjg4GMXFxbhw4UK97VRUVKC4uFjjRfQ8KygoQGBgIL744gucPXsWN2/eRGJiIpYvX47Q0FBDl2dwTR4OUVtbi9mzZ2PAgAHo0aMHgP/e8sPS0rLO4aqzszNycnLUyzwaWqr5qnn1iYuLw5IlS5paKpHkyOVy+Pn5YeXKlbh+/TqqqqrQrl07TJkyBfPnzzd0eQbX5OCaMWMGzp8/jx9++EGX9dRr3rx5iImJUb9XPfqI6Hklk8kQFxeHuLi4Bpe5deuW/gpqYZoUXNHR0Thw4ACOHTum8ScGLi4uqKysRGFhocZRV25urnqQnIuLC06dOqWxPdVVx4YG0slkMshksqaUSkTPIa36uIQQiI6Oxt69e3H06FF4eXlpzPf19YWFhQWOHDminnb58mXcvn0bSqUSAKBUKnHu3Dn13RMBIDk5GXZ2dvDx8XmWfSEiI6HVEdeMGTOwY8cOfPnll7C1tVX3SSkUClhbW0OhUGDy5MmIiYmBg4MD7OzsMHPmTCiVSvTv3x8AMGzYMPj4+OBPf/oTli9fjpycHLz//vuYMWMGj6qIqFG0Cq4NGzYAAAICAjSmb9myBREREQCAlStXwtTUFGFhYaioqEBwcDDWr1+vXtbMzAwHDhxAVFQUlEolbGxsEB4ejtjY2GfbEyIyGloFlxDiqctYWVkhPj4e8fHxDS7Tvn17HDp0SJumiYjUeHcIqmuxwgBtFum/TZIs/pE1EUkOg4uIJIfBRUSSw+AiIslh5zyRDujz+ZdNee7lsWPH8M9//hOZmZm4e/cu9u7di9GjR+u+OD3hEReRESgtLUXv3r2fOExJSnjERWQEQkJCEBISYugydIZHXEQkOQwuIpIcBhcRSQ6Di4gkh8FFRJLDq4pERuDBgwe4du2a+v3NmzeRlZUFBwcHeHh4GLCypmFwEelAUwaF6lNGRgaGDBmifq96hkN4eLjGA2algsFFZAQCAgIadT89qWAfFxFJDoOLiCSHp4rUIvTc2lPvbZ4LP6f3Nkk3eMRFRJLD4CIiyWFwEZHkMLiISHIYXEQkOQwuIpIcBhcRSQ7HcRHpgj6f/t2Ep35v2LABGzZswK1btwAA3bt3x8KFCyV7O2cecREZAXd3dyxduhSZmZnIyMhAYGAgQkNDceHCBUOX1iQ84iIyAqNGjdJ4/+GHH2LDhg04efIkunfvbqCqmo7BRWRkampqkJiYiNLSUiiVSkOX0yQMLiIjce7cOSiVSpSXl0Mul2Pv3r3w8fExdFlNwj4uIiPRtWtXZGVlIT09HVFRUQgPD8fFixcNXVaT8IiLyEhYWlqiU6dOAABfX1+cPn0aq1evxqZNmwxcmfZ4xEVkpGpra1FRUWHoMpqER1xktC5189Zq+VpXV9S8/zeUV1VBmGr+m2+ty8Kawbx58xASEgIPDw+UlJRgx44dSElJweHDhw1dWpMwuIh04OEfjjdqOesePZq5kvrl5eVh0qRJuHv3LhQKBXr16oXDhw/j1VdfNUg9z4rBRWQENm/ebOgSdIp9XEQkOQwuIpIcBhcRSQ6Di4gkR+vgOnbsGEaNGgU3NzeYmJhg3759GvMjIiJgYmKi8Ro+fLjGMvfu3cOECRNgZ2cHe3t7TJ48GQ8ePHimHSEi46F1cJWWlqJ3796Ij49vcJnhw4fj7t276te///1vjfkTJkzAhQsXkJycjAMHDuDYsWOYOnWq9tUTkVHSejhESEjIU28+JpPJ4OLiUu+8S5cuISkpCadPn0a/fv0AAGvXrsWIESOwYsUKuLm5aVsSERmZZunjSklJgZOTE7p27YqoqCgUFBSo56WlpcHe3l4dWgAQFBQEU1NTpKen17u9iooKFBcXa7yIyHjpPLiGDx+Obdu24ciRI1i2bBlSU1MREhKCmpoaAEBOTg6cnJw01jE3N4eDgwNycnLq3WZcXBwUCoX61a5dO12XTUQSovOR8+PGjVP/f8+ePdGrVy907NgRKSkpGDp0aJO2OW/ePMTExKjfFxcXM7yoRXk5c3zjFsx89rbOhZ979o1IXLMPh+jQoQPatm2La9euAQBcXFyQl5ensUx1dTXu3bvXYL+YTCaDnZ2dxouIGu9powGEEFi4cCFcXV1hbW2NoKAgXL161TDFNkKzB9cvv/yCgoICuLq6AgCUSiUKCwuRmfn///QcPXoUtbW18PPza+5yiIzS00YDLF++HGvWrMHGjRuRnp4OGxsbBAcHo7y8XM+VNo7Wp4oPHjxQHz0BwM2bN5GVlQUHBwc4ODhgyZIlCAsLg4uLC65fv4533nkHnTp1QnBwMADA29sbw4cPx5QpU7Bx40ZUVVUhOjoa48aN4xVFombypNEAQgisWrUK77//PkJDQwEA27Ztg7OzM/bt26fR/dNSaH3ElZGRgb59+6Jv374AgJiYGPTt2xcLFy6EmZkZzp49i9/97nfo0qULJk+eDF9fX3z//feQyWTqbWzfvh3dunXD0KFDMWLECAwcOBCffPKJ7vaKiBrt5s2byMnJQVBQkHqaQqGAn58f0tLSDFhZw7Q+4goICIAQosH5jbkxmYODA3bs2KFt00TUDFRX852dnTWmOzs7N3il39D4t4pEJDkMLiIjp7qan5ubqzE9Nze3wSv9hsbgIjJyXl5ecHFxwZEjR9TTiouLkZ6e3mIfGMtbNxMZgSeNBvDw8MDs2bPxwQcfoHPnzvDy8sKCBQvg5uaG0aNHG67oJ2BwEenAKd9/P30hGO5hGRkZGRgyZIj6veovUcLDw5GQkIB33nkHpaWlmDp1KgoLCzFw4EAkJSXBysrKIPU+DYOLyAg8bTSAiYkJYmNjERsbq8eqmo59XEQkOQwuIpIcBhcRSQ6Di4gkh8FFRJLD4CIiyWFwEZHkMLiISHIYXEQkORw5T6QDt/7wut7a8v7pkt7aaql4xEVkBDZs2IBevXqpHzajVCrx9ddfq+eXl5djxowZaNOmDeRyOcLCwurc5qYlYXARGQF3d3csXboUmZmZyMjIQGBgIEJDQ3HhwgUAwJw5c/DVV18hMTERqampyM7OxpgxYwxcdcN4qkhkBEaNGqXx/sMPP8SGDRtw8uRJuLu7Y/PmzdixYwcCAwMBAFu2bIG3tzdOnjyJ/v37G6LkJ+IRF5GRqampwc6dO1FaWgqlUonMzExUVVVpPCyjW7du8PDweH4elkFE0nTu3DkolUqUl5dDLpdj79698PHxQVZWFiwtLWFvb6+xfEt+WAaDi8hIdO3aFVlZWSgqKsKePXsQHh6O1NRUQ5fVJAwuIiNhaWmJTp06AQB8fX1x+vRprF69GmPHjkVlZSUKCws1jrr4sAwianFqa2tRUVEBX19fWFhYaDws4/Lly7h9+zYflkFEhjNv3jyEhITAw8MDJSUl2LFjB1JSUnD48GEoFApMnjwZMTExcHBwgJ2dHWbOnAmlUtkirygCDC4infDck9io5Qz1sIy8vDxMmjQJd+/ehUKhQK9evXD48GG8+uqrAICVK1fC1NQUYWFhqKioQHBwMNavX2+QWhuDwUVkBDZv3vzE+VZWVoiPj0d8fLyeKno27OMiIslhcBGR5DC4iEhyGFxEJDkMLqLGEgIQAg0/D9q4POnJ2M2NwUXUSCZFRRBVVSg34C9sS1JWVgYAsLCw0HvbHA5B1EgmDx/CJCUVv4WEAK3tYWViAhNtt1Fe3iy16ZMQAmVlZcjLy4O9vT3MzMz0XgODi0gL5vv3oxpAXoA/TCwsABPtossQRyfNxd7e3mB/y8jgItKCiRCw+PJLiMOHIezttQ4ur68PNU9hemZhYWGQIy0VBhdRE5iUl8OkCfeqsrKyaoZqjA8754lIchhcRCQ5DC4ikhwGFxFJjtbBdezYMYwaNQpubm4wMTHBvn37NOYLIbBw4UK4urrC2toaQUFBuHr1qsYy9+7dw4QJE2BnZwd7e3tMnjwZDx48eKYdISLjoXVwlZaWonfv3g3et2f58uVYs2YNNm7ciPT0dNjY2CA4OBjljwy8mzBhAi5cuIDk5GQcOHAAx44dw9SpU5u+F0RkVLQeDhESEoKQkJB65wkhsGrVKrz//vsIDQ0FAGzbtg3Ozs7Yt28fxo0bh0uXLiEpKQmnT59Gv379AABr167FiBEjsGLFCri5uT3D7hCRMdBpH9fNmzeRk5Oj8WBJhUIBPz8/9YMl09LSYG9vrw4tAAgKCoKpqSnS09Pr3W5FRQWKi4s1XkRkvHQaXKqHRzo7O2tMf/TBkjk5OXByctKYb25uDgcHhwYfPhkXFweFQqF+tWvXTpdlE5HESOKq4rx581BUVKR+3blzx9AlEZEB6TS4VH9wmZubqzH90QdLuri4IC8vT2N+dXU17t271+AfbMpkMtjZ2Wm8iMh46TS4vLy84OLiovFgyeLiYqSnp6sfLKlUKlFYWIjMzEz1MkePHkVtbS38/Px0WQ4RPae0vqr44MEDXLt2Tf3+5s2byMrKgoODAzw8PDB79mx88MEH6Ny5M7y8vLBgwQK4ublh9OjRAABvb28MHz4cU6ZMwcaNG1FVVYXo6GiMGzeOVxSJqFG0Dq6MjAwMGTJE/T4mJgYAEB4ejoSEBLzzzjsoLS3F1KlTUVhYiIEDByIpKUnjr+K3b9+O6OhoDB06VP0QyjVr1uhgd4jIGJgIQ944uomKi4uhUChQVFT03Pd3eb53UO9t3rL6o97b7Onlofc2d8dV671N758u6b1NQ2ju31FJXFUkInoUg4uIJIfBRUSSw+AiIslhcBGR5DC4iEhyGFxEJDkMLiKSHAYXEUkOg4uIJIfBRUSSw+AiIslhcBGR5DC4iEhyGFxEJDkMLiKSHAYXEUkOg4uIJIfBRUSSw+AiIslhcBGR5DC4iEhyGFxEJDkMLiKSHAYXEUkOg4uIJIfBRUSSw+AiIslhcBGR5DC4iEhyGFxEJDkMLiKSHAYXEUkOg4uIJIfBRUSSw+AiIslhcBGR5DC4iEhyGFxEJDkMLiKSHAYXEUmOzoNr8eLFMDEx0Xh169ZNPb+8vBwzZsxAmzZtIJfLERYWhtzcXF2XQUTPsWY54urevTvu3r2rfv3www/qeXPmzMFXX32FxMREpKamIjs7G2PGjGmOMojoOWXeLBs1N4eLi0ud6UVFRdi8eTN27NiBwMBAAMCWLVvg7e2NkydPon///s1RDhE9Z5rliOvq1atwc3NDhw4dMGHCBNy+fRsAkJmZiaqqKgQFBamX7datGzw8PJCWltbg9ioqKlBcXKzxIiLjpfPg8vPzQ0JCApKSkrBhwwbcvHkTgwYNQklJCXJycmBpaQl7e3uNdZydnZGTk9PgNuPi4qBQKNSvdu3a6bpsIpIQnZ8qhoSEqP+/V69e8PPzQ/v27bF7925YW1s3aZvz5s1DTEyM+n1xcTHDi8iINftwCHt7e3Tp0gXXrl2Di4sLKisrUVhYqLFMbm5uvX1iKjKZDHZ2dhovIjJezR5cDx48wPXr1+Hq6gpfX19YWFjgyJEj6vmXL1/G7du3oVQqm7sUInpO6PxUce7cuRg1ahTat2+P7OxsLFq0CGZmZhg/fjwUCgUmT56MmJgYODg4wM7ODjNnzoRSqeQVRSJqNJ0H1y+//ILx48ejoKAAjo6OGDhwIE6ePAlHR0cAwMqVK2FqaoqwsDBUVFQgODgY69ev13UZRPQc03lw7dy584nzraysEB8fj/j4eF03TURGgn+rSESSw+AiIslhcBGR5DC4iEhyGFxEJDkMLiKSHAYXEUkOg4uIJIfBRUSSw+AiIslhcBGR5DC4iEhyGFxEJDkMLiKSHAYXEUkOg4uIJIfBRUSSw+AiIslhcBGR5DC4iEhyGFxEJDkMLiKSHAYXEUkOg4uIJIfBRUSSw+AiIslhcBGR5DC4iEhyGFxEJDkMLiKSHAYXEUkOg4uIJIfBRUSSw+AiIslhcBGR5DC4iEhyGFxEJDkMLiKSHAYXEUkOg4uIJIfBRUSSY7Dgio+Ph6enJ6ysrODn54dTp04ZqhQikhiDBNeuXbsQExODRYsW4ccff0Tv3r0RHByMvLw8Q5RDRBJjkOD6+OOPMWXKFERGRsLHxwcbN25Eq1at8K9//csQ5RCRxJjru8HKykpkZmZi3rx56mmmpqYICgpCWlpavetUVFSgoqJC/b6oqAgAUFxc3LzFtgC1FWV6b7PYROi9zZqHNXpv80GN/ts0hu8s8P/7KUTzfJf0Hly//fYbampq4OzsrDHd2dkZP/30U73rxMXFYcmSJXWmt2vXrllqNHYKg7R6Se8tvqz3FgEoDPPpGkpJSQkUzbDPeg+uppg3bx5iYmLU72tra3Hv3j20adMGJiYmBqyMdKG4uBjt2rXDnTt3YGdnZ+hySAeEECgpKYGbm1uzbF/vwdW2bVuYmZkhNzdXY3pubi5cXFzqXUcmk0Emk2lMs7e3b64SyUDs7OwYXM+R5jjSUtF757ylpSV8fX1x5MgR9bTa2locOXIESqVS3+UQkQQZ5FQxJiYG4eHh6NevH15++WWsWrUKpaWliIyMNEQ5RCQxBgmusWPHIj8/HwsXLkROTg769OmDpKSkOh32ZBxkMhkWLVpUpzuAqCEmormuVxIRNRP+rSIRSQ6Di4gkh8FFRJLD4CIiyWFwEZHkMLiISHIYXKR3Fy9exPTp09G3b1+4urrC1dUVffv2xfTp03Hx4kVDl0cSwHFcpFdff/01Ro8ejRdffBHBwcHqQce5ublITk5GZmYmvvzySwQHBxu4UmrJGFykV71790ZoaChiY2Prnb948WL87//+L86ePavnykhKGFykV9bW1sjKykLXrl3rnX/58mX06dMHDx8+1HNlJCXs4yK98vT0xMGDBxucf/DgQbRv316PFZEUSeJGgvT8iI2NxR//+EekpKQgKChIo4/ryJEjSEpKwo4dOwxcJbV0PFUkvTtx4gTWrFmDtLQ05OTkAABcXFygVCoxa9Ys3peNnorBRUSSwz4uIpIcBhe1KPPnz8ebb75p6DKohWPnPLUov/76K+7cuWPoMqiFYx8XtQhCCD5qjhqNp4rUIshkMly6pP+HwpI08VSR9OrRB/s+qqamBkuXLkWbNm0AAB9//LE+yyKJYXCRXq1atQq9e/eu80BfIQQuXboEGxsbnjLSU7GPi/Rq6dKl+OSTT/DZZ58hMDBQPd3CwgJnzpyBj4+PAasjqWAfF+nVe++9h127diEqKgpz585FVVWVoUsiCWJwkd699NJLyMzMRH5+Pvr164fz58/z9JC0wj4uMgi5XI6tW7di586dCAoKQk1NjaFLIglhHxcZ3C+//ILMzEwEBQXBxsbG0OWQBDC4iEhy2MdFRJLD4CIiyWFwEZHkMLioRUtISKgzyp6IwUVEksPgIiLJYXCRzgQEBCA6OhrR0dFQKBRo27YtFixYANWIm/v372PSpElo3bo1WrVqhZCQEFy9elVjGwkJCfDw8ECrVq3w+9//HgUFBRrzz5w5gyFDhsDW1hZ2dnbw9fVFRkaG3vaRWgYGF+nU1q1bYW5ujlOnTmH16tX4+OOP8dlnnwEAIiIikJGRgf379yMtLQ1CCIwYMUL994rp6emYPHkyoqOjkZWVhSFDhuCDDz7Q2P6ECRPg7u6O06dPIzMzE++99x4sLCz0vp9kYIJIR/z9/YW3t7eora1VT3v33XeFt7e3uHLligAgjh8/rp7322+/CWtra7F7924hhBDjx48XI0aM0Njm2LFjhUKhUL+3tbUVCQkJzbsj1OLxiIt0qn///hp/MK1UKnH16lVcvHgR5ubm8PPzU89r06YNunbtqr7z6aVLlzTmq9Z/VExMDP785z8jKCgIS5cuxfXr15txb6ilYnCRpCxevBgXLlzAyJEjcfToUfj4+GDv3r2GLov0jMFFOpWenq7x/uTJk+jcuTN8fHxQXV2tMb+goACXL19W3zzQ29u73vUf16VLF8yZMwfffPMNxowZgy1btjTDnlBLxuAinbp9+zZiYmJw+fJl/Pvf/8batWsxa9YsdO7cGaGhoZgyZQp++OEHnDlzBhMnTsQLL7yA0NBQAMBbb72FpKQkrFixAlevXsW6deuQlJSk3vbDhw8RHR2NlJQU/Pzzzzh+/DhOnz4Nb29vQ+0uGYqhO9no+eHv7y+mT58u/vKXvwg7OzvRunVrMX/+fHVn/b1798Sf/vQnoVAohLW1tQgODhZXrlzR2MbmzZuFu7u7sLa2FqNGjRIrVqxQd85XVFSIcePGiXbt2glLS0vh5uYmoqOjxcOHD/W9q2RgvK0N6UxAQAD69OmDVatWGboUes7xVJGIJIfBRUSSw1NFIpIcHnERkeQwuIhIchhcRCQ5DC4ikhwGFxFJDoOLiCSHwUVEksPgIiLJYXARkeT8H6nVGX3ncwpvAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "column = 'initstatistics'\n",
+ "if df_time[column].max() > 0:\n",
+ " df_tpx_pivot.plot.bar(column=column, figsize=(3,3), grid=False)\n",
+ " plt.title('Throughput '+column+' [Gb/h]')\n",
+ " plt.suptitle('')\n",
+ " #plt.ylim(0, df_tpx_pivot[column].max()*1.1)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Benchmarking Phase"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " benchmark_geo \n",
+ " benchmark_mean \n",
+ " generate \n",
+ " ingest \n",
+ " initconstraints \n",
+ " initindexes \n",
+ " initschema \n",
+ " initstatistics \n",
+ " load \n",
+ " loaded \n",
+ " ... \n",
+ " mem_max_load \n",
+ " cpu_total_load \n",
+ " mem_max_stream \n",
+ " cpu_total_stream \n",
+ " mem_max_loader \n",
+ " cpu_total_loader \n",
+ " mem_max_datagenerator \n",
+ " cpu_total_datagenerator \n",
+ " mem_max_benchmarker \n",
+ " cpu_total_benchmarker \n",
+ " \n",
+ " \n",
+ " SF \n",
+ " num_experiment \n",
+ " num_client \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 0.626844 \n",
+ " 0.870090 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 7.128312e+03 \n",
+ " 80.012976 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 208.652344 \n",
+ " 6.357339 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 0.624912 \n",
+ " 0.877594 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 4.038180e+03 \n",
+ " 160.696836 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 611.730469 \n",
+ " 12.480364 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 0.629116 \n",
+ " 0.888116 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 4.229605e+03 \n",
+ " 241.310310 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1212.539062 \n",
+ " 21.294983 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 0.621419 \n",
+ " 0.871111 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 8.228980e+03 \n",
+ " 320.818782 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1863.578125 \n",
+ " 28.945682 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 0.625231 \n",
+ " 0.882196 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 7.845113e+03 \n",
+ " 402.095493 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 2465.582031 \n",
+ " 35.623551 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 0.620819 \n",
+ " 0.873909 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 3818.800781 \n",
+ " 89.863155 \n",
+ " 7.161371e+03 \n",
+ " 480.793733 \n",
+ " 705.457031 \n",
+ " 2.415629 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3037.617188 \n",
+ " 41.721285 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 0.625912 \n",
+ " 0.886332 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 7.329809e+03 \n",
+ " 564.956015 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 2742.273438 \n",
+ " 17.090795 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 0.616898 \n",
+ " 0.867791 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 7.848301e+03 \n",
+ " 643.013221 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3084.117188 \n",
+ " 48.048381 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 0.616639 \n",
+ " 0.869442 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 7.971777e+03 \n",
+ " 721.034614 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3462.558594 \n",
+ " 61.486374 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 0.620555 \n",
+ " 0.871424 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 8.032227e+03 \n",
+ " 809.336122 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3894.109375 \n",
+ " 61.253136 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1.637411 \n",
+ " 2.337024 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.352643e+04 \n",
+ " 254.895022 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 204.019531 \n",
+ " 7.368385 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 1.615564 \n",
+ " 2.381898 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 2.088032e+04 \n",
+ " 513.052090 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 660.550781 \n",
+ " 14.698020 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 1.627704 \n",
+ " 2.399394 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 3.279666e+04 \n",
+ " 774.232907 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1125.523438 \n",
+ " 16.856276 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 1.639990 \n",
+ " 2.407944 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 4.267620e+04 \n",
+ " 1035.374460 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1840.070312 \n",
+ " 21.739376 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 1.653012 \n",
+ " 2.422681 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 3.664088e+04 \n",
+ " 1301.766807 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 2354.382812 \n",
+ " 25.390574 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 1.657783 \n",
+ " 2.457802 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 6624.316406 \n",
+ " 270.958437 \n",
+ " 4.626659e+04 \n",
+ " 1580.428484 \n",
+ " 2910.578125 \n",
+ " 7.351115 \n",
+ " 0 \n",
+ " 0 \n",
+ " 2808.136719 \n",
+ " 26.741739 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 1.684695 \n",
+ " 2.477245 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 3.284285e+04 \n",
+ " 1896.309787 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 2807.425781 \n",
+ " 49.581324 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 1.713946 \n",
+ " 2.509459 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 3.728577e+04 \n",
+ " 2195.282286 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3293.394531 \n",
+ " 67.042332 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 1.740239 \n",
+ " 2.512901 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 4.183903e+04 \n",
+ " 2532.981222 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3753.957031 \n",
+ " 75.274546 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 1.779724 \n",
+ " 2.656800 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 4.240661e+04 \n",
+ " 2927.611783 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 4150.222656 \n",
+ " 84.710041 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 1 \n",
+ " 1 \n",
+ " 4.249538 \n",
+ " 6.697040 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 6.326941e+04 \n",
+ " 786.669466 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 4.241509 \n",
+ " 6.733446 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.054058e+05 \n",
+ " 1587.744005 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 4.319135 \n",
+ " 6.866624 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.392845e+05 \n",
+ " 2417.887925 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 4.357608 \n",
+ " 6.910564 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.786093e+05 \n",
+ " 3275.796691 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 4.444132 \n",
+ " 7.157446 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.869333e+05 \n",
+ " 4246.551481 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 4.556069 \n",
+ " 7.458999 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 17342.320312 \n",
+ " 952.253322 \n",
+ " 2.032445e+05 \n",
+ " 5265.466408 \n",
+ " 2608.453125 \n",
+ " 8.310315 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 4.759533 \n",
+ " 8.017166 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 2.027020e+05 \n",
+ " 6528.646610 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 4.936151 \n",
+ " 8.304516 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 2.320173e+05 \n",
+ " 7860.367871 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 5.231177 \n",
+ " 8.596706 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 2.130519e+05 \n",
+ " 9147.668042 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 5.392703 \n",
+ " 8.895940 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 2.305828e+05 \n",
+ " 10593.564916 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 30 \n",
+ " 1 \n",
+ " 1 \n",
+ " 11.848516 \n",
+ " 20.773472 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 2.428011e+05 \n",
+ " 6184.898335 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 238.613281 \n",
+ " 13.309727 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 11.560896 \n",
+ " 20.736863 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 4.072534e+05 \n",
+ " 12370.134032 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 653.542969 \n",
+ " 15.027941 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 11.551032 \n",
+ " 20.878200 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 5.741196e+05 \n",
+ " 18572.865874 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1076.601562 \n",
+ " 27.752162 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 12.034596 \n",
+ " 21.469454 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 7.415082e+05 \n",
+ " 25137.664373 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1478.449219 \n",
+ " 42.074733 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 12.992434 \n",
+ " 22.567123 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 8.108165e+05 \n",
+ " 32702.073946 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1880.527344 \n",
+ " 56.977909 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 13.718017 \n",
+ " 25.209100 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 45615.996094 \n",
+ " 2947.725295 \n",
+ " 9.121772e+05 \n",
+ " 40614.352894 \n",
+ " 31904.496094 \n",
+ " 69.471757 \n",
+ " 0 \n",
+ " 0 \n",
+ " 2268.343750 \n",
+ " 62.487400 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 14.459409 \n",
+ " 26.819507 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.086867e+06 \n",
+ " 49626.594767 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 2668.695312 \n",
+ " 81.235520 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 14.997548 \n",
+ " 28.170066 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.269541e+06 \n",
+ " 58838.671861 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3035.449219 \n",
+ " 98.604956 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 14.790488 \n",
+ " 30.449043 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.282161e+06 \n",
+ " 66750.954151 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3449.035156 \n",
+ " 110.060736 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 16.690499 \n",
+ " 30.843552 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.405335e+06 \n",
+ " 73239.706541 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3723.453125 \n",
+ " 123.735284 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
40 rows Ă— 30 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " benchmark_geo benchmark_mean generate ingest \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 0.626844 0.870090 0.0 17.0 \n",
+ " 2 0.624912 0.877594 0.0 17.0 \n",
+ " 3 0.629116 0.888116 0.0 17.0 \n",
+ " 4 0.621419 0.871111 0.0 17.0 \n",
+ " 5 0.625231 0.882196 0.0 17.0 \n",
+ " 6 0.620819 0.873909 0.0 17.0 \n",
+ " 7 0.625912 0.886332 0.0 17.0 \n",
+ " 8 0.616898 0.867791 0.0 17.0 \n",
+ " 9 0.616639 0.869442 0.0 17.0 \n",
+ " 10 0.620555 0.871424 0.0 17.0 \n",
+ "3 1 1 1.637411 2.337024 0.0 56.0 \n",
+ " 2 1.615564 2.381898 0.0 56.0 \n",
+ " 3 1.627704 2.399394 0.0 56.0 \n",
+ " 4 1.639990 2.407944 0.0 56.0 \n",
+ " 5 1.653012 2.422681 0.0 56.0 \n",
+ " 6 1.657783 2.457802 0.0 56.0 \n",
+ " 7 1.684695 2.477245 0.0 56.0 \n",
+ " 8 1.713946 2.509459 0.0 56.0 \n",
+ " 9 1.740239 2.512901 0.0 56.0 \n",
+ " 10 1.779724 2.656800 0.0 56.0 \n",
+ "10 1 1 4.249538 6.697040 0.0 205.0 \n",
+ " 2 4.241509 6.733446 0.0 205.0 \n",
+ " 3 4.319135 6.866624 0.0 205.0 \n",
+ " 4 4.357608 6.910564 0.0 205.0 \n",
+ " 5 4.444132 7.157446 0.0 205.0 \n",
+ " 6 4.556069 7.458999 0.0 205.0 \n",
+ " 7 4.759533 8.017166 0.0 205.0 \n",
+ " 8 4.936151 8.304516 0.0 205.0 \n",
+ " 9 5.231177 8.596706 0.0 205.0 \n",
+ " 10 5.392703 8.895940 0.0 205.0 \n",
+ "30 1 1 11.848516 20.773472 0.0 672.0 \n",
+ " 2 11.560896 20.736863 0.0 672.0 \n",
+ " 3 11.551032 20.878200 0.0 672.0 \n",
+ " 4 12.034596 21.469454 0.0 672.0 \n",
+ " 5 12.992434 22.567123 0.0 672.0 \n",
+ " 6 13.718017 25.209100 0.0 672.0 \n",
+ " 7 14.459409 26.819507 0.0 672.0 \n",
+ " 8 14.997548 28.170066 0.0 672.0 \n",
+ " 9 14.790488 30.449043 0.0 672.0 \n",
+ " 10 16.690499 30.843552 0.0 672.0 \n",
+ "\n",
+ " initconstraints initindexes initschema \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 29.036005 7.205218 1.211485 \n",
+ " 2 29.036005 7.205218 1.211485 \n",
+ " 3 29.036005 7.205218 1.211485 \n",
+ " 4 29.036005 7.205218 1.211485 \n",
+ " 5 29.036005 7.205218 1.211485 \n",
+ " 6 29.036005 7.205218 1.211485 \n",
+ " 7 29.036005 7.205218 1.211485 \n",
+ " 8 29.036005 7.205218 1.211485 \n",
+ " 9 29.036005 7.205218 1.211485 \n",
+ " 10 29.036005 7.205218 1.211485 \n",
+ "3 1 1 96.297798 17.512669 1.261016 \n",
+ " 2 96.297798 17.512669 1.261016 \n",
+ " 3 96.297798 17.512669 1.261016 \n",
+ " 4 96.297798 17.512669 1.261016 \n",
+ " 5 96.297798 17.512669 1.261016 \n",
+ " 6 96.297798 17.512669 1.261016 \n",
+ " 7 96.297798 17.512669 1.261016 \n",
+ " 8 96.297798 17.512669 1.261016 \n",
+ " 9 96.297798 17.512669 1.261016 \n",
+ " 10 96.297798 17.512669 1.261016 \n",
+ "10 1 1 405.726116 58.959765 1.237707 \n",
+ " 2 405.726116 58.959765 1.237707 \n",
+ " 3 405.726116 58.959765 1.237707 \n",
+ " 4 405.726116 58.959765 1.237707 \n",
+ " 5 405.726116 58.959765 1.237707 \n",
+ " 6 405.726116 58.959765 1.237707 \n",
+ " 7 405.726116 58.959765 1.237707 \n",
+ " 8 405.726116 58.959765 1.237707 \n",
+ " 9 405.726116 58.959765 1.237707 \n",
+ " 10 405.726116 58.959765 1.237707 \n",
+ "30 1 1 1354.092800 205.071821 1.118685 \n",
+ " 2 1354.092800 205.071821 1.118685 \n",
+ " 3 1354.092800 205.071821 1.118685 \n",
+ " 4 1354.092800 205.071821 1.118685 \n",
+ " 5 1354.092800 205.071821 1.118685 \n",
+ " 6 1354.092800 205.071821 1.118685 \n",
+ " 7 1354.092800 205.071821 1.118685 \n",
+ " 8 1354.092800 205.071821 1.118685 \n",
+ " 9 1354.092800 205.071821 1.118685 \n",
+ " 10 1354.092800 205.071821 1.118685 \n",
+ "\n",
+ " initstatistics load loaded ... \\\n",
+ "SF num_experiment num_client ... \n",
+ "1 1 1 20.242573 76.836504 2.288853 ... \n",
+ " 2 20.242573 76.836504 2.288853 ... \n",
+ " 3 20.242573 76.836504 2.288853 ... \n",
+ " 4 20.242573 76.836504 2.288853 ... \n",
+ " 5 20.242573 76.836504 2.288853 ... \n",
+ " 6 20.242573 76.836504 2.288853 ... \n",
+ " 7 20.242573 76.836504 2.288853 ... \n",
+ " 8 20.242573 76.836504 2.288853 ... \n",
+ " 9 20.242573 76.836504 2.288853 ... \n",
+ " 10 20.242573 76.836504 2.288853 ... \n",
+ "3 1 1 29.401657 202.647463 2.343093 ... \n",
+ " 2 29.401657 202.647463 2.343093 ... \n",
+ " 3 29.401657 202.647463 2.343093 ... \n",
+ " 4 29.401657 202.647463 2.343093 ... \n",
+ " 5 29.401657 202.647463 2.343093 ... \n",
+ " 6 29.401657 202.647463 2.343093 ... \n",
+ " 7 29.401657 202.647463 2.343093 ... \n",
+ " 8 29.401657 202.647463 2.343093 ... \n",
+ " 9 29.401657 202.647463 2.343093 ... \n",
+ " 10 29.401657 202.647463 2.343093 ... \n",
+ "10 1 1 36.520368 709.609962 2.295420 ... \n",
+ " 2 36.520368 709.609962 2.295420 ... \n",
+ " 3 36.520368 709.609962 2.295420 ... \n",
+ " 4 36.520368 709.609962 2.295420 ... \n",
+ " 5 36.520368 709.609962 2.295420 ... \n",
+ " 6 36.520368 709.609962 2.295420 ... \n",
+ " 7 36.520368 709.609962 2.295420 ... \n",
+ " 8 36.520368 709.609962 2.295420 ... \n",
+ " 9 36.520368 709.609962 2.295420 ... \n",
+ " 10 36.520368 709.609962 2.295420 ... \n",
+ "30 1 1 43.233445 2277.665694 2.153249 ... \n",
+ " 2 43.233445 2277.665694 2.153249 ... \n",
+ " 3 43.233445 2277.665694 2.153249 ... \n",
+ " 4 43.233445 2277.665694 2.153249 ... \n",
+ " 5 43.233445 2277.665694 2.153249 ... \n",
+ " 6 43.233445 2277.665694 2.153249 ... \n",
+ " 7 43.233445 2277.665694 2.153249 ... \n",
+ " 8 43.233445 2277.665694 2.153249 ... \n",
+ " 9 43.233445 2277.665694 2.153249 ... \n",
+ " 10 43.233445 2277.665694 2.153249 ... \n",
+ "\n",
+ " mem_max_load cpu_total_load mem_max_stream \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 0.000000 0.000000 7.128312e+03 \n",
+ " 2 0.000000 0.000000 4.038180e+03 \n",
+ " 3 0.000000 0.000000 4.229605e+03 \n",
+ " 4 0.000000 0.000000 8.228980e+03 \n",
+ " 5 0.000000 0.000000 7.845113e+03 \n",
+ " 6 3818.800781 89.863155 7.161371e+03 \n",
+ " 7 0.000000 0.000000 7.329809e+03 \n",
+ " 8 0.000000 0.000000 7.848301e+03 \n",
+ " 9 0.000000 0.000000 7.971777e+03 \n",
+ " 10 0.000000 0.000000 8.032227e+03 \n",
+ "3 1 1 0.000000 0.000000 1.352643e+04 \n",
+ " 2 0.000000 0.000000 2.088032e+04 \n",
+ " 3 0.000000 0.000000 3.279666e+04 \n",
+ " 4 0.000000 0.000000 4.267620e+04 \n",
+ " 5 0.000000 0.000000 3.664088e+04 \n",
+ " 6 6624.316406 270.958437 4.626659e+04 \n",
+ " 7 0.000000 0.000000 3.284285e+04 \n",
+ " 8 0.000000 0.000000 3.728577e+04 \n",
+ " 9 0.000000 0.000000 4.183903e+04 \n",
+ " 10 0.000000 0.000000 4.240661e+04 \n",
+ "10 1 1 0.000000 0.000000 6.326941e+04 \n",
+ " 2 0.000000 0.000000 1.054058e+05 \n",
+ " 3 0.000000 0.000000 1.392845e+05 \n",
+ " 4 0.000000 0.000000 1.786093e+05 \n",
+ " 5 0.000000 0.000000 1.869333e+05 \n",
+ " 6 17342.320312 952.253322 2.032445e+05 \n",
+ " 7 0.000000 0.000000 2.027020e+05 \n",
+ " 8 0.000000 0.000000 2.320173e+05 \n",
+ " 9 0.000000 0.000000 2.130519e+05 \n",
+ " 10 0.000000 0.000000 2.305828e+05 \n",
+ "30 1 1 0.000000 0.000000 2.428011e+05 \n",
+ " 2 0.000000 0.000000 4.072534e+05 \n",
+ " 3 0.000000 0.000000 5.741196e+05 \n",
+ " 4 0.000000 0.000000 7.415082e+05 \n",
+ " 5 0.000000 0.000000 8.108165e+05 \n",
+ " 6 45615.996094 2947.725295 9.121772e+05 \n",
+ " 7 0.000000 0.000000 1.086867e+06 \n",
+ " 8 0.000000 0.000000 1.269541e+06 \n",
+ " 9 0.000000 0.000000 1.282161e+06 \n",
+ " 10 0.000000 0.000000 1.405335e+06 \n",
+ "\n",
+ " cpu_total_stream mem_max_loader \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 80.012976 0.000000 \n",
+ " 2 160.696836 0.000000 \n",
+ " 3 241.310310 0.000000 \n",
+ " 4 320.818782 0.000000 \n",
+ " 5 402.095493 0.000000 \n",
+ " 6 480.793733 705.457031 \n",
+ " 7 564.956015 0.000000 \n",
+ " 8 643.013221 0.000000 \n",
+ " 9 721.034614 0.000000 \n",
+ " 10 809.336122 0.000000 \n",
+ "3 1 1 254.895022 0.000000 \n",
+ " 2 513.052090 0.000000 \n",
+ " 3 774.232907 0.000000 \n",
+ " 4 1035.374460 0.000000 \n",
+ " 5 1301.766807 0.000000 \n",
+ " 6 1580.428484 2910.578125 \n",
+ " 7 1896.309787 0.000000 \n",
+ " 8 2195.282286 0.000000 \n",
+ " 9 2532.981222 0.000000 \n",
+ " 10 2927.611783 0.000000 \n",
+ "10 1 1 786.669466 0.000000 \n",
+ " 2 1587.744005 0.000000 \n",
+ " 3 2417.887925 0.000000 \n",
+ " 4 3275.796691 0.000000 \n",
+ " 5 4246.551481 0.000000 \n",
+ " 6 5265.466408 2608.453125 \n",
+ " 7 6528.646610 0.000000 \n",
+ " 8 7860.367871 0.000000 \n",
+ " 9 9147.668042 0.000000 \n",
+ " 10 10593.564916 0.000000 \n",
+ "30 1 1 6184.898335 0.000000 \n",
+ " 2 12370.134032 0.000000 \n",
+ " 3 18572.865874 0.000000 \n",
+ " 4 25137.664373 0.000000 \n",
+ " 5 32702.073946 0.000000 \n",
+ " 6 40614.352894 31904.496094 \n",
+ " 7 49626.594767 0.000000 \n",
+ " 8 58838.671861 0.000000 \n",
+ " 9 66750.954151 0.000000 \n",
+ " 10 73239.706541 0.000000 \n",
+ "\n",
+ " cpu_total_loader mem_max_datagenerator \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 0.000000 0 \n",
+ " 2 0.000000 0 \n",
+ " 3 0.000000 0 \n",
+ " 4 0.000000 0 \n",
+ " 5 0.000000 0 \n",
+ " 6 2.415629 0 \n",
+ " 7 0.000000 0 \n",
+ " 8 0.000000 0 \n",
+ " 9 0.000000 0 \n",
+ " 10 0.000000 0 \n",
+ "3 1 1 0.000000 0 \n",
+ " 2 0.000000 0 \n",
+ " 3 0.000000 0 \n",
+ " 4 0.000000 0 \n",
+ " 5 0.000000 0 \n",
+ " 6 7.351115 0 \n",
+ " 7 0.000000 0 \n",
+ " 8 0.000000 0 \n",
+ " 9 0.000000 0 \n",
+ " 10 0.000000 0 \n",
+ "10 1 1 0.000000 0 \n",
+ " 2 0.000000 0 \n",
+ " 3 0.000000 0 \n",
+ " 4 0.000000 0 \n",
+ " 5 0.000000 0 \n",
+ " 6 8.310315 0 \n",
+ " 7 0.000000 0 \n",
+ " 8 0.000000 0 \n",
+ " 9 0.000000 0 \n",
+ " 10 0.000000 0 \n",
+ "30 1 1 0.000000 0 \n",
+ " 2 0.000000 0 \n",
+ " 3 0.000000 0 \n",
+ " 4 0.000000 0 \n",
+ " 5 0.000000 0 \n",
+ " 6 69.471757 0 \n",
+ " 7 0.000000 0 \n",
+ " 8 0.000000 0 \n",
+ " 9 0.000000 0 \n",
+ " 10 0.000000 0 \n",
+ "\n",
+ " cpu_total_datagenerator mem_max_benchmarker \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 0 208.652344 \n",
+ " 2 0 611.730469 \n",
+ " 3 0 1212.539062 \n",
+ " 4 0 1863.578125 \n",
+ " 5 0 2465.582031 \n",
+ " 6 0 3037.617188 \n",
+ " 7 0 2742.273438 \n",
+ " 8 0 3084.117188 \n",
+ " 9 0 3462.558594 \n",
+ " 10 0 3894.109375 \n",
+ "3 1 1 0 204.019531 \n",
+ " 2 0 660.550781 \n",
+ " 3 0 1125.523438 \n",
+ " 4 0 1840.070312 \n",
+ " 5 0 2354.382812 \n",
+ " 6 0 2808.136719 \n",
+ " 7 0 2807.425781 \n",
+ " 8 0 3293.394531 \n",
+ " 9 0 3753.957031 \n",
+ " 10 0 4150.222656 \n",
+ "10 1 1 0 0.000000 \n",
+ " 2 0 0.000000 \n",
+ " 3 0 0.000000 \n",
+ " 4 0 0.000000 \n",
+ " 5 0 0.000000 \n",
+ " 6 0 0.000000 \n",
+ " 7 0 0.000000 \n",
+ " 8 0 0.000000 \n",
+ " 9 0 0.000000 \n",
+ " 10 0 0.000000 \n",
+ "30 1 1 0 238.613281 \n",
+ " 2 0 653.542969 \n",
+ " 3 0 1076.601562 \n",
+ " 4 0 1478.449219 \n",
+ " 5 0 1880.527344 \n",
+ " 6 0 2268.343750 \n",
+ " 7 0 2668.695312 \n",
+ " 8 0 3035.449219 \n",
+ " 9 0 3449.035156 \n",
+ " 10 0 3723.453125 \n",
+ "\n",
+ " cpu_total_benchmarker \n",
+ "SF num_experiment num_client \n",
+ "1 1 1 6.357339 \n",
+ " 2 12.480364 \n",
+ " 3 21.294983 \n",
+ " 4 28.945682 \n",
+ " 5 35.623551 \n",
+ " 6 41.721285 \n",
+ " 7 17.090795 \n",
+ " 8 48.048381 \n",
+ " 9 61.486374 \n",
+ " 10 61.253136 \n",
+ "3 1 1 7.368385 \n",
+ " 2 14.698020 \n",
+ " 3 16.856276 \n",
+ " 4 21.739376 \n",
+ " 5 25.390574 \n",
+ " 6 26.741739 \n",
+ " 7 49.581324 \n",
+ " 8 67.042332 \n",
+ " 9 75.274546 \n",
+ " 10 84.710041 \n",
+ "10 1 1 0.000000 \n",
+ " 2 0.000000 \n",
+ " 3 0.000000 \n",
+ " 4 0.000000 \n",
+ " 5 0.000000 \n",
+ " 6 0.000000 \n",
+ " 7 0.000000 \n",
+ " 8 0.000000 \n",
+ " 9 0.000000 \n",
+ " 10 0.000000 \n",
+ "30 1 1 13.309727 \n",
+ " 2 15.027941 \n",
+ " 3 27.752162 \n",
+ " 4 42.074733 \n",
+ " 5 56.977909 \n",
+ " 6 62.487400 \n",
+ " 7 81.235520 \n",
+ " 8 98.604956 \n",
+ " 9 110.060736 \n",
+ " 10 123.735284 \n",
+ "\n",
+ "[40 rows x 30 columns]"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "benchmark_start = df_time.groupby(['SF', 'num_experiment', 'num_client']).min('benchmark_start')\n",
+ "\n",
+ "benchmark_start"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " benchmark_geo \n",
+ " benchmark_mean \n",
+ " generate \n",
+ " ingest \n",
+ " initconstraints \n",
+ " initindexes \n",
+ " initschema \n",
+ " initstatistics \n",
+ " load \n",
+ " loaded \n",
+ " ... \n",
+ " mem_max_load \n",
+ " cpu_total_load \n",
+ " mem_max_stream \n",
+ " cpu_total_stream \n",
+ " mem_max_loader \n",
+ " cpu_total_loader \n",
+ " mem_max_datagenerator \n",
+ " cpu_total_datagenerator \n",
+ " mem_max_benchmarker \n",
+ " cpu_total_benchmarker \n",
+ " \n",
+ " \n",
+ " SF \n",
+ " num_experiment \n",
+ " num_client \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 0.626844 \n",
+ " 0.870090 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 7.128312e+03 \n",
+ " 80.012976 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 208.652344 \n",
+ " 6.357339 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 0.627641 \n",
+ " 0.879075 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 4.038180e+03 \n",
+ " 160.696836 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 611.730469 \n",
+ " 12.480364 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 0.632130 \n",
+ " 0.899522 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 4.229605e+03 \n",
+ " 241.310310 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1212.539062 \n",
+ " 21.294983 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 0.630736 \n",
+ " 0.888230 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 8.228980e+03 \n",
+ " 320.818782 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1863.578125 \n",
+ " 28.945682 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 0.636013 \n",
+ " 0.924576 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 7.845113e+03 \n",
+ " 402.095493 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 2465.582031 \n",
+ " 35.623551 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 0.640728 \n",
+ " 0.908141 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 3818.800781 \n",
+ " 89.863155 \n",
+ " 7.161371e+03 \n",
+ " 480.793733 \n",
+ " 705.457031 \n",
+ " 2.415629 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3037.617188 \n",
+ " 41.721285 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 0.640812 \n",
+ " 0.916236 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 7.329809e+03 \n",
+ " 564.956015 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 2742.273438 \n",
+ " 17.090795 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 0.632665 \n",
+ " 0.904015 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 7.848301e+03 \n",
+ " 643.013221 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3084.117188 \n",
+ " 48.048381 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 0.639336 \n",
+ " 0.914431 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 7.971777e+03 \n",
+ " 721.034614 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3462.558594 \n",
+ " 61.486374 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 0.650121 \n",
+ " 0.927470 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 8.032227e+03 \n",
+ " 809.336122 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3894.109375 \n",
+ " 61.253136 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1.637411 \n",
+ " 2.337024 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.352643e+04 \n",
+ " 254.895022 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 204.019531 \n",
+ " 7.368385 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 1.629153 \n",
+ " 2.392267 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 2.088032e+04 \n",
+ " 513.052090 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 660.550781 \n",
+ " 14.698020 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 1.659287 \n",
+ " 2.451833 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 3.279666e+04 \n",
+ " 774.232907 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1125.523438 \n",
+ " 16.856276 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 1.660253 \n",
+ " 2.438937 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 4.267620e+04 \n",
+ " 1035.374460 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1840.070312 \n",
+ " 21.739376 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 1.679546 \n",
+ " 2.461815 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 3.664088e+04 \n",
+ " 1301.766807 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 2354.382812 \n",
+ " 25.390574 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 1.701831 \n",
+ " 2.497585 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 6624.316406 \n",
+ " 270.958437 \n",
+ " 4.626659e+04 \n",
+ " 1580.428484 \n",
+ " 2910.578125 \n",
+ " 7.351115 \n",
+ " 0 \n",
+ " 0 \n",
+ " 2808.136719 \n",
+ " 26.741739 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 1.783129 \n",
+ " 2.628219 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 3.284285e+04 \n",
+ " 1896.309787 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 2807.425781 \n",
+ " 49.581324 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 1.827464 \n",
+ " 2.639318 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 3.728577e+04 \n",
+ " 2195.282286 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3293.394531 \n",
+ " 67.042332 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 1.885180 \n",
+ " 2.698596 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 4.183903e+04 \n",
+ " 2532.981222 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3753.957031 \n",
+ " 75.274546 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 2.000874 \n",
+ " 2.866765 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 4.240661e+04 \n",
+ " 2927.611783 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 4150.222656 \n",
+ " 84.710041 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 1 \n",
+ " 1 \n",
+ " 4.249538 \n",
+ " 6.697040 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 6.326941e+04 \n",
+ " 786.669466 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 4.256660 \n",
+ " 6.792321 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.054058e+05 \n",
+ " 1587.744005 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 4.344926 \n",
+ " 7.031578 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.392845e+05 \n",
+ " 2417.887925 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 4.403455 \n",
+ " 7.250765 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.786093e+05 \n",
+ " 3275.796691 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 4.604848 \n",
+ " 7.543895 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.869333e+05 \n",
+ " 4246.551481 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 4.858891 \n",
+ " 7.775989 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 17342.320312 \n",
+ " 952.253322 \n",
+ " 2.032445e+05 \n",
+ " 5265.466408 \n",
+ " 2608.453125 \n",
+ " 8.310315 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 5.170702 \n",
+ " 8.477382 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 2.027020e+05 \n",
+ " 6528.646610 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 5.374004 \n",
+ " 8.769735 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 2.320173e+05 \n",
+ " 7860.367871 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 5.676579 \n",
+ " 9.179535 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 2.130519e+05 \n",
+ " 9147.668042 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 6.060483 \n",
+ " 9.544057 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 2.305828e+05 \n",
+ " 10593.564916 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 30 \n",
+ " 1 \n",
+ " 1 \n",
+ " 11.848516 \n",
+ " 20.773472 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 2.428011e+05 \n",
+ " 6184.898335 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 238.613281 \n",
+ " 13.309727 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 11.590215 \n",
+ " 21.159031 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 4.072534e+05 \n",
+ " 12370.134032 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 653.542969 \n",
+ " 15.027941 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 11.807706 \n",
+ " 21.721130 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 5.741196e+05 \n",
+ " 18572.865874 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1076.601562 \n",
+ " 27.752162 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 12.315965 \n",
+ " 22.365024 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 7.415082e+05 \n",
+ " 25137.664373 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1478.449219 \n",
+ " 42.074733 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 13.244481 \n",
+ " 24.931526 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 8.108165e+05 \n",
+ " 32702.073946 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1880.527344 \n",
+ " 56.977909 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 14.096852 \n",
+ " 26.204070 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 45615.996094 \n",
+ " 2947.725295 \n",
+ " 9.121772e+05 \n",
+ " 40614.352894 \n",
+ " 31904.496094 \n",
+ " 69.471757 \n",
+ " 0 \n",
+ " 0 \n",
+ " 2268.343750 \n",
+ " 62.487400 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 15.398105 \n",
+ " 28.600618 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.086867e+06 \n",
+ " 49626.594767 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 2668.695312 \n",
+ " 81.235520 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 16.289964 \n",
+ " 30.197897 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.269541e+06 \n",
+ " 58838.671861 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3035.449219 \n",
+ " 98.604956 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 17.628742 \n",
+ " 32.871015 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.282161e+06 \n",
+ " 66750.954151 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3449.035156 \n",
+ " 110.060736 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 19.279709 \n",
+ " 41.397282 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.405335e+06 \n",
+ " 73239.706541 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3723.453125 \n",
+ " 123.735284 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
40 rows Ă— 30 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " benchmark_geo benchmark_mean generate ingest \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 0.626844 0.870090 0.0 17.0 \n",
+ " 2 0.627641 0.879075 0.0 17.0 \n",
+ " 3 0.632130 0.899522 0.0 17.0 \n",
+ " 4 0.630736 0.888230 0.0 17.0 \n",
+ " 5 0.636013 0.924576 0.0 17.0 \n",
+ " 6 0.640728 0.908141 0.0 17.0 \n",
+ " 7 0.640812 0.916236 0.0 17.0 \n",
+ " 8 0.632665 0.904015 0.0 17.0 \n",
+ " 9 0.639336 0.914431 0.0 17.0 \n",
+ " 10 0.650121 0.927470 0.0 17.0 \n",
+ "3 1 1 1.637411 2.337024 0.0 56.0 \n",
+ " 2 1.629153 2.392267 0.0 56.0 \n",
+ " 3 1.659287 2.451833 0.0 56.0 \n",
+ " 4 1.660253 2.438937 0.0 56.0 \n",
+ " 5 1.679546 2.461815 0.0 56.0 \n",
+ " 6 1.701831 2.497585 0.0 56.0 \n",
+ " 7 1.783129 2.628219 0.0 56.0 \n",
+ " 8 1.827464 2.639318 0.0 56.0 \n",
+ " 9 1.885180 2.698596 0.0 56.0 \n",
+ " 10 2.000874 2.866765 0.0 56.0 \n",
+ "10 1 1 4.249538 6.697040 0.0 205.0 \n",
+ " 2 4.256660 6.792321 0.0 205.0 \n",
+ " 3 4.344926 7.031578 0.0 205.0 \n",
+ " 4 4.403455 7.250765 0.0 205.0 \n",
+ " 5 4.604848 7.543895 0.0 205.0 \n",
+ " 6 4.858891 7.775989 0.0 205.0 \n",
+ " 7 5.170702 8.477382 0.0 205.0 \n",
+ " 8 5.374004 8.769735 0.0 205.0 \n",
+ " 9 5.676579 9.179535 0.0 205.0 \n",
+ " 10 6.060483 9.544057 0.0 205.0 \n",
+ "30 1 1 11.848516 20.773472 0.0 672.0 \n",
+ " 2 11.590215 21.159031 0.0 672.0 \n",
+ " 3 11.807706 21.721130 0.0 672.0 \n",
+ " 4 12.315965 22.365024 0.0 672.0 \n",
+ " 5 13.244481 24.931526 0.0 672.0 \n",
+ " 6 14.096852 26.204070 0.0 672.0 \n",
+ " 7 15.398105 28.600618 0.0 672.0 \n",
+ " 8 16.289964 30.197897 0.0 672.0 \n",
+ " 9 17.628742 32.871015 0.0 672.0 \n",
+ " 10 19.279709 41.397282 0.0 672.0 \n",
+ "\n",
+ " initconstraints initindexes initschema \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 29.036005 7.205218 1.211485 \n",
+ " 2 29.036005 7.205218 1.211485 \n",
+ " 3 29.036005 7.205218 1.211485 \n",
+ " 4 29.036005 7.205218 1.211485 \n",
+ " 5 29.036005 7.205218 1.211485 \n",
+ " 6 29.036005 7.205218 1.211485 \n",
+ " 7 29.036005 7.205218 1.211485 \n",
+ " 8 29.036005 7.205218 1.211485 \n",
+ " 9 29.036005 7.205218 1.211485 \n",
+ " 10 29.036005 7.205218 1.211485 \n",
+ "3 1 1 96.297798 17.512669 1.261016 \n",
+ " 2 96.297798 17.512669 1.261016 \n",
+ " 3 96.297798 17.512669 1.261016 \n",
+ " 4 96.297798 17.512669 1.261016 \n",
+ " 5 96.297798 17.512669 1.261016 \n",
+ " 6 96.297798 17.512669 1.261016 \n",
+ " 7 96.297798 17.512669 1.261016 \n",
+ " 8 96.297798 17.512669 1.261016 \n",
+ " 9 96.297798 17.512669 1.261016 \n",
+ " 10 96.297798 17.512669 1.261016 \n",
+ "10 1 1 405.726116 58.959765 1.237707 \n",
+ " 2 405.726116 58.959765 1.237707 \n",
+ " 3 405.726116 58.959765 1.237707 \n",
+ " 4 405.726116 58.959765 1.237707 \n",
+ " 5 405.726116 58.959765 1.237707 \n",
+ " 6 405.726116 58.959765 1.237707 \n",
+ " 7 405.726116 58.959765 1.237707 \n",
+ " 8 405.726116 58.959765 1.237707 \n",
+ " 9 405.726116 58.959765 1.237707 \n",
+ " 10 405.726116 58.959765 1.237707 \n",
+ "30 1 1 1354.092800 205.071821 1.118685 \n",
+ " 2 1354.092800 205.071821 1.118685 \n",
+ " 3 1354.092800 205.071821 1.118685 \n",
+ " 4 1354.092800 205.071821 1.118685 \n",
+ " 5 1354.092800 205.071821 1.118685 \n",
+ " 6 1354.092800 205.071821 1.118685 \n",
+ " 7 1354.092800 205.071821 1.118685 \n",
+ " 8 1354.092800 205.071821 1.118685 \n",
+ " 9 1354.092800 205.071821 1.118685 \n",
+ " 10 1354.092800 205.071821 1.118685 \n",
+ "\n",
+ " initstatistics load loaded ... \\\n",
+ "SF num_experiment num_client ... \n",
+ "1 1 1 20.242573 76.836504 2.288853 ... \n",
+ " 2 20.242573 76.836504 2.288853 ... \n",
+ " 3 20.242573 76.836504 2.288853 ... \n",
+ " 4 20.242573 76.836504 2.288853 ... \n",
+ " 5 20.242573 76.836504 2.288853 ... \n",
+ " 6 20.242573 76.836504 2.288853 ... \n",
+ " 7 20.242573 76.836504 2.288853 ... \n",
+ " 8 20.242573 76.836504 2.288853 ... \n",
+ " 9 20.242573 76.836504 2.288853 ... \n",
+ " 10 20.242573 76.836504 2.288853 ... \n",
+ "3 1 1 29.401657 202.647463 2.343093 ... \n",
+ " 2 29.401657 202.647463 2.343093 ... \n",
+ " 3 29.401657 202.647463 2.343093 ... \n",
+ " 4 29.401657 202.647463 2.343093 ... \n",
+ " 5 29.401657 202.647463 2.343093 ... \n",
+ " 6 29.401657 202.647463 2.343093 ... \n",
+ " 7 29.401657 202.647463 2.343093 ... \n",
+ " 8 29.401657 202.647463 2.343093 ... \n",
+ " 9 29.401657 202.647463 2.343093 ... \n",
+ " 10 29.401657 202.647463 2.343093 ... \n",
+ "10 1 1 36.520368 709.609962 2.295420 ... \n",
+ " 2 36.520368 709.609962 2.295420 ... \n",
+ " 3 36.520368 709.609962 2.295420 ... \n",
+ " 4 36.520368 709.609962 2.295420 ... \n",
+ " 5 36.520368 709.609962 2.295420 ... \n",
+ " 6 36.520368 709.609962 2.295420 ... \n",
+ " 7 36.520368 709.609962 2.295420 ... \n",
+ " 8 36.520368 709.609962 2.295420 ... \n",
+ " 9 36.520368 709.609962 2.295420 ... \n",
+ " 10 36.520368 709.609962 2.295420 ... \n",
+ "30 1 1 43.233445 2277.665694 2.153249 ... \n",
+ " 2 43.233445 2277.665694 2.153249 ... \n",
+ " 3 43.233445 2277.665694 2.153249 ... \n",
+ " 4 43.233445 2277.665694 2.153249 ... \n",
+ " 5 43.233445 2277.665694 2.153249 ... \n",
+ " 6 43.233445 2277.665694 2.153249 ... \n",
+ " 7 43.233445 2277.665694 2.153249 ... \n",
+ " 8 43.233445 2277.665694 2.153249 ... \n",
+ " 9 43.233445 2277.665694 2.153249 ... \n",
+ " 10 43.233445 2277.665694 2.153249 ... \n",
+ "\n",
+ " mem_max_load cpu_total_load mem_max_stream \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 0.000000 0.000000 7.128312e+03 \n",
+ " 2 0.000000 0.000000 4.038180e+03 \n",
+ " 3 0.000000 0.000000 4.229605e+03 \n",
+ " 4 0.000000 0.000000 8.228980e+03 \n",
+ " 5 0.000000 0.000000 7.845113e+03 \n",
+ " 6 3818.800781 89.863155 7.161371e+03 \n",
+ " 7 0.000000 0.000000 7.329809e+03 \n",
+ " 8 0.000000 0.000000 7.848301e+03 \n",
+ " 9 0.000000 0.000000 7.971777e+03 \n",
+ " 10 0.000000 0.000000 8.032227e+03 \n",
+ "3 1 1 0.000000 0.000000 1.352643e+04 \n",
+ " 2 0.000000 0.000000 2.088032e+04 \n",
+ " 3 0.000000 0.000000 3.279666e+04 \n",
+ " 4 0.000000 0.000000 4.267620e+04 \n",
+ " 5 0.000000 0.000000 3.664088e+04 \n",
+ " 6 6624.316406 270.958437 4.626659e+04 \n",
+ " 7 0.000000 0.000000 3.284285e+04 \n",
+ " 8 0.000000 0.000000 3.728577e+04 \n",
+ " 9 0.000000 0.000000 4.183903e+04 \n",
+ " 10 0.000000 0.000000 4.240661e+04 \n",
+ "10 1 1 0.000000 0.000000 6.326941e+04 \n",
+ " 2 0.000000 0.000000 1.054058e+05 \n",
+ " 3 0.000000 0.000000 1.392845e+05 \n",
+ " 4 0.000000 0.000000 1.786093e+05 \n",
+ " 5 0.000000 0.000000 1.869333e+05 \n",
+ " 6 17342.320312 952.253322 2.032445e+05 \n",
+ " 7 0.000000 0.000000 2.027020e+05 \n",
+ " 8 0.000000 0.000000 2.320173e+05 \n",
+ " 9 0.000000 0.000000 2.130519e+05 \n",
+ " 10 0.000000 0.000000 2.305828e+05 \n",
+ "30 1 1 0.000000 0.000000 2.428011e+05 \n",
+ " 2 0.000000 0.000000 4.072534e+05 \n",
+ " 3 0.000000 0.000000 5.741196e+05 \n",
+ " 4 0.000000 0.000000 7.415082e+05 \n",
+ " 5 0.000000 0.000000 8.108165e+05 \n",
+ " 6 45615.996094 2947.725295 9.121772e+05 \n",
+ " 7 0.000000 0.000000 1.086867e+06 \n",
+ " 8 0.000000 0.000000 1.269541e+06 \n",
+ " 9 0.000000 0.000000 1.282161e+06 \n",
+ " 10 0.000000 0.000000 1.405335e+06 \n",
+ "\n",
+ " cpu_total_stream mem_max_loader \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 80.012976 0.000000 \n",
+ " 2 160.696836 0.000000 \n",
+ " 3 241.310310 0.000000 \n",
+ " 4 320.818782 0.000000 \n",
+ " 5 402.095493 0.000000 \n",
+ " 6 480.793733 705.457031 \n",
+ " 7 564.956015 0.000000 \n",
+ " 8 643.013221 0.000000 \n",
+ " 9 721.034614 0.000000 \n",
+ " 10 809.336122 0.000000 \n",
+ "3 1 1 254.895022 0.000000 \n",
+ " 2 513.052090 0.000000 \n",
+ " 3 774.232907 0.000000 \n",
+ " 4 1035.374460 0.000000 \n",
+ " 5 1301.766807 0.000000 \n",
+ " 6 1580.428484 2910.578125 \n",
+ " 7 1896.309787 0.000000 \n",
+ " 8 2195.282286 0.000000 \n",
+ " 9 2532.981222 0.000000 \n",
+ " 10 2927.611783 0.000000 \n",
+ "10 1 1 786.669466 0.000000 \n",
+ " 2 1587.744005 0.000000 \n",
+ " 3 2417.887925 0.000000 \n",
+ " 4 3275.796691 0.000000 \n",
+ " 5 4246.551481 0.000000 \n",
+ " 6 5265.466408 2608.453125 \n",
+ " 7 6528.646610 0.000000 \n",
+ " 8 7860.367871 0.000000 \n",
+ " 9 9147.668042 0.000000 \n",
+ " 10 10593.564916 0.000000 \n",
+ "30 1 1 6184.898335 0.000000 \n",
+ " 2 12370.134032 0.000000 \n",
+ " 3 18572.865874 0.000000 \n",
+ " 4 25137.664373 0.000000 \n",
+ " 5 32702.073946 0.000000 \n",
+ " 6 40614.352894 31904.496094 \n",
+ " 7 49626.594767 0.000000 \n",
+ " 8 58838.671861 0.000000 \n",
+ " 9 66750.954151 0.000000 \n",
+ " 10 73239.706541 0.000000 \n",
+ "\n",
+ " cpu_total_loader mem_max_datagenerator \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 0.000000 0 \n",
+ " 2 0.000000 0 \n",
+ " 3 0.000000 0 \n",
+ " 4 0.000000 0 \n",
+ " 5 0.000000 0 \n",
+ " 6 2.415629 0 \n",
+ " 7 0.000000 0 \n",
+ " 8 0.000000 0 \n",
+ " 9 0.000000 0 \n",
+ " 10 0.000000 0 \n",
+ "3 1 1 0.000000 0 \n",
+ " 2 0.000000 0 \n",
+ " 3 0.000000 0 \n",
+ " 4 0.000000 0 \n",
+ " 5 0.000000 0 \n",
+ " 6 7.351115 0 \n",
+ " 7 0.000000 0 \n",
+ " 8 0.000000 0 \n",
+ " 9 0.000000 0 \n",
+ " 10 0.000000 0 \n",
+ "10 1 1 0.000000 0 \n",
+ " 2 0.000000 0 \n",
+ " 3 0.000000 0 \n",
+ " 4 0.000000 0 \n",
+ " 5 0.000000 0 \n",
+ " 6 8.310315 0 \n",
+ " 7 0.000000 0 \n",
+ " 8 0.000000 0 \n",
+ " 9 0.000000 0 \n",
+ " 10 0.000000 0 \n",
+ "30 1 1 0.000000 0 \n",
+ " 2 0.000000 0 \n",
+ " 3 0.000000 0 \n",
+ " 4 0.000000 0 \n",
+ " 5 0.000000 0 \n",
+ " 6 69.471757 0 \n",
+ " 7 0.000000 0 \n",
+ " 8 0.000000 0 \n",
+ " 9 0.000000 0 \n",
+ " 10 0.000000 0 \n",
+ "\n",
+ " cpu_total_datagenerator mem_max_benchmarker \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 0 208.652344 \n",
+ " 2 0 611.730469 \n",
+ " 3 0 1212.539062 \n",
+ " 4 0 1863.578125 \n",
+ " 5 0 2465.582031 \n",
+ " 6 0 3037.617188 \n",
+ " 7 0 2742.273438 \n",
+ " 8 0 3084.117188 \n",
+ " 9 0 3462.558594 \n",
+ " 10 0 3894.109375 \n",
+ "3 1 1 0 204.019531 \n",
+ " 2 0 660.550781 \n",
+ " 3 0 1125.523438 \n",
+ " 4 0 1840.070312 \n",
+ " 5 0 2354.382812 \n",
+ " 6 0 2808.136719 \n",
+ " 7 0 2807.425781 \n",
+ " 8 0 3293.394531 \n",
+ " 9 0 3753.957031 \n",
+ " 10 0 4150.222656 \n",
+ "10 1 1 0 0.000000 \n",
+ " 2 0 0.000000 \n",
+ " 3 0 0.000000 \n",
+ " 4 0 0.000000 \n",
+ " 5 0 0.000000 \n",
+ " 6 0 0.000000 \n",
+ " 7 0 0.000000 \n",
+ " 8 0 0.000000 \n",
+ " 9 0 0.000000 \n",
+ " 10 0 0.000000 \n",
+ "30 1 1 0 238.613281 \n",
+ " 2 0 653.542969 \n",
+ " 3 0 1076.601562 \n",
+ " 4 0 1478.449219 \n",
+ " 5 0 1880.527344 \n",
+ " 6 0 2268.343750 \n",
+ " 7 0 2668.695312 \n",
+ " 8 0 3035.449219 \n",
+ " 9 0 3449.035156 \n",
+ " 10 0 3723.453125 \n",
+ "\n",
+ " cpu_total_benchmarker \n",
+ "SF num_experiment num_client \n",
+ "1 1 1 6.357339 \n",
+ " 2 12.480364 \n",
+ " 3 21.294983 \n",
+ " 4 28.945682 \n",
+ " 5 35.623551 \n",
+ " 6 41.721285 \n",
+ " 7 17.090795 \n",
+ " 8 48.048381 \n",
+ " 9 61.486374 \n",
+ " 10 61.253136 \n",
+ "3 1 1 7.368385 \n",
+ " 2 14.698020 \n",
+ " 3 16.856276 \n",
+ " 4 21.739376 \n",
+ " 5 25.390574 \n",
+ " 6 26.741739 \n",
+ " 7 49.581324 \n",
+ " 8 67.042332 \n",
+ " 9 75.274546 \n",
+ " 10 84.710041 \n",
+ "10 1 1 0.000000 \n",
+ " 2 0.000000 \n",
+ " 3 0.000000 \n",
+ " 4 0.000000 \n",
+ " 5 0.000000 \n",
+ " 6 0.000000 \n",
+ " 7 0.000000 \n",
+ " 8 0.000000 \n",
+ " 9 0.000000 \n",
+ " 10 0.000000 \n",
+ "30 1 1 13.309727 \n",
+ " 2 15.027941 \n",
+ " 3 27.752162 \n",
+ " 4 42.074733 \n",
+ " 5 56.977909 \n",
+ " 6 62.487400 \n",
+ " 7 81.235520 \n",
+ " 8 98.604956 \n",
+ " 9 110.060736 \n",
+ " 10 123.735284 \n",
+ "\n",
+ "[40 rows x 30 columns]"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "benchmark_end = df_time.groupby(['SF', 'num_experiment', 'num_client']).max('benchmark_end')\n",
+ "\n",
+ "benchmark_end"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " span_benchmark \n",
+ " \n",
+ " \n",
+ " SF \n",
+ " num_experiment \n",
+ " num_client \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 22 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 25 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 32 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 45 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 48 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 55 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 59 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 69 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 81 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 82 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 1 \n",
+ " 1 \n",
+ " 56 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 62 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 75 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 75 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 82 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 87 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 102 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 114 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 117 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 123 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 1 \n",
+ " 1 \n",
+ " 153 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 160 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 173 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 185 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 213 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 223 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 247 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 254 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 269 \n",
+ " \n",
+ " \n",
+ " 30 \n",
+ " 1 \n",
+ " 1 \n",
+ " 4044 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 4056 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 4066 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 4100 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 4156 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 4199 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 4235 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 4283 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 4350 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 4550 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " span_benchmark\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 22\n",
+ " 2 25\n",
+ " 3 32\n",
+ " 4 45\n",
+ " 5 48\n",
+ " 6 55\n",
+ " 7 59\n",
+ " 8 69\n",
+ " 9 81\n",
+ " 10 82\n",
+ "3 1 1 56\n",
+ " 2 62\n",
+ " 3 75\n",
+ " 4 75\n",
+ " 5 82\n",
+ " 6 87\n",
+ " 7 102\n",
+ " 8 114\n",
+ " 9 117\n",
+ " 10 123\n",
+ "10 1 1 153\n",
+ " 2 160\n",
+ " 3 173\n",
+ " 4 185\n",
+ " 5 202\n",
+ " 6 213\n",
+ " 7 223\n",
+ " 8 247\n",
+ " 9 254\n",
+ " 10 269\n",
+ "30 1 1 4044\n",
+ " 2 4056\n",
+ " 3 4066\n",
+ " 4 4100\n",
+ " 5 4156\n",
+ " 6 4199\n",
+ " 7 4235\n",
+ " 8 4283\n",
+ " 9 4350\n",
+ " 10 4550"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_benchmark = pd.DataFrame(benchmark_end['benchmark_end'] - benchmark_start['benchmark_start'])\n",
+ "\n",
+ "df_benchmark.columns = ['span_benchmark']\n",
+ "\n",
+ "df_benchmark"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " benchmark_geo \n",
+ " benchmark_mean \n",
+ " generate \n",
+ " ingest \n",
+ " initconstraints \n",
+ " initindexes \n",
+ " initschema \n",
+ " initstatistics \n",
+ " load \n",
+ " loaded \n",
+ " ... \n",
+ " mem_max_load \n",
+ " cpu_total_load \n",
+ " mem_max_stream \n",
+ " cpu_total_stream \n",
+ " mem_max_loader \n",
+ " cpu_total_loader \n",
+ " mem_max_datagenerator \n",
+ " cpu_total_datagenerator \n",
+ " mem_max_benchmarker \n",
+ " cpu_total_benchmarker \n",
+ " \n",
+ " \n",
+ " SF \n",
+ " num_experiment \n",
+ " num_client \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " ... \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " ... \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " ... \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " ... \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " ... \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " ... \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " ... \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " ... \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " ... \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " ... \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " ... \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " ... \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " ... \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " ... \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " ... \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " ... \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " ... \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " ... \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " ... \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " ... \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " ... \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " ... \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " ... \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " ... \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " ... \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " ... \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " ... \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " ... \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " ... \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " ... \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " \n",
+ " \n",
+ " 30 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " ... \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " ... \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " 2 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " ... \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " 3 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " ... \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " ... \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " 5 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " ... \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " 6 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " ... \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " 7 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " ... \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " ... \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " 9 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " ... \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " 10 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
40 rows Ă— 32 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " benchmark_geo benchmark_mean generate ingest \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 1 1 1 1 \n",
+ " 2 2 2 2 2 \n",
+ " 3 3 3 3 3 \n",
+ " 4 4 4 4 4 \n",
+ " 5 5 5 5 5 \n",
+ " 6 6 6 6 6 \n",
+ " 7 7 7 7 7 \n",
+ " 8 8 8 8 8 \n",
+ " 9 9 9 9 9 \n",
+ " 10 10 10 10 10 \n",
+ "3 1 1 1 1 1 1 \n",
+ " 2 2 2 2 2 \n",
+ " 3 3 3 3 3 \n",
+ " 4 4 4 4 4 \n",
+ " 5 5 5 5 5 \n",
+ " 6 6 6 6 6 \n",
+ " 7 7 7 7 7 \n",
+ " 8 8 8 8 8 \n",
+ " 9 9 9 9 9 \n",
+ " 10 10 10 10 10 \n",
+ "10 1 1 1 1 1 1 \n",
+ " 2 2 2 2 2 \n",
+ " 3 3 3 3 3 \n",
+ " 4 4 4 4 4 \n",
+ " 5 5 5 5 5 \n",
+ " 6 6 6 6 6 \n",
+ " 7 7 7 7 7 \n",
+ " 8 8 8 8 8 \n",
+ " 9 9 9 9 9 \n",
+ " 10 10 10 10 10 \n",
+ "30 1 1 1 1 1 1 \n",
+ " 2 2 2 2 2 \n",
+ " 3 3 3 3 3 \n",
+ " 4 4 4 4 4 \n",
+ " 5 5 5 5 5 \n",
+ " 6 6 6 6 6 \n",
+ " 7 7 7 7 7 \n",
+ " 8 8 8 8 8 \n",
+ " 9 9 9 9 9 \n",
+ " 10 10 10 10 10 \n",
+ "\n",
+ " initconstraints initindexes initschema \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 1 1 1 \n",
+ " 2 2 2 2 \n",
+ " 3 3 3 3 \n",
+ " 4 4 4 4 \n",
+ " 5 5 5 5 \n",
+ " 6 6 6 6 \n",
+ " 7 7 7 7 \n",
+ " 8 8 8 8 \n",
+ " 9 9 9 9 \n",
+ " 10 10 10 10 \n",
+ "3 1 1 1 1 1 \n",
+ " 2 2 2 2 \n",
+ " 3 3 3 3 \n",
+ " 4 4 4 4 \n",
+ " 5 5 5 5 \n",
+ " 6 6 6 6 \n",
+ " 7 7 7 7 \n",
+ " 8 8 8 8 \n",
+ " 9 9 9 9 \n",
+ " 10 10 10 10 \n",
+ "10 1 1 1 1 1 \n",
+ " 2 2 2 2 \n",
+ " 3 3 3 3 \n",
+ " 4 4 4 4 \n",
+ " 5 5 5 5 \n",
+ " 6 6 6 6 \n",
+ " 7 7 7 7 \n",
+ " 8 8 8 8 \n",
+ " 9 9 9 9 \n",
+ " 10 10 10 10 \n",
+ "30 1 1 1 1 1 \n",
+ " 2 2 2 2 \n",
+ " 3 3 3 3 \n",
+ " 4 4 4 4 \n",
+ " 5 5 5 5 \n",
+ " 6 6 6 6 \n",
+ " 7 7 7 7 \n",
+ " 8 8 8 8 \n",
+ " 9 9 9 9 \n",
+ " 10 10 10 10 \n",
+ "\n",
+ " initstatistics load loaded ... mem_max_load \\\n",
+ "SF num_experiment num_client ... \n",
+ "1 1 1 1 1 1 ... 1 \n",
+ " 2 2 2 2 ... 2 \n",
+ " 3 3 3 3 ... 3 \n",
+ " 4 4 4 4 ... 4 \n",
+ " 5 5 5 5 ... 5 \n",
+ " 6 6 6 6 ... 6 \n",
+ " 7 7 7 7 ... 7 \n",
+ " 8 8 8 8 ... 8 \n",
+ " 9 9 9 9 ... 9 \n",
+ " 10 10 10 10 ... 10 \n",
+ "3 1 1 1 1 1 ... 1 \n",
+ " 2 2 2 2 ... 2 \n",
+ " 3 3 3 3 ... 3 \n",
+ " 4 4 4 4 ... 4 \n",
+ " 5 5 5 5 ... 5 \n",
+ " 6 6 6 6 ... 6 \n",
+ " 7 7 7 7 ... 7 \n",
+ " 8 8 8 8 ... 8 \n",
+ " 9 9 9 9 ... 9 \n",
+ " 10 10 10 10 ... 10 \n",
+ "10 1 1 1 1 1 ... 1 \n",
+ " 2 2 2 2 ... 2 \n",
+ " 3 3 3 3 ... 3 \n",
+ " 4 4 4 4 ... 4 \n",
+ " 5 5 5 5 ... 5 \n",
+ " 6 6 6 6 ... 6 \n",
+ " 7 7 7 7 ... 7 \n",
+ " 8 8 8 8 ... 8 \n",
+ " 9 9 9 9 ... 9 \n",
+ " 10 10 10 10 ... 10 \n",
+ "30 1 1 1 1 1 ... 1 \n",
+ " 2 2 2 2 ... 2 \n",
+ " 3 3 3 3 ... 3 \n",
+ " 4 4 4 4 ... 4 \n",
+ " 5 5 5 5 ... 5 \n",
+ " 6 6 6 6 ... 6 \n",
+ " 7 7 7 7 ... 7 \n",
+ " 8 8 8 8 ... 8 \n",
+ " 9 9 9 9 ... 9 \n",
+ " 10 10 10 10 ... 10 \n",
+ "\n",
+ " cpu_total_load mem_max_stream \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 1 1 \n",
+ " 2 2 2 \n",
+ " 3 3 3 \n",
+ " 4 4 4 \n",
+ " 5 5 5 \n",
+ " 6 6 6 \n",
+ " 7 7 7 \n",
+ " 8 8 8 \n",
+ " 9 9 9 \n",
+ " 10 10 10 \n",
+ "3 1 1 1 1 \n",
+ " 2 2 2 \n",
+ " 3 3 3 \n",
+ " 4 4 4 \n",
+ " 5 5 5 \n",
+ " 6 6 6 \n",
+ " 7 7 7 \n",
+ " 8 8 8 \n",
+ " 9 9 9 \n",
+ " 10 10 10 \n",
+ "10 1 1 1 1 \n",
+ " 2 2 2 \n",
+ " 3 3 3 \n",
+ " 4 4 4 \n",
+ " 5 5 5 \n",
+ " 6 6 6 \n",
+ " 7 7 7 \n",
+ " 8 8 8 \n",
+ " 9 9 9 \n",
+ " 10 10 10 \n",
+ "30 1 1 1 1 \n",
+ " 2 2 2 \n",
+ " 3 3 3 \n",
+ " 4 4 4 \n",
+ " 5 5 5 \n",
+ " 6 6 6 \n",
+ " 7 7 7 \n",
+ " 8 8 8 \n",
+ " 9 9 9 \n",
+ " 10 10 10 \n",
+ "\n",
+ " cpu_total_stream mem_max_loader \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 1 1 \n",
+ " 2 2 2 \n",
+ " 3 3 3 \n",
+ " 4 4 4 \n",
+ " 5 5 5 \n",
+ " 6 6 6 \n",
+ " 7 7 7 \n",
+ " 8 8 8 \n",
+ " 9 9 9 \n",
+ " 10 10 10 \n",
+ "3 1 1 1 1 \n",
+ " 2 2 2 \n",
+ " 3 3 3 \n",
+ " 4 4 4 \n",
+ " 5 5 5 \n",
+ " 6 6 6 \n",
+ " 7 7 7 \n",
+ " 8 8 8 \n",
+ " 9 9 9 \n",
+ " 10 10 10 \n",
+ "10 1 1 1 1 \n",
+ " 2 2 2 \n",
+ " 3 3 3 \n",
+ " 4 4 4 \n",
+ " 5 5 5 \n",
+ " 6 6 6 \n",
+ " 7 7 7 \n",
+ " 8 8 8 \n",
+ " 9 9 9 \n",
+ " 10 10 10 \n",
+ "30 1 1 1 1 \n",
+ " 2 2 2 \n",
+ " 3 3 3 \n",
+ " 4 4 4 \n",
+ " 5 5 5 \n",
+ " 6 6 6 \n",
+ " 7 7 7 \n",
+ " 8 8 8 \n",
+ " 9 9 9 \n",
+ " 10 10 10 \n",
+ "\n",
+ " cpu_total_loader mem_max_datagenerator \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 1 1 \n",
+ " 2 2 2 \n",
+ " 3 3 3 \n",
+ " 4 4 4 \n",
+ " 5 5 5 \n",
+ " 6 6 6 \n",
+ " 7 7 7 \n",
+ " 8 8 8 \n",
+ " 9 9 9 \n",
+ " 10 10 10 \n",
+ "3 1 1 1 1 \n",
+ " 2 2 2 \n",
+ " 3 3 3 \n",
+ " 4 4 4 \n",
+ " 5 5 5 \n",
+ " 6 6 6 \n",
+ " 7 7 7 \n",
+ " 8 8 8 \n",
+ " 9 9 9 \n",
+ " 10 10 10 \n",
+ "10 1 1 1 1 \n",
+ " 2 2 2 \n",
+ " 3 3 3 \n",
+ " 4 4 4 \n",
+ " 5 5 5 \n",
+ " 6 6 6 \n",
+ " 7 7 7 \n",
+ " 8 8 8 \n",
+ " 9 9 9 \n",
+ " 10 10 10 \n",
+ "30 1 1 1 1 \n",
+ " 2 2 2 \n",
+ " 3 3 3 \n",
+ " 4 4 4 \n",
+ " 5 5 5 \n",
+ " 6 6 6 \n",
+ " 7 7 7 \n",
+ " 8 8 8 \n",
+ " 9 9 9 \n",
+ " 10 10 10 \n",
+ "\n",
+ " cpu_total_datagenerator mem_max_benchmarker \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 1 1 \n",
+ " 2 2 2 \n",
+ " 3 3 3 \n",
+ " 4 4 4 \n",
+ " 5 5 5 \n",
+ " 6 6 6 \n",
+ " 7 7 7 \n",
+ " 8 8 8 \n",
+ " 9 9 9 \n",
+ " 10 10 10 \n",
+ "3 1 1 1 1 \n",
+ " 2 2 2 \n",
+ " 3 3 3 \n",
+ " 4 4 4 \n",
+ " 5 5 5 \n",
+ " 6 6 6 \n",
+ " 7 7 7 \n",
+ " 8 8 8 \n",
+ " 9 9 9 \n",
+ " 10 10 10 \n",
+ "10 1 1 1 1 \n",
+ " 2 2 2 \n",
+ " 3 3 3 \n",
+ " 4 4 4 \n",
+ " 5 5 5 \n",
+ " 6 6 6 \n",
+ " 7 7 7 \n",
+ " 8 8 8 \n",
+ " 9 9 9 \n",
+ " 10 10 10 \n",
+ "30 1 1 1 1 \n",
+ " 2 2 2 \n",
+ " 3 3 3 \n",
+ " 4 4 4 \n",
+ " 5 5 5 \n",
+ " 6 6 6 \n",
+ " 7 7 7 \n",
+ " 8 8 8 \n",
+ " 9 9 9 \n",
+ " 10 10 10 \n",
+ "\n",
+ " cpu_total_benchmarker \n",
+ "SF num_experiment num_client \n",
+ "1 1 1 1 \n",
+ " 2 2 \n",
+ " 3 3 \n",
+ " 4 4 \n",
+ " 5 5 \n",
+ " 6 6 \n",
+ " 7 7 \n",
+ " 8 8 \n",
+ " 9 9 \n",
+ " 10 10 \n",
+ "3 1 1 1 \n",
+ " 2 2 \n",
+ " 3 3 \n",
+ " 4 4 \n",
+ " 5 5 \n",
+ " 6 6 \n",
+ " 7 7 \n",
+ " 8 8 \n",
+ " 9 9 \n",
+ " 10 10 \n",
+ "10 1 1 1 \n",
+ " 2 2 \n",
+ " 3 3 \n",
+ " 4 4 \n",
+ " 5 5 \n",
+ " 6 6 \n",
+ " 7 7 \n",
+ " 8 8 \n",
+ " 9 9 \n",
+ " 10 10 \n",
+ "30 1 1 1 \n",
+ " 2 2 \n",
+ " 3 3 \n",
+ " 4 4 \n",
+ " 5 5 \n",
+ " 6 6 \n",
+ " 7 7 \n",
+ " 8 8 \n",
+ " 9 9 \n",
+ " 10 10 \n",
+ "\n",
+ "[40 rows x 32 columns]"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "benchmark_count = df_time.groupby(['SF', 'num_experiment', 'num_client']).count()\n",
+ "\n",
+ "benchmark_count"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " span_benchmark \n",
+ " count \n",
+ " \n",
+ " \n",
+ " SF \n",
+ " num_experiment \n",
+ " num_client \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 22 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 25 \n",
+ " 2 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 32 \n",
+ " 3 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 45 \n",
+ " 4 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 48 \n",
+ " 5 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 55 \n",
+ " 6 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 59 \n",
+ " 7 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 69 \n",
+ " 8 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 81 \n",
+ " 9 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 82 \n",
+ " 10 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 1 \n",
+ " 1 \n",
+ " 56 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 62 \n",
+ " 2 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 75 \n",
+ " 3 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 75 \n",
+ " 4 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 82 \n",
+ " 5 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 87 \n",
+ " 6 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 102 \n",
+ " 7 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 114 \n",
+ " 8 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 117 \n",
+ " 9 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 123 \n",
+ " 10 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 1 \n",
+ " 1 \n",
+ " 153 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 160 \n",
+ " 2 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 173 \n",
+ " 3 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 185 \n",
+ " 4 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202 \n",
+ " 5 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 213 \n",
+ " 6 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 223 \n",
+ " 7 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 247 \n",
+ " 8 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 254 \n",
+ " 9 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 269 \n",
+ " 10 \n",
+ " \n",
+ " \n",
+ " 30 \n",
+ " 1 \n",
+ " 1 \n",
+ " 4044 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 4056 \n",
+ " 2 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 4066 \n",
+ " 3 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 4100 \n",
+ " 4 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 4156 \n",
+ " 5 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 4199 \n",
+ " 6 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 4235 \n",
+ " 7 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 4283 \n",
+ " 8 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 4350 \n",
+ " 9 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 4550 \n",
+ " 10 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " span_benchmark count\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 22 1\n",
+ " 2 25 2\n",
+ " 3 32 3\n",
+ " 4 45 4\n",
+ " 5 48 5\n",
+ " 6 55 6\n",
+ " 7 59 7\n",
+ " 8 69 8\n",
+ " 9 81 9\n",
+ " 10 82 10\n",
+ "3 1 1 56 1\n",
+ " 2 62 2\n",
+ " 3 75 3\n",
+ " 4 75 4\n",
+ " 5 82 5\n",
+ " 6 87 6\n",
+ " 7 102 7\n",
+ " 8 114 8\n",
+ " 9 117 9\n",
+ " 10 123 10\n",
+ "10 1 1 153 1\n",
+ " 2 160 2\n",
+ " 3 173 3\n",
+ " 4 185 4\n",
+ " 5 202 5\n",
+ " 6 213 6\n",
+ " 7 223 7\n",
+ " 8 247 8\n",
+ " 9 254 9\n",
+ " 10 269 10\n",
+ "30 1 1 4044 1\n",
+ " 2 4056 2\n",
+ " 3 4066 3\n",
+ " 4 4100 4\n",
+ " 5 4156 5\n",
+ " 6 4199 6\n",
+ " 7 4235 7\n",
+ " 8 4283 8\n",
+ " 9 4350 9\n",
+ " 10 4550 10"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_benchmark['count'] = benchmark_count['benchmark_geo']\n",
+ "\n",
+ "df_benchmark"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " span_benchmark \n",
+ " count \n",
+ " SF \n",
+ " tpx \n",
+ " \n",
+ " \n",
+ " SF \n",
+ " num_experiment \n",
+ " num_client \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 22 \n",
+ " 1 \n",
+ " 1 \n",
+ " 3600.000000 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 25 \n",
+ " 2 \n",
+ " 1 \n",
+ " 6336.000000 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 32 \n",
+ " 3 \n",
+ " 1 \n",
+ " 7425.000000 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 45 \n",
+ " 4 \n",
+ " 1 \n",
+ " 7040.000000 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 48 \n",
+ " 5 \n",
+ " 1 \n",
+ " 8250.000000 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 55 \n",
+ " 6 \n",
+ " 1 \n",
+ " 8640.000000 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 59 \n",
+ " 7 \n",
+ " 1 \n",
+ " 9396.610169 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 69 \n",
+ " 8 \n",
+ " 1 \n",
+ " 9182.608696 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 81 \n",
+ " 9 \n",
+ " 1 \n",
+ " 8800.000000 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 82 \n",
+ " 10 \n",
+ " 1 \n",
+ " 9658.536585 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 1 \n",
+ " 1 \n",
+ " 56 \n",
+ " 1 \n",
+ " 3 \n",
+ " 4242.857143 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 62 \n",
+ " 2 \n",
+ " 3 \n",
+ " 7664.516129 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 75 \n",
+ " 3 \n",
+ " 3 \n",
+ " 9504.000000 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 75 \n",
+ " 4 \n",
+ " 3 \n",
+ " 12672.000000 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 82 \n",
+ " 5 \n",
+ " 3 \n",
+ " 14487.804878 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 87 \n",
+ " 6 \n",
+ " 3 \n",
+ " 16386.206897 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 102 \n",
+ " 7 \n",
+ " 3 \n",
+ " 16305.882353 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 114 \n",
+ " 8 \n",
+ " 3 \n",
+ " 16673.684211 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 117 \n",
+ " 9 \n",
+ " 3 \n",
+ " 18276.923077 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 123 \n",
+ " 10 \n",
+ " 3 \n",
+ " 19317.073171 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 1 \n",
+ " 1 \n",
+ " 153 \n",
+ " 1 \n",
+ " 10 \n",
+ " 5176.470588 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 160 \n",
+ " 2 \n",
+ " 10 \n",
+ " 9900.000000 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 173 \n",
+ " 3 \n",
+ " 10 \n",
+ " 13734.104046 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 185 \n",
+ " 4 \n",
+ " 10 \n",
+ " 17124.324324 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202 \n",
+ " 5 \n",
+ " 10 \n",
+ " 19603.960396 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 213 \n",
+ " 6 \n",
+ " 10 \n",
+ " 22309.859155 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 223 \n",
+ " 7 \n",
+ " 10 \n",
+ " 24860.986547 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 247 \n",
+ " 8 \n",
+ " 10 \n",
+ " 25651.821862 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 254 \n",
+ " 9 \n",
+ " 10 \n",
+ " 28062.992126 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 269 \n",
+ " 10 \n",
+ " 10 \n",
+ " 29442.379182 \n",
+ " \n",
+ " \n",
+ " 30 \n",
+ " 1 \n",
+ " 1 \n",
+ " 4044 \n",
+ " 1 \n",
+ " 30 \n",
+ " 587.537092 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 4056 \n",
+ " 2 \n",
+ " 30 \n",
+ " 1171.597633 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 4066 \n",
+ " 3 \n",
+ " 30 \n",
+ " 1753.074274 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 4100 \n",
+ " 4 \n",
+ " 30 \n",
+ " 2318.048780 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 4156 \n",
+ " 5 \n",
+ " 30 \n",
+ " 2858.517806 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 4199 \n",
+ " 6 \n",
+ " 30 \n",
+ " 3395.094070 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 4235 \n",
+ " 7 \n",
+ " 30 \n",
+ " 3927.272727 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 4283 \n",
+ " 8 \n",
+ " 30 \n",
+ " 4438.010740 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 4350 \n",
+ " 9 \n",
+ " 30 \n",
+ " 4915.862069 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 4550 \n",
+ " 10 \n",
+ " 30 \n",
+ " 5221.978022 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " span_benchmark count SF tpx\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 22 1 1 3600.000000\n",
+ " 2 25 2 1 6336.000000\n",
+ " 3 32 3 1 7425.000000\n",
+ " 4 45 4 1 7040.000000\n",
+ " 5 48 5 1 8250.000000\n",
+ " 6 55 6 1 8640.000000\n",
+ " 7 59 7 1 9396.610169\n",
+ " 8 69 8 1 9182.608696\n",
+ " 9 81 9 1 8800.000000\n",
+ " 10 82 10 1 9658.536585\n",
+ "3 1 1 56 1 3 4242.857143\n",
+ " 2 62 2 3 7664.516129\n",
+ " 3 75 3 3 9504.000000\n",
+ " 4 75 4 3 12672.000000\n",
+ " 5 82 5 3 14487.804878\n",
+ " 6 87 6 3 16386.206897\n",
+ " 7 102 7 3 16305.882353\n",
+ " 8 114 8 3 16673.684211\n",
+ " 9 117 9 3 18276.923077\n",
+ " 10 123 10 3 19317.073171\n",
+ "10 1 1 153 1 10 5176.470588\n",
+ " 2 160 2 10 9900.000000\n",
+ " 3 173 3 10 13734.104046\n",
+ " 4 185 4 10 17124.324324\n",
+ " 5 202 5 10 19603.960396\n",
+ " 6 213 6 10 22309.859155\n",
+ " 7 223 7 10 24860.986547\n",
+ " 8 247 8 10 25651.821862\n",
+ " 9 254 9 10 28062.992126\n",
+ " 10 269 10 10 29442.379182\n",
+ "30 1 1 4044 1 30 587.537092\n",
+ " 2 4056 2 30 1171.597633\n",
+ " 3 4066 3 30 1753.074274\n",
+ " 4 4100 4 30 2318.048780\n",
+ " 5 4156 5 30 2858.517806\n",
+ " 6 4199 6 30 3395.094070\n",
+ " 7 4235 7 30 3927.272727\n",
+ " 8 4283 8 30 4438.010740\n",
+ " 9 4350 9 30 4915.862069\n",
+ " 10 4550 10 30 5221.978022"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_benchmark['SF'] = df_benchmark.index.map(lambda x: x[0])\n",
+ "df_benchmark['tpx'] = 22*3600*df_benchmark['count']/df_benchmark['span_benchmark']*df_benchmark['SF']\n",
+ "\n",
+ "df_benchmark"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Plot Throughput"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ,\n",
+ " ]"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMwAAADsCAYAAAA4jknEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABDZ0lEQVR4nO2deVxTV/r/PzchCWFJ2PddQVxwt4o63bSitagjtXa+9lud2vbXVq3W1lq17uPY6retXdR2xlZtrcvYimvFsbi1FhcUFDcURKFAWJQECCHbfX5/RCKBAAkBIXDfr9d9kXvvOeeeXM4nZ3uecxgiInBwcFgEr60zwMFhT3CC4eCwAk4wHBxWwAmGg8MKOMFwcFgBJxgODivgBMPBYQWcYDg4rIATDAeHFXCCaWWWLVuGvn37tlr6W7ZsAcMwYBgGc+bMabXntGemTZuGCRMmNBrmySefNL6n9PT0Zj+rXQum5gs2dCxbtqzFn5mbm4v33nsPffr0gZeXFyIiIvD8888jKSnJbPjExEQMGTIEUqkUrq6u6Nmzp0nBfe+995CcnNzi+ayNRCJBYWEhVq5caby2Z88ejBo1Cp6eng0WkurqasyYMQOenp5wcXFBQkICioqKTMLk5uZi7NixcHJygo+PD+bNmwedTmcS5sSJE+jfvz9EIhG6du2KLVu2NJlnvV6Pzz77DDExMXB0dIS7uzvGjBmD06dPN+sdNMWePXtw7tw5m9Np14IpLCw0HuvWrTMWjJrjvffea9Hn/fDDD+jVqxfy8/OxbNkyJCcnY8eOHRgyZAhef/11vPzyy9Dr9cbwycnJmDx5MhISEnDu3DlcuHABq1atglarNYZxcXGBp6dni+azLgzDwM/PD66ursZrSqUSw4cPx8cff9xgvHfeeQcHDhzA7t27cfLkSRQUFGDixInG+3q9HmPHjoVGo8Eff/yBrVu3YsuWLViyZIkxTE5ODsaOHYunnnoK6enpmDNnDl599VUcOXKkwecSEV588UWsWLECs2fPxvXr13HixAkEBwfjySefxN69e217IWbw8PCAt7e37QmRnbB582aSSqX1rh8/fpwA0MGDBykmJoZEIhENHjyYMjIyjGH+/ve/U0xMDFVXVxMRkVqtpr59+9L//u//GsPs37+ffH19KSUlxezzKysrKS4ujmbOnGm8Nnv2bHryyScbzffSpUupT58+xnMA9Y7Q0FDj/YyMDBo9ejQ5OzuTj48PvfTSS1RSUmL1e6khJyeHAFBaWprJdblcTgKBgHbv3m28dv36dQJgfAe//PIL8Xg8kslkxjAbN24kiURCarWaiIjef/996tmzp0nakydPpri4uAbztHPnTgJA+/fvr3dv4sSJ5OnpSZWVlUT08P19/fXXFBQURGKxmCZNmkRyudwYZ+rUqTR+/Hhau3Yt+fn5kYeHB7311luk0WgsehfW0K5rGGuYN28ePvnkE5w/fx7e3t6Ij483/tJ/8cUXUCqV+OCDDwAAixYtglwux1dffQUA0Gg0mDlzJrZs2YIhQ4bg999/x8CBA+Hr64s33ngDL7/8Mvbu3Ysff/wR27dvR3Z2NgDAz88PV69exZUrVyzOZ+0aMisrC127dsXjjz8OAJDL5Xj66afRr18/pKamIikpCUVFRXjhhRda8lUBAC5cuACtVouRI0car0VHRyMkJAQpKSkAgJSUFMTExMDX19cYJi4uDuXl5bh69aoxTO00asLUpGGO7du3IyoqCvHx8fXuvfvuu7h37x6OHj1qvJaVlYX//Oc/OHDgAJKSkpCWloa33nrLJN7x48eRnZ2N48ePG2tCS5qG1tJhBLN06VI888wziImJwdatW1FUVITExEQAhmbRtm3bsH79eixZsgTr1q3DDz/8AIlEAgA4efIkvL29MXr0aMjlcowfPx5jx47FkSNH4OXlhe3bt0Or1cLT0xPPPvus8Z85a9YsDBo0CDExMQgLC8OLL76I7777Dmq1usF8+vn5wc/PD76+vpg3bx6kUim++eYbAMBXX32Ffv364Z///Ceio6PRr18/fPfddzh+/Dhu3rzZou9LJpNBKBTCzc3N5Lqvry9kMpkxTG2x1NyvuddYmPLycqhUKrPPvnnzJrp37272Xs312t+3uroa33//Pfr27YvHH38cX375JXbu3GnMAwC4u7vjq6++QnR0NJ577jmMHTu2VfqOHUYwsbGxxs8eHh7o1q0brl+/bnL/vffew8qVK/Huu+9i+PDhxnsZGRkYOnQoAOCPP/6Ap6cnli9fjr59++If//gHwsPDjWH9/f1RVlYGAHB2dsahQ4eQlZWFDz/8EC4uLnj33Xfx2GOPoaqqqtH8Lly4ECkpKdi3bx/EYjEA4NKlSzh+/DhcXFyMR3R0NAAYa7WOAjXhhiUUCo2fQ0JCEBgYaDyPjY0Fy7LIzMw0XuvZsyf4fL7x3N/fH8XFxS2YYwMdRjBNwbIsTp8+DT6fj6ysLJN7Op3OWGg1Gg2cnZ1N7ru4uBg/X7x4EV27djW536VLF7z66qvYtGkTLl68iGvXrmHXrl0N5mXbtm347LPPkJiYaFIQKisrER8fj/T0dJPj1q1bxmZbS+Hn5weNRgO5XG5yvaioCH5+fsYwdUfNas6bCiORSIzvtC6RkZEmP2a1qbkeFRVl1fcRCAQm5wzDgGVZq9KwhA4jmDNnzhg/l5WV1av2165dixs3buDkyZNISkrC5s2bjfe6du2KjIwMAMCgQYNw48YN7Nu3DyzLYt++fbh06RJUKhXWrl2LvLw8jBs3rsF8hIWFwcnJCUql0uz9lJQUvPrqq/jmm28wZMgQk3v9+/fH1atXERYWhq5du5ocdUVsKwMGDIBAIDBptmRmZiI3N9dYW8fGxiIjI8Pkl/ro0aOQSCTo0aOHMUzdps/Ro0dNavy6/O1vf8OtW7dw4MCBevc++eQTBAQE4JlnnjFey83NRUFBgfH8zJkz4PF46Natm5XfugVo9nDBI6apUbKePXvSr7/+ShkZGTRu3DgKCQkxjuRcvHiRhEKhcVTmm2++IVdXV8rOziYiIoVCQR4eHpSZmUlERN9++y2JxWLi8/k0ZMgQGj16NAkEAho3bhzl5eUZn7106VKaN28eHT9+nG7fvk0XL16kadOmkVgsphs3bhjD1IySFRYWkq+vL02dOpUKCwuNR3FxMRER5efnk7e3Nz3//PN07tw5ysrKoqSkJJo2bRrpdDqr3su9e/coLS2NDh06RABo586dlJaWRoWFhcYwb7zxBoWEhNCxY8coNTWVYmNjKTY21nhfp9NRr169aNSoUZSenk5JSUnk7e1NCxYsMIa5ffs2OTk50bx58+j69eu0fv164vP5lJSU1OD/kmVZmjBhArm7u9OmTZsoJyeHLl26RK+//joJhUI6duyYyTt2dnamkSNHUnp6Op06dYqioqLoxRdfNIapGSWrzezZs+mJJ54wudYSo2QdRjAHDhygnj17klAopMcee4wuXbpEREQqlYp69OhBr7/+ukm8cePG0dChQ40F8eOPP6Y+ffpQaWkpERmGngsKCoiIqLS0lKqqquo9+9ixY5SQkEDBwcEkFArJ19eXRo8eTb/99psxTG3B1OS17lF7WPnmzZv017/+ldzc3EgsFlN0dDTNmTOHWJa16r1s3rzZ7LOWLl1qDKNSqeitt94id3d3cnJyor/+9a8mgiIiunPnDo0ZM4bEYjF5eXnRu+++S1qttt7/oG/fviQUCikiIoI2b95sNq+10Wq1tHbtWuP/DAB5eHjQ1atXTcLVvL8NGzZQQEAAOTo60vPPP0/37983huEEYwU1hbCsrMymdFiWpTfeeIOCgoLoX//6l/FXv7Kykn766Sfq06cPnT9/vgVy3LI0NQ9jL1y4cIHc3d3pvffeM7ledx7LFrh5mBaEYRhs3LgR69evx9atW+Hn5weRSASJRII1a9bgww8/xMCBA9s6m2ZRKBRwcXHB/Pnz2zorzaZ///5ITk6Gs7Nzq4wIjhkzBj179rQ5HYcWyEuHYty4cRg3bhxUKhVKS0vh5uZmYnLS3khISDAOkdedU7E3+vXrh379+rVK2ps2bTLOC4WEhDQ7HYaIW5eMg8NSuCYZB4cVcILh4LACTjAcHFbQ7jr9LMuioKAArq6uYBimrbPD0YEhIlRUVCAgIAA8noV1hzVj0Bs2bKCYmBhydXUlV1dXGjJkCP3yyy/G+zUTYR4eHuTs7EwTJ0408aWwhLy8PLMTbtzBHa111LbeaAqrRskOHDgAPp+PyMhIEBG2bt2KtWvXIi0tDT179sSbb76JQ4cOYcuWLZBKpZg5cyZ4PJ5VbqcKhQJubm7Iy8szmt9zcLQG5eXlCA4Ohlwuh1QqtSySVT//ZqixB7LEg88SFAoFASCFQmFr1jg4GqU5Za3ZnX69Xo+dO3dCqVQiNjbWIg8+c6jVapSXl5scHBztFasFk5GRARcXF4hEIrzxxhtITExEjx49LPLgM8fq1ashlUqNR3BwsNVfgoOjIWRKGc4VnoNM2XAZtAarBdOtWzekp6fj7NmzePPNNzF16lRcu3at2RlYsGABFAqF8cjLy2t2Whwctdlzaw/iforD9P9OR9xPcdhza4/NaVo9rCwUCo0ehwMGDMD58+fx+eefY/LkyUYPvtq1TG0PPnOIRCKIRCKr8kBE0Ol0JksedTb4fD4cHBy4ofcGOJ57HEv/WGo8Z8FiecpyDA0YCj/nhstjU9g8D8OyLNRqtYkHX0JCAoD6HnwtgUajQWFhYZM+850BJycn+Pv7m/i/d2Y0eg2O3DmC7de348q9+iv5sMQiryLv0QlmwYIFGDNmDEJCQlBRUYHt27fjxIkTOHLkCKRSKaZPn465c+fCw8MDEokEs2bNQmxsbD1X3ObCsixycnLA5/MREBAAoVDYKX9hiQgajQYlJSXIyclBZGSk5RNvHZDiqmL8J/M/2H1zN+5X3wcACBgBtKQ1CcdjeAh2ta2PbJVgiouL8fLLL6OwsBBSqRS9e/fGkSNHjP7Xn332GXg8HhISEqBWqxEXF4cNGzbYlMHaaDQasCyL4OBgODk5tVi69ohYLIZAIMDdu3eh0Wjg6OjY1ll6pBARLpVcwvbr23H07lHoyLB8rY+TD17s9iISohJwIu8ElqcsB0sseAwPS2OX2lS7AO3QvL+8vBxSqRQKhaLexGV1dTVycnIQHh7e6QqIOTrL+5ApZcgtz0WIJATuju5IyknC9hvbce3ew8Gm/j798T/d/wdPhzwNAU9gEjevIg/BrsH1xNJYWWuIdmdLxsFRmz239hhrCQYMnBycoNQZVuQR8oQYGzEWf4v+G7p7ml8Y0M/Zz+ZapTacYDjaLTKlDMv/WA4WhvXFCASlTgkvRy9M6TEFCZEJcHd0f6R54gTD0W45mH3QKJbarP7LagwJaJmBJGvpvEMrFlJSUoI333wTISEhEIlE8PPzQ1xcnNGgNCwsrN6+NUFBQW2ca/tGy2rxaeqn+Dzt83r3eAwPYdKwR5+pB3A1TBMkJCRAo9Fg69atiIiIQFFREZKTk3Hv3j1jmBUrVuC1114zntde45fDOgorCzHv1DxcKrkEABjsNxjni8636EiXLXCCaQS5XI7ffvsNJ06cwBNPPAEACA0NxWOPPWYSztXVtVFrBg7LOJF3Aot+X4RyTTlcBa5YMWwFRoaObHSk61HDCaYRalbQ37t3L4YMGWK1CQ+HZWj1Wqy7uA7fX/seANDLsxfWPrEWQa6Gpm1Lj3TZAteHaQQHBwds2bIFW7duhZubG4YNG4aFCxfi8uXLJuHmz59vskXFF1980UY5tj/yK/MxLWmaUSwvdX8J34/53iiW9gYnmCZISEhAQUEB9u/fj9GjRxs3QK29u9W8efNMtqd4+eWX2y7DdkRybjImHZiEy6WX4Sp0xedPfY75j82HgC9oOnIbwTXJLMDR0RHPPPMMnnnmGSxevBivvvoqli5dimnTpgEAvLy86u0Zw9EwWr0Wn174FNuubwMA9PbqjTVPrEGgS2ATMdseroZpBj169Ghw/xeOxvmz4k+8fPhlo1im9piKLaO32IVYAK6GaZR79+5h0qRJeOWVV9C7d2+4uroiNTUVa9aswfjx49s6e3ZDjS1YbnkuPr3wKSq0FZAIJVg1fBWeDH6yrbNnFZxgGsHFxQWDBw/GZ599huzsbGi1WgQHB+O1117DwoUL2zp7dsGeW3tMzFsAoI93H6x9fC38XfzbMGfNg7NWtmPa8/uQKWU4lnsMq8+tNrnOgMEvE39pF6NgnLUyR5tARMivzMeFogtILUpFqiwVf1b+aT4sCIXKwnYhmObACYajSWr7o/g5+4GIcLf8LlKLUo0iqbsqC4/hoYu0C7LkWSCQyXVbvR7bEk4wHI1S1x+lp2dPyKpkKFWVmoRzYBzQw6sHBvoOxEDfgejn0w8uQheT+O3BFsxWOMFwNIg5f5SaxSUEPAFivGIw0M8gkD7efeAkqO82PjFyIoYGDG03tmC2wgmGo0FO558264/y/qD3MSlqEhwdLBtoaE+2YLbCTVxymOXQ7UNYfXZ1ves8hodnQp+xWCwdDa6G4TChxnmrZia+q7Qrbpff7jB9EFvhBMNhpFRVivdOvocLRRcAAK/FvIYZfWegRFXSYfogtsIJhgMAcKnkEuYen4tiVTGcBc5YNWwVRoSOANCx+iC2wgmGA7tv7sbqs6uhZbUIl4Zj3VPrECGNaOtstUu4Tv8j4tSpU4iPj0dAQAAYhsHevXvbOktQ69VY9scyrEhZAS2rxciQkdgxdgcnlkbo1IIpVKjwR3YpChWqVn+WUqlEnz59sH79+lZ/liXIlDJMOzwNP9/6GTyGh9n9Z+PTJz+Fs8C5rbPWrrH7JhkRQaW1ftuLny/8iaX7r4IlgMcAy8f1RMIA6+ybxAK+xYuhjxkzBmPGjLE6n63BucJzmHdqHu5X34dUJMWav6zB0MChbZ0tu8DuBaPS6tFjyRGb0mAJWLzvKhbvu2pVvGsr4uAktI9XKFPKcLf8Ls7LzmNTxiboSY/uHt3x2VOf2Y3zVnvAPv7bHDZhziclPiIeS2KXdNoJyOZi94IRC/i4tiLOqjgyRTVGfnoSbC1PIB4D/Dr3CfhJLS9AYkH7X7BPppRh2R/LTCyGGTCY1W8WJ5ZmYPeCYRjG6mZRhLcLVk+MwcI9V6AnAp9h8M+JvRDh7dJKuWw7fr37q4lYAIMR5Z+Vf9qlx2NbY/eCaS6TB4Xg8Shv3CmtQpiXE/yl4rbOUouzN2sv/i/1/+pdt3eflLak0woGAPyl4kcmlMrKSmRlZRnPc3JykJ6eDg8PD4SEhLTos1hise7iOmy+shkA0MOjB26U3eDswVqATi2YR0lqaiqeeuop4/ncuXMBAFOnTjVZFNBWqrRV+OC3D3A87zgA4P/1/n94q+9bKK4q5uzBWgBOMI+IJ598Eq293khhZSFmHZuFzLJMCHlCrBi2AmMjxgLg7MFaCk4wHYTLJZfx9rG3ca/6HjwcPfD5U5+jr0/fts5Wh4MTTAfg1J+nsCBlATSsBpHukfjq6a8Q4BLQ1tnqkHRqWzJ7h4hQoanA/53/P2hYDZ4MehI/jPmBE0srYpVgVq9ejUGDBsHV1RU+Pj6YMGECMjMzTcJUV1djxowZ8PT0hIuLCxISElBUVNSimeYwjITJqmSo0FQAAP7e8+9Y99Q6zniylbFKMCdPnsSMGTNw5swZHD16FFqtFqNGjTJZmPudd97BgQMHsHv3bpw8eRIFBQWYOHFii2e8M6PVa3FHcQeVmkrjrP3cgXPB57V/ywO7h2yguLiYANDJkyeJiEgul5NAIKDdu3cbw1y/fp0AUEpKikVpKhQKAkAKhaLePZVKRdeuXSOVSmVLtu0SjU5DlepKKleX0417N+hKyRW6WniV0jLSOuX7aAkaK2sNYVOnX6FQAAA8PDwAABcuXIBWq8XIkSONYaKjoxESEoKUlBQMGVJ/q2i1Wg21Wm08Ly8vtyVLHZKy6jIUVBaYXBPyhfAV+yK/LL+NctU5aXann2VZzJkzB8OGDUOvXr0AADKZDEKhEG5ubiZhfX19IZPJzKRi6BdJpVLjERzMmWzURqvX1hMLAAS7BkPIF7ZBjuwMRT6Qc8rwtwVotmBmzJiBK1euYOfOnTZlYMGCBVAoFMYjLy/PpvQ6Giq9eW9QPVnvNNfpuPg9sK4XsDXe8Pfi9zYn2awm2cyZM3Hw4EGcOnUKQUEPvRT9/Pyg0Wggl8tNapmioqIGt+UWiUTc7sQNoNKpIKs0XzMLeULo9ZxozFJdDlzaCRye9/AascCBOUCXEYC0+Q5zVtUwRISZM2ciMTERx44dQ3h4uMn9AQMGQCAQIDk52XgtMzMTubm5iI2NbXYmOwIbN25E7969IZFIIJFIEBsbi8OHD5sNS0Qoqy5DjiIHWlZbb/QrwCWgXW+c2iZU3QfStgHbJwNru5iKpQbSA/dv2/QYq2qYGTNmYPv27di3bx9cXV2N/RKpVAqxWAypVIrp06dj7ty58PDwgEQiwaxZsxAbG2u2w9/mKPKB+9mARxebfnUsISgoCB999BEiIyNBRNi6dSvGjx+PtLQ09OzZ0xiOJRaFlYWQq+UAABehCwJdAkFE0LAaCHlCTiw1VMiA6wcMx53fDYKowS0MkN8FavsCMXzAw7YVcawSzMaNGwEYDAlrs3nzZuOOwp999hl4PB4SEhKgVqsRFxeHDRs22JTJRiECtFXWx0vfDhx+31BVMzxgzBqg7/9Yl4bACbBwEYz4+HiT81WrVmHjxo04c+aMUTBqvRp5FXlQ6wyjhj5OPvASexkX2ui0Qqn9w8bqHohkP5B3DiaC8I0BeowDuscD3tFA2g+GZhjpDWKJX2fzD6P9b9mnUQL/bCNTkIUFgND6mXW9Xo/du3dj6tSpSEtLQ48ePVCuLkd+ZT5YYsHn8RHkEgQXYeMeoO15y74W4+L3wIHZhh82cwQNMgike7z52kORb2iGeUTUEwu3ZV87JyMjA7GxsaiuroaLiwsSExMR3T0aMqUM91T3AABOAicEuQR13tqkNplJwP5Z9a8HPQbETAKixzZdY0gDW7S5bf+CETgZfumtobwAWP+Y6a8WwwdmnAUkVtRWZjYQaoxu3bohPT0dCoUCP/30E6ZOnYofD/6IwC6Gf6in2BM+Tj7gMZ3cJvbPVODER0DWUfP3RywBwv/yaPP0APsXDMNY3yzyigTiP6/fvvWKbI0cGhEKhejatSsAIDomGif+OIFNGzZh+afLEegSCInIsmZBhyXvPHDyIyDr1wcXeEDdDZ1aoONuC/YvmObS/2XDmHwD7duWRqvXQqPXQMAXQKFWoLiqGCzLQqfVIcItAiJ+J56Lyj1rEEr2McM5wwf6vAj85V3g7ukW77jbQucVDNDi7duGKKsuw7z58/CXEX+Bf5A/lJVKHPr5EM6fPo8VSSs6r1juphiEcvuE4ZzhA33/ZhBKTS3i2eWR/rA1RecWzCOgxhbsful9LJy5ECVFJXCVuKJXr15ISkrCqFGj2jqLj567fxj6KDknDec8B8OQ/l/eBdzD6od/RD9slsAJppXR6DUAgJWfrzS5HiYN6zzOXjXzKFX3gfObgDu/Ga7zHIC+Ux4IJbRt82ghnGBamwbmNYW8R2xpbItVQ3PisiygLAHO/Qv47ROYTDDyBEC/l4C/zAXcWnZNttaGE0wrotFrkF9R36z8kduC1Z78Y3iGEcL+Lzc/br//BVRlQHm+QUzlfwKKPx98zjd8Li8AWK2ZBBng74eB4EEt+hUfFZxgWgktq8Xd8rvQsloI+UIEuQaBJfbR24LdvwPsfxvGX3hiDZOBx1YBQieALzQ9HGp9ZnXAzaSHadXE/WUeoKtuZobIhrhtDyeYVkDH6nC3/K5xGDlMEtY2M/dZyQ9mys1YPzXgNmARNQXeyROQBALSIMNR81nyoJNOBHzRt/4EcRvOo9gKJ5gWRs/qcbf8LtQ6NRx4Dm0jlvs5wJFFQOYh8/cZHvDiTkAsBfQaQKcx/K17VBYbRrNMLH55wLRDQEA/QGDButTmJojbyYhXc+AE04LoWT1yK3JRrasGn8dHqCT00boRa6qA3z8DTn8O6NWGUajH/p9hBCppgWmh7WbhnjqSgPoFPtSK7f0e8QRxa8MJpoVgiUVeRR6qtFXgMTyESkIf3YZFRMDVRODIh4YOOABEPAmM/hjwiTacRz/XvELbEgW+Hc2j2AonmBaAJRZ/VvwJpVZpFIvY4RHtN6PXAnvfBDITDefSECBulcHcvbavji2FtgMVeFvhBGMjRISCygJUaCrAMAyCXYPhZKUVc7NgdQaPwwoZkJ8KODgCw98Bhs22rG/B0Sw4wdgAEaFQWQiFWgEGBrE05fTVbHQaQ7+ELwTUFUBFIaDRAiAg4mngKfuZLbdnOrnjRfMhIsiqZCirLgMABLoGwlXo2mD4U6dOIT4+HgEBAWAYBnv37q2X3pIlS+Dv7w+xWIyRI0fi1q1bhpvKUqD4KnAvCyi+BijyDDUMXwQ4+wDPruHE8ojo1IKRKWU4V3gOMqX1cxLFqmLcV90HAAS6BEIqkjYaXqlUok+fPli/fr3Z+2vWrMEXX3yBr7/+GmfPnoWzszPi4uJQXVluEEhdXPwAj3BA0EFdk9spdt8kIyKodOYXu2uM/dn7sfrsarBgwQMPCwYvwLgu4yyKW6oqRUlVCUR8Efxd/OHm6NZknDFjxmDMmDFm7xER1q1bhw8//BDjx48HAHz//ffw9fXF3p1b8eKzw+tHErkA1Kl/79oEuxeMSqfC4O2DbUqDBYtVZ1dh1dlVVsX7ZeIv8BR72vRswLBBrEwme7gmNRGkAh0G9+uFlDMp5gXDFwG6BhaG4Gg17F4wbYmno+1iAWBc383X19fQoVfkAzoVfL08ICu5Dzh5AVWlDyNIgw02X3Zsk2Wv2L1gxA5inP2fs1bFKaoqwoS9E8DW8hfnMTzsHb8Xvk6+9cLrWB1uld2qd92BaeHXV3YXoAfelwzf0D8ROAJuwYCL74NRMpFBLBxtgt0LhmEYq+c9wqXhWDp0KZanLDfZuz5cGm42fFl1mdlZey1pIYSNhVevg5+zwVar6M878HfrZqhRXP1QdE+Bvn0f5MlByAmlHWD3gmkuEyMnYmjA0Cb3rteyWhRXFZu9Z5MTGLEG48YKGcK9xPDz8ULymUvo+9QEQOCI8vJynD17Fm+++Wbzn8HR4nRawQBN713PEou88jzoWB0ceA7QsTrjPWudwCrl95F18zrwQGQ5GWeR7qyBh7sEIaHhmDNrJv7xyTpE9o1FeHg4Fi9ejICAAEyYMKHZ34+j5enUgmkMIkJ+ZT5UOhX4PD7CpGHggde8BcGVpUj9NRFPTXrdeGnu0jUAgKlTJmPLDzvw/qIlUGr0eP311yGXyzF8+HAkJSV13CVg7RT7X1u5lSiuKkZJVQkYMAiVhjZ/wQqdxjBLXxdnb8DVH7BhI9dOsbZyK9KctZW5mS8zKNQKlFSVAAD8XfxtW91FrzZ/3VFqk1g42gZOMHWo0lYhv9KwcIWn2BPuju7NT4wIqCozf6+zLt5n53CCqYVGr0FeRR6ICK5CV7NzMhZDZFg95cGq/CbUTDxy2B1cp/8BNe7FOlYHRwdHBLoEGjcyshoig8Fk1QOxSEMAkSs38dgB4ASDhyNiNQtXhLiG1NtX0orEAEWuYZVHwLBQndMDExpOKHYPJxgYTGVqe0w2e5UXIkCeC6hqxBIKOHm0XEY52pxOL5iy6jLj7l+BLoHNdy8mMmxCqnrQyXcPA8Q2DBhwtEs6tWCUGiUKKwsBAN5O3k06gTUIsQbDyWo5AOaBWNxaKJcc7YlOKxi1zrBjMYEgFUnhLfZuXkLEAmV3gGoFOLF0fKweVrbJN72doGN1yK3IhZ70EAvECHAJaN6IGLGGtYtrxOIRzomlg2O1YJrtm17dPpydatYQ0+g1EPAECHYNbt4mrCxrWJJVXSOWCMPsfQNs3LgRvXv3hkQigUQiQWxsLA4fPmy8X11djRkzZsDT0xMuLi5ISEhAUVFRM74hR6tCNgCAEhMTjecsy5Kfnx+tXbvWeE0ul5NIJKIdO3ZYlKZCoSAApFAo6t1TqVR07do1UqlUzcqvWqemO4o7dKXkCl0rvUYVeXeoMuUMaQoLrUtIrycqvUWUf5EoP51IVT+vddm/fz8dOnSIbt68SZmZmbRw4UISCAR05coVIiJ64403KDg4mJKTkyk1NZWGDBlCQ4cObTRNW99HZ6exstYQLdqHqeebDkAqlWLw4MFISUnBiy++WC+OWq2GWv3Q3qq8vNyqZxIRSNX0IhhlajlkDzr4ACD+9Rzy1n5lqCl4PPh+uAhuTZnS16wNVlkEaJRgxGIwnhGGSckmiI+PNzlftWoVNm7ciDNnziAoKAjffvsttm/fjqeffhoAsHnzZnTv3h1nzpzBkCFDmkyfwzyFChVySpUI93KGv9T2BQ5bVDAmvum18PX1Nd6ry+rVq7F8+fJmP5NUKmT2H2BR2NoNLxOJsSyKVqxE0YqVsIZuKafAWCCWuuj1euzevRtKpRKxsbG4cOECtFqtyQ9NdHQ0QkJCkJKS0uaCaelC96jYeS4XCxMzwBLAY4DVE2MweZBtO561+SjZggULMHfuXON5eXk5goOD2zBHVmDlBGdGRgZiY2NRXV0NFxcXJCYmokePHkhPT4dQKISbm5tJ+MZ+aB4Vu87nYsEe2wrdoxRccUU1TmeV4r9Xi3D4ysN3xxKwcM8VPB7lbVMeWlQwfn4G78WioiL4+/sbrxcVFaFv375m44hEIohEzbfcZcRidLt4odEwBcoCKKoVDy+U3APz0hwwbO19F3mIOHQQgjq1I1jWsA1dzex97WcLrRss6NatG9LT06FQKPDTTz9h6tSpOHnypFVpPAr0LOF6YTmSrxfhs18fjnCyBMz/OQNfJt+Cp4sIErEA0kYOiViA326VYO2RzBb9la9NpVqHczn38PutezidVYrMooqGvxcR7pRWtR/BhIeHw8/PD8nJyUaBtLZvOsMwYJwanp1XapVQMGpAXMvBKiQQ0sUfoHzlx8Y+jP+K5RCF11oEg8gwa19ZAEBrGr8GK7ezEAqF6Nq1KwBgwIABOH/+PD7//HNMnjwZGo0GcrncpJYpKioy/gi1JlUaHdLz5Ei9U4bzd+4jLVeOSrWuwfB/yqvxp9z6Uc8awf12qwRdfVwR6CZGoJsYAW5i+Ls5QuRg3n6vdg3l5SLC5T/l+P3WPfyeVYK0XDl0tX74GAboFSBFn2A3/Hj2Lmq7R/IZBmFeti0Ub7VgKisrkZWVZTzPyclBeno6PDw8EBISgjlz5uAf//gHIiMj29w3Xc/qjb4t7o7u8BZ7P3Qx/ltP+Dw1Cpq7uRCGhkBQu2BqlIa1wbRKwzlPADhKHlofAy1ios+yLNRqNQYMGACBQIDk5GQkJCQAADIzM5Gbm4vY2FibnlFD7UIn4POQeqcMqXfu4/zdMlzNV5gUOgBwFTmgZ4AEZ3Pum2z4x2OADVP6w4HHg0KlNTnK65yXVKghV9XfGPbgZRmA+k1Nb1dRLRE5ItBNjNslSvxQq+CLHHhQ11nAMMTDCcO6euEvkV6IjfCEu7Ph/xITKMHCPVegJwKfYfDPib1sbhJaLZjU1FQ89dRTxvOa/sfUqVOxZcsWvP/++1Aqle3CN72oqghavRYCvgC+Tr7g8/gmhpUCPz9Toeg0hlXxa5pfDM+wHpizt8E70sWv2Sb6CxYswJgxYxASEoKKigps374dJ06cwJEjRyCVSjF9+nTMnTsXHh4ekEgkmDVrFmJjY23q8Gt0LAoVKmw7cxebfssxt9OlET+JIwaFe2BQmDsGhnqgm58r+DwGu87n1it0o3v5N5LSQwoVKgz76Bhqa5FhgNeGh6NCrcOfZSoUyFXIl6tQrWVRUqFGSYUa6XnyBtNU61hIHR0wPMobw7t6YVgXL4R4mq81Jg8KweNR3rhTWoUwL6cW6T91WJ/+Ck0FcstzAQBh0rDG3YxZPaAsNix7VLOBqdgDkPgbtpdoAaZPn47k5GQUFhZCKpWid+/emD9/Pp555hnjd3v33XexY8cOqNVqxMXFYcOGDcYmmUbHQqPTQ+jAh9DB0HdSVqmQffs27vOkyFPo8KdchQJ5NfLLqpAvV6G4Qo2G/rsRXs6I7eKJQWEeGBjmjkA3cYPWDoUKVbMLnTnB1e3DEBHKqrRG8eQ/EFJGvhxnc+p7rG5/dTCGdvWyKh/maI5Pf4cUjI7VIVueDR2rg6fYs+GllGr6KbX3lBc4G3bbEtrgx9/ClFaqUSB/OBAu4PPAEkGnUaO44E8sO16M/Aq92bgCHgMtW/9fvOO1IYjt0jJL3TZFcwVnrobiMwx+/+CpFqktmiOYNh9Wbg0KlYXQsTqI+CL4OPk8vGHclEhkEIjiT0BbZbjHFxo2QHV0M93qro0gIijVetxTqqGo0w/Q6msvcQt08XZBj2BHY/s/0P3hX41Oj+EfH69X6Gzt/FqDv1TcrALuLxVj9cSYFu+H2EKHE4xCrUC52mAtEOgS+NBOTFlqfp8VYz/FB+C1/RIHap0e8iotypQaaPQNr84f5O4EESOCUCXGv17u0WiN294KnTW0Rj/EFjqUYLR6LQqVD/1bxDV7Peo05sXi6AZIgyyegDTXj2gJ9CxBodKirEoDZa3hXD7DwFUsgLxKYxKeAQMXkQNYC7e7aG+FzlqaW0O1Bh1GMESEAmUB9Kwejg6O8BLX6hQ2tDaYs5fFYikur4as/OHcg6/EEV4uIvB5ljXf6oqtpslVVqWBQqUFW6sr6SJygIezEBJHAXg8Bi4iPvLLqkEgMGAQ6O4IoQMP1Q1PldSjPRU6e8YuBWNunEKulqNSUwmGYUybYgCgrjSfUBNrg6l1eiiqtJBXaVGtM+1UF5VXo6i8GnweAwGfByGfB4EDD0K+6bkDj0FZlQb5ZSoQAAaAq6MA1Vq9SZNL5MCHu5MAbk7CerWXh7MILiIBNDoWQgee8X47G6/pFNiVYAQCQ21QVVUFsfjhr6VGrzHuU+nj5GO6NYXyHlBpxh6rgYlHjU4PuUoLRZUWKq35kafa6FmCntWjuoGwDBhQrRkQAlBebejE8xkGUicB3J2EcBLyG3Viqy2UGqqqDAMWNe+Fo/WxK8Hw+Xy4ubmhuNiw/YTTA5OY/Mp86HQ6iB3EcIbzQ2e1aoXBDgwAxJ6GRSlYrWHmni8EHoTT6FhUqnWoqNaaFHwGDMRCHpxFDiitUJtM/DFgEPpgwkzLstDqCDqWhVZP0OkNf/Vs7S2bTPFwFsLTWQgejwFIB3Ujpih1ISJUVVWhuLgYbm5u4PO5JWcfFXYlGOChgWeNaCq1lShXl4NhGHiLvXGn9I4hoFZlGBkDAUIXwKkKelYJnZ6FA9/wS63S6KHS6k1MLRgYzC/EQj4cBXzoVAwUADRqHeRVWmOzys1JgAJVw6+PB4AhglZPKKknNoAvdUSlhf2fhnBzc3sktmYcD7E7wTAMA39/f/j4+OD2/dtYdnwZtHot3uz7JoaGDzUEyr8AJL1t6OxHxgHPrMAvV4vw6dGb5me+GaB3oBRPRvlgeJQXPJ3N922KK6qRX6ZCoLsYPq6Wm/pkZxTgs6O3wBKBxzB455lIDO8S0Ixv/xCBQMDVLG2A3QmmBmIIS84uQa4qF8MChmFC9ARDHyD/ArBrMqCpAKLGAM99hMJKHd7dc72eWPoESfHXfoEYE+MPX0nTAghxdESIt5vVeZ04KAKxUf52O6zL8RC7Fcy3Gd/iyr0rcBW6YvnQ5QaxFF0DtiUYxBL2F2DSFoAvwObfs8zWLB+M6f7IzEO4Yd2OgV0K5vq96/j60tcAgIWDF8LX2Re4lw38MMFgGxY4EPjbDrB8ET4+fB3/+u12vTQetXkIR8eg7W1BrECmlOF0/mm8f+p96EiHkSEjMTZ8rMF35fsJhsUpfHoCU3ZDxTjhrR8v4puTBrGMiPYB/0Ef297MQziaj1Ymg/LMWWhbyNXbbmqYPbf2GLcJBwBnB2csjl0MpuqeoWZR5AIeXYD/TUSRzgmvfpuCjHwFhHwePn4+Bn/tF2STmTqH/SH/6ScULllq4lXr9vzzNqVpF4KRKWUmYgGAKl0VNMpSYPd0oPQmIAkCXt6HqxWOeHXraRQqquHuJMC/Xh6IQWGGFfS5foR9opXJoLlzF8KwUFOHPxjmpFiFArqSEuhKSw1HcQk0d+9C/p//PAzIsihcshTOw4fXS8Ma7EIwueW5JmIBAAIhb99r8JNdNnhEvrwPvxYI8fbOFFRp9Oji7Yzvpg1CqGf78WvhsA5Wo8G9TZtQ+uVXBt8lhoF4wADwJRITgUBb3w3afIIsNHdzO75gQiQh4DE8E9HwAATnZwCOUtBLe/DtdR5W/ZIKImBYV09smDIAUjFnMtIeaLSG0OuhLZRBc+dOvUObnw+T4U0iqFJTzT6DL5WC7+0FBy9vOHh5gefkBPnu3abxeTwIQ+18XTJL8HP2w9LYpcZmGQ/A0pJ78OM5Qve33VicwmDHuesAgL89FoIV43tCwLer8YwOi0k/gmEgHT8eDl6eUNeIIjcPpNE0nVAt3KdOhfNjg+DgbRAH38sLPGF9u0Bx75h6fRhbahfAnlyUL34P2S9zkefAQ7BWBz8WqHxhN9447YLfs0rBMMCiZ7tj+vDw5u9NyWETpNNBk5cHTU4O1NnZqL56DRVJSU3GYwQCCEJDIAwLgygsDMIHByMW486kFwwFvgYeD12PJVtc8LUymfmVgdCRXZQV+cCB2fAjFn4PbBSJ4WH6wTKcvVcNJyEfn7/YD8/0sGHXY44GqdukYpVKqHPuQHM7G+rbt6HJvg11zm1o7uZa1J9wGTkSzkOGQBgaCmF4GAT+/mAaMPPxX7Hcplqi3spANmIfgrmf/XA1lwcwxIIpy4GfpD++nTYQPQOauXsYR4Poyspw79tvcf/b74x9AZ5UClahaDAO4+gIYUQ4RBFdwPf2RtmWLfX6EX4fLrK4ELs9/zychw9vsJZ41NiHYDy6gMADU8tYXkc8OPpEYt8rwyyyA+vsNNbx1t2/D/WtLKizs6DJyoY6Kwvq7Gzo792rl06NWPgeHhBFREAYEQFRlwgII7pAFBEOB39/MLXWRnDsEmFzP6KlawlbsAvBFMIDn2un4x8O38KBYaEjHhbqpmPJlJGcWCygbsdb8uyz4Lm6GMSRnQ19Wf21vxojcP1XkIwYYVHY9lZD2IpdCCanVImd+qdwQt8bYbwi3GF9IYMn/lquRoS3S1tnr11BRNCVlECTlQV1VjZUly+j/ODB2gFQfuiQaSSGgSAoCKIuXSDq2gXCLl0h6toVPGcn3H4uvl6nW9yzp1V5ak81hK3YhWDCvZzBYwAZeULGGqyLO5vxZN0mFREZZrSzswxNqFpNqcb6GDVInnsOLo//BcIuXSCKiABPbN4CwtZOd0fDboaVLVlytCNCRLi/eQuK1641dp4FISHQy+VgG9qtjceDMDgYwsiucPDzg/zH7fU63i01NGvPdNxhZdj/2lqNdbqBuk2prAed8GxU37wJqjRd9Uaba1gzGjwehCEhEEV2NdQUXSMNTarwcPBq7bkjjo5uV0Oz9ozd1DD2TF2rWZ/358ExOtogiqyHhyVNqRr8/rES0vh4E2E0RketJWyhQ9cw9oi+ogLKlBQULl7ysEnEsij+6GPzEWo1pURdu0LUNRJ8dzfkvfZ6vY63y/DhFosF4GqJloITjBU01KxiNRpobt+G+tYtqG/eRPXNm1DfvAVdYWGDafF9fSDuFfNAGF0Nzao6TakauI53+4ETjIXUnctwGfE0eEIhqm/ehObOXUBnfl0xvo8P9A+WhDLC4yF81y67ne3uzHCCaQB9RYWhtsjMhCotHeUHDjy8SYTKX5NNwvMkEoiiIiGKjIRjVBREUVEQRUaCL5GY9fyz59nuzkynEoy5JhXp9dDczYU68waqMzOhzrwJdWYmtAUFTabn9sILcB05AqKoKDj4+jZoJc3VEB2HTiOYuk0qcb9+II0G6lu3QGrzq/s7+PvDMSoKDoGBkO/YUW8uw+utNy0u/FwN0THokIIhrRaaO3dQfSMT6puZqLp8Gaqz52oFIKguXjSeMmIxRFGRcIzqBlG3bnDsZmhS8aUPLaDFPbpzHW8O+xKMuSaV7v59qDMzDeLIzER1ZiY0WVkgC/wyvGbOhPS5sRAEBzfoj1ED16ziAOxIMPKffno4n8EwEHbpAr1CDn1JqdnwPCcniLp1g6hbFAT+AShZt65ek8rt+QRuxpvDKlpNMOvXr8fatWshk8nQp08ffPnll3jsscealZZWJjM0h2oKPBE0WVmGzwwDQUiwoTkV3Q2O3QzNKkFgoIlfhoOnB9ek4rCZVhHMrl27MHfuXHz99dcYPHgw1q1bh7i4OGRmZsLHx6fpBOqguXPXdKb7Ab6LF8NtwnjwnJteSolrUnG0BK2ytMqnn36K1157DX//+9/Ro0cPfP3113BycsJ3333XrPSEYaH1dzjm8eA64mmLxFKDwM8PzoMf48TC0WxaXDAajQYXLlzAyJEjHz6Ex8PIkSORkpJSL7xarUZ5ebnJUReBnx/8Vyx/KBquScXRRrR4k6y0tBR6vR6+vqYruPj6+uLGjRv1wq9evRrLly9vMl2uScXRHmjz1e4WLFgAhUJhPPLy8hoMyzWpONqaFq9hvLy8wOfzUVRUZHK9qKjI7H6MIpEIIivM1Dk42pIWF4xQKMSAAQOQnJyMCRMmAABYlkVycjJmzpzZZPwafzZzfRkOjpakpoxZ5UNJrcDOnTtJJBLRli1b6Nq1a/T666+Tm5sbyWSyJuPm5eURDNvZcwd3PJIjLy/P4rLdKvMwkydPRklJCZYsWQKZTIa+ffsiKSmp3kCAOQICApCXlwdXV9d61r/l5eUIDg5GXl5es9yX2zI+l/f2l3ciQkVFBQICLN/RutVm+mfOnGlRE6wuPB4PQUFBjYaRSCQ2+fu3ZXwu7+0r79JaBraW0OajZBwc9gQnGA4OK7ArwYhEIixdurTZw9BtGZ/Lu33mvS7tbl0yDo72jF3VMBwcbQ0nGA4OK+AEw8FhBZxgODiswG4Ec+rUKcTHxyMgIAAMw2Dv3r0Wx129ejUGDRoEV1dX+Pj4YMKECcjMzLQo7saNG9G7d2/jxFdsbCwOHz7czG8BfPTRR2AYBnPmzLEo/LJly8AwjMkRHR1t8fPy8/Px0ksvwdPTE2KxGDExMUhtYK/7uoSFhdV7NsMwmDFjhkXx9Xo9Fi9ejPDwcIjFYnTp0gUrV6602HaroqICc+bMQWhoKMRiMYYOHYrz58+bDdtU+SAiLFmyBP7+/hCLxRg5ciRu3bplUT5qYzeCUSqV6NOnD9avX2913JMnT2LGjBk4c+YMjh49Cq1Wi1GjRkGpVDYZNygoCB999BEuXLiA1NRUPP300xg/fjyuXr1qdT7Onz+Pb775Br1797YqXs+ePVFYWGg8fv/9d4vilZWVYdiwYRAIBDh8+DCuXbuGTz75BO7u7hbnt/Zzjx49CgCYNGmSRfE//vhjbNy4EV999RWuX7+Ojz/+GGvWrMGXX35pUfxXX30VR48exQ8//ICMjAyMGjUKI0eORH5+fr2wTZWPNWvW4IsvvsDXX3+Ns2fPwtnZGXFxcaiurrYoL0aaaV/ZpgCgxMTEZscvLi4mAHTy5MlmxXd3d6dNmzZZFaeiooIiIyPp6NGj9MQTT9Ds2bMtird06VLq06eP9Zkkovnz59Pw4cObFdccs2fPpi5duhDLshaFHzt2LL3yyism1yZOnEhTpkxpMm5VVRXx+Xw6ePCgyfX+/fvTokWLGo1bt3ywLEt+fn60du1a4zW5XE4ikYh27NhhwTd5iN3UMC2J4sE+LB4eHlbF0+v12LlzJ5RKJWJjY62KO2PGDIwdO9bEddtSbt26hYCAAERERGDKlCnIrdlQqQn279+PgQMHYtKkSfDx8UG/fv3w73//2+rnAwbX823btuGVV15pcEncugwdOhTJycm4efMmAODSpUv4/fffMWbMmCbj6nQ66PV6ODqabvorFostrmFryMnJgUwmM3n3UqkUgwcPNus23yhWyaudABtqGL1eT2PHjqVhw4ZZHOfy5cvk7OxMfD6fpFIpHTp0yKpn7tixg3r16kUqlYqIyKoa5pdffqH//Oc/dOnSJUpKSqLY2FgKCQmh8vLyJuOKRCISiUS0YMECunjxIn3zzTfk6OhIW7ZssSr/RES7du0iPp9P+fn5FsfR6/U0f/58YhiGHBwciGEY+uc//2lx/NjYWHriiScoPz+fdDod/fDDD8Tj8SgqKqrReHXLx+nTpwkAFRQUmISbNGkSvfDCCxbnh4io0wnmjTfeoNDQUKt8INRqNd26dYtSU1Ppgw8+IC8vL7p69apFcXNzc8nHx4cuXbpkvGaNYOpSVlZGEonEoiahQCCg2NhYk2uzZs2iIUOGWP3cUaNG0XPPPWdVnB07dlBQUBDt2LGDLl++TN9//z15eHhYLNisrCx6/PHHCQDx+XwaNGgQTZkyhaKjoxuNxwmmDs0VzIwZMygoKIhu375t0/NHjBhBr7/+ukVhExMTjf/wmgMAMQxDfD6fdDqd1c8fOHAgffDBB02GCwkJoenTp5tc27BhAwUEBFj1vDt37hCPx6O9e/daFS8oKIi++uork2srV66kbt26WZVOZWWlsbC/8MIL9OyzzzYavm75yM7OJgCUlpZmEu7xxx+nt99+26q8dIo+DBFh5syZSExMxLFjxxAeHm5TeizLQt3Aiv91GTFiBDIyMpCenm48Bg4ciClTpiA9PR38JtZ0rktlZSWys7Ph7+/fZNhhw4bVGz6/efMmQkNDrXrm5s2b4ePjg7Fjx1oVr6qqCrw668nx+XywZhZlbAxnZ2f4+/ujrKwMR44cwfjx462KHx4eDj8/PyQnP9zTp7y8HGfPnrW6L2o3NUxFRQWlpaVRWloaAaBPP/2U0tLS6O7du03GffPNN0kqldKJEyeosLDQeFRVVTUZ94MPPqCTJ09STk4OXb58mT744ANiGIb++9//Nvu7WNMke/fdd+nEiROUk5NDp0+fppEjR5KXlxcVFxc3GffcuXPk4OBAq1atolu3btGPP/5ITk5OtG3bNovzqtfrKSQkhObPn29xnBqmTp1KgYGBdPDgQcrJyaE9e/aQl5cXvf/++xbFT0pKosOHD9Pt27fpv//9L/Xp04cGDx5MGo2mXtimysdHH31Ebm5utG/fPrp8+TKNHz+ewsPDjf1KS7EbwRw/ftysP/bUqVObjGsuHgDavHlzk3FfeeUVCg0NJaFQSN7e3jRixAibxEJknWAmT55M/v7+JBQKKTAwkCZPnkxZWVkWP+vAgQPUq1cvEolEFB0dTf/617+syuuRI0cIAGVmZloVj4iovLycZs+eTSEhIeTo6EgRERG0aNEiUqvVFsXftWsXRUREkFAoJD8/P5oxYwbJ5XKzYZsqHyzL0uLFi8nX15dEIhGNGDGiWd+JM+/n4LCCTtGH4eBoKTjBcHBYAScYDg4r4ATDwWEFnGA4OKyAEwwHhxVwguHgsAJOMBwcVsAJhoPDCjjBtCHTpk0z7qHDYR9wgrEDtFptW2eB4wGcYB4BP/30E2JiYiAWi+Hp6YmRI0di3rx52Lp1K/bt22dcjeXEiRO4c+cOGIbBrl278MQTT8DR0RE//vgjAGDTpk3o3r07HB0dER0djQ0bNpg8Z/78+YiKioKTkxMiIiKwePFiE7EtW7YMffv2xXfffYeQkBC4uLjgrbfegl6vx5o1a+Dn5wcfHx+sWrXKGIeIsGzZMoSEhEAkEiEgIABvv/32o3lx7RGrzTU5rKKgoIAcHBzo008/NboIrF+/nioqKuiFF16g0aNHG90N1Go15eTkEAAKCwujn3/+mW7fvk0FBQW0bds28vf3N177+eef63kvrly5kk6fPk05OTm0f/9+8vX1pY8//th4f+nSpeTi4kLPP/88Xb16lfbv309CoZDi4uJo1qxZdOPGDfruu+8IAJ05c4aIiHbv3k0SiYR++eUXunv3Lp09e9Zqi+eOBCeYVubChQsEgO7cuVPv3tSpU2n8+PEm12oEs27dOpPrXbp0oe3bt5tcW7lyZT0X5NqsXbuWBgwYYDxfunQpOTk5mawHEBcXR2FhYaTX643XunXrRqtXryYiok8++YSioqLM+qB0RlptBzIOA3369MGIESMQExODuLg4jBo1Cs8//3yTa4MNHDjQ+FmpVCI7OxvTp0/Ha6+9Zryu0+lMdtDatWsXvvjiC2RnZ6OyshI6na7erlthYWFwdXU1nvv6+oLP55t4Rvr6+qK4uBiAYQ2ydevWISIiAqNHj8azzz6L+Ph4ODh0zqLD9WFaGT6fj6NHj+Lw4cPo0aMHvvzyS3Tr1g05OTmNxnN2djZ+rqysBAD8+9//NnF1vnLlCs6cOQMASElJwZQpU/Dss8/i4MGDSEtLw6JFi6DRaEzSFQgEJucMw5i9VuNGHBwcjMzMTGzYsAFisRhvvfUWHn/88U47ENE5fyYeMQzDYNiwYRg2bBiWLFmC0NBQJCYmQigUQq/XNxnf19cXAQEBuH37NqZMmWI2zB9//IHQ0FAsWrTIeO3u3bstkn+xWIz4+HjEx8djxowZiI6ORkZGBvr3798i6dsTnGBambNnzyI5ORmjRo2Cj48Pzp49i5KSEnTv3h3V1dU4cuQIMjMz4enp2egGpcuXL8fbb78NqVSK0aNHQ61WIzU1FWVlZZg7dy4iIyORm5uLnTt3YtCgQTh06BASExNtzv+WLVug1+sxePBgODk5Ydu2bRCLxVYvpNFR4JpkrYxEIsGpU6fw7LPPIioqCh9++CE++eQTjBkzBq+99hq6deuGgQMHwtvbG6dPn24wnVdffRWbNm3C5s2bERMTgyeeeAJbtmwxroAzbtw4vPPOO5g5cyb69u2LP/74A4sXL7Y5/25ubvj3v/+NYcOGoXfv3vj1119x4MABeHp62py2PcL59HNwWAFXw3BwWAEnGA4OK+AEw8FhBZxgODisgBMMB4cVcILh4LACTjAcHFbACYaDwwo4wXBwWAEnGA4OK+AEw8FhBf8fIOlUJXikzN8AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "\n",
+ "df_benchmark_plot = df_benchmark.unstack(level=0).droplevel(0)\n",
+ "df_benchmark_plot['tpx'] = df_benchmark_plot['tpx']/1000\n",
+ "ax = df_benchmark_plot.plot(y='tpx', figsize=(2,2), grid=False, style=\".-\")\n",
+ "plt.title('Tpx@Size [1000 Qph]'.format(dbms), fontsize=10)\n",
+ "plt.suptitle('')\n",
+ "ax.set_xlabel(\"streams\")\n",
+ "ax.set_xticks(range(1,11))\n",
+ "#plt.title(\"Tpx generate to disk [Gb/h]\".format(dbms=dbms, imported=imported), fontsize=10)\n",
+ "#df_benchmark_plot.droplevel(0)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#df_time_multiindex = df_time.set_index(['SF', 'num_experiment', 'num_client'])\n",
+ "#df_time_multiindex"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Plot Hardware Metrics"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " benchmark_geo \n",
+ " benchmark_mean \n",
+ " generate \n",
+ " ingest \n",
+ " initconstraints \n",
+ " initindexes \n",
+ " initschema \n",
+ " initstatistics \n",
+ " load \n",
+ " loaded \n",
+ " ... \n",
+ " mem_max_load \n",
+ " cpu_total_load \n",
+ " mem_max_stream \n",
+ " cpu_total_stream \n",
+ " mem_max_loader \n",
+ " cpu_total_loader \n",
+ " mem_max_datagenerator \n",
+ " cpu_total_datagenerator \n",
+ " mem_max_benchmarker \n",
+ " cpu_total_benchmarker \n",
+ " \n",
+ " \n",
+ " SF \n",
+ " num_experiment \n",
+ " num_client \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 0.626844 \n",
+ " 0.870090 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 7.128312e+03 \n",
+ " 80.012976 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 208.652344 \n",
+ " 6.357339 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 0.627641 \n",
+ " 0.879075 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 4.038180e+03 \n",
+ " 160.696836 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 611.730469 \n",
+ " 12.480364 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 0.632130 \n",
+ " 0.899522 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 4.229605e+03 \n",
+ " 241.310310 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1212.539062 \n",
+ " 21.294983 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 0.630736 \n",
+ " 0.888230 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 8.228980e+03 \n",
+ " 320.818782 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1863.578125 \n",
+ " 28.945682 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 0.636013 \n",
+ " 0.924576 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 7.845113e+03 \n",
+ " 402.095493 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 2465.582031 \n",
+ " 35.623551 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 0.640728 \n",
+ " 0.908141 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 3818.800781 \n",
+ " 89.863155 \n",
+ " 7.161371e+03 \n",
+ " 480.793733 \n",
+ " 705.457031 \n",
+ " 2.415629 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3037.617188 \n",
+ " 41.721285 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 0.640812 \n",
+ " 0.916236 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 7.329809e+03 \n",
+ " 564.956015 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 2742.273438 \n",
+ " 17.090795 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 0.632665 \n",
+ " 0.904015 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 7.848301e+03 \n",
+ " 643.013221 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3084.117188 \n",
+ " 48.048381 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 0.639336 \n",
+ " 0.914431 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 7.971777e+03 \n",
+ " 721.034614 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3462.558594 \n",
+ " 61.486374 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 0.650121 \n",
+ " 0.927470 \n",
+ " 0.0 \n",
+ " 17.0 \n",
+ " 29.036005 \n",
+ " 7.205218 \n",
+ " 1.211485 \n",
+ " 20.242573 \n",
+ " 76.836504 \n",
+ " 2.288853 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 8.032227e+03 \n",
+ " 809.336122 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3894.109375 \n",
+ " 61.253136 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1.637411 \n",
+ " 2.337024 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.352643e+04 \n",
+ " 254.895022 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 204.019531 \n",
+ " 7.368385 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 1.629153 \n",
+ " 2.392267 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 2.088032e+04 \n",
+ " 513.052090 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 660.550781 \n",
+ " 14.698020 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 1.659287 \n",
+ " 2.451833 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 3.279666e+04 \n",
+ " 774.232907 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1125.523438 \n",
+ " 16.856276 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 1.660253 \n",
+ " 2.438937 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 4.267620e+04 \n",
+ " 1035.374460 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1840.070312 \n",
+ " 21.739376 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 1.679546 \n",
+ " 2.461815 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 3.664088e+04 \n",
+ " 1301.766807 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 2354.382812 \n",
+ " 25.390574 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 1.701831 \n",
+ " 2.497585 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 6624.316406 \n",
+ " 270.958437 \n",
+ " 4.626659e+04 \n",
+ " 1580.428484 \n",
+ " 2910.578125 \n",
+ " 7.351115 \n",
+ " 0 \n",
+ " 0 \n",
+ " 2808.136719 \n",
+ " 26.741739 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 1.783129 \n",
+ " 2.628219 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 3.284285e+04 \n",
+ " 1896.309787 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 2807.425781 \n",
+ " 49.581324 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 1.827464 \n",
+ " 2.639318 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 3.728577e+04 \n",
+ " 2195.282286 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3293.394531 \n",
+ " 67.042332 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 1.885180 \n",
+ " 2.698596 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 4.183903e+04 \n",
+ " 2532.981222 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3753.957031 \n",
+ " 75.274546 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 2.000874 \n",
+ " 2.866765 \n",
+ " 0.0 \n",
+ " 56.0 \n",
+ " 96.297798 \n",
+ " 17.512669 \n",
+ " 1.261016 \n",
+ " 29.401657 \n",
+ " 202.647463 \n",
+ " 2.343093 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 4.240661e+04 \n",
+ " 2927.611783 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 4150.222656 \n",
+ " 84.710041 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 1 \n",
+ " 1 \n",
+ " 4.249538 \n",
+ " 6.697040 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 6.326941e+04 \n",
+ " 786.669466 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 4.256660 \n",
+ " 6.792321 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.054058e+05 \n",
+ " 1587.744005 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 4.344926 \n",
+ " 7.031578 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.392845e+05 \n",
+ " 2417.887925 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 4.403455 \n",
+ " 7.250765 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.786093e+05 \n",
+ " 3275.796691 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 4.604848 \n",
+ " 7.543895 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.869333e+05 \n",
+ " 4246.551481 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 4.858891 \n",
+ " 7.775989 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 17342.320312 \n",
+ " 952.253322 \n",
+ " 2.032445e+05 \n",
+ " 5265.466408 \n",
+ " 2608.453125 \n",
+ " 8.310315 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 5.170702 \n",
+ " 8.477382 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 2.027020e+05 \n",
+ " 6528.646610 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 5.374004 \n",
+ " 8.769735 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 2.320173e+05 \n",
+ " 7860.367871 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 5.676579 \n",
+ " 9.179535 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 2.130519e+05 \n",
+ " 9147.668042 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 6.060483 \n",
+ " 9.544057 \n",
+ " 0.0 \n",
+ " 205.0 \n",
+ " 405.726116 \n",
+ " 58.959765 \n",
+ " 1.237707 \n",
+ " 36.520368 \n",
+ " 709.609962 \n",
+ " 2.295420 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 2.305828e+05 \n",
+ " 10593.564916 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 30 \n",
+ " 1 \n",
+ " 1 \n",
+ " 11.848516 \n",
+ " 20.773472 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 2.428011e+05 \n",
+ " 6184.898335 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 238.613281 \n",
+ " 13.309727 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 11.590215 \n",
+ " 21.159031 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 4.072534e+05 \n",
+ " 12370.134032 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 653.542969 \n",
+ " 15.027941 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 11.807706 \n",
+ " 21.721130 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 5.741196e+05 \n",
+ " 18572.865874 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1076.601562 \n",
+ " 27.752162 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 12.315965 \n",
+ " 22.365024 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 7.415082e+05 \n",
+ " 25137.664373 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1478.449219 \n",
+ " 42.074733 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 13.244481 \n",
+ " 24.931526 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 8.108165e+05 \n",
+ " 32702.073946 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1880.527344 \n",
+ " 56.977909 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 14.096852 \n",
+ " 26.204070 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 45615.996094 \n",
+ " 2947.725295 \n",
+ " 9.121772e+05 \n",
+ " 40614.352894 \n",
+ " 31904.496094 \n",
+ " 69.471757 \n",
+ " 0 \n",
+ " 0 \n",
+ " 2268.343750 \n",
+ " 62.487400 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 15.398105 \n",
+ " 28.600618 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.086867e+06 \n",
+ " 49626.594767 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 2668.695312 \n",
+ " 81.235520 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 16.289964 \n",
+ " 30.197897 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.269541e+06 \n",
+ " 58838.671861 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3035.449219 \n",
+ " 98.604956 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 17.628742 \n",
+ " 32.871015 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.282161e+06 \n",
+ " 66750.954151 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3449.035156 \n",
+ " 110.060736 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 19.279709 \n",
+ " 41.397282 \n",
+ " 0.0 \n",
+ " 672.0 \n",
+ " 1354.092800 \n",
+ " 205.071821 \n",
+ " 1.118685 \n",
+ " 43.233445 \n",
+ " 2277.665694 \n",
+ " 2.153249 \n",
+ " ... \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.405335e+06 \n",
+ " 73239.706541 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0 \n",
+ " 0 \n",
+ " 3723.453125 \n",
+ " 123.735284 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
40 rows Ă— 32 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " benchmark_geo benchmark_mean generate ingest \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 0.626844 0.870090 0.0 17.0 \n",
+ " 2 0.627641 0.879075 0.0 17.0 \n",
+ " 3 0.632130 0.899522 0.0 17.0 \n",
+ " 4 0.630736 0.888230 0.0 17.0 \n",
+ " 5 0.636013 0.924576 0.0 17.0 \n",
+ " 6 0.640728 0.908141 0.0 17.0 \n",
+ " 7 0.640812 0.916236 0.0 17.0 \n",
+ " 8 0.632665 0.904015 0.0 17.0 \n",
+ " 9 0.639336 0.914431 0.0 17.0 \n",
+ " 10 0.650121 0.927470 0.0 17.0 \n",
+ "3 1 1 1.637411 2.337024 0.0 56.0 \n",
+ " 2 1.629153 2.392267 0.0 56.0 \n",
+ " 3 1.659287 2.451833 0.0 56.0 \n",
+ " 4 1.660253 2.438937 0.0 56.0 \n",
+ " 5 1.679546 2.461815 0.0 56.0 \n",
+ " 6 1.701831 2.497585 0.0 56.0 \n",
+ " 7 1.783129 2.628219 0.0 56.0 \n",
+ " 8 1.827464 2.639318 0.0 56.0 \n",
+ " 9 1.885180 2.698596 0.0 56.0 \n",
+ " 10 2.000874 2.866765 0.0 56.0 \n",
+ "10 1 1 4.249538 6.697040 0.0 205.0 \n",
+ " 2 4.256660 6.792321 0.0 205.0 \n",
+ " 3 4.344926 7.031578 0.0 205.0 \n",
+ " 4 4.403455 7.250765 0.0 205.0 \n",
+ " 5 4.604848 7.543895 0.0 205.0 \n",
+ " 6 4.858891 7.775989 0.0 205.0 \n",
+ " 7 5.170702 8.477382 0.0 205.0 \n",
+ " 8 5.374004 8.769735 0.0 205.0 \n",
+ " 9 5.676579 9.179535 0.0 205.0 \n",
+ " 10 6.060483 9.544057 0.0 205.0 \n",
+ "30 1 1 11.848516 20.773472 0.0 672.0 \n",
+ " 2 11.590215 21.159031 0.0 672.0 \n",
+ " 3 11.807706 21.721130 0.0 672.0 \n",
+ " 4 12.315965 22.365024 0.0 672.0 \n",
+ " 5 13.244481 24.931526 0.0 672.0 \n",
+ " 6 14.096852 26.204070 0.0 672.0 \n",
+ " 7 15.398105 28.600618 0.0 672.0 \n",
+ " 8 16.289964 30.197897 0.0 672.0 \n",
+ " 9 17.628742 32.871015 0.0 672.0 \n",
+ " 10 19.279709 41.397282 0.0 672.0 \n",
+ "\n",
+ " initconstraints initindexes initschema \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 29.036005 7.205218 1.211485 \n",
+ " 2 29.036005 7.205218 1.211485 \n",
+ " 3 29.036005 7.205218 1.211485 \n",
+ " 4 29.036005 7.205218 1.211485 \n",
+ " 5 29.036005 7.205218 1.211485 \n",
+ " 6 29.036005 7.205218 1.211485 \n",
+ " 7 29.036005 7.205218 1.211485 \n",
+ " 8 29.036005 7.205218 1.211485 \n",
+ " 9 29.036005 7.205218 1.211485 \n",
+ " 10 29.036005 7.205218 1.211485 \n",
+ "3 1 1 96.297798 17.512669 1.261016 \n",
+ " 2 96.297798 17.512669 1.261016 \n",
+ " 3 96.297798 17.512669 1.261016 \n",
+ " 4 96.297798 17.512669 1.261016 \n",
+ " 5 96.297798 17.512669 1.261016 \n",
+ " 6 96.297798 17.512669 1.261016 \n",
+ " 7 96.297798 17.512669 1.261016 \n",
+ " 8 96.297798 17.512669 1.261016 \n",
+ " 9 96.297798 17.512669 1.261016 \n",
+ " 10 96.297798 17.512669 1.261016 \n",
+ "10 1 1 405.726116 58.959765 1.237707 \n",
+ " 2 405.726116 58.959765 1.237707 \n",
+ " 3 405.726116 58.959765 1.237707 \n",
+ " 4 405.726116 58.959765 1.237707 \n",
+ " 5 405.726116 58.959765 1.237707 \n",
+ " 6 405.726116 58.959765 1.237707 \n",
+ " 7 405.726116 58.959765 1.237707 \n",
+ " 8 405.726116 58.959765 1.237707 \n",
+ " 9 405.726116 58.959765 1.237707 \n",
+ " 10 405.726116 58.959765 1.237707 \n",
+ "30 1 1 1354.092800 205.071821 1.118685 \n",
+ " 2 1354.092800 205.071821 1.118685 \n",
+ " 3 1354.092800 205.071821 1.118685 \n",
+ " 4 1354.092800 205.071821 1.118685 \n",
+ " 5 1354.092800 205.071821 1.118685 \n",
+ " 6 1354.092800 205.071821 1.118685 \n",
+ " 7 1354.092800 205.071821 1.118685 \n",
+ " 8 1354.092800 205.071821 1.118685 \n",
+ " 9 1354.092800 205.071821 1.118685 \n",
+ " 10 1354.092800 205.071821 1.118685 \n",
+ "\n",
+ " initstatistics load loaded ... \\\n",
+ "SF num_experiment num_client ... \n",
+ "1 1 1 20.242573 76.836504 2.288853 ... \n",
+ " 2 20.242573 76.836504 2.288853 ... \n",
+ " 3 20.242573 76.836504 2.288853 ... \n",
+ " 4 20.242573 76.836504 2.288853 ... \n",
+ " 5 20.242573 76.836504 2.288853 ... \n",
+ " 6 20.242573 76.836504 2.288853 ... \n",
+ " 7 20.242573 76.836504 2.288853 ... \n",
+ " 8 20.242573 76.836504 2.288853 ... \n",
+ " 9 20.242573 76.836504 2.288853 ... \n",
+ " 10 20.242573 76.836504 2.288853 ... \n",
+ "3 1 1 29.401657 202.647463 2.343093 ... \n",
+ " 2 29.401657 202.647463 2.343093 ... \n",
+ " 3 29.401657 202.647463 2.343093 ... \n",
+ " 4 29.401657 202.647463 2.343093 ... \n",
+ " 5 29.401657 202.647463 2.343093 ... \n",
+ " 6 29.401657 202.647463 2.343093 ... \n",
+ " 7 29.401657 202.647463 2.343093 ... \n",
+ " 8 29.401657 202.647463 2.343093 ... \n",
+ " 9 29.401657 202.647463 2.343093 ... \n",
+ " 10 29.401657 202.647463 2.343093 ... \n",
+ "10 1 1 36.520368 709.609962 2.295420 ... \n",
+ " 2 36.520368 709.609962 2.295420 ... \n",
+ " 3 36.520368 709.609962 2.295420 ... \n",
+ " 4 36.520368 709.609962 2.295420 ... \n",
+ " 5 36.520368 709.609962 2.295420 ... \n",
+ " 6 36.520368 709.609962 2.295420 ... \n",
+ " 7 36.520368 709.609962 2.295420 ... \n",
+ " 8 36.520368 709.609962 2.295420 ... \n",
+ " 9 36.520368 709.609962 2.295420 ... \n",
+ " 10 36.520368 709.609962 2.295420 ... \n",
+ "30 1 1 43.233445 2277.665694 2.153249 ... \n",
+ " 2 43.233445 2277.665694 2.153249 ... \n",
+ " 3 43.233445 2277.665694 2.153249 ... \n",
+ " 4 43.233445 2277.665694 2.153249 ... \n",
+ " 5 43.233445 2277.665694 2.153249 ... \n",
+ " 6 43.233445 2277.665694 2.153249 ... \n",
+ " 7 43.233445 2277.665694 2.153249 ... \n",
+ " 8 43.233445 2277.665694 2.153249 ... \n",
+ " 9 43.233445 2277.665694 2.153249 ... \n",
+ " 10 43.233445 2277.665694 2.153249 ... \n",
+ "\n",
+ " mem_max_load cpu_total_load mem_max_stream \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 0.000000 0.000000 7.128312e+03 \n",
+ " 2 0.000000 0.000000 4.038180e+03 \n",
+ " 3 0.000000 0.000000 4.229605e+03 \n",
+ " 4 0.000000 0.000000 8.228980e+03 \n",
+ " 5 0.000000 0.000000 7.845113e+03 \n",
+ " 6 3818.800781 89.863155 7.161371e+03 \n",
+ " 7 0.000000 0.000000 7.329809e+03 \n",
+ " 8 0.000000 0.000000 7.848301e+03 \n",
+ " 9 0.000000 0.000000 7.971777e+03 \n",
+ " 10 0.000000 0.000000 8.032227e+03 \n",
+ "3 1 1 0.000000 0.000000 1.352643e+04 \n",
+ " 2 0.000000 0.000000 2.088032e+04 \n",
+ " 3 0.000000 0.000000 3.279666e+04 \n",
+ " 4 0.000000 0.000000 4.267620e+04 \n",
+ " 5 0.000000 0.000000 3.664088e+04 \n",
+ " 6 6624.316406 270.958437 4.626659e+04 \n",
+ " 7 0.000000 0.000000 3.284285e+04 \n",
+ " 8 0.000000 0.000000 3.728577e+04 \n",
+ " 9 0.000000 0.000000 4.183903e+04 \n",
+ " 10 0.000000 0.000000 4.240661e+04 \n",
+ "10 1 1 0.000000 0.000000 6.326941e+04 \n",
+ " 2 0.000000 0.000000 1.054058e+05 \n",
+ " 3 0.000000 0.000000 1.392845e+05 \n",
+ " 4 0.000000 0.000000 1.786093e+05 \n",
+ " 5 0.000000 0.000000 1.869333e+05 \n",
+ " 6 17342.320312 952.253322 2.032445e+05 \n",
+ " 7 0.000000 0.000000 2.027020e+05 \n",
+ " 8 0.000000 0.000000 2.320173e+05 \n",
+ " 9 0.000000 0.000000 2.130519e+05 \n",
+ " 10 0.000000 0.000000 2.305828e+05 \n",
+ "30 1 1 0.000000 0.000000 2.428011e+05 \n",
+ " 2 0.000000 0.000000 4.072534e+05 \n",
+ " 3 0.000000 0.000000 5.741196e+05 \n",
+ " 4 0.000000 0.000000 7.415082e+05 \n",
+ " 5 0.000000 0.000000 8.108165e+05 \n",
+ " 6 45615.996094 2947.725295 9.121772e+05 \n",
+ " 7 0.000000 0.000000 1.086867e+06 \n",
+ " 8 0.000000 0.000000 1.269541e+06 \n",
+ " 9 0.000000 0.000000 1.282161e+06 \n",
+ " 10 0.000000 0.000000 1.405335e+06 \n",
+ "\n",
+ " cpu_total_stream mem_max_loader \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 80.012976 0.000000 \n",
+ " 2 160.696836 0.000000 \n",
+ " 3 241.310310 0.000000 \n",
+ " 4 320.818782 0.000000 \n",
+ " 5 402.095493 0.000000 \n",
+ " 6 480.793733 705.457031 \n",
+ " 7 564.956015 0.000000 \n",
+ " 8 643.013221 0.000000 \n",
+ " 9 721.034614 0.000000 \n",
+ " 10 809.336122 0.000000 \n",
+ "3 1 1 254.895022 0.000000 \n",
+ " 2 513.052090 0.000000 \n",
+ " 3 774.232907 0.000000 \n",
+ " 4 1035.374460 0.000000 \n",
+ " 5 1301.766807 0.000000 \n",
+ " 6 1580.428484 2910.578125 \n",
+ " 7 1896.309787 0.000000 \n",
+ " 8 2195.282286 0.000000 \n",
+ " 9 2532.981222 0.000000 \n",
+ " 10 2927.611783 0.000000 \n",
+ "10 1 1 786.669466 0.000000 \n",
+ " 2 1587.744005 0.000000 \n",
+ " 3 2417.887925 0.000000 \n",
+ " 4 3275.796691 0.000000 \n",
+ " 5 4246.551481 0.000000 \n",
+ " 6 5265.466408 2608.453125 \n",
+ " 7 6528.646610 0.000000 \n",
+ " 8 7860.367871 0.000000 \n",
+ " 9 9147.668042 0.000000 \n",
+ " 10 10593.564916 0.000000 \n",
+ "30 1 1 6184.898335 0.000000 \n",
+ " 2 12370.134032 0.000000 \n",
+ " 3 18572.865874 0.000000 \n",
+ " 4 25137.664373 0.000000 \n",
+ " 5 32702.073946 0.000000 \n",
+ " 6 40614.352894 31904.496094 \n",
+ " 7 49626.594767 0.000000 \n",
+ " 8 58838.671861 0.000000 \n",
+ " 9 66750.954151 0.000000 \n",
+ " 10 73239.706541 0.000000 \n",
+ "\n",
+ " cpu_total_loader mem_max_datagenerator \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 0.000000 0 \n",
+ " 2 0.000000 0 \n",
+ " 3 0.000000 0 \n",
+ " 4 0.000000 0 \n",
+ " 5 0.000000 0 \n",
+ " 6 2.415629 0 \n",
+ " 7 0.000000 0 \n",
+ " 8 0.000000 0 \n",
+ " 9 0.000000 0 \n",
+ " 10 0.000000 0 \n",
+ "3 1 1 0.000000 0 \n",
+ " 2 0.000000 0 \n",
+ " 3 0.000000 0 \n",
+ " 4 0.000000 0 \n",
+ " 5 0.000000 0 \n",
+ " 6 7.351115 0 \n",
+ " 7 0.000000 0 \n",
+ " 8 0.000000 0 \n",
+ " 9 0.000000 0 \n",
+ " 10 0.000000 0 \n",
+ "10 1 1 0.000000 0 \n",
+ " 2 0.000000 0 \n",
+ " 3 0.000000 0 \n",
+ " 4 0.000000 0 \n",
+ " 5 0.000000 0 \n",
+ " 6 8.310315 0 \n",
+ " 7 0.000000 0 \n",
+ " 8 0.000000 0 \n",
+ " 9 0.000000 0 \n",
+ " 10 0.000000 0 \n",
+ "30 1 1 0.000000 0 \n",
+ " 2 0.000000 0 \n",
+ " 3 0.000000 0 \n",
+ " 4 0.000000 0 \n",
+ " 5 0.000000 0 \n",
+ " 6 69.471757 0 \n",
+ " 7 0.000000 0 \n",
+ " 8 0.000000 0 \n",
+ " 9 0.000000 0 \n",
+ " 10 0.000000 0 \n",
+ "\n",
+ " cpu_total_datagenerator mem_max_benchmarker \\\n",
+ "SF num_experiment num_client \n",
+ "1 1 1 0 208.652344 \n",
+ " 2 0 611.730469 \n",
+ " 3 0 1212.539062 \n",
+ " 4 0 1863.578125 \n",
+ " 5 0 2465.582031 \n",
+ " 6 0 3037.617188 \n",
+ " 7 0 2742.273438 \n",
+ " 8 0 3084.117188 \n",
+ " 9 0 3462.558594 \n",
+ " 10 0 3894.109375 \n",
+ "3 1 1 0 204.019531 \n",
+ " 2 0 660.550781 \n",
+ " 3 0 1125.523438 \n",
+ " 4 0 1840.070312 \n",
+ " 5 0 2354.382812 \n",
+ " 6 0 2808.136719 \n",
+ " 7 0 2807.425781 \n",
+ " 8 0 3293.394531 \n",
+ " 9 0 3753.957031 \n",
+ " 10 0 4150.222656 \n",
+ "10 1 1 0 0.000000 \n",
+ " 2 0 0.000000 \n",
+ " 3 0 0.000000 \n",
+ " 4 0 0.000000 \n",
+ " 5 0 0.000000 \n",
+ " 6 0 0.000000 \n",
+ " 7 0 0.000000 \n",
+ " 8 0 0.000000 \n",
+ " 9 0 0.000000 \n",
+ " 10 0 0.000000 \n",
+ "30 1 1 0 238.613281 \n",
+ " 2 0 653.542969 \n",
+ " 3 0 1076.601562 \n",
+ " 4 0 1478.449219 \n",
+ " 5 0 1880.527344 \n",
+ " 6 0 2268.343750 \n",
+ " 7 0 2668.695312 \n",
+ " 8 0 3035.449219 \n",
+ " 9 0 3449.035156 \n",
+ " 10 0 3723.453125 \n",
+ "\n",
+ " cpu_total_benchmarker \n",
+ "SF num_experiment num_client \n",
+ "1 1 1 6.357339 \n",
+ " 2 12.480364 \n",
+ " 3 21.294983 \n",
+ " 4 28.945682 \n",
+ " 5 35.623551 \n",
+ " 6 41.721285 \n",
+ " 7 17.090795 \n",
+ " 8 48.048381 \n",
+ " 9 61.486374 \n",
+ " 10 61.253136 \n",
+ "3 1 1 7.368385 \n",
+ " 2 14.698020 \n",
+ " 3 16.856276 \n",
+ " 4 21.739376 \n",
+ " 5 25.390574 \n",
+ " 6 26.741739 \n",
+ " 7 49.581324 \n",
+ " 8 67.042332 \n",
+ " 9 75.274546 \n",
+ " 10 84.710041 \n",
+ "10 1 1 0.000000 \n",
+ " 2 0.000000 \n",
+ " 3 0.000000 \n",
+ " 4 0.000000 \n",
+ " 5 0.000000 \n",
+ " 6 0.000000 \n",
+ " 7 0.000000 \n",
+ " 8 0.000000 \n",
+ " 9 0.000000 \n",
+ " 10 0.000000 \n",
+ "30 1 1 13.309727 \n",
+ " 2 15.027941 \n",
+ " 3 27.752162 \n",
+ " 4 42.074733 \n",
+ " 5 56.977909 \n",
+ " 6 62.487400 \n",
+ " 7 81.235520 \n",
+ " 8 98.604956 \n",
+ " 9 110.060736 \n",
+ " 10 123.735284 \n",
+ "\n",
+ "[40 rows x 32 columns]"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_time_hw = df_time.groupby(['SF', 'num_experiment', 'num_client']).max()\n",
+ "\n",
+ "df_time_hw"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " span_benchmark \n",
+ " \n",
+ " \n",
+ " SF \n",
+ " num_client \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 1 \n",
+ " 22.0 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 23.0 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 24.0 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 24.0 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 24.0 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 24.0 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 25.0 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 24.0 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 25.0 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 25.0 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 1 \n",
+ " 56.0 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 57.0 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 59.0 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 58.0 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 59.0 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 60.0 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 62.0 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 63.0 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 64.0 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 68.0 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 1 \n",
+ " 153.0 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 154.0 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 160.0 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 165.0 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 172.0 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 176.0 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 192.0 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 198.0 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 207.0 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 215.0 \n",
+ " \n",
+ " \n",
+ " 30 \n",
+ " 1 \n",
+ " 4044.0 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 4052.0 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 4064.0 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 4078.0 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 4132.0 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 4159.0 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 4209.0 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 4242.0 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 4299.0 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 4477.0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " span_benchmark\n",
+ "SF num_client \n",
+ "1 1 22.0\n",
+ " 2 23.0\n",
+ " 3 24.0\n",
+ " 4 24.0\n",
+ " 5 24.0\n",
+ " 6 24.0\n",
+ " 7 25.0\n",
+ " 8 24.0\n",
+ " 9 25.0\n",
+ " 10 25.0\n",
+ "3 1 56.0\n",
+ " 2 57.0\n",
+ " 3 59.0\n",
+ " 4 58.0\n",
+ " 5 59.0\n",
+ " 6 60.0\n",
+ " 7 62.0\n",
+ " 8 63.0\n",
+ " 9 64.0\n",
+ " 10 68.0\n",
+ "10 1 153.0\n",
+ " 2 154.0\n",
+ " 3 160.0\n",
+ " 4 165.0\n",
+ " 5 172.0\n",
+ " 6 176.0\n",
+ " 7 192.0\n",
+ " 8 198.0\n",
+ " 9 207.0\n",
+ " 10 215.0\n",
+ "30 1 4044.0\n",
+ " 2 4052.0\n",
+ " 3 4064.0\n",
+ " 4 4078.0\n",
+ " 5 4132.0\n",
+ " 6 4159.0\n",
+ " 7 4209.0\n",
+ " 8 4242.0\n",
+ " 9 4299.0\n",
+ " 10 4477.0"
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_time_benchmark = df_time.groupby(['SF', 'num_client']).max()\n",
+ "df_time_benchmark = pd.DataFrame(df_time_benchmark['span_benchmark']).T\n",
+ "df_time_benchmark.T"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(1, 1)\n",
+ "(1, 2)\n",
+ "(1, 3)\n",
+ "(1, 4)\n",
+ "(1, 5)\n",
+ "(1, 6)\n",
+ "(1, 7)\n",
+ "(1, 8)\n",
+ "(1, 9)\n",
+ "(1, 10)\n",
+ "(3, 1)\n",
+ "(3, 2)\n",
+ "(3, 3)\n",
+ "(3, 4)\n",
+ "(3, 5)\n",
+ "(3, 6)\n",
+ "(3, 7)\n",
+ "(3, 8)\n",
+ "(3, 9)\n",
+ "(3, 10)\n",
+ "(10, 1)\n",
+ "(10, 2)\n",
+ "(10, 3)\n",
+ "(10, 4)\n",
+ "(10, 5)\n",
+ "(10, 6)\n",
+ "(10, 7)\n",
+ "(10, 8)\n",
+ "(10, 9)\n",
+ "(10, 10)\n",
+ "(30, 1)\n",
+ "(30, 2)\n",
+ "(30, 3)\n",
+ "(30, 4)\n",
+ "(30, 5)\n",
+ "(30, 6)\n",
+ "(30, 7)\n",
+ "(30, 8)\n",
+ "(30, 9)\n",
+ "(30, 10)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "(0.0, 4924.700000000001)"
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOAAAADoCAYAAAD2fuiMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAcsElEQVR4nO3de1QTZ/oH8G+4JBLCHSFYQKhUkCqiqIhuf7aFNXrUg/VS6roV6m1VdKW6LdKttt1ji5dq1a63XVvxuCourtptXVDkpquImDUVqVK1oFhArTZcwp28vz88jEZQEiC+AZ7POTntzLwzeTInXzMZJvOIGGMMhBAuzHgXQEhPRgEkhCMKICEcUQAJ4YgCSAhHFEBCOKIAEsIRBZAQjiiAhHBEAezGMjMzIRKJoFareZciiIqKwuTJk/UeX1RUBJFIBJFIhMDAQL3WSUhIENaJiYlpV53PCwXQCKKiooQ3gEgkgpOTE8aNG4dLly7xLq3LOnnyJNLS0vQaGxERgdLSUoSEhBi5qo6jABrJuHHjUFpaitLSUqSlpcHCwgITJ07kXRY3TU1N0Gq17V7fyckJTk5Oeo21srKCXC6HWCxu9/M9LxRAI5FIJJDL5ZDL5QgMDMSKFStQXFyMe/fuCWOKi4vx5ptvwt7eHo6OjggPD0dRUZGwvPlw7fPPP4ebmxucnJwQHR2NhoYGYUxdXR1iY2Ph4eEBiUQCHx8ffPXVVzq1KJVKDBs2DFKpFKNGjUJBQYGw7OOPP0ZgYCC+/vpreHp6QiaTYdGiRWhqasK6desgl8vh4uKCTz/9VGebGzduxKBBg2BtbQ0PDw8sWrQIVVVVwvKEhATY29vj3//+N/z9/SGRSHDr1q0W+yk3Nxe9e/fG2rVrDdq/mZmZGDFiBKytrWFvb4/Ro0fj5s2bBm3DFFAAn4Oqqir84x//gI+Pj/CveENDAxQKBWxsbHD69GmcOXMGMpkM48aNQ319vbBuRkYGbty4gYyMDOzZswcJCQlISEgQls+aNQsHDhzAli1bcOXKFezcuRMymUzn+f/85z9jw4YNuHDhAiwsLDB79myd5Tdu3EBycjJSUlJw4MABfPXVV5gwYQJu376NrKwsrF27Fh9++CFycnKEdczMzLBlyxbk5+djz549SE9Px/vvv6+z3erqaqxduxa7du1Cfn4+XFxcdJanp6fjt7/9LT799FPExsbqvT8bGxsxefJkjBkzBpcuXUJ2djbmz58PkUik9zZMBiOdLjIykpmbmzNra2tmbW3NADA3NzemVCqFMXv37mW+vr5Mq9UK8+rq6piVlRU7fvy4sJ2+ffuyxsZGYcz06dNZREQEY4yxgoICBoClpqa2WkdGRgYDwE6ePCnMO3bsGAPAampqGGOMffTRR0wqlbKKigphjEKhYF5eXqypqUmY5+vry+Lj45/6mpOSkpiTk5MwvXv3bgaAqVSqFvsmPDycHT58mMlkMpaYmPjUbTLGWGFhIQPALl68KMy7f/8+A8AyMzOfue6YMWPY0qVLnzmGN/oENJLXXnsNKpUKKpUK58+fh0KhwPjx44XDpO+//x7Xr1+HjY0NZDIZZDIZHB0dUVtbixs3bgjbefnll2Fubi5Mu7m54e7duwAAlUoFc3NzjBkz5pm1BAQE6KwPQNgGAHh5ecHGxkaYdnV1hb+/P8zMzHTmPb7OyZMnERoaihdeeAE2NjZ4++23cf/+fVRXVwtjxGKxznM3y8nJwfTp07F3715EREQ8s/bWODo6IioqCgqFApMmTcLmzZtRWlpq8HZMAQXQSKytreHj4wMfHx8MHz4cu3btgkajwd///ncADw9Lg4KChJA2P3788Uf87ne/E7ZjaWmps12RSCSczLCystKrlse30XyY9vgJkdae41nPW1RUhIkTJyIgIAD/+te/oFQqsXXrVgDQOXy2srJq9bCwX79+8PPzw9dff63zfdYQu3fvRnZ2NkaNGoWDBw+if//+OHfuXLu2xRMF8DkRiUQwMzNDTU0NAGDo0KG4du0aXFxchKA2P+zs7PTa5qBBg6DVapGVlWXM0ltQKpXQarXYsGEDRo4cif79+6OkpETv9Z2dnZGeno7r16/jzTffbHcIhwwZgri4OJw9exYDBw7E/v3727UdniiARlJXV4eysjKUlZXhypUrWLJkCaqqqjBp0iQAwMyZM+Hs7Izw8HCcPn0ahYWFyMzMxB//+Efcvn1br+fw8vJCZGQkZs+ejaNHjwrb+Oc//2nMlwYfHx80NDTgyy+/xE8//YS9e/dix44dBm3DxcUF6enpuHr1KmbMmIHGxka91y0sLERcXByys7Nx8+ZNnDhxAteuXcOAAQMMfSncUQCNJCUlBW5ubnBzc0NwcDByc3ORlJSEV199FQAglUpx6tQpeHp6YsqUKRgwYADmzJmD2tpa2Nra6v0827dvx7Rp07Bo0SL4+flh3rx50Gg0RnpVDw0ePBgbN27E2rVrMXDgQOzbtw/x8fEGb0culyM9PR15eXmYOXMmmpqa9FpPKpXi6tWrmDp1Kvr374/58+cjOjoaf/jDHwyugTcRY3RTJmK6ioqK4O3tjYsXL+p9KVqzV199FYGBgdi0aZNRausM9AlIuoRRo0Zh1KhReo3dt28fZDIZTp8+beSqOo4+AYlJa2xsFK4Okkgk8PDwaHOdyspK3LlzBwBgb28PZ2dnY5bYIRRAQjiiQ1BCOKIAEsIRBZAQjix4F2AsWq0WJSUlsLGx6ZpXyZMujTGGyspK9OnTR+ea2id12wCWlJTodcaMEGMqLi6Gu7v7U5d32wA2X91fXFxs0JUlhHSGiooKeHh46PzKpDXdNoDNh522trYUQMJNW19/6CQMIRxRAAnhiAJICEcUQEI4ogASwhEFkBCOKICEcEQBJIQjCiAhHHXbK2EIeZrq6mpcvXpVZ15tQxNu/1oNdwcpelk+uhGyn58fpFKp0WqhAJIe5+rVqwgKCtJrrFKpxNChQ41WCwWQ9Dh+fn5QKpU6867frcTSRBU2vxUIHxcbnbHGRAEkPY5UKm3xqSb+uRySzCr4DwrEwBf0uzN5Z6CTMIRwRAEkhCMKICEcUQAJ4YhOwpAeofAXDTR1T+/AdP1ulc5/n8ZaYgFvZ+tOq4sCSLq9wl80eO3zTL3GxhxUtTkm40+vdloIKYCk23tQXQWzXj/jT7/tDw/H1q9qqWvU4m5FLVxse0Fi0fo3s+IH1fg89Uc8qK6CNyiAhOilRHMT1t5fYvv1jm/L2hso0QQiCK4d3xg6GMA1a9YgLi4OS5cuFXqw1dbWYvny5UhMTERdXR0UCgW2bdsGV9dHBd+6dQsLFy5ERkYGZDIZIiMjER8fDwuLR+VkZmZi2bJlyM/Ph4eHBz788ENERUV1pFzSQ/Wx7gtN4RJsjghEPxdZu7dz424Vlh5Uoc9rfTuttnYHMDc3Fzt37kRAQIDO/HfffRfHjh1DUlIS7OzssHjxYkyZMgVnzpwBADQ1NWHChAmQy+U4e/YsSktLMWvWLFhaWuKzzz4D8LAF8YQJE7BgwQLs27cPaWlpmDt3Ltzc3KBQKDrwcklPpNVaQlv7AjSVcmhtW7/K5eHF2DVwd7DSuRj7cU21VdDW3oPEvFen1dau9mRVVVUYOnQotm3bhtWrVwtdSMvLy9G7d2/s378f06ZNA/DwwtcBAwYgOzsbI0eORHJyMiZOnIiSkhLhU3HHjh2IjY3FvXv3IBaLERsbi2PHjuHy5cvCc7711ltQq9VISUnRq8aKigrY2dmhvLyc7gvawyWev4UVh/OEaW1DLRru39ZrXUsnd5hZ6gZOn5Mw+r7/2vUJGB0djQkTJiAsLAyrV68W5iuVSjQ0NCAsLEyY5+fnB09PTyGA2dnZGDRokM4hqUKhwMKFC5Gfn48hQ4YgOztbZxvNY2JiYp5aU11dHerq6oTpioqK9rw00g2NfVkOAOjnIoOVpTl+yFMhYvw0vdY9mJwJ/0GBwjT3P0MkJibif//7H3Jzc1ssKysrg1gshr29vc58V1dXlJWVCWMeD1/z8uZlzxpTUVGBmpoaWFlZtXju+Ph4fPLJJ4a+HNIDOFqL8dYIT2H6RYfhLX4N0SV+D1hcXIylS5ciNTUVvXp13nFwZ4iLi8OyZcuE6eZ78xPypNZ+DcGLQZeiKZVK3L17F0OHDoWFhQUsLCyQlZWFLVu2wMLCAq6urqivr4dardZZ786dO5DLHx4GyOVyoX/348ublz1rjK2tbauffsDD/uHNfSCoHwTpKgwKYGhoKPLy8qBSqYTHsGHDMHPmTOH/LS0tkZaWJqxTUFCAW7duISQkBAAQEhKCvLw83L17VxiTmpoKW1tb+Pv7C2Me30bzmOZtENJtsA4aM2YMW7p0qTC9YMEC5unpydLT09mFCxdYSEgICwkJEZY3NjaygQMHsrFjxzKVSsVSUlJY7969WVxcnDDmp59+YlKplL333nvsypUrbOvWrczc3JylpKToXVd5eTkDwMrLyzv6EgkxmL7vv04PYE1NDVu0aBFzcHBgUqmUvfHGG6y0tFRnnaKiIjZ+/HhmZWXFnJ2d2fLly1lDQ4POmIyMDBYYGMjEYjF78cUX2e7duw2qiwJIeNL3/deuvwN2BfR3QMKTvu8/+j0gIRxRAAnhiAJICEcUQEI4ogASwhEFkBCOKICEcEQBJIQjCiAhHFEACeGIAkgIRxRAQjiiABLCEQWQEI4ogIRwRAEkhCMKICEcUQAJ4YgCSAhHBgVw+/btCAgIEO67GRISguTkZGF5bW0toqOj4eTkBJlMhqlTp7a4v+etW7cwYcIESKVSuLi44L333kNjo27n0szMTAwdOhQSiQQ+Pj5ISEho/yskxIQZFEB3d3esWbMGSqUSFy5cwOuvv47w8HDk5+cDeNgZ6dtvv0VSUhKysrJQUlKCKVOmCOs3d0aqr6/H2bNnsWfPHiQkJGDVqlXCmObOSK+99hpUKhViYmIwd+5cHD9+vJNeMiEmpKO3X3NwcGC7du1iarWaWVpasqSkJGHZlStXGACWnZ3NGGPsP//5DzMzM2NlZWXCmO3btzNbW1tWV1fHGGPs/fffZy+//LLOc0RERDCFQmFQXXRbQsKTvu+/dn8HbGpqQmJiIjQaDUJCQtrsjATgqZ2RKioqhE/Rp3VGat7G09TV1aGiokLnQYipMziAeXl5kMlkkEgkWLBgAY4cOQJ/f//n1hnpaeLj42FnZyc8qDEL6QoMDqCvry9UKhVycnKwcOFCREZG4ocffjBGbQaJi4tDeXm58CguLuZdEiFtMrg/oFgsho+PDwAgKCgIubm52Lx5MyIiIoTOSI9/Cj7ZGen8+fM62+uMzkjAw+5IEonE0JdDCFcd/jugVqtFXV0dgoKCqDMSIYYy5MzOihUrWFZWFissLGSXLl1iK1asYCKRiJ04cYIxZjqdkRijs6CEL6N0R5o9ezbr27cvE4vFrHfv3iw0NFQIH2Om0xmJMQog4Yu6I1F3JMIRdUcipAugABLCEQWQEI4ogIRwRAEkhCMKICEcUQAJ4YgCSAhHFEBCOKIAEsIRBZAQjiiAhHBEASSEIwogIRxRAAnhiAJICEcUQEI4ogASwhEFkBCOKICEcGRQAOPj4zF8+HDY2NjAxcUFkydPRkFBgc4YalFGiP4MCmBWVhaio6Nx7tw5pKamoqGhAWPHjoVGoxHGUIsyQgzQkXsf3r17lwFgWVlZjDFmUi3K6L6ghCejtycDgPLycgCAo6MjAHBtUUbtyUhX1O4AarVaxMTEYPTo0Rg4cCAAcG1RRu3JSFfU7gBGR0fj8uXLSExM7Mx62o3ak5GuyOD2ZACwePFifPfddzh16hTc3d2F+XK5nFuLMmpPRroigz4BGWNYvHgxjhw5gvT0dHh7e+sspxZlhBjIkDM7CxcuZHZ2diwzM5OVlpYKj+rqamGMqbQoo7OghCejtCcD0Orj8fZhptKijAJIeKL2ZNSejHBE7ckI6QIogIRwRAEkhCMKICEcUQAJ4YgCSAhHFEBCOKIAEsIRBZAQjiiAhHBEASSEIwogIRxRAAnhiAJICEcUQEI4ogASwhEFkBCOKICEcEQBJIQjgwN46tQpTJo0CX369IFIJMLRo0d1ljPGsGrVKri5ucHKygphYWG4du2azpgHDx5g5syZsLW1hb29PebMmYOqqiqdMZcuXcIrr7yCXr16wcPDA+vWrTP81RFi4gwOoEajweDBg7F169ZWl69btw5btmzBjh07kJOTA2traygUCtTW1gpjZs6cifz8fKSmpgo3+J0/f76wvKKiAmPHjkXfvn2hVCqxfv16fPzxx/jb3/7WjpdIiAnryK3XALAjR44I01qtlsnlcrZ+/XphnlqtZhKJhB04cIAxxtgPP/zAALDc3FxhTHJyMhOJROznn39mjDG2bds25uDgIHRLYoyx2NhY5uvrq3dtdFtCwtNz6Y70pMLCQpSVlel0NrKzs0NwcLBOdyR7e3sMGzZMGBMWFgYzMzPk5OQIY/7v//4PYrFYGKNQKFBQUIBff/211eem7kikK+rUADZ3N2qts9HjnY9cXFx0lltYWMDR0dGgDkpPou5IpCvqNmdBqTsS6Yo6NYDN3Y1a62z0eOejxxuzAEBjYyMePHjQZnekx5/jSRKJBLa2tjoPQkxdpwbQ29sbcrlcp7NRRUUFcnJydLojqdVqKJVKYUx6ejq0Wi2Cg4OFMadOnUJDQ4MwJjU1Fb6+vnBwcOjMkgnhy9CzO5WVlezixYvs4sWLDADbuHEju3jxIrt58yZjjLE1a9Ywe3t79s0337BLly6x8PBw5u3tzWpqaoRtjBs3jg0ZMoTl5OSw//73v+yll15iM2bMEJar1Wrm6urK3n77bXb58mWWmJjIpFIp27lzp9510llQwpNRuiMx9rBrEVrpkBQZGckYe/iniJUrVzJXV1cmkUhYaGgoKygo0NnG/fv32YwZM5hMJmO2trbsnXfeYZWVlTpjvv/+e/ab3/yGSSQS9sILL7A1a9YYVCcFkPBE3ZGoOxLhiLojEdIFUAAJ4YgCSAhHFEBCOKIAEsIRBZAQjiiAhHBEASSEIwogIRxRAAnhiAJICEcUQEI4ogASwhEFkBCOKICEcEQBJIQjC94FkO6nuroaV69e1ZlX29CE279Ww91Bil6W5sJ8Pz8/SKXS512iyaAAkg6raazBmZs/oKa+CQDw0/UfsWLJPL3WXfPl3/GiT39h2kpsjtF9/WFlYWWUWk0N3ZJCD01NTTh9+jRKS0vh5uaGV155Bebm5m2v2EN8dzUXcTmzO217X/wmAWH9gjptezzo+/6jT8A2HD58GMuXL0dRUZEwz8vLCxs2bMCUKVP4FWZCflXbQVO4RJiu/6UY97/7XK91nSb+CWJn3buYu4/z6szyTJpJB3Dr1q1Yv349ysrKMHjwYHz55ZcYMWLEc3v+w4cPY9q0aZg4cSIOHDiAgQMH4vLly/jss88wbdo0HDp0iEIIYMIgL1iajUM/FxmsLM1RU1ONwolhba8IwNunP6ysHn0HtJZYwNvZ2lilmhyTPQQ9ePAgZs2ahR07diA4OBibNm1CUlISCgoKWvSWaE1HD0Gbmprg4+ODQYMG4ejRozAze3TCWKvVYvLkybh8+TKuXbtm9MPRkvJyHFQ9upGxpqoC1/KUz1jjkZcGBcFa9uj1y+16YfLAIT3mOxYv+r7/TDaAwcHBGD58OP76178CePim9/DwwJIlS7BixYo21zckgK29wc+kHEHmt/9E6OTfwUnep8U698t+RtrRA/j90pXwHzpSmG+MN/gXWen4umhpp23v81EJULzUtb9jmbouHcD6+npIpVIcOnQIkydPFuZHRkZCrVbjm2++abFOXV0d6urqhOny8nJ4enqiuLi4zQBu/W8W9t6K7bT6VwdvR1i/IZ22vdLychzOUwnTGk0lbuSrnjr+cf1eDoS1tY0w7WLbCxP9A+gT0MgqKirg4eEBtVoNOzu7p44zye+Av/zyC5qamlptUfbk35eaxcfH45NPPmkxn0ebsql49bk/JzFNlZWVXS+A7REXF4dly5YJ01qtFg8ePICTkxNEIlGHt9/8L5o+n6g8UH0d09n1McZQWVmJPn1afn15nEkG0NnZGebm5s9sc/YkiUQCiUSiM8/e3r7TazP11mdUX8d0Zn3P+uRrZpLXgorFYgQFBem0OdNqtUhLSxPanBHSHZjkJyAALFu2DJGRkRg2bBhGjBiBTZs2QaPR4J133uFdGiGdxmQDGBERgXv37mHVqlUoKytDYGAgUlJSWpyYeV4kEgk++uijFoe5poLq6xhe9ZnknyEI6SlM8jsgIT0FBZAQjiiAhHBEASSEIwpgG06dOoVJkyahT58+EIlEOHr0KO+SdGzfvh0BAQHCH5BDQkKQnJzMrZ629hdjDKtWrYKbmxusrKwQFhaGa9euPZfa2tpXtbW1iI6OhpOTE2QyGaZOndriYpDORgFsg0ajweDBg7F161bepbTK3d0da9asgVKpxIULF/D6668jPDwc+fn5XOppa3+tW7cOW7ZswY4dO5CTkwNra2soFArU1tYavba29tW7776Lb7/9FklJScjKykJJSYnxf+/JiN4AsCNHjvAuo00ODg5s165dvMtosb+0Wi2Ty+Vs/fr1wjy1Ws0kEgk7cOAAhwof7Su1Ws0sLS1ZUlKSsOzKlSsMAMvOzjba89MnYDfS1NSExMREaDQak7xkr7CwEGVlZQgLe/RreTs7OwQHByM7O/u51vLkvlIqlWhoaNCpzc/PD56enkatzWSvhCH6y8vLQ0hICGprayGTyXDkyBH4+/vzLquFsrIyAGj1Z2bNy4ztaftKpVJBLBa3uIDf2LVRALsBX19fqFQqlJeX49ChQ4iMjERWVpZJhpC3p+0rXugQtBsQi8Xw8fFBUFAQ4uPjMXjwYGzevJl3WS00/5TMkJ+Zdban7Su5XI76+nqo1ernWhsFsBvSarU6t+cwFd7e3pDL5To/M6uoqEBOTg6376zN+yooKAiWlpY6tRUUFODWrVtGrY0OQdtQVVWF69evC9OFhYVQqVRwdHSEp6cnx8oeiouLw/jx4+Hp6YnKykrs378fmZmZOH78OJd62tpfMTExWL16NV566SV4e3tj5cqV6NOnj869f4zlWfvKzs4Oc+bMwbJly+Do6AhbW1ssWbIEISEhGDlyZNsbby+jnV/tJjIyMhiAFo/IyEjepTHGGJs9ezbr27cvE4vFrHfv3iw0NJSdOHGCWz1t7S+tVstWrlzJXF1dmUQiYaGhoaygoOC51NbWvqqpqWGLFi1iDg4OTCqVsjfeeIOVlpYatSb6ORIhHNF3QEI4ogASwhEFkBCOKICEcEQBJIQjCiAhHFEACeGIAkgIRxRAQjiiAPZw9+7dw8KFC+Hp6QmJRAK5XA6FQoEzZ84AALy8vCASiXQe7u7unKvuPuhi7B5u6tSpqK+vx549e/Diiy/izp07SEtLw/3794Uxf/nLXzBv3jxh2tgtuXsSCmAPplarcfr0aWRmZmLMmDEAgL59+2LEiBE642xsbJ7b7/V6GjoE7cFkMhlkMhmOHj1qkr8f7AkogD2YhYUFEhISsGfPHtjb22P06NH44IMPcOnSJZ1xsbGxQlhlMhm2bNnCqeLuh36ORFBbW4vTp0/j3LlzSE5Oxvnz57Fr1y5ERUXBy8sLv//97xEVFSWMd3Z2Nkr34Z6IAkhamDt3LlJTU3Hz5k14eXkhJiYGMTExvMvqlugQlLTg7+8PjUbDu4wegc6C9mD379/H9OnTMXv2bAQEBMDGxgYXLlzAunXrEB4ezru8HoEC2IPJZDIEBwfjiy++wI0bN9DQ0AAPDw/MmzcPH3zwAe/yegT6DkgIR/QdkBCOKICEcEQBJIQjCiAhHFEACeGIAkgIRxRAQjiiABLCEQWQEI4ogIRwRAEkhKP/B/PN6mst4ImgAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "for index in df_time_benchmark.columns:\n",
+ " print(index)\n",
+ " #df_time_benchmark[(index)] = df_time_benchmark[index]/int(index[0])\n",
+ "\n",
+ "df_time_benchmark.T.boxplot(column='span_benchmark', by='SF', figsize=(2,2), grid=False)\n",
+ "plt.title('Benchmark [s]', fontsize=10)\n",
+ "plt.suptitle('')\n",
+ "plt.ylim(0, df_time_benchmark.max().max()*1.1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " benchmark_geo \n",
+ " benchmark_mean \n",
+ " generate \n",
+ " ... \n",
+ " cpu_total_datagenerator \n",
+ " mem_max_benchmarker \n",
+ " cpu_total_benchmarker \n",
+ " \n",
+ " \n",
+ " \n",
+ " SF \n",
+ " 1 \n",
+ " 3 \n",
+ " 10 \n",
+ " 30 \n",
+ " 1 \n",
+ " 3 \n",
+ " 10 \n",
+ " 30 \n",
+ " 1 \n",
+ " 3 \n",
+ " ... \n",
+ " 10 \n",
+ " 30 \n",
+ " 1 \n",
+ " 3 \n",
+ " 10 \n",
+ " 30 \n",
+ " 1 \n",
+ " 3 \n",
+ " 10 \n",
+ " 30 \n",
+ " \n",
+ " \n",
+ " num_experiment \n",
+ " num_client \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 1 \n",
+ " 0.626844 \n",
+ " 1.637411 \n",
+ " 4.249538 \n",
+ " 11.848516 \n",
+ " 0.870090 \n",
+ " 2.337024 \n",
+ " 6.697040 \n",
+ " 20.773472 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0 \n",
+ " 0 \n",
+ " 208.652344 \n",
+ " 204.019531 \n",
+ " 0.0 \n",
+ " 238.613281 \n",
+ " 6.357339 \n",
+ " 7.368385 \n",
+ " 0.0 \n",
+ " 13.309727 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 0.627641 \n",
+ " 1.629153 \n",
+ " 4.256660 \n",
+ " 11.590215 \n",
+ " 0.879075 \n",
+ " 2.392267 \n",
+ " 6.792321 \n",
+ " 21.159031 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0 \n",
+ " 0 \n",
+ " 611.730469 \n",
+ " 660.550781 \n",
+ " 0.0 \n",
+ " 653.542969 \n",
+ " 12.480364 \n",
+ " 14.698020 \n",
+ " 0.0 \n",
+ " 15.027941 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 0.632130 \n",
+ " 1.659287 \n",
+ " 4.344926 \n",
+ " 11.807706 \n",
+ " 0.899522 \n",
+ " 2.451833 \n",
+ " 7.031578 \n",
+ " 21.721130 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0 \n",
+ " 0 \n",
+ " 1212.539062 \n",
+ " 1125.523438 \n",
+ " 0.0 \n",
+ " 1076.601562 \n",
+ " 21.294983 \n",
+ " 16.856276 \n",
+ " 0.0 \n",
+ " 27.752162 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 0.630736 \n",
+ " 1.660253 \n",
+ " 4.403455 \n",
+ " 12.315965 \n",
+ " 0.888230 \n",
+ " 2.438937 \n",
+ " 7.250765 \n",
+ " 22.365024 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0 \n",
+ " 0 \n",
+ " 1863.578125 \n",
+ " 1840.070312 \n",
+ " 0.0 \n",
+ " 1478.449219 \n",
+ " 28.945682 \n",
+ " 21.739376 \n",
+ " 0.0 \n",
+ " 42.074733 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 0.636013 \n",
+ " 1.679546 \n",
+ " 4.604848 \n",
+ " 13.244481 \n",
+ " 0.924576 \n",
+ " 2.461815 \n",
+ " 7.543895 \n",
+ " 24.931526 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0 \n",
+ " 0 \n",
+ " 2465.582031 \n",
+ " 2354.382812 \n",
+ " 0.0 \n",
+ " 1880.527344 \n",
+ " 35.623551 \n",
+ " 25.390574 \n",
+ " 0.0 \n",
+ " 56.977909 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 0.640728 \n",
+ " 1.701831 \n",
+ " 4.858891 \n",
+ " 14.096852 \n",
+ " 0.908141 \n",
+ " 2.497585 \n",
+ " 7.775989 \n",
+ " 26.204070 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0 \n",
+ " 0 \n",
+ " 3037.617188 \n",
+ " 2808.136719 \n",
+ " 0.0 \n",
+ " 2268.343750 \n",
+ " 41.721285 \n",
+ " 26.741739 \n",
+ " 0.0 \n",
+ " 62.487400 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 0.640812 \n",
+ " 1.783129 \n",
+ " 5.170702 \n",
+ " 15.398105 \n",
+ " 0.916236 \n",
+ " 2.628219 \n",
+ " 8.477382 \n",
+ " 28.600618 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0 \n",
+ " 0 \n",
+ " 2742.273438 \n",
+ " 2807.425781 \n",
+ " 0.0 \n",
+ " 2668.695312 \n",
+ " 17.090795 \n",
+ " 49.581324 \n",
+ " 0.0 \n",
+ " 81.235520 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 0.632665 \n",
+ " 1.827464 \n",
+ " 5.374004 \n",
+ " 16.289964 \n",
+ " 0.904015 \n",
+ " 2.639318 \n",
+ " 8.769735 \n",
+ " 30.197897 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0 \n",
+ " 0 \n",
+ " 3084.117188 \n",
+ " 3293.394531 \n",
+ " 0.0 \n",
+ " 3035.449219 \n",
+ " 48.048381 \n",
+ " 67.042332 \n",
+ " 0.0 \n",
+ " 98.604956 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 0.639336 \n",
+ " 1.885180 \n",
+ " 5.676579 \n",
+ " 17.628742 \n",
+ " 0.914431 \n",
+ " 2.698596 \n",
+ " 9.179535 \n",
+ " 32.871015 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0 \n",
+ " 0 \n",
+ " 3462.558594 \n",
+ " 3753.957031 \n",
+ " 0.0 \n",
+ " 3449.035156 \n",
+ " 61.486374 \n",
+ " 75.274546 \n",
+ " 0.0 \n",
+ " 110.060736 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 0.650121 \n",
+ " 2.000874 \n",
+ " 6.060483 \n",
+ " 19.279709 \n",
+ " 0.927470 \n",
+ " 2.866765 \n",
+ " 9.544057 \n",
+ " 41.397282 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0 \n",
+ " 0 \n",
+ " 3894.109375 \n",
+ " 4150.222656 \n",
+ " 0.0 \n",
+ " 3723.453125 \n",
+ " 61.253136 \n",
+ " 84.710041 \n",
+ " 0.0 \n",
+ " 123.735284 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
10 rows Ă— 128 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " benchmark_geo \\\n",
+ "SF 1 3 10 30 \n",
+ "num_experiment num_client \n",
+ "1 1 0.626844 1.637411 4.249538 11.848516 \n",
+ " 2 0.627641 1.629153 4.256660 11.590215 \n",
+ " 3 0.632130 1.659287 4.344926 11.807706 \n",
+ " 4 0.630736 1.660253 4.403455 12.315965 \n",
+ " 5 0.636013 1.679546 4.604848 13.244481 \n",
+ " 6 0.640728 1.701831 4.858891 14.096852 \n",
+ " 7 0.640812 1.783129 5.170702 15.398105 \n",
+ " 8 0.632665 1.827464 5.374004 16.289964 \n",
+ " 9 0.639336 1.885180 5.676579 17.628742 \n",
+ " 10 0.650121 2.000874 6.060483 19.279709 \n",
+ "\n",
+ " benchmark_mean \\\n",
+ "SF 1 3 10 30 \n",
+ "num_experiment num_client \n",
+ "1 1 0.870090 2.337024 6.697040 20.773472 \n",
+ " 2 0.879075 2.392267 6.792321 21.159031 \n",
+ " 3 0.899522 2.451833 7.031578 21.721130 \n",
+ " 4 0.888230 2.438937 7.250765 22.365024 \n",
+ " 5 0.924576 2.461815 7.543895 24.931526 \n",
+ " 6 0.908141 2.497585 7.775989 26.204070 \n",
+ " 7 0.916236 2.628219 8.477382 28.600618 \n",
+ " 8 0.904015 2.639318 8.769735 30.197897 \n",
+ " 9 0.914431 2.698596 9.179535 32.871015 \n",
+ " 10 0.927470 2.866765 9.544057 41.397282 \n",
+ "\n",
+ " generate ... cpu_total_datagenerator \\\n",
+ "SF 1 3 ... 10 30 \n",
+ "num_experiment num_client ... \n",
+ "1 1 0.0 0.0 ... 0 0 \n",
+ " 2 0.0 0.0 ... 0 0 \n",
+ " 3 0.0 0.0 ... 0 0 \n",
+ " 4 0.0 0.0 ... 0 0 \n",
+ " 5 0.0 0.0 ... 0 0 \n",
+ " 6 0.0 0.0 ... 0 0 \n",
+ " 7 0.0 0.0 ... 0 0 \n",
+ " 8 0.0 0.0 ... 0 0 \n",
+ " 9 0.0 0.0 ... 0 0 \n",
+ " 10 0.0 0.0 ... 0 0 \n",
+ "\n",
+ " mem_max_benchmarker \\\n",
+ "SF 1 3 10 30 \n",
+ "num_experiment num_client \n",
+ "1 1 208.652344 204.019531 0.0 238.613281 \n",
+ " 2 611.730469 660.550781 0.0 653.542969 \n",
+ " 3 1212.539062 1125.523438 0.0 1076.601562 \n",
+ " 4 1863.578125 1840.070312 0.0 1478.449219 \n",
+ " 5 2465.582031 2354.382812 0.0 1880.527344 \n",
+ " 6 3037.617188 2808.136719 0.0 2268.343750 \n",
+ " 7 2742.273438 2807.425781 0.0 2668.695312 \n",
+ " 8 3084.117188 3293.394531 0.0 3035.449219 \n",
+ " 9 3462.558594 3753.957031 0.0 3449.035156 \n",
+ " 10 3894.109375 4150.222656 0.0 3723.453125 \n",
+ "\n",
+ " cpu_total_benchmarker \n",
+ "SF 1 3 10 30 \n",
+ "num_experiment num_client \n",
+ "1 1 6.357339 7.368385 0.0 13.309727 \n",
+ " 2 12.480364 14.698020 0.0 15.027941 \n",
+ " 3 21.294983 16.856276 0.0 27.752162 \n",
+ " 4 28.945682 21.739376 0.0 42.074733 \n",
+ " 5 35.623551 25.390574 0.0 56.977909 \n",
+ " 6 41.721285 26.741739 0.0 62.487400 \n",
+ " 7 17.090795 49.581324 0.0 81.235520 \n",
+ " 8 48.048381 67.042332 0.0 98.604956 \n",
+ " 9 61.486374 75.274546 0.0 110.060736 \n",
+ " 10 61.253136 84.710041 0.0 123.735284 \n",
+ "\n",
+ "[10 rows x 128 columns]"
+ ]
+ },
+ "execution_count": 23,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_hw_pivot = df_time_hw[df_time_hw['cpu_total_stream']!=0].unstack(0)#.pivot(index='SF', columns='pods', values='cpu_total_stream')\n",
+ "df_hw_pivot"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 24,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAN0AAADsCAYAAADw4qMSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABAPklEQVR4nO2dd3hU1daH35lJJj2BQCqp1NCVIkS4oIAE5EMQRLyigCJcFRDEAoh0EcQCqICoV8DrFZEqRUAEwSslFAndgJAQII2W3qas748hA0MCzCRhQpLzPs8oZ59d1pmc35x91l57b5WICAoKCnZDXd4GKChUNRTRKSjYGUV0Cgp2RhGdgoKdUUSnoGBnFNEpKNgZRXQKCnZGEZ2Cgp1RRKegYGcU0SnYhSVLlqBSqVCpVIwePbq8zSkxU6ZMMV/H3LlzS1RHlRDdpUuXeOWVVwgJCcHJyQl/f3+ioqLYtWuXOY9KpWLt2rVFyg4ePJjevXsTHx9v/rJv91myZIn9LspOPPLII2UmEk9PT5KSkpg+fXqZ1FcSvvrqK5o3b467uzvVqlXjwQcfZObMmebzN4vq5s+vv/4KwJtvvklSUhJBQUEltsGh1FdRAejbty8FBQUsXbqU2rVrk5KSwrZt27hy5YrVdQQHB5OUlGQ+/uijj9i8ebP5jwHg5eVVpnZXNlQqFf7+/ve8nYKCArRabZH0b775htGjR/Ppp5/SsWNH8vPzOXLkCMeOHbPI17hxY4u/K4C3tzcA7u7uuLu7o9FoSm6gVHKuXbsmgOzYseOO+QBZs2ZNkfRBgwZJr169iqRPnjxZmjdvbrUNw4YNE19fX3FycpLGjRvL+vXrzedXrlwpjRo1Eq1WK6GhofLRRx9ZlA8NDZXp06fL888/L25ubhISEiI//fSTpKamyhNPPCFubm7StGlT2b9/v7nM4sWLxcvLS9asWSN169YVJycn6dq1qyQkJNzx2kaNGiUdO3Y0nwcsPnFxcSIicvToUenWrZu4ubmJr6+vPPfcc3Lp0qXbfgeF9txKaGioTJs2TZ555hlxdXWVwMBA+fzzz4t8f0OGDJGaNWuKh4eHPProoxITE2M+X/i3+OqrryQsLExUKlWxNvTq1UsGDx58WxtvrutuhIaGypw5c+6arzgqffey8Jdp7dq15Ofn2719o9FI9+7d2bVrF9999x0nTpxg1qxZ5l/KgwcP8vTTT/PMM89w9OhRpkyZwsSJE4t0VefMmUO7du04dOgQPXr04Pnnn2fgwIE899xz/Pnnn9SpU4eBAwciN00aycnJYcaMGXz77bfs2rWLtLQ0nnnmGattnzdvHpGRkQwdOpSkpCSSkpIIDg4mLS2NTp068eCDD3LgwAE2b95MSkoKTz/9dIm+ow8//JDmzZtz6NAhxo0bx6hRo9i6dav5fL9+/UhNTWXTpk0cPHiQFi1a0LlzZ65evWrO8/fff7Nq1SpWr15NTExMse34+/uzd+9ezp07VyI7y4wSSbWCsXLlSqlevbo4OzvLww8/LOPHj5fDhw9b5OEePem2bNkiarVaYmNjiz3/7LPPymOPPWaR9tZbb0mjRo3Mx6GhofLcc8+Zj5OSkgSQiRMnmtP27NkjgCQlJYmI6ckCyN69e815Tp48KYBER0ff9tpuftKJiHTs2FFGjRplkWf69OnStWtXi7Tz588LcNvrvNOTrlu3bhZp/fv3l+7du4uIyP/+9z/x9PSUvLw8izx16tSRRYsWiYjpb+Ho6CipqanFtl1IYmKitG3bVgCpX7++DBo0SJYvXy4Gg8GcZ/LkyaJWq8XNzc38ad26dbF2K0+6O9C3b18SExNZt24d3bp1Y8eOHbRo0cIujo+YmBiCgoKoX79+sedPnjxJu3btLNLatWvH6dOnMRgM5rRmzZqZ/+3n5wdA06ZNi6Slpqaa0xwcHGjdurX5OCIigmrVqnHy5MlSXBEcPnyY3377zdyLcHd3JyIiAoAzZ87YXF9kZGSR40IbDx8+TFZWFjVq1LBoLy4uzqKt0NBQfHx87thOQEAAe/bs4ejRo4waNQq9Xs+gQYPo1q0bRqPRnK9BgwbExMSYP6tWrbL5mu5ElXCkADg7O/PYY4/x2GOPMXHiRF566SUmT57M4MGDAfDw8CA9Pb1IubS0tFI5SFxcXEpc9mYcHR3N/1apVLdNu/nmuRtqtdqiOwqg0+nuWi4rK4uePXvywQcfFDkXEBBgdfvWkJWVRUBAADt27Chyrlq1auZ/u7m5WV1nkyZNaNKkCa+++iovv/wy//jHP9i5cyePPvooAFqtlrp165bW9NtSJZ50xdGoUSOys7PNxw0aNODgwYMWeQwGA4cPH77tU8oamjVrxoULFzh16lSx5xs2bGgxdAGwa9cu6tevXzoPGaDX6zlw4ID5ODY2lrS0NBo2bAiAj4+PhUcWKPI+pNVqLZ64AC1atOD48eOEhYVRt25di48tN38he/fuLXJcaGOLFi1ITk7GwcGhSFs1a9a0ua1badSoEYDFvXCvqfSiu3LlCp06deK7777jyJEjxMXFsWLFCmbPnk2vXr3M+caMGcPXX3/NggULOH36NDExMQwbNoxr167x0ksvlbj9jh070qFDB/r27cvWrVuJi4tj06ZNbN68GYA33niDbdu2MX36dE6dOsXSpUv5/PPPefPNN0t97Y6OjowcOZLo6GgOHjzI4MGDadu2LQ899BAAnTp14sCBA3z77becPn2ayZMnF3Gfh4WFER0dTXx8PJcvX8ZoNDJ8+HCuXr3KP//5T/bv38+ZM2fYsmULL7zwQhGBWsOuXbuYPXs2p06dYv78+axYsYJRo0YB0KVLFyIjI+nduze//PIL8fHx7N69mwkTJlj8oFjDK6+8wvTp09m1axfnzp1j7969DBw4EB8fnyJd3HtKid4EKxB5eXkybtw4adGihXh5eYmrq6s0aNBA3n33XcnJybHI+9///ldatmwpHh4e4ufnJ48//ngRh0shtgwZXLlyRV544QWpUaOGODs7S5MmTWTDhg3m84VDBo6OjhISEiIffvihRfniXtq5xfETFxcngBw6dEhEbjguVq1aJbVr1xYnJyfp0qWLnDt3zqKeSZMmiZ+fn3h5ecnrr78uI0aMsHCkxMbGStu2bcXFxcViyODUqVPy5JNPSrVq1cTFxUUiIiJk9OjRYjQai/0O7uRImTp1qvTr109cXV3F399f5s2bZ5EnIyNDRo4cKYGBgeLo6CjBwcEyYMAA8/CHtX+LlStXyuOPPy4BAQGi1WolMDBQ+vbtK0eOHDHnsceQQaUXXVXldjd5eXEn0ZX05i1PFO+lQoUgPT0dd3d3xo4dW96mlJj3338fd3d3EhISSlxHlfFeKpQvffv2pX379oCl17Gi8fLLL5uDAO42RHE7VCLKupcKCvZE6V4qKNgZRXQKCnZGEZ2Cgp2ptI4Uo9FIYmIiHh4e5hApBYV7gYiQmZlJYGAgavXdn2OVVnSJiYkEBweXtxkKVYjz589bNaO80orOw8MDMH0Rnp6e5WyNQmUmIyOD4OBg8z13Nyqt6Aq7lJ6enoroFOyCta8xiiNFQcHOKKJTULACXXIy2Xuj0SUnl7ouRXQKCnchbeVK/n60EwmDB/N3p86krVxZqvoq7TudNYgIer2+RHPAKguOjo6lnixbmSm4cIGkiZOgMFrSaCRp0mTc2rfHsYTLCVZZ0RUUFJCUlEROTk55m1KuqFQqgoKCcHd3L29T7jsMaWlcHDX6huAKMRopOJegiM4WjEYjcXFxaDQaAgMD0Wq1VXIAXUS4dOkSFy5coF69esoT7ybyz5zh/KuvojtXzBQetRptaEiJ666SoisoKMBoNBIcHIyrq2t5m1Ou+Pj4EB8fj06nU0R3nczffiPxzbcwZmfjGBiIV58nubxgIRiNoFYTMG1qiZ9yUEVFV4g1ITuVnar4hL8dIsKVr7/m0idzQATX1q2pNW8uDt7eVHvqKQrOJaANDSmV4KCKi05BoRBjXh5J704kY8MGAKr98xn833kH1fVlDh39/UsttkIU0SlUeXTJyVwYPoK848fBwQH/dydQ3Ybl521FEZ1ClSbn0CEujHwNw+XLaKpVo9an83C7vkThvUJ5qbEDd9sfLywsrMh+aKXZ/0zBOtJWrSZh4CAMly/jVL8+YStX3HPBgfKkswvW7I83bdo0hg4daj5WPIn3DtHrSf3wI64uXQqAx2OPEThrJuoSrE5dEhTR3WPS0tL43//+x44dO+jYsSNg2uzioVt+UT08POyyYWJVx5CezsXXx5C9ezcANUeMoOarr6Cyoydb6V7eY8p7fzwFE7rkZNJWr+Fsnz5k796NysWFWvPm4TNiuF0FB4ro7jkODg4sWbKEpUuXUq1aNdq1a8c777zDkSNHLPKNHTvWYiuoTz/9tJwsrnwUBiwnvfMO+ouJaLy8CFv2PZ5RXcvFHkV0dsCa/fHeeustiz3RBg4cWH4GVyJ0ycmWAcuAITMTTTkueKuIzk4U7o83ceJEdu/ezeDBg5k8ebL5fM2aNS22garIqyDfT6StWnXbgOXyQhFdOXHr/ngKZU/GL7+YYiZvpZQBy6VFEd09xtr98RTKloxffuHimDfAYMC5eXModJaUQcByaVGGDO4x7u7utGnThjlz5nDmzBl0Oh3BwcEMHTqUd955p7zNq5RkbPmFi2+8AXo9nj17EjhrJvpLl8osYLm0VNoNRDIyMvDy8iI9Pb3IamB5eXnExcURHh6Os7NzOVl4f1DZvgsLwT3Rk8CZM1Hd40CDO91rxaE86RQqDRlbfuHimDFgMNhNcCVBeadTqBTcLDivXk/ct4IDRXQKlYCMzVssBBfw/vv3reBAEZ1CBSdj8xbTO1wFERzYKLqZM2fSunVrPDw88PX1pXfv3sTGxlrkycvLY/jw4dSoUQN3d3f69u1LSkqKRZ6EhAR69OiBq6srvr6+vPXWW+j1eos8hVEbTk5O1K1b1yJ6Q0EBIGPz5psE16tCCA5sFN3OnTsZPnw4e/fuZevWreh0Orp27WoxyPv666+zfv16VqxYwc6dO0lMTKRPnz7m8waDgR49elBQUMDu3btZunQpS5YsYdKkSeY8cXFx9OjRg0cffZSYmBhGjx7NSy+9xJYtW8rgkhUqAybBvXmT4GZUCMEBIKUgNTVVANm5c6eIiKSlpYmjo6OsWLHCnOfkyZMCyJ49e0RE5Oeffxa1Wi3JycnmPAsXLhRPT0/Jz88XEZG3335bGjdubNFW//79JSoqymrb0tPTBZD09PQi53Jzc+XEiROSm5tr/cVWUirid5G+aZOcaNRYTjSIkItjx4lRry9fe+5wrxVHqd7p0tPTAfD29gbg4MGD6HQ6unTpYs4TERFBSEgIe/bsAWDPnj00bdoUPz8/c56oqCgyMjI4fvy4Oc/NdRTmKayjOPLz88nIyLD4KFQeCvcSuLZs2Y0nXO/eBMx4r+I84a5T4nE6o9HI6NGjadeuHU2aNAEgOTkZrVZbJFjXz8+P5OsbLyQnJ1sIrvB84bk75cnIyCA3NxcXF5ci9sycOZOpU6eW9HIU7mPSVq4kadJk07qT1/F68kkC3pte4QQHpfBeDh8+nGPHjvHDDz+UpT0lZvz48aSnp5s/58+fL2+TFMoAXXJyEcGhUlFzxPAKKTgooehGjBjBhg0b+O233ywW0PH396egoIC0tDSL/CkpKealCPz9/Yt4MwuP75bH09Oz2KccgJOTk3kDyMq8EeTvv/9Oz549CQwMRKVSsXbt2vI26Z5SEH/OUnAAIuguXCwfg8oAm0QnIowYMYI1a9awfft2wsPDLc63bNkSR0dHtm3bZk6LjY0lISGByMhIACIjIzl69CipqanmPFu3bsXT05NGjRqZ89xcR2GewjruJ5LSc9l95jJJ6bl2aS87O5vmzZszf/58u7RX3qictEUTy3lqTmmx6Z1u+PDhfP/99/z00094eHiY38G8vLxwcXHBy8uLIUOGMGbMGLy9vfH09GTkyJFERkbStm1bALp27UqjRo14/vnnmT17NsnJybz77rsMHz4cJycnAF5++WU+//xz3n77bV588UW2b9/Ojz/+yMaNG8v48k2ICLk627fLWnXwApPXHccooFbB1Cca07elbUvnuThqbFravHv37nTv3t1WUyskhowMkt6daJl4H0zNKS02iW7hQtOEwEceecQiffHixQwePBiAOXPmoFar6du3L/n5+URFRbFgwQJzXo1Gw4YNG3jllVeIjIzEzc2NQYMGMW3aNHOe8PBwNm7cyOuvv868efMICgri66+/JioqqoSXeWdydQYaTSrdGKBRYOJPx5n403Gbyp2YFoWrVok7vxUpKODCa6MoOHMGBz8/gj7/DGNO7n0xNae02PTXFitmATk7OzN//vw7dn9CQ0P5+eef71jPI488wqFDh2wxT6GSICIkTZ1Kzt69qF1dCV70Bc4REeVtVpmh/MRi6uKdmGbbUzQ5PY8un+zEeNPvkFoFv47piL+X9fPSXBwrpgfuXnJl0Zekr1oNajW15nxSqQQHiugA03ZRtnbxavu4M7NPU95ZfQyDCBqVivf7NKG2j7KjaWlI37iRS3PnAuD37gTcry/QW5lQRFcK+rcOoUN9H+Iv5xBW05UAr+KHMxSsI+fPP0kab1rCwnvwYLyffbacLbo3KKIrJQFeLnYVW1ZWFn///bf5OC4ujpiYGLy9vQkJqbhu9IJz57jw6nCkoAD3Lp3xfevN8jbpnqGIroJx4MABHn30UfPxmDFjABg0aFCFnf6kv3aN88P+hSEtDecmTag1e3aFjTaxBkV0FYxHHnnEKi9yRcFYUMDFka9RcO4cDoEBBC9cgLqS7wOvzBxXKDdEhKR33yXnwAHU7u4Ef/EFDj4+5W3WPUcRnUK5cfnz+WSsWw8aDbXmzcW5fv3yNskuKKJTKBfS1q7l8vUACv8pk3Fv166cLbIfiugU7E72vn2mnXSAGkOHUr1fv3K2yL4ojhQFu6FLTiZ7z16S338fdDo8unXD5/XR5W2W3VFEp2AXbp397RgcTOCsmXbfBfV+oOpdsYLdKW72t+7iRQy3THauKiiiU7jn5J+NKzr7u5w3ZixPFNEp3HMyfy5m8nEFn/1dGhTRKdxTri5dStrKVaaDwhnylWD2d2lQRFeBWLhwIc2aNTMvvBQZGcmmTZvK26zbkrF5CymzPgDA9603qfvbdkKWLqXu9m1Ue+qpcrau/FC8l6Ul/SJcPQPedcCr1j1tKigoiFmzZlGvXj1EhKVLl9KrVy8OHTpE48aN72nbtpJz8CCJb78NIlR/9lm8X3wRlUpVZZ9uN6OIDkAEdDm2l4v5Hja9DWIElRq6z4YHbJwD5uh6o9t1F3r27GlxPGPGDBYuXMjevXvvK9Hln427MU2nc2f8Jrxj0+JLlR1FdGAS3PuBpatDjPDzm6aPLbyTCFo3m5szGAysWLGC7Ozs+2ppQv3ly5wfNgxDejrOzZtR66MPK/U0nZKgiK6CcfToUSIjI8nLy8Pd3Z01a9aY1wstb4w5OZx/+RV0Fy7gGBJC8MKFqG+zOHBVRhEdmLp47yTaViYjEeY/ZHrCFaLSwPBo8LThqelo29yxBg0aEBMTQ3p6OitXrmTQoEHs3Lmz3IUnej0XXx9D3rFjaKpXJ+SrL3G4vrGMgiWK6MD0TmVrF69mPeg5D9aPBjGYBNdzrin9HqLVaqlbty5gWlF7//79zJs3j0WLFt3Tdu+EiJA8bTpZO3eicnYmeOECtKGh5WbP/Y4iutLQYiDU6QxXz4J37XvuvSwOo9FIfn6+3du9mSuLviTtxx9BpaLWRx/i8sAD5WrP/Y4iutLiVctuYhs/fjzdu3cnJCSEzMxMvv/+e3bs2FGuO9Smr1t3Y8m8CRPwuGVfQYWiKKKrQKSmpjJw4ECSkpLw8vKiWbNmbNmyhccee6xc7Mneu5fECe8C4P3ii3g/N6Bc7KhoKKKrQPz73/8ubxPM5MWe4sKIkaDT4fl4d3zffKO8TaowKGFgCjajS07m/LBhGLOycG3VioBZs6rkvLiSojzpFKxGl5xM3smTpM7+EH1KCto6dQia/zlqbTF7yCncFkV0ClZx68xvlbs7IV8uQuPlVc6WVTyUPoHCXSlu5rfk5IAS3lUiFNEp3BVl5nfZoohO4Y6IwUDaD8uKnqjCM79LiyI6hdsiBgNJ77xD5i9bTaFyyszvMkFxpCgUixgMJI4fb1r23MGBWh9/jEvzZhScS6gU+36XJ4roFIpQnOA8o7oCKGIrAxTRKVggBgOJ48aTsf664D75GM+uXcvbrEqF8k5Xwfj999/p2bMngYGBqFQq1q5da3FeRJg0aRIBAQG4uLjQpUsXTp8+bVXdiuDsgyK6UpKcncy+pH0kZyfbpb3s7GyaN2/O/Os73tzK7Nmz+fTTT/niiy+Ijo7Gzc2NqKgo8vLy7lhvEcHN+UQR3D1C6V5iejrk6nNtLrfuzDpmRs/EiBE1asa3Gc8TdZ6wqQ4XBxebFu3p3r073bt3L/aciDB37lzeffddevXqBcC3336Ln58fa9eu5Zlnnim+UhFSP/qYnJsFV04zF6oCiuiAXH0ubb5vU6o6jBiZET2DGdEzbCoX/Ww0rjYu2XA74uLiSE5OpstNc9q8vLxo06YNe/bsKVZ0IoI+LY2sHTtQK4KzC4roKhHJyaYurp+fn0W6n5+f+dzNiAi65GQkNxccHAiaO0eZhGoHFNFh6uJFPxttU5mUnBR6r+2NkRvhUWqVmrW91uLn6neHkkXbLg9EBN2FCxgzMwHwHz8Oj06dysWWqoYiOkClUtncxQv3Cmfyw5OZumcqRjGiVqmZHDmZcK/we2Tl3fG/PoaWkpJCQECAOT0lJYUHblq3pFBwhvR0UKnQeHvj1rChvc2tsiiiKwV96vXh4cCHOZ95nmCPYPzdynfgODw8HH9/f7Zt22YWWUZGBtHR0bzyyisAGAsK0F28iDE7G64vc66+dKkcra56KKIrJf5u/nYVW1ZWFn///bf5OC4ujpiYGLy9vQkJCWH06NG899571KtXj/DwcCZOnEhgYCC9e/dGf/UqusQb63s6VK+Owd0dFNHZFUV0FYwDBw7w6KOPmo/HjBkDwKBBg1iyZAlvv/022dnZDBs2jLS0NNq3b8/mzZvRqtTkJ1ouqKu/ehXx8LCr/RWV5OxkEjISCPEMKfWPrEpEpIzsuq/IyMjAy8uL9PR0PD09Lc7l5eURFxdHeHg4zs7O5WSh/RCjkYK4OIy5RccijQGBJKSmVJnvoiSsiF3B9L3TEcT87t6nXh/z+Tvda8Vhc0RKWYQhXb16lQEDBuDp6Um1atUYMmQIWVlZFnmOHDnCP/7xD5ydnQkODmb27Nm2mqqAKdKk4Ny5YgUHoNI62tmiioOIsCp2FdP2TkMwPZuMYmTqnqmlikCyWXRlEYY0YMAAjh8/ztatW9mwYQO///47w4YNM5/PyMiga9euhIaGcvDgQT788EOmTJnCl19+WYJLrLqYBZedjUqtxqFmTYvzjoGBqB0V0RVHTGoMAzcNZMreKUXOGcXI+czzJa9cSgEga9asMR8bjUbx9/eXDz/80JyWlpYmTk5OsmzZMhEROXHihACyf/9+c55NmzaJSqWSixcviojIggULpHr16pKfn2/OM3bsWGnQoIHVtqWnpwsg6enpRc7l5ubKiRMnJDc31+r6KhpGnU7yTp+WnKNHJffECTFkZ4uIiKGgQPSZWWIoKBCRqvFd2EJcWpyM3j5amixpIk2WNJFW/2klTZc0NR83WdJEmi1tJklZSeYyd7rXiqNMA57vFoYEsGfPHqpVq0arVq3Mebp06YJarSY6Otqcp0OHDmhvWtotKiqK2NhYrl27Vmzb+fn5ZGRkWHyqKkadjvy4OIx5eagcHNCGh6N2NY1Dqh0d0bi7KU+4W7ice5n39r5H759682vCr6hVavrW68vGPhuZ8vAU1CqTVArf6UrjTClT76U1YUjJycn4+vpaGuHggLe3t0We8PDwInUUnqtevXqRtmfOnMnUqVPL5kIqMMaCAgri45GCAlQOjmjDw1A7OZW3WfctObocvj3xLYuPLSZHb9qN95GgRxjdcjR1qtUBoM+1Kzx87gLnHTUE6434N8m6U5V3pdIMGYwfP97sPgfTe2FwcHA5WmR/jPn5JsHpdKgctSbBKQvBFoveqGft32tZELOAS7mmccomNZowptUYWvu3NmXKz4L/fQR/zMEf8DfoTenrR5t2ayrhxjFlKjprwpD8/f1JTU21KKfX67l69aq5vL+/PykpKRZ5Co/9b7NcgJOTE05V+BfdmJdnEpxej0rrZBKc0oU0UzjOFuwRTOy1WOYcnMPZ9LMA1HKvxegWo4kKizJNs8rPhH1fwe7PIPdq0crEYNoe7X4QnTVhSJGRkaSlpXHw4EFatmwJwPbt2zEajbRp08acZ8KECeh0Ohyv3zhbt26lQYMGxXYtqzrG3FyT4AwG1M7OaMPCUDlUmk5MqVl9erU5RvZmvJy8eLnZyzzd4Gm0Gu11sX15XWzXfQfVQiDtPHDTcLZKY9qPsITY7EjJysoiJiaGmJgY4EYYUkJCAiqVyhyGtG7dOo4ePcrAgQPNYUgADRs2pFu3bgwdOpR9+/axa9cuRowYwTPPPENgoGnb4GeffRatVsuQIUM4fvw4y5cvZ968eRbdRwUThuxsCuLiTIJzcVEEdwvJ2clM2T2liOCeafAMP/f5mecaPYdWlwe/fwRzm8K2aSbBedeBJxfByEPwxKcmocGNHXdLsyehrS7V3377TTDJ3uIzaNAgETENG0ycOFH8/PzEyclJOnfuLLGxsRZ1XLlyRf75z3+Ku7u7eHp6ygsvvCCZmZkWeQ4fPizt27cXJycnqVWrlsyaNcsmO6vCkIE+M1Nyjh+XnKNHJe/MGTHq9TbXUVm+i+I4eumoDNg4wMLdX/jZl7RPJDddZOdskZkhIpM9TZ9PW4jE/CCi11lWlnZB5Ozvpv/fgq1DBkoYWAUKfVq4cCELFy4kPj4egIa1azP+X/+ie/fuaENCyC8o4I033uCHH34gPz+fqKgoFixYUMSbfDMV9bu4E4dSD7Ho8CJ2Je4q9rxapWZLrSfx378Y8tJMiTXqQsex0KQvqG3bo8HWMDClH1JKdMnJFMSfQxsWes/XhAwKCuL9996jto8P+itX+W7dTzw9ahR/tm9PE7Wa119/nY0bN7JixQq8vLwYMWIEffr0Ydeu4m++yoSIsC95H4uOLGJ/8n4ANCoNPWr3ICTrKguS/4dRpUItwuSr6fifnWMqWKPedbH1sVlsJUURHaY/mNwmNvFOpK1dS8p7M0yba6jV+L07gWrX312tReVi/cJE3du1uzE1x8OD6WPH8vXKlUTv20dwSAj//ve/+f777+l0fQb44sWLadiwIXv37qVt27Y22VVREBH+uPgHXx75kphLMQA4qB3oVacXQ5oOIdiohrlN6KVWcd7RgWCdHn+DAaqHQ6d3ofGTVoktKT2XuMvZhNd0I8CrdLP9FdEBkptLbIuWpavEaCRl2nRSpk23qViDPw+icr37rHVjQYHFXDiDwcCK1avJzs4mMjKSgwcPotPpLKKBIiIiCAkJYc+ePZVOdCLCb+d/48sjX3L8ynEAtGotfev35cUmL+Lv6gfno2H7eyBG/A2YxFZIz3lQu6NVbS3fn8D41UcxCqhVMLNPU/q3LvnmKYroKgBiNKK7cBGAY6dO8ehzz5FXUIC7qysrv19Go0aNiImJQavVUq1aNYuyt1uUqKJROM4W5B7E0StH+fLIl5y6dgowrTPzdP2nGdR4ED6O7nBsFUQvguQjxVem0pje4azg4rUcxq0+SqHnwyjwzupjdKjvU+InniI6TF28Bn8etKmMLiWFsz3+z3LfNrWa2hs34HgHx0Vxbd8Jo06H7tw5jNdnadQPD2fvypWkZ2aydutWXnz5X+xsGGGT7RWN1adXM3X3VItFoADcHN34Z8Q/eb7R83jnZcPu+XBw6Y0BbQdnaPoUeNYyDQmIwSqXv9EoHDh3jZ+PJrH20EVudTUaRIi/nKOIrjSoVCqrung34xQeTsC0qTd2KL2+fZRTeNktTGTMyaEgIcEUZaLRoKleHS5fpk6IqWvT5rHHOBQfz7x58+jfvz8FBQWkpaVZPO1SUlJuG8VTEUjMTGTK7inm+WyFDGw4kGHNhuGVdAR+eg3+2giFY3FewdB6CLQYBK7eprQWg0xRJN61ixWc0SgcTLjGxiNJbDqWREpG/m1t0qhUhNUs+VqliuhKQbWnnsKtfft7sn2UPi0N3cWLIILayRnH0BDUWi2aGjWQ/AJUTlrUjo4YjUby8/Np2bIljo6ObNu2jb59+wIQGxtLQkICkZGRZWaXvTAYDWyO38ycg3OKCA7gkdxcvL7pDqnHbySG/QPa/AvqdwfNLbe2V60iYruT0DycHejayJ//axZAYlouk346jkEEjUrF+32alMqZooiulDj6+5ep2EQEfUoK+suXAdB4eOAYFIRKo2H8+PF0796dkJAQMjMz+f7779mxYwdbtmzBy8uLIUOGMGbMGLy9vfH09GTkyJFERkZWKCeKwWjgl3O/8MXhL8yxkbeiFiH497lgMICjKzTrDw8NA79Gt6230PsY6u1KUnoeG44ksflYMskZNyZXezg78FgjP/6vWQDt6tbEyeGGV7NTQ1/iL+cQVtNV8V5WJsRgMK1HeX0BWIeaPjj4+ZqHFFJTUxk4cCBJSUl4eXnRrFkztmzZwmPXl0GfM2cOarWavn37WgyOVwSMYuSXeJPYzqSfAcBT68ng8J647/qMWTWq3xhnu3wVf/cAaPMKPDgAXO4cj/t99DkmrD1W5N0MwMPJgcca+9GjaQDt61kK7WYCvFxKLbZClIiU+yQKw1hQYHKY5Oeb1qOsVQuHWzyR94Ly/i6MYmTrua18cfgL/k4zLS3oofVgUNBjDLh2Ffejq0CXTbJGYznONnDdHV3+17IL2HnqEhuOJPHryZQi57s19ueplkH8o/7thWYtSkRKBcSQnY0uIQExGEwzvUNCzDO9KytGMbItYRsLDy/k9DXTwlUejm4879GA5xJO4hE71yK/v8FwY5ytGJe/iBCbksn2v1LZfjKVPxOuYbzD42TQw2FE1qlRlpdkNYroyhn91avokpJMDhNnZxxDQyvtPLjk7GTOZZzjQsYFlsUuI/ZaLADuGieeM3rw/JkjeBpOmjI7uECjJ+CBAXAtHtnwOioxICoNqusu/zydgT1nrrDtrxR+++sSF9Mso4oi/D14KMyb/0Sfs+haltb7WFoU0ZUTIoI+ORn9lSsAaDy9cAyqhUpdOffpXHlqJdP2TLPwRLqpNAzIzGHglfN4FT6WgtuYhNa4Nzh7AbB8fzjz8uYSokohQfxoc7opGUf2s+vMZfJ0N8bunBzUPFynBp0a+tEpwpda1UzvYI1refLO6mNl5n0sLYro7IxRp0Nyc9FfvoIxJxsAB19fHHx8bNocsqJgMBpYHrucmftmWqSrRPj2wgXq63TgEQjNnzGJraZlt/GCOSKkBoli6g6uOXQjHC7Ay5lOEb50ivDl4To1cdEWfT/r3zqEDvV9ysz7WFqqtOjs7UO6dS8BVCq0QUFovLzsasfN3KvvoMBQwPoz6/nm2DckZCYUbVelIj20LbQdDbUftQg6zsjT8fupS2z/K5WtJ1KK9Tr2bx3MoMgwGgZ4WPVjVZbex9JSJUVXuARETk4OLncJwyorjDqdpeAARGyOhClrCgoKANBoymZaS44uh9WnV7P46L9JzTONNXoYDGSp1chN4lCLENxqGNTtgohw9lIW20+msv2vVPbHX0V/By+IRqVidJd6942IbKVKik6j0VCtWjXzAkmurq73tGsnIuhSUjAajUXOGTMy0biVj/CMRiOXLl3C1dUVh1Iu8ZBRkMHykz/wn2PfcE1v6jb76PUMSs+kXz5sdhSm1rwx1jbpShoJ+eEsWn+c7X+lcu5KjkV9dXzc6NzQj0cb+BJ3OYuJa8suIqS8qZKigxurit26MllZI0YjhmvXkPziY/kc1GpUZfSUKQlqtZqQkJAS/+hcyb3Cfw8vYtmplWSJDoBaOj0vpmfQ26sh2kdfgMZPErT+S34+/h6JWjWBBUbmF7zAG8tudDsdNSra1q5hfj8LreFmPhdZpwaPRpRdREh5U2VFp1KpCAgIwNfXF51Od0/ayDt1mpQZM5DUVFROTrg/0pHMrb+aA6R9XhuJZ7t296Rta9Fqtait9JgmJ8eQkHSAkIBW4ObDkj0zWJX0B3nXPZJ1Cgp4KVtPt3pP4tDzBfBrTMKVHFb8dp7P9tfDn08Iy0sh3uhHMjXwdtPSpaEvnSL8aF+vJu5Ot78d76d3stJSJSNS7EHaqlUkT52GFBTgGBJC0Gef4tyggWl5h3sQIH2vWf3rm0y9sBmjSmUaUwTTv4HG+fkMdfDn0QdfRtW4F6euGtl8LJktx5M5kXT75e2/f6kND9etedvzFQUlIqWcMRYUkPLeDNJ+/BEA90ceIXD2B2iu/zHKOkDaHlw89wdTLmy+4QhRqTACzfN1vOrXjjYPjeGwLpAPjiez5dd9xN/0fqZRq2ge5MWhhDSLuQIalYpwHzeqIoroyhBdYiIXRo0m7+hRUKnweW0kNf71r4o54K0v4PzxH1lz/FtW5F1AinnvfCJkKJvyonh9cRIpGfHmdK2Dmg71atK1sT9dGvrh7aZl+f6E+2qAujxRRFdGZO/ezcUxb2BIS0Pj5UXgRx/h/o/25W2WbRiN5Mbt5NdDX7D62hEOaK/fHhoNiMAtLv+P/nAmVX8OAHcnBx6N8KVbY386NvAp8n52vw1QlyeK6EqJiHDlq6+5NHcuGI04N2pErU8/RRtUihWA7YkIknSE439+xeqLv7FJC1lqNWgdUInQxtGHYKcuHD97hL98j5td/o1SmnDSsR79H/CnWxN/Hq5b467R+pXJGVIaFNGVAkNmJonjx5P16zYAvPr0wX/SRNT3yXSh4jB7IF0Dcb54kA2n17Banc1prRacTd1gf5yIcGzN35e7sjWxcNefB/DNiMfP6Swp+bXZow/juyEP0r6eT/ldTAVFEV0J0CUnk71rF5cXfoHuwgVUjo74TXyXav363dfxk6s3DWdqyk6zB1IDGJxVgBZHUVFXahN/qROnr4Zz+vo2FyoVNArw5ERiBqn6MFL1YYDJEVLH173crqUio4jORtJWriRp4iQKAwLVXl6EfPUlLs2albNltyErFU78xP7D3zLF8ZqFB9IA1NS7c/VKB66mtWKf0RQZ4+7kQIf6NekU4ccjDXyo6e6kOELKEEV0NlBw/ryF4ACMmZk43LKzbLmTdQlOriPt+Eo2Xz3KejdXjjg7AUWfwu6JDxOX3YEQb1c6N/Slc4QfD4V7o3Ww9LgqjpCyQxGdlehSUzk/fARFQt6NRgrOJZT/2Fv2ZTi5Ht3x1fyeeoD1bq7sdHVBX+P6+iFy/T+3eCA7NPkHc9p1oI6P+127xoojpGxQRGcFOQcPcmH0aAyXLhc9qVajDS35Ets2k34Rrp4x7Z/m6AIn1yPHVnMscS/r3F3Y7OZKmu+NKA91ni85aQ+hz2hOW8+1nPA7ZuGBbP+Pf1DX18N+9isoorsTIsK1//yHlNkfgl6PU726ePToweVPP7NYYNZuT7k/vyXp5zGcd1ATrNODSs0GNxfWubsRH3iji6vSuZGf0RJdegv8ncPo3ciPFqHVeX25BzUzb3gg9xnCy3XZgqqKIrrbYMzOJmniRDJ+3gSAZ48eBEyfhtrVlWq9e9s3fjL7CsR8x6o9HzAtyN/sfQRudBeNDugym6BLb0EDrxY81jSAxxr50TjQ09xtzNMZeGe1itTsMMUZUo4oAc/FkH82jguvjaTg7zPg4IDf229T/fnn7DsckHUJ/toAJ9aSGf8HP7k580GN6hbvZAAuOT6kpz9CS5+ORDUMpUsjP/PaIMWRlJ6rOEPKGCXguZRkbN1K0rjxGLOzcfDxoda8ubi2aGGfxjNT4K/1cHwt187v4TcXJ7a6ubI3JAD9bQQf5fcsb70wCE9n61YQU5wh5Y8iuuuIXs+lefO48tXXALi2akWtOZ/g4FPGERc3O0K8akFGEpxcDyfWcunCXra7urDVzZUDwQEYbhKaIb8GGu0VC6+/SqDfw12sFpzC/YEiOkB/5QoXx7xBTnQ0AN4vvIDvmNdRlfX6kxaOEAMBniEkZiSwzc2FX91cOBQcaLGOiCEvAF91a7qEdqFfs1YsPvIDGxM/M6lNVDweOJJm/mFla6PCPafKv9PlxsRwYdRo9CkpqFxdCXx/Bp7dupW9Qef3sWr5k0y7vk6ISoQAvZ7EW4QteSGEubTlibpR9GnWnJruThbnjyTH8+fFv2lRq64iuPsE5Z3OCnTJyeTHx5N3+DCXPp8POh3a2rUJ+uxTnOrUKbuGrsbByXUYj69hz9UTTPX3NT/JRKUyCU5AU1CHxtXa069hd7o3jLhjtH4z/zBFbBWcKie6tJUrb2zkeB2PqCgCZsxA414GM5mvnIETP1FwfA2H02LZ7urCdldXEgOK3531Wb9XGdft5fs6UFqhbKlSotMlJxcRHCoVvuPG2ia4W50hl0/DibVkH1vLvqwzbHd1YYerC2k3C82oAZWhiCOkx4PdFcFVMaqU6Ariz1kKDkAEXcJ5tAEB1lVyizPEycWHXZLOdjdXdrk4k+t2w9upMrhQy6kVXcO6MPjBrnzwxzLFEaJQtUSnDQsFtdpSeNbGTorAmd9YtX28RVSIaVWsG7GODgYv6ro/TO8GUfRr3AGtww1HyayuQ3k2+THFEVLFqVKic/T3J2Da1BtdzLvFTopA4iEKjq7h+F9r+VWVzrc1b4oKub4qlofek4Y+3Xi2yeN0Cm9xx+6i4ghRqFKiA6j21FO4tW9/+9hJoxEu7Cct5kcOnNnEXoccdri6kFLdASh+o49XI0bxXLun773xCpWCKic6AEcXA46+eeByfWdPowE5t4v4A9+z7+Jv7NXqTe9n3hrANO1FY9TgrWnAJeOJIs6QZnUesv9FKFRYqp7obnGEpNZsyu6CRPY4CzFOTkh1LWBajMfF4EKY+8M80aAbfRt1xMXRhXG/fKU4QxRKRdWKSEm/yIqvHmJ6zeqmQepb1nIE8DbUoKFPZ/7ZrAcdQh4s9v1MiQpRuBklIuUOnDyz+4bgwCQ4EcIMNWgR9gwDH+xJHe+gu9ajOEMUSsN9vd73/PnzCQsLw9nZmTZt2rBv375S1Xcg12ARUAyASkX/iOFM7fyKVYJTUCgt963oli9fzpgxY5g8eTJ//vknzZs3JyoqqlT7yTWv0xZu6UwrjhAFe3Pfiu6TTz5h6NChvPDCCzRq1IgvvvgCV1dXvvnmmxLX2cw/jB6Br4Fcf9qJiscDX1O6igp25b58pysoKODgwYOMHz/enKZWq+nSpQt79uwptkx+fj75N+12mpFR/L5oSlSIQnlzX4ru8uXLGAwG/PwsI/P9/Pz466+/ii0zc+ZMpk6dalX9iiNEoTy5b7uXtjJ+/HjS09PNn/Pnz5e3SQoKxXJfPulq1qyJRqMhJSXFIj0lJQX/28RJOjk54eR0Y5Z14fDj7bqZCgplReE9Zu2Q930pOq1WS8uWLdm2bRu9e/cGwGg0sm3bNkaMGGFVHZmZmQAEBwffKzMVFCzIzMzEy6v4+NybuS9FBzBmzBgGDRpEq1ateOihh5g7dy7Z2dm88MILVpUPDAzk/PnzeHh4FIkqycjIIDg4mPPnz9u8JmZpy5dn26UtX1Xbvlt5ESEzM5PAwECr6rpvRde/f38uXbrEpEmTSE5O5oEHHmDz5s1FnCu3Q61WExR058FuT0/PEv0ByqJ8ebZd2vJVte07lbfmCVfIfSs6gBEjRljdnVRQqChUGu+lgkJFoUqKzsnJicmTJ1t4O+1VvjzbLm35qtp2WZS/mUo7tUdB4X6lSj7pFBTKE0V0Cgp2RhGdgoKdUUSnoGBnqpTofv/9d3r27ElgYCAqlYq1a9daXXbmzJm0bt0aDw8PfH196d27N7GxsVaXX7hwIc2aNTMPrkZGRrJp06YSXAXMmjULlUrF6NGjrco/ZcoUVCqVxSciIsKmNi9evMhzzz1HjRo1cHFxoWnTphw4cMCqsmFhYUXaV6lUDB8+/K5lDQYDEydOJDw8HBcXF+rUqcP06dOtjnMEU3jW6NGjCQ0NxcXFhYcffpj9+/cXm/du94iIMGnSJAICAnBxcaFLly6cPn3aalugiokuOzub5s2bM3/+fJvL7ty5k+HDh7N37162bt2KTqeja9euZGdnW1U+KCiIWbNmcfDgQQ4cOECnTp3o1asXx48ft8mO/fv3s2jRIpo1a2ZTucaNG5OUlGT+/PHHH1aXvXbtGu3atcPR0ZFNmzZx4sQJPv74Y6pXr261zTe3vXXrVgD69et317IffPABCxcu5PPPP+fkyZN88MEHzJ49m88++8xq+1966SW2bt3Kf/7zH44ePUrXrl3p0qULFy9eLJL3bvfI7Nmz+fTTT/niiy+Ijo7Gzc2NqKgo8vLyrLYHqaIAsmbNmhKXT01NFUB27txZ4jqqV68uX3/9tdX5MzMzpV69erJ161bp2LGjjBo1yqpykydPlubNm5fMSBEZO3astG/fvsTlb2XUqFFSp04dMRqNd83bo0cPefHFFy3S+vTpIwMGDLCqrZycHNFoNLJhwwaL9BYtWsiECRPuWPbWe8RoNIq/v798+OGH5rS0tDRxcnKSZcuWWWWPiEiVetKVJenp6QB4e3vbXNZgMPDDDz+QnZ1NZGSk1eWGDx9Ojx496NKli81tnj59msDAQGrXrs2AAQNISEiwuuy6deto1aoV/fr1w9fXlwcffJCvvvrKZhvAtCrAd999x4svvmjVbkUPP/ww27Zt49SpUwAcPnyYP/74g+7du1vVnl6vx2Aw4OzsbJHu4uJi09MeIC4ujuTkZIvv38vLizZt2tx2RYNisVqelQxK8aQzGAzSo0cPadeunU3ljhw5Im5ubqLRaMTLy0s2btxoddlly5ZJkyZNJDc3V0TEpifdzz//LD/++KMcPnxYNm/eLJGRkRISEiIZGRlWlXdychInJycZP368/Pnnn7Jo0SJxdnaWJUuWWG1/IcuXLxeNRiMXL160Kr/BYJCxY8eKSqUSBwcHUalU8v7779vUZmRkpHTs2FEuXrwoer1e/vOf/4harZb69evfsdyt98iuXbsEkMTERIt8/fr1k6efftpqexTRlYCXX35ZQkND5fz58zaVy8/Pl9OnT8uBAwdk3LhxUrNmTTl+/PhdyyUkJIivr68cPnzYnGaL6G7l2rVr4unpaXXX1tHRUSIjIy3SRo4cKW3btrW57a5du8r//d//WZ1/2bJlEhQUJMuWLZMjR47It99+K97e3jYJ/u+//5YOHToIIBqNRlq3bi0DBgyQiIiIO5ZTRFfGlFR0w4cPl6CgIDl79mypbejcubMMGzbsrvnWrFljvmEKP4CoVCrRaDSi1+ttbrtVq1Yybtw4q/KGhITIkCFDLNIWLFgggYGBNrUZHx8varVa1q5da3WZoKAg+fzzzy3Spk+fLg0aNLCpbRGRrKwss2Cefvppefzxx++Y/9Z75MyZMwLIoUOHLPJ16NBBXnvtNavtUN7prEREGDFiBGvWrGH79u2Eh4eXuk6j0Wixgtnt6Ny5M0ePHiUmJsb8adWqFQMGDCAmJgaN5vZ7lBdHVlYWZ86cIcDKjTDbtWtXZHjk1KlThIaG2tTu4sWL8fX1pUePHlaXycnJQa22vE01Gg3GWzf3tAI3NzcCAgK4du0aW7ZsoVevXjaVDw8Px9/fn23btpnTMjIyiI6OtundvEo96TIzM+XQoUNy6NAhAeSTTz6RQ4cOyblz5+5a9pVXXhEvLy/ZsWOHJCUlmT85OTlWtT1u3DjZuXOnxMXFyZEjR2TcuHGiUqnkl19+KdG12NK9fOONN2THjh0SFxcnu3btki5dukjNmjUlNTXVqvL79u0TBwcHmTFjhpw+fVr++9//iqurq3z33XdW22swGCQkJETGjh1rdRkRkUGDBkmtWrVkw4YNEhcXJ6tXr5aaNWvK22+/bXUdmzdvlk2bNsnZs2fll19+kebNm0ubNm2koKCgSN673SOzZs2SatWqyU8//SRHjhyRXr16SXh4uPld2xqqlOh+++03wbTGs8Vn0KBBdy1bXDlAFi9ebFXbL774ooSGhopWqxUfHx/p3LlziQUnYpvo+vfvLwEBAaLVaqVWrVrSv39/+fvvv21qb/369dKkSRNxcnKSiIgI+fLLL20qv2XLFgEkNjbWpnIZGRkyatQoCQkJEWdnZ6ldu7ZMmDBB8vPzra5j+fLlUrt2bdFqteLv7y/Dhw+XtLS0YvPe7R4xGo0yceJE8fPzEycnJ+ncubPN16RM7VFQsDPKO52Cgp1RRKegYGcU0Sko2BlFdAoKdkYRnYKCnVFEp6BgZxTRKSjYGUV0Cgp2RhGdgoKdUURXwRk8eLB5OzGFioEiuiqCTqcrbxMUrqOIroKwcuVKmjZtiouLCzVq1KBLly689dZbLF26lJ9++sm8wtaOHTuIj49HpVKxfPlyOnbsiLOzM//9738B+Prrr2nYsCHOzs5ERESwYMECi3bGjh1L/fr1cXV1pXbt2kycONFCsFOmTOGBBx7gm2++ISQkBHd3d1599VUMBgOzZ8/G398fX19fZsyYYS4jIkyZMoWQkBCcnJwIDAzktddes88Xdz9iU3i0QrmQmJgoDg4O8sknn5inBs2fP18yMzPl6aeflm7dupmnGuXn50tcXJwAEhYWJqtWrZKzZ89KYmKifPfddxIQEGBOW7VqVZFZ2NOnT5ddu3ZJXFycrFu3Tvz8/OSDDz4wn588ebK4u7vLU089JcePH5d169aJVquVqKgoGTlypPz111/yzTffCCB79+4VEZEVK1aIp6en/Pzzz3Lu3DmJjo62eZZCZUIRXQXg4MGDAkh8fHyRc4MGDZJevXpZpBWKbu7cuRbpderUke+//94ibfr06UWWYriZDz/8UFq2bGk+njx5sri6ulqsrxIVFSVhYWFiMBjMaQ0aNJCZM2eKiMjHH38s9evXL3b+WlXkvt4UUsFE8+bN6dy5M02bNiUqKoquXbvy1FNP3XXdyVatWpn/nZ2dzZkzZxgyZAhDhw41p+v1eotdRJcvX86nn37KmTNnyMrKQq/XF9l5NCwsDA8PD/Oxn58fGo3GYoa3n58fqampgGl9y7lz51K7dm26devG448/Ts+ePXFwqJq3n/JOVwHQaDRs3bqVTZs20ahRIz777DMaNGhAXFzcHcu5ubmZ/52VlQXAV199ZbHsw7Fjx9i7dy8Ae/bsYcCAATz++ONs2LCBQ4cOMWHCBAoKCizqdXR0tDhWqVTFphUuqRAcHExsbCwLFizAxcWFV199lQ4dOlRZ507V/KmpgKhUKtq1a0e7du2YNGkSoaGhrFmzBq1Wi8FguGt5Pz8/AgMDOXv2LAMGDCg2z+7duwkNDWXChAnmtHPnzpWJ/S4uLvTs2ZOePXsyfPhwIiIiOHr0KC1atCiT+isSiugqANHR0Wzbto2uXbvi6+tLdHQ0ly5domHDhuTl5bFlyxZiY2OpUaPGHTecnzp1Kq+99hpeXl5069aN/Px8Dhw4wLVr1xgzZgz16tUjISGBH374gdatW7Nx40bWrFlTavuXLFmCwWCgTZs2uLq68t133+Hi4mLzwkaVBaV7WQHw9PTk999/5/HHH6d+/fq8++67fPzxx3Tv3p2hQ4fSoEEDWrVqhY+PD7t27bptPS+99BJff/01ixcvpmnTpnTs2JElS5aYVzZ74okneP311xkxYgQPPPAAu3fvZuLEiaW2v1q1anz11Ve0a9eOZs2a8euvv7J+/Xpq1KhR6rorIsoaKQoKdkZ50iko2BlFdAoKdkYRnYKCnVFEp6BgZxTRKSjYGUV0Cgp2RhGdgoKdUUSnoGBnFNEpKNgZRXQKCnZGEZ2Cgp35f0UeJmZ7HmcfAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df_hw_pivot_2_plot = df_hw_pivot.copy()#droplevel(0)\n",
+ "df_hw_pivot_2_plot\n",
+ "#df_hw_pivot_2_plot = df_hw_pivot_2.copy()\n",
+ "#df_hw_pivot_2_plot.droplevel(0)\n",
+ "\n",
+ "for index in df_hw_pivot_2_plot['cpu_total_stream'].columns:\n",
+ " #print(index)\n",
+ " df_hw_pivot_2_plot[('cpu_total_stream',index)] = df_hw_pivot_2_plot['cpu_total_stream',index]/int(index)\n",
+ " #print(df_hw_pivot_2_plot[('mem_max_stream',index)])\n",
+ "\n",
+ "\n",
+ "column = 'cpu_total_stream'\n",
+ "#df_hw_pivot_2_plot[column] = df_hw_pivot_2_plot[column]/1024.\n",
+ "#df_hw_pivot_2_plot = df_hw_pivot_2_plot['mem_max_stream'].index.droplevel(0)\n",
+ "\n",
+ "#['mem_max_stream'].index.droplevel(0)\n",
+ "df_hw_pivot_2_plot = df_hw_pivot_2_plot.droplevel(0)\n",
+ "\n",
+ "ax = df_hw_pivot_2_plot.plot(y=column, figsize=(2,2), grid=False, style=\".-\")\n",
+ "plt.title('SUT compute [per SF]'.format(dbms), fontsize=10)\n",
+ "plt.suptitle('')\n",
+ "#plt.title('Tpx@Size [1000 Qph]'.format(dbms), fontsize=10)\n",
+ "ax.set_xlabel(\"streams\")\n",
+ "ax.set_xticks(range(1,11))\n",
+ "plt.legend(loc='upper left', title='SF')\n",
+ "#plt.ylim(0, df_means[column].max()*1.1)\n",
+ "#plt.xscale('log')\n",
+ "#plt.yscale('log')\n",
+ "#df_hw_pivot_2_plot.T\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "SF\n",
+ "1 8.036114\n",
+ "3 15.060738\n",
+ "10 22.657937\n",
+ "30 45.746578\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 25,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMwAAADsCAYAAAA4jknEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABEpElEQVR4nO2dd3gU1frHP7Mt2WySDQmkkQRC73gFRIog0psgYMUrXK4FDQKWn4iAoICgKCpKURHRSxWkKyCioFIivXcCCaQQQnrbMuf3x5KFJQnJpofM53n22cyZc86cncx3Tn9fSQghUFBQKBSq8i6AgkJlQhGMgoITKIJRUHACRTAKCk6gCEZBwQkUwSgoOIEiGAUFJ1AEo6DgBIpgFBScQBGMglPs2LEDSZKQJImBAwcWKQ9Jkli3bl2JlqswDB8+3F72ol6/QgsmPj6el19+mZCQEFxcXPD396dnz57s2rXLHie/Hz98+HAGDhzIpUuX7Dcpv8/ixYvL7kcVgTt/g7e3N507d+avv/7KM/5LL72EWq1m1apVuc5NmTIFSZLo1atXrnOzZs1CkiQefvjhAst05syZXPctNjaWMWPGUK9ePVxdXfHz86NDhw7Mnz+fjIyMQv3W28nMzMRgMHD+/HmsViszZ86kUaNG6PV6vL29adu2LQsXLrTHv10Qt3/Onz8PwOeff05MTIzT5bgdTbFSlzKDBw/GZDLx/fffU6dOHeLi4ti+fTsJCQmFziM4ONjhJn388cds2bKF3377zR5mNBpLtNylxW+//UbTpk25fv0606dPp1+/fpw9exY/Pz97nIyMDFasWMFbb73FokWLePzxx3PlExAQwB9//MGVK1cICgqyhy9atIiQkJBClcXX1xcvLy/78cWLF+nQoQNeXl588MEHNG/eHBcXF44dO8bXX39NzZo1efTRR536vdu2baNWrVrUq1ePd999l6+++oovv/yS1q1bk5KSwv79+0lMTHRI06tXL7777juHsBo1agC2/3Ox/9eigpKYmCgAsWPHjrvGA8TatWtzhQ8bNkwMGDAgV/jkyZNFy5YtC1UGQCxYsED07dtX6PV60ahRI7F7925x7tw50blzZ+Hm5ibatWsnzp8/b09z/vx58eijjwpfX19hMBhE69atxbZt2+znT506JfR6vVi6dKk9bOXKlcLV1VWcOHEiz3JEREQIQBw6dMgedvToUQGI9evXO8RdvHixePDBB0VSUpJwc3MTkZGRef7+fv36iWnTptnDd+3aJapXry5efvll0blz53zvyR9//CEAkZiY6BDes2dPERQUJNLS0vJMJ8uy/W9AzJs3T/Tq1Uu4urqK0NBQsWrVqlxpRowYIcaNGyeEEKJly5ZiypQp+ZZLiPz/53eS3zNTGCpsk8zd3R13d3fWrVtHdnZ2uZVj6tSpPPfccxw+fJhGjRrxzDPP8NJLLzF+/Hj279+PEIJRo0bZ46elpdGnTx+2b9/OoUOH6NWrF/379ycyMhKARo0a8fHHH/PKK68QGRnJlStXGDlyJB9++CFNmjQpVJkyMzP54YcfANDpdA7nvv32W5599lmMRiO9e/fOt7k5YsQIh3OLFi1i6NChufIrDAkJCfz666+EhYVhMBjyjCNJksPxpEmTGDx4MEeOHGHo0KE89dRTnDp1yn5elmU2bdrEgAEDAPD39+f3338nPj7e6fKVKEWSWRmxevVqUa1aNeHq6irat28vxo8fL44cOeIQh1KuYSZOnGg/3rNnjwDEt99+aw9bvny5cHV1vWs+TZs2FV988YVDWN++fcVDDz0kunbtKnr06OHwBr6TnBpGr9cLg8EgJEkSgGjVqpUwmUz2eGfPnhVarVbEx8cLIYRYu3atCA0Ndcg75/ebTCbh6+srdu7cKdLS0oSHh4c4cuSIGDNmjNM1zN69ewUg1qxZ4xDXx8dHGAwGYTAYxFtvvWUPB8TIkSMd4rZt21a8/PLL9uNdu3YJX19fYbVahRBCnDhxQjRu3FioVCrRvHlz8dJLL4lffvnFIY9hw4YJtVptv6bBYBBDhgzJ9Rvye2YKQ4WtYcDWh4mOjmbDhg306tWLHTt2cP/995dpJ71Fixb2v3P6Cs2bN3cIy8rKIiUlBbDVMG+++SaNGzfGy8sLd3d3Tp06Za9hcli0aBFHjx7l4MGDLF68ONcbOC9WrlzJoUOH+Omnn6hXrx6LFy9Gq9U65NmzZ0+qV68OQJ8+fUhOTub333/PlZdWq+XZZ5/lu+++Y9WqVTRo0MDht5YE//zzD4cPH6Zp06a5Wgnt2rXLdXx7DbN+/Xr69euHSmV7RJs0acLx48fZu3cvI0aM4Nq1a/Tv35/nn3/eIZ8uXbpw+PBh+2fOnDkl+psqdKcfwNXVle7du9O9e3cmTZrE888/z+TJkxk+fDgAHh4eJCcn50qXlJRUIp352x/InIc6rzBZlgF488032bZtGx9//DH16tVDr9czZMgQTCaTQ75HjhwhPT0dlUpFTEwMAQEBBZYlODiY+vXrU79+fSwWC4899hjHjx/HxcUFq9XK999/T2xsLBrNrX+r1Wpl0aJFdO3aNVd+I0aMoG3bthw/fpwRI0Y4cVccqVevHpIkcebMGYfwOnXqAKDX653Oc8OGDcycOdMhTKVS0aZNG9q0acPYsWNZsmQJ//73v5kwYQKhoaEAGAwG6tWrV8RfUjAVuobJiyZNmpCenm4/btiwIQcOHHCIY7VaOXLkCA0aNCjr4rFr1y6GDx/OY489RvPmzfH39+fSpUsOcW7cuMHw4cOZMGECw4cPZ+jQoWRmZjp1nSFDhqDRaJg3bx4Av/zyC6mpqRw6dMjhDbt8+XLWrFlDUlJSrjyaNm1K06ZNOX78OM8880xRfzI+Pj50796dL7/80uF/czf27t2b67hx48YAnDt3jsuXL9O9e/e75pHT5yvsNUuCCiuYhIQEHnnkEZYsWcLRo0eJiIhg1apVfPTRR/aOIMDrr7/OwoULmTdvHufOnePw4cO8+OKLJCYm5qquy4L69euzZs0aDh8+zJEjR3jmmWfstU8OI0eOJDg4mIkTJzJ79mysVitvvvmmU9eRJInRo0czc+ZMMjIy+Pbbb+nbty8tW7akWbNm9s8TTzyBl5cXS5cuzTOf33//nZiYGIch4qIwb948LBYLrVu3ZuXKlZw6dYozZ86wZMkSTp8+jVqtdoi/atUqFi1axNmzZ5k8eTL//POPffBk/fr1dOvWDTc3N3v8IUOG8OmnnxIeHs7ly5fZsWMHYWFhNGjQgEaNGhWr7E5RpJ5PGZCVlSXefvttcf/99wuj0Sjc3NxEw4YNxcSJE0VGRoZD3KVLl4pWrVoJDw8P4efnJ/r06ZNrcCAHZzv9t3cO8xrevbMTHBERIbp06SL0er0IDg4WX375pejcubMYM2aMEEKI77//XhgMBnH27Fl7HuHh4UKr1ebqxN7tukIIkZ6eLqpVqyZmzpwpNBqN+PHHH/NM//LLL4t//etfhfr9Ren05xAdHS1GjRolQkNDhVarFe7u7uKBBx4Qs2bNEunp6fZ4gJg7d67o3r27cHFxEbVr1xYrV660n+/YsaP45ptvHPL++uuvRZcuXUSNGjWETqcTISEhYvjw4eLSpUv2OGUxrCzdzEBBoVDs2LGDLl26kJiYWOxaKS+uX79OQEAAV65ccZiQLUkkSWLt2rVFWtpTYZtkChWboKAgnn766RLP98aNG8yePbtUxDJy5Ejc3d2LlYdSwyg4RWZmJlevXgVsk8v+/v7lXKLCc+3aNfvwf0BAQL6TrHdDEYyCghMoTTIFBSdQBKOg4ASKYBQUnKDCLY2RZZno6Gg8PDwKtb5KQaGoCCFITU0lMDDQvmatICqcYKKjowkODi7vYihUIaKiohw20t2NCicYDw8PwPYjPD09y7k0CvcyKSkpBAcH25+5wlDhBJPTDPP09FQEo1AmONP0Vzr9CgpOoAhG4Z7GHBtL+t5wzLGxJZKfIhiFe5ak1as5/0hXIocP5/wjXUlavbrYeVa4PkxhEEJgsViwWq3lXZRyQ61Wo9FolKH3fDDHxhIz6V3IWfkly8S8OxlDx45oi7H+rdIJxmQyERMTUyTDcPcabm5uBAQEFMnSy71O8s8/3xJLDrKM6XJk1RGMLMtERESgVqsJDAxEp9NVyTesEAKTyUR8fDwRERHUr1+/0BNvVYHEH38k/pPZuU+oVOhqFc5QYX5UKsGYTCZkWSY4ONhh+2pVRK/Xo9VquXz5MiaTCVdX1/IuUrkjZJn42bNJWPgtAK4tW5J17BjIMqhUBLz/XrFqF6hkgslBeZvaUO7DLeTMTKLHvU3qr78CUH3UKKqHvYIlLg7T5Uh0tUKKLRaopIJRULgdy/XrRL0SRtbRo0haLQHTp2G8acdZ6+9fIkLJQRGMQqUm+9w5ol4aiTk6GrXRSNCXX+DWpk2pXU8RjEKlJX33bq6MHoOcloa2VgghX32FrnbtUr2m0ggugIJ81NSuXTuXP5LCrnxVKDqJq1YR+eJLyGlp6Fu1ovaKFaUuFlBqmAIpjI+a999/nxdeeMF+fKfROoWSQ8gy8Z9+SsI3NkdKnv37EzB9GqoymotSBHMXkpKS+Ouvv9ixYwedO3cGoFatWjzwwAMO8Tw8PCqV9ZTKipyVZRsJ27oVgOphYVQfFVamc3FKk+wuVBQfNVUdc2wsKb/+yqWnn7aJRasl8MOZ1Hh1VJlPXCuCuQsajYbFixfz/fff4+XlRYcOHXjnnXc4evSoQ7xx48bZxeXu7l7iLhaqMkmrV3O+yyNcHT2G7FOnkfR6ai36FuNt9rXLEqVJVgCDBw+mb9++/PXXX+zdu5fNmzfz0UcfsXDhQrvLjf/7v/+z/w3Y/bMo2DDHxmK6dBld7VoOcyLCYsGamIglIQFLQgLWhAQsCTewJlzHknADU/RVMsP/cchLZGejLcct7IpgCkFBPmqqV69eqj5JKjNJq1c7rBrWhYaCWoU14QbWpKTcCyQLogQWUBYHRTBFoEmTJuXiZ76ykWuJPWCKiHCMpFKhrlYNjY8Pah9vND7V0fh4o/b2QdJquDbrY0dRlcACyuJQLMHMnDmT8ePHM2bMGD777DMAsrKyeOONN1ixYgXZ2dn07NmTefPmlZol9tIkISGBxx9/nBEjRtCiRQs8PDzYv39/Lh81CnmTvntPnjWI77i3MHToYBOJlxfSXYbh1Z6exLw7uUQXUBaHIgtm3759fPXVV7n8Ir722mv8/PPPrFq1CqPRyKhRoxg0aJB9oq8y4e7uTtu2bfn000+5cOECZrOZ4OBgXnjhBd55553yLl6FxpqWxvX583OfUKnw7N270A+915AhGDp2LNEFlMWiKE5lUlNTRf369cW2bdscnAUlJSUJrVbr4HP91KlTAhB79uwpVN7JyckCEMnJybnOZWZmipMnT4rMzMyiFPueo6LeD1mWRdSoV8XJho3E6TYPiJONm4iTDRuJk42biMTbno3y5m7PWn4UqYYJCwujb9++dOvWjWnTptnDDxw4gNlsplu3bvawRo0aERISwp49e3jwwQdz5ZWdne0wx5HjjkCh8pKwcCGp27YhabWEfPM1Gj+/ilNDFBOnBbNixQoOHjzIvn37cp2LjY1Fp9Pl8kzl5+dHbD5WO2bMmMF7773nbDEUKijpu3cT/+lnAPhNmIC+ZUuASi+UHJyauIyKimLMmDEsXbq0xHb4jR8/nuTkZPsnKiqqRPJVKHvMV69y9fU3QJYxDh6E15NPlHeRShynBHPgwAGuXbvG/fffj0ajQaPRsHPnTubMmYNGo8HPzw+TyZTLxXVcXFy+a61cXFzsVi4Va5eVFzk7myujx2BNSsK1aVP83333nrS34FSTrGvXrhw7dswh7D//+Q+NGjVi3LhxBAcHo9Vq2b59O4MHDwbgzJkzREZG0q5du5IrtUKFI3bqVLJOnEDt5UXQnM9RubiUd5FKBacE4+HhQbNmzRzCDAYDPj4+9vD//ve/vP7663h7e+Pp6cmrr75Ku3bt8uzwK9wbJP74I8mrfwKVisBPPkZbs2Z5F6nUKPGZ/k8//RSVSsXgwYMdJi4V7k0yjx4lbqptpLTGmDG4d+hQziUqXYotmB07djgcu7q6MnfuXObOnVvcrBUqOJaEBK6MHoMwm/Ho3g2fF18oOFElR1ner1AkhMXC1dffwBIbiy40lIAZM+7JTv6dKIJRKBLXPv2UjPBwJDc3gr6Yg9rdvbyLVCYogikj/vzzT/r3709gYCCSJFXq1c4pW7Zw49tFAAR+MB2XKrS1oUoLJiY5k90XrhOTnFnq10pPT6dly5aVvm+Xff480e9MAMD7vyPw7NWrnEtUtlT6/TBCCDLNzru9+OnAFSZvOIEsQCXBe482ZXAr58wj6bXqQrfbe/fuTe/evZ0uZ0XCmpbGlVGvIjIycGvbFt/XXivvIpU5lV4wmWYrTd7dWqw8ZAGT1p9g0voTTqU7+X5P3HSV/hYWiDk2luxLl7jx7beYLl1C4+9PzdmfIGnu/d9+J1XvFys4RdLq1bc2cAGo1QTN+RyNj0/5FqycqPSC0WvVnHy/p1NpYpOz6DZ7J/LtO18l+O31zvgbC7+oVK+9tw32mWNjHcUCIMtofH3Lr1DlTKUXjCRJTjeL6tRwZ8ag5ryz5jhWIVBLEh8MakadGlVjaLSwmC5ddhQLgBDlaoSivKn0gikqT7YJoVODGly6nkHt6m4EGPXlXaQKh7p6Hs2ucjZCUd5UWcEABBj1ZSaUtLQ0zp8/bz+OiIjg8OHDeHt7ExJS8R5AYbUSP+tjx8AKYISivKnSgilL9u/fT5cuXezHr7/+OgDDhg1j8eLF5VSq/In/9FPSdu5EcnGh5uefo9Lr74ktxsVFEUwZ8fDDDyOcNVpXTiRv2GD3ExkwfToeD3cu5xJVHKr0TL9CbjKPHCFm4iQAfF56CWO/vuVcooqFIhgFO+a4ONtMvsmEe5cu1BgzuryLVOFQBKMA2HyvXAkbhSU+Hpf69QicNQtJ8dKcC+WOKCCEIGbiJLKOH7c5Vp03D7W7obyLVSFRBKNAwsKFpGzaBBoNNT//HF05upOo6CiCqeKk/v4H8bM/BcB/wjsYHmxbziWq2CiCqcJknztH9JtvghB4PfUk1Z5+uryLVOFRBFNFsSQmEvVKGHJGBm4PPID/hAnlXaRKgSKYKogwm7k69jXMUVFog4Ko+flnSFpteRerUqAIpgoSN2MmGeHhqNzcCJo3F021auVdpEqDU4KZP38+LVq0sNtAbteuHZs3b7afz8rKIiwsDB8fH9zd3Rk8eDBxcXElXujKSEH3rqxIXLGSxGXLAAic9RGuDRqUeRkqM04JJigoiJkzZ3LgwAH279/PI488woABAzhxwra197XXXmPjxo2sWrWKnTt3Eh0dzaBBg0ql4CVC8lWI+NP2XcoUdO9KG3NsLAmLvyd26lQAaowdg0fXrmVy7XuK4npxqlatmli4cGGRvY9lZWWJ5ORk+ycqKso5D2SyLER2mvOf8K+FmOIlxGRP23f4187nIcslcu+KSmE9kCWuWnXLC1jDRuLikCFCLmbZ7wXKzAMZgNVqZdWqVaSnp9OuXbsieR+DEnCoZM6ADwKLnh5AyPDLm7aPM7wTDTrnZ8TvvHelSV7bjLNOnMQSF1fll+oXBac7/ceOHcPd3R0XFxdGjhzJ2rVradKkSZG8j0HVcqiU370rTVJ+/iX3NuObvu4VnMfpGqZhw4YcPnyY5ORkVq9ezbBhw9i5c2eRC+Di4oJLcXyJaN1sb3pnSImGuQ/YapYcJDWEhYOnE7WV1s2py+Z370pDNHJ2NvGzP+XG99/nPlnFtxkXB6cFo9PpqHfTNGirVq3Yt28fn3/+OU8++aTd+9jttczdvI+VCJLkfLOoen3o/zlsHAvCahNL/89s4aVIfvfuq6++KtHrZJ09S/Sb/0f22bMA6Nu0IfPAgQrj674yU+wdl7Isk52dTatWrSqX97H7n4O6XeHGRfCuA8aydwKUc+9KCiHLJC5ZwrWPP0GYTKi9vQmYPg2PLl0wx8beM56MyxOnBDN+/Hh69+5NSEgIqampLFu2jB07drB161aMRmPl8z5mrFlmQrnbvSsJzHHXiBk/nvTduwEwdO5E4PTpaKpXB2xejBWhFB+nBHPt2jWee+45YmJiMBqNtGjRgq1bt9K9e3dA8T52Nwq6d8UhbdcubkyYiDUpCcnFBd9xb1Ht6aerhL+WskYSomJZZkhJScFoNJKcnJzLo3JWVhYRERGEhoaWmNvzykxmejoXjh5FemcCqpgYXJs0IXDWR7jUrVveRasU3O1Zyw/FakwlRc7IwBQZiZyRgVqS8HnheWq8+iqSTlfeRbunUQRTyRBCYImPx3ItHiFbQa0mYOYMvB94oLyLViVQBFNJkM1m5PR0rNevI2dlAaDy8ECjVuOmNMHKDEUwlQDLjRuYo2+bnJUktDVrIrm6IkVElF/BqiCKYCowQpaxJCRguXOLhBCoDAawOu95TaF4KIKpgAirFWtiIpbr1xEWS95xsk2gubf901REFMFUIITViiXhBtaE64ibtYek0eQpGslFp9Qw5YAimAqAsFiwJCRgTbhhG/kCJJ0OTfXqqL28sCYlOfRhtIGBqLRaRTDlgCKYckQ2m7FeT8CSeMO+BF9ycUFTowZqo9E+U6/x9kbl4YHINiG56GxiUSgXFMGUEbLZjMjORnJxASGwXr+OJTERbi60ULm6ovH1ReXhkeeSFpVWC4pQyh3FakwZYLlxg+1Ll9K/Xz9q1qyJ2sWFNatW2Ua73NzQ1aqFtk4d3vv4YwIDA9Hr9XTr1o1z586Vd9EV7qBKCyY2PZZ/Yv4hNj3/HaHFRTabMUdHk56ZSfMGDfj0psE8lYsLutBQdKGhqD08mDVrFnPmzGHBggWEh4djMBjo2bMnWTcnKRUqBpW+SSaEINOS6XS6DRc2MCN8BjIyKlSMbzueR+s+6lQeeo2+wBXB4uZ+l54PPUTPhx6yh6uNXqgNto1vQgg+++wzJk6cyIABAwD44Ycf8PPzY926dTz11FNOlUuh9Kj0gsm0ZNJ2WfEMaMvITA+fzvTw6U6lC38mHLcCtimL/EaytLdufUREBLGxsQ4GRIxGI23btmXPnj2KYCoQVbpJVtrI2dlYovO2N6DS3BJMjpEQPz8/hzgFGRCpLJRF07esqPQ1jF6jJ/yZcKfSxGXEMXDdQGRuGcFQSSrWDViHn5vfXVLmvnZ+CIsF0+XLCKsVlV6PNigIYbbYJhyrEGvOreG9Pe8hCxmVpGJyu8kMql92xh1j02OJTIkkxDMEf0Pxd5xWesFIklRgs+hOQo2hTG4/Odc/MtQYWiJlErKMKTISYTIhaXXoatVC0mggH+s4OUZC4uLiCAgIsIfHxcVx3333lUiZyoPY9Fim7J6CwDZ0LguZ9/a8R/vA9iXy8BbEqjOrmLp3KgKBChWT2xdfrJVeMEVlUP1BtA9sT1RqFMEewSX2DxRCYL56FTkjA0mlRlcrxCaWuxAaGoq/vz/bt2+3CyQlJYXw8HBefvnlEilXWXMt4xoT/ppgF0sOspB5a+dbPN/ieToEdkCtKtn1cEIITiacZMXpFay7sO7WdSkZsVZZwQD4G/xL/E1nuXYNa3KybQl+SDCqm1up09LSOH/+vD1eREQEhw8fxtvbm5CQEMaOHcu0adOoX78+oaGhTJo0icDAQAYOHFii5SttLLKFlWdW8sWhL0g3p+cZ51D8IcK2h+Fv8GdQvUE8Vv+xYv8fYtNj2XRxExsvbORi8sU848hCJio1ShFMRcGSmIglPh6wrfdSu7vbz+3fv58uXbrYj19//XUAhg0bxuLFi3nrrbdIT0/nxRdfJCkpiY4dO7Jly5ZKZbvgWPwxpu6dyqkbpwBoXr057QPb882xb+xN35dbvkxydjIbL24kNj2WeUfmseDoAjrW7MiQ+kN4KOghNKrCPZbp5nR+u/wbGy9s5J/Yf+y1mYvahXaB7dgZtdOhhlNJKoI9iue/UzGCUUJY09IwXb4MQqCpUQOtX+EHD4pKRbkfydnJfH7wc1afXY1A4KHzYOz9YxlcfzBqlZrY9NhcTd9saza/Xf6Nn879xL7Yffa8fPW+DKg3gMENBlPT3WYC6/aOew19DcJjwtlwcQO/R/7uMAfX2q81j9Z9lO61uuOucy9wwKEoRjAUwZQAcnY2posXEVYraqMRbVBQmZg4Ku/7IYRg48WNfLL/E25k3QDg0bqP8nqr1/HR+xQ6n0vJl1hzbg3rL6y35yMh0S6wHUEeQaw+sxoZGQkJd607qeZUe9ranrXpX7c/fev0tQvsdvISaw6lLpgZM2awZs0aTp8+jV6vp3379nz44Yc0bNjQHicrK4s33niDFStWONgmu3OOIT8qm2CExUL2hYsIswmV3g1daG0kVdlMb5Xn/TifeJ5p4dM4EHcAgDrGOkx8cCJt/NsUOU+z1czvUb/z09mf2BOzJ994HjoP+ob25dG6j9KserMiv5xK3czSzp07CQsLo02bNlgsFt555x169OjByZMnMdxc5vHaa6/x888/s2rVKoxGI6NGjWLQoEHs2rXL+V9UwRE3reALswlJp7ONiJWRWJylpOYjMswZfHX0K3448QMWYcFV7crIliN5rslzaNXFW02tVWvpWbsnPWv3JCo1irmH5vJzxM+54n3S6RPa1Swf88NOCWbLli0Ox4sXL8bX15cDBw7QqVMnkpOT+fbbb1m2bBmPPPIIAN999x2NGzdm7969FddkbBGwDx9nZiCp1bfmWiogxZ08zBHbldQrLDi6gJj0GAC6BHfh7QfeJtC9mP558iDYI5ixrcayOWJzrgnmUK+SmS8rCsX6DycnJwPg7e0NUCSnStnZ2Q4GuVNSUopTpDLDYfg4OBhVcVx2lCLRqdG5Jg+n7J7CsfhjeLh4oJbUqCRVvt/HE46zJWKLw2hToCGQ8W3H83Dww6Vadn+Df54TzGUx6ZkfRRaMLMuMHTuWDh060KxZM4AiOVUqtgeycuBuw8cVASEER+KPsPXSVjZe2Jhr8lAgWH1udZHylpBY0H1Bia2KKIjSmmAuKkUWTFhYGMePH+fvv/8uVgHGjx9vn5MAWw0THFy8sfLSQjabkZOTMcfazB5patSoMC67hRCcvHGSLRFb2Hppq73ZlBcSEkMaDEGv0SMLGauwOn7Ltu9rGdcIj3VcpycQXM+8XmaCgdKZYC4qRRLMqFGj2LRpE3/++SdBQUH2cH9/f6edKhXbA1kZcacxPZVej8bXtxxLdLMfJZv534n/sfbyWqJSb7k7dNO48UjII/Sq3YtrGdeYFj7N6T5MbHosPX/qiSwc+xDFnfyrzDglGCEEr776KmvXrmXHjh2Ehjq+ZSqdU6VCkrNr0iEsMxNhsSCV0T57s9WMyWpCp9YhC5lkUzKJqYnEZ8Sz6vwqYkwxuKpd6RzcmV61e9GxZkdcNbeGmh8KesjpZo2/wZ/J7SpWH6K8cUowYWFhLFu2jPXr1+Ph4WHvlxiNRvR6feV0qlQIRD7bhEW2qUwMU9zIukFMWu4mlizbJvPaBrSlQ60OdArqlO/K7aI2aypaH6K8cWrSYP78+SQnJ/Pwww8TEBBg/6xcudIe59NPP6Vfv34MHjyYTp064e/vz5o1a0q84GWFEALLjRt5nnNmb8v8+fNp0aIFnp6eeHp60q5dOzZv3mw/n5WVxSuvvIKPjw/u7u70G9iPgxcOci7xXJ5iMWgN+Ln54WfwY8KDE+gV2svpbQ6Fxd/gTxv/NlVeLFDFl8aYY2MxXbqMrnatfN3ZmWNjsVy/Dkhw22iTNjAQzc3h9MKwdt1ahCRo1LARaknNd99/x+yPZ/PHnj+o3bA2b41+i99//Z3pX0zH3dOdD97+AEmSWPLLkjzzq22sjdqqrnArHyoTVdKhkhACkem8EYykdeuImzbd7lnYb+IEvO5YSm9JTMQcY3u7a2vWROXmhjCZkXRaVFotQohCLctIzEqkQccGtvIikCWZf7/+b+bPn8/2v7bTo1oPflzyIx8t+IgHOz2Ii9qFzxZ8RpfWXYg+EU1g09wTgzqVDqti+bLMqfyCyczkzP2tipeJLBP3/lTi3p/qVLKGBw8gud29GWS2molOcxwwMFvMbN2wlcyMTDq078DV01exmC088+gz+Hr7IkkSdVvVJSQkhOMHj9O6bWuHPALdA9GqtVjNimDKmkovmIqMEIJrGdfsx2dPnmVo76GYsk24u7uzbu06uj7QlWXLlqHT6fCrnrcRjGqu1XDXumOSTehUumKv2VIoOpVeMJJeT8ODB5xKY46L42LffnZ7xgCoVNT5eRNqb29Mly4hzGabVcqQ/BdUSvr8jWDIQuZq2lVSsm8t9QmtF8pPf/xEamoq+3/dz7Bhw9i5c2ehyqxVaxWhVAAqv2AkqcBm0Z24hIYS8P57xLw72d6HCXj/PXQhIZgiLiGp1aj0elzq1CnSgkqz1UxkaiRZliwkScJT50lydjJanZaQOiEEugfyRNcnOHjgIJ9//jlPPvmk0xO+CuVDpRdMUfEaMgRDx46YLkeiqxWCxs8Pc2QUclZmsVYfZ5gziEyNxCpbUavUBHsE24eA72xSybJMdnb2PTvhey9SZQUDoPX3tw8nm2NisKam3DReEVKk1ceJWYnEpMcghMBV40qwRzA6tW2u5t2J79K7d29CQkJITU1l2bJl7Nixg61bt5bNhG/yVbhxAbzrgjH3zkSFwlGlBZODJSEBS0ICALqgILvN48IihCAuI46ETFseni6eBBoCHUwIXbt2jeeee46YmBiMRiMtWrRg69atdO/eHbBN+KpUKgYPHuywU7VEOPgDbBwDQgZJBf0/h/ufK5m8qxhVeuISwJqaajNeAWj8/NDWqOFUeots4WraVdJMaQDUcKtBDX2NirOnP/kqfNbMJpYcJDWMPVbla5oqOXFZHOTMTExRthW+6mrV0FSv7lT6bEs2kamRmKwmVJKKQPdAjC7G0ihq0Tm0xFEsAMIKNy5WecEUhSorGNlsttUssozKYEAbEOBUrZBqSuVK6hVkIaNVaQn2DL6rrWUsJrBmg9oFNGVgXznjBmweB8d+zH1OUoF3ndIvwz1IlRSMsFoxX75sW57v4nLXuZbbMVvNZFuzybBkEJ9h23HppnUj2CP47sbn0q9D8q29KhiDweBcbeYUp3+BTWMhLc4mjrqPwIU/bDUL2NwERvwJ9z1demUoSYozYFHCgx1VTjBCCExXriBnZSFpNLbhY3XB9n0TsxJzLXHxcvUiwBCASrqL2CwmR7GA7djFs+RrmsxE2DIejiy3HVdvAAPnQ1Br24Nz/RwcWAwn18K6kZCdAm1fKtkylDQFDVgIAZYsMGWAOQPMmbe+T22AvfMBUWKDHZVSMEUdp5BNJiwxMcipqSCp0IWEoNIV/NDmtR4MoIa+xt3FApCfd7T0a+ARAMUwxu1wH87+ChtHQ2oMIEH7V6HLO6C92Uw01rR9QjvBrwGwdx5sfgsyk6DzW1AGgxROc/UgbBiNfZW4kGHDq/DHB2A13RJHYRAybBwLdbsWq6apVILR3tyslZGRgf4uy1Ly4s4txupqXqgKuULgRnbe+2HMstk+z5InpnRIvpL3ufR4Wz/DzRvcqoPW+VG/jIwMkK1ot46DQ4ttgT71YMA8CMnHK5tKBT0/AFcv2PGB7ZOVBD2m286VN9fPw+mNcGoTXN2fd5zUfOwVqF1sL4icfUGpd7zkSmCwo1IJRq1W4+XlxbVrtgWNbm5uheqoy2Yzpit3PLjXr2Px8Lirz3urbCU+M55UU2qe52WTTJY1j92YQrb1WzKu55QcuG1lsc5oq3lkEyRfs320BtBXAxePAt/2QggyMjK4Fh2F1+kVqE8sBiRoFwaPTLxVq+SHJMHD48DVCFvG2WqbrGToPwfUZfxICAExh20COb0J4k/fPb6kgqdWQLVat8Sh1ds+t9fW+Q2nF3Owo1IJBm45H8oRTWGQ09Kw5mHvTC3L+c7om6wmErMTscq2B91V40qW5ZY4vFy8uJKUR+1hNUNGgq3JAKC7KQShAtkCKg2oTLZjiwSmVFvTgnjgku28zt2WLr/m2k1Bep1dif+5ZbaHYMA8qOXkMpoHR9pEsz4MDi+19WkGfwuaEjZKcmfHW7ZC5J5bIrm9j6fS2JqNjfpBo75w7ldbU0pYbQ98/8+gYc+Cr2msaeuz3Jm2mB3/SjVxeTtWqxWz2VxgfqarV7n62uu2fsvtqFSELP4u10SlWTaz8vRKVp1dhRACX4Mvb7R6g8Y+jYnPiCc2PRZ/gz813O6Y4JStcHiZ7W0tm8HFCA+Ph/rdKJDkq3D8Jzi5HrKTb5ZPB/W7Q4snwK8ppMZBcqSt5tr9JdrrJ1Bbs6DtSOj6LuiKsT351CZY/R+byOt0gSeXgEsJ2Vq7vdOOZGsqXj9ne6nkoHWDet2gcX+o3wP0Xo55JF+1NaW86xRxlCzvtPe89X5nsSQmcumppzBfjkQTGIglNtZhdbLXkCEO8S+nXGb8X+M5dv0YYLNEP/6B8bjrCnh4Ei/B2pchcrftuEEvW/PGw0mXF+ZMOL4G/vna1kzJwRhy8y1827+qWm1brVK7g3PXyI+LO2D5M2BOh6A2MHSVrWYsDnEnYX57II9HTF8NGvSGxv1sw94FNSNLAUUwtyFnZRE5/D9kHj6MNjCQ2itXIKxW++rk2/fwCyFYc24NH+77kExLJh46D95t9y69ave6+0WEsL1Bt74DpjRbU6rXDPjXv4s36iQEXD1gE87xNbYaywEJRu2D6vWLfo28iNoHS4fYBgF8m8K/1zov+qQoOPMLnP4ZLv2Ve5UB2AYY2o4s+/7SHShLY24iZJnot8aRefgwKk9Pgr/5Gs3Nptedxi6SspKYsmcK2yO3A/CA/wNM7zi9YAspqXG2YdyzNw20h7SHgfPAuwQsQkqSbe4kqLWtLf/jv+/8hZAaW/KCCW4D//kF/vcYXDsBi3rCc+ttHez8EAJij9omS8/8DLHH7n4NSQ1NHyt3sRSVylnqArj20SxSf/0VSasl6MsvcKlbN894u6N3M/HvicRnxqNRaRj9r9EMazos/7mVnM7r9fPw+1TIvAFqHTwyyTZCVcIOTgGo2co2MlTCoz354tcURmyBHwZCYgQs6gWDvrKdy+m0W81weddNkfzi2GmXVBD8IDTqAw372OKVcMe7PLnnmmQ3/reEuOnTAQicNQtj/372czluG/wN/iw/vZwlp2wmjOoY6zDzoZk09mmcf8YOndeb+DeHx74GvyZOl9MpDv6Q+6Er7eX5KdG2msZhmFeyCTjhnG0YOgeN3tYPadTH1n+7c9lPcTrtpUiZ9GH+/PNPZs2axYEDB4iJiWHt2rUOnn6FEEyePJlvvvmGpKQkOnTowPz586lfv3DNh+IIJnX7dq6MehWEoMZrr1H9pRft5273kXI7TzV8itdbv373hZN5jekjwejD4F3bqTIWmfJ46OJO3Oy054Gbj63T3qiPbWStOKN05URRnjWnp3bT09Np2bIlc+fOzfP8Rx99xJw5c1iwYAHh4eEYDAZ69uxJVj7mVkuKzKNHufrGmyAEXk88gc+LL9jPxabH5imWaR2mMeHBCXcXC8D+b/PovIrca8RKE2NNCH2obN/Qtw/93k6vD+HNczBwrm2upBKKpag43Yfp3bs3vXv3zvOcEILPPvuMiRMnMmDAAAB++OEH/Pz8WLduHU899VSuNCXhUMkUFUXUyJcRWVkYOj2E/7uTHFYAXEq+lEssQMGes2TZ1lf5e3buc6XZj6goeNfNu//UuH/p9NcqASW6eCgiIoLY2FgHD2RGo5G2bduyZ0/eTj5nzJiB0Wi0f5z1DWNJTCTqhRex3riBS5PG1Jz9qYPxiixLFt8d/y5XugLdNmSnwcpnb4mlXnfbwwL3ROe1UOTMlle1330XSnSULMea/50ek+/mgaw4DpXk7GyujHoV06VLaAICCJ6/ALX7rf34iVmJjPp9FEfjj6KW1MhCRiAKdtuQFAnLn4a447ZRsEe/gJZPVdjOa6ly/3O2Fb5V7XfnQ7kPKxfVoZKQZaLffpvMAwdQeXgQ8vVXaP1uOTiKSoni5e0vcznlMp46T+Y8Moea7jULdtsQuRdWDLUtnDT4wlPLbPMTcGuJfFWjqv7uPChRweQsjIyLiyMgIMAeHhcXx3333VeSlyJ+9mxSN28BrZagL+bgctso3LH4Y4z6fRQ3sm4QaAhkfrf51PGy9TfuOiF5aKlt6Fg224aMn1oOXlXX25ZCbkq0DxMaGoq/vz/bt2+3h6WkpBAeHl4iBunMsbGk7w0nfsECEhZ+C0DgtKkYbrPd9UfkH4zYOoIbWTdo7N2YpX2X2sWSL7IVfp0I61+xiaVxfxixtUTFEpOcye4L14lJdt7TgELFwekaJi0tjfPnz9uPIyIiOHz4MN7e3oSEhDB27FimTZtG/fr1CQ0NZdKkSQQGBjrM1RSFpNWrb5l2vUmNMaMx3hyNA1hxegUz/pmBLGQ61uzIJ50/KdjJUFYK/PQ8nNtqO+70lm2VcQluplq5L5Lxa44hC1BJMGNQc55sE+JUHjHJmURcTye0uoEAY9kvVCwOxS17cdKX9H1zeuJyx44ddOnSJVf4sGHDWLx4sX3i8uuvvyYpKYmOHTsyb948GjRoUKj885pMMsfGcv6Rro7GwyWJur9vRxcQgCxkPj/4OYuOLwJgcP3BTHxw4t0NUwDciIDlT9lmszWutrVgzQYX7kYUkpjkTDrM/B35jrvcJMCTAKMr1Qw6fAw6qhl0eBt0eLvp8Ha/9e3houHH/VHFFlx5UdiXhRACk1XGZLF9zFaBySKz/vBVZv92FiFsS+xGdq7LI418sVgFshBYZYFVCKxW27eccywLdp2/zqr9VxDkfe17drVy+t5wIocPzxU35Pvv0ba+j0m7JvFLxC8AhN0XxkstXip4J+alv2Hlv23rwdz94elltmUfJcyW4zGMXHKwyOk1KrDcMYUkSfDx4y25P6QaQdX0aNWlu7W4MG9pWRbcyDARm5xFbHIWMSlZnI9L5fs9l3PF9fd0Rb4pELNFtn1bS/8xVEsSf7/dxf4b7tnVyrratWxNpDvcU5gCqvHqbyPZF7sPjaRhSvspDKg3IP+MchZPXj1om5CULRD4L9tImGcBk5hF4ExsKlM2nswVrpLgg8eaI4Ab6SZupJtITDeRkG4iMcNEQprtO8NkzSUWsC0QfuPHIwCoVRJB1fTU9jEQWt1ALR83alc3UNvH4CCmojRNhBAsC49k0vrjyDff8M88EEKdGu7EpWQRk5xFbHImsSlZxCVnY7LmUdg8iE0peNWHRiWhVklk53EDAjxdMbhqUEsSKpWEWgVqlQq1ZLsfKkkiLdvCiWjHSXCrEFy6nlGsplmlEIzW35+o/4whcNFnqIXAKklceO4/vHPoLc4nncegNTD74dm0D8xn3RPkvXiy2WAYMLdUNi9tPxXH6OWHSDdZ8TboSMowIQvbW+6DQc0K1aTKNFk5E5vCY/N3c2c7oG4NA1eTMskyy1xOyOByQgY7z8Y7xFGrJIKr6dFpVJyLS7Nv4/pXiBf+nq5kma1kmWWyLLbvbLPVFmaRyTJbyTRZHbZ+CQFLwyPzLa8kQXV3FwKMrvh7uuLhqmHNwasOeagk+Pq51gQa9eg0Ejq1Gq1GQqdWodOo0KpV6NQqVCopz+asWpJYE9a+wIc+v7S1qxdvGU+laJLl/Hjv7CiCsiOI9jCQXm8rKm0Kvnpf5nWbR0Pvhvlnmt/iydeOgzGoRMsvhGDhXxF8sPkUQsCDdbyZP7QVWRYrl65nULu6m9NvuJX7InlnzXGsQjgITpYF11KzibiezqWEm5/r6VxOyOBSQjpZ5sK98Z3lwTreNAs04m90xd/oahOIUY+vh0uu5mF+ZS8sxUlfUNp7tg+z+8J1hv34JS4Ba5AkYe8AuopAlvT7hobV73IDow/Dz2/kbbJn2CbbgsYSwmSRmbjuGD/utxnHePqBYN57tBk6TfH7GDHJmU4JLkdMm45GM+3nU7nOj+hQm0YBnrhq1bhqVLZvrRpX7c2/NWqSM00MmLsr11v69n5AaZS9JNPfLe0924dxN6TZxQI2sQgB1y8+ydAFZ3l/gJbezfwdO/pxJ2wG305vyjvTEl48eSPdxMglB/gn4gYqCSb2bcJ/OtQuMSv+AUa9Uw+LSiXhb3Slb4sAPvjlVK6H/oVOdQqRnxszBjXP9ZZ29qF1tuwlmb64176TSiGYLHHNLpYcJAmCq1uJjM7mlaUH6dHEj6kDm+FnioIdM2x74RGABM0fhxqN4I/ppbLz71xcKiO+30fUjUw8XDTMeeZfdGnoW3DCMiDAqC/WQ/9kmxA6NahRrBriXqJSCCbEMwSVpHJYoq+SVCwZ3pfVe1OZt+MCp08dZe/F9+jP36i4Ga/JQNskpG8j23HLp0p8EeEfZ64xetkhUrMthHi78e2w1tT38yiRvEuK4j70Jf2WrsxUij4MOO6YzFltPKj+IEiKJGnLB3icXon6plD2uz5I4ID3CWycj7nUEkAIwaJdl5j+80lkAQ+EerPg2VZ4G8rAlYVCiXDP9mEABtUfRHuPOkTF7Cc4oDX+br62zvyB7/G6aYYoyqc9r13ry/6kUFyW3uCNHhcY0SEUTQlP7JksMpM3HGf5P7Ydl0+0DmLawOYl0rlXqNhUmhomlwVFSQ3CYjsX2gm6TISQtkQmZDB+7VF2nbdtr21e08iHg1vQJLB4RgHBNuJy7Eoy83de4FBkEpIEE/o05r8dQ8vERZ9CyXLPDivnPY8CBN4P3d/PNTQshGDVgStM23SSlCwLGpXES53r8HirYKKTM4u0EO/2NVEAOrXE/Gdb0bWxk4buFCoM926T7MaFvC0odn8vz3kUSZJ4onUwDzeoweQNJ9h8PJa5f1xg7h8XbOeB/i0DaRLoSabJNrudYbKSabZ9sm7+nXHzXGqWmatJjss5LLIokVpLoXJROQSTnzEG77wN9OXg6+nK/GdbsTz8MuPXHreHC2DDkWg2HMntJKmwyIJir0tSqHxUDsEU03VBreqGPMM71a9OiI8bbjoNrlo1eq0avVZlO9blHKvJMJl5aclBh/VcJbEuSaHyUTkEA8UyxhBa3YBKItds94dDWhS6hphZAjPeCpWfyiMYKLIxhuLOdoMy461go3IJphiUxAOvzHgrVBnBgPLAKxQfZWpaQcEJKlwNkzOPWhQbywoKzpDzjDkzd1/hBJN603mrszaWFRSKSmpqKkajsVBxK9zSGFmWiY6OxsPDI9f6rBy7y1FRUUVytlSe6ZWyV7yyCyFITU0lMDAQVSHt0FW4GkalUhEUdPd99p6ensVyGFue6ZWyV6yyF7ZmyUHp9CsoOIEiGAUFJ6hUgnFxcWHy5MlFco9R3umVslfOst9Jhev0KyhUZCpVDaOgUN4oglFQcAJFMAoKTqAIRkHBCSqNYP7880/69+9PYGAgkiSxbt26QqedMWMGbdq0wcPDA19fXwYOHMiZM2cKlXb+/Pm0aNHCPvHVrl07Nm/eXMRfATNnzkSSJMaOHVuo+FOmTEGSJIdPo0aNCn29q1ev8uyzz+Lj44Ner6d58+bs35+Hnek8qF27dq5rS5JEWFhYodJbrVYmTZpEaGgoer2eunXrMnXq1EKv3UpNTWXs2LHUqlULvV5P+/bt2bdvX55xC3o+hBC8++67BAQEoNfr6datG+fOnStUOW6n0ggmPT2dli1bMnfuXKfT7ty5k7CwMPbu3cu2bdswm8306NGD9PT0AtMGBQUxc+ZMDhw4wP79+3nkkUcYMGAAJ06ccLoc+/bt46uvvqJFixZOpWvatCkxMTH2z99//12odImJiXTo0AGtVsvmzZs5efIkn3zyCdWqVSt0eW+/7rZt2wB4/PHHC5X+ww8/ZP78+Xz55ZecOnWKDz/8kI8++ogvvviiUOmff/55tm3bxv/+9z+OHTtGjx496NatG1evXs0Vt6Dn46OPPmLOnDksWLCA8PBwDAYDPXv2JCurYF81DohKCCDWrl1b5PTXrl0TgNi5c2eR0lerVk0sXLjQqTSpqamifv36Ytu2baJz585izJgxhUo3efJk0bJlS+cLKYQYN26c6NixY5HS5sWYMWNE3bp1hSzLhYrft29fMWLECIewQYMGiaFDhxaYNiMjQ6jVarFp0yaH8Pvvv19MmDDhrmnvfD5kWRb+/v5i1qxZ9rCkpCTh4uIili9fXohfcotKU8OUJMnJyQB4e3s7lc5qtbJixQrS09Od9godFhZG37596datm1PpAM6dO0dgYCB16tRh6NChREbm79TodjZs2EDr1q15/PHH8fX15V//+hfffPON09cHMJlMLFmyhBEjRhTaaGH79u3Zvn07Z8+eBeDIkSP8/fff9O7du8C0FosFq9WKq6urQ7hery90DZtDREQEsbGxDvfeaDTStm1b9uzZ41ReVa6GsVqtom/fvqJDhw6FTnP06FFhMBiEWq0WRqNR/Pzzz05dc/ny5aJZs2YiMzNTCCGcqmF++eUX8eOPP4ojR46ILVu2iHbt2omQkBCRkpJSYFoXFxfh4uIixo8fLw4ePCi++uor4erqKhYvXuxU+YUQYuXKlUKtVourV68WOo3VahXjxo0TkiQJjUYjJEkSH3zwQaHTt2vXTnTu3FlcvXpVWCwW8b///U+oVCrRoEGDu6a78/nYtWuXAER0dLRDvMcff1w88cQThS6PEEJUOcGMHDlS1KpVS0RFRRU6TXZ2tjh37pzYv3+/ePvtt0X16tXFiRMnCpU2MjJS+Pr6iiNHjtjDnBHMnSQmJgpPT89CNQm1Wq1o166dQ9irr74qHnzwQaev26NHD9GvXz+n0ixfvlwEBQWJ5cuXi6NHj4offvhBeHt7F1qw58+fF506dRKAUKvVok2bNmLo0KGiUaNGd02nCOYOiiqYsLAwERQUJC5evFis63ft2lW8+OKLhYq7du1a+z885wMISZKEWq0WFovF6eu3bt1avP322wXGCwkJEf/9738dwubNmycCAwOdut6lS5eESqUS69atcypdUFCQ+PLLLx3Cpk6dKho2bOhUPmlpafaH/YknnhB9+vS5a/w7n48LFy4IQBw6dMghXqdOncTo0aOdKkuV6MMIIRg1ahRr167l999/JzQ0tFj5ybJMdnZ2oeJ27dqVY8eOcfjwYfundevWDB06lMOHD6NWq526dlpaGhcuXCAgIKDAuB06dMg1fH727Flq1arl1DW/++47fH196du3r1PpMjIycm3MUqvVyHIeZn/vgsFgICAggMTERLZu3cqAAXfxlJ0HoaGh+Pv7s337dntYSkoK4eHhTvdFK00Nk5qaKg4dOiQOHTokADF79mxx6NAhcfny5QLTvvzyy8JoNIodO3aImJgY+ycjI6PAtG+//bbYuXOniIiIEEePHhVvv/22kCRJ/Prrr0X+Lc40yd544w2xY8cOERERIXbt2iW6desmqlevLq5du1Zg2n/++UdoNBoxffp0ce7cObF06VLh5uYmlixZUuiyWq1WERISIsaNG1foNDkMGzZM1KxZU2zatElERESINWvWiOrVq4u33nqrUOm3bNkiNm/eLC5evCh+/fVX0bJlS9G2bVthMplyxS3o+Zg5c6bw8vIS69evF0ePHhUDBgwQoaGh9n5lYak0gvnjjz8ENrPIDp9hw4YVmDavdID47rvvCkw7YsQIUatWLaHT6USNGjVE165diyUWIZwTzJNPPikCAgKETqcTNWvWFE8++aQ4f/58oa+1ceNG0axZM+Hi4iIaNWokvv76a6fKunXrVgGIM2fOOJVOCCFSUlLEmDFjREhIiHB1dRV16tQREyZMENnZ2YVKv3LlSlGnTh2h0+mEv7+/CAsLE0lJSXnGLej5kGVZTJo0Sfj5+QkXFxfRtWvXIv0mZXm/goITVIk+jIJCSaEIRkHBCRTBKCg4gSIYBQUnUASjoOAEimAUFJxAEYyCghMoglFQcAJFMAoKTqAIphwZPnw4AwcOLO9iKDiBIphKgNlsLu8iKNxEEUwZsHr1apo3b45er8fHx4du3brxf//3f3z//fesX7/ebo1lx44dXLp0CUmSWLlyJZ07d8bV1ZWlS5cCsHDhQho3boyrqyuNGjVi3rx5DtcZN24cDRo0wM3NjTp16jBp0iQHsU2ZMoX77ruPRYsWERISgru7O6+88gpWq5WPPvoIf39/fH19mT59uj2NEIIpU6YQEhKCi4sLgYGBjB49umxuXEXE6eWaCk4RHR0tNBqNmD17tn2LwNy5c0Vqaqp44oknRK9evezbDbKzs0VERIQARO3atcVPP/0kLl68KKKjo8WSJUtEQECAPeynn37KtXtx6tSpYteuXSIiIkJs2LBB+Pn5iQ8//NB+fvLkycLd3V0MGTJEnDhxQmzYsEHodDrRs2dP8eqrr4rTp0+LRYsWCUDs3btXCCHEqlWrhKenp/jll1/E5cuXRXh4uNMrnu8lFMGUMgcOHBCAuHTpUq5zw4YNEwMGDHAIyxHMZ5995hBet25dsWzZMoewqVOn5tqCfDuzZs0SrVq1sh9PnjxZuLm5OdgD6Nmzp6hdu7awWq32sIYNG4oZM2YIIYT45JNPRIMGDfLcg1IVqXAeyO41WrZsSdeuXWnevDk9e/akR48eDBkypEDbYK1bt7b/nZ6ezoULF/jvf//LCy+8YA+3WCwOHrRWrlzJnDlzuHDhAmlpaVgsllxet2rXro2Hh4f92M/PD7Va7bAz0s/Pj2vXrgE2G2SfffYZderUoVevXvTp04f+/fuj0VTNR0fpw5QyarWabdu2sXnzZpo0acIXX3xBw4YNiYiIuGs6g8Fg/zstLQ2Ab775xmGr8/Hjx9m7dy8Ae/bsYejQofTp04dNmzZx6NAhJkyYgMlkcshXq9U6HEuSlGdYzjbi4OBgzpw5w7x589Dr9bzyyit06tSpyg5EVM3XRBkjSRIdOnSgQ4cOvPvuu9SqVYu1a9ei0+mwWq0Fpvfz8yMwMJCLFy8ydOjQPOPs3r2bWrVqMWHCBHvY5cuXS6T8er2e/v37079/f8LCwmjUqBHHjh3j/vvvL5H8KxOKYEqZ8PBwtm/fTo8ePfD19SU8PJz4+HgaN25MVlYWW7du5cyZM/j4+NzVQel7773H6NGjMRqN9OrVi+zsbPbv309iYiKvv/469evXJzIykhUrVtCmTRt+/vln1q5dW+zyL168GKvVStu2bXFzc2PJkiXo9XqnDWncKyhNslLG09OTP//8kz59+tCgQQMmTpzIJ598Qu/evXnhhRdo2LAhrVu3pkaNGuzatSvffJ5//nkWLlzId999R/PmzencuTOLFy+2W8B59NFHee211xg1ahT33Xcfu3fvZtKkScUuv5eXF9988w0dOnSgRYsW/Pbbb2zcuBEfH59i510ZUfb0Kyg4gVLDKCg4gSIYBQUnUASjoOAEimAUFJxAEYyCghMoglFQcAJFMAoKTqAIRkHBCRTBKCg4gSIYBQUnUASjoOAE/w//QJZXW7ctrQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df_hw_pivot_2_plot = df_hw_pivot.copy()#droplevel(0)\n",
+ "df_hw_pivot_2_plot\n",
+ "#df_hw_pivot_2_plot = df_hw_pivot_2.copy()\n",
+ "#df_hw_pivot_2_plot.droplevel(0)\n",
+ "\n",
+ "for index in df_hw_pivot_2_plot['mem_max_stream'].columns:\n",
+ " #print(index)\n",
+ " df_hw_pivot_2_plot[('mem_max_stream',index)] = df_hw_pivot_2_plot['mem_max_stream',index]/int(index)\n",
+ " #print(df_hw_pivot_2_plot[('mem_max_stream',index)])\n",
+ "\n",
+ "\n",
+ "column = 'mem_max_stream'\n",
+ "df_hw_pivot_2_plot[column] = df_hw_pivot_2_plot[column]/1024.\n",
+ "#df_hw_pivot_2_plot = df_hw_pivot_2_plot['mem_max_stream'].index.droplevel(0)\n",
+ "\n",
+ "#['mem_max_stream'].index.droplevel(0)\n",
+ "df_hw_pivot_2_plot = df_hw_pivot_2_plot.droplevel(0)\n",
+ "\n",
+ "ax = df_hw_pivot_2_plot.plot(y=column, figsize=(2,2), grid=False, style=\".-\")\n",
+ "plt.title('SUT max RAM [Gb/SF]'.format(dbms), fontsize=10)\n",
+ "plt.suptitle('')\n",
+ "#plt.title('Tpx@Size [1000 Qph]'.format(dbms), fontsize=10)\n",
+ "ax.set_xlabel(\"streams\")\n",
+ "ax.set_xticks(range(1,11))\n",
+ "plt.legend(loc='upper left', title='SF')\n",
+ "#plt.ylim(0, df_means[column].max()*1.1)\n",
+ "#plt.xscale('log')\n",
+ "#plt.yscale('log')\n",
+ "#df_hw_pivot_2_plot.T\n",
+ "df_hw_pivot_2_plot[column].max()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Results in folder .//1686234009\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686236492\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686228050\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686238015\n",
+ "Read results\n",
+ "Load Evaluation\n"
+ ]
+ }
+ ],
+ "source": [
+ "df_res = pd.DataFrame()\n",
+ "for code in codes:\n",
+ " evaluate.load_experiment(code)\n",
+ " df = evaluate.get_streaming_metrics('total_cpu_util').T.max()\n",
+ " df = df.reindex(index=natural_sort(df.index))\n",
+ " path=resultfolder\n",
+ " with open(path+str(code)+\"/connections.config\",'r') as inf:\n",
+ " connections = ast.literal_eval(inf.read())\n",
+ " #print(\"found\", len(connections), \"connections\")\n",
+ " connections_sorted = sorted(connections, key=lambda c: c['name'])\n",
+ " SF = connections_sorted[0]['parameter']['connection_parameter']['loading_parameters']['SF']\n",
+ " #print(df)\n",
+ " df.index = df.index.map(lambda x: x[len('PostgreSQL-AWS-4-'):])\n",
+ " df_res[SF] = df.copy()\n",
+ " #df.T.max().plot.bar()\n",
+ "\n",
+ "#print(df_res)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 3 \n",
+ " 10 \n",
+ " 30 \n",
+ " \n",
+ " \n",
+ " DBMS \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 2.925197 \n",
+ " 6.325603 \n",
+ " 7.290536 \n",
+ " 9.000576 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 7.373190 \n",
+ " 12.891595 \n",
+ " 14.601075 \n",
+ " 18.001615 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 9.825474 \n",
+ " 15.766660 \n",
+ " 20.998972 \n",
+ " 26.572984 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 9.916559 \n",
+ " 20.264882 \n",
+ " 27.996150 \n",
+ " 34.870364 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 13.846226 \n",
+ " 21.572946 \n",
+ " 35.011020 \n",
+ " 43.971000 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 13.035102 \n",
+ " 27.996733 \n",
+ " 40.438248 \n",
+ " 52.016224 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 15.284197 \n",
+ " 35.329831 \n",
+ " 46.495163 \n",
+ " 61.151688 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 18.066155 \n",
+ " 37.752712 \n",
+ " 53.969259 \n",
+ " 63.825899 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 16.729748 \n",
+ " 36.465671 \n",
+ " 56.431668 \n",
+ " 63.813964 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 16.241658 \n",
+ " 41.544776 \n",
+ " 57.952377 \n",
+ " 63.836050 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 1 3 10 30\n",
+ "DBMS \n",
+ "1 2.925197 6.325603 7.290536 9.000576\n",
+ "2 7.373190 12.891595 14.601075 18.001615\n",
+ "3 9.825474 15.766660 20.998972 26.572984\n",
+ "4 9.916559 20.264882 27.996150 34.870364\n",
+ "5 13.846226 21.572946 35.011020 43.971000\n",
+ "6 13.035102 27.996733 40.438248 52.016224\n",
+ "7 15.284197 35.329831 46.495163 61.151688\n",
+ "8 18.066155 37.752712 53.969259 63.825899\n",
+ "9 16.729748 36.465671 56.431668 63.813964\n",
+ "10 16.241658 41.544776 57.952377 63.836050"
+ ]
+ },
+ "execution_count": 27,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMwAAADsCAYAAAA4jknEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABEkklEQVR4nO2dd3hUxfrHP7ubTbLphHRSCB0EolQDXEFAEBBBit4r/gTsFKVcr4BIb4JSbIDtgl5AkSqogIgCSm+hqZQQSEilJJtkk2w78/tjycKSQjbZNHI+z7NPsnNmzszunu85U973HYUQQiAjI1MilJXdABmZ6oQsGBkZO5AFIyNjB7JgZGTsQBaMjIwdyIKRkbEDWTAyMnYgC0ZGxg5kwcjI2IEsGJkqzcqVK/Hx8bG+nz59Og8++GCltee+Fsy1a9cYMWIE4eHhuLi4EBQURM+ePdm3b581j0KhYPPmzQXKDhs2jP79+3P58mUUCkWxr5UrV1bchyoDGzZsoEuXLnh7e+Ph4UHLli2ZOXMmN2/eBCwXZ/5nUiqVhIaGMnz4cNLS0gCs30VMTEyBc3fp0oWxY8eWqX1169ZlyZIlNmnPPPMM58+fL9N5HYlTZTegPBk4cCAGg4GvvvqKevXqkZqayq5du7hx40aJzxEWFkZycrL1/fvvv8/27dv55ZdfrGne3t4ObXd5MHnyZObPn8+4ceOYO3cuISEhXLhwgeXLl/O///2PMWPGAODl5cW5c+eQJImTJ08yfPhwkpKS2LFjR6W0W6PRoNFoKqXuQhH3Kenp6QIQu3fvLjYfIDZt2lQgfejQoaJfv34F0qdNmyaioqJK1AZALF++XPTp00doNBrRpEkTsX//fnHhwgXRuXNn4ebmJqKjo8XFixetZS5evCiefPJJERAQINzd3UWbNm3Ezp07rcf/+usvodFoxOrVq61pa9euFa6uruLs2bOFtuPQoUMCEEuWLCn0eHp6uhBCiBUrVghvb2+bY3PmzBFKpVLk5OSIuLg4AYgTJ04UOEfnzp3FmDFjivwuCjver18/MXToUOtxwOZVWJvs+f7Lg/u2S+bh4YGHhwebN29Gr9dXWjtmzZrF888/T0xMDE2aNOHZZ5/l1VdfZdKkSRw9ehQhBKNHj7bmz87Opnfv3uzatYsTJ07w+OOP07dvX+Lj4wFo0qQJ77//PiNHjiQ+Pp6rV6/y2muvMX/+fJo1a1ZoG1avXo2HhwcjR44s9PidY4S70Wg0SJKEyWQq/ZdQAjZu3EhoaCgzZ84kOTnZ5qlelbhvBePk5MTKlSv56quv8PHxoWPHjrz99tucOnWqQtsxfPhwnn76aRo1asSECRO4fPkyQ4YMoWfPnjRt2pQxY8awe/dua/6oqCheffVVmjdvTsOGDZk1axb169dny5Yt1jwjR46kU6dOPPfccwwbNoy2bdvy+uuvF9mGCxcuUK9ePdRqtV1tz++ytWnTBk9PT7s/uz34+vqiUqnw9PQkKCiIoKCgcq2vtNy3ggHLGCYpKYktW7bw+OOPs3v3blq1alWhg/SWLVta/w8MDASgRYsWNml5eXlkZmYClifMm2++SdOmTfHx8cHDw4O//vrL+oTJ57///S+nTp3i+PHj1sF6UQg7XJ60Wi0eHh64ubnRuHFjAgMDWb16dYnL3+/c14N+AFdXVx577DEee+wxpkyZwksvvcS0adMYNmwYAJ6enmi12gLlMjIyHDKYv/Ounn9RF5YmSRIAb775Jjt37uT999+nQYMGaDQaBg0ahMFgsDnvyZMn0el0KJVKkpOTCQ4OLrINjRo14o8//sBoNN7zKePp6cnx48dRKpUEBwfbDLi9vLwASvV9KZXKAsI1Go3FtqUqcl8/YQqjWbNm6HQ66/vGjRtz7Ngxmzxms5mTJ0/SqFGjim4e+/btY9iwYTz11FO0aNGCoKAgLl++bJPn5s2bDBs2jMmTJzNs2DCGDBlCbm5uked89tlnyc7OZunSpYUez8jIsP6vVCpp0KAB9erVKzA75evri5+fX4HvKzMzk4sXLxb7ffn7+9uMS8xmM2fOnLHJ4+zsjNlsLvIcVYH7VjA3btyga9eurFq1ilOnThEXF8e6detYsGAB/fr1s+YbP348X3zxBUuXLuXChQvExMTwyiuvkJ6ezksvvVTh7W7YsCEbN24kJiaGkydP8uyzz1qfPvm89tprhIWF8c4777Bo0SLMZjNvvvlmkeds3749b731Fv/+97956623OHDgAFeuXGHXrl0MHjyYr776qsTtGz9+PHPnzmX16tXExsZy+PBhhgwZgr+/PwMGDCiyXNeuXfnxxx/58ccf+fvvvxkxYoSNUMGyDrN3714SExO5fv16idtUkdy3XTIPDw/at2/P4sWLiY2NxWg0EhYWxssvv8zbb79tzfevf/0LIQSLFi1i4sSJuLm50bp1a/bu3Wsdc1QkixYt4oUXXqBDhw74+fkxYcIE6/gG4Ouvv+ann37ixIkTODk54eTkxKpVq+jUqRNPPPEEvXr1KvS88+fPp3Xr1nzyyScsX74cSZKoX78+gwYNYujQoSVu31tvvYWHhwfz588nNjYWX19fOnbsyG+//VbseskLL7zAyZMnef7553FycmLcuHE8+uijNnlmzpzJq6++Sv369dHr9XaNvSoKhaiKrZKRqaLct10yGZnyQBaMjIwdyIKRkbEDWTAyMnYgC0ZGxg5kwcjI2EGVW4eRJImkpCQ8PT2LtY+SkSkrQgiysrIICQlBqSzZs6PKCSYpKYmwsLDKboZMDSIhIYHQ0NAS5a1ygsk3I09ISLAa+8nIlAeZmZmEhYXZ5bpQ5QST3w3z8vKSBSNTIdjT9ZcH/TIydiALRqbcMaakoDt4CGNKSoWXL2vdd1PlumQy9xcZ69eTPGUqCAEKBbWGPIt7p07AHV2hu/9a3gCQ/ccfpH/99e3y//d/eHTqCEJYrJmFsITMACD/veWYbv9+Mr5da0lTKgmeOQOfQYPK9HmqnLVyZmYm3t7eaLXaIscwQghMJlOVdzYqT1QqFU5OTlV26t2cnU36mm+4tmhRZTflNkolDX7dhfpWvICSXGt3U+2eMAaDgeTkZHJyciq7KZWOm5sbwcHBODs7V3ZTAMuNLDcmhoz168ncth1RxG+krlsXlbt7fqHb5fMfFbf+SNnZGBMSCpaPCEfl7mF5It35AlCAAgXm7GwMsbG2BSUJw5V4q2BKQ7USjCRJxMXFoVKpCAkJwdnZucreYcsTIQQGg4Fr164RFxdHw4YNS7zwVh6Y0tPJ3LKFjPXr0V+4aE1Xh4dbLvg7OzFKJRErV5ToojWmpHCxaze40+NUqSTiq6/uWb6oss4R4SX+XIVRrQRjMBiQJImwsDDc3NwquzmVikajQa1Wc+XKFQwGA66urhVav5Akcg4fJuO7dWTt3Im4FdBC4eqK1+OP4zN4EJpWrdBu2EDy1GmWC/fWOKKkd3h1UBDBM2eUqnxZyhZHtRJMPpV5N61KVNT3YExJwXD5Cs51I0CpRLtpMxkbNmC8I/STS7Om1Bo8GK8+fVDdMR7wGTQI906dMFyJxzki3O4Ltizly1p3YVRLwchUHBnr19++S4NlrHCri6X08MDriT74DB6M5oEHijyHOiioTBdrWcqXte67sfsWlZiYyHPPPUft2rXRaDS0aNGCo0ePWo8LIZg6dao1plX37t25cOGCwxosU3EYU1JsxQIgBK7NmxM8dy4N9+4hePr0YsVyv2GXYNLT0+nYsSNqtZpt27bx559/snDhQmrVqmXNs2DBAj788EOWL1/OoUOHcHd3p2fPnuTl5Tm88TLli+HyFVux3CLgP//BZ8BTKGvgONIuwcyfP5+wsDBWrFhBu3btiIyMpEePHtSvXx+wPF2WLFnCO++8Q79+/WjZsiVff/01SUlJhe7BUh241x4zdevWLbBfTEktX6s6UmFB3B0w01SdsUswW7ZsoU2bNgwePJiAgAAeeughPv/8c+vxuLg4UlJS6N69uzXN29ub9u3bc+DAgULPqdfryczMtHlVJQYOHMiJEyf46quvOH/+PFu2bKFLly42e8zcGXE+OTmZEydOVGKLHYM5K4vU2bNtEx0001SdsWvQf+nSJZYtW8b48eN5++23OXLkCG+88QbOzs4MHTqUlFv2OncHwAsMDLQeu5t58+YxY8aMUja/fMnIyOD3339n9+7ddO7cGYCIiAjatWtnky8/4vz9ghCC5KlTMSYkoA4JIXT5cszp6Q6baarO2PWEkSSJVq1aMXfuXB566CFeeeUVXn75ZZYvX17qBkyaNAmtVmt9JRSysltZVJU9ZiqajLVrydq2HZycqLN4Ea6NGuLevl21FEuKLoXDyYdJ0TnG+NIuwQQHBxfYtKdp06bWrRjy77Kpqak2eVJTU4u8A7u4uFh9X6qaD0xJ95iZMGGCVVweHh58+OGHldTispP311+kzp0HQMD48Wiioiq5RaVn44WN9NzQkxd/fpGeG3qy8cLGMp/TLsF07NiRc+fO2aSdP3+eiIgIACIjIwkKCmLXrl3W45mZmRw6dIjo6OgyN7YyKMkeM//5z3+IiYmxvp5//vnKa3AZMGfrSBw7DmEw4NGlC77Dh1V2k0qFUTKyN2Ev0/dPRxKWWT5JSMw4MKPMTxq7xjDjxo2jQ4cOzJ07l6effprDhw/z2Wef8dlnnwEWc+2xY8cye/ZsGjZsSGRkJFOmTCEkJIT+/fuXqaGVyb32mPHz86NBgwaV28gyIoQgZfp0DFeu4BQURPC8udXGTu9G7g1OXjtpfZ29fpY8c8FlDElIJGQlEOReQcaXbdu2ZdOmTUyaNImZM2cSGRnJkiVLGDJkiDXPW2+9hU6n45VXXiEjI4NOnTqxffv2Crd1Kk+aNWtWbafJiyJj/Xoyf/gBVCrqLFqI0x1ra5VNii6F+Mx4wr3C8dP4cSH9AjHXYiwCSTvJ1eyrBcq4q93RGXU2aUqFkjDPsgVYsds05oknnuCJJ54o8rhCoWDmzJnMnDmzTA2rCty4cYPBgwfzwgsv0LJlSzw9PTl69GiBPWaqO3nnzpM6ew4A/mPG4NaqVSW36DbfnfuO2QdnW03/1Uo1RqngzmX1vevzYMCDRPlHEeUfRV3vumy+uJkZB2YgCQmlQsm06GllerqAbEtWLCXdY6Y6I+XkkDhuHEKvx/0f/6D2Sy9WdpMQQnAi7QTfnfuOH+N+tDlmlIy4ObnZiKOFfwu8nAtOFg1oOIAOIR1IyEogzDOszGKBauZxmZeXR1xcHJGRkfdVF6+0OOL7SJo4Ce3mzTgFBBC5eRNOvr4ObmXJuay9zNZLW/nx0o8kZicWme+LHl/QPrh9meurER6XMo4jY9NmtJs3g1JJnYXvV4pYbubdZFvcNn689COnr5+2prs5udGpTid2Xtl52xMTyzgkwiuiwtuZjyyYGor+4kVSbo0z/V8fjVvbtuVW152D9iD3IPJMeexO2M3WS1vZl7gPs7DEZlApVHQI6UDf+n3pEtYFjZOGjRc2OnwcUhZkwdRApNxcy7glNxf3DtHUfuWVcqvrzgtegYKogCgupF+wmcF6oPYD9K3fl551e+Kn8bMpXx7jkLIgC6YGkjJnDvoLF1H5+RGyYAEKlap86tGlWMUCliAXMWkxAIS4h9CnXh+eqP8E9bzrFXueIPegShdKPrJgahjarVvRrt8ACgV13luAk5/fvQuVkvjMeKtY7mRC2wk82/RZlIrq52pe/VosU2r0l+JInjYdAL8RI3AvZ3OlY2nHCqQpFUq6R3SvlmIBWTA1Bv2VKyS8+ioiJwe3du3wGzWyXOv76dJPLI1ZCljihAFVYtBeVuQuWQ0gY/16kt+ZYn3v0aVLuY1bAPYn7mfyvskA/KvJvxj+wHCuZl+tEoP2siIL5j7HmJJiiW18B2nvv49X717l4t9y+tppxu4ei0ky8Xjdx5nYbiJKhZJgj2CH11UZyF2y+5ysn3+2jTwJ1pCpjuaS9hIjd40k15RLdHA0czvNrbZjlaK4vz5NFWbv3r307duXkJAQFApFhVg7G+LjufbxJwUPlEMgixRdCq/tfI0MfQYP1H6AxY8uRq1SO7SOqkCNFkyyNpf9sddJ1uaWe106nY6oqCg++aSQC7gcMGdmkvDaCKTMTJxCQiA/SmY5BLLQ6rWM+GUEybpk6nrVZWn3pbir3R12/qpEtR/DCCHINdq/7cWGY1eZtuUskgClAmY8+QADW9sXHkmjVpXYyapXr1706tXL7naWBmE0cnXMGAyXLuEUFETdb7+xdsMcHcgi15TL6F2juZhxkQBNAJ8+9im+rpVnwFneVHvB5BrNNJu6o0znkARM+f4sU74/a1e5P2f2xM25an2FQghSZs0m58BBFG5uhC1bijogAMDhg3yjZOTNPW8Scy0GT2dPlj+2nBCPEIfWUdWo0V2y+5GbX31FxnffWVby338f16ZNy6UeSUhM3z+dvVf34qJy4ZNun9CwVsNyqasqUbVuj6VAo1bx58yedpVJ0ebRfdEepDu3LVHAL+M7E+Rdcr8Sjbr81jJKQ9avv5E2fwEAAW+9hWfXR8utrsXHFrMldgsqhYqFnRfyUMBD5VZXVaLaC0ahUNjdLarn78G8AS14e+MZzEKgUiiYO6A59fw9yqmV5U/eX3+R+OabIAQ+Tz+N77Ch5VbXyjMrWXl2JQDTO0ync1jncqurqlHtBVNanmkbziON/Ll8PYe6fm4Ee2squ0mlxnjjBikjRlrMXqIfJmjKO+UW8eX7i9+z8NhCAMa3Hk//Bv3LpZ6qSo0VDECwt6bChJKdnc3Fi7e3s4uLiyMmJgZfX1/Cw0u/JiKEIHXGTEwpKThHRhK6ZAkKdfmsf+xJ2MO0/dMAGNpsKMObDy+XeqoyNVowFcnRo0d59NHbY4rx48cDMHToUJuggPYghMCcno7+wgXUPj6Efboclbe3I5prQ4ouhV/jf2XR0UWYhZm+9foyvs14h9dTHZAFU0F06dIFR8cbMV2/gcjLA7UToe99hHMZnlRFsfHCRqbvn271q2/o05AZHWfcdyYvJaVmfur7AFN6Oub0mwD4v/EGbm3aOLyOFF2KjVgAYrWx3Mi9UUyp+xtZMNUQs06HMSkJuLXP5B378TiSzRc324gFbodbranIXbJqhqTXW3YvFgKlhwcqp/L5Cb/9+1urA9idOCLcanVGfsJUEySjEXNmJobLVxBmM0qNxmLq4uDpYyEEHxz/gDmH5iAQtApoZR2v3A8ek2VFfsJUA0w3b1q7YAAKlQrn8HD0ZvuNTovDaDYy/cB0tsRuAWDUg6N4teWrpOakVpkwR5WNLJgqjmQ02ogFQJjNODq+r86oY9xv4ziQfACVQsW06Gk81fApoGqFOapsZMFUcUQRWwUKvQGcHGPLdi3nGqN2jeKvm3+hcdKwsPNC/hH6D4ec+35DFkw1ReHiDA7okl3SXmLEzhEk6ZLwdfVlabelPOD3gANaeH8iC6YKI8xmjMnJBdLVISEo1eoyCyYmLYbRv45Gq9cS7hnO8u7LCfOquTNgJUEWTBXGmJyM0OtRODnhHBGBMEsoXJwtYikju+J3MWHvBPRmPS38WvBxt4/vT09JbSLcjAXf+uBdp8ynk6eVK4hly5bRsmVL607R0dHRbNu2rcj8pvR0zBkZAKhDQ1FqNKg83B0ilrV/r2X87vHozXoeCX2EL3p8cX+K5fjXsKQ5fNXX8vf412U+Zc0WjDYR4vZa/pYzoaGhvPvuuxw7doyjR4/StWtX+vXrx9mzBd2ipbw8a1fMKSAAlYdj/HSEEHx4/ENmH5qNJCQGNhzIB49+gJvazSHnr1JoE2HrGMiP7Swk2Dq2zL91mQTz7rvvWndOzicvL49Ro0ZRu3ZtPDw8GDhwIKmpqWVqZLEIAQad/a/Dn9vefQ5/bv857DCm7Nu3L71796Zhw4Y0atSIOXPm4OHhwcGDB20/jiRhTEgASULp7o6Tv79DvqarWVd57ZfX+Pz05wCMfHAk06Kn4aS8T3vlZzbcFks+wgw3L5XptKX+to4cOcKnn35Ky5YtbdLHjRvHjz/+yLp16/D29mb06NEMGDCAffv2lamhRWLMgbllDLwgJPjpTcvLHt5OAmf7wwmZzWbWrVuHTqcj+q6A4MbkZKT8cUtoqEMcwdb8tYZ5h+dZ3z9Z/0lGRI0o83mrJGYT7HkX9r5X8JhCBb7Fb61xL0r1hMnOzmbIkCF8/vnn1Lpje2qtVsuXX37JokWL6Nq1K61bt2bFihXs37+/wJ20JnL69Gk8PDxwcXHhtddeY9OmTTRr1sx63JSRgTk9HbCMWxzhCHY45bCNWAB+uPQDKbqUMp+7ypGZDF8/eVssER0tIgHL375LyjzwL9UTZtSoUfTp04fu3bsze/Zsa/qxY8cwGo10v8N6tkmTJoSHh3PgwAEefvjhAufS6/Xo71icy8zMtK8xajfLnd4eMpPgk3a2j2yFCkYdAi87nlZ29v0bN25MTEwMWq2W9evXM3ToUPbs2UOzZs0s45ZbK/qOGrfsit/FxL0TC6TnWxzfV6v3F36BTa9Azg1w9rSIo8WgW7NklyxPFgfMktktmG+//Zbjx49z5MiRAsdSUlJwdnbGx8fHJj0wMJCUlMLvaPPmzWPGjBn2NuM2CoX93SK/htD3A8sgUJhv3338yjdMkLOzMw0aNACgdevWHDlyhA8++IDly5Y5dNwiCYmlMUv59NSnhR6/ryyOzSb4bTb8sdjyPqglDF4Jtetb3nvXcYhQ8rFLMAkJCYwZM4adO3c6bNvvSZMmWd11wfKECQurgB+z1fNQv5tD7z72IkkSer3eoeOWTEMmE/dO5PfE3wF4rulz1POuZ50Zu68sjrVXYf2LkHCru9/2ZegxG9TltyW9XYI5duwYaWlptGrVyppmNpvZu3cvH3/8MTt27MBgMJCRkWHzlElNTSWoiKiLLi4uuLi4lK71ZcXBd5/imDRpEr169SI8PJysrCzWrFnD7t27+WnDBoeNWy6mX2TMb2OIz4rHReXCtOhp9K3fF4B/hP6j8iyOHbx4CMD5HbDpVchNBxcvePIjeKC/Y85dDHYJplu3bpw+fdombfjw4TRp0oQJEyYQFhaGWq1m165dDBw4EIBz584RHx9fYDaoppGWlsbzzz9PcnIy3t7etGzZkm1bt/JIZCRIEk7+ZRu37Lyyk8l/TCbXlEuwezBLHl1Cs9q3JxQqzeL42Er4YaxlCl6hhCeWQOsyxEwzG+GX6XDgY8v7kIdg0ArwjSx7W0uAXYLx9PSkefPmNmnu7u7Url3bmv7iiy8yfvx4fH198fLy4vXXXyc6OrrQAX9N4ssvv7R5LyQJQ+wlJH2eZdwSULpxixCCr89+zUdnPgKgfVB73uv8HrVca92jZDkiBCSfhKMr4PjKO9Il2PoGnPwGQttCcBQEtYDaDUBZAsvrjHhYNxwSj1retx8Bj80Ap4rroTh81Wrx4sUolUoGDhyIXq+nZ8+eLF1a0NW1pmMZt+ShcHKydMVKMW4xSSZu5t1k/fn1gCVW2NjWYytvMfJmHJxeD6e/g+vni84Xf8DyysdJA4EPWMQT3NIycA9oBs63ZiG1iXBiFRz4CPRZ4OoN/ZZC0yfK9/MUgkI4OvZPGcnMzMTb2xutVouXl5fNsby8POLi4oiMjHTYpENlYMrIwHj1KgDOdeuWqiuWZ8oj7kYcSfFJLI5bzMg2I+ldr7ejm3pvdNfh7CY49R1cPXw73ckVIjvDhZ/hTnc3hRK6TgVtAqSchtQzlsXnu1EooXZDcPaApDt2Y/aJgKFboVZEmZte3LVWFPepXUTVRdLrMeWvt/j7l0osWr2WpOwkTJIJlVLFe4+8R9Og8onSb6nwrkG7QQd//2R5ksT+CpLJkk+hhMhHoMXT0LQvuHpZDB7vnr5v9fztc0u3zFWST1oElHIaUk6B7hpcP1dIW65CJZrzyIKpICSjEZGXhzElBZG/3nJr35aSYDQb0Zv1ZBoySc+zzKq5Obmh1CiJ9CnHAe/xr+8wYlRAaBtI/ROMutt5gh+Elk9D84HgedfEwr2m75Uqy/qXX0PLQiNYxkDZqRDzDeyabps/3x6sEpYBQBZMhXB3EAuUSrvGLel56SRl21oz+Gn88FJ6cfn6ZQe29C7utvhFwNVbC9a16lqeJC0Gg3+j4s9j7/S9QmERXsun4deZBS0yymgPVhZkwZQzhQWxQJIKz1wIRrOxgFgAfF19MZdiq0K7uBlb0OIXoPf70PYlh4d4KoB3ncItMirp6QKyYMqdYoNYlGCRMsdUyIAYMEgGVJTzhk6ZhdjoKVTQuHf5iyWfKmCRcSeyYMoZharwi1rh4nzPsibJRFpOWqHHnJXOmB0cl8yG+IOWOzsACkBU3h2+Ai0y7oUsmHJESFLxQSyKwSSZuJx5GYPZgEqhwixuiyPEIwS1Sl1+XbKU07D6aTDlQsMeli5YRnyVuMNXNrJgygkhBMakZKScHBRKFeqIcMtNugRBLMySmSuZV9Cb9DgpnajrVRelQolBMuCsdEatKp8NkwC4EQv/GwB6LYRHw+CvLAuIDlj3uB+o2T795Yj5xg3MGbeMKsPC2HfsGP3/9U9CIyJQKBRs3rzZJr8QgqlTpxIcHIy7uzvP9XuOhLgEIrwicHFyQa1S4652L1+xZCbB1/1Bl2ZZdf/Xt7dX22WAGi6YFF0Kh5MPO9z70JyVjfGW/486KAiVpwc6nY6oqCg++eSTQsssWLCADz/8kBkLZ7Bm+xrc3NwY8cwIMDm0aUWTcxP+9xRo4y0LlM9tBI1PBVVefaj2XTIhBLmmXLvLbYndwrxD85CQUKJkUvtJPFn/SbvOoXHSFFhLkfR6jFct+6eofGqhql0bgF69etGrV68iP8OSJUsY+eZIOvboiFKhZPWq1dStU5fNmzfzz3/+0+7PZxf6LFg9CK79DZ4h8Pxm8Cj5ompNotoLJteUS/s17ct0DgmJOYfmMOfQHLvKHXr2kE2IImE2Y7gSf2s7CjfUIcElWpyMvRRLSkoKrTu2RqlQEuEVgZvajfbt23PgwIHyFYwxD759FhKPgcbXIhYfx2/9d79Qo7tkjkQIgSEhAWHQo1CrcQ4PQ6G899crCYlTl04B4B/gT7hXuFWExbl2OwSzCTa8aInN5uwBz60H/8blV999QLV/wmicNBx69pBdZVJzUum/uT8St1exlQolm/ttJtAt0K668zGlpiJlZ4NCiXN4eIk8J4UQJGYnknPLWjfEIwR3tf1hm0qFEBazl79/AJUL/OsbqNO6YuquxlR7wSgUCrsjN0Z6RzKtwzRmHJhh4+ce6V06I0ZTejqm69cBcA6tg1KjuUeJ22LJ1GfiH2hxHstOz4Y7Zm9TU1N58MEHS9Wme1QOP78DMassi5GDV1isjGXuSbUXTGkZ0HAAHUI6lNnPXcrJuR0eyd8flbd3icrdzLuJVq9FgYLo5tEEBQWxa9cuq0AyMzM5dOgQI0aUQ8C93xfedvHt9zE06eP4Ou5TaqxgoOx+7pLRiOHWBq0qT69izfWzs7O5ePEi+f5652PP4xPkQ5PQJnj5eTF27Fhmz55Nw4YNiYyMZMqUKYSEhNC/f/9St69QjnwBv86y/N9zHjz4rGPPf59TowVTFoQkYYyPR5hMKF1cUIfWKXZG7OChgzzW/THr+wVTFgAwdOhQVq5cyVtvvYVOp+OVV14hIyODTp06sX37dsd5lmoTLT72v9+KCvnIWxA90jHnrkHILsqlQAiB8epVzFqtZYPW+vVROhdtTFmYP0uIR0iZA1WU+Ps4/jVseQOrq3Ddf1jcfCvK4riKUhoXZXlauRSYrl/HrNWCQoE6LLxYsRTlz+KhdswWFvdEm2iJ1HKnX/2V/YWb7svcE1kwdiAZjRjT0jDd2r5DHRyMyqP4aWCD2VB4ulR4usOJWVNwWw4HbPtQU5HHMCXkbjdjpbs7Tr733rUr25hdaLqz8t7+MGXm1Dr4bW7B9Ep2863OyE+YElCYm7Gk0yEZjcWWu5F7g+u51wuk5/uzlCtH/wsbXwYkCG3n8G0fairyE6YElMbN+GbuTasVtL+bP7VcalWMPwvAH0vgl2mW/9u+DL0WQFZylXHzrc7IgikB5iL2rCnKzTg9L51kncXT0k/jh7/GH4VCUf5CEQJ+nQ2/v29532k8dJtqmQ2rQm6+1RlZMPfArNVivnmzQHpRbsYZeRnWWTFfjS8BbgEO2XbvnkgSbJ8Ih2/tCdN9OnQaV/711jBkwRSDlJeHIdGy665TbT9UfrURekORbsZavZbEbEv+Wq61CHILqhixmE3w/Tg4uQZQQJ9bYZBkHI4smCIQZrPF7CU/SmVQoOXiL2LMkqnP5GqWJV5yLddaBLuXzBem7A0VsONtOLXGMqDvvwyinin/emsosmAKIX8lXxgMFt+WsLBiL/4sQxZXsy1i8XHxqTixSGZLMPBLv4LK2bJPSiVEtK9JyNPKhWBKu4Y5KwsUCotvi1PR95VsQzYJWQkIIfB28SbEI6RQsSxbtoyWLVvi5eWFl5cX0dHRbNu2zXo8Ly+PUaNGUbt2bTw8PBg4cCCptxZIC0UyWfzvTbmW7SKeXSuLpQKo0YIxpqSgO3jIGrACLDNipmuW4HnqkJBifVuyDdnEZ8UjhMDL2atIsQCEhoby7rvvcuzYMY4ePUrXrl3p168fZ8+eBWDcuHFs3bqVdevWsWfPHpKSkhgwYEDhFZuNcOMiGHMtEfOf/Bjqdy3ltyBjD9Xe+FIIgci1PwhGxubNpM6eY5ldUioJfGcyXr16Y4i7hJAknGrVQh0cXGR5nTGHq8Y0JASezp6EeoaiVNh3//H19eW9995j0KBB+Pv7s2bNGgYNskSw//vvv2natGnB7drNBkvsMFMeeWYVcVpBZIPG1Xq/nMqiRu4PI3JzOdeqjK61kkTqzFmkzpxlX7Gdq/Dw9rNbLGazmXXr1qHT6YiOjubYsWMYjUa6d+9uzdOkSRPCw8NvC8ZkAEO2xWhSMoJSDZ5hUIhhp0z5Ue0FU5m4qd0J8wwrsVhOnz5NdHQ0eXl5eHh4sGnTJpo1a0ZMTAzOzs42O0/DHUEwdNctO3blo3Sy7KdiqlKdgxpBtReMQqOh8fFj9854B8bUVC71ecJ22wmlkpAli3Fv3brQcUu6PoOU7NtxktUqZ8L8G9j1ZGncuDExMTFotVrWr1/P0KFD2bNnj20mIcCst4xPzEbIvWkrFri149etAOEyFYpdne558+bRtm1bPD09CQgIoH///pw7Z7utmt2zPWVEoVCgdHOz6+USGUnwzBmQHwZJqaT2q6/g3qYNTrVrF8hvdlGTYk4Hjav1ZXRWIuy5YE0GnIWeBnXDad26NfPmzSMqKooPFi8kyEeDwWAgI/aoZbu6tL8g/TKpqSkE+RbRtzYXbt8mU77YJZg9e/YwatQoDh48yM6dOzEajfTo0QOd7vb2bXbN9lQiPoMGUW/7NoJmzSR02VJ8Bg0q0lw/01C4LVmJfVp01yHtrGVmK+2sZYfha38j5Wai116jdb3aqNVO7Pp1t3VrvHNXUohPTCH6H0XMfqkqbqttmdvY1SXbvn27zfuVK1cSEBDAsWPHeOSRR9BqtXz55ZesWbOGrl0tP/SKFSto2rQpBw8etJ3tuYVer0d/hzVwZhGGjo5GmM2gN+DatClKjabIGbFsQzapOYU/IUvk02IygDaBSfM+otejHQivE0xWto41m7ez+8BRdqxZhrdfMC/+3z8ZP+sDfOs2x6uWH6//exbR0dE83K1PwTGMdxg4OYMprzQfXaYMlGkMo9VqAcv0KFCy2Z67mDdvHjNmzChLM+zGshVFEpI+D4WTE+rw8EKjVGbqM7mafRUhBC4qF/R3dINK5NMiJItZPZB2/SbPj5lKctp1vD09aNniAXb8tJXHelp281r8yeco//1vBj7zLHq9np49e7J06VLLedz9wMXL0g1TuVjEIlMplHodRpIknnzySTIyMvjjjz8AWLNmDcOHD7d5YgC0a9eORx99lPnz5xc4T2FPmLCwsHINgmG6ft2yWKlQ4Fy3Lir3gm7GGXkZVkNKLxcv6njUwSyZS+7TYsixbEJUVKD0gAfKfOFXlaAg1ZUKXYcZNWoUZ86csYqltLi4uODiUjH9ccloRNJqbbeiKEQsN3JvWJ2/fFx9CHG3rOArVcoSPlVSLNtmg8UgUuMDOTdu58nvUtUQkrW5xF3XEennTrD3vaOCVmVKJZjRo0fzww8/sHfvXkJDQ63pQUFBltmejAybNYXU1FSCgkofMM8RFPDJ17ihumuQL4Tgeu51676Svhpf+0z0DbpbT5VbYwtXH/AOBZUaPIJqZJdq7ZF4Jm08jSRAqYB5A1rwTNvquzuAXbNkQghGjx7Npk2b+PXXX4mMtI1F3Lp1a9RqNbt27bKmnTt3jvj4eKKjox3T4lJQqE9+bg7CdHu3IiEEqTmpVrH4u/mXXCySBJmJltkvU55lYbFWJPhGWsQCFpG4eNYosew+l8aEDRaxAEgCJm44zfs7/mb/xetoc4qPiVAVsesJM2rUKNasWcP333+Pp6endSsGb29vNBoN3t7evPjii4wfPx5fX1+8vLx4/fXXLbM9hQz4K4p7+eQLIUjWJZOeZ9liL9A9ED+NX8lObtBBxhUw3apDUwu8QkFV7deES0We0czWk0msPhRPTEJGgeMC+Pi3WD7+LRaAMF8NLep480CIN83reNM8xIvaHrZd9KrUpbPrV122bBkAXbp0sUlfsWIFw4YNA2Dx4sUolUoGDhxYcLbHQdg7T1GUYBQuzkhCskbRBzsiUkpmy1hFd2tbcKWTZWxSgdvcVSW72dhr2aw+GM/6Ywlk5lme3E5KMEm2+RRA58b+xF7LJuFmrvX10+nbFuPB3q63xONNeo6erw9cKXWXztFiq1bWymazmfPnzxMQEEDtW1vh3QtJr8cQG4uQbH85dUgIylo+JGQlkG3IRqFQUMejDt4uxUTfNxks4xDJbDGCzJ9m1vhaAkwoK/apcuPGDdLS0mjUqBEqlapC6wYwmCR2/pnKqoNXOHDp9qRGaC0Nz7YPZ3DrMH79O5W3N57BLAQqhYK5A5pbL/iMHANnkzI5k6jlTFImZxO1XLquK6o6Kw+EeBHg6YKPmzM+bmp8NM7UclfjrVHj4+ZMrVtpv55LZebWP4sUW2lmyaqVYACSk5PJyMggICAANze3YscYloDhCUgGPUo3N5wCAhBGEwpnNUKlJFmXTK4pFwUKgt2DcXcuJoplTjrcYUsGgMIJvIItY5MKRAhBTk4OaWlp+Pj4EFyMG4IjuPsufTU9h28PJ/DtkQSuZ1tuGkoFdG0SwJCHI3ikoT8qpcKm/OXrOdT1c7vnXT4rz8ifSZmcScpk999p/H6xYFy30qJSKPhj4qPWNtQI8/782ba0tLR75jVnZCDl5IBSiZNSieJWQAtJSNzIu4HRbESpUOLr6ktaRjHnMxutC5A2eAZD9nXAcT+qPfj4+JT77OOds1wKBTQJ9ORcapZ1IO/v6cI/24bxz3bh1PEpXAzB3poSd4c8XdW0r1eb9vVq07tFEB3f/dVaF1iEOfepFigVCtJzDGTkGsnIMZCRYyQjx0h6jgFtrpEb2QYMZttehVkILl/PKVPXrNoJRqFQEBwcTEBAAMZiIk9m7vyFa4sWoVIqCZ4zB7cGDbiWc41z6edYdXYVSbokvJy9mN5hOg1qNSj8JDfj4PQ6+HMLmAsxQ+m/HELbOOiT2YdarS73blhSRg4TN562hmYWAv5KyQKgY4PaDGkfwWPNAlGrysdxN9hbw7wBLYrs0hVHsja3gNhUCgV1/ezbre5uqp1g8lGpVEVeMHnnz3NzyhSUeXn4j3kD34fbs/HCRqbvn261MPZ09mR59+XU874rxrBkhvPb4fBncGl30Q1QqMA/Eu6zFXYhBGeTMtl2JpkNxxILxDEHWPh0FANbhRY8UA480zacRxr5l7hLl09RYivrwL/aCqYoJJ2OxLHjEHl5uHfsSO1XXyVFl2IjFgCdUYeb0x13G90NOPE1HPmvJbgEWPzlG/WCdi9bFiR/GGeJfF8J8YnLc2pVCMGZxEx+PJ3MtjPJXLmRU2RelUJBh/olm3BxFPZ06e6ktGIrjvtKMEIIkqfPwHDpEk6BgYS8twCFUsnp66cL+K5IQiIhK4EgbYrlaXJ6/R2zXrWg1VBo8wLUumOX1gbdKyU+8doj8daukUIB/+nRmJf+UQ9np5J3he4WnBCCk1e1bDudzE9nkkm4edvmzcVJyaONA+jdMph0nYGZW/906F26Iimt2Iqi2s2SFUf6d9+RMnUaqFREfP0Vbq1bo9Vr+b9t/0ecNs4mrxIFO4x+BF29w1szOAravQLNB4K6alwUBy/d4J+fHSz0WICnC3VqaQjx0RDqY/kb4qOhzq2Xl8YJhUJRYODeqb4fl67rSMy4LRJXtZKuTQLo3SKYRxsH4O5y+15qzyxXdaJGzJIVRd5ff1miwAAB48bi1ro1OcYcRu8aTZw2Dg+lMzlmPZJCgVIIpl2/QVD2FUswiQeesggltE2V2cZOm2vkw10XWLEvrsg8aVl60rL0nIjPKPS4h4sT/p7OxF2/3cUSAutUrZuzyiqSLo39cXMu/HJw9F26OnNfCMaclcXVsWMRBgMeXbrg+8ILGM1Gxu8eT8y1GLzUHqy4fBEvs5kEtRNhRhNBZjNEvw4d3wCPonc/rmjMkuDbI/Es/Pk8N3WFe3SqFLD19U6YJEFSRi5X03NJysgjMSPn1t9cbuoMZOtNZOtNhZ5jXPdGvNq5Hq7qil/wrM5Ue8EIIUh+ZwrGK/E4hQQT8u48JAQTf5/IvqR9aJw0LA15nEbnFwFYhJJPo55VSiwHYm8w84c/+SvZYqbTIMCDKU80I0WbW2C2p1mIxSKhZahPoefKNZhJzMjlTKKWcWtjbEZwKoWCp9uGymIpBdVeMOmr15C1Yweo1YQuXozS25sZB2bw85WfUSvVLGn6ElE/TS1YsAptW5dwM4e5P/3FtjMWeyovVyfGP9aIIQ9HWNc47J3t0TiraBDgQYMAD/Qms8OnV2sq1VowuadPk3rLizPwP2/i2rIli48tZsOFDSgVShY0eo4OP02xmNz7NbYEoaikaeHC0OlNLN19kc9/j8NgklAq4LmHIxjXvRG13G3dAMoyjiiP6dWaSrUVjFmrJXHMWDAa8XzsMWr93//x5ZkvWXF2BQDT6z5F95/nWUKrNuoFg1davB6rwLZ1kiTYHJPIu9v+Ji3LMpXdoX5tpvZtRpMg+2YGS4o8cHcM1VIwQgiSJr2NMSkJdVgYwXPnsO78Oj44/gEAb4b25KndH1kC3jXrBwO+sDhulXHburIsHuaX1elNfPJbrNVXJNzXjcl9mtKjWWDFbJEhUyaqpWBurlhJ9q+/olCrqbNkMT9f/4PZB2cD8HJAB4b+8aXFt77lM9BvqUOcue5eyxjRuT6PNgnALIkCL5MkkMTt9/tjr7Pu6FWbgbe7s4rRXRvyQqe6uDjJg+/qQrVauDSmpJC1cyep894FSSJo+jROdwphzK9jMAkTz9SKYvLxrSgAWj0PTywBZdkuxhRtHqsOXrZ6CDoCBbBldEdaFDHDJVMx3NcLlxnr15M8dZo1HrJrixZc6tKA8b+8hkmY6O3ZkLfzxdLuFXh8/u1QsHaSlWdk+5kUNscksj/2RqEGiABBXq64u6hQKRWolEpUSix/FeCkVKJUQlaeibNJtsEJBZCtNxd+UpkqTbUQjDElxUYsAHlnzzJl8yj0Gj2d3cKYfWqXJaJHhzfgsZl2r9gbzRK/X7jGphNJ7PwzhTzj7bqiQr05dVVbYC1j06gO9xzLlJeZuUzlUC0EY7h8xTbSPoAk4ZmWTetGgbz/537UAJ0nQpeJRYqlMAPEmIQMNp9IZOupZJuV9Xr+7gx4qA79HqxDmK8ba4/El2oto7zMzGUqh2ohGOe6EZbu1R2iMSvA09+LJeeO4yoEdJsG/xhf5Dnujo/VrUkgF69lE3eHD7mfhzN9o0IY8FAozet42cxalWUtQ14HuX+oFoJRBwWRNKofgR9vQiUsYlnTy5kF1/7GQwjLeOXh14osn6zNtYoFLPGxdv5liUypUavo+UAg/R+qQ6cGfjgV4z1YlrUMeR3k/qBaCCZFl8J4zx/xGakiKF2QUktBhqeZNxKU8MQiaDO82PKHLt20GUPkM+rR+ozs0sDGlF1GpjiqxZUSnxmPJCRueim46XW7m5Tw6H8IKkYsZknw1f7LLNj+d4FjKoWC5x6OkMUiYxfV4moJVzijFALpjjGFUgjCGjxeZJmLaVm8tf4Ux2/5ikT6uXPlhg5JIA+8ZUpNtRBMUG4m067fZIaf7x0OYDcJys0qkNdolvhs7yU++OUCBrOEh4sTE3s14dl24aRm5ckDb5kyUS0Eg299Buhy6ZCbdNsBTKKAef7ZJC1vrT9lXSjs0tifuU+1IORWvCx54C1TVqqHYLzrQN8PCNo6lqA8fQHzfL3JzEe7LrJ8TywmSeCtUTOtbzOeeqiObNAo41Cqh2DAYhtWv1sB8/zj8em8tf4UF9OyAejVPIgZ/R4gwPP+ihcmUzWoPoIBG/P8HIOJ93ecZ8X+OIQAPw8XZvV7gF4tyjfOsEzNploJJt+05Ua2nvd2nCf+piUayoBWdZj6RDN83GrOZkUylUO1Ecydpi35BHu7MndACx5tXHUCWcjc31QLwdxt2gIWn5KvX2hHw8CK3WpCpmZTPmHXHUzcdV0B0xYBXM8uPG6XjEx5US0EE+nnjvKu2WHZp0SmMqgWgsn3KVHdWlORTVtkKotyG8N88sknvPfee6SkpBAVFcVHH31Eu3btSn0+2adEpipQLk+YtWvXMn78eKZNm8bx48eJioqiZ8+eJdpmrziCvTVE168ti0Wm0iiXqDHt27enbdu2fPzxxwBIkkRYWBivv/46EydOtMmr1+vR37EteGZmJmFhYaXa7kJGxh6qRNQYg8HAsWPHmDRpkjVNqVTSvXt3Dhw4UCD/vHnzmDFjRoH0zMzMAmkyMo4k/xqz55nhcMFcv34ds9lMYGCgTXpgYCB//13QkWvSpEmMH3/bFz8xMZFmzZoRFhbm6KbJyBRKVlYW3t7eJcpb6QuXLi4uuLi4WN97eHiQkJCAp6dnAUvj/O5aQkJCqbprlVlebnvVa7sQgqysLEJCQkp8PocLxs/PD5VKRWpqqk16ampqifaUVyqVhIYWv0Ovl5dXmcY3lVlebnvVantJnyz5OHyWzNnZmdatW7Nr1y5rmiRJ7Nq1i+joaEdXJyNToZRLl2z8+PEMHTqUNm3a0K5dO5YsWYJOp2P48OKju8jIVHXKRTDPPPMM165dY+rUqaSkpPDggw+yffv2AhMB9uLi4sK0adNsxjzVpbzc9urZ9rupctH7ZWSqMtXClkxGpqogC0ZGxg5kwcjI2IEsGBkZO6g2gtm7dy99+/YlJCQEhULB5s2bS1x23rx5tG3bFk9PTwICAujfvz/nzp0rUdlly5bRsmVL68JXdHQ027ZtK+WngHfffReFQsHYsWNLlH/69OkoFAqbV5MmTUpcX2JiIs899xy1a9dGo9HQokULjh49WqKydevWLVC3QqFg1KhRJSpvNpuZMmUKkZGRaDQa6tevz6xZs0psu5WVlcXYsWOJiIhAo9HQoUMHjhw5Umjee10fQgimTp1KcHAwGo2G7t27c+HChRK1406qjWB0Oh1RUVF88skndpfds2cPo0aN4uDBg+zcuROj0UiPHj3Q6XT3LBsaGsq7777LsWPHOHr0KF27dqVfv36cPXvW7nYcOXKETz/9lJYtW9pV7oEHHiA5Odn6+uOPP0pULj09nY4dO6JWq9m2bRt//vknCxcupFatWiVu75317ty5E4DBgweXqPz8+fNZtmwZH3/8MX/99Rfz589nwYIFfPTRRyUq/9JLL7Fz507+97//cfr0aXr06EH37t1JTEwskPde18eCBQv48MMPWb58OYcOHcLd3Z2ePXuSl5dXorZYEdUQQGzatKnU5dPS0gQg9uzZU6rytWrVEl988YVdZbKyskTDhg3Fzp07RefOncWYMWNKVG7atGkiKirK/kYKISZMmCA6depUqrKFMWbMGFG/fn0hSVKJ8vfp00e88MILNmkDBgwQQ4YMuWfZnJwcoVKpxA8//GCT3qpVKzF58uRiy959fUiSJIKCgsR7771nTcvIyBAuLi7im2++KcEnuU21ecI4Eq1WC4Cvr69d5cxmM99++y06nc5uM59Ro0bRp08funfvblc5gAsXLhASEkK9evUYMmQI8fHxJSq3ZcsW2rRpw+DBgwkICOChhx7i888/t7t+sLhtrFq1ihdeeKHE4Xc7dOjArl27OH/+PAAnT57kjz/+oFevXvcsazKZMJvNuLraRjDVaDQlfsLmExcXR0pKis137+3tTfv27Qt1OSkWu+RVRaAMTxiz2Sz69OkjOnbsWOIyp06dEu7u7kKlUglvb2/x448/2lXnN998I5o3by5yc3OFEMKuJ8xPP/0kvvvuO3Hy5Emxfft2ER0dLcLDw0VmZuY9y7q4uAgXFxcxadIkcfz4cfHpp58KV1dXsXLlSrvaL4QQa9euFSqVSiQmJpa4jNlsFhMmTBAKhUI4OTkJhUIh5s6dW+Ly0dHRonPnziIxMVGYTCbxv//9TyiVStGoUaNiy919fezbt08AIikpySbf4MGDxdNPP13i9gghRI0TzGuvvSYiIiJEQkJCicvo9Xpx4cIFcfToUTFx4kTh5+cnzp49W6Ky8fHxIiAgQJw8edKaZo9g7iY9PV14eXmVqEuoVqtFdHS0Tdrrr78uHn74Ybvr7dGjh3jiiSfsKvPNN9+I0NBQ8c0334hTp06Jr7/+Wvj6+pZYsBcvXhSPPPKIAIRKpRJt27YVQ4YMEU2aNCm2nCyYuyitYEaNGiVCQ0PFpUuXylR/t27dxCuvvFKivJs2bbL+4PkvQCgUCqFSqYTJZLK7/jZt2oiJEyfeM194eLh48cUXbdKWLl0qQkJC7Krv8uXLQqlUis2bN9tVLjQ0VHz88cc2abNmzRKNGze26zzZ2dnWi/3pp58WvXv3Ljb/3ddHbGysAMSJEyds8j3yyCPijTfesKstNWIMI4Rg9OjRbNq0iV9//ZXIyMgynU+SJJs4BMXRrVs3Tp8+TUxMjPXVpk0bhgwZQkxMDCqVyq66s7OziY2NJTj43kHXO3bsWGD6/Pz580RERNhV54oVKwgICKBPnz52lcvJyUGptL3EVCoV0t1byN8Dd3d3goODSU9PZ8eOHfTr18+u8pGRkQQFBdm4nGRmZnLo0CH7XU7sklclkpWVJU6cOCFOnDghALFo0SJx4sQJceXKlXuWHTFihPD29ha7d+8WycnJ1ldOTs49y06cOFHs2bNHxMXFiVOnTomJEycKhUIhfv7551J/Fnu6ZP/+97/F7t27RVxcnNi3b5/o3r278PPzE2lpafcse/jwYeHk5CTmzJkjLly4IFavXi3c3NzEqlWrStxWs9kswsPDxYQJE0pcJp+hQ4eKOnXqiB9++EHExcWJjRs3Cj8/P/HWW2+VqPz27dvFtm3bxKVLl8TPP/8soqKiRPv27YXBYCiQ917Xx7vvvit8fHzE999/L06dOiX69esnIiMjrePKklJtBPPbb78JLBFibV5Dhw69Z9nCygFixYoV9yz7wgsviIiICOHs7Cz8/f1Ft27dyiQWIewTzDPPPCOCg4OFs7OzqFOnjnjmmWfExYsXS1zX1q1bRfPmzYWLi4to0qSJ+Oyzz+xq644dOwQgzp07Z1c5IYTIzMwUY8aMEeHh4cLV1VXUq1dPTJ48Wej1+hKVX7t2rahXr55wdnYWQUFBYtSoUSIjI6PQvPe6PiRJElOmTBGBgYHCxcVFdOvWrVSfSTbvl5GxgxoxhpGRcRSyYGRk7EAWjIyMHciCkZGxA1kwMjJ2IAtGRsYOZMHIyNiBLBgZGTuQBSMjYweyYCqRYcOG0b9//8puhowdyIKpBhiNxspugswtZMFUAOvXr6dFixZoNBpq165N9+7d+c9//sNXX33F999/b43Gsnv3bi5fvoxCoWDt2rV07twZV1dXVq9eDcAXX3xB06ZNcXV1pUmTJixdutSmngkTJtCoUSPc3NyoV68eU6ZMsRHb9OnTefDBB/nvf/9LeHg4Hh4ejBw5ErPZzIIFCwgKCiIgIIA5c+ZYywghmD59OuHh4bi4uBASEsIbb7xRMV9cVcRuc00Zu0hKShJOTk5i0aJFVheBTz75RGRlZYmnn35aPP7441Z3A71eL+Li4gQg6tatKzZs2CAuXbokkpKSxKpVq0RwcLA1bcOGDQW8F2fNmiX27dsn4uLixJYtW0RgYKCYP3++9fi0adOEh4eHGDRokDh79qzYsmWLcHZ2Fj179hSvv/66+Pvvv8V///tfAYiDBw8KIYRYt26d8PLyEj/99JO4cuWKOHTokN0Wz/cTsmDKmWPHjglAXL58ucCxoUOHin79+tmk5QtmyZIlNun169cXa9assUmbNWtWARfkO3nvvfdE69atre+nTZsm3NzcbOIB9OzZU9StW1eYzWZrWuPGjcW8efOEEEIsXLhQNGrUqFAflJpIpW/Zd78TFRVFt27daNGiBT179qRHjx4MGjTonrHB2rRpY/1fp9MRGxvLiy++yMsvv2xNN5lMNjtorV27lg8//JDY2Fiys7MxmUwFdt2qW7cunp6e1veBgYGoVCobz8jAwEDrFvGDBw9myZIl1KtXj8cff5zevXvTt29fnJxq5qUjj2HKGZVKxc6dO9m2bRvNmjXjo48+onHjxsTFxRVbzt3d3fp/dnY2AJ9//rmNq/OZM2c4ePAgAAcOHGDIkCH07t2bH374gRMnTjB58mQMBoPNedVqtc17hUJRaFq+G3FYWBjnzp1j6dKlaDQaRo4cySOPPFJjJyJq5m2iglEoFHTs2JGOHTsydepUIiIi2LRpE87OzpjN5nuWDwwMJCQkhEuXLjFkyJBC8+zfv5+IiAgmT55sTbty5YpD2q/RaOjbty99+/Zl1KhRNGnShNOnT9OqVSuHnL86IQumnDl06BC7du2iR48eBAQEcOjQIa5du0bTpk3Jy8tjx44dnDt3jtq1axe7QemMGTN444038Pb25vHHH0ev13P06FHS09MZP348DRs2JD4+nm+//Za2bdvy448/smnTpjK3f+XKlZjNZtq3b4+bmxurVq1Co9HYHUjjfkHukpUzXl5e7N27l969e9OoUSPeeecdFi5cSK9evXj55Zdp3Lgxbdq0wd/fn3379hV5npdeeokvvviCFStW0KJFCzp37szKlSutEXCefPJJxo0bx+jRo3nwwQfZv38/U6ZMKXP7fXx8+Pzzz+nYsSMtW7bkl19+YevWrdSuXbvM566OyD79MjJ2ID9hZGTsQBaMjIwdyIKRkbEDWTAyMnYgC0ZGxg5kwcjI2IEsGBkZO5AFIyNjB7JgZGTsQBaMjIwdyIKRkbGD/wehfHkxPk2AMwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "#fig, ax = plt.subplots()\n",
+ "ax = df_res.plot(figsize=(2,2), grid=False, style=\".-\", sharex=False)\n",
+ "plt.title('SUT max CPU util'.format(dbms), fontsize=10)\n",
+ "plt.suptitle('')\n",
+ "#ax.set_xlim(0,10)\n",
+ "ax.set_xticks(range(0,10), labels=[\"%s\" % (int(item)) for item in df_res.index.tolist()], rotation=0)\n",
+ "ax.set_xlabel(\"streams\")\n",
+ "#ax.get_figure().tight_layout()\n",
+ "#ax.xaxis.set_major_formatter(lambda x: float(x))\n",
+ "plt.legend(title='SF')\n",
+ "df_res"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Results in folder .//1686234009\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686236492\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686228050\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686238015\n",
+ "Read results\n",
+ "Load Evaluation\n"
+ ]
+ }
+ ],
+ "source": [
+ "df_res = pd.DataFrame()\n",
+ "for code in codes:\n",
+ " evaluate.load_experiment(code)\n",
+ " df = evaluate.get_streaming_metrics('total_cpu_memory').T.max()\n",
+ " df = df.reindex(index=natural_sort(df.index))\n",
+ " path=resultfolder\n",
+ " with open(path+str(code)+\"/connections.config\",'r') as inf:\n",
+ " connections = ast.literal_eval(inf.read())\n",
+ " #print(\"found\", len(connections), \"connections\")\n",
+ " connections_sorted = sorted(connections, key=lambda c: c['name'])\n",
+ " SF = connections_sorted[0]['parameter']['connection_parameter']['loading_parameters']['SF']\n",
+ " #print(df)\n",
+ " df.index = df.index.map(lambda x: x[len('PostgreSQL-AWS-4-'):])\n",
+ " df_res[SF] = df.copy()/1000\n",
+ " #df.T.max().plot.bar()\n",
+ "\n",
+ "#print(df_res)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 3 \n",
+ " 10 \n",
+ " 30 \n",
+ " \n",
+ " \n",
+ " DBMS \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 7.128312 \n",
+ " 13.526434 \n",
+ " 63.269414 \n",
+ " 242.801102 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 4.038180 \n",
+ " 20.880320 \n",
+ " 105.405840 \n",
+ " 407.253375 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 4.229605 \n",
+ " 32.796660 \n",
+ " 139.284535 \n",
+ " 574.119574 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 8.228980 \n",
+ " 42.676199 \n",
+ " 178.609262 \n",
+ " 741.508152 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 7.845113 \n",
+ " 36.640883 \n",
+ " 186.933273 \n",
+ " 810.816473 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 7.161371 \n",
+ " 46.266586 \n",
+ " 203.244477 \n",
+ " 912.177176 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 7.329809 \n",
+ " 32.842848 \n",
+ " 202.702039 \n",
+ " 1086.867223 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 7.848301 \n",
+ " 37.285773 \n",
+ " 232.017277 \n",
+ " 1269.540586 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 7.971777 \n",
+ " 41.839031 \n",
+ " 213.051941 \n",
+ " 1282.160914 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 8.032227 \n",
+ " 42.406613 \n",
+ " 230.582828 \n",
+ " 1405.334891 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 1 3 10 30\n",
+ "DBMS \n",
+ "1 7.128312 13.526434 63.269414 242.801102\n",
+ "2 4.038180 20.880320 105.405840 407.253375\n",
+ "3 4.229605 32.796660 139.284535 574.119574\n",
+ "4 8.228980 42.676199 178.609262 741.508152\n",
+ "5 7.845113 36.640883 186.933273 810.816473\n",
+ "6 7.161371 46.266586 203.244477 912.177176\n",
+ "7 7.329809 32.842848 202.702039 1086.867223\n",
+ "8 7.848301 37.285773 232.017277 1269.540586\n",
+ "9 7.971777 41.839031 213.051941 1282.160914\n",
+ "10 8.032227 42.406613 230.582828 1405.334891"
+ ]
+ },
+ "execution_count": 29,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAANsAAADsCAYAAAD9/NNVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAyRklEQVR4nO29eXgUVdq/f1d3urPveyAJQSAIsggIRnAcFwzRH+KIigwojIi+DiMj+LqgQARGcPQniwziLsw748YqKsg4OIiyhMXEjTFsgUCSTiAkTegkvdX5/tGkSduB7N1Zzp2rruo+61OV+vQ5darOcxQhhEAikbQ6Gm8bIJF0FqTYJBIPIcUmkXgIKTaJxENIsUkkHkKKTSLxEFJsEomHkGKTSDyEFJtE4iGk2CStiqIoKIpCWFhYk/L/9re/5fHHH683TU09OTk5TarHE0ixtQKnT5/m0UcfJSkpCV9fX+Li4khPT2fnzp3ONIqisHHjRre8kydP5s477+T48ePOC+hS26pVq+qsv1u3bs40AQEB9OvXj7fffrvOtB988AFarZZp06a5xW3fvh1FUQgPD6e6utolbt++fc466uO9997j0KFDLmEWi4WXX36ZQYMGERgYSGhoKAMGDGD27NkUFhbWW2Zt1q9fz969exuVxxtIsbUCY8eOJTs7m9WrV3Po0CE2bdrEb3/7W0pLSxtcRmJiIkVFRc7tiSeeoG/fvi5h48aNu2T++fPnU1RUxE8//cTEiROZOnUqW7ZscUv3zjvv8NRTT/HBBx+4CaqG4OBgNmzY4JYvKSmpQccSFhZGTEyM87vZbGbkyJEsXLiQyZMns2PHDn788UdeffVVzpw5w/LlyxtUbg0RERFER0c3Ko9XEJIWpaysTABi+/btl00HiA0bNriFT5o0SYwZM8YtPDMzUwwYMKBBNiQnJ4slS5a4hEVERIgZM2a4hB07dkz4+/uL8vJyMWzYMPHPf/7TJf4///mPAMTs2bPFLbfc4gyvrKwUoaGhYs6cOaK+S6iu41y0aJHQaDTiu+++qzOPqqrOzzfccIOYNm2amDZtmggJCRGRkZFi9uzZLmmEECIvL08AIjs7+7L2eBPZsrUwQUFBBAUFsXHjRsxms7fNQVVV1q1bR1lZGXq93iXuvffe4/bbbyc0NJSJEyfyzjvv1FnG/fffzzfffEN+fj4A69ato1u3bgwaNKhJNn3wwQeMHDmSq6++us74X3dNV69ejY+PD3v37mXZsmUsXrz4kt3itowUWwvj4+PDqlWrWL16NWFhYQwfPpxnn32WH374waN2PP300wQFBeHr68vdd99NeHg4Dz30kDNeVVVWrVrFxIkTAbjvvvv49ttvycvLcysrJiaGjIwM5z3iu+++y4MPPthk2w4dOkRqaqpL2O9+9zvnD9V1113nEpeYmMiSJUtITU1lwoQJPPbYYyxZsqTJ9XsLKbZWYOzYsRQWFrJp0yZGjRrF9u3bGTRo0CUHNFqDJ598kpycHL766iuGDRvGkiVL6NGjhzP+yy+/xGQycdtttwEQFRXFyJEjeffdd+ss78EHH2TVqlUcO3aM3bt3M2HChBa197XXXiMnJ4cHH3yQyspKl7hrr73WpbVLS0vj8OHD2O32FrWhtZFiayX8/PwYOXIkc+bMYdeuXUyePJnMzExnfHBwMEaj0S1feXk5oaGhza4/KiqKHj16cP3117NmzRqmT5/OwYMHnfHvvPMOZ8+exd/fHx8fH3x8fNi8eTOrV69GVVW38jIyMqiqqmLKlCmMHj2ayMjIJtvWs2dPcnNzXcLi4+Pp0aMHERERTS63rSPF5iH69OmDyWRyfk9NTeXAgQMuaex2O99//z29evVq0boTExMZN24cs2bNAqC0tJRPPvmEDz/8kJycHOeWnZ1NWVkZ//rXv9zK8PHx4YEHHmD79u3N6kICjB8/ni+//JLs7OwGpc/KynL5vmfPHnr27IlWq22WHZ7Gx9sGdDRKS0u55557ePDBB+nfvz/BwcHs37+fl156iTFjxjjTzZw5kylTptC7d29GjhyJyWRi+fLllJWVudxbtRR//vOfueqqq9i/fz/ffvstkZGR3HvvvW6DEbfddhvvvPMOo0aNcitjwYIFPPnkk81q1QBmzJjB559/zs0330xmZibXX3894eHhHDp0iC1btriJKD8/n5kzZ/LII4/w3XffsXz5cl555ZVm2eANpNhamKCgIOc90tGjR7FarSQmJjJ16lSeffZZZ7rx48cjhGDx4sU888wzBAQEMHjwYHbs2EFsbGyL29WnTx9uvfVW5s6dy6lTp/jd735X5wPpsWPHcv/993PmzBm3OL1eT1RUVLNt8fPzY9u2bSxdupT33nuPWbNmoaoqKSkpZGRkMGPGDJf0DzzwAFVVVQwdOhStVsuf//xnHn744Wbb4WkUIaTDH0nroSgKGzZs4M4772zVeo4fP05KSgrZ2dkMHDiwVetqKvKeTdLqjB8/nq5du7Za+RkZGfTt27fVym8pZMsmaVWOHDkCgFarJSUlpVXqKCgooKqqCoCkpCS3h/dtBSk2icRDyG6kROIhpNgkEg8hxSaReIgO+5xNVVUKCwsJDg5u0ARHiaSpCCGoqKggISEBjebS7VeHFVthYSGJiYneNkPSiTh58uRlH3F0WLEFBwcDjhMQEhLiZWskHZlz586RmJjovOYuRYcVW03XMSQkRIpN4hHqu12RAyQSiYeQYpNIAKvBgGlPFlaDodXqkGKTdHrK167lyI03kT95MkduupnytWtbpZ4Oe8/WEIQQ2Gy2dje9viXR6XTtbhJmS2I1GCiaMxdq3lpUVYrmZhI4YgS6uLgWravTis1isVBUVOTm76KzoSgKXbt2JSgoyNumeBxht1O86MWLQqtBVbGcyJdiawlUVSUvLw+tVktCQgJ6vb5TPvgWQnD69GlOnTrVLt0MNAd7RQUFTzyBacc37pEaDfrkhjmgbQydUmwWiwVVVUlMTCQgIMDb5niV6Ohojh8/jtVq7TRis+Tnc/LRP2I5ehTFz4/QMXdQvmYtqCpoNMTPn9firRp0UrHVcLlXazoLna1FN2XtpWD6dOxGIz4xMXR97TX8r+pL1KOPYjmRjz45qVWEBp1cbJLORdlHH2NYsABsNvz69aPr3/6GLtaxBoEuLq7VRFaDFJukwyNsNopf/Ctl//gHACG33078C39B4+fnUTuk2CQdGrvRSMGMmZh27QIg+vHHiXzkYa90n+VNiweob7222uup1Wyt6SCns2DOy+P4uPsw7dqFEhBAl+WvEvU/j3jtPlW2bB5g7NixWCwWVq9eTffu3SkuLmbbtm0u67XNnz+fqVOnOr93lpHB1uL8zp0UzJiJeu4cPvHxJK58Db/evb1qkxRbK1NeXs4333zD9u3bueGGGwBITk5m6NChLumCg4OJa+Ub9I6O1WDAfPw4Vd9lc2bFCrDb8b/6aroufxWfFnAu21yk2FqZ2uu1XXvttfj6+nrbpDaN1WDAcvwE+m7JjRodLF+7lqK5mY5nZRcIHTOGuAXz0bQR13Yd1pXduXPnCA0NxWg0us1nq66uJi8vj5SUFPw8MCK1bt06pk6dSlVVFYMGDeKGG27gvvvuo3///oDjnq2oqAidTufMs3DhQqZPn97qtnn6XFwOF8FceLgcMno09rNnsZ0969iXlmIvPYu97Cy20rPYzpZiKy7B/MsvroUpCld8tQ19fHyr2325a83FJCk2z1xg1dXVfPPNN+zZs4ctW7awd+9e3n77bSZPnky3bt2YOHEikydPdqaPiooiLCzMI3a1BbFZDQaO3HSzS8vUXJJWryZw2ND6EzaThopNdiM9RM16bTVrtj300ENkZmY6BVaznlpnxXL8xKWF5uODT0QE2shIfMLDHfua7xHhCEWDYfZs1xeKW+n9xuYgxeYl+vTpw8aNG71tRptBE1zHrAONhpSNG/Ht2aPe4XpFqG5d0NZ+I6SxSLG1Mg1dr60zo1osFP/lBdfAC4Lx69WzQWWE3X03gSNGtPr7jc1Biq2Vaeh6bZ0VIQTFCxZQlZ2NJjiYritWgBBNEown3m9sDlJsrYyvry+LFi1i0aJFl0xz/PhxzxnUxij74APH9BaNhi6LFxM49Bpvm9RqyNe1JF7DlLWX4oWOH6GYJ54g6PoRXraodZFik3gFy6kCCh5/HGw2QkaPJuLBP3jbpFZHik3icdTKSk5Nm4a9rAy/vn2JXzC/U0xilWKTeBQhBIWznsWcm4s2KoquK/7m8Xll3kKKTeJRSt94g4qtW0Gno+ury9r06GFLI8Um8RgVX33F6aXLAIibM5uAQYO8bJFnkWKTeATzkSMUPvkUAOG//z3h997rZYs8jxSbpNWxG42cnDYN1WQi4JpriJ31jLdN8gpSbJJWRdhsFMx8AuuJfHQJCXRZthSl1lSizoQUm6RVKVm8BNPOnSj+/nRd8Td8IiK8bZLXkGJrZ+zYsYPRo0eTkJCAoihteuaAcdMmzr77LgAJixbid+WVXrbIu0ixNZMiYxW7jp6hyFjlkfpMJhMDBgxgxYoVHqmvqVRs/5rCZ58DIPJ/HiFk1CgvW+R95IvIOB60Vlkbv2zUugOnyNz0M6oAjQLz7ujL2MGNc0Hnr9M26u2JjIwMMjIyGmuqRyl97z1K/vqS87uuSxcvWtN2kGIDqqx2+szd2qwyVAFzPvmZOZ/83Kh8B+enE6DvOP8G84kTLkIDMGQ+T9D113eqB9h1IbuRkhZDqCpFs+e4R1xY76yz03F+UpuBv07LwfnpjcpjMFZzy+KvUWu7vVDg3zNvIC604e/6+es6jjPW08tepWrfPveINugPxBtIseFYNqmxXbnu0UEsuqsfz67/CbsQaBWFhXddRffozreCJ0D5ho2UvvEGAKFj78K4YWOb9gfiDaTYmsG4a5L4Ta9ojp+ppFtUAPGh/t42ySuY9u6laO5cwDHyGPP440Q/9lib9gfiDRp9z1bfcx4hBHPnziU+Ph5/f39uueUWDh8+7JLm7NmzTJgwgZCQEMLCwpgyZQrnz593SfPDDz9w/fXX4+fnR2JiIi+95HrT3VaID/Un7YpIjwnt/Pnz5OTkkJOTA0BeXh45OTnk53vnnshy/DgFj00Hq5XgUaOIvuBYVhcXR+CwoVJotRGNZPPmzeK5554T69evF4DYsGGDS/yLL74oQkNDxcaNG8X3338v7rjjDpGSkiKqqqqcaUaNGiUGDBgg9uzZI7755hvRo0cPMX78eGe80WgUsbGxYsKECeKnn34SH3zwgfD39xdvvPFGg+00Go0CEEaj0S2uqqpKHDx40MWm9sJ//vMfAbhtkyZNalJ5zTkXtrIyceTWdHEwtbc4du+9wt4Oz2dLcLlrrTaNFptL5l+JTVVVERcXJ15++WVnWHl5ufD19RUffPCBEEKIgwcPCkDs27fPmWbLli1CURRRUFAghBDitddeE+Hh4cJsNjvTPP300yI1NbXBtnVUsbU0TT0Xqtksjk+8XxxM7S0O3XijsJ4+3UoWtn0aKrYWHfrPy8vDYDBwyy23OMNCQ0MZNmwYu3fvBmD37t2EhYUxZMgQZ5pbbrkFjUZDVlaWM81vfvMb9LUWREhPTyc3N5eysrI66zabzZw7d85lk7QOQgiKnp9H5b59aAIDSVz5eptYJaat06JiMxgMAMTGxrqEx8bGOuMMBgMxMTEu8T4+PkRERLikqauM2nX8mkWLFhEaGurcEhMTm39AkjopfettjOvXO9zPLV2CX2ovb5vULugwD7VnzZqF0Wh0bidPnvS2SR2Sc19s5fTixQDEPvcsQddf72WL2g8tKraaxfyKi4tdwouLi51xcXFxlJSUuMTbbDbOnj3rkqauMmrX8Wt8fX0JCQlx2SQtS9UPP1D49NMAhN9/PxETJnjZovZFi4otJSWFuLg4tm3b5gw7d+4cWVlZpKWlAZCWlkZ5eTkHDhxwpvnqq69QVZVhw4Y50+zYsQOr1epM8+WXX5Kamkp4eHhLmixpINbCQk7+cRrCbCbwht8Q+8zT3jap/dHYkZeKigqRnZ0tsrOzBSAWL14ssrOzxYkTJ4QQjqH/sLAw8cknn4gffvhBjBkzps6h/6uvvlpkZWWJb7/9VvTs2dNl6L+8vFzExsaK+++/X/z000/iww8/FAEBAXLovxVoyLmwVVSIo6PvEAdTe4ujo+8QtorzHrSw7dNqQ//1PedRVVXMmTNHxMbGCl9fX3HzzTeL3NxclzJKS0vF+PHjRVBQkAgJCRF/+MMfREVFhUua77//XowYMUL4+vqKLl26iBdffLFRdkqxNYz6zoVqtYoTDz8sDqb2FrnDRwjLhcczkos0VGxy5dFO4iD0UlzuXFgNBgwvLOT8l1+i+PmR/H9/x79fPy9Z2naRK49KmkX52rUUzZnrXM0z9M47pdCaSYcZ+pe0HJaCAhehAZR//DHWSzzjlDQMKbZ2xMqVK+nfv7/z0UZaWhpbtmxp0TosJ05w8pH/cV2fGuQE0BZAiq25GAsgb4dj38p07dqVF198kQMHDrB//35uuukmxowZw88/N84VQ10IVeXsP//JsTt/h+XIEfcEcgJos5H3bOD4FbdWNj5fzvuw5SkQKigayHgJBv6+cWXoAqCBDn9Gjx7t8v2FF15g5cqV7Nmzh759+zau3loIu52i2bMxb3a0kgHDhhE0YgQlS5bICaAtiBQbOIS2MKF5ZQgVNv+vY2sMzxaCPrDR1dntdtasWYPJZHK+MNBYhBDYjEZsJSVUZeeg9fMj5oknCJ/wexSNhpDR/5+cANqCSLG1M3788UfS0tKorq4mKCiIDRs20KdPn0aXI2w2rIWF2MrLQQh8e6eS+NRT+KakONO09QXh2xtSbODoyj1b2Lg85wphxVBHi1aDooVpWRDSiFZSF9CoalNTU8nJycFoNLJ27VomTZrE119/3SjB2Y1GrIWFCLsdFAVNcDBdXn4Z36DO6T/FU0ixgeOeqbFduaieMHoZfPo4CLtDaKOXOsJbEb1eT48ePQAYPHgw+/btY9myZbxxwdnO5RA2G1aDAXt5OQAaPz/0UVFoi4pQfOSl0NrIM9wcBj0AV9wMZ49BRHcI9bznX1VVMZvNl463WhFmM8Jmw2YoRtgcL3f7REXjExON2WLxlKmdHim25hLaxWMimzVrFhkZGSQlJVFRUcH777/P9u3b2bq1bm/OtrNnsRa6do8VvR59165oAhrXfZU0Hym2dkRJSQkPPPAARUVFhIaG0r9/f7Zu3crIkSPd0qpms5vQAPTJyWh8fT1hruRXSLG1I95555160wi7HdvZs9jPnKk73moDKTavIMXWQVCtVuylpdjPnkWo6iXTKb76S8ZJWhcptnaOajZjO3PGMcJ44X1Gja8v2uhoUFWXrqQuIQFNJ11ity0gxdZOUSursJ05jb2Wyz5NQAA+UVFogoOda75pgoMRZguKr14KzctIsbUDaobvFb0eYbFgO30a1WRyxmuDg9FGRaENdH9WqNHpQIqsTSDF1sapa/jegYI2LNTRknXy2ebtBSm2NoxqtdYpNG1YOD4x0Wj0crCjPSHns7VhRHV1neHasDAptHaIFFsbRQiB7ezZOuPk8H37RIqtjWIzGFArKgDXiaVy+L79Iu/Z2iC2M2ewlZYCoOvaBU1goBy+7wDIlq2NYTcanV6sdLGx+ISFodHp0AYFotHpWmTlV4l3kGJrJgaTgb1FezGYmu/mzX7ehOXUKQB8IiLR1rHmmclkYsCAAaxYsaLOMl566SVeffVVXn/9dbKysggMDCQ9PZ3qSwy2SDyH7EbiaA2qbFWNzrfp6CYWZS1CRUWDhlnDZnHHFXc0qgx/H38URUGtrsaanw9CoA0JwSc+zvkWSG0yMjLIyMi45HEsXbqU2bNnM2bMGAD+/ve/Exsby8aNG7nvvvsafYySlkOKDaiyVTHs/WHNKkNF5YWsF3gh64VG5cv6fRZ+6LCcOIFQ7WgCAtB17Vqn0OqjvpVfpdi8ixSblxGqijX/BMJqRfH1RZ+UhKJpWu++ISu/SryHFBuOrlzW77Malae4spg7N96JysXpLBpFw8YxG4kNiL1MzosIVUVbUIJqrkbx8UGfnCx9gXRg5H8WUBSFgEZ6uUoJTSHzukzm7Z6HKlQ0iobMtExSQlPqz4zj/sp66hT2ykoUjcYxg7qZb4XUXvk1Pj7eGV5cXMzAgQObVbak+UixNYO7et7FdQnXcbLiJInBicQFNtzHoq24GLvRCIqCLikJjb9/s+2pvfJrjbhqVn599NFHm12+pHlIsTWTuMC4RokMwFZaiu2C2wJdQgLaRvhrPH/+PEdq+eLPy8sjJyeHiIgIkpKSePzxx/nLX/5Cz549SUlJYc6cOSQkJHDnnXc2ykZJyyPF5mHsRiPWoiIAfGJi8WnkGuH79+/nxhtvdH6fOXMmAJMmTWLVqlU89dRTmEwmHn74YcrLyxkxYgRffPFFp1/0sS0gVx710EWoWq2oRiPW4mLHs7SICHTx8U0a4m9J5CqszUeuPNqG+PUEUI2fX5sQmsSzyNe1Wpm6JoCq1dUIm81LFkm8hRRbK3OpCaDCLN1+dzak2FoRoarYTp+uM05OAO18SLG1EkIIrAWFqJWVbiuLygmgnZMWF9vzzz+PoiguW+/evZ3x1dXVTJs2jcjISIKCghg7dizFxcUuZeTn53P77bcTEBBATEwMTz75JLZ2do/jeGhdDoqCPikJ39RU9N1S8E1NxSciwtvmSbxAq4xG9u3bl3//+98XK6n1vt+MGTP4/PPPWbNmDaGhofzpT3/irrvuYufOnYBj+drbb7+duLg4du3aRVFREQ888AA6nY6FCxe2hrktjttD6+BgR4RszTo3ooXJzMwUAwYMqDOuvLxc6HQ6sWbNGmfYf//7XwGI3bt3CyGE2Lx5s9BoNMJgMDjTrFy5UoSEhAiz2dxgO4xGowCE0Wh0i6uqqhIHDx4UVVVVDS6vodjKy0Xljz+Kyh9/FJbikhYvv6VpzXPRWbjctVabVrlnO3z4MAkJCXTv3p0JEyaQn58PwIEDB7BarS7zrXr37k1SUhK7d+8GYPfu3fTr189lmkh6ejrnzp3j559/vmSdZrOZc+fOuWyexm66ONNaGxGBT7T7TGtJ56XFxTZs2DBWrVrFF198wcqVK8nLy+P666+noqICg8GAXq8nLCzMJU/t+VYGg6HO+Vg1cZdi0aJFhIaGOrfExMSWPbB6cJlpHRwiH1pL3GhxsWVkZHDPPffQv39/0tPT2bx5M+Xl5Xz88cctXZULs2bNwmg0OreTJ0+2an21Ua1Wx0xrux2NfwC6xKbNtK6PlStX0r9/f0JCQggJCSEtLY0tW7Y44xsy+CTxHq0+9B8WFkavXr04cuQIcXFxWCwWyi8soF5DcXGxcy5WXFyc2wVS870mTV34+vo6L8KazRNYCgo49+mnWA0GFL0v+uSmz7Suj65du/Liiy9y4MAB9u/fz0033cSYMWOc3esZM2bw6aefsmbNGr7++msKCwu56667WsUWSRNo7ZvHiooKER4eLpYtW+YcIFm7dq0z/pdffqlzgKS4uNiZ5o033hAhISGiurq6wfU2ZoBEVVVhN5kavZX+3z/Ewd5XioOpvcXB3leKM6tXN7oMVVWbemqFEEKEh4eLt99+u0GDT3UhB0iaT0MHSFp86P9///d/GT16NMnJyRQWFpKZmYlWq2X8+PGEhoYyZcoUZs6cSUREBCEhITz22GOkpaVx7bXXAnDrrbfSp08f7r//fl566SUMBgOzZ89m2rRp+LbS8rSiqorcQYObWYigZOEiShYualS21O8OoDRhMXm73c6aNWswmUykpaXVO/hUc34l3qPFxXbq1CnGjx9PaWkp0dHRjBgxgj179hAdHQ3AkiVL0Gg0jB07FrPZTHp6Oq+99pozv1ar5bPPPuPRRx8lLS2NwMBAJk2axPz581va1HbJjz/+SFpaGtXV1QQFBbFhwwb69OlDTk5OvYNPEu/S4mL78MMPLxvv5+fHihUrLulkFCA5OZnNmze3tGmXRPH3J/W7A/WmU61WhMWCWllJ9S+5FD7+uHNpXQA0Grp//hm62IY5/KmpuzGkpqaSk5OD0Whk7dq1TJo0ia+//rpRZUi8g5zPhsPhT31duV/PSdN3SSDmqScpefn/B1UFjYb4+fPwTWmYw5+motfr6dGjBwCDBw9m3759LFu2jHHjxjkHn2q3brUHnyTeRYqtAVxqUcLwCRMIycjAciIffXISOi9c1KqqYjabGTx4MDqdjm3btjF27FgAcnNzyc/PJy0tzeN2SdyRYmsAwmyuO9xiRRcX5zGRzZo1i4yMDJKSkqioqOD9999n+/btbN26tUGDTxLvIsXWAC713MzTc9JKSkp44IEHKCoqIjQ0lP79+7N161ZGjhwJ1D/4JPEu0uFPPU5uhM2G+VgewuLauukSEjrEVBnp8Kf5SIc/LYCw2x2vYVnMKDod+sREhCrkooSSJiHFdgmEqmI5dQq1qgpFq3W4B5e//JJmIN0i1IEQAmthoWNNa0WDLkkKTdJ8pNjqwFZcjL28HFDQJ3ZFG9j416kkkl/TqcVW19iQ7UxtlwbxaD00e8BbdNDxsTZJpxSb7sLgRmVlpUu4Y/H4Gj/8MR1itLE+LBaH/0qtVutlSzo+nXKARKvVEhYWRklJCQABAQGolZWOt0SEQBsWBsHB2Dv4ou+qqnL69GkCAgJcnDJJWodOe4Zr3hcsKSlBWK2OrqMQKH5+jgvPZPKyhZ5Bo9GQlJQkXTh4gE4rNkVRiI+PJ8xi4cTjM9CWl+M3YADx8+c1ewXQ9oRer0fTSjPLJa50WrEB2M6coWDqw4j8fPx79yZ5wfyLPh4lkham0/6k2c+bOPnwI1jz89F16ULim29IoUlalU4pNkv+SfInPUD1wYNow8NJfPstdDEx3jZL0sHpdGIrW7OGo7feSvXPBwEIGzeu1Sd8ShqOwWRgb9FeDCbPunLwRL2dSmxWgwHD3EyXsNI338QqfXS0CdYfXk/6unSm/GsK6evSWX94fYeqt1MNkFiOn3D1GQKgqlhO5HtllnVnx67aOX7uOAdLD7LPsI8NRzY441Shkrkrk83HNpMSmkLX4K50CepCQlACXYK6EOob6laewWQg/1w+SSFJxAW6/j+FEBjNRgpNhRSZijCYDBSdLyLPmMeOgh0u9c7bPY/rEq5zK6O5dCqx6bslg0bj8BlSg0aDPjnJe0a1YS538TY2r021ccx4jP+W/peDpQc5WHqQ3LJcqmxVly0ny5BFliHLLTxYF+wUXpfgLpypOsMXeV8gECgo3Jh4I+F+4RSZipziqq+uGlShcrLipBRbc9DFxRE/fx5FczNdnPR05FatKYKxq3b+77//x+L9i50X70P9HuLGxBsdzpG48ABcAaXmr1b4tvxtvP796wgcvYiuQV05XXUas93dvYS/jz+9I3rTLaQbG49sdOYB0KBh+qDpVFgqKDxfSMH5Ak6dP8XZ6rNUWCvILcsltyzXrUyB4KuTX9V5bJF+kSQEJRAXGEd8YDyBukAXWwE0iobE4JZfK6JTztS2GgxeddLTWJrawqw/vJ55u+ehChWNoiEzLZM7rriDM1VnMJgMFFcWU2wqduxrfS4xlWDH3uLHEagLpHdEb/pE9uHKiCvpG9mX5JBktBrtJe29q6e7+/QqW9VF8VWc4kDxAf514l9u6cZcMYbBsYNJCEogPjCe2MBYfLXujn4bWu+laOhM7U4ptvbEpS4Eq2ql0lpJhaUCk9Xk3J+3nue85TxFpiLe/eldl19scLREvw5rKJF+kei1egQCIYSjHIGzPIHAYrNwzuq+XNfC4Qu5/Yrb0SiXH5MzmAycrDhJYnBig39YDCYD6evSUcXF2wONomHr2K2NKqOx9dYgxdYBxJZdnM2kLya5icNX44tZrdvjV0PwUXyICYghNjCW2IALW+DFvRYtEzZPQKXxF29LXPhNobmtU3OQPkjaIWXVZWQZsthTuIc9RXsoOF9QZ7raQvPT+hGoCyRYH0ygLpAgfRBBuiA0ioYvT3zpkk+jaPjw9g9JjUitt4XJvC7T7eJtiFjiAuPITGta3uZwV8+7uC7huia3Tp5Atmweoq77ripbFd8Vf8eeIoe4fjn7i0seLVq3eyeNomFV+ipSQlMI1Aei01za8VBzf+2b07VqTt72huxGtiGx1b7oa4alK6wV5JTkYFWtLml7hvfk2vhruTb+WgbHDmbr8a1eE4ykYUixtQGxVdmq2HFqB09+/eQlByXiAuNIi0/j2vhrGRo/lCh/93W4pWDaNvKezQsUm4rJPp3N9yXfk12STe7ZXGzCVmfaiVdO5L7e95EUXP/EzbjAOCmyDoAUWyOofd8V5R/FobJD5JTkkHM6h5ySHIpMRW55Iv0iKa0udQnTKBom9Z0kBdTJkGJrIGty17BgzwJnd1Cn0bndb2kUDanhqQyMGcjA6IEMjBlIfGA8G45s8PjonKTtIcV2GQwmA98UfMO2E9vYWbjTJc6qWgnwCeDqmKsd4ooZSP+o/gTo3H1MtodhaUnrI8VWC4vdwncl3/HtqW/5tuBbjhqPXjb9qze9yrD4YQ0qW953STql2Grfe9lUGzsLdvJtwbdkGbJc3gzXKBr6R/VnQPQA/n7w724vqyaHJHvDfEk7pdOJ7aPcj3hhzwuXHIqP8o9ieMJwRnQZQVpCmnPeVPew7vK+S9IsOtVzNoPJwMi1I93SXhV5FTcn38zwhOGXfZXJa8+7jAVw9ihEXAGhXdpH3qbSDo9VPmerg/xz+XWGzxwyk2virqk3f7Puu5ryz7RbYe9b8K/nQKigaODWF2DwJPDxd0yEvRzf/R0+/fPFvKOXwaAHapVvg2ojVJc7tqryi9+P/gf++ykgAAWGPQL9x0FQDATGgE89vjWbcrz12VsXQoBqgwOrYMtTF/PeMg+uuuvCzHxxif2F/Ac3wH8WNq7eJtDpWrb0telNepsdaNoFJARkvQFbZzn+mSgw6H6I7VfrAq+1rzZe/Gw5f/myffxB5w/6QMdeF3Bh8wdFgSP/ds8TlQoWU8PKvxx+YReFFxR9YX9hM/wE+966cPEqMPQRSB4ONjPYzWCrdnyu2exmMJVC9v/Br7v3XYc69vaa9NXu+1ozDFoERQuP/9jg/3GHeF1rxYoVvPzyyxgMBgYMGMDy5csZOnRog/Je6gSsP7yeebvmoaKiQUPmdQ181/DXv7q/eQqS08B0BirPQuUZqCy98L3U9bNo+YmYLYo+GPxCwT/MISLVCifdXRHgHwHmc46WpD2gaEGjxTGlXKl7L+xgrXTPO+kzSLm+QdW0+27kRx99xMyZM3n99dcZNmwYS5cuJT09ndzcXGKa4ePxiv05fHHiFKf0Wrpa7JjNa8Bw3PErbzGB+TxYKmp9Pg9VZXCu1nQXocLXLzbvAJOug6gejou75iL/9d5WjVg5AqVWS6yiQTMtC/zDHReJc6sCS63P5woQX/0FpVZLIVBQ7noTIq+4UE84+IaA9leXgbEAseQq13oVDZr/+RaC4x2t4vkSMJU49s7Pp+H0L1Cw3/14o690tIA+fuDjC1rfi599/MBuRux7x93ejJcgJOFCul/lqSmn6qz7eVI0aBrSOl3qWCO6Xz5fE2izLduwYcO45ppr+Nvf/gY4VlxJTEzkscce45lnnqk3f12/NsWnjhL91iA0LbSGRGVAF6oCErD4RmDRh1/Yh2G+sLf4RoBqY8T2+9D8SjAfj9hCuS4ai03Falex2FTMNhXLhc8Wm8q5KisxRz9moc87+CgqNqHhWdsU8hLvwtdHS+1XKh0+QGo+g9lqJ/HEOre8Rd3vwV+nRaMoKBd+4BWHMxGUC+WYrXbCcj90yfucbQrlqffhr7+4tFTtC6fmKvKrNLAofzxa5WKsTWh4OvGfVPnHIi7cLjlmezvKEAKqrXYS8ta42Xuq29346bR1riNXE1JttZNUx7HmJ43FV6etM08NZqud5HzXvLNtD/Hnp+YTH+rfoOugXXcjLRYLAQEBrF27ljvvvNMZPmnSJMrLy/nkk0/c8pjNZszmi5Mqz507R2JiossJ+Gnnp1z15US3vNvt/ckT8Zjwo1L4cR4/TMKf8/hRiR9+wszr+qVuF9AI8zIMRNZ7PPdq/+N2IXxsv7HB5yOOUrppijmuxjaoPm/nbc7xtpVj/WDqtaRd0bAy2nU38syZM9jtdmJjY13CY2Nj+eWXX+rMs2jRIubNm3fZcqOT+2AXiptosq56HnNAPFa7ik1VsdoFNruKj13gb1cpqahmVuF5twsoNDaZJP9ao3KK+0djlZWPDTeyw97f5Z95bfcIEsL88fXRoNdq0Ptc2LRa9D4adFqFaqudV/51CAORGFTHP15R4PnRfQj111/0/VF7cA2Hj8TySgsLN//ilvep9N4E+/k4cgrhbFlUcbGlMVZaWP7VEde8wGM39SDE332yau1ZCxVVVpZtw+V4i5VInri1F6H+Osd5udAK17SqigLnKq28+IW7vbMyehMWoP/16XWpu7zSwguf/9ct7+zbrnTmdc1z8XN5pYUFn7nm1SoK3aJafmnnNim2pjBr1ixmzpzp/F7TstUmtusV7O3/PIN+mOcUzXf9M3l67M2XLbvIWMXwF43sMF+8gE4rUXz74NB6uxqOvF9hEK7/zCXjBjaomxId7Muz63/CLgRaRWHhXVcx7pqG+bkM8dc1OW+XcP8m540P8+PZ9T9hUCPRKgovNjBvWGDT7Q3282ly3kBf97wN7UI2hg7Tjfw1l2vai08d5cyJX4hK7k1s1ysaZNNH+/Kb/M9sTl5wCPb4mUq6RQU0+iJob3nbm73Qzu/ZwDFAMnToUJYvXw44BkiSkpL405/+1OQBkubirX+mpG3Tru/ZAGbOnMmkSZMYMmQIQ4cOZenSpZhMJv7whz94zab4UP8mC6U5eSUdgzYrtnHjxnH69Gnmzp2LwWBg4MCBfPHFF26DJhJJe6HNdiObi9FoJCwsjJMnT3rdu5akY1MzGFdeXk5oqPvqOjW02ZatuVRUVAC4jUhKJK1FaWnpZcXWYVs2VVUpLCwkODi4Xu9VDaXmF6wpraXM23brbG5eo9FIUlISZWVlhIWFXTJdh23ZNBoNXbt2bZWyQ0JCmtw1lXnbbp3NzaupZ8pTp1rmVyLxJlJsEomHkGJrBL6+vmRmZuLr676gnszbMnnbm72NydthB0gkkraGbNkkEg8hxSaReAgpNonEQ0ixSSQeQopN4kZBQQETJ04kMjISf39/+vXrx/79dTjxkTSKDvsGiaRplJWVMXz4cG688Ua2bNlCdHQ0hw8fJjw83NumtXvk0L/EhWeeeYadO3fyzTffeNuUDofsRkpc2LRpE0OGDOGee+4hJiaGq6++mrfeesvbZnUIpNgkLhw7doyVK1fSs2dPtm7dyqOPPsr06dNZvXq1t01r98hupMQFvV7PkCFD2LVrlzNs+vTp7Nu3j927d3vRsvaPbNkkLsTHx9OnTx+XsCuvvJL8/LpXAJI0HCk2iQvDhw8nNzfXJezQoUMkJ8tVVpuLFJvEhRkzZrBnzx4WLlzIkSNHeP/993nzzTeZNm2at01r98h7Nokbn332GbNmzeLw4cOkpKQwc+ZMpk6d6m2z2j1SbBKJh5DdSInEQ0ixSSQeQopNIvEQUmwSiYeQYpNIPIQUm0TiIaTYJBIPIcUmkXgIKTaJxENIsbVzJk+e7LLuuKTtIsXWSbBard42odMjxdZOWLt2Lf369cPf35/IyEhuueUWnnzySVavXs0nn3yCoigoisL27ds5fvw4iqLw0UcfccMNN+Dn58c///lPAN5++22uvPJK/Pz86N27N6+99ppLPU8//TS9evUiICCA7t27M2fOHBehPv/88wwcOJB3332XpKQkgoKC+OMf/4jdbuell14iLi6OmJgYXnjhBWceIQTPP/88SUlJ+Pr6kpCQwPTp0z1z4toSQtLmKSwsFD4+PmLx4sUiLy9P/PDDD2LFihWioqJC3HvvvWLUqFGiqKhIFBUVCbPZLPLy8gQgunXrJtatWyeOHTsmCgsLxT/+8Q8RHx/vDFu3bp2IiIgQq1atcta1YMECsXPnTpGXlyc2bdokYmNjxV//+ldnfGZmpggKChJ33323+Pnnn8WmTZuEXq8X6enp4rHHHhO//PKLePfddwUg9uzZI4QQYs2aNSIkJERs3rxZnDhxQmRlZYk333zT4+fR20ixtQMOHDggAHH8+HG3uEmTJokxY8a4hNWIbenSpS7hV1xxhXj//fddwhYsWCDS0tIuWffLL78sBg8e7PyemZkpAgICxLlz55xh6enpolu3bsJutzvDUlNTxaJFi4QQQrzyyiuiV69ewmKx1H+wHRjpN7IdMGDAAG6++Wb69etHeno6t956K3fffXe9vhyHDBni/GwymTh69ChTpkxxmZtms9lc1oH+6KOPePXVVzl69Cjnz5/HZrO5rcTZrVs3goODnd9jY2PRarUuK2/GxsZSUlICwD333MPSpUvp3r07o0aN4rbbbmP06NH4+HSuy0/es7UDtFotX375JVu2bKFPnz4sX76c1NRU8vLyLpsvMDDQ+fn8+fMAvPXWW+Tk5Di3n376iT179gCwe/duJkyYwG233cZnn31GdnY2zz33HBaLxaVcnU7n8l1RlDrDVFUFIDExkdzcXF577TX8/f354x//yG9+85tON2jTuX5a2jGKojB8+HCGDx/O3LlzSU5OZsOGDej1eux2e735Y2NjSUhI4NixY0yYMKHONLt27SI5OZnnnnvOGXbixIkWsd/f35/Ro0czevRopk2bRu/evfnxxx8ZNGhQi5TfHpBiawdkZWWxbds2br31VmJiYsjKyuL06dNceeWVVFdXs3XrVnJzc4mMjHTpEv6aefPmMX36dEJDQxk1ahRms5n9+/dTVlbGzJkz6dmzJ/n5+Xz44Ydcc801fP7552zYsKHZ9q9atQq73c6wYcMICAjgH//4B/7+/p3OiZDsRrYDQkJC2LFjB7fddhu9evVi9uzZvPLKK2RkZDB16lRSU1MZMmQI0dHR7Ny585LlPPTQQ7z99tu899579OvXjxtuuIFVq1aRkpICwB133MGMGTP405/+xMCBA9m1axdz5sxptv1hYWG89dZbDB8+nP79+/Pvf/+bTz/9lMjIyGaX3Z6QPkgkEg8hWzaJxENIsUkkHkKKTSLxEFJsEomHkGKTSDyEFJtE4iGk2CQSDyHFJpF4CCk2icRDSLFJJB5Cik0i8RD/DwAUzdUV6m3PAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "ax = df_res.plot(figsize=(2,2), grid=False, style=\".-\")\n",
+ "plt.title('SUT RAM [Gb]'.format(dbms), fontsize=10)\n",
+ "plt.suptitle('')\n",
+ "ax.set_xlabel(\"streams\")\n",
+ "ax.set_xticks(range(1,11))\n",
+ "plt.legend(title='SF')\n",
+ "\n",
+ "df_res"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Results in folder .//1686234009\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686236492\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686228050\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686238015\n",
+ "Read results\n",
+ "Load Evaluation\n"
+ ]
+ }
+ ],
+ "source": [
+ "df_res = pd.DataFrame()\n",
+ "for code in codes:\n",
+ " evaluate.load_experiment(code)\n",
+ " df = evaluate.get_streaming_metrics('total_cpu_memory_cached').T.max()\n",
+ " df = df.reindex(index=natural_sort(df.index))\n",
+ " path=resultfolder\n",
+ " with open(path+str(code)+\"/connections.config\",'r') as inf:\n",
+ " connections = ast.literal_eval(inf.read())\n",
+ " #print(\"found\", len(connections), \"connections\")\n",
+ " connections_sorted = sorted(connections, key=lambda c: c['name'])\n",
+ " SF = connections_sorted[0]['parameter']['connection_parameter']['loading_parameters']['SF']\n",
+ " #print(df)\n",
+ " df.index = df.index.map(lambda x: x[len('PostgreSQL-AWS-4-'):])\n",
+ " df_res[SF] = df.copy()/1000\n",
+ " #df.T.max().plot.bar()\n",
+ "\n",
+ "#print(df_res)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 3 \n",
+ " 10 \n",
+ " 30 \n",
+ " \n",
+ " \n",
+ " DBMS \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 8.785402 \n",
+ " 18.434281 \n",
+ " 79.560328 \n",
+ " 265.305297 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 5.695270 \n",
+ " 25.788168 \n",
+ " 121.696754 \n",
+ " 429.757570 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 5.886695 \n",
+ " 37.704508 \n",
+ " 155.575449 \n",
+ " 596.623770 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 9.886070 \n",
+ " 47.584047 \n",
+ " 194.900176 \n",
+ " 764.012348 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 9.502203 \n",
+ " 41.548730 \n",
+ " 203.224187 \n",
+ " 833.320668 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 8.818461 \n",
+ " 51.174434 \n",
+ " 219.535391 \n",
+ " 934.681371 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 8.986898 \n",
+ " 37.750695 \n",
+ " 218.992953 \n",
+ " 1109.371418 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 9.505391 \n",
+ " 42.193621 \n",
+ " 248.308191 \n",
+ " 1292.044781 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 9.628867 \n",
+ " 46.746879 \n",
+ " 229.342855 \n",
+ " 1304.665109 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 9.689316 \n",
+ " 47.314461 \n",
+ " 246.873742 \n",
+ " 1427.839086 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 1 3 10 30\n",
+ "DBMS \n",
+ "1 8.785402 18.434281 79.560328 265.305297\n",
+ "2 5.695270 25.788168 121.696754 429.757570\n",
+ "3 5.886695 37.704508 155.575449 596.623770\n",
+ "4 9.886070 47.584047 194.900176 764.012348\n",
+ "5 9.502203 41.548730 203.224187 833.320668\n",
+ "6 8.818461 51.174434 219.535391 934.681371\n",
+ "7 8.986898 37.750695 218.992953 1109.371418\n",
+ "8 9.505391 42.193621 248.308191 1292.044781\n",
+ "9 9.628867 46.746879 229.342855 1304.665109\n",
+ "10 9.689316 47.314461 246.873742 1427.839086"
+ ]
+ },
+ "execution_count": 31,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAANsAAADsCAYAAAD9/NNVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAyPUlEQVR4nO29d3xUVf7//7xT0pMJ6QSSEAQCKEVEMKJiAQP4QVBUZJGyIu5HUQR2FVEgggv4wZ+CsooNgf0p6oKiWJBldREFEgSJICg1EEgyCaTXafd8/xgyZJgAqTMp5/l43Ezuuae8753zmlPuKYoQQiCRSJocjacNkEjaClJsEombkGKTSNyEFJtE4iak2CQSNyHFJpG4CSk2icRNSLFJJG5Cik0icRNSbJImRVEUFEUhODi4XuFvvfVWZsyYcUU/VemkpaXVKx13IMXWBJw9e5bHHnuM2NhYvL29iYqKIikpiR07djj8KIrC559/7hJ28uTJjB49mpMnTzoy0KWONWvW1Jh+p06dHH78/Pzo1asX7733Xo1+P/roI7RaLdOmTXO5tm3bNhRFoV27dlRWVjpd+/nnnx1pXInVq1dz5MgRJzez2czLL79Mv3798Pf3x2Aw0KdPH+bOnUtWVtYV46zOZ599xu7du+sUxhNIsTUBY8aMYd++faxdu5YjR46wadMmbr31VvLy8modR0xMDNnZ2Y7jr3/9K1dffbWT29ixYy8ZfuHChWRnZ/Pbb7/x0EMPMXXqVDZv3uzib9WqVTzzzDN89NFHLoKqIjAwkI0bN7qEi42NrdW9BAcHExER4Tg3mUwMHTqUxYsXM3nyZLZv386BAwd4/fXXOXfuHCtWrKhVvFWEhIQQHh5epzAeQUgalYKCAgGIbdu2XdYfIDZu3OjiPmnSJDFq1CgX9+TkZNGnT59a2RAXFyeWLVvm5BYSEiJmzpzp5HbixAnh6+srCgsLxcCBA8WHH37odP2///2vAMTcuXPFkCFDHO7l5eXCYDCIefPmiStloZruc8mSJUKj0YhffvmlxjCqqjr+Hzx4sJg2bZqYNm2aCAoKEqGhoWLu3LlOfoQQIj09XQBi3759l7XHk8iSrZEJCAggICCAzz//HJPJ5GlzUFWVTz/9lIKCAry8vJyurV69mrvuuguDwcBDDz3EqlWraoxjwoQJ/Pjjj2RkZADw6aef0qlTJ/r161cvmz766COGDh3KtddeW+P1i6uma9euRafTsXv3bl577TVeffXVS1aLmzNSbI2MTqdjzZo1rF27luDgYAYNGsRzzz3H/v373WrH7NmzCQgIwNvbm/vuu4927drxyCOPOK6rqsqaNWt46KGHAHjwwQf56aefSE9Pd4krIiKC4cOHO9qI77//Pg8//HC9bTty5AgJCQlObvfcc4/jh+rGG290uhYTE8OyZctISEhg/PjxPPnkkyxbtqze6XsKKbYmYMyYMWRlZbFp0yaGDRvGtm3b6Nev3yU7NJqCp59+mrS0NL7//nsGDhzIsmXL6NKli+P61q1bKSsrY8SIEQCEhYUxdOhQ3n///Rrje/jhh1mzZg0nTpxg165djB8/vlHtffPNN0lLS+Phhx+mvLzc6doNN9zgVNolJiZy9OhRbDZbo9rQ1EixNRE+Pj4MHTqUefPmsXPnTiZPnkxycrLjemBgIEVFRS7hCgsLMRgMDU4/LCyMLl26cPPNN7N+/XqmT5/OoUOHHNdXrVpFfn4+vr6+6HQ6dDod33zzDWvXrkVVVZf4hg8fTkVFBVOmTGHkyJGEhobW27auXbty+PBhJ7f27dvTpUsXQkJC6h1vc0eKzU307NmTsrIyx3lCQgJ79+518mOz2fj111/p1q1bo6YdExPD2LFjmTNnDgB5eXl88cUXfPzxx6SlpTmOffv2UVBQwL///W+XOHQ6HRMnTmTbtm0NqkICjBs3jq1bt7Jv375a+U9NTXU6T0lJoWvXrmi12gbZ4W50njagtZGXl8f999/Pww8/TO/evQkMDGTPnj0sXbqUUaNGOfzNmjWLKVOm0L17d4YOHUpZWRkrVqygoKDAqW3VWDz11FNcc8017Nmzh59++onQ0FAeeOABl86IESNGsGrVKoYNG+YSx4svvsjTTz/doFINYObMmXz99dfccccdJCcnc/PNN9OuXTuOHDnC5s2bXUSUkZHBrFmz+Mtf/sIvv/zCihUreOWVVxpkgyeQYmtkAgICHG2k48ePY7FYiImJYerUqTz33HMOf+PGjUMIwauvvsqzzz6Ln58f1113Hdu3bycyMrLR7erZsyd33nkn8+fP58yZM9xzzz01vpAeM2YMEyZM4Ny5cy7XvLy8CAsLa7AtPj4+fPfddyxfvpzVq1czZ84cVFUlPj6e4cOHM3PmTCf/EydOpKKiggEDBqDVannqqad49NFHG2yHu1GEkAv+SJoORVHYuHEjo0ePbtJ0Tp48SXx8PPv27aNv375NmlZ9kW02SZMzbtw4Onbs2GTxDx8+nKuvvrrJ4m8sZMkmaVKOHTsGgFarJT4+vknSyMzMpKKiAoDY2FiXl/fNBSk2icRNyGqkROImpNgkEjchxSaRuIlW+55NVVWysrIIDAys1QRHiaS+CCEoKSkhOjoajebS5VerFVtWVhYxMTGeNkPShjh9+vRlX3G0WrEFBgYC9gcQFBTkYWskrZni4mJiYmIcee5StFqxVVUdg4KCpNgkbuFKzRXZQSKRuAkpNokEsBiNlKWkYjEamywNKTZJm6dwwwaO3XY7GZMnc+z2OyjcsKFJ0mm1bbbaIITAarW2uOn1jYler29xkzAbE4vRSPa8+VA1alFVyZ6fjP9NN6GPimrUtNqs2MxmM9nZ2S7rXbQ1FEWhY8eOBAQEeNoUtyMsFox/X3RBaFWoKuZTGVJsjYGqqqSnp6PVaomOjsbLy6tNvvgWQnD27FnOnDnTIpcZaAjWggIyZ86iPCXF9aJGg1dc7RagrQttUmxmsxlVVYmJicHPz8/T5niU8PBwTp48icViaTNiqzxyhDPTnsBy+jSKnx+G0aMo/PgTUFXQaGi/cEGjl2rQRsVWxeWG1rQV2lqJXvLdd2Q9/QxqeTn6jh3p+MYb+CR0I+zRRzGfysArLrZJhAZtXGyStoMQgry33uLsa68D4DdwIB2WL0PXrh0A+qioJhNZFVJsklaPWl5O1nPPU/LttwC0Gz+eyGdno+j1brVDik3SqrFkZnL6iScx/f476PVEzZtLuwce8IgtstHiBq60X1v1/dSqjqZcIKetUL5nD+n3P4Dp99/RhoQQt2a1x4QGsmRzC2PGjMFsNrN27Vo6d+5MTk4O3333ndN+bQsXLmTq1KmO87bSM9hUFHzyL4x//ztYLHj36EHMG/9AHx3tUZuk2JqYwsJCfvzxR7Zt28bgwYMBiIuLY8CAAU7+AgMDiWriBnprx2I0Yjp+nOIvv6To8y8ACBw+jOhFi9A0g1c8UmxNTPX92m644Qa8vb09bVKzxmI0Yj55Cq9OcbXuHRRCUPDBh+QsXuw0GiR8xgxC//Jos3m9IcXWxFTt1zZ16lTeeust+vXrx+DBg3nwwQfp3bu3w9/s2bOZO3eu43zx4sVMnz7dEyZ7jMING8ien+x4uRz+1HT8BgzAlp+PNT8fW14+toJ8rPkF2PLysBac/8zPB6vVOTKNBsPoUc1GaCDF5hbGjBnDXXfdxY8//khKSgqbN29m6dKlvPfee0yePBmw76dW9T/QKGvqtyQsRuMFoQGoKmeXLa9/hE00vrEhSLG5iar92qr2bHvkkUdITk52CKxqP7W2ivnkqQtCq4Y2LAx9dDS6du3QhoaiC2mHtl0I2tAQdCEhaENCwWbl5Lg/OYdvovGNDUGKzUP07NmTzz//3NNmNBvUygpXR42G+A3ra1U6tV+4wKkK2lTjGxuCFFsTU9v92toylpxcjPOTnR3rKJjg++7D/6abmnx8Y0OQYmtiartfW1tFrazkzJNPYs3NxavLVXR47TVs5/LqJRh3jG9sCK12Y43i4mIMBgNFRUUuq2tVVlaSnp5OfHw8Pj4+HrKweeDJZyGEIOuZ2RR/+SVag4FO6/+FV2zzamfVhsvlterI4VoSj5H33nsUf/klaLV0eG15ixRaXZBik3iEku//y9lXlwEQ+fxz+N9wg4ctanqk2CRup/LIEbL+9jcQguBxDxLypz952iS3IMUmcSvWggLOPD4Ntbwcv4EDiWpDnURSbBK3ISwWMp+ageXMGfQxMXRYvsztEzg9iRSbxG0YFy2ifPduNP7+xLz5hmNJgraCFJvELeSvW2dfwUpRiP7/Xsa7a1dPm+R2pNgkTU5ZSgo5ixYDED5rJoG33eZhizyDFJukSTFnZJD51Ayw2Qi6eyShjzziaZM8hhSbpMmwlZZy+rHHsRUV4dO7N+1ffLFZzS9zN1JsLYzt27czcuRIoqOjURSl2c4cMGdmkvHwFMzHj6OLjKTjP1agaeOz1KXYGkh2UQU7j58ju6iGKSJNQFlZGX369OGNN95wS3r1oXDDBo4PGUrl/v0AGO65B31EhIet8jxy1D/2AbEVlrpvG/Xp3jMkbzqIKkCjwIK7r2bMdXVbgs5Xr61T1Wr48OEMHz68rqa6DZctmIC8d96h3YNjm/WIfHcgxQZUWGz0nL+lQXGoAuZ9cZB5XxysU7hDC5Pw82o9X0Pxt1vctgVTS0NWIyWNhun4cc7+4x+uF5rhEgWeoPX8pDYAX72WQwuT6hTGWFTJkFd/QK32I65R4D+zBhNlqP28MF9961iM1ZqXx+m//C+itBR9bCyWM2ea9RIFnkCKDfu2SXWtynUOD2DJvb147rPfsAmBVlFYfO81dA5vezt4qpWVnH78cfuYx9hYOn3yMcJkatZLFHgCKbYGMPb6WG7pFs7Jc+V0CvOjvcHX0ya5HaGqZD0zm8pf96M1GIh5+y2nbZgkF5BiayDtDb5uFVlpaSnHjh1znKenp5OWlkZISAixHpjpnPvKK5T8+98oej0d3/gH3vHxbrehpSDF1sLYs2cPt1UbWzhr1iwAJk2axJo1a9xqS8HHn5C/6n0A2i9ejF///m5Nv6VR597IK41gEEIwf/582rdvj6+vL0OGDOHo0aNOfvLz8xk/fjxBQUEEBwczZcoUSktLnfzs37+fm2++GR8fH2JiYli6dGnd764VcuuttyKEcDncLbTSH3/E+OKLAIQ/NR3DyP9xa/otkTqL7UojGJYuXcrrr7/OW2+9RWpqKv7+/iQlJVFZWenwM378eA4ePMjWrVv56quv2L59O48++qjjenFxMXfeeSdxcXHs3buXl19+mRdeeIF33nmnHrcoaWwq//jDMbjYcM89hP7v/3rapJaBaACA2Lhxo+NcVVURFRUlXn75ZYdbYWGh8Pb2Fh999JEQQohDhw4JQPz8888OP5s3bxaKoojMzEwhhBBvvvmmaNeunTCZTA4/s2fPFgkJCbW2raioSACiqKjI5VpFRYU4dOiQqKioqHV8rZW6Pguz0SiO3DJYHEroLk5OmizUat9RW+Vyea06jfpSOz09HaPRyJAhQxxuBoOBgQMHsmvXLgB27dpFcHAw/avV74cMGYJGoyE1NdXh55ZbbsHLy8vhJykpicOHD1NQUFBj2iaTieLiYqdD0rioZWWc/t/HsObk4HXVVXR8/TWUat+R5PI0qtiMRiMAkZGRTu6RkZGOa0ajkYiLBqXqdDpCQkKc/NQUR/U0LmbJkiUYDAbHERMT0/AbkjgQViuZs/5q3zI3NJSYt99Ge5kFSSWutJrhWnPmzKGoqMhxnD592tMmtRqEEOQsXkLpDz+g+PgQs/JNvDp28LRZLY5GFVvVNrU5OTlO7jk5OY5rUVFR5ObmOl23Wq3k5+c7+akpjuppXIy3tzdBQUFOh6RxyF+7loJ16+zrh7y8FN9qmzhKak+jii0+Pp6oqCi+++47h1txcTGpqakkJiYCkJiYSGFhIXv37nX4+f7771FVlYEDBzr8bN++HYvF4vCzdetWEhISaNfGVmTyJBajkbNvvEHuS/8HQMTTTxM0dKiHrWrB1LXnpaSkROzbt0/s27dPAOLVV18V+/btE6dOnRJCCPHSSy+J4OBg8cUXX4j9+/eLUaNGifj4eKfermHDholrr71WpKamip9++kl07dpVjBs3znG9sLBQREZGigkTJojffvtNfPzxx8LPz0+8/fbbtbZT9kbWjks9i4L168Wh7j3EoYTu4lBCd5E+YYJQVdVDVjZvatsbWWex/fe//xWAyzFp0iQhhL37f968eSIyMlJ4e3uLO+64Qxw+fNgpjry8PDFu3DgREBAggoKCxJ///GdRUlLi5OfXX38VN910k/D29hYdOnQQL730Up3slGKrHTU9C3N2tpPQDiV0F4d69BTm7GwPWtp8qa3Y5JZRcssop2ehms1kP/c8xV995eI3du1a/AcO8ICVzRu5ZVQrZOXKlfTu3dvRAZSYmMjmzZsbLf6Kgwc5ed/9NQpNTgBtOFJsDaUoE9K32z+bmI4dO/LSSy+xd+9e9uzZw+23386oUaM4eLBuSzG4IAT5H3zAybEPYjpyBG1ICMHjHgTN+ewhJ4A2CnLUP9jXzLCU1z1c2jrY/AwIFRQNDF8Kfeu4/ZHeD2q54M/IkSOdzhctWsTKlStJSUnh6quvrlu651FNJqxnz1Hw4To0ViuBSUlEJc9HFxJC2F/+IieANiJSbGAX2uLohsUhVPjmb/ajLjyXBV7+dU7OZrOxfv16ysrKHK9V6oIQAuvZs5hzchBWC5qgIDo88zRB1Vbuau57VLc0pNhaGAcOHCAxMZHKykoCAgLYuHEjPXv2rFMcamUlljOZqJUVIIR9VMhbKwlo376JrJaAFJsdvZ+9hKkLxVnwxgB7iVaFooVpqRBUh1JS71enZBMSEkhLS6OoqIgNGzYwadIkfvjhh1oJTgiB9dw5rLm5dpFptegiItDp9W1u+yZPIMUG9jZTXatyYV1h5Gvw5QwQNrvQRi63uzchXl5edOnSBYDrrruOn3/+mddee4233367Rv+qxYIwmUBRsBqNqBX2lZu1gYHooqPBZoO8vCa1WWJHiq0h9JsIV90B+ScgpDMY3D84V1VVTCZTjdes+flYspxLbEWjQde+PdrgYPtKzLa6rwQtqR9SbA3F0MFtIpszZw7Dhw8nNjaWkpIS1q1bx7Zt29iyxXU1Z9VsdhEagFenTmj86lZ1lTQOUmwtiNzcXCZOnEh2djYGg4HevXuzZcsWhlYbHCxUFVtxMdac3BrjEGqrHDDUIpBia0GsWrXqkteEzYatoABrXh6i2myJi1G85cxqTyHF1sIRFgvW/Hxs+fmI8+0vRadDGxKKotVgyc52+NVHR6PR6z1laptHiq2FoppMWM+dw1ZY6Ng1RvHyQhcWZu/8OD/UShMUhDCZUby9pNA8jBRbC6Cq+17x9gaLxS6yagsaaXx90YWHowkMdNnrTaPXgxRZs0CKrZlTU/d9FdrAQLRhYWj8/Nr0XtUtBSm2ZoxqsdQoNK3BYC/J2vhcvJaGnGLTjBHVVpGujrZdiBRaC0SKrZkihMCan1/jNdl93zKRYmuGCCGwZhtRS0oA57aY7L5vucg2WzPEeu4c1nz74GCvmI4ofn6y+74VIMXWzLAWFGA9vyCtPioKrcFgvyBF1uKR1chmhK2kBEumvfdRFxaGLizMxU9j7I8n8QxSbA3EWGZkd/ZujGU1b/hRW9TycsynTwMCbXAwuos2FqmiMfbHk3gGWY3EXhpUWCvqHG7T8U0sSV2CiooGDXMGzuHuq+6uUxy+Ol+E2Yz51ClQVTQBAejPl1o1MXz4cIZXWyfk4vtYvnw5c+fOZdSoUQD885//JDIyks8//5wHH3ywbjcoaVSk2IAKawUD1w1sUBwqKotSF7EodVGdwu16YAe6jGyEzYbG1xevmBjHuMa6cqX98aTYPIsUm4exZmSgtdgHEXvFxaFotfWOqzb740k8hxQb9qpc6p9S6xQmpzyH0Z+PRuXCgj8aRcPnoz4n0q/m9lZ1hKpiOX0arworil6PV6dOKDr5dbRm5LcLKIqCXx1XuYo3xJN8YzILdi1AFSoaRUNyYjLxhvgrhhVCYDl9Bk2lDUWrxSsuDk0jbJdbfX+89tWWpcvJyaFv374Njl/SMKTYGsC9Xe/lxugbOV1ympjAGKL8r7ygqX10SDa24iJQFPSxsWh8fRvFnur741WJq2p/vMcee6xR0pDUHym2BhLlH1UrkVVhHx1iH/Po1bEj2oCAOqVXWlrKsWPHHOfp6emkpaUREhJCbGwsM2bM4O9//ztdu3YlPj6eefPmER0dzejRo+uUjqTxkWJzE6rFgi0vD+u5c8BFo0PqwJ49e7jtttsc57NmzQJg0qRJrFmzhmeeeYaysjIeffRRCgsLuemmm/j222/b/NZYzQG5P5sbMuHFE0A1AQF4d+rU5OnWBrlXXcOR+7M1E2qaAKqWlqJeZgUsSetEiq2JUUtLa3QXJrObLZF4Gim2JkS1WBwj+C9GTgBte0ixNRHCZsNy8iTCanV5WS0ngLZNZG9kEyBUFfOpU6gmE4pOh1fnzqAocgJoG0eKrZERQmA5cwa1vBxFo7FvZFE1OkSKrE3T6NXIF154AUVRnI7u3bs7rldWVjJt2jRCQ0MJCAhgzJgx5FzUrsnIyOCuu+7Cz8+PiIgInn76aaxWa2Ob2ugIIbBkZdsXUFUU9HFxchUsiYMmKdmuvvpq/vOf/1xIpFqbZebMmXz99desX78eg8HAE088wb333suOHTsA+17Rd911F1FRUezcuZPs7GwmTpyIXq9n8eLFTWFuo2E9exZbQbXRIf513ytb0ooRjUxycrLo06dPjdcKCwuFXq8X69evd7j9/vvvAhC7du0SQgjxzTffCI1GI4xGo8PPypUrRVBQkDCZTLW2o6ioSACiqKjI5VpFRYU4dOiQqKioqHV8V8KSlyfKDxwQ5QcOCMu5c40Wb1PTFM+irXG5vFadJumNPHr0KNHR0XTu3Jnx48eTkZEBwN69e7FYLE6TG7t3705sbCy7du0CYNeuXfTq1ctpTlZSUhLFxcUcPHjwkmmaTCaKi4udDndhKy52vLjWhYejCw11W9qSlkOji23gwIGsWbOGb7/9lpUrV5Kens7NN99MSUkJRqMRLy8vgoODncJUn9xoNBprnPxYde1SLFmyBIPB4DhiYmIa98Yuga2s7PzaIaBt1w5dRESTpbVy5Up69+5NUFAQQUFBJCYmsnnzZsf12rSHJZ6j0cU2fPhw7r//fnr37k1SUhLffPMNhYWF/Otf/2rspJyYM2cORUVFjuP0eQE0JWplJRV7f6HiwAFEZeVl1w5pDDp27MhLL73E3r172bNnD7fffjujRo1ylPgzZ87kyy+/ZP369fzwww9kZWVx7733Npk9krrR5F3/wcHBdOvWjWPHjjF06FDMZjOFhYVOpVtOTo5j4mNUVBS7d+92iqPq17nKT014e3vj7e1dLxuFEIiKui34o5rN5L2/mvx337Xvj6bREDn3eYLrOJVF8fWttUBHjhzpdL5o0SJWrlxJSkoKHTt2ZNWqVaxbt47bb78dgNWrV9OjRw9SUlK44YYb6mSXpPFpcrGVlpZy/PhxJkyYwHXXXYder+e7775jzJgxABw+fJiMjAwSExMBSExMZNGiReTm5hJxvkq2detWgoKC6NmzZ5PYKCoqONzvuoZFoqrkLHyRnIUv1ilYwi97UeqxobzNZmP9+vWUlZWRmJh4xfawFJvnaXSx/e1vf2PkyJHExcWRlZVFcnIyWq2WcePGYTAYmDJlCrNmzSIkJISgoCCefPJJEhMTHZnhzjvvpGfPnkyYMIGlS5diNBqZO3cu06ZNq3fJ1Zo4cOAAiYmJVFZWEhAQwMaNG+nZsydpaWlXbA9LPEuji+3MmTOMGzeOvLw8wsPDuemmm0hJSSE8PByAZcuWodFoGDNmDCaTiaSkJN58801HeK1Wy1dffcVjjz1GYmIi/v7+TJo0iYULFza2qQ4UX18Sftl7WT/WggKn/amtBQVkPTUD1AsL/qDR0Pnrr9BfYoHVS6VdFxISEkhLS6OoqIgNGzYwadIkfvjhhzrFIfEMcvJoLUZ4qBYLpsOHXdwrDh4kZ8FCu+A0GtovXEDwffc12j3UhiFDhnDVVVcxduxY7rjjDgoKCpxKt7i4OGbMmMHMmTNrDC8njzac2k4elWMja4EwmWp0N9z1PwQOHoz5VAZecbHoL9OB01SoqorJZKpVe1jiWaTYaoFaVlaju+LthT4gym0imzNnDsOHDyc2NpaSkhLWrVvHtm3b2LJlS63awxLPIsV2BawFBVjPnnVx98SctNzcXCZOnEh2djYGg4HevXuzZcsWhg4dCly5PSzxLLLNdpl2iq24GPP5oWa6sDC0oaGtbk6abLM1HNlmayBOw7CC26GLjLS/fG4lIpO4H7ksQg2oFRVYTp0CIdAGBqLv0LTDsCRtAym2i1BNJsynTiFUFY2fH/qYGCk0SaMgxVYN1WKxC81qRePjY9/CqZ57pUkkF9Omc1L1viFhs2E5dQphNjfKXmkthVbaP9YsaZNi05/v5CgvLweqrYZVWWlfDSsuDqWNdISYzfbFYrVt4IfF07TJ3kitVktwcDC5ubkIIfAqKkItK0PRaNBHRWEWAtrAhu+qqnL27Fn8/Pyc1omRNA1t9glHRUUhhCD799/tw7EUBW1oKJpqg43bAhqNhtjYWNkJ5AbarNgURUG3bh3aDz5EhIQQNW8u/tWW3GsreHl5oZGdQG6hTYrNYjRybuVbFH7yCQoQPW0awdX2PJNImoI2J7bCDRvInjffvpQBEJiURPAYuU6HpOlpU/UHi9HoJDSAkq1bsciZzM0GY5mR3dm7MZa59ztxR7ptqmQznzzlJDQAVBXzqQyPzEWTOPPZ0c9YsHMBKioaNMxPnM+YbmPcm66iITkxmXu7Nn5tp02N+rcYjRy7/Q6XpQy6fP+dFJsHyKvI4/f83/k973f25e7jx8wfXfzEG+KJC4qjQ0AHov2j6RDYwf5/QDRBXs4j7I1lRjKKM4gNiiXK/8L3KYSgwFRAdlk2xjIjxjIj2aXZZJdlk1GSwR/5fzjFo1E0bBmzxSmOyyFH/deAPiqK9gsXkD0/2WkpAym0mrlU5q1r2Ei/SHLKcziUd8ghrt/zfye3PPeK8aQXpZNelF7jtUB9IB0C7SIst5aTmp2KQKCg0CeiDz5aH7uwyrIx2WqebV8TqlA5XXK6zvd8JdpUyVaFxWj06FIG7qSugqm0VpJbnsv6I+tZe3CtI/Pe0+Ue+kf1t+9MhP2dnIJy4Vw5f45CqjGV9YfXI7BnLT+dH+XWcpe0FBTiguLoEdqDmIAY3j3wriMM2EuYF298kQprBZllmWSVZpFZkklWWRb5lfl1fhZhvmG0929PlH8UUf5RtPdvj6/Wl4UpC13SlSVbI6GPct9SBo1BfUuYz45+xoJdC1CFvS0y+/rZDIgaQE55DrnluRjLjeSU2f/PKc8hpzyHIlORSzwCwWfHPuOzY5/Vy/5yazlatHRp14XuId3pEdqDnqE9SWiXgJ/+wpqZHQI7ONmbnJjM3V3urjlOSznZZdlklmayI3MH6/5Y5+JnyjVTGNRhEFF+UUT6R+KlrXlrZY1G45JuY5dq0EZLtpaEk2DQ8Nf+f2VwzGBKLaWUmcvsn5Zqn+ZSSi2lnK04y/cZ39crTS+NF2bV7OLeM6QnQd5B9lJA2EUoEI7BzAJBsamYo4VHXcK+NeQtBnUYdMW0jWVGTpecJiYwptYZ3lhmJOnTJFRxoS1e19KpPulWUdu8JsXWTCkyFfHvk/9mYUrjrpfpp/OjQ2AHIvwi7L/4fpFE+kcS4Rfh+L/MXMawz4bVK/M2RsavDxeX4k3Vo1gTshrZwii3lPNL7i+kZqeSmp3KH/l/OLUjquOj9SHIO4gAfQABXgEE6APw1/tf+PQKQAjBO/vfcWmLfDH6iytm+iCvIJITk+tVtYryj6p32IZwb9d7uTH6xnqXTu5Almxu4uJ2l8VmYf+5/ezO3k1Kdgr7z+3HqjpvZdwpqBMni086udWllGjor31DqlYNCdvSkNXIZiS26pleQeGq4KvILM2kwuq8c060fzQD2w90HGG+YR4VjKR2SLF5WGwl5hIOnD3Ajswd/PP3f9boJ8QnhAFRAxzi6hjQscapLlIwzRvZZmsCLjdC4VTxKdLOpvHr2V9Jy03jeOHxS7a5AF5IfIF7ut6DRrny8NSq90KSlo0UWy25uAt+4tUTMXgbSMu1C6zQVOgSpmNARxJCEvg+43uXjopBHQbVSmiS1oMUWy04XXyaF3a+4BCMisqag2uc/HhpvLgm7Br6hPehT0Qf+oT3Icw3DKi5o0KWVG0PKbYaEEKQUZLBT5k/sTNrJylZKTVWCa+PvJ7bYm+jb3hfuod0R6+teZGgltAtLWl62qTYamp7lVnK2J29mx1ZO/gp8ycySzMvG4dG0bD45sW1Fo5sd0nanNgu7oa/PfZ2is3F7Mvd5/SeS6fRcV3EddzY4UYGRQ/it3O/sTBloawKSupNm+r6N5YZuXPDnZfsJYwJjGFQ9CAGdRjEgKgBToNkq8LLqqDkYmTXfw1kFGfUKLTxPcbzp+5/IjYo9rLh21xVsCgT8o9DyFVg6OBpa1o8bUpssUGxKCgu3fCTr57cvEXUkExf37C//BO+fAqECooGRr4G/SbWLe364Il7bWjYWtKmxBblH8ULN77gmW742nyZVjNUFkFlIVQU2j9//9Ke8RGAAv0mQbck0PuC3u/Cp1e1/7VeoCiughnxCvQYaY/XKZ2iC+eVRVBihCPfXrBLqLBpOuSfgNCuEBAB/uEXDl0N88Tqk3lrEnjf8WA1gbXS/mkzVTs3X3A/8i38/N6F59R3PMTdaD8X4vKfGSlwYIP9/yb8YWlTbbYqjMY0TmfvIaZ9f6Ki+tY+0tpmIKsJyvPsR9k5OPg5/LIWR0boeD34hV7I3FXCsrjOZq4XigZ0vmCpeS/wRscn+LwAI8A/DCryIf1HHPcbfwuEdL5ILBcJyFRqf7bNAUULMw7U+keiVbTZ3njjDV5++WWMRiN9+vRhxYoVDBgwoGGR/vJPIr98iiihIi73K2azgLkUzGX2jHBgPfz0yvlfQwV6/A8YYi+IqjwPys9Beb493CURcGb35W30NoCvARQdFJxwvR6WABqdXZyWivNHGVT1pgr18kKrit/HYBdK9U/fYPs9bltit9WBAj3utt9bWS6UnoWysyBs5380CuHckZrvN/0H+9FQqn5EdF6g8wGdt/3Taq75OUVfB/6hdtsVpYZP7N9bxq6LTLbZS/FGrk42W7F98sknzJo1i7feeouBAweyfPlykpKSOHz4MBEREfWLtCgTsWk6yvlMpAgVselJlN2rQDXbM5LpvMAuu0CMsFfvLoeitZdeOh8oynC9fsM0iLnensl9g6tlegNotBfsXXYNChcmYqqKBs2EjTVnBJvFLkBzORSkI1aPcNwrYF8gbsavEHz5jiCA3Xne9Nu/AJ2iYhUafumdzIAxM5w9qSpUFNhFV5YLpbn2KtnP77pG2Gc8hHc7LxBv0Hpf+F/nA6YSxIaHXe197CcIjrP70V4iu17qOY39/68smEuFDel8pUdUZ5ptNXLgwIFcf/31/OMf/wDsO67ExMTw5JNP8uyzz14xfE1Fe95vWwndcF+d7LApOmwab7xsriVFZscRlAT3xOzdDpNXO8xe7Rz/W/WBoCh4lxu549s70FT/MtGw/ubNFOrCMVtVzLbzh9V+WM7/X1RpIfzov1isW+XI9M9Zp3Ay5l689VrHDIGqeQKKcuF/k1Wl48kNLmFzrrofX73O7rdqkR6F8wv32N0qzTa2HMohijw6aXI4qUaSQyhJV0fh56V1Ku+c9rgDvMuNLDk1Dq1ywd0qNMyO+ZBK36jzyyjYC0/H/0ClxUb7E+td7M3sdB8+em2NL2uq0q602Ig59alL2Iy4MfjotReFcY7DZLERm+Ecdq71EZ56ZiHtDb6XzhjVaNFTbMxmM35+fmzYsIHRo0c73CdNmkRhYSFffPGFSxiTyYTJdKE0Ki4uJiYmxukB7Nl/gH6f3oymWkZQhcIcyxTOEE658KEUX8qFN2X4UIYvFnREkccO7+kuGegm02sYCb3i/Tyg/a9LRviXrfZ7C1TP9LVJr7HC1peG3K+n7vXisB9NvYHEq2oXR4tus507dw6bzUZkZKSTe2RkJH/88UeNYZYsWcKCBQsuG2+HuC7MsT7ComoZ4XnrFLTXT6KbToPVJrCqKmar/dNqE5htKmdLDMzJesQlAxki44j1rdYTp7j+W1Rh4V/G29hu6+30Zd7QOYRogy9eOo390No/9ec/vXUaKiw2Xv33EYyEYlTtX7yiwPz/6YHB18vxKy2g2qI79j+F5WaWbP7DJezf7kwgyFcPQqAKezh7+AvxFFdYWPH9sYtbbEy77SoMvs49jxdPv7OHxel+c5RQZg7pisFXby9Bq0rgaqVpcYWVpd+62vvssO4E++kdy+dd/JwBisrNLP7GNezzI3oQ7FfzilpVFJabWfT1705htYpCpzC/y4arD81SbPVhzpw5zJo1y3FeVbJVp73Bl36jpzP4sz7EKEZOiyim3zuYsddfvg2TXVTBoJeK2G66kIHOKmH89PCAK1Y17GG/xyicv8xlY/vWqpoSEejNc5/9hk0ItIrC4nuvuaK9VRj89PUO26Gdb4PDGtVQtIrCS7UMG+Jff3uDfOsfNtBH5xK2tlXIutBqqpEXc7miPbuogpPnyukU5lfrh/rJzxn1/jIbEra+9rbUsC3NXmjhbTawd5AMGDCAFStWAPYOktjYWJ544ol6d5A0FE99mZLmTYtuswHMmjWLSZMm0b9/fwYMGMDy5cspKyvjz3/+s8dsam/wrbdQGhJW0jpotmIbO3YsZ8+eZf78+RiNRvr27cu3337r0mkikbQUmm01sqEUFRURHBzM6dOnPb6UnaR1U9UZV1hYiMFguKS/ZluyNZSSkhIAlx5JiaSpyMvLu6zYWm3JpqoqWVlZBAYG1rgWY32o+gWrT2kpwzbfNBsatqioiNjYWAoKCggODr6kv1Zbsmk0Gjp27NgkcQcFBdW7airDNt80GxpWo7n80oRy4UKJxE1IsUkkbkKKrQ54e3uTnJyMt7e3DNtEYVuavXUJ22o7SCSS5oYs2SQSNyHFJpG4CSk2icRNSLFJJG5Cik3iQmZmJg899BChoaH4+vrSq1cv9uzZ42mzWjytdgSJpH4UFBQwaNAgbrvtNjZv3kx4eDhHjx6lXbt2njatxSO7/iVOPPvss+zYsYMff/zR06a0OmQ1UuLEpk2b6N+/P/fffz8RERFce+21vPtuDetASuqMFJvEiRMnTrBy5Uq6du3Kli1beOyxx5g+fTpr1671tGktHlmNlDjh5eVF//792blzp8Nt+vTp/Pzzz+zatesyISVXQpZsEifat29Pz549ndx69OhBRkYNS6hL6oQUm8SJQYMGcfjwYSe3I0eOEBcX5yGLWg9SbBInZs6cSUpKCosXL+bYsWOsW7eOd955h2nTpnnatBaPbLNJXPjqq6+YM2cOR48eJT4+nlmzZjF16lRPm9XikWKTSNyErEZKJG5Cik0icRNSbBKJm5Bik0jchBSbROImpNgkEjchxSaRuAkpNonETUixSSRuQoqthTN58mSnfcclzRcptjaCxWLxtAltHim2FsKGDRvo1asXvr6+hIaGMmTIEJ5++mnWrl3LF198gaIoKIrCtm3bOHnyJIqi8MknnzB48GB8fHz48MMPAXjvvffo0aMHPj4+dO/enTfffNMpndmzZ9OtWzf8/Pzo3Lkz8+bNcxLqCy+8QN++fXn//feJjY0lICCAxx9/HJvNxtKlS4mKiiIiIoJFixY5wggheOGFF4iNjcXb25vo6GimT5/ungfXnBCSZk9WVpbQ6XTi1VdfFenp6WL//v3ijTfeECUlJeKBBx4Qw4YNE9nZ2SI7O1uYTCaRnp4uANGpUyfx6aefihMnToisrCzxwQcfiPbt2zvcPv30UxESEiLWrFnjSOvFF18UO3bsEOnp6WLTpk0iMjJS/N///Z/jenJysggICBD33XefOHjwoNi0aZPw8vISSUlJ4sknnxR//PGHeP/99wUgUlJShBBCrF+/XgQFBYlvvvlGnDp1SqSmpop33nnH7c/R00ixtQD27t0rAHHy5EmXa5MmTRKjRo1ycqsS2/Lly53cr7rqKrFu3TontxdffFEkJiZeMu2XX35ZXHfddY7z5ORk4efnJ4qLix1uSUlJolOnTsJmszncEhISxJIlS4QQQrzyyiuiW7duwmw2X/lmWzFy3cgWQJ8+fbjjjjvo1asXSUlJ3Hnnndx3331XXMuxf//+jv/Lyso4fvw4U6ZMcZqbZrVanfaB/uSTT3j99dc5fvw4paWlWK1Wl504O3XqRGBgoOM8MjISrVbrtPNmZGQkubm5ANx///0sX76czp07M2zYMEaMGMHIkSPR6dpW9pNtthaAVqtl69atbN68mZ49e7JixQoSEhJIT0+/bDh/f3/H/6WlpQC8++67pKWlOY7ffvuNlJQUAHbt2sX48eMZMWIEX331Ffv27eP555/HbDY7xavX653OFUWp0U1VVQBiYmI4fPgwb775Jr6+vjz++OPccsstba7Tpm39tLRgFEVh0KBBDBo0iPnz5xMXF8fGjRvx8vLCZrNdMXxkZCTR0dGcOHGC8ePH1+hn586dxMXF8fzzzzvcTp061Sj2+/r6MnLkSEaOHMm0adPo3r07Bw4coF+/fo0Sf0tAiq0FkJqaynfffcedd95JREQEqampnD17lh49elBZWcmWLVs4fPgwoaGhTlXCi1mwYAHTp0/HYDAwbNgwTCYTe/bsoaCggFmzZtG1a1cyMjL4+OOPuf766/n666/ZuHFjg+1fs2YNNpuNgQMH4ufnxwcffICvr2+bW0RIViNbAEFBQWzfvp0RI0bQrVs35s6dyyuvvMLw4cOZOnUqCQkJ9O/fn/DwcHbs2HHJeB555BHee+89Vq9eTa9evRg8eDBr1qwhPj4egLvvvpuZM2fyxBNP0LdvX3bu3Mm8efMabH9wcDDvvvsugwYNonfv3vznP//hyy+/JDQ0tMFxtyTkGiQSiZuQJZtE4iak2CQSNyHFJpG4CSk2icRNSLFJJG5Cik0icRNSbBKJm5Bik0jchBSbROImpNgkEjchxSaRuIn/B5Eh937eVs8yAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "ax = df_res.plot(figsize=(2,2), grid=False, style=\".-\")\n",
+ "plt.title('SUT RAM [Gb]'.format(dbms), fontsize=10)\n",
+ "plt.suptitle('')\n",
+ "ax.set_xlabel(\"streams\")\n",
+ "ax.set_xticks(range(1,11))\n",
+ "plt.legend(title='SF')\n",
+ "\n",
+ "df_res"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Results in folder .//1686234009\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686236492\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686228050\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686238015\n",
+ "Read results\n",
+ "Load Evaluation\n"
+ ]
+ }
+ ],
+ "source": [
+ "df_res = pd.DataFrame()\n",
+ "for code in codes:\n",
+ " evaluate.load_experiment(code)\n",
+ " df = evaluate.get_streaming_metrics('total_cpu_util_s').T.max() - evaluate.get_streaming_metrics('total_cpu_util_s').T.min()\n",
+ " df = pd.DataFrame(df)\n",
+ " df = df.reindex(index=natural_sort(df.index))\n",
+ " path=resultfolder\n",
+ " with open(path+str(code)+\"/connections.config\",'r') as inf:\n",
+ " connections = ast.literal_eval(inf.read())\n",
+ " #print(\"found\", len(connections), \"connections\")\n",
+ " connections_sorted = sorted(connections, key=lambda c: c['name'])\n",
+ " SF = connections_sorted[0]['parameter']['connection_parameter']['loading_parameters']['SF']\n",
+ " #print(df)\n",
+ " df.index = df.index.map(lambda x: x[len('PostgreSQL-AWS-4-'):])\n",
+ " df_res[SF] = df.copy()\n",
+ " #df.T.max().plot.bar()\n",
+ "\n",
+ "#print(df_res)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 3 \n",
+ " 10 \n",
+ " 30 \n",
+ " \n",
+ " \n",
+ " DBMS \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 80.012976 \n",
+ " 254.895022 \n",
+ " 786.669466 \n",
+ " 6184.898335 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 160.696836 \n",
+ " 513.052090 \n",
+ " 1587.744005 \n",
+ " 12370.134032 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 241.310310 \n",
+ " 774.232907 \n",
+ " 2417.887925 \n",
+ " 18572.865874 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 320.818782 \n",
+ " 1035.374460 \n",
+ " 3275.796691 \n",
+ " 25137.664373 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 402.095493 \n",
+ " 1301.766807 \n",
+ " 4246.551481 \n",
+ " 32702.073946 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 480.793733 \n",
+ " 1580.428484 \n",
+ " 5265.466408 \n",
+ " 40614.352894 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 564.956015 \n",
+ " 1896.309787 \n",
+ " 6528.646610 \n",
+ " 49626.594767 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 643.013221 \n",
+ " 2195.282286 \n",
+ " 7860.367871 \n",
+ " 58838.671861 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 721.034614 \n",
+ " 2532.981222 \n",
+ " 9147.668042 \n",
+ " 66750.954151 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 809.336122 \n",
+ " 2927.611783 \n",
+ " 10593.564916 \n",
+ " 73239.706541 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 1 3 10 30\n",
+ "DBMS \n",
+ "1 80.012976 254.895022 786.669466 6184.898335\n",
+ "2 160.696836 513.052090 1587.744005 12370.134032\n",
+ "3 241.310310 774.232907 2417.887925 18572.865874\n",
+ "4 320.818782 1035.374460 3275.796691 25137.664373\n",
+ "5 402.095493 1301.766807 4246.551481 32702.073946\n",
+ "6 480.793733 1580.428484 5265.466408 40614.352894\n",
+ "7 564.956015 1896.309787 6528.646610 49626.594767\n",
+ "8 643.013221 2195.282286 7860.367871 58838.671861\n",
+ "9 721.034614 2532.981222 9147.668042 66750.954151\n",
+ "10 809.336122 2927.611783 10593.564916 73239.706541"
+ ]
+ },
+ "execution_count": 33,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOQAAADsCAYAAABkBArgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5NUlEQVR4nO2deVxTV/r/PzeBhIQlQbaArAqC+1op0o7WolQdq1+tdfrt/KpdtLVatTq2WheqjsWx0xmtdelixflWq9VWa11KrR2XKqBYcUNxAwEhIAJhz3af3x9AJLIlbAlw3q/XfZF7z3POeW64n5xzz8oREYHBYFgFAks7wGAwHsEEyWBYEUyQDIYVwQTJYFgRTJAMhhXBBMlgWBFMkAyGFcEEyWBYEUyQDIYVwQTJaDViYmLAcRw4jsP8+fMt7U6dWJuPTJCtyIMHDzBr1iz4+vpCLBZDoVAgMjISZ86cMdhwHIcDBw7Uijt9+nRMnDgRaWlphgemviMmJqZeHy5evIgpU6bAw8MDdnZ2CAoKwowZM3Dz5k0AqJW+i4sLRo8ejYsXLxrS8Pf3x/r162ul/eGHH2LAgAENfgdOTk7Izs7G6tWrja7fvn0br776Kry9vSEWixEQEICXXnoJiYmJRt9N9SGTyRAeHo7ffvvNED5ixIg6RRQTEwO5XN6gX9VMnToV2dnZCAsLM8m+tWGCbEUmT56MixcvYseOHbh58yYOHjyIESNG4OHDhyan4ePjg+zsbMOxcOFC9O7d2+ja1KlT64x76NAhPPnkk1Cr1di5cyeuX7+Ob775BjKZDMuXLzey/fXXX5GdnY3Y2FiUlJRgzJgxKCwsbM7tA6gUlUKhgKOjo+FaYmIiBg8ejJs3b+Lzzz9HcnIy9u/fj5CQECxcuNAo/vbt25GdnY0zZ87A1dUVf/7zn3H37t1m+1WNRCKBQqGASCRqsTSbg42lHeioFBYW4vTp0zhx4gSGDx8OAPDz88PQoUPNSkcoFEKhUBjOHRwcYGNjY3StLsrKyvDqq69i7Nix2L9/v+F6QEAAQkNDa4nNxcUFCoUCCoUC//znPxEeHo6EhARERkaa5W9jEBGmT5+OoKAgnD59GgLBozJhwIABmDdvnpG9XC43+LVlyxZ07doVx44dw5tvvmlynidOnMB7772Ha9euwdbWFr1798auXbvg5+fXYvfVUrASspVwcHCAg4MDDhw4ALVa3eb5x8bGIi8vD++9916d4Q1V6SQSCQBAo9G0uF9JSUm4du0aFi5caCTG1vJLp9Nh4sSJGD58OC5fvoy4uDjMnDkTHMeZ7XtbwErIVsLGxgYxMTGYMWMGtm7dikGDBmH48OH4y1/+gn79+rV6/rdu3QIAhISEmBWvsLAQq1evhoODg9mleWv6VVZWhmXLlkEoFBpqHKZQVFQElUqFP//5z+jevTsAoGfPnmbl3ZawErIVmTx5MrKysnDw4EE899xzOHHiBAYNGtRgI0xLYe4012HDhsHBwQHOzs64dOkS9uzZAw8PD4v79dJLL8HBwQGOjo74/vvvsW3bNrN+0Lp06YLp06cjMjIS48ePx4YNG5CdnW2u220GE2QrY2dnh1GjRmH58uU4e/Yspk+fjqioKEO4o6MjVCpVrXiFhYWQyWRNzrdHjx4AgBs3bphkv2fPHly6dAkFBQW4c+cOxo4dawhzcnJqMR/N9evf//43kpKSoFQqoVQqMW3aNLP92r59O+Li4jBs2DDs2bMHPXr0QHx8vFl+txVMkG1Mr169UFpaajgPDg7GhQsXjGz0ej0uXbpkeHibwujRo+Hq6op169bVGf54o46Pjw+6d+9e5ztcXT4CwB9//GG2jwMGDECvXr3wySefgOf5Rv1SKBQIDAyEm5tbnX798ccfJvk1cOBALFmyBGfPnkWfPn2wa9cus/xuK9g7ZCvx8OFDTJkyBa+99hr69esHR0dHJCYmYt26dZgwYYLBbsGCBXj99dcREhKCUaNGobS0FBs3bkRBQQHeeOONJudvb2+Pr776ClOmTMHzzz+PuXPnIjAwEHl5efjuu++Qnp6O3bt3m5TWu+++i6effhpr1qzBpEmToNfr8e233yIuLg6bN282yy+O47B9+3ZERETg6aefxtKlSxESEoKSkhL89NNP+OWXX3Dy5EmT0po1axY+++wzzJ07F2+88QbEYjEOHz6Mb7/9Fj/99BMAIDU1FV988QWef/55eHl5ISUlBbdu3cIrr7xilt9tBjFahYqKClq8eDENGjSIZDIZSaVSCg4OpmXLllFZWZmR7c6dO2nw4MHk6OhIHh4eNHbsWLp06VKd6UZFRVH//v1N9uP8+fM0adIkcnNzI7FYTIGBgTRz5ky6desWERGlpqYSALp48WKD6cTGxlJ4eDg5OzuTi4sLjRgxgk6ePNlgnO3bt5NMJqszLCUlhV555RXy8vIikUhEfn5+9NJLL9Eff/xhsAFA+/fvbzCPc+fO0ahRo8jNzY1kMhmFhoYaxVEqlTRx4kTy9PQ05LNixQrS6/VG6QwfPpzmzZvXYF5tAUfEFrlitA4xMTGYP39+iwwwaG1GjBiBAQMG1DkiqS1h75CMVkWlUsHBwQHvv/++pV2pk507d8LBwQGnT5+2tCsAAFZCMlqN4uJi5OTkAKjs8Hd1dbWwR7WxNh+ZIBkMK4JVWRkMK4IJksGwIpggGQwrolMPDOB5HllZWXB0dLTa0f+MjgERobi4GF5eXnXOcqmmUwsyKysLPj4+lnaD0YnIyMiAt7d3veGdWpDVs9gzMjLg5ORkYW8YHZmioiL4+PgYrZxQF51akNXVVCcnJyZIRpvQ2KsRa9RhMKwIJkgGw0S0SiVK4xOgVSpbLQ8mSAbDBAr37cPtZ0Yiffp03B75LAr37WuVfDr1O6Qp6PV6aLVaS7thMYRCIWxsbDp1t5AmIwPZy2osm8nzyF4RBfunnoJtI6v/mQsTZAOUlJQgMzPT7HVgOhpSqRSenp5Ws3ZpW6JXqXC/rhXNeR6ae+lMkG2FXq9HZmYmpFIp3NzcOmUJQUTQaDR48OABUlNTERQU1GCndkdDk5aGjFlvQ5OaWjtQIIDIz7fF82SCrAetVgsigpubm2E90M6IRCKBra0t7t27B41GAzs7O0u71CaUxicgc9488CoVbDw9IZ/0P8jbshXgeUAggOeqlS1eOgJMkI3SGUvGx+lMpSIAFOz5DsrVqwGdDnb9+8Hns89g4+YG+ZQp0NxLh8jPt1XECDBBMhgGSKdDzrp1KPjP/wEAnMaNg+dHayAQiwEAtgpFqwmxGiZIBgOAvrgY9xcuROmpyqU83ObNhctbb7V5DYkJktHp0WRkIGPWLGhu3wFnZwevtWvh9FzLbjJkKp3r5cCKaWwvSX9//1r7QjY0a4BhGmWJiUh7cSo0t+/Axt0dfv/3fxYTI8BKSKth8uTJ0Gg02LFjB7p164acnBwcP37caC/JVatWYcaMGYZzoVBoCVc7DIU/7Ed2VBSg1cKud294b94E21bYz8QcmCCtAFP3knR0dGx0X0hGw2iVSqjvpqL4l1gU7t4DAHCMjITX2mgIrKB7iwnSCqi5l+STTz4JcVWrHqNlKdy3D9kroir7EqtwfXsWXOfMAWclXTvW4UUnp3ovyR07dkAulyM8PBwffPABLl++bGT3/vvvG8Tr4OCATz/91EIetz+0SmUtMYLjIH/xRasRI8AEaTWYspfkokWLkJSUZDisdsMYK6Ti2jVjMQIAETT30i3jUD0wQVoRje0l6erqisDAQMPR0PbfjEfoVSo8WL+hdkArjUdtDkyQVszje0kyzEdfXIz0N2ZAfesWOHt7oLp62orjUZsDa9SxAkzdS5JhHvqSUmTMmImKK1cglMvhu2MHhDKnVh+P2hyYIK0ABwcHhIaG4t///jfu3LkDrVYLHx8fzJgxAx988IGl3WuX8GVlyHjzTZQnJUHg5ATfr7fBLrhyV2VrFGI1TJBWgFgsRnR0NKKjo+u1SUtLazuH2jl8eTky3pqF8gsXIHB0hO+2bbDr1cvSbpkEe4dkdCj4igpkzp6NsnPnILC3h+9XX0LSt4+l3TIZJkhGh4FXq5H5zlyUno0DJ5XC58svIOnf39JumQUTJKNDQBoN7s+dh9LTp8FJJPD9fCukgwZZ2i2zMVuQ9+/fx1//+le4uLhAIpGgb9++SExMNIQTEVasWAFPT09IJBJERETg1q1bRmnk5+fj5ZdfhpOTE+RyOV5//XWUlJQY2Vy+fBlPP/007Ozs4OPjg3Xr1tXyZe/evQgJCYGdnR369u2LI0eOmHs7jA4AabXIXLAAJSdPghOL4bNlM6RPPGFpt5oGmUF+fj75+fnR9OnTKSEhge7evUuxsbF0+/Ztg83atWtJJpPRgQMH6NKlS/T8889TQEAAlZeXG2yee+456t+/P8XHx9Pp06cpMDCQXnrpJUO4SqUiDw8Pevnll+nq1av07bffkkQioc8//9xgc+bMGRIKhbRu3TpKTk6mZcuWka2tLV25csXk+1GpVASAVCpVrbDy8nJKTk428ruzYs3fBa/VUsa8+ZQcHELX+/aj4tO/W9qlOmnoWauJWYJ8//336amnnqo3nOd5UigU9PHHHxuuFRYWklgspm+//ZaIiJKTkwkAnT9/3mBz9OhR4jiO7t+/T0REmzdvJmdnZ1Kr1UZ5BwcHG85ffPFFGjdunFH+oaGh9Oabb5p8P0yQpmGt3wWv01HmgoWVYuzTl4pPnLC0S/ViqiDNqrIePHgQQ4YMwZQpU+Du7o6BAwfiyy+/NISnpqZCqVQiIiLCcE0mkyE0NBRxcXEAgLi4OMjlcgwZMsRgExERAYFAgISEBIPNn/70J6N1QCMjI5GSkoKCggKDTc18qm2q86kLtVqNoqIio4PR/tAqlSg5G4f7776LosOHARsbdN2wAQ5VU9faM2YJ8u7du9iyZQuCgoIQGxuLWbNmYe7cudixYwcAQFm154HHY5M8PTw8DGFKpRLu7u5G4TY2NujSpYuRTV1p1MyjPhtlA/suREdHQyaTGQ62N2T7o3DfPtwe+SwyXnsNxb8cAzgOXf/1CRxHPmNp11oEswTJ8zwGDRqEjz76CAMHDsTMmTMxY8YMbN26tbX8a1GWLFkClUplODIyMiztEsMM6pxCBUDSr5+FPGp5zBKkp6cnej024qFnz55IT6+cwlI9mz0nJ8fIJicnxxCmUCiQm5trFK7T6ZCfn29kU1caNfOoz6ahGfVisdiwFyTbE7L9oUm71y6mUDUHswQZHh6OlJQUo2s3b96En58fACAgIAAKhQLHjx83hBcVFSEhIQFhYWEAgLCwMBQWFuLChQsGm99++w08zyM0NNRgc+rUKaNNbo4dO4bg4GA4OzsbbGrmU21TnU9n5tSpUxg/fjy8vLzAcRwOHDhgaZdaBM39zNoXrXAKVbMwp6Xo3LlzZGNjQ2vWrKFbt27Rzp07SSqV0jfffGOwWbt2Lcnlcvrxxx/p8uXLNGHChDq7PQYOHEgJCQn0+++/U1BQkFG3R2FhIXl4eND/+3//j65evUq7d+8mqVRaq9vDxsaG/vnPf9L169cpKirKars9sgrL6MztB5RVWNbstEzhyJEjtHTpUvrhhx8IAO3fv79Z6VlDK2v59et0feAgSg4OoeSQnpV/e/aigr17LeaTObRKtwcR0U8//UR9+vQhsVhMISEh9MUXXxiF8zxPy5cvJw8PDxKLxfTss89SSkqKkc3Dhw/ppZdeIgcHB3JycqJXX32ViouLjWwuXbpETz31FInFYuratSutXbu2li/fffcd9ejRg0QiEfXu3ZsOHz5s1r2YI0ie56lUrTX7+M/ZVApYfIj83j9EAYsP0X/OppqdBs/zZt1XTTqCILW5uXRzxDOUHBxCadOnkzo9nUriE0iTnW0Rf5qCqYLkiDrvXmtFRUWQyWRQqVS13icrKiqQmpqKgIAA2NnZoUyjQ68VsRbxM3lVJKSipk3M4TgO+/fvx8SJE5uc/+PfRVvCV1Tg3ivTUHH5MkT+/vDfsxtCmaxNfWgJGnrWasLGsjKsFiJC9gcfoOLyZQhlMvhs3dIuxWgObD6kiUhshUheZd6K1kpVBSL+dRJ8jTqIgAN+XTAcCpnpJY3EtnMuiJz32SYUHTla2fH/6acQ+ftb2qVWhwnSRDiOM7va2M3NAdGT+uKDH65CTwQhx+GjSX3Qzc2hlbzsOKgOH0bepk0AAM8Po2AfOrSRGB0DJshWZuoTvvhTDzek5ZXB31UKT5nlV8e2dsqTkpC9pHLpki6vvQb5Cy9Y2KO2gwmyDfCUSdpUiCUlJbh9+7bhPDU1FUlJSejSpQt8fa27z06blYWMOe+ANBo4jBwJ94ULLO1Sm8IE2QFJTEzEM888Gtu5YEHlQz1t2jSjhZetDX1JKTJmvQ19Xh7EISHo+vE6cJ1sQyEmyA7IiBEj0N56s0ivR9bf/gZ1SgqErq7w2bwJAnt7S7vV5rBuD4ZVkPvPT1By4kTljP9Nn8HWy8vSLlkEJkiGxSnYuxf527cDALyiP2p3C1O1JEyQDItSGp8A5cpVAADXd+bAaexYC3tkWdg7JMMiaJVKlCUkIPvvawCdDk7jxsH17bct7ZbFYYJktDmPb5xq6+0Nz4/WgOM4C3tmeViVldGm1DXrX5uVBX3VWkmdHSZIRpuiTkurPeuf5zvUrP/mwATJaFNKT/9e+2JHm/XfDJggGW2G6tBh5G/bVnlS/b5opRunWgrWqMNoE8ouXED2kiUAgC6vvoou016x6o1TLQUrITsYW7ZsQb9+/Qyr6oWFheHo0aMW9Ulz7x4yZ88BabVwHBUB90V/g61CAfvQoUyMj8EE2Rao7gOppyr/tjLe3t5Yu3YtLly4gMTERIwcORITJkzAtWvXWj3vutAVFCBj5pvQFxbCrm9feK1bB07AHrv6YFVWUyECtGXmx0vaBRx9DyAe4ATAmHXAgP81Lw1b6aN3rkYYP3680fmaNWuwZcsWxMfHo3fv3ubl20x4jQb335kLzb17sPHyrBwwLmHzQRuCCdJUtGXAR80c8Ew8cORvlYc5fJAFiMyf+aDX67F3716Ulpa2+Xq1RITsZctQlpgIgYMDfLZuhY2bW5v60B5hguyAXLlyBWFhYaioqICDgwP2799fa8X51iZv02YUHfwJEArRdcN62PXo0ab5t1eYIE3FVlpZUplDURawaWhlyVgNJwRmJwBOZpS2tlKzsg0ODkZSUhJUKhX27duHadOm4eTJk20mStWPPyLvs88AAIoPo+AQHt4m+XYEmCBNhePMrza6BgHjNwA/zQdIXynG8esrr7ciIpEIgYGBAIDBgwfj/Pnz2LBhAz7//PNWzRcASs+dQ9ay5QAAlxkz4DxlSqvn2ZFggmxtBr0CdH8WyL8LdOkGyLq2uQs8z0OtVrd6Puq7qch8Zy6g1cLxuefg9u78Vs+zo8EE2RbIuraZEJcsWYIxY8bA19cXxcXF2LVrF06cOIHY2NZddV2Xn4+MN98Er1JB0r8/vNZGs+6NJsAE2cHIzc3FK6+8guzsbMhkMvTr1w+xsbEYNWpUq+XJq9XInD0H2owM2Hp7w3vzJgjaeMuBjkKzfsLWrl0LjuMwf/58w7WKigrMnj0bLi4ucHBwwOTJk2vt45ieno5x48ZBKpXC3d0dixYtgk6nM7I5ceIEBg0aBLFYjMDAwDpXS9u0aRP8/f1hZ2eH0NBQnDt3rjm30yHYtm0b0tLSoFarkZubi19//bXVxKhVKlESF4f78+ej/OJFCJyc4PP5Vti4uLRKfp2Cpu7mc+7cOfL396d+/frRvHnzDNffeust8vHxoePHj1NiYiI9+eSTNGzYMEO4TqejPn36UEREBF28eJGOHDlCrq6utGTJEoPN3bt3SSqV0oIFCyg5OZk2btxIQqGQfv75Z4PN7t27SSQS0ddff03Xrl2jGTNmkFwup5ycHJPvoa22o2vv1PVdFOzdS8k9e1VuC1e1NVxJXLwFvbRuWm07OiKi4uJiCgoKomPHjtHw4cMNgiwsLCRbW1vaW2PPvuvXrxMAiouLI6LKvQsFAgEplUqDzZYtW8jJyYnUajUREb333nvUu3dvozynTp1KkZGRhvOhQ4fS7NmzDed6vZ68vLwoOjra5PtggjSNx78LTXa2sRir9mxsT9vDtTWmCrJJVdbZs2dj3LhxiIiIMLp+4cIFaLVao+shISHw9fVFXFwcACAuLg59+/aFh4eHwSYyMhJFRUWG8ZZxcXG10o6MjDSkodFocOHCBSMbgUCAiIgIg01dqNVqFBUVGR0M8+kMW4tbCrMbdXbv3o0//vgD58+frxWmVCohEokgl8uNrnt4eECpVBpsaoqxOrw6rCGboqIilJeXo6CgAHq9vk6bGzdu1Ot7dHQ0Vq5cadqNMupFfetm7YtsknGLYFYJmZGRgXnz5mHnzp1tvnFnS7BkyRKoVCrDkZGRYWmX2h1FR44gJ3pt5QmbZNzimFVCXrhwAbm5uRg0aJDhml6vx6lTp/DZZ58hNjYWGo0GhYWFRqVkTk4OFFX/LIVCUas1tLoVtqbN4y2zOTk5cHJygkQigVAohFAorNNG0cBDIRaLIRaLzbllRg1Kfv8dDxa9B/A8ZC9Mhuvbb0ObkckmGbcgZpWQzz77LK5cuYKkpCTDMWTIELz88suGz7a2tjh+/LghTkpKCtLT0w2zDcLCwnDlyhXk5uYabI4dOwYnJyfDWMuwsDCjNKptqtMQiUQYPHiwkQ3P8zh+/Hibz2roLPAVFcj5xzpAr4dswgR4rloFkZcXm2Tc0jS39ahmKytRZbeHr68v/fbbb5SYmEhhYWEUFhZmCK/u9hg9ejQlJSXRzz//TG5ubnV2eyxatIiuX79OmzZtqrPbQywWU0xMDCUnJ9PMmTNJLpcbtd42BmtlNY2SvDy69OuvdHXEM5S58G/E63SWdqnd0ardHjV5XJDl5eX09ttvk7OzM0mlUvqf//kfyn6sOTwtLY3GjBlDEomEXF1daeHChaTVao1s/vvf/9KAAQNIJBJRt27daPv27bXy3rhxI/n6+pJIJKKhQ4dSfLx5/WBMkI2jKyqmgsuX6dKvv1Lq8hXEP/Z/YpiGqYLkiNrZvmUtSFFREWQyGVQqFZycnIzCKioqkJqaioCAgHbZgNUS6EtKoLl3D2q9HhnFxQjs1w8SR0dLu9UuaehZqwkb/dsBOXXqFMaPHw8vLy9wHIcDBw4YhRMRVqxYAU9PT0gkEkRERODWrVtGNvrS0sp+RSII7O1h4+wMzta2De+ic8IE2QYoS5U4l30OylJlm+RXWlqK/v37Y9OmTXWGr1u3Dp9++im2bt2KhIQE2NvbIzIyEhUVFQCqxXgPIB4CBwfYenqavKYPo3mw2R4mQkQo15WbHe/gnYOITogGDx4CCLAkdAme7/68WWlIbCRmbUQzZswYjBkzps4wIsL69euxbNkyTJgwAQDwn//8Bx4eHjhw4ABefP55aO9VjsQRODhA5OsLtUZjlr+MpsMEaSLlunKE7gptVho8eKxJWIM1CWvMipfwvwmQmrmMR32kpqZCqVQaDTuUyWQIDQ3F2VOnMbFfPxDPQ2BvD5GvL5vT2Mawb7uTUT08seawQ16rhbuzM7JS71aKUSplYrQQrIQ0EYmNBAn/m2BWnJyyHEw8MBE8Hg3EFnACHJhwAB5SjwZi1s67tdDl50OblQW+vBwcx4ETiSDy8wMnFLZanoz6YYI0EY7jzK42BsgCEDUsCivjVoInHgJOgKiwKATIAlrJy8apHlqYk5MDD1dXaLMqV9LLffgQ/UJCQBoNiOeZIC0EE2QrMyloEoZ5DUNGcQZ8HH2gsLfsMLOAgAAoFAocP34cfXwrZ2cUlZTg/JUrmDF1KgCA1BqAdXFYBCbINkBhr2hTIZaUlOD27duG89TUVCQlJaFLly7w9fXF/Pnz8fe//x2+Yjv4e3li1WefwdPNDeNHjgQAcGJRm/nKMIYJsgOSmJiIZ555xnC+YMECAMC0adMQExODv82ZA1XaPcz5MAqq4mIMGzgQP27dCjuxGLZeXhCw0tFisKFznWzonL60FNp79x61pvr5gXgepNaAE4vqFGNH/S7aElOHzrESshOhLymFJr2q07+6n1EorGzAYaWiVcAE2UmoHCiebhgOx/oZrRMmyE6AvrgYmvSqgeKOjhD5+DAxWilMkB0cfVERNBkZABGEjk6w9fFmYrRimCA7MHqVCprMzEoxOjnB1puJ0dphguyg6AoLoc28D4AglMkqxcimUFk9TJAdkEoxZgIAhHI5bLt2ZWJsJzBBdjB0BQXQ3r8PABA6O8O2atUARvuACbKDwGu10OflQffwIQBA2KULbD09mRjbGUyQHYDqKVTVCOztmRjbKazJrZ3DazRGYvxizx4MiYyETCaDk5MTwsLCcPToUUO4Kft3MiwHE2QboFUqURqfAK2yZRe5Ip43NN5U09XDA6vmz8e5U6eRmJiIkSNHYsKECYadxd5991389NNP2Lt3L06ePImsrCxMmjSpRf1iNB1WZTURIgKVm7/IVeGBA8j5+5rK7dsEAngsWwr5xIlmpcFJai9yxWu10Kang3/Mp3EjRgAAxMHBENjaYs2aNdiyZQvi4+Ph7e2Nbdu2YdeuXRhZNdVq+/bt6NmzJ+Lj4/Hkk0+afX+MloUJ0kSovBwpgwY3LxGeR86q1chZtdqsaMF/XAAnfbRaAV9eDk16OkirBScUQujsDF1eniG8egqVXq/H3r17UVpairCwsEb372SCtDxMkO0MfVFR5egbngcnEkPk5wuBWAyhi4thCtW1GzcQ5uuLiooKODg4YP/+/ejVqxeSkpIa3b+TYVmYIE2Ek0gQ/McFs+Joc3Jwd9yfjXcbFgjQ7fAh2HqYvsgVJ5GAiKB/+NDwHiqwt68cJG5T+S8U2NoaplAFBwcjKSkJKpUK+/btw7Rp03Dy5EmzfGdYBiZIE+E4zqjaaArigAB4rlqJ7BVRhndIz1UrIQ4wb5Er4nlos7OhLygAUNXh7+lZ77hUkUiEwMBAAMDgwYNx/vx5bNiwAVOnTm10/06GZTGrlTU6OhpPPPEEHB0d4e7ujokTJyIlJcXIxpRm9fT0dIwbNw5SqRTu7u5YtGgRdDqdkc2JEycwaNAgiMViBAYGIiYmppY/mzZtgr+/P+zs7BAaGlprI1hrQP7CCwj87Th8d+xA4G/HIX/hBbPik14PTXq6QYy2CkXl6BszBonzPA+1Wo3Bgwc3un8nw8KYs6VWZGQkbd++na5evUpJSUk0duxY8vX1pZKSEoPNW2+9RT4+PnT8+HFKTEykJ598koYNG2YIr94fMiIigi5evEhHjhwhV1fXOveHXLBgASUnJ9PGjRvr3B9SJBLR119/TdeuXaMZM2aQXC6nnJwck+/H2rej01dUUPnNm1R25QqVXbtGuka2MiMiWrx4MZ08eZJSU1Pp8uXLtHjxYuI4jn755Rcianz/zrqwhu+ivdMm+0Pm5uYSADp58iQRERUWFpKtrS3t3bvXYHP9+nUCQHFxcUREdOTIERIIBEYbq27ZsoWcnJxIrVYTEdF7771HvXv3Nspr6tSpFBkZaTgfOnQozZ4923Cu1+vJy8uLoqOjTfbfmgWpKymh8uRkKrtyhcpv3CB9WZlJ8V577TXy8/MjkUhEbm5u9OyzzxrESGTa/p2PY+nvoiNgqiCbNTBApVIBALp06QIAjTarA0BcXBz69u1rtJR9ZGQkioqKDJ3XcXFxRmlU21SnodFocOHCBSMbgUCAiIgIg01dqNVqFBUVGR3WBK/VQl9SAl1eHjRpaSC9HgKJBKJu3SCQmLZ6+bZt25CWlga1Wo3c3Fz8+uuvGDVqlCHczs4OmzZtQn5+PkpLS/HDDz+w90crosmC5Hke8+fPR3h4OPr06QOgct+IxprVlUqlkRirw6vDGrIpKipCeXk58vLyoNfr67RpqPk+OjoaMpnMcPj4+Jh/462ELj8f6pQUaNLSKltSqyYViwIC2LKMnYgmC3L27Nm4evUqdu/e3ZL+tCpLliyBSqUyHBkZGZZ2CUDVqJsa41GrsVEo2Az/TkaTuj3mzJmDQ4cO4dSpU/D29jZcVygUjTarKxSKWq2h1a2wNW0eb5nNycmBk5MTJBIJhEIhhEJhnTYNVb/EYjHEYrH5N9zK8KWldV4njRYQsVXEOxNm/fwSEebMmYP9+/fjt99+Q8Bj/WmmNKuHhYXhypUryM3NNdgcO3YMTk5O6NWrl8GmZhrVNtVpiEQiDB482MiG53kcP3683TXf60tKoMvKrjOMLenfCTGnpWjWrFkkk8noxIkTlJ2dbTjKarQANtasXt3tMXr0aEpKSqKff/6Z3Nzc6uz2WLRoEV2/fp02bdpUZ7eHWCymmJgYSk5OppkzZ5JcLjdqvW0MU1pZy0xs3TQXnudJm/ugskvjyhUqv5Fi+Fx25QppHz5slXybQllZGWtlbSat0u0BoM5j+/btBhtTmtXT0tJozJgxJJFIyNXVlRYuXEhardbI5r///S8NGDCARCIRdevWzSiPajZu3Ei+vr4kEolo6NChFB8fb87tNPglaTQaSk5OpsLCQrPSNAVeryd1erpBfOrMTOL1etJrNKQrLiG9RtPieTaHvLw8Sk5OJp1OZ2lX2i2mCpLt7VHPfgtEhPT0dGi1Wnh5eUHQQo0rvEYDXXY2eLUa4DjYuLpCKJdb5ex+IkJZWRlyc3Mhl8vh6elpaZfaLWxvj2bCcRw8PT2RmpqKe/futUiavFoNfX4+QAQIBBA6O0NQWAgUFrZI+q2FXC5nfZVtBBNkA4hEIgQFBUGj0TQrHSJC4fc/IH/7dgh5HuIePeCxbCls3dxayNPWw9bWFkK2m3KbwQTZCAKBoFlbsPHl5chethxFhw9DAEA2aRIUUSsgsMLuF4blYYJsRTSZmcic8w7UN24ANjbw+GAJnF96ySrfFxnWARNkC6NVKqFJuwdd3gPkrP479CoVhC4u8N6wHtIhQyztHsPKYYJsQQr37Xs0GbkKu7594b3xU9iyRhGGCbCBki2EVqmsJUZwHLw++ScTI8NkmCBbiLLERGMxAgARdNls8SiG6TBBtgAlZ85AuXJV7QCBACI/37Z3iNEqKEuVOJd9DsrS1vuRZe+QzYCIkL9tG3L/9W+A52Hj7Q1dVpbRglasutr+KdOW4YvLX+Drq1+DQBBwAkSFRWFSUMuv+M4E2UT4sjJkLV2K4qM/AwBkkydBsWIF9AUF0NxLh8jPl4nRClGWKpFelA5fJ18o7I3/P0SE3LJcpBSkICU/BTfybyClIAX3ioxHavHEY2XcSgzzGlYrjebCBNkENOnplf2LN28CtrZQLP0A8qlTwXEcBAoFE6KV8sOtH7AybiV44iGAAG/1fwvejt5IyU8xiLBAXWBSWjzxyCjOYIK0NCWnf8f9v/0NvEoFoasrvD/dAOmgQZZ2i1EPRITs0mwkKhPx4dkPQaicS8GDx+ZLm2vZCzkhAmQB6OHcAyFdQhDcJRjOYmf85fBfwNOjRjsBJ4CPY8svAcMEaSJEhIdffoUH//43QARJ//7o+ukGs1YgZ7QMdVU7eeKRXZqNO4V3jI67qrso05XVm1aQPAhDFEMQ7ByMkC4h6C7vDjub2kMlo8KiHpWuVe+QLV06AkyQJsGXliLrg6Uojo0FAMinTIHH8mUQsOU12px9N/dhVdwqEAgcOPRz6wcdr8Nd1V2U6+rencxGYANvB2+kFaUZXRdwAmyO2GySsCYFTcIwr2HIKM6Aj6NPq4gRYIJsFM29e8icMwfqW7cr3xeXLYPz1Bct7Va7p6HGFaCqRlLxELcKbuF24W3cLryN5Lxk3Ci48cgGhEsPLhnObQQ28HfyR6A8EN3k3RAoD0R3WXf4OPnAVmBr/A7ZhFJOYa9oNSFWwwRZB9XjUbU5SuSs+Qh8URFs3NzQ9dMNkA4caGn32j2PC+O9J95Dzy49cbvwtpEAC9WFJqX3dv+3ERkQCR/HSuHVR1uVcs2BrRjw2CzuusajSgYORNcN62Hr7m4pVzsERZoiJGYnYv6J+YbGlYbgwMHXyRdB8iAEOgfCVeKKNfFrjOIKOAFiJ8dapbhqwlYMaAL1jkf9xz+YGOugvmpnfkV+ZYNK4V3cUVU2rNwtvIsH5Q/qTcvZzhm9XXobxBcoD0Q3WbdaDSy2Ats2aVyxFEyQNdCk3atzPKo2OxsiX+tZ5dwa2JuyF6vjVxsaVwZ7DAZPPO6q7jZY1XS1c0VeRZ7RNQEnwHd//s6qGlcsBRNkDUT+foBAUGuD1Y4+HrWuko6IUKAuwP3i+8gsycT9kvvILM5EZnEm7hXdg7Ls0XhOAiExJ9FwzoFDV4eu6C7vjm6ybugm74busu4IkAXAQeTQLhpXLAUTZA1sFYo6N1jtqCNvyrRl+E/yf7A5abPhvSzYORgEQmZxZoP9d3Uxo+8MjPIbBX+ZPyQ29W8O1NFLuebAGnXqeNHWKpXtbjxqXaVcmbYM2aXZuF9yH1klWcgqyXr0uTQL+RX5jabrLnWHt4M3vB29DX+lNlIsOLEAPIxHrrSHxpVmoboP5N8BunQHZF3NisoadZqBrYXGozbWN1eT6iqlslSJA7cOYHfKbkMp52XvhQp9hUmCq4v5g+ZjpO9IeDl4QSysezGuqGFtM3KlxWmqqP74D/DTPIB4gBMA4zcAg15pcfdYCWnCr1Zb8Ph71YLBCzBEMQQ5pTlQliqRU5ZTeVSd55blQsM3vjylg60Dujp0RVeHrvBy8DL6KxQIMfng5FpjNE0t6ZSlyqZXO5tR2rSYqJ5ZCgQ+C6hLAE1J1d/i2uclucDNn43T4oTA/Csm52/qs8YE2cKCbKyU0/JaPCx/aBBVTlkOUlWp2Htzb5PycxI5oUhTe+PZD8M+xCj/UXASNXxfdTWwmDzPrzVKG54HdBWAthzQllV9Lnt0fuMIcP4rVO5iwQEh4wC3YEBTBmhLAU1pjc9llXE0pYC6GChvWo2hXqYdAgKeNsmUVVmbgTlVx5rsvrEbHyV8ZOgKGOk7Em4SN4PwcstykVeeZ1KnOFApNl9HX3jYe8BD6gGFvQIeUg942Fd+dpe442HFQ0R+H1mrlAvvGt6oGAFgUnEJhqXfR4aNAD46Hoo+JfUb67WVwtBVABd3Ar+tqhIVBwx9C/AbViWc0kcC0pQZXyvLB+7U2NmMeODgO8AvywGdGqhnPGrdEHDjUOXRVCQugL0LIHIAxA6AyLHqb41z0gMn1lbmVw0nBLp0a3q+9dDuS8hNmzbh448/hlKpRP/+/bFx40YMHTrUpLh1/Wr9cOsHrDz7IXgQBOAQNexDjO82Hnnlecgtz0Vu2aPjQdmDys/luVCWKusd3Pw4NpwN3KRu8JB6wF3qDntbexy4vd9IpgJwiH3hl/p/EHh9VelRgR9OLcfKnFPgOQ4CIkTJB2JS72mVD7dO/UhE2vJHD722AijLAy7vqZ22e8/Kkkpb/shWVw7wOpPur8UQigFbyaODeKAgrbZdyHjANQgQSQFb+8f+SgGRPaAuAX0zCVyNb5nnBBDMv2pS6X7u+/UYdHklbDgeOhLgj35RGDp5vsm30imqrHv27MErr7yCrVu3IjQ0FOvXr8fevXuRkpICdxNG1jz+JSlLlYjcNxq8iSWYKYxzHYIBDt7wEErgLrCDh8AWXXgBBHp1pUh0FUBpHr6/fQCrXLsYRLUiLx+THYIA6KtEVfHIXlsO8FqjfJRCITJsbeCj1UGh17eY/+ag6RIMvb0HeBsJeBspeBs76G2k0AvtoBdKoLeRADo1vC58bCwMCHDpmRiU23tDI5BAJxRDy4nBQwg9EXiewBNBVJqNscdHQ1CjdZeHAHueOopSsTv0PIEngK+Ko6eqc56gKtdCcz4Ga2y2GUS1VPc6NH1fhp1ICD1P0POVcfXVcfnKz2UaPX6/nQcFHsJfkIM03gMPOFf8vvgZeMrq796pSacQZGhoKJ544gl89tlnACo3bfXx8cE777yDxYsXNxr/8S/p3O0jeP3M+3Xa2hDgygNueoKbnoeHTgt3nRYKrRruej04EN5QeICvsSq5gAixGVkmC6QlRZXJeUIlkEENEdQQoQK2UJMIFVWfK0gEIWnxMh2GoMZC6nri8J7uLWSRC8pJhHJUxTHEFcEZRTgjngch9+jR0ZEAT6k3QAmXRn17UfhffFRDGB/oXsd3+mdMuq/mxAVgJCpTfG2Ib2c8ibDupqXR4d8hNRoNLly4gCVLlhiuCQQCREREIC4urs44arUaarXacF5UZNwY4lhUCgFRLVHtua9ED6220SX6ovLysbJGKReVlw+1tguS4AR1lQgqIKr1WQg9pgtjodDrDULkicNi7evIgUuVre1jwrKtEkcxTovn1xLHCxUfmPTAXRF61XrAv9c33FChhCuW6N6oFe+h0BVSoQBCjoNAwEEo4CDgAAFX/ZmDRq/Hd8XP4JS+n5Ew/F2kcJLYQsBVxhEKOHAcV5VWZRpFFVp8l1E7blh3F7g7ig351orPAeVaPfYmZkIJFyj5yu+FA/DaU/6QS0RV8TgIBY/8rfa5pEKHf/x8w6jeJOQ4+LtKG/1+zaXdCjIvLw96vR4ej83Y9/DwwI0bN+qMEx0djZUrV9abZqlNCJbnFWC1q7NBVMvzCnDMdiYOyT2hF4ih58TQCcWVn4Wiqr920BQ/xCfZ0zCsvMJQyrnqCEv9t0Hq5mv0UD7+wJRptFhyxrdWdcon4k30lYoMD5VAYPyACgUcVOVafHDwDaO4y3SvY8lfnoWb0UNaWyAPSzR45WvglPrRA57LueDH2cPgKZM8ivdYnjlFFXjmn8bxTK3CZavKEb72NyjpkTCEHIdvZz7Z5Lj/erG/SVXHwX7O+OCHq9ATQchx+GhSH0x9wrRhkc72trXimlpdNYd2K8imsGTJEixYsMBwXlRUBB+fR4PGu/oFYl/BSzhSFoMskQBeGh4b1a9i3nvLTXpYlq57A3/HNij06iphvIH5k0eY9I/b4zYXw3/oDx9OiQxSYO6k4SY/LDaC2nEnDDCtGyJ6Ul988MNVKHkXCDkO0ZP6oL+Pc4Nx/Fzsa8Uz9QH1lEkMcc19uJsTFwCmPuGLP/VwQ1peGfxdpWYJqjlxzaHdvkNqNBpIpVLs27cPEydONFyfNm0aCgsL8eOPPzaaRl31+j3n0/HpDyebJIzmxAUqRd3Uf7gl4rY3fy1Jp2nUGTp0KDZu3AigslHH19cXc+bMaVKjTjWd7WFhtD4dvlEHABYsWIBp06ZhyJAhGDp0KNavX4/S0lK8+uqrzUrXUyZpspiaE5fBaNeCnDp1Kh48eIAVK1ZAqVRiwIAB+Pnnn2s19DAY7YV2XWVtLiqVCnK5HBkZGRYfXM7o2FQ3IBYWFkImk9Vr165LyOZSXFwMAEYtrQxGa/Lw4cMGBdmpS0ie55GVlQVHR0dwNQYDNIfqX8KmlLrtLW5789eScVUqFXx9fVFQUAC5XF6vXacuIQUCAby9vVslbScnpyZXg9tb3PbmryXjCgQNj/diG7YyGFYEEySDYUUwQbYwYrEYUVFREIvrXoumI8Vtb/62h7idulGHwbA2WAnJYFgRTJAMhhXBBMlgWBFMkAyGFcEEyWgS9+/fx1//+le4uLhAIpGgb9++SExMbDwio0E69UgdRtMoKChAeHg4nnnmGRw9ehRubm64desWnJ0bXmmA0Tis24NhNosXL8aZM2dw+vRpS7vS4WBVVobZHDx4EEOGDMGUKVPg7u6OgQMH4ssvv7S0Wx0CJkiG2dy9exdbtmxBUFAQYmNjMWvWLMydOxc7duywtGvtHlZlZZiNSCTCkCFDcPbsWcO1uXPn4vz58/WuicswDVZCMszG09MTvXr1MrrWs2dPpKenW8ijjgMTJMNswsPDkZKSYnTt5s2b8PPzs5BHHQcmSIbZvPvuu4iPj8dHH32E27dvY9euXfjiiy8we/ZsS7vW7mHvkIwmcejQISxZsgS3bt1CQEAAFixYgBkzZljarXYPEySDYUWwKiuDYUUwQTIYVgQTJINhRTBBMhhWBBMkg2FFMEEyGFYEEySDYUUwQTIYVgQTJINhRTBBdgKmT5+OiRMnWtoNhgkwQTIMaLVaS7vQ6WGC7EDs27cPffv2hUQigYuLCyIiIrBo0SLs2LEDP/74IziOA8dxOHHiBNLS0sBxHPbs2YPhw4fDzs4OO3fuBAB89dVX6NmzJ+zs7BASEoLNmzcb5fP++++jR48ekEql6NatG5YvX24k5g8//BADBgzA119/DV9fXzg4OODtt9+GXq/HunXroFAo4O7ujjVr1hjiEBE+/PBD+Pr6QiwWw8vLC3Pnzm2bL86aIEaHICsri2xsbOhf//oXpaam0uXLl2nTpk1UXFxML774Ij333HOUnZ1N2dnZpFarKTU1lQCQv78/ff/993T37l3Kysqib775hjw9PQ3Xvv/+e+rSpQvFxMQY8lq9ejWdOXOGUlNT6eDBg+Th4UH/+Mc/DOFRUVHk4OBAL7zwAl27do0OHjxIIpGIIiMj6Z133qEbN27Q119/TQAoPj6eiIj27t1LTk5OdOTIEbp37x4lJCTQF1980ebfo6VhguwgXLhwgQBQWlparbBp06bRhAkTjK5VC3L9+vVG17t37067du0yurZ69WoKCwurN++PP/6YBg8ebDiPiooiqVRKRUVFhmuRkZHk7+9Per3ecC04OJiio6OJiOiTTz6hHj16kEajafxmOzBsXdYOQv/+/fHss8+ib9++iIyMxOjRo/HCCy80ulbqkCFDDJ9LS0tx584dvP7660ZzG3U6HWQymeF8z549+PTTT3Hnzh2UlJRAp9PV2lHY398fjo6OhnMPDw8IhUKjHYQ9PDyQm5sLAJgyZQrWr1+Pbt264bnnnsPYsWMxfvx42Nh0rkeUvUN2EIRCIY4dO4ajR4+iV69e2LhxI4KDg5GamtpgPHt7e8PnkpISAMCXX36JpKQkw3H16lXEx8cDAOLi4vDyyy9j7NixOHToEC5evIilS5dCo9EYpWtra2t0znFcndd4ngcA+Pj4ICUlBZs3b4ZEIsHbb7+NP/3pT52uoalz/fx0cDiOQ3h4OMLDw7FixQr4+flh//79EIlE0Ov1jcb38PCAl5cX7t69i5dffrlOm7Nnz8LPzw9Lly41XLt3716L+C+RSDB+/HiMHz8es2fPRkhICK5cuYJBgwa1SPrtASbIDkJCQgKOHz+O0aNHw93dHQkJCXjw4AF69uyJiooKxMbGIiUlBS4uLkbVz8dZuXIl5s6dC5lMhueeew5qtRqJiYkoKCjAggULEBQUhPT0dOzevRtPPPEEDh8+jP379zfb/5iYGOj1eoSGhkIqleKbb76BRCLpdAtnsSprB8HJyQmnTp3C2LFj0aNHDyxbtgyffPIJxowZgxkzZiA4OBhDhgyBm5sbzpw5U286b7zxBr766its374dffv2xfDhwxETE4OAgAAAwPPPP493330Xc+bMwYABA3D27FksX7682f7L5XJ8+eWXCA8PR79+/fDrr7/ip59+gouLS7PTbk+wNXUYDCuClZAMhhXBBMlgWBFMkAyGFcEEyWBYEUyQDIYVwQTJYFgRTJAMhhXBBMlgWBFMkAyGFcEEyWBYEUyQDIYV8f8BK38RcIzMe58AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "ax = df_res.plot(figsize=(2,2), grid=False, style=\".-\")\n",
+ "plt.title('SUT CPU [CPUs]'.format(dbms), fontsize=10)\n",
+ "plt.suptitle('')\n",
+ "ax.set_xlabel(\"streams\")\n",
+ "ax.set_xticks(range(1,11))\n",
+ "plt.legend(title='SF')\n",
+ "df_res"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Results in folder .//1686234009\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686236492\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686228050\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686238015\n",
+ "Read results\n",
+ "Load Evaluation\n"
+ ]
+ }
+ ],
+ "source": [
+ "df_res = pd.DataFrame()\n",
+ "for code in codes:\n",
+ " evaluate.load_experiment(code)\n",
+ " df = evaluate.get_benchmarker_metrics('total_cpu_util').T.max()\n",
+ " df = df.reindex(index=natural_sort(df.index))\n",
+ " path=resultfolder\n",
+ " with open(path+str(code)+\"/connections.config\",'r') as inf:\n",
+ " connections = ast.literal_eval(inf.read())\n",
+ " #print(\"found\", len(connections), \"connections\")\n",
+ " connections_sorted = sorted(connections, key=lambda c: c['name'])\n",
+ " SF = connections_sorted[0]['parameter']['connection_parameter']['loading_parameters']['SF']\n",
+ " #print(df)\n",
+ " df.index = df.index.map(lambda x: x[len('PostgreSQL-AWS-4-'):])\n",
+ " df_res[SF] = df.copy()\n",
+ " #df.T.max().plot.bar()\n",
+ "\n",
+ "#print(df_res)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 3 \n",
+ " 10 \n",
+ " 30 \n",
+ " \n",
+ " \n",
+ " DBMS \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 0.351637 \n",
+ " 0.452132 \n",
+ " 0.0 \n",
+ " 0.453909 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 0.274562 \n",
+ " 0.450193 \n",
+ " 0.0 \n",
+ " 0.906511 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 0.594639 \n",
+ " 0.875783 \n",
+ " 0.0 \n",
+ " 1.369124 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 0.692282 \n",
+ " 1.736767 \n",
+ " 0.0 \n",
+ " 0.482500 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 1.875298 \n",
+ " 1.333599 \n",
+ " 0.0 \n",
+ " 0.672106 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 1.182135 \n",
+ " 1.504793 \n",
+ " 0.0 \n",
+ " 2.428322 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 2.707533 \n",
+ " 2.880599 \n",
+ " 0.0 \n",
+ " 0.553262 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 1.685111 \n",
+ " 2.234767 \n",
+ " 0.0 \n",
+ " 2.064222 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 1.876792 \n",
+ " 3.372648 \n",
+ " 0.0 \n",
+ " 3.292659 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 2.563882 \n",
+ " 2.562248 \n",
+ " 0.0 \n",
+ " 3.452518 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 1 3 10 30\n",
+ "DBMS \n",
+ "1 0.351637 0.452132 0.0 0.453909\n",
+ "2 0.274562 0.450193 0.0 0.906511\n",
+ "3 0.594639 0.875783 0.0 1.369124\n",
+ "4 0.692282 1.736767 0.0 0.482500\n",
+ "5 1.875298 1.333599 0.0 0.672106\n",
+ "6 1.182135 1.504793 0.0 2.428322\n",
+ "7 2.707533 2.880599 0.0 0.553262\n",
+ "8 1.685111 2.234767 0.0 2.064222\n",
+ "9 1.876792 3.372648 0.0 3.292659\n",
+ "10 2.563882 2.562248 0.0 3.452518"
+ ]
+ },
+ "execution_count": 35,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMEAAADsCAYAAADNcMJ0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABCxklEQVR4nO2dd3xUVd7/33d6JpNCCgklIaH3Xg0WUARUhBVd3cVVVld/utgW10fRFdRVEX1QxEVdK7iK+iiCYIFVqtI7SC+BENJJL1Pv+f1xM5MMmYRMepj7fr3mlZl77zn3zGQ+c9q3SEIIgYpKAKNp7gaoqDQ3qghUAh5VBCoBjyoClYBHFYFKwKOKQCXgUUWgEvCoIlAJeFQRqAQ8l7UINmzYgCRJ5OfnN3dTVOpIQkICCxYs8LyWJIkVK1Y06D1atAimT5+OJElIkoRerycmJoZx48bx0UcfIcvyJctfccUVpKenExYW1gStbdlkZGTw8MMP07lzZ4xGI3FxcUyaNIm1a9d6rklISPB83sHBwQwePJivvvrKc3769OlMmTKlSt0N8WOzePFiwsPDqxzfuXMn999/f53rrQ0tWgQAEyZMID09nTNnzvDjjz8yZswYHn30UW666SacTme15RwOBwaDgdjYWCRJarT22e32Rqu7oThz5gxDhgxh3bp1vPbaaxw8eJDVq1czZswYZsyY4XXtCy+8QHp6Onv37mXYsGHcfvvtbNmypZlaDtHR0ZjN5sa9iWjB3H333WLy5MlVjq9du1YA4v333/ccA8Tbb78tJk2aJMxms5gzZ45Yv369AEReXp4oKCgQJpNJ/PDDD151ffPNN8JisYiSkhIhhBApKSnitttuE2FhYaJNmzbi5ptvFsnJyVXa9OKLL4p27dqJhIQEn22fM2eOGDBggPjwww9FXFycCA4OFg8++KBwOp1i3rx5IiYmRkRHR4sXX3zRq9z8+fNF3759hdlsFh07dhQPPvigKCoq8pz/85//LPr16yesVqsQQgibzSYGDhwo/vSnP1X7OU6cOFF06NBBFBcXVzmXl5fned6pUyfxxhtveF47HA5hNpvFU0895fXeL6by5+wLX+f37t0rAJGcnOw5X/kxZ84cn20CxPLly6t9r3WhxfcEvhg7diwDBgzgm2++8Tr+3HPP8bvf/Y6DBw9yzz33eJ0LDQ3lpptuYunSpV7HP/vsM6ZMmYLZbMbhcDB+/HhCQkL45Zdf2Lx5MxaLhQkTJnj94q9du5Zjx47x008/8d1331XbzlOnTvHjjz+yevVqPv/8cz788ENuvPFGUlNT2bhxI/PmzeMf//gH27dv95TRaDQsXLiQQ4cOsWTJEtatW8f//M//eM4vXLiQkpISnnrqKQCeeeYZ8vPz+de//uWzDbm5uaxevZoZM2YQHBxc5byvIYgbnU6HXq9v9N7uiiuuYMGCBYSGhpKenk56ejp///vfG/WeldE12Z0amJ49e3LgwAGvY3/84x/585//7Hl9+vRpr/PTpk3jT3/6E6WlpZjNZgoLC/n+++9Zvnw5AF9++SWyLPPBBx94hlAff/wx4eHhbNiwgeuvvx6A4OBgPvjgAwwGQ41tlGWZjz76iJCQEHr37s2YMWM4duwYP/zwAxqNhh49ejBv3jzWr1/PiBEjAHjsscc85RMSEnjxxRd54IEHePvttwGwWCx8+umnXH311YSEhLBgwQLWr19PaGiozzacPHkSIQQ9e/a81Efqhd1uZ/78+RQUFDB27Fi/yvqLwWAgLCwMSZKIjY1t1Hv5otWKQAhRZaw/dOjQGsvccMMN6PV6Vq5cyR133MGyZcsIDQ3luuuuA2D//v2cPHmSkJAQr3JWq5VTp055Xvfr1++SAgDlS1y5rpiYGLRaLRqNxutYVlaW5/XPP//M3LlzOXr0KIWFhTidTqxWq0e4AKNGjeLvf/87//znP3nyyScZPXp0tW0QfrqLPPnkk/zjH//AarVisVh45ZVXuPHGG/2qo7XRakVw5MgREhMTvY756u4rYzAYuPXWW1m6dCl33HEHS5cu5fbbb0enUz6G4uJihgwZwmeffValbHR0dK3v40av13u9dq9yXXzMvdJ15swZbrrpJh588EFeeuklIiIi+PXXX7n33nux2+0eEciyzObNm9FqtZw8ebLGNnTr1g1Jkjh69Git2vzEE08wffp0LBYLMTExXj80oaGhnD17tkqZ/Px8tFpttZ+LW/SVBelwOGrVnqagVc4J1q1bx8GDB5k6darfZadNm8bq1as5dOgQ69atY9q0aZ5zgwcP5sSJE7Rt25auXbt6PZpimXX37t3Issz8+fMZOXIk3bt3Jy0trcp1r732GkePHmXjxo2sXr2ajz/+uNo6IyIiGD9+PIsWLaKkpKTK+YuXNaOioujatavPVbUePXpw6NAhbDab1/E9e/aQmJhYReBu3D8g6enpnmP79u3zusZgMOByuap9H41JixeBzWYjIyOD8+fPs2fPHl5++WUmT57MTTfdxF133eV3fVdddRWxsbFMmzaNxMREz1gcFIFERUUxefJkfvnlF5KTk9mwYQOPPPIIqampDfm2fNK1a1ccDgdvvfUWp0+f5j//+Q/vvvuu1zV79+5l9uzZfPDBByQlJfH666/z6KOPVpn/VGbRokW4XC6GDx/OsmXLOHHiBEeOHGHhwoWMGjWq1u2bNm0akiRx1113sXv3bk6ePMlHH33EggULePzxx2t8X3FxcTz33HOcOHGC77//nvnz53tdk5CQQHFxMWvXriUnJ4fS0tJat6u+tHgRrF69mnbt2pGQkMCECRNYv349Cxcu5Ntvv0Wr1fpdnyRJ/OEPf2D//v1evQCA2Wxm06ZNxMfHc8stt9CrVy/uvfderFZrtRPPhmTAgAG8/vrrzJs3j759+/LZZ58xd+5cz3mr1cqdd97J9OnTmTRpEgD3338/Y8aM4U9/+lO1v6SdO3dmz549jBkzhscff5y+ffsybtw41q5dyzvvvFPr9oWHh/PLL7/gcDi4+eabGThwIAsXLuT111/n//2//1dtOb1ez+eff87Ro0fp378/8+bN48UXX/S65oorruCBBx7g9ttvJzo6mldffbXW7aovkvB35qSicpnR4nsCFZXGRhWBSsCjikAl4FFFoBLwqCJQCXhUEagEPE1uNiHLMmlpaYSEhDSqnb+KihCCoqIi2rdv72WvdTFNLoK0tDTi4uKa+rYqAcy5c+fo2LFjteebXARuq8pz5841yS6sSuBSWFhIXFxcFavgi2lyEbiHQKGhoaoIVJqESw271YmxSsCjikClRePIyKBk23YcGRmNdg9VBCotlryvvuLkmLGkTJ/OybHXkv/1141ynxbpWeZyuVqU51FTo9Vq0el0AbuE7CouIXfJEnLeeqvioCyTPnsOwaNHo29gP+QWJ4Li4mJSU1P99o293DCbzbRr165WvswtnoLzkHsKIrpAWIdqL7OnppL3n0/JX7YMubi46gWyjP1syuUtApfLRWpqKmazmejo6ID8JRRCYLfbyc7OJjk5mW7dutW40dPi2fMJrHoUhAySBia9CYMrPAKFEJTt2kXuJ59QtHYdlPtb6+PicKSmQuUfQ40GQ6f4Bm9iixKBw+FACEF0dDRBQUHN3ZxmIygoCL1ez9mzZ7Hb7ZhMpuZuUt0oOF8hAFD+rnoMulyLHBRN4Q8/kPvJJ9gOH/EUCR49moi77yI4KYmCb74hffYcRRgaDe1eeL7BewFoYSJwE4g9wMW06l9/N7mnQMg4SjXYi3QYQpxIGkHeWwvJW70FV04OAJLJRNjkyUT86U6MXbt6ioffeivBo0djP5uCoVN8owgAWqgIVC4TIrqQf8pM+s4wQAJE+Z+VAOhiYmgzbRrht92Krk0bn1XoY2Mb7cvvRhWBSqPhKHRWEgDKXwHGXj2Juu8+QsaNQ6omTEtToopApdGwb/uWCgFUEPPULIJHDG/6BlXDZTDwrDvZ2dk8+OCDxMfHYzQaiY2NZfz48WzevBnwjtfvftRkjajijaFkL0qQ6UpIAkMLSxcR0D3B1KlTsdvtLFmyhM6dO5OZmcnatWu5cOGC55oXXniB++67z/O6LrGOAhKXA33GOrQmAy5r+ddMgnZDC9Cf/gp6tpyeIGBFkJ+fzy+//MKGDRu4+uqrAejUqRPDh3v/c0JCQpolUnKr58yv2LOLcFljQKul46J/YTLnof9hOuz9FK6ZBeaI5m4lEMDDIYvFgsViYcWKFVVia6o0AEdWUZym7G+Yhw0j5Jpr0A+bArH9wFEKuz5s3vZVImBFoNPpWLx4MUuWLCE8PJykpCSefvrpKjkPnnzySY9gLBYLCxcubKYWtyJkGY5+R1G5CCzXKD0tkgSjHlaeb38PnC3jxydgRQDKnCAtLY2VK1cyYcIENmzYwODBg1m8eLHnmieeeIJ9+/Z5HnUJAhxwpO7AlZdFaZZi9xRyzTUV5/reAiHtoSQLDvxf87TvIgJaBAAmk4lx48bx7LPPsmXLFqZPn86cOXM8592hyt2PmtIbqZRzZBUlGUYQEobERAwJCRXntHoY+YDyfOu/vG2Dmgm/RPDOO+/Qv39/j2vkqFGj+PHHHxurbc1C7969fcbxV6klQsDhlRSfdw+Frql6zZDpYAiB7KNw8ucmbZ4v/BJBx44deeWVV9i9eze7du1i7NixTJ48mUOHDjVW+xqNCxcuMHbsWD799FMOHDhAcnIyX331Fa+++iqTJ09u7ua1XtL3I/JSKE6vQQSmsApL0i1vVT3fxPi1ROqOie/mpZde4p133mHbtm306dOnQRvW2FgsFkaMGMEbb7zBqVOncDgcxMXFcd999/H00083d/NaL0dWUZarx2XToAkJwTx4kO/rRj4A29+F5I2QfgDa9W/adlaizvsELpeLr776ipKSkhqzndhsNq8lyMLCwrreskExGo3MnTvXKwnGxZw5c6bpGnS5UGlp1HLl6Optg8Ljoc/v4LevlbnBLe81YSO98XtifPDgQSwWC0ajkQceeIDly5fTu3fvaq+fO3cuYWFhnocaeOsyJvsY5ByjOE3xBbGMGVPz9Vc8pPz9bZnie9BM+C2CHj16sG/fPrZv386DDz7I3XffzeHDh6u9ftasWRQUFHge586dq1eDVVowR1biKNFiy9eBRkNwDallAWg/CBKuBNmpDI2aCb9FYDAY6Nq1K0OGDGHu3LkMGDCAN998s9rrjUajZzVJDbjVzBSch+RNjfere2QVRWlGAIIGDarWR8CLUeW9we7FYG2eoXK99wlkWVbNDloDez6BBX1hySTl755PGrb+vDOQvr9iKOTeJb4U3a6HqO5gK2z4NtUSv0Qwa9YsNm3axJkzZzh48CCzZs1iw4YNVbJAqrQwqvP1bcge4ch3yE6J0ixlUhxyqfmAG40GRs1Qnm9/F1xNH2rHLxFkZWVx11130aNHD6699lp27tzJmjVrGDduXGO1T6UhKPf19UK4ILf63Md+U75LLFwCfceOGLp0qX3Z/ndAcDQUnIPD3zZcm2qJX0ukH37Yciz/VPwgootivFbZREHSQETnhqm/KAPObac4TZnvWa65xr9gCXoTDLsPNrwMWxZC36lKe5uIgLcdCgjCOkC3Cd7HDCEQFN4w9R/9DiEExZlKCHSfu8SXYthfQGeC9P1w5teGaVctUUUQKJTlKX+HP6BYcdoKGs5k4cgqrHl6nCUyGrMZ8/Bh/tcRHAkD/6g83/qvhmlXLVFFEAhYCyF1JwC7O/yBvCtnK8c3vwmFafWruzQXkn/xGMwFJyWhqWvoyJEzAAmOr1Y23poIVQQNxKZNm5g0aRLt27dHkiRWrFjR3E2q4OwWEC7OyDFM/fw8Q5aHkNNmoOLhtfaF+tV97EcQLoqzw4E6DoXcRHWFHjcoz7cuql+7/OCyFUF6QRlbTuWQXlDWJPcrKSlhwIABLFrUdP+82lJyVDFX/lXuC4AsJO7LnKqc3P85nN9T98qPrMJRpsGa5QLAcvVV9WorV5R7nu3/Aoqz6ldXLWnRjvZCCMocLr/LLdudypyVh5AFaCR4/uY+TB3iX6iUIL3WrxWOiRMnMnHiRH+b2iRIpzcA8Kvcz3Nsr9yF7MTJRCd/C2uehj//6P+KjK0ITq3zGMyZ+vdHFxVVv8bGj4QOQ+D8btj5AYxpfIveFi2CMoeL3rPX1KsOWcCz3x7i2W/983k4/MJ4zIYW/fHUjqIMzAUnkIXEVrnC0FEjgXztbFj8X0jZqqzP95niX90n/gsuG8U5HQGZkDHX1L+9kqT0Bl9Nhx3vQ9JjYDDXv94auGyHQyrlnN4IwLmg7hRg8Ry+e1QCMR27Vgw/fpoNDqt/dR9ZheyCkvNKD1Kv+UBlek5STK3LcmH/0oapswZa9E9dkF7L4RfG+1Umo8DKda9vRK4c1l6Cn2deTWxY7UOcB+kvkyBb5UOho0FDIB9MOg1Wp8yFErtyPulRxWYn/6xitjD6sdrV67DC8f9SmmlE2F3oYmIw9uzZMG3W6pSVotVP4vzlTY5ao4lO7EtMRz92of2gRfcEkiRhNuj8enSOtjD3ln5oy8e3Wkli7i396Bxt8aueyyI8vBAeEXxb2A2Ax6/vAcB/D2dQbHOC0QLXli+ZbvpfKM6uXd2n1oGjhOKcSKAOu8SXYtCdODVGdIUp9F17F1HvD2HHsgUNV38lWrQI6srtw+L59akxfH7fSH59agy3D2v47CatgpwTUJSGrDWxtiQRg1bDn0Z1onNUMFaHzH8PlWeEHPAHaDcA7EWw/qXa1X1kFUJAUbrbgeaaBm16ZnYmGleFdbJWEgw+8DyZqaca9D5wmYoAoF1YEKO6RNIurGky3hQXF3tiEwEkJyezb98+UlJSmuT+Pjm9HoCsNgOxYWBAXBgmvZbJA5W8YSv2lW+UaTQwvtzNdM8SyLzEIoLLAcd+wFagw5lXhmQyETxyZIM2PTv5MJqLOhadJJNz9miD3gcuYxE0Nbt27WLQoEEMGqQ4ls+cOZNBgwYxe/bs5mtU+VBot2YAAMMSlNifUwa1B+DXE9lkFZVPhhOSoNckxdp0zTM1xwM68ytY8ynOVuoLHjkSTQOnlDribItLeKvAKTREdWqgeUclVBE0ENdccw1CiCqPytHsGoJaJ7d2OSH5FwCWl88HhicqX9pOkcEMig9HFvDd/vSKMuNeAK1B6UFO/Lf6uo8omWYqzwcaErtT5l+7Spnl/AtOoXxFnULDnv5zGmVyrIqgFZH/9decHHtt7ZJbp+0BexGyqQ3r8mPRSDCkU4W74+8GuYdElRxrIjrDiP+nPF/zjG8HF9kFR77DadVQlqK4Qzb0fODLXec4e6GUdUETSL17O4fGLeXCfbsYPvWxBr2PG1UErQRHRkZFJkfwJLeutkcoHwplRAxHRkOvdqGEmCrCn9zYrx1ajcSB1AJOZVfKGXzVE2COhAsnYNdHVetN3QklWRTntAEhMPbuhT4mpoHeJZTanSxcewKAR67tSkLn7vRJurHRlkdBFUGrwX7mbIUA3JQnt/ZJuQh2apSgVu6hkJtIi5Gru0cD8O3eSr2BKazCVGHD3AoTbDeHy4dC+UpPEtLAQ6GPN58hu8hGfISZO5poVU8VQSvBkNBJWcWpTHXJrW3FcG4HACsKyucDCVUTYkwZVLFKJCpPhAdPh+heigA2vlpxXAhladQFJaeKgIadD+SV2Hl3g7IE+vj13THomubrqYqglaCPjaXt3//udSz2+WqSW6dsBdmBKyye9dnBAAz1IYJxvWIINmhJyS1lT0p+xQmtDsa/qDzf8R7knFSep++HghRK80KRy2xoo6Iw9e3bEG8PgHc3nqLI5qRnbAiT+rdvsHovhSqCVsTFv/rBo6pZmy8fCqVHjgQkOkcHEx1irHJZkEHL+L6KiFbsvSjyRNfroOs4JTDWT88qx46sAqC4WPFNtlx9FVIDJR1PLyhj8ZYzADw5oSeaizcJGhFVBK2IsoMHvV5bD1UT+c89H5DK5wM+egE3U8o3zr47kIbDddGcY/xLIGnh2A+KId6RlcoucbITaNih0Js/n8DmlBmeEME1PaIbrN7aoIqgFWE9oIhAClJ2wa1HfIigOAsyfwPgm3xlReXiSXFlrugSSXSIkbxSB5uOX2Q3FN0Dht6jPP/mfsg5jr3YhCMzF0mvJ3jUFfV8Rwons4r5v11KeM4nJ/ZocrstVQStBCEEZeV5IEJvVFwQrb5iwCZvAkCO6c/W8n2wYTX0BDqtxjP+Xn7xkAiULJO6IChWlmKLzyvWtebhw9Faguv0Xi7m9Z+OIQu4rlcMQzo1fUZLVQStBEdKCnJBAZLBQPiUKYAyHBIXmzeU2wulRY7AKQvahZno2KZm+yn3xtlPhzMpsl60Qea0Ko9yPBloRlWTd8BP9p/L54eDGUgSPDG+R4PU6S+qCBqApkhjVVY+FDL26qmsyGi1uC5cwJlVaQgjBJzaAMB2KvYHLjW86NshlC7RwdicMmsOZXqfzD2FOyu9yy5RmqNEkrD0aZjVm1fXKAZxtwzqSI/YkAap018uXxE0dgTmSjRFGivrb4oIgvr2Q2MyYeysrNBYD1e6R+5pKEwFrYFVecpKUk1DITeSJHkmyFVWiSK6KNHqQEnBJCSMYU4Mveufkf7XEzlsPnkBg1bDY9d1q3d9daVli0AIsJf4/9jxvncE5h3v+1+HH1kVJ02axA033EC3bt3o3r07L730EhaLhW3btjXYR1F2UJnsBvVXnOVN5YlRvOYF5UMhueMItqUqUTZqmhRXxm1eveVUDpmFldwswzrApDdB0lJcHnbdctVo5Xg9kGXBvNVKLzBtZDxxEY3rR1wTLdq9EkcpvFzPblfI8MPflYc/PJ0GBv8nfrVNY+UPwun0fNlN/cpF0Kc3Bd9+i/XwkYoL3fsDUSOxHpNpY9bTNdpycXU+iY80M6RTG3afzWPV/jT+cmWlOKWD70J0uobiVb8DSrH84eF6v6cff8vg4PkCgg1aZozpWu/66kPL7glaEf6msfIH28mTCKsVjcXiyQlcpSeQXZ6Voe0oQhmaEOHXptMUX5al5RTtOopcXIomJISgAQPq+lYAcLhk/ve/SoS5+67qTJSl6kZeU9KyewK9WflF9ofCNFg03DsUuaSFGdsh1I9eRe9f9+xOY1VQUMDXX3/N3XffzcaNGxtECO5NMlPfvp4dWmPPXgA409Nx5uaiK00GawEYw/ghJwa4wIhaDoXc3NivHc+vPMRv5ws5kVlEtxhlopr/9dekP6s4B8lFRRQsX074rbfW+f18vTuV5JwSIoIN3j1OM+FXTzB37lyGDRtGSEgIbdu2ZcqUKRw71ogxIyVJGZL484jq5hnDKnVoYdIC5bg/9fi5YeNvGit/cG+SBfWrsNPRWoI9vYL18BHPfEAkXsmOswVA7SbFlYkINnh2a929gceEu9IcqUYT7ktQZnex4OfjADw0pisWY/P/Dvslgo0bNzJjxgy2bdvGTz/9hMPh4Prrr295GeAH3wWPHYS7v1P+uhNHNyENmcaq7DdlUmzq28/ruNeQqHw+kBk1kkKrE7NBS5/2/ueHcw+Jvt2XhiwL/024L8GSrWfILLTRITyIaSNbRgAEv2S4evVqr9eLFy+mbdu27N69m6uuqmcMyoYmrEO9VzBqy6xZs5g4cSLx8fEUFRWxdOlSNmzYwJo19YueByDbbNiOK7+c7pUhN6Y+vSn84Qesvx2A6O0AbKUfUMKQTm3Qaf2f8l3XKwaLUUdqXhm7U/IYmNCpaoKP6ky4L0FBqYO31ysWqTPHdceoaxmxneo1MS4oULrdiIjqu12bzUZhYaHX43KjMdNY2U6eApcLbVQUuovMpj09wcF94LJDaEfWlifK8Hco5KlTr2VCJctSfWws5uGV9gQ0Gtq9UI0J9yV4d9MpCq1OusdYPD1OS6DOAzJZlnnsscdISkqibw025XPnzuX555+v621aBY2Zxsp2orwX6Nu3ys6vqZcyOXak5+CyS2g6X82OQ4onWF1FAIpl6de7U/n+YDpzJvXBlZ8PQNSMGYTfdmudBJBZaOXjzckAPDG+J9omNJW+FHXuCWbMmMFvv/3GF198UeN1ajLv+mE7rvjbmi4aCgFow8PRt1dWvKx5enLajiKryIZeKzEoPrzO9xzVJZK2IUbySx1s2n3KMxxr84c76iQAgIVrT2B1yAzp1IbrerWtc9sagzqJ4KGHHuK7775j/fr1dOxYc8hzNZm3b+xOmWKrA7tTrvE623Fl9S2oX1URAJh6KBtN1nw9W4TSI/fvGI6pHrFUtRqJmwco4tr7w0YQAkNiYp3Dru9IvsDnO5SJ9JMTera4EJd+iUAIwUMPPcTy5ctZt24diYmJjdWuy5oLJTaOZhRyOqeEYxmF5Jb4XkUSsozjvLJPUp0boylGMWizlkXza5ry76ytqURNuMfsjr27ATAPHVqnej7fkcLv/73NEyA5Oae45gLNgF8imDFjBp9++ilLly4lJCSEjIwMMjIyKCtrmmwwlwN2p8z5vIrPSwDn86w+ewThUMya9R07omvTpsp5AFNQDgDWfCM7z+QCNXuS1ZY+7UPp1tZCr2zF8d08zD8RCCFYtjuVWd94e8M9/c1vTZY9qLb4NTF+5513ACXaWmU+/vhjpk+f3lBtuqyxO6tm3hEI7E65SnQFYbcjUXVptDIml7KHYM8sJj0zD0lvZHAn34LxB0mSmNorgm75yqaZPz3BjuRcXltzlJ1n8qqccwnBmZzSJosRWxv8EkEVBw4Vv9H6cEyXwGd4EeFwIFF1k8xDbjI6ewq6oBicZVoSC9PR9OlPWJDe9/V+Ml7KxipkMs1taBMcwaWmxL+dL+C1NcfYWO6madBKOFyCyt8arSSRENV8FqO+UA3o6oPTruTtctprXcTqIwdbpMXoWwR2pd7K5hJelO8Sm9orlqJd8883yHzATfAxZShzMLIzK/dX75dxMquYv362m5ve+pWNx7PRaSTuHBnPL0+O5ZWp3rkiXr6lb4vqBaClG9C1ZEpyoKDScm9YHARfevWksNx9McpixOGSKShzUGJ3IoTwWjWRHQ7FXEGj8WyKVcEtgp7dKT61n6755+nWAPMBN2U7dwHwW2RnUvamcf9V3qEQU/NKefPnEyzbk4oslI3lKQM78Nh13egUqZih3z4snqu6R3Mmp5SEKHOLEwCoIqgbTru3AEB5bQwFXfWJrGVZUGRVwpWEm/XotRqKrE7K7C4KyxyEmSvKinK7I0N8HJpgH34NsgzJSj4yMWA0fL+frgWpDEus/3wAFHONsgMHADjatgtn0wv5cuc5ruoehU6jYdH6k3y2/SwOlzLYub53DI9f38Oni2S7sKAW+eV3o4qgLriqMYxz2WoUQbHNiSwEeq3GkyI2ymIkq8hKRqGN0CC9pzeQrYp3l7F7d9+VZRxQwiQaQjgcfwUxLCKhMIMoY8OMcK0HDyLsdrRRUQR3ToSMIp5cdgAJ0JWP9QFGd43i8eu7Myi+YcTXHKhzgrqgrfpF37RtN5Om3lFtRnshBLNnz+baIT0Z1DmGcePGceLECaJDDGg1Ejani7zSikgP7p6gWhGUD4VIvJKtpSYKDGa0QvbsMNeX0l3KUEgzYBBHMooq2gU4XILe7UJZ+pcRfPqXEa1aAHAZiyCjJIMd6TvIKKmb3XuNVApB4qak1MqAfn2qzWg/b948PnrvHf7x8uus3/QrwcHBjB8/HofdTtvyEIlZhVZkd4IPd0/QrToRKP4DdL6GnWfyOBWm7Nx7Od7Xg9Ly+UBBtz74WhN89qZeXNG1nom7WwgtejgkhKDM6f/GyspTK5m7fS4yMho0zBoxi5u73OxXHUG6oOq390vKw5yYI8EUDsWZTBybxMRrr4Koql9aIQQL3nyT+x5+nOsm3Eiv9qF88sknxMTEsGLFCn7/+9vJKbZjd8nkFtuJMIBwKatIxoROVe/vKIOzWwGwxl3JgW/PMCC8A4Ozj/sOyOUnwumkdO9eAGJGj0SzLNUrJa6yzNkwgbdaAi1aBGXOMkYsHVGvOmRkXtr+Ei9tr2VWxnK2/3E7Zl8ulg6rsiwKYIkBnVHxRLtwUgkMcOFklSLJyclkZmQw4sprCDHp0EgSYWFhjBgxgq1bt3LHHXfQNsTI+fwysopshAUpu8eSXo9k8DHHOLddmX+EtGNPaTROOZmcdolwYr23430dsR45gigtRRMaSofB/Zgr2vD0N7/hEqLFLnPWhxYtghZJaXkvYAxTBACg0SrxeXKOV0ya5Yr9gIxyV8TIqGhCK21kxcTEeM61CTaQU2zD5pQpLVTsayR9NZNs93yg8zXsKN+VDR3QFzaB7ehRZZNNX/cNM/dQyDxkCJJG0yqWOetDixZBkC6I7X/c7leZzNJMpqyYgkyFLY5G0rBi8gpizLVPKxSk8/GPll1QqtjnVNkT0OogsouSOxigKFO5XqP1mEpISFhMvj9yjSQRE2oiJbcUuawMCZAM1XyRK4lg506lPT0H9URjsSAXF2M7nYypRzVziVrgnhRXNpVo6cuc9aFFT4wlScKsN/v1SAxLZM4Vc9CUR03TSBrmjJpDYliiX/X4nA+U5ipRLHQmMPoIGagzKkIAcFkh7wwIQXC4IpjSggvoKplNZGZmElvJPj8sSE+QXouxfAfa51Ao8xCkKeN1R6cr2XM2H4DhnaM8Tjb1mRcIWaZ0d7nlqJ9Gc62VFi2CunJLt1tYM3UNH43/iDVT13BLt1vqX6kQFRPi4Kjqo1Ho3b+WEtgKoSCFNjEdiWobw55tv3guKywsZPv27V4BuiRJItYkISGQJQ3yxXZGez6Bd5I8L9N2raLM4SIsSE+3thZMvctF4Ctkey2xnTipBP41mz2iutxp0cOh+hAbHEtscN28oHxiK1LG+5IWgqqaJhQXF3PyZMWkODmnjH2/HSOiTSih7Xsy7d4HeOO1VxjYtxeJiYk8++yztG/fninlEabdBLnsOACbVkdhWaVNufN7YOUjUGnBMu7XWcTyJn0TeqPRSL5DM/pJ6a6dAJgHDqzXvKI1cdmKoMHxLItGKBPhi9i1axdjxozxvJ755DMA3H3bJBYveJ6nH76HUJ3M/fffT35+PqNHj2b16tWYLsoEL5f7Zjg0ekptpaQnHyHx+IewbylctGKvQSZBk8nwRKV3cIvAdvgIQpbrlErJMx8IkKEQqCKoHU6bMrQBMPveIHJntL+YvMxz4MqhrbjAC089xgsvvFDjrUS5CHRGHRFSITHfPwzFvmP8uNBwRo7xONUbEhORTCbk0lLsZ89i9NPzTwjhc1J8uXNZzgn8QXY4cBUXK1ab1VGieG9hDAG9qfrrLsIlC847Q8kR5X7V+SlgrT7kjJBlj81QOBcIwoYGQWGncXDPf+HmtzyR9YSkZZbjXgr0benbIQwASafD1ENJdFGXIZHj7Flc2TlIej2m/v39Lt9aCeiewJmbiyOtItapvn17dBfHUJJdUHpBeR7sX0I5t8FcjjaaSKMWyZoHeckQ2dU74rUQYM1HzlX2DCRJgFbCpgniHvsTGOjF4vjhED8CulwLuaf55oyB/1uTQ1JiOPpKQbZMfXpTtn8/1sOHCbvxRr/a6+4FTAP6ozE2b5DcpiRgewLZ4fASAIAjLa1qj1CWB8KlGM0Z/YuUUVim1BUapEdqEw+GEGWJNfe0knDbWqjsJ2QdgbwzCJuyNKoxGpAiuqANjiRVimXDsWy2ny4XYlgHSLySDRnK8unwhEive9ZncuzZJAugoRAEsAhENXFC3V9E5UXlZdFov4L0ClHhOxBq0inZXiISlSVU2QkXTiipkIrSPKtOsqSYaUihbUBnQKfVMLFvOwBeXXPMM+cQQrAzWdkku9h/oEIER/x2h62YDwzzq1xrJ2BFIJeW+jwuGSttUNmLFYtRSaOsCvlBqd2FU5bRaiSC3ZGXNVoIqyaGZ1R3ZIfypdUEVezM3jmyE0adht1n81h3NAuAc7llZBRalSBbcd4iMHbtCno9ckGBJ1xLbXCkpeE4fx60WoIGDqz9G70MCEgRuEpKcGZnVzmub9cOTeW1cXcvEBQBGv+mT56hkEnvvfssqvoYAwiHzeNTXFkE0SFGpl+RAMBra44hy4Id5aFV+nUII8jgvVwrGQyYuin5v/wxq3bvEpt6926w1KythYATgexw4Dh3DoRAGxaGsXt335tCTruS9AJq5TtcGSEEBVa3CC4Sj9b3hFN2Kr2ApDcg6bzLPHB1F0KMOo5mFLHqQBo7kpX5wbBqnOpNffyfFwTqfAACTARClnGcO4dwOtEYjejbt0djMHjCCzpzcyvG0aXly6IGSyVTiNphc8rYnTKSJGExXSQwnUFxyq9MWByyTRGNxlz1Xm2CDdx/lZLRZf5/j7PtdM1BtuoyOQ7ETTI3ASUCZ0YGcmkpkkaLPj4eSasMJbTh4aDRIGw2Za4gy3VeFoWKoZDFqPMdfTk4Ctr2UZZK2/aB4CjPJlnloVBl7hmdSJTFQEpuKSm5ynxmaDXZ3z0i8JXs2wfOCxewnz4NQNCghknS3ZoIGBE48/Jw5iq/oPqOHbzWwSWtFm1YOACu3Fyw5ikrOFoDmML8vldh5VWh6tAZlM23csd8uVQRgVSNCIKNOkZ18V4OXX0o3ee1xh49fCf7robSXcp8wNitW7XhHi9nAkIEclmZZ09A17YtWh+RsXURyj/fVViIKHTbCdVgLVqJizPaT504ll/X/+RxoLFarcyYMYPIyEgsFgtTp04lM7Mic7zscCCc5cMhk+8d6fSCMr4/4P2lry6uZ7XJvqshkIdCcBmLwJGRQcm27dhTU7GnpCgT4ZAQdNG+hzeaoCA0ZjMIgbPEBkiKD3EtqJzR/qeNWxh+xZU8du80jh9VXB3/9re/sWrVKr766is2btxIWloat9xSYd7tGQoZjZ4h2sUk55R4+flCRVxPX3iGREcu7W4ZiPZClWnRZhNCCM8XxB/yV6wg88WXlLG9JBFx7z2EXH892ogIRFmZz+gJoAxF5NxcHHaBtk00Gm3tPp5JkyZ5nifnlPDwk8/y9acfs23bNjp27MiHH37I0qVLGTt2LKAEMO7Vqxfbtm1j5MiRHstRKaj6GJ2JUcFoJHw4vPsuY+rdqzzZd82TY1dhIbajSmb5oCGqCFocoqyMY4OH1LMSQe4HH5L7gX8plbquXeN3N+mSBQWlNtasWk5pqZLRfvfu3TgcDq677jrPdT179iQ+Pp6tW7d6icDXypCbdmFBzL2lX60d3mu7QlS6Zw8Igb5TPPqYlpVBpqnwWwSbNm3itddeY/fu3aSnp7N8+fIqjiGXA86iUvxxKTl48CCjRo3CarViDrbwzTff0Lt3b/bt24fBYCA8PNzrereTfeXerrqVITf+OLwby73CnGnpOPPyqp3wlgX4UAjqIIKSkhIGDBjAPffc4zWubQykoCB67NntVxlHZianb7zJO/euRkPn779DH1ODo72QIesIssOJrVCPcDiQbbZaW1P26NGDHzZsJS3rApt//p7p06ezcePGS5YTdrsSY0iSkGpxr9o6vGstFgydOmE/exbr4cNYkpJ8XlexSRZY9kKV8VsEEydOZOLEiY3RlipIkoRk9i+WvSE+nqi//pWct9/2RHVu98Lzl3YwKc0Fow5NUBAugxK1wZWbh6Zd7Vw0dXo9ke3jCY+NY9K1ozlyYC9vvvkmt99+O3a7nfz8fK/ewO1k7xkKmUx18gSrCVOf3jWKQC4tpeyQsnoUqCtD0ARzApvN5pXZvTHzGAshcKSmYrnmaoIGDQRJg7FzYu0yLrodZ4Ij0ZmDsRcX48rPQxfTtlZfzlKbE5cs0Gk0mA1aT0b7IUOGoNfrWbt2LVOnTgXg2LFjpKSkMGrUqFoPheqCqXdvCn/4sdp5Qdn+/eB0oouNRd+h5eQVbmoaXQRNmcfYmZ2Nq6gIJAnzoME1TjS9sJeCowRlWTQKjUaHpFeGRK6CgktuIM2aNYtho8cSFBGDzmXlP28t92S0DwsL495772XmzJlEREQQGhrKww8/zKhRoxg5ciS28p3a6jbJ6sOlJseV7YVaWkbJpqTRRTBr1ixmzpzpeV1YWEhcXFwNJfxHdjhw5efjzFJMjfXt29deAFDJWjQctHokQBsRgTMzE1du7iVFkJmZycMP/IXsrAzCwsIY0L+/V0b7N954A41Gw9SpU7HZbIwfP563334bIQRymeJOqfFz2Fcb3JNjx9kUXEVFaEO8YyUF+v6Am0YXgdFoxNiIrnoXu0hqzMH+bf07ShXvMfCyE9K1aYMzKwu5rAy5rKzG4cqid9/nRFYRGkmid7tQNBfZC5lMJhYtWlQlYrVstYJQokL4DLRVT3Rt2qBv3x5HWhrWI0cIHj7cc07Y7cpwiMCeD0Ar3zH25SIpl5bU7DRfmZIcyD6GJ5SJo2JjTtLpPOYVbpuj6nCnYLIYdVUEUBNuxx4pqIYI2PWkOrPqst8OIWw2tG3aYCg3sQhU/BZBcXEx+/btY9++fYAScXnfvn2kpPgOC9KY1MpFsjqqS7lUKQmfttzp3pVfgHA6q62qsi+xP8iNOCl2U928oPJQKJDnA1AHEezatYtBgwYxqNzkdubMmQwaNIjZs2c3eOMuhVzsOzu6l4tkdThrSLlUjsZsRmM0gZBx5ef7vNzulClzuJC4hNWoDxpzZchN9SIojzQX4EMhqMOcoLogU02Nq7AQZ05OleP69u29XSSrw1o10TTg5fklSRLayAjktDScubloIyOr/Gq6h0Jmgw6dtva/KUqMIUVwjbEy5MYtAvvpZOTSUjRmM8Llomz3HkCdFEMLnRNcSmSyzYYjNRVQhizGHj0wJCRi7NGjatwgX5RkVzjNVCYsrkriPW1YGJJGg7DbkUtKqhSpGAr593uiBNkSSDqdT/fOhvqh0UVHK5azsoz12DEArEePIpeUoLFYFN+DAKdFiUBbbkZst1c/phcuF/azZxGyjMZsRh8bi0avR2sJrmUPUAgFioAIaVfFw+tiJK1W8Tyj3OGmEk5ZpsSmOM6HXuxGeQlEacVQyNeYvLR80qxvgKC4Fw+J3PZCQUMGV2u6HUi0KCtSnU6H2WwmOzsbvV6P5qKdWiGEEiDLakXS6zG0bYutBsFUwVEGeWcBUZ5pJgycMqBX/vpIyAcgBwdjz8mB/AKcbYo8YisssyM7bRi0WoTLgdVVy1UpwF5UhCzLaHU6T+hF93ssLS0lKyuL8PBwzw9DfTD16U3xxo0e3wJ1f8CbFiUCSZJo164dycnJnD17tsp5V2Fh+WRYQhcVhXTuXNVKqkN2QXGm4japM0GwCXLP1Lq4s6AAYbejKStDG6psOl0otlHmkLEYtSQX+7fO78jMBJcLrcOBxocpSXh4uFcCj/pQuScQQgR0ZAlftCgRABgMBrp161ZlSFS8aROZc19BC7T9nycI8Scdkb0Evrkfco5BeCLc+iGY/AupWHT2LFnzXkUbGUmnjz/iq30Z/HtTuVAleHxcd27o175WdeV/u5IL776rvNBoiHzkYULHj/ec1+v1DdIDuHEn27CdOIntyBFc+flIJhNBffo02D1aMy1OBAAajcYrbr/16FFynnwKTVkZEffcQ7Q/VqyyC76ZAWd+VnyGp74F4f47jzhHX42Y8wIi/Teeeep9vgnxnlA+8c1RRnVvd0kzZ0dGBnnPPYem0sT3wqynaTNiRO0M/eqArn17tGFhuAoKyPv8CwCCBg5slF3q1kiLmhj7wpmXR+qMhxBlZQQnJdH28ZmXLlSZNc/A8R+VIdAfvoA2CbW7r0tm99k83vz5BL9/dysDX17PVzGDARi2f32V62vy93VjTz1P+j+eVWKcVkaWsZ9tvM1GSZI8O8cFK1cC6lCoMi2yJ3AjnE7O/20mjvPn0cfH0+H1+f6tZmz/N2x/R3n+u39DXFXHkfSCMpJzSkiINFNql/n1RDa/nrzA9tMXKLJ57xLvG3g1t59Yx8Cck8QXZ5FiqehRavL3dWRmceHf75L31dfgy6RDo8HQqZoYpQ2EqXdvSrZs9eyyqyKooEWLIPPVVyndtg3JbCZu0b/QhvkRA+jYalj9lPL8uuehz5Qql3y5M4WnvjlY5YfZTViQnqSukSR1jeLKrtHER5o5l72e4vXreVF7nD9LMTX6+zrz8rjw3vvkLV3q+fIFXzEKU79+XHj/Ay+nn8YaCrlxT44B0OkIGhA4STguRYsVQf7yFeR98h8A2s97BWN5kNlakbYPvr5HcZkcfDckPVrlkvN5pTy17GCVyBNDE8IZ2zOG0V2j6NM+rEoEuTZ//APF69cTs2Utv6x6grMlooq/r6uoiNyPPyZ38RKPkVzQoEFEP/YYwSMUS842f/gD9rMpGDrFN7oAAOwplVbSnE4Kv/+e8FtvbfT7tgZapAjKDhwgY84cAKL++ldCy+3ya0VBKiy9XXGS6TwGbpxfJYCWzeniia8P+Ay98vi4nlUivVUmOCkJfVwcjnPnMP+6jlGVvkhyaSm5//mUCx99hFygBPM19e5N9GOPEnzllV6bYvrY2Cb58oMyGc9euNDrWPrsOQSPHt1kbWjJtDgROLOzSX34EYTdjuXaa4l6aEbtC9uKFAEUZ0B0L/j9EtB677gWlDq4/z+72J5c1Ty6pnG9G0mjoc0dt5P12v+Su+QTdB07om/fnpING8j593u4LijmGIauXYh++BFCrh/X7Faa9jNnvQMPgGcyroqgBYnAcXwftv1byf5sNc7MTAxdutB+3iu1cz4vOA85x+GX+ZD5GwS3hWn/VyWOaGpeKdM/3snJrGIsRh23D4tj8eYztYrjU5mwW24h6/U3sJ04wbnpf/Y6p4+LI/rhhwi98cYWY5JgSOgEGk2VCByNPRlvLbQIEeTPf5z0978HlF9MyaBTJsIWy6UL7/kEVj2qjP8BNHr44xcQ7v0PPphawD1LdpJdZCM21MRH04fRu30of7kysVZxfCojbDZwVU22Ef34TCKnT29xSbD1sbG0e+F50mfPadLJeGuh2UXgOL7PSwAAwu5AWvMERLdRUiUhKeN6SSp/rlGe20vh4Fd4JbkWLrB4/3PXH81ixtI9lNpd9IwN4eM/D/N84Wsbx6cy9jNVTToAgvoPaHECcBN+660Ejx7dpJPx1kKzi8B+eCeVBaAgYd+3AX2MH8ZxbtzZIcOUECJLt6fw7Le/4ZIFo7tG8fadg/22+LyY1jq8aMrJeGui2UVg6D0M5Ze8khAkgeG6+yA2VjknRPlwx/1cKM/LCmDbIrx6AkkLEZ2RZcH//vcYb284BcDUwR2Ze0s/DLr6b5Krw4vLi2YXgb77QKy/uwbTig0gJJAE1inXoJ/6cu0qaNsDVj2mDIMkLUxagC04lv/5v318u09xwn/sum48em23Bl2lUYcXlw/NLoL0gjKmMoke1/elf+lpDpg7c4xEfs0vpX14LWLxDL7Lk+WdiM4U6Nty/4c72J6ci04jMfeWftw2tGHjHLlRhxeXB80uAnfyiSNBiRwJKo8XKuD6NzYxNCGCAR3DGRgXTv+OYURaqolfFNYBwjooS6DvbvEsgb5z52Cu7OZ/zjGVwKLZReAr+QRAsc3FhmPZbDhWkXOrY5sgBsSFM7BjOAPiwunbIRSzQUd6QRnrjmQx/6fj5JbYiQ018fGfh9GrnX8+AyqBiSSaOHREYWEhYWFhFBQUEFoe3OrLnSleySeen9yHfh3C2J+az75z+ew/l8+p7KpO7hoJ2oYYySisCJMSG2pk+Ywkv5c9VS4/fH3XfNHsPQFUn3xiQFw4d41Srim0OjiYWuARxb5z+WQV2bwEAJBVVE08IRWVamgRIoBLb1qFmvQkdY0iqWtFRIjvD6QxY+ler+tkAWdyStWeQKXWtHjPspoY3KkNF4f+rI0RnIpKZVq1CNzJ7LTl6//+GMGpqLhpMcOhuuJPMjsVFV+0ehFA3YzgVFTctOrhkIpKQ6CKQCXgqZMIFi1aREJCAiaTiREjRrBjx46GbpeKSpPhtwi+/PJLZs6cyZw5c9izZw8DBgxg/PjxZJUnzasrGSUZ7EjfQUZJhlq2hd2ztZatLX6bTYwYMYJhw4bxr3/9CwBZlomLi+Phhx/mqaeeumR5X1vZy44v44WtLyAjo0HDrBGzuLnLzbVqz8pTK5m7fW5AlG1t7W3QspKGOaPmcEu3W2pVFmpvNuGXCOx2O2azma+//popU6Z4jt99993k5+fz7bffVinjK5l3XFycp2EZJRmM/3o8MnKVsioqldFIGtZMXUNscO3M12srAr+GQzk5ObhcLmJiYryOx8TEkJHhu7uaO3cuYWFhnsfFOYxTClNUAajUClnInCvyIxx/LWn2ZN7xofFoJA2yqBCCRtKwYvIKYszeYruYzNJMpqyY4iWiy7Vsa2tvY5WNC2l4Bym/eoKoqCi0Wi2ZmZlexzMzM6tNKGE0GgkNDfV6VCY2OJY5o+agkZSmuMd+iWGJmPXmGh+JYYnMuSIwyra29jZW2doOhfxC+Mnw4cPFQw895HntcrlEhw4dxNy5c2tVvqCgQACioKDA63h6cbrYkb5DpBen+9ukgCrb2trbnGWr+65djN8i+OKLL4TRaBSLFy8Whw8fFvfff78IDw8XGRkZDdowFZX6Utvvmt9zgttvv53s7Gxmz55NRkYGAwcOZPXq1VUmyyoqrYUmd68sKCggPDycc+fO1bhspaJSX9yLMPn5+YTVkNuiya1Ii4qKAKoslaqoNBYXLlyoUQRN3hPIskxaWhohISENFgzLrfi69C6trWxra29zli0oKCA+Pp68vDzCyxOy+6LJewKNRkPHjh0bpW5fS7CXa9nW1t7mLHtxUvgq5+tUq4rKZYQqApWA57IQgdFoZM6cORiN1YRpvIzKtrb2toayTT4xVlFpaVwWPYGKSn1QRaAS8KgiUAl4VBGoBDyqCFoR58+f58477yQyMpKgoCD69evHrl27mrtZrZ7LIgJdIJCXl0dSUhJjxozhxx9/JDo6mhMnTtCmTZvmblqrR10ibSU89dRTbN68mV9++aW5m3LZoQ6HWgkrV65k6NCh3HbbbbRt25ZBgwbx/vvvN3ezLgtUEbQSTp8+zTvvvEO3bt1Ys2YNDz74II888ghLlixp7qa1etThUCvBYDAwdOhQtmzZ4jn2yCOPsHPnTrZu3dqMLWv9qD1BK6Fdu3b07t3b61ivXr1ISUlpphZdPqgiaCUkJSVx7Ngxr2PHjx+nU6dOzdSiywdVBK2Ev/3tb2zbto2XX36ZkydPsnTpUt577z1mzJjR3E1r9ahzglbEd999x6xZszhx4gSJiYnMnDmT++67r7mb1epRRaAS8KjDIZWARxWBSsCjikAl4FFFoBLwqCJQCXhUEagEPKoIVAIeVQQqAY8qApWARxVBIzF9+nSvNLcqLRdVBM2Mw+Fo7iYEPKoI6snXX39Nv379CAoKIjIykuuuu44nnniCJUuW8O233yJJEpIksWHDBs6cOYMkSXz55ZdcffXVmEwmPvvsMwA++OADevXqhclkomfPnrz99tte93nyySfp3r07ZrOZzp078+yzz3oJ6LnnnmPgwIF89NFHxMfHY7FY+Otf/4rL5eLVV18lNjaWtm3b8tJLL3nKCCF47rnniI+Px2g00r59ex555JGm+eBaEo2VNC0QSEtLEzqdTrz++usiOTlZHDhwQCxatEgUFRWJ3//+92LChAkiPT1dpKenC5vNJpKTkwUgEhISxLJly8Tp06dFWlqa+PTTT0W7du08x5YtWyYiIiLE4sWLPff65z//KTZv3iySk5PFypUrRUxMjJg3b57n/Jw5c4TFYhG33nqrOHTokFi5cqUwGAxi/Pjx4uGHHxZHjx4VH330kQDEtm3bhBBCfPXVVyI0NFT88MMP4uzZs2L79u3ivffea/LPsblRRVAPdu/eLQBx5syZKufuvvtuMXnyZK9jbhEsWLDA63iXLl3E0qVLvY7985//FKNGjar23q+99poYMmSI5/WcOXOE2WwWhYWFnmPjx48XCQkJwuVyeY716NHDk253/vz5onv37sJut1/6zV7GqHGH6sGAAQO49tpr6devH+PHj+f666/n1ltvvWQsoKFDh3qel5SUcOrUKe69914v3wCn0+mVZ+vLL79k4cKFnDp1iuLiYpxOZ5XMLQkJCYSEhHhex8TEoNVqvTK1xMTEkJWVBcBtt93GggUL6Ny5MxMmTOCGG25g0qRJ6HSB9bVQ5wT1QKvV8tNPP/Hjjz/Su3dv3nrrLXr06EFycnKN5YKDgz3Pi4uLAXj//ffZt2+f5/Hbb7+xbds2ALZu3cq0adO44YYb+O6779i7dy/PPPMMdrvdq169Xu/1WpIkn8dkWQaU5InHjh3j7bffJigoiL/+9a9cddVVATdZDyzJNwKSJJGUlERSUhKzZ8+mU6dOLF++HIPBgMvlumT5mJgY2rdvz+nTp5k2bZrPa7Zs2UKnTp145plnPMfOnj3bIO0PCgpi0qRJTJo0iRkzZtCzZ08OHjzI4MGDG6T+1oAqgnqwfft21q5dy/XXX0/btm3Zvn072dnZ9OrVC6vVypo1azh27BiRkZE1phB9/vnneeSRRwgLC2PChAnYbDZ27dpFXl4eM2fOpFu3bqSkpPDFF18wbNgwvv/+e5YvX17v9i9evBiXy8WIESMwm818+umnBAUFBZzzvjocqgehoaFs2rSJG264ge7du/OPf/yD+fPnM3HiRO677z569OjB0KFDiY6OZvPmzdXW85e//IUPPviAjz/+mH79+nH11VezePFiEhMTAbj55pv529/+xkMPPcTAgQPZsmULzz77bL3bHx4ezvvvv09SUhL9+/fn559/ZtWqVURGRta77taE6mOsEvCoPYFKwKOKQCXgUUWgEvCoIlAJeFQRqAQ8qghUAh5VBCoBjyoClYBHFYFKwKOKQCXgUUWgEvD8f91caBPzM6W8AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "ax = df_res.plot(figsize=(2,2), grid=False, style=\".-\")\n",
+ "plt.title('Driver max CPU util'.format(dbms), fontsize=10)\n",
+ "plt.suptitle('')\n",
+ "ax.set_xlabel(\"streams\")\n",
+ "ax.set_xticks(range(1,11))\n",
+ "plt.legend(title='SF')\n",
+ "df_res"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Results in folder .//1686234009\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686236492\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686228050\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686238015\n",
+ "Read results\n",
+ "Load Evaluation\n"
+ ]
+ }
+ ],
+ "source": [
+ "df_res = pd.DataFrame()\n",
+ "for code in codes:\n",
+ " evaluate.load_experiment(code)\n",
+ " df = evaluate.get_benchmarker_metrics('total_cpu_util_max').T.max()\n",
+ " df = df.reindex(index=natural_sort(df.index))\n",
+ " path=resultfolder\n",
+ " with open(path+str(code)+\"/connections.config\",'r') as inf:\n",
+ " connections = ast.literal_eval(inf.read())\n",
+ " #print(\"found\", len(connections), \"connections\")\n",
+ " connections_sorted = sorted(connections, key=lambda c: c['name'])\n",
+ " SF = connections_sorted[0]['parameter']['connection_parameter']['loading_parameters']['SF']\n",
+ " #print(df)\n",
+ " df.index = df.index.map(lambda x: x[len('PostgreSQL-AWS-4-'):])\n",
+ " df_res[SF] = df.copy()\n",
+ " #df.T.max().plot.bar()\n",
+ "\n",
+ "#print(df_res)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 3 \n",
+ " 10 \n",
+ " 30 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: [1, 3, 10, 30]\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 37,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOsAAADeCAYAAADcvffLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAp6UlEQVR4nO3de1xUZf4H8M8wMMN1GEFhQEEwEdEVUAwa3M0UFNAUVl0v0YrGaq2aKV0xlbSMyq1Mf6ZbrVJrpJFppqKrIFkykoCYilIqoinglavc5/v7w+WsIwMOlwGPft+v17xynvM85zxnmg/nzJkzzyMhIgJj7L5n0tUdYIwZhsPKmEhwWBkTCQ4rYyLBYWVMJDisjIkEh5UxkeCwMiYSHFbGRILDKkJpaWmQSCQoKSnp6q6wTsRh7QIzZsyARCKBRCKBmZkZHB0dMWrUKGzYsAFarfae7QMDA1FYWAhbW9tO6C27X3BYu0hoaCgKCwtx/vx5JCcnY8SIEXjhhRfw5JNPor6+vtl2dXV1kMlkUKlUkEgkRutfbW2t0dZ9p4aGBoP+QDEOa5eRy+VQqVTo2bMnhgwZgkWLFuG7775DcnIyEhIShHoSiQTr1q3D+PHjYWVlhRUrVuicBpeVlcHCwgLJyck669+2bRtsbGxw69YtAMDFixcxefJkKJVK2NnZITw8HOfPnxfqz5gxAxEREVixYgWcnZ3h6enZbN+///57PProozA3N0f37t3x5z//WVh28+ZNTJ8+Hd26dYOlpSXCwsLw22+/CcsTEhKgVCqxY8cODBgwAHK5HBcuXEBNTQ1eeukl9OzZE1ZWVggICEBaWlqLr6FEIsE///lPPPnkk7C0tISXlxc0Gg3OnDmDJ554AlZWVggMDMTZs2eFNmfPnkV4eDgcHR1hbW2NRx99FPv37xeWnz59GpaWlkhMTBTKvv76a1hYWCA3N7fF/hgdsU4XFRVF4eHhepf5+PhQWFiY8BwAOTg40IYNG+js2bNUUFBABw4cIAB08+ZNIiKaNGkSPf300zrrmThxolBWW1tLXl5e9Mwzz9Avv/xCubm59NRTT5GnpyfV1NQIfbK2tqa//vWvdOLECTpx4oTe/u3cuZOkUiktXbqUcnNzKScnh95++21h+fjx48nLy4sOHjxIOTk5FBISQn379qXa2loiItq4cSOZmZlRYGAgHTp0iE6fPk2VlZX0t7/9jQIDA+ngwYN05swZWrlyJcnlcvr111+bfR0BUM+ePWnLli2Ul5dHERER5ObmRiNHjqQ9e/ZQbm4uPfbYYxQaGiq0ycnJofXr19Px48fp119/pcWLF5O5uTkVFBQIddauXUu2trZUUFBAFy9epG7dutFHH33UbD86C4e1C7QU1ilTppCXl5fwHAAtWLBAp87dYd22bRtZW1tTZWUlERGVlpaSubk5JScnExHRv//9b/L09CStViuso6amhiwsLGjv3r1CnxwdHYXwNketVlNkZKTeZb/++isBoEOHDgll165dIwsLC/r666+J6HZYAVBOTo5Qp6CggKRSKV26dElnfUFBQRQbG9tsXwDQ4sWLhecajYYA0L/+9S+h7KuvviJzc/MW92ngwIG0Zs0anbKxY8fSn/70JwoKCqLRo0frvHZdxbTLDulMLyJq8ll06NChLbYZM2YMzMzMsGPHDkydOhVbt26FQqFAcHAwAODYsWM4c+YMbGxsdNpVV1frnCIOGjQIMpmsxW3l5ORg1qxZepedOnUKpqamCAgIEMrs7e3h6emJU6dOCWUymQze3t7C8+PHj6OhoQH9+vXTWV9NTQ3s7e1b7M+d63F0dBT2486y6upqlJWVQaFQoKKiAm+88QZ27dqFwsJC1NfXo6qqChcuXNBZ74YNG9CvXz+YmJjg5MmTRr0+YCgO633m1KlTcHd31ymzsrJqsY1MJsOkSZOQmJiIqVOnIjExEVOmTIGp6e3/vRUVFfDz88OXX37ZpG2PHj0M3g4AWFhYGLIb91zHnW/+iooKSKVSZGVlQSqV6tS1trZucV1mZmbCvxvXqa+s8SLWSy+9hH379uEf//gH+vbtCwsLC0yaNKnJBbVjx46hsrISJiYmKCwshJOTUxv2tGNxWO8jqampOH78OBYuXNjqtpGRkRg1ahROnjyJ1NRUvPXWW8KyIUOGYMuWLXBwcIBCoWhXH729vZGSkoKZM2c2Webl5YX6+npkZGQgMDAQAHD9+nXk5eVhwIABza5z8ODBaGhowJUrV/CnP/2pXf27l0OHDmHGjBnCRbGKigqdC20AcOPGDcyYMQOvv/46CgsLERkZiezs7A75Q9UefDW4i9TU1KCoqAiXLl1CdnY23n77bYSHh+PJJ5/E9OnTW72+xx9/HCqVCpGRkXB3d9c5FY2MjET37t0RHh6OH3/8Efn5+UhLS8P8+fPx+++/t2o7cXFx+OqrrxAXF4dTp07h+PHjePfddwEAHh4eCA8Px6xZs/DTTz/h2LFjePrpp9GzZ0+Eh4c3u85+/fohMjIS06dPx7fffov8/Hz8/PPPiI+Px65du1r9WrTEw8MD3377LXJycnDs2DE89dRTTb46eu655+Di4oLFixfjgw8+QENDA1566aUO7UdbcFi7yJ49e+Dk5AQ3NzeEhobiwIEDWL16Nb777rsmp4KGkEgkmDZtGo4dO4bIyEidZZaWljh48CBcXV0xYcIEeHl5ITo6GtXV1a0+0j7xxBNISkrCjh074Ovri5EjR+Lnn38Wlm/cuBF+fn548sknoVarQUTYvXu3zqmpPhs3bsT06dPx4osvwtPTExEREThy5AhcXV1b1b97+eCDD9CtWzcEBgZi3LhxCAkJwZAhQ4TlX3zxBXbv3o1///vfMDU1hZWVFTZt2oRPP/20yddjnU1CxAOmMSYGfGRlTCQ4rIyJBIeVMZHgsDImEhxWxkSCw8qYSPAdTM3QarW4fPkybGxs7ov7QtmDi4hQXl4OZ2dnmJg0f/zksDbj8uXLcHFx6epusIfIxYsX0atXr2aXc1ib0fgLlYsXL7b7flrGWlJWVgYXF5cmv4q6G4e1GY2nvgqFgsPKOsW9Pm51ygWmtWvXws3NDebm5ggICNC5l1SfpKQk9O/fH+bm5hg0aBB2796ts/zOAccaH6GhoTp1bty4gcjISCgUCiiVSkRHR6OioqLD942xzmL0sG7ZsgUxMTGIi4tDdnY2fHx8EBISgitXruitn56ejmnTpiE6OhpHjx5FREQEIiIicOLECZ16jQOONT6++uorneWRkZE4efIk9u3bh507d+LgwYOYPXu20faTMaMz9lAU/v7+NHfuXOF5Q0MDOTs7U3x8vN76kydPprFjx+qUBQQE0LPPPis8b2lYFCKi3NxcAkBHjhwRypKTk0kikTQZOqQ5paWlBIBKS0sNqs9YWxn6XjPqZ9ba2lpkZWUhNjZWKDMxMUFwcDA0Go3eNhqNBjExMTplISEh2L59u05ZWloaHBwc0K1bN4wcORJvvfWWMASIRqOBUqnUGQ4lODgYJiYmyMjI0BmNr1FNTQ1qamqE52VlZa3eX9YUEaG+vh4NDQ1d3ZUuI5VKYWpq2u6vAI0a1mvXrqGhoUEYG6eRo6MjTp8+rbdNUVGR3vpFRUXC89DQUEyYMAHu7u44e/YsFi1ahLCwMGg0GkilUhQVFcHBwUFnHaamprCzs9NZz53i4+OxbNmytuwma0ZtbS0KCwuF4VAfZpaWlnBycrrnGFctEeXV4KlTpwr/HjRoELy9vfHII48gLS0NQUFBbVpnbGyszhG98XI6axutVov8/HxIpVI4OztDJpM9lDeXEBFqa2tx9epV5Ofnw8PDo8UbH1pi1LB2794dUqkUxcXFOuXFxcVQqVR626hUqlbVB4A+ffqge/fuOHPmDIKCgqBSqZpcwKqvr8eNGzeaXY9cLodcLjdkt5gBamtrodVq4eLiAktLy67uTpeysLCAmZkZCgoKUFtbC3Nz8zatx6hXg2UyGfz8/JCSkiKUabVapKSkQK1W622jVqt16gPAvn37mq0PAL///juuX78ujECnVqtRUlKCrKwsoU5qaiq0Wq3O2ETM+Np6FHnQdMjrYOwrXZs3bya5XE4JCQmUm5tLs2fPJqVSSUVFRURE9Ne//pVee+01of6hQ4fI1NSU/vGPf9CpU6coLi6OzMzM6Pjx40REVF5eTi+99BJpNBrKz8+n/fv305AhQ8jDw4Oqq6uF9YSGhtLgwYMpIyODfvrpJ/Lw8KBp06YZ3G++Gtw+VVVVlJubS1VVVV3dlftCS6+Hoe+1ThmRf82aNeTq6koymYz8/f3p8OHDwrLhw4dTVFSUTv2vv/6a+vXrRzKZjAYOHEi7du0Slt26dYtGjx5NPXr0IDMzM+rduzfNmjVLCH+j69ev07Rp08ja2poUCgXNnDmTysvLDe4zh7V9OKy6OiKsPGBaM8rKymBra4vS0lK+3bANqqurkZ+fD3d39zZ/RnuQtPR6GPpe4w8U7IFw9epV/P3vf4erq6swQ19ISAgOHToEAHBzc2tyi2pLv3C5H4nyqxvG7jZx4kTU1tbi888/R58+fVBcXIyUlBRcv35dqLN8+XKdeXraMj5zV+KwMtErKSnBjz/+iLS0NAwfPhwA0Lt3b/j7++vUs7GxafErwPsdnwYz0bO2toa1tTW2b9+uc8vog4bDykTP1NQUCQkJ+Pzzz6FUKjFs2DAsWrQIv/zyi069V199VQi2tbU1Vq9e3UU9bhsOK3sgTJw4EZcvX8aOHTsQGhqKtLQ0DBkyBAkJCUKdl19+GTk5OcKjLROAdSUOK3tgmJubY9SoUViyZAnS09MxY8YMxMXFCcu7d++Ovn37Cg+lUtl1nW0DDit7YA0YMACVlZVd3Y0Ow1eDmehdv34df/nLX/DMM8/A29sbNjY2yMzMxHvvvdfivLBiw2FlomdtbY2AgAB8+OGHOHv2LOrq6uDi4oJZs2Zh0aJFXd29DsNhZaInl8sRHx+P+Pj4ZuucP3++8zpkJPyZlTGR4LAyJhIcVsZEgsPKmEhwWBkTCQ4rYyLBYWVMJDisjIkEh5UxkeCwMiYSHFbG7nLw4EGMGzcOzs7OkEgkTSZF6yocViYKhaVVSD97DYWlVUbfVmVlJXx8fLB27Vqjb6s1+EZ+1mmICFV1rZ/6cWvW74jbcRJaAkwkwLLxAzHRz/BhRC3MpK2aFCssLAxhYWGt7qexdUpY165di5UrV6KoqAg+Pj5Ys2ZNk5Hn7pSUlIQlS5bg/Pnz8PDwwLvvvosxY8YAAOrq6rB48WLs3r0b586dg62tLYKDg/HOO+/A2dlZWIebmxsKCgp01hsfH4/XXnvNODvJ7qmqrgEDlu5t1zq0BCz57iSWfHfS4Da5y0NgKRP/ccnop8FbtmxBTEwM4uLikJ2dDR8fH4SEhDSZ5a1Reno6pk2bhujoaBw9ehQRERGIiIjAiRMnAAC3bt1CdnY2lixZguzsbHz77bfIy8vD+PHjm6xr+fLlKCwsFB7PP/+8UfeVMWMy+vQZAQEBePTRR/F///d/ACBMA/j888/rPcpNmTIFlZWV2Llzp1D22GOPwdfXF+vXr9e7jSNHjsDf3x8FBQVwdXUFcPvIumDBAixYsKBN/ebpM9pH33QRbTkNLiqtRvAHP0B7x7vURALsjxkOla1h03K09jT4ThKJBNu2bUNERESb2je676fPqK2tRVZWFoKDg/+3QRMTBAcHQ6PR6G2j0Wh06gNASEhIs/UBoLS0FBKJpMkAWO+88w7s7e0xePBgrFy5EvX19c2uo6amBmVlZToP1rEkEgksZaatevTpYY34CYMg/W/YpBIJ4icMQp8e1gav40GZxNmoJ/LXrl1DQ0MDHB0ddcodHR1x+vRpvW2Kior01i8qKtJbv7q6Gq+++iqmTZum81dp/vz5GDJkCOzs7JCeno7Y2FgUFhbigw8+0Lue+Ph4LFu2rDW7xzrJlEdd8Xi/Hjh/7RbculvCydaiq7vUJUT9qbuurg6TJ08GEWHdunU6y2JiYoR/e3t7QyaT4dlnn0V8fLzeGc5jY2N12pSVlcHFxcV4nWet4mRr0WkhraiowJkzZ4Tn+fn5yMnJgZ2dnfAxqysYNazdu3eHVCpFcXGxTnlxcXGzc46oVCqD6jcGtaCgAKmpqff8XBkQEID6+nqcP38enp6eTZbL5XK9IWYPn8zMTIwYMUJ43vhHPCoqSmfQ8M5m1M+sMpkMfn5+SElJEcq0Wi1SUlKgVqv1tlGr1Tr1AWDfvn069RuD+ttvv2H//v2wt7e/Z19ycnJgYmICBweHNu4Ne1g88cQToNsTjes8ujKoQCecBsfExCAqKgpDhw6Fv78/Vq1ahcrKSsycORMAMH36dPTs2VMYme6FF17A8OHD8f7772Ps2LHYvHkzMjMz8cknnwC4HdRJkyYhOzsbO3fuRENDg/B51s7ODjKZDBqNBhkZGRgxYgRsbGyg0WiwcOFCPP300+jWrZuxd5kx4+jIqdibs2bNGnJ1dSWZTEb+/v50+PBhYdnw4cMpKipKp/7XX39N/fr1I5lMRgMHDqRdu3YJy/Lz8wmA3seBAweIiCgrK4sCAgLI1taWzM3NycvLi95++22qrq42uM+GTh3P9KuqqqLc3Fyqqqrq6q7cF1p6PQx9rxn9e1ax4u9Z26el7xUfRvf996yMsY7DYWVMJDisjIkEh5UxkeCwMiYSHFbGRILDyphIcFgZu8u6devg7e0NhUIBhUIBtVqN5OTkru4Wh5WJROklIP/g7f8aWa9evfDOO+8gKysLmZmZGDlyJMLDw3HypOFDyRiDqH8ix0SGCKi71fp2OYlA8isAaQGJCRD2HuD7lOHtzSyBVvwAfdy4cTrPV6xYgXXr1uHw4cMYOHCg4dvtYBxW1nnqbgFvO9+7XktIC+x+6fbDUIsuAzKrNm2uoaEBSUlJqKysbPaXYp2Fw8qYHsePH4darUZ1dTWsra2xbds2DBgwoEv7xGFlncfM8vZRrjXKLgNr/W8fURtJpMDcDEBh4FHazLJ12wTg6emJnJwclJaW4ptvvkFUVBR++OGHLg0sh5V1Homk9aej3T2AcR8B3y8AqOF2UMetul1uRDKZDH379gUA+Pn54ciRI/joo4/wz3/+06jbbQmHld3/hkwHHgkCbpwD7PoAtj07vQtarRY1NTWdvt07cViZONj27LSQxsbGIiwsDK6urigvL0diYiLS0tKwd2/7ZhNoLw4rY3e5cuUKpk+fjsLCQtja2sLb2xt79+7FqFGjurRfHFbG7vKvf/2rq7ugF9/BxJhIcFgZEwkOK2MiwWFlTCQ4rIyJBIeVMZHolLCuXbsWbm5uMDc3R0BAAH7++ecW6yclJaF///4wNzfHoEGDsHv3bp3lRISlS5fCyckJFhYWCA4Oxm+//aZT58aNG4iMjIRCoYBSqUR0dDQqKio6fN8Y6yxGD+uWLVsQExODuLg4ZGdnw8fHByEhIbhy5Yre+unp6Zg2bRqio6Nx9OhRREREICIiAidOnBDqvPfee1i9ejXWr1+PjIwMWFlZISQkBNXV1UKdyMhInDx5Evv27cPOnTtx8OBBzJ4929i7y5jxGGVijzv4+/vT3LlzhecNDQ3k7OxM8fHxeutPnjyZxo4dq1MWEBBAzz77LBERabVaUqlUtHLlSmF5SUkJyeVy+uqrr4iIKDc3lwDQkSNHhDrJyckkkUjo0qVLBvWb57ppH57rRldHzHVj1CNrbW0tsrKyEBwcLJSZmJggODgYGo1GbxuNRqNTHwBCQkKE+vn5+SgqKtKpY2tri4CAAKGORqOBUqnE0KFDhTrBwcEwMTFBRkaG3u3W1NSgrKxM58HY/cSoYb127RoaGhrg6OioU+7o6ChM03i3oqKiFus3/vdede6eh9XU1BR2dnbNbjc+Ph62trbCg2c9f3gdPHgQ48aNg7OzMyQSCbZv366znAy4ZmIMfDX4v2JjY1FaWio8Ll682NVdYncoqizCz4U/o6hS/x/bjlRZWQkfHx+sXbtW73JDrpkYg1Fv5O/evTukUimKi4t1youLi6FSqfS2UalULdZv/G9xcTGcnJx06vj6+gp17r6AVV9fjxs3bjS7XblcDrlcbvjOsVYjIlTVV7W63Y6zOxCfEQ8ttDCBCWIDYjH+kfEGt7cwtYCkFQOmhYWFISwsTO8yIsKqVauwePFihIeHAwC++OILODo6Yvv27Zg6darB22kto4ZVJpPBz88PKSkpiIiIAHD7R7wpKSmYN2+e3jZqtRopKSlYsGCBULZv3z5hsCp3d3eoVCqkpKQI4SwrK0NGRgb+/ve/C+soKSlBVlYW/Pz8AACpqanQarUICAgwzs6ye6qqr0JAYvtefy20WJGxAisyVhjcJuOpDFi2YWgXfe51zUS0YQWAmJgYREVFYejQofD398eqVatQWVmJmTNnAgCmT5+Onj17Ij4+HgDwwgsvYPjw4Xj//fcxduxYbN68GZmZmfjkk08AABKJBAsWLMBbb70FDw8PuLu7Y8mSJXB2dhb+IHh5eSE0NBSzZs3C+vXrUVdXh3nz5mHq1Klwdm7n6HrsoWbINRNjMXpYp0yZgqtXr2Lp0qUoKiqCr68v9uzZI+zshQsXYGLyv4/OgYGBSExMxOLFi7Fo0SJ4eHhg+/bt+MMf/iDUeeWVV1BZWYnZs2ejpKQEf/zjH7Fnzx6dGaW//PJLzJs3D0FBQTAxMcHEiROxevVqY+8ua4GFqQUyntJ/Nb45xbeKEbE9Alr8b8A0E4kJtodvh6OlYwstdbf7QDDKl0oPAP6etX068nvWrb9uJe/PvekPCX8g78+9aeuvWzugh4YBQNu2bROenz17lgDQ0aNHdeo9/vjjNH/+/GbX0xHfs/JIEey+N8FjAgKdA3Gx/CJcbFygstJ/kbAzGHLNxFg4rEwUVFaqTgtpRUUFzpw5IzzPz89HTk4O7Ozs4Orqes9rJsbCYWXsLpmZmRgxYoTwPCYmBgAQFRWFhIQEg66ZGIPkv+fl7C5lZWWwtbVFaWkpFApFV3dHdKqrq5Gfnw93d3ejv4nFoKXXw9D3Gt/BxJhIcFgZEwkOK2MiwWFlTCQ4rIyJBIeVMZHgsDImEhxWxkSCw8qYSHBYGRMJDitjd1m3bh28vb2hUCigUCigVquRnJwsLK+ursbcuXNhb28Pa2trTJw4sclQRMbAYWWiUFdUhMrDGagz8mgMANCrVy+88847yMrKQmZmJkaOHInw8HCcPHkSALBw4UJ8//33SEpKwg8//IDLly9jwoQJRu8X38jfDL6Rv3303bhORKCq1g+YVrJ9O4rfWgFotYCJCRwXvw5lK36OJrFo3YBp+tjZ2WHlypWYNGkSevTogcTEREyaNAkAcPr0aXh5eUGj0eCxxx7T274jbuTnn8ixTkNVVcgb4te+lWi1KF7+JoqXv2lwE8/sLEgs2zZgWkNDA5KSklBZWQm1Wo2srCzU1dXpDJjWv39/uLq6thjWjsBhZUyP48ePQ61Wo7q6GtbW1ti2bRsGDBiAnJwcyGQyKJVKnfoPxIBpjDWSWFjAMzurVW3qiotxbuyTt0+BG5mYoM+unTBzNGzANIlF6wdM8/T0RE5ODkpLS/HNN98gKioKP/zwQ6vX05E4rKzTSCSSVp+Oyt3d4bR8GQqXxgmfWZ2WL4Pc3d1IvbxNJpOhb9++AAA/Pz8cOXIEH330EaZMmYLa2lqUlJToHF1bGri+o3BY2X1POWkSrP74R9QWXICstyvMjBwKfbRaLWpqauDn5wczMzOkpKRg4sSJAIC8vDxcuHBBGIjeWDisTBTMVKpOC2lsbCzCwsLg6uqK8vJyJCYmIi0tDXv37oWtrS2io6MRExMDOzs7KBQKPP/881Cr1Ua9uARwWBlr4sqVK5g+fToKCwtha2sLb29v7N27F6NGjQIAfPjhh8LA8TU1NQgJCcHHH39s/I4ZOthxa12/fp2eeuopsrGxIVtbW3rmmWeovLy8xTZVVVU0Z84csrOzIysrK5owYQIVFRUJy3Nycmjq1KnUq1cvMjc3p/79+9OqVat01nHgwAEC0ORRWFjYqv7zIN/tw5Mp67qvB/mOjIxEYWEh9u3bh7q6OsycOROzZ89GYmJis20WLlyIXbt2ISkpCba2tpg3bx4mTJiAQ4cOAQCysrLg4OCATZs2wcXFBenp6Zg9ezakUmmTia7y8vJ0vmC+e75WxkTHGH9FcnNzCQAdOXJEKEtOTiaJREKXLl3S26akpITMzMwoKSlJKDt16hQBII1G0+y25syZQyNGjBCeNx5Zb9682a594CNr+/CRVVdHHFmNcm+wRqOBUqnE0KFDhbLg4GCYmJggI0P/xET3ujOkOaWlpbCzs2tS7uvrCycnJ4waNUo4MrekpqYGZWVlOg/G7idGCWtRUVGT005TU1PY2dk1e5dHUVFRq+8MSU9Px5YtWzB79myhzMnJCevXr8fWrVuxdetWuLi44IknnkB2dnaLfY6Pj4etra3wcHFxMWBPGes8rQrra6+9dvuL7RYep0+fNlZfdZw4cQLh4eGIi4vD6NGjhXJPT088++yz8PPzQ2BgIDZs2IDAwEB8+OGHLa4vNjYWpaWlwuPixYvG3oWHAvHvRAB0zOvQqgtML774ImbMmNFinT59+kClUuHKlSs65fX19bhx40azd3moVCqD7wzJzc1FUFAQZs+ejcWLF9+z3/7+/vjpp59arCOXyyGXy++5LmYYMzMzAMCtW7dg0Ybb/R40t27dAvC/16UtWhXWHj16oEePHvesp1arUVJSgqysLPj53f6VRWpqKrRaLQIC9E9Tb+idISdPnsTIkSMRFRWFFSsMm6o+JycHTk5OBtVlHUMqlUKpVAp/tC0tLdv9MzUxIiLcunULV65cgVKphFQqbfO6jPLVjZeXF0JDQzFr1iysX78edXV1mDdvHqZOnQpnZ2cAwKVLlxAUFIQvvvgC/v7+Bt0ZcuLECYwcORIhISGIiYkRPstKpVLhj8iqVavg7u6OgQMHorq6Gp999hlSU1Pxn//8xxi7ylrQeEZ091nWw0ipVLb73mGjfc/65ZdfYt68eQgKChLu9li9erWwvK6uDnl5ecLpAXDvO0O++eYbXL16FZs2bcKmTZuE8t69e+P8+fMAgNraWrz44ou4dOkSLC0t4e3tjf379+tM4cc6h0QigZOTExwcHFBXV9fV3ekyZmZm7TqiNuKRIprBI0WwzsJTPjL2gOGwMiYSHFbGRILDyphIcFgZEwkOK2MiwWFlTCQ4rIyJBIeVMZHgsDImEhxWxkSCw8qYSHBYGRMJDitjIsFhZUwkOKyMiQSHlTGR4LAyJhIcVsZEgsPKmEhwWBkTCQ4rYyLBYWVMJDisjImE0cJ648YNREZGQqFQQKlUIjo6GhUVFS22qa6uxty5c2Fvbw9ra2tMnDgRxcXFOnX0zVy3efNmnTppaWkYMmQI5HI5+vbti4SEhI7ePcY6nxEmeSYiotDQUPLx8aHDhw/Tjz/+SH379qVp06a12Oa5554jFxcXSklJoczMTHrssccoMDBQpw4A2rhxIxUWFgqPO2eTPnfuHFlaWlJMTAzl5ubSmjVrSCqV0p49e1rVf575nHUWQ99rRglrbm4uAaAjR44IZcnJySSRSOjSpUt625SUlJCZmRklJSUJZadOnSIApNFo/tdhgLZt29bstl955RUaOHCgTtmUKVMoJCSkVfvAYWWdxdD3mlFOgzUaDZRKJYYOHSqUBQcHw8TEBBkZGXrbZGVloa6uDsHBwUJZ//794erqCo1Go1N37ty56N69O/z9/bFhwwadiWo1Go3OOgAgJCSkyTruVlNTg7KyMp0HY/cTo8wiV1RUBAcHB90NmZrCzs5OmKZRXxuZTKYzkTIAODo66rRZvnw5Ro4cCUtLS/znP//BnDlzUFFRgfnz5wvrcXR0bLKOsrIyVFVVNTuxb3x8PJYtW9baXWWs07TqyPraa6/pvcBz5+P06dPG6isAYMmSJRg2bBgGDx6MV199Fa+88gpWrlzZ7vXGxsaitLRUeFy8eLEDestYx2nVkfXFF1/EjBkzWqzTp08fqFSqJhPo1tfX48aNG81OKKtSqVBbW4uSkhKdo2txcXGLk9AGBATgzTffRE1NDeRyOVQqVZMryMXFxVAoFM0eVQFALpdDLpe3uG+MdaVWhbVHjx7CDOMtUavVKCkpQVZWFvz8/AAAqamp0Gq1CAgI0NvGz88PZmZmSElJwcSJEwEAeXl5uHDhAtRqdbPbysnJQbdu3YSgqdVq7N69W6fOvn37WlwHY6JgrCtcoaGhNHjwYMrIyKCffvqJPDw8dL66+f3338nT05MyMjKEsueee45cXV0pNTWVMjMzSa1Wk1qtFpbv2LGDPv30Uzp+/Dj99ttv9PHHH5OlpSUtXbpUqNP41c3LL79Mp06dorVr1/JXN+y+1qVf3RARXb9+naZNm0bW1takUCho5syZVF5eLizPz88nAHTgwAGhrKqqiubMmUPdunUjS0tL+vOf/0yFhYXC8uTkZPL19SVra2uysrIiHx8fWr9+PTU0NOhs+8CBA+Tr60symYz69OlDGzdubHX/Oayssxj6XpMQ3fG9BxOUlpZCqVTi4sWLLU4dz1h7lZWVwcXFBSUlJbC1tW22nlG+unkQlJeXAwBcXFy6uCfsYXH9+vUWw8pH1mZotVpcvnwZNjY2kEgkrW7f+NeyLUfm9rR9WLct1n4Dt8/iXF1dcfPmzSb3GdyJj6zNMDExQa9evdq9HoVC0ebT6Pa0fVi3LdZ+A7ffcy0ub/OaGWOdisPKmEhwWI1ELpcjLi6uTXdFtaftw7ptsfa7Ne35AhNjIsFHVsZEgsPKmEhwWBkTCQ4rYyLBYWVMJDisjIkEh5UxkeCwMiYSHFbGRILDyphIcFgfcjNmzEBERERXd4MZgMPKDFJXV9fVXXjocVgfEt988w0GDRoECwsL2NvbIzg4GC+//DI+//xzfPfdd8Ig7WlpaTh//jwkEgm2bNmC4cOHw9zcHF9++SUA4LPPPoOXlxfMzc3Rv39/fPzxxzrbefXVV9GvXz9YWlqiT58+WLJkiU7Q33jjDfj6+mLDhg1wdXWFtbU15syZg4aGBrz33ntQqVRwcHDAihUrhDZEhDfeeAOurq6Qy+VwdnYWZmB4qBh75DbW9S5fvkympqb0wQcfUH5+Pv3yyy+0du1aKi8vp8mTJ1NoaKgwI19NTY0w8qSbmxtt3bqVzp07R5cvX6ZNmzaRk5OTULZ161ays7OjhIQEYVtvvvkmHTp0iPLz82nHjh3k6OhI7777rrA8Li6OrK2tadKkSXTy5EnasWMHyWQyCgkJoeeff55Onz5NGzZsIAB0+PBhIiJKSkoihUJBu3fvpoKCAsrIyKBPPvmk01/HrsZhfQhkZWURADp//nyTZVFRURQeHq5T1hjWVatW6ZQ/8sgjlJiYqFP25ptv6oztfLeVK1eSn5+f8DwuLo4sLS2prKxMKAsJCSE3NzedIWU9PT0pPj6eiIjef/996tevH9XW1t57Zx9gPAbTQ8DHxwdBQUEYNGgQQkJCMHr0aEyaNAndunVrsd2dswBWVlbi7NmziI6OxqxZs4Ty+vp6nRH5tmzZgtWrV+Ps2bOoqKhAfX19k3GJ3NzcYGNjIzx3dHSEVCrVGYPI0dFRmILlL3/5C1atWoU+ffogNDQUY8aMwbhx42Bq+nC9ffkz60NAKpVi3759SE5OxoABA7BmzRp4enoiPz+/xXZWVlbCvxtnrf/000+Rk5MjPE6cOIHDhw8DuD3dZmRkJMaMGYOdO3fi6NGjeP3111FbW6uzXjMzM53nEolEb5lWqwVwezjYvLw8fPzxx7CwsMCcOXPw+OOPP3QXvR6uP00PMYlEgmHDhmHYsGFYunQpevfujW3btkEmk6GhoeGe7R0dHeHs7Ixz584hMjJSb5309HT07t0br7/+ulBWUFDQIf23sLDAuHHjMG7cOMydOxf9+/fH8ePHMWTIkA5ZvxhwWB8CGRkZSElJwejRo+Hg4ICMjAxcvXoVXl5eqK6uxt69e5GXlwd7e/sWB5letmwZ5s+fD1tbW4SGhqKmpgaZmZm4efMmYmJi4OHhgQsXLmDz5s149NFHsWvXLmzbtq3d/U9ISEBDQwMCAgJgaWmJTZs2wcLCAr179273usWET4MfAgqFAgcPHsSYMWPQr18/LF68GO+//z7CwsIwa9YseHp6YujQoejRowcOHTrU7Hr+9re/4bPPPsPGjRsxaNAgDB8+HAkJCXB3dwcAjB8/HgsXLsS8efPg6+uL9PR0LFmypN39VyqV+PTTTzFs2DB4e3tj//79+P7772Fvb9/udYsJD5jGmEjwkZUxkeCwMiYSHFbGRILDyphIcFgZEwkOK2MiwWFlTCQ4rIyJBIeVMZHgsDImEhxWxkTi/wHOrmZ+fl7zPQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "ax = df_res.plot(figsize=(2,2), grid=False, style=\".-\")\n",
+ "plt.title('Driver core max'.format(dbms), fontsize=10)\n",
+ "plt.suptitle('')\n",
+ "ax.set_xlabel(\"streams\")\n",
+ "ax.set_xticks(range(1,11))\n",
+ "plt.legend(title='SF')\n",
+ "df_res"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Results in folder .//1686234009\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686236492\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686228050\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686238015\n",
+ "Read results\n",
+ "Load Evaluation\n"
+ ]
+ }
+ ],
+ "source": [
+ "df_res = pd.DataFrame()\n",
+ "for code in codes:\n",
+ " evaluate.load_experiment(code)\n",
+ " df = evaluate.get_benchmarker_metrics('total_cpu_memory').T.max()\n",
+ " df = df.reindex(index=natural_sort(df.index))\n",
+ " path=resultfolder\n",
+ " with open(path+str(code)+\"/connections.config\",'r') as inf:\n",
+ " connections = ast.literal_eval(inf.read())\n",
+ " #print(\"found\", len(connections), \"connections\")\n",
+ " connections_sorted = sorted(connections, key=lambda c: c['name'])\n",
+ " SF = connections_sorted[0]['parameter']['connection_parameter']['loading_parameters']['SF']\n",
+ " #print(df)\n",
+ " df.index = df.index.map(lambda x: x[len('PostgreSQL-AWS-4-'):])\n",
+ " df_res[SF] = df.copy()/1000.\n",
+ " #df.T.max().plot.bar()\n",
+ "\n",
+ "#print(df_res)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 3 \n",
+ " 10 \n",
+ " 30 \n",
+ " \n",
+ " \n",
+ " DBMS \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 0.208652 \n",
+ " 0.204020 \n",
+ " 0.0 \n",
+ " 0.238613 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 0.611730 \n",
+ " 0.660551 \n",
+ " 0.0 \n",
+ " 0.653543 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 1.212539 \n",
+ " 1.125523 \n",
+ " 0.0 \n",
+ " 1.076602 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 1.863578 \n",
+ " 1.840070 \n",
+ " 0.0 \n",
+ " 1.478449 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 2.465582 \n",
+ " 2.354383 \n",
+ " 0.0 \n",
+ " 1.880527 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 3.037617 \n",
+ " 2.808137 \n",
+ " 0.0 \n",
+ " 2.268344 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 2.742273 \n",
+ " 2.807426 \n",
+ " 0.0 \n",
+ " 2.668695 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 3.084117 \n",
+ " 3.293395 \n",
+ " 0.0 \n",
+ " 3.035449 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 3.462559 \n",
+ " 3.753957 \n",
+ " 0.0 \n",
+ " 3.449035 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 3.894109 \n",
+ " 4.150223 \n",
+ " 0.0 \n",
+ " 3.723453 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 1 3 10 30\n",
+ "DBMS \n",
+ "1 0.208652 0.204020 0.0 0.238613\n",
+ "2 0.611730 0.660551 0.0 0.653543\n",
+ "3 1.212539 1.125523 0.0 1.076602\n",
+ "4 1.863578 1.840070 0.0 1.478449\n",
+ "5 2.465582 2.354383 0.0 1.880527\n",
+ "6 3.037617 2.808137 0.0 2.268344\n",
+ "7 2.742273 2.807426 0.0 2.668695\n",
+ "8 3.084117 3.293395 0.0 3.035449\n",
+ "9 3.462559 3.753957 0.0 3.449035\n",
+ "10 3.894109 4.150223 0.0 3.723453"
+ ]
+ },
+ "execution_count": 39,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMEAAADsCAYAAADNcMJ0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzN0lEQVR4nO2dd3xT9f7/nydp0jadlJYO6ELLHl5AAVFUlKUgW1RUUMRxUVD8OXCwvIDiRXEgV9kOLsgGEZAviiBYloCAXmS0tNBFV9qmbebn90doILSFpm3apDnPxyOPJueczznvpOd1Puv9eb8lIYRARsaDUdS3ATIy9Y0sAhmPRxaBjMcji0DG45FFIOPxyCKQ8XhkEch4PLIIZDweWQQyHo8sgqvYtWsXkiSRn59f36bUK9OmTUOSJCRJYt68eQ6Xr8rvWHaMJEkMHjy42rbWBg1KBGPGjLH9sCqVivDwcHr37s2SJUuwWCw3LH/77beTnp5OUFBQHVhrz7Jly2y2KxQKIiMjGTlyJCkpKRUe36pVK7y9vcnIyCi37+6770aSJN57771y+x544AEkSWLatGnXtadt27akp6fzzDPP2G0/cuQII0eOJDIyEm9vb2JjYxkwYACbN2/GEQ+cst/6oYceqnIZZ9GgRADQr18/0tPTSU5OZuvWrdxzzz1MnDiRAQMGYDKZKi1nNBpRq9VEREQgSZLT7DMYDJXuCwwMJD09nYsXL7J27VpOnTrFiBEjyh3366+/UlJSwvDhw1m+fHmF54qOjmbZsmV22y5evMjOnTuJjIy8oZ1eXl5ERESg0Whs2zZu3Ei3bt0oKipi+fLl/PXXX2zbto0hQ4bw9ttvo9Vqb3jeMsp+a19f3yqXcRYNTgTe3t5ERETQtGlTOnXqxJtvvsnGjRvZunWr3U0hSRILFizgwQcfxM/Pj5kzZ9pV4wUFBfj6+rJ161a7869fv56AgACKi4sBSE1N5aGHHiI4OJiQkBAGDRpEcnKy7fgxY8YwePBgZs6cSVRUFC1btqzUdkmSiIiIIDIykttvv52xY8dy4MABCgoK7I5bvHgxjz76KI8//jhLliyp8FwDBgwgOzubvXv32rYtX76cPn360KRJk6r+nDZ0Oh1jx47lgQceYMuWLfTp04fmzZvTunVrxo4dy7Fjx8rVoHv37qVDhw74+PjQrVs3Tpw44fB164IGJ4KK6NWrFx07dmTdunV226dNm8aQIUM4fvw4Tz31lN2+wMBABgwYwIoVK+y2f/vttwwePBiNRoPRaKRv374EBASwZ88e9u7di7+/P/369bN74u/cuZNTp06xY8cOvv/++yrZnJWVxfr161EqlSiVStv2wsJCVq9ezWOPPUbv3r3RarXs2bOnXHm1Ws2oUaNYunSpbduyZcvKfc+q8uOPP5KTk8Nrr71W6THX1qCvvvoqc+fO5eDBg4SFhTFw4ECMRmO1ru9MPEIEYG1DX/2EBnj00Ud58sknad68OTExMeXKjBo1ig0bNtie+gUFBWzZsoVRo0YBsGrVKiwWC4sWLaJ9+/a0bt2apUuXkpKSwq5du2zn8fPzY9GiRbRt25a2bdtWaqNWq8Xf3x8/Pz/Cw8P5+eefGT9+PH5+frZjVq5cSUJCAm3btkWpVPLwww+zePHiCs/31FNP8d1336HT6di9ezdarZYBAwZU9Sez4++//wawq8kOHjyIv7+/7XWtwKdOnUrv3r1p3749y5cvJzMzk/Xr11fr+s7EY0QghCj3pOrSpct1y9x///2oVCo2bdoEwNq1awkMDOS+++4D4NixY5w5c4aAgADbjRASEkJpaSlnz561nad9+/ao1eob2hgQEMDRo0c5dOgQc+fOpVOnTsycOdPumCVLlvDYY4/ZPj/22GOsXr2awsLCcufr2LEjCQkJrFmzhiVLlvD444/j5eV1QzuqSocOHTh69ChHjx5Fp9OV63N1797d9j4kJISWLVvy119/1dr1a4va+0VcnL/++ov4+Hi7bVc/YStCrVYzfPhwVqxYwcMPP8yKFSsYOXKk7UYqKiqic+fOfPvtt+XKhoWFVfk6ZSgUCm6++WYAWrduzdmzZ3n++ef5+uuvAfjzzz9JTEzkwIEDvP7667ZyZrOZlStXMm7cuHLnfOqpp5g/fz5//vknBw4cqJIdFZGQkADAqVOn6NatG2Dtf5XZ6854RE3w008/cfz4cYYNG+Zw2VGjRrFt2zZOnjzJTz/9ZGsKAXTq1InTp0/TpEkTbr75ZrtXbQyzvvHGG6xatYrff/8dsHaIe/bsybFjx2xP4KNHjzJp0qRKm0SPPvoox48fp127drRp06batvTp04eQkBDef//9KpdJTEy0vc/Ly+Pvv/+mdevW1bbBWTQ4Eej1ejIyMrh48SK///47s2bNYtCgQQwYMIAnnnjC4fP17NmTiIgIRo0aRXx8PF27drXtGzVqFKGhoQwaNIg9e/aQlJTErl27mDBhAhcuXKjxd4mOjmbIkCFMmTIFo9HI119/zSOPPEK7du3sXk8//TT79+/n5MmT5c7RqFEj0tPT2blzZ41s8ff3Z9GiRWzZsoUHHniA7du3c+7cOf744w/mzJkDYNeBB5gxYwY7d+7kxIkTjBkzhtDQ0HqfGKuIBieCbdu2ERkZSVxcHP369ePnn3/mk08+YePGjeX+SVVBkiQeeeQRjh07ZlcLAGg0Gnbv3k1MTAxDhw61DReWlpYSGBhYK9/n5ZdfZsuWLXz44Yfk5OQwZMiQcse0bt2a1q1bV1obBAcHV7lJdj2GDBnCvn370Gg0PPHEE7Rs2ZJevXrx008/sXLlynKd7vfee4+JEyfSuXNnMjIy2Lx5c5X6RnWNJC+0l7mWadOmsWHDBo4ePer0a40ZM4b8/Hw2bNjg9GtVRoOrCWRqh+PHj+Pv78/nn3/ulPPv2bMHf3//CgcV6hq5JpApR25uLrm5uYB1lMsZvlQlJSVcvHgRsPY3IiIiav0aVUUWgYzHIzeHZDweWQQyHo8sAhmPp87dJiwWC2lpaQQEBDjVb19GRghBYWEhUVFRKBSVP+/rXARpaWlER0fX9WVlPJjU1FSaNWtW6f46F0FAQABgNay2ZlVlZCqioKCA6Oho2z1XGXUugrImUGBgoCwCmTrhRs1uuWMs4/HIIpBxbbQXIWm39a+T8JhFNTJuyO9fwaYJgABJAQM/hk6Ou8PfCJcUgdlsdskF2XWFUqnEy8vLs4eQ81OvCABAWGDzS3DTvRDUtFYv5XIiKCoq4sKFCw4FcmqIaDQaIiMjXdL/3umYDLDxBWwCKEOYIfeca4ngvffeY/LkyUycOLFa4fquxWw2c+HCBTQaDWFhYR75JBRCYDAYuHTpEklJSSQkJFx3oqfBoS+C7x6HpF3l90lKCGle65estggOHjzIF198QYcOHWrNGKPRiBCCsLAwl4hMVl/4+vqiUqk4f/48BoMBHx+f+japbii6BCtGQNoRUGmg02g48KW1BpCUMHBerdcCUE0RFBUVMWrUKBYuXMi//vWv2rbJI2uAa/Gopz9AbhJ8M9Ta3NE0hkdXQ7POcPuL1m0hzZ0iAKjmEOn48eN54IEHbPF3roder6egoMDuJSNjR/oxWNzHerMHx8BTP1oFANYbP/5OpwkAqlETrFy5kt9//52DBw9W6fjZs2czffp0hw2T8RDO7YKVj4GhEMLbw2NrIODKKrN0bQlJ2TriQ/2IDHJOE9khEaSmpjJx4kR27NhR5Xbq5MmTmTRpku1zmT+HjAzH18D658BihLg74eFvwefKUs5VB1OYvO44FgEKCWYPbc/IW8uHy6wpDjWHDh8+TFZWFp06dcLLywsvLy9++eUXPvnkE7y8vDCbzeXKeHt72/yEXM1f6NKlSzz//PPExMTYoln37dvXFsk5Li7OljOg7HU9b0QZB0hcAGvHWgXQdgg8ttZOAOnaEpsAACwC3lx3gnRtSa2b4lBNcO+993L8+HG7bU8++SStWrXi9ddfr1Zcn/pk2LBhGAwGli9fTvPmzcnMzGTnzp3k5OTYjpkxY4ZdeEN3+44uhxDwf9Ng7zzr59uehX7vwTUDAccvaG0CKMMsBMnZxbXeLHJIBAEBAbRr185um5+fH40bNy633dXJz89nz5497Nq1i7vuuguA2NhYbrvtNrvjAgIC6jUSQoPCbIRNL8Kx/1o/3zsF7pgE14wG5uoMzNl+qlxxpSQRF6opt72meNg43BXKokhv2LABvV5f3+Y0bLQX4e8f4eshVgFIShj0Odz5SjkBZBfpeXRhImeyivD39kJxebdSkpg1tJ1TOsd1HnKloKCAoKAgtFptuf5BaWkpSUlJxMfH18kE0dq1axk3bhwlJSV06tSJu+66i4cfftg2ARgXF0d6ejoqlcpWZtasWUyYMMHpttX1b+E0fv8KNk+0+v4AKFTWDnCLvuUOzSosZdTC/ZzOKqJJgDcrxnXDNz+btBOniWqXQNMWcQ5d+nr32tV4bE0A1j5BWloamzZtol+/fuzatYtOnTrZpXV69dVX7SJAVyeor8eivWgvALDO/oaXbzpnFpTy8JeJnM4qIiLQh1XPdid09zYKBj+A/5sTKBj8APlr1jjFTI8WAYCPjw+9e/fmnXfeYd++fYwZM4apU6fa9oeGhtqFXA8ODq4/Y92NtKP2AgDr59xz9ofllzDyi984d0lH02BfVj3bjabGAtLfmQJlWUctFtKnTMVYQbbOmuLxIriWNm3aoNPp6tsM96dUCz9X4FJzjRPchbxiRn75G8k5xTRr5MvKZ7oRVZrPxZdeto4kXY3FguF8xSlta4LLuVLXFTk5OYwYMYKnnnqKDh06EBAQwKFDh5gzZw6DBg2qb/PcG4MOvh0BWX+C2h+MxdYa4BonuNTcYh7+MpGL+SXEhGhY8VQXfDes4uynnyJKKpgPUChQx9b+ZJnHisDf35+uXbvy0UcfcfbsWYxGI9HR0YwbN44333yzvs1zX4yl8N9HIHW/dfJrzBbwDSnnBJecrePRhYmkaUuJD/Xjq+4aDE8/QeH//geApksXNLffTvZnn1mbRAoFkTOmo3LCcLVHjw65Mm75W5gMsOoxOL3dWgM8sRGalU+OeO5SEY8sTCSzQE/bIAWfFu9Hv+Y7EAJlUBBNXnuNoKFDkCQJY0YGhvMpqGNjHBZAVUeHPLYmkKllzCZYN84qAC9feHRVhQI4k2UVwKWCUkbo/ubpXzegz74EQNCgQTR5/TW8QkJsx6siIpzy9L8aWQQyNcdisc4E/7nh8jzANxB3R7nD/s4s5NGFiSgyM5h7ahNtUk5gAdSxsURMn4bf5ayYdY0sApmaIQRsfRWOrbB2fEcshZvt15lc/DuZ3/f9wScnddx17jBPnPoRtcmIpFLR+JlnaPzMOBTe3vX0BWQRyNQEIWDHFDi4CJBgyBfQeqDdIT9+8CVNF8/jZgQfW48CQHPbbURMm4Z38/hrz1rnyCKQqT6/zIF9n1jfD/wYOoyw233x72SaLp6H4nLUCAlr/AjflyYR8+zTLrOMVp4sk6ke+z6FXbOs7/vOhs6jyx2y7ft9NgGUIQHZ4XEuIwCQRSBTHQ4ugh/ftr7v9TZ0/6fdbiEEH28+StDqr8oVNUsSUW0T6sLKKiOLQMYxjv4XtrxifX/HJOj5qt1uvcnMG0t/JWbW67TNO49R6YXlck/ALEmkPfWSw96gzkbuE8hUDe1Fq1v0L+9bP3d9zroo5irydAZe+c9PDF81h/iCdEz+ASQsXUKutz9pJ08T1TaBdi4mAJBFIFMVrg6MCxDTzdoPuKpdn5yt45VPt/H89/NoqsvGEtKYFsuX4p2QQFNwuaf/1cjNoVpi9+7dDBw4kKioKCRJYsOGDfVtUu1Qtibg6g5u6kEoTLd9PJicy/jZ65i46QOa6rIhMoqEVf/FO8G12v6V0WBFkK4tYd/ZbKdEJ6gInU5Hx44dmT9/fp1cr84493MFawLMtjUBm46l8fYHa3l7x8eElWhRxsdz88oVqN0orI5LN4eEEJQYy4dxuRFrD19g6qaTtng10x9sy7DOjoVK8VUpHRrG69+/P/3793fUVNcmPxX+b0b57ZISERLP/J9O88N/t/Ov3xbjbypF3aYNsYsX4dWoUd3bWgNcWgQlRjNtpmyv0TksAt7ZeJJ3Np50qNyfM/qiUbv0z+NcinPhm2GgywT/cNBl2wLjmu7/iMk/5nB2605m7l+Gj9mIb5cuRP9nAUp///q23GE8+L8sUykGHax4CLJPQWBTGPsjIEHuOQo0MTy3KR32bGXaoW9QWcz49byTZh9/jMJNI4m7tAh8VUr+nFE+KsH1yNCWct+Hv9gFblJI8H+T7iIiqOp++b4qDw2yZTbC6ifhwkHwCbZGhgtqRrq2hAP58NGav7n5yC+8dOQ7lEIQ0K8fTee8j+TGyURcWgSSJDncJGke5s/soe15c90JzELY4tU0D3O/aroinBqgVgjrSJBtTcB30KQ1qw6m8MG3e4gqzKZ7ThJP/M/aRA0aPozI6dOR3Dwqn0N32IIFC1iwYAHJyckAtG3blilTprhch3DkrTH0bBFGcnYxcaEap0UzrmucHqB253Q4+u0Vl+iYrqTlF/PT3EUsP7rGzg/I+5FRRE55y6V8gKqLQyJo1qwZ7733HgkJCQghWL58OYMGDeLIkSO0bdvWWTZWi8gg3zq9+YuKijhz5oztc1JSEkePHiUkJISYmJrfqJUFqO3ZIqx2vmfiAvj1I+v7gR9Dy/6UGs3MWv4LE64RgAXI6juU5g1AAOCgCAYOtPcVnzlzJgsWLCAxMdHlRFDXHDp0iHvuucf2uSwc/ejRo+2CeVWXpGxdhQFq/0wrqLkIjq+BbW9Y3/d6Bzo9TkpOMc9/exjN7yfKeYIqgKjinPLncVOq3Scwm82sXr0anU5H9+7dKz1Or9fbxfpsqJlq7r77bqdm3Iyq5EafvO44/x6hoGeLsOqd+OxP1hwBYI0Qfecr/Py/LCauPIJPbhYz/9pSrohQKIhs4x6zwVXB4Rnj48eP4+/vj7e3N8899xzr16+nTZs2lR4/e/ZsgoKCbC85QUf1WLDrrN1nhQQhfmqyCvU8seQAk9cdp0hvcuykaUdg1eO2HAHmvrP5cMffPLnsIFFpZ5i/51OaFWQi+ftfCZ2uUBDlpNAn9YXDIVcMBgMpKSlotVrWrFnDokWL+OWXXyoVQkU1QXR0tBxy5QZc/VtsOnGJ19b8gSTBvJG30CTAh7hQDUG+KuZsO8WyfckANA32Zc7wDvS4OfTGF8g5a80TVpwN8XeRN/hbJqz5kz2ns+mVcphJx1ajNJvwbt2a6M/ngyRVO/RJfVHVkCs1jjt03333cdNNN/HFF1/U2DBZBFco+y1MfqEM//IQepOFV3q34MV7yzdDfjubw2trj5Gaa/WTerxbLG/0b4WfdyWt3cJMWNwb8s9DRAdO9FnBs9+dJi1Px9hT2xj2v58ACOjdm6j330Ohqf2cAHVBnUWltlgscnx/J2ERghmb/0RvsnBPyzDG33Oz1aszabf172W639SYbRN78ni3WAC+TjxPv493k3jums6r9iKc2gZfPQj55xGN4lnX5mOGLj5BTnY+s458YxNA4+eepenH89xWAI7gUMd48uTJ9O/fn5iYGAoLC1mxYgW7du1i+/aa+ffIlEcIQZ7OQFp+CU2Dfflo5C0ojn59JdS5pID+c+CWRwHwk+Dd+5tzf6sg3lx/grRcLaO/3M3j3WKZ1KcFmpPfwQ+v2DxChdqf90Jn8cUP6YQV5/Hvo1/TJCsFSa0mcua/CLpmJLAh45AIsrKyeOKJJ0hPTycoKIgOHTqwfft2evfu7Sz7PJa8YgMlRgsqhYKPR3Ui2HjJPta/sMAP/8/6uoruwM8AZa3Jo5df12Ax6Nh4PJs2uYXMPvIN6sJ8lKGhRH/2Kb633OKkb+WaOCSCxYsXO8sOmaso0pvILjQA8Pw9N9ExOhiS/ijv118DlAgeykyk38FfkUxGvFu1Ivrz+aiiomrtGu6CS/sOeSJGs4WU3GIEAo1ayR1tL9+Up3eUP1hSwvj9EBh1TSz/y++FoEBv4uN1P/Nm8liUkijbTOYfgfT/62cA/O+7l6bvv4/Cz8+J38x1kUXgQgghSMktxmS2oPZSEqxRWX1z9n16JchVWQirslj/odeftAr0gXt73sXkM08z3bAUc76S7NN+lGRY20uNn3mGsJcmIika7CLDGyKLwIXIKChFpzehkCSiAn1IK5Tgj++uxPi55y24ZVS5WP83Ij7Uj4JzGs4dCbe5QJgkicAp02nyyIgblG74eK78a5EFCxbQoUMHAgMDCQwMpHv37mzdutWhcxSUGLlUaB1qbtbIF2+VEgxFsHuO9YA7X7HG+AlqCvF3VlkAAKEl2nJOcEog6p47HbKxodJwRVDBeLqzKPOuPXz4MIcOHaJXr14MGjSIkyertqRTbzKTmlcMQKi/N8EaNZTkW5c4AnR/werYVk2vzcIfdyBdMycqCeGU/F/uiGs3h4Sw5rtylKMrYOtrFY6nVxmVpso3XU28ay0WQUpOMWaLQKP2sq5+K8mDwjTrAe1GQJ8p1RfATz+T+e9/l9/hpPxf7ohri8BYDLNqOGRXyXj6DXkzDdSOj5ZU1bu2jDRtCSVGM14KBTEhGhSlWshLtu5U+1ubQNUUQP7adaRPmQJmM94tW6I/fdrp+b/cEdcWgRtx/PhxunfvTmlpKf7+/jf0rgXI1RnI1VnnA6JDfFGbCq8IwDsIfH2ueG86gBCC3MWLyfr3XACCBg8m8t0ZmHJy3M4Jri5wbRGoNNYnsiMUpMH82+wnlq4eT3fk2g7QsmVLjh49avOuHT169HW9awtLjVzMtzq8hQf6ECCVQk4SIKwL3H0jIDfZIRsAhMVC1pwPyL28kKfx02MJe+UVJEmqk/xf7ohri0CSHG+ShCZYlwdufskWJ6cq4+k1Ra1Wc/PNNwPQuXNnDh48yMcff1yhd212kZ60/CuR8XxFCeSkAMJaAzSKBb3BYRuE0UjaW29RsGkzAE1ee43GTz1ZvS/kQbi2CKpLpyfgpnsdHk+vTSrzrjWYzHYC0KDHrygdJAHegRASZ+3MO3q94mIuTHwJ3Z494OVF1Mx/ESQnJa8SDVMEYL3x6+jmd8S7NqfI+oRXYSKAEiKlHJSSwOTlh1ej+GoJwJSXR+pzz1F67A8kHx+affIx/j171vh7eQoNVwR1SFW9a0uNZnJ0BkKkQpqSbRv00QsVikbx1eoEG9PTSXl6HIazZ1EEBRH9nwVo/vGP2vhaHoMsglqgKt61FovVL0gpjDRVZHP1oKdaMiJJji/w0585Q8rT4zBlZOAVEUHMooV4X+6XyFQdWQR1RHpBKaVGM40UBq4d9ZcAzHrwunEoQ2NGBobk85iLCsl4623MWi3q5s2JWbwIVWSkM0xv8MgiqAO0JUZyivQoEEQpC6CiaPPKGyezzl+zhvQpU60TXpfx6diB6P/8x+3CobsSDdd3yEUwmCxcuOwXdJMqF6W5hHI/e1D0DWsBY0ZGOQEARL33niyAGiLXBE5ECEFqntUvqKlSi6+5AJCgcXPrk9+st/6tQjNIn5xcTgAApqxLeMfXf1Z4d0YWgRPJKtSj05sIkYpoLC57hAZFg3eA9X0Vbn4AYTKhXb2m/A7ZCa5WkJtDTqJIbyKroBQ/SmkqZVs3+oeDX2OHzmMpLiZ1/HgKtmyxzqCXjavKTnC1hlwTOAGT2UJqbjFqjMQpspDK/IECHBu9EWYzaW9Mxrh7N5KPD03n/huftm1lJ7haRhZBLSOE4EJeCRaziZsUmSgxW53xgmMdcom2GAyYsrMRp0+jatSI6AWf20KhyDd/7eJQc2j27NnceuutBAQE0KRJEwYPHsypU6ecZZtbkqMzUFhqIE7KRI0RlGqr/5IDs8FmXTHG1FQwm/GKiiLuvys8LhZQXeKQCH755RfGjx9PYmIiO3bswGg00qdPH3Q6nbPscytKDGbStaU0k7Lxk0qtHqwhzUGpqvI5zFothuQkhNmMpFLR9N8foI6Lc57RMo6JYNu2bYwZM4a2bdvSsWNHli1bRkpKCocPH3aWfW7Dz7t+4f4BA+jduQUhzVqwftvP0CgOVNa8AkIIpkyZQmRkJL6+vtx3332cPn3a7hymnBwMqakgBAo/P5SNG8tzAHVAjUaHtFotACEhIZUeo9frKSgosHvVBRm6DA6kHyBDl1En17uQlUu7VgksmPkaAJImFHyuREKeM2cOn3zyCf/5z3/Yv38/fn5+9O3bl9LSUoQQGDMyMKanA6AMCUEVFeXRsYDqkmp3jC0WCy+99BI9evSgXbt2lR43e/Zspk+fXq1rCCEoMZXc+MBr2HR2E7P3z8aCBQUKJnedzIM3PejQOXy9fKuclC6/2MDtt3dnVI94FGWOcFcJQAjBvHnzePvttxl02cf/q6++Ijw8nPXr1jHszjsxX36geIWH4xUaikWO9F1nVFsE48eP58SJE/z666/XPW7y5Mm2/F1wJUlHVSgxldB1RdfqmgiABQsz989k5v6ZDpXb/+h+NFVYYmkwmbmUV0C8lGkVgE9QuWOSkpLIyMjgvvvus20L0Gi4rUsX9v74I4M7dABJQtW0KV7BwQ7ZKVNzqiWCF154ge+//57du3fTrFmz6x7r7e2Nt/eNncPcEb3JTGp2IdFk4CVZECoNUnBsueMyMqxNsvDwcABMubkY09II8/Oz7pMk1LGxKP0bRq5ld8MhEQghePHFF1m/fj27du0i3sk+K75evux/dL9DZTKLMxm8YTAWrvjZKCQFGwZtIFwT7tC1r0euTk9WXiGxUiY+khGz5IUypDkorp/Y2mI0Yky7JniAEEgN9EHhDjgkgvHjx7NixQo2btxIQECA7QkXFBSEr2/t5wyWJKlKTZKriQ+KZ+rtU5n+23QswoJCUjC1+1Tig2pPsAaTheL8LFpK1tVhQkC2CKCRUFKRN1DE5cmtzMxMwlRXhkuzcnLo0KoVAEJvAFXVh1Jlag+HM9qDNV3p1SxdupQxY8bUlk01ZmjCUG6Pup3UwlSiA6KJ8KvdGVa9vtRueaQkQRORR7EhHHUFNUh8fDwRERHs2LKFloMHA1BQVMTB48cZN3Kk9RzeVXOmk6l9HG4OuQsRfhG1fvOXUVpcSMA1A0e64mL+l3oYLx9ru/7ajPYTnn2WWe+/T1xgIM2bN2fa3LlEhoUxsFcvVFFRKORaoN6QfYccpLDUiJehgGvXSB489ie9Rjxj+3x1RvtFH3zAxGHDKMjI4MV33yW/oIA7evTgh83fE9SurSyAeqbGKVwdxZ1TuJosFi5kZBOHNdK1wJYyAykoGvzs8wcLITBlZGLKsbpSe4WG4hUeXqX5B1f/LdyBqqZwlWsCB0jPLyFcXAIJhG8IUkAkmPVIFawOExYLxrQ0zPn5gNXz0yu0Ckm2ZeocWQRVpKDEiLIkG1/JgJCUSIFRVse4ClaHCYsFY2oq5sJCQELVNEr2AXJhZBFUAZPZQmZeIc3JA7gigAoQJhOGlBQsxcUgKVDHRKMMCKhLc2UcRBZBFUjLL6WJyEYpCeussKbiJZIWoxFjcjIWvR5JqUQVE4PSQzNCuhOyCG6AttiAuSSfIIXO2gEOjqlwhZhFr8eQnIwwGpG8vFDHxaGQO7RugSyC62A0W0jLL6a5lAOA5NfEtj7gaizFJRjOJ1sXwqjVVgGo5ckvd0EWQSUIIUjLLyFE5OEtmRAKFVKA/eSbxWjEotVizMwCYUHh44s6LhbJS/5Z3Qn5v1UJ+SVGSkuKiZbyAZCCmtk5x5V5gpYheXujjo9DUl7fgU7G9ZCXLlWAtRlUQlMpG4WENXnGVesEKvIEFXo9ooIIcTKujyyCaxBCcDGvhEBLIf5SKQIFBDWzdYaFEJgyMysuW40USzL1jyyCa8grNqIr1RMpWcMmSgHh4GX19RdCYEpPt80Cl/HlqlXcNnQojaIiK8xoX1payvjx42ncuDH+/v4MGzaMzEqEJFP3NFgRGDMy0CXux5hR9YX2BpOF9PwSIqRcvCQzePmAfxPg8izwhQuYcq3iUAZdaR41DQ9n1rvvVprR/uWXX2bz5s2sXr2aX375hbS0NIYOHVqL31amJrh0x1gIgShxfKF9/oYNZP5rpi1xdfjbbxF82Y//etdKzSlGrdfRSHEJ4eNtdYqTFAizGUNqKpaiIru1wJaICITewNBnW9p5gl6d0b5Zs2YsXryYFStW0KtXL8C6/qJ169YkJibSrVs3h7+fTO3i2iIoKeFUp841O4nFQuaMd8mc8W6Vi5wCWv60Acnb3+oGcf48lpISaxTo6BiUAdY1AwqVqtxqsGsz2h8+fBij0Wi3yL5Vq1bExMTw22+/ySJwAVxaBPVKQAQWgwFD8nmEweoGoY6NRaGpeLlnZRntjx49ilqtJviaKBLh4eG25aky9YtLi0Dy9aXl745FtzNmZnLugQH2CS0UCppv+R5VePmF9gaTmfO5JViMehIUaSiwQFAzhJca47kkhMmIpFJZZ4Gvsxi+soz2Mq6Pa4tAkpAqefJWhnd8PJEzpl9JbXQ5jn9F2VxydXouFBjAS02sKh8vSQ0qP8y+IRiTL7tBeHtbBXCD1V+VZbQfOXIkBoOB/Px8u9ogMzPTtgBfpn5xaRFUl+Dhw/G7447rxvE3mCxczLN2ugMoJkjSIQQYlSGYk89b3SB8NahjY6rlBlGW0b5z586oVCp27tzJsGHDADh16hQpKSl07969Zl9UplZokCIA60qu68Xx15vMCECNkWaXM8nk6/3wycsEBAp/f9TR0VVyg7heRvugoCDGjh3LpEmTCAkJITAwkBdffJHu3bvLnWIXocGK4EbkFxsJkQqJsmQjzBJGowKfUuuMrzI42KGAuDfKaP/RRx+hUCgYNmwYer2evn378vnnnzvtu8k4hkcutNcWG0jLLSDBcBFjsf2T3iukEV6RUVUOxuss5IX2NaeqC+0dnjHevXs3AwcOJCrKeqNs2LChJnbWOQaTmQv5JTSyFJUTAIAyyK/eBSBTtzgsAp1OR8eOHZk/f74z7HEqQghScktQW0oJFdqKj6ko27xMg8bhPkH//v3p37+/M2xxOpkFeiyGYppLGZhLK37aS77ymmBPw+kdY71ej/6qhBN1lanmWopKjWgLC60CKJKwGBVcCZ1lRQ6H6Jk4XQTVyVRT2311k9lCem4h8WRgKZSwmCRrOJTYGCRvb4TegOStdikBuFPcV3fH6a7UkydPRqvV2l6pqamVHqu8PCZvMNTe4hQhBGm5hURb0hBFYDFJSAoF6jhrUgyFSoXS38+lBABQXFwMgMrF7GqIOL0mcCRTjZeXFxqNhkuXLqFSqVDUQuK6vKISAnUXMOgEFjNICglVZCRGpRJjaWmNz1/bCCEoLi4mKyuL4OBg24NBxnm41GSZJElERkaSlJTE+fPna3w+o8mEKLyEotSCEBJIEl6hoUhu4L0ZHBws+xbVEQ6LoKioiDNnztg+XxuHv6ao1WoSEhJq3CTSFetIXjCWgMRcjEVeKIIDafre+6hjy+cUczVUKpVcA9QhDs8Y79q1i3vuuafc9tGjR7Ns2bIblq/qLF5NECYDJ2fcj8+W8xh1XijDQoj7+ls5M7yH4bTQ7Hfffbdrj1xYzJyfOxLv789jLPaCsMbE/XcV6mZN69syGRfFpfoENUYIcj5/EuN/T2Iq9cIQGkKbNWsrXEwjI1NGwxCB9iLknEG3bQk5CxMx65UUhjSi47oNqJqE1bd1Mi6O+4vg968wrnqZwgtqso4FIkxKckOCab5yHd6yAGSqgHuLQHuR/HlvkH4gjLJMel5+JqQ5HxIZIw8vylQNtw6+ZTx1iPQDgVydStJUrORW9aX6M0rG7XBrEWR8t5pyuVSFRGaW7A8tU3XcVgT5n71F0feHym23SBIXwlrVg0Uy7opbiiB37mTSP1sHSBQ19sF8eSWYWZL49JYRxLaKq1f7ZNwLt+sYZ896jUtfbQYg5+ZAJnaZiiI/j4jCbDIDwnhl1B1EBpVPqSQjUxluIwIhBJemvEzO6u0A5LYOZOYds/lh3O1YhCA5u5i4UI0sABmHcQsRCIuFzNdfJG/zTwDkdwjgk7s/YOWY7gRprP728s0vU11cXgTCZCL95efR7vgVEBR29mfpvR+x7LFu+KplT0uZmuPSIrAYDKSNH0fhngMgCYq7aljb9zPmP3QbKqVb9ullXBCXFYGluJjUZ56i+NAxJIWg9HZvdg78gtkDu6BQyHGBZGoPlxSBuaCAlKfGUHriLyQvC6Yeag4NX8ar990iB8aSqXVcTgSm3FzOj34cw+lzKFQWRE8v/n7kW56+o0N9mybTQHEZERgzMig+coTMf3+A+WI6Sm8zirsUpDyxiqFd2tW3eTINGJcQQf6aNaS/MwUur1hTqM143yvIHrOGXh1kAcg4l3ofYjFmZJB2lQAALEYFJUMX0VkWgEwdUO8iyDz0G9K1a5aFhH9+bv0YJONx1LsI8kURV8cDBUASaEVxvdgj43nUuwjC/nE74bdqQbosBEnQpEsBof+QUxnJ1A313jEOb3YTBwa/TvuId7EUKVD4Wzje7R1ua3ZTfZsm4yFUqyaYP38+cXFx+Pj40LVrVw4cOFAjI24b9hIFEw+Q/NgyCiYe4LZhL9XofDIyjuCwCFatWsWkSZOYOnUqv//+Ox07dqRv375kZWXVyBDRyA9d8zBEI8eTZGToMjiQfoAMneMxRt2trLvZW59lq4rDYRi7du3KrbfeymeffQZY8/VGR0fz4osv8sYbb9ywfEWh8db+vZYZv83AggUFCiZ3ncyDNz1YJXs2nd3E7P2zPaKsu9lbq2UlBVO7T2VowtAqlYWqh2F0SAQGgwGNRsOaNWsYPHiwbfvo0aPJz89n48aN5cpUlKkmOjraZliGLoO+a/piwVJVM2Q8FIWkYPuw7UT4VS2cjlOyV2ZnZ2M2mwm/JqxheHg4GZWEO589ezZBQUG2V3R0tN3+lIIUWQAyVcIiLKQWVp7kpbo4fXRo8uTJTJo0yfa5rCYoIyYwBoWkwCKuCEEhKdgwaAPhmuvHEM0szmTwhsF2ImqoZd3NXmeVjQ6Ivk6p6uFQTRAaGopSqSQzM9Nue2ZmZqUJJby9vQkMDLR7XU2EXwRTu09FIVlNKWv7xQfFo1FprvuKD4pn6u2eUdbd7HVW2ao2hRxCOMhtt90mXnjhBdtns9ksmjZtKmbPnl2l8lqtVgBCq9XabU8vShcH0g+I9KJ0R03yqLLuZm99lq3sXrsWh0WwcuVK4e3tLZYtWyb+/PNP8cwzz4jg4GCRkZFRq4bJyNSUqt5rDvcJRo4cyaVLl5gyZQoZGRnccsstbNu2rVxnWUbGXXB4nqCmaLVagoODSU1NdVq6JhkZuDIIk5+fT1BQUKXH1bnvUGFhIUC5oVIZGWeRk5NzXRHUeU1gsVhIS0sjICCg1hbNlym+OrWLu5V1N3vrs6xWqyUmJoa8vDyCg4MrPa7OawKFQkGzZs2ccu6KhmAball3s7c+y94oKXy9ryeQkalvZBHIeDwNQgTe3t5MnToVb2/vBl/W3ex1h7J13jGWkXE1GkRNICNTE2QRyHg8sghkPB5ZBDIejywCN+LixYs89thjNG7cGF9fX9q3b8+hQ+XT2Mo4Rr3HHZKpGnl5efTo0YN77rmHrVu3EhYWxunTp2nUqFF9m+b2yEOkbsIbb7zB3r172bNnT32b0uCQm0NuwqZNm+jSpQsjRoygSZMm/OMf/2DhwoX1bVaDQBaBm3Du3DkWLFhAQkIC27dv5/nnn2fChAksX768vk1ze+TmkJugVqvp0qUL+/bts22bMGECBw8e5LfffqtHy9wfuSZwEyIjI2nTpo3dttatW5OSklJPFjUcZBG4CT169ODUqVN22/7++29iY2PryaKGgywCN+Hll18mMTGRWbNmcebMGVasWMGXX37J+PHj69s0t0fuE7gR33//PZMnT+b06dPEx8czadIkxo0bV99muT2yCGQ8Hrk5JOPxyCKQ8XhkEch4PLIIZDweWQQyHo8sAhmPRxaBjMcji0DG45FFIOPxyCJwEmPGjLFLcyvjusgiqGeMRmN9m+DxyCKoIWvWrKF9+/b4+vrSuHFj7rvvPl599VWWL1/Oxo0bkSQJSZLYtWsXycnJSJLEqlWruOuuu/Dx8eHbb78FYNGiRbRu3RofHx9atWrF559/bned119/nRYtWqDRaGjevDnvvPOOnYCmTZvGLbfcwpIlS4iJicHf359//vOfmM1m5syZQ0REBE2aNGHmzJm2MkIIpk2bRkxMDN7e3kRFRTFhwoS6+eFcCWclTfME0tLShJeXl/jwww9FUlKS+OOPP8T8+fNFYWGheOihh0S/fv1Eenq6SE9PF3q9XiQlJQlAxMXFibVr14pz586JtLQ08c0334jIyEjbtrVr14qQkBCxbNky27XeffddsXfvXpGUlCQ2bdokwsPDxfvvv2/bP3XqVOHv7y+GDx8uTp48KTZt2iTUarXo27evePHFF8X//vc/sWTJEgGIxMREIYQQq1evFoGBgeKHH34Q58+fF/v37xdffvllnf+O9Y0sghpw+PBhAYjk5ORy+0aPHi0GDRpkt61MBPPmzbPbftNNN4kVK1bYbXv33XdF9+7dK732Bx98IDp37mz7PHXqVKHRaERBQYFtW9++fUVcXJwwm822bS1btrSl2507d65o0aKFMBgMN/6yDRg57lAN6NixI/feey/t27enb9++9OnTh+HDh98wFlCXLl1s73U6HWfPnmXs2LF2awNMJpNdnq1Vq1bxySefcPbsWYqKijCZTOUyt8TFxREQEGD7HB4ejlKptMvUEh4eTlZWFgAjRoxg3rx5NG/enH79+nH//fczcOBAvLw867aQ+wQ1QKlUsmPHDrZu3UqbNm349NNPadmyJUlJSdct5+fnZ3tfVFQEwMKFCzl69KjtdeLECRITEwH47bffGDVqFPfffz/ff/89R44c4a233sJgMNidV6VS2X2WJKnCbRaLBbAmTzx16hSff/45vr6+/POf/6Rnz54e11n3LMk7AUmS6NGjBz169GDKlCnExsayfv161Go1ZrP5huXDw8OJiori3LlzjBo1qsJj9u3bR2xsLG+99ZZt2/nz52vFfl9fXwYOHMjAgQMZP348rVq14vjx43Tq1KlWzu8OyCKoAfv372fnzp306dOHJk2asH//fi5dukTr1q0pLS1l+/btnDp1isaNG183hej06dOZMGECQUFB9OvXD71ez6FDh8jLy2PSpEkkJCSQkpLCypUrufXWW9myZQvr16+vsf3Lli3DbDbTtWtXNBoN33zzDb6+vh63eF9uDtWAwMBAdu/ezf3330+LFi14++23mTt3Lv3792fcuHG0bNmSLl26EBYWxt69eys9z9NPP82iRYtYunQp7du356677mLZsmXEx8cD8OCDD/Lyyy/zwgsvcMstt7Bv3z7eeeedGtsfHBzMwoUL6dGjBx06dOD//u//2Lx5M40bN67xud0JeY2xjMcj1wQyHo8sAhmPRxaBjMcji0DG45FFIOPxyCKQ8XhkEch4PLIIZDweWQQyHo8sAhmPRxaBjMfz/wFreKNB5bspFQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "ax = df_res.plot(figsize=(2,2), grid=False, style=\".-\")\n",
+ "plt.title('Driver RAM [Gb]'.format(dbms), fontsize=10)\n",
+ "plt.suptitle('')\n",
+ "ax.set_xlabel(\"streams\")\n",
+ "ax.set_xticks(range(1,11))\n",
+ "plt.legend(title='SF')\n",
+ "df_res"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Results in folder .//1686234009\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686236492\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686228050\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "Results in folder .//1686238015\n",
+ "Read results\n",
+ "Load Evaluation\n"
+ ]
+ }
+ ],
+ "source": [
+ "df_res = pd.DataFrame()\n",
+ "for code in codes:\n",
+ " evaluate.load_experiment(code)\n",
+ " df = evaluate.get_benchmarker_metrics('total_cpu_memory_cached').T.max()\n",
+ " df = df.reindex(index=natural_sort(df.index))\n",
+ " path=resultfolder\n",
+ " with open(path+str(code)+\"/connections.config\",'r') as inf:\n",
+ " connections = ast.literal_eval(inf.read())\n",
+ " #print(\"found\", len(connections), \"connections\")\n",
+ " connections_sorted = sorted(connections, key=lambda c: c['name'])\n",
+ " SF = connections_sorted[0]['parameter']['connection_parameter']['loading_parameters']['SF']\n",
+ " #print(df)\n",
+ " df.index = df.index.map(lambda x: x[len('PostgreSQL-AWS-4-'):])\n",
+ " df_res[SF] = df.copy()/1000.\n",
+ " #df.T.max().plot.bar()\n",
+ "\n",
+ "#print(df_res)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 3 \n",
+ " 10 \n",
+ " 30 \n",
+ " \n",
+ " \n",
+ " DBMS \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 0.211746 \n",
+ " 0.208016 \n",
+ " 0.0 \n",
+ " 0.244414 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 0.619078 \n",
+ " 0.672410 \n",
+ " 0.0 \n",
+ " 0.664113 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 1.226977 \n",
+ " 1.140477 \n",
+ " 0.0 \n",
+ " 1.095809 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 1.886910 \n",
+ " 1.864305 \n",
+ " 0.0 \n",
+ " 1.503844 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 2.497164 \n",
+ " 2.385965 \n",
+ " 0.0 \n",
+ " 1.914688 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 3.078094 \n",
+ " 2.848871 \n",
+ " 0.0 \n",
+ " 2.304051 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 2.780430 \n",
+ " 2.859117 \n",
+ " 0.0 \n",
+ " 2.710203 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 3.129750 \n",
+ " 3.352691 \n",
+ " 0.0 \n",
+ " 3.082242 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 3.511543 \n",
+ " 3.821375 \n",
+ " 0.0 \n",
+ " 3.505238 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 3.947219 \n",
+ " 4.223957 \n",
+ " 0.0 \n",
+ " 3.785199 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 1 3 10 30\n",
+ "DBMS \n",
+ "1 0.211746 0.208016 0.0 0.244414\n",
+ "2 0.619078 0.672410 0.0 0.664113\n",
+ "3 1.226977 1.140477 0.0 1.095809\n",
+ "4 1.886910 1.864305 0.0 1.503844\n",
+ "5 2.497164 2.385965 0.0 1.914688\n",
+ "6 3.078094 2.848871 0.0 2.304051\n",
+ "7 2.780430 2.859117 0.0 2.710203\n",
+ "8 3.129750 3.352691 0.0 3.082242\n",
+ "9 3.511543 3.821375 0.0 3.505238\n",
+ "10 3.947219 4.223957 0.0 3.785199"
+ ]
+ },
+ "execution_count": 41,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMEAAADsCAYAAADNcMJ0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzjElEQVR4nO2dd3wUdf7/n7M1PSE9gTQQaQJSpHoWpApIF09QUMRTERC+vzvBQvMQ5A5FT+CUFiwcHCD9ADkQ4UC6wQCKlEBCKqRskk2ybeb3x8LCkgSyabvJzvPx2Ed2Z+cz857NvObT3p/3W5AkSUJGxo1RONsAGRlnI4tAxu2RRSDj9sgikHF7ZBHIuD2yCGTcHlkEMm6PLAIZt0cWgYzbI4vgDvbv348gCOTl5TnbFKcya9YsBEFAEAQWLVrkcPmK/I639hEEgcGDB1fa1uqgXolg7Nixth9WrVYTFhZGr169WLlyJaIo3rd8t27dSE9Px9/fvxastSc+Pt5mu0KhICIigpEjR5KcnFzm/s2bN0er1ZKRkVHquyeeeAJBEJg/f36p7/r3748gCMyaNeue9rRq1Yr09HReffVVu+0///wzI0eOJCIiAq1WS0xMDAMGDGDbtm044oFz67d+9tlnK1ympqhXIgDo27cv6enpXLlyhZ07d/Lkk08yefJkBgwYgNlsLrecyWRCo9EQHh6OIAg1Zp/RaCz3Oz8/P9LT00lNTWXjxo2cP3+eESNGlNrvf//7H8XFxQwfPpzVq1eXeayoqCji4+PttqWmprJ3714iIiLua6dKpSI8PBwvLy/bti1bttClSxcKCwtZvXo1v/76K7t27WLIkCG899576HS6+x73Frd+a09PzwqXqSnqnQi0Wi3h4eE0bNiQ9u3b884777BlyxZ27txpd1MIgsDSpUt55pln8Pb2Zu7cuXbVeH5+Pp6enuzcudPu+Js2bcLX15eioiIAUlJSePbZZwkICCAwMJBBgwZx5coV2/5jx45l8ODBzJ07l8jISJo1a1au7YIgEB4eTkREBN26dWPcuHEcO3aM/Px8u/1WrFjB888/zwsvvMDKlSvLPNaAAQO4ceMGhw4dsm1bvXo1vXv3JjQ0tKI/pw29Xs+4cePo378/O3bsoHfv3jRu3JgWLVowbtw4Tp8+XaoGPXToEG3atMHDw4MuXbpw5swZh89bG9Q7EZRFjx49aNu2Ld99953d9lmzZjFkyBASExN5+eWX7b7z8/NjwIABrFmzxm77t99+y+DBg/Hy8sJkMtGnTx98fX05ePAghw4dwsfHh759+9o98ffu3cv58+fZs2cP27dvr5DNWVlZbNq0CaVSiVKptG0vKChg/fr1jB49ml69eqHT6Th48GCp8hqNhlGjRrFq1Srbtvj4+FLXWVG+//57srOz+ctf/lLuPnfXoH/+859ZuHAhx48fJyQkhIEDB2IymSp1/prELUQA1jb0nU9ogOeff56XXnqJxo0bEx0dXarMqFGj2Lx5s+2pn5+fz44dOxg1ahQA69atQxRFli9fTuvWrWnRogWrVq0iOTmZ/fv3247j7e3N8uXLadWqFa1atSrXRp1Oh4+PD97e3oSFhfHDDz8wYcIEvL29bfusXbuWpk2b0qpVK5RKJc899xwrVqwo83gvv/wy//73v9Hr9Rw4cACdTseAAQMq+pPZ8fvvvwPY1WTHjx/Hx8fH9rpb4DNnzqRXr160bt2a1atXk5mZyaZNmyp1/prEbUQgSVKpJ1XHjh3vWebpp59GrVazdetWADZu3Iifnx89e/YE4PTp01y8eBFfX1/bjRAYGEhJSQmXLl2yHad169ZoNJr72ujr60tCQgInTpxg4cKFtG/fnrlz59rts3LlSkaPHm37PHr0aNavX09BQUGp47Vt25amTZuyYcMGVq5cyQsvvIBKpbqvHRWlTZs2JCQkkJCQgF6vL9Xn6tq1q+19YGAgzZo149dff62281cX1feLuDi//vorcXFxdtvufMKWhUajYfjw4axZs4bnnnuONWvWMHLkSNuNVFhYSIcOHfj2229LlQ0JCanweW6hUCh44IEHAGjRogWXLl3i9ddf5+uvvwbg3LlzHDlyhGPHjvH222/bylksFtauXcv48eNLHfPll19m8eLFnDt3jmPHjlXIjrJo2rQpAOfPn6dLly6Atf91y966jFvUBPv27SMxMZFhw4Y5XHbUqFHs2rWLs2fPsm/fPltTCKB9+/ZcuHCB0NBQHnjgAbtXdQyzTps2jXXr1nHq1CnA2iF+7LHHOH36tO0JnJCQwNSpU8ttEj3//PMkJiby0EMP0bJly0rb0rt3bwIDA/noo48qXObIkSO297m5ufz++++0aNGi0jbUFPVOBAaDgYyMDFJTUzl16hQffvghgwYNYsCAAbz44osOH++xxx4jPDycUaNGERcXR+fOnW3fjRo1iuDgYAYNGsTBgwdJSkpi//79TJo0iWvXrlX5WqKiohgyZAgzZszAZDLx9ddf88c//pGHHnrI7vXKK69w9OhRzp49W+oYDRo0ID09nb1791bJFh8fH5YvX86OHTvo378/u3fv5vLly/zyyy8sWLAAwK4DDzBnzhz27t3LmTNnGDt2LMHBwU6fGCuLeieCXbt2ERERQWxsLH379uWHH37gs88+Y8uWLaX+SRVBEAT++Mc/cvr0abtaAMDLy4sDBw4QHR3N0KFDbcOFJSUl+Pn5Vcv1TJkyhR07dvDxxx+TnZ3NkCFDSu3TokULWrRoUW5tEBAQUOEm2b0YMmQIhw8fxsvLixdffJFmzZrRo0cP9u3bx9q1a0t1uufPn8/kyZPp0KEDGRkZbNu2rUJ9o9pGkBfay9zNrFmz2Lx5MwkJCTV+rrFjx5KXl8fmzZtr/FzlUe9qApnqITExER8fH5YsWVIjxz948CA+Pj5lDirUNnJNIFOKnJwccnJyAOsoV034UhUXF5OamgpY+xvh4eHVfo6KIotAxu2Rm0Mybo8sAhm3RxaBjNtT624ToiiSlpaGr69vjfrty8hIkkRBQQGRkZEoFOU/72tdBGlpaURFRdX2aWXcmJSUFBo1alTu97UuAl9fX8BqWHXNqsrIlEV+fj5RUVG2e648al0Et5pAfn5+sghkaoX7NbvljrGM2yOLQMa10aVC0gHr3xrCbRbVyNRBTn0FWycBEggKGPgptHfcHf5+uKQILBaLSy7Iri2USiUqlcq9h5DzUm4LAEASYdtb0OQp8G9YradyOREUFhZy7do1hwI51Ue8vLyIiIhwSf/7GsdshC1vYhPALSQL5Fyu3yKwWCxcu3YNLy8vQkJC3PJJKEkSRqOR69evk5SURNOmTe850VPvMBTAuhcgaX/p7wQlBDau9lO6lAhMJhOSJBESEuISkcmchaenJ2q1mqtXr2I0GvHw8HC2SbVDYRZ8OwLSE0DtbW3/H/vSWgMIShi4qNprAaji6ND8+fMRBIG33nqrmsyx4o41wN241dMfrM2cFb2tAvAKgrHboN98eCsRxmy3/q2BTjFUoSY4fvw4X3zxBW3atKlOe2TckbSfrTWA/joExMALmyCoifU7/4Y18vS/k0o9bgoLCxk1ahTLli2jQYMG1W2TjDtxaR/ED7AKILw1jNtzWwC1RKVEMGHCBPr372+LxHYvDAYD+fn5di8ZGQB++be1BjAWQtzjMPY/4Btmt0u6rpjDl26QriuuMTMcFsHatWs5deoU8+bNq9D+8+bNw9/f3/ZyJQ/S69ev8/rrrxMdHW2LZt2nTx9bJOfY2FhbzoBbr3t5I8o4wOF/wHfjQTTDQ8Nh1AbwsPclW3c8mW7z9/H8sqN0n7+PdcfLztVQVRzqE6SkpDB58mT27NlT4RGL6dOnM3XqVNvnW559rsCwYcMwGo2sXr2axo0bk5mZyd69e8nOzrbtM2fOHLvwhpWJXSRzB6IIe96Hnz63fu7yBvSeC3cNBKTripm2MdE2UyBK8M53Z3jswRAi/Kt35NAhEZw8eZKsrCzat29v22axWDhw4ACff/45BoOh1E2i1WrRarXVY201kpeXx8GDB9m/fz+PP/44ADExMXTq1MluP19fX6dGQqhXmI2w5Q1IXG/93OsD6DYRyhgNXH346t1TZVgkiSs3ipwrgqeeeorExES7bS+99BLNmzfn7bffrlNPyVtRpDdv3kyXLl1cUqj1Bl0qZCbC/z6B5COgUMGgxdD2uTJ3X3ssmX/+eKnUdqUgEBvsVUaJquFQn8DX17dUHExvb2+CgoJ46KGHqt24mkSlUhEfH8/q1asJCAige/fuvPPOO/zyyy92+7399tt2Mfg/++wzJ1lcRzn1FSx6CNaMtApAqYHn15UrgK9+usK076wP2q6NAwktyaPN9YuEluj4cOhD1V4LgIvNGNc2w4YNo3///hw8eJAjR46wc+dOFixYwPLlyxk7dixgzbZy6z1AcHCwc4yti+hSYdtkq/PbLUQzhJQdmXr5wcv8dYc1f8Erj8YxofgcGd9/aO1HKBREPDobHimdTKWqVFkEd2ZkqYt4eHjQq1cvevXqxfvvv88rr7zCzJkzbTd+cHBwvYjB7xRST9oLAKyfy3CCW7L/Igt2nQfgjSea8FZbfy71mAG3HClFkfQZM/F+9FHU1dxHc7O5+fvTsmVL9Hq9s82o+xTlwL6/lt5+lxOcJEl8+t8LNgG81bMp//doI7Lmf3RbALcQRYxXq3+Y1G2bQ9nZ2YwYMYKXX36ZNm3a4Ovry4kTJ1iwYAGDBg1ytnl1m5J8+HY43DgPGl8w6a01wF1OcJIk8ffvz7P4B2sn+M99mvGilMLlga9hTk8vfVyFAk2MCzaH6io+Pj507tyZTz75hEuXLmEymYiKimL8+PG88847zjav7mIsgn89Z20KeQbC2B3g4W9tAgU2thPAh//5lWUHkwCY0y2EHt99xrU9ewBQN2yIz1M9yP3m29t9gjmzq70pBE4IyJufn4+/vz86na5UtImSkhKSkpKIi4tzH/fhcqiTv4XZYBXApX2g9YMxWyGyXandJEli9rZzxB++gkISWeJ9mbgtXyPq9aBUEvTySwS/8QYKT09MGRkYryajiYl2WAD3utfuxG1rAplqxmKC9S9ZBaD2glHryxSAKEq8u/kM/zqWTBNdKh9d2YF30u+IgGfbtoTPmY3HHWli1eHhNfL0vxNZBDJVR7TAptfg/A5QauGP/4LoLqV2s4gSb2/8he1HL/HKb98z9PJBBFFE4eND6P9NJWDkSAQnrKOQRSBTNUTROhdwZoN1JvjZr6DxE3a7pOuKuZhVyNc/XSVv3w98cXoTocW5APj260vY9OmoQ0OdYLwVWQQylUeSYPd0+Plra0iUYcuhWV+7XdYdT+bv3x6k2Y2r9Ew5TufM3wBQR0YSPnMGPjf9tpyJLAKZyrPvAzj6T+v7QYuhlX1mzXRdMT8sXE58wnrbhJSIgOfoF4idOhmFV/X7AVUGebJMpnIc+DscXGh9//Tf4eHnS+2SeOp3Jt0hALAGUcnqNdhlBACyCGQqw5Gl1loArO7QncaX2uW31DxuzP2Au52klUhE6m/UvI0OIItAxjFOroZd06zvH58G3SeV2uXHc+kceOlN2l07W2pNgKRQENGyac3b6QCyCGQqhi4V9n4A227e9N0mwhPTSu327YELXJ4wkT8kn8SiUOI1dNjtVWMKBZE1NOtbFeSOscz9uTMwLkDMo9Zm0B0rwiyixEebThG7aDZdrl/ArFLTcNEnBPZ8CtOkNys961sbyDVBNXHgwAEGDhxIZGQkgiCwefNmZ5tUPehSbz7972jYJP8E+Wm2j3qDmUnLDtBs4bu0u34Bs9aDuOVfEtjzKcA66+vduZNLCgDqsQhqI1THnej1etq2bcvixYtr5Xy1xoU9pV2abwXGBTJ0Jbz8yW76rZxDy5yrWLx9eGD1Kny6lJ4xdlVcujkkSRLFJovD5TaevMbMrWcRJVAIMPuZVgzr4FioFE+10qFwkP369aNfv36Omura5CTdHgW6k5trAs6m6fh/i/cwZfdnRBVeRwpowAOrV9n5/tQFXFoExSYLLWfsrtIxRAne33KW97ecdajcuTl98NK49M9TsxReh2+GQtEN8IuEgky7wLh701T8ddk2Zv6whLDiXISwMBrHr0IbF+dsyx3Gjf/LMuViKLAuism5DAHR8PL3t5dFBjZm1Rkjq1ds56+HviSoJB9lVDRx8StRN6zZmKE1hUuLwFOt5NycPg6VydCV0PPjHxHvaMYqBPjv1McJ96+4X76nuu6Ej6lWzAZYN/p2dOjRm8AvwuoEZ9awZXcqp/ce4aPDy/AzFaFp2pSYlStQhYQ42/JK49IiEATB4SZJ4xAf5g1tzTvfncEiSSgFgQ+HPkTjEJ8asrIeIYpWl+jL+635AUath+AHWHc8menfJSJK0OrGZeYfWYGX2YBH69ZEL/sSZUCAsy2vEi4tgsoy8pFoHnswhCs3iogN9qqRWDXOIl1XTNINPXHB3tV7XZJknQk++53VJXrk19CwA+m6YqZ/l0hgUR5PpJxi1G/f4yGaUbbvQPSXX6D08a4+G5yEQyJYunQpS5cu5cqVKwC0atWKGTNmuOSoSIS/Z63e/IWFhVy8eNH2OSkpiYSEBAIDA4mOrp7F4Xc+kRUCzBvampHVFYfnfx/DsS+s7wf/Ex6wjvGvP3GNnklHmZywAcXNuYLLfuEEvreAB+uBAMDBeYJGjRoxf/58Tp48yYkTJ+jRoweDBg3i7FnHRl7qIydOnKBdu3a0a2ddUjh16lTatWvHjBkzquX4t57It/o6ogTTv0usnnmQU1/B3jnW933nQ5sRWESJBbt+46stR5mcsN4mAICYgkyiVcaqn9dFcKgmGDhwoN3nuXPnsnTpUo4cOUKrVq2q1bC6xhNPPFGjGTeTbujtOvtgFcJHO3/jo+Ft0Koq2ZH/7T/WlWEAj06BLq+TXWhg8toEjp5PZ+bP60s9KZWSREBuFhBbuXO6GJXuE1gsFtavX49er6dr167l7mcwGDAYDLbPcpKOypGhKylz++aENH5NL+DvI9rSupG/YwdNPgIbXrIOfz48Gp6aSUJKHm98c5KizOv87Xg8zbKvli5XQ/F/nIXDbhOJiYn4+Pig1Wp57bXX2LRpEy1btix3f1dO0lFXSM0rZs72cwA2/3ylIDCqczRB3hrOZxYweMkh/r77PAZzBWfYs36FNc+CuQQe7Is0cBHfHkvm2X/+hMfVSyw++BnNsq+i8PMjcOxYO0/Qmor/4ywcjjtkNBpJTk5Gp9OxYcMGli9fzo8//liuEMqqCaKiouS4Q/fh1m/RMCqaF1YncDolj9YN/fnHH9uRriuxjXrl6I3M2HKG7b9YI7Y9GObD30e0pU2jgPIPnpdizRRZkAaNOlHy/He8t+MyG05eo1taItN+/hdqkxFNbCyNli5BGxdXpfg/zqKicYeqHHyrZ8+eNGnShC+++KLKhskiuM2t32LrJRNL/5eCv6ea7RMfJUqZCzmXILCJXVDbnYnpvL/lDDcKjSgVAn96rDGTeza17yvoUq2ZIr9/D3KTILgZ14Zs4tUNlzmXpuO5C/sYc24nAN7dutHwk49R+jvYxHIhai34liiKdk96meqjyGhm62mry/KikQ8TdWXD7VDnggIGfmrL7duvdQSdGwcxc+tZtp1OY8n+S+w5l8nfh7ehbaQ3nFoNO/9yO0q0RwCHuy7j9eVnKS4s4r3EDXS/chKABqNHEzbtbQRVvZxGKoVDVzl9+nT69etHdHQ0BQUFrFmzhv3797N7d9Wc3GRKYzBZyCsyATCxxwM8GWGCRXfE+pdE2DoRDn8OSGAxEmgx8Q+LiYW+BswmAyqdCc3KsvsIYkk+/7fhNIpiNZ///DVRmUmgUhH+3ns0eG5kLV2la+CQCLKysnjxxRdJT0/H39+fNm3asHv3bnr16lVT9rklFlEiLa8EUYL20Q14q+eDcPVg6Vj/YI38fBeam69Sq9zvQIFI57yzjD51CG9dNgp/fxp9+ineXTpX12XUGRwSwYoVK2rKDpmbSJLEtdwijBYLSoXAO0+3QKkQrOHO70ZQwJAvwS/CmgZJqb759+Z7hZofLuaxZMcx1lqmoBRud//ykj0Zf2IXCqMRTePGRC1dgiYmphav1HVwj0ZfHSK70Iiu2ISAQJC3hgbeGmuY882v2+94K9Z/mxH3PN6THRoSERnF9M/PMtu4CkuBgoJ0D/LO+6DAiPcf/kDDjxei9PWtuYtycWQRuBB6g5n0m5NiIb5a8ooVcP13+HYoGPKtC9wHfgoF6Xax/u9HTpGRvEteXE4Is3N/KBn0LM3nvu82HeDyqLdrjGuTpUuX0qZNG/z8/PDz86Nr167s3LnToWOYLCLJOUVISPh7qgnwUlvDnW95A0ryoFEna9bH4Acg7g8VFgBAjKXQzgEOrOEQQ8e95PYCgPosAl0qJB2w/q1hqupYKEkSKTlFmCwiWpWSRg28ECxG0GdZBRDZDkZvAG3l1kT4XDhrJwAABbf8f2Rc+zEgSWAqcrxcwprbY+KCAvotKDNW5j1Re5WZab0squpYmJlvoNBgRiEIxAR5oRSNmHKvWuP+BzWFkSusKY8qgeHCBTLnzS/9RT3z/6kKri0CUxF8GFm1Y0gi/Of/WV+O8E4aaBz3l6+oY+Et8otNZBVY+wGNGnjiIVgg+yJIZusIzzOLwSvQYTsAik6dIuW11xHz81GGhmC5kV3j+b/qIq4tgjpEYmIiXbt2paSkBB8fn/s6FgIYzRZScq01XZCPlgCtADcugMUICg14h4J35QRQsO8HUqdMQTIY8GzXjqilSxBLSuqc/09t4NoiUHtZn8iOkJ8GizvZTywJSphw1Bo6xJFzO0CzZs1ISEiwORaOGTPm3o6FJgtXsouwiBJeGhURPiprDWAxWMf5/aKgoHL9mbyN35E+YwZYLPg8/jgNF32CwtMTJcg3fxm4tggEwfEmSXBT6zDitrfs4uQQXLORkDUajS3zfYcOHTh+/DiffvppmY6FOXoD13JvrwgL8BBQ5FyyujUr1BD0AJgd92uUJInsZcu5/vHHAPgPGULEnNkIanUlr8o9cG0RVJb2L0KTp0rlzq1NynMsNJpFOwEoEfEquAqCwbrAPegBUGmtgnAASRTJ+ugjclZ/BUDQ+FcImTrVoSh67kr9FAFYb/xauvkdcSzUG8y29wokYoUMvAQDoqBEEfQAqB13IZeMRtLeeZf87dsBCJ32NkFjx1b6etyN+iuCWqSijoWiJHG90Fo7aDARI2ThKRgxSwqkwCYo1I5HxxD1eq5Nmoz+0CFQqYic9yH+dw3ZytwbWQTVQEUdCzN0JZSYLAQLBURwA0G4ORXiEYinh+PDseacHFL+9BoliYkIXl40+vRTfP7wqMPHcXdkEdQS+cUmbhQaUGMmQrhh83IWBPA03ABzGKg09z2OKSMD45WrCFot6dOnY7xyBWVAAFFffoFnmzY1exH1FFkEtYDJLHLt5nxAjFqHUNY6F4vhviLI27CB9BkzrRNeN1FFRhC9fAXaxnUvGrSrUH99h1wESZJIzi3CLEqEqorwspQTckapvedxTBkZpQQA0OjTT2UBVBFZBDVMVoEBvcGMr1BCmHjTYU1716Jv/6j71gLGK1dLCQBALKqdTDz1Gbk5VIMUGsxk5ZegxUSMIgtBksAjABrEWt2kLQZrDXAfAUiSROHBg6W/kJ3gqgVZBDWE2SKSklOEEguNlZkoJIs13HlAjLU3rNJUqCMsmUxkzJ1L3voN1g23hpRkJ7hqQxZBDWBdJ1yMxWKhiSILtWSy+gMFxt2O5FaR44gi6bPnYNi+HRQKwt59B9+nnpKd4KoZWQQ1QLbeSH6JiWjhOp6U3Ex018TqGl1BRJMJy40bFJ88idLTk4YLF+Lb40lAdoKrbmQRVDPFRus64TAhlwBBDwjWGsABdwixpARTyjUksxlFgwbEfPYZnq0fqjmj3RxZBNWIRZRIzikmgALChDzrxoAo0FY8koOloABTSgqS2QwqFQ0//hjPWPcMhVJbODREOm/ePB555BF8fX0JDQ1l8ODBnD9fOviTO3LgwAH6PN2fx9o2JbpRFJt3/QA+Ydbkd1j7CTNmzCAiIgJPT0969uzJhQsX7I5hzsnBeDUZSRRReHmhCg5GEx7mjMtxKxwSwY8//siECRM4cuQIe/bswWQy0bt3b/R6fU3ZV2ky9BkcSz9Ghj6jds6XnUfTB5uzeO7b1g1qH/CNsH2/YMECPvvsM/75z39y9OhRvL296dOnDyUlJUiShCkzE1NaGiChDAhAHRmJ4EAnWqbyONQc2rVrl93n+Ph4QkNDOXnyJI899liZZaqSpEOSJIrNjk8Gbb20lXlH5yEiokDB9M7TeabJMw4dw1PlWWFffIPJQptOjzKoUxxa4aartHewbaG+JEksWrSI9957j0GDBgHw1VdfERYWxqbvvmPYH/6ARacDQBUSgio0FFEOclxrVKlPoLv5jwsMLH8d7Lx585g9e3aljl9sLqbzmqrFxhQRmXt0LnOPznWo3NHnj+JVgSWWoiSRkqMnigy0ghlJeXPs/46neFJSEhkZGfTs2dO2zdfLi04dO3Lo++8Z3KYNCALqyEhUDRo4ZKdM1al0fSuKIm+99Rbdu3fnoYfKH7mYPn06Op3O9kpJSansKV0Oo1kkJbuIYHMG3oIBSVAiBDYptV9GhrVJFhZmbd+bc3IwnD9PiLe39TtBQBMdIwvASVS6JpgwYQJnzpzhf//73z3302q1aLX3dg4rD0+VJ0efP+pQmcyiTAZvHozIbT8bhaBg86DNhHlVvJPpqbr3ApccvYHM3ALChRwCBD0SAkIFhkJFk+lm2/8OJAnBo3K/kUzVqZQI3nzzTbZv386BAwdo1KhRddtkQxCECjVJ7iTOP46Z3WYy+6fZiJKIQlAws+tM4vyrz9PSaBYpysuiuXDDFp8rV/LGR+lNWY4Q4TcntzIzMwm5Y9F7VnY2bZo3B0AyGEFeEO8UHBKBJElMnDiRTZs2sX//fuLiXNOFd2jToXSL7EZKQQpRvlGEe1fvDKvJWEJDbtgFqGtAIUVGA5oyapC4uDjCw8PZs307zYYMASC/sJDjiYmMH2lNiCFo7+9HJFMzOCSCCRMmsGbNGrZs2YKvr6+trevv74+nZ+1lj68I4d7h1X7z38JkKC4VoVFfVMRvKSdReVjjhd6d0X7Sq6/y4YIFxPr707hxY2YtXEhESAgDe/RAHRmJQq4FnIfkAECZr1WrVlX4GDqdTgIknU5X6rvi4mLp3LlzUnFxsSNm1SoGk1nKvJYkSamn7F771n9Z5m8zZswYyZiZJel/+UWa9qc/SWEhIZJWq5We6tFDOnfqZ8liNJZ5nrrwW7g697rX7sTh5pA7I0kS6TkFNMI6NCxhzYgkAU/2G4IkjS+1vzkjA3NWJoIgMGfWbD5culSOBeRiyL5DDpCtN+JvykIpiIgqLxSBcWAxIJSxMEYSRUxpaVjy8gCr56cqONgJVsvcD1kEFcRgslCoyyFW0CMBigZR5S6MkUQRU0oKloICQEDdUJ4Ec2VkEVQASZJIzdXTkBvWDd4h5QbslcxmjMnJiEVF1kmwqCiU90gkLeN8ZBFUgBuFBnxM2Va3CIUa4Q7HuDsRTSZMV64iGkoQFErUMdEovR0PqiVTu8giuA8lJgu5+QU8QB4Agn8jUChL7ScaDBivXEEymRBUKjSxsSg8HI8rKlP7yCK4B+LNXGKR3EAhgKT1QygjbZJYXIzx6lUksxlBo7EKQCNPftUVZBHcg+sFBjzMOnyEEiQU1lrgjuFN0WRC1OkwZWWBKKLw8EATEyPnA6hjyCIoh2Kjmez8Ih4UsgEQ/MKteQNuYs7JsXOEEzQaNHFxCMrSTSUZ10ZeulQGoiSRkltMuJCDShCRVB7WEaFb35fhCSoZjUhlRIiTcX1kEZRBVn4JSpOeQKEAAME/ypoKlpuzwFll5/+VDMZas1Gm+pBFcBd6g5kbBQYaCjfnBLyCbEm0b7lBWHJz7cp8uW4dnYYOpUFkRJkZ7UtKSpgwYQJBQUH4+PgwbNgwMjMza+2aZO5NvRWBKSMD/ZGjmDIqvtBeFK2R44IEHR6CyZpDzNea8VISRUypqZizrX0Epd/tUaKGYWF8+MEH5Wa0nzJlCtu2bWP9+vX8+OOPpKWlMXTo0Gq8Wpmq4NIdY0mSkIodX2ift3kzmX+da0tcHfbeuwQMHnzfcum6EsRCPSGKdCQPDYJfJChVSBYLxpQUxMJC61rghg1RBQQgmsKRDEaG/qmZnSv0nRntGzVqxIoVK1izZg09evQAYNWqVbRo0YIjR47QpUsXh69PpnpxbREUF3O+fYeqHUQUyZzzAZlzPqhwkQtAsz3/RvAMtLpBXL2KWFwMggJNdBRKX2swLYVaXWo12N0Z7U+ePInJZLJbZN+8eXOio6P56aefZBG4AC4tAqfi1wjRZLJOghkMCEol6pgYlF5l+wyVl9E+ISEBjUZDQECA3f5hYWG2RUkyzsWlRSB4etLs1EmHypgyM7ncf4B9QguFgsY7tqMOK73Q3mgWSdeVoC8x0FSRhhoz+IQiaTwwJSXddINQo4mNuacbRHkZ7WVcH9cWgSAglPPkLQ9tXBwRc2bfTm10M46/toz10Dl6A9fyjSCoiPDSoRVUoPRC9AnDdOUKksWCoNWiiYm5rxtEeRntR44cidFoJC8vz642yMzMtC3Al3EuLi2CyhIwfDjejz56zzj+RrNI6s3M8p4YCcYaGc+oDMJyNdnqBuHpaXWDUDn+M93KaN+hQwfUajV79+5l2LBhAJw/f57k5GS6du1ahauUqS7qpQjAupLrXnH8jWYLEqDGTJSQhSBAvsETdU42IKHw8UETFVUhN4h7ZbT39/dn3LhxTJ06lcDAQPz8/Jg4cSJdu3aVO8UuQr0Vwf3QGy0ECgVEijeQLAImkwJ1iTWOqNLfH3XDhhUOiHu/jPaffPIJCoWCYcOGYTAY6NOnD0uWLKmxa5NxDEGq5dXz+fn5+Pv7o9Pp8LtrxVVJSQlJSUnExcXhUYO++MVGM1ev63jAcA1Tkf2TXtWgAarISKcvhq+t36I+c6977U7q7YxxedxKpOFr0ZcSAIAywNvpApCpXRwWwYEDBxg4cCCRN5+WmzdvrgGzao60vGIks4EQKa/M76Wyss3L1GscFoFer6dt27YsXry4JuypUXL1RgqLiogT0pFKyt5H8JTXBLsbDneM+/XrR79+/WrClhqlxGQhM6+QODKgUEI0KbgdOsuKHA7RPanx0aHKZKqp7r66KEqk5hQSI6UjFEqIZoU1HEpMDIJWi2QwImg1LiUAd4/2V5vUeMd43rx5+Pv7215RUVHl7qu8OSZvNFbv4pRMnZ4I0zUUhSKiWUBQKNDExqL08UGhVqP08XYpAQAUFRUBoHYxu+ojNV4TTJ8+nalTp9o+5+fnlysElUqFl5cX169fR61Wo6iGxHWFxUY0uhTMegtGCwgKAXVEBCalElNJOR0DJyJJEkVFRWRlZREQEGB7MMjUHDUuAkcy1QiCQEREBElJSVy9erXK5zZbRCz5WShLLEiSAIKAKjgYoQ54bwYEBMi+RbWEy80YazQamjZtWuUmkclo5PySV/E7lIapUIXC34fIeR+V6UjnaqjVarkGqEUcFkFhYSEXL160fb47GUV1oFAoqjZLKlpI+vhZGmz6FWOBClWgP7Efr0Db2PUFIFP7OCyCEydO8OSTT9o+32rvjxkzhvj4+GozrNKIImmfv4h6468Y9SrEQH+arFuP5h4dchn3xmERPPHEE647fCdJ5K94Df2q45iLVZQ08OehDd+hjox0tmUyLozL9QkqhS4Vsi9SsvdrMhYfwFKipMDfj5YbN6OOlDuXMvem7ovg1FeY1k2hMFVN1i9+iEYluf6+BK/+Nz6yAGQqQN0WgS6VvEXTSD8WgtUFAlReZnJmzadb8xjn2iZTZ6jTrtSm8ydIP+bHLQEAmIuV9A4qcJ5RMnWOOi2CzA0buFMAAEgCWVlyYFyZilNnRaBbOoOCrcdLbRcFgWshzZ1gkUxdpU6KIPeTd0j79N+AQGGgB5abK8EsgsA/Hh5BTPNYp9onU7eocx3jG/P+wvXV2wCBnCb+vNb+PTwKdIQX3CDTN4T/G/UoEf6ezjZTpg5RZ0QgSRLXZ0whe/1uAHKa+zGt0xw2j++Gl0bJlRtFxAZ7yQKQcZg6IQJJFMn48wTyduwHIK+1L3O7zmP9uG6E+1t9jOSbX6ayuLwIJJOJtMmvkb/vMCCR38GXT7sv4F9ju+PvJS84kak6Li0C0WAg9fVxFB4+CYKEvpM38Y9/zKrR3fDUyK7GMtWDy4rAUqjn2vixFP18BkEpUdzVk009P+cfIzqjUtbJQS0ZF8UlRWDOzSXl5TGU/HoBhUrE+KiW/f2X8dcBHeTAWDLVjsuJwJSZxdWxL2JKuopSY8HymJqEofFM6dHe2abJ1FNcRgSmjAyKTpwg829/w5KZhcrTAo8rufzcGl7o0tbZ5snUY1xCBHkbNpD+/gy4uVhHqbGg6gFpo/9N/3atnWydTH3H6SIwZWSQ9v4MhDtWq1lMCoyD/kl3WQAytYDTh1kyT/xkJwAAJIGA/NyyC8jIVDNOF0GeVMid8UABECR0UpFT7JFxP5wugpB23Qh7RAfCTSEIEqEd8wluJ6cykqkdnN4nCGvUhGOD36Z1+AeIhQoUPiKJXd6nU6MmzjZNxk2oVE2wePFiYmNj8fDwoHPnzhw7dqxKRnQa9hb5k49xZXQ8+ZOP0WnYW1U6noyMIzgsgnXr1jF16lRmzpzJqVOnaNu2LX369CErK6tKhkgNvNE3DkFq4HiSjAx9BsfSj5GhdzzGaF0rW9fsdWbZiuJw4r7OnTvzyCOP8PnnnwPWfL1RUVFMnDiRadOm3bd8WcnUNv6+kTk/zUFERIGC6Z2n80yTZypkz9ZLW5l3dJ5blK1r9lZrWUHBzK4zGdp0aIXKQsUT9zkkAqPRiJeXFxs2bGDw4MG27WPGjCEvL48tW7aUKlNWko6oqCibYRn6DPps6IOIvDhe5t4oBAW7h+0m3Lti8aRqJHvljRs3sFgshIWF2W0PCwsjo5xw5/dL0pGcnywLQKZCiJJISkFKtR/X6Uk6ov2iUQgKROm2EBSCgs2DNhPmZS+2u8ksymTw5sF2IqqvZeuavTVVNsq3+gMrO1QTBAcHo1QqyczMtNuemZlZbkIJrVaLn5+f3etOwr3Dmdl1JgrBasqttl+cfxxeaq97vuL845jZzT3K1jV7a6psRZtCDiE5SKdOnaQ333zT9tlisUgNGzaU5s2bV6HyOp1OAiSdTme3Pb0wXTqWfkxKL0x31CS3KlvX7HVm2fLutbtxWARr166VtFqtFB8fL507d0569dVXpYCAACkjI6NaDZORqSoVvdcc7hOMHDmS69evM2PGDDIyMnj44YfZtWtXqc6yjExdweF5gqqi0+kICAggJSXlnsNWMjJV5dYgTF5eHv7+/uXuV+u+QwUF1ojR98pnLCNTnWRnZ99TBLVeE4iiSFpaGr6+vtW2aP6W4itTu9S1snXNXmeW1el0REdHk5ubS0BAQLn71XpNoFAoaNSoUY0cu6wh2Ppatq7Z68yy90sK7/T1BDIyzkYWgYzbUy9EoNVqmTlzJlqttt6XrWv21oWytd4xlpFxNepFTSAjUxVkEci4PbIIZNweWQQybo8sgjpEamoqo0ePJigoCE9PT1q3bs2JEyecbVadx+lxh2QqRm5uLt27d+fJJ59k586dhISEcOHCBRo0aOBs0+o88hBpHWHatGkcOnSIgwcPOtuUeofcHKojbN26lY4dOzJixAhCQ0Np164dy5Ytc7ZZ9QJZBHWEy5cvs3TpUpo2bcru3bt5/fXXmTRpEqtXr3a2aXUeuTlUR9BoNHTs2JHDhw/btk2aNInjx4/z008/OdGyuo9cE9QRIiIiaNmypd22Fi1akJyc7CSL6g+yCOoI3bt35/z583bbfv/9d2JiYpxkUf1BFkEdYcqUKRw5coQPP/yQixcvsmbNGr788ksmTJjgbNPqPHKfoA6xfft2pk+fzoULF4iLi2Pq1KmMHz/e2WbVeWQRyLg9cnNIxu2RRSDj9sgikHF7ZBHIuD2yCGTcHlkEMm6PLAIZt0cWgYzbI4tAxu2RRVBDjB071i7NrYzrIovAyZhMJmeb4PbIIqgiGzZsoHXr1nh6ehIUFETPnj3585//zOrVq9myZQuCICAIAvv37+fKlSsIgsC6det4/PHH8fDw4NtvvwVg+fLltGjRAg8PD5o3b86SJUvszvP222/z4IMP4uXlRePGjXn//fftBDRr1iwefvhhVq5cSXR0ND4+PrzxxhtYLBYWLFhAeHg4oaGhzJ0711ZGkiRmzZpFdHQ0Wq2WyMhIJk2aVDs/nCtRU0nT3IG0tDRJpVJJH3/8sZSUlCT98ssv0uLFi6WCggLp2Weflfr27Sulp6dL6enpksFgkJKSkiRAio2NlTZu3ChdvnxZSktLk7755hspIiLCtm3jxo1SYGCgFB8fbzvXBx98IB06dEhKSkqStm7dKoWFhUkfffSR7fuZM2dKPj4+0vDhw6WzZ89KW7dulTQajdSnTx9p4sSJ0m+//SatXLlSAqQjR45IkiRJ69evl/z8/KT//Oc/0tWrV6WjR49KX375Za3/js5GFkEVOHnypARIV65cKfXdmDFjpEGDBtltuyWCRYsW2W1v0qSJtGbNGrttH3zwgdS1a9dyz/23v/1N6tChg+3zzJkzJS8vLyk/P9+2rU+fPlJsbKxksVhs25o1a2ZLt7tw4ULpwQcflIxG4/0vth4jxx2qAm3btuWpp56idevW9OnTh969ezN8+PD7xgLq2LGj7b1er+fSpUuMGzfObm2A2Wy2y7O1bt06PvvsMy5dukRhYSFms7lU5pbY2Fh8fX1tn8PCwlAqlXaZWsLCwsjKygJgxIgRLFq0iMaNG9O3b1+efvppBg4ciErlXreF3CeoAkqlkj179rBz505atmzJP/7xD5o1a0ZSUtI9y3l7e9veFxYWArBs2TISEhJsrzNnznDkyBEAfvrpJ0aNGsXTTz/N9u3b+fnnn3n33XcxGo12x1Wr1XafBUEoc5soioA1eeL58+dZsmQJnp6evPHGGzz22GNu11l3L8nXAIIg0L17d7p3786MGTOIiYlh06ZNaDQaLBbLfcuHhYURGRnJ5cuXGTVqVJn7HD58mJiYGN59913btqtXr1aL/Z6engwcOJCBAwcyYcIEmjdvTmJiIu3bt6+W49cFZBFUgaNHj7J371569+5NaGgoR48e5fr167Ro0YKSkhJ2797N+fPnCQoKumcK0dmzZzNp0iT8/f3p27cvBoOBEydOkJuby9SpU2natCnJycmsXbuWRx55hB07drBp06Yq2x8fH4/FYqFz5854eXnxzTff4Onp6XaL9+XmUBXw8/PjwIEDPP300zz44IO89957LFy4kH79+jF+/HiaNWtGx44dCQkJ4dChQ+Ue55VXXmH58uWsWrWK1q1b8/jjjxMfH09cXBwAzzzzDFOmTOHNN9/k4Ycf5vDhw7z//vtVtj8gIIBly5bRvXt32rRpw3//+1+2bdtGUFBQlY9dl5DXGMu4PXJNIOP2yCKQcXtkEci4PbIIZNweWQQybo8sAhm3RxaBjNsji0DG7ZFFIOP2yCKQcXtkEci4Pf8flHUN0g+mqQAAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "ax = df_res.plot(figsize=(2,2), grid=False, style=\".-\")\n",
+ "plt.title('Driver RAM [Gb]'.format(dbms), fontsize=10)\n",
+ "plt.suptitle('')\n",
+ "ax.set_xlabel(\"streams\")\n",
+ "ax.set_xticks(range(1,11))\n",
+ "plt.legend(title='SF')\n",
+ "df_res"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Results in folder .//1686234009\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "found 55 connections\n",
+ "Results in folder .//1686236492\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "found 55 connections\n",
+ "Results in folder .//1686228050\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "found 55 connections\n",
+ "Results in folder .//1686238015\n",
+ "Read results\n",
+ "Load Evaluation\n",
+ "found 55 connections\n",
+ " 1 3 10 30\n",
+ "DBMS \n",
+ "1 6.357339 7.368385 0.0 13.309727\n",
+ "2 12.480364 14.698020 0.0 15.027941\n",
+ "3 21.294983 16.856276 0.0 27.752162\n",
+ "4 28.945682 21.739376 0.0 42.074733\n",
+ "5 35.623551 25.390574 0.0 56.977909\n",
+ "6 41.721285 26.741739 0.0 62.487400\n",
+ "7 17.090795 49.581324 0.0 81.235520\n",
+ "8 48.048381 67.042332 0.0 98.604956\n",
+ "9 61.486374 75.274546 0.0 110.060736\n",
+ "10 61.253136 84.710041 0.0 123.735284\n"
+ ]
+ }
+ ],
+ "source": [
+ "df_res = pd.DataFrame()\n",
+ "for code in codes:\n",
+ " evaluate.load_experiment(code)\n",
+ " df = evaluate.get_benchmarker_metrics('total_cpu_util_s').T.max() - evaluate.get_benchmarker_metrics('total_cpu_util_s').T.min()\n",
+ " df = pd.DataFrame(df)\n",
+ " df = df.reindex(index=natural_sort(df.index))\n",
+ " path=resultfolder\n",
+ " with open(path+str(code)+\"/connections.config\",'r') as inf:\n",
+ " connections = ast.literal_eval(inf.read())\n",
+ " print(\"found\", len(connections), \"connections\")\n",
+ " connections_sorted = sorted(connections, key=lambda c: c['name'])\n",
+ " SF = connections_sorted[0]['parameter']['connection_parameter']['loading_parameters']['SF']\n",
+ " #print(df)\n",
+ " df.index = df.index.map(lambda x: x[len('PostgreSQL-AWS-4-'):])\n",
+ " df_res[SF] = df.copy()\n",
+ " #df.T.max().plot.bar()\n",
+ "\n",
+ "print(df_res)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 3 \n",
+ " 10 \n",
+ " 30 \n",
+ " \n",
+ " \n",
+ " DBMS \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 6.357339 \n",
+ " 7.368385 \n",
+ " 0.0 \n",
+ " 13.309727 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 12.480364 \n",
+ " 14.698020 \n",
+ " 0.0 \n",
+ " 15.027941 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 21.294983 \n",
+ " 16.856276 \n",
+ " 0.0 \n",
+ " 27.752162 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 28.945682 \n",
+ " 21.739376 \n",
+ " 0.0 \n",
+ " 42.074733 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 35.623551 \n",
+ " 25.390574 \n",
+ " 0.0 \n",
+ " 56.977909 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 41.721285 \n",
+ " 26.741739 \n",
+ " 0.0 \n",
+ " 62.487400 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 17.090795 \n",
+ " 49.581324 \n",
+ " 0.0 \n",
+ " 81.235520 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 48.048381 \n",
+ " 67.042332 \n",
+ " 0.0 \n",
+ " 98.604956 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 61.486374 \n",
+ " 75.274546 \n",
+ " 0.0 \n",
+ " 110.060736 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 61.253136 \n",
+ " 84.710041 \n",
+ " 0.0 \n",
+ " 123.735284 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 1 3 10 30\n",
+ "DBMS \n",
+ "1 6.357339 7.368385 0.0 13.309727\n",
+ "2 12.480364 14.698020 0.0 15.027941\n",
+ "3 21.294983 16.856276 0.0 27.752162\n",
+ "4 28.945682 21.739376 0.0 42.074733\n",
+ "5 35.623551 25.390574 0.0 56.977909\n",
+ "6 41.721285 26.741739 0.0 62.487400\n",
+ "7 17.090795 49.581324 0.0 81.235520\n",
+ "8 48.048381 67.042332 0.0 98.604956\n",
+ "9 61.486374 75.274546 0.0 110.060736\n",
+ "10 61.253136 84.710041 0.0 123.735284"
+ ]
+ },
+ "execution_count": 43,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAANQAAADsCAYAAAAM94jYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABBrElEQVR4nO2dd3hU1fa/3zOTSU8mhIQUQgoCAZGigAGCWAhdhAsiau4VvyD+rlJEvIqoEAQRBQuiiAoIqKAICCJVRCkiIB0EpAYCqbRMeqac/ftjkpEhIcwkk0zKeZ/nPOSUffaa4Xxm77P3XmtJQgiBgoKCQ1A52wAFhdqEIigFBQeiCEpBwYEoglJQcCCKoBQUHIgiKAUFB6IISkHBgSiCUlBwIIqgFBQciCKocrB161YkSSIzM9PZpjiFyMhIJEmq1t+Bs2ysk4J6+umnLV+2RqMhKCiI7t278+WXXyLL8m3Ld+7cmdTUVLRabRVYWxK9Xs+MGTNo06YNnp6eBAQEEBsby8KFCzEYDID1Z3R1daVJkyZMmTIFo9EIwKJFi/Dz8yv1/pIksXr16jJtmDJlSonvQAjBF198QUxMDN7e3vj5+dG+fXtmzZpFXl4eAJMnT7bY5eLiQmRkJC+++CI5OTlA2T9WkZGRzJo1y6bvaO/evaxcudKmax2JS5XXWE3o1asXCxcuxGQykZ6ezsaNG3nhhRdYsWIFa9aswcWl9K/GYDDg6upKcHBwpdqn1+txdXUt9XjPnj05fPgwU6dOJTY2Fl9fX3bv3s17773H3XffTdu2bYF/PmNhYSHr169n5MiRaDQaJkyYUGH7fHx8SnwH//nPf/jhhx944403+OSTTwgMDOTw4cPMmjWLyMhIBgwYAEDLli355ZdfMBqN7Ny5k2HDhpGXl8fnn39eYbuKCQwMxN/f32H3sxlRBxk6dKjo379/ieNbtmwRgJg3b57lGCA+/fRT0a9fP+Hp6SkSEhLEb7/9JgBx/fp1odPphLu7u1i/fr3VvX744Qfh7e0tcnNzhRBCJCUlicGDBwutVivq1asnHnnkEZGYmFjCprfeekuEhISIyMjIUm1/9913hUqlEgcOHChxTq/Xi5ycnFt+xu7du4uOHTsKIYRYuHCh0Gq1pdYBiFWrVpV6TgghIiIixIcffmh1bNmyZQIQq1evLnG9LMsiMzNTCCFEQkKCaNOmjdX5ESNGiODgYCGEsPpuy6q3sLBQjBw5UgQHBws3NzcRHh4u3n77bavry7pXZVEnu3y34qGHHqJNmzb88MMPVscnT57Mv/71L44ePcqwYcOszvn6+vLwww+zdOlSq+NLlixhwIABeHp6YjAY6NmzJz4+PuzYsYOdO3fi7e1Nr1690Ov1ljJbtmzh5MmTbN68mbVr15Zq45IlS4iLi+Puu+8ucU6j0eDl5XXLz+fh4WFVnyNZsmQJ0dHR9O/fv8Q5SZLK7B6Xx67Zs2ezZs0avv/+e06ePMmSJUuIjIy012yHU2e7fLeiefPmHDlyxOrYk08+yf/93/9Z9s+dO2d1Pj4+nv/85z/k5eXh6elJVlYW69atY9WqVQAsW7YMWZaZP38+kiQBsHDhQvz8/Ni6dSs9evQAwMvLi/nz55fa1Svm9OnTPPDAA3Z9JiEEW7ZsYdOmTYwePdqusrZy+vRpoqOj7S63f/9+li5dykMPPWRXuaSkJJo2bUqXLl2QJImIiAi7664MFEHdhBDC8tAX0759+zLL9OnTB41Gw5o1a3j88cdZuXIlvr6+xMXFAXD48GHOnDmDj4+PVbmCggLOnj1r2W/VqlWZYiq2z1bWrl2Lt7c3BoMBWZZ58sknmTx5ss3l7cEeu44ePYq3tzcmkwm9Xk/fvn355JNP7Krv6aefpnv37kRHR9OrVy8efvhhyw+TM1EEdRMnTpwgKirK6lhZ3SgAV1dXHn30UZYuXcrjjz/O0qVLGTJkiGVgIycnh3bt2rFkyZISZQMDA22uB6BZs2b8/ffftnwUHnzwQebOnYurqyuhoaFWAy2+vr7k5uYiyzIq1T89/+LRNXtHMO2xKzo62jLwExoaavUj4uvrC4BOpysxCpmZmWmx65577iExMZENGzbwyy+/8NhjjxEXF8eKFSvsstvRKO9QN/Drr79y9OhRBg0aZHfZ+Ph4Nm7cyLFjx/j111+Jj4+3nLvnnns4ffo0DRo0oEmTJlabvQ/uk08+yS+//MLBgwdLnDMYDOTm5lr2vby8aNKkCeHh4SVGLaOjozEajRw6dMjq+IEDBwCzQOy169SpU/z4448lzgkh0Ol0lv3iYfzIyMgSLXLTpk1RqVTs37/f6vi5c+fQ6XRWdvn6+jJkyBDmzZvHsmXLWLlyJdeuXbPLbkdTZwVVWFhIWloaycnJHDhwgLfffpv+/fvz8MMP89RTT9l9v65duxIcHEx8fDxRUVHExMRYzsXHxxMQEED//v3ZsWMHiYmJbN26lTFjxnDp0iW76hk7diyxsbF069aNOXPmcPjwYc6dO8f3339Px44dOX36tE33admyJT169GDYsGFs2bKFxMRENm7cyPPPP8+QIUNo2LChXXY99thjDBkyhCeeeIK3336bffv2ceHCBdauXUtcXBy//fabTffx8fHhmWee4aWXXmLNmjUkJiayfft24uPj6dixI507dwbggw8+4Ntvv+Xvv//m1KlTLF++nODg4FvOrVUZVTaeWI0YOnSoAAQgXFxcRGBgoIiLixNffvmlMJlMVtdSyhDyrYZjX3nlFQGISZMmlagzNTVVPPXUUyIgIEC4ubmJxo0bixEjRgidTmexqbSh/NIoKCgQ06dPF61atRLu7u7C399fxMbGikWLFgmDwWDz/a5fvy7GjBkj7rjjDuHh4SGaNm0qXnnlFZGdnV1mudKGzYUQwmQyiblz54oOHToIT09P4evrK9q1ayc++ugjkZeXJ4Qofdj8ZvLz80VCQoJo3ry58PDwEFFRUeLZZ58Vly9ftlzzxRdfiLZt2wovLy/h6+srunXrVmIqwRnD5pIQSpAWBfuIjIxk7NixjB071tmmlMnWrVt58MEHuX79epW1XIqgFOwmMjKS1NRUNBoNycnJTluCVRYtW7bk3LlzFBQUKIJSqN5cuHDBsmawcePGVqOE1QVn2agISkHBgVS/nxYFhRqMIigFBQeiCEpBwYHUyKVHsiyTkpKCj49PiXV3CgqORAhBdnY2oaGhNg1s1EhBpaSk0KhRI2eboVCHuHjxImFhYbe9rkYKqnjV9sWLFy2LKRUUKoOsrCwaNWpUwlPgVtRIQRV383x9fRVBKVQJtr5aKIMSCgoORBGUQp3HkJZG7u49GNLSKnwvRVAKdZrMFSs48+BDJD39NGce6kZmBR0Ua+Q7lC0IITAajZhMJmeb4jTUajUuLi7K1MItMKSlkTpxEhSvvpNlUicl4NWlC5pyhomrlYLS6/WkpqZagivWZTw9PQkJCbltrIq6SNb69f+IqRhZRn8hSRFUMbIsk5iYiFqttsQrqIu/0EII9Ho9ly9fJjEx0eJarmAm5/edZMz6qOQJlQrXiPBy37fWCUqv1yPLMo0aNcLT09PZ5jgVDw8PNBoNFy5cQK/X4+7u7myTqgU5O3ZwaeQo0Otxi46m8PRpkGVQqQiZ8ma5WyeohYIqRvk1NqN8D9bkbNvGpVGjEQYD3t26EfbhBxivXUN/IQnXiPAKiQlqsaAUFG4m+7ffSB7zAsJgwKd7HA3ffx/J1RVNcHCFhVSM8vOlUCfI3rKFS8Vi6tmThh98gFQJAzWKoBRqPVmbN3PphbFgMODTuxcN35uJpNFUSl2KoCrI5cuXee655wgPD8fNzY3g4GB69uzJzp07AevEX8WbLauWFRxD1qafSX5xHBiN+PbtS8OZlScmUN6hKsygQYPQ6/UsXryYxo0bk56ezpYtW7h69arlmilTpjBixAjLvlqtdoapdY6sDRtI/t/LYDLh268fodPfRrpF3i9HoQiqAmRmZrJjxw62bt3K/fffD0BERAT33nuv1XWlJSdTqFx069aR8sp4MJnQ9u9PyNvTkKrgh0zp8lUAb29vvL29Wb16NYWFhc42R6EI3U8/kfLyK2YxDRxYZWICRVAVwsXFhUWLFrF48WL8/PyIjY3ltddeK5Ffavz48RbxeXt7M3v2bCdZXPvR/fgjKeNfBVnGb/CjhLw1tcrEBIqgKsygQYNISUlhzZo19OrVi61bt3LPPfewaNEiyzUvv/wyhw4dsmzlSUagcGuK3S+uLlxEyqsTzGIaMoTgN99EquKJbeUdygG4u7vTvXt3unfvzsSJE3nmmWdISEjg6aefBiAgIIAmTZo418haSuaKFaROSjAvHSrC74nHCZ44scrFBEoLVSnceeedVnmaFCoHQ1paCTEhSdR/9lmniAmUFqpCXL16lcGDBzNs2DBat26Nj48P+/btY8aMGaUmb1ZwLIVnz1qLCUAIDEkXcQ0JcYpNiqAqgLe3NzExMXz44YecPXsWg8FAo0aNGDFiBK+99pqzzavVGK9f5/LHpeTlraD7RUVRBFUB3NzcmD59OtOnT7/lNefPn686g+oIhadPc/H5kRguXkRydUUYjQ5zv6goiqAUahTZW7eS8tL/kHNz0YSF0Wjup6h8fBzmflFRFEEp1AiEEFz7ciEZ770HQuDZoQMNZ3+ES716AE4XUjGKoBSqPbJeT9qkBHSrVwPgN3gwwRPfqBT3i4qiCEqhWmO8coVLo0aTf+gQqNUEvfoq9f4dX23jhCiCUqi2FBw/zsWRozCmpqLy9aXhhx/gHRvrbLPKxO7Zr+3bt9OvXz9CQ0ORJInVRc1wMUIIJk2aREhICB4eHsTFxXH69Gmra65du0Z8fDy+vr74+fkxfPhwcnJyKvRBFGoXWZt+5nz8vzGmpuIaGUnksu+qvZigHILKzc2lTZs2zJkzp9TzM2bMYPbs2Xz22Wfs2bMHLy8vevbsSUFBgeWa+Ph4jh07xubNm1m7di3bt2/n2WefLf+nUKg1CCG4/OmnJL/wAiI/H6/YWCKXfYdbVJSzTbMNUQEAsWrVKsu+LMsiODhYzJw503IsMzNTuLm5iW+//VYIIcTx48cFIPbu3Wu5ZsOGDUKSJJGcnGxTvTqdTgBCp9OVOJefny+OHz8u8vPzy/mpahc15fvQp6aK7G3bRNJ//yuORzcXx6Obi9Rp04RsMDjVrrKetdJw6IKnxMRE0tLSiIuLsxzTarXExMSwa9cuAHbt2oWfnx/t27e3XBMXF4dKpWLPnj2l3rewsJCsrCyrTaH2kLliBWce6sbFZ/8fOb9tBZWK4ClvEvzaa5XuYetoHCqotKLsBUFBQVbHg4KCLOfS0tJo0KCB1XkXFxf8/f0t19zM9OnT0Wq1lk3JXlh7KHWBK+DdtauTLKoYNWK1+YQJE9DpdJbt4sWLzjapUrjdgE9tpPDvkyUXuBbFF6+JOFRQxXET0tPTrY6np6dbzgUHB5ORkWF13mg0cu3atVvGXXBzc7NkK6zKrIWpunz+OHuFVF1+ldR3uwGf2oYQgmvffVfyhJMXuFYEh3ZQo6KiCA4OZsuWLbRt2xYw5yjds2cPzz33HACdOnUiMzOT/fv3065dOwB+/fVXZFkmJibGkeZYEEKQb7Avrc3K/ZdIWHMMWYBKgjcfacmgdvaF//LQqO2agOzduze9e/e2q46azLUFC8jduhXUanMWjGqywLUi2C2onJwczpw5Y9lPTEzk0KFD+Pv7Ex4eztixY3nrrbdo2rQpUVFRTJw4kdDQUAYMGABAixYt6NWrFyNGjOCzzz7DYDAwatQoHn/8cUJDQx32wW4k32Dizkmbyl1eFjDxx2NM/PGYXeWOT+mJp2vNeqmuKnJ+30nGBx8CEDxxIt4P3F9tFrhWBLv/t/ft28eDDz5o2R83bhwAQ4cOZdGiRbzyyivk5uby7LPPkpmZSZcuXdi4caNV5oclS5YwatQounXrhkqlYtCgQUrgkjqE/uJFkl96yRJIxW/IY0iSVKOFVIwkxM0Zp6o/WVlZaLVadDpdifepgoICEhMTiYqKsojY3i5fmq6AuA+2Id/wzagk+GXc/QRrbU8JY2+X70YkSWLVqlWWlr28lPZ9OBM5L4/zTzxJ4cmTuLduTcQ3X6OqhotciynrWSuNOtEfkSTJrq5X40Bvpg9sxWs//IVJCNSSxNsD76JxoHclWln7EUKQOnEShSdPoq5fn7DZH1VrMZWHOiGo8jCkQzhdmwVy/koekQGehGg9nG1SjefaosVkrVsHLi6EzfqwVnTxbkYRVBmEaD2qVEi3G/CpyeTu3k3GzJkABL36Kp4dOjjZospBEVQ14nYDPjUVQ3IyyWNfBFlGO2AA9eKfdLZJlYYiqGrEAw88QA0cIyoTuaCAi6NHY8rMxL1lS4InJ1Rb50BHUCOWHinUTIQQpE6aROHxE6jr1SPs49moqsFIY2WiCEqh0rj+9TdkrfkJ1GoafvghmkqauK9OKIJSqBRy//yT9HffBSDolZfx6lg5y8ocgi4ZEreb/60gyjuUgsMxpKaaByGKMgfWq87ZRg58BT+9AEIGSQX9PoJ7ym+v0kIpOBS5sJBLo8dgunYNtxYtCJnyZvUdhNAlw5oxZjGB+d+fxlaopVIEpeAwhBCkTX6Tgr/+Qq3VEvbxx6g8qumEeN41WPVf4KZRVWGCa+fKfVuly6fgEAxpaVxd8CW6VatApaLhhx/gGtbQ2WaVzqmfYc1oyCnFQ1xSg3/jct9aEZRChclcsYLUiZPMPk2AT/fueHXu7GSrSqEwGza9DgcWm/frN4U7H4HfZ5lbJkkN/WaBtvw/BIqgFCqEJSbEDRPS2Zs3Y0hLq15r9c7/Dqufg8wi1/qOz0O3SaDxgPbDzd08/8YVEhMoglKoIIWJibeMCVEtBGXIhy1TYfengABtOAz4FKLu++cabcMKC6kYZVCiGjF37lxat25tiZvRqVMnNmzY4GyzyiS3KDycFdUlJkTyfvi8K+yeAwjzcPhzO63F5GCUFqosdMlw7Sz43+GwX7CyCAsL45133qFp06YIIVi8eDH9+/fn4MGDtGzZstLrt5e8gwe5tuBL844kmbt91SEmhFEP22fAjg/M70beQfDIx9CsZ6VXXTcEJQQY8uwrc2gpbHjlnwm/3jOgrZ2rpDWe5gfNRvr162e1P23aNObOncvu3burnaBMOp3Zjd1kwrdPHwJf/p85t62zY0KkHzMPh6cdMe/f9Sj0mQme/lVSfd0QlCEP3q7AOjIhw/r/mTd7eC0FXL3KVaXJZGL58uXk5ubSqVOnct2jshBCkPrGGxhTUtGEhxM85U3U3t5OSxSNLhmunIbErbBrDpj04OEPD38ALf9VpabUDUHVII4ePUqnTp0oKCjA29ubVatWceeddzrbLCuuL11K9uZfQKOh4fvvo/Z2YmiAG5cOFdOsF/SbDT5Bty5XSdQNQWk8za2FrWSlwJx7rf+TJDWM3AO+drR0Gk/bry0iOjqaQ4cOodPpWLFiBUOHDmXbtm3VRlQFJ06Q8U7Rotf/vYRHq7ucZ8zlU+alQzeudpBU0Pd9p4gJ6oqgJMm+rldAU/MiyZ/GWk/4BTStLAstuLq60qRJEwDatWvH3r17+eijj/j8888rve7bIefmkvziOITBgPeDDzpv0asQ8NdKWP8KJZcOyXAtEbT2BSV1FHVDUOXhnqfgjm4Om/ArL7IsU1hY6JS6byZtylT058/jEhxMyNvTnLPoNf24ebDo/I7Sz1dw6VBFUQRVFg6c8LOFCRMm0Lt3b8LDw8nOzmbp0qVs3bqVTZvKH/XWUWSuXo3uxx/N6/Tem2nJvl5lFOhg6zuw53Nzr8HFHe57CTzrw/qXHbZ0qKIogqpGZGRk8NRTT5GamopWq6V169Zs2rSJ7t27O9WuwnOJpE2ZCkDg6FF43pDbq9KRZTiyDDZPgtyiJBMt+kGPaVAvwrzfrJfTexLFKIKqRixYsMDZJpRALiwk+cUXEXl5eHbsSP2qTN2aetjc+lwsSsRXvyn0fheadLO+rop7EmWhCEqhTDLefdcc6dXfn9AZ7yKp1ZVfad41+PUt2L/QPMig8YL7XzEvaHWp3pFmFUEp3JKsTT9zfem3AIS++y6amzJPOpTiydnUQ7DzI8i/Zj5+16PQY6p90xVORBGUQqnoLyWT+sYbANQf8Qze93WpvMpKm5wNbGFeMlSJC1krA0VQCiUQBgMpL72EnJ2NR9u2BI4ZU3mVFcd1sJpPkuDJZf8MOtQgFPcNhRJc/ugj8g8fRuXrS8P330PSaCqvsnPbKDE5i/jHEbCGoQhKwYqcHTu4Ot882hjy1lQ0DStx9Kwgy+xmcTNOnpytCEqXTwEwu7LnHTxE2ptvAlDvySfx7dGj8iqUZbNL+vVEcNOCPrvIVcb5k7MVQRGUgjnIyqQEiyu7S3AwDca/UrmV7vwQ/l4Lalf4zw/gE1LuydlUXT6JV3KJCvAqV/qhipa/EUVQdRx90kWriEUAxowMTNevo6osR8Ezv5jjPIDZcTOsaOVFOVqlZXuTmPDDUWRhTts6fWArhnSw3f2+ouVvRhFUHaUwMZHMFSvI/H65lZiAyg2yci0RVgzHEuOh/f+V+1apunyLGABkAeNXHmXu1rO4a9SoVRIuahUuKgm1SkKjllCr/tk3yjK//X3Zcj9ZwGs//EXXZoHlbqkUQVUjtm/fzsyZM9m/fz+pqaklklYLIUhISGDevHlkZmYSGxvL3LlzadrUNrcSWa8n++fNZC5fTt6ePbe+sLKCrOjzYNl/oCATGraDPu9V6HaJV3KtEosXc/6qneEObsAkBOev5CmCqgzSctNIykoi3DecYK/Kj5OQm5tLmzZtGDZsGAMHDixxfsaMGcyePZvFixcTFRXFxIkT6dmzJ8ePHy8zw7swGrnyxTzyli7FlJlpPqhS4X3fffgNeQzj5SvmwQhZrrwgK0LAT2Mg/Sh4BcJjX4OLWwVuJ/j1REaJ4yoJPn7ibrQerhhlGZMsMMoCo0n8s28yH7uWW8j7P5+yGrRXSxKRAfY7hhZTJwQlhCDfmG9XmTVn1zB9z3RkZFSomBAzgUfueMSue3i4eNjlM9S7d2969+5d6jkhBLNmzeKNN96gf//+AHz11VcEBQWxevVqHn/8cWSDAVFYiOTmhqRWY8rKQn/5MsaMDHSrVqHKzMQlOBi/QYPwGzTQKl+T9/1d0V9IqrwgK7vnwtHl5lG8wYsqNIonhOC9n08y//dEACTMM1lqSeLtgXfRt7Xty5QCfdx47Ye/MAlhKV+RgYk6Iah8Yz4xS8ufn0hGZtqeaUzbM82ucnue3INnOdzgSyMxMZG0tDTi4uIsx7RaLTExMezatYtHe/TAkHKDm79KBbKMXDRy5xkTQ0DPHnjfdx+SS8n/dk1wcOVFK0rcAT+blzHRcxpEln8ZkxCCaetOWMT0Rt8W9G0dwvkreUQGeNothiEdwunaLLDc5W+mTgiqNpCWZg5sHxRkHSshKCiI1JQUazEByDKSiwtqHx9cVCpCJieU2S2sNHTJsPxpswNgq8cg5r/lvpUsCyb/dIyvdl0AYEr/ljzVKRKgQkII0XpUWEjF1AlBebh4sOfJMl7CbyI9L50Bqwcg889iTZWkYnX/1QR52h78w8OlilK5mEylHtaEhYGLC1JWVtXYcTPGQvj+P5B3BYJbmeN0lNNtXpYFr606ynd7LyJJ8Pa/WvHEvdUgOu1N1AlBSZJkV9crShtFQucE3tz1JrKQUUkqEjolEKWNqkQryya4qDuWnp5OyA3x79LT0mgVVbpdkpvbLcVWJaz/nzkcskc9GPINuJav+2uSBS+vOMwPB5JRSTDz0TYMauecICy3o04IqjwMbDqQzqGduZh9kUY+japklK8soqKiCA4OZsuWLbRt2xYAXWYme/bsYXi/fubwWTe4P2hCQ1FpNM4T1L6FZrcMSQWDFkC9yHLdxmCSGff9YX46nIJaJfHhkLY80qb6+kYpgiqDYK/gKhVSTk4OZ86csewnJiZy6NAh/P39CQ8PZ+zYsbz11ls0bdqUyMhI3nj5ZUICA+kXF4drVCSSRoMo1CO5uZrF5Cwu7jW7rgM8NLGky7qN6I0yo789wKZj6WjUEh8/cQ+97qoGGT3KQjiYhIQEgXkU07JFR0dbzufn54vnn39e+Pv7Cy8vLzFw4ECRlpZmVx06nU4AQqfTlTiXn58vjh8/LvLz8yv8Waqa3377rcR3B4ihQ4cKIYSQZVlMnDhRBAUFCTc3N/FgTIw4vHatMGZl3/KeVf59ZKUJ8V60EAm+Qnz3byFkuVy3ydcbxf8t/FNEjF8rmr62Xvxy3L5nxFGU9ayVRqW0UC1btuSXX36x7LvcMEz74osvsm7dOpYvX45Wq2XUqFEMHDiQnTt3VoYpNYoHHngAcfMyoBuQJIkpU6Yw8fnnMV65AoBro0aofZwYCvlGTAbziF52KgREm/MwlWMQIl9v4tmv97Hj9BXcXFTMe6o9XZsFOt7eSqBSBOXi4mJ5ib4RnU7HggULWLp0KQ899BAACxcupEWLFuzevZuOHTtWhjm1CuPlyxYxaUJDUWu1TraoCF0ybBgPSX+Amy88vgTcfOy+TW6hkeGL97L73DU8NGoWPN2ezncEVILBlUOlOBiePn2a0NBQGjduTHx8PElJZu/L/fv3YzAYrCYnmzdvTnh4OLtKS9xVRGFhIVlZWVZbXcR47RqG9HQANEFBuPhXTYqW23LgK/iwJfz9k3m/9eN2h61O1eWz5UQ6T3yxm93nruHt5sJXw++tUWKCShBUTEwMixYtYuPGjcydO5fExETuu+8+srOzSUtLw9XVFT8/P6syQUFBlonL0pg+fTpardayNWrUyNFmV3tMOp1l8tYlIACXwGrSBdIlmwOs3Lgibt8C83EbWbY3idh3fmX44n0cSdbh7qLim2di6BBZTX4w7MDhXb4b16K1bt2amJgYIiIi+P777/HwKN9E54QJExg3bpxlPysrq06JypSTg/7SJQDU9erhEuSczBKlcu2sdbQiMK+KuHbOpvV6N7tgAOhNMkG+5V8460wqPaaEn58fzZo148yZMwQHB6PX68ksXvFcRHp6eqnvXMW4ublZ8s4Wb3UFOS8PfVISCIHaV4smNNQ5QfpvRVZqyWN2xIQozQVDFnD+SvldMJxJpQsqJyeHs2fPEhISQrt27dBoNGzZssVy/uTJkyQlJVW7LH3VAbmgAP2FCyDLqLy90YQ1rF5iMhTAtneKdorssjMmRJhfyV5LRV0onInDu3z/+9//6NevHxEREaSkpJCQkIBareaJJ55Aq9UyfPhwxo0bh7+/P76+vowePZpOnTopI3w3Iev16M+fR5hMqDw8cW3UCElVzYJU/THb3LXzDoan1piD+dsZE2J/0nWrfUe4UDgThwvq0qVLPPHEE1y9epXAwEC6dOnC7t27CSx6if7www9RqVQMGjSIwsJCevbsyaeffupoM2o0ssFgFpPRiMrNHdeI8KqJKW4P18/DjvfNf/ecBg2igWi7biGEYN52sxvGf+9vzP3NGjjEhcKZOFxQ3333XZnn3d3dmTNnDnPmzHF01TUe2WBA5OdjSEtH6PVIrq5oIiNK9V9yOhvGg7EAorrCXYPKdYtd565yPDULD42a/95/B36e1TsRgC1Uw/+puonx2jUrnyZJpcI1MrLK1uTZFUrr7/VwaiOoNNDn/XK7ZMzfYW6dHm0XVivEBErk2GqBbDBgSEnhi2XLuHfgQII6dqTBvfcS27UrGzZssFxXUFDAyJEjqV+/Pt7e3gwaNIj0ooneirBsbxKd3/mVJ+ftIfadX1m2t4wwyPo8c+sE0HkUBDYrV51nMnL49e8MJAmGdXGeW4yjUQRVBoa0NHJ378FQxqSzIxBFOXQbBgUxZexYdi5bxu/ffccD991H//79OXbsGGBeB/nTTz+xfPlytm3bRkpKSqnBXGzFaJL5atd5xq88aokkVhxKK1V3ixgcO94DXRJoG0HXl8td94IiF/a4FkFEBdiRULyaUye6fEIIRL59QVoyV68m/a1plkhAQW+8jt8NIb1sQfK4fZAWIQTGq1cB6PvAA1bnpvXsyecLFrB7927CwsIctg5Sl2/guz+TWPzHeVJ0BSXO3zKU1pXTsHO2+e9e08G1fEK4mlPIDwfME9Uj7quZMcxvRd0QVH4+J+9pV/4byDLpU6aSXpRn1laiD+xH8rz1fIoQAkNyMnJ2Nv/E7jGjCgri+5Uryc3NpVOnTrddB2mLoM5fyWXhzkSW779Ent7seOjnoUGXbyiR/yKi/k1iEsLsgSsboGkPaP7wbeu7FUv2JFFolGkdpqVDZBUnv65k6oSgqiNCCAwpKeY4eZJknmfy8ODIgQN06daNgoICvL29WbVqFXfeeSeHDh0q1zpIIQSFBhNvrDrKyiMZlq5ddJAPw7tE8UjbUH48lGwJpVXM32nZhPrd8GNwbBWc2wpqN3Oe23IORBQYTHy16zwAz9zXuHpNVDuAOiEoycOD6AP7bb7ekJ7Oub4PW4LnA6BS0XjdWjR2rKOTbrF2UQiBMTUV03XzpKZrWBjqouVUd959N4cOHUKn07FixQqGDh3Ktm3bbKpPb5TRG024uqhxUUtk5hnIuJ7H5Rw9u85dRQh4MDqQ4V0aE9ukvuVhvjGU1tqjKSzZncS0dSe4r2kgGrUKCrNh02vmSu4bV6FUM2sOpXAlR0+o1p3e1d37thzUDUFJUpldr5txi4oiZMqb/2SkKIqm6naLYCj2IITAmJ6O8Zo5h6wmLMzKp8nV1ZUmTZoA0K5dO/bu3ctHH33EkCFDLOsgb2ylitdBXsstJPl6vqXrppYkTEIgjCZUEjzcOpTBMY1p0qB0Z8TiUFotG/qy4WgaZy/n8u2fSeYwXVvfMTsN1ouC2LEV+uzzfz8HwP/FRpnFWsuofZ/IQfg9+ihNft1C+OLFNPl1C36PPuqQ+xozMqwcBF1u6sLdjCzLFBYWlrkOsn2HGCsxgXlgwUWlIsDHjWBfd17s3uyWYroRX3cNL3Y3D4XP+uU02UlHzFFfwZzzVlP+2H7bT1/hVHoOXq5qhtxbO70F6kQLVV4cHU3VcPkyxsvmbA+akJASDoITJkygd+/ehIeHk52dzdKlS9m6dSubNm265TrImI4daRjdmpxCY4n6Gvl7oMFElsq+95QnOjRi8R/nOZORzfXlY/ARJvMgRNPu5f/wwPwd5tZpSIdwfN2dGESmElEEVUUYr1zBeKO3bf36Ja7JyMjgqaeeIjU1Fa1WS+vWrdm0aRPdu5sf5JvXQd73YDdemTKzVDFJSLi5qJGN9ocRc1GreL1vC9Ys/oDw7IPILh6oer1z+4Jl8HdaFjtOX0Elwf/FRlboXtUZRVBVgPHqVcvksEuDBrf0tl2wYEGZ93F3d2fGBx/xvzdnkF1gsBzXemhwc1FzObsQgUBComE9d1xdVBSU1JpNPBCu4R73b0GGNdp/M8CvYl20BUXLjHrfFUIj/5rpmmELiqAqGeP16xhSzU545XVdF0KQU2gkI7uQ3KLWSELCz1NDoI8b7hrzSnR/L1f0RhlXFxWuLhV7PZZ+exutnMkZOZSXk+8j7Pw12pfTJT0ju4AfD5nXKT5zX+1ZZlQayqBEJWLMzMSQbI6t4FK/Pi5BQXbNuwghyMo3cPZyDolXcsktNCJJEv5erjQL9qaRv6dFTACuLiq83V0qLCZSDsHe+QD81uQVDLgwdd0J5NKym9nA17suoDfJtIuox93htWsi92YUQVUSJp0OwyWzmNT+/rgEB99WTHqjTE6BAb3RRGaentMZOZy/mkue3oRKkgjwdiM6yIewep64uVSSf5Qsw7qXzHEi7hpE/389gZermsMXM/npSMrty99Evt7EN7vN2TJG1PLWCZQun0MpTngmilaPg0Dt54cmJOS2Yrp5HqkYtSTh7+1KgLdb1czbHPwKkveBqw/0mEYDH3eef7AJMzedZMbGk/RsGWzVKt6OlQcucT3PQLi/J93vrH0TuTdTa1uosiKwVgbGa9coPHkS/fnz5m6eEKi1WjQNbx8HQm80cakUMQV4uxEd7EOI1qPcYrL5e9Alw4m1sHmSef/B18DXnOVjeJcoQrXuJGfmW1aJ24IsC74sun5YbCRqO4fvayK1TlCaIoe8vLyqi5ojW1oka2x5Z8otNN4ywo+vuwaXCrZKxd+DpixHxQNfway7YFk8FOjANxTufdZy2l2jZnzv5gB8+tsZLmcX2lT3r39ncO5KLr7uLgxuXzsncm+m1nX51Go1fn5+ZGSYExp7enpW+gJMU24uBlkucVzOzkHtVfoQsd5g4nJOYalzSGAexZONegrsGfc26s2rwVUahFpDXl4eGRkZ+Pn5ob4xJoXJaA6okpMO6cdhzRisAlVmp5nP3RBspV/rUL7ceZ7DFzP5YPMppg9sdVtz5hVN5D4ZE4GXW6171EqlVn7K4hh/xaKqbEw5OcilhId2UalKBFeRZUFWgZHcQiMCs9OGp5saF5WKrCI3Cgnw89SQnG/Hf48+B/KuQ/EdXL1ApcYv9xzBJ3dCThpkp5v/zb0CJTqYNyDkEoEqVSqJiX1b8Ohnu1i2N4mhnSNoHnzr+IhHL+nYk3gNF5XE0M4Rtn+OGk6tFJQkSYSEhNCgQQMMBsPtC1SA68uXc+3LhajNFZv9hlQqAseMxjc21nJdocHEqoPJLP0zyTKXdG+UP8/edwdRgWZHvYzsApKv59OwngcNfGxYM2cyQsZxOPsrHPrG+pwQaAquojbdwrFSUoFXA/CsBxknbjpXeqDK9pH+9GkVzPqjaUxbd4Kvh986EfiCokWwD7cOqdFRjOylVgqqGLVabd3VcSBCCDJmvkfml1+iAuqPeAa/J5/EkHQR14hwyxpAWRasOZzCzE0nSc40P9x3hvjyWp8WdGlqHQg/3N2d8EC/siqFy3+b/ZLObYPzv4M++9bXh3eCoLvAJ8gcO88nGLyDzJtXAKiKvpsDX8FPY80hlG8TqHJ8r+b8cjyDHaevsPVkBg9ENyhxTaoun7VHzJPZz9Qyj9zbUasFVVkIo5HUSQnofvgBgAYvv0z94cMAcL0h/+0fZ6/w9voT/JVs7g6GaN35X49o/nV3Q1SljXjpks2xwv3v+OeB1l0yi+fcVkjcZn63uRGPehDWAU5vxqobJ6nNqThtCTp5z1NwRzdzN+82gSoj6nvxdGwkX2w/x7R1J+jSJKDEwMmiP85jlAUdG/tzV8Nqkm6nilAEZSdyYSHJ414iZ8sWUKsJmToVv4H/Av4JxSVhDpG15W/zO5y3mwvPPXAHw7tE3XoO58BX5iwWQgYkiIg1v+9cPWN9nYsHRHSCqPuh8QMQ3BpUKrtamVLRNrT5+pEPNmH5vouczsjhu70X+XfHf96RcgqNLN1jjppU2+JF2IIiKDswZWdz6fmR5O3di+TqSsMPP8Cnmzl/7LK9SSWySKhVEvEx4Yzp1pQA7zKySaT9ddNIm4ALv5v/lFQQeo9ZPI0fgEb3gksp97KjlakoWg+zz9SkH4/x4eZTPNI21OKOsXzfRbILjDQO9OLBUrqDtR1FUDZivHKFpBHPUnjiBCpvb8I+nYPXvfcCkJKZx6srj5YYN1vyTAwdG5d00wCgMAdOroejy+HML5Q66vbgG3DvCPDws81IO1qZivLEveEs+uM85y7n8ulvZ3m1d3NMsuDLneaJ3OFdokrv1tZyFEHZgP7SJZKGD8dwIQl1/fqEz/sC9zvvBCDpah7PL9lf6iB0iUUKRr15RO7ocrOYDGVMPktqaPuk7WKqYjRqFa/3acHwxfv48vdE4mPC+StZx8Vr+dTz1DDw7jBnm+gUFEHdhoJTp7g4/BmMly+jadiQ8AXzcY2MxGiSWfB7Ih/+cooCQ8lJXUtKFlmGi7vNIjq2GvKv/XORf2NoNdi8Je2q2DuQE3ioeQNim9Rn55mrTF5zjIvXzT8Q/+kYgYdrNUtuUEUogiqDvAMHufjf/yJnZeHWtCmN5s9HE9SAv5J1jF95hGMp5tG7To3rE9s0gG9/3kW4lEqSCGFiXDAhf74Df60E3cV/burVwBxcv/Vg87tR8SqOgKZV9g7kKCRJ4vU+d9Jn9g7LAAyAj0ftdG+3BUVQtyBn+3YujXkBUVCAx9130+izuRR6eDFj3XEW/J6ILMwv56/3bcHgexoi7ZrDSLeJSAjzWoUdN9zM1QfufMTcEkV1/Wf+52aq8B3IUdTzKimed9b/XecmdItRBHUThlOHuL7kK64u3wSyjFfX+wj76CN+v5jD5FW7UWWep7uUQt/QbHoEZeF+4CxsOgmG3OIcfpZ/uaMbtBtqjrSqqZ0PV+KV3BLHbhnKuQ6gCKoIU04u16a/yJWV2ymWhHsjHwIe9ufEnH/RKOscP0uXcXErel+6WrSVRZcXIeq+yjTb6UQFeKGSsJ4uqMEpPStKrROUIS0N/fkLuEZGWIUAM+XkYEhOxpCcUvTvDVtxSGTghvaFgktZaH7/nJaessXRRbh6IwVGQ/2m5veegGbgroWvB1hnQ7cjcXNNJkTrwfSBrSyhnGt6Ss+KUqsEdX35CtImTTKPV0sSbs2bgwSG5BRknc7+GwqJ33V38Vf9WHo9cB9N72yH5B1Uelzvfh/VuFE6R3FjKOeantKzokiiql1bHUBWVhZarRadTodvUUxwQ1oaZx7qZh2P/CbUfn5oGjY0b6EhaFxz0aRtQqM/C5IgcUMDbmyhkAQHE2YyeHBf2zxmdck1apRO4faU9qyVRa1pofTnL5QqpoAXX8T3oQfRhIai8irKZ5S0B7a8CRd2gifIfj785j+EpPTzdDx4DIQEkmDn3a3p2zvOdvfzGjhKp+BYao2gXCMjzItEb8qY4df/kX/epdKPwZapcMqcZlNWu7FV25/xad24nOUD4dAiMJHWeec44tmYEx5RtKyjo1UK5aPWCEoTHFxqxgxNcDBcPw+/TYcjywCBQMWvHj1443pfUnPNa+3ahvlx+FImJzyiOOFhDndVl0erFMpHrREUmDNmeLVugv7EXlxbdEATGgrrX4Z9C82xFoDf1J2ZmjeQcwWhuKgkBrQOYXiXxrQK07Jsb5IyWqVQIWqVoDjwFZqfXkAjZDgogVoDJj0AO2nD9MLB/CUao/XQ8FxMOEM7RRKs/cfVXBmtUqgotUdQuuQbHPQABJj0HJMjeMv4b3bJLYkK8GJqbCSD2oXh6Vr6Ry9OPKagUB5qj6CunbWeWC1iqvHfqKK6sqBLFA9GN6iTPjoKVUetEVS6piEBQkIt/TOtZhQqxg7uRce7WzvRMoW6RK2JHHu2UMsE4zMYhfkjGYWK14zDEb7KvJBC1VFrWqioAC9WyA+yvbA1kap0zstBXJYCeFEZ9laoQmpNC1W8SPOyFMBu+U4uSwHKsLdCleO0FmrOnDnMnDmTtLQ02rRpw8cff8y9RUFPyosy7K3gbJzSQi1btoxx48aRkJDAgQMHaNOmDT179nRILHLJRYfa8yySSzlWlwNpuWn8mfonablpVVrW2eUV28tf/kacsto8JiaGDh068MknnwAgyzKNGjVi9OjRvPrqq7ctf6sVwCtPrWTKrinIyKhQMSFmAo/c8YjNdq05u4bpe6aXq3xFyjq7vGJ7UXlJRUKnBAY2HWg5b+9q8yoXlF6vx9PTkxUrVjBgwADL8aFDh5KZmcmPP/5YokxhYSGFhf/kJMrKyqJRo0ZWHzItN42eK3oic2v3DQWF26GSVGwatIlgL/OCansFVeVdvitXrmAymQgKCrI6HhQURFpa6U3u9OnT0Wq1lq1Ro5LJu5KykhQxKVQYWchczL54+wtvQY0YNp8wYQLjxo2z7Be3UDcS7huOSlIh37BaQiWpWN1/NUGe1uItjfS8dAasHmAlSlvLV6Sss8srtpcs38in/NkWq7yFCggIQK1Wk55unUUiPT3dkijtZtzc3PD19bXabibYK5iETgmoJPNHKu4PR2mj8NR43naL0kaR0Ll85StS1tnlFdtLli/u7pUHpw1K3HvvvXz88ceAeVAiPDycUaNGVWhQAszvUhezL9LIp1G5vpiKlHdm3RUtr9heenl736EQTuC7774Tbm5uYtGiReL48ePi2WefFX5+fiItLc2m8jqdTgBCp9NVsqUKdR17nzWnvEMNGTKEy5cvM2nSJNLS0mjbti0bN24sMVChoFDTqJFRj3Q6HX5+fly8eNG2ZlhBoZwUD4BlZmai1d4+G2ONGOW7mexsc17Z0obPFRQqg+zsbJsEVSNbKFmWSUlJwcfHB+mmoJPFvyjlbb0qUt6ZdVe0vGJ76eWFEGRnZxMaGopKdftB8RrZQqlUKsLCyk7odavhdVupSHln1l3R8ortJcvb0jIVU2vcNxQUqgOKoBQUHEitE5SbmxsJCQm4uZWRdb2Syjuz7oqWV2wvf/kbqZGDEgoK1ZVa10IpKDgTRVAKCg5EEZSCggNRBKWg4EBqjaC2b99Ov379CA0NRZIkVq9ebXPZ6dOn06FDB3x8fGjQoAEDBgzg5MmTNpefO3curVu3tkwMdurUiQ0bNpTjU8A777yDJEmMHTvWpusnT56MJElWW/Pmze2qMzk5mX//+9/Ur18fDw8PWrVqxb59+2wqGxkZWaJ+SZIYOXLkbcuaTCYmTpxIVFQUHh4e3HHHHUydOhV7xsmys7MZO3YsEREReHh40LlzZ/bu3Vvqtbd7RoQQTJo0iZCQEDw8PIiLi+P06dM22wK1SFC5ubm0adOGOXPm2F1227ZtjBw5kt27d7N582YMBgM9evQgNzfXpvJhYWG888477N+/n3379vHQQw/Rv39/jh07Zpcde/fu5fPPP6d1a/tCR7ds2ZLU1FTL9vvvv9tc9vr168TGxqLRaNiwYQPHjx/n/fffp169ejbbfGPdmzdvBmDw4MG3Lfvuu+8yd+5cPvnkE06cOMG7777LjBkzLH5ytvDMM8+wefNmvv76a44ePUqPHj2Ii4sjOTm5xLW3e0ZmzJjB7Nmz+eyzz9izZw9eXl707NmTgoICm+1xij9UZQOIVatWlbt8RkaGAMS2bdvKfY969eqJ+fPn23x9dna2aNq0qdi8ebO4//77xQsvvGBTuYSEBNGmTZvyGSmEGD9+vOjSpUu5y9/MCy+8IO644w4hy/Jtr+3bt68YNmyY1bGBAweK+Ph4m+rKy8sTarVarF271ur4PffcI15//fUyy978jMiyLIKDg8XMmTMtxzIzM4Wbm5v49ttvbbJHCCFqTQvlSHRFGeP9/f3tLmsymfjuu+/Izc2lU6dONpcbOXIkffv2JS4uzu46T58+TWhoKI0bNyY+Pp6kpCSby65Zs4b27dszePBgGjRowN133828efPstgHMEa2++eYbhg0bVmLRcml07tyZLVu2cOrUKQAOHz7M77//Tu/evW2qz2g0YjKZcHd3tzru4eFhVysNkJiYSFpamtX3r9VqiYmJYdeuXbbfyGbp1SCoQAtlMplE3759RWxsrF3ljhw5Iry8vIRarRZarVasW7fO5rLffvutuOuuu0R+fr4QQtjVQq1fv158//334vDhw2Ljxo2iU6dOIjw8XGRlZdlU3s3NTbi5uYkJEyaIAwcOiM8//1y4u7uLRYsW2Wx/McuWLRNqtVokJyfbdL3JZBLjx48XkiQJFxcXIUmSePvtt+2qs1OnTuL+++8XycnJwmg0iq+//lqoVCrRrFmzMsvd/Izs3LlTACIlJcXqusGDB4vHHnvMZnsUQd3Ef//7XxERESEuXrxoV7nCwkJx+vRpsW/fPvHqq6+KgIAAcezYsduWS0pKEg0aNBCHDx+2HLNHUDdz/fp14evra3N3U6PRiE6dOlkdGz16tOjYsaPddffo0UM8/PDDNl//7bffirCwMPHtt9+KI0eOiK+++kr4+/vbJeYzZ86Irl27CkCo1WrRoUMHER8fL5o3b15mOUVQdlBeQY0cOVKEhYWJc+fOVdiGbt26iWefffa2161atcryMBRvgJAkSajVamE0Gu2uu3379uLVV1+16drw8HAxfPhwq2OffvqpCA0NtavO8+fPC5VKJVavXm1zmbCwMPHJJ59YHZs6daqIjo62q24hhMjJybGI4bHHHhN9+vQp8/qbn5GzZ88KQBw8eNDquq5du4oxY8bYbIfyDoV5uHTUqFGsWrWKX3/9laioqArfU5Zlq2i3t6Jbt24cPXqUQ4cOWbb27dsTHx/PoUOHUKvVdtWbk5PD2bNnCQkJsen62NjYElMEp06dIiIiwq56Fy5cSIMGDejbt6/NZfLy8ko47anVamTZ/oClXl5ehISEcP36dTZt2kT//v3tKh8VFUVwcDBbtmyxHMvKymLPnj12vQvXmhYqOztbHDx4UBw8eFAA4oMPPhAHDx4UFy5cuG3Z5557Tmi1WrF161aRmppq2fLy8myq+9VXXxXbtm0TiYmJ4siRI+LVV18VkiSJn3/+uVyfxZ4u30svvSS2bt0qEhMTxc6dO0VcXJwICAgQGRkZNpX/888/hYuLi5g2bZo4ffq0WLJkifD09BTffPONzfaaTCYRHh4uxo8fb3MZIYQYOnSoaNiwoVi7dq1ITEwUP/zwgwgICBCvvPKKzffYuHGj2LBhgzh37pz4+eefRZs2bURMTIzQ6/Ulrr3dM/LOO+8IPz8/8eOPP4ojR46I/v37i6ioKMu7rS3UGkH99ttvAiixDR069LZlSysHiIULF9pU97Bhw0RERIRwdXUVgYGBolu3buUWkxD2CWrIkCEiJCREuLq6ioYNG4ohQ4aIM2fO2FXfTz/9JO666y7h5uYmmjdvLr744gu7ym/atEkA4uTJk3aVy8rKEi+88IIIDw8X7u7uonHjxuL1118XhYWFNt9j2bJlonHjxsLV1VUEBweLkSNHiszMzFKvvd0zIsuymDhxoggKChJubm6iW7dudn8mxX1DQcGBKO9QCgoORBGUgoIDUQSloOBAFEEpKDgQRVAKCg5EEZSCggNRBKWg4EAUQSkoOBBFUAoKDkQRVDXm6aefZsCAAc42Q8EOFEHVAgwGg7NNUChCEVQ1YMWKFbRq1QoPDw/q169PXFwcL7/8MosXL+bHH3+0RBLaunUr58+fR5Ikli1bxv3334+7uztLliwBYP78+bRo0QJ3d3eaN2/Op59+alXP+PHjadasGZ6enjRu3JiJEydaiXHy5Mm0bduWL7/8kvDwcLy9vXn++ecxmUzMmDGD4OBgGjRowLRp0yxlhBBMnjyZ8PBw3NzcCA0NZcyYMVXzxVVH7FpKq+BwUlJShIuLi/jggw8s7h9z5swR2dnZ4rHHHhO9evWyuJMUFhaKxMREAYjIyEixcuVKce7cOZGSkiK++eYbERISYjm2cuXKEt6vU6dOFTt37hSJiYlizZo1IigoSLz77ruW8wkJCcLb21s8+uij4tixY2LNmjXC1dVV9OzZU4wePVr8/fff4ssvvxSA2L17txBCiOXLlwtfX1+xfv16ceHCBbFnzx67V6vXJhRBOZn9+/cLQJw/f77EuaFDh4r+/ftbHSsW1KxZs6yO33HHHWLp0qVWx6ZOnVrCvf1GZs6cKdq1a2fZT0hIEJ6enlbxKHr27CkiIyOFyWSyHIuOjhbTp08XQgjx/vvvi2bNmpXqf1QXqZEZDGsTbdq0oVu3brRq1YqePXvSo0cPHn300dvGxWvfvr3l79zcXM6ePcvw4cMZMWKE5bjRaLTKvrds2TJmz57N2bNnycnJwWg0lsjYFxkZiY+Pj2U/KCgItVpt5VkbFBRERkYGYI6/N2vWLBo3bkyvXr3o06cP/fr1w8Wlbj5ayjuUk1Gr1WzevJkNGzZw55138vHHHxMdHU1iYmKZ5by8vCx/5+TkADBv3jwrV/q//vqL3bt3A7Br1y7i4+Pp06cPa9eu5eDBg7z++uvo9Xqr+2o0Gqt9SZJKPVbspt6oUSNOnjzJp59+ioeHB88//zxdu3atswMldfNnpJohSRKxsbHExsYyadIkIiIiWLVqFa6urphMptuWDwoKIjQ0lHPnzhEfH1/qNX/88QcRERG8/vrrlmMXLlxwiP0eHh7069ePfv36MXLkSJo3b87Ro0e55557HHL/moQiKCezZ88etmzZQo8ePWjQoAF79uzh8uXLtGjRgoKCAjZt2sTJkyepX79+mcmT33zzTcaMGYNWq6VXr14UFhayb98+rl+/zrhx42jatClJSUl89913dOjQgXXr1rFq1aoK279o0SJMJhMxMTF4enryzTff4OHhYXeQl9qC0uVzMr6+vmzfvp0+ffrQrFkz3njjDd5//3169+7NiBEjiI6Opn379gQGBrJz585b3ueZZ55h/vz5LFy4kFatWnH//fezaNEiSwSnRx55hBdffJFRo0bRtm1b/vjjDyZOnFhh+/38/Jg3bx6xsbG0bt2aX375hZ9++on69etX+N41ESWmhIKCA1FaKAUFB6IISkHBgSiCUlBwIIqgFBQciCIoBQUHoghKQcGBKIJSUHAgiqAUFByIIigFBQeiCEpBwYEoglJQcCD/H//Quc+OEEH4AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "ax = df_res.plot(figsize=(2,2), grid=False, style=\".-\")\n",
+ "plt.title('Driver CPU [CPUs]'.format(dbms), fontsize=10)\n",
+ "plt.suptitle('')\n",
+ "ax.set_xlabel(\"streams\")\n",
+ "ax.set_xticks(range(0,10), labels=[\"%s\" % (int(item)) for item in df_res.index.tolist()], rotation=0)\n",
+ "plt.legend(title='SF')\n",
+ "df_res"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "benchmarking",
+ "language": "python",
+ "name": "benchmarking"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.15"
+ },
+ "toc": {
+ "base_numbering": 1,
+ "nav_menu": {},
+ "number_sections": false,
+ "sideBar": true,
+ "skip_h1_title": false,
+ "title_cell": "Table of Contents",
+ "title_sidebar": "Contents",
+ "toc_cell": true,
+ "toc_position": {
+ "height": "calc(100% - 180px)",
+ "left": "10px",
+ "top": "150px",
+ "width": "512px"
+ },
+ "toc_section_display": true,
+ "toc_window_display": false
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/images/evaluator_dbmsbenchmarker/notebooks/Evaluation-YCSB.html b/images/evaluator_dbmsbenchmarker/notebooks/Evaluation-YCSB.html
new file mode 100644
index 00000000..80be5a09
--- /dev/null
+++ b/images/evaluator_dbmsbenchmarker/notebooks/Evaluation-YCSB.html
@@ -0,0 +1,22669 @@
+
+
+
+
+
+Evaluation-YCSB
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
.//1684758882/bexhoma-benchmarker-postgresql-32-8-98304-1684758882-1-1-wjjww.log.df.pickle
+
+
+
+
+
Out[6]:
+
+
+
+
+
+
+
+connection
+configuration
+experiment_run
+client
+pod
+pod_count
+threads
+target
+sf
+workload
+...
+[CLEANUP].MaxLatency(us)
+[CLEANUP].95thPercentileLatency(us)
+[CLEANUP].99thPercentileLatency(us)
+[UPDATE].Operations
+[UPDATE].AverageLatency(us)
+[UPDATE].MinLatency(us)
+[UPDATE].MaxLatency(us)
+[UPDATE].95thPercentileLatency(us)
+[UPDATE].99thPercentileLatency(us)
+[UPDATE].Return=OK
+
+
+PostgreSQL-32-8-98304-1
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+0
+PostgreSQL-32-8-98304-1
+PostgreSQL-32-8-98304
+1
+1
+wjjww
+8
+4
+12288
+30
+a
+...
+299
+299
+299
+1874342
+640.6968872276244
+104
+18579455
+1043
+3525
+1874342
+
+
+
+
1 rows Ă— 43 columns
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
.//1684758882/bexhoma-benchmarker-postgresql-32-8-98304-1684758882-1-1-wjjww.log.df.pickle
+
+
+
+
+
Out[8]:
+
+
+
+
+
+
+
+connection
+configuration
+experiment_run
+client
+pod
+pod_count
+threads
+target
+sf
+workload
+...
+[CLEANUP].MaxLatency(us)
+[CLEANUP].95thPercentileLatency(us)
+[CLEANUP].99thPercentileLatency(us)
+[UPDATE].Operations
+[UPDATE].AverageLatency(us)
+[UPDATE].MinLatency(us)
+[UPDATE].MaxLatency(us)
+[UPDATE].95thPercentileLatency(us)
+[UPDATE].99thPercentileLatency(us)
+[UPDATE].Return=OK
+
+
+PostgreSQL-32-8-98304-1
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+0
+PostgreSQL-32-8-98304-1
+PostgreSQL-32-8-98304
+1
+1
+wjjww
+8
+4
+12288
+30
+a
+...
+299
+299
+299
+1874342
+640.6968872276244
+104
+18579455
+1043
+3525
+1874342
+
+
+
+
1 rows Ă— 43 columns
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[10]:
+
+
+
+
+
+
+connection_pod
+PostgreSQL-32-1-114688-1
+PostgreSQL-32-1-131072-1
+PostgreSQL-32-1-16384-1
+PostgreSQL-32-1-32768-1
+PostgreSQL-32-1-49152-1
+PostgreSQL-32-1-65536-1
+PostgreSQL-32-1-81920-1
+PostgreSQL-32-1-98304-1
+PostgreSQL-32-8-114688-1
+PostgreSQL-32-8-114688-2
+...
+PostgreSQL-32-8-81920-7
+PostgreSQL-32-8-81920-8
+PostgreSQL-32-8-98304-1
+PostgreSQL-32-8-98304-2
+PostgreSQL-32-8-98304-3
+PostgreSQL-32-8-98304-4
+PostgreSQL-32-8-98304-5
+PostgreSQL-32-8-98304-6
+PostgreSQL-32-8-98304-7
+PostgreSQL-32-8-98304-8
+
+
+
+
+connection
+PostgreSQL-32-1-114688
+PostgreSQL-32-1-131072
+PostgreSQL-32-1-16384
+PostgreSQL-32-1-32768
+PostgreSQL-32-1-49152
+PostgreSQL-32-1-65536
+PostgreSQL-32-1-81920
+PostgreSQL-32-1-98304
+PostgreSQL-32-8-114688
+PostgreSQL-32-8-114688
+...
+PostgreSQL-32-8-81920
+PostgreSQL-32-8-81920
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+
+
+configuration
+PostgreSQL-32-1-114688
+PostgreSQL-32-1-131072
+PostgreSQL-32-1-16384
+PostgreSQL-32-1-32768
+PostgreSQL-32-1-49152
+PostgreSQL-32-1-65536
+PostgreSQL-32-1-81920
+PostgreSQL-32-1-98304
+PostgreSQL-32-8-114688
+PostgreSQL-32-8-114688
+...
+PostgreSQL-32-8-81920
+PostgreSQL-32-8-81920
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+
+
+experiment_run
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+...
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+
+
+client
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+...
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+
+
+pod
+tx5d5.sensor
+b9gzf.sensor
+mr62r.sensor
+9fbk6.sensor
+gs5fb.sensor
+6hqzb.sensor
+nkd9n.sensor
+xzd7w.sensor
+5x62v.sensor
+7bc2c.sensor
+...
+qpc6h.sensor
+vtqn4.sensor
+6xx8q.sensor
+ghmf9.sensor
+gqw9m.sensor
+jln48.sensor
+n9xct.sensor
+p78x4.sensor
+s4t2s.sensor
+zklhx.sensor
+
+
+pod_count
+1
+1
+1
+1
+1
+1
+1
+1
+8
+8
+...
+8
+8
+8
+8
+8
+8
+8
+8
+8
+8
+
+
+threads
+32
+32
+32
+32
+32
+32
+32
+32
+4
+4
+...
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+
+
+target
+114688
+131072
+16384
+32768
+49152
+65536
+81920
+98304
+14336
+14336
+...
+10240
+10240
+12288
+12288
+12288
+12288
+12288
+12288
+12288
+12288
+
+
+sf
+30
+30
+30
+30
+30
+30
+30
+30
+30
+30
+...
+30
+30
+30
+30
+30
+30
+30
+30
+30
+30
+
+
+workload
+a
+a
+a
+a
+a
+a
+a
+a
+a
+a
+...
+a
+a
+a
+a
+a
+a
+a
+a
+a
+a
+
+
+operations
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+3750000
+3750000
+...
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+
+
+batchsize
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+...
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+
+
+[OVERALL].RunTime(ms)
+1066169
+1085442
+1831226
+1059352
+1062779
+1030604
+1054230
+1074369
+1032151
+1039143
+...
+1004788
+1073472
+1054586
+1069092
+1054273
+979125
+1054125
+1013255
+970744
+1036959
+
+
+[OVERALL].Throughput(ops/sec)
+28138.128195436184
+27638.51039484376
+16382.467265099993
+28319.198906501333
+28227.88180797701
+29109.143764239223
+28456.788366864916
+27923.367111299747
+3633.189329855806
+3608.74297377743
+...
+3732.1305588840632
+3493.337506707208
+3555.8977646204294
+3507.6494819903246
+3556.9534646149527
+3829.9502106472614
+3557.4528637495555
+3700.943987446398
+3863.0164080334257
+3616.3435584242
+
+
+[TOTAL_GCS_Copy].Count
+1662
+1662
+1662
+1662
+1662
+1662
+1662
+1662
+207
+207
+...
+207
+207
+207
+207
+207
+207
+207
+207
+207
+207
+
+
+[TOTAL_GC_TIME_Copy].Time(ms)
+1411
+1425
+1361
+1404
+1412
+1393
+1403
+1409
+160
+161
+...
+160
+161
+161
+160
+161
+159
+159
+161
+165
+161
+
+
+[TOTAL_GC_TIME_%_Copy].Time(%)
+0.1323429962792015
+0.13128292437550787
+0.07432179315933697
+0.13253385088242622
+0.1328592303762118
+0.1351634575452841
+0.13308291359570493
+0.1311467475327378
+0.01550160780738477
+0.015493536500751099
+...
+0.01592375705123867
+0.014998062362129612
+0.015266654402770375
+0.014965971123158717
+0.015271186874746864
+0.01623898889314439
+0.015083600142298115
+0.0158893861861032
+0.016997272195347076
+0.0155261683441679
+
+
+[TOTAL_GCS_MarkSweepCompact].Count
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+...
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+
+
+[TOTAL_GC_TIME_MarkSweepCompact].Time(ms)
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+...
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+
+
+[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%)
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+...
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+
+
+[TOTAL_GCs].Count
+1662
+1662
+1662
+1662
+1662
+1662
+1662
+1662
+207
+207
+...
+207
+207
+207
+207
+207
+207
+207
+207
+207
+207
+
+
+[TOTAL_GC_TIME].Time(ms)
+1411
+1425
+1361
+1404
+1412
+1393
+1403
+1409
+160
+161
+...
+160
+161
+161
+160
+161
+159
+159
+161
+165
+161
+
+
+[TOTAL_GC_TIME_%].Time(%)
+0.1323429962792015
+0.13128292437550787
+0.07432179315933697
+0.13253385088242622
+0.1328592303762118
+0.1351634575452841
+0.13308291359570493
+0.1311467475327378
+0.01550160780738477
+0.015493536500751099
+...
+0.01592375705123867
+0.014998062362129612
+0.015266654402770375
+0.014965971123158717
+0.015271186874746864
+0.01623898889314439
+0.015083600142298115
+0.0158893861861032
+0.016997272195347076
+0.0155261683441679
+
+
+[CLEANUP].Operations
+32
+32
+32
+32
+32
+32
+32
+32
+4
+4
+...
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+
+
+[CLEANUP].AverageLatency(us)
+95.4375
+95.0
+140.40625
+99.6875
+90.25
+86.625
+95.25
+95.5
+116.25
+162.0
+...
+123.75
+133.75
+128.5
+118.25
+109.25
+139.5
+142.5
+153.0
+104.75
+125.5
+
+
+[CLEANUP].MinLatency(us)
+57
+37
+32
+53
+47
+55
+54
+54
+61
+72
+...
+61
+76
+76
+62
+63
+104
+103
+105
+59
+62
+
+
+[CLEANUP].MaxLatency(us)
+186
+199
+692
+195
+199
+206
+214
+375
+187
+373
+...
+196
+217
+192
+200
+195
+212
+237
+287
+234
+260
+
+
+[CLEANUP].95thPercentileLatency(us)
+144
+154
+450
+140
+147
+132
+129
+115
+187
+373
+...
+196
+217
+192
+200
+195
+212
+237
+287
+234
+260
+
+
+[CLEANUP].99thPercentileLatency(us)
+186
+199
+692
+195
+199
+206
+214
+375
+187
+373
+...
+196
+217
+192
+200
+195
+212
+237
+287
+234
+260
+
+
+[INSERT].Operations
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+3750000
+3750000
+...
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+
+
+[INSERT].AverageLatency(us)
+1024.3594275
+1033.9956250666667
+835.0811325
+1019.0929389666667
+1042.6627607666667
+1032.8564868
+1039.4797652333334
+1031.2387599666667
+1071.3269501333334
+1064.0484906666666
+...
+1021.6099389333333
+1072.3814525333332
+1045.2016928
+1028.8221322666666
+1045.3850088
+1015.8059450666667
+1083.8865906666667
+1051.2896445333333
+991.6972021333333
+1022.2611192
+
+
+[INSERT].MinLatency(us)
+629
+636
+633
+630
+630
+629
+636
+630
+653
+687
+...
+645
+686
+632
+631
+639
+636
+689
+638
+638
+636
+
+
+[INSERT].MaxLatency(us)
+18612223
+24150015
+385791
+26443775
+23822335
+23887871
+23085055
+23478271
+23658495
+23658495
+...
+25804799
+25804799
+23363583
+23363583
+23363583
+23363583
+23363583
+23363583
+23363583
+23363583
+
+
+[INSERT].95thPercentileLatency(us)
+967
+945
+1025
+1018
+981
+967
+967
+959
+1034
+1015
+...
+943
+1009
+1000
+998
+1011
+919
+1001
+987
+914
+955
+
+
+[INSERT].99thPercentileLatency(us)
+1261
+1268
+1180
+1261
+1268
+1255
+1261
+1263
+1278
+1247
+...
+1173
+1306
+1229
+1251
+1238
+1164
+1246
+1220
+1162
+1198
+
+
+[INSERT].Return=OK
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+3750000
+3750000
+...
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+
+
+
+
36 rows Ă— 72 columns
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[12]:
+
+
+
+
+
+
+connection_pod
+PostgreSQL-32-8-16384-2
+PostgreSQL-32-8-16384-3
+PostgreSQL-32-8-16384-4
+PostgreSQL-32-8-16384-5
+PostgreSQL-32-8-16384-6
+PostgreSQL-32-8-16384-7
+PostgreSQL-32-8-16384-8
+PostgreSQL-32-8-16384-1
+PostgreSQL-32-8-32768-4
+PostgreSQL-32-8-32768-1
+...
+PostgreSQL-32-8-131072-6
+PostgreSQL-32-8-131072-7
+PostgreSQL-32-8-131072-1
+PostgreSQL-32-1-32768-1
+PostgreSQL-32-1-49152-1
+PostgreSQL-32-1-65536-1
+PostgreSQL-32-1-81920-1
+PostgreSQL-32-1-98304-1
+PostgreSQL-32-1-114688-1
+PostgreSQL-32-1-131072-1
+
+
+
+
+connection
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-32768
+PostgreSQL-32-8-32768
+...
+PostgreSQL-32-8-131072
+PostgreSQL-32-8-131072
+PostgreSQL-32-8-131072
+PostgreSQL-32-1-32768
+PostgreSQL-32-1-49152
+PostgreSQL-32-1-65536
+PostgreSQL-32-1-81920
+PostgreSQL-32-1-98304
+PostgreSQL-32-1-114688
+PostgreSQL-32-1-131072
+
+
+configuration
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-32768
+PostgreSQL-32-8-32768
+...
+PostgreSQL-32-8-131072
+PostgreSQL-32-8-131072
+PostgreSQL-32-8-131072
+PostgreSQL-32-1-32768
+PostgreSQL-32-1-49152
+PostgreSQL-32-1-65536
+PostgreSQL-32-1-81920
+PostgreSQL-32-1-98304
+PostgreSQL-32-1-114688
+PostgreSQL-32-1-131072
+
+
+experiment_run
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+...
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+
+
+client
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+...
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+
+
+pod
+gb9j5.sensor
+kjk85.sensor
+mskcx.sensor
+pcmmg.sensor
+pmr6w.sensor
+qmfjw.sensor
+xrrbk.sensor
+2hl8g.sensor
+lvlv2.sensor
+5m288.sensor
+...
+p6x48.sensor
+p9pwx.sensor
+2dbvt.sensor
+9fbk6.sensor
+gs5fb.sensor
+6hqzb.sensor
+nkd9n.sensor
+xzd7w.sensor
+tx5d5.sensor
+b9gzf.sensor
+
+
+pod_count
+8
+8
+8
+8
+8
+8
+8
+8
+8
+8
+...
+8
+8
+8
+1
+1
+1
+1
+1
+1
+1
+
+
+threads
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+...
+4
+4
+4
+32
+32
+32
+32
+32
+32
+32
+
+
+target
+2048
+2048
+2048
+2048
+2048
+2048
+2048
+2048
+4096
+4096
+...
+16384
+16384
+16384
+32768
+49152
+65536
+81920
+98304
+114688
+131072
+
+
+sf
+30
+30
+30
+30
+30
+30
+30
+30
+30
+30
+...
+30
+30
+30
+30
+30
+30
+30
+30
+30
+30
+
+
+workload
+a
+a
+a
+a
+a
+a
+a
+a
+a
+a
+...
+a
+a
+a
+a
+a
+a
+a
+a
+a
+a
+
+
+operations
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+...
+3750000
+3750000
+3750000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+
+
+batchsize
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+...
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+
+
+[OVERALL].RunTime(ms)
+1831208.0
+1831207.0
+1831193.0
+1831201.0
+1831203.0
+1831193.0
+1831197.0
+1831205.0
+1046118.0
+1070644.0
+...
+1044507.0
+1016913.0
+1019260.0
+1059352.0
+1062779.0
+1030604.0
+1054230.0
+1074369.0
+1066169.0
+1085442.0
+
+
+[OVERALL].Throughput(ops/sec)
+2047.828537
+2047.829656
+2047.845312
+2047.836365
+2047.834129
+2047.845312
+2047.840839
+2047.831892
+3584.681652
+3502.564811
+...
+3590.210501
+3687.631095
+3679.139768
+28319.198907
+28227.881808
+29109.143764
+28456.788367
+27923.367111
+28138.128195
+27638.510395
+
+
+[TOTAL_GCS_Copy].Count
+207
+207
+207
+207
+207
+207
+207
+207
+207
+206
+...
+207
+207
+207
+1662
+1662
+1662
+1662
+1662
+1662
+1662
+
+
+[TOTAL_GC_TIME_Copy].Time(ms)
+152
+158
+157
+153
+156
+156
+156
+157
+163
+166
+...
+161
+161
+159
+1404
+1412
+1393
+1403
+1409
+1411
+1425
+
+
+[TOTAL_GC_TIME_%_Copy].Time(%)
+0.008300531670897025
+0.008628188948600568
+0.008573645705286117
+0.008355172370482541
+0.008518989975442374
+0.008519036496972193
+0.008519017888299294
+0.008573589521653775
+0.015581416245586061
+0.015504686898726373
+...
+0.01541397041858025
+0.015832229502425476
+0.015599552616604203
+0.13253385088242622
+0.1328592303762118
+0.1351634575452841
+0.13308291359570493
+0.1311467475327378
+0.1323429962792015
+0.13128292437550787
+
+
+[TOTAL_GCS_MarkSweepCompact].Count
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+...
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+
+
+[TOTAL_GC_TIME_MarkSweepCompact].Time(ms)
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+...
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+
+
+[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%)
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+...
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+
+
+[TOTAL_GCs].Count
+207
+207
+207
+207
+207
+207
+207
+207
+207
+206
+...
+207
+207
+207
+1662
+1662
+1662
+1662
+1662
+1662
+1662
+
+
+[TOTAL_GC_TIME].Time(ms)
+152
+158
+157
+153
+156
+156
+156
+157
+163
+166
+...
+161
+161
+159
+1404
+1412
+1393
+1403
+1409
+1411
+1425
+
+
+[TOTAL_GC_TIME_%].Time(%)
+0.008300531670897025
+0.008628188948600568
+0.008573645705286117
+0.008355172370482541
+0.008518989975442374
+0.008519036496972193
+0.008519017888299294
+0.008573589521653775
+0.015581416245586061
+0.015504686898726373
+...
+0.01541397041858025
+0.015832229502425476
+0.015599552616604203
+0.13253385088242622
+0.1328592303762118
+0.1351634575452841
+0.13308291359570493
+0.1311467475327378
+0.1323429962792015
+0.13128292437550787
+
+
+[CLEANUP].Operations
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+...
+4
+4
+4
+32
+32
+32
+32
+32
+32
+32
+
+
+[CLEANUP].AverageLatency(us)
+115.25
+79.25
+84.25
+85.75
+82.25
+182.25
+83.0
+224.75
+220.25
+205.5
+...
+139.25
+116.5
+104.75
+99.6875
+90.25
+86.625
+95.25
+95.5
+95.4375
+95.0
+
+
+[CLEANUP].MinLatency(us)
+44.0
+33.0
+49.0
+45.0
+39.0
+113.0
+43.0
+49.0
+115.0
+65.0
+...
+62.0
+63.0
+60.0
+53.0
+47.0
+55.0
+54.0
+54.0
+57.0
+37.0
+
+
+[CLEANUP].MaxLatency(us)
+214.0
+187.0
+188.0
+191.0
+186.0
+251.0
+186.0
+423.0
+470.0
+506.0
+...
+207.0
+211.0
+214.0
+195.0
+199.0
+206.0
+214.0
+375.0
+186.0
+199.0
+
+
+[CLEANUP].95thPercentileLatency(us)
+214.0
+187.0
+188.0
+191.0
+186.0
+251.0
+186.0
+423.0
+470.0
+506.0
+...
+207.0
+211.0
+214.0
+140.0
+147.0
+132.0
+129.0
+115.0
+144.0
+154.0
+
+
+[CLEANUP].99thPercentileLatency(us)
+214.0
+187.0
+188.0
+191.0
+186.0
+251.0
+186.0
+423.0
+470.0
+506.0
+...
+207.0
+211.0
+214.0
+195.0
+199.0
+206.0
+214.0
+375.0
+186.0
+199.0
+
+
+[INSERT].Operations
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+...
+3750000
+3750000
+3750000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+
+
+[INSERT].AverageLatency(us)
+832.772679
+812.780115
+839.590646
+790.366524
+856.366943
+893.798743
+810.112466
+855.068822
+1008.154887
+1017.997042
+...
+1026.584293
+989.811878
+1018.979515
+1019.092939
+1042.662761
+1032.856487
+1039.479765
+1031.23876
+1024.359428
+1033.995625
+
+
+[INSERT].MinLatency(us)
+647.0
+646.0
+637.0
+646.0
+643.0
+650.0
+649.0
+643.0
+634.0
+635.0
+...
+637.0
+640.0
+640.0
+630.0
+630.0
+629.0
+636.0
+630.0
+629.0
+636.0
+
+
+[INSERT].MaxLatency(us)
+142975.0
+142975.0
+143103.0
+142975.0
+143231.0
+143231.0
+143103.0
+143103.0
+25477119.0
+25477119.0
+...
+22003711.0
+22003711.0
+22003711.0
+26443775.0
+23822335.0
+23887871.0
+23085055.0
+23478271.0
+18612223.0
+24150015.0
+
+
+[INSERT].95thPercentileLatency(us)
+1025.0
+977.0
+1034.0
+973.0
+1107.0
+1134.0
+1000.0
+1063.0
+984.0
+1027.0
+...
+1017.0
+939.0
+961.0
+1018.0
+981.0
+967.0
+967.0
+959.0
+967.0
+945.0
+
+
+[INSERT].99thPercentileLatency(us)
+1129.0
+1089.0
+1220.0
+1044.0
+1275.0
+1352.0
+1213.0
+1201.0
+1248.0
+1298.0
+...
+1254.0
+1149.0
+1203.0
+1261.0
+1268.0
+1255.0
+1261.0
+1263.0
+1261.0
+1268.0
+
+
+[INSERT].Return=OK
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+...
+3750000
+3750000
+3750000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+
+
+
+
36 rows Ă— 72 columns
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[15]:
+
+
+
+
+
+
+
+connection
+configuration
+experiment_run
+client
+pod
+pod_count
+threads
+target
+sf
+workload
+...
+[CLEANUP].MaxLatency(us)
+[CLEANUP].95thPercentileLatency(us)
+[CLEANUP].99thPercentileLatency(us)
+[INSERT].Operations
+[INSERT].AverageLatency(us)
+[INSERT].MinLatency(us)
+[INSERT].MaxLatency(us)
+[INSERT].95thPercentileLatency(us)
+[INSERT].99thPercentileLatency(us)
+[INSERT].Return=OK
+
+
+connection_pod
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+PostgreSQL-32-1-114688-1
+PostgreSQL-32-1-114688
+PostgreSQL-32-1-114688
+1
+0
+tx5d5.sensor
+1
+32
+114688
+30
+a
+...
+186
+144
+186
+30000000
+1024.3594275
+629
+18612223
+967
+1261
+30000000
+
+
+PostgreSQL-32-1-131072-1
+PostgreSQL-32-1-131072
+PostgreSQL-32-1-131072
+1
+0
+b9gzf.sensor
+1
+32
+131072
+30
+a
+...
+199
+154
+199
+30000000
+1033.9956250666667
+636
+24150015
+945
+1268
+30000000
+
+
+PostgreSQL-32-1-16384-1
+PostgreSQL-32-1-16384
+PostgreSQL-32-1-16384
+1
+0
+mr62r.sensor
+1
+32
+16384
+30
+a
+...
+692
+450
+692
+30000000
+835.0811325
+633
+385791
+1025
+1180
+30000000
+
+
+PostgreSQL-32-1-32768-1
+PostgreSQL-32-1-32768
+PostgreSQL-32-1-32768
+1
+0
+9fbk6.sensor
+1
+32
+32768
+30
+a
+...
+195
+140
+195
+30000000
+1019.0929389666667
+630
+26443775
+1018
+1261
+30000000
+
+
+PostgreSQL-32-1-49152-1
+PostgreSQL-32-1-49152
+PostgreSQL-32-1-49152
+1
+0
+gs5fb.sensor
+1
+32
+49152
+30
+a
+...
+199
+147
+199
+30000000
+1042.6627607666667
+630
+23822335
+981
+1268
+30000000
+
+
+PostgreSQL-32-1-65536-1
+PostgreSQL-32-1-65536
+PostgreSQL-32-1-65536
+1
+0
+6hqzb.sensor
+1
+32
+65536
+30
+a
+...
+206
+132
+206
+30000000
+1032.8564868
+629
+23887871
+967
+1255
+30000000
+
+
+PostgreSQL-32-1-81920-1
+PostgreSQL-32-1-81920
+PostgreSQL-32-1-81920
+1
+0
+nkd9n.sensor
+1
+32
+81920
+30
+a
+...
+214
+129
+214
+30000000
+1039.4797652333334
+636
+23085055
+967
+1261
+30000000
+
+
+PostgreSQL-32-1-98304-1
+PostgreSQL-32-1-98304
+PostgreSQL-32-1-98304
+1
+0
+xzd7w.sensor
+1
+32
+98304
+30
+a
+...
+375
+115
+375
+30000000
+1031.2387599666667
+630
+23478271
+959
+1263
+30000000
+
+
+PostgreSQL-32-8-114688-1
+PostgreSQL-32-8-114688
+PostgreSQL-32-8-114688
+1
+0
+5x62v.sensor
+8
+4
+14336
+30
+a
+...
+187
+187
+187
+3750000
+1071.3269501333334
+653
+23658495
+1034
+1278
+3750000
+
+
+PostgreSQL-32-8-114688-2
+PostgreSQL-32-8-114688
+PostgreSQL-32-8-114688
+1
+0
+7bc2c.sensor
+8
+4
+14336
+30
+a
+...
+373
+373
+373
+3750000
+1064.0484906666666
+687
+23658495
+1015
+1247
+3750000
+
+
+PostgreSQL-32-8-114688-3
+PostgreSQL-32-8-114688
+PostgreSQL-32-8-114688
+1
+0
+c7w5h.sensor
+8
+4
+14336
+30
+a
+...
+359
+359
+359
+3750000
+1062.6480872
+698
+23658495
+1068
+1321
+3750000
+
+
+PostgreSQL-32-8-114688-4
+PostgreSQL-32-8-114688
+PostgreSQL-32-8-114688
+1
+0
+dg57m.sensor
+8
+4
+14336
+30
+a
+...
+202
+202
+202
+3750000
+1054.2813354666666
+639
+23658495
+988
+1227
+3750000
+
+
+PostgreSQL-32-8-114688-5
+PostgreSQL-32-8-114688
+PostgreSQL-32-8-114688
+1
+0
+dn5vx.sensor
+8
+4
+14336
+30
+a
+...
+448
+448
+448
+3750000
+1046.1617666666666
+634
+23658495
+1002
+1243
+3750000
+
+
+PostgreSQL-32-8-114688-6
+PostgreSQL-32-8-114688
+PostgreSQL-32-8-114688
+1
+0
+hkqrv.sensor
+8
+4
+14336
+30
+a
+...
+200
+200
+200
+3750000
+1015.1118
+643
+23658495
+915
+1154
+3750000
+
+
+PostgreSQL-32-8-114688-7
+PostgreSQL-32-8-114688
+PostgreSQL-32-8-114688
+1
+0
+qbf55.sensor
+8
+4
+14336
+30
+a
+...
+217
+217
+217
+3750000
+979.8143810666667
+629
+23658495
+930
+1164
+3750000
+
+
+PostgreSQL-32-8-114688-8
+PostgreSQL-32-8-114688
+PostgreSQL-32-8-114688
+1
+0
+sr6t8.sensor
+8
+4
+14336
+30
+a
+...
+195
+195
+195
+3750000
+1062.6591456
+682
+23658495
+1034
+1260
+3750000
+
+
+PostgreSQL-32-8-131072-1
+PostgreSQL-32-8-131072
+PostgreSQL-32-8-131072
+1
+0
+2dbvt.sensor
+8
+4
+16384
+30
+a
+...
+214
+214
+214
+3750000
+1018.9795154666666
+640
+22003711
+961
+1203
+3750000
+
+
+PostgreSQL-32-8-131072-2
+PostgreSQL-32-8-131072
+PostgreSQL-32-8-131072
+1
+0
+2vfvb.sensor
+8
+4
+16384
+30
+a
+...
+193
+193
+193
+3750000
+1037.8515736
+632
+22003711
+950
+1194
+3750000
+
+
+PostgreSQL-32-8-131072-3
+PostgreSQL-32-8-131072
+PostgreSQL-32-8-131072
+1
+0
+5qftv.sensor
+8
+4
+16384
+30
+a
+...
+368
+368
+368
+3750000
+1108.4157389333334
+642
+22003711
+1077
+1333
+3750000
+
+
+PostgreSQL-32-8-131072-4
+PostgreSQL-32-8-131072
+PostgreSQL-32-8-131072
+1
+0
+fwkgs.sensor
+8
+4
+16384
+30
+a
+...
+336
+336
+336
+3750000
+1011.0584301333333
+635
+22003711
+1018
+1246
+3750000
+
+
+PostgreSQL-32-8-131072-5
+PostgreSQL-32-8-131072
+PostgreSQL-32-8-131072
+1
+0
+n8gtm.sensor
+8
+4
+16384
+30
+a
+...
+266
+266
+266
+3750000
+971.4101096
+636
+22003711
+851
+1042
+3750000
+
+
+PostgreSQL-32-8-131072-6
+PostgreSQL-32-8-131072
+PostgreSQL-32-8-131072
+1
+0
+p6x48.sensor
+8
+4
+16384
+30
+a
+...
+207
+207
+207
+3750000
+1026.5842928
+637
+22003711
+1017
+1254
+3750000
+
+
+PostgreSQL-32-8-131072-7
+PostgreSQL-32-8-131072
+PostgreSQL-32-8-131072
+1
+0
+p9pwx.sensor
+8
+4
+16384
+30
+a
+...
+211
+211
+211
+3750000
+989.8118778666667
+640
+22003711
+939
+1149
+3750000
+
+
+PostgreSQL-32-8-131072-8
+PostgreSQL-32-8-131072
+PostgreSQL-32-8-131072
+1
+0
+vjc59.sensor
+8
+4
+16384
+30
+a
+...
+279
+279
+279
+3750000
+1058.5769722666666
+636
+22003711
+965
+1194
+3750000
+
+
+PostgreSQL-32-8-16384-1
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-16384
+1
+0
+2hl8g.sensor
+8
+4
+2048
+30
+a
+...
+423
+423
+423
+3750000
+855.0688224
+643
+143103
+1063
+1201
+3750000
+
+
+PostgreSQL-32-8-16384-2
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-16384
+1
+0
+gb9j5.sensor
+8
+4
+2048
+30
+a
+...
+214
+214
+214
+3750000
+832.7726792
+647
+142975
+1025
+1129
+3750000
+
+
+PostgreSQL-32-8-16384-3
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-16384
+1
+0
+kjk85.sensor
+8
+4
+2048
+30
+a
+...
+187
+187
+187
+3750000
+812.7801149333334
+646
+142975
+977
+1089
+3750000
+
+
+PostgreSQL-32-8-16384-4
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-16384
+1
+0
+mskcx.sensor
+8
+4
+2048
+30
+a
+...
+188
+188
+188
+3750000
+839.5906464
+637
+143103
+1034
+1220
+3750000
+
+
+PostgreSQL-32-8-16384-5
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-16384
+1
+0
+pcmmg.sensor
+8
+4
+2048
+30
+a
+...
+191
+191
+191
+3750000
+790.3665242666667
+646
+142975
+973
+1044
+3750000
+
+
+PostgreSQL-32-8-16384-6
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-16384
+1
+0
+pmr6w.sensor
+8
+4
+2048
+30
+a
+...
+186
+186
+186
+3750000
+856.3669426666667
+643
+143231
+1107
+1275
+3750000
+
+
+PostgreSQL-32-8-16384-7
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-16384
+1
+0
+qmfjw.sensor
+8
+4
+2048
+30
+a
+...
+251
+251
+251
+3750000
+893.7987432
+650
+143231
+1134
+1352
+3750000
+
+
+PostgreSQL-32-8-16384-8
+PostgreSQL-32-8-16384
+PostgreSQL-32-8-16384
+1
+0
+xrrbk.sensor
+8
+4
+2048
+30
+a
+...
+186
+186
+186
+3750000
+810.1124664
+649
+143103
+1000
+1213
+3750000
+
+
+PostgreSQL-32-8-32768-1
+PostgreSQL-32-8-32768
+PostgreSQL-32-8-32768
+1
+0
+5m288.sensor
+8
+4
+4096
+30
+a
+...
+506
+506
+506
+3750000
+1017.9970421333334
+635
+25477119
+1027
+1298
+3750000
+
+
+PostgreSQL-32-8-32768-2
+PostgreSQL-32-8-32768
+PostgreSQL-32-8-32768
+1
+0
+dxlcv.sensor
+8
+4
+4096
+30
+a
+...
+217
+217
+217
+3750000
+1018.7530533333334
+642
+25477119
+991
+1275
+3750000
+
+
+PostgreSQL-32-8-32768-3
+PostgreSQL-32-8-32768
+PostgreSQL-32-8-32768
+1
+0
+j97qc.sensor
+8
+4
+4096
+30
+a
+...
+190
+190
+190
+3750000
+1013.7664738666666
+641
+25477119
+987
+1317
+3750000
+
+
+PostgreSQL-32-8-32768-4
+PostgreSQL-32-8-32768
+PostgreSQL-32-8-32768
+1
+0
+lvlv2.sensor
+8
+4
+4096
+30
+a
+...
+470
+470
+470
+3750000
+1008.1548872
+634
+25477119
+984
+1248
+3750000
+
+
+PostgreSQL-32-8-32768-5
+PostgreSQL-32-8-32768
+PostgreSQL-32-8-32768
+1
+0
+nzswp.sensor
+8
+4
+4096
+30
+a
+...
+192
+192
+192
+3750000
+1050.2617424
+641
+25477119
+1024
+1342
+3750000
+
+
+PostgreSQL-32-8-32768-6
+PostgreSQL-32-8-32768
+PostgreSQL-32-8-32768
+1
+0
+qk7pg.sensor
+8
+4
+4096
+30
+a
+...
+204
+204
+204
+3750000
+982.0317464
+635
+25477119
+959
+1140
+3750000
+
+
+PostgreSQL-32-8-32768-7
+PostgreSQL-32-8-32768
+PostgreSQL-32-8-32768
+1
+0
+thvmb.sensor
+8
+4
+4096
+30
+a
+...
+194
+194
+194
+3750000
+1003.5151149333333
+634
+25477119
+993
+1229
+3750000
+
+
+PostgreSQL-32-8-32768-8
+PostgreSQL-32-8-32768
+PostgreSQL-32-8-32768
+1
+0
+vbs9b.sensor
+8
+4
+4096
+30
+a
+...
+474
+474
+474
+3750000
+1025.1049664
+643
+25477119
+1007
+1229
+3750000
+
+
+PostgreSQL-32-8-49152-1
+PostgreSQL-32-8-49152
+PostgreSQL-32-8-49152
+1
+0
+7fnlv.sensor
+8
+4
+6144
+30
+a
+...
+373
+373
+373
+3750000
+1041.5667581333332
+636
+23117823
+938
+1178
+3750000
+
+
+PostgreSQL-32-8-49152-2
+PostgreSQL-32-8-49152
+PostgreSQL-32-8-49152
+1
+0
+8pcnm.sensor
+8
+4
+6144
+30
+a
+...
+213
+213
+213
+3750000
+1032.7283445333333
+640
+23101439
+889
+1153
+3750000
+
+
+PostgreSQL-32-8-49152-3
+PostgreSQL-32-8-49152
+PostgreSQL-32-8-49152
+1
+0
+9kkpj.sensor
+8
+4
+6144
+30
+a
+...
+189
+189
+189
+3750000
+1058.0164234666668
+640
+23117823
+946
+1239
+3750000
+
+
+PostgreSQL-32-8-49152-4
+PostgreSQL-32-8-49152
+PostgreSQL-32-8-49152
+1
+0
+jlvdb.sensor
+8
+4
+6144
+30
+a
+...
+190
+190
+190
+3750000
+1018.2560928
+636
+23101439
+912
+1162
+3750000
+
+
+PostgreSQL-32-8-49152-5
+PostgreSQL-32-8-49152
+PostgreSQL-32-8-49152
+1
+0
+m7bxp.sensor
+8
+4
+6144
+30
+a
+...
+198
+198
+198
+3750000
+1020.9561941333334
+633
+23101439
+862
+1116
+3750000
+
+
+PostgreSQL-32-8-49152-6
+PostgreSQL-32-8-49152
+PostgreSQL-32-8-49152
+1
+0
+s229l.sensor
+8
+4
+6144
+30
+a
+...
+210
+210
+210
+3750000
+1035.5929082666667
+639
+23101439
+930
+1207
+3750000
+
+
+PostgreSQL-32-8-49152-7
+PostgreSQL-32-8-49152
+PostgreSQL-32-8-49152
+1
+0
+sb97n.sensor
+8
+4
+6144
+30
+a
+...
+222
+222
+222
+3750000
+1074.3827728
+649
+23101439
+964
+1237
+3750000
+
+
+PostgreSQL-32-8-49152-8
+PostgreSQL-32-8-49152
+PostgreSQL-32-8-49152
+1
+0
+x2j79.sensor
+8
+4
+6144
+30
+a
+...
+205
+205
+205
+3750000
+1011.5114624
+630
+23101439
+859
+1105
+3750000
+
+
+PostgreSQL-32-8-65536-1
+PostgreSQL-32-8-65536
+PostgreSQL-32-8-65536
+1
+0
+42qlk.sensor
+8
+4
+8192
+30
+a
+...
+210
+210
+210
+3750000
+996.8832234666667
+630
+22495231
+990
+1205
+3750000
+
+
+PostgreSQL-32-8-65536-2
+PostgreSQL-32-8-65536
+PostgreSQL-32-8-65536
+1
+0
+5dqdh.sensor
+8
+4
+8192
+30
+a
+...
+404
+404
+404
+3750000
+1075.0937845333333
+702
+22495231
+1048
+1269
+3750000
+
+
+PostgreSQL-32-8-65536-3
+PostgreSQL-32-8-65536
+PostgreSQL-32-8-65536
+1
+0
+66dgh.sensor
+8
+4
+8192
+30
+a
+...
+436
+436
+436
+3750000
+983.9162618666667
+637
+22495231
+942
+1171
+3750000
+
+
+PostgreSQL-32-8-65536-4
+PostgreSQL-32-8-65536
+PostgreSQL-32-8-65536
+1
+0
+6778k.sensor
+8
+4
+8192
+30
+a
+...
+373
+373
+373
+3750000
+1075.2453562666667
+651
+22495231
+1070
+1293
+3750000
+
+
+PostgreSQL-32-8-65536-5
+PostgreSQL-32-8-65536
+PostgreSQL-32-8-65536
+1
+0
+6vllq.sensor
+8
+4
+8192
+30
+a
+...
+354
+354
+354
+3750000
+1086.0009186666666
+650
+22495231
+1105
+1350
+3750000
+
+
+PostgreSQL-32-8-65536-6
+PostgreSQL-32-8-65536
+PostgreSQL-32-8-65536
+1
+0
+d8z5q.sensor
+8
+4
+8192
+30
+a
+...
+251
+251
+251
+3750000
+1005.459416
+642
+22495231
+970
+1191
+3750000
+
+
+PostgreSQL-32-8-65536-7
+PostgreSQL-32-8-65536
+PostgreSQL-32-8-65536
+1
+0
+k8drx.sensor
+8
+4
+8192
+30
+a
+...
+230
+230
+230
+3750000
+987.9829925333333
+635
+22495231
+985
+1216
+3750000
+
+
+PostgreSQL-32-8-65536-8
+PostgreSQL-32-8-65536
+PostgreSQL-32-8-65536
+1
+0
+m4t2w.sensor
+8
+4
+8192
+30
+a
+...
+210
+210
+210
+3750000
+1054.6162472
+696
+22495231
+1030
+1261
+3750000
+
+
+PostgreSQL-32-8-81920-1
+PostgreSQL-32-8-81920
+PostgreSQL-32-8-81920
+1
+0
+2gmfh.sensor
+8
+4
+10240
+30
+a
+...
+205
+205
+205
+3750000
+1040.1317130666666
+630
+25804799
+943
+1197
+3750000
+
+
+PostgreSQL-32-8-81920-2
+PostgreSQL-32-8-81920
+PostgreSQL-32-8-81920
+1
+0
+7nlbl.sensor
+8
+4
+10240
+30
+a
+...
+221
+221
+221
+3750000
+995.7930290666667
+632
+25804799
+901
+1142
+3750000
+
+
+PostgreSQL-32-8-81920-3
+PostgreSQL-32-8-81920
+PostgreSQL-32-8-81920
+1
+0
+b2bbf.sensor
+8
+4
+10240
+30
+a
+...
+185
+185
+185
+3750000
+1064.0971224
+686
+25804799
+996
+1243
+3750000
+
+
+PostgreSQL-32-8-81920-4
+PostgreSQL-32-8-81920
+PostgreSQL-32-8-81920
+1
+0
+lc56j.sensor
+8
+4
+10240
+30
+a
+...
+284
+284
+284
+3750000
+1005.0607568
+630
+25804799
+941
+1161
+3750000
+
+
+PostgreSQL-32-8-81920-5
+PostgreSQL-32-8-81920
+PostgreSQL-32-8-81920
+1
+0
+lccsk.sensor
+8
+4
+10240
+30
+a
+...
+209
+209
+209
+3750000
+1023.3424666666666
+631
+25804799
+943
+1185
+3750000
+
+
+PostgreSQL-32-8-81920-6
+PostgreSQL-32-8-81920
+PostgreSQL-32-8-81920
+1
+0
+nqq5s.sensor
+8
+4
+10240
+30
+a
+...
+259
+259
+259
+3750000
+1071.9134168
+682
+25804799
+1012
+1253
+3750000
+
+
+PostgreSQL-32-8-81920-7
+PostgreSQL-32-8-81920
+PostgreSQL-32-8-81920
+1
+0
+qpc6h.sensor
+8
+4
+10240
+30
+a
+...
+196
+196
+196
+3750000
+1021.6099389333333
+645
+25804799
+943
+1173
+3750000
+
+
+PostgreSQL-32-8-81920-8
+PostgreSQL-32-8-81920
+PostgreSQL-32-8-81920
+1
+0
+vtqn4.sensor
+8
+4
+10240
+30
+a
+...
+217
+217
+217
+3750000
+1072.3814525333332
+686
+25804799
+1009
+1306
+3750000
+
+
+PostgreSQL-32-8-98304-1
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+1
+0
+6xx8q.sensor
+8
+4
+12288
+30
+a
+...
+192
+192
+192
+3750000
+1045.2016928
+632
+23363583
+1000
+1229
+3750000
+
+
+PostgreSQL-32-8-98304-2
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+1
+0
+ghmf9.sensor
+8
+4
+12288
+30
+a
+...
+200
+200
+200
+3750000
+1028.8221322666666
+631
+23363583
+998
+1251
+3750000
+
+
+PostgreSQL-32-8-98304-3
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+1
+0
+gqw9m.sensor
+8
+4
+12288
+30
+a
+...
+195
+195
+195
+3750000
+1045.3850088
+639
+23363583
+1011
+1238
+3750000
+
+
+PostgreSQL-32-8-98304-4
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+1
+0
+jln48.sensor
+8
+4
+12288
+30
+a
+...
+212
+212
+212
+3750000
+1015.8059450666667
+636
+23363583
+919
+1164
+3750000
+
+
+PostgreSQL-32-8-98304-5
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+1
+0
+n9xct.sensor
+8
+4
+12288
+30
+a
+...
+237
+237
+237
+3750000
+1083.8865906666667
+689
+23363583
+1001
+1246
+3750000
+
+
+PostgreSQL-32-8-98304-6
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+1
+0
+p78x4.sensor
+8
+4
+12288
+30
+a
+...
+287
+287
+287
+3750000
+1051.2896445333333
+638
+23363583
+987
+1220
+3750000
+
+
+PostgreSQL-32-8-98304-7
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+1
+0
+s4t2s.sensor
+8
+4
+12288
+30
+a
+...
+234
+234
+234
+3750000
+991.6972021333333
+638
+23363583
+914
+1162
+3750000
+
+
+PostgreSQL-32-8-98304-8
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+1
+0
+zklhx.sensor
+8
+4
+12288
+30
+a
+...
+260
+260
+260
+3750000
+1022.2611192
+636
+23363583
+955
+1198
+3750000
+
+
+
+
72 rows Ă— 36 columns
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[16]:
+
+
+
+
+
+
+
+PostgreSQL-32-1-16384
+PostgreSQL-32-8-16384
+PostgreSQL-32-1-32768
+PostgreSQL-32-8-32768
+PostgreSQL-32-1-49152
+PostgreSQL-32-8-49152
+PostgreSQL-32-1-65536
+PostgreSQL-32-8-65536
+PostgreSQL-32-1-81920
+PostgreSQL-32-8-81920
+PostgreSQL-32-1-98304
+PostgreSQL-32-8-98304
+PostgreSQL-32-1-114688
+PostgreSQL-32-8-114688
+PostgreSQL-32-1-131072
+PostgreSQL-32-8-131072
+
+
+
+
+connection
+PostgreSQL-32-1-16384
+PostgreSQL-32-8-16384
+PostgreSQL-32-1-32768
+PostgreSQL-32-8-32768
+PostgreSQL-32-1-49152
+PostgreSQL-32-8-49152
+PostgreSQL-32-1-65536
+PostgreSQL-32-8-65536
+PostgreSQL-32-1-81920
+PostgreSQL-32-8-81920
+PostgreSQL-32-1-98304
+PostgreSQL-32-8-98304
+PostgreSQL-32-1-114688
+PostgreSQL-32-8-114688
+PostgreSQL-32-1-131072
+PostgreSQL-32-8-131072
+
+
+configuration
+PostgreSQL-32-1-16384
+PostgreSQL-32-8-16384
+PostgreSQL-32-1-32768
+PostgreSQL-32-8-32768
+PostgreSQL-32-1-49152
+PostgreSQL-32-8-49152
+PostgreSQL-32-1-65536
+PostgreSQL-32-8-65536
+PostgreSQL-32-1-81920
+PostgreSQL-32-8-81920
+PostgreSQL-32-1-98304
+PostgreSQL-32-8-98304
+PostgreSQL-32-1-114688
+PostgreSQL-32-8-114688
+PostgreSQL-32-1-131072
+PostgreSQL-32-8-131072
+
+
+experiment_run
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+
+
+client
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+
+
+pod
+mr62r.sensor
+2hl8g.sensorgb9j5.sensorkjk85.sensormskcx.sensorpcmmg.sensorpmr6w.sensorqmfjw.sensorxrrbk.sensor
+9fbk6.sensor
+5m288.sensordxlcv.sensorj97qc.sensorlvlv2.sensornzswp.sensorqk7pg.sensorthvmb.sensorvbs9b.sensor
+gs5fb.sensor
+7fnlv.sensor8pcnm.sensor9kkpj.sensorjlvdb.sensorm7bxp.sensors229l.sensorsb97n.sensorx2j79.sensor
+6hqzb.sensor
+42qlk.sensor5dqdh.sensor66dgh.sensor6778k.sensor6vllq.sensord8z5q.sensork8drx.sensorm4t2w.sensor
+nkd9n.sensor
+2gmfh.sensor7nlbl.sensorb2bbf.sensorlc56j.sensorlccsk.sensornqq5s.sensorqpc6h.sensorvtqn4.sensor
+xzd7w.sensor
+6xx8q.sensorghmf9.sensorgqw9m.sensorjln48.sensorn9xct.sensorp78x4.sensors4t2s.sensorzklhx.sensor
+tx5d5.sensor
+5x62v.sensor7bc2c.sensorc7w5h.sensordg57m.sensordn5vx.sensorhkqrv.sensorqbf55.sensorsr6t8.sensor
+b9gzf.sensor
+2dbvt.sensor2vfvb.sensor5qftv.sensorfwkgs.sensorn8gtm.sensorp6x48.sensorp9pwx.sensorvjc59.sensor
+
+
+pod_count
+1
+8
+1
+8
+1
+8
+1
+8
+1
+8
+1
+8
+1
+8
+1
+8
+
+
+threads
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+
+
+target
+16384
+16384
+32768
+32768
+49152
+49152
+65536
+65536
+81920
+81920
+98304
+98304
+114688
+114688
+131072
+131072
+
+
+sf
+30
+30
+30
+30
+30
+30
+30
+30
+30
+30
+30
+30
+30
+30
+30
+30
+
+
+workload
+a
+a
+a
+a
+a
+a
+a
+a
+a
+a
+a
+a
+a
+a
+a
+a
+
+
+operations
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+
+
+batchsize
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+
+
+[OVERALL].RunTime(ms)
+1831226.0
+1831208.0
+1059352.0
+1070644.0
+1062779.0
+1050521.0
+1030604.0
+1092327.0
+1054230.0
+1073472.0
+1074369.0
+1069092.0
+1066169.0
+1124981.0
+1085442.0
+1090990.0
+
+
+[OVERALL].Throughput(ops/sec)
+16382.467265
+16382.692041
+28319.198907
+28713.344934
+28227.881808
+29561.928753
+29109.143764
+28917.241547
+28456.788367
+29461.21192
+27923.367111
+29188.20774
+28138.128195
+29163.003574
+27638.510395
+29215.760305
+
+
+[CLEANUP].Operations
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+
+
+[CLEANUP].AverageLatency(us)
+140.40625
+117.09375
+99.6875
+153.375
+90.25
+129.1875
+86.625
+145.40625
+95.25
+130.4375
+95.5
+127.65625
+95.4375
+133.0
+95.0
+135.25
+
+
+[CLEANUP].MinLatency(us)
+32.0
+33.0
+53.0
+60.0
+47.0
+56.0
+55.0
+57.0
+54.0
+58.0
+54.0
+59.0
+57.0
+60.0
+37.0
+60.0
+
+
+[CLEANUP].MaxLatency(us)
+692.0
+423.0
+195.0
+506.0
+199.0
+373.0
+206.0
+436.0
+214.0
+284.0
+375.0
+287.0
+186.0
+448.0
+199.0
+368.0
+
+
+[CLEANUP].95thPercentileLatency(us)
+450.0
+423.0
+140.0
+506.0
+147.0
+373.0
+132.0
+436.0
+129.0
+284.0
+115.0
+287.0
+144.0
+448.0
+154.0
+368.0
+
+
+[CLEANUP].99thPercentileLatency(us)
+692.0
+423.0
+195.0
+506.0
+199.0
+373.0
+206.0
+436.0
+214.0
+284.0
+375.0
+287.0
+186.0
+448.0
+199.0
+368.0
+
+
+[INSERT].Operations
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+
+
+[INSERT].AverageLatency(us)
+835.081132
+836.357117
+1019.092939
+1014.948128
+1042.662761
+1036.62637
+1032.856487
+1033.149775
+1039.479765
+1036.791237
+1031.23876
+1035.543667
+1024.359428
+1044.506495
+1033.995625
+1027.836064
+
+
+[INSERT].MinLatency(us)
+633.0
+637.0
+630.0
+634.0
+630.0
+630.0
+629.0
+630.0
+636.0
+630.0
+630.0
+631.0
+629.0
+629.0
+636.0
+632.0
+
+
+[INSERT].MaxLatency(us)
+385791.0
+143231.0
+26443775.0
+25477119.0
+23822335.0
+23117823.0
+23887871.0
+22495231.0
+23085055.0
+25804799.0
+23478271.0
+23363583.0
+18612223.0
+23658495.0
+24150015.0
+22003711.0
+
+
+[INSERT].95thPercentileLatency(us)
+1025.0
+1134.0
+1018.0
+1027.0
+981.0
+964.0
+967.0
+1105.0
+967.0
+1012.0
+959.0
+1011.0
+967.0
+1068.0
+945.0
+1077.0
+
+
+[INSERT].99thPercentileLatency(us)
+1180.0
+1352.0
+1261.0
+1342.0
+1268.0
+1239.0
+1255.0
+1350.0
+1261.0
+1306.0
+1263.0
+1251.0
+1261.0
+1321.0
+1268.0
+1333.0
+
+
+[INSERT].Return=OK
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[17]:
+
+
+
+
+
+
+
+
+experiment_run
+client
+pod_count
+threads
+target
+sf
+operations
+batchsize
+[OVERALL].RunTime(ms)
+[OVERALL].Throughput(ops/sec)
+...
+[CLEANUP].MaxLatency(us)
+[CLEANUP].95thPercentileLatency(us)
+[CLEANUP].99thPercentileLatency(us)
+[INSERT].Operations
+[INSERT].AverageLatency(us)
+[INSERT].MinLatency(us)
+[INSERT].MaxLatency(us)
+[INSERT].95thPercentileLatency(us)
+[INSERT].99thPercentileLatency(us)
+[INSERT].Return=OK
+
+
+connection
+pod
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+PostgreSQL-32-1-114688
+tx5d5.sensor
+1
+0
+1
+32
+114688
+30
+30000000
+-1
+1066169.0
+28138.128195
+...
+186.0
+144.0
+186.0
+30000000
+1024.359428
+629.0
+18612223.0
+967.0
+1261.0
+30000000
+
+
+PostgreSQL-32-1-131072
+b9gzf.sensor
+1
+0
+1
+32
+131072
+30
+30000000
+-1
+1085442.0
+27638.510395
+...
+199.0
+154.0
+199.0
+30000000
+1033.995625
+636.0
+24150015.0
+945.0
+1268.0
+30000000
+
+
+PostgreSQL-32-1-16384
+mr62r.sensor
+1
+0
+1
+32
+16384
+30
+30000000
+-1
+1831226.0
+16382.467265
+...
+692.0
+450.0
+692.0
+30000000
+835.081132
+633.0
+385791.0
+1025.0
+1180.0
+30000000
+
+
+PostgreSQL-32-1-32768
+9fbk6.sensor
+1
+0
+1
+32
+32768
+30
+30000000
+-1
+1059352.0
+28319.198907
+...
+195.0
+140.0
+195.0
+30000000
+1019.092939
+630.0
+26443775.0
+1018.0
+1261.0
+30000000
+
+
+PostgreSQL-32-1-49152
+gs5fb.sensor
+1
+0
+1
+32
+49152
+30
+30000000
+-1
+1062779.0
+28227.881808
+...
+199.0
+147.0
+199.0
+30000000
+1042.662761
+630.0
+23822335.0
+981.0
+1268.0
+30000000
+
+
+PostgreSQL-32-1-65536
+6hqzb.sensor
+1
+0
+1
+32
+65536
+30
+30000000
+-1
+1030604.0
+29109.143764
+...
+206.0
+132.0
+206.0
+30000000
+1032.856487
+629.0
+23887871.0
+967.0
+1255.0
+30000000
+
+
+PostgreSQL-32-1-81920
+nkd9n.sensor
+1
+0
+1
+32
+81920
+30
+30000000
+-1
+1054230.0
+28456.788367
+...
+214.0
+129.0
+214.0
+30000000
+1039.479765
+636.0
+23085055.0
+967.0
+1261.0
+30000000
+
+
+PostgreSQL-32-1-98304
+xzd7w.sensor
+1
+0
+1
+32
+98304
+30
+30000000
+-1
+1074369.0
+27923.367111
+...
+375.0
+115.0
+375.0
+30000000
+1031.238760
+630.0
+23478271.0
+959.0
+1263.0
+30000000
+
+
+PostgreSQL-32-8-114688
+5x62v.sensor
+1
+0
+8
+4
+14336
+30
+3750000
+-1
+1032151.0
+3633.189330
+...
+187.0
+187.0
+187.0
+3750000
+1071.326950
+653.0
+23658495.0
+1034.0
+1278.0
+3750000
+
+
+7bc2c.sensor
+1
+0
+8
+4
+14336
+30
+3750000
+-1
+1039143.0
+3608.742974
+...
+373.0
+373.0
+373.0
+3750000
+1064.048491
+687.0
+23658495.0
+1015.0
+1247.0
+3750000
+
+
+c7w5h.sensor
+1
+0
+8
+4
+14336
+30
+3750000
+-1
+1124981.0
+3333.389631
+...
+359.0
+359.0
+359.0
+3750000
+1062.648087
+698.0
+23658495.0
+1068.0
+1321.0
+3750000
+
+
+dg57m.sensor
+1
+0
+8
+4
+14336
+30
+3750000
+-1
+1018860.0
+3680.584182
+...
+202.0
+202.0
+202.0
+3750000
+1054.281335
+639.0
+23658495.0
+988.0
+1227.0
+3750000
+
+
+dn5vx.sensor
+1
+0
+8
+4
+14336
+30
+3750000
+-1
+991561.0
+3781.915586
+...
+448.0
+448.0
+448.0
+3750000
+1046.161767
+634.0
+23658495.0
+1002.0
+1243.0
+3750000
+
+
+hkqrv.sensor
+1
+0
+8
+4
+14336
+30
+3750000
+-1
+990135.0
+3787.362329
+...
+200.0
+200.0
+200.0
+3750000
+1015.111800
+643.0
+23658495.0
+915.0
+1154.0
+3750000
+
+
+qbf55.sensor
+1
+0
+8
+4
+14336
+30
+3750000
+-1
+989158.0
+3791.103140
+...
+217.0
+217.0
+217.0
+3750000
+979.814381
+629.0
+23658495.0
+930.0
+1164.0
+3750000
+
+
+sr6t8.sensor
+1
+0
+8
+4
+14336
+30
+3750000
+-1
+1057316.0
+3546.716403
+...
+195.0
+195.0
+195.0
+3750000
+1062.659146
+682.0
+23658495.0
+1034.0
+1260.0
+3750000
+
+
+PostgreSQL-32-8-131072
+2dbvt.sensor
+1
+0
+8
+4
+16384
+30
+3750000
+-1
+1019260.0
+3679.139768
+...
+214.0
+214.0
+214.0
+3750000
+1018.979515
+640.0
+22003711.0
+961.0
+1203.0
+3750000
+
+
+2vfvb.sensor
+1
+0
+8
+4
+16384
+30
+3750000
+-1
+999208.0
+3752.972354
+...
+193.0
+193.0
+193.0
+3750000
+1037.851574
+632.0
+22003711.0
+950.0
+1194.0
+3750000
+
+
+5qftv.sensor
+1
+0
+8
+4
+16384
+30
+3750000
+-1
+1085177.0
+3455.657464
+...
+368.0
+368.0
+368.0
+3750000
+1108.415739
+642.0
+22003711.0
+1077.0
+1333.0
+3750000
+
+
+fwkgs.sensor
+1
+0
+8
+4
+16384
+30
+3750000
+-1
+1090990.0
+3437.245071
+...
+336.0
+336.0
+336.0
+3750000
+1011.058430
+635.0
+22003711.0
+1018.0
+1246.0
+3750000
+
+
+n8gtm.sensor
+1
+0
+8
+4
+16384
+30
+3750000
+-1
+959749.0
+3907.271589
+...
+266.0
+266.0
+266.0
+3750000
+971.410110
+636.0
+22003711.0
+851.0
+1042.0
+3750000
+
+
+p6x48.sensor
+1
+0
+8
+4
+16384
+30
+3750000
+-1
+1044507.0
+3590.210501
+...
+207.0
+207.0
+207.0
+3750000
+1026.584293
+637.0
+22003711.0
+1017.0
+1254.0
+3750000
+
+
+p9pwx.sensor
+1
+0
+8
+4
+16384
+30
+3750000
+-1
+1016913.0
+3687.631095
+...
+211.0
+211.0
+211.0
+3750000
+989.811878
+640.0
+22003711.0
+939.0
+1149.0
+3750000
+
+
+vjc59.sensor
+1
+0
+8
+4
+16384
+30
+3750000
+-1
+1011973.0
+3705.632463
+...
+279.0
+279.0
+279.0
+3750000
+1058.576972
+636.0
+22003711.0
+965.0
+1194.0
+3750000
+
+
+PostgreSQL-32-8-16384
+2hl8g.sensor
+1
+0
+8
+4
+2048
+30
+3750000
+-1
+1831205.0
+2047.831892
+...
+423.0
+423.0
+423.0
+3750000
+855.068822
+643.0
+143103.0
+1063.0
+1201.0
+3750000
+
+
+gb9j5.sensor
+1
+0
+8
+4
+2048
+30
+3750000
+-1
+1831208.0
+2047.828537
+...
+214.0
+214.0
+214.0
+3750000
+832.772679
+647.0
+142975.0
+1025.0
+1129.0
+3750000
+
+
+kjk85.sensor
+1
+0
+8
+4
+2048
+30
+3750000
+-1
+1831207.0
+2047.829656
+...
+187.0
+187.0
+187.0
+3750000
+812.780115
+646.0
+142975.0
+977.0
+1089.0
+3750000
+
+
+mskcx.sensor
+1
+0
+8
+4
+2048
+30
+3750000
+-1
+1831193.0
+2047.845312
+...
+188.0
+188.0
+188.0
+3750000
+839.590646
+637.0
+143103.0
+1034.0
+1220.0
+3750000
+
+
+pcmmg.sensor
+1
+0
+8
+4
+2048
+30
+3750000
+-1
+1831201.0
+2047.836365
+...
+191.0
+191.0
+191.0
+3750000
+790.366524
+646.0
+142975.0
+973.0
+1044.0
+3750000
+
+
+pmr6w.sensor
+1
+0
+8
+4
+2048
+30
+3750000
+-1
+1831203.0
+2047.834129
+...
+186.0
+186.0
+186.0
+3750000
+856.366943
+643.0
+143231.0
+1107.0
+1275.0
+3750000
+
+
+qmfjw.sensor
+1
+0
+8
+4
+2048
+30
+3750000
+-1
+1831193.0
+2047.845312
+...
+251.0
+251.0
+251.0
+3750000
+893.798743
+650.0
+143231.0
+1134.0
+1352.0
+3750000
+
+
+xrrbk.sensor
+1
+0
+8
+4
+2048
+30
+3750000
+-1
+1831197.0
+2047.840839
+...
+186.0
+186.0
+186.0
+3750000
+810.112466
+649.0
+143103.0
+1000.0
+1213.0
+3750000
+
+
+PostgreSQL-32-8-32768
+5m288.sensor
+1
+0
+8
+4
+4096
+30
+3750000
+-1
+1070644.0
+3502.564811
+...
+506.0
+506.0
+506.0
+3750000
+1017.997042
+635.0
+25477119.0
+1027.0
+1298.0
+3750000
+
+
+dxlcv.sensor
+1
+0
+8
+4
+4096
+30
+3750000
+-1
+1038352.0
+3611.492057
+...
+217.0
+217.0
+217.0
+3750000
+1018.753053
+642.0
+25477119.0
+991.0
+1275.0
+3750000
+
+
+j97qc.sensor
+1
+0
+8
+4
+4096
+30
+3750000
+-1
+1028056.0
+3647.661217
+...
+190.0
+190.0
+190.0
+3750000
+1013.766474
+641.0
+25477119.0
+987.0
+1317.0
+3750000
+
+
+lvlv2.sensor
+1
+0
+8
+4
+4096
+30
+3750000
+-1
+1046118.0
+3584.681652
+...
+470.0
+470.0
+470.0
+3750000
+1008.154887
+634.0
+25477119.0
+984.0
+1248.0
+3750000
+
+
+nzswp.sensor
+1
+0
+8
+4
+4096
+30
+3750000
+-1
+1063681.0
+3525.493075
+...
+192.0
+192.0
+192.0
+3750000
+1050.261742
+641.0
+25477119.0
+1024.0
+1342.0
+3750000
+
+
+qk7pg.sensor
+1
+0
+8
+4
+4096
+30
+3750000
+-1
+1020079.0
+3676.185864
+...
+204.0
+204.0
+204.0
+3750000
+982.031746
+635.0
+25477119.0
+959.0
+1140.0
+3750000
+
+
+thvmb.sensor
+1
+0
+8
+4
+4096
+30
+3750000
+-1
+1047311.0
+3580.598313
+...
+194.0
+194.0
+194.0
+3750000
+1003.515115
+634.0
+25477119.0
+993.0
+1229.0
+3750000
+
+
+vbs9b.sensor
+1
+0
+8
+4
+4096
+30
+3750000
+-1
+1046122.0
+3584.667945
+...
+474.0
+474.0
+474.0
+3750000
+1025.104966
+643.0
+25477119.0
+1007.0
+1229.0
+3750000
+
+
+PostgreSQL-32-8-49152
+7fnlv.sensor
+1
+0
+8
+4
+6144
+30
+3750000
+-1
+1011511.0
+3707.324982
+...
+373.0
+373.0
+373.0
+3750000
+1041.566758
+636.0
+23117823.0
+938.0
+1178.0
+3750000
+
+
+8pcnm.sensor
+1
+0
+8
+4
+6144
+30
+3750000
+-1
+979584.0
+3828.155625
+...
+213.0
+213.0
+213.0
+3750000
+1032.728345
+640.0
+23101439.0
+889.0
+1153.0
+3750000
+
+
+9kkpj.sensor
+1
+0
+8
+4
+6144
+30
+3750000
+-1
+1050521.0
+3569.657341
+...
+189.0
+189.0
+189.0
+3750000
+1058.016423
+640.0
+23117823.0
+946.0
+1239.0
+3750000
+
+
+jlvdb.sensor
+1
+0
+8
+4
+6144
+30
+3750000
+-1
+1023677.0
+3663.264877
+...
+190.0
+190.0
+190.0
+3750000
+1018.256093
+636.0
+23101439.0
+912.0
+1162.0
+3750000
+
+
+m7bxp.sensor
+1
+0
+8
+4
+6144
+30
+3750000
+-1
+985892.0
+3803.662064
+...
+198.0
+198.0
+198.0
+3750000
+1020.956194
+633.0
+23101439.0
+862.0
+1116.0
+3750000
+
+
+s229l.sensor
+1
+0
+8
+4
+6144
+30
+3750000
+-1
+1046148.0
+3584.578855
+...
+210.0
+210.0
+210.0
+3750000
+1035.592908
+639.0
+23101439.0
+930.0
+1207.0
+3750000
+
+
+sb97n.sensor
+1
+0
+8
+4
+6144
+30
+3750000
+-1
+1038195.0
+3612.038201
+...
+222.0
+222.0
+222.0
+3750000
+1074.382773
+649.0
+23101439.0
+964.0
+1237.0
+3750000
+
+
+x2j79.sensor
+1
+0
+8
+4
+6144
+30
+3750000
+-1
+988599.0
+3793.246807
+...
+205.0
+205.0
+205.0
+3750000
+1011.511462
+630.0
+23101439.0
+859.0
+1105.0
+3750000
+
+
+PostgreSQL-32-8-65536
+42qlk.sensor
+1
+0
+8
+4
+8192
+30
+3750000
+-1
+1015387.0
+3693.173145
+...
+210.0
+210.0
+210.0
+3750000
+996.883223
+630.0
+22495231.0
+990.0
+1205.0
+3750000
+
+
+5dqdh.sensor
+1
+0
+8
+4
+8192
+30
+3750000
+-1
+1035542.0
+3621.292038
+...
+404.0
+404.0
+404.0
+3750000
+1075.093785
+702.0
+22495231.0
+1048.0
+1269.0
+3750000
+
+
+66dgh.sensor
+1
+0
+8
+4
+8192
+30
+3750000
+-1
+981090.0
+3822.279302
+...
+436.0
+436.0
+436.0
+3750000
+983.916262
+637.0
+22495231.0
+942.0
+1171.0
+3750000
+
+
+6778k.sensor
+1
+0
+8
+4
+8192
+30
+3750000
+-1
+1070699.0
+3502.384891
+...
+373.0
+373.0
+373.0
+3750000
+1075.245356
+651.0
+22495231.0
+1070.0
+1293.0
+3750000
+
+
+6vllq.sensor
+1
+0
+8
+4
+8192
+30
+3750000
+-1
+1092327.0
+3433.037909
+...
+354.0
+354.0
+354.0
+3750000
+1086.000919
+650.0
+22495231.0
+1105.0
+1350.0
+3750000
+
+
+d8z5q.sensor
+1
+0
+8
+4
+8192
+30
+3750000
+-1
+1019868.0
+3676.946428
+...
+251.0
+251.0
+251.0
+3750000
+1005.459416
+642.0
+22495231.0
+970.0
+1191.0
+3750000
+
+
+k8drx.sensor
+1
+0
+8
+4
+8192
+30
+3750000
+-1
+1037218.0
+3615.440534
+...
+230.0
+230.0
+230.0
+3750000
+987.982993
+635.0
+22495231.0
+985.0
+1216.0
+3750000
+
+
+m4t2w.sensor
+1
+0
+8
+4
+8192
+30
+3750000
+-1
+1055539.0
+3552.687300
+...
+210.0
+210.0
+210.0
+3750000
+1054.616247
+696.0
+22495231.0
+1030.0
+1261.0
+3750000
+
+
+PostgreSQL-32-8-81920
+2gmfh.sensor
+1
+0
+8
+4
+10240
+30
+3750000
+-1
+1009671.0
+3714.081121
+...
+205.0
+205.0
+205.0
+3750000
+1040.131713
+630.0
+25804799.0
+943.0
+1197.0
+3750000
+
+
+7nlbl.sensor
+1
+0
+8
+4
+10240
+30
+3750000
+-1
+984110.0
+3810.549634
+...
+221.0
+221.0
+221.0
+3750000
+995.793029
+632.0
+25804799.0
+901.0
+1142.0
+3750000
+
+
+b2bbf.sensor
+1
+0
+8
+4
+10240
+30
+3750000
+-1
+1029558.0
+3642.339722
+...
+185.0
+185.0
+185.0
+3750000
+1064.097122
+686.0
+25804799.0
+996.0
+1243.0
+3750000
+
+
+lc56j.sensor
+1
+0
+8
+4
+10240
+30
+3750000
+-1
+1013965.0
+3698.352507
+...
+284.0
+284.0
+284.0
+3750000
+1005.060757
+630.0
+25804799.0
+941.0
+1161.0
+3750000
+
+
+lccsk.sensor
+1
+0
+8
+4
+10240
+30
+3750000
+-1
+992998.0
+3776.442651
+...
+209.0
+209.0
+209.0
+3750000
+1023.342467
+631.0
+25804799.0
+943.0
+1185.0
+3750000
+
+
+nqq5s.sensor
+1
+0
+8
+4
+10240
+30
+3750000
+-1
+1043412.0
+3593.978218
+...
+259.0
+259.0
+259.0
+3750000
+1071.913417
+682.0
+25804799.0
+1012.0
+1253.0
+3750000
+
+
+qpc6h.sensor
+1
+0
+8
+4
+10240
+30
+3750000
+-1
+1004788.0
+3732.130559
+...
+196.0
+196.0
+196.0
+3750000
+1021.609939
+645.0
+25804799.0
+943.0
+1173.0
+3750000
+
+
+vtqn4.sensor
+1
+0
+8
+4
+10240
+30
+3750000
+-1
+1073472.0
+3493.337507
+...
+217.0
+217.0
+217.0
+3750000
+1072.381453
+686.0
+25804799.0
+1009.0
+1306.0
+3750000
+
+
+PostgreSQL-32-8-98304
+6xx8q.sensor
+1
+0
+8
+4
+12288
+30
+3750000
+-1
+1054586.0
+3555.897765
+...
+192.0
+192.0
+192.0
+3750000
+1045.201693
+632.0
+23363583.0
+1000.0
+1229.0
+3750000
+
+
+ghmf9.sensor
+1
+0
+8
+4
+12288
+30
+3750000
+-1
+1069092.0
+3507.649482
+...
+200.0
+200.0
+200.0
+3750000
+1028.822132
+631.0
+23363583.0
+998.0
+1251.0
+3750000
+
+
+gqw9m.sensor
+1
+0
+8
+4
+12288
+30
+3750000
+-1
+1054273.0
+3556.953465
+...
+195.0
+195.0
+195.0
+3750000
+1045.385009
+639.0
+23363583.0
+1011.0
+1238.0
+3750000
+
+
+jln48.sensor
+1
+0
+8
+4
+12288
+30
+3750000
+-1
+979125.0
+3829.950211
+...
+212.0
+212.0
+212.0
+3750000
+1015.805945
+636.0
+23363583.0
+919.0
+1164.0
+3750000
+
+
+n9xct.sensor
+1
+0
+8
+4
+12288
+30
+3750000
+-1
+1054125.0
+3557.452864
+...
+237.0
+237.0
+237.0
+3750000
+1083.886591
+689.0
+23363583.0
+1001.0
+1246.0
+3750000
+
+
+p78x4.sensor
+1
+0
+8
+4
+12288
+30
+3750000
+-1
+1013255.0
+3700.943987
+...
+287.0
+287.0
+287.0
+3750000
+1051.289645
+638.0
+23363583.0
+987.0
+1220.0
+3750000
+
+
+s4t2s.sensor
+1
+0
+8
+4
+12288
+30
+3750000
+-1
+970744.0
+3863.016408
+...
+234.0
+234.0
+234.0
+3750000
+991.697202
+638.0
+23363583.0
+914.0
+1162.0
+3750000
+
+
+zklhx.sensor
+1
+0
+8
+4
+12288
+30
+3750000
+-1
+1036959.0
+3616.343558
+...
+260.0
+260.0
+260.0
+3750000
+1022.261119
+636.0
+23363583.0
+955.0
+1198.0
+3750000
+
+
+
+
72 rows Ă— 23 columns
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[32]:
+
+
+
+
+
+
+connection_pod
+PostgreSQL-32-1-114688-1-1
+PostgreSQL-32-1-131072-1-1
+PostgreSQL-32-1-16384-1-1
+PostgreSQL-32-1-32768-1-1
+PostgreSQL-32-1-49152-1-1
+PostgreSQL-32-1-65536-1-1
+PostgreSQL-32-1-81920-1-1
+PostgreSQL-32-1-98304-1-1
+PostgreSQL-32-8-114688-1-1
+PostgreSQL-32-8-114688-1-2
+...
+PostgreSQL-32-8-81920-1-7
+PostgreSQL-32-8-81920-1-8
+PostgreSQL-32-8-98304-1-1
+PostgreSQL-32-8-98304-1-2
+PostgreSQL-32-8-98304-1-3
+PostgreSQL-32-8-98304-1-4
+PostgreSQL-32-8-98304-1-5
+PostgreSQL-32-8-98304-1-6
+PostgreSQL-32-8-98304-1-7
+PostgreSQL-32-8-98304-1-8
+
+
+
+
+connection
+PostgreSQL-32-1-114688-1
+PostgreSQL-32-1-131072-1
+PostgreSQL-32-1-16384-1
+PostgreSQL-32-1-32768-1
+PostgreSQL-32-1-49152-1
+PostgreSQL-32-1-65536-1
+PostgreSQL-32-1-81920-1
+PostgreSQL-32-1-98304-1
+PostgreSQL-32-8-114688-1
+PostgreSQL-32-8-114688-1
+...
+PostgreSQL-32-8-81920-1
+PostgreSQL-32-8-81920-1
+PostgreSQL-32-8-98304-1
+PostgreSQL-32-8-98304-1
+PostgreSQL-32-8-98304-1
+PostgreSQL-32-8-98304-1
+PostgreSQL-32-8-98304-1
+PostgreSQL-32-8-98304-1
+PostgreSQL-32-8-98304-1
+PostgreSQL-32-8-98304-1
+
+
+configuration
+PostgreSQL-32-1-114688
+PostgreSQL-32-1-131072
+PostgreSQL-32-1-16384
+PostgreSQL-32-1-32768
+PostgreSQL-32-1-49152
+PostgreSQL-32-1-65536
+PostgreSQL-32-1-81920
+PostgreSQL-32-1-98304
+PostgreSQL-32-8-114688
+PostgreSQL-32-8-114688
+...
+PostgreSQL-32-8-81920
+PostgreSQL-32-8-81920
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+PostgreSQL-32-8-98304
+
+
+experiment_run
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+...
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+
+
+client
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+...
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+
+
+pod
+mwnxg
+zp9vj
+dpz6r
+k6vs7
+klpvs
+7w4z9
+chmc5
+7lqx2
+2jq82
+8tw89
+...
+vhthf
+xn2w5
+45zhr
+bhvd9
+k4r5r
+kq9kf
+mlt4b
+rksk7
+vn5b4
+wjjww
+
+
+pod_count
+1
+1
+1
+1
+1
+1
+1
+1
+8
+8
+...
+8
+8
+8
+8
+8
+8
+8
+8
+8
+8
+
+
+threads
+32
+32
+32
+32
+32
+32
+32
+32
+4
+4
+...
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+
+
+target
+114688
+131072
+16384
+32768
+49152
+65536
+81920
+98304
+14336
+14336
+...
+10240
+10240
+12288
+12288
+12288
+12288
+12288
+12288
+12288
+12288
+
+
+sf
+30
+30
+30
+30
+30
+30
+30
+30
+30
+30
+...
+30
+30
+30
+30
+30
+30
+30
+30
+30
+30
+
+
+workload
+a
+a
+a
+a
+a
+a
+a
+a
+a
+a
+...
+a
+a
+a
+a
+a
+a
+a
+a
+a
+a
+
+
+operations
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+3750000
+3750000
+...
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+3750000
+
+
+batchsize
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+...
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+-1
+
+
+[OVERALL].RunTime(ms)
+515631
+521364
+1831314
+915761
+657683
+523264
+521007
+514630
+520977
+522245
+...
+515641
+532786
+517972
+525430
+510878
+509697
+523738
+513476
+523770
+513732
+
+
+[OVERALL].Throughput(ops/sec)
+58181.14116490281
+57541.37224664534
+16381.68003957814
+32759.63925085257
+45614.68062881358
+57332.43639921722
+57580.800257961986
+58294.308532343624
+7198.014499680408
+7180.537870156727
+...
+7272.501604798687
+7038.473233155526
+7239.773578494591
+7137.011590506823
+7340.304338804959
+7357.312285534347
+7160.068583910276
+7303.165094376368
+7159.631135803884
+7299.5258228025505
+
+
+[TOTAL_GCS_Copy].Count
+528
+531
+526
+533
+531
+530
+531
+534
+66
+65
+...
+64
+65
+66
+66
+66
+66
+66
+66
+65
+66
+
+
+[TOTAL_GC_TIME_Copy].Time(ms)
+773
+766
+736
+738
+779
+763
+765
+776
+251
+200
+...
+310
+232
+229
+202
+280
+224
+186
+331
+295
+302
+
+
+[TOTAL_GC_TIME_%_Copy].Time(%)
+0.1499134070682329
+0.14692230380310112
+0.04018972169709837
+0.08058871255709732
+0.11844612069948592
+0.14581549657534246
+0.14683104065780306
+0.1507879447369955
+0.048178710384527534
+0.03829620197416921
+...
+0.06011934659966915
+0.04354468773578885
+0.04421088398600696
+0.03844470243419675
+0.0548076057297437
+0.043947678718925166
+0.03551394017619497
+0.06446260389969541
+0.056322431601657216
+0.0587855146263032
+
+
+[TOTAL_GCS_MarkSweepCompact].Count
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+...
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+
+
+[TOTAL_GC_TIME_MarkSweepCompact].Time(ms)
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+...
+0
+0
+0
+0
+0
+0
+0
+0
+0
+0
+
+
+[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%)
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+...
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+
+
+[TOTAL_GCs].Count
+528
+531
+526
+533
+531
+530
+531
+534
+66
+65
+...
+64
+65
+66
+66
+66
+66
+66
+66
+65
+66
+
+
+[TOTAL_GC_TIME].Time(ms)
+773
+766
+736
+738
+779
+763
+765
+776
+251
+200
+...
+310
+232
+229
+202
+280
+224
+186
+331
+295
+302
+
+
+[TOTAL_GC_TIME_%].Time(%)
+0.1499134070682329
+0.14692230380310112
+0.04018972169709837
+0.08058871255709732
+0.11844612069948592
+0.14581549657534246
+0.14683104065780306
+0.1507879447369955
+0.048178710384527534
+0.03829620197416921
+...
+0.06011934659966915
+0.04354468773578885
+0.04421088398600696
+0.03844470243419675
+0.0548076057297437
+0.043947678718925166
+0.03551394017619497
+0.06446260389969541
+0.056322431601657216
+0.0587855146263032
+
+
+[READ].Operations
+14999034
+15000437
+15000202
+14999278
+15001696
+15003790
+14998146
+15004063
+1875496
+1872886
+...
+1874668
+1874136
+1875638
+1875215
+1876860
+1873827
+1876454
+1873752
+1874515
+1875658
+
+
+[READ].AverageLatency(us)
+414.1533992122426
+418.6445766213344
+236.30964003018093
+244.15625558776895
+349.14303242780016
+419.17214543791937
+432.82956566764983
+424.96967601375707
+448.51290112055693
+477.0497755869818
+...
+432.95185760892065
+478.3749418398665
+469.7713530009522
+451.09467714368753
+470.12151732148374
+437.6148956120282
+440.84926622235344
+416.91854151456545
+431.3523418057471
+426.3018178154013
+
+
+[READ].MinLatency(us)
+86
+86
+93
+91
+89
+89
+85
+86
+95
+91
+...
+101
+91
+98
+91
+96
+106
+91
+95
+94
+96
+
+
+[READ].MaxLatency(us)
+20905983
+20856831
+70271
+1073151
+18399231
+18235391
+20709375
+18776063
+13819903
+13819903
+...
+13230079
+13942783
+13852671
+12337151
+18415615
+17629183
+13852671
+16990207
+16728063
+9420799
+
+
+[READ].95thPercentileLatency(us)
+762
+750
+392
+395
+482
+774
+788
+757
+768
+850
+...
+790
+921
+769
+861
+787
+723
+757
+696
+779
+772
+
+
+[READ].99thPercentileLatency(us)
+2147
+2287
+514
+540
+1209
+2289
+2355
+2301
+2435
+2401
+...
+2305
+2245
+2481
+2355
+2463
+2377
+2327
+2191
+2543
+2399
+
+
+[READ].Return=OK
+14999034
+15000437
+15000202
+14999278
+15001696
+15003790
+14998146
+15004063
+1875496
+1872886
+...
+1874668
+1874136
+1875638
+1875215
+1876860
+1873827
+1876454
+1873752
+1874515
+1875658
+
+
+[CLEANUP].Operations
+32
+32
+32
+32
+32
+32
+32
+32
+4
+4
+...
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+
+
+[CLEANUP].AverageLatency(us)
+104.75
+97.0625
+68.09375
+100.96875
+174.59375
+122.875
+138.46875
+126.4375
+224.75
+143.75
+...
+195.75
+135.5
+156.75
+143.5
+141.25
+148.25
+458.0
+182.0
+318.75
+141.75
+
+
+[CLEANUP].MinLatency(us)
+60
+62
+35
+36
+55
+70
+64
+64
+65
+70
+...
+116
+65
+76
+67
+78
+87
+74
+96
+61
+77
+
+
+[CLEANUP].MaxLatency(us)
+305
+305
+269
+651
+2655
+343
+938
+377
+420
+352
+...
+320
+335
+358
+352
+304
+270
+1324
+355
+991
+299
+
+
+[CLEANUP].95thPercentileLatency(us)
+178
+132
+170
+343
+146
+168
+175
+187
+420
+352
+...
+320
+335
+358
+352
+304
+270
+1324
+355
+991
+299
+
+
+[CLEANUP].99thPercentileLatency(us)
+305
+305
+269
+651
+2655
+343
+938
+377
+420
+352
+...
+320
+335
+358
+352
+304
+270
+1324
+355
+991
+299
+
+
+[UPDATE].Operations
+15000966
+14999563
+14999798
+15000722
+14998304
+14996210
+15001854
+14995937
+1874504
+1877114
+...
+1875332
+1875864
+1874362
+1874785
+1873140
+1876173
+1873546
+1876248
+1875485
+1874342
+
+
+[UPDATE].AverageLatency(us)
+635.8843409151117
+647.1705313014786
+260.75799487433096
+262.927870671825
+454.03203375528324
+644.1248997580055
+630.4081144237239
+620.0819837399957
+569.8579874996266
+599.2677647708131
+...
+621.9825412247005
+618.4722176021289
+610.3075121027848
+620.0627383940025
+592.218151873325
+606.3485243631584
+621.7419929908312
+604.16092648733
+621.6882539716394
+640.6968872276244
+
+
+[UPDATE].MinLatency(us)
+95
+94
+102
+101
+93
+93
+93
+93
+99
+96
+...
+105
+98
+105
+98
+101
+114
+99
+107
+102
+104
+
+
+[UPDATE].MaxLatency(us)
+20987903
+20889599
+67071
+722943
+18235391
+20774911
+20758527
+18956287
+20135935
+18825215
+...
+20430847
+20955135
+18710527
+18956287
+18956287
+18317311
+17874943
+18776063
+18759679
+18579455
+
+
+[UPDATE].95thPercentileLatency(us)
+1041
+1061
+434
+415
+535
+1075
+1115
+1065
+1010
+1047
+...
+1007
+1088
+1032
+1086
+1072
+1011
+1015
+966
+1080
+1043
+
+
+[UPDATE].99thPercentileLatency(us)
+3383
+3619
+573
+580
+1687
+3657
+3731
+3641
+3501
+3589
+...
+3367
+3275
+3517
+3495
+3579
+3465
+3449
+3267
+3613
+3525
+
+
+[UPDATE].Return=OK
+15000966
+14999563
+14999798
+15000722
+14998304
+14996210
+15001854
+14995937
+1874504
+1877114
+...
+1875332
+1875864
+1874362
+1874785
+1873140
+1876173
+1873546
+1876248
+1875485
+1874342
+
+
+
+
43 rows Ă— 72 columns
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[33]:
+
+
{'PostgreSQL-32-1-114688': [[1]],
+ 'PostgreSQL-32-1-131072': [[1]],
+ 'PostgreSQL-32-1-16384': [[1]],
+ 'PostgreSQL-32-1-32768': [[1]],
+ 'PostgreSQL-32-1-49152': [[1]],
+ 'PostgreSQL-32-1-65536': [[1]],
+ 'PostgreSQL-32-1-81920': [[1]],
+ 'PostgreSQL-32-1-98304': [[1]],
+ 'PostgreSQL-32-8-114688': [[8]],
+ 'PostgreSQL-32-8-131072': [[8]],
+ 'PostgreSQL-32-8-16384': [[8]],
+ 'PostgreSQL-32-8-32768': [[8]],
+ 'PostgreSQL-32-8-49152': [[8]],
+ 'PostgreSQL-32-8-65536': [[8]],
+ 'PostgreSQL-32-8-81920': [[8]],
+ 'PostgreSQL-32-8-98304': [[8]]}
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[34]:
+
+
+
+
+
+
+
+connection
+configuration
+experiment_run
+client
+pod
+pod_count
+threads
+target
+sf
+workload
+...
+[CLEANUP].MaxLatency(us)
+[CLEANUP].95thPercentileLatency(us)
+[CLEANUP].99thPercentileLatency(us)
+[UPDATE].Operations
+[UPDATE].AverageLatency(us)
+[UPDATE].MinLatency(us)
+[UPDATE].MaxLatency(us)
+[UPDATE].95thPercentileLatency(us)
+[UPDATE].99thPercentileLatency(us)
+[UPDATE].Return=OK
+
+
+connection_pod
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+PostgreSQL-32-8-16384-1-2
+PostgreSQL-32-8-16384-1
+PostgreSQL-32-8-16384
+1
+1
+6qp9s
+8
+4
+2048
+30
+a
+...
+267.0
+267.0
+267.0
+1875349
+279.281535
+111.0
+130815.0
+430.0
+692.0
+1875349
+
+
+PostgreSQL-32-8-16384-1-3
+PostgreSQL-32-8-16384-1
+PostgreSQL-32-8-16384
+1
+1
+77mw4
+8
+4
+2048
+30
+a
+...
+228.0
+228.0
+228.0
+1874880
+279.843256
+109.0
+77247.0
+503.0
+648.0
+1874880
+
+
+PostgreSQL-32-8-16384-1-4
+PostgreSQL-32-8-16384-1
+PostgreSQL-32-8-16384
+1
+1
+cpwg6
+8
+4
+2048
+30
+a
+...
+244.0
+244.0
+244.0
+1875427
+269.904560
+109.0
+130175.0
+415.0
+649.0
+1875427
+
+
+PostgreSQL-32-8-16384-1-5
+PostgreSQL-32-8-16384-1
+PostgreSQL-32-8-16384
+1
+1
+cxgj6
+8
+4
+2048
+30
+a
+...
+204.0
+204.0
+204.0
+1875337
+297.950520
+109.0
+76415.0
+467.0
+640.0
+1875337
+
+
+PostgreSQL-32-8-16384-1-6
+PostgreSQL-32-8-16384-1
+PostgreSQL-32-8-16384
+1
+1
+jpmmp
+8
+4
+2048
+30
+a
+...
+292.0
+292.0
+292.0
+1875014
+261.791274
+108.0
+55775.0
+398.0
+625.0
+1875014
+
+
+PostgreSQL-32-8-16384-1-7
+PostgreSQL-32-8-16384-1
+PostgreSQL-32-8-16384
+1
+1
+rt4r9
+8
+4
+2048
+30
+a
+...
+230.0
+230.0
+230.0
+1873638
+291.152009
+114.0
+118847.0
+515.0
+655.0
+1873638
+
+
+PostgreSQL-32-8-16384-1-8
+PostgreSQL-32-8-16384-1
+PostgreSQL-32-8-16384
+1
+1
+tfbqm
+8
+4
+2048
+30
+a
+...
+215.0
+215.0
+215.0
+1875605
+285.543071
+113.0
+127295.0
+491.0
+633.0
+1875605
+
+
+PostgreSQL-32-8-16384-1-1
+PostgreSQL-32-8-16384-1
+PostgreSQL-32-8-16384
+1
+1
+28mm2
+8
+4
+2048
+30
+a
+...
+238.0
+238.0
+238.0
+1873921
+259.960231
+108.0
+88511.0
+461.0
+614.0
+1873921
+
+
+PostgreSQL-32-8-32768-1-4
+PostgreSQL-32-8-32768-1
+PostgreSQL-32-8-32768
+1
+1
+j2j7f
+8
+4
+4096
+30
+a
+...
+324.0
+324.0
+324.0
+1876703
+312.227578
+107.0
+735231.0
+478.0
+929.0
+1876703
+
+
+PostgreSQL-32-8-32768-1-1
+PostgreSQL-32-8-32768-1
+PostgreSQL-32-8-32768
+1
+1
+2pf8r
+8
+4
+4096
+30
+a
+...
+282.0
+282.0
+282.0
+1874112
+290.050854
+109.0
+97407.0
+454.0
+946.0
+1874112
+
+
+PostgreSQL-32-8-32768-1-2
+PostgreSQL-32-8-32768-1
+PostgreSQL-32-8-32768
+1
+1
+5szs7
+8
+4
+4096
+30
+a
+...
+236.0
+236.0
+236.0
+1875046
+295.300415
+110.0
+332287.0
+437.0
+1008.0
+1875046
+
+
+PostgreSQL-32-8-32768-1-3
+PostgreSQL-32-8-32768-1
+PostgreSQL-32-8-32768
+1
+1
+cfgn7
+8
+4
+4096
+30
+a
+...
+260.0
+260.0
+260.0
+1874994
+304.605591
+103.0
+1277951.0
+471.0
+971.0
+1874994
+
+
+PostgreSQL-32-8-32768-1-5
+PostgreSQL-32-8-32768-1
+PostgreSQL-32-8-32768
+1
+1
+lc8b4
+8
+4
+4096
+30
+a
+...
+264.0
+264.0
+264.0
+1873702
+282.308903
+105.0
+159871.0
+430.0
+929.0
+1873702
+
+
+PostgreSQL-32-8-32768-1-6
+PostgreSQL-32-8-32768-1
+PostgreSQL-32-8-32768
+1
+1
+mt7d6
+8
+4
+4096
+30
+a
+...
+323.0
+323.0
+323.0
+1874082
+309.469422
+110.0
+86015.0
+508.0
+823.0
+1874082
+
+
+PostgreSQL-32-8-32768-1-7
+PostgreSQL-32-8-32768-1
+PostgreSQL-32-8-32768
+1
+1
+p9tms
+8
+4
+4096
+30
+a
+...
+301.0
+301.0
+301.0
+1875937
+312.520923
+109.0
+539135.0
+485.0
+975.0
+1875937
+
+
+PostgreSQL-32-8-32768-1-8
+PostgreSQL-32-8-32768-1
+PostgreSQL-32-8-32768
+1
+1
+rt62c
+8
+4
+4096
+30
+a
+...
+344.0
+344.0
+344.0
+1876930
+313.031167
+111.0
+270079.0
+482.0
+971.0
+1876930
+
+
+PostgreSQL-32-8-49152-1-1
+PostgreSQL-32-8-49152-1
+PostgreSQL-32-8-49152
+1
+1
+5wh9k
+8
+4
+6144
+30
+a
+...
+349.0
+349.0
+349.0
+1875039
+483.460633
+105.0
+12902399.0
+625.0
+2353.0
+1875039
+
+
+PostgreSQL-32-8-49152-1-2
+PostgreSQL-32-8-49152-1
+PostgreSQL-32-8-49152
+1
+1
+998gf
+8
+4
+6144
+30
+a
+...
+278.0
+278.0
+278.0
+1874709
+473.292028
+101.0
+18120703.0
+637.0
+2247.0
+1874709
+
+
+PostgreSQL-32-8-49152-1-3
+PostgreSQL-32-8-49152-1
+PostgreSQL-32-8-49152
+1
+1
+ghk57
+8
+4
+6144
+30
+a
+...
+425.0
+425.0
+425.0
+1873652
+469.840329
+105.0
+16007167.0
+651.0
+2293.0
+1873652
+
+
+PostgreSQL-32-8-49152-1-4
+PostgreSQL-32-8-49152-1
+PostgreSQL-32-8-49152
+1
+1
+rvqs4
+8
+4
+6144
+30
+a
+...
+1652.0
+1652.0
+1652.0
+1875591
+507.224280
+105.0
+18219007.0
+658.0
+2231.0
+1875591
+
+
+PostgreSQL-32-8-49152-1-7
+PostgreSQL-32-8-49152-1
+PostgreSQL-32-8-49152
+1
+1
+tqqdc
+8
+4
+6144
+30
+a
+...
+307.0
+307.0
+307.0
+1874986
+494.877304
+101.0
+14909439.0
+675.0
+2257.0
+1874986
+
+
+PostgreSQL-32-8-49152-1-8
+PostgreSQL-32-8-49152-1
+PostgreSQL-32-8-49152
+1
+1
+xwgtc
+8
+4
+6144
+30
+a
+...
+348.0
+348.0
+348.0
+1876064
+441.921570
+105.0
+14909439.0
+646.0
+2269.0
+1876064
+
+
+PostgreSQL-32-8-49152-1-6
+PostgreSQL-32-8-49152-1
+PostgreSQL-32-8-49152
+1
+1
+sgxpf
+8
+4
+6144
+30
+a
+...
+311.0
+311.0
+311.0
+1874523
+464.176237
+107.0
+18382847.0
+641.0
+2301.0
+1874523
+
+
+PostgreSQL-32-8-49152-1-5
+PostgreSQL-32-8-49152-1
+PostgreSQL-32-8-49152
+1
+1
+sfzq5
+8
+4
+6144
+30
+a
+...
+304.0
+304.0
+304.0
+1874898
+494.085958
+107.0
+21233663.0
+654.0
+2133.0
+1874898
+
+
+PostgreSQL-32-8-65536-1-2
+PostgreSQL-32-8-65536-1
+PostgreSQL-32-8-65536
+1
+1
+l25nl
+8
+4
+8192
+30
+a
+...
+301.0
+301.0
+301.0
+1875272
+620.948668
+101.0
+20856831.0
+1096.0
+3859.0
+1875272
+
+
+PostgreSQL-32-8-65536-1-8
+PostgreSQL-32-8-65536-1
+PostgreSQL-32-8-65536
+1
+1
+z58tr
+8
+4
+8192
+30
+a
+...
+290.0
+290.0
+290.0
+1872314
+603.486167
+107.0
+13221887.0
+1076.0
+3917.0
+1872314
+
+
+PostgreSQL-32-8-65536-1-7
+PostgreSQL-32-8-65536-1
+PostgreSQL-32-8-65536
+1
+1
+wp69b
+8
+4
+8192
+30
+a
+...
+322.0
+322.0
+322.0
+1874271
+618.117459
+103.0
+20905983.0
+1085.0
+3907.0
+1874271
+
+
+PostgreSQL-32-8-65536-1-1
+PostgreSQL-32-8-65536-1
+PostgreSQL-32-8-65536
+1
+1
+5spjq
+8
+4
+8192
+30
+a
+...
+313.0
+313.0
+313.0
+1875000
+634.823838
+100.0
+21069823.0
+1046.0
+3931.0
+1875000
+
+
+PostgreSQL-32-8-65536-1-5
+PostgreSQL-32-8-65536-1
+PostgreSQL-32-8-65536
+1
+1
+rh8zl
+8
+4
+8192
+30
+a
+...
+515.0
+515.0
+515.0
+1875343
+610.272305
+100.0
+20627455.0
+1018.0
+3753.0
+1875343
+
+
+PostgreSQL-32-8-65536-1-4
+PostgreSQL-32-8-65536-1
+PostgreSQL-32-8-65536
+1
+1
+nws4x
+8
+4
+8192
+30
+a
+...
+332.0
+332.0
+332.0
+1875071
+622.472328
+104.0
+16457727.0
+1053.0
+3851.0
+1875071
+
+
+PostgreSQL-32-8-65536-1-6
+PostgreSQL-32-8-65536-1
+PostgreSQL-32-8-65536
+1
+1
+vc88w
+8
+4
+8192
+30
+a
+...
+608.0
+608.0
+608.0
+1875539
+628.395195
+102.0
+20987903.0
+1081.0
+3865.0
+1875539
+
+
+PostgreSQL-32-8-65536-1-3
+PostgreSQL-32-8-65536-1
+PostgreSQL-32-8-65536
+1
+1
+lrgp7
+8
+4
+8192
+30
+a
+...
+297.0
+297.0
+297.0
+1875517
+609.462749
+103.0
+20922367.0
+1087.0
+3897.0
+1875517
+
+
+PostgreSQL-32-8-81920-1-8
+PostgreSQL-32-8-81920-1
+PostgreSQL-32-8-81920
+1
+1
+xn2w5
+8
+4
+10240
+30
+a
+...
+335.0
+335.0
+335.0
+1875864
+618.472218
+98.0
+20955135.0
+1088.0
+3275.0
+1875864
+
+
+PostgreSQL-32-8-81920-1-6
+PostgreSQL-32-8-81920-1
+PostgreSQL-32-8-81920
+1
+1
+tt4fm
+8
+4
+10240
+30
+a
+...
+362.0
+362.0
+362.0
+1875823
+597.406558
+113.0
+20463615.0
+972.0
+3363.0
+1875823
+
+
+PostgreSQL-32-8-81920-1-7
+PostgreSQL-32-8-81920-1
+PostgreSQL-32-8-81920
+1
+1
+vhthf
+8
+4
+10240
+30
+a
+...
+320.0
+320.0
+320.0
+1875332
+621.982541
+105.0
+20430847.0
+1007.0
+3367.0
+1875332
+
+
+PostgreSQL-32-8-81920-1-3
+PostgreSQL-32-8-81920-1
+PostgreSQL-32-8-81920
+1
+1
+b7bh7
+8
+4
+10240
+30
+a
+...
+384.0
+384.0
+384.0
+1873757
+583.579925
+105.0
+20496383.0
+951.0
+3315.0
+1873757
+
+
+PostgreSQL-32-8-81920-1-2
+PostgreSQL-32-8-81920-1
+PostgreSQL-32-8-81920
+1
+1
+9wm6b
+8
+4
+10240
+30
+a
+...
+318.0
+318.0
+318.0
+1874917
+616.268760
+104.0
+20856831.0
+1026.0
+3347.0
+1874917
+
+
+PostgreSQL-32-8-81920-1-1
+PostgreSQL-32-8-81920-1
+PostgreSQL-32-8-81920
+1
+1
+9hk6b
+8
+4
+10240
+30
+a
+...
+302.0
+302.0
+302.0
+1876646
+621.082813
+104.0
+20922367.0
+954.0
+3241.0
+1876646
+
+
+PostgreSQL-32-8-81920-1-4
+PostgreSQL-32-8-81920-1
+PostgreSQL-32-8-81920
+1
+1
+kfjzh
+8
+4
+10240
+30
+a
+...
+683.0
+683.0
+683.0
+1874551
+615.696021
+102.0
+20201471.0
+1009.0
+3347.0
+1874551
+
+
+PostgreSQL-32-8-81920-1-5
+PostgreSQL-32-8-81920-1
+PostgreSQL-32-8-81920
+1
+1
+krdkb
+8
+4
+10240
+30
+a
+...
+412.0
+412.0
+412.0
+1874516
+578.652579
+107.0
+20545535.0
+1008.0
+3395.0
+1874516
+
+
+PostgreSQL-32-8-98304-1-1
+PostgreSQL-32-8-98304-1
+PostgreSQL-32-8-98304
+1
+1
+45zhr
+8
+4
+12288
+30
+a
+...
+358.0
+358.0
+358.0
+1874362
+610.307512
+105.0
+18710527.0
+1032.0
+3517.0
+1874362
+
+
+PostgreSQL-32-8-98304-1-2
+PostgreSQL-32-8-98304-1
+PostgreSQL-32-8-98304
+1
+1
+bhvd9
+8
+4
+12288
+30
+a
+...
+352.0
+352.0
+352.0
+1874785
+620.062738
+98.0
+18956287.0
+1086.0
+3495.0
+1874785
+
+
+PostgreSQL-32-8-98304-1-3
+PostgreSQL-32-8-98304-1
+PostgreSQL-32-8-98304
+1
+1
+k4r5r
+8
+4
+12288
+30
+a
+...
+304.0
+304.0
+304.0
+1873140
+592.218152
+101.0
+18956287.0
+1072.0
+3579.0
+1873140
+
+
+PostgreSQL-32-8-98304-1-4
+PostgreSQL-32-8-98304-1
+PostgreSQL-32-8-98304
+1
+1
+kq9kf
+8
+4
+12288
+30
+a
+...
+270.0
+270.0
+270.0
+1876173
+606.348524
+114.0
+18317311.0
+1011.0
+3465.0
+1876173
+
+
+PostgreSQL-32-8-98304-1-5
+PostgreSQL-32-8-98304-1
+PostgreSQL-32-8-98304
+1
+1
+mlt4b
+8
+4
+12288
+30
+a
+...
+1324.0
+1324.0
+1324.0
+1873546
+621.741993
+99.0
+17874943.0
+1015.0
+3449.0
+1873546
+
+
+PostgreSQL-32-8-98304-1-6
+PostgreSQL-32-8-98304-1
+PostgreSQL-32-8-98304
+1
+1
+rksk7
+8
+4
+12288
+30
+a
+...
+355.0
+355.0
+355.0
+1876248
+604.160926
+107.0
+18776063.0
+966.0
+3267.0
+1876248
+
+
+PostgreSQL-32-8-98304-1-8
+PostgreSQL-32-8-98304-1
+PostgreSQL-32-8-98304
+1
+1
+wjjww
+8
+4
+12288
+30
+a
+...
+299.0
+299.0
+299.0
+1874342
+640.696887
+104.0
+18579455.0
+1043.0
+3525.0
+1874342
+
+
+PostgreSQL-32-8-98304-1-7
+PostgreSQL-32-8-98304-1
+PostgreSQL-32-8-98304
+1
+1
+vn5b4
+8
+4
+12288
+30
+a
+...
+991.0
+991.0
+991.0
+1875485
+621.688254
+102.0
+18759679.0
+1080.0
+3613.0
+1875485
+
+
+PostgreSQL-32-8-114688-1-4
+PostgreSQL-32-8-114688-1
+PostgreSQL-32-8-114688
+1
+1
+hg76g
+8
+4
+14336
+30
+a
+...
+282.0
+282.0
+282.0
+1873433
+598.484479
+105.0
+20119551.0
+1020.0
+3705.0
+1873433
+
+
+PostgreSQL-32-8-114688-1-1
+PostgreSQL-32-8-114688-1
+PostgreSQL-32-8-114688
+1
+1
+2jq82
+8
+4
+14336
+30
+a
+...
+420.0
+420.0
+420.0
+1874504
+569.857987
+99.0
+20135935.0
+1010.0
+3501.0
+1874504
+
+
+PostgreSQL-32-8-114688-1-2
+PostgreSQL-32-8-114688-1
+PostgreSQL-32-8-114688
+1
+1
+8tw89
+8
+4
+14336
+30
+a
+...
+352.0
+352.0
+352.0
+1877114
+599.267765
+96.0
+18825215.0
+1047.0
+3589.0
+1877114
+
+
+PostgreSQL-32-8-114688-1-3
+PostgreSQL-32-8-114688-1
+PostgreSQL-32-8-114688
+1
+1
+fzvfv
+8
+4
+14336
+30
+a
+...
+324.0
+324.0
+324.0
+1875507
+583.797519
+105.0
+13819903.0
+1076.0
+3627.0
+1875507
+
+
+PostgreSQL-32-8-114688-1-5
+PostgreSQL-32-8-114688-1
+PostgreSQL-32-8-114688
+1
+1
+jwcxm
+8
+4
+14336
+30
+a
+...
+335.0
+335.0
+335.0
+1874515
+588.496871
+108.0
+13819903.0
+1063.0
+3871.0
+1874515
+
+
+PostgreSQL-32-8-114688-1-6
+PostgreSQL-32-8-114688-1
+PostgreSQL-32-8-114688
+1
+1
+knc8q
+8
+4
+14336
+30
+a
+...
+374.0
+374.0
+374.0
+1875905
+634.300144
+98.0
+20103167.0
+997.0
+3533.0
+1875905
+
+
+PostgreSQL-32-8-114688-1-8
+PostgreSQL-32-8-114688-1
+PostgreSQL-32-8-114688
+1
+1
+sf8fh
+8
+4
+14336
+30
+a
+...
+301.0
+301.0
+301.0
+1874330
+616.061852
+112.0
+20299775.0
+1029.0
+3697.0
+1874330
+
+
+PostgreSQL-32-8-114688-1-7
+PostgreSQL-32-8-114688-1
+PostgreSQL-32-8-114688
+1
+1
+kp9r9
+8
+4
+14336
+30
+a
+...
+408.0
+408.0
+408.0
+1875886
+588.626170
+105.0
+18530303.0
+999.0
+3651.0
+1875886
+
+
+PostgreSQL-32-1-16384-1-1
+PostgreSQL-32-1-16384-1
+PostgreSQL-32-1-16384
+1
+1
+dpz6r
+1
+32
+16384
+30
+a
+...
+269.0
+170.0
+269.0
+14999798
+260.757995
+102.0
+67071.0
+434.0
+573.0
+14999798
+
+
+PostgreSQL-32-8-131072-1-8
+PostgreSQL-32-8-131072-1
+PostgreSQL-32-8-131072
+1
+1
+qkjzm
+8
+4
+16384
+30
+a
+...
+310.0
+310.0
+310.0
+1875211
+554.659974
+108.0
+18563071.0
+953.0
+3395.0
+1875211
+
+
+PostgreSQL-32-8-131072-1-2
+PostgreSQL-32-8-131072-1
+PostgreSQL-32-8-131072
+1
+1
+82tzj
+8
+4
+16384
+30
+a
+...
+358.0
+358.0
+358.0
+1874712
+614.491262
+97.0
+18939903.0
+976.0
+3417.0
+1874712
+
+
+PostgreSQL-32-8-131072-1-3
+PostgreSQL-32-8-131072-1
+PostgreSQL-32-8-131072
+1
+1
+cdllj
+8
+4
+16384
+30
+a
+...
+311.0
+311.0
+311.0
+1875603
+584.949657
+111.0
+18399231.0
+909.0
+3303.0
+1875603
+
+
+PostgreSQL-32-8-131072-1-4
+PostgreSQL-32-8-131072-1
+PostgreSQL-32-8-131072
+1
+1
+dxbqh
+8
+4
+16384
+30
+a
+...
+340.0
+340.0
+340.0
+1873868
+602.965952
+106.0
+20185087.0
+912.0
+3287.0
+1873868
+
+
+PostgreSQL-32-8-131072-1-5
+PostgreSQL-32-8-131072-1
+PostgreSQL-32-8-131072
+1
+1
+fg7g6
+8
+4
+16384
+30
+a
+...
+376.0
+376.0
+376.0
+1876344
+587.999810
+103.0
+20250623.0
+923.0
+3303.0
+1876344
+
+
+PostgreSQL-32-8-131072-1-6
+PostgreSQL-32-8-131072-1
+PostgreSQL-32-8-131072
+1
+1
+g2lp7
+8
+4
+16384
+30
+a
+...
+342.0
+342.0
+342.0
+1875315
+599.226824
+96.0
+18481151.0
+987.0
+3435.0
+1875315
+
+
+PostgreSQL-32-8-131072-1-7
+PostgreSQL-32-8-131072-1
+PostgreSQL-32-8-131072
+1
+1
+gtfsx
+8
+4
+16384
+30
+a
+...
+310.0
+310.0
+310.0
+1875976
+605.955583
+93.0
+13787135.0
+948.0
+3279.0
+1875976
+
+
+PostgreSQL-32-8-131072-1-1
+PostgreSQL-32-8-131072-1
+PostgreSQL-32-8-131072
+1
+1
+6zf7s
+8
+4
+16384
+30
+a
+...
+536.0
+536.0
+536.0
+1875599
+556.295206
+105.0
+13787135.0
+961.0
+3445.0
+1875599
+
+
+PostgreSQL-32-1-32768-1-1
+PostgreSQL-32-1-32768-1
+PostgreSQL-32-1-32768
+1
+1
+k6vs7
+1
+32
+32768
+30
+a
+...
+651.0
+343.0
+651.0
+15000722
+262.927871
+101.0
+722943.0
+415.0
+580.0
+15000722
+
+
+PostgreSQL-32-1-49152-1-1
+PostgreSQL-32-1-49152-1
+PostgreSQL-32-1-49152
+1
+1
+klpvs
+1
+32
+49152
+30
+a
+...
+2655.0
+146.0
+2655.0
+14998304
+454.032034
+93.0
+18235391.0
+535.0
+1687.0
+14998304
+
+
+PostgreSQL-32-1-65536-1-1
+PostgreSQL-32-1-65536-1
+PostgreSQL-32-1-65536
+1
+1
+7w4z9
+1
+32
+65536
+30
+a
+...
+343.0
+168.0
+343.0
+14996210
+644.124900
+93.0
+20774911.0
+1075.0
+3657.0
+14996210
+
+
+PostgreSQL-32-1-81920-1-1
+PostgreSQL-32-1-81920-1
+PostgreSQL-32-1-81920
+1
+1
+chmc5
+1
+32
+81920
+30
+a
+...
+938.0
+175.0
+938.0
+15001854
+630.408114
+93.0
+20758527.0
+1115.0
+3731.0
+15001854
+
+
+PostgreSQL-32-1-98304-1-1
+PostgreSQL-32-1-98304-1
+PostgreSQL-32-1-98304
+1
+1
+7lqx2
+1
+32
+98304
+30
+a
+...
+377.0
+187.0
+377.0
+14995937
+620.081984
+93.0
+18956287.0
+1065.0
+3641.0
+14995937
+
+
+PostgreSQL-32-1-114688-1-1
+PostgreSQL-32-1-114688-1
+PostgreSQL-32-1-114688
+1
+1
+mwnxg
+1
+32
+114688
+30
+a
+...
+305.0
+178.0
+305.0
+15000966
+635.884341
+95.0
+20987903.0
+1041.0
+3383.0
+15000966
+
+
+PostgreSQL-32-1-131072-1-1
+PostgreSQL-32-1-131072-1
+PostgreSQL-32-1-131072
+1
+1
+zp9vj
+1
+32
+131072
+30
+a
+...
+305.0
+132.0
+305.0
+14999563
+647.170531
+94.0
+20889599.0
+1061.0
+3619.0
+14999563
+
+
+
+
72 rows Ă— 43 columns
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[37]:
+
+
+
+
+
+
+
+PostgreSQL-32-1-16384-1
+PostgreSQL-32-8-16384-1
+PostgreSQL-32-1-32768-1
+PostgreSQL-32-8-32768-1
+PostgreSQL-32-1-49152-1
+PostgreSQL-32-8-49152-1
+PostgreSQL-32-1-65536-1
+PostgreSQL-32-8-65536-1
+PostgreSQL-32-1-81920-1
+PostgreSQL-32-8-81920-1
+PostgreSQL-32-1-98304-1
+PostgreSQL-32-8-98304-1
+PostgreSQL-32-1-114688-1
+PostgreSQL-32-8-114688-1
+PostgreSQL-32-1-131072-1
+PostgreSQL-32-8-131072-1
+
+
+
+
+connection
+PostgreSQL-32-1-16384-1
+PostgreSQL-32-8-16384-1
+PostgreSQL-32-1-32768-1
+PostgreSQL-32-8-32768-1
+PostgreSQL-32-1-49152-1
+PostgreSQL-32-8-49152-1
+PostgreSQL-32-1-65536-1
+PostgreSQL-32-8-65536-1
+PostgreSQL-32-1-81920-1
+PostgreSQL-32-8-81920-1
+PostgreSQL-32-1-98304-1
+PostgreSQL-32-8-98304-1
+PostgreSQL-32-1-114688-1
+PostgreSQL-32-8-114688-1
+PostgreSQL-32-1-131072-1
+PostgreSQL-32-8-131072-1
+
+
+configuration
+PostgreSQL-32-1-16384
+PostgreSQL-32-8-16384
+PostgreSQL-32-1-32768
+PostgreSQL-32-8-32768
+PostgreSQL-32-1-49152
+PostgreSQL-32-8-49152
+PostgreSQL-32-1-65536
+PostgreSQL-32-8-65536
+PostgreSQL-32-1-81920
+PostgreSQL-32-8-81920
+PostgreSQL-32-1-98304
+PostgreSQL-32-8-98304
+PostgreSQL-32-1-114688
+PostgreSQL-32-8-114688
+PostgreSQL-32-1-131072
+PostgreSQL-32-8-131072
+
+
+experiment_run
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+
+
+client
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+
+
+pod
+dpz6r
+28mm26qp9s77mw4cpwg6cxgj6jpmmprt4r9tfbqm
+k6vs7
+2pf8r5szs7cfgn7j2j7flc8b4mt7d6p9tmsrt62c
+klpvs
+5wh9k998gfghk57rvqs4sfzq5sgxpftqqdcxwgtc
+7w4z9
+5spjql25nllrgp7nws4xrh8zlvc88wwp69bz58tr
+chmc5
+9hk6b9wm6bb7bh7kfjzhkrdkbtt4fmvhthfxn2w5
+7lqx2
+45zhrbhvd9k4r5rkq9kfmlt4brksk7vn5b4wjjww
+mwnxg
+2jq828tw89fzvfvhg76gjwcxmknc8qkp9r9sf8fh
+zp9vj
+6zf7s82tzjcdlljdxbqhfg7g6g2lp7gtfsxqkjzm
+
+
+pod_count
+1
+8
+1
+8
+1
+8
+1
+8
+1
+8
+1
+8
+1
+8
+1
+8
+
+
+threads
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+
+
+target
+16384
+16384
+32768
+32768
+49152
+49152
+65536
+65536
+81920
+81920
+98304
+98304
+114688
+114688
+131072
+131072
+
+
+sf
+30
+30
+30
+30
+30
+30
+30
+30
+30
+30
+30
+30
+30
+30
+30
+30
+
+
+workload
+a
+a
+a
+a
+a
+a
+a
+a
+a
+a
+a
+a
+a
+a
+a
+a
+
+
+operations
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+30000000
+
+
+batchsize
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+-1.0
+
+
+[OVERALL].RunTime(ms)
+1831314.0
+1832430.0
+915761.0
+916820.0
+657683.0
+636295.0
+523264.0
+525847.0
+521007.0
+532786.0
+514630.0
+525430.0
+515631.0
+522245.0
+521364.0
+513763.0
+
+
+[OVERALL].Throughput(ops/sec)
+16381.68004
+16377.623988
+32759.639251
+32738.135294
+45614.680629
+47358.596378
+57332.436399
+57515.975815
+57580.800258
+58539.257066
+58294.308532
+57996.79243
+58181.141165
+58176.917093
+57541.372247
+59503.634165
+
+
+[CLEANUP].Operations
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+32
+
+
+[CLEANUP].AverageLatency(us)
+68.09375
+110.03125
+100.96875
+127.28125
+174.59375
+196.09375
+122.875
+170.875
+138.46875
+170.65625
+126.4375
+211.28125
+104.75
+164.15625
+97.0625
+164.84375
+
+
+[CLEANUP].MinLatency(us)
+35.0
+46.0
+36.0
+49.0
+55.0
+61.0
+70.0
+62.0
+64.0
+65.0
+64.0
+61.0
+60.0
+65.0
+62.0
+64.0
+
+
+[CLEANUP].MaxLatency(us)
+269.0
+292.0
+651.0
+344.0
+2655.0
+1652.0
+343.0
+608.0
+938.0
+683.0
+377.0
+1324.0
+305.0
+420.0
+305.0
+536.0
+
+
+[CLEANUP].95thPercentileLatency(us)
+170.0
+292.0
+343.0
+344.0
+146.0
+1652.0
+168.0
+608.0
+175.0
+683.0
+187.0
+1324.0
+178.0
+420.0
+132.0
+536.0
+
+
+[CLEANUP].99thPercentileLatency(us)
+269.0
+292.0
+651.0
+344.0
+2655.0
+1652.0
+343.0
+608.0
+938.0
+683.0
+377.0
+1324.0
+305.0
+420.0
+305.0
+536.0
+
+
+[READ].Operations
+15000202
+15000829
+14999278
+14998494
+15001696
+15000538
+15003790
+15001673
+14998146
+14998594
+15004063
+15001919
+14999034
+14998806
+15000437
+14997372
+
+
+[READ].AverageLatency(us)
+236.30964
+253.423811
+244.156256
+282.138179
+349.143032
+400.705718
+419.172145
+450.779241
+432.829566
+442.564595
+424.969676
+443.003051
+414.153399
+462.604994
+418.644577
+447.964995
+
+
+[READ].MinLatency(us)
+93.0
+95.0
+91.0
+93.0
+89.0
+91.0
+89.0
+89.0
+85.0
+91.0
+86.0
+91.0
+86.0
+91.0
+86.0
+90.0
+
+
+[READ].MaxLatency(us)
+70271.0
+172287.0
+1073151.0
+196095.0
+18399231.0
+21381119.0
+18235391.0
+21004287.0
+20709375.0
+20627455.0
+18776063.0
+18415615.0
+20905983.0
+20168703.0
+20856831.0
+20316159.0
+
+
+[READ].95thPercentileLatency(us)
+392.0
+467.0
+395.0
+469.0
+482.0
+603.0
+774.0
+831.0
+788.0
+921.0
+757.0
+861.0
+762.0
+864.0
+750.0
+790.0
+
+
+[READ].99thPercentileLatency(us)
+514.0
+638.0
+540.0
+908.0
+1209.0
+1850.0
+2289.0
+3101.0
+2355.0
+2325.0
+2301.0
+2543.0
+2147.0
+2779.0
+2287.0
+2471.0
+
+
+[READ].Return=OK
+15000202
+15000829
+14999278
+14998494
+15001696
+15000538
+15003790
+15001673
+14998146
+14998594
+15004063
+15001919
+14999034
+14998806
+15000437
+14997372
+
+
+[UPDATE].Operations
+14999798
+14999171
+15000722
+15001506
+14998304
+14999462
+14996210
+14998327
+15001854
+15001406
+14995937
+14998081
+15000966
+15001194
+14999563
+15002628
+
+
+[UPDATE].AverageLatency(us)
+260.757995
+278.178307
+262.927871
+302.439357
+454.032034
+478.609792
+644.1249
+618.497339
+630.408114
+606.642677
+620.081984
+614.653123
+635.884341
+597.361598
+647.170531
+588.318033
+
+
+[UPDATE].MinLatency(us)
+102.0
+108.0
+101.0
+103.0
+93.0
+101.0
+93.0
+100.0
+93.0
+98.0
+93.0
+98.0
+95.0
+96.0
+94.0
+93.0
+
+
+[UPDATE].MaxLatency(us)
+67071.0
+130815.0
+722943.0
+1277951.0
+18235391.0
+21233663.0
+20774911.0
+21069823.0
+20758527.0
+20955135.0
+18956287.0
+18956287.0
+20987903.0
+20299775.0
+20889599.0
+20250623.0
+
+
+[UPDATE].95thPercentileLatency(us)
+434.0
+515.0
+415.0
+508.0
+535.0
+675.0
+1075.0
+1096.0
+1115.0
+1088.0
+1065.0
+1086.0
+1041.0
+1076.0
+1061.0
+987.0
+
+
+[UPDATE].99thPercentileLatency(us)
+573.0
+692.0
+580.0
+1008.0
+1687.0
+2353.0
+3657.0
+3931.0
+3731.0
+3395.0
+3641.0
+3613.0
+3383.0
+3871.0
+3619.0
+3445.0
+
+
+[UPDATE].Return=OK
+14999798
+14999171
+15000722
+15001506
+14998304
+14999462
+14996210
+14998327
+15001854
+15001406
+14995937
+14998081
+15000966
+15001194
+14999563
+15002628
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[38]:
+
+
+
+
+
+
+
+
+experiment_run
+client
+pod_count
+threads
+target
+sf
+operations
+batchsize
+[OVERALL].RunTime(ms)
+[OVERALL].Throughput(ops/sec)
+...
+[CLEANUP].MaxLatency(us)
+[CLEANUP].95thPercentileLatency(us)
+[CLEANUP].99thPercentileLatency(us)
+[UPDATE].Operations
+[UPDATE].AverageLatency(us)
+[UPDATE].MinLatency(us)
+[UPDATE].MaxLatency(us)
+[UPDATE].95thPercentileLatency(us)
+[UPDATE].99thPercentileLatency(us)
+[UPDATE].Return=OK
+
+
+connection
+pod
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+PostgreSQL-32-1-114688-1
+mwnxg
+1
+1
+1
+32
+114688
+30
+30000000
+-1
+515631.0
+58181.141165
+...
+305.0
+178.0
+305.0
+15000966
+635.884341
+95.0
+20987903.0
+1041.0
+3383.0
+15000966
+
+
+PostgreSQL-32-1-131072-1
+zp9vj
+1
+1
+1
+32
+131072
+30
+30000000
+-1
+521364.0
+57541.372247
+...
+305.0
+132.0
+305.0
+14999563
+647.170531
+94.0
+20889599.0
+1061.0
+3619.0
+14999563
+
+
+PostgreSQL-32-1-16384-1
+dpz6r
+1
+1
+1
+32
+16384
+30
+30000000
+-1
+1831314.0
+16381.680040
+...
+269.0
+170.0
+269.0
+14999798
+260.757995
+102.0
+67071.0
+434.0
+573.0
+14999798
+
+
+PostgreSQL-32-1-32768-1
+k6vs7
+1
+1
+1
+32
+32768
+30
+30000000
+-1
+915761.0
+32759.639251
+...
+651.0
+343.0
+651.0
+15000722
+262.927871
+101.0
+722943.0
+415.0
+580.0
+15000722
+
+
+PostgreSQL-32-1-49152-1
+klpvs
+1
+1
+1
+32
+49152
+30
+30000000
+-1
+657683.0
+45614.680629
+...
+2655.0
+146.0
+2655.0
+14998304
+454.032034
+93.0
+18235391.0
+535.0
+1687.0
+14998304
+
+
+PostgreSQL-32-1-65536-1
+7w4z9
+1
+1
+1
+32
+65536
+30
+30000000
+-1
+523264.0
+57332.436399
+...
+343.0
+168.0
+343.0
+14996210
+644.124900
+93.0
+20774911.0
+1075.0
+3657.0
+14996210
+
+
+PostgreSQL-32-1-81920-1
+chmc5
+1
+1
+1
+32
+81920
+30
+30000000
+-1
+521007.0
+57580.800258
+...
+938.0
+175.0
+938.0
+15001854
+630.408114
+93.0
+20758527.0
+1115.0
+3731.0
+15001854
+
+
+PostgreSQL-32-1-98304-1
+7lqx2
+1
+1
+1
+32
+98304
+30
+30000000
+-1
+514630.0
+58294.308532
+...
+377.0
+187.0
+377.0
+14995937
+620.081984
+93.0
+18956287.0
+1065.0
+3641.0
+14995937
+
+
+PostgreSQL-32-8-114688-1
+2jq82
+1
+1
+8
+4
+14336
+30
+3750000
+-1
+520977.0
+7198.014500
+...
+420.0
+420.0
+420.0
+1874504
+569.857987
+99.0
+20135935.0
+1010.0
+3501.0
+1874504
+
+
+8tw89
+1
+1
+8
+4
+14336
+30
+3750000
+-1
+522245.0
+7180.537870
+...
+352.0
+352.0
+352.0
+1877114
+599.267765
+96.0
+18825215.0
+1047.0
+3589.0
+1877114
+
+
+fzvfv
+1
+1
+8
+4
+14336
+30
+3750000
+-1
+518308.0
+7235.080300
+...
+324.0
+324.0
+324.0
+1875507
+583.797519
+105.0
+13819903.0
+1076.0
+3627.0
+1875507
+
+
+hg76g
+1
+1
+8
+4
+14336
+30
+3750000
+-1
+499907.0
+7501.395260
+...
+282.0
+282.0
+282.0
+1873433
+598.484479
+105.0
+20119551.0
+1020.0
+3705.0
+1873433
+
+
+jwcxm
+1
+1
+8
+4
+14336
+30
+3750000
+-1
+514709.0
+7285.670155
+...
+335.0
+335.0
+335.0
+1874515
+588.496871
+108.0
+13819903.0
+1063.0
+3871.0
+1874515
+
+
+knc8q
+1
+1
+8
+4
+14336
+30
+3750000
+-1
+518773.0
+7228.595166
+...
+374.0
+374.0
+374.0
+1875905
+634.300144
+98.0
+20103167.0
+997.0
+3533.0
+1875905
+
+
+kp9r9
+1
+1
+8
+4
+14336
+30
+3750000
+-1
+515101.0
+7280.125645
+...
+408.0
+408.0
+408.0
+1875886
+588.626170
+105.0
+18530303.0
+999.0
+3651.0
+1875886
+
+
+sf8fh
+1
+1
+8
+4
+14336
+30
+3750000
+-1
+515996.0
+7267.498198
+...
+301.0
+301.0
+301.0
+1874330
+616.061852
+112.0
+20299775.0
+1029.0
+3697.0
+1874330
+
+
+PostgreSQL-32-8-131072-1
+6zf7s
+1
+1
+8
+4
+16384
+30
+3750000
+-1
+487554.0
+7691.455716
+...
+536.0
+536.0
+536.0
+1875599
+556.295206
+105.0
+13787135.0
+961.0
+3445.0
+1875599
+
+
+82tzj
+1
+1
+8
+4
+16384
+30
+3750000
+-1
+512945.0
+7310.725321
+...
+358.0
+358.0
+358.0
+1874712
+614.491262
+97.0
+18939903.0
+976.0
+3417.0
+1874712
+
+
+cdllj
+1
+1
+8
+4
+16384
+30
+3750000
+-1
+502692.0
+7459.836242
+...
+311.0
+311.0
+311.0
+1875603
+584.949657
+111.0
+18399231.0
+909.0
+3303.0
+1875603
+
+
+dxbqh
+1
+1
+8
+4
+16384
+30
+3750000
+-1
+510550.0
+7345.020076
+...
+340.0
+340.0
+340.0
+1873868
+602.965952
+106.0
+20185087.0
+912.0
+3287.0
+1873868
+
+
+fg7g6
+1
+1
+8
+4
+16384
+30
+3750000
+-1
+508747.0
+7371.050837
+...
+376.0
+376.0
+376.0
+1876344
+587.999810
+103.0
+20250623.0
+923.0
+3303.0
+1876344
+
+
+g2lp7
+1
+1
+8
+4
+16384
+30
+3750000
+-1
+511584.0
+7330.174517
+...
+342.0
+342.0
+342.0
+1875315
+599.226824
+96.0
+18481151.0
+987.0
+3435.0
+1875315
+
+
+gtfsx
+1
+1
+8
+4
+16384
+30
+3750000
+-1
+513763.0
+7299.085376
+...
+310.0
+310.0
+310.0
+1875976
+605.955583
+93.0
+13787135.0
+948.0
+3279.0
+1875976
+
+
+qkjzm
+1
+1
+8
+4
+16384
+30
+3750000
+-1
+487248.0
+7696.286080
+...
+310.0
+310.0
+310.0
+1875211
+554.659974
+108.0
+18563071.0
+953.0
+3395.0
+1875211
+
+
+PostgreSQL-32-8-16384-1
+28mm2
+1
+1
+8
+4
+2048
+30
+3750000
+-1
+1831372.0
+2047.645153
+...
+238.0
+238.0
+238.0
+1873921
+259.960231
+108.0
+88511.0
+461.0
+614.0
+1873921
+
+
+6qp9s
+1
+1
+8
+4
+2048
+30
+3750000
+-1
+1831557.0
+2047.438327
+...
+267.0
+267.0
+267.0
+1875349
+279.281535
+111.0
+130815.0
+430.0
+692.0
+1875349
+
+
+77mw4
+1
+1
+8
+4
+2048
+30
+3750000
+-1
+1832430.0
+2046.462894
+...
+228.0
+228.0
+228.0
+1874880
+279.843256
+109.0
+77247.0
+503.0
+648.0
+1874880
+
+
+cpwg6
+1
+1
+8
+4
+2048
+30
+3750000
+-1
+1831259.0
+2047.771506
+...
+244.0
+244.0
+244.0
+1875427
+269.904560
+109.0
+130175.0
+415.0
+649.0
+1875427
+
+
+cxgj6
+1
+1
+8
+4
+2048
+30
+3750000
+-1
+1831962.0
+2046.985691
+...
+204.0
+204.0
+204.0
+1875337
+297.950520
+109.0
+76415.0
+467.0
+640.0
+1875337
+
+
+jpmmp
+1
+1
+8
+4
+2048
+30
+3750000
+-1
+1831550.0
+2047.446152
+...
+292.0
+292.0
+292.0
+1875014
+261.791274
+108.0
+55775.0
+398.0
+625.0
+1875014
+
+
+rt4r9
+1
+1
+8
+4
+2048
+30
+3750000
+-1
+1832282.0
+2046.628194
+...
+230.0
+230.0
+230.0
+1873638
+291.152009
+114.0
+118847.0
+515.0
+655.0
+1873638
+
+
+tfbqm
+1
+1
+8
+4
+2048
+30
+3750000
+-1
+1831729.0
+2047.246072
+...
+215.0
+215.0
+215.0
+1875605
+285.543071
+113.0
+127295.0
+491.0
+633.0
+1875605
+
+
+PostgreSQL-32-8-32768-1
+2pf8r
+1
+1
+8
+4
+4096
+30
+3750000
+-1
+916321.0
+4092.452317
+...
+282.0
+282.0
+282.0
+1874112
+290.050854
+109.0
+97407.0
+454.0
+946.0
+1874112
+
+
+5szs7
+1
+1
+8
+4
+4096
+30
+3750000
+-1
+916820.0
+4090.224908
+...
+236.0
+236.0
+236.0
+1875046
+295.300415
+110.0
+332287.0
+437.0
+1008.0
+1875046
+
+
+cfgn7
+1
+1
+8
+4
+4096
+30
+3750000
+-1
+916751.0
+4090.532762
+...
+260.0
+260.0
+260.0
+1874994
+304.605591
+103.0
+1277951.0
+471.0
+971.0
+1874994
+
+
+j2j7f
+1
+1
+8
+4
+4096
+30
+3750000
+-1
+916269.0
+4092.684572
+...
+324.0
+324.0
+324.0
+1876703
+312.227578
+107.0
+735231.0
+478.0
+929.0
+1876703
+
+
+lc8b4
+1
+1
+8
+4
+4096
+30
+3750000
+-1
+916220.0
+4092.903451
+...
+264.0
+264.0
+264.0
+1873702
+282.308903
+105.0
+159871.0
+430.0
+929.0
+1873702
+
+
+mt7d6
+1
+1
+8
+4
+4096
+30
+3750000
+-1
+916340.0
+4092.367462
+...
+323.0
+323.0
+323.0
+1874082
+309.469422
+110.0
+86015.0
+508.0
+823.0
+1874082
+
+
+p9tms
+1
+1
+8
+4
+4096
+30
+3750000
+-1
+916454.0
+4091.858402
+...
+301.0
+301.0
+301.0
+1875937
+312.520923
+109.0
+539135.0
+485.0
+975.0
+1875937
+
+
+rt62c
+1
+1
+8
+4
+4096
+30
+3750000
+-1
+915726.0
+4095.111420
+...
+344.0
+344.0
+344.0
+1876930
+313.031167
+111.0
+270079.0
+482.0
+971.0
+1876930
+
+
+PostgreSQL-32-8-49152-1
+5wh9k
+1
+1
+8
+4
+6144
+30
+3750000
+-1
+620373.0
+6044.750497
+...
+349.0
+349.0
+349.0
+1875039
+483.460633
+105.0
+12902399.0
+625.0
+2353.0
+1875039
+
+
+998gf
+1
+1
+8
+4
+6144
+30
+3750000
+-1
+634777.0
+5907.586444
+...
+278.0
+278.0
+278.0
+1874709
+473.292028
+101.0
+18120703.0
+637.0
+2247.0
+1874709
+
+
+ghk57
+1
+1
+8
+4
+6144
+30
+3750000
+-1
+635764.0
+5898.415135
+...
+425.0
+425.0
+425.0
+1873652
+469.840329
+105.0
+16007167.0
+651.0
+2293.0
+1873652
+
+
+rvqs4
+1
+1
+8
+4
+6144
+30
+3750000
+-1
+636295.0
+5893.492798
+...
+1652.0
+1652.0
+1652.0
+1875591
+507.224280
+105.0
+18219007.0
+658.0
+2231.0
+1875591
+
+
+sfzq5
+1
+1
+8
+4
+6144
+30
+3750000
+-1
+635374.0
+5902.035651
+...
+304.0
+304.0
+304.0
+1874898
+494.085958
+107.0
+21233663.0
+654.0
+2133.0
+1874898
+
+
+sgxpf
+1
+1
+8
+4
+6144
+30
+3750000
+-1
+634520.0
+5909.979197
+...
+311.0
+311.0
+311.0
+1874523
+464.176237
+107.0
+18382847.0
+641.0
+2301.0
+1874523
+
+
+tqqdc
+1
+1
+8
+4
+6144
+30
+3750000
+-1
+635739.0
+5898.647086
+...
+307.0
+307.0
+307.0
+1874986
+494.877304
+101.0
+14909439.0
+675.0
+2257.0
+1874986
+
+
+xwgtc
+1
+1
+8
+4
+6144
+30
+3750000
+-1
+635196.0
+5903.689570
+...
+348.0
+348.0
+348.0
+1876064
+441.921570
+105.0
+14909439.0
+646.0
+2269.0
+1876064
+
+
+PostgreSQL-32-8-65536-1
+5spjq
+1
+1
+8
+4
+8192
+30
+3750000
+-1
+519071.0
+7224.445211
+...
+313.0
+313.0
+313.0
+1875000
+634.823838
+100.0
+21069823.0
+1046.0
+3931.0
+1875000
+
+
+l25nl
+1
+1
+8
+4
+8192
+30
+3750000
+-1
+523360.0
+7165.239988
+...
+301.0
+301.0
+301.0
+1875272
+620.948668
+101.0
+20856831.0
+1096.0
+3859.0
+1875272
+
+
+lrgp7
+1
+1
+8
+4
+8192
+30
+3750000
+-1
+517747.0
+7242.919804
+...
+297.0
+297.0
+297.0
+1875517
+609.462749
+103.0
+20922367.0
+1087.0
+3897.0
+1875517
+
+
+nws4x
+1
+1
+8
+4
+8192
+30
+3750000
+-1
+520616.0
+7203.005670
+...
+332.0
+332.0
+332.0
+1875071
+622.472328
+104.0
+16457727.0
+1053.0
+3851.0
+1875071
+
+
+rh8zl
+1
+1
+8
+4
+8192
+30
+3750000
+-1
+525847.0
+7131.351895
+...
+515.0
+515.0
+515.0
+1875343
+610.272305
+100.0
+20627455.0
+1018.0
+3753.0
+1875343
+
+
+vc88w
+1
+1
+8
+4
+8192
+30
+3750000
+-1
+523591.0
+7162.078798
+...
+608.0
+608.0
+608.0
+1875539
+628.395195
+102.0
+20987903.0
+1081.0
+3865.0
+1875539
+
+
+wp69b
+1
+1
+8
+4
+8192
+30
+3750000
+-1
+522241.0
+7180.592868
+...
+322.0
+322.0
+322.0
+1874271
+618.117459
+103.0
+20905983.0
+1085.0
+3907.0
+1874271
+
+
+z58tr
+1
+1
+8
+4
+8192
+30
+3750000
+-1
+520375.0
+7206.341581
+...
+290.0
+290.0
+290.0
+1872314
+603.486167
+107.0
+13221887.0
+1076.0
+3917.0
+1872314
+
+
+PostgreSQL-32-8-81920-1
+9hk6b
+1
+1
+8
+4
+10240
+30
+3750000
+-1
+512036.0
+7323.703802
+...
+302.0
+302.0
+302.0
+1876646
+621.082813
+104.0
+20922367.0
+954.0
+3241.0
+1876646
+
+
+9wm6b
+1
+1
+8
+4
+10240
+30
+3750000
+-1
+519087.0
+7224.222529
+...
+318.0
+318.0
+318.0
+1874917
+616.268760
+104.0
+20856831.0
+1026.0
+3347.0
+1874917
+
+
+b7bh7
+1
+1
+8
+4
+10240
+30
+3750000
+-1
+503879.0
+7442.262924
+...
+384.0
+384.0
+384.0
+1873757
+583.579925
+105.0
+20496383.0
+951.0
+3315.0
+1873757
+
+
+kfjzh
+1
+1
+8
+4
+10240
+30
+3750000
+-1
+523228.0
+7167.047635
+...
+683.0
+683.0
+683.0
+1874551
+615.696021
+102.0
+20201471.0
+1009.0
+3347.0
+1874551
+
+
+krdkb
+1
+1
+8
+4
+10240
+30
+3750000
+-1
+492041.0
+7621.316110
+...
+412.0
+412.0
+412.0
+1874516
+578.652579
+107.0
+20545535.0
+1008.0
+3395.0
+1874516
+
+
+tt4fm
+1
+1
+8
+4
+10240
+30
+3750000
+-1
+503374.0
+7449.729227
+...
+362.0
+362.0
+362.0
+1875823
+597.406558
+113.0
+20463615.0
+972.0
+3363.0
+1875823
+
+
+vhthf
+1
+1
+8
+4
+10240
+30
+3750000
+-1
+515641.0
+7272.501605
+...
+320.0
+320.0
+320.0
+1875332
+621.982541
+105.0
+20430847.0
+1007.0
+3367.0
+1875332
+
+
+xn2w5
+1
+1
+8
+4
+10240
+30
+3750000
+-1
+532786.0
+7038.473233
+...
+335.0
+335.0
+335.0
+1875864
+618.472218
+98.0
+20955135.0
+1088.0
+3275.0
+1875864
+
+
+PostgreSQL-32-8-98304-1
+45zhr
+1
+1
+8
+4
+12288
+30
+3750000
+-1
+517972.0
+7239.773578
+...
+358.0
+358.0
+358.0
+1874362
+610.307512
+105.0
+18710527.0
+1032.0
+3517.0
+1874362
+
+
+bhvd9
+1
+1
+8
+4
+12288
+30
+3750000
+-1
+525430.0
+7137.011591
+...
+352.0
+352.0
+352.0
+1874785
+620.062738
+98.0
+18956287.0
+1086.0
+3495.0
+1874785
+
+
+k4r5r
+1
+1
+8
+4
+12288
+30
+3750000
+-1
+510878.0
+7340.304339
+...
+304.0
+304.0
+304.0
+1873140
+592.218152
+101.0
+18956287.0
+1072.0
+3579.0
+1873140
+
+
+kq9kf
+1
+1
+8
+4
+12288
+30
+3750000
+-1
+509697.0
+7357.312286
+...
+270.0
+270.0
+270.0
+1876173
+606.348524
+114.0
+18317311.0
+1011.0
+3465.0
+1876173
+
+
+mlt4b
+1
+1
+8
+4
+12288
+30
+3750000
+-1
+523738.0
+7160.068584
+...
+1324.0
+1324.0
+1324.0
+1873546
+621.741993
+99.0
+17874943.0
+1015.0
+3449.0
+1873546
+
+
+rksk7
+1
+1
+8
+4
+12288
+30
+3750000
+-1
+513476.0
+7303.165094
+...
+355.0
+355.0
+355.0
+1876248
+604.160926
+107.0
+18776063.0
+966.0
+3267.0
+1876248
+
+
+vn5b4
+1
+1
+8
+4
+12288
+30
+3750000
+-1
+523770.0
+7159.631136
+...
+991.0
+991.0
+991.0
+1875485
+621.688254
+102.0
+18759679.0
+1080.0
+3613.0
+1875485
+
+
+wjjww
+1
+1
+8
+4
+12288
+30
+3750000
+-1
+513732.0
+7299.525823
+...
+299.0
+299.0
+299.0
+1874342
+640.696887
+104.0
+18579455.0
+1043.0
+3525.0
+1874342
+
+
+
+
72 rows Ă— 30 columns
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[INSERT].99thPercentileLatency(us) not avalable
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[INSERT].AverageLatency(us) not avalable
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[INSERT].95thPercentileLatency(us) not avalable
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[SCAN].99thPercentileLatency(us) not avalable
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[SCAN].AverageLatency(us) not avalable
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
[SCAN].95thPercentileLatency(us) not avalable
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
found 16 connections
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
PostgreSQL-32-1-114688-1 1068.2056978940964 [s] for 32 threads on ip-192-168-92-229.eu-central-1.compute.internal
+PostgreSQL-32-1-131072-1 1087.3417482078075 [s] for 32 threads on ip-192-168-92-229.eu-central-1.compute.internal
+PostgreSQL-32-1-16384-1 1834.0904397517443 [s] for 32 threads on ip-192-168-92-229.eu-central-1.compute.internal
+PostgreSQL-32-1-32768-1 1062.0822292342782 [s] for 32 threads on ip-192-168-92-229.eu-central-1.compute.internal
+PostgreSQL-32-1-49152-1 1065.0029773414135 [s] for 32 threads on ip-192-168-92-229.eu-central-1.compute.internal
+PostgreSQL-32-1-65536-1 1033.139736406505 [s] for 32 threads on ip-192-168-92-229.eu-central-1.compute.internal
+PostgreSQL-32-1-81920-1 1056.9990959092975 [s] for 32 threads on ip-192-168-92-229.eu-central-1.compute.internal
+PostgreSQL-32-1-98304-1 1077.2663244530559 [s] for 32 threads on ip-192-168-92-229.eu-central-1.compute.internal
+PostgreSQL-32-8-114688-1 1129.2390964254737 [s] for 4 threads on ip-192-168-92-229.eu-central-1.compute.internal
+PostgreSQL-32-8-131072-1 1094.283723473549 [s] for 4 threads on ip-192-168-92-229.eu-central-1.compute.internal
+PostgreSQL-32-8-16384-1 1835.2130344808102 [s] for 4 threads on ip-192-168-92-229.eu-central-1.compute.internal
+PostgreSQL-32-8-32768-1 1074.2522376477718 [s] for 4 threads on ip-192-168-92-229.eu-central-1.compute.internal
+PostgreSQL-32-8-49152-1 1054.188381895423 [s] for 4 threads on ip-192-168-92-229.eu-central-1.compute.internal
+PostgreSQL-32-8-65536-1 1095.2031724601984 [s] for 4 threads on ip-192-168-92-229.eu-central-1.compute.internal
+PostgreSQL-32-8-81920-1 1076.1312694624066 [s] for 4 threads on ip-192-168-92-229.eu-central-1.compute.internal
+PostgreSQL-32-8-98304-1 1073.1441322341561 [s] for 4 threads on ip-192-168-92-229.eu-central-1.compute.internal
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[62]:
+
+
['total_cpu_memory',
+ 'total_cpu_memory_cached',
+ 'total_cpu_util',
+ 'total_cpu_util_max',
+ 'total_cpu_throttled',
+ 'total_cpu_util_others',
+ 'total_cpu_util_s',
+ 'total_cpu_util_user_s',
+ 'total_cpu_util_sys_s',
+ 'total_cpu_throttled_s',
+ 'total_cpu_util_others_s',
+ 'total_network_rx',
+ 'total_network_tx',
+ 'total_fs_read',
+ 'total_fs_write',
+ 'total_gpu_util',
+ 'total_gpu_power',
+ 'total_gpu_memory']
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[69]:
+
+
['total_cpu_memory',
+ 'total_cpu_memory_cached',
+ 'total_cpu_util',
+ 'total_cpu_util_max',
+ 'total_cpu_throttled',
+ 'total_cpu_util_others',
+ 'total_cpu_util_s',
+ 'total_cpu_util_user_s',
+ 'total_cpu_util_sys_s',
+ 'total_cpu_throttled_s',
+ 'total_cpu_util_others_s',
+ 'total_network_rx',
+ 'total_network_tx',
+ 'total_fs_read',
+ 'total_fs_write',
+ 'total_gpu_util',
+ 'total_gpu_power',
+ 'total_gpu_memory']
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[76]:
+
+
['total_cpu_memory',
+ 'total_cpu_memory_cached',
+ 'total_cpu_util',
+ 'total_cpu_util_max',
+ 'total_cpu_throttled',
+ 'total_cpu_util_others',
+ 'total_cpu_util_s',
+ 'total_cpu_util_user_s',
+ 'total_cpu_util_sys_s',
+ 'total_cpu_throttled_s',
+ 'total_cpu_util_others_s',
+ 'total_network_rx',
+ 'total_network_tx',
+ 'total_fs_read',
+ 'total_fs_write',
+ 'total_gpu_util',
+ 'total_gpu_power',
+ 'total_gpu_memory']
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[78]:
+
+
PostgreSQL-32-1-16384-1 3331.054276
+PostgreSQL-32-1-32768-1 2135.833365
+PostgreSQL-32-1-49152-1 2860.510238
+PostgreSQL-32-1-65536-1 4950.739413
+PostgreSQL-32-1-81920-1 5049.445946
+PostgreSQL-32-1-98304-1 4894.388010
+PostgreSQL-32-1-114688-1 4695.229749
+PostgreSQL-32-1-131072-1 4854.766119
+PostgreSQL-32-8-16384-1 3250.851061
+PostgreSQL-32-8-32768-1 2153.290309
+PostgreSQL-32-8-49152-1 2969.004657
+PostgreSQL-32-8-65536-1 4392.625075
+PostgreSQL-32-8-81920-1 4174.933585
+PostgreSQL-32-8-98304-1 4309.111984
+PostgreSQL-32-8-114688-1 4379.602404
+PostgreSQL-32-8-131072-1 4079.609299
+dtype: float64
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[79]:
+
+
PostgreSQL-32-1-16384-1 4.973462
+PostgreSQL-32-1-32768-1 4.478603
+PostgreSQL-32-1-49152-1 13.785709
+PostgreSQL-32-1-65536-1 16.049334
+PostgreSQL-32-1-81920-1 16.826042
+PostgreSQL-32-1-98304-1 15.550890
+PostgreSQL-32-1-114688-1 13.336056
+PostgreSQL-32-1-131072-1 13.245598
+PostgreSQL-32-8-16384-1 2.856713
+PostgreSQL-32-8-32768-1 3.039626
+PostgreSQL-32-8-49152-1 11.866286
+PostgreSQL-32-8-65536-1 14.107406
+PostgreSQL-32-8-81920-1 13.991398
+PostgreSQL-32-8-98304-1 13.454298
+PostgreSQL-32-8-114688-1 15.131495
+PostgreSQL-32-8-131072-1 15.122374
+dtype: float64
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[83]:
+
+
['total_cpu_memory',
+ 'total_cpu_memory_cached',
+ 'total_cpu_util',
+ 'total_cpu_util_max',
+ 'total_cpu_throttled',
+ 'total_cpu_util_others',
+ 'total_cpu_util_s',
+ 'total_cpu_util_user_s',
+ 'total_cpu_util_sys_s',
+ 'total_cpu_throttled_s',
+ 'total_cpu_util_others_s',
+ 'total_network_rx',
+ 'total_network_tx',
+ 'total_fs_read',
+ 'total_fs_write',
+ 'total_gpu_util',
+ 'total_gpu_power',
+ 'total_gpu_memory']
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Out[88]:
+
+
<matplotlib.legend.Legend at 0x20b2a2fa100>
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/images/evaluator_dbmsbenchmarker/notebooks/Evaluation-YCSB.ipynb b/images/evaluator_dbmsbenchmarker/notebooks/Evaluation-YCSB.ipynb
new file mode 100644
index 00000000..7890ef0a
--- /dev/null
+++ b/images/evaluator_dbmsbenchmarker/notebooks/Evaluation-YCSB.ipynb
@@ -0,0 +1,21640 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Evaluate YCSB Result\n",
+ "\n",
+ " \n",
+ "\n",
+ "References:\n",
+ "1. https://github.com/brianfrankcooper/YCSB/wiki/Running-a-Workload\n",
+ "\n",
+ "## Import Packages"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#!pip list\n",
+ "\n",
+ "%matplotlib inline\n",
+ "\n",
+ "import pandas as pd\n",
+ "import os\n",
+ "import re\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pickle\n",
+ "# Some nice output\n",
+ "pd.set_option(\"display.max_rows\", None)\n",
+ "pd.set_option('display.max_colwidth', None)\n",
+ "from IPython.display import display, Markdown\n",
+ "\n",
+ "import dbmsbenchmarker\n",
+ "\n",
+ "import evaluator"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Pick Result"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "code = \"1684758882\"\n",
+ "path = \"./\"\n",
+ "name_pattern = \"PostgreSQL-32-(.+?)-(.+?)-1\"\n",
+ "peak_benchmark = 65536\n",
+ "peak_loading = 2**14*2"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Helper Functions"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def plot_comparison(df_aggregated, x, y, colum, title, marker=None):\n",
+ " if y in df_aggregated.columns:\n",
+ " ax = evaluation.plot(df_aggregated.rename(columns={'pod_count': 'pods'}), column=column, x=x, y=y, figsize=(2,2))\n",
+ " ax.title.set_size(10)\n",
+ " ax.set_title(title)\n",
+ " plt.legend(loc='lower right', title='num pods')\n",
+ " if marker is not None:\n",
+ " ax.axvline(marker, color='k', linestyle='--')\n",
+ " else:\n",
+ " print(\"{} not avalable\".format(y))\n",
+ "\n",
+ "def plot_variation(df_groups, max_pod_count, column):\n",
+ " if column in df_groups:\n",
+ " ax = df_groups[df_groups['pod_count']==max_pod_count].boxplot(by='target', column=column, rot=90, figsize=(2,2), grid=False)\n",
+ " ax.get_figure().suptitle('')\n",
+ " ax.title.set_size(10)\n",
+ " else:\n",
+ " print(\"{} not avalable\".format(column))\n",
+ "\n",
+ "def plot_metric(df, title, marker=None):\n",
+ " global name_pattern\n",
+ " df = pd.DataFrame(df, columns=[\"new\"])\n",
+ " #found = re.findall('PostgreSQL-AWS-32-(.+?)-(.+?)-1\\n', stdout)\n",
+ " #print(found)\n",
+ " #df['vusers'] = \n",
+ " #print(name_pattern)\n",
+ " #print(df)\n",
+ " liste = list(df.index.map(lambda x: re.findall(name_pattern, x)))\n",
+ " #print(liste)\n",
+ " df['pods'] = [int(x[0][0]) for x in liste]\n",
+ " df['target'] = [int(int(x[0][1])) for x in liste]\n",
+ " #df['target'] = [int(int(x[0][1])/16384) for x in liste]\n",
+ " #df['config'] = [x[0] for x in liste]\n",
+ " #df.set_index('vusers', inplace=True)\n",
+ " #ax = df.plot.bar(legend=False, figsize=(2,2), title=\"SUT CPU\")\n",
+ " #df.plot.bar(x='target')\n",
+ " df = df.pivot(columns='pods', index='target', values='new')\n",
+ " ax = df.plot(figsize=(2,2), title=title)\n",
+ " plt.legend(title='num pods')\n",
+ " ax.set_ylim(0, df.max().max()*1.05)\n",
+ " ax.title.set_size(10)\n",
+ " if marker is not None:\n",
+ " ax.axvline(marker, color='k', linestyle='--')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Start Evaluation"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "evaluation = evaluator.ycsb(code=code, path=path)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Prepare Result\n",
+ "\n",
+ "This has to be done only once. Prepared results will be stored in result folder.\n",
+ "\n",
+ "## Transform all Benchmarking Log Files to DataFrames\n",
+ "\n",
+ "We also pick the first log file to be an example for later"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "filename_example = \"\"\n",
+ "\n",
+ "directory = os.fsencode(path+\"/\"+code)\n",
+ "for file in os.listdir(directory):\n",
+ " filename = os.fsdecode(file)\n",
+ " if filename.startswith(\"bexhoma-benchmarker\") and filename.endswith(\".log\"):\n",
+ " #print(\"filename:\", filename)\n",
+ " pod_name = filename[filename.rindex(\"-\")+1:-len(\".log\")]\n",
+ " #print(\"pod_name:\", pod_name)\n",
+ " jobname = filename[len(\"bexhoma-benchmarker-\"):-len(\"-\"+pod_name+\".log\")]\n",
+ " #print(\"jobname:\", jobname)\n",
+ " evaluation.end_benchmarking(jobname)\n",
+ " filename_example = filename"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Show a DataFrame for Single Pod as Example"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ ".//1684758882/bexhoma-benchmarker-postgresql-32-8-98304-1684758882-1-1-wjjww.log.df.pickle\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " connection \n",
+ " configuration \n",
+ " experiment_run \n",
+ " client \n",
+ " pod \n",
+ " pod_count \n",
+ " threads \n",
+ " target \n",
+ " sf \n",
+ " workload \n",
+ " ... \n",
+ " [CLEANUP].MaxLatency(us) \n",
+ " [CLEANUP].95thPercentileLatency(us) \n",
+ " [CLEANUP].99thPercentileLatency(us) \n",
+ " [UPDATE].Operations \n",
+ " [UPDATE].AverageLatency(us) \n",
+ " [UPDATE].MinLatency(us) \n",
+ " [UPDATE].MaxLatency(us) \n",
+ " [UPDATE].95thPercentileLatency(us) \n",
+ " [UPDATE].99thPercentileLatency(us) \n",
+ " [UPDATE].Return=OK \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " 1 \n",
+ " 1 \n",
+ " wjjww \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 299 \n",
+ " 299 \n",
+ " 299 \n",
+ " 1874342 \n",
+ " 640.6968872276244 \n",
+ " 104 \n",
+ " 18579455 \n",
+ " 1043 \n",
+ " 3525 \n",
+ " 1874342 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1 rows Ă— 43 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " connection configuration \\\n",
+ "PostgreSQL-32-8-98304-1 \n",
+ "0 PostgreSQL-32-8-98304-1 PostgreSQL-32-8-98304 \n",
+ "\n",
+ " experiment_run client pod pod_count threads target \\\n",
+ "PostgreSQL-32-8-98304-1 \n",
+ "0 1 1 wjjww 8 4 12288 \n",
+ "\n",
+ " sf workload ... [CLEANUP].MaxLatency(us) \\\n",
+ "PostgreSQL-32-8-98304-1 ... \n",
+ "0 30 a ... 299 \n",
+ "\n",
+ " [CLEANUP].95thPercentileLatency(us) \\\n",
+ "PostgreSQL-32-8-98304-1 \n",
+ "0 299 \n",
+ "\n",
+ " [CLEANUP].99thPercentileLatency(us) \\\n",
+ "PostgreSQL-32-8-98304-1 \n",
+ "0 299 \n",
+ "\n",
+ " [UPDATE].Operations [UPDATE].AverageLatency(us) \\\n",
+ "PostgreSQL-32-8-98304-1 \n",
+ "0 1874342 640.6968872276244 \n",
+ "\n",
+ " [UPDATE].MinLatency(us) [UPDATE].MaxLatency(us) \\\n",
+ "PostgreSQL-32-8-98304-1 \n",
+ "0 104 18579455 \n",
+ "\n",
+ " [UPDATE].95thPercentileLatency(us) \\\n",
+ "PostgreSQL-32-8-98304-1 \n",
+ "0 1043 \n",
+ "\n",
+ " [UPDATE].99thPercentileLatency(us) [UPDATE].Return=OK \n",
+ "PostgreSQL-32-8-98304-1 \n",
+ "0 3525 1874342 \n",
+ "\n",
+ "[1 rows x 43 columns]"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "filename = path+\"/\"+code+\"/\"+filename_example+\".df.pickle\"\n",
+ "print(filename)\n",
+ "df = pd.read_pickle(filename)\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Transform all Loading Log Files to DataFrames\n",
+ "\n",
+ "We also pick the first log file to be an example for later"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "directory = os.fsencode(path+\"/\"+code)\n",
+ "for file in os.listdir(directory):\n",
+ " filename = os.fsdecode(file)\n",
+ " if filename.startswith(\"bexhoma-loading\") and filename.endswith(\".sensor.log\"):\n",
+ " #print(\"filename:\", filename)\n",
+ " pod_name = filename[filename.rindex(\"-\")+1:-len(\".log\")]\n",
+ " #print(\"pod_name:\", pod_name)\n",
+ " jobname = filename[len(\"bexhoma-loading-\"):-len(\"-\"+pod_name+\".sensor.log\")]\n",
+ " #print(\"jobname:\", jobname)\n",
+ " evaluation.end_loading(jobname)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Show a DataFrame for Single Pod as Example"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ ".//1684758882/bexhoma-benchmarker-postgresql-32-8-98304-1684758882-1-1-wjjww.log.df.pickle\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " connection \n",
+ " configuration \n",
+ " experiment_run \n",
+ " client \n",
+ " pod \n",
+ " pod_count \n",
+ " threads \n",
+ " target \n",
+ " sf \n",
+ " workload \n",
+ " ... \n",
+ " [CLEANUP].MaxLatency(us) \n",
+ " [CLEANUP].95thPercentileLatency(us) \n",
+ " [CLEANUP].99thPercentileLatency(us) \n",
+ " [UPDATE].Operations \n",
+ " [UPDATE].AverageLatency(us) \n",
+ " [UPDATE].MinLatency(us) \n",
+ " [UPDATE].MaxLatency(us) \n",
+ " [UPDATE].95thPercentileLatency(us) \n",
+ " [UPDATE].99thPercentileLatency(us) \n",
+ " [UPDATE].Return=OK \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " 1 \n",
+ " 1 \n",
+ " wjjww \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 299 \n",
+ " 299 \n",
+ " 299 \n",
+ " 1874342 \n",
+ " 640.6968872276244 \n",
+ " 104 \n",
+ " 18579455 \n",
+ " 1043 \n",
+ " 3525 \n",
+ " 1874342 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1 rows Ă— 43 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " connection configuration \\\n",
+ "PostgreSQL-32-8-98304-1 \n",
+ "0 PostgreSQL-32-8-98304-1 PostgreSQL-32-8-98304 \n",
+ "\n",
+ " experiment_run client pod pod_count threads target \\\n",
+ "PostgreSQL-32-8-98304-1 \n",
+ "0 1 1 wjjww 8 4 12288 \n",
+ "\n",
+ " sf workload ... [CLEANUP].MaxLatency(us) \\\n",
+ "PostgreSQL-32-8-98304-1 ... \n",
+ "0 30 a ... 299 \n",
+ "\n",
+ " [CLEANUP].95thPercentileLatency(us) \\\n",
+ "PostgreSQL-32-8-98304-1 \n",
+ "0 299 \n",
+ "\n",
+ " [CLEANUP].99thPercentileLatency(us) \\\n",
+ "PostgreSQL-32-8-98304-1 \n",
+ "0 299 \n",
+ "\n",
+ " [UPDATE].Operations [UPDATE].AverageLatency(us) \\\n",
+ "PostgreSQL-32-8-98304-1 \n",
+ "0 1874342 640.6968872276244 \n",
+ "\n",
+ " [UPDATE].MinLatency(us) [UPDATE].MaxLatency(us) \\\n",
+ "PostgreSQL-32-8-98304-1 \n",
+ "0 104 18579455 \n",
+ "\n",
+ " [UPDATE].95thPercentileLatency(us) \\\n",
+ "PostgreSQL-32-8-98304-1 \n",
+ "0 1043 \n",
+ "\n",
+ " [UPDATE].99thPercentileLatency(us) [UPDATE].Return=OK \n",
+ "PostgreSQL-32-8-98304-1 \n",
+ "0 3525 1874342 \n",
+ "\n",
+ "[1 rows x 43 columns]"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "filename = path+\"/\"+code+\"/\"+filename_example+\".df.pickle\"\n",
+ "print(filename)\n",
+ "df = pd.read_pickle(filename)\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Transform all DataFrames into Single Result DataFrame"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "evaluation.evaluate_results()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Get Loading Result"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " connection_pod \n",
+ " PostgreSQL-32-1-114688-1 \n",
+ " PostgreSQL-32-1-131072-1 \n",
+ " PostgreSQL-32-1-16384-1 \n",
+ " PostgreSQL-32-1-32768-1 \n",
+ " PostgreSQL-32-1-49152-1 \n",
+ " PostgreSQL-32-1-65536-1 \n",
+ " PostgreSQL-32-1-81920-1 \n",
+ " PostgreSQL-32-1-98304-1 \n",
+ " PostgreSQL-32-8-114688-1 \n",
+ " PostgreSQL-32-8-114688-2 \n",
+ " ... \n",
+ " PostgreSQL-32-8-81920-7 \n",
+ " PostgreSQL-32-8-81920-8 \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " PostgreSQL-32-8-98304-2 \n",
+ " PostgreSQL-32-8-98304-3 \n",
+ " PostgreSQL-32-8-98304-4 \n",
+ " PostgreSQL-32-8-98304-5 \n",
+ " PostgreSQL-32-8-98304-6 \n",
+ " PostgreSQL-32-8-98304-7 \n",
+ " PostgreSQL-32-8-98304-8 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " connection \n",
+ " PostgreSQL-32-1-114688 \n",
+ " PostgreSQL-32-1-131072 \n",
+ " PostgreSQL-32-1-16384 \n",
+ " PostgreSQL-32-1-32768 \n",
+ " PostgreSQL-32-1-49152 \n",
+ " PostgreSQL-32-1-65536 \n",
+ " PostgreSQL-32-1-81920 \n",
+ " PostgreSQL-32-1-98304 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " ... \n",
+ " PostgreSQL-32-8-81920 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " \n",
+ " \n",
+ " configuration \n",
+ " PostgreSQL-32-1-114688 \n",
+ " PostgreSQL-32-1-131072 \n",
+ " PostgreSQL-32-1-16384 \n",
+ " PostgreSQL-32-1-32768 \n",
+ " PostgreSQL-32-1-49152 \n",
+ " PostgreSQL-32-1-65536 \n",
+ " PostgreSQL-32-1-81920 \n",
+ " PostgreSQL-32-1-98304 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " ... \n",
+ " PostgreSQL-32-8-81920 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " \n",
+ " \n",
+ " experiment_run \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " ... \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " client \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " pod \n",
+ " tx5d5.sensor \n",
+ " b9gzf.sensor \n",
+ " mr62r.sensor \n",
+ " 9fbk6.sensor \n",
+ " gs5fb.sensor \n",
+ " 6hqzb.sensor \n",
+ " nkd9n.sensor \n",
+ " xzd7w.sensor \n",
+ " 5x62v.sensor \n",
+ " 7bc2c.sensor \n",
+ " ... \n",
+ " qpc6h.sensor \n",
+ " vtqn4.sensor \n",
+ " 6xx8q.sensor \n",
+ " ghmf9.sensor \n",
+ " gqw9m.sensor \n",
+ " jln48.sensor \n",
+ " n9xct.sensor \n",
+ " p78x4.sensor \n",
+ " s4t2s.sensor \n",
+ " zklhx.sensor \n",
+ " \n",
+ " \n",
+ " pod_count \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 8 \n",
+ " ... \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " \n",
+ " \n",
+ " threads \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 4 \n",
+ " 4 \n",
+ " ... \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " \n",
+ " \n",
+ " target \n",
+ " 114688 \n",
+ " 131072 \n",
+ " 16384 \n",
+ " 32768 \n",
+ " 49152 \n",
+ " 65536 \n",
+ " 81920 \n",
+ " 98304 \n",
+ " 14336 \n",
+ " 14336 \n",
+ " ... \n",
+ " 10240 \n",
+ " 10240 \n",
+ " 12288 \n",
+ " 12288 \n",
+ " 12288 \n",
+ " 12288 \n",
+ " 12288 \n",
+ " 12288 \n",
+ " 12288 \n",
+ " 12288 \n",
+ " \n",
+ " \n",
+ " sf \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " ... \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " \n",
+ " \n",
+ " workload \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " ... \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " \n",
+ " \n",
+ " operations \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " ... \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " batchsize \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " ... \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " \n",
+ " \n",
+ " [OVERALL].RunTime(ms) \n",
+ " 1066169 \n",
+ " 1085442 \n",
+ " 1831226 \n",
+ " 1059352 \n",
+ " 1062779 \n",
+ " 1030604 \n",
+ " 1054230 \n",
+ " 1074369 \n",
+ " 1032151 \n",
+ " 1039143 \n",
+ " ... \n",
+ " 1004788 \n",
+ " 1073472 \n",
+ " 1054586 \n",
+ " 1069092 \n",
+ " 1054273 \n",
+ " 979125 \n",
+ " 1054125 \n",
+ " 1013255 \n",
+ " 970744 \n",
+ " 1036959 \n",
+ " \n",
+ " \n",
+ " [OVERALL].Throughput(ops/sec) \n",
+ " 28138.128195436184 \n",
+ " 27638.51039484376 \n",
+ " 16382.467265099993 \n",
+ " 28319.198906501333 \n",
+ " 28227.88180797701 \n",
+ " 29109.143764239223 \n",
+ " 28456.788366864916 \n",
+ " 27923.367111299747 \n",
+ " 3633.189329855806 \n",
+ " 3608.74297377743 \n",
+ " ... \n",
+ " 3732.1305588840632 \n",
+ " 3493.337506707208 \n",
+ " 3555.8977646204294 \n",
+ " 3507.6494819903246 \n",
+ " 3556.9534646149527 \n",
+ " 3829.9502106472614 \n",
+ " 3557.4528637495555 \n",
+ " 3700.943987446398 \n",
+ " 3863.0164080334257 \n",
+ " 3616.3435584242 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GCS_Copy].Count \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 207 \n",
+ " 207 \n",
+ " ... \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GC_TIME_Copy].Time(ms) \n",
+ " 1411 \n",
+ " 1425 \n",
+ " 1361 \n",
+ " 1404 \n",
+ " 1412 \n",
+ " 1393 \n",
+ " 1403 \n",
+ " 1409 \n",
+ " 160 \n",
+ " 161 \n",
+ " ... \n",
+ " 160 \n",
+ " 161 \n",
+ " 161 \n",
+ " 160 \n",
+ " 161 \n",
+ " 159 \n",
+ " 159 \n",
+ " 161 \n",
+ " 165 \n",
+ " 161 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GC_TIME_%_Copy].Time(%) \n",
+ " 0.1323429962792015 \n",
+ " 0.13128292437550787 \n",
+ " 0.07432179315933697 \n",
+ " 0.13253385088242622 \n",
+ " 0.1328592303762118 \n",
+ " 0.1351634575452841 \n",
+ " 0.13308291359570493 \n",
+ " 0.1311467475327378 \n",
+ " 0.01550160780738477 \n",
+ " 0.015493536500751099 \n",
+ " ... \n",
+ " 0.01592375705123867 \n",
+ " 0.014998062362129612 \n",
+ " 0.015266654402770375 \n",
+ " 0.014965971123158717 \n",
+ " 0.015271186874746864 \n",
+ " 0.01623898889314439 \n",
+ " 0.015083600142298115 \n",
+ " 0.0158893861861032 \n",
+ " 0.016997272195347076 \n",
+ " 0.0155261683441679 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GCS_MarkSweepCompact].Count \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GC_TIME_MarkSweepCompact].Time(ms) \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GCs].Count \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 207 \n",
+ " 207 \n",
+ " ... \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GC_TIME].Time(ms) \n",
+ " 1411 \n",
+ " 1425 \n",
+ " 1361 \n",
+ " 1404 \n",
+ " 1412 \n",
+ " 1393 \n",
+ " 1403 \n",
+ " 1409 \n",
+ " 160 \n",
+ " 161 \n",
+ " ... \n",
+ " 160 \n",
+ " 161 \n",
+ " 161 \n",
+ " 160 \n",
+ " 161 \n",
+ " 159 \n",
+ " 159 \n",
+ " 161 \n",
+ " 165 \n",
+ " 161 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GC_TIME_%].Time(%) \n",
+ " 0.1323429962792015 \n",
+ " 0.13128292437550787 \n",
+ " 0.07432179315933697 \n",
+ " 0.13253385088242622 \n",
+ " 0.1328592303762118 \n",
+ " 0.1351634575452841 \n",
+ " 0.13308291359570493 \n",
+ " 0.1311467475327378 \n",
+ " 0.01550160780738477 \n",
+ " 0.015493536500751099 \n",
+ " ... \n",
+ " 0.01592375705123867 \n",
+ " 0.014998062362129612 \n",
+ " 0.015266654402770375 \n",
+ " 0.014965971123158717 \n",
+ " 0.015271186874746864 \n",
+ " 0.01623898889314439 \n",
+ " 0.015083600142298115 \n",
+ " 0.0158893861861032 \n",
+ " 0.016997272195347076 \n",
+ " 0.0155261683441679 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].Operations \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 4 \n",
+ " 4 \n",
+ " ... \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].AverageLatency(us) \n",
+ " 95.4375 \n",
+ " 95.0 \n",
+ " 140.40625 \n",
+ " 99.6875 \n",
+ " 90.25 \n",
+ " 86.625 \n",
+ " 95.25 \n",
+ " 95.5 \n",
+ " 116.25 \n",
+ " 162.0 \n",
+ " ... \n",
+ " 123.75 \n",
+ " 133.75 \n",
+ " 128.5 \n",
+ " 118.25 \n",
+ " 109.25 \n",
+ " 139.5 \n",
+ " 142.5 \n",
+ " 153.0 \n",
+ " 104.75 \n",
+ " 125.5 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].MinLatency(us) \n",
+ " 57 \n",
+ " 37 \n",
+ " 32 \n",
+ " 53 \n",
+ " 47 \n",
+ " 55 \n",
+ " 54 \n",
+ " 54 \n",
+ " 61 \n",
+ " 72 \n",
+ " ... \n",
+ " 61 \n",
+ " 76 \n",
+ " 76 \n",
+ " 62 \n",
+ " 63 \n",
+ " 104 \n",
+ " 103 \n",
+ " 105 \n",
+ " 59 \n",
+ " 62 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].MaxLatency(us) \n",
+ " 186 \n",
+ " 199 \n",
+ " 692 \n",
+ " 195 \n",
+ " 199 \n",
+ " 206 \n",
+ " 214 \n",
+ " 375 \n",
+ " 187 \n",
+ " 373 \n",
+ " ... \n",
+ " 196 \n",
+ " 217 \n",
+ " 192 \n",
+ " 200 \n",
+ " 195 \n",
+ " 212 \n",
+ " 237 \n",
+ " 287 \n",
+ " 234 \n",
+ " 260 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].95thPercentileLatency(us) \n",
+ " 144 \n",
+ " 154 \n",
+ " 450 \n",
+ " 140 \n",
+ " 147 \n",
+ " 132 \n",
+ " 129 \n",
+ " 115 \n",
+ " 187 \n",
+ " 373 \n",
+ " ... \n",
+ " 196 \n",
+ " 217 \n",
+ " 192 \n",
+ " 200 \n",
+ " 195 \n",
+ " 212 \n",
+ " 237 \n",
+ " 287 \n",
+ " 234 \n",
+ " 260 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].99thPercentileLatency(us) \n",
+ " 186 \n",
+ " 199 \n",
+ " 692 \n",
+ " 195 \n",
+ " 199 \n",
+ " 206 \n",
+ " 214 \n",
+ " 375 \n",
+ " 187 \n",
+ " 373 \n",
+ " ... \n",
+ " 196 \n",
+ " 217 \n",
+ " 192 \n",
+ " 200 \n",
+ " 195 \n",
+ " 212 \n",
+ " 237 \n",
+ " 287 \n",
+ " 234 \n",
+ " 260 \n",
+ " \n",
+ " \n",
+ " [INSERT].Operations \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " ... \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " [INSERT].AverageLatency(us) \n",
+ " 1024.3594275 \n",
+ " 1033.9956250666667 \n",
+ " 835.0811325 \n",
+ " 1019.0929389666667 \n",
+ " 1042.6627607666667 \n",
+ " 1032.8564868 \n",
+ " 1039.4797652333334 \n",
+ " 1031.2387599666667 \n",
+ " 1071.3269501333334 \n",
+ " 1064.0484906666666 \n",
+ " ... \n",
+ " 1021.6099389333333 \n",
+ " 1072.3814525333332 \n",
+ " 1045.2016928 \n",
+ " 1028.8221322666666 \n",
+ " 1045.3850088 \n",
+ " 1015.8059450666667 \n",
+ " 1083.8865906666667 \n",
+ " 1051.2896445333333 \n",
+ " 991.6972021333333 \n",
+ " 1022.2611192 \n",
+ " \n",
+ " \n",
+ " [INSERT].MinLatency(us) \n",
+ " 629 \n",
+ " 636 \n",
+ " 633 \n",
+ " 630 \n",
+ " 630 \n",
+ " 629 \n",
+ " 636 \n",
+ " 630 \n",
+ " 653 \n",
+ " 687 \n",
+ " ... \n",
+ " 645 \n",
+ " 686 \n",
+ " 632 \n",
+ " 631 \n",
+ " 639 \n",
+ " 636 \n",
+ " 689 \n",
+ " 638 \n",
+ " 638 \n",
+ " 636 \n",
+ " \n",
+ " \n",
+ " [INSERT].MaxLatency(us) \n",
+ " 18612223 \n",
+ " 24150015 \n",
+ " 385791 \n",
+ " 26443775 \n",
+ " 23822335 \n",
+ " 23887871 \n",
+ " 23085055 \n",
+ " 23478271 \n",
+ " 23658495 \n",
+ " 23658495 \n",
+ " ... \n",
+ " 25804799 \n",
+ " 25804799 \n",
+ " 23363583 \n",
+ " 23363583 \n",
+ " 23363583 \n",
+ " 23363583 \n",
+ " 23363583 \n",
+ " 23363583 \n",
+ " 23363583 \n",
+ " 23363583 \n",
+ " \n",
+ " \n",
+ " [INSERT].95thPercentileLatency(us) \n",
+ " 967 \n",
+ " 945 \n",
+ " 1025 \n",
+ " 1018 \n",
+ " 981 \n",
+ " 967 \n",
+ " 967 \n",
+ " 959 \n",
+ " 1034 \n",
+ " 1015 \n",
+ " ... \n",
+ " 943 \n",
+ " 1009 \n",
+ " 1000 \n",
+ " 998 \n",
+ " 1011 \n",
+ " 919 \n",
+ " 1001 \n",
+ " 987 \n",
+ " 914 \n",
+ " 955 \n",
+ " \n",
+ " \n",
+ " [INSERT].99thPercentileLatency(us) \n",
+ " 1261 \n",
+ " 1268 \n",
+ " 1180 \n",
+ " 1261 \n",
+ " 1268 \n",
+ " 1255 \n",
+ " 1261 \n",
+ " 1263 \n",
+ " 1278 \n",
+ " 1247 \n",
+ " ... \n",
+ " 1173 \n",
+ " 1306 \n",
+ " 1229 \n",
+ " 1251 \n",
+ " 1238 \n",
+ " 1164 \n",
+ " 1246 \n",
+ " 1220 \n",
+ " 1162 \n",
+ " 1198 \n",
+ " \n",
+ " \n",
+ " [INSERT].Return=OK \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " ... \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
36 rows Ă— 72 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ "connection_pod PostgreSQL-32-1-114688-1 \\\n",
+ "connection PostgreSQL-32-1-114688 \n",
+ "configuration PostgreSQL-32-1-114688 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod tx5d5.sensor \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 114688 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1066169 \n",
+ "[OVERALL].Throughput(ops/sec) 28138.128195436184 \n",
+ "[TOTAL_GCS_Copy].Count 1662 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 1411 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.1323429962792015 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 1662 \n",
+ "[TOTAL_GC_TIME].Time(ms) 1411 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.1323429962792015 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 95.4375 \n",
+ "[CLEANUP].MinLatency(us) 57 \n",
+ "[CLEANUP].MaxLatency(us) 186 \n",
+ "[CLEANUP].95thPercentileLatency(us) 144 \n",
+ "[CLEANUP].99thPercentileLatency(us) 186 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1024.3594275 \n",
+ "[INSERT].MinLatency(us) 629 \n",
+ "[INSERT].MaxLatency(us) 18612223 \n",
+ "[INSERT].95thPercentileLatency(us) 967 \n",
+ "[INSERT].99thPercentileLatency(us) 1261 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-1-131072-1 \\\n",
+ "connection PostgreSQL-32-1-131072 \n",
+ "configuration PostgreSQL-32-1-131072 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod b9gzf.sensor \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 131072 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1085442 \n",
+ "[OVERALL].Throughput(ops/sec) 27638.51039484376 \n",
+ "[TOTAL_GCS_Copy].Count 1662 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 1425 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.13128292437550787 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 1662 \n",
+ "[TOTAL_GC_TIME].Time(ms) 1425 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.13128292437550787 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 95.0 \n",
+ "[CLEANUP].MinLatency(us) 37 \n",
+ "[CLEANUP].MaxLatency(us) 199 \n",
+ "[CLEANUP].95thPercentileLatency(us) 154 \n",
+ "[CLEANUP].99thPercentileLatency(us) 199 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1033.9956250666667 \n",
+ "[INSERT].MinLatency(us) 636 \n",
+ "[INSERT].MaxLatency(us) 24150015 \n",
+ "[INSERT].95thPercentileLatency(us) 945 \n",
+ "[INSERT].99thPercentileLatency(us) 1268 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-1-16384-1 \\\n",
+ "connection PostgreSQL-32-1-16384 \n",
+ "configuration PostgreSQL-32-1-16384 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod mr62r.sensor \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 16384 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1831226 \n",
+ "[OVERALL].Throughput(ops/sec) 16382.467265099993 \n",
+ "[TOTAL_GCS_Copy].Count 1662 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 1361 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.07432179315933697 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 1662 \n",
+ "[TOTAL_GC_TIME].Time(ms) 1361 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.07432179315933697 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 140.40625 \n",
+ "[CLEANUP].MinLatency(us) 32 \n",
+ "[CLEANUP].MaxLatency(us) 692 \n",
+ "[CLEANUP].95thPercentileLatency(us) 450 \n",
+ "[CLEANUP].99thPercentileLatency(us) 692 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 835.0811325 \n",
+ "[INSERT].MinLatency(us) 633 \n",
+ "[INSERT].MaxLatency(us) 385791 \n",
+ "[INSERT].95thPercentileLatency(us) 1025 \n",
+ "[INSERT].99thPercentileLatency(us) 1180 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-1-32768-1 \\\n",
+ "connection PostgreSQL-32-1-32768 \n",
+ "configuration PostgreSQL-32-1-32768 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod 9fbk6.sensor \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 32768 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1059352 \n",
+ "[OVERALL].Throughput(ops/sec) 28319.198906501333 \n",
+ "[TOTAL_GCS_Copy].Count 1662 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 1404 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.13253385088242622 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 1662 \n",
+ "[TOTAL_GC_TIME].Time(ms) 1404 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.13253385088242622 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 99.6875 \n",
+ "[CLEANUP].MinLatency(us) 53 \n",
+ "[CLEANUP].MaxLatency(us) 195 \n",
+ "[CLEANUP].95thPercentileLatency(us) 140 \n",
+ "[CLEANUP].99thPercentileLatency(us) 195 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1019.0929389666667 \n",
+ "[INSERT].MinLatency(us) 630 \n",
+ "[INSERT].MaxLatency(us) 26443775 \n",
+ "[INSERT].95thPercentileLatency(us) 1018 \n",
+ "[INSERT].99thPercentileLatency(us) 1261 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-1-49152-1 \\\n",
+ "connection PostgreSQL-32-1-49152 \n",
+ "configuration PostgreSQL-32-1-49152 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod gs5fb.sensor \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 49152 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1062779 \n",
+ "[OVERALL].Throughput(ops/sec) 28227.88180797701 \n",
+ "[TOTAL_GCS_Copy].Count 1662 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 1412 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.1328592303762118 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 1662 \n",
+ "[TOTAL_GC_TIME].Time(ms) 1412 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.1328592303762118 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 90.25 \n",
+ "[CLEANUP].MinLatency(us) 47 \n",
+ "[CLEANUP].MaxLatency(us) 199 \n",
+ "[CLEANUP].95thPercentileLatency(us) 147 \n",
+ "[CLEANUP].99thPercentileLatency(us) 199 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1042.6627607666667 \n",
+ "[INSERT].MinLatency(us) 630 \n",
+ "[INSERT].MaxLatency(us) 23822335 \n",
+ "[INSERT].95thPercentileLatency(us) 981 \n",
+ "[INSERT].99thPercentileLatency(us) 1268 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-1-65536-1 \\\n",
+ "connection PostgreSQL-32-1-65536 \n",
+ "configuration PostgreSQL-32-1-65536 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod 6hqzb.sensor \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 65536 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1030604 \n",
+ "[OVERALL].Throughput(ops/sec) 29109.143764239223 \n",
+ "[TOTAL_GCS_Copy].Count 1662 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 1393 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.1351634575452841 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 1662 \n",
+ "[TOTAL_GC_TIME].Time(ms) 1393 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.1351634575452841 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 86.625 \n",
+ "[CLEANUP].MinLatency(us) 55 \n",
+ "[CLEANUP].MaxLatency(us) 206 \n",
+ "[CLEANUP].95thPercentileLatency(us) 132 \n",
+ "[CLEANUP].99thPercentileLatency(us) 206 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1032.8564868 \n",
+ "[INSERT].MinLatency(us) 629 \n",
+ "[INSERT].MaxLatency(us) 23887871 \n",
+ "[INSERT].95thPercentileLatency(us) 967 \n",
+ "[INSERT].99thPercentileLatency(us) 1255 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-1-81920-1 \\\n",
+ "connection PostgreSQL-32-1-81920 \n",
+ "configuration PostgreSQL-32-1-81920 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod nkd9n.sensor \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 81920 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1054230 \n",
+ "[OVERALL].Throughput(ops/sec) 28456.788366864916 \n",
+ "[TOTAL_GCS_Copy].Count 1662 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 1403 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.13308291359570493 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 1662 \n",
+ "[TOTAL_GC_TIME].Time(ms) 1403 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.13308291359570493 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 95.25 \n",
+ "[CLEANUP].MinLatency(us) 54 \n",
+ "[CLEANUP].MaxLatency(us) 214 \n",
+ "[CLEANUP].95thPercentileLatency(us) 129 \n",
+ "[CLEANUP].99thPercentileLatency(us) 214 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1039.4797652333334 \n",
+ "[INSERT].MinLatency(us) 636 \n",
+ "[INSERT].MaxLatency(us) 23085055 \n",
+ "[INSERT].95thPercentileLatency(us) 967 \n",
+ "[INSERT].99thPercentileLatency(us) 1261 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-1-98304-1 \\\n",
+ "connection PostgreSQL-32-1-98304 \n",
+ "configuration PostgreSQL-32-1-98304 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod xzd7w.sensor \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 98304 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1074369 \n",
+ "[OVERALL].Throughput(ops/sec) 27923.367111299747 \n",
+ "[TOTAL_GCS_Copy].Count 1662 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 1409 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.1311467475327378 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 1662 \n",
+ "[TOTAL_GC_TIME].Time(ms) 1409 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.1311467475327378 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 95.5 \n",
+ "[CLEANUP].MinLatency(us) 54 \n",
+ "[CLEANUP].MaxLatency(us) 375 \n",
+ "[CLEANUP].95thPercentileLatency(us) 115 \n",
+ "[CLEANUP].99thPercentileLatency(us) 375 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1031.2387599666667 \n",
+ "[INSERT].MinLatency(us) 630 \n",
+ "[INSERT].MaxLatency(us) 23478271 \n",
+ "[INSERT].95thPercentileLatency(us) 959 \n",
+ "[INSERT].99thPercentileLatency(us) 1263 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-114688-1 \\\n",
+ "connection PostgreSQL-32-8-114688 \n",
+ "configuration PostgreSQL-32-8-114688 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod 5x62v.sensor \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 14336 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1032151 \n",
+ "[OVERALL].Throughput(ops/sec) 3633.189329855806 \n",
+ "[TOTAL_GCS_Copy].Count 207 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 160 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.01550160780738477 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 207 \n",
+ "[TOTAL_GC_TIME].Time(ms) 160 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.01550160780738477 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 116.25 \n",
+ "[CLEANUP].MinLatency(us) 61 \n",
+ "[CLEANUP].MaxLatency(us) 187 \n",
+ "[CLEANUP].95thPercentileLatency(us) 187 \n",
+ "[CLEANUP].99thPercentileLatency(us) 187 \n",
+ "[INSERT].Operations 3750000 \n",
+ "[INSERT].AverageLatency(us) 1071.3269501333334 \n",
+ "[INSERT].MinLatency(us) 653 \n",
+ "[INSERT].MaxLatency(us) 23658495 \n",
+ "[INSERT].95thPercentileLatency(us) 1034 \n",
+ "[INSERT].99thPercentileLatency(us) 1278 \n",
+ "[INSERT].Return=OK 3750000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-114688-2 ... \\\n",
+ "connection PostgreSQL-32-8-114688 ... \n",
+ "configuration PostgreSQL-32-8-114688 ... \n",
+ "experiment_run 1 ... \n",
+ "client 0 ... \n",
+ "pod 7bc2c.sensor ... \n",
+ "pod_count 8 ... \n",
+ "threads 4 ... \n",
+ "target 14336 ... \n",
+ "sf 30 ... \n",
+ "workload a ... \n",
+ "operations 3750000 ... \n",
+ "batchsize -1 ... \n",
+ "[OVERALL].RunTime(ms) 1039143 ... \n",
+ "[OVERALL].Throughput(ops/sec) 3608.74297377743 ... \n",
+ "[TOTAL_GCS_Copy].Count 207 ... \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 161 ... \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.015493536500751099 ... \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 ... \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 ... \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 ... \n",
+ "[TOTAL_GCs].Count 207 ... \n",
+ "[TOTAL_GC_TIME].Time(ms) 161 ... \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.015493536500751099 ... \n",
+ "[CLEANUP].Operations 4 ... \n",
+ "[CLEANUP].AverageLatency(us) 162.0 ... \n",
+ "[CLEANUP].MinLatency(us) 72 ... \n",
+ "[CLEANUP].MaxLatency(us) 373 ... \n",
+ "[CLEANUP].95thPercentileLatency(us) 373 ... \n",
+ "[CLEANUP].99thPercentileLatency(us) 373 ... \n",
+ "[INSERT].Operations 3750000 ... \n",
+ "[INSERT].AverageLatency(us) 1064.0484906666666 ... \n",
+ "[INSERT].MinLatency(us) 687 ... \n",
+ "[INSERT].MaxLatency(us) 23658495 ... \n",
+ "[INSERT].95thPercentileLatency(us) 1015 ... \n",
+ "[INSERT].99thPercentileLatency(us) 1247 ... \n",
+ "[INSERT].Return=OK 3750000 ... \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-81920-7 \\\n",
+ "connection PostgreSQL-32-8-81920 \n",
+ "configuration PostgreSQL-32-8-81920 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod qpc6h.sensor \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 10240 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1004788 \n",
+ "[OVERALL].Throughput(ops/sec) 3732.1305588840632 \n",
+ "[TOTAL_GCS_Copy].Count 207 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 160 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.01592375705123867 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 207 \n",
+ "[TOTAL_GC_TIME].Time(ms) 160 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.01592375705123867 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 123.75 \n",
+ "[CLEANUP].MinLatency(us) 61 \n",
+ "[CLEANUP].MaxLatency(us) 196 \n",
+ "[CLEANUP].95thPercentileLatency(us) 196 \n",
+ "[CLEANUP].99thPercentileLatency(us) 196 \n",
+ "[INSERT].Operations 3750000 \n",
+ "[INSERT].AverageLatency(us) 1021.6099389333333 \n",
+ "[INSERT].MinLatency(us) 645 \n",
+ "[INSERT].MaxLatency(us) 25804799 \n",
+ "[INSERT].95thPercentileLatency(us) 943 \n",
+ "[INSERT].99thPercentileLatency(us) 1173 \n",
+ "[INSERT].Return=OK 3750000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-81920-8 \\\n",
+ "connection PostgreSQL-32-8-81920 \n",
+ "configuration PostgreSQL-32-8-81920 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod vtqn4.sensor \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 10240 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1073472 \n",
+ "[OVERALL].Throughput(ops/sec) 3493.337506707208 \n",
+ "[TOTAL_GCS_Copy].Count 207 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 161 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.014998062362129612 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 207 \n",
+ "[TOTAL_GC_TIME].Time(ms) 161 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.014998062362129612 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 133.75 \n",
+ "[CLEANUP].MinLatency(us) 76 \n",
+ "[CLEANUP].MaxLatency(us) 217 \n",
+ "[CLEANUP].95thPercentileLatency(us) 217 \n",
+ "[CLEANUP].99thPercentileLatency(us) 217 \n",
+ "[INSERT].Operations 3750000 \n",
+ "[INSERT].AverageLatency(us) 1072.3814525333332 \n",
+ "[INSERT].MinLatency(us) 686 \n",
+ "[INSERT].MaxLatency(us) 25804799 \n",
+ "[INSERT].95thPercentileLatency(us) 1009 \n",
+ "[INSERT].99thPercentileLatency(us) 1306 \n",
+ "[INSERT].Return=OK 3750000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-98304-1 \\\n",
+ "connection PostgreSQL-32-8-98304 \n",
+ "configuration PostgreSQL-32-8-98304 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod 6xx8q.sensor \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 12288 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1054586 \n",
+ "[OVERALL].Throughput(ops/sec) 3555.8977646204294 \n",
+ "[TOTAL_GCS_Copy].Count 207 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 161 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.015266654402770375 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 207 \n",
+ "[TOTAL_GC_TIME].Time(ms) 161 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.015266654402770375 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 128.5 \n",
+ "[CLEANUP].MinLatency(us) 76 \n",
+ "[CLEANUP].MaxLatency(us) 192 \n",
+ "[CLEANUP].95thPercentileLatency(us) 192 \n",
+ "[CLEANUP].99thPercentileLatency(us) 192 \n",
+ "[INSERT].Operations 3750000 \n",
+ "[INSERT].AverageLatency(us) 1045.2016928 \n",
+ "[INSERT].MinLatency(us) 632 \n",
+ "[INSERT].MaxLatency(us) 23363583 \n",
+ "[INSERT].95thPercentileLatency(us) 1000 \n",
+ "[INSERT].99thPercentileLatency(us) 1229 \n",
+ "[INSERT].Return=OK 3750000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-98304-2 \\\n",
+ "connection PostgreSQL-32-8-98304 \n",
+ "configuration PostgreSQL-32-8-98304 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod ghmf9.sensor \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 12288 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1069092 \n",
+ "[OVERALL].Throughput(ops/sec) 3507.6494819903246 \n",
+ "[TOTAL_GCS_Copy].Count 207 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 160 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.014965971123158717 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 207 \n",
+ "[TOTAL_GC_TIME].Time(ms) 160 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.014965971123158717 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 118.25 \n",
+ "[CLEANUP].MinLatency(us) 62 \n",
+ "[CLEANUP].MaxLatency(us) 200 \n",
+ "[CLEANUP].95thPercentileLatency(us) 200 \n",
+ "[CLEANUP].99thPercentileLatency(us) 200 \n",
+ "[INSERT].Operations 3750000 \n",
+ "[INSERT].AverageLatency(us) 1028.8221322666666 \n",
+ "[INSERT].MinLatency(us) 631 \n",
+ "[INSERT].MaxLatency(us) 23363583 \n",
+ "[INSERT].95thPercentileLatency(us) 998 \n",
+ "[INSERT].99thPercentileLatency(us) 1251 \n",
+ "[INSERT].Return=OK 3750000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-98304-3 \\\n",
+ "connection PostgreSQL-32-8-98304 \n",
+ "configuration PostgreSQL-32-8-98304 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod gqw9m.sensor \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 12288 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1054273 \n",
+ "[OVERALL].Throughput(ops/sec) 3556.9534646149527 \n",
+ "[TOTAL_GCS_Copy].Count 207 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 161 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.015271186874746864 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 207 \n",
+ "[TOTAL_GC_TIME].Time(ms) 161 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.015271186874746864 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 109.25 \n",
+ "[CLEANUP].MinLatency(us) 63 \n",
+ "[CLEANUP].MaxLatency(us) 195 \n",
+ "[CLEANUP].95thPercentileLatency(us) 195 \n",
+ "[CLEANUP].99thPercentileLatency(us) 195 \n",
+ "[INSERT].Operations 3750000 \n",
+ "[INSERT].AverageLatency(us) 1045.3850088 \n",
+ "[INSERT].MinLatency(us) 639 \n",
+ "[INSERT].MaxLatency(us) 23363583 \n",
+ "[INSERT].95thPercentileLatency(us) 1011 \n",
+ "[INSERT].99thPercentileLatency(us) 1238 \n",
+ "[INSERT].Return=OK 3750000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-98304-4 \\\n",
+ "connection PostgreSQL-32-8-98304 \n",
+ "configuration PostgreSQL-32-8-98304 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod jln48.sensor \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 12288 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 979125 \n",
+ "[OVERALL].Throughput(ops/sec) 3829.9502106472614 \n",
+ "[TOTAL_GCS_Copy].Count 207 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 159 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.01623898889314439 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 207 \n",
+ "[TOTAL_GC_TIME].Time(ms) 159 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.01623898889314439 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 139.5 \n",
+ "[CLEANUP].MinLatency(us) 104 \n",
+ "[CLEANUP].MaxLatency(us) 212 \n",
+ "[CLEANUP].95thPercentileLatency(us) 212 \n",
+ "[CLEANUP].99thPercentileLatency(us) 212 \n",
+ "[INSERT].Operations 3750000 \n",
+ "[INSERT].AverageLatency(us) 1015.8059450666667 \n",
+ "[INSERT].MinLatency(us) 636 \n",
+ "[INSERT].MaxLatency(us) 23363583 \n",
+ "[INSERT].95thPercentileLatency(us) 919 \n",
+ "[INSERT].99thPercentileLatency(us) 1164 \n",
+ "[INSERT].Return=OK 3750000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-98304-5 \\\n",
+ "connection PostgreSQL-32-8-98304 \n",
+ "configuration PostgreSQL-32-8-98304 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod n9xct.sensor \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 12288 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1054125 \n",
+ "[OVERALL].Throughput(ops/sec) 3557.4528637495555 \n",
+ "[TOTAL_GCS_Copy].Count 207 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 159 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.015083600142298115 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 207 \n",
+ "[TOTAL_GC_TIME].Time(ms) 159 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.015083600142298115 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 142.5 \n",
+ "[CLEANUP].MinLatency(us) 103 \n",
+ "[CLEANUP].MaxLatency(us) 237 \n",
+ "[CLEANUP].95thPercentileLatency(us) 237 \n",
+ "[CLEANUP].99thPercentileLatency(us) 237 \n",
+ "[INSERT].Operations 3750000 \n",
+ "[INSERT].AverageLatency(us) 1083.8865906666667 \n",
+ "[INSERT].MinLatency(us) 689 \n",
+ "[INSERT].MaxLatency(us) 23363583 \n",
+ "[INSERT].95thPercentileLatency(us) 1001 \n",
+ "[INSERT].99thPercentileLatency(us) 1246 \n",
+ "[INSERT].Return=OK 3750000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-98304-6 \\\n",
+ "connection PostgreSQL-32-8-98304 \n",
+ "configuration PostgreSQL-32-8-98304 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod p78x4.sensor \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 12288 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1013255 \n",
+ "[OVERALL].Throughput(ops/sec) 3700.943987446398 \n",
+ "[TOTAL_GCS_Copy].Count 207 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 161 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.0158893861861032 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 207 \n",
+ "[TOTAL_GC_TIME].Time(ms) 161 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.0158893861861032 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 153.0 \n",
+ "[CLEANUP].MinLatency(us) 105 \n",
+ "[CLEANUP].MaxLatency(us) 287 \n",
+ "[CLEANUP].95thPercentileLatency(us) 287 \n",
+ "[CLEANUP].99thPercentileLatency(us) 287 \n",
+ "[INSERT].Operations 3750000 \n",
+ "[INSERT].AverageLatency(us) 1051.2896445333333 \n",
+ "[INSERT].MinLatency(us) 638 \n",
+ "[INSERT].MaxLatency(us) 23363583 \n",
+ "[INSERT].95thPercentileLatency(us) 987 \n",
+ "[INSERT].99thPercentileLatency(us) 1220 \n",
+ "[INSERT].Return=OK 3750000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-98304-7 \\\n",
+ "connection PostgreSQL-32-8-98304 \n",
+ "configuration PostgreSQL-32-8-98304 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod s4t2s.sensor \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 12288 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 970744 \n",
+ "[OVERALL].Throughput(ops/sec) 3863.0164080334257 \n",
+ "[TOTAL_GCS_Copy].Count 207 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 165 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.016997272195347076 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 207 \n",
+ "[TOTAL_GC_TIME].Time(ms) 165 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.016997272195347076 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 104.75 \n",
+ "[CLEANUP].MinLatency(us) 59 \n",
+ "[CLEANUP].MaxLatency(us) 234 \n",
+ "[CLEANUP].95thPercentileLatency(us) 234 \n",
+ "[CLEANUP].99thPercentileLatency(us) 234 \n",
+ "[INSERT].Operations 3750000 \n",
+ "[INSERT].AverageLatency(us) 991.6972021333333 \n",
+ "[INSERT].MinLatency(us) 638 \n",
+ "[INSERT].MaxLatency(us) 23363583 \n",
+ "[INSERT].95thPercentileLatency(us) 914 \n",
+ "[INSERT].99thPercentileLatency(us) 1162 \n",
+ "[INSERT].Return=OK 3750000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-98304-8 \n",
+ "connection PostgreSQL-32-8-98304 \n",
+ "configuration PostgreSQL-32-8-98304 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod zklhx.sensor \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 12288 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1036959 \n",
+ "[OVERALL].Throughput(ops/sec) 3616.3435584242 \n",
+ "[TOTAL_GCS_Copy].Count 207 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 161 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.0155261683441679 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 207 \n",
+ "[TOTAL_GC_TIME].Time(ms) 161 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.0155261683441679 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 125.5 \n",
+ "[CLEANUP].MinLatency(us) 62 \n",
+ "[CLEANUP].MaxLatency(us) 260 \n",
+ "[CLEANUP].95thPercentileLatency(us) 260 \n",
+ "[CLEANUP].99thPercentileLatency(us) 260 \n",
+ "[INSERT].Operations 3750000 \n",
+ "[INSERT].AverageLatency(us) 1022.2611192 \n",
+ "[INSERT].MinLatency(us) 636 \n",
+ "[INSERT].MaxLatency(us) 23363583 \n",
+ "[INSERT].95thPercentileLatency(us) 955 \n",
+ "[INSERT].99thPercentileLatency(us) 1198 \n",
+ "[INSERT].Return=OK 3750000 \n",
+ "\n",
+ "[36 rows x 72 columns]"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_df_loading()\n",
+ "\n",
+ "df = df.sort_values(['configuration','experiment_run','client'])\n",
+ "\n",
+ "df = df[df.columns.drop(list(df.filter(regex='FAILED')))]\n",
+ "\n",
+ "df.T"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Plot Results\n",
+ "\n",
+ "### Set Data Types for Plotting"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df.fillna(0, inplace=True)\n",
+ "\n",
+ "df_plot = evaluation.loading_set_datatypes(df)\n",
+ "\n",
+ "df_plot.sort_values('target', inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Remove Failed Pods"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " connection_pod \n",
+ " PostgreSQL-32-8-16384-2 \n",
+ " PostgreSQL-32-8-16384-3 \n",
+ " PostgreSQL-32-8-16384-4 \n",
+ " PostgreSQL-32-8-16384-5 \n",
+ " PostgreSQL-32-8-16384-6 \n",
+ " PostgreSQL-32-8-16384-7 \n",
+ " PostgreSQL-32-8-16384-8 \n",
+ " PostgreSQL-32-8-16384-1 \n",
+ " PostgreSQL-32-8-32768-4 \n",
+ " PostgreSQL-32-8-32768-1 \n",
+ " ... \n",
+ " PostgreSQL-32-8-131072-6 \n",
+ " PostgreSQL-32-8-131072-7 \n",
+ " PostgreSQL-32-8-131072-1 \n",
+ " PostgreSQL-32-1-32768-1 \n",
+ " PostgreSQL-32-1-49152-1 \n",
+ " PostgreSQL-32-1-65536-1 \n",
+ " PostgreSQL-32-1-81920-1 \n",
+ " PostgreSQL-32-1-98304-1 \n",
+ " PostgreSQL-32-1-114688-1 \n",
+ " PostgreSQL-32-1-131072-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " connection \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " ... \n",
+ " PostgreSQL-32-8-131072 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " PostgreSQL-32-1-32768 \n",
+ " PostgreSQL-32-1-49152 \n",
+ " PostgreSQL-32-1-65536 \n",
+ " PostgreSQL-32-1-81920 \n",
+ " PostgreSQL-32-1-98304 \n",
+ " PostgreSQL-32-1-114688 \n",
+ " PostgreSQL-32-1-131072 \n",
+ " \n",
+ " \n",
+ " configuration \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " ... \n",
+ " PostgreSQL-32-8-131072 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " PostgreSQL-32-1-32768 \n",
+ " PostgreSQL-32-1-49152 \n",
+ " PostgreSQL-32-1-65536 \n",
+ " PostgreSQL-32-1-81920 \n",
+ " PostgreSQL-32-1-98304 \n",
+ " PostgreSQL-32-1-114688 \n",
+ " PostgreSQL-32-1-131072 \n",
+ " \n",
+ " \n",
+ " experiment_run \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " ... \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " client \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " pod \n",
+ " gb9j5.sensor \n",
+ " kjk85.sensor \n",
+ " mskcx.sensor \n",
+ " pcmmg.sensor \n",
+ " pmr6w.sensor \n",
+ " qmfjw.sensor \n",
+ " xrrbk.sensor \n",
+ " 2hl8g.sensor \n",
+ " lvlv2.sensor \n",
+ " 5m288.sensor \n",
+ " ... \n",
+ " p6x48.sensor \n",
+ " p9pwx.sensor \n",
+ " 2dbvt.sensor \n",
+ " 9fbk6.sensor \n",
+ " gs5fb.sensor \n",
+ " 6hqzb.sensor \n",
+ " nkd9n.sensor \n",
+ " xzd7w.sensor \n",
+ " tx5d5.sensor \n",
+ " b9gzf.sensor \n",
+ " \n",
+ " \n",
+ " pod_count \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " ... \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " threads \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " ... \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " \n",
+ " \n",
+ " target \n",
+ " 2048 \n",
+ " 2048 \n",
+ " 2048 \n",
+ " 2048 \n",
+ " 2048 \n",
+ " 2048 \n",
+ " 2048 \n",
+ " 2048 \n",
+ " 4096 \n",
+ " 4096 \n",
+ " ... \n",
+ " 16384 \n",
+ " 16384 \n",
+ " 16384 \n",
+ " 32768 \n",
+ " 49152 \n",
+ " 65536 \n",
+ " 81920 \n",
+ " 98304 \n",
+ " 114688 \n",
+ " 131072 \n",
+ " \n",
+ " \n",
+ " sf \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " ... \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " \n",
+ " \n",
+ " workload \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " ... \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " \n",
+ " \n",
+ " operations \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " ... \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " \n",
+ " \n",
+ " batchsize \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " ... \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " \n",
+ " \n",
+ " [OVERALL].RunTime(ms) \n",
+ " 1831208.0 \n",
+ " 1831207.0 \n",
+ " 1831193.0 \n",
+ " 1831201.0 \n",
+ " 1831203.0 \n",
+ " 1831193.0 \n",
+ " 1831197.0 \n",
+ " 1831205.0 \n",
+ " 1046118.0 \n",
+ " 1070644.0 \n",
+ " ... \n",
+ " 1044507.0 \n",
+ " 1016913.0 \n",
+ " 1019260.0 \n",
+ " 1059352.0 \n",
+ " 1062779.0 \n",
+ " 1030604.0 \n",
+ " 1054230.0 \n",
+ " 1074369.0 \n",
+ " 1066169.0 \n",
+ " 1085442.0 \n",
+ " \n",
+ " \n",
+ " [OVERALL].Throughput(ops/sec) \n",
+ " 2047.828537 \n",
+ " 2047.829656 \n",
+ " 2047.845312 \n",
+ " 2047.836365 \n",
+ " 2047.834129 \n",
+ " 2047.845312 \n",
+ " 2047.840839 \n",
+ " 2047.831892 \n",
+ " 3584.681652 \n",
+ " 3502.564811 \n",
+ " ... \n",
+ " 3590.210501 \n",
+ " 3687.631095 \n",
+ " 3679.139768 \n",
+ " 28319.198907 \n",
+ " 28227.881808 \n",
+ " 29109.143764 \n",
+ " 28456.788367 \n",
+ " 27923.367111 \n",
+ " 28138.128195 \n",
+ " 27638.510395 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GCS_Copy].Count \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 206 \n",
+ " ... \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GC_TIME_Copy].Time(ms) \n",
+ " 152 \n",
+ " 158 \n",
+ " 157 \n",
+ " 153 \n",
+ " 156 \n",
+ " 156 \n",
+ " 156 \n",
+ " 157 \n",
+ " 163 \n",
+ " 166 \n",
+ " ... \n",
+ " 161 \n",
+ " 161 \n",
+ " 159 \n",
+ " 1404 \n",
+ " 1412 \n",
+ " 1393 \n",
+ " 1403 \n",
+ " 1409 \n",
+ " 1411 \n",
+ " 1425 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GC_TIME_%_Copy].Time(%) \n",
+ " 0.008300531670897025 \n",
+ " 0.008628188948600568 \n",
+ " 0.008573645705286117 \n",
+ " 0.008355172370482541 \n",
+ " 0.008518989975442374 \n",
+ " 0.008519036496972193 \n",
+ " 0.008519017888299294 \n",
+ " 0.008573589521653775 \n",
+ " 0.015581416245586061 \n",
+ " 0.015504686898726373 \n",
+ " ... \n",
+ " 0.01541397041858025 \n",
+ " 0.015832229502425476 \n",
+ " 0.015599552616604203 \n",
+ " 0.13253385088242622 \n",
+ " 0.1328592303762118 \n",
+ " 0.1351634575452841 \n",
+ " 0.13308291359570493 \n",
+ " 0.1311467475327378 \n",
+ " 0.1323429962792015 \n",
+ " 0.13128292437550787 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GCS_MarkSweepCompact].Count \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GC_TIME_MarkSweepCompact].Time(ms) \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GCs].Count \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 206 \n",
+ " ... \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " 1662 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GC_TIME].Time(ms) \n",
+ " 152 \n",
+ " 158 \n",
+ " 157 \n",
+ " 153 \n",
+ " 156 \n",
+ " 156 \n",
+ " 156 \n",
+ " 157 \n",
+ " 163 \n",
+ " 166 \n",
+ " ... \n",
+ " 161 \n",
+ " 161 \n",
+ " 159 \n",
+ " 1404 \n",
+ " 1412 \n",
+ " 1393 \n",
+ " 1403 \n",
+ " 1409 \n",
+ " 1411 \n",
+ " 1425 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GC_TIME_%].Time(%) \n",
+ " 0.008300531670897025 \n",
+ " 0.008628188948600568 \n",
+ " 0.008573645705286117 \n",
+ " 0.008355172370482541 \n",
+ " 0.008518989975442374 \n",
+ " 0.008519036496972193 \n",
+ " 0.008519017888299294 \n",
+ " 0.008573589521653775 \n",
+ " 0.015581416245586061 \n",
+ " 0.015504686898726373 \n",
+ " ... \n",
+ " 0.01541397041858025 \n",
+ " 0.015832229502425476 \n",
+ " 0.015599552616604203 \n",
+ " 0.13253385088242622 \n",
+ " 0.1328592303762118 \n",
+ " 0.1351634575452841 \n",
+ " 0.13308291359570493 \n",
+ " 0.1311467475327378 \n",
+ " 0.1323429962792015 \n",
+ " 0.13128292437550787 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].Operations \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " ... \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].AverageLatency(us) \n",
+ " 115.25 \n",
+ " 79.25 \n",
+ " 84.25 \n",
+ " 85.75 \n",
+ " 82.25 \n",
+ " 182.25 \n",
+ " 83.0 \n",
+ " 224.75 \n",
+ " 220.25 \n",
+ " 205.5 \n",
+ " ... \n",
+ " 139.25 \n",
+ " 116.5 \n",
+ " 104.75 \n",
+ " 99.6875 \n",
+ " 90.25 \n",
+ " 86.625 \n",
+ " 95.25 \n",
+ " 95.5 \n",
+ " 95.4375 \n",
+ " 95.0 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].MinLatency(us) \n",
+ " 44.0 \n",
+ " 33.0 \n",
+ " 49.0 \n",
+ " 45.0 \n",
+ " 39.0 \n",
+ " 113.0 \n",
+ " 43.0 \n",
+ " 49.0 \n",
+ " 115.0 \n",
+ " 65.0 \n",
+ " ... \n",
+ " 62.0 \n",
+ " 63.0 \n",
+ " 60.0 \n",
+ " 53.0 \n",
+ " 47.0 \n",
+ " 55.0 \n",
+ " 54.0 \n",
+ " 54.0 \n",
+ " 57.0 \n",
+ " 37.0 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].MaxLatency(us) \n",
+ " 214.0 \n",
+ " 187.0 \n",
+ " 188.0 \n",
+ " 191.0 \n",
+ " 186.0 \n",
+ " 251.0 \n",
+ " 186.0 \n",
+ " 423.0 \n",
+ " 470.0 \n",
+ " 506.0 \n",
+ " ... \n",
+ " 207.0 \n",
+ " 211.0 \n",
+ " 214.0 \n",
+ " 195.0 \n",
+ " 199.0 \n",
+ " 206.0 \n",
+ " 214.0 \n",
+ " 375.0 \n",
+ " 186.0 \n",
+ " 199.0 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].95thPercentileLatency(us) \n",
+ " 214.0 \n",
+ " 187.0 \n",
+ " 188.0 \n",
+ " 191.0 \n",
+ " 186.0 \n",
+ " 251.0 \n",
+ " 186.0 \n",
+ " 423.0 \n",
+ " 470.0 \n",
+ " 506.0 \n",
+ " ... \n",
+ " 207.0 \n",
+ " 211.0 \n",
+ " 214.0 \n",
+ " 140.0 \n",
+ " 147.0 \n",
+ " 132.0 \n",
+ " 129.0 \n",
+ " 115.0 \n",
+ " 144.0 \n",
+ " 154.0 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].99thPercentileLatency(us) \n",
+ " 214.0 \n",
+ " 187.0 \n",
+ " 188.0 \n",
+ " 191.0 \n",
+ " 186.0 \n",
+ " 251.0 \n",
+ " 186.0 \n",
+ " 423.0 \n",
+ " 470.0 \n",
+ " 506.0 \n",
+ " ... \n",
+ " 207.0 \n",
+ " 211.0 \n",
+ " 214.0 \n",
+ " 195.0 \n",
+ " 199.0 \n",
+ " 206.0 \n",
+ " 214.0 \n",
+ " 375.0 \n",
+ " 186.0 \n",
+ " 199.0 \n",
+ " \n",
+ " \n",
+ " [INSERT].Operations \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " ... \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " \n",
+ " \n",
+ " [INSERT].AverageLatency(us) \n",
+ " 832.772679 \n",
+ " 812.780115 \n",
+ " 839.590646 \n",
+ " 790.366524 \n",
+ " 856.366943 \n",
+ " 893.798743 \n",
+ " 810.112466 \n",
+ " 855.068822 \n",
+ " 1008.154887 \n",
+ " 1017.997042 \n",
+ " ... \n",
+ " 1026.584293 \n",
+ " 989.811878 \n",
+ " 1018.979515 \n",
+ " 1019.092939 \n",
+ " 1042.662761 \n",
+ " 1032.856487 \n",
+ " 1039.479765 \n",
+ " 1031.23876 \n",
+ " 1024.359428 \n",
+ " 1033.995625 \n",
+ " \n",
+ " \n",
+ " [INSERT].MinLatency(us) \n",
+ " 647.0 \n",
+ " 646.0 \n",
+ " 637.0 \n",
+ " 646.0 \n",
+ " 643.0 \n",
+ " 650.0 \n",
+ " 649.0 \n",
+ " 643.0 \n",
+ " 634.0 \n",
+ " 635.0 \n",
+ " ... \n",
+ " 637.0 \n",
+ " 640.0 \n",
+ " 640.0 \n",
+ " 630.0 \n",
+ " 630.0 \n",
+ " 629.0 \n",
+ " 636.0 \n",
+ " 630.0 \n",
+ " 629.0 \n",
+ " 636.0 \n",
+ " \n",
+ " \n",
+ " [INSERT].MaxLatency(us) \n",
+ " 142975.0 \n",
+ " 142975.0 \n",
+ " 143103.0 \n",
+ " 142975.0 \n",
+ " 143231.0 \n",
+ " 143231.0 \n",
+ " 143103.0 \n",
+ " 143103.0 \n",
+ " 25477119.0 \n",
+ " 25477119.0 \n",
+ " ... \n",
+ " 22003711.0 \n",
+ " 22003711.0 \n",
+ " 22003711.0 \n",
+ " 26443775.0 \n",
+ " 23822335.0 \n",
+ " 23887871.0 \n",
+ " 23085055.0 \n",
+ " 23478271.0 \n",
+ " 18612223.0 \n",
+ " 24150015.0 \n",
+ " \n",
+ " \n",
+ " [INSERT].95thPercentileLatency(us) \n",
+ " 1025.0 \n",
+ " 977.0 \n",
+ " 1034.0 \n",
+ " 973.0 \n",
+ " 1107.0 \n",
+ " 1134.0 \n",
+ " 1000.0 \n",
+ " 1063.0 \n",
+ " 984.0 \n",
+ " 1027.0 \n",
+ " ... \n",
+ " 1017.0 \n",
+ " 939.0 \n",
+ " 961.0 \n",
+ " 1018.0 \n",
+ " 981.0 \n",
+ " 967.0 \n",
+ " 967.0 \n",
+ " 959.0 \n",
+ " 967.0 \n",
+ " 945.0 \n",
+ " \n",
+ " \n",
+ " [INSERT].99thPercentileLatency(us) \n",
+ " 1129.0 \n",
+ " 1089.0 \n",
+ " 1220.0 \n",
+ " 1044.0 \n",
+ " 1275.0 \n",
+ " 1352.0 \n",
+ " 1213.0 \n",
+ " 1201.0 \n",
+ " 1248.0 \n",
+ " 1298.0 \n",
+ " ... \n",
+ " 1254.0 \n",
+ " 1149.0 \n",
+ " 1203.0 \n",
+ " 1261.0 \n",
+ " 1268.0 \n",
+ " 1255.0 \n",
+ " 1261.0 \n",
+ " 1263.0 \n",
+ " 1261.0 \n",
+ " 1268.0 \n",
+ " \n",
+ " \n",
+ " [INSERT].Return=OK \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " ... \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
36 rows Ă— 72 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ "connection_pod PostgreSQL-32-8-16384-2 \\\n",
+ "connection PostgreSQL-32-8-16384 \n",
+ "configuration PostgreSQL-32-8-16384 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod gb9j5.sensor \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 2048 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1831208.0 \n",
+ "[OVERALL].Throughput(ops/sec) 2047.828537 \n",
+ "[TOTAL_GCS_Copy].Count 207 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 152 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.008300531670897025 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 207 \n",
+ "[TOTAL_GC_TIME].Time(ms) 152 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.008300531670897025 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 115.25 \n",
+ "[CLEANUP].MinLatency(us) 44.0 \n",
+ "[CLEANUP].MaxLatency(us) 214.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 214.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 214.0 \n",
+ "[INSERT].Operations 3750000 \n",
+ "[INSERT].AverageLatency(us) 832.772679 \n",
+ "[INSERT].MinLatency(us) 647.0 \n",
+ "[INSERT].MaxLatency(us) 142975.0 \n",
+ "[INSERT].95thPercentileLatency(us) 1025.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1129.0 \n",
+ "[INSERT].Return=OK 3750000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-16384-3 \\\n",
+ "connection PostgreSQL-32-8-16384 \n",
+ "configuration PostgreSQL-32-8-16384 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod kjk85.sensor \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 2048 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1831207.0 \n",
+ "[OVERALL].Throughput(ops/sec) 2047.829656 \n",
+ "[TOTAL_GCS_Copy].Count 207 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 158 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.008628188948600568 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 207 \n",
+ "[TOTAL_GC_TIME].Time(ms) 158 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.008628188948600568 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 79.25 \n",
+ "[CLEANUP].MinLatency(us) 33.0 \n",
+ "[CLEANUP].MaxLatency(us) 187.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 187.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 187.0 \n",
+ "[INSERT].Operations 3750000 \n",
+ "[INSERT].AverageLatency(us) 812.780115 \n",
+ "[INSERT].MinLatency(us) 646.0 \n",
+ "[INSERT].MaxLatency(us) 142975.0 \n",
+ "[INSERT].95thPercentileLatency(us) 977.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1089.0 \n",
+ "[INSERT].Return=OK 3750000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-16384-4 \\\n",
+ "connection PostgreSQL-32-8-16384 \n",
+ "configuration PostgreSQL-32-8-16384 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod mskcx.sensor \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 2048 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1831193.0 \n",
+ "[OVERALL].Throughput(ops/sec) 2047.845312 \n",
+ "[TOTAL_GCS_Copy].Count 207 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 157 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.008573645705286117 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 207 \n",
+ "[TOTAL_GC_TIME].Time(ms) 157 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.008573645705286117 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 84.25 \n",
+ "[CLEANUP].MinLatency(us) 49.0 \n",
+ "[CLEANUP].MaxLatency(us) 188.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 188.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 188.0 \n",
+ "[INSERT].Operations 3750000 \n",
+ "[INSERT].AverageLatency(us) 839.590646 \n",
+ "[INSERT].MinLatency(us) 637.0 \n",
+ "[INSERT].MaxLatency(us) 143103.0 \n",
+ "[INSERT].95thPercentileLatency(us) 1034.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1220.0 \n",
+ "[INSERT].Return=OK 3750000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-16384-5 \\\n",
+ "connection PostgreSQL-32-8-16384 \n",
+ "configuration PostgreSQL-32-8-16384 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod pcmmg.sensor \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 2048 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1831201.0 \n",
+ "[OVERALL].Throughput(ops/sec) 2047.836365 \n",
+ "[TOTAL_GCS_Copy].Count 207 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 153 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.008355172370482541 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 207 \n",
+ "[TOTAL_GC_TIME].Time(ms) 153 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.008355172370482541 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 85.75 \n",
+ "[CLEANUP].MinLatency(us) 45.0 \n",
+ "[CLEANUP].MaxLatency(us) 191.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 191.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 191.0 \n",
+ "[INSERT].Operations 3750000 \n",
+ "[INSERT].AverageLatency(us) 790.366524 \n",
+ "[INSERT].MinLatency(us) 646.0 \n",
+ "[INSERT].MaxLatency(us) 142975.0 \n",
+ "[INSERT].95thPercentileLatency(us) 973.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1044.0 \n",
+ "[INSERT].Return=OK 3750000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-16384-6 \\\n",
+ "connection PostgreSQL-32-8-16384 \n",
+ "configuration PostgreSQL-32-8-16384 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod pmr6w.sensor \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 2048 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1831203.0 \n",
+ "[OVERALL].Throughput(ops/sec) 2047.834129 \n",
+ "[TOTAL_GCS_Copy].Count 207 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 156 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.008518989975442374 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 207 \n",
+ "[TOTAL_GC_TIME].Time(ms) 156 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.008518989975442374 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 82.25 \n",
+ "[CLEANUP].MinLatency(us) 39.0 \n",
+ "[CLEANUP].MaxLatency(us) 186.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 186.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 186.0 \n",
+ "[INSERT].Operations 3750000 \n",
+ "[INSERT].AverageLatency(us) 856.366943 \n",
+ "[INSERT].MinLatency(us) 643.0 \n",
+ "[INSERT].MaxLatency(us) 143231.0 \n",
+ "[INSERT].95thPercentileLatency(us) 1107.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1275.0 \n",
+ "[INSERT].Return=OK 3750000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-16384-7 \\\n",
+ "connection PostgreSQL-32-8-16384 \n",
+ "configuration PostgreSQL-32-8-16384 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod qmfjw.sensor \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 2048 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1831193.0 \n",
+ "[OVERALL].Throughput(ops/sec) 2047.845312 \n",
+ "[TOTAL_GCS_Copy].Count 207 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 156 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.008519036496972193 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 207 \n",
+ "[TOTAL_GC_TIME].Time(ms) 156 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.008519036496972193 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 182.25 \n",
+ "[CLEANUP].MinLatency(us) 113.0 \n",
+ "[CLEANUP].MaxLatency(us) 251.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 251.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 251.0 \n",
+ "[INSERT].Operations 3750000 \n",
+ "[INSERT].AverageLatency(us) 893.798743 \n",
+ "[INSERT].MinLatency(us) 650.0 \n",
+ "[INSERT].MaxLatency(us) 143231.0 \n",
+ "[INSERT].95thPercentileLatency(us) 1134.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1352.0 \n",
+ "[INSERT].Return=OK 3750000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-16384-8 \\\n",
+ "connection PostgreSQL-32-8-16384 \n",
+ "configuration PostgreSQL-32-8-16384 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod xrrbk.sensor \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 2048 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1831197.0 \n",
+ "[OVERALL].Throughput(ops/sec) 2047.840839 \n",
+ "[TOTAL_GCS_Copy].Count 207 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 156 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.008519017888299294 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 207 \n",
+ "[TOTAL_GC_TIME].Time(ms) 156 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.008519017888299294 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 83.0 \n",
+ "[CLEANUP].MinLatency(us) 43.0 \n",
+ "[CLEANUP].MaxLatency(us) 186.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 186.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 186.0 \n",
+ "[INSERT].Operations 3750000 \n",
+ "[INSERT].AverageLatency(us) 810.112466 \n",
+ "[INSERT].MinLatency(us) 649.0 \n",
+ "[INSERT].MaxLatency(us) 143103.0 \n",
+ "[INSERT].95thPercentileLatency(us) 1000.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1213.0 \n",
+ "[INSERT].Return=OK 3750000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-16384-1 \\\n",
+ "connection PostgreSQL-32-8-16384 \n",
+ "configuration PostgreSQL-32-8-16384 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod 2hl8g.sensor \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 2048 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1831205.0 \n",
+ "[OVERALL].Throughput(ops/sec) 2047.831892 \n",
+ "[TOTAL_GCS_Copy].Count 207 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 157 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.008573589521653775 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 207 \n",
+ "[TOTAL_GC_TIME].Time(ms) 157 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.008573589521653775 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 224.75 \n",
+ "[CLEANUP].MinLatency(us) 49.0 \n",
+ "[CLEANUP].MaxLatency(us) 423.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 423.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 423.0 \n",
+ "[INSERT].Operations 3750000 \n",
+ "[INSERT].AverageLatency(us) 855.068822 \n",
+ "[INSERT].MinLatency(us) 643.0 \n",
+ "[INSERT].MaxLatency(us) 143103.0 \n",
+ "[INSERT].95thPercentileLatency(us) 1063.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1201.0 \n",
+ "[INSERT].Return=OK 3750000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-32768-4 \\\n",
+ "connection PostgreSQL-32-8-32768 \n",
+ "configuration PostgreSQL-32-8-32768 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod lvlv2.sensor \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 4096 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1046118.0 \n",
+ "[OVERALL].Throughput(ops/sec) 3584.681652 \n",
+ "[TOTAL_GCS_Copy].Count 207 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 163 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.015581416245586061 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 207 \n",
+ "[TOTAL_GC_TIME].Time(ms) 163 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.015581416245586061 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 220.25 \n",
+ "[CLEANUP].MinLatency(us) 115.0 \n",
+ "[CLEANUP].MaxLatency(us) 470.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 470.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 470.0 \n",
+ "[INSERT].Operations 3750000 \n",
+ "[INSERT].AverageLatency(us) 1008.154887 \n",
+ "[INSERT].MinLatency(us) 634.0 \n",
+ "[INSERT].MaxLatency(us) 25477119.0 \n",
+ "[INSERT].95thPercentileLatency(us) 984.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1248.0 \n",
+ "[INSERT].Return=OK 3750000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-32768-1 ... \\\n",
+ "connection PostgreSQL-32-8-32768 ... \n",
+ "configuration PostgreSQL-32-8-32768 ... \n",
+ "experiment_run 1 ... \n",
+ "client 0 ... \n",
+ "pod 5m288.sensor ... \n",
+ "pod_count 8 ... \n",
+ "threads 4 ... \n",
+ "target 4096 ... \n",
+ "sf 30 ... \n",
+ "workload a ... \n",
+ "operations 3750000 ... \n",
+ "batchsize -1 ... \n",
+ "[OVERALL].RunTime(ms) 1070644.0 ... \n",
+ "[OVERALL].Throughput(ops/sec) 3502.564811 ... \n",
+ "[TOTAL_GCS_Copy].Count 206 ... \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 166 ... \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.015504686898726373 ... \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 ... \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 ... \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 ... \n",
+ "[TOTAL_GCs].Count 206 ... \n",
+ "[TOTAL_GC_TIME].Time(ms) 166 ... \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.015504686898726373 ... \n",
+ "[CLEANUP].Operations 4 ... \n",
+ "[CLEANUP].AverageLatency(us) 205.5 ... \n",
+ "[CLEANUP].MinLatency(us) 65.0 ... \n",
+ "[CLEANUP].MaxLatency(us) 506.0 ... \n",
+ "[CLEANUP].95thPercentileLatency(us) 506.0 ... \n",
+ "[CLEANUP].99thPercentileLatency(us) 506.0 ... \n",
+ "[INSERT].Operations 3750000 ... \n",
+ "[INSERT].AverageLatency(us) 1017.997042 ... \n",
+ "[INSERT].MinLatency(us) 635.0 ... \n",
+ "[INSERT].MaxLatency(us) 25477119.0 ... \n",
+ "[INSERT].95thPercentileLatency(us) 1027.0 ... \n",
+ "[INSERT].99thPercentileLatency(us) 1298.0 ... \n",
+ "[INSERT].Return=OK 3750000 ... \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-131072-6 \\\n",
+ "connection PostgreSQL-32-8-131072 \n",
+ "configuration PostgreSQL-32-8-131072 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod p6x48.sensor \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 16384 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1044507.0 \n",
+ "[OVERALL].Throughput(ops/sec) 3590.210501 \n",
+ "[TOTAL_GCS_Copy].Count 207 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 161 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.01541397041858025 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 207 \n",
+ "[TOTAL_GC_TIME].Time(ms) 161 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.01541397041858025 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 139.25 \n",
+ "[CLEANUP].MinLatency(us) 62.0 \n",
+ "[CLEANUP].MaxLatency(us) 207.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 207.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 207.0 \n",
+ "[INSERT].Operations 3750000 \n",
+ "[INSERT].AverageLatency(us) 1026.584293 \n",
+ "[INSERT].MinLatency(us) 637.0 \n",
+ "[INSERT].MaxLatency(us) 22003711.0 \n",
+ "[INSERT].95thPercentileLatency(us) 1017.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1254.0 \n",
+ "[INSERT].Return=OK 3750000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-131072-7 \\\n",
+ "connection PostgreSQL-32-8-131072 \n",
+ "configuration PostgreSQL-32-8-131072 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod p9pwx.sensor \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 16384 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1016913.0 \n",
+ "[OVERALL].Throughput(ops/sec) 3687.631095 \n",
+ "[TOTAL_GCS_Copy].Count 207 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 161 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.015832229502425476 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 207 \n",
+ "[TOTAL_GC_TIME].Time(ms) 161 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.015832229502425476 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 116.5 \n",
+ "[CLEANUP].MinLatency(us) 63.0 \n",
+ "[CLEANUP].MaxLatency(us) 211.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 211.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 211.0 \n",
+ "[INSERT].Operations 3750000 \n",
+ "[INSERT].AverageLatency(us) 989.811878 \n",
+ "[INSERT].MinLatency(us) 640.0 \n",
+ "[INSERT].MaxLatency(us) 22003711.0 \n",
+ "[INSERT].95thPercentileLatency(us) 939.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1149.0 \n",
+ "[INSERT].Return=OK 3750000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-131072-1 \\\n",
+ "connection PostgreSQL-32-8-131072 \n",
+ "configuration PostgreSQL-32-8-131072 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod 2dbvt.sensor \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 16384 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1019260.0 \n",
+ "[OVERALL].Throughput(ops/sec) 3679.139768 \n",
+ "[TOTAL_GCS_Copy].Count 207 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 159 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.015599552616604203 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 207 \n",
+ "[TOTAL_GC_TIME].Time(ms) 159 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.015599552616604203 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 104.75 \n",
+ "[CLEANUP].MinLatency(us) 60.0 \n",
+ "[CLEANUP].MaxLatency(us) 214.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 214.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 214.0 \n",
+ "[INSERT].Operations 3750000 \n",
+ "[INSERT].AverageLatency(us) 1018.979515 \n",
+ "[INSERT].MinLatency(us) 640.0 \n",
+ "[INSERT].MaxLatency(us) 22003711.0 \n",
+ "[INSERT].95thPercentileLatency(us) 961.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1203.0 \n",
+ "[INSERT].Return=OK 3750000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-1-32768-1 \\\n",
+ "connection PostgreSQL-32-1-32768 \n",
+ "configuration PostgreSQL-32-1-32768 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod 9fbk6.sensor \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 32768 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1059352.0 \n",
+ "[OVERALL].Throughput(ops/sec) 28319.198907 \n",
+ "[TOTAL_GCS_Copy].Count 1662 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 1404 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.13253385088242622 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 1662 \n",
+ "[TOTAL_GC_TIME].Time(ms) 1404 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.13253385088242622 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 99.6875 \n",
+ "[CLEANUP].MinLatency(us) 53.0 \n",
+ "[CLEANUP].MaxLatency(us) 195.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 140.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 195.0 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1019.092939 \n",
+ "[INSERT].MinLatency(us) 630.0 \n",
+ "[INSERT].MaxLatency(us) 26443775.0 \n",
+ "[INSERT].95thPercentileLatency(us) 1018.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1261.0 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-1-49152-1 \\\n",
+ "connection PostgreSQL-32-1-49152 \n",
+ "configuration PostgreSQL-32-1-49152 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod gs5fb.sensor \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 49152 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1062779.0 \n",
+ "[OVERALL].Throughput(ops/sec) 28227.881808 \n",
+ "[TOTAL_GCS_Copy].Count 1662 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 1412 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.1328592303762118 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 1662 \n",
+ "[TOTAL_GC_TIME].Time(ms) 1412 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.1328592303762118 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 90.25 \n",
+ "[CLEANUP].MinLatency(us) 47.0 \n",
+ "[CLEANUP].MaxLatency(us) 199.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 147.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 199.0 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1042.662761 \n",
+ "[INSERT].MinLatency(us) 630.0 \n",
+ "[INSERT].MaxLatency(us) 23822335.0 \n",
+ "[INSERT].95thPercentileLatency(us) 981.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1268.0 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-1-65536-1 \\\n",
+ "connection PostgreSQL-32-1-65536 \n",
+ "configuration PostgreSQL-32-1-65536 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod 6hqzb.sensor \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 65536 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1030604.0 \n",
+ "[OVERALL].Throughput(ops/sec) 29109.143764 \n",
+ "[TOTAL_GCS_Copy].Count 1662 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 1393 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.1351634575452841 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 1662 \n",
+ "[TOTAL_GC_TIME].Time(ms) 1393 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.1351634575452841 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 86.625 \n",
+ "[CLEANUP].MinLatency(us) 55.0 \n",
+ "[CLEANUP].MaxLatency(us) 206.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 132.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 206.0 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1032.856487 \n",
+ "[INSERT].MinLatency(us) 629.0 \n",
+ "[INSERT].MaxLatency(us) 23887871.0 \n",
+ "[INSERT].95thPercentileLatency(us) 967.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1255.0 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-1-81920-1 \\\n",
+ "connection PostgreSQL-32-1-81920 \n",
+ "configuration PostgreSQL-32-1-81920 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod nkd9n.sensor \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 81920 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1054230.0 \n",
+ "[OVERALL].Throughput(ops/sec) 28456.788367 \n",
+ "[TOTAL_GCS_Copy].Count 1662 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 1403 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.13308291359570493 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 1662 \n",
+ "[TOTAL_GC_TIME].Time(ms) 1403 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.13308291359570493 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 95.25 \n",
+ "[CLEANUP].MinLatency(us) 54.0 \n",
+ "[CLEANUP].MaxLatency(us) 214.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 129.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 214.0 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1039.479765 \n",
+ "[INSERT].MinLatency(us) 636.0 \n",
+ "[INSERT].MaxLatency(us) 23085055.0 \n",
+ "[INSERT].95thPercentileLatency(us) 967.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1261.0 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-1-98304-1 \\\n",
+ "connection PostgreSQL-32-1-98304 \n",
+ "configuration PostgreSQL-32-1-98304 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod xzd7w.sensor \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 98304 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1074369.0 \n",
+ "[OVERALL].Throughput(ops/sec) 27923.367111 \n",
+ "[TOTAL_GCS_Copy].Count 1662 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 1409 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.1311467475327378 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 1662 \n",
+ "[TOTAL_GC_TIME].Time(ms) 1409 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.1311467475327378 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 95.5 \n",
+ "[CLEANUP].MinLatency(us) 54.0 \n",
+ "[CLEANUP].MaxLatency(us) 375.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 115.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 375.0 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1031.23876 \n",
+ "[INSERT].MinLatency(us) 630.0 \n",
+ "[INSERT].MaxLatency(us) 23478271.0 \n",
+ "[INSERT].95thPercentileLatency(us) 959.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1263.0 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-1-114688-1 \\\n",
+ "connection PostgreSQL-32-1-114688 \n",
+ "configuration PostgreSQL-32-1-114688 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod tx5d5.sensor \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 114688 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1066169.0 \n",
+ "[OVERALL].Throughput(ops/sec) 28138.128195 \n",
+ "[TOTAL_GCS_Copy].Count 1662 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 1411 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.1323429962792015 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 1662 \n",
+ "[TOTAL_GC_TIME].Time(ms) 1411 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.1323429962792015 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 95.4375 \n",
+ "[CLEANUP].MinLatency(us) 57.0 \n",
+ "[CLEANUP].MaxLatency(us) 186.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 144.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 186.0 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1024.359428 \n",
+ "[INSERT].MinLatency(us) 629.0 \n",
+ "[INSERT].MaxLatency(us) 18612223.0 \n",
+ "[INSERT].95thPercentileLatency(us) 967.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1261.0 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-1-131072-1 \n",
+ "connection PostgreSQL-32-1-131072 \n",
+ "configuration PostgreSQL-32-1-131072 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod b9gzf.sensor \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 131072 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1085442.0 \n",
+ "[OVERALL].Throughput(ops/sec) 27638.510395 \n",
+ "[TOTAL_GCS_Copy].Count 1662 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 1425 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.13128292437550787 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 1662 \n",
+ "[TOTAL_GC_TIME].Time(ms) 1425 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.13128292437550787 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 95.0 \n",
+ "[CLEANUP].MinLatency(us) 37.0 \n",
+ "[CLEANUP].MaxLatency(us) 199.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 154.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 199.0 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1033.995625 \n",
+ "[INSERT].MinLatency(us) 636.0 \n",
+ "[INSERT].MaxLatency(us) 24150015.0 \n",
+ "[INSERT].95thPercentileLatency(us) 945.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1268.0 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ "[36 rows x 72 columns]"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_plot.drop(df_plot[df_plot['[OVERALL].Throughput(ops/sec)'] == 0].index, inplace=True)\n",
+ "\n",
+ "df_plot.T"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Plot Results per Number of Pods"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACO5klEQVR4nOzdd3hUZf7+8XtSJn0mCSQkgSQ0AelFQVZRWZEiFiyroruCoq4Kq4iiculP0V0XsbuuZct3xVVY1F3bioIIiKsUKQlVQBAILfTMhBDS5vn9EebAmAAJJGdS3q/rmgvmnGfOfM7QPtzznOc4jDFGAAAAAAAAgI1Cgl0AAAAAAAAAGh9CKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKUDSyJEj5XA45HA41Llz52CXUy+NHTvW+gxjY2Nr7LgjR46s0ePZbeLEiXI4HNq3b1+wS6nUs88+qw4dOsjn8wW7lKArKSlRenq6Xn/99WCXAgD1Av3TmaN/qhz9U/1B/4QzRSgFHNW0aVO98847euaZZwK2l5SU6E9/+pPOPfdcxcXFKTY2Vueee67+9Kc/qaSkxBr34osvyuFw6Kuvvjrhe/ztb3+Tw+HQp59+Kkm6+OKLrUbk548OHTpYr5syZUrAvrCwMDVv3lwjR47Ujh07Tvh+r7/+uhwOh/r06XPCMQ6HQ2PGjDnpZ3PxxRefstn8zW9+o3feeUf9+vU76bifn8uJHi1btjzpcVA1f/zjH/Xxxx9Xus/r9Wry5Ml6+OGHFRJSN/45WLVqlRwOh77//nvb3zs8PFzjxo3T008/rSNHjtj+/gBQH9E/nRj9U/1F/1R19E84U2HBLgCoK2JiYvTrX/86YFtBQYGGDh2q+fPn6/LLL9fIkSMVEhKimTNn6r777tOHH36oGTNmKCYmRjfeeKPGjx+vadOmacCAAZW+x7Rp09SkSRMNGTLE2taiRQtNmjSpwli3211h21NPPaVWrVrpyJEjWrRokaZMmaJvv/1Wq1evVmRkZIXxU6dOVcuWLfX9999r48aNatu2bXU/lirr1auXevXqpa+++krLly8/4bgLL7xQ77zzTsC222+/Xb1799add95pbavP3+7VJX/84x913XXXadiwYRX2/eMf/1BpaamGDx9uf2EnMGPGDCUnJ+vcc88NyvvfeuuteuSRRzRt2jTddtttQakBAOoT+qczQ/9UN9E/VQ/9E84EoRRwEuPGjdP8+fP16quvBnwbdvfdd+u1117TmDFj9OCDD+qNN95QWlqa+vfvrw8//FBvvPGGIiIiAo61Y8cOffPNN7rzzjsVHh5ubXe73RWauRMZMmSIzjnnHEnljUjTpk01efJkffrpp7r++usDxm7evFkLFizQhx9+qN/+9reaOnWqnnjiidP9KGpM69at1bp164Btd911l1q3bl3lz6GqSktL5fP55HQ6a/S4DcVbb72lK6+8stKGPFg+//xzDRkyRA6HIyjvHx8fr4EDB2rKlCk0VQBwmuifah79U91B/1QR/RPORN2YbwjUQdu3b9f//d//6Ze//GWl07NHjx6t/v376+9//7u2b98uSfr1r38tj8ejGTNmVBg/ffp0+Xw+3XzzzTVWo3+q96ZNmyrsmzp1qhISEjR06FBdd911mjp1ao29bzDs2LFDw4YNU2xsrJKSkvTggw+qrKzM2r9lyxY5HA49//zzevnll9WmTRtFRERo7dq1kqS5c+eqX79+iomJUXx8vK666ir98MMPAe8xcuTISqe9+9c1OF5hYaHuvfdeNW3aVHFxcbryyiu1Y8cOORwOTZw4scIx8vLyNHLkSMXHx8vtduvWW2/V4cOHA8b4LwWYOnWq2rdvr8jISPXq1UvffPPNadXpcDhUUFCgt99+25rWP3LkSEnlTffKlSsr/Va6oKBADzzwgNLT0xUREaH27dvr+eeflzHmtOrNz8/X2LFj1bJlS0VERCg5OVmXXnpphW+E8/LytGDBAg0dOtTaNn36dPXq1UtxcXFyuVzq0qWLXnnllQqvGzt2rFVv27ZtNXny5ArrPPh8Pr3yyivq0qWLIiMjlZSUpMGDB2vp0qUB4y699FJ9++23OnDgQIXPBgBwcvRPdQv9U/XrpH+if4K9CKWAE/jiiy9UVlamW2655YRjbrnlFpWWlmrmzJmSpGuuuUaRkZGaNm1ahbHTpk1TZmamzj///IDtZWVl2rdvX4VHQUHBKWvcsmWLJCkhIaHCvqlTp+qaa66R0+nU8OHD9eOPP2rJkiWnPGZdVFZWpkGDBqlJkyZ6/vnnddFFF+mFF17QX//61wpj33rrLb366qu688479cILLygxMVFfffWVBg0apD179mjixIkaN26cFixYoPPPP9/6DKtr5MiRevXVV3XZZZdp8uTJioqKCmgGfu76669Xfn6+Jk2apOuvv15TpkzRk08+WWHc/PnzNXbsWP3617/WU089pf3792vw4MFavXp1tWt85513FBERoX79+umdd97RO++8o9/+9reSpAULFkiSevbsGfAaY4yuvPJKvfTSSxo8eLBefPFFtW/fXuPHj9e4ceNOq9677rpLb7zxhq699lq9/vrrevDBBxUVFVWhqZ01a5YcDocGDhwoSZo9e7aGDx+uhIQETZ48Wc8884wuvvhifffdd9ZrDh8+rIsuukjvvvuubrnlFv3pT3/S+eefrwkTJlSod9SoUVbzNXnyZD3yyCOKjIzUokWLAsb16tVLxhjrMwIAVB39U91B/0T/RP+EesEAMCNGjDCZmZkB28aOHWskmaysrBO+bvny5UaSGTdunLXtV7/6lYmMjDQej8fatm7dOiPJTJgwIeD1F110kZFU6eO3v/2tNe6tt94yksxXX31l9u7da7Zt22b+/e9/m6SkJBMREWG2bdsWcNylS5caSWb27NnGGGN8Pp9p0aKFue+++yqcgyQzevTok34+F110kenUqdNJx/iNGDHCxMTEVGmsX0xMjBkxYsQJjyfJPPXUUwHbe/ToYXr16mU937x5s5FkXC6X2bNnT8DY7t27m+TkZLN//35r24oVK0xISIi55ZZbAt7r578PjDHmiSeeMMf/dbls2TIjyYwdOzZg3MiRI40k88QTT1R47W233RYw9uqrrzZNmjQJ2Ob/tV+6dKm1bevWrSYyMtJcffXV1a7TmBN/to899piRZPLz8wO2f/zxx0aS+cMf/hCw/brrrjMOh8Ns3Lix2vW63e5T/h4zxpjf/OY35qKLLrKe33fffcblcpnS0tITvub3v/+9iYmJMRs2bAjY/sgjj5jQ0FCTk5NjjDFm7ty5RpK59957KxzD5/MFPN+5c6eRZCZPnnzKmgGgMaN/on/yvxf9E/0T/RNOFzOlgBPIz8+XJMXFxZ1wjH+f1+u1tv3617/WkSNH9OGHH1rb/N/8VTb1vGXLlpo9e3aFx9ixYyuMHTBggJKSkpSenq7rrrtOMTEx+vTTT9WiRYuAcVOnTlWzZs3Uv39/SeXThG+44QZNnz49YMp2fXLXXXcFPO/Xr59++umnCuOuvfZaJSUlWc937dql7OxsjRw5UomJidb2rl276tJLL9Xnn39e7Vr83+zec889Adt/97vfVav+/fv3B/zekaS+ffuqV69e1vOMjAxdddVVmjVrVo3+2u3fv19hYWEVFkT9/PPPFRoaqnvvvTdg+wMPPCBjjL744otq1xsfH6/Fixdr586dJ6zH5/Np5syZAd+WxsfHq6CgQLNnzz7h6z744AP169dPCQkJAd+UDxgwQGVlZdZU+P/85z9yOByVrgvy80sL/N+c19XbUANAXUb/VLfQP9E/VYb+CXUJoRRwAv6Gyd9cVaayxmvIkCFKTEwMmIL+r3/9S926dVOnTp0qHCMmJkYDBgyo8Dj+lsZ+r732mmbPnq1///vfuuyyy7Rv374KC4KWlZVp+vTp6t+/vzZv3qyNGzdq48aN6tOnj3bv3q05c+ZU74OoA/zXrx8vISFBBw8erDC2VatWAc+3bt0qSWrfvn2FsWeffXaVp/r//JghISEV3utkd+fJyMgIeO7/h/vn53DWWWdVeG27du10+PBh7d27t1p1no6tW7cqLS2twn8mzj77bGv/8apS77PPPqvVq1crPT1dvXv31sSJEys0xEuWLNHevXsDmqp77rlH7dq105AhQ9SiRQvddtttVkPr9+OPP2rmzJlKSkoKePjXetizZ4+k8nVD0tLSAhrrEzFH134I1mKhAFCf0T/VHfRP9E/0T6gPuPsecAL+f0RWrlyp7t27Vzpm5cqVkqSOHTta28LDw3X99dfrb3/7m3bv3q2cnBz9+OOPevbZZ8+4pt69e1t3jxk2bJguuOAC3XTTTVq/fr31jc3cuXO1a9cuTZ8+XdOnT69wjKlTp1rXnNcXoaGhVR4bFRV12u9zon9Ea+IbthOdg/nZ4pdVURN1NmnSRKWlpcrPzz/pt9k14frrr1e/fv300Ucf6csvv9Rzzz2nyZMn68MPP7Ru7/3555+rZcuWAX+WkpOTlZ2drVmzZumLL77QF198obfeeku33HKL3n77bUnl3xBeeumleuihhyp973bt2lW7Xn+j27Rp02q/FgAaO/qnuoP+KRD9E/0T6iZmSgEnMGTIEIWGhuqdd9454Zh//vOfCgsL0+DBgwO233zzzSorK9N7772nadOmyeFwaPjw4TVaX2hoqCZNmqSdO3fqz3/+s7V96tSpSk5O1gcffFDhMXz4cH300UcqLCys0VrqsszMTEnS+vXrK+xbt26dmjZtqpiYGEnl377l5eVVGPfzb7cyMzPl8/m0efPmgO0bN24843p//PHHCts2bNig6Oho69vOqtYpnbgB83+T/PNzyMzM1M6dOyt8w71u3Tprf3XrlaTU1FTdc889+vjjj7V582Y1adJETz/9tLV/xowZuuyyyyocy+l06oorrtDrr7+uTZs26be//a3++c9/Wp91mzZtdOjQoUq/LR8wYID1DWubNm20c+fOKt0Rxv+Z+P9jBQCoOvqnhoH+if7JP47+CbWNUAo4gfT0dN1666366quv9MYbb1TY/+abb2ru3LkaNWpUhTUJzj//fLVs2VLvvvuu3nvvPV100UUVxtSEiy++WL1799bLL7+sI0eOqLCwUB9++KEuv/xyXXfddRUeY8aMUX5+vj799NMar+VkNm3aVOltl+2Qmpqq7t276+233w5oRFavXq0vv/wy4B/yNm3ayOPxWN/gSuVrKnz00UcBxxw0aJAk6fXXXw/Y/uqrr55xvQsXLgy41e+2bdv0ySefaODAgda3hVWtUyq/vKGyBqxv376SVOF2vpdddpnKysoCGnVJeumll+RwOKxv5qpab1lZmTweT8BrkpOTlZaWpqKiIknS7t27tXz58gp339m/f3/A85CQEHXt2lWSrNdef/31WrhwoWbNmlXhHPPy8lRaWiqpfK0MY0yld+z5+bety5Ytk8PhsD4jAEDV0T/VHPqnqqN/Oob+CfUNl+8BJ/HSSy9p3bp1uueeezRz5kzrG71Zs2bpk08+sW6t+3MOh0M33XST/vjHP0qSnnrqqRO+h8fj0bvvvlvpvl//+tenrHH8+PH61a9+pSlTpighIUH5+fm68sorKx173nnnKSkpSVOnTtUNN9xgbV+6dKn+8Ic/VBh/8cUX64ILLpAk7d27t9IxrVq1qnQB0uNdcsklknTatw8+U88995yGDBmivn37atSoUSosLNSrr74qt9utiRMnWuNuvPFGPfzww7r66qt177336vDhw3rjjTfUrl27gMahV69euvbaa/Xyyy9r//79Ou+88zR//nxt2LBB0pldS9+5c2cNGjRI9957ryIiIqzG7fhmoKp1+mv96quv9OKLLyotLU2tWrVSnz591Lp1a3Xu3FlfffWVbrvtNmv8FVdcof79++vRRx/Vli1b1K1bN3355Zf65JNPNHbsWLVp06Za9ebn56tFixa67rrr1K1bN8XGxuqrr77SkiVLrD87n3/+uSIjI62FZf1uv/12HThwQL/85S/VokULbd26Va+++qq6d+9ufQs3fvx4ffrpp7r88ss1cuRI9erVSwUFBVq1apX+/e9/a8uWLWratKn69++v3/zmN/rTn/6kH3/8UYMHD5bP59P//vc/9e/fX2PGjLHed/bs2Tr//PPVpEmT0/51BIDGjP6J/on+if4JqLJg3fYPqEtOdItYY4wpKioyL730kunVq5eJiYkx0dHRpmfPnubll182xcXFJzzmmjVrjCQTERFhDh48WOmYk93S+Pg/nv5bGi9ZsqTCMcrKykybNm1MmzZtzOWXX24iIyNNQUHBCesaOXKkCQ8PN/v27TPGmJO+/+9///tT1nnJJZdU+Cx/fkvjzMzME36+xpz6lsaV3SL557fv9d/S+Lnnnqv0OF999ZU5//zzTVRUlHG5XOaKK64wa9eurTDuyy+/NJ07dzZOp9O0b9/evPvuu5XeKrigoMCMHj3aJCYmmtjYWDNs2DCzfv16I8k888wzFercu3dvwOv9v6abN2+2tuno7aXfffddc9ZZZ5mIiAjTo0cPM2/evNOuc926debCCy80UVFRRlLA5/ziiy+a2NhYc/jw4YDX5Ofnm/vvv9+kpaWZ8PBwc9ZZZ5nnnnuuwq1/q1JvUVGRGT9+vOnWrZuJi4szMTExplu3bub111+3xlx33XXmsssuq3CO//73v83AgQNNcnKycTqdJiMjw/z2t781u3btqlDvhAkTTNu2bY3T6TRNmzY1v/jFL8zzzz8f8Ge0tLTUPPfcc6ZDhw7G6XSapKQkM2TIELNs2TJrTF5ennE6nebvf/97hXoAAIHon+if/Oif6J/on3C6CKUAU/4Pd3p6utm7d+8JGyCc3KFDh8zevXvNjTfeWGkT1BhkZWUZSebdd989rdf7mxS75OXlmcTExNNuIGqi3pKSEuNyucxrr712RsepKS+99JJJTU2t0GgCACqifzpz9E/0T6eD/gkNCWtKAUdt27ZNSUlJ1nRrVM+jjz6qpKSkSu9Y0xBVttjpyy+/rJCQEF144YVBqKj63G63HnroIT333HPy+XxBqeHAgQO6//77dfXVVwfl/Y9XUlKiF198UY899tgZ3YUIABoT+qczQ/9E/3Q66J/QkDiMOY37aQINzNq1a7Vz505JUmxsrM4777wgV1T/bNiwQTk5OZKksLAwXXzxxcEtqJY9+eSTWrZsmfr376+wsDDrlrt33nmn/vKXv5zWMR0Oh0aPHl1hkcy6qr7VCwCoWfRPZ47+if4JaOxY6ByQ1LFjR3Xs2DHYZdRr7dq1U7t27YJdhm1+8YtfaPbs2fr973+vQ4cOKSMjQxMnTtSjjz4a7NIAALAF/dOZo3+ifwIaO2ZKAQAAAAAAwHasKQUAAAAAAADbEUoBAAAAAADAdo16TSmfz6edO3cqLi5ODocj2OUAAIA6yBij/Px8paWlKSSE7/PonwAAwKlUtX9q1KHUzp07lZ6eHuwyAABAPbBt2za1aNEi2GUEHf0TAACoqlP1T406lIqLi5NU/iG5XK4gVwMAAOoir9er9PR0q29o7OifAADAqVS1f2rUoZR/yrnL5aKpAgAAJ8WlauXonwAAQFWdqn9iYQQAAAAAAADYjlAKAAAAAAAAtiOUAgAAAAAAgO0a9ZpSAFBflJWVqaSkJNhlAA1SeHi4QkNDg10GACAIfD6fiouLg10GUO/UVP9EKAUAdZgxRrm5ucrLywt2KUCDFh8fr5SUFBYzB4BGpLi4WJs3b5bP5wt2KUC9VBP9E6EUANRh/kAqOTlZ0dHR/IcZqGHGGB0+fFh79uyRJKWmpga5IgCAHYwx2rVrl0JDQ5Wenq6QEFa2AaqqRvsnUw2vv/666dKli4mLizNxcXHmvPPOM59//rm1v7Cw0Nxzzz0mMTHRxMTEmGuuucbk5uYGHGPr1q3msssuM1FRUSYpKck8+OCDpqSkJGDMvHnzTI8ePYzT6TRt2rQxb731VoVa/vznP5vMzEwTERFhevfubRYvXlydUzHGGOPxeIwk4/F4qv1aAKhtpaWlZu3atWbfvn3BLgVo8Pbt22fWrl1rSktLK+yriX6hIfVQ9E8AGoLi4mKzdu1ak5eXF+xSgHqrJvqnasXBLVq00DPPPKNly5Zp6dKl+uUvf6mrrrpKa9askSTdf//9+u9//6sPPvhA8+fP186dO3XNNddYry8rK9PQoUNVXFysBQsW6O2339aUKVP0+OOPW2M2b96soUOHqn///srOztbYsWN1++23a9asWdaY9957T+PGjdMTTzyh5cuXq1u3bho0aJCV0gFAQ+BfQyo6OjrIlQANn//PWW2t3UYPBQB1S1lZmSTJ6XQGuRKg/qqR/ulMk7GEhATz97//3eTl5Znw8HDzwQcfWPt++OEHI8ksXLjQGGPM559/bkJCQgK++XvjjTeMy+UyRUVFxhhjHnroIdOpU6eA97jhhhvMoEGDrOe9e/c2o0ePtp6XlZWZtLQ0M2nSpGrVzjd9AOqywsJCs3btWlNYWBjsUoAG72R/3mqrX6ivPRT9E4CGgD4LOHM10T+d9oWzZWVlmj59ugoKCtS3b18tW7ZMJSUlGjBggDWmQ4cOysjI0MKFCyVJCxcuVJcuXdSsWTNrzKBBg+T1eq1vChcuXBhwDP8Y/zGKi4u1bNmygDEhISEaMGCANeZEioqK5PV6Ax4AAAB2qm89FP0TAACoLdUOpVatWqXY2FhFRETorrvu0kcffaSOHTsqNzdXTqdT8fHxAeObNWum3NxcSeUL9h7fTPn3+/edbIzX61VhYaH27dunsrKySsf4j3EikyZNktvtth7p6enVPX0AQD2zZcsWORwOZWdnB7uUBsfhcOjjjz8OdhmWkSNHatiwYcEu44Tqaw9F/wQAqAw91um5+OKLNXbs2GCXYZkyZUqFHsRO1Q6l2rdvr+zsbC1evFh33323RowYobVr19ZGbTVuwoQJ8ng81mPbtm3BLgkAGqRvvvlGV1xxhdLS0upccFEfnG64sn79evXv31/NmjVTZGSkWrdurcceeyzgOv+//e1v6tevnxISEpSQkKABAwbo+++/P+lxJ06cqO7du1e7HgSqrz0U/RMA1B1lZWX6f//v/6lVq1aKiopSmzZt9Pvf/17GmGCXVi/UxBdYGzduVFxc3CmDnK+//loOh0N5eXln9H4NXVh1X+B0OtW2bVtJUq9evbRkyRK98soruuGGG1RcXKy8vLyAX5zdu3crJSVFkpSSklKh8d29e7e1z/+jf9vxY1wul6KiohQaGqrQ0NBKx/iPcSIRERGKiIio7ikDAKqpoKBA3bp102233RawWDNqV3h4uG655Rb17NlT8fHxWrFihe644w75fD798Y9/lFTeIA0fPly/+MUvFBkZqcmTJ2vgwIFas2aNmjdvXqv1GWNUVlamsLBqtx8NQn3toeifAKDumDx5st544w29/fbb6tSpk5YuXapbb71Vbrdb9957b7DLa/BKSko0fPhw9evXTwsWLLD1fcPDw217Pzud9ppSfj6fT0VFRerVq5fCw8M1Z84ca9/69euVk5Ojvn37SpL69u2rVatWBdzhZfbs2XK5XOrYsaM15vhj+Mf4j+F0OtWrV6+AMT6fT3PmzLHGAACCa8iQIfrDH/6gq6++usqv8c/G+ctf/qL09HRFR0fr+uuvl8fjscb4fD499dRTatGihSIiItS9e3fNnDkz4Djff/+9evToocjISJ1zzjnKysqqVu1r1qzR5ZdfLpfLpbi4OPXr10+bNm2q0vtX9o1Ydna2HA6HtmzZIunYFOlZs2bp7LPPVmxsrAYPHqxdu3ZZn8Pbb7+tTz75RA6HQw6HQ19//XWVam/durVuvfVWdevWTZmZmbryyit1880363//+581ZurUqbrnnnvUvXt3dejQQX//+9+tf0crM2XKFD355JNasWKFVc+UKVOs/fv27dPVV1+t6OhonXXWWfr0008rfB5ffPGFevXqpYiICH377bfy+XyaNGmS9S1vt27d9O9//9t6XVlZmUaNGmXtb9++vV555ZWAusrKyjRu3DjFx8erSZMmeuihhyp8S/zvf/9bXbp0UVRUlJo0aaIBAwaooKCgSp+lHeihAADVtWDBAl111VUaOnSoWrZsqeuuu04DBw486axneqwz77H8HnvsMXXo0EHXX3/9Scdt2bJF/fv3lyQlJCTI4XBo5MiR1n6fz6eHHnpIiYmJSklJ0cSJEwNe73A49MYbb+jKK69UTEyMnn76aUnSJ598op49e1oz4p988kmVlpZar3vxxRfVpUsXxcTEKD09Xffcc48OHToUcOwpU6YoIyND0dHRuvrqq7V///6A/StWrFD//v0VFxcnl8ulXr16aenSpdX6nKqlOiurP/LII2b+/Plm8+bNZuXKleaRRx4xDofDfPnll8YYY+666y6TkZFh5s6da5YuXWr69u1r+vbta72+tLTUdO7c2QwcONBkZ2ebmTNnmqSkJDNhwgRrzE8//WSio6PN+PHjzQ8//GBee+01ExoaambOnGmNmT59uomIiDBTpkwxa9euNXfeeaeJj48PuCNNVXD3GAB1WWV3s/D5fKagqCQoD5/Pd1rnIcl89NFHpxz3xBNPmJiYGPPLX/7SZGVlmfnz55u2bduam266yRrz4osvGpfLZf71r3+ZdevWmYceesiEh4ebDRs2GGOMyc/PN0lJSeamm24yq1evNv/9739N69atjSSTlZV1yhq2b99uEhMTzTXXXGOWLFli1q9fb/7xj3+YdevWVen9582bZySZgwcPWsfMysoykszmzZuNMca89dZbJjw83AwYMMAsWbLELFu2zJx99tnWeebn55vrr7/eDB482Ozatcvs2rXLurtadf3444/m7LPPNo8++ugJx3i9XhMZGWn++9//Vrr/8OHD5oEHHjCdOnWy6jl8+LAxpvzXtkWLFmbatGnmxx9/NPfee6+JjY01+/fvD/g8unbtar788kuzceNGs3//fvOHP/zBdOjQwcycOdNs2rTJvPXWWyYiIsJ8/fXXxhhjiouLzeOPP26WLFlifvrpJ/Puu++a6Oho895771l1TZ482SQkJJj//Oc/Zu3atWbUqFEmLi7OXHXVVcYYY3bu3GnCwsLMiy++aPUtr732msnPz6/0PGv77nsNqYeifwLQEPz87/360mM9/fTTJjMz06xfv94YY0x2drZJTk4277777glfQ49VMz3WnDlzTKtWrYzH4zFvvfWWcbvdJxxbWlpq/vOf/xhJZv369WbXrl0mLy/PGGPMRRddZFwul5k4caLZsGGDefvttwN6AmPKe6zk5GTzj3/8w2zatMls3brVfPPNN8blcpkpU6aYTZs2mS+//NK0bNnSTJw40XrdSy+9ZObOnWs2b95s5syZY9q3b2/uvvtua/+iRYtMSEiImTx5slm/fr155ZVXTHx8fMC5dOrUyfz61782P/zwg9mwYYN5//33TXZ2dqXnWRP9U7VCqdtuu81kZmYap9NpkpKSzCWXXBLwwRUWFpp77rnHJCQkmOjoaHP11VebXbt2BRxjy5YtZsiQISYqKso0bdrUPPDAA6akpCRgzLx580z37t2N0+k0rVu3Nm+99VaFWl599VWTkZFhnE6n6d27t1m0aFF1TsUYQ1MFoG6r7C/5gqISk/nwZ0F5FBSVnKTaE6tOKBUaGmq2b99ubfviiy9MSEiI9W9JWlqaefrppwNed+6555p77rnHGGPMX/7yF9OkSZOAz+yNN96ocsM0YcIE06pVK1NcXFzp/lO9f1UbJklm48aN1pjXXnvNNGvWzHo+YsQIK1w5HX379jURERFGkrnzzjtNWVnZCcfefffdpnXr1ie9JfYTTzxhunXrVmG7JPPYY49Zzw8dOmQkmS+++MIYc+zz+Pjjj60xR44cMdHR0WbBggUBxxo1apQZPnz4CWsYPXq0ufbaa63nqamp5tlnn7Wel5SUmBYtWlif27Jly4wks2XLlhMe83i1HUo1pB6K/glAQ/Dzv/frS49VVlZmHn74YeNwOExYWJhxOBzmj3/840lfQ4915j3Wvn37THp6upk/f771XicLpU5UszHlodQFF1wQsO3cc881Dz/8sPVckhk7dmzAmEsuuaTCr/U777xjUlNTT1jDBx98YJo0aWI9Hz58uLnssssCxtxwww0B5xIXF2emTJly0nPzq4n+qVqLOvzf//3fSfdHRkbqtdde02uvvXbCMZmZmfr8889PepyLL774lFMBx4wZozFjxpx0DACgfsnIyAhY16hv377y+Xxav369oqOjtXPnTp1//vkBrzn//PO1YsUKSdIPP/ygrl27KjIyMuAYVZWdna1+/fpVes2+1+s95ftXVXR0tNq0aWM9T01NDbgs60y99957ys/P14oVKzR+/Hg9//zzeuihhyqMe+aZZzR9+nR9/fXXAZ9ZdXTt2tX6eUxMjFwuV4VzOeecc6yfb9y4UYcPH9all14aMKa4uFg9evSwnr/22mv6xz/+oZycHBUWFqq4uNhabN3j8WjXrl3q06ePNT4sLEznnHOOdQlft27ddMkll6hLly4aNGiQBg4cqOuuu04JCQmndZ5nih4KAFAT3n//fU2dOlXTpk1Tp06dlJ2drbFjxyotLU0jRow44evosc7MHXfcoZtuukkXXnjhGR9LCuyfpMrrPL5/ksovq/vuu++sS/mk8uUMjhw5osOHDys6OlpfffWVJk2apHXr1snr9aq0tDRg/w8//FBheY2+ffsGXCo5btw43X777XrnnXc0YMAA/epXvwr4TGta41xpFADqqajwUK19alDQ3ruhi4qKOqPXh4SUL9Vojlvb6Pg73/n9vCFzOBw1etec9PR0SVLHjh1VVlamO++8Uw888IBCQ4/9Gj7//PN65pln9NVXX1VojKqjsnPx+XwB22JiYqyf+9c1mDFjRoWF1f2LaU+fPl0PPvigXnjhBfXt21dxcXF67rnntHjx4irXFRoaqtmzZ2vBggX68ssv9eqrr+rRRx/V4sWL1apVq2qdIwCg4asvPdb48eP1yCOP6MYbb5QkdenSRVu3btWkSZNOGkoFW33vsebOnatPP/1Uzz//vFWHz+dTWFiY/vrXv+q2226r1vGq2z9J5T3Uk08+WelNhCIjI7VlyxZdfvnluvvuu/X0008rMTFR3377rUaNGqXi4mJFR0dXqbaJEyfqpptu0owZM/TFF1/oiSee0PTp06u1Vmx1nPFC5wAA+zgcDkU7w4LycDgctX5+OTk52rlzp/V80aJFCgkJUfv27eVyuZSWlqbvvvsu4DXfffedtdDz2WefrZUrV+rIkSMBx6iqrl276n//+1+lTU5V3j8pKUmSrAU1pfJvBqvL6XSqrKys2q+rjM/nU0lJSUCj8+yzz+r3v/+9Zs6cWeFbuNqup2PHjoqIiFBOTo7atm0b8PCHad99951+8Ytf6J577lGPHj3Utm1bayFUSXK73UpNTQ0IqUpLS7Vs2bKA93I4HDr//PP15JNPKisrS06nUx999FGNnAcAoGGpLz3W4cOHrYDGLzQ0tEKg8XP0WOVOt6dZuHChsrOzrcdTTz2luLg4ZWdnnzCscTqdklRjPVTPnj21fv36Cv1T27ZtFRISomXLlsnn8+mFF17Qeeedp3bt2gX8mkvlv44//5Kvsl/Hdu3a6f7779eXX36pa665Rm+99VaNnENlmCkFAKhxhw4d0saNG63nmzdvVnZ2thITE5WRkXHC10VGRmrEiBF6/vnn5fV6de+99+r666+3blc/fvx4PfHEE2rTpo26d++ut956S9nZ2Zo6daok6aabbtKjjz6qO+64QxMmTNCWLVusb7SqYsyYMXr11Vd14403asKECXK73Vq0aJF69+6t9u3bn/L9/cHKxIkT9fTTT2vDhg164YUXqv35tWzZUrNmzdL69evVpEkTud3uKt0GeOrUqQoPD1eXLl0UERGhpUuXasKECbrhhhus10+ePFmPP/64pk2bppYtWyo3N1eSFBsbq9jY2BPW4/81bNGiheLi4qxZTdUVFxenBx98UPfff798Pp8uuOACeTwefffdd3K5XBoxYoTOOuss/fOf/9SsWbPUqlUrvfPOO1qyZEnADKf77rtPzzzzjM466yx16NBBL774YsAdeRYvXqw5c+Zo4MCBSk5O1uLFi7V3716dffbZp1U3AAB1wRVXXKGnn35aGRkZ6tSpk7KysvTiiy+ecqYOPVa50+2xft4/LF26VCEhIercufMJX5OZmSmHw6HPPvtMl112maKiok7Ya1XF448/rssvv1wZGRm67rrrFBISohUrVmj16tX6wx/+oLZt26qkpESvvvqqrrjiCn333Xd68803A45x77336vzzz9fzzz+vq666SrNmzQq4dK+wsFDjx4/Xddddp1atWmn79u1asmSJrr322tOu+5SqtHpVA8VCnQDqspMtHFjX+Rd2/PljxIgRJ3yNfzHt119/3aSlpZnIyEhz3XXXmQMHDlhjysrKzMSJE03z5s1NeHi46datm7Wott/ChQtNt27djNPpNN27d7fufFKVRTiNMWbFihVm4MCBJjo62sTFxZl+/fqZTZs2Vfn9v/32W9OlSxcTGRlp+vXrZz744IMKi3D+fGHMjz76yBz/T/KePXvMpZdeamJjY40kM2/ePGNM+cKYJ/sMp0+fbnr27GliY2NNTEyM6dixo/njH/8Y8HsoMzOz0l+bJ5544oTHPXLkiLn22mtNfHy8kWQtnq1KFrF3u93W/hMt8Onz+czLL79s2rdvb8LDw01SUpIZNGiQtXjokSNHzMiRI43b7Tbx8fHm7rvvNo888kjAYuslJSXmvvvuMy6Xy8THx5tx48aZW265xVq8dO3atWbQoEEmKSnJREREmHbt2plXX331hOdY2wudNyR8HgAagvraZ3m9XnPfffeZjIwMExkZaVq3bm0effTRk95Fjh7rzHusn6vKQufGGPPUU0+ZlJQU43A4rONfdNFF5r777gsYd9VVVwW8f2U9ljHGzJw50/ziF78wUVFRxuVymd69e5u//vWv1v4XX3zRpKammqioKDNo0CDzz3/+s0Iv9n//93+mRYsWJioqylxxxRXm+eeft86lqKjI3HjjjSY9Pd04nU6TlpZmxowZc8I/JzXRPzmOnnCj5PV65Xa75fF45HK5gl0OAAQ4cuSINm/erFatWp32ItT1ycSJE/Xxxx+f1lTsxiIzM1NPPvmkRo4cGexSGpyT/XmjXwjE5wGgIWhMfRY91qnRY52emuifWFMKAIB6YM2aNXK73brllluCXQoAAECDQY8VXIRSAIBG46677rLWTvr546677gp2eSfVqVMnrVy5ssLipgAAAMFGj4XTxeV7TD8HUEc1pmnldtmzZ4+8Xm+l+1wul5KTk22uCHUFl+9VHZ8HgIaAPqtm0WM1TjXRP3H3PQBAo5GcnExTBAAAUMPosXC6mJ8GAAAAAAAA2xFKAUAd14ivsgZsw58zAGic+PsfOH018eeHUAoA6qjw8HBJ0uHDh4NcCdDw+f+c+f/cAQAattDQUElScXFxkCsB6q+a6J9YUwpAo7Y3v0gxEaGKdta9vw5DQ0MVHx+vPXv2SJKio6PlcDiCXBXQsBhjdPjwYe3Zs0fx8fHWf1IAAA1bWFiYoqOjtXfvXoWHh3PnNaAaarJ/qnv/CwOAWpaz/7BmrNqlGat2avUOr8JCHOqWHq8+rRJ1Xusm6pWZoJiIuvHXY0pKiiRZwRSA2hEfH2/9eQMANHwOh0OpqanavHmztm7dGuxygHqpJvqnuvG/LgCoZdsOHNbnq3ZpxqpdWrndE7Cv1Ge0bOtBLdt6UK9/vUlhIQ51aeHWea2bqE+rRJ3TMlGxQQqp/A1TcnKySkpKglID0NCFh4czQwoAGiGn06mzzjqLS/iA01BT/ROhFIAGa/vBw/piVa4+W7VLK7blWdtDHFLfNk00tEuaBnVqpsPFZVr4034t+mm/Fv90QDvyCpWVk6esnDy98fUmhYY41KX50ZCqdaLODUJIFRoayn+aAQAAalhISIgiIyODXQbQaBFKAWhQduYVWjOisnLyrO0hDqlPqyYa2jVVgzunqGlshLWviaT0xGhdf066pPJZVYt+2q/Fmw9o0U/7tf1gobK35Sl7W57enF8eUnVOc+m81k10XusmOqdlguIiWRwZAAAAAKqDUApAvZfrOWIFUcu2HrS2OxxS75aJurxrqgZ1TlFyXNW+BUtPjFZ6YrR+dTSk2n7wsBb/dMAKqnIOHNaK7R6t2O7RX775SSEOqXPzY5f7ndsqUS5CKgAAAAA4KUIpAPXSbm95EPX5ql1asiUwiDo3M1FDu6ZqSOcUJbvOfDp2i4RotegVrWt7tZAk7cgr1OKjl/ot2rxfW/cf1srtHq3c7tFfj4ZUndLc1sLp57ZKlDuKkAoAAAAAjucwxphgFxEsXq9XbrdbHo9HLpcr2OUAOIU93iP6YnWuZqzcpSVbD+j4v73OyUw4GkSlKsVt77oAuzyF1kyqRT/t15b9hwP2OxxSx9Rjl/v1bpkodzQhFVBf0C8E4vMAAACnUtV+gVCKpgqo0/bmF2nm6l36bOUufb8lMIjqmRGvoV3TdFmXFKW6o4JX5M/keo5o8eZjC6f/tK8gYL/DIZ2d4lKf1onWJX/x0c4gVQvgVOgXAvF5AACAUyGUqgKaKqBu2neoSDOPzohavHm/fMf9LdUjI15Du6Tqsi6pSouvO0HUyez2HrEWTV/00379tLdiSNW+WZw1k6pPq0QlxBBSAXUF/UIgPg8AAHAqVe0XWFMKQJ2w/1CRZq3ZrRmrdmrhpsAgqlt6vC7vkqohXVLUIiE6eEWepmauSF3ZLU1XdkuTJO3JPxKwcPrGPYe0Ljdf63LzNWXBFklSh5Q4K6Dq3SpRTY67WyAAAAAANASEUgCC5mBBsWatydWMVbu0YNN+lR2XRHVt4bZmRKUn1r8g6mSS4yJ1Rbc0XXE0pNqbX6Tvj5tJ9WMlIVX7ZnHW5X69WyWqKSEVAAAAgHqOUAqArfIOF+vLNbv12apd+m7jvoAgqnNzl4Z2SdPQLqnKaNKwgqiTSYqL0NCuqRraNVVS+eWL/pBq8U8HtH53vvX458KtkqSzkmOPLZzeKlFJcYRUAAAAAOoXQikAtc5zuERfri2fEfXtj/tUelwQ1THVVR7IdElVy6YxQayy7mgaG6HLjs4Sk8ovbVyy5YAWHb3kb11uvn7cc0g/7jmkdxaVh1Rtk2PVp9XRhdNbJyo5zt47EAIAAABAdRFKAagVnsISfbV2t2as2qX//bhXJWXHgqgOKXG6vGt56NI6KTaIVdYPTWIjNLhzqgZ3Lg+pDhQUH5tJtfmAftjl1cY9h7RxzyFNXZwjSWqdFGPNpDqvVaKSXYRUAAAAAOoWQikANSb/SIm++mG3ZqzcpW827FNxmc/a175ZnIYeDaLaJhNEnYnEGKcGd07R4M4pksoviSwPqcqDqh9yvfppb4F+2lugaf6QqmmM+rRuovNaly+cnuquH3cuBAAAANBwEUoBOCP5R0o054c9+mzlLn2zYW9AEHVWcqwu75qmoV1T1DY5LohVNmzx0U4N7JSigZ3KQyrP4RJ9v8U/k2q/1uz06qd9BfppX4H+9X15SJUcF6GuLdzq0jy+/McWbhZPBwAAAGArQikA1XaoqFRzjs6I+nrDXhWXHgui2iTFaGjXNF3eNVXtmhFEBYM7OlyXdmymSzs2k1R+KeXSLf67+x3Qmp0e7ckv0lc/7NFXP+yxXpfmjlSXFm51bRGvLs3d6tLcrYQYZ7BOAwAAAEADRygFoEoKiko1d90ezVi5S/PW71HRcUFU66Yx5WtEdU1V+2ZxcjgcQawUP+eOCtclZzfTJWeXh1SFxWVau8ujlds9WrXdo5U7PNq095B2eo5op+eIZq3Zbb02PTFKXZvHl4dVzd3q1Nwtd1R4sE4FAAAAQANCKAWcQN7hYl3/l4XalXdEEeGhigwPUWR4qCLCyn+MDA9RZFho+baj+8qfH9sfEXb8647fF/h6/9iIsBCFhNSdQOdwcanmrdurGat2au66PTpSciyIatkk+uileanqkEIQVZ9EOUPVKzNRvTITrW2Hikq1ZodHq3YcDat2eLR5X4G2HSjUtgOFmrFqlzW2VdMYdWnuPnr5X3lQFRvBPycAAAAAqof/RQAnMH/DXm3YfUiSlF9Uatv7OsNCFBn2s/DqaOAVcZJgzAq/wkOt10ec4DiR4SFW0OYMDQkIlAqLy/T1+j36bNUuzf1hjwpLyqx9mU2iNbRLqoZ2TVXHVBdBVAMSGxGmPq2bqE/rJtY2T2GJ1uwon0lVPqMqT9sOFGrzvgJt3legT1fslCQ5HFKbpFh1be62Lv/rmOpSlDM0WKcDAAAAoB4glAJOICsnT5J0Xa8Wuu38VjpSWqaiEt/RH8t0pMSnIyVl5Y9S/8/Lfyw6bmzAOOv1ga8t8xnrfYtLfSou9cl7xJ4gzOHQscArLFSewpKAICo9MUpDu5SvEdUpjSCqMXFHhesXbZvqF22bWtsOFhRrlTWjKk+rtnu003NEG/cc0sY9h/Rh1g5JUmiIQ2clxx5dRD1eXZu71SE1ThFhBFUAAAAAyhFKASeQlXNQknRhuyR1THPV6nuVlvmOC7YCw61joZYv8PnRnxf9LPCqbGzRz49dWiZzNAczRiosKTsaRJVIkprHR+nyruUzoro0dxNEwZIQ49SF7ZJ0Ybska9ve/CKtti77y9OK7R7tzS/Sutx8rcvN1/tLt0uSwkMdap8Sd+yOf83datcsTs6wkGCdDgAAAIAgIpQCKnGkpExrdnolST3S42v9/cJCQxQbGmLbujzGGBWX+axQq+i4mV7OsBC1axZLEIUqS4qLUP8OyerfIdnattt75OhC6uUh1aodHh0oKNbqHV6t3uHVv74vH+cMC9HZqa7jLv1zq21SrMJCCaoqU+YzyjtcrAMFxdpfcNyPh4p1oKDI2maM1CE1Th1TXeqU5tZZzWIVzmcKAACAOoZQCqjE6h0elfqMkuIi1CIhKtjl1DiHw3F0YfVQiTupoRY0c0Xq0o6RurRj+R3/jDHakVdo3e1v1fbyy/+8R0q1YlueVmzLs14bGR6iTmluazH1ri3catU0VqF16CYANaW41KeDh4u1/5A/YCrSgQph07HteYUl1izHU1n4037r587QELVLibVCqk5pLp2d6lIMC9QDAAAgiOhGgUr415PqkR7PjCGgBjgcDrVIiFaLhGgN6ZIqqTyoyjlw2Lrb38rteVq9w6tDRaVatvWglm09aL0+xhmqTs3dAYupZyZG16m7VUrlNwrwB0j7C4p18GcBU/lMpmP7809z7Th3VLiaxDiVePTRJNaphOhjPy8tM1q7y6u1O71au8ur/COl1iw1qfxySodDatkkRh3TXOqUVh5WdUx1KSkuogY/EQAAAODECKWASiw/up5Uj4yEIFcCNFwOh0OZTWKU2SRGV3RLkyT5fEab9xccnUlVvkbV6h1eFRSX6fvNB/T95gPW6+Miw9TFH1IdXaeqRUJUjQXJxhgdKiqtZNZS4KVyBwqOzXQ6/iYBVRXikBUo+UOl8p9HWMFTkxinEo9uT4h2VutSPGOMth0o1NpdHq3Z6T368Gi3t8i6k+KMlbus8clxEeqU5joaVpXPqkpPqHsBIAAAAOo/QimgEv6ZUj0z4oNaB9DYhIQ41CYpVm2SYjWsR3NJ5esobdp7yFqjauUOj9buLJ/9s2DTfi3YdOwytfjocOuyP/+C6qnuSDkcDvl8Rp7CkuPCpKKAGUwHDwcGTAcKilVc5qv2OYSHOiqESscHS02O7vNvj48Kr9XAx+FwKKNJtDKaRGtw51Rr+75DRVp7XEi1dpdXm/cVaE9+kfas36t56/daY+MiwnR2qitgVlXb5FgWqQcAAMAZcRhT1dUpGh6v1yu32y2PxyOXq3bvrob6Y5enUH0nzVVoiEOrJg5UtJPsFqhrSsp8+nH3Ia3akWdd/vfDLq9Kyir+k9YkximHQzp4uERlvur/kxcVHho4g8k/q+lnAZM/dIqLCKu3l/0WFJVqXa73uLDKq/W5+ZWGc87QEJ3VLLZ8VlWqS52au3V2qsu2GzbYiX4hEJ8HAAA4lar2Cw2vcwTOkH+WVIeUOAIpoI4KDw1Rx6OXmN1wbvm2otIybcg9pJU78rRqu0crtnu0YXe+9hcUB7w2LiLMuhTu2Eym42Y1xTqPu2wuQlHO0CCcYXDERISpV2aiemUmWttKynzatPeQ1uwInFWVf6TUCq78rHWqjptV1THNpeS4yGCcDgAAAOo4/scN/Mzyrf71pOKDWwiAaokIC1WXFuVrTKlP+bYjJWXasDtfoSEONYmJUEJMePldJ1Fl4aEh6pDiUocUl67tVb7NGKPtBwvLA6rjZlXleo8cW6dq1bF1qpKOrlNVPquqfJ2qjDq4UD0AAADsRSgF/EzW0VvT92SRc6DeiwwPVdcW8cEuo8FxOBxKT4xWemLgOlX7DxVp7S5vwILqm/cVaG9+kb5ev1dfH7dOVWxEmDWjyj+r6qzkONapAgAAaEQIpYDjFJf6tGqHRxJ33gOA6moSG6F+ZyWp31lJ1rbDxaX6YVe+1h697G/NTq/W5ebrUFGpvt9yQN9vOXZHxfBQh85Kjjs2qyrNrbNT4xQXGR6M0wEAAEAtI5QCjrN2l1fFpT4lRIerZZPoYJcDAPVetDNMvTIT1CvzWNDvX6cq4O5/O73yHinV2l1erd3l1QfLjh2jZZNodUpzB8yqYp0qAACA+o9QCjhOVo5/PamEenv3LACo645fp+qanuXbjq1T5Q2YVbXLc0Rb9h/Wlv2HA9apahp7bJ2qTmludW7uUmaTmCCdEQAAAE4HoRRwHP+d93qkxwe1DgBobALXqUqxtvvXqTp+VtVP+wq071CR5m/Yq/kbytep6tLcrf/+7oJglQ8AAIDTQCgFHCdr27GZUgCA4DvROlXrcvOPzara6VV3vkwAAACodwilgKP25hdp24FCORxSt3R3sMsBAJxAtDNMPTMSuEsqAABAPcd9l4Gj/OtJtUvmTk8AAAAAANQ2QingqKxteZKkHhnxQa0DAAAAAIDGgFAKOGr5Vv96UvHBLQQAAAAAgEaAUAqQVFrm08rtHklijRIAAAAAAGxAKAVIWr87X4UlZYqLCFObpNhglwMAAAAAQINHKAVIysrJkyR1z4hXSIgjuMUAAAAAANAIEEoBkpYfvfNej/T44BYCAAAAAEAjQSgFSMo+OlOqRybrSQEAAAAAYAdCKTR6BwuK9dO+AklS9xbxwS0GAAAAAIBGglAKjV72tjxJUuumMUqIcQa3GAAAAAAAGglCKTR6Wf71pDK4dA8AAAAAALsQSqHRyzo6U6pHRnxQ6wAAAAAAoDEhlEKj5vOZY4ucE0oBAAAAAGAbQik0ahv3HlJ+UaminaFq3ywu2OUAAAAAANBoEEqhUfOvJ9W1hVthofxxAAAAAADALvwvHI1alnXpHoucAwAAAABgJ0IpNGpWKJUeH9Q6AAAAAABobAil0Gh5j5Row558ScyUAgAAAADAboRSaLRWbvPIGCk9MUpJcRHBLgcAAAAAgEaFUAqNln+R8x7pzJICAAAAAMBuhFJotJb7Q6mM+OAWAgAAAABAI0QohUbJGKOsbXmSpJ6sJwUAAAAAgO0IpdAobdl/WHmHS+QMC9HZqa5glwMAAAAAQKNDKIVGyb+eVJfmbjnD+GMAAAAAAIDd+N84GiVrPan0+OAWAgAAAABAI0UohUYpKydPktQzk/WkAAAAAAAIBkIpNDqHi0u1LjdfEnfeAwAAAAAgWAil0Ois3O5Rmc8oxRWpVHdUsMsBAAAAAKBRIpRCo3Ps0r34oNYBAAAAAEBjRiiFRifLWuSc9aQAAAAAAAgWQik0KsYYZW3Lk8R6UgAAAAAABBOhFBqV7QcLtTe/SGEhDnVu7g52OQAAAAAANFqEUmhU/LOkOqW5FBkeGtxiAAAAAABoxAil0KhY60llsJ4UAAAAAADBRCiFRmX50TvvsZ4UAAAAAADBRSiFRuNISZnW7vRIknoyUwoAAAAAgKAilEKjsWanVyVlRk1jnWqREBXscgAAAAAAaNQIpdBo+NeT6p6eIIfDEeRqAAAAAABo3Ail0GhksZ4UAAAAAAB1BqEUGg3/TCnWkwIAAAAAIPgIpdAo5HqOaKfniEIcUtcW7mCXAwAAAABAo0cohUbBP0uqfYpLMRFhQa4GAAAAAAAQSqFRyNqWJ0nqyXpSAAAAAADUCYRSaBT8M6V6sJ4UAAAAAAB1AqEUGrySMp9WbvdI4s57AAAAAADUFYRSaPB+2OVVUalP7qhwtWoSE+xyAAAAAACACKXQCGTl5EkqnyUVEuIIbjEAAAAAAEASoRQaAWs9qXTWkwIAAAAAoK4glEKD57/zHutJAQAAAABQdxBKoUHbd6hIW/cfliR1S48PbjEAAAAAAMBCKIUGLfvoelJnJcfKHRUe3GIAAAAAAICFUAoNWta2o+tJcekeAAAAAAB1CqEUGrTlW/MkST0yWOQcAAAAAIC6hFAKDVaZz2jF9jxJUk9CKQAAAAAA6pRqhVKTJk3Sueeeq7i4OCUnJ2vYsGFav359wJiLL75YDocj4HHXXXcFjMnJydHQoUMVHR2t5ORkjR8/XqWlpQFjvv76a/Xs2VMRERFq27atpkyZUqGe1157TS1btlRkZKT69Omj77//vjqngwZuw+58HS4uU2xEmNomxwa7HABAI0YPBQAAUFG1Qqn58+dr9OjRWrRokWbPnq2SkhINHDhQBQUFAePuuOMO7dq1y3o8++yz1r6ysjINHTpUxcXFWrBggd5++21NmTJFjz/+uDVm8+bNGjp0qPr376/s7GyNHTtWt99+u2bNmmWNee+99zRu3Dg98cQTWr58ubp166ZBgwZpz549p/tZoIHJOrrIebd0t0JDHMEtBgDQqNFDAQAAVOQwxpjTffHevXuVnJys+fPn68ILL5RU/i1f9+7d9fLLL1f6mi+++EKXX365du7cqWbNmkmS3nzzTT388MPau3evnE6nHn74Yc2YMUOrV6+2XnfjjTcqLy9PM2fOlCT16dNH5557rv785z9Lknw+n9LT0/W73/1OjzzySJXq93q9crvd8ng8crlcp/sxoI568IMV+vey7RrTv60eHNQ+2OUAAOqp2ugX6nMPRf8EAABOpar9whmtKeXxeCRJiYmJAdunTp2qpk2bqnPnzpowYYIOHz5s7Vu4cKG6dOliNVOSNGjQIHm9Xq1Zs8YaM2DAgIBjDho0SAsXLpQkFRcXa9myZQFjQkJCNGDAAGsMkJVTfue9npnxwS0EAICfoYcCAACQwk73hT6fT2PHjtX555+vzp07W9tvuukmZWZmKi0tTStXrtTDDz+s9evX68MPP5Qk5ebmBjRTkqznubm5Jx3j9XpVWFiogwcPqqysrNIx69atO2HNRUVFKioqsp57vd7TOHPUB57DJdq0t/ySiO7pLHIOAKg76lsPRf8EAABqy2mHUqNHj9bq1av17bffBmy/8847rZ936dJFqampuuSSS7Rp0ya1adPm9CutAZMmTdKTTz4Z1Bpgj6xt5bOkWjaJVmKMM8jVAABwTH3roeifAABAbTmty/fGjBmjzz77TPPmzVOLFi1OOrZPnz6SpI0bN0qSUlJStHv37oAx/ucpKSknHeNyuRQVFaWmTZsqNDS00jH+Y1RmwoQJ8ng81mPbtm1VOFvUR/5FzntmMEsKAFB31Mceiv4JAADUlmqFUsYYjRkzRh999JHmzp2rVq1anfI12dnZkqTU1FRJUt++fbVq1aqAO7zMnj1bLpdLHTt2tMbMmTMn4DizZ89W3759JUlOp1O9evUKGOPz+TRnzhxrTGUiIiLkcrkCHmiYsrblSZJ6ZMQHtQ4AAKT63UPRPwEAgNpSrcv3Ro8erWnTpumTTz5RXFyctX6B2+1WVFSUNm3apGnTpumyyy5TkyZNtHLlSt1///268MIL1bVrV0nSwIED1bFjR/3mN7/Rs88+q9zcXD322GMaPXq0IiIiJEl33XWX/vznP+uhhx7Sbbfdprlz5+r999/XjBkzrFrGjRunESNG6JxzzlHv3r318ssvq6CgQLfeemtNfTaop3w+o+yji5z3YKYUAKAOoIcCAACohKkGSZU+3nrrLWOMMTk5OebCCy80iYmJJiIiwrRt29aMHz/eeDyegONs2bLFDBkyxERFRZmmTZuaBx54wJSUlASMmTdvnunevbtxOp2mdevW1nsc79VXXzUZGRnG6XSa3r17m0WLFlXndIzH4zGSKtSH+u3H3V6T+fBnpv1jn5vi0rJglwMAqOdqol9oSD0U/RMAADiVqvYLDmOMsT8Kqxu8Xq/cbrc8Hg9T0RuQ95du00P/XqnerRL1/m9PfDknAABVQb8QiM8DAACcSlX7hdNa6Byoy/yLnLOeFAAAAAAAdRehFBqcLP96UumsJwUAAAAAQF1FKIUG5VBRqdbvzpck9WSmFAAAAAAAdRahFBqUldvyZIzUPD5Kya7IYJcDAAAAAABOgFAKDUrWtjxJrCcFAAAAAEBdRyiFBmX51qPrSWWwnhQAAAAAAHUZoRQaDGOMNVOK9aQAAAAAAKjbCKXQYOQcOKwDBcVyhoaoY5or2OUAAAAAAICTIJRCg7E8p/zSvU7NXYoICw1yNQAAAAAA4GQIpdBgZOXkSZJ6pLOeFAAAAAAAdR2hFBoMfyjVMzM+qHUAAAAAAIBTI5RCg1BYXKYfdnklcec9AAAAAADqA0IpNAirdnhU6jNKjotQmjsy2OUAAAAAAIBTIJRCg5B1dJHznhkJcjgcQa4GAAAAAACcCqEUGgRrkfOM+KDWAQAAAAAAqoZQCvWeMUbLj86UYj0pAAAAAADqB0Ip1Hs7PUe0J79IYSEOdWnuDnY5AAAAAACgCgilUO/515M6O9WlKGdokKsBAAAAAABVQSiFeo/1pAAAAAAAqH8IpVDvHVtPKj64hQAAAAAAgCojlEK9VlRapjU7vJKknixyDgAAAABAvUEohXpt7U6vist8SoxxKiMxOtjlAAAAAACAKiKUQr1mrSeVHi+HwxHcYgAAAAAAQJURSqFeYz0pAAAAAADqJ0Ip1Gv+mVKsJwUAAAAAQP1CKIV6a4/3iHbkFcrhkLqmxwe7HAAAAAAAUA2EUqi3lh+dJdW+WZxiI8KCWwwAAAAAAKgWQinUW1nb/OtJcekeAAAAAAD1DaEU6i3rznsscg4AAAAAQL1DKIV6qbTMp5Xb8yRJPQmlAAAAAACodwilUC+ty83XkRKfXJFhat00NtjlAAAAAACAaiKUQr2UlVO+nlT3jASFhDiCXA0AAAAAAKguQinUS9Z6UunxQa0DAAAAAACcHkIp1EvLc/x33osPbiEAAAAAAOC0EEqh3jlQUKwt+w9LknqkJwS5GgAAAAAAcDoIpVDvZG8rnyXVJilG7ujwIFcDAAAAAABOB6EU6h1rPakMZkkBAAAAAFBfEUqh3mE9KQAAAAAA6j9CKdQrZT6jFds8kqSezJQCAAAAAKDeIpRCvbJxzyEdKipVtDNU7ZrFBbscAAAAAABwmgilUK/4L93r1iJeoSGOIFcDAAAAAABOF6EU6pUs1pMCAAAAAKBBIJRCveK/8x7rSQEAAAAAUL8RSqHe8BSW6Mc9hyRJ3ZkpBQAAAABAvUYohXpjxbY8SVJGYrSaxkYEtxgAAAAAAHBGCKVQbxy7dC8+qHUAAAAAAIAzRyiFeiNrm3+Rc9aTAgAAAACgviOUQr1gjLFmSnHnPQAAAAAA6j9CKdQLP+0rkKewRBFhIeqQ4gp2OQAAAAAA4AwRSqFe8M+S6trCLWcYv20BAAAAAKjv+N896oWsHNaTAgAAAACgISGUQr2w3L+eVHp8UOsAAAAAAAA1g1AKdV5BUanW53olST0zmSkFAAAAAEBDQCiFOm/ldo98RkpzR6qZKzLY5QAAAAAAgBpAKIU6L2sb60kBAAAAANDQEEqhzlu+NU+S1CMjPqh1AAAAAACAmkMohTrNGKNsZkoBAAAAANDgEEqhTtt+sFD7DhUrPNShTmmuYJcDAAAAAABqCKEU6rTlOeWzpDqmuRUZHhrkagAAAAAAQE0hlEKdlpWTJ0nqyXpSAAAAAAA0KIRSqNOyclhPCgAAAACAhohQCnXWkZIyrdnplST1SI8PbjEAAAAAAKBGEUqhzlq9w6NSn1HT2Ai1SIgKdjkAAAAAAKAGEUqhzjp+PSmHwxHcYgAAAAAAQI0ilEKdlbWN9aQAAAAAAGioCKVQZy3fmidJ6sGd9wAAAAAAaHAIpVAn7fIUKtd7RKEhDnVt4Q52OQAAAAAAoIYRSqFO8q8n1SElTtHOsOAWAwAAAAAAahyhFOqkrBz/elLxwS0EAAAAAADUCkIp1EnLj86U6pHOIucAAAAAADREhFKoc4pLfVq1wyNJ6plJKAUAAAAAQENEKIU654ddXhWX+hQfHa6WTaKDXQ4AAAAAAKgFhFKoc5b715NKj5fD4QhyNQAAAAAAoDYQSqHO8d95r0cGl+4BAAAAANBQEUqhzsnaVj5TqiehFAAAAAAADRahFOqUvflF2nagUA6H1DXdHexyAAAAAABALSGUQp2SdXQ9qbOSY+WKDA9yNQAAAAAAoLYQSqFOydqWJ4lL9wAAAAAAaOgIpVCn+GdK9ciID24hAAAAAACgVhFKoc4oLfNp5XaPJO68BwAAAABAQ0cohTpj/e58HS4uU1xEmNomxQa7HAAAAAAAUIsIpVBnZOXkSZK6Z8QrJMQR3GIAAAAAAECtIpRCneEPpXqkxwe1DgAAAAAAUPsIpVBnHFvknPWkAAAAAABo6AilUCccLCjWT/sKJEndmSkFAAAAAECDRyiFOiF7e54kqXXTGCXEOINbDAAAAAAAqHWEUqgTjl/kHAAAAAAANHyEUqgTWE8KAAAAAIDGhVAKQefzGWUfnSnVk5lSAAAAAAA0CoRSCLpNew8pv6hUUeGhat8sLtjlAAAAAAAAGxBKIeiWH710r2sLt8JC+S0JAAAAAEBjQAKAoPMvct4zk/WkAAAAAABoLAilEHT+UKpHenxQ6wAAAAAAAPYhlEJQ5R8p0YY9+ZKk7ixyDgAAAABAo0EohaBasc0jY6QWCVFKjosMdjkAAAAAAMAmhFIIqqyji5z3zGA9KQAAAAAAGhNCKQRV1rY8SVIPLt0DAAAAAKBRIZRC0BhjrJlSPZgpBQAAAABAo0IohaDZsv+wDh4ukTMsRB1TXcEuBwAAAAAA2IhQCkHjnyXVpblbzjB+KwIAAAAA0JiQBCBosnLyJEk90uODWgcAAAAAALAfoRSCZjnrSQEAAAAA0GgRSiEoDheXal1uviSpZ2Z8cIsBAAAAAAC2I5RCUKza7lGZzyjFFalUd1SwywEAAAAAADarVig1adIknXvuuYqLi1NycrKGDRum9evXB4w5cuSIRo8erSZNmig2NlbXXnutdu/eHTAmJydHQ4cOVXR0tJKTkzV+/HiVlpYGjPn666/Vs2dPRUREqG3btpoyZUqFel577TW1bNlSkZGR6tOnj77//vvqnA6CaLl/PamM+KDWAQCAHeihAAAAKqpWKDV//nyNHj1aixYt0uzZs1VSUqKBAweqoKDAGnP//ffrv//9rz744APNnz9fO3fu1DXXXGPtLysr09ChQ1VcXKwFCxbo7bff1pQpU/T4449bYzZv3qyhQ4eqf//+ys7O1tixY3X77bdr1qxZ1pj33ntP48aN0xNPPKHly5erW7duGjRokPbs2XMmnwdskmWtJxUf3EIAALABPRQAAEAlzBnYs2ePkWTmz59vjDEmLy/PhIeHmw8++MAa88MPPxhJZuHChcYYYz7//HMTEhJicnNzrTFvvPGGcblcpqioyBhjzEMPPWQ6deoU8F433HCDGTRokPW8d+/eZvTo0dbzsrIyk5aWZiZNmlTl+j0ej5FkPB5PNc4aZ8rn85lz/jDbZD78mVmyeX+wywEA4KRqo1+ozz0U/RMAADiVqvYLZ7SmlMfjkSQlJiZKkpYtW6aSkhINGDDAGtOhQwdlZGRo4cKFkqSFCxeqS5cuatasmTVm0KBB8nq9WrNmjTXm+GP4x/iPUVxcrGXLlgWMCQkJ0YABA6wxqLt25BVqb36RwkIc6tzcHexyAACwHT0UAACAFHa6L/T5fBo7dqzOP/98de7cWZKUm5srp9Op+Pj4gLHNmjVTbm6uNeb4Zsq/37/vZGO8Xq8KCwt18OBBlZWVVTpm3bp1J6y5qKhIRUVF1nOv11uNM0ZN8a8n1THNpcjw0OAWAwCAzepbD0X/BAAAastpz5QaPXq0Vq9erenTp9dkPbVq0qRJcrvd1iM9PT3YJTVK/vWkemYkBLkSAADsV996KPonAABQW04rlBozZow+++wzzZs3Ty1atLC2p6SkqLi4WHl5eQHjd+/erZSUFGvMz+8k439+qjEul0tRUVFq2rSpQkNDKx3jP0ZlJkyYII/HYz22bdtWvRNHjcjiznsAgEaqPvZQ9E8AAKC2VCuUMsZozJgx+uijjzR37ly1atUqYH+vXr0UHh6uOXPmWNvWr1+vnJwc9e3bV5LUt29frVq1KuAOL7Nnz5bL5VLHjh2tMccfwz/Gfwyn06levXoFjPH5fJozZ441pjIRERFyuVwBD9irqLRMa3eWT/vvkc5MKQBA41Cfeyj6JwAAUFuqtabU6NGjNW3aNH3yySeKi4uz1i9wu92KioqS2+3WqFGjNG7cOCUmJsrlcul3v/ud+vbtq/POO0+SNHDgQHXs2FG/+c1v9Oyzzyo3N1ePPfaYRo8erYiICEnSXXfdpT//+c966KGHdNttt2nu3Ll6//33NWPGDKuWcePGacSIETrnnHPUu3dvvfzyyyooKNCtt95aU58NasHqHV4Vl/nUJMap9MSoYJcDAIAt6KEAAAAqUZ1b+kmq9PHWW29ZYwoLC80999xjEhISTHR0tLn66qvNrl27Ao6zZcsWM2TIEBMVFWWaNm1qHnjgAVNSUhIwZt68eaZ79+7G6XSa1q1bB7yH36uvvmoyMjKM0+k0vXv3NosWLarO6XBL4yD42zebTObDn5lRU5YEuxQAAKqkJvqFhtRD0T8BAIBTqWq/4DDGGPujsLrB6/XK7XbL4/EwFd0mo6ct14yVuzR+UHuN7t822OUAAHBK9AuB+DwAAMCpVLVfOO277wGnI2tr+Z33WOQcAAAAAIDGjVAKtsn1HNFOzxGFOKRuLeKDXQ4AAAAAAAgiQinYJntb+Syp9ikuxURUa419AAAAAADQwBBKwTZZOXmSuHQPAAAAAAAQSsFGy3OOrieVHh/cQgAAAAAAQNARSsEWJWU+rdzukST1zEwIcjUAAAAAACDYCKVgi3W78lVU6pM7KlytmsQEuxwAAAAAABBkhFKwhf/Sve7p8QoJcQS5GgAAAAAAEGyEUrBF1tFQqmcGl+4BAAAAAABCKdgka1ueJO68BwAAAAAAyhFKodbtP1SkrfsPS5K6cec9AAAAAAAgQinYICsnT5LUNjlW7qjw4BYDAAAAAADqBEIp1Lqsbf71pOKDWwgAAAAAAKgzCKVQ6/wzpXqwyDkAAAAAADiKUAq1qsxntIJFzgEAAAAAwM8QSqFWbdidr4LiMsVGhOms5LhglwMAAAAAAOoIQinUKv+le93S3QoNcQS3GAAAAAAAUGcQSqFWZeWUL3LeI531pAAAAAAAwDGEUqhVy/2hFOtJAQAAAACA4xBKodZ4Dpdo094CSdx5DwAAAAAABCKUQq3J3p4nSWrZJFqJMc7gFgMAAAAAAOoUQinUmuVb/ZfuMUsKAAAAAAAEIpRCrcnalieJ9aQAAAAAAEBFhFKoFT6fUfbRRc57MlMKAAAAAAD8DKEUasVP+wrkPVKqyPAQtU+JC3Y5AAAAAACgjiGUQq1YfnSWVNfm8QoP5bcZAAAAAAAIRFqAWpGVkydJ6pEZH9Q6AAAAAABA3UQohVqRdXSmVI901pMCAAAAAAAVEUqhxh0qKtWG3fmSuPMeAAAAAACoHKEUatzKbXnyGal5fJSauSKDXQ4AAAAAAKiDCKVQ47K25UlilhQAAAAAADgxQinUOGs9qQzWkwIAAAAAAJUjlEKNMsZouf/Oe8yUAgAAAAAAJ0AohRqVc+CwDhQUyxkaok5prmCXAwAAAAAA6ihCKdSorKOzpDo1dykiLDS4xQAAAAAAgDqLUAo1ylpPKp31pAAAAAAAwIkRSqFGsZ4UAAAAAACoCkIp1JjC4jL9sMsrSeqZyUwpAAAAAABwYoRSqDGrd3pU6jNKjotQmjsy2OUAAAAAAIA6jFAKNWb51qPrSWXEy+FwBLkaAAAAAABQlxFKocb477zXM4NL9wAAAAAAwMkRSqFGGGO03H/nPUIpAAAAAABwCoRSqBG7PEe0J79IoSEOdWnuDnY5AAAAAACgjiOUQo3wz5I6OzVOUc7QIFcDAAAAAADqOkIp1AjWkwIAAAAAANVBKIUakZVz7M57AAAAAAAAp0IohTNWVFqm1Tu8kqQe6cyUAgAAAAAAp0YohTO2dqdXxWU+JcY4ldkkOtjlAAAAAACAeoBQCmfMv55Uj/R4ORyO4BYDAAAAAADqBUIpnLGsbXmSWE8KAAAAAABUHaEUztjyrf5FzllPCgAAAAAAVA2hFM7IHu8R7cgrlMMhdUuPD3Y5AAAAAACgniCUwhnxX7rXvlmcYiPCglsMAAAAAACoNwilcEaW5/gv3YsPbiEAAAAAAKBeIZTCGTl25z3WkwIAAAAAAFVHKIXTVlrm08rteZKknpnxQa0FAAAAAADUL4RSOG3rcvN1pMSnuMgwtW4aG+xyAAAAAABAPUIohdOWdXQ9qe7p8QoJcQS5GgAAAAAAUJ8QSuG0+deT6pnBelIAAAAAAKB6CKVw2rK25UniznsAAAAAAKD6CKVwWg4WFGvzvgJJ5ZfvAQAAAAAAVAehFE5L1rby9aRaJ8UoPtoZ5GoAAAAAAEB9QyiF08J6UgAAAAAA4EwQSuG0+EMp1pMCAAAAAACng1AK1VbmM8r2L3KezkwpAAAAAABQfYRSqLaNew7pUFGpop2hap8SF+xyAAAAAABAPUQohWrLyilf5Lxbi3iFhjiCXA0AAAAAAKiPCKVQbawnBQAAAAAAzhShFKpt+dGZUj248x4AAAAAADhNhFKoFk9hiX7cc0gSM6UAAAAAAMDpI5RCtazcnidJykiMVtPYiOAWAwAAAAAA6i1CKVTL8q15kpglBQAAAAAAzgyhFKola1v5elI9WU8KAAAAAACcAUIpVJkxhjvvAQAAAACAGkEohSrbvK9AnsISRYSFqEOKK9jlAAAAAACAeoxQClW2/OgsqS7N3XKG8VsHAAAAAACcPpIFVFlWztH1pDJZTwoAAAAAAJwZQilUmbWeVHp8UOsAAAAAAAD1X1iwC0D98a87zlP29jx1a+EOdikAAAAAAKCeI5RClbmjw3VRu6RglwEAAAAAABoALt8DAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7aodSn3zzTe64oorlJaWJofDoY8//jhg/8iRI+VwOAIegwcPDhhz4MAB3XzzzXK5XIqPj9eoUaN06NChgDErV65Uv379FBkZqfT0dD377LMVavnggw/UoUMHRUZGqkuXLvr888+rezoAAAC1jv4JAACgomqHUgUFBerWrZtee+21E44ZPHiwdu3aZT3+9a9/Bey/+eabtWbNGs2ePVufffaZvvnmG915553Wfq/Xq4EDByozM1PLli3Tc889p4kTJ+qvf/2rNWbBggUaPny4Ro0apaysLA0bNkzDhg3T6tWrq3tKAAAAtYr+CQAAoCKHMcac9osdDn300UcaNmyYtW3kyJHKy8ur8A2g3w8//KCOHTtqyZIlOueccyRJM2fO1GWXXabt27crLS1Nb7zxhh599FHl5ubK6XRKkh555BF9/PHHWrdunSTphhtuUEFBgT777DPr2Oedd566d++uN998s0r1e71eud1ueTweuVyu0/gEAABAQ1fT/QL9EwAAaOiq2i/UyppSX3/9tZKTk9W+fXvdfffd2r9/v7Vv4cKFio+PtxoqSRowYIBCQkK0ePFia8yFF15oNVSSNGjQIK1fv14HDx60xgwYMCDgfQcNGqSFCxeesK6ioiJ5vd6ABwAAQF1A/wQAABqbGg+lBg8erH/+85+aM2eOJk+erPnz52vIkCEqKyuTJOXm5io5OTngNWFhYUpMTFRubq41plmzZgFj/M9PNca/vzKTJk2S2+22Hunp6Wd2sgAAADWA/gkAADRGYTV9wBtvvNH6eZcuXdS1a1e1adNGX3/9tS655JKafrtqmTBhgsaNG2c993q9NFYAACDo6J8AAEBjVCuX7x2vdevWatq0qTZu3ChJSklJ0Z49ewLGlJaW6sCBA0pJSbHG7N69O2CM//mpxvj3VyYiIkIulyvgAQAAUNfQPwEAgMag1kOp7du3a//+/UpNTZUk9e3bV3l5eVq2bJk1Zu7cufL5fOrTp4815ptvvlFJSYk1Zvbs2Wrfvr0SEhKsMXPmzAl4r9mzZ6tv3761fUoAAAC1iv4JAAA0BtUOpQ4dOqTs7GxlZ2dLkjZv3qzs7Gzl5OTo0KFDGj9+vBYtWqQtW7Zozpw5uuqqq9S2bVsNGjRIknT22Wdr8ODBuuOOO/T999/ru+++05gxY3TjjTcqLS1NknTTTTfJ6XRq1KhRWrNmjd577z298sorAVPH77vvPs2cOVMvvPCC1q1bp4kTJ2rp0qUaM2ZMDXwsAAAANYf+CQAAoBKmmubNm2ckVXiMGDHCHD582AwcONAkJSWZ8PBwk5mZae644w6Tm5sbcIz9+/eb4cOHm9jYWONyucytt95q8vPzA8asWLHCXHDBBSYiIsI0b97cPPPMMxVqef/99027du2M0+k0nTp1MjNmzKjWuXg8HiPJeDye6n4MAACgkaiJfoH+CQAANCZV7RccxhgTjDCsLvB6vXK73fJ4PKyPAAAAKkW/EIjPAwAAnEpV+4VaX1MKAAAAAAAA+DlCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7QilAAAAAAAAYDtCKQAAAAAAANiOUAoAAAAAAAC2I5QCAAAAAACA7aodSn3zzTe64oorlJaWJofDoY8//jhgvzFGjz/+uFJTUxUVFaUBAwboxx9/DBhz4MAB3XzzzXK5XIqPj9eoUaN06NChgDErV65Uv379FBkZqfT0dD377LMVavnggw/UoUMHRUZGqkuXLvr888+rezoAAAC1jv4JAACgomqHUgUFBerWrZtee+21Svc/++yz+tOf/qQ333xTixcvVkxMjAYNGqQjR45YY26++WatWbNGs2fP1meffaZvvvlGd955p7Xf6/Vq4MCByszM1LJly/Tcc89p4sSJ+utf/2qNWbBggYYPH65Ro0YpKytLw4YN07Bhw7R69erqnhIAAECton8CAACohDkDksxHH31kPff5fCYlJcU899xz1ra8vDwTERFh/vWvfxljjFm7dq2RZJYsWWKN+eKLL4zD4TA7duwwxhjz+uuvm4SEBFNUVGSNefjhh0379u2t59dff70ZOnRoQD19+vQxv/3tb6tcv8fjMZKMx+Op8msAAEDjUtP9Av0TAABo6KraL9TomlKbN29Wbm6uBgwYYG1zu93q06ePFi5cKElauHCh4uPjdc4551hjBgwYoJCQEC1evNgac+GFF8rpdFpjBg0apPXr1+vgwYPWmOPfxz/G/z6VKSoqktfrDXgAAAAEE/0TAABorGo0lMrNzZUkNWvWLGB7s2bNrH25ublKTk4O2B8WFqbExMSAMZUd4/j3ONEY//7KTJo0SW6323qkp6dX9xQBAABqFP0TAABorBrV3fcmTJggj8djPbZt2xbskgAAAOo0+icAAFBbajSUSklJkSTt3r07YPvu3butfSkpKdqzZ0/A/tLSUh04cCBgTGXHOP49TjTGv78yERERcrlcAQ8AAIBgon8CAACNVY2GUq1atVJKSormzJljbfN6vVq8eLH69u0rSerbt6/y8vK0bNkya8zcuXPl8/nUp08fa8w333yjkpISa8zs2bPVvn17JSQkWGOOfx//GP/7AAAA1Af0TwAAoLGqdih16NAhZWdnKzs7W1L54pzZ2dnKycmRw+HQ2LFj9Yc//EGffvqpVq1apVtuuUVpaWkaNmyYJOnss8/W4MGDdccdd+j777/Xd999pzFjxujGG29UWlqaJOmmm26S0+nUqFGjtGbNGr333nt65ZVXNG7cOKuO++67TzNnztQLL7ygdevWaeLEiVq6dKnGjBlz5p8KAABADaJ/AgAAqER1b+s3b948I6nCY8SIEcaY8tsa/7//9/9Ms2bNTEREhLnkkkvM+vXrA46xf/9+M3z4cBMbG2tcLpe59dZbTX5+fsCYFStWmAsuuMBERESY5s2bm2eeeaZCLe+//75p166dcTqdplOnTmbGjBnVOhduaQwAAE6lJvoF+icAANCYVLVfcBhjTDDCsLrA6/XK7XbL4/GwPgIAAKgU/UIgPg8AAHAqVe0XGtXd9wAAAAAAAFA3EEoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxX46HUxIkT5XA4Ah4dOnSw9h85ckSjR49WkyZNFBsbq2uvvVa7d+8OOEZOTo6GDh2q6OhoJScna/z48SotLQ0Y8/XXX6tnz56KiIhQ27ZtNWXKlJo+FQAAAFvQPwEAgMaoVmZKderUSbt27bIe3377rbXv/vvv13//+1998MEHmj9/vnbu3KlrrrnG2l9WVqahQ4equLhYCxYs0Ntvv60pU6bo8ccft8Zs3rxZQ4cOVf/+/ZWdna2xY8fq9ttv16xZs2rjdAAAAGod/RMAAGhsHMYYU5MHnDhxoj7++GNlZ2dX2OfxeJSUlKRp06bpuuuukyStW7dOZ599thYuXKjzzjtPX3zxhS6//HLt3LlTzZo1kyS9+eabevjhh7V37145nU49/PDDmjFjhlavXm0d+8Ybb1ReXp5mzpxZ5Vq9Xq/cbrc8Ho9cLteZnTgAAGiQ7OgX6J8AAEBDUtV+oVZmSv34449KS0tT69atdfPNNysnJ0eStGzZMpWUlGjAgAHW2A4dOigjI0MLFy6UJC1cuFBdunSxGipJGjRokLxer9asWWONOf4Y/jH+Y5xIUVGRvF5vwAMAAKAuoH8CAACNTY2HUn369NGUKVM0c+ZMvfHGG9q8ebP69eun/Px85ebmyul0Kj4+PuA1zZo1U25uriQpNzc3oKHy7/fvO9kYr9erwsLCE9Y2adIkud1u65Genn6mpwsAAHDG6J8AAEBjFFbTBxwyZIj1865du6pPnz7KzMzU+++/r6ioqJp+u2qZMGGCxo0bZz33er00VgAAIOjonwAAQGNUK5fvHS8+Pl7t2rXTxo0blZKSouLiYuXl5QWM2b17t1JSUiRJKSkpFe4m439+qjEul+ukjVtERIRcLlfAAwAAoK6hfwIAAI1BrYdShw4d0qZNm5SamqpevXopPDxcc+bMsfavX79eOTk56tu3rySpb9++WrVqlfbs2WONmT17tlwulzp27GiNOf4Y/jH+YwAAANRn9E8AAKAxqPFQ6sEHH9T8+fO1ZcsWLViwQFdffbVCQ0M1fPhwud1ujRo1SuPGjdO8efO0bNky3Xrrrerbt6/OO+88SdLAgQPVsWNH/eY3v9GKFSs0a9YsPfbYYxo9erQiIiIkSXfddZd++uknPfTQQ1q3bp1ef/11vf/++7r//vtr+nQAAABqHf0TAABojGp8Tant27dr+PDh2r9/v5KSknTBBRdo0aJFSkpKkiS99NJLCgkJ0bXXXquioiINGjRIr7/+uvX60NBQffbZZ7r77rvVt29fxcTEaMSIEXrqqaesMa1atdKMGTN0//3365VXXlGLFi3097//XYMGDarp0wEAAKh19E8AAKAxchhjTLCLCBav1yu32y2Px8P6CAAAoFL0C4H4PAAAwKlUtV+o9TWlAAAAAAAAgJ8jlAIAAAAAAIDtCKUAAAAAAABgO0IpAAAAAAAA2I5QCgAAAAAAALYjlAIAAAAAAIDtCKUAAAAAAABgO0IpAAAAAAAA2I5QCgAAAAAAALYjlAIAAAAAAIDtCKUAAAAAAABgO0IpAAAAAAAA2I5QCgAAAAAAALYjlAIAAAAAAIDtCKUAAAAAAABgO0IpAAAAAAAA2I5QCgAAAAAAALYjlAIAAABq0T++3azsbXnBLgMAgDqHUAoAAAA4CWOMlmw5oD35R6r92kU/7ddTn63VsNe+q4XKAACo3wilAAAA0CBM/HSNxr2XXem+4lKfvlq7W57Ckkr3l5b5dKCguNJ989bv0a/eXKjeT8/Ri7M3qKCotMo1rc/Nr/JYAAAaG0IpAAAA1HulZT5NWbBFH2bt0NTFW2WMCdj/3xU7dfs/l+raNxZUOuOp7aNfqOfvZ2vbgcMV9o3/YKX18z/N+VEXP/+1pn+fozJf+Xvc+68stXxkhv7+v5+0eV9BhfcGAACVI5QCAABAvVdYUmb9/NGPVuuGvyzSiuPWcfLPgtq455Bu+tti7c0vqvQ4/Z6dV2HG1P7jnmc2idbe/CI98uEqXfbK//T1+j36dMVOSdIfZvyg/s9/rfOfmasH3l+hD5dv19b9FUMuAABQjlAKAAAA9YbPV3EWks9ntGDT/oBt3285oKte+073Tc/S9oOHlX/cJXcb9xzS8L8tOmEwNfCl+Zq1JrfSfbPvv0j/7/KOckeFa/3ufI18a0nAfmdoiHZ6jug/y7dr3Psr9I/vNlf3FAEAaDTCgl0AAAAAUBW3/ON7fbNhr4b3Tteka7pqy74C/Wf5dn24fId25BVa4/7f5R21ZqdHH2Xt0CfZO/XF6lwVl/qs/anuyKMzphZp2h3nKSkuIuB99h0q1m/fWaZh3dM08cpOAfucYSEadUErXdezhV6d+6PeXrhFJWXHgrIVTwzU0q0H9N3G/VqwaZ9WbvfU0qcBAED9RygFAACAeuGbDXslSf/6fpt+3H1IS7cerHScM9ShF6/vrtvOb6WnZ/yghT8FzqL61x3n6ca/LtKPR4Opf915nrXvN+dlKi4yTG/O36SPs3fqu5/NwPJzR4frscs76pa+LXXhc/Os7VHOUPU7K0n9zkqSJLV8ZMYZnTMAAA0Zl+8BAACg3lm69aBCHNLF7ZP06vAeWvLoAGtfRFioJKlzc7em3dFH/xh5TsBrWzaN0fQ7z1OKK9IKpvyu6dlcDw3uoA/vOV9tkmJOeImfX0aT6JPub50UU91TAwCg0SCUAgAAQL3zyJAOWjjhEk25tbeu6JamhOhwa98FZzW1fu5wOPTLDs0qvP74YGrD7kPW9vDQ8va4e3q8ZtzbT3de2PqM6hzUKeWMXg8AQEP2/9u79+Co6ruP45/NZXdzIQkmkBAgEhSCQIRAShq01qkZU+TBUjtCKaVILXiBKSkVqQ8FxnYQqtaWWgqtHbQdUYSnSqulMDQgCsZwkUQiCJRbFA0UMRc0EMj+nj9oTlkTwiYkZ88m79cMY/ac3+5+9zsm+53Pnj2HUAoAAAAh5/6vXqfkOK91OyI8TPfd0ld3D++l1ISogB6jT1KMXpz2ZSXHeZrc740M1//ecYO8kYGNzOlJjY+KSrmkRgAA4I9QCgAAAI5XUXXW+vnWjG5Nrnnkjhv0xN1DmtzXvUvTwVN6UoxWTctVjDtckeEupcQ3DpH+7/6RkqTMnvHN1jgsrWuz+wEAgD9OdA4AAADHK/ng4knNB6R00XNTRrT4/nFRkTp5mfNDpSfFaPvcPFXWnldSbOPwanDPeB1dPLrFzyldPgwDAAAcKQUAAIAQsPuDSklSViuPRlr+3eF+//2iGE+Eegb4tb+W+PrgFA3pFa95/zOwzR8bAIBQx5FSAAAAcLzShlCqd0Kr7n9999hWH+0UKJerqW0u/XXGze36vAAAhCqOlAIAAICj1fuM9nxYJUka0spQqj01nOD83pvTg1wJAAChhSOlAAAA4GgHT9bos7p6xbjDdX332GCX08jmh24NdgkAAIQkjpQCAACAozV8de/GXgkKD2viO3IAACAkEUoBAADA0Ur+E0o58at7AACg9QilAAAA4Gi7yyslSUMJpQAA6FAIpQAAAOBYn9dd0IETNZKkrLSE4BYDAADaFKEUAAAAHGvPh1XyGSklzqvkOG+wywEAAG2IUAoAAACO1XA+Kb66BwBAx0MoBQAAAMcq/bBSEic5BwCgIyKUAgAAgGOVcJJzAAA6LEIpAAAAONLJ6rP6qOqswlzSjb3ig10OAABoY4RSAAAAcKSG80n1695FMZ6I4BYDAADaHKEUAAAAHImTnAMA0LERSgEAAMCRrFAqLSGodQAAgPZBKAUAAADH8fmM3v2wSpI0pFdCcIsBAADtglAKAAAAjnPo32d05twFRUWGq39ybLDLAQAA7YBQCgAAAI6z+z9f3cvsFa+IcEZWAAA6It7hAQAA4DilnOQcAIAOj1AKAAAAjsOV9wAA6PgIpQAAAOAotXX1er+iRpI0hFAKAIAOi1AKAAAAjvLeR1Wq9xl16+JRarw32OUAAIB2QigFAAAAR7n0q3sulyu4xQAAgHZDKAUAAABH4XxSAAB0DoRSAAAAcBRCKQAAOgdCKQAAADjGqTPn9OGntXK5pMxe8cEuBwAAtCNCKQAAADhG6X+OkrquW6zivJHBLQYAALQrQikAAAA4Bl/dAwCg8yCUAgAAgGM0hFJDCKUAAOjwCKUAAADgCD6f0ZsHT0mSsgilAADo8AilAAAA4AjvlH9q/ZyR0iWIlQAAADsQSgEAAMARrusWa/0cGc6YCgBARxcR7AIAAAAASeoa49bRxaODXQYAALAJH0EBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbEUoBAAAAAADAdoRSAAAAAAAAsB2hFAAAAAAAAGxHKAUAAAAAAADbhXwotXTpUvXp00der1c5OTnavn17sEsCAABwNOYnAADgBCEdSr300kuaNWuWFixYoHfeeUdDhgxRfn6+Tp48GezSAAAAHIn5CQAAOEVIh1JPPfWUpk6dqilTpmjgwIFavny5oqOjtWLFimCXBgAA4EjMTwAAwClCNpSqq6vTrl27lJeXZ20LCwtTXl6eioqKglgZAACAMzE/AQAAJ4kIdgGtderUKdXX1ys5Odlve3Jyst5///0m73Pu3DmdO3fOul1VVSVJqq6ubr9CAQBASGuYE4wxQa7k6jE/AQAAOwQ6P4VsKNUaixYt0qOPPtpoe+/evYNQDQAACCU1NTWKj48Pdhm2Y34CAACtdaX5KWRDqaSkJIWHh+vEiRN+20+cOKGUlJQm7/PII49o1qxZ1m2fz6fTp08rMTFRLperxTVUV1erd+/e+uCDDxQXF9fi+3cW9Ckw9OnK6FFg6FNg6FNg6NPFT/hqamqUmpoa7FKuGvNT6KBPgaFPgaFPgaFPV0aPAkOfAp+fQjaUcrvdGj58uAoLCzV27FhJF4ekwsJCzZgxo8n7eDweeTwev20JCQlXXUtcXFyn/R+tJehTYOjTldGjwNCnwNCnwHT2PnWUI6SYn0IPfQoMfQoMfQoMfboyehSYzt6nQOankA2lJGnWrFmaPHmysrOzNWLECP3617/WZ599pilTpgS7NAAAAEdifgIAAE4R0qHU+PHj9e9//1vz589XRUWFhg4dqvXr1zc6eScAAAAuYn4CAABOEdKhlCTNmDHjsoebtzePx6MFCxY0OqQd/uhTYOjTldGjwNCnwNCnwNCnjon5yfnoU2DoU2DoU2Do05XRo8DQp8C5TEe4vjEAAAAAAABCSliwCwAAAAAAAEDnQygFAAAAAAAA2xFKAQAAAAAAwHaEUq20dOlS9enTR16vVzk5Odq+fXuwS2ozixYt0pe+9CV16dJF3bt319ixY7V//36/NWfPntX06dOVmJio2NhYfetb39KJEyf81pSXl2v06NGKjo5W9+7dNXv2bF24cMFvzeuvv65hw4bJ4/Ho+uuv13PPPdeonlDo9eLFi+VyuVRQUGBto0cXHT9+XN/97neVmJioqKgoZWZmaufOndZ+Y4zmz5+vHj16KCoqSnl5eTp48KDfY5w+fVoTJ05UXFycEhISdO+99+rMmTN+a95991195StfkdfrVe/evfX44483qmXNmjUaMGCAvF6vMjMztW7duvZ50S1UX1+vefPmKT09XVFRUbruuuv085//XJee8q8z9umNN97QmDFjlJqaKpfLpbVr1/rtd1JPAqmlvTTXp/Pnz2vOnDnKzMxUTEyMUlNT9b3vfU8fffSR32N0hj7BOZz8nnU1mJ9ahxnq8pihrowZqmnMUIFhhnIIgxZbtWqVcbvdZsWKFea9994zU6dONQkJCebEiRPBLq1N5Ofnm2effdaUlZWZkpISc8cdd5i0tDRz5swZa839999vevfubQoLC83OnTvNl7/8ZTNy5Ehr/4ULF8zgwYNNXl6e2b17t1m3bp1JSkoyjzzyiLXm8OHDJjo62syaNcvs3bvXPP300yY8PNysX7/eWhMKvd6+fbvp06ePufHGG83MmTOt7fTImNOnT5trr73W3HPPPaa4uNgcPnzYbNiwwfzrX/+y1ixevNjEx8ebtWvXmtLSUnPnnXea9PR0U1tba635+te/boYMGWLefvtt8+abb5rrr7/eTJgwwdpfVVVlkpOTzcSJE01ZWZl58cUXTVRUlPn9739vrdm2bZsJDw83jz/+uNm7d6/56U9/aiIjI82ePXvsaUYzFi5caBITE81rr71mjhw5YtasWWNiY2PNkiVLrDWdsU/r1q0zc+fONS+//LKRZF555RW//U7qSSC1tJfm+lRZWWny8vLMSy+9ZN5//31TVFRkRowYYYYPH+73GJ2hT3AGJ79nXS3mp5Zjhro8ZqjAMEM1jRkqMMxQzkAo1QojRoww06dPt27X19eb1NRUs2jRoiBW1X5OnjxpJJktW7YYYy7+gkZGRpo1a9ZYa/bt22ckmaKiImPMxV/wsLAwU1FRYa1ZtmyZiYuLM+fOnTPGGPPwww+bQYMG+T3X+PHjTX5+vnXb6b2uqakx/fr1Mxs3bjRf/epXrYGKHl00Z84cc/PNN192v8/nMykpKeaJJ56wtlVWVhqPx2NefPFFY4wxe/fuNZLMjh07rDX/+Mc/jMvlMsePHzfGGPO73/3OdO3a1epbw3NnZGRYt8eNG2dGjx7t9/w5OTnmvvvuu7oX2QZGjx5tvv/97/ttu+uuu8zEiRONMfTJGNNoUHBSTwKpxS5NDZ5ftH37diPJHDt2zBjTOfuE4HHye1ZbY35qHjNU85ihAsMMdWXMUIFhhgoevr7XQnV1ddq1a5fy8vKsbWFhYcrLy1NRUVEQK2s/VVVVkqRrrrlGkrRr1y6dP3/erwcDBgxQWlqa1YOioiJlZmYqOTnZWpOfn6/q6mq999571ppLH6NhTcNjhEKvp0+frtGjRzd6HfToor/97W/Kzs7W3Xffre7duysrK0vPPPOMtf/IkSOqqKjwqz8+Pl45OTl+fUpISFB2dra1Ji8vT2FhYSouLrbW3HLLLXK73daa/Px87d+/X59++qm1prleBtPIkSNVWFioAwcOSJJKS0u1detWjRo1ShJ9aoqTehJILU5SVVUll8ulhIQESfQJ9nH6e1ZbY35qHjNU85ihAsMM1XJO6kmozQbMUO2DUKqFTp06pfr6er83QUlKTk5WRUVFkKpqPz6fTwUFBbrppps0ePBgSVJFRYXcbrf1y9jg0h5UVFQ02aOGfc2tqa6uVm1treN7vWrVKr3zzjtatGhRo3306KLDhw9r2bJl6tevnzZs2KAHHnhAP/zhD/WnP/1J0n9fZ3P1V1RUqHv37n77IyIidM0117RJL53Qp5/85Cf69re/rQEDBigyMlJZWVkqKCjQxIkTJdGnpjipJ4HU4hRnz57VnDlzNGHCBMXFxUmiT7CP09+z2hLzU/OYoa6MGSowzFAt56SehNJswAzVfiKCXQCcbfr06SorK9PWrVuDXYqjfPDBB5o5c6Y2btwor9cb7HIcy+fzKTs7W4899pgkKSsrS2VlZVq+fLkmT54c5OqcY/Xq1Vq5cqVeeOEFDRo0SCUlJSooKFBqaip9Qps5f/68xo0bJ2OMli1bFuxygA6N+enymKECwwwVGGYo2IEZqn1xpFQLJSUlKTw8vNEVQE6cOKGUlJQgVdU+ZsyYoddee02bN29Wr169rO0pKSmqq6tTZWWl3/pLe5CSktJkjxr2NbcmLi5OUVFRju71rl27dPLkSQ0bNkwRERGKiIjQli1b9Jvf/EYRERFKTk7u9D2SpB49emjgwIF+22644QaVl5dL+u/rbK7+lJQUnTx50m//hQsXdPr06TbppRP6NHv2bOuTvszMTE2aNEk/+tGPrE+Q6VNjTupJILUEW8MwdezYMW3cuNH6hE+iT7CP09+z2grzU/OYoQLDDBUYZqiWc1JPQmE2YIZqf4RSLeR2uzV8+HAVFhZa23w+nwoLC5WbmxvEytqOMUYzZszQK6+8ok2bNik9Pd1v//DhwxUZGenXg/3796u8vNzqQW5urvbs2eP3S9rwS9zwBpubm+v3GA1rGh7Dyb2+7bbbtGfPHpWUlFj/srOzNXHiROvnzt4jSbrpppsaXQ77wIEDuvbaayVJ6enpSklJ8au/urpaxcXFfn2qrKzUrl27rDWbNm2Sz+dTTk6OteaNN97Q+fPnrTUbN25URkaGunbtaq1prpfB9PnnnysszP/PcXh4uHw+nyT61BQn9SSQWoKpYZg6ePCg/vnPfyoxMdFvP32CXZz+nnW1mJ8CwwwVGGaowDBDtZyTeuL02YAZyibBPc96aFq1apXxeDzmueeeM3v37jXTpk0zCQkJflcACWUPPPCAiY+PN6+//rr5+OOPrX+ff/65teb+++83aWlpZtOmTWbnzp0mNzfX5ObmWvsbLtV7++23m5KSErN+/XrTrVu3Ji/VO3v2bLNv3z6zdOnSJi/VGyq9vvTKMcbQI2MuXqEiIiLCLFy40Bw8eNCsXLnSREdHm+eff95as3jxYpOQkGD++te/mnfffdd84xvfaPKStFlZWaa4uNhs3brV9OvXz+9Sq5WVlSY5OdlMmjTJlJWVmVWrVpno6OhGl1qNiIgwTz75pNm3b59ZsGCBYy5nPHnyZNOzZ0/rcsYvv/yySUpKMg8//LC1pjP2qaamxuzevdvs3r3bSDJPPfWU2b17t3XFEyf1JJBagtGnuro6c+edd5pevXqZkpISv7/pl14FpjP0Cc7g5Pesq8X81HrMUI0xQwWGGappzFBX3ydmKPsQSrXS008/bdLS0ozb7TYjRowwb7/9drBLajOSmvz37LPPWmtqa2vNgw8+aLp27Wqio6PNN7/5TfPxxx/7Pc7Ro0fNqFGjTFRUlElKSjI//vGPzfnz5/3WbN682QwdOtS43W7Tt29fv+doECq9/uJARY8uevXVV83gwYONx+MxAwYMMH/4wx/89vt8PjNv3jyTnJxsPB6Pue2228z+/fv91nzyySdmwoQJJjY21sTFxZkpU6aYmpoavzWlpaXm5ptvNh6Px/Ts2dMsXry4US2rV682/fv3N2632wwaNMj8/e9/b/sX3ArV1dVm5syZJi0tzXi9XtO3b18zd+5cvze8ztinzZs3N/m3aPLkycYYZ/UkkFraS3N9OnLkyGX/pm/evNl6jM7QJziHk9+zrgbzU+sxQzWNGerKmKGaxgwVGGYoZ3AZY0zbH38FAAAAAAAAXB7nlAIAAAAAAIDtCKUAAAAAAABgO0IpAAAAAAAA2I5QCgAAAAAAALYjlAIAAAAAAIDtCKUAAAAAAABgO0IpAAAAAAAA2I5QCgAAAAAAALYjlAIAAAAAAIDtCKUAhLxbb71VBQUFwS7D4rR6AAAAvshp84rT6gFgD0IpAJBUV1cX7BIAAABCCvMTgKtFKAUgpN1zzz3asmWLlixZIpfLJZfLpUOHDunee+9Venq6oqKilJGRoSVLljS639ixY7Vw4UKlpqYqIyNDkvTWW29p6NCh8nq9ys7O1tq1a+VyuVRSUmLdt6ysTKNGjVJsbKySk5M1adIknTp16rL1HD161K52AAAAXBHzEwCniAh2AQBwNZYsWaIDBw5o8ODB+tnPfiZJ6tq1q3r16qU1a9YoMTFRb731lqZNm6YePXpo3Lhx1n0LCwsVFxenjRs3SpKqq6s1ZswY3XHHHXrhhRd07NixRoeRV1ZW6mtf+5p+8IMf6Fe/+pVqa2s1Z84cjRs3Tps2bWqynm7dutnTDAAAgAAwPwFwCkIpACEtPj5ebrdb0dHRSklJsbY/+uij1s/p6ekqKirS6tWr/YaqmJgY/fGPf5Tb7ZYkLV++XC6XS88884y8Xq8GDhyo48ePa+rUqdZ9fvvb3yorK0uPPfaYtW3FihXq3bu3Dhw4oP79+zdZDwAAgFMwPwFwCkIpAB3S0qVLtWLFCpWXl6u2tlZ1dXUaOnSo35rMzExroJKk/fv368Ybb5TX67W2jRgxwu8+paWl2rx5s2JjYxs956FDh9S/f/+2fSEAAAA2YX4CYDdCKQAdzqpVq/TQQw/pl7/8pXJzc9WlSxc98cQTKi4u9lsXExPT4sc+c+aMxowZo1/84heN9vXo0aPVNQMAAAQT8xOAYCCUAhDy3G636uvrrdvbtm3TyJEj9eCDD1rbDh06dMXHycjI0PPPP69z587J4/FIknbs2OG3ZtiwYfrLX/6iPn36KCKi6T+hX6wHAADAaZifADgBV98DEPL69Omj4uJiHT16VKdOnVK/fv20c+dObdiwQQcOHNC8efMaDUdN+c53viOfz6dp06Zp37592rBhg5588klJksvlkiRNnz5dp0+f1oQJE7Rjxw4dOnRIGzZs0JQpU6xB6ov1+Hy+9nvxAAAArcD8BMAJCKUAhLyHHnpI4eHhGjhwoLp166b8/HzdddddGj9+vHJycvTJJ5/4fep3OXFxcXr11VdVUlKioUOHau7cuZo/f74kWedJSE1N1bZt21RfX6/bb79dmZmZKigoUEJCgsLCwpqsp7y8vP1ePAAAQCswPwFwApcxxgS7CABwqpUrV2rKlCmqqqpSVFRUsMsBAABwPOYnAIHinFIAcIk///nP6tu3r3r27KnS0lLNmTNH48aNY6ACAAC4DOYnAK1FKAUAl6ioqND8+fNVUVGhHj166O6779bChQuDXRYAAIBjMT8BaC2+vgcAAAAAAADbcaJzAAAAAAAA2I5QCgAAAAAAALYjlAIAAAAAAIDtCKUAAAAAAABgO0IpAAAAAAAA2I5QCgAAAAAAALYjlAIAAAAAAIDtCKUAAAAAAABgO0IpAAAAAAAA2O7/AXPHcNTrJLjOAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "\n",
+ "column = \"threads\"\n",
+ "x = \"target\"\n",
+ "y = \"[OVERALL].Throughput(ops/sec)\"\n",
+ "evaluation.plot(df_plot, column=column, x=x, y=y, plot_by=\"pod_count\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACcCklEQVR4nOzdd3gUVcPG4WfTCymUFIJA6B0JIB0BQQNiBEERRSkiKMKryGsBlSYCAoqon4INYkH0tStNIYIgINKCNGmC1NBCEpKQQJL5/lh3Zckm2cBml/K7r2susjNn5pzZApuHU0yGYRgCAAAAAAAAXMjD3Q0AAAAAAADA9YdQCgAAAAAAAC5HKAUAAAAAAACXI5QCAAAAAACAyxFKAQAAAAAAwOUIpQAAAAAAAOByhFIAAAAAAABwOUIpAAAAAAAAuByhFAAAAAAAAFyOUArXhP79+8tkMslkMql+/frubo7LpaSkWO/fZDLplVdecXeTbERHR+uOO+5wdzOuaP3791d0dLTNPpPJpHHjxrmlPdeSxx57TLfeemuJXPv8+fOqWLGi3n777RK5PgAAAHAtI5TCNaNcuXL6+OOP9fLLL1v32QtDLMHNq6++mu8a8fHxMplMWr9+vc3+X3/9VV26dFGFChXk5+enSpUqKS4uTp9++qnda9vbHn30UWu5C0M0k8kkX19f1axZU2PGjFFWVpa17YVdz7LFx8crMDBQH3/8sV577TWHn689e/bo7rvvVunSpRUQEKA2bdpo2bJl+cpd3FbLVrt2bZty27dv17hx47R//36H23Cx5cuX29Th7e2tqlWrqm/fvvrrr78u+bpXiiNHjmjcuHFKTEws0Xr279/v1HDy7bffVnx8vFOu5Wr79u3T+++/r+eee65Eru/t7a0RI0Zo4sSJ1s8uAAAAAMd4ubsBgLMEBgbqgQcecLj8tGnTNGTIEAUEBBRa7osvvtC9996rRo0a6YknnlDp0qW1b98+rVixQu+9957uv/9+m/K33nqr+vbtm+86NWvWtHns6+ur999/X5KUmpqq7777ThMmTNDevXs1d+5czZgxQ+np6dbyCxcu1Lx58/Taa6+pXLly1v2tWrWSt7e3HnjgAe3fv19PPvlkkfd+8OBBtWzZUp6ennr66acVGBioOXPm6LbbblNCQoJuvvnmAttqERISYvN4+/btGj9+vNq3b5+vx09xPf7447rpppt0/vx5bdy4Ue+++64WLFigLVu2KCoq6rKu7U5HjhzR+PHjFR0drUaNGtkce++995SXl+eehhXh7bffVrly5dS/f393N6XYXn/9dVWpUkUdOnQosToGDBigkSNH6tNPP9VDDz1UYvUAAAAA1xpCKVyXGjVqpMTERM2aNUsjRowotOy4ceNUt25d/fbbb/Lx8bE5dvz48Xzla9as6VA45uXlZVPuscceU6tWrTRv3jxNnz5d3bt3tymflJSkefPmqXv37pcd+rz88stKSUnR1q1bVatWLUnSoEGDVLt2bT355JPasGFDoW0taW3bttXdd98tyfwLf82aNfX444/rww8/1KhRoy7r2hkZGQoMDHRGM53K29vb3U245pw/f15z58616aVYEkJDQ3XbbbcpPj6eUAoAAAAoBobv4brUunVr3XLLLZo6darOnj1baNm9e/fqpptuyhdISVJ4eLjT2mQymdSmTRsZhlHiQ9VWrlypmJgYayAlSQEBAbrzzju1ceNG7d69O985ubm5SktLs3u9+Ph43XPPPZKkDh06WIffLV++3Kbcr7/+qmbNmsnPz09Vq1bVRx995FB7b7nlFknmoVgWixYtUtu2bRUYGKigoCB17dpV27Ztszmvf//+KlWqlPbu3avbb79dQUFB6tOnjyQpLy9Pr7/+uho0aCA/Pz+FhYWpc+fO+YZufvLJJ2rSpIn8/f1VpkwZ9e7dWwcPHrQp0759e9WvX1/bt29Xhw4dFBAQoAoVKmjq1KnWMsuXL9dNN90kyRy0XTj80tJWR8LGw4cP66GHHlJERIR8fX1Vr149zZ4926Hn8WJz5szRLbfcovDwcPn6+qpu3bqaOXOmTZno6Ght27ZNv/zyi7XN7du3tx5PSUnR8OHDVbFiRfn6+qp69eqaMmWKTa+vC4cTvvvuu6pWrZp8fX110003ad26dfna9eeff6pXr14KCwuTv7+/atWqpeeff16StGzZMplMJn3zzTf5zvv0009lMpm0Zs0aSeb328mTJ9WpUyebcpZhuhcPNbUMH73wfbt792717NlTkZGR8vPz0w033KDevXsrNTXV5txbb71Vv/76q5KTkwt+wgEAAADYoKcUrlvjxo3TzTffrJkzZxbaW6py5cpKSEjQoUOHdMMNNxR53aysLJ08eTLf/uDgYLvB1oUsvySXLl26yHouR3Z2tt06LEMZN2zYoBo1alj3Z2ZmKjg4WJmZmSpdurTuu+8+TZkyRaVKlZIk3XzzzXr88cf1xhtv6LnnnlOdOnUkyfqn9O8cVgMHDlS/fv00e/Zs9e/fX02aNFG9evUKbe/evXslSWXLlpUkffzxx+rXr59iY2M1ZcoUZWZmaubMmWrTpo02bdpkE+7k5OQoNjZWbdq00SuvvGK9x4EDByo+Pl5dunTRww8/rJycHK1cuVK//fabmjZtKkmaOHGiRo8erV69eunhhx/WiRMn9Oabb+rmm2/Wpk2bFBoaaq3n9OnT6ty5s3r06KFevXrpyy+/1LPPPqsGDRqoS5cuqlOnjl588UWNGTNGgwcPVtu2bSWZh1866tixY2rRooVMJpOGDRumsLAwLVq0SAMHDlRaWpqGDx/u8LUkaebMmapXr57uvPNOeXl56YcfftBjjz2mvLw8DR06VJI0Y8YM/ec//1GpUqWswVBERIQk8/uiXbt2Onz4sB555BFVqlRJq1ev1qhRo3T06FHNmDHDpr5PP/1UZ86c0SOPPCKTyaSpU6eqR48e+uuvv6w9xf744w+1bdtW3t7eGjx4sKKjo7V371798MMPmjhxotq3b6+KFStq7ty5uuuuu2yuP3fuXFWrVk0tW7aUJK1evVomk0kxMTHFel4szp07p9jYWGVnZ+s///mPIiMjdfjwYc2fP18pKSk2Q1ibNGkiwzC0evVqJvUHAAAAHGUA14B+/foZlStXzre/cuXKRteuXW32STKGDh1qGIZhdOjQwYiMjDQyMzMNwzCMOXPmGJKMdevWWct/8MEHhiTDx8fH6NChgzF69Ghj5cqVRm5ubr76JBW4zZs3z6a9gYGBxokTJ4wTJ04Ye/bsMV555RXDZDIZ9evXN/Ly8vJde9q0aYYkY9++fQU+D/v27TMkGdOmTSv0+YqLizNCQ0ONtLQ0m/0tW7Y0JBmvvPKKdd/IkSONZ5991vj888+NefPmGf369TMkGa1btzbOnz9vLffFF18Ykoxly5blq69y5cqGJGPFihXWfcePHzd8fX2N//73v9Z9y5YtMyQZs2fPNk6cOGEcOXLEWLBggREdHW2YTCZj3bp1xpkzZ4zQ0FBj0KBBNnUkJSUZISEhNvstbR05cqRN2Z9//tmQZDz++OP52mp57vfv3294enoaEydOtDm+ZcsWw8vLy2Z/u3btDEnGRx99ZN2XnZ1tREZGGj179rTuW7dunSHJmDNnTr567b2HJRljx461Ph44cKBRvnx54+TJkzblevfubYSEhFjfx46+DyzlLxQbG2tUrVrVZl+9evWMdu3a5Ss7YcIEIzAw0Ni1a5fN/pEjRxqenp7GgQMHbNpTtmxZIzk52Vruu+++MyQZP/zwg3XfzTffbAQFBRl///23zTUv/EyMGjXK8PX1NVJSUqz7jh8/bnh5edk8Xw888IBRtmzZfO22fM4v/ixZ3n+W9/CmTZsMScYXX3yR7xoXO3LkiCHJmDJlSpFlAQAAAJgxfA/XtXHjxikpKUmzZs0qsMxDDz2kxYsXq3379vr11181YcIEtW3bVjVq1NDq1avzle/WrZuWLFmSb7t4ouWMjAyFhYUpLCxM1atX11NPPaXWrVvru+++k8lkcvq9XmjIkCFKSUnRvffeq02bNmnXrl0aPny4dejahUMaJ0+erJdfflm9evVS7969FR8fr4kTJ2rVqlX68ssvHa6zbt261t5BkhQWFqZatWrZHar40EMPKSwsTFFRUeratasyMjL04YcfqmnTplqyZIlSUlJ033336eTJk9bN09NTzZs3t7uC4JAhQ2wef/XVVzKZTBo7dmy+spbn/uuvv1ZeXp569eplU09kZKRq1KiRr55SpUrZzLvl4+OjZs2aOW0opmEY+uqrrxQXFyfDMGzaFBsbq9TUVG3cuLFY1/T397f+nJqaqpMnT6pdu3b666+/8g1Ps+eLL75Q27ZtVbp0aZv2dOrUSbm5uVqxYoVN+Xvvvdemh57l/WB5jk6cOKEVK1booYceUqVKlWzOvfAz0bdvX2VnZ9u8/z7//HPl5OTYvAanTp26rF6Hlp5QP/74ozIzMwsta6nHXi9JAAAAAPYxfA/XtZtvvlkdOnTQ1KlTC50MOTY2VrGxscrMzNSGDRv0+eefa9asWbrjjjv0559/2swtdcMNN+Sbw8YePz8//fDDD5KkQ4cOaerUqTp+/LhNUFBSunTpojfffFMjR45U48aNJUnVq1fXxIkT9cwzz1iH5RXkySef1OjRo7V06VL17t3boTovDhkk8y/yp0+fzrd/zJgxatu2rTw9PVWuXDnVqVNHXl7mv64s811Z5pm6WHBwsM1jLy+vfMMu9+7dq6ioKJUpU6bA9u7evVuGYdgMY7zQxROT33DDDfnCxNKlS+uPP/4osI7iOHHihFJSUvTuu+/q3XfftVvG3sT7hVm1apXGjh2rNWvW5AtdUlNT862weLHdu3frjz/+UFhYmEPtufg9YAlyLO8BSzhVv379QuutXbu2brrpJs2dO1cDBw6UZB6616JFC1WvXt2mrGEYhV6rMFWqVNGIESM0ffp0zZ07V23bttWdd96pBx54IN9zY6mnpANlAAAA4FpCKIXr3tixY9W+fXu98847NnME2RMQEKC2bduqbdu2KleunMaPH69FixapX79+xa7X09PTJryKjY1V7dq19cgjj+j7778v9vWKa9iwYRowYID++OMP+fj4qFGjRvrggw8kmVcQLIy/v7/Kli1brEmdPT097e63Fxo0aNCgwGDPMoH2xx9/rMjIyHzHLeGVha+vrzw8it8pNC8vTyaTSYsWLbLb9ouDu+Lc36Ww3PcDDzxQ4PutYcOGDl9v79696tixo2rXrq3p06erYsWK8vHx0cKFC/Xaa6/ZTFReWJtuvfVWPfPMM3aPX/w+cuZz1LdvXz3xxBM6dOiQsrOz9dtvv+n//u//bMqULVvWbuhZUHCUm5ubb9+rr76q/v3767vvvtNPP/2kxx9/XJMnT9Zvv/1mE3Za6ilXrlyx7wUAAAC4XhFK4brXrl07tW/fXlOmTNGYMWMcPs8yGfbRo0ed0o7y5cvrySef1Pjx4/Xbb7+pRYsWTrluYQIDA62TQkvS0qVL5e/vr9atWxd63pkzZ3Ty5EmbHjKu6iFSrVo1SeaVDx3pkVbQNX788UclJycX2FuqWrVqMgxDVapUKTKkc9TlPEdhYWEKCgpSbm7uJd/3hX744QdlZ2fr+++/t+nBZG/4Y0HtrlatmtLT053SHkmqWrWqJGnr1q1Flu3du7dGjBihefPm6ezZs/L29ta9995rU6Z27dqaO3duvl5flh5aKSkpNuX//vtvu3U1aNBADRo00AsvvKDVq1erdevWmjVrll566SVrGcvKkBdO7g8AAACgcMwpBejfuaXsDYtKSEiwe87ChQslSbVq1XJaO/7zn/8oICBAL7/8stOumZqaqj///LPIOYJWr16tr7/+WgMHDrT+Ap+VlaUzZ87kKzthwgQZhqHOnTtb9wUGBkrK/4u+s8XGxio4OFiTJk3S+fPn8x0/ceJEkdfo2bOnDMPQ+PHj8x2z9Nrp0aOHPD09NX78+Hw9eQzD0KlTp4rd9st5jjw9PdWzZ0999dVXdkMbR+774utJtr2UUlNTNWfOnHxlAwMD7ba5V69eWrNmjX788cd8x1JSUpSTk1OsNoWFhenmm2/W7NmzdeDAAZtjF78G5cqVU5cuXfTJJ59o7ty56ty5c75eSi1btpRhGNqwYYPNfkuweeGcV7m5ufk+/2lpafnuoUGDBvLw8FB2drbN/g0bNshkMtmEvAAAAAAKR08pQObeUu3atdMvv/yS71i3bt1UpUoVxcXFqVq1asrIyNDSpUv1ww8/6KabblJcXJxN+V27dumTTz7Jd52IiAjdeuuthbajbNmyGjBggN5++23t2LHDKb0uvvnmGw0YMEBz5sxR//79JZl7hPTq1Ut33nmnIiMjtW3bNs2aNUsNGzbUpEmTrOcmJSUpJiZG9913n2rXri3JPOnzwoUL1blzZ3Xr1s1atlGjRvL09NSUKVOUmpoqX19f3XLLLTbzbTlDcHCwZs6cqQcffFCNGzdW7969FRYWpgMHDmjBggVq3bp1vmFcF+vQoYMefPBBvfHGG9q9e7c6d+6svLw8rVy5Uh06dNCwYcNUrVo1vfTSSxo1apT279+v7t27KygoSPv27dM333yjwYMH66mnnipW26tVq6bQ0FDNmjVLQUFBCgwMVPPmzVWlShWHzn/55Ze1bNkyNW/eXIMGDVLdunWVnJysjRs3aunSpfmGUyYkJCgrKyvfdbp3767bbrtNPj4+iouL0yOPPKL09HS99957Cg8Pz9f7r0mTJpo5c6ZeeuklVa9eXeHh4brlllv09NNP6/vvv9cdd9yh/v37q0mTJsrIyNCWLVv05Zdfav/+/cUezvbGG2+oTZs2aty4sQYPHqwqVapo//79WrBggRITE23K9u3bV3fffbckc1B6sTZt2qhs2bJaunSpzRxk9erVU4sWLTRq1Chrb7nPPvssXwD1888/a9iwYbrnnntUs2ZN5eTk6OOPP7YGhBdasmSJWrdurbJlyxbrfgEAAIDrmsvX+wNKQL9+/YzKlSvn21+5cmWja9euNvskGUOHDs1X1rIcvCRj3bp11v3z5s0zevfubVSrVs3w9/c3/Pz8jLp16xrPP/+8kZaWlu/aBW3t2rWzaW9gYKDde9m7d6/h6elp9OvXz2b/tGnT7C5jf6F9+/YZkoxp06ZZ982ZM8eQZMyZM8e6Lzk52ejWrZsRGRlp+Pj4GFWqVDGeffbZfPdz+vRp44EHHjCqV69uBAQEGL6+vka9evWMSZMmGefOnctX/3vvvWdUrVrV8PT0NCQZy5YtMwzD/utgGIbRrl07m+fF8hp88cUXBd7jhWVjY2ONkJAQw8/Pz6hWrZrRv39/Y/369dYyhT3POTk5xrRp04zatWsbPj4+RlhYmNGlSxdjw4YNNuW++uoro02bNkZgYKARGBho1K5d2xg6dKixc+dOm/uoV69evjrsvS+/++47o27duoaXl5fN62KvrCRj7NixNvuOHTtmDB061KhYsaLh7e1tREZGGh07djTeffddaxnL+6Cg7eOPPzYMwzC+//57o2HDhoafn58RHR1tTJkyxZg9e3a+91lSUpLRtWtXIygoKN97+cyZM8aoUaOM6tWrGz4+Pka5cuWMVq1aGa+88or1PWLvfVnYPW7dutW46667jNDQUMPPz8+oVauWMXr06HznZmdnG6VLlzZCQkKMs2fP5jtuGIbx+OOPG9WrV8+3f+/evUanTp0MX19fIyIiwnjuueeMJUuW2Lxv//rrL+Ohhx4yqlWrZvj5+RllypQxOnToYCxdutTmWikpKYaPj4/x/vvv220DAAAAAPtMhuGkWXgBN+rfv79+/vlnbdy4UV5eXkVOWH6tMf4ZTnbw4EE1btxY06ZNK3YvHuBqk5OTo6ioKMXFxVkn6b/YX3/9pdq1a2vRokXq2LFjibRjxowZmjp1qvbu3euS1TMBAACAawVzSuGacfDgQYWFhalNmzbuborLpaamKiwsTI0bN3Z3UwCX+fbbb3XixAn17du3wDJVq1bVwIEDnTpP24XOnz+v6dOn64UXXiCQAgAAAIqJnlK4Jmzfvl1HjhyRJJUqVcolK9ddSXJycrR8+XLr45o1a9qsqAZcS9auXas//vhDEyZMULly5bRx40Z3NwkAAADAJSCUAgBcVfr3769PPvlEjRo1Unx8vOrXr+/uJgEAAAC4BAzfAwBcVeLj45WTk6P169cTSOGasGLFCsXFxSkqKkomk0nffvttkecsX75cjRs3lq+vr6pXr674+PgSbycAAICzEUoBAAC4UUZGhm688Ua99dZbDpXft2+funbtqg4dOigxMVHDhw/Xww8/rB9//LGEWwoAAOBcDN8DAAC4QphMJn3zzTfq3r17gWWeffZZLViwQFu3brXu6927t1JSUrR48WIXtBIAAMA5vNzdgJKSl5enI0eOKCgoSCaTyd3NAQAA1xjDMHTmzBlFRUXJw8N1nc/XrFmjTp062eyLjY3V8OHDCzwnOztb2dnZ1sd5eXlKTk5W2bJl+Z4EAACcztHvSddsKHXkyBFVrFjR3c0AAADXuIMHD+qGG25wWX1JSUmKiIiw2RcREaG0tDSdPXtW/v7++c6ZPHmyxo8f76omAgAASCr6e9I1G0oFBQVJMj8BwcHBbm4NAAC41qSlpalixYrW7xxXslGjRmnEiBHWx6mpqapUqRLfkwAAQIlw9HvSNRtKWbqiBwcH82ULAACUGFcPf4uMjNSxY8ds9h07dkzBwcF2e0lJkq+vr3x9ffPt53sSAAAoSUV9T2L1PQAAgKtIy5YtlZCQYLNvyZIlatmypZtaBAAAcGkIpQAAANwoPT1diYmJSkxMlCTt27dPiYmJOnDggCTz0Lu+fftayz/66KP666+/9Mwzz+jPP//U22+/rf/973968skn3dF8AACAS0YoBQAA4Ebr169XTEyMYmJiJEkjRoxQTEyMxowZI0k6evSoNaCSpCpVqmjBggVasmSJbrzxRr366qt6//33FRsb65b2AwAAXCqTYRiGuxtREtLS0hQSEqLU1FTmSoDDcnNzdf78eXc3AwBwBfD29panp2eBx6/m7xpXc9sBAIBrFPb7sbO+J12zE50DxWEYhpKSkpSSkuLupgAAriChoaGKjIx0+WTmAAAA7uLo78fO+J5EKAVI1g9ceHi4AgIC+OUDAK5zhmEoMzNTx48flySVL1/ezS0CAABwjaJ+P3bm9yRCKVz3cnNzrR+4smXLurs5AIArhL+/vyTp+PHjCg8PL7SLOgAAwLXA0d+PnfU9iYnOcd2zjJENCAhwc0sAAFcay78NzDcIAACuB8X5/dgZ35MIpYB/MGQPAHAx/m0AAADXI0e+AznjexKhFAAAAAAAAFyOUArAFSU6OlozZsxwdzOuWqdOnVJ4eLj279/v8rpbtGihr776qtAy+/fvl8lkkslkUqNGjYp1/eXLl8tkMl1Rq2ReK+9Xk8mkb7/91t3NcDrLey00NNTdTQEAAIAdhFLAVWzFihWKi4tTVFTUNfNL5bp16zR48GB3N+OKDEAcMXHiRHXr1k3R0dH5jp06dUo33HDDJd1Xbm6uRo8erSpVqsjf31/VqlXThAkTZBiGtcwLL7ygkSNHKi8vr8jrLV26VAkJCdbH48aNU//+/a2P27dvr+HDhxerjVe69u3bKz4+3uHylgAP+Y0bN85uqBkdHa3ly5dbHx89evSaCA0BAACuVYRSwFUsIyNDN954o9566y13N+WynTt3TpIUFhZ2zUw6b7knV8nMzNQHH3yggQMH2j0+cOBANWzY8JKuPWXKFM2cOVP/93//px07dmjKlCmaOnWq3nzzTWuZLl266MyZM1q0aFGR1ytbtqxLVrt09WuAK0tkZKRCQkLc3QwAAAAUgFAKuIp16dJFL730ku66665inffdd9+pcePG8vPzU9WqVTV+/Hjl5ORIkl588UVFRUXp1KlT1vJdu3ZVhw4drD1gTCaTZs6cqS5dusjf319Vq1bVl19+aVPHwYMH1atXL4WGhqpMmTLq1q2bzZCy/v37q3v37po4caKioqJUq1YtSfmHQ5lMJr3zzju64447FBAQoDp16mjNmjXas2eP2rdvr8DAQLVq1Up79+51+B4t133//fd11113KSAgQDVq1ND3338vydxDpUOHDpKk0qVLy2Qy2fTiKUj79u01bNgwDR8+XOXKlVNsbKy1t0tiYqK1XEpKikwmk7VHh6VXVkJCgpo2baqAgAC1atVKO3fuLLLOCy1cuFC+vr5q0aJFvmMzZ85USkqKnnrqqWJd02L16tXq1q2bunbtqujoaN1999267bbb9Pvvv1vLeHp66vbbb9dnn312SXVY9O/fX7/88otef/116/CrC987GzZsKPB5svSgef/991WlShX5+flJMj/nDz/8sMLCwhQcHKxbbrlFmzdvtp63d+9edevWTRERESpVqpRuuukmLV261KZdx48fV1xcnPz9/VWlShXNnTvX5rhhGBo3bpwqVaokX19fRUVF6fHHH7+s5+JC8fHxCg0N1bfffqsaNWrIz89PsbGxOnjwoE25mTNnqlq1avLx8VGtWrX08ccf2xzfvXu3br75Zvn5+alu3bpasmRJsdpx6NAh3XfffSpTpowCAwPVtGlTrV271qH6nfF5iI+P1/jx47V582br+6M4PdAAAABQNEdGPzhSpiiEUoAdhmEo81yOW7YLh0OVhJUrV6pv37564okntH37dr3zzjuKj4/XxIkTJUnPP/+8oqOj9fDDD0uS3nrrLa1evVoffvihPDz+/Stj9OjR6tmzpzZv3qw+ffqod+/e2rFjhyTzkqCxsbEKCgrSypUrtWrVKpUqVUqdO3e26bmSkJCgnTt3asmSJZo/f36BbZ4wYYL69u2rxMRE1a5dW/fff78eeeQRjRo1SuvXr5dhGBo2bJjD92gxfvx49erVS3/88Yduv/129enTR8nJyapYsaJ1bqSdO3fq6NGjev311x16fj/88EP5+Pho1apVmjVrlkPnWDz//PN69dVXtX79enl5eemhhx4q1vkrV65UkyZN8u3fvn27XnzxRX300Uc2r2FxtGrVSgkJCdq1a5ckafPmzfr111/VpUsXm3LNmjXTypUrL6kOi9dff10tW7bUoEGDdPToUR09elQVK1a0Hi/qedqzZ4+++uorff3119bw45577tHx48e1aNEibdiwQY0bN1bHjh2VnJwsSUpPT9ftt9+uhIQEbdq0SZ07d1ZcXJwOHDhgvW7//v118OBBLVu2TF9++aXefvttHT9+3Hr8q6++0muvvaZ33nlHu3fv1rfffqsGDRpc1nNxsczMTE2cOFEfffSRVq1apZSUFPXu3dt6/JtvvtETTzyh//73v9q6daseeeQRDRgwQMuWLZNk/uLQo0cP+fj4aO3atZo1a5aeffZZh+tPT09Xu3btdPjwYX3//ffavHmznnnmGesXkqLqL46CXud7771X//3vf1WvXj3r++Pee+8t9vUBAACQn4+Pjzw8PHTkyBGlpqbq7NmzysrKstnOnj2r1NRUHTlyRB4eHvLx8bn0Co1rVGpqqiHJSE1NdXdTcIU7e/assX37duPs2bPWfRnZ543Kz853y5aRff6S7kOS8c033xRZrmPHjsakSZNs9n388cdG+fLlrY/37t1rBAUFGc8++6zh7+9vzJ07N19djz76qM2+5s2bG0OGDLFer1atWkZeXp71eHZ2tuHv72/8+OOPhmEYRr9+/YyIiAgjOzvb5jqVK1c2XnvtNZu6XnjhBevjNWvWGJKMDz74wLpv3rx5hp+fX7Hu8eLrpqenG5KMRYsWGYZhGMuWLTMkGadPnzYc1a5dOyMmJsZm3759+wxJxqZNm6z7Tp8+bUgyli1bZlPX0qVLrWUWLFhgSLJ5XxalW7duxkMPPWSzLysry2jYsKHx8ccfX/J9GYZh5ObmGs8++6xhMpkMLy8vw2Qy5XuODcMwvvvuO8PDw8PIzc21ex17z4c97dq1M5544gmbfY48T2PHjjW8vb2N48ePW8usXLnSCA4ONrKysmyuV61aNeOdd94psA316tUz3nzzTcMwDGPnzp2GJOP333+3Ht+xY4chyfp+ffXVV42aNWsa586dK/TeLtWcOXMMScZvv/2Wrw1r1641DMMwWrVqZQwaNMjmvHvuuce4/fbbDcMwjB9//NHw8vIyDh8+bD2+aNEih//+eOedd4ygoCDj1KlTdo8XVb+zPg9jx441brzxxiLbaxjm5y0kJMShsvbY+zfC4mr+rnE1tx0AAJSs7OxsY//+/cb27dsL3fbv35/v9zkLR79reF16nAXgarR582atWrXKptdQbm6usrKylJmZqYCAAFWtWlWvvPKKHnnkEd177726//77812nZcuW+R5beqVs3rxZe/bsUVBQkE2ZrKwsm2F2DRo0cChVv3AepIiICOu5F+7LyspSWlqagoODHbrHi68bGBio4OBgm54vl8JeTyVHXdie8uXLSzIPGatUqZJD5589e9Y6XM1i1KhRqlOnjh544IFLbpck/e9//9PcuXP16aefql69ekpMTNTw4cMVFRWlfv36Wcv5+/srLy9P2dnZ8vf3v6w6C1LU81S5cmWFhYVZy2zevFnp6en55rA6e/as9f2Ynp6ucePGacGCBTp69KhycnJ09uxZa0+pHTt2yMvLy+b1rV27ts2qbvfcc49mzJihqlWrqnPnzrr99tsVFxcnLy/n/VPr5eWlm266KV8bduzYoWbNmmnHjh35Fgpo3bq1taffjh07VLFiRUVFRVmPX/xZLkxiYqJiYmJUpkwZu8eLqr84LvfzAAAAgEvj4+OjSpUqKScnR7m5uXbLeHp6ysvL67IX5iGUAuzw9/bU9hdj3VZ3SUpPT9f48ePVo0ePfMcuDDRWrFghT09P7d+/Xzk5OcX6xTo9PV1NmjTJN+eOJJuwIDAw0KHreXt7W3+2/KVnb59lCJGj93jhNSzXudxx0Rffk2W4nHHBsMzz58/bPbewe3JEuXLldPr0aZt9P//8s7Zs2WKd88vSjnLlyun555/X+PHjHbr2008/rZEjR1qHijVo0EB///23Jk+ebBNKJScnKzAwsMQCKano5+ni1yA9PV3ly5e3WZXNwhIqPfXUU1qyZIleeeUVVa9eXf7+/rr77ruLNVF6xYoVtXPnTi1dulRLlizRY489pmnTpumXX37J9167Wl3u6+rKzwMAAAAunclkkre3d4l/jyWUAuwwmUwK8Lk2Px6NGzfWzp07Vb169QLLfP755/r666+1fPly9erVSxMmTMgXXvz222/q27evzeOYmBhrHZ9//rnCw8MVHBxcMjdSCEfusSiWHlwF/c+Aoywh3NGjR63Pz4WTPDtTTEyMPvnkE5t9X331lc6ePWt9vG7dOj300ENauXKlqlWr5vC1MzMz881H5enpmS8k2Lp1q/U+L4ePj89lP/cWjRs3VlJSkry8vBQdHW23zKpVq9S/f3/rogHp6ek2k6vXrl1bOTk52rBhg7Wn0s6dO5WSkmJzHX9/f8XFxSkuLk5Dhw5V7dq1tWXLFjVu3Ngp95KTk6P169erWbNmNm2oU6eOJKlOnTpatWqVTVC4atUq1a1b13r84MGDOnr0qLX30W+//eZw/Q0bNtT777+v5ORku72liqrfWZ8HZ74/AAAA4D7X5m/dwHUiPT1de/bssT7et2+fEhMTVaZMmQKHuIwZM0Z33HGHKlWqpLvvvlseHh7avHmztm7dqpdeekmHDh3SkCFDNGXKFLVp00Zz5szRHXfcoS5dutis6vbFF1+oadOmatOmjebOnavff/9dH3zwgSSpT58+mjZtmrp166YXX3xRN9xwg/7++299/fXXeuaZZ3TDDTeU6PNS1D06onLlyjKZTJo/f75uv/12+fv7q1SpUsVui7+/v1q0aKGXX35ZVapU0fHjx/XCCy8U+zqOiI2N1ahRo3T69GmVLl1akvIFTydPnpRkDg8uHHpWlLi4OE2cOFGVKlVSvXr1tGnTJk2fPj3fJOMrV67Ubbfddnk3IvMqjGvXrtX+/ftVqlSpAoeLOaJTp05q2bKlunfvrqlTp6pmzZo6cuSIFixYoLvuuktNmzZVjRo19PXXXysuLk4mk0mjR4+2Cdxq1aqlzp0765FHHtHMmTPl5eWl4cOH2/Qcio+PV25urpo3b66AgAB98skn8vf3V+XKlS/rubiQt7e3/vOf/+iNN96Ql5eXhg0bphYtWlhDqqefflq9evVSTEyMOnXqpB9++EFff/21dSXBTp06qWbNmurXr5+mTZumtLQ0Pf/88w7Xf99992nSpEnq3r27Jk+erPLly2vTpk2KiopSy5Yti6zfWZ+H6Oho6993N9xwg4KCguTr61vs6wAAAMC9WH0PuIqtX79eMTEx1h4HI0aMUExMjMaMGVPgObGxsZo/f75++ukn3XTTTWrRooVee+01Va5cWYZhqH///mrWrJl1NbvY2FgNGTJEDzzwgNLT063XGT9+vD777DM1bNhQH330kebNm2ftDREQEKAVK1aoUqVK6tGjh+rUqaOBAwcqKyvLJT2nCrtHR1WoUEHjx4/XyJEjFRERYbO6X3HNnj1bOTk5atKkiYYPH+5wMHah/fv3y2Qy2R2CZtGgQQM1btxY//vf/5x+7TfffFN33323HnvsMdWpU0dPPfWUHnnkEU2YMMFa5vDhw1q9erUGDBhQrPrteeqpp+Tp6am6desqLCzMZhW84jKZTFq4cKFuvvlmDRgwQDVr1lTv3r31999/W+comz59ukqXLq1WrVopLi5OsbGx+Xo3zZkzR1FRUWrXrp169OihwYMHKzw83Ho8NDRU7733nlq3bq2GDRtq6dKl+uGHH/LNZWXRv39/tW/fvlj3EhAQoGeffVb333+/WrdurVKlSunzzz+3Hu/evbtef/11vfLKK6pXr57eeecdzZkzx1qPh4eHvvnmG509e1bNmjXTww8/nG9VysL4+Pjop59+Unh4uG6//XY1aNBAL7/8sjw9PR2qX3LO56Fnz57q3LmzOnTooLCwMM2bN6/Y1wAAAID7mQyjhNefd5O0tDSFhIQoNTXVLcOHcPXIysrSvn37VKVKlXyTRMM+k8mkb775Rt27d3d3U64by5YtU48ePfTXX39Ze0HZs2DBAj399NPaunVrvuF2l3vtojz77LM6ffq03n333QLL7N+/X1WqVNGmTZvUqFGjS67rWtCuXTt16NBB48aNc6h8fHy8hg8fnm/IIAp3uc9bYf9GXM3fNa7mtgMAgCufo981GL4HAFeBhQsX6rnnnisyNOratat2796tw4cPq2LFik69dlHCw8M1YsQIh8q2atVKjRo10urVqy+rzqtVamqq9u7dqwULFri7Kde0UqVKKScnh/9wAAAAuEIRSgGAAw4cOGAdnmjP9u3bS3Sp+mnTpjlcdvjw4SV27cL897//LbLMDTfcoN27d0vSdT0HUEhIiA4dOuTuZuQzadIkTZo0ye6xtm3batGiRS5u0eWxTKJuGV4IAACAKwvD93DdY/geHJGTk2OzGtvFoqOj5eVFzo+rW3JyspKTk+0e8/f3V4UKFVzcIvdj+B4AAEDxMXwPAJzIy8tL1atXd3czgBJVpkyZy1rpEAAAACgOVt8DAAAAAACAyxFKAQAAAAAAwOUIpQAAAAAAAOByhFKXyDAMHTiV6e5mAAAAAAAAXJWY6PwSVRm1UJL0bOfaGtK+mptbAwAAAAAAcHWhp9RlWrjlqLubAFxToqOjNWPGDHc346p16tQphYeHa//+/e5uSj4nT55UeHi4Dh06VGi5+Ph4mUwmmUwmDR8+vFh1jBs3To0aNbr0RjrZ/v37ZTKZlJiY6O6mXJbly5fLZDIpJSXF3U1xKst9mUwmde/e3d3NAQAAuO4QSgFXsRUrViguLk5RUVEymUz69ttv3d2ky7Zu3ToNHjzY3c24an8Jnzhxorp166bo6GhJ5pCqc+fOioqKkq+vrypWrKhhw4YpLS3Nes7XX3+tW2+9VWFhYQoODlbLli31448/Frvud999V+3bt1dwcLDd565cuXLq27evxo4dW+S1goODdfToUU2YMMG6r3379oqPj7c+vlbe8xcymUzFChTj4+PVvn37EmvP1ax9+/b5Qk1LSGjRqlUrHT16VL169XJx6wAAACARSgFXtYyMDN14441666233N2Uy3bu3DlJUlhYmAICAtzcGuew3JOrZGZm6oMPPtDAgQOt+zw8PNStWzd9//332rVrl+Lj47V06VI9+uij1jIrVqzQrbfeqoULF2rDhg3q0KGD4uLitGnTpmLX37lzZz333HMFlhkwYIDmzp2r5OTkQq9lMpkUGRmpoKCgYrXhUrj6dcKVw8fHR5GRkfL393d3UwAAAK5LhFLAVaxLly566aWXdNdddxXrvO+++06NGzeWn5+fqlatqvHjxysnJ0eS9OKLLyoqKkqnTp2ylu/atas6dOigvLw8SebAYObMmerSpYv8/f1VtWpVffnllzZ1HDx4UL169VJoaKjKlCmjbt262fQA6d+/v7p3766JEycqKipKtWrVkpR/+J7JZNI777yjO+64QwEBAapTp47WrFmjPXv2qH379goMDFSrVq20d+9eh+/Rct33339fd911lwICAlSjRg19//33ksy9KTp06CBJKl26tEwmk/r371/k89q+fXsNGzZMw4cPV7ly5RQbG2t3+FZKSopMJpOWL18u6d9eWQkJCWratKkCAgLUqlUr7dy5s8g6L7Rw4UL5+vqqRYsW1n2lS5fWkCFD1LRpU1WuXFkdO3bUY489ppUrV1rLzJgxQ88884xuuukm1ahRQ5MmTVKNGjX0ww8/FKv+4cOHa+TIkTb1X6xevXqKiorSN998U6xrX8zSE+yuu+6SyWSyPrb4+OOPFR0drZCQEPXu3VtnzpyxHrP3OknS1q1b1aVLF5UqVUoRERF68MEHdfLkSet5ixcvVps2bRQaGqqyZcvqjjvuyPe++/333xUTEyM/Pz81bdo0X7B3+vRp9enTR2FhYfL391eNGjU0Z86cy3ouLmT5XI0fP97a8+3RRx+1Cd6ys7P1+OOPKzw8XH5+fmrTpo3WrVtnc52FCxeqZs2a8vf3V4cOHYo9HHTVqlVq3769AgICVLp0acXGxur06dMO1R8fH6/Q0FCb63377bc2PZwswzQLep379++vX375Ra+//rp1eN6VOKQVAADgekcoBdhjGNK5DPdshlGit7Zy5Ur17dtXTzzxhLZv36533nlH8fHxmjhxoiTp+eefV3R0tB5++GFJ0ltvvaXVq1frww8/lIfHv39ljB49Wj179tTmzZvVp08f9e7dWzt27JAknT9/XrGxsQoKCtLKlSu1atUqlSpVSp07d7b55TghIUE7d+7UkiVLNH/+/ALbPGHCBPXt21eJiYmqXbu27r//fj3yyCMaNWqU1q9fL8MwNGzYMIfv0WL8+PHq1auX/vjjD91+++3q06ePkpOTVbFiRX311VeSpJ07d+ro0aN6/fXXHXp+P/zwQ/n4+GjVqlWaNWuWQ+dYPP/883r11Ve1fv16eXl56aGHHirW+StXrlSTJk0KLXPkyBF9/fXXateuXYFl8vLydObMGZUpU6ZY9TuqWbNmNqHYpbCEGHPmzNHRo0dtQo29e/fq22+/1fz58zV//nz98ssvevnll23Ov/h1SklJ0S233KKYmBitX79eixcv1rFjx2yGdWVkZGjEiBFav369EhIS5OHhobvuussa1qanp+uOO+5Q3bp1tWHDBo0bN05PPfWUTb2jR4/W9u3btWjRIu3YsUMzZ85UuXLlLuu5uFhCQoJ27Nih5cuXa968efr66681fvx46/FnnnlGX331lT788ENt3LhR1atXV2xsrLX32sGDB9WjRw/FxcUpMTFRDz/8sEaOHOlw/YmJierYsaPq1q2rNWvW6Ndff1VcXJxyc3Mdqt9Rhb3Or7/+ulq2bKlBgwbp6NGjOnr0qCpWrFis6wMAAMAFjGtUamqqIclITU0tketXfna+UfnZ+cYdb6wskevDdc6ePWts377dOHv27L87s9MNY2ywe7bs9Eu6D0nGN998U2S5jh07GpMmTbLZ9/HHHxvly5e3Pt67d68RFBRkPPvss4a/v78xd+7cfHU9+uijNvuaN29uDBkyxHq9WrVqGXl5edbj2dnZhr+/v/Hjjz8ahmEY/fr1MyIiIozs7Gyb61SuXNl47bXXbOp64YUXrI/XrFljSDI++OAD67558+YZfn5+xbrHi6+bnp5uSDIWLVpkGIZhLFu2zJBknD592nBUu3btjJiYGJt9+/btMyQZmzZtsu47ffq0IclYtmyZTV1Lly61llmwYIEhyfZ9WYRu3boZDz30kN1jvXv3Nvz9/Q1JRlxcXKHXnTJlilG6dGnj2LFjDtd9oaKeuyeffNJo3759gefPmTPHCAkJKbIee+/5sWPHGgEBAUZaWpp139NPP200b97c+tje6zRhwgTjtttus9l38OBBQ5Kxc+dOu/WfOHHCkGRs2bLFMAzDeOedd4yyZcvaPLczZ860ef3j4uKMAQMGFHlvl6pfv35GmTJljIyMDJs2lCpVysjNzTXS09MNb29vm8/0uXPnjKioKGPq1KmGYRjGqFGjjLp169pc99lnn3X483DfffcZrVu3tnvMkfrtvf7ffPONceFXFkdf5yeeeKLI9hqG+Xnr1q2b3WN2/434R0l/1yhJV3PbAQDAlc/R7xr0lAKuM5s3b9aLL76oUqVKWTdLb4LMzExJUtWqVfXKK69oypQpuvPOO3X//ffnu07Lli3zPbb0lNq8ebP27NmjoKAgax1lypRRVlaWzXCnBg0ayMfHp8g2N2zY0PpzRESE9dwL92VlZVkn73bkHi++bmBgoIKDg3X8+PEi21OYonoqFebC9pQvX16SitWes2fPys/Pz+6x1157TRs3btR3332nvXv3asSIEXbLffrppxo/frz+97//KTw8vBitd5y/v7/N6+Bs0dHRNnNRlS9fPt/zePHrtHnzZi1btszmPVO7dm1Jsr5nd+/erfvuu09Vq1ZVcHCwdcjggQMHJEk7duxQw4YNbV6Diz8nQ4YM0WeffaZGjRrpmWee0erVq51z0xe48cYbbeZla9mypdLT03Xw4EHt3btX58+fV+vWra3Hvb291axZM+vnd8eOHWrevLnNNS++j8JYekrZ40j9jnLkdQYAAMCVzcvdDQCuSN4B0nNH3Fd3CUpPT9f48ePVo0ePfMcu/GV6xYoV8vT01P79+5WTkyMvL8f/ukhPT1eTJk00d+7cfMfCwsKsPwcGBjp0PW9vb+vPlnll7O27cBiVI/d44TUs17Fc41JdfE+WIY/GBcMyz58/b/fcwu7JEeXKlbPO23OxyMhIRUZGqnbt2ipTpozatm2r0aNHW8MvSfrss8/08MMP64svvlCnTp0crre4kpOTbd4HzubI63rx65Senq64uDhNmTIl3/Usz1FcXJwqV66s9957T1FRUcrLy1P9+vWLNVF6ly5d9Pfff2vhwoVasmSJOnbsqKFDh+qVV15x+BpXusudNNzDw8Pm8yLZ/8yUxOcXAAAArkVPKcAek0nyCXTPdsFkviWhcePG2rlzp6pXr55vswQon3/+ub7++mstX75cBw4c0IQJE/Jd57fffsv3uE6dOtY6du/erfDw8Hx1hISElOj9OXqPRbH04LLMg3OpLOHL0aNHrfsunPTcmWJiYrR9+/Yiy1l+cc/OzrbumzdvngYMGKB58+apa9euJdI+i61btyomJuayr+Pt7X3Zr49F48aNtW3bNkVHR+d7zwQGBurUqVPauXOnXnjhBXXs2FF16tTJFwDWqVNHf/zxh7Kysqz7Lv6cSOb3RL9+/fTJJ59oxowZevfdd51yDxabN2/W2bNnbdpQqlQpVaxYUdWqVbPOpWVx/vx5rVu3TnXr1rXex++//25zTXv3UZCGDRsqISHB7jFH6g8LC9OZM2eUkZFhLXMpnxkfHx+nvT8AAABQMgilgKtYenq6EhMTrb+w7du3T4mJidbhRPaMGTNGH330kcaPH69t27Zpx44d+uyzz/TCCy9Ikg4dOqQhQ4ZoypQpatOmjebMmaNJkybl+6X0iy++0OzZs7Vr1y6NHTtWv//+u3Wy8T59+qhcuXLq1q2bVq5cqX379mn58uV6/PHHdejQoZJ5Mopxj46oXLmyTCaT5s+frxMnTig9Pf2S2uLv768WLVro5Zdf1o4dO/TLL78Uqx3FERsbq23bttmEJQsXLtScOXO0detW7d+/XwsWLNCjjz6q1q1bW4efffrpp+rbt69effVVNW/eXElJSUpKSlJqamqx6k9KSlJiYqL27NkjSdqyZYsSExNtJrDOzMzUhg0bdNttt132/UZHRyshIUFJSUkF9hBz1NChQ5WcnKz77rtP69at0969e/Xjjz9qwIABys3NVenSpVW2bFm9++672rNnj37++ed8QyDvv/9+mUwmDRo0SNu3b9fChQvz9YAaM2aMvvvuO+3Zs0fbtm3T/PnzrWGus5w7d04DBw60tmHs2LEaNmyYPDw8FBgYqCFDhujpp5/W4sWLtX37dg0aNEiZmZkaOHCgJOnRRx/V7t279fTTT2vnzp369NNPFR8f73D9o0aN0rp16/TYY4/pjz/+0J9//qmZM2fq5MmTDtXfvHlzBQQE6LnnntPevXuLXb9FdHS01q5dq/379+vkyZP0ogIAALgCEUoBV7H169crJibG2utkxIgRiomJ0ZgxYwo8JzY2VvPnz9dPP/2km266SS1atNBrr72mypUryzAM9e/fX82aNbMGTLGxsRoyZIgeeOABm2Bm/Pjx+uyzz9SwYUN99NFHmjdvnrWnQ0BAgFasWKFKlSqpR48eqlOnjgYOHKisrCwFBweX4DNS9D06qkKFCho/frxGjhypiIgIm9X9imv27NnKyclRkyZNNHz4cL300kvFvsb+/ftlMpm0fPnyAss0aNBAjRs31v/+9z/rPn9/f7333ntq06aN6tSpoyeffFJ33nmnzWqH7777rnJycjR06FCVL1/euj3xxBPWMvHx8dYhhQWZNWuWYmJiNGjQIEnSzTffrJiYGH3//ffWMt99950qVaqktm3bFvcpyOfVV1/VkiVLVLFixcvueRUVFaVVq1YpNzdXt912mxo0aKDhw4crNDRUHh4e8vDw0GeffaYNGzaofv36evLJJzVt2jSba5QqVUo//PCDtmzZopiYGD3//PP5hgP6+Pho1KhRatiwoW6++WZ5enrqs88+K7Bd0dHRGjduXLHupWPHjqpRo4Zuvvlm3XvvvbrzzjttrvHyyy+rZ8+eevDBB9W4cWPt2bNHP/74o0qXLi1JqlSpkr766it9++23uvHGGzVr1ixNmjTJ4fpr1qypn376SZs3b1azZs3UsmVLfffdd9YhwEXVX6ZMGX3yySdauHChGjRooHnz5hX7OZCkp556Sp6enqpbt67CwsIKDesBAADgHibj4okbrhFpaWkKCQlRampqifwSHD1ygSSpQYUQ/fCfNk6/PlwnKytL+/btU5UqVQqcJBq2TCaTvvnmG3Xv3t3dTbluLFu2TD169NBff/1l/eXdngULFujpp5/W1q1bHR6q6IixY8fql19+KTQUc0SLFi30+OOP25083yI+Pl7Dhw9XSkrKZdV1tcvMzFTZsmW1aNEitW/f3qFz+vfvr5SUFH377bcl2rZrTWHPW2H/RpT0d42SdDW3HQAAXPkc/a5BTykAuAosXLhQzz33XKGBlCR17dpVgwcP1uHDh51a/6JFizR16tTLusbJkyfVo0cP3XfffUWWTU1NValSpfTss89eVp1Xs2XLlumWW25xOJBC8a1cuVKlSpWyuygDAAAASh6r7wGAAw4cOGAdnmjP9u3bValSpRKr/+KhYoUZPny40+u/eOLrS1GuXDk988wzRZbr2bOn2rQx90ANDQ297HqvVl27di3xSecvRZcuXbRy5Uq7x5577jk999xzLm7RpWvatKl1Tr5SpUq5tzEAAADXIUIpAMV2jY76LVRUVFShK4BFRUW5rjHXuKCgIAUFBbm7GVelS5kQvLjef/99m9X9LlSmTJkSr9+Z/P39Vb16dXc3AwAA4LpFKHWFMgyjyEmFAbiOl5cXv7wCMi8CAAAAADgDc0pdgVbtOakqoxaq6UtL3d0UAAAAAACAEkEodQWKX71fknQyPdu9DbnOXI9D0gAAhePfBgAAgJJDKIXrnre3tyTz8usAAFzI8m+D5d8KAAAAOA9zSuG65+npqdDQUB0/flySFBAQwHxeAHCdMwxDmZmZOn78uEJDQ+Xp6enuJgEAAFxzCKUASZGRkZJkDaYAAJCk0NBQ678RAAAAcC5CKUCSyWRS+fLlFR4ervPnz7u7OQCAK4C3tzc9pAAAAEoQoRRwAU9PT34BAQAAAADABZjoHAAAAAAAAC5HKAUAAAAAAACXI5QCAAAAAACAyxFKAQAAAAAAwOUIpQAAAAAAAOByhFIAAAAAAABwOUIpAAAAAAAAuByhFAAAAAAAAFyOUAoAAAAAAAAuRyiFfF74dosSdhxzdzMAAAAAAMA1jFAKNhJ2HNMnvx3QwA/Xu7spAAAAAADgGkYoBRv7T2W6uwkAAAAAAOA6QCgFAAAAAAAAlyOUAgAAAAAAgMsRSl2HsnNylZGd4+5mAAAAAACA65iXuxsA16v1wmJJ0p8TOsvP29PNrQEAAAAAANcjekpdxw4mM6k5AAAAAABwD0IpAAAAAAAAuByh1GXacjjV3U0AAAAAAAC46hBKAQAAAAAAwOUIpQAAAAAAAOByhFIAAAAAAABwOUIpJ8g6n+vuJgAAAAAAAFxVCKWcYN/JDHc3AQAAAAAA4KpCKOUEu46dcXcTAAAAAAAAriqEUk6w+1i6u5sAAAAAAABwVSGUcoLdx53bU8ownHo5AAAAAACAKw6hlBM4u6fU0h3HnHo9AAAAAACAKw2hlBPsP5Wh7BxW4AMAAAAAAHAUoZQT5BnSXydYgQ8AAAAAAMBRhFJOwgp8AAAAAAAAjiOUcpI9x1mBDwAAAAAAwFGEUk5CTykAAAAAAADHEUo5ibNX4AMAAAAAALiWEUo5CSvwAQAAAAAAOI5QygmC/byuyhX4zuXmubsJAAAAAADgOkUo5QQ1IoIkXX3zSi3dftzdTQAAAAAAANcpQiknqBlRSpJzVuDLOs8QQAAAAAAAcO0jlHKCGuHO6ymVknn+sq8BAAAAAABwpSOUcoIa//SUunAFvjqjFyt65IJiT35+OvOcU9sGAAAAAABwJfJydwOuBTX/mVPKsgKfr5enzv4zDG/x1iR1a1TB4Wu5u6dUUOYhzfGeolQFSguWSf6hkl9owX/6BEomk/saDAAAAAAArkqEUk4QHuSrID8vncnK0V8nMlSnfLD1WFJqVrGulXrWvT2lAs6dUAfPzeYH61YXfYKHd9HBFYEWAAAAAAC4CKGUE5hMJtWMCNKGv09r17EzNqHUqr2n9Ei7ag5fy909pdL8K+rp84MVrAyN7hglnU2RslLMf549/e/PWSlSXo6Ud17KOGHeisvD69LCLP9QyacUgRYAAAAAAFcxQiknqRlRShv+Pn3ZK/ClnHVvKHXWt5y+yG0vSRp9S9eCCxqGdC7DNqQqzp95582hVuZJ81ZcBFoAAAAAAFzVCKWcpLqTVuBzd08ph5lMkm8p8xZyQ/HONQzpfOalhVlZKVLuOScEWiH2Q6uy1aS63Yp/TwAAAAAAoFgIpZykpmUFvsvsKeXuOaWSM7JLvhKTyTyflE+gFOL4JPCS/gm0zhYQWp0uRqB1yrzZ8+NzUuXWUoN7zAFVQJlLuk0AAAAAAFAwQiknqfFPT6m/T2UqOyf3kq/j7p5S32464tb6i2QyST4B5i04qnjnFhpopZhDrb9XS3//Kv29yrwtfFqq3klqcLdUq4s5SAMAAAAAAJeNUMpJIoJtV+C7VK4MpSKCfV1W1xXB0UAr9ZC09WtpyxdS0h/SrkXmzTtQqt3V3IOqWgfJ09t1bQcAAAAA4Brj4e4GXCssK/BJlzeEz5GJzkd/u1XRIxdo2o9/2j2+9XCqJszfLsMwCr1OsD+hil0hN0itH5ceXSkN/V26+WmpdLR0PkPa8j/p03ukV2pK80eYe1bl5bm7xQAAAAAAXHUIpZyoRvg/80pdxmTnKZlFzyn18W9/S5LeWrbX7vE73vxVH/y6T7NX7b/kduAfYbWkW16QHk+UHk6Qmj8qBYZLZ5Ol9R9Ic7pIMxpIS8ZISVvMQwQBAAAAAECRGL7nRDUiLn8FPmcO39uVdHkrAeICJpN0Q1PzdttEaf8KacuX0vbvpbRD0qrXzVtYbfP8U/XvlspUcXerAQAAAAC4YtFTyonsrcCXnuV4yJR1Pldnzzs+SXqwH5miW3h6SdVukbq/LT29W+r1kVQnTvL0kU78Kf38kvRGI+n9W6W170rpx93dYgAAAAAArjjFDqVWrFihuLg4RUVFyWQy6dtvv7U5bhiGxowZo/Lly8vf31+dOnXS7t27bcokJyerT58+Cg4OVmhoqAYOHKj0dNt5mP744w+1bdtWfn5+qlixoqZOnVr8u3OxC1fgs9h4IMXh89McmE/qwnmiGtwQ4njjUDK8/aW63aR7P5Ge2i11e0uq2l4yeUiHfpcWPS29Wlv6uIeUOE/KSnN3iwEAAAAAuCIUO5TKyMjQjTfeqLfeesvu8alTp+qNN97QrFmztHbtWgUGBio2NlZZWVnWMn369NG2bdu0ZMkSzZ8/XytWrNDgwYOtx9PS0nTbbbepcuXK2rBhg6ZNm6Zx48bp3XffvYRbdB3LCny5eZc2r5Ajk5wnpf37PNaKCL6kelBC/EOlmAekvt9JI3ZInV+WKjSRjFxpb4L07aPSKzWk//WTdsyXcrLd3WIAAAAAANym2OO/unTpoi5dutg9ZhiGZsyYoRdeeEHdunWTJH300UeKiIjQt99+q969e2vHjh1avHix1q1bp6ZNm0qS3nzzTd1+++165ZVXFBUVpblz5+rcuXOaPXu2fHx8VK9ePSUmJmr69Ok24dWVxmQyqUZ4qWL1jrqQI/NJbT38b08bP+/CM8WcSwzH4ARBkVKLIebt1F5p61fSH/+TTu2Wtn9r3nxDpLp3Sg3ukaLbSB6e7m41AAAAAAAu49Q5pfbt26ekpCR16tTJui8kJETNmzfXmjVrJElr1qxRaGioNZCSpE6dOsnDw0Nr1661lrn55pvl4+NjLRMbG6udO3fq9OnTduvOzs5WWlqazeYONf+Z7PxSOLLy3pbDqQ5f76uNhy65LXCistWkds9Iw9ZJj6yQWv1HCoqSslOlTR9LH90pTa8rLX5OOryRFfwAAAAAANcFp4ZSSUlJkqSIiAib/REREdZjSUlJCg8Ptznu5eWlMmXK2JSxd40L67jY5MmTFRISYt0qVqx4+Td0CWrYCaXSHJzs3JHhe9uKCKUMAo0rl8kklb9Ruu0l6cltUv8FUpP+kl+olJ4k/faW9F4H6c0m0rLJ0sndRV0RAAAAAICr1jWz+t6oUaOUmppq3Q4ePOiWdtQIL5Vv344jjvXaSnVk+N6Rf0OpCydUtzh0+qxDdcHNPDzMQ/biXjdPkH7fZ1L9npKXv5S8V/rlZen/mkrvtJNW/5+UdsTdLQYAAAAAwKmcGkpFRkZKko4dO2az/9ixY9ZjkZGROn78uM3xnJwcJScn25Sxd40L67iYr6+vgoODbTZ3sDd8b5uDoVTK2cKH7x0/k6Vjaf9Ojr1gy9F8ZTb8/e/wxjKBPvmO4wrk5SPV6iLdPVt6eo/U4z2pxm2SyVM6mij99Lx5eF/8HdKGD6Wz9oewAgAAAABwNXFqKFWlShVFRkYqISHBui8tLU1r165Vy5YtJUktW7ZUSkqKNmzYYC3z888/Ky8vT82bN7eWWbFihc6f/7fn0JIlS1SrVi2VLl3amU12uohgXwX52s4f72godbqInlLbDhd9nfV/J1t/NjlUK64ovqWkhr2kPl9IT+2Sur4qVWopyZD2r5R+eFyaVkOad7+09WvpXP7ecgAAAAAAXA2KHUqlp6crMTFRiYmJksyTmycmJurAgQMymUwaPny4XnrpJX3//ffasmWL+vbtq6ioKHXv3l2SVKdOHXXu3FmDBg3S77//rlWrVmnYsGHq3bu3oqKiJEn333+/fHx8NHDgQG3btk2ff/65Xn/9dY0YMcJpN15STCaTakTYDuHbdsSxycmLGr631YFJztfvpxfNNSOwnHTTw9JDi6XhW6RO46SI+lLeeWnnAunLAdIrNaSvH5F2L5VyHZu7DAAAAACAK4FX0UVsrV+/Xh06dLA+tgRF/fr1U3x8vJ555hllZGRo8ODBSklJUZs2bbR48WL5+flZz5k7d66GDRumjh07ysPDQz179tQbb7xhPR4SEqKffvpJQ4cOVZMmTVSuXDmNGTNGgwcPvpx7dZmaEUHaeCDF+njP8XRl5+TK18uz0POKGr63tYhwKy3rvHYeO+NwO3EVCa0ktXnSvB3bLm39UtryhZRyQPrjM/MWUE6qd5fU4B6pYjPzxOoAAAAAAFyhih1KtW/fvtAV3kwmk1588UW9+OKLBZYpU6aMPv3000LradiwoVauXFnc5l0Rql802XlOnqHdx9JVv0JIoeelFNlTqvDhe5sOpIjF964DEXWliDHSLaOlg7+bw6lt30iZJ6V175m30EpS/bvNAVVEXXe3GAAAAACAfK6Z1feuJPYnOy966F1hodTpjHM6nFL4ynob9icXelyyHSLo583Lf1UzmaRKzaWur0j//VPq85XUsLfkU8rcg+rX6dLMltLbraSV06XTf7u7xQAAAAAAWBW7pxSKdqkr8KWeLTiUsgzdiy4boP2n7E9uvf7voueT+jPp33YE+PDyXzM8vaUanczbuUxp12Jpy5fS7p+k49ukhG1SwnipYgupwd3mYX6B5dzdagAAAADAdYyuMiUgItjX+nOlMgGSig6lzufmKT07R5LUvlZYvuOWoXv1ChgCmJObp8SDKUW27c8k5py65vkESPV7SPd9Kj29W4p7Q4puK8kkHfxNWviU9EpN6ZO7pc2fS9m8JwAAAAAArkdXmRJgumCC6Tsaltfby/dqx9E05eYZ8vSwP/m0pZeUySR1b1RBy3eeUMuqZa3HLT2l6keFaMEfR/Odv+PoGWWey1Wwn5fSsnIKbBuh1HXGv7TUpJ95Szsibf3aPAfV0URpzxLz5uUvVe8ohdeRSkdLpauY/wwqL3mQWwMAAAAASgahVAmrGlZKft4eyjyXq/2nMlQtrJTdcpb5pIL9vOVhJ7jadvifUKpCsN3z1/9tnk+qceXSWr7zRIHt2ZlU9DBCXKOCo6RWw8zbyd3m4X1b/icl/yX9Od+8XcjTRwqt/E9QdfFWWfLNP0wVAAAAAABHEUqVME8PqXZksBIPpmj7kbQCQ6nUs+ckSaEB3vmOpWWdt84jVT/K/vA9y3xSTQsJpfLyDO2kpxQkqVwNqcMoqf1I6chGad9K6fT+f7fUg1LuOenUbvNmT0A5c0BVpkr+0CqovOTh6Zp7AQAAAABclQilXKBelDmU2nYkTXE3RtktczrD3FMq1D9/KLXtn/mkKoT6q3SgT77jhmFo/T8r7zWpXKbAdhxOOauMc7nFbj+uYSaTVKGJebtQbo6Udtg2qLpwO5ssZZ40b4fX57+up48UWqmAXlbR9LICAAAAABBKXS6T/SmibNSNMg+52/bPvFD2pPwzp1RIQP7QyXJeQUP3Dp0+q2Np2fLyMKlRxdAC69hxlKF7cJCnl3mIXunKktrlP56VKp3+Wzq9L39glXLgn15We8ybPQFl/5276uItOIpeVgAAAABwHSCUukwFDae7UL1/ymw/kibDMGwmQrdIyfxn+J6dnlJbD/87ybk9G/4ZulcvKlj+PgX/Ms/QPTiNX4hUvqF5u1hebuG9rDJP/bvZ62Xl4V14Lys/++EsAAAAAODqQih1mW5vUL7IMrUjg+TpYdKpjHM6lpatyBC/fGUsq+/Zm1NqiyWUuqGg+aSKHronsfIeXMTD0xwqhVaSqtyc/7i1l9V++72s8s5LyXvNmz0BZQsOrIIr0MsKAAAAAK4ShFKXaN/k23Xo9FlVLBNQZFk/b09VCwvUrmPp2n401W4oZVl97+KeUhnZOfrrZIakQiY53//PJOfRpQttx5+svIcrQZG9rI4U0Mtq30W9rDbkP9/DWwqtaCewqmIeiuhXdM9GAAAAAIBrEEpdIpPJ5FAgZVEvKkS7jqVr2+E03VI7It/xguaU2nE0TYYhRQT7KizIN995aVnntfOYuQdU08oFh1JZ53O1759wC7hieXiaQ6XQilKVtvmPZ6VJKQX0sjr99z+9rP4yb/b4l7ENq0IrSV75P1fXBZ9A8/MRUFYKKGP+2Sv/nHa4CuWel86e/ifATTb/mZcjRTaUylSVPDzc3UIAAABAEqGUy9SLCtY3mw5r2xH7vZUsc0qVvmj4XlHzSW06kCLDkCqW8Vd4cP4eWBZ7jqcrz5DKBPooOePcpdwC4H5+wVJkA/N2sbxc6cxR26Aq+YKJ2DNPmlcNPJssHdno0mZfNXyCzAGVJaSyBFYBZSX/0hc9/qect7+7W31ty8n+N1g6m3xB0PTPeznfsdNSdsGLasg3RKoQI0U1/nflzeCih6EDAAAAJYFQykXqlv9nBb6j5l8Wur21SnXLB2lyD/MQpgvnlErPzrWet+WwOcSqX6GASc73m+eTalrEfFKWlfdqRQRpzV+nCix3OOVskfcCXJE8PKWQG8xbdJv8x7PP5J/LKvWQuQfJdceQstP/DTLOnpaMPOncGfOW8rfjl/IO+DegsgmsCgi0/MuYe2k5snTpteZc5kXB0inbHk32Qqdz6ZdYmUnyD/33tTDypGNbzYHVX8vNm0VQeXM4FRXz75/+oZd9uwAAAEBRCKVcpG6UOZQ6mHxW6/Yna/PBFG0+mGINpSxzSoX4+yg9+99gaNuRf3pKFRBKrf/bsfmkLCvv1S5feCgFXLN8g6TI+uYNtvLypKyU/EO+7AYoFxzLy5HOZ5q3tEOO1+fpW3QPLJufy0i+wVdOkGUY5rDI5nlKthMsXXQs5xJDf5NHwc+L3RCwjDlUunjS/9zz0vHt0uGN5jnZDm+UTuww9zD8c755syhb/YLeVI3NvRPpFQcAAAAnI5RykdAAH1UI9dfhlLNaszd/KGQZvhca4G3trZSVk6vdx83/S16/QrDd6yYeTJFUdE8py8p7tSODCiyTk5tX+E0AuDZ5ePwbcpSt5tg5hiFlpxURxlw81OyUlHtOys02ByFnjhajjV4XhS9l7AQ1F/XO8gstev4kwzCvCHlheGQTJp2yfyz3EodBe3hd1N7SBQdL1kAuxDnzQHl6S+VvNG9NB5j3ncuQjm7+N6g6stHci/DUHvO25X//tjuinm1QFVab1S4BAABwWQilXKheVLAOp5y19n6yyMnNU1qWeQjRhavv7Uo6o9w8Q+VK+SiygPmiMs/lKtjPSzXCSxVa97+hlP1wS5JW7j7p0H0AgEwm82qGfiFSmSqOnWMY5hCkoMDK3vxImafMPYzycqSM4+bN4TZ6mMOpCwMfk4dtnWdPX/oQTk9fOyFZAcGS5Zhv0JXT40syD6Ws3Mq8WWScko5s+jekOrxByjhhDq+ObpY2zDGX8w40B1wVGv+zNZFCK19Z9wcAAIArGqFUCatUJtD6c72oEP20/Vi+yc4tgZQkhVwQSmWcy7WeZyrkS37jyqXl4VHw8ZPp2TqZni2TSaoZUXBPqS83FGP4DQAUl8kk+ZYyb6GVHD/POhdTAfMu2Rsudy7dPI9S5inzdmp34XV4BzgwnPCiY94B12YAE1hWqtHJvEnmMDH10AUh1UZzaHUuXTqw2rxZ+Jf5tydVhSbmnlWlwtxzH1eZt956S9OmTVNSUpJuvPFGvfnmm2rWrFmB5WfMmKGZM2fqwIEDKleunO6++25NnjxZfn4FL3oCAABwpSGUKiGzHmis9ftPq0nlf+d6sswrdei07bwilqF7Qb5e8vLMP0SjoKF7Fk0rOzafVHTZQPn72B9qkZJ5Tku2Hyv0OgDgFj4B5i3kBsfPsaxad+EwvMxT5qCKVQSLx2SSQiuat3rdzfvycqWTu217UyVtNT/fe5aYN4uQSuYV/yyr/ZW/0dxjDFaff/65RowYoVmzZql58+aaMWOGYmNjtXPnToWHh+cr/+mnn2rkyJGaPXu2WrVqpV27dql///4ymUyaPn26G+4AAADg0hBKlZDO9curc33bZbbrRdkPl1L+WXkvJMDb7vH6UfYnObdoUoyV9wryw+YjOsecUgCuFV6+UnB58wbn8/CUwmubt5g+5n052eZgyhJSHd4ondwlpR4wb9u/++dkk3k+Ksuwv6jGUkR9ycvHbbfjbtOnT9egQYM0YIB5rq9Zs2ZpwYIFmj17tkaOHJmv/OrVq9W6dWvdf//9kqTo6Gjdd999Wrt2rUvbDQAAcLkIpVyofIifSgd46/Q/K+1ZpP7zOLSgUKqAlfckycvDpEYVQwut98KV9wryBUP3AACXw8tXuqGJedMg876sNOlo4r8h1eGN5pUaT+wwb4lzzeU8fcwr/FmG/FVoYl4B0BkTvF/hzp07pw0bNmjUqFHWfR4eHurUqZPWrFlj95xWrVrpk08+0e+//65mzZrpr7/+0sKFC/Xggw8WWE92drays7Otj9PS0gosCwAA4CqEUi5kMplULypEv+6xnVA85ew/K+/55/9f4hB/b91QuuBhJfWiggsckmdR1Mp7O5PO6I9DqfLyMCknzyj0WgAAOMwvWKpys3mzOHPMtjfV4Q1SVso/jzf8W843WIpqZBtUBUddc/N4nTx5Urm5uYqIiLDZHxERoT///NPuOffff79OnjypNm3ayDAM5eTk6NFHH9Vzzz1XYD2TJ0/W+PHjndp2AACAy0Uo5WL1ooLzh1KF9JSqXyG40EnOixq6l5tnaNexwlfe+2qjuZfULbXD9RPzSgEASlJQhFSri3mTzBOpn973b0+qwxvMq/xlp0n7Vpg3i1IRF4RUjaWoGPOcYNeZ5cuXa9KkSXr77bfVvHlz7dmzR0888YQmTJig0aNH2z1n1KhRGjFihPVxWlqaKlas6KomAwAA2EUo5WJ17cwrVWgoVcR8Uk2jC5/kfP+pDGXn5Mnf21OVygTkO56Tm6evNx6WJN3d5AZtOpiiE2ey85UDAKBEmExSmarmrcHd5n25OebhfZaQ6shG6dh2Kf2YtHOhebMoU/XfnlQVGkuRDc0T418lypUrJ09PTx07ZvufQseOHVNkZKTdc0aPHq0HH3xQDz/8sCSpQYMGysjI0ODBg/X888/Lw86wR19fX/n6+jr/BgAAAC4DoZSL2ZvsPPWfic7tDd8rbD4pyfGV92pGBsnDI3+Pq192ndDJ9GyVDfRRh9rh8rGz+h8AAC7l6WWeYyqygdSkn3nfuUwp6Q/boCr5r3+3rV+ay5k8pfC6/06kXqmlFFbLffdSBB8fHzVp0kQJCQnq3r27JCkvL08JCQkaNmyY3XMyMzPzBU+enuah/IbBMHwAAHD1IJRysSrlSuXbl5L5z5xSdofvFR5KhQf7FXr8z39W3qtdwMp7X/4zwXn3mAryJpACAFypfAKkSi3Mm0VmsnRkkzmossxTlX5MOrbFvG38UKrXQ7pnjvva7YARI0aoX79+atq0qZo1a6YZM2YoIyPDuhpf3759VaFCBU2ePFmSFBcXp+nTpysmJsY6fG/06NGKi4uzhlMAAABXA0IpF/O001vJshpfiL9tKFXK10uV7Qy5K44/C1l5LyXznJbuMA8XuLvJDZdVDwAALhdQRqre0bxJ5vmp0o7825Pq8AYpuo172+iAe++9VydOnNCYMWOUlJSkRo0aafHixdbJzw8cOGDTM+qFF16QyWTSCy+8oMOHDyssLExxcXGaOHGiu24BAADgkhBKXQFSLMP3AszD94J8zS9Lo4qhdofcFYcllKplZ+W97zcf0flcQ/WiglWnvP1J0AEAuGqYTFJIBfNW9053t6ZYhg0bVuBwveXLl9s89vLy0tixYzV27FgXtAwAAKDkEEq5QYVQfx1OOWt9nHrR8L02Ncppas+Gal718lYUyjiXo1MZ5mvbW3lv4ZYkSfSSAgAAAAAArsckQm5wca8ka0+pf4bveXt6qNdNFVW5bOBl1ZN1Pk+SFB7kqzKB+SdRN9dlUrdGFayPYyqFXladAAAAAAAAjiCUcoNypf4NiPLyDOvqeyF2Jjp3htqFDM3rWDvCJrCKqVT4an4AAAAAAADOQCjlZmeycmRZvTnU335vpstV2858UhYM3QMAAAAAAO5AKOVmKWfNcz4F+njKx6tkXo7CQql2tcJKpE4AAAAAAIDCEEq5WUqm7cp7JcHeynuS1L5WmLw9eQsAAAAAAADXI5Fwg30nM6w/WyY5D/EvmfmkPD1Mqh5eyu6xno0ZugcAAAAAANyDUMoNTpzJtv6ckmkevhdaQpOcVy0XKF8vT7vHChvWBwAAAAAAUJIIpdzs3+F7rl95DwAAAAAAwF0IpdzMEkqFuGHlPQAAAAAAAHchlHIzy+p7JdZTilAKAAAAAABcgQil3CzVMnyvhCY6L2jlPQAAAAAAAHcilHIzy+p7JdVTqkKof4lcFwAAAAAA4HIQSrnZv6vvlcycUiaTqUSuCwAAAAAAcDkIpdzM2lPKicP3GlUMlSQ90KKS064JAAAAAADgTIRSbmadU6oEekrVigwu9HhJ9c4CAAAAAAAoipe7G3C9K4k5pZpXLaO9J9LVvmaY3eMvdK2j5IxzCgvydVqdAAAAAAAAxUEo5QZVw0rpr5MZkqTcPEOSFOLE4XujutTRM7G15elhfz6ph9tWdVpdAAAAAAAAl4Lhe25QrpTtsDk/bw/5eXs6tY6CAikAAAAAAIArAaHUFSDUn7mdAAAAAADA9YVQ6grgzPmkAAAAAAAArgaEUlcAZ84nBQAAAAAAcDUglLoC0FMKAAAAAABcbwilrgClA5hTCgAAAAAAXF8Ipa4AIcXsKfXGfTGSpPf7Ni2J5gAAAAAAAJQ4L3c3AMVffe/OG6N0541RJdQaAAAAAACAkkdPqSsAc0oBAAAAAIDrDaHUFSCU1fcAAAAAAMB1hlDqClDcOaUAAAAAAACudoRSV4DizikFAAAAAABwtSOUcgMPD5PNY+aUAgAAAAAA1xtCKTdoXKm0zWNCKQAAAAAAcL0hlHKDCztK+Xh6yN/b032NAQAAAAAAcANCKTcLDfCWyWQquiAAAAAAAMA1hFDKzRi6BwAAAAAArkeEUm7GynsAAAAAAOB6RCjlZiH0lAIAAAAAANchQik3C/UnlAIAAAAAANcfQik3Y04pAAAAAABwPSKUcrPQAOaUAgAAAAAA1x9CKTcLYfgeAAAAAAC4DhFKuRnD9wAAAAAAwPWIUMrNSjN8DwAAAAAAXIcIpdyM4XsAAAAAAOB6RCjlZgzfAwAAAAAA1yNCKTdj9T0AAAAAAHA9IpRyAw+TyfpzoI+nG1sCAAAAAADgHoRSbhAZ4mf92XRBQAUAAAAAAHC9IJRyA1bcAwAAAAAA1zsvdzfgelQrMkgNbwhR3fLB7m4KAAAAAACAWxBKucn3w9q4uwkAAAAAAABuw/A9AAAAAAAAuByhFAAAAAAAAFyOUAo26kUxzxUAAAAAACh5zCkFGy2qltUr99yoRhVD3N0UAAAAAABwDSOUQj53N7nB3U0AAAAAAADXOIbvAQAAAAAAwOUIpQAAAAAAAOByhFIAAAAAAABwOUIpAAAAAAAAuByhFAAAAAAAAFyOUAoAAAAAAAAuRygFAAAAAAAAlyOUAgAAAAAAgMsRSgEAAAAAAMDlCKUAAAAAAADgcoRSAAAAAAAAcDlCKQAAAAAAALgcoRQAAAAAAABcjlAKAAAAAAAALkcoBQAAAAAAAJcjlAIAAAAAAIDLEUoBAAAAAADA5QilAAAAAAAA4HKEUgAAAAAAAHA5QikAAAAAAAC4HKEUAAAAAAAAXI5QCgAAAAAAAC5HKAUAAAAAAACXc3oolZubq9GjR6tKlSry9/dXtWrVNGHCBBmGYS1jGIbGjBmj8uXLy9/fX506ddLu3bttrpOcnKw+ffooODhYoaGhGjhwoNLT053dXAAAAAAAALiB00OpKVOmaObMmfq///s/7dixQ1OmTNHUqVP15ptvWstMnTpVb7zxhmbNmqW1a9cqMDBQsbGxysrKspbp06ePtm3bpiVLlmj+/PlasWKFBg8e7OzmAgAAAAAAwA1MxoVdmJzgjjvuUEREhD744APrvp49e8rf31+ffPKJDMNQVFSU/vvf/+qpp56SJKWmpioiIkLx8fHq3bu3duzYobp162rdunVq2rSpJGnx4sW6/fbbdejQIUVFRRXZjrS0NIWEhCg1NVXBwcHOvEUAAICr+rvG1dx2AABw5XP0u4bTe0q1atVKCQkJ2rVrlyRp8+bN+vXXX9WlSxdJ0r59+5SUlKROnTpZzwkJCVHz5s21Zs0aSdKaNWsUGhpqDaQkqVOnTvLw8NDatWvt1pudna20tDSbDQAAAAAAAFcmL2dfcOTIkUpLS1Pt2rXl6emp3NxcTZw4UX369JEkJSUlSZIiIiJszouIiLAeS0pKUnh4uG1DvbxUpkwZa5mLTZ48WePHj3f27QAAAAAAAKAEOL2n1P/+9z/NnTtXn376qTZu3KgPP/xQr7zyij788ENnV2Vj1KhRSk1NtW4HDx4s0foAAAAAAABw6ZzeU+rpp5/WyJEj1bt3b0lSgwYN9Pfff2vy5Mnq16+fIiMjJUnHjh1T+fLlrecdO3ZMjRo1kiRFRkbq+PHjNtfNyclRcnKy9fyL+fr6ytfX19m3AwAAAAAAgBLg9J5SmZmZ8vCwvaynp6fy8vIkSVWqVFFkZKQSEhKsx9PS0rR27Vq1bNlSktSyZUulpKRow4YN1jI///yz8vLy1Lx5c2c3GQAAAAAAAC7m9J5ScXFxmjhxoipVqqR69epp06ZNmj59uh566CFJkslk0vDhw/XSSy+pRo0aqlKlikaPHq2oqCh1795dklSnTh117txZgwYN0qxZs3T+/HkNGzZMvXv3dmjlPQAAAAAAAFzZnB5Kvfnmmxo9erQee+wxHT9+XFFRUXrkkUc0ZswYa5lnnnlGGRkZGjx4sFJSUtSmTRstXrxYfn5+1jJz587VsGHD1LFjR3l4eKhnz5564403nN1cAAAAAAAAuIHJMAzD3Y0oCWlpaQoJCVFqaqqCg4Pd3RwAAHCNuZq/a1zNbQcAAFc+R79rOH1OKQAAAAAAAKAohFIAAAAAAABwOUIpAAAAAAAAuByhFAAAAAAAAFyOUAoAAAAAAAAuRygFAAAAAAAAlyOUAgAAAAAAgMsRSgEAAAAAAMDlCKUAAAAAAADgcoRSAAAAAAAAcDlCKQAAAAAAALgcoRQAAAAAAABcjlAKAAAAAAAALkcoBQAAAAAAAJcjlAIAAAAAAIDLEUoBAAAAAADA5QilAAAAAAAA4HKEUgAAAAAAAHA5QikAAAAAAAC4HKEUAAAAAAAAXI5QCgAAAAAAAC5HKAUAAAAAAACXI5QCAAAAAACAyxFKAQAAAAAAwOUIpQAAAAAAAOByhFIAAAAAAABwOUIpAAAAAAAAuByhFAAAAAAAAFyOUAoAAAAAAAAuRygFAAAAAAAAlyOUAgAAAAAAgMsRSgEAAAAAAMDlCKUAAAAAAADgcoRSAAAAAAAAcDlCKQAAAAAAALgcoRQAAAAAAABcjlAKAAAAAAAALkcoBQAAAAAAAJcjlAIAAAAAAIDLEUoBAAAAAADA5QilAAAA3Oytt95SdHS0/Pz81Lx5c/3++++Flk9JSdHQoUNVvnx5+fr6qmbNmlq4cKGLWgsAAOAcXu5uAAAAwPXs888/14gRIzRr1iw1b95cM2bMUGxsrHbu3Knw8PB85c+dO6dbb71V4eHh+vLLL1WhQgX9/fffCg0NdX3jAQAALgOhFAAAgBtNnz5dgwYN0oABAyRJs2bN0oIFCzR79myNHDkyX/nZs2crOTlZq1evlre3tyQpOjralU0GAABwCobvAQAAuMm5c+e0YcMGderUybrPw8NDnTp10po1a+ye8/3336tly5YaOnSoIiIiVL9+fU2aNEm5ubkF1pOdna20tDSbDQAAwN0IpQAAANzk5MmTys3NVUREhM3+iIgIJSUl2T3nr7/+0pdffqnc3FwtXLhQo0eP1quvvqqXXnqpwHomT56skJAQ61axYkWn3gcAAMClIJQCAAC4iuTl5Sk8PFzvvvuumjRponvvvVfPP/+8Zs2aVeA5o0aNUmpqqnU7ePCgC1sMAABgH3NKAQAAuEm5cuXk6empY8eO2ew/duyYIiMj7Z5Tvnx5eXt7y9PT07qvTp06SkpK0rlz5+Tj45PvHF9fX/n6+jq38QAAAJeJnlIAAABu4uPjoyZNmighIcG6Ly8vTwkJCWrZsqXdc1q3bq09e/YoLy/Pum/Xrl0qX7683UAKAADgSkUoBQAA4EYjRozQe++9pw8//FA7duzQkCFDlJGRYV2Nr2/fvho1apS1/JAhQ5ScnKwnnnhCu3bt0oIFCzRp0iQNHTrUXbcAAABwSRi+BwAA4Eb33nuvTpw4oTFjxigpKUmNGjXS4sWLrZOfHzhwQB4e//4/YsWKFfXjjz/qySefVMOGDVWhQgU98cQTevbZZ911CwAAAJfEZBiG4e5GlIS0tDSFhIQoNTVVwcHB7m4OAAC4xlzN3zWu5rYDAIArn6PfNRi+BwAAAAAAAJcjlAIAAAAAAIDLEUoBAAAAAADA5QilAAAAAAAA4HKEUgAAAAAAAHA5QikAAAAAAAC4HKEUAAAAAAAAXI5QCgAAAAAAAC5HKAUAAAAAAACXI5QCAAAAAACAyxFKAQAAAAAAwOUIpQAAAAAAAOByhFIAAAAAAABwOUIpAAAAAAAAuByhFAAAAAAAAFyOUAoAAAAAAAAuRygFAAAAAAAAlyOUAgAAAAAAgMsRSgEAAAAAAMDlCKUAAAAAAADgcoRSAAAAAAAAcDlCKQAAAAAAALgcoRQAAAAAAABcjlAKAAAAAAAALkcoBQAAAAAAAJcjlAIAAAAAAIDLEUoBAAAAAADA5QilAAAAAAAA4HKEUgAAAAAAAHA5QikAAAAAAAC4HKEUAAAAAAAAXI5QCgAAAAAAAC5HKAUAAAAAAACXI5QCAAAAAACAyxFKAQAAAAAAwOUIpQAAAAAAAOByhFIAAAAAAABwOUIpAAAAAAAAuByhFAAAAAAAAFyOUAoAAAAAAAAuRygFAAAAAAAAlyOUAgAAAAAAgMsRSgEAAAAAAMDlCKUAAAAAAADgcoRSAAAAAAAAcDlCKQAAAAAAALgcoRQAAAAAAABcjlAKAAAAAAAALkcoBQAAAAAAAJcjlAIAAAAAAIDLEUoBAAAAAADA5QilAAAAAAAA4HKEUgAAAAAAAHA5QikAAAAAAAC4HKEUAAAAAAAAXI5QCgAAAAAAAC5XIqHU4cOH9cADD6hs2bLy9/dXgwYNtH79eutxwzA0ZswYlS9fXv7+/urUqZN2795tc43k5GT16dNHwcHBCg0N1cCBA5Wenl4SzQUAAAAAAICLOT2UOn36tFq3bi1vb28tWrRI27dv16uvvqrSpUtby0ydOlVvvPGGZs2apbVr1yowMFCxsbHKysqylunTp4+2bdumJUuWaP78+VqxYoUGDx7s7OYCAAAAAADADUyGYRjOvODIkSO1atUqrVy50u5xwzAUFRWl//73v3rqqackSampqYqIiFB8fLx69+6tHTt2qG7dulq3bp2aNm0qSVq8eLFuv/12HTp0SFFRUUW2Iy0tTSEhIUpNTVVwcLDzbhAAAEBX93eNq7ntAADgyufodw2n95T6/vvv1bRpU91zzz0KDw9XTEyM3nvvPevxffv2KSkpSZ06dbLuCwkJUfPmzbVmzRpJ0po1axQaGmoNpCSpU6dO8vDw0Nq1a53dZAAAAAAAALiY00Opv/76SzNnzlSNGjX0448/asiQIXr88cf14YcfSpKSkpIkSRERETbnRUREWI8lJSUpPDzc5riXl5fKlCljLXOx7OxspaWl2WwAAAAAAAC4Mnk5+4J5eXlq2rSpJk2aJEmKiYnR1q1bNWvWLPXr18/Z1VlNnjxZ48ePL7HrAwAAAAAAwHmc3lOqfPnyqlu3rs2+OnXq6MCBA5KkyMhISdKxY8dsyhw7dsx6LDIyUsePH7c5npOTo+TkZGuZi40aNUqpqanW7eDBg065HwAAAAAAADif00Op1q1ba+fOnTb7du3apcqVK0uSqlSposjISCUkJFiPp6Wlae3atWrZsqUkqWXLlkpJSdGGDRusZX7++Wfl5eWpefPmduv19fVVcHCwzQYAAAAAAIArk9OH7z355JNq1aqVJk2apF69eun333/Xu+++q3fffVeSZDKZNHz4cL300kuqUaOGqlSpotGjRysqKkrdu3eXZO5Z1blzZw0aNEizZs3S+fPnNWzYMPXu3duhlfcAAAAAAABwZXN6KHXTTTfpm2++0ahRo/Tiiy+qSpUqmjFjhvr06WMt88wzzygjI0ODBw9WSkqK2rRpo8WLF8vPz89aZu7cuRo2bJg6duwoDw8P9ezZU2+88YazmwsAAAAAAAA3MBmGYbi7ESUhLS1NISEhSk1NZSgfAABwuqv5u8bV3HYAAHDlc/S7htPnlAIAAAAAAACKQigFAAAAAAAAlyOUAgAAAAAAgMsRSgEAAAAAAMDlCKUAAAAAAADgcoRSAAAAAAAAcDlCKQAAAAAAALgcoRQAAAAAAABcjlAKAAAAAAAALkcoBQAAAAAAAJcjlAIAAAAAAIDLEUoBAAAAAADA5QilAAAAAAAA4HKEUgAAAAAAAHA5QikAAAAAAAC4HKEUAAAAAAAAXI5QCgAAAAAAAC5HKAUAAAAAAACXI5QCAAAAAACAyxFKAQAAAAAAwOUIpQAAAAAAAOByhFIAAAAAAABwOUIpAAAAAAAAuByhFAAAAAAAAFyOUAoAAAAAAAAuRygFAAAAAAAAlyOUAgAAAAAAgMsRSgEAAAAAAMDlCKUAAAAAAADgcoRSAAAAAAAAcDlCKQAAAAAAALgcoRQAAAAAAABcjlAKAAAAAAAALkcoBQAAAAAAAJcjlAIAAAAAAIDLEUoBAAAAAADA5QilAAAAAAAA4HKEUgAAAAAAAHA5QikAAAAAAAC4HKEUAAAAAAAAXI5QCgAAAAAAAC5HKAUAAAAAAACXI5QCAAAAAACAyxFKAQAAAAAAwOUIpQAAAAAAAOByhFIAAAAAAABwOUIpAAAAAAAAuByhFAAAAAAAAFyOUAoAAAAAAAAuRygFAAAAAAAAlyOUAgAAAAAAgMsRSgEAAAAAAMDlCKUAAAAAAADgcoRSAAAAAAAAcDlCKQAAAAAAALgcoRQAAAAAAABcjlAKAAAAAAAALkcoBQAAAAAAAJcjlAIAAAAAAIDLEUoBAAAAAADA5QilAAAAAAAA4HKEUgAAAAAAAHA5QikAAAA3e+uttxQdHS0/Pz81b95cv//+u0PnffbZZzKZTOrevXvJNhAAAKAEEEoBAAC40eeff64RI0Zo7Nix2rhxo2688UbFxsbq+PHjhZ63f/9+PfXUU2rbtq2LWgoAAOBchFIAAABuNH36dA0aNEgDBgxQ3bp1NWvWLAUEBGj27NkFnpObm6s+ffpo/Pjxqlq1qgtbCwAA4DyEUgAAAG5y7tw5bdiwQZ06dbLu8/DwUKdOnbRmzZoCz3vxxRcVHh6ugQMHuqKZAAAAJcLL3Q0AAAC4Xp08eVK5ubmKiIiw2R8REaE///zT7jm//vqrPvjgAyUmJjpcT3Z2trKzs62P09LSLqm9AAAAzkRPKQAAgKvEmTNn9OCDD+q9995TuXLlHD5v8uTJCgkJsW4VK1YswVYCAAA4hp5SAAAAblKuXDl5enrq2LFjNvuPHTumyMjIfOX37t2r/fv3Ky4uzrovLy9PkuTl5aWdO3eqWrVq+c4bNWqURowYYX2clpZGMAUAANyOUAoAAMBNfHx81KRJEyUkJKh79+6SzCFTQkKChg0blq987dq1tWXLFpt9L7zwgs6cOaPXX3+9wKDJ19dXvr6+Tm8/AADA5SCUAgAAcKMRI0aoX79+atq0qZo1a6YZM2YoIyNDAwYMkCT17dtXFSpU0OTJk+Xn56f69evbnB8aGipJ+fYDAABc6QilAAAA3Ojee+/ViRMnNGbMGCUlJalRo0ZavHixdfLzAwcOyMODaUABAMC1x2QYhuHuRpSEtLQ0hYSEKDU1VcHBwe5uDgAAuMZczd81rua2AwCAK5+j3zX4bzcAAAAAAAC4HKEUAAAAAAAAXI5QCgAAAAAAAC5HKAUAAAAAAACXI5QCAAAAAACAyxFKAQAAAAAAwOUIpQAAAAAAAOByhFIAAAAAAABwOUIpAAAAAAAAuByhFAAAAAAAAFyOUAoAAAAAAAAuRygFAAAAAAAAlyOUAgAAAAAAgMsRSgEAAAAAAMDlCKUAAAAAAADgcoRSAAAAAAAAcDlCKQAAAAAAALgcoRQAAAAAAABcjlAKAAAAAAAALkcoBQAAAAAAAJcjlAIAAAAAAIDLEUoBAAAAAADA5QilAAAAAAAA4HKEUgAAAAAAAHA5QikAAAAAAAC4HKEUAAAAAAAAXI5QCgAAAAAAAC5HKAUAAAAAAACXI5QCAAAAAACAyxFKAQAAAAAAwOUIpQAAAAAAAOByhFIAAAAAAABwOUIpAAAAAAAAuByhFAAAAAAAAFyOUAoAAAAAAAAuV+Kh1MsvvyyTyaThw4db92VlZWno0KEqW7asSpUqpZ49e+rYsWM25x04cEBdu3ZVQECAwsPD9fTTTysnJ6ekmwsAAAAAAAAXKNFQat26dXrnnXfUsGFDm/1PPvmkfvjhB33xxRf65ZdfdOTIEfXo0cN6PDc3V127dtW5c+e0evVqffjhh4qPj9eYMWNKsrkAAAAAAABwkRILpdLT09WnTx+99957Kl26tHV/amqqPvjgA02fPl233HKLmjRpojlz5mj16tX67bffJEk//fSTtm/frk8++USNGjVSly5dNGHCBL311ls6d+5cSTUZAAAAAAAALlJiodTQoUPVtWtXderUyWb/hg0bdP78eZv9tWvXVqVKlbRmzRpJ0po1a9SgQQNFRERYy8TGxiotLU3btm2zW192drbS0tJsNgAAAAAAAFyZvEriop999pk2btyodevW5TuWlJQkHx8fhYaG2uyPiIhQUlKStcyFgZTluOWYPZMnT9b48eOd0HoAAAAAAACUNKf3lDp48KCeeOIJzZ07V35+fs6+fIFGjRql1NRU63bw4EGX1Q0AAAAAAIDicXootWHDBh0/flyNGzeWl5eXvLy89Msvv+iNN96Ql5eXIiIidO7cOaWkpNicd+zYMUVGRkqSIiMj863GZ3lsKXMxX19fBQcH22wAAAAAAAC4Mjk9lOrYsaO2bNmixMRE69a0aVP16dPH+rO3t7cSEhKs5+zcuVMHDhxQy5YtJUktW7bUli1bdPz4cWuZJUuWKDg4WHXr1nV2kwEAAAAAAOBiTp9TKigoSPXr17fZFxgYqLJly1r3Dxw4UCNGjFCZMmUUHBys//znP2rZsqVatGghSbrttttUt25dPfjgg5o6daqSkpL0wgsvaOjQofL19XV2kwEAAAAAAOBiJTLReVFee+01eXh4qGfPnsrOzlZsbKzefvtt63FPT0/Nnz9fQ4YMUcuWLRUYGKh+/frpxRdfdEdzAQAAAAAA4GQmwzAMdzeiJKSlpSkkJESpqanMLwUAAJzuav6ucTW3HQAAXPkc/a7h9DmlAAAAAAAAgKIQSgEAAAAAAMDlCKUAAAAAAADgcoRSAAAAAAAAcDlCKQAAAAAAALgcoRQAAAAAAABcjlAKAAAAAAAALkcoBQAAAAAAAJcjlAIAAAAAAIDLEUoBAAAAAADA5QilAAAAAAAA4HKEUgAAAAAAAHA5QikAAAAAAAC4HKEUAAAAAAAAXI5QCgAAAAAAAC5HKAUAAAAAAACXI5QCAAAAAACAyxFKAQAAAADw/+3dfZBV9X0/8M/ysLsg7vIku4AQsEEIgoIguJqnaXaghppSjVpKFamNjQEroTFoVWySMRBjmthosLGjphMJyjSaSg2ULohVVxAEIj6A9QlHsyCh7OITIPv9/ZEfN1552oXds7vyes3cGe4533vu53yG3fuZN4d7gMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAWtjtt98eAwYMiOLi4hg7dmysWrXqoGvvvPPO+MxnPhPdunWLbt26RWVl5SHXAwC0VkIpAIAWdN9998XMmTPjxhtvjKeffjpOO+20GD9+fGzduvWA6x955JGYNGlSLF++PKqrq6Nfv34xbty4eOONNzKuHADg6BSklFJLF9Ec6urqorS0NGpra6OkpKSlywEAPmaaatYYO3ZsnHHGGXHbbbdFRER9fX3069cvrrzyyrjmmmsO+/q9e/dGt27d4rbbbotLLrkk09oBAA6kobOGK6UAAFrI7t27Y82aNVFZWZnb1q5du6isrIzq6uoGHePdd9+NPXv2RPfu3ZurTACAZtGhpQsAADhWbdu2Lfbu3RtlZWV528vKyuKFF15o0DFmzZoVffr0yQu2PmrXrl2xa9eu3PO6urojKxgAoAm5UgoAoI2aO3duLFiwIB544IEoLi4+6Lo5c+ZEaWlp7tGvX78MqwQAODChFABAC+nZs2e0b98+tmzZkrd9y5YtUV5efsjX3nLLLTF37tz4r//6rzj11FMPufbaa6+N2tra3OP1118/6toBAI6WUAoAoIUUFhbGqFGjoqqqKretvr4+qqqqoqKi4qCvu/nmm+M73/lOLF68OEaPHn3Y9ykqKoqSkpK8BwBAS/OdUgAALWjmzJkxZcqUGD16dIwZMyZ+9KMfxTvvvBNTp06NiIhLLrkk+vbtG3PmzImIiO9973sxe/bsmD9/fgwYMCBqamoiIqJLly7RpUuXFjsPAIDGEkoBALSgiy66KN56662YPXt21NTUxIgRI2Lx4sW5Lz/fvHlztGv3h4vb582bF7t3744vf/nLece58cYb4x//8R+zLB0A4KgUpJRSSxfRHOrq6qK0tDRqa2tdog4ANLm2PGu05doBgNavobOG75QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAy1+Sh1Jw5c+KMM86I448/Pnr16hUTJ06MjRs35q15//33Y9q0adGjR4/o0qVLnH/++bFly5a8NZs3b44JEyZE586do1evXnH11VfHBx980NTlAgAAANACmjyUWrFiRUybNi2efPLJWLp0aezZsyfGjRsX77zzTm7N17/+9XjooYdi4cKFsWLFinjzzTfjvPPOy+3fu3dvTJgwIXbv3h1PPPFE/OxnP4t77rknZs+e3dTlAgAAANACClJKqTnf4K233opevXrFihUr4rOf/WzU1tbGCSecEPPnz48vf/nLERHxwgsvxKc+9amorq6OM888M37961/Hn/7pn8abb74ZZWVlERFxxx13xKxZs+Ktt96KwsLCw75vXV1dlJaWRm1tbZSUlDTnKQIAx6C2PGu05doBgNavobNGs3+nVG1tbUREdO/ePSIi1qxZE3v27InKysrcmiFDhkT//v2juro6IiKqq6tj+PDhuUAqImL8+PFRV1cXzz777AHfZ9euXVFXV5f3AAAAAKB1atZQqr6+PmbMmBFnn312DBs2LCIiampqorCwMLp27Zq3tqysLGpqanJrPhxI7du/b9+BzJkzJ0pLS3OPfv36NfHZAAAAANBUmjWUmjZtWmzYsCEWLFjQnG8TERHXXntt1NbW5h6vv/56s78nAAAAAEemQ3MdePr06bFo0aJ49NFH48QTT8xtLy8vj927d8eOHTvyrpbasmVLlJeX59asWrUq73j77s63b81HFRUVRVFRUROfBQAAAADNocmvlEopxfTp0+OBBx6IZcuWxcCBA/P2jxo1Kjp27BhVVVW5bRs3bozNmzdHRUVFRERUVFTEM888E1u3bs2tWbp0aZSUlMTQoUObumQAAAAAMtbkV0pNmzYt5s+fH7/61a/i+OOPz30HVGlpaXTq1ClKS0vjsssui5kzZ0b37t2jpKQkrrzyyqioqIgzzzwzIiLGjRsXQ4cOjYsvvjhuvvnmqKmpieuvvz6mTZvmaigAAACAj4EmD6XmzZsXERGf//zn87bffffdcemll0ZExA9/+MNo165dnH/++bFr164YP358/OQnP8mtbd++fSxatCiuuOKKqKioiOOOOy6mTJkS3/72t5u6XAAAAABaQEFKKbV0Ec2hrq4uSktLo7a2NkpKSlq6HADgY6YtzxptuXYAoPVr6KzRrHffAwAAAIADEUoBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZa9Wh1O233x4DBgyI4uLiGDt2bKxataqlSwIAaHKNnXkWLlwYQ4YMieLi4hg+fHg8/PDDGVUKANB0Wm0odd9998XMmTPjxhtvjKeffjpOO+20GD9+fGzdurWlSwMAaDKNnXmeeOKJmDRpUlx22WWxdu3amDhxYkycODE2bNiQceUAAEenIKWUWrqIAxk7dmycccYZcdttt0VERH19ffTr1y+uvPLKuOaaaw77+rq6uigtLY3a2tooKSlp7nIBgGNMU80ajZ15LrroonjnnXdi0aJFuW1nnnlmjBgxIu64445MawcAOJCGzhqt8kqp3bt3x5o1a6KysjK3rV27dlFZWRnV1dUtWBkAQNM5kpmnuro6b31ExPjx481IAECb06GlCziQbdu2xd69e6OsrCxve1lZWbzwwgsHfM2uXbti165duee1tbUR8ft0DgCgqe2bMY7movMjmXlqamoOuL6mpuag72NOAgCy1NA5qVWGUkdizpw58a1vfWu/7f369WuBagCAY8XOnTujtLS0pcs4JHMSANASDjcntcpQqmfPntG+ffvYsmVL3vYtW7ZEeXn5AV9z7bXXxsyZM3PP6+vrY/v27dGjR48oKCg4ojrq6uqiX79+8frrr/u+hQbQr8bRr8bRr8bRr8bRr4bTqz9IKcXOnTujT58+R3yMI5l5ysvLG7U+wpzU0vSqcfSrcfSrcfSrcfSrcfTrDxo6J7XKUKqwsDBGjRoVVVVVMXHixIj4/fBUVVUV06dPP+BrioqKoqioKG9b165dm6SekpKSY/4vVGPoV+PoV+PoV+PoV+PoV8Pp1e8d7RVSRzLzVFRURFVVVcyYMSO3benSpVFRUXHQ9zEntQ561Tj61Tj61Tj61Tj61Tj69XsNmZNaZSgVETFz5syYMmVKjB49OsaMGRM/+tGP4p133ompU6e2dGkAAE3mcDPPJZdcEn379o05c+ZERMRVV10Vn/vc5+IHP/hBTJgwIRYsWBCrV6+On/70py15GgAAjdZqQ6mLLroo3nrrrZg9e3bU1NTEiBEjYvHixft9sScAQFt2uJln8+bN0a7dH26YfNZZZ8X8+fPj+uuvj3/4h3+IQYMGxYMPPhjDhg1rqVMAADgirTaUioiYPn36QS9dz0JRUVHceOON+13uzoHpV+PoV+PoV+PoV+PoV8PpVfM41MzzyCOP7LftggsuiAsuuKCZqzo0fxcaTq8aR78aR78aR78aR78aR78aryAdzX2MAQAAAOAItDv8EgAAAABoWkIpAAAAADInlAIAAAAgc0Kpg7j99ttjwIABUVxcHGPHjo1Vq1a1dElNbs6cOXHGGWfE8ccfH7169YqJEyfGxo0b89a8//77MW3atOjRo0d06dIlzj///NiyZUvems2bN8eECROic+fO0atXr7j66qvjgw8+yFvzyCOPxOmnnx5FRUXxyU9+Mu6555796mlLPZ87d24UFBTEjBkzctv0an9vvPFG/NVf/VX06NEjOnXqFMOHD4/Vq1fn9qeUYvbs2dG7d+/o1KlTVFZWxosvvph3jO3bt8fkyZOjpKQkunbtGpdddlm8/fbbeWt+85vfxGc+85koLi6Ofv36xc0337xfLQsXLowhQ4ZEcXFxDB8+PB5++OHmOekjtHfv3rjhhhti4MCB0alTp/ijP/qj+M53vhMf/tq/Y7lfjz76aJx77rnRp0+fKCgoiAcffDBvf2vqTUNqaW6H6teePXti1qxZMXz48DjuuOOiT58+cckll8Sbb76Zd4xjqV80Xlv5HDoa5qQjZ05qGHNSw5mTDs2c1DjmpFYmsZ8FCxakwsLCdNddd6Vnn302feUrX0ldu3ZNW7ZsaenSmtT48ePT3XffnTZs2JDWrVuXvvjFL6b+/funt99+O7fmq1/9aurXr1+qqqpKq1evTmeeeWY666yzcvs/+OCDNGzYsFRZWZnWrl2bHn744dSzZ8907bXX5ta8/PLLqXPnzmnmzJnpueeeSz/+8Y9T+/bt0+LFi3Nr2lLPV61alQYMGJBOPfXUdNVVV+W261W+7du3p0984hPp0ksvTStXrkwvv/xyWrJkSfrf//3f3Jq5c+em0tLS9OCDD6b169enL33pS2ngwIHpvffey635kz/5k3TaaaelJ598Mv3P//xP+uQnP5kmTZqU219bW5vKysrS5MmT04YNG9IvfvGL1KlTp/Qv//IvuTWPP/54at++fbr55pvTc889l66//vrUsWPH9Mwzz2TTjAa46aabUo8ePdKiRYvSK6+8khYuXJi6dOmSbr311tyaY7lfDz/8cLruuuvSL3/5yxQR6YEHHsjb35p605Bamtuh+rVjx45UWVmZ7rvvvvTCCy+k6urqNGbMmDRq1Ki8YxxL/aJx2srn0NEyJx0Zc1LDmJMax5x0aOakxjEntS5CqQMYM2ZMmjZtWu753r17U58+fdKcOXNasKrmt3Xr1hQRacWKFSml3/9AduzYMS1cuDC35vnnn08Rkaqrq1NKv/+BbteuXaqpqcmtmTdvXiopKUm7du1KKaX0zW9+M51yyil573XRRRel8ePH5563lZ7v3LkzDRo0KC1dujR97nOfyw1berW/WbNmpU9/+tMH3V9fX5/Ky8vT97///dy2HTt2pKKiovSLX/wipZTSc889lyIiPfXUU7k1v/71r1NBQUF64403Ukop/eQnP0ndunXL9XDfew8ePDj3/MILL0wTJkzIe/+xY8emv/3bvz26k2xCEyZMSH/913+dt+28885LkydPTinp14d9dHhoTb1pSC1ZO9Bw+lGrVq1KEZFee+21lNKx3S8Or618DjU1c9LhmZMazpzUOOakhjMnNY45qeX573sfsXv37lizZk1UVlbmtrVr1y4qKyujurq6BStrfrW1tRER0b1794iIWLNmTezZsyevF0OGDIn+/fvnelFdXR3Dhw+PsrKy3Jrx48dHXV1dPPvss7k1Hz7GvjX7jtGWej5t2rSYMGHCfuejV/v7j//4jxg9enRccMEF0atXrxg5cmTceeeduf2vvPJK1NTU5J1LaWlpjB07Nq9nXbt2jdGjR+fWVFZWRrt27WLlypW5NZ/97GejsLAwt2b8+PGxcePG+L//+7/cmkP1tTU466yzoqqqKjZt2hQREevXr4/HHnsszjnnnIjQr0NpTb1pSC2tUW1tbRQUFETXrl0jQr84uLb0OdTUzEmHZ05qOHNS45iTjlxr6k1b/dw3JzUvodRHbNu2Lfbu3Zv3gRgRUVZWFjU1NS1UVfOrr6+PGTNmxNlnnx3Dhg2LiIiampooLCzM/fDt8+Fe1NTUHLBX+/Ydak1dXV289957babnCxYsiKeffjrmzJmz3z692t/LL78c8+bNi0GDBsWSJUviiiuuiL/7u7+Ln/3sZxHxh3M+1LnU1NREr1698vZ36NAhunfv3iR9bU09u+aaa+Iv/uIvYsiQIdGxY8cYOXJkzJgxIyZPnhwR+nUorak3DamltXn//fdj1qxZMWnSpCgpKYkI/eLg2tLnUFMyJx2eOalxzEmNY046cq2pN23xc9+c1Pw6tHQBtA7Tpk2LDRs2xGOPPdbSpbRKr7/+elx11VWxdOnSKC4ubuly2oT6+voYPXp0fPe7342IiJEjR8aGDRvijjvuiClTprRwda3P/fffH/fee2/Mnz8/TjnllFi3bl3MmDEj+vTpo180mz179sSFF14YKaWYN29eS5cDrZY56dDMSY1nTmoccxItwZyUDVdKfUTPnj2jffv2+90NZMuWLVFeXt5CVTWv6dOnx6JFi2L58uVx4okn5raXl5fH7t27Y8eOHXnrP9yL8vLyA/Zq375DrSkpKYlOnTq1iZ6vWbMmtm7dGqeffnp06NAhOnToECtWrIh//ud/jg4dOkRZWZlefUTv3r1j6NCheds+9alPxebNmyPiD+d8qHMpLy+PrVu35u3/4IMPYvv27U3S19bUs6uvvjr3r4DDhw+Piy++OL7+9a/n/sVZvw6uNfWmIbW0FvsGrddeey2WLl2a+9e/CP3i4NrS51BTMScdnjmp8cxJjWNOOnKtqTdt6XPfnJQdodRHFBYWxqhRo6Kqqiq3rb6+PqqqqqKioqIFK2t6KaWYPn16PPDAA7Fs2bIYOHBg3v5Ro0ZFx44d83qxcePG2Lx5c64XFRUV8cwzz+T9UO77od33QVtRUZF3jH1r9h2jLfT8C1/4QjzzzDOxbt263GP06NExefLk3J/1Kt/ZZ5+9362zN23aFJ/4xCciImLgwIFRXl6edy51dXWxcuXKvJ7t2LEj1qxZk1uzbNmyqK+vj7Fjx+bWPProo7Fnz57cmqVLl8bgwYOjW7duuTWH6mtr8O6770a7dvm/ktu3bx/19fURoV+H0pp605BaWoN9g9aLL74Y//3f/x09evTI269fHExb+hw6WuakhjMnNZ45qXHMSUeuNfWmrXzum5My1rLfs946LViwIBUVFaV77rknPffcc+nyyy9PXbt2zbsbyMfBFVdckUpLS9MjjzySfvvb3+Ye7777bm7NV7/61dS/f/+0bNmytHr16lRRUZEqKipy+/fdvnfcuHFp3bp1afHixemEE0444O17r7766vT888+n22+//YC3721rPf/wXWVS0quPWrVqVerQoUO66aab0osvvpjuvffe1Llz5/Tzn/88t2bu3Lmpa9eu6Ve/+lX6zW9+k/7sz/7sgLenHTlyZFq5cmV67LHH0qBBg/Jut7pjx45UVlaWLr744rRhw4a0YMGC1Llz5/1ut9qhQ4d0yy23pOeffz7deOONLX7r3o+aMmVK6tu3b+5Wx7/85S9Tz5490ze/+c3cmmO5Xzt37kxr165Na9euTRGR/umf/imtXbs2dxeU1tSbhtTS3A7Vr927d6cvfelL6cQTT0zr1q3L+/3/4TvEHEv9onHayufQ0TInHR1z0qGZkxrHnHRo5qTGMSe1LkKpg/jxj3+c+vfvnwoLC9OYMWPSk08+2dIlNbmIOODj7rvvzq1577330te+9rXUrVu31Llz5/Tnf/7n6be//W3ecV599dV0zjnnpE6dOqWePXumv//7v0979uzJW7N8+fI0YsSIVFhYmE466aS899inrfX8o8OWXu3voYceSsOGDUtFRUVpyJAh6ac//Wne/vr6+nTDDTeksrKyVFRUlL7whS+kjRs35q353e9+lyZNmpS6dOmSSkpK0tSpU9POnTvz1qxfvz59+tOfTkVFRalv375p7ty5+9Vy//33p5NPPjkVFhamU045Jf3nf/5n05/wUairq0tXXXVV6t+/fyouLk4nnXRSuu666/I+/I7lfi1fvvyAv6+mTJmSUmpdvWlILc3tUP165ZVXDvr7f/ny5bljHEv9ovHayufQ0TAnHR1z0uGZkxrOnHRo5qTGMSe1LgUppdT0118BAAAAwMH5TikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAtq0z3/+8zFjxoyWLiOntdUDAADQWgmlgGPe7t27W7oEAACAY45QCmizLr300lixYkXceuutUVBQEAUFBfHSSy/FZZddFgMHDoxOnTrF4MGD49Zbb93vdRMnToybbrop+vTpE4MHD46IiCeeeCJGjBgRxcXFMXr06HjwwQejoKAg1q1bl3vthg0b4pxzzokuXbpEWVlZXHzxxbFt27aD1vPqq69m1Q4AAIA2pUNLFwBwpG699dbYtGlTDBs2LL797W9HRES3bt3ixBNPjIULF0aPHj3iiSeeiMsvvzx69+4dF154Ye61VVVVUVJSEkuXLo2IiLq6ujj33HPji1/8YsyfPz9ee+21/f4b3o4dO+KP//iP42/+5m/ihz/8Ybz33nsxa9asuPDCC2PZsmUHrOeEE07IphkAAABtjFAKaLNKS0ujsLAwOnfuHOXl5bnt3/rWt3J/HjhwYFRXV8f999+fF0odd9xx8a//+q9RWFgYERF33HFHFBQUxJ133hnFxcUxdOjQeOONN+IrX/lK7jW33XZbjBw5Mr773e/mtt11113Rr1+/2LRpU5x88skHrAcAAID9CaWAj53bb7897rrrrti8eXO89957sXv37hgxYkTemuHDh+cCqYiIjRs3xqmnnhrFxcW5bWPGjMl7zfr162P58uXRpUuX/d7zpZdeipNPPrlpTwQAAOBjTCgFfKwsWLAgvvGNb8QPfvCDqKioiOOPPz6+//3vx8qVK/PWHXfccY0+9ttvvx3nnntufO9739tvX+/evY+4ZgAAgGORUApo0woLC2Pv3r25548//nicddZZ8bWvfS237aWXXjrscQYPHhw///nPY9euXVFUVBQREU899VTemtNPPz3+/d//PQYMGBAdOhz41+dH6wEAAODA3H0PaNMGDBgQK1eujFdffTW2bdsWgwYNitWrV8eSJUti06ZNccMNN+wXLh3IX/7lX0Z9fX1cfvnl8fzzz8eSJUvilltuiYiIgoKCiIiYNm1abN++PSZNmhRPPfVUvPTSS7FkyZKYOnVqLoj6aD319fXNd/IAAABtmFAKaNO+8Y1vRPv27WPo0KFxwgknxPjx4+O8886Liy66KMaOHRu/+93v8q6aOpiSkpJ46KGHYt26dTFixIi47rrrYvbs2RERue+Z6tOnTzz++OOxd+/eGDduXAwfPjxmzJgRXbt2jXbt2h2wns2bNzffyQMAALRhBSml1NJFALRG9957b0ydOjVqa2ujU6dOLV0OAADAx4rvlAL4//7t3/4tTjrppOjbt2+sX78+Zs2aFRdeeKFACgAAoBkIpQD+v5qampg9e3bU1NRE796944ILLoibbrqppcsCAAD4WPLf9wAAAADInC86BwAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBz/w+vN6umaUzFwAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "column = [\"threads\", \"pod_count\"]\n",
+ "x = \"target\"\n",
+ "y = \"[INSERT].95thPercentileLatency(us)\"\n",
+ "evaluation.plot(df_plot, column=column, x=x, y=y, plot_by=\"experiment_run\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Aggregate by Parallel Pods"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " connection \n",
+ " configuration \n",
+ " experiment_run \n",
+ " client \n",
+ " pod \n",
+ " pod_count \n",
+ " threads \n",
+ " target \n",
+ " sf \n",
+ " workload \n",
+ " ... \n",
+ " [CLEANUP].MaxLatency(us) \n",
+ " [CLEANUP].95thPercentileLatency(us) \n",
+ " [CLEANUP].99thPercentileLatency(us) \n",
+ " [INSERT].Operations \n",
+ " [INSERT].AverageLatency(us) \n",
+ " [INSERT].MinLatency(us) \n",
+ " [INSERT].MaxLatency(us) \n",
+ " [INSERT].95thPercentileLatency(us) \n",
+ " [INSERT].99thPercentileLatency(us) \n",
+ " [INSERT].Return=OK \n",
+ " \n",
+ " \n",
+ " connection_pod \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-114688-1 \n",
+ " PostgreSQL-32-1-114688 \n",
+ " PostgreSQL-32-1-114688 \n",
+ " 1 \n",
+ " 0 \n",
+ " tx5d5.sensor \n",
+ " 1 \n",
+ " 32 \n",
+ " 114688 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 186 \n",
+ " 144 \n",
+ " 186 \n",
+ " 30000000 \n",
+ " 1024.3594275 \n",
+ " 629 \n",
+ " 18612223 \n",
+ " 967 \n",
+ " 1261 \n",
+ " 30000000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-131072-1 \n",
+ " PostgreSQL-32-1-131072 \n",
+ " PostgreSQL-32-1-131072 \n",
+ " 1 \n",
+ " 0 \n",
+ " b9gzf.sensor \n",
+ " 1 \n",
+ " 32 \n",
+ " 131072 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 199 \n",
+ " 154 \n",
+ " 199 \n",
+ " 30000000 \n",
+ " 1033.9956250666667 \n",
+ " 636 \n",
+ " 24150015 \n",
+ " 945 \n",
+ " 1268 \n",
+ " 30000000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-16384-1 \n",
+ " PostgreSQL-32-1-16384 \n",
+ " PostgreSQL-32-1-16384 \n",
+ " 1 \n",
+ " 0 \n",
+ " mr62r.sensor \n",
+ " 1 \n",
+ " 32 \n",
+ " 16384 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 692 \n",
+ " 450 \n",
+ " 692 \n",
+ " 30000000 \n",
+ " 835.0811325 \n",
+ " 633 \n",
+ " 385791 \n",
+ " 1025 \n",
+ " 1180 \n",
+ " 30000000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-32768-1 \n",
+ " PostgreSQL-32-1-32768 \n",
+ " PostgreSQL-32-1-32768 \n",
+ " 1 \n",
+ " 0 \n",
+ " 9fbk6.sensor \n",
+ " 1 \n",
+ " 32 \n",
+ " 32768 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 195 \n",
+ " 140 \n",
+ " 195 \n",
+ " 30000000 \n",
+ " 1019.0929389666667 \n",
+ " 630 \n",
+ " 26443775 \n",
+ " 1018 \n",
+ " 1261 \n",
+ " 30000000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-49152-1 \n",
+ " PostgreSQL-32-1-49152 \n",
+ " PostgreSQL-32-1-49152 \n",
+ " 1 \n",
+ " 0 \n",
+ " gs5fb.sensor \n",
+ " 1 \n",
+ " 32 \n",
+ " 49152 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 199 \n",
+ " 147 \n",
+ " 199 \n",
+ " 30000000 \n",
+ " 1042.6627607666667 \n",
+ " 630 \n",
+ " 23822335 \n",
+ " 981 \n",
+ " 1268 \n",
+ " 30000000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-65536-1 \n",
+ " PostgreSQL-32-1-65536 \n",
+ " PostgreSQL-32-1-65536 \n",
+ " 1 \n",
+ " 0 \n",
+ " 6hqzb.sensor \n",
+ " 1 \n",
+ " 32 \n",
+ " 65536 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 206 \n",
+ " 132 \n",
+ " 206 \n",
+ " 30000000 \n",
+ " 1032.8564868 \n",
+ " 629 \n",
+ " 23887871 \n",
+ " 967 \n",
+ " 1255 \n",
+ " 30000000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-81920-1 \n",
+ " PostgreSQL-32-1-81920 \n",
+ " PostgreSQL-32-1-81920 \n",
+ " 1 \n",
+ " 0 \n",
+ " nkd9n.sensor \n",
+ " 1 \n",
+ " 32 \n",
+ " 81920 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 214 \n",
+ " 129 \n",
+ " 214 \n",
+ " 30000000 \n",
+ " 1039.4797652333334 \n",
+ " 636 \n",
+ " 23085055 \n",
+ " 967 \n",
+ " 1261 \n",
+ " 30000000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-98304-1 \n",
+ " PostgreSQL-32-1-98304 \n",
+ " PostgreSQL-32-1-98304 \n",
+ " 1 \n",
+ " 0 \n",
+ " xzd7w.sensor \n",
+ " 1 \n",
+ " 32 \n",
+ " 98304 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 375 \n",
+ " 115 \n",
+ " 375 \n",
+ " 30000000 \n",
+ " 1031.2387599666667 \n",
+ " 630 \n",
+ " 23478271 \n",
+ " 959 \n",
+ " 1263 \n",
+ " 30000000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-114688-1 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " 1 \n",
+ " 0 \n",
+ " 5x62v.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 187 \n",
+ " 187 \n",
+ " 187 \n",
+ " 3750000 \n",
+ " 1071.3269501333334 \n",
+ " 653 \n",
+ " 23658495 \n",
+ " 1034 \n",
+ " 1278 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-114688-2 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " 1 \n",
+ " 0 \n",
+ " 7bc2c.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 373 \n",
+ " 373 \n",
+ " 373 \n",
+ " 3750000 \n",
+ " 1064.0484906666666 \n",
+ " 687 \n",
+ " 23658495 \n",
+ " 1015 \n",
+ " 1247 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-114688-3 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " 1 \n",
+ " 0 \n",
+ " c7w5h.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 359 \n",
+ " 359 \n",
+ " 359 \n",
+ " 3750000 \n",
+ " 1062.6480872 \n",
+ " 698 \n",
+ " 23658495 \n",
+ " 1068 \n",
+ " 1321 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-114688-4 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " 1 \n",
+ " 0 \n",
+ " dg57m.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 202 \n",
+ " 202 \n",
+ " 202 \n",
+ " 3750000 \n",
+ " 1054.2813354666666 \n",
+ " 639 \n",
+ " 23658495 \n",
+ " 988 \n",
+ " 1227 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-114688-5 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " 1 \n",
+ " 0 \n",
+ " dn5vx.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 448 \n",
+ " 448 \n",
+ " 448 \n",
+ " 3750000 \n",
+ " 1046.1617666666666 \n",
+ " 634 \n",
+ " 23658495 \n",
+ " 1002 \n",
+ " 1243 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-114688-6 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " 1 \n",
+ " 0 \n",
+ " hkqrv.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 200 \n",
+ " 200 \n",
+ " 200 \n",
+ " 3750000 \n",
+ " 1015.1118 \n",
+ " 643 \n",
+ " 23658495 \n",
+ " 915 \n",
+ " 1154 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-114688-7 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " 1 \n",
+ " 0 \n",
+ " qbf55.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 217 \n",
+ " 217 \n",
+ " 217 \n",
+ " 3750000 \n",
+ " 979.8143810666667 \n",
+ " 629 \n",
+ " 23658495 \n",
+ " 930 \n",
+ " 1164 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-114688-8 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " 1 \n",
+ " 0 \n",
+ " sr6t8.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 195 \n",
+ " 195 \n",
+ " 195 \n",
+ " 3750000 \n",
+ " 1062.6591456 \n",
+ " 682 \n",
+ " 23658495 \n",
+ " 1034 \n",
+ " 1260 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-131072-1 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " 1 \n",
+ " 0 \n",
+ " 2dbvt.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 214 \n",
+ " 214 \n",
+ " 214 \n",
+ " 3750000 \n",
+ " 1018.9795154666666 \n",
+ " 640 \n",
+ " 22003711 \n",
+ " 961 \n",
+ " 1203 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-131072-2 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " 1 \n",
+ " 0 \n",
+ " 2vfvb.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 193 \n",
+ " 193 \n",
+ " 193 \n",
+ " 3750000 \n",
+ " 1037.8515736 \n",
+ " 632 \n",
+ " 22003711 \n",
+ " 950 \n",
+ " 1194 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-131072-3 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " 1 \n",
+ " 0 \n",
+ " 5qftv.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 368 \n",
+ " 368 \n",
+ " 368 \n",
+ " 3750000 \n",
+ " 1108.4157389333334 \n",
+ " 642 \n",
+ " 22003711 \n",
+ " 1077 \n",
+ " 1333 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-131072-4 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " 1 \n",
+ " 0 \n",
+ " fwkgs.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 336 \n",
+ " 336 \n",
+ " 336 \n",
+ " 3750000 \n",
+ " 1011.0584301333333 \n",
+ " 635 \n",
+ " 22003711 \n",
+ " 1018 \n",
+ " 1246 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-131072-5 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " 1 \n",
+ " 0 \n",
+ " n8gtm.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 266 \n",
+ " 266 \n",
+ " 266 \n",
+ " 3750000 \n",
+ " 971.4101096 \n",
+ " 636 \n",
+ " 22003711 \n",
+ " 851 \n",
+ " 1042 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-131072-6 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " 1 \n",
+ " 0 \n",
+ " p6x48.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 207 \n",
+ " 207 \n",
+ " 207 \n",
+ " 3750000 \n",
+ " 1026.5842928 \n",
+ " 637 \n",
+ " 22003711 \n",
+ " 1017 \n",
+ " 1254 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-131072-7 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " 1 \n",
+ " 0 \n",
+ " p9pwx.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 211 \n",
+ " 211 \n",
+ " 211 \n",
+ " 3750000 \n",
+ " 989.8118778666667 \n",
+ " 640 \n",
+ " 22003711 \n",
+ " 939 \n",
+ " 1149 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-131072-8 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " 1 \n",
+ " 0 \n",
+ " vjc59.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 279 \n",
+ " 279 \n",
+ " 279 \n",
+ " 3750000 \n",
+ " 1058.5769722666666 \n",
+ " 636 \n",
+ " 22003711 \n",
+ " 965 \n",
+ " 1194 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-16384-1 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " 1 \n",
+ " 0 \n",
+ " 2hl8g.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 423 \n",
+ " 423 \n",
+ " 423 \n",
+ " 3750000 \n",
+ " 855.0688224 \n",
+ " 643 \n",
+ " 143103 \n",
+ " 1063 \n",
+ " 1201 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-16384-2 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " 1 \n",
+ " 0 \n",
+ " gb9j5.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 214 \n",
+ " 214 \n",
+ " 214 \n",
+ " 3750000 \n",
+ " 832.7726792 \n",
+ " 647 \n",
+ " 142975 \n",
+ " 1025 \n",
+ " 1129 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-16384-3 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " 1 \n",
+ " 0 \n",
+ " kjk85.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 187 \n",
+ " 187 \n",
+ " 187 \n",
+ " 3750000 \n",
+ " 812.7801149333334 \n",
+ " 646 \n",
+ " 142975 \n",
+ " 977 \n",
+ " 1089 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-16384-4 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " 1 \n",
+ " 0 \n",
+ " mskcx.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 188 \n",
+ " 188 \n",
+ " 188 \n",
+ " 3750000 \n",
+ " 839.5906464 \n",
+ " 637 \n",
+ " 143103 \n",
+ " 1034 \n",
+ " 1220 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-16384-5 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " 1 \n",
+ " 0 \n",
+ " pcmmg.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 191 \n",
+ " 191 \n",
+ " 191 \n",
+ " 3750000 \n",
+ " 790.3665242666667 \n",
+ " 646 \n",
+ " 142975 \n",
+ " 973 \n",
+ " 1044 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-16384-6 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " 1 \n",
+ " 0 \n",
+ " pmr6w.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 186 \n",
+ " 186 \n",
+ " 186 \n",
+ " 3750000 \n",
+ " 856.3669426666667 \n",
+ " 643 \n",
+ " 143231 \n",
+ " 1107 \n",
+ " 1275 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-16384-7 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " 1 \n",
+ " 0 \n",
+ " qmfjw.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 251 \n",
+ " 251 \n",
+ " 251 \n",
+ " 3750000 \n",
+ " 893.7987432 \n",
+ " 650 \n",
+ " 143231 \n",
+ " 1134 \n",
+ " 1352 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-16384-8 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " 1 \n",
+ " 0 \n",
+ " xrrbk.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 186 \n",
+ " 186 \n",
+ " 186 \n",
+ " 3750000 \n",
+ " 810.1124664 \n",
+ " 649 \n",
+ " 143103 \n",
+ " 1000 \n",
+ " 1213 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-32768-1 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " 1 \n",
+ " 0 \n",
+ " 5m288.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 506 \n",
+ " 506 \n",
+ " 506 \n",
+ " 3750000 \n",
+ " 1017.9970421333334 \n",
+ " 635 \n",
+ " 25477119 \n",
+ " 1027 \n",
+ " 1298 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-32768-2 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " 1 \n",
+ " 0 \n",
+ " dxlcv.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 217 \n",
+ " 217 \n",
+ " 217 \n",
+ " 3750000 \n",
+ " 1018.7530533333334 \n",
+ " 642 \n",
+ " 25477119 \n",
+ " 991 \n",
+ " 1275 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-32768-3 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " 1 \n",
+ " 0 \n",
+ " j97qc.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 190 \n",
+ " 190 \n",
+ " 190 \n",
+ " 3750000 \n",
+ " 1013.7664738666666 \n",
+ " 641 \n",
+ " 25477119 \n",
+ " 987 \n",
+ " 1317 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-32768-4 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " 1 \n",
+ " 0 \n",
+ " lvlv2.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 470 \n",
+ " 470 \n",
+ " 470 \n",
+ " 3750000 \n",
+ " 1008.1548872 \n",
+ " 634 \n",
+ " 25477119 \n",
+ " 984 \n",
+ " 1248 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-32768-5 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " 1 \n",
+ " 0 \n",
+ " nzswp.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 192 \n",
+ " 192 \n",
+ " 192 \n",
+ " 3750000 \n",
+ " 1050.2617424 \n",
+ " 641 \n",
+ " 25477119 \n",
+ " 1024 \n",
+ " 1342 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-32768-6 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " 1 \n",
+ " 0 \n",
+ " qk7pg.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 204 \n",
+ " 204 \n",
+ " 204 \n",
+ " 3750000 \n",
+ " 982.0317464 \n",
+ " 635 \n",
+ " 25477119 \n",
+ " 959 \n",
+ " 1140 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-32768-7 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " 1 \n",
+ " 0 \n",
+ " thvmb.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 194 \n",
+ " 194 \n",
+ " 194 \n",
+ " 3750000 \n",
+ " 1003.5151149333333 \n",
+ " 634 \n",
+ " 25477119 \n",
+ " 993 \n",
+ " 1229 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-32768-8 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " 1 \n",
+ " 0 \n",
+ " vbs9b.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 474 \n",
+ " 474 \n",
+ " 474 \n",
+ " 3750000 \n",
+ " 1025.1049664 \n",
+ " 643 \n",
+ " 25477119 \n",
+ " 1007 \n",
+ " 1229 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-49152-1 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " 1 \n",
+ " 0 \n",
+ " 7fnlv.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 373 \n",
+ " 373 \n",
+ " 373 \n",
+ " 3750000 \n",
+ " 1041.5667581333332 \n",
+ " 636 \n",
+ " 23117823 \n",
+ " 938 \n",
+ " 1178 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-49152-2 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " 1 \n",
+ " 0 \n",
+ " 8pcnm.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 213 \n",
+ " 213 \n",
+ " 213 \n",
+ " 3750000 \n",
+ " 1032.7283445333333 \n",
+ " 640 \n",
+ " 23101439 \n",
+ " 889 \n",
+ " 1153 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-49152-3 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " 1 \n",
+ " 0 \n",
+ " 9kkpj.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 189 \n",
+ " 189 \n",
+ " 189 \n",
+ " 3750000 \n",
+ " 1058.0164234666668 \n",
+ " 640 \n",
+ " 23117823 \n",
+ " 946 \n",
+ " 1239 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-49152-4 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " 1 \n",
+ " 0 \n",
+ " jlvdb.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 190 \n",
+ " 190 \n",
+ " 190 \n",
+ " 3750000 \n",
+ " 1018.2560928 \n",
+ " 636 \n",
+ " 23101439 \n",
+ " 912 \n",
+ " 1162 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-49152-5 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " 1 \n",
+ " 0 \n",
+ " m7bxp.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 198 \n",
+ " 198 \n",
+ " 198 \n",
+ " 3750000 \n",
+ " 1020.9561941333334 \n",
+ " 633 \n",
+ " 23101439 \n",
+ " 862 \n",
+ " 1116 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-49152-6 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " 1 \n",
+ " 0 \n",
+ " s229l.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 210 \n",
+ " 210 \n",
+ " 210 \n",
+ " 3750000 \n",
+ " 1035.5929082666667 \n",
+ " 639 \n",
+ " 23101439 \n",
+ " 930 \n",
+ " 1207 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-49152-7 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " 1 \n",
+ " 0 \n",
+ " sb97n.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 222 \n",
+ " 222 \n",
+ " 222 \n",
+ " 3750000 \n",
+ " 1074.3827728 \n",
+ " 649 \n",
+ " 23101439 \n",
+ " 964 \n",
+ " 1237 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-49152-8 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " 1 \n",
+ " 0 \n",
+ " x2j79.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 205 \n",
+ " 205 \n",
+ " 205 \n",
+ " 3750000 \n",
+ " 1011.5114624 \n",
+ " 630 \n",
+ " 23101439 \n",
+ " 859 \n",
+ " 1105 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-65536-1 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " 1 \n",
+ " 0 \n",
+ " 42qlk.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 210 \n",
+ " 210 \n",
+ " 210 \n",
+ " 3750000 \n",
+ " 996.8832234666667 \n",
+ " 630 \n",
+ " 22495231 \n",
+ " 990 \n",
+ " 1205 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-65536-2 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " 1 \n",
+ " 0 \n",
+ " 5dqdh.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 404 \n",
+ " 404 \n",
+ " 404 \n",
+ " 3750000 \n",
+ " 1075.0937845333333 \n",
+ " 702 \n",
+ " 22495231 \n",
+ " 1048 \n",
+ " 1269 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-65536-3 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " 1 \n",
+ " 0 \n",
+ " 66dgh.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 436 \n",
+ " 436 \n",
+ " 436 \n",
+ " 3750000 \n",
+ " 983.9162618666667 \n",
+ " 637 \n",
+ " 22495231 \n",
+ " 942 \n",
+ " 1171 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-65536-4 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " 1 \n",
+ " 0 \n",
+ " 6778k.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 373 \n",
+ " 373 \n",
+ " 373 \n",
+ " 3750000 \n",
+ " 1075.2453562666667 \n",
+ " 651 \n",
+ " 22495231 \n",
+ " 1070 \n",
+ " 1293 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-65536-5 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " 1 \n",
+ " 0 \n",
+ " 6vllq.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 354 \n",
+ " 354 \n",
+ " 354 \n",
+ " 3750000 \n",
+ " 1086.0009186666666 \n",
+ " 650 \n",
+ " 22495231 \n",
+ " 1105 \n",
+ " 1350 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-65536-6 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " 1 \n",
+ " 0 \n",
+ " d8z5q.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 251 \n",
+ " 251 \n",
+ " 251 \n",
+ " 3750000 \n",
+ " 1005.459416 \n",
+ " 642 \n",
+ " 22495231 \n",
+ " 970 \n",
+ " 1191 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-65536-7 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " 1 \n",
+ " 0 \n",
+ " k8drx.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 230 \n",
+ " 230 \n",
+ " 230 \n",
+ " 3750000 \n",
+ " 987.9829925333333 \n",
+ " 635 \n",
+ " 22495231 \n",
+ " 985 \n",
+ " 1216 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-65536-8 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " 1 \n",
+ " 0 \n",
+ " m4t2w.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 210 \n",
+ " 210 \n",
+ " 210 \n",
+ " 3750000 \n",
+ " 1054.6162472 \n",
+ " 696 \n",
+ " 22495231 \n",
+ " 1030 \n",
+ " 1261 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-81920-1 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " 1 \n",
+ " 0 \n",
+ " 2gmfh.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 205 \n",
+ " 205 \n",
+ " 205 \n",
+ " 3750000 \n",
+ " 1040.1317130666666 \n",
+ " 630 \n",
+ " 25804799 \n",
+ " 943 \n",
+ " 1197 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-81920-2 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " 1 \n",
+ " 0 \n",
+ " 7nlbl.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 221 \n",
+ " 221 \n",
+ " 221 \n",
+ " 3750000 \n",
+ " 995.7930290666667 \n",
+ " 632 \n",
+ " 25804799 \n",
+ " 901 \n",
+ " 1142 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-81920-3 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " 1 \n",
+ " 0 \n",
+ " b2bbf.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 185 \n",
+ " 185 \n",
+ " 185 \n",
+ " 3750000 \n",
+ " 1064.0971224 \n",
+ " 686 \n",
+ " 25804799 \n",
+ " 996 \n",
+ " 1243 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-81920-4 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " 1 \n",
+ " 0 \n",
+ " lc56j.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 284 \n",
+ " 284 \n",
+ " 284 \n",
+ " 3750000 \n",
+ " 1005.0607568 \n",
+ " 630 \n",
+ " 25804799 \n",
+ " 941 \n",
+ " 1161 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-81920-5 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " 1 \n",
+ " 0 \n",
+ " lccsk.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 209 \n",
+ " 209 \n",
+ " 209 \n",
+ " 3750000 \n",
+ " 1023.3424666666666 \n",
+ " 631 \n",
+ " 25804799 \n",
+ " 943 \n",
+ " 1185 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-81920-6 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " 1 \n",
+ " 0 \n",
+ " nqq5s.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 259 \n",
+ " 259 \n",
+ " 259 \n",
+ " 3750000 \n",
+ " 1071.9134168 \n",
+ " 682 \n",
+ " 25804799 \n",
+ " 1012 \n",
+ " 1253 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-81920-7 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " 1 \n",
+ " 0 \n",
+ " qpc6h.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 196 \n",
+ " 196 \n",
+ " 196 \n",
+ " 3750000 \n",
+ " 1021.6099389333333 \n",
+ " 645 \n",
+ " 25804799 \n",
+ " 943 \n",
+ " 1173 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-81920-8 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " 1 \n",
+ " 0 \n",
+ " vtqn4.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 217 \n",
+ " 217 \n",
+ " 217 \n",
+ " 3750000 \n",
+ " 1072.3814525333332 \n",
+ " 686 \n",
+ " 25804799 \n",
+ " 1009 \n",
+ " 1306 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " 1 \n",
+ " 0 \n",
+ " 6xx8q.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 192 \n",
+ " 192 \n",
+ " 192 \n",
+ " 3750000 \n",
+ " 1045.2016928 \n",
+ " 632 \n",
+ " 23363583 \n",
+ " 1000 \n",
+ " 1229 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-98304-2 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " 1 \n",
+ " 0 \n",
+ " ghmf9.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 200 \n",
+ " 200 \n",
+ " 200 \n",
+ " 3750000 \n",
+ " 1028.8221322666666 \n",
+ " 631 \n",
+ " 23363583 \n",
+ " 998 \n",
+ " 1251 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-98304-3 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " 1 \n",
+ " 0 \n",
+ " gqw9m.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 195 \n",
+ " 195 \n",
+ " 195 \n",
+ " 3750000 \n",
+ " 1045.3850088 \n",
+ " 639 \n",
+ " 23363583 \n",
+ " 1011 \n",
+ " 1238 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-98304-4 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " 1 \n",
+ " 0 \n",
+ " jln48.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 212 \n",
+ " 212 \n",
+ " 212 \n",
+ " 3750000 \n",
+ " 1015.8059450666667 \n",
+ " 636 \n",
+ " 23363583 \n",
+ " 919 \n",
+ " 1164 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-98304-5 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " 1 \n",
+ " 0 \n",
+ " n9xct.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 237 \n",
+ " 237 \n",
+ " 237 \n",
+ " 3750000 \n",
+ " 1083.8865906666667 \n",
+ " 689 \n",
+ " 23363583 \n",
+ " 1001 \n",
+ " 1246 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-98304-6 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " 1 \n",
+ " 0 \n",
+ " p78x4.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 287 \n",
+ " 287 \n",
+ " 287 \n",
+ " 3750000 \n",
+ " 1051.2896445333333 \n",
+ " 638 \n",
+ " 23363583 \n",
+ " 987 \n",
+ " 1220 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-98304-7 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " 1 \n",
+ " 0 \n",
+ " s4t2s.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 234 \n",
+ " 234 \n",
+ " 234 \n",
+ " 3750000 \n",
+ " 991.6972021333333 \n",
+ " 638 \n",
+ " 23363583 \n",
+ " 914 \n",
+ " 1162 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-98304-8 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " 1 \n",
+ " 0 \n",
+ " zklhx.sensor \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 260 \n",
+ " 260 \n",
+ " 260 \n",
+ " 3750000 \n",
+ " 1022.2611192 \n",
+ " 636 \n",
+ " 23363583 \n",
+ " 955 \n",
+ " 1198 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
72 rows Ă— 36 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " connection configuration \\\n",
+ "connection_pod \n",
+ "PostgreSQL-32-1-114688-1 PostgreSQL-32-1-114688 PostgreSQL-32-1-114688 \n",
+ "PostgreSQL-32-1-131072-1 PostgreSQL-32-1-131072 PostgreSQL-32-1-131072 \n",
+ "PostgreSQL-32-1-16384-1 PostgreSQL-32-1-16384 PostgreSQL-32-1-16384 \n",
+ "PostgreSQL-32-1-32768-1 PostgreSQL-32-1-32768 PostgreSQL-32-1-32768 \n",
+ "PostgreSQL-32-1-49152-1 PostgreSQL-32-1-49152 PostgreSQL-32-1-49152 \n",
+ "PostgreSQL-32-1-65536-1 PostgreSQL-32-1-65536 PostgreSQL-32-1-65536 \n",
+ "PostgreSQL-32-1-81920-1 PostgreSQL-32-1-81920 PostgreSQL-32-1-81920 \n",
+ "PostgreSQL-32-1-98304-1 PostgreSQL-32-1-98304 PostgreSQL-32-1-98304 \n",
+ "PostgreSQL-32-8-114688-1 PostgreSQL-32-8-114688 PostgreSQL-32-8-114688 \n",
+ "PostgreSQL-32-8-114688-2 PostgreSQL-32-8-114688 PostgreSQL-32-8-114688 \n",
+ "PostgreSQL-32-8-114688-3 PostgreSQL-32-8-114688 PostgreSQL-32-8-114688 \n",
+ "PostgreSQL-32-8-114688-4 PostgreSQL-32-8-114688 PostgreSQL-32-8-114688 \n",
+ "PostgreSQL-32-8-114688-5 PostgreSQL-32-8-114688 PostgreSQL-32-8-114688 \n",
+ "PostgreSQL-32-8-114688-6 PostgreSQL-32-8-114688 PostgreSQL-32-8-114688 \n",
+ "PostgreSQL-32-8-114688-7 PostgreSQL-32-8-114688 PostgreSQL-32-8-114688 \n",
+ "PostgreSQL-32-8-114688-8 PostgreSQL-32-8-114688 PostgreSQL-32-8-114688 \n",
+ "PostgreSQL-32-8-131072-1 PostgreSQL-32-8-131072 PostgreSQL-32-8-131072 \n",
+ "PostgreSQL-32-8-131072-2 PostgreSQL-32-8-131072 PostgreSQL-32-8-131072 \n",
+ "PostgreSQL-32-8-131072-3 PostgreSQL-32-8-131072 PostgreSQL-32-8-131072 \n",
+ "PostgreSQL-32-8-131072-4 PostgreSQL-32-8-131072 PostgreSQL-32-8-131072 \n",
+ "PostgreSQL-32-8-131072-5 PostgreSQL-32-8-131072 PostgreSQL-32-8-131072 \n",
+ "PostgreSQL-32-8-131072-6 PostgreSQL-32-8-131072 PostgreSQL-32-8-131072 \n",
+ "PostgreSQL-32-8-131072-7 PostgreSQL-32-8-131072 PostgreSQL-32-8-131072 \n",
+ "PostgreSQL-32-8-131072-8 PostgreSQL-32-8-131072 PostgreSQL-32-8-131072 \n",
+ "PostgreSQL-32-8-16384-1 PostgreSQL-32-8-16384 PostgreSQL-32-8-16384 \n",
+ "PostgreSQL-32-8-16384-2 PostgreSQL-32-8-16384 PostgreSQL-32-8-16384 \n",
+ "PostgreSQL-32-8-16384-3 PostgreSQL-32-8-16384 PostgreSQL-32-8-16384 \n",
+ "PostgreSQL-32-8-16384-4 PostgreSQL-32-8-16384 PostgreSQL-32-8-16384 \n",
+ "PostgreSQL-32-8-16384-5 PostgreSQL-32-8-16384 PostgreSQL-32-8-16384 \n",
+ "PostgreSQL-32-8-16384-6 PostgreSQL-32-8-16384 PostgreSQL-32-8-16384 \n",
+ "PostgreSQL-32-8-16384-7 PostgreSQL-32-8-16384 PostgreSQL-32-8-16384 \n",
+ "PostgreSQL-32-8-16384-8 PostgreSQL-32-8-16384 PostgreSQL-32-8-16384 \n",
+ "PostgreSQL-32-8-32768-1 PostgreSQL-32-8-32768 PostgreSQL-32-8-32768 \n",
+ "PostgreSQL-32-8-32768-2 PostgreSQL-32-8-32768 PostgreSQL-32-8-32768 \n",
+ "PostgreSQL-32-8-32768-3 PostgreSQL-32-8-32768 PostgreSQL-32-8-32768 \n",
+ "PostgreSQL-32-8-32768-4 PostgreSQL-32-8-32768 PostgreSQL-32-8-32768 \n",
+ "PostgreSQL-32-8-32768-5 PostgreSQL-32-8-32768 PostgreSQL-32-8-32768 \n",
+ "PostgreSQL-32-8-32768-6 PostgreSQL-32-8-32768 PostgreSQL-32-8-32768 \n",
+ "PostgreSQL-32-8-32768-7 PostgreSQL-32-8-32768 PostgreSQL-32-8-32768 \n",
+ "PostgreSQL-32-8-32768-8 PostgreSQL-32-8-32768 PostgreSQL-32-8-32768 \n",
+ "PostgreSQL-32-8-49152-1 PostgreSQL-32-8-49152 PostgreSQL-32-8-49152 \n",
+ "PostgreSQL-32-8-49152-2 PostgreSQL-32-8-49152 PostgreSQL-32-8-49152 \n",
+ "PostgreSQL-32-8-49152-3 PostgreSQL-32-8-49152 PostgreSQL-32-8-49152 \n",
+ "PostgreSQL-32-8-49152-4 PostgreSQL-32-8-49152 PostgreSQL-32-8-49152 \n",
+ "PostgreSQL-32-8-49152-5 PostgreSQL-32-8-49152 PostgreSQL-32-8-49152 \n",
+ "PostgreSQL-32-8-49152-6 PostgreSQL-32-8-49152 PostgreSQL-32-8-49152 \n",
+ "PostgreSQL-32-8-49152-7 PostgreSQL-32-8-49152 PostgreSQL-32-8-49152 \n",
+ "PostgreSQL-32-8-49152-8 PostgreSQL-32-8-49152 PostgreSQL-32-8-49152 \n",
+ "PostgreSQL-32-8-65536-1 PostgreSQL-32-8-65536 PostgreSQL-32-8-65536 \n",
+ "PostgreSQL-32-8-65536-2 PostgreSQL-32-8-65536 PostgreSQL-32-8-65536 \n",
+ "PostgreSQL-32-8-65536-3 PostgreSQL-32-8-65536 PostgreSQL-32-8-65536 \n",
+ "PostgreSQL-32-8-65536-4 PostgreSQL-32-8-65536 PostgreSQL-32-8-65536 \n",
+ "PostgreSQL-32-8-65536-5 PostgreSQL-32-8-65536 PostgreSQL-32-8-65536 \n",
+ "PostgreSQL-32-8-65536-6 PostgreSQL-32-8-65536 PostgreSQL-32-8-65536 \n",
+ "PostgreSQL-32-8-65536-7 PostgreSQL-32-8-65536 PostgreSQL-32-8-65536 \n",
+ "PostgreSQL-32-8-65536-8 PostgreSQL-32-8-65536 PostgreSQL-32-8-65536 \n",
+ "PostgreSQL-32-8-81920-1 PostgreSQL-32-8-81920 PostgreSQL-32-8-81920 \n",
+ "PostgreSQL-32-8-81920-2 PostgreSQL-32-8-81920 PostgreSQL-32-8-81920 \n",
+ "PostgreSQL-32-8-81920-3 PostgreSQL-32-8-81920 PostgreSQL-32-8-81920 \n",
+ "PostgreSQL-32-8-81920-4 PostgreSQL-32-8-81920 PostgreSQL-32-8-81920 \n",
+ "PostgreSQL-32-8-81920-5 PostgreSQL-32-8-81920 PostgreSQL-32-8-81920 \n",
+ "PostgreSQL-32-8-81920-6 PostgreSQL-32-8-81920 PostgreSQL-32-8-81920 \n",
+ "PostgreSQL-32-8-81920-7 PostgreSQL-32-8-81920 PostgreSQL-32-8-81920 \n",
+ "PostgreSQL-32-8-81920-8 PostgreSQL-32-8-81920 PostgreSQL-32-8-81920 \n",
+ "PostgreSQL-32-8-98304-1 PostgreSQL-32-8-98304 PostgreSQL-32-8-98304 \n",
+ "PostgreSQL-32-8-98304-2 PostgreSQL-32-8-98304 PostgreSQL-32-8-98304 \n",
+ "PostgreSQL-32-8-98304-3 PostgreSQL-32-8-98304 PostgreSQL-32-8-98304 \n",
+ "PostgreSQL-32-8-98304-4 PostgreSQL-32-8-98304 PostgreSQL-32-8-98304 \n",
+ "PostgreSQL-32-8-98304-5 PostgreSQL-32-8-98304 PostgreSQL-32-8-98304 \n",
+ "PostgreSQL-32-8-98304-6 PostgreSQL-32-8-98304 PostgreSQL-32-8-98304 \n",
+ "PostgreSQL-32-8-98304-7 PostgreSQL-32-8-98304 PostgreSQL-32-8-98304 \n",
+ "PostgreSQL-32-8-98304-8 PostgreSQL-32-8-98304 PostgreSQL-32-8-98304 \n",
+ "\n",
+ " experiment_run client pod pod_count \\\n",
+ "connection_pod \n",
+ "PostgreSQL-32-1-114688-1 1 0 tx5d5.sensor 1 \n",
+ "PostgreSQL-32-1-131072-1 1 0 b9gzf.sensor 1 \n",
+ "PostgreSQL-32-1-16384-1 1 0 mr62r.sensor 1 \n",
+ "PostgreSQL-32-1-32768-1 1 0 9fbk6.sensor 1 \n",
+ "PostgreSQL-32-1-49152-1 1 0 gs5fb.sensor 1 \n",
+ "PostgreSQL-32-1-65536-1 1 0 6hqzb.sensor 1 \n",
+ "PostgreSQL-32-1-81920-1 1 0 nkd9n.sensor 1 \n",
+ "PostgreSQL-32-1-98304-1 1 0 xzd7w.sensor 1 \n",
+ "PostgreSQL-32-8-114688-1 1 0 5x62v.sensor 8 \n",
+ "PostgreSQL-32-8-114688-2 1 0 7bc2c.sensor 8 \n",
+ "PostgreSQL-32-8-114688-3 1 0 c7w5h.sensor 8 \n",
+ "PostgreSQL-32-8-114688-4 1 0 dg57m.sensor 8 \n",
+ "PostgreSQL-32-8-114688-5 1 0 dn5vx.sensor 8 \n",
+ "PostgreSQL-32-8-114688-6 1 0 hkqrv.sensor 8 \n",
+ "PostgreSQL-32-8-114688-7 1 0 qbf55.sensor 8 \n",
+ "PostgreSQL-32-8-114688-8 1 0 sr6t8.sensor 8 \n",
+ "PostgreSQL-32-8-131072-1 1 0 2dbvt.sensor 8 \n",
+ "PostgreSQL-32-8-131072-2 1 0 2vfvb.sensor 8 \n",
+ "PostgreSQL-32-8-131072-3 1 0 5qftv.sensor 8 \n",
+ "PostgreSQL-32-8-131072-4 1 0 fwkgs.sensor 8 \n",
+ "PostgreSQL-32-8-131072-5 1 0 n8gtm.sensor 8 \n",
+ "PostgreSQL-32-8-131072-6 1 0 p6x48.sensor 8 \n",
+ "PostgreSQL-32-8-131072-7 1 0 p9pwx.sensor 8 \n",
+ "PostgreSQL-32-8-131072-8 1 0 vjc59.sensor 8 \n",
+ "PostgreSQL-32-8-16384-1 1 0 2hl8g.sensor 8 \n",
+ "PostgreSQL-32-8-16384-2 1 0 gb9j5.sensor 8 \n",
+ "PostgreSQL-32-8-16384-3 1 0 kjk85.sensor 8 \n",
+ "PostgreSQL-32-8-16384-4 1 0 mskcx.sensor 8 \n",
+ "PostgreSQL-32-8-16384-5 1 0 pcmmg.sensor 8 \n",
+ "PostgreSQL-32-8-16384-6 1 0 pmr6w.sensor 8 \n",
+ "PostgreSQL-32-8-16384-7 1 0 qmfjw.sensor 8 \n",
+ "PostgreSQL-32-8-16384-8 1 0 xrrbk.sensor 8 \n",
+ "PostgreSQL-32-8-32768-1 1 0 5m288.sensor 8 \n",
+ "PostgreSQL-32-8-32768-2 1 0 dxlcv.sensor 8 \n",
+ "PostgreSQL-32-8-32768-3 1 0 j97qc.sensor 8 \n",
+ "PostgreSQL-32-8-32768-4 1 0 lvlv2.sensor 8 \n",
+ "PostgreSQL-32-8-32768-5 1 0 nzswp.sensor 8 \n",
+ "PostgreSQL-32-8-32768-6 1 0 qk7pg.sensor 8 \n",
+ "PostgreSQL-32-8-32768-7 1 0 thvmb.sensor 8 \n",
+ "PostgreSQL-32-8-32768-8 1 0 vbs9b.sensor 8 \n",
+ "PostgreSQL-32-8-49152-1 1 0 7fnlv.sensor 8 \n",
+ "PostgreSQL-32-8-49152-2 1 0 8pcnm.sensor 8 \n",
+ "PostgreSQL-32-8-49152-3 1 0 9kkpj.sensor 8 \n",
+ "PostgreSQL-32-8-49152-4 1 0 jlvdb.sensor 8 \n",
+ "PostgreSQL-32-8-49152-5 1 0 m7bxp.sensor 8 \n",
+ "PostgreSQL-32-8-49152-6 1 0 s229l.sensor 8 \n",
+ "PostgreSQL-32-8-49152-7 1 0 sb97n.sensor 8 \n",
+ "PostgreSQL-32-8-49152-8 1 0 x2j79.sensor 8 \n",
+ "PostgreSQL-32-8-65536-1 1 0 42qlk.sensor 8 \n",
+ "PostgreSQL-32-8-65536-2 1 0 5dqdh.sensor 8 \n",
+ "PostgreSQL-32-8-65536-3 1 0 66dgh.sensor 8 \n",
+ "PostgreSQL-32-8-65536-4 1 0 6778k.sensor 8 \n",
+ "PostgreSQL-32-8-65536-5 1 0 6vllq.sensor 8 \n",
+ "PostgreSQL-32-8-65536-6 1 0 d8z5q.sensor 8 \n",
+ "PostgreSQL-32-8-65536-7 1 0 k8drx.sensor 8 \n",
+ "PostgreSQL-32-8-65536-8 1 0 m4t2w.sensor 8 \n",
+ "PostgreSQL-32-8-81920-1 1 0 2gmfh.sensor 8 \n",
+ "PostgreSQL-32-8-81920-2 1 0 7nlbl.sensor 8 \n",
+ "PostgreSQL-32-8-81920-3 1 0 b2bbf.sensor 8 \n",
+ "PostgreSQL-32-8-81920-4 1 0 lc56j.sensor 8 \n",
+ "PostgreSQL-32-8-81920-5 1 0 lccsk.sensor 8 \n",
+ "PostgreSQL-32-8-81920-6 1 0 nqq5s.sensor 8 \n",
+ "PostgreSQL-32-8-81920-7 1 0 qpc6h.sensor 8 \n",
+ "PostgreSQL-32-8-81920-8 1 0 vtqn4.sensor 8 \n",
+ "PostgreSQL-32-8-98304-1 1 0 6xx8q.sensor 8 \n",
+ "PostgreSQL-32-8-98304-2 1 0 ghmf9.sensor 8 \n",
+ "PostgreSQL-32-8-98304-3 1 0 gqw9m.sensor 8 \n",
+ "PostgreSQL-32-8-98304-4 1 0 jln48.sensor 8 \n",
+ "PostgreSQL-32-8-98304-5 1 0 n9xct.sensor 8 \n",
+ "PostgreSQL-32-8-98304-6 1 0 p78x4.sensor 8 \n",
+ "PostgreSQL-32-8-98304-7 1 0 s4t2s.sensor 8 \n",
+ "PostgreSQL-32-8-98304-8 1 0 zklhx.sensor 8 \n",
+ "\n",
+ " threads target sf workload ... \\\n",
+ "connection_pod ... \n",
+ "PostgreSQL-32-1-114688-1 32 114688 30 a ... \n",
+ "PostgreSQL-32-1-131072-1 32 131072 30 a ... \n",
+ "PostgreSQL-32-1-16384-1 32 16384 30 a ... \n",
+ "PostgreSQL-32-1-32768-1 32 32768 30 a ... \n",
+ "PostgreSQL-32-1-49152-1 32 49152 30 a ... \n",
+ "PostgreSQL-32-1-65536-1 32 65536 30 a ... \n",
+ "PostgreSQL-32-1-81920-1 32 81920 30 a ... \n",
+ "PostgreSQL-32-1-98304-1 32 98304 30 a ... \n",
+ "PostgreSQL-32-8-114688-1 4 14336 30 a ... \n",
+ "PostgreSQL-32-8-114688-2 4 14336 30 a ... \n",
+ "PostgreSQL-32-8-114688-3 4 14336 30 a ... \n",
+ "PostgreSQL-32-8-114688-4 4 14336 30 a ... \n",
+ "PostgreSQL-32-8-114688-5 4 14336 30 a ... \n",
+ "PostgreSQL-32-8-114688-6 4 14336 30 a ... \n",
+ "PostgreSQL-32-8-114688-7 4 14336 30 a ... \n",
+ "PostgreSQL-32-8-114688-8 4 14336 30 a ... \n",
+ "PostgreSQL-32-8-131072-1 4 16384 30 a ... \n",
+ "PostgreSQL-32-8-131072-2 4 16384 30 a ... \n",
+ "PostgreSQL-32-8-131072-3 4 16384 30 a ... \n",
+ "PostgreSQL-32-8-131072-4 4 16384 30 a ... \n",
+ "PostgreSQL-32-8-131072-5 4 16384 30 a ... \n",
+ "PostgreSQL-32-8-131072-6 4 16384 30 a ... \n",
+ "PostgreSQL-32-8-131072-7 4 16384 30 a ... \n",
+ "PostgreSQL-32-8-131072-8 4 16384 30 a ... \n",
+ "PostgreSQL-32-8-16384-1 4 2048 30 a ... \n",
+ "PostgreSQL-32-8-16384-2 4 2048 30 a ... \n",
+ "PostgreSQL-32-8-16384-3 4 2048 30 a ... \n",
+ "PostgreSQL-32-8-16384-4 4 2048 30 a ... \n",
+ "PostgreSQL-32-8-16384-5 4 2048 30 a ... \n",
+ "PostgreSQL-32-8-16384-6 4 2048 30 a ... \n",
+ "PostgreSQL-32-8-16384-7 4 2048 30 a ... \n",
+ "PostgreSQL-32-8-16384-8 4 2048 30 a ... \n",
+ "PostgreSQL-32-8-32768-1 4 4096 30 a ... \n",
+ "PostgreSQL-32-8-32768-2 4 4096 30 a ... \n",
+ "PostgreSQL-32-8-32768-3 4 4096 30 a ... \n",
+ "PostgreSQL-32-8-32768-4 4 4096 30 a ... \n",
+ "PostgreSQL-32-8-32768-5 4 4096 30 a ... \n",
+ "PostgreSQL-32-8-32768-6 4 4096 30 a ... \n",
+ "PostgreSQL-32-8-32768-7 4 4096 30 a ... \n",
+ "PostgreSQL-32-8-32768-8 4 4096 30 a ... \n",
+ "PostgreSQL-32-8-49152-1 4 6144 30 a ... \n",
+ "PostgreSQL-32-8-49152-2 4 6144 30 a ... \n",
+ "PostgreSQL-32-8-49152-3 4 6144 30 a ... \n",
+ "PostgreSQL-32-8-49152-4 4 6144 30 a ... \n",
+ "PostgreSQL-32-8-49152-5 4 6144 30 a ... \n",
+ "PostgreSQL-32-8-49152-6 4 6144 30 a ... \n",
+ "PostgreSQL-32-8-49152-7 4 6144 30 a ... \n",
+ "PostgreSQL-32-8-49152-8 4 6144 30 a ... \n",
+ "PostgreSQL-32-8-65536-1 4 8192 30 a ... \n",
+ "PostgreSQL-32-8-65536-2 4 8192 30 a ... \n",
+ "PostgreSQL-32-8-65536-3 4 8192 30 a ... \n",
+ "PostgreSQL-32-8-65536-4 4 8192 30 a ... \n",
+ "PostgreSQL-32-8-65536-5 4 8192 30 a ... \n",
+ "PostgreSQL-32-8-65536-6 4 8192 30 a ... \n",
+ "PostgreSQL-32-8-65536-7 4 8192 30 a ... \n",
+ "PostgreSQL-32-8-65536-8 4 8192 30 a ... \n",
+ "PostgreSQL-32-8-81920-1 4 10240 30 a ... \n",
+ "PostgreSQL-32-8-81920-2 4 10240 30 a ... \n",
+ "PostgreSQL-32-8-81920-3 4 10240 30 a ... \n",
+ "PostgreSQL-32-8-81920-4 4 10240 30 a ... \n",
+ "PostgreSQL-32-8-81920-5 4 10240 30 a ... \n",
+ "PostgreSQL-32-8-81920-6 4 10240 30 a ... \n",
+ "PostgreSQL-32-8-81920-7 4 10240 30 a ... \n",
+ "PostgreSQL-32-8-81920-8 4 10240 30 a ... \n",
+ "PostgreSQL-32-8-98304-1 4 12288 30 a ... \n",
+ "PostgreSQL-32-8-98304-2 4 12288 30 a ... \n",
+ "PostgreSQL-32-8-98304-3 4 12288 30 a ... \n",
+ "PostgreSQL-32-8-98304-4 4 12288 30 a ... \n",
+ "PostgreSQL-32-8-98304-5 4 12288 30 a ... \n",
+ "PostgreSQL-32-8-98304-6 4 12288 30 a ... \n",
+ "PostgreSQL-32-8-98304-7 4 12288 30 a ... \n",
+ "PostgreSQL-32-8-98304-8 4 12288 30 a ... \n",
+ "\n",
+ " [CLEANUP].MaxLatency(us) \\\n",
+ "connection_pod \n",
+ "PostgreSQL-32-1-114688-1 186 \n",
+ "PostgreSQL-32-1-131072-1 199 \n",
+ "PostgreSQL-32-1-16384-1 692 \n",
+ "PostgreSQL-32-1-32768-1 195 \n",
+ "PostgreSQL-32-1-49152-1 199 \n",
+ "PostgreSQL-32-1-65536-1 206 \n",
+ "PostgreSQL-32-1-81920-1 214 \n",
+ "PostgreSQL-32-1-98304-1 375 \n",
+ "PostgreSQL-32-8-114688-1 187 \n",
+ "PostgreSQL-32-8-114688-2 373 \n",
+ "PostgreSQL-32-8-114688-3 359 \n",
+ "PostgreSQL-32-8-114688-4 202 \n",
+ "PostgreSQL-32-8-114688-5 448 \n",
+ "PostgreSQL-32-8-114688-6 200 \n",
+ "PostgreSQL-32-8-114688-7 217 \n",
+ "PostgreSQL-32-8-114688-8 195 \n",
+ "PostgreSQL-32-8-131072-1 214 \n",
+ "PostgreSQL-32-8-131072-2 193 \n",
+ "PostgreSQL-32-8-131072-3 368 \n",
+ "PostgreSQL-32-8-131072-4 336 \n",
+ "PostgreSQL-32-8-131072-5 266 \n",
+ "PostgreSQL-32-8-131072-6 207 \n",
+ "PostgreSQL-32-8-131072-7 211 \n",
+ "PostgreSQL-32-8-131072-8 279 \n",
+ "PostgreSQL-32-8-16384-1 423 \n",
+ "PostgreSQL-32-8-16384-2 214 \n",
+ "PostgreSQL-32-8-16384-3 187 \n",
+ "PostgreSQL-32-8-16384-4 188 \n",
+ "PostgreSQL-32-8-16384-5 191 \n",
+ "PostgreSQL-32-8-16384-6 186 \n",
+ "PostgreSQL-32-8-16384-7 251 \n",
+ "PostgreSQL-32-8-16384-8 186 \n",
+ "PostgreSQL-32-8-32768-1 506 \n",
+ "PostgreSQL-32-8-32768-2 217 \n",
+ "PostgreSQL-32-8-32768-3 190 \n",
+ "PostgreSQL-32-8-32768-4 470 \n",
+ "PostgreSQL-32-8-32768-5 192 \n",
+ "PostgreSQL-32-8-32768-6 204 \n",
+ "PostgreSQL-32-8-32768-7 194 \n",
+ "PostgreSQL-32-8-32768-8 474 \n",
+ "PostgreSQL-32-8-49152-1 373 \n",
+ "PostgreSQL-32-8-49152-2 213 \n",
+ "PostgreSQL-32-8-49152-3 189 \n",
+ "PostgreSQL-32-8-49152-4 190 \n",
+ "PostgreSQL-32-8-49152-5 198 \n",
+ "PostgreSQL-32-8-49152-6 210 \n",
+ "PostgreSQL-32-8-49152-7 222 \n",
+ "PostgreSQL-32-8-49152-8 205 \n",
+ "PostgreSQL-32-8-65536-1 210 \n",
+ "PostgreSQL-32-8-65536-2 404 \n",
+ "PostgreSQL-32-8-65536-3 436 \n",
+ "PostgreSQL-32-8-65536-4 373 \n",
+ "PostgreSQL-32-8-65536-5 354 \n",
+ "PostgreSQL-32-8-65536-6 251 \n",
+ "PostgreSQL-32-8-65536-7 230 \n",
+ "PostgreSQL-32-8-65536-8 210 \n",
+ "PostgreSQL-32-8-81920-1 205 \n",
+ "PostgreSQL-32-8-81920-2 221 \n",
+ "PostgreSQL-32-8-81920-3 185 \n",
+ "PostgreSQL-32-8-81920-4 284 \n",
+ "PostgreSQL-32-8-81920-5 209 \n",
+ "PostgreSQL-32-8-81920-6 259 \n",
+ "PostgreSQL-32-8-81920-7 196 \n",
+ "PostgreSQL-32-8-81920-8 217 \n",
+ "PostgreSQL-32-8-98304-1 192 \n",
+ "PostgreSQL-32-8-98304-2 200 \n",
+ "PostgreSQL-32-8-98304-3 195 \n",
+ "PostgreSQL-32-8-98304-4 212 \n",
+ "PostgreSQL-32-8-98304-5 237 \n",
+ "PostgreSQL-32-8-98304-6 287 \n",
+ "PostgreSQL-32-8-98304-7 234 \n",
+ "PostgreSQL-32-8-98304-8 260 \n",
+ "\n",
+ " [CLEANUP].95thPercentileLatency(us) \\\n",
+ "connection_pod \n",
+ "PostgreSQL-32-1-114688-1 144 \n",
+ "PostgreSQL-32-1-131072-1 154 \n",
+ "PostgreSQL-32-1-16384-1 450 \n",
+ "PostgreSQL-32-1-32768-1 140 \n",
+ "PostgreSQL-32-1-49152-1 147 \n",
+ "PostgreSQL-32-1-65536-1 132 \n",
+ "PostgreSQL-32-1-81920-1 129 \n",
+ "PostgreSQL-32-1-98304-1 115 \n",
+ "PostgreSQL-32-8-114688-1 187 \n",
+ "PostgreSQL-32-8-114688-2 373 \n",
+ "PostgreSQL-32-8-114688-3 359 \n",
+ "PostgreSQL-32-8-114688-4 202 \n",
+ "PostgreSQL-32-8-114688-5 448 \n",
+ "PostgreSQL-32-8-114688-6 200 \n",
+ "PostgreSQL-32-8-114688-7 217 \n",
+ "PostgreSQL-32-8-114688-8 195 \n",
+ "PostgreSQL-32-8-131072-1 214 \n",
+ "PostgreSQL-32-8-131072-2 193 \n",
+ "PostgreSQL-32-8-131072-3 368 \n",
+ "PostgreSQL-32-8-131072-4 336 \n",
+ "PostgreSQL-32-8-131072-5 266 \n",
+ "PostgreSQL-32-8-131072-6 207 \n",
+ "PostgreSQL-32-8-131072-7 211 \n",
+ "PostgreSQL-32-8-131072-8 279 \n",
+ "PostgreSQL-32-8-16384-1 423 \n",
+ "PostgreSQL-32-8-16384-2 214 \n",
+ "PostgreSQL-32-8-16384-3 187 \n",
+ "PostgreSQL-32-8-16384-4 188 \n",
+ "PostgreSQL-32-8-16384-5 191 \n",
+ "PostgreSQL-32-8-16384-6 186 \n",
+ "PostgreSQL-32-8-16384-7 251 \n",
+ "PostgreSQL-32-8-16384-8 186 \n",
+ "PostgreSQL-32-8-32768-1 506 \n",
+ "PostgreSQL-32-8-32768-2 217 \n",
+ "PostgreSQL-32-8-32768-3 190 \n",
+ "PostgreSQL-32-8-32768-4 470 \n",
+ "PostgreSQL-32-8-32768-5 192 \n",
+ "PostgreSQL-32-8-32768-6 204 \n",
+ "PostgreSQL-32-8-32768-7 194 \n",
+ "PostgreSQL-32-8-32768-8 474 \n",
+ "PostgreSQL-32-8-49152-1 373 \n",
+ "PostgreSQL-32-8-49152-2 213 \n",
+ "PostgreSQL-32-8-49152-3 189 \n",
+ "PostgreSQL-32-8-49152-4 190 \n",
+ "PostgreSQL-32-8-49152-5 198 \n",
+ "PostgreSQL-32-8-49152-6 210 \n",
+ "PostgreSQL-32-8-49152-7 222 \n",
+ "PostgreSQL-32-8-49152-8 205 \n",
+ "PostgreSQL-32-8-65536-1 210 \n",
+ "PostgreSQL-32-8-65536-2 404 \n",
+ "PostgreSQL-32-8-65536-3 436 \n",
+ "PostgreSQL-32-8-65536-4 373 \n",
+ "PostgreSQL-32-8-65536-5 354 \n",
+ "PostgreSQL-32-8-65536-6 251 \n",
+ "PostgreSQL-32-8-65536-7 230 \n",
+ "PostgreSQL-32-8-65536-8 210 \n",
+ "PostgreSQL-32-8-81920-1 205 \n",
+ "PostgreSQL-32-8-81920-2 221 \n",
+ "PostgreSQL-32-8-81920-3 185 \n",
+ "PostgreSQL-32-8-81920-4 284 \n",
+ "PostgreSQL-32-8-81920-5 209 \n",
+ "PostgreSQL-32-8-81920-6 259 \n",
+ "PostgreSQL-32-8-81920-7 196 \n",
+ "PostgreSQL-32-8-81920-8 217 \n",
+ "PostgreSQL-32-8-98304-1 192 \n",
+ "PostgreSQL-32-8-98304-2 200 \n",
+ "PostgreSQL-32-8-98304-3 195 \n",
+ "PostgreSQL-32-8-98304-4 212 \n",
+ "PostgreSQL-32-8-98304-5 237 \n",
+ "PostgreSQL-32-8-98304-6 287 \n",
+ "PostgreSQL-32-8-98304-7 234 \n",
+ "PostgreSQL-32-8-98304-8 260 \n",
+ "\n",
+ " [CLEANUP].99thPercentileLatency(us) \\\n",
+ "connection_pod \n",
+ "PostgreSQL-32-1-114688-1 186 \n",
+ "PostgreSQL-32-1-131072-1 199 \n",
+ "PostgreSQL-32-1-16384-1 692 \n",
+ "PostgreSQL-32-1-32768-1 195 \n",
+ "PostgreSQL-32-1-49152-1 199 \n",
+ "PostgreSQL-32-1-65536-1 206 \n",
+ "PostgreSQL-32-1-81920-1 214 \n",
+ "PostgreSQL-32-1-98304-1 375 \n",
+ "PostgreSQL-32-8-114688-1 187 \n",
+ "PostgreSQL-32-8-114688-2 373 \n",
+ "PostgreSQL-32-8-114688-3 359 \n",
+ "PostgreSQL-32-8-114688-4 202 \n",
+ "PostgreSQL-32-8-114688-5 448 \n",
+ "PostgreSQL-32-8-114688-6 200 \n",
+ "PostgreSQL-32-8-114688-7 217 \n",
+ "PostgreSQL-32-8-114688-8 195 \n",
+ "PostgreSQL-32-8-131072-1 214 \n",
+ "PostgreSQL-32-8-131072-2 193 \n",
+ "PostgreSQL-32-8-131072-3 368 \n",
+ "PostgreSQL-32-8-131072-4 336 \n",
+ "PostgreSQL-32-8-131072-5 266 \n",
+ "PostgreSQL-32-8-131072-6 207 \n",
+ "PostgreSQL-32-8-131072-7 211 \n",
+ "PostgreSQL-32-8-131072-8 279 \n",
+ "PostgreSQL-32-8-16384-1 423 \n",
+ "PostgreSQL-32-8-16384-2 214 \n",
+ "PostgreSQL-32-8-16384-3 187 \n",
+ "PostgreSQL-32-8-16384-4 188 \n",
+ "PostgreSQL-32-8-16384-5 191 \n",
+ "PostgreSQL-32-8-16384-6 186 \n",
+ "PostgreSQL-32-8-16384-7 251 \n",
+ "PostgreSQL-32-8-16384-8 186 \n",
+ "PostgreSQL-32-8-32768-1 506 \n",
+ "PostgreSQL-32-8-32768-2 217 \n",
+ "PostgreSQL-32-8-32768-3 190 \n",
+ "PostgreSQL-32-8-32768-4 470 \n",
+ "PostgreSQL-32-8-32768-5 192 \n",
+ "PostgreSQL-32-8-32768-6 204 \n",
+ "PostgreSQL-32-8-32768-7 194 \n",
+ "PostgreSQL-32-8-32768-8 474 \n",
+ "PostgreSQL-32-8-49152-1 373 \n",
+ "PostgreSQL-32-8-49152-2 213 \n",
+ "PostgreSQL-32-8-49152-3 189 \n",
+ "PostgreSQL-32-8-49152-4 190 \n",
+ "PostgreSQL-32-8-49152-5 198 \n",
+ "PostgreSQL-32-8-49152-6 210 \n",
+ "PostgreSQL-32-8-49152-7 222 \n",
+ "PostgreSQL-32-8-49152-8 205 \n",
+ "PostgreSQL-32-8-65536-1 210 \n",
+ "PostgreSQL-32-8-65536-2 404 \n",
+ "PostgreSQL-32-8-65536-3 436 \n",
+ "PostgreSQL-32-8-65536-4 373 \n",
+ "PostgreSQL-32-8-65536-5 354 \n",
+ "PostgreSQL-32-8-65536-6 251 \n",
+ "PostgreSQL-32-8-65536-7 230 \n",
+ "PostgreSQL-32-8-65536-8 210 \n",
+ "PostgreSQL-32-8-81920-1 205 \n",
+ "PostgreSQL-32-8-81920-2 221 \n",
+ "PostgreSQL-32-8-81920-3 185 \n",
+ "PostgreSQL-32-8-81920-4 284 \n",
+ "PostgreSQL-32-8-81920-5 209 \n",
+ "PostgreSQL-32-8-81920-6 259 \n",
+ "PostgreSQL-32-8-81920-7 196 \n",
+ "PostgreSQL-32-8-81920-8 217 \n",
+ "PostgreSQL-32-8-98304-1 192 \n",
+ "PostgreSQL-32-8-98304-2 200 \n",
+ "PostgreSQL-32-8-98304-3 195 \n",
+ "PostgreSQL-32-8-98304-4 212 \n",
+ "PostgreSQL-32-8-98304-5 237 \n",
+ "PostgreSQL-32-8-98304-6 287 \n",
+ "PostgreSQL-32-8-98304-7 234 \n",
+ "PostgreSQL-32-8-98304-8 260 \n",
+ "\n",
+ " [INSERT].Operations [INSERT].AverageLatency(us) \\\n",
+ "connection_pod \n",
+ "PostgreSQL-32-1-114688-1 30000000 1024.3594275 \n",
+ "PostgreSQL-32-1-131072-1 30000000 1033.9956250666667 \n",
+ "PostgreSQL-32-1-16384-1 30000000 835.0811325 \n",
+ "PostgreSQL-32-1-32768-1 30000000 1019.0929389666667 \n",
+ "PostgreSQL-32-1-49152-1 30000000 1042.6627607666667 \n",
+ "PostgreSQL-32-1-65536-1 30000000 1032.8564868 \n",
+ "PostgreSQL-32-1-81920-1 30000000 1039.4797652333334 \n",
+ "PostgreSQL-32-1-98304-1 30000000 1031.2387599666667 \n",
+ "PostgreSQL-32-8-114688-1 3750000 1071.3269501333334 \n",
+ "PostgreSQL-32-8-114688-2 3750000 1064.0484906666666 \n",
+ "PostgreSQL-32-8-114688-3 3750000 1062.6480872 \n",
+ "PostgreSQL-32-8-114688-4 3750000 1054.2813354666666 \n",
+ "PostgreSQL-32-8-114688-5 3750000 1046.1617666666666 \n",
+ "PostgreSQL-32-8-114688-6 3750000 1015.1118 \n",
+ "PostgreSQL-32-8-114688-7 3750000 979.8143810666667 \n",
+ "PostgreSQL-32-8-114688-8 3750000 1062.6591456 \n",
+ "PostgreSQL-32-8-131072-1 3750000 1018.9795154666666 \n",
+ "PostgreSQL-32-8-131072-2 3750000 1037.8515736 \n",
+ "PostgreSQL-32-8-131072-3 3750000 1108.4157389333334 \n",
+ "PostgreSQL-32-8-131072-4 3750000 1011.0584301333333 \n",
+ "PostgreSQL-32-8-131072-5 3750000 971.4101096 \n",
+ "PostgreSQL-32-8-131072-6 3750000 1026.5842928 \n",
+ "PostgreSQL-32-8-131072-7 3750000 989.8118778666667 \n",
+ "PostgreSQL-32-8-131072-8 3750000 1058.5769722666666 \n",
+ "PostgreSQL-32-8-16384-1 3750000 855.0688224 \n",
+ "PostgreSQL-32-8-16384-2 3750000 832.7726792 \n",
+ "PostgreSQL-32-8-16384-3 3750000 812.7801149333334 \n",
+ "PostgreSQL-32-8-16384-4 3750000 839.5906464 \n",
+ "PostgreSQL-32-8-16384-5 3750000 790.3665242666667 \n",
+ "PostgreSQL-32-8-16384-6 3750000 856.3669426666667 \n",
+ "PostgreSQL-32-8-16384-7 3750000 893.7987432 \n",
+ "PostgreSQL-32-8-16384-8 3750000 810.1124664 \n",
+ "PostgreSQL-32-8-32768-1 3750000 1017.9970421333334 \n",
+ "PostgreSQL-32-8-32768-2 3750000 1018.7530533333334 \n",
+ "PostgreSQL-32-8-32768-3 3750000 1013.7664738666666 \n",
+ "PostgreSQL-32-8-32768-4 3750000 1008.1548872 \n",
+ "PostgreSQL-32-8-32768-5 3750000 1050.2617424 \n",
+ "PostgreSQL-32-8-32768-6 3750000 982.0317464 \n",
+ "PostgreSQL-32-8-32768-7 3750000 1003.5151149333333 \n",
+ "PostgreSQL-32-8-32768-8 3750000 1025.1049664 \n",
+ "PostgreSQL-32-8-49152-1 3750000 1041.5667581333332 \n",
+ "PostgreSQL-32-8-49152-2 3750000 1032.7283445333333 \n",
+ "PostgreSQL-32-8-49152-3 3750000 1058.0164234666668 \n",
+ "PostgreSQL-32-8-49152-4 3750000 1018.2560928 \n",
+ "PostgreSQL-32-8-49152-5 3750000 1020.9561941333334 \n",
+ "PostgreSQL-32-8-49152-6 3750000 1035.5929082666667 \n",
+ "PostgreSQL-32-8-49152-7 3750000 1074.3827728 \n",
+ "PostgreSQL-32-8-49152-8 3750000 1011.5114624 \n",
+ "PostgreSQL-32-8-65536-1 3750000 996.8832234666667 \n",
+ "PostgreSQL-32-8-65536-2 3750000 1075.0937845333333 \n",
+ "PostgreSQL-32-8-65536-3 3750000 983.9162618666667 \n",
+ "PostgreSQL-32-8-65536-4 3750000 1075.2453562666667 \n",
+ "PostgreSQL-32-8-65536-5 3750000 1086.0009186666666 \n",
+ "PostgreSQL-32-8-65536-6 3750000 1005.459416 \n",
+ "PostgreSQL-32-8-65536-7 3750000 987.9829925333333 \n",
+ "PostgreSQL-32-8-65536-8 3750000 1054.6162472 \n",
+ "PostgreSQL-32-8-81920-1 3750000 1040.1317130666666 \n",
+ "PostgreSQL-32-8-81920-2 3750000 995.7930290666667 \n",
+ "PostgreSQL-32-8-81920-3 3750000 1064.0971224 \n",
+ "PostgreSQL-32-8-81920-4 3750000 1005.0607568 \n",
+ "PostgreSQL-32-8-81920-5 3750000 1023.3424666666666 \n",
+ "PostgreSQL-32-8-81920-6 3750000 1071.9134168 \n",
+ "PostgreSQL-32-8-81920-7 3750000 1021.6099389333333 \n",
+ "PostgreSQL-32-8-81920-8 3750000 1072.3814525333332 \n",
+ "PostgreSQL-32-8-98304-1 3750000 1045.2016928 \n",
+ "PostgreSQL-32-8-98304-2 3750000 1028.8221322666666 \n",
+ "PostgreSQL-32-8-98304-3 3750000 1045.3850088 \n",
+ "PostgreSQL-32-8-98304-4 3750000 1015.8059450666667 \n",
+ "PostgreSQL-32-8-98304-5 3750000 1083.8865906666667 \n",
+ "PostgreSQL-32-8-98304-6 3750000 1051.2896445333333 \n",
+ "PostgreSQL-32-8-98304-7 3750000 991.6972021333333 \n",
+ "PostgreSQL-32-8-98304-8 3750000 1022.2611192 \n",
+ "\n",
+ " [INSERT].MinLatency(us) [INSERT].MaxLatency(us) \\\n",
+ "connection_pod \n",
+ "PostgreSQL-32-1-114688-1 629 18612223 \n",
+ "PostgreSQL-32-1-131072-1 636 24150015 \n",
+ "PostgreSQL-32-1-16384-1 633 385791 \n",
+ "PostgreSQL-32-1-32768-1 630 26443775 \n",
+ "PostgreSQL-32-1-49152-1 630 23822335 \n",
+ "PostgreSQL-32-1-65536-1 629 23887871 \n",
+ "PostgreSQL-32-1-81920-1 636 23085055 \n",
+ "PostgreSQL-32-1-98304-1 630 23478271 \n",
+ "PostgreSQL-32-8-114688-1 653 23658495 \n",
+ "PostgreSQL-32-8-114688-2 687 23658495 \n",
+ "PostgreSQL-32-8-114688-3 698 23658495 \n",
+ "PostgreSQL-32-8-114688-4 639 23658495 \n",
+ "PostgreSQL-32-8-114688-5 634 23658495 \n",
+ "PostgreSQL-32-8-114688-6 643 23658495 \n",
+ "PostgreSQL-32-8-114688-7 629 23658495 \n",
+ "PostgreSQL-32-8-114688-8 682 23658495 \n",
+ "PostgreSQL-32-8-131072-1 640 22003711 \n",
+ "PostgreSQL-32-8-131072-2 632 22003711 \n",
+ "PostgreSQL-32-8-131072-3 642 22003711 \n",
+ "PostgreSQL-32-8-131072-4 635 22003711 \n",
+ "PostgreSQL-32-8-131072-5 636 22003711 \n",
+ "PostgreSQL-32-8-131072-6 637 22003711 \n",
+ "PostgreSQL-32-8-131072-7 640 22003711 \n",
+ "PostgreSQL-32-8-131072-8 636 22003711 \n",
+ "PostgreSQL-32-8-16384-1 643 143103 \n",
+ "PostgreSQL-32-8-16384-2 647 142975 \n",
+ "PostgreSQL-32-8-16384-3 646 142975 \n",
+ "PostgreSQL-32-8-16384-4 637 143103 \n",
+ "PostgreSQL-32-8-16384-5 646 142975 \n",
+ "PostgreSQL-32-8-16384-6 643 143231 \n",
+ "PostgreSQL-32-8-16384-7 650 143231 \n",
+ "PostgreSQL-32-8-16384-8 649 143103 \n",
+ "PostgreSQL-32-8-32768-1 635 25477119 \n",
+ "PostgreSQL-32-8-32768-2 642 25477119 \n",
+ "PostgreSQL-32-8-32768-3 641 25477119 \n",
+ "PostgreSQL-32-8-32768-4 634 25477119 \n",
+ "PostgreSQL-32-8-32768-5 641 25477119 \n",
+ "PostgreSQL-32-8-32768-6 635 25477119 \n",
+ "PostgreSQL-32-8-32768-7 634 25477119 \n",
+ "PostgreSQL-32-8-32768-8 643 25477119 \n",
+ "PostgreSQL-32-8-49152-1 636 23117823 \n",
+ "PostgreSQL-32-8-49152-2 640 23101439 \n",
+ "PostgreSQL-32-8-49152-3 640 23117823 \n",
+ "PostgreSQL-32-8-49152-4 636 23101439 \n",
+ "PostgreSQL-32-8-49152-5 633 23101439 \n",
+ "PostgreSQL-32-8-49152-6 639 23101439 \n",
+ "PostgreSQL-32-8-49152-7 649 23101439 \n",
+ "PostgreSQL-32-8-49152-8 630 23101439 \n",
+ "PostgreSQL-32-8-65536-1 630 22495231 \n",
+ "PostgreSQL-32-8-65536-2 702 22495231 \n",
+ "PostgreSQL-32-8-65536-3 637 22495231 \n",
+ "PostgreSQL-32-8-65536-4 651 22495231 \n",
+ "PostgreSQL-32-8-65536-5 650 22495231 \n",
+ "PostgreSQL-32-8-65536-6 642 22495231 \n",
+ "PostgreSQL-32-8-65536-7 635 22495231 \n",
+ "PostgreSQL-32-8-65536-8 696 22495231 \n",
+ "PostgreSQL-32-8-81920-1 630 25804799 \n",
+ "PostgreSQL-32-8-81920-2 632 25804799 \n",
+ "PostgreSQL-32-8-81920-3 686 25804799 \n",
+ "PostgreSQL-32-8-81920-4 630 25804799 \n",
+ "PostgreSQL-32-8-81920-5 631 25804799 \n",
+ "PostgreSQL-32-8-81920-6 682 25804799 \n",
+ "PostgreSQL-32-8-81920-7 645 25804799 \n",
+ "PostgreSQL-32-8-81920-8 686 25804799 \n",
+ "PostgreSQL-32-8-98304-1 632 23363583 \n",
+ "PostgreSQL-32-8-98304-2 631 23363583 \n",
+ "PostgreSQL-32-8-98304-3 639 23363583 \n",
+ "PostgreSQL-32-8-98304-4 636 23363583 \n",
+ "PostgreSQL-32-8-98304-5 689 23363583 \n",
+ "PostgreSQL-32-8-98304-6 638 23363583 \n",
+ "PostgreSQL-32-8-98304-7 638 23363583 \n",
+ "PostgreSQL-32-8-98304-8 636 23363583 \n",
+ "\n",
+ " [INSERT].95thPercentileLatency(us) \\\n",
+ "connection_pod \n",
+ "PostgreSQL-32-1-114688-1 967 \n",
+ "PostgreSQL-32-1-131072-1 945 \n",
+ "PostgreSQL-32-1-16384-1 1025 \n",
+ "PostgreSQL-32-1-32768-1 1018 \n",
+ "PostgreSQL-32-1-49152-1 981 \n",
+ "PostgreSQL-32-1-65536-1 967 \n",
+ "PostgreSQL-32-1-81920-1 967 \n",
+ "PostgreSQL-32-1-98304-1 959 \n",
+ "PostgreSQL-32-8-114688-1 1034 \n",
+ "PostgreSQL-32-8-114688-2 1015 \n",
+ "PostgreSQL-32-8-114688-3 1068 \n",
+ "PostgreSQL-32-8-114688-4 988 \n",
+ "PostgreSQL-32-8-114688-5 1002 \n",
+ "PostgreSQL-32-8-114688-6 915 \n",
+ "PostgreSQL-32-8-114688-7 930 \n",
+ "PostgreSQL-32-8-114688-8 1034 \n",
+ "PostgreSQL-32-8-131072-1 961 \n",
+ "PostgreSQL-32-8-131072-2 950 \n",
+ "PostgreSQL-32-8-131072-3 1077 \n",
+ "PostgreSQL-32-8-131072-4 1018 \n",
+ "PostgreSQL-32-8-131072-5 851 \n",
+ "PostgreSQL-32-8-131072-6 1017 \n",
+ "PostgreSQL-32-8-131072-7 939 \n",
+ "PostgreSQL-32-8-131072-8 965 \n",
+ "PostgreSQL-32-8-16384-1 1063 \n",
+ "PostgreSQL-32-8-16384-2 1025 \n",
+ "PostgreSQL-32-8-16384-3 977 \n",
+ "PostgreSQL-32-8-16384-4 1034 \n",
+ "PostgreSQL-32-8-16384-5 973 \n",
+ "PostgreSQL-32-8-16384-6 1107 \n",
+ "PostgreSQL-32-8-16384-7 1134 \n",
+ "PostgreSQL-32-8-16384-8 1000 \n",
+ "PostgreSQL-32-8-32768-1 1027 \n",
+ "PostgreSQL-32-8-32768-2 991 \n",
+ "PostgreSQL-32-8-32768-3 987 \n",
+ "PostgreSQL-32-8-32768-4 984 \n",
+ "PostgreSQL-32-8-32768-5 1024 \n",
+ "PostgreSQL-32-8-32768-6 959 \n",
+ "PostgreSQL-32-8-32768-7 993 \n",
+ "PostgreSQL-32-8-32768-8 1007 \n",
+ "PostgreSQL-32-8-49152-1 938 \n",
+ "PostgreSQL-32-8-49152-2 889 \n",
+ "PostgreSQL-32-8-49152-3 946 \n",
+ "PostgreSQL-32-8-49152-4 912 \n",
+ "PostgreSQL-32-8-49152-5 862 \n",
+ "PostgreSQL-32-8-49152-6 930 \n",
+ "PostgreSQL-32-8-49152-7 964 \n",
+ "PostgreSQL-32-8-49152-8 859 \n",
+ "PostgreSQL-32-8-65536-1 990 \n",
+ "PostgreSQL-32-8-65536-2 1048 \n",
+ "PostgreSQL-32-8-65536-3 942 \n",
+ "PostgreSQL-32-8-65536-4 1070 \n",
+ "PostgreSQL-32-8-65536-5 1105 \n",
+ "PostgreSQL-32-8-65536-6 970 \n",
+ "PostgreSQL-32-8-65536-7 985 \n",
+ "PostgreSQL-32-8-65536-8 1030 \n",
+ "PostgreSQL-32-8-81920-1 943 \n",
+ "PostgreSQL-32-8-81920-2 901 \n",
+ "PostgreSQL-32-8-81920-3 996 \n",
+ "PostgreSQL-32-8-81920-4 941 \n",
+ "PostgreSQL-32-8-81920-5 943 \n",
+ "PostgreSQL-32-8-81920-6 1012 \n",
+ "PostgreSQL-32-8-81920-7 943 \n",
+ "PostgreSQL-32-8-81920-8 1009 \n",
+ "PostgreSQL-32-8-98304-1 1000 \n",
+ "PostgreSQL-32-8-98304-2 998 \n",
+ "PostgreSQL-32-8-98304-3 1011 \n",
+ "PostgreSQL-32-8-98304-4 919 \n",
+ "PostgreSQL-32-8-98304-5 1001 \n",
+ "PostgreSQL-32-8-98304-6 987 \n",
+ "PostgreSQL-32-8-98304-7 914 \n",
+ "PostgreSQL-32-8-98304-8 955 \n",
+ "\n",
+ " [INSERT].99thPercentileLatency(us) [INSERT].Return=OK \n",
+ "connection_pod \n",
+ "PostgreSQL-32-1-114688-1 1261 30000000 \n",
+ "PostgreSQL-32-1-131072-1 1268 30000000 \n",
+ "PostgreSQL-32-1-16384-1 1180 30000000 \n",
+ "PostgreSQL-32-1-32768-1 1261 30000000 \n",
+ "PostgreSQL-32-1-49152-1 1268 30000000 \n",
+ "PostgreSQL-32-1-65536-1 1255 30000000 \n",
+ "PostgreSQL-32-1-81920-1 1261 30000000 \n",
+ "PostgreSQL-32-1-98304-1 1263 30000000 \n",
+ "PostgreSQL-32-8-114688-1 1278 3750000 \n",
+ "PostgreSQL-32-8-114688-2 1247 3750000 \n",
+ "PostgreSQL-32-8-114688-3 1321 3750000 \n",
+ "PostgreSQL-32-8-114688-4 1227 3750000 \n",
+ "PostgreSQL-32-8-114688-5 1243 3750000 \n",
+ "PostgreSQL-32-8-114688-6 1154 3750000 \n",
+ "PostgreSQL-32-8-114688-7 1164 3750000 \n",
+ "PostgreSQL-32-8-114688-8 1260 3750000 \n",
+ "PostgreSQL-32-8-131072-1 1203 3750000 \n",
+ "PostgreSQL-32-8-131072-2 1194 3750000 \n",
+ "PostgreSQL-32-8-131072-3 1333 3750000 \n",
+ "PostgreSQL-32-8-131072-4 1246 3750000 \n",
+ "PostgreSQL-32-8-131072-5 1042 3750000 \n",
+ "PostgreSQL-32-8-131072-6 1254 3750000 \n",
+ "PostgreSQL-32-8-131072-7 1149 3750000 \n",
+ "PostgreSQL-32-8-131072-8 1194 3750000 \n",
+ "PostgreSQL-32-8-16384-1 1201 3750000 \n",
+ "PostgreSQL-32-8-16384-2 1129 3750000 \n",
+ "PostgreSQL-32-8-16384-3 1089 3750000 \n",
+ "PostgreSQL-32-8-16384-4 1220 3750000 \n",
+ "PostgreSQL-32-8-16384-5 1044 3750000 \n",
+ "PostgreSQL-32-8-16384-6 1275 3750000 \n",
+ "PostgreSQL-32-8-16384-7 1352 3750000 \n",
+ "PostgreSQL-32-8-16384-8 1213 3750000 \n",
+ "PostgreSQL-32-8-32768-1 1298 3750000 \n",
+ "PostgreSQL-32-8-32768-2 1275 3750000 \n",
+ "PostgreSQL-32-8-32768-3 1317 3750000 \n",
+ "PostgreSQL-32-8-32768-4 1248 3750000 \n",
+ "PostgreSQL-32-8-32768-5 1342 3750000 \n",
+ "PostgreSQL-32-8-32768-6 1140 3750000 \n",
+ "PostgreSQL-32-8-32768-7 1229 3750000 \n",
+ "PostgreSQL-32-8-32768-8 1229 3750000 \n",
+ "PostgreSQL-32-8-49152-1 1178 3750000 \n",
+ "PostgreSQL-32-8-49152-2 1153 3750000 \n",
+ "PostgreSQL-32-8-49152-3 1239 3750000 \n",
+ "PostgreSQL-32-8-49152-4 1162 3750000 \n",
+ "PostgreSQL-32-8-49152-5 1116 3750000 \n",
+ "PostgreSQL-32-8-49152-6 1207 3750000 \n",
+ "PostgreSQL-32-8-49152-7 1237 3750000 \n",
+ "PostgreSQL-32-8-49152-8 1105 3750000 \n",
+ "PostgreSQL-32-8-65536-1 1205 3750000 \n",
+ "PostgreSQL-32-8-65536-2 1269 3750000 \n",
+ "PostgreSQL-32-8-65536-3 1171 3750000 \n",
+ "PostgreSQL-32-8-65536-4 1293 3750000 \n",
+ "PostgreSQL-32-8-65536-5 1350 3750000 \n",
+ "PostgreSQL-32-8-65536-6 1191 3750000 \n",
+ "PostgreSQL-32-8-65536-7 1216 3750000 \n",
+ "PostgreSQL-32-8-65536-8 1261 3750000 \n",
+ "PostgreSQL-32-8-81920-1 1197 3750000 \n",
+ "PostgreSQL-32-8-81920-2 1142 3750000 \n",
+ "PostgreSQL-32-8-81920-3 1243 3750000 \n",
+ "PostgreSQL-32-8-81920-4 1161 3750000 \n",
+ "PostgreSQL-32-8-81920-5 1185 3750000 \n",
+ "PostgreSQL-32-8-81920-6 1253 3750000 \n",
+ "PostgreSQL-32-8-81920-7 1173 3750000 \n",
+ "PostgreSQL-32-8-81920-8 1306 3750000 \n",
+ "PostgreSQL-32-8-98304-1 1229 3750000 \n",
+ "PostgreSQL-32-8-98304-2 1251 3750000 \n",
+ "PostgreSQL-32-8-98304-3 1238 3750000 \n",
+ "PostgreSQL-32-8-98304-4 1164 3750000 \n",
+ "PostgreSQL-32-8-98304-5 1246 3750000 \n",
+ "PostgreSQL-32-8-98304-6 1220 3750000 \n",
+ "PostgreSQL-32-8-98304-7 1162 3750000 \n",
+ "PostgreSQL-32-8-98304-8 1198 3750000 \n",
+ "\n",
+ "[72 rows x 36 columns]"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_df_loading()\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-1-32768 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " PostgreSQL-32-1-49152 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " PostgreSQL-32-1-65536 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " PostgreSQL-32-1-81920 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " PostgreSQL-32-1-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-1-114688 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " PostgreSQL-32-1-131072 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " connection \n",
+ " PostgreSQL-32-1-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-1-32768 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " PostgreSQL-32-1-49152 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " PostgreSQL-32-1-65536 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " PostgreSQL-32-1-81920 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " PostgreSQL-32-1-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-1-114688 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " PostgreSQL-32-1-131072 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " \n",
+ " \n",
+ " configuration \n",
+ " PostgreSQL-32-1-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-1-32768 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " PostgreSQL-32-1-49152 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " PostgreSQL-32-1-65536 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " PostgreSQL-32-1-81920 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " PostgreSQL-32-1-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-1-114688 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " PostgreSQL-32-1-131072 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " \n",
+ " \n",
+ " experiment_run \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " client \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " pod \n",
+ " mr62r.sensor \n",
+ " 2hl8g.sensorgb9j5.sensorkjk85.sensormskcx.sensorpcmmg.sensorpmr6w.sensorqmfjw.sensorxrrbk.sensor \n",
+ " 9fbk6.sensor \n",
+ " 5m288.sensordxlcv.sensorj97qc.sensorlvlv2.sensornzswp.sensorqk7pg.sensorthvmb.sensorvbs9b.sensor \n",
+ " gs5fb.sensor \n",
+ " 7fnlv.sensor8pcnm.sensor9kkpj.sensorjlvdb.sensorm7bxp.sensors229l.sensorsb97n.sensorx2j79.sensor \n",
+ " 6hqzb.sensor \n",
+ " 42qlk.sensor5dqdh.sensor66dgh.sensor6778k.sensor6vllq.sensord8z5q.sensork8drx.sensorm4t2w.sensor \n",
+ " nkd9n.sensor \n",
+ " 2gmfh.sensor7nlbl.sensorb2bbf.sensorlc56j.sensorlccsk.sensornqq5s.sensorqpc6h.sensorvtqn4.sensor \n",
+ " xzd7w.sensor \n",
+ " 6xx8q.sensorghmf9.sensorgqw9m.sensorjln48.sensorn9xct.sensorp78x4.sensors4t2s.sensorzklhx.sensor \n",
+ " tx5d5.sensor \n",
+ " 5x62v.sensor7bc2c.sensorc7w5h.sensordg57m.sensordn5vx.sensorhkqrv.sensorqbf55.sensorsr6t8.sensor \n",
+ " b9gzf.sensor \n",
+ " 2dbvt.sensor2vfvb.sensor5qftv.sensorfwkgs.sensorn8gtm.sensorp6x48.sensorp9pwx.sensorvjc59.sensor \n",
+ " \n",
+ " \n",
+ " pod_count \n",
+ " 1 \n",
+ " 8 \n",
+ " 1 \n",
+ " 8 \n",
+ " 1 \n",
+ " 8 \n",
+ " 1 \n",
+ " 8 \n",
+ " 1 \n",
+ " 8 \n",
+ " 1 \n",
+ " 8 \n",
+ " 1 \n",
+ " 8 \n",
+ " 1 \n",
+ " 8 \n",
+ " \n",
+ " \n",
+ " threads \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " \n",
+ " \n",
+ " target \n",
+ " 16384 \n",
+ " 16384 \n",
+ " 32768 \n",
+ " 32768 \n",
+ " 49152 \n",
+ " 49152 \n",
+ " 65536 \n",
+ " 65536 \n",
+ " 81920 \n",
+ " 81920 \n",
+ " 98304 \n",
+ " 98304 \n",
+ " 114688 \n",
+ " 114688 \n",
+ " 131072 \n",
+ " 131072 \n",
+ " \n",
+ " \n",
+ " sf \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " \n",
+ " \n",
+ " workload \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " \n",
+ " \n",
+ " operations \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " \n",
+ " \n",
+ " batchsize \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " \n",
+ " \n",
+ " [OVERALL].RunTime(ms) \n",
+ " 1831226.0 \n",
+ " 1831208.0 \n",
+ " 1059352.0 \n",
+ " 1070644.0 \n",
+ " 1062779.0 \n",
+ " 1050521.0 \n",
+ " 1030604.0 \n",
+ " 1092327.0 \n",
+ " 1054230.0 \n",
+ " 1073472.0 \n",
+ " 1074369.0 \n",
+ " 1069092.0 \n",
+ " 1066169.0 \n",
+ " 1124981.0 \n",
+ " 1085442.0 \n",
+ " 1090990.0 \n",
+ " \n",
+ " \n",
+ " [OVERALL].Throughput(ops/sec) \n",
+ " 16382.467265 \n",
+ " 16382.692041 \n",
+ " 28319.198907 \n",
+ " 28713.344934 \n",
+ " 28227.881808 \n",
+ " 29561.928753 \n",
+ " 29109.143764 \n",
+ " 28917.241547 \n",
+ " 28456.788367 \n",
+ " 29461.21192 \n",
+ " 27923.367111 \n",
+ " 29188.20774 \n",
+ " 28138.128195 \n",
+ " 29163.003574 \n",
+ " 27638.510395 \n",
+ " 29215.760305 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].Operations \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].AverageLatency(us) \n",
+ " 140.40625 \n",
+ " 117.09375 \n",
+ " 99.6875 \n",
+ " 153.375 \n",
+ " 90.25 \n",
+ " 129.1875 \n",
+ " 86.625 \n",
+ " 145.40625 \n",
+ " 95.25 \n",
+ " 130.4375 \n",
+ " 95.5 \n",
+ " 127.65625 \n",
+ " 95.4375 \n",
+ " 133.0 \n",
+ " 95.0 \n",
+ " 135.25 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].MinLatency(us) \n",
+ " 32.0 \n",
+ " 33.0 \n",
+ " 53.0 \n",
+ " 60.0 \n",
+ " 47.0 \n",
+ " 56.0 \n",
+ " 55.0 \n",
+ " 57.0 \n",
+ " 54.0 \n",
+ " 58.0 \n",
+ " 54.0 \n",
+ " 59.0 \n",
+ " 57.0 \n",
+ " 60.0 \n",
+ " 37.0 \n",
+ " 60.0 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].MaxLatency(us) \n",
+ " 692.0 \n",
+ " 423.0 \n",
+ " 195.0 \n",
+ " 506.0 \n",
+ " 199.0 \n",
+ " 373.0 \n",
+ " 206.0 \n",
+ " 436.0 \n",
+ " 214.0 \n",
+ " 284.0 \n",
+ " 375.0 \n",
+ " 287.0 \n",
+ " 186.0 \n",
+ " 448.0 \n",
+ " 199.0 \n",
+ " 368.0 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].95thPercentileLatency(us) \n",
+ " 450.0 \n",
+ " 423.0 \n",
+ " 140.0 \n",
+ " 506.0 \n",
+ " 147.0 \n",
+ " 373.0 \n",
+ " 132.0 \n",
+ " 436.0 \n",
+ " 129.0 \n",
+ " 284.0 \n",
+ " 115.0 \n",
+ " 287.0 \n",
+ " 144.0 \n",
+ " 448.0 \n",
+ " 154.0 \n",
+ " 368.0 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].99thPercentileLatency(us) \n",
+ " 692.0 \n",
+ " 423.0 \n",
+ " 195.0 \n",
+ " 506.0 \n",
+ " 199.0 \n",
+ " 373.0 \n",
+ " 206.0 \n",
+ " 436.0 \n",
+ " 214.0 \n",
+ " 284.0 \n",
+ " 375.0 \n",
+ " 287.0 \n",
+ " 186.0 \n",
+ " 448.0 \n",
+ " 199.0 \n",
+ " 368.0 \n",
+ " \n",
+ " \n",
+ " [INSERT].Operations \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " \n",
+ " \n",
+ " [INSERT].AverageLatency(us) \n",
+ " 835.081132 \n",
+ " 836.357117 \n",
+ " 1019.092939 \n",
+ " 1014.948128 \n",
+ " 1042.662761 \n",
+ " 1036.62637 \n",
+ " 1032.856487 \n",
+ " 1033.149775 \n",
+ " 1039.479765 \n",
+ " 1036.791237 \n",
+ " 1031.23876 \n",
+ " 1035.543667 \n",
+ " 1024.359428 \n",
+ " 1044.506495 \n",
+ " 1033.995625 \n",
+ " 1027.836064 \n",
+ " \n",
+ " \n",
+ " [INSERT].MinLatency(us) \n",
+ " 633.0 \n",
+ " 637.0 \n",
+ " 630.0 \n",
+ " 634.0 \n",
+ " 630.0 \n",
+ " 630.0 \n",
+ " 629.0 \n",
+ " 630.0 \n",
+ " 636.0 \n",
+ " 630.0 \n",
+ " 630.0 \n",
+ " 631.0 \n",
+ " 629.0 \n",
+ " 629.0 \n",
+ " 636.0 \n",
+ " 632.0 \n",
+ " \n",
+ " \n",
+ " [INSERT].MaxLatency(us) \n",
+ " 385791.0 \n",
+ " 143231.0 \n",
+ " 26443775.0 \n",
+ " 25477119.0 \n",
+ " 23822335.0 \n",
+ " 23117823.0 \n",
+ " 23887871.0 \n",
+ " 22495231.0 \n",
+ " 23085055.0 \n",
+ " 25804799.0 \n",
+ " 23478271.0 \n",
+ " 23363583.0 \n",
+ " 18612223.0 \n",
+ " 23658495.0 \n",
+ " 24150015.0 \n",
+ " 22003711.0 \n",
+ " \n",
+ " \n",
+ " [INSERT].95thPercentileLatency(us) \n",
+ " 1025.0 \n",
+ " 1134.0 \n",
+ " 1018.0 \n",
+ " 1027.0 \n",
+ " 981.0 \n",
+ " 964.0 \n",
+ " 967.0 \n",
+ " 1105.0 \n",
+ " 967.0 \n",
+ " 1012.0 \n",
+ " 959.0 \n",
+ " 1011.0 \n",
+ " 967.0 \n",
+ " 1068.0 \n",
+ " 945.0 \n",
+ " 1077.0 \n",
+ " \n",
+ " \n",
+ " [INSERT].99thPercentileLatency(us) \n",
+ " 1180.0 \n",
+ " 1352.0 \n",
+ " 1261.0 \n",
+ " 1342.0 \n",
+ " 1268.0 \n",
+ " 1239.0 \n",
+ " 1255.0 \n",
+ " 1350.0 \n",
+ " 1261.0 \n",
+ " 1306.0 \n",
+ " 1263.0 \n",
+ " 1251.0 \n",
+ " 1261.0 \n",
+ " 1321.0 \n",
+ " 1268.0 \n",
+ " 1333.0 \n",
+ " \n",
+ " \n",
+ " [INSERT].Return=OK \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " PostgreSQL-32-1-16384 \\\n",
+ "connection PostgreSQL-32-1-16384 \n",
+ "configuration PostgreSQL-32-1-16384 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod mr62r.sensor \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 16384 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 1831226.0 \n",
+ "[OVERALL].Throughput(ops/sec) 16382.467265 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 140.40625 \n",
+ "[CLEANUP].MinLatency(us) 32.0 \n",
+ "[CLEANUP].MaxLatency(us) 692.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 450.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 692.0 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 835.081132 \n",
+ "[INSERT].MinLatency(us) 633.0 \n",
+ "[INSERT].MaxLatency(us) 385791.0 \n",
+ "[INSERT].95thPercentileLatency(us) 1025.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1180.0 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ " PostgreSQL-32-8-16384 \\\n",
+ "connection PostgreSQL-32-8-16384 \n",
+ "configuration PostgreSQL-32-8-16384 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod 2hl8g.sensorgb9j5.sensorkjk85.sensormskcx.sensorpcmmg.sensorpmr6w.sensorqmfjw.sensorxrrbk.sensor \n",
+ "pod_count 8 \n",
+ "threads 32 \n",
+ "target 16384 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 1831208.0 \n",
+ "[OVERALL].Throughput(ops/sec) 16382.692041 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 117.09375 \n",
+ "[CLEANUP].MinLatency(us) 33.0 \n",
+ "[CLEANUP].MaxLatency(us) 423.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 423.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 423.0 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 836.357117 \n",
+ "[INSERT].MinLatency(us) 637.0 \n",
+ "[INSERT].MaxLatency(us) 143231.0 \n",
+ "[INSERT].95thPercentileLatency(us) 1134.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1352.0 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ " PostgreSQL-32-1-32768 \\\n",
+ "connection PostgreSQL-32-1-32768 \n",
+ "configuration PostgreSQL-32-1-32768 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod 9fbk6.sensor \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 32768 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 1059352.0 \n",
+ "[OVERALL].Throughput(ops/sec) 28319.198907 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 99.6875 \n",
+ "[CLEANUP].MinLatency(us) 53.0 \n",
+ "[CLEANUP].MaxLatency(us) 195.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 140.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 195.0 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1019.092939 \n",
+ "[INSERT].MinLatency(us) 630.0 \n",
+ "[INSERT].MaxLatency(us) 26443775.0 \n",
+ "[INSERT].95thPercentileLatency(us) 1018.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1261.0 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ " PostgreSQL-32-8-32768 \\\n",
+ "connection PostgreSQL-32-8-32768 \n",
+ "configuration PostgreSQL-32-8-32768 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod 5m288.sensordxlcv.sensorj97qc.sensorlvlv2.sensornzswp.sensorqk7pg.sensorthvmb.sensorvbs9b.sensor \n",
+ "pod_count 8 \n",
+ "threads 32 \n",
+ "target 32768 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 1070644.0 \n",
+ "[OVERALL].Throughput(ops/sec) 28713.344934 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 153.375 \n",
+ "[CLEANUP].MinLatency(us) 60.0 \n",
+ "[CLEANUP].MaxLatency(us) 506.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 506.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 506.0 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1014.948128 \n",
+ "[INSERT].MinLatency(us) 634.0 \n",
+ "[INSERT].MaxLatency(us) 25477119.0 \n",
+ "[INSERT].95thPercentileLatency(us) 1027.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1342.0 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ " PostgreSQL-32-1-49152 \\\n",
+ "connection PostgreSQL-32-1-49152 \n",
+ "configuration PostgreSQL-32-1-49152 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod gs5fb.sensor \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 49152 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 1062779.0 \n",
+ "[OVERALL].Throughput(ops/sec) 28227.881808 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 90.25 \n",
+ "[CLEANUP].MinLatency(us) 47.0 \n",
+ "[CLEANUP].MaxLatency(us) 199.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 147.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 199.0 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1042.662761 \n",
+ "[INSERT].MinLatency(us) 630.0 \n",
+ "[INSERT].MaxLatency(us) 23822335.0 \n",
+ "[INSERT].95thPercentileLatency(us) 981.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1268.0 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ " PostgreSQL-32-8-49152 \\\n",
+ "connection PostgreSQL-32-8-49152 \n",
+ "configuration PostgreSQL-32-8-49152 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod 7fnlv.sensor8pcnm.sensor9kkpj.sensorjlvdb.sensorm7bxp.sensors229l.sensorsb97n.sensorx2j79.sensor \n",
+ "pod_count 8 \n",
+ "threads 32 \n",
+ "target 49152 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 1050521.0 \n",
+ "[OVERALL].Throughput(ops/sec) 29561.928753 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 129.1875 \n",
+ "[CLEANUP].MinLatency(us) 56.0 \n",
+ "[CLEANUP].MaxLatency(us) 373.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 373.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 373.0 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1036.62637 \n",
+ "[INSERT].MinLatency(us) 630.0 \n",
+ "[INSERT].MaxLatency(us) 23117823.0 \n",
+ "[INSERT].95thPercentileLatency(us) 964.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1239.0 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ " PostgreSQL-32-1-65536 \\\n",
+ "connection PostgreSQL-32-1-65536 \n",
+ "configuration PostgreSQL-32-1-65536 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod 6hqzb.sensor \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 65536 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 1030604.0 \n",
+ "[OVERALL].Throughput(ops/sec) 29109.143764 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 86.625 \n",
+ "[CLEANUP].MinLatency(us) 55.0 \n",
+ "[CLEANUP].MaxLatency(us) 206.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 132.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 206.0 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1032.856487 \n",
+ "[INSERT].MinLatency(us) 629.0 \n",
+ "[INSERT].MaxLatency(us) 23887871.0 \n",
+ "[INSERT].95thPercentileLatency(us) 967.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1255.0 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ " PostgreSQL-32-8-65536 \\\n",
+ "connection PostgreSQL-32-8-65536 \n",
+ "configuration PostgreSQL-32-8-65536 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod 42qlk.sensor5dqdh.sensor66dgh.sensor6778k.sensor6vllq.sensord8z5q.sensork8drx.sensorm4t2w.sensor \n",
+ "pod_count 8 \n",
+ "threads 32 \n",
+ "target 65536 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 1092327.0 \n",
+ "[OVERALL].Throughput(ops/sec) 28917.241547 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 145.40625 \n",
+ "[CLEANUP].MinLatency(us) 57.0 \n",
+ "[CLEANUP].MaxLatency(us) 436.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 436.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 436.0 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1033.149775 \n",
+ "[INSERT].MinLatency(us) 630.0 \n",
+ "[INSERT].MaxLatency(us) 22495231.0 \n",
+ "[INSERT].95thPercentileLatency(us) 1105.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1350.0 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ " PostgreSQL-32-1-81920 \\\n",
+ "connection PostgreSQL-32-1-81920 \n",
+ "configuration PostgreSQL-32-1-81920 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod nkd9n.sensor \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 81920 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 1054230.0 \n",
+ "[OVERALL].Throughput(ops/sec) 28456.788367 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 95.25 \n",
+ "[CLEANUP].MinLatency(us) 54.0 \n",
+ "[CLEANUP].MaxLatency(us) 214.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 129.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 214.0 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1039.479765 \n",
+ "[INSERT].MinLatency(us) 636.0 \n",
+ "[INSERT].MaxLatency(us) 23085055.0 \n",
+ "[INSERT].95thPercentileLatency(us) 967.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1261.0 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ " PostgreSQL-32-8-81920 \\\n",
+ "connection PostgreSQL-32-8-81920 \n",
+ "configuration PostgreSQL-32-8-81920 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod 2gmfh.sensor7nlbl.sensorb2bbf.sensorlc56j.sensorlccsk.sensornqq5s.sensorqpc6h.sensorvtqn4.sensor \n",
+ "pod_count 8 \n",
+ "threads 32 \n",
+ "target 81920 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 1073472.0 \n",
+ "[OVERALL].Throughput(ops/sec) 29461.21192 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 130.4375 \n",
+ "[CLEANUP].MinLatency(us) 58.0 \n",
+ "[CLEANUP].MaxLatency(us) 284.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 284.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 284.0 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1036.791237 \n",
+ "[INSERT].MinLatency(us) 630.0 \n",
+ "[INSERT].MaxLatency(us) 25804799.0 \n",
+ "[INSERT].95thPercentileLatency(us) 1012.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1306.0 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ " PostgreSQL-32-1-98304 \\\n",
+ "connection PostgreSQL-32-1-98304 \n",
+ "configuration PostgreSQL-32-1-98304 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod xzd7w.sensor \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 98304 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 1074369.0 \n",
+ "[OVERALL].Throughput(ops/sec) 27923.367111 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 95.5 \n",
+ "[CLEANUP].MinLatency(us) 54.0 \n",
+ "[CLEANUP].MaxLatency(us) 375.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 115.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 375.0 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1031.23876 \n",
+ "[INSERT].MinLatency(us) 630.0 \n",
+ "[INSERT].MaxLatency(us) 23478271.0 \n",
+ "[INSERT].95thPercentileLatency(us) 959.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1263.0 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ " PostgreSQL-32-8-98304 \\\n",
+ "connection PostgreSQL-32-8-98304 \n",
+ "configuration PostgreSQL-32-8-98304 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod 6xx8q.sensorghmf9.sensorgqw9m.sensorjln48.sensorn9xct.sensorp78x4.sensors4t2s.sensorzklhx.sensor \n",
+ "pod_count 8 \n",
+ "threads 32 \n",
+ "target 98304 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 1069092.0 \n",
+ "[OVERALL].Throughput(ops/sec) 29188.20774 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 127.65625 \n",
+ "[CLEANUP].MinLatency(us) 59.0 \n",
+ "[CLEANUP].MaxLatency(us) 287.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 287.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 287.0 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1035.543667 \n",
+ "[INSERT].MinLatency(us) 631.0 \n",
+ "[INSERT].MaxLatency(us) 23363583.0 \n",
+ "[INSERT].95thPercentileLatency(us) 1011.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1251.0 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ " PostgreSQL-32-1-114688 \\\n",
+ "connection PostgreSQL-32-1-114688 \n",
+ "configuration PostgreSQL-32-1-114688 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod tx5d5.sensor \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 114688 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 1066169.0 \n",
+ "[OVERALL].Throughput(ops/sec) 28138.128195 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 95.4375 \n",
+ "[CLEANUP].MinLatency(us) 57.0 \n",
+ "[CLEANUP].MaxLatency(us) 186.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 144.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 186.0 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1024.359428 \n",
+ "[INSERT].MinLatency(us) 629.0 \n",
+ "[INSERT].MaxLatency(us) 18612223.0 \n",
+ "[INSERT].95thPercentileLatency(us) 967.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1261.0 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ " PostgreSQL-32-8-114688 \\\n",
+ "connection PostgreSQL-32-8-114688 \n",
+ "configuration PostgreSQL-32-8-114688 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod 5x62v.sensor7bc2c.sensorc7w5h.sensordg57m.sensordn5vx.sensorhkqrv.sensorqbf55.sensorsr6t8.sensor \n",
+ "pod_count 8 \n",
+ "threads 32 \n",
+ "target 114688 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 1124981.0 \n",
+ "[OVERALL].Throughput(ops/sec) 29163.003574 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 133.0 \n",
+ "[CLEANUP].MinLatency(us) 60.0 \n",
+ "[CLEANUP].MaxLatency(us) 448.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 448.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 448.0 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1044.506495 \n",
+ "[INSERT].MinLatency(us) 629.0 \n",
+ "[INSERT].MaxLatency(us) 23658495.0 \n",
+ "[INSERT].95thPercentileLatency(us) 1068.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1321.0 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ " PostgreSQL-32-1-131072 \\\n",
+ "connection PostgreSQL-32-1-131072 \n",
+ "configuration PostgreSQL-32-1-131072 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod b9gzf.sensor \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 131072 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 1085442.0 \n",
+ "[OVERALL].Throughput(ops/sec) 27638.510395 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 95.0 \n",
+ "[CLEANUP].MinLatency(us) 37.0 \n",
+ "[CLEANUP].MaxLatency(us) 199.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 154.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 199.0 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1033.995625 \n",
+ "[INSERT].MinLatency(us) 636.0 \n",
+ "[INSERT].MaxLatency(us) 24150015.0 \n",
+ "[INSERT].95thPercentileLatency(us) 945.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1268.0 \n",
+ "[INSERT].Return=OK 30000000 \n",
+ "\n",
+ " PostgreSQL-32-8-131072 \n",
+ "connection PostgreSQL-32-8-131072 \n",
+ "configuration PostgreSQL-32-8-131072 \n",
+ "experiment_run 1 \n",
+ "client 0 \n",
+ "pod 2dbvt.sensor2vfvb.sensor5qftv.sensorfwkgs.sensorn8gtm.sensorp6x48.sensorp9pwx.sensorvjc59.sensor \n",
+ "pod_count 8 \n",
+ "threads 32 \n",
+ "target 131072 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 1090990.0 \n",
+ "[OVERALL].Throughput(ops/sec) 29215.760305 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 135.25 \n",
+ "[CLEANUP].MinLatency(us) 60.0 \n",
+ "[CLEANUP].MaxLatency(us) 368.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 368.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 368.0 \n",
+ "[INSERT].Operations 30000000 \n",
+ "[INSERT].AverageLatency(us) 1027.836064 \n",
+ "[INSERT].MinLatency(us) 632.0 \n",
+ "[INSERT].MaxLatency(us) 22003711.0 \n",
+ "[INSERT].95thPercentileLatency(us) 1077.0 \n",
+ "[INSERT].99thPercentileLatency(us) 1333.0 \n",
+ "[INSERT].Return=OK 30000000 "
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.fillna(0, inplace=True)\n",
+ "df_plot = evaluation.loading_set_datatypes(df)\n",
+ "\n",
+ "df_aggregated = evaluation.loading_aggregate_by_parallel_pods(df_plot)\n",
+ "df_aggregated.sort_values('target', inplace=True)\n",
+ "df_aggregated.T"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Group by Connection"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " experiment_run \n",
+ " client \n",
+ " pod_count \n",
+ " threads \n",
+ " target \n",
+ " sf \n",
+ " operations \n",
+ " batchsize \n",
+ " [OVERALL].RunTime(ms) \n",
+ " [OVERALL].Throughput(ops/sec) \n",
+ " ... \n",
+ " [CLEANUP].MaxLatency(us) \n",
+ " [CLEANUP].95thPercentileLatency(us) \n",
+ " [CLEANUP].99thPercentileLatency(us) \n",
+ " [INSERT].Operations \n",
+ " [INSERT].AverageLatency(us) \n",
+ " [INSERT].MinLatency(us) \n",
+ " [INSERT].MaxLatency(us) \n",
+ " [INSERT].95thPercentileLatency(us) \n",
+ " [INSERT].99thPercentileLatency(us) \n",
+ " [INSERT].Return=OK \n",
+ " \n",
+ " \n",
+ " connection \n",
+ " pod \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-114688 \n",
+ " tx5d5.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 1 \n",
+ " 32 \n",
+ " 114688 \n",
+ " 30 \n",
+ " 30000000 \n",
+ " -1 \n",
+ " 1066169.0 \n",
+ " 28138.128195 \n",
+ " ... \n",
+ " 186.0 \n",
+ " 144.0 \n",
+ " 186.0 \n",
+ " 30000000 \n",
+ " 1024.359428 \n",
+ " 629.0 \n",
+ " 18612223.0 \n",
+ " 967.0 \n",
+ " 1261.0 \n",
+ " 30000000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-131072 \n",
+ " b9gzf.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 1 \n",
+ " 32 \n",
+ " 131072 \n",
+ " 30 \n",
+ " 30000000 \n",
+ " -1 \n",
+ " 1085442.0 \n",
+ " 27638.510395 \n",
+ " ... \n",
+ " 199.0 \n",
+ " 154.0 \n",
+ " 199.0 \n",
+ " 30000000 \n",
+ " 1033.995625 \n",
+ " 636.0 \n",
+ " 24150015.0 \n",
+ " 945.0 \n",
+ " 1268.0 \n",
+ " 30000000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-16384 \n",
+ " mr62r.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 1 \n",
+ " 32 \n",
+ " 16384 \n",
+ " 30 \n",
+ " 30000000 \n",
+ " -1 \n",
+ " 1831226.0 \n",
+ " 16382.467265 \n",
+ " ... \n",
+ " 692.0 \n",
+ " 450.0 \n",
+ " 692.0 \n",
+ " 30000000 \n",
+ " 835.081132 \n",
+ " 633.0 \n",
+ " 385791.0 \n",
+ " 1025.0 \n",
+ " 1180.0 \n",
+ " 30000000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-32768 \n",
+ " 9fbk6.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 1 \n",
+ " 32 \n",
+ " 32768 \n",
+ " 30 \n",
+ " 30000000 \n",
+ " -1 \n",
+ " 1059352.0 \n",
+ " 28319.198907 \n",
+ " ... \n",
+ " 195.0 \n",
+ " 140.0 \n",
+ " 195.0 \n",
+ " 30000000 \n",
+ " 1019.092939 \n",
+ " 630.0 \n",
+ " 26443775.0 \n",
+ " 1018.0 \n",
+ " 1261.0 \n",
+ " 30000000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-49152 \n",
+ " gs5fb.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 1 \n",
+ " 32 \n",
+ " 49152 \n",
+ " 30 \n",
+ " 30000000 \n",
+ " -1 \n",
+ " 1062779.0 \n",
+ " 28227.881808 \n",
+ " ... \n",
+ " 199.0 \n",
+ " 147.0 \n",
+ " 199.0 \n",
+ " 30000000 \n",
+ " 1042.662761 \n",
+ " 630.0 \n",
+ " 23822335.0 \n",
+ " 981.0 \n",
+ " 1268.0 \n",
+ " 30000000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-65536 \n",
+ " 6hqzb.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 1 \n",
+ " 32 \n",
+ " 65536 \n",
+ " 30 \n",
+ " 30000000 \n",
+ " -1 \n",
+ " 1030604.0 \n",
+ " 29109.143764 \n",
+ " ... \n",
+ " 206.0 \n",
+ " 132.0 \n",
+ " 206.0 \n",
+ " 30000000 \n",
+ " 1032.856487 \n",
+ " 629.0 \n",
+ " 23887871.0 \n",
+ " 967.0 \n",
+ " 1255.0 \n",
+ " 30000000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-81920 \n",
+ " nkd9n.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 1 \n",
+ " 32 \n",
+ " 81920 \n",
+ " 30 \n",
+ " 30000000 \n",
+ " -1 \n",
+ " 1054230.0 \n",
+ " 28456.788367 \n",
+ " ... \n",
+ " 214.0 \n",
+ " 129.0 \n",
+ " 214.0 \n",
+ " 30000000 \n",
+ " 1039.479765 \n",
+ " 636.0 \n",
+ " 23085055.0 \n",
+ " 967.0 \n",
+ " 1261.0 \n",
+ " 30000000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-98304 \n",
+ " xzd7w.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 1 \n",
+ " 32 \n",
+ " 98304 \n",
+ " 30 \n",
+ " 30000000 \n",
+ " -1 \n",
+ " 1074369.0 \n",
+ " 27923.367111 \n",
+ " ... \n",
+ " 375.0 \n",
+ " 115.0 \n",
+ " 375.0 \n",
+ " 30000000 \n",
+ " 1031.238760 \n",
+ " 630.0 \n",
+ " 23478271.0 \n",
+ " 959.0 \n",
+ " 1263.0 \n",
+ " 30000000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-114688 \n",
+ " 5x62v.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1032151.0 \n",
+ " 3633.189330 \n",
+ " ... \n",
+ " 187.0 \n",
+ " 187.0 \n",
+ " 187.0 \n",
+ " 3750000 \n",
+ " 1071.326950 \n",
+ " 653.0 \n",
+ " 23658495.0 \n",
+ " 1034.0 \n",
+ " 1278.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " 7bc2c.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1039143.0 \n",
+ " 3608.742974 \n",
+ " ... \n",
+ " 373.0 \n",
+ " 373.0 \n",
+ " 373.0 \n",
+ " 3750000 \n",
+ " 1064.048491 \n",
+ " 687.0 \n",
+ " 23658495.0 \n",
+ " 1015.0 \n",
+ " 1247.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " c7w5h.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1124981.0 \n",
+ " 3333.389631 \n",
+ " ... \n",
+ " 359.0 \n",
+ " 359.0 \n",
+ " 359.0 \n",
+ " 3750000 \n",
+ " 1062.648087 \n",
+ " 698.0 \n",
+ " 23658495.0 \n",
+ " 1068.0 \n",
+ " 1321.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " dg57m.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1018860.0 \n",
+ " 3680.584182 \n",
+ " ... \n",
+ " 202.0 \n",
+ " 202.0 \n",
+ " 202.0 \n",
+ " 3750000 \n",
+ " 1054.281335 \n",
+ " 639.0 \n",
+ " 23658495.0 \n",
+ " 988.0 \n",
+ " 1227.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " dn5vx.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 991561.0 \n",
+ " 3781.915586 \n",
+ " ... \n",
+ " 448.0 \n",
+ " 448.0 \n",
+ " 448.0 \n",
+ " 3750000 \n",
+ " 1046.161767 \n",
+ " 634.0 \n",
+ " 23658495.0 \n",
+ " 1002.0 \n",
+ " 1243.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " hkqrv.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 990135.0 \n",
+ " 3787.362329 \n",
+ " ... \n",
+ " 200.0 \n",
+ " 200.0 \n",
+ " 200.0 \n",
+ " 3750000 \n",
+ " 1015.111800 \n",
+ " 643.0 \n",
+ " 23658495.0 \n",
+ " 915.0 \n",
+ " 1154.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " qbf55.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 989158.0 \n",
+ " 3791.103140 \n",
+ " ... \n",
+ " 217.0 \n",
+ " 217.0 \n",
+ " 217.0 \n",
+ " 3750000 \n",
+ " 979.814381 \n",
+ " 629.0 \n",
+ " 23658495.0 \n",
+ " 930.0 \n",
+ " 1164.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " sr6t8.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1057316.0 \n",
+ " 3546.716403 \n",
+ " ... \n",
+ " 195.0 \n",
+ " 195.0 \n",
+ " 195.0 \n",
+ " 3750000 \n",
+ " 1062.659146 \n",
+ " 682.0 \n",
+ " 23658495.0 \n",
+ " 1034.0 \n",
+ " 1260.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-131072 \n",
+ " 2dbvt.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1019260.0 \n",
+ " 3679.139768 \n",
+ " ... \n",
+ " 214.0 \n",
+ " 214.0 \n",
+ " 214.0 \n",
+ " 3750000 \n",
+ " 1018.979515 \n",
+ " 640.0 \n",
+ " 22003711.0 \n",
+ " 961.0 \n",
+ " 1203.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " 2vfvb.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 999208.0 \n",
+ " 3752.972354 \n",
+ " ... \n",
+ " 193.0 \n",
+ " 193.0 \n",
+ " 193.0 \n",
+ " 3750000 \n",
+ " 1037.851574 \n",
+ " 632.0 \n",
+ " 22003711.0 \n",
+ " 950.0 \n",
+ " 1194.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " 5qftv.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1085177.0 \n",
+ " 3455.657464 \n",
+ " ... \n",
+ " 368.0 \n",
+ " 368.0 \n",
+ " 368.0 \n",
+ " 3750000 \n",
+ " 1108.415739 \n",
+ " 642.0 \n",
+ " 22003711.0 \n",
+ " 1077.0 \n",
+ " 1333.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " fwkgs.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1090990.0 \n",
+ " 3437.245071 \n",
+ " ... \n",
+ " 336.0 \n",
+ " 336.0 \n",
+ " 336.0 \n",
+ " 3750000 \n",
+ " 1011.058430 \n",
+ " 635.0 \n",
+ " 22003711.0 \n",
+ " 1018.0 \n",
+ " 1246.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " n8gtm.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 959749.0 \n",
+ " 3907.271589 \n",
+ " ... \n",
+ " 266.0 \n",
+ " 266.0 \n",
+ " 266.0 \n",
+ " 3750000 \n",
+ " 971.410110 \n",
+ " 636.0 \n",
+ " 22003711.0 \n",
+ " 851.0 \n",
+ " 1042.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " p6x48.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1044507.0 \n",
+ " 3590.210501 \n",
+ " ... \n",
+ " 207.0 \n",
+ " 207.0 \n",
+ " 207.0 \n",
+ " 3750000 \n",
+ " 1026.584293 \n",
+ " 637.0 \n",
+ " 22003711.0 \n",
+ " 1017.0 \n",
+ " 1254.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " p9pwx.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1016913.0 \n",
+ " 3687.631095 \n",
+ " ... \n",
+ " 211.0 \n",
+ " 211.0 \n",
+ " 211.0 \n",
+ " 3750000 \n",
+ " 989.811878 \n",
+ " 640.0 \n",
+ " 22003711.0 \n",
+ " 939.0 \n",
+ " 1149.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " vjc59.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1011973.0 \n",
+ " 3705.632463 \n",
+ " ... \n",
+ " 279.0 \n",
+ " 279.0 \n",
+ " 279.0 \n",
+ " 3750000 \n",
+ " 1058.576972 \n",
+ " 636.0 \n",
+ " 22003711.0 \n",
+ " 965.0 \n",
+ " 1194.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-16384 \n",
+ " 2hl8g.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1831205.0 \n",
+ " 2047.831892 \n",
+ " ... \n",
+ " 423.0 \n",
+ " 423.0 \n",
+ " 423.0 \n",
+ " 3750000 \n",
+ " 855.068822 \n",
+ " 643.0 \n",
+ " 143103.0 \n",
+ " 1063.0 \n",
+ " 1201.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " gb9j5.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1831208.0 \n",
+ " 2047.828537 \n",
+ " ... \n",
+ " 214.0 \n",
+ " 214.0 \n",
+ " 214.0 \n",
+ " 3750000 \n",
+ " 832.772679 \n",
+ " 647.0 \n",
+ " 142975.0 \n",
+ " 1025.0 \n",
+ " 1129.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " kjk85.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1831207.0 \n",
+ " 2047.829656 \n",
+ " ... \n",
+ " 187.0 \n",
+ " 187.0 \n",
+ " 187.0 \n",
+ " 3750000 \n",
+ " 812.780115 \n",
+ " 646.0 \n",
+ " 142975.0 \n",
+ " 977.0 \n",
+ " 1089.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " mskcx.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1831193.0 \n",
+ " 2047.845312 \n",
+ " ... \n",
+ " 188.0 \n",
+ " 188.0 \n",
+ " 188.0 \n",
+ " 3750000 \n",
+ " 839.590646 \n",
+ " 637.0 \n",
+ " 143103.0 \n",
+ " 1034.0 \n",
+ " 1220.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " pcmmg.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1831201.0 \n",
+ " 2047.836365 \n",
+ " ... \n",
+ " 191.0 \n",
+ " 191.0 \n",
+ " 191.0 \n",
+ " 3750000 \n",
+ " 790.366524 \n",
+ " 646.0 \n",
+ " 142975.0 \n",
+ " 973.0 \n",
+ " 1044.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " pmr6w.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1831203.0 \n",
+ " 2047.834129 \n",
+ " ... \n",
+ " 186.0 \n",
+ " 186.0 \n",
+ " 186.0 \n",
+ " 3750000 \n",
+ " 856.366943 \n",
+ " 643.0 \n",
+ " 143231.0 \n",
+ " 1107.0 \n",
+ " 1275.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " qmfjw.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1831193.0 \n",
+ " 2047.845312 \n",
+ " ... \n",
+ " 251.0 \n",
+ " 251.0 \n",
+ " 251.0 \n",
+ " 3750000 \n",
+ " 893.798743 \n",
+ " 650.0 \n",
+ " 143231.0 \n",
+ " 1134.0 \n",
+ " 1352.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " xrrbk.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1831197.0 \n",
+ " 2047.840839 \n",
+ " ... \n",
+ " 186.0 \n",
+ " 186.0 \n",
+ " 186.0 \n",
+ " 3750000 \n",
+ " 810.112466 \n",
+ " 649.0 \n",
+ " 143103.0 \n",
+ " 1000.0 \n",
+ " 1213.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-32768 \n",
+ " 5m288.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1070644.0 \n",
+ " 3502.564811 \n",
+ " ... \n",
+ " 506.0 \n",
+ " 506.0 \n",
+ " 506.0 \n",
+ " 3750000 \n",
+ " 1017.997042 \n",
+ " 635.0 \n",
+ " 25477119.0 \n",
+ " 1027.0 \n",
+ " 1298.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " dxlcv.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1038352.0 \n",
+ " 3611.492057 \n",
+ " ... \n",
+ " 217.0 \n",
+ " 217.0 \n",
+ " 217.0 \n",
+ " 3750000 \n",
+ " 1018.753053 \n",
+ " 642.0 \n",
+ " 25477119.0 \n",
+ " 991.0 \n",
+ " 1275.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " j97qc.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1028056.0 \n",
+ " 3647.661217 \n",
+ " ... \n",
+ " 190.0 \n",
+ " 190.0 \n",
+ " 190.0 \n",
+ " 3750000 \n",
+ " 1013.766474 \n",
+ " 641.0 \n",
+ " 25477119.0 \n",
+ " 987.0 \n",
+ " 1317.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " lvlv2.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1046118.0 \n",
+ " 3584.681652 \n",
+ " ... \n",
+ " 470.0 \n",
+ " 470.0 \n",
+ " 470.0 \n",
+ " 3750000 \n",
+ " 1008.154887 \n",
+ " 634.0 \n",
+ " 25477119.0 \n",
+ " 984.0 \n",
+ " 1248.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " nzswp.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1063681.0 \n",
+ " 3525.493075 \n",
+ " ... \n",
+ " 192.0 \n",
+ " 192.0 \n",
+ " 192.0 \n",
+ " 3750000 \n",
+ " 1050.261742 \n",
+ " 641.0 \n",
+ " 25477119.0 \n",
+ " 1024.0 \n",
+ " 1342.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " qk7pg.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1020079.0 \n",
+ " 3676.185864 \n",
+ " ... \n",
+ " 204.0 \n",
+ " 204.0 \n",
+ " 204.0 \n",
+ " 3750000 \n",
+ " 982.031746 \n",
+ " 635.0 \n",
+ " 25477119.0 \n",
+ " 959.0 \n",
+ " 1140.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " thvmb.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1047311.0 \n",
+ " 3580.598313 \n",
+ " ... \n",
+ " 194.0 \n",
+ " 194.0 \n",
+ " 194.0 \n",
+ " 3750000 \n",
+ " 1003.515115 \n",
+ " 634.0 \n",
+ " 25477119.0 \n",
+ " 993.0 \n",
+ " 1229.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " vbs9b.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1046122.0 \n",
+ " 3584.667945 \n",
+ " ... \n",
+ " 474.0 \n",
+ " 474.0 \n",
+ " 474.0 \n",
+ " 3750000 \n",
+ " 1025.104966 \n",
+ " 643.0 \n",
+ " 25477119.0 \n",
+ " 1007.0 \n",
+ " 1229.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-49152 \n",
+ " 7fnlv.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1011511.0 \n",
+ " 3707.324982 \n",
+ " ... \n",
+ " 373.0 \n",
+ " 373.0 \n",
+ " 373.0 \n",
+ " 3750000 \n",
+ " 1041.566758 \n",
+ " 636.0 \n",
+ " 23117823.0 \n",
+ " 938.0 \n",
+ " 1178.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " 8pcnm.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 979584.0 \n",
+ " 3828.155625 \n",
+ " ... \n",
+ " 213.0 \n",
+ " 213.0 \n",
+ " 213.0 \n",
+ " 3750000 \n",
+ " 1032.728345 \n",
+ " 640.0 \n",
+ " 23101439.0 \n",
+ " 889.0 \n",
+ " 1153.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " 9kkpj.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1050521.0 \n",
+ " 3569.657341 \n",
+ " ... \n",
+ " 189.0 \n",
+ " 189.0 \n",
+ " 189.0 \n",
+ " 3750000 \n",
+ " 1058.016423 \n",
+ " 640.0 \n",
+ " 23117823.0 \n",
+ " 946.0 \n",
+ " 1239.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " jlvdb.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1023677.0 \n",
+ " 3663.264877 \n",
+ " ... \n",
+ " 190.0 \n",
+ " 190.0 \n",
+ " 190.0 \n",
+ " 3750000 \n",
+ " 1018.256093 \n",
+ " 636.0 \n",
+ " 23101439.0 \n",
+ " 912.0 \n",
+ " 1162.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " m7bxp.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 985892.0 \n",
+ " 3803.662064 \n",
+ " ... \n",
+ " 198.0 \n",
+ " 198.0 \n",
+ " 198.0 \n",
+ " 3750000 \n",
+ " 1020.956194 \n",
+ " 633.0 \n",
+ " 23101439.0 \n",
+ " 862.0 \n",
+ " 1116.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " s229l.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1046148.0 \n",
+ " 3584.578855 \n",
+ " ... \n",
+ " 210.0 \n",
+ " 210.0 \n",
+ " 210.0 \n",
+ " 3750000 \n",
+ " 1035.592908 \n",
+ " 639.0 \n",
+ " 23101439.0 \n",
+ " 930.0 \n",
+ " 1207.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " sb97n.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1038195.0 \n",
+ " 3612.038201 \n",
+ " ... \n",
+ " 222.0 \n",
+ " 222.0 \n",
+ " 222.0 \n",
+ " 3750000 \n",
+ " 1074.382773 \n",
+ " 649.0 \n",
+ " 23101439.0 \n",
+ " 964.0 \n",
+ " 1237.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " x2j79.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 988599.0 \n",
+ " 3793.246807 \n",
+ " ... \n",
+ " 205.0 \n",
+ " 205.0 \n",
+ " 205.0 \n",
+ " 3750000 \n",
+ " 1011.511462 \n",
+ " 630.0 \n",
+ " 23101439.0 \n",
+ " 859.0 \n",
+ " 1105.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-65536 \n",
+ " 42qlk.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1015387.0 \n",
+ " 3693.173145 \n",
+ " ... \n",
+ " 210.0 \n",
+ " 210.0 \n",
+ " 210.0 \n",
+ " 3750000 \n",
+ " 996.883223 \n",
+ " 630.0 \n",
+ " 22495231.0 \n",
+ " 990.0 \n",
+ " 1205.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " 5dqdh.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1035542.0 \n",
+ " 3621.292038 \n",
+ " ... \n",
+ " 404.0 \n",
+ " 404.0 \n",
+ " 404.0 \n",
+ " 3750000 \n",
+ " 1075.093785 \n",
+ " 702.0 \n",
+ " 22495231.0 \n",
+ " 1048.0 \n",
+ " 1269.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " 66dgh.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 981090.0 \n",
+ " 3822.279302 \n",
+ " ... \n",
+ " 436.0 \n",
+ " 436.0 \n",
+ " 436.0 \n",
+ " 3750000 \n",
+ " 983.916262 \n",
+ " 637.0 \n",
+ " 22495231.0 \n",
+ " 942.0 \n",
+ " 1171.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " 6778k.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1070699.0 \n",
+ " 3502.384891 \n",
+ " ... \n",
+ " 373.0 \n",
+ " 373.0 \n",
+ " 373.0 \n",
+ " 3750000 \n",
+ " 1075.245356 \n",
+ " 651.0 \n",
+ " 22495231.0 \n",
+ " 1070.0 \n",
+ " 1293.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " 6vllq.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1092327.0 \n",
+ " 3433.037909 \n",
+ " ... \n",
+ " 354.0 \n",
+ " 354.0 \n",
+ " 354.0 \n",
+ " 3750000 \n",
+ " 1086.000919 \n",
+ " 650.0 \n",
+ " 22495231.0 \n",
+ " 1105.0 \n",
+ " 1350.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " d8z5q.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1019868.0 \n",
+ " 3676.946428 \n",
+ " ... \n",
+ " 251.0 \n",
+ " 251.0 \n",
+ " 251.0 \n",
+ " 3750000 \n",
+ " 1005.459416 \n",
+ " 642.0 \n",
+ " 22495231.0 \n",
+ " 970.0 \n",
+ " 1191.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " k8drx.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1037218.0 \n",
+ " 3615.440534 \n",
+ " ... \n",
+ " 230.0 \n",
+ " 230.0 \n",
+ " 230.0 \n",
+ " 3750000 \n",
+ " 987.982993 \n",
+ " 635.0 \n",
+ " 22495231.0 \n",
+ " 985.0 \n",
+ " 1216.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " m4t2w.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1055539.0 \n",
+ " 3552.687300 \n",
+ " ... \n",
+ " 210.0 \n",
+ " 210.0 \n",
+ " 210.0 \n",
+ " 3750000 \n",
+ " 1054.616247 \n",
+ " 696.0 \n",
+ " 22495231.0 \n",
+ " 1030.0 \n",
+ " 1261.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-81920 \n",
+ " 2gmfh.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1009671.0 \n",
+ " 3714.081121 \n",
+ " ... \n",
+ " 205.0 \n",
+ " 205.0 \n",
+ " 205.0 \n",
+ " 3750000 \n",
+ " 1040.131713 \n",
+ " 630.0 \n",
+ " 25804799.0 \n",
+ " 943.0 \n",
+ " 1197.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " 7nlbl.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 984110.0 \n",
+ " 3810.549634 \n",
+ " ... \n",
+ " 221.0 \n",
+ " 221.0 \n",
+ " 221.0 \n",
+ " 3750000 \n",
+ " 995.793029 \n",
+ " 632.0 \n",
+ " 25804799.0 \n",
+ " 901.0 \n",
+ " 1142.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " b2bbf.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1029558.0 \n",
+ " 3642.339722 \n",
+ " ... \n",
+ " 185.0 \n",
+ " 185.0 \n",
+ " 185.0 \n",
+ " 3750000 \n",
+ " 1064.097122 \n",
+ " 686.0 \n",
+ " 25804799.0 \n",
+ " 996.0 \n",
+ " 1243.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " lc56j.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1013965.0 \n",
+ " 3698.352507 \n",
+ " ... \n",
+ " 284.0 \n",
+ " 284.0 \n",
+ " 284.0 \n",
+ " 3750000 \n",
+ " 1005.060757 \n",
+ " 630.0 \n",
+ " 25804799.0 \n",
+ " 941.0 \n",
+ " 1161.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " lccsk.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 992998.0 \n",
+ " 3776.442651 \n",
+ " ... \n",
+ " 209.0 \n",
+ " 209.0 \n",
+ " 209.0 \n",
+ " 3750000 \n",
+ " 1023.342467 \n",
+ " 631.0 \n",
+ " 25804799.0 \n",
+ " 943.0 \n",
+ " 1185.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " nqq5s.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1043412.0 \n",
+ " 3593.978218 \n",
+ " ... \n",
+ " 259.0 \n",
+ " 259.0 \n",
+ " 259.0 \n",
+ " 3750000 \n",
+ " 1071.913417 \n",
+ " 682.0 \n",
+ " 25804799.0 \n",
+ " 1012.0 \n",
+ " 1253.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " qpc6h.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1004788.0 \n",
+ " 3732.130559 \n",
+ " ... \n",
+ " 196.0 \n",
+ " 196.0 \n",
+ " 196.0 \n",
+ " 3750000 \n",
+ " 1021.609939 \n",
+ " 645.0 \n",
+ " 25804799.0 \n",
+ " 943.0 \n",
+ " 1173.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " vtqn4.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1073472.0 \n",
+ " 3493.337507 \n",
+ " ... \n",
+ " 217.0 \n",
+ " 217.0 \n",
+ " 217.0 \n",
+ " 3750000 \n",
+ " 1072.381453 \n",
+ " 686.0 \n",
+ " 25804799.0 \n",
+ " 1009.0 \n",
+ " 1306.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-98304 \n",
+ " 6xx8q.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1054586.0 \n",
+ " 3555.897765 \n",
+ " ... \n",
+ " 192.0 \n",
+ " 192.0 \n",
+ " 192.0 \n",
+ " 3750000 \n",
+ " 1045.201693 \n",
+ " 632.0 \n",
+ " 23363583.0 \n",
+ " 1000.0 \n",
+ " 1229.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " ghmf9.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1069092.0 \n",
+ " 3507.649482 \n",
+ " ... \n",
+ " 200.0 \n",
+ " 200.0 \n",
+ " 200.0 \n",
+ " 3750000 \n",
+ " 1028.822132 \n",
+ " 631.0 \n",
+ " 23363583.0 \n",
+ " 998.0 \n",
+ " 1251.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " gqw9m.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1054273.0 \n",
+ " 3556.953465 \n",
+ " ... \n",
+ " 195.0 \n",
+ " 195.0 \n",
+ " 195.0 \n",
+ " 3750000 \n",
+ " 1045.385009 \n",
+ " 639.0 \n",
+ " 23363583.0 \n",
+ " 1011.0 \n",
+ " 1238.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " jln48.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 979125.0 \n",
+ " 3829.950211 \n",
+ " ... \n",
+ " 212.0 \n",
+ " 212.0 \n",
+ " 212.0 \n",
+ " 3750000 \n",
+ " 1015.805945 \n",
+ " 636.0 \n",
+ " 23363583.0 \n",
+ " 919.0 \n",
+ " 1164.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " n9xct.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1054125.0 \n",
+ " 3557.452864 \n",
+ " ... \n",
+ " 237.0 \n",
+ " 237.0 \n",
+ " 237.0 \n",
+ " 3750000 \n",
+ " 1083.886591 \n",
+ " 689.0 \n",
+ " 23363583.0 \n",
+ " 1001.0 \n",
+ " 1246.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " p78x4.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1013255.0 \n",
+ " 3700.943987 \n",
+ " ... \n",
+ " 287.0 \n",
+ " 287.0 \n",
+ " 287.0 \n",
+ " 3750000 \n",
+ " 1051.289645 \n",
+ " 638.0 \n",
+ " 23363583.0 \n",
+ " 987.0 \n",
+ " 1220.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " s4t2s.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 970744.0 \n",
+ " 3863.016408 \n",
+ " ... \n",
+ " 234.0 \n",
+ " 234.0 \n",
+ " 234.0 \n",
+ " 3750000 \n",
+ " 991.697202 \n",
+ " 638.0 \n",
+ " 23363583.0 \n",
+ " 914.0 \n",
+ " 1162.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " zklhx.sensor \n",
+ " 1 \n",
+ " 0 \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1036959.0 \n",
+ " 3616.343558 \n",
+ " ... \n",
+ " 260.0 \n",
+ " 260.0 \n",
+ " 260.0 \n",
+ " 3750000 \n",
+ " 1022.261119 \n",
+ " 636.0 \n",
+ " 23363583.0 \n",
+ " 955.0 \n",
+ " 1198.0 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
72 rows Ă— 23 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " experiment_run client pod_count \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688 tx5d5.sensor 1 0 1 \n",
+ "PostgreSQL-32-1-131072 b9gzf.sensor 1 0 1 \n",
+ "PostgreSQL-32-1-16384 mr62r.sensor 1 0 1 \n",
+ "PostgreSQL-32-1-32768 9fbk6.sensor 1 0 1 \n",
+ "PostgreSQL-32-1-49152 gs5fb.sensor 1 0 1 \n",
+ "PostgreSQL-32-1-65536 6hqzb.sensor 1 0 1 \n",
+ "PostgreSQL-32-1-81920 nkd9n.sensor 1 0 1 \n",
+ "PostgreSQL-32-1-98304 xzd7w.sensor 1 0 1 \n",
+ "PostgreSQL-32-8-114688 5x62v.sensor 1 0 8 \n",
+ " 7bc2c.sensor 1 0 8 \n",
+ " c7w5h.sensor 1 0 8 \n",
+ " dg57m.sensor 1 0 8 \n",
+ " dn5vx.sensor 1 0 8 \n",
+ " hkqrv.sensor 1 0 8 \n",
+ " qbf55.sensor 1 0 8 \n",
+ " sr6t8.sensor 1 0 8 \n",
+ "PostgreSQL-32-8-131072 2dbvt.sensor 1 0 8 \n",
+ " 2vfvb.sensor 1 0 8 \n",
+ " 5qftv.sensor 1 0 8 \n",
+ " fwkgs.sensor 1 0 8 \n",
+ " n8gtm.sensor 1 0 8 \n",
+ " p6x48.sensor 1 0 8 \n",
+ " p9pwx.sensor 1 0 8 \n",
+ " vjc59.sensor 1 0 8 \n",
+ "PostgreSQL-32-8-16384 2hl8g.sensor 1 0 8 \n",
+ " gb9j5.sensor 1 0 8 \n",
+ " kjk85.sensor 1 0 8 \n",
+ " mskcx.sensor 1 0 8 \n",
+ " pcmmg.sensor 1 0 8 \n",
+ " pmr6w.sensor 1 0 8 \n",
+ " qmfjw.sensor 1 0 8 \n",
+ " xrrbk.sensor 1 0 8 \n",
+ "PostgreSQL-32-8-32768 5m288.sensor 1 0 8 \n",
+ " dxlcv.sensor 1 0 8 \n",
+ " j97qc.sensor 1 0 8 \n",
+ " lvlv2.sensor 1 0 8 \n",
+ " nzswp.sensor 1 0 8 \n",
+ " qk7pg.sensor 1 0 8 \n",
+ " thvmb.sensor 1 0 8 \n",
+ " vbs9b.sensor 1 0 8 \n",
+ "PostgreSQL-32-8-49152 7fnlv.sensor 1 0 8 \n",
+ " 8pcnm.sensor 1 0 8 \n",
+ " 9kkpj.sensor 1 0 8 \n",
+ " jlvdb.sensor 1 0 8 \n",
+ " m7bxp.sensor 1 0 8 \n",
+ " s229l.sensor 1 0 8 \n",
+ " sb97n.sensor 1 0 8 \n",
+ " x2j79.sensor 1 0 8 \n",
+ "PostgreSQL-32-8-65536 42qlk.sensor 1 0 8 \n",
+ " 5dqdh.sensor 1 0 8 \n",
+ " 66dgh.sensor 1 0 8 \n",
+ " 6778k.sensor 1 0 8 \n",
+ " 6vllq.sensor 1 0 8 \n",
+ " d8z5q.sensor 1 0 8 \n",
+ " k8drx.sensor 1 0 8 \n",
+ " m4t2w.sensor 1 0 8 \n",
+ "PostgreSQL-32-8-81920 2gmfh.sensor 1 0 8 \n",
+ " 7nlbl.sensor 1 0 8 \n",
+ " b2bbf.sensor 1 0 8 \n",
+ " lc56j.sensor 1 0 8 \n",
+ " lccsk.sensor 1 0 8 \n",
+ " nqq5s.sensor 1 0 8 \n",
+ " qpc6h.sensor 1 0 8 \n",
+ " vtqn4.sensor 1 0 8 \n",
+ "PostgreSQL-32-8-98304 6xx8q.sensor 1 0 8 \n",
+ " ghmf9.sensor 1 0 8 \n",
+ " gqw9m.sensor 1 0 8 \n",
+ " jln48.sensor 1 0 8 \n",
+ " n9xct.sensor 1 0 8 \n",
+ " p78x4.sensor 1 0 8 \n",
+ " s4t2s.sensor 1 0 8 \n",
+ " zklhx.sensor 1 0 8 \n",
+ "\n",
+ " threads target sf operations \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688 tx5d5.sensor 32 114688 30 30000000 \n",
+ "PostgreSQL-32-1-131072 b9gzf.sensor 32 131072 30 30000000 \n",
+ "PostgreSQL-32-1-16384 mr62r.sensor 32 16384 30 30000000 \n",
+ "PostgreSQL-32-1-32768 9fbk6.sensor 32 32768 30 30000000 \n",
+ "PostgreSQL-32-1-49152 gs5fb.sensor 32 49152 30 30000000 \n",
+ "PostgreSQL-32-1-65536 6hqzb.sensor 32 65536 30 30000000 \n",
+ "PostgreSQL-32-1-81920 nkd9n.sensor 32 81920 30 30000000 \n",
+ "PostgreSQL-32-1-98304 xzd7w.sensor 32 98304 30 30000000 \n",
+ "PostgreSQL-32-8-114688 5x62v.sensor 4 14336 30 3750000 \n",
+ " 7bc2c.sensor 4 14336 30 3750000 \n",
+ " c7w5h.sensor 4 14336 30 3750000 \n",
+ " dg57m.sensor 4 14336 30 3750000 \n",
+ " dn5vx.sensor 4 14336 30 3750000 \n",
+ " hkqrv.sensor 4 14336 30 3750000 \n",
+ " qbf55.sensor 4 14336 30 3750000 \n",
+ " sr6t8.sensor 4 14336 30 3750000 \n",
+ "PostgreSQL-32-8-131072 2dbvt.sensor 4 16384 30 3750000 \n",
+ " 2vfvb.sensor 4 16384 30 3750000 \n",
+ " 5qftv.sensor 4 16384 30 3750000 \n",
+ " fwkgs.sensor 4 16384 30 3750000 \n",
+ " n8gtm.sensor 4 16384 30 3750000 \n",
+ " p6x48.sensor 4 16384 30 3750000 \n",
+ " p9pwx.sensor 4 16384 30 3750000 \n",
+ " vjc59.sensor 4 16384 30 3750000 \n",
+ "PostgreSQL-32-8-16384 2hl8g.sensor 4 2048 30 3750000 \n",
+ " gb9j5.sensor 4 2048 30 3750000 \n",
+ " kjk85.sensor 4 2048 30 3750000 \n",
+ " mskcx.sensor 4 2048 30 3750000 \n",
+ " pcmmg.sensor 4 2048 30 3750000 \n",
+ " pmr6w.sensor 4 2048 30 3750000 \n",
+ " qmfjw.sensor 4 2048 30 3750000 \n",
+ " xrrbk.sensor 4 2048 30 3750000 \n",
+ "PostgreSQL-32-8-32768 5m288.sensor 4 4096 30 3750000 \n",
+ " dxlcv.sensor 4 4096 30 3750000 \n",
+ " j97qc.sensor 4 4096 30 3750000 \n",
+ " lvlv2.sensor 4 4096 30 3750000 \n",
+ " nzswp.sensor 4 4096 30 3750000 \n",
+ " qk7pg.sensor 4 4096 30 3750000 \n",
+ " thvmb.sensor 4 4096 30 3750000 \n",
+ " vbs9b.sensor 4 4096 30 3750000 \n",
+ "PostgreSQL-32-8-49152 7fnlv.sensor 4 6144 30 3750000 \n",
+ " 8pcnm.sensor 4 6144 30 3750000 \n",
+ " 9kkpj.sensor 4 6144 30 3750000 \n",
+ " jlvdb.sensor 4 6144 30 3750000 \n",
+ " m7bxp.sensor 4 6144 30 3750000 \n",
+ " s229l.sensor 4 6144 30 3750000 \n",
+ " sb97n.sensor 4 6144 30 3750000 \n",
+ " x2j79.sensor 4 6144 30 3750000 \n",
+ "PostgreSQL-32-8-65536 42qlk.sensor 4 8192 30 3750000 \n",
+ " 5dqdh.sensor 4 8192 30 3750000 \n",
+ " 66dgh.sensor 4 8192 30 3750000 \n",
+ " 6778k.sensor 4 8192 30 3750000 \n",
+ " 6vllq.sensor 4 8192 30 3750000 \n",
+ " d8z5q.sensor 4 8192 30 3750000 \n",
+ " k8drx.sensor 4 8192 30 3750000 \n",
+ " m4t2w.sensor 4 8192 30 3750000 \n",
+ "PostgreSQL-32-8-81920 2gmfh.sensor 4 10240 30 3750000 \n",
+ " 7nlbl.sensor 4 10240 30 3750000 \n",
+ " b2bbf.sensor 4 10240 30 3750000 \n",
+ " lc56j.sensor 4 10240 30 3750000 \n",
+ " lccsk.sensor 4 10240 30 3750000 \n",
+ " nqq5s.sensor 4 10240 30 3750000 \n",
+ " qpc6h.sensor 4 10240 30 3750000 \n",
+ " vtqn4.sensor 4 10240 30 3750000 \n",
+ "PostgreSQL-32-8-98304 6xx8q.sensor 4 12288 30 3750000 \n",
+ " ghmf9.sensor 4 12288 30 3750000 \n",
+ " gqw9m.sensor 4 12288 30 3750000 \n",
+ " jln48.sensor 4 12288 30 3750000 \n",
+ " n9xct.sensor 4 12288 30 3750000 \n",
+ " p78x4.sensor 4 12288 30 3750000 \n",
+ " s4t2s.sensor 4 12288 30 3750000 \n",
+ " zklhx.sensor 4 12288 30 3750000 \n",
+ "\n",
+ " batchsize [OVERALL].RunTime(ms) \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688 tx5d5.sensor -1 1066169.0 \n",
+ "PostgreSQL-32-1-131072 b9gzf.sensor -1 1085442.0 \n",
+ "PostgreSQL-32-1-16384 mr62r.sensor -1 1831226.0 \n",
+ "PostgreSQL-32-1-32768 9fbk6.sensor -1 1059352.0 \n",
+ "PostgreSQL-32-1-49152 gs5fb.sensor -1 1062779.0 \n",
+ "PostgreSQL-32-1-65536 6hqzb.sensor -1 1030604.0 \n",
+ "PostgreSQL-32-1-81920 nkd9n.sensor -1 1054230.0 \n",
+ "PostgreSQL-32-1-98304 xzd7w.sensor -1 1074369.0 \n",
+ "PostgreSQL-32-8-114688 5x62v.sensor -1 1032151.0 \n",
+ " 7bc2c.sensor -1 1039143.0 \n",
+ " c7w5h.sensor -1 1124981.0 \n",
+ " dg57m.sensor -1 1018860.0 \n",
+ " dn5vx.sensor -1 991561.0 \n",
+ " hkqrv.sensor -1 990135.0 \n",
+ " qbf55.sensor -1 989158.0 \n",
+ " sr6t8.sensor -1 1057316.0 \n",
+ "PostgreSQL-32-8-131072 2dbvt.sensor -1 1019260.0 \n",
+ " 2vfvb.sensor -1 999208.0 \n",
+ " 5qftv.sensor -1 1085177.0 \n",
+ " fwkgs.sensor -1 1090990.0 \n",
+ " n8gtm.sensor -1 959749.0 \n",
+ " p6x48.sensor -1 1044507.0 \n",
+ " p9pwx.sensor -1 1016913.0 \n",
+ " vjc59.sensor -1 1011973.0 \n",
+ "PostgreSQL-32-8-16384 2hl8g.sensor -1 1831205.0 \n",
+ " gb9j5.sensor -1 1831208.0 \n",
+ " kjk85.sensor -1 1831207.0 \n",
+ " mskcx.sensor -1 1831193.0 \n",
+ " pcmmg.sensor -1 1831201.0 \n",
+ " pmr6w.sensor -1 1831203.0 \n",
+ " qmfjw.sensor -1 1831193.0 \n",
+ " xrrbk.sensor -1 1831197.0 \n",
+ "PostgreSQL-32-8-32768 5m288.sensor -1 1070644.0 \n",
+ " dxlcv.sensor -1 1038352.0 \n",
+ " j97qc.sensor -1 1028056.0 \n",
+ " lvlv2.sensor -1 1046118.0 \n",
+ " nzswp.sensor -1 1063681.0 \n",
+ " qk7pg.sensor -1 1020079.0 \n",
+ " thvmb.sensor -1 1047311.0 \n",
+ " vbs9b.sensor -1 1046122.0 \n",
+ "PostgreSQL-32-8-49152 7fnlv.sensor -1 1011511.0 \n",
+ " 8pcnm.sensor -1 979584.0 \n",
+ " 9kkpj.sensor -1 1050521.0 \n",
+ " jlvdb.sensor -1 1023677.0 \n",
+ " m7bxp.sensor -1 985892.0 \n",
+ " s229l.sensor -1 1046148.0 \n",
+ " sb97n.sensor -1 1038195.0 \n",
+ " x2j79.sensor -1 988599.0 \n",
+ "PostgreSQL-32-8-65536 42qlk.sensor -1 1015387.0 \n",
+ " 5dqdh.sensor -1 1035542.0 \n",
+ " 66dgh.sensor -1 981090.0 \n",
+ " 6778k.sensor -1 1070699.0 \n",
+ " 6vllq.sensor -1 1092327.0 \n",
+ " d8z5q.sensor -1 1019868.0 \n",
+ " k8drx.sensor -1 1037218.0 \n",
+ " m4t2w.sensor -1 1055539.0 \n",
+ "PostgreSQL-32-8-81920 2gmfh.sensor -1 1009671.0 \n",
+ " 7nlbl.sensor -1 984110.0 \n",
+ " b2bbf.sensor -1 1029558.0 \n",
+ " lc56j.sensor -1 1013965.0 \n",
+ " lccsk.sensor -1 992998.0 \n",
+ " nqq5s.sensor -1 1043412.0 \n",
+ " qpc6h.sensor -1 1004788.0 \n",
+ " vtqn4.sensor -1 1073472.0 \n",
+ "PostgreSQL-32-8-98304 6xx8q.sensor -1 1054586.0 \n",
+ " ghmf9.sensor -1 1069092.0 \n",
+ " gqw9m.sensor -1 1054273.0 \n",
+ " jln48.sensor -1 979125.0 \n",
+ " n9xct.sensor -1 1054125.0 \n",
+ " p78x4.sensor -1 1013255.0 \n",
+ " s4t2s.sensor -1 970744.0 \n",
+ " zklhx.sensor -1 1036959.0 \n",
+ "\n",
+ " [OVERALL].Throughput(ops/sec) ... \\\n",
+ "connection pod ... \n",
+ "PostgreSQL-32-1-114688 tx5d5.sensor 28138.128195 ... \n",
+ "PostgreSQL-32-1-131072 b9gzf.sensor 27638.510395 ... \n",
+ "PostgreSQL-32-1-16384 mr62r.sensor 16382.467265 ... \n",
+ "PostgreSQL-32-1-32768 9fbk6.sensor 28319.198907 ... \n",
+ "PostgreSQL-32-1-49152 gs5fb.sensor 28227.881808 ... \n",
+ "PostgreSQL-32-1-65536 6hqzb.sensor 29109.143764 ... \n",
+ "PostgreSQL-32-1-81920 nkd9n.sensor 28456.788367 ... \n",
+ "PostgreSQL-32-1-98304 xzd7w.sensor 27923.367111 ... \n",
+ "PostgreSQL-32-8-114688 5x62v.sensor 3633.189330 ... \n",
+ " 7bc2c.sensor 3608.742974 ... \n",
+ " c7w5h.sensor 3333.389631 ... \n",
+ " dg57m.sensor 3680.584182 ... \n",
+ " dn5vx.sensor 3781.915586 ... \n",
+ " hkqrv.sensor 3787.362329 ... \n",
+ " qbf55.sensor 3791.103140 ... \n",
+ " sr6t8.sensor 3546.716403 ... \n",
+ "PostgreSQL-32-8-131072 2dbvt.sensor 3679.139768 ... \n",
+ " 2vfvb.sensor 3752.972354 ... \n",
+ " 5qftv.sensor 3455.657464 ... \n",
+ " fwkgs.sensor 3437.245071 ... \n",
+ " n8gtm.sensor 3907.271589 ... \n",
+ " p6x48.sensor 3590.210501 ... \n",
+ " p9pwx.sensor 3687.631095 ... \n",
+ " vjc59.sensor 3705.632463 ... \n",
+ "PostgreSQL-32-8-16384 2hl8g.sensor 2047.831892 ... \n",
+ " gb9j5.sensor 2047.828537 ... \n",
+ " kjk85.sensor 2047.829656 ... \n",
+ " mskcx.sensor 2047.845312 ... \n",
+ " pcmmg.sensor 2047.836365 ... \n",
+ " pmr6w.sensor 2047.834129 ... \n",
+ " qmfjw.sensor 2047.845312 ... \n",
+ " xrrbk.sensor 2047.840839 ... \n",
+ "PostgreSQL-32-8-32768 5m288.sensor 3502.564811 ... \n",
+ " dxlcv.sensor 3611.492057 ... \n",
+ " j97qc.sensor 3647.661217 ... \n",
+ " lvlv2.sensor 3584.681652 ... \n",
+ " nzswp.sensor 3525.493075 ... \n",
+ " qk7pg.sensor 3676.185864 ... \n",
+ " thvmb.sensor 3580.598313 ... \n",
+ " vbs9b.sensor 3584.667945 ... \n",
+ "PostgreSQL-32-8-49152 7fnlv.sensor 3707.324982 ... \n",
+ " 8pcnm.sensor 3828.155625 ... \n",
+ " 9kkpj.sensor 3569.657341 ... \n",
+ " jlvdb.sensor 3663.264877 ... \n",
+ " m7bxp.sensor 3803.662064 ... \n",
+ " s229l.sensor 3584.578855 ... \n",
+ " sb97n.sensor 3612.038201 ... \n",
+ " x2j79.sensor 3793.246807 ... \n",
+ "PostgreSQL-32-8-65536 42qlk.sensor 3693.173145 ... \n",
+ " 5dqdh.sensor 3621.292038 ... \n",
+ " 66dgh.sensor 3822.279302 ... \n",
+ " 6778k.sensor 3502.384891 ... \n",
+ " 6vllq.sensor 3433.037909 ... \n",
+ " d8z5q.sensor 3676.946428 ... \n",
+ " k8drx.sensor 3615.440534 ... \n",
+ " m4t2w.sensor 3552.687300 ... \n",
+ "PostgreSQL-32-8-81920 2gmfh.sensor 3714.081121 ... \n",
+ " 7nlbl.sensor 3810.549634 ... \n",
+ " b2bbf.sensor 3642.339722 ... \n",
+ " lc56j.sensor 3698.352507 ... \n",
+ " lccsk.sensor 3776.442651 ... \n",
+ " nqq5s.sensor 3593.978218 ... \n",
+ " qpc6h.sensor 3732.130559 ... \n",
+ " vtqn4.sensor 3493.337507 ... \n",
+ "PostgreSQL-32-8-98304 6xx8q.sensor 3555.897765 ... \n",
+ " ghmf9.sensor 3507.649482 ... \n",
+ " gqw9m.sensor 3556.953465 ... \n",
+ " jln48.sensor 3829.950211 ... \n",
+ " n9xct.sensor 3557.452864 ... \n",
+ " p78x4.sensor 3700.943987 ... \n",
+ " s4t2s.sensor 3863.016408 ... \n",
+ " zklhx.sensor 3616.343558 ... \n",
+ "\n",
+ " [CLEANUP].MaxLatency(us) \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688 tx5d5.sensor 186.0 \n",
+ "PostgreSQL-32-1-131072 b9gzf.sensor 199.0 \n",
+ "PostgreSQL-32-1-16384 mr62r.sensor 692.0 \n",
+ "PostgreSQL-32-1-32768 9fbk6.sensor 195.0 \n",
+ "PostgreSQL-32-1-49152 gs5fb.sensor 199.0 \n",
+ "PostgreSQL-32-1-65536 6hqzb.sensor 206.0 \n",
+ "PostgreSQL-32-1-81920 nkd9n.sensor 214.0 \n",
+ "PostgreSQL-32-1-98304 xzd7w.sensor 375.0 \n",
+ "PostgreSQL-32-8-114688 5x62v.sensor 187.0 \n",
+ " 7bc2c.sensor 373.0 \n",
+ " c7w5h.sensor 359.0 \n",
+ " dg57m.sensor 202.0 \n",
+ " dn5vx.sensor 448.0 \n",
+ " hkqrv.sensor 200.0 \n",
+ " qbf55.sensor 217.0 \n",
+ " sr6t8.sensor 195.0 \n",
+ "PostgreSQL-32-8-131072 2dbvt.sensor 214.0 \n",
+ " 2vfvb.sensor 193.0 \n",
+ " 5qftv.sensor 368.0 \n",
+ " fwkgs.sensor 336.0 \n",
+ " n8gtm.sensor 266.0 \n",
+ " p6x48.sensor 207.0 \n",
+ " p9pwx.sensor 211.0 \n",
+ " vjc59.sensor 279.0 \n",
+ "PostgreSQL-32-8-16384 2hl8g.sensor 423.0 \n",
+ " gb9j5.sensor 214.0 \n",
+ " kjk85.sensor 187.0 \n",
+ " mskcx.sensor 188.0 \n",
+ " pcmmg.sensor 191.0 \n",
+ " pmr6w.sensor 186.0 \n",
+ " qmfjw.sensor 251.0 \n",
+ " xrrbk.sensor 186.0 \n",
+ "PostgreSQL-32-8-32768 5m288.sensor 506.0 \n",
+ " dxlcv.sensor 217.0 \n",
+ " j97qc.sensor 190.0 \n",
+ " lvlv2.sensor 470.0 \n",
+ " nzswp.sensor 192.0 \n",
+ " qk7pg.sensor 204.0 \n",
+ " thvmb.sensor 194.0 \n",
+ " vbs9b.sensor 474.0 \n",
+ "PostgreSQL-32-8-49152 7fnlv.sensor 373.0 \n",
+ " 8pcnm.sensor 213.0 \n",
+ " 9kkpj.sensor 189.0 \n",
+ " jlvdb.sensor 190.0 \n",
+ " m7bxp.sensor 198.0 \n",
+ " s229l.sensor 210.0 \n",
+ " sb97n.sensor 222.0 \n",
+ " x2j79.sensor 205.0 \n",
+ "PostgreSQL-32-8-65536 42qlk.sensor 210.0 \n",
+ " 5dqdh.sensor 404.0 \n",
+ " 66dgh.sensor 436.0 \n",
+ " 6778k.sensor 373.0 \n",
+ " 6vllq.sensor 354.0 \n",
+ " d8z5q.sensor 251.0 \n",
+ " k8drx.sensor 230.0 \n",
+ " m4t2w.sensor 210.0 \n",
+ "PostgreSQL-32-8-81920 2gmfh.sensor 205.0 \n",
+ " 7nlbl.sensor 221.0 \n",
+ " b2bbf.sensor 185.0 \n",
+ " lc56j.sensor 284.0 \n",
+ " lccsk.sensor 209.0 \n",
+ " nqq5s.sensor 259.0 \n",
+ " qpc6h.sensor 196.0 \n",
+ " vtqn4.sensor 217.0 \n",
+ "PostgreSQL-32-8-98304 6xx8q.sensor 192.0 \n",
+ " ghmf9.sensor 200.0 \n",
+ " gqw9m.sensor 195.0 \n",
+ " jln48.sensor 212.0 \n",
+ " n9xct.sensor 237.0 \n",
+ " p78x4.sensor 287.0 \n",
+ " s4t2s.sensor 234.0 \n",
+ " zklhx.sensor 260.0 \n",
+ "\n",
+ " [CLEANUP].95thPercentileLatency(us) \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688 tx5d5.sensor 144.0 \n",
+ "PostgreSQL-32-1-131072 b9gzf.sensor 154.0 \n",
+ "PostgreSQL-32-1-16384 mr62r.sensor 450.0 \n",
+ "PostgreSQL-32-1-32768 9fbk6.sensor 140.0 \n",
+ "PostgreSQL-32-1-49152 gs5fb.sensor 147.0 \n",
+ "PostgreSQL-32-1-65536 6hqzb.sensor 132.0 \n",
+ "PostgreSQL-32-1-81920 nkd9n.sensor 129.0 \n",
+ "PostgreSQL-32-1-98304 xzd7w.sensor 115.0 \n",
+ "PostgreSQL-32-8-114688 5x62v.sensor 187.0 \n",
+ " 7bc2c.sensor 373.0 \n",
+ " c7w5h.sensor 359.0 \n",
+ " dg57m.sensor 202.0 \n",
+ " dn5vx.sensor 448.0 \n",
+ " hkqrv.sensor 200.0 \n",
+ " qbf55.sensor 217.0 \n",
+ " sr6t8.sensor 195.0 \n",
+ "PostgreSQL-32-8-131072 2dbvt.sensor 214.0 \n",
+ " 2vfvb.sensor 193.0 \n",
+ " 5qftv.sensor 368.0 \n",
+ " fwkgs.sensor 336.0 \n",
+ " n8gtm.sensor 266.0 \n",
+ " p6x48.sensor 207.0 \n",
+ " p9pwx.sensor 211.0 \n",
+ " vjc59.sensor 279.0 \n",
+ "PostgreSQL-32-8-16384 2hl8g.sensor 423.0 \n",
+ " gb9j5.sensor 214.0 \n",
+ " kjk85.sensor 187.0 \n",
+ " mskcx.sensor 188.0 \n",
+ " pcmmg.sensor 191.0 \n",
+ " pmr6w.sensor 186.0 \n",
+ " qmfjw.sensor 251.0 \n",
+ " xrrbk.sensor 186.0 \n",
+ "PostgreSQL-32-8-32768 5m288.sensor 506.0 \n",
+ " dxlcv.sensor 217.0 \n",
+ " j97qc.sensor 190.0 \n",
+ " lvlv2.sensor 470.0 \n",
+ " nzswp.sensor 192.0 \n",
+ " qk7pg.sensor 204.0 \n",
+ " thvmb.sensor 194.0 \n",
+ " vbs9b.sensor 474.0 \n",
+ "PostgreSQL-32-8-49152 7fnlv.sensor 373.0 \n",
+ " 8pcnm.sensor 213.0 \n",
+ " 9kkpj.sensor 189.0 \n",
+ " jlvdb.sensor 190.0 \n",
+ " m7bxp.sensor 198.0 \n",
+ " s229l.sensor 210.0 \n",
+ " sb97n.sensor 222.0 \n",
+ " x2j79.sensor 205.0 \n",
+ "PostgreSQL-32-8-65536 42qlk.sensor 210.0 \n",
+ " 5dqdh.sensor 404.0 \n",
+ " 66dgh.sensor 436.0 \n",
+ " 6778k.sensor 373.0 \n",
+ " 6vllq.sensor 354.0 \n",
+ " d8z5q.sensor 251.0 \n",
+ " k8drx.sensor 230.0 \n",
+ " m4t2w.sensor 210.0 \n",
+ "PostgreSQL-32-8-81920 2gmfh.sensor 205.0 \n",
+ " 7nlbl.sensor 221.0 \n",
+ " b2bbf.sensor 185.0 \n",
+ " lc56j.sensor 284.0 \n",
+ " lccsk.sensor 209.0 \n",
+ " nqq5s.sensor 259.0 \n",
+ " qpc6h.sensor 196.0 \n",
+ " vtqn4.sensor 217.0 \n",
+ "PostgreSQL-32-8-98304 6xx8q.sensor 192.0 \n",
+ " ghmf9.sensor 200.0 \n",
+ " gqw9m.sensor 195.0 \n",
+ " jln48.sensor 212.0 \n",
+ " n9xct.sensor 237.0 \n",
+ " p78x4.sensor 287.0 \n",
+ " s4t2s.sensor 234.0 \n",
+ " zklhx.sensor 260.0 \n",
+ "\n",
+ " [CLEANUP].99thPercentileLatency(us) \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688 tx5d5.sensor 186.0 \n",
+ "PostgreSQL-32-1-131072 b9gzf.sensor 199.0 \n",
+ "PostgreSQL-32-1-16384 mr62r.sensor 692.0 \n",
+ "PostgreSQL-32-1-32768 9fbk6.sensor 195.0 \n",
+ "PostgreSQL-32-1-49152 gs5fb.sensor 199.0 \n",
+ "PostgreSQL-32-1-65536 6hqzb.sensor 206.0 \n",
+ "PostgreSQL-32-1-81920 nkd9n.sensor 214.0 \n",
+ "PostgreSQL-32-1-98304 xzd7w.sensor 375.0 \n",
+ "PostgreSQL-32-8-114688 5x62v.sensor 187.0 \n",
+ " 7bc2c.sensor 373.0 \n",
+ " c7w5h.sensor 359.0 \n",
+ " dg57m.sensor 202.0 \n",
+ " dn5vx.sensor 448.0 \n",
+ " hkqrv.sensor 200.0 \n",
+ " qbf55.sensor 217.0 \n",
+ " sr6t8.sensor 195.0 \n",
+ "PostgreSQL-32-8-131072 2dbvt.sensor 214.0 \n",
+ " 2vfvb.sensor 193.0 \n",
+ " 5qftv.sensor 368.0 \n",
+ " fwkgs.sensor 336.0 \n",
+ " n8gtm.sensor 266.0 \n",
+ " p6x48.sensor 207.0 \n",
+ " p9pwx.sensor 211.0 \n",
+ " vjc59.sensor 279.0 \n",
+ "PostgreSQL-32-8-16384 2hl8g.sensor 423.0 \n",
+ " gb9j5.sensor 214.0 \n",
+ " kjk85.sensor 187.0 \n",
+ " mskcx.sensor 188.0 \n",
+ " pcmmg.sensor 191.0 \n",
+ " pmr6w.sensor 186.0 \n",
+ " qmfjw.sensor 251.0 \n",
+ " xrrbk.sensor 186.0 \n",
+ "PostgreSQL-32-8-32768 5m288.sensor 506.0 \n",
+ " dxlcv.sensor 217.0 \n",
+ " j97qc.sensor 190.0 \n",
+ " lvlv2.sensor 470.0 \n",
+ " nzswp.sensor 192.0 \n",
+ " qk7pg.sensor 204.0 \n",
+ " thvmb.sensor 194.0 \n",
+ " vbs9b.sensor 474.0 \n",
+ "PostgreSQL-32-8-49152 7fnlv.sensor 373.0 \n",
+ " 8pcnm.sensor 213.0 \n",
+ " 9kkpj.sensor 189.0 \n",
+ " jlvdb.sensor 190.0 \n",
+ " m7bxp.sensor 198.0 \n",
+ " s229l.sensor 210.0 \n",
+ " sb97n.sensor 222.0 \n",
+ " x2j79.sensor 205.0 \n",
+ "PostgreSQL-32-8-65536 42qlk.sensor 210.0 \n",
+ " 5dqdh.sensor 404.0 \n",
+ " 66dgh.sensor 436.0 \n",
+ " 6778k.sensor 373.0 \n",
+ " 6vllq.sensor 354.0 \n",
+ " d8z5q.sensor 251.0 \n",
+ " k8drx.sensor 230.0 \n",
+ " m4t2w.sensor 210.0 \n",
+ "PostgreSQL-32-8-81920 2gmfh.sensor 205.0 \n",
+ " 7nlbl.sensor 221.0 \n",
+ " b2bbf.sensor 185.0 \n",
+ " lc56j.sensor 284.0 \n",
+ " lccsk.sensor 209.0 \n",
+ " nqq5s.sensor 259.0 \n",
+ " qpc6h.sensor 196.0 \n",
+ " vtqn4.sensor 217.0 \n",
+ "PostgreSQL-32-8-98304 6xx8q.sensor 192.0 \n",
+ " ghmf9.sensor 200.0 \n",
+ " gqw9m.sensor 195.0 \n",
+ " jln48.sensor 212.0 \n",
+ " n9xct.sensor 237.0 \n",
+ " p78x4.sensor 287.0 \n",
+ " s4t2s.sensor 234.0 \n",
+ " zklhx.sensor 260.0 \n",
+ "\n",
+ " [INSERT].Operations \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688 tx5d5.sensor 30000000 \n",
+ "PostgreSQL-32-1-131072 b9gzf.sensor 30000000 \n",
+ "PostgreSQL-32-1-16384 mr62r.sensor 30000000 \n",
+ "PostgreSQL-32-1-32768 9fbk6.sensor 30000000 \n",
+ "PostgreSQL-32-1-49152 gs5fb.sensor 30000000 \n",
+ "PostgreSQL-32-1-65536 6hqzb.sensor 30000000 \n",
+ "PostgreSQL-32-1-81920 nkd9n.sensor 30000000 \n",
+ "PostgreSQL-32-1-98304 xzd7w.sensor 30000000 \n",
+ "PostgreSQL-32-8-114688 5x62v.sensor 3750000 \n",
+ " 7bc2c.sensor 3750000 \n",
+ " c7w5h.sensor 3750000 \n",
+ " dg57m.sensor 3750000 \n",
+ " dn5vx.sensor 3750000 \n",
+ " hkqrv.sensor 3750000 \n",
+ " qbf55.sensor 3750000 \n",
+ " sr6t8.sensor 3750000 \n",
+ "PostgreSQL-32-8-131072 2dbvt.sensor 3750000 \n",
+ " 2vfvb.sensor 3750000 \n",
+ " 5qftv.sensor 3750000 \n",
+ " fwkgs.sensor 3750000 \n",
+ " n8gtm.sensor 3750000 \n",
+ " p6x48.sensor 3750000 \n",
+ " p9pwx.sensor 3750000 \n",
+ " vjc59.sensor 3750000 \n",
+ "PostgreSQL-32-8-16384 2hl8g.sensor 3750000 \n",
+ " gb9j5.sensor 3750000 \n",
+ " kjk85.sensor 3750000 \n",
+ " mskcx.sensor 3750000 \n",
+ " pcmmg.sensor 3750000 \n",
+ " pmr6w.sensor 3750000 \n",
+ " qmfjw.sensor 3750000 \n",
+ " xrrbk.sensor 3750000 \n",
+ "PostgreSQL-32-8-32768 5m288.sensor 3750000 \n",
+ " dxlcv.sensor 3750000 \n",
+ " j97qc.sensor 3750000 \n",
+ " lvlv2.sensor 3750000 \n",
+ " nzswp.sensor 3750000 \n",
+ " qk7pg.sensor 3750000 \n",
+ " thvmb.sensor 3750000 \n",
+ " vbs9b.sensor 3750000 \n",
+ "PostgreSQL-32-8-49152 7fnlv.sensor 3750000 \n",
+ " 8pcnm.sensor 3750000 \n",
+ " 9kkpj.sensor 3750000 \n",
+ " jlvdb.sensor 3750000 \n",
+ " m7bxp.sensor 3750000 \n",
+ " s229l.sensor 3750000 \n",
+ " sb97n.sensor 3750000 \n",
+ " x2j79.sensor 3750000 \n",
+ "PostgreSQL-32-8-65536 42qlk.sensor 3750000 \n",
+ " 5dqdh.sensor 3750000 \n",
+ " 66dgh.sensor 3750000 \n",
+ " 6778k.sensor 3750000 \n",
+ " 6vllq.sensor 3750000 \n",
+ " d8z5q.sensor 3750000 \n",
+ " k8drx.sensor 3750000 \n",
+ " m4t2w.sensor 3750000 \n",
+ "PostgreSQL-32-8-81920 2gmfh.sensor 3750000 \n",
+ " 7nlbl.sensor 3750000 \n",
+ " b2bbf.sensor 3750000 \n",
+ " lc56j.sensor 3750000 \n",
+ " lccsk.sensor 3750000 \n",
+ " nqq5s.sensor 3750000 \n",
+ " qpc6h.sensor 3750000 \n",
+ " vtqn4.sensor 3750000 \n",
+ "PostgreSQL-32-8-98304 6xx8q.sensor 3750000 \n",
+ " ghmf9.sensor 3750000 \n",
+ " gqw9m.sensor 3750000 \n",
+ " jln48.sensor 3750000 \n",
+ " n9xct.sensor 3750000 \n",
+ " p78x4.sensor 3750000 \n",
+ " s4t2s.sensor 3750000 \n",
+ " zklhx.sensor 3750000 \n",
+ "\n",
+ " [INSERT].AverageLatency(us) \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688 tx5d5.sensor 1024.359428 \n",
+ "PostgreSQL-32-1-131072 b9gzf.sensor 1033.995625 \n",
+ "PostgreSQL-32-1-16384 mr62r.sensor 835.081132 \n",
+ "PostgreSQL-32-1-32768 9fbk6.sensor 1019.092939 \n",
+ "PostgreSQL-32-1-49152 gs5fb.sensor 1042.662761 \n",
+ "PostgreSQL-32-1-65536 6hqzb.sensor 1032.856487 \n",
+ "PostgreSQL-32-1-81920 nkd9n.sensor 1039.479765 \n",
+ "PostgreSQL-32-1-98304 xzd7w.sensor 1031.238760 \n",
+ "PostgreSQL-32-8-114688 5x62v.sensor 1071.326950 \n",
+ " 7bc2c.sensor 1064.048491 \n",
+ " c7w5h.sensor 1062.648087 \n",
+ " dg57m.sensor 1054.281335 \n",
+ " dn5vx.sensor 1046.161767 \n",
+ " hkqrv.sensor 1015.111800 \n",
+ " qbf55.sensor 979.814381 \n",
+ " sr6t8.sensor 1062.659146 \n",
+ "PostgreSQL-32-8-131072 2dbvt.sensor 1018.979515 \n",
+ " 2vfvb.sensor 1037.851574 \n",
+ " 5qftv.sensor 1108.415739 \n",
+ " fwkgs.sensor 1011.058430 \n",
+ " n8gtm.sensor 971.410110 \n",
+ " p6x48.sensor 1026.584293 \n",
+ " p9pwx.sensor 989.811878 \n",
+ " vjc59.sensor 1058.576972 \n",
+ "PostgreSQL-32-8-16384 2hl8g.sensor 855.068822 \n",
+ " gb9j5.sensor 832.772679 \n",
+ " kjk85.sensor 812.780115 \n",
+ " mskcx.sensor 839.590646 \n",
+ " pcmmg.sensor 790.366524 \n",
+ " pmr6w.sensor 856.366943 \n",
+ " qmfjw.sensor 893.798743 \n",
+ " xrrbk.sensor 810.112466 \n",
+ "PostgreSQL-32-8-32768 5m288.sensor 1017.997042 \n",
+ " dxlcv.sensor 1018.753053 \n",
+ " j97qc.sensor 1013.766474 \n",
+ " lvlv2.sensor 1008.154887 \n",
+ " nzswp.sensor 1050.261742 \n",
+ " qk7pg.sensor 982.031746 \n",
+ " thvmb.sensor 1003.515115 \n",
+ " vbs9b.sensor 1025.104966 \n",
+ "PostgreSQL-32-8-49152 7fnlv.sensor 1041.566758 \n",
+ " 8pcnm.sensor 1032.728345 \n",
+ " 9kkpj.sensor 1058.016423 \n",
+ " jlvdb.sensor 1018.256093 \n",
+ " m7bxp.sensor 1020.956194 \n",
+ " s229l.sensor 1035.592908 \n",
+ " sb97n.sensor 1074.382773 \n",
+ " x2j79.sensor 1011.511462 \n",
+ "PostgreSQL-32-8-65536 42qlk.sensor 996.883223 \n",
+ " 5dqdh.sensor 1075.093785 \n",
+ " 66dgh.sensor 983.916262 \n",
+ " 6778k.sensor 1075.245356 \n",
+ " 6vllq.sensor 1086.000919 \n",
+ " d8z5q.sensor 1005.459416 \n",
+ " k8drx.sensor 987.982993 \n",
+ " m4t2w.sensor 1054.616247 \n",
+ "PostgreSQL-32-8-81920 2gmfh.sensor 1040.131713 \n",
+ " 7nlbl.sensor 995.793029 \n",
+ " b2bbf.sensor 1064.097122 \n",
+ " lc56j.sensor 1005.060757 \n",
+ " lccsk.sensor 1023.342467 \n",
+ " nqq5s.sensor 1071.913417 \n",
+ " qpc6h.sensor 1021.609939 \n",
+ " vtqn4.sensor 1072.381453 \n",
+ "PostgreSQL-32-8-98304 6xx8q.sensor 1045.201693 \n",
+ " ghmf9.sensor 1028.822132 \n",
+ " gqw9m.sensor 1045.385009 \n",
+ " jln48.sensor 1015.805945 \n",
+ " n9xct.sensor 1083.886591 \n",
+ " p78x4.sensor 1051.289645 \n",
+ " s4t2s.sensor 991.697202 \n",
+ " zklhx.sensor 1022.261119 \n",
+ "\n",
+ " [INSERT].MinLatency(us) \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688 tx5d5.sensor 629.0 \n",
+ "PostgreSQL-32-1-131072 b9gzf.sensor 636.0 \n",
+ "PostgreSQL-32-1-16384 mr62r.sensor 633.0 \n",
+ "PostgreSQL-32-1-32768 9fbk6.sensor 630.0 \n",
+ "PostgreSQL-32-1-49152 gs5fb.sensor 630.0 \n",
+ "PostgreSQL-32-1-65536 6hqzb.sensor 629.0 \n",
+ "PostgreSQL-32-1-81920 nkd9n.sensor 636.0 \n",
+ "PostgreSQL-32-1-98304 xzd7w.sensor 630.0 \n",
+ "PostgreSQL-32-8-114688 5x62v.sensor 653.0 \n",
+ " 7bc2c.sensor 687.0 \n",
+ " c7w5h.sensor 698.0 \n",
+ " dg57m.sensor 639.0 \n",
+ " dn5vx.sensor 634.0 \n",
+ " hkqrv.sensor 643.0 \n",
+ " qbf55.sensor 629.0 \n",
+ " sr6t8.sensor 682.0 \n",
+ "PostgreSQL-32-8-131072 2dbvt.sensor 640.0 \n",
+ " 2vfvb.sensor 632.0 \n",
+ " 5qftv.sensor 642.0 \n",
+ " fwkgs.sensor 635.0 \n",
+ " n8gtm.sensor 636.0 \n",
+ " p6x48.sensor 637.0 \n",
+ " p9pwx.sensor 640.0 \n",
+ " vjc59.sensor 636.0 \n",
+ "PostgreSQL-32-8-16384 2hl8g.sensor 643.0 \n",
+ " gb9j5.sensor 647.0 \n",
+ " kjk85.sensor 646.0 \n",
+ " mskcx.sensor 637.0 \n",
+ " pcmmg.sensor 646.0 \n",
+ " pmr6w.sensor 643.0 \n",
+ " qmfjw.sensor 650.0 \n",
+ " xrrbk.sensor 649.0 \n",
+ "PostgreSQL-32-8-32768 5m288.sensor 635.0 \n",
+ " dxlcv.sensor 642.0 \n",
+ " j97qc.sensor 641.0 \n",
+ " lvlv2.sensor 634.0 \n",
+ " nzswp.sensor 641.0 \n",
+ " qk7pg.sensor 635.0 \n",
+ " thvmb.sensor 634.0 \n",
+ " vbs9b.sensor 643.0 \n",
+ "PostgreSQL-32-8-49152 7fnlv.sensor 636.0 \n",
+ " 8pcnm.sensor 640.0 \n",
+ " 9kkpj.sensor 640.0 \n",
+ " jlvdb.sensor 636.0 \n",
+ " m7bxp.sensor 633.0 \n",
+ " s229l.sensor 639.0 \n",
+ " sb97n.sensor 649.0 \n",
+ " x2j79.sensor 630.0 \n",
+ "PostgreSQL-32-8-65536 42qlk.sensor 630.0 \n",
+ " 5dqdh.sensor 702.0 \n",
+ " 66dgh.sensor 637.0 \n",
+ " 6778k.sensor 651.0 \n",
+ " 6vllq.sensor 650.0 \n",
+ " d8z5q.sensor 642.0 \n",
+ " k8drx.sensor 635.0 \n",
+ " m4t2w.sensor 696.0 \n",
+ "PostgreSQL-32-8-81920 2gmfh.sensor 630.0 \n",
+ " 7nlbl.sensor 632.0 \n",
+ " b2bbf.sensor 686.0 \n",
+ " lc56j.sensor 630.0 \n",
+ " lccsk.sensor 631.0 \n",
+ " nqq5s.sensor 682.0 \n",
+ " qpc6h.sensor 645.0 \n",
+ " vtqn4.sensor 686.0 \n",
+ "PostgreSQL-32-8-98304 6xx8q.sensor 632.0 \n",
+ " ghmf9.sensor 631.0 \n",
+ " gqw9m.sensor 639.0 \n",
+ " jln48.sensor 636.0 \n",
+ " n9xct.sensor 689.0 \n",
+ " p78x4.sensor 638.0 \n",
+ " s4t2s.sensor 638.0 \n",
+ " zklhx.sensor 636.0 \n",
+ "\n",
+ " [INSERT].MaxLatency(us) \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688 tx5d5.sensor 18612223.0 \n",
+ "PostgreSQL-32-1-131072 b9gzf.sensor 24150015.0 \n",
+ "PostgreSQL-32-1-16384 mr62r.sensor 385791.0 \n",
+ "PostgreSQL-32-1-32768 9fbk6.sensor 26443775.0 \n",
+ "PostgreSQL-32-1-49152 gs5fb.sensor 23822335.0 \n",
+ "PostgreSQL-32-1-65536 6hqzb.sensor 23887871.0 \n",
+ "PostgreSQL-32-1-81920 nkd9n.sensor 23085055.0 \n",
+ "PostgreSQL-32-1-98304 xzd7w.sensor 23478271.0 \n",
+ "PostgreSQL-32-8-114688 5x62v.sensor 23658495.0 \n",
+ " 7bc2c.sensor 23658495.0 \n",
+ " c7w5h.sensor 23658495.0 \n",
+ " dg57m.sensor 23658495.0 \n",
+ " dn5vx.sensor 23658495.0 \n",
+ " hkqrv.sensor 23658495.0 \n",
+ " qbf55.sensor 23658495.0 \n",
+ " sr6t8.sensor 23658495.0 \n",
+ "PostgreSQL-32-8-131072 2dbvt.sensor 22003711.0 \n",
+ " 2vfvb.sensor 22003711.0 \n",
+ " 5qftv.sensor 22003711.0 \n",
+ " fwkgs.sensor 22003711.0 \n",
+ " n8gtm.sensor 22003711.0 \n",
+ " p6x48.sensor 22003711.0 \n",
+ " p9pwx.sensor 22003711.0 \n",
+ " vjc59.sensor 22003711.0 \n",
+ "PostgreSQL-32-8-16384 2hl8g.sensor 143103.0 \n",
+ " gb9j5.sensor 142975.0 \n",
+ " kjk85.sensor 142975.0 \n",
+ " mskcx.sensor 143103.0 \n",
+ " pcmmg.sensor 142975.0 \n",
+ " pmr6w.sensor 143231.0 \n",
+ " qmfjw.sensor 143231.0 \n",
+ " xrrbk.sensor 143103.0 \n",
+ "PostgreSQL-32-8-32768 5m288.sensor 25477119.0 \n",
+ " dxlcv.sensor 25477119.0 \n",
+ " j97qc.sensor 25477119.0 \n",
+ " lvlv2.sensor 25477119.0 \n",
+ " nzswp.sensor 25477119.0 \n",
+ " qk7pg.sensor 25477119.0 \n",
+ " thvmb.sensor 25477119.0 \n",
+ " vbs9b.sensor 25477119.0 \n",
+ "PostgreSQL-32-8-49152 7fnlv.sensor 23117823.0 \n",
+ " 8pcnm.sensor 23101439.0 \n",
+ " 9kkpj.sensor 23117823.0 \n",
+ " jlvdb.sensor 23101439.0 \n",
+ " m7bxp.sensor 23101439.0 \n",
+ " s229l.sensor 23101439.0 \n",
+ " sb97n.sensor 23101439.0 \n",
+ " x2j79.sensor 23101439.0 \n",
+ "PostgreSQL-32-8-65536 42qlk.sensor 22495231.0 \n",
+ " 5dqdh.sensor 22495231.0 \n",
+ " 66dgh.sensor 22495231.0 \n",
+ " 6778k.sensor 22495231.0 \n",
+ " 6vllq.sensor 22495231.0 \n",
+ " d8z5q.sensor 22495231.0 \n",
+ " k8drx.sensor 22495231.0 \n",
+ " m4t2w.sensor 22495231.0 \n",
+ "PostgreSQL-32-8-81920 2gmfh.sensor 25804799.0 \n",
+ " 7nlbl.sensor 25804799.0 \n",
+ " b2bbf.sensor 25804799.0 \n",
+ " lc56j.sensor 25804799.0 \n",
+ " lccsk.sensor 25804799.0 \n",
+ " nqq5s.sensor 25804799.0 \n",
+ " qpc6h.sensor 25804799.0 \n",
+ " vtqn4.sensor 25804799.0 \n",
+ "PostgreSQL-32-8-98304 6xx8q.sensor 23363583.0 \n",
+ " ghmf9.sensor 23363583.0 \n",
+ " gqw9m.sensor 23363583.0 \n",
+ " jln48.sensor 23363583.0 \n",
+ " n9xct.sensor 23363583.0 \n",
+ " p78x4.sensor 23363583.0 \n",
+ " s4t2s.sensor 23363583.0 \n",
+ " zklhx.sensor 23363583.0 \n",
+ "\n",
+ " [INSERT].95thPercentileLatency(us) \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688 tx5d5.sensor 967.0 \n",
+ "PostgreSQL-32-1-131072 b9gzf.sensor 945.0 \n",
+ "PostgreSQL-32-1-16384 mr62r.sensor 1025.0 \n",
+ "PostgreSQL-32-1-32768 9fbk6.sensor 1018.0 \n",
+ "PostgreSQL-32-1-49152 gs5fb.sensor 981.0 \n",
+ "PostgreSQL-32-1-65536 6hqzb.sensor 967.0 \n",
+ "PostgreSQL-32-1-81920 nkd9n.sensor 967.0 \n",
+ "PostgreSQL-32-1-98304 xzd7w.sensor 959.0 \n",
+ "PostgreSQL-32-8-114688 5x62v.sensor 1034.0 \n",
+ " 7bc2c.sensor 1015.0 \n",
+ " c7w5h.sensor 1068.0 \n",
+ " dg57m.sensor 988.0 \n",
+ " dn5vx.sensor 1002.0 \n",
+ " hkqrv.sensor 915.0 \n",
+ " qbf55.sensor 930.0 \n",
+ " sr6t8.sensor 1034.0 \n",
+ "PostgreSQL-32-8-131072 2dbvt.sensor 961.0 \n",
+ " 2vfvb.sensor 950.0 \n",
+ " 5qftv.sensor 1077.0 \n",
+ " fwkgs.sensor 1018.0 \n",
+ " n8gtm.sensor 851.0 \n",
+ " p6x48.sensor 1017.0 \n",
+ " p9pwx.sensor 939.0 \n",
+ " vjc59.sensor 965.0 \n",
+ "PostgreSQL-32-8-16384 2hl8g.sensor 1063.0 \n",
+ " gb9j5.sensor 1025.0 \n",
+ " kjk85.sensor 977.0 \n",
+ " mskcx.sensor 1034.0 \n",
+ " pcmmg.sensor 973.0 \n",
+ " pmr6w.sensor 1107.0 \n",
+ " qmfjw.sensor 1134.0 \n",
+ " xrrbk.sensor 1000.0 \n",
+ "PostgreSQL-32-8-32768 5m288.sensor 1027.0 \n",
+ " dxlcv.sensor 991.0 \n",
+ " j97qc.sensor 987.0 \n",
+ " lvlv2.sensor 984.0 \n",
+ " nzswp.sensor 1024.0 \n",
+ " qk7pg.sensor 959.0 \n",
+ " thvmb.sensor 993.0 \n",
+ " vbs9b.sensor 1007.0 \n",
+ "PostgreSQL-32-8-49152 7fnlv.sensor 938.0 \n",
+ " 8pcnm.sensor 889.0 \n",
+ " 9kkpj.sensor 946.0 \n",
+ " jlvdb.sensor 912.0 \n",
+ " m7bxp.sensor 862.0 \n",
+ " s229l.sensor 930.0 \n",
+ " sb97n.sensor 964.0 \n",
+ " x2j79.sensor 859.0 \n",
+ "PostgreSQL-32-8-65536 42qlk.sensor 990.0 \n",
+ " 5dqdh.sensor 1048.0 \n",
+ " 66dgh.sensor 942.0 \n",
+ " 6778k.sensor 1070.0 \n",
+ " 6vllq.sensor 1105.0 \n",
+ " d8z5q.sensor 970.0 \n",
+ " k8drx.sensor 985.0 \n",
+ " m4t2w.sensor 1030.0 \n",
+ "PostgreSQL-32-8-81920 2gmfh.sensor 943.0 \n",
+ " 7nlbl.sensor 901.0 \n",
+ " b2bbf.sensor 996.0 \n",
+ " lc56j.sensor 941.0 \n",
+ " lccsk.sensor 943.0 \n",
+ " nqq5s.sensor 1012.0 \n",
+ " qpc6h.sensor 943.0 \n",
+ " vtqn4.sensor 1009.0 \n",
+ "PostgreSQL-32-8-98304 6xx8q.sensor 1000.0 \n",
+ " ghmf9.sensor 998.0 \n",
+ " gqw9m.sensor 1011.0 \n",
+ " jln48.sensor 919.0 \n",
+ " n9xct.sensor 1001.0 \n",
+ " p78x4.sensor 987.0 \n",
+ " s4t2s.sensor 914.0 \n",
+ " zklhx.sensor 955.0 \n",
+ "\n",
+ " [INSERT].99thPercentileLatency(us) \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688 tx5d5.sensor 1261.0 \n",
+ "PostgreSQL-32-1-131072 b9gzf.sensor 1268.0 \n",
+ "PostgreSQL-32-1-16384 mr62r.sensor 1180.0 \n",
+ "PostgreSQL-32-1-32768 9fbk6.sensor 1261.0 \n",
+ "PostgreSQL-32-1-49152 gs5fb.sensor 1268.0 \n",
+ "PostgreSQL-32-1-65536 6hqzb.sensor 1255.0 \n",
+ "PostgreSQL-32-1-81920 nkd9n.sensor 1261.0 \n",
+ "PostgreSQL-32-1-98304 xzd7w.sensor 1263.0 \n",
+ "PostgreSQL-32-8-114688 5x62v.sensor 1278.0 \n",
+ " 7bc2c.sensor 1247.0 \n",
+ " c7w5h.sensor 1321.0 \n",
+ " dg57m.sensor 1227.0 \n",
+ " dn5vx.sensor 1243.0 \n",
+ " hkqrv.sensor 1154.0 \n",
+ " qbf55.sensor 1164.0 \n",
+ " sr6t8.sensor 1260.0 \n",
+ "PostgreSQL-32-8-131072 2dbvt.sensor 1203.0 \n",
+ " 2vfvb.sensor 1194.0 \n",
+ " 5qftv.sensor 1333.0 \n",
+ " fwkgs.sensor 1246.0 \n",
+ " n8gtm.sensor 1042.0 \n",
+ " p6x48.sensor 1254.0 \n",
+ " p9pwx.sensor 1149.0 \n",
+ " vjc59.sensor 1194.0 \n",
+ "PostgreSQL-32-8-16384 2hl8g.sensor 1201.0 \n",
+ " gb9j5.sensor 1129.0 \n",
+ " kjk85.sensor 1089.0 \n",
+ " mskcx.sensor 1220.0 \n",
+ " pcmmg.sensor 1044.0 \n",
+ " pmr6w.sensor 1275.0 \n",
+ " qmfjw.sensor 1352.0 \n",
+ " xrrbk.sensor 1213.0 \n",
+ "PostgreSQL-32-8-32768 5m288.sensor 1298.0 \n",
+ " dxlcv.sensor 1275.0 \n",
+ " j97qc.sensor 1317.0 \n",
+ " lvlv2.sensor 1248.0 \n",
+ " nzswp.sensor 1342.0 \n",
+ " qk7pg.sensor 1140.0 \n",
+ " thvmb.sensor 1229.0 \n",
+ " vbs9b.sensor 1229.0 \n",
+ "PostgreSQL-32-8-49152 7fnlv.sensor 1178.0 \n",
+ " 8pcnm.sensor 1153.0 \n",
+ " 9kkpj.sensor 1239.0 \n",
+ " jlvdb.sensor 1162.0 \n",
+ " m7bxp.sensor 1116.0 \n",
+ " s229l.sensor 1207.0 \n",
+ " sb97n.sensor 1237.0 \n",
+ " x2j79.sensor 1105.0 \n",
+ "PostgreSQL-32-8-65536 42qlk.sensor 1205.0 \n",
+ " 5dqdh.sensor 1269.0 \n",
+ " 66dgh.sensor 1171.0 \n",
+ " 6778k.sensor 1293.0 \n",
+ " 6vllq.sensor 1350.0 \n",
+ " d8z5q.sensor 1191.0 \n",
+ " k8drx.sensor 1216.0 \n",
+ " m4t2w.sensor 1261.0 \n",
+ "PostgreSQL-32-8-81920 2gmfh.sensor 1197.0 \n",
+ " 7nlbl.sensor 1142.0 \n",
+ " b2bbf.sensor 1243.0 \n",
+ " lc56j.sensor 1161.0 \n",
+ " lccsk.sensor 1185.0 \n",
+ " nqq5s.sensor 1253.0 \n",
+ " qpc6h.sensor 1173.0 \n",
+ " vtqn4.sensor 1306.0 \n",
+ "PostgreSQL-32-8-98304 6xx8q.sensor 1229.0 \n",
+ " ghmf9.sensor 1251.0 \n",
+ " gqw9m.sensor 1238.0 \n",
+ " jln48.sensor 1164.0 \n",
+ " n9xct.sensor 1246.0 \n",
+ " p78x4.sensor 1220.0 \n",
+ " s4t2s.sensor 1162.0 \n",
+ " zklhx.sensor 1198.0 \n",
+ "\n",
+ " [INSERT].Return=OK \n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688 tx5d5.sensor 30000000 \n",
+ "PostgreSQL-32-1-131072 b9gzf.sensor 30000000 \n",
+ "PostgreSQL-32-1-16384 mr62r.sensor 30000000 \n",
+ "PostgreSQL-32-1-32768 9fbk6.sensor 30000000 \n",
+ "PostgreSQL-32-1-49152 gs5fb.sensor 30000000 \n",
+ "PostgreSQL-32-1-65536 6hqzb.sensor 30000000 \n",
+ "PostgreSQL-32-1-81920 nkd9n.sensor 30000000 \n",
+ "PostgreSQL-32-1-98304 xzd7w.sensor 30000000 \n",
+ "PostgreSQL-32-8-114688 5x62v.sensor 3750000 \n",
+ " 7bc2c.sensor 3750000 \n",
+ " c7w5h.sensor 3750000 \n",
+ " dg57m.sensor 3750000 \n",
+ " dn5vx.sensor 3750000 \n",
+ " hkqrv.sensor 3750000 \n",
+ " qbf55.sensor 3750000 \n",
+ " sr6t8.sensor 3750000 \n",
+ "PostgreSQL-32-8-131072 2dbvt.sensor 3750000 \n",
+ " 2vfvb.sensor 3750000 \n",
+ " 5qftv.sensor 3750000 \n",
+ " fwkgs.sensor 3750000 \n",
+ " n8gtm.sensor 3750000 \n",
+ " p6x48.sensor 3750000 \n",
+ " p9pwx.sensor 3750000 \n",
+ " vjc59.sensor 3750000 \n",
+ "PostgreSQL-32-8-16384 2hl8g.sensor 3750000 \n",
+ " gb9j5.sensor 3750000 \n",
+ " kjk85.sensor 3750000 \n",
+ " mskcx.sensor 3750000 \n",
+ " pcmmg.sensor 3750000 \n",
+ " pmr6w.sensor 3750000 \n",
+ " qmfjw.sensor 3750000 \n",
+ " xrrbk.sensor 3750000 \n",
+ "PostgreSQL-32-8-32768 5m288.sensor 3750000 \n",
+ " dxlcv.sensor 3750000 \n",
+ " j97qc.sensor 3750000 \n",
+ " lvlv2.sensor 3750000 \n",
+ " nzswp.sensor 3750000 \n",
+ " qk7pg.sensor 3750000 \n",
+ " thvmb.sensor 3750000 \n",
+ " vbs9b.sensor 3750000 \n",
+ "PostgreSQL-32-8-49152 7fnlv.sensor 3750000 \n",
+ " 8pcnm.sensor 3750000 \n",
+ " 9kkpj.sensor 3750000 \n",
+ " jlvdb.sensor 3750000 \n",
+ " m7bxp.sensor 3750000 \n",
+ " s229l.sensor 3750000 \n",
+ " sb97n.sensor 3750000 \n",
+ " x2j79.sensor 3750000 \n",
+ "PostgreSQL-32-8-65536 42qlk.sensor 3750000 \n",
+ " 5dqdh.sensor 3750000 \n",
+ " 66dgh.sensor 3750000 \n",
+ " 6778k.sensor 3750000 \n",
+ " 6vllq.sensor 3750000 \n",
+ " d8z5q.sensor 3750000 \n",
+ " k8drx.sensor 3750000 \n",
+ " m4t2w.sensor 3750000 \n",
+ "PostgreSQL-32-8-81920 2gmfh.sensor 3750000 \n",
+ " 7nlbl.sensor 3750000 \n",
+ " b2bbf.sensor 3750000 \n",
+ " lc56j.sensor 3750000 \n",
+ " lccsk.sensor 3750000 \n",
+ " nqq5s.sensor 3750000 \n",
+ " qpc6h.sensor 3750000 \n",
+ " vtqn4.sensor 3750000 \n",
+ "PostgreSQL-32-8-98304 6xx8q.sensor 3750000 \n",
+ " ghmf9.sensor 3750000 \n",
+ " gqw9m.sensor 3750000 \n",
+ " jln48.sensor 3750000 \n",
+ " n9xct.sensor 3750000 \n",
+ " p78x4.sensor 3750000 \n",
+ " s4t2s.sensor 3750000 \n",
+ " zklhx.sensor 3750000 \n",
+ "\n",
+ "[72 rows x 23 columns]"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_plot = evaluation.loading_set_datatypes(df)\n",
+ "df_groups = df_plot.groupby(['connection', 'pod'])\n",
+ "\n",
+ "df_groups = df_groups.sum('target')\n",
+ "df_groups"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Get Maximum Number of Parallel Pods"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "8"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "max_pod_count = df_groups['pod_count'].max()\n",
+ "max_pod_count"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Plot Varations"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAN0AAAEGCAYAAADhSpBCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6wUlEQVR4nO2deVgUR/rHvzMj9yUiMIMCM3GCQsCA4AGeJCaYgIJ4rhfeq/EIoq4h2UhiImhWjcaLNT+DRpNoVHQ9osb1igcGHYOKCiqIKIcYlUtu5v39wdKxZdAZHAYY6/M8/WhXVb/1NtPfquq6WkBEBAaDoTOETe0Ag/GqwUTHYOgYJjoGQ8cw0TEYOoaJjsHQMUx0DIaOYaJjMHQMEx2DoWOY6BgMHdNiRNevXz8IBAIIBAIkJSU1tTtaISMjg7snT09PrdndtGkTWrdurTV7+sDDhw9hZ2eHjIwMrdg7dOgQPD09oVQqNb62xYgOAKZMmYKcnBy4u7tzD2ytAGvP7ezsUFRUxLvO09MTn332GXd++/ZtjBo1Cg4ODjA2Nkb79u0RHByMlJQULk2tGJ49tm3bBgA4ceIEL9zW1hbvv/8+rly58tzra4/PPvsMjo6OyMnJwdy5c59737V5WVtbo6ysjBd3/vx5zmYtI0aMwI0bNzT6244fPx4hISEaXfM0zV3oixcvRnBwMKRSqVbsDRgwAAYGBvjhhx80vrZFic7U1BRisRitWrWqN01RURGWLVtWb3xlZSXeeecdFBQUID4+Hqmpqdi+fTs8PDyQn5/PSxsXF4ecnBze8eyDmZqaipycHBw+fBjl5eUIDAxERUUF75qVK1fC0tKSFzZv3jyIRCKIxWKYm5urdf8WFhbYvXs3L2zjxo1wcnLihZmYmMDOzk4tm68CJSUl2LhxIyZNmqRVu+PHj8c333yj8XUtSnTqMGvWLKxYsQJ5eXkq469evYq0tDSsW7cOPXr0gLOzM3r27Ikvv/wSPXr04KVt3bo1xGIx7zA2NualsbOzg1gsRpcuXRAeHo67d+8iJSWFd42VlRUEAgEvTF2hPU1YWBi+++477ry0tBTbtm1DWFgYL92ztc5nn30GT09PbNmyBVKpFFZWVhg5cmSdFsHzWLFiBTw8PGBmZgZHR0d88MEHKC4uBlBTE0+YMAEFBQW8mhwAysvLMW/ePLRr1w5mZmbo3r07Tpw4UcfXw4cPw9XVFebm5hgwYABycnJ4+X/33Xd44403YGRkBIlEgpkzZwIAJk6ciKCgIF7ayspK2NnZYePGjQCAX375BUZGRrzfV1XNvGfPHl6L4dKlS/D394eFhQUsLS3h7e2NCxcucPEDBw7EhQsXkJaWpvbfEdBD0f3tb3+DXC7HokWLVMbb2tpCKBRi586dqK6u1lq+BQUFXNPT0NBQa3afZuzYsTh16hQyMzMBALt27YJUKkWXLl1eeG1aWhr27NmD/fv3Y//+/Th58iSWLFmidt5CoRDffPMNrl69is2bN+PYsWP4xz/+AQDw8/OrU5vPmzcPADBz5kwkJCRg27ZtuHz5MoYNG4YBAwbg5s2bnO2SkhIsW7YMW7ZswW+//YbMzEzuegBYv349ZsyYgalTp+LKlSvYu3cv5HI5AGDy5Mk4dOgQT6T79+9HSUkJRowYAQA4deoUvL291b7XWkaPHo327dvj/PnzUCgU+Oijj2BgYMDFOzk5wd7eHqdOndLMMLUQ+vbtSx9++CF3fvv2bQJAf/zxR53zQ4cOkYGBAd26dYuIiN58802Kiorirl2zZg2ZmpqShYUF+fv706JFiygtLY2XHwAyNjYmMzMz3nHnzh0iIjp+/DgB4MIBEAAaNGhQHd/j4uLIysqq3nuLioqiN998s9742rweP35MISEh9PnnnxMRkb+/P61atYp2795NT/+Uz+YXFRVFpqamVFhYyIXNnz+funfvzp2HhYVRcHBwvT48y44dO8jGxua593jnzh0SiUSUlZXFC3/77bcpMjKSuw4A91sREa1du5bs7e25cwcHB/rkk0/q9cXNzY2WLl3KnQ8cOJDGjx/PnQcHB9PEiRN516jy99m/o4WFBW3atKnefImIvLy86LPPPntummfRu5oOAAICAtCrVy98+umnKuNnzJiB3Nxc/PDDD/D19cWOHTvwxhtv4MiRI7x0X3/9NZKSkniHg4MDL82pU6egUCiwadMmuLi4IDY2ttHuC6hpTm3atAnp6elISEjA6NGj1bpOKpXCwsKCO5dIJPU2wVXx3//+F2+//TbatWsHCwsLjB07Fg8fPkRJSUm911y5cgXV1dVwcXGBubk5d5w8eZLXJDM1NUWHDh1U+paXl4fs7Gy8/fbb9eYzefJkxMXFAQDu37+PgwcPYuLEiVx8aWlpndcCdYiIiMDkyZPRv39/LFmyRGUz0sTE5Ll/A1XopegAYMmSJdi+fTv++OMPlfEWFhYYOHAgFi9ejEuXLqF379748ssveWnEYjHkcjnveLYTRyaToWPHjggLC8PkyZO5Jk1j8d5776G0tBSTJk3CwIEDYWNjo9Z1TzeLgJreVXW7uzMyMhAUFITOnTtj165dUCgUWLt2LQCgoqKi3uuKi4shEomgUCh4Bdf169exatWq5/pG/1tbbWJi8kL/xo0bxxVCW7duhUwmQ+/evbn4tm3b4vHjx7xrhEIhl0ctlZWVvPPPPvsMV69eRWBgII4dOwY3N7c6HVmPHj2Cra3tC33k5a1R6hZEt27dEBoaio8++uiFaQUCATp16oQnT568VJ4zZsxAcnJynR9Gm7Rq1Qrjxo3DiRMneKV5Y6JQKKBUKrF8+XL06NEDLi4uyM7O5qUxNDSs847s5eWF6upq5OXl1Sm8xGKxWnlbWFhAKpXi6NGj9aaxsbFBSEgI4uLisGnTJkyYMKGOH9euXeOF2draoqioiPebqxr/dXFxwZw5c/Drr78iNDSUq1EBoKysDGlpafDy8lLrXmrRW9EBNWMzx44dQ2pqKheWlJSE4OBg7Ny5E9euXcOtW7ewceNGfPfddwgODuZdn5+fj9zcXN7xPGGamppiypQpiIqKqlOKasKaNWue25z64osv8ODBAwQEBDQ4D1UUFBTUaU7fvXsXcrkclZWVWL16NdLT07Fly5Y6zWipVIri4mIcPXoUf/75J0pKSuDi4oLRo0dj3LhxiI+Px+3bt5GYmIiYmBgcOHBAbb8+++wzLF++HN988w1u3ryJixcvYvXq1bw0kydPxubNm3H9+vU6vbkBAQG4evUqr7br3r07TE1N8fHHHyMtLQ0//vgjNm3axMWXlpZi5syZOHHiBO7cuYMzZ87g/PnzcHV15dKcO3cORkZG8PX1VfteAOhnR8rTTJ06lQBwHSkPHjyg2bNnk7u7O5mbm5OFhQV5eHjQsmXLqLq6mrsO/+sYefaIiYkhIn7nxtNkZmZSq1ataPv27VyYph0pUVFR5OzszJ3Xl1ct6nSkPNtR8/XXX/PyCAsLU3m/kyZNIiKiFStWkEQiIRMTEwoICKDvv/++jk/Tpk0jGxsb3t+7oqKCFi5cSFKplAwMDEgikdDgwYPp8uXL9f5tnr0fIqLY2Fjq2LEjZ2PWrFm8eKVSSc7OzvT++++r/Bt169aNYmNj6+Qjl8vJxMSEgoKCaMOGDVy+5eXlNHLkSHJ0dCRDQ0NycHCgmTNnUmlpKXf91KlT6e9//7vK/J5HixWdPvGi3kvGiykqKiJLS0vatWuXyvj9+/eTq6srr2B9GR48eEBt2rSh9PR0ja9tUc3LdevWwdzcnJtq1dLJzMyEubk5oqOjm9qVFotSqUReXh6++OILtG7dGoMGDVKZLjAwEFOnTkVWVpZW8s3IyMC6desgk8k0vlZA1DK24MvKykJpaSmAmkHJxhqA1iVVVVXcBFwjIyM4Ojo2rUMtkIyMDMhkMrRv3x6bNm167rtwc6HFiI7B0BdaVPOSwdAHmOgYDB3DRMdg6Jj6F6Y1Y5RKJbKzs2FhYcFbisFg6AIiQlFRERwcHCAUal5vtUjRZWdns54+RpNz9+5dtG/fXuPrWqToamfL3717F5aWlk3sTfOguroaZ8+eRW5uLsRiMfz8/CASiZraLb2ksLAQjo6OvFUbmtAiRVfbpLS0tGSiAxAfH4+5c+fyNt2RSqVYvnw5QkNDm84xPaehrzasI6WFEx8fj6FDh8LDwwMJCQkoKipCQkICPDw8MHToUMTHxze1i4xnaJGD44WFhbCyskJBQcErXdNVV1dDLpfDw8MDe/bs4b3UK5VKhISEIDk5GTdv3mRNTS3yss8fq+laMKdOnUJGRgY+/vjjOr1oQqEQkZGRuH37tuZ7eDAaFY1EJ5VKVe7hOGPGDAA1i/pmzJgBGxsbmJubY8iQIbh//z7PRmZmJgIDA2Fqago7OzvMnz8fVVVV2rujV4jazXjc3d1VxteGP7uzFqNp0Uh058+f5+3dWLunyLBhwwAAc+bMwb59+7Bjxw6cPHkS2dnZvBf56upqbl/Is2fPYvPmzdi0aRMWLlyoxVt6dZBIJACA5ORklfG14bXpGM2El1lT9OGHH1KHDh1IqVRSfn4+GRgY0I4dO7j469evEwBKSEggIqJffvmFhEIh5ebmcmnWr19PlpaWVF5erna+BQUFBIAKCgpexv0WT1VVFUmlUho4cGCddWLV1dU0cOBAkslkVFVV1UQe6icv+/w1+J2uoqICW7duxcSJEyEQCKBQKFBZWYn+/ftzaTp16gQnJyckJCQAANerZm9vz6UJCAhAYWEhrl69Wm9e5eXlKCws5B0MQCQSYfny5di/fz9CQkJ4vZchISHYv38/li1bxjpRmhkNFt2ePXuQn5+P8ePHAwByc3NhaGhYZ9dce3t75ObmcmmeFlxtfG1cfcTExMDKyoo72GyUvwgNDcXOnTtx5coV+Pn5wdLSEn5+fkhOTsbOnTvZOF0zpMGD4xs3bsR7771XZx/IxiAyMhIRERHcee2MAEYNoaGhCA4OxqlTp5CTkwOJRILevXuzGq6Z0iDR3blzB//97395A69isRgVFRXIz8/n1Xb379/ntlsTi8VITEzk2art3XzelmxGRkYwMjJqiKuvDCKRCP369WtqNxhq0CDRxcXFwc7ODoGBgVyYt7c3DAwMcPToUQwZMgRAzRdtMjMzuS3KfH19sXjxYuTl5XFflTly5AgsLS3h5ub2svfCeEUoKSlBSkoKyiqrce9xCdpbm8LYoKZW79SpE0xNTZvYwxegac9LdXU1OTk50YIFC+rETZs2jZycnOjYsWN04cIF8vX1JV9fXy6+qqqK3N3d6d1336WkpCQ6dOgQ2dracvvaqwvrvXy1USgU9W6RqFAoGj3/l33+NBbd4cOHCQClpqbWiSstLaUPPviArK2tydTUlAYPHkw5OTm8NBkZGfTee++RiYkJtW3blubOnUuVlZUa+cBE92rz5MkTUigUtP3gCRKHraTtB0+QQqEghUJBT548afT8X/b5Y3MvGS2W5KwCBK0+jf2zesG9nZXO8n3Z569FLu1h8Gnx7zivGEx0ekBKSkq9Hz1UKBRqfTSSoTuY6PSATp06QaFQ4FZeET7cloRVIz0ht7Pg4hjNCyY6PcDU1BRdunSBYVYBjE4Uw83DU6fvOAzNYOvpGAwdw0THYOgYJjoGQ8cw0TEYOoaJjsHQMaz3kqETqqur2dKj/8FqOkajEx8fD7lcDn9/f4waNQr+/v6Qy+Wv7J6cTHSMRoVthlsXJjpGo1FdXY25c+ciKCgIe/bsQY8ePWBubo4ePXpgz549CAoKwrx581BdXd3UruoUJjpGo8E2w1UNEx2j0WCb4aqGiY7RaLDNcFXDRMdoNHr37g2pVIro6GgolUpenFKpRExMDGQyGXr37t1EHjYNTHSMRoNthqsaNjjOqIM2V6LXboY7d+5c+Pn5ceEymeyV3QyXiY5RB22vRGeb4fJhomPUoTFWorPNcP+CiY5RB7YSvXFhHSkMho5hNR2jxXD7zyd4Uv7XV3tv5RXz/q3FzKgVZG3NdOqbJjDRMTia80N9+88n8F92QmVc+PakOmHH5/VrtsJjomMAaP4PdW1hsHKEJ+R25gDwvyGNUrS3NuGGNG7lFSN8exKv8GhuMNExALSch1puZ87r1PGRNokbL4XGHSlZWVkYM2YMbGxsYGJiAg8PD1y4cIGLLy4uxsyZM9G+fXuYmJjAzc0NsbGxPBtlZWWYMWMGbGxsYG5ujiFDhnDfqWM0LbUPtXs7K/hI2yDEqx18pG24sFpBMhqORqJ7/PgxevbsCQMDAxw8eBDXrl3D8uXLYW1tzaWJiIjAoUOHsHXrVly/fh3h4eGYOXMm9u7dy6WZM2cO9u3bhx07duDkyZPIzs5+JWcmMF5NNGpeLl26FI6OjoiLi+PCZDIZL83Zs2cRFhbGDYROnToV//73v5GYmIhBgwahoKAAGzduxI8//oi33noLQM1HJl1dXXHu3Dn06NHjJW+JwWjeaFTT7d27Fz4+Phg2bBjs7Ozg5eWFb7/9lpfGz88Pe/fuRVZWFogIx48fx40bN/Duu+8CqJlGVFlZif79+3PXdOrUCU5OTkhISFCZb3l5OQoLC3kHg9FS0Uh06enpWL9+PV5//XUcPnwY06dPx+zZs7F582YuzerVq+Hm5ob27dvD0NAQAwYMwNq1a9GnTx8AQG5uLgwNDXnfJQcAe3t75Obmqsw3JiYGVlZW3OHo6KjhbTIYzQeNmpdKpRI+Pj6Ijo4GAHh5eSE5ORmxsbEICwsDUCO6c+fOYe/evXB2dsZvv/2GGTNmwMHBgVe7aUJkZCQiIiK488LCQiY8RotFI9FJJBK4ubnxwlxdXbFr1y4AQGlpKT7++GPs3r0bgYGBAIDOnTsjKSkJy5YtQ//+/SEWi1FRUYH8/HxebXf//n2IxWKV+RoZGcHIyEgTVxmMZotGzcuePXsiNTWVF3bjxg04OzsDACorK1FZWVlnExqRSMStHPb29oaBgQGOHj3KxaempiIzMxO+vr4NugkGoyWhUU03Z84c+Pn5ITo6GsOHD0diYiI2bNiADRs2AAAsLS3Rt29fzJ8/HyYmJnB2dsbJkyfx/fffY8WKFQAAKysrTJo0CREREWjTpg0sLS0xa9Ys+Pr6sp5LxiuBRqLr2rUrdu/ejcjISCxatAgymQwrV67E6NGjuTTbtm1DZGQkRo8ejUePHsHZ2RmLFy/GtGnTuDRff/01hEIhhgwZgvLycgQEBGDdunXauysGoxmj8TSwoKAgBAUF1RsvFot543iqMDY2xtq1a7F27VpNs2cwWjxsPR2DoWOY6BgMHcNEx2DoGCY6BkPHMNExGDqGiY7B0DFMdAyGjmGiYzB0DBMdg6FjmOgYDB3DRMdg6BgmOgZDxzDRMRg6homOwdAxTHQMho5homMwdAwTHYOhY5joGAwdw0THYOgYJjoGQ8cw0TEYOoaJjsHQMUx0DIaOYaJjMHQMEx2DoWM03uGZ0Xy4/ecTPCmv4s5v5RXz/q3FzKgVZG3NdOobo340Fl1WVhYWLFiAgwcPoqSkBHK5HHFxcfDx8eHSXL9+HQsWLMDJkydRVVUFNzc37Nq1C05OTgCAsrIyzJ07F9u2beN9y8De3l57d6bn3P7zCfyXnVAZF749qU7Y8Xn9mPCaCRqJ7vHjx+jZsyf8/f1x8OBB2Nra4ubNm7C2tubSpKWloVevXpg0aRI+//xzWFpa4urVqzA2NubSzJkzBwcOHMCOHTtgZWWFmTNnIjQ0FGfOnNHenek5tTXcyhGekNuZAwDKKqtx73Ep2lubwNhABKCm1gvfnsSrERlNi0aiW7p0KRwdHXkfCJHJZLw0n3zyCd5//3189dVXXFiHDh24/xcUFGDjxo348ccf8dZbbwEA4uLi4OrqinPnzrHPZWmI3M4c7u2suHMfadP5wlAPjTpS9u7dCx8fHwwbNgx2dnbw8vLCt99+y8UrlUocOHAALi4uCAgIgJ2dHbp37449e/ZwaRQKBSorK3mfQu7UqROcnJyQkJCgMt/y8nIUFhbyDgajpaKR6NLT07F+/Xq8/vrrOHz4MKZPn47Zs2dj8+bNAIC8vDwUFxdjyZIlGDBgAH799VcMHjwYoaGhOHnyJAAgNzcXhoaGvE8fA4C9vT1yc3NV5hsTEwMrKyvuYN8bZ7RkNGpeKpVK+Pj4IDo6GgDg5eWF5ORkxMbGIiwsjPvEcXBwMObMmQMA8PT0xNmzZxEbG4u+ffs2yMnIyEhERERw54WFhUx4jBaLRjWdRCKBm5sbL8zV1RWZmZkAgLZt26JVq1bPTSMWi1FRUYH8/Hxemvv370MsFqvM18jICJaWlryDwWipaCS6nj17IjU1lRd248YNODs7AwAMDQ3RtWvX56bx9vaGgYEBjh49ysWnpqYiMzMTvr6+DboJBqMloVHzcs6cOfDz80N0dDSGDx+OxMREbNiwARs2bODSzJ8/HyNGjECfPn3g7++PQ4cOYd++fThx4gQAwMrKCpMmTUJERATatGkDS0tLzJo1C76+vqznkvFKoJHounbtit27dyMyMhKLFi2CTCbDypUrMXr0aC7N4MGDERsbi5iYGMyePRsdO3bErl270KtXLy7N119/DaFQiCFDhvAGxxmMVwGNZ6QEBQUhKCjouWkmTpyIiRMn1htvbGyMtWvXYu3atZpmz2C0eNiEZwZDxzDRMRg6homOwdAxTHQMho5homMwdAwTHYOhY5joGAwdw0THYOgYtkdKE1FdXY1Tp04hJycHEokEvXv3hkgkamq3GDqA1XRNQHx8PORyOfz9/TFq1Cj4+/tDLpcjPj6+qV1j6AAmOh0THx+PoUOHwsPDAwkJCSgqKkJCQgI8PDwwdOhQJrxXAL1sXpaUlCAlJeV/G/WUoL21KbdRT6dOnWBqatokflVXV2Pu3LkICgrCnj17IBTWlHk9evTAnj17EBISgnnz5iE4OJg1NfUYvRRdSkoKvL29VcYpFAp06dJFxx7VcOrUKWRkZOCnn37iBFeLUChEZGQk/Pz8cOrUKfTr169JfGQ0Pnopuk6dOkGhUOBWXhE+3JaEVSM9Ibez4OKaipycHACAu7u7yvja8Np0DP1EL0VnamqKLl26wDCrAEYniuHm4cnbpq6pkEgkAIDk5GSVC3aTk5N56Rh/UV5dBqFxFm4XpkJobF5vutuFxRAaZ6G8ugxA0//mqtAr0TX3bcZ79+4NqVSK6Oho3jsdULPpU0xMDGQyGXr37q1z35o72U/uwEy2Gh8nvjitmQzIfuIJbzTPHcP1RnQtYZtxkUiE5cuXY+jQoQgJCUFkZCTc3d2RnJyMmJgY7N+/Hzt37mSdKCpwMHPGk9uzsGqEJzrY1V/TpeUV48PtSXDwd9ahd5qhN6JrKduMh4aGYufOnZg7dy78/Py4cJlMhp07dyI0NLRJ/GruGImMoSxrB5llR7jZ1N9sVJYVQFn2AEYi43rTNDV6I7raNr/I2JZr85saAy4WAFDApRMZN32bPzQ0FMHBwS81I0Wf3nFeNfRGdC2tzS8SiV5qWKCl3S/jL/RGdPrU5leHV+1+9Qm9EZ0+tfnV4VW7X32Czb1kMHQMEx2DoWP0pnlZWlkNAEjO+qunsr4hA01prhOoGS0TvRFd2v/E9FH8FbXSmxmpf+vNdQI1QzvoulDVWHRZWVlYsGABDh48iJKSEsjlcsTFxcHHx6dO2mnTpuHf//43vv76a4SHh3Phjx49wqxZs7Bv3z7umwarVq2CuXn9vXAv4t03aj6z1cHOHCbPDIQ/PWAOaD4NrLlOoGZoB10XqhqJ7vHjx+jZsyf8/f1x8OBB2Nra4ubNm7C2tq6Tdvfu3Th37hwcHBzqxI0ePRo5OTk4cuQIKisrMWHCBEydOhU//vhjg2+kjZkhRnZzUhn37He51eXpuZyG9h1gKCiGkbgYhvZyGP5PxOmPK2FW8qRJ5nIytIOuC1WNRLd06VI4OjoiLi6OC5PJZHXSZWVlYdasWTh8+DACAwN5cdevX8ehQ4dw/vx5rnZcvXo13n//fSxbtkylSJuCljCXk6EddL0qRSPR7d27FwEBARg2bBhOnjyJdu3a4YMPPsCUKVO4NEqlEmPHjsX8+fPxxhtv1LGRkJCA1q1b85qj/fv3h1AoxO+//47BgwfXuaa8vBzl5eXceWFhoSZuN4jGmMtZW3OWlpbg9q0bKtPI5C5o29qSCVgHNNWqFI1El56ejvXr1yMiIgIff/wxzp8/j9mzZ8PQ0BBhYWEAamrDVq1aYfbs2Spt5Obmws7Oju9Eq1Zo06YNcnNzVV4TExODzz//XBNXtcazTVMfacPsPF1zlufeQu7mcJXpxGErYSSWs5qzkWnKloxGolMqlfDx8UF0dDQAwMvLC8nJyYiNjUVYWBgUCgVWrVqFixcvQiAQaMVBAIiMjERERAR3XlhYCEdHR63Z1wVP15ztLLrg9khPlenIsh0W7E1tslUQjUFzHHJpylUpGolOIpHAzc2NF+bq6opdu3YBqNkDJC8vD05Of3Vo1G7Gs3LlSmRkZEAsFiMvL49no6qqCo8ePYJYLFaZr5GREYyMjDRxtdlSW3N2lateHV4zzpiqMq4xacxVC815yEVbLRlN0Eh0PXv2RGoq/4G4ceMGnJ1rJtOOHTsW/fv358UHBARg7NixmDBhAgDA19cX+fn5UCgU3A9x7NgxKJVKdO/evcE3om1etaUzjbFqofadqdpSgu0HT+Duo1Is+zUV897tCMc2JgCAaksJbv/54t7fxpz8oGs0Et2cOXPg5+eH6OhoDB8+HImJidiwYQM2bNgAALCxsYGNjQ3vGgMDA4jFYnTs2BFATc04YMAATJkyBbGxsaisrMTMmTMxcuTIZtNzCWj/IWzuItb2qoX63pmMxHKsvlwN4H/iOHERwIvfmRpz8oOu0cizrl27Yvfu3YiMjMSiRYsgk8mwcuVKjB49WqNMf/jhB8ycORNvv/02Nzj+zTffaGTjedS+Q9zKK0J57i1cu2KOivt/jbuo8w6h7Yewua9/0/aqhUclNYXHvHdc4Nim5u9dXqVEXmEZ7CyNYdSqZtrv3UclWHbkBh6VFEOG+kXXmJMfdI3GxUFQUBCCgoLUTp+RkVEnrE2bNi81EP4inn2HGLH5rzh13yG0/RBqW8TNvblVW8isv/XitOoUMtqe/NCULY/mWwe/BLUzDOrrLWsKtC3i5t7cau6LbG8X3G6ylodeiq52hkFzQts1U3NvbjX3RbalT9rgye1Zaqd/fUAHreWtl6LTBtoWibZrpsaYa6pNmnvzN9BDCgPhgCYptJjo6uFpkSgry1D58J7KdAY27SE0MH6hSJp7zaRtmnvztykLLSa6enhaJLdTrmDEe0NVptt+8AS6+vi8UCTNvWbSNq9aIaMJTHT18LRI3rDr+tyOGbZyvC6vWiGjCUx0atAcO2YYLRcmOsYrjzYmU2gCEx3jlUcbkyk0gYmO0ejouibRFF1PpmCiYwBo3HE1XdckmqLrd3YmuiZA2yW/Nuxpe1zyaZrjtLymhImuCdB2ya8Ne9oel3wa1vvLh4muCdB2ya8Ney1pXLK5vyO+CAERUVM7oSmFhYWwsrJCQUEBLC0tm9odho65ePFik27/8LLPH6vpGC2Olv6OyETHaHG09HdE9qksBkPHMNExGDqGiY7B0DEt8p2utsNVF980YDCepfa5a2jHf4sUXVFREQC0uK3VGfpFUVERrKw0XxfYIsfplEolsrOzYWFh8dxvJtR+8+Du3btaGc9j9pg9oKaGKyoqgoODA4RCzd/QWmRNJxQK0b59e7XTW1paanUQndlj9hpSw9XCOlIYDB3DRMdg6Bi9Fp2RkRGioqK09pktZo/Z0wYtsiOFwWjJ6HVNx2A0R5joGAwdw0THYOgYJjoGQ8cw0TEYOkbvRXf//n3k5uZqxdbNmzdx9OhR3LqlxudF1eTzzz/Hn3/+qTV7jBYA6QkPHz6kIUOGkKOjI02bNo2qqqpo0qRJJBAISCgUkq+vL2VnZ6ttLzo6mv773/8SEdGjR4/o7bffJoFAwNkbMGAAPX78WG17BQUFdY78/HwyMDCg33//nQtTl4qKCpo/fz516NCBunbtShs3buTF5+bmklAoVNueLsnNzaWcnByt2ausrNSaLSKiuLg4ys/P16rNp9Eb0U2cOJHc3d1p9erV1LdvXwoODqbOnTvT6dOn6ezZs9S1a1caN26c2vbat29PFy9eJCKiyZMnk5eXF128eJFKS0spKSmJevToQZMmTVLbnlAoVHnUirj2X3WJiooie3t7+te//kWffPIJWVlZ0dSpU7n43NxcEggEatur5erVqzR9+nTy9PQksVhMYrGYPD09afr06XT16lWNbGm7IDx48CBdvnyZiIiqq6tp0aJF5ODgQEKhkNq1a0cxMTGkVCo18lEVBgYGdO3atZe2Ux96IzqJREJnzpwhor8euF9//ZWLP336NLVr105te0ZGRpSRkUFERFKplE6ePMmLv3DhAkkkErXttWvXjgIDA+nYsWN04sQJOnHiBB0/fpxEIhHFxcVxYeoil8tp37593PnNmzdJLpfT+PHjSalUNqim++WXX8jQ0JB69OhBUVFRtG7dOlq3bh1FRUWRn58fGRkZ0aFDh9S2p+2CsGPHjvTbb78RUU1LxMbGhlasWEEHDx6klStXkr29PS1ZskRte9bW1ioPgUBAVlZW3Lm20RvRmZqaciIhqimtrly5wp2np6eTmZmZ2vZcXFxo//79REQkk8k4Qdfyxx9/kKWlpdr2Hj58SCEhIeTv70/37t3jwlu1aqVxDUJEZGJiQrdv3+aF3bt3j1xcXGj06NGUlZWlseg6d+5Mn376ab3xUVFR5OHhoba9xigI79y5Q0RE7u7u9PPPP/Pi9+/fT3K5XG175ubmFBgYSJs2beKOuLg4EolEtHjxYi5M2+iN6N58801as2YNEdWU2BYWFrR8+XIufv369eTu7q62vX/961/k6upKN2/epOXLl5Ovry/dunWLiGoE3K9fPxo6dKjGfq5bt44cHBzoxx9/JKKGi04mk3HvnE+TlZVFLi4u9M4772gsOmNjY0pJSak3PiUlhYyNjdW2p+2CUCKRUEJCAhER2dvbc83/Wm7cuEEmJiZq27t58yZX2xYVFXHhDf1N1EVvRLd161YSiUQkl8vJyMiIduzYQQ4ODjR8+HAaOXIkGRoacqJUl1mzZpGBgQF16tSJjI2NSSgUkqGhIQmFQvLx8WlwZ8DVq1fpzTffpL/97W8N/oEnTZpEEydOVBl37949ksvlGouuU6dOvILqWZYvX04dO3ZU2562C8IPPviAgoKCqKqqiqZOnUqTJ0/mvcPNmjWLfH191bZHVNMJ849//IM6dOhAp0+fJiImOo04ffo0LVu2jGvSXL16lcaOHUtDhgxpcDPh2rVr9NVXX9G0adNo6tSpFBUVRb/++utLv7CXl5fTnDlzyNPTk9LT0zW+PiMj47nvV1lZWRrf888//0ytWrWigQMH0qpVq2jbtm20bds2WrVqFQ0aNIgMDQ1p586datvTdkGYn59PPj4+JJfLaezYsWRsbEzOzs70zjvvkEwmIysrKzp37pxG91zL0aNHycnJiSIjI8nAwKBRRcdWGTB4nD17Ft988w0SEhK48U2xWAxfX198+OGH8PX11cjemTNncO7cOfj6+sLPzw/Xrl3DkiVLUFJSgoEDByIsLEwje5WVldi4cSP27duH9PR0KJVKSCQS9OzZE9OnT9doR4FnefjwIaZMmYLjx4/j3Llz6NixY4NtPQ+9F93nn3+OGTNmoG3btg26/smTJ1AoFMjJyYFQKMRrr72GLl26PHdvFk146623EBcXB2dn5wZdf+zYMZw+fZrn36BBg/D6669rxT+G9tEb0anajo+IYGtri9OnT3N73Ku7l4ZSqcRHH32ENWvWoLy8nLMHAE5OTli9ejUGDhyotn979+5VGR4aGopVq1ZxO5sNGjRILXt5eXkYOHAgLly4AKFQCKVSCS8vL2RlZeHBgweIiIjAV199pbZ/z2PTpk0YPHhwg/cFqa6uhkgk4s4TExM5f7WxYJSIoFQqeXlo4tudO3cglUohFApRXl6O//znP1AqlfD394e9vf1L+6fKYb1A24PPCxYsIFdXV9q3bx8dOXKE+vTpQ0uXLqXr16/Tp59+SkZGRnT48GG17T3tR32HJv6NGDGCQkJCqKCggMrKymjmzJncmNfRo0fJxsaGVq5cqba959HQweKMjAzy9vYmkUhEAwYMoIKCAurfvz93vzKZjFJTU9W2V1lZSZ988gn16dOHFi5cSEREX331FZmampKhoSGNGzeOysvL1bZ36dIlkkgkJBQKyd3dnTIzM8nd3Z3MzMzI3NycrK2tKTExUeP7fhF6IzptDz5LJBJuIJaopkfQ3NycysrKiIho0aJFGvWUDRgwgAIDA+n+/fu88Ib2lFlaWlJycjJ3XlxcTAYGBtxUsi1btmjU00ik/cHiIUOGUN++fWnfvn00fPhw6tmzJ/Xr14/u3btH2dnZFBAQQCEhIWrb++c//0n29vYUERFBbm5uNG3aNHJ0dKStW7fS5s2bqV27drR06VK17QUEBNDQoUPpypUr9OGHH5KrqysNGzaMKioqqLKyksaMGUP9+/dX25666I3otD34bGFhQWlpadx5dXU1tWrVihsmuHr1Kpmammpkc8WKFeTo6MibSdJQ/2xtbXnXlZSUkFAopIcPHxIRUVpaGhkZGWlkU9uDxba2tvTHH38QUU3Po0AgoFOnTnHxCoWC7O3t1bb32muvcX+7mzdvklAopG3btnHx27dv12gIwtramqvBS0pKSCQS0e+//87FJycnk42Njdr21EVvRFeLtgaf/fz86Msvv+TOf/rpJ2rdujV3fuXKlQZNEfrjjz/Izc2Npk6dSk+ePGmwf4MHD6YhQ4ZQcXExVVRUUHh4OG82xrlz50gsFmtkU9uDxRYWFtxwSG2hlZSUxMvPwsJCbXvGxsaUmZnJO79+/Tp3np6erpG91q1b040bN4ioZgK5SCQihULBxV+/fr1RpoHp3dKe6dOn48iRI1i6dClGjRrVYDuLFi3CF198ge7du6Nv374YO3YsoqKiuPhDhw7By8tLY7uenp64cOECBAIBPD09G7wf/rJly5CUlITWrVvDzMwMmzZtwvr167n469evY/z48RrZlMvlOHv2LMRiMTw9PXHmzJkG+VbLG2+8ge+++w4AsHnzZtjY2GDbtm1c/E8//QQXFxe17VlZWSE/P58779KlCywsLLjz8vJyjXqVvb29sXTpUmRlZSEmJgYymQxr1qzh4levXg13d3e17amN1mXcTHjZwWcioqSkJPr4449p7ty5vDmD2uI///kPhYeH13nPU5cnT57Qr7/+Svv27aMHDx5o1TdtDBYfOnSIjI2NydDQkIyNjenkyZPk4uJC3bp1ox49epBIJKLt27erbc/f3/+5zduff/6ZvL291baXmJhINjY2JBQKydbWlpKTk6l79+4kFovJwcGBTExMVE61e1n0ZsiAoX20MVickZEBhUIBb29vSKVS3L9/H2vXrkVJSQkCAwPh7++vtq0bN27AwMAAMplMZfyPP/6IVq1aYfjw4WrbfPLkCVJSUtCxY0eYm5ujrKwMP/zwA0pLS/HOO+80ygC53okuMTGxzmwKPz8/dO3aVWv2fH190a1bN635DNSscP/3v/+NhQsXNkt7DC2i9bqzibh//z716tWLBAIBOTs7U7du3ahbt27k7OxMAoGAevXqpVEz7v79+9SzZ0+t2XsRSUlJWl3prW17zYmqqire+blz5+jkyZNUUVGhsS2lUknp6enc6vPy8nLatm0bbd68WetN9lr0RnRDhgwhX19flUtTUlJSyM/PT6OlONq2d+nSpece27dv10gk2rZHpP0tILRtLzs7m3r27EkikYj69OlDjx49osDAQG6w3cXFRaOV6CkpKeTs7ExCoZDkcjmlp6eTt7c3mZmZkampKbVt25br3dQmeiM6c3PzOuurnubChQtkbm7eZPaeNyOlITNmtG2PSPtbQGjb3tixY8nPz4/27t1LI0aMID8/P+rduzfdu3eP7ty5Qz179qQZM2aobS84OJgGDRpEly9fpvDwcHJ1daXg4GCqqKigsrIyGjhwII0ZM0Zte+qiN6KzsbF57oyT48ePazTQ2Rj2Nm7cSBkZGSqPAwcOaCQSbdsj0v4WENq29/Qi1ocPH5JAIOD1Lh49epRee+01te09PXhfXFxcZ/D+zJkz5OTkpLY9ddEb0X3wwQfk7OxM8fHxvF21CgoKKD4+nqRSKc2cObPJ7L377rv0xRdf1BuflJSkUamvbXtE2t8CQtv2nh0cNzMzo5s3b3Lnd+7c0WjluImJCbf9A1FN66Z2dwAioszMTI1n9aiD3oiurKyMpk2bxq3sNjY25q32nj59Ojdv8mXsCQSCBtmLj4+nLVu21Bv/6NEjjaZYadsekfa3gNC2PScnJ940rQULFnDT3ohqCpq2bduqba9Dhw68mm3dunVUWFjInSsUCo1n9aiD3g0ZFBYWQqFQ8Lr4vb29G/x53MLCQly4cAH3798HANjb28PHx0ern9ttLkyePBlEhI0bN9aJy8rKQr9+/ZCeno7q6uomsRccHIy33noLH374ocr4tWvXIj4+HkePHlXL3rRp0+Dj44PJkyerjF+yZAlOnTqFAwcOqGVPXfROdI2NoaEhLl26BFdX16Z2RevcuXMHKSkpCAgIUBmfnZ2NI0eOqL3aW9v2XkRiYiJMTU21NnXr9u3bMDY2hkQi0Yq9WvRKdKWlpVAoFGjTpg3c3Nx4cWVlZfj5558xbtw4tWxFRESoDF+1ahXGjBkDGxsbAMCKFSvUsnfx4kVYW1tzsym2bNmC2NhYZGZmwtnZGTNnzsTIkSPVslXLmjVrkJiYiPfffx8jR47Eli1bEBMTA6VSidDQUCxatAitWrXSyCZDB2i9wdpEpKamcgPXQqGQ+vTpQ1lZWVy8pj1lAoGAPD09qV+/frxDIBBQ165dqV+/fuTv76+2vc6dO9ORI0eIiOjbb78lExMTmj17Nq1fv57Cw8PJ3Ny8zjjW8/jiiy/IwsKChgwZQmKxmJYsWUI2Njb05ZdfUnR0NNna2nILPTWhvLyctm/fTuHh4TRy5EgaOXIkhYeH088//6zRAtGnuXv3Lm/VQi0VFRV1NvFtCDKZrEHjaXfv3uUNgP/22280atQo6tWrF40ePZrOnj370r6pQm9EFxISQoGBgfTgwQO6efMmBQYGkkwm43qnNBVdTEwMyWQyOnr0KC/8ZTaHrd0D0svLizZs2MCL/+GHH8jNzU1tex06dKBdu3YRUU0Hgkgkoq1bt3Lx8fHxGm28SlTTpf/aa6+RsbEx9e3bl4YPH07Dhw+nvn37krGxMcnlcl5v4YvIzs6mrl27klAoJJFIRGPHjuWJT9PfZNWqVSoPkUhEkZGR3Lm6dOvWjRvS2LNnDwmFQho0aBAtWLCABg8eTAYGBrwhD22hN6Kzs7Pj9rknqpneM23aNHJycqK0tLQGbTOemJhILi4uNHfuXG6KUUNFZ2NjQxcuXOB8fXpdGRHRrVu3Xqq728DAgLeSPCMjQ+NFtv3796fg4GCVHzIpKCig4OBgevfdd9W2N27cOOrevTudP3+ejhw5Qt7e3uTj40OPHj0iIs0HxwUCAbVv356kUinvEAgE1K5dO5JKpSSTydS2Z2Zmxq1A6d69e50t2VevXk1eXl5q21MXvRGdhYWFyn08ZsyYQe3bt6fffvutQXMRi4qKaNy4cdS5c2e6cuVKg5e5jBkzhvvgyLBhw+if//wnLz46OlqjLctlMhkdPHiQiGp2NhYKhbxtxg8cOEBSqVQjH01MTHg7MD/L5cuXNSoYHBwceF38tbM8PD096eHDhxoXhH//+9/J09Ozzu/c0ILQysqKLl26REQ1BWHt/2u5deuWxgWXOuiN6Lp27Urff/+9yrgZM2ZQ69atX2oC8E8//UT29vYkFAob9ANnZWWRVCqlPn36UEREBJmYmFCvXr1oypQp1KdPHzI0NKQDBw6obe+f//wn2dra0uTJk0kmk9FHH31ETk5OtH79eoqNjSVHR0eaM2eORj5KJJLnNqf27t2r0UdTzMzM6rxrVVZWUkhICHXu3JkuX76s8W8SHx9Pjo6OtHr1ai6soaIbNGgQffTRR0RUs1/Ks03Tb7/9ll5//XWN7b4IvRFddHQ0vffee/XGT58+vUGfjnqau3fv0p49e6i4uLhB1z9+/JgWLFhAbm5u3OJOZ2dnGjVqFJ0/f14jW9XV1bR48WIKCgqi6OhoUiqV9NNPP5GjoyPZ2NjQ+PHjNfbz008/JWtra1qxYgVdunSJcnNzKTc3ly5dukQrVqygNm3aUFRUlNr2PDw8VO4IXSs8JyenBhWE9+7do7feeosGDBhAOTk5DRbdtWvXyMbGhsaNG0dffPEFmZub05gxY2jx4sU0btw4MjIyori4OI3tvgi9ER1DOyxZsoQkEgnXC1w7eVoikWi00xYR0T/+8Y963wErKytp0KBBDS4IlUolRUdHk1gsJpFI1OBt0G/dukUjR44kCwsLbsK4gYEB+fn50e7duxtk80Xo1TgdQ3vcvn2bN6unvtXaz6OqqgolJSX1zt6pqqpCVlZWg3e3BgCFQoHTp09j3LhxsLa2brAdIkJeXh6USiXatm0LAwODBttSJzMGQy0yMzNpwoQJzN5Lwmo6htpcunQJXbp0UXuuJLOnGjZHiMFR3/cWaklPT2f2tACr6RgcQqEQAoHguXtxCgQCtUv+V82euujdZrOMhiORSBAfHw+lUqnyuHjxIrOnBZjoGBze3t5QKBT1xr+oVnjV7akLe6djcMyfPx9PnjypN14ul+P48ePM3kvC3ukYDB3DmpcMho5homMwdAwTHYOhY5joGAwdw0THYOgYJroWQr9+/RAeHt7UbnA0N39aEkx0rxAVFRVN7QIDYEt7WgJhYWEEgHfcunWLJk6cSFKplIyNjcnFxYVWrlxZ57rg4GD68ssvSSKRcHumnDlzht58800yMjIib29v2r17NwHgPqZBRHTlyhUaMGAAmZmZkZ2dHY0ZM4bbrk6VP89+s4BRP0x0LYD8/Hzy9fWlKVOmUE5ODuXk5FBZWRktXLiQzp8/T+np6bR161YyNTXlfcM7LCyMzM3NaezYsZScnEzJyclUUFBAbdq0oTFjxtDVq1fpl19+IRcXF57oHj9+TLa2thQZGUnXr1+nixcv0jvvvMPt86nKn2c/1MioHzYNrAVgZWUFQ0NDmJqaQiwWc+Gff/4593+ZTIaEhAT8/PPPvG9um5mZ4f/+7/9gaGgIAIiNjYVAIMC3334LY2NjuLm5ISsrC1OmTOGuWbNmDby8vBAdHc2Ffffdd3B0dMSNGzfg4uKi0h+GejDRtWDWrl2L7777DpmZmSgtLUVFRQU8PT15aTw8PDjBAUBqaio6d+4MY2NjLuzZ76dfunQJx48fh7m5eZ0809LS4OLiot0becVgomuhbNu2DfPmzcPy5cvh6+sLCwsL/Otf/8Lvv//OS2dmZqax7eLiYgwcOBBLly6tE6ftj2m8ijDRtRAMDQ15iynPnDkDPz8/fPDBB1xYWlraC+107NgRW7duRXl5OYyMjAAA58+f56Xp0qULdu3aBalUWu8HSJ71h6E+bMighSCVSvH7778jIyMDf/75J15//XVcuHABhw8fxo0bN/Dpp5/WEY8qRo0aBaVSialTp+L69es4fPgwli1bBqBm/RgAzJgxA48ePcLf/vY3nD9/HmlpaTh8+DAmTJjACe1Zf5RKZePdvJ7BRNdCmDdvHkQiEdzc3GBra4uAgACEhoZixIgR6N69Ox4+fMir9erD0tIS+/btQ1JSEjw9PfHJJ59g4cKFAMC95zk4OODMmTOorq7Gu+++Cw8PD4SHh6N169YQCoUq/cnMzGy8m9cz2Ho6Bn744QdMmDABBQUFMDExaWp39B72TvcK8v333+O1115Du3btcOnSJSxYsADDhw9ngtMRTHSvILm5uVi4cCFyc3MhkUgwbNgwLF68uKndemVgzUsGQ8ewjhQGQ8cw0TEYOoaJjsHQMUx0DIaOYaJjMHQMEx2DoWOY6BgMHcNEx2DomP8HRcBHpb/XSGMAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "y='[INSERT].MinLatency(us)'\n",
+ "plot_variation(df_groups, max_pod_count, y)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAM4AAAEVCAYAAACokdqcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAukElEQVR4nO3dd3yNd/8/8Nc52XuJDDJFiMoSK7iJGuGOSNRtS1KzCK09WpLa1Ci1+q0SVSO0jVZpqTt2qBGNGWSIEUlEEIQk5Lx/f/jluh0ZznU5SQ7ez8fjPNprvc/nxHld43ONIyMiAmNMFHlNN4CxtxEHhzEJODiMScDBYUwCDg5jEnBwGJOAg8OYBBwcxiTg4DAmQZUFJyAgADKZDDKZDElJSVX1NtUqIyND+Ew+Pj413Zz3Ttu2bbFlyxa11Lp79y5q166NW7duSVq+Src4w4YNQ1ZWFho3bix86UpDVDpcu3ZtPHr0SGk5Hx8ffPnll8LwtWvX0L9/f9jb20NfXx9169ZFSEgILl++LMxT+oV+9RUbGwsAOHjwoNJ4a2tr/Pvf/8b58+crXb709eWXX8LBwQFZWVmYMGFCpZ+79L0sLCxQWFioNO3UqVNCTXXasGEDzM3NJS//6r+Pptm5cydycnLQt29ftdSrVasWwsPDER0dLWn5Kg2OoaEhbG1toa2tXeE8jx49wuLFiyuc/uzZM3Tq1An5+fmIi4vDlStXsG3bNnh6euLBgwdK88bExCArK0vpFRoaqjTPlStXkJWVhb1796KoqAhBQUEoLi5WWmbZsmUwNTVVGjdx4kRoaWnB1tYWxsbGKn1+ExMT7NixQ2ncunXr4OjoqNLy7H+++eYbDBo0CHK5+r6ygwYNwubNm3Hv3j3Ry9b4Mc6YMWOwdOlS3Llzp9zpFy9eRFpaGlavXo2WLVvCyckJrVu3xpw5c9CyZUulec3NzWFra6v00tfXV5qndu3asLW1RZMmTTB27FjcvHkTly9fVlrGzMwMMplMaZyqYXlZREQE1q9fLww/ffoUsbGxiIiIUJovLy8P/fr1Q506dWBoaAhPT09s3bpVmJ6bmwtbW1vMmzdPGHfs2DHo6uoiPj5epbbs2bMHbdq0gbm5OaysrNCtWzekpaUJ011cXAAAvr6+kMlkCAgIEKZ9//338PDwgL6+Pho2bIjVq1cL00q3VHFxcWjfvj0MDQ3h7e2N48ePK71/QkICAgICYGhoCAsLCwQGBuL+/fvYuHEjrKysUFRUpDR/aGgowsLChM+/f/9+BAcHl3nfl7eQDx48gEwmw8GDBwEA9+/fx4ABA2BtbQ0DAwPUr18fMTExwvwffPAB7O3ty6zcVFHjwenXrx/c3Nwwa9ascqdbW1tDLpfj559/RklJidreNz8/X9iN09XVVVvdl4WFheHIkSO4ceMGAOCXX36Bs7MzmjRpojRfYWEh/Pz8sHv3bly4cAHDhw9HWFgYTp48CeDF32D9+vX48ssvcfr0aTx69AhhYWEYPXo0OnTooFJbCgoKMH78eJw+fRrx8fGQy+Xo0aMHFAoFAAjv9d///hdZWVmIi4sDAGzevBlRUVGYO3cukpOTMW/ePMyYMQM//PCDUv0vvvgCEydORFJSEtzd3dGvXz88f/4cAJCUlIQOHTqgUaNGOH78OI4ePYrg4GCUlJSgV69eKCkpwc6dO4Vad+7cwe7duzF48GAAwNGjR2FoaAgPDw9Rf/8ZM2bg0qVL+PPPP5GcnIw1a9agVq1aSvM0b94cR44cEVUXAEBVpF27dvTZZ58Jw9euXSMA9M8//5QZ3rNnD+no6FBqaioREXl7e1N0dLSw7MqVK8nQ0JBMTEyoffv2NGvWLEpLS1N6PwCkr69PRkZGSq/r168TEdGBAwcIgDAeAAGg7t27l2l7TEwMmZmZVfjZoqOjydvbu8Lppe91//59Cg0NpZkzZxIRUfv27Wn58uW0Y8cOet2fPigoiCZMmKA0btSoUeTu7k79+/cnT09PKiwsVLnNr8rNzSUAdP78eSIq++9Tql69erRlyxalcbNnzyZ/f3+l5b7//nth+sWLFwkAJScnExFRv379qHXr1hW2ZeTIkdS1a1dheMmSJeTq6koKhYKIiL7++mtydXVVWqa89t6/f58A0IEDB4iIKDg4mAYNGlTp32HcuHEUEBBQ6TzlqfEtDgAEBgaiTZs2mDFjRrnTIyMjkZ2djc2bN8Pf3x8//fQTPvjgA+zbt09pvq+//hpJSUlKL3t7e6V5jhw5gsTERGzYsAHu7u749ttvq+xzAcDgwYOxYcMGpKen4/jx4xgwYECZeUpKSjB79mx4enrC0tISxsbG2Lt3r7ClKrV48WI8f/4cP/30EzZv3gw9PT2V25GSkoJ+/frB1dUVpqamcHZ2BoAy7/GygoICpKWlYciQITA2NhZec+bMUdrNAwAvLy/h/+3s7ABA2P0u3eJUZNiwYfjrr7+QmZkJ4EVHx8cffyx0oDx9+rTMLrcqRo4cidjYWPj4+GDy5Mk4duxYmXkMDAzw5MkT0bUrPmqvZgsWLIC/vz8mTZpU7nQTExMEBwcjODgYc+bMQWBgIObMmYNOnToJ89ja2sLNza3S93FxcYG5uTkaNGiAO3fuoE+fPjh8+LBaP8vLunbtiuHDh2PIkCEIDg6GlZVVmXkWLVqE5cuXY9myZfD09ISRkRHGjh2L4uJipfnS0tJw+/ZtKBQKZGRkwNPTU+V2BAcHw8nJCWvXroW9vT0UCgUaN25c5j1e9vjxYwDA2rVr0aJFC6VpWlpaSsM6OjrC/5d+4Ut3Aw0MDCptm6+vL7y9vbFx40Z07twZFy9exO7du4XptWrVwv3795WWKe0koJfuw3z27JnSPF27dsX169fxxx9/YN++fejQoQMiIyOVOqPu3bsHa2vrSttXHo3Y4gAv9jU/+ugjTJ069bXzymQyNGzYEAUFBW/0npGRkbhw4YKkg0NVaWtrIzw8HAcPHhT22V+VkJCAkJAQDBw4EN7e3nB1dcXVq1eV5ikuLsbAgQPRp08fzJ49G0OHDq2wQ+VVeXl5uHLlCqZPn44OHTrAw8OjzBex9Djv5eNIGxsb2NvbIz09HW5ubkqv0s4EVXh5eb22E2Po0KHYsGEDYmJi0LFjRzg4OAjTfH19kZ2drdTm0i97VlaWMK68rnRra2tERERg06ZNWLZsGb777jul6RcuXICvr6/Kn6WUxgQHAObOnYv9+/fjypUrwrikpCSEhITg559/xqVLl5Camop169Zh/fr1CAkJUVr+wYMHyM7OVnpVFi5DQ0MMGzYM0dHRSmsusVauXFnprsjs2bORm5uLwMDAcqfXr18f+/btw7Fjx5CcnIxPPvkEOTk5SvN88cUXyM/PxzfffIMpU6bA3d29TBBLSkrK7KomJyfDwsICVlZW+O6775Camor9+/dj/PjxSsvWrl0bBgYG2LNnD3JycpCfnw8AmDlzJubPn49vvvkGV69exfnz5xETE4OlS5eq/PeZNm0aTp06hVGjRuHcuXO4fPky1qxZg7t37wrz9O/fH7du3cLatWvLfC5fX1/UqlULCQkJwjgDAwO0bNkSCxYsQHJyMg4dOoTp06crLRcVFYXffvsNqampuHjxInbt2qXUwfDkyRMkJiaic+fOKn8WgeijIhWJ6Rx42fDhwwmA0DmQm5tLn376KTVu3JiMjY3JxMSEPD09afHixVRSUiIsh/9/sP/qa/78+USkfMD+shs3bpC2tjZt27ZNGCe2cyA6OpqcnJyE4Yreq9SrnQN5eXkUEhJCxsbGVLt2bZo+fTqFh4dTSEiIUE9bW5uOHDmi9Pc0NTWl1atXC20u7/PXq1ePiIj27dtHHh4epKenR15eXnTw4EECQDt27BBqrl27lhwcHEgul1O7du2E8Zs3byYfHx/S1dUlCwsLatu2LcXFxQntePXf8dWDdCKigwcPUqtWrUhPT4/Mzc0pMDCwzN8nLCyMLC0tlTo9Sk2ePJn69u2rNO7SpUvk7+9PBgYG5OPjQ3/99ZfS+86ePZs8PDzIwMCALC0tKSQkhNLT04Xlt2zZQg0aNCj33+h1qi0475LX9aoxaT788EMaM2ZMudOysrLI0tKSMjIy1PZ+LVq0oM2bN0tatkqDo6OjQ0ZGRnTu3Lmqeptqdf36dTIyMiIdHR0Ojhrdu3eP4uLiSC6X0+XLlyucb8eOHXT48GG1vGdubi4tXLhQ6PIWS0ZUNY+HyszMxNOnTwEAjo6OVXaSsTo9f/4cGRkZAAA9PT2lA1gmnbOzM+7fv48ZM2Zg4sSJNd0clVRZcBh7l2lUrxpjbwsODmMScHAYk4CDw5gEHBzGJKix4Bw+fBjBwcGwt7eHTCbDr7/+Kmr5L7/8stxbnI2MjKqmwYy9pMaCU1BQAG9vb6xatUrS8hMnTixzm3SjRo3Qq1cvNbeUsXKo5TTsG8Ir10wRERUWFtKECRPI3t6eDA0NqXnz5krXPr0qKSmJAKjtzDJjldHYY5zRo0fj+PHjiI2Nxblz59CrVy906dIFKSkp5c7//fffw93dHf/617+quaXsvVTTySUqu8W5fv06aWlpUWZmptJ8HTp0oGnTppVZ/unTp2RhYUELFy6s6qYyRkREGnMH6MvOnz+PkpISuLu7K40vKioq9w7KHTt24NGjR2WeHsNYVdHI4Dx+/BhaWlpITEwsc4tueY9p+v7779GtWzfY2NhUVxPZe04jg+Pr64uSkhLcuXPntccs165dw4EDB5QeL8RYVaux4Dx+/BipqanC8LVr15CUlARLS0u4u7tjwIABCA8Px5IlS+Dr64vc3FzEx8fDy8sLQUFBwnLr16+HnZ0dunbtWhMfg72vaurgqvT24ldfERERRERUXFxMUVFR5OzsTDo6OmRnZ0c9evRQuimupKSE6tatS59//nkNfQr2vuL7cRiTQGPP4zCmyTg4jElQ7Z0DCoUCt2/fhomJidp/I4ax1yEiPHr0CPb29m/0kyHVHpzbt2/zQy5Yjbt58ybq1q0reflqD46JiQmAFw03NTWt7rdn77mHDx/CwcFB+B5KVe3BKd09MzU15eCwGvOmhwncOcCYBBwcxiTQyGvVmDi38/OxLSkRBY8fIuV8Yrnz1Pf0g5GxKWzN9BHa2BcG2pX/Zg2rHAfnHbAtKRHrMz57MWBX/jxn7v4K/P9f1bA02oDA+n7V0rZ31TsZnPdtDdzHxw/AcpU/b1uXRtXbwHdQtV+r9vDhQ5iZmSE/P7/KetW+PrT/f2tgFSxuxWvg94W6vn/v5BaH18Csqr2TWxzGKqKu7x93RzMmAQeHMQk4OIxJwMFhTAIODmMSvJPd0VWtuLgYq1evRlpaGurVq4dRo0a9Ez8OzFTHwRFp8uTJ+Prrr/H8+XNh3KRJkzBu3Dh89dVXNdgyzfUuXsnBwRFh8uTJWLRoEWxsbDBnzhx069YNu3btwvTp07Fo0SIAeCfCo+4v+rt4LR2fAFVRcXExjIyMYGVlhVu3bkFb+3/rnOfPn6Nu3brIy8tDQUHBW7/bpu5LljRpi6Ou7x8HRwW38/Px6cIZ2L1lLZq26wxXD68y8zzKf4A/t36PvoNHYvXnczV+V6MymvRFVzcOTjXii0bfHXyRZzXq4+OHhL3tVd7itB3AF42+63iLoyJ1HuO8y7tCmo63ONVMV1cX48aNw6JFi1C3bl3MmjVL6FWLiopCTk4OJk2apFLHwLvYy/S+4eCIUNrV/PXXX+OTTz4Rxmtra2PSpEkqd0Xz/UJvP95Vk4CvHKhZb7Kry7tqNUhXVxdjx46t6Wa8tzRhV5eDw946mrCry7tq7L3Ct04zVoM4OIxJwMFhTAIODmMSiArO/Pnz0axZM5iYmKB27doIDQ3FlStXqqptjGksUcE5dOgQIiMj8ffff2Pfvn149uwZOnfujIKCgqpqH2Ma6Y26o3Nzc1G7dm0cOnQIbdu2LXeeoqIiFBUVCcOlPyXH3dGsJmhEd3R+fj4AwNLSssJ55s+fDzMzM+HFP5zL3gWStzgKhQLdu3fHgwcPcPTo0Qrn4y0O0yQ1fq1aZGQkLly4UGloAEBPTw96enpS34YxjSQpOKNHj8auXbtw+PDhN/qteMbeVqKCQ0QYM2YMduzYgYMHD8LFxaWq2sWYRhMVnMjISGzZsgW//fYbTExMkJ2dDQAwMzODgQHf2sveH6I6B2QyWbnjY2Ji8PHHH6tUg6+OZjWpRjoHqvkOBMY0Fl+rxpgEHBzGJODgMCYBB4cxCTg4jEnAwWFMAg4OYxJwcBiTgIPDmAQcHMYk4OAwJgEHhzEJODiMScDBYUwCDg5jEnBwGJOAg8OYBBwcxiTg4DAmAQeHMQk4OIxJwMFhTAIODmMScHAYk4CDw5gEHBzGJODgMCYBB4cxCTg4jEnAwWFMAg4OYxJwcBiTgIPDmAQcHMYk4OAwJgEHhzEJODiMScDBYUwCDg5jEnBwGJOAg8OYBBwcxiQQHZzDhw8jODgY9vb2kMlk+PXXX6ugWYxpNtHBKSgogLe3N1atWlUV7WHsraAtdoGuXbuia9euKs9fVFSEoqIiYfjhw4di35IxjVPlxzjz58+HmZmZ8HJwcKjqt2SsylV5cKZNm4b8/HzhdfPmzap+S8aqnOhdNbH09PSgp6dX1W/DWLXi7mjGJODgMCaB6F21x48fIzU1VRi+du0akpKSYGlpCUdHR7U2jjFNJTo4p0+fRvv27YXh8ePHAwAiIiKwYcMGtTWMMU0mOjgBAQEgoqpoC2NvDT7GYUwCDg5jEnBwGJOAg8OYBBwcxiTg4DAmAQeHMQk4OIxJwMFhTAIODmMScHAYk4CDw5gEHBzGJODgMCYBB4cxCTg4jEnAwWFMAg4OYxJwcBiTgIPDmAQcHMYk4OAwJgEHhzEJODiMScDBYUwCDg5jEnBwGJOAg8OYBBwcxiTg4DAmAQeHMQk4OIxJwMFhTAIODmMScHAYk4CDw5gEHBzGJODgMCYBB4cxCTg4jEnAwWFMAg4OYxJICs6qVavg7OwMfX19tGjRAidPnlR3uxjTaKKDs23bNowfPx7R0dE4c+YMvL29ERgYiDt37lRF+xjTSDIiIjELtGjRAs2aNcPKlSsBAAqFAg4ODhgzZgymTp362uUfPnwIMzMz5Ofnw9TUFABwOz8f25ISUfD4IVLOJ5a7XH1PPxgZm8LWTB+hjX1hoG0gptmMASj/+yeFtpiZi4uLkZiYiGnTpgnj5HI5OnbsiOPHj5e7TFFREYqKioThhw8flplnW1Ii1md89mLArvz3PnP3V+Dui/+3NNqAwPp+YprOmFqJCs7du3dRUlICGxsbpfE2Nja4fPlyucvMnz8fM2fOrLRuHx8/AMtV3uK0dWkkptmMqZ2o4Egxbdo0jB8/Xhh++PAhHBwclOaxNzPDuHYfvhgICq3qJjH2xkQFp1atWtDS0kJOTo7S+JycHNja2pa7jJ6eHvT09KS3kDENJKpXTVdXF35+foiPjxfGKRQKxMfHw9/fX+2NY0xTid5VGz9+PCIiItC0aVM0b94cy5YtQ0FBAQYNGlQV7WNMI4kOTp8+fZCbm4uoqChkZ2fDx8cHe/bsKdNhUJHS3u/yetcYq2ql3zuRZ2HKEH0e503dunWrTOcAY9Xt5s2bqFu3ruTlqz04CoUCt2/fhomJCWQyWYXzlfa+3bx5841OVHE9rvcyIsKjR49gb28PuVz6pZpV3h39KrlcLirppqamavnDcj2uV8rMzOyN34evjmZMAg4OYxJobHD09PQQHR2ttpOnXI/rqVO1dw4w9i7Q2C0OY5qMg8OYBBwcxiTg4DAmAQeHMQk0Ojg5OTnIzs5+4zopKSmIj49HamqqGlr1PzNnzsTdu3fVWpO9JUgD5OXlUc+ePcnBwYFGjBhBz58/pyFDhpBMJiO5XE7+/v50+/ZtlWrNmzeP/vvf/xIR0b1796hDhw4kk8mEWl26dKH79++Lal9+fn6Z14MHD0hHR4dOnDghjHvXZWdnU1ZWltrqPXv2TG21iIhiYmLowYMHaq1ZEY0IzuDBg6lx48a0YsUKateuHYWEhJCXlxcdPXqUjh07Rs2aNaPw8HCVatWtW5fOnDlDRERDhw4lX19fOnPmDD19+pSSkpKoZcuWNGTIEFHtk8vl5b5Kw1j6X1UVFxfTpEmTqF69etSsWTNat26d0vTs7GxR9YiILl68SCNHjiQfHx+ytbUlW1tb8vHxoZEjR9LFixdF1VLnioyI6M8//6Rz584REVFJSQnNmjWL7O3tSS6XU506dWj+/PmkUChEtbE8Ojo6dOnSpTeuowqNCI6dnR0lJCQQ0YsvjUwmo7/++kuYfvToUapTp45KtfT09CgjI4OIiJydnenQoUNK00+fPk12dnai2lenTh0KCgqi/fv308GDB+ngwYN04MAB0tLSopiYGGGcqqKjo8nGxoYWLVpEX3zxBZmZmdHw4cOF6aV/A1X98ccfpKurSy1btqTo6GhavXo1rV69mqKjo6lVq1akp6dHe/bsUbmeOldkREQNGjSgw4cPE9GLPQIrKytaunQp/fnnn7Rs2TKysbGhBQsWqFzPwsKi3JdMJiMzMzNhuCppRHAMDQ2FLzvRizXH+fPnheH09HQyMjJSqZa7uzvt2rWLiIhcXFyEQJb6559/yNTUVFT78vLyKDQ0lNq3b0+3bt0Sxmtra4temxMRubm50e+//y4Mp6SkkJubG3388cekUChEb3G8vLxoxowZFU6Pjo4mT09Pleupc0VG9GJldv36dSIiaty4MW3fvl1p+q5du8jNzU3lesbGxhQUFEQbNmwQXjExMaSlpUVz584VxlUljQiOt7c3rVy5koherD1NTExoyZIlwvQ1a9ZQ48aNVaq1aNEi8vDwoJSUFFqyZAn5+/tTamoqEb0IYEBAAP3nP/+R1M7Vq1eTvb09bdmyhYikB8fAwICuXbumNO7WrVvk7u5OAwYMoMzMTFHB0dfXp8uXL1c4/fLly6Svr69yPXWuyIheBPH48eNERGRjYyPsSpe6evUqGRgYqFwvJSVF2Oo9evRIGC/130MKjQjOpk2bSEtLi9zc3EhPT49++uknsre3p969e1Pfvn1JV1dXCJYqxowZQzo6OtSwYUPS19cnuVxOurq6JJfLqWnTpm90gHvx4kXy9vamfv36Sf6HcnFxETowXpaZmUnu7u7UqVMnUcFp2LCh0ormVUuWLKEGDRqoXE+dKzIiolGjRlG3bt3o+fPnNHz4cBo6dKjSMc2YMWPI399f5XpELzoWJk+eTPXq1aOjR48S0XsYHKIXm//FixcLuwgXL16ksLAw6tmzp6TN7qVLl+irr76iESNG0PDhwyk6Opr++usvtRyEFhUV0bhx48jHx4fS09NFLz9kyBAaPHhwudNu3bpFbm5uooKzfft20tbWpuDgYFq+fDnFxsZSbGwsLV++nLp37066urr0888/q1xP3SuyBw8eUNOmTcnNzY3CwsJIX1+fnJycqFOnTuTi4kJmZmb0999/q1zvZfHx8eTo6EjTpk0jHR2d9y8475OMjIxKD9YzMzNFrywSEhKoT58+5OjoSLq6uqSrq0uOjo7Up08fOnbsmOg2qntFVlxcTGvWrKF///vf1LBhQ3J3d6d27drR559/Tjdv3hRd72V3796lHj16kLm5eaW7rOqk0bcVzJw5E5GRkahVq5boZQsKCpCYmIisrCzI5XK4urqiSZMmlT7nQKwPP/wQMTExcHJyUltN9nbQiOCU96goIoK1tTWOHj2Khg0bAoBK96YrFApMnToVK1euFB72XvoRHR0dsWLFCgQHB4tq386dO8sd/9FHH2H58uXCU3u6d+8uqu7+/ftx9OhRpXB3794d9evXF1WnIhs2bECPHj0k32NfUlICLS0tYfjkyZNQKBTw9fVVyw1jRASFQqH0HmLadv36dTg7O0Mul6OoqAi//fYbFAoF2rdvr/LjyiSrlu3aa6jzBOOUKVPIw8ODfv/9d9q3bx+1bduWFi5cSMnJyTRjxgzS09OjvXv3imrfy+2o6CXmmCQnJ4eaN29OcrmctLW1SS6Xk5+fH9na2pKWlhZNmjRJVPsqIvWEYEZGBvn5+ZGWlhZ16dKF8vPzqWPHjsJndXFxoStXrqhc79mzZ/TFF19Q27ZtKSoqioiIvvrqKzI0NCRdXV0KDw+noqIileudPXuW7OzsSC6XU+PGjenGjRvUuHFjMjIyImNjY7KwsKCTJ0+K/txiaERw1HmC0c7OTjjZRvTiYNvY2JgKCwuJiGjWrFmie3C6dOlCQUFBlJOTozReai9Onz59KDQ0lPLz86mwsJBGjx4tnFCMj48nKysrWrZsmcr11H1CsGfPntSuXTv6/fffqXfv3tS6dWsKCAigW7du0e3btykwMJBCQ0NVrjd9+nSysbGh8ePHU6NGjWjEiBHk4OBAmzZtoh9++IHq1KlDCxcuVLleYGAg/ec//6Hz58/TZ599Rh4eHtSrVy8qLi6mZ8+e0cCBA6ljx44q15NCI4KjzhOMJiYmlJaWJgyXlJSQtra20AV98eJFMjQ0FN3GpUuXkoODg9KJS6nBMTU1pQsXLgjDjx8/Jh0dHeF6tx9//FFU97G6TwhaW1vTP//8Q0QvesRkMhkdOXJEmJ6YmEg2NjYq13N1dRX+bikpKSSXyyk2NlaYvm3bNlHd2xYWFsKW9MmTJ6SlpUUnTpwQpl+4cIGsrKxUrieFRgSnlDpOMLZq1YrmzJkjDG/dupXMzc2F4fPnz0u+HOOff/6hRo0a0fDhw6mgoEBycKytrZWWe/LkCcnlcsrLyyMiorS0NNLT01O5nrpPCJqYmAjd7KUrnqSkJKX3MzExUbmevr4+3bhxQ2k4OTlZGE5PTxdVz9zcnK5evUpEL3rrtLS0KDExUZienJxc5ZfcaNRtBSNHjsS+ffuwcOFC9O/fX1KNWbNmYfbs2WjRogXatWuHsLAwREdHC9P37NkDX19fSbV9fHxw+vRpyGQy+Pj4SH7+cJs2bRAVFYWCggI8e/YMn3/+OVxdXWFpaQkAyM3NhYWFhcr13NzccOzYMdja2sLHxwcJCQmS2lXqgw8+wPr16wEAP/zwA6ysrBAbGytM37p1K9zd3VWuZ2ZmhgcPHgjDTZo0gYmJiTBcVFQkqrfTz88PCxcuRGZmJubPnw8XFxfhpzUBYMWKFWjcuLHK9SSp0lhK9KYnGJOSkujzzz+nCRMmKF1jpU6//fYbjR07tsxxjyrS0tKoXr16pK2tTTo6OmRubk779u0TpsfExNDUqVMltUsdJwT37NlD+vr6pKurS/r6+nTo0CFyd3en5s2bU8uWLUlLS4u2bdumcr327dtXuqu4fft28vPzU7neyZMnycrKiuRyOVlbW9OFCxeoRYsWZGtrS/b29mRgYFDulRnqpBHd0e+jJ0+eICEhAUVFRWjZsqWkc1UVycvLw7Bhw3DgwAH8/fffaNCggegaGRkZSExMhJ+fH5ydnZGTk4NVq1bhyZMnCAoKQvv27VWudfXqVejo6MDFxaXc6Vu2bIG2tjZ69+6tcs2CggJcvnwZDRo0gLGxMQoLC7F582Y8ffoUnTp1kvSZxdCo4Jw8eRLHjx8X7vq0tbVFq1at0KxZM7XU8vf3R/PmzdXaZuDFnar/93//h6ioKLXXZhqqSrdnKsrJyaE2bdqQTCYjJycnat68OTVv3pycnJxIJpNRmzZtVN4lysnJodatW6ullqqSkpJE33hWmezsbJo5c6ba6mmK58+fKw3//fffdOjQISouLhZdS6FQUHp6unAXaVFREcXGxtIPP/xAubm5amlvZTQiOD179iR/f/9yrzO6fPkytWrVSuVbAdRZq9TZs2crfW3btk2twREbRHXfUaruerdv36bWrVuTlpYWtW3blu7du0dBQUHCCVV3d3dRd5RevnyZnJycSC6Xk5ubG6Wnp5Ofnx8ZGRmRoaEh1apVS+h1qyoaERxjY+My92i87PTp02RsbFzttUpVduWAlFun1R1Edd9Rqu56YWFh1KpVK9q5cyf16dOHWrVqRf/617/o1q1bdP36dWrdujVFRkaqXC8kJIS6d+9O586do7Fjx5KHhweFhIRQcXExFRYWUnBwMA0cOFDlelJoRHCsrKwqvTLgwIEDKp/QUmetl2uuW7eOMjIyyn3t3r1b1Bdd3UFU9x2l6q738o1seXl5JJPJlHq94uPjydXVVeV6L5+gffz4cZkTtAkJCeTo6KhyPSk0IjijRo0iJycniouLU3paTH5+PsXFxZGzszONHj262muV6ty5M82ePbvC6UlJSaLWwOoOorrvKK2KO1RfPgFqZGREKSkpwvD169dF3QFqYGAg3IpN9GIvo/QuXyKiGzduiDqBLIVGBKewsJBGjBgh3KWpr6+vdOfmyJEjhWvNpNaSyWSia5WKi4ujH3/8scLp9+7dE3VJi7qDqO47StVdz9HRUemSmClTpghXSRC9+Ly1atVSuV69evWUtjCrV6+mhw8fCsOJiYlka2urcj0pNKo7+uHDh0hMTFTqQvbz85P0U3cPHz7E6dOnkZOTAwCwsbFB06ZN1fqzeVLt2LEDBQUFGDhwYLnT79+/j507dyIiIkKlekOHDgURYd26dWWmZWZmIiAgAOnp6SgpKamReiEhIfjwww/x2WeflTt91apViIuLQ3x8vEr1RowYgaZNm2Lo0KHlTl+wYAGOHDmC3bt3q1RPkiqNpQapzmduVTd131FaFXeoVubEiRNKDwN5U+np6aJ66aTQmC3O06dPkZiYCEtLSzRq1EhpWmFhIbZv347w8PDX1hk/fny545cvX46BAwfCysoKALB06VKV23bmzBlYWFgIZ75//PFHfPvtt7hx4wacnJwwevRo9O3bV+V67B1QpbFU0ZUrV4QTlHK5nNq2bUuZmZnCdDG9ODKZjHx8fCggIEDpJZPJqFmzZhQQEEDt27cX1T4vLy/hWrK1a9eSgYEBffrpp7RmzRoaO3YsGRsblznX8TorVqygsLAw2rp1KxERbdy4kTw8PKhBgwY0bdo00Y+HLSoqom3bttHYsWOpb9++1LdvXxo7dixt375d1E1iL7t586bS1daliouLyzzoUQoXFxdJ51tu3rypdJLz8OHD1L9/f2rTpg0NGDBA0jMWxNKI4ISGhlJQUBDl5uZSSkoKBQUFkYuLi9BzIiY48+fPJxcXF4qPj1ca/yaPDjIwMBCeM+br60vfffed0vTNmzdTo0aNVK43e/ZsMjExoZ49e5KtrS0tWLCArKysaM6cOTRv3jyytrYW7pRURUpKCrm6upK+vj61a9eOevfuTb1796Z27dqRvr4+ubm5KfVivc7t27epWbNmJJfLSUtLi8LCwpQCJLY7evny5eW+tLS0aNq0acKwqpo3by50l//6668kl8upe/fuNGXKFOrRowfp6OgodadXBY0ITu3atYVnCxO9uJxixIgR5OjoSGlpaaL/oU6ePEnu7u40YcIE4XKONwmOlZUVnT59Wmjry/emEBGlpqaK6k6tV68e/fLLL0T0okdJS0uLNm3aJEyPi4sT9WTLjh07UkhISLkPfs/Pz6eQkBDq3LmzyvXCw8OpRYsWdOrUKdq3bx/5+flR06ZN6d69e0Qk/gSoTCajunXrkrOzs9JLJpNRnTp1yNnZmVxcXFSuZ2RkJFw136JFizKPz12xYgX5+vqqXE8KjQiOiYlJuQfukZGRVLduXTp8+LDoS1oePXpE4eHh5OXlRefPn3+jZ24NHDhQeFB7r169aPr06UrT582bJ+oRs6+eh9DR0VG6IzQjI0PUXaoGBgaVHlyfO3dOVLDt7e2Vuo9Lz8b7+PhQXl6e6BXZJ598Qj4+PmX+jaWuzMzMzOjs2bNE9GJFVvr/pVJTUyXd5SuGRgSnWbNmtHHjxnKnRUZGkrm5ueRrwbZu3Uo2NjYkl8slByczM5OcnZ2pbdu2NH78eDIwMKA2bdrQsGHDqG3btqSrq0u7d+9WuZ6Liwv9+eefRPTi8a9yuVzpecq7d+8mZ2dnlevZ2dlVumuyc+dOUQ+aNzIyKnPs8ezZMwoNDSUvLy86d+6c6H+PuLg4cnBwoBUrVgjjpAane/fuwv1KgYGBZXbz1q5dS/Xr1xddVwyNCM68efOoa9euFU4fOXKkqF2DV928eZN+/fVXevz4seQa9+/fpylTplCjRo2Em7ycnJyof//+dOrUKVG1pk+fTtbW1jR06FBycXGhqVOnkqOjI61Zs4a+/fZbcnBwoHHjxqlcb8aMGWRhYUFLly6ls2fPUnZ2NmVnZ9PZs2dp6dKlZGlpSdHR0SrX8/T0LPfJn6XhcXR0lLQiu3XrFn344YfUpUsXysrKkhycS5cukZWVFYWHh9Ps2bPJ2NiYBg4cSHPnzqXw8HDS09OjmJgY0XXF0IjgvG9KSkpo7ty51K1bN5o3bx4pFAraunUrOTg4kJWVFX388ceiQ75gwQKys7MTeiZLr3mzs7MT9QQZIqLJkydXeEz07Nkz6t69u+QVmUKhoHnz5gmPwpK6F5Camkp9+/YlExMT4To/HR0datWqFe3YsUNSTTE05jwOU49r164pXXlR0V2XlXn+/DmePHlS4VUWz58/R2Zm5hs9wTQxMRFHjx5FeHi4qOcrvIqIcOfOHSgUCtSqVQs6OjqSa4l9Y/aOu3HjBg0aNIjrqRFvcd4DZ8+eRZMmTVS+tozrvZ52lVVm1aaiZ1uXSk9P53pqxlucd4BcLodMJqv0OW8ymUzlNfD7Vk8KjXogIZPGzs4OcXFxUCgU5b7OnDnD9dSMg/MO8PPzQ2JiYoXTX7d2ft/rScHHOO+ASZMmoaCgoMLpbm5uOHDgANdTIz7GYUwC3lVjTAIODmMScHAYk4CDw5gEHBzGJODgVIOAgACMHTu2ppsh0LT2vI04OG+J4uLimm4Ce1mVXnvNKCIiggAovVJTU2nw4MHk7OxM+vr65O7uXubn2SMiIigkJITmzJlDdnZ2wq3UCQkJ5O3tTXp6euTn50c7duwgAMJDyIle/EBwly5dyMjIiGrXrk0DBw4UHqdUXntefU40ez0OThV78OAB+fv707BhwygrK4uysrKosLCQoqKi6NSpU5Senk6bNm0iQ0NDpd/VjIiIIGNjYwoLC6MLFy7QhQsXKD8/nywtLWngwIF08eJF+uOPP8jd3V0pOPfv3ydra2uaNm0aJScn05kzZ6hTp07Cs+TKa8+rP/jEXo+DUw3atWtHn332WaXzREZGUs+ePYXhiIgIsrGxUXqY4Jo1a8jKyoqePn0qjFu7dq1ScGbPnl3mtuebN28SALpy5YrK7WGV42vVasiqVauwfv163LhxA0+fPkVxcTF8fHyU5vH09ISurq4wfOXKFXh5eUFfX18Y9+pvmp49exYHDhyAsbFxmfdMS0sT9TPrrGIcnBoQGxuLiRMnYsmSJfD394eJiQkWLVqEEydOKM1nZGQkuvbjx48RHByMhQsXlplmZ2cnuc1MGQenGujq6irdVJWQkIBWrVph1KhRwri0tLTX1mnQoAE2bdqEoqIi6OnpAQBOnTqlNE+TJk3wyy+/wNnZGdra5f/zvtoeJh53R1cDZ2dnnDhxAhkZGbh79y7q16+P06dPY+/evbh69SpmzJhRJgDl6d+/PxQKBYYPH47k5GTs3bsXixcvBvDiHhQAiIyMxL1799CvXz+cOnUKaWlp2Lt3LwYNGiSE5dX2KBSKqvvw7ygOTjWYOHEitLS00KhRI1hbWyMwMBAfffQR+vTpgxYtWiAvL09p61MRU1NT/P7770hKSoKPjw+++OILREVFAYBw3GNvb4+EhASUlJSgc+fO8PT0xNixY2Fubg65XF5ue27cuFF1H/4dxffjvOU2b96MQYMGIT8/HwYGBjXdnPcGH+O8ZTZu3AhXV1fUqVMHZ8+exZQpU9C7d28OTTXj4LxlsrOzERUVhezsbNjZ2aFXr16YO3duTTfrvcO7aoxJwJ0DjEnAwWFMAg4OYxJwcBiTgIPDmAQcHMYk4OAwJgEHhzEJ/h/Ogq0A6eud/AAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "y='[INSERT].MaxLatency(us)'\n",
+ "plot_variation(df_groups, max_pod_count, y)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPYAAAEGCAYAAABW92hlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/yUlEQVR4nO2deVgUR/rHvzMcM9wIKjMgwiiCGlQUL/A2eK1BiLoewSNeJMYkGk081oONingnHlF3s15RoxgluuKq4ecRRRF1EATxQARRBExE7nvm/f3B0msL6AwMMAz1eZ5+tLuq33576G9V11vVVQIiIjAYDJ1C2NAOMBgMzcOEzWDoIEzYDIYOwoTNYOggTNgMhg7ChM1g6CBM2AyGDsKEzWDoIEzYDIYOolXCHjhwIAQCAQQCAaKjoxvaHY2QnJzM3ZObm1tDu8OoY3bv3o2hQ4dqzN6ECROwadMm9U8kLWLAgAE0a9YsSktLo9LSUkpKSiIAdPv2bSIibr9FixaUk5PDO7dLly4UEBDA7T9+/JgmTpxIUqmURCIR2dnZ0ahRo+jevXtcHgBVbocPHyYioosXL/KON2/enEaMGEF37tx56/kVW0BAAJWVlVFaWhotWLCAunTpotLv4OLiQoaGhpSWllbzH1NLAUC//vprjc8fMGAAzZ07V2P+aJLCwkKSSqUUHh6uMZuxsbHUrFkzysrKUus8raqxAcDY2BgSiQT6+vrV5snNzcXGjRurTS8tLcWQIUOQnZ2NkJAQPHjwAMHBwejUqROysrJ4effu3Yu0tDTe5uvry8vz4MEDpKWl4dy5cyguLsbIkSNRUlLCO+f777+Hubk579jXX38NPT09SCQSmJqaqnT/4eHhKCwsxNixY7F//36VzqkNJSUldX6NpsKxY8dgbm6OPn36aMymq6sr2rZti4MHD6p1ntYJWxW++OILbN68GS9evKgy/e7du0hMTMSOHTvQu3dvODg4oE+fPli9ejV69+7Ny2tpaQmJRMLbxGIxL0/Lli0hkUjQrVs3zJs3D0+fPsX9+/d551hYWEAgEPCOqSrm19m9ezc++ugjTJ48GXv27OGO//bbbxCLxZUKprlz52Lw4MHcfnh4OPr16wcjIyPY29vjyy+/RH5+Ppfu6OiIVatWYcqUKTA3N4e/vz8AYNGiRXB2doaxsTHatGmD5cuXo7S0lHet1atXo2XLljAzM8PMmTOxePHiSs2Lf/3rX+jQoQPEYjHat2+PHTt2qHzvL1++xMSJE2FnZwdjY2N06tQJhw8f5tI//vhj/P7779iyZQvXvElOTgYAxMXFYcSIETA1NYWNjQ0mT56MP//8kzt34MCB+PLLL7Fw4UJYWVlBIpHg73//O+/6WVlZ+OSTT2BjYwOxWAxXV1eEhoYiPz8f5ubmOHbsGC//iRMnYGJigtzcXADAkSNH4O3tzcszcOBAzJs3j3fM19cXH3/8Mbe/Y8cOtGvXDmKxGDY2Nhg7diwvv7e3N44cOaLy7wg0UmFPnDgRTk5OWLlyZZXpLVq0gFAoxLFjx6BQKDR23ezsbO4HNjQ01JjdCnJzc/HLL79g0qRJ3BvHlStXAADvv/8+LC0tcfz4cS6/QqFAcHAw/Pz8AACJiYkYPnw4xowZgzt37iA4OBjh4eH4/PPPedfZuHEjunTpgtu3b2P58uUAADMzM+zbtw/x8fHYsmULfvzxR3z33XfcOYcOHUJgYCDWrVsHuVyO1q1bY+fOnTy7hw4dwooVKxAYGIh79+5hzZo1WL58ucpvHkVFRXB3d8fp06cRFxcHf39/TJ48GTdu3AAAbNmyBR4eHpg1axb3VmRvb4+srCwMHjwYXbt2xa1bt3D27FlkZGRg3LhxPPv79++HiYkJIiMjsX79eqxcuRJhYWEAAKVSiREjRuDq1as4ePAg4uPjsXbtWujp6cHExAQTJkzA3r17efb27t2LsWPHwszMDEB5odq9e3eV7rWCW7du4csvv8TKlSvx4MEDnD17Fv379+fl6dmzJ27cuIHi4mLVDWusMaAB3mw/VdfGvn37Np09e5YMDAzo0aNHRFS5jb19+3YyNjYmMzMzGjRoEK1cuZISExN51wNAYrGYTExMeNuTJ0+I6H9t7Irj+G/bedSoUZV837t3L1lYWFR7bwEBAe9sY//zn/8kNzc3bn/u3Lk0depU3v7gwYO5/XPnzpFIJKJXr14REdGMGTPI39+fZ/PKlSskFAqpsLCQiIgcHBzI19f3rX4QEW3YsIHc3d25/V69etGcOXN4efr06cO7p7Zt29LPP//My7Nq1Sry8PDg9qFmG3vkyJG0YMECbr+qNvaqVato6NChvGNPnz4lAPTgwQPuvL59+/Ly9OjRgxYtWkRE5b+lUCjk8r9JZGQk6enp0fPnz4mIKCMjg/T19enSpUtERPTq1SsCQJcvX+adV5W/Pj4+3N/1+PHjZG5uXilm9DoxMTEEgJKTk6vN8yaNssYGgGHDhqFv375cjfMmc+bMQXp6Og4dOgQPDw/88ssveO+997gSuoLvvvsO0dHRvM3W1paX58qVK5DL5di3bx+cnZ2xa9euOrmnPXv2YNKkSdz+pEmT8Msvv3Cven5+frh06RKeP38OoLyGHDlyJCwtLQEAMTEx2LdvH0xNTblt2LBhUCqVSEpK4uxWVasEBwejT58+XBNi2bJlSElJ4dIfPHiAnj178s55fT8/Px+JiYmYMWMG7/qrV69GYmKiSvevUCiwatUqdOrUCVZWVjA1NcW5c+d4flRFTEwMLl68yLtu+/btAYB37c6dO/POk0qlXHMuOjoarVq1grOzc5XX6NmzJ9577z3u7ePgwYNwcHDgatfCwkIAqNSMexdDhgyBg4MD2rRpg8mTJ+PQoUMoKCjg5TEyMgKASsffRqMVNgCsXbsWwcHBuH37dpXpZmZm8Pb2RmBgIGJiYtCvXz+sXr2al0cikcDJyYm3vRm4k8lkcHFxwdSpUzFz5kyMHz9e4/cSHx+P69evY+HChdDX14e+vj569+6NgoIC7vW/R48eaNu2LY4cOYLCwkL8+uuv3Gs4AOTl5eGTTz7hFVIxMTFISEhA27ZtuXwmJia8a0dERMDPzw9/+ctfEBoaitu3b2Pp0qVqBdby8vIAAD/++CPv+nFxcbh+/bpKNjZs2IAtW7Zg0aJFuHjxIqKjozFs2LB3+pGXlwdvb+9KBXRCQgLvtdbAwIB3nkAggFKpBPA/8byNmTNnYt++fQDKX8OnTZsGgUAAALC2toZAIMCrV6945wiFQtAbc5m8HrswMzNDVFQUDh8+DKlUihUrVqBLly68WEpmZiaA8iamqjRqYffs2ROjR4/G4sWL35lXIBCgffv2vEBSTZgzZw7i4uLw66+/1srOm+zevRv9+/dHTEwM7+GcP38+du/ezeXz8/PDoUOHcOrUKQiFQowcOZJL69atG+Lj4ysVVE5OTm+NCVy7dg0ODg5YunQpunfvjnbt2uHJkye8PC4uLrh58ybv2Ov7NjY2sLW1xePHjytdWyaTqfQbXL16FT4+Ppg0aRK6dOmCNm3a4OHDh7w8hoaGleIm3bp1w927d+Ho6Fjp2m8WYtXRuXNnPHv2rNL1XmfSpEl48uQJtm7divj4eEydOpXnV8eOHREfH887p0WLFkhLS+P2FQoF4uLieHn09fXh5eWF9evX486dO0hOTsaFCxe49Li4OLRq1QrNmzdX6V6ARi5sAAgMDMSFCxfw4MED7lh0dDR8fHxw7NgxxMfH49GjR9i9ezf27NkDHx8f3vlZWVlIT0/nbW8Tv7GxMWbNmoWAgIBKJbE6bN++He+//z6A8hL8wIEDmDhxIlxdXXnbzJkzERkZibt37wIoF3ZUVBQCAwMxduxYiEQizuaiRYtw7do1fP7551yNdfLkyUrBszdp164dUlJScOTIESQmJmLr1q2VCq4vvvgCu3fvxv79+5GQkIDVq1fjzp07XI0FAN9++y2CgoKwdetWPHz4ELGxsdi7dy82b97Ms5WUlFSpds3Pz0e7du0QFhaGa9eu4d69e/jkk0+QkZHBO9fR0RGRkZFITk7Gn3/+CaVSiTlz5iAzMxMTJ07EzZs3kZiYiHPnzmHatGkqB08HDBiA/v37Y8yYMQgLC0NSUhLOnDmDs2fPcnmaNWuG0aNH45tvvsHQoUPRqlUrno1hw4YhPDycd2zw4ME4ffo0Tp8+jfv372P27Nm82jg0NBRbt25FdHQ0njx5gp9++glKpRIuLi5cnitXrqg/6EXl1ng9oE7w7HX8/f25ASFERH/88Qd9+eWX5OrqSqampmRmZkadOnWijRs3kkKh4M5DNQNLgoKCiOh/wbOK4FQFKSkppK+vT8HBwdwxdYNnAQEB5ODgQEREx44dI6FQSOnp6VWe26FDB/rqq6+4/Z49exIAunDhQqW8N27coCFDhpCpqSmZmJhQ586dKTAwkEt3cHCg7777rtJ533zzDVlbW5OpqSmNHz+evvvuu0r3s3LlSmrevDmZmprS9OnT6csvv6TevXvz8hw6dIjc3NzI0NCQmjVrRv3796eQkBAuvbrf/MqVK/Ty5Uvy8fEhU1NTatmyJS1btoymTJlCPj4+3PkPHjyg3r17k5GREQGgpKQkIiJ6+PAhffjhh2RpaUlGRkbUvn17mjdvHimVSiJ6dxCLiOjly5c0bdo0sra2JrFYTK6urhQaGso75/z58wSAjh49Wuk3vHv3LhkZGfEGk5SUlNDs2bPJysqKWrZsSUFBQbzrXrlyhQYMGEDNmjUjIyMj6ty5M++5KiwsJAsLC4qIiKh0vbeh1cLWJVSJijc2vLy8aNKkSQ3tRr3y008/kbW1NRUXF1eZPnbsWFqzZo3Grrdjxw4aMmSI2udp3av4jh07YGpqitjY2IZ2RSOkpKTA1NQUa9asaWhXakVBQQE2b96Mu3fv4v79+wgICMD//d//8dqZukxBQQESExOxdu1afPLJJ9XGLDZs2FCjgUnVYWBggG3btql9noBIe6YfTk1N5boNWrduXSeDQOqbsrIybnSUSCSCvb19wzpUQwoLC+Ht7Y3bt2+jqKgILi4uWLZsGUaPHt3QrtULf//73xEYGIj+/fvj5MmTGhVvXaBVwmYwGJpB617FGQxG7WHCZjB0ECZsBkMHqf6j50aOUqnE8+fPYWZmxhtEwWDUB0SE3Nxc2NraQiis//pTZ4X9/PnzRhuBZugOT58+rTRCrT7QWWFXfCP79OlTmJubN7A3DF1AoVDg2rVrSE9Ph0QigaenJ/T09KrMm5OTA3t7e+45rG90VtgVr9/m5uZM2IxaExISggULFnBjEoDyceubNm16a19+QzUDWfCMwXgHISEhGDt2LDp16oSIiAjk5uYiIiICnTp1wtixYxESEtLQLlZCZweo5OTkwMLCAtnZ2azGZtQYhUIBJycndOrUCSdOnOAFwpRKJXx9fREXF4eEhATea3lDP3+sxmYw3sKVK1eQnJyMv/3tb5Wi20KhEEuWLEFSUhI3N522oLawL1++DG9vb9ja2kIgEODEiRO89JCQEAwdOpSbUaKqif+LioowZ84cWFtbw9TUFGPGjKn03W1KSgpGjhwJY2NjtGzZEt988w3KysrUdZfBqBUVkyS4urpWmV5x/PXJFLQBtYWdn5+PLl264Icffqg2vW/fvli3bl21Nr766iucOnUKv/zyC37//Xc8f/6cF4BQKBTc3N3Xrl3D/v37sW/fPqxYsUJddxmMWiGVSgGg0qwnFVQcr8inNdTmW1G8ZcbJ6iZFyMrKIgMDA/rll1+4Y/fu3SMA3Mfk//nPfypNPLBz504yNzev9jvYN8nOziYAlJ2drd5NMRivUVZWRo6OjuTt7c2bpIOISKFQkLe3N8lkMiorK+OlNfTzV+9tbLlcjtLSUnh5eXHH2rdvj9atWyMiIgIAuIijjY0Nl2fYsGHIycnhpgh6k+LiYuTk5PA2BqO26OnpYdOmTQgNDYWvry8vKu7r64vQ0FBs3Lix2v7shqLehZ2eng5DQ0NuytwKbGxskJ6ezuV5XdQV6RVpVREUFAQLCwtuY6POGJpi9OjROHbsGGJjY+Hp6Qlzc3N4enoiLi4Ox44d08pv0nVmgMqSJUswf/58br9i5A+DoQlGjx4NHx8fXLlyBWlpaZBKpejXr5/W1dQV1LuwJRIJSkpKkJWVxau1MzIyIJFIuDwVy7q8nl6RVhUikYg3YyeDoWn09PQwcODAhnZDJer9Vdzd3R0GBgY4f/48d+zBgwdISUmBh4cHAMDDwwOxsbG8RffCwsJgbm6Ojh071rfLDEajQ+0aOy8vD48ePeL2K+aItrKyQuvWrZGZmYmUlBRuGZqK+b5fX5VyxowZmD9/PqysrGBubo4vvvgCHh4e3EqYQ4cORceOHTF58mSsX78e6enpWLZsGebMmcNqZQZDFdQNo7+5GHzFVjFP8t69e6tdBL6CwsJC+uyzz6hZs2ZkbGxMH374YaVF3pOTk2nEiBFkZGREzZs3pwULFlBpaanKfjZ0d4M2kZ+fT3K5nORyOV29foOCz1yiq9dvkFwup/z8/IZ2Tydp6OePjRVvAkRFRcHd3b3KNLlcjm7dutWzR3wKCgpw//59AEBRqQLPXhWgVTNjiA300L59exgbGzeofzWhoZ8/nYmKM6qnffv2kMvlAIBHL3Ix90g0tkxwg1NLM25Vyobk/v37Wl3wNEaYsJsAxsbGnDgMU7MhupSHjp3c4Gpn0cCelaPtBU9jhAmb0eBoe8HTGGHC1kI02eZM+jMf+cX/+yru0Ys83r8VmIj0IWuu2pKzDO2HCVsL0VSbM+nPfAzaeKnKtHnB0ZWOXfx6oEri1vZgl7b7Vx8wYWshmmpzVtTU3493g1PL8rWmyh/0QrRqZgSxgd5/r5GHecHRvJr9bWh7sEvb/asPmLC1EE23OZ1amvLO7e5YO/+0Pdil7f7VB0zYDLWoaLMb2rQFABgK8iCS5MHQxgmGLU3x+FUp8Cq7QdvsLBjHhM1Qg7pqs2sSFiwshwlbgygUikbzWV9NqKs2u6ZoDAVPfcGErSFqOqF8Y0TTbXZNkVmQB6E4FV8PcYa9VXnku7hMiRc5RWhpLoZIv/xjxqeZBdgY9hCZBXmQofH3AlQFE7YGqJhQ/oMPPsDhw4fh6uqKuLg4rFmzBmPHjtXaWTZ0jef5T2Ai24adj96d10QGPM93gzts3pm3MUbZmbBriUKhwIIFC/DBBx/wJpTv3bs3Tpw4AV9fX3z99dfw8fHRqddybcTWxAH5SV9gy3g3tP1vU6EqEl/kYW5wNGwHOahktzFG2Zmwa0nFhPKHDx+udkJ5T09PXLlypdHMvtFYEemJoSyyg8zcBR2tq4+AK4uyoSz6AyI9sUp2G2OUna0EUksa64TyDN2G1di15PUJ5StmgHkddSeUb2rdNU3tfusLJuxa0q9fPzg6OmLNmjVVLtoWFBQEmUyGfv36vdNWU+uuaQz321gLHibsWlIxofzYsWPh6+uLJUuWcFHxoKAghIaG4tixYyoFzrS9n1jTaPv9NoaCpzqYsDVAxYTyCxYsgKenJ3dcJpPVqKtLW/uJ6wpN3W9hqQIAEJeazR2rrqBQBW0veN4GE7aGaGwTymsDxYoiCMWpSMp5AKG4+u6ppJzygSfFiiIA1UeiE/8r2MUhsSpd30Sk2uPfGAtaJmwNUtsJ5TX9oGs7FQNK/nbj3XlVGVAy9L3yxSTatjSF0Ru16eu1LqB9bWJNw4StRWj6Qdc0mi54ND2gxMrEEBN6tq4y7c1aV9dhwtYiNP2ga1qImi546mpACYMJW6vQ9IOuaSHW1ZBNhuZhwtYA2vr1j6aFyGrYxgMTtgbQ1q9/mBBrR2MOZjJh15KkP/OhMJci+MwlAMDTzEJs/O0Bvh7qAnsrIyjMpYhLVW2qIE33w2o72n6/2h7MfBtM2LWgupFJIokTtt1RAMgDLkVxx981Mqmu+mE1haaFqO3325hjCkzYtUDTM3Zoez+spoVYV/f7eszj0YtcFKc/QnysKUoyzNSKeTTmpgwTdi3Q9Iwd2t4Pq2kh1tX9VhXzGL+//F9tnfFE0zBh14K6elXTVI2jabS94Kng9RlPquqlaAowYdeCunpVYzVO7Xh9xpOmitozqFy+fBne3t6wtbWFQCDAiRMneOlEhBUrVkAqlcLIyAheXl5ISEjg5cnMzISfnx/Mzc1haWmJGTNmIC+PH3C5c+cO+vXrB7FYDHt7e6xfv179u6tjXg8mVWy3kjNx4nYqbiVncsfUjepW1DhyuRxXr99A8JlLuHr9BuRyeZOpcbSBuvr71gdq19j5+fno0qULpk+fXuXniOvXr8fWrVuxf/9+yGQyLF++HMOGDUN8fDzE4vIay8/PD2lpaQgLC0NpaSmmTZsGf39//PzzzwCAnJwcDB06FF5eXti1axdiY2Mxffp0WFpawt/fv5a3rDkqgkkLg2+i9OWzKvMYWLeC0KD8vlWN6rIaRzvQ9qj921DbkxEjRmDEiBFVphERvv/+eyxbtgw+Pj4AgJ9++gk2NjY4ceIEJkyYgHv37uHs2bO4efMmunfvDgDYtm0b/vKXv2Djxo2wtbXFoUOHUFJSgj179sDQ0BDvvfceoqOjsXnzZq0SdkUwqfRFIqZ4j60yT/CZS+jYyU3nvybSRbS9l+JtaLSISUpKQnp6Ory8vLhjFhYW6NWrFyIiIjBhwgRERETA0tKSEzUAeHl5QSgUIjIyEh9++CEiIiLQv39/GBoacnmGDRuGdevW4dWrV2jWrFmlaxcXF6O4uJjbz8nJ0eStVUlFMKmgoDnee0uwRhsnlGe8m8YSLKwKjQo7PT0dAGBjw+/SsbGx4dLS09PRsmVLvhP6+rCysuLlkclklWxUpFUl7KCgIHz77beauRE1Ya/ODG1DexoFtWTJkiWYP38+t5+TkwN7e/sG9Kjhqashm9raHcf4HxoVtkRS3ibJyMjgTbebkZEBNzc3Ls+LFy9455WVlSEzM5M7XyKRICMjg5enYr8iz5uIRCKIRCKN3IeuUFfBH013x7GCQvNoVNgymQwSiQTnz5/nhJyTk4PIyEjMnj0bAODh4YGsrCzI5XLu4bhw4QKUSiV69erF5Vm6dClKS0thYGAAAAgLC4OLi0uVr+HagrattllXwR9NDwBh/fZ1AKlJbm4u3b59m27fvk0AaPPmzXT79m168uQJERGtXbuWLC0t6eTJk3Tnzh3y8fEhmUxGhYWFnI3hw4dT165dKTIyksLDw6ldu3Y0ceJELj0rK4tsbGxo8uTJFBcXR0eOHCFjY2P6xz/+obKf2dnZBICys7PVvcUacfz4cXJ0dCQA3Obo6EjHjx+vl+urSuyzLHJYFEqxz7Ia2hWO/Px8ksvlJJfL6er1GxR85hJdvX6D5HI55efn19huWVkZXbx4kX7++We6ePEilZWV1dpXVX+/+n7+3kRtYV+8eJH38FZsU6dOJSIipVJJy5cvJxsbGxKJRPT+++/TgwcPeDZevnxJEydOJFNTUzI3N6dp06ZRbm4uL09MTAz17duXRCIR2dnZ0dq1a9Xysz5/2OPHj5NAICBvb2+KiIig3NxcioiIIG9vbxIIBFolbm0Udl1QVwWtzgq7sVBfP2xZWRk5OjqSt7c3KRQKXppCoSBvb2+SyWQaqS1qyus1YvCZSySZ+j0Fn7lU6xpRW6nLgpYJu4Gprx+24g0mIiKiyvRr164RALp48WKd+vE25HJ5lW9ZAEgulzeYX3VBXRe0jUXYOtPd1VA0htU2m9LXTmxZ43KYsGuJplfbrAua0gCaxlDQ1gdsfexa8vpqm0qlkpem7mqbjNrzekFbFdpQ0NYHTNi1pGK1zdDQUPj6+iIiIgK5ubmIiIiAr68vQkNDsXHjRraGVz1RFwVtQUEBoqKiEBUVhfjY6P8OoIlGVFQUCgoKNH0LmqFBWvb1gDb0Y8tkMq3q6moqvB4Vv3btGuXk5NC1a9dqHBWvSfCxoYNnAiKiBipT6pScnBxYWFggOzsb5ubm9XJNbRt51pQJCQnBggULkJyczB2TyWTYuHGj2ssa12RBiIZ4/l6HCZuhszRkQdvQzx+LijN0ltoua9yYYcEzBkMHYcJmMHQQJmwGQwdhwmYwdBAmbAZDB2HCZjB0ECZsBkMHYcJmMHQQJmwGQwdhwmYwdBAmbAZDB2HCZjB0ECZsBkMHYcJmMHQQJmwGQwdhwmYwdBAmbAZDB2HCZjB0ECZsBkMHYcJmMHQQJmwGQwdhwmYwdBAmbAZDB6kTYefm5mLevHlwcHCAkZERPD09cfPmTS6diLBixQpIpVIYGRnBy8sLCQkJPBuZmZnw8/ODubk5LC0tMWPGDOTl5dWFuwyGzlEnwp45cybCwsJw4MABxMbGYujQofDy8kJqaioAYP369di6dSt27dqFyMhImJiYYNiwYSgqKuJs+Pn54e7duwgLC0NoaCguX74Mf3//unCXwdA9NL0YWEFBAenp6VFoaCjveLdu3Wjp0qWkVCpJIpHQhg0buLSsrCwSiUR0+PBhIiKKj48nAHTz5k0uz5kzZ0ggEFBqaqpKfjT0omiMpk1DP38ar7HLysqgUCggFot5x42MjBAeHo6kpCSkp6fDy8uLS7OwsECvXr0QEREBAIiIiIClpSW6d+/O5fHy8oJQKERkZGSV1y0uLkZOTg5vYzCaKhoXtpmZGTw8PLBq1So8f/4cCoUCBw8eREREBNLS0pCeng4AsLGx4Z1nY2PDpaWnp6Nly5a8dH19fVhZWXF53iQoKAgWFhbcZm9vr+lbYzAaDXWyKN+BAwcwffp02NnZQU9PD926dcPEiRMhl8vr4nIAgCVLlmD+/Pncfk5OTrXirsmyqAxGY6JOhN22bVv8/vvvyM/PR05ODqRSKcaPH482bdpAIpEAADIyMiCVSrlzMjIy4ObmBgCQSCR48eIFz2ZZWRkyMzO5899EJBJBJBKp5N/9+/fh7u5eZZpcLke3bt1UssNgaCt12o9tYmICqVSKV69e4dy5c/Dx8YFMJoNEIsH58+e5fDk5OYiMjISHhwcAwMPDA1lZWbwa/sKFC1AqlejVq1et/Wrfvj3kcjnkcjmCz1yCZOr3CD5zCXK5HO3bt6+1fQajwamLiNzZs2fpzJkz9PjxY/rtt9+oS5cu1KtXLyopKSEiorVr15KlpSWdPHmS7ty5Qz4+PiSTyaiwsJCzMXz4cOratStFRkZSeHg4tWvXjiZOnKiyD6pGJWOfZZHDolCKfZZVs5tlMKqgoaPidfIqnp2djSVLluDZs2ewsrLCmDFjEBgYCAMDAwDAwoULkZ+fD39/f2RlZaFv3744e/YsL5J+6NAhfP7553j//fchFAoxZswYbN26tS7cZTB0DgERUUM7URfk5OTAwsIC2dnZMDc3rzZfXGo2PtgWjtAv+sLVzqIePWToMqo+f3UFGyvOYOggTNgMhg7ChM1g6CBM2AyGDsKEzWDoIEzYDIYOwoTNYOggTNgMhg7ChM1g6CBM2AyGDsKEzWDoIHXyEYg2k/RnPvKLy7j9Ry/yeP9WYCLSh6y5Sb36xmBoiiYl7KQ/8zFo46Uq0+YFR1c6dvHrgUzcjEZJkxJ2RU39/Xg3OLU0BVAxNVIhWjUzgthAD0B57T0vOJpXszMYjYkmJewKnFqa8j7R7O7YcL4wGHUBC54xGDoIEzaDoYMwYTMYOggTNoOhgzSp4FmxoghCcSqSch5AKDatNl9STh6E4lQUK4oAsHnQGI2PJiXs5/lPYCLbhr/deHdeExnwPN8N7rB5d2YGQ8toUsK2NXFAftIX2DLeDW1bVl9jJ77Iw9zgaNgOcqhH7xgMzdGkhC3SE0NZZAeZuQs6Wlf/iq0syoay6A+I9MTV5mEwtBkWPGMwdBAmbAZDB2HCZjB0ECZsBkMHYcJmMHQQJmwGQwdpUt1dhaUKAOUrbFZQ3ffYDEZjpkkJO/G/gl0cEqtSfhNRk/p5GDpEk3pyh74nAQC0bWkKozdmS3l9VhWAzXnGaNxovI2tUCiwfPlyyGQyGBkZoW3btli1ahWIiMtDRFixYgWkUimMjIzg5eWFhIQEnp3MzEz4+fnB3NwclpaWmDFjBvLyaveKbGViiAk9W6OHoxVc7SzgamfBibliVpWKjYma0ZjRuLDXrVuHnTt3Yvv27bh37x7WrVuH9evXY9u2bVye9evXY+vWrdi1axciIyNhYmKCYcOGoaioiMvj5+eHu3fvIiwsDKGhobh8+TL8/f017S6DoZuQhhk5ciRNnz6dd2z06NHk5+dHRERKpZIkEglt2LCBS8/KyiKRSESHDx8mIqL4+HgCQDdv3uTynDlzhgQCAaWmpqrkR3Z2NgGg7Ozst+aLfZZFDotCKfZZlkp2GQxVUPX5qys0XmN7enri/PnzePjwIQAgJiYG4eHhGDFiBAAgKSkJ6enp8PLy4s6xsLBAr169EBERAQCIiIiApaUlunfvzuXx8vKCUChEZGRkldctLi5GTk4Ob2MwmioaD54tXrwYOTk5aN++PfT09KBQKBAYGAg/Pz8AQHp6OgDAxob/nbONjQ2Xlp6ejpYtW/Id1deHlZUVl+dNgoKC8O2332r6dhiMRonGa+yjR4/i0KFD+PnnnxEVFYX9+/dj48aN2L9/v6YvxWPJkiXIzs7mtqdPn9bp9RgMbUbjNfY333yDxYsXY8KECQCATp064cmTJwgKCsLUqVMhkZR3OWVkZEAqlXLnZWRkwM3NDQAgkUjw4sULnt2ysjJkZmZy57+JSCSCSCTS9O0wGI0SjdfYBQUFEAr5ZvX09KBUKgEAMpkMEokE58+f59JzcnIQGRkJDw8PAICHhweysrIgl8u5PBcuXIBSqUSvXr004mNUVBSioqIQHxuN4vRHiI+NRlRUFAoKCmptn8FocDQdjZs6dSrZ2dlRaGgoJSUlUUhICDVv3pwWLlzI5Vm7di1ZWlrSyZMn6c6dO+Tj40MymYwKCwu5PMOHD6euXbtSZGQkhYeHU7t27WjixIkq+/G2qKRcLicAVW5yubx2PwCDQQ0fFde4sHNycmju3LnUunVrEovF1KZNG1q6dCkVFxdzeZRKJS1fvpxsbGxIJBLR+++/Tw8ePODZefnyJU2cOJFMTU3J3Nycpk2bRrm5uSr78bYfNj8/n+RyOcnlcrp6/QYFn7lEV6/fILlcTvn5+TW/eQbjvzS0sAVErw0J0yFycnJgYWGB7OxsmJubN7Q7jCZGQz9/7LNNBkMHYcJmMHQQJmwGQwfR2c82K0IHbGgpoyGoeO4aKoSls8LOzc0FANjb2zewJ4ymTG5uLiws6n/9N52NiiuVSjx//hxmZmYQCATV5svJyYG9vT2ePn2qkegls8fsAeU1dW5uLmxtbSsN2KoPdLbGFgqFaNWqlcr5zc3NNdotwewxew1RU1fAgmcMhg7ChM1g6CBNXtgikQgBAQEa+zKM2WP2tAGdDZ4xGE2ZJl9jMxi6CBM2g6GDMGEzGDoIEzaDoYMwYTMYOggTNsonUqxuWmN1SUhIwPnz5/Ho0SON2AOAb7/9Fn/++afG7DF0nyYl7MzMTIwdOxatW7fG7NmzoVAoMHPmTEilUtjZ2cHT0xNpaWkq2wsKCuImZXz16hW8vLzg4uKCIUOGwMXFBSNGjEBWVpbK9t5c8CAnJwfZ2dkIDAzE48eP1V4IobS0FAsXLoSTkxN69uyJPXv28NIzMjKgp6ensr36RJOFLVA+y60m2bdvH7Kzs9+dsaFokAmZGojp06eTq6srbdu2jQYMGEA+Pj7UuXNnCg8Pp2vXrlGPHj1oypQpKttr1aoVRUVFERHRzJkzqWvXrhQVFUWFhYUUHR1NvXv3phkzZqhsTygUVrkJBALev6oSEBBANjY2tGHDBlq6dClZWFiQv78/l56enk4CgUBlexXcvXuXZs+eTW5ubiSRSEgikZCbmxvNnj2b7t69q5atly9f0pgxY8je3p4+/fRTKisroxkzZnD36uHhQc+fP1fZ3pkzZ+jOnTtERKRQKGjlypVka2tLQqGQ7OzsKCgoiJRKpVo+VoWBgQHFx8fX2k5d0aSELZVK6erVq0T0v4f6t99+49LDw8PJzs5OZXsikYiSk5OJiMjR0ZF+//13XvqtW7dIKpWqbM/Ozo5GjhxJFy5coEuXLtGlS5fo4sWLpKenR3v37uWOqYqTkxOdOnWK209ISCAnJyf6+OOPSalUUnp6uloFBRHRf/7zHzI0NKTevXtTQEAA7dixg3bs2EEBAQHk6elJIpGIzp49q7I9TRe2Li4udPnyZSIiWrNmDVlbW9PmzZvpzJkz9P3335ONjQ2tXbtWZXvNmjWrchMIBGRhYcHtaxtNStjGxsacEInKS93Y2Fhu//Hjx2RiYqKyPWdnZwoNDSUiIplMxhUaFdy+fZvMzc1Vtvfy5Uvy9fWlQYMG0bNnz7jj+vr6ateERERGRkaUlJTEO/bs2TNydnYmPz8/Sk1NVVvYnTt3puXLl1ebHhAQQJ06dVLZXl0Utk+ePCEiIldXVzp69CgvPTQ0lJycnFS2Z2pqSiNHjqR9+/Zx2969e0lPT48CAwO5Y9pGkxJ2ly5daPv27URUXvOYmZnRpk2buPSdO3eSq6uryvY2bNhAHTp0oISEBNq0aRN5eHjQo0ePiKi8kBg4cCCNHTtWbT937NhBtra29PPPPxNRzYUtk8no//7v/yodT01NJWdnZxoyZIjawhaLxXT//v1q0+/fv09isVhle5oubKVSKUVERBARkY2NDddUquDhw4dkZGSksr2EhATureH16a9r+jepL5qUsA8ePEh6enrk5OREIpGIfvnlF7K1taVx48bRhAkTyNDQkBO+qnzxxRdkYGBA7du3J7FYTEKhkAwNDUkoFFL37t0pLS2tRr7evXuXunTpQhMnTqzxQzRjxoxKSxpX8OzZM3JyclJb2O3bt+cVhm+yadMmcnFxUdmepgvbzz77jD744AMqKysjf39/mjlzJq9N/cUXX5CHh4fK9oiISktLaeHChdS2bVsKDw8nIiZsrSM8PJw2btzIvf7dvXuXJk+eTGPGjKnxK1V8fDytX7+ePv30U/L396eAgAD67bffah2kKS4upq+++orc3Nzo8ePHap+fnJz81vZuamqq2vd89OhR0tfXJ29vb9qyZQsdOXKEjhw5Qlu2bKFRo0aRoaEhHTt2TGV7mi5ss7KyqHv37uTk5ESTJ08msVhMDg4ONGTIEJLJZGRhYUHXr19X654rOH/+PLVu3ZqWLFlCBgYGWi1s9nUXQ22uXbuGrVu3IiIiguuSkkgk8PDwwNy5c7k12FTl6tWruH79Ojw8PODp6Yn4+HisXbsWBQUF8Pb2xtSpU9WyV1pait27d+PUqVN4/PgxlEolpFIp+vTpg9mzZ6s1s86bvHz5ErNmzcLFixdx/fp1uLi41NhWXcKEjfIBIHPmzEHz5s1rdH5+fj7kcjnS0tIgFArRpk0bdOvW7a1zranD4MGDsXfvXjg4ONTo/AsXLiA8PJzn36hRo9CuXTuN+MfQPpqUsKsa3EFEaNGiBcLDw9G+fXsAUHluLKVSicWLF2P79u0oLi7m7AFA69atsW3bNnh7e6vs37///e8qj48ePRpbtmzhZlwdNWqUSvZevHgBb29v3Lp1C0KhEEqlEl27dkVqair++OMPzJ8/H+vXr1fZv7exb98+fPjhhzWe50uhUPAGy9y4cYPzVxOTGhARlEpljQbkKBQKPHnyBI6OjhAKhSguLsbJkyehVCoxaNAg2NjY1No/jdNgjYAGQNMDQBYtWkQdOnSgU6dOUVhYGPXv35/WrVtH9+7do+XLl5NIJKJz586pbO91P6rb1PFv/Pjx5OvrS9nZ2VRUVESff/451yd8/vx5sra2pu+//15le2+jpgM2kpOTyd3dnfT09Gj48OGUnZ1NXl5e3P3KZLJKCza+jdLSUlq6dCn179+fVqxYQURE69evJ2NjYzI0NKQpU6bwFoh8FzExMSSVSkkoFJKrqyulpKSQq6srmZiYkKmpKTVr1oxu3Lih9n3XNU1K2JoeACKVSrnBEETlkWZTU1MqKioiIqKVK1eqFYEdPnw4jRw5kjIyMnjHaxqBNTc3p7i4OG4/Ly+PDAwMuBUgDxw4oFYEm0jzAzbGjBlDAwYMoFOnTtG4ceOoT58+NHDgQHr27Bk9f/6chg0bRr6+virbW7ZsGdnY2ND8+fOpY8eO9Omnn5K9vT0dPHiQ9u/fT3Z2drRu3TqV7Q0bNozGjh1LsbGxNHfuXOrQoQP99a9/pZKSEiotLaVJkyaRl5eXyvbqiyYlbE0PADEzM6PExERuX6FQkL6+PtfFdffuXTI2NlbL5ubNm8ne3p43Yqym/rVo0YJ3XkFBAQmFQnr58iURESUmJpJIJFLLpqYHbLRo0YJu375NROURbYFAQFeuXOHS5XI52djYqGyvTZs23G+XkJBAQqGQjhw5wqUHBwer1X3WrFkz7k2koKCA9PT0KDIykkuPi4sja2trle3VF01K2BVoagCIp6cnrV69mts/fPgwWVpacvuxsbE1Gm54+/Zt6tixI/n7+1N+fn6N/fvwww9pzJgxlJeXRyUlJTRv3jzeqKvr16+TRCJRy6amB2yYmZlxXXkVBWN0dDTvemZmZirbE4vFlJKSwtu/d+8et//48WO17FlaWtLDhw+JiKikpIT09PRILpdz6ffu3dPKIaVN6uuuCmbPno2wsDCsW7cOH330UY3trFy5EqtWrUKvXr0wYMAATJ48GQEBAVz62bNn0bVrV7Xturm54datWxAIBHBzc6vx+k8bN25EdHQ0LC0tYWJign379mHnzp1c+r179/Dxxx+rZdPJyQnXrl2DRCKBm5sbrl69WiPfKnjvvfe4r872798Pa2trHDlyhEs/fPgwnJ2dVbZnYWHB+6KuW7duMDMz4/aLi4vV6q1wd3fHunXrkJqaiqCgIMhkMmzfvp1L37ZtG1xdXVW2V280dMnSkNR2AAgRUXR0NP3tb3+jBQsW8MY4a4qTJ0/SvHnzKrW7VSU/P59+++03OnXqFP3xxx8a9U0TAzbOnj1LYrGYDA0NSSwW0++//07Ozs7Us2dP6t27N+np6VFwcLDK9gYNGvTWpsDRo0fJ3d1dZXs3btwga2trEgqF1KJFC4qLi6NevXqRRCIhW1tbMjIyqnLYbkPTpLq7GJpHEwM2kpOTIZfL4e7uDkdHR2RkZOCHH35AQUEBRo4ciUGDBqls6+HDhzAwMIBMJqsy/eeff4a+vj7GjRunss38/Hzcv38fLi4uMDU1RVFREQ4dOoTCwkLu23tto0kK+8aNG5VGTXl6eqJHjx4as+fh4YGePXtqzGegfPKBf/zjH1ixYoVW2mNoEQ37wlC/ZGRkUN++fUkgEJCDgwP17NmTevbsSQ4ODiQQCKhv375qvfJmZGRQnz59NGbvXURHR6v90UZ92tMmysrKePvXr1+n33//nUpKStS2pVQq6fHjx1RaWkpE5U24I0eO0P79+zXevNEUTUrYY8aMIQ8Pjyo/O7x//z55enqq9Zmlpu3FxMS8dQsODlZLiJq2R1QeGf7mm2+obdu21KNHD9q9ezcvXd3JGzRt7/nz59SnTx/S09Oj/v37U2ZmJo0cOZIb8OLs7KzWjCz3798nBwcHEgqF5OTkRI8fPyZ3d3cyMTEhY2Njat68ORc11yaalLBNTU0rfZ/7Ordu3SJTU9MGs/e2kWc1GRmnaXtEmp9uSdP2Jk+eTJ6envTvf/+bxo8fT56entSvXz969uwZPXnyhPr06UNz5sxR2Z6Pjw+NGjWK7ty5Q/PmzaMOHTqQj48PlZSUUFFREXl7e9OkSZNUtldfNClhW1tbv3Vk2cWLF9UabFAX9nbv3k3JyclVbqdPn1ZLiJq2R6T56ZY0be/1iRZevnxJAoGAF7U+f/48tWnTRmV7rw+gycvLqzSA5urVq9S6dWuV7dUXTUrYn332GTk4OFBISAg3rJKIKDs7m0JCQsjR0ZE+//zzBrM3dOhQWrVqVbXp0dHRatVemrZHpPnpljRt780BKiYmJpSQkMDtP3nyRK0ZVIyMjLiplojK39IqZskhIkpJSVF79F590KSEXVRURJ9++ik3w4lYLObNejJ79mxunHdt7AkEghrZCwkJoQMHDlSbnpmZqdZwTU3bI9L8dEuatte6dWvekM9FixZxQ2iJyguz5s2bq2yvbdu2vBp6x44dlJOTw+3L5XK1R+/VB02yuysnJwdyuZzXPeXu7q7y55pV2bt16xYyMjIAADY2NujevXuN7WkzM2fOBBFh9+7dldJSU1MxcOBAPH78GAqFokHs+fj4YPDgwZg7d26V6T/88ANCQkK4+eDfxaefforu3btj5syZVaavXbsWV65cwenTp1WyV180SWHXNYaGhoiJiUGHDh0a2hWN8+TJE9y/fx/Dhg2rMv358+cICwtTedYTTdt7Fzdu3ICxsbHGhoEmJSVBLBZDKpVqxJ6maHLCLiwshFwuh5WVFTp27MhLKyoqwtGjRzFlyhSVbM2fP7/K41u2bMGkSZNgbW0NANi8ebNK9qKiotCsWTNu1NSBAwewa9cupKSkwMHBAZ9//jkmTJigkq0Ktm/fjhs3buAvf/kLJkyYgAMHDiAoKAhKpRKjR4/GypUroa+vr5ZNRiOg4VoB9c+DBw+4wSNCoZD69+9PqampXLq6EViBQEBubm40cOBA3iYQCKhHjx40cOBAGjRokMr2OnfuTGFhYURE9OOPP5KRkRF9+eWXtHPnTpo3bx6ZmppW6ud9G6tWrSIzMzMaM2YMSSQSWrt2LVlbW9Pq1atpzZo11KJFC24yAnUoLi6m4OBgmjdvHk2YMIEmTJhA8+bNo6NHj6o1icHrPH36lPe1WAUlJSWVFmKoCTKZrEb9zU+fPuUNQrl8+TJ99NFH1LdvX/Lz86Nr167V2re6oEkJ29fXl0aOHEl//PEHJSQk0MiRI0kmk3FRT3WFHRQURDKZjM6fP887XpsJ/ivm2O7atSv985//5KUfOnSIOnbsqLK9tm3b0vHjx4moPGikp6dHBw8e5NJDQkLUmjyfqLw7qk2bNiQWi2nAgAE0btw4GjduHA0YMIDEYjE5OTnxotDv4vnz59SjRw8SCoWkp6dHkydP5glc3b/Jli1bqtz09PRoyZIl3L6q9OzZk+uOO3HiBAmFQho1ahQtWrSIPvzwQzIwMOB112kLTUrYLVu25NZ1IiofKvjpp59S69atKTExsUZL3ty4cYOcnZ1pwYIF3HDFmgrb2tqabt26xfn6+nfJRESPHj2qVVeNgYEBb0aV5ORktSeC8PLyIh8fH173XgXZ2dnk4+NDQ4cOVdnelClTqFevXnTz5k0KCwsjd3d36t69O2VmZhKR+gNUBAIBtWrVihwdHXmbQCAgOzs7cnR0JJlMprI9ExMT7su/Xr16VVoeaNu2bdS1a1eV7dUXTUrYZmZmVc7LNWfOHGrVqhVdvny5RmOnc3NzacqUKdS5c2eKjY2t8SeMkyZN4hbx++tf/0rLli3jpa9Zs0at5XNkMhmdOXOGiMpXwBAKhbwlb06fPk2Ojo5q+WhkZMRbqeNN7ty5o1bhY2try+ueqhjN5ebmRi9fvlS7sP3kk0/Izc2t0t+5poWthYUFxcTEEFF5YVvx/woePXqkduFYHzQpYffo0YN++umnKtPmzJlDlpaWtfoo4vDhw2RjY0NCobBGD1Fqaio5OjpS//79af78+WRkZER9+/alWbNmUf/+/cnQ0JBOnz6tsr1ly5ZRixYtaObMmSSTyWjx4sXUunVr2rlzJ+3atYvs7e3pq6++UstHqVT61lfPf//732otRGhiYlKp7VtaWkq+vr7UuXNnunPnjtp/k5CQELK3t6dt27Zxx2oq7FGjRtHixYuJqHz+szdf43/88Udq166d2nbrmiYl7DVr1tCIESOqTZ89e3aNlpV9nadPn9KJEycoLy+vRue/evWKFi1aRB07duQmIHBwcKCPPvqIbt68qZYthUJBgYGB9MEHH9CaNWtIqVTS4cOHyd7enqytrenjjz9W28/ly5dTs2bNaPPmzRQTE0Pp6emUnp5OMTExtHnzZrKysqKAgACV7XXq1KnKlUMqxN26desaFbbPnj2jwYMH0/DhwyktLa3Gwo6Pjydra2uaMmUKrVq1ikxNTWnSpEkUGBhIU6ZMIZFIRHv37lXbbl3TpITN0Axr164lqVTK9S5UfFAilUrVmgGUiGjhwoXVtslLS0tp1KhRNS5slUolrVmzhiQSCenp6dV4SZ5Hjx7RhAkTyMzMjPuIxsDAgDw9PenXX3+tkc26psn1YzM0R1JSEm/0XnWzlryNsrIyFBQUVDtKr6ysDKmpqTVeBQUA5HI5wsPDMWXKFDRr1qzGdogIL168gFKpRPPmzWFgYFBjW3VOAxcsDB0jJSWFpk2bxuw1MKzGZmiUmJgYdOvWTeWx3cxe3cDGEjLUorr1xSp4/Pgxs6cFsBqboRZCoRACgeCtc50LBAKVa7CmZq++aJILBjBqjlQqRUhICJRKZZVbVFQUs6cFMGEz1MLd3R1yubza9HfVbk3dXn3B2tgMtfjmm2+Qn59fbbqTkxMuXrzI7DUwrI3NYOgg7FWcwdBBmLAZDB2ECZvB0EGYsBkMHYQJm8HQQZiwdYiBAwdi3rx5De0Gh7b505RgwmbwKCkpaWgXGJqgIT4pY2ieqVOnEgDe9ujRI5o+fTo5OjqSWCwmZ2dn+v777yud5+PjQ6tXryapVMrNgXb16lXq0qULiUQicnd3p19//ZUAcAvUERHFxsbS8OHDycTEhFq2bEmTJk3ipuqtyp831+hi1B1M2DpCVlYWeXh40KxZsygtLY3S0tKoqKiIVqxYQTdv3qTHjx/TwYMHydjYmIKDg7nzpk6dSqampjR58mSKi4ujuLg4ys7OJisrK5o0aRLdvXuX/vOf/5CzszNP2K9evaIWLVrQkiVL6N69exQVFUVDhgzh5lGvyp83F6Nn1B1sSKmOYGFhAUNDQxgbG0MikXDHv/32W+7/MpkMEREROHr0KMaNG8cdNzExwb/+9S8YGhoCAHbt2gWBQIAff/wRYrEYHTt2RGpqKmbNmsWds337dnTt2hVr1qzhju3Zswf29vZ4+PAhnJ2dq/SHUT8wYes4P/zwA/bs2YOUlBQUFhaipKQEbm5uvDydOnXiRA0ADx48QOfOnSEWi7ljPXv25J0TExODixcvwtTUtNI1ExMT4ezsrNkbYagFE7YOc+TIEXz99dfYtGkTPDw8YGZmhg0bNiAyMpKXz8TERG3beXl58Pb2xrp16yqladsCdU0RJmwdwtDQkPfB/9WrV+Hp6YnPPvuMO5aYmPhOOy4uLjh48CCKi4shEokAADdv3uTl6datG44fPw5HR8dqF/V70x9G/cG6u3QIR0dHREZGIjk5GX/++SfatWuHW7du4dy5c3j48CGWL19eSaBV8dFHH0GpVMLf3x/37t3DuXPnsHHjRgDl3x8DwJw5c5CZmYmJEyfi5s2bSExMxLlz5zBt2jROzG/6o1Qq6+7mGTyYsHWIr7/+Gnp6eujYsSNatGiBYcOGYfTo0Rg/fjx69eqFly9f8mrv6jA3N8epU6cQHR0NNzc3LF26FCtWrAAArt1ta2uLq1evQqFQYOjQoejUqRPmzZsHS0tLCIXCKv1JSUmpu5tn8GDfYzNU4tChQ5g2bRqys7NhZGTU0O4w3gFrYzOq5KeffkKbNm1gZ2eHmJgYLFq0COPGjWOibiQwYTOqJD09HStWrEB6ejqkUin++te/IjAwsKHdYqgIexVnMHQQFjxjMHQQJmwGQwdhwmYwdBAmbAZDB2HCZjB0ECZsBkMHYcJmMHQQJmwGQwf5f7kBe3CQSEqWAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "y='[INSERT].AverageLatency(us)'\n",
+ "plot_variation(df_groups, max_pod_count, y)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQwAAAEGCAYAAACQF6v1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA75klEQVR4nO3dd1gU1/oH8O8ussDSRYRFaUoQG4LYwEQhFjQGRTBqLJhYuDFg9FpiuFFRY2+J0UQTryVFoyZBb9RoQowFFUVBEGwRBVGKGAsISN3394c/Jq6AzuJS9/08zz46c86+e2bZfXfmnDMzEiIiMMaYCNK6bgBjrOHghMEYE40TBmNMNE4YjDHROGEwxkTjhMEYE40TBmNMNE4YjDHROGEwxkSrVsLw9vaGRCKBRCJBfHy8hptUN1JTU4VtcnNzq9M2NJb3VIxnt/no0aOQSCR4+PBhnbarPrl69Sqsra3x6NEjjcTbuHEj/Pz8qvXcau9hTJo0CZmZmejQoUOFP3r5cvPmzStspJubG+bPny8sp6SkYNSoUbCxsYG+vj5atmyJIUOG4MqVK0Kd8i/ys4+dO3cC+OdDVv6wtLTEG2+8gcTExOc+v/wxf/582NraIjMzEzNmzHjhtu/evRtubm6Qy+Wwt7fHypUrK9T54osv0LZtWxgYGKBNmzb49ttvVcrfeecd+Pv7i3mrVTy7rVZWVggMDMSNGzfUjlXbKtvm8ve9Q4cO1Y7r7e2NadOmVfv58+fPr7MfCTHCwsIwZcoUGBsbayTe+PHjERcXh6ioKLWf26S6LyqXy2Ftbf3cOo8ePcKqVauwYMGCSstLSkrQr18/tGnTBhEREVAoFLh9+zYOHjxY4Rdm69atGDBggMo6MzMzleWrV6/CxMQEGRkZmDVrFgYNGoTk5GRkZmYKdXbt2oV58+bh6tWrwjojIyPo6OjA2toaRkZGz92mgwcPYvTo0Vi3bh369++Py5cvY9KkSTAwMEBoaCgAYMOGDQgLC8OmTZvQtWtXxMTEYNKkSTA3N692Zn/W1atXYWxsjGvXriE4OBh+fn64cOECdHR01I5VUlICXV1djbRLXeXvO6tcWloa9u/fj3Xr1mkspkwmw6hRo/D555/jtddeU+/JVA29e/emqVOnCsspKSkEgM6fP6+yPGvWLDIyMqI7d+4IdTt16kTh4eFERHT+/HkCQKmpqc99PQC0Z8+eKsuPHDlCAOjBgwfCul9++YUAUEJCgkrdrVu3kqmpaZWxwsPDqVOnTlWWv/322zRs2DCVdZ9//jm1bNmSlEolERF5enrSzJkzVepMnz6devbsKbwGAJXHkSNHhPft559/Jm9vbzIwMCBXV1c6derUc7d1+/btBICuXLlCRER79+4ld3d30tPTI0dHR5o/fz6VlJQI9QHQl19+SX5+fiSXy4W/xy+//EJdunQhPT09srCwIH9/f+E5hYWFNGPGDLKxsSG5XE7dunWjI0eOVHhfDx06RC4uLmRoaEi+vr6UkZEhapvLPzuVbV9UVBS9+uqrpK+vTy1btqQpU6ZQXl6eUP7s5/FZH374Ib3yyitkYGBAjo6ONGfOHCouLhba/Wy7tm7dSkREDx48oAkTJlCzZs3I2NiYfHx8KD4+Xohb/ln59ttvyd7enkxMTGjEiBGUm5sr1CkrK6Ply5dT69atSSaTka2tLS1atIiIiHx8fCgkJESlrdnZ2aSrq0t//PEHERGtXLmSunTpolKnss/op59+Svb29sLykSNHqGvXriSXy8nU1JS8vLxUvmfHjh0jmUxGBQUFVb5vlanRTs+3334bTk5OWLhwYaXllpaWkEql+Omnn1BWVqax183JyREOV2QymcbiAkBRURH09fVV1hkYGOD27du4efPmc+vExMSgpKQEM2fOxPDhwzFgwABkZmYiMzMTXl5eQt2PP/4YM2fORHx8PJydnfH222+jtLS0yjYZGBgAAIqLixEVFYWgoCBMnToVly5dwldffYVt27Zh8eLFKs+ZP38+hg4disTERIwfPx4HDhzA0KFD8cYbb+D8+fM4fPgwunXrJtQPDQ1FdHQ0du7ciQsXLuCtt97CgAEDcO3aNaFOQUEBVq1ahe+++w7Hjx9HWloaZs6cCQAv3OaqXL9+HQMGDEBgYCAuXLiAXbt24cSJE8LenBjGxsbYtm0bLl26hLVr12LTpk349NNPAQAjRozAjBkz0L59e6FdI0aMAAC89dZbyM7OxsGDBxEbG4vOnTujT58+uH//vkr79u7di/3792P//v04duwYli1bJpSHhYVh2bJlmDt3Li5duoQdO3bAysoKADBx4kTs2LEDRUVFQv3vv/8eLVq0wOuvvw4AiIqKQpcuXURvKwCUlpbC398fvXv3xoULFxAdHY3g4GBIJBKhTpcuXVBaWoozZ86oFbtG9zDOnz9Phw4dIl1dXUpOTiYi1T0MIqL169eTXC4XMvjChQvp+vXrKq8HgPT19cnQ0FDlcfPmTSL651epfD3+/5di8ODBFdr+snsYX331Fcnlcvrjjz+orKyMrl69Si4uLgRA2BMICwsja2trOnfuHCmVSjp79ixZWVkRAOEXd9y4cTRkyBCV2OXv23//+19h3cWLFwkAXb58WWVby3+BMzIyyMvLi1q0aEFFRUXUp08fWrJkiUrc7777jhQKhcr7OW3aNJU6np6eNHr06Eq3+ebNm6Sjo0Pp6ekq6/v06UNhYWFE9M8vdfnfmYjoiy++ICsrK2H5edtc1R7GhAkTKDg4WOU5UVFRJJVK6fHjx0T04j2MZ61cuZI8PDyE5cr+5lFRUWRiYkKFhYUq61u3bk1fffWV8Dy5XK6yRzFr1izq3r07ERHl5uaSnp4ebdq0qdJ2PH78mMzNzWnXrl3COldXV5o/f76w3KlTJ1q4cKHK8160h3Hv3j0CQEePHn3Ou0Bkbm5O27Zte26dZ9X4sKqvry9effVVzJ07t9LykJAQZGVlYfv27fD09MSPP/6I9u3bIzIyUqXep59+ivj4eJWHjY2NSp2oqCjExsZi27ZtcHZ2xsaNGzW+PZMmTUJoaCjefPNNyGQy9OjRAyNHjgQASKVP3s65c+di4MCB6NGjB3R1dTFkyBCMGzdOpc7zuLq6Cv9XKBQAgOzsbJU6LVu2hKGhIWxsbJCfn4+ff/4ZMpkMCQkJWLhwIYyMjIRHeQd1QUGB8Pxnf7Xi4+PRp0+fStuTmJiIsrIyODs7q8Q9duwYrl+/LtSTy+Vo3bq1Stufbbe6EhISsG3bNpXX9fX1hVKpREpKiqgYu3btQs+ePYU+qjlz5iAtLe2Fr5uXlwcLCwuV105JSVHZZgcHB5XOyKe3+fLlyygqKqryfdXX18fYsWOxZcsWAEBcXBySkpLwzjvvCHUeP35cYW/1RZo2bYp33nkHvr6+8PPzw9q1a1X68coZGBiofCbEqHanpzqWLVsGT09PzJo1q9JyY2Nj+Pn5wc/PD4sWLYKvry8WLVqEfv36CXWsra3h5OT03NdxdHSEmZkZ2rRpg+zsbIwYMQLHjx/X6LZIJBIsX74cS5YsQVZWFiwtLXH48GEAQKtWrQA8+UNs2bIFX331Fe7cuQOFQoGvv/4axsbGsLS0fOFrPN0BWb4bqVQqVepERUXBxMQEzZs3V/nA5uXlYcGCBQgICKgQ9+kPnqGhoUpZ+WFNZfLy8qCjo4PY2NgKnapPdxI/23EqkUhAL3l9pry8PPzrX//CBx98UKHMzs7uhc+Pjo7G6NGjsWDBAvj6+sLU1BQ7d+7E6tWrX/i6CoUCR48erVD2dGd7Zdtc/rd63ntabuLEiXBzc8Pt27exdetWvP7667C3txfKmzVrhgcPHqg8RyqVVnhfS0pKVJa3bt2KDz74AIcOHcKuXbswZ84cREZGokePHkKd+/fvi/o8Pq1WEka3bt0QEBCAjz766IV1JRIJXFxccOrUqZd6zZCQECxduhR79uzB0KFDXypWZXR0dNCiRQsAwA8//ABPT88Kb76uri5atmwJANi5cyfefPNNYQ9DJpO9VL9NeXJ8VufOnXH16tUXJtdnubq64vDhw3j33XcrlLm7u6OsrAzZ2dnq96o/pTrb3LlzZ1y6dEnt7Sl36tQp2Nvb4+OPPxbWlfc1Pa9dnTt3RlZWFpo0aQIHB4dqvfYrr7wCAwMDHD58GBMnTqy0TseOHdGlSxds2rQJO3bswPr161XK3d3dcenSJZV1lpaWyMrKAhEJPyiVzd1xd3eHu7s7wsLC4OnpiR07dggJ4/r16ygsLIS7u7ta21QrCQMAFi9ejPbt26NJk39eMj4+HuHh4Rg7dizatWsHmUyGY8eOYcuWLZg9e7bK8x8+fIisrCyVdcbGxhV+KcvJ5XJMmjQJ4eHh8Pf3V+nwUcf69euxZ88eYS/i77//xk8//QRvb28UFhZi69at+PHHH3Hs2DHhOX/99RdiYmLQvXt3PHjwAGvWrEFSUhK++eYboY6DgwN+++03XL16FRYWFjA1Na1W+541b948vPnmm7Czs8OwYcMglUqRkJCApKQkLFq0qMrnhYeHo0+fPmjdujVGjhyJ0tJS/Prrr5g9ezacnZ0xevRoBAUFYfXq1XB3d8fdu3dx+PBhuLq6YtCgQaLaVp1tnj17Nnr06IHQ0FBMnDgRhoaGuHTpEiIjI1W+XHfv3q3wpVEoFHjllVeQlpaGnTt3omvXrjhw4AD27NlToV0pKSmIj49Hy5YtYWxsjL59+8LT0xP+/v5YsWIFnJ2dkZGRIXQOi+mI1NfXx+zZs/Hhhx9CJpOhZ8+euHv3Li5evIgJEyYI9SZOnIjQ0FAYGhpW+HHz9fXFxIkTUVZWJuzdeXt74+7du1ixYgWGDRuGQ4cO4eDBgzAxMQHwZG7T119/jcGDB8PGxgZXr17FtWvXEBQUJMSNiopCq1atVA4hRVGrx+P/qdPp+bTg4GACIHR63r17lz744APq0KEDGRkZkbGxMXXs2JFWrVpFZWVlwvPwzLBX+WPp0qVEVPlQHBFRWloaNWnSRKVTSd1Oz/DwcJXhqrt371KPHj3I0NCQ5HI59enTh06fPq0S49KlS+Tm5kYGBgZkYmJCQ4YMEYY8y2VnZ1O/fv3IyMioyiFGoidDe+Xlz9vWpx06dIi8vLyE1+/WrRt9/fXXKu9nZcPUP//8M7m5uZFMJqNmzZpRQECAUFZcXEzz5s0jBwcH0tXVJYVCQUOHDqULFy4QUeXv6549e+jpj5iYba5s+2JiYoTnGRoakqurKy1evFgo7927d6Wfj08++YSInnREWlhYkJGREY0YMYI+/fRTlbYWFhZSYGAgmZmZqQyr5ubm0pQpU8jGxoZ0dXXJ1taWRo8eTWlpaUQkbnizrKyMFi1aRPb29qSrq0t2dnYVOqUfPXpEcrmc3n///Qp/k5KSErKxsaFDhw6prN+wYQPZ2tqSoaEhBQUF0eLFi4XXzcrKIn9/f1IoFCSTycje3p7mzZun8p3q37+/8P1Rh0YSRmPyolESxjQtJSWFpFIpxcbGVlq+fv166t+/v8ZeLykpiZo3b04PHz5U+7nVHiX58ssvYWRkJEy/bujS0tJgZGSEJUuW1HVTmJYoKSlBVlYW5syZgx49eqBz586V1vvXv/6FXr16aexckszMTHz77bfVOgyWEKnfjZ2eno7Hjx8DeNJTrenJUXWhtLQUqampAAA9PT3Y2trWbYNYo3f06FH4+PjA2dkZP/30Ezp27FjXTXqhaiUMxph24uthMMZE44TBGBONEwZjTLRam7hV25RKJTIyMmBsbFztSVuMVRcR4dGjR7CxsRF1/lBD0WgTRkZGBo90sDp369Yt4fSAxqDRJozyE7Ju3bolTJllrLbk5ubC1tZWY5fVqy8abcIoPwwxMTHhhMHqTGM7HG48B1eMsRrHCYMxJlqjPSR5noKCAuE2BoUlZbj9oAAtzeXQ19WBi4sL5HJ5HbeQsfpJKxPGlStX4OHhUWlZ+cVeGxNOkExTtDJhuLi4IDY2FgCQnP0IU3fGY+1INzg1N4aLi0sdt07ztC1BspqjlQlDLpcLXxJZeg70juahXUc3dGihmate1TfaliBZzdHKhKFttC1BsprDCUMDuI+AaQtOGBrAfQRMW3DC0ADuI2DaghOGBnAfAdMWnDAYewHuo/oHJwzGXoD7qP7BCYOxF+A+qn9wwmDsBbiP6h98tipjTDTew2CNDndS1hxOGKzR4U7KmsMJgzU63ElZczhhsEaHOylrDnd6MsZE44TBGBONEwZjTDS1E8bx48fh5+cHGxsbSCQS7N27V6V8/vz5cHFxgaGhIczNzdG3b1+cOXNGpc79+/cxevRomJiYwMzMDBMmTEBeXp5KnQsXLuC1116Dvr4+bG1tsWLFCvW3jtWIgoICxMXFIS4uDqfOnMXuQ8dw6sxZxMXFoaCgoK6bx2qQ2p2e+fn56NSpE8aPH4+AgIAK5c7Ozli/fj1atWqFx48f49NPP0X//v2RnJwMS0tLAMDo0aORmZmJyMhIlJSU4N1330VwcDB27NgB4Mldo/r374++ffti48aNSExMxPjx42FmZobg4OCX3GTNSvk7H/lFpcJycnaeyr/lDPWawLGZYa22rabwsKX2UjthDBw4EAMHDqyyfNSoUSrLa9aswebNm3HhwgX06dMHly9fxqFDh3D27Fl06dIFALBu3Tq88cYbWLVqFWxsbLB9+3YUFxdjy5YtkMlkaN++PeLj47FmzZoqE0ZRURGKioqE5dzcXHU3TW0pf+fDZ9XRSsum7YqvsO7ITO9GkTR42FJ71eiwanFxMb7++muYmpqiU6dOAIDo6GiYmZkJyQIA+vbtC6lUijNnzmDo0KGIjo5Gr169IJPJhDq+vr5Yvnw5Hjx4AHNz8wqvtXTpUixYsKAmN6eC8j2Lz0a4wam5EYDymYWP0dLcAPq6OgCe7G1M2xWvsifSkPGwpfaqkYSxf/9+jBw5EgUFBVAoFIiMjESzZs0AAFlZWWjevLlqI5o0QdOmTZGVlSXUcXR0VKljZWUllFWWMMLCwjB9+nRhufxmuLXBqbmRypeli0OtvCxjta5GEoaPjw/i4+Px999/Y9OmTRg+fDjOnDlTIVFokp6eHvT09GosPmOshoZVDQ0N4eTkhB49emDz5s1o0qQJNm/eDACwtrZGdna2Sv3S0lLcv38f1tbWQp07d+6o1ClfLq/DGKt9tTIPQ6lUCh2Snp6eePjwodBpBgB//vknlEolunfvLtQ5fvw4SkpKhDqRkZFo06ZNpYcjjLHaoXbCyMvLQ3x8POLj4wEAKSkpiI+PR1paGvLz8/Gf//wHp0+fxs2bNxEbG4vx48cjPT0db731FgCgbdu2GDBgACZNmoSYmBicPHkSoaGhGDlyJGxsbAA8GWmRyWSYMGECLl68iF27dmHt2rUqfRSMsdqndh/GuXPn4OPjIyyXf4nHjRuHjRs34sqVK/jmm2/w999/w8LCAl27dkVUVBTat28vPGf79u0IDQ1Fnz59IJVKERgYiM8//1woNzU1xe+//46QkBB4eHigWbNmmDdvXr2bg8GYtlE7YXh7e4OIqiyPiIh4YYymTZsKk7Sq4urqiqioKHWbxxirQXwuCWNMNE4YjDHR+AI6jZw2nuvCag4njEZMW891YTWHE0Yjpq3nurCawwlDC/C5LkxTuNOTMSYa72GwRoU7eWsWJ4yXUFRWCKl+OlJyr0Kqb1RlvZTcPEj101FUVgiArxlRU7iTt+ZxwngJGfk3Yei4Dv+JeXFdQ0cgI98NHrCq+YZpKe7krXmcMF6CjaE98lOmYO0IN7RuXvUexvXsPEzdFQ8bH/tabJ324k7emsMJ4yXo6ehDWdgCjiZt0M6i6kMNZWEOlIV3oaejX4utY0zzeJSEMSYa72GwOldQUIArV64AKO9zKEBLczn0dXXg4uICuVxexy1k5ThhsDpXn+9zwsO0qjhhMLXUxBdIU/c50fQwNw/TVsQJg4lWU18gTd3nRNPD3DxMWxEnDCZaff8C1dQwNw/T/oMTRj2kqU7AmpqJqskvkCYPcXiYu+ZxwqiHNNUJWN9nonIfQcOjdQmjIfR6a6oTsL7PRK3vhzisIq1KGA3lF01TnYANZRed+wgaDq1KGPyLxtjL0aqEUU5Tv2iPS8oAAEnpOcK6qhIQY42BViYMTbn+/4ngo4hEUfUN9fjtZg0bf4JfQv/2T+4k37q5EQyeOZx5+rAH0J6pw+rgCxA1PJwwXkJTQxlGdrOrtOzZwx5WUX0f9mUVccJgdaa+D/uyijhhsDrTUIZ92T84YdQzDWFiGdNenDDqkYYysay+4mHumscJox7hiWUvh4e5a55WvWMNZRiPp0pXDw9z1zy1E8bx48excuVKxMbGIjMzE3v27IG/vz8AoKSkBHPmzMGvv/6KGzduwNTUFH379sWyZctgY2MjxLh//z6mTJmCffv2QSqVIjAwEGvXroWR0T9/0AsXLiAkJARnz56FpaUlpkyZgg8//PClNpaH8Ro3HuaueWonjPz8fHTq1Anjx49HQECASllBQQHi4uIwd+5cdOrUCQ8ePMDUqVMxePBgnDt3Tqg3evRoZGZmIjIyEiUlJXj33XcRHByMHTt2AAByc3PRv39/9O3bFxs3bkRiYiLGjx8PMzMzBAcHV3tjeRiPsZejdsIYOHAgBg4cWGmZqakpIiMjVdatX78e3bp1Q1paGuzs7HD58mUcOnQIZ8+eRZcuXQAA69atwxtvvIFVq1bBxsYG27dvR3FxMbZs2QKZTIb27dsjPj4ea9asqTJhFBUVoaioSFjOzc2tUEfbhvG4E5BpWo33YeTk5EAikcDMzAwAEB0dDTMzMyFZAEDfvn0hlUpx5swZDB06FNHR0ejVqxdkMplQx9fXF8uXL8eDBw9gbm5e4XWWLl2KBQsW1PTmNCjcCfhyGkqfV22q0U9IYWEhZs+ejbfffhsmJiYAgKysLDRv3ly1EU2aoGnTpsjKyhLqODo6qtSxsrISyipLGGFhYZg+fbqwnJubC1tbW41uT0PDnYAvh/u8KqqxhFFSUoLhw4eDiLBhw4aaehmBnp4e9PT0avx1GhLuBHw53OdVUY0kjPJkcfPmTfz555/C3gUAWFtbIzs7W6V+aWkp7t+/D2tra6HOnTt3VOqUL5fXYbVP23bRta3PSwyNJ4zyZHHt2jUcOXIEFhYWKuWenp54+PAhYmNjhQvd/vnnn1AqlejevbtQ5+OPP0ZJSQl0dXUBAJGRkWjTpk2lhyOsdmh6F507ZRsetRNGXl4ekpOTheWUlBTEx8ejadOmUCgUGDZsGOLi4rB//36UlZUJ/RJNmzaFTCZD27ZtMWDAAEyaNAkbN25ESUkJQkNDMXLkSGGuxqhRo7BgwQJMmDABs2fPRlJSEtauXYtPP/1UQ5vNqkPTu+jcKdvwqP0XOHfuHHx8fITl8o7GcePGYf78+fjll18AAG5ubirPO3LkCLy9vQEA27dvR2hoKPr06SNM3Pr888+Fuqampvj9998REhICDw8PNGvWDPPmzXupORjs5Wl6F507ZRsetROGt7c3iKjK8ueVlWvatKkwSasqrq6uiIqKUrd5rAGp752yfMhUEe/jMVYFPmSqqPFvIWPVxIdMFXHCYKwK9f2QqS5I67oBjLGGg/cw6pGamhj19N3gk7MfoSgrGZcSjVB8x1itu8FzJyDjhFGP1NS5C5XdDX7EN0/+Vedu8NwJyPgvWo/U1LkLT98N/skeQQFamsuhr6uj1t3guROQccKoR2rq3IWn7wb/MrgTkHHCYHVOU30srOZxwmB1TlN9LKzmccJgdU5TfSys5nHCYHVOU30srOZxwmCNDveJ1BxOGKzR4T6RmsMJgzU6mu4T4T2Wf3DCYI2OpvtEeI/lH5ww6hE+V6N+4lGcf3DCqEcayrka2raLzqM4/+CEoQGa+gI1lHM1eBdde3HC0ABNfYEayrkavIuuvThhaIC2fYF4F117ccLQAP4CMW3Bl+hjjInGCYMxJhonDMaYaJwwGGOiccJgjImmVaMkPPWasZejVQmjoUy9Zqy+0qpvREOZes1YfaVVCaOhTL1mrL7iTk/GmGicMBhjoqmdMI4fPw4/Pz/Y2NhAIpFg7969KuURERHo378/LCwsIJFIEB8fXyFGYWEhQkJCYGFhASMjIwQGBuLOnTsqddLS0jBo0CDI5XI0b94cs2bNQmlpqbrNbZAKCgoQFxeHuLg4XEqM///T5eMRFxeHgoKCum4e02Jq92Hk5+ejU6dOGD9+PAICAiotf/XVVzF8+HBMmjSp0hj//ve/ceDAAfz4448wNTVFaGgoAgICcPLkSQBAWVkZBg0aBGtra5w6dQqZmZkICgqCrq4ulixZom6TGxy+3gSrt+glAKA9e/ZUWpaSkkIA6Pz58yrrHz58SLq6uvTjjz8K6y5fvkwAKDo6moiIfv31V5JKpZSVlSXU2bBhA5mYmFBRUVGlr1dYWEg5OTnC49atWwSAcnJynrsNibcfkv3s/ZR4+6GILa4d+fn5FBsbS7GxsXTydAztOniUTp6OodjYWMrPz6/r5jERcnJyRH3+GppaHyWJjY1FSUkJ+vbtK6xzcXGBnZ0doqOj0aNHD0RHR6Njx46wsrIS6vj6+mLy5Mm4ePEi3N3dK8RdunQpFixYUCvbUNP4dHlWX9V6p2dWVhZkMhnMzMxU1ltZWSErK0uo83SyKC8vL6tMWFgYcnJyhMetW7c033jGtFyjmYehp6cHPT29um4GY41are9hWFtbo7i4GA8fPlRZf+fOHVhbWwt1nh01KV8ur8MYq321njA8PDygq6uLw4cPC+uuXr2KtLQ0eHp6AgA8PT2RmJiI7OxsoU5kZCRMTEzQrl272m4yY+z/qX1IkpeXh+TkZGE5JSUF8fHxaNq0Kezs7HD//n2kpaUhIyMDwJNkADzZM7C2toapqSkmTJiA6dOno2nTpjAxMcGUKVPg6emJHj16AAD69++Pdu3aYezYsVixYgWysrIwZ84chISE8GEHY3VJ3WGVI0eOEIAKj3HjxhER0datWystDw8PF2I8fvyY3n//fTI3Nye5XE5Dhw6lzMxMlddJTU2lgQMHkoGBATVr1oxmzJhBJSUlotspdlirPg6rsoavsQ6rSoiI6iZV1azc3FyYmpoiJycHJiYmVdZLSs/Bm+tOYP+UV/nkM6YxYj9/DQ2fS8IYE40TBmNMNE4YjDHROGEwxkTjhMEYE40TBmNMNE4YjDHROGEwxkTjhMEYE40TBmNMNE4YjDHROGEwxkTjhMEYE63RXKKPsZpWVlaGqKgoZGZmQqFQ4LXXXoOOjk5dN6tW8R4GYyJERETAyckJPj4+GDVqFHx8fODk5ISIiIi6blqt4oTB2AtERERg2LBh6NixI6Kjo/Ho0SPhVhjDhg3TqqShlRfQKSgowJUrVwAAydmPMHVnPNaOdINTc2O4uLhALpfXRZNZPVRWVgYnJyd07NgRe/fuhVT6z2+sUqmEv78/kpKScO3aNZXDk8Z6AR2t7MPgWxEysaKiopCamooffvhBJVkAgFQqRVhYGLy8vBAVFQVvb++6aWQt0sqE4eLigtjYWABAYUkZbj8oQEtzOfR1deDi4lLHrWP1SWZmJgCgQ4cOlZaXry+v19hpZcLgWxEysRQKBQAgKSlJuKr905KSklTqNXbc6cnYc7z22mtwcHDAkiVLoFQqVcqUSiWWLl0KR0dHvPbaa3XUwtrFCYOx59DR0cHq1auxf/9++Pv7q4yS+Pv7Y//+/Vi1apXWzMfQykMSxtQREBCAn376CTNmzICXl5ew3tHRET/99BMCAgLqsHW1SyuHVRmrDnVmejbWz1+j3cMoz4O5ubl13BLWmDzdWZ6fn19lvfLPXWP7PW60CePRo0cAAFtb2zpuCdNmjx49gqlp47mjXqM9JFEqlcjIyICxsTEkEkmV9XJzc2Fra4tbt25pZNeR43E84MmexaNHj2BjY1NhwldD1mj3MKRSKVq2bCm6vomJiUaPNTkex2tMexblGk/qY4zVOE4YjDHRtD5h6OnpITw8HHp6ehyP49V6vIam0XZ6MsY0T+v3MBhj4nHCYIyJxgmDMSYaJwzGmGicMBhjonHCAHDnzh1kZWVpJNa1a9dw+PBhJCcnayQeACxYsAB///23xuIxVl1alTDu37+PYcOGwc7ODpMnT0ZZWRkmTpwIhUKBFi1awMvLS61rMy5duhSHDx8GADx48AB9+/ZFmzZt0K9fP7Rp0wYDBw7Ew4cPRcfLzc2t8MjJycHixYtx48YNYZ1YJSUl+PDDD+Hk5IRu3bphy5YtKuV37typtxd+0WQSB4DS0lKNxQKAbdu2IScnR6MxGwTSIuPHj6cOHTrQunXrqHfv3jRkyBBydXWlEydO0KlTp6hr164UFBQkOl7Lli0pLi6OiIgmTpxI7u7uFBcXR48fP6b4+Hjq0aMHTZgwQXQ8qVRa6UMikaj8K1Z4eDhZWVnRypUr6eOPPyZTU1MKDg4WyrOyskgikYiOV+7ixYs0efJkcnNzI2tra7K2tiY3NzeaPHkyXbx4Ua1Y9+7do8DAQLK1taX33nuPSktLacKECcK2enp6UkZGhuh4Bw8epAsXLhARUVlZGS1cuJBsbGxIKpVSixYtaOnSpaRUKtVqY2V0dXXp0qVLLx2nodGqhKFQKOjkyZNE9M+X5ffffxfKT5w4QS1atBAdT09Pj1JTU4mIyMHBgY4dO6ZSfu7cOVIoFKLjtWjRggYNGkR//vknHT16lI4ePUpHjhwhHR0d2rp1q7BOLCcnJ9q3b5+wfO3aNXJycqJ33nmHlEolZWVlqZWAiIh+/fVXkslk1KNHDwoPD6cvv/ySvvzySwoPDycvLy/S09OjQ4cOiY6n6STepk0bOn78OBERLVmyhCwsLGjNmjV08OBB+uyzz8jKyoqWLVsmOp65uXmlD4lEQqampsKyttCqhCGXy4UvONGTX4nExERh+caNG2RoaCg6nrOzM+3fv5+IiBwdHYVkVO78+fNkYmIiOt69e/fI39+ffHx86Pbt28L6Jk2aqP3LTURkYGBAKSkpKutu375Nzs7ONHr0aEpPT1c7Ybi6utLcuXOrLA8PD6eOHTuKjlcTSfzmzZtERNShQwfavXu3Svn+/fvJyclJdDwjIyMaNGgQbdu2TXhs3bqVdHR0aPHixcI6baFVCaNTp060fv16InryS2lsbEyrV68Wyjds2EAdOnQQHW/lypXUtm1bunbtGq1evZo8PT0pOTmZiJ4kH29vbxo2bJja7fzyyy/JxsaGduzYQUTVTxiOjo70xx9/VFifnp5Ozs7O1K9fP7UThr6+Pl25cqXK8itXrpC+vr7oeJpO4gqFgqKjo4mIyMrKSjhkLPfXX3+RgYGB6HjXrl0T9nIePXokrK/u36Sh06qE8f3335OOjg45OTmRnp4e/fjjj2RjY0PDhw+nkSNHkkwmExKKWFOmTCFdXV1ycXEhfX19kkqlJJPJSCqVUpcuXSgzM7Nabb148SJ16tSJ3n777Wp/OCdMmEDjx4+vtOz27dvk5OSkdsJwcXFRSbLPWr16NbVp00Z0PE0n8ffff5/efPNNKi0tpeDgYJo4caJKn8WUKVPI09NTdDwiopKSEvrwww+pdevWdOLECSLihKE1Tpw4QatWrRJ2gy9evEhjx46lwMDAau9aXrp0iVasWEHvvfceBQcHU3h4OP3+++8v3blWVFRE//73v8nNzY1u3Lih9vNTU1Of25+Qnp6u9jbv3r2bmjRpQn5+frR27VrauXMn7dy5k9auXUuDBw8mmUxGP/30k+h4mk7iDx8+pC5dupCTkxONHTuW9PX1yd7envr160eOjo5kampKp0+fVmubyx0+fJjs7OwoLCyMdHV1tTJh8NmqTG2nTp3C559/jujoaGHo09raGp6enpg6dSo8PT3Vinfy5EmcPn0anp6e8PLywqVLl7Bs2TIUFBTAz88P48aNUyteSUkJNm/ejH379uHGjRtQKpVQKBTo2bMnJk+erNaV2J517949TJo0CUeOHMHp06fRpk2basdqiDhh4MnEqJCQEDRr1qxaz8/Pz0dsbCwyMzMhlUrRqlUrdO7c+bnXElXH66+/jq1bt8Le3r5az//zzz9x4sQJlfYNHjwYr7zyikbax7SHViWMyiY9EREsLS1x4sQJ4UbMYq/9qFQq8dFHH2H9+vUoKioS4gGAnZ0d1q1bBz8/P9Ht++WXXypdHxAQgLVr1wpXQB88eLCoeNnZ2fDz88O5c+cglUqhVCrh7u6O9PR03L17F9OnT8eKFStEt+95tm3bhqFDh1b7OpZlZWUqk8hiYmKE9mriYjVEBKVSWa2JamVlZbh58yYcHBwglUpRVFSE//3vf1AqlfDx8YGVldVLt6/BqLODoTqg6YlRs2fPprZt29K+ffsoMjKSevXqRcuXL6fLly/T3LlzSU9Pj3777TfR8Z5uR1UPddo3YsQI8vf3p5ycHCosLKTQ0FBhTsPhw4fJwsKCPvvsM9Hxnqe6E5lSU1PJw8ODdHR0aMCAAZSTk0N9+/YVttfR0ZGuXr0qOl5JSQl9/PHH1KtXL5o3bx4REa1YsYLkcjnJZDIKCgqioqIi0fESEhJIoVCQVCqlDh06UFpaGnXo0IEMDQ3JyMiIzM3NKSYmRu3tbqi0KmFoemKUQqEQJgkRPRl5MDIyosLCQiIiWrhwoVo98gMGDKBBgwbRnTt3VNZXt0fexMSEkpKShOW8vDzS1dWlnJwcIiL67rvv1BrRINL8RKbAwEDq3bs37du3j4YPH049e/Ykb29vun37NmVkZJCvry/5+/uLjjdnzhyysrKi6dOnU7t27ei9994jW1tb+v777+mbb76hFi1a0PLly0XH8/X1pWHDhlFiYiJNnTqV2rZtS2+99RYVFxdTSUkJjRkzhvr27Ss6XkOnVQlD0xOjjI2N6fr168JyWVkZNWnSRBhKvXjxIsnlcrVirlmzhmxtbVVmaFa3fZaWlirPKygoIKlUSvfu3SMiouvXr5Oenp5aMTU9kcnS0pLOnz9PRE9GOCQSCUVFRQnlsbGxZGVlJTpeq1athPfu2rVrJJVKaefOnUL5rl271BqmNTc3F/acCgoKSEdHh86cOSOUJyUlkYWFheh4DZ1WJYxympoY5eXlRYsWLRKWf/jhBzIzMxOWExMTqzVt+Pz589SuXTsKDg6m/Pz8ardv6NChFBgYSHl5eVRcXEzTpk1TmeV4+vRpsra2ViumpicyGRsbC0PG5Qk3Pj5e5fWMjY1Fx9PX16e0tDSV5cuXLwvLN27cUCuemZkZ/fXXX0REVFxcTDo6OhQbGyuUX758WaumhmvV2arlJk+ejMjISCxfvhyjRo2qdpyFCxfik08+Qffu3dG7d2+MHTsW4eHhQvmhQ4fg7u6udlw3NzecO3cOEokEbm5u1b4/56pVqxAfHw8zMzMYGhpi27Zt2LBhg1B++fJlvPPOO2rFdHJywqlTp2BtbQ03NzecPHmyWm0r1759e+Es2m+++QYWFhbYuXOnUP7DDz/A2dlZdDxTU1OVM4Q7d+4MY2NjYbmoqEit0SsPDw8sX74c6enpWLp0KRwdHbF+/XqhfN26dejQoYPoeA1eXWesuvSyE6OIiOLj4+k///kPzZgxQ+UcCE353//+R9OmTavQryFWfn4+/f7777Rv3z66e/euRtumiYlMhw4dIn19fZLJZKSvr0/Hjh0jZ2dn6tatG/Xo0YN0dHRo165douP5+Pg895Bo9+7d5OHhITpeTEwMWVhYkFQqJUtLS0pKSqLu3buTtbU12djYkIGBQaXT7xsrrRpWZZqniYlMqampiI2NhYeHBxwcHHDnzh188cUXKCgowKBBg+Dj4yM61l9//QVdXV04OjpWWr5jxw40adIEw4cPFx0zPz8fV65cQZs2bWBkZITCwkJs374djx8/Fq59oi20MmHExMRUmKXo5eWFrl27aiyep6cnunXrprE2A08uKvPVV19h3rx59TIea/y0KmFkZ2cjMDAQJ0+ehJ2dnTDh5s6dO0hLS0PPnj3x888/o3nz5qLjBQQE4NSpUxqJ9yIJCQno3LkzysrK6mW8+uTZiWBnzpxBUVERPD09oaurq1YsIkJqaipsbW3RpEkTFBcXY8+ePSgqKsIbb7xR7RnCDVIdHg7VusDAQPL09Kz09OwrV66Ql5eXWqejazpeQkLCcx+7du1Sa+KWpuMRPRkpmDVrFrVu3Zq6du1KmzdvVilX96I8mo6XkZFBPXv2JB0dHerVqxfdv3+fBg0aJEwEc3Z2VusKXleuXCF7e3uSSqXk5OREN27cIA8PDzI0NCS5XE7NmjUTRlG0gVYlDCMjowrXR3jauXPnyMjIqM7iPW+mZ3Vmomo6HpHmL/un6Xhjx44lLy8v+uWXX2jEiBHk5eVFr732Gt2+fZtu3rxJPXv2pJCQENHxhgwZQoMHD6YLFy7QtGnTqG3btjRkyBAqLi6mwsJC8vPzozFjxoiO19BpVcKwsLB47kzOI0eOqDUJpybibd68mVJTUyt9HDhwQK0vuKbjEWn+sn+ajvf0BXTu3btHEolEZRTj8OHD1KpVK9Hxnp5YlpeXV2Fi2cmTJ8nOzk50vIZOqxLG+++/T/b29hQRESFMjyYiysnJoYiICHJwcKDQ0NA6i9e/f3/65JNPqiyPj49X69dW0/GINH/ZP03He3bilqGhIV27dk1YvnnzplpX3DIwMBAu+Uf0ZK+y/KpqRERpaWlqz5ZtyLQqYRQWFtJ7770nXBFLX19f5SpZkydPFs4DeZl4EomkWvEiIiLou+++q7L8/v37ak271nQ8Is1f9k/T8ezs7FSmbs+ePVuYCk/0JEk2a9ZMdLzWrVur7FF8+eWXlJubKyzHxsaqPVu2IdOqUZJyubm5iI2NVRkG9fDwEH1ae2Xxzp07hzt37gAArKys0KVLl2rHq88mTpwIIsLmzZsrlKWnp8Pb2xs3btwQPfKi6XhDhgzB66+/jqlTp1Za/sUXXyAiIkK4n8yLvPfee+jSpQsmTpxYafmyZcsQFRWFAwcOiIrX0GllwqhpMpkMCQkJaNu2bV03ReNu3ryJK1euwNfXt9LyjIwMREZGir5KlqbjvUhMTAzkcrnGpnOnpKRAX18fCoVCI/HqO61LGI8fP0ZsbCyaNm2Kdu3aqZQVFhZi9+7dCAoKEhVr+vTpla5fu3YtxowZAwsLCwDAmjVrRMWLi4uDubm5MEvxu+++w8aNG5GWlgZ7e3uEhoZi5MiRomKVW79+PWJiYvDGG29g5MiR+O6777B06VIolUoEBARg4cKFaNKkiVoxmRaru6Oh2nf16lWyt7cXhhN79epF6enpQrm6PfISiYTc3NzI29tb5SGRSKhr167k7e1NPj4+ouO5urpSZGQkERFt2rSJDAwM6IMPPqANGzbQtGnTyMjIqMI8hef55JNPyNjYmAIDA8na2pqWLVtGFhYWtGjRIlqyZAlZWloKF5lRR1FREe3atYumTZtGI0eOpJEjR9K0adNo9+7dal2c5mm3bt1SOfu1XHFxcYUbRFWHo6NjteZL3Lp1S+UcnOPHj9OoUaPo1VdfpdGjR9OpU6deum0NiVYlDH9/fxo0aBDdvXuXrl27RoMGDSJHR0ehF1zdhLF06VJydHSkw4cPq6x/mRsPld+jw93dnb7++muV8u3bt1O7du1Ex2vdujX9/PPPRPSks09HR4e+//57oTwiIkKtm/oQPRn2bNWqFenr61Pv3r1p+PDhNHz4cOrduzfp6+uTk5OTyqjEi2RkZFDXrl1JKpWSjo4OjR07ViVxqPs3Wbt2baUPHR0dCgsLE5bF6tatmzDsu3fvXpJKpTR48GCaPXs2DR06lHR1dVWGhRs7rUoYzZs3F+67SUSkVCrpvffeIzs7O7p+/Xq1bh0YExNDzs7ONGPGDCouLiai6icMCwsLOnfunNDWp68LQUSUnJz8UkOCurq6KlfgSk1NVfsCP3379qUhQ4aoDCOXy8nJoSFDhlD//v1FxwsKCqLu3bvT2bNnKTIykjw8PKhLly50//59IlJ/4pZEIqGWLVuSg4ODykMikVCLFi3IwcGBHB0dRcczNDQUzmTu3r17hdssrlu3jtzd3UXHa+i0KmEYGxtXet3JkJAQatmyJR0/flzthEFE9OjRIwoKCiJXV1dKTEys9qneY8aMEW7e/NZbb9GcOXNUypcsWaLWbQgdHR3p4MGDRPTkjl9SqVTl1oEHDhwgBwcHtdpoYGCgcmeyZ124cEGtpGZjY6MyDFo+e9LNzY3u3bundhL/17/+RW5ubhX+ztVN4qamppSQkEBET5J4+f/LJScnq510GzKtShhdu3alb7/9ttKykJAQMjMzq1bCKPfDDz+QlZUVSaXSan0409PTycHBgXr16kXTp08nAwMDevXVV2nSpEnUq1cvkslkdODAAdHx5syZQ5aWljRx4kRydHSkjz76iOzs7GjDhg20ceNGsrW1pX//+99qtVGhUDx3F/yXX35R6wbUhoaGFfoWSkpKyN/fn1xdXenChQtq/00iIiLI1taW1q1bJ6yrbsIYPHgwffTRR0T05Pqezx7ObNq0iV555RW14zZUWpUwlixZQgMHDqyyfPLkyWrPfHzWrVu3aO/evZSXl1et5z948IBmz55N7dq1Ey4sY29vT6NGjaKzZ8+qFausrIwWL15Mb775Ji1ZsoSUSiX98MMPZGtrSxYWFvTOO++o3c65c+eSubk5rVmzhhISEigrK4uysrIoISGB1qxZQ02bNqXw8HDR8Tp27FjpndLKk4adnV21kvjt27fp9ddfpwEDBlBmZma1E8alS5fIwsKCgoKC6JNPPiEjIyMaM2YMLV68mIKCgkhPT4+2bt2qdtyGSqsSBtOMZcuWkUKhEEabyk9kUygUal2Rm4joww8/rLLPo6SkhAYPHlztJK5UKmnJkiVkbW1NOjo61b61YXJyMo0cOZKMjY2Fk/d0dXXJy8uL9uzZU62YDZXWzcNgmpOSkqIyW7aqq1w9T2lpKQoKCqqcFVtaWor09PRq3/UNAGJjY3HixAkEBQXB3Ny82nGICNnZ2VAqlWjWrJna19VoFOo4YbFGJi0tjd59912O10jxHgbTqPp+VbD6Hq++4znBTC1V3f+13I0bNzheI8Z7GEwtUqkUEonkufdKkUgkon9xtS1eQ6eVNzJi1adQKBAREQGlUlnpIy4ujuM1YpwwmFo8PDwQGxtbZfmLfo21PV5Dx30YTC2zZs1Cfn5+leVOTk44cuQIx2ukuA+DMSYaH5IwxkTjhMEYE40TBmNMNE4YjDHROGEwxkTjhNGIeHt7Y9q0aXXdDEF9aw97eZwwmIri4uK6bgKrz+riFFmmeePGjSMAKo/k5GQaP348OTg4kL6+Pjk7O9Nnn31W4XlDhgyhRYsWkUKhEK7xefLkSerUqRPp6emRh4cH7dmzhwAINyYmIkpMTKQBAwaQoaEhNW/enMaMGSNckr+y9jx7D1XW8HDCaCQePnxInp6eNGnSJMrMzKTMzEwqLCykefPm0dmzZ+nGjRv0/fffk1wup127dgnPGzduHBkZGdHYsWMpKSmJkpKSKCcnh5o2bUpjxoyhixcv0q+//krOzs4qCePBgwdkaWlJYWFhdPnyZYqLi6N+/foJ92GprD2lpaV18dYwDeKp4Y2EqakpZDIZ5HI5rK2thfULFiwQ/u/o6Ijo6Gjs3r0bw4cPF9YbGhriv//9L2QyGQBg48aNkEgk2LRpE/T19dGuXTukp6dj0qRJwnPWr18Pd3d3LFmyRFi3ZcsW2Nra4q+//oKzs3Ol7WENGyeMRu6LL77Ali1bkJaWhsePH6O4uBhubm4qdTp27CgkCwC4evUqXF1doa+vL6zr1q2bynMSEhJw5MgRGBkZVXjN69evw9nZWbMbwuoFThiN2M6dOzFz5kysXr0anp6eMDY2xsqVK3HmzBmVeoaGhmrHzsvLg5+fH5YvX16hTFtuTKyNOGE0IjKZTOVCLidPnoSXlxfef/99Yd3169dfGKdNmzb4/vvvUVRUBD09PQDA2bNnVep07twZP//8MxwcHKq8mfOz7WENHw+rNiIODg44c+YMUlNT8ffff+OVV17BuXPn8Ntvv+Gvv/7C3LlzK3zxKzNq1CgolUoEBwfj8uXL+O2337Bq1SoAT67/AAAhISG4f/8+3n77bZw9exbXr1/Hb7/9hnfffVdIEs+2R6lU1tzGs1rBCaMRmTlzJnR0dNCuXTtYWlrC19cXAQEBGDFiBLp374579+6p7G1UxcTEBPv27UN8fDzc3Nzw8ccfY968eQAg9GvY2Njg5MmTKCsrQ//+/dGxY0dMmzYNZmZmkEqllbYnLS2t5jae1Qq+HgYTZfv27Xj33XeRk5MDAwODum4OqyPch8Eq9e2336JVq1Zo0aIFEhISMHv2bAwfPpyThZbjhMEqlZWVhXnz5iErKwsKhQJvvfUWFi9eXNfNYnWMD0kYY6JxpydjTDROGIwx0ThhMMZE44TBGBONEwZjTDROGIwx0ThhMMZE44TBGBPt/wABKJ18xOjXnQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "y='[INSERT].99thPercentileLatency(us)'\n",
+ "plot_variation(df_groups, max_pod_count, y)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQwAAAEGCAYAAACQF6v1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6kElEQVR4nO3dd1hUV/oH8O8MvSMIzCBVEeyiGM2ga4koJsZKLImKscBPg67ExLZGiEaxJrElmk0ilhjbrmYtq8YQKyoqBoKKRhBEulEBAanz/v5guXEE9A4OUub9PM88Ovfc+865A7xz5pxzz5UQEYExxkSQ1ncFGGONBycMxphonDAYY6JxwmCMicYJgzEmGicMxphonDAYY6JxwmCMicYJgzEmWq0SRt++fSGRSCCRSBATE6PhKtWP5ORk4Zw8PT3rpQ6nTp2CRCJBTk5Ovbx+fXj2nLdu3QpLS8t6rVNDExERgbZt26K8vFwj8ebPn4+ZM2fW6thatzACAgKQkZGBDh06CH9slcmj8rmtrS0eP36scpynpyc+/fRT4XlSUhLee+892Nvbw9DQEA4ODhg2bBhu3rwp7FP5h/zsY/fu3QD++qWrfNjY2OCtt95CXFzcc4+vfHz66adwdHRERkYGPvrooxee+969e+Hp6QljY2M4Oztj9erVKuXP1qfykZmZKezTt29fBAcHq/OWA6j4g6qMJ5VK4eDggEmTJiE7O1vtWK9adefs7e2NjIwMWFhY1Dqui4sL1q5dW+vj33//fQwfPrzWx9e1uXPn4pNPPoGOjo5G4n388cfYtm0b7ty5o/axurV9UWNjY8hksufu8/jxY6xZswaLFy+utry0tBQDBgyAh4cH9u/fD7lcjtTUVBw9erTKp2x4eDgGDRqksu3ZT6Jbt27B3Nwc6enpmDNnDgYPHoyEhARkZGQI++zZswchISG4deuWsM3U1BQ6OjqQyWQwNTV97jkdPXoU48aNw4YNGzBw4EDEx8cjICAARkZGmDFjRrX1qWRra/vc2GKZm5vj1q1bUCqViI2NxaRJk5Ceno7jx4/XKl5paSn09PQ0Ujd16evrv/D3SJudO3cOiYmJ8PPz01jM5s2bw9fXF5s2baryYfdCVAt9+vShWbNmCc+TkpIIAP32228qz+fMmUOmpqaUlZUl7Nu5c2cKDQ0lIqLffvuNAFBycvJzXw8AHThwoMbykydPEgB69OiRsO3gwYMEgGJjY1X2DQ8PJwsLixpjhYaGUufOnWssf/fdd+mdd95R2bZ+/XpycHAgpVJZY32eNnHiRAKg8khKShKO++WXX8jLy4uMjIxIoVDQzZs3n1v/ZcuWkVQqpcLCQiIi+vbbb6lNmzZkYGBAHh4e9NVXXwn7Vv5sdu/eTb179yYDAwMKDw8nIqLvv/+e2rVrR/r6+iSTySgoKEg47tGjRzRlyhRq3rw5mZmZUb9+/SgmJqbK+7Z9+3ZydnYmc3NzGjNmDOXl5Yk658r3qrrz++mnn6hLly5kYGBArq6u9Omnn1JpaalQ7uzsTF9++WW173VZWRlNnjyZXFxcyNDQkNzd3Wnt2rUq9X62XidPniQiopSUFBo1ahRZWFhQs2bNaOjQoZSUlKTycxw2bBitXr2aZDIZWVlZ0QcffEAlJSXCPkVFRTR37lxycHAgfX19atWqFX333XekVCqpVatWtHr1apX6Vv5N3L59m4iIgoKCqvy+Vb7u02bNmkV9+vQRnu/bt486dOhAhoaGZGVlRf3796f8/HyhfNu2beTg4FDte/Y8ddrp+e6778LNzQ1LliypttzGxgZSqRT/+te/NPb9DAByc3OFryv6+voaiwsAxcXFMDQ0VNlmZGSE1NRU3L17V2W7p6cn5HI5BgwYgMjISGH7unXroFAohK91GRkZcHR0FMoXLlyIzz//HFeuXIGuri4mT5783DoZGRlBqVSirKwMO3fuREhICJYtW4b4+HiEhYVh0aJF2LZtm8ox8+fPx6xZsxAfHy982gQFBSEwMBBxcXE4ePAg3NzchP1HjRqF7OxsHD16FNHR0ejatSv69++Phw8fCvskJibip59+wuHDh3H48GGcPn0aK1asEHXONTl79iz8/f0xa9Ys3LhxA9988w22bt2KZcuWvfBYAFAqlXBwcMC+fftw48YNhISE4B//+Af27t0LoKJ5Pnr0aAwaNEiol7e3N0pLS+Hr6wszMzOcPXsWkZGRMDU1xaBBg1BSUiLEP3nyJBITE3Hy5Els27YNW7duxdatW4Vyf39/7Nq1C+vXr0d8fDy++eYbmJqaQiKRYPLkyQgPD1epb3h4OHr37i2892fPnkW3bt1EnWuljIwMvPvuu5g8eTLi4+Nx6tQpjBw5EvTUhendu3dHamoqkpOT1Ypdpy2M3377jY4dO0Z6enqUkJBARKotDCKijRs3krGxsfCptWTJEkpMTFR5PQBkaGhIJiYmKo+7d+8S0V+f6JXb8b9PiqFDh1ap+8u2ML755hsyNjamX375hcrLy+nWrVvUpk0bAkDnz58nIqKbN2/S5s2b6cqVKxQZGUmTJk0iXV1dio6OrvE9fPo8fvnlF2HbkSNHCAA9efKk2vr/8ccf5O7uTt26dSMiolatWtGPP/6oEvezzz4jhUJBRH/9bJ7+lCUisre3p4ULF1Z7zmfPniVzc3MqKipS2d6qVSv65ptvhPfN2NhYaFEQEc2ZM4d69Ogh6pxramH079+fwsLCVI7ZsWMHyeVy4fnzWhjVCQoKIj8/P+F5dZ/YO3bsIA8PD6HVSERUXFxMRkZGdPz4ceE4Z2dnKisrE/YZNWoUjRkzhoiIbt26RQDoxIkT1dYjLS2NdHR0KCoqioiISkpKqHnz5rR161ZhHwsLC9q+fbvKcS9qYURHR7+w5Z6bm0sA6NSpUzXuU51a92GI5evri169emHRokX48ccfq5QHBQXB398fp06dwsWLF7Fv3z6EhYXh4MGDGDBggLDfl19+CR8fH5Vj7e3tVZ6fPXsWxsbGuHjxIsLCwrB582aNn09AQAASExPx9ttvo7S0FObm5pg1axY+/fRTSKUVDTYPDw94eHgIx3h7eyMxMRFffvklduzY8cLX6NSpk/B/uVwOAMjOzoaTkxOAihaUqakplEolioqK0KtXL3z33XcoKChAYmIipkyZgoCAACFGWVlZlU7Fpz+1srOzkZ6ejv79+1dbn9jYWOTn58Pa2lpl+5MnT5CYmCg8d3FxgZmZmUrdX7YzNjY2FpGRkSotivLychQVFaGwsBDGxsYvjPHVV19hy5YtSElJwZMnT1BSUvLCkbDY2FgkJCSonA8AFBUVqZxz+/btVToj5XK50NkeExMDHR0d9OnTp9rXsLe3x+DBg7FlyxZ0794dhw4dQnFxMUaNGiXs8+TJkyot2hfp3Lkz+vfvj44dO8LX1xcDBw7EO++8g2bNmgn7GBkZAQAKCwvVil3nCQMAVqxYAYVCgTlz5lRbbmZmhiFDhmDIkCFYunQpfH19sXTpUpWEIZPJVJrI1XF1dYWlpSU8PDyQnZ2NMWPG4MyZMxo9F4lEgpUrVyIsLAyZmZmwsbFBREQEAKBly5Y1Hte9e3ecO3dO1Gs83QEpkUgAVDStK5mZmeHq1auQSqWQy+XCDz8rKwsA8O2336JHjx4qMZ/tYTcxMRH+X3l8TfLz8yGXy3Hq1KkqZU93PD/bcSqRSFTqXRv5+flYvHgxRo4cWaVMzB/S7t278fHHH+Pzzz+HQqGAmZkZVq9ejaioqBe+rpeXF3bu3FmlzMbGRvj/8875Re8rAEydOhUTJkzAl19+ifDwcIwZM0YlCTZv3hyPHj1SOUYqlap8vQAqOq4r6ejo4MSJEzh//jx+/vlnbNiwAQsXLkRUVBRcXV0BQPgq+fS5iPFKEkb37t0xcuRIzJ8//4X7SiQStGnTBufPn3+p1wwKCsLy5ctx4MABjBgx4qViVUdHRwctWrQAAOzatQsKheK5b35MTIzQWgAq+lZq228jlUqrTZ52dnawt7fHnTt3MG7cONHxzMzM4OLigoiICPTr169KedeuXZGZmQldXV24uLjUqs5A7c65a9euuHXr1gs/LGoSGRkJb29vfPDBB8K2p1sINdWra9eu2LNnD2xtbVVGutTRsWNHKJVKnD59ukrruNJbb70FExMTbNq0CceOHavyAdelSxfcuHFDZZuNjQ2uXbumsi0mJqbKB03Pnj3Rs2dPhISEwNnZGQcOHMDs2bMBANeuXYOenh7at2+v1jm9koQBAMuWLUP79u2hq/vXS8bExCA0NBQTJkxAu3btoK+vj9OnT2PLli2YN2+eyvE5OTkq8xiAil/0pz8pn2ZsbIyAgACEhoZi+PDhwie1ujZu3IgDBw4IrYg///wT//rXv9C3b18UFRUhPDwc+/btw+nTp4Vj1q5dC1dXV7Rv3x5FRUX47rvv8Ouvv+Lnn38W9nFxcUFUVBSSk5NhamoKKyurWtXvWYsXL8bf//53WFhYYNCgQSguLsaVK1fw6NEj4ZelOp9++immTZsGW1tbvPnmm3j8+DEiIyMxc+ZM+Pj4QKFQYPjw4Vi1ahXc3d2Rnp6OI0eOYMSIEaI75WpzziEhIXj77bfh5OSEd955B1KpFLGxsbh27RqWLl0q7JeWllZlEqGzszNat26N7du34/jx43B1dcWOHTtw+fJl4ZO2sl7Hjx/HrVu3YG1tDQsLC4wbNw6rV6/GsGHDsGTJEjg4OODu3bvYv38/5s6dCwcHB1HnO3HiREyePBnr169H586dcffuXWRnZ2P06NEAKj543n//fSxYsACtW7eGQqFQieHr61ulw/qNN97A6tWrsX37digUCvzwww+4du0aunTpAgCIiopCREQEBg4cCFtbW0RFReH+/fto27atEOPs2bP429/+JqoVpEKtHo//UafT82mBgYEEQOj0vH//Pv3973+nDh06kKmpKZmZmVHHjh1pzZo1VF5eLhyHZ4a9Kh/Lly8nopqHMVNSUkhXV5f27NkjbFO30zM0NJScnZ2F5/fv36fXX3+dTExMyNjYmPr3708XL15UibFy5Upq1aqVMKTVt29f+vXXX1X2uXXrFr3++utkZGRU4xAj0V/DbJXDeS+qPxHRzp07ydPTk/T19alZs2bUu3dv2r9/PxHV/LMhItq8eTN5eHiQnp4eyeVymjlzplCWl5dHM2fOJHt7e9LT0yNHR0caN24cpaSkVPu+ERF9+eWXKu+dmHOu7vyOHTtG3t7eZGRkRObm5tS9e3f65z//KZQ7OztX+/uxY8cOKioqovfff58sLCzI0tKSpk+fTvPnz1epa3Z2Ng0YMIBMTU1VhlUzMjLI39+fmjdvTgYGBtSyZUsKCAig3NxcIhI3vPnkyRP68MMPSS6Xk76+Prm5udGWLVtUjklMTCQAtGrVqio/kwcPHpChoaHK0DoRUUhICNnZ2ZGFhQV9+OGHNGPGDOF1b9y4Qb6+vmRjY0MGBgbk7u5OGzZsUDnew8ODdu3aVeX1XkQjCaMpedEoCWOadubMGdLT06PMzMxqyz/++GMKDAzU2Ov997//pbZt26rMZRGr1vMwvv76a5iamgo9wo1dSkoKTE1NERYWVt9VYVqiuLgYqamp+PTTTzFq1CjY2dlVu9/ChQvh7Oz80h3IlQoKChAeHq7SPSCWhEj92wykpaXhyZMnAAAnJyeNT46qD2VlZcIkFgMDA1GTihh7GVu3bsWUKVPg6emJgwcPCp3oDVmtEgZjTDvxehiMMdE4YTDGROOEwRgT7ZVN3HrVlEol0tPTYWZmVutJW4zVFhHh8ePHsLe3F64xagqabMJIT0/nkQ5W7+7duydqVmhj0WQTRuVVhvfu3av1tQCM1VZeXh4cHR2rXO3a2DXZhFH5NcTc3JwTBqs3Te3rcNP5csUYq3OcMBhjojXZryTPU1hYKNzGoKi0HKmPCuHQzBiGejpo06aNqFWcGNNGWpkwbt68CS8vr2rLKhe4ZYxVpZUJo02bNoiOjgYAJGQ/xqzdMVg31hNutmZo06ZNPdeOsYZLKxOGsbGx0IrQT8uFwal8tOvoiQ4tan/3Lca0AXd6MsZE44TBGBONEwZjTDROGIwx0ThhMMZE44TBGBONEwZjTDROGIwx0ThhMMZE44TBGBNN7YRx5swZDBkyBPb29pBIJPjpp59Uyvfv34+BAwfC2toaEomkyg1yAaCoqAhBQUGwtraGqakp/Pz8kJWVpbJPSkoKBg8eDGNjY9ja2mLOnDkoKytTt7oMFVfnXr16FVevXsX5qMvYe+w0zkddxtWrV1FYWFjf1WONiNrXkhQUFKBz586YPHkyRo4cWW15r169MHr0aAQEBFQb48MPP8SRI0ewb98+WFhYYMaMGRg5ciQiIyMBAOXl5Rg8eDBkMhnOnz+PjIwM+Pv7Q09Pj29lWAt8dS7TmJe5qSsAOnDgQLVlNd0lPCcnh/T09Gjfvn3Ctvj4eAJAFy5cIKKKm8VKpVKVm9Nu2rSJzM3Nqbi4WFTdcnNzCYBwp+2axKXmkPO8wxSXmiMqbmNUUFBA0dHRFB0dTXuOniLZxLW05+gpio6OpoKCgvquXpMk9vevsXnlfRjR0dEoLS2Fj4+PsK1NmzZwcnLChQsXAAAXLlxAx44dVW5O6+vri7y8PFy/fr3auMXFxcjLy1N5sAqVV+d27doV7Tp6wkDmhnYdPdG1a1deLIip5ZUnjMzMTOjr68PS0lJlu52dHTIzM4V9nr2TdeXzyn2etXz5clhYWAgPvsUAY5rXZEZJFixYgNzcXOFx7969+q4SY03OK19ARyaToaSkBDk5OSqtjKysLMhkMmGfS5cuqRxXOYpSuc+zDAwMYGBgUDeVZowBqIcWhpeXF/T09BARESFsu3XrFlJSUqBQKAAACoUCcXFxyM7OFvY5ceIEzM3N0a5du1ddZcbY/6jdwsjPz0dCQoLwPCkpCTExMbCysoKTkxMePnyIlJQUpKenA6hIBkBFy0Amk8HCwgJTpkzB7NmzYWVlBXNzc8ycORMKhQKvv/46AGDgwIFo164dJkyYgFWrViEzMxOffPIJgoKCuBXBWH1Sd1jl5MmTBKDKY+LEiUREFB4eXm15aGioEOPJkyf0wQcfULNmzcjY2JhGjBhBGRkZKq+TnJxMb775JhkZGVHz5s3po48+otLSUtH15GHV6mnb+daXpjqsKiEiqp9UVbfy8vJgYWGB3Nzc594q8VpaLt7ecA6HZ/bSikWAte1864vY37/GpsmMkjDG6h4nDMaYaJwwGGOiaeWNjBhTB9+L9y9alzCS/ixAQfFfl8knZOer/FvJxEAXrs1NXmndWMPEV/v+RasSRtKfBei35lS1ZcF7YqpsO/lxX04ajO/F+xStShiVLYu1YzzhZmsKoLKJ+QQOzYxgqKcDoKK1EbwnRqUlwrQX34v3L1qVMCq52Zqq/LC7udRfXZjmcZ9D3dHKhMGaNu5zqDucMFiTw30OdYcTBmtyuM+h7vDELcaYaJwwGGOiccJgjInGfRhNHM9sZZrECaMJ45mtTNM4YTRhPLOVaRonDC3AM1uZpnCnJ2NMNE4YjDHROGEwxkTjhMEYE40TBmNMNE4YjDHReFiVNSk8s7VuccJgTQbPbK17WpUwisuLIDVMQ1LeLUgNTWvcLykvH1LDNBSXFwHgNRQaC57ZWve0KmGkF9yFiesG/OPSi/c1cQXSCzzhBbsX7strSDYsPLO17mhVwrA3cUZB0kysG+OJVrY1tzASs/Mxa08M7Ps5i4rLa0gybaFVCcNAxxDKohZwNfdAO+uav2ooi3KhLLoPAx1DUXF5DUmmLbQqYdQVXkOSaQueh8EYE41bGIw9B8/rUMUJg7Ea8LyOqjhhMLVpyzAyz+uoihPGS2rITda6mqim6WHkhp6AeF7HXzhhvISG3mStq4lqmh5G1lQC4pm8dU/thHHmzBmsXr0a0dHRyMjIwIEDBzB8+HChnIgQGhqKb7/9Fjk5OejZsyc2bdqE1q1bC/s8fPgQM2fOxKFDhyCVSuHn54d169bB1PSvH/Lvv/+OoKAgXL58GTY2Npg5cybmzp37cmerYQ29yVpXE9U0PYysqQRUVwmS/UXthFFQUIDOnTtj8uTJGDlyZJXyVatWYf369di2bRtcXV2xaNEi+Pr64saNGzA0rJgINW7cOGRkZODEiRMoLS3FpEmTEBgYiB9//BEAkJeXh4EDB8LHxwebN29GXFwcJk+eDEtLSwQGBr7kKWteQ22y1tVENU3TVAKqqwTJ/qJ2wnjzzTfx5ptvVltGRFi7di0++eQTDBs2DACwfft22NnZ4aeffsLYsWMRHx+PY8eO4fLly+jWrRsAYMOGDXjrrbewZs0a2NvbY+fOnSgpKcGWLVugr6+P9u3bIyYmBl988UWDTBisYWgsCbIx02gfRlJSEjIzM+Hj4yNss7CwQI8ePXDhwgWMHTsWFy5cgKWlpZAsAMDHxwdSqRRRUVEYMWIELly4gN69e0NfX1/Yx9fXFytXrsSjR4/QrFmzKq9dXFyM4uJi4XleXp4mT439j6Y7eRtypzGrSqMJIzMzEwBgZ6f6vdDOzk4oy8zMhK2trWoldHVhZWWlso+rq2uVGJVl1SWM5cuXY/HixZo5EVYtTXfyNvROY1ZVkxklWbBgAWbPni08z8vLg6OjYz3WqOnRdCdvQ+80ZlVpNGHIZDIAQFZWFuRyubA9KysLnp6ewj7Z2dkqx5WVleHhw4fC8TKZDFlZWSr7VD6v3OdZBgYGMDAweG79npSWAwCupeUK22r6BWU103Qnb0PtNGZVaTRhuLq6QiaTISIiQkgQeXl5iIqKwvTp0wEACoUCOTk5iI6OFsbef/31VyiVSvTo0UPYZ+HChSgtLYWenh4A4MSJE/Dw8Kj264hYif9LBPP3x4na38Tg+W8Pj/u/HH7/Gh+1E0Z+fj4SEhKE50lJSYiJiYGVlRWcnJwQHByMpUuXonXr1sKwqr29vTBXo23bthg0aBACAgKwefNmlJaWYsaMGRg7dizs7e0BAO+99x4WL16MKVOmYN68ebh27RrWrVuHL7/88qVOdmD7itZJK1tTGD3T3H26WQyI62Tjcf+Xw+9f46N2wrhy5Qr69esnPK/sN5g4cSK2bt2KuXPnoqCgAIGBgcjJyUGvXr1w7NgxYQ4GAOzcuRMzZsxA//79hYlb69evF8otLCzw888/IygoCF5eXmjevDlCQkJeekjVykQfY7s7VVv2bLNYDB73fzn8/jU+aieMvn37gohqLJdIJFiyZAmWLFlS4z5WVlbCJK2adOrUCWfPnlW3eq+UUqkHZVELFDyWQWlekWyq6xMpL8rncf9q8LyJxqfJjJLUB033iTDW0PFv8EvQdJ+IpvGoENM0ThgvQdN9IprGLSCmafwb0oQ19BYQa3w4YTRhDb0FxBofrUwYT6/wlJD9GMWZCbgRZ4qSLLMGscITqx3us6l7Wpkwqlvhacy2in/5TmWNF/fZ1D2tfMeeXuGpujUkWePEfTZ1TysTxtMrPLGmg/ts6p5WJoyGrqGvos20FyeMBojvBt8w8NW0VXHCaID4bvANA19NWxUnDA3Q9DAt3w2+YeCraavihKEBPEzbNPHVtFVxwtAAHqZl2oIThgbwMC3TFtL6rgBjrPHgFgZjNeBrU6rihMHqTUP/g+RrU6pq+mfINEbTE5ka+h8kX5tSFScMLaCpeSJJuUkancjU0P8g+dqUqjhhNDB1cXNiTc0TeVJghYKkmaL2BYDWg1o9t5z/IBsfThgNSF3dnFhT80QGd3SBnnRQg20RsLrHCaMBqaubE2tqngi3CBgnjAaIb07MGiqeuMUYE40TBmNMNE4YjDHROGEwxkTjhMEYE41HSRoQXkOSNXScMBoQXkOSNXScMBoQXkOSNXScMBoQbV1DUtOLKPO9c+sOJwxW7zS9iDIvylx3OGGweqfpRZR5Uea6wwmD1TtNL6LMizLXnTqZh/H48WMEBwfD2dkZRkZG8Pb2xuXLl4VyIkJISAjkcjmMjIzg4+OD27dvq8R4+PAhxo0bB3Nzc1haWmLKlCnIz9eetRMZa4jqJGFMnToVJ06cwI4dOxAXF4eBAwfCx8cHaWlpAIBVq1Zh/fr12Lx5M6KiomBiYgJfX18UFRUJMcaNG4fr16/jxIkTOHz4MM6cOYPAwMC6qC5jTCzSsMLCQtLR0aHDhw+rbO/atSstXLiQlEolyWQyWr16tVCWk5NDBgYGtGvXLiIiunHjBgGgy5cvC/scPXqUJBIJpaWliapHbm4uAaDc3FwNnNWrEZeaQ87zDlNcao5G9nsVGlJdXgWx59sYf//E0HgLo6ysDOXl5TA0VB3yMzIywrlz55CUlITMzEz4+PgIZRYWFujRowcuXLgAALhw4QIsLS3RrVs3YR8fHx9IpVJERUVV+7rFxcXIy8tTebC6UVhYiKtXr+Lq1au4ERfzv2HLGFy9ehWFhYX1XT1WhzTe6WlmZgaFQoHPPvsMbdu2hZ2dHXbt2oULFy7Azc0NmZmZAAA7O9UZinZ2dkJZZmYmbG1tVSuqqwsrKythn2ctX74cixcv1vTpsGrwsKX2qpNRkh07dmDy5Mlo0aIFdHR00LVrV7z77rvCUFddWLBgAWbPni08z8vLg6OjY529njbjYUvtVScJo1WrVjh9+jQKCgqQl5cHuVyOMWPGoGXLlpDJKpaWz8rKglwuF47JysqCp6cnAEAmkyE7O1slZllZGR4+fCgc/ywDAwMYGBjUxemwZ/Cwpfaq08vbTUxMIJfL8ejRIxw/fhzDhg2Dq6srZDIZIiIihP3y8vIQFRUFhUIBAFAoFMjJyVFpkfz6669QKpXo0aNHXVaZMfYcddLCOH78OIgIHh4eSEhIwJw5c9CmTRtMmjQJEokEwcHBWLp0KVq3bg1XV1csWrQI9vb2GD58OACgbdu2GDRoEAICArB582aUlpZixowZGDt2LOzt7euiyowxEeokYeTm5mLBggVITU2FlZUV/Pz8sGzZMujp6QEA5s6di4KCAgQGBiInJwe9evXCsWPHVEZWdu7ciRkzZqB///6QSqXw8/PD+vXr66K6jDGR6iRhjB49GqNHj66xXCKRYMmSJViyZEmN+1hZWeHHH3+si+oxxmqJl+hjjInGF581IE9KywEA19JyhW013fmMsfrACaMBSfxfIpi/P07U/iYG/ONjrxb/xjUgA9tXzDHhmx2zhooTRgPCNztmDR13ejLGROOEwRgTjRMGY0w0ThiMMdE4YTDGROOEwRgTjRMGY0w0nofRAPGt/lhDxQmjAeI1M1lDxQmjAeI1M1lDxQmjAeI1M1lDxQmDsRfgPqW/cMJg7AW4T+kvnDAYewHuU/oLJwzGXoD7lP7CE7cYY6JxwmCMicYJgzEmWpPtwyAiABW3YWTsVav8vav8PWwqmmzCePz4MQDwHdxZvXr8+DEsLJrOWqwSamop8H+USiXS09NhZmYGiURS4355eXlwdHTEvXv3YG5u/tKvy/E4HlDRsnj8+DHs7e0hlTadb/5NtoUhlUrh4OAgen9zc3ON/EJxPI5XqSm1LCo1ndTHGKtznDAYY6JpfcIwMDBAaGgoDAwMOB7He+XxGpsm2+nJGNM8rW9hMMbE44TBGBONEwZjTDROGIwx0ThhMMZE44QBICsrC5mZmRqJdfv2bURERCAhIUEj8QBg8eLF+PPPPzUWj7Ha0qqE8fDhQ7zzzjtwcnLC9OnTUV5ejqlTp0Iul6NFixbw9vZGRkaG6HjLly9HREQEAODRo0fw8fGBh4cHBgwYAA8PD7z55pvIyckRHS8vL6/KIzc3F8uWLcOdO3eEbWKVlpZi7ty5cHNzQ/fu3bFlyxaV8qysLOjo6IiO9yppMokDQFlZmcZiAcDWrVuRm5ur0ZiNAmmRyZMnU4cOHWjDhg3Up08fGjZsGHXq1InOnTtH58+fp9dee438/f1Fx3NwcKCrV68SEdHUqVOpS5cudPXqVXry5AnFxMTQ66+/TlOmTBEdTyqVVvuQSCQq/4oVGhpKdnZ2tHr1alq4cCFZWFhQYGCgUJ6ZmUkSiUR0vErXr1+n6dOnk6enJ8lkMpLJZOTp6UnTp0+n69evqxXrwYMH5OfnR46OjjRt2jQqKyujKVOmCOeqUCgoPT1ddLyjR4/S77//TkRE5eXltGTJErK3tyepVEotWrSg5cuXk1KpVKuO1dHT06MbN268dJzGRqsShlwup8jISCL664/l559/FsrPnTtHLVq0EB3PwMCAkpOTiYjIxcWFTp8+rVJ+5coVksvlouO1aNGCBg8eTL/++iudOnWKTp06RSdPniQdHR0KDw8Xtonl5uZGhw4dEp7fvn2b3Nzc6P333yelUkmZmZlqJSAiov/+97+kr69Pr7/+OoWGhtLXX39NX3/9NYWGhpK3tzcZGBjQsWPHRMfTdBL38PCgM2fOEBFRWFgYWVtb0xdffEFHjx6ltWvXkp2dHa1YsUJ0vGbNmlX7kEgkZGFhITzXFlqVMIyNjYU/cKKKT4m4uDjh+Z07d8jExER0PHd3dzp8+DAREbm6ugrJqNJvv/1G5ubmouM9ePCAhg8fTv369aPU1FRhu66urtqf3ERERkZGlJSUpLItNTWV3N3dady4cZSWlqZ2wujUqRMtWrSoxvLQ0FDq2LGj6Hh1kcTv3r1LREQdOnSgvXv3qpQfPnyY3NzcRMczNTWlwYMH09atW4VHeHg46ejo0LJly4Rt2kKrEkbnzp1p48aNRFTxSWlmZkaff/65UL5p0ybq0KGD6HirV6+mtm3b0u3bt+nzzz8nhUJBCQkJRFSRfPr27UvvvPOO2vX8+uuvyd7enn788Uciqn3CcHV1pV9++aXK9rS0NHJ3d6cBAwaonTAMDQ3p5s2bNZbfvHmTDA0NRcfTdBKXy+V04cIFIiKys7MTvjJW+uOPP8jIyEh0vNu3bwutnMePHwvba/szaey0KmH88MMPpKOjQ25ubmRgYED79u0je3t7Gj16NI0dO5b09fWFhCLWzJkzSU9Pj9q0aUOGhoYklUpJX1+fpFIpdevWjTIyMmpV1+vXr1Pnzp3p3XffrfUv55QpU2jy5MnVlqWmppKbm5vaCaNNmzYqSfZZn3/+OXl4eIiOp+kk/sEHH9Dbb79NZWVlFBgYSFOnTlXps5g5cyYpFArR8YiISktLae7cudSqVSs6d+4cEXHC0Brnzp2jNWvWCM3g69ev04QJE8jPz6/WTcsbN27QqlWraNq0aRQYGEihoaH0888/v3TnWnFxMX344Yfk6elJd+7cUfv45OTk5/YnpKWlqX3Oe/fuJV1dXRoyZAitW7eOdu/eTbt376Z169bR0KFDSV9fn/71r3+JjqfpJJ6Tk0PdunUjNzc3mjBhAhkaGpKzszMNGDCAXF1dycLCgi5evKjWOVeKiIggJycnWrBgAenp6WllwuCrVZnazp8/j/Xr1+PChQvC0KdMJoNCocCsWbOgUCjUihcZGYmLFy9CoVDA29sbN27cwIoVK1BYWIghQ4Zg4sSJasUrLS3F999/j0OHDuHOnTtQKpWQy+Xo2bMnpk+frtZKbM968OABAgICcPLkSVy8eBEeHh61jtUYccJAxcSooKAgNG/evFbHFxQUIDo6GhkZGZBKpWjZsiW6du363LVE1fHGG28gPDwczs7OtTr+119/xblz51TqN3ToULRu3Voj9WPaQ6sSRnWTnogINjY2OHfunHCfTLFrPyqVSsyfPx8bN25EcXGxEA8AnJycsGHDBgwZMkR0/Q4ePFjt9pEjR2LdunXCCuhDhw4VFS87OxtDhgzBlStXIJVKoVQq0aVLF6SlpeH+/fuYPXs2Vq1aJbp+z7N161aMGDGi1utYlpeXq0wiu3TpklBfTSxWQ0RQKpW1mqhWXl6Ou3fvwsXFBVKpFMXFxfjPf/4DpVKJfv36wc7O7qXr12jU25eheqDpiVHz5s2jtm3b0qFDh+jEiRPUu3dvWrlyJcXHx9OiRYvIwMCAjh8/Ljre0/Wo6aFO/caMGUPDhw+n3NxcKioqohkzZghzGiIiIsja2prWrl0rOt7z1HYiU3JyMnl5eZGOjg4NGjSIcnNzycfHRzhfV1dXunXrluh4paWltHDhQurduzeFhIQQEdGqVavI2NiY9PX1yd/fn4qLi0XHi42NJblcTlKplDp06EApKSnUoUMHMjExIVNTU2rWrBldunRJ7fNurLQqYWh6YpRcLhcmCRFVjDyYmppSUVEREREtWbJErR75QYMG0eDBgykrK0tle2175M3NzenatWvC8/z8fNLT06Pc3FwiItqxY4daIxpEmp/I5OfnR3369KFDhw7R6NGjqWfPntS3b19KTU2l9PR08vX1peHDh4uO98knn5CdnR3Nnj2b2rVrR9OmTSNHR0f64YcfaNu2bdSiRQtauXKl6Hi+vr70zjvvUFxcHM2aNYvatm1Lo0aNopKSEiotLaXx48eTj4+P6HiNnVYlDE1PjDIzM6PExETheXl5Oenq6gpDqdevXydjY2O1Yn7xxRfk6OioMkOztvWzsbFROa6wsJCkUik9ePCAiIgSExPJwMBArZianshkY2NDv/32GxFVjHBIJBI6e/asUB4dHU12dnai47Vs2VJ4727fvk1SqZR2794tlO/Zs0etYdpmzZoJLafCwkLS0dGhqKgoofzatWtkbW0tOl5jp1UJo5KmJkZ5e3vT0qVLhee7du0iS0tL4XlcXFytpg3/9ttv1K5dOwoMDKSCgoJa12/EiBHk5+dH+fn5VFJSQsHBwSqzHC9evEgymUytmJqeyGRmZiYMGVcm3JiYGJXXMzMzEx3P0NCQUlJSVJ7Hx8cLz+/cuaNWPEtLS/rjjz+IiKikpIR0dHQoOjpaKI+Pj9eqqeFadbVqpenTp+PEiRNYuXIl3nvvvVrHWbJkCT777DP06NEDffr0wYQJExAaGiqUHzt2DF26dFE7rqenJ65cuQKJRAJPT89a359zzZo1iImJgaWlJUxMTLB161Zs2rRJKI+Pj8f777+vVkw3NzecP38eMpkMnp6eiIyMrFXdKrVv3164inbbtm2wtrbG7t27hfJdu3bB3d1ddDwLCwuVK4S7du0KMzMz4XlxcbFao1deXl5YuXIl0tLSsHz5cri6umLjxo1C+YYNG9ChQwfR8Rq9+s5Y9ellJ0YREcXExNA//vEP+uijj1SugdCU//znPxQcHFylX0OsgoIC+vnnn+nQoUN0//59jdZNExOZjh07RoaGhqSvr0+GhoZ0+vRpcnd3p+7du9Prr79OOjo6tGfPHtHx+vXr99yvRHv37iUvLy/R8S5dukTW1tYklUrJxsaGrl27Rj169CCZTEb29vZkZGRU7fT7pkqrhlWZ5mliIlNycjKio6Ph5eUFFxcXZGVl4auvvkJhYSEGDx6Mfv36iY71xx9/QE9PD66urtWW//jjj9DV1cXo0aNFxywoKMDNmzfh4eEBU1NTFBUVYefOnXjy5Imw9om20MqEcenSpSqzFL29vfHaa69pLJ5CoUD37t01VmegYlGZb775BiEhIQ0yHmv6tCphZGdnw8/PD5GRkXBychIm3GRlZSElJQU9e/bEv//9b9ja2oqON3LkSJw/f14j8V4kNjYWXbt2RXl5eYOM15A8OxEsKioKxcXFUCgU0NPTUysWESE5ORmOjo7Q1dVFSUkJDhw4gOLiYrz11lu1niHcKNXj16FXzs/PjxQKRbWXZ9+8eZO8vb3Vuhxd0/FiY2Of+9izZ49aE7c0HY+oYqRgzpw51KpVK3rttdfo+++/VylXd1EeTcdLT0+nnj17ko6ODvXu3ZsePnxIgwcPFiaCubu7q7WC182bN8nZ2ZmkUim5ubnRnTt3yMvLi0xMTMjY2JiaN28ujKJoA61KGKamplXWR3jalStXyNTUtN7iPW+mZ21momo6HpHml/3TdLwJEyaQt7c3HTx4kMaMGUPe3t70t7/9jVJTU+nu3bvUs2dPCgoKEh1v2LBhNHToUPr9998pODiY2rZtS8OGDaOSkhIqKiqiIUOG0Pjx40XHa+y0KmFYW1s/dybnyZMn1ZqEUxfxvv/+e0pOTq72ceTIEbX+wDUdj0jzy/5pOt7TC+g8ePCAJBKJyihGREQEtWzZUnS8pyeW5efnV5lYFhkZSU5OTqLjNXZalTA++OADcnZ2pv379wvTo4mIcnNzaf/+/eTi4kIzZsyot3gDBw6kzz77rMbymJgYtT5tNR2PSPPL/mk63rMTt0xMTOj27dvC87t376q14paRkZGw5B9RRauyclU1IqKUlBS1Z8s2ZlqVMIqKimjatGnCiliGhoYqq2RNnz5duA7kZeJJJJJaxdu/fz/t2LGjxvKHDx+qNe1a0/GINL/sn6bjOTk5qUzdnjdvnjAVnqgiSTZv3lx0vFatWqm0KL7++mvKy8sTnkdHR6s9W7Yx06pRkkp5eXmIjo5WGQb18vISfVl7dfGuXLmCrKwsAICdnR26detW63gN2dSpU0FE+P7776uUpaWloW/fvrhz547okRdNxxs2bBjeeOMNzJo1q9ryr776Cvv37xfuJ/Mi06ZNQ7du3TB16tRqy1esWIGzZ8/iyJEjouI1dlqZMOqavr4+YmNj0bZt2/quisbdvXsXN2/ehK+vb7Xl6enpOHHihOhVsjQd70UuXboEY2NjjU3nTkpKgqGhIeRyuUbiNXRalzCePHmC6OhoWFlZoV27diplRUVF2Lt3L/z9/UXFmj17drXb161bh/Hjx8Pa2hoA8MUXX4iKd/XqVTRr1kyYpbhjxw5s3rwZKSkpcHZ2xowZMzB27FhRsSpt3LgRly5dwltvvYWxY8dix44dWL58OZRKJUaOHIklS5ZAV1dXrZhMi9Xft6FX79atW+Ts7CwMJ/bu3ZvS0tKEcnV75CUSCXl6elLfvn1VHhKJhF577TXq27cv9evXT3S8Tp060YkTJ4iI6NtvvyUjIyP6+9//Tps2baLg4GAyNTWtMk/heT777DMyMzMjPz8/kslktGLFCrK2tqalS5dSWFgY2djYCIvMqKO4uJj27NlDwcHBNHbsWBo7diwFBwfT3r171Vqc5mn37t1Tufq1UklJSZUbRNWGq6trreZL3Lt3T+UanDNnztB7771HvXr1onHjxtH58+dfum6NiVYljOHDh9PgwYPp/v37dPv2bRo8eDC5uroKveDqJozly5eTq6srRUREqGx/mRsPVd6jo0uXLvTPf/5TpXznzp3Url070fFatWpF//73v4moorNPR0eHfvjhB6F8//79at3Uh6hi2LNly5ZkaGhIffr0odGjR9Po0aOpT58+ZGhoSG5ubiqjEi+Snp5Or732GkmlUtLR0aEJEyaoJA51fybr1q2r9qGjo0MLFiwQnovVvXt3Ydj3p59+IqlUSkOHDqV58+bRiBEjSE9PT2VYuKnTqoRha2sr3HeTiEipVNK0adPIycmJEhMTa3XrwEuXLpG7uzt99NFHVFJSQkS1TxjW1tZ05coVoa5PrwtBRJSQkPBSQ4J6enoqK3AlJyervcCPj48PDRs2TGUYuVJubi4NGzaMBg4cKDqev78/9ejRgy5fvkwnTpwgLy8v6tatGz18+JCI1J+4JZFIyMHBgVxcXFQeEomEWrRoQS4uLuTq6io6nomJiXAlc48eParcZnHDhg3UpUsX0fEaO61KGGZmZtWuOxkUFEQODg505swZtRMGEdHjx4/J39+fOnXqRHFxcbW+1Hv8+PHCzZtHjRpFn3zyiUp5WFiYWrchdHV1paNHjxJRxR2/pFKpyq0Djxw5Qi4uLmrV0cjISOXOZM/6/fff1Upq9vb2KsOglbMnPT096cGDB2on8f/7v/8jT0/PKj/n2iZxCwsLio2NJaKKJF75/0oJCQlqJ93GTKsSxmuvvUbbt2+vtiwoKIgsLS1rlTAq7dq1i+zs7EgqldbqlzMtLY1cXFyod+/eNHv2bDIyMqJevXpRQEAA9e7dm/T19enIkSOi433yySdkY2NDU6dOJVdXV5o/fz45OTnRpk2baPPmzeTo6EgffvihWnWUy+XPbYIfPHhQrRtQm5iYVOlbKC0tpeHDh1OnTp3o999/V/tnsn//fnJ0dKQNGzYI22qbMIYOHUrz588noor1PZ/9OvPtt99S69at1Y7bWGlVwggLC6M333yzxvLp06erPfPxWffu3aOffvqJ8vPza3X8o0ePaN68edSuXTthYRlnZ2d677336PLly2rFKi8vp2XLltHbb79NYWFhpFQqadeuXeTo6EjW1tb0/vvvq13PRYsWUbNmzeiLL76g2NhYyszMpMzMTIqNjaUvvviCrKysKDQ0VHS8jh07VnuntMqk4eTkVKsknpqaSm+88QYNGjSIMjIyap0wbty4QdbW1uTv70+fffYZmZqa0vjx42nZsmXk7+9PBgYGFB4ernbcxkqrEgbTjBUrVpBcLhdGmyovZJPL5WqtyE1ENHfu3Br7PEpLS2no0KG1TuJKpZLCwsJIJpORjo5OrW9tmJCQQGPHjiUzMzPh4j09PT3y9vamAwcO1CpmY6V18zCY5iQlJanMlq1plavnKSsrQ2FhYY2zYsvKypCWllbru74BQHR0NM6dOwd/f380a9as1nGICNnZ2VAqlWjevLna62o0CfWcsFgTk5KSQpMmTeJ4TRS3MJhGNfRVwRp6vIaO5wQztdR0/9dKd+7c4XhNGLcwmFqkUikkEslz75UikUhEf+JqW7zGTitvZMRqTy6XY//+/VAqldU+rl69yvGaME4YTC1eXl6Ijo6usfxFn8baHq+x4z4MppY5c+agoKCgxnI3NzecPHmS4zVR3IfBGBONv5IwxkTjhMEYE40TBmNMNE4YjDHROGEwxkTjhNGE9O3bF8HBwfVdDUFDqw97eZwwmIqSkpL6rgJryOrjElmmeRMnTiQAKo+EhASaPHkyubi4kKGhIbm7u9PatWurHDds2DBaunQpyeVyYY3PyMhI6ty5MxkYGJCXlxcdOHCAAAg3JiYiiouLo0GDBpGJiQnZ2trS+PHjhSX5q6vPs/dQZY0PJ4wmIicnhxQKBQUEBFBGRgZlZGRQUVERhYSE0OXLl+nOnTv0ww8/kLGxMe3Zs0c4buLEiWRqakoTJkyga9eu0bVr1yg3N5esrKxo/PjxdP36dfrvf/9L7u7uKgnj0aNHZGNjQwsWLKD4+Hi6evUqDRgwQLgPS3X1KSsrq4+3hmkQTw1vIiwsLKCvrw9jY2PIZDJh++LFi4X/u7q64sKFC9i7dy9Gjx4tbDcxMcF3330HfX19AMDmzZshkUjw7bffwtDQEO3atUNaWhoCAgKEYzZu3IguXbogLCxM2LZlyxY4Ojrijz/+gLu7e7X1YY0bJ4wm7quvvsKWLVuQkpKCJ0+eoKSkBJ6enir7dOzYUUgWAHDr1i106tQJhoaGwrbu3burHBMbG4uTJ0/C1NS0ymsmJibC3d1dsyfCGgROGE3Y7t278fHHH+Pzzz+HQqGAmZkZVq9ejaioKJX9TExM1I6dn5+PIUOGYOXKlVXKtOXGxNqIE0YToq+vr7KQS2RkJLy9vfHBBx8I2xITE18Yx8PDAz/88AOKi4thYGAAALh8+bLKPl27dsW///1vuLi41Hgz52frwxo/HlZtQlxcXBAVFYXk5GT8+eefaN26Na5cuYLjx4/jjz/+wKJFi6r84Vfnvffeg1KpRGBgIOLj43H8+HGsWbMGQMX6DwAQFBSEhw8f4t1338Xly5eRmJiI48ePY9KkSUKSeLY+SqWy7k6evRKcMJqQjz/+GDo6OmjXrh1sbGzg6+uLkSNHYsyYMejRowcePHig0tqoibm5OQ4dOoSYmBh4enpi4cKFCAkJAQChX8Pe3h6RkZEoLy/HwIED0bFjRwQHB8PS0hJSqbTa+qSkpNTdybNXgtfDYKLs3LkTkyZNQm5uLoyMjOq7OqyecB8Gq9b27dvRsmVLtGjRArGxsZg3bx5Gjx7NyULLccJg1crMzERISAgyMzMhl8sxatQoLFu2rL6rxeoZfyVhjInGnZ6MMdE4YTDGROOEwRgTjRMGY0w0ThiMMdE4YTDGROOEwRgTjRMGY0y0/wckwrZ0q9foXQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "y='[INSERT].95thPercentileLatency(us)'\n",
+ "plot_variation(df_groups, max_pod_count, y)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAEGCAYAAACq4kOvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABAWElEQVR4nO2deVwUR/r/PzMjDAwwiAgMyKmIiqAoHhnNKp5oWO94JPFar4DoigcqGyPRRDGJF+uB2RzgN7peicZ4oYhCIqAoCiKi8QBB5Eg8GEXueX5/8KPXFtAZGGVg6v169Qu6qvrpp3v6U1VdVV0lICICg8HQOYSN7QCDwWgcmPgZDB2FiZ/B0FGY+BkMHYWJn8HQUZj4GQwdhYmfwdBRmPgZDB2FiZ/B0FHeivi9vLwgEAggEAiQnJz8Nk6ptWRmZnL3wsPDo0G2HB0dsXnzZo349Sb47LPPGnyNDaWsrAzOzs6Ij49vVD/eJJMmTcKGDRvUPu6tlfyzZ89Gbm4u3NzcuLCdO3eiZ8+ekEgkMDExQf/+/XH06FEufv78+ejUqVOt9rKysiASifDrr78CACeol7e9e/cCAGJiYnjhFhYWeO+995CamlqrfW9vb4hEIly8eLFG3PTp0zF69Og6r/VVorSzs0Nubi4WL15c5/HTp0+v83oEAgEcHR3rPFYXqc5QaytYduzYAScnJ/Tp0+et+7Vq1SpMnjz5jZ9nxYoVWLNmDQoLC9U67q2JXyKRQCaToUWLFgCAJUuW4OOPP8bEiRNx9epVJCYm4t1338WoUaOwdetWAMDMmTNx48aNWnPtiIgIWFpa4r333uPCwsPDkZuby9teFunNmzeRm5uLkydPorS0FD4+PigrK+OlycrKQnx8PObNm4cffvhBo/dBJBJBJpPB2Ni4zjShoaG8a3j52mrLkFSlvLy83sc2NYgIW7duxcyZMxvl/IcPH8bIkSPf+Hnc3NzQrl077Nq1S63jGuWd//z589iwYQO+/vprLFmyBM7OzujUqRPWrFmDgIAALFq0CNnZ2fDw8ED37t1rCJCIEBERgWnTpnGZCQC0bNkSMpmMtxkYGPCOtbS0hEwmQ/fu3REQEIDs7GzcuHGDlyY8PBx///vf4efnhz179qC4uPjN3YxaMDU15V0DwL82CwsLLu3z588xY8YMmJiYwN7eHv/5z3+4uOoScd++fejfvz8MDAywe/duKJVKrF69Gra2thCLxfDw8EBkZCR3XHUt6cmTJ1xYcnIyBAIBMjMzubBvv/0WdnZ2kEgkGDNmDDZu3IiWLVvWuJ4ff/wRjo6OMDU1xaRJk/D06VMuzsvLC/PmzcO8efNgamqK1q1b49NPP8WL35sJBAL88ssvPJstW7ZEREQEAMDJyQkA0K1bNwgEAnh5eQEAkpKScOfOHfj4+PCOTU1NxcCBA2FoaAhzc3PMmTMHz5494+Kra3arVq2ChYUFpFIpfH19eYXETz/9BHd3d87G4MGDUVRUxMVnZ2cjLS0Nw4YNAxHhs88+g729PcRiMWxsbPDPf/6TS1taWoolS5agTZs2MDIyQu/evRETE8PzOS4uDl5eXpBIJDAzM4O3tzceP37MxY8YMYKr5apKo4h/z549MDY2xscff1wjbvHixSgvL8fPP/8MoKr0379/P+/GxsTEICMjAzNmzKi3D4WFhdzN0tfX58KJCOHh4Zg8eTI6duwIZ2dn/PTTT/U+z5tmw4YN6NGjB65cuYK5c+fCz88PN2/e5KVZvnw5FixYgPT0dHh7eyM0NBQbNmzA+vXrcfXqVXh7e2PkyJG4deuWyueNi4uDr68vFixYgOTkZAwZMgRr1qypke7OnTv45ZdfcPToURw9ehSxsbFYt24dL83OnTvRokULJCYmIjQ0FBs3bsR3332nsi+JiYkAgNOnTyM3NxcHDx4EAPz+++9wcXGBiYkJl7aoqAje3t4wMzPDxYsXceDAAZw+fRrz5s3j2YyOjkZ6ejpiYmKwZ88eHDx4EKtWrQIA5Obm4oMPPsCMGTO4NGPHjuVlWL/++iu8vLwglUrx888/Y9OmTfjmm29w69Yt/PLLL3B3d+fSzps3DwkJCdi7dy+uXr2K8ePHY9iwYdzvkZycjEGDBsHV1RUJCQk4d+4cRowYgcrKSs5Gr169kJiYiNLSUpXvG+gt0L9/f1qwYAG3P2zYMOratWud6aVSKfn5+RER0ePHj8nAwIDCw8O5+ClTptC7777LOwYAGRgYkJGREW+7d+8eERGdPXuWAHDhAAgAjRw5kmfn1KlTZGFhQeXl5UREtGnTJurfvz8vzbRp02jUqFF1+u/g4ECbNm2qM56IKDg4+JX34OVrO3ToUK3nmTx5MrevVCrJ0tKSwsLCiIgoIyODANDmzZt5x9nY2NCaNWt4YT179qS5c+cS0f/u1ePHj7n4K1euEADKyMggIqKJEyeSj48Pz8ZHH31EpqamvGuUSCSkUCi4sMDAQOrduze3379/f+rUqRMplUoubNmyZdSpU6dXXr+pqSn3TFRf55UrV3hpFixYQAMHDuSF/ec//yEzMzN69uwZF3bs2DESCoWUl5dHRFW/b6tWraioqIhLExYWRsbGxlRZWUlJSUkEgDIzM6kuhgwZQlu3biUiog0bNpCLiwuVlZXVSHfv3j0SiUSUk5PDCx80aBAFBQUREdEHH3xAffv2rfNcREQpKSmv9ellGq2rj1ScRqBly5YYO3YsV/VXKBT4+eefa32P27RpE5KTk3mbjY0NL83vv/+OpKQkREREwMXFBTt27ODF//DDD5g4cSL3OvHBBx8gLi4Od+7cqc9lvnG6dOnC/S8QCCCTyVBQUMBL06NHD+5/hUKBBw8eoG/fvrw0ffv2RXp6usrnvXnzJnr16sULe3kfqGr8fLHktba2ruHfO++8A4FAwO3L5XLcunWLV7LVh+Li4hqvfenp6ejatSuMjIy4sL59+0KpVPJqTF27doVEIuH59OzZM2RnZ6Nr164YNGgQ3N3dMX78eHz77be8KrhCoUBsbCz3vj9+/HgUFxejbdu2mD17Ng4dOoSKigoAVa8glZWVcHFxgbGxMbfFxsZyz1x1yf8qDA0NAVS9BqpKi9cn0TwuLi44d+4cysrKeFVuAHjw4AEUCgVcXFy4sJkzZ2LQoEG4ffs2zp49C5FIhPHjx9ewK5PJ4Ozs/MpzOzk5oWXLlujQoQMKCgowceJE/PbbbwCAR48e4dChQygvL0dYWBh3TGVlJX744Ydaq7WNjZ6eHm9fIBBAqVTywl580FVBKKwqE17MoOvbUKiKf69DIBDUKCxU8ad169Z19uY0BJFIhKioKMTHx+PUqVPYsmULPvnkE1y4cAFOTk44ceIEXF1dYWdnB6Cqh+fmzZs4ffo0oqKiMHfuXHz99deIjY3Fs2fPIBKJkJSUBJFIxDtPdaNwtbBfxaNHjwCA1x70Ohql5J80aRKePXuGb775pkbc+vXroaenh3HjxnFhAwYMgJOTE8LDwxEeHo5Jkyap/UDXhr+/P65du4ZDhw4BAHbv3g1bW1ukpKTwag8bNmxAREREg0sibUAqlcLGxgZxcXG88Li4OLi6ugL43wNU3dMAoEY3WocOHWr0OtS3F+LChQu8/fPnz6N9+/acGCwsLHi+3Lp1i1fCVRcgL/8+3bp1w40bN3gZR6dOnZCSksJrQ4qLi4NQKESHDh24sJSUFF5D7/nz52FsbMwJWiAQoG/fvli1ahWuXLkCfX197jk6fPgwRo0axfPF0NAQI0aMwL///W/ExMQgISEBqamp6NatGyorK1FQUABnZ2feVt3Y26VLF0RHR7/yHl67dg22trZo3br1K9O9SKOU/HK5HAsWLEBgYCDKysowevRolJeXY9euXQgNDcXmzZu5mwxU3egZM2Zg48aNePz4MTZt2lSr3SdPniAvL48XZmJiUmdGIZFIMHv2bAQHB2P06NH4/vvv8f777/PGIgBVOXdQUBAiIyO5luPCwsIagjA3N+f8zsnJqRHv4OAAMzOzWn3ZunUrDh069NofWRMEBgYiODgY7dq1g4eHB8LDw5GcnIzdu3cDAJydnWFnZ4fPPvsMa9aswR9//FFjEMn8+fPRr18/bNy4ESNGjMCZM2dw4sQJXvVdVbKysrBo0SJ8/PHHuHz5MrZs2cI738CBA7F161bI5XJUVlZi2bJlvBqFpaUlDA0NERkZCVtbWxgYGMDU1BQDBgzAs2fPkJaWxv2mH330EYKDgzFt2jR89tln+PPPPzF//nxMmTIFVlZWnM2ysjLMnDkTK1asQGZmJoKDgzFv3jwIhUJcuHAB0dHRGDp0KCwtLXHhwgX8+eef6NSpEyoqKnDixAksWbKEs1VdcPTu3RsSiQS7du2CoaEhHBwcYG5ujo8++ghTp07Fhg0b0K1bN/z555+Ijo5Gly5d4OPjg6CgILi7u2Pu3Lnw9fWFvr4+zp49i/Hjx3Ni//333zF06FD1brzKrQMN4OUGv2q+//578vT05Brq/va3v9Gvv/5aq43s7GwSCoXUuXPnWuPx/xvwXt5CQkKIqPZGLCKirKwsatGiBa1bt44AUGJiYq32hw8fTmPGjCGiqgah2s41c+ZMIqpqiKst/scff+TsvdzgFxwcTA4ODnVeW10Nfi83LHbt2pWCg4OJqO6GsMrKSvrss8+oTZs2pKenR127dqUTJ07w0pw7d47c3d3JwMCA/va3v9GBAwd4DX5EVY1nbdq0IUNDQxo9ejR98cUXJJPJ6rxGoqoG1Bevs3///jR37lzy9fUlqVRKZmZm9K9//YvXAJiTk0NDhw4lIyMjat++PR0/fpzX4EdE9O2335KdnR0JhUJeA+2ECRNo+fLlPB+uXr1KAwYMIAMDA2rVqhXNnj2bnj59ysVXN+iuXLmSzM3NydjYmGbPnk0lJSVERHT9+nXy9vYmCwsLEovF5OLiQlu2bCEiotOnT5OtrS3vfIcOHaLevXuTVColIyMjeuedd+j06dNcfFlZGa1cuZIcHR1JT0+PrK2tacyYMXT16lUuTUxMDPXp04fEYjG1bNmSvL29uWe5uLiYTE1NKSEhgdShUcWvy6jT2t9UmDVrVo1emNfxpp+NlJQUsrS05In7dbyuN+dVzJ8/n+upelts376dhgwZovZxb+2df/v27TA2Nn4jDTBNiaysLBgbG2Pt2rWN7UqDWb9+PVJSUnD79m1s2bIFO3fuxLRp0xrbLR5dunTBl19+iYyMjLdyPjc3N/j5+b2Vc1Wjp6eHLVu2qH3cW3nn3717N9d4Ym9v/zZOqbXY2NhwbQFisbhxnWkgiYmJ+Oqrr/D06VO0bdsW//73vzFr1qzGdqsG06dPf2vnmjNnzls7VzX1vecCIjZvP4OhizSo2r9u3ToIBAIEBARwYSUlJfD394e5uTmMjY0xbtw45Ofn847LysqCj48PJBIJLC0tERgYyA16qCYmJgbdu3eHWCyGs7MzN46bwWBohnqL/+LFi/jmm294I8wAYOHChThy5AgOHDiA2NhYPHjwAGPHjuXiKysruS/p4uPjsXPnTkRERGDlypVcmoyMDPj4+GDAgAFITk5GQEAAZs2ahZMnT9bXXQaD8TL1aV18+vQptW/fnqKionittU+ePCE9PT06cOAAlzY9PZ0AcN0Qx48f542jJqoaNy2VSqm0tJSIiJYuXVqjS2/ixInk7e1dH3cZDEYt1KvBz9/fHz4+Phg8eDC++OILLjwpKQnl5eUYPHgwF9axY0fY29sjISEB77zzDhISEuDu7s4bUOHt7Q0/Pz+kpaWhW7duSEhI4NmoTvPi68XLlJaW8r5oUiqVePToEczNzes18ITBaAhEhKdPn8LGxoYbLq1tqC3+vXv34vLly7UO5czLy4O+vn6Nb7qtrKy4kXd5eXk84VfHV8e9Ko1CoUBxcXGtY51DQkK4Ty4ZDG0hOzsbtra2je1Gragl/uzsbCxYsABRUVE1vpZqbIKCgrBo0SJuv7CwEPb29sjOzoZUKm1Ezxi6iEKhgJ2dHe+LRm1DLfEnJSWhoKAA3bt358IqKyvx22+/YevWrTh58iTKysrw5MkTXumfn5/PfaQgk8m4yRdejK+Oq/77cg9Bfn4+pFJpnV84icXiWvvNpVIpEz+j0dDmV061XkYGDRqE1NRU3hdvPXr0wEcffcT9r6enx/s45ebNm8jKyoJcLgdQ9VFPamoq75vuqKgoSKVS7qsyuVxe4wOXqKgozgaDwdAADW0xfHlstq+vL9nb29OZM2fo0qVLJJfLSS6Xc/EVFRXk5uZGQ4cOpeTkZIqMjCQLCwtu1hIiort375JEIqHAwEBKT0+nbdu2kUgkosjISJX9KiwsJABUWFjY0EtkMNSmKTx/Gh/eu2nTJgiFQowbNw6lpaXw9vbG9u3buXiRSISjR4/Cz88PcrkcRkZGmDZtGlavXs2lcXJywrFjx7Bw4UKEhobC1tYW3333Hby9vTXtLoPxWp4/f85N8lpSXon7j5/D1kwCAz0ROnbsyJvxpynRbIf3KhQKmJqaorCwkL3zMxrE5cuX4enpWWtcUlISrw2smqbw/DXKZB4MRlOiY8eOSEpKAgDcLniKBXuTETrJA86WJujYsWMje1d/mPgZjNcgkUi40l0/pxDimGdwdfeAWxvTRvasYTDxMxqd5vpOre0w8TManRs3bqj9Ts1oOEz8WoiulYTN9Z1a22Hi10I0XRJqe2bSXN+ptR0mfi1E0yWhrmUmDNVg4tcyMv4qQlFpBfSt2gEA9AXPIJY9g76VM/QtjXH3cTnwuBBG4hZwaq3awiXanploGpY5qQYTvxaR8VcRBqyPqTUuYF9yjbCzS7xUygA0Xa3W5nf0jL+KcPHSJUwc7lVr/L4TMXB191Ar82yuMPFrEUWlVfMYbp7oAWfLqnXaqkquYtiaGcJAr2r5qtsFzxCwL5lL/7bR1nf06sxTWV4C2bTNtaZZEvUXhDHnAKieeTZXmPi1EGdLY56Qejg2ni8vU/1aUs3tgme8v9U0Rsla7de/J7+j1ZmntsDEz1CZN/Fa8iYyE23OPLUJJn6Gymj6teRNtXFoEm2u6TQUJn6GypRWlkBokAORgQWEBlXilxgALiYAUMilExk8g9AgB6WVJQDqbgfQ9jaOppA5NQQmfobKPCi6ByOnLfhX4uvTGjkBD4o84Amr16bV1mq6tmdODYWJXwNoql+5umTNUNzkStbayFCoVrICmq222hg5oChjPkIneqCdZd3+3Sl4hgX7kmEzwOGV9rQdTdd0tA0mfg2gqUEvmi5ZNV1tFYsMoCxpAydpB7ia1/2QK0sKoSz5E2KRds3wrC5vqqajLTDxawBNDXrRdMna3KutL6PpmlNzr+kw8WsATQ16eVMlq7a+U2saTZfUzb2mw8TfQJpzV9DLFJdXAgCu5fzvfbeumkRj0NxLak3DxN8AtL0rSNPV4Dv/X9TLD6aqdH4j8dt9vJp7Sa1pmPgbgKbfqTVdsmq6Gjy0c9WKSu0sjWH40rW9eA+AxqnpaHvNRNtg4m8Amu4K0nTJqulqcCsjfUzqZV9r3MvtCqqgazUTbUO3r76BZBRmvJGStY2JELn37gAAsh8VY/2pm1gytAPsWhnCydkFhoYSlUpWba8G61rNRNtg4m8AxUWtUJQxX+X07Ye1e2V8dcl6+fLlGt+jL9lZ9TcpKQluzs1jQkszfVsUZczH/AHOnDBLK5QoUJTAUmoAcYuqpSSzHz3H+qg/3nrNpLm/RjDxNwAfd0foCYdpvKR5cdxAbSMGVUXbH977DyugLGmD0BPFAIpfii16ab8NWknqfjV4EzT31wi1vA0LC0NYWBgyMzMBAJ07d8bKlSsxfPhwAICXlxdiY2N5x3z88cfYsWMHt5+VlQU/Pz+cPXsWxsbGmDZtGkJCQtCixf9ciYmJwaJFi5CWlgY7OzusWLEC06dPr+clvjk0XdJU8+K4gYag7Q+vtlfTtd2/hqLWr21ra4t169ahffv2ICLs3LkTo0aNwpUrV9C5c2cAwOzZs3mLbr44rr2yshI+Pj6QyWSIj49Hbm4upk6dCj09PaxduxYAkJGRAR8fH/j6+mL37t2Ijo7GrFmzYG1tzRbqVBNtf3jfVOapKbTdv4ailvhHjBjB21+zZg3CwsJw/vx5TvwSiQQymazW40+dOoXr16/j9OnTsLKygoeHBz7//HMsW7YMn332GfT19bFjxw44OTlhw4YNAIBOnTrh3Llz2LRp0yvFX1paitLSUm5foVCoc2kN4sUPe24XPEVp3m1cTzVGWb5Jo04Y2VQeXm29f82detfzKisrceDAARQVFUEul3Phu3fvxq5duyCTyTBixAh8+umn3I+XkJAAd3d3WFn9r8XW29sbfn5+SEtLQ7du3ZCQkIDBgwfzzuXt7Y2AgIBX+hMSEoJVq1bV93IaRG0f9kx8oYGusWez1TSaFquu3T9tQW3xp6amQi6Xo6SkBMbGxjh06BBcXV0BAB9++CEcHBxgY2ODq1evYtmyZbh58yYOHjwIAMjLy+MJHwC3n5eX98o0CoUCxcXFMDQ0rNWvoKAgLFq0iNtXKBSws7NT9/LqhaYa6JoKmharrt0/bUFt8Xfo0AHJyckoLCzETz/9hGnTpiE2Nhaurq6YM2cOl87d3R3W1tYYNGgQ7ty5g3btXt3N1VDEYjHEYvEbPUddaKqBrqmgabHq2v3TFtQWv76+PpydnQEAnp6euHjxIkJDQ/HNN9/USNu7d28AwO3bt9GuXTvIZDIkJvJHdOTn5wMA104gk8m4sBfTSKXSOkt9xtuFibV50OC+HaVSyWtoe5Hk5GQAgLW1NQBALpdjzZo1KCgogKWlJQAgKioKUqmUe3WQy+U4fvw4z05UVBSvXYGhHqxBrWE02/tHarB8+XKKjY2ljIwMunr1Ki1fvpwEAgGdOnWKbt++TatXr6ZLly5RRkYGHT58mNq2bUv9+vXjjq+oqCA3NzcaOnQoJScnU2RkJFlYWFBQUBCX5u7duySRSCgwMJDS09Np27ZtJBKJKDIyUh1XqbCwkABQYWGhWsc1R5KSkghArVtSUlJju/dGSb3/hByWHaXU+0/qbaM+968pPH9qlfwFBQWYOnUqcnNzYWpqii5duuDkyZMYMmQIsrOzcfr0aWzevBlFRUWws7PDuHHjsGLFCu54kUiEo0ePws/PD3K5HEZGRpg2bRpvXICTkxOOHTuGhQsXIjQ0FLa2tvjuu+9YH38DYA1qDaO53j8BEVFjO/EmUCgUMDU1RWFhIaRSaWO7w2gkruUU4u9bzuHo/Hff6riGpvD8CRvbAQaD0Tgw8TMYOgoTP4OhozDxMxg6StP6AJnBUIFm2y+vYZj4Gc0O9qGQajDxM5odzbVfXtMw8TOaHezbA9VgDX4Mho7CxM9g6ChM/AyGjsLEz2DoKEz8DIaOwsTPYOgoTPwMho7CxM9g6ChM/AyGjsLEz2DoKEz8DIaOwsTPYOgoTPwMho7CxM9g6ChM/AyGjsLEz2DoKEz8DIaOopb4w8LC0KVLF0ilUkilUsjlcpw4cYKLLykpgb+/P8zNzWFsbIxx48bVWHE3KysLPj4+kEgksLS0RGBgICoqKnhpYmJi0L17d4jFYjg7OyMiIqL+V8hgMGpFLfHb2tpi3bp1SEpKwqVLlzBw4ECMGjUKaWlpAICFCxfiyJEjOHDgAGJjY/HgwQOMHTuWO76yshI+Pj4oKytDfHw8du7ciYiICKxcuZJLk5GRAR8fHwwYMADJyckICAjArFmzcPLkSQ1dMoPBAKDeKr21YWZmRt999x09efKE9PT06MCBA1xceno6AaCEhAQiIjp+/DgJhULKy8vj0oSFhZFUKqXS0lIiIlq6dCl17tyZd46JEyeSt7e3Wn41hVVSGc2XpvD81fudv7KyEnv37kVRURHkcjmSkpJQXl6OwYMHc2k6duwIe3t7JCQkAAASEhLg7u4OKysrLo23tzcUCgVXe0hISODZqE5TbaMuSktLoVAoeBuDwagbtcWfmpoKY2NjiMVi+Pr64tChQ3B1dUVeXh709fXRsmVLXnorKyvk5eUBAPLy8njCr46vjntVGoVCgeLi4jr9CgkJgampKbfZ2dmpe2kMhk6htvg7dOiA5ORkXLhwAX5+fpg2bRquX7/+JnxTi6CgIBQWFnJbdnZ2Y7vEYGg1as/br6+vD2dnZwCAp6cnLl68iNDQUEycOBFlZWV48uQJr/TPz8+HTCYDAMhkMiQmJvLsVfcGvJjm5R6C/Px8SKVSGBoa1umXWCyGWCxW93IYDJ2lwf38SqUSpaWl8PT0hJ6eHqKjo7m4mzdvIisrC3K5HAAgl8uRmpqKgoICLk1UVBSkUilcXV25NC/aqE5TbYPBYGgIdVoHly9fTrGxsZSRkUFXr16l5cuXk0AgoFOnThERka+vL9nb29OZM2fo0qVLJJfLSS6Xc8dXVFSQm5sbDR06lJKTkykyMpIsLCwoKCiIS3P37l2SSCQUGBhI6enptG3bNhKJRBQZGalWS2ZTaG1lNF+awvOnlvhnzJhBDg4OpK+vTxYWFjRo0CBO+ERExcXFNHfuXDIzMyOJREJjxoyh3Nxcno3MzEwaPnw4GRoaUuvWrWnx4sVUXl7OS3P27Fny8PAgfX19atu2LYWHh6t9YU3h5jOaL03h+RMQETVu3ePNoFAoYGpqisLCQkil0sZ2h6FjNIXnj43tZzB0FCZ+BkNHYeJnMHQUJn4GQ0dh4mcwdBQmfgZDR2HiZzB0FCZ+BkNHYeJnMHQUJn4GQ0dh4mcwdBQmfgZDR2HiZzB0FCZ+BkNHYeJnMHQUJn4GQ0dh4mcwdBQmfgZDR2HiZzB0FCZ+BkNHYeJnMHQUJn4GQ0dh4mcwdBQmfgZDR2HiZzB0FCZ+BkNHUUv8ISEh6NmzJ0xMTGBpaYnRo0fj5s2bvDReXl4QCAS8zdfXl5cmKysLPj4+kEgksLS0RGBgICoqKnhpYmJi0L17d4jFYjg7OyMiIqJ+V8hgMGpFLfHHxsbC398f58+fR1RUFMrLyzF06FAUFRXx0s2ePRu5ubnc9tVXX3FxlZWV8PHxQVlZGeLj47Fz505ERERg5cqVXJqMjAz4+PhgwIABSE5ORkBAAGbNmoWTJ0828HIZDAZHQ1b5LCgoIAAUGxvLhfXv358WLFhQ5zHHjx8noVBIeXl5XFhYWBhJpVIqLS0lIqKlS5dS586decdNnDiRvL29VfatKaySymi+NIXnr0Hv/IWFhQCAVq1a8cJ3796N1q1bw83NDUFBQXj+/DkXl5CQAHd3d1hZWXFh3t7eUCgUSEtL49IMHjyYZ9Pb2xsJCQl1+lJaWgqFQsHbGAxG3bSo74FKpRIBAQHo27cv3NzcuPAPP/wQDg4OsLGxwdWrV7Fs2TLcvHkTBw8eBADk5eXxhA+A28/Ly3tlGoVCgeLiYhgaGtbwJyQkBKtWrarv5TAYOke9xe/v749r167h3LlzvPA5c+Zw/7u7u8Pa2hqDBg3CnTt30K5du/p7+hqCgoKwaNEibl+hUMDOzu6NnY/BaOrUq9o/b948HD16FGfPnoWtre0r0/bu3RsAcPv2bQCATCZDfn4+L031vkwme2UaqVRaa6kPAGKxGFKplLcxGIy6UUv8RIR58+bh0KFDOHPmDJycnF57THJyMgDA2toaACCXy5GamoqCggIuTVRUFKRSKVxdXbk00dHRPDtRUVGQy+XquMtgMF6FOq2Dfn5+ZGpqSjExMZSbm8ttz58/JyKi27dv0+rVq+nSpUuUkZFBhw8fprZt21K/fv04GxUVFeTm5kZDhw6l5ORkioyMJAsLCwoKCuLS3L17lyQSCQUGBlJ6ejpt27aNRCIRRUZGquxrU2htZTRfmsLzp5b4AdS6hYeHExFRVlYW9evXj1q1akVisZicnZ0pMDCwxg3IzMyk4cOHk6GhIbVu3ZoWL15M5eXlvDRnz54lDw8P0tfXp7Zt23LnUJWmcPMZzZem8PwJiIgaq9bxJlEoFDA1NUVhYSF7/2e8dZrC88fG9jMYOgoTP4OhozDxMxg6ChM/g6GjMPEzGDoKEz+DoaMw8TMYOgoTP4OhozDxMxg6ChM/g6GjMPEzGDoKEz+DoaMw8TMYOgoTP4OhozDxMxg6ChM/g6GjMPEzGDoKEz+DoaMw8TMYOgoTP4OhozDxMxg6ChM/g6GjMPEzGDoKEz+DoaMw8TMYOkq9l+huijwoLMS+5CQUPVPgVmpSrWnau3vCyFgKmakBRrt1g2GL2lcFZjCaOmqV/CEhIejZsydMTExgaWmJ0aNH4+bNm7w0JSUl8Pf3h7m5OYyNjTFu3Lgay21nZWXBx8cHEokElpaWCAwMREVFBS9NTEwMunfvDrFYDGdnZ0RERNTvCl9gX3ISfshcgH1/fYrL1r/Uuu3761P8kLkAa1M+xm8Z1xt8TgZDW1Gr5I+NjYW/vz969uyJiooK/Otf/8LQoUNx/fp1GBkZAQAWLlyIY8eO4cCBAzA1NcW8efMwduxYxMXFAQAqKyvh4+MDmUyG+Ph45ObmYurUqdDT08PatWsBABkZGfDx8YGvry92796N6OhozJo1C9bW1vD29q73xU708AQQqnLJ38/Jtd7nYjC0noas8llQUEAAKDY2loiInjx5Qnp6enTgwAEuTXp6OgGghIQEIiI6fvw4CYVCysvL49KEhYWRVCql0tJSIiJaunQpde7cmXeuiRMnkre3d52+lJSUUGFhIbdlZ2dr/SqpjOZLU1ilt0ENfoWFhQCAVq1aAQCSkpJQXl6OwYMHc2k6duwIe3t7JCQkAAASEhLg7u4OKysrLo23tzcUCgXS0tK4NC/aqE5TbaM2QkJCYGpqym12dnYNuTQGo9lTb/ErlUoEBASgb9++cHNzAwDk5eVBX18fLVu25KW1srJCXl4el+ZF4VfHV8e9Ko1CoUBxcXGt/gQFBaGwsJDbsrOz63tpDIZOUO/Wfn9/f1y7dg3nzp3TpD/1RiwWQywWN7YbDEaToV7inzdvHo4ePYrffvsNtra2XLhMJkNZWRmePHnCK/3z8/Mhk8m4NImJiTx71b0BL6Z5uYcgPz8fUqkUhoaqdb0REQBAoVCod3EMhgaofu6qn0OtRJ0GAqVSSf7+/mRjY0N//PFHjfjqBr+ffvqJC7tx40atDX75+flcmm+++YakUimVlJQQUVWDn5ubG8/2Bx988MoGv5epbvBjG9sac8vOzlZHYm8VAZHqWdPcuXPx3//+F4cPH0aHDh24cFNTU65E9vPzw/HjxxEREQGpVIr58+cDAOLj4wFUdfV5eHjAxsYGX331FfLy8jBlyhTMmjWL19Xn5uYGf39/zJgxA2fOnME///lPHDt2TOWuPqVSiQcPHsDExAQCgaDOdAqFAnZ2dsjOzoZUKlX1VjB7zN4r7RERnj59ChsbGwiFWjqQVp2cAnXkbuHh4Vya4uJimjt3LpmZmZFEIqExY8ZQbm4uz05mZiYNHz6cDA0NqXXr1rR48WIqLy/npTl79ix5eHiQvr4+tW3blncOTaLpLhlmj9lrKqj1zk8qVBIMDAywbds2bNu2rc40Dg4OOH78+CvteHl54cqVK+q4x2Aw1EBL6yMMBuNNo/PiF4vFCA4O1lg3IbPH7DUV1GrwYzAYzQedL/kZDF2FiZ/B0FGY+BkMHYWJn8HQUZj4GQwdhYkfVR8NVX9O3BBu3bqF6Oho3L59WwNe/Y9Vq1bhr7/+0qhNBkOnxP/o0SO8//77sLe3h5+fHyorK7npwdq0aYM+ffogNzdXJVshISGIjo4GADx+/BiDBw9Ghw4dMGTIEHTo0AHDhw/HkydP1PJPoVDU2AoLC7FmzRrcvXuXC1OV8vJyLF26FM7OzujVqxd++OEHXnx+fj5EIpFaPr4NNJUZV/Py/JANJSIigpvIpknTyMOL3yozZswgNzc32rJlC/Xv359GjRpFXbp0oXPnzlF8fDz17NmTpk6dqpItW1tbunz5MhERzZo1i7p160aXL1+m4uJiSk5OpnfeeYdmzpypln9CobDWTSAQ8P6qSnBwMFlZWdHXX39Nn3zyCZmamtKcOXO4+Ly8PBIIBGr5mJaWRn5+fuTh4UEymYxkMhl5eHiQn58fpaWlqWXr4cOHNG7cOLKzsyNfX1+qqKigmTNnctcpl8vpwYMHKts7ceIEXb16lYiIKisrafXq1WRjY0NCoZDatGlDISEhpFQq1fKxNvT09Oj69esNttPY6JT4ra2tKS4ujoj+9+CfOnWKiz937hy1adNGJVtisZgyMzOJiMjR0ZGbx7CaS5cukbW1tVr+tWnThnx8fOjMmTMUExNDMTExdPbsWRKJRBQeHs6FqYqzszMdOXKE27916xY5OzvT9OnTSalUUl5enlqZyfHjx0lfX5/eeecdCg4Opu3bt9P27dspODiY+vTpQ2KxmCIjI1W2p8nMmIioQ4cO9NtvvxER0dq1a8nc3Jw2btxIJ06coM2bN5OVlRWtW7dOZXtmZma1bgKBgExNTbn9popOiV8ikXCCJarKwVNTU7n9u3fvkpGRkUq2XFxc6OjRo0RE5OTkxGUq1Vy5coWkUqla/j18+JBGjx5NAwYMoPv373PhLVq0ULtUJSIyNDSkjIwMXtj9+/fJxcWFPvroI8rJyVFL/F26dKFPP/20zvjg4GByd3dX2Z4mM2Oiqgz53r17RETk5uZG+/fv58UfPXqUnJ2dVbZnbGxMPj4+FBERwW3h4eEkEolozZo1XFhTRafE37VrV9q6dSsRVZViJiYmtGHDBi4+LCysxiQidfH1119Tp06d6NatW7RhwwaSy+V0+/ZtIqrKRLy8vOj999+vl5/bt28nGxsb+u9//0tE9Re/k5MTnT59ukZ4Tk4Oubi40JAhQ9QSv4GBAd24caPO+Bs3bpCBgYHK9jSZGRNVZSbVk8ZYWVlxr2XV/PHHH2RoaKiyvVu3bnG1j6dPn3Lh9f09tA2dEv+uXbtIJBKRs7MzicViOnDgANnY2NCECRNo0qRJpK+vz2UOqjB//nzS09Ojjh07koGBAQmFQtLX1yehUEg9evSoMY+BOqSlpVHXrl3pgw8+qPfDNnPmTJoxY0atcffv3ydnZ2e1xN+xY0deZvkyGzZsoA4dOqhsT5OZMRHR3Llz6e9//ztVVFTQnDlzaNasWbx3/Pnz55NcLlfZHhFReXk5LV26lNq1a0fnzp0jIib+Jsu5c+do/fr1XHUzLS2NpkyZQuPGjatXFe769ev01Vdfka+vL82ZM4eCg4Pp1KlTGmlYKi0tpYULF5KHhwfdvXtX7eMzMzNf+Q6ek5Oj1jXv37+fWrRoQSNGjKDQ0FDau3cv7d27l0JDQ2nkyJGkr6/Pm8LtdWg6M37y5An16NGDnJ2dacqUKWRgYEAODg40ZMgQcnJyIlNTUzp//rzK9l4kOjqa7O3tKSgoiPT09JqF+NlXfQy1iI+Px7///W8kJCRw3XEymQxyuRwLFiyAXC5Xy15cXBzOnz8PuVyOPn364Pr161i3bh2eP3+OESNGYNq0aWrZKy8vx/fff48jR47g7t27UCqVsLa2Rt++feHn58ebcFZdHj58iNmzZ+Ps2bM4f/48byq7pggTP6oG0fj7+6N169ZqH1tUVISkpCTk5uZCKBSibdu26N69+yvnDVSXgQMHIjw8HA4ODvU6/syZMzh37hzPx5EjR6J9+/Ya85HR9NAp8dc2QIaIYGFhgXPnzqFjx44AoNJEj0qlEsuXL8fWrVtRWlrK2QIAe3t7bNmyBSNGjFDLv19//bXW8LFjxyI0NJRbhWjkyJEq2SsoKMCIESNw6dIlCIVCKJVKdOvWDTk5Ofjzzz+xaNEifPXVV2r5WBsREREYM2YMTE1N63V8ZWUlb7BRYmIi56smJs0gIiiVynoNaKqsrMS9e/fg6OgIoVCI0tJSHD58GEqlEgMGDKixuEyTotFeOBoBTQ6iWbZsGXXq1ImOHDlCUVFR1K9fP/ryyy8pPT2dPv30UxKLxXTy5Em1/HvRj7o2dRroJk6cSKNHj6bCwkIqKSmhefPmcf3m0dHRZG5uTps3b1bLx9qo76CXzMxM8vT0JJFIRMOGDaPCwkIaPHgwd61OTk508+ZNle2Vl5fTJ598Qv369aOVK1cSEdFXX31FEomE9PX1aerUqdx6kKqQkpJC1tbWJBQKyc3NjbKyssjNzY2MjIzI2NiYzMzMKDExUe3r1hZ0SvyaHERjbW3NDSghqmo9NzY25tYeWL16tdoty8OGDSMfHx/emgZE9W9dlkqldO3aNW7/2bNnpKenx808++OPP6rVOq/pQS/jxo2j/v3705EjR2jChAnUt29f8vLyovv379ODBw/I29ubRo8erbK9FStWkJWVFS1atIhcXV3J19eX7OzsaNeuXbRz505q06YNffnllyrb8/b2pvfff59SU1NpwYIF1KlTJxo/fjyVlZVReXk5TZ48mQYPHqyyPW1Dp8SvyUE0JiYmdOfOHW6/srKSWrRowXXvpaWlkUQiUdvHjRs3kp2dHW9kXn3Fb2FhwTvu+fPnJBQK6eHDh0REdOfOHRKLxSrb0/SgFwsLC7py5QoRVbXUCwQC+v3337n4pKQksrKyUtle27Ztuft269YtEgqFtHfvXi5+3759anUdmpmZcTWa58+fk0gkogsXLnDx165dI3Nzc5XtaRs6Jf5qNDGIpk+fPvTFF19w+3v27KGWLVty+6mpqfUe+nnlyhVydXWlOXPmUFFRUb3FP2bMGBo3bhw9e/aMysrKKCAggDfC7fz58ySTyVS2p+lBLyYmJlwXZnXmmZyczDufiYmJyvYMDAwoKyuLt5+ens7t3717Vy17LVu25FamKisrI5FIRElJSVx8enp6kx7eq1Nf9VXj5+eHqKgofPnll/jwww/rZWP16tX4/PPP0bt3b/Tv3x9TpkxBcHAwFx8ZGYlu3brVy7aHhwcuXboEgUAADw+Peq/3tn79eiQnJ6Nly5YwMjJCREQEwsLCuPj09HRMnz5dZXvOzs6Ij4+HTCaDh4cH4uLi6uVXNZ07d+a+NNy5cyfMzc2xd+9eLn7Pnj1wcXFR2Z6pqSnvS8ru3bvDxMSE2y8tLVWrF8bT0xNffvklcnJyEBISAicnJ2zdupWL37JlC7dCdZOksXOfxqShg2iSk5PpX//6Fy1evJg3Jl2THD58mAICAmq0A6hKUVERnTp1io4cOUJ//vmnxvzSxKCXyMhIMjAwIH19fTIwMKDY2FhycXGhXr160TvvvEMikYj27dunsr0BAwa88rVj//795OnpqbK9xMREMjc3J6FQSBYWFnTt2jXq3bs3yWQysrGxIUNDw1qHTzcVdKqrj6FZNDHoJTMzE0lJSfD09ISjoyPy8/Oxbds2PH/+HD4+PhgwYIDKtv744w/o6enBycmp1vj//ve/aNGiBSZMmKCyzaKiIty4cQMdOnSAsbExSkpKsHv3bhQXF3NzNzRVdFL8iYmJNUao9enTBz179tSILblcjl69emnUZ6BqkotvvvkGK1eu1Ep7jKaFTom/oKAA48aNQ1xcHOzt7bkBGvn5+cjKykLfvn3x888/w9LSUiVbY8eORXx8fINtqUpKSgq6d++OyspKrbSnLbw8aOjChQsoLS2FXC6Hnp6eWraICJmZmbCzs0OLFi1QVlaGQ4cOobS0FO+99169RoVqDY34yvHWGTduHMnl8lo/S71x4wb16dNH5c9wNWmrmpSUlFdu+/btU2uQj6btlZWVUWBgILVr14569uxJ33//PS9e3clBNG3vwYMH1LdvXxKJRNSvXz969OgR+fj4cIOGXFxc1JoZ6MaNG+Tg4EBCoZCcnZ3p7t275OnpSUZGRiSRSKh169Zcb0BTRKfEb2xsXOMb7xe5dOkSGRsbv3Vb1bxqhF99pvHStD1NTwumaXtTpkyhPn360K+//koTJ06kPn360N/+9je6f/8+3bt3j/r27Uv+/v4q2xs1ahSNHDmSrl69SgEBAdSpUycaNWoUlZWVUUlJCY0YMYImT56ssj1tQ6fEb25u/soRfGfPnlV50IYmbb1o8/vvv6fMzMxat2PHjqklVk3b0/S0YJq29+JkHg8fPiSBQMBrjY+Ojqa2bduqbO/FQUjPnj2rMQgpLi6O7O3tVbanbeiU+OfOnUsODg508OBBbogrEVFhYSEdPHiQHB0dad68eW/dVjVDhw6lzz//vM745ORktUpCTdvT9LRgmrb38iAfIyMjunXrFrd/7949tWbyMTQ05KYFI6qq7VXP1kRElJWVpdYISW1Dp8RfUlJCvr6+3Gw7BgYGvBl4/Pz8uLH59bUlEAjUtlXNwYMH6ccff6wz/tGjR2oNn9W0PU1PC6Zpe/b29rzht8uWLeOGMhNVZXatW7dW2V67du14Jf327dtJoVBw+0lJSWqNkNQ2dKq1vxqFQoGkpCRe95ynp6dKn/LWZuvSpUvIz88HAFhZWaFHjx71sqXtzJo1C0SE77//vkZcTk4OvLy8cPfuXZV7DzRtb9SoURg4cCAWLFhQa/y2bdtw8OBBbr2F1+Hr64sePXpg1qxZtcavW7cOv//+O44dO6aSPW1DJ8X/JtHX10dKSgo6derU2K5onHv37uHGjRvw9vauNf7BgweIiopSefYdTdt7HYmJiZBIJBobkpuRkQEDAwNYW1trxN7bRufEX1xcjKSkJLRq1Qqurq68uJKSEuzfvx9Tp059rZ1FixbVGh4aGorJkyfD3NwcALBx40aVfbt8+TLMzMy4EWo//vgjduzYgaysLDg4OGDevHmYNGmSyvYAYOvWrUhMTMR7772HSZMm4ccff0RISAiUSiXGjh2L1atXo0WLFmrZZDQTGu+N4+1z8+ZNcnBw4Lq4+vXrRzk5OVy8Oq3LAoGAPDw8yMvLi7cJBALq2bMneXl50YABA9Tyr0uXLhQVFUVERN9++y0ZGhrSP//5TwoLC6OAgAAyNjau0Rf+Kj7//HMyMTGhcePGkUwmo3Xr1pG5uTl98cUXtHbtWrKwsOAmvVCV0tJS2rdvHwUEBNCkSZNo0qRJFBAQQPv371droowXyc7O5n0lWE1ZWVmNxVDqg5OTU73647Ozs3nfQ/z222/04Ycf0rvvvksfffQRxcfHN9i3xkSnxD969Gjy8fGhP//8k27dukU+Pj7k5OTEteiqI/6QkBBycnKi6OhoXnhDpnU2NDTk5rHv1q0b/ec//+HF7969m1xdXVW2165dO/r555+JqKqxSyQS0a5du7j4gwcPqrWIxa1bt6ht27ZkYGBA/fv3pwkTJtCECROof//+ZGBgQM7OzrzW9dfx4MED6tmzJwmFQhKJRDRlyhReJqBuV19oaGitm0gkoqCgIG5fVXr16sV1Rf7yyy8kFApp5MiRtGzZMhozZgzp6enxuiqbGjolfktLS24tNyIipVJJvr6+ZG9vT3fu3FH7YUtMTCQXFxdavHgxlZWVEVHDxG9ubk6XLl3ifH3x23Yiotu3bzeoq0pPT483s09mZqZaE44MHjyYRo0axevarKawsJBGjRpFQ4cOVdne1KlTqXfv3nTx4kWKiooiT09P6tGjBz169IiI1B/kIxAIyNbWlhwdHXmbQCCgNm3akKOjIzk5Oalsz8jIiPvas3fv3jWW+tqyZQt169ZNZXvahk6J38TEpNa55vz9/cnW1pZ+++03tcRPRPT06VOaOnUqdenShVJTUxs0p/vkyZO5xT3Hjx9PK1as4MWvXbtWreWwnJyc6MSJE0RUtVqNUCjkLWF17NgxcnR0VNmeoaEhb0Wdl7l69apamZONjQ2va6561JyHhwc9fPhQ7cz4448/Jg8Pjxq/cX0zZFNTU0pJSSGiqsy4+v9qbt++Xa/ZmrQFnRJ/z5496f/+7/9qjfP396eWLVuqLf5q9uzZQ1ZWViQUCust/pycHHJ0dKR+/frRokWLyNDQkN59912aPXs29evXj/T19enYsWMq21uxYgVZWFjQrFmzyMnJiZYvX0729vYUFhZGO3bsIDs7O1q4cKHK9qytrV9Zzf3111/VWpzUyMioxrt4eXk5jR49mrp06UJXr15V+/c4ePAg2dnZ0ZYtW7iw+op/5MiRtHz5ciKqms/v5VeGb7/9ltq3b6+2XW1Bp8S/du1aGj58eJ3xfn5+ai9Z/SLZ2dn0yy+/0LNnz+pt4/Hjx7Rs2TJydXXlJrpwcHCgDz/8kC5evKiWrcrKSlqzZg39/e9/p7Vr15JSqaQ9e/aQnZ0dmZub0/Tp09Xy9dNPPyUzMzPauHEjpaSkUF5eHuXl5VFKSgpt3LiRWrVqRcHBwSrbc3d3r3WFn+oMwN7evl6Z8f3792ngwIE0bNgwys3Nrbf4r1+/Tubm5jR16lT6/PPPydjYmCZPnkxr1qyhqVOnklgspvDwcLXtags6JX5Gw1m3bh1ZW1tzPSbVHwhZW1urNTMuEdHSpUvrbCMoLy+nkSNH1jszViqVtHbtWpLJZCQSiepdG7t9+zZNmjSJTExMuI+i9PT0qE+fPnTo0KF62dQWdK6fn6EZMjIyeCMk65o951VUVFTg+fPndY6GrKioQE5OTr1XKgKApKQknDt3DlOnToWZmVm97RARCgoKoFQq0bp1a7XnBdBKGjnzYTQjsrKy6B//+Aez10RgJT9DY2j7TEPabu9tw8Z1MlSmrrUEq7l79y6z14RgJT9DZYRCIQQCwSvXERAIBCqXhLpmT9vQyUU7GPXD2toaBw8ehFKprHW7fPkys9eEYOJnqIynpyeSkpLqjH9dKanr9rQN9s7PUJnAwEAUFRXVGe/s7IyzZ88ye00E9s7PYOgorNrPYOgoTPwMho7CxM9g6ChM/AyGjsLEz2DoKEz8zQgvLy8EBAQ0thsc2uYPgw8TP4NHWVlZY7vAeFs0xqeEDM0zbdo0AsDbbt++TTNmzCBHR0cyMDAgFxcX2rx5c43jRo0aRV988QVZW1tzc/rFxcVR165dSSwWk6enJx06dIgAcAtXEhGlpqbSsGHDyMjIiCwtLWny5MncVNe1+fPyunyMxoWJv5nw5MkTksvlNHv2bMrNzaXc3FwqKSmhlStX0sWLF+nu3bu0a9cukkgktG/fPu64adOmkbGxMU2ZMoWuXbtG165do8LCQmrVqhVNnjyZ0tLS6Pjx4+Ti4sIT/+PHj8nCwoKCgoIoPT2dLl++TEOGDOHWKqjNn4qKisa4NYw6YMN7mwmmpqbQ19eHRCKBTCbjwletWsX97+TkhISEBOzfvx8TJkzgwo2MjPDdd99BX18fALBjxw4IBAJ8++23MDAwgKurK3JycjB79mzumK1bt6Jbt25Yu3YtF/bDDz/Azs4Of/zxB1xcXGr1h6E9MPE3c7Zt24YffvgBWVlZKC4uRllZGTw8PHhp3N3dOeEDwM2bN9GlSxcYGBhwYb169eIdk5KSgrNnz8LY2LjGOe/cuQMXFxfNXghD4zDxN2P27t2LJUuWYMOGDZDL5TAxMcHXX3+NCxcu8NIZGRmpbfvZs2cYMWIEvvzyyxpxTXXhSl2Dib8Zoa+vz5tYIi4uDn369MHcuXO5sDt37rzWTocOHbBr1y6UlpZCLBYDAC5evMhL0717d/z8889wdHSsc6HPl/1haBesq68Z4ejoiAsXLiAzMxN//fUX2rdvj0uXLuHkyZP4448/8Omnn9YQcW18+OGHUCqVmDNnDtLT03Hy5EmsX78eQNU37ADg7++PR48e4YMPPsDFixdx584dnDx5Ev/4xz84wb/sj1KpfHMXz1AbJv5mxJIlSyASieDq6goLCwt4e3tj7NixmDhxInr37o2HDx/yagF1IZVKceTIESQnJ8PDwwOffPIJVq5cCQBcO4CNjQ3i4uJQWVmJoUOHwt3dHQEBAWjZsiWEQmGt/mRlZb25i2eoDfuen6ESu3fvxj/+8Q8UFhbC0NCwsd1haAD2zs+olf/7v/9D27Zt0aZNG6SkpGDZsmWYMGECE34zgomfUSt5eXlYuXIl8vLyYG1tjfHjx2PNmjWN7RZDg7BqP4Oho7AGPwZDR2HiZzB0FCZ+BkNHYeJnMHQUJn4GQ0dh4mcwdBQmfgZDR2HiZzB0lP8HipkQEIqqi8kAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "y='[OVERALL].Throughput(ops/sec)'\n",
+ "plot_variation(df_groups, max_pod_count, y)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAGNCAYAAAC2Wc0RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACYQklEQVR4nOzdd1gU19cH8O8uZekoSJUiEUUQFSUWNCpEBJUYTTCmqlhiCaiAsSXGGkOs2DXFiIkSW9SoWMCCxohRsResWCJSjAJKXeC8f/Du/FgXlDIsxfN5nn10Zu7OuXeBO2dn7tyREBGBMcYYY4ypjbSmK8AYY4wx9rrhBIwxxhhjTM04AWOMMcYYUzNOwBhjjDHG1IwTMMYYY4wxNeMEjDHGGGNMzTgBY4wxxhhTM07AGGOMMcbUjBMwxhhjjDE14wSMsVpGIpFg5syZNV2Nei82NhYSiQSxsbEvLTdz5kxIJBI8fvxYPRVjjL0WOAFjr42IiAhIJBKll7m5Oby8vLBv376arl6VXb16FTNnzsTdu3druiqsElatWoWIiIiarka51bX6MlbbcALGXjuzZ8/Gb7/9hl9//RWTJk1CWloa+vTpgz179tR01ark6tWrmDVrFidgdVRdS2jqWn0Zq200a7oCjKlb79698eabbwrLw4cPh4WFBX7//Xe88847NVizuqOgoABFRUXQ1tau6aqwl8jNzYW2tjakUv6uzVhtw3+V7LXXoEED6OrqQlNT+ftIVlYWJkyYAFtbW8hkMjg5OWHhwoUgIgBATk4OWrRogRYtWiAnJ0d435MnT2BlZYXOnTujsLAQABAQEAADAwPcuXMHvr6+0NfXh7W1NWbPni3s72XOnTuH3r17w8jICAYGBujRowdOnjwpbI+IiMAHH3wAAPDy8hIusb5qfNPWrVvh4uICHR0duLq6YseOHQgICECTJk2EMnfv3oVEIsHChQuxZMkSNG3aFDKZDFevXgUAHD58GF27doW+vj4aNGiAfv364dq1a0pxXtyngmJ8VUkSiQRBQUHYuHEjnJycoKOjA3d3dxw7dkzl/Q8fPsSwYcNgYWEBmUyGli1b4pdfflEp9++//6J///7Q19eHubk5QkJCkJeX99LP5kWPHz/GwIEDYWRkBFNTU4wfPx65ubnC9u7du6NNmzalvtfJyQm+vr5l7rtJkya4cuUKjh49KvzsPD09ART/Pn355Zdo1aoVDAwMYGRkhN69e+PChQtK+1CMadu0aROmTZuGxo0bQ09PD5mZmQDK97MGgKKiIixZsgQtW7aEjo4OLCwsMGrUKDx9+rRc9WWMlQ+fAWOvnYyMDDx+/BhEhNTUVCxfvhzPnz/HZ599JpQhIrz77rs4cuQIhg8fDjc3Nxw4cAATJ07Ew4cPER4eDl1dXaxfvx5dunTB119/jcWLFwMAAgMDkZGRgYiICGhoaAj7LCwsRK9evdCpUyfMnz8f+/fvx4wZM1BQUIDZs2eXWd8rV66ga9euMDIywqRJk6ClpYUffvgBnp6eOHr0KDp27Ihu3bph3LhxWLZsGb766is4OzsDgPBvaaKiovDhhx+iVatWCAsLw9OnTzF8+HA0bty41PLr1q1Dbm4uRo4cCZlMBhMTExw8eBC9e/fGG2+8gZkzZyInJwfLly9Hly5dcPbs2VKTrvI4evQoNm/ejHHjxkEmk2HVqlXo1asXTp06BVdXVwBASkoKOnXqJCRsZmZm2LdvH4YPH47MzEwEBwcDKE6Ue/Togfv372PcuHGwtrbGb7/9hsOHD1eoTgMHDkSTJk0QFhaGkydPYtmyZXj69Cl+/fVXAMCgQYPw+eef4/Lly0IdAeD06dO4ceMGpk2bVua+lyxZgrFjx8LAwABff/01AMDCwgIAcOfOHezcuRMffPABHBwckJKSgh9++AHdu3fH1atXYW1trbSvOXPmQFtbG19++SXy8vKgra1doZ/1qFGjEBERgaFDh2LcuHFITEzEihUrcO7cOfz999/Q0tJ6aX0ZY+VEjL0m1q1bRwBUXjKZjCIiIpTK7ty5kwDQt99+q7R+wIABJJFI6NatW8K6qVOnklQqpWPHjtHWrVsJAC1ZskTpfUOGDCEANHbsWGFdUVER+fn5kba2NqWlpQnrAdCMGTOE5f79+5O2tjbdvn1bWJeUlESGhobUrVs3YZ0i9pEjR8r1ebRq1YpsbGzo2bNnwrrY2FgCQPb29sK6xMREAkBGRkaUmpqqtA83NzcyNzen//77T1h34cIFkkqlNHjwYKX2l9ynwowZM+jFbkjxczlz5oyw7t69e6Sjo0PvvfeesG748OFkZWVFjx8/Vnr/Rx99RMbGxpSdnU1EREuWLCEAtGXLFqFMVlYWOTo6luvzUtTx3XffVVr/xRdfEAC6cOECERGlp6eTjo4OTZ48WancuHHjSF9fn54/f/7SOC1btqTu3burrM/NzaXCwkKldYmJiSSTyWj27NnCuiNHjhAAeuONN4S2K5T3Z/3XX38RANq4caPS+/fv36+yvqz6MsbKhy9BstfOypUrERMTg5iYGGzYsAFeXl4YMWIEtm/fLpTZu3cvNDQ0MG7cOKX3TpgwAUSkdNfkzJkz0bJlSwwZMgRffPEFunfvrvI+haCgIOH/ijM3+fn5OHjwYKnlCwsLER0djf79++ONN94Q1ltZWeGTTz7B8ePHhUtMFZGUlIRLly5h8ODBMDAwENZ3794drVq1KvU9/v7+MDMzE5YfPXqE8+fPIyAgACYmJsL61q1bo2fPnti7d2+F66Xg4eEBd3d3YdnOzg79+vXDgQMHUFhYCCLCH3/8gb59+4KI8PjxY+Hl6+uLjIwMnD17FkDxz9LKygoDBgwQ9qenp4eRI0dWqE6BgYFKy2PHjhX2DwDGxsbo168ffv/9d+GycmFhITZv3ixc/qwMmUwmjOEqLCzEf//9BwMDAzg5OQltLGnIkCHQ1dUVlivys966dSuMjY3Rs2dPpc/U3d0dBgYGOHLkSKXawBhTxQkYe+106NAB3t7e8Pb2xqeffoqoqCi4uLgIyRAA3Lt3D9bW1jA0NFR6r+KS3r1794R12tra+OWXX5CYmIhnz55h3bp1KuOaAEAqlSolUQDQvHlzACjzzsW0tDRkZ2fDyclJZZuzszOKiorw4MGD8jf+/ynq7+joqLKttHUA4ODgUOo+yqrb48ePkZWVVeG6AUCzZs1U1jVv3hzZ2dlIS0tDWloa0tPT8eOPP8LMzEzpNXToUABAamqqUE9HR0eVn0lp9a5InZo2bQqpVKr0sxs8eDDu37+Pv/76CwBw8OBBpKSkYNCgQRWKVVJRURHCw8PRrFkzyGQyNGrUCGZmZrh48SIyMjJUypf1cyrPz/rmzZvIyMiAubm5yuf6/Plz4TNljFUdjwFjrz2pVAovLy8sXboUN2/eRMuWLSu8jwMHDgAovuvs5s2bKgfB+qDkWZWKKi0hBSDcpFBRRUVFAIDPPvsMQ4YMKbVM69atK7Xv8iqtTb6+vrCwsMCGDRvQrVs3bNiwAZaWlvD29q50nO+++w7ffPMNhg0bhjlz5sDExARSqRTBwcHC51BSVX5ORUVFMDc3x8aNG0vdXvIMKGOsajgBYwzF0yoAwPPnzwEA9vb2OHjwIJ49e6Z0FiwhIUHYrnDx4kXMnj0bQ4cOxfnz5zFixAhcunQJxsbGSjGKiopw584d4awXANy4cQMAyhysbmZmBj09PVy/fl1lW0JCAqRSKWxtbQGUneSURlH/W7duqWwrbd3L9lFW3Ro1aiRcdmvYsCHS09NVypU8k1jSzZs3VdbduHEDenp6QhJgaGiIwsLCVyY39vb2uHz5MohI6TMqrd4v82JifevWLRQVFSn97DQ0NPDJJ58gIiIC8+bNw86dO/H5558r3YxRlrJ+ftu2bYOXlxfWrl2rtD49PR2NGjV65X4r8rNu2rQpDh48iC5durwykavI7xtjTBVfgmSvPblcjujoaGhrawuXGPv06YPCwkKsWLFCqWx4eDgkEgl69+4tvDcgIADW1tZYunQpIiIikJKSgpCQkFJjldwfEWHFihXQ0tJCjx49Si2voaEBHx8f/Pnnn0qXulJSUhAZGYm33noLRkZGACAkO6UlOi+ytraGq6srfv31VyHpBIrvPrx06dIr3w8Uj0Nzc3PD+vXrlWJevnwZ0dHR6NOnj7CuadOmyMjIwMWLF4V1jx49wo4dO0rdd1xcnNL4pgcPHuDPP/+Ej48PNDQ0oKGhAX9/f/zxxx+4fPmyyvvT0tKE//fp0wdJSUnYtm2bsC47Oxs//vhjudqpsHLlSqXl5cuXA4Dwu6AwaNAgPH36FKNGjVK5u/Zl9PX1S/3ZaWhoqExVsnXrVjx8+LBc+63Iz3rgwIEoLCzEnDlzVPZTUFCgVL+y6ssYK6cavAGAMbVS3AU5e/Zs+u233+i3336jRYsWkbu7OwGgKVOmCGULCwvJy8uLJBIJjRw5klauXEn9+vUjABQcHCyUmz59OkkkEjp8+LCw7ttvvyUAFBUVJawbMmQI6ejoULNmzWjw4MG0cuVKeueddwgAffXVV0r1xAt3QV6+fJn09fWpcePGNHfuXJo3bx698cYbJJPJ6OTJk0K5R48ekYaGBnXq1IkiIiLo999/p5SUlDI/j127dpFEIqHWrVtTeHg4TZ8+nUxMTMjV1ZWaNGkilFPcBblgwQKVfcTExJCmpia1aNGCFixYQLNnzyYzMzNq2LAh3blzRyj3+PFj0tfXpzfeeIOWLFlC3333Hdna2lK7du1KvQvS1dWVGjVqRLNnz6Z58+aRvb096ejoCHccEhElJyeTvb096enp0fjx4+mHH36gsLAw+uCDD6hhw4ZCOcUdj4o7FJcsWULu7u7UunXrCt0F2apVK+rbty+tXLmSPvvsMwJAn3zySanvcXV1JQDk7Oz80n2X9MUXX5BEIqE5c+bQ77//TocOHSKi4t8xABQQEEA//vgjjR07lkxMTOiNN95QugtRcRfk1q1bVfZd3p81EdGoUaMIAPXu3ZvCw8NpxYoVNH78eLK2tlbad1n1ZYyVDydg7LVR2jQUOjo65ObmRqtXr6aioiKl8s+ePaOQkBCytrYmLS0tatasGS1YsEAoFx8fT5qamkpTSxARFRQUUPv27cna2pqePn1KRMUJmL6+Pt2+fZt8fHxIT0+PLCwsaMaMGSpTDLyYgBERnT17lnx9fcnAwID09PTIy8uLTpw4odLGn376id544w3S0NAoV3KxadMmatGiBclkMnJ1daVdu3aRv78/tWjRQijzsgSMiOjgwYPUpUsX0tXVJSMjI+rbty9dvXpVpVx0dDS5urqStrY2OTk50YYNG8qchiIwMJA2bNhAzZo1I5lMRm3bti21LSkpKRQYGEi2trakpaVFlpaW1KNHD/rxxx+Vyt27d4/effdd0tPTo0aNGtH48eOFqRXKm4BdvXqVBgwYQIaGhtSwYUMKCgqinJycUt8zf/58AkDffffdS/ddUnJyMvn5+ZGhoSEBEJKr3NxcmjBhAllZWZGuri516dKF4uLiqHv37uVOwIjK97NW+PHHH8nd3Z10dXXJ0NCQWrVqRZMmTaKkpKRX1pcxVj4SonJMw80Yq5KAgABs27ZN6RJQbeXm5gYzMzPExMTUSHyJRILAwECVy791ydKlSxESEoK7d+/Czs6upqtTppr+WTP2OuMxYIy9puRyuXDzgUJsbCwuXLjAj5WpAiLC2rVr0b1791qTfPHPmrHah++CZOw19fDhQ3h7e+Ozzz6DtbU1EhISsGbNGlhaWmL06NE1Xb06JysrC7t27cKRI0dw6dIl/PnnnzVdJQH/rBmrfTgBY+w11bBhQ7i7u+Pnn39GWloa9PX14efnh++//x6mpqY1Xb06Jy0tDZ988gkaNGiAr776Cu+++25NV0nAP2vGah8eA8YYY4wxpmY8BowxxhhjTM04AWOMMcYYUzNOwBhjjDHG1IwTMMYYY4wxNeMEjDHGGGNMzTgBY4wxxhhTM07AGGOMMcbUjBMwxhhjjDE14wSMMcYYY0zNOAFjjDHGGFMzTsAYY4wxxtSMEzDGGGOMMTXjBIwxxhhjTM04AWOMMcYYUzNOwBhjjDHG1IwTMMYYY4wxNeMEjDHGGGNMzTgBY4wxxhhTM07AGGOMMcbUjBMwxhhjjDE14wSMMcYYY0zN6mwCFhAQAIlEAolEAldX15quTp0UHBwsfIYGBgai7TcgIEDU/anbzJkzIZFI8Pjx45quSqnmz5+PFi1aoKioqKarUuPkcjlsbW2xatUqtcbl/qfquP8pHfc/dUdV+586m4ABQKNGjfDbb7/h+++/V1ovl8uxbNkytG/fHoaGhjAwMED79u2xbNkyyOVyodzixYshkUhw8ODBMmP89NNPkEgk2LVrFwDA09NT6DRefLVo0UJ4X0REhNI2TU1NNG7cGAEBAXj48GGZ8VatWgWJRIKOHTuWWUYikSAoKOiln42np+crDwyDBg3Cb7/9hq5du7603IttKevVpEmTl+6Hlc93332HnTt3lrotMzMT8+bNw+TJkyGV1o4/30uXLkEikeDUqVNqj62lpYXQ0FDMnTsXubm5ao3N/U/ZuP+pu7j/Kb+q9j+a1VAntdHX18dnn32mtC4rKwt+fn44evQo3nnnHQQEBEAqlWL//v0YP348tm/fjqioKOjr6+Ojjz7CxIkTERkZCW9v71JjREZGwtTUFL179xbW2djYICwsTKWssbGxyrrZs2fDwcEBubm5OHnyJCIiInD8+HFcvnwZOjo6KuU3btyIJk2a4NSpU7h16xYcHR0r+rGUm7u7O9zd3XHw4EGcPXu2zHLdunXDb7/9prRuxIgR6NChA0aOHCmsq8vfOmuT7777DgMGDED//v1Vtv3yyy8oKCjAxx9/rP6KlSEqKgrm5uZo3759jcQfOnQopkyZgsjISAwbNkxtcbn/qRruf2on7n8qpkr9D9VRQ4YMIXt7e5X1I0eOJAC0fPlylW0rVqwgADR69GhhXY8ePcjY2Jhyc3NVyv/7778klUqVynfv3p1atmz5yvqtW7eOANDp06eV1k+ePJkA0ObNm1Xec+fOHQJA27dvJzMzM5o5c2ap+wZAgYGBL41f3noSFX+W+vr65SqroK+vT0OGDBFtfwpyuZzy8vIq9V6xzJgxgwBQWlpajcR/2WfbunVr+uyzz9RboVfo2rVrmfVVl3feeYe6du2qtnjc/3D/U124/6mYutz/1I5ziCL5999/sXbtWrz99tulniIPDAyEl5cXfv75Z/z7778AgM8++wwZGRmIiopSKb9p0yYUFRXh008/Fa2OitPtt2/fVtm2ceNGNGzYEH5+fhgwYAA2btwoWtya8PDhQ/Tv3x8GBgYwMzPDl19+icLCQmH73bt3IZFIsHDhQixZsgRNmzaFTCbD1atXAQCHDx9G165doa+vjwYNGqBfv364du2aUoyAgIBSLz0oxlGUlJOTg3HjxqFRo0YwNDTEu+++i4cPH0IikWDmzJkq+0hPT0dAQAAaNGgAY2NjDB06FNnZ2UplFJdjNm7cCCcnJ+jo6MDd3R3Hjh2rVD0lEgmysrKwfv164dJKQEAAACAxMREXL14s9WxJVlYWJkyYAFtbW8hkMjg5OWHhwoUgokrV99mzZwgODkaTJk0gk8lgbm6Onj17qpypSE9Px4kTJ+Dn5yes27RpE9zd3WFoaAgjIyO0atUKS5cuVXlfcHCwUF9HR0fMmzdPZVxJUVERli5dilatWkFHRwdmZmbo1asXzpw5o1SuZ8+eOH78OJ48eaLy2agL9z+1C/c/Fa8n9z/q7X/qVQK2b98+FBYWYvDgwWWWGTx4MAoKCrB//34AwPvvvw8dHR1ERkaqlI2MjIS9vT26dOmitL6wsBCPHz9WeWVlZb2yjnfv3gUANGzYUGXbxo0b8f7770NbWxsff/wxbt68idOnT79yn7VRYWEhfH19YWpqioULF6J79+5YtGgRfvzxR5Wy69atw/LlyzFy5EgsWrQIJiYmOHjwIHx9fZGamoqZM2ciNDQUJ06cQJcuXYTPsKICAgKwfPly9OnTB/PmzYOurq7SH+6LBg4ciGfPniEsLAwDBw5EREQEZs2apVLu6NGjCA4OxmeffYbZs2fjv//+Q69evXD58uUK1/G3336DTCZD165d8dtvv+G3337DqFGjAAAnTpwAALRr107pPUSEd999F+Hh4ejVqxcWL14MJycnTJw4EaGhoZWq7+jRo7F69Wr4+/tj1apV+PLLL6Grq6tyADpw4AAkEgl8fHwAADExMfj444/RsGFDzJs3D99//z08PT3x999/C+/Jzs5G9+7dsWHDBgwePBjLli1Dly5dMHXqVJX6Dh8+XOgo582bhylTpkBHRwcnT55UKufu7g4iEj6jmsD9T+3B/Q/3P3Wi/xH1PJwalXYJIDg4mADQuXPnynzf2bNnCQCFhoYK6z744APS0dGhjIwMYV1CQgIBoKlTpyq9v3v37gSg1NeoUaOEcopLAAcPHqS0tDR68OABbdu2jczMzEgmk9GDBw+U9nvmzBkCQDExMUREVFRURDY2NjR+/HiVNqAOXAIAQLNnz1Za37ZtW3J3dxeWExMTCQAZGRlRamqqUlk3NzcyNzen//77T1h34cIFkkqlNHjwYKVYpV0KUpzGV4iPjycAFBwcrFQuICCAANCMGTNU3jts2DClsu+99x6ZmpoqrVP87M+cOSOsu3fvHuno6NB7771X4XoSlf3ZTps2jQDQs2fPlNbv3LmTANC3336rtH7AgAEkkUjo1q1bFa6vsbHxK3/HiIgGDRpE3bt3F5bHjx9PRkZGVFBQUOZ75syZQ/r6+nTjxg2l9VOmTCENDQ26f/8+EREdPnyYANC4ceNU9lFUVKS0nJSURABo3rx5r6yzGLj/4f5HEYv7H+5/Ktv/1KszYM+ePQMAGBoalllGsS0zM1NY99lnnyE3Nxfbt28X1im+kZZ2+r9JkyaIiYlReQUHB6uU9fb2hpmZGWxtbTFgwADo6+tj165dsLGxUSq3ceNGWFhYwMvLC0DxqdoPP/wQmzZtUjptXpeMHj1aablr1664c+eOSjl/f3+YmZkJy48ePcL58+cREBAAExMTYX3r1q3Rs2dP7N27t8J1UZxx+OKLL5TWjx07tkL1/++//5R+dwDAw8MD7u7uwrKdnR369euHAwcOiPqz+++//6Cpqaky2Hjv3r3Q0NDAuHHjlNZPmDABRIR9+/ZVuL4NGjTAP//8g6SkpDLrU1RUhP379yt9i2/QoAGysrIQExNT5vu2bt2Krl27omHDhkpncLy9vVFYWChcjvjjjz8gkUgwY8YMlX28eHlHcUanJm/d5/6nduH+h/uf0tSm/qdeJWCKzk3REZamtE6yd+/eMDExUboM8Pvvv6NNmzZo2bKlyj709fXh7e2t8ip5G7jCypUrERMTg23btqFPnz54/PgxZDKZUpnCwkJs2rQJXl5eSExMxK1bt3Dr1i107NgRKSkpOHToUMU+iFpAcb28pIYNG+Lp06cqZR0cHJSW7927BwBwcnJSKevs7Fzuyy0v7lMqlarEetldXnZ2dkrLij+yF9vQrFkzlfc2b94c2dnZSEtLq1A9K+PevXuwtrZWOfA7OzsL20sqT33nz5+Py5cvw9bWFh06dMDMmTNVDl6nT59GWlqaUgf4xRdfoHnz5ujduzdsbGwwbNgw4eCjcPPmTezfvx9mZmZKL8XYktTUVADF45Ssra2VDoJlof8fa/Jix6hO3P/UHtz/cP9TF/qfOj0NxYsUP/CLFy/Czc2t1DIXL14EALi4uAjrtLS0MHDgQPz0009ISUnB/fv3cfPmTcyfP7/KderQoQPefPNNAED//v3x1ltv4ZNPPsH169eFbxKHDx/Go0ePsGnTJmzatEllHxs3bhSucdcVGhoa5S6rq6tb6Thl/cKL8c2vrDbQCwNLy0OMepqamqKgoADPnj176VkWMQwcOBBdu3bFjh07EB0djQULFmDevHnYvn27MCXC3r170aRJE6W/JXNzc5w/fx4HDhzAvn37sG/fPqxbtw6DBw/G+vXrARR/c+3ZsycmTZpUauzmzZtXuL6Kg1KjRo0q/F6xcP9Te3D/o4z7n9rZ/9SrM2C9e/eGhoaGypwxJf3666/Q1NREr169lNZ/+umnKCwsxObNmxEZGQmJRCL6XCcaGhoICwtDUlISVqxYIazfuHEjzM3NsXXrVpXXxx9/jB07diAnJ0fUutRm9vb2AIDr16+rbEtISECjRo2gr68PoPhbYXp6ukq5F7912dvbo6ioCImJiUrrb926VeX63rx5U2XdjRs3oKenJ3wLL289gbI7S8UZjhfbYG9vj6SkJJUzLwkJCcL2itYXAKysrPDFF19g586dSExMhKmpKebOnStsj4qKQp8+fVT2pa2tjb59+2LVqlW4ffs2Ro0ahV9//VX4rJs2bYrnz5+XehbH29tb+ObftGlTJCUllevOIsVnokiCagL3P/UD9z/c/yjKVXf/U68SMFtbWwwdOhQHDx7E6tWrVbavWbMGhw8fxvDhw1XGQHTp0gVNmjTBhg0bsHnzZnTv3l2ljBg8PT3RoUMHLFmyBLm5ucjJycH27dvxzjvvYMCAASqvoKAgPHv2TJgJW11u375d6q3q6mBlZQU3NzesX79eqdO4fPkyoqOjlf7omjZtioyMDOHMAlA8hmPHjh1K+/T19QUAlUdGLF++vMr1jYuLU7o9+sGDB/jzzz/h4+MjfIstbz2B4ktMpXWWHh4eAKByC3SfPn1QWFiodFAFgPDwcEgkEqVJPMtT38LCQmRkZCi9x9zcHNbW1sjLywMApKSk4OzZsyp3cf33339Ky1KpFK1btwYA4b0DBw5EXFwcDhw4oNLG9PR0FBQUACgem0NEpd759eJZgPj4eEgkEuEzqgnc/4iH+5/y4/7nf+pa/1OvLkECxT/0hIQEfPHFF9i/f7/wTfPAgQP4888/hduRXySRSPDJJ5/gu+++A1A8g3RZMjIysGHDhlK3vTgzdmkmTpyIDz74ABEREWjYsCGePXuGd999t9SynTp1gpmZGTZu3IgPP/xQWH/mzBl8++23KuU9PT3x1ltvAQDS0tJKLePg4PDKuYV69OgBAJW+5bqqFixYgN69e8PDwwPDhw9HTk4Oli9fDmNjY6U5cz766CNMnjwZ7733HsaNG4fs7GysXr0azZs3V/ojd3d3h7+/P5YsWYL//vsPnTp1wtGjR3Hjxg0AVRs75OrqCl9fX4wbNw4ymUzoZEv+4Za3noq6Hjx4EIsXL4a1tTUcHBzQsWNHvPHGG3B1dcXBgweVZlzu27cvvLy88PXXX+Pu3bto06YNoqOj8eeffyI4OBhNmzatUH2fPXsGGxsbDBgwAG3atIGBgQEOHjyI06dPC387e/fuhY6OjjBoW2HEiBF48uQJ3n77bdjY2ODevXtYvnw53NzchG+HEydOxK5du4SZ4t3d3ZGVlYVLly5h27ZtuHv3Lho1agQvLy8MGjQIy5Ytw82bN9GrVy8UFRXhr7/+gpeXl9JcWzExMejSpQtMTU0r/XMUA/c/3P9w/8P9T7lV6J7JWqSs22qJiPLy8ig8PJzc3d1JX1+f9PT0qF27drRkyRLKz88vc59XrlwhACSTyejp06ellnnZbeAlP86yZqImIiosLKSmTZtS06ZN6Z133iEdHR3Kysoqs14BAQGkpaVFjx8/JiJ6afw5c+a8sp49evRQ+SxfvA3c3t6+zM+XqHIzUb94y7PiNvAFCxaUup+DBw9Sly5dSFdXl4yMjKhv37509epVlXLR0dHk6upK2tra5OTkRBs2bCj19uqsrCwKDAwkExMTMjAwoP79+9P169cJAH3//fcq9XxxJmrFzzQxMVFYh/+/JX/Dhg3UrFkzkslk1LZtWzpy5Eil65mQkEDdunUjXV1dAqD0OS9evJgMDAwoOztb6T3Pnj2jkJAQsra2Ji0tLWrWrBktWLBA5Xbp8tQ3Ly+PJk6cSG3atCFDQ0PS19enNm3a0KpVq4QyAwYMoD59+qi0cdu2beTj40Pm5uakra1NdnZ2NGrUKHr06JFKfadOnUqOjo6kra1NjRo1os6dO9PChQuV/kYLCgpowYIF1KJFC9LW1iYzMzPq3bs3xcfHC2XS09NJW1ubfv75Z5X6VBfuf7j/UeD+h/ufyvY/dToBs7W1pbS0tDI7K/Zyz58/p7S0NProo48q/eiOuu7cuXMEgDZs2FCp9ys6FHVJT08nExOTSicbYtRXLpeTkZERrVy5skr7EUt4eDhZWVmpHBSqE/c/Vcf9D/c/lVGf+p86PQbswYMHMDMzE055s4r5+uuvYWZmVuqdT/VRaQOJlyxZAqlUim7dutVAjSrO2NgYkyZNwoIFC1Qem6EuT548QUhICN57770aiV+SXC7H4sWLMW3atCrdzVYZ3P9UDfc/3P9URn3qfyRElbintRa4evWqMEmbgYEBOnXqVMM1qntu3LiB+/fvAwA0NTXh6elZsxWqZrNmzUJ8fDy8vLygqakp3KY8cuRI/PDDD5Xap0QiQWBgoMoA1NqqrtW3tuL+p+q4/+H+53VXZwfhu7i4KM3/wSquefPmlZrzpK7q3LkzYmJiMGfOHDx//hx2dnaYOXMmvv7665quGqtjuP+pOu5/uP957Yl+QZQxxmqJsLAwAqD0TMOcnBz64osvyMTEhPT19en999+n5ORkpffdu3eP+vTpQ7q6umRmZkZffvklyeVypTJHjhyhtm3bkra2NjVt2pTWrVunhhYxxuqLOj0GjDHGynL69Gn88MMPwjxACiEhIdi9eze2bt2Ko0ePIikpCe+//76wvbCwEH5+fsjPz8eJEyewfv16REREYPr06UKZxMRE+Pn5wcvLC+fPn0dwcDBGjBhR6txCjDFWmjo7Bowxxsry/PlztGvXDqtWrcK3334LNzc3LFmyBBkZGTAzM0NkZCQGDBgAoHjGbmdnZ8TFxaFTp07Yt28f3nnnHSQlJcHCwgJA8SSqkydPRlpaGrS1tTF58mRERUXh8uXLQsyPPvoI6enpKs+eY4yx0tTZMWBiKCoqQlJSEgwNDWv0Ib6MseLZpZ89ewZra2tIpVU7OR8YGAg/Pz94e3srTQYaHx8PuVwuPHgXKH7Eip2dnZCAxcXFoVWrVkLyBRTPZD5mzBhcuXIFbdu2RVxcnNI+FGWCg4PLrFNeXp4wGzdQ3P88efIEpqam3P8wVsPE7H/K67VOwJKSkmBra1vT1WCMlfDgwYMqPYZn06ZNOHv2LE6fPq2yLTk5Gdra2mjQoIHSegsLCyQnJwtlSiZfiu2KbS8rk5mZiZycnFJvSQ8LCyv1sSaMsdqjqv1PRbzWCZjiie4PHjyAkZFRud8nl8sRHR0NHx8faGlpVVf1ajQmt7F+xKxLbczMzIStra3wd1kZDx48wPjx4xETEwMdHZ1K76c6TJ06FaGhocJyRkYG7OzskJiYWKE2y+VyHDlyBF5eXmr9maozJrexfsSsS2189uwZHBwcqtT/VNRrnYApTvsbGRlVOAHT09ODkZGRWn+p1BmT21g/YtbFNlblclx8fDxSU1PRrl07YV1hYSGOHTuGFStW4MCBA8jPz0d6errSWbCUlBRYWloCACwtLXHq1Cml/aakpAjbFP8q1pUsY2RkVOaEjDKZDDKZTGW9iYlJpfofU1NTtf9M1RWT21g/YtalNirKqnM4AN8FyRirN3r06IFLly7h/PnzwuvNN9/Ep59+KvxfS0sLhw4dEt5z/fp13L9/Hx4eHgAADw8PXLp0CampqUKZmJgYGBkZCXN/eXh4KO1DUUaxD8YYe5XX+gwYY6x+MTQ0hKurq9I6fX19mJqaCuuHDx+O0NBQ4czT2LFj4eHhIcxm7+PjAxcXFwwaNAjz589HcnIypk2bhsDAQOEM1ujRo7FixQpMmjQJw4YNw+HDh7FlyxZERUWpt8GMsTqLEzDG2GslPDwcUqkU/v7+yMvLg6+vL1atWiVs19DQwJ49ezBmzBh4eHhAX18fQ4YMwezZs4UyDg4OiIqKQkhICJYuXQobGxv8/PPP8PX1rYkmMcbqIE7AGGP1WmxsrNKyjo4OVq5ciZUrV5b5Hnt7e+zdu/el+/X09MS5c+fEqGKZioqKkJ+fr7ROLpdDU1MTeXl5kEql0NDQqNY6MMaqBydgjDFWC+Xn5yMxMRFFRUVK64kIlpaWuH//PiQSCRo0aABLS0ueS4yxOoYTMMYYq2WICI8ePYKGhgZsbW2VJoYsKirC8+fPoa+vj9zcXOFmASsrq5qqLmOsEjgBY4yxWqagoADZ2dmwtraGnp6e0jbFZUldXV3o6+sDAFJTU2Fubs6XIxmrQzgBY2qTlJGBzefjheWs55m4eel/y1RESE5JwR9XTkMiLb6c0qyVO/QNiudIsjTWQX/XttDVLH2eJcbqi8LCQgCAtrb2K8sqEjS5XM4JGHvtZGdnIyEhQVh+npOHE5duo2GjMzDQLb5ruUWLFipfZGoDTsCY2mw+H49f7o5XXvniVZPGwKMSi2cf7wQe/2/ZRD8Cvs3cq6mGjNUu5RnXxWO/2OssISEB7u6qx4T5Jf4fHx+vNDlzbcEJGFObD93cASwVlss6A2ZpYVHmGbBuDi5qrTNjjLHaq0WLFoiP/99x5PqjdIRuvYTFH7SCk1UDoUxtxAkYUxtrY2OEdH9beaVff+G/crkce/fuRZ8+fdT22ArGGGN1l56entLZLem9/yD7KwfOrm3gZm9agzV7NX4UEWOMMcaYmvEZMMYYY6weqssD1F8HnIAxxlgtRUSvLPPiRK2MKdTlAeqvA07AGGOsltHS0oJEIkFaWhrMzMyU7nRUzAOWk5ODgoICpKWlQSqVlmvKCvZ6qcsD1F8HnIAxxlgto6GhARsbG/z777+4e/eu0jYiQk5ODnR1dSGRSKCnpwc7Ozul2fIZA+r2APXXASdgjDFWCxkYGKBZs2aQy+VK6+VyOY4dO4bu3btDJpNBU1Ozzs8FVp6xSgCPV2L1CydgjDFWS2loaKjMbq+hoYGCggLIZLJ6M11LecYqAeKOV+IB6qymcQLG6rWXPf6otEcfAf+b/JUffcSYepRnrJKinFhqYoB6yaSPz/IxTsBYvfbKxx+98OgjQPnxR/zoI8aqX02MVaqJAeqlJX3VeZaP1W6cgNUS/KDq6vGyxx+V9ugjQPkMGD/6iLHqk/g4C1l5BSrrb6dlCf9qaqoepvRlmnBopF+l2DWd9KnjLF9N4LN85ccJWC3BD6quHi97/BE/+oixmpP4OAteC2NfWmbCtktlbjvypWeVkzB1K5n01ac7Eksm0lcvnceHvT2Vtr94lm/zvli4tHITJZGuyyqUgIWFhWH79u1ISEiArq4uOnfujHnz5sHJyUkok5ycjIkTJyImJgbPnj2Dk5MTvv76a/j7+wtlnjx5grFjx2L37t2QSqXw9/fH0qVLYWBgIJS5ePEiAgMDcfr0aZiZmWHs2LGYNGmSUn22bt2Kb775Bnfv3kWzZs0wb9489OnTp7KfRY2qiQdVlzzrVp4zbiVj8hk3xlhVKA7YSz50g6O5gfK2nDzsiY3DO54e0C9x5gQAbqU+R/Dm86WeOWPq92IiXSTPheWQJS99z5cxjyGNPQ6gbibSYqlQAnb06FEEBgaiffv2KCgowFdffQUfHx9cvXoV+vrFH+DgwYORnp6OXbt2oVGjRoiMjMTAgQNx5swZtG3bFgDw6aef4tGjR4iJiYFcLsfQoUMxcuRIREZGAgAyMzPh4+MDb29vrFmzBpcuXcKwYcPQoEEDjBw5EgBw4sQJfPzxxwgLC8M777yDyMhI9O/fH2fPnoWrq6uYn5Fa1MSDqlXOur3ijBvA46NqI77RgNVljuYGcG1srLROLpcj2QxoZ9+Qz07XcpxIV16FErD9+/crLUdERMDc3Bzx8fHo1q0bgOLEaPXq1ejQoQMAYNq0aQgPD0d8fDzatm2La9euYf/+/Th9+jTefPNNAMDy5cvRp08fLFy4ENbW1ti4cSPy8/Pxyy+/QFtbGy1btsT58+exePFiIQFbunQpevXqhYkTJwIA5syZg5iYGKxYsQJr1qyp2qfymih51q08Z9wAHh9VG/GNBoyxmsaJdMVVaQxYRkYGAMDExERY17lzZ2zevBl+fn5o0KABtmzZgtzcXHh6egIA4uLi0KBBAyH5AgBvb29IpVL8888/eO+99xAXF4du3bopPVrD19cX8+bNw9OnT9GwYUPExcUhNDRUqT6+vr7YuXNnmfXNy8tDXl6esJyZmQmg+JfkxckOX0ZRtiLvqarqiGmmp4egzl3/t8LHTyleTEwMevbsWfYfDolbH3V/rvXl5/h+yzYoKgoXlrOeZeDW5XMAih9bk5qWBnMzM6WZ0h1d20Lf0BgWRjJ42KhO9lkVlW2jOn8OjDFW0yqdgBUVFSE4OBhdunRRuuS3ZcsWfPjhhzA1NYWmpib09PSwY8cOODo6AigeI2Zubq5cCU1NmJiYIDk5WSjj4OCgVMbCwkLY1rBhQyQnJwvrSpZR7KM0YWFhmDVrlsr66OjoSt2RERMTU+H3VJW6Y3Ib60ZMR6UlTbRp2f7lbyAAmVlAZhaO/HtE1LooVLSN2dnZ1VIPxmpSTd7pyWq3SidggYGBuHz5Mo4fP660/ptvvkF6ejoOHjyIRo0aYefOnRg4cCD++usvtGrVqsoVroqpU6cqnTXLzMyEra0tfHx8YGRkVO79lOvskMjUHZPbWHlJGZnYdqn4DFTJs1FA6WekFGejAMDCSIZ3XdqINiarLv0cFWekGasvaupOT0766oZKJWBBQUHYs2cPjh07BhsbG2H97du3sWLFCly+fBktW7YEALRp0wZ//fUXVq5ciTVr1sDS0hKpqalK+ysoKMCTJ09gaWkJALC0tERKSopSGcXyq8ootpdGJpNBJpOprNfS0qrUwamy76sKdcfkNlbc9isXEHE/5H8rGr9QwFZ5TNa5p38CT/+3bGYk/pisuvBz5DEirL6piQHqr8v0HvUhyaxQAkZEGDt2LHbs2IHY2FiVy4SKSwglx5oAxc8uKyoqAgB4eHggPT0d8fHxwozAhw8fRlFRETp27CiU+frrryGXy4VOOSYmBk5OTmjYsKFQ5tChQwgODhbixMTEwMPDoyJNYkx0Fb25oarTiTDGajd1DlB/He5KrC9JZoUSsMDAQERGRuLPP/+EoaGhMN7K2NgYurq6aNGiBRwdHTFq1CgsXLgQpqam2LlzJ2JiYrBnzx4AgLOzM3r16oXPP/8ca9asgVwuR1BQED766CNYW1sDAD755BPMmjULw4cPx+TJk3H58mUsXboU4eH/G2g8fvx4dO/eHYsWLYKfnx82bdqEM2fO4McffxTrs2GsUlSmFKnm6UQYY7VTXmEupDoPkZh5HVId5WSooKAASQVJuPbkmsqZmsTM55DqPEReYS4A5cStvOrzXYn1JcmsUAK2evVqABDuaFRYt24dAgICoKWlhb1792LKlCno27cvnj9/DkdHR6xfv15pgtSNGzciKCgIPXr0ECZiXbZsmbDd2NgY0dHRCAwMhLu7Oxo1aoTp06cLU1AAxXdbRkZGYtq0afjqq6/QrFkz7Ny5s07OAcZYXVPRSXz5sVnsdZSUdQ/6Dsvx1amyy6zav6rU9foOQFKWG9xhUep2VveTzApfgnyVZs2a4Y8//nhpGRMTE2HS1bK0bt0af/3110vLfPDBB/jggw9eWSfGmLgqOokvPzaLvagmzw6pi7W+PbISx2Lph25oaq7axr+P/40ub3VRaePt1OcYv/k8rL3s1VndOqO+/O7wsyAZYxXG49zqt5IPVAZKf6hyVR+oXBNnh8oauA1Uz+BtmYYOinIbw8HICS6mqmdqEjUT4WzirHKmpig3A0W5aZBp6FQo3uuivpxZ5ASMMVZhPM6tfktISBBukiqp5EOV4+PjhQdLV4a6zw6VZ+A2UDcGb7/u6suZRU7AGGOMKWnRogXi4/93VvP6o3SEbr2ExR+0gpNVA6FMVaj77NDLBm4DdWvwdm1SE5cD68uZRU7AGGOMKdHT01M6uyW99x9kf+XA2bUN3OxNa7BmVVfawG2gbg3erk3qy+XAmsAJGGOMMcYqpb5cDqwJnIAxxhhj1SBHXggAuPwwQ2VbVk4ezqQBlveelnrJs66oL5cDawInYIwxxtR+h+Dr4Pb/J1JTtpc1sF8Tv906Xeb79WV8iK7P+KfLGGOvudfhDsGXDRYHqmfAuE/L4mcTNzU3gK6WhtK2648yMGHbJSwa0ApOVqr75KS2/uMEjDHGXnM1cYegui/PlWewOCDugHETfW181MGu1G0FBcWfV1Mz/VJvCmD1HydgjDHGAKj3DkF1X5572WBxgAeMM/XjBIwxxpjaqfvy3MsGiwP1Z8C4uufleh1uNKgunIAxxthrribGR/Hlueqh7nm5+EaDynt9W84YYwxAzYyPKunFZ09ef5SOvORbuHZZF0X/NRDWV/X5k68Ddc/LxTcaVB4nYIwx9pprqG2DrMSxGOvlWOog/Jy8fPx15hK6vtkKujJtpW0PnmRjYcyNKo2PKuvZk5+sV16u6vMnXwfqnpeLz2RWHidgjDH2mvv3vwIU5TbG0n05AHLKKGWH3bdUx/kUawwTPdXErbxefPbk85w8RB2Jg5+XBwxKjB2q6vMnXwevw5is+tJGTsAYY+w197LLSED1X0p68dmTcrkcTx+nwqPDm/xcxgp6HcZk1Zc21o5aMMYYqzEvu4wE1I9LSS87awLUrTMnL/M6jMmqL23kBIwxVm+sXr0aq1evxt27dwEALVu2xPTp09G7d28AgKenJ44ePar0nlGjRmHNmjXC8v379zFmzBgcOXIEBgYGGDJkCMLCwpQGLcfGxiI0NBRXrlyBra0tpk2bhoCAgGpvH6u8V581AerKmZOXeR3GZNWXNtb+3ybGGCsnGxsbfP/992jWrBmICOvXr0e/fv1w7tw5tGzZEgDw+eefY/bs2cJ7St5VV1hYCD8/P1haWuLEiRN49OgRBg8eDC0tLXz33XcAgMTERPj5+WH06NHYuHEjDh06hBEjRsDKygq+vr7qbTArt5q+zMrYizgBY4zVG3379lVanjt3LlavXo2TJ08KCZienh4sLS1LfX90dDSuXr2KgwcPwsLCAm5ubpgzZw4mT56MmTNnQltbG2vWrIGDgwMWLVoEAHB2dsbx48cRHh7OCVgt9jpcZn1Reab34Kk9ag4nYIyxeqmwsBBbt25FVlYWPDw8hPUbN27Ehg0bYGlpib59++Kbb74RDkBxcXFo1aoVLCz+N5+Vr68vxowZgytXrqBt27aIi4uDt7e3UixfX18EBwe/tD55eXnIy8sTljMzMwEUDziXy+XlbpeibEXeU1HZ2dm4fv26sHzjUQbykm/h8nlt5KcUJydOTk7VduBWRxtfpEjACgoK1BJXHfEuX76Mjh07qqwvOb3HP//8g7Zt21ZLfHV/plWJqc7fNQVOwBhj9cqlS5fg4eGB3NxcGBgYYMeOHXBxcQEAfPLJJ7C3t4e1tTUuXryIyZMn4/r169i+fTsAIDk5WSn5AiAsJycnv7RMZmYmcnJyoKurW2q9wsLCMGvWLJX10dHRlUpkYmJiKvye8rp9+zYmTJigsn5QiQP3okWL0LRp02qrA1C9bXzRg+cAoImTJ0/i4eXqiZGXl4d///0XAJCSDeQla2Dr79dxrMSP38bGBjKZrIw9VDye4kwtAMiLgCe5gIkOoCUtXnf37l08evRIlHgvUsdnKlbM7Ozs6qpSmSqUgIWFhWH79u1ISEiArq4uOnfujHnz5sHJyUmpXFxcHL7++mv8888/0NDQgJubGw4cOCB0TE+ePMHYsWOxe/duSKVS+Pv7Y+nSpTAw+N88MhcvXkRgYCBOnz4NMzMzjB07FpMmTVKKs3XrVnzzzTe4e/cumjVrhnnz5qFPnz6V/SwYY/WAk5MTzp8/j4yMDGzbtg1DhgzB0aNH4eLigpEjRwrlWrVqBSsrK/To0QO3b9+u9mRi6tSpCA0NFZYzMzNha2sLHx8fGBkZlXs/crkcMTEx6NmzZ7VN0ZCdnY233npLWH6ek4cDf52Gb9f2wrxc1X0GrLrb+KIL958Al86gU6dOaGNnUi0xzp07hw8//FBp3fwXylTnGSl1f67q+EzFiqk4I61OFUrAjh49isDAQLRv3x4FBQX46quv4OPjg6tXr0Jfv3hwYlxcHHr16oWpU6di+fLl0NTUxIULFyCVSoX9fPrpp3j06BFiYmIgl8sxdOhQjBw5EpGRkQCKPwgfHx94e3tjzZo1uHTpEoYNG4YGDRoIHeiJEyfw8ccfIywsDO+88w4iIyPRv39/nD17Fq6urmJ9PoyxOkZbWxuOjo4AAHd3d5w+fRpLly7FDz/8oFJWcXnm1q1baNq0KSwtLXHqlPLzeFJSUgBAGDdmaWkprCtZxsjIqMyzXwAgk8lKPbOhpaVVqYNhZd9XHsbGxujQoYOwLJfL8Sz9Cbp27qTWebmqs40vUtzlqqmpWW0xXV1dhQlnXzbZbHW3WV2fqzo+U7Fi1sR8cxVKwPbv36+0HBERAXNzc8THx6Nbt24AgJCQEIwbNw5TpkwRypU8Q3bt2jXs378fp0+fxptvvgkAWL58Ofr06YOFCxfC2toaGzduRH5+Pn755Rdoa2ujZcuWOH/+PBYvXiwkYEuXLkWvXr0wceJEAMCcOXMQExODFStWKN1Szhh7vRUVFSmNvSrp/PnzAAArKysAgIeHB+bOnYvU1FSYm5sDKL4MZmRkJFzG9PDwwN69e5X2ExMTozTOjLHSlJxwliebZVUaA5aRUTyhnYlJ8Wm+1NRU/PPPP/j000/RuXNn3L59Gy1atMDcuXOF09lxcXFo0KCBkHwBgLe3N6RSKf755x+89957iIuLQ7du3aCt/b9njvn6+mLevHl4+vQpGjZsiLi4OKXT+YoyO3fuLLO+dWkQbE3H5DbWj5h1qY1i1HHq1Kno3bs37Ozs8OzZM0RGRiI2NhYHDhzA7du3ERkZiT59+sDU1BQXL15ESEgIunXrhtatWwMAfHx84OLigkGDBmH+/PlITk7GtGnTEBgYKJy9Gj16NFasWIFJkyZh2LBhOHz4MLZs2YKoqKgq158x9vqodAJWVFSE4OBgdOnSRbjkd+fOHQDAzJkzsXDhQri5ueHXX39Fjx49cPnyZTRr1gzJycnCN0uhEpqaMDExURrk6uDgoFSm5EDYhg0bljkQVrGP0tSlQbC1JSa3sX7ErAttFGMQbGpqKgYPHoxHjx7B2NgYrVu3xoEDB9CzZ088ePAABw8exJIlS5CVlQVbW1v4+/tj2rRpwvs1NDSwZ88ejBkzBh4eHtDX18eQIUOU5g1zcHBAVFQUQkJCsHTpUtjY2ODnn3/mKSgYYxVS6QQsMDAQly9fxvHjx4V1RUVFAIpnlh46dCgAoG3btjh06BB++eUXhIWFVbG6VVOXBsHWdExuY/2IWZfaKMYg2LVr15a5zdbWVmUW/NLY29urXGJ8kaenJ86dO1fh+jHGxFWX5zqrVAIWFBSEPXv24NixY7CxsRHWK8ZRKMZKKDg7O+P+/fsAigewpqamKm0vKCjAkydPXjnIVbHtZWXKmmARqFuDYGtLTG5j/YhZF9rI42CYOtXlAzf7n4SEBLi7u6usLznXWXx8vNLD3muLCiVgRISxY8dix44diI2NVblM2KRJE1hbWytN4AcAN27cEJ7F5uHhgfT0dMTHxwsf2uHDh1FUVCTckeTh4YGvv/4acrlc6JRjYmLg5OSEhg0bCmUOHTqkNPkhD4RljDFWHnX5wM3+p0WLFsKdpUDpd5e2aNGipqr3UhVKwAIDAxEZGYk///wThoaGwngrY2Nj6OrqQiKRYOLEiZgxYwbatGkDNzc3rF+/HgkJCdi2bRuA4rNhvXr1wueff441a9ZALpcjKCgIH330EaytrQEUT5Y4a9YsDB8+HJMnT8bly5exdOlShIeHC3UZP348unfvjkWLFsHPzw+bNm3CmTNn8OOPP4r12TDGGKun6vKBm/1PyTtLgbp1d2mFErDVq1cDKB7/UNK6desQEBAAAAgODkZubi5CQkLw5MkTtGnTBjExMUqTHG7cuBFBQUHo0aOHMBHrsmXLhO3GxsaIjo5GYGAg3N3d0ahRI0yfPl1pEsXOnTsjMjIS06ZNw1dffYVmzZph586dPAcYY4yxV6rLB25WP1T4EmR5TJkyRWkesBeZmJgIk66WpXXr1vjrr79eWuaDDz7ABx98UK46McYYY4zVFtJXF2GMMcYYY2LiBIwxxhhjTM04AWOMMcYYUzNOwBhjjDHG1IwTMMYYY4wxNeMEjDHGGGNMzSr9LEjGGGOMsZJKPuKptMc7AfyIJwVOwBhjjDEmitIe8VTy8U4AP+JJgRMwxhhjjImi5COeSnu8k6IM4wSMMcYYYyIp+YgnfrzTy/EgfMYYY4wxNeMEjDHGGGNMzTgBY4wxxhhTM07AGGOMMcbUjBMwxhhjjDE14wSMMcYYY0zNOAFjjDHGGFMzTsAYY4wxxtSMEzDGGGOMMTXjBIwxxhhjTM04AWOMMcYYUzNOwBhjjDHG1KxCCVhYWBjat28PQ0NDmJubo3///rh+/XqpZYkIvXv3hkQiwc6dO5W23b9/H35+ftDT04O5uTkmTpyIgoICpTKxsbFo164dZDIZHB0dERERoRJj5cqVaNKkCXR0dNCxY0ecOnWqIs1hjDHGGKsRFUrAjh49isDAQJw8eRIxMTGQy+Xw8fFBVlaWStklS5ZAIpGorC8sLISfnx/y8/Nx4sQJrF+/HhEREZg+fbpQJjExEX5+fvDy8sL58+cRHByMESNG4MCBA0KZzZs3IzQ0FDNmzMDZs2fRpk0b+Pr6IjU1tSJNYowxxhhTO82KFN6/f7/SckREBMzNzREfH49u3boJ68+fP49FixbhzJkzsLKyUnpPdHQ0rl69ioMHD8LCwgJubm6YM2cOJk+ejJkzZ0JbWxtr1qyBg4MDFi1aBABwdnbG8ePHER4eDl9fXwDA4sWL8fnnn2Po0KEAgDVr1iAqKgq//PILpkyZUvFPgjHGGGNMTao0BiwjIwMAYGJiIqzLzs7GJ598gpUrV8LS0lLlPXFxcWjVqhUsLCyEdb6+vsjMzMSVK1eEMt7e3krv8/X1RVxcHAAgPz8f8fHxSmWkUim8vb2FMowxxhhjtVWFzoCVVFRUhODgYHTp0gWurq7C+pCQEHTu3Bn9+vUr9X3JyclKyRcAYTk5OfmlZTIzM5GTk4OnT5+isLCw1DIJCQll1jkvLw95eXnCcmZmJgBALpdDLpe/qskCRdmKvKeq1B2T21g/YtalNqqzjowxVtMqnYAFBgbi8uXLOH78uLBu165dOHz4MM6dOydK5cQWFhaGWbNmqayPjo6Gnp5ehfcXExMjRrVqdUxuY/2IWRfamJ2dXU01YYyx2qdSCVhQUBD27NmDY8eOwcbGRlh/+PBh3L59Gw0aNFAq7+/vj65duyI2NhaWlpYqdyumpKQAgHDJ0tLSUlhXsoyRkRF0dXWhoaEBDQ2NUsuUdtlTYerUqQgNDRWWMzMzYWtrCx8fHxgZGZW7/XK5HDExMejZsye0tLTK/b6qUHdMbmP9iFmX2qg4I80YY6+DCiVgRISxY8dix44diI2NhYODg9L2KVOmYMSIEUrrWrVqhfDwcPTt2xcA4OHhgblz5yI1NRXm5uYAir8pGxkZwcXFRSizd+9epf3ExMTAw8MDAKCtrQ13d3ccOnQI/fv3B1B8SfTQoUMICgoqs/4ymQwymUxlvZaWVqUOTpV9X1WoOya3sX7ErAttVHf9GGOsJlUoAQsMDERkZCT+/PNPGBoaCmO2jI2NoaurC0tLy1LPQNnZ2QnJmo+PD1xcXDBo0CDMnz8fycnJmDZtGgIDA4XkaPTo0VixYgUmTZqEYcOG4fDhw9iyZQuioqKEfYaGhmLIkCF488030aFDByxZsgRZWVnCXZGMMcYYY7VVhRKw1atXAwA8PT2V1q9btw4BAQHl2oeGhgb27NmDMWPGwMPDA/r6+hgyZAhmz54tlHFwcEBUVBRCQkKwdOlS2NjY4OeffxamoACADz/8EGlpaZg+fTqSk5Ph5uaG/fv3qwzMZ4wxxhirbSp8CbKiSnuPvb29yiXGF3l6er5yMH9QUNBLLzkyxhhjjNVG/CxIxhhjjDE14wSMMcYYY0zNOAFjjDHGGFMzTsAYY4wxxtSMEzDGGGOMMTXjBIwxxhhjTM04AWOMMcYYUzNOwBhj9cbq1avRunVrGBkZwcjICB4eHti3b5+wPTc3F4GBgTA1NYWBgQH8/f1Vnil7//59+Pn5QU9PD+bm5pg4cSIKCgqUysTGxqJdu3aQyWRwdHRERESEOprHGKtHOAFjjNUbNjY2+P777xEfH48zZ87g7bffRr9+/XDlyhUAQEhICHbv3o2tW7fi6NGjSEpKwvvvvy+8v7CwEH5+fsjPz8eJEyewfv16REREYPr06UKZxMRE+Pn5wcvLC+fPn0dwcDBGjBiBAwcOqL29jLG6q0Iz4TPGWG3Wt29fpeW5c+di9erVOHnyJGxsbLB27VpERkbi7bffBlD8GDVnZ2ecPHkSnTp1QnR0NK5evYqDBw/CwsICbm5umDNnDiZPnoyZM2dCW1sba9asgYODAxYtWgQAcHZ2xvHjxxEeHq70uDTGGHsZPgPGGKuXCgsLsWnTJmRlZcHDwwPx8fGQy+Xw9vYWyrRo0QJ2dnaIi4sDAMTFxaFVq1ZKz5T19fVFZmamcBYtLi5OaR+KMop9MMZYefAZMMZYvXLp0iV4eHggNzcXBgYG2LFjB1xcXHD+/Hloa2ujQYMGSuUtLCyQnJwMAEhOTlZKvhTbFdteViYzMxM5OTnQ1dUttV55eXnIy8sTljMzMwEAcrkccrm83O1TlK3Ie6pK3TG5jfUjZl1qozrrqMAJGGOsXnFycsL58+eRkZGBbdu2YciQITh69GhNVwthYWGYNWuWyvro6Gjo6elVeH8xMTFiVKtWx+Q21o+YdaGN2dnZ1VSTsnECxhirV7S1teHo6AgAcHd3x+nTp7F06VJ8+OGHyM/PR3p6utJZsJSUFFhaWgIALC0tcerUKaX9Ke6SLFnmxTsnU1JSYGRkVObZLwCYOnUqQkNDheXMzEzY2trCx8cHRkZG5W6fXC5HTEwMevbsCS0trXK/ryrUHZPbWD9i1qU2Ks5IqxMnYIyxeq2oqAh5eXlwd3eHlpYWDh06BH9/fwDA9evXcf/+fXh4eAAAPDw8MHfuXKSmpsLc3BxA8TdpIyMjuLi4CGX27t2rFCMmJkbYR1lkMhlkMpnKei0trUodnCr7vqpQd0xuY/2IWRfaqO76AZyAMcbqkalTp6J3796ws7PDs2fPEBkZidjYWBw4cADGxsYYPnw4QkNDYWJiAiMjI4wdOxYeHh7o1KkTAMDHxwcuLi4YNGgQ5s+fj+TkZEybNg2BgYFC8jR69GisWLECkyZNwrBhw3D48GFs2bIFUVFRNdl0xlgdwwkYY6zeSE1NxeDBg/Ho0SMYGxujdevWOHDgAHr27AkACA8Ph1Qqhb+/P/Ly8uDr64tVq1YJ79fQ0MCePXswZswYeHh4QF9fH0OGDMHs2bOFMg4ODoiKikJISAiWLl0KGxsb/PzzzzwFBWOsQjgBY4zVG2vXrn3pdh0dHaxcuRIrV64ss4y9vb3KJcYXeXp64ty5c5WqI2OMATwPGGOMMcaY2nECxhhjjDGmZpyAMcYYY4ypGSdgjDHGGGNqVqEELCwsDO3bt4ehoSHMzc3Rv39/XL9+Xdj+5MkTjB07Fk5OTtDV1YWdnR3GjRuHjIwMpf3cv38ffn5+0NPTg7m5OSZOnIiCggKlMrGxsWjXrh1kMhkcHR0RERGhUp+VK1eiSZMm0NHRQceOHVUmUGSMMcYYq40qlIAdPXoUgYGBOHnyJGJiYiCXy+Hj44OsrCwAQFJSEpKSkrBw4UJcvnwZERER2L9/P4YPHy7so7CwEH5+fsjPz8eJEyewfv16REREYPr06UKZxMRE+Pn5wcvLC+fPn0dwcDBGjBiBAwcOCGU2b96M0NBQzJgxA2fPnkWbNm3g6+uL1NTUqn4mjDHGGGPVqkLTUOzfv19pOSIiAubm5oiPj0e3bt3g6uqKP/74Q9jetGlTzJ07F5999hkKCgqgqamJ6OhoXL16FQcPHoSFhQXc3NwwZ84cTJ48GTNnzoS2tjbWrFkDBwcHLFq0CADg7OyM48ePIzw8XJhrZ/Hixfj8888xdOhQAMCaNWsQFRWFX375BVOmTKnSh8IYY4wxVp2qNAZMcWnRxMTkpWWMjIygqVmc68XFxaFVq1awsLAQyvj6+iIzMxNXrlwRynh7eyvtx9fXF3FxcQCA/Px8xMfHK5WRSqXw9vYWyjDGGGOM1VaVnoi1qKgIwcHB6NKlC1xdXUst8/jxY8yZMwcjR44U1iUnJyslXwCE5eTk5JeWyczMRE5ODp4+fYrCwsJSyyQkJJRZ57y8POTl5QnLiodvyuVyyOXyVzVZoChbkfdUlbpjchvrR8y61EZ11pExxmpapROwwMBAXL58GcePHy91e2ZmJvz8/ODi4oKZM2dWNoyowsLCMGvWLJX10dHR0NPTq/D+YmJixKhWrY7JbawfMetCG7Ozs6upJowxVvtUKgELCgrCnj17cOzYMdjY2Khsf/bsGXr16gVDQ0Ps2LFD6SnjlpaWKncrpqSkCNsU/yrWlSxjZGQEXV1daGhoQENDo9Qyin2UZurUqQgNDRWWMzMzYWtrCx8fHxgZGZWz9cXf1GNiYtCzZ0+1PUFd3TG5jfUjZl1qo+KMNGOMvQ4qlIAREcaOHYsdO3YgNjYWDg4OKmUyMzPh6+sLmUyGXbt2QUdHR2m7h4cH5s6di9TUVJibmwMo/qZsZGQEFxcXocyLz2KLiYmBh4cHAEBbWxvu7u44dOgQ+vfvD6D4kuihQ4cQFBRUZv1lMhlkMpnKei0trUodnCr7vqpQd0xuY/2IWRfaqO76McZYTarQIPzAwEBs2LABkZGRMDQ0RHJyMpKTk5GTkwOgOPlSTEuxdu1aZGZmCmUKCwsBAD4+PnBxccGgQYNw4cIFHDhwANOmTUNgYKCQHI0ePRp37tzBpEmTkJCQgFWrVmHLli0ICQkR6hIaGoqffvoJ69evx7Vr1zBmzBhkZWUJd0UyxhhjjNVWFToDtnr1agCAp6en0vp169YhICAAZ8+exT///AMAcHR0VCqTmJiIJk2aQENDA3v27MGYMWPg4eEBfX19DBkyBLNnzxbKOjg4ICoqCiEhIVi6dClsbGzw888/C1NQAMCHH36ItLQ0TJ8+HcnJyXBzc8P+/ftVBuYzxhhjjNU2Fb4E+TKenp6vLAMA9vb2KpcYS9vXuXPnXlomKCjopZccGWOMMcZqI34WJGOMMcaYmnECxhhjjDGmZpyAMcYYY4ypGSdgjDHGGGNqxgkYY4wxxpiacQLGGGOMMaZmnIAxxhhjjKkZJ2CMMcYYY2rGCRhjjDHGmJpxAsYYY4wxpmacgDHGGGOMqRknYIwxxhhjasYJGGOMMcaYmnECxhhjjDGmZpyAMcYYY4ypGSdgjDHGGGNqxgkYY4wxxpiacQLGGGOMMaZmnIAxxhhjjKkZJ2CMMcYYY2rGCRhjjDHGmJpxAsYYY4wxpmacgDHGGGOMqVmFErCwsDC0b98ehoaGMDc3R//+/XH9+nWlMrm5uQgMDISpqSkMDAzg7++PlJQUpTL379+Hn58f9PT0YG5ujokTJ6KgoECpTGxsLNq1aweZTAZHR0dERESo1GflypVo0qQJdHR00LFjR5w6daoizWGMMcYYqxEVSsCOHj2KwMBAnDx5EjExMZDL5fDx8UFWVpZQJiQkBLt378bWrVtx9OhRJCUl4f333xe2FxYWws/PD/n5+Thx4gTWr1+PiIgITJ8+XSiTmJgIPz8/eHl54fz58wgODsaIESNw4MABoczmzZsRGhqKGTNm4OzZs2jTpg18fX2Rmppalc+DMcYYY6zaaVak8P79+5WWIyIiYG5ujvj4eHTr1g0ZGRlYu3YtIiMj8fbbbwMA1q1bB2dnZ5w8eRKdOnVCdHQ0rl69ioMHD8LCwgJubm6YM2cOJk+ejJkzZ0JbWxtr1qyBg4MDFi1aBABwdnbG8ePHER4eDl9fXwDA4sWL8fnnn2Po0KEAgDVr1iAqKgq//PILpkyZUuUPhjHGGGOsulQoAXtRRkYGAMDExAQAEB8fD7lcDm9vb6FMixYtYGdnh7i4OHTq1AlxcXFo1aoVLCwshDK+vr4YM2YMrly5grZt2yIuLk5pH4oywcHBAID8/HzEx8dj6tSpwnapVApvb2/ExcWVWd+8vDzk5eUJy5mZmQAAuVwOuVxe7nYrylbkPVWl7pjcxvoRsy61UZ11ZIyxmlbpBKyoqAjBwcHo0qULXF1dAQDJycnQ1tZGgwYNlMpaWFggOTlZKFMy+VJsV2x7WZnMzEzk5OTg6dOnKCwsLLVMQkJCmXUOCwvDrFmzVNZHR0dDT0+vHK1WFhMTU+H3VJW6Y3Ib60fMutDG7OzsaqoJY4zVPpVOwAIDA3H58mUcP35czPpUq6lTpyI0NFRYzszMhK2tLXx8fGBkZFTu/cjlcsTExKBnz57Q0tKqjqrWeExuY/2IWZfaqDgjzRhjr4NKJWBBQUHYs2cPjh07BhsbG2G9paUl8vPzkZ6ernQWLCUlBZaWlkKZF+9WVNwlWbLMi3dOpqSkwMjICLq6utDQ0ICGhkapZRT7KI1MJoNMJlNZr6WlVamDU2XfVxXqjsltrB8x60Ib1V0/xhirSRW6C5KIEBQUhB07duDw4cNwcHBQ2u7u7g4tLS0cOnRIWHf9+nXcv38fHh4eAAAPDw9cunRJ6W7FmJgYGBkZwcXFRShTch+KMop9aGtrw93dXalMUVERDh06JJRhjDHGGKutKpSABQYGYsOGDYiMjIShoSGSk5ORnJyMnJwcAICxsTGGDx+O0NBQHDlyBPHx8Rg6dCg8PDzQqVMnAICPjw9cXFwwaNAgXLhwAQcOHMC0adMQGBgonJ0aPXo07ty5g0mTJiEhIQGrVq3Cli1bEBISItQlNDQUP/30E9avX49r165hzJgxyMrKEu6KZIy9fsozV6GnpyckEonSa/To0UplxJqrkDHGylKhS5CrV68GUNyBlbRu3ToEBAQAAMLDwyGVSuHv74+8vDz4+vpi1apVQlkNDQ3s2bMHY8aMgYeHB/T19TFkyBDMnj1bKOPg4ICoqCiEhIRg6dKlsLGxwc8//yxMQQEAH374IdLS0jB9+nQkJyfDzc0N+/fvVxmYzxh7fSjmKmzfvj0KCgrw1VdfwcfHB1evXoW+vr5Q7vPPP1fqc0rehKOYq9DS0hInTpzAo0ePMHjwYGhpaeG7774D8L+5CkePHo2NGzfi0KFDGDFiBKysrJT6KcYYK0uFEjAiemUZHR0drFy5EitXriyzjL29Pfbu3fvS/Xh6euLcuXMvLRMUFISgoKBX1okx9np41VyFCnp6emWOFxVrrkLGGHsZfhYkY6zeenGuQoWNGzeiUaNGcHV1xdSpU5WmwChrrsLMzExcuXJFKFPaXIUvm4eQMcZKqtJErIwxVluVNlchAHzyySewt7eHtbU1Ll68iMmTJ+P69evYvn07AHHmKtTV1VWpD08EXXvj1URMbmPtilkTE0FzAsYYq5fKmqtw5MiRwv9btWoFKysr9OjRA7dv30bTpk2rrT48EXTtj1cTMbmNtSNmTUwEzQkYY6zeKWuuwtJ07NgRAHDr1i00bdpUlLkKS8MTQdfeeDURk9tYu2LWxETQnIAxxuoNIsLYsWOxY8cOxMbGqsxVWJrz588DAKysrAAUz0M4d+5cpKamwtzcHEDpcxW+eCNRybkKS8MTQdf+eDURk9tYO2LWxETQPAifMVZvvGquwtu3b2POnDmIj4/H3bt3sWvXLgwePBjdunVD69atAYg3VyFjjL0MJ2CMsXpj9erVyMjIgKenJ6ysrITX5s2bARQ/RePgwYPw8fFBixYtMGHCBPj7+2P37t3CPhRzFWpoaMDDwwOfffYZBg8eXOpchTExMWjTpg0WLVqkMlchY4y9DF+CZIzVG6+aq9DW1hZHjx595X7EmquQMcbKwmfAGGOMMcbUjBMwxhhjjDE14wSMMcYYY0zNOAFjjDHGGFMzTsAYY4wxxtSMEzDGGGOMMTXjBIwxxhhjTM04AWOMMcYYUzNOwBhjjDHG1IwTMMYYY4wxNeMEjDHGGGNMzTgBY4wxxhhTM07AGGOMMcbUjBMwxhhjjDE1q3ACduzYMfTt2xfW1taQSCTYuXOn0vbnz58jKCgINjY20NXVhYuLC9asWaNUJjc3F4GBgTA1NYWBgQH8/f2RkpKiVOb+/fvw8/ODnp4ezM3NMXHiRBQUFCiViY2NRbt27SCTyeDo6IiIiIiKNocxxhhjTO0qnIBlZWWhTZs2WLlyZanbQ0NDsX//fmzYsAHXrl1DcHAwgoKCsGvXLqFMSEgIdu/eja1bt+Lo0aNISkrC+++/L2wvLCyEn58f8vPzceLECaxfvx4RERGYPn26UCYxMRF+fn7w8vLC+fPnERwcjBEjRuDAgQMVbRJjjDHGmFppVvQNvXv3Ru/evcvcfuLECQwZMgSenp4AgJEjR+KHH37AqVOn8O677yIjIwNr165FZGQk3n77bQDAunXr4OzsjJMnT6JTp06Ijo7G1atXcfDgQVhYWMDNzQ1z5szB5MmTMXPmTGhra2PNmjVwcHDAokWLAADOzs44fvw4wsPD4evrW4mPgjHGGGNMPSqcgL1K586dsWvXLgwbNgzW1taIjY3FjRs3EB4eDgCIj4+HXC6Ht7e38J4WLVrAzs4OcXFx6NSpE+Li4tCqVStYWFgIZXx9fTFmzBhcuXIFbdu2RVxcnNI+FGWCg4PLrFteXh7y8vKE5czMTACAXC6HXC4vdxsVZSvynqpSd0xuY/2IWZfaqM46MsZYTRM9AVu+fDlGjhwJGxsbaGpqQiqV4qeffkK3bt0AAMnJydDW1kaDBg2U3mdhYYHk5GShTMnkS7Fdse1lZTIzM5GTkwNdXV2VuoWFhWHWrFkq66Ojo6Gnp1fhtsbExFT4PVWl7pjcxvoRsy60MTs7u5pqwhhjtU+1JGAnT57Erl27YG9vj2PHjiEwMBDW1tYqZ6zUberUqQgNDRWWMzMzYWtrCx8fHxgZGZV7P3K5HDExMejZsye0tLSqo6o1HpPbWD9i1qU2Ks5IM8bY60DUBCwnJwdfffUVduzYAT8/PwBA69atcf78eSxcuBDe3t6wtLREfn4+0tPTlc6CpaSkwNLSEgBgaWmJU6dOKe1bcZdkyTIv3jmZkpICIyOjUs9+AYBMJoNMJlNZr6WlVamDU2XfVxXqjsltrB8x60Ib1V0/xhirSaLOA6YYSyWVKu9WQ0MDRUVFAAB3d3doaWnh0KFDwvbr16/j/v378PDwAAB4eHjg0qVLSE1NFcrExMTAyMgILi4uQpmS+1CUUeyDMcYYY6y2qvAZsOfPn+PWrVvCcmJiIs6fPw8TExPY2dmhe/fumDhxInR1dWFvb4+jR4/i119/xeLFiwEAxsbGGD58OEJDQ2FiYgIjIyOMHTsWHh4e6NSpEwDAx8cHLi4uGDRoEObPn4/k5GRMmzYNgYGBwhms0aNHY8WKFZg0aRKGDRuGw4cPY8uWLYiKihLjc2GMMcYYqzYVTsDOnDkDLy8vYVkxpmrIkCGIiIjApk2bMHXqVHz66ad48uQJ7O3tMXfuXIwePVp4T3h4OKRSKfz9/ZGXlwdfX1+sWrVK2K6hoYE9e/ZgzJgx8PDwgL6+PoYMGYLZs2cLZRwcHBAVFYWQkBAsXboUNjY2+Pnnn3kKCsYYY4zVehVOwDw9PUFEZW63tLTEunXrXroPHR0drFy5sszJXAHA3t4ee/fufWVdzp079/IKM8YYY4zVMvwsSMYYY4wxNeMEjDHGGGNMzTgBY4wxxhhTM07AGGOMMcbUjBMwxhhjjDE14wSMMcYYY0zNOAFjjDHGGFMzTsAYY4wxxtSMEzDGGGOMMTXjBIwxxhhjTM04AWOMMcYYUzNOwBhjjDHG1IwTMMYYY4wxNeMEjDHGGGNMzTgBY4wxxhhTM07AGGOMMcbUjBMwxhhjjDE14wSMMcYYY0zNOAFjjDHGGFMzzZquQG2VlJGBzefjAQBZzzNx81K8sI2KCMkpKfjjymlIpBJhfbNW7tA3MIKlsQ76u7aFrqau2uvNGKv7uP9hrP7jBKwMm8/H45e74/+3wuqFAo2BRy+sOvt4J/C4+P8m+hHwbeZejTVkjNVX3P8wVv9xAlaGD93cASwFUPY3UEsLizK/gXZzcFF3lRl77YWFhWH79u1ISEiArq4uOnfujHnz5sHJyUkok5ubiwkTJmDTpk3Iy8uDr68vVq1aBQsLC6HM/fv3MWbMGBw5cgQGBgYYMmQIwsLCoKn5vy4zNjYWoaGhuHLlCmxtbTFt2jQEBASI0g7ufxir/yqcgB07dgwLFixAfHw8Hj16hB07dqB///5KZa5du4bJkyfj6NGjKCgogIuLC/744w/Y2dkBqBsdoLWxMUK6v/2/FX7/a6NcLsfevXvRp08faGlpiRKPMVZ1R48eRWBgINq3b4+CggJ89dVX8PHxwdWrV6Gvrw8ACAkJQVRUFLZu3QpjY2MEBQXh/fffx99//w0AKCwshJ+fHywtLXHixAk8evQIgwcPhpaWFr777jsAQGJiIvz8/DB69Ghs3LgRhw4dwogRI2BlZQVfX98qt4P7H8bqvwoPws/KykKbNm2wcuXKUrffvn0bb731Flq0aIHY2FhcvHgR33zzDXR0dIQyISEh2L17N7Zu3YqjR48iKSkJ77//vrBd0QHm5+fjxIkTWL9+PSIiIjB9+nShjKID9PLywvnz5xEcHIwRI0bgwIEDFW0SY6ye2L9/PwICAtCyZUu0adMGERERuH//PuLji88gZWRkYO3atVi8eDHefvttuLu7Y926dThx4gROnjwJAIiOjsbVq1exYcMGuLm5oXfv3pgzZw5WrlyJ/Px8AMCaNWvg4OCARYsWwdnZGUFBQRgwYADCw8NrrO2MsbqlwmfAevfujd69e5e5/euvv0afPn0wf/58YV3Tpk2F/ys6wMjISLz9dvE3vHXr1sHZ2RknT55Ep06dhA7w4MGDsLCwgJubG+bMmYPJkydj5syZ0NbWVuoAAcDZ2RnHjx9HeHi4KN9AGWN1X0ZGBgDAxMQEABAfHw+5XA5vb2+hTIsWLWBnZ4e4uDh06tQJcXFxaNWqldIZeV9fX4wZMwZXrlxB27ZtERcXp7QPRZng4OAy65KXl4e8vDxhOTMzE0DxGS25XF7uNinKVuQ9VaXumNzG+hGzLrVRnXVUEHUMWFFREaKiojBp0iT4+vri3LlzcHBwwNSpU4XLlNwBVg7/4dT9eDURsy61Uew6FhUVITg4GF26dIGrqysAIDk5Gdra2mjQoIFSWQsLCyQnJwtlSvY9iu2KbS8rk5mZiZycHOjqqt6BGBYWhlmzZqmsj46Ohp6eXoXbFxMTU+H3VJW6Y3Ib60fMutDG7OzsaqpJ2URNwFJTU/H8+XN8//33+PbbbzFv3jzs378f77//Po4cOYLu3btzB1hF/IdT9+PVRMy60EaxO8DAwEBcvnwZx48fF3W/lTV16lSEhoYKy5mZmbC1tYWPjw+MjIzKvR+5XI6YmBj07NlTbWPA1B2T21g/YtalNipOyKiT6GfAAKBfv34ICQkBALi5ueHEiRNYs2YNunfvLma4CuMOsPbGq4mY3MbaFVPMDjAoKAh79uzBsWPHYGNjI6y3tLREfn4+0tPTlb4EpqSkwNLSUihz6tQppf2lpKQI2xT/KtaVLGNkZFTqlz8AkMlkkMlkKuu1tLQq9bOp7PuqQt0xuY31I2ZdaGNN3NAiagLWqFEjaGpqwsVF+RZoxfgsgDvAquI/nLofryZi1oU2ilE/IsLYsWOxY8cOxMbGwsHBQWm7u7s7tLS0cOjQIfj7+wMArl+/jvv378PDwwMA4OHhgblz5yI1NRXm5uYAis/mGRkZCX2bh4cH9u7dq7TvmJgYYR+MMfYqoj6KSFtbG+3bt8f169eV1t+4cQP29vYAlDtAhdI6wEuXLiE1NVUoU1oHWHIfijLcATL2+goMDMSGDRsQGRkJQ0NDJCcnIzk5GTk5OQAAY2NjDB8+HKGhoThy5Aji4+MxdOhQeHh4oFOnTgAAHx8fuLi4YNCgQbhw4QIOHDiAadOmITAwUPgCN3r0aNy5cweTJk1CQkICVq1ahS1btghn/hlj7FUqfAbs+fPnuHXrlrCcmJiI8+fPw8TEBHZ2dpg4cSI+/PBDdOvWDV5eXti/fz92796N2NhYAModoImJCYyMjDB27NgyO8D58+cjOTm51A5wxYoVmDRpEoYNG4bDhw9jy5YtiIqKKndbiAhAxS99yOVyZGdnIzMzU62XddQZk9tYP2LWpTYq/g4Vf5eVsXr1agCAp6en0vp169YJcwSGh4dDKpXC399faR5CBQ0NDezZswdjxoyBh4cH9PX1MWTIEMyePVso4+DggKioKISEhGDp0qWwsbHBzz//XKE7sLn/qT3xaiImt7F2xRSj/6kwqqAjR44QAJXXkCFDhDJr164lR0dH0tHRoTZt2tDOnTuV9pGTk0NffPEFNWzYkPT09Oi9996jR48eKZW5e/cu9e7dm3R1dalRo0Y0YcIEksvlKnVxc3MjbW1teuONN2jdunUVasuDBw9KbQu/+MWvmns9ePCgQn/HdRX3P/ziV+17qbP/kRCpM92rXYqKipCUlARDQ0NIJJJXv+H/KQbvP3jwoEKD96tC3TG5jfUjZl1qIxHh2bNnsLa2hlQq6uiIWon7n9oTryZichtrV8ya6H9e62dBSqVSpTukKsrIyEhtv1Q1FZPbWD9i1pU2GhsbV1Ntah/uf2pfvJqIyW2sPTHV3f/U/6+ZjDHGGGO1DCdgjDHGGGNqxglYJchkMsyYMaPUOcXqS0xuY/2I+Tq08XXzOvxMuY31I+br0MaqeK0H4TPGGGOM1QQ+A8YYY4wxpmacgDHGGGOMqRknYIwxxhhjasYJGGOMMcaYmnECxmqVgoKCao+RkZGB69ev4/r168jIyKj2eC+KjY0VHg7NWGWkpKQgOTm5pqvBGKsCTsCqICIiQu0H8Oq6afXChQv49ttvsWrVKjx+/FhpW2ZmJoYNGyZqvP379+PSpUsAih/JMmfOHDRu3BgymQw2Njb4/vvvRW/rzz//DBcXF5iYmMDFxUXp/2vXrhU11sv4+Pjg7t27aosH8AG7rnry5AkGDBgAOzs7jBkzBoWFhRgxYgSsrKzQuHFjdO7cGY8eParWOty8eROHDh3CrVu3qjXOi2bNmqXSF7Gqq4m+QB1frEuqiWNzpajtqZP1kJaWFl29elX0/ebm5tKECROoa9eu9P333xMR0Zw5c0hfX5/09fXp448/poyMDNHiHThwgLS1tally5ZkZ2dHpqamdPjwYWF7cnIySaVS0eIRETk5OdGxY8eIiOi7774jU1NTWrx4Me3bt4+WLFlCFhYWQtvFMH/+fNLT06MpU6bQkSNH6OrVq3T16lU6cuQITZ06lfT19WnBggWixSMiatu2bakviURCzs7OwrKY/vvvP/L39ydbW1saPXo0FRQU0PDhw0kikZBUKiUPDw9KSkoSNWZ2djb99ddfdOXKFZVtOTk5tH79elHjvU6GDRtGrq6utHz5curevTv169ePWrduTcePH6cTJ05Q+/btafDgwaLF++677+jgwYNERPTkyRPq0aMHSSQS4fenV69e9PTpU9HiERFlZGSovNLT00lLS4v++ecfYZ2Y8vPzaeLEidS0aVNq3749rV27Vml7dfR5RERXrlyhMWPGkJubG1laWpKlpSW5ubnRmDFjSv37qYqa6Av27dtHFy9eJCKiwsJCmj17NllbW5NUKqXGjRtTWFgYFRUViRqzNNV1bBYbJ2Dl0LBhw1JfEomEjI2NhWWxhISEkLW1NU2YMIGcnZ3piy++IDs7O9qwYQNFRkaSo6MjjR07VrR4Hh4e9NVXXxERUVFREc2bN48MDAxo3759RFQ9nZFMJqN79+4REZGrqytt2bJFafuePXvI0dFRtHh2dna0efPmMrdv2rSJbG1tRYtHRKSpqUm9evWimTNnCq8ZM2aQVCqlL774QlgnJnUfsK9fv0729vZCp96tWzelTr26DmSvCysrK/r777+JqPizlEgkFB0dLWw/fvw4NW7cWLR4NjY2dPbsWSIiGjFiBLVt25bOnj1LOTk5dP78eerUqRMNHz5ctHhERFKptNSX4ndK8a+YZsyYQRYWFrRgwQL6+uuvydjYmEaOHClsV3zWYtq7dy9pa2tTp06daMaMGbRq1SpatWoVzZgxgzp37kwymYz2798vWjx19wVE6v9ire5js9g4ASsHAwMD8vPzo4iICOG1bt060tDQoLlz5wrrxGJra0sxMTFERHT79m2SSqW0c+dOYXt0dDTZ29uLFs/IyIhu3bqltG7jxo2kr69Pu3fvrpaDqJWVFcXFxRERkYWFhdDpK9y4cYN0dXVFi6ejo/PSb0RXrlwRNR5R8cGxadOmNH36dCosLBTWa2pqiv5tV0HdB+z+/fuTn58fpaWl0c2bN8nPz48cHByE5JoTsKrR09Oju3fvCstaWlp06dIlYfnOnTukr68vWjyZTCbEa9KkCR09elRp+5kzZ8jKykq0eEREjRs3Jj8/Pzp8+DDFxsZSbGwsHTlyhDQ0NGjdunXCOjE5OjrS7t27heWbN2+So6MjBQQEUFFRUbX83rZu3Zq++eabMrfPmDGDWrVqJVo8dfcFROr/Yq3uY7PYOAErh5s3bwrfFp49eyasr64Dqa6urvBLTFTc6V6+fFlYTkxMJD09PdHimZmZ0ZkzZ1TW//7776Snp0erV68WvTP64osv6J133qGCggIaOXIkjRgxQunU9NixY8nDw0O0eF27dqXBgweTXC5X2VZQUECDBw+mbt26iRZPIT09nT766CPq2LGjkORWZwKm7gO2ubm5cMmBqPgM6ujRo8nOzo5u377NCVgVtWnThlasWEFExWdQDA0NadGiRcL21atXk6urq2jxmjdvTnv27CEiIgcHB+EArnDu3DkyMjISLR5R8aWy/v37k5eXF/3777/C+ur8O9HV1aXExESldf/++y81b96cPv30U3r48KHov7c6OjqUkJBQ5vaEhATS0dERLZ66+wIi9X+xVvexWWycgJWTXC6nSZMmUdOmTen48eNEVH0/ZCcnJ9q0aRMREZ06dYq0tbXpl19+EbZv2rSJmjVrJlq8nj17ljn+KTIykrS0tETvjNLT0+nNN98kR0dHGjRoEOno6JC9vT317NmTHBwcyNjYmE6ePClavAsXLpClpSWZmprSe++9R6NHj6bRo0fTe++9R6ampmRlZaXUOYntl19+IUtLS/rhhx9IS0ur2joHdR+wDQ0NSz2zGBgYSDY2NnTs2DFOwKpgw4YNpKGhQY6OjiSTyWjr1q1kbW1NAwcOpI8++oi0tbWFn7cYFixYQM7OznTz5k1atGgReXh4CF8c7ty5Q56enjRgwADR4pW0atUqsra2psjISCKq3oOog4ODMNatpIcPH1Lz5s2pZ8+eov/etmjRQulv8UWLFi0iJycn0eKpuy8gUv8XayL1HpvFxglYBR06dIjs7Oxo6tSp1XYgDQ8PJx0dHfL29qaGDRvSsmXLyNLSkiZNmkRTpkwhY2Njmj17tmjxtm/fTsHBwWVu37hxI3l6eooWTyE/P59Wr15Nffr0oRYtWlDz5s2pe/fu9NVXX9GDBw9Ej5eZmUmrVq2iwYMHk4+PD/n4+NDgwYNp9erVog/yLc2NGzeoffv2JJFIqq1zUPcBu3379vTrr7+Wui0wMJAaNGjACVgVHT9+nBYuXCicjbpy5QoNGjSI/P39q+XyytixY0lLS4tatGhBOjo6JJVKSVtbm6RSKb355pv06NEj0WMqXLlyhdq0aUMff/xxtR5Ehw8fTsOGDSt127///kuOjo6i/95u2bKFNDU1qW/fvrR06VLatGkTbdq0iZYuXUrvvvsuaWtr07Zt20SLp+6+gEj9X6xLUsexWWz8MO5K+O+///D555/jyJEjOHnyJJycnESPERkZibi4OHTu3Bkff/wxYmNjMX36dGRnZ6Nv37745ptvIJXyLCJ1TVFREZ49ewYjIyNIJJJqifH333/j5MmT8PDwQOfOnXH16lV8//33wu/OkCFDRIsVFhaGv/76C3v37i11+xdffIE1a9agqKhItJis+l27dg179uzBnTt3UFRUBCsrK3Tp0gXe3t7V9nurkJ+fjylTpuDIkSPYvn07HBwcRI9x7949JCQkwNfXt9TtSUlJiImJEfVvBQBOnDiBZcuWIS4uTpgKwtLSEh4eHhg/fjw8PDxEjafOvkBBLpdj7dq12L17t8rvz5gxY2BjYyN6TAV1HJvFxAkYK5NcLoeWlpZaYxIRioqKoKGhoda41amgoABXrlxR6nBdXFzU/tmy+mPWrFkIDAxEo0aNaroqjLFK4lMo5VRYWChk8wCQl5eHLVu2YNOmTUhJSan2+Hl5ebh9+zby8vJE3/eWLVuQn58vLK9YsQL29vbQ0dFBo0aNMHv2bNFjFhQUYNq0aejevTtmzJgBAFiwYAEMDAygp6eHIUOGKNWpquRyOSZNmgRHR0d06NABv/zyi9L2lJQU0ZO+oqIiTJs2DWZmZmjbti169+6N3r17o23btjA3N8c333xTbWeGCgsLlZZPnTqFkydPVsvvD6s+mZmZKq+MjAzMnTsXd+7cEdaJLSsrC8eOHcPmzZuxdetWxMfHV9sk0GV5++23ce/evWqNcfjwYcyePRtjxoxBYGAgFi1ahJs3b1ZrzBdV96ShtaEvICKVeoilpo/NVVKDlz/rjAsXLpCVlRVJpVJydXWl+/fvk6urK+nr65OBgQE1bNiQTp06JVq8devW0YkTJ4ioeCLLYcOGkYaGBkmlUtLU1KRRo0ZRbm6uaPGkUimlpKQQUfFgcR0dHZo+fTpFRUXRt99+S/r6+vTTTz+JFo+IaNq0aWRhYUGhoaHk4uJCo0ePJltbW9qwYQOtX7+eGjduTPPmzRMtXk3M+zNx4kQyMzOjNWvWUGJiImVnZ1N2djYlJibSDz/8QObm5jRp0iRRY969e5fc3d1JQ0ODevXqRRkZGeTt7S1Mpung4EDXr18XLZ6rqyvNnj2b7t+/L9o+2f+oe46swsJCmjhxIunq6irFkkgkZG9vT7t27RItlsKff/5Z6ktDQ4NWrFghLIspJSWFOnToIPSpUqmU3N3dydLSkjQ0NGjixImixnuZ6po0VN19AVHxgPivv/6aunXrRtOnTyei/02Cra2tTYMHD6a8vDzR4qn72Cw2TsDKwdfXlwYMGECXLl2i8ePHk7OzM33wwQeUn59PcrmcPvvsM/L29hYtnoODgzBQ8csvv6QmTZrQ9u3b6dq1a7Rz505q3ry5qB2ERCIRErAOHTrQ/PnzlbavWrVK9Bnb33jjDWEenps3b5JUKhXu/CQi2rx5s6h36NTEvD8WFhYvnVhx//79ZG5uLmpMf39/6t69O+3evZsGDhxIXbp0IU9PT/r3338pKSmJfH19qX///qLFk0gkZGpqShoaGuTr60vbtm0rdaoPVjnqniNr8uTJ5OzsTLt376aYmBjq1q0bzZs3j65du0bffPMNyWQyOnDggGjxiEgpmSzrJfbf5ocffkj9+/enjIwMys3NpaCgIGFS0kOHDpGpqSktWbJE1JjqnjRU3X0Bkfq/WKv72Cw2TsDKoWHDhsI3lOzsbNLQ0KB//vlH2H758mUyNTUVLV7JyeyaN28uzEivcPToUbKzsxMtnkQiodTUVCIiatSoEZ0/f15p+61bt8jQ0FC0eETFc+KUPGuio6ND165dE5bv3LkjasyamPdHT09PaY6sF124cEH0eXjMzMzo3LlzRFR8R5JEIqG//vpL2B4fH08WFhaixZNIJPTw4UPasWMH9e3blzQ1NcnMzIwmTJhQJx4FUtupe44sKysrYSZzouK/EQMDA+GM++zZs0WfRqBXr17k5+cnfAlUqM67II2MjJTmVnz+/DlpaWkJd0P/9ttvok4JQaT+SUPV3RcQqf+LtbqPzWLjMWDlQETQ1NQEAJV/AUBDQ0PUsTyWlpa4ffs2gOKxGC8OtDUzM8N///0nWjyg+OHYu3btgo6ODrKzs5W25ebmin7nk7GxMdLT04Xldu3awdDQUFjOy8sTNWbJz1ShcePGOHLkCE6fPo2AgADRYil4enriyy+/LPWBwo8fP8bkyZPh6ekpaszc3FwYGxsDAAwNDaGhoaH0uRoZGan8fKtKU1MT/fv3x65du3D//n2EhIRg165dcHV1RefOnVXG27HyMzExwY4dO/DBBx+gQ4cO+P3336s13vPnz9G4cWNh2crKCrm5uXj69CkAwN/fHxcuXBA15r59+9CjRw+8+eab2LNnj6j7LotMJlPqX6RSKQoLC4WHRnfu3Bl3794VNea5c+eQmpqKw4cPw9/fH0OGDEFAQAAkEgn69++PIUOGiHpXYk30BUlJSWjTpg0AwNHREdra2sIyALRv317UcX3qPjaLjROwcnB3d8e8efPw8OFDhIWFwcHBAStWrBC2L1++HK6urqLF+/TTT/H1118jPT0dgwYNwuzZs/H8+XMAQHZ2NmbOnIkuXbqIFg8AhgwZgv79++Phw4c4fPiw0raTJ0+iadOmosZzcXHB2bNnheW///5bqeO/dOkSmjVrJlq8t99+G5GRkSrrra2tcfjwYSQmJooWS2HNmjVISkqClZUV2rVrJwzCb9euHaysrJCUlITVq1eLGrNly5ZCwrN+/XqYmppi06ZNwvbff/8dzZs3Fy3ei0mylZUVpk6dihs3buDQoUNo2rQpxo0bJ1q819WYMWMQExODefPm4ZNPPqm2OK1atVJK8rZs2QIDAwNYWloCKL6xRCaTiR5XkbRPnjwZo0aNEj0xeNFbb72F6dOnIysrC3K5HF999RXeeOMNmJiYAADS0tLQsGFDUWM6OjrixIkTsLS0hJubG/7++29R9/8idfcFgPq/WKv72Cy6mj4FVxecOnWKTE1NSSqVkpmZGV2+fJk6duxIlpaWZG1tTbq6uqXOqlxZeXl59O6771LDhg2pZ8+epKOjQ3p6etSsWTPS19cnOzs70QdPvszu3btFfUgsUfFDnO/cuVPm9o0bN7704dkVdffu3Ze24eHDh9UyqWVhYSHt3buXpk+fTiNHjqSRI0fS9OnTad++fUrPhxTL/v37SUdHh7S1tUlHR4eOHj1KzZs3pw4dOlCnTp1IQ0ND1M+15PjBsqhjktvXRV5eHoWEhJCbm9tL/34q6+DBgySTyahDhw7UrVs30tTUpPDwcGH7ggUL6O233xY9rkJ2djaNGjWKmjVrRhoaGtV2CfL27dvUtGlT0tTUJC0tLWrQoIHw/F2i4huhpkyZUi2xidQzaai6+wIiIi8vr5f2o1u2bCF3d3fR4qn72Cw2ngesnLKyspCQkAAnJycYGBggNzcXGzduRE5ODnr27FktE77t37+/1MnsPvnkE+jr64sej9UPd+/eRXx8PNzd3dGkSROkpKRg5cqVyM7Ohp+fH7y8vESLNXToUCxbtkzpWy6r2y5cuIAtW7YgLy8Pvr6+6Nmzp9rrsGvXLhw5cgRTp06Fubl5tcTIzs7G33//jby8PHTq1Entc6qpY9JQdfYFAHDjxg1oaWmVOXluZGQkNDU1MXDgQNFi1sSxWSycgLFXysrKQnx8PLp161atceRyOe7evQtzc3Nh7ILYDh8+jOPHj+PRo0eQSqV444038O6774p6ubMkIsLdu3dha2sLTU1N5OfnY8eOHcjLy0OfPn14Ik1WLqdOnVKZPb1z585o3759DdeMMVZZnICVkzoPpI8fP65VB+YLFy6gXbt2ok6kN3/+fIwdOxa6urooLCzE5MmTsXz5chQUFEAqlWLQoEH44YcfRJstPjU1FX379sWZM2cglUpRVFSEtm3b4uHDh0hLS0NoaCjmz58vSiyF69evw9fXFw8ePMAbb7yB6OhofPDBB0hISAARQU9PDydOnKi25A8onvD2yJEjuH//Ppo0aQJPT89qecoAz/ZfPVJTU+Hv74+///4bdnZ2sLCwAFA8cfD9+/fRpUsX/PHHH6KfJSot4fPw8ECHDh1EjVMeKSkp+OGHHzB9+vR6HbM+KSwsVOpn/vnnH+Tl5cHDw0P0PqFOf8mtqWufdUlCQgLZ29uTVColR0dHunPnDrm7u5O+vj7p6elRo0aN6MaNG6LFk0ql9Pbbb9PGjRtFnXC1ss6fPy/6FA0lJ39dsGABNWzYkH755Re6cuUKbdiwgczNzUWdL6Ym5v3p168fvfvuu3Tx4kUKDg4mZ2dn6tevH+Xn51Nubi717duXPvvsM1FjBgUFCbeBP3jwgFq0aEEaGhpkYWFBGhoa1KpVK6XpDKqqsLCQvv76a2rQoIHK3E0NGjSgadOmVctYt9eFv78/eXh4UEJCgsq2hIQE6ty5Mw0YMEC0eCkpKdSlSxdh4tUOHTpQhw4dyN7eniQSCb311luvHPMnturof2oiZn5+Pk2cOJGaNm1K7du3p7Vr1yptF3suQnXHIyJKSkqiLl26kIaGBnXr1o2ePHlCfn5+Qp/QvHlzSkpKEi2euo/NYuMErBzUfSCVSCTUq1cv0tbWpoYNG1JQUJAwn0t1KGuCQMXLyMhI9D/UkoO327ZtSz/88IPS9g0bNlDLli1Fi1cT8/6UnIfn+fPnKvPw/P3336LO50ZUPPnrpUuXiIho4MCB5O3tTWlpaURUPKfUO++8I+oBuyZm+3+dGBgY0NmzZ8vcfubMGTIwMBAtnroTPqLi+fBe9tq8ebPo/U9NxFT30zhq4ukfgwYNos6dO9OuXbvoww8/pM6dO1PXrl3p33//pXv37lGXLl0oMDBQtHg18SVXTJyAlYO6D6SK5CQtLY0WLlxILi4uJJVKqV27drRq1SrR7yrT09OjCRMmKE0QWPI1a9asaknAFJO/mpqaCkmDwp07d0hPT0+0eGZmZkp3GmVnZ5NUKqX//vuPiIrvipLJZKLFIyqe/FUxoS5R8cH01q1bwvL9+/dFj6mjoyPcHWdjY6M0KSER0aVLl6hRo0aixauJ2f5fJ6ampi+d6f7IkSOiTjSp7oSP6OUz4VfH45ZqKqa6n8ZRE0//sLKyori4OCIq/sInkUiU7kI8dOgQvfHGG6LFq4kvuWLiecDK4fnz58L8MPr6+tDX14eVlZWw3dbWtloe+tmoUSNMmDABV65cwfHjx+Hm5obJkyfDysoKgwcPFi2Om5sbbG1thYkAX3z169dPtFgl/fTTT1i2bBm0tbXx5MkTpW3Pnj0Tdb6hmpj3x9raGvfv3xeW58+frzRWpzpiNm/eHKdOnQJQPPniiw9qfvbsmagTEz579gzW1tZlbreyskJWVpZo8V43H374IYYMGYIdO3Yo/SwzMzOxY8cODB06FB9//LFo8WQy2Usf7i323yVQPNnsTz/9hMTERJXXnTt3qmVy1pqI+fDhQ6U5qRwdHREbG4sTJ05g0KBBoj+sWt3xAODp06fCfI4mJibQ09ODvb29Uh0ePXokWryaOjaLRfPVRZjiQGpnZweg+g+kpU1U5+HhAQ8PDyxbtgybNm0SdXZxPz8/pcnzXmRiYiJqwgcAdnZ2+OmnnwAUd/pnz55VusvyyJEjot4+vHDhQvj4+KBBgwaQSCTQ19fH1q1bhe3Xrl0TfTZ8b29vJCQk4K233gJQPJlmSdHR0WjXrp2oMUNCQvDll1/CwsICU6dOxbhx47B8+XI4Ozvj+vXrGD9+PN5//33R4ilm+9+4caPKYNfqmu3/dbJ48WIUFRXho48+QkFBAbS1tQEA+fn50NTUxPDhw7Fw4ULR4ikSvvDwcPTo0QNGRkYAihO+Q4cOITQ0VNSEDyieTDMpKUnpQF1Seno6SOR7xWoipuJpHE2aNBHWKZ7G4eXlJXr/o+54AGBubo5Hjx7B1tYWABAUFCQkSEBxgibmFErqPjaLrqZPwdUFo0aNop9++qnM7WFhYdSnTx/R4pVncsv6Li4u7qWXQiojKyuLoqOjaffu3cK4qJp0584dUQekKixatIj09PRIV1eXtLW1SSqVCq/+/fvTs2fPRIt1//59cnV1JU1NTWrbti316tWLevXqRW3btiVNTU1q3bq10jM/WeVkZGTQ4cOHKTIykiIjI+nw4cPVMsFtbm4ujR49Wvi90dHRIR0dHZJIJKStrU1jxowR/cag7du302+//Vbm9idPnog+SXJNxBw+fDgNGzas1G3//vsvOTo6inpJUN3xiIjefffdl97MtGLFClEn8lX3sVlsPA2FCBITE6Gjo6N06rMq1q9fj48++qhaHvnBXg/p6emIiYlRmcS3Oqa8KCoqwoEDB3Dy5EmVaQt8fHwglfJIh7omMzMTZ86cES7fWFhY4M033xTOiLGKu3fvHhISEuDr61vq9qSkJMTExIj2PEh1xyuPU6dOQU9PT22PBxL72Cw2TsCYQN2TlJZERIiNjcWtW7dgZWUFX19ftc4hVV3z/uzZswenTp2Cr68vunTpgsOHD2PhwoUoKirC+++/j5EjR4oaj9U/OTk5iI+Ph4mJCVxcXJS25ebmYsuWLaIPEXiRtrY2Lly4AGdn52qNw9hrpUbPv9URDx48ULpkdezYMfrkk0/orbfeok8//ZROnDhRLXHLmj+psLBQ6e66qkpJSaEOHTqQVColTU1Nkkql5O7uTpaWlqShoUETJ04ULZZC7969KT09nYiK75bp2LEjSSQSMjMzI6lUSi1atBDuklSH6pj3Z82aNaSpqUnu7u5kZGREv/32GxkaGtKIESNo1KhRpKurK/rcY2Xx8vKiu3fvqiVWSc+fP6ejR4+qPW59cf36dWEOLqlUSt26daOHDx8K28W+ky0kJKTUl1QqpcGDBwvLYoqPj1d6ruWvv/5KnTt3JhsbG+rSpQv9/vvvosZTWL58OQ0aNEjY/6+//krOzs7k5OREU6dOJblcLnrMvLw82rx5MwUHB9NHH31EH330EQUHB9OWLVsoLy9P9HhExcev0oYd5Ofnq+1v08HBoVrm46qpY7NYeBB+Ofj7++Obb77BO++8gz///BPvv/8+3nnnHXTp0gU3btxA9+7dsX37drzzzjuixMvMzMSIESOwe/duGBkZYdSoUZgxY4Yws3BaWhocHBxEu4tl3LhxsLa2xtOnTyGTyfDll18KlyAOHz6MgQMHonHjxhg/frwo8YDi51zm5eUBAKZNm4Znz57h9u3bcHBwwL///ov+/ftj+vTpWL16tSjxLl68+NLt169fFyVOScuWLcOqVauE57316dMHixYtwhdffAEA6NSpE+bPny/q57pr165S1x87dgx79uwRBse+++67osV8mVu3bsHLy6ta7rh6HUyePBmurq44c+YM0tPTERwcjLfeeguxsbHCwGMxLVmyBG3atEGDBg2U1hMRrl27Bn19/VJvEqqKoUOHYtGiRXBwcMDPP/+McePG4fPPP8egQYNw/fp1fP7558jOzsawYcNEi/ntt99i/vz58PHxQUhICO7du4cFCxYgJCQEUqkU4eHh0NLSwqxZs0SLeevWLfj6+iIpKQkdO3YUnmpw7tw5rFmzBjY2Nti3bx8cHR1Fiffo0SP069cP8fHxkEgk+OSTT7Bq1SoYGBgAAJ48eSL63+ayZctKXX///n2sW7cOlpaWAIqPOWJQ97FZdDWdAdYF+vr6wje0jh070vfff6+0ffny5dS2bVvR4o0bN46aN29OW7dupZ9++ons7e3Jz89P+IYk9gR6NTFJackbDZycnOjPP/9U2n7w4EFycHAQNZ665/15cR4wLS0tpfnOEhMTRZ3rjOjl7SzZXnWpiVnM6xNzc3O6ePGisFxUVESjR48mOzs7un37tuhnwMLCwsjBwYEOHTqktF5TU1NpHj0x6erqCmdn27ZtSz/++KPS9o0bN5KLi4uoMZs2bUp//PEHERX/jmpoaNCGDRuE7du3bydHR0dRY3p7e1O/fv1KvXkiIyOD+vXrRz4+PqLFGzx4MHXs2JFOnz5NMTEx5O7uTm+++SY9efKEiKpnIlaJREI2NjbUpEkTpZdEIqHGjRtTkyZNRO3X1X1sFhsnYOVgbGxMFy5cIKLiDlHxf4Vbt26JeiC1s7OjI0eOCMtpaWnUoUMH8vHxodzcXNE73ZqYpLTkRKzm5uZKCSAR0d27d0WNaWpqSmvXrqW7d++W+oqKihI9UbCxsaFjx44REdHDhw9JIpFQVFSUsD02NpZsbGxEjdmrVy/y8/NTuYu2ug6gNfEUhdeJoaEhXb16VWV9YGCg8Psl9ud76tQpat68OU2YMIHy8/OJqHoTMFNTUzpz5gwRFfcF58+fV9p+69Yt0tXVFTVmaV+OSvZBd+/eFf3Lka6ursqE0yVdvHhR1HZaW1srTcSsmBnezc2N/vvvv2qZiHXUqFHk5uam8jtbXb8/6j42i41vTyqH7t274/fffwcAtG3bFrGxsUrbjxw5Ikw+J4a0tDSl+WkaNWqEgwcP4tmzZ+jTpw+ys7NFiwXUzCSlABAQEID3338fcrkciYmJStuSk5NVLoNURcl5f0p7NW7cWPR5f/r164fhw4dj7ty5eO+99zB48GBMmDAB+/fvx4EDBzB27Fj4+PiIGnPfvn3o0aMH3nzzzWqZTPJFeXl5GDZsGMLDw0t9TZgwodrrUJ+1aNECZ86cUVm/YsUK9OvXr1ouJbdv3x7x8fFIS0vDm2++icuXL4t+2bGk3r17C0MNunfvjm3btilt37Jli2iX5RQsLS1x9epVAMDNmzdRWFgoLAPAlStXRH/AeYMGDXD37t0yt9+9e1fUPi8jI0Op35bJZNi+fTuaNGkCLy8vpKamihZLYc2aNZg+fTp8fX2xYsUK0ff/InUfm0VX0xlgXXD16lUyNTWlwYMH05w5c8jAwIA+++wzmjt3Lg0ePJhkMhmtW7dOtHhOTk5KZ0oUnj17Rh4eHtSmTRtRv7ncvn2bmjZtSpqamqSlpUUNGjSgmJgYYfu6detoypQposUjIgoICFB6bd68WWn7xIkTydfXV7R4NTHvz/Pnz+nzzz8nV1dXGjlyJOXl5dGCBQtIW1ubJBIJeXp6Vtt8b+fOnSMXFxcaOXIkZWVlVds30M6dO7/0RgK+BFk13333HfXu3bvM7WPGjBH9MlJJv//+O1lYWJBUKq22M2APHz6kJk2aULdu3Sg0NJR0dXXprbfeos8//5y6detG2trapfaHVTFt2jQyMzOjESNGkIODA02ZMoXs7Oxo9erVtGbNGrK1tRX9ZoNvvvmGGjZsSIsXL6YLFy5QcnIyJScn04ULF2jx4sVkYmJCM2bMEC1eq1ataNu2bSrr5XI59e/fn+zs7Krtb/Pff/+lt99+m3r16kWPHj2qtv5H3cdmsXECVk63bt2i/2vv/mOirv84gD+PXx0/Dn8AwyMZYChFagdSDKhBxGy5SGZpBGRQaGFmzPDMuSjUQ9BcsdV0aW6KGdYMpn8gMaU2EAUhb+lQGGowfqwglPiRBPf+/sG8dQGp3z73Oe7u+dhu03tz93x/GPJ5+bn35/VOTk4WKpXKuJbG2dlZREdHi9LSUkmz3nnnnSk3vO3v7xeRkZGS/8MZHBwUFRUVJk1KDQaDpBn3Y2BgQAwPD1ss35yGh4dFf3+/2XOGhobEm2++KebPny8cHR3N8gtQp9OJjz76aMrxtrY2kZ6eLnkuyae9vV2UlZWJgYEBs2X09fWJzZs3i9DQUKFUKoWLi4sICAgQKSkpor6+XvK8sbExodPpxPPPPy/y8/OFwWAQX3/9tfD39xdeXl4iPT3dLMdbUFAg1Gq1cS3mnfWaarVaFBYWSpql1WqnXFP2119/iRdeeMGsxbvBYBD5+fnGu+nNVcDLeW6WGvuA3SchBH799VcYDAZ4e3ubpVdVX18fOjs78eijj046/scff6CxsRGxsbGSZ/8de//8d11dXdi7d++E/mpJSUlIT0833tlqTidOnEBVVRW2bNki+ccqRHT/rl+/btK0OCgoSPKM0dFRDA0NTdk8d3R0FB0dHVNuxySVhoYGVFdXY/Xq1WbdFkiOc7PUWIBJoL29HR9++KGk+zM2NTXh3LlziIqKwsMPP4wrV66gqKgIt2/fRlpaGuLj4yXL2rhx46TPFxUVIS0tDV5eXgDG96WTSmNjI2bNmmX8xVNcXIx9+/ahra0NAQEBWL9+PZKTkyXLA8bXzdTV1WHZsmVITk5GcXExdu7caWyKum3bNjg5SdeZ5cKFC0hISEBwcDBcXV1RW1uLlJQUjIyMoKKiAqGhoTh16hRUKpVkmURkncxxHplOeZbItMQx3hdLXn6zFVKvcykvLxcuLi5i9uzZQqlUivLycuHj4yMSEhJEfHy8cHR0nHCb+H+hUCiERqMRcXFxJg+FQiEef/xxERcXJ55++mnJ8oQQYvHixcZ1Zvv37xeurq5iw4YNYu/evSI7O1t4eHiIL7/8UrK87du3C5VKJV588UUxZ84cUVBQILy8vMSOHTtEfn6+8PHxEbm5uZLlCSFETEyMycdzxcXFIjIyUggxvuZMo9GIDRs2SJp5N93d3SIvL0/S9+zp6RFnzpwx3jX722+/iYKCApGXlzfpHXxENJHc6yUtsT7THo7xfvAK2D2YqrnlHdeuXcN7770nWUO76OhoxMfHY8eOHSgpKcG6deuQlZUFnU4HANiyZQsaGhrw/fffS5JXUFCAL774AgcOHDC5subs7Ay9Xj9h+xMpuLm5oampCQEBAQgPD0dWVhbWrFljHD969Ch0Oh0uX74sSV5wcDB27dqFFStWQK/XY8mSJTh06BBSU1MBAKWlpdBqtWhpaZEkDxg/xkuXLmHevHkAxvdMVCqVaG9vh6+vLyorK5Geno6Ojg7JMu9Gr9cjPDxcsp/Vuro6LF26FP39/Zg5cyYqKyuxcuVKODk5wWAwoLOzE9XV1QgPD5ckj8hayX0ekTvPEpmWOEZJWboCtAZyN7f09PQULS0tQojxxaJOTk6isbHROP7zzz8LX19fyfKEsP3eP5bo+xMQECCqq6uNf+/s7BQKhUIMDQ0JIcYbsSqVSkkz9Xr9vz6OHTsm6c9qQkKCyMzMFP39/WL37t1i7ty5IjMz0ziekZEhkpKSJMsjslZyn0cs0ZTZHo5RSuwDdg/UajW+++47GAyGSR+NjY2SZ97pu+Pg4AClUokZM2YYx1QqFW7duiVpnq33/rFE35+kpCS89dZbOHXqFKqqqpCamorY2Fi4uroCGN/+SOoeNRqNBmFhYdBoNBMeYWFhkq+ra2howMaNG6FSqfDuu++is7PT5Erm+vXrUV9fL2kmkTWS+zxiifOWPRyjlLgX5D1YsmQJGhoasHz58knHFQqFpE08AwMD0dLSgoceeggAUFtba7LvW1tbG9RqtWR5d3h4eODQoUMoKSlBQkKCWS/bFhYWIiYmBrGxsYiIiMCePXvwww8/4JFHHsHVq1dx7tw5lJaWSpaXmpqK1atXY/ny5Th9+jS0Wi1ycnLQ29sLhUIBnU6Hl156SbI8YHy/ua6uLiQmJmJsbAxRUVE4cuSIcVyhUGDnzp2SZs6ePRu7du3CM888M+n45cuXkZiYKFneyMiIsaB0dnaGm5sbvL29jePe3t7o7e2VLI/IWsl9HpE7zxKZljhGKbEAuwebNm3C4ODglOPBwcGoqqqSLC8rK8uk+Fm4cKHJeHl5uaR3Qf5TcnIynnzySTQ0NJjtFmU/Pz/89NNPKCgowMmTJyGEQF1dHdrb2xETE4OamhpERERIlpeXl2e8E3HNmjV4//338dhjj0Gr1WJoaAiJiYnYvn27ZHnAeEF77Ngx/PnnnxgdHTVugnuH1F3wAdOO/5O5efOmpL+Q/P39ce3aNQQGBgIASkpKTP5z0NXVZVKQEdkruc8jcudZItMSxyglLsInsiGlpaUYHBxEWlrapON9fX04ceIEXnvtNUny8vLyEBISMuVHm1u3bsWVK1dw/PhxSfKIiGwFCzAiMpuhoSE4OjrigQcesPRUiIimFS7CJ7Ij7e3teP3112XL6+3tRVZWlmx5RETWglfAiOyI1H3AplseEZG14CJ8IhtyL40JrTmPiMhW8AoYkQ1xcHC4663XCoVCsitScucREdkKrgEjsiFshEh0d3FxccjOzrb0NIym23xIHizAiGzIncaEUzFXI0S58oimi5GREUtPgawcCzAiG7Jp0yZER0dPOW6ORohy5hH9V+np6fjxxx9RVFQEhUIBhUKB1tZWvPHGGwgKCoKrqytCQkJQVFQ04XVJSUnQ6XTw8/NDSEgIAODs2bPQaDRQKpWIiIhAWVkZFAoFLl68aHztpUuX8Nxzz8HDwwO+vr549dVX0dPTM+V8bty4Ide3gyyIi/CJbMhTTz31r+Pu7u6IjY212jyi/6qoqAjNzc1YuHAhtm3bBgCYNWsW5s6di2+//RZeXl44e/Ys1q5dC7VajVWrVhlfe/r0aXh6eqKyshIA0N/fj8TERCxbtgxHjx7FL7/8MuGjxJs3byI+Ph6ZmZn45JNPMDw8jM2bN2PVqlU4c+bMpPPx8fGR55tBFsUCjIiI7MaMGTPg4uICNzc3zJkzx/h8Xl6e8c9BQUGora3FN998Y1KAubu748CBA3BxcQEA7Nu3DwqFAvv374dSqURoaCg6OjpMNqT/7LPPEBYWhvz8fONzBw8ehL+/P5qbm7FgwYJJ50O2jwUYERHZvc8//xwHDx5EW1sbhoeHMTIyAo1GY/I1ixYtMhZfAHD16lUsXrwYSqXS+NwTTzxh8hq9Xo+qqqoJe8ECQGtrKxYsWCDtgZDVYAFGRER2raSkBDk5OdizZw+ioqKgUqmwe/dunD9/3uTr3N3d7/u9BwYGkJiYiMLCwgljf9+4nuwPCzAiIrIrLi4uJr3pampqEB0djXXr1hmfa21tvev7hISE4MiRI7h9+7Zxv9P6+nqTrwkPD8fx48cRGBgIJ6fJT7n/nA/ZB94FSUREdiUwMBDnz5/HjRs30NPTg/nz5+PChQuoqKhAc3MzPvjggwmF1GRSUlJgMBiwdu1aNDU1oaKiAh9//DGA8RYsAPD222/j999/xyuvvIL6+nq0traioqICGRkZxqLrn/MxGAzmO3iaNliAkUVMt8aD020+RGQ+OTk5cHR0RGhoKHx8fPDss89ixYoVePnllxEZGYne3l6Tq2FT8fT0xMmTJ3Hx4kVoNBps3boVubm5AGBcF+bn54eamhqMjY1h6dKlWLRoEbKzszFz5kw4ODhMOp+2tjbzHTxNG9yKiCwiLi4OGo0Gn3766f/9HiMjIyYLYi09HyKir776ChkZGbh16xZcXV0tPR2axngFjGTHRohEZCsOHz6M6upqXL9+HWVlZcYeXyy+6G64CJ9kx0aIRGQruru7kZubi+7ubqjVaqxcuRI6nc7S0yIrwAKMZMdGiERkK7RaLbRaraWnQVaIBRhNG2yESERE9oIFGE0LbIRIRET2hAUYWQQbIRIRkT3jXZBkEWyESERE9owFGFkEGyESEZE9YyNWsjlshEhERNMd14CR1Tt8+DDmzZuHBx98EHq9no0QiYho2mMBRlaPjRCJiMja8CNIIiIiIplxET4RERGRzFiAEREREcmMBRgRERGRzFiAEREREcmMBRgRERGRzFiAEREREcmMBRgRERGRzFiAEREREcmMBRgRERGRzP4HflnMW9YudKYAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "by='target'\n",
+ "column='[OVERALL].Throughput(ops/sec)'\n",
+ "groups = df_groups.groupby('pod_count')\n",
+ "rows = 1#(len(groups)+1)//2\n",
+ "row=0\n",
+ "col=0\n",
+ "fig, axes = plt.subplots(nrows=rows, ncols=2, squeeze=False, figsize=(6,4*rows))#, sharex=True\n",
+ "for key1, grp in groups:#df3.groupby(col1):\n",
+ " ax = grp.boxplot(ax=axes[row,col], by='target', column='[OVERALL].Throughput(ops/sec)', figsize=(6,4), layout=(rows,2), rot=90)\n",
+ " col = col + 1\n",
+ " if col > 1:\n",
+ " row = row + 1\n",
+ " col = 0\n",
+ "plt.legend(loc='best')\n",
+ "plt.tight_layout()\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Plot Comparison"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOYAAADvCAYAAADmZahzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3NElEQVR4nO2deVxU9f7/XzPDrIzDgOwKggsiiKgoiFrajSsaLZYlmhWSueR2vZSZLeLtZni169dS07r+TNtcyxZFDRW0DEkRd8INhNQBFYZhh5l5//4Y58QRUIZtBvk8H4/zmHM+n/fn83mfw3lxPuezHQERERgMhk0htLYDDAajLkyYDIYNwoTJYNggTJgMhg3ChMlg2CBMmAyGDcKEyWDYIEyYDIYNwoTJYNggTJiNICUlBQKBADt27LC2K00iJycHAoEAH374obVdaRQCgYDb2ovP9TFv3jzuPJRKpUVpO6wwa//x77WlpKRY29V2T2JiIhYvXmxRmqeffhpffvkloqKiWsepJrBq1So4ODigpqamUfYvvvgivvzySzz00EMWl2VncYoHhC+//JJ3/MUXXyApKalOeJ8+fZCZmdmWrj1wJCYmYs2aNRaJs1+/fnjhhRdaz6kmsHv3bowaNQpisbhR9iEhIQgJCcH+/ftx4sQJi8rqsMK8+49+9OhRJCUl1XszNFeY5eXlUCgUzcqDYV3Ky8tx6NAhrF27tk3K67BV2aZgNBqxZMkSdO3aFTKZDI8++iguXbrEsxk5ciT69u2L9PR0PPzww1AoFHjrrbcAAAUFBZgyZQrc3Nwgk8kQHByMTZs28dKb32fvrkKb3xM3btzIC9++fTsCAgIgk8nQt29f7Ny5E5MnT4aPj0+95/DZZ5+hR48ekEqlGDx4MI4dO8aLnzx5MpRKJa5cuYLIyEjY29vD09MT7733HmpPRGqsn5MnT8aaNWsA8F8fmsqVK1fw3HPPwcnJCQqFAkOGDMHu3bt5Nmbftm7dirfeegvu7u6wt7fHk08+iby8PJ7txYsXMW7cOLi7u0Mmk6Fr166YMGECiouLeXYHDhxAVVUVxowZAwCoqanBv/71L/Tq1QsymQydO3fG8OHDkZSU1ORzq02HfWI2haVLl0IoFOL1119HcXExli1bhkmTJiEtLY1nd/v2bYwZMwYTJkzACy+8ADc3N1RUVGDkyJG4dOkSZs+eDV9fX2zfvh2TJ0+GVqvFP/7xD4v92b17N6KjoxEUFISEhAQUFRVhypQp6NKlS73233zzDUpKSjB9+nQIBAIsW7YMzzzzDK5cucKrnhkMBowePRpDhgzBsmXLsHfvXsTHx0Ov1+O9996zyMfp06fj+vXr9b4mWEp+fj6GDh2K8vJyzJ07F507d8amTZvw5JNPYseOHXj66ad59kuWLIFAIMCCBQtQUFCAlStXIiIiAidPnoRcLkd1dTUiIyNRVVWFOXPmwN3dHdeuXcOuXbug1Wrh4ODA5ZWYmIiQkBC4ubkBABYvXoyEhAS88sorCA0NhU6nw/Hjx3HixAn8/e9/b9Z5AgCIQUREs2bNooYuR3JyMgGgPn36UFVVFRf+0UcfEQA6c+YMFzZixAgCQOvWrePlsXLlSgJAX331FRdWXV1N4eHhpFQqSafT8cpKTk7mpc/OziYA9Pnnn3NhQUFB1LVrVyopKeHCUlJSCAB169atTtrOnTtTYWEhF/7DDz8QAPrpp5+4sJiYGAJAc+bM4cKMRiNFRUWRRCKhmzdvWuznva5tfQCg+Pj4OuHz5s0jAPTLL79wYSUlJeTr60s+Pj5kMBh4vnXp0oW7rkRE27ZtIwD00UcfERFRRkYGAaDt27ff1ydvb2+eT8HBwRQVFdWo84mJiSF7e/tG2ZphVVkLiI2NhUQi4Y7NrW1Xrlzh2UmlUsTGxvLCEhMT4e7ujokTJ3JhYrEYc+fORWlpKQ4dOmSRL9evX8eZM2fw0ksv8ZriR4wYgaCgoHrTREdHw9HR8b7+A8Ds2bO5fYFAgNmzZ6O6uhr79++3yM+WJDExEaGhoRg+fDgXplQqMW3aNOTk5OD8+fM8+5deegmdOnXijp999ll4eHggMTERALgn4r59+1BeXt5guWfPnkVubi6vhVitVuPcuXO4ePFii5zb3TBhWoC3tzfv2HyTFxUV8cK7dOnCEzAAXL16Fb169YJQyL/kffr04eItwWzfs2fPOnH1hQGN918oFKJ79+68MD8/PwCmd0hrcfXqVfTu3btOeEPXsFevXrxjgUCAnj17cufg6+uLuLg4rF+/Hs7OzoiMjMSaNWvqvF/u3r0bbm5uGDRoEBf23nvvQavVws/PD0FBQZg/fz5Onz7dEqcJgAnTIkQiUb3hdNfqLHK5vMllNNQwYjAYmpynmcb63xha08+25L///S9Onz6Nt956CxUVFZg7dy4CAwPx559/cjaJiYkYPXo075wffvhhXL58GRs2bEDfvn2xfv16DBw4EOvXr28Rv5gw24hu3brh4sWLMBqNvPA//viDiwf+eopptVqe3d1PA7P93a3CDYVZgtForFO9vXDhAgBwrb2N9RNoWMSW0q1bN2RlZdUJv/samrm7mklEuHTpUp0W66CgILzzzjs4fPgwfvnlF1y7dg3r1q0DYDq/3377rd6BDk5OToiNjcXmzZuRl5eHfv36WTyQoiGYMNuIxx57DBqNBlu3buXC9Ho9Vq1aBaVSiREjRgAw3VwikQiHDx/mpf/kk094x56enujbty+++OILlJaWcuGHDh3CmTNnmu3v6tWruX0iwurVqyEWi/Hoo49a5CcA2NvbA6grYkt57LHH8PvvvyM1NZULKysrw2effQYfHx8EBATw7L/44guUlJRwxzt27MCNGze4Lg+dTge9Xs9LExQUBKFQiKqqKgDAzz//DAAYNWoUz+727du8Y6VSiZ49e3LpmgvrLmkjpk2bhk8//RSTJ09Geno6fHx8sGPHDhw5cgQrV67kGikcHBzw3HPPYdWqVRAIBOjRowd27dqFgoKCOnl+8MEHeOqppzBs2DDExsaiqKgIq1evRt++fXlitRSZTIa9e/ciJiYGYWFh2LNnD3bv3o233noLLi4uFvsZEhICAJg7dy4iIyMhEokwYcIEi/168803sXnzZowZMwZz586Fk5MTNm3ahOzsbHz77bd13t+dnJwwfPhwxMbGIj8/HytXrkTPnj0xdepUAMDBgwcxe/ZsPPfcc/Dz84Ner8eXX34JkUiEcePGATC9Xw4fPpzXdQIAAQEBGDlyJEJCQuDk5ITjx49jx44dvEazZmFRG+4DTGO6S+5uVq+va2DEiBEUGBhYbz75+fkUGxtLzs7OJJFIKCgoiJfWzM2bN2ncuHGkUCjI0dGRpk+fTmfPnq1TFhHRli1byN/fn6RSKfXt25d+/PFHGjduHPn7+9fxc/ny5XXKwl1dE+am/cuXL9OoUaNIoVCQm5sbxcfHc90Rlvqp1+tpzpw55OLiQgKB4L5dJ3f7VJvLly/Ts88+S2q1mmQyGYWGhtKuXbt4Nua/1+bNm2nhwoXk6upKcrmcoqKi6OrVq5zdlStX6OWXX6YePXqQTCYjJycneuSRR2j//v1EZOomcnV1pWXLltXx4/3336fQ0FBSq9Ukl8vJ39+flixZQtXV1XVsm9JdwoT5ABIcHEwRERFNStuUm6ilAUDz58+nmzdvUnl5ucXpG/pHailpaWkEgM6dO9ek9KWlpXTz5k2aMGEC68fsSNTU1NR5R0pJScGpU6cwcuRI6zjVQixfvhwuLi7ccD5r8cEHH9R5d20sb7/9NlxcXLBlyxaL07J3zHbMtWvXEBERgRdeeAGenp74448/sG7dOri7u2PGjBnWdq/J1B5vau4/tQahoaEIDQ1tcvqZM2fi8ccfBwDY2VkmNSbMdoyjoyNCQkKwfv163Lx5E/b29oiKisLSpUvRuXNna7vXZCIiIqztQovg5+fX5H8sAiL27RIGw9Zg75gMhg3ChMlg2CAd+h3TaDTi+vXr6NSpU4sNG2Mw6oOIUFJSAk9PzzoDIeqjQwvz+vXr8PLysrYbjA5EXl4eunbtel87i4S5du1arF27lps2ExgYiEWLFnFjDysrK/Haa69hy5YtqKqqQmRkJD755BNu1jcA5Obm4tVXX0VycjKUSiViYmKQkJDAa05OSUlBXFwczp07By8vL7zzzjuYPHkyz5c1a9Zg+fLl0Gg0CA4OxqpVqyxu2jYPg8vLy4NKpbIoLYNhCTqdDl5eXrz5offEktEIP/74I+3evZsuXLhAWVlZ9NZbb5FYLKazZ88SEdGMGTPIy8uLDhw4QMePH6chQ4bQ0KFDufR6vZ769u1LERERlJGRQYmJieTs7EwLFy7kbK5cuUIKhYLi4uLo/PnztGrVKhKJRLR3717OZsuWLSSRSGjDhg107tw5mjp1KqnVasrPz7dodEVxcTEBoOLiYovSWYper6fk5GRKTk4mvV7fqmUxbBNL77VmD8lzdHSk9evXk1arJbFYzBsGlZmZSQAoNTWViIgSExNJKBSSRqPhbNauXUsqlYpbsuONN96oM9Y0OjqaIiMjuePQ0FCaNWsWd2wwGMjT05MSEhIs8r2thFlaWkoACACVlpa2alkM28TSe63JrbIGgwFbtmxBWVkZwsPDkZ6ejpqaGl7nsL+/P7y9vblpOqmpqQgKCuJVbSMjI6HT6XDu3DnO5u4O5sjISC6P6upqpKen82yEQiEiIiJ404Hqo6qqCjqdjrcxGLaIxcI8c+YMlEolpFIpZsyYgZ07dyIgIAAajQYSiQRqtZpn7+bmBo1GAwDQaDQ8UZrjzXH3stHpdKioqMCtW7dgMBjqtTHn0RAJCQlwcHDgNtbww7BVLG6V7d27N06ePIni4mLs2LEDMTExFi8kZS0WLlyIuLg47tj8Qt4uKMkHrp8ArqUD104AN04CAhHg0htw7gU49wZc/ABnP0DVBbBG94++GijOA4pygKJsoKoEkDkAMjUgVwNyx7/2pQ5AI7oNOioWC1MikXCLPYWEhODYsWP46KOPEB0djerqami1Wt5TMz8/H+7u7gAAd3d3/P7777z88vPzuTjzrzmsto1KpYJcLodIJIJIJKrXxpxHQ0ilUkilUktPue2p1JmEZxbhtROA7s/6bcsKgJxf+GES5R2x3hGqS2/Tr1N3QNS45f0bpKIIKMy+I74ckwDN+8V/AmS8d3oOASBT8cUqU5uOuf27wqSdAIHQtEHw175AcFeYoIGwu9MKAKMBMOoBMtzZN9TabyCc7sQZjbX274R38gRc/Zt3jdEC/ZhGoxFVVVUICQmBWCzGgQMHuNnfWVlZyM3NRXh4OAAgPDwcS5YsQUFBAVxdXQGYZhKoVCpuak14eDi3vKCZpKQkLg+JRIKQkBAcOHAAY8eO5Xw4cOBAy80eb0v0VYDmLP9peOsCTG1FtREALv5Al4GmzXOgKfjWBdN2M8v0W3gFqC4FrmeYttoI7UzivCPYGqdeuIwu+F3XGemaGlTWGNDLRYYgZSl6iW+jCzSQ6nL5Aqwsxj2xkwOOPoCTr0lUlcUmMVdqgQqt6bem3HR+lcX3z6+9MWgK8PiKZmdjkTAXLlyIMWPGwNvbGyUlJfjmm2+QkpKCffv2wcHBAVOmTEFcXBycnJygUqkwZ84chIeHY8iQIQBM66YEBATgxRdfxLJly6DRaPDOO+9g1qxZ3JNsxowZWL16Nd544w28/PLLOHjwILZt28ZbBj8uLg4xMTEYNGgQQkNDsXLlSpSVldVZy9UmKcgCiv/4S4SaM4Cxnq9HOXgDXQYAXUJMIvTsb3pi3E2XgfxjQ43piXYr645YLwK3skC3LkJQXfqXkAGIAfjf2SLICdUkRpdLtyAW3HulO6O9G4ROvn8J0NHnzuYLKF3vX43WV/0l0tq/dwv47rDqUtMTmejOrxFA7f0WRCAChCLTPzOByFTt5vbN4cK7bERAJ48WKd4iYRYUFOCll17CjRs34ODggH79+mHfvn3ckvD/93//B6FQiHHjxvEGGJgRiUTYtWsXXn31VYSHh8Pe3h4xMTG8Zfd9fX2xe/du/POf/8RHH32Erl27Yv369YiMjORsoqOjcfPmTSxatAgajQb9+/fH3r176zQI2QpiYyWWTQwGirIh3jASEN1148qd7jwJQ/4SotKlaYWJxICLH0o6+eK0OBwZ+iKcLNEiQ18EcaUGPYXX0VNwDT0E19FTcB29RNfhDC08BYXAHbeqIcafcEO2wQW55Fprc0MeuaCyUorOlRL01CvRU6BET7ESPRVK9DQq4Q4um4axkwKd3ExbS0Jk2mqLtSERm22FdwQluCMwoeivaq4V6dDTvnQ6HRwcHFBcXNy6I3+O/T9g951GJ7EC8OjPr5I6+jTrRjAYCRcLSpCRq8XJXC0y8opwsaAUd/9lxSIBAjwdMMBLjQHeavT3UsPbSQFBpdb0ZDXqTb4o3QGhEIVl1bhUUPrXdrMUlwtKcU1b0aAvSqkdergq0dNFie4u9vB2UnCbWiHusGOSLb3XmDDbQJj6z5+A3dXD2CyLxjblC7Czs4NYJISdSAiJSACxSHjnWADJnX3T9lec2E4AsfBOmJ0QdkIBcm6X42SuFqf/1KKsum71s6ujHP291Bjg7YgB3moEeKggE9e/6LMllFXpcflmaR3RXr1dDoOx4dtJKbWDl5MC3k5yeDkq4N1ZAS8nBbwcFejqKG8R32wVS++1Dj2IvU0ouwXK+RXHrhuwrMYNha5aCIQtfwPaS0QI9lJzQuzvpYZLp9ZpgbaX2qFfVzX6dVXzwqv1RuTcLuPEmn2rDHmF5cgrKke+rgqlVXpk3tAh80b9AzvcVTJ4OcnviFfBidfbSQEXpRRCoelpS0So0htRVqVHqXmrrLVfpTfFVepRYt6v0qO0yoDSyhqUVRlQWqVHld4IdwcpuqoV6OIoR1dHObqo5ejqaDp2kDezBbsZsCdmaz8x0zeh7Ns5UCaYFh7+8dhl2EnlqDYYoTcQagxG1BiMqDYQ9LX2awzGO8eEaoMRNXoj9Ma/9msMRrh2kpmqpN5q9HLtBJHQdquJlTUG/FlUjrzCCuQWliO3sBx5tX7re+LXRmInhLO9BOU1BpRV6VFjaP3btpPMjhNq13qE62hB1Zw9MW2MylPf8Y7/1seNW5m8IyETi9DTtRN6utZtWSYiFJXX8ATLibaoHNe1lajWG3G9uLJOWoVEBKXUzrTJTL/2Ujt0uvNrDjNv9lI7dJKZfu2EAmiKK3FNW4E/i8rv/FbgWlEFbpdVo6RSjz80JfhDU1KnXHPZJqHK7zxxFQjuqkZ4j+avt8SE2ZqUF0KS9wsabiphAKZvmzjZS+BkL0F/L3Wd+BqDETe0lbhdVsUJ0F5qB3uJXbNrCX27ONQbXl6tx3VtBfLuCPXPIr54b5ZUobzagIsFpbhY8Neq9+MHdWXCtHmyEiEkA/4wegE4f19zRv2IRULTu2ZnRZuVqZDYNfiEB0xV8+vaCt5T9s+icoT6tszqhEyYrUjFqe8gB/CzMQRMmA8WMrEI3V2U6O6ivL9xE2CjiFuLCi0kV02D+zUeD8Y6qYy2gwmztcjaAxHpkWXsiuABTV/Nm9ExYVXZVqLs5LewB7CXwhAd3BXx8fEAALHYen1jjPYDE2ZrUKmD7GoKAEDTJRLujsoW+9Iwo2PAqrKtwYV9EFENLhs9MCAk3NreMNohTJitQGnGdgDAXhqCyEAPGI1GnDt3DufOnYPR2MLTkxgPJKwq29JUlUCWkwwAKPAaDQeFGGVlZejbty8AoLS0tEOO/GFYBntitjB04WfYUTWyjW7oP2iYtd1htFOYMFsY3YkdAICfMQQRAfdeg4jBaAgmzJakugyKqwcAADe9R6OTjHWNMJoGE2YLQheTIDZWIdfoguBBI6ztDqMdw4TZgmiPm6qxSRiCRwNsc/0hRvuACbOlqKmA/dX9AIDb3cZAIWEN3oymw+6eFsJ4cT8kxgr8Sc7oF/oIL04sFuP111/n9hmM+8GE2UIUHd+OzgD2IwwT/PnVWIlEguXLl1vHMUa7hFVlW4KaSihzkgAAWp/HHujV3hhtA3titgCGSwchNZbjBjmhb+ijdeKNRiNyc3MBAN7e3hCyj+kw7gMTZgtQeGw7XADsFwzB+N6udeIrKirg6+sLgA3JYzQO9q+7ueiroMz5GQBQ7PMYpHasGstoPkyYzcRwKRlyYynySY2+Q/5ubXcYDwhMmM3k1u+mKV7JgjAM61W3GstgNAUmzOZgqEGnq/sAALruURCL2OVktAzsTmoG+sspUBhKcJNUCBwy2truMB4gmDCbQUHaNgDAIeEQhPVo4vcsGYx6YN0lTcWgh0OOqRpb0j0KdveoxtrZ2WHmzJncPoNxP9hd0kSqrxyGvaEYt6kTAsLH3NNWKpVizZo1beQZ40GAVWWbSP5RUzX2F1EYBndnrbGMloU9MZuC0QB1zl4AQGmPx7kPqjYEEeHWrVsAAGdn5w77uXNG42HCbALVV35FJ0MRikiJgGFR97UvLy+Hq6vpqcqG5DEaA6vKNoEbv20BAPxqF4YB3VhrLKPlYcK0FKMR6qumamx5jyhWLWW0CkyYFlJx5QgcDIXQkQKBw560tjuMBxSLhJmQkIDBgwejU6dOcHV1xdixY5GVlcWzqaysxKxZs9C5c2colUqMGzcO+fn5PJvc3FxERUVBoVDA1dUV8+fPh16v59mkpKRg4MCBkEql6NmzJzZu3FjHnzVr1sDHxwcymQxhYWH4/fffLTmdJnEjdSsA4DdxGAK9nVu9PEbHxCJhHjp0CLNmzcLRo0eRlJSEmpoajBo1CmVlZZzNP//5T/z000/Yvn07Dh06hOvXr+OZZ57h4g0GA6KiolBdXY3ffvsNmzZtwsaNG7Fo0SLOJjs7G1FRUXjkkUdw8uRJzJs3D6+88gr27dvH2WzduhVxcXGIj4/HiRMnEBwcjMjISBQUFDTnetwboxGOOXsAAGU9H2fVWEbrQc2goKCAANChQ4eIiEir1ZJYLKbt27dzNpmZmQSAUlNTiYgoMTGRhEIhaTQazmbt2rWkUqmoqqqKiIjeeOMNCgwM5JUVHR1NkZGR3HFoaCjNmjWLOzYYDOTp6UkJCQkN+ltZWUnFxcXclpeXRwCouLi4UedbeukIUbyKdIvcKDOvoFFpiIhKS0sJAAGg0tLSRqdjPDgUFxdbdK816x2zuLgYAODk5AQASE9PR01NDSIi/vq0ub+/P7y9vZGamgoASE1NRVBQENzc/lqwKjIyEjqdDufOneNsaudhtjHnUV1djfT0dJ6NUChEREQEZ1MfCQkJcHBw4DYvLy+Lzvf6EVNrbJo4FL27NL4aa2dnh5iYGMTExLAheYxG0eS7xGg0Yt68eRg2bBj3JSuNRgOJRAK1Ws2zdXNzg0aj4Wxqi9Icb467l41Op0NFRQWKiopgMBjqtfnjjz8a9HnhwoWIi4vjjnU6XePFSQTHq6ZqbLmF1VipVFrvOzKD0RBNFuasWbNw9uxZ/Prrry3pT6silUohlUqblLb0yu9wNhSglGQIfHhsyzrGYNxFk6qys2fPxq5du5CcnIyuXbty4e7u7qiuroZWq+XZ5+fnw93dnbO5u5XWfHw/G5VKBblcDmdnZ4hEonptzHm0NH8e2QwAOC4JRQ9Py8bGEhHKyspQVlYGImoN9xgPGBYJk4gwe/Zs7Ny5EwcPHuRWfjMTEhICsViMAwcOcGFZWVnIzc1FeLjpk+fh4eE4c+YMr/U0KSkJKpUKAQEBnE3tPMw25jwkEglCQkJ4NkajEQcOHOBsWhQiON2pxlb0vP8QvLspLy+HUqmEUqlEeXl5S3vHeBCxpGXp1VdfJQcHB0pJSaEbN25wW3l5OWczY8YM8vb2poMHD9Lx48cpPDycwsPDuXi9Xk99+/alUaNG0cmTJ2nv3r3k4uJCCxcu5GyuXLlCCoWC5s+fT5mZmbRmzRoSiUS0d+9ezmbLli0klUpp48aNdP78eZo2bRqp1Wpea+/9aGxLWdHFNKJ4FZUtcqGc641vjTXDWmUZlrbKWiRM88119/b5559zNhUVFTRz5kxydHQkhUJBTz/9NN24cYOXT05ODo0ZM4bkcjk5OzvTa6+9RjU1NTyb5ORk6t+/P0kkEurevTuvDDOrVq0ib29vkkgkFBoaSkePHrXkdBp9sc5u+idRvIp+WTLGovzNMGEyLBWmgKjjvvTodDo4ODiguLgYKpWqfiMi3Hg/AB6G60gKXIq/P/eqxeWUlZVBqVQCYLNLOiqNutdqwcbK3ofCKyfgYbiOShKjz0PPWtsdRgeBCfM+/PmrqTU2QzoYXd3ZFC9G28CEeS+I4JybCACo7PW4lZ1hdCTY+LB7cPNKBjwN11BFYvQZ8VyT8xGJRHj22We5fQbjfjBh3oO8X7fABcBpWQgGuzZ9wS2ZTIbt27e3nGOMBx5Wlb0HnXNNKxWwaiyjrWHCbIAbl06im+EqqkkE/xHjre0Oo4PBhNkAeXemeJ2VhcDFxe0+1vemrKwMAoEAAoGAN6mcwWgIJswGcMk1jY2t8nvCyp4wOiJMmPXw58XT8DXkoIZE8B8RbW13GB0QJsx6yLszxStTPgCOzs2rxjIYTYF1l9SD1/DnkWrUQ9Y12NquMDooTJj10LVnELr2XG5tNxgdGFaVZTBsEPbEbANEIhEee+wxbp/BuB9MmG2ATCbD7t27re0Gox3BqrIMhg3CnpiMejEYDKipqbG2G+0GsVjcoq8pTJhtQFlZGffh2oKCApteWoSIoNFo6ixByrg/arUa7u7uLfJNGybMNqK9LFtpFqWrqysUCgX7cFIjICKUl5dzS7J6eHg0O08mTAaHwWDgRNm5c2dru9OukMvlAEw1IldX12ZXa1njD4PD/E6pUCis7En7xHzdWuLdnAmTUQdWfW0aLXndmDAZDBuECZPBqIVAIMD3339vbTdY409bIBQKMWLECG6fwbgfTJhtgFwuR0pKirXdYLQj2L9vRqMYOXIk5s6dizfeeANOTk5wd3fH4sWLuficnBwIBAKcPHmSC9NqtRAIBNw/pZSUFAgEAuzbtw8DBgyAXC7H3/72NxQUFGDPnj3o06cPVCoVnn/++Xv2+27cuBFqtRrff/89evXqBZlMhsjISOTl5fHs1q5dix49ekAikaB379748ssvefEXL17Eww8/DJlMhoCAACQlJfHiq6urMXv2bHh4eEAmk6Fbt25ISEho2gW0ECZMRqPZtGkT7O3tkZaWhmXLluG9996rczM3hsWLF2P16tX47bffkJeXh/Hjx2PlypX45ptvsHv3bvz8889YtWrVPfMoLy/HkiVL8MUXX+DIkSPQarWYMGECF79z50784x//wGuvvYazZ89i+vTpiI2NRXJyMgDT91SfeeYZSCQSpKWlYd26dViwYAGvjI8//hg//vgjtm3bhqysLHz99dfw8fGx+HybRCt+eczmsfTTaE2ltLSUnJ2dydnZ2aY/w1dRUUHnz5+nioqKOnEjRoyg4cOH88IGDx5MCxYsICKi7OxsAkAZGRlcfFFREQGg5ORkIjJ9WhEA7d+/n7NJSEggAHT58mUubPr06RQZGdmgn59//jkB4H12MTMzkwBQWloaERENHTqUpk6dykv33HPP0WOPPUZERPv27SM7Ozu6du0aF79nzx4CQDt37iQiojlz5tDf/vY3MhqNDfpSm3tdP0vvNfbEbCNu3bqFW7duWduNZtGvXz/esYeHB+/L4E3Jx83NDQqFAt27d+eF3S9fOzs7DB48mDv29/eHWq1GZmYmACAzMxPDhg3jpRk2bBgv3svLC56enlz83V8jnzx5Mk6ePInevXtj7ty5+Pnnny0806bDhMloNGKxmHcsEAhgNBoB/NXaTLU+t9rQCJja+QgEgnvma00GDhyI7Oxs/Pvf/0ZFRQXGjx/PfYOmtWHCZLQILi6mTxTeuHGDC6vdENTS6PV6HD9+nDvOysqCVqtFnz59AAB9+vTBkSNHeGmOHDmCgIAALj4vL4/n79GjR+uUo1KpEB0djf/973/YunUrvv32WxQWFrbGKfFg3SWMFkEul2PIkCFYunQpfH19UVBQgHfeeafVyhOLxZgzZw4+/vhj2NnZYfbs2RgyZAhCQ0MBAPPnz8f48eMxYMAARERE4KeffsJ3332H/fv3AwAiIiLg5+eHmJgYLF++HDqdDm+//TavjBUrVsDDwwMDBgyAUCjE9u3b4e7uDrVa3WrnZYY9MRktxoYNG6DX6xESEoJ58+bh/fffb7WyFAoFFixYgOeffx7Dhg2DUqnE1q1bufixY8fio48+wocffojAwEB8+umn+PzzzzFy5EgApqr3zp07UVFRgdDQULzyyitYsmQJr4xOnTph2bJlGDRoEAYPHoycnBwkJia2ySARAdV+Kehg6HQ6ODg4oLi4GCqVqtXKKSsrg1KpBACUlpba7ETpyspKZGdnw9fXFzKZzNruNMjGjRsxb948m5vMfa/rZ+m9xqqybYBQKMSgQYO4fQbjfjBhtgFyuRzHjh2zthuMdoTF/74PHz6MJ554Ap6envWOxCciLFq0CB4eHpDL5YiIiMDFixd5NoWFhZg0aRJUKhXUajWmTJmC0tJSns3p06fx0EMPQSaTwcvLC8uWLavjy/bt2+Hv7w+ZTIagoCAkJiZaejqMdsjkyZNtrhrb0lgszLKyMgQHB2PNmjX1xi9btgwff/wx1q1bh7S0NNjb2yMyMhKVlZWczaRJk3Du3DkkJSVh165dOHz4MKZNm8bF63Q6jBo1Ct26dUN6ejqWL1+OxYsX47PPPuNsfvvtN0ycOBFTpkxBRkYGxo4di7Fjx+Ls2bOWnhKDYXs0anxQA6DW8CUiIqPRSO7u7rR8+XIuTKvVklQqpc2bNxMR0fnz5wkAHTt2jLPZs2cPCQQCbnjUJ598Qo6OjlRVVcXZLFiwgHr37s0djx8/nqKionj+hIWF0fTp0xvtf1sNySsrK6Nu3bpRt27dqKysrFXLag73GlLGuD82OyQvOzsbGo0GERERXJiDgwPCwsKQmpoKAEhNTYVareYaQwBTn5JQKERaWhpn8/DDD0MikXA2kZGRyMrKQlFREWdTuxyzjbmc+qiqqoJOp+NtbQER4erVq7h69SpvZAyD0RAtKkyNRgPANNaxNm5ublycRqPh1lg1Y2dnBycnJ55NfXnULqMhG3N8fSQkJMDBwYHbvLy8LD1FBqNN6FBt9wsXLkRxcTG33T1/j8GwFVpUmO7u7gCA/Px8Xnh+fj4X5+7uXmfmgF6vR2FhIc+mvjxql9GQjTm+PqRSKVQqFW9jMGyRFhWmr68v3N3dceDAAS5Mp9MhLS2Nm1ITHh4OrVaL9PR0zubgwYMwGo0ICwvjbA4fPsybnZCUlITevXvD0dGRs6ldjtnm7qk7DEa7xNKWp5KSEsrIyKCMjAwCQCtWrKCMjAy6evUqEREtXbqU1Go1/fDDD3T69Gl66qmnyNfXl9dSNXr0aBowYAClpaXRr7/+Sr169aKJEydy8Vqtltzc3OjFF1+ks2fP0pYtW0ihUNCnn37K2Rw5coTs7Ozoww8/pMzMTIqPjyexWExnzpxp9Lm05URpAASg3U6UflA4dOgQPf744+Th4VGnV6G5tGSrrMXCNM9Cv3uLiYkhIlOXybvvvktubm4klUrp0UcfpaysLF4et2/fpokTJ5JSqSSVSkWxsbFUUlLCszl16hQNHz6cpFIpdenShZYuXVrHl23btpGfnx9JJBIKDAyk3bt3W3QubdldEhAQQAEBAay7xMokJibS22+/Td99951NC5MNYm+DQeztheYMYiciVNQYWsmzeyMXi5q0CrpAIMDOnTsxduzYFvGDDWJn2BwVNQYELNpnlbLPvxcJheTBupU7VHcJg9FeeLD+zdgo5eXl3MJRx44deyC/piUXi3D+vUirlf2gwYTZBhARzp8/z+0/iAgEggeuOmlNWFWWwbBB2L84RoeitLQUly5d4o6zs7Nx8uRJODk5wdvb24qe8WHCZHQojh8/jkceeYQ7jouLAwDExMRg48aNVvKqLkyYjA7FyJEj28V7PnvHZDBsEPbEbAMEAgG6devG7TMY94MJsw1QKBTIycmxthuMdgSryjIYNggTJoNhgzBhtgEVFRUYPHgwBg8ejIqKCmu7w2gHsHfMNsBoNHKfjLOF7z4ybB/2xGQwbBAmTAbDBmHCZDBsECZMRofCYDDg3Xffha+vL+RyOXr06IF///vfNjdMjzX+MDoU//nPf7B27Vps2rQJgYGBOH78OGJjY+Hg4IC5c+da2z0OJsw2wtnZ2doutC5EQE25dcoWK4BGDnX87bff8NRTTyEqKgoA4OPjg82bN+P3339vTQ8thgmzDbC3t8fNmzet7UbrUlMOfOBpnbLfug5I7BtlOnToUHz22We4cOEC/Pz8cOrUKfz6669YsWJFKztpGUyYjA7Fm2++CZ1OB39/f4hEIhgMBixZsgSTJk2ytms8mDAZLYNYYXpyWavsRrJt2zZ8/fXX+OabbxAYGIiTJ09i3rx58PT0RExMTCs6aRlMmG1ARUUFxowZAwDYs2cP5HK5lT1qBQSCRlcnrcn8+fPx5ptvYsKECQCAoKAgXL16FQkJCUyYHQ2j0YhDhw5x+wzrUV5eDqGQ30soEols7u/ChMnoUDzxxBNYsmQJvL29ERgYiIyMDKxYsQIvv/yytV3jwYTJ6FCsWrUK7777LmbOnImCggJ4enpi+vTpWLRokbVd48GEyehQdOrUCStXrsTKlSut7co9YUPyGAwbhAmTwbBBWFW2jXgQPyTEaD2YMNsAe3t7lJWVWdsNRjuCVWUZdbC1KVDthZa8bkyYDA6xWAzA1AnPsBzzdTNfx+bAqrJtQGVlJcaNGwcA+PbbbyGTyazsUf2IRCKo1WoUFBQAML0Xs5Xj7w8Roby8HAUFBVCr1RCJmv8hXSbMNsBgMCAxMZHbt2Xc3d0BgBMno/Go1Wru+jUXJkwGD4FAAA8PD7i6uqKmpsba7rQbxGJxizwpzTBhMupFJBK16I3GsIx23/izZs0a+Pj4QCaTISwszOaWiGAwmkK7FubWrVsRFxeH+Ph4nDhxAsHBwYiMjGTvR4x2T7sW5ooVKzB16lTExsYiICAA69atg0KhwIYNG6ztGoPRLNrtO2Z1dTXS09OxcOFCLkwoFCIiIgKpqan1pqmqqkJVVRV3XFxcDADQ6XSt6mvtUT86nc7mW2YZLY/5HmvsIIR2K8xbt27BYDDAzc2NF+7m5oY//vij3jQJCQn417/+VSfcy8urVXysD09PK60kx7AJSkpK4ODgcF+7divMprBw4ULExcVxx0ajEYWFhejcuXO77EjX6XTw8vJCXl4eVCqVtd1pE9rrORMRSkpKGv2Pud0K09nZGSKRCPn5+bzw/Pz8Bjt5pVIppFIpL0ytVreWi22GSqVqVzdpS9Aez7kxT0oz7bbxRyKRICQkBAcOHODCjEYjDhw4gPDwcCt6xmA0n3b7xASAuLg4xMTEYNCgQQgNDcXKlStRVlaG2NhYa7vGYDSLdi3M6Oho3Lx5E4sWLYJGo0H//v2xd+/eOg1CDypSqRTx8fF1qucPMh3lnAXEJt8xGDZHu33HZDAeZJgwGQwbhAmTwbBBmDAZDBuECbMNWbx4MQQCAW/z9/fn4isrKzFr1ix07twZSqUS48aNqzOAIjc3F1FRUVAoFHB1dcX8+fOh1+t5NikpKRg4cCCkUil69uyJjRs31vGlNafLHT58GE888QQ8PT0hEAjw/fff8+KJCIsWLYKHhwfkcjkiIiJw8eJFnk1hYSEmTZoElUoFtVqNKVOmoLS0lGdz+vRpPPTQQ5DJZPDy8sKyZcvq+LJ9+3b4+/tDJpMhKCiIW0nCEl+sAjHajPj4eAoMDKQbN25w282bN7n4GTNmkJeXFx04cICOHz9OQ4YMoaFDh3Lxer2e+vbtSxEREZSRkUGJiYnk7OxMCxcu5GyuXLlCCoWC4uLi6Pz587Rq1SoSiUS0d+9ezmbLli0kkUhow4YNdO7cOZo6dSqp1WrKz89vkfNMTEykt99+m7777jsCQDt37uTFL126lBwcHOj777+nU6dO0ZNPPkm+vr5UUVHB2YwePZqCg4Pp6NGj9Msvv1DPnj1p4sSJXHxxcTG5ubnRpEmT6OzZs7R582aSy+X06aefcjZHjhwhkUhEy5Yto/Pnz9M777xDYrGYzpw5Y5Ev1oAJsw2Jj4+n4ODgeuO0Wi2JxWLavn07F5aZmUkAKDU1lYhMN7xQKCSNRsPZrF27llQqFVVVVRER0RtvvEGBgYG8vKOjoykyMpI7Dg0NpVmzZnHHBoOBPD09KSEhodnneDd3C9NoNJK7uzstX76cC9NqtSSVSmnz5s1ERHT+/HkCQMeOHeNs9uzZQwKBgK5du0ZERJ988gk5Ojpy501EtGDBAurduzd3PH78eIqKiuL5ExYWRtOnT2+0L9aCVWXbmIsXL8LT0xPdu3fHpEmTkJubCwBIT09HTU0NIiIiOFt/f394e3tz09hSU1MRFBTEG0ARGRkJnU6Hc+fOcTa18zDbmPMwT5erbXO/6XItSXZ2NjQaDa98BwcHhIWF8c5TrVZj0KBBnE1ERASEQiHS0tI4m4cffhgSiYSziYyMRFZWFoqKijibe12LxvhiLZgw25CwsDBs3LgRe/fuxdq1a5GdnY2HHnoIJSUl0Gg0kEgkdQbVu7m5QaPRAAA0Gk2909zMcfey0el0qKiouOd0OXMerYm5jHuVr9Fo4Orqyou3s7ODk5NTi1yL2vH388VatOshee0N8+feAaBfv34ICwtDt27dsG3btgfz8++MJsOemFZErVbDz88Ply5dgru7O6qrq6HVank2taexubu71zvNzRx3LxuVSgW5XN6k6XItibmMe5Xv7u5eZ90mvV6PwsLCFrkWtePv54u1YMK0IqWlpbh8+TI8PDwQEhICsVjMm8aWlZWF3NxcbhpbeHg4zpw5w7tpk5KSoFKpEBAQwNnUzsNsY87D2tPlfH194e7uzitfp9MhLS2Nd55arRbp6emczcGDB2E0GhEWFsbZHD58mLf2bVJSEnr37g1HR0fO5l7XojG+WA2rNj11MF577TVKSUmh7OxsOnLkCEVERJCzszMVFBQQkam7xNvbmw4ePEjHjx+n8PBwCg8P59Kbu0tGjRpFJ0+epL1795KLi0u93SXz58+nzMxMWrNmTb3dJVKplDZu3Ejnz5+nadOmkVqt5rX2NoeSkhLKyMigjIwMAkArVqygjIwMunr1KhGZuijUajX98MMPdPr0aXrqqafq7S4ZMGAApaWl0a+//kq9evXidZdotVpyc3OjF198kc6ePUtbtmwhhUJRp7vEzs6OPvzwQ8rMzKT4+Ph6u0vu54s1YMJsQ6Kjo8nDw4MkEgl16dKFoqOj6dKlS1x8RUUFzZw5kxwdHUmhUNDTTz9NN27c4OWRk5NDY8aMIblcTs7OzvTaa69RTU0NzyY5OZn69+9PEomEunfvTp9//nkdX1atWkXe3t4kkUgoNDSUjh492mLnmZycTADqbDExMURk6qZ49913yc3NjaRSKT366KOUlZXFy+P27ds0ceJEUiqVpFKpKDY2lkpKSng2p06douHDh5NUKqUuXbrQ0qVL6/iybds28vPzI4lEQoGBgbR7925efGN8sQZs2heDYYOwd0wGwwZhwmQwbBAmTAbDBmHCZDBsECZMBsMGYcJkMGwQJkwGwwZhwmQwbBAmTAbDBmHC7ACMHDkS8+bNs7YbHLbmjy3ChMloFNXV1dZ2oWNh7cG6jNYlJiamzmDyS5cu0csvv0w+Pj4kk8nIz8+PVq5cWSfdU089Re+//z55eHiQj48PEZlmbAQHB5NUKqWQkBDauXMnAaCMjAwu7ZkzZ2j06NFkb29Prq6u9MILL3CLjtXnT3Z2dltdjnYDE+YDjlarpfDwcJo6dSq3Ml9lZSUtWrSIjh07RleuXKGvvvqKFAoFbd26lUsXExNDSqWSm1Z19uxZKi4uJicnJ3rhhRfo3LlzlJiYSH5+fjxhFhUVcVPRMjMz6cSJE/T3v/+dHnnkkQb90ev11rg0Ng1bWuQBx8HBARKJBAqFgjcrv/Yn7319fZGamopt27Zh/PjxXLi9vT3Wr1/PLXi1bt06CAQC/O9//4NMJkNAQACuXbuGqVOncmlWr16NAQMG4IMPPuDCNmzYAC8vL1y4cAF+fn71+sPgw4TZQVmzZg02bNiA3NxcVFRUoLq6Gv379+fZBAUF8Vahy8rKQr9+/SCTybiw0NBQXppTp04hOTkZSqWyTpmXL1+Gn59fy57IAwoTZgdky5YteP311/Hf//4X4eHh6NSpE5YvX84tDWnG3t7e4rxLS0vxxBNP4D//+U+dOA8Pjyb73NFgwuwASCQSGAwG7vjIkSMYOnQoZs6cyYVdvnz5vvn07t0bX331FaqqqrgPxx47doxnM3DgQHz77bfw8fGBnV39t9fd/jDqwrpLOgA+Pj5IS0tDTk4Obt26hV69euH48ePYt28fLly4gHfffbeOwOrj+eefh9FoxLRp05CZmYl9+/bhww8/BAAIBAIAwKxZs1BYWIiJEyfi2LFjuHz5Mvbt24fY2FhOjHf7YzQaW+/k2ylMmB2A119/HSKRCAEBAXBxcUFkZCSeeeYZREdHIywsDLdv3+Y9PRtCpVLhp59+wsmTJ9G/f3+8/fbbWLRoEQBw752enp44cuQIDAYDRo0ahaCgIMybNw9qtRpCobBef8yr0TP+gq35w2gWX3/9NWJjY1FcXMwWrW5B2DsmwyK++OILdO/eHV26dMGpU6ewYMECjB8/nomyhWHCZFiERqPBokWLoNFo4OHhgeeeew5LliyxtlsPHKwqy2DYIKzxh8GwQZgwGQwbhAmTwbBBmDAZDBuECZPBsEGYMBkMG4QJk8GwQZgwGQwb5P8DlbpWRSY5MPAAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "column = \"pods\"\n",
+ "x = \"target\"\n",
+ "y = \"[OVERALL].Throughput(ops/sec)\"\n",
+ "title = \"Throughput [ops/s]\"\n",
+ "plot_comparison(df_aggregated, x, y, column, title, peak_loading)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAANsAAADxCAYAAABCtMIQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAviUlEQVR4nO3de1xUZf4H8M+ZYa7AMAJyU+QqKKjkDSRNLUk0cjVv5KVFbbUSLdPI9VeK1ZomZW6uotuu2pr3Uls37/dUdFFBNAgFQVgFEZH7MMzl+/sDOTkCijAXwOf9ep0XM+c8c57vDPOdc85zznkejogIDMOYnMDSATDMs4IlG8OYCUs2hjETlmwMYyYs2RjGTFiyMYyZsGRjGDNhycYwZsKSjWHMhCUbw5gJSzaGMROWbIxJTZkyBRzHgeM4dOvWzWT1rFy5kq+H4zgUFhaarK6mYslmQmvWrAHHcQgJCbFoHBs3bgTHcbhw4UKz13X27FksXrwYxcXFjX6No6MjNm3ahGXLljW7/oYMGzYMmzZtwmuvvWayOpqLJZsJbd68GZ6envjvf/+LjIwMS4djFGfPnsUnn3zyVMlmbW2NyZMn49VXXzVZXF26dMHkyZPRo0cPk9XRXCzZTCQrKwtnz57FihUr0L59e2zevNnSITEWxpLNRDZv3ox27dohIiICY8eOrZNsP/zwAziOw8mTJ+u8dt26deA4DlevXuXnnThxAn369IFUKoWPjw/WrVuHxYsXg+M4o8R78+ZNzJw5E/7+/pDJZHBwcMC4ceOQnZ3Nl1m8eDFiYmIAAF5eXvzx0cNlnoa3tzcmT55cZ/6LL76IQYMG8c/LysowZ84ceHp6QiKRwMnJCS+//DIuXbrUpHotxcrSAbRVmzdvxujRoyEWizFhwgTEx8cjMTERffv2BQBERETAxsYGO3bsMPhiAcD27dsRGBjINygkJSVh2LBhcHV1xSeffAKdTodPP/0U7du3N1q8iYmJOHv2LF5//XV07NgR2dnZiI+Px+DBg5Gamgq5XI7Ro0fj2rVr2Lp1K77++ms4OjoCQJPiKC8vR3Z2Nt555506y1JSUjBx4kT++dtvv40ffvgBs2bNQkBAAO7du4fTp08jLS0NvXr1avqbNjdijO7ChQsEgA4fPkxERHq9njp27EjvvfeeQbkJEyaQk5MTabVafl5eXh4JBAL69NNP+XkjRowguVxOt27d4uddv36drKysqDH/wg0bNhAASkxMbLBMZWVlnXkJCQkEgP71r3/x8+Li4ggAZWVlPbFeIqKoqCjy8PBocN0HDx40mJ+bm0sA6O9//zs/z87OjqKjoxtVX2xsLAGgu3fvNqq8ObHdSBPYvHkznJ2d8eKLLwIAOI5DZGQktm3bBp1Ox5eLjIxEQUEBTpw4wc/74YcfoNfrERkZCQDQ6XQ4cuQIRo0aBTc3N76cr68vhg8fbrSYZTIZ/1ij0eDevXvw9fWFUqk0ye5a7S5yUFCQwfzLly8DgEFDh1KpxPnz53H79m2jx2FOLNmMTKfTYdu2bXjxxReRlZWFjIwMZGRkICQkBHfu3MHRo0f5ssOGDYOdnR22b9/Oz9u+fTuee+45+Pn5AQAKCgqgUqng6+tbp6765jWVSqXCokWL4O7uDolEAkdHR7Rv3x7FxcUoKSkxWj21rly5AmdnZzg7OxvMT0lJgUAgMDgnt3z5cly9ehXu7u4IDg7G4sWLcePGDaPHZGos2Yzs2LFjyMvLw7Zt29C5c2d+Gj9+PAAYNJRIJBKMGjUKu3fvhlarxa1bt3DmzBl+q2ZOs2fPxpIlSzB+/Hjs2LEDhw4dwuHDh+Hg4AC9Xm/0+q5evVpnqwYAycnJ8Pb2hrW1NT9v/PjxuHHjBlatWgU3NzfExcUhMDAQ+/fvN3pcpsQaSIxs8+bNcHJywurVq+ss27VrF3bv3o21a9fyu22RkZH47rvvcPToUaSlpYGIDJLNyckJUqm03vN0xjx398MPPyAqKgpfffUVP6+qqqrO+TRjtX5euXKlzo+KXq/HsWPHMHDgwDrlXV1dMXPmTMycORMFBQXo1asXlixZYtRdaVNjyWZEKpUKu3btwrhx4zB27Ng6y93c3LB161b8+9//5r9oYWFhsLe3x/bt25GWlobg4GB4eXnxrxEKhQgLC8OePXtw+/Zt/rgtIyPDqL/sQqEQ9EivhqtWrTI4xgTAb3Ge5qT2owoKCnD37l3k5eUZzP/mm29QWFiI7t278/N0Oh3Ky8thZ2fHz3NycoKbmxvUanWTY7AElmxG9O9//xtlZWX4wx/+UO/yfv368Se4a5NNJBJh9OjR2LZtGyoqKvDll1/Wed3ixYtx6NAh9O/fH++88w50Oh3+9re/oVu3bkhOTm50fOvXr8eBAwfqzH/vvffw6quvYtOmTbCzs0NAQAASEhJw5MgRODg4GJTt3bs3AOCjjz7C66+/DpFIhBEjRhjs9j3JlStXAACHDh3CzJkz0aVLF5w7dw4HDx4EAFy8eBHnz59HSEgIysrK0LFjR4wdOxZBQUGwsbHBkSNHkJiYaLAVbhUs3RzalowYMYKkUilVVFQ0WGbKlCkkEomosLCQn3f48GECQBzHUW5ubr2vO3r0KPXs2ZPEYjH5+PjQP/7xD5o3bx5JpdInxlXb9N/QlJubS/fv36epU6eSo6Mj2djYUHh4OP3222/k4eFBUVFRBuv77LPPqEOHDiQQCJ54GqC+pv+vv/6ahEIh/fzzz+Tj40NSqZRefvllunLlCvn4+FDHjh3p4sWLRESkVqspJiaGgoKCyNbWlqytrSkoKIjWrFlTb30tuemfJVsrNnLkSPL19bV0GI8VFRVF7u7udPfuXbp//z4REb355pvUuXNno9ajUqno7t27FBMT02KTjbVGthIqlcrg+fXr17Fv3z4MHjzYMgE9hdzcXLRv3x4DBgwAULMbGRAQYNQ61q5di/bt2yMuLs6o6zUmdszWSnh7e2PKlCnw9vbGzZs3ER8fD7FYjA8//NDSoT3Whx9+yF//aGNjAyJCamoqhgwZYtR6xowZY3Bu7uEGlZaCJVsrMWzYMGzduhX5+fmQSCQIDQ3F559/js6dO1s6tMcKCAgw2IrduHED5eXlRt+yubu7w93d3ajrNDaOiI1iwzDmwI7ZGMZMWLIxjJm02WM2vV6P27dvw9bW1miXGDFMfYgIZWVlcHNzg0DQ8ParzSbb7du3W/wBM9O25ObmomPHjg0ub7PJZmtrC6DmA1AoFBaOhmnLSktL4e7uzn/nGtJmk61211GhUJg02XQ6HX755RcAwAsvvAChUGiyupiW7UmHK2022cylqqqKvyO7vLz8qS7IZZ4trDWSYcyEJRvDmAnbjWwBdHpCTlElrt8pw/WCcmQUlKO4shp2MlHNJBfDTiaC8sFzpbx2fs1fiZXpjhN1ekJltRaV1TpUqGv+VlbroNbqIBdbQSG1gq1UBBupFazFQuOdZiECNCqgquShqbiBx/VM6jJA1g6w6/hgcq/5q+jw+3NrR8CMp4VYspmRRqfHzXuVyCgow/U75bhWUI6c/LvAvQx00t+CF5cPb8FtvMDloR3KUQ0raGAFDYQP/lpBTSKUwAqFD+ZXQwQ9J4LASgxOJIbQSgKhSAIrsQQisRRiSc1kJbSCTquGrloNnUYNvbZmIk01SKcGdNXgdNWATgOBTg2BXgOBvqZWMbQQQQsxNLCGFu04LUTQQQ8OenDQQoAi4lDICQBOAK72r0AIjhOAE9ROVhAIBBAIhRAKBBAIrSAQCCEUCmAlEMBKWwFBdSm4qhJwVSWAXtO8D7z8Ts1062L9y4USwO735NPauqFS6oIyiQvui5xxV+CI+xoRSlQalKg0sJWK8OYAr/rX1Qgs2UygWqtH9r2KmoS6U4bMOyUovXMDovuZ6ES34c3loReXh7GCPLhyRcb5L+gBqB9MxvI0BxkPbyBqb0s1Qj9BOghQwdmgUmCNKqEt1FY2qBbZQitSQCdWQC+xA6R24KR2EMqVsJK3g5WNEmK5ApqyQmiLckDF/4Ow7BbEFbchU+XBVp0PW20RBDo1UHSjZkLNv0HxYOrwoP77ZIPb5IDb5Ih70k7AgI1Nfi9P/W8+deoU4uLicPHiReTl5WH37t0YNWoUv5yIEBsbi2+//RbFxcXo378/4uPjDa5OLyoqwuzZs7F3714IBAKMGTMGf/3rX2FjY8OXSUlJQXR0NBITE9G+fXvMnj27xd9OsuD7E6CSHMhKs+CJPHhzeYjgbsODuwMJp23w09ZJ7SFw7AzOsTPg6As4+AI2LjW/7A+2NjV/HzzW1myJ9NpqqNVVUFdVQa2uQrVahepqNTQPtl5ajRr6B1sx0usBgQhkJQYnFIOzkkBgJYZAJIHAqmZLKBRJYSWueSyWyCASSyCRyCCRSmElkoKzEtdsDYSimokIID2I9FBXa1CproaqWotKtQYqtRoqtRaqag1Uag2qqqtRVa1FVbUGVdVaVGs0qNLUPK/WaFGl0eG+VoxSkqMU1vzfSkhgmMlPogNw78EEAO0eTN0NSomghTNXhA64BzeuEG7cvQdTIdyFRXBFIayhQjuuHO24cgTiJopERU/7lTDw1MlWUVGBoKAgTJs2DaNHj66zfPny5fjmm2/w3XffwcvLCwsXLkR4eDhSU1MhlUoBAJMmTUJeXh4OHz4MjUaDqVOnYsaMGdiyZQuAmpOEQ4cORVhYGNauXYsrV65g2rRpUCqVmDFjRrPesLGl5N7HhCGB8OdyseB/EyAWcvV+qjqBGPp2XrBq71eTVA6+wIO/Qrl9k+oWAJA9mCyJAyB9MDWHTk9QaWqODWuPD8vVWlRWa1GhfjC/WodKtRbl1VpUqnWoqP69bM3rauapqnWQioSGx7gyw2Pd2kkpE/OPbaVWEAgeJHdVCVDyvwdTLuyFkua9webc5g2Adu/ezT/X6/Xk4uJCcXFx/Lzi4mKSSCS0detWIiJKTU2t0xX2/v37ieM4vnvtNWvWULt27UitVvNl5s+fT/7+/o2OraSkhABQSUlJU9/eExWUVtH3n0wiilXwU9UXflT1jwjS751LlBBPdO0wUVEWkU77xPUxrVNjv2tGPWbLyspCfn4+wsLC+Hl2dnYICQlBQkICXn/9dSQkJECpVKJPnz58mbCwMAgEApw/fx6vvfYaEhISMHDgQIjFYr5MeHg4vvjiC9y/fx/t2rWrU7darTbo2qy0tNSYb60OrU6Pbf/8ErP1e2vqj/gbJEGjIRGzk9pM/Yx6ni0/Px8A6nQp7ezszC/Lz8+Hk5OTwXIrKyvY29sblKlvHQ/X8ailS5fCzs6On0x9EfJ3u37C9PtfQ6cnHLEdgxR0gU7Y3B0ppi1rMye1FyxYgJKSEn7Kzc01WV1HL/yK8KsfQMppkOMwAC9/sAHBwcGoqqoyWZ1M62fUZHNxcQEA3Llzx2D+nTt3+GUuLi4oKCgwWK7ValFUVGRQpr51PFzHoyQSCX/RsSkvPs7Iuw/bvX9CR64Q9yTucJr0rUnqYdoeoyabl5cXXFxcDEZqKS0txfnz5xEaGgoACA0NRXFxMS5e/P1E47Fjx6DX6/mB3kNDQ3Hq1CloNL+f1Dx8+DD8/f3rPV4zlwq1Fpc3zEYwlwoVJ4Pd1B2ATGmxeJhW5mlbXsrKyigpKYmSkpIIAK1YsYKSkpLo5s2bRES0bNkyUiqV9NNPP1FKSgqNHDmSvLy8SKVS8esYNmwY9ezZk86fP0+nT5+mzp0704QJE/jlxcXF5OzsTG+88QZdvXqVtm3bRnK5nNatW9foOI3dGqnX62lj/Od8q2PxxV1ERFReXs73LFxeXm6UupjWpbHftadOtuPHj9fbhXVtF9V6vZ4WLlxIzs7OJJFIaMiQIZSenm6wjnv37tGECRPIxsaGFAoFTZ06lcrKygzKXL58mQYMGEASiYQ6dOhAy5Yte6o4jZ1se37eS1WLHIhiFXRr98f8fJZsTGO/a222K7vS0lLY2dmhpKSk2cdvl1LT4bp9GFy5IuQ4DkKnmXuAB31NVFRU8Fe+sPvZnk2N/a61mdZIUym4XwbsjIIrV4Q7Yne4v/kvPtEY5mmwC5EfQ6PT49K372AYpaECMiim7AD3SIOISCRCbGws/5hhGsKS7TH2b4rDHyprrhApe2UNXNzqdpktFouxePFiM0fGtEZsf6gBp0/sR3jWcgDA9YB34RJc96JrhnkabMtWjxtZmeh8/B1IOC2utRsEv7GfNFhWr9cjLS0NANC1a9fHdtLJPNtYsj2irKICFd9Pgjd3H/+z6gTv6Zse2yCiUqn4oYpYayTzOOxn+CFEhKR1b6G7Lg1lkEMetQNW8pY3zhfTOrFke8gv277CwNK90BOHOy+vhr17V0uHxLQhLNkeuHruEPr99jkAINlvFnz7swYRxrhYsgG4ezsbLgemQ8zpkGw7CD0nfGrpkJg26JlPtuoqFYo2RMIRxcgSeMD/rU3gWIsiYwLP9reKCFe+nQ5/zW8ohTVEk7ZCZsMaRBjTeKab/i/vWYHe9/ZCRxwyBn2DXj6BT70OkUiEDz74gH/MMA15ZpMtJ+koApKXABxw2iMag14a26T1iMVixMXFGTk6pi16Jncjywpuwubf0yDidEiQDcKAqM8sHRLzDHjmko00KhT+cxzsqRjXOQ/4Td8IobDpH4Ner0d2djays7Oh1xuhv22mzXrmdiMvHv0RfdTpuE820Iz/Hg72TeuNuJZKpYKXV81gC+xyLeZxnrlk6zV0En4uVUFqrcCQgB6WDod5hjxzySYQcIgYP93SYTDPoGfumI1hLIUlG8OYCUs2hjETlmwMYybPXAOJsVlZWWHmzJn8Y4ZpCPt2NJNEIsHq1astHQbTChh9N9LT0xMcx9WZoqOjAQCDBw+us+ztt982WEdOTg4iIiIgl8vh5OSEmJgYaLVaY4fKMGZl9C1bYmIidDod//zq1at4+eWXMW7cOH7e9OnT8emnv9+gKZfL+cc6nQ4RERFwcXHB2bNnkZeXhz/+8Y8QiUT4/PPPjR1usxERCgsLAQCOjo7guKcZbJ15pph60IH33nuPfHx8SK/XExHRoEGD6L333muw/L59+0ggEFB+fj4/Lz4+nhQKhcEY24+qqqqikpISfsrNzTX5mNpEbGANpvEDa5i0NbK6uhrff/89pk2bZvCLv3nzZjg6OqJbt25YsGABKisr+WUJCQno3r27wTC/4eHhKC0txa+//tpgXeYe5pdhnpZJG0j27NmD4uJiTJkyhZ83ceJEeHh4wM3NDSkpKZg/fz7S09Oxa9cuAE0bTxuoGeZ37ty5/PPS0lKWcEyLYtJk++c//4nhw4fDzc2Nnzdjxgz+cffu3eHq6oohQ4YgMzMTPj4+Ta5LIpFAIpE0K16GMSWT7UbevHkTR44cwZ/+9KfHlqsd2jcjIwNA08bTZpjWwGTJtmHDBjg5OSEiIuKx5ZKTkwEArq6uAGrG075y5YrBIPeHDx+GQqFAQEDdUWQYprUwyW6kXq/Hhg0bEBUVZXBVRWZmJrZs2YJXXnkFDg4OSElJwfvvv4+BAweiR4+ae8uGDh2KgIAAvPHGG1i+fDny8/Px8ccfIzo6mu0mMq2bKZpCDx48SADqjKWdk5NDAwcOJHt7e5JIJOTr60sxMTF1mkyzs7Np+PDhJJPJyNHRkebNm0cajeapYjD2mNoNqaqqoqioKIqKiqKqqiqT1sW0TGxMbSOOqc0wj8PG1GaYFoZdiNxMRMSflJfL5exyLaZBbMvWTJWVlbCxsYGNjY3BlTAM8yiWbAxjJizZGMZMWLIxjJmwZGMYM2HJxjBmwpKNYcyEnWdrJqFQiLFjx/KPGaYhLNmaSSqVYufOnZYOg2kF2G4kw5gJSzaGMROWbM1UUVHB939ZUVFh6XCYFowlG8OYCUs2hjETlmwMYyYs2RjGTFiyMYyZsGRjGDNhV5A0k1AoxCuvvMI/ZpiGsGRrJqlUip9//tnSYTCtANuNZBgzYVu2Z5BOp4NGo7F0GK2GSCQyyiGC0ZNt8eLF+OSTTwzm+fv747fffgMAVFVVYd68edi2bRvUajXCw8OxZs0ag2GicnJy8M477+D48eOwsbFBVFQUli5d2iIHiK+oqICTkxMAoKCgANbW1haOqGFEhPz8fBQXF1s6lFZHqVTCxcWlWV0VmuTbGxgYiCNHjvxeyUNJ8v777+Pnn3/Gzp07YWdnh1mzZmH06NE4c+YMgNY3zC+AVtOFXW2iOTk5sT4uG6m2X9DagV5qB4Bp6sqMKjY2loKCgupdVlxcTCKRiHbu3MnPS0tLIwCUkJBARE0f5vdR5urrv7UM86vVaik1NZUKCwstHUqrVFhYSKmpqaTVausss+gwv9evX4ebmxu8vb0xadIk5OTkAAAuXrwIjUaDsLAwvmyXLl3QqVMnJCQkAGj6ML9qtRqlpaUGE/O72mM0uVxu4Uhap9rPrTnHukZPtpCQEGzcuBEHDhxAfHw8srKy8MILL6CsrAz5+fkQi8VQKpUGr3F2duaH8G3qML9sTO3GYbuOTWOMz83ox2zDhw/nH/fo0QMhISHw8PDAjh07IJPJjF0dj42pzbR0Jj/PplQq4efnh4yMDLi4uKC6urpOa9idO3f4IXybOsyvRCKBQqEwmBjmURzHYc+ePRap2+TJVl5ejszMTLi6uqJ3794QiUQ4evQovzw9PR05OTkIDQ0F0PqG+RUIBBg0aBAGDRoEgYBdI8A0zOi7kR988AFGjBgBDw8P3L59G7GxsRAKhZgwYQLs7Ozw5ptvYu7cubC3t4dCocDs2bMRGhqKfv36AWh9w/zKZDKcOHHC0mEwrYDRf4r/97//YcKECfD398f48ePh4OCAc+fOoX379gCAr7/+Gq+++irGjBmDgQMHwsXFBbt27eJfLxQK8Z///AdCoRChoaGYPHky/vjHP+LTTz81dqjMQwYPHox3330XH374Iezt7eHi4oLFixfzy7Ozs8FxHJKTk/l5xcXF4DiO/7E5ceIEOI7DwYMH0bNnT8hkMrz00ksoKCjA/v370bVrVygUCkycOPGx5yY3btwIpVKJPXv2oHPnzpBKpQgPD0dubq5Bufj4ePj4+EAsFsPf3x+bNm0yWH79+nUMHDgQUqkUAQEBOHz4sMHy6upqzJo1C66urpBKpfDw8MDSpUub9gE2hqnOS1iauc6ztRYqlYpSU1NJpVLVu3zQoEGkUCho8eLFdO3aNfruu++I4zg6dOgQERFlZWURAEpKSuJfc//+fQJAx48fJyKi48ePEwDq168fnT59mi5dukS+vr40aNAgGjp0KF26dIlOnTpFDg4OtGzZsgZj3bBhA4lEIurTpw+dPXuWLly4QMHBwfT888/zZXbt2kUikYhWr15N6enp9NVXX5FQKKRjx44REZFOp6Nu3brRkCFDKDk5mU6ePEk9e/YkALR7924iIoqLiyN3d3c6deoUZWdn0y+//EJbtmx56s+vsd81lmzNVF5eTo6OjuTo6NiiT2o3JtkGDBhgMK9v3740f/58Inq6ZDty5AhfZunSpQSAMjMz+XlvvfUWhYeHNxjrhg0bCACdO3eOn1d78cP58+eJiOj555+n6dOnG7xu3Lhx9MorrxAR0cGDB8nKyopu3brFL9+/f79Bss2ePZteeukl0uv1DcZSyxjJxo7ojaCwsBCFhYWWDqPZevToYfDc1dXVoKGqKetxdnaGXC6Ht7e3wbwnrdfKygp9+/bln3fp0gVKpRJpaWkAgLS0NPTv39/gNf379zdY7u7uDjc3N355bSNcrSlTpiA5ORn+/v549913cejQoad8p0+HJRvDE4lEBs85joNerwcAvqWViPjlDV1N8fB6OI577HotqVevXsjKysJnn30GlUqF8ePH8+M2mAJLNqZRahu48vLy+HkPN5YYm1arxYULF/jn6enpKC4uRteuXQEAXbt25S9er3XmzBn+9FDXrl2Rm5trEO+5c+fq1KNQKBAZGYlvv/0W27dvx48//oiioiJTvCV2PxvTODKZDP369cOyZcvg5eWFgoICfPzxxyarTyQSYfbs2fjmm29gZWWFWbNmoV+/fggODgYAxMTEYPz48ejZsyfCwsKwd+9e7Nq1i7/bJCwsDH5+foiKikJcXBxKS0vx0UcfGdSxYsUKuLq6omfPnhAIBNi5cydcXFzqXE5oLGzLxjTa+vXrodVq0bt3b8yZMwd/+ctfTFaXXC7H/PnzMXHiRPTv3x82NjbYvn07v3zUqFH461//ii+//BKBgYFYt24dNmzYgMGDBwOo2e3dvXs3VCoVgoOD8ac//QlLliwxqMPW1hbLly9Hnz590LdvX2RnZ2Pfvn0muziBo4d3wtuQ0tJS2NnZoaSkxKSXblVUVMDGxgZAzdUyLfXm0aqqKmRlZcHLywtSqdTS4TzWxo0bMWfOnBZ1k+vjPr/GftfYbmQzCQQC9OnTh3/MMA1hydZMMpkMiYmJlg6DaQXYTzHT4kyZMqVF7UIaC0s2hjETlmzNVFlZCU9PT3h6eraajn8Yy2DHbM1ERLh58yb/mGEawrZsDGMmLNkYxkxYsjGMmbBkYxgzYcnGtCmnTp3CiBEj4ObmZtGetOrDkq2ZOI5DQEAAAgICWAeoLUBFRQWCgoKwevVqS4dSB2v6bya5XP7YbtHbAiKCSqOzSN0ykfCpfsSGDx9u0FFwS8KSjXkilUaHgEUHLVJ36qfhkIvbxteU7UYyjJm0jZ8MC6qsrOQ7pklMTGyTo8TIREKkfhpusbrbCpZszURESE1N5R+3RRzHtZldOUsy+m7k0qVL0bdvX9ja2sLJyQmjRo1Cenq6QZnBgweD4ziD6e233zYok5OTg4iICMjlcjg5OSEmJgZardbY4TKM2Rj95+rkyZOIjo5G3759odVq8X//938YOnQoUlNTDboMmD59ukGX4g/vfrXGoX6ZlqG8vBwZGRn886ysLCQnJ8Pe3h6dOnWyYGQwfffjBQUFBIBOnjzJzxs0aBC99957Db7GGEP9smF+DT2pR+S2orZX5kenqKioZq23VfSIXFJSAgCwt7c3mL9582Y4OjqiW7duWLBggcG9YE0Z6pcN88sANYcoVNOtvsG0ceNGS4dm2gYSvV6POXPmoH///ujWrRs/f+LEifDw8ICbmxtSUlIwf/58pKen86PZNGWo36VLl+KTTz4x0TthmOYzabJFR0fj6tWrOH36tMH8GTNm8I+7d+8OV1dXDBkyBJmZmfDx8WlSXZYa5pfjOHh4ePCPGaYhJku2WbNm4T//+Q9OnTqFjh07PrZsSEgIACAjIwM+Pj5wcXHBf//7X4MyTxrqVyKRWGSwRLlcjuzsbLPXy7Q+Rj9mIyLMmjULu3fvxrFjx+Dl5fXE19T2Ge/q6gqg9Q31yzCNYfQtW3R0NLZs2YKffvoJtra2/DGWnZ0dZDIZMjMzsWXLFrzyyitwcHBASkoK3n//fQwcOJAfaqi1DfXLMI3SrPbQeqCeZlcAtGHDBiIiysnJoYEDB5K9vT1JJBLy9fWlmJiYOs2m2dnZNHz4cJLJZOTo6Ejz5s0jjUbT6DjM1fRfWVlJffr0oT59+lBlZaVJ62qOZ6Xp31SM0fRv9C0bPeGSJXd3d5w8efKJ6/Hw8MC+ffuMFZbJ6PV6fmijljDmGNNysav+GcZMWLIxjJmwZGMYM2HJxrQZOp0OCxcuhJeXF2QyGXx8fPDZZ5+1mFuf2E1KTJvxxRdfID4+Ht999x0CAwNx4cIFTJ06FXZ2dnj33XctHR5LNmNwdHS0dAimRQRoLDRoiEgONPIyuLNnz2LkyJGIiIgAAHh6emLr1q11rkayFJZszWRtbY27d+9aOgzT0lQCn7tZpu7/uw2IGzd08vPPP4+///3vuHbtGvz8/HD58mWcPn0aK1asMHGQjcOSjWkz/vznP6O0tBRdunSBUCiETqfDkiVLMGnSJEuHBoAlG9MYInnNFsZSdTfSjh07sHnzZmzZsgWBgYFITk7GnDlz4ObmhqioKBMG2Tgs2ZpJpVLxnYLu378fMpnMwhGZAMc1elfOkmJiYvDnP/8Zr7/+OoCa27du3ryJpUuXsmRrC/R6PX/5Gbtcy7IqKyshEBiezRIKhS3m/8KSjWkzRowYgSVLlqBTp04IDAxEUlISVqxYgWnTplk6NAAs2Zg2ZNWqVVi4cCFmzpyJgoICuLm54a233sKiRYssHRoAlmxMG2Jra4uVK1di5cqVlg6lXuxyLYYxE5ZsDGMmbDfSCNriYBqM8bFkayZra2tUVFRYOgymFWC7kc+YlnK7SWtjjM+NJdszQiQSAYBBN+9M49V+brWfY1Ow3chmqqqqwpgxYwAAP/74I6RSqYUjqp9QKIRSqeT74pTL5awH50YgIlRWVqKgoABKpRJCYdMHZ2TJ1kw6nY7vBUyns8wg741V25v0w53fMo2jVCob7I27sViyPUM4joOrqyucnJyg0WgsHU6rIRKJmrVFq8WS7RkkFAqN8uVhnk6LbiBZvXo1PD09IZVKERIS0mJub2eYpmixybZ9+3bMnTsXsbGxuHTpEoKCghAeHs6ON5hWq8Um24oVKzB9+nRMnToVAQEBWLt2LeRyOdavX2/p0BimSVrkMVt1dTUuXryIBQsW8PMEAgHCwsKQkJBQ72vUajXUajX/vHZ4YVMP9/vw1SOlpaUtvkWSMb7a79iTTny3yGQrLCyETqerd6jf3377rd7XNDTMrzlGH63l5mahHqiYFqGsrAx2dnYNLm+RydYUjw7zq9frUVRUBAcHh1Z58rZ2mOLc3FwoFApLh2M2rfF9ExHKysqe+GPbIpPN0dERQqGQH9q31p07d55qmF+lUmmqEM1GoVC0mi+dMbW29/24LVqtFtlAIhaL0bt3bxw9epSfp9frcfToUYSGhlowMoZpuha5ZQOAuXPnIioqCn369EFwcDBWrlyJiooKTJ061dKhMUyTtNhki4yMxN27d7Fo0SLk5+fjueeew4EDB+o0mrRVEokEsbGxz9wY4m35fXPEbnBiGLNokcdsDNMWsWRjGDNhycYwZsKSjWHMhCWbkSxevBgcxxlMXbp04ZdXVVUhOjoaDg4OsLGxwZgxY+qctM/JyUFERATkcjmcnJwQExMDrVZrUObEiRPo1asXJBIJfH19sXHjxjqxmPLWpFOnTmHEiBFwc3MDx3HYs2ePwXIiwqJFi+Dq6gqZTIawsDBcv37doExRUREmTZoEhUIBpVKJN998E+Xl5QZlUlJS8MILL0AqlcLd3R3Lly+vE8vOnTvRpUsXSKVSdO/enb9j/mliMStijCI2NpYCAwMpLy+Pn+7evcsvf/vtt8nd3Z2OHj1KFy5coH79+tHzzz/PL9dqtdStWzcKCwujpKQk2rdvHzk6OtKCBQv4Mjdu3CC5XE5z586l1NRUWrVqFQmFQjpw4ABfZtu2bSQWi2n9+vX066+/0vTp00mpVNKdO3eM8j737dtHH330Ee3atYsA0O7duw2WL1u2jOzs7GjPnj10+fJl+sMf/kBeXl6kUqn4MsOGDaOgoCA6d+4c/fLLL+Tr60sTJkzgl5eUlJCzszNNmjSJrl69Slu3biWZTEbr1q3jy5w5c4aEQiEtX76cUlNT6eOPPyaRSERXrlx5qljMiSWbkcTGxlJQUFC9y4qLi0kkEtHOnTv5eWlpaQSAEhISiKjmSywQCCg/P58vEx8fTwqFgtRqNRERffjhhxQYGGiw7sjISAoPD+efBwcHU3R0NP9cp9ORm5sbLV26tNnv8VGPJpterycXFxeKi4vj5xUXF5NEIqGtW7cSEVFqaioBoMTERL7M/v37ieM4unXrFhERrVmzhtq1a8e/byKi+fPnk7+/P/98/PjxFBERYRBPSEgIvfXWW42OxdzYbqQRXb9+HW5ubvD29sakSZOQk5MDALh48SI0Gg3CwsL4sl26dEGnTp34W4YSEhLQvXt3g5P24eHhKC0txa+//sqXeXgdtWVq11F7a9LDZZ50a5IxZWVlIT8/36B+Ozs7hISEGLxPpVKJPn368GXCwsIgEAhw/vx5vszAgQMhFov5MuHh4UhPT8f9+/f5Mo/7LBoTi7mxZDOSkJAQbNy4EQcOHEB8fDyysrLwwgsvoKysDPn5+RCLxXUujHZ2dkZ+fj4AID8/v95bimqXPa5MaWkpVCrVY29Nql2HKdXW8bj68/Pz4eTkZLDcysoK9vb2RvksHl7+pFjMrcVertXa1A71CwA9evRASEgIPDw8sGPHjrY59C/z1NiWzUSUSiX8/PyQkZEBFxcXVFdXo7i42KDMw7cMubi41HtLUe2yx5VRKBSQyWRNujXJmGrreFz9Li4udfqR0Wq1KCoqMspn8fDyJ8VibizZTKS8vByZmZlwdXVF7969IRKJDG4ZSk9PR05ODn/LUGhoKK5cuWLwRTx8+DAUCgUCAgL4Mg+vo7ZM7TosfWuSl5cXXFxcDOovLS3F+fPnDd5ncXExLl68yJc5duwY9Ho9QkJC+DKnTp0y6Nvy8OHD8Pf3R7t27fgyj/ssGhOL2VmkWaYNmjdvHp04cYKysrLozJkzFBYWRo6OjlRQUEBENU3/nTp1omPHjtGFCxcoNDSUQkND+dfXNv0PHTqUkpOT6cCBA9S+fft6m/5jYmIoLS2NVq9eXW/Tv0QioY0bN1JqairNmDGDlEqlQStnc5SVlVFSUhIlJSURAFqxYgUlJSXRzZs3iaimuV2pVNJPP/1EKSkpNHLkyHqb/nv27Ennz5+n06dPU+fOnQ2a/ouLi8nZ2ZneeOMNunr1Km3bto3kcnmdpn8rKyv68ssvKS0tjWJjY+tt+n9SLObEks1IIiMjydXVlcRiMXXo0IEiIyMpIyODX65SqWjmzJnUrl07ksvl9Nprr1FeXp7BOrKzs2n48OEkk8nI0dGR5s2bRxqNxqDM8ePH6bnnniOxWEze3t60YcOGOrGsWrWKOnXqRGKxmIKDg+ncuXNGe5/Hjx8nAHWmqKgoIqppcl+4cCE5OzuTRCKhIUOGUHp6usE67t27RxMmTCAbGxtSKBQ0depUKisrMyhz+fJlGjBgAEkkEurQoQMtW7asTiw7duwgPz8/EovFFBgYSD///LPB8sbEYk7sFhuGMRN2zMYwZsKSjWHMhCUbw5gJSzaGMROWbAxjJizZGMZMWLIxjJmwZGMYM2HJxjBmwpKtlRs8eDDmzJlj6TB4LS2eloQlG4Pq6mpLh/BssNhVmUyzRUVF1bkgOCMjg6ZNm0aenp4klUrJz8+PVq5cWed1I0eOpL/85S/k6upKnp6eRFRzJX1QUBBJJBLq3bs37d69mwBQUlIS/9orV67QsGHDyNrampycnGjy5Ml8x0b1xZOVlWWuj6PFY8nWihUXF1NoaChNnz6d79GrqqqKFi1aRImJiXTjxg36/vvvSS6X0/bt2/nXRUVFkY2NDX8Ly9WrV6mkpITs7e1p8uTJ9Ouvv9K+ffvIz8/PINnu37/P3/aTlpZGly5dopdffplefPHFBuPRarWW+GhaJNYtQitmZ2cHsVgMuVxucPfxw8Mde3l5ISEhATt27MD48eP5+dbW1vjHP/7Bd6qzdu1acByHb7/9FlKpFAEBAbh16xamT5/Ov+Zvf/sbevbsic8//5yft379eri7u+PatWvw8/OrNx6mBku2Nmj16tVYv349cnJyoFKpUF1djeeee86gTPfu3Q16r0pPT0ePHj0glUr5ecHBwQavuXz5Mo4fPw4bG5s6dWZmZsLPz8+4b6SNYcnWxmzbtg0ffPABvvrqK4SGhsLW1hZxcXF8N3G1rK2tn3rd5eXlGDFiBL744os6y1xdXZsc87OCJVsrJxaLodPp+OdnzpzB888/j5kzZ/LzMjMzn7gef39/fP/991Cr1fxAhImJiQZlevXqhR9//BGenp6wsqr/q/NoPMzvWNN/K+fp6Ynz588jOzsbhYWF6Ny5My5cuICDBw/i2rVrWLhwYZ2kqc/EiROh1+sxY8YMpKWl4eDBg/jyyy8BABzHAQCio6NRVFSECRMmIDExEZmZmTh48CCmTp3KJ9ij8ej1etO9+VaGJVsr98EHH0AoFCIgIADt27dHeHg4Ro8ejcjISISEhODevXsGW7mGKBQK7N27F8nJyXjuuefw0UcfYdGiRQDAH8e5ubnhzJkz0Ol0GDp0KLp37445c+ZAqVRCIBDUG09tr9AMG+aXeYzNmzdj6tSpKCkpYR3NGgE7ZmN4//rXv+Dt7Y0OHTrg8uXLmD9/PsaPH88SzUhYsjG8/Px8LFq0CPn5+XB1dcW4ceOwZMkSS4fVZrDdSIYxE9ZAwjBmwpKNYcyEJRvDmAlLNoYxE5ZsDGMmLNkYxkxYsjGMmbBkYxgz+X8ex4GbAqduxAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "column = \"pods\"\n",
+ "x = \"target\"\n",
+ "y = \"[INSERT].AverageLatency(us)\"\n",
+ "title = \"Avg Lat [$\\mu$s]\"\n",
+ "plot_comparison(df_aggregated, x, y, column, title, peak_loading)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAANsAAADxCAYAAABCtMIQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAyHElEQVR4nO2deVxUVf/H38PAMDOsArIlmwsgarjjvhSK5tNTaqmphViWj0uaZmbmUj1maY9ZPmZP/VLLstJM21xyNxUNVyTMBUGtRNwAWWSb8/tj4sYEKMosgOf9es2Le88595zvvcxnzrnfe+75qoQQAolEYnHsbG2ARHK3IMUmkVgJKTaJxEpIsUkkVkKKTSKxElJsEomVkGKTSKyEFJtEYiWk2CQSKyHFJpFYCSk2icRKSLHVMmbPno1KpeLy5cu2NuW2GTFiBCqVCpVKRfPmzS3WzsKFC5V2atK1kmIzEwcPHqRPnz64urri4uJC7969OXLkiEmZHTt2mHwJyn727dtnUnbv3r3Mnj2bzMxMs9q5fPlyVCoVBw4cqHZdd2Kjl5cXK1as4I033qh2+5XRp08fVqxYQf/+/S3Wxp1gb2sD6gKHDh2iS5cuBAQEMGvWLAwGA++99x7du3fn559/JiwszKT8s88+S7t27UzSGjdubLK/d+9eXnnlFUaMGIG7u7ulT+GOuBMbnZycGD58uEXtCg8PJzw8nNOnT7N27VqLtnU7SLGZgRkzZqDT6YiPj8fT0xOA4cOHExoayksvvcSaNWtMynft2pVHHnnEFqZKbIgcRpqBn376iejoaEVoAH5+fnTv3p3vv/+enJyccsdcv36d4uLiCuubPXs2U6ZMASAkJEQZaqalpSllMjMzlR7Fzc2NuLg48vLyzHI+Z8+eZcyYMYSFhaHT6fD09OTRRx81ab8qNt4uDRs2rLDX69mzJ927dweM123ixIkEBwfj6OiIt7c3vXr14tChQ3fcrrWQPZsZKCgoQKfTlUvX6/UUFhaSlJREhw4dlPS4uDhycnJQq9V07dqV+fPn07ZtWyV/wIABnDx5ks8//5y3334bLy8vAOrXr6+UGTRoECEhIcydO5dDhw7xf//3f3h7e/Pmm29W+3wSEhLYu3cvQ4YMoUGDBqSlpbFkyRJ69OhBcnIyer2+SjbeDjk5OaSlpfGvf/2rXF5iYiJDhw4FYPTo0Xz11VeMGzeOiIgIrly5wu7duzl+/DitW7e+85O2BkJSbVq0aCFCQ0NFcXGxklZQUCACAwMFIL766ishhBB79uwRAwcOFB999JH45ptvxNy5c4Wnp6fQarXi0KFDJnXOnz9fACI1NdUkfdasWQIQI0eONEnv37+/8PT0vKWty5YtE4BISEiotExeXl65tPj4eAGITz755JY2VkZsbKwICgqqMK+0/k2bNpmknz9/XgDigw8+EEII4ebmJsaOHVul9kqv1aVLl6pU3tLIYaQZGDNmDCdPnuTJJ58kOTmZpKQknnjiCS5cuABAfn4+AJ06deKrr75i5MiR/POf/+TFF19k3759qFQqpk2bdlttjh492mS/a9euXLlyhezs7GqfT9leuqioiCtXrtC4cWPc3d0tNlxLSkoCIDIy0iT96NGjANx7770AuLu7s3//fv744w+L2GFJpNjMwOjRo3nppZdYuXIlzZo1o0WLFqSkpPDCCy8A4OzsXOmxjRs35qGHHmL79u2UlJRUuc3AwECT/Xr16gFw7dq1OzgDU/Lz85k5cyYBAQE4Ojri5eVF/fr1yczMJCsrq9r1V8SxY8fw8fHBx8fHJD0xMRE7Ozvludy8efNISkoiICCA9u3bM3v2bM6cOWMRm8yNFJuZmDNnDhcvXuSnn34iMTGRhIQEDAYDAKGhoTc9NiAggMLCQnJzc6vcnlqtrjBdmGH9pvHjxzNnzhwGDRrEqlWr+PHHH9m8eTOenp7KOZmbpKSkcr0awJEjR2jYsCFOTk6A8V71zJkzLFq0CH9/f+bPn0+zZs3YsGGDRewyJ9JBYkbq1atHly5dlP0tW7bQoEEDwsPDb3rcmTNn0Gq1Jj2gSqWymJ234quvviI2Npb//Oc/StqNGzfKPbw2p43Hjh1j8ODBJmkGg4Ft27bRrVs3k3Q/Pz/GjBnDmDFjyMjIoHXr1syZM4e+ffuazR5LIHs2C/Hll1+SkJDAxIkTsbMzXuZLly6VK3f06FG+/fZbevfurZQDlF9yc88gqQpqtbpcD7lo0aJyw1xz2ZiRkcGlS5eUe9xS3n33XS5fvkyLFi0AKCkpKTeM9fb2xt/fn4KCgmrZYA1kz2YGdu3axauvvkrv3r3x9PRk3759LFu2jD59+jBhwgSl3ODBg9HpdHTq1Alvb2+Sk5P54IMP0Ov15aYvtWnTBoDp06czZMgQHBwcePDBB81m89KlS9m4cWO59AkTJvCPf/yDFStW4ObmRkREBPHx8WzZssXkOeLNbCwVYVU5duwYAD/++CNjxowhPDycffv2sWnTJsA4FW7//v2EhYXRoEEDHnnkESIjI3F2dmbLli0kJCSY9MI1Flu7Q+sCp0+fFr179xZeXl7C0dFRhIeHi7lz54qCggKTcu+8845o37698PDwEPb29sLPz08MHz5cnDp1qsJ6X3vtNXHPPfcIOzs7xcVemTu71KV/Kzd8abnKPufPnxfXrl0TcXFxwsvLSzg7O4uYmBjx66+/iqCgIBEbG3tLGyujMtf/22+/LdRqtfjhhx9Eo0aNhFarFb169RLHjh0TjRo1Eg0aNBAHDx4UBQUFYsqUKSIyMlK4uLgIJycnERkZKd57770K26tprn+VEHJFZIl1GDFiBNu2bePQoUPY29sr8ymfeuopdu3axcmTJ83Szo0bN8jJyWHevHnMnz+fS5cuKQ/dbYm8Z5NYlfPnz1O/fn0TR9KxY8eIiIgwWxvvv/8+9evXZ/78+War0xzIezaJ1XjhhReUuY+lnlchBMnJydx///1ma2fgwIEm78u5ubmZre7qIMUmsRoRERHlerDU1FRycnLM2rMFBAQQEBBgtvrMhbxnk0ishLxnk0ishBSbRGIl6uw9m8Fg4I8//sDFxcWmU58kdR8hBNevX8ff399kFtDfqbNi++OPP2rkTbKk7nL+/HkaNGhQaX6dFZuLiwtgvACurq42tkZSl8nOziYgIED5zlVGnRVb6dDR1dXVomIrKSnhp59+AowvcFb26ouk7nOr25U6KzZrcePGDXr27AkY19G43Um4krsH6Y2USKzE3Sm2SyehpOJl5CQSS3H3iS3nEizrC0tj4PJpW1sjuYu4+8R26VcoKYLfD8D7XeDnD8FC62pIJGW5+8QW0hXG7IWQ7lCcD+ufh08HQNbvtrZMUse5+8QG4NYAHl8HfeeBvQ7ObIf3OkLiKqiL87KLC+BKiq2tuOu5e13/dnYQ9Qw0ug/WPgO/H4SvR8Gv30O/t8HJ89Z1AA4ODsybN0/ZrnFk/Q6fDoRLxyH8HxDzOtQLsrVVdyV19hWb7Oxs3NzcyMrKuvVD7ZJi2L0Adr4JhmJw8oZ/LoKwPtYx1lJcOgErBkD2b3+l2Wuh62To9Cw4aG1nWx2iqt+1u3MY+XfU9tD9BXhqK9QPh9wM+HwwfDseCq7b2ro743yC0eOa/Rt4NoZhayCoCxTfgO1z4L0OcHKTra28q5A9298pugHbXoP4xYAA90B4+H0I7lxh8ZKSEmX9+9atW9eM6Vonf4RVTxgdQPe0gaGrjcNiISBpDfz4Mlz/c43G0L7QZy54hNjWZltRXAgF2XAjy/jDWpANN7LL/L0OBVnGbb0nRM8qV0VVv2tSbJWRthvW/guyzgEq6DQOer5cbuiVm5urrKdRI6ZrHfkcvhkLogQaR8OgT0DzN5sKrhuHzPuWGIfNakfo8hx0mQgO5UNf1Tqy/4AT6yEn4y/hlBPRn0IqvlH1ej0bw/iD5ZuTYqum2MD4T9n0EhxeYdyv3xQG/A/8/lqTvsaITQjY+y5snmncv3cwPLQY1Ddx2mT8ChumQOou4757EPR5A8L6Qm17B7AwF45/D0c/hzM7MC6DeRtonMHRFbSu4OhSZrvMXxdfaP1EuUOl2MwhtlJ+XQ/fPQu5l8DOHnq8CJ2fA7V9zRCbwWAcGu5bbNzvNB6iXzV6XG+FEPDLWtg0Ha7/GYapcS/o+yZ4NrKczebAUAJpP8HRLyD5WygqE5gkoAP4NCsvmHIi+lNYdnc+/JdiM6fYAHIvw/cT4fh3xv172kL//5Gr87Ot2IoL4ZsxcGy1cb/Xa9D52duvpyAHds033qsaikCtgc4ToMsk0OjNa3N1yfgVEr8wPhfNLjMZoV4IRD4G9w6y6j2oFJu5xQbGXiBxFayfYrxptteR2/VlnHuMB2wgtoIcWPU4pGwz9rgPLYbIIdWr8/Ip4/md2W7cdwuEPq8bn9HZcmiZexmOfWUcJl448le61g2aDTCKLKC9TWyUYrOE2ErJ+g3WjYHUneQWCpznGh8PWFVsuZfhs0fhj0PgoIdBK6BJtHnqFsLYg2+c9tczukb3Qd/54NXYPG1UhaIbcHKjcZh4erPRmQPGH5YmvY0/LE1ibP680GJi27VrF/Pnz+fgwYNcuHCBtWvX8vDDDyv5QghmzZrFhx9+SGZmJp07d2bJkiU0adJEKXP16lXGjx/Pd999h52dHQMHDuSdd94xiU+WmJjI2LFjSUhIoH79+owfP16J5FmdC/B7Zj4P/Xc3eo09eo36z0+ZbUd79A5//tWocSqb71imnIMdXskfo9r6Gi6vZQCQ81kcTl2esfwv7LWzsKI/XE0BnQcMWw0N2pq/ncJc+GmB0fFSUgh2DkavbLcp5T2c5kIIOL/f2IMlrTWOIErxb23swZoPACfbr91fSlXFdtvTtXJzc4mMjGTkyJEMGDCgXP68efN49913+fjjjwkJCWHGjBnExMSQnJyMVmv8BRo2bBgXLlxg8+bNFBUVERcXx9NPP83KlSsV43v37k10dDTvv/8+x44dY+TIkbi7u/P000/frsmm9hcUczmnECisVj1GQgg2zOapbq9xj+oKDse/gpNruFEvDE2Hp7CLHGwc5piT9CTj9KucdHALgMfXgleTWx93J2ic4P4Z0HIobJhq7F12v20cSkfPNrrCVSpQ2Rk/lNk2SadM+t/z/tzOv2Z8Bpj4BVxL+8sG1wbGe7DIIVA/zDLnaSWqNYxUqVQmPZsQAn9/fyZPnszzzz8PQFZWFj4+PixfvpwhQ4Zw/PhxIiIiSEhIoG1b46/xxo0beeCBB/jtt9/w9/dnyZIlTJ8+nfT0dDQaDQAvvvgi69at49dff62SbZX92twoKiH1ci55hSXkFRab/i0oMdnPLSwmv7CE3MIS8guLyS0oIb+ohNyC0vRiDAJAEKlKYah6G/9U70WnMgq5QKUlxScG0WYkjVp2RetQzQfeabvh86HGX3vvCBi+Blz9q1dnVRHC+Oxq44uQec6ybWmcIeIho8CCulTNq2pDLNaz3YzU1FTS09OJjv7r3sHNzY2oqCji4+MZMmQI8fHxuLu7K0IDiI6Oxs7Ojv3799O/f3/i4+Pp1q2bIjSAmJgY3nzzTa5du6YEay9LQUGBSfTJ7OzsCm3UOqhp6meeezghBAXFBvIKSzh18ToJaQ/w3JnzBJ7/loFiM2F2vxGR/g388A1J34ew2+1B8sP607JxA9oE1cNVexsTl5O/hTVPQUkBBHaCx1aCrvx1sBgqFYT3M9677X7b6P0sKQJh+PMj/tqmzLaggvQKyqrU0LCHcZgY/oDlhqk2xKxiS09PB8DHx8ck3cfHR8lLT0/H29vb1Ah7ezw8PEzKhISElKujNK8isc2dO5dXXnnFPCdSRVQqFRq1ipS0UzgDY3o0xe6+JpQYenL8jyx+OLKN+ic+I/L6TpqrUmme/S7Xf/6QdfGdmWeIBp/mtA+uR7sQD9oHe+DtWsmN/oGl8MNk45cyrB888pHtZno46KDnS8aPORGi9j1Iv03qzCs206ZNY9KkScp+6Vp+liY/P18JT1TqjVTbqWjewJ3mDQbAPwYgci9zZe/HaI58jEvuWR6338LjbOHglSasvHg/k+M7UICGIE89bYM8aB9Sjxb3uOPtosHjwELsds41NtY6FvotME6crmvUcaGBmcXm6+sLwMWLF/Hz81PSL168SMuWLZUyGRkZJscVFxdz9epV5XhfX18uXrxoUqZ0v7TM33F0dMTR0dEs52FuVE5eePaaDNGTjFOjDixF/Po9bThFG80pZqtWsLqoK59dvZ81V+5hzaHfsMPAK/bLedx+CwCfOQ5mY8ZQvL5KwstZQ30XR7ycy3xcNHjoNdira/b9zd2MWcUWEhKCr68vW7duVcSVnZ3N/v37+de//gVAx44dyczM5ODBg0oA9G3btmEwGIiKilLKTJ8+naKiIuWFzM2bNxMWFlbhELLWoFJBw+7QsDuq6xfhyKdwcDkumecYab+RkfYbOe/Siq/tetMsawfR7McgVMwqjmXFjd6QdeWW1XvoNYr4yorRXe+AnRk7DxUq9I5qnBztcXa0x0ljj4vWHidHe5wc1TjaW/7th8JiAzkFxeQWFP/tr9HJVd/FkWBPJxrU09WIH6Hb9kbm5ORw+rRxVapWrVqxYMECevbsiYeHB4GBgbz55pu88cYbJq7/xMREE9d/3759uXjxIu+//77i+m/btq3i+s/KyiIsLIzevXszdepUkpKSGDlyJG+//XaVXf8WfahdhmrPjTQYjDNADiyFkxv+dBoYEWoNWX0X85tfDJdzCricU2j8e73AdD+ngCu5hTVqRQcHtcooPM2fYnRU46x1wNlRjZPG/i+ROtrj7KhGp7FXPL1lxZNbUEJOOTEZ0wtLqrZQk72digb1dAR5OhHsqTf+9TL+DainR2NfPSFa7KH2jh07lBWAyxIbG8vy5cuVh9offPABmZmZdOnShffee4/Q0FCl7NWrVxk3bpzJQ+1333230ofaXl5ejB8/nqlTp1bZzlojtrJk/W58w+Dgx1CUZ3w9pmH3Kh1aYhBczf1LfEZRGvcv5RSQnV9053ZV0l5uYVlx/PlIpKjErO1UBa2DnSLcUnFrNWoysm+QdiWXG0WVi9JOBffU0xHs6USQp/7Pv0ZRBnjoq/S4Rk7Xqo1iK8VgME5NstfcumwNo7jE8DcRlvZORYogy/ZSpdt5hSXoHNR/9Xba0uGp2rQX1JbZ1hh7zJsNEQ0GQcb1AtKu5HL2Si5pV/I4eyWX1MvGv3mFlf84qFTg76Yj6M/esLG3M092KT/B2SbP2SRmws4O7Gqf0ADs1Xa46exw09WMxY/s7FT4umnxddPSoaHpIk5CCC7lFHD2Sh5pl3M5eyWP1FJRXs4jp6CY3zPz+T0zn70pVwjxcqpQbFVFiq2aODg4KLNlauTqWpJKUalUeLto8XbR0i7YwyRPCOOwvLQnTLuci05TPbnIYaREUk3k6loSSQ1DDiOricFg4Nw548TcwMDAm8ZUltzdSLFVk/z8fGUeZ41YXUtSY5E/wxKJlZBik0ishBSbRGIlpNgkEishxSaRWAkpNonESkjXfzWxt7dnzJgxyrZEUhny21FNHB0dWbx4sa3NkNQC5DBSIrESsmerJkIILl++DICXlxequ2DhGsmdIcVWTfLy8pSl+eR0LcnNkMNIicRKSLFJJFZCik0isRJSbBKJlZBik0ishNnFFhwcjEqlKvcZO3YsAD169CiXN3r0aJM6zp07R79+/dDr9Xh7ezNlyhSKi4vNbapEYlXM7vpPSEigpOSvtfiSkpLo1asXjz76qJI2atQoXn31VWVfr/8rQHpJSQn9+vXD19eXvXv3cuHCBZ544gkcHBx4/fXXzW1utbG3tyc2NlbZlkgqRViYCRMmiEaNGgmDwSCEEKJ79+5iwoQJlZZfv369sLOzE+np6UrakiVLhKurqygoKKhyu1lZWQIQWVlZd2y7RFIVqvpds+g9W2FhIZ9++ikjR440mVnx2Wef4eXlRfPmzZk2bRp5eXlKXnx8PC1atDCJ8RYTE0N2dja//PJLpW0VFBSQnZ1t8pFIahIWHfesW7eOzMxMRowYoaQNHTqUoKAg/P39SUxMZOrUqZw4cYKvv/4aMAY7rCiYYmleZdgiGCIYp2uV/ljo9Xo5XUtSKRYV20cffUTfvn3x9/8r7nPZKDQtWrTAz8+P+++/n5SUFBo1anTHbdkqGGJeXp751/qX1EksJrazZ8+yZcsWpceqjNKYbKdPn6ZRo0b4+vry888/m5S5VSBEqNnBECUSsOBztmXLluHt7U2/fv1uWu7IkSMASqTSjh07cuzYMZPopJs3b8bV1ZWIiAhLmSuRWByL9GwGg4Fly5YRGxtr4g5PSUlh5cqVPPDAA3h6epKYmMhzzz1Ht27duPfeewHo3bs3ERERPP7448ybN4/09HRefvllxo4dK3suSe3GEq7QTZs2CUCcOHHCJP3cuXOiW7duwsPDQzg6OorGjRuLKVOmlHOZpqWlib59+wqdTie8vLzE5MmTRVFR0W3ZYC3Xf05OjgAEIHJycizalqRmUtXvmoxiU00sEgxRUquQUWwkkhqGnF9UTdRqNY888oiyLZFUhhRbNdFqtaxevdrWZkhqAXIYKZFYCSk2icRKSLFVk9zcXOW9vNzcXFubI6nBSLFJJFZCik0isRJSbBKJlZBik0ishBSbRGIlpNgkEishZ5BUE7VazQMPPKBsSySVIcVWTbRaLT/88IOtzZDUAuQwUiKxErJnuwspKSmhqKjI1mbUGhwcHMxyiyDFVk1yc3OVYIgZGRk1+uVRIQTp6elkZmba2pRah7u7O76+vtVaqlCKzQyUXWS2JlMqNG9vb7nGZRURf64LWroAVenCVHeCFNtdQklJiSI0T09PW5tTq9DpdIBx5OLt7X3HQ0rpILlLKL1HKxvERFJ1Sq9bde51pdjuMuTQ8c4wx3Uzu9hmz55dLv5aeHi4kn/jxg3Gjh2Lp6cnzs7ODBw4UFnxuBQZn01SF7FIz9asWTMuXLigfHbv3q3kPffcc3z33XesXr2anTt38scffzBgwAAlvzQ+W2FhIXv37uXjjz9m+fLlzJw50xKmSu4yVCoV69ats0nbFnGQ2NvbV7guf1ZWFh999BErV67kvvvuA4zLlDdt2pR9+/bRoUMHfvzxR5KTk9myZQs+Pj60bNmS1157jalTpzJ79mw0Go0lTL5j7Ozs6N69u7ItkVSGRb4dp06dwt/fn4YNGzJs2DDOnTsHwMGDBykqKiI6OlopGx4eTmBgIPHx8UDti8+m0+nYsWMHO3bsULxWEklFmF1sUVFRLF++nI0bN7JkyRJSU1Pp2rUr169fJz09HY1Gg7u7u8kxPj4+Suy16sRnc3NzUz7WCBdVl+jRowfPPvssL7zwAh4eHvj6+jJ79mwlPy0tDZVKpQRCAcjMzESlUrFjxw4AduzYgUqlYtOmTbRq1QqdTsd9991HRkYGGzZsoGnTpri6ujJ06NCbPptcvnw57u7urFu3jiZNmqDVaomJieH8+fMm5ZYsWUKjRo3QaDSEhYWxYsUKk/xTp07RrVs3tFotERERbN682SS/sLCQcePG4efnh1arJSgoiLlz597ZBawCZh9G9u3bV9m+9957iYqKIigoiFWrVln0l99W8dnqEh9//DGTJk1i//79xMfHM2LECDp37kyvXr1uq57Zs2fz3//+F71ez6BBgxg0aBCOjo6sXLmSnJwc+vfvz6JFi5g6dWqldeTl5TFnzhw++eQTNBoNY8aMYciQIezZsweAtWvXMmHCBBYuXEh0dDTff/89cXFxNGjQgJ49e2IwGBgwYAA+Pj7s37+frKwsJk6caNLGu+++y7fffsuqVasIDAzk/Pnz5QRtVqwQd0C0bdtWvPjii2Lr1q0CENeuXTPJDwwMFAsWLBBCCDFjxgwRGRlpkn/mzBkBiEOHDlW5TWsG1vDy8hJeXl41OrBGfn6+SE5OFvn5+RXmd+/eXXTp0sUkrV27dmLq1KlCCCFSU1MFIA4fPqzkX7t2TQBi+/btQgghtm/fLgCxZcsWpczcuXMFIFJSUpS0Z555RsTExFRq67JlywQg9u3bp6QdP35cAGL//v1CCCE6deokRo0aZXLco48+Kh544AEhhDG4i729vfj999+V/A0bNghArF27VgghxPjx48V9992nxHu/GTe7fjUipjYYg02kpKTg5+dHmzZtcHBwYOvWrUr+iRMnOHfuHB07dgRqZ3y2y5cvc/nyZVubUW1Kw3aV4ufnZ/J/uJN6fHx80Ov1NGzY0CTtVvXa29vTrl07ZT88PBx3d3eOHz8OwPHjx+ncubPJMZ07dzbJDwgIMIl6W/odK2XEiBEcOXKEsLAwnn32WX788cfbPNPbw+xie/7559m5cydpaWns3buX/v37o1areeyxx3Bzc+PJJ59k0qRJbN++nYMHDxIXF0fHjh3p0KEDYBqf7ejRo2zatEnGZ7MSDg4OJvsqlQqDwQD85WkVZYIeVTabomw9KpXqpvXaktatW5Oamsprr71Gfn4+gwYNUuI2WAKzi+23337jscceIywsjEGDBuHp6cm+ffuoX78+AG+//Tb/+Mc/GDhwIN26dcPX19ckFLBareb7779HrVbTsWNHhg8fzhNPPMGrr75qblMlt0Hp/+/ChQtKWllnibkpLi7mwIEDyv6JEyfIzMykadOmADRt2lS5fytlz549yuinadOmnD9/3sTeffv2lWvH1dWVwYMH8+GHH/Lll1+yZs0arl69aolTMr+D5IsvvrhpvlarZfHixSxevLjSMkFBQaxfv97cpkmqgU6no0OHDrzxxhuEhISQkZHByy+/bLH2HBwcGD9+PO+++y729vaMGzeODh060L59ewCmTJnCoEGDaNWqFdHR0Xz33Xd8/fXXbNmyBYDo6GhCQ0OJjY1l/vz5ZGdnM336dJM2FixYgJ+fH61atcLOzo7Vq1fj6+tbzltuLuRTWEmVWbp0KcXFxbRp04aJEyfy73//22Jt6fV6pk6dytChQ+ncuTPOzs58+eWXSv7DDz/MO++8w1tvvUWzZs343//+x7Jly+jRowdgHPauXbuW/Px82rdvz1NPPcWcOXNM2nBxcWHevHm0bduWdu3akZaWxvr16y02OUFGHq0mtSXy6I0bN0hNTSUkJAStVmtrc27K8uXLmThxYo16yfVm16+q3zX5Pls1sbOzo23btsq2RFIZUmzVRKfTkZCQYGszJLUA+VMsqXGMGDGiRg0hzYUUm0RiJaTYqkleXh7BwcEEBwfXmoV/JLZB3rNVEyEEZ8+eVbYlksqQPZtEYiWk2CQSKyHFJpFYCSk2icRKSLFJ6hS7du3iwQcfxN/f36YraVWEFFs1UalUREREEBERIRdArQHk5uYSGRl507dKbIV0/VcTvV5/01W/6gJCCPKLSmzSts5BfVs/Yn379jVZB6cmIcUmuSX5RSVEzNxkk7aTX41Br6kbX1M5jJRIrETd+MmwIXl5ecrCNAkJCXUySozOQU3yqzE2a7uuIMVWTYQQJCcnK9t1EZVKVWeGcrZEDiMlEishf64kdYqcnBxOnz6t7KempnLkyBE8PDwIDAy0oWUW6Nnmzp1Lu3btcHFxwdvbm4cffpgTJ06YlOnRo0e5GG6jR482KSNjtEnuhAMHDtCqVStatWoFwKRJk2jVqlWNCDlm9p5t586djB07lnbt2lFcXMxLL71E7969SU5ONlkMZ9SoUSZrQZZ1LJTGaPP19WXv3r1cuHCBJ554AgcHB15//XVzmyypQ/To0aPm3jvfcpHzapKRkSEAsXPnTiWte/fuYsKECZUes379emFnZyfS09OVtCVLlghXV1dRUFBQpXatudY/IIBavda/5ObUirX+s7KyAPDw8DBJ/+yzz/Dy8qJ58+ZMmzbN5C3nO4nRZqv4bCqViqCgIIKCguR0LclNsaiDxGAwMHHiRDp37kzz5s2V9KFDhxIUFIS/vz+JiYlMnTqVEydOKMuQ30mMtrlz5/LKK69Y6EwqR6/Xk5aWZvV2JbUPi4pt7NixJCUlmcTUBnj66aeV7RYtWuDn58f9999PSkoKjRo1uqO2ZHw2SU3HYsPIcePG8f3337N9+3YaNGhw07JRUVEAisvW19eXixcvmpQp3a8oVjeAo6Mjrq6uJh+JpCZhdrEJIRg3bhxr165l27ZthISE3PKY0mgofn5+QO2K0Zafn0+7du1o164d+fn5tjZHUoMx+zBy7NixrFy5km+++QYXFxflHsvNzQ2dTkdKSgorV67kgQcewNPTk8TERJ577jm6deumBNErG6Nt3rx5pKen19gYbQaDQQltVBNijklqMOZ2kfKnG/zvn2XLlgkhhDh37pzo1q2b8PDwEI6OjqJx48ZiypQp5dymaWlpom/fvkKn0wkvLy8xefJkUVRUVGU7pOvfFOn6rx7mcP2bvWcTt3igGBAQwM6dO29Zj4zRJqlryInIEomVkGKT1BlKSkqYMWMGISEh6HQ6GjVqxGuvvVZjpm/JWf+SOsObb77JkiVL+Pjjj2nWrBkHDhwgLi4ONzc3nn32WVubJ8VmDry8vGxtgmURAopsFDTEQQ9VnAa3d+9eHnroIfr16wdAcHAwn3/+OT///LMlLawyUmzVxMnJiUuXLtnaDMtSlAev+9um7Zf+AE3VQid36tSJDz74gJMnTxIaGsrRo0fZvXs3CxYssLCRVUOKTVJnePHFF8nOziY8PBy1Wk1JSQlz5sxh2LBhtjYNkGKTVAUHvbGHsVXbVWTVqlV89tlnrFy5kmbNmnHkyBEmTpyIv78/sbGxFjSyakixVZP8/HxlUdANGzag0+lsbJEFUKmqPJSzJVOmTOHFF19kyJAhgHGS+9mzZ5k7d64UW13AYDAoD+nldC3bkpeXh52d6dMstVpdY/4vUmySOsODDz7InDlzCAwMpFmzZhw+fJgFCxYwcuRIW5sGSLFJ6hCLFi1ixowZjBkzhoyMDPz9/XnmmWdqxGI/IMUmqUO4uLiwcOFCFi5caGtTKkRO15JIrIQUm0RiJeQw0gzUxWAaEvMjxVZNnJycyM3NtbUZklqAHEbeZdSU101qG+a4blJsdwkODg4AJovhSqpO6XUrvY53ghxGVpMbN24wcOBAANasWYNWq7WxRRWjVqtxd3dXVizT6/VyBecqIIQgLy+PjIwM3N3dUavvPDijFFs1KSkpUdZKKSmxTZD3qlK65mbZJQIlVcPd3b3SNUurihTbXYRKpcLPzw9vb2+KiopsbU6twcHBoVo9WilSbHcharXaLF8eye1Rox0kixcvJjg4GK1WS1RUVI15vV0iuRNqrNi+/PJLJk2axKxZszh06BCRkZHExMTI+w1JraXGim3BggWMGjWKuLg4IiIieP/999Hr9SxdutTWpkkkd0SNvGcrLCzk4MGDTJs2TUmzs7MjOjqa+Pj4Co8pKCigoKBA2S8NwmjpoIhlZ49kZ2fXeI+kxPyUfsdu9eC7Rort8uXLlJSUVBgQ8ddff63wmMqCIVozRpu/v41WoJLUCK5fv46bm1ul+TVSbHfC34MhGgwGrl69iqenZ618eFsazPH8+fN3Vay52njeQgiuX79+yx/bGik2Ly8v1Gp1hQERbxYM8e/hpNzd3S1lotW4WwM71rbzvlmPVkqNdJBoNBratGnD1q1blTSDwcDWrVvp2LGjDS2TSO6cGtmzAUyaNInY2Fjatm1L+/btWbhwIbm5ucTFxdnaNInkjqixYhs8eDCXLl1i5syZpKen07JlSzZu3FjOaVJXcXR0ZNasWTUu0qqlqcvnrRLyBSeJxCrUyHs2iaQuIsUmkVgJKTaJxEpIsUkkVkKKzUzMnj0blUpl8gkPD1fyb9y4wdixY/H09MTZ2ZmBAweWe2h/7tw5+vXrh16vx9vbmylTplBcXGxSZseOHbRu3RpHR0caN27M8uXLy9liyVeTdu3axYMPPoi/vz8qlYp169aZ5AshmDlzJn5+fuh0OqKjozl16pRJmatXrzJs2DBcXV1xd3fnySefJCcnx6RMYmIiXbt2RavVEhAQwLx588rZsnr1asLDw9FqtbRo0UJ5Y/52bLEqQmIWZs2aJZo1ayYuXLigfC5duqTkjx49WgQEBIitW7eKAwcOiA4dOohOnTop+cXFxaJ58+YiOjpaHD58WKxfv154eXmJadOmKWXOnDkj9Hq9mDRpkkhOThaLFi0SarVabNy4USnzxRdfCI1GI5YuXSp++eUXMWrUKOHu7i4uXrxolvNcv369mD59uvj6668FINauXWuS/8Ybbwg3Nzexbt06cfToUfHPf/5ThISEiPz8fKVMnz59RGRkpNi3b5/46aefROPGjcVjjz2m5GdlZQkfHx8xbNgwkZSUJD7//HOh0+nE//73P6XMnj17hFqtFvPmzRPJycni5ZdfFg4ODuLYsWO3ZYs1kWIzE7NmzRKRkZEV5mVmZgoHBwexevVqJe348eMCEPHx8UII45fYzs5OpKenK2WWLFkiXF1dRUFBgRBCiBdeeEE0a9bMpO7BgweLmJgYZb99+/Zi7Nixyn5JSYnw9/cXc+fOrfY5/p2/i81gMAhfX18xf/58JS0zM1M4OjqKzz//XAghRHJysgBEQkKCUmbDhg1CpVKJ33//XQghxHvvvSfq1aunnLcQQkydOlWEhYUp+4MGDRL9+vUzsScqKko888wzVbbF2shhpBk5deoU/v7+NGzYkGHDhnHu3DkADh48SFFREdHR0UrZ8PBwAgMDlVeG4uPjadGihclD+5iYGLKzs/nll1+UMmXrKC1TWkfpq0lly9zq1SRzkpqaSnp6ukn7bm5uREVFmZynu7s7bdu2VcpER0djZ2fH/v37lTLdunVDo9EoZWJiYjhx4gTXrl1TytzsWlTFFmsjxWYmoqKiWL58ORs3bmTJkiWkpqbStWtXrl+/Tnp6OhqNptzEaB8fH9LT0wFIT0+v8JWi0ryblcnOziY/P/+mryaV1mFJStu4Wfvp6el4e3ub5Nvb2+Ph4WGWa1E2/1a2WJsaO12rtlEa6hfg3nvvJSoqiqCgIFatWlU3Q/9KbhvZs1kId3d3QkNDOX36NL6+vhQWFpKZmWlSpuwrQ76+vhW+UlSad7Myrq6u6HS6O3o1yZyUtnGz9n19fcutI1NcXMzVq1fNci3K5t/KFmsjxWYhcnJySElJwc/PjzZt2uDg4GDyytCJEyc4d+6c8spQx44dOXbsmMkXcfPmzbi6uhIREaGUKVtHaZnSOmz9alJISAi+vr4m7WdnZ7N//36T88zMzOTgwYNKmW3btmEwGIiKilLK7Nq1y2Rty82bNxMWFka9evWUMje7FlWxxerYxC1TB5k8ebLYsWOHSE1NFXv27BHR0dHCy8tLZGRkCCGMrv/AwECxbds2ceDAAdGxY0fRsWNH5fhS13/v3r3FkSNHxMaNG0X9+vUrdP1PmTJFHD9+XCxevLhC17+jo6NYvny5SE5OFk8//bRwd3c38XJWh+vXr4vDhw+Lw4cPC0AsWLBAHD58WJw9e1YIYXS3u7u7i2+++UYkJiaKhx56qELXf6tWrcT+/fvF7t27RZMmTUxc/5mZmcLHx0c8/vjjIikpSXzxxRdCr9eXc/3b29uLt956Sxw/flzMmjWrQtf/rWyxJlJsZmLw4MHCz89PaDQacc8994jBgweL06dPK/n5+flizJgxol69ekKv14v+/fuLCxcumNSRlpYm+vbtK3Q6nfDy8hKTJ08WRUVFJmW2b98uWrZsKTQajWjYsKFYtmxZOVsWLVokAgMDhUajEe3btxf79u0z23lu375dAOU+sbGxQgijy33GjBnCx8dHODo6ivvvv1+cOHHCpI4rV66Ixx57TDg7OwtXV1cRFxcnrl+/blLm6NGjokuXLsLR0VHcc8894o033ihny6pVq0RoaKjQaDSiWbNm4ocffjDJr4ot1kS+YiORWAl5zyaRWAkpNonESkixSSRWQopNIrESUmwSiZWQYpNIrIQUm0RiJaTYJBIrIcUmkVgJKbZaTo8ePZg4caKtzVCoafbUJKTYJBQWFtrahLsDm83KlFSb2NjYchOCT58+LUaOHCmCg4OFVqsVoaGhYuHCheWOe+ihh8S///1v4efnJ4KDg4UQxpn0kZGRwtHRUbRp00asXbtWAOLw4cPKsceOHRN9+vQRTk5OwtvbWwwfPlxZ2Kgie1JTU611OWo8Umy1mMzMTNGxY0cxatQoZUWvGzduiJkzZ4qEhARx5swZ8emnnwq9Xi++/PJL5bjY2Fjh7OysvMKSlJQksrKyhIeHhxg+fLj45ZdfxPr160VoaKiJ2K5du6a89nP8+HFx6NAh0atXL9GzZ89K7SkuLrbFpamRyGURajFubm5oNBr0er3J28dlwx2HhIQQHx/PqlWrGDRokJLu5OTE//3f/ymL6rz//vuoVCo+/PBDtFotERER/P7774waNUo55r///S+tWrXi9ddfV9KWLl1KQEAAJ0+eJDQ0tEJ7JEak2OogixcvZunSpZw7d478/HwKCwtp2bKlSZkWLVqYrF514sQJ7r33XrRarZLWvn17k2OOHj3K9u3bcXZ2LtdmSkoKoaGh5j2ROoYUWx3jiy++4Pnnn+c///kPHTt2xMXFhfnz5yvLxJXi5OR023Xn5OTw4IMP8uabb5bL8/Pzu2Ob7xak2Go5Go2GkpISZX/Pnj106tSJMWPGKGkpKSm3rCcsLIxPP/2UgoICJRBhQkKCSZnWrVuzZs0agoODsbev+Kvzd3skfyFd/7Wc4OBg9u/fT1paGpcvX6ZJkyYcOHCATZs2cfLkSWbMmFFONBUxdOhQDAYDTz/9NMePH2fTpk289dZbAKhUKgDGjh3L1atXeeyxx0hISCAlJYVNmzYRFxenCOzv9hgMBsudfC1Diq2W8/zzz6NWq4mIiKB+/frExMQwYMAABg8eTFRUFFeuXDHp5SrD1dWV7777jiNHjtCyZUumT5/OzJkzAZT7OH9/f/bs2UNJSQm9e/emRYsWTJw4EXd3d+zs7Cq0p3RVaIkM8yu5CZ999hlxcXFkZWXJhWbNgLxnkyh88sknNGzYkHvuuYejR48ydepUBg0aJIVmJqTYJArp6enMnDmT9PR0/Pz8ePTRR5kzZ46tzaozyGGkRGIlpINEIrESUmwSiZWQYpNIrIQUm0RiJaTYJBIrIcUmkVgJKTaJxEpIsUkkVuL/AZz1OZZSQ93OAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "column = \"pods\"\n",
+ "x = \"target\"\n",
+ "y = \"[INSERT].95thPercentileLatency(us)\"\n",
+ "title = \"95th Lat [$\\mu$s]\"\n",
+ "plot_comparison(df_aggregated, x, y, column, title, peak_loading)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAANsAAADxCAYAAABCtMIQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAs40lEQVR4nO3deVxU9f4/8NfMMCs4jLKjILgAgog74m6RaOXtlqWZdpHK8mKLP0u9VgotXgy75s1rWrevWt5yqa52K/el6wZcVFARwg2EUsBtGJZhgJn374+RoxOgLMMMy/v5eMyDOefzmXPe53Decz7nM2cRERGBMdbixPYOgLGOgpONMRvhZGPMRjjZGLMRTjbGbISTjTEb4WRjzEY42RizEU42xmyEk40xG+FkY8xGONnamPj4eIhEIly/ft3eoTTazJkzIRKJIBKJ0Ldv3xabz8qVK4X5tKZ1xclmJSdOnMCECROgVqvRqVMnjB8/Hunp6U2ud+zYMcTHx0Or1Vo1zg0bNkAkEuH48ePNnlZTYnR1dcXGjRuxbNmyZs+/PhMmTMDGjRvx+OOPt9g8moKTzQpOnjyJkSNH4tKlS4iLi8OSJUtw/vx5jBkzBtnZ2Y2uB5g35HfeecfqyWZNTYnR0dERM2bMwKOPPtpicQUFBWHGjBno169fi82jKRzsHUB7sHjxYiiVSiQlJcHFxQUAMGPGDAQEBODNN9/Ed99916h6rH3iPZsVHD58GJGRkUICAYCXlxfGjBmDH3/8EaWlpY2qFx8fj/nz5wMA/P39hWOP3Nxc4XNarRYzZ86ERqOBs7MzYmJiUF5ebpXluXz5MmJjYxEYGAilUgkXFxc89dRTFvNvSIyN1aNHD8yYMaPW+HHjxmHMmDEAgJKSEsydOxd+fn6Qy+Vwd3fHQw89hJMnTzZ5vrbCezYrMBgMUCqVtcarVCpUVlYiIyMDw4YNa3C9J554AufOncOmTZvw0UcfwdXVFQDg5uYmfGbKlCnw9/dHQkICTp48ic8//xzu7u744IMPmr08qampOHbsGJ5++ml069YNubm5WLNmDcaOHYvMzEyoVKoGxdgYpaWlyM3NxZ///OdaZadPn8YzzzwDAJg9eza+/fZbvPzyywgODsaNGzdw5MgRZGVlYeDAgU1faFsg1myhoaEUEBBA1dXVwjiDwUC+vr4EgL799ttG1SMiWr58OQGgnJwci3nFxcURAHruuecsxj/++OPk4uJy31jXr19PACg1NbXeOuXl5bXGJSUlEQD68ssv7xtjfaKjo6l79+51ltVMf/fu3Rbj8/PzCQB99tlnRETk7OxMc+bMadD8atbVtWvXGlS/pXEz0gpiY2Nx7tw5PP/888jMzERGRgb+9Kc/4erVqwAAvV7fqHoNMXv2bIvhUaNG4caNG9DpdM1enrv3vlVVVbhx4wZ69eoFjUbTYs21jIwMAEBYWJjF+FOnTgGA0Nmh0WiQkpKCK1eutEgcLYmTzQpmz56NN998E19//TVCQkIQGhqKixcvYsGCBQAAJyenRtVrCF9fX4vhzp07AwBu3brV7OXR6/VYsmQJfHx8IJfL4erqCjc3N2i1WhQXFzd7+nU5c+YMPDw84OHhYTH+9OnTEIvFwu9yiYmJyMjIgI+PD4YOHYr4+HhcunSpRWKyNk42K1m6dCkKCwtx+PBhnD59GqmpqTCZTACAgICARte7H4lEUud4ssL9m1555RUsXboUU6ZMwdatW7Fnzx7s3bsXLi4uQqzWlpGRUWuvBgDp6eno0aMHHB0dAZiPVS9duoRVq1bB29sby5cvR0hICHbu3NkicVkTd5BYUefOnTFy5EhheN++fejWrRuCgoIaXU8kErV8wPX49ttvER0djb/97W/CuIqKilq/p1kzxjNnzmDq1KkW40wmEw4cOIDRo0dbjPfy8kJsbCxiY2NRVFSEgQMHYunSpZg4caLV4mkJvGdrIVu2bEFqairmzp0Lsbj+1VxfvZpvcnv8qC2RSGrtIVetWgWj0WgxzloxFhUV4dq1a8Kxa42PP/4Y169fR2hoKADAaDTWasa6u7vD29sbBoOhWTHYAu/ZrODQoUN49913MX78eLi4uCA5ORnr16/HhAkT8NprrzW6HgAMGjQIAPDWW2/h6aefhlQqxaRJk6wW87p167Br165a41977TU8+uij2LhxI5ydnREcHIykpCTs27fP4vfBe8VYk4QNdebMGQDAnj17EBsbi6CgICQnJ2P37t0AzKe4paSkIDAwEN26dcOTTz6JsLAwODk5Yd++fUhNTbXYC7da9u4ObQ8uXLhA48ePJ1dXV5LL5RQUFEQJCQlkMBiaVK/Ge++9R127diWxWCx0sdfXnV3TpX+/bviaevW98vPz6datWxQTE0Ourq7k5OREUVFR9Msvv1D37t0pOjr6vjHWp76u/48++ogkEgn99NNP1LNnT1IoFPTQQw/RmTNnqGfPntStWzc6ceIEGQwGmj9/PoWFhVGnTp3I0dGRwsLC6JNPPqlzfq2t619ExHdEZrYxc+ZMHDhwACdPnoSDgwM0Gg0A4IUXXsChQ4dw7tw5q8ynoqICpaWlSExMxPLly3Ht2jXhR3d74mM2ZlP5+flwc3Oz6CA6c+YMgoODrTaPtWvXws3NDcuXL7faNK2Bj9mYzSxYsEA497HmN0UiQmZmJh588EGrzWfy5MkW18s5OztbbdrNwcnGbCY4OLjWHiwnJwelpaVW3bP5+PjAx8fHatOzFj5mY8xG+JiNMRvhZGPMRtrtMZvJZMKVK1fQqVMnu576xNo/IkJJSQm8vb3vebZQu022K1eutMqDZNZ+5efno1u3bvWWt9tk69SpEwDzClCr1XaOhrVnOp0OPj4+wjZXn3abbDVNR7Va3aLJZjQacfjwYQDmCzjru/SFtX/3O1xpt8lmKxUVFRg3bhwA8300GnsSLus4uDeSMRvpeMlGBJiM96/HmJV1vGZkcT6wMhSQqgB5J8uXrFPtcbXqOAFy9Z3h1n4CTrUBSF4D5CUBHn2B7hGAT7g5dmZTHS/ZDCXmv1Xl5ldpYfOmV3VX4yAvBejzQPOmZ03n9wE7FwA3L5qHz+0CDgMQiQHPUMB3OOA7DOg+HHByt2uoHUHHSza3IGBBDmDQmRPvXq/KusaX3v6rA0AA3dUk3fhHIOwPQOQ7gEtPey0hcOsysPtN4JcfzcNOHsDQWcCNi8DlY4D2MnD1lPmVssZcp0tPwDfCvOfzjQC69ADa48kAJiNQUXz7pTX/1WvvDN/9/vdlnf2AF/Y1edYdL9nEEkDVxfxqDiKgsgy4WQgk9DKPE4mBrB+A7J3AkBeA0QsAR5d7T8eaqiqAYx8Dh/8GVFcAIgkw7M/AmIWA4q6fP3RXzEmXl2xuXhaeNe/9bl4E0v9lruPkYd7r+Q43J6BHX/O6a+1MJuDyESDze6CkoHbCGJpxX01p7btZN0a7Petfp9PB2dkZxcXFLfo7W2VlJf7+978DAF6bNh6y/74PnN9jLpQ7A6NfB4a+BEgVLRYDAODcbmDnQuBWjnnYbxTw8HLAvc/9P6vXAvn/A/KOAZeTgCsnAWOlZR1ZJ8Bn6O0933Cg68Bmb3xWdSsXSN8EnPoa0Obdv75UBSg0gMIZUN7+q9BYvq9V1hlw7lprUg3d1jjZWsLFg8CexUCh+UY20PgCD8YBfSdbv2l2KxfYtQjI3mEe7uQFjH+/efOqqjAnXM3eLz+l9h5BIjMndMAEIGC8uYlla5VlQOZ/gPSvgNzDd8bL1UDI44BXv9tJo7mdNJrbieMMOMisFgYnmz2TDTAfG5zeAux/Dyi5favsroPMidB9ePOnX6UHjv4dOPKRuckodrjTZLR2T6PJaG5q5iXf2fuVFljWcQsCAqLMyddtKCBpoSMUInPTN/0r4Ox2oLL0doEI6DEW6D8d6POoTfe6nGw2Sjaj0Sjc/37gwIG1T9eqLAeSVwNHVt7ZMIIeNXeiuPZq2kyzd5l7GbWXzcP+o4GJywH3oHt/zlqIgOvngfO7zc3Xy8csO4oUGqD3Q+bE6/lA84+PAUCbD5zabE6ymqYyAHT2NydY2NOAxj4nnnOy2SjZysrKhPtp3PN0rZJC4OcE4OQXAJnMe6LBz5v3RA3tRLmZA+z6i7kLHwA6eQNRS81NJnv2HOpvARcPmBPv/B7zcA2RxNzR0nu8OfncAhsea5UeyPrR3Glz6b8w320P5t86Q/5oTjLfCLv3mnKy2SHZTl68CpFUAX2lERXVRlTc/quvNEFfZURFlRGq4vMYmfMxehcfAwDoxY740fkZ/Kj8A0qqJdBXmVBRZd5LqJVSaJRSuClMeFS3GSMLv4IDVcIkckB+UAxuDpoLtbMGGqUUzkopHCQtd0IQEaHKSDBUG2GoNsFQbYLJRDCaCEYiEBGMJsBYXQ1F4Qk45e1Hp7z9UN6yfHyx3skHN7zH4rrXONxwHYpqsRQmE8FEgFhkfnW+dRpdc7+DR95PcKgqFT6r8xyGG72fhM5vIiBzgkQsglgkgkQsgkRsPhFYcntYJAIqq2vWu3md6oX/h/l/UVFlLq/539TU0d9VJoyvMqKbRoVNLw6rtW442WyQbPk3y/H5wUy8++QQAIDP//sWYlnDeh2HizPwlsNXCBGbm4K/kisSq57GD6ZhIOEsOsJD4hNY4rARPuJrAIDDxr6Ir47GRardK9ZJ7mBOUNXtl1IGZ5U5YR3lDjBU3UkUQ7V5gzJUG2GoMo+rEMqNlsO365masKV0E13DOHEaHhSnIUKcCbmoSigrIzmOmEKx3zQA6aZeeECchiclh9BLfOdxUL+SK741jsZ3xlHIJ4+6ZmEzfi4q/Dx/XK3xnGwtlGxEhNTcW1h3JAd7MgtQbahA/kdPAgDC3v4ejo5OUMokUEjFUEolUNx+KW+/FFIxFLLb7x1ECLm+C4MurIKqwnwmS4lLP/w65E1UKj3QNSkOrgWHzMsj88BP3i/jqHQEiiuqoS2vQrG+CtrySugqqq22fA0lk4hv71FE5j2S2LxXEd8ernlfs/cRiwBHkQEDjacRXpWKoVWpcKGbdU7bADmOykZgrzwS6eIQGCGC0UQgAoxk3pvW7A2NVPP+9njC7b8EmYP5f6CUSaBwkNxe72KL/4e85r1MDIXD7bp3/89uj1fIJOgkd0Bvj9qdT5xsVk42Q7URP566ivXHcpDx251u8AhfR2ye08xLbCrLgeRPzD2LNZ0oYgfAVA2IpcDwV4DRbwCyuqddbTShpKIa2tvJp9VXobj8zntteRXKK6shd5BA7mDe2OQOYsild713MH8R1NSRS3837u4yB3HzbzVhMgEFp83Heed2AVfSzOdsDpgOBP/R8kf4Vo6TzUrJdr3UgK+S87Ax+TKul5qflCJ3EOOJgd0QM8IPXZ3EDesgaYjSInMnyokvzL17PR8EJiY2vdeyLSGye0dHUzV0W+t4p2s10NkrxVh/NBf/Sb+CSqP5AYAeajn+FOGHaUN90cXR/KNoWVmZ9Wbq5A48+hEQ8bL5BOlW0NNmMx1gOTnZ7mI0EfZlFWL90RwkX7pzPBHmo8HzI/0xsa8npL/r8ZNKpYiLixPeW4VLT/ueyMxaBDcjAZRUVGHr8V+x4VgO8m+aHyIvEYswsa8nnhvpj4G+nW0RMmujuBnZALnXy7DhWC6+PfErSg3mHj1npRTPhPvi2WHd4a1pRSfasjavwyUbESHp0g2sO5KL/b8UChda93J3QswIPzwxoBuUsoZfSmIymZCVlQUA6NOnzz1v0sk6tg6XbPuzivDCl8eF4bGBbnhuhD9G9XZtUne2Xq8XHk/Ed9di99Lhkm1MoBt6uDliRE9XRA/3Qy93J3uHxDqIDpdsUokYe//fGEjE7b+rmbUuHfIAgxON2UOHTDbG7IGTjTEb4WRjzEY6XAeJtUmlUrzxxhvCe8bqw6drMdZMDd3WuBnJmI1wM7KZTCYT8vLMNwX19fXl07VYvTjZmkmv18Pf3x8An67F7o2/hhmzEU42xmyEk40xG+FkY8xGGp1shw4dwqRJk+Dt7Q2RSITt27dblBMRlixZAi8vLyiVSkRGRuL8+fMWdW7evInp06dDrVZDo9Hg+eefR2lpqUWd06dPY9SoUVAoFPDx8UFiYmLjl46xVqTRyVZWVoawsDCsXr26zvLExER8/PHHWLt2LVJSUuDo6IioqChUVFQIdaZPn46zZ89i7969+PHHH3Ho0CG8+OKLQrlOp8P48ePRvXt3nDhxAsuXL0d8fDw+++yzJiwiY60ENQMA2rZtmzBsMpnI09OTli9fLozTarUkl8tp06ZNRESUmZlJACg1NVWos3PnThKJRPTbb78REdEnn3xCnTt3JoPBINRZuHAhBQYGNji24uJiAkDFxcVNXbwGqaiooNjYWIqNjaWKiooWnRdrnRq6rVn1mC0nJwcFBQWIjIwUxjk7OyM8PBxJSUkAgKSkJGg0GgwePFioExkZCbFYjJSUFKHO6NGjIZPdeWBdVFQUsrOzcevWXU9IuYvBYIBOp7N42YJcLsfq1auxevVqyOVym8yTtU1WTbaCAvMD8jw8LB+A4OHhIZQVFBTA3d3dotzBwQFdunSxqFPXNO6ex+8lJCTA2dlZePn42OdZXYzVp930Ri5atAjFxcXCKz8/3ybzJSJcu3YN165dA7XPc7qZlVj1dC1PT08AQGFhIby8vITxhYWF6N+/v1CnqKjI4nPV1dW4efOm8HlPT08UFhZa1KkZrqnze3K53C7NuPLycmFPzadrsXux6p7N398fnp6e2L9/vzBOp9MhJSUFERERAICIiAhotVqcOHFCqHPgwAGYTCaEh4cLdQ4dOoSqqjvP8tq7dy8CAwPRuTPfnZi1UY3teSkpKaG0tDRKS0sjALRixQpKS0ujy5cvExHRsmXLSKPR0Pfff0+nT5+mxx57jPz9/Umv1wvTmDBhAg0YMIBSUlLoyJEj1Lt3b5o2bZpQrtVqycPDg5599lnKyMigzZs3k0qlok8//bTBcdqqN7K0tJRgfv4slZaWtui8WOvU0G2t0cl28OBBYeO6+xUdHU1E5u7/xYsXk4eHB8nlcnrwwQcpOzvbYho3btygadOmkZOTE6nVaoqJiaGSkhKLOqdOnaKRI0eSXC6nrl270rJlyxoVJycbs5WGbmt8pXYzNfgB9qzd4iu1GWtlONkYsxG+UruZHBwcEB0dLbxnrD68dTSTXC7Hhg0b7B0GawO4GcmYjfCerZmICOXl5QAAlUrVpGe8sY6B92zNVF5eDicnJzg5OQlJx1hdONkYsxFONsZshJONMRvhZGPMRjjZGLMRTjbGbIR/Z2smiUSCJ598UnjPWH042ZpJoVDgm2++sXcYrA3gZiRjNsLJxpiNcLI1U1lZGUQiEUQiEcrKyuwdDmvFONkYsxFONsZshJONMRvhZGPMRjjZGLMRTjbGbITPIGkmiUSChx9+WHjPWH042ZpJoVDgp59+sncYrA3gZiRjNsJ7tg7IaDRaPI6L3ZtUKrXKIQInWzOVlZUJD0MsKipq1Q/WICIUFBRAq9XaO5Q2R6PRwNPTs1m3KuRks4K2cgu7mkRzd3fne1w2UM19QWuelnv3E3Ubi5OtgzAajUKiubi42DucNkWpVAIwt1zc3d2b3KTkDpIOouYYTaVS2TmStqlmvTXnWJeTrYPhpmPTWGO9cbIxZiOcbKxDEYlE2L59u13mzR0kzSQWizFmzBjhPWP14WRrJqVSiZ9//tneYbA2gL+KGQBg7NixePXVV7FgwQJ06dIFnp6eiI+PF8pzc3MhEomQnp4ujNNqtRCJRMKXzc8//wyRSITdu3djwIABUCqVeOCBB1BUVISdO3eiT58+UKvVeOaZZ+752+SGDRug0Wiwfft29O7dGwqFAlFRUcjPz7eot2bNGvTs2RMymQyBgYHYuHGjRfn58+cxevRoKBQKBAcHY+/evRbllZWVePnll+Hl5QWFQoHu3bsjISGhaSuwATjZmOCLL76Ao6MjUlJSkJiYiHfffbfWBtoQ8fHx+Mc//oFjx44hPz8fU6ZMwcqVK/H111/jp59+wp49e7Bq1ap7TqO8vBxLly7Fl19+iaNHj0Kr1eLpp58Wyrdt24bXXnsNr7/+OjIyMvDSSy8hJiYGBw8eBACYTCY88cQTkMlkSElJwdq1a7Fw4UKLeXz88cf4z3/+g61btyI7OxtfffUV/Pz8Gr28DUbtVHFxMQGg4uLiFp1PaWkpubq6kqurK5WWlrbovJpDr9dTZmYm6fX6OsvHjBlDI0eOtBg3ZMgQWrhwIRER5eTkEABKS0sTym/dukUA6ODBg0REdPDgQQJA+/btE+okJCQQALp48aIw7qWXXqKoqKh6Y12/fj0BoOTkZGFcVlYWAaCUlBQiIho+fDjNmjXL4nNPPfUUPfzww0REtHv3bnJwcKDffvtNKN+5cycBoG3bthER0SuvvEIPPPAAmUymemOpca/119BtjfdsVnD9+nVcv37d3mE0W79+/SyGvby8hNOUmjodDw8PqFQq9OjRw2Lc/abr4OCAIUOGCMNBQUHQaDTIysoCAGRlZWHEiBEWnxkxYoRFuY+PD7y9vYXyiIgIi/ozZ85Eeno6AgMD8eqrr2LPnj2NXNLG4WRjAqlUajEsEolgMpkA3OlpJSKhvL6zKe6ejkgkuud07WngwIHIycnBe++9B71ejylTpgjPbWgJnGysQdzc3AAAV69eFcbd3VlibdXV1Th+/LgwnJ2dDa1Wiz59+gAA+vTpg6NHj1p85ujRowgODhbK8/PzLeJNTk6uNR+1Wo2pU6fin//8J7Zs2YLvvvsON2/ebIlF4q5/1jBKpRLDhg3DsmXL4O/vj6KiIrz99tstNj+pVIpXXnkFH3/8MRwcHPDyyy9j2LBhGDp0KABg/vz5mDJlCgYMGIDIyEj88MMP+Pe//419+/YBACIjIxEQEIDo6GgsX74cOp0Ob731lsU8VqxYAS8vLwwYMABisRjffPMNPD09odFoWmSZrL5ni4+PF27HXfMKCgoSyisqKjBnzhy4uLjAyckJkydPRmFhocU08vLy8Mgjj0ClUsHd3R3z589HdXW1tUNljbRu3TpUV1dj0KBBmDt3Lt5///0Wm5dKpcLChQvxzDPPYMSIEXBycsKWLVuE8j/+8Y/4+9//jg8//BAhISH49NNPsX79eowdOxaAudm7bds26PV6DB06FC+88AKWLl1qMY9OnTohMTERgwcPxpAhQ5Cbm4sdO3a03MkJ9+2GaaS4uDgKCQmhq1evCq9r164J5bNnzyYfHx/av38/HT9+nIYNG0bDhw8Xyqurq6lv374UGRlJaWlptGPHDnJ1daVFixY1Kg5b9kYCIABtujeyNVm/fj05OzvbOwwL1uiNbJFmpIODAzw9PWuNLy4uxv/93//h66+/xgMPPAAAWL9+Pfr06YPk5GQMGzYMe/bsQWZmJvbt2wcPDw/0798f7733HhYuXIj4+HjIZLI652kwGGAwGIRhnU7XEotWi1gsxuDBg4X3jNWnRbaO8+fPw9vbGz169MD06dORl5cHADhx4gSqqqoQGRkp1A0KCoKvry+SkpIAAElJSQgNDYWHh4dQJyoqCjqdDmfPnq13ngkJCXB2dhZePj4+LbFotSiVSqSmpiI1NVW4yJCxulg92cLDw7Fhwwbs2rULa9asQU5ODkaNGoWSkhIUFBRAJpPVOgD18PBAQUEBAPOl+3cnWk15TVl9Fi1ahOLiYuH1+1N7WNsxc+bMdnmfFKs3IydOnCi879evH8LDw9G9e3ds3bq1Rb/55XI55HJ5i02fseZq8YMMjUaDgIAAXLhwAZ6enqisrKz1rVVYWCgc43l6etbqnawZrus40N7Ky8vh5+cHPz+/NnPjH2YfLZ5spaWluHjxIry8vDBo0CBIpVLs379fKM/OzkZeXp5wKk1ERATOnDljcTrP3r17oVarhR8sWxMiwuXLl3H58mWLsysY+z2rNyPfeOMNTJo0Cd27d8eVK1cQFxcHiUSCadOmwdnZGc8//zzmzZuHLl26QK1W45VXXkFERASGDRsGABg/fjyCg4Px7LPPIjExEQUFBXj77bcxZ84cbiayNs3qyfbrr79i2rRpuHHjBtzc3DBy5EgkJycLp/t89NFHEIvFmDx5MgwGA6KiovDJJ58In5dIJPjxxx/x5z//GREREXB0dER0dDTeffdda4fKmE2JqJ22fXQ6HZydnVFcXAy1Wt1i8ykrK4OTkxMAc5O5td4RuaKiAjk5OfD394dCobB3OG3OvdZfQ7c1/hWWMRvhZGPtyqFDhzBp0iR4e3vb9U5adeFkayaRSITg4GAEBwfzDVBbgbKyMoSFhWH16tX2DqUWvsSmmVQq1T1PI2sPiAj6KqNd5q2UShr1JTZx4kSLEytaE042dl/6KiOCl+y2y7wz342CStY+NlNuRjJmI+3jK8OOysvLhRvTpKamtsunxCilEmS+G2W3ebcXnGzNRETIzMwU3rdHIpGo3TTl7ImbkYzZCH9dsXaltLQUFy5cEIZzcnKQnp6OLl26wNfX146RcbKxdub48eMYN26cMDxv3jwAQHR0NDZs2GCnqMw42Vi7Mnbs2FZ77MzHbIzZCO/ZmkkkEqF79+7Ce8bqw8nWTCqVCrm5ufYOg7UB3IxkzEY42RizEU62ZtLr9RgyZAiGDBkCvV5v73BYK8bHbM1kMpmERxu1hmeOsdaL92yM2QgnG2M2wsnGmI1wsrF2w2g0YvHixfD394dSqUTPnj3x3nvvtZrTt7iDhLUbH3zwAdasWYMvvvgCISEhOH78OGJiYuDs7IxXX33V3uFxslmDq6urvUNoWURAlZ0eGiJVAQ08De7YsWN47LHH8MgjjwAA/Pz8sGnTJvzvf/9ryQgbjJOtmRwdHXHt2jV7h9GyqsqBv3rbZ95vXgFkDbvL9PDhw/HZZ5/h3LlzCAgIwKlTp3DkyBGsWLGihYNsGE421m785S9/gU6nQ1BQECQSCYxGI5YuXYrp06fbOzQAnGysIaQq8x7GXvNuoK1bt+Krr77C119/jZCQEKSnp2Pu3Lnw9vZGdHR0CwbZMJxszaTX64Wbgu7cubN9PldbJGpwU86e5s+fj7/85S94+umnAQChoaG4fPkyEhISONnaA5PJhP/+97/Ce2Y/5eXlEIstf82SSCSt5v/CycbajUmTJmHp0qXw9fVFSEgI0tLSsGLFCjz33HP2Dg0AJxtrR1atWoXFixcjNjYWRUVF8Pb2xksvvYQlS5bYOzQAnGysHenUqRNWrlyJlStX2juUOvHpWozZCCcbYzbCzUgraI8P02DWx8nWTI6OjigrK7N3GKwN4GZkB9NaLjdpa6yx3jjZOgipVArA/MMva7ya9VazHpuCm5HNVFFRgcmTJwMAvvvuOygUCjtHVDeJRAKNRoOioiIA5uNMvoPz/RERysvLUVRUBI1GA4mk6Q9n5GRrJqPRiB07dgjvWzNPT08AEBKONZxGoxHWX1NxsnUgIpEIXl5ecHd3R1VVlb3DaTOkUmmz9mg1ONk6IIlEYpWNhzVOq+4gWb16Nfz8/KBQKBAeHt5qLm9nrClabbJt2bIF8+bNQ1xcHE6ePImwsDBERUXx8QZrs1ptsq1YsQKzZs1CTEwMgoODsXbtWqhUKqxbt87eoTHWJK3ymK2yshInTpzAokWLhHFisRiRkZFISkqq8zMGgwEGg0EYLi4uBgDodLoWjfXus0d0Ol2r75Fk1lezjd3vh+9WmWzXr1+H0WiEh4eHxXgPDw/88ssvdX4mISEB77zzTq3xPj4+LRJjXby97XQHKtYqlJSUwNnZud7yVplsTbFo0SLMmzdPGDaZTLh58yZcXFza5I+3Op0OPj4+yM/Ph1qttnc4NtMWl5uIUFJSct8v21aZbK6urpBIJCgsLLQYX1hYWO8Pi3K5HHK53GKcRqNpqRBtRq1Wt5mNzpra2nLfa49Wo1V2kMhkMgwaNAj79+8XxplMJuzfvx8RERF2jIyxpmuVezYAmDdvHqKjozF48GAMHToUK1euRFlZGWJiYuwdGmNN0mqTberUqbh27RqWLFmCgoIC9O/fH7t27arVadJeyeVyxMXF1Woat3fteblFxBc4MWYTrfKYjbH2iJONMRvhZGPMRjjZGLMRTjYriY+Ph0gksngFBQUJ5RUVFZgzZw5cXFzg5OSEyZMn1/rRPi8vD4888ghUKhXc3d0xf/58VFdXW9T5+eefMXDgQMjlcvTq1QsbNmyoFUtLXpp06NAhTJo0Cd7e3hCJRNi+fbtFORFhyZIl8PLyglKpRGRkJM6fP29R5+bNm5g+fTrUajU0Gg2ef/55lJaWWtQ5ffo0Ro0aBYVCAR8fHyQmJtaK5ZtvvkFQUBAUCgVCQ0OFK+YbE4tNEbOKuLg4CgkJoatXrwqva9euCeWzZ88mHx8f2r9/Px0/fpyGDRtGw4cPF8qrq6upb9++FBkZSWlpabRjxw5ydXWlRYsWCXUuXbpEKpWK5s2bR5mZmbRq1SqSSCS0a9cuoc7mzZtJJpPRunXr6OzZszRr1izSaDRUWFholeXcsWMHvfXWW/Tvf/+bANC2bdssypctW0bOzs60fft2OnXqFP3hD38gf39/0uv1Qp0JEyZQWFgYJScn0+HDh6lXr140bdo0oby4uJg8PDxo+vTplJGRQZs2bSKlUkmffvqpUOfo0aMkkUgoMTGRMjMz6e233yapVEpnzpxpVCy2xMlmJXFxcRQWFlZnmVarJalUSt98840wLisriwBQUlISEZk3YrFYTAUFBUKdNWvWkFqtJoPBQERECxYsoJCQEItpT506laKiooThoUOH0pw5c4Rho9FI3t7elJCQ0Oxl/L3fJ5vJZCJPT09avny5ME6r1ZJcLqdNmzYREVFmZiYBoNTUVKHOzp07SSQS0W+//UZERJ988gl17txZWG4iooULF1JgYKAwPGXKFHrkkUcs4gkPD6eXXnqpwbHYGjcjrej8+fPw9vZGjx49MH36dOTl5QEATpw4gaqqKkRGRgp1g4KC4OvrK1wylJSUhNDQUIsf7aOioqDT6XD27Fmhzt3TqKlTM42aS5PurnO/S5OsKScnBwUFBRbzd3Z2Rnh4uMVyajQaDB48WKgTGRkJsViMlJQUoc7o0aMhk8mEOlFRUcjOzsatW7eEOvdaFw2JxdY42awkPDwcGzZswK5du7BmzRrk5ORg1KhRKCkpQUFBAWQyWa0Toz08PFBQUAAAKCgoqPOSopqye9XR6XTQ6/X3vDSpZhotqWYe95p/QUEB3N3dLcodHBzQpUsXq6yLu8vvF4uttdrTtdqamkf9AkC/fv0QHh6O7t27Y+vWre3z0b+s0XjP1kI0Gg0CAgJw4cIFeHp6orKyElqt1qLO3ZcMeXp61nlJUU3Zveqo1WoolcomXZpkTTXzuNf8PT09a91Hprq6Gjdv3rTKuri7/H6x2BonWwspLS3FxYsX4eXlhUGDBkEqlVpcMpSdnY28vDzhkqGIiAicOXPGYkPcu3cv1Go1goODhTp3T6OmTs007H1pkr+/Pzw9PS3mr9PpkJKSYrGcWq0WJ06cEOocOHAAJpMJ4eHhQp1Dhw5Z3Nty7969CAwMROfOnYU691oXDYnF5uzSLdMOvf766/Tzzz9TTk4OHT16lCIjI8nV1ZWKioqIyNz17+vrSwcOHKDjx49TREQERURECJ+v6fofP348paen065du8jNza3Orv/58+dTVlYWrV69us6uf7lcThs2bKDMzEx68cUXSaPRWPRyNkdJSQmlpaVRWloaAaAVK1ZQWloaXb58mYjM3e0ajYa+//57On36ND322GN1dv0PGDCAUlJS6MiRI9S7d2+Lrn+tVkseHh707LPPUkZGBm3evJlUKlWtrn8HBwf68MMPKSsri+Li4urs+r9fLLbEyWYlU6dOJS8vL5LJZNS1a1eaOnUqXbhwQSjX6/UUGxtLnTt3JpVKRY8//jhdvXrVYhq5ubk0ceJEUiqV5OrqSq+//jpVVVVZ1Dl48CD179+fZDIZ9ejRg9avX18rllWrVpGvry/JZDIaOnQoJScnW205Dx48SABqvaKjo4nI3OW+ePFi8vDwILlcTg8++CBlZ2dbTOPGjRs0bdo0cnJyIrVaTTExMVRSUmJR59SpUzRy5EiSy+XUtWtXWrZsWa1Ytm7dSgEBASSTySgkJIR++ukni/KGxGJLfIkNYzbCx2yM2QgnG2M2wsnGmI1wsjFmI5xsjNkIJxtjNsLJxpiNcLIxZiOcbIzZCCdbGzd27FjMnTvX3mEIWls8rQknG0NlZaW9Q+gY7HZWJmu26OjoWicEX7hwgZ577jny8/MjhUJBAQEBtHLlylqfe+yxx+j9998nLy8v8vPzIyLzmfRhYWEkl8tp0KBBtG3bNgJAaWlpwmfPnDlDEyZMIEdHR3J3d6cZM2YINzaqK56cnBxbrY5Wj5OtDdNqtRQREUGzZs0S7uhVUVFBS5YsodTUVLp06RL961//IpVKRVu2bBE+Fx0dTU5OTsIlLBkZGVRcXExdunShGTNm0NmzZ2nHjh0UEBBgkWy3bt0SLvvJysqikydP0kMPPUTjxo2rN57q6mp7rJpWiW+L0IY5OztDJpNBpVJZXH189+OO/f39kZSUhK1bt2LKlCnCeEdHR3z++efCTXXWrl0LkUiEf/7zn1AoFAgODsZvv/2GWbNmCZ/5xz/+gQEDBuCvf/2rMG7dunXw8fHBuXPnEBAQUGc8zIyTrR1avXo11q1bh7y8POj1elRWVqJ///4WdUJDQy3uXpWdnY1+/fpBoVAI44YOHWrxmVOnTuHgwYNwcnKqNc+LFy8iICDAugvSznCytTObN2/GG2+8gb/97W+IiIhAp06dsHz5cuE2cTUcHR0bPe3S0lJMmjQJH3zwQa0yLy+vJsfcUXCytXEymQxGo1EYPnr0KIYPH47Y2Fhh3MWLF+87ncDAQPzrX/+CwWAQHkSYmppqUWfgwIH47rvv4OfnBweHujed38fD7uCu/zbOz88PKSkpyM3NxfXr19G7d28cP34cu3fvxrlz57B48eJaSVOXZ555BiaTCS+++CKysrKwe/dufPjhhwAAkUgEAJgzZw5u3ryJadOmITU1FRcvXsTu3bsRExMjJNjv4zGZTC238G0MJ1sb98Ybb0AikSA4OBhubm6IiorCE088galTpyI8PBw3btyw2MvVR61W44cffkB6ejr69++Pt956C0uWLAEA4TjO29sbR48ehdFoxPjx4xEaGoq5c+dCo9FALBbXGU/NXaEZP+aX3cNXX32FmJgYFBcX841mrYCP2Zjgyy+/RI8ePdC1a1ecOnUKCxcuxJQpUzjRrISTjQkKCgqwZMkSFBQUwMvLC0899RSWLl1q77DaDW5GMmYj3EHCmI1wsjFmI5xsjNkIJxtjNsLJxpiNcLIxZiOcbIzZCCcbYzby/wGyKdNqyBGI8AAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "column = \"pods\"\n",
+ "x = \"target\"\n",
+ "y = \"[INSERT].99thPercentileLatency(us)\"\n",
+ "title = \"99th Lat [$\\mu$s]\"\n",
+ "plot_comparison(df_aggregated, x, y, column, title, peak_loading)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOQAAADvCAYAAADikHhOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6GklEQVR4nO2deVxU1fvHP5dhNpZhQJYBZc1w31PE1DJRNDIty7UiNLM0za9pZuVWmaZmflXU7JvS5ppp5c5PcUMlRXCDcGNxQ/ZhG7aZ5/fHwNWRbYAZZsDzfr3ui7nnPPec5w73M/fe85yFIyICg8EwCyxM7QCDwXgIEySDYUYwQTIYZgQTJINhRjBBMhhmBBMkg2FGMEEyGGYEEySDYUYwQTIYZgQTJMNkeHl5geM4cByHDz74oFHrjo2N5evmOA6///57o9ZfHUyQRiYsLIz/p586dapSPhHB3d0dHMfhpZdeanT/nn/+eXTs2NEgZZ0+fRoLFy5ETk6O3sf069cPv/zyC4KDgw3ig754enril19+waefftqo9dYGE2QjIZFIsGXLlkrpx48fx507dyAWi03glWE5ffo0Fi1aVCdB+vj44I033kDPnj2N51gV2Nvb44033sCgQYMatd7aYIJsJF588UXs3LkTZWVlOulbtmxBjx49oFAoTOQZw5xggmwkxo4di8zMTISHh/NpJSUl+P333zFu3Lgqj1mxYgX69OmDFi1aQCqVokePHpXedTZv3gyO47Bp0yad9K+//hocx2H//v0N9v3SpUt4++234ePjA4lEAoVCgQkTJiAzM5O3WbhwIWbPng0A8Pb25h/Tk5KS6lzfsWPHwHEcduzYgUWLFqFly5awtbXFa6+9BqVSieLiYsyYMQPOzs6wsbFBSEgIiouLdcoIDw9H3759IZfLYWNjgzZt2pjd42lVWJragScFLy8v+Pv7Y+vWrRg6dCgA4MCBA1AqlRgzZgxWr15d6Zj//ve/ePnllzF+/HiUlJRg27ZteP3117F3714EBQUBAEJCQvDHH39g5syZGDRoENzd3XH58mUsWrQIEydOxIsvvthg38PDw3Hr1i2EhIRAoVDg6tWr2LhxI65evYqzZ8+C4zi8+uqruHbtGrZu3YrvvvsOjo6OAAAnJ6d617tkyRJIpVJ88sknuHHjBtasWQOhUAgLCwtkZ2dj4cKFOHv2LMLCwuDt7Y358+cDAK5evYqXXnoJnTt3xhdffAGxWIwbN24gMjKywd+F0SGGUdm8eTMBoHPnztHatWvJ1taWCgsLiYjo9ddfpwEDBhARkaenJwUFBekcW2FXQUlJCXXs2JFeeOEFnfT79++Tg4MDDRo0iIqLi6lbt27k4eFBSqWyVv+ee+456tChQ402j/tBRLR161YCQCdOnODTli9fTgAoMTGx1nqJtOccHBxcKT0iIoIAUMeOHamkpIRPHzt2LHEcR0OHDtWx9/f3J09PT37/u+++IwCUnp5eqw8Vde3cuVMvn40Ne2RtREaNGgWVSoW9e/ciLy8Pe/furfZxFQCkUin/OTs7G0qlEv369cOFCxd07BQKBUJDQxEeHo5+/fohNjYWmzZtgkwmM4jfj/pRVFSEjIwM9O7dGwAq+WJI3nrrLQiFQn7fz88PRIQJEybo2Pn5+eH27dv8+7lcLgcA/Pnnn9BoNEbzzxgwQTYiTk5OCAgIwJYtW/DHH39ArVbjtddeq9Z+79696N27NyQSCRwcHODk5IT169dDqVRWsh0zZgyCgoLwzz//YNKkSRg4cKDB/M7KysKHH34IFxcXSKVSODk5wdvbGwCq9MVQeHh46Ozb2dkBANzd3SulazQa3pfRo0fj2WefxTvvvAMXFxeMGTMGO3bsaBLiZO+Qjcy4ceMwadIkpKamYujQofyv+eOcPHkSL7/8Mvr3749169bB1dUVQqEQmzdvrjJ8kpmZifPnzwMA4uLioNFoYGFhmN/bUaNG4fTp05g9eza6du0KGxsbaDQaDBkyxKgXuUAgqFM6lc9GI5VKceLECURERGDfvn04ePAgtm/fjhdeeAGHDx+u9nhzgN0hG5lXXnkFFhYWOHv2bI2Pq7t27YJEIsGhQ4cwYcIEDB06FAEBAdXaT506FXl5eViyZAlOnTqFVatWGcTf7OxsHDlyBJ988gkWLVqEV155BYMGDYKPj08lW47jDFKnIbCwsMDAgQOxcuVKxMXFYfHixTh69CgiIiJM7VqNsDtkI2NjY4P169cjKSkJw4YNq9ZOIBCA4zio1Wo+LSkpCXv27Klk+/vvv2P79u1YvXo1pk2bhosXL+Lzzz/HSy+9BF9f3wb5W3E3ocfmQqtK8NbW1gBQp44BxiArKwsODg46aV27dgWASuERc4MJ0gTo000sKCgIK1euxJAhQzBu3DikpaUhNDQUrVu3xqVLl3i7tLQ0vP/++xgwYADfH3Tt2rWIiIjA22+/jVOnTtX66Jqeno6vvvqqUrq3tzfGjx+P/v37Y9myZSgtLUXLli1x+PBhJCYmVrLv0aMHAOCzzz7DmDFjIBQKMWzYMF6ojcUXX3yBEydOICgoCJ6enkhLS8O6devQqlUr9O3bt1F9qStMkGbKCy+8gB9//BFLly7FjBkz4O3tjW+++QZJSUk6gnz//fdRXFzMdxAAgBYtWmDjxo0YPnw4VqxYgY8//rjGutLS0jBv3rxK6QMHDsT48eOxZcsWTJs2DaGhoSAiDB48GAcOHICbm5uOfc+ePfHll19iw4YNOHjwIDQaDRITExtdkC+//DKSkpKwadMmZGRkwNHREc899xwWLVrENwyZKxw9/izCYDQSFZ0l1qxZA6lU2qjCVavVyM7ORmRkJEaMGIGdO3fW2OLdWLBGHYZJ2bZtG5ycnDBnzpxGrffy5ctwcnLCiBEjGrXe2mB3SIbJiIyMhEqlAqCNLbZp06bR6s7Pz8fZs2f5/c6dO8PZ2bnR6q8OJkgGw4xgj6wMhhnBBMlgmBFMkAyGGfFExyE1Gg3u3bsHW1tbs+r2xWh+EBHy8vLg5uZWY0eNJ1qQ9+7dqzRygMEwJrdv30arVq2qzX+iBWlrawtA+yUZauwgg1EVubm5cHd356+56niiBVnxmCqTyYwqSLVajZMnTwLQTntozsN/GMaltlejJ1qQjUVRUREGDBgAQBuQbuy+nYymA2tlZTDMCCZIBsOMYIJsBNLzHg6Kzcw37wGyDNPCBNkI/JOUxX8esS4SJ6+nm9AbhjnDBNkI3M4s4D9n5JXgzR//wZL98SgpM/9Z0BiNCxNkI5CSpeI/j+6pDQp/f+IWXttwGokZBdUd1rR5EAfE/w00gakXzQkmyEbgjrIY8udDEDzjcywe2Q0b3ugBuZUQl+4oEbT6JH6PvlNpEqkmTfxeYOPzwPY3gJ9eArIqz7/DqBomyEbgXk4RFj5LWPRKW4iEQgzpqMCBD/vBz9sBhSVqzNp5EdO3xSK3qNTUrjac6J+AHW8C6vLGq+RIYP2zwLn/sbulHjBBGpnCkjL4FkbjQ8s/4Hl0CrBlNKC8A1c7KbZM6o3ZgW0gsODw98V7ePG/JxGdnG1ql+sHEXBiBfD3dIA0QLc3gA+iAc9ngdICYN9HwC8jgJwUU3tq1jBBGpnkzEJ40x2cu6vGubtqqBMOAqG9gfObIABh6oDW2PmeP9wdpLiTrcKo789gzZHrUGua0COsRgMc/AQ4+qV2v+9M4OW1gGNrIHgvMOQbwFIKJB4H1vUBosO0AmZUggnSyCRnFqKl+h56/a8Avf5XgCKXZ4CSPGDvf4CfhgGZN9Hdwx77pvfD8K5uUGsI34Zfw7gfzuJejqr2CkxNWQnwxyQgaoN2f8hSIGABUNFn08IC6P0e8H4k4O6nPfe/PwR+HQko75jObzOFCdLIJGcWwIN78DDhrT3ai1ZoBSSfAtb3ASJXQybksGp0V3z7ehdYiwSISszC0P+exMErqSbzvVaK84GtY4ArvwMWlsCrPwC936/atsVTQMgBYPBiQCAGbh4B1vkDMb+xu+UjMEEamaTMQng+KkgLgfainXIG8HkeKCsCwucBPwaAS4vDyB6tsG96P3RuZQelqhTv/RqNT3dfhqpEXW0dJqEgE/j5Za2whFbA2O1A51E1H2MhAPp8ALx3Cmj5DFCcC/xZ/l6de79x/DZzmCCNzN3MHLhxmZUz7L2AN/do37XEdsC9GOD7/kDE1/CSW+L39/pg8nPaBW22RKXg5bWnEH8/t1F9r5ac28CmQOBuNCC1B4L/Bp6ufiGgSjj5AhMOAQELAYEIuH4IWOcHXNz+xN8tmSCNTGl6EgRcNRcZxwHd3wSmRgFtXwI0ZcDxb4Dvn4Mo9QLmDm2HXyf6wdlWjOtp+RgeGomwyETTxizT/tWKMfM6IGupFVarZ+pejsAS6PsfYPIJwLUrUKQEdr8LbBsP5KcZ3G1jU1ymxqZTiQ3ufcUEaUSKy9SwKkiq3VDmCoz+FXg9DLB2AtLjgf8FAAc/RV9PKQ582A8D2zqjpEyDhX/HYeJP503TSf32P1ox5t4FHNsAEw8DTg2c3Ni5HfDO/wEvfA5YCIGEfUCoH3BlV5O6W645cgNf7I3DhLBzDSrniZ4oOTc3F3Z2dlAqlUaZMeBmej62rJqDmfQLbJbkAdBjgHJhFnDoU+DiVu2+vRcwbDXIuz9+PpOMxeV9YJ1sxQj29wQAlGkIZWoq/6vR/tVodNJKNQS1ujy93L5UrYFaQ9o8jQZyqQjdPOTazd0e9taih35dDwe2vwmUqYBWPYFxOwArh8r+N4TUK8Ce94DUy9r99sOBoJWAtaNh6zEwV+4qMTw0EmoNYcMb3TGko2slG32vNSZIIwry6L8PcOfXqRjDHcbXyd0Bn+fx6aefQiQS1X7w9XDg7xlAbnlooPtbwOCvEJ/NYfrWGFxPyze4v4/j42iNrh5yjLSMRJ/L88FRGdB6EDDqJ0BkpFkPykqAk98CJ1doH+GtHIGXVmrFWR+IgKIc7Q9dQQZQmPHwr7oM6DCiQXf5UrUGw9dGIu5+LoI6uSJ0fPcq7Zgg9cDYgtx0KhGtD72J/oLL2sab7m/WrYCiXODIIm23MwCwdQVe+g4q78H44eQtJGcWQijgILDgIBRYQGDBwVLAQWhhUZ7GwVJgAUsLTrtVfBZY8MdZWjz8fC+nCBdSsnEhJRu30rWd3icK9mGe8DcAwF/UDzvcPkFnT0d097BHNw85WtiIDfmV8RSnXAD35xSIMuMBANedh+B0m48xum9HSEqVD0VVmFn+OfOxtMyHnzVlNVfmOxToMw3w7PMwfqona49ex4rD12BvJcTh/zwHJ9uqvw8mSD0wtiAX/nUVE88Ph7tFujYG59mnfgUlRQJ/TQOybmr3O44Ehi4z6qNcTkExlHs/g2f8DwCAnykIC4rHgh5rdvBsYcWLs7uHPdoobCEU1Nw0kVdUige5Rbiv1G6pyiKk5mr/3lcW4UFuEbIKSiBCKaZZ7sb7gr9gyWlQQgKIuHqGf0S22kdsa0ftXdfaUSvWa4cAlEugZQ+gz3Sg3TBtiKYWrj3Iw0urT6FErcGq0V0xolvLam2ZIPXA2IJ8Z9MpfJ/8EjhoEB/0N2DtiHbt2tW6onGVlKqAY0uB02sAUgNSB21MT9FF2zAic6vzr3u1qMu0vWlif9XuByyE2v9D3EgvQEz5HfRCSg5uVPHYLBUK0KmVHbp72KOlXIK0vOJKossvruWOVY5EaAFXOyn6SJLxQe63cC1JBgAQOHBS+0fE1QKwavFQaFaOuuKzagEIJVVXknEdOLMWiN36sEO8vRfg/wHQdTwgsqr6K9IQXl1/Ghdv52BgW2f8L/iZGmeUY4LUA2ML8q1lv+LnwqnI1Uhh96W2c0CDZ527FwP8OQ14cFk3XWynFaZzW8C5ffnn9nW/i5aqgN8nAAn7Ac4CGLa62kdtpaoUsbdzcCFZK9LY2znIK9JPbDKJJVztpHCxk8BVJoHCTgJXO4l2304CV5kUMqnlw4tcXYYf/o7A+rMZKBPL8de0/vByNOB7bH468M9G4NwPgKq8g7/UAeg1Ceg5CbBx0jH/4cQtLN4fD1uxJcJnPgeFXTWCL4cJUg+MKcgytQZTFyzG95YrkC1rB4ePogAYaBpIdam2g3ZypDYumHm9+vcka6eH4qz469QWkFRxvqpsYOtYIOUMYCkBXtsEtA3S2y2NhnAzPR8xKTm4kJKNzIISuMjEcLWTQiF7KDiFTAJrcd1nIC1TazD2h7M4l5SNji1l2PV+H4gtDTzHbUmBtjvfmbVAjvaODEsJ0GWs9j2zxVNIzCjAkFUnUFymwTcjO2F0T49ai2WC1ANjCvJ2ViHCvp2NecJfke8TBNtgbRjDKPOylpUAmTeAtDggLb58iwOyk8C/Hz2OnXu5QNsBTu0AuQewfzaQdlV7tx23rf7vvEbkvlKFF/97EtmFpQj298Si4R2NU5FGDcT/BUSuBu5dKE/kQG2D8Hn6C/jtrgJ9Wzvil4m99FoXRt9rjU2UbCSSMwvhxWk7hnP23satzFIEuLTXbo9SUgCkJzwUaIVY8+4Bytva7fph3WNsFMAbuwCFkS70BuJqJ8XKUV0REnYOP51JRm+fFhjaqXLcr8FYCIAOrwDtRwDJp4HTq4FrB8H9uxeLsRcjxb7w6PIJOOppuHd3MEEajaTMAl6QaGFkQVaHyBpo2V27PYoqB0j/97E7ajzg4AOM/EHbqGHGDGjrjMn9ffD9iVv4eNcldHCzg0eLqhtfGgzHAV7PAl7PIvVGDCJ/WYSXcBLduWvAvgnAmcXaxrUuYwGhtMHVMUEaieTMAjxXMcrD3se0zjyOVA549NZuTZRZgW1wLikLF1JyMG3rBex8rw9ElsbrCUpEmH28BCeLJ+Gg+zvY6BsNLvpHbShq73+Ao4sBv8lAz3ca1IOJ9WU1EnczcuDGZWh3zPyO0xQRCiywZlx32EmFuHhHiaUH/jVqfTuj7+Dk9QyILS0wd9Tz4AYtAP5zFQhcon0fL8wAIhYDO95qUD1MkEaiJD0RAo5QZmkNoX1LzJo1C7NmzYJQKDS1a82GlnIpVrzeBQCwKTIRh68aZzD3g9wifLk3DgAwc5AvfJxstBliW8B/CjA9Bhj5I6DorA2TNAD2yGoEiAhCZSIgANT23hCLxVi+fLmp3WqWDGrvgol9vfHjqUTM2nkR+91kaGVvuPdJIsJnu68gr6gMXVrZYWLfKtoDBEKg02vaHlQNDFqwO6QRSMsrhpvmHgBA6NjaxN40f+YMaYsu7nLkFpVh2tYYlKoNN93k35fu4//iH0Ao4LDstS6wrKlbIMdp5xBqAEyQRiApowDe5S2sFo5PQaPRICkpCUlJSdCwuUkNjsjSAmvHdoOtxBIxKTlYfijBIOVm5hdj4V9XAQDTXngabRQ1r35sCJggjUDyo/PoODwFlUoFb29veHt7Q6VqAjPJNUHcHayw/DXt++TGE7dw9N8HtRxROwv+uoqsghK0Vdji/eefanB5+sAEaQSSswrgbVHewOBgZiGPZsyQjgq83ccLAPDRjou4r6z/j9+hq6nYe+k+BBYclr/WpdYRLIaCCdII3EnPgRvKJ7Zq0Ti/rAwtc19si04t7ZBdWIrpW2NQVo/3SWVhKT7fcwUAMLm/Dzq1sjO0m9VSJ0EuWbIEPXv2hK2tLZydnTFixAgkJOg+rxcVFWHq1Klo0aIFbGxsMHLkSDx4oPv4kJKSgqCgIFhZWcHZ2RmzZ89GWZlu5+hjx46he/fuEIvFaN26NcLCwir5ExoaCi8vL0gkEvj5+eGff/6py+kYjeL0W7AoD3nA2qn2AxgGQ2wpwNpx3WArtsS5pGysDL9W5zK+3BeH9LxiPOVkjekDnzaCl9VTJ0EeP34cU6dOxdmzZxEeHo7S0lIMHjwYBQUPl1T7z3/+g7///hs7d+7E8ePHce/ePbz66qt8vlqtRlBQEEpKSnD69Gn89NNPCAsLw/z583mbxMREBAUFYcCAAYiNjcWMGTPwzjvv4NChQ7zN9u3bMXPmTCxYsAAXLlxAly5dEBgYiLQ0085Yxoc8AJTJvQ3az5GhH54trLF0ZGcAwLpjN3H8mv4L5B5LSMPv0XfAccCy17pAIjTwaJLaoAaQlpZGAOj48eNERJSTk0NCoZB27tzJ28THxxMAOnPmDBER7d+/nywsLCg1NZW3Wb9+PclkMiouLiYioo8//pg6dOigU9fo0aMpMDCQ3+/VqxdNnTqV31er1eTm5kZLlizR23+lUkkASKlU1uGsayYzv5i+/PR9ogUyKtv2FhER5efnE7TDLig/P99gdTFq5rPdl8hzzl7q/sVhSlWqarXPVZWQ/9f/R55z9tKiv64a1Bd9r7UGvUMqlUoAgIODtu9edHQ0SktLERDwcNLctm3bwsPDA2fOnAEAnDlzBp06dYKLiwtvExgYiNzcXFy9epW3ebSMCpuKMkpKShAdHa1jY2FhgYCAAN6mKoqLi5Gbm6uzGZqkzIchDwGLQZqUz4Pao52rDJkFJXq9Ty498C/uKYvg4WCFWYG+jeSlLvUWpEajwYwZM/Dss8+iY0ftUJ3U1FSIRCLI5XIdWxcXF6SmpvI2j4qxIr8iryab3NxcqFQqZGRkQK1WV2lTUUZVLFmyBHZ2dvzm7u5e9xOvhZTMQnjyozy0DTqWlpaYMmUKpkyZAktL1jmqsZAIBQgd141fK2X1kevV2p65mYnforRL5S0d2QlWItP8n+otyKlTp+LKlSvYtm2bIf0xKnPnzoVSqeS327dvG7yOpMwCeFlUxCC1IQ+xWIzQ0FCEhoZCLDbOLG2MqvFxssHXr3YCAKyJuIFT1zMq2RSWlGHOrksAgHF+HujzlOnmga2XID/44APs3bsXERERaNWqFZ+uUChQUlKCnJwcHfsHDx5AoVDwNo+3ulbs12Yjk8kglUrh6OgIgUBQpU1FGVUhFoshk8l0NkNzNz37YcjDgYU8zIHhXVtiTE93EAEztsciLa9IJ//bw9eQklUIVzsJ5g5tayIvtdRJkESEDz74ALt378bRo0fh7a3b0bZHjx4QCoU4cuQIn5aQkICUlBT4+/sDAPz9/XH58mWd1tDw8HDIZDK0b9+et3m0jAqbijJEIhF69OihY6PRaHDkyBHexlRUhDxKLW34CaaICOnp6UhPTzftuhxPMAuGdUAbF1tk5BdjxrZYfkHc6ORsbIrUtop//Won2EpMPBqnLi1F77//PtnZ2dGxY8fo/v37/FZYWMjbvPfee+Th4UFHjx6l8+fPk7+/P/n7+/P5ZWVl1LFjRxo8eDDFxsbSwYMHycnJiebOncvb3Lp1i6ysrGj27NkUHx9PoaGhJBAI6ODBg7zNtm3bSCwWU1hYGMXFxdG7775Lcrlcp/W2NozRyvqfRV8RLZBR4Zo+fBprZTUPrj/IpbafHyDPOXvpv/93jVQlZTTw22PkOWcvzdwea9S69b3W6iTIiovq8W3z5s28jUqloilTppC9vT1ZWVnRK6+8Qvfv39cpJykpiYYOHUpSqZQcHR3po48+otLSUh2biIgI6tq1K4lEIvLx8dGpo4I1a9aQh4cHiUQi6tWrF509e7Yup2NwQeaqSuirT98jWiCjkvKQBxETpDnx+/nb5DlnL3l/spcmhv1DnnP2Uo8vwym7oNio9ep7rbFZ5ww469yVu0pcXB+C8ZZHgP6ztSs6ASgoKICNjXZQq1FmnWPUiVk7L+L36IfLqW94oweGdKy+7cEQ6Hutsb6sBuTRmeZYp3Lz5YvhHfC0s/YHMqizq9HFWBdYUMyAJGUWYAQ/yoO1sJorViJL/DShF/6+eA/j/Gqf5LgxYYI0IPfSs9GSY6M8mgJucikmP2d+/yP2yGpAitJuAIA25GHVwsTeMJoi7A5pQAQ52nhWqZ03hI+M8rC0tERwcDD/mcGoDnZ1GIiiUjXsVLcBISBw0u1ULhaLqxzPyWA8DntkNRApWYX8KA+Rk/m9mzCaBuwOaSB0FtdpoXuHJCIUFhYCAKysrPRaLYnxZMLukAYiObMAnhWjPB5rYS0sLISNjQ1sbGx4YTIYVcEEaSDupGc9DHmwTgGMesIEaSCKH2hDHiWWtizkwag3TJAGgsvWhjxK7LzYxFaMesMEaQBK1RrICrXTP1g6shZWRv1hgjQAd7NV8MB9AIDYpXHn8WQ0L5ggDYB2+XJtC+vjIQ8Goy6wOKQBSM4sxKAa1vIQCAR47bXX+M8MRnUwQRqAu+lZcOOytDtVDLuSSCTYuXNnI3vFaIqwR1YDUFQe8ii2tAWsHEzsDaMpwwRpCLJuAgBKZF4s5MFoEEyQDUStIdgUaEMeFtUsHVBQUACO48BxnM7CRAzG4zBBNpDU3CK0Im3IQ6pgIQ9Gw2CCbCDJGQXwLg95WLBpOxgNhAmygSRnFcKLTWzFMBBMkA3kTlomXCtCHuwOyWggTJANRJX6SMhDam9ibxhNHSbIBsJl3wIAFMvY8uWMhsN66jQAIoI0LwmwALgaHlcFAgFefPFF/jODUR1MkA0gPb8YLTX3AQtAqqi+U7lEIsG+ffsa0TNGU4U9sjaAlMxCeJe3sFo6shgko+GwO2QDSMosxLNc1RNbNXXUajVKS0tN7UaTQSgUGuR1hAmyAdx9NORRw8RWBQUFcHZ2BgCkpaWZ9XJ0RITU1NRKy9Izakcul0OhUDRomk8myAagSr0OACiylEFSyyiPpjL9Y4UYnZ2d2RyyelIx725aWhoAwNXVtd5lMUE2ACof5VFk6wWJiX0xBGq1mhdjixZs5ry6IJVKAWifgJydnev9+MoadRqANC8ZAMA1k4mtKt4ZraysTOxJ06Tie2vIuzcTZD3JKSyBouwuAMCqmU1sxR5T64chvjcmyHqS/EjIQ+jcvATJMB1MkPUkKbMAnhUhDzbKo9nAcRz27NljsvpZo049uZeWCQWXrd1x8K7R1sLCAs899xz/mcGoDibIelLAhzzsag15SKVSHDt2rBG8YjR12M91fSkPeahsPU3sSOPw/PPPY/r06fj444/h4OAAhUKBhQsX8vlJSUngOA6xsbF8Wk5ODjiO43+Mjh07Bo7jcOjQIXTr1g1SqRQvvPAC0tLScODAAbRr1w4ymQzjxo2rMW4bFhYGuVyOPXv24Omnn4ZEIkFgYCBu376tY7d+/Xo89dRTEIlEaNOmDX755Red/OvXr6N///6QSCRo3749wsPDdfJLSkrwwQcfwNXVFRKJBJ6enliyZEn9vkA9YYKsJ5LcJO2HJ2jpuZ9++gnW1taIiorCsmXL8MUXX1S6iPVh4cKFWLt2LU6fPo3bt29j1KhRWLVqFbZs2YJ9+/bh8OHDWLNmTY1lFBYWYvHixfj5558RGRmJnJwcjBkzhs/fvXs3PvzwQ3z00Ue4cuUKJk+ejJCQEERERAAANBoNXn31VYhEIkRFRWHDhg2YM2eOTh2rV6/GX3/9hR07diAhIQG//fYbvLy86ny+dYKeYJRKJQEgpVJZp+Pyi0pp22cvEy2QkerwV7Xb5+eTo6MjOTo6Un5+fn3dNToqlYri4uJIpVJVynvuueeob9++Omk9e/akOXPmEBFRYmIiAaCYmBg+Pzs7mwBQREQEERFFREQQAPq///s/3mbJkiUEgG7evMmnTZ48mQIDA6v1c/PmzQSAzp49y6fFx8cTAIqKiiIioj59+tCkSZN0jnv99dfpxRdfJCKiQ4cOkaWlJd29e5fPP3DgAAGg3bt3ExHRtGnT6IUXXiCNRlOtL49S0/en77XG7pD1IOWReXQkLr56HZORkYGMjAxjumV0OnfurLPv6urKdxerbzkuLi6wsrKCj4+PTlpt5VpaWqJnz578ftu2bSGXyxEfHw8AiI+Px7PPPqtzzLPPPquT7+7uDjc3Nz7f399fx/7tt99GbGws2rRpg+nTp+Pw4cN1PNO6wwRZD5IzC+DFVb+WR3NFKBTq7HMcB41GA+Bh6zER8fnV9Vh5tByO42os15R0794diYmJ+PLLL6FSqTBq1Ch+jRZjUWdBnjhxAsOGDYObm1uVMRsiwvz58+Hq6gqpVIqAgABcv35dxyYrKwvjx4+HTCaDXC7HxIkTkZ+fr2Nz6dIl9OvXDxKJBO7u7li2bFklX3bu3Im2bdtCIpGgU6dO2L9/f11Pp17ceZABFy5Hu9PiyRFkTTg5OQEA7t+/z6c92sBjaMrKynD+/Hl+PyEhATk5OWjXrh0AoF27doiMjNQ5JjIyEu3bt+fzb9++rePv2bNnK9Ujk8kwevRo/PDDD9i+fTt27dqFrKwsY5wSgHoIsqCgAF26dEFoaGiV+cuWLcPq1auxYcMGREVFwdraGoGBgSgqKuJtxo8fj6tXryI8PBx79+7FiRMn8O677/L5ubm5GDx4MDw9PREdHY3ly5dj4cKF2LhxI29z+vRpjB07FhMnTkRMTAxGjBiBESNG4MqVK3U9pTpTEfJQWdqxia3KkUql6N27N5YuXYr4+HgcP34cn3/+udHqEwqFmDZtGqKiohAdHY23334bvXv3Rq9evQAAs2fPRlhYGNavX4/r169j5cqV+OOPPzBr1iwAQEBAAHx9fREcHIyLFy/i5MmT+Oyzz3TqWLlyJbZu3Yp///0X165dw86dO6FQKCCXy412Xg1q1MEjL8BERBqNhhQKBS1fvpxPy8nJIbFYTFu3biUiori4OAJA586d420OHDhAHMfxL9jr1q0je3t7Ki4u5m3mzJlDbdq04fdHjRpFQUFBOv74+fnR5MmT9fa/vo063/13GdECGWV817d2Y9I26gAgAE26UefDDz/USRs+fDgFBwfz+3FxceTv709SqZS6du1Khw8frrJRJzs7mz9m8+bNZGdnp1PuggULqEuXLtX6WXHMrl27yMfHh8RiMQUEBFBycrKO3bp168jHx4eEQiH5+vrSzz//rJOfkJBAffv2JZFIRL6+vnTw4EGda3rjxo3UtWtXsra2JplMRgMHDqQLFy5U65chGnUMKsibN29WamkjIurfvz9Nnz6diIh+/PFHksvlOvmlpaUkEAjojz/+ICKiN998k4YPH65jc/ToUQJAWVlZRETk7u5O3333nY7N/PnzqXPnztX6W1RUREqlkt9u375dL0Gu/3KKVpA/v6WXfXMQpDlRlYjNAbNrZU1N1TZ0uLi46KS7uLjweampqfzo+QosLS3h4OCgY1NVGY/WUZ1NRX5VLFmyBHZ2dvzm7u5e11NEcZka9sV3AOjfwmphYYFnnnkGzzzzDOs6x6iRJ+rqmDt3LpRKJb893rNDH25nqfgWVis9F9eRSqU4d+4czp07xw9kZTCqwqCCVCgUAIAHDx7opD948IDPUygUlWJMZWVlyMrK0rGpqoxH66jOpiK/KsRiMWQymc5WV5IzC+BdLsia5mJlGI+333672c75Y1BBent7Q6FQ4MiRI3xabm4uoqKi+KCrv78/cnJyEB0dzdscPXoUGo0Gfn5+vM2JEyd04ljh4eFo06YN7O3teZtH66mweTy4a2juPsiAc0XI4wmKQTIaibq+uObl5VFMTAzFxMQQAFq5ciXFxMTwLVxLly4luVxOf/75J126dImGDx9O3t7eOi+6Q4YMoW7dulFUVBSdOnWKnn76aRo7diyfn5OTQy4uLvTmm2/SlStXaNu2bWRlZUXff/89bxMZGUmWlpa0YsUKio+PpwULFpBQKKTLly/rfS71aWVdt2UX0QIZFXzprvcxBQUF5OnpSZ6enlRQUKD3cY1NU2nUMVdM0spa0XT9+FbR/K3RaGjevHnk4uJCYrGYBg4cSAkJCTplZGZm0tixY8nGxoZkMhmFhIRQXl6ejs3Fixepb9++JBaLqWXLlrR06dJKvuzYsYN8fX1JJBJRhw4daN++fXU6l/oIcs0abcgjXc+QBxFrZX1SMIQgOaJH+jo9YeTm5sLOzg5KpVLv98kfvv4Ak0p+QbrPK3B6K0yvYwoKCmBjYwMAyM/PN9t5WYuKipCYmAhvb29IJM1hHr3GpabvT99r7YlqZW0oZWoN5KoUAIDYufq1PBiM+sIEWQfu5RTBs7yF1catjYm9YTRHmCDrQHJWAbzKJ7ayYCEPhhFggqwDdx6ks5BHE6e20UqmhgmyDuTfSwAAFFjKAalc7+M4jkP79u3Rvn17NgmxialttJKpYbPO1QF1hnb58gIbT9SlndTKygpXr141jlNmAhFBVao2Sd1SoUDvH7qhQ4di6NChRvao/jBB1gGRUitIjbzmeVifRFSlarSff8gkdcd9EQgrUfO4lNkjq55oNAQ7lbYzuqSZreXBMB+ax89KI5CWVwx3aEMetnUMeRQWFvITMp07d65Zri4lFQoQ90WgyepuLjBB6klSZgGeKo9BCuq4/BwRIS4ujv/cHOE4rtk8NpoS9siqJ3dTH8CJU2p3WAySYSTYT5qe5N3XTmyVbymHjcTOxN4w6kt+fj5u3LjB7ycmJiI2NhYODg7w8PAwoWdamCD1RJ2u/ScWWHvCxsS+MOrP+fPnMWDAAH5/5syZAIDg4GCEhYWZyKuHMEHqiVCZCABQs5BHk+b555836/d49g6pB0QEWaE25CFiIQ+GEWF3SD3IKihBS7oHcICsZd1HeXAcB09PT/4zg1EdTJB6kJxVyM80J3Kq+zhIKysrJCUlGdgrRnOEPbLqgTbkkavdcWAhD4bxYILUg9y71wAAeZb2gKTuU0cyGPrCBKkHZRnakEe+Vf3iVCqVCj179kTPnj2hUqkM6RqjmcHeIfXAMqc85GFfv5CHRqPhl04zh3UPGeYLu0PqgW2hdmIroRMLeTCMCxNkLeQWlcJNfQ8AYFePkAeDUReYIGshJfNhyIONg2QYGybIWriTmgpHPuTBJrZq6qjVasybNw/e3t6QSqV46qmn8OWXX5pNdzrWqFMLfMhDYA9bFvJo8nzzzTdYv349fvrpJ3To0AHnz59HSEgI7OzsMH36dFO7xwRZG6Vp2mFXedYesG1AOY6OjoZxyFwhAkoLTVO30ArQs0vi6dOnMXz4cAQFBQEAvLy8sHXrVvzzzz/G9FBvmCBrQVAe8ihrwCgPa2trpKenG8ol86S0EPjazTR1f3oPEOk3D2CfPn2wceNGXLt2Db6+vrh48SJOnTqFlStXGtlJ/WCCrIWHIQ+2lkdz4JNPPkFubi7atm0LgUAAtVqNxYsXY/z48aZ2DQATZI2oStRQlN0FLOo+sdUTh9BKe6cyVd16smPHDvz222/YsmULOnTogNjYWMyYMQNubm4IDg42opP6wQRZAylZhfAsX8vD2tW33uWoVCp+ct4DBw5AKpUaxD+zguP0fmw0JbNnz8Ynn3yCMWPGAAA6deqE5ORkLFmyhAnS3Lmbmoo25SEPrgETW2k0Ghw/fpz/zDAdhYWFsLDQjfYJBAKz+b8wQdaA8s6/AIBcgT1k4oa0sTLMhWHDhmHx4sXw8PBAhw4dEBMTg5UrV2LChAmmdg0AE2SNFKdpR3nkWnmARSCbB2vWrMG8efMwZcoUpKWlwc3NDZMnT8b8+fNN7RoAJsgasczRruVRascmtmou2NraYtWqVVi1apWpXakS1nWuBmwKtCEPSxbyYDQSTJDVUFKmgVPpXQD1m9iKwagP7JG1Gu7mqPhRHjK3+oc8KmiOC+wwDA8TZDXcuX8f/bg8AA0LeQDarnMFBQWGcIvRzGGPrNWQc1sb8lAKHIAnLORhLkORmhqG+N6YIKuhJF07yiNX6m5iTxoPoVAIQBs8Z9Sdiu+t4nusD+yRtRossrWjPEoMEPIoKirCyJEjAQC7du2CRCJpcJnGQCAQQC6XIy0tDYD2vZfNtF47RITCwkKkpaVBLpdDIKj/ArJMkNVgnZ8MABAYIOShVquxf/9+/rM5o1AoAIAXJUN/5HI5//3VFybIKlBrCE4lFaM8Gt7C2pTgOA6urq5wdnZGaWmpqd1pMgiFwgbdGStggqyC+0oVPLn7AAB5q7Ym9sY0CAQCg1xgjLrR5Bt1QkND4eXlBYlEAj8/P4NMxXD33n04cPkAAAFbvpzRiDRpQW7fvh0zZ87EggULcOHCBXTp0gWBgYENfv/JvpMAAMgROABitl4yo/Fo0oJcuXIlJk2ahJCQELRv3x4bNmyAlZUVNm3a1KByfSy0PXSKbb0M4CWDoT9N9h2ypKQE0dHRmDt3Lp9mYWGBgIAAnDlzpspjiouLUVxczO8rlUoAQG5uro6dwrIAuWoJpC6tK+XVh0d76eTm5pp9SyvD8FRcR7V1HmiygszIyIBarYaLi4tOuouLC/79998qj1myZAkWLVpUKd3dvbrg///KN8Ph5maimdkYZkFeXh7s7OyqzW+ygqwPc+fOxcyZM/l9jUaDrKwstGjRokkGwHNzc+Hu7o7bt29DJnsyhlA31XMmIuTl5dX6g9xkBeno6AiBQIAHDx7opD948KDa4KxYLIZYLNZJk8vlxnKx0ZDJZE3q4jQETfGca7ozVtBkG3VEIhF69OiBI0eO8GkajQZHjhyBv7+/CT1jMOpPk71DAsDMmTMRHByMZ555Br169cKqVatQUFCAkJAQU7vGYNSLJi3I0aNHIz09HfPnz0dqaiq6du2KgwcPVmroaa6IxWIsWLCg0mN4c6a5nzNHbPAbg2E2NNl3SAajOcIEyWCYEUyQDIYZwQTJYJgRTJCNyMKFC8FxnM7Wtu3D8ZZFRUWYOnUqWrRoARsbG4wcObJSx4eUlBQEBQXBysoKzs7OmD17NsrKynRsjh07hu7du0MsFqN169YICwur5Isxhq1VcOLECQwbNgxubm7gOA579uzRyScizJ8/H66urpBKpQgICMD169d1bLKysjB+/HjIZDLI5XJMnDgR+fn5OjaXLl1Cv379IJFI4O7ujmXLllXyZefOnWjbti0kEgk6derEz9xQF18aFWI0GgsWLKAOHTrQ/fv3+S09PZ3Pf++998jd3Z2OHDlC58+fp969e1OfPn34/LKyMurYsSMFBARQTEwM7d+/nxwdHWnu3Lm8za1bt8jKyopmzpxJcXFxtGbNGhIIBHTw4EHeZtu2bSQSiWjTpk109epVmjRpEsnlcnrw4IFBznP//v302Wef0R9//EEAaPfu3Tr5S5cuJTs7O9qzZw9dvHiRXn75ZfL29iaVSsXbDBkyhLp06UJnz56lkydPUuvWrWns2LF8vlKpJBcXFxo/fjxduXKFtm7dSlKplL7//nveJjIykgQCAS1btozi4uLo888/J6FQSJcvX66TL40JE2QjsmDBAurSpUuVeTk5OSQUCmnnzp18Wnx8PAGgM2fOEJH2QrewsKDU1FTeZv369SSTyai4uJiIiD7++GPq0KGDTtmjR4+mwMBAfr9Xr140depUfl+tVpObmxstWbKkwef4OI8LUqPRkEKhoOXLl/NpOTk5JBaLaevWrUREFBcXRwDo3LlzvM2BAweI4zi6e/cuERGtW7eO7O3t+fMmIpozZw61adOG3x81ahQFBQXp+OPn50eTJ0/W25fGhj2yNjLXr1+Hm5sbfHx8MH78eKSkaNcPiY6ORmlpKQICAnjbtm3bwsPDgx9OdubMGXTq1Emn40NgYCByc3Nx9epV3ubRMipsKsqoGLb2qE1tw9YMSWJiIlJTU3Xqt7Ozg5+fn855yuVyPPPMM7xNQEAALCwsEBUVxdv0798fIpGItwkMDERCQgKys7N5m5q+C318aWyYIBsRPz8/hIWF4eDBg1i/fj0SExPRr18/5OXlITU1FSKRqFJndxcXF6SmagdMp6amVjncrCKvJpvc3FyoVKoah61VlGFMKuqoqf7U1FQ4Ozvr5FtaWsLBwcEg38Wj+bX50tg06a5zTY2KZc0BoHPnzvDz84Onpyd27NjRPJc5Z9QZdoc0IXK5HL6+vrhx4wYUCgVKSkqQk5OjY/PocDKFQlHlcLOKvJpsZDIZpFJpvYatGZKKOmqqX6FQVJoXqaysDFlZWQb5Lh7Nr82XxoYJ0oTk5+fj5s2bcHV1RY8ePSAUCnWGkyUkJCAlJYUfTubv74/Lly/rXKzh4eGQyWRo3749b/NoGRU2FWWYetiat7c3FAqFTv25ubmIiorSOc+cnBxER0fzNkePHoVGo4Gfnx9vc+LECZ25Y8PDw9GmTRvY29vzNjV9F/r40uiYpCnpCeWjjz6iY8eOUWJiIkVGRlJAQAA5OjpSWloaEWnDHh4eHnT06FE6f/48+fv7k7+/P398Rdhj8ODBFBsbSwcPHiQnJ6cqwx6zZ8+m+Ph4Cg0NrTLsIRaLKSwsjOLi4ujdd98luVyu03rbEPLy8igmJoZiYmIIAK1cuZJiYmIoOTmZiLShBrlcTn/++SddunSJhg8fXmXYo1u3bhQVFUWnTp2ip59+WifskZOTQy4uLvTmm2/SlStXaNu2bWRlZVUp7GFpaUkrVqyg+Ph4WrBgQZVhj9p8aUyYIBuR0aNHk6urK4lEImrZsiWNHj2abty4weerVCqaMmUK2dvbk5WVFb3yyit0//59nTKSkpJo6NChJJVKydHRkT766CMqLS3VsYmIiKCuXbuSSCQiHx8f2rx5cyVf1qxZQx4eHiQSiahXr1509uxZg51nREQEAai0BQcHE5E23DBv3jxycXEhsVhMAwcOpISEBJ0yMjMzaezYsWRjY0MymYxCQkIoLy9Px+bixYvUt29fEovF1LJlS1q6dGklX3bs2EG+vr4kEomoQ4cOtG/fPp18fXxpTNjwKwbDjGDvkAyGGcEEyWCYEUyQDIYZwQTJYJgRTJAMhhnBBMlgmBFMkAyGGcEEyWCYEUyQDIYZwQT5BPD8889jxowZpnaDx9z8MSeYIBl6UVJSYmoXngxM1ouW0SgEBwdX6uR948YNmjBhAnl5eZFEIiFfX19atWpVpeOGDx9OX331Fbm6upKXlxcRaUdQdOnShcRiMfXo0YN2795NACgmJoY/9vLlyzRkyBCytrYmZ2dneuONN/jJvKryJzExsbG+DrOHCbKZk5OTQ/7+/jRp0iR+pruioiKaP38+nTt3jm7dukW//vorWVlZ0fbt2/njgoODycbGhh/edOXKFVIqleTg4EBvvPEGXb16lfbv30++vr46gszOzuaHhMXHx9OFCxdo0KBBNGDAgGr9KSsrM8VXY5awKTyaOXZ2dhCJRLCystIZBf/o0u7e3t44c+YMduzYgVGjRvHp1tbW+N///sdPJLVhwwZwHIcffvgBEokE7du3x927dzFp0iT+mLVr16Jbt274+uuv+bRNmzbB3d0d165dg6+vb5X+MLQwQT6hhIaGYtOmTUhJSYFKpUJJSQm6du2qY9OpUyedWd0SEhLQuXNnSCQSPq1Xr146x1y8eBERERGwsbGpVOfNmzfh6+tr2BNpZjBBPoFs27YNs2bNwrfffgt/f3/Y2tpi+fLl/BSLFVhbW9e57Pz8fAwbNgzffPNNpTxXV9d6+/ykwAT5BCASiaBWq/n9yMhI9OnTB1OmTOHTbt68WWs5bdq0wa+//ori4mJ+wdRz587p2HTv3h27du2Cl5cXLC2rvrwe94fxEBb2eALw8vJCVFQUkpKSkJGRgaeffhrnz5/HoUOHcO3aNcybN6+SsKpi3Lhx0Gg0ePfddxEfH49Dhw5hxYoVAACO4wAAU6dORVZWFsaOHYtz587h5s2bOHToEEJCQngRPu6PRqMx3sk3MZggnwBmzZoFgUCA9u3bw8nJCYGBgXj11VcxevRo+Pn5ITMzU+duWR0ymQx///03YmNj0bVrV3z22WeYP38+APDvlW5uboiMjIRarcbgwYPRqVMnzJgxA3K5HBYWFlX6UzF7O4Mtac5oIL/99htCQkKgVCrZZM8GgL1DMurEzz//DB8fH7Rs2RIXL17EnDlzMGrUKCZGA8EEyagTqampmD9/PlJTU+Hq6orXX38dixcvNrVbzQb2yMpgmBGsUYfBMCOYIBkMM4IJksEwI5ggGQwzggmSwTAjmCAZDDOCCZLBMCOYIBkMM+L/ATeS9LLXCXKjAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "column = \"pods\"\n",
+ "x = \"target\"\n",
+ "y = \"[INSERT].MaxLatency(us)\"\n",
+ "y2 = \"[INSERT].MaxLatency(ms)\"\n",
+ "title = \"Max Lat [ms]\"\n",
+ "df_aggregated[y2] = df_aggregated[y]/1000.\n",
+ "plot_comparison(df_aggregated, x, y2, column, title, peak_loading)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAANMAAADxCAYAAABRY4LkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAppElEQVR4nO3de1xUdf4/8NeZ+wwwjILcCgQ3FfEW3oi01TaSzPVbaeG1B1JrmaS5lrn+yku1hGmZ6Rq2fVdxzUu6pa3mDe+bIosXvMEXb5CmAt64DzPMzPv3B3JyhEYGDgzg+/l4nIdzPp/PnPM+47w553zmfM4RiIjAGGswmasDYKy14GRiTCKcTIxJhJOJMYlwMjEmEU4mxiTCycSYRDiZGJMIJxNjEuFkYkwinEyMSYSTqYkkJydDEATk5ua6OhRJjB8/HoIgQBAEdOvWrVHWsWjRInEdgiDgxo0bjbIeqXAyOak6KQRBwE8//VSjnogQGBgIQRDwxz/+sdHjOHLkiCTLO3ToEObOnYvCwsI6v8fb2xurVq3CvHnzJInhXs888wxWrVqFF154oVGWLzVOpnrSaDRYs2ZNjfL9+/fjl19+gVqttit/+eWXYTQa0b59+6YK0SmHDh3CBx984FQyubm5Ydy4cY32RyM0NBTjxo1Djx49GmX5UuNkqqdnn30WGzZsgMVisStfs2YNevfuDT8/P7tyuVwOjUYDQRCaMkzWhDiZ6mn06NG4efMmUlJSxDKz2Yx//etfGDNmTI32954zzZ07F4Ig4Pz58xg/fjwMBgM8PT0RFxeH8vJyyeL8+eefMWnSJHTu3BlarRZeXl546aWX7M7d5s6di+nTpwMAQkJCxMPY+p7fdejQAePGjatR/uSTT2LgwIHifElJCaZOnYrg4GCo1Wr4+Pjg6aefxrFjx+q1XlfjZKqn4OBgREZGYu3atWLZtm3bUFRUhFGjRtV5OTExMSgpKUFiYiJiYmKQnJyMDz74QLI409PTcejQIYwaNQqLFy/GxIkTsXv3bgwaNEhM2uHDh2P06NEAgM8//xyrVq3CqlWr0K5dO6fXV1paitzcXPTs2bNG3cmTJ+0O2SZOnIikpCSMGDECX375Jd555x1otVpkZWXVc2tdS+HqAFqyMWPGYObMmTAajdBqtVi9ejUGDhyIgICAOi8jPDwc//jHP8T5mzdv4h//+Ac++eQTSWIcOnQoXnzxRbuyYcOGITIyEt999x1efvll9OjRA7169cLatWvx/PPPIzg4uN7rO336NIioRjL98ssvuHXrll0y/fjjj5gwYQI+++wzsezdd9+t97pdjfdMDRATEwOj0YgtW7agpKQEW7ZsqfUQz5GJEyfazT/xxBO4efMmiouLJYlRq9WKrysrK3Hz5k088sgjMBgMjXI4dfr0aQCokUwnTpwAALtkMhgMSEtLw9WrVyWPwxU4mRqgXbt2iIqKwpo1a/D999/DarXW2AvcT1BQkN18mzZtAAC3b9+WJEaj0YjZs2cjMDAQarUa3t7eaNeuHQoLC1FUVCTJOu526tQp+Pr6wtfX16785MmTkMlkdr9JzZ8/H6dPn0ZgYCD69euHuXPn4uLFi5LH1FQ4mRpozJgx2LZtG5YtW4YhQ4bAYDA49X65XF5ruVT3uZk8eTISEhIQExOD9evXY+fOnUhJSYGXlxdsNpsk67jb6dOnaz1fysjIQIcOHeDm5iaWxcTE4OLFi1iyZAkCAgKwYMECdO3aFdu2bZM8rqbAydRAL7zwAmQyGQ4fPuz0IV5T+Ne//oXY2Fh89tlnePHFF/H0009jwIABNX5PkqrL/tSpU+jUqZNdmc1mw549e2r9vcjf3x+TJk3Cpk2bkJOTAy8vLyQkJEgSS1PjDogGcnd3R1JSEnJzczFs2DBXh1ODXC6vsZdbsmQJrFarXVn1HsOZH23vVVBQgOvXr+PatWt25YsXL8aNGzfQvXt3scxqtaK0tBSenp5imY+PDwICAmAymeodgytxMkkgNjbWZetevnw5tm/fXqP8rbfegoeHB/74xz9i1apV8PT0RFhYGFJTU7Fr1y54eXnZte/duzcA4L333sOoUaOgVCoxbNgwu8Oy+zl16hQAYOfOnZg0aRJCQ0Nx+PBh7NixAwBw9OhRpKWlISIiAiUlJXj44Yfx4osvomfPnnB3d8euXbuQnp5u17vXknAytXBJSUm1lo8fPx4eHh744osvIJfLsXr1alRUVKB///7YtWsXoqOj7dr37dsXH330EZYtW4bt27fDZrMhJyfH6WSSy+VYt24dpkyZghUrVuCJJ57A/v378fzzzyMjIwNKpRIAoNPpMGnSJOzcuRPff/89bDYbHnnkEXz55Zd444036v+BuJDAd3Rl9TF+/Hjs2bMHx44dg0KhgMFgwJ/+9CccOHAAZ8+elWQdFRUVKC0txfz587FgwQJcv34d3t7ekiy7MXAHBKu3y5cvo127dhgwYACAqj1TWFiYZMtftmwZ2rVrhwULFki2zMbEh3msXt59913x+jt3d3cQETIzM/HUU09Jto4RI0bY/S51d2dFc8TJxOolLCzMbi908eJFlJaWSrpnCgwMRGBgoGTLa2x8zsSYRPiciTGJcDIxJpEWec5ks9lw9epVeHh48MhV1qiICCUlJQgICIBM5njf0yKT6erVqy3qxJS1fJcvX8bDDz/ssE2LTCYPDw8AVRuo1+tdHA1rzYqLixEYGCh+5xxpkclUfWin1+sbNZmsViv+85//AKgatPdbwyVY61eX04kWmUxNpaKiAk8++SSAqnsbOHOdGnvwcG8eYxJpfcnUCKNHGauLVneYZ/28G2RlBYBSAyi0EBSaO681gFJb9a9Ypv217u56pRZQqIHKu46Tf04FDN6Ayh1Q6QCVG6B0A+Qt6yOsqLTidrkZN0vNuF1uxq2ymlNheSW0Kjk8tUpxMuiqpqp5lVjmqVVCKW++f5NtNkKhsbLGNt79GdwsM+N2mRkbJkZCo6z/eXHL+ibUQXFJCdqgEjBVAqaShi3MfNeVVt8MB1Q1T0KtMhUsch0sCh0scu2df3WwKrS1llsUOlhlaggyGWR3bvYoEwCZgDuvBQgCILtTLpYBEGSADAJksqp5mSCg+qcPo9mKUpMFZSYLSk0WlN81X1VmRbnJApPV8Z7bDYA7CAIIcthggQ23YUMxbPgFNshhgxwEWfVrwQaNnKBTCNAoAK1CgFYBaBSARl41qeUEQa4EZAqQXAmSqQC5EiRXATIVoFACciUgU0KQqwC5ClBU/SsoVJDJVYBcAZmial5QqGEymVFcWoryshKUlpWhorwMRmMZKo1lMJvKYTEZYTWXgyqNUKMSGpir/hXM8IIZD8EMjVBVpoYZGphx++Z++Pv51/vr0uqSaYTsC5SXl0IjmKG58yFWf2hVH6j5Tt2vZXe3VQu/tiOrEUAaAOCizQ/eVAk3VECHCiiEqi+l3GaG3GaGurLQdRtdVzI03oG99c7U3EacO/ENNyorm2pVLcPuWS/AZLFVTZVWVFTaUGGxwnTn34o7ZSbLnbrKO2UWG4ru/FtdVlpaBqA/AOCT4K+hVN+5Bx0RFKiE2lYBNVVAYzNCTUaoqQJqmxEaMt5TV1FVL76uQPXlxUQAge78W1VAYnl1G7pThzt1d89XvVbKZFAqZFDKBSjlMqjkMijld+YV9vMKuQz37egVZIAgB2TV/8rv+VcGG2Qw2wSYrYDJJqDCClRYAJMVMFqACguh3FL1mmxWyGyVkJEFclsl5FQ9We5MVa8VsEBBlVCQBXJYoCALlKiEnKxQwgIFKqGCBTbIUCmoYZGpYZWrxUN1QaWFTKWFQqWDUqODSq2DWqeDXKn79dBeob7nkL7qX62n7/0+FYdaXTIJggCNUl517KtVNmhZZrMZIdfnAwDeeiUSKpVKihBbDRkAzZ2JtdAhGMXFxfD09ERRURFfAcEalTPfNaePoK9cuYJx48bBy8sLWq0W3bt3t3vgFhFh9uzZ8Pf3h1arRVRUFM6dO2e3jFu3bmHs2LHQ6/UwGAx49dVXUVpa6mwojDUrTiXT7du30b9/fyiVSmzbtg2ZmZn47LPPxFv6AlW3vF28eDGWLVuGtLQ0uLm5ITo6GhUVFWKbsWPH4syZM0hJScGWLVtw4MABvPbaa9JtlUSsVivS09ORnp5e4z5zjNVATpgxYwYNGDDgN+ttNhv5+fnRggULxLLCwkJSq9W0du1aIiLKzMwkAJSeni622bZtGwmCQFeuXKlTHEVFRQSAioqKnAnfaaWlpYQ75/ylpaWNui7WPDnzXXNqz/Tvf/8bffr0wUsvvQQfHx+Eh4fj66+/FutzcnKQl5eHqKgosczT0xMRERFITU0FAKSmpsJgMKBPnz5im6ioKMhkMqSlpdW6XpPJhOLiYruJsebGqWS6ePEikpKS0LFjR+zYsQNvvPEGpkyZgpUrVwIA8vLyAKDGExB8fX3Fury8PPj4+NjVKxQKtG3bVmxzr8TERHh6eooTj2VizZFTyWSz2dCrVy98/PHHCA8Px2uvvYYJEyZg2bJljRUfAGDmzJkoKioSp8uXLzfq+hirD6eSyd/fv8atnLp06YJLly4BgPhQ5Pz8fLs2+fn5Yp2fnx8KCgrs6i0WC27dulXjocrV1Gq1OHapsccwMVZfTiVT//79kZ2dbVd29uxZtG/fHkDVw4X9/Pywe/dusb64uBhpaWmIjIwEAERGRqKwsBBHjx4V2+zZswc2mw0RERH13hDGXM6Zno3//ve/pFAoKCEhgc6dO0erV68mnU5H33zzjdhm3rx5ZDAY6IcffqCTJ0/Sc889RyEhIWQ0GsU2zzzzDIWHh1NaWhr99NNP1LFjRxo9enSj9LA0BPfmMWe+a04lExHR5s2bqVu3bqRWqyk0NJT+/ve/29XbbDaaNWsW+fr6klqtpqeeeoqys7Pt2ty8eZNGjx5N7u7upNfrKS4ujkpKSuocQ1Mlk8lkojlz5tCcOXPIZDI16rpY8+TMd40vJ2LMgUa9nIgxVrtWd9W4lGw2G7KysgBU9Vre7yaE7MHGyeSA0WgUH2nCdydi98N/ahmTCCcTYxLhZGJMIpxMjEmEk4kxiXAyMSYR7hp3QKlU4p133hFfM+YIX07EmAN8ORFjLsCHeQ7YbDZx4GNQUBBfTsQc4mRywGg0IiQkBABfTsTuj//UMiYRTibGJMLJxJhEOJkYkwgnE2MS4WRiTCLcNe6AQqHApEmTxNeMOcLfEAfUajWWLl3q6jBYC8GHeYxJhPdMDhARbty4AQDw9vaGINz3scrsAcbJ5EB5ebn4+Bu+nIjdDx/mMSYRTibGJMLJxJhEOJkYkwgnE2MS4WRiTCLcNe6AQqFAbGys+JoxR/gb4oBarUZycrKrw2AtBB/mMSYR3jM5QEQoLy8HAOh0Or6ciDnUoD3TvHnzIAgCpk6dKpZVVFQgPj4eXl5ecHd3x4gRI5Cfn2/3vkuXLmHo0KHQ6XTw8fHB9OnTYbFYGhJKoygvL4e7uzvc3d3FpGLst9Q7mdLT0/HVV1+hR48eduV//vOfsXnzZmzYsAH79+/H1atXMXz4cLHearVi6NChMJvNOHToEFauXInk5GTMnj27/lvBWHNQn8e5l5SUUMeOHSklJYUGDhxIb731FhERFRYWklKppA0bNohts7KyCAClpqYSEdHWrVtJJpNRXl6e2CYpKYn0ej2ZTKY6rd+Zx8k3RGlpKQEgAFRaWtqo62LNkzPftXrtmeLj4zF06FBERUXZlR89ehSVlZV25aGhoQgKCkJqaioAIDU1Fd27d4evr6/YJjo6GsXFxThz5kyt6zOZTCguLrabGGtunO6AWLduHY4dO4b09PQadXl5eVCpVDAYDHblvr6+yMvLE9vcnUjV9dV1tUlMTMQHH3zgbKiMNSmn9kyXL1/GW2+9hdWrV0Oj0TRWTDXMnDkTRUVF4nT58uUmWzdjdeVUMh09ehQFBQXo1asXFAoFFAoF9u/fj8WLF0OhUMDX1xdmsxmFhYV278vPz4efnx8AwM/Pr0bvXvV8dZt7qdVq6PV6u4mx5sapw7ynnnoKp06dsiuLi4tDaGgoZsyYgcDAQCiVSuzevRsjRowAAGRnZ+PSpUuIjIwEAERGRiIhIQEFBQXiKNaUlBTo9XqEhYVJsU2SkcvlePHFF8XXjDnU0N6Ou3vziIgmTpxIQUFBtGfPHjpy5AhFRkZSZGSkWG+xWKhbt240ePBgysjIoO3bt1O7du1o5syZdV5nU/XmMebMd03yKyA+//xzyGQyjBgxAiaTCdHR0fjyyy/Ferlcji1btuCNN95AZGQk3NzcEBsbiw8//FDqUBhrUvwYTsYc4MdwSqSsrAyCIEAQBJSVlbk6HNbMcTIxJhFOJsYkwsnEmEQ4mRiTCCcTYxLhZGJMIjxs3QG5XI5nn31WfM2YI5xMDmg0Gvz444+uDoO1EHyYx5hEeM/UylitVlRWVro6jBZDqVRKdgjPyeRAWVmZOEykoKCgWT/sjIiQl5dXYywZuz+DwQA/P78G38qNk+k+WsotvqoTycfHh+/xV0d0576IBQUFAAB/f/8GLY+TqRWwWq1iInl5ebk6nBZFq9UCgDhYtSGHfNwB0QpUnyPpdDoXR9IyVX9uDT3X5GRqRfjQrn6k+tw4mRiTCCcTazUEQcCmTZtctn7ugHBAJpNh4MCB4mvGHOFkckCr1WLfvn2uDoO1EPzn9gEwaNAgTJkyBe+++y7atm0LPz8/zJ07V6zPzc2FIAjIyMgQywoLCyEIgvjHZN++fRAEATt27EB4eDi0Wi3+8Ic/oKCgANu2bUOXLl2g1+sxZswYh7/NJScnw2AwYNOmTejYsSM0Gg2io6Nr3KU3KSkJv/vd76BSqdC5c2esWrXKrv7cuXP4/e9/D41Gg7CwMKSkpNjVm81mvPnmm/D394dGo0H79u2RmJhYvw+wjjiZHhArV66Em5sb0tLSMH/+fHz44Yc1voB1MXfuXPztb3/DoUOHcPnyZcTExGDRokVYs2YNfvzxR+zcuRNLlixxuIzy8nIkJCTgn//8Jw4ePIjCwkKMGjVKrN+4cSPeeustvP322zh9+jRef/11xMXFYe/evQAAm82G4cOHQ6VSIS0tDcuWLcOMGTPs1rF48WL8+9//xvr165GdnY3Vq1cjODjY6e11SiPfw69RNOUjZby9vcnb27tZP1LGaDRSZmYmGY3GWusHDhxIAwYMsCvr27cvzZgxg4iIcnJyCAAdP35crL99+zYBoL179xIR0d69ewkA7dq1S2yTmJhIAOjChQti2euvv07R0dG/GeuKFSsIAB0+fFgsq37sUFpaGhERPf744zRhwgS797300kv07LPPEhHRjh07SKFQ0JUrV8T6bdu2EQDauHEjERFNnjyZ/vCHP5DNZvvNWKo5+vwa/ZEyD5IbN27gxo0brg6jwe59KJ2/v794GU19l+Pr6wudTocOHTrYld1vuQqFAn379hXnQ0NDYTAYkJWVBQDIyspC//797d7Tv39/u/rAwEAEBASI9dW33642fvx4ZGRkoHPnzpgyZQp27tzp5JY6j5PpAaFUKu3mBUGAzWYD8GtPJd11P9Lfuhrg7uUIguBwua7Uq1cv5OTk4KOPPoLRaERMTIx43/jGwsnE0K5dOwDAtWvXxLK7OyOkZrFYcOTIEXE+OzsbhYWF6NKlCwCgS5cuOHjwoN17Dh48KD7YoUuXLrh8+bJdvIcPH66xHr1ej5EjR+Lrr7/Gt99+i++++w63bt1qjE0CwF3jDFU/ATz22GOYN28eQkJCUFBQgPfff7/R1qdUKjF58mTxUURvvvkmHnvsMfTr1w8AMH36dMTExCA8PBxRUVHYvHkzvv/+e+zatQsAEBUVhU6dOiE2NhYLFixAcXEx3nvvPbt1LFy4EP7+/ggPD4dMJsOGDRvg5+dX40F8UuI9EwMALF++HBaLBb1798bUqVPx17/+tdHWpdPpMGPGDIwZMwb9+/eHu7s7vv32W7H++eefxxdffIFPP/0UXbt2xVdffYUVK1Zg0KBBAKoOSzdu3Aij0Yh+/frhT3/6ExISEuzW4eHhgfnz56NPnz7o27cvcnNzsXXr1kb98Z1v3O9AWVkZ3N3dAQClpaXNdnBgRUUFcnJyEBIS0qRPdKyP5ORkTJ06tVkNYnT0+TnzXePDPAdkMhn69OkjvmbMEU4mB7Raba0PwmasNvznljWp8ePHN6tDPClxMjEmEU4mB8rLyxEcHIzg4OAWc2MV5jp8zuQAEeHnn38WXzPmiFN7psTERPTt2xceHh7w8fHB888/j+zsbLs2FRUViI+Ph5eXF9zd3TFixAjk5+fbtbl06RKGDh0KnU4HHx8fTJ8+HRaLpeFbw5gLOZVM+/fvR3x8PA4fPoyUlBRUVlZi8ODBds97/fOf/4zNmzdjw4YN2L9/P65evYrhw4eL9VarFUOHDoXZbMahQ4ewcuVKJCcnY/bs2dJtFWOucN/ryh0oKCggALR//34iIiosLCSlUkkbNmwQ21RfXp+amkpERFu3biWZTEZ5eXlim6SkJNLr9WQymeq03qYcggGAALToIRjMsWYxBKOoqAgA0LZtWwDA0aNHUVlZiaioKLFNaGgogoKCkJqaCgBITU1F9+7d4evrK7aJjo5GcXExzpw5U+t6TCYTiouL7SbGmpt6J5PNZsPUqVPRv39/dOvWDUDVLXpVKlWNiwl9fX2Rl5cntrk7karrq+tqk5iYCE9PT3EKDAysb9isBTtw4ACGDRuGgIAAl9+JqDb1Tqb4+HicPn0a69atkzKeWs2cORNFRUXidO/9AhqLIAgICwtDWFgY3+CxGSgrK0PPnj2xdOlSV4dSq3p1jb/55pvYsmULDhw4gIcfflgs9/Pzg9lsRmFhod3eKT8/H35+fmKb//73v3bLq+7tq25zL7VaDbVaXZ9QG0Sn0/3moWdrQUQwVlpdsm6tUu7UH6khQ4ZgyJAhjRhRwziVTESEyZMnY+PGjdi3bx9CQkLs6nv37g2lUondu3djxIgRAKoGfl26dEkcVhwZGYmEhATxRukAkJKSAr1eLw7+Yk3HWGlF2OwdLll35ofR0Klaz0+dTm1JfHw81qxZgx9++AEeHh7iOY6npye0Wi08PT3x6quvYtq0aWjbti30ej0mT56MyMhIPPbYYwCAwYMHIywsDC+//DLmz5+PvLw8vP/++4iPj3fJ3ocxyTjThYg73cT3TitWrLDrZpw0aRK1adOGdDodvfDCC3Tt2jW75eTm5tKQIUNIq9WSt7c3vf3221RZWVnnOJqqa7ysrIzCwsIoLCyMysrKGnVdDdGQrnGbzUZlpkqXTHW5c9BvwV13ImooqbrGnT7Mux+NRoOlS5c6PEls3749tm7d6syqXYKIkJmZKb5ujQRBaFWHWq7EF7oyJhH+k8RajNLSUpw/f16cz8nJQUZGBtq2bYugoCAXRlaFk4m1GEeOHMGTTz4pzk+bNg0AEBsbi+TkZBdF9StOJtZiDBo0qFmfu/I5E2MS4T2TA4IgoH379uJrxhzhZHJAp9MhNzfX1WGwFoIP8xiTCCcTYxLhZHLAaDSib9++6Nu3L4xGo6vDYc0cnzM5YLPZxEefNIdnDrHmjfdMjEmEk4kxiXAyMSYRTibWIlitVsyaNQshISHQarX43e9+h48++qhZXV7EHRCsRfjkk0+QlJSElStXomvXrjhy5Aji4uLg6emJKVOmuDo8AJxM9+Xt7e3qEBoXEVDpoocSKHVAHS/TOnToEJ577jkMHToUABAcHIy1a9fWuDmPK3EyOeDm5obr16+7OozGVVkOfBzgmnX/v6uAqm6PNn388cfx97//HWfPnkWnTp1w4sQJ/PTTT1i4cGEjB1l3nEysRfjLX/6C4uJihIaGQi6Xw2q1IiEhAWPHjnV1aCJOpgedUle1h3DVuuto/fr1WL16NdasWYOuXbsiIyMDU6dORUBAAGJjYxsxyLrjZHLAaDSKNz3ctm0btFqtiyNqBIJQ50MtV5o+fTr+8pe/YNSoUQCA7t274+eff0ZiYiInU0tgs9mwf/9+8TVznfLy8hpPvJfL5c3q/4WTibUIw4YNQ0JCAoKCgtC1a1ccP34cCxcuxCuvvOLq0EScTKxFWLJkCWbNmoVJkyahoKAAAQEBeP3115vVQ/I4mViL4OHhgUWLFmHRokWuDuU38eVEjEmEk4kxifBh3n3odHX/LYQ92DiZHHBzc7N7kjxjjvBhXivSnIYjtCRSfW6cTK2AUqkEUPXDJnNe9edW/TnWFx/mOVBRUSE+TvS7776DRqNxcUS1k8vlMBgMKCgoAFB1nsd3oL0/IkJ5eTkKCgpgMBggl8sbtDxOJgesVqv4UDar1TUPUa6r6odrVycUqzuDwfCbDyd3BidTKyEIAvz9/eHj44PKykpXh9NiKJXKBu+RqnEytTJyuVyyLwdzjss6IJYuXYrg4GBoNBpEREQ0q+HHjNWHS5Lp22+/xbRp0zBnzhwcO3YMPXv2RHR0NB/vsxbNJcm0cOFCTJgwAXFxcQgLC8OyZcug0+mwfPlyV4TDmCSa/JzJbDbj6NGjmDlzplgmk8kQFRWF1NTUWt9jMplgMpnE+aKiIgBAcXFxo8Z699UPxcXFzb5Hj0mv+jtWlx92mzyZbty4AavVCl9fX7tyX19f/N///V+t70lMTMQHH3xQozwwMLBRYqxNQICL7uDDmoWSkhJ4eno6bNMievNmzpwpPlkbqBpCfuvWLXh5ebXIHyeLi4sRGBiIy5cvQ6/XuzqcJtMSt5uIUFJSUqc/pk2eTN7e3pDL5cjPz7crz8/P/80fztRqNdRqtV2ZwWBorBCbjF6vbzFfKim1tO2+3x6pWpN3QKhUKvTu3Ru7d+8Wy2w2G3bv3o3IyMimDocxybjkMG/atGmIjY1Fnz590K9fPyxatAhlZWWIi4tzRTiMScIlyTRy5Ehcv34ds2fPRl5eHh599FFs3769RqdEa6VWqzFnzpwah66tXWvfboF4EAxjkuDxTIxJhJOJMYlwMjEmEU4mxiTCyVRHc+fOhSAIdlNoaKhYX1FRgfj4eHh5ecHd3R0jRoyo8cP0pUuXMHToUOh0Ovj4+GD69OmwWCx2bfbt24devXpBrVbjkUceQXJyco1YGmv4yoEDBzBs2DAEBARAEARs2rTJrp6IMHv2bPj7+0Or1SIqKgrnzp2za3Pr1i2MHTsWer0eBoMBr776KkpLS+3anDx5Ek888QQ0Gg0CAwMxf/78GrFs2LABoaGh0Gg06N69uzji2ZlYmhyxOpkzZw517dqVrl27Jk7Xr18X6ydOnEiBgYG0e/duOnLkCD322GP0+OOPi/UWi4W6detGUVFRdPz4cdq6dSt5e3vTzJkzxTYXL14knU5H06ZNo8zMTFqyZAnJ5XLavn272GbdunWkUqlo+fLldObMGZowYQIZDAbKz89v8DZu3bqV3nvvPfr+++8JAG3cuNGuft68eeTp6UmbNm2iEydO0P/8z/9QSEgIGY1Gsc0zzzxDPXv2pMOHD9N//vMfeuSRR2j06NFifVFREfn6+tLYsWPp9OnTtHbtWtJqtfTVV1+JbQ4ePEhyuZzmz59PmZmZ9P7775NSqaRTp045FUtT42Sqozlz5lDPnj1rrSssLCSlUkkbNmwQy7KysggApaamElHVF1Umk1FeXp7YJikpifR6PZlMJiIievfdd6lr1652yx45ciRFR0eL8/369aP4+Hhx3mq1UkBAACUmJjZ4G+92bzLZbDby8/OjBQsWiGWFhYWkVqtp7dq1RESUmZlJACg9PV1ss23bNhIEga5cuUJERF9++SW1adNG3GYiohkzZlDnzp3F+ZiYGBo6dKhdPBEREfT666/XORZX4MM8J5w7dw4BAQHo0KEDxo4di0uXLgEAjh49isrKSkRFRYltQ0NDERQUJA4rSU1NRffu3e1+mI6OjkZxcTHOnDkjtrl7GdVtqpdRPXzl7jb3G74ilZycHOTl5dmt29PTExEREXbbaDAY0KdPH7FNVFQUZDIZ0tLSxDa///3voVKp7LYxOzsbt2/fFts4+hzqEosrcDLVUUREBJKTk7F9+3YkJSUhJycHTzzxBEpKSpCXlweVSlXj4ltfX1/k5eUBAPLy8moddlJd56hNcXExjEajw+Er1ctoLNXLd7TuvLw8+Pj42NUrFAq0bdtWks/h7vr7xeIKLWIIRnNQ/ThOAOjRowciIiLQvn17rF+/vnU+npM5jfdM9WQwGNCpUyecP38efn5+MJvNKCwstGtz97ASPz+/WoedVNc5aqPX66HVaus1fEUq1ct3tG4/P78a9/GwWCy4deuWJJ/D3fX3i8UVOJnqqbS0FBcuXIC/vz969+4NpVJpN6wkOzsbly5dEoeVREZG4tSpU3ZftpSUFOj1eoSFhYlt7l5GdZvqZbhy+EpISAj8/Pzs1l1cXIy0tDS7bSwsLMTRo0fFNnv27IHNZkNERITY5sCBA3b39ktJSUHnzp3Rpk0bsY2jz6EusbiEy7o+Wpi3336b9u3bRzk5OXTw4EGKiooib29vKigoIKKqrvGgoCDas2cPHTlyhCIjIykyMlJ8f3XX+ODBgykjI4O2b99O7dq1q7VrfPr06ZSVlUVLly6ttWtcrVZTcnIyZWZm0muvvUYGg8Gul7C+SkpK6Pjx43T8+HECQAsXLqTjx4/Tzz//TERV3dEGg4F++OEHOnnyJD333HO1do2Hh4dTWloa/fTTT9SxY0e7rvHCwkLy9fWll19+mU6fPk3r1q0jnU5Xo2tcoVDQp59+SllZWTRnzpxau8bvF0tT42Sqo5EjR5K/vz+pVCp66KGHaOTIkXT+/Hmx3mg00qRJk6hNmzak0+nohRdeoGvXrtktIzc3l4YMGUJarZa8vb3p7bffpsrKSrs2e/fupUcffZRUKhV16NCBVqxYUSOWJUuWUFBQEKlUKurXrx8dPnxYkm3cu3cvAagxxcbGElFVl/SsWbPI19eX1Go1PfXUU5SdnW23jJs3b9Lo0aPJ3d2d9Ho9xcXFUUlJiV2bEydO0IABA0itVtNDDz1E8+bNqxHL+vXrqVOnTqRSqahr1670448/2tXXJZamxkMwGJMInzMxJhFOJsYkwsnEmEQ4mRiTCCcTYxLhZGJMIpxMjEmEk4kxiXAyMSYRTqZmbtCgQZg6daqrwxA1t3iaE06mB4DZbHZ1CA8Gl14ZyByKjY2tcdHp+fPn6ZVXXqHg4GDSaDTUqVMnWrRoUY33Pffcc/TXv/6V/P39KTg4mIiqrsbu2bMnqdVq6t27N23cuJEA0PHjx8X3njp1ip555hlyc3MjHx8fGjdunHjjmNriycnJaaqPo9njZGrGCgsLKTIykiZMmCDeEamiooJmz55N6enpdPHiRfrmm29Ip9PRt99+K74vNjaW3N3dxWEOp0+fpqKiImrbti2NGzeOzpw5Q1u3bqVOnTrZJdPt27fFYSFZWVl07Ngxevrpp+nJJ5/8zXgsFosrPppmiYetN2Oenp5QqVTQ6XR2I0jvfiRpSEgIUlNTsX79esTExIjlbm5u+N///V/xxiXLli2DIAj4+uuvodFoEBYWhitXrmDChAnie/72t78hPDwcH3/8sVi2fPlyBAYG4uzZs+jUqVOt8bAqnEwt0NKlS7F8+XJcunQJRqMRZrMZjz76qF2b7t27290BKDs7Gz169IBGoxHL+vXrZ/eeEydOYO/evXB3d6+xzgsXLqBTp07Sbkgrw8nUwqxbtw7vvPMOPvvsM0RGRsLDwwMLFiwQb6VVzc3Nzelll5aWYtiwYfjkk09q1Pn7+9c75gcFJ1Mzp1KpYLVaxfmDBw/i8ccfx6RJk8SyCxcu3Hc5nTt3xjfffAOTySQ+bCw9Pd2uTa9evfDdd98hODgYCkXtX41742G/4q7xZi44OBhpaWnIzc3FjRs30LFjRxw5cgQ7duzA2bNnMWvWrBpJUZsxY8bAZrPhtddeQ1ZWFnbs2IFPP/0UAMQn1sfHx+PWrVsYPXo00tPTceHCBezYsQNxcXFiAt0bj81ma7yNb2E4mZq5d955B3K5HGFhYWjXrh2io6MxfPhwjBw5EhEREbh586bdXuq36PV6bN68GRkZGXj00Ufx3nvvYfbs2QAgnkcFBATg4MGDsFqtGDx4MLp3746pU6fCYDBAJpPVGk/1XW0ZP4bzgbZ69WrExcWhqKiIb6QpAT5neoD885//RIcOHfDQQw/hxIkTmDFjBmJiYjiRJMLJ9ADJy8sTn3Dv7++Pl156CQkJCa4Oq9XgwzzGJMIdEIxJhJOJMYlwMjEmEU4mxiTCycSYRDiZGJMIJxNjEuFkYkwi/x+SZARJqhcJ1AAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "column = \"pods\"\n",
+ "x = \"target\"\n",
+ "y = \"[INSERT].MinLatency(us)\"\n",
+ "title = \"Min Lat [$\\mu$s]\"\n",
+ "plot_comparison(df_aggregated, x, y, column, title, peak_loading)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Get Benchmarking Result"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " connection_pod \n",
+ " PostgreSQL-32-1-114688-1-1 \n",
+ " PostgreSQL-32-1-131072-1-1 \n",
+ " PostgreSQL-32-1-16384-1-1 \n",
+ " PostgreSQL-32-1-32768-1-1 \n",
+ " PostgreSQL-32-1-49152-1-1 \n",
+ " PostgreSQL-32-1-65536-1-1 \n",
+ " PostgreSQL-32-1-81920-1-1 \n",
+ " PostgreSQL-32-1-98304-1-1 \n",
+ " PostgreSQL-32-8-114688-1-1 \n",
+ " PostgreSQL-32-8-114688-1-2 \n",
+ " ... \n",
+ " PostgreSQL-32-8-81920-1-7 \n",
+ " PostgreSQL-32-8-81920-1-8 \n",
+ " PostgreSQL-32-8-98304-1-1 \n",
+ " PostgreSQL-32-8-98304-1-2 \n",
+ " PostgreSQL-32-8-98304-1-3 \n",
+ " PostgreSQL-32-8-98304-1-4 \n",
+ " PostgreSQL-32-8-98304-1-5 \n",
+ " PostgreSQL-32-8-98304-1-6 \n",
+ " PostgreSQL-32-8-98304-1-7 \n",
+ " PostgreSQL-32-8-98304-1-8 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " connection \n",
+ " PostgreSQL-32-1-114688-1 \n",
+ " PostgreSQL-32-1-131072-1 \n",
+ " PostgreSQL-32-1-16384-1 \n",
+ " PostgreSQL-32-1-32768-1 \n",
+ " PostgreSQL-32-1-49152-1 \n",
+ " PostgreSQL-32-1-65536-1 \n",
+ " PostgreSQL-32-1-81920-1 \n",
+ " PostgreSQL-32-1-98304-1 \n",
+ " PostgreSQL-32-8-114688-1 \n",
+ " PostgreSQL-32-8-114688-1 \n",
+ " ... \n",
+ " PostgreSQL-32-8-81920-1 \n",
+ " PostgreSQL-32-8-81920-1 \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " \n",
+ " \n",
+ " configuration \n",
+ " PostgreSQL-32-1-114688 \n",
+ " PostgreSQL-32-1-131072 \n",
+ " PostgreSQL-32-1-16384 \n",
+ " PostgreSQL-32-1-32768 \n",
+ " PostgreSQL-32-1-49152 \n",
+ " PostgreSQL-32-1-65536 \n",
+ " PostgreSQL-32-1-81920 \n",
+ " PostgreSQL-32-1-98304 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " ... \n",
+ " PostgreSQL-32-8-81920 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " \n",
+ " \n",
+ " experiment_run \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " ... \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " client \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " ... \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " pod \n",
+ " mwnxg \n",
+ " zp9vj \n",
+ " dpz6r \n",
+ " k6vs7 \n",
+ " klpvs \n",
+ " 7w4z9 \n",
+ " chmc5 \n",
+ " 7lqx2 \n",
+ " 2jq82 \n",
+ " 8tw89 \n",
+ " ... \n",
+ " vhthf \n",
+ " xn2w5 \n",
+ " 45zhr \n",
+ " bhvd9 \n",
+ " k4r5r \n",
+ " kq9kf \n",
+ " mlt4b \n",
+ " rksk7 \n",
+ " vn5b4 \n",
+ " wjjww \n",
+ " \n",
+ " \n",
+ " pod_count \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 8 \n",
+ " ... \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " 8 \n",
+ " \n",
+ " \n",
+ " threads \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 4 \n",
+ " 4 \n",
+ " ... \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " \n",
+ " \n",
+ " target \n",
+ " 114688 \n",
+ " 131072 \n",
+ " 16384 \n",
+ " 32768 \n",
+ " 49152 \n",
+ " 65536 \n",
+ " 81920 \n",
+ " 98304 \n",
+ " 14336 \n",
+ " 14336 \n",
+ " ... \n",
+ " 10240 \n",
+ " 10240 \n",
+ " 12288 \n",
+ " 12288 \n",
+ " 12288 \n",
+ " 12288 \n",
+ " 12288 \n",
+ " 12288 \n",
+ " 12288 \n",
+ " 12288 \n",
+ " \n",
+ " \n",
+ " sf \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " ... \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " \n",
+ " \n",
+ " workload \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " ... \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " \n",
+ " \n",
+ " operations \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " ... \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " 3750000 \n",
+ " \n",
+ " \n",
+ " batchsize \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " ... \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " -1 \n",
+ " \n",
+ " \n",
+ " [OVERALL].RunTime(ms) \n",
+ " 515631 \n",
+ " 521364 \n",
+ " 1831314 \n",
+ " 915761 \n",
+ " 657683 \n",
+ " 523264 \n",
+ " 521007 \n",
+ " 514630 \n",
+ " 520977 \n",
+ " 522245 \n",
+ " ... \n",
+ " 515641 \n",
+ " 532786 \n",
+ " 517972 \n",
+ " 525430 \n",
+ " 510878 \n",
+ " 509697 \n",
+ " 523738 \n",
+ " 513476 \n",
+ " 523770 \n",
+ " 513732 \n",
+ " \n",
+ " \n",
+ " [OVERALL].Throughput(ops/sec) \n",
+ " 58181.14116490281 \n",
+ " 57541.37224664534 \n",
+ " 16381.68003957814 \n",
+ " 32759.63925085257 \n",
+ " 45614.68062881358 \n",
+ " 57332.43639921722 \n",
+ " 57580.800257961986 \n",
+ " 58294.308532343624 \n",
+ " 7198.014499680408 \n",
+ " 7180.537870156727 \n",
+ " ... \n",
+ " 7272.501604798687 \n",
+ " 7038.473233155526 \n",
+ " 7239.773578494591 \n",
+ " 7137.011590506823 \n",
+ " 7340.304338804959 \n",
+ " 7357.312285534347 \n",
+ " 7160.068583910276 \n",
+ " 7303.165094376368 \n",
+ " 7159.631135803884 \n",
+ " 7299.5258228025505 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GCS_Copy].Count \n",
+ " 528 \n",
+ " 531 \n",
+ " 526 \n",
+ " 533 \n",
+ " 531 \n",
+ " 530 \n",
+ " 531 \n",
+ " 534 \n",
+ " 66 \n",
+ " 65 \n",
+ " ... \n",
+ " 64 \n",
+ " 65 \n",
+ " 66 \n",
+ " 66 \n",
+ " 66 \n",
+ " 66 \n",
+ " 66 \n",
+ " 66 \n",
+ " 65 \n",
+ " 66 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GC_TIME_Copy].Time(ms) \n",
+ " 773 \n",
+ " 766 \n",
+ " 736 \n",
+ " 738 \n",
+ " 779 \n",
+ " 763 \n",
+ " 765 \n",
+ " 776 \n",
+ " 251 \n",
+ " 200 \n",
+ " ... \n",
+ " 310 \n",
+ " 232 \n",
+ " 229 \n",
+ " 202 \n",
+ " 280 \n",
+ " 224 \n",
+ " 186 \n",
+ " 331 \n",
+ " 295 \n",
+ " 302 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GC_TIME_%_Copy].Time(%) \n",
+ " 0.1499134070682329 \n",
+ " 0.14692230380310112 \n",
+ " 0.04018972169709837 \n",
+ " 0.08058871255709732 \n",
+ " 0.11844612069948592 \n",
+ " 0.14581549657534246 \n",
+ " 0.14683104065780306 \n",
+ " 0.1507879447369955 \n",
+ " 0.048178710384527534 \n",
+ " 0.03829620197416921 \n",
+ " ... \n",
+ " 0.06011934659966915 \n",
+ " 0.04354468773578885 \n",
+ " 0.04421088398600696 \n",
+ " 0.03844470243419675 \n",
+ " 0.0548076057297437 \n",
+ " 0.043947678718925166 \n",
+ " 0.03551394017619497 \n",
+ " 0.06446260389969541 \n",
+ " 0.056322431601657216 \n",
+ " 0.0587855146263032 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GCS_MarkSweepCompact].Count \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GC_TIME_MarkSweepCompact].Time(ms) \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " ... \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GCs].Count \n",
+ " 528 \n",
+ " 531 \n",
+ " 526 \n",
+ " 533 \n",
+ " 531 \n",
+ " 530 \n",
+ " 531 \n",
+ " 534 \n",
+ " 66 \n",
+ " 65 \n",
+ " ... \n",
+ " 64 \n",
+ " 65 \n",
+ " 66 \n",
+ " 66 \n",
+ " 66 \n",
+ " 66 \n",
+ " 66 \n",
+ " 66 \n",
+ " 65 \n",
+ " 66 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GC_TIME].Time(ms) \n",
+ " 773 \n",
+ " 766 \n",
+ " 736 \n",
+ " 738 \n",
+ " 779 \n",
+ " 763 \n",
+ " 765 \n",
+ " 776 \n",
+ " 251 \n",
+ " 200 \n",
+ " ... \n",
+ " 310 \n",
+ " 232 \n",
+ " 229 \n",
+ " 202 \n",
+ " 280 \n",
+ " 224 \n",
+ " 186 \n",
+ " 331 \n",
+ " 295 \n",
+ " 302 \n",
+ " \n",
+ " \n",
+ " [TOTAL_GC_TIME_%].Time(%) \n",
+ " 0.1499134070682329 \n",
+ " 0.14692230380310112 \n",
+ " 0.04018972169709837 \n",
+ " 0.08058871255709732 \n",
+ " 0.11844612069948592 \n",
+ " 0.14581549657534246 \n",
+ " 0.14683104065780306 \n",
+ " 0.1507879447369955 \n",
+ " 0.048178710384527534 \n",
+ " 0.03829620197416921 \n",
+ " ... \n",
+ " 0.06011934659966915 \n",
+ " 0.04354468773578885 \n",
+ " 0.04421088398600696 \n",
+ " 0.03844470243419675 \n",
+ " 0.0548076057297437 \n",
+ " 0.043947678718925166 \n",
+ " 0.03551394017619497 \n",
+ " 0.06446260389969541 \n",
+ " 0.056322431601657216 \n",
+ " 0.0587855146263032 \n",
+ " \n",
+ " \n",
+ " [READ].Operations \n",
+ " 14999034 \n",
+ " 15000437 \n",
+ " 15000202 \n",
+ " 14999278 \n",
+ " 15001696 \n",
+ " 15003790 \n",
+ " 14998146 \n",
+ " 15004063 \n",
+ " 1875496 \n",
+ " 1872886 \n",
+ " ... \n",
+ " 1874668 \n",
+ " 1874136 \n",
+ " 1875638 \n",
+ " 1875215 \n",
+ " 1876860 \n",
+ " 1873827 \n",
+ " 1876454 \n",
+ " 1873752 \n",
+ " 1874515 \n",
+ " 1875658 \n",
+ " \n",
+ " \n",
+ " [READ].AverageLatency(us) \n",
+ " 414.1533992122426 \n",
+ " 418.6445766213344 \n",
+ " 236.30964003018093 \n",
+ " 244.15625558776895 \n",
+ " 349.14303242780016 \n",
+ " 419.17214543791937 \n",
+ " 432.82956566764983 \n",
+ " 424.96967601375707 \n",
+ " 448.51290112055693 \n",
+ " 477.0497755869818 \n",
+ " ... \n",
+ " 432.95185760892065 \n",
+ " 478.3749418398665 \n",
+ " 469.7713530009522 \n",
+ " 451.09467714368753 \n",
+ " 470.12151732148374 \n",
+ " 437.6148956120282 \n",
+ " 440.84926622235344 \n",
+ " 416.91854151456545 \n",
+ " 431.3523418057471 \n",
+ " 426.3018178154013 \n",
+ " \n",
+ " \n",
+ " [READ].MinLatency(us) \n",
+ " 86 \n",
+ " 86 \n",
+ " 93 \n",
+ " 91 \n",
+ " 89 \n",
+ " 89 \n",
+ " 85 \n",
+ " 86 \n",
+ " 95 \n",
+ " 91 \n",
+ " ... \n",
+ " 101 \n",
+ " 91 \n",
+ " 98 \n",
+ " 91 \n",
+ " 96 \n",
+ " 106 \n",
+ " 91 \n",
+ " 95 \n",
+ " 94 \n",
+ " 96 \n",
+ " \n",
+ " \n",
+ " [READ].MaxLatency(us) \n",
+ " 20905983 \n",
+ " 20856831 \n",
+ " 70271 \n",
+ " 1073151 \n",
+ " 18399231 \n",
+ " 18235391 \n",
+ " 20709375 \n",
+ " 18776063 \n",
+ " 13819903 \n",
+ " 13819903 \n",
+ " ... \n",
+ " 13230079 \n",
+ " 13942783 \n",
+ " 13852671 \n",
+ " 12337151 \n",
+ " 18415615 \n",
+ " 17629183 \n",
+ " 13852671 \n",
+ " 16990207 \n",
+ " 16728063 \n",
+ " 9420799 \n",
+ " \n",
+ " \n",
+ " [READ].95thPercentileLatency(us) \n",
+ " 762 \n",
+ " 750 \n",
+ " 392 \n",
+ " 395 \n",
+ " 482 \n",
+ " 774 \n",
+ " 788 \n",
+ " 757 \n",
+ " 768 \n",
+ " 850 \n",
+ " ... \n",
+ " 790 \n",
+ " 921 \n",
+ " 769 \n",
+ " 861 \n",
+ " 787 \n",
+ " 723 \n",
+ " 757 \n",
+ " 696 \n",
+ " 779 \n",
+ " 772 \n",
+ " \n",
+ " \n",
+ " [READ].99thPercentileLatency(us) \n",
+ " 2147 \n",
+ " 2287 \n",
+ " 514 \n",
+ " 540 \n",
+ " 1209 \n",
+ " 2289 \n",
+ " 2355 \n",
+ " 2301 \n",
+ " 2435 \n",
+ " 2401 \n",
+ " ... \n",
+ " 2305 \n",
+ " 2245 \n",
+ " 2481 \n",
+ " 2355 \n",
+ " 2463 \n",
+ " 2377 \n",
+ " 2327 \n",
+ " 2191 \n",
+ " 2543 \n",
+ " 2399 \n",
+ " \n",
+ " \n",
+ " [READ].Return=OK \n",
+ " 14999034 \n",
+ " 15000437 \n",
+ " 15000202 \n",
+ " 14999278 \n",
+ " 15001696 \n",
+ " 15003790 \n",
+ " 14998146 \n",
+ " 15004063 \n",
+ " 1875496 \n",
+ " 1872886 \n",
+ " ... \n",
+ " 1874668 \n",
+ " 1874136 \n",
+ " 1875638 \n",
+ " 1875215 \n",
+ " 1876860 \n",
+ " 1873827 \n",
+ " 1876454 \n",
+ " 1873752 \n",
+ " 1874515 \n",
+ " 1875658 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].Operations \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 4 \n",
+ " 4 \n",
+ " ... \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " 4 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].AverageLatency(us) \n",
+ " 104.75 \n",
+ " 97.0625 \n",
+ " 68.09375 \n",
+ " 100.96875 \n",
+ " 174.59375 \n",
+ " 122.875 \n",
+ " 138.46875 \n",
+ " 126.4375 \n",
+ " 224.75 \n",
+ " 143.75 \n",
+ " ... \n",
+ " 195.75 \n",
+ " 135.5 \n",
+ " 156.75 \n",
+ " 143.5 \n",
+ " 141.25 \n",
+ " 148.25 \n",
+ " 458.0 \n",
+ " 182.0 \n",
+ " 318.75 \n",
+ " 141.75 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].MinLatency(us) \n",
+ " 60 \n",
+ " 62 \n",
+ " 35 \n",
+ " 36 \n",
+ " 55 \n",
+ " 70 \n",
+ " 64 \n",
+ " 64 \n",
+ " 65 \n",
+ " 70 \n",
+ " ... \n",
+ " 116 \n",
+ " 65 \n",
+ " 76 \n",
+ " 67 \n",
+ " 78 \n",
+ " 87 \n",
+ " 74 \n",
+ " 96 \n",
+ " 61 \n",
+ " 77 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].MaxLatency(us) \n",
+ " 305 \n",
+ " 305 \n",
+ " 269 \n",
+ " 651 \n",
+ " 2655 \n",
+ " 343 \n",
+ " 938 \n",
+ " 377 \n",
+ " 420 \n",
+ " 352 \n",
+ " ... \n",
+ " 320 \n",
+ " 335 \n",
+ " 358 \n",
+ " 352 \n",
+ " 304 \n",
+ " 270 \n",
+ " 1324 \n",
+ " 355 \n",
+ " 991 \n",
+ " 299 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].95thPercentileLatency(us) \n",
+ " 178 \n",
+ " 132 \n",
+ " 170 \n",
+ " 343 \n",
+ " 146 \n",
+ " 168 \n",
+ " 175 \n",
+ " 187 \n",
+ " 420 \n",
+ " 352 \n",
+ " ... \n",
+ " 320 \n",
+ " 335 \n",
+ " 358 \n",
+ " 352 \n",
+ " 304 \n",
+ " 270 \n",
+ " 1324 \n",
+ " 355 \n",
+ " 991 \n",
+ " 299 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].99thPercentileLatency(us) \n",
+ " 305 \n",
+ " 305 \n",
+ " 269 \n",
+ " 651 \n",
+ " 2655 \n",
+ " 343 \n",
+ " 938 \n",
+ " 377 \n",
+ " 420 \n",
+ " 352 \n",
+ " ... \n",
+ " 320 \n",
+ " 335 \n",
+ " 358 \n",
+ " 352 \n",
+ " 304 \n",
+ " 270 \n",
+ " 1324 \n",
+ " 355 \n",
+ " 991 \n",
+ " 299 \n",
+ " \n",
+ " \n",
+ " [UPDATE].Operations \n",
+ " 15000966 \n",
+ " 14999563 \n",
+ " 14999798 \n",
+ " 15000722 \n",
+ " 14998304 \n",
+ " 14996210 \n",
+ " 15001854 \n",
+ " 14995937 \n",
+ " 1874504 \n",
+ " 1877114 \n",
+ " ... \n",
+ " 1875332 \n",
+ " 1875864 \n",
+ " 1874362 \n",
+ " 1874785 \n",
+ " 1873140 \n",
+ " 1876173 \n",
+ " 1873546 \n",
+ " 1876248 \n",
+ " 1875485 \n",
+ " 1874342 \n",
+ " \n",
+ " \n",
+ " [UPDATE].AverageLatency(us) \n",
+ " 635.8843409151117 \n",
+ " 647.1705313014786 \n",
+ " 260.75799487433096 \n",
+ " 262.927870671825 \n",
+ " 454.03203375528324 \n",
+ " 644.1248997580055 \n",
+ " 630.4081144237239 \n",
+ " 620.0819837399957 \n",
+ " 569.8579874996266 \n",
+ " 599.2677647708131 \n",
+ " ... \n",
+ " 621.9825412247005 \n",
+ " 618.4722176021289 \n",
+ " 610.3075121027848 \n",
+ " 620.0627383940025 \n",
+ " 592.218151873325 \n",
+ " 606.3485243631584 \n",
+ " 621.7419929908312 \n",
+ " 604.16092648733 \n",
+ " 621.6882539716394 \n",
+ " 640.6968872276244 \n",
+ " \n",
+ " \n",
+ " [UPDATE].MinLatency(us) \n",
+ " 95 \n",
+ " 94 \n",
+ " 102 \n",
+ " 101 \n",
+ " 93 \n",
+ " 93 \n",
+ " 93 \n",
+ " 93 \n",
+ " 99 \n",
+ " 96 \n",
+ " ... \n",
+ " 105 \n",
+ " 98 \n",
+ " 105 \n",
+ " 98 \n",
+ " 101 \n",
+ " 114 \n",
+ " 99 \n",
+ " 107 \n",
+ " 102 \n",
+ " 104 \n",
+ " \n",
+ " \n",
+ " [UPDATE].MaxLatency(us) \n",
+ " 20987903 \n",
+ " 20889599 \n",
+ " 67071 \n",
+ " 722943 \n",
+ " 18235391 \n",
+ " 20774911 \n",
+ " 20758527 \n",
+ " 18956287 \n",
+ " 20135935 \n",
+ " 18825215 \n",
+ " ... \n",
+ " 20430847 \n",
+ " 20955135 \n",
+ " 18710527 \n",
+ " 18956287 \n",
+ " 18956287 \n",
+ " 18317311 \n",
+ " 17874943 \n",
+ " 18776063 \n",
+ " 18759679 \n",
+ " 18579455 \n",
+ " \n",
+ " \n",
+ " [UPDATE].95thPercentileLatency(us) \n",
+ " 1041 \n",
+ " 1061 \n",
+ " 434 \n",
+ " 415 \n",
+ " 535 \n",
+ " 1075 \n",
+ " 1115 \n",
+ " 1065 \n",
+ " 1010 \n",
+ " 1047 \n",
+ " ... \n",
+ " 1007 \n",
+ " 1088 \n",
+ " 1032 \n",
+ " 1086 \n",
+ " 1072 \n",
+ " 1011 \n",
+ " 1015 \n",
+ " 966 \n",
+ " 1080 \n",
+ " 1043 \n",
+ " \n",
+ " \n",
+ " [UPDATE].99thPercentileLatency(us) \n",
+ " 3383 \n",
+ " 3619 \n",
+ " 573 \n",
+ " 580 \n",
+ " 1687 \n",
+ " 3657 \n",
+ " 3731 \n",
+ " 3641 \n",
+ " 3501 \n",
+ " 3589 \n",
+ " ... \n",
+ " 3367 \n",
+ " 3275 \n",
+ " 3517 \n",
+ " 3495 \n",
+ " 3579 \n",
+ " 3465 \n",
+ " 3449 \n",
+ " 3267 \n",
+ " 3613 \n",
+ " 3525 \n",
+ " \n",
+ " \n",
+ " [UPDATE].Return=OK \n",
+ " 15000966 \n",
+ " 14999563 \n",
+ " 14999798 \n",
+ " 15000722 \n",
+ " 14998304 \n",
+ " 14996210 \n",
+ " 15001854 \n",
+ " 14995937 \n",
+ " 1874504 \n",
+ " 1877114 \n",
+ " ... \n",
+ " 1875332 \n",
+ " 1875864 \n",
+ " 1874362 \n",
+ " 1874785 \n",
+ " 1873140 \n",
+ " 1876173 \n",
+ " 1873546 \n",
+ " 1876248 \n",
+ " 1875485 \n",
+ " 1874342 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
43 rows Ă— 72 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ "connection_pod PostgreSQL-32-1-114688-1-1 \\\n",
+ "connection PostgreSQL-32-1-114688-1 \n",
+ "configuration PostgreSQL-32-1-114688 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod mwnxg \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 114688 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 515631 \n",
+ "[OVERALL].Throughput(ops/sec) 58181.14116490281 \n",
+ "[TOTAL_GCS_Copy].Count 528 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 773 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.1499134070682329 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 528 \n",
+ "[TOTAL_GC_TIME].Time(ms) 773 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.1499134070682329 \n",
+ "[READ].Operations 14999034 \n",
+ "[READ].AverageLatency(us) 414.1533992122426 \n",
+ "[READ].MinLatency(us) 86 \n",
+ "[READ].MaxLatency(us) 20905983 \n",
+ "[READ].95thPercentileLatency(us) 762 \n",
+ "[READ].99thPercentileLatency(us) 2147 \n",
+ "[READ].Return=OK 14999034 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 104.75 \n",
+ "[CLEANUP].MinLatency(us) 60 \n",
+ "[CLEANUP].MaxLatency(us) 305 \n",
+ "[CLEANUP].95thPercentileLatency(us) 178 \n",
+ "[CLEANUP].99thPercentileLatency(us) 305 \n",
+ "[UPDATE].Operations 15000966 \n",
+ "[UPDATE].AverageLatency(us) 635.8843409151117 \n",
+ "[UPDATE].MinLatency(us) 95 \n",
+ "[UPDATE].MaxLatency(us) 20987903 \n",
+ "[UPDATE].95thPercentileLatency(us) 1041 \n",
+ "[UPDATE].99thPercentileLatency(us) 3383 \n",
+ "[UPDATE].Return=OK 15000966 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-1-131072-1-1 \\\n",
+ "connection PostgreSQL-32-1-131072-1 \n",
+ "configuration PostgreSQL-32-1-131072 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod zp9vj \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 131072 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 521364 \n",
+ "[OVERALL].Throughput(ops/sec) 57541.37224664534 \n",
+ "[TOTAL_GCS_Copy].Count 531 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 766 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.14692230380310112 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 531 \n",
+ "[TOTAL_GC_TIME].Time(ms) 766 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.14692230380310112 \n",
+ "[READ].Operations 15000437 \n",
+ "[READ].AverageLatency(us) 418.6445766213344 \n",
+ "[READ].MinLatency(us) 86 \n",
+ "[READ].MaxLatency(us) 20856831 \n",
+ "[READ].95thPercentileLatency(us) 750 \n",
+ "[READ].99thPercentileLatency(us) 2287 \n",
+ "[READ].Return=OK 15000437 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 97.0625 \n",
+ "[CLEANUP].MinLatency(us) 62 \n",
+ "[CLEANUP].MaxLatency(us) 305 \n",
+ "[CLEANUP].95thPercentileLatency(us) 132 \n",
+ "[CLEANUP].99thPercentileLatency(us) 305 \n",
+ "[UPDATE].Operations 14999563 \n",
+ "[UPDATE].AverageLatency(us) 647.1705313014786 \n",
+ "[UPDATE].MinLatency(us) 94 \n",
+ "[UPDATE].MaxLatency(us) 20889599 \n",
+ "[UPDATE].95thPercentileLatency(us) 1061 \n",
+ "[UPDATE].99thPercentileLatency(us) 3619 \n",
+ "[UPDATE].Return=OK 14999563 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-1-16384-1-1 \\\n",
+ "connection PostgreSQL-32-1-16384-1 \n",
+ "configuration PostgreSQL-32-1-16384 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod dpz6r \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 16384 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 1831314 \n",
+ "[OVERALL].Throughput(ops/sec) 16381.68003957814 \n",
+ "[TOTAL_GCS_Copy].Count 526 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 736 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.04018972169709837 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 526 \n",
+ "[TOTAL_GC_TIME].Time(ms) 736 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.04018972169709837 \n",
+ "[READ].Operations 15000202 \n",
+ "[READ].AverageLatency(us) 236.30964003018093 \n",
+ "[READ].MinLatency(us) 93 \n",
+ "[READ].MaxLatency(us) 70271 \n",
+ "[READ].95thPercentileLatency(us) 392 \n",
+ "[READ].99thPercentileLatency(us) 514 \n",
+ "[READ].Return=OK 15000202 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 68.09375 \n",
+ "[CLEANUP].MinLatency(us) 35 \n",
+ "[CLEANUP].MaxLatency(us) 269 \n",
+ "[CLEANUP].95thPercentileLatency(us) 170 \n",
+ "[CLEANUP].99thPercentileLatency(us) 269 \n",
+ "[UPDATE].Operations 14999798 \n",
+ "[UPDATE].AverageLatency(us) 260.75799487433096 \n",
+ "[UPDATE].MinLatency(us) 102 \n",
+ "[UPDATE].MaxLatency(us) 67071 \n",
+ "[UPDATE].95thPercentileLatency(us) 434 \n",
+ "[UPDATE].99thPercentileLatency(us) 573 \n",
+ "[UPDATE].Return=OK 14999798 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-1-32768-1-1 \\\n",
+ "connection PostgreSQL-32-1-32768-1 \n",
+ "configuration PostgreSQL-32-1-32768 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod k6vs7 \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 32768 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 915761 \n",
+ "[OVERALL].Throughput(ops/sec) 32759.63925085257 \n",
+ "[TOTAL_GCS_Copy].Count 533 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 738 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.08058871255709732 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 533 \n",
+ "[TOTAL_GC_TIME].Time(ms) 738 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.08058871255709732 \n",
+ "[READ].Operations 14999278 \n",
+ "[READ].AverageLatency(us) 244.15625558776895 \n",
+ "[READ].MinLatency(us) 91 \n",
+ "[READ].MaxLatency(us) 1073151 \n",
+ "[READ].95thPercentileLatency(us) 395 \n",
+ "[READ].99thPercentileLatency(us) 540 \n",
+ "[READ].Return=OK 14999278 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 100.96875 \n",
+ "[CLEANUP].MinLatency(us) 36 \n",
+ "[CLEANUP].MaxLatency(us) 651 \n",
+ "[CLEANUP].95thPercentileLatency(us) 343 \n",
+ "[CLEANUP].99thPercentileLatency(us) 651 \n",
+ "[UPDATE].Operations 15000722 \n",
+ "[UPDATE].AverageLatency(us) 262.927870671825 \n",
+ "[UPDATE].MinLatency(us) 101 \n",
+ "[UPDATE].MaxLatency(us) 722943 \n",
+ "[UPDATE].95thPercentileLatency(us) 415 \n",
+ "[UPDATE].99thPercentileLatency(us) 580 \n",
+ "[UPDATE].Return=OK 15000722 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-1-49152-1-1 \\\n",
+ "connection PostgreSQL-32-1-49152-1 \n",
+ "configuration PostgreSQL-32-1-49152 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod klpvs \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 49152 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 657683 \n",
+ "[OVERALL].Throughput(ops/sec) 45614.68062881358 \n",
+ "[TOTAL_GCS_Copy].Count 531 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 779 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.11844612069948592 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 531 \n",
+ "[TOTAL_GC_TIME].Time(ms) 779 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.11844612069948592 \n",
+ "[READ].Operations 15001696 \n",
+ "[READ].AverageLatency(us) 349.14303242780016 \n",
+ "[READ].MinLatency(us) 89 \n",
+ "[READ].MaxLatency(us) 18399231 \n",
+ "[READ].95thPercentileLatency(us) 482 \n",
+ "[READ].99thPercentileLatency(us) 1209 \n",
+ "[READ].Return=OK 15001696 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 174.59375 \n",
+ "[CLEANUP].MinLatency(us) 55 \n",
+ "[CLEANUP].MaxLatency(us) 2655 \n",
+ "[CLEANUP].95thPercentileLatency(us) 146 \n",
+ "[CLEANUP].99thPercentileLatency(us) 2655 \n",
+ "[UPDATE].Operations 14998304 \n",
+ "[UPDATE].AverageLatency(us) 454.03203375528324 \n",
+ "[UPDATE].MinLatency(us) 93 \n",
+ "[UPDATE].MaxLatency(us) 18235391 \n",
+ "[UPDATE].95thPercentileLatency(us) 535 \n",
+ "[UPDATE].99thPercentileLatency(us) 1687 \n",
+ "[UPDATE].Return=OK 14998304 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-1-65536-1-1 \\\n",
+ "connection PostgreSQL-32-1-65536-1 \n",
+ "configuration PostgreSQL-32-1-65536 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod 7w4z9 \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 65536 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 523264 \n",
+ "[OVERALL].Throughput(ops/sec) 57332.43639921722 \n",
+ "[TOTAL_GCS_Copy].Count 530 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 763 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.14581549657534246 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 530 \n",
+ "[TOTAL_GC_TIME].Time(ms) 763 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.14581549657534246 \n",
+ "[READ].Operations 15003790 \n",
+ "[READ].AverageLatency(us) 419.17214543791937 \n",
+ "[READ].MinLatency(us) 89 \n",
+ "[READ].MaxLatency(us) 18235391 \n",
+ "[READ].95thPercentileLatency(us) 774 \n",
+ "[READ].99thPercentileLatency(us) 2289 \n",
+ "[READ].Return=OK 15003790 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 122.875 \n",
+ "[CLEANUP].MinLatency(us) 70 \n",
+ "[CLEANUP].MaxLatency(us) 343 \n",
+ "[CLEANUP].95thPercentileLatency(us) 168 \n",
+ "[CLEANUP].99thPercentileLatency(us) 343 \n",
+ "[UPDATE].Operations 14996210 \n",
+ "[UPDATE].AverageLatency(us) 644.1248997580055 \n",
+ "[UPDATE].MinLatency(us) 93 \n",
+ "[UPDATE].MaxLatency(us) 20774911 \n",
+ "[UPDATE].95thPercentileLatency(us) 1075 \n",
+ "[UPDATE].99thPercentileLatency(us) 3657 \n",
+ "[UPDATE].Return=OK 14996210 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-1-81920-1-1 \\\n",
+ "connection PostgreSQL-32-1-81920-1 \n",
+ "configuration PostgreSQL-32-1-81920 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod chmc5 \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 81920 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 521007 \n",
+ "[OVERALL].Throughput(ops/sec) 57580.800257961986 \n",
+ "[TOTAL_GCS_Copy].Count 531 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 765 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.14683104065780306 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 531 \n",
+ "[TOTAL_GC_TIME].Time(ms) 765 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.14683104065780306 \n",
+ "[READ].Operations 14998146 \n",
+ "[READ].AverageLatency(us) 432.82956566764983 \n",
+ "[READ].MinLatency(us) 85 \n",
+ "[READ].MaxLatency(us) 20709375 \n",
+ "[READ].95thPercentileLatency(us) 788 \n",
+ "[READ].99thPercentileLatency(us) 2355 \n",
+ "[READ].Return=OK 14998146 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 138.46875 \n",
+ "[CLEANUP].MinLatency(us) 64 \n",
+ "[CLEANUP].MaxLatency(us) 938 \n",
+ "[CLEANUP].95thPercentileLatency(us) 175 \n",
+ "[CLEANUP].99thPercentileLatency(us) 938 \n",
+ "[UPDATE].Operations 15001854 \n",
+ "[UPDATE].AverageLatency(us) 630.4081144237239 \n",
+ "[UPDATE].MinLatency(us) 93 \n",
+ "[UPDATE].MaxLatency(us) 20758527 \n",
+ "[UPDATE].95thPercentileLatency(us) 1115 \n",
+ "[UPDATE].99thPercentileLatency(us) 3731 \n",
+ "[UPDATE].Return=OK 15001854 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-1-98304-1-1 \\\n",
+ "connection PostgreSQL-32-1-98304-1 \n",
+ "configuration PostgreSQL-32-1-98304 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod 7lqx2 \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 98304 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 514630 \n",
+ "[OVERALL].Throughput(ops/sec) 58294.308532343624 \n",
+ "[TOTAL_GCS_Copy].Count 534 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 776 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.1507879447369955 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 534 \n",
+ "[TOTAL_GC_TIME].Time(ms) 776 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.1507879447369955 \n",
+ "[READ].Operations 15004063 \n",
+ "[READ].AverageLatency(us) 424.96967601375707 \n",
+ "[READ].MinLatency(us) 86 \n",
+ "[READ].MaxLatency(us) 18776063 \n",
+ "[READ].95thPercentileLatency(us) 757 \n",
+ "[READ].99thPercentileLatency(us) 2301 \n",
+ "[READ].Return=OK 15004063 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 126.4375 \n",
+ "[CLEANUP].MinLatency(us) 64 \n",
+ "[CLEANUP].MaxLatency(us) 377 \n",
+ "[CLEANUP].95thPercentileLatency(us) 187 \n",
+ "[CLEANUP].99thPercentileLatency(us) 377 \n",
+ "[UPDATE].Operations 14995937 \n",
+ "[UPDATE].AverageLatency(us) 620.0819837399957 \n",
+ "[UPDATE].MinLatency(us) 93 \n",
+ "[UPDATE].MaxLatency(us) 18956287 \n",
+ "[UPDATE].95thPercentileLatency(us) 1065 \n",
+ "[UPDATE].99thPercentileLatency(us) 3641 \n",
+ "[UPDATE].Return=OK 14995937 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-114688-1-1 \\\n",
+ "connection PostgreSQL-32-8-114688-1 \n",
+ "configuration PostgreSQL-32-8-114688 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod 2jq82 \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 14336 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 520977 \n",
+ "[OVERALL].Throughput(ops/sec) 7198.014499680408 \n",
+ "[TOTAL_GCS_Copy].Count 66 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 251 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.048178710384527534 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 66 \n",
+ "[TOTAL_GC_TIME].Time(ms) 251 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.048178710384527534 \n",
+ "[READ].Operations 1875496 \n",
+ "[READ].AverageLatency(us) 448.51290112055693 \n",
+ "[READ].MinLatency(us) 95 \n",
+ "[READ].MaxLatency(us) 13819903 \n",
+ "[READ].95thPercentileLatency(us) 768 \n",
+ "[READ].99thPercentileLatency(us) 2435 \n",
+ "[READ].Return=OK 1875496 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 224.75 \n",
+ "[CLEANUP].MinLatency(us) 65 \n",
+ "[CLEANUP].MaxLatency(us) 420 \n",
+ "[CLEANUP].95thPercentileLatency(us) 420 \n",
+ "[CLEANUP].99thPercentileLatency(us) 420 \n",
+ "[UPDATE].Operations 1874504 \n",
+ "[UPDATE].AverageLatency(us) 569.8579874996266 \n",
+ "[UPDATE].MinLatency(us) 99 \n",
+ "[UPDATE].MaxLatency(us) 20135935 \n",
+ "[UPDATE].95thPercentileLatency(us) 1010 \n",
+ "[UPDATE].99thPercentileLatency(us) 3501 \n",
+ "[UPDATE].Return=OK 1874504 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-114688-1-2 ... \\\n",
+ "connection PostgreSQL-32-8-114688-1 ... \n",
+ "configuration PostgreSQL-32-8-114688 ... \n",
+ "experiment_run 1 ... \n",
+ "client 1 ... \n",
+ "pod 8tw89 ... \n",
+ "pod_count 8 ... \n",
+ "threads 4 ... \n",
+ "target 14336 ... \n",
+ "sf 30 ... \n",
+ "workload a ... \n",
+ "operations 3750000 ... \n",
+ "batchsize -1 ... \n",
+ "[OVERALL].RunTime(ms) 522245 ... \n",
+ "[OVERALL].Throughput(ops/sec) 7180.537870156727 ... \n",
+ "[TOTAL_GCS_Copy].Count 65 ... \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 200 ... \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.03829620197416921 ... \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 ... \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 ... \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 ... \n",
+ "[TOTAL_GCs].Count 65 ... \n",
+ "[TOTAL_GC_TIME].Time(ms) 200 ... \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.03829620197416921 ... \n",
+ "[READ].Operations 1872886 ... \n",
+ "[READ].AverageLatency(us) 477.0497755869818 ... \n",
+ "[READ].MinLatency(us) 91 ... \n",
+ "[READ].MaxLatency(us) 13819903 ... \n",
+ "[READ].95thPercentileLatency(us) 850 ... \n",
+ "[READ].99thPercentileLatency(us) 2401 ... \n",
+ "[READ].Return=OK 1872886 ... \n",
+ "[CLEANUP].Operations 4 ... \n",
+ "[CLEANUP].AverageLatency(us) 143.75 ... \n",
+ "[CLEANUP].MinLatency(us) 70 ... \n",
+ "[CLEANUP].MaxLatency(us) 352 ... \n",
+ "[CLEANUP].95thPercentileLatency(us) 352 ... \n",
+ "[CLEANUP].99thPercentileLatency(us) 352 ... \n",
+ "[UPDATE].Operations 1877114 ... \n",
+ "[UPDATE].AverageLatency(us) 599.2677647708131 ... \n",
+ "[UPDATE].MinLatency(us) 96 ... \n",
+ "[UPDATE].MaxLatency(us) 18825215 ... \n",
+ "[UPDATE].95thPercentileLatency(us) 1047 ... \n",
+ "[UPDATE].99thPercentileLatency(us) 3589 ... \n",
+ "[UPDATE].Return=OK 1877114 ... \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-81920-1-7 \\\n",
+ "connection PostgreSQL-32-8-81920-1 \n",
+ "configuration PostgreSQL-32-8-81920 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod vhthf \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 10240 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 515641 \n",
+ "[OVERALL].Throughput(ops/sec) 7272.501604798687 \n",
+ "[TOTAL_GCS_Copy].Count 64 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 310 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.06011934659966915 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 64 \n",
+ "[TOTAL_GC_TIME].Time(ms) 310 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.06011934659966915 \n",
+ "[READ].Operations 1874668 \n",
+ "[READ].AverageLatency(us) 432.95185760892065 \n",
+ "[READ].MinLatency(us) 101 \n",
+ "[READ].MaxLatency(us) 13230079 \n",
+ "[READ].95thPercentileLatency(us) 790 \n",
+ "[READ].99thPercentileLatency(us) 2305 \n",
+ "[READ].Return=OK 1874668 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 195.75 \n",
+ "[CLEANUP].MinLatency(us) 116 \n",
+ "[CLEANUP].MaxLatency(us) 320 \n",
+ "[CLEANUP].95thPercentileLatency(us) 320 \n",
+ "[CLEANUP].99thPercentileLatency(us) 320 \n",
+ "[UPDATE].Operations 1875332 \n",
+ "[UPDATE].AverageLatency(us) 621.9825412247005 \n",
+ "[UPDATE].MinLatency(us) 105 \n",
+ "[UPDATE].MaxLatency(us) 20430847 \n",
+ "[UPDATE].95thPercentileLatency(us) 1007 \n",
+ "[UPDATE].99thPercentileLatency(us) 3367 \n",
+ "[UPDATE].Return=OK 1875332 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-81920-1-8 \\\n",
+ "connection PostgreSQL-32-8-81920-1 \n",
+ "configuration PostgreSQL-32-8-81920 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod xn2w5 \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 10240 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 532786 \n",
+ "[OVERALL].Throughput(ops/sec) 7038.473233155526 \n",
+ "[TOTAL_GCS_Copy].Count 65 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 232 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.04354468773578885 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 65 \n",
+ "[TOTAL_GC_TIME].Time(ms) 232 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.04354468773578885 \n",
+ "[READ].Operations 1874136 \n",
+ "[READ].AverageLatency(us) 478.3749418398665 \n",
+ "[READ].MinLatency(us) 91 \n",
+ "[READ].MaxLatency(us) 13942783 \n",
+ "[READ].95thPercentileLatency(us) 921 \n",
+ "[READ].99thPercentileLatency(us) 2245 \n",
+ "[READ].Return=OK 1874136 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 135.5 \n",
+ "[CLEANUP].MinLatency(us) 65 \n",
+ "[CLEANUP].MaxLatency(us) 335 \n",
+ "[CLEANUP].95thPercentileLatency(us) 335 \n",
+ "[CLEANUP].99thPercentileLatency(us) 335 \n",
+ "[UPDATE].Operations 1875864 \n",
+ "[UPDATE].AverageLatency(us) 618.4722176021289 \n",
+ "[UPDATE].MinLatency(us) 98 \n",
+ "[UPDATE].MaxLatency(us) 20955135 \n",
+ "[UPDATE].95thPercentileLatency(us) 1088 \n",
+ "[UPDATE].99thPercentileLatency(us) 3275 \n",
+ "[UPDATE].Return=OK 1875864 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-98304-1-1 \\\n",
+ "connection PostgreSQL-32-8-98304-1 \n",
+ "configuration PostgreSQL-32-8-98304 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod 45zhr \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 12288 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 517972 \n",
+ "[OVERALL].Throughput(ops/sec) 7239.773578494591 \n",
+ "[TOTAL_GCS_Copy].Count 66 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 229 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.04421088398600696 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 66 \n",
+ "[TOTAL_GC_TIME].Time(ms) 229 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.04421088398600696 \n",
+ "[READ].Operations 1875638 \n",
+ "[READ].AverageLatency(us) 469.7713530009522 \n",
+ "[READ].MinLatency(us) 98 \n",
+ "[READ].MaxLatency(us) 13852671 \n",
+ "[READ].95thPercentileLatency(us) 769 \n",
+ "[READ].99thPercentileLatency(us) 2481 \n",
+ "[READ].Return=OK 1875638 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 156.75 \n",
+ "[CLEANUP].MinLatency(us) 76 \n",
+ "[CLEANUP].MaxLatency(us) 358 \n",
+ "[CLEANUP].95thPercentileLatency(us) 358 \n",
+ "[CLEANUP].99thPercentileLatency(us) 358 \n",
+ "[UPDATE].Operations 1874362 \n",
+ "[UPDATE].AverageLatency(us) 610.3075121027848 \n",
+ "[UPDATE].MinLatency(us) 105 \n",
+ "[UPDATE].MaxLatency(us) 18710527 \n",
+ "[UPDATE].95thPercentileLatency(us) 1032 \n",
+ "[UPDATE].99thPercentileLatency(us) 3517 \n",
+ "[UPDATE].Return=OK 1874362 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-98304-1-2 \\\n",
+ "connection PostgreSQL-32-8-98304-1 \n",
+ "configuration PostgreSQL-32-8-98304 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod bhvd9 \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 12288 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 525430 \n",
+ "[OVERALL].Throughput(ops/sec) 7137.011590506823 \n",
+ "[TOTAL_GCS_Copy].Count 66 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 202 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.03844470243419675 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 66 \n",
+ "[TOTAL_GC_TIME].Time(ms) 202 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.03844470243419675 \n",
+ "[READ].Operations 1875215 \n",
+ "[READ].AverageLatency(us) 451.09467714368753 \n",
+ "[READ].MinLatency(us) 91 \n",
+ "[READ].MaxLatency(us) 12337151 \n",
+ "[READ].95thPercentileLatency(us) 861 \n",
+ "[READ].99thPercentileLatency(us) 2355 \n",
+ "[READ].Return=OK 1875215 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 143.5 \n",
+ "[CLEANUP].MinLatency(us) 67 \n",
+ "[CLEANUP].MaxLatency(us) 352 \n",
+ "[CLEANUP].95thPercentileLatency(us) 352 \n",
+ "[CLEANUP].99thPercentileLatency(us) 352 \n",
+ "[UPDATE].Operations 1874785 \n",
+ "[UPDATE].AverageLatency(us) 620.0627383940025 \n",
+ "[UPDATE].MinLatency(us) 98 \n",
+ "[UPDATE].MaxLatency(us) 18956287 \n",
+ "[UPDATE].95thPercentileLatency(us) 1086 \n",
+ "[UPDATE].99thPercentileLatency(us) 3495 \n",
+ "[UPDATE].Return=OK 1874785 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-98304-1-3 \\\n",
+ "connection PostgreSQL-32-8-98304-1 \n",
+ "configuration PostgreSQL-32-8-98304 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod k4r5r \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 12288 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 510878 \n",
+ "[OVERALL].Throughput(ops/sec) 7340.304338804959 \n",
+ "[TOTAL_GCS_Copy].Count 66 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 280 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.0548076057297437 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 66 \n",
+ "[TOTAL_GC_TIME].Time(ms) 280 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.0548076057297437 \n",
+ "[READ].Operations 1876860 \n",
+ "[READ].AverageLatency(us) 470.12151732148374 \n",
+ "[READ].MinLatency(us) 96 \n",
+ "[READ].MaxLatency(us) 18415615 \n",
+ "[READ].95thPercentileLatency(us) 787 \n",
+ "[READ].99thPercentileLatency(us) 2463 \n",
+ "[READ].Return=OK 1876860 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 141.25 \n",
+ "[CLEANUP].MinLatency(us) 78 \n",
+ "[CLEANUP].MaxLatency(us) 304 \n",
+ "[CLEANUP].95thPercentileLatency(us) 304 \n",
+ "[CLEANUP].99thPercentileLatency(us) 304 \n",
+ "[UPDATE].Operations 1873140 \n",
+ "[UPDATE].AverageLatency(us) 592.218151873325 \n",
+ "[UPDATE].MinLatency(us) 101 \n",
+ "[UPDATE].MaxLatency(us) 18956287 \n",
+ "[UPDATE].95thPercentileLatency(us) 1072 \n",
+ "[UPDATE].99thPercentileLatency(us) 3579 \n",
+ "[UPDATE].Return=OK 1873140 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-98304-1-4 \\\n",
+ "connection PostgreSQL-32-8-98304-1 \n",
+ "configuration PostgreSQL-32-8-98304 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod kq9kf \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 12288 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 509697 \n",
+ "[OVERALL].Throughput(ops/sec) 7357.312285534347 \n",
+ "[TOTAL_GCS_Copy].Count 66 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 224 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.043947678718925166 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 66 \n",
+ "[TOTAL_GC_TIME].Time(ms) 224 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.043947678718925166 \n",
+ "[READ].Operations 1873827 \n",
+ "[READ].AverageLatency(us) 437.6148956120282 \n",
+ "[READ].MinLatency(us) 106 \n",
+ "[READ].MaxLatency(us) 17629183 \n",
+ "[READ].95thPercentileLatency(us) 723 \n",
+ "[READ].99thPercentileLatency(us) 2377 \n",
+ "[READ].Return=OK 1873827 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 148.25 \n",
+ "[CLEANUP].MinLatency(us) 87 \n",
+ "[CLEANUP].MaxLatency(us) 270 \n",
+ "[CLEANUP].95thPercentileLatency(us) 270 \n",
+ "[CLEANUP].99thPercentileLatency(us) 270 \n",
+ "[UPDATE].Operations 1876173 \n",
+ "[UPDATE].AverageLatency(us) 606.3485243631584 \n",
+ "[UPDATE].MinLatency(us) 114 \n",
+ "[UPDATE].MaxLatency(us) 18317311 \n",
+ "[UPDATE].95thPercentileLatency(us) 1011 \n",
+ "[UPDATE].99thPercentileLatency(us) 3465 \n",
+ "[UPDATE].Return=OK 1876173 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-98304-1-5 \\\n",
+ "connection PostgreSQL-32-8-98304-1 \n",
+ "configuration PostgreSQL-32-8-98304 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod mlt4b \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 12288 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 523738 \n",
+ "[OVERALL].Throughput(ops/sec) 7160.068583910276 \n",
+ "[TOTAL_GCS_Copy].Count 66 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 186 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.03551394017619497 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 66 \n",
+ "[TOTAL_GC_TIME].Time(ms) 186 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.03551394017619497 \n",
+ "[READ].Operations 1876454 \n",
+ "[READ].AverageLatency(us) 440.84926622235344 \n",
+ "[READ].MinLatency(us) 91 \n",
+ "[READ].MaxLatency(us) 13852671 \n",
+ "[READ].95thPercentileLatency(us) 757 \n",
+ "[READ].99thPercentileLatency(us) 2327 \n",
+ "[READ].Return=OK 1876454 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 458.0 \n",
+ "[CLEANUP].MinLatency(us) 74 \n",
+ "[CLEANUP].MaxLatency(us) 1324 \n",
+ "[CLEANUP].95thPercentileLatency(us) 1324 \n",
+ "[CLEANUP].99thPercentileLatency(us) 1324 \n",
+ "[UPDATE].Operations 1873546 \n",
+ "[UPDATE].AverageLatency(us) 621.7419929908312 \n",
+ "[UPDATE].MinLatency(us) 99 \n",
+ "[UPDATE].MaxLatency(us) 17874943 \n",
+ "[UPDATE].95thPercentileLatency(us) 1015 \n",
+ "[UPDATE].99thPercentileLatency(us) 3449 \n",
+ "[UPDATE].Return=OK 1873546 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-98304-1-6 \\\n",
+ "connection PostgreSQL-32-8-98304-1 \n",
+ "configuration PostgreSQL-32-8-98304 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod rksk7 \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 12288 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 513476 \n",
+ "[OVERALL].Throughput(ops/sec) 7303.165094376368 \n",
+ "[TOTAL_GCS_Copy].Count 66 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 331 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.06446260389969541 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 66 \n",
+ "[TOTAL_GC_TIME].Time(ms) 331 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.06446260389969541 \n",
+ "[READ].Operations 1873752 \n",
+ "[READ].AverageLatency(us) 416.91854151456545 \n",
+ "[READ].MinLatency(us) 95 \n",
+ "[READ].MaxLatency(us) 16990207 \n",
+ "[READ].95thPercentileLatency(us) 696 \n",
+ "[READ].99thPercentileLatency(us) 2191 \n",
+ "[READ].Return=OK 1873752 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 182.0 \n",
+ "[CLEANUP].MinLatency(us) 96 \n",
+ "[CLEANUP].MaxLatency(us) 355 \n",
+ "[CLEANUP].95thPercentileLatency(us) 355 \n",
+ "[CLEANUP].99thPercentileLatency(us) 355 \n",
+ "[UPDATE].Operations 1876248 \n",
+ "[UPDATE].AverageLatency(us) 604.16092648733 \n",
+ "[UPDATE].MinLatency(us) 107 \n",
+ "[UPDATE].MaxLatency(us) 18776063 \n",
+ "[UPDATE].95thPercentileLatency(us) 966 \n",
+ "[UPDATE].99thPercentileLatency(us) 3267 \n",
+ "[UPDATE].Return=OK 1876248 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-98304-1-7 \\\n",
+ "connection PostgreSQL-32-8-98304-1 \n",
+ "configuration PostgreSQL-32-8-98304 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod vn5b4 \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 12288 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 523770 \n",
+ "[OVERALL].Throughput(ops/sec) 7159.631135803884 \n",
+ "[TOTAL_GCS_Copy].Count 65 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 295 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.056322431601657216 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 65 \n",
+ "[TOTAL_GC_TIME].Time(ms) 295 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.056322431601657216 \n",
+ "[READ].Operations 1874515 \n",
+ "[READ].AverageLatency(us) 431.3523418057471 \n",
+ "[READ].MinLatency(us) 94 \n",
+ "[READ].MaxLatency(us) 16728063 \n",
+ "[READ].95thPercentileLatency(us) 779 \n",
+ "[READ].99thPercentileLatency(us) 2543 \n",
+ "[READ].Return=OK 1874515 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 318.75 \n",
+ "[CLEANUP].MinLatency(us) 61 \n",
+ "[CLEANUP].MaxLatency(us) 991 \n",
+ "[CLEANUP].95thPercentileLatency(us) 991 \n",
+ "[CLEANUP].99thPercentileLatency(us) 991 \n",
+ "[UPDATE].Operations 1875485 \n",
+ "[UPDATE].AverageLatency(us) 621.6882539716394 \n",
+ "[UPDATE].MinLatency(us) 102 \n",
+ "[UPDATE].MaxLatency(us) 18759679 \n",
+ "[UPDATE].95thPercentileLatency(us) 1080 \n",
+ "[UPDATE].99thPercentileLatency(us) 3613 \n",
+ "[UPDATE].Return=OK 1875485 \n",
+ "\n",
+ "connection_pod PostgreSQL-32-8-98304-1-8 \n",
+ "connection PostgreSQL-32-8-98304-1 \n",
+ "configuration PostgreSQL-32-8-98304 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod wjjww \n",
+ "pod_count 8 \n",
+ "threads 4 \n",
+ "target 12288 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 3750000 \n",
+ "batchsize -1 \n",
+ "[OVERALL].RunTime(ms) 513732 \n",
+ "[OVERALL].Throughput(ops/sec) 7299.5258228025505 \n",
+ "[TOTAL_GCS_Copy].Count 66 \n",
+ "[TOTAL_GC_TIME_Copy].Time(ms) 302 \n",
+ "[TOTAL_GC_TIME_%_Copy].Time(%) 0.0587855146263032 \n",
+ "[TOTAL_GCS_MarkSweepCompact].Count 0 \n",
+ "[TOTAL_GC_TIME_MarkSweepCompact].Time(ms) 0 \n",
+ "[TOTAL_GC_TIME_%_MarkSweepCompact].Time(%) 0.0 \n",
+ "[TOTAL_GCs].Count 66 \n",
+ "[TOTAL_GC_TIME].Time(ms) 302 \n",
+ "[TOTAL_GC_TIME_%].Time(%) 0.0587855146263032 \n",
+ "[READ].Operations 1875658 \n",
+ "[READ].AverageLatency(us) 426.3018178154013 \n",
+ "[READ].MinLatency(us) 96 \n",
+ "[READ].MaxLatency(us) 9420799 \n",
+ "[READ].95thPercentileLatency(us) 772 \n",
+ "[READ].99thPercentileLatency(us) 2399 \n",
+ "[READ].Return=OK 1875658 \n",
+ "[CLEANUP].Operations 4 \n",
+ "[CLEANUP].AverageLatency(us) 141.75 \n",
+ "[CLEANUP].MinLatency(us) 77 \n",
+ "[CLEANUP].MaxLatency(us) 299 \n",
+ "[CLEANUP].95thPercentileLatency(us) 299 \n",
+ "[CLEANUP].99thPercentileLatency(us) 299 \n",
+ "[UPDATE].Operations 1874342 \n",
+ "[UPDATE].AverageLatency(us) 640.6968872276244 \n",
+ "[UPDATE].MinLatency(us) 104 \n",
+ "[UPDATE].MaxLatency(us) 18579455 \n",
+ "[UPDATE].95thPercentileLatency(us) 1043 \n",
+ "[UPDATE].99thPercentileLatency(us) 3525 \n",
+ "[UPDATE].Return=OK 1874342 \n",
+ "\n",
+ "[43 rows x 72 columns]"
+ ]
+ },
+ "execution_count": 32,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_df_benchmarking()\n",
+ "#df = df[df.columns.drop(list(df.filter(regex='FAILED')))]\n",
+ "df.T"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Reconstruct Workflow out of Result\n",
+ "\n",
+ "How many benchmarker have been used per configuration?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'PostgreSQL-32-1-114688': [[1]],\n",
+ " 'PostgreSQL-32-1-131072': [[1]],\n",
+ " 'PostgreSQL-32-1-16384': [[1]],\n",
+ " 'PostgreSQL-32-1-32768': [[1]],\n",
+ " 'PostgreSQL-32-1-49152': [[1]],\n",
+ " 'PostgreSQL-32-1-65536': [[1]],\n",
+ " 'PostgreSQL-32-1-81920': [[1]],\n",
+ " 'PostgreSQL-32-1-98304': [[1]],\n",
+ " 'PostgreSQL-32-8-114688': [[8]],\n",
+ " 'PostgreSQL-32-8-131072': [[8]],\n",
+ " 'PostgreSQL-32-8-16384': [[8]],\n",
+ " 'PostgreSQL-32-8-32768': [[8]],\n",
+ " 'PostgreSQL-32-8-49152': [[8]],\n",
+ " 'PostgreSQL-32-8-65536': [[8]],\n",
+ " 'PostgreSQL-32-8-81920': [[8]],\n",
+ " 'PostgreSQL-32-8-98304': [[8]]}"
+ ]
+ },
+ "execution_count": 33,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "evaluation.reconstruct_workflow(df)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Plot Results\n",
+ "\n",
+ "### Set Data Types for Plotting"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " connection \n",
+ " configuration \n",
+ " experiment_run \n",
+ " client \n",
+ " pod \n",
+ " pod_count \n",
+ " threads \n",
+ " target \n",
+ " sf \n",
+ " workload \n",
+ " ... \n",
+ " [CLEANUP].MaxLatency(us) \n",
+ " [CLEANUP].95thPercentileLatency(us) \n",
+ " [CLEANUP].99thPercentileLatency(us) \n",
+ " [UPDATE].Operations \n",
+ " [UPDATE].AverageLatency(us) \n",
+ " [UPDATE].MinLatency(us) \n",
+ " [UPDATE].MaxLatency(us) \n",
+ " [UPDATE].95thPercentileLatency(us) \n",
+ " [UPDATE].99thPercentileLatency(us) \n",
+ " [UPDATE].Return=OK \n",
+ " \n",
+ " \n",
+ " connection_pod \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-16384-1-2 \n",
+ " PostgreSQL-32-8-16384-1 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " 1 \n",
+ " 1 \n",
+ " 6qp9s \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 267.0 \n",
+ " 267.0 \n",
+ " 267.0 \n",
+ " 1875349 \n",
+ " 279.281535 \n",
+ " 111.0 \n",
+ " 130815.0 \n",
+ " 430.0 \n",
+ " 692.0 \n",
+ " 1875349 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-16384-1-3 \n",
+ " PostgreSQL-32-8-16384-1 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " 1 \n",
+ " 1 \n",
+ " 77mw4 \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 228.0 \n",
+ " 228.0 \n",
+ " 228.0 \n",
+ " 1874880 \n",
+ " 279.843256 \n",
+ " 109.0 \n",
+ " 77247.0 \n",
+ " 503.0 \n",
+ " 648.0 \n",
+ " 1874880 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-16384-1-4 \n",
+ " PostgreSQL-32-8-16384-1 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " 1 \n",
+ " 1 \n",
+ " cpwg6 \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 244.0 \n",
+ " 244.0 \n",
+ " 244.0 \n",
+ " 1875427 \n",
+ " 269.904560 \n",
+ " 109.0 \n",
+ " 130175.0 \n",
+ " 415.0 \n",
+ " 649.0 \n",
+ " 1875427 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-16384-1-5 \n",
+ " PostgreSQL-32-8-16384-1 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " 1 \n",
+ " 1 \n",
+ " cxgj6 \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 204.0 \n",
+ " 204.0 \n",
+ " 204.0 \n",
+ " 1875337 \n",
+ " 297.950520 \n",
+ " 109.0 \n",
+ " 76415.0 \n",
+ " 467.0 \n",
+ " 640.0 \n",
+ " 1875337 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-16384-1-6 \n",
+ " PostgreSQL-32-8-16384-1 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " 1 \n",
+ " 1 \n",
+ " jpmmp \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 292.0 \n",
+ " 292.0 \n",
+ " 292.0 \n",
+ " 1875014 \n",
+ " 261.791274 \n",
+ " 108.0 \n",
+ " 55775.0 \n",
+ " 398.0 \n",
+ " 625.0 \n",
+ " 1875014 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-16384-1-7 \n",
+ " PostgreSQL-32-8-16384-1 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " 1 \n",
+ " 1 \n",
+ " rt4r9 \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 230.0 \n",
+ " 230.0 \n",
+ " 230.0 \n",
+ " 1873638 \n",
+ " 291.152009 \n",
+ " 114.0 \n",
+ " 118847.0 \n",
+ " 515.0 \n",
+ " 655.0 \n",
+ " 1873638 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-16384-1-8 \n",
+ " PostgreSQL-32-8-16384-1 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " 1 \n",
+ " 1 \n",
+ " tfbqm \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 215.0 \n",
+ " 215.0 \n",
+ " 215.0 \n",
+ " 1875605 \n",
+ " 285.543071 \n",
+ " 113.0 \n",
+ " 127295.0 \n",
+ " 491.0 \n",
+ " 633.0 \n",
+ " 1875605 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-16384-1-1 \n",
+ " PostgreSQL-32-8-16384-1 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " 1 \n",
+ " 1 \n",
+ " 28mm2 \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 238.0 \n",
+ " 238.0 \n",
+ " 238.0 \n",
+ " 1873921 \n",
+ " 259.960231 \n",
+ " 108.0 \n",
+ " 88511.0 \n",
+ " 461.0 \n",
+ " 614.0 \n",
+ " 1873921 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-32768-1-4 \n",
+ " PostgreSQL-32-8-32768-1 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " 1 \n",
+ " 1 \n",
+ " j2j7f \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 324.0 \n",
+ " 324.0 \n",
+ " 324.0 \n",
+ " 1876703 \n",
+ " 312.227578 \n",
+ " 107.0 \n",
+ " 735231.0 \n",
+ " 478.0 \n",
+ " 929.0 \n",
+ " 1876703 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-32768-1-1 \n",
+ " PostgreSQL-32-8-32768-1 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " 1 \n",
+ " 1 \n",
+ " 2pf8r \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 282.0 \n",
+ " 282.0 \n",
+ " 282.0 \n",
+ " 1874112 \n",
+ " 290.050854 \n",
+ " 109.0 \n",
+ " 97407.0 \n",
+ " 454.0 \n",
+ " 946.0 \n",
+ " 1874112 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-32768-1-2 \n",
+ " PostgreSQL-32-8-32768-1 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " 1 \n",
+ " 1 \n",
+ " 5szs7 \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 236.0 \n",
+ " 236.0 \n",
+ " 236.0 \n",
+ " 1875046 \n",
+ " 295.300415 \n",
+ " 110.0 \n",
+ " 332287.0 \n",
+ " 437.0 \n",
+ " 1008.0 \n",
+ " 1875046 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-32768-1-3 \n",
+ " PostgreSQL-32-8-32768-1 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " 1 \n",
+ " 1 \n",
+ " cfgn7 \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 260.0 \n",
+ " 260.0 \n",
+ " 260.0 \n",
+ " 1874994 \n",
+ " 304.605591 \n",
+ " 103.0 \n",
+ " 1277951.0 \n",
+ " 471.0 \n",
+ " 971.0 \n",
+ " 1874994 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-32768-1-5 \n",
+ " PostgreSQL-32-8-32768-1 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " 1 \n",
+ " 1 \n",
+ " lc8b4 \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 264.0 \n",
+ " 264.0 \n",
+ " 264.0 \n",
+ " 1873702 \n",
+ " 282.308903 \n",
+ " 105.0 \n",
+ " 159871.0 \n",
+ " 430.0 \n",
+ " 929.0 \n",
+ " 1873702 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-32768-1-6 \n",
+ " PostgreSQL-32-8-32768-1 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " 1 \n",
+ " 1 \n",
+ " mt7d6 \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 323.0 \n",
+ " 323.0 \n",
+ " 323.0 \n",
+ " 1874082 \n",
+ " 309.469422 \n",
+ " 110.0 \n",
+ " 86015.0 \n",
+ " 508.0 \n",
+ " 823.0 \n",
+ " 1874082 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-32768-1-7 \n",
+ " PostgreSQL-32-8-32768-1 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " 1 \n",
+ " 1 \n",
+ " p9tms \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 301.0 \n",
+ " 301.0 \n",
+ " 301.0 \n",
+ " 1875937 \n",
+ " 312.520923 \n",
+ " 109.0 \n",
+ " 539135.0 \n",
+ " 485.0 \n",
+ " 975.0 \n",
+ " 1875937 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-32768-1-8 \n",
+ " PostgreSQL-32-8-32768-1 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " 1 \n",
+ " 1 \n",
+ " rt62c \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 344.0 \n",
+ " 344.0 \n",
+ " 344.0 \n",
+ " 1876930 \n",
+ " 313.031167 \n",
+ " 111.0 \n",
+ " 270079.0 \n",
+ " 482.0 \n",
+ " 971.0 \n",
+ " 1876930 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-49152-1-1 \n",
+ " PostgreSQL-32-8-49152-1 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " 1 \n",
+ " 1 \n",
+ " 5wh9k \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 349.0 \n",
+ " 349.0 \n",
+ " 349.0 \n",
+ " 1875039 \n",
+ " 483.460633 \n",
+ " 105.0 \n",
+ " 12902399.0 \n",
+ " 625.0 \n",
+ " 2353.0 \n",
+ " 1875039 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-49152-1-2 \n",
+ " PostgreSQL-32-8-49152-1 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " 1 \n",
+ " 1 \n",
+ " 998gf \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 278.0 \n",
+ " 278.0 \n",
+ " 278.0 \n",
+ " 1874709 \n",
+ " 473.292028 \n",
+ " 101.0 \n",
+ " 18120703.0 \n",
+ " 637.0 \n",
+ " 2247.0 \n",
+ " 1874709 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-49152-1-3 \n",
+ " PostgreSQL-32-8-49152-1 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " 1 \n",
+ " 1 \n",
+ " ghk57 \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 425.0 \n",
+ " 425.0 \n",
+ " 425.0 \n",
+ " 1873652 \n",
+ " 469.840329 \n",
+ " 105.0 \n",
+ " 16007167.0 \n",
+ " 651.0 \n",
+ " 2293.0 \n",
+ " 1873652 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-49152-1-4 \n",
+ " PostgreSQL-32-8-49152-1 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " 1 \n",
+ " 1 \n",
+ " rvqs4 \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 1652.0 \n",
+ " 1652.0 \n",
+ " 1652.0 \n",
+ " 1875591 \n",
+ " 507.224280 \n",
+ " 105.0 \n",
+ " 18219007.0 \n",
+ " 658.0 \n",
+ " 2231.0 \n",
+ " 1875591 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-49152-1-7 \n",
+ " PostgreSQL-32-8-49152-1 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " 1 \n",
+ " 1 \n",
+ " tqqdc \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 307.0 \n",
+ " 307.0 \n",
+ " 307.0 \n",
+ " 1874986 \n",
+ " 494.877304 \n",
+ " 101.0 \n",
+ " 14909439.0 \n",
+ " 675.0 \n",
+ " 2257.0 \n",
+ " 1874986 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-49152-1-8 \n",
+ " PostgreSQL-32-8-49152-1 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " 1 \n",
+ " 1 \n",
+ " xwgtc \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 348.0 \n",
+ " 348.0 \n",
+ " 348.0 \n",
+ " 1876064 \n",
+ " 441.921570 \n",
+ " 105.0 \n",
+ " 14909439.0 \n",
+ " 646.0 \n",
+ " 2269.0 \n",
+ " 1876064 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-49152-1-6 \n",
+ " PostgreSQL-32-8-49152-1 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " 1 \n",
+ " 1 \n",
+ " sgxpf \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 311.0 \n",
+ " 311.0 \n",
+ " 311.0 \n",
+ " 1874523 \n",
+ " 464.176237 \n",
+ " 107.0 \n",
+ " 18382847.0 \n",
+ " 641.0 \n",
+ " 2301.0 \n",
+ " 1874523 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-49152-1-5 \n",
+ " PostgreSQL-32-8-49152-1 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " 1 \n",
+ " 1 \n",
+ " sfzq5 \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 304.0 \n",
+ " 304.0 \n",
+ " 304.0 \n",
+ " 1874898 \n",
+ " 494.085958 \n",
+ " 107.0 \n",
+ " 21233663.0 \n",
+ " 654.0 \n",
+ " 2133.0 \n",
+ " 1874898 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-65536-1-2 \n",
+ " PostgreSQL-32-8-65536-1 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " 1 \n",
+ " 1 \n",
+ " l25nl \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 301.0 \n",
+ " 301.0 \n",
+ " 301.0 \n",
+ " 1875272 \n",
+ " 620.948668 \n",
+ " 101.0 \n",
+ " 20856831.0 \n",
+ " 1096.0 \n",
+ " 3859.0 \n",
+ " 1875272 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-65536-1-8 \n",
+ " PostgreSQL-32-8-65536-1 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " 1 \n",
+ " 1 \n",
+ " z58tr \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 290.0 \n",
+ " 290.0 \n",
+ " 290.0 \n",
+ " 1872314 \n",
+ " 603.486167 \n",
+ " 107.0 \n",
+ " 13221887.0 \n",
+ " 1076.0 \n",
+ " 3917.0 \n",
+ " 1872314 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-65536-1-7 \n",
+ " PostgreSQL-32-8-65536-1 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " 1 \n",
+ " 1 \n",
+ " wp69b \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 322.0 \n",
+ " 322.0 \n",
+ " 322.0 \n",
+ " 1874271 \n",
+ " 618.117459 \n",
+ " 103.0 \n",
+ " 20905983.0 \n",
+ " 1085.0 \n",
+ " 3907.0 \n",
+ " 1874271 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-65536-1-1 \n",
+ " PostgreSQL-32-8-65536-1 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " 1 \n",
+ " 1 \n",
+ " 5spjq \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 313.0 \n",
+ " 313.0 \n",
+ " 313.0 \n",
+ " 1875000 \n",
+ " 634.823838 \n",
+ " 100.0 \n",
+ " 21069823.0 \n",
+ " 1046.0 \n",
+ " 3931.0 \n",
+ " 1875000 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-65536-1-5 \n",
+ " PostgreSQL-32-8-65536-1 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " 1 \n",
+ " 1 \n",
+ " rh8zl \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 515.0 \n",
+ " 515.0 \n",
+ " 515.0 \n",
+ " 1875343 \n",
+ " 610.272305 \n",
+ " 100.0 \n",
+ " 20627455.0 \n",
+ " 1018.0 \n",
+ " 3753.0 \n",
+ " 1875343 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-65536-1-4 \n",
+ " PostgreSQL-32-8-65536-1 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " 1 \n",
+ " 1 \n",
+ " nws4x \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 332.0 \n",
+ " 332.0 \n",
+ " 332.0 \n",
+ " 1875071 \n",
+ " 622.472328 \n",
+ " 104.0 \n",
+ " 16457727.0 \n",
+ " 1053.0 \n",
+ " 3851.0 \n",
+ " 1875071 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-65536-1-6 \n",
+ " PostgreSQL-32-8-65536-1 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " 1 \n",
+ " 1 \n",
+ " vc88w \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 608.0 \n",
+ " 608.0 \n",
+ " 608.0 \n",
+ " 1875539 \n",
+ " 628.395195 \n",
+ " 102.0 \n",
+ " 20987903.0 \n",
+ " 1081.0 \n",
+ " 3865.0 \n",
+ " 1875539 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-65536-1-3 \n",
+ " PostgreSQL-32-8-65536-1 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " 1 \n",
+ " 1 \n",
+ " lrgp7 \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 297.0 \n",
+ " 297.0 \n",
+ " 297.0 \n",
+ " 1875517 \n",
+ " 609.462749 \n",
+ " 103.0 \n",
+ " 20922367.0 \n",
+ " 1087.0 \n",
+ " 3897.0 \n",
+ " 1875517 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-81920-1-8 \n",
+ " PostgreSQL-32-8-81920-1 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " 1 \n",
+ " 1 \n",
+ " xn2w5 \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 335.0 \n",
+ " 335.0 \n",
+ " 335.0 \n",
+ " 1875864 \n",
+ " 618.472218 \n",
+ " 98.0 \n",
+ " 20955135.0 \n",
+ " 1088.0 \n",
+ " 3275.0 \n",
+ " 1875864 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-81920-1-6 \n",
+ " PostgreSQL-32-8-81920-1 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " 1 \n",
+ " 1 \n",
+ " tt4fm \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 362.0 \n",
+ " 362.0 \n",
+ " 362.0 \n",
+ " 1875823 \n",
+ " 597.406558 \n",
+ " 113.0 \n",
+ " 20463615.0 \n",
+ " 972.0 \n",
+ " 3363.0 \n",
+ " 1875823 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-81920-1-7 \n",
+ " PostgreSQL-32-8-81920-1 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " 1 \n",
+ " 1 \n",
+ " vhthf \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 320.0 \n",
+ " 320.0 \n",
+ " 320.0 \n",
+ " 1875332 \n",
+ " 621.982541 \n",
+ " 105.0 \n",
+ " 20430847.0 \n",
+ " 1007.0 \n",
+ " 3367.0 \n",
+ " 1875332 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-81920-1-3 \n",
+ " PostgreSQL-32-8-81920-1 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " 1 \n",
+ " 1 \n",
+ " b7bh7 \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 384.0 \n",
+ " 384.0 \n",
+ " 384.0 \n",
+ " 1873757 \n",
+ " 583.579925 \n",
+ " 105.0 \n",
+ " 20496383.0 \n",
+ " 951.0 \n",
+ " 3315.0 \n",
+ " 1873757 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-81920-1-2 \n",
+ " PostgreSQL-32-8-81920-1 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " 1 \n",
+ " 1 \n",
+ " 9wm6b \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 318.0 \n",
+ " 318.0 \n",
+ " 318.0 \n",
+ " 1874917 \n",
+ " 616.268760 \n",
+ " 104.0 \n",
+ " 20856831.0 \n",
+ " 1026.0 \n",
+ " 3347.0 \n",
+ " 1874917 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-81920-1-1 \n",
+ " PostgreSQL-32-8-81920-1 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " 1 \n",
+ " 1 \n",
+ " 9hk6b \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 302.0 \n",
+ " 302.0 \n",
+ " 302.0 \n",
+ " 1876646 \n",
+ " 621.082813 \n",
+ " 104.0 \n",
+ " 20922367.0 \n",
+ " 954.0 \n",
+ " 3241.0 \n",
+ " 1876646 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-81920-1-4 \n",
+ " PostgreSQL-32-8-81920-1 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " 1 \n",
+ " 1 \n",
+ " kfjzh \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 683.0 \n",
+ " 683.0 \n",
+ " 683.0 \n",
+ " 1874551 \n",
+ " 615.696021 \n",
+ " 102.0 \n",
+ " 20201471.0 \n",
+ " 1009.0 \n",
+ " 3347.0 \n",
+ " 1874551 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-81920-1-5 \n",
+ " PostgreSQL-32-8-81920-1 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " 1 \n",
+ " 1 \n",
+ " krdkb \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 412.0 \n",
+ " 412.0 \n",
+ " 412.0 \n",
+ " 1874516 \n",
+ " 578.652579 \n",
+ " 107.0 \n",
+ " 20545535.0 \n",
+ " 1008.0 \n",
+ " 3395.0 \n",
+ " 1874516 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-98304-1-1 \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " 1 \n",
+ " 1 \n",
+ " 45zhr \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 358.0 \n",
+ " 358.0 \n",
+ " 358.0 \n",
+ " 1874362 \n",
+ " 610.307512 \n",
+ " 105.0 \n",
+ " 18710527.0 \n",
+ " 1032.0 \n",
+ " 3517.0 \n",
+ " 1874362 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-98304-1-2 \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " 1 \n",
+ " 1 \n",
+ " bhvd9 \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 352.0 \n",
+ " 352.0 \n",
+ " 352.0 \n",
+ " 1874785 \n",
+ " 620.062738 \n",
+ " 98.0 \n",
+ " 18956287.0 \n",
+ " 1086.0 \n",
+ " 3495.0 \n",
+ " 1874785 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-98304-1-3 \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " 1 \n",
+ " 1 \n",
+ " k4r5r \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 304.0 \n",
+ " 304.0 \n",
+ " 304.0 \n",
+ " 1873140 \n",
+ " 592.218152 \n",
+ " 101.0 \n",
+ " 18956287.0 \n",
+ " 1072.0 \n",
+ " 3579.0 \n",
+ " 1873140 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-98304-1-4 \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " 1 \n",
+ " 1 \n",
+ " kq9kf \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 270.0 \n",
+ " 270.0 \n",
+ " 270.0 \n",
+ " 1876173 \n",
+ " 606.348524 \n",
+ " 114.0 \n",
+ " 18317311.0 \n",
+ " 1011.0 \n",
+ " 3465.0 \n",
+ " 1876173 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-98304-1-5 \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " 1 \n",
+ " 1 \n",
+ " mlt4b \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 1324.0 \n",
+ " 1324.0 \n",
+ " 1324.0 \n",
+ " 1873546 \n",
+ " 621.741993 \n",
+ " 99.0 \n",
+ " 17874943.0 \n",
+ " 1015.0 \n",
+ " 3449.0 \n",
+ " 1873546 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-98304-1-6 \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " 1 \n",
+ " 1 \n",
+ " rksk7 \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 355.0 \n",
+ " 355.0 \n",
+ " 355.0 \n",
+ " 1876248 \n",
+ " 604.160926 \n",
+ " 107.0 \n",
+ " 18776063.0 \n",
+ " 966.0 \n",
+ " 3267.0 \n",
+ " 1876248 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-98304-1-8 \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " 1 \n",
+ " 1 \n",
+ " wjjww \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 299.0 \n",
+ " 299.0 \n",
+ " 299.0 \n",
+ " 1874342 \n",
+ " 640.696887 \n",
+ " 104.0 \n",
+ " 18579455.0 \n",
+ " 1043.0 \n",
+ " 3525.0 \n",
+ " 1874342 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-98304-1-7 \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " 1 \n",
+ " 1 \n",
+ " vn5b4 \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 991.0 \n",
+ " 991.0 \n",
+ " 991.0 \n",
+ " 1875485 \n",
+ " 621.688254 \n",
+ " 102.0 \n",
+ " 18759679.0 \n",
+ " 1080.0 \n",
+ " 3613.0 \n",
+ " 1875485 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-114688-1-4 \n",
+ " PostgreSQL-32-8-114688-1 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " 1 \n",
+ " 1 \n",
+ " hg76g \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 282.0 \n",
+ " 282.0 \n",
+ " 282.0 \n",
+ " 1873433 \n",
+ " 598.484479 \n",
+ " 105.0 \n",
+ " 20119551.0 \n",
+ " 1020.0 \n",
+ " 3705.0 \n",
+ " 1873433 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-114688-1-1 \n",
+ " PostgreSQL-32-8-114688-1 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " 1 \n",
+ " 1 \n",
+ " 2jq82 \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 420.0 \n",
+ " 420.0 \n",
+ " 420.0 \n",
+ " 1874504 \n",
+ " 569.857987 \n",
+ " 99.0 \n",
+ " 20135935.0 \n",
+ " 1010.0 \n",
+ " 3501.0 \n",
+ " 1874504 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-114688-1-2 \n",
+ " PostgreSQL-32-8-114688-1 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8tw89 \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 352.0 \n",
+ " 352.0 \n",
+ " 352.0 \n",
+ " 1877114 \n",
+ " 599.267765 \n",
+ " 96.0 \n",
+ " 18825215.0 \n",
+ " 1047.0 \n",
+ " 3589.0 \n",
+ " 1877114 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-114688-1-3 \n",
+ " PostgreSQL-32-8-114688-1 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " 1 \n",
+ " 1 \n",
+ " fzvfv \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 324.0 \n",
+ " 324.0 \n",
+ " 324.0 \n",
+ " 1875507 \n",
+ " 583.797519 \n",
+ " 105.0 \n",
+ " 13819903.0 \n",
+ " 1076.0 \n",
+ " 3627.0 \n",
+ " 1875507 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-114688-1-5 \n",
+ " PostgreSQL-32-8-114688-1 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " 1 \n",
+ " 1 \n",
+ " jwcxm \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 335.0 \n",
+ " 335.0 \n",
+ " 335.0 \n",
+ " 1874515 \n",
+ " 588.496871 \n",
+ " 108.0 \n",
+ " 13819903.0 \n",
+ " 1063.0 \n",
+ " 3871.0 \n",
+ " 1874515 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-114688-1-6 \n",
+ " PostgreSQL-32-8-114688-1 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " 1 \n",
+ " 1 \n",
+ " knc8q \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 374.0 \n",
+ " 374.0 \n",
+ " 374.0 \n",
+ " 1875905 \n",
+ " 634.300144 \n",
+ " 98.0 \n",
+ " 20103167.0 \n",
+ " 997.0 \n",
+ " 3533.0 \n",
+ " 1875905 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-114688-1-8 \n",
+ " PostgreSQL-32-8-114688-1 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " 1 \n",
+ " 1 \n",
+ " sf8fh \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 301.0 \n",
+ " 301.0 \n",
+ " 301.0 \n",
+ " 1874330 \n",
+ " 616.061852 \n",
+ " 112.0 \n",
+ " 20299775.0 \n",
+ " 1029.0 \n",
+ " 3697.0 \n",
+ " 1874330 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-114688-1-7 \n",
+ " PostgreSQL-32-8-114688-1 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " 1 \n",
+ " 1 \n",
+ " kp9r9 \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 408.0 \n",
+ " 408.0 \n",
+ " 408.0 \n",
+ " 1875886 \n",
+ " 588.626170 \n",
+ " 105.0 \n",
+ " 18530303.0 \n",
+ " 999.0 \n",
+ " 3651.0 \n",
+ " 1875886 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-16384-1-1 \n",
+ " PostgreSQL-32-1-16384-1 \n",
+ " PostgreSQL-32-1-16384 \n",
+ " 1 \n",
+ " 1 \n",
+ " dpz6r \n",
+ " 1 \n",
+ " 32 \n",
+ " 16384 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 269.0 \n",
+ " 170.0 \n",
+ " 269.0 \n",
+ " 14999798 \n",
+ " 260.757995 \n",
+ " 102.0 \n",
+ " 67071.0 \n",
+ " 434.0 \n",
+ " 573.0 \n",
+ " 14999798 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-131072-1-8 \n",
+ " PostgreSQL-32-8-131072-1 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " 1 \n",
+ " 1 \n",
+ " qkjzm \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 310.0 \n",
+ " 310.0 \n",
+ " 310.0 \n",
+ " 1875211 \n",
+ " 554.659974 \n",
+ " 108.0 \n",
+ " 18563071.0 \n",
+ " 953.0 \n",
+ " 3395.0 \n",
+ " 1875211 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-131072-1-2 \n",
+ " PostgreSQL-32-8-131072-1 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " 1 \n",
+ " 1 \n",
+ " 82tzj \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 358.0 \n",
+ " 358.0 \n",
+ " 358.0 \n",
+ " 1874712 \n",
+ " 614.491262 \n",
+ " 97.0 \n",
+ " 18939903.0 \n",
+ " 976.0 \n",
+ " 3417.0 \n",
+ " 1874712 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-131072-1-3 \n",
+ " PostgreSQL-32-8-131072-1 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " 1 \n",
+ " 1 \n",
+ " cdllj \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 311.0 \n",
+ " 311.0 \n",
+ " 311.0 \n",
+ " 1875603 \n",
+ " 584.949657 \n",
+ " 111.0 \n",
+ " 18399231.0 \n",
+ " 909.0 \n",
+ " 3303.0 \n",
+ " 1875603 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-131072-1-4 \n",
+ " PostgreSQL-32-8-131072-1 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " 1 \n",
+ " 1 \n",
+ " dxbqh \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 340.0 \n",
+ " 340.0 \n",
+ " 340.0 \n",
+ " 1873868 \n",
+ " 602.965952 \n",
+ " 106.0 \n",
+ " 20185087.0 \n",
+ " 912.0 \n",
+ " 3287.0 \n",
+ " 1873868 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-131072-1-5 \n",
+ " PostgreSQL-32-8-131072-1 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " 1 \n",
+ " 1 \n",
+ " fg7g6 \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 376.0 \n",
+ " 376.0 \n",
+ " 376.0 \n",
+ " 1876344 \n",
+ " 587.999810 \n",
+ " 103.0 \n",
+ " 20250623.0 \n",
+ " 923.0 \n",
+ " 3303.0 \n",
+ " 1876344 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-131072-1-6 \n",
+ " PostgreSQL-32-8-131072-1 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " 1 \n",
+ " 1 \n",
+ " g2lp7 \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 342.0 \n",
+ " 342.0 \n",
+ " 342.0 \n",
+ " 1875315 \n",
+ " 599.226824 \n",
+ " 96.0 \n",
+ " 18481151.0 \n",
+ " 987.0 \n",
+ " 3435.0 \n",
+ " 1875315 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-131072-1-7 \n",
+ " PostgreSQL-32-8-131072-1 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " 1 \n",
+ " 1 \n",
+ " gtfsx \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 310.0 \n",
+ " 310.0 \n",
+ " 310.0 \n",
+ " 1875976 \n",
+ " 605.955583 \n",
+ " 93.0 \n",
+ " 13787135.0 \n",
+ " 948.0 \n",
+ " 3279.0 \n",
+ " 1875976 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-131072-1-1 \n",
+ " PostgreSQL-32-8-131072-1 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " 1 \n",
+ " 1 \n",
+ " 6zf7s \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 536.0 \n",
+ " 536.0 \n",
+ " 536.0 \n",
+ " 1875599 \n",
+ " 556.295206 \n",
+ " 105.0 \n",
+ " 13787135.0 \n",
+ " 961.0 \n",
+ " 3445.0 \n",
+ " 1875599 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-32768-1-1 \n",
+ " PostgreSQL-32-1-32768-1 \n",
+ " PostgreSQL-32-1-32768 \n",
+ " 1 \n",
+ " 1 \n",
+ " k6vs7 \n",
+ " 1 \n",
+ " 32 \n",
+ " 32768 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 651.0 \n",
+ " 343.0 \n",
+ " 651.0 \n",
+ " 15000722 \n",
+ " 262.927871 \n",
+ " 101.0 \n",
+ " 722943.0 \n",
+ " 415.0 \n",
+ " 580.0 \n",
+ " 15000722 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-49152-1-1 \n",
+ " PostgreSQL-32-1-49152-1 \n",
+ " PostgreSQL-32-1-49152 \n",
+ " 1 \n",
+ " 1 \n",
+ " klpvs \n",
+ " 1 \n",
+ " 32 \n",
+ " 49152 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 2655.0 \n",
+ " 146.0 \n",
+ " 2655.0 \n",
+ " 14998304 \n",
+ " 454.032034 \n",
+ " 93.0 \n",
+ " 18235391.0 \n",
+ " 535.0 \n",
+ " 1687.0 \n",
+ " 14998304 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-65536-1-1 \n",
+ " PostgreSQL-32-1-65536-1 \n",
+ " PostgreSQL-32-1-65536 \n",
+ " 1 \n",
+ " 1 \n",
+ " 7w4z9 \n",
+ " 1 \n",
+ " 32 \n",
+ " 65536 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 343.0 \n",
+ " 168.0 \n",
+ " 343.0 \n",
+ " 14996210 \n",
+ " 644.124900 \n",
+ " 93.0 \n",
+ " 20774911.0 \n",
+ " 1075.0 \n",
+ " 3657.0 \n",
+ " 14996210 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-81920-1-1 \n",
+ " PostgreSQL-32-1-81920-1 \n",
+ " PostgreSQL-32-1-81920 \n",
+ " 1 \n",
+ " 1 \n",
+ " chmc5 \n",
+ " 1 \n",
+ " 32 \n",
+ " 81920 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 938.0 \n",
+ " 175.0 \n",
+ " 938.0 \n",
+ " 15001854 \n",
+ " 630.408114 \n",
+ " 93.0 \n",
+ " 20758527.0 \n",
+ " 1115.0 \n",
+ " 3731.0 \n",
+ " 15001854 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-98304-1-1 \n",
+ " PostgreSQL-32-1-98304-1 \n",
+ " PostgreSQL-32-1-98304 \n",
+ " 1 \n",
+ " 1 \n",
+ " 7lqx2 \n",
+ " 1 \n",
+ " 32 \n",
+ " 98304 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 377.0 \n",
+ " 187.0 \n",
+ " 377.0 \n",
+ " 14995937 \n",
+ " 620.081984 \n",
+ " 93.0 \n",
+ " 18956287.0 \n",
+ " 1065.0 \n",
+ " 3641.0 \n",
+ " 14995937 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-114688-1-1 \n",
+ " PostgreSQL-32-1-114688-1 \n",
+ " PostgreSQL-32-1-114688 \n",
+ " 1 \n",
+ " 1 \n",
+ " mwnxg \n",
+ " 1 \n",
+ " 32 \n",
+ " 114688 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 305.0 \n",
+ " 178.0 \n",
+ " 305.0 \n",
+ " 15000966 \n",
+ " 635.884341 \n",
+ " 95.0 \n",
+ " 20987903.0 \n",
+ " 1041.0 \n",
+ " 3383.0 \n",
+ " 15000966 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-131072-1-1 \n",
+ " PostgreSQL-32-1-131072-1 \n",
+ " PostgreSQL-32-1-131072 \n",
+ " 1 \n",
+ " 1 \n",
+ " zp9vj \n",
+ " 1 \n",
+ " 32 \n",
+ " 131072 \n",
+ " 30 \n",
+ " a \n",
+ " ... \n",
+ " 305.0 \n",
+ " 132.0 \n",
+ " 305.0 \n",
+ " 14999563 \n",
+ " 647.170531 \n",
+ " 94.0 \n",
+ " 20889599.0 \n",
+ " 1061.0 \n",
+ " 3619.0 \n",
+ " 14999563 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
72 rows Ă— 43 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " connection configuration \\\n",
+ "connection_pod \n",
+ "PostgreSQL-32-8-16384-1-2 PostgreSQL-32-8-16384-1 PostgreSQL-32-8-16384 \n",
+ "PostgreSQL-32-8-16384-1-3 PostgreSQL-32-8-16384-1 PostgreSQL-32-8-16384 \n",
+ "PostgreSQL-32-8-16384-1-4 PostgreSQL-32-8-16384-1 PostgreSQL-32-8-16384 \n",
+ "PostgreSQL-32-8-16384-1-5 PostgreSQL-32-8-16384-1 PostgreSQL-32-8-16384 \n",
+ "PostgreSQL-32-8-16384-1-6 PostgreSQL-32-8-16384-1 PostgreSQL-32-8-16384 \n",
+ "PostgreSQL-32-8-16384-1-7 PostgreSQL-32-8-16384-1 PostgreSQL-32-8-16384 \n",
+ "PostgreSQL-32-8-16384-1-8 PostgreSQL-32-8-16384-1 PostgreSQL-32-8-16384 \n",
+ "PostgreSQL-32-8-16384-1-1 PostgreSQL-32-8-16384-1 PostgreSQL-32-8-16384 \n",
+ "PostgreSQL-32-8-32768-1-4 PostgreSQL-32-8-32768-1 PostgreSQL-32-8-32768 \n",
+ "PostgreSQL-32-8-32768-1-1 PostgreSQL-32-8-32768-1 PostgreSQL-32-8-32768 \n",
+ "PostgreSQL-32-8-32768-1-2 PostgreSQL-32-8-32768-1 PostgreSQL-32-8-32768 \n",
+ "PostgreSQL-32-8-32768-1-3 PostgreSQL-32-8-32768-1 PostgreSQL-32-8-32768 \n",
+ "PostgreSQL-32-8-32768-1-5 PostgreSQL-32-8-32768-1 PostgreSQL-32-8-32768 \n",
+ "PostgreSQL-32-8-32768-1-6 PostgreSQL-32-8-32768-1 PostgreSQL-32-8-32768 \n",
+ "PostgreSQL-32-8-32768-1-7 PostgreSQL-32-8-32768-1 PostgreSQL-32-8-32768 \n",
+ "PostgreSQL-32-8-32768-1-8 PostgreSQL-32-8-32768-1 PostgreSQL-32-8-32768 \n",
+ "PostgreSQL-32-8-49152-1-1 PostgreSQL-32-8-49152-1 PostgreSQL-32-8-49152 \n",
+ "PostgreSQL-32-8-49152-1-2 PostgreSQL-32-8-49152-1 PostgreSQL-32-8-49152 \n",
+ "PostgreSQL-32-8-49152-1-3 PostgreSQL-32-8-49152-1 PostgreSQL-32-8-49152 \n",
+ "PostgreSQL-32-8-49152-1-4 PostgreSQL-32-8-49152-1 PostgreSQL-32-8-49152 \n",
+ "PostgreSQL-32-8-49152-1-7 PostgreSQL-32-8-49152-1 PostgreSQL-32-8-49152 \n",
+ "PostgreSQL-32-8-49152-1-8 PostgreSQL-32-8-49152-1 PostgreSQL-32-8-49152 \n",
+ "PostgreSQL-32-8-49152-1-6 PostgreSQL-32-8-49152-1 PostgreSQL-32-8-49152 \n",
+ "PostgreSQL-32-8-49152-1-5 PostgreSQL-32-8-49152-1 PostgreSQL-32-8-49152 \n",
+ "PostgreSQL-32-8-65536-1-2 PostgreSQL-32-8-65536-1 PostgreSQL-32-8-65536 \n",
+ "PostgreSQL-32-8-65536-1-8 PostgreSQL-32-8-65536-1 PostgreSQL-32-8-65536 \n",
+ "PostgreSQL-32-8-65536-1-7 PostgreSQL-32-8-65536-1 PostgreSQL-32-8-65536 \n",
+ "PostgreSQL-32-8-65536-1-1 PostgreSQL-32-8-65536-1 PostgreSQL-32-8-65536 \n",
+ "PostgreSQL-32-8-65536-1-5 PostgreSQL-32-8-65536-1 PostgreSQL-32-8-65536 \n",
+ "PostgreSQL-32-8-65536-1-4 PostgreSQL-32-8-65536-1 PostgreSQL-32-8-65536 \n",
+ "PostgreSQL-32-8-65536-1-6 PostgreSQL-32-8-65536-1 PostgreSQL-32-8-65536 \n",
+ "PostgreSQL-32-8-65536-1-3 PostgreSQL-32-8-65536-1 PostgreSQL-32-8-65536 \n",
+ "PostgreSQL-32-8-81920-1-8 PostgreSQL-32-8-81920-1 PostgreSQL-32-8-81920 \n",
+ "PostgreSQL-32-8-81920-1-6 PostgreSQL-32-8-81920-1 PostgreSQL-32-8-81920 \n",
+ "PostgreSQL-32-8-81920-1-7 PostgreSQL-32-8-81920-1 PostgreSQL-32-8-81920 \n",
+ "PostgreSQL-32-8-81920-1-3 PostgreSQL-32-8-81920-1 PostgreSQL-32-8-81920 \n",
+ "PostgreSQL-32-8-81920-1-2 PostgreSQL-32-8-81920-1 PostgreSQL-32-8-81920 \n",
+ "PostgreSQL-32-8-81920-1-1 PostgreSQL-32-8-81920-1 PostgreSQL-32-8-81920 \n",
+ "PostgreSQL-32-8-81920-1-4 PostgreSQL-32-8-81920-1 PostgreSQL-32-8-81920 \n",
+ "PostgreSQL-32-8-81920-1-5 PostgreSQL-32-8-81920-1 PostgreSQL-32-8-81920 \n",
+ "PostgreSQL-32-8-98304-1-1 PostgreSQL-32-8-98304-1 PostgreSQL-32-8-98304 \n",
+ "PostgreSQL-32-8-98304-1-2 PostgreSQL-32-8-98304-1 PostgreSQL-32-8-98304 \n",
+ "PostgreSQL-32-8-98304-1-3 PostgreSQL-32-8-98304-1 PostgreSQL-32-8-98304 \n",
+ "PostgreSQL-32-8-98304-1-4 PostgreSQL-32-8-98304-1 PostgreSQL-32-8-98304 \n",
+ "PostgreSQL-32-8-98304-1-5 PostgreSQL-32-8-98304-1 PostgreSQL-32-8-98304 \n",
+ "PostgreSQL-32-8-98304-1-6 PostgreSQL-32-8-98304-1 PostgreSQL-32-8-98304 \n",
+ "PostgreSQL-32-8-98304-1-8 PostgreSQL-32-8-98304-1 PostgreSQL-32-8-98304 \n",
+ "PostgreSQL-32-8-98304-1-7 PostgreSQL-32-8-98304-1 PostgreSQL-32-8-98304 \n",
+ "PostgreSQL-32-8-114688-1-4 PostgreSQL-32-8-114688-1 PostgreSQL-32-8-114688 \n",
+ "PostgreSQL-32-8-114688-1-1 PostgreSQL-32-8-114688-1 PostgreSQL-32-8-114688 \n",
+ "PostgreSQL-32-8-114688-1-2 PostgreSQL-32-8-114688-1 PostgreSQL-32-8-114688 \n",
+ "PostgreSQL-32-8-114688-1-3 PostgreSQL-32-8-114688-1 PostgreSQL-32-8-114688 \n",
+ "PostgreSQL-32-8-114688-1-5 PostgreSQL-32-8-114688-1 PostgreSQL-32-8-114688 \n",
+ "PostgreSQL-32-8-114688-1-6 PostgreSQL-32-8-114688-1 PostgreSQL-32-8-114688 \n",
+ "PostgreSQL-32-8-114688-1-8 PostgreSQL-32-8-114688-1 PostgreSQL-32-8-114688 \n",
+ "PostgreSQL-32-8-114688-1-7 PostgreSQL-32-8-114688-1 PostgreSQL-32-8-114688 \n",
+ "PostgreSQL-32-1-16384-1-1 PostgreSQL-32-1-16384-1 PostgreSQL-32-1-16384 \n",
+ "PostgreSQL-32-8-131072-1-8 PostgreSQL-32-8-131072-1 PostgreSQL-32-8-131072 \n",
+ "PostgreSQL-32-8-131072-1-2 PostgreSQL-32-8-131072-1 PostgreSQL-32-8-131072 \n",
+ "PostgreSQL-32-8-131072-1-3 PostgreSQL-32-8-131072-1 PostgreSQL-32-8-131072 \n",
+ "PostgreSQL-32-8-131072-1-4 PostgreSQL-32-8-131072-1 PostgreSQL-32-8-131072 \n",
+ "PostgreSQL-32-8-131072-1-5 PostgreSQL-32-8-131072-1 PostgreSQL-32-8-131072 \n",
+ "PostgreSQL-32-8-131072-1-6 PostgreSQL-32-8-131072-1 PostgreSQL-32-8-131072 \n",
+ "PostgreSQL-32-8-131072-1-7 PostgreSQL-32-8-131072-1 PostgreSQL-32-8-131072 \n",
+ "PostgreSQL-32-8-131072-1-1 PostgreSQL-32-8-131072-1 PostgreSQL-32-8-131072 \n",
+ "PostgreSQL-32-1-32768-1-1 PostgreSQL-32-1-32768-1 PostgreSQL-32-1-32768 \n",
+ "PostgreSQL-32-1-49152-1-1 PostgreSQL-32-1-49152-1 PostgreSQL-32-1-49152 \n",
+ "PostgreSQL-32-1-65536-1-1 PostgreSQL-32-1-65536-1 PostgreSQL-32-1-65536 \n",
+ "PostgreSQL-32-1-81920-1-1 PostgreSQL-32-1-81920-1 PostgreSQL-32-1-81920 \n",
+ "PostgreSQL-32-1-98304-1-1 PostgreSQL-32-1-98304-1 PostgreSQL-32-1-98304 \n",
+ "PostgreSQL-32-1-114688-1-1 PostgreSQL-32-1-114688-1 PostgreSQL-32-1-114688 \n",
+ "PostgreSQL-32-1-131072-1-1 PostgreSQL-32-1-131072-1 PostgreSQL-32-1-131072 \n",
+ "\n",
+ " experiment_run client pod pod_count threads \\\n",
+ "connection_pod \n",
+ "PostgreSQL-32-8-16384-1-2 1 1 6qp9s 8 4 \n",
+ "PostgreSQL-32-8-16384-1-3 1 1 77mw4 8 4 \n",
+ "PostgreSQL-32-8-16384-1-4 1 1 cpwg6 8 4 \n",
+ "PostgreSQL-32-8-16384-1-5 1 1 cxgj6 8 4 \n",
+ "PostgreSQL-32-8-16384-1-6 1 1 jpmmp 8 4 \n",
+ "PostgreSQL-32-8-16384-1-7 1 1 rt4r9 8 4 \n",
+ "PostgreSQL-32-8-16384-1-8 1 1 tfbqm 8 4 \n",
+ "PostgreSQL-32-8-16384-1-1 1 1 28mm2 8 4 \n",
+ "PostgreSQL-32-8-32768-1-4 1 1 j2j7f 8 4 \n",
+ "PostgreSQL-32-8-32768-1-1 1 1 2pf8r 8 4 \n",
+ "PostgreSQL-32-8-32768-1-2 1 1 5szs7 8 4 \n",
+ "PostgreSQL-32-8-32768-1-3 1 1 cfgn7 8 4 \n",
+ "PostgreSQL-32-8-32768-1-5 1 1 lc8b4 8 4 \n",
+ "PostgreSQL-32-8-32768-1-6 1 1 mt7d6 8 4 \n",
+ "PostgreSQL-32-8-32768-1-7 1 1 p9tms 8 4 \n",
+ "PostgreSQL-32-8-32768-1-8 1 1 rt62c 8 4 \n",
+ "PostgreSQL-32-8-49152-1-1 1 1 5wh9k 8 4 \n",
+ "PostgreSQL-32-8-49152-1-2 1 1 998gf 8 4 \n",
+ "PostgreSQL-32-8-49152-1-3 1 1 ghk57 8 4 \n",
+ "PostgreSQL-32-8-49152-1-4 1 1 rvqs4 8 4 \n",
+ "PostgreSQL-32-8-49152-1-7 1 1 tqqdc 8 4 \n",
+ "PostgreSQL-32-8-49152-1-8 1 1 xwgtc 8 4 \n",
+ "PostgreSQL-32-8-49152-1-6 1 1 sgxpf 8 4 \n",
+ "PostgreSQL-32-8-49152-1-5 1 1 sfzq5 8 4 \n",
+ "PostgreSQL-32-8-65536-1-2 1 1 l25nl 8 4 \n",
+ "PostgreSQL-32-8-65536-1-8 1 1 z58tr 8 4 \n",
+ "PostgreSQL-32-8-65536-1-7 1 1 wp69b 8 4 \n",
+ "PostgreSQL-32-8-65536-1-1 1 1 5spjq 8 4 \n",
+ "PostgreSQL-32-8-65536-1-5 1 1 rh8zl 8 4 \n",
+ "PostgreSQL-32-8-65536-1-4 1 1 nws4x 8 4 \n",
+ "PostgreSQL-32-8-65536-1-6 1 1 vc88w 8 4 \n",
+ "PostgreSQL-32-8-65536-1-3 1 1 lrgp7 8 4 \n",
+ "PostgreSQL-32-8-81920-1-8 1 1 xn2w5 8 4 \n",
+ "PostgreSQL-32-8-81920-1-6 1 1 tt4fm 8 4 \n",
+ "PostgreSQL-32-8-81920-1-7 1 1 vhthf 8 4 \n",
+ "PostgreSQL-32-8-81920-1-3 1 1 b7bh7 8 4 \n",
+ "PostgreSQL-32-8-81920-1-2 1 1 9wm6b 8 4 \n",
+ "PostgreSQL-32-8-81920-1-1 1 1 9hk6b 8 4 \n",
+ "PostgreSQL-32-8-81920-1-4 1 1 kfjzh 8 4 \n",
+ "PostgreSQL-32-8-81920-1-5 1 1 krdkb 8 4 \n",
+ "PostgreSQL-32-8-98304-1-1 1 1 45zhr 8 4 \n",
+ "PostgreSQL-32-8-98304-1-2 1 1 bhvd9 8 4 \n",
+ "PostgreSQL-32-8-98304-1-3 1 1 k4r5r 8 4 \n",
+ "PostgreSQL-32-8-98304-1-4 1 1 kq9kf 8 4 \n",
+ "PostgreSQL-32-8-98304-1-5 1 1 mlt4b 8 4 \n",
+ "PostgreSQL-32-8-98304-1-6 1 1 rksk7 8 4 \n",
+ "PostgreSQL-32-8-98304-1-8 1 1 wjjww 8 4 \n",
+ "PostgreSQL-32-8-98304-1-7 1 1 vn5b4 8 4 \n",
+ "PostgreSQL-32-8-114688-1-4 1 1 hg76g 8 4 \n",
+ "PostgreSQL-32-8-114688-1-1 1 1 2jq82 8 4 \n",
+ "PostgreSQL-32-8-114688-1-2 1 1 8tw89 8 4 \n",
+ "PostgreSQL-32-8-114688-1-3 1 1 fzvfv 8 4 \n",
+ "PostgreSQL-32-8-114688-1-5 1 1 jwcxm 8 4 \n",
+ "PostgreSQL-32-8-114688-1-6 1 1 knc8q 8 4 \n",
+ "PostgreSQL-32-8-114688-1-8 1 1 sf8fh 8 4 \n",
+ "PostgreSQL-32-8-114688-1-7 1 1 kp9r9 8 4 \n",
+ "PostgreSQL-32-1-16384-1-1 1 1 dpz6r 1 32 \n",
+ "PostgreSQL-32-8-131072-1-8 1 1 qkjzm 8 4 \n",
+ "PostgreSQL-32-8-131072-1-2 1 1 82tzj 8 4 \n",
+ "PostgreSQL-32-8-131072-1-3 1 1 cdllj 8 4 \n",
+ "PostgreSQL-32-8-131072-1-4 1 1 dxbqh 8 4 \n",
+ "PostgreSQL-32-8-131072-1-5 1 1 fg7g6 8 4 \n",
+ "PostgreSQL-32-8-131072-1-6 1 1 g2lp7 8 4 \n",
+ "PostgreSQL-32-8-131072-1-7 1 1 gtfsx 8 4 \n",
+ "PostgreSQL-32-8-131072-1-1 1 1 6zf7s 8 4 \n",
+ "PostgreSQL-32-1-32768-1-1 1 1 k6vs7 1 32 \n",
+ "PostgreSQL-32-1-49152-1-1 1 1 klpvs 1 32 \n",
+ "PostgreSQL-32-1-65536-1-1 1 1 7w4z9 1 32 \n",
+ "PostgreSQL-32-1-81920-1-1 1 1 chmc5 1 32 \n",
+ "PostgreSQL-32-1-98304-1-1 1 1 7lqx2 1 32 \n",
+ "PostgreSQL-32-1-114688-1-1 1 1 mwnxg 1 32 \n",
+ "PostgreSQL-32-1-131072-1-1 1 1 zp9vj 1 32 \n",
+ "\n",
+ " target sf workload ... \\\n",
+ "connection_pod ... \n",
+ "PostgreSQL-32-8-16384-1-2 2048 30 a ... \n",
+ "PostgreSQL-32-8-16384-1-3 2048 30 a ... \n",
+ "PostgreSQL-32-8-16384-1-4 2048 30 a ... \n",
+ "PostgreSQL-32-8-16384-1-5 2048 30 a ... \n",
+ "PostgreSQL-32-8-16384-1-6 2048 30 a ... \n",
+ "PostgreSQL-32-8-16384-1-7 2048 30 a ... \n",
+ "PostgreSQL-32-8-16384-1-8 2048 30 a ... \n",
+ "PostgreSQL-32-8-16384-1-1 2048 30 a ... \n",
+ "PostgreSQL-32-8-32768-1-4 4096 30 a ... \n",
+ "PostgreSQL-32-8-32768-1-1 4096 30 a ... \n",
+ "PostgreSQL-32-8-32768-1-2 4096 30 a ... \n",
+ "PostgreSQL-32-8-32768-1-3 4096 30 a ... \n",
+ "PostgreSQL-32-8-32768-1-5 4096 30 a ... \n",
+ "PostgreSQL-32-8-32768-1-6 4096 30 a ... \n",
+ "PostgreSQL-32-8-32768-1-7 4096 30 a ... \n",
+ "PostgreSQL-32-8-32768-1-8 4096 30 a ... \n",
+ "PostgreSQL-32-8-49152-1-1 6144 30 a ... \n",
+ "PostgreSQL-32-8-49152-1-2 6144 30 a ... \n",
+ "PostgreSQL-32-8-49152-1-3 6144 30 a ... \n",
+ "PostgreSQL-32-8-49152-1-4 6144 30 a ... \n",
+ "PostgreSQL-32-8-49152-1-7 6144 30 a ... \n",
+ "PostgreSQL-32-8-49152-1-8 6144 30 a ... \n",
+ "PostgreSQL-32-8-49152-1-6 6144 30 a ... \n",
+ "PostgreSQL-32-8-49152-1-5 6144 30 a ... \n",
+ "PostgreSQL-32-8-65536-1-2 8192 30 a ... \n",
+ "PostgreSQL-32-8-65536-1-8 8192 30 a ... \n",
+ "PostgreSQL-32-8-65536-1-7 8192 30 a ... \n",
+ "PostgreSQL-32-8-65536-1-1 8192 30 a ... \n",
+ "PostgreSQL-32-8-65536-1-5 8192 30 a ... \n",
+ "PostgreSQL-32-8-65536-1-4 8192 30 a ... \n",
+ "PostgreSQL-32-8-65536-1-6 8192 30 a ... \n",
+ "PostgreSQL-32-8-65536-1-3 8192 30 a ... \n",
+ "PostgreSQL-32-8-81920-1-8 10240 30 a ... \n",
+ "PostgreSQL-32-8-81920-1-6 10240 30 a ... \n",
+ "PostgreSQL-32-8-81920-1-7 10240 30 a ... \n",
+ "PostgreSQL-32-8-81920-1-3 10240 30 a ... \n",
+ "PostgreSQL-32-8-81920-1-2 10240 30 a ... \n",
+ "PostgreSQL-32-8-81920-1-1 10240 30 a ... \n",
+ "PostgreSQL-32-8-81920-1-4 10240 30 a ... \n",
+ "PostgreSQL-32-8-81920-1-5 10240 30 a ... \n",
+ "PostgreSQL-32-8-98304-1-1 12288 30 a ... \n",
+ "PostgreSQL-32-8-98304-1-2 12288 30 a ... \n",
+ "PostgreSQL-32-8-98304-1-3 12288 30 a ... \n",
+ "PostgreSQL-32-8-98304-1-4 12288 30 a ... \n",
+ "PostgreSQL-32-8-98304-1-5 12288 30 a ... \n",
+ "PostgreSQL-32-8-98304-1-6 12288 30 a ... \n",
+ "PostgreSQL-32-8-98304-1-8 12288 30 a ... \n",
+ "PostgreSQL-32-8-98304-1-7 12288 30 a ... \n",
+ "PostgreSQL-32-8-114688-1-4 14336 30 a ... \n",
+ "PostgreSQL-32-8-114688-1-1 14336 30 a ... \n",
+ "PostgreSQL-32-8-114688-1-2 14336 30 a ... \n",
+ "PostgreSQL-32-8-114688-1-3 14336 30 a ... \n",
+ "PostgreSQL-32-8-114688-1-5 14336 30 a ... \n",
+ "PostgreSQL-32-8-114688-1-6 14336 30 a ... \n",
+ "PostgreSQL-32-8-114688-1-8 14336 30 a ... \n",
+ "PostgreSQL-32-8-114688-1-7 14336 30 a ... \n",
+ "PostgreSQL-32-1-16384-1-1 16384 30 a ... \n",
+ "PostgreSQL-32-8-131072-1-8 16384 30 a ... \n",
+ "PostgreSQL-32-8-131072-1-2 16384 30 a ... \n",
+ "PostgreSQL-32-8-131072-1-3 16384 30 a ... \n",
+ "PostgreSQL-32-8-131072-1-4 16384 30 a ... \n",
+ "PostgreSQL-32-8-131072-1-5 16384 30 a ... \n",
+ "PostgreSQL-32-8-131072-1-6 16384 30 a ... \n",
+ "PostgreSQL-32-8-131072-1-7 16384 30 a ... \n",
+ "PostgreSQL-32-8-131072-1-1 16384 30 a ... \n",
+ "PostgreSQL-32-1-32768-1-1 32768 30 a ... \n",
+ "PostgreSQL-32-1-49152-1-1 49152 30 a ... \n",
+ "PostgreSQL-32-1-65536-1-1 65536 30 a ... \n",
+ "PostgreSQL-32-1-81920-1-1 81920 30 a ... \n",
+ "PostgreSQL-32-1-98304-1-1 98304 30 a ... \n",
+ "PostgreSQL-32-1-114688-1-1 114688 30 a ... \n",
+ "PostgreSQL-32-1-131072-1-1 131072 30 a ... \n",
+ "\n",
+ " [CLEANUP].MaxLatency(us) \\\n",
+ "connection_pod \n",
+ "PostgreSQL-32-8-16384-1-2 267.0 \n",
+ "PostgreSQL-32-8-16384-1-3 228.0 \n",
+ "PostgreSQL-32-8-16384-1-4 244.0 \n",
+ "PostgreSQL-32-8-16384-1-5 204.0 \n",
+ "PostgreSQL-32-8-16384-1-6 292.0 \n",
+ "PostgreSQL-32-8-16384-1-7 230.0 \n",
+ "PostgreSQL-32-8-16384-1-8 215.0 \n",
+ "PostgreSQL-32-8-16384-1-1 238.0 \n",
+ "PostgreSQL-32-8-32768-1-4 324.0 \n",
+ "PostgreSQL-32-8-32768-1-1 282.0 \n",
+ "PostgreSQL-32-8-32768-1-2 236.0 \n",
+ "PostgreSQL-32-8-32768-1-3 260.0 \n",
+ "PostgreSQL-32-8-32768-1-5 264.0 \n",
+ "PostgreSQL-32-8-32768-1-6 323.0 \n",
+ "PostgreSQL-32-8-32768-1-7 301.0 \n",
+ "PostgreSQL-32-8-32768-1-8 344.0 \n",
+ "PostgreSQL-32-8-49152-1-1 349.0 \n",
+ "PostgreSQL-32-8-49152-1-2 278.0 \n",
+ "PostgreSQL-32-8-49152-1-3 425.0 \n",
+ "PostgreSQL-32-8-49152-1-4 1652.0 \n",
+ "PostgreSQL-32-8-49152-1-7 307.0 \n",
+ "PostgreSQL-32-8-49152-1-8 348.0 \n",
+ "PostgreSQL-32-8-49152-1-6 311.0 \n",
+ "PostgreSQL-32-8-49152-1-5 304.0 \n",
+ "PostgreSQL-32-8-65536-1-2 301.0 \n",
+ "PostgreSQL-32-8-65536-1-8 290.0 \n",
+ "PostgreSQL-32-8-65536-1-7 322.0 \n",
+ "PostgreSQL-32-8-65536-1-1 313.0 \n",
+ "PostgreSQL-32-8-65536-1-5 515.0 \n",
+ "PostgreSQL-32-8-65536-1-4 332.0 \n",
+ "PostgreSQL-32-8-65536-1-6 608.0 \n",
+ "PostgreSQL-32-8-65536-1-3 297.0 \n",
+ "PostgreSQL-32-8-81920-1-8 335.0 \n",
+ "PostgreSQL-32-8-81920-1-6 362.0 \n",
+ "PostgreSQL-32-8-81920-1-7 320.0 \n",
+ "PostgreSQL-32-8-81920-1-3 384.0 \n",
+ "PostgreSQL-32-8-81920-1-2 318.0 \n",
+ "PostgreSQL-32-8-81920-1-1 302.0 \n",
+ "PostgreSQL-32-8-81920-1-4 683.0 \n",
+ "PostgreSQL-32-8-81920-1-5 412.0 \n",
+ "PostgreSQL-32-8-98304-1-1 358.0 \n",
+ "PostgreSQL-32-8-98304-1-2 352.0 \n",
+ "PostgreSQL-32-8-98304-1-3 304.0 \n",
+ "PostgreSQL-32-8-98304-1-4 270.0 \n",
+ "PostgreSQL-32-8-98304-1-5 1324.0 \n",
+ "PostgreSQL-32-8-98304-1-6 355.0 \n",
+ "PostgreSQL-32-8-98304-1-8 299.0 \n",
+ "PostgreSQL-32-8-98304-1-7 991.0 \n",
+ "PostgreSQL-32-8-114688-1-4 282.0 \n",
+ "PostgreSQL-32-8-114688-1-1 420.0 \n",
+ "PostgreSQL-32-8-114688-1-2 352.0 \n",
+ "PostgreSQL-32-8-114688-1-3 324.0 \n",
+ "PostgreSQL-32-8-114688-1-5 335.0 \n",
+ "PostgreSQL-32-8-114688-1-6 374.0 \n",
+ "PostgreSQL-32-8-114688-1-8 301.0 \n",
+ "PostgreSQL-32-8-114688-1-7 408.0 \n",
+ "PostgreSQL-32-1-16384-1-1 269.0 \n",
+ "PostgreSQL-32-8-131072-1-8 310.0 \n",
+ "PostgreSQL-32-8-131072-1-2 358.0 \n",
+ "PostgreSQL-32-8-131072-1-3 311.0 \n",
+ "PostgreSQL-32-8-131072-1-4 340.0 \n",
+ "PostgreSQL-32-8-131072-1-5 376.0 \n",
+ "PostgreSQL-32-8-131072-1-6 342.0 \n",
+ "PostgreSQL-32-8-131072-1-7 310.0 \n",
+ "PostgreSQL-32-8-131072-1-1 536.0 \n",
+ "PostgreSQL-32-1-32768-1-1 651.0 \n",
+ "PostgreSQL-32-1-49152-1-1 2655.0 \n",
+ "PostgreSQL-32-1-65536-1-1 343.0 \n",
+ "PostgreSQL-32-1-81920-1-1 938.0 \n",
+ "PostgreSQL-32-1-98304-1-1 377.0 \n",
+ "PostgreSQL-32-1-114688-1-1 305.0 \n",
+ "PostgreSQL-32-1-131072-1-1 305.0 \n",
+ "\n",
+ " [CLEANUP].95thPercentileLatency(us) \\\n",
+ "connection_pod \n",
+ "PostgreSQL-32-8-16384-1-2 267.0 \n",
+ "PostgreSQL-32-8-16384-1-3 228.0 \n",
+ "PostgreSQL-32-8-16384-1-4 244.0 \n",
+ "PostgreSQL-32-8-16384-1-5 204.0 \n",
+ "PostgreSQL-32-8-16384-1-6 292.0 \n",
+ "PostgreSQL-32-8-16384-1-7 230.0 \n",
+ "PostgreSQL-32-8-16384-1-8 215.0 \n",
+ "PostgreSQL-32-8-16384-1-1 238.0 \n",
+ "PostgreSQL-32-8-32768-1-4 324.0 \n",
+ "PostgreSQL-32-8-32768-1-1 282.0 \n",
+ "PostgreSQL-32-8-32768-1-2 236.0 \n",
+ "PostgreSQL-32-8-32768-1-3 260.0 \n",
+ "PostgreSQL-32-8-32768-1-5 264.0 \n",
+ "PostgreSQL-32-8-32768-1-6 323.0 \n",
+ "PostgreSQL-32-8-32768-1-7 301.0 \n",
+ "PostgreSQL-32-8-32768-1-8 344.0 \n",
+ "PostgreSQL-32-8-49152-1-1 349.0 \n",
+ "PostgreSQL-32-8-49152-1-2 278.0 \n",
+ "PostgreSQL-32-8-49152-1-3 425.0 \n",
+ "PostgreSQL-32-8-49152-1-4 1652.0 \n",
+ "PostgreSQL-32-8-49152-1-7 307.0 \n",
+ "PostgreSQL-32-8-49152-1-8 348.0 \n",
+ "PostgreSQL-32-8-49152-1-6 311.0 \n",
+ "PostgreSQL-32-8-49152-1-5 304.0 \n",
+ "PostgreSQL-32-8-65536-1-2 301.0 \n",
+ "PostgreSQL-32-8-65536-1-8 290.0 \n",
+ "PostgreSQL-32-8-65536-1-7 322.0 \n",
+ "PostgreSQL-32-8-65536-1-1 313.0 \n",
+ "PostgreSQL-32-8-65536-1-5 515.0 \n",
+ "PostgreSQL-32-8-65536-1-4 332.0 \n",
+ "PostgreSQL-32-8-65536-1-6 608.0 \n",
+ "PostgreSQL-32-8-65536-1-3 297.0 \n",
+ "PostgreSQL-32-8-81920-1-8 335.0 \n",
+ "PostgreSQL-32-8-81920-1-6 362.0 \n",
+ "PostgreSQL-32-8-81920-1-7 320.0 \n",
+ "PostgreSQL-32-8-81920-1-3 384.0 \n",
+ "PostgreSQL-32-8-81920-1-2 318.0 \n",
+ "PostgreSQL-32-8-81920-1-1 302.0 \n",
+ "PostgreSQL-32-8-81920-1-4 683.0 \n",
+ "PostgreSQL-32-8-81920-1-5 412.0 \n",
+ "PostgreSQL-32-8-98304-1-1 358.0 \n",
+ "PostgreSQL-32-8-98304-1-2 352.0 \n",
+ "PostgreSQL-32-8-98304-1-3 304.0 \n",
+ "PostgreSQL-32-8-98304-1-4 270.0 \n",
+ "PostgreSQL-32-8-98304-1-5 1324.0 \n",
+ "PostgreSQL-32-8-98304-1-6 355.0 \n",
+ "PostgreSQL-32-8-98304-1-8 299.0 \n",
+ "PostgreSQL-32-8-98304-1-7 991.0 \n",
+ "PostgreSQL-32-8-114688-1-4 282.0 \n",
+ "PostgreSQL-32-8-114688-1-1 420.0 \n",
+ "PostgreSQL-32-8-114688-1-2 352.0 \n",
+ "PostgreSQL-32-8-114688-1-3 324.0 \n",
+ "PostgreSQL-32-8-114688-1-5 335.0 \n",
+ "PostgreSQL-32-8-114688-1-6 374.0 \n",
+ "PostgreSQL-32-8-114688-1-8 301.0 \n",
+ "PostgreSQL-32-8-114688-1-7 408.0 \n",
+ "PostgreSQL-32-1-16384-1-1 170.0 \n",
+ "PostgreSQL-32-8-131072-1-8 310.0 \n",
+ "PostgreSQL-32-8-131072-1-2 358.0 \n",
+ "PostgreSQL-32-8-131072-1-3 311.0 \n",
+ "PostgreSQL-32-8-131072-1-4 340.0 \n",
+ "PostgreSQL-32-8-131072-1-5 376.0 \n",
+ "PostgreSQL-32-8-131072-1-6 342.0 \n",
+ "PostgreSQL-32-8-131072-1-7 310.0 \n",
+ "PostgreSQL-32-8-131072-1-1 536.0 \n",
+ "PostgreSQL-32-1-32768-1-1 343.0 \n",
+ "PostgreSQL-32-1-49152-1-1 146.0 \n",
+ "PostgreSQL-32-1-65536-1-1 168.0 \n",
+ "PostgreSQL-32-1-81920-1-1 175.0 \n",
+ "PostgreSQL-32-1-98304-1-1 187.0 \n",
+ "PostgreSQL-32-1-114688-1-1 178.0 \n",
+ "PostgreSQL-32-1-131072-1-1 132.0 \n",
+ "\n",
+ " [CLEANUP].99thPercentileLatency(us) \\\n",
+ "connection_pod \n",
+ "PostgreSQL-32-8-16384-1-2 267.0 \n",
+ "PostgreSQL-32-8-16384-1-3 228.0 \n",
+ "PostgreSQL-32-8-16384-1-4 244.0 \n",
+ "PostgreSQL-32-8-16384-1-5 204.0 \n",
+ "PostgreSQL-32-8-16384-1-6 292.0 \n",
+ "PostgreSQL-32-8-16384-1-7 230.0 \n",
+ "PostgreSQL-32-8-16384-1-8 215.0 \n",
+ "PostgreSQL-32-8-16384-1-1 238.0 \n",
+ "PostgreSQL-32-8-32768-1-4 324.0 \n",
+ "PostgreSQL-32-8-32768-1-1 282.0 \n",
+ "PostgreSQL-32-8-32768-1-2 236.0 \n",
+ "PostgreSQL-32-8-32768-1-3 260.0 \n",
+ "PostgreSQL-32-8-32768-1-5 264.0 \n",
+ "PostgreSQL-32-8-32768-1-6 323.0 \n",
+ "PostgreSQL-32-8-32768-1-7 301.0 \n",
+ "PostgreSQL-32-8-32768-1-8 344.0 \n",
+ "PostgreSQL-32-8-49152-1-1 349.0 \n",
+ "PostgreSQL-32-8-49152-1-2 278.0 \n",
+ "PostgreSQL-32-8-49152-1-3 425.0 \n",
+ "PostgreSQL-32-8-49152-1-4 1652.0 \n",
+ "PostgreSQL-32-8-49152-1-7 307.0 \n",
+ "PostgreSQL-32-8-49152-1-8 348.0 \n",
+ "PostgreSQL-32-8-49152-1-6 311.0 \n",
+ "PostgreSQL-32-8-49152-1-5 304.0 \n",
+ "PostgreSQL-32-8-65536-1-2 301.0 \n",
+ "PostgreSQL-32-8-65536-1-8 290.0 \n",
+ "PostgreSQL-32-8-65536-1-7 322.0 \n",
+ "PostgreSQL-32-8-65536-1-1 313.0 \n",
+ "PostgreSQL-32-8-65536-1-5 515.0 \n",
+ "PostgreSQL-32-8-65536-1-4 332.0 \n",
+ "PostgreSQL-32-8-65536-1-6 608.0 \n",
+ "PostgreSQL-32-8-65536-1-3 297.0 \n",
+ "PostgreSQL-32-8-81920-1-8 335.0 \n",
+ "PostgreSQL-32-8-81920-1-6 362.0 \n",
+ "PostgreSQL-32-8-81920-1-7 320.0 \n",
+ "PostgreSQL-32-8-81920-1-3 384.0 \n",
+ "PostgreSQL-32-8-81920-1-2 318.0 \n",
+ "PostgreSQL-32-8-81920-1-1 302.0 \n",
+ "PostgreSQL-32-8-81920-1-4 683.0 \n",
+ "PostgreSQL-32-8-81920-1-5 412.0 \n",
+ "PostgreSQL-32-8-98304-1-1 358.0 \n",
+ "PostgreSQL-32-8-98304-1-2 352.0 \n",
+ "PostgreSQL-32-8-98304-1-3 304.0 \n",
+ "PostgreSQL-32-8-98304-1-4 270.0 \n",
+ "PostgreSQL-32-8-98304-1-5 1324.0 \n",
+ "PostgreSQL-32-8-98304-1-6 355.0 \n",
+ "PostgreSQL-32-8-98304-1-8 299.0 \n",
+ "PostgreSQL-32-8-98304-1-7 991.0 \n",
+ "PostgreSQL-32-8-114688-1-4 282.0 \n",
+ "PostgreSQL-32-8-114688-1-1 420.0 \n",
+ "PostgreSQL-32-8-114688-1-2 352.0 \n",
+ "PostgreSQL-32-8-114688-1-3 324.0 \n",
+ "PostgreSQL-32-8-114688-1-5 335.0 \n",
+ "PostgreSQL-32-8-114688-1-6 374.0 \n",
+ "PostgreSQL-32-8-114688-1-8 301.0 \n",
+ "PostgreSQL-32-8-114688-1-7 408.0 \n",
+ "PostgreSQL-32-1-16384-1-1 269.0 \n",
+ "PostgreSQL-32-8-131072-1-8 310.0 \n",
+ "PostgreSQL-32-8-131072-1-2 358.0 \n",
+ "PostgreSQL-32-8-131072-1-3 311.0 \n",
+ "PostgreSQL-32-8-131072-1-4 340.0 \n",
+ "PostgreSQL-32-8-131072-1-5 376.0 \n",
+ "PostgreSQL-32-8-131072-1-6 342.0 \n",
+ "PostgreSQL-32-8-131072-1-7 310.0 \n",
+ "PostgreSQL-32-8-131072-1-1 536.0 \n",
+ "PostgreSQL-32-1-32768-1-1 651.0 \n",
+ "PostgreSQL-32-1-49152-1-1 2655.0 \n",
+ "PostgreSQL-32-1-65536-1-1 343.0 \n",
+ "PostgreSQL-32-1-81920-1-1 938.0 \n",
+ "PostgreSQL-32-1-98304-1-1 377.0 \n",
+ "PostgreSQL-32-1-114688-1-1 305.0 \n",
+ "PostgreSQL-32-1-131072-1-1 305.0 \n",
+ "\n",
+ " [UPDATE].Operations [UPDATE].AverageLatency(us) \\\n",
+ "connection_pod \n",
+ "PostgreSQL-32-8-16384-1-2 1875349 279.281535 \n",
+ "PostgreSQL-32-8-16384-1-3 1874880 279.843256 \n",
+ "PostgreSQL-32-8-16384-1-4 1875427 269.904560 \n",
+ "PostgreSQL-32-8-16384-1-5 1875337 297.950520 \n",
+ "PostgreSQL-32-8-16384-1-6 1875014 261.791274 \n",
+ "PostgreSQL-32-8-16384-1-7 1873638 291.152009 \n",
+ "PostgreSQL-32-8-16384-1-8 1875605 285.543071 \n",
+ "PostgreSQL-32-8-16384-1-1 1873921 259.960231 \n",
+ "PostgreSQL-32-8-32768-1-4 1876703 312.227578 \n",
+ "PostgreSQL-32-8-32768-1-1 1874112 290.050854 \n",
+ "PostgreSQL-32-8-32768-1-2 1875046 295.300415 \n",
+ "PostgreSQL-32-8-32768-1-3 1874994 304.605591 \n",
+ "PostgreSQL-32-8-32768-1-5 1873702 282.308903 \n",
+ "PostgreSQL-32-8-32768-1-6 1874082 309.469422 \n",
+ "PostgreSQL-32-8-32768-1-7 1875937 312.520923 \n",
+ "PostgreSQL-32-8-32768-1-8 1876930 313.031167 \n",
+ "PostgreSQL-32-8-49152-1-1 1875039 483.460633 \n",
+ "PostgreSQL-32-8-49152-1-2 1874709 473.292028 \n",
+ "PostgreSQL-32-8-49152-1-3 1873652 469.840329 \n",
+ "PostgreSQL-32-8-49152-1-4 1875591 507.224280 \n",
+ "PostgreSQL-32-8-49152-1-7 1874986 494.877304 \n",
+ "PostgreSQL-32-8-49152-1-8 1876064 441.921570 \n",
+ "PostgreSQL-32-8-49152-1-6 1874523 464.176237 \n",
+ "PostgreSQL-32-8-49152-1-5 1874898 494.085958 \n",
+ "PostgreSQL-32-8-65536-1-2 1875272 620.948668 \n",
+ "PostgreSQL-32-8-65536-1-8 1872314 603.486167 \n",
+ "PostgreSQL-32-8-65536-1-7 1874271 618.117459 \n",
+ "PostgreSQL-32-8-65536-1-1 1875000 634.823838 \n",
+ "PostgreSQL-32-8-65536-1-5 1875343 610.272305 \n",
+ "PostgreSQL-32-8-65536-1-4 1875071 622.472328 \n",
+ "PostgreSQL-32-8-65536-1-6 1875539 628.395195 \n",
+ "PostgreSQL-32-8-65536-1-3 1875517 609.462749 \n",
+ "PostgreSQL-32-8-81920-1-8 1875864 618.472218 \n",
+ "PostgreSQL-32-8-81920-1-6 1875823 597.406558 \n",
+ "PostgreSQL-32-8-81920-1-7 1875332 621.982541 \n",
+ "PostgreSQL-32-8-81920-1-3 1873757 583.579925 \n",
+ "PostgreSQL-32-8-81920-1-2 1874917 616.268760 \n",
+ "PostgreSQL-32-8-81920-1-1 1876646 621.082813 \n",
+ "PostgreSQL-32-8-81920-1-4 1874551 615.696021 \n",
+ "PostgreSQL-32-8-81920-1-5 1874516 578.652579 \n",
+ "PostgreSQL-32-8-98304-1-1 1874362 610.307512 \n",
+ "PostgreSQL-32-8-98304-1-2 1874785 620.062738 \n",
+ "PostgreSQL-32-8-98304-1-3 1873140 592.218152 \n",
+ "PostgreSQL-32-8-98304-1-4 1876173 606.348524 \n",
+ "PostgreSQL-32-8-98304-1-5 1873546 621.741993 \n",
+ "PostgreSQL-32-8-98304-1-6 1876248 604.160926 \n",
+ "PostgreSQL-32-8-98304-1-8 1874342 640.696887 \n",
+ "PostgreSQL-32-8-98304-1-7 1875485 621.688254 \n",
+ "PostgreSQL-32-8-114688-1-4 1873433 598.484479 \n",
+ "PostgreSQL-32-8-114688-1-1 1874504 569.857987 \n",
+ "PostgreSQL-32-8-114688-1-2 1877114 599.267765 \n",
+ "PostgreSQL-32-8-114688-1-3 1875507 583.797519 \n",
+ "PostgreSQL-32-8-114688-1-5 1874515 588.496871 \n",
+ "PostgreSQL-32-8-114688-1-6 1875905 634.300144 \n",
+ "PostgreSQL-32-8-114688-1-8 1874330 616.061852 \n",
+ "PostgreSQL-32-8-114688-1-7 1875886 588.626170 \n",
+ "PostgreSQL-32-1-16384-1-1 14999798 260.757995 \n",
+ "PostgreSQL-32-8-131072-1-8 1875211 554.659974 \n",
+ "PostgreSQL-32-8-131072-1-2 1874712 614.491262 \n",
+ "PostgreSQL-32-8-131072-1-3 1875603 584.949657 \n",
+ "PostgreSQL-32-8-131072-1-4 1873868 602.965952 \n",
+ "PostgreSQL-32-8-131072-1-5 1876344 587.999810 \n",
+ "PostgreSQL-32-8-131072-1-6 1875315 599.226824 \n",
+ "PostgreSQL-32-8-131072-1-7 1875976 605.955583 \n",
+ "PostgreSQL-32-8-131072-1-1 1875599 556.295206 \n",
+ "PostgreSQL-32-1-32768-1-1 15000722 262.927871 \n",
+ "PostgreSQL-32-1-49152-1-1 14998304 454.032034 \n",
+ "PostgreSQL-32-1-65536-1-1 14996210 644.124900 \n",
+ "PostgreSQL-32-1-81920-1-1 15001854 630.408114 \n",
+ "PostgreSQL-32-1-98304-1-1 14995937 620.081984 \n",
+ "PostgreSQL-32-1-114688-1-1 15000966 635.884341 \n",
+ "PostgreSQL-32-1-131072-1-1 14999563 647.170531 \n",
+ "\n",
+ " [UPDATE].MinLatency(us) [UPDATE].MaxLatency(us) \\\n",
+ "connection_pod \n",
+ "PostgreSQL-32-8-16384-1-2 111.0 130815.0 \n",
+ "PostgreSQL-32-8-16384-1-3 109.0 77247.0 \n",
+ "PostgreSQL-32-8-16384-1-4 109.0 130175.0 \n",
+ "PostgreSQL-32-8-16384-1-5 109.0 76415.0 \n",
+ "PostgreSQL-32-8-16384-1-6 108.0 55775.0 \n",
+ "PostgreSQL-32-8-16384-1-7 114.0 118847.0 \n",
+ "PostgreSQL-32-8-16384-1-8 113.0 127295.0 \n",
+ "PostgreSQL-32-8-16384-1-1 108.0 88511.0 \n",
+ "PostgreSQL-32-8-32768-1-4 107.0 735231.0 \n",
+ "PostgreSQL-32-8-32768-1-1 109.0 97407.0 \n",
+ "PostgreSQL-32-8-32768-1-2 110.0 332287.0 \n",
+ "PostgreSQL-32-8-32768-1-3 103.0 1277951.0 \n",
+ "PostgreSQL-32-8-32768-1-5 105.0 159871.0 \n",
+ "PostgreSQL-32-8-32768-1-6 110.0 86015.0 \n",
+ "PostgreSQL-32-8-32768-1-7 109.0 539135.0 \n",
+ "PostgreSQL-32-8-32768-1-8 111.0 270079.0 \n",
+ "PostgreSQL-32-8-49152-1-1 105.0 12902399.0 \n",
+ "PostgreSQL-32-8-49152-1-2 101.0 18120703.0 \n",
+ "PostgreSQL-32-8-49152-1-3 105.0 16007167.0 \n",
+ "PostgreSQL-32-8-49152-1-4 105.0 18219007.0 \n",
+ "PostgreSQL-32-8-49152-1-7 101.0 14909439.0 \n",
+ "PostgreSQL-32-8-49152-1-8 105.0 14909439.0 \n",
+ "PostgreSQL-32-8-49152-1-6 107.0 18382847.0 \n",
+ "PostgreSQL-32-8-49152-1-5 107.0 21233663.0 \n",
+ "PostgreSQL-32-8-65536-1-2 101.0 20856831.0 \n",
+ "PostgreSQL-32-8-65536-1-8 107.0 13221887.0 \n",
+ "PostgreSQL-32-8-65536-1-7 103.0 20905983.0 \n",
+ "PostgreSQL-32-8-65536-1-1 100.0 21069823.0 \n",
+ "PostgreSQL-32-8-65536-1-5 100.0 20627455.0 \n",
+ "PostgreSQL-32-8-65536-1-4 104.0 16457727.0 \n",
+ "PostgreSQL-32-8-65536-1-6 102.0 20987903.0 \n",
+ "PostgreSQL-32-8-65536-1-3 103.0 20922367.0 \n",
+ "PostgreSQL-32-8-81920-1-8 98.0 20955135.0 \n",
+ "PostgreSQL-32-8-81920-1-6 113.0 20463615.0 \n",
+ "PostgreSQL-32-8-81920-1-7 105.0 20430847.0 \n",
+ "PostgreSQL-32-8-81920-1-3 105.0 20496383.0 \n",
+ "PostgreSQL-32-8-81920-1-2 104.0 20856831.0 \n",
+ "PostgreSQL-32-8-81920-1-1 104.0 20922367.0 \n",
+ "PostgreSQL-32-8-81920-1-4 102.0 20201471.0 \n",
+ "PostgreSQL-32-8-81920-1-5 107.0 20545535.0 \n",
+ "PostgreSQL-32-8-98304-1-1 105.0 18710527.0 \n",
+ "PostgreSQL-32-8-98304-1-2 98.0 18956287.0 \n",
+ "PostgreSQL-32-8-98304-1-3 101.0 18956287.0 \n",
+ "PostgreSQL-32-8-98304-1-4 114.0 18317311.0 \n",
+ "PostgreSQL-32-8-98304-1-5 99.0 17874943.0 \n",
+ "PostgreSQL-32-8-98304-1-6 107.0 18776063.0 \n",
+ "PostgreSQL-32-8-98304-1-8 104.0 18579455.0 \n",
+ "PostgreSQL-32-8-98304-1-7 102.0 18759679.0 \n",
+ "PostgreSQL-32-8-114688-1-4 105.0 20119551.0 \n",
+ "PostgreSQL-32-8-114688-1-1 99.0 20135935.0 \n",
+ "PostgreSQL-32-8-114688-1-2 96.0 18825215.0 \n",
+ "PostgreSQL-32-8-114688-1-3 105.0 13819903.0 \n",
+ "PostgreSQL-32-8-114688-1-5 108.0 13819903.0 \n",
+ "PostgreSQL-32-8-114688-1-6 98.0 20103167.0 \n",
+ "PostgreSQL-32-8-114688-1-8 112.0 20299775.0 \n",
+ "PostgreSQL-32-8-114688-1-7 105.0 18530303.0 \n",
+ "PostgreSQL-32-1-16384-1-1 102.0 67071.0 \n",
+ "PostgreSQL-32-8-131072-1-8 108.0 18563071.0 \n",
+ "PostgreSQL-32-8-131072-1-2 97.0 18939903.0 \n",
+ "PostgreSQL-32-8-131072-1-3 111.0 18399231.0 \n",
+ "PostgreSQL-32-8-131072-1-4 106.0 20185087.0 \n",
+ "PostgreSQL-32-8-131072-1-5 103.0 20250623.0 \n",
+ "PostgreSQL-32-8-131072-1-6 96.0 18481151.0 \n",
+ "PostgreSQL-32-8-131072-1-7 93.0 13787135.0 \n",
+ "PostgreSQL-32-8-131072-1-1 105.0 13787135.0 \n",
+ "PostgreSQL-32-1-32768-1-1 101.0 722943.0 \n",
+ "PostgreSQL-32-1-49152-1-1 93.0 18235391.0 \n",
+ "PostgreSQL-32-1-65536-1-1 93.0 20774911.0 \n",
+ "PostgreSQL-32-1-81920-1-1 93.0 20758527.0 \n",
+ "PostgreSQL-32-1-98304-1-1 93.0 18956287.0 \n",
+ "PostgreSQL-32-1-114688-1-1 95.0 20987903.0 \n",
+ "PostgreSQL-32-1-131072-1-1 94.0 20889599.0 \n",
+ "\n",
+ " [UPDATE].95thPercentileLatency(us) \\\n",
+ "connection_pod \n",
+ "PostgreSQL-32-8-16384-1-2 430.0 \n",
+ "PostgreSQL-32-8-16384-1-3 503.0 \n",
+ "PostgreSQL-32-8-16384-1-4 415.0 \n",
+ "PostgreSQL-32-8-16384-1-5 467.0 \n",
+ "PostgreSQL-32-8-16384-1-6 398.0 \n",
+ "PostgreSQL-32-8-16384-1-7 515.0 \n",
+ "PostgreSQL-32-8-16384-1-8 491.0 \n",
+ "PostgreSQL-32-8-16384-1-1 461.0 \n",
+ "PostgreSQL-32-8-32768-1-4 478.0 \n",
+ "PostgreSQL-32-8-32768-1-1 454.0 \n",
+ "PostgreSQL-32-8-32768-1-2 437.0 \n",
+ "PostgreSQL-32-8-32768-1-3 471.0 \n",
+ "PostgreSQL-32-8-32768-1-5 430.0 \n",
+ "PostgreSQL-32-8-32768-1-6 508.0 \n",
+ "PostgreSQL-32-8-32768-1-7 485.0 \n",
+ "PostgreSQL-32-8-32768-1-8 482.0 \n",
+ "PostgreSQL-32-8-49152-1-1 625.0 \n",
+ "PostgreSQL-32-8-49152-1-2 637.0 \n",
+ "PostgreSQL-32-8-49152-1-3 651.0 \n",
+ "PostgreSQL-32-8-49152-1-4 658.0 \n",
+ "PostgreSQL-32-8-49152-1-7 675.0 \n",
+ "PostgreSQL-32-8-49152-1-8 646.0 \n",
+ "PostgreSQL-32-8-49152-1-6 641.0 \n",
+ "PostgreSQL-32-8-49152-1-5 654.0 \n",
+ "PostgreSQL-32-8-65536-1-2 1096.0 \n",
+ "PostgreSQL-32-8-65536-1-8 1076.0 \n",
+ "PostgreSQL-32-8-65536-1-7 1085.0 \n",
+ "PostgreSQL-32-8-65536-1-1 1046.0 \n",
+ "PostgreSQL-32-8-65536-1-5 1018.0 \n",
+ "PostgreSQL-32-8-65536-1-4 1053.0 \n",
+ "PostgreSQL-32-8-65536-1-6 1081.0 \n",
+ "PostgreSQL-32-8-65536-1-3 1087.0 \n",
+ "PostgreSQL-32-8-81920-1-8 1088.0 \n",
+ "PostgreSQL-32-8-81920-1-6 972.0 \n",
+ "PostgreSQL-32-8-81920-1-7 1007.0 \n",
+ "PostgreSQL-32-8-81920-1-3 951.0 \n",
+ "PostgreSQL-32-8-81920-1-2 1026.0 \n",
+ "PostgreSQL-32-8-81920-1-1 954.0 \n",
+ "PostgreSQL-32-8-81920-1-4 1009.0 \n",
+ "PostgreSQL-32-8-81920-1-5 1008.0 \n",
+ "PostgreSQL-32-8-98304-1-1 1032.0 \n",
+ "PostgreSQL-32-8-98304-1-2 1086.0 \n",
+ "PostgreSQL-32-8-98304-1-3 1072.0 \n",
+ "PostgreSQL-32-8-98304-1-4 1011.0 \n",
+ "PostgreSQL-32-8-98304-1-5 1015.0 \n",
+ "PostgreSQL-32-8-98304-1-6 966.0 \n",
+ "PostgreSQL-32-8-98304-1-8 1043.0 \n",
+ "PostgreSQL-32-8-98304-1-7 1080.0 \n",
+ "PostgreSQL-32-8-114688-1-4 1020.0 \n",
+ "PostgreSQL-32-8-114688-1-1 1010.0 \n",
+ "PostgreSQL-32-8-114688-1-2 1047.0 \n",
+ "PostgreSQL-32-8-114688-1-3 1076.0 \n",
+ "PostgreSQL-32-8-114688-1-5 1063.0 \n",
+ "PostgreSQL-32-8-114688-1-6 997.0 \n",
+ "PostgreSQL-32-8-114688-1-8 1029.0 \n",
+ "PostgreSQL-32-8-114688-1-7 999.0 \n",
+ "PostgreSQL-32-1-16384-1-1 434.0 \n",
+ "PostgreSQL-32-8-131072-1-8 953.0 \n",
+ "PostgreSQL-32-8-131072-1-2 976.0 \n",
+ "PostgreSQL-32-8-131072-1-3 909.0 \n",
+ "PostgreSQL-32-8-131072-1-4 912.0 \n",
+ "PostgreSQL-32-8-131072-1-5 923.0 \n",
+ "PostgreSQL-32-8-131072-1-6 987.0 \n",
+ "PostgreSQL-32-8-131072-1-7 948.0 \n",
+ "PostgreSQL-32-8-131072-1-1 961.0 \n",
+ "PostgreSQL-32-1-32768-1-1 415.0 \n",
+ "PostgreSQL-32-1-49152-1-1 535.0 \n",
+ "PostgreSQL-32-1-65536-1-1 1075.0 \n",
+ "PostgreSQL-32-1-81920-1-1 1115.0 \n",
+ "PostgreSQL-32-1-98304-1-1 1065.0 \n",
+ "PostgreSQL-32-1-114688-1-1 1041.0 \n",
+ "PostgreSQL-32-1-131072-1-1 1061.0 \n",
+ "\n",
+ " [UPDATE].99thPercentileLatency(us) \\\n",
+ "connection_pod \n",
+ "PostgreSQL-32-8-16384-1-2 692.0 \n",
+ "PostgreSQL-32-8-16384-1-3 648.0 \n",
+ "PostgreSQL-32-8-16384-1-4 649.0 \n",
+ "PostgreSQL-32-8-16384-1-5 640.0 \n",
+ "PostgreSQL-32-8-16384-1-6 625.0 \n",
+ "PostgreSQL-32-8-16384-1-7 655.0 \n",
+ "PostgreSQL-32-8-16384-1-8 633.0 \n",
+ "PostgreSQL-32-8-16384-1-1 614.0 \n",
+ "PostgreSQL-32-8-32768-1-4 929.0 \n",
+ "PostgreSQL-32-8-32768-1-1 946.0 \n",
+ "PostgreSQL-32-8-32768-1-2 1008.0 \n",
+ "PostgreSQL-32-8-32768-1-3 971.0 \n",
+ "PostgreSQL-32-8-32768-1-5 929.0 \n",
+ "PostgreSQL-32-8-32768-1-6 823.0 \n",
+ "PostgreSQL-32-8-32768-1-7 975.0 \n",
+ "PostgreSQL-32-8-32768-1-8 971.0 \n",
+ "PostgreSQL-32-8-49152-1-1 2353.0 \n",
+ "PostgreSQL-32-8-49152-1-2 2247.0 \n",
+ "PostgreSQL-32-8-49152-1-3 2293.0 \n",
+ "PostgreSQL-32-8-49152-1-4 2231.0 \n",
+ "PostgreSQL-32-8-49152-1-7 2257.0 \n",
+ "PostgreSQL-32-8-49152-1-8 2269.0 \n",
+ "PostgreSQL-32-8-49152-1-6 2301.0 \n",
+ "PostgreSQL-32-8-49152-1-5 2133.0 \n",
+ "PostgreSQL-32-8-65536-1-2 3859.0 \n",
+ "PostgreSQL-32-8-65536-1-8 3917.0 \n",
+ "PostgreSQL-32-8-65536-1-7 3907.0 \n",
+ "PostgreSQL-32-8-65536-1-1 3931.0 \n",
+ "PostgreSQL-32-8-65536-1-5 3753.0 \n",
+ "PostgreSQL-32-8-65536-1-4 3851.0 \n",
+ "PostgreSQL-32-8-65536-1-6 3865.0 \n",
+ "PostgreSQL-32-8-65536-1-3 3897.0 \n",
+ "PostgreSQL-32-8-81920-1-8 3275.0 \n",
+ "PostgreSQL-32-8-81920-1-6 3363.0 \n",
+ "PostgreSQL-32-8-81920-1-7 3367.0 \n",
+ "PostgreSQL-32-8-81920-1-3 3315.0 \n",
+ "PostgreSQL-32-8-81920-1-2 3347.0 \n",
+ "PostgreSQL-32-8-81920-1-1 3241.0 \n",
+ "PostgreSQL-32-8-81920-1-4 3347.0 \n",
+ "PostgreSQL-32-8-81920-1-5 3395.0 \n",
+ "PostgreSQL-32-8-98304-1-1 3517.0 \n",
+ "PostgreSQL-32-8-98304-1-2 3495.0 \n",
+ "PostgreSQL-32-8-98304-1-3 3579.0 \n",
+ "PostgreSQL-32-8-98304-1-4 3465.0 \n",
+ "PostgreSQL-32-8-98304-1-5 3449.0 \n",
+ "PostgreSQL-32-8-98304-1-6 3267.0 \n",
+ "PostgreSQL-32-8-98304-1-8 3525.0 \n",
+ "PostgreSQL-32-8-98304-1-7 3613.0 \n",
+ "PostgreSQL-32-8-114688-1-4 3705.0 \n",
+ "PostgreSQL-32-8-114688-1-1 3501.0 \n",
+ "PostgreSQL-32-8-114688-1-2 3589.0 \n",
+ "PostgreSQL-32-8-114688-1-3 3627.0 \n",
+ "PostgreSQL-32-8-114688-1-5 3871.0 \n",
+ "PostgreSQL-32-8-114688-1-6 3533.0 \n",
+ "PostgreSQL-32-8-114688-1-8 3697.0 \n",
+ "PostgreSQL-32-8-114688-1-7 3651.0 \n",
+ "PostgreSQL-32-1-16384-1-1 573.0 \n",
+ "PostgreSQL-32-8-131072-1-8 3395.0 \n",
+ "PostgreSQL-32-8-131072-1-2 3417.0 \n",
+ "PostgreSQL-32-8-131072-1-3 3303.0 \n",
+ "PostgreSQL-32-8-131072-1-4 3287.0 \n",
+ "PostgreSQL-32-8-131072-1-5 3303.0 \n",
+ "PostgreSQL-32-8-131072-1-6 3435.0 \n",
+ "PostgreSQL-32-8-131072-1-7 3279.0 \n",
+ "PostgreSQL-32-8-131072-1-1 3445.0 \n",
+ "PostgreSQL-32-1-32768-1-1 580.0 \n",
+ "PostgreSQL-32-1-49152-1-1 1687.0 \n",
+ "PostgreSQL-32-1-65536-1-1 3657.0 \n",
+ "PostgreSQL-32-1-81920-1-1 3731.0 \n",
+ "PostgreSQL-32-1-98304-1-1 3641.0 \n",
+ "PostgreSQL-32-1-114688-1-1 3383.0 \n",
+ "PostgreSQL-32-1-131072-1-1 3619.0 \n",
+ "\n",
+ " [UPDATE].Return=OK \n",
+ "connection_pod \n",
+ "PostgreSQL-32-8-16384-1-2 1875349 \n",
+ "PostgreSQL-32-8-16384-1-3 1874880 \n",
+ "PostgreSQL-32-8-16384-1-4 1875427 \n",
+ "PostgreSQL-32-8-16384-1-5 1875337 \n",
+ "PostgreSQL-32-8-16384-1-6 1875014 \n",
+ "PostgreSQL-32-8-16384-1-7 1873638 \n",
+ "PostgreSQL-32-8-16384-1-8 1875605 \n",
+ "PostgreSQL-32-8-16384-1-1 1873921 \n",
+ "PostgreSQL-32-8-32768-1-4 1876703 \n",
+ "PostgreSQL-32-8-32768-1-1 1874112 \n",
+ "PostgreSQL-32-8-32768-1-2 1875046 \n",
+ "PostgreSQL-32-8-32768-1-3 1874994 \n",
+ "PostgreSQL-32-8-32768-1-5 1873702 \n",
+ "PostgreSQL-32-8-32768-1-6 1874082 \n",
+ "PostgreSQL-32-8-32768-1-7 1875937 \n",
+ "PostgreSQL-32-8-32768-1-8 1876930 \n",
+ "PostgreSQL-32-8-49152-1-1 1875039 \n",
+ "PostgreSQL-32-8-49152-1-2 1874709 \n",
+ "PostgreSQL-32-8-49152-1-3 1873652 \n",
+ "PostgreSQL-32-8-49152-1-4 1875591 \n",
+ "PostgreSQL-32-8-49152-1-7 1874986 \n",
+ "PostgreSQL-32-8-49152-1-8 1876064 \n",
+ "PostgreSQL-32-8-49152-1-6 1874523 \n",
+ "PostgreSQL-32-8-49152-1-5 1874898 \n",
+ "PostgreSQL-32-8-65536-1-2 1875272 \n",
+ "PostgreSQL-32-8-65536-1-8 1872314 \n",
+ "PostgreSQL-32-8-65536-1-7 1874271 \n",
+ "PostgreSQL-32-8-65536-1-1 1875000 \n",
+ "PostgreSQL-32-8-65536-1-5 1875343 \n",
+ "PostgreSQL-32-8-65536-1-4 1875071 \n",
+ "PostgreSQL-32-8-65536-1-6 1875539 \n",
+ "PostgreSQL-32-8-65536-1-3 1875517 \n",
+ "PostgreSQL-32-8-81920-1-8 1875864 \n",
+ "PostgreSQL-32-8-81920-1-6 1875823 \n",
+ "PostgreSQL-32-8-81920-1-7 1875332 \n",
+ "PostgreSQL-32-8-81920-1-3 1873757 \n",
+ "PostgreSQL-32-8-81920-1-2 1874917 \n",
+ "PostgreSQL-32-8-81920-1-1 1876646 \n",
+ "PostgreSQL-32-8-81920-1-4 1874551 \n",
+ "PostgreSQL-32-8-81920-1-5 1874516 \n",
+ "PostgreSQL-32-8-98304-1-1 1874362 \n",
+ "PostgreSQL-32-8-98304-1-2 1874785 \n",
+ "PostgreSQL-32-8-98304-1-3 1873140 \n",
+ "PostgreSQL-32-8-98304-1-4 1876173 \n",
+ "PostgreSQL-32-8-98304-1-5 1873546 \n",
+ "PostgreSQL-32-8-98304-1-6 1876248 \n",
+ "PostgreSQL-32-8-98304-1-8 1874342 \n",
+ "PostgreSQL-32-8-98304-1-7 1875485 \n",
+ "PostgreSQL-32-8-114688-1-4 1873433 \n",
+ "PostgreSQL-32-8-114688-1-1 1874504 \n",
+ "PostgreSQL-32-8-114688-1-2 1877114 \n",
+ "PostgreSQL-32-8-114688-1-3 1875507 \n",
+ "PostgreSQL-32-8-114688-1-5 1874515 \n",
+ "PostgreSQL-32-8-114688-1-6 1875905 \n",
+ "PostgreSQL-32-8-114688-1-8 1874330 \n",
+ "PostgreSQL-32-8-114688-1-7 1875886 \n",
+ "PostgreSQL-32-1-16384-1-1 14999798 \n",
+ "PostgreSQL-32-8-131072-1-8 1875211 \n",
+ "PostgreSQL-32-8-131072-1-2 1874712 \n",
+ "PostgreSQL-32-8-131072-1-3 1875603 \n",
+ "PostgreSQL-32-8-131072-1-4 1873868 \n",
+ "PostgreSQL-32-8-131072-1-5 1876344 \n",
+ "PostgreSQL-32-8-131072-1-6 1875315 \n",
+ "PostgreSQL-32-8-131072-1-7 1875976 \n",
+ "PostgreSQL-32-8-131072-1-1 1875599 \n",
+ "PostgreSQL-32-1-32768-1-1 15000722 \n",
+ "PostgreSQL-32-1-49152-1-1 14998304 \n",
+ "PostgreSQL-32-1-65536-1-1 14996210 \n",
+ "PostgreSQL-32-1-81920-1-1 15001854 \n",
+ "PostgreSQL-32-1-98304-1-1 14995937 \n",
+ "PostgreSQL-32-1-114688-1-1 15000966 \n",
+ "PostgreSQL-32-1-131072-1-1 14999563 \n",
+ "\n",
+ "[72 rows x 43 columns]"
+ ]
+ },
+ "execution_count": 34,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.fillna(0, inplace=True)\n",
+ "#df.drop(df[df['[READ].Operations'] == 0].index, inplace=True)\n",
+ "#df.drop(df[df['[READ].Return=OK'] == 0].index, inplace=True)\n",
+ "\n",
+ "df_plot = evaluation.benchmarking_set_datatypes(df)\n",
+ "df_plot.sort_values('target', inplace=True)\n",
+ "df_plot"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Plot Results per Number of Pods"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACXDUlEQVR4nOzdeXhU5f338c9M9j0QshCzsIMsgoBARFQqEhF3FERUUNSqWEWqKL/6CNJaFHet0lZbsQpFse4KyKIoshpBZBUUCFsIWxayZ+Z+/ggZGRIgCWHOTPJ+XdcY5px7znxnSPCbz9znPjZjjBEAAAAAAADgQXarCwAAAAAAAEDjQygFAAAAAAAAjyOUAgAAAAAAgMcRSgEAAAAAAMDjCKUAAAAAAADgcYRSAAAAAAAA8DhCKQAAAAAAAHgcoRQAAAAAAAA8jlAKAAAAAAAAHkcoBUgaNWqUbDabbDabOnfubHU5Pmns2LGu9zA8PLzejjtq1Kh6PZ6nTZo0STabTQcOHLC6lGpNnTpVHTp0kNPptLoUy5WVlSk5OVmvvfaa1aUAgE+gfzp99E/Vo3/yHfRPOF2EUsBRzZo109tvv62nnnrKbXtZWZlefvllnXfeeYqIiFB4eLjOO+88vfzyyyorK3ONe/7552Wz2bRgwYITPsfrr78um82mTz75RJJ08cUXuxqR428dOnRwPW769Olu+/z9/XXWWWdp1KhR2r179wmf77XXXpPNZlPv3r1POMZms+m+++476Xtz8cUXn7LZvOWWW/T222+rX79+Jx13/Gs50a1FixYnPQ5q5q9//as++uijavfl5eXp6aef1iOPPCK73Tv+d/DTTz/JZrNp5cqVHn/ugIAAjRs3Tk8++aSKi4s9/vwA4Ivon06M/sl30T/VHP0TTpe/1QUA3iIsLEw333yz27aCggINHjxYixcv1hVXXKFRo0bJbrdr7ty5euCBB/TBBx/o888/V1hYmG688UY9/PDDmjlzpgYMGFDtc8ycOVMxMTEaNGiQa1tSUpKmTJlSZWxUVFSVbZMnT1bLli1VXFys5cuXa/r06VqyZInWrVun4ODgKuNnzJihFi1aaOXKldq6davatGlT27elxnr06KEePXpowYIF+uGHH0447sILL9Tbb7/ttu2OO+5Qr169dNddd7m2+fKne97kr3/9q66//npdc801Vfb9+9//Vnl5uYYPH+75wk7g888/V1xcnM477zxLnv+2227To48+qpkzZ+r222+3pAYA8CX0T6eH/sk70T/VDv0TTgehFHAS48aN0+LFi/XKK6+4fRp2zz336NVXX9V9992nhx56SNOmTVNiYqL69++vDz74QNOmTVNQUJDbsXbv3q1vvvlGd911lwICAlzbo6KiqjRzJzJo0CD17NlTUkUj0qxZMz399NP65JNPNHToULex27Zt09KlS/XBBx/o97//vWbMmKGJEyfW9a2oN61atVKrVq3ctt19991q1apVjd+HmiovL5fT6VRgYGC9HrehePPNN3XVVVdV25Bb5YsvvtCgQYNks9ksef7o6GgNHDhQ06dPp6kCgDqif6p/9E/eg/6pKvonnA7vmG8IeKFdu3bpX//6l373u99VOz17zJgx6t+/v9544w3t2rVLknTzzTcrNzdXn3/+eZXxs2bNktPp1IgRI+qtxsqp3r/88kuVfTNmzFCTJk00ePBgXX/99ZoxY0a9Pa8Vdu/erWuuuUbh4eGKjY3VQw89JIfD4dq/fft22Ww2Pfvss3rxxRfVunVrBQUFacOGDZKkRYsWqV+/fgoLC1N0dLSuvvpqbdy40e05Ro0aVe2098p1DY5VVFSk+++/X82aNVNERISuuuoq7d69WzabTZMmTapyjJycHI0aNUrR0dGKiorSbbfdpsLCQrcxlacCzJgxQ+3bt1dwcLB69Oihb775pk512mw2FRQU6K233nJN6x81apSkiqZ77dq11X4qXVBQoD/+8Y9KTk5WUFCQ2rdvr2effVbGmDrVm5+fr7Fjx6pFixYKCgpSXFycLr300iqfCOfk5Gjp0qUaPHiwa9usWbPUo0cPRUREKDIyUl26dNFLL71U5XFjx4511dumTRs9/fTTVdZ5cDqdeumll9SlSxcFBwcrNjZWl112mb7//nu3cZdeeqmWLFmiQ4cOVXlvAAAnR//kXeifal8n/RP9EzyLUAo4gTlz5sjhcOjWW2894Zhbb71V5eXlmjt3riTpuuuuU3BwsGbOnFll7MyZM5Wamqq+ffu6bXc4HDpw4ECVW0FBwSlr3L59uySpSZMmVfbNmDFD1113nQIDAzV8+HBt2bJFq1atOuUxvZHD4VB6erpiYmL07LPP6qKLLtJzzz2nf/7zn1XGvvnmm3rllVd011136bnnnlPTpk21YMECpaenKzs7W5MmTdK4ceO0dOlS9e3b1/Ue1taoUaP0yiuv6PLLL9fTTz+tkJAQt2bgeEOHDlV+fr6mTJmioUOHavr06XriiSeqjFu8eLHGjh2rm2++WZMnT9bBgwd12WWXad26dbWu8e2331ZQUJD69eunt99+W2+//bZ+//vfS5KWLl0qSerevbvbY4wxuuqqq/TCCy/osssu0/PPP6/27dvr4Ycf1rhx4+pU7913361p06ZpyJAheu211/TQQw8pJCSkSlM7b9482Ww2DRw4UJI0f/58DR8+XE2aNNHTTz+tp556ShdffLG+++4712MKCwt10UUX6Z133tGtt96ql19+WX379tWECROq1Dt69GhX8/X000/r0UcfVXBwsJYvX+42rkePHjLGuN4jAEDN0T95D/on+if6J/gEA8CMHDnSpKamum0bO3askWRWr159wsf98MMPRpIZN26ca9sNN9xggoODTW5urmvbpk2bjCQzYcIEt8dfdNFFRlK1t9///veucW+++aaRZBYsWGD2799vdu7cad5//30TGxtrgoKCzM6dO92O+/333xtJZv78+cYYY5xOp0lKSjIPPPBAldcgyYwZM+ak789FF11kOnXqdNIxlUaOHGnCwsJqNLZSWFiYGTly5AmPJ8lMnjzZbfu5555revTo4bq/bds2I8lERkaa7Oxst7HdunUzcXFx5uDBg65tP/74o7Hb7ebWW291e67jvw+MMWbixInm2H8uMzIyjCQzduxYt3GjRo0ykszEiROrPPb22293G3vttdeamJgYt22Vf/fff/+9a9uOHTtMcHCwufbaa2tdpzEnfm8fe+wxI8nk5+e7bf/oo4+MJPOXv/zFbfv1119vbDab2bp1a63rjYqKOuX3mDHG3HLLLeaiiy5y3X/ggQdMZGSkKS8vP+Fj/vznP5uwsDDz888/u21/9NFHjZ+fn8nMzDTGGLNo0SIjydx///1VjuF0Ot3u79mzx0gyTz/99ClrBoDGjP6J/qnyueif6J/on1BXzJQCTiA/P1+SFBERccIxlfvy8vJc226++WYVFxfrgw8+cG2r/OSvuqnnLVq00Pz586vcxo4dW2XsgAEDFBsbq+TkZF1//fUKCwvTJ598oqSkJLdxM2bMUHx8vPr37y+pYprwsGHDNGvWLLcp277k7rvvdrvfr18//frrr1XGDRkyRLGxsa77e/fu1Zo1azRq1Cg1bdrUtf2cc87RpZdeqi+++KLWtVR+snvvvfe6bf/DH/5Qq/oPHjzo9r0jSWlpaerRo4frfkpKiq6++mrNmzevXv/uDh48KH9//yoLon7xxRfy8/PT/fff77b9j3/8o4wxmjNnTq3rjY6O1ooVK7Rnz54T1uN0OjV37ly3T0ujo6NVUFCg+fPnn/Bxs2fPVr9+/dSkSRO3T8oHDBggh8Phmgr/v//9Tzabrdp1QY4/taDyk3NvvQw1AHgz+ifvQv9E/1Qd+id4E0Ip4AQqG6bK5qo61TVegwYNUtOmTd2moP/3v/9V165d1alTpyrHCAsL04ABA6rcjr2kcaVXX31V8+fP1/vvv6/LL79cBw4cqLIgqMPh0KxZs9S/f39t27ZNW7du1datW9W7d2/t27dPCxcurN0b4QUqz18/VpMmTXT48OEqY1u2bOl2f8eOHZKk9u3bVxl79tln13iq//HHtNvtVZ7rZFfnSUlJcbtf+T/u419D27Ztqzy2Xbt2Kiws1P79+2tVZ13s2LFDiYmJVX6ZOPvss137j1WTeqdOnap169YpOTlZvXr10qRJk6o0xKtWrdL+/fvdmqp7771X7dq106BBg5SUlKTbb7/d1dBW2rJli+bOnavY2Fi3W+VaD9nZ2ZIq1g1JTEx0a6xPxBxd+8GqxUIBwJfRP3kP+if6J/on+AKuvgecQOX/RNauXatu3bpVO2bt2rWSpI4dO7q2BQQEaOjQoXr99de1b98+ZWZmasuWLZo6depp19SrVy/X1WOuueYaXXDBBbrpppu0efNm1yc2ixYt0t69ezVr1izNmjWryjFmzJjhOufcV/j5+dV4bEhISJ2f50T/E62PT9hO9BrMcYtf1kR91BkTE6Py8nLl5+ef9NPs+jB06FD169dPH374ob788ks988wzevrpp/XBBx+4Lu/9xRdfqEWLFm4/S3FxcVqzZo3mzZunOXPmaM6cOXrzzTd166236q233pJU8QnhpZdeqvHjx1f73O3atat1vZWNbrNmzWr9WABo7OifvAf9kzv6J/oneCdmSgEnMGjQIPn5+entt98+4Zj//Oc/8vf312WXXea2fcSIEXI4HHr33Xc1c+ZM2Ww2DR8+vF7r8/Pz05QpU7Rnzx797W9/c22fMWOG4uLiNHv27Cq34cOH68MPP1RRUVG91uLNUlNTJUmbN2+usm/Tpk1q1qyZwsLCJFV8+paTk1Nl3PGfbqWmpsrpdGrbtm1u27du3Xra9W7ZsqXKtp9//lmhoaGuTztrWqd04gas8pPk419Damqq9uzZU+UT7k2bNrn217ZeSWrevLnuvfdeffTRR9q2bZtiYmL05JNPuvZ//vnnuvzyy6scKzAwUFdeeaVee+01/fLLL/r973+v//znP673unXr1jpy5Ei1n5YPGDDA9Qlr69attWfPnhpdEabyPan8xQoAUHP0Tw0D/RP9U+U4+iecaYRSwAkkJyfrtttu04IFCzRt2rQq+//+979r0aJFGj16dJU1Cfr27asWLVronXfe0bvvvquLLrqoypj6cPHFF6tXr1568cUXVVxcrKKiIn3wwQe64oordP3111e53XfffcrPz9cnn3xS77WczC+//FLtZZc9oXnz5urWrZveeustt0Zk3bp1+vLLL93+R966dWvl5ua6PsGVKtZU+PDDD92OmZ6eLkl67bXX3La/8sorp13vsmXL3C71u3PnTn388ccaOHCg69PCmtYpVZzeUF0DlpaWJklVLud7+eWXy+FwuDXqkvTCCy/IZrO5Ppmrab0Oh0O5ubluj4mLi1NiYqJKSkokSfv27dMPP/xQ5eo7Bw8edLtvt9t1zjnnSJLrsUOHDtWyZcs0b968Kq8xJydH5eXlkirWyjDGVHvFnuM/bc3IyJDNZnO9RwCAmqN/qj/0TzVH//Qb+if4Gk7fA07ihRde0KZNm3Tvvfdq7ty5rk/05s2bp48//th1ad3j2Ww23XTTTfrrX/8qSZo8efIJnyM3N1fvvPNOtftuvvnmU9b48MMP64YbbtD06dPVpEkT5efn66qrrqp2bJ8+fRQbG6sZM2Zo2LBhru3ff/+9/vKXv1QZf/HFF+uCCy6QJO3fv7/aMS1btqx2AdJjXXLJJZJU58sHn65nnnlGgwYNUlpamkaPHq2ioiK98sorioqK0qRJk1zjbrzxRj3yyCO69tprdf/996uwsFDTpk1Tu3bt3BqHHj16aMiQIXrxxRd18OBB9enTR4sXL9bPP/8s6fTOpe/cubPS09N1//33KygoyNW4HdsM1LTOyloXLFig559/XomJiWrZsqV69+6tVq1aqXPnzlqwYIFuv/121/grr7xS/fv315/+9Cdt375dXbt21ZdffqmPP/5YY8eOVevWrWtVb35+vpKSknT99dera9euCg8P14IFC7Rq1SrXz84XX3yh4OBg18Kyle644w4dOnRIv/vd75SUlKQdO3bolVdeUbdu3Vyfwj388MP65JNPdMUVV2jUqFHq0aOHCgoK9NNPP+n999/X9u3b1axZM/Xv31+33HKLXn75ZW3ZskWXXXaZnE6nvv32W/Xv31/33Xef63nnz5+vvn37KiYmps5/jwDQmNE/0T/RP9E/ATVm1WX/AG9yokvEGmNMSUmJeeGFF0yPHj1MWFiYCQ0NNd27dzcvvviiKS0tPeEx169fbySZoKAgc/jw4WrHnOySxsf+eFZe0njVqlVVjuFwOEzr1q1N69atzRVXXGGCg4NNQUHBCesaNWqUCQgIMAcOHDDGmJM+/5///OdT1nnJJZdUeS+Pv6RxamrqCd9fY059SePqLpF8/OV7Ky9p/Mwzz1R7nAULFpi+ffuakJAQExkZaa688kqzYcOGKuO+/PJL07lzZxMYGGjat29v3nnnnWovFVxQUGDGjBljmjZtasLDw80111xjNm/ebCSZp556qkqd+/fvd3t85d/ptm3bXNt09PLS77zzjmnbtq0JCgoy5557rvnqq6/qXOemTZvMhRdeaEJCQowkt/f5+eefN+Hh4aawsNDtMfn5+ebBBx80iYmJJiAgwLRt29Y888wzVS79W5N6S0pKzMMPP2y6du1qIiIiTFhYmOnatat57bXXXGOuv/56c/nll1d5je+//74ZOHCgiYuLM4GBgSYlJcX8/ve/N3v37q1S74QJE0ybNm1MYGCgadasmTn//PPNs88+6/YzWl5ebp555hnToUMHExgYaGJjY82gQYNMRkaGa0xOTo4JDAw0b7zxRpV6AADu6J/onyrRP9E/0T+hrgilAFPxP+7k5GSzf//+EzZAOLkjR46Y/fv3mxtvvLHaJqgxWL16tZFk3nnnnTo9vrJJ8ZScnBzTtGnTOjcQ9VFvWVmZiYyMNK+++uppHae+vPDCC6Z58+ZVGk0AQFX0T6eP/on+qS7on9CQsKYUcNTOnTsVGxvrmm6N2vnTn/6k2NjYaq9Y0xBVt9jpiy++KLvdrgsvvNCCimovKipK48eP1zPPPCOn02lJDYcOHdKDDz6oa6+91pLnP1ZZWZmef/55PfbYY6d1FSIAaEzon04P/RP9U13QP6EhsRlTh+tpAg3Mhg0btGfPHklSeHi4+vTpY3FFvufnn39WZmamJMnf318XX3yxtQWdYU888YQyMjLUv39/+fv7uy65e9ddd+kf//hHnY5ps9k0ZsyYKotkeitfqxcAUL/on04f/RP9E9DYsdA5IKljx47q2LGj1WX4tHbt2qldu3ZWl+Ex559/vubPn68///nPOnLkiFJSUjRp0iT96U9/sro0AAA8gv7p9NE/0T8BjR0zpQAAAAAAAOBxrCkFAAAAAAAAjyOUAgAAAAAAgMc16jWlnE6n9uzZo4iICNlsNqvLAQAAXsgYo/z8fCUmJspu5/M8+icAAHAqNe2fGnUotWfPHiUnJ1tdBgAA8AE7d+5UUlKS1WVYjv4JAADU1Kn6p0YdSkVEREiqeJMiIyMtrgYAAHijvLw8JScnu/qGxo7+CQAAnEpN+6dGHUpVTjmPjIykqQIAACfFqWoV6J8AAEBNnap/YmEEAAAAAAAAeByhFAAAAAAAADyOUAoAAAAAAAAe16jXlAIAX+FwOFRWVmZ1GUCDFBAQID8/P6vLAABYwOl0qrS01OoyAJ9TX/0ToRQAeDFjjLKyspSTk2N1KUCDFh0drYSEBBYzB4BGpLS0VNu2bZPT6bS6FMAn1Uf/RCgFAF6sMpCKi4tTaGgovzAD9cwYo8LCQmVnZ0uSmjdvbnFFAABPMMZo79698vPzU3Jysux2VrYBaqo++ydCKQDwUg6HwxVIxcTEWF0O0GCFhIRIkrKzsxUXF8epfADQCJSXl6uwsFCJiYkKDQ21uhzA59RX/1TrOHj37t26+eabFRMTo5CQEHXp0kXff/+9a78xRo8//riaN2+ukJAQDRgwQFu2bHE7xqFDhzRixAhFRkYqOjpao0eP1pEjR9zGrF27Vv369VNwcLCSk5M1derUKrXMnj1bHTp0UHBwsLp06aIvvviiti8HALxW5RpSNErAmVf5c3Ym126jhwIA7+FwOCRJgYGBFlcC+K766J9qFUodPnxYffv2VUBAgObMmaMNGzboueeeU5MmTVxjpk6dqpdffll///vftWLFCoWFhSk9PV3FxcWuMSNGjND69es1f/58ffbZZ/rmm2901113ufbn5eVp4MCBSk1NVUZGhp555hlNmjRJ//znP11jli5dquHDh2v06NFavXq1rrnmGl1zzTVat25dnd8MAPBGnLIHnHln+ueMHgoAvBN9FlB39fLzY2rhkUceMRdccMEJ9zudTpOQkGCeeeYZ17acnBwTFBRk/vvf/xpjjNmwYYORZFatWuUaM2fOHGOz2czu3buNMca89tprpkmTJqakpMTtudu3b++6P3ToUDN48GC35+/du7f5/e9/X+PXk5ubaySZ3NzcGj8GADylqKjIbNiwwRQVFVldCtDgneznrT76hYbUQ9E/AWgI6LOA01cf/VOtZkp98skn6tmzp2644QbFxcXp3HPP1euvv+7av23bNmVlZWnAgAGubVFRUerdu7eWLVsmSVq2bJmio6PVs2dP15gBAwbIbrdrxYoVrjEXXnih21TK9PR0bd68WYcPH3aNOfZ5KsdUPk91SkpKlJeX53YDADRs27dvl81m05o1a6wupcGx2Wz66KOPrC7DZdSoUbrmmmusLqNavtxD0T8BAKpDj1U3F198scaOHWt1GS7Tp09XdHS0Zc9fq1Dq119/1bRp09S2bVvNmzdP99xzj+6//3699dZbkiquEiVJ8fHxbo+Lj4937cvKylJcXJzbfn9/fzVt2tRtTHXHOPY5TjSmcn91pkyZoqioKNctOTm5Ni8fAFBD33zzja688kolJiZ6XXDhC+oarmzevFn9+/dXfHy8goOD1apVKz322GNu5/m//vrr6tevn5o0aaImTZpowIABWrly5UmPO2nSJHXr1q3W9eA3vtxD0T8BgPdwOBz6f//v/6lly5YKCQlR69at9ec//1nGGKtL8wn18QHW1q1bFRERccog5+uvv5bNZlNOTs5pPV9DV6tQyul0qnv37vrrX/+qc889V3fddZfuvPNO/f3vfz9T9dWrCRMmKDc313XbuXOn1SUBQINUUFCgrl276tVXX7W6lEYlICBAt956q7788ktt3rxZL774ol5//XVNnDjRNebrr7/W8OHD9dVXX2nZsmVKTk7WwIEDtXv37jNenzFG5eXlZ/x5vJEv91D0TwDgPZ5++mlNmzZNf/vb37Rx40Y9/fTTmjp1ql555RWrS2sUysrKNHz4cPXr18/jz9tQ1SqUat68uTp27Oi27eyzz1ZmZqYkKSEhQZK0b98+tzH79u1z7UtISFB2drbb/vLych06dMhtTHXHOPY5TjSmcn91goKCFBkZ6XYDANS/QYMG6S9/+YuuvfbaGj+mcjbOP/7xDyUnJys0NFRDhw5Vbm6ua4zT6dTkyZOVlJSkoKAgdevWTXPnznU7zsqVK3XuuecqODhYPXv21OrVq2tV+/r163XFFVcoMjJSERER6tevn3755ZcaPX91n4itWbNGNptN27dvl/TbFOl58+bp7LPPVnh4uC677DLt3bvX9T689dZb+vjjj2Wz2WSz2fT111/XqPZWrVrptttuU9euXZWamqqrrrpKI0aM0LfffusaM2PGDN17773q1q2bOnTooDfeeENOp1MLFy6s9pjTp0/XE088oR9//NFVz/Tp0137Dxw4oGuvvVahoaFq27atPvnkkyrvx5w5c9SjRw8FBQVpyZIlcjqdmjJliutT3q5du+r99993Pc7hcGj06NGu/e3bt9dLL73kVpfD4dC4ceMUHR2tmJgYjR8/vsqnxO+//766dOmikJAQxcTEaMCAASooKKjRe1nffLmHon8CAO+xdOlSXX311Ro8eLBatGih66+/XgMHDjzprGd6rNPvsSo99thj6tChg4YOHXrScdu3b1f//v0lSU2aNJHNZtOoUaNc+51Op8aPH6+mTZsqISFBkyZNcnu8zWbTtGnTdNVVVyksLExPPvmkJOnjjz9W9+7dXTPin3jiCbcP/J5//nl16dJFYWFhSk5O1r333lvlKr3Tp09XSkqKQkNDde211+rgwYNu+3/88Uf1799fERERioyMVI8ePdyuFlzfahVK9e3bV5s3b3bb9vPPPys1NVWS1LJlSyUkJLg1tnl5eVqxYoXS0tIkSWlpacrJyVFGRoZrzKJFi+R0OtW7d2/XmG+++cYtDZw/f77at2/vukpNWlpalQZ6/vz5rucBgIbIGKPC0nJLbp6YFr5161a99957+vTTTzV37lytXr1a9957r2v/Sy+9pOeee07PPvus1q5dq/T0dF111VXasmWLJOnIkSO64oor1LFjR2VkZGjSpEl66KGHavz8u3fv1oUXXqigoCAtWrRIGRkZuv32213/sz/V89dUYWGhnn32Wb399tv65ptvlJmZ6arzoYce0tChQ11N1N69e3X++efX6viVtm7dqrlz5+qiiy46aS1lZWVq2rRptfuHDRumP/7xj+rUqZOrnmHDhrn2P/HEExo6dKjWrl2ryy+/XCNGjNChQ4fcjvHoo4/qqaee0saNG3XOOedoypQp+s9//qO///3vWr9+vR588EHdfPPNWrx4saSKRi0pKUmzZ8/Whg0b9Pjjj+v//u//9N5777mO+dxzz2n69On697//rSVLlujQoUP68MMPXfv37t2r4cOH6/bbb9fGjRv19ddf67rrrrPs9AZ6KADwbr7SY51//vlauHChfv75Z0kVAcKSJUs0aNCgkz6OHuv0e6xFixZp9uzZNToTIDk5Wf/73/8kVSyvsHfvXrcP2N566y2FhYVpxYoVmjp1qiZPnqz58+e7HWPSpEm69tpr9dNPP+n222/Xt99+q1tvvVUPPPCANmzYoH/84x+aPn26K7CSJLvdrpdfflnr16/XW2+9pUWLFmn8+PGu/StWrNDo0aN13333ac2aNerfv7/+8pe/uD3viBEjlJSUpFWrVikjI0OPPvqoAgICavw+1VptVlZfuXKl8ff3N08++aTZsmWLmTFjhgkNDTXvvPOOa8xTTz1loqOjzccff2zWrl1rrr76atOyZUu31dgvu+wyc+6555oVK1aYJUuWmLZt25rhw4e79ufk5Jj4+Hhzyy23mHXr1plZs2aZ0NBQ849//MM15rvvvjP+/v7m2WefNRs3bjQTJ040AQEB5qeffqrx6+HqMQC8WXVXsygoKTOpj3xmya2gpKxOr0OS+fDDD085buLEicbPz8/s2rXLtW3OnDnGbrebvXv3GmOMSUxMNE8++aTb48477zxz7733GmOM+cc//mFiYmLc3rNp06YZSWb16tWnrGHChAmmZcuWprS0tNr9p3r+r776ykgyhw8fdu1fvXq1kWS2bdtmjDHmzTffNJLM1q1bXWNeffVVEx8f77o/cuRIc/XVV5+y3hNJS0szQUFBRpK56667jMPhOOHYe+65x7Rq1eqkVx+aOHGi6dq1a5Xtksxjjz3mun/kyBEjycyZM8cY89v78dFHH7nGFBcXm9DQULN06VK3Y40ePdqtFzjemDFjzJAhQ1z3mzdvbqZOneq6X1ZWZpKSklzvW0ZGhpFktm/ffsJjHutMX32vIfVQ9E8AGoLj/933lR7L4XCYRx55xNhsNuPv729sNpv561//etLH0GOdfo914MABk5ycbBYvXux6rqioqJM+prqajTHmoosuqnJF3vPOO8888sgjrvuSzNixY93GXHLJJVX+rt9++23TvHnzE9Ywe/ZsExMT47o/fPhwc/nll7uNGTZsmNtriYiIMNOnTz/pa6tUH/2Tf20CrPPOO08ffvihJkyYoMmTJ6tly5Z68cUXNWLECNeY8ePHq6CgQHfddZdycnJ0wQUXaO7cuQoODnaNmTFjhu677z5dcsklstvtGjJkiF5++WXX/qioKH355ZcaM2aMevTooWbNmunxxx/XXXfd5Rpz/vnna+bMmXrsscf0f//3f2rbtq0++ugjde7cuTYvCQDgRVJSUnTWWWe57qelpcnpdGrz5s0KDQ3Vnj171LdvX7fH9O3bVz/++KMkuWbiHPv/nNrM/lizZo369etX7adBeXl5p3z+mgoNDVXr1q1d95s3b17ltKzT8e677yo/P18//vijHn74YT377LNun5JVeuqppzRr1ix9/fXXbu9ZbZxzzjmuP4eFhSkyMrLKazn2anFbt25VYWGhLr30UrcxpaWlOvfcc133X331Vf373/9WZmamioqKVFpa6lpsPTc3V3v37nXNDpIqFvzu2bOn69Pmrl276pJLLlGXLl2Unp6ugQMH6vrrr3fNFvI0eigAQH147733NGPGDM2cOVOdOnXSmjVrNHbsWCUmJmrkyJEnfBw91um58847ddNNN+nCCy887WNJ7v2TVH2dx/ZPUsWsuO+++85tZpTD4VBxcbEKCwsVGhqqBQsWaMqUKdq0aZPy8vJUXl7utn/jxo1VltdIS0tzO1Vy3LhxuuOOO/T2229rwIABuuGGG9ze0/pWq1BKkq644gpdccUVJ9xvs9k0efJkTZ48+YRjmjZtqpkzZ570ec455xy3NTCqc8MNN+iGG244ecEA0ICEBPhpw+R0y567oQsJCTmtx9vtFWfFm2Om4Ve3MOXxDZnNZqvX08oqr47WsWNHORwO3XXXXfrjH/8oP7/f/g6fffZZPfXUU1qwYEGVxqg2qnstTqfTbVtYWJjrz5XrGnz++eduzbFUsXaRJM2aNUsPPfSQnnvuOaWlpSkiIkLPPPOMVqxYUeO6/Pz8NH/+fC1dulRffvmlXnnlFf3pT3/SihUr1LJly1q9xvpCDwUA3stXeqyHH35Yjz76qG688UZJUpcuXbRjxw5NmTLlpKGU1Xy9x1q0aJE++eQTPfvss646nE6n/P399c9//lO33357rY5X2/5JquihnnjiCV133XVVjhccHKzt27friiuu0D333KMnn3xSTZs21ZIlSzR69GiVlpYqNDS0RrVNmjRJN910kz7//HPNmTNHEydO1KxZs2q1Vmxt1GpNKQCAtWw2m0ID/S252Wy2M/76MjMztWfPHtf95cuXy263q3379oqMjFRiYqK+++47t8d89913rgWkzz77bK1du1bFxcVux6ipyl/mq2tyavL8sbGxkuRaUFOq+GSwtgIDA+VwOGr9uOo4nU6VlZW5NTpTp07Vn//8Z82dO7fKp3Bnup6OHTsqKChImZmZatOmjdutMkz77rvvdP755+vee+/VueeeqzZt2rgWQpUqZgM1b97cLaQqLy93W2tJqvh56du3r5544gmtXr1agYGBbutOAQBQyVd6rMLCQldAU8nPz69KoHE8eqwKde1pli1bpjVr1rhukydPVkREhNasWXPCsCYwMFCS6q2H6t69uzZv3lylf2rTpo3sdrsyMjLkdDr13HPPqU+fPmrXrp3b37lU8fd4/Id81f09tmvXTg8++KC+/PJLXXfddXrzzTfr5TVUp9YzpQAAOJUjR45o69atrvvbtm3TmjVr1LRpU6WkpJzwccHBwRo5cqSeffZZ5eXl6f7779fQoUNdVwV7+OGHNXHiRLVu3VrdunXTm2++qTVr1mjGjBmSpJtuukl/+tOfdOedd2rChAnavn276xOtmrjvvvv0yiuv6MYbb9SECRMUFRWl5cuXq1evXmrfvv0pn78yWJk0aZKefPJJ/fzzz3ruuedq/f61aNFC8+bN0+bNmxUTE6OoqKgaLTA5Y8YMBQQEqEuXLgoKCtL333+vCRMmaNiwYa7HP/3003r88cc1c+ZMtWjRQllZWZKk8PBwhYeHn7Ceyr/DpKQkRUREuGY11VZERIQeeughPfjgg3I6nbrggguUm5ur7777TpGRkRo5cqTatm2r//znP5o3b55atmypt99+W6tWrXKb4fTAAw/oqaeeUtu2bdWhQwc9//zzblfkWbFihRYuXKiBAwcqLi5OK1as0P79+3X22WfXqW4AALzBlVdeqSeffFIpKSnq1KmTVq9ereeff/6UM3XosSrUtcc6vn/4/vvvZbfbT3rqe2pqqmw2mz777DNdfvnlCgkJOWGvVROPP/64rrjiCqWkpOj666+X3W7Xjz/+qHXr1ukvf/mL2rRpo7KyMr3yyiu68sor9d133+nvf/+72zHuv/9+9e3bV88++6yuvvpqzZs3z+3UvaKiIj388MO6/vrr1bJlS+3atUurVq3SkCFD6lz3KdVo9aoGioU6AXizky0c6O0qF3Y8/jZy5MgTPqZyMe3XXnvNJCYmmuDgYHP99debQ4cOucY4HA4zadIkc9ZZZ5mAgADTtWtX16LalZYtW2a6du1qAgMDTbdu3cz//ve/Gi/CaYwxP/74oxk4cKAJDQ01ERERpl+/fuaXX36p8fMvWbLEdOnSxQQHB5t+/fqZ2bNnV1mE8/iFMT/88ENz7P+Ss7OzzaWXXmrCw8ONJPPVV18ZYyoWxjzZezhr1izTvXt3Ex4ebsLCwkzHjh3NX//6V7fvodTU1Gr/biZOnHjC4xYXF5shQ4aY6OhoI8m8+eabxpjqF7GPiopy7T/RAp9Op9O8+OKLpn379iYgIMDExsaa9PR01+KhxcXFZtSoUSYqKspER0ebe+65xzz66KNui62XlZWZBx54wERGRpro6Ggzbtw4c+utt7oWL92wYYNJT083sbGxJigoyLRr18688sorJ3yNZ3qh84aE9wNAQ+CrfVZeXp554IEHTEpKigkODjatWrUyf/rTn0xJSckJH0OPdfo91vFqstC5McZMnjzZJCQkGJvN5jr+RRddZB544AG3cVdffbXb81fXYxljzNy5c835559vQkJCTGRkpOnVq5f55z//6dr//PPPm+bNm5uQkBCTnp5u/vOf/1Tpxf71r3+ZpKQkExISYq688krz7LPPul5LSUmJufHGG01ycrIJDAw0iYmJ5r777jvhz0l99E+2oy+4UcrLy1NUVJRyc3MVGRlpdTkA4Ka4uFjbtm1Ty5Yt67wItS+ZNGmSPvroozpNxW4sUlNT9cQTT2jUqFFWl9LgnOznjX7BHe8HgIagMfVZ9FinRo9VN/XRP7GmFAAAPmD9+vWKiorSrbfeanUpAAAADQY9lrUIpQAAjcbdd9/tWjvp+Nvdd99tdXkn1alTJ61du7bK4qYAAABWo8dCXXH6HtPPAXipxjSt3FOys7OVl5dX7b7IyEjFxcV5uCJ4C07fqzneDwANAX1W/aLHapzqo3/i6nsAgEYjLi6OpggAAKCe0WOhrpifBgAAAAAAAI8jlAIAL9eIz7IGPIafMwBonPj3H6i7+vj5IZQCAC8VEBAgSSosLLS4EqDhq/w5q/y5AwA0bH5+fpKk0tJSiysBfFd99E+sKQUAXsrPz0/R0dHKzs6WJIWGhspms1lclW9xGqNyh1PGSBVvnU02m2STZLO5/xmNkzFGhYWFys7OVnR0tOuXFABAw+bv76/Q0FDt379fAQEBXHkNqIX67J8IpQDAiyUkJEiSK5hCVRXBk5HDaVTudKrc+dt9h9OoJpOKK4Kp3/4sm+2E247+8eifbb+NqW7b0f8cu939GLZj9h+z7UT1VHM81I/o6GjXzxsAoOGz2Wxq3ry5tm3bph07dlhdDuCT6qN/IpQCAC9W2TDFxcWprKzM6nIs4XQaHThSoj25RdqbU6w9uUXak/Pbn/OLy0/6+EB/uwL87BWhlaMitGoobDbJ317x+vzskr+fXQE2m4ID/RQXGayEyGDFRQYpITJY8ZFBiosMVkxYkPzspFnHCggIYIYUADRCgYGBatu2LafwAXVQX/0ToRQA+AA/P78G/UtzcZlDuw4XasfBilvmoYrbjoMF2nm4SKXlzpM+vll4kFJjQpXStOKWGlNxS24aqtjwILfT84wxrtlUpQ6nyh1OlTmMyhxOlR0NrUrLK75WbitzGJWVO1XudKrUYY4+5rfH/Xaso49xOlVWXjFzq/pxJ3/OynHH/7n6tSQdJ3hX8qvdGuBnU/OoEJ0VHaKzmvz2NSk6RElNQpUQFaxAf05hAAA0Dna7XcHBwVaXATRahFIAgDPOGKOcwjLtOBo0ZR4NnnYcKlTmwUJl5RWf9PH+dpuSmoQouTJwahqmlGNCqLCgmv/vzGazKcDPpgA/KUS+FfQ5jgnKfgvAjgnMjgZheUXl2p1TqN2Hi7Qrp0i7Dxdpd06R9uYWq8xhXKFfdWw2KT4i2D2wOvrniq+hCgn0rfcNAAAA3olQCgBQLxxOoz05RUdnOFXOdiqo+PPBQuWXnPw0u/Agf9csp5TK4Ono/eZRwfL3Y/aOn90mP7ufggPqFgo5nEb78oq163CRK7TanVN09H5FeFVS7lRWXrGy8oqVseNwtcdpGhZ4TEh1/IyrUEWG+LN4PAAAAE6JUAoAUGOFpeWu0Gnn0a8Vs50KtOtw0SnXa4qPDHKb5ZTq+hqmJqEBBBlnmJ/dpsToECVGh0hqWmW/MUYHjpS6AirXbKtjQqv8knIdKijVoYJS/bQ7t9rniQjydwuqfptxFaqzokPULDyQv2sAAAAQSgEAflMZSmQeKvhtxlNl8HSoUPvzS076+EA/u5Kahij16Gl1KTFhSj0aPiU14bQvb2ez2RQbEaTYiCB1S46udkxuUdkxM6x+m21VGVodLChVfkm5NmXla1NW9etaBfnb3QOr6BAlNa04NfCsJiGKjwhiZhwAAEAjQCgFAI1MmcOp3YeLXEFT5sECt8XFC0tPtHB2haiQANci4qmu2U4Vs58SIoO5slsDFxUSoKiQAHVMjKx2f1Gp47fA6pj1rCq/ZuUVq6TcqV8PFOjXAwXVHsPPblNCZLBrPaskV4BVEVolRgcryJ+AEwAAwNcRSgGAlyspd6iwxKGC0nIVljpUUHLc19JyFZSUq6DEocLSchWUOlRYcvRr6THbjx4jr6hMJzvLzmaTmkcG/7au0zGn2qU2DVNUaIDnXjx8Tkign9rEhatNXHi1+0vLncrKLdauY9a0OvYUwb25RSpzGNfsq5Xbqn+euIggt1MDOzaP1NXdzjqDrwwAAAD1jVAKAOqJMUYl5U5XYFRwXCBUJTCqyZjScpU5Tr5OU10E+duPWdMpTClNQ5QaUxFAJTUJYRYKzphAf3tF0BkTWu1+h9Nof36JducUatdx61lVfi0qcyg7v0TZ+SVanZkjSTq/dQyhFAAAgI8hlALQqBWWlutAfunRWUi/BUNHjg+KqgRGv808OnYWk+MUC32fjkB/u8KD/BUa6KewQH+FBh39GuinsCD3rxXj/BUW5FfxNdBPoUEVXyNDAhQbHiQ7p9nBC/nZbUqIClZCVLB6pFbdb4zR4cKyo7OrCl1XD2zZLMzzxQIAAOC0EEoBaLS27MvXVX/7TkVlJ19DqS6CA+xuwVFYdWHScaFS2NHQyC1MOvo1NNBPASz8DMhms6lpWKCahgWqS1KU1eUAAADgNBBKAWi0/r74VxWVORToZ1dkSIDbrKKKkKjqLKPjAyO3wOno19BAfxb7BgAAAIBTIJQC0CjtyyvWJz/uliS9+/s+OjelicUVAQAAAEDjwrkgABqlt5ZuV5nDqGdqEwIpAAAAALAAoRSARqewtFwzVmRKku7o18riagAAAACgcSKUAtDozP5+l3KLypQaE6pLO8ZbXQ4AAAAANEqEUgAaFYfT6F9LtkmSRl/QkgXJAQAAAMAihFIAGpX5G/Yp81ChokICdH2PJKvLAQAAAIBGi1AKQKPyxre/SpJG9E5RaCAXIAUAAAAAqxBKAWg0Vmce1vc7DivAz6aR57ewuhwAAAAAaNQIpQA0Gm98W7GW1FVdz1J8ZLDF1QAAAABA40YoBaBR2HmoUHPW7ZUk3dGvpcXVAAAAAAAIpQA0Cm9+t11OI/Vr20xnN4+0uhwAAAAAaPQIpQA0eLlFZXp3VaYkafQFzJICAAAAAG9AKAWgwZu1MlMFpQ61iw/XRe1irS4HAAAAACBCKQANXJnDqelLt0uS7riglWw2m7UFAQAAAAAkEUoBaOA+X7tXe3OL1Sw8SFefm2h1OQAAAACAowilADRYxhi9seRXSdLItFQF+ftZXBEAAAAAoBKhFIAGa/mvh7Rud56CA+wa0SfV6nIAAAAAAMcglALQYL3xbcUsqSHdk9Q0LNDiagAAAAAAxyKUAtAgbc0+ooWbsmWzSaMvaGl1OQAAAACA4xBKAWiQ/rVkmyTpkg7xahUbbnE1AAAAAIDjEUoBaHAOHinRBz/skiTd2Y9ZUgAAAADgjQilADQ47yzPVEm5U+ckRalXy6ZWlwMAAAAAqAahFIAGpbjMobeXb5dUsZaUzWaztiAAAAAAQLUIpQA0KB+t3q0DR0qVGBWsy7s0t7ocAAAAAMAJEEoBaDCcTqM3ji5wflvflgrw4584AAAAAPBW/MYGoMFY/PN+bc0+ovAgfw3rlWx1OQAAAACAkyCUAtBgvLHkV0nSjeclKzI4wOJqAAAAAAAnQygFoEFYvydX3209KD+7TaP6trC6HAAAAADAKRBKAWgQ/vVtxVpSgzonKKlJqMXVAAAAAABOhVAKgM/Lyi3WJz/ukSTd2a+VxdUAAAAAAGqCUAqAz5u+dLvKnUa9WjRV1+Roq8sBAAAAANQAoRQAn1ZQUq6ZK3ZIku7o19LiagAAAAAANUUoBcCnzf5+p/KKy9UiJlQDzo63uhwAAAAAQA0RSgHwWQ6n0b+/2y5JGn1BS9ntNmsLAgAAAADUGKEUAJ/15fosZR4qVHRogK7vkWx1OQAAAACAWiCUAuCzXv/2V0nSzb1TFRLoZ3E1AAAAAIDaIJQC4JMydhzWD5k5CvSz69bzU60uBwAAAABQS4RSAHzSv5ZUzJK6ului4iKCLa4GAAAAAFBbhFIAfM7OQ4Wauy5LknRHv1YWVwMAAAAAqAtCKQA+519LtslppH5tm6l9QoTV5QAAAAAA6oBQCoBPyS0s03vf75Qk3cksKQAAAADwWYRSAHzKzJWZKix1qENChPq1bWZ1OQAAAACAOiKUAuAzSsudmr50myRp9AUtZbPZLK4IAAAAAFBXhFIAfMbnP+3RvrwSxUYE6apuiVaXAwAAAAA4DYRSAHyCMUavf1MxS2pkWqqC/P0srggAAAAAcDoIpQD4hGW/HNSGvXkKDrBrRO9Uq8sBAAAAAJwmQikAPuH1b3+VJN3QI1lNwgItrgYAAAAAcLoIpQB4va3Z+fpq837ZbBULnAMAAAAAfB+hFACv968lFWtJXXp2vFo0C7O4GgAAAABAfSCUAuDVDhwp0f9+2C1JuvPCVhZXAwAAAACoL4RSALza28t2qLTcqa5JUeqZ2sTqcgAAAAAA9YRQCoDXKi5z6O3lOyRJd/RrJZvNZnFFAAAAAID6QigFwGt98MNuHSoo1VnRIRrUOcHqcgAAAAAA9YhQCoBXcjqN/rXkV0nSbX1byN+Pf64AAAAAoCHhtzwAXunrn7P1y/4CRQT5a9h5yVaXAwAAAACoZ4RSALzS699skyTd2CtZEcEBFlcDAAAAAKhvhFIAvM663bla9utB+dltGtW3pdXlAAAAAADOAEIpAF7njW8r1pIa3KW5zooOsbgaAAAAAMCZQCgFwKvszS3SZ2v3SpLu7NfK4moAAAAAAGcKoRQArzJ96XaVO416t2yqLklRVpcDAAAAADhDCKUAeI0jJeWauSJTErOkAAAAAKChI5QC4DXeW7VT+cXlatUsTL/rEGd1OQAAAACAM4hQCoBXKHc49e/vtkmSbr+gpex2m8UVAQAAAADOJEIpAF7hyw37tOtwkZqEBmhI9ySrywEAAAAAnGGEUgC8wuvf/ipJuqVPqkIC/SyuBgAAAABwphFKAbBcxo5DWp2Zo0A/u25Ja2F1OQAAAAAADyCUAmC517+pWEvqmnMTFRsRZHE1AAAAAABPIJQCYKkdBws0b0OWJOmOfq0srgYAAAAA4CmEUgAs9e8l22SMdFG7WLWLj7C6HAAAAACAhxBKAbBMbmGZ3vt+lyTpTmZJAQAAAECjQigFwDIzVu5QUZlDHRIi1LdNjNXlAAAAAAA8iFAKgCVKy516a+l2SRWzpGw2m7UFAQAAAAA8ilAKgCU+/XGP9uWVKC4iSFd2TbS6HAAAAACAhxFKAfA4Y4xe//ZXSdLI81so0J9/igAAAACgseE3QQAet/SXg9qUla+QAD+N6J1idTkAAAAAAAsQSgHwuMpZUkN7Jik6NNDiagAAAAAAViCUAuBRW/bl6+vN+2WzSbdf0NLqcgAAAAAAFiGUAuBRb3y7TZI0sGO8UmPCLK4GAAAAAGAVQikAHrM/v0Qfrt4tSbqzXyuLqwEAAAAAWKlWodSkSZNks9ncbh06dHDtLy4u1pgxYxQTE6Pw8HANGTJE+/btcztGZmamBg8erNDQUMXFxenhhx9WeXm525ivv/5a3bt3V1BQkNq0aaPp06dXqeXVV19VixYtFBwcrN69e2vlypW1eSkALPD28h0qdTjVLTlaPVKbWF0OAHgMPRQAAEBVtZ4p1alTJ+3du9d1W7JkiWvfgw8+qE8//VSzZ8/W4sWLtWfPHl133XWu/Q6HQ4MHD1ZpaamWLl2qt956S9OnT9fjjz/uGrNt2zYNHjxY/fv315o1azR27FjdcccdmjdvnmvMu+++q3HjxmnixIn64Ycf1LVrV6Wnpys7O7uu7wOAM6y4zKF3lu+QVDFLymazWVwRAHgWPRQAAMBxTC1MnDjRdO3atdp9OTk5JiAgwMyePdu1bePGjUaSWbZsmTHGmC+++MLY7XaTlZXlGjNt2jQTGRlpSkpKjDHGjB8/3nTq1Mnt2MOGDTPp6emu+7169TJjxoxx3Xc4HCYxMdFMmTKlNi/H5ObmGkkmNze3Vo8DUHvvLN9uUh/5zPR9aqEpK3dYXQ4A1Fh99AsNqYeifwIAAKdS036h1jOltmzZosTERLVq1UojRoxQZmamJCkjI0NlZWUaMGCAa2yHDh2UkpKiZcuWSZKWLVumLl26KD4+3jUmPT1deXl5Wr9+vWvMsceoHFN5jNLSUmVkZLiNsdvtGjBggGvMiZSUlCgvL8/tBuDMczqN/nV0gfPb+7aUvx/L2QFofHy1h6J/AgAAZ0qtfjPs3bu3pk+frrlz52ratGnatm2b+vXrp/z8fGVlZSkwMFDR0dFuj4mPj1dWVpYkKSsry62Zqtxfue9kY/Ly8lRUVKQDBw7I4XBUO6byGCcyZcoURUVFuW7Jycm1efkA6mjRpmz9eqBAEcH+GnoeP3cAGh9f7qHonwAAwJniX5vBgwYNcv35nHPOUe/evZWamqr33ntPISEh9V5cfZswYYLGjRvnup+Xl0djBXjA69/+Kkm6qVeKwoNq9c8OADQIvtxD0T8BAIAz5bTOoYmOjla7du20detWJSQkqLS0VDk5OW5j9u3bp4SEBElSQkJClSvJVN4/1ZjIyEiFhISoWbNm8vPzq3ZM5TFOJCgoSJGRkW43AGfWT7tytWLbIfnbbRrVt4XV5QCAV/ClHor+CQAAnCmnFUodOXJEv/zyi5o3b64ePXooICBACxcudO3fvHmzMjMzlZaWJklKS0vTTz/95HaFl/nz5ysyMlIdO3Z0jTn2GJVjKo8RGBioHj16uI1xOp1auHChawwA7/HGkopZUlec01zNo7x7NgAAeAo9FAAAQC1DqYceekiLFy/W9u3btXTpUl177bXy8/PT8OHDFRUVpdGjR2vcuHH66quvlJGRodtuu01paWnq06ePJGngwIHq2LGjbrnlFv3444+aN2+eHnvsMY0ZM0ZBQUGSpLvvvlu//vqrxo8fr02bNum1117Te++9pwcffNBVx7hx4/T666/rrbfe0saNG3XPPfeooKBAt912Wz2+NQBO156cIn22dq8k6Y5+rSyuBgCsQw8FAABQVa0Wd9m1a5eGDx+ugwcPKjY2VhdccIGWL1+u2NhYSdILL7wgu92uIUOGqKSkROnp6Xrttddcj/fz89Nnn32me+65R2lpaQoLC9PIkSM1efJk15iWLVvq888/14MPPqiXXnpJSUlJeuONN5Senu4aM2zYMO3fv1+PP/64srKy1K1bN82dO7fKwp0ArDV96XY5nEZprWLU+awoq8sBAMvQQwEAAFRlM8YYq4uwSl5enqKiopSbm8v6CEA9yy8u0/lTFim/pFz/GtlTl5zNLzwAfBP9gjveDwAAcCo17RdOa00pADiR977fpfyScrWKDVP/9nFWlwMAAAAA8DKEUgDqXbnDqX8v2SZJuuOCVrLbbRZXBAAAAADwNoRSAOrd3PVZ2p1TpJiwQF3X/SyrywEAAAAAeCFCKQD1yhij17+tmCV1c59UBQf4WVwRAAAAAMAbEUoBqFff7zisH3fmKNDfrlvSUq0uBwAAAADgpQilANSrN779VZJ03blnqVl4kMXVAAAAAAC8FaEUgHqz/UCBvtywT5J0R7+WFlcDAAAAAPBmhFIA6s2/v9smY6T+7WPVJi7C6nIAAAAAAF6MUApAvcgpLNXs73dJku7s18riagAAAAAA3o5QCkC9mLEiU0VlDnVsHqm01jFWlwMAAAAA8HKEUgBOW0m5Q9OXbpdUsZaUzWaztiAAAAAAgNcjlAJw2j79ca/255coPjJIV5yTaHU5AAAAAAAfQCgF4LQYY/TGt79Kkkad31KB/vyzAgAAAAA4NX57BHBalmw9oE1Z+QoN9NNNvVKsLgcAAAAA4CMIpQCclte/3SZJGtozWVGhARZXAwAAAADwFYRSAOpsc1a+vvl5v+w26fa+La0uBwAAAADgQwilANTZv5ZUrCWV3ilBKTGhFlcDAAAAAPAlhFIA6iQ7v1gfrd4jSbqjXyuLqwEAAAAA+BpCKQB18vayHSp1ONU9JVo9UptYXQ4AAAAAwMcQSgGotaJSh95ZvkOSdCezpAAAAAAAdUAoBaDW3v9hlw4Xlim5aYgGdkqwuhwAAAAAgA8ilAJQK06n0b+XbJNUccU9P7vN4ooAAAAAAL6IUApArSzclK1tBwoUGeyvoT2TrS4HAAAAAOCjCKUA1Mrr3/4qSbqpd6rCgvwtrgYAAAAA4KsIpQDU2NpdOVq57ZD87TaNOr+F1eUAAAAAAHwYoRSAGnv924q1pK7qmqiEqGCLqwEAAAAA+DJCKQA1sjunSF/8tFeSNLpfS4urAQAAAAD4OkIpADUy/bttcjiNzm8do06JUVaXAwAAAADwcYRSAE4pv7hMs1bulCTd2a+VxdUAAAAAABoCQikAp/Tuqp3KLylXm7hwXdQu1upyAAAAAAANAKEUgJMqdzj15nfbJUl3XNBSdrvN2oIAAAAAAA0CoRSAk/piXZZ25xQpJixQ15x7ltXlAAAAAAAaCEIpACdkjNEb3/4qSbolLVXBAX4WVwQAAAAAaCgIpQCc0Krth7V2V66C/O26pU+q1eUAAAAAABoQQikAJ/T60VlS13VPUkx4kMXVAAAAAAAaEkIpANXadqBACzbukySNvqClxdUAAAAAABoaQikA1frXkl9ljHRJhzi1iQu3uhwAAAAAQANDKAWgisMFpXo/Y5ckaXQ/ZkkBAAAAAOofoRSAKmas2KHiMqc6JUYqrVWM1eUAAAAAABogQikAbkrKHXpr2Q5J0p39Wslms1lcEQAAAACgISKUAuDm4zV7tD+/RM2jgjX4nOZWlwMAAAAAaKAIpQC4GGP0r2+3SZJGnd9CAX78EwEAAAAAODP4jROAyzdbDmjzvnyFBfrpxl4pVpcDAAAAAGjACKUAuPx7ScUsqaHnJSsqJMDiagAAAAAADRmhFABJ0o6DBVr8837ZbNJt57e0uhwAAAAAQANHKAVAkjRzZaYk6cK2sUqJCbW4GgAAAABAQ0coBUAl5Q7N/n6XJOnmPqkWVwMAAAAAaAwIpQBozk9ZOlRQquZRwerfPtbqcgAAAAAAjQChFADNWLFDkjS8V4r8/fhnAQAAAABw5vHbJ9DIbcrK06rth+Vnt+nG85KtLgcAAAAA0EgQSgGN3IzlFQucD+wYr7jIYIurAQAAAAA0FoRSQCNWUFKuD1fvlsQC5wAAAAAAzyKUAhqxj9fs0ZGScrVqFqbzW8dYXQ4AAAAAoBEhlAIaKWOM3llescD5Tb1TZLPZLK4IAAAAANCYEEoBjdSanTnasDdPQf52Xd8jyepyAAAAAACNDKEU0Ei9c3SB8yvOSVR0aKDF1QAAAAAAGhtCKaARyiks1Wdr90iSRvRJsbgaAAAAAEBjRCgFNELvZ+xSSblTHZtH6tzkaKvLAQAAAAA0QoRSQCNjjNHMFRWn7o3owwLnAAAAAABrEEoBjczSXw7q1wMFCg/y1zXdzrK6HAAAAABAI0UoBTQyM1bskCRde+5ZCgvyt7gaAAAAAEBjRSgFNCLZecX6cv0+SSxwDgAAAACwFqEU0IjMWrVT5U6jnqlN1CEh0upyAAAAAACNGKEU0EiUO5z678qKBc5v7pNqcTUAAAAAgMaOUApoJL7avF97c4vVJDRAl3VOsLocAAAAAEAjRygFNBLvLK9Y4Hxoz2QFB/hZXA0AAAAAoLEjlAIagcyDhfpmy35J0k29WeAcAAAAAGA9QimgEZi5MlPGSP3aNlNqTJjV5QAAAAAAQCgFNHQl5Q699/1OSSxwDgAAAADwHoRSQAM3d12WDhWUKiEyWJd0iLO6HAAAAAAAJBFKAQ3ejOWZkqQbeyXL348feQAAAACAd+A3VKAB+3lfvlZuPyQ/u003nscC5wAAAAAA70EoBTRgM5bvkCRdena8EqKCLa4GAAAAAIDfEEoBDVRBSbk++GG3JGlEH2ZJAQAAAAC8C6EU0EB9+uMe5ZeUq0VMqPq2bmZ1OQAAAAAAuCGUAhogY4zeWVFx6t6I3qmy220WVwQAAAAAgDtCKaAB+nFXrtbtzlOgv13X90iyuhwAAAAAAKoglAIaoMoFzq/o0lxNwgItrgYAAAAAgKoIpYAGJrewTJ+u3SNJGtEn1eJqAAAAAACoHqEU0MC8/8MuFZc51SEhQt1Toq0uBwAAAACAahFKAQ2IMUYzji5wfnOfVNlsLHAOAAAAAPBOhFJAA7Ls14P6dX+BwgL9dM25Z1ldDgAAAAAAJ0QoBTQgM5ZnSpKuOfcshQf5W1wNAAAAAAAnRigFNBDZ+cWatz5LUsWpewAAAAAAeDNCKaCBeG/VTpU7jXqkNtHZzSOtLgcAAAAAgJMilAIaAIfT6L8rd0qSRvROsbgaAAAAAABOjVAKaAC+3pyt3TlFahIaoMu7NLe6HAAAAAAATolQCmgA3lm+Q5J0Q89kBQf4WVwNAAAAAACnRigF+Lidhwr19c/7JUnDe3HqHgAAAADANxBKAT7uvyszZYzUr20ztWwWZnU5AAAAAADUCKEU4MNKy5167/vKBc5TLa4GAAAAAICaI5QCfNjc9Vk6cKRU8ZFBGnB2nNXlAAAAAABQY4RSgA+bcXSB8xvPS5G/Hz/OAAAAAADfwW+xgI/asi9fK7Ydkp/dxgLnAAAAAACfQygF+KgZKzIlSZd0iFNCVLDF1QAAAAAAUDuEUoAPKiwt1/9+2CVJurkPC5wDAAAAAHwPoRTggz79cY/yi8uVGhOqC9o0s7ocAAAAAABqjVAK8EHvLK84de+mXimy220WVwMAAAAAQO0RSgE+Zu2uHP20O1eB/nbd0DPZ6nIAAAAAAKgTQinAx7yzfIckaXCX5moaFmhxNQAAAAAA1A2hFOBDcgvL9MmPeyRJI3qnWFwNAAAAAAB1RygF+JAPVu9ScZlTHRIi1CO1idXlAAAAAABQZ4RSgI8wxmjGiooFzkf0SZXNxgLnAAAAAADfRSgF+Ijlvx7S1uwjCg300zXdEq0uBwAAAACA03JaodRTTz0lm82msWPHurYVFxdrzJgxiomJUXh4uIYMGaJ9+/a5PS4zM1ODBw9WaGio4uLi9PDDD6u8vNxtzNdff63u3bsrKChIbdq00fTp06s8/6uvvqoWLVooODhYvXv31sqVK0/n5QBebcaKigXOrzn3LEUEB1hcDQCgruifAAAAKtQ5lFq1apX+8Y9/6JxzznHb/uCDD+rTTz/V7NmztXjxYu3Zs0fXXXeda7/D4dDgwYNVWlqqpUuX6q233tL06dP1+OOPu8Zs27ZNgwcPVv/+/bVmzRqNHTtWd9xxh+bNm+ca8+6772rcuHGaOHGifvjhB3Xt2lXp6enKzs6u60sCvNb+/BLNW58liQXOAcCX0T8BAAAcw9RBfn6+adu2rZk/f7656KKLzAMPPGCMMSYnJ8cEBASY2bNnu8Zu3LjRSDLLli0zxhjzxRdfGLvdbrKyslxjpk2bZiIjI01JSYkxxpjx48ebTp06uT3nsGHDTHp6uut+r169zJgxY1z3HQ6HSUxMNFOmTKnx68jNzTWSTG5ubs1fPGCBvy3aYlIf+cxc8+oSq0sBgEanvvoF+icAANBY1LRfqNNMqTFjxmjw4MEaMGCA2/aMjAyVlZW5be/QoYNSUlK0bNkySdKyZcvUpUsXxcfHu8akp6crLy9P69evd405/tjp6emuY5SWliojI8NtjN1u14ABA1xjqlNSUqK8vDy3G+DtHE6jmUcXOL+5d6rF1QAA6or+CQAAwJ1/bR8wa9Ys/fDDD1q1alWVfVlZWQoMDFR0dLTb9vj4eGVlZbnGHNtQVe6v3HeyMXl5eSoqKtLhw4flcDiqHbNp06YT1j5lyhQ98cQTNXuhgJdY/HO2ducUKSokQIPPaW51OQCAOqB/AgAAqKpWM6V27typBx54QDNmzFBwcPCZqumMmTBhgnJzc123nTt3Wl0ScEozllfMkrqhR5KCA/wsrgYAUFv0TwAAANWrVSiVkZGh7Oxsde/eXf7+/vL399fixYv18ssvy9/fX/Hx8SotLVVOTo7b4/bt26eEhARJUkJCQpWryVTeP9WYyMhIhYSEqFmzZvLz86t2TOUxqhMUFKTIyEi3G+DNdh0u1KLNFYvP3sQC5wDgk+ifAAAAqlerUOqSSy7RTz/9pDVr1rhuPXv21IgRI1x/DggI0MKFC12P2bx5szIzM5WWliZJSktL008//eR2lZf58+crMjJSHTt2dI059hiVYyqPERgYqB49eriNcTqdWrhwoWsM0BD8d2WmjJH6tolRq9hwq8sBANQB/RMAAED1arWmVEREhDp37uy2LSwsTDExMa7to0eP1rhx49S0aVNFRkbqD3/4g9LS0tSnTx9J0sCBA9WxY0fdcsstmjp1qrKysvTYY49pzJgxCgoKkiTdfffd+tvf/qbx48fr9ttv16JFi/Tee+/p888/dz3vuHHjNHLkSPXs2VO9evXSiy++qIKCAt12222n9YYA3qK03Kl3V+2SxALnAODL6J8AAACqV+uFzk/lhRdekN1u15AhQ1RSUqL09HS99tprrv1+fn767LPPdM899ygtLU1hYWEaOXKkJk+e7BrTsmVLff7553rwwQf10ksvKSkpSW+88YbS09NdY4YNG6b9+/fr8ccfV1ZWlrp166a5c+dWWbwT8FVfbsjSgSMliosI0oCOfF8DQENG/wQAABojmzHGWF2EVfLy8hQVFaXc3FzWR4DXufGfy7T810O6/3dtNG5ge6vLAYBGi37BHe8HAAA4lZr2C7VaUwqAZ2zNPqLlvx6S3Sbd2IsFzgEAAAAADQ+hFOCFZqzYIUm65Ox4JUaHWFwNAAAAAAD1j1AK8DJFpQ79L6NigfMRvZklBQAAAABomAilAC/z6do9yisuV0rTUF3YNtbqcgAAAAAAOCMIpQAvM2N5xal7N/VOkd1us7gaAAAAAADODEIpwIv8tCtXP+7KVaCfXTf0SLK6HAAAAAAAzhhCKcCLVC5wPqhLgmLCgyyuBgAAAACAM4dQCvASecVl+njNHknSzX1SLa4GAAAAAIAzi1AK8BIfZOxSUZlD7eLD1TO1idXlAAAAAABwRhFKAV7AGKMZKzIlVcySstlY4BwAAAAA0LARSgFeYOW2Q9qSfUShgX669tyzrC4HAAAAAIAzjlAK8ALvHJ0ldXW3REUEB1hcDQAAAAAAZx6hFGCxA0dKNHfdXknSiN4scA4AAAAAaBwIpQCLvff9TpU5jLolR6vzWVFWlwMAAAAAgEcQSgEWcjiNZh49dW9E7xSLqwEAAAAAwHMIpQALfbNlv3YdLlJUSICu7JpodTkAAAAAAHgMoRRgoRnLd0iSru+RpOAAP4urAQAAAADAcwilAIvszinSok3ZkqSbOHUPAAAAANDIEEoBFpm1MlNOI53fOkatY8OtLgcAAAAAAI8ilAIsUOZwataqnZKkm/ukWlwNAAAAAACeRygFWODL9fu0P79EsRFBurRjvNXlAAAAAADgcYRSgAVmrKhY4PzG85IV4MePIQAAAACg8eG3YcDDftl/REt/OSi7TbqxFwucAwAAAAAaJ0IpwMNmLM+UJP2uQ5zOig6xuBoAAAAAAKxBKAV4UHGZQ+9nVCxwPoIFzgEAAAAAjRihFOBBn/64R3nF5UpqEqKL2sZaXQ4AAAAAAJYhlAI8aMaKilP3buqdIrvdZnE1AAAAAABYh1AK8JB1u3O1ZmeOAvxsGtoz2epyAAAAAACwFKEU4CEzVuyQJA3q3FzNwoMsrgYAAAAAAGsRSgEekFdcpo/X7JEkjeidYnE1AAAAAABYj1AK8ICPVu9WYalD7eLD1atlU6vLAQAAAADAcoRSwBlmjNE7yytO3RvRO1U2GwucAwAAAABAKAWcYd/vOKyf9x1RSICfru1+ltXlAAAAAADgFQilgDOscpbU1d0SFRkcYHE1AAAAAAB4B0Ip4Aw6eKREc37KklRx6h4AAAAAAKhAKAWcQbMzdqnU4VTXpCh1SYqyuhwAAAAAALwGoRRwhjidRjNXZEqSRvRhlhQAAAAAAMcilALOkG+27FfmoUJFBvvrynMSrS4HAAAAAACvQigFnCEzjs6SGtIjSSGBfhZXAwAAAACAdyGUAs6APTlFWrhxnyQWOAcAAAAAoDqEUsAZMGtlppxG6tOqqdrEhVtdDgAAAAAAXodQCqhnZQ6nZq3aKUm6mQXOAQAAAACoFqEUUM8WbNin7PwSNQsP0sCOCVaXAwAAAACAVyKUAurZOyt2SJKGnZekQH9+xAAAAAAAqA6/MQP16Nf9R/Td1oOy2aThvVKsLgcAAAAAAK9FKAXUo5krMiVJv2sfp6QmoRZXAwAAAACA9yKUAupJcZlDszN2SZJG9GGWFAAAAAAAJ0MoBdSTz9fuVW5Rmc6KDtFF7eKsLgcAAAAAAK9GKAXUk8oFzm/qnSI/u83iagAAAAAA8G6EUkA9WL8nV6szcxTgZ9PQnslWlwMAAAAAgNcjlALqwYyjC5ynd0pQbESQxdUAAAAAAOD9CKWA05RfXKaPVu+WJN3cJ9XiagAAAAAA8A2EUsBp+mj1bhWWOtQmLly9Wza1uhwAAAAAAHwCoRRwGowxrlP3RvROkc3GAucAAAAAANQEoRRwGjJ2HNamrHwFB9h1Xfckq8sBAAAAAMBnEEoBp+Gd5TskSVd1TVRUSIDF1QAAAAAA4DsIpYA6OlRQqi9+ypLEAucAAAAAANQWoRRQR7O/36lSh1PnJEXpnKRoq8sBAAAAAMCnEEoBdeB0Gs1c+dsC5wAAAAAAoHYIpYA6WLL1gHYcLFREsL+u7JpodTkAAAAAAPgcQimgDioXOB/SPUmhgf4WVwMAAAAAgO8hlAJqaW9ukRZuypbEqXsAAAAAANQVoRRQS7NW7pTDadS7ZVO1jY+wuhwAAAAAAHwSoRRQC2UOp2atqljg/OY+qRZXAwAAAACA7yKUAmph4cZs7csrUbPwQKV3SrC6HAAAAAAAfBahFFALM1ZULHA+tGeyAv358QEAAAAAoK74rRqooW0HCvTtlgOy2aThvVjgHAAAAACA00EoBdTQf1dWrCV1cbtYJTcNtbgaAAAAAAB8G6EUUAPFZQ7N/n6nJBY4BwAAAACgPhBKATXwxU97dbiwTGdFh+ji9nFWlwMAAAAAgM8jlAJqYMaKilP3hvdKlp/dZnE1AAAAAAD4PkIp4BQ27s1Txo7D8rfbNPS8ZKvLAQAAAACgQSCUAk7hneU7JEnpnRMUFxFscTUAAAAAADQMhFLASRwpKddHq3dLkkb0TrG4GgAAAAAAGg5CKeAkPlq9WwWlDrWODVNaqxirywEAAAAAoMEglAJOwBjjOnVvRO9U2WwscA4AAAAAQH0hlAJOYO2uXG3KyldwgF1DuidZXQ4AAAAAAA0KoRRwAnPWZUmSBpwdr6jQAIurAQAAAACgYSGUAqphjNHcdXslSYM6N7e4GgAAAAAAGh5CKaAam/fla/vBQgX623Vx+1irywEAAAAAoMEhlAKqMffoqXsXto1VWJC/xdUAAAAAANDwEEoB1agMpS7rnGBxJQAAAAAANEyEUsBxth8o0KasfPnbbRpwdpzV5QAAAAAA0CARSgHHmbe+YpZUWusYRYcGWlwNAAAAAAANE6EUcJy5R0Op9E6cugcAAAAAwJlCKAUcY29ukVZn5shmkwZ2jLe6HAAAAAAAGixCKeAYX67fJ0nqkdJEcZHBFlcDAAAAAEDDRSgFHIOr7gEAAAAA4BmEUsBRhwpKtWLbQUmsJwUAAAAAwJlGKAUctWDDPjmN1PmsSCU3DbW6HAAAAAAAGjRCKeCoyqvuXcYsKQAAAAAAzjhCKUBSfnGZlmw5IIn1pAAAAAAA8ARCKUDSok3ZKnU41To2TG3iIqwuBwAAAACABo9QCpA0bz1X3QMAAAAAwJMIpdDoFZc59NWm/ZKkyzo1t7gaAAAAAAAaB0IpNHrf/LxfRWUOnRUdos5nRVpdDgAAAAAAjQKhFBq9ucecumez2SyuBgAAAACAxoFQCo1amcOpBRv2SWI9KQAAAAAAPIlQCo3a8l8PKq+4XM3Cg9Q9pYnV5QAAAAAA0GgQSqFRm7Ou4tS9gZ3i5Wfn1D0AAAAAADyFUAqNlsNp9OX6o6fudeLUPQAAAAAAPIlQCo3WD5mHdeBIiSKD/dWnVYzV5QAAAAAA0KgQSqHRmnv01L0BZ8cr0J8fBQAAAAAAPInfxNEoGWNcoRRX3QMAAAAAwPNqFUpNmzZN55xzjiIjIxUZGam0tDTNmTPHtb+4uFhjxoxRTEyMwsPDNWTIEO3bt8/tGJmZmRo8eLBCQ0MVFxenhx9+WOXl5W5jvv76a3Xv3l1BQUFq06aNpk+fXqWWV199VS1atFBwcLB69+6tlStX1ualoJFbvydPu3OKFBLgpwvbxVpdDgCggaOHAgAAqKpWoVRSUpKeeuopZWRk6Pvvv9fvfvc7XX311Vq/fr0k6cEHH9Snn36q2bNna/HixdqzZ4+uu+461+MdDocGDx6s0tJSLV26VG+99ZamT5+uxx9/3DVm27ZtGjx4sPr37681a9Zo7NixuuOOOzRv3jzXmHfffVfjxo3TxIkT9cMPP6hr165KT09Xdnb26b4faCTmrNsrSerfIVbBAX4WVwMAaOjooQAAAKphTlOTJk3MG2+8YXJyckxAQICZPXu2a9/GjRuNJLNs2TJjjDFffPGFsdvtJisryzVm2rRpJjIy0pSUlBhjjBk/frzp1KmT23MMGzbMpKenu+736tXLjBkzxnXf4XCYxMREM2XKlFrVnpubaySZ3NzcWj0Ovu93z35lUh/5zHy0epfVpQAAvNyZ6hd8tYeifwIAAKdS036hzmtKORwOzZo1SwUFBUpLS1NGRobKyso0YMAA15gOHTooJSVFy5YtkyQtW7ZMXbp0UXx8vGtMenq68vLyXJ8ULlu2zO0YlWMqj1FaWqqMjAy3MXa7XQMGDHCNOZGSkhLl5eW53dD4bM3O1y/7CxToZ9fvOsRZXQ4AoJHxtR6K/gkAAJwptQ6lfvrpJ4WHhysoKEh33323PvzwQ3Xs2FFZWVkKDAxUdHS02/j4+HhlZVUsKJ2VleXWTFXur9x3sjF5eXkqKirSgQMH5HA4qh1TeYwTmTJliqKioly35OTk2r58NACVC5z3bROjiOAAi6sBADQWvtpD0T8BAIAzpdahVPv27bVmzRqtWLFC99xzj0aOHKkNGzacidrq3YQJE5Sbm+u67dy50+qSYIG567nqHgDA83y1h6J/AgAAZ4p/bR8QGBioNm3aSJJ69OihVatW6aWXXtKwYcNUWlqqnJwct0/69u3bp4SEil/+ExISqlzhpfLKMseOOf5qM/v27VNkZKRCQkLk5+cnPz+/asdUHuNEgoKCFBQUVNuXjAZk56FCrdudJ7tNurQjoRQAwHN8tYeifwIAAGdKndeUquR0OlVSUqIePXooICBACxcudO3bvHmzMjMzlZaWJklKS0vTTz/95HaFl/nz5ysyMlIdO3Z0jTn2GJVjKo8RGBioHj16uI1xOp1auHChawxwIvOOzpLq3TJGTcMCLa4GANCY0UMBAIDGrlYzpSZMmKBBgwYpJSVF+fn5mjlzpr7++mvNmzdPUVFRGj16tMaNG6emTZsqMjJSf/jDH5SWlqY+ffpIkgYOHKiOHTvqlltu0dSpU5WVlaXHHntMY8aMcX0Cd/fdd+tvf/ubxo8fr9tvv12LFi3Se++9p88//9xVx7hx4zRy5Ej17NlTvXr10osvvqiCggLddttt9fjWoCGqXE+KU/cAAJ5EDwUAAFBVrUKp7Oxs3Xrrrdq7d6+ioqJ0zjnnaN68ebr00kslSS+88ILsdruGDBmikpISpaen67XXXnM93s/PT5999pnuuecepaWlKSwsTCNHjtTkyZNdY1q2bKnPP/9cDz74oF566SUlJSXpjTfeUHp6umvMsGHDtH//fj3++OPKyspSt27dNHfu3CoLdwLHys4rVkbmYUnSwE58rwAAPIceCgAAoCqbMcZYXYRV8vLyFBUVpdzcXEVGRlpdDs6wd5bv0GMfrVO35Gh9NKav1eUAAHwE/YI73g8AAHAqNe0XTntNKcBXzOOqewAAAAAAeA1CKTQKOYWlWvbLQUnSZZ0IpQAAAAAAsBqhFBqFhRuzVe406pAQoRbNwqwuBwAAAACARo9QCo3CHK66BwAAAACAVyGUQoNXUFKub7bsl0QoBQAAAACAtyCUQoP39eb9Ki13qkVMqNrHR1hdDgAAAAAAEKEUGoG5R6+6l945QTabzeJqAAAAAACARCiFBq64zKFFG/dJ4qp7AAAAAAB4E0IpNGhLfzmgglKHmkcFq2tStNXlAAAAAACAowil0KDNPXrVvfROCbLbOXUPAAAAAABvQSiFBqvc4dT8DRWn7qVz6h4AAAAAAF6FUAoN1spth3S4sExNwwJ1XosmVpcDAAAAAACOQSiFBqvyqnuXnh0vfz++1QEAAAAA8Cb8po4Gyek0mnc0lLqsM6fuAQAAAADgbQil0CCt2ZWjfXkligjy1/ltYqwuBwAAAAAAHIdQCg3SvKNX3fvd2XEK8vezuBoAAAAAAHA8Qik0OMYY13pSl3HVPQAAAAAAvBKhFBqcjXvzteNgoYL87bqofazV5QAAAAAAgGoQSqHBqZwldVG7WIUG+ltcDQAAAAAAqA6hFBqcyvWkuOoeAAAAAADei1AKDcqv+49o8758+dttuqRDvNXlAAAAAACAEyCUQoMyb/0+SVJa6xhFhQZYXA0AAAAAADgRQik0KJXrSQ3q3NziSgAAAAAAwMkQSqHB2JNTpB935shmky7tyKl7AAAAAAB4M0IpNBjzjs6SOi+1qWIjgiyuBgAAAAAAnAyhFBqMuUevupfOVfcAAAAAAPB6hFJoEA4cKdGq7YckSemdOHUPAAAAAABvRyiFBmHBhn1yGqnLWVFKahJqdTkAAAAAAOAUCKXQIFRede8yTt0DAAAAAMAnEErB5+UVl+m7rQckEUoBAAAAAOArCKXg8xZtzFaZw6htXLhax4ZbXQ4AAAAAAKgBQin4vMqr7jFLCgAAAAAA30EoBZ9WVOrQ1z9nS5LSOxFKAQAAAADgKwil4NMW/7xfxWVOJTUJUafESKvLAQAAAAAANUQoBZ82r/Kqe50SZLPZLK4GAAAAAADUFKEUfFZpuVMLNu6TxHpSAAAAAAD4GkIp+KylvxxQfnG5YiOC1D2lidXlAAAAAACAWiCUgs+qPHUvvVO87HZO3QMAAAAAwJcQSsEnOZxGX64/eupep+YWVwMAAAAAAGqLUAo+6fvth3SwoFRRIQHq3aqp1eUAAAAAAIBaIpSCT5p79NS9AWfHK8CPb2MAAAAAAHwNv83D5xhjNG9dRSjFVfcAAAAAAPBNhFLwOT/tztWe3GKFBvqpX9tmVpcDAAAAAADqgFAKPmfO0VlS/TvEKTjAz+JqAAAAAABAXRBKwacYYzS38tS9Tpy6BwAAAACAryKUgk/Zkn1E2w4UKNDPrv4d4qwuBwAAAAAA1BGhFHxK5Sypfm2bKTzI3+JqAAAAAABAXRFKwadUhlLpXHUPAAAAAACfRigFn5F5sFAb9ubJz27TpWfHW10OAAAAAAA4DYRS8Bnz1lfMkurTqqmahAVaXA0AAAAAADgdhFLwGXPW7ZXEVfcAAAAAAGgICKXgE/blFeuHzBxJ0kBCKQAAAAAAfB6hFHzCl0dP3eueEq34yGCLqwEAAAAAAKeLUAo+Ye7RUOoyrroHAAAAAECDQCgFr3e4oFTLfz0kSUrn1D0AAAAAABoEQil4vQUb98nhNDq7eaRSY8KsLgcAAAAAANQDQil4vbnrKk7dG8SpewAAAAAANBiEUvBqR0rK9e2WA5JYTwoAAAAAgIaEUApe7atN2Sp1ONWqWZjaxoVbXQ4AAAAAAKgnhFLwapVX3UvvnCCbzWZxNQAAAAAAoL4QSsFrFZc59NWmbEnSZVx1DwAAAACABoVQCl5ryZYDKix1qHlUsM5JirK6HAAAAAAAUI8IpeC1XKfudeLUPQAAAAAAGhpCKXilModT8zfskyQN4qp7AAAAAAA0OIRS8Eorfj2k3KIyxYQFqmeLplaXAwAAAAAA6hmhFLzS3PV7JUkDO8XLz86pewAAAAAANDSEUvA6TqfRvPUVp+6lc9U9AAAAAAAaJEIpeJ3VOw9rf36JIoL8dX7rZlaXAwAAAAAAzgBCKXiduesqrrp3ydlxCvTnWxQAAAAAgIaI3/jhVYwxmnM0lLqMq+4BAAAAANBgEUrBq6zfk6ddh4sUHGDXRe3irC4HAAAAAACcIYRS8Crz1lfMkrq4XZxCAv0srgYAAAAAAJwphFLwKnM5dQ8AAAAAgEaBUApeY2v2EW3JPqIAP5v6d+DUPQAAAAAAGjJCKXiNylP3zm/dTFEhARZXAwAAAAAAziRCKXiNylCKU/cAAAAAAGj4CKXgFXYdLtTaXbmy26RLO8ZbXQ4AAAAAADjDCKXgFeat3ydJOq9FUzULD7K4GgAAAAAAcKYRSsErzOOqewAAAAAANCqEUrDc/vwSrdpxSJKU3olQCgAAAACAxoBQCpabv2GfjJG6JkUpMTrE6nIAAAAAAIAHEErBcnOPXnUvnVP3AAAAAABoNAilYKncojIt3XpAknQZp+4BAAAAANBoEErBUgs37lO506hdfLhaxYZbXQ4AAAAAAPAQQilYaq7rqnvNLa4EAAAAAAB4EqEULFNYWq7FP++XxKl7AAAAAAA0NoRSsMzizftVUu5UStNQnd08wupyAAAAAACABxFKwTKVV927rHOCbDabxdUAAAAAAABPIpSCJUrKHVq0MVuSlM6pewAAAAAANDqEUrDE0q0HlV9SrvjIIJ2bHG11OQAAAAAAwMMIpWCJyqvupXdKkN3OqXsAAAAAADQ2hFLwuHKHU/M37pPEVfcAAAAAAGisCKXgcau2H9ahglJFhwaoV8umVpcDAAAAAAAsQCgFj5t39Kp7l54dL38/vgUBAAAAAGiMSATgUU6nca0ndVlnTt0DAAAAAKCxIpSCR63dnausvGKFBfqpb5tmVpcDAAAAAAAsQigFj5qzbq8kqX+HOAUH+FlcDQAAAAAAsAqhFDzGGKN5R0/dG9S5ucXVAAAAAAAAKxFKwWM278vX9oOFCvS36+L2sVaXAwAAAAAALEQoBY+pXOD8wraxCgvyt7gaAAAAAABgJUIpeAxX3QMAAAAAAJUIpeAR2w8UaFNWvvzsNg04O87qcgAAAAAAgMUIpeARc9dXzJJKaxWj6NBAi6sBAAAAAABWI5SCR1SeupfOqXsAAAAAAEC1DKWmTJmi8847TxEREYqLi9M111yjzZs3u40pLi7WmDFjFBMTo/DwcA0ZMkT79u1zG5OZmanBgwcrNDRUcXFxevjhh1VeXu425uuvv1b37t0VFBSkNm3aaPr06VXqefXVV9WiRQsFBwerd+/eWrlyZW1eDjxkb26R1uzMkc0mpXeMt7ocAAA8jh4KAACgqlqFUosXL9aYMWO0fPlyzZ8/X2VlZRo4cKAKCgpcYx588EF9+umnmj17thYvXqw9e/bouuuuc+13OBwaPHiwSktLtXTpUr311luaPn26Hn/8cdeYbdu2afDgwerfv7/WrFmjsWPH6o477tC8efNcY959912NGzdOEydO1A8//KCuXbsqPT1d2dnZp/N+4Az4cn1FQ90jpYniIoMtrgYAAM+jhwIAAKiGOQ3Z2dlGklm8eLExxpicnBwTEBBgZs+e7RqzceNGI8ksW7bMGGPMF198Yex2u8nKynKNmTZtmomMjDQlJSXGGGPGjx9vOnXq5PZcw4YNM+np6a77vXr1MmPGjHHddzgcJjEx0UyZMqXG9efm5hpJJjc3txavGrV14z+WmdRHPjOvf/OL1aUAAFBrZ6Jf8OUeiv4JAACcSk37hdNaUyo3N1eS1LRpU0lSRkaGysrKNGDAANeYDh06KCUlRcuWLZMkLVu2TF26dFF8/G+ncaWnpysvL0/r1693jTn2GJVjKo9RWlqqjIwMtzF2u10DBgxwjYF3OFRQqhXbDkqS0juxnhQAABI9FAAAgCT51/WBTqdTY8eOVd++fdW5c2dJUlZWlgIDAxUdHe02Nj4+XllZWa4xxzZTlfsr951sTF5enoqKinT48GE5HI5qx2zatOmENZeUlKikpMR1Py8vrxavGHWxYMM+OY3UKTFSyU1DrS4HAADL+VoPRf8EAADOlDrPlBozZozWrVunWbNm1Wc9Z9SUKVMUFRXluiUnJ1tdUoM3Z91eSdJlzJICAECS7/VQ9E8AAOBMqVModd999+mzzz7TV199paSkJNf2hIQElZaWKicnx238vn37lJCQ4Bpz/JVkKu+fakxkZKRCQkLUrFkz+fn5VTum8hjVmTBhgnJzc123nTt31u6Fo1byisv03daKU/cu60woBQCAL/ZQ9E8AAOBMqVUoZYzRfffdpw8//FCLFi1Sy5Yt3fb36NFDAQEBWrhwoWvb5s2blZmZqbS0NElSWlqafvrpJ7crvMyfP1+RkZHq2LGja8yxx6gcU3mMwMBA9ejRw22M0+nUwoULXWOqExQUpMjISLcbzpyvNmWr1OFU69gwtY2PsLocAAAs48s9FP0TAAA4U2q1ptSYMWM0c+ZMffzxx4qIiHCtXxAVFaWQkBBFRUVp9OjRGjdunJo2barIyEj94Q9/UFpamvr06SNJGjhwoDp27KhbbrlFU6dOVVZWlh577DGNGTNGQUFBkqS7775bf/vb3zR+/HjdfvvtWrRokd577z19/vnnrlrGjRunkSNHqmfPnurVq5defPFFFRQU6Lbbbquv9wanad76iu8PZkkBABo7eigAAIBq1OaSfpKqvb355puuMUVFRebee+81TZo0MaGhoebaa681e/fudTvO9u3bzaBBg0xISIhp1qyZ+eMf/2jKysrcxnz11VemW7duJjAw0LRq1crtOSq98sorJiUlxQQGBppevXqZ5cuX1+blcEnjM6iotNx0eGyOSX3kM7N2Z47V5QAAUGf10S80pB6K/gkAAJxKTfsFmzHGeD4K8w55eXmKiopSbm4uU9Hr2Zfrs3TX2xk6KzpESx7pL5vNZnVJAADUCf2CO94PAABwKjXtF+p89T3gZOYePXUvvVMCgRQAAAAAAKiCUAr1rrTcqQUbKq7qw3pSAAAAAACgOoRSqHfLfz2ovOJyNQsPVI/UJlaXAwAAAAAAvBChFOpd5al7AzslyM/OqXsAAAAAAKAqQinUK4fT6Mv1R0/d68SpewAAAAAAoHqEUqhXP2Qe1oEjJYoM9lefVjFWlwMAAAAAALwUoRTq1dx1FafuDTg7XoH+fHsBAAAAAIDqkRqg3hhjXKFUOlfdAwAAAAAAJ0EohXqzbneeducUKSTATxe2jbW6HAAAAAAA4MUIpVBv5q7fK0nq3yFWIYF+FlcDAAAAAAC8GaEU6o3r1D2uugcAAAAAAE6BUAr1Ymt2vn7ZX6BAP7t+1yHO6nIAAAAAAICXI5RCvaicJdW3TYwiggMsrgYAAAAAAHg7QinUi7nrK0Kpy7jqHgAAAAAAqAFCKZy2nYcKtW53nuw2acDZ8VaXAwAAAAAAfAChFE7bvKOzpHq1bKqY8CCLqwEAAAAAAL6AUAqnrXI9qUGdm1tcCQAAAAAA8BWEUjgt2XnFysg8LEka2IlT9wAAAAAAQM0QSuG0fLlhn4yRuiVHq3lUiNXlAAAAAAAAH0EohdMyj6vuAQAAAACAOiCUQp3lFJZq2S8HJUnpnQilAAAAAABAzRFKoc4WbMxWudOoQ0KEWjYLs7ocAAAAAADgQwilUGeVV91jlhQAAAAAAKgtQinUSUFJub7Zsl+SNKgLoRQAAAAAAKgdQinUydeb96u03KkWMaFqHx9hdTkAAAAAAMDHEEqhTuYevepeeucE2Ww2i6sBAAAAAAC+hlAKtVZc5tCijfskSZexnhQAAAAAAKgDQinU2ndbD6ig1KGEyGB1TYq2uhwAAAAAAOCDCKVQa79ddS9edjun7gEAAAAAgNojlEKtlDucmn/01L30zpy6BwAAAAAA6oZQCrWyctsh5RSWqWlYoHq1aGp1OQAAAAAAwEcRSqFWKq+6d+nZ8fL349sHAAAAAADUDakCaszpNJp3NJS6jFP3AAAAAADAaSCUQo2t2ZWjfXklCg/y1/ltYqwuBwAAAAAA+DBCKdRY5VX3ftchTkH+fhZXAwAAAAAAfBmhFGps0aZsSZy6BwAAAAAATp+/1QXAd3xw7/n6alO2LmoXa3UpAAAAAADAxxFKocYigwN0dbezrC4DAAAAAAA0AJy+BwAAAAAAAI8jlAIAAAAAAIDHEUoBAAAAAADA4wilAAAAAAAA4HGEUgAAAAAAAPA4QikAAAAAAAB4HKEUAAAAAAAAPI5QCgAAAAAAAB5HKAUAAAAAAACPI5QCAAAAAACAxxFKAQAAAAAAwOMIpQAAAAAAAOBxhFIAAAAAAADwOEIpAAAAAAAAeByhFAAAAAAAADyOUAoAAAAAAAAeRygFAAAAAAAAjyOUAgAAAAAAgMcRSgEAAAAAAMDjCKUAAAAAAADgcYRSAAAAAAAA8DhCKQAAAAAAAHgcoRQAAAAAAAA8jlAKAAAAAAAAHkcoBQAAAAAAAI8jlAIAAAAAAIDHEUoBAAAAAADA4wilAAAAAAAA4HGEUgAAAAAAAPA4QikAAAAAAAB4HKEUAAAAAAAAPI5QCgAAAAAAAB5HKAUAAAAAAACPI5QCAAAAAACAxxFKAQAAAAAAwOMIpQAAAAAAAOBxhFIAAAAAAADwOEIpAAAAAAAAeByhFAAAAAAAADyOUAoAAAAAAAAeRygFAAAAAAAAjyOUAgAAAAAAgMcRSgEAAAAAAMDjCKUAAAAAAADgcYRSAAAAAAAA8DhCKQAAAAAAAHgcoRQAAAAAAAA8jlAKAAAAAAAAHkcoBQAAAAAAAI8jlAIAAAAAAIDHEUoBAAAAAADA4wilAAAAAAAA4HGEUgAAAAAAAPA4QikAAAAAAAB4HKEUAAAAAAAAPI5QCgAAAAAAAB5HKAUAAAAAAACPI5QCAAAAAACAxxFKAQAAAAAAwOMIpQAAAAAAAOBxhFIAAAAAAADwOEIpAAAAAAAAeByhFAAAAAAAADyOUAoAAAAAAAAeRygFAAAAAAAAjyOUAgAAAAAAgMfVOpT65ptvdOWVVyoxMVE2m00fffSR235jjB5//HE1b95cISEhGjBggLZs2eI25tChQxoxYoQiIyMVHR2t0aNH68iRI25j1q5dq379+ik4OFjJycmaOnVqlVpmz56tDh06KDg4WF26dNEXX3xR25cDAABwxtE/AQAAVFXrUKqgoEBdu3bVq6++Wu3+qVOn6uWXX9bf//53rVixQmFhYUpPT1dxcbFrzIgRI7R+/XrNnz9fn332mb755hvdddddrv15eXkaOHCgUlNTlZGRoWeeeUaTJk3SP//5T9eYpUuXavjw4Ro9erRWr16ta665Rtdcc43WrVtX25cEAABwRtE/AQAAVMOcBknmww8/dN13Op0mISHBPPPMM65tOTk5JigoyPz3v/81xhjz/9u78+io6vv/46/JMpMEyEIgCWExQSAIRFlSYtSqldSIfLVUjyhSRWpxgxZKVepRsLZFqFuLFrW1B21/LgjfqlVB+KYBpWAMiyQQloDIJjCJELIgEELm8/sDc8uYABNIZu4kz8c5OWfm3s/cec/7QOZ9Xpk7d9OmTUaSWb16tbXmo48+Mg6Hw+zdu9cYY8yLL75o4uLiTE1NjbVm6tSpJi0tzbo/atQoM2LECK96MjMzzb333utz/ZWVlUaSqays9PkxAACgbWnueYH5CQAAtHa+zgvN+p1SO3bskNvtVnZ2trUtJiZGmZmZys/PlyTl5+crNjZWGRkZ1prs7GyFhISooKDAWnPllVfK6XRaa3JyclRSUqJDhw5Za059nvo19c8DAAAQDJifAABAWxXWnAdzu92SpMTERK/tiYmJ1j63262EhATvIsLC1LFjR681qampDY5Rvy8uLk5ut/uMz9OYmpoa1dTUWPerqqqa8vIAAACaHfMTAABoq9rU1fdmzpypmJgY66d79+6BLgkAAMDWmJ8AAEBLadZQKikpSZJUWlrqtb20tNTal5SUpLKyMq/9J06cUHl5udeaxo5x6nOcbk39/sY88sgjqqystH727NnT1JcIAADQrJifAABAW9WsoVRqaqqSkpKUl5dnbauqqlJBQYGysrIkSVlZWaqoqNDatWutNUuXLpXH41FmZqa1Zvny5aqtrbXW5ObmKi0tTXFxcdaaU5+nfk398zTG5XIpOjra6wcAACCQmJ8AAEBb1eRQ6vDhwyosLFRhYaGkk1/OWVhYqN27d8vhcGjy5Mn6/e9/r/fff18bNmzQnXfeqeTkZI0cOVKSdNFFF+m6667T+PHjtWrVKq1cuVITJ07UbbfdpuTkZEnS7bffLqfTqbvvvlsbN27U22+/rdmzZ2vKlClWHZMmTdLixYv17LPPasuWLfrNb36jNWvWaOLEieffFQAAgGbE/AQAANCIpl7Wb9myZUZSg5+xY8caY05e1njatGkmMTHRuFwuM2zYMFNSUuJ1jIMHD5rRo0eb9u3bm+joaDNu3DhTXV3ttaaoqMhcccUVxuVyma5du5pZs2Y1qGX+/PmmT58+xul0mv79+5uFCxc26bVwSWMAAHA2zTEvMD8BAIC2xNd5wWGMMYEIw+ygqqpKMTExqqys5KPoAACgUcwL3ugHAAA4G1/nhTZ19T0AAAAAAADYA6EUAAAAAAAA/I5QCgAAAAAAAH5HKAUAAAAAAAC/I5QCAAAAAACA3xFKAQAAAAAAwO8IpQAAAAAAAOB3hFIAAAAAAADwO0IpAAAAAAAA+B2hFAAAAAAAAPyOUAoAAAAAAAB+RygFAAAAAAAAvyOUAgAAAAAAgN8RSgEAAAAAAMDvCKUAAAAAAADgd4RSAAAAAAAA8DtCKQAAAAAAAPgdoRQAAAAAAAD8jlAKAAAAAAAAfkcoBQAAgDbPGCNjTLMf9++f7lTKrxcq5dcLm/3YAAAEu7BAFwAAAAAE2kP/u17/2fa1fn5Nb40e2kOhIY7zOl7lkVrN/Giz5q3e00wVAgDQ+vBJKQAAALR5K7YdUGlVjR57r1gjnv+PPvvyoE+PO1Hn0f+u/UqzPtqiY7V1Msbog6J9GvbcJwRSAACcBZ+UAgAAQJvnrjpm3d7irtZtf/1MI9K76JHr+6pbXFSD9R6P0cIN+/XH3K368sA3kqTuHSOVt7lMS7eUSZJ6JbRXWIhDW9zV/nkRAAAEGUIpAAAA4BRjMnvorVW7tXDDfv17c6kG94hT/refnNox83rlbS7Ts7lbtXl/ldfjHn23WJLkDA3RhB/00n1X91TaY4v9Xj8AAMGC0/cAAADQ6n1RVq2UXy/UQwuKtKf8yBnXzvhxuj78+feVmdpRNSc8ViAlSTe99Kl+9o812ry/Sh1cYfpldh+vxw5N6ahFk67QpOzecoWFKjqCvwEDAHA6hFIAAABo9bKfWy5JWrD2K33/qWW67k/L9VzuVhXvrfS66l7995v3S47WvHsu1ZzbB3sdZ93uCkWEh+i+qy7U8od/oEnZvb32z7vnUvVK6GDdX/1Ydgu9IgAAgh9/ugEAAECbEuI4+b1RW9zVej5vm5JjIqx9f7j5Yuu2w+HQiIu7aMKb/33sXZel6IEfXKiEDhH6rhfHDFbId67a5woL1c5ZI5r/RQAA0AoQSgEAAKBVW7Oz3Lo9NusCTc7uo6VbyvR/m9xavvWA9lX+90vOB3SNafD4wuk/1MDf5mr4gCT95sb+DfbvmHm9yr85rvj2rpZ5AQAAtFKEUgAAAGi1jDF6ekmJJGn00O564kcDJEk3D+mmm4d007HaOq3YdkC5m0plZNQroX2DY8RGOc/4aSeHw0EgBQDAOSCUAgAAQKu14osDKthRLmdoiH5+Te8G+yPCQ5XdL1HZ/RIDUB0AAG0bX3QOAACAVskYo2e+/ZTUmEt7KDk2MsAVAQCAUxFKAQAAoFXK3VSqoq8qFRkeqgeu7hXocgAAwHcQSgEAAKDV8XiMnsvdKkkad3mKOnfgO58AALAbQikAAAC0Oh+s36ct7mp1iAjTvVdeGOhyAABAIwilAAAA0KrU1nn0x28/JXXvlT0VExUe4IoAAEBjCKUAAADQqvxz7VfaefCI4ts5Ne7y1ECXAwAAToNQCgAAAK1GzYk6PZ+3TZJ0/9UXqp0rLMAVAQCA0yGUAgAAQKvxZsFu7as8pqToCP3k0gsCXQ4AADgD/nQEAACAoGeM0S/mFeqDon2SpF8M662I8NAAVwUAAM6ET0oBAAAg6BXvrbICqZjIcN2S0S3AFQEAgLMhlAIAAEDQ+3D9Puv2vVf1VHgoYy4AAHbHuzUAAACCmjFGize6rfv3XnlhAKsBAAC+IpQCAABAUNu4r0q7Dh5RRHiINj6Ro9AQR6BLAgAAPiCUAgAAQFD74NtT967pm6B2Lq7jAwBAsCCUAgAAQNAyxmjh+v2SpBHpyQGuBgAANAWhFAAAAILW+q8q9dWho4oMD9U1fRMCXQ4AAGgCQikAAAAErYUbTn5KathFCYp0hga4GgAA0BSEUgAAAAhKp5669z8XdwlwNQAAoKkIpQAAABCU1u2p0N6Ko2rnDNXVaZy6BwBAsCGUAgAAQFCq/5RUdr9ERYRz6h4AAMGGUAoAAABBx+MxWrSh/qp7nLoHAEAwIpQCAABA0Pl89yHtrzymDq4wXdmnc6DLAQAA54BQCgAAAEHnw29P3fshp+4BABC0CKUAAAAQVLxO3eOqewAABC1CKQAAAASVNbsOqay6Rh0iwnRF706BLgcAAJwjQikAAAAElQ/X75Mk5fRPkiuMU/cAAAhWhFIAAAAIGnUeo0Ub3JI4dQ8AgGBHKAUAAICgsWpHuQ4crlFMZLguv5BT9wAACGaEUgAAAAgaCzfUn7qXKGcYoywAAMGMd3IAAAAEhRN1Hn307al7/3NxcoCrAQAA54tQCgAAAEFh3uo9OvjNcUlS1oXxAa4GAACcL0IpAAAABIXH3iu2boeHMsYCABDseDcHAACA7Xk8xrqdmdoxgJUAAIDmQigFAAAA21u355AkqUNEmP7f3ZkBrgYAADQHQikAAADY3uLik19wnn0RV90DAKC14B0dAAAAtmaM0UffhlI5/ZMCXA0AAGguhFIAAACwtY37qvTVoaOKCA/RVX06B7ocAADQTAilAAAAYGtLNp78lNTVfRIU6QwNcDUAAKC5EEoBAADA1upP3Ruezql7AAC0JoRSAAAAsK0vyqr1RdlhhYc69IO+CYEuBwAANCNCKQAAANjWko2lkqTLe3VSdER4gKsBAADNiVAKAAAAtrX421P3ruOqewAAtDqEUgAAALClPeVHtGFvpUIc0g/7JQa6HAAA0MwIpQAAAGBL9VfdG5raUfHtXQGuBgAANDdCKQAAANhSfSjFqXsAALROhFIAAACwnbLqY1qz65Ak6VpCKQAAWiVCKQAAANjO/20slTHSJd1jlRwbGehyAABACyCUAgAAgO3Un7o3fACfkgIAoLUilAIAAICtVBw5rvztByVJOZy6BwBAq0UoBQAAAFvJ21ymEx6jvkkdlNqpXaDLAQAALYRQCgAAALbyUfHJU/f4lBQAAK0boRQAAABs45uaE1q+7WtJ0nV8nxQAAK0aoRQAAABs4+OSr3X8hEcp8VHqm9Qh0OUAAIAWRCgFAAAA21j87VX3cgYkyeFwBLgaAADQkgilAAAAYAvbSqv1QdE+SdJ1fJ8UAACtHqEUAAAAbKHyaK11+5JusYErBAAA+EVYoAsAAAAAJCkjpaMev6GfLukeq5AQTt0DAKC1I5QCAACAbYy7PDXQJQAAAD/h9D0AAAAAAAD4HaEUAAAAAAAA/I5QCgAAAAAAAH5HKAUAAAAAAAC/I5QCAAAAAACA3xFKAQAAAAAAwO8IpQAAAAAAAOB3hFIAAAAAAADwO0IpAAAAAAAA+B2hFAAAAAAAAPyOUAoAAAAAAAB+RygFAAAAAAAAvyOUAgAAAAAAgN8RSgEAAAAAAMDvCKUAAAAAAADgd4RSAAAAAAAA8LugD6XmzJmjlJQURUREKDMzU6tWrQp0SQAAALbG/AQAAOwgqEOpt99+W1OmTNHjjz+uzz//XJdccolycnJUVlYW6NIAAABsifkJAADYRVCHUs8995zGjx+vcePGqV+/fnr55ZcVFRWluXPnBro0AAAAW2J+AgAAdhG0odTx48e1du1aZWdnW9tCQkKUnZ2t/Pz8AFYGAABgT8xPAADATsICXcC5OnDggOrq6pSYmOi1PTExUVu2bGn0MTU1NaqpqbHuV1ZWSpKqqqparlAAABDU6ucEY0yAKzl/zE8AAMAffJ2fgjaUOhczZ87UE0880WB79+7dA1ANAAAIJtXV1YqJiQl0GX7H/AQAAM7V2eanoA2lOnXqpNDQUJWWlnptLy0tVVJSUqOPeeSRRzRlyhTrvsfjUXl5ueLj4+VwOJpcQ1VVlbp37649e/YoOjq6yY9vK+iTb+jT2dEj39An39An39Cnk3/hq66uVnJycqBLOW/MT8GDPvmGPvmGPvmGPp0dPfINffJ9fgraUMrpdGrIkCHKy8vTyJEjJZ0ckvLy8jRx4sRGH+NyueRyuby2xcbGnnct0dHRbfYfWlPQJ9/Qp7OjR76hT76hT75p631qLZ+QYn4KPvTJN/TJN/TJN/Tp7OiRb9p6n3yZn4I2lJKkKVOmaOzYscrIyNDQoUP1pz/9Sd98843GjRsX6NIAAABsifkJAADYRVCHUrfeequ+/vprTZ8+XW63WwMHDtTixYsbfHknAAAATmJ+AgAAdhHUoZQkTZw48bQfN29pLpdLjz/+eIOPtMMbffINfTo7euQb+uQb+uQb+tQ6MT/ZH33yDX3yDX3yDX06O3rkG/rkO4dpDdc3BgAAAAAAQFAJCXQBAAAAAAAAaHsIpQAAAAAAAOB3hFIAAAAAAADwO0KpczRnzhylpKQoIiJCmZmZWrVqVaBLajYzZ87U9773PXXo0EEJCQkaOXKkSkpKvNYcO3ZMEyZMUHx8vNq3b6+bb75ZpaWlXmt2796tESNGKCoqSgkJCXrooYd04sQJrzUff/yxBg8eLJfLpV69eum1115rUE8w9HrWrFlyOByaPHmytY0enbR371795Cc/UXx8vCIjI5Wenq41a9ZY+40xmj59urp06aLIyEhlZ2dr27ZtXscoLy/XmDFjFB0drdjYWN199906fPiw15r169fr+9//viIiItS9e3c99dRTDWpZsGCB+vbtq4iICKWnp2vRokUt86KbqK6uTtOmTVNqaqoiIyN14YUX6ne/+51O/cq/ttin5cuX64YbblBycrIcDofee+89r/126okvtbSUM/WptrZWU6dOVXp6utq1a6fk5GTdeeed2rdvn9cx2kKfYB92fs86H8xP54YZ6vSYoc6OGapxzFC+YYayCYMmmzdvnnE6nWbu3Llm48aNZvz48SY2NtaUlpYGurRmkZOTY1599VVTXFxsCgsLzfXXX2969OhhDh8+bK257777TPfu3U1eXp5Zs2aNufTSS81ll11m7T9x4oQZMGCAyc7ONuvWrTOLFi0ynTp1Mo888oi15ssvvzRRUVFmypQpZtOmTeaFF14woaGhZvHixdaaYOj1qlWrTEpKirn44ovNpEmTrO30yJjy8nJzwQUXmLvuussUFBSYL7/80ixZssR88cUX1ppZs2aZmJgY895775mioiJz4403mtTUVHP06FFrzXXXXWcuueQS89lnn5n//Oc/plevXmb06NHW/srKSpOYmGjGjBljiouLzVtvvWUiIyPNX/7yF2vNypUrTWhoqHnqqafMpk2bzGOPPWbCw8PNhg0b/NOMM5gxY4aJj483H374odmxY4dZsGCBad++vZk9e7a1pi32adGiRebRRx8177zzjpFk3n33Xa/9duqJL7W0lDP1qaKiwmRnZ5u3337bbNmyxeTn55uhQ4eaIUOGeB2jLfQJ9mDn96zzxfzUdMxQp8cM5RtmqMYxQ/mGGcoeCKXOwdChQ82ECROs+3V1dSY5OdnMnDkzgFW1nLKyMiPJfPLJJ8aYk/9Bw8PDzYIFC6w1mzdvNpJMfn6+Mebkf/CQkBDjdrutNS+99JKJjo42NTU1xhhjHn74YdO/f3+v57r11ltNTk6Odd/uva6urja9e/c2ubm55qqrrrIGKnp00tSpU80VV1xx2v0ej8ckJSWZp59+2tpWUVFhXC6Xeeutt4wxxmzatMlIMqtXr7bWfPTRR8bhcJi9e/caY4x58cUXTVxcnNW3+udOS0uz7o8aNcqMGDHC6/kzMzPNvffee34vshmMGDHC/PSnP/XadtNNN5kxY8YYY+iTMabBoGCnnvhSi780Nnh+16pVq4wks2vXLmNM2+wTAsfO71nNjfnpzJihzowZyjfMUGfHDOUbZqjA4fS9Jjp+/LjWrl2r7Oxsa1tISIiys7OVn58fwMpaTmVlpSSpY8eOkqS1a9eqtrbWqwd9+/ZVjx49rB7k5+crPT1diYmJ1pqcnBxVVVVp48aN1ppTj1G/pv4YwdDrCRMmaMSIEQ1eBz066f3331dGRoZuueUWJSQkaNCgQXrllVes/Tt27JDb7faqPyYmRpmZmV59io2NVUZGhrUmOztbISEhKigosNZceeWVcjqd1pqcnByVlJTo0KFD1poz9TKQLrvsMuXl5Wnr1q2SpKKiIq1YsULDhw+XRJ8aY6ee+FKLnVRWVsrhcCg2NlYSfYL/2P09q7kxP50ZM9SZMUP5hhmq6ezUk2CbDZihWgahVBMdOHBAdXV1Xm+CkpSYmCi32x2gqlqOx+PR5MmTdfnll2vAgAGSJLfbLafTaf1nrHdqD9xud6M9qt93pjVVVVU6evSo7Xs9b948ff7555o5c2aDffTopC+//FIvvfSSevfurSVLluj+++/XL37xC/3973+X9N/Xeab63W63EhISvPaHhYWpY8eOzdJLO/Tp17/+tW677Tb17dtX4eHhGjRokCZPnqwxY8ZIok+NsVNPfKnFLo4dO6apU6dq9OjRio6OlkSf4D92f89qTsxPZ8YMdXbMUL5hhmo6O/UkmGYDZqiWExboAmBvEyZMUHFxsVasWBHoUmxlz549mjRpknJzcxURERHocmzL4/EoIyNDTz75pCRp0KBBKi4u1ssvv6yxY8cGuDr7mD9/vt544w29+eab6t+/vwoLCzV58mQlJyfTJzSb2tpajRo1SsYYvfTSS4EuB2jVmJ9OjxnKN8xQvmGGgj8wQ7UsPinVRJ06dVJoaGiDK4CUlpYqKSkpQFW1jIkTJ+rDDz/UsmXL1K1bN2t7UlKSjh8/roqKCq/1p/YgKSmp0R7V7zvTmujoaEVGRtq612vXrlVZWZkGDx6ssLAwhYWF6ZNPPtHzzz+vsLAwJSYmtvkeSVKXLl3Ur18/r20XXXSRdu/eLem/r/NM9SclJamsrMxr/4kTJ1ReXt4svbRDnx566CHrL33p6em644479Mtf/tL6CzJ9ashOPfGllkCrH6Z27dql3Nxc6y98En2C/9j9Pau5MD+dGTOUb5ihfMMM1XR26kkwzAbMUC2PUKqJnE6nhgwZory8PGubx+NRXl6esrKyAlhZ8zHGaOLEiXr33Xe1dOlSpaameu0fMmSIwsPDvXpQUlKi3bt3Wz3IysrShg0bvP6T1v8nrn+DzcrK8jpG/Zr6Y9i518OGDdOGDRtUWFho/WRkZGjMmDHW7bbeI0m6/PLLG1wOe+vWrbrgggskSampqUpKSvKqv6qqSgUFBV59qqio0Nq1a601S5culcfjUWZmprVm+fLlqq2ttdbk5uYqLS1NcXFx1poz9TKQjhw5opAQ71/HoaGh8ng8kuhTY+zUE19qCaT6YWrbtm3697//rfj4eK/99An+Yvf3rPPF/OQbZijfMEP5hhmq6ezUE7vPBsxQfhLY71kPTvPmzTMul8u89tprZtOmTeaee+4xsbGxXlcACWb333+/iYmJMR9//LHZv3+/9XPkyBFrzX333Wd69Ohhli5datasWWOysrJMVlaWtb/+Ur3XXnutKSwsNIsXLzadO3du9FK9Dz30kNm8ebOZM2dOo5fqDZZen3rlGGPokTEnr1ARFhZmZsyYYbZt22beeOMNExUVZV5//XVrzaxZs0xsbKz517/+ZdavX29+9KMfNXpJ2kGDBpmCggKzYsUK07t3b69LrVZUVJjExERzxx13mOLiYjNv3jwTFRXV4FKrYWFh5plnnjGbN282jz/+uG0uZzx27FjTtWtX63LG77zzjunUqZN5+OGHrTVtsU/V1dVm3bp1Zt26dUaSee6558y6deusK57YqSe+1BKIPh0/ftzceOONplu3bqawsNDrd/qpV4FpC32CPdj5Pet8MT+dO2aohpihfMMM1ThmqPPvEzOU/xBKnaMXXnjB9OjRwzidTjN06FDz2WefBbqkZiOp0Z9XX33VWnP06FHzwAMPmLi4OBMVFWV+/OMfm/3793sdZ+fOnWb48OEmMjLSdOrUyfzqV78ytbW1XmuWLVtmBg4caJxOp+nZs6fXc9QLll5/d6CiRyd98MEHZsCAAcblcpm+ffuav/71r177PR6PmTZtmklMTDQul8sMGzbMlJSUeK05ePCgGT16tGnfvr2Jjo4248aNM9XV1V5rioqKzBVXXGFcLpfp2rWrmTVrVoNa5s+fb/r06WOcTqfp37+/WbhwYfO/4HNQVVVlJk2aZHr06GEiIiJMz549zaOPPur1htcW+7Rs2bJGfxeNHTvWGGOvnvhSS0s5U5927Nhx2t/py5Yts47RFvoE+7Dze9b5YH46d8xQjWOGOjtmqMYxQ/mGGcoeHMYY0/yfvwIAAAAAAABOj++UAgAAAAAAgN8RSgEAAAAAAMDvCKUAAAAAAADgd4RSAAAAAAAA8DtCKQAAAAAAAPgdoRQAAAAAAAD8jlAKAAAAAAAAfkcoBQAAAAAAAL8jlAIAAAAAAIDfEUoBCHpXX321Jk+eHOgyLHarBwAA4LvsNq/YrR4A/kEoBQCSjh8/HugSAAAAggrzE4DzRSgFIKjddddd+uSTTzR79mw5HA45HA5t375dd999t1JTUxUZGam0tDTNnj27weNGjhypGTNmKDk5WWlpaZKkTz/9VAMHDlRERIQyMjL03nvvyeFwqLCw0HpscXGxhg8frvbt2ysxMVF33HGHDhw4cNp6du7c6a92AAAAnBXzEwC7CAt0AQBwPmbPnq2tW7dqwIAB+u1vfytJiouLU7du3bRgwQLFx8fr008/1T333KMuXbpo1KhR1mPz8vIUHR2t3NxcSVJVVZVuuOEGXX/99XrzzTe1a9euBh8jr6io0DXXXKOf/exn+uMf/6ijR49q6tSpGjVqlJYuXdpoPZ07d/ZPMwAAAHzA/ATALgilAAS1mJgYOZ1ORUVFKSkpydr+xBNPWLdTU1OVn5+v+fPnew1V7dq109/+9jc5nU5J0ssvvyyHw6FXXnlFERER6tevn/bu3avx48dbj/nzn/+sQYMG6cknn7S2zZ07V927d9fWrVvVp0+fRusBAACwC+YnAHZBKAWgVZozZ47mzp2r3bt36+jRozp+/LgGDhzotSY9Pd0aqCSppKREF198sSIiIqxtQ4cO9XpMUVGRli1bpvbt2zd4zu3bt6tPnz7N+0IAAAD8hPkJgL8RSgFodebNm6cHH3xQzz77rLKystShQwc9/fTTKigo8FrXrl27Jh/78OHDuuGGG/SHP/yhwb4uXbqcc80AAACBxPwEIBAIpQAEPafTqbq6Ouv+ypUrddlll+mBBx6wtm3fvv2sx0lLS9Prr7+umpoauVwuSdLq1au91gwePFj//Oc/lZKSorCwxn+FfrceAAAAu2F+AmAHXH0PQNBLSUlRQUGBdu7cqQMHDqh3795as2aNlixZoq1bt2ratGkNhqPG3H777fJ4PLrnnnu0efNmLVmyRM8884wkyeFwSJImTJig8vJyjR49WqtXr9b27du1ZMkSjRs3zhqkvluPx+NpuRcPAABwDpifANgBoRSAoPfggw8qNDRU/fr1U+fOnZWTk6ObbrpJt956qzIzM3Xw4EGvv/qdTnR0tD744AMVFhZq4MCBevTRRzV9+nRJsr4nITk5WStXrlRdXZ2uvfZapaena/LkyYqNjVVISEij9ezevbvlXjwAAMA5YH4CYAcOY4wJdBEAYFdvvPGGxo0bp8rKSkVGRga6HAAAANtjfgLgK75TCgBO8Y9//EM9e/ZU165dVVRUpKlTp2rUqFEMVAAAAKfB/ATgXBFKAcAp3G63pk+fLrfbrS5duuiWW27RjBkzAl0WAACAbTE/AThXnL4HAAAAAAAAv+OLzgEAAAAAAOB3hFIAAAAAAADwO0IpAAAAAAAA+B2hFAAAAAAAAPyOUAoAAAAAAAB+RygFAAAAAAAAvyOUAgAAAAAAgN8RSgEAAAAAAMDvCKUAAAAAAADgd/8fRdcrg0Wfsh8AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "\n",
+ "column = \"threads\"\n",
+ "x = \"target\"\n",
+ "y = \"[OVERALL].Throughput(ops/sec)\"\n",
+ "evaluation.plot(df_plot, column=column, x=x, y=y, plot_by=\"pod_count\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACbVElEQVR4nOzdd3gU5f738c+m94QAadQACU06giAKKBIUEARFFGnW409U5LHAUVC6XdSjIgfFhoJiPagUUQQBqYIUIfSeBAgkkJA+zx/LLiwJkLY7Ke/Xdc21s7Mzs9/ZBEg+fO97LIZhGAIAAAAAAABcyM3sAgAAAAAAAFD5EEoBAAAAAADA5QilAAAAAAAA4HKEUgAAAAAAAHA5QikAAAAAAAC4HKEUAAAAAAAAXI5QCgAAAAAAAC5HKAUAAAAAAACXI5QCAAAAAACAyxFKoUIYNmyYLBaLLBaLrrrqKrPLKbG+ffuW2et54YUXZLFYdPz4cbNLKbOWLl0qi8WipUuX2rcNGzZMdevWNa2mimLNmjXy8vLS/v37nXL+0aNHq3379k45NwAAAABHhFKoMKpVq6ZPP/1UL774on1b3bp17eGOxWKRv7+/2rVrp08++STf8bYg4VLLnDlz8h2Tm5urqKgoWSwW/fzzzwXWZQtxbIufn59q166t3r17a9asWcrMzMx3zBNPPKFPP/1UjRo1KtS1Z2dna/z48apXr568vb1Vr149TZo0STk5OYW+xj///NNh3ylTpui7774r1PtfysWff1hYmK677jp9++23JTpvWfHuu+/qo48+cvr7dOnSpdTCyZUrV+qFF17QqVOnSuV8rvbss8/qrrvuUp06dZxy/pEjR2rTpk364YcfnHJ+AAAAAOd5mF0AUFr8/f11zz335NvesmVL/b//9/8kSUePHtXMmTM1dOhQZWZm6oEHHsi3/2OPPaarr7463/YOHTrk2/brr7/q6NGjqlu3rmbPnq2bb775kvW99957CggIUGZmpg4fPqyFCxfq3nvv1bRp0zR//nzVqlXLvm/nzp0lSTNnzixUR9I999yjr776Svfee6/atm2rP//8U2PHjtWBAwc0Y8aMQl1jgwYNHJ5PmTJFt99+u/r27XvF97+cCz//I0eO6P3331e/fv303nvv6V//+leJzm22d999V9WqVdOwYcMctl9//fU6e/asvLy8zCnsMlauXKnx48dr2LBhCgkJMbucItm4caN++eUXrVy50mnvERERoT59+ujVV1/Vrbfe6rT3AQAAAEAohUqgRo0aDmHVsGHDVK9ePb3xxhsFhlLXXXedbr/99kKd+7PPPlPr1q01dOhQ/fvf/1ZaWpr8/f0L3Pf2229XtWrV7M/HjRun2bNna8iQIbrjjjvydSoV1tq1a/Xll19q7NixmjBhgiTpX//6l6pVq6bXX39dI0aMUPPmzYt9jSV18ec/ZMgQNWjQQG+88UaJQ6mMjAx5eXnJza1sNX26ubnJx8fH7DIqnFmzZql27dq65pprnPo+AwYM0B133KE9e/aoXr16Tn0vAAAAoDIrW7/JAS5QvXp1NWrUSLt37y7Rec6ePatvv/1WAwcO1IABA3T27Fl9//33RTrHoEGDdP/992v16tVavHhxsepYvny5JGngwIEO2wcOHCjDMDR37twCjzt9+nS+4X02FotFaWlp+vjjj+1D7y7uBjp16pS92yY4OFjDhw9Xenr6FeuNiIhQ48aNtXfvXvu2w4cP695771V4eLi8vb3VtGlTffjhhw7H2YYezpkzR88995xq1KghPz8/paamSpJWr16tW265RVWqVJG/v7+aN2+uN9980+Ec27dv1+23367Q0FD5+Piobdu2+YZpffTRR7JYLFqxYoVGjRql6tWry9/fX7fddpuOHTtm369u3braunWrfv/9d/tn1KVLF4daL5xTqiB5eXmaNm2amjZtKh8fH4WHh+uhhx7SyZMnr/g5Xuzvv/+2B64+Pj6KiIjQvffeqxMnTtj3eeGFF/TUU09JkqKjo+1179u3z77PZ599pjZt2sjX11ehoaEaOHCgDh486PBetuGE27ZtU9euXeXn56caNWro5ZdfzldXRkaGXnjhBcXGxsrHx0eRkZHq16+fdu/eLcMwVLduXfXp06fA44KDg/XQQw/Zt3333Xe64YYbZLFYHPa1WCx64YUX8p2jbt26Dt+3tmGuMTEx8vHxUdWqVdWpU6d8f/a6desmSUX+8wwAAACgaOiUQqWTk5OjQ4cOqUqVKgW+fvr06QKHzFWtWtXhl+EffvhBZ86c0cCBAxUREaEuXbpo9uzZuvvuu4tUz+DBgzVjxgwtWrRIN910U9EuRrLPSeXr6+uw3c/PT5K0fv36fMcMHz5cZ86ckbu7u6677jq98soratu2rf31Tz/9VPfff7/atWunBx98UJJUv359h3MMGDBA0dHRmjp1qjZs2KCZM2cqLCxML7300mXrzc7O1sGDB1W1alVJUmJioq655hpZLBaNGDFC1atX188//6z77rtPqampGjlypMPxEydOlJeXl5588kllZmbKy8tLixcvVq9evRQZGanHH39cERER+ueffzR//nw9/vjjkqStW7fq2muvVY0aNTR69Gj5+/vryy+/VN++ffX111/rtttuc3ifRx99VFWqVNHzzz+vffv2adq0aRoxYoQ95Js2bZoeffRRBQQE6Nlnn5UkhYeHX/baL/bQQw/po48+0vDhw/XYY49p7969+s9//qO//vpLK1askKenZ6HPtXjxYu3Zs0fDhw9XRESEtm7dqhkzZmjr1q36888/ZbFY1K9fP8XHx+uLL77QG2+8Ye/cq169uiRp8uTJGjt2rAYMGKD7779fx44d09tvv63rr79ef/31l8Nwv5MnT6pHjx7q16+fBgwYoHnz5umZZ55Rs2bN7MNYc3Nz1atXLy1ZskQDBw7U448/rtOnT2vx4sXasmWL6tevr3vuuUcvv/yykpOTFRoaaj////73P6Wmptq77A4fPqwDBw6odevWRfqML/TCCy9o6tSp9u/t1NRUrVu3Ths2bHD4sxccHKz69etrxYoVeuKJJ4r9fgAAAACuwAAqgKFDhxp16tTJt71OnTpG9+7djWPHjhnHjh0zNm/ebAwePNiQZDzyyCMO+/7222+GpEsuR48eddi/V69exrXXXmt/PmPGDMPDw8NISkpy2O/55583JBnHjh0rsPaTJ08akozbbrst32udO3c2mjZtetlr//rrrw1Jxqeffuqwffr06YYk46qrrrJvW7FihdG/f3/jgw8+ML7//ntj6tSpRtWqVQ0fHx9jw4YNDsf7+/sbQ4cOzfd+tuu59957HbbfdtttRtWqVR22Xfz5b9q0yRg4cKAhyXj00UcNwzCM++67z4iMjDSOHz/ucOzAgQON4OBgIz093TCM81+fevXq2bcZhmHk5OQY0dHRRp06dYyTJ086nCMvL8++fuONNxrNmjUzMjIyHF7v2LGjERMTY982a9YsQ5LRrVs3h+OfeOIJw93d3Th16pR9W9OmTY3OnTvn+4xstf7222/2bRd/jy5fvtyQZMyePdvh2AULFuTbXpjvgws/E5svvvjCkGQsW7bMvu2VV14xJBl79+512Hffvn2Gu7u7MXnyZIftmzdvNjw8PBy2d+7c2ZBkfPLJJ/ZtmZmZRkREhNG/f3/7tg8//NCQZLz++uv5arN9tjt27DAkGe+9957D67feeqtRt25d+36//PKLIcn43//+l+9ckoznn38+3/Y6deo4fA+3aNHC6NmzZ779CtK9e3ejcePGhdoXAAAAQPEwfA8V3qJFi1S9enVVr15dzZo106effqrhw4frlVdeKXD/cePGafHixfmWC7s4Tpw4oYULF+quu+6yb+vfv78sFou+/PLLItUXEBAgydqhVRy33HKL6tSpoyeffFLffPON9u/fry+//FLPPvusPDw8dPbsWfu+HTt21Lx583Tvvffq1ltv1ejRo+1dNGPGjCnS+148H9R1112nEydO2IfT2Vz4+bdo0UJfffWVBg8erJdeekmGYejrr79W7969ZRiGjh8/bl/i4uKUkpKiDRs2OJxv6NChDl1hf/31l/bu3auRI0fmm7jb1tmWnJysX3/9VQMGDLB3wh0/flwnTpxQXFycdu7cqcOHDzsc++CDDzp0xl133XXKzc3V/v37i/Q5XcpXX32l4OBg3XTTTQ7X3aZNGwUEBOi3334r0vku/EwyMjJ0/Phx+9xLF3+GBfnmm2+Ul5enAQMGONQTERGhmJiYfPUEBAQ4zBXm5eWldu3aac+ePfZtX3/9tapVq6ZHH3003/vZPtvY2Fi1b99es2fPtr+WnJysn3/+WYMGDbLvZxuGeKkOx8IICQnR1q1btXPnzivuW6VKlULdZAAAAABA8TF8DxVe+/btNWnSJOXm5mrLli2aNGmSTp48eck7ozVr1sw+p8ylzJ07V9nZ2WrVqpV27drl8F6zZ8/WI488Uuj6zpw5I0kKDAws9DEX8vHx0Y8//qgBAwaof//+kiRvb2+9/PLLmjx5sj30upQGDRqoT58++uabb5Sbmyt3d/dCvW/t2rUdntvCgpMnTyooKMi+3fb5WywW+fn5qXHjxvbwKCkpSadOndKMGTMKvEugbZ8LRUdHOzy3zQ121VVXXbLWXbt2yTAMjR07VmPHjr3k+9SoUaNQ11cadu7cqZSUFIWFhV2ynqJITk7W+PHjNWfOnHzHpqSkFKoewzAUExNT4OsXDyWsWbNmvrmdqlSpor///tv+fPfu3WrYsKE8PC7/T82QIUM0YsQI7d+/X3Xq1NFXX32l7OxsDR48ON++hmFc8VouZcKECerTp49iY2N11VVXqUePHho8eHC+GwHY3ufi6wMAAABQugilUOFVq1bNHjLFxcWpUaNG6tWrl958802NGjWqWOe0dXVce+21Bb5elLt2bdmyRZI1HCqupk2basuWLdq2bZtOnjypJk2ayNfXV0888YQ6d+58xeNr1aqlrKwspaWlOQRKl3Op8Ori0ODCz/9ieXl5kqR77rlHQ4cOLXCfiwODi+fOKgzb+zz55JOKi4srcJ+LP//CXl9x5eXlKSwszKFD6EK2eZ4Ka8CAAVq5cqWeeuoptWzZUgEBAcrLy1OPHj3s13+leiwWi37++ecCr/3icLM0P5+BAwfqiSee0OzZs/Xvf/9bn332mdq2bauGDRva97HNQVaUUDA3N9fh+fXXX6/du3fr+++/16JFizRz5ky98cYbmj59uu6//36HfU+ePOlwt0wAAAAApY9QCpVOz5491blzZ02ZMkUPPfSQ/P39i3T83r17tXLlSo0YMSJf4JOXl6fBgwfr888/13PPPVeo83366aeSdMmwpLAsFouaNm1qf/7TTz8pLy/vil1fkjVE8/HxcQgeXNElUr16dQUGBio3N7dQdRbENgH7li1bLnkOW0Do6elZ7PcpSEk+o/r16+uXX37RtddeW6yg7UInT57UkiVLNH78eI0bN86+vaBhapequX79+jIMQ9HR0YqNjS1RPReec/Xq1crOzr7spO2hoaHq2bOnZs+erUGDBmnFihWaNm2awz6NGjWSJIe7NtpUqVJFp06dctiWlZWlo0ePFvhew4cPt0/2f/311+uFF17IF0rt3btXLVq0KOSVAgAAACgO5pRCpfTMM8/oxIkT+u9//1vkY22dLU8//bRuv/12h2XAgAHq3LnzJbtfLvb5559r5syZ6tChg2688cZCHbN9+3YdOHDgsvucPXtWY8eOVWRkpMO8V8eOHcu376ZNm/TDDz+oe/fucnM7/1eCv79/vl/0S5u7u7v69++vr7/+2t4xdqGC6r1Y69atFR0drWnTpuWr19a1ExYWpi5duuj9998vMKgozPsUpCSf0YABA5Sbm6uJEyfmey0nJ6dI57V1LV3cpXRxsCPJHsJefP5+/frJ3d1d48ePz3cewzDsczoVRf/+/XX8+HH95z//yffaxe8xePBgbdu2TU899ZTc3d01cOBAh9dr1KihWrVqad26dfnOVb9+fS1btsxh24wZM/J1Sl18DQEBAWrQoIH9DpY2KSkp2r17tzp27HjliwQAAABQbHRKoVK6+eabddVVV+n111/XI4884tDFsXz5cmVkZOQ7pnnz5mrevLlmz56tli1bqlatWgWe+9Zbb9Wjjz6qDRs2ONy+ft68eQoICFBWVpYOHz6shQsXasWKFfbJvwurcePG6ty5s5YuXWrfNmDAAEVFRalJkyZKTU3Vhx9+qD179ujHH390mKvqzjvvlK+vrzp27KiwsDBt27ZNM2bMkJ+fn1588UWH92nTpo1++eUXvf7664qKilJ0dLTat29f6DoL68UXX9Rvv/2m9u3b64EHHlCTJk2UnJysDRs26JdfflFycvJlj3dzc9N7772n3r17q2XLlho+fLgiIyO1fft2bd26VQsXLpQkvfPOO+rUqZOaNWumBx54QPXq1VNiYqJWrVqlQ4cOadOmTUWuvU2bNnrvvfc0adIkNWjQQGFhYbrhhhsKdWznzp310EMPaerUqdq4caO6d+8uT09P7dy5U1999ZXefPNN3X777fb9jx07pkmTJuU7T3R0tAYNGqTrr79eL7/8srKzs1WjRg0tWrSowK6iNm3aSJKeffZZDRw4UJ6enurdu7fq16+vSZMmacyYMdq3b5/69u2rwMBA7d27V99++60efPBBPfnkk0X6fIYMGaJPPvlEo0aN0po1a3TdddcpLS1Nv/zyi/7v//5Pffr0se/bs2dPVa1aVV999ZVuvvnmAufa6tOnj7799tt88z3df//9+te//qX+/fvrpptu0qZNm7Rw4cJ8w++aNGmiLl26qE2bNgoNDdW6des0b948jRgxwmG/X375RYZhONQHAAAAwAlcfr8/wAmGDh1q1KlTJ9/2OnXqXPIW8B999JEhyZg1a5ZhGIbx22+/GZIuuTz//PPG+vXrDUnG2LFjL1nLvn37DEnGE088YRiGYTz//PMO5/Hx8TFq1qxp9OrVy/jwww+NjIyMS56rc+fORtOmTR22STI6d+7ssO2ll14yGjVqZPj4+BhVqlQxbr31VuOvv/7Kd74333zTaNeunREaGmp4eHgYkZGRxj333GPs3Lkz377bt283rr/+esPX19eQZAwdOtTheo4dO+aw/6xZswxJxt69e+3bLvf5XygxMdF45JFHjFq1ahmenp5GRESEceONNxozZsyw72P7+nz11VcFnuOPP/4wbrrpJiMwMNDw9/c3mjdvbrz99tsO++zevdsYMmSIERERYXh6eho1atQwevXqZcybNy/fdaxdu9bhWNv7//bbb/ZtCQkJRs+ePY3AwECHr0tB+17qe3TGjBlGmzZtDF9fXyMwMNBo1qyZ8fTTTxtHjhyx79O5c+dLfl/eeOONhmEYxqFDh4zbbrvNCAkJMYKDg4077rjDOHLkiP1790ITJ040atSoYbi5ueX7mn399ddGp06dDH9/f8Pf399o1KiR8cgjjxg7duxwqOfi78tLXWN6errx7LPPGtHR0fav7e23327s3r073/H/93//Z0gyPv/883yvGYZhbNiwwZBkLF++3GF7bm6u8cwzzxjVqlUz/Pz8jLi4OGPXrl1GnTp17N+3hmEYkyZNMtq1a2eEhIQYvr6+RqNGjYzJkycbWVlZDue78847jU6dOhVYAwAAAIDSYzGMUpq1FzDRsGHD9Ouvv2rDhg3y8PCw392tvDp9+rQyMzPVp08fpaSkFDi0DahonnjiCX3wwQdKSEiQn59fgfvceOONioqKss/FVtoSEhIUHR2tOXPm0CkFAAAAOBlzSqHCOHjwoKpXr65OnTqZXUqJDR48WNWrV9fKlSvNLgVwiYyMDH322Wfq37//JQMpSZoyZYrmzp2r/fv3O6WOadOmqVmzZgRSAAAAgAvQKYUKYdu2bTpy5Igk6+TF11xzjckVlczff/+tpKQkSRXjeoBLSUpK0i+//KJ58+bpu+++04YNG9SyZUuzywIAAADgAoRSAADTLF26VF27dlVYWJjGjh2bb9JxAAAAABUXw/cAAKbp0qWLDMNQYmIigRQqhWXLlql3796KioqSxWLRd999d8Vjli5dqtatW8vb21sNGjTQRx995PQ6AQAAXIFQCgAAwEXS0tLUokULvfPOO4Xaf+/everZs6e6du2qjRs3auTIkbr//vu1cOFCJ1cKAADgfAzfAwAAMIHFYtG3336rvn37XnKfZ555Rj/++KPDXVgHDhyoU6dOacGCBS6oEgAAwHk8zC6gOPLy8nTkyBEFBgbKYrGYXQ4AAKgEDMPQ6dOnFRUVJTc31zSbr1q1St26dXPYFhcXp5EjR17ymMzMTGVmZtqf5+XlKTk5WVWrVuXnJgAA4BKF/bmpXIZSR44cUa1atcwuAwAAVEIHDx5UzZo1XfJeCQkJCg8Pd9gWHh6u1NRUnT17Vr6+vvmOmTp1qsaPH++S+gAAAC7nSj83lctQKjAwUJL14oKCgkyuBgAAVAapqamqVauW/eeQsmrMmDEaNWqU/XlKSopq167Nz00AAMBlCvtzU7kMpWyt50FBQfxwBQAAXMqVQ+AiIiKUmJjosC0xMVFBQUEFdklJkre3t7y9vfNt5+cmAADgalf6uYm77wEAAJRRHTp00JIlSxy2LV68WB06dDCpIgAAgNJDKAUAAOAiZ86c0caNG7Vx40ZJ0t69e7Vx40YdOHBAknXo3ZAhQ+z7/+tf/9KePXv09NNPa/v27Xr33Xf15Zdf6oknnjCjfAAAgFJFKAUAAOAi69atU6tWrdSqVStJ0qhRo9SqVSuNGzdOknT06FF7QCVJ0dHR+vHHH7V48WK1aNFCr732mmbOnKm4uDhT6gcAAChNFsMwDLOLKKrU1FQFBwcrJSWFuREAOE1ubq6ys7PNLgOAi3h6esrd3f2Sr5fXnz/Ka90AAMBcl/t9qLR+biqXE50DgDMZhqGEhASdOnXK7FIAuFhISIgiIiJcOpk5AABAWVLY34dK4+cmQikAuIjtL+CwsDD5+fnxyylQCRiGofT0dCUlJUmSIiMjTa4IAADAHFf6fag0f24ilAKAC+Tm5tr/Aq5atarZ5QBwIV9fX0lSUlKSwsLCLtuSDgAAUBEV9veh0vq5iYnOAeACtjHTfn5+JlcCwAy2P/vMJwcAACqjovw+VBo/NxFKAUABGLIHVE782QcAACjcz0Sl8XMToRQAAAAAAABcjlAKAFAm1a1bV9OmTTO7jEpt3759slgs2rhxo9ml2HXp0kUjR440uwwAAACUAkIpAKgAli1bpt69eysqKkoWi0Xfffed2SWV2Nq1a/Xggw+aXYaWLl0qi8VyxVvillUvvviiLBbLFYOcYcOGqW/fvi6pCQAAAJAIpQCgQkhLS1OLFi30zjvvmF1KiWVlZUmSqlevXmEmnLddk6utXbtW77//vpo3b+6y98zNzVVeXp7L3g8AAADlF6EUAFQAN998syZNmqTbbrutSMd9//33at26tXx8fFSvXj2NHz9eOTk5kqQJEyYoKipKJ06csO/fs2dPde3a1R46WCwWvffee7r55pvl6+urevXqad68eQ7vcfDgQQ0YMEAhISEKDQ1Vnz59tG/fPvvrtg6dyZMnKyoqSg0bNpSUf/iexWLR+++/r169esnPz0+NGzfWqlWrtGvXLnXp0kX+/v7q2LGjdu/eXehrtJ135syZuu222+Tn56eYmBj98MMPkqzD17p27SpJqlKliiwWi4YNG3bFz7VLly4aMWKERo4cqWrVqikuLq7AoXCnTp2SxWLR0qVLJZ3vylqyZInatm0rPz8/dezYUTt27Ljie17szJkzGjRokP773/+qSpUql933hRde0Mcff6zvv/9eFovFoSZJ2rNnj7p27So/Pz+1aNFCq1atsr/20UcfKSQkRD/88IOaNGkib29vHThwQJmZmXryySdVo0YN+fv7q3379g7nPHHihO666y7VqFFDfn5+atasmb744guHutLS0jRkyBAFBAQoMjJSr732Wr7a3333XcXExMjHx0fh4eG6/fbbi/xZAQAAwFFh/pOxNP4jklAKAK7AMAylZ+W4fDEMw6nXtXz5cg0ZMkSPP/64tm3bpvfff18fffSRJk+eLEl69tlnVbduXd1///2SpHfeeUcrV67Uxx9/LDe38/98jB07Vv3799emTZs0aNAgDRw4UP/8848k6+1h4+LiFBgYqOXLl2vFihUKCAhQjx49HLqHlixZoh07dmjx4sWaP3/+JWueOHGihgwZoo0bN6pRo0a6++679dBDD2nMmDFat26dDMPQiBEjCn2NNuPHj9eAAQP0999/65ZbbtGgQYOUnJysWrVq6euvv5Yk7dixQ0ePHtWbb75ZqM/3448/lpeXl1asWKHp06cX6hibZ599Vq+99prWrVsnDw8P3XvvvUU6XpIeeeQR9ezZU926dbvivk8++aQGDBigHj166OjRozp69Kg6duzoUM+TTz6pjRs3KjY2VnfddZdDsJeenq6XXnpJM2fO1NatWxUWFqYRI0Zo1apVmjNnjv7++2/dcccd6tGjh3bu3ClJysjIUJs2bfTjjz9qy5YtevDBBzV48GCtWbPGft6nnnpKv//+u77//nstWrRIS5cu1YYNG+yvr1u3To899pgmTJigHTt2aMGCBbr++uuL/FkBAADAysvLS25ubjpy5IhSUlJ09uxZZWRkOCxnz55VSkqKjhw5Ijc3N3l5eRX7/TxKsXYAqJDOZueqybiFLn/fbRPi5OflvL+mx48fr9GjR2vo0KGSpHr16mnixIl6+umn9fzzz8vd3V2fffaZWrZsqdGjR+utt97SzJkzVbt2bYfz3HHHHfbgauLEiVq8eLHefvttvfvuu5o7d67y8vI0c+ZM+y1jZ82apZCQEC1dulTdu3eXJPn7+2vmzJlX/Adt+PDhGjBggCTpmWeeUYcOHTR27FjFxcVJkh5//HENHz680NdoM2zYMN11112SpClTpuitt97SmjVr1KNHD4WGhkqSwsLCFBISUujPNyYmRi+//LL9+YXdYVcyefJkde7cWZI0evRo9ezZUxkZGfLx8SnU8XPmzNGGDRu0du3aQu0fEBAgX19fZWZmKiIiIt/rTz75pHr27CnJ+pk2bdpUu3btUqNGjSRZw8d3331XLVq0kCQdOHBAs2bN0oEDBxQVFWU/x4IFCzRr1ixNmTJFNWrU0JNPPml/j0cffVQLFy7Ul19+qXbt2unMmTP64IMP9Nlnn+nGG2+UZA36atasaT/mwIED8vf3V69evRQYGKg6deqoVatWhbpmAAAA5Ofm5qbo6GgdPXpUR44cuey+fn5+ql27tsN/WBcVoRQAVFKbNm3SihUrHLqGcnNzlZGRofT0dPn5+alevXp69dVX9dBDD+nOO+/U3Xffne88HTp0yPfcNkRt06ZN2rVrlwIDAx32ycjIcBhm16xZs0L9D8uFcyOFh4fbj71wW0ZGhlJTUxUUFFSoa7z4vP7+/goKClJSUtIV67mcNm3aFPvYC+uJjIyUJCUlJeULBAty8OBBPf7441q8eHGhQ6zi1mMLpby8vBz22bx5s3JzcxUbG+twnszMTFWtWlWS9eswZcoUffnllzp8+LCysrKUmZlp/5rs3r1bWVlZat++vf340NBQ+/BOSbrppptUp04d1atXTz169FCPHj3swzABAABQPF5eXqpdu7ZycnKUm5tb4D7u7u7y8PCw/8dzcRFKAcAV+Hq6a9uEOFPe15nOnDmj8ePHq1+/fvleuzDMWLZsmdzd3bVv3z7l5OTIw6Pw/3ScOXNGbdq00ezZs/O9Vr16dfu6v79/oc7n6elpX7f9A1jQNtv49sJe44XnsJ2npGPkL74m2/8gXTgsMzs7u8BjL3dNV7J+/XolJSWpdevW9m25ublatmyZ/vOf/ygzM1Pu7kX73rpSPb6+vg4/kJw5c0bu7u5av359vvcKCAiQJL3yyit68803NW3aNDVr1kz+/v4aOXJkkSaFDwwM1IYNG7R06VItWrRI48aN0wsvvKC1a9cWqasNAAAAjiwWizw9PfP9nFzaCKUA4AosFotTh9GZpXXr1tqxY4caNGhwyX3mzp2rb775RkuXLtWAAQM0ceJEjR8/3mGfP//8U0OGDHF4bhtC1bp1a82dO1dhYWEKCgpyzoVcRmGu8UpsHVyX+l+iwrKFcEePHrV/PhdOel5abrzxRm3evNlh2/Dhw9WoUSM988wzlwykvLy8SnyNNq1atVJubq6SkpJ03XXXFbjPihUr1KdPH91zzz2SrCFXfHy8mjRpIkmqX7++PD09tXr1anuH2MmTJxUfH28f2ihJHh4e6tatm7p166bnn39eISEh+vXXXwsMIgEAAFC2VLzfsgCgEjpz5ox27dplf753715t3LhRoaGhlxzyNW7cOPXq1Uu1a9fW7bffLjc3N23atElbtmzRpEmTdOjQIT388MN66aWX1KlTJ82aNUu9evXSzTffrGuuucZ+nq+++kpt27ZVp06dNHv2bK1Zs0YffPCBJGnQoEF65ZVX1KdPH02YMEE1a9bU/v379c033+jpp592mB/IGa50jYVRp04dWSwWzZ8/X7fccot8fX3t3T5F4evrq2uuuUYvvviioqOjlZSUpOeee67I57mSwMBAXXXVVQ7b/P39VbVq1XzbL1S3bl0tXLhQO3bsUNWqVRUcHFzsGmJjYzVo0CANGTJEr732mlq1aqVjx45pyZIlat68uXr27KmYmBjNmzdPK1euVJUqVfT6668rMTHRHkoFBATovvvu01NPPaWqVasqLCxMzz77rMOcBfPnz9eePXt0/fXXq0qVKvrpp5+Ul5fnMMQPAAAAZRd33wOACmDdunVq1aqVvQNn1KhRatWqlcaNG3fJY+Li4jR//nwtWrRIV199ta655hq98cYbqlOnjgzD0LBhw9SuXTv73ezi4uL08MMP65577tGZM2fs5xk/frzmzJmj5s2b65NPPtEXX3xhDxb8/Py0bNky1a5dW/369VPjxo113333KSMjwyWdU5e7xsKqUaOGfcL08PBwh7v7FdWHH36onJwctWnTRiNHjix0MHahffv2yWKxaOnSpcWuoyAPPPCAGjZsqLZt26p69epasWJFic43a9YsDRkyRP/v//0/NWzYUH379tXatWvtIelzzz2n1q1bKy4uTl26dFFERIT69u3rcI5XXnlF1113nXr37q1u3bqpU6dODnN1hYSE6JtvvtENN9ygxo0ba/r06friiy/UtGnTEtUOAAAA17AYzr7nuBOkpqYqODhYKSkppgwHAVBxZWRkaO/evYqOji61SaIrMovFom+//TZfmADn+e2339SvXz/t2bNHVapUMbucCudyfweU158/ymvdAACg/Crszx90SgEAUI789NNP+ve//00gBQAAgHKPOaUAACiCAwcO2IcnFmTbtm2XnMerNLzyyitOOzcAAADgSoRSAIBiK4cjwEssKirqsnfNi4qKcl0xAAAAQDlGKAUAQBF4eHioQYMGZpcBAAAAlHvMKQUAAAAAAACXI5QCAAAAAACAyxFKAQAAAAAAwOUIpcqg3DxDKWezzS4DAAAAAADAaQilyqCHPl2n9lN+UdLpDLNLAQAAAAAAcApCqTJozd5kZWTn6WDyWbNLAQDT1K1bV9OmTTO7DFzBRx99pJCQELPLcGCxWPTdd9+ZXQYAAACugFCqjDmblavUjByzywBQzixbtky9e/dWVFRUhfmFfO3atXrwwQfNLkNLly6VxWLRqVOnzC6l0N577z01b95cQUFBCgoKUocOHfTzzz/bX09OTtajjz6qhg0bytfXV7Vr19Zjjz2mlJSUy56XoBAAAACliVCqjGHIHoDiSEtLU4sWLfTOO++YXUqJZWVlSZKqV68uPz8/k6spHbZrcpWaNWvqxRdf1Pr167Vu3TrdcMMN6tOnj7Zu3SpJOnLkiI4cOaJXX31VW7Zs0UcffaQFCxbovvvuc0l9rv48AAAAUDYRSpUxCSmEUgCK7uabb9akSZN02223Fem477//Xq1bt5aPj4/q1aun8ePHKyfH2q05YcIERUVF6cSJE/b9e/bsqa5duyovL0+SdZjUe++9p5tvvlm+vr6qV6+e5s2b5/AeBw8e1IABAxQSEqLQ0FD16dNH+/bts78+bNgw9e3bV5MnT1ZUVJQaNmwoKX9XjsVi0fvvv69evXrJz89PjRs31qpVq7Rr1y516dJF/v7+6tixo3bv3l3oa7Sdd+bMmbrtttvk5+enmJgY/fDDD5Kkffv2qWvXrpKkKlWqyGKxaNiwYVf8XLt06aIRI0Zo5MiRqlatmuLi4rRv3z5ZLBZt3LjRvt+pU6dksVi0dOlSSee7spYsWaK2bdvKz89PHTt21I4dO674nhfq3bu3brnlFsXExCg2NlaTJ09WQECA/vzzT0nSVVddpa+//lq9e/dW/fr1dcMNN2jy5Mn63//+5/DZXHxN+/fv1xNPPCGLxSKLxeLw+sKFC9W4cWMFBASoR48eOnr0qP21S32Nr/S9sXbtWt10002qVq2agoOD1blzZ23YsMHhfXfu3Knrr79ePj4+atKkiRYvXuzwelZWlkaMGKHIyEj5+PioTp06mjp1apE+TwAAADgHoVQZk3g60+wSAFzMMKSsNNcvhuHUy1q+fLmGDBmixx9/XNu2bdP777+vjz76SJMnT5YkPfvss6pbt67uv/9+SdI777yjlStX6uOPP5ab2/l/PsaOHav+/ftr06ZNGjRokAYOHKh//vlHkpSdna24uDgFBgZq+fLlWrFihT20uLBbZsmSJdqxY4cWL16s+fPnX7LmiRMnasiQIdq4caMaNWqku+++Ww899JDGjBmjdevWyTAMjRgxotDXaDN+/HgNGDBAf//9t2655RYNGjRIycnJqlWrlr7++mtJ0o4dO3T06FG9+eabhfp8P/74Y3l5eWnFihWaPn16oY6xefbZZ/Xaa69p3bp18vDw0L333luk4y+Um5urOXPmKC0tTR06dLjkfikpKQoKCpKHh0eBr3/zzTeqWbOmJkyYoKNHjzqETunp6Xr11Vf16aefatmyZTpw4ICefPJJh+Mv/hoX5nvj9OnTGjp0qP744w/9+eefiomJ0S233KLTp09LkvLy8tSvXz95eXlp9erVmj59up555hmH933rrbf0ww8/6Msvv9SOHTs0e/Zs1a1btzgfJQAAAEpZwT95wjRJqXRKAWVOdro0Jcr17/vvI5KXv9NOP378eI0ePVpDhw6VJNWrV08TJ07U008/reeff17u7u767LPP1LJlS40ePVpvvfWWZs6cqdq1azuc54477rAHVxMnTtTixYv19ttv691339XcuXOVl5enmTNn2jtrZs2apZCQEC1dulTdu3eXJPn7+2vmzJny8vK6bM3Dhw/XgAEDJEnPPPOMOnTooLFjxyouLk6S9Pjjj2v48OGFvkabYcOG6a677pIkTZkyRW+99ZbWrFmjHj16KDQ0VJIUFhZWpAm9Y2Ji9PLLL9ufX9gBdCWTJ09W586dJUmjR49Wz549lZGRIR8fn0KfY/PmzerQoYMyMjIUEBCgb7/9Vk2aNClw3+PHj2vixImXncMrNDRU7u7uCgwMVEREhMNr2dnZmj59uurXry9JGjFihCZMmOCwz8Vf488+++yK3xs33HCDwzlmzJihkJAQ/f777+rVq5d++eUXbd++XQsXLlRUlPXP6JQpU3TzzTfbjzlw4IBiYmLUqVMnWSwW1alTpzAfHwAAAFyAUKqMSSSUAuAimzZt0ooVKxy6hnJzc5WRkaH09HT5+fmpXr16evXVV/XQQw/pzjvv1N13353vPBd333To0ME+RG3Tpk3atWuXAgMDHfbJyMhwGGbXrFmzKwZSktS8eXP7enh4uP3YC7dlZGQoNTVVQUFBhbrGi8/r7++voKAgJSUlXbGey2nTpk2xj72wnsjISElSUlJSvkDwcho2bKiNGzcqJSVF8+bN09ChQ/X777/nC6ZSU1PVs2dPNWnSRC+88EKx6vXz87MHUraaL/78Lv4aF+Z7IzExUc8995yWLl2qpKQk5ebmKj09XQcOHJAk/fPPP6pVq5Y9kJLyfz8OGzZMN910kxo2bKgePXqoV69e9jAUAAAA5iKUKmMSUhm+B5Q5nn7WriUz3teJzpw5o/Hjx6tfv375XruwI2fZsmVyd3fXvn37lJOTc8nhXZd6jzZt2mj27Nn5Xqtevbp93d+/cB1hnp6e9nVbd01B22xzXhX2Gi88h+08tnMU18XXZBvyaFwwLDM7O7vAYy93TYXl5eWlBg0aSLIGZGvXrtWbb76p999/377P6dOn1aNHDwUGBurbb7/N9zkUVkGfn3HR8NOLP4/CfG8MHTpUJ06c0Jtvvqk6derI29tbHTp0KNJE6a1bt9bevXv1888/65dfftGAAQPUrVu3fHOfAQAAwPUIpcoYOqWAMshiceowOrO0bt1aO3bssAcXBZk7d66++eYbLV26VAMGDNDEiRM1fvx4h33+/PNPDRkyxOF5q1at7O8xd+5chYWFKSgoyDkXchmFucYrsXX35ObmlqgWW9By9OhR++dz4aTnzpaXl6fMzPP/8ZGamqq4uDh5e3vrhx9+KNTQQC8vrxJ/DjaF+d5YsWKF3n33Xd1yyy2SrBOjHz9+3P5648aNdfDgQR09etTeUWabzP1CQUFBuvPOO3XnnXfq9ttvV48ePZScnGwfmgkAAABzMNF5GcOcUgCK48yZM9q4caM95Ni7d682btxoH+ZUkHHjxumTTz7R+PHjtXXrVv3zzz+aM2eOnnvuOUnSoUOH9PDDD+ull15Sp06dNGvWLE2ZMiXfL/1fffWVPvzwQ8XHx+v555/XmjVr7JONDxo0SNWqVVOfPn20fPly7d27V0uXLtVjjz2mQ4cOOefDKMI1FkadOnVksVg0f/58HTt2TGfOnClWLb6+vrrmmmv04osv6p9//tHvv/9epDqKYsyYMVq2bJn27dunzZs3a8yYMVq6dKkGDRokyRpIde/eXWlpafrggw+UmpqqhIQEJSQkXDZ0qlu3rpYtW6bDhw87hEPFUZjvjZiYGH366af6559/tHr1ag0aNEi+vr72c3Tr1k2xsbEaOnSoNm3apOXLl+vZZ591eJ/XX39dX3zxhbZv3674+Hh99dVXioiIKNL8YAAAAHAOQqkyxDAMJTJ8D0AxrFu3Tq1atbJ34IwaNUqtWrXSuHHjLnlMXFyc5s+fr0WLFunqq6/WNddcozfeeEN16tSRYRgaNmyY2rVrZw+Y4uLi9PDDD+uee+5xCGbGjx+vOXPmqHnz5vrkk0/0xRdf2Oct8vPz07Jly1S7dm3169dPjRs31n333aeMjAyXdE5d7hoLq0aNGvYJ08PDwx3u7ldUH374oXJyctSmTRuNHDlSkyZNKvI59u3bJ4vFoqVLl15yn6SkJA0ZMkQNGzbUjTfeqLVr12rhwoW66aabJEkbNmzQ6tWrtXnzZjVo0ECRkZH25eDBg5c874QJE7Rv3z7Vr1/fYfhlcRTme+ODDz7QyZMn1bp1aw0ePFiPPfaYwsLC7Odwc3PTt99+q7Nnz6pdu3a6//77891ZMTAwUC+//LLatm2rq6++Wvv27dNPP/3kcAdJAAAAmMNiXDzpQzmQmpqq4OBg++2rK4qUs9lqMX6R/fnXD3dUmzpVTKwIqHwyMjK0d+9eRUdHF+lOZ5WVxWLRt99+q759+5pdSqXx22+/qV+/ftqzZ4+qVOHfiNJ2ub8DyuvPH+W1bgAAUH4V9ucP/puwDGHoHgDgSn766Sf9+9//JpACAABAucdE52UIQ/cAoOw7cOCAfXhiQbZt26batWs77f1feeUVp50bAAAAcCVCqTKEO+8BKG/K4QjwEouKirrsXfOioqJcVwwAAABQjhFKlSEJhFIAUOZ5eHioQYMGZpcBAAAAlHvMKVWGMKcUAAAAAACoLAilyhDmlALKjso4LA0Af/YBAABciVCqDEk8TacUYDZPT09JUnp6usmVADCD7c++7e8CAAAAOA9zSpUhiSmEUoDZ3N3dFRISoqSkJEmSn5+fLBaLyVUBcDbDMJSenq6kpCSFhITI3d3d7JIAAAAqPEKpMiIvz1DSaevwPS93N2Xl5plcEVB5RURESJI9mAJQeYSEhNj/DgAAAIBzEUqVEcnpWcrJM2SxSNUDvXX41FmzSwIqLYvFosjISIWFhSk7O9vscgC4iKenJx1SAAAALkQoVUYknrvzXlV/b3m4M1QIKAvc3d35BRUAAAAAnISJzssIWygVHuRtciUAAAAAAADORyhVRiSmWueTCg/yMbkSAAAAAAAA5yOUKiPolAIAAAAAAJUJoVQZQacUAAAAAACoTAilyojznVKEUgAAAAAAoOIjlCojGL4HAAAAAAAqE0KpMsI2fC8skE4pAAAAAABQ8RFKlQHZuXk6kWYNpSKCCaUAAAAAAEDFRyhVBhw7nSnDkDzcLAr18zK7HAAAAAAAAKcjlCoDbPNJhQV6y83NYnI1AAAAAAAAzkcoVQbY55PiznsAAAAAAKCSIJQqA5JOWzulIgilAAAAAABAJUEoVQYkpFhDqfAgb5MrAQAAAAAAcA1CqTKA4XsAAAAAAKCyIZQqA2zD98IJpQAAAAAAQCVBKFUG2O6+x5xSAAAAAACgsiCUKgOYUwoAAAAAAFQ2hFImO5uVq9SMHEmlM6eUYRi66vmFevKrTSU+FwAAAAAAgLMQSpnMNp+Uj6ebgnw8Sny+3+OP6UxmjuatP1TicwEAAAAAADgLoZTJbEP3IoJ8ZLFYCnXMzOV79NaSnQW+Zuu6AgAAAAAAKMtK3pqDEkk8nSmp8EP3cnLzNOnHfyRJQzrUUYifl9NqAwAAAAAAcBY6pUyWlGqb5LyQoVSeYV9PPUtXFAAAAAAAKJ8IpUyWmGobvsed9wAAAAAAQOVBKGWyhFTr8L3CdkoBAAAAAABUBIRSJrN1ShV2TikAAAAAAICKgFDKZPY5pQIZvgcAAAAAACoPQikTGYahxHPD9yKC6ZQCAAAAAACVB6GUiVIzcnQ2O1eSFBZIKAUAAAAAACoPQikT2YbuBfl4yNfL3eRqAAAAAAAAXIdQykSJ3HkPAAAAAABUUoRSJrLdeY/5pAAAAAAAQGVDKGWihHOhFPNJAQAAAACAyoZQykS2OaXCg7xNrgQAAAAAAMC1CKVMxJxSAAAAAACgsiKUMlHiaVunFKEUAAAAAACoXAilTJSYwvA9AAAAAABQORFKmSQvz1DSaYbvAQAAAACAyolQyiTJ6VnKyTNksUjVA+mUAgAAAAAAlQuhlEkSz915r6q/tzzd+TIAAAAAAIDKhTTEJLZQivmkAAAAAABAZUQoZZLEVOaTAgAAAAAAlRehlAm+33hYY77ZLIlOKQAAAAAAUDkRSpng8Tkb7et0SgEAAAAAgMqIUMpkhFIAAAAAAKAyIpQyGcP3AAAAAABAZUQoZbKwQDqlAAAAAABA5UMoZbKIYEIpAAAAAABQ+RBKmSzUz8vsEgAAAAAAAFyOUMpkbm4Ws0sAAAAAAABwOUIpAAAAAAAAuByhFAAAAAAAAFyOUAoAAAAAAAAuRygFAAAAAAAAlyOUAgAAAAAAgMsRSpkoLNDb7BIAAAAAAABMQSjlYnl5hn09wMfDxEoAAAAAAADMQyjlYmezc+3re46lFbjP/hPpkqTDp866pCYAAAAAAABXI5RysfSs3CvvdM6CLUedWAkAAAAAAIB5CKVcLD0rx+wSAAAAAAAATEco5WJF6ZQCAAAAAACoqAilXIxOKQAAAAAAgCKGUrm5uRo7dqyio6Pl6+ur+vXra+LEiTKM83eUMwxD48aNU2RkpHx9fdWtWzft3LnT4TzJyckaNGiQgoKCFBISovvuu09nzpwpnSsq4+iUAgAAAAAAKGIo9dJLL+m9997Tf/7zH/3zzz966aWX9PLLL+vtt9+27/Pyyy/rrbfe0vTp07V69Wr5+/srLi5OGRkZ9n0GDRqkrVu3avHixZo/f76WLVumBx98sPSuqgwjlAIAAAAAAJA8irLzypUr1adPH/Xs2VOSVLduXX3xxRdas2aNJGuX1LRp0/Tcc8+pT58+kqRPPvlE4eHh+u677zRw4ED9888/WrBggdauXau2bdtKkt5++23dcsstevXVVxUVFVWa11fmFGX43oItCU6sBAAAAAAAwDxF6pTq2LGjlixZovj4eEnSpk2b9Mcff+jmm2+WJO3du1cJCQnq1q2b/Zjg4GC1b99eq1atkiStWrVKISEh9kBKkrp16yY3NzetXr26wPfNzMxUamqqw1JeFaVTKs+48j4AAAAAAADlUZE6pUaPHq3U1FQ1atRI7u7uys3N1eTJkzVo0CBJUkKCtbMnPDzc4bjw8HD7awkJCQoLC3MswsNDoaGh9n0uNnXqVI0fP74opZZZ6ZkM3wMAAAAAAChSp9SXX36p2bNn6/PPP9eGDRv08ccf69VXX9XHH3/srPokSWPGjFFKSop9OXjwoFPfz5mYUwoAAAAAAKCInVJPPfWURo8erYEDB0qSmjVrpv3792vq1KkaOnSoIiIiJEmJiYmKjIy0H5eYmKiWLVtKkiIiIpSUlORw3pycHCUnJ9uPv5i3t7e8vb2LUmqZVZQ5pQAAAAAAACqqInVKpaeny83N8RB3d3fl5eVJkqKjoxUREaElS5bYX09NTdXq1avVoUMHSVKHDh106tQprV+/3r7Pr7/+qry8PLVv377YF1JeXNgp1a5uqImVAAAAAAAAmKdInVK9e/fW5MmTVbt2bTVt2lR//fWXXn/9dd17772SJIvFopEjR2rSpEmKiYlRdHS0xo4dq6ioKPXt21eS1LhxY/Xo0UMPPPCApk+fruzsbI0YMUIDBw6s8Hfek6Q0OqUAAAAAAACKFkq9/fbbGjt2rP7v//5PSUlJioqK0kMPPaRx48bZ93n66aeVlpamBx98UKdOnVKnTp20YMEC+fj42PeZPXu2RowYoRtvvFFubm7q37+/3nrrrdK7qjLsLHNKAQAAAAAAFC2UCgwM1LRp0zRt2rRL7mOxWDRhwgRNmDDhkvuEhobq888/L8pbVxhpJodSCSkZumbqEg2/tq6e793U1FoAAAAAAEDlVaQ5pVByZ00evvfqoh2SpFkr9plaBwAnMgwp5bC07w/pdKLZ1QAAAABAgYrUKYWSS8s0t1MqI5vhg0CFkZcnndovHdshHd9hfTy2XToWL2Wdtu5jcZPqdZWa3yk16il5B5hbMwAAAACcQyjlYmcJhQAUVW62lLznXOhkC6C2S8d3SjkZBR9jcZcCI6XUQ9LuJdbF009q1MsaUNXrIrnzTwAAAAAA8/AbiYulZXL3PQCXkJ0hndh5Pnw6tl06Hi+d2CXlXeLvDncvqVqsdaneSKp+7jG0vuThJZ3YLW3+Sto0Rzq5V9r8pXXxD5Oa3S41HyBFtpQsFpdeKgAAAAAQSrkYd98DoMzT1rDJHj6dC6BO7ZeMvIKP8fQ/HzjZA6iGUkidy3c8Va0vdRktdX5GOrRO+nuutOVrKS1J+vNd61It1hpONRsgVanjnGsGAAAAgIsQSrmQYRhKM3micwAulJ580XxP55bUQ5c+xifEseOpWkNr+BRUQ3Irwb0pLBap1tXWpcdUadcSa0C14ydrQPbrJOtSu4M1oGrSV/ILLf77AQAAAMAVEEq5UGZOnvIMs6sAUKoMQzqTdH6o3bHt58OntKRLH+cfZg2bbB1P1RtaA6iAMOcPpXP3lBr2sC4ZqdI//5P+niPtXS4dWGVdfn5GiulunX8qNk7y8HZuTQAAAAAqHUIpF0ov5aF7hki4AJfJy7N2OB07FzxdeLe7jJRLHxdcy3G4XfWG1udlpQvJJ0hqNci6pByWtsyT/v5SStwibZ9vXXyCrZ1Tze+0dlKVpGMLAAAAAM4hlHKh9FIYupdnnA+iNh48pTpV/Ut8TgAXyMuVTu5z7Hg6vsMaRmWnFXyMxU2qUjf/fE/VYiXvAFdWXzLBNaRrH7cuCVusE6L//ZV0+oi04WPrElxLanaHNaAKa2R2xUC59c477+iVV15RQkKCWrRoobffflvt2rW75P7Tpk3Te++9pwMHDqhatWq6/fbbNXXqVPn4+LiwagAAgNJFKOVCpdEpdUEmpcXbEtWnZY0iHT//76MlrgGoEHKypOTdjuHTsR3WO93lZhZ8jJunVLXB+fmebEPuqjaQPCvYL4YRV1mXG5+X9q+wzj+17Qcp5aD0x+vWJbKFNZy6qr8UGGF2xUC5MXfuXI0aNUrTp09X+/btNW3aNMXFxWnHjh0KCwvLt//nn3+u0aNH68MPP1THjh0VHx+vYcOGyWKx6PXXXzfhCgAAAEoHoZQLlfbwvd+2X2a+GgBWOZlS0j/553tK3iMZl/gz6eErVYvJP+F4aLR1PqbKxM1dir7eutzyqrTjZ+vwvl2LpaObrMui56R6XawBVaNe5as7DDDB66+/rgceeEDDhw+XJE2fPl0//vijPvzwQ40ePTrf/itXrtS1116ru+++W5JUt25d3XXXXVq9erVL6wYAAChthFIulJ5ZunfeS8vKVWpGtoJ8KtkvyUBhZWdI77a3DscriHfQ+W6n6hcswbWZN6kgnr7SVf2sS9oJaes31oDq0Bpp96/WxdNPatTTGlDV6yq5888McKGsrCytX79eY8aMsW9zc3NTt27dtGrVqgKP6dixoz777DOtWbNG7dq10549e/TTTz9p8ODBBe6fmZmpzMzzHZ+pqamlexEAAAClhN8WXKi0O6UkaXn8cfVsHlnq5wUqhH1/WAMpd2+pZtv8AVRgpPPvdFdR+VeV2j1gXU7sljbPs97BL3mPtPkr6+JfXbrqdqn5ACmqFZ81IOn48ePKzc1VeHi4w/bw8HBt3769wGPuvvtuHT9+XJ06dZJhGMrJydG//vUv/fvf/y5w/6lTp2r8+PGlXjsAAEBpoxXAhdIumug8ulrJJyn/bQdD+IBL2rnQ+tjyLmn4T1KvN6Rr/iXV7yoFRRGSlJaq9aUuz0iPbpDuXyK1e1DyqyqlHZNWvyf9t6v0n6ul31+5dNcagEtaunSppkyZonfffVcbNmzQN998ox9//FETJ04scP8xY8YoJSXFvhw8eNDFFQMAABQOnVIudPZcp1RUsI9a1a6i8X2alvicS3ckKS/PkJsbv1wDDgxDil9gXY+JM7eWysJisXak1WwrxU2xDuf7e660/UfpxE7pt0nWpdY11u6pprdJfqFmVw24VLVq1eTu7q7ExESH7YmJiYqIKPiGAWPHjtXgwYN1//33S5KaNWumtLQ0Pfjgg3r22WfldtFwY29vb3l7ezvnAgAAAEoRnVIulHYulGpTN1TvDGotH0/3Ip8j5Wy2w/PjZ7K05UiK/Xl44PkfQlPSHfcFKpVjO6RTB6xD9+p1NruaysfdU4qNk27/UHpyp9T3PSm6sySLdPBP6cdR0qux0hd3S9u+t87/BVQCXl5eatOmjZYsWWLflpeXpyVLlqhDhw4FHpOenp4veHJ3t/4MYVx4W14AAIByhk4pFzp7bviev1fRwyibnzYfta83iQzStqOp+nV7kprXDJEkhfh52V/fciRF1zaoVuz3Aso1W5dU9HWSV8mHyqIEfIKklndbl9Qj5+af+lJK3Czt+NG6eAdLTftYJ0iv3ZGJ5lGhjRo1SkOHDlXbtm3Vrl07TZs2TWlpafa78Q0ZMkQ1atTQ1KlTJUm9e/fW66+/rlatWql9+/batWuXxo4dq969e9vDKQAAgPKIUMqFbJ1SviUIpb7beNi+fkOjMG07mqrfdhzTyG6x+fb9+xChFCqxnYusj7E9zK0DjoKipGsfsy6JW63h1OavpNTD0oZPrEtQTan5HdaAKqyx2RUDpe7OO+/UsWPHNG7cOCUkJKhly5ZasGCBffLzAwcOOHRGPffcc7JYLHruued0+PBhVa9eXb1799bkyZPNugQAAIBSQSjlQrY5pfy9ivexHziRri2Hz9/WuUvD6vrPb7v096FTOn4mU9UCHOeP2Hz4VLFrBcq1syelA39a12O6m1sLLi28qXTTeOnG56X9K6zzT237Xko9JP3xhnWJaCY1Hyg1u10KLHi+HaA8GjFihEaMGFHga0uXLnV47uHhoeeff17PP/+8CyoDAABwHUIpF0rLtA7fK26n1PcXdElJUligj66qEaQth1P1+45j6t+mpsPrfx9KEVAp7VoiGblS9cZSlTpmV4MrcXOzDrOMvk665RXr0Mu/v7R2uyVsti6Lx1rnpGp+p9S4l+QdaHbV5svJlDJSpcxzi23dMKQqdaXQaD4nAAAAlGmEUi6Unm3rlCp6KGUYhr69KJSSpK4Nw7TlcKp+3ZGUL5Q6dPKsktOyFOrvle84oEKLX2h9jKVLqtzx9LXela/pbVLaCWnbt9aA6uBqac9v1mW+r9SopzWgqt/VOql6eWIYUvZZxyApI+VcuHT6gm1XeC0388rv5V9dCq0nVYm2PobWs4ZVofUk3yrWOyYCAAAAJiGUcqH0c51SfsUYvrf5cIr2HEuTxWL9fcama6Mwvf3rLi2LP6ac3LwCj+scW73YNQPlTl6utGuxdZ35pMo3/6rS1fdbl+Q91gnSN82RkndLW+ZZF79q1qF9zQdIUa2dH7Lk5UlZZwoIiVIcg6R84VKK42t5OaVXk1eA5B1knVDeO8jaJXhyn5R+Qko7Zl0Ors5/nE9wwWFVaD0pIJzACgAAAE5HKOVC6efmlPLzLnqn1Ld/WbukbmocrkXbEu3bW9QMUai/l5LTsrR+/0mHu+9J0uZDpwilULkcWmudU8onRKrZzuxqUFpC60mdn5auf0o6vME6/9SWr6X049Lq6dalagNr91SzO6wBy8Xyci/qQLroscBtBXQuych/7uKwuFmH13kHWx9todLFj96B1gDpUq+5XeLflIwUKXmvNdA7ee4xea91OX3E+vrRjdblYp5+5wKraMewqkq0FFzz0u8JAAAAFAGhlAudPTd8z6+Iw/dycvP0v01HJEm3tarhEEq5u1nUOba6vv3rsH7bcUy3tarhcCzzSqHSiV9gfWzQTXLnr7gKx2KRaraxLnGTpd2/WQOq7T9KJ3ZJv022LpEtJHcvx0ApO6306nDzuCgkCr4gQCooXCogePIKcG43kk+wFNXSulwsK93aTWUPq/acD7BSDkrZ6VLSVuuS79o9z89ZdWFYFVpPCqkteTBkHAAAAIXDb2wulFbM4Xt/7Dqu42esc0NdU6+qfXvi6QzVruqnLg3PhVLbk/KFUpsPE0qhkolfZH1k6F7F5+5pnTcstru1o+mf+daAau/v0tFNlz7Ow+dch1IBwZFP0BVeO/e6p2/5Ht7m5SeFN7EuF8vJsgZTF4dVyXukU/ul3CzpxE7rcjGLm7WT6uKwKrSeNcjy8nP6pQEAAKD8IJRyobNZxeuU+u7c0L3ezSPl5nb+l6DMbOscUp1jq8vNIu1IPK0jp85Kknw93ZWRk6ujKRlKOp2hsECf0rgEoGw7ddDa2WFxkxrcaHY1cCXvQKnlXdYl9ai0f4Xk4V1AN1OgdTsuzcNLqlrfulwsL1dKPewYVp3ce349O106dcC67Fma//jAyAvCqmjHuax8gp1+aQAAAChbCKVcKM0eShX+Y0/LzNHCrdbhen0v6oKyCfHzUuvaVbRu/0n9tiNJkuTv7a6aVXy1M+mMthxO0Q2NCKVQCew8d9e9Wu0lv1Bza4F5giKtk5+j9Lm5W4fohdSW6nVxfM0wpDNJ57uqHIYG7rHOYXX6qHXZvyL/uf2qXnridb+q5bszDQAAAAUilHKh4nRKLdqWoLPZuapb1U8ta4UoNaPgOzZ1bRSmdftP6tftSfZtzWoGa2fSGf19KEU3NAovWfFAeRB/LpSK6W5uHUBlZLFIgeHWpU6H/K+nJ19i4vU9UlqS9W6B6Sekw+vyH+sVmL+zytZxFRgpubk5//oAAABQ6gilXCQ7N09Zudbhdv5F6JT69i/rBOd9WtaQ5TL/S9y1YZheWbhDh06etW9rXiNY32w4rM1Mdo7KICtd2rvMus58UkDZ4xdqXWq2yf9a5mnrxOv55rHaax0umHVaSvjbulzMw8dxOGDnpxkKCAAAUE4QSrlI+rkuKUnyLUKn1B87j0m69NA9m8aRgYoI8lFCaoZ9W7OaIZKkvw+nyDCMy4ZaQLm3d5mUkyEF15LCGptdDYCi8A6UIppZl4tlZ1gnWL940vWTe6WT+61/7o/9Y11kkW4c5/LyAQAAUDyEUi6SnmUddufhZpGXR+GHGeQZUstaIYqu5n/Z/SwWi7o2qq4v1hy0b2sSGSR3N4uOnc5UQmqGIoN9i1c8UB7Y5pOKjWPuGaAi8fSRqje0LhfLzT53p0DbMMDjTGQPAABQjhBKuUh6Me+8J0m3XaFLyqZrwzCHUMrXy10xYQHannBafx9KIZRCxWUYF8wnFWduLQBcx93z/PxS4o6bAAAA5Q0zg7pIembR77wnSe5uFvVqHlmofa9tUE1e7o5f0uY1rfNqMK8UKrTErdZ5Zzx8pejrzK4GAAAAAFAIhFIuYhu+5+ddtE6pzrHVVTWgcEMR/L091L5eqMO2C+eVAiqs+AXWx3qdJU86AgEAAACgPCCUcpHiDt+70gTnF+vSMMzhefMatk6pUzIMo0jnAsqNnYusj7EM3QMAAACA8oJQykXOh1JFG753U+PwIu3fvUm4vNzdFBboI0lqFBkoT3eLTqZn69DJs0U6F1AupJ2QDq6xrsd0N7cWAAAAAEChMdG5i6TZhu8VsVPKt4j71wr1088jr1OIr6ckydvDXQ0jArXlcKo2M4QPFdGuxZIMKbyZFFzT7GoAAAAAAIVEp5SLnD3XKeVfxE6p4qhfPcBhHqpmNUIkSX8z2TkqIttd92LpkgIAAACA8oRQykVsnVJF7XwqDfY78B0+5fL3BpwqN1vatcS6HtvD3FoAAAAAAEVCKOUi5zulXB9KNTs32TmdUqhwDq6WMlMkv6pSjTZmVwMAAAAAKAJCKRdJy7SGUr4uGL53sdjwQHl5uOl0Ro7L3xtwqvgF1scGN0lurg98AQAAAADFRyjlImezrYGQGZ1SXh5uahwZ5PL3BZwufpH1MTbO3DoAAAAAAEVGKOUi5zulzOnmaH5uCB9QYSTvlY7vkCzuUv0bzK4GAAAAAFBEhFIukm6bU8rb9cP3JKlZTUIpVDA7z3VJ1eko+YaYWgoAAAAAoOgIpVwk/dzd9/zM6pQilEJFY5tPKqa7uXUAAAAAAIqFUMpFbJ1SfkWY6DwiyKfU3r9B9QD5ePLlRgWReUba94d1PbaHubUAAAAAAIqFlMJFzO6U8nB3U9MouqVQQexZKuVmSVXqStVizK4GAAAAAFAMhFIucr5Tyrzb1jdjsnNUFDsXWh9je0gWi7m1AAAAAACKhVDKRYozfK+0Ma8UKgTDkOLPTXLOfFIAAAAAUG4RSrlIaQ3f8/Y4/yWLCC7anFOEUqgQjm6SziRInv5S3U5mVwMAAAAAKCZCKRfIzTOUkZ0nqXSH73m5F+3LF10toNTeGzBN/Lmhe/W7Sh7e5tYCAAAAACg2QikXOJuda1/39zZv+J67G3PvoAKwzycVZ24dAAAAAIASIZRygfRM69A9i8Vx+N2V9LgqwlklAeXTmSTp8HrrOvNJAQAAAEC5RijlArZJzv29PGQpwp3CalbxdVZJQPm089wE55EtpUBCWwAAAAAozwilXCDt3CTnvqU4nxRQKcUzdA8AAAAAKgpCKRc4a++UIpQCii0nS9r9m3WdUAoAAAAAyj1CKRewDd/z9TJvknOg3DuwUso6LfmHSZGtzK4GAAAAAFBChFIukH5u+B6dUkAJ2IbuxXSX3PirCwAAAADKO36zc4HznVKEUkCxMZ8UAAAAAFQohFIukHbB3fcAFMPxXVLybsnNU6rf1exqAAAAAAClgFDKBc6eG77nV8ROKU93vjyAJGnnuS6putdK3oHm1gIAAAAAKBWkHi6QlmntlPLzLlwo1aZOFUnSnVfXclpNQLkSv8D6GMPQPQAAAACoKBhP5gJns8+FUoUcvvf1wx2dWQ5QvmSkSvtXWteZTwoAAAAAKgw6pVwgLbN4w/ecoVfzSLNLAIpm969SXo5UtYFUtb7Z1QAAAAAASgmhlAuczbJ1SpkfSgHlzs5F1sfYHubWAQAAAAAoVYRSLpBmn+ic0ZJAkeTlnQ+lYrqbWwsAAAAAoFQRSrlAOp1SQPEc+UtKOyZ5B0m1O5hdDQAAAACgFBFKucD5UIpOKaBIbHfdq99V8vAytxYAAAAAQKkilHKB0uyUsljOr3u4Wy69I1AR2EIp5pMCAAAAgAqHUMoF0s/NKeXvXfJQytvj/DmiQnxLfD6gzEo9IiX8LckiNbjJ7GoAAAAAAKWM8WQuYOuU8vUsnY9734s9S+U8QJlmm+C8RhspoLq5tQAAAAAASh2dUi6Qnmm7+575E50P61hXkhQR5GNuIcCVxJ8LpWLjzK0DAAAAAOAUdEo5mWEYSs8+N6dUKQzfK6m2dUPptELZl50h7fnNuk4oBQAAAAAVEp1STpaRnSfDsK5z9z2gkPb/IWWnS4GRUkRzs6sBAAAAADgBoZST2SY5lyRfT/M7pYByIX6h9TGmu+MtJwEAAAAAFQahlJPZJjn38XSTuxu/XANXZBjnQ6nYHubWAgAAAABwGkIpJ7OFUv4M3QMK59gO6dR+yd1bqtfZ7GoAAAAAAE5CKOVkaeeG7/mWgTvvAeXCznNdUtHXSV7+5tYCAAAAAHAaQiknO0unFFA09vmkuOseAAAAAFRkhFJOlpZJpxRQaGdPSgf+tK7Hdje3FgAAAACAUxFKOdnZ7HOdUt6EUsAV7VoiGblS9UZSlbpmVwMAAAAAcCJCKSdLy7SGUr6eDN8DrmjnIutjLEP3AAAAAKCiI5RysvRzE53TKQVcQV6utHOxdZ35pAAAAACgwiOUcrL0cxOd+zGnFHB5h9ZJZ5Mln2CpVnuzqwEAAAAAOBmhlJOdD6UYvgdcVvwC62ODbpI7f14AAAAAoKIjlHIy2/A9OqWAK4hfaH2M7WFuHQAAAAAAlyCUcjI6pYBCOHVQStoqWdysnVIAAAAAgAqPUMrJ6JQCCmHnuS6pmu0kv1BzawEAAAAAuAShlJMx0TlQCPGLrI+x3c2tAwAAAADgMoRSTsbwPeAKstKlvb9b15lPCgAAAAAqDUIpJ7MP3/OmUwoo0L7lUk6GFFxLCmtidjUAAAAAABchlHIye6eUJ6EUUKD4BdbHmO6SxWJuLQAAAAAAlyGUcrL0TGso5e/N8D0gH8O4YD4phu4BAAAAQGVCKOVktuF7vkx0DuSXuFVKPSR5+ErR15ldDQAAAADAhQilnMw2fM+fic6B/HYutD7W6yx5+ppbCwAAAADApQilnCgrJ085eYYkOqWAAsWfC6ViuptbBwAAAADA5QilnMg2dE+S/AilAEdpJ6RDa63rsXHm1gIAAAAAcDlCKSeyDd3zcneTpzsfNeBg1y+SkSeFXyUF1zS7GgAAAACAi5GUOJGtU8rPmy4pIB/bfFJ0SQEAAABApUQo5US2Tik/T0IpwEFutrVTSpJiCKUAAAAAoDIilHKitMxzoZQ3d94DHBxcLWWkSL6hUs22ZlcDAAAAADABoZQTnc0+N3yPSc4BR/a77t0kufHnAwAAAAAqI0IpJ7J3ShFKAY7imU8KAAAAACo7QiknOmubU8qL4XuAXfJe6fgOyeIu1b/R7GoAAAAAACYhlHKitCyG7wH57FxkfazdQfINMbUUAAAAAIB5CKWcyH73PUIp4Dz70L3u5tYBAAAAADAVoZQTpds7pRi+B0iSMs9I+5Zb12N7mFsLAAAAAMBUhFJORKcUcJG9v0u5WVKVulK1WLOrAQAAAACYiFDKidLP3X3P35tOKUCSFL/A+hgTJ1ks5tYCAAAAADAVoZQTpWdbQylfTzqlABmGFH9ukvPYOHNrAQAAAACYjlDKidIzrXNK+XsTSgE6ukk6kyB5+kt1O5ldDQAAAADAZIRSTmSbU8qXic4Baee5Lqn6XSUPb3NrAQAAAACYjlDKiex332P4HnDBfFLdza0DAAAAAFAmEEo5kf3uewzfQ2V3Jkk6vMG6TigFAAAAABChlFPZQymG76Gy27lYkiFFtpCCIs2uBgAAAABQBhBKOZFt+J6/F51SqOR2LrQ+xvYwtw4AAAAAQJlBKOVEafaJzgmlUInlZEm7frWux8SZWwsAAAAAoMwglHKSnNw8ZeXkSZL8Gb6HyuzASinrtORfXYpqZXY1AAAAAIAyglDKSdKzc+3rdEqhUotfZH2M6S658VcOAAAAAMCK3xCd5Oy5oXvubhZ5e/AxoxKLX2B9jGXoHgAAAADgPNISJ0nLtE5y7ufpLovFYnI1gEmO75KSd0tunlK9rmZXAwAAAAAoQwilnCT9XKeUnzdD91CJ2e66V6ej5BNkbi0AAAAAgDKFUMpJ7KEUk5yjMos/F0oxdA8AAAAAcBFCKSdJzzo3fI9JzlFZZaRK+1dY12N7mFsLAAAAAKDMIZRykrP2TilCKVRSe36T8nKkqg2kqvXNrgYAAAAAUMYQSjlJGsP3UNnZhu7FMHQPAAAAAJAfoZSTnGX4HiqzvDxp5yLrOvNJAQAAAAAKQCjlJHRKoVI78peUdkzyCpRqdzC7GgAAAABAGUQo5STpzCmFymznuaF7DW6QPLzMrQUAAAAAUCYRSjlJeua54XvehFKohOIXWB+ZTwoAAAAAcAmEUk6Snn2uU8qT4XuoZFKPSkc3SbJIMTeZXQ0AAAAAoIwilHISW6eUP51SqGxsE5zXaC0FhJlbCwAAAACgzCKUchLbnFK+zCmFyib+3HxSsT3MrQMAAAAAUKYRSjmJLZTy5+57qEyyM6Q9S63rMd1NLQUAAAAAULYVOZQ6fPiw7rnnHlWtWlW+vr5q1qyZ1q1bZ3/dMAyNGzdOkZGR8vX1Vbdu3bRz506HcyQnJ2vQoEEKCgpSSEiI7rvvPp05c6bkV1OGpGdZh+/RKYVKZf8fUnaaFBgpRbYwuxoAAAAAQBlWpFDq5MmTuvbaa+Xp6amff/5Z27Zt02uvvaYqVarY93n55Zf11ltvafr06Vq9erX8/f0VFxenjIwM+z6DBg3S1q1btXjxYs2fP1/Lli3Tgw8+WHpXZbKdiae14cApSXRKoZKJPzefVMxNksVibi0AAAAAgDKtSInJSy+9pFq1amnWrFn2bdHR0fZ1wzA0bdo0Pffcc+rTp48k6ZNPPlF4eLi+++47DRw4UP/8848WLFigtWvXqm3btpKkt99+W7fccoteffVVRUVFlcZ1mar7tGX2dTqlUGkYhhS/wLrOfFIAAAAAgCsoUqfUDz/8oLZt2+qOO+5QWFiYWrVqpf/+97/21/fu3auEhAR169bNvi04OFjt27fXqlWrJEmrVq1SSEiIPZCSpG7dusnNzU2rV68u6fWUCYZxfp2776HSOB4vndovuXtJ0Z3NrgYAAAAAUMYVKZTas2eP3nvvPcXExGjhwoV6+OGH9dhjj+njjz+WJCUkJEiSwsPDHY4LDw+3v5aQkKCwMMfbxHt4eCg0NNS+z8UyMzOVmprqsJQXfp4M30MlYeuSqnud5B1gbi0AAAAAgDKvSIlJXl6e2rZtqylTpkiSWrVqpS1btmj69OkaOnSoUwqUpKlTp2r8+PFOO78z+dEphcrCNp9UbJy5dQAAAAAAyoUidUpFRkaqSZMmDtsaN26sAwcOSJIiIiIkSYmJiQ77JCYm2l+LiIhQUlKSw+s5OTlKTk6273OxMWPGKCUlxb4cPHiwKGWbyo85pVAZnD0pHbAO0VVMd3NrAQAAAACUC0UKpa699lrt2LHDYVt8fLzq1KkjyTrpeUREhJYsWWJ/PTU1VatXr1aHDh0kSR06dNCpU6e0fv16+z6//vqr8vLy1L59+wLf19vbW0FBQQ5LeeHjQSiFSmD3r5KRK1VvJIVGX3l/AAAAAEClV6The0888YQ6duyoKVOmaMCAAVqzZo1mzJihGTNmSJIsFotGjhypSZMmKSYmRtHR0Ro7dqyioqLUt29fSdbOqh49euiBBx7Q9OnTlZ2drREjRmjgwIEV4s57F3Nzs5hdAuB88Qutj3RJAQAAAAAKqUih1NVXX61vv/1WY8aM0YQJExQdHa1p06Zp0KBB9n2efvpppaWl6cEHH9SpU6fUqVMnLViwQD4+PvZ9Zs+erREjRujGG2+Um5ub+vfvr7feeqv0rgqA6+TlSjsXW9dje5hbCwAAAACg3LAYhmGYXURRpaamKjg4WCkpKWVyKF/d0T/a1/e92NPESgAXOLBa+rC75BMsPbVHcueOkwAqprL+88ellNe6AQBA+VXYnz+KNKcUAOSz89zQvQbdCKQAAAAAAIVGKAWgZOzzScWZWwcAAAAAoFwhlAJQfCmHpMQtksXN2ikFAAAAAEAhEUoBKD5bl1TNqyX/qubWAgAAAAAoVwilABSfLZSKZegeABTFO++8o7p168rHx0ft27fXmjVrLrv/qVOn9MgjjygyMlLe3t6KjY3VTz/95KJqAQAAnINZiQEUT1a6tPd36zrzSQFAoc2dO1ejRo3S9OnT1b59e02bNk1xcXHasWOHwsLC8u2flZWlm266SWFhYZo3b55q1Kih/fv3KyQkxPXFAwAAlCJCKQDFs2+5lJMhBdWUwpuaXQ0AlBuvv/66HnjgAQ0fPlySNH36dP3444/68MMPNXr06Hz7f/jhh0pOTtbKlSvl6ekpSapbt64rSwYAAHAKhu8BKB770L3uksVibi0AUE5kZWVp/fr16tbt/M0h3Nzc1K1bN61atarAY3744Qd16NBBjzzyiMLDw3XVVVdpypQpys3NLXD/zMxMpaamOiwAAABlEaEUgKIzjAtCqR7m1gIA5cjx48eVm5ur8PBwh+3h4eFKSEgo8Jg9e/Zo3rx5ys3N1U8//aSxY8fqtdde06RJkwrcf+rUqQoODrYvtWrVKvXrAAAAKA2EUgCKLmmblHpI8vCR6l5ndjUAUKHl5eUpLCxMM2bMUJs2bXTnnXfq2Wef1fTp0wvcf8yYMUpJSbEvBw8edHHFAAAAhcOcUgCKLn6B9TG6s+TlZ24tAFCOVKtWTe7u7kpMTHTYnpiYqIiIiAKPiYyMlKenp9zd3e3bGjdurISEBGVlZcnLy8thf29vb3l7e5d+8QAAAKWMTikARRe/yPoYy133AKAovLy81KZNGy1ZssS+LS8vT0uWLFGHDh0KPObaa6/Vrl27lJeXZ98WHx+vyMjIfIEUAABAeUIoBaBo0pOlQ2us6zHdza0FAMqhUaNG6b///a8+/vhj/fPPP3r44YeVlpZmvxvfkCFDNGbMGPv+Dz/8sJKTk/X4448rPj5eP/74o6ZMmaJHHnnErEsAAAAoFQzfA1A0u36RjDwp/CophMlzAaCo7rzzTh07dkzjxo1TQkKCWrZsqQULFtgnPz9w4IDc3M7/v2GtWrW0cOFCPfHEE2revLlq1Kihxx9/XM8884xZlwAAAFAqCKUAFI1tPim6pACg2EaMGKERI0YU+NrSpUvzbevQoYP+/PNPJ1cFAADgWgzfA1B4uTnWTilJiu1hbi0AAAAAgHKNUApA4R1cLWWkSL6hUs22ZlcDAAAAACjHCKUAFN7OhdbHmJskN/fL7wsAAAAAwGUQSgEovHhbKMV8UgAAAACAkiGUAlA4J/dJx7ZLFnepwY1mVwMAAAAAKOcIpQAUTvwi62PtayTfKubWAgAAAAAo9wilnOCB66IlSQ91rmdyJUApil9gfYyNM7cOAAAAAECFQCjlBOlZuZIkbw8mgkYFkXlG2rfcuh5DKAUAAAAAKDlCKSc4djpTklQ90NvkSoBSsvd3KTdLCqkjVW9odjUAAAAAgAqAUMoJjp05F0oFEEqhgrDddS82TrJYzK0FAAAAAFAhEEo5AZ1SqFAMQ9p5bpJz5pMCAAAAAJQSQqlSZhiGjp/rlAojlEJFkPC3dPqo5Okn1elkdjUAAAAAgAqCUKqUncnMUUZ2niSpGsP3UBHYhu7V6yp5+phbCwAAAACgwiCUKmW2oXsB3h7y9eLue6gALpxPCgAAAACAUkIoVcqYTwoVyplj0uH11vWY7ubWAgAAAACoUAilShl33kOFsmuxJEOKbCEFRZpdDQAAAACgAiGUKmXH6ZRCRRK/wPoYw9A9AAAAAEDpIpQqZbZOqWoBXiZXApRQTpa0+zfremwPc2sBAAAAAFQ4hFKljDmlUGEcWCVlpkr+1aWoVmZXAwAAAACoYAilShmhFCoM2133YrpLbvxVAQAAAAAoXfymWcqOn8mSRCiFCmDnBaEUAAAAAACljFCqlNk6papx9z2UZyd2Syd2SW4eUv0bzK4GAAAAAFABEUqVorw8Q8fPMHwPFYBt6F6djpJPkLm1AAAAAAAqJEKpUnTqbLZy8gxJUlV/QimUY/ELrI/cdQ8AAAAA4CSEUqXI1iVVxc9TXh58tCinMlKl/Sut6zFx5tYCAAAAAKiwSE5KEfNJoULY85uUly2F1peqNTC7GgAAAABABUUoVYpsoRTzSaFci19kfYylSwoAAAAA4DyEUqWIUArlXl6etPPcJOeEUgAAAAAAJyKUKkX2O+8xfA/l1dG/pLRjklegVLuj2dUAAAAAACowQqlSRKcUyr34c11S9btKHl7m1gIAAAAAqNAIpUrRsTNMdI5yzhZKxfYwtw4AAAAAQIVHKFWK6JRCuXY6QTq60boec5OppQAAAAAAKj5CqVJEKIVybee5u+7VaCMFhJlbCwAAAACgwiOUKiU5uXlKTs+SRCiFcso2dC+Gu+4BAAAAAJyPUKqUJKdlyTAkN4tUxY8JolHO5GRKu3+zrscSSgEAAAAAnI9QqpQknRu6VzXAW+5uFpOrAYpo3x9SdpoUECFFtjC7GgAAAABAJUAoVUpsd96rzp33UB7Z77rXXbIQqgIAAAAAnI9QqpQcZ5JzlFeGIcUvsK4znxQAAAAAwEUIpUqJrVOqGp1SKG+Ox0un9kvuXlK9LmZXAwAAAACoJAilSskxOqVQXtmG7tXtJHkHmFsLAAAAAKDSIJQqJYRSKLfs80n1MLcOAAAAAEClQihVSo6fIZRCOXT2lHRglXU9pruppQAAAAAAKhdCqVJi75RiTimUJ7uXSEauVK2hFBptdjUAAAAAgEqEUKqUnB++52VyJUARxC+yPsbSJQUAAAAAcC1CqVKQkZ2r1IwcSVL1AB+TqwEKKS9X2mkLpZhPCgAAAADgWoRSpcA2n5SXu5uCfD1MrgYopMPrpbPJknewVKu92dUAAAAAACoZQqlScPxMliTrJOcWi8XkaoBCil9gfWxwo+TuaW4tAAAAAIBKh1CqFNjmk6oWwHxSKEfiGboHAAAAADAPoVQpOD/JOXfeQzmRckhK3CzJIjXoZnY1AAAAAIBKiFCqFBBKodyxTXBeq53kX9XcWgAAAAAAlRKhVCmwTXRePYBQCuVE/ELrY0x3c+sAAAAAAFRahFKlwD6nFJ1SKA+yz0p7freuM58UAAAAAMAkhFKl4BidUihP9i6Xcs5KQTWk8KZmVwMAAAAAqKQIpUoBc0qhXIlfYH2MjZMsFnNrAQAAAABUWoRSpcA+pxShFMo6wzg/yXlMnLm1AAAAAAAqNUKpEkrLzFF6Vq4kqRrD91DWJW2TUg5KHj5S9PVmVwMAAAAAqMQIpUrINnTPz8td/t4eJlcDXIHtrnvR10tefubWAgAAAACo1AilSugYQ/dQnthCqViG7gEAAAAAzEUoVULHT3PnPZQT6cnSoTXWdeaTAgAAAACYjFCqhOiUQrmx6xfJyJPCmkohtcyuBgAAAABQyRFKlZBtTikmOUeZZx+6193cOgAAAAAAEKFUidlCKTqlUKbl5ki7FlvXY3uYWwsAAAAAACKUKjFCKZQLh9ZIGSmSbxWp5tVmVwMAAAAAAKFUSR0/w0TnKAfiF1gfG9wkubmbWwsAAAAAACKUKjH7nFJ0SqGsOvq3tP5j63osd90DAAAAAJQNhFIlYBgGd99D2ZawWfrkVinjlHXYXuPeZlcEAAAAAIAkQqkSSTmbrexcQ5JULcDL5GqAiyRulT6+VTp7UqrRRrrna8mD8BQAAAAAUDYQSpWAbT6pYF9PeXswTw/KkMRt0se9pbPJUlRr6Z5vJJ9gs6sCAAAAAMCOUKoEkmzzSdElhbIkabs1kEo/IUW2lAZ/K/mGmF0VAAAAAAAOCKVKwDbJOfNJocw4tuNcIHVcimwhDfmOQAoAAAAAUCYRSpXA+VDKx+RKAEnHd1oDqbQkKaKZNPg7ybeK2VUBAAAAAFAgQqkSOH4mS5JUPYBOKZjs+C7po17SmUQpvJk05AfJL9TsqgAAAAAAuCRCqRKwdUpVC2ROKZjoxG7p417SmQQprKk05HsCKQAAAABAmedhdgHl0e/xxzT0wzX253RKwTQndls7pE4flcKaSEN/kPyrml0VAAAAAABXRKdUAQzD0COfb9DPm48W+Pq0X+IdnjPROUyRvNc6h9TpI1L1RtYhe/7VzK4KAAAAAIBCIZQqwPy/j+rHv4/q4dkbCnzdMByfE0rB5U7uswZSqYelag2lof+TAqqbXRUAAAAAAIVGKFWAgyfTi7Q/oRRc6uR+6aPeUspBqWrMuUAqzOyqAAAAAAAoEkKpErJYpFA/JjqHi5w6aJ3UPOWAVLWBNGy+FBhudlUAAAAAABQZoVQJVfX3koc7HyNcIOWQ9FFP6dQBKbSetUMqMMLsqgAAAAAAKBbSlBKqxp334Aoph88FUvulKtHS0PlSUJTZVQEAAAAAUGyEUiXEfFJwutQj1iF7J/dJVepah+wF1zC7KgAAAAAASoRQqoSq0ykFZ0o9Kn3US0reI4XUsXZIBdc0uyoAAAAAAEqMUKqE6JSC05xOkD7uLSXvloJrWzukQmqZXRUAAAAAAKWCUKqECKXgFKcTrYHUiZ1ScC1p2P+kkNpmVwUAAAAAQKkhlCohQimUujNJ0ie3SsfjpaCa1rvsValrdlUAAAAAAJQqQqli2HjwlH2du++hVJ05Jn18q3RsuxQYZe2QCo02uyoAAAAAAEodoVQRrdx93OE5nVIoNWnHpU/6SMf+kQIjrXNIhdYzuyoAAAAAAJyCUKoIElMz9NgXfzls4+57KBVpJ6yBVNJWKSDCepe9qvXNrgoAAAAAAKchlCqk7Nw8Pfr5Xzp+Jsthe7Cvp0kVocJIT5Y+7SMlbpECwq0dUtUamF0VAAAAAABORShVSK8s3KE1+5IV4O3hsN3NzWJSRagQ0pOtHVIJmyX/MOuk5tVizK4KAAAAAACnI5QqhAVbEjRj2R5J0qt3NDe5GlQYZ09Kn94mJfwt+Ve3BlLVG5pdFQAAAAAALkEoVYCsnDz7+t7jaXrqq02SpPs7RavHVZFmlYWK5OwpayB1dKPkV00a8oMU1sjsqgAAAAAAcBlCqQJ8vvqAff3hz9brdGaOrq5bRc/cTGiAUpCRIn3WTzryl+RXVRr6gxTexOyqAAAAAABwKUKpApzNzrWvb084rWoBXvrP3a3l6c7HhRLKSJU+6y8dXi/5hkpDvpfCm5pdFQAAAAAALkfKcgVuFumtu1opPMjH7FJQ3mWetgZSh9ZKvlWsgVREM7OrAgAAAADAFIRSV/D/ujdUx/rVzC4D5V3maemz26VDaySfEGnwd1Ikk+YDAAAAACovQqkCNI4Isq8/3Lm+iZWgQsg8I80eIB38U/IJloZ8J0W1NLsqAAAAAABMRShVgAAfD/u6m5vFxEpQ7mWlSZ8PkA6slLyDpcHfSlGtzK4KAAAAAADTEUoBzpKVLn1+p7R/heQdZA2karQxuyoAAAAAAMoEQinAGbLSpS/ulPYtl7wCpXu+kWoSSAEAAAAAYEMoBZS27LPSnLukvcskrwDpnq+lWlebXRUAAAAAAGUKoRRQmrIzpDl3S3uWSp7+1kCqdnuzqwIAAAAAoMwhlAJKS3aGNHeQtPvXc4HUPKn2NWZXBQAAAABAmUQoBZSGnExp7j3Srl8kTz9p0JdSnY5mVwUAAAAAQJlFKAWUVE6mNHewtGux5OEr3f2lVLeT2VUBAAAAAFCmEUoBJZGTJX05VNq5UPLwke6eK0VfZ3ZVAAAAAACUeYRSQHHlZElfDZPif7YGUnfNkep1NrsqAAAAAADKBUIpoDhys6V5w6UdP0ru3tLAz6X6Xc2uCgAAAACAcoNQqgAJKRlml4CyLDdbmnevtH2+5O5lDaQa3Gh2VQAAAAAAlCuEUgXYdjTV7BJQVuXmSF/fL/3zgzWQunO2FNPN7KoAAAAAACh3CKWAwsrNkb55QNr2neTmKQ34VIrtbnZVAAAAAACUS4RSQGHk5kjfPiRt/cYaSN35qdSwh9lVAQAAAABQbhFKAVeSlyt997C0ZZ7k5iEN+FhqeLPZVQEAAAAAUK4RSgGXk5crffd/0uYvJYu7dPssqVFPs6sCAAAAAKDcI5QCLiUvT/rhUenvOecCqQ+lJreaXRUAAAAAABUCoRRQkLw86X+PShtnWwOp/jOlpn3NrgoAAAAAgAqDUAq4WF6eNP9x6a/PJIub1G+GdFU/s6sCAAAAAKBCIZQCLpSXJ/34hLThE2sgddsMqdntZlcFAAAAAECFQygF2BiG9NOT0vqPJFmkvtOl5neYXRUAAAAAABUSoVQxtKwVYnYJKG2GIf30lLTuA1kDqfekFneaXRUAAAAAABVWiUKpF198URaLRSNHjrRvy8jI0COPPKKqVasqICBA/fv3V2JiosNxBw4cUM+ePeXn56ewsDA99dRTysnJKUkpQPEZhvTzM9La/0qySH3ekVreZXZVAAAAAABUaMUOpdauXav3339fzZs3d9j+xBNP6H//+5+++uor/f777zpy5Ij69Ts/SXRubq569uyprKwsrVy5Uh9//LE++ugjjRs3rvhXARSXYUgLxkhr3rc+v/VtqdUgc2sCAAAAAKASKFYodebMGQ0aNEj//e9/VaVKFfv2lJQUffDBB3r99dd1ww03qE2bNpo1a5ZWrlypP//8U5K0aNEibdu2TZ999platmypm2++WRMnTtQ777yjrKys0rkqoDAMQ1r0nLT6Pevz3m9KrQebWxMAAAAAAJVEsUKpRx55RD179lS3bt0ctq9fv17Z2dkO2xs1aqTatWtr1apVkqRVq1apWbNmCg8Pt+8TFxen1NRUbd26tcD3y8zMVGpqqsMClIhhSIvHSqv+Y33e6w2pzTBTSwIAAAAAoDLxKOoBc+bM0YYNG7R27dp8ryUkJMjLy0shISEO28PDw5WQkGDf58JAyva67bWCTJ06VePHjy9qqUDBDEP65QVp5dvW5z1fk9rea2pJAAAAAABUNkXqlDp48KAef/xxzZ49Wz4+Ps6qKZ8xY8YoJSXFvhw8eNBl740KxjCkJROkFdOsz295Vbr6flNLAgAAAACgMipSKLV+/XolJSWpdevW8vDwkIeHh37//Xe99dZb8vDwUHh4uLKysnTq1CmH4xITExURESFJioiIyHc3Pttz2z4X8/b2VlBQkMNipqr+Xqa+P4opL0/6bbL0x+vW5z1ekto9YG5NAAAAAABUUkUavnfjjTdq8+bNDtuGDx+uRo0a6ZlnnlGtWrXk6empJUuWqH///pKkHTt26MCBA+rQoYMkqUOHDpo8ebKSkpIUFhYmSVq8eLGCgoLUpEmT0rgmp3uxf3Nd9/KvmnZnS7NLKb8MQ8rJlHLOStkZ1secTCn7rJSTcZnHoux74TEZUm7m+fePmypd8y/zrh8AAAAAgEquSKFUYGCgrrrqKodt/v7+qlq1qn37fffdp1GjRik0NFRBQUF69NFH1aFDB11zzTWSpO7du6tJkyYaPHiwXn75ZSUkJOi5557TI488Im9v71K6LOeqHuit7RNvNruM0pWbfeVw58JQ6LKPtmMyL7+PDNdfp7u31O0FqcP/uf69AQAAAACAXZEnOr+SN954Q25uburfv78yMzMVFxend9991/66u7u75s+fr4cfflgdOnSQv7+/hg4dqgkTJpR2KcXm5+Wu9Kxcs8twjvhF0sIx54MhW4BkmHi9FjfJw1fy8JY8fSUPnwIefaz7ePpYnxe4z0WP+Y7zlbwDrK8DAGCid955R6+88ooSEhLUokULvf3222rXrt0Vj5szZ47uuusu9enTR999953zCwUAAHCiEodSS5cudXju4+Ojd955R++8884lj6lTp45++umnkr6107i7WcwuwXlyMqQTuy6/T6FCH2/HkKgowdDFj+6ekqUCf+YAAFxg7ty5GjVqlKZPn6727dtr2rRpiouL044dO+xTGxRk3759evLJJ3Xddde5sFoAAADnKfVOKZRxda6Vhv106YDIw5uACAAAJ3r99df1wAMPaPjw4ZKk6dOn68cff9SHH36o0aNHF3hMbm6uBg0apPHjx2v58uX5bioDAABQHhXp7nuoAPyrSnWvlWq0kcKbSKH1pKBIybeKNZgikAIAwGmysrK0fv16devWzb7Nzc1N3bp106pVqy553IQJExQWFqb77rvPFWUCAAC4BJ1SAAAALnL8+HHl5uYqPDzcYXt4eLi2b99e4DF//PGHPvjgA23cuLFQ75GZmanMzPN3nE1NTS12vQAAAM5EpxQAAEAZdfr0aQ0ePFj//e9/Va1atUIdM3XqVAUHB9uXWrVqOblKAACA4qFTCgAAwEWqVasmd3d3JSYmOmxPTExUREREvv13796tffv2qXfv3vZteXl5kiQPDw/t2LFD9evXdzhmzJgxGjVqlP15amoqwRQAACiTCKUAAABcxMvLS23atNGSJUvUt29fSdaQacmSJRoxYkS+/Rs1aqTNmzc7bHvuued0+vRpvfnmmwWGTd7e3vL29nZK/QAAAKWJUAoAAMCFRo0apaFDh6pt27Zq166dpk2bprS0NPvd+IYMGaIaNWpo6tSp8vHx0VVXXeVwfEhIiCTl2w4AAFDeEEoVoF3dUC3ZnmR2GQAAoAK68847dezYMY0bN04JCQlq2bKlFixYYJ/8/MCBA3JzY9pPAABQ8RFKFaBN3SqEUgAAwGlGjBhR4HA9SVq6dOllj/3oo49KvyAAAAAT8N9wAAAAAAAAcDlCKQAAAAAAALgcoRQAAAAAAABcjlAKAAAAAAAALkcoBQAAAAAAAJcjlAIAAAAAAIDLEUoBAAAAAADA5QilAAAAAAAA4HKEUgAAAAAAAHA5QikAAAAAAAC4HKEUAAAAAAAAXI5QCgAAAAAAAC5HKAUAAAAAAACXI5QCAAAAAACAyxFKAQAAAAAAwOUIpQAAAAAAAOByhFIAAAAAAABwOUIpAAAAAAAAuByhFAAAAAAAAFyOUAoAAAAAAAAuRyhVgO5Nws0uAQAAAAAAoELzMLuAsqhBWKC2jo+Tn5e72aUAAAAAAABUSIRSl+DvzUcDAAAAAADgLAzfAwAAAAAAgMsRSgEAAAAAAMDlCKUAAAAAAADgcoRSAAAAAAAAcDlCKQAAAAAAALgcoRQAAAAAAABcjlAKAAAAAAAALkcoBQAAAAAAAJcjlAIAAAAAAIDLEUoBAAAAAADA5QilAAAAAAAA4HKEUgAAAAAAAHA5QikAAAAAAAC4HKEUAAAAAAAAXI5QCgAAAAAAAC5HKAUAAAAAAACXI5QCAAAAAACAyxFKAQAAAAAAwOUIpQAAAAAAAOByhFIAAAAAAABwOUIpAAAAAAAAuByhFAAAAAAAAFyOUAoAAAAAAAAuRygFAAAAAAAAlyOUAgAAAAAAgMsRSgEAAAAAAMDlCKUAAAAAAADgcoRSAAAAAAAAcDlCKQAAAAAAALgcoRQAAAAAAABcjlAKAAAAAAAALkcoBQAAAAAAAJcjlAIAAAAAAIDLEUoBAAAAAADA5QilAAAAAAAA4HKEUgAAAAAAAHA5QikAAAAAAAC4HKEUAAAAAAAAXI5QCgAAAAAAAC5HKAUAAAAAAACXI5QCAAAAAACAyxFKAQAAAAAAwOUIpQAAAAAAAOByhFIAAAAAAABwOUIpAAAAAAAAuByhFAAAAAAAAFyOUAoAAAAAAAAuRygFAAAAAAAAlyOUAgAAAAAAgMsRSgEAAAAAAMDlCKUAAAAAAADgcoRSAAAAAAAAcDlCKQAAAAAAALgcoRQAAAAAAABcjlAKAAAAAAAALkcoBQAAAAAAAJcjlAIAAAAAAIDLEUoBAAAAAADA5QilAAAAAAAA4HKEUgAAAAAAAHA5QikAAAAAAAC4HKEUAAAAAAAAXI5QCgAAAAAAAC5HKAUAAPD/27v7IKvq+37gn+Vhd0HcBUF2ASFggxCECILgamIyzQ7UEFOqEUqJEmq1iZBKaAyxKvyS1ECMebAJhcaMMZ1IUFofKjUwBJBUXUEQiPgA1icczYLEsouKLLLf3x8ZbryCwOXh7G54vWbuDPec7733cz7Dcj7z3ss5AABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOYKCqVmzZoV55xzTpx88snRtWvXGDNmTGzatClvzTvvvBOTJ0+Ozp07R4cOHeKSSy6JrVu35q3ZsmVLjB49Otq3bx9du3aNa6+9Nt59992jPxoAAAAAWoSCQqmVK1fG5MmT47HHHoulS5fGnj17YuTIkfHWW2/l1nzlK1+JBx54IBYuXBgrV66M1157LS6++OLc/r1798bo0aOjoaEhHn300fj5z38ed9xxR8yYMePYHRUAAAAAzVpRSikd6Ytff/316Nq1a6xcuTIuuOCCqKuri1NPPTXmz58fn/vc5yIi4tlnn42PfOQjUVNTE+eee2786le/is985jPx2muvRUVFRUREzJs3L6ZPnx6vv/56FBcXH/Jz6+vro7y8POrq6qKsrOxIywcAOGwtdf5oqXUDAC3X4c4fR3VNqbq6uoiIOOWUUyIiYu3atbFnz56orq7Orenfv3/06tUrampqIiKipqYmBg0alAukIiJGjRoV9fX18dRTTx3wc3bv3h319fV5DwAAAABariMOpRobG2Pq1Klx/vnnx8CBAyMiora2NoqLi6Njx455aysqKqK2tja35r2B1L79+/YdyKxZs6K8vDz36Nmz55GWDQDQ5ObMmRO9e/eO0tLSGDFiRKxevfoD1952223x8Y9/PDp16hSdOnWK6urqg64HAGgpjjiUmjx5cmzcuDEWLFhwLOs5oOuuuy7q6upyj1deeeW4fyYAwPFw1113xbRp02LmzJnxxBNPxFlnnRWjRo2Kbdu2HXD9Qw89FOPHj48VK1ZETU1N9OzZM0aOHBmvvvpqxpUDABxbRxRKTZkyJRYtWhQrVqyI0047Lbe9srIyGhoaYseOHXnrt27dGpWVlbk1778b377n+9a8X0lJSZSVleU9AABaou9///tx5ZVXxqRJk2LAgAExb968aN++fdx+++0HXH/nnXfG1VdfHYMHD47+/fvHT3/602hsbIxly5ZlXDkAwLFVUCiVUoopU6bEvffeG8uXL48+ffrk7R86dGi0bds2b0jatGlTbNmyJaqqqiIioqqqKp588sm83wYuXbo0ysrKYsCAAUdzLAAAzVpDQ0OsXbs27/qbrVq1iurq6tz1Nw/l7bffjj179uSu6QkA0FK1KWTx5MmTY/78+XH//ffHySefnLsGVHl5ebRr1y7Ky8vjiiuuiGnTpsUpp5wSZWVl8eUvfzmqqqri3HPPjYiIkSNHxoABA+Kyyy6Lm2++OWpra+OGG26IyZMnR0lJybE/QgCAZmL79u2xd+/eA15f89lnnz2s95g+fXp07949L9h6r927d8fu3btzz90gBgBorgr6ptTcuXOjrq4uPvnJT0a3bt1yj7vuuiu35gc/+EF85jOfiUsuuSQuuOCCqKysjHvuuSe3v3Xr1rFo0aJo3bp1VFVVxec///m4/PLL45vf/OaxOyoAgD9Bs2fPjgULFsS9994bpaWlB1zjBjEAQEtRlFJKTV1Eoerr66O8vDzq6upcXwoAyMSxmD8aGhqiffv28R//8R8xZsyY3PaJEyfGjh074v777//A195yyy3xz//8z/HrX/86hg0b9oHrDvRNqZ49e5qbAIDMHO7cdMR33wMAoDDFxcUxdOjQvOtv7rto+b7rbx7IzTffHN/61rdi8eLFBw2kItwgBgBoOQq6phQAAEdn2rRpMXHixBg2bFgMHz48fvjDH8Zbb70VkyZNioiIyy+/PHr06BGzZs2KiIjvfOc7MWPGjJg/f3707t07d03PDh06RIcOHZrsOAAAjpZQCgAgQ+PGjYvXX389ZsyYEbW1tTF48OBYvHhx7uLnW7ZsiVat/vhl9rlz50ZDQ0N87nOfy3ufmTNnxv/7f/8vy9IBAI4p15QCADgMLXX+aKl1AwAtl2tKAQAAANBsCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyFyThVJz5syJ3r17R2lpaYwYMSJWr17dVKUAAGSq0Dlo4cKF0b9//ygtLY1BgwbFgw8+mFGlAADHT5OEUnfddVdMmzYtZs6cGU888UScddZZMWrUqNi2bVtTlAMAkJlC56BHH300xo8fH1dccUWsW7cuxowZE2PGjImNGzdmXDkAwLFVlFJKWX/oiBEj4pxzzokf//jHERHR2NgYPXv2jC9/+cvx9a9//ZCvr6+vj/Ly8qirq4uysrLjXS4AwDGbPwqdg8aNGxdvvfVWLFq0KLft3HPPjcGDB8e8efMyqxsA4HAd7vyR+TelGhoaYu3atVFdXf3HIlq1iurq6qipqcm6HACAzBzJHFRTU5O3PiJi1KhR5iYAoMVrk/UHbt++Pfbu3RsVFRV52ysqKuLZZ5894Gt2794du3fvzj2vq6uLiD8kbwAAWdg3dxzNl8yPZA6qra094Pra2toDrjc3AQBN7XDnpsxDqSMxa9as+MY3vrHf9p49ezZBNQDAiWznzp1RXl7e1GV8IHMTANBcHGpuyjyU6tKlS7Ru3Tq2bt2at33r1q1RWVl5wNdcd911MW3atNzzxsbGeOONN6Jz585RVFR0RHXU19dHz54945VXXnF9hcOkZ4XRr8LpWWH0q3B6Vjg9+6OUUuzcuTO6d+9+xO9xJHNQZWWluakF0rPC6Ffh9KxwelYY/Sqcnv3R4c5NmYdSxcXFMXTo0Fi2bFmMGTMmIv4wLC1btiymTJlywNeUlJRESUlJ3raOHTsek3rKyspO+L8shdKzwuhX4fSsMPpVOD0rnJ79wdF+Q+pI5qCqqqpYtmxZTJ06Nbdt6dKlUVVVdcD15qbmRc8Ko1+F07PC6Vlh9KtwevYHhzM3Ncl/35s2bVpMnDgxhg0bFsOHD48f/vCH8dZbb8WkSZOaohwAgMwcag66/PLLo0ePHjFr1qyIiLjmmmviE5/4RHzve9+L0aNHx4IFC2LNmjXxk5/8pCkPAwDgqDVJKDVu3Lh4/fXXY8aMGVFbWxuDBw+OxYsX73cRTwCAPzWHmoO2bNkSrVr98QbJ5513XsyfPz9uuOGG+Kd/+qfo27dv3HfffTFw4MCmOgQAgGOiyS50PmXKlA/8mnoWSkpKYubMmft9vZ0PpmeF0a/C6Vlh9KtwelY4PTs+DjYHPfTQQ/ttu/TSS+PSSy89zlV9MH8PCqdnhdGvwulZ4fSsMPpVOD0rXFE6mvsaAwAAAMARaHXoJQAAAABwbAmlAAAAAMicUAoAAACAzJ2QodScOXOid+/eUVpaGiNGjIjVq1c3dUnHxaxZs+Kcc86Jk08+Obp27RpjxoyJTZs25a155513YvLkydG5c+fo0KFDXHLJJbF169a8NVu2bInRo0dH+/bto2vXrnHttdfGu+++m7fmoYceirPPPjtKSkriwx/+cNxxxx371dPS+j579uwoKiqKqVOn5rbp1/5effXV+PznPx+dO3eOdu3axaBBg2LNmjW5/SmlmDFjRnTr1i3atWsX1dXV8dxzz+W9xxtvvBETJkyIsrKy6NixY1xxxRXx5ptv5q357W9/Gx//+MejtLQ0evbsGTfffPN+tSxcuDD69+8fpaWlMWjQoHjwwQePz0Efob1798aNN94Yffr0iXbt2sWf/dmfxbe+9a1476X9TvR+/eY3v4mLLroounfvHkVFRXHffffl7W9O/TmcWrJwsJ7t2bMnpk+fHoMGDYqTTjopunfvHpdffnm89tpree9xovWMwrWUc9LRMDcdHXPT4TE3FcbsdGhmp8KYm5qhdIJZsGBBKi4uTrfffnt66qmn0pVXXpk6duyYtm7d2tSlHXOjRo1KP/vZz9LGjRvT+vXr06c//enUq1ev9Oabb+bWfPGLX0w9e/ZMy5YtS2vWrEnnnntuOu+883L733333TRw4MBUXV2d1q1blx588MHUpUuXdN111+XWvPDCC6l9+/Zp2rRp6emnn04/+tGPUuvWrdPixYtza1pa31evXp169+6dPvrRj6Zrrrkmt12/8r3xxhvpQx/6UPrCF76QVq1alV544YW0ZMmS9L//+7+5NbNnz07l5eXpvvvuSxs2bEif/exnU58+fdKuXbtya/7iL/4inXXWWemxxx5L//M//5M+/OEPp/Hjx+f219XVpYqKijRhwoS0cePG9Mtf/jK1a9cu/du//VtuzSOPPJJat26dbr755vT000+nG264IbVt2zY9+eST2TTjMNx0002pc+fOadGiRenFF19MCxcuTB06dEi33nprbs2J3q8HH3wwXX/99emee+5JEZHuvffevP3NqT+HU0sWDtazHTt2pOrq6nTXXXelZ599NtXU1KThw4enoUOH5r3HidYzCtNSzklHy9x05MxNh8fcVDiz06GZnQpjbmp+TrhQavjw4Wny5Mm553v37k3du3dPs2bNasKqsrFt27YUEWnlypUppT/80LVt2zYtXLgwt+aZZ55JEZFqampSSn/4oW3VqlWqra3NrZk7d24qKytLu3fvTiml9LWvfS2deeaZeZ81bty4NGrUqNzzltT3nTt3pr59+6alS5emT3ziE7nhSr/2N3369PSxj33sA/c3NjamysrK9N3vfje3bceOHamkpCT98pe/TCml9PTTT6eISI8//nhuza9+9atUVFSUXn311ZRSSv/6r/+aOnXqlOvhvs/u169f7vnYsWPT6NGj8z5/xIgR6e///u+P7iCPodGjR6e//du/zdt28cUXpwkTJqSU9Ov93j8oNKf+HE4tTeFAw+j7rV69OkVEevnll1NKesahtZRz0rFmbjo85qbDZ24qnNmpMGanwpibmocT6r/vNTQ0xNq1a6O6ujq3rVWrVlFdXR01NTVNWFk26urqIiLilFNOiYiItWvXxp49e/L60b9//+jVq1euHzU1NTFo0KCoqKjIrRk1alTU19fHU089lVvz3vfYt2bfe7S0vk+ePDlGjx693zHp1/7+67/+K4YNGxaXXnppdO3aNYYMGRK33XZbbv+LL74YtbW1ecdSXl4eI0aMyOtZx44dY9iwYbk11dXV0apVq1i1alVuzQUXXBDFxcW5NaNGjYpNmzbF//3f/+XWHKyvzcF5550Xy5Yti82bN0dExIYNG+Lhhx+OCy+8MCL061CaU38Op5bmqq6uLoqKiqJjx44RoWccXEs6Jx1r5qbDY246fOamwpmdjk5z6k9LnQPMTcffCRVKbd++Pfbu3Zt34ouIqKioiNra2iaqKhuNjY0xderUOP/882PgwIEREVFbWxvFxcW5H7B93tuP2traA/Zr376Dramvr49du3a1qL4vWLAgnnjiiZg1a9Z++/Rrfy+88ELMnTs3+vbtG0uWLIkvfelL8Q//8A/x85//PCL+eMwHO5ba2tro2rVr3v42bdrEKaecckz62px69vWvfz3++q//Ovr37x9t27aNIUOGxNSpU2PChAkRoV+H0pz6czi1NEfvvPNOTJ8+PcaPHx9lZWURoWccXEs6Jx1L5qbDY24qjLmpcGano9Oc+tMS5wBzUzbaNHUBZGPy5MmxcePGePjhh5u6lGbrlVdeiWuuuSaWLl0apaWlTV1Oi9DY2BjDhg2Lb3/72xERMWTIkNi4cWPMmzcvJk6c2MTVNT9333133HnnnTF//vw488wzY/369TF16tTo3r27fnHc7dmzJ8aOHRsppZg7d25TlwPNmrnp0MxNhTM3Fc7sRFMxN2XnhPqmVJcuXaJ169b73fVj69atUVlZ2URVHX9TpkyJRYsWxYoVK+K0007Lba+srIyGhobYsWNH3vr39qOysvKA/dq372BrysrKol27di2m72vXro1t27bF2WefHW3atIk2bdrEypUr41/+5V+iTZs2UVFRoV/v061btxgwYEDeto985COxZcuWiPjjMR/sWCorK2Pbtm15+99999144403jklfm1PPrr322txv/AYNGhSXXXZZfOUrX8n9hlm/Dq459edwamlO9g1WL7/8cixdujT3274IPePgWtI56VgxNx0ec1PhzE2FMzsdnebUn5Y0B5ibsnVChVLFxcUxdOjQWLZsWW5bY2NjLFu2LKqqqpqwsuMjpRRTpkyJe++9N5YvXx59+vTJ2z906NBo27ZtXj82bdoUW7ZsyfWjqqoqnnzyybwfvH0/mPtOqlVVVXnvsW/NvvdoKX3/1Kc+FU8++WSsX78+9xg2bFhMmDAh92f9ynf++efvd7vszZs3x4c+9KGIiOjTp09UVlbmHUt9fX2sWrUqr2c7duyItWvX5tYsX748GhsbY8SIEbk1v/nNb2LPnj25NUuXLo1+/fpFp06dcmsO1tfm4O23345WrfL/2W3dunU0NjZGhH4dSnPqz+HU0lzsG6yee+65+PWvfx2dO3fO269nHExLOicdLXNTYcxNhTM3Fc7sdHSaU39ayhxgbmoCTXud9ewtWLAglZSUpDvuuCM9/fTT6aqrrkodO3bMu+vHn4ovfelLqby8PD300EPpd7/7Xe7x9ttv59Z88YtfTL169UrLly9Pa9asSVVVVamqqiq3f9+tekeOHJnWr1+fFi9enE499dQD3qr32muvTc8880yaM2fOAW/V2xL7/t67yKSkX++3evXq1KZNm3TTTTel5557Lt15552pffv26Re/+EVuzezZs1PHjh3T/fffn37729+mv/zLvzzgbWiHDBmSVq1alR5++OHUt2/fvNuq7tixI1VUVKTLLrssbdy4MS1YsCC1b99+v9uqtmnTJt1yyy3pmWeeSTNnzmwWt+l9r4kTJ6YePXrkbmt8zz33pC5duqSvfe1ruTUner927tyZ1q1bl9atW5ciIn3/+99P69aty93xpDn153BqycLBetbQ0JA++9nPptNOOy2tX78+71zw3jvCnGg9ozAt5Zx0tMxNR8/cdHDmpsKZnQ7N7FQYc1Pzc8KFUiml9KMf/Sj16tUrFRcXp+HDh6fHHnusqUs6LiLigI+f/exnuTW7du1KV199derUqVNq3759+qu/+qv0u9/9Lu99XnrppXThhRemdu3apS5duqR//Md/THv27Mlbs2LFijR48OBUXFycTj/99LzP2Kcl9v39w5V+7e+BBx5IAwcOTCUlJal///7pJz/5Sd7+xsbGdOONN6aKiopUUlKSPvWpT6VNmzblrfn973+fxo8fnzp06JDKysrSpEmT0s6dO/PWbNiwIX3sYx9LJSUlqUePHmn27Nn71XL33XenM844IxUXF6czzzwz/fd///exP+CjUF9fn6655prUq1evVFpamk4//fR0/fXX553kTvR+rVix4oD/bk2cODGl1Lz6czi1ZOFgPXvxxRc/8FywYsWK3HucaD2jcC3lnHQ0zE1Hz9x0aOamwpidDs3sVBhzU/NTlFJKx/77VwAAAADwwU6oa0oBAAAA0DwIpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpYBm75Of/GRMnTq1qcvIaW71AAAAtERCKeCE0NDQ0NQlAAAA8B5CKaBZ+8IXvhArV66MW2+9NYqKiqKoqCief/75uOKKK6JPnz7Rrl276NevX9x66637vW7MmDFx0003Rffu3aNfv34REfHoo4/G4MGDo7S0NIYNGxb33XdfFBUVxfr163Ov3bhxY1x44YXRoUOHqKioiMsuuyy2b9/+gfW89NJLWbUDAADgT0abpi4A4GBuvfXW2Lx5cwwcODC++c1vRkREp06d4rTTTouFCxdG586d49FHH42rrroqunXrFmPHjs29dtmyZVFWVhZLly6NiIj6+vq46KKL4tOf/nTMnz8/Xn755f3+G96OHTviz//8z+Pv/u7v4gc/+EHs2rUrpk+fHmPHjo3ly5cfsJ5TTz01m2YAAAD8CRFKAc1aeXl5FBcXR/v27aOysjK3/Rvf+Ebuz3369Imampq4++6780Kpk046KX76059GcXFxRETMmzcvioqK4rbbbovS0tIYMGBAvPrqq3HllVfmXvPjH/84hgwZEt/+9rdz226//fbo2bNnbN68Oc4444wD1gMAAEBhhFJAizRnzpy4/fbbY8uWLbFr165oaGiIwYMH560ZNGhQLpCKiNi0aVN89KMfjdLS0ty24cOH571mw4YNsWLFiujQocN+n/n888/HGWeccWwPBAAA4AQllAJanAULFsRXv/rV+N73vhdVVVVx8sknx3e/+91YtWpV3rqTTjqp4Pd+880346KLLorvfOc7++3r1q3bEdcMAABAPqEU0OwVFxfH3r17c88feeSROO+88+Lqq6/ObXv++ecP+T79+vWLX/ziF7F79+4oKSmJiIjHH388b83ZZ58d//mf/xm9e/eONm0O/E/k++sBAACgcO6+BzR7vXv3jlWrVsVLL70U27dvj759+8aaNWtiyZIlsXnz5rjxxhv3C5cO5G/+5m+isbExrrrqqnjmmWdiyZIlccstt0RERFFRUURETJ48Od54440YP358PP744/H888/HkiVLYtKkSbkg6v31NDY2Hr+DBwAA+BMllAKava9+9avRunXrGDBgQJx66qkxatSouPjii2PcuHExYsSI+P3vf5/3rakPUlZWFg888ECsX78+Bg8eHNdff33MmDEjIiJ3nanu3bvHI488Env37o2RI0fGoEGDYurUqdGxY8do1arVAevZsmXL8Tt4AACAP1FFKaXU1EUANJU777wzJk2aFHV1ddGuXbumLgcAAOCE4ZpSwAnl3//93+P000+PHj16xIYNG2L69OkxduxYgRQAAEDGhFLACaW2tjZmzJgRtbW10a1bt7j00kvjpptuauqyAAAATjj++x4AAAAAmXOhcwAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAy9/8B7ugWOtUWMr8AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "column = \"threads\"\n",
+ "x = \"target\"\n",
+ "y = \"[READ].95thPercentileLatency(us)\"\n",
+ "if y in df_plot.columns:\n",
+ " evaluation.plot(df_plot, column=column, x=x, y=y, plot_by=\"experiment_run\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Aggregate by Parallel Pods"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-16384-1 \n",
+ " PostgreSQL-32-8-16384-1 \n",
+ " PostgreSQL-32-1-32768-1 \n",
+ " PostgreSQL-32-8-32768-1 \n",
+ " PostgreSQL-32-1-49152-1 \n",
+ " PostgreSQL-32-8-49152-1 \n",
+ " PostgreSQL-32-1-65536-1 \n",
+ " PostgreSQL-32-8-65536-1 \n",
+ " PostgreSQL-32-1-81920-1 \n",
+ " PostgreSQL-32-8-81920-1 \n",
+ " PostgreSQL-32-1-98304-1 \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " PostgreSQL-32-1-114688-1 \n",
+ " PostgreSQL-32-8-114688-1 \n",
+ " PostgreSQL-32-1-131072-1 \n",
+ " PostgreSQL-32-8-131072-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " connection \n",
+ " PostgreSQL-32-1-16384-1 \n",
+ " PostgreSQL-32-8-16384-1 \n",
+ " PostgreSQL-32-1-32768-1 \n",
+ " PostgreSQL-32-8-32768-1 \n",
+ " PostgreSQL-32-1-49152-1 \n",
+ " PostgreSQL-32-8-49152-1 \n",
+ " PostgreSQL-32-1-65536-1 \n",
+ " PostgreSQL-32-8-65536-1 \n",
+ " PostgreSQL-32-1-81920-1 \n",
+ " PostgreSQL-32-8-81920-1 \n",
+ " PostgreSQL-32-1-98304-1 \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " PostgreSQL-32-1-114688-1 \n",
+ " PostgreSQL-32-8-114688-1 \n",
+ " PostgreSQL-32-1-131072-1 \n",
+ " PostgreSQL-32-8-131072-1 \n",
+ " \n",
+ " \n",
+ " configuration \n",
+ " PostgreSQL-32-1-16384 \n",
+ " PostgreSQL-32-8-16384 \n",
+ " PostgreSQL-32-1-32768 \n",
+ " PostgreSQL-32-8-32768 \n",
+ " PostgreSQL-32-1-49152 \n",
+ " PostgreSQL-32-8-49152 \n",
+ " PostgreSQL-32-1-65536 \n",
+ " PostgreSQL-32-8-65536 \n",
+ " PostgreSQL-32-1-81920 \n",
+ " PostgreSQL-32-8-81920 \n",
+ " PostgreSQL-32-1-98304 \n",
+ " PostgreSQL-32-8-98304 \n",
+ " PostgreSQL-32-1-114688 \n",
+ " PostgreSQL-32-8-114688 \n",
+ " PostgreSQL-32-1-131072 \n",
+ " PostgreSQL-32-8-131072 \n",
+ " \n",
+ " \n",
+ " experiment_run \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " client \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " pod \n",
+ " dpz6r \n",
+ " 28mm26qp9s77mw4cpwg6cxgj6jpmmprt4r9tfbqm \n",
+ " k6vs7 \n",
+ " 2pf8r5szs7cfgn7j2j7flc8b4mt7d6p9tmsrt62c \n",
+ " klpvs \n",
+ " 5wh9k998gfghk57rvqs4sfzq5sgxpftqqdcxwgtc \n",
+ " 7w4z9 \n",
+ " 5spjql25nllrgp7nws4xrh8zlvc88wwp69bz58tr \n",
+ " chmc5 \n",
+ " 9hk6b9wm6bb7bh7kfjzhkrdkbtt4fmvhthfxn2w5 \n",
+ " 7lqx2 \n",
+ " 45zhrbhvd9k4r5rkq9kfmlt4brksk7vn5b4wjjww \n",
+ " mwnxg \n",
+ " 2jq828tw89fzvfvhg76gjwcxmknc8qkp9r9sf8fh \n",
+ " zp9vj \n",
+ " 6zf7s82tzjcdlljdxbqhfg7g6g2lp7gtfsxqkjzm \n",
+ " \n",
+ " \n",
+ " pod_count \n",
+ " 1 \n",
+ " 8 \n",
+ " 1 \n",
+ " 8 \n",
+ " 1 \n",
+ " 8 \n",
+ " 1 \n",
+ " 8 \n",
+ " 1 \n",
+ " 8 \n",
+ " 1 \n",
+ " 8 \n",
+ " 1 \n",
+ " 8 \n",
+ " 1 \n",
+ " 8 \n",
+ " \n",
+ " \n",
+ " threads \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " \n",
+ " \n",
+ " target \n",
+ " 16384 \n",
+ " 16384 \n",
+ " 32768 \n",
+ " 32768 \n",
+ " 49152 \n",
+ " 49152 \n",
+ " 65536 \n",
+ " 65536 \n",
+ " 81920 \n",
+ " 81920 \n",
+ " 98304 \n",
+ " 98304 \n",
+ " 114688 \n",
+ " 114688 \n",
+ " 131072 \n",
+ " 131072 \n",
+ " \n",
+ " \n",
+ " sf \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " 30 \n",
+ " \n",
+ " \n",
+ " workload \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " a \n",
+ " \n",
+ " \n",
+ " operations \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " 30000000 \n",
+ " \n",
+ " \n",
+ " batchsize \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " -1.0 \n",
+ " \n",
+ " \n",
+ " [OVERALL].RunTime(ms) \n",
+ " 1831314.0 \n",
+ " 1832430.0 \n",
+ " 915761.0 \n",
+ " 916820.0 \n",
+ " 657683.0 \n",
+ " 636295.0 \n",
+ " 523264.0 \n",
+ " 525847.0 \n",
+ " 521007.0 \n",
+ " 532786.0 \n",
+ " 514630.0 \n",
+ " 525430.0 \n",
+ " 515631.0 \n",
+ " 522245.0 \n",
+ " 521364.0 \n",
+ " 513763.0 \n",
+ " \n",
+ " \n",
+ " [OVERALL].Throughput(ops/sec) \n",
+ " 16381.68004 \n",
+ " 16377.623988 \n",
+ " 32759.639251 \n",
+ " 32738.135294 \n",
+ " 45614.680629 \n",
+ " 47358.596378 \n",
+ " 57332.436399 \n",
+ " 57515.975815 \n",
+ " 57580.800258 \n",
+ " 58539.257066 \n",
+ " 58294.308532 \n",
+ " 57996.79243 \n",
+ " 58181.141165 \n",
+ " 58176.917093 \n",
+ " 57541.372247 \n",
+ " 59503.634165 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].Operations \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " 32 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].AverageLatency(us) \n",
+ " 68.09375 \n",
+ " 110.03125 \n",
+ " 100.96875 \n",
+ " 127.28125 \n",
+ " 174.59375 \n",
+ " 196.09375 \n",
+ " 122.875 \n",
+ " 170.875 \n",
+ " 138.46875 \n",
+ " 170.65625 \n",
+ " 126.4375 \n",
+ " 211.28125 \n",
+ " 104.75 \n",
+ " 164.15625 \n",
+ " 97.0625 \n",
+ " 164.84375 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].MinLatency(us) \n",
+ " 35.0 \n",
+ " 46.0 \n",
+ " 36.0 \n",
+ " 49.0 \n",
+ " 55.0 \n",
+ " 61.0 \n",
+ " 70.0 \n",
+ " 62.0 \n",
+ " 64.0 \n",
+ " 65.0 \n",
+ " 64.0 \n",
+ " 61.0 \n",
+ " 60.0 \n",
+ " 65.0 \n",
+ " 62.0 \n",
+ " 64.0 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].MaxLatency(us) \n",
+ " 269.0 \n",
+ " 292.0 \n",
+ " 651.0 \n",
+ " 344.0 \n",
+ " 2655.0 \n",
+ " 1652.0 \n",
+ " 343.0 \n",
+ " 608.0 \n",
+ " 938.0 \n",
+ " 683.0 \n",
+ " 377.0 \n",
+ " 1324.0 \n",
+ " 305.0 \n",
+ " 420.0 \n",
+ " 305.0 \n",
+ " 536.0 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].95thPercentileLatency(us) \n",
+ " 170.0 \n",
+ " 292.0 \n",
+ " 343.0 \n",
+ " 344.0 \n",
+ " 146.0 \n",
+ " 1652.0 \n",
+ " 168.0 \n",
+ " 608.0 \n",
+ " 175.0 \n",
+ " 683.0 \n",
+ " 187.0 \n",
+ " 1324.0 \n",
+ " 178.0 \n",
+ " 420.0 \n",
+ " 132.0 \n",
+ " 536.0 \n",
+ " \n",
+ " \n",
+ " [CLEANUP].99thPercentileLatency(us) \n",
+ " 269.0 \n",
+ " 292.0 \n",
+ " 651.0 \n",
+ " 344.0 \n",
+ " 2655.0 \n",
+ " 1652.0 \n",
+ " 343.0 \n",
+ " 608.0 \n",
+ " 938.0 \n",
+ " 683.0 \n",
+ " 377.0 \n",
+ " 1324.0 \n",
+ " 305.0 \n",
+ " 420.0 \n",
+ " 305.0 \n",
+ " 536.0 \n",
+ " \n",
+ " \n",
+ " [READ].Operations \n",
+ " 15000202 \n",
+ " 15000829 \n",
+ " 14999278 \n",
+ " 14998494 \n",
+ " 15001696 \n",
+ " 15000538 \n",
+ " 15003790 \n",
+ " 15001673 \n",
+ " 14998146 \n",
+ " 14998594 \n",
+ " 15004063 \n",
+ " 15001919 \n",
+ " 14999034 \n",
+ " 14998806 \n",
+ " 15000437 \n",
+ " 14997372 \n",
+ " \n",
+ " \n",
+ " [READ].AverageLatency(us) \n",
+ " 236.30964 \n",
+ " 253.423811 \n",
+ " 244.156256 \n",
+ " 282.138179 \n",
+ " 349.143032 \n",
+ " 400.705718 \n",
+ " 419.172145 \n",
+ " 450.779241 \n",
+ " 432.829566 \n",
+ " 442.564595 \n",
+ " 424.969676 \n",
+ " 443.003051 \n",
+ " 414.153399 \n",
+ " 462.604994 \n",
+ " 418.644577 \n",
+ " 447.964995 \n",
+ " \n",
+ " \n",
+ " [READ].MinLatency(us) \n",
+ " 93.0 \n",
+ " 95.0 \n",
+ " 91.0 \n",
+ " 93.0 \n",
+ " 89.0 \n",
+ " 91.0 \n",
+ " 89.0 \n",
+ " 89.0 \n",
+ " 85.0 \n",
+ " 91.0 \n",
+ " 86.0 \n",
+ " 91.0 \n",
+ " 86.0 \n",
+ " 91.0 \n",
+ " 86.0 \n",
+ " 90.0 \n",
+ " \n",
+ " \n",
+ " [READ].MaxLatency(us) \n",
+ " 70271.0 \n",
+ " 172287.0 \n",
+ " 1073151.0 \n",
+ " 196095.0 \n",
+ " 18399231.0 \n",
+ " 21381119.0 \n",
+ " 18235391.0 \n",
+ " 21004287.0 \n",
+ " 20709375.0 \n",
+ " 20627455.0 \n",
+ " 18776063.0 \n",
+ " 18415615.0 \n",
+ " 20905983.0 \n",
+ " 20168703.0 \n",
+ " 20856831.0 \n",
+ " 20316159.0 \n",
+ " \n",
+ " \n",
+ " [READ].95thPercentileLatency(us) \n",
+ " 392.0 \n",
+ " 467.0 \n",
+ " 395.0 \n",
+ " 469.0 \n",
+ " 482.0 \n",
+ " 603.0 \n",
+ " 774.0 \n",
+ " 831.0 \n",
+ " 788.0 \n",
+ " 921.0 \n",
+ " 757.0 \n",
+ " 861.0 \n",
+ " 762.0 \n",
+ " 864.0 \n",
+ " 750.0 \n",
+ " 790.0 \n",
+ " \n",
+ " \n",
+ " [READ].99thPercentileLatency(us) \n",
+ " 514.0 \n",
+ " 638.0 \n",
+ " 540.0 \n",
+ " 908.0 \n",
+ " 1209.0 \n",
+ " 1850.0 \n",
+ " 2289.0 \n",
+ " 3101.0 \n",
+ " 2355.0 \n",
+ " 2325.0 \n",
+ " 2301.0 \n",
+ " 2543.0 \n",
+ " 2147.0 \n",
+ " 2779.0 \n",
+ " 2287.0 \n",
+ " 2471.0 \n",
+ " \n",
+ " \n",
+ " [READ].Return=OK \n",
+ " 15000202 \n",
+ " 15000829 \n",
+ " 14999278 \n",
+ " 14998494 \n",
+ " 15001696 \n",
+ " 15000538 \n",
+ " 15003790 \n",
+ " 15001673 \n",
+ " 14998146 \n",
+ " 14998594 \n",
+ " 15004063 \n",
+ " 15001919 \n",
+ " 14999034 \n",
+ " 14998806 \n",
+ " 15000437 \n",
+ " 14997372 \n",
+ " \n",
+ " \n",
+ " [UPDATE].Operations \n",
+ " 14999798 \n",
+ " 14999171 \n",
+ " 15000722 \n",
+ " 15001506 \n",
+ " 14998304 \n",
+ " 14999462 \n",
+ " 14996210 \n",
+ " 14998327 \n",
+ " 15001854 \n",
+ " 15001406 \n",
+ " 14995937 \n",
+ " 14998081 \n",
+ " 15000966 \n",
+ " 15001194 \n",
+ " 14999563 \n",
+ " 15002628 \n",
+ " \n",
+ " \n",
+ " [UPDATE].AverageLatency(us) \n",
+ " 260.757995 \n",
+ " 278.178307 \n",
+ " 262.927871 \n",
+ " 302.439357 \n",
+ " 454.032034 \n",
+ " 478.609792 \n",
+ " 644.1249 \n",
+ " 618.497339 \n",
+ " 630.408114 \n",
+ " 606.642677 \n",
+ " 620.081984 \n",
+ " 614.653123 \n",
+ " 635.884341 \n",
+ " 597.361598 \n",
+ " 647.170531 \n",
+ " 588.318033 \n",
+ " \n",
+ " \n",
+ " [UPDATE].MinLatency(us) \n",
+ " 102.0 \n",
+ " 108.0 \n",
+ " 101.0 \n",
+ " 103.0 \n",
+ " 93.0 \n",
+ " 101.0 \n",
+ " 93.0 \n",
+ " 100.0 \n",
+ " 93.0 \n",
+ " 98.0 \n",
+ " 93.0 \n",
+ " 98.0 \n",
+ " 95.0 \n",
+ " 96.0 \n",
+ " 94.0 \n",
+ " 93.0 \n",
+ " \n",
+ " \n",
+ " [UPDATE].MaxLatency(us) \n",
+ " 67071.0 \n",
+ " 130815.0 \n",
+ " 722943.0 \n",
+ " 1277951.0 \n",
+ " 18235391.0 \n",
+ " 21233663.0 \n",
+ " 20774911.0 \n",
+ " 21069823.0 \n",
+ " 20758527.0 \n",
+ " 20955135.0 \n",
+ " 18956287.0 \n",
+ " 18956287.0 \n",
+ " 20987903.0 \n",
+ " 20299775.0 \n",
+ " 20889599.0 \n",
+ " 20250623.0 \n",
+ " \n",
+ " \n",
+ " [UPDATE].95thPercentileLatency(us) \n",
+ " 434.0 \n",
+ " 515.0 \n",
+ " 415.0 \n",
+ " 508.0 \n",
+ " 535.0 \n",
+ " 675.0 \n",
+ " 1075.0 \n",
+ " 1096.0 \n",
+ " 1115.0 \n",
+ " 1088.0 \n",
+ " 1065.0 \n",
+ " 1086.0 \n",
+ " 1041.0 \n",
+ " 1076.0 \n",
+ " 1061.0 \n",
+ " 987.0 \n",
+ " \n",
+ " \n",
+ " [UPDATE].99thPercentileLatency(us) \n",
+ " 573.0 \n",
+ " 692.0 \n",
+ " 580.0 \n",
+ " 1008.0 \n",
+ " 1687.0 \n",
+ " 2353.0 \n",
+ " 3657.0 \n",
+ " 3931.0 \n",
+ " 3731.0 \n",
+ " 3395.0 \n",
+ " 3641.0 \n",
+ " 3613.0 \n",
+ " 3383.0 \n",
+ " 3871.0 \n",
+ " 3619.0 \n",
+ " 3445.0 \n",
+ " \n",
+ " \n",
+ " [UPDATE].Return=OK \n",
+ " 14999798 \n",
+ " 14999171 \n",
+ " 15000722 \n",
+ " 15001506 \n",
+ " 14998304 \n",
+ " 14999462 \n",
+ " 14996210 \n",
+ " 14998327 \n",
+ " 15001854 \n",
+ " 15001406 \n",
+ " 14995937 \n",
+ " 14998081 \n",
+ " 15000966 \n",
+ " 15001194 \n",
+ " 14999563 \n",
+ " 15002628 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " PostgreSQL-32-1-16384-1 \\\n",
+ "connection PostgreSQL-32-1-16384-1 \n",
+ "configuration PostgreSQL-32-1-16384 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod dpz6r \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 16384 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 1831314.0 \n",
+ "[OVERALL].Throughput(ops/sec) 16381.68004 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 68.09375 \n",
+ "[CLEANUP].MinLatency(us) 35.0 \n",
+ "[CLEANUP].MaxLatency(us) 269.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 170.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 269.0 \n",
+ "[READ].Operations 15000202 \n",
+ "[READ].AverageLatency(us) 236.30964 \n",
+ "[READ].MinLatency(us) 93.0 \n",
+ "[READ].MaxLatency(us) 70271.0 \n",
+ "[READ].95thPercentileLatency(us) 392.0 \n",
+ "[READ].99thPercentileLatency(us) 514.0 \n",
+ "[READ].Return=OK 15000202 \n",
+ "[UPDATE].Operations 14999798 \n",
+ "[UPDATE].AverageLatency(us) 260.757995 \n",
+ "[UPDATE].MinLatency(us) 102.0 \n",
+ "[UPDATE].MaxLatency(us) 67071.0 \n",
+ "[UPDATE].95thPercentileLatency(us) 434.0 \n",
+ "[UPDATE].99thPercentileLatency(us) 573.0 \n",
+ "[UPDATE].Return=OK 14999798 \n",
+ "\n",
+ " PostgreSQL-32-8-16384-1 \\\n",
+ "connection PostgreSQL-32-8-16384-1 \n",
+ "configuration PostgreSQL-32-8-16384 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod 28mm26qp9s77mw4cpwg6cxgj6jpmmprt4r9tfbqm \n",
+ "pod_count 8 \n",
+ "threads 32 \n",
+ "target 16384 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 1832430.0 \n",
+ "[OVERALL].Throughput(ops/sec) 16377.623988 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 110.03125 \n",
+ "[CLEANUP].MinLatency(us) 46.0 \n",
+ "[CLEANUP].MaxLatency(us) 292.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 292.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 292.0 \n",
+ "[READ].Operations 15000829 \n",
+ "[READ].AverageLatency(us) 253.423811 \n",
+ "[READ].MinLatency(us) 95.0 \n",
+ "[READ].MaxLatency(us) 172287.0 \n",
+ "[READ].95thPercentileLatency(us) 467.0 \n",
+ "[READ].99thPercentileLatency(us) 638.0 \n",
+ "[READ].Return=OK 15000829 \n",
+ "[UPDATE].Operations 14999171 \n",
+ "[UPDATE].AverageLatency(us) 278.178307 \n",
+ "[UPDATE].MinLatency(us) 108.0 \n",
+ "[UPDATE].MaxLatency(us) 130815.0 \n",
+ "[UPDATE].95thPercentileLatency(us) 515.0 \n",
+ "[UPDATE].99thPercentileLatency(us) 692.0 \n",
+ "[UPDATE].Return=OK 14999171 \n",
+ "\n",
+ " PostgreSQL-32-1-32768-1 \\\n",
+ "connection PostgreSQL-32-1-32768-1 \n",
+ "configuration PostgreSQL-32-1-32768 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod k6vs7 \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 32768 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 915761.0 \n",
+ "[OVERALL].Throughput(ops/sec) 32759.639251 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 100.96875 \n",
+ "[CLEANUP].MinLatency(us) 36.0 \n",
+ "[CLEANUP].MaxLatency(us) 651.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 343.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 651.0 \n",
+ "[READ].Operations 14999278 \n",
+ "[READ].AverageLatency(us) 244.156256 \n",
+ "[READ].MinLatency(us) 91.0 \n",
+ "[READ].MaxLatency(us) 1073151.0 \n",
+ "[READ].95thPercentileLatency(us) 395.0 \n",
+ "[READ].99thPercentileLatency(us) 540.0 \n",
+ "[READ].Return=OK 14999278 \n",
+ "[UPDATE].Operations 15000722 \n",
+ "[UPDATE].AverageLatency(us) 262.927871 \n",
+ "[UPDATE].MinLatency(us) 101.0 \n",
+ "[UPDATE].MaxLatency(us) 722943.0 \n",
+ "[UPDATE].95thPercentileLatency(us) 415.0 \n",
+ "[UPDATE].99thPercentileLatency(us) 580.0 \n",
+ "[UPDATE].Return=OK 15000722 \n",
+ "\n",
+ " PostgreSQL-32-8-32768-1 \\\n",
+ "connection PostgreSQL-32-8-32768-1 \n",
+ "configuration PostgreSQL-32-8-32768 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod 2pf8r5szs7cfgn7j2j7flc8b4mt7d6p9tmsrt62c \n",
+ "pod_count 8 \n",
+ "threads 32 \n",
+ "target 32768 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 916820.0 \n",
+ "[OVERALL].Throughput(ops/sec) 32738.135294 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 127.28125 \n",
+ "[CLEANUP].MinLatency(us) 49.0 \n",
+ "[CLEANUP].MaxLatency(us) 344.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 344.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 344.0 \n",
+ "[READ].Operations 14998494 \n",
+ "[READ].AverageLatency(us) 282.138179 \n",
+ "[READ].MinLatency(us) 93.0 \n",
+ "[READ].MaxLatency(us) 196095.0 \n",
+ "[READ].95thPercentileLatency(us) 469.0 \n",
+ "[READ].99thPercentileLatency(us) 908.0 \n",
+ "[READ].Return=OK 14998494 \n",
+ "[UPDATE].Operations 15001506 \n",
+ "[UPDATE].AverageLatency(us) 302.439357 \n",
+ "[UPDATE].MinLatency(us) 103.0 \n",
+ "[UPDATE].MaxLatency(us) 1277951.0 \n",
+ "[UPDATE].95thPercentileLatency(us) 508.0 \n",
+ "[UPDATE].99thPercentileLatency(us) 1008.0 \n",
+ "[UPDATE].Return=OK 15001506 \n",
+ "\n",
+ " PostgreSQL-32-1-49152-1 \\\n",
+ "connection PostgreSQL-32-1-49152-1 \n",
+ "configuration PostgreSQL-32-1-49152 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod klpvs \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 49152 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 657683.0 \n",
+ "[OVERALL].Throughput(ops/sec) 45614.680629 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 174.59375 \n",
+ "[CLEANUP].MinLatency(us) 55.0 \n",
+ "[CLEANUP].MaxLatency(us) 2655.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 146.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 2655.0 \n",
+ "[READ].Operations 15001696 \n",
+ "[READ].AverageLatency(us) 349.143032 \n",
+ "[READ].MinLatency(us) 89.0 \n",
+ "[READ].MaxLatency(us) 18399231.0 \n",
+ "[READ].95thPercentileLatency(us) 482.0 \n",
+ "[READ].99thPercentileLatency(us) 1209.0 \n",
+ "[READ].Return=OK 15001696 \n",
+ "[UPDATE].Operations 14998304 \n",
+ "[UPDATE].AverageLatency(us) 454.032034 \n",
+ "[UPDATE].MinLatency(us) 93.0 \n",
+ "[UPDATE].MaxLatency(us) 18235391.0 \n",
+ "[UPDATE].95thPercentileLatency(us) 535.0 \n",
+ "[UPDATE].99thPercentileLatency(us) 1687.0 \n",
+ "[UPDATE].Return=OK 14998304 \n",
+ "\n",
+ " PostgreSQL-32-8-49152-1 \\\n",
+ "connection PostgreSQL-32-8-49152-1 \n",
+ "configuration PostgreSQL-32-8-49152 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod 5wh9k998gfghk57rvqs4sfzq5sgxpftqqdcxwgtc \n",
+ "pod_count 8 \n",
+ "threads 32 \n",
+ "target 49152 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 636295.0 \n",
+ "[OVERALL].Throughput(ops/sec) 47358.596378 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 196.09375 \n",
+ "[CLEANUP].MinLatency(us) 61.0 \n",
+ "[CLEANUP].MaxLatency(us) 1652.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 1652.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 1652.0 \n",
+ "[READ].Operations 15000538 \n",
+ "[READ].AverageLatency(us) 400.705718 \n",
+ "[READ].MinLatency(us) 91.0 \n",
+ "[READ].MaxLatency(us) 21381119.0 \n",
+ "[READ].95thPercentileLatency(us) 603.0 \n",
+ "[READ].99thPercentileLatency(us) 1850.0 \n",
+ "[READ].Return=OK 15000538 \n",
+ "[UPDATE].Operations 14999462 \n",
+ "[UPDATE].AverageLatency(us) 478.609792 \n",
+ "[UPDATE].MinLatency(us) 101.0 \n",
+ "[UPDATE].MaxLatency(us) 21233663.0 \n",
+ "[UPDATE].95thPercentileLatency(us) 675.0 \n",
+ "[UPDATE].99thPercentileLatency(us) 2353.0 \n",
+ "[UPDATE].Return=OK 14999462 \n",
+ "\n",
+ " PostgreSQL-32-1-65536-1 \\\n",
+ "connection PostgreSQL-32-1-65536-1 \n",
+ "configuration PostgreSQL-32-1-65536 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod 7w4z9 \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 65536 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 523264.0 \n",
+ "[OVERALL].Throughput(ops/sec) 57332.436399 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 122.875 \n",
+ "[CLEANUP].MinLatency(us) 70.0 \n",
+ "[CLEANUP].MaxLatency(us) 343.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 168.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 343.0 \n",
+ "[READ].Operations 15003790 \n",
+ "[READ].AverageLatency(us) 419.172145 \n",
+ "[READ].MinLatency(us) 89.0 \n",
+ "[READ].MaxLatency(us) 18235391.0 \n",
+ "[READ].95thPercentileLatency(us) 774.0 \n",
+ "[READ].99thPercentileLatency(us) 2289.0 \n",
+ "[READ].Return=OK 15003790 \n",
+ "[UPDATE].Operations 14996210 \n",
+ "[UPDATE].AverageLatency(us) 644.1249 \n",
+ "[UPDATE].MinLatency(us) 93.0 \n",
+ "[UPDATE].MaxLatency(us) 20774911.0 \n",
+ "[UPDATE].95thPercentileLatency(us) 1075.0 \n",
+ "[UPDATE].99thPercentileLatency(us) 3657.0 \n",
+ "[UPDATE].Return=OK 14996210 \n",
+ "\n",
+ " PostgreSQL-32-8-65536-1 \\\n",
+ "connection PostgreSQL-32-8-65536-1 \n",
+ "configuration PostgreSQL-32-8-65536 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod 5spjql25nllrgp7nws4xrh8zlvc88wwp69bz58tr \n",
+ "pod_count 8 \n",
+ "threads 32 \n",
+ "target 65536 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 525847.0 \n",
+ "[OVERALL].Throughput(ops/sec) 57515.975815 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 170.875 \n",
+ "[CLEANUP].MinLatency(us) 62.0 \n",
+ "[CLEANUP].MaxLatency(us) 608.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 608.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 608.0 \n",
+ "[READ].Operations 15001673 \n",
+ "[READ].AverageLatency(us) 450.779241 \n",
+ "[READ].MinLatency(us) 89.0 \n",
+ "[READ].MaxLatency(us) 21004287.0 \n",
+ "[READ].95thPercentileLatency(us) 831.0 \n",
+ "[READ].99thPercentileLatency(us) 3101.0 \n",
+ "[READ].Return=OK 15001673 \n",
+ "[UPDATE].Operations 14998327 \n",
+ "[UPDATE].AverageLatency(us) 618.497339 \n",
+ "[UPDATE].MinLatency(us) 100.0 \n",
+ "[UPDATE].MaxLatency(us) 21069823.0 \n",
+ "[UPDATE].95thPercentileLatency(us) 1096.0 \n",
+ "[UPDATE].99thPercentileLatency(us) 3931.0 \n",
+ "[UPDATE].Return=OK 14998327 \n",
+ "\n",
+ " PostgreSQL-32-1-81920-1 \\\n",
+ "connection PostgreSQL-32-1-81920-1 \n",
+ "configuration PostgreSQL-32-1-81920 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod chmc5 \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 81920 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 521007.0 \n",
+ "[OVERALL].Throughput(ops/sec) 57580.800258 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 138.46875 \n",
+ "[CLEANUP].MinLatency(us) 64.0 \n",
+ "[CLEANUP].MaxLatency(us) 938.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 175.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 938.0 \n",
+ "[READ].Operations 14998146 \n",
+ "[READ].AverageLatency(us) 432.829566 \n",
+ "[READ].MinLatency(us) 85.0 \n",
+ "[READ].MaxLatency(us) 20709375.0 \n",
+ "[READ].95thPercentileLatency(us) 788.0 \n",
+ "[READ].99thPercentileLatency(us) 2355.0 \n",
+ "[READ].Return=OK 14998146 \n",
+ "[UPDATE].Operations 15001854 \n",
+ "[UPDATE].AverageLatency(us) 630.408114 \n",
+ "[UPDATE].MinLatency(us) 93.0 \n",
+ "[UPDATE].MaxLatency(us) 20758527.0 \n",
+ "[UPDATE].95thPercentileLatency(us) 1115.0 \n",
+ "[UPDATE].99thPercentileLatency(us) 3731.0 \n",
+ "[UPDATE].Return=OK 15001854 \n",
+ "\n",
+ " PostgreSQL-32-8-81920-1 \\\n",
+ "connection PostgreSQL-32-8-81920-1 \n",
+ "configuration PostgreSQL-32-8-81920 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod 9hk6b9wm6bb7bh7kfjzhkrdkbtt4fmvhthfxn2w5 \n",
+ "pod_count 8 \n",
+ "threads 32 \n",
+ "target 81920 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 532786.0 \n",
+ "[OVERALL].Throughput(ops/sec) 58539.257066 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 170.65625 \n",
+ "[CLEANUP].MinLatency(us) 65.0 \n",
+ "[CLEANUP].MaxLatency(us) 683.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 683.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 683.0 \n",
+ "[READ].Operations 14998594 \n",
+ "[READ].AverageLatency(us) 442.564595 \n",
+ "[READ].MinLatency(us) 91.0 \n",
+ "[READ].MaxLatency(us) 20627455.0 \n",
+ "[READ].95thPercentileLatency(us) 921.0 \n",
+ "[READ].99thPercentileLatency(us) 2325.0 \n",
+ "[READ].Return=OK 14998594 \n",
+ "[UPDATE].Operations 15001406 \n",
+ "[UPDATE].AverageLatency(us) 606.642677 \n",
+ "[UPDATE].MinLatency(us) 98.0 \n",
+ "[UPDATE].MaxLatency(us) 20955135.0 \n",
+ "[UPDATE].95thPercentileLatency(us) 1088.0 \n",
+ "[UPDATE].99thPercentileLatency(us) 3395.0 \n",
+ "[UPDATE].Return=OK 15001406 \n",
+ "\n",
+ " PostgreSQL-32-1-98304-1 \\\n",
+ "connection PostgreSQL-32-1-98304-1 \n",
+ "configuration PostgreSQL-32-1-98304 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod 7lqx2 \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 98304 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 514630.0 \n",
+ "[OVERALL].Throughput(ops/sec) 58294.308532 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 126.4375 \n",
+ "[CLEANUP].MinLatency(us) 64.0 \n",
+ "[CLEANUP].MaxLatency(us) 377.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 187.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 377.0 \n",
+ "[READ].Operations 15004063 \n",
+ "[READ].AverageLatency(us) 424.969676 \n",
+ "[READ].MinLatency(us) 86.0 \n",
+ "[READ].MaxLatency(us) 18776063.0 \n",
+ "[READ].95thPercentileLatency(us) 757.0 \n",
+ "[READ].99thPercentileLatency(us) 2301.0 \n",
+ "[READ].Return=OK 15004063 \n",
+ "[UPDATE].Operations 14995937 \n",
+ "[UPDATE].AverageLatency(us) 620.081984 \n",
+ "[UPDATE].MinLatency(us) 93.0 \n",
+ "[UPDATE].MaxLatency(us) 18956287.0 \n",
+ "[UPDATE].95thPercentileLatency(us) 1065.0 \n",
+ "[UPDATE].99thPercentileLatency(us) 3641.0 \n",
+ "[UPDATE].Return=OK 14995937 \n",
+ "\n",
+ " PostgreSQL-32-8-98304-1 \\\n",
+ "connection PostgreSQL-32-8-98304-1 \n",
+ "configuration PostgreSQL-32-8-98304 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod 45zhrbhvd9k4r5rkq9kfmlt4brksk7vn5b4wjjww \n",
+ "pod_count 8 \n",
+ "threads 32 \n",
+ "target 98304 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 525430.0 \n",
+ "[OVERALL].Throughput(ops/sec) 57996.79243 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 211.28125 \n",
+ "[CLEANUP].MinLatency(us) 61.0 \n",
+ "[CLEANUP].MaxLatency(us) 1324.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 1324.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 1324.0 \n",
+ "[READ].Operations 15001919 \n",
+ "[READ].AverageLatency(us) 443.003051 \n",
+ "[READ].MinLatency(us) 91.0 \n",
+ "[READ].MaxLatency(us) 18415615.0 \n",
+ "[READ].95thPercentileLatency(us) 861.0 \n",
+ "[READ].99thPercentileLatency(us) 2543.0 \n",
+ "[READ].Return=OK 15001919 \n",
+ "[UPDATE].Operations 14998081 \n",
+ "[UPDATE].AverageLatency(us) 614.653123 \n",
+ "[UPDATE].MinLatency(us) 98.0 \n",
+ "[UPDATE].MaxLatency(us) 18956287.0 \n",
+ "[UPDATE].95thPercentileLatency(us) 1086.0 \n",
+ "[UPDATE].99thPercentileLatency(us) 3613.0 \n",
+ "[UPDATE].Return=OK 14998081 \n",
+ "\n",
+ " PostgreSQL-32-1-114688-1 \\\n",
+ "connection PostgreSQL-32-1-114688-1 \n",
+ "configuration PostgreSQL-32-1-114688 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod mwnxg \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 114688 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 515631.0 \n",
+ "[OVERALL].Throughput(ops/sec) 58181.141165 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 104.75 \n",
+ "[CLEANUP].MinLatency(us) 60.0 \n",
+ "[CLEANUP].MaxLatency(us) 305.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 178.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 305.0 \n",
+ "[READ].Operations 14999034 \n",
+ "[READ].AverageLatency(us) 414.153399 \n",
+ "[READ].MinLatency(us) 86.0 \n",
+ "[READ].MaxLatency(us) 20905983.0 \n",
+ "[READ].95thPercentileLatency(us) 762.0 \n",
+ "[READ].99thPercentileLatency(us) 2147.0 \n",
+ "[READ].Return=OK 14999034 \n",
+ "[UPDATE].Operations 15000966 \n",
+ "[UPDATE].AverageLatency(us) 635.884341 \n",
+ "[UPDATE].MinLatency(us) 95.0 \n",
+ "[UPDATE].MaxLatency(us) 20987903.0 \n",
+ "[UPDATE].95thPercentileLatency(us) 1041.0 \n",
+ "[UPDATE].99thPercentileLatency(us) 3383.0 \n",
+ "[UPDATE].Return=OK 15000966 \n",
+ "\n",
+ " PostgreSQL-32-8-114688-1 \\\n",
+ "connection PostgreSQL-32-8-114688-1 \n",
+ "configuration PostgreSQL-32-8-114688 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod 2jq828tw89fzvfvhg76gjwcxmknc8qkp9r9sf8fh \n",
+ "pod_count 8 \n",
+ "threads 32 \n",
+ "target 114688 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 522245.0 \n",
+ "[OVERALL].Throughput(ops/sec) 58176.917093 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 164.15625 \n",
+ "[CLEANUP].MinLatency(us) 65.0 \n",
+ "[CLEANUP].MaxLatency(us) 420.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 420.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 420.0 \n",
+ "[READ].Operations 14998806 \n",
+ "[READ].AverageLatency(us) 462.604994 \n",
+ "[READ].MinLatency(us) 91.0 \n",
+ "[READ].MaxLatency(us) 20168703.0 \n",
+ "[READ].95thPercentileLatency(us) 864.0 \n",
+ "[READ].99thPercentileLatency(us) 2779.0 \n",
+ "[READ].Return=OK 14998806 \n",
+ "[UPDATE].Operations 15001194 \n",
+ "[UPDATE].AverageLatency(us) 597.361598 \n",
+ "[UPDATE].MinLatency(us) 96.0 \n",
+ "[UPDATE].MaxLatency(us) 20299775.0 \n",
+ "[UPDATE].95thPercentileLatency(us) 1076.0 \n",
+ "[UPDATE].99thPercentileLatency(us) 3871.0 \n",
+ "[UPDATE].Return=OK 15001194 \n",
+ "\n",
+ " PostgreSQL-32-1-131072-1 \\\n",
+ "connection PostgreSQL-32-1-131072-1 \n",
+ "configuration PostgreSQL-32-1-131072 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod zp9vj \n",
+ "pod_count 1 \n",
+ "threads 32 \n",
+ "target 131072 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 521364.0 \n",
+ "[OVERALL].Throughput(ops/sec) 57541.372247 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 97.0625 \n",
+ "[CLEANUP].MinLatency(us) 62.0 \n",
+ "[CLEANUP].MaxLatency(us) 305.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 132.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 305.0 \n",
+ "[READ].Operations 15000437 \n",
+ "[READ].AverageLatency(us) 418.644577 \n",
+ "[READ].MinLatency(us) 86.0 \n",
+ "[READ].MaxLatency(us) 20856831.0 \n",
+ "[READ].95thPercentileLatency(us) 750.0 \n",
+ "[READ].99thPercentileLatency(us) 2287.0 \n",
+ "[READ].Return=OK 15000437 \n",
+ "[UPDATE].Operations 14999563 \n",
+ "[UPDATE].AverageLatency(us) 647.170531 \n",
+ "[UPDATE].MinLatency(us) 94.0 \n",
+ "[UPDATE].MaxLatency(us) 20889599.0 \n",
+ "[UPDATE].95thPercentileLatency(us) 1061.0 \n",
+ "[UPDATE].99thPercentileLatency(us) 3619.0 \n",
+ "[UPDATE].Return=OK 14999563 \n",
+ "\n",
+ " PostgreSQL-32-8-131072-1 \n",
+ "connection PostgreSQL-32-8-131072-1 \n",
+ "configuration PostgreSQL-32-8-131072 \n",
+ "experiment_run 1 \n",
+ "client 1 \n",
+ "pod 6zf7s82tzjcdlljdxbqhfg7g6g2lp7gtfsxqkjzm \n",
+ "pod_count 8 \n",
+ "threads 32 \n",
+ "target 131072 \n",
+ "sf 30 \n",
+ "workload a \n",
+ "operations 30000000 \n",
+ "batchsize -1.0 \n",
+ "[OVERALL].RunTime(ms) 513763.0 \n",
+ "[OVERALL].Throughput(ops/sec) 59503.634165 \n",
+ "[CLEANUP].Operations 32 \n",
+ "[CLEANUP].AverageLatency(us) 164.84375 \n",
+ "[CLEANUP].MinLatency(us) 64.0 \n",
+ "[CLEANUP].MaxLatency(us) 536.0 \n",
+ "[CLEANUP].95thPercentileLatency(us) 536.0 \n",
+ "[CLEANUP].99thPercentileLatency(us) 536.0 \n",
+ "[READ].Operations 14997372 \n",
+ "[READ].AverageLatency(us) 447.964995 \n",
+ "[READ].MinLatency(us) 90.0 \n",
+ "[READ].MaxLatency(us) 20316159.0 \n",
+ "[READ].95thPercentileLatency(us) 790.0 \n",
+ "[READ].99thPercentileLatency(us) 2471.0 \n",
+ "[READ].Return=OK 14997372 \n",
+ "[UPDATE].Operations 15002628 \n",
+ "[UPDATE].AverageLatency(us) 588.318033 \n",
+ "[UPDATE].MinLatency(us) 93.0 \n",
+ "[UPDATE].MaxLatency(us) 20250623.0 \n",
+ "[UPDATE].95thPercentileLatency(us) 987.0 \n",
+ "[UPDATE].99thPercentileLatency(us) 3445.0 \n",
+ "[UPDATE].Return=OK 15002628 "
+ ]
+ },
+ "execution_count": 37,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_df_benchmarking()\n",
+ "df.fillna(0, inplace=True)\n",
+ "#df.drop(df[df['[READ].Operations'] == 0].index, inplace=True)\n",
+ "#df.drop(df[df['[READ].Return=OK'] == 0].index, inplace=True)\n",
+ "df_plot = evaluation.benchmarking_set_datatypes(df)\n",
+ "df_aggregated = evaluation.benchmarking_aggregate_by_parallel_pods(df_plot)\n",
+ "df_aggregated.sort_values('target', inplace=True)\n",
+ "df_aggregated.T"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Group by Connection"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " experiment_run \n",
+ " client \n",
+ " pod_count \n",
+ " threads \n",
+ " target \n",
+ " sf \n",
+ " operations \n",
+ " batchsize \n",
+ " [OVERALL].RunTime(ms) \n",
+ " [OVERALL].Throughput(ops/sec) \n",
+ " ... \n",
+ " [CLEANUP].MaxLatency(us) \n",
+ " [CLEANUP].95thPercentileLatency(us) \n",
+ " [CLEANUP].99thPercentileLatency(us) \n",
+ " [UPDATE].Operations \n",
+ " [UPDATE].AverageLatency(us) \n",
+ " [UPDATE].MinLatency(us) \n",
+ " [UPDATE].MaxLatency(us) \n",
+ " [UPDATE].95thPercentileLatency(us) \n",
+ " [UPDATE].99thPercentileLatency(us) \n",
+ " [UPDATE].Return=OK \n",
+ " \n",
+ " \n",
+ " connection \n",
+ " pod \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-114688-1 \n",
+ " mwnxg \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 32 \n",
+ " 114688 \n",
+ " 30 \n",
+ " 30000000 \n",
+ " -1 \n",
+ " 515631.0 \n",
+ " 58181.141165 \n",
+ " ... \n",
+ " 305.0 \n",
+ " 178.0 \n",
+ " 305.0 \n",
+ " 15000966 \n",
+ " 635.884341 \n",
+ " 95.0 \n",
+ " 20987903.0 \n",
+ " 1041.0 \n",
+ " 3383.0 \n",
+ " 15000966 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-131072-1 \n",
+ " zp9vj \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 32 \n",
+ " 131072 \n",
+ " 30 \n",
+ " 30000000 \n",
+ " -1 \n",
+ " 521364.0 \n",
+ " 57541.372247 \n",
+ " ... \n",
+ " 305.0 \n",
+ " 132.0 \n",
+ " 305.0 \n",
+ " 14999563 \n",
+ " 647.170531 \n",
+ " 94.0 \n",
+ " 20889599.0 \n",
+ " 1061.0 \n",
+ " 3619.0 \n",
+ " 14999563 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-16384-1 \n",
+ " dpz6r \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 32 \n",
+ " 16384 \n",
+ " 30 \n",
+ " 30000000 \n",
+ " -1 \n",
+ " 1831314.0 \n",
+ " 16381.680040 \n",
+ " ... \n",
+ " 269.0 \n",
+ " 170.0 \n",
+ " 269.0 \n",
+ " 14999798 \n",
+ " 260.757995 \n",
+ " 102.0 \n",
+ " 67071.0 \n",
+ " 434.0 \n",
+ " 573.0 \n",
+ " 14999798 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-32768-1 \n",
+ " k6vs7 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 32 \n",
+ " 32768 \n",
+ " 30 \n",
+ " 30000000 \n",
+ " -1 \n",
+ " 915761.0 \n",
+ " 32759.639251 \n",
+ " ... \n",
+ " 651.0 \n",
+ " 343.0 \n",
+ " 651.0 \n",
+ " 15000722 \n",
+ " 262.927871 \n",
+ " 101.0 \n",
+ " 722943.0 \n",
+ " 415.0 \n",
+ " 580.0 \n",
+ " 15000722 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-49152-1 \n",
+ " klpvs \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 32 \n",
+ " 49152 \n",
+ " 30 \n",
+ " 30000000 \n",
+ " -1 \n",
+ " 657683.0 \n",
+ " 45614.680629 \n",
+ " ... \n",
+ " 2655.0 \n",
+ " 146.0 \n",
+ " 2655.0 \n",
+ " 14998304 \n",
+ " 454.032034 \n",
+ " 93.0 \n",
+ " 18235391.0 \n",
+ " 535.0 \n",
+ " 1687.0 \n",
+ " 14998304 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-65536-1 \n",
+ " 7w4z9 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 32 \n",
+ " 65536 \n",
+ " 30 \n",
+ " 30000000 \n",
+ " -1 \n",
+ " 523264.0 \n",
+ " 57332.436399 \n",
+ " ... \n",
+ " 343.0 \n",
+ " 168.0 \n",
+ " 343.0 \n",
+ " 14996210 \n",
+ " 644.124900 \n",
+ " 93.0 \n",
+ " 20774911.0 \n",
+ " 1075.0 \n",
+ " 3657.0 \n",
+ " 14996210 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-81920-1 \n",
+ " chmc5 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 32 \n",
+ " 81920 \n",
+ " 30 \n",
+ " 30000000 \n",
+ " -1 \n",
+ " 521007.0 \n",
+ " 57580.800258 \n",
+ " ... \n",
+ " 938.0 \n",
+ " 175.0 \n",
+ " 938.0 \n",
+ " 15001854 \n",
+ " 630.408114 \n",
+ " 93.0 \n",
+ " 20758527.0 \n",
+ " 1115.0 \n",
+ " 3731.0 \n",
+ " 15001854 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-1-98304-1 \n",
+ " 7lqx2 \n",
+ " 1 \n",
+ " 1 \n",
+ " 1 \n",
+ " 32 \n",
+ " 98304 \n",
+ " 30 \n",
+ " 30000000 \n",
+ " -1 \n",
+ " 514630.0 \n",
+ " 58294.308532 \n",
+ " ... \n",
+ " 377.0 \n",
+ " 187.0 \n",
+ " 377.0 \n",
+ " 14995937 \n",
+ " 620.081984 \n",
+ " 93.0 \n",
+ " 18956287.0 \n",
+ " 1065.0 \n",
+ " 3641.0 \n",
+ " 14995937 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-114688-1 \n",
+ " 2jq82 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 520977.0 \n",
+ " 7198.014500 \n",
+ " ... \n",
+ " 420.0 \n",
+ " 420.0 \n",
+ " 420.0 \n",
+ " 1874504 \n",
+ " 569.857987 \n",
+ " 99.0 \n",
+ " 20135935.0 \n",
+ " 1010.0 \n",
+ " 3501.0 \n",
+ " 1874504 \n",
+ " \n",
+ " \n",
+ " 8tw89 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 522245.0 \n",
+ " 7180.537870 \n",
+ " ... \n",
+ " 352.0 \n",
+ " 352.0 \n",
+ " 352.0 \n",
+ " 1877114 \n",
+ " 599.267765 \n",
+ " 96.0 \n",
+ " 18825215.0 \n",
+ " 1047.0 \n",
+ " 3589.0 \n",
+ " 1877114 \n",
+ " \n",
+ " \n",
+ " fzvfv \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 518308.0 \n",
+ " 7235.080300 \n",
+ " ... \n",
+ " 324.0 \n",
+ " 324.0 \n",
+ " 324.0 \n",
+ " 1875507 \n",
+ " 583.797519 \n",
+ " 105.0 \n",
+ " 13819903.0 \n",
+ " 1076.0 \n",
+ " 3627.0 \n",
+ " 1875507 \n",
+ " \n",
+ " \n",
+ " hg76g \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 499907.0 \n",
+ " 7501.395260 \n",
+ " ... \n",
+ " 282.0 \n",
+ " 282.0 \n",
+ " 282.0 \n",
+ " 1873433 \n",
+ " 598.484479 \n",
+ " 105.0 \n",
+ " 20119551.0 \n",
+ " 1020.0 \n",
+ " 3705.0 \n",
+ " 1873433 \n",
+ " \n",
+ " \n",
+ " jwcxm \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 514709.0 \n",
+ " 7285.670155 \n",
+ " ... \n",
+ " 335.0 \n",
+ " 335.0 \n",
+ " 335.0 \n",
+ " 1874515 \n",
+ " 588.496871 \n",
+ " 108.0 \n",
+ " 13819903.0 \n",
+ " 1063.0 \n",
+ " 3871.0 \n",
+ " 1874515 \n",
+ " \n",
+ " \n",
+ " knc8q \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 518773.0 \n",
+ " 7228.595166 \n",
+ " ... \n",
+ " 374.0 \n",
+ " 374.0 \n",
+ " 374.0 \n",
+ " 1875905 \n",
+ " 634.300144 \n",
+ " 98.0 \n",
+ " 20103167.0 \n",
+ " 997.0 \n",
+ " 3533.0 \n",
+ " 1875905 \n",
+ " \n",
+ " \n",
+ " kp9r9 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 515101.0 \n",
+ " 7280.125645 \n",
+ " ... \n",
+ " 408.0 \n",
+ " 408.0 \n",
+ " 408.0 \n",
+ " 1875886 \n",
+ " 588.626170 \n",
+ " 105.0 \n",
+ " 18530303.0 \n",
+ " 999.0 \n",
+ " 3651.0 \n",
+ " 1875886 \n",
+ " \n",
+ " \n",
+ " sf8fh \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 14336 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 515996.0 \n",
+ " 7267.498198 \n",
+ " ... \n",
+ " 301.0 \n",
+ " 301.0 \n",
+ " 301.0 \n",
+ " 1874330 \n",
+ " 616.061852 \n",
+ " 112.0 \n",
+ " 20299775.0 \n",
+ " 1029.0 \n",
+ " 3697.0 \n",
+ " 1874330 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-131072-1 \n",
+ " 6zf7s \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 487554.0 \n",
+ " 7691.455716 \n",
+ " ... \n",
+ " 536.0 \n",
+ " 536.0 \n",
+ " 536.0 \n",
+ " 1875599 \n",
+ " 556.295206 \n",
+ " 105.0 \n",
+ " 13787135.0 \n",
+ " 961.0 \n",
+ " 3445.0 \n",
+ " 1875599 \n",
+ " \n",
+ " \n",
+ " 82tzj \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 512945.0 \n",
+ " 7310.725321 \n",
+ " ... \n",
+ " 358.0 \n",
+ " 358.0 \n",
+ " 358.0 \n",
+ " 1874712 \n",
+ " 614.491262 \n",
+ " 97.0 \n",
+ " 18939903.0 \n",
+ " 976.0 \n",
+ " 3417.0 \n",
+ " 1874712 \n",
+ " \n",
+ " \n",
+ " cdllj \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 502692.0 \n",
+ " 7459.836242 \n",
+ " ... \n",
+ " 311.0 \n",
+ " 311.0 \n",
+ " 311.0 \n",
+ " 1875603 \n",
+ " 584.949657 \n",
+ " 111.0 \n",
+ " 18399231.0 \n",
+ " 909.0 \n",
+ " 3303.0 \n",
+ " 1875603 \n",
+ " \n",
+ " \n",
+ " dxbqh \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 510550.0 \n",
+ " 7345.020076 \n",
+ " ... \n",
+ " 340.0 \n",
+ " 340.0 \n",
+ " 340.0 \n",
+ " 1873868 \n",
+ " 602.965952 \n",
+ " 106.0 \n",
+ " 20185087.0 \n",
+ " 912.0 \n",
+ " 3287.0 \n",
+ " 1873868 \n",
+ " \n",
+ " \n",
+ " fg7g6 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 508747.0 \n",
+ " 7371.050837 \n",
+ " ... \n",
+ " 376.0 \n",
+ " 376.0 \n",
+ " 376.0 \n",
+ " 1876344 \n",
+ " 587.999810 \n",
+ " 103.0 \n",
+ " 20250623.0 \n",
+ " 923.0 \n",
+ " 3303.0 \n",
+ " 1876344 \n",
+ " \n",
+ " \n",
+ " g2lp7 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 511584.0 \n",
+ " 7330.174517 \n",
+ " ... \n",
+ " 342.0 \n",
+ " 342.0 \n",
+ " 342.0 \n",
+ " 1875315 \n",
+ " 599.226824 \n",
+ " 96.0 \n",
+ " 18481151.0 \n",
+ " 987.0 \n",
+ " 3435.0 \n",
+ " 1875315 \n",
+ " \n",
+ " \n",
+ " gtfsx \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 513763.0 \n",
+ " 7299.085376 \n",
+ " ... \n",
+ " 310.0 \n",
+ " 310.0 \n",
+ " 310.0 \n",
+ " 1875976 \n",
+ " 605.955583 \n",
+ " 93.0 \n",
+ " 13787135.0 \n",
+ " 948.0 \n",
+ " 3279.0 \n",
+ " 1875976 \n",
+ " \n",
+ " \n",
+ " qkjzm \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 16384 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 487248.0 \n",
+ " 7696.286080 \n",
+ " ... \n",
+ " 310.0 \n",
+ " 310.0 \n",
+ " 310.0 \n",
+ " 1875211 \n",
+ " 554.659974 \n",
+ " 108.0 \n",
+ " 18563071.0 \n",
+ " 953.0 \n",
+ " 3395.0 \n",
+ " 1875211 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-16384-1 \n",
+ " 28mm2 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1831372.0 \n",
+ " 2047.645153 \n",
+ " ... \n",
+ " 238.0 \n",
+ " 238.0 \n",
+ " 238.0 \n",
+ " 1873921 \n",
+ " 259.960231 \n",
+ " 108.0 \n",
+ " 88511.0 \n",
+ " 461.0 \n",
+ " 614.0 \n",
+ " 1873921 \n",
+ " \n",
+ " \n",
+ " 6qp9s \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1831557.0 \n",
+ " 2047.438327 \n",
+ " ... \n",
+ " 267.0 \n",
+ " 267.0 \n",
+ " 267.0 \n",
+ " 1875349 \n",
+ " 279.281535 \n",
+ " 111.0 \n",
+ " 130815.0 \n",
+ " 430.0 \n",
+ " 692.0 \n",
+ " 1875349 \n",
+ " \n",
+ " \n",
+ " 77mw4 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1832430.0 \n",
+ " 2046.462894 \n",
+ " ... \n",
+ " 228.0 \n",
+ " 228.0 \n",
+ " 228.0 \n",
+ " 1874880 \n",
+ " 279.843256 \n",
+ " 109.0 \n",
+ " 77247.0 \n",
+ " 503.0 \n",
+ " 648.0 \n",
+ " 1874880 \n",
+ " \n",
+ " \n",
+ " cpwg6 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1831259.0 \n",
+ " 2047.771506 \n",
+ " ... \n",
+ " 244.0 \n",
+ " 244.0 \n",
+ " 244.0 \n",
+ " 1875427 \n",
+ " 269.904560 \n",
+ " 109.0 \n",
+ " 130175.0 \n",
+ " 415.0 \n",
+ " 649.0 \n",
+ " 1875427 \n",
+ " \n",
+ " \n",
+ " cxgj6 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1831962.0 \n",
+ " 2046.985691 \n",
+ " ... \n",
+ " 204.0 \n",
+ " 204.0 \n",
+ " 204.0 \n",
+ " 1875337 \n",
+ " 297.950520 \n",
+ " 109.0 \n",
+ " 76415.0 \n",
+ " 467.0 \n",
+ " 640.0 \n",
+ " 1875337 \n",
+ " \n",
+ " \n",
+ " jpmmp \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1831550.0 \n",
+ " 2047.446152 \n",
+ " ... \n",
+ " 292.0 \n",
+ " 292.0 \n",
+ " 292.0 \n",
+ " 1875014 \n",
+ " 261.791274 \n",
+ " 108.0 \n",
+ " 55775.0 \n",
+ " 398.0 \n",
+ " 625.0 \n",
+ " 1875014 \n",
+ " \n",
+ " \n",
+ " rt4r9 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1832282.0 \n",
+ " 2046.628194 \n",
+ " ... \n",
+ " 230.0 \n",
+ " 230.0 \n",
+ " 230.0 \n",
+ " 1873638 \n",
+ " 291.152009 \n",
+ " 114.0 \n",
+ " 118847.0 \n",
+ " 515.0 \n",
+ " 655.0 \n",
+ " 1873638 \n",
+ " \n",
+ " \n",
+ " tfbqm \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 2048 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 1831729.0 \n",
+ " 2047.246072 \n",
+ " ... \n",
+ " 215.0 \n",
+ " 215.0 \n",
+ " 215.0 \n",
+ " 1875605 \n",
+ " 285.543071 \n",
+ " 113.0 \n",
+ " 127295.0 \n",
+ " 491.0 \n",
+ " 633.0 \n",
+ " 1875605 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-32768-1 \n",
+ " 2pf8r \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 916321.0 \n",
+ " 4092.452317 \n",
+ " ... \n",
+ " 282.0 \n",
+ " 282.0 \n",
+ " 282.0 \n",
+ " 1874112 \n",
+ " 290.050854 \n",
+ " 109.0 \n",
+ " 97407.0 \n",
+ " 454.0 \n",
+ " 946.0 \n",
+ " 1874112 \n",
+ " \n",
+ " \n",
+ " 5szs7 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 916820.0 \n",
+ " 4090.224908 \n",
+ " ... \n",
+ " 236.0 \n",
+ " 236.0 \n",
+ " 236.0 \n",
+ " 1875046 \n",
+ " 295.300415 \n",
+ " 110.0 \n",
+ " 332287.0 \n",
+ " 437.0 \n",
+ " 1008.0 \n",
+ " 1875046 \n",
+ " \n",
+ " \n",
+ " cfgn7 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 916751.0 \n",
+ " 4090.532762 \n",
+ " ... \n",
+ " 260.0 \n",
+ " 260.0 \n",
+ " 260.0 \n",
+ " 1874994 \n",
+ " 304.605591 \n",
+ " 103.0 \n",
+ " 1277951.0 \n",
+ " 471.0 \n",
+ " 971.0 \n",
+ " 1874994 \n",
+ " \n",
+ " \n",
+ " j2j7f \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 916269.0 \n",
+ " 4092.684572 \n",
+ " ... \n",
+ " 324.0 \n",
+ " 324.0 \n",
+ " 324.0 \n",
+ " 1876703 \n",
+ " 312.227578 \n",
+ " 107.0 \n",
+ " 735231.0 \n",
+ " 478.0 \n",
+ " 929.0 \n",
+ " 1876703 \n",
+ " \n",
+ " \n",
+ " lc8b4 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 916220.0 \n",
+ " 4092.903451 \n",
+ " ... \n",
+ " 264.0 \n",
+ " 264.0 \n",
+ " 264.0 \n",
+ " 1873702 \n",
+ " 282.308903 \n",
+ " 105.0 \n",
+ " 159871.0 \n",
+ " 430.0 \n",
+ " 929.0 \n",
+ " 1873702 \n",
+ " \n",
+ " \n",
+ " mt7d6 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 916340.0 \n",
+ " 4092.367462 \n",
+ " ... \n",
+ " 323.0 \n",
+ " 323.0 \n",
+ " 323.0 \n",
+ " 1874082 \n",
+ " 309.469422 \n",
+ " 110.0 \n",
+ " 86015.0 \n",
+ " 508.0 \n",
+ " 823.0 \n",
+ " 1874082 \n",
+ " \n",
+ " \n",
+ " p9tms \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 916454.0 \n",
+ " 4091.858402 \n",
+ " ... \n",
+ " 301.0 \n",
+ " 301.0 \n",
+ " 301.0 \n",
+ " 1875937 \n",
+ " 312.520923 \n",
+ " 109.0 \n",
+ " 539135.0 \n",
+ " 485.0 \n",
+ " 975.0 \n",
+ " 1875937 \n",
+ " \n",
+ " \n",
+ " rt62c \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 4096 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 915726.0 \n",
+ " 4095.111420 \n",
+ " ... \n",
+ " 344.0 \n",
+ " 344.0 \n",
+ " 344.0 \n",
+ " 1876930 \n",
+ " 313.031167 \n",
+ " 111.0 \n",
+ " 270079.0 \n",
+ " 482.0 \n",
+ " 971.0 \n",
+ " 1876930 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-49152-1 \n",
+ " 5wh9k \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 620373.0 \n",
+ " 6044.750497 \n",
+ " ... \n",
+ " 349.0 \n",
+ " 349.0 \n",
+ " 349.0 \n",
+ " 1875039 \n",
+ " 483.460633 \n",
+ " 105.0 \n",
+ " 12902399.0 \n",
+ " 625.0 \n",
+ " 2353.0 \n",
+ " 1875039 \n",
+ " \n",
+ " \n",
+ " 998gf \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 634777.0 \n",
+ " 5907.586444 \n",
+ " ... \n",
+ " 278.0 \n",
+ " 278.0 \n",
+ " 278.0 \n",
+ " 1874709 \n",
+ " 473.292028 \n",
+ " 101.0 \n",
+ " 18120703.0 \n",
+ " 637.0 \n",
+ " 2247.0 \n",
+ " 1874709 \n",
+ " \n",
+ " \n",
+ " ghk57 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 635764.0 \n",
+ " 5898.415135 \n",
+ " ... \n",
+ " 425.0 \n",
+ " 425.0 \n",
+ " 425.0 \n",
+ " 1873652 \n",
+ " 469.840329 \n",
+ " 105.0 \n",
+ " 16007167.0 \n",
+ " 651.0 \n",
+ " 2293.0 \n",
+ " 1873652 \n",
+ " \n",
+ " \n",
+ " rvqs4 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 636295.0 \n",
+ " 5893.492798 \n",
+ " ... \n",
+ " 1652.0 \n",
+ " 1652.0 \n",
+ " 1652.0 \n",
+ " 1875591 \n",
+ " 507.224280 \n",
+ " 105.0 \n",
+ " 18219007.0 \n",
+ " 658.0 \n",
+ " 2231.0 \n",
+ " 1875591 \n",
+ " \n",
+ " \n",
+ " sfzq5 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 635374.0 \n",
+ " 5902.035651 \n",
+ " ... \n",
+ " 304.0 \n",
+ " 304.0 \n",
+ " 304.0 \n",
+ " 1874898 \n",
+ " 494.085958 \n",
+ " 107.0 \n",
+ " 21233663.0 \n",
+ " 654.0 \n",
+ " 2133.0 \n",
+ " 1874898 \n",
+ " \n",
+ " \n",
+ " sgxpf \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 634520.0 \n",
+ " 5909.979197 \n",
+ " ... \n",
+ " 311.0 \n",
+ " 311.0 \n",
+ " 311.0 \n",
+ " 1874523 \n",
+ " 464.176237 \n",
+ " 107.0 \n",
+ " 18382847.0 \n",
+ " 641.0 \n",
+ " 2301.0 \n",
+ " 1874523 \n",
+ " \n",
+ " \n",
+ " tqqdc \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 635739.0 \n",
+ " 5898.647086 \n",
+ " ... \n",
+ " 307.0 \n",
+ " 307.0 \n",
+ " 307.0 \n",
+ " 1874986 \n",
+ " 494.877304 \n",
+ " 101.0 \n",
+ " 14909439.0 \n",
+ " 675.0 \n",
+ " 2257.0 \n",
+ " 1874986 \n",
+ " \n",
+ " \n",
+ " xwgtc \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 6144 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 635196.0 \n",
+ " 5903.689570 \n",
+ " ... \n",
+ " 348.0 \n",
+ " 348.0 \n",
+ " 348.0 \n",
+ " 1876064 \n",
+ " 441.921570 \n",
+ " 105.0 \n",
+ " 14909439.0 \n",
+ " 646.0 \n",
+ " 2269.0 \n",
+ " 1876064 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-65536-1 \n",
+ " 5spjq \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 519071.0 \n",
+ " 7224.445211 \n",
+ " ... \n",
+ " 313.0 \n",
+ " 313.0 \n",
+ " 313.0 \n",
+ " 1875000 \n",
+ " 634.823838 \n",
+ " 100.0 \n",
+ " 21069823.0 \n",
+ " 1046.0 \n",
+ " 3931.0 \n",
+ " 1875000 \n",
+ " \n",
+ " \n",
+ " l25nl \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 523360.0 \n",
+ " 7165.239988 \n",
+ " ... \n",
+ " 301.0 \n",
+ " 301.0 \n",
+ " 301.0 \n",
+ " 1875272 \n",
+ " 620.948668 \n",
+ " 101.0 \n",
+ " 20856831.0 \n",
+ " 1096.0 \n",
+ " 3859.0 \n",
+ " 1875272 \n",
+ " \n",
+ " \n",
+ " lrgp7 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 517747.0 \n",
+ " 7242.919804 \n",
+ " ... \n",
+ " 297.0 \n",
+ " 297.0 \n",
+ " 297.0 \n",
+ " 1875517 \n",
+ " 609.462749 \n",
+ " 103.0 \n",
+ " 20922367.0 \n",
+ " 1087.0 \n",
+ " 3897.0 \n",
+ " 1875517 \n",
+ " \n",
+ " \n",
+ " nws4x \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 520616.0 \n",
+ " 7203.005670 \n",
+ " ... \n",
+ " 332.0 \n",
+ " 332.0 \n",
+ " 332.0 \n",
+ " 1875071 \n",
+ " 622.472328 \n",
+ " 104.0 \n",
+ " 16457727.0 \n",
+ " 1053.0 \n",
+ " 3851.0 \n",
+ " 1875071 \n",
+ " \n",
+ " \n",
+ " rh8zl \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 525847.0 \n",
+ " 7131.351895 \n",
+ " ... \n",
+ " 515.0 \n",
+ " 515.0 \n",
+ " 515.0 \n",
+ " 1875343 \n",
+ " 610.272305 \n",
+ " 100.0 \n",
+ " 20627455.0 \n",
+ " 1018.0 \n",
+ " 3753.0 \n",
+ " 1875343 \n",
+ " \n",
+ " \n",
+ " vc88w \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 523591.0 \n",
+ " 7162.078798 \n",
+ " ... \n",
+ " 608.0 \n",
+ " 608.0 \n",
+ " 608.0 \n",
+ " 1875539 \n",
+ " 628.395195 \n",
+ " 102.0 \n",
+ " 20987903.0 \n",
+ " 1081.0 \n",
+ " 3865.0 \n",
+ " 1875539 \n",
+ " \n",
+ " \n",
+ " wp69b \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 522241.0 \n",
+ " 7180.592868 \n",
+ " ... \n",
+ " 322.0 \n",
+ " 322.0 \n",
+ " 322.0 \n",
+ " 1874271 \n",
+ " 618.117459 \n",
+ " 103.0 \n",
+ " 20905983.0 \n",
+ " 1085.0 \n",
+ " 3907.0 \n",
+ " 1874271 \n",
+ " \n",
+ " \n",
+ " z58tr \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 8192 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 520375.0 \n",
+ " 7206.341581 \n",
+ " ... \n",
+ " 290.0 \n",
+ " 290.0 \n",
+ " 290.0 \n",
+ " 1872314 \n",
+ " 603.486167 \n",
+ " 107.0 \n",
+ " 13221887.0 \n",
+ " 1076.0 \n",
+ " 3917.0 \n",
+ " 1872314 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-81920-1 \n",
+ " 9hk6b \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 512036.0 \n",
+ " 7323.703802 \n",
+ " ... \n",
+ " 302.0 \n",
+ " 302.0 \n",
+ " 302.0 \n",
+ " 1876646 \n",
+ " 621.082813 \n",
+ " 104.0 \n",
+ " 20922367.0 \n",
+ " 954.0 \n",
+ " 3241.0 \n",
+ " 1876646 \n",
+ " \n",
+ " \n",
+ " 9wm6b \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 519087.0 \n",
+ " 7224.222529 \n",
+ " ... \n",
+ " 318.0 \n",
+ " 318.0 \n",
+ " 318.0 \n",
+ " 1874917 \n",
+ " 616.268760 \n",
+ " 104.0 \n",
+ " 20856831.0 \n",
+ " 1026.0 \n",
+ " 3347.0 \n",
+ " 1874917 \n",
+ " \n",
+ " \n",
+ " b7bh7 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 503879.0 \n",
+ " 7442.262924 \n",
+ " ... \n",
+ " 384.0 \n",
+ " 384.0 \n",
+ " 384.0 \n",
+ " 1873757 \n",
+ " 583.579925 \n",
+ " 105.0 \n",
+ " 20496383.0 \n",
+ " 951.0 \n",
+ " 3315.0 \n",
+ " 1873757 \n",
+ " \n",
+ " \n",
+ " kfjzh \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 523228.0 \n",
+ " 7167.047635 \n",
+ " ... \n",
+ " 683.0 \n",
+ " 683.0 \n",
+ " 683.0 \n",
+ " 1874551 \n",
+ " 615.696021 \n",
+ " 102.0 \n",
+ " 20201471.0 \n",
+ " 1009.0 \n",
+ " 3347.0 \n",
+ " 1874551 \n",
+ " \n",
+ " \n",
+ " krdkb \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 492041.0 \n",
+ " 7621.316110 \n",
+ " ... \n",
+ " 412.0 \n",
+ " 412.0 \n",
+ " 412.0 \n",
+ " 1874516 \n",
+ " 578.652579 \n",
+ " 107.0 \n",
+ " 20545535.0 \n",
+ " 1008.0 \n",
+ " 3395.0 \n",
+ " 1874516 \n",
+ " \n",
+ " \n",
+ " tt4fm \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 503374.0 \n",
+ " 7449.729227 \n",
+ " ... \n",
+ " 362.0 \n",
+ " 362.0 \n",
+ " 362.0 \n",
+ " 1875823 \n",
+ " 597.406558 \n",
+ " 113.0 \n",
+ " 20463615.0 \n",
+ " 972.0 \n",
+ " 3363.0 \n",
+ " 1875823 \n",
+ " \n",
+ " \n",
+ " vhthf \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 515641.0 \n",
+ " 7272.501605 \n",
+ " ... \n",
+ " 320.0 \n",
+ " 320.0 \n",
+ " 320.0 \n",
+ " 1875332 \n",
+ " 621.982541 \n",
+ " 105.0 \n",
+ " 20430847.0 \n",
+ " 1007.0 \n",
+ " 3367.0 \n",
+ " 1875332 \n",
+ " \n",
+ " \n",
+ " xn2w5 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 10240 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 532786.0 \n",
+ " 7038.473233 \n",
+ " ... \n",
+ " 335.0 \n",
+ " 335.0 \n",
+ " 335.0 \n",
+ " 1875864 \n",
+ " 618.472218 \n",
+ " 98.0 \n",
+ " 20955135.0 \n",
+ " 1088.0 \n",
+ " 3275.0 \n",
+ " 1875864 \n",
+ " \n",
+ " \n",
+ " PostgreSQL-32-8-98304-1 \n",
+ " 45zhr \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 517972.0 \n",
+ " 7239.773578 \n",
+ " ... \n",
+ " 358.0 \n",
+ " 358.0 \n",
+ " 358.0 \n",
+ " 1874362 \n",
+ " 610.307512 \n",
+ " 105.0 \n",
+ " 18710527.0 \n",
+ " 1032.0 \n",
+ " 3517.0 \n",
+ " 1874362 \n",
+ " \n",
+ " \n",
+ " bhvd9 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 525430.0 \n",
+ " 7137.011591 \n",
+ " ... \n",
+ " 352.0 \n",
+ " 352.0 \n",
+ " 352.0 \n",
+ " 1874785 \n",
+ " 620.062738 \n",
+ " 98.0 \n",
+ " 18956287.0 \n",
+ " 1086.0 \n",
+ " 3495.0 \n",
+ " 1874785 \n",
+ " \n",
+ " \n",
+ " k4r5r \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 510878.0 \n",
+ " 7340.304339 \n",
+ " ... \n",
+ " 304.0 \n",
+ " 304.0 \n",
+ " 304.0 \n",
+ " 1873140 \n",
+ " 592.218152 \n",
+ " 101.0 \n",
+ " 18956287.0 \n",
+ " 1072.0 \n",
+ " 3579.0 \n",
+ " 1873140 \n",
+ " \n",
+ " \n",
+ " kq9kf \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 509697.0 \n",
+ " 7357.312286 \n",
+ " ... \n",
+ " 270.0 \n",
+ " 270.0 \n",
+ " 270.0 \n",
+ " 1876173 \n",
+ " 606.348524 \n",
+ " 114.0 \n",
+ " 18317311.0 \n",
+ " 1011.0 \n",
+ " 3465.0 \n",
+ " 1876173 \n",
+ " \n",
+ " \n",
+ " mlt4b \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 523738.0 \n",
+ " 7160.068584 \n",
+ " ... \n",
+ " 1324.0 \n",
+ " 1324.0 \n",
+ " 1324.0 \n",
+ " 1873546 \n",
+ " 621.741993 \n",
+ " 99.0 \n",
+ " 17874943.0 \n",
+ " 1015.0 \n",
+ " 3449.0 \n",
+ " 1873546 \n",
+ " \n",
+ " \n",
+ " rksk7 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 513476.0 \n",
+ " 7303.165094 \n",
+ " ... \n",
+ " 355.0 \n",
+ " 355.0 \n",
+ " 355.0 \n",
+ " 1876248 \n",
+ " 604.160926 \n",
+ " 107.0 \n",
+ " 18776063.0 \n",
+ " 966.0 \n",
+ " 3267.0 \n",
+ " 1876248 \n",
+ " \n",
+ " \n",
+ " vn5b4 \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 523770.0 \n",
+ " 7159.631136 \n",
+ " ... \n",
+ " 991.0 \n",
+ " 991.0 \n",
+ " 991.0 \n",
+ " 1875485 \n",
+ " 621.688254 \n",
+ " 102.0 \n",
+ " 18759679.0 \n",
+ " 1080.0 \n",
+ " 3613.0 \n",
+ " 1875485 \n",
+ " \n",
+ " \n",
+ " wjjww \n",
+ " 1 \n",
+ " 1 \n",
+ " 8 \n",
+ " 4 \n",
+ " 12288 \n",
+ " 30 \n",
+ " 3750000 \n",
+ " -1 \n",
+ " 513732.0 \n",
+ " 7299.525823 \n",
+ " ... \n",
+ " 299.0 \n",
+ " 299.0 \n",
+ " 299.0 \n",
+ " 1874342 \n",
+ " 640.696887 \n",
+ " 104.0 \n",
+ " 18579455.0 \n",
+ " 1043.0 \n",
+ " 3525.0 \n",
+ " 1874342 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
72 rows Ă— 30 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " experiment_run client pod_count threads \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688-1 mwnxg 1 1 1 32 \n",
+ "PostgreSQL-32-1-131072-1 zp9vj 1 1 1 32 \n",
+ "PostgreSQL-32-1-16384-1 dpz6r 1 1 1 32 \n",
+ "PostgreSQL-32-1-32768-1 k6vs7 1 1 1 32 \n",
+ "PostgreSQL-32-1-49152-1 klpvs 1 1 1 32 \n",
+ "PostgreSQL-32-1-65536-1 7w4z9 1 1 1 32 \n",
+ "PostgreSQL-32-1-81920-1 chmc5 1 1 1 32 \n",
+ "PostgreSQL-32-1-98304-1 7lqx2 1 1 1 32 \n",
+ "PostgreSQL-32-8-114688-1 2jq82 1 1 8 4 \n",
+ " 8tw89 1 1 8 4 \n",
+ " fzvfv 1 1 8 4 \n",
+ " hg76g 1 1 8 4 \n",
+ " jwcxm 1 1 8 4 \n",
+ " knc8q 1 1 8 4 \n",
+ " kp9r9 1 1 8 4 \n",
+ " sf8fh 1 1 8 4 \n",
+ "PostgreSQL-32-8-131072-1 6zf7s 1 1 8 4 \n",
+ " 82tzj 1 1 8 4 \n",
+ " cdllj 1 1 8 4 \n",
+ " dxbqh 1 1 8 4 \n",
+ " fg7g6 1 1 8 4 \n",
+ " g2lp7 1 1 8 4 \n",
+ " gtfsx 1 1 8 4 \n",
+ " qkjzm 1 1 8 4 \n",
+ "PostgreSQL-32-8-16384-1 28mm2 1 1 8 4 \n",
+ " 6qp9s 1 1 8 4 \n",
+ " 77mw4 1 1 8 4 \n",
+ " cpwg6 1 1 8 4 \n",
+ " cxgj6 1 1 8 4 \n",
+ " jpmmp 1 1 8 4 \n",
+ " rt4r9 1 1 8 4 \n",
+ " tfbqm 1 1 8 4 \n",
+ "PostgreSQL-32-8-32768-1 2pf8r 1 1 8 4 \n",
+ " 5szs7 1 1 8 4 \n",
+ " cfgn7 1 1 8 4 \n",
+ " j2j7f 1 1 8 4 \n",
+ " lc8b4 1 1 8 4 \n",
+ " mt7d6 1 1 8 4 \n",
+ " p9tms 1 1 8 4 \n",
+ " rt62c 1 1 8 4 \n",
+ "PostgreSQL-32-8-49152-1 5wh9k 1 1 8 4 \n",
+ " 998gf 1 1 8 4 \n",
+ " ghk57 1 1 8 4 \n",
+ " rvqs4 1 1 8 4 \n",
+ " sfzq5 1 1 8 4 \n",
+ " sgxpf 1 1 8 4 \n",
+ " tqqdc 1 1 8 4 \n",
+ " xwgtc 1 1 8 4 \n",
+ "PostgreSQL-32-8-65536-1 5spjq 1 1 8 4 \n",
+ " l25nl 1 1 8 4 \n",
+ " lrgp7 1 1 8 4 \n",
+ " nws4x 1 1 8 4 \n",
+ " rh8zl 1 1 8 4 \n",
+ " vc88w 1 1 8 4 \n",
+ " wp69b 1 1 8 4 \n",
+ " z58tr 1 1 8 4 \n",
+ "PostgreSQL-32-8-81920-1 9hk6b 1 1 8 4 \n",
+ " 9wm6b 1 1 8 4 \n",
+ " b7bh7 1 1 8 4 \n",
+ " kfjzh 1 1 8 4 \n",
+ " krdkb 1 1 8 4 \n",
+ " tt4fm 1 1 8 4 \n",
+ " vhthf 1 1 8 4 \n",
+ " xn2w5 1 1 8 4 \n",
+ "PostgreSQL-32-8-98304-1 45zhr 1 1 8 4 \n",
+ " bhvd9 1 1 8 4 \n",
+ " k4r5r 1 1 8 4 \n",
+ " kq9kf 1 1 8 4 \n",
+ " mlt4b 1 1 8 4 \n",
+ " rksk7 1 1 8 4 \n",
+ " vn5b4 1 1 8 4 \n",
+ " wjjww 1 1 8 4 \n",
+ "\n",
+ " target sf operations batchsize \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688-1 mwnxg 114688 30 30000000 -1 \n",
+ "PostgreSQL-32-1-131072-1 zp9vj 131072 30 30000000 -1 \n",
+ "PostgreSQL-32-1-16384-1 dpz6r 16384 30 30000000 -1 \n",
+ "PostgreSQL-32-1-32768-1 k6vs7 32768 30 30000000 -1 \n",
+ "PostgreSQL-32-1-49152-1 klpvs 49152 30 30000000 -1 \n",
+ "PostgreSQL-32-1-65536-1 7w4z9 65536 30 30000000 -1 \n",
+ "PostgreSQL-32-1-81920-1 chmc5 81920 30 30000000 -1 \n",
+ "PostgreSQL-32-1-98304-1 7lqx2 98304 30 30000000 -1 \n",
+ "PostgreSQL-32-8-114688-1 2jq82 14336 30 3750000 -1 \n",
+ " 8tw89 14336 30 3750000 -1 \n",
+ " fzvfv 14336 30 3750000 -1 \n",
+ " hg76g 14336 30 3750000 -1 \n",
+ " jwcxm 14336 30 3750000 -1 \n",
+ " knc8q 14336 30 3750000 -1 \n",
+ " kp9r9 14336 30 3750000 -1 \n",
+ " sf8fh 14336 30 3750000 -1 \n",
+ "PostgreSQL-32-8-131072-1 6zf7s 16384 30 3750000 -1 \n",
+ " 82tzj 16384 30 3750000 -1 \n",
+ " cdllj 16384 30 3750000 -1 \n",
+ " dxbqh 16384 30 3750000 -1 \n",
+ " fg7g6 16384 30 3750000 -1 \n",
+ " g2lp7 16384 30 3750000 -1 \n",
+ " gtfsx 16384 30 3750000 -1 \n",
+ " qkjzm 16384 30 3750000 -1 \n",
+ "PostgreSQL-32-8-16384-1 28mm2 2048 30 3750000 -1 \n",
+ " 6qp9s 2048 30 3750000 -1 \n",
+ " 77mw4 2048 30 3750000 -1 \n",
+ " cpwg6 2048 30 3750000 -1 \n",
+ " cxgj6 2048 30 3750000 -1 \n",
+ " jpmmp 2048 30 3750000 -1 \n",
+ " rt4r9 2048 30 3750000 -1 \n",
+ " tfbqm 2048 30 3750000 -1 \n",
+ "PostgreSQL-32-8-32768-1 2pf8r 4096 30 3750000 -1 \n",
+ " 5szs7 4096 30 3750000 -1 \n",
+ " cfgn7 4096 30 3750000 -1 \n",
+ " j2j7f 4096 30 3750000 -1 \n",
+ " lc8b4 4096 30 3750000 -1 \n",
+ " mt7d6 4096 30 3750000 -1 \n",
+ " p9tms 4096 30 3750000 -1 \n",
+ " rt62c 4096 30 3750000 -1 \n",
+ "PostgreSQL-32-8-49152-1 5wh9k 6144 30 3750000 -1 \n",
+ " 998gf 6144 30 3750000 -1 \n",
+ " ghk57 6144 30 3750000 -1 \n",
+ " rvqs4 6144 30 3750000 -1 \n",
+ " sfzq5 6144 30 3750000 -1 \n",
+ " sgxpf 6144 30 3750000 -1 \n",
+ " tqqdc 6144 30 3750000 -1 \n",
+ " xwgtc 6144 30 3750000 -1 \n",
+ "PostgreSQL-32-8-65536-1 5spjq 8192 30 3750000 -1 \n",
+ " l25nl 8192 30 3750000 -1 \n",
+ " lrgp7 8192 30 3750000 -1 \n",
+ " nws4x 8192 30 3750000 -1 \n",
+ " rh8zl 8192 30 3750000 -1 \n",
+ " vc88w 8192 30 3750000 -1 \n",
+ " wp69b 8192 30 3750000 -1 \n",
+ " z58tr 8192 30 3750000 -1 \n",
+ "PostgreSQL-32-8-81920-1 9hk6b 10240 30 3750000 -1 \n",
+ " 9wm6b 10240 30 3750000 -1 \n",
+ " b7bh7 10240 30 3750000 -1 \n",
+ " kfjzh 10240 30 3750000 -1 \n",
+ " krdkb 10240 30 3750000 -1 \n",
+ " tt4fm 10240 30 3750000 -1 \n",
+ " vhthf 10240 30 3750000 -1 \n",
+ " xn2w5 10240 30 3750000 -1 \n",
+ "PostgreSQL-32-8-98304-1 45zhr 12288 30 3750000 -1 \n",
+ " bhvd9 12288 30 3750000 -1 \n",
+ " k4r5r 12288 30 3750000 -1 \n",
+ " kq9kf 12288 30 3750000 -1 \n",
+ " mlt4b 12288 30 3750000 -1 \n",
+ " rksk7 12288 30 3750000 -1 \n",
+ " vn5b4 12288 30 3750000 -1 \n",
+ " wjjww 12288 30 3750000 -1 \n",
+ "\n",
+ " [OVERALL].RunTime(ms) \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688-1 mwnxg 515631.0 \n",
+ "PostgreSQL-32-1-131072-1 zp9vj 521364.0 \n",
+ "PostgreSQL-32-1-16384-1 dpz6r 1831314.0 \n",
+ "PostgreSQL-32-1-32768-1 k6vs7 915761.0 \n",
+ "PostgreSQL-32-1-49152-1 klpvs 657683.0 \n",
+ "PostgreSQL-32-1-65536-1 7w4z9 523264.0 \n",
+ "PostgreSQL-32-1-81920-1 chmc5 521007.0 \n",
+ "PostgreSQL-32-1-98304-1 7lqx2 514630.0 \n",
+ "PostgreSQL-32-8-114688-1 2jq82 520977.0 \n",
+ " 8tw89 522245.0 \n",
+ " fzvfv 518308.0 \n",
+ " hg76g 499907.0 \n",
+ " jwcxm 514709.0 \n",
+ " knc8q 518773.0 \n",
+ " kp9r9 515101.0 \n",
+ " sf8fh 515996.0 \n",
+ "PostgreSQL-32-8-131072-1 6zf7s 487554.0 \n",
+ " 82tzj 512945.0 \n",
+ " cdllj 502692.0 \n",
+ " dxbqh 510550.0 \n",
+ " fg7g6 508747.0 \n",
+ " g2lp7 511584.0 \n",
+ " gtfsx 513763.0 \n",
+ " qkjzm 487248.0 \n",
+ "PostgreSQL-32-8-16384-1 28mm2 1831372.0 \n",
+ " 6qp9s 1831557.0 \n",
+ " 77mw4 1832430.0 \n",
+ " cpwg6 1831259.0 \n",
+ " cxgj6 1831962.0 \n",
+ " jpmmp 1831550.0 \n",
+ " rt4r9 1832282.0 \n",
+ " tfbqm 1831729.0 \n",
+ "PostgreSQL-32-8-32768-1 2pf8r 916321.0 \n",
+ " 5szs7 916820.0 \n",
+ " cfgn7 916751.0 \n",
+ " j2j7f 916269.0 \n",
+ " lc8b4 916220.0 \n",
+ " mt7d6 916340.0 \n",
+ " p9tms 916454.0 \n",
+ " rt62c 915726.0 \n",
+ "PostgreSQL-32-8-49152-1 5wh9k 620373.0 \n",
+ " 998gf 634777.0 \n",
+ " ghk57 635764.0 \n",
+ " rvqs4 636295.0 \n",
+ " sfzq5 635374.0 \n",
+ " sgxpf 634520.0 \n",
+ " tqqdc 635739.0 \n",
+ " xwgtc 635196.0 \n",
+ "PostgreSQL-32-8-65536-1 5spjq 519071.0 \n",
+ " l25nl 523360.0 \n",
+ " lrgp7 517747.0 \n",
+ " nws4x 520616.0 \n",
+ " rh8zl 525847.0 \n",
+ " vc88w 523591.0 \n",
+ " wp69b 522241.0 \n",
+ " z58tr 520375.0 \n",
+ "PostgreSQL-32-8-81920-1 9hk6b 512036.0 \n",
+ " 9wm6b 519087.0 \n",
+ " b7bh7 503879.0 \n",
+ " kfjzh 523228.0 \n",
+ " krdkb 492041.0 \n",
+ " tt4fm 503374.0 \n",
+ " vhthf 515641.0 \n",
+ " xn2w5 532786.0 \n",
+ "PostgreSQL-32-8-98304-1 45zhr 517972.0 \n",
+ " bhvd9 525430.0 \n",
+ " k4r5r 510878.0 \n",
+ " kq9kf 509697.0 \n",
+ " mlt4b 523738.0 \n",
+ " rksk7 513476.0 \n",
+ " vn5b4 523770.0 \n",
+ " wjjww 513732.0 \n",
+ "\n",
+ " [OVERALL].Throughput(ops/sec) ... \\\n",
+ "connection pod ... \n",
+ "PostgreSQL-32-1-114688-1 mwnxg 58181.141165 ... \n",
+ "PostgreSQL-32-1-131072-1 zp9vj 57541.372247 ... \n",
+ "PostgreSQL-32-1-16384-1 dpz6r 16381.680040 ... \n",
+ "PostgreSQL-32-1-32768-1 k6vs7 32759.639251 ... \n",
+ "PostgreSQL-32-1-49152-1 klpvs 45614.680629 ... \n",
+ "PostgreSQL-32-1-65536-1 7w4z9 57332.436399 ... \n",
+ "PostgreSQL-32-1-81920-1 chmc5 57580.800258 ... \n",
+ "PostgreSQL-32-1-98304-1 7lqx2 58294.308532 ... \n",
+ "PostgreSQL-32-8-114688-1 2jq82 7198.014500 ... \n",
+ " 8tw89 7180.537870 ... \n",
+ " fzvfv 7235.080300 ... \n",
+ " hg76g 7501.395260 ... \n",
+ " jwcxm 7285.670155 ... \n",
+ " knc8q 7228.595166 ... \n",
+ " kp9r9 7280.125645 ... \n",
+ " sf8fh 7267.498198 ... \n",
+ "PostgreSQL-32-8-131072-1 6zf7s 7691.455716 ... \n",
+ " 82tzj 7310.725321 ... \n",
+ " cdllj 7459.836242 ... \n",
+ " dxbqh 7345.020076 ... \n",
+ " fg7g6 7371.050837 ... \n",
+ " g2lp7 7330.174517 ... \n",
+ " gtfsx 7299.085376 ... \n",
+ " qkjzm 7696.286080 ... \n",
+ "PostgreSQL-32-8-16384-1 28mm2 2047.645153 ... \n",
+ " 6qp9s 2047.438327 ... \n",
+ " 77mw4 2046.462894 ... \n",
+ " cpwg6 2047.771506 ... \n",
+ " cxgj6 2046.985691 ... \n",
+ " jpmmp 2047.446152 ... \n",
+ " rt4r9 2046.628194 ... \n",
+ " tfbqm 2047.246072 ... \n",
+ "PostgreSQL-32-8-32768-1 2pf8r 4092.452317 ... \n",
+ " 5szs7 4090.224908 ... \n",
+ " cfgn7 4090.532762 ... \n",
+ " j2j7f 4092.684572 ... \n",
+ " lc8b4 4092.903451 ... \n",
+ " mt7d6 4092.367462 ... \n",
+ " p9tms 4091.858402 ... \n",
+ " rt62c 4095.111420 ... \n",
+ "PostgreSQL-32-8-49152-1 5wh9k 6044.750497 ... \n",
+ " 998gf 5907.586444 ... \n",
+ " ghk57 5898.415135 ... \n",
+ " rvqs4 5893.492798 ... \n",
+ " sfzq5 5902.035651 ... \n",
+ " sgxpf 5909.979197 ... \n",
+ " tqqdc 5898.647086 ... \n",
+ " xwgtc 5903.689570 ... \n",
+ "PostgreSQL-32-8-65536-1 5spjq 7224.445211 ... \n",
+ " l25nl 7165.239988 ... \n",
+ " lrgp7 7242.919804 ... \n",
+ " nws4x 7203.005670 ... \n",
+ " rh8zl 7131.351895 ... \n",
+ " vc88w 7162.078798 ... \n",
+ " wp69b 7180.592868 ... \n",
+ " z58tr 7206.341581 ... \n",
+ "PostgreSQL-32-8-81920-1 9hk6b 7323.703802 ... \n",
+ " 9wm6b 7224.222529 ... \n",
+ " b7bh7 7442.262924 ... \n",
+ " kfjzh 7167.047635 ... \n",
+ " krdkb 7621.316110 ... \n",
+ " tt4fm 7449.729227 ... \n",
+ " vhthf 7272.501605 ... \n",
+ " xn2w5 7038.473233 ... \n",
+ "PostgreSQL-32-8-98304-1 45zhr 7239.773578 ... \n",
+ " bhvd9 7137.011591 ... \n",
+ " k4r5r 7340.304339 ... \n",
+ " kq9kf 7357.312286 ... \n",
+ " mlt4b 7160.068584 ... \n",
+ " rksk7 7303.165094 ... \n",
+ " vn5b4 7159.631136 ... \n",
+ " wjjww 7299.525823 ... \n",
+ "\n",
+ " [CLEANUP].MaxLatency(us) \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688-1 mwnxg 305.0 \n",
+ "PostgreSQL-32-1-131072-1 zp9vj 305.0 \n",
+ "PostgreSQL-32-1-16384-1 dpz6r 269.0 \n",
+ "PostgreSQL-32-1-32768-1 k6vs7 651.0 \n",
+ "PostgreSQL-32-1-49152-1 klpvs 2655.0 \n",
+ "PostgreSQL-32-1-65536-1 7w4z9 343.0 \n",
+ "PostgreSQL-32-1-81920-1 chmc5 938.0 \n",
+ "PostgreSQL-32-1-98304-1 7lqx2 377.0 \n",
+ "PostgreSQL-32-8-114688-1 2jq82 420.0 \n",
+ " 8tw89 352.0 \n",
+ " fzvfv 324.0 \n",
+ " hg76g 282.0 \n",
+ " jwcxm 335.0 \n",
+ " knc8q 374.0 \n",
+ " kp9r9 408.0 \n",
+ " sf8fh 301.0 \n",
+ "PostgreSQL-32-8-131072-1 6zf7s 536.0 \n",
+ " 82tzj 358.0 \n",
+ " cdllj 311.0 \n",
+ " dxbqh 340.0 \n",
+ " fg7g6 376.0 \n",
+ " g2lp7 342.0 \n",
+ " gtfsx 310.0 \n",
+ " qkjzm 310.0 \n",
+ "PostgreSQL-32-8-16384-1 28mm2 238.0 \n",
+ " 6qp9s 267.0 \n",
+ " 77mw4 228.0 \n",
+ " cpwg6 244.0 \n",
+ " cxgj6 204.0 \n",
+ " jpmmp 292.0 \n",
+ " rt4r9 230.0 \n",
+ " tfbqm 215.0 \n",
+ "PostgreSQL-32-8-32768-1 2pf8r 282.0 \n",
+ " 5szs7 236.0 \n",
+ " cfgn7 260.0 \n",
+ " j2j7f 324.0 \n",
+ " lc8b4 264.0 \n",
+ " mt7d6 323.0 \n",
+ " p9tms 301.0 \n",
+ " rt62c 344.0 \n",
+ "PostgreSQL-32-8-49152-1 5wh9k 349.0 \n",
+ " 998gf 278.0 \n",
+ " ghk57 425.0 \n",
+ " rvqs4 1652.0 \n",
+ " sfzq5 304.0 \n",
+ " sgxpf 311.0 \n",
+ " tqqdc 307.0 \n",
+ " xwgtc 348.0 \n",
+ "PostgreSQL-32-8-65536-1 5spjq 313.0 \n",
+ " l25nl 301.0 \n",
+ " lrgp7 297.0 \n",
+ " nws4x 332.0 \n",
+ " rh8zl 515.0 \n",
+ " vc88w 608.0 \n",
+ " wp69b 322.0 \n",
+ " z58tr 290.0 \n",
+ "PostgreSQL-32-8-81920-1 9hk6b 302.0 \n",
+ " 9wm6b 318.0 \n",
+ " b7bh7 384.0 \n",
+ " kfjzh 683.0 \n",
+ " krdkb 412.0 \n",
+ " tt4fm 362.0 \n",
+ " vhthf 320.0 \n",
+ " xn2w5 335.0 \n",
+ "PostgreSQL-32-8-98304-1 45zhr 358.0 \n",
+ " bhvd9 352.0 \n",
+ " k4r5r 304.0 \n",
+ " kq9kf 270.0 \n",
+ " mlt4b 1324.0 \n",
+ " rksk7 355.0 \n",
+ " vn5b4 991.0 \n",
+ " wjjww 299.0 \n",
+ "\n",
+ " [CLEANUP].95thPercentileLatency(us) \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688-1 mwnxg 178.0 \n",
+ "PostgreSQL-32-1-131072-1 zp9vj 132.0 \n",
+ "PostgreSQL-32-1-16384-1 dpz6r 170.0 \n",
+ "PostgreSQL-32-1-32768-1 k6vs7 343.0 \n",
+ "PostgreSQL-32-1-49152-1 klpvs 146.0 \n",
+ "PostgreSQL-32-1-65536-1 7w4z9 168.0 \n",
+ "PostgreSQL-32-1-81920-1 chmc5 175.0 \n",
+ "PostgreSQL-32-1-98304-1 7lqx2 187.0 \n",
+ "PostgreSQL-32-8-114688-1 2jq82 420.0 \n",
+ " 8tw89 352.0 \n",
+ " fzvfv 324.0 \n",
+ " hg76g 282.0 \n",
+ " jwcxm 335.0 \n",
+ " knc8q 374.0 \n",
+ " kp9r9 408.0 \n",
+ " sf8fh 301.0 \n",
+ "PostgreSQL-32-8-131072-1 6zf7s 536.0 \n",
+ " 82tzj 358.0 \n",
+ " cdllj 311.0 \n",
+ " dxbqh 340.0 \n",
+ " fg7g6 376.0 \n",
+ " g2lp7 342.0 \n",
+ " gtfsx 310.0 \n",
+ " qkjzm 310.0 \n",
+ "PostgreSQL-32-8-16384-1 28mm2 238.0 \n",
+ " 6qp9s 267.0 \n",
+ " 77mw4 228.0 \n",
+ " cpwg6 244.0 \n",
+ " cxgj6 204.0 \n",
+ " jpmmp 292.0 \n",
+ " rt4r9 230.0 \n",
+ " tfbqm 215.0 \n",
+ "PostgreSQL-32-8-32768-1 2pf8r 282.0 \n",
+ " 5szs7 236.0 \n",
+ " cfgn7 260.0 \n",
+ " j2j7f 324.0 \n",
+ " lc8b4 264.0 \n",
+ " mt7d6 323.0 \n",
+ " p9tms 301.0 \n",
+ " rt62c 344.0 \n",
+ "PostgreSQL-32-8-49152-1 5wh9k 349.0 \n",
+ " 998gf 278.0 \n",
+ " ghk57 425.0 \n",
+ " rvqs4 1652.0 \n",
+ " sfzq5 304.0 \n",
+ " sgxpf 311.0 \n",
+ " tqqdc 307.0 \n",
+ " xwgtc 348.0 \n",
+ "PostgreSQL-32-8-65536-1 5spjq 313.0 \n",
+ " l25nl 301.0 \n",
+ " lrgp7 297.0 \n",
+ " nws4x 332.0 \n",
+ " rh8zl 515.0 \n",
+ " vc88w 608.0 \n",
+ " wp69b 322.0 \n",
+ " z58tr 290.0 \n",
+ "PostgreSQL-32-8-81920-1 9hk6b 302.0 \n",
+ " 9wm6b 318.0 \n",
+ " b7bh7 384.0 \n",
+ " kfjzh 683.0 \n",
+ " krdkb 412.0 \n",
+ " tt4fm 362.0 \n",
+ " vhthf 320.0 \n",
+ " xn2w5 335.0 \n",
+ "PostgreSQL-32-8-98304-1 45zhr 358.0 \n",
+ " bhvd9 352.0 \n",
+ " k4r5r 304.0 \n",
+ " kq9kf 270.0 \n",
+ " mlt4b 1324.0 \n",
+ " rksk7 355.0 \n",
+ " vn5b4 991.0 \n",
+ " wjjww 299.0 \n",
+ "\n",
+ " [CLEANUP].99thPercentileLatency(us) \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688-1 mwnxg 305.0 \n",
+ "PostgreSQL-32-1-131072-1 zp9vj 305.0 \n",
+ "PostgreSQL-32-1-16384-1 dpz6r 269.0 \n",
+ "PostgreSQL-32-1-32768-1 k6vs7 651.0 \n",
+ "PostgreSQL-32-1-49152-1 klpvs 2655.0 \n",
+ "PostgreSQL-32-1-65536-1 7w4z9 343.0 \n",
+ "PostgreSQL-32-1-81920-1 chmc5 938.0 \n",
+ "PostgreSQL-32-1-98304-1 7lqx2 377.0 \n",
+ "PostgreSQL-32-8-114688-1 2jq82 420.0 \n",
+ " 8tw89 352.0 \n",
+ " fzvfv 324.0 \n",
+ " hg76g 282.0 \n",
+ " jwcxm 335.0 \n",
+ " knc8q 374.0 \n",
+ " kp9r9 408.0 \n",
+ " sf8fh 301.0 \n",
+ "PostgreSQL-32-8-131072-1 6zf7s 536.0 \n",
+ " 82tzj 358.0 \n",
+ " cdllj 311.0 \n",
+ " dxbqh 340.0 \n",
+ " fg7g6 376.0 \n",
+ " g2lp7 342.0 \n",
+ " gtfsx 310.0 \n",
+ " qkjzm 310.0 \n",
+ "PostgreSQL-32-8-16384-1 28mm2 238.0 \n",
+ " 6qp9s 267.0 \n",
+ " 77mw4 228.0 \n",
+ " cpwg6 244.0 \n",
+ " cxgj6 204.0 \n",
+ " jpmmp 292.0 \n",
+ " rt4r9 230.0 \n",
+ " tfbqm 215.0 \n",
+ "PostgreSQL-32-8-32768-1 2pf8r 282.0 \n",
+ " 5szs7 236.0 \n",
+ " cfgn7 260.0 \n",
+ " j2j7f 324.0 \n",
+ " lc8b4 264.0 \n",
+ " mt7d6 323.0 \n",
+ " p9tms 301.0 \n",
+ " rt62c 344.0 \n",
+ "PostgreSQL-32-8-49152-1 5wh9k 349.0 \n",
+ " 998gf 278.0 \n",
+ " ghk57 425.0 \n",
+ " rvqs4 1652.0 \n",
+ " sfzq5 304.0 \n",
+ " sgxpf 311.0 \n",
+ " tqqdc 307.0 \n",
+ " xwgtc 348.0 \n",
+ "PostgreSQL-32-8-65536-1 5spjq 313.0 \n",
+ " l25nl 301.0 \n",
+ " lrgp7 297.0 \n",
+ " nws4x 332.0 \n",
+ " rh8zl 515.0 \n",
+ " vc88w 608.0 \n",
+ " wp69b 322.0 \n",
+ " z58tr 290.0 \n",
+ "PostgreSQL-32-8-81920-1 9hk6b 302.0 \n",
+ " 9wm6b 318.0 \n",
+ " b7bh7 384.0 \n",
+ " kfjzh 683.0 \n",
+ " krdkb 412.0 \n",
+ " tt4fm 362.0 \n",
+ " vhthf 320.0 \n",
+ " xn2w5 335.0 \n",
+ "PostgreSQL-32-8-98304-1 45zhr 358.0 \n",
+ " bhvd9 352.0 \n",
+ " k4r5r 304.0 \n",
+ " kq9kf 270.0 \n",
+ " mlt4b 1324.0 \n",
+ " rksk7 355.0 \n",
+ " vn5b4 991.0 \n",
+ " wjjww 299.0 \n",
+ "\n",
+ " [UPDATE].Operations \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688-1 mwnxg 15000966 \n",
+ "PostgreSQL-32-1-131072-1 zp9vj 14999563 \n",
+ "PostgreSQL-32-1-16384-1 dpz6r 14999798 \n",
+ "PostgreSQL-32-1-32768-1 k6vs7 15000722 \n",
+ "PostgreSQL-32-1-49152-1 klpvs 14998304 \n",
+ "PostgreSQL-32-1-65536-1 7w4z9 14996210 \n",
+ "PostgreSQL-32-1-81920-1 chmc5 15001854 \n",
+ "PostgreSQL-32-1-98304-1 7lqx2 14995937 \n",
+ "PostgreSQL-32-8-114688-1 2jq82 1874504 \n",
+ " 8tw89 1877114 \n",
+ " fzvfv 1875507 \n",
+ " hg76g 1873433 \n",
+ " jwcxm 1874515 \n",
+ " knc8q 1875905 \n",
+ " kp9r9 1875886 \n",
+ " sf8fh 1874330 \n",
+ "PostgreSQL-32-8-131072-1 6zf7s 1875599 \n",
+ " 82tzj 1874712 \n",
+ " cdllj 1875603 \n",
+ " dxbqh 1873868 \n",
+ " fg7g6 1876344 \n",
+ " g2lp7 1875315 \n",
+ " gtfsx 1875976 \n",
+ " qkjzm 1875211 \n",
+ "PostgreSQL-32-8-16384-1 28mm2 1873921 \n",
+ " 6qp9s 1875349 \n",
+ " 77mw4 1874880 \n",
+ " cpwg6 1875427 \n",
+ " cxgj6 1875337 \n",
+ " jpmmp 1875014 \n",
+ " rt4r9 1873638 \n",
+ " tfbqm 1875605 \n",
+ "PostgreSQL-32-8-32768-1 2pf8r 1874112 \n",
+ " 5szs7 1875046 \n",
+ " cfgn7 1874994 \n",
+ " j2j7f 1876703 \n",
+ " lc8b4 1873702 \n",
+ " mt7d6 1874082 \n",
+ " p9tms 1875937 \n",
+ " rt62c 1876930 \n",
+ "PostgreSQL-32-8-49152-1 5wh9k 1875039 \n",
+ " 998gf 1874709 \n",
+ " ghk57 1873652 \n",
+ " rvqs4 1875591 \n",
+ " sfzq5 1874898 \n",
+ " sgxpf 1874523 \n",
+ " tqqdc 1874986 \n",
+ " xwgtc 1876064 \n",
+ "PostgreSQL-32-8-65536-1 5spjq 1875000 \n",
+ " l25nl 1875272 \n",
+ " lrgp7 1875517 \n",
+ " nws4x 1875071 \n",
+ " rh8zl 1875343 \n",
+ " vc88w 1875539 \n",
+ " wp69b 1874271 \n",
+ " z58tr 1872314 \n",
+ "PostgreSQL-32-8-81920-1 9hk6b 1876646 \n",
+ " 9wm6b 1874917 \n",
+ " b7bh7 1873757 \n",
+ " kfjzh 1874551 \n",
+ " krdkb 1874516 \n",
+ " tt4fm 1875823 \n",
+ " vhthf 1875332 \n",
+ " xn2w5 1875864 \n",
+ "PostgreSQL-32-8-98304-1 45zhr 1874362 \n",
+ " bhvd9 1874785 \n",
+ " k4r5r 1873140 \n",
+ " kq9kf 1876173 \n",
+ " mlt4b 1873546 \n",
+ " rksk7 1876248 \n",
+ " vn5b4 1875485 \n",
+ " wjjww 1874342 \n",
+ "\n",
+ " [UPDATE].AverageLatency(us) \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688-1 mwnxg 635.884341 \n",
+ "PostgreSQL-32-1-131072-1 zp9vj 647.170531 \n",
+ "PostgreSQL-32-1-16384-1 dpz6r 260.757995 \n",
+ "PostgreSQL-32-1-32768-1 k6vs7 262.927871 \n",
+ "PostgreSQL-32-1-49152-1 klpvs 454.032034 \n",
+ "PostgreSQL-32-1-65536-1 7w4z9 644.124900 \n",
+ "PostgreSQL-32-1-81920-1 chmc5 630.408114 \n",
+ "PostgreSQL-32-1-98304-1 7lqx2 620.081984 \n",
+ "PostgreSQL-32-8-114688-1 2jq82 569.857987 \n",
+ " 8tw89 599.267765 \n",
+ " fzvfv 583.797519 \n",
+ " hg76g 598.484479 \n",
+ " jwcxm 588.496871 \n",
+ " knc8q 634.300144 \n",
+ " kp9r9 588.626170 \n",
+ " sf8fh 616.061852 \n",
+ "PostgreSQL-32-8-131072-1 6zf7s 556.295206 \n",
+ " 82tzj 614.491262 \n",
+ " cdllj 584.949657 \n",
+ " dxbqh 602.965952 \n",
+ " fg7g6 587.999810 \n",
+ " g2lp7 599.226824 \n",
+ " gtfsx 605.955583 \n",
+ " qkjzm 554.659974 \n",
+ "PostgreSQL-32-8-16384-1 28mm2 259.960231 \n",
+ " 6qp9s 279.281535 \n",
+ " 77mw4 279.843256 \n",
+ " cpwg6 269.904560 \n",
+ " cxgj6 297.950520 \n",
+ " jpmmp 261.791274 \n",
+ " rt4r9 291.152009 \n",
+ " tfbqm 285.543071 \n",
+ "PostgreSQL-32-8-32768-1 2pf8r 290.050854 \n",
+ " 5szs7 295.300415 \n",
+ " cfgn7 304.605591 \n",
+ " j2j7f 312.227578 \n",
+ " lc8b4 282.308903 \n",
+ " mt7d6 309.469422 \n",
+ " p9tms 312.520923 \n",
+ " rt62c 313.031167 \n",
+ "PostgreSQL-32-8-49152-1 5wh9k 483.460633 \n",
+ " 998gf 473.292028 \n",
+ " ghk57 469.840329 \n",
+ " rvqs4 507.224280 \n",
+ " sfzq5 494.085958 \n",
+ " sgxpf 464.176237 \n",
+ " tqqdc 494.877304 \n",
+ " xwgtc 441.921570 \n",
+ "PostgreSQL-32-8-65536-1 5spjq 634.823838 \n",
+ " l25nl 620.948668 \n",
+ " lrgp7 609.462749 \n",
+ " nws4x 622.472328 \n",
+ " rh8zl 610.272305 \n",
+ " vc88w 628.395195 \n",
+ " wp69b 618.117459 \n",
+ " z58tr 603.486167 \n",
+ "PostgreSQL-32-8-81920-1 9hk6b 621.082813 \n",
+ " 9wm6b 616.268760 \n",
+ " b7bh7 583.579925 \n",
+ " kfjzh 615.696021 \n",
+ " krdkb 578.652579 \n",
+ " tt4fm 597.406558 \n",
+ " vhthf 621.982541 \n",
+ " xn2w5 618.472218 \n",
+ "PostgreSQL-32-8-98304-1 45zhr 610.307512 \n",
+ " bhvd9 620.062738 \n",
+ " k4r5r 592.218152 \n",
+ " kq9kf 606.348524 \n",
+ " mlt4b 621.741993 \n",
+ " rksk7 604.160926 \n",
+ " vn5b4 621.688254 \n",
+ " wjjww 640.696887 \n",
+ "\n",
+ " [UPDATE].MinLatency(us) \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688-1 mwnxg 95.0 \n",
+ "PostgreSQL-32-1-131072-1 zp9vj 94.0 \n",
+ "PostgreSQL-32-1-16384-1 dpz6r 102.0 \n",
+ "PostgreSQL-32-1-32768-1 k6vs7 101.0 \n",
+ "PostgreSQL-32-1-49152-1 klpvs 93.0 \n",
+ "PostgreSQL-32-1-65536-1 7w4z9 93.0 \n",
+ "PostgreSQL-32-1-81920-1 chmc5 93.0 \n",
+ "PostgreSQL-32-1-98304-1 7lqx2 93.0 \n",
+ "PostgreSQL-32-8-114688-1 2jq82 99.0 \n",
+ " 8tw89 96.0 \n",
+ " fzvfv 105.0 \n",
+ " hg76g 105.0 \n",
+ " jwcxm 108.0 \n",
+ " knc8q 98.0 \n",
+ " kp9r9 105.0 \n",
+ " sf8fh 112.0 \n",
+ "PostgreSQL-32-8-131072-1 6zf7s 105.0 \n",
+ " 82tzj 97.0 \n",
+ " cdllj 111.0 \n",
+ " dxbqh 106.0 \n",
+ " fg7g6 103.0 \n",
+ " g2lp7 96.0 \n",
+ " gtfsx 93.0 \n",
+ " qkjzm 108.0 \n",
+ "PostgreSQL-32-8-16384-1 28mm2 108.0 \n",
+ " 6qp9s 111.0 \n",
+ " 77mw4 109.0 \n",
+ " cpwg6 109.0 \n",
+ " cxgj6 109.0 \n",
+ " jpmmp 108.0 \n",
+ " rt4r9 114.0 \n",
+ " tfbqm 113.0 \n",
+ "PostgreSQL-32-8-32768-1 2pf8r 109.0 \n",
+ " 5szs7 110.0 \n",
+ " cfgn7 103.0 \n",
+ " j2j7f 107.0 \n",
+ " lc8b4 105.0 \n",
+ " mt7d6 110.0 \n",
+ " p9tms 109.0 \n",
+ " rt62c 111.0 \n",
+ "PostgreSQL-32-8-49152-1 5wh9k 105.0 \n",
+ " 998gf 101.0 \n",
+ " ghk57 105.0 \n",
+ " rvqs4 105.0 \n",
+ " sfzq5 107.0 \n",
+ " sgxpf 107.0 \n",
+ " tqqdc 101.0 \n",
+ " xwgtc 105.0 \n",
+ "PostgreSQL-32-8-65536-1 5spjq 100.0 \n",
+ " l25nl 101.0 \n",
+ " lrgp7 103.0 \n",
+ " nws4x 104.0 \n",
+ " rh8zl 100.0 \n",
+ " vc88w 102.0 \n",
+ " wp69b 103.0 \n",
+ " z58tr 107.0 \n",
+ "PostgreSQL-32-8-81920-1 9hk6b 104.0 \n",
+ " 9wm6b 104.0 \n",
+ " b7bh7 105.0 \n",
+ " kfjzh 102.0 \n",
+ " krdkb 107.0 \n",
+ " tt4fm 113.0 \n",
+ " vhthf 105.0 \n",
+ " xn2w5 98.0 \n",
+ "PostgreSQL-32-8-98304-1 45zhr 105.0 \n",
+ " bhvd9 98.0 \n",
+ " k4r5r 101.0 \n",
+ " kq9kf 114.0 \n",
+ " mlt4b 99.0 \n",
+ " rksk7 107.0 \n",
+ " vn5b4 102.0 \n",
+ " wjjww 104.0 \n",
+ "\n",
+ " [UPDATE].MaxLatency(us) \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688-1 mwnxg 20987903.0 \n",
+ "PostgreSQL-32-1-131072-1 zp9vj 20889599.0 \n",
+ "PostgreSQL-32-1-16384-1 dpz6r 67071.0 \n",
+ "PostgreSQL-32-1-32768-1 k6vs7 722943.0 \n",
+ "PostgreSQL-32-1-49152-1 klpvs 18235391.0 \n",
+ "PostgreSQL-32-1-65536-1 7w4z9 20774911.0 \n",
+ "PostgreSQL-32-1-81920-1 chmc5 20758527.0 \n",
+ "PostgreSQL-32-1-98304-1 7lqx2 18956287.0 \n",
+ "PostgreSQL-32-8-114688-1 2jq82 20135935.0 \n",
+ " 8tw89 18825215.0 \n",
+ " fzvfv 13819903.0 \n",
+ " hg76g 20119551.0 \n",
+ " jwcxm 13819903.0 \n",
+ " knc8q 20103167.0 \n",
+ " kp9r9 18530303.0 \n",
+ " sf8fh 20299775.0 \n",
+ "PostgreSQL-32-8-131072-1 6zf7s 13787135.0 \n",
+ " 82tzj 18939903.0 \n",
+ " cdllj 18399231.0 \n",
+ " dxbqh 20185087.0 \n",
+ " fg7g6 20250623.0 \n",
+ " g2lp7 18481151.0 \n",
+ " gtfsx 13787135.0 \n",
+ " qkjzm 18563071.0 \n",
+ "PostgreSQL-32-8-16384-1 28mm2 88511.0 \n",
+ " 6qp9s 130815.0 \n",
+ " 77mw4 77247.0 \n",
+ " cpwg6 130175.0 \n",
+ " cxgj6 76415.0 \n",
+ " jpmmp 55775.0 \n",
+ " rt4r9 118847.0 \n",
+ " tfbqm 127295.0 \n",
+ "PostgreSQL-32-8-32768-1 2pf8r 97407.0 \n",
+ " 5szs7 332287.0 \n",
+ " cfgn7 1277951.0 \n",
+ " j2j7f 735231.0 \n",
+ " lc8b4 159871.0 \n",
+ " mt7d6 86015.0 \n",
+ " p9tms 539135.0 \n",
+ " rt62c 270079.0 \n",
+ "PostgreSQL-32-8-49152-1 5wh9k 12902399.0 \n",
+ " 998gf 18120703.0 \n",
+ " ghk57 16007167.0 \n",
+ " rvqs4 18219007.0 \n",
+ " sfzq5 21233663.0 \n",
+ " sgxpf 18382847.0 \n",
+ " tqqdc 14909439.0 \n",
+ " xwgtc 14909439.0 \n",
+ "PostgreSQL-32-8-65536-1 5spjq 21069823.0 \n",
+ " l25nl 20856831.0 \n",
+ " lrgp7 20922367.0 \n",
+ " nws4x 16457727.0 \n",
+ " rh8zl 20627455.0 \n",
+ " vc88w 20987903.0 \n",
+ " wp69b 20905983.0 \n",
+ " z58tr 13221887.0 \n",
+ "PostgreSQL-32-8-81920-1 9hk6b 20922367.0 \n",
+ " 9wm6b 20856831.0 \n",
+ " b7bh7 20496383.0 \n",
+ " kfjzh 20201471.0 \n",
+ " krdkb 20545535.0 \n",
+ " tt4fm 20463615.0 \n",
+ " vhthf 20430847.0 \n",
+ " xn2w5 20955135.0 \n",
+ "PostgreSQL-32-8-98304-1 45zhr 18710527.0 \n",
+ " bhvd9 18956287.0 \n",
+ " k4r5r 18956287.0 \n",
+ " kq9kf 18317311.0 \n",
+ " mlt4b 17874943.0 \n",
+ " rksk7 18776063.0 \n",
+ " vn5b4 18759679.0 \n",
+ " wjjww 18579455.0 \n",
+ "\n",
+ " [UPDATE].95thPercentileLatency(us) \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688-1 mwnxg 1041.0 \n",
+ "PostgreSQL-32-1-131072-1 zp9vj 1061.0 \n",
+ "PostgreSQL-32-1-16384-1 dpz6r 434.0 \n",
+ "PostgreSQL-32-1-32768-1 k6vs7 415.0 \n",
+ "PostgreSQL-32-1-49152-1 klpvs 535.0 \n",
+ "PostgreSQL-32-1-65536-1 7w4z9 1075.0 \n",
+ "PostgreSQL-32-1-81920-1 chmc5 1115.0 \n",
+ "PostgreSQL-32-1-98304-1 7lqx2 1065.0 \n",
+ "PostgreSQL-32-8-114688-1 2jq82 1010.0 \n",
+ " 8tw89 1047.0 \n",
+ " fzvfv 1076.0 \n",
+ " hg76g 1020.0 \n",
+ " jwcxm 1063.0 \n",
+ " knc8q 997.0 \n",
+ " kp9r9 999.0 \n",
+ " sf8fh 1029.0 \n",
+ "PostgreSQL-32-8-131072-1 6zf7s 961.0 \n",
+ " 82tzj 976.0 \n",
+ " cdllj 909.0 \n",
+ " dxbqh 912.0 \n",
+ " fg7g6 923.0 \n",
+ " g2lp7 987.0 \n",
+ " gtfsx 948.0 \n",
+ " qkjzm 953.0 \n",
+ "PostgreSQL-32-8-16384-1 28mm2 461.0 \n",
+ " 6qp9s 430.0 \n",
+ " 77mw4 503.0 \n",
+ " cpwg6 415.0 \n",
+ " cxgj6 467.0 \n",
+ " jpmmp 398.0 \n",
+ " rt4r9 515.0 \n",
+ " tfbqm 491.0 \n",
+ "PostgreSQL-32-8-32768-1 2pf8r 454.0 \n",
+ " 5szs7 437.0 \n",
+ " cfgn7 471.0 \n",
+ " j2j7f 478.0 \n",
+ " lc8b4 430.0 \n",
+ " mt7d6 508.0 \n",
+ " p9tms 485.0 \n",
+ " rt62c 482.0 \n",
+ "PostgreSQL-32-8-49152-1 5wh9k 625.0 \n",
+ " 998gf 637.0 \n",
+ " ghk57 651.0 \n",
+ " rvqs4 658.0 \n",
+ " sfzq5 654.0 \n",
+ " sgxpf 641.0 \n",
+ " tqqdc 675.0 \n",
+ " xwgtc 646.0 \n",
+ "PostgreSQL-32-8-65536-1 5spjq 1046.0 \n",
+ " l25nl 1096.0 \n",
+ " lrgp7 1087.0 \n",
+ " nws4x 1053.0 \n",
+ " rh8zl 1018.0 \n",
+ " vc88w 1081.0 \n",
+ " wp69b 1085.0 \n",
+ " z58tr 1076.0 \n",
+ "PostgreSQL-32-8-81920-1 9hk6b 954.0 \n",
+ " 9wm6b 1026.0 \n",
+ " b7bh7 951.0 \n",
+ " kfjzh 1009.0 \n",
+ " krdkb 1008.0 \n",
+ " tt4fm 972.0 \n",
+ " vhthf 1007.0 \n",
+ " xn2w5 1088.0 \n",
+ "PostgreSQL-32-8-98304-1 45zhr 1032.0 \n",
+ " bhvd9 1086.0 \n",
+ " k4r5r 1072.0 \n",
+ " kq9kf 1011.0 \n",
+ " mlt4b 1015.0 \n",
+ " rksk7 966.0 \n",
+ " vn5b4 1080.0 \n",
+ " wjjww 1043.0 \n",
+ "\n",
+ " [UPDATE].99thPercentileLatency(us) \\\n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688-1 mwnxg 3383.0 \n",
+ "PostgreSQL-32-1-131072-1 zp9vj 3619.0 \n",
+ "PostgreSQL-32-1-16384-1 dpz6r 573.0 \n",
+ "PostgreSQL-32-1-32768-1 k6vs7 580.0 \n",
+ "PostgreSQL-32-1-49152-1 klpvs 1687.0 \n",
+ "PostgreSQL-32-1-65536-1 7w4z9 3657.0 \n",
+ "PostgreSQL-32-1-81920-1 chmc5 3731.0 \n",
+ "PostgreSQL-32-1-98304-1 7lqx2 3641.0 \n",
+ "PostgreSQL-32-8-114688-1 2jq82 3501.0 \n",
+ " 8tw89 3589.0 \n",
+ " fzvfv 3627.0 \n",
+ " hg76g 3705.0 \n",
+ " jwcxm 3871.0 \n",
+ " knc8q 3533.0 \n",
+ " kp9r9 3651.0 \n",
+ " sf8fh 3697.0 \n",
+ "PostgreSQL-32-8-131072-1 6zf7s 3445.0 \n",
+ " 82tzj 3417.0 \n",
+ " cdllj 3303.0 \n",
+ " dxbqh 3287.0 \n",
+ " fg7g6 3303.0 \n",
+ " g2lp7 3435.0 \n",
+ " gtfsx 3279.0 \n",
+ " qkjzm 3395.0 \n",
+ "PostgreSQL-32-8-16384-1 28mm2 614.0 \n",
+ " 6qp9s 692.0 \n",
+ " 77mw4 648.0 \n",
+ " cpwg6 649.0 \n",
+ " cxgj6 640.0 \n",
+ " jpmmp 625.0 \n",
+ " rt4r9 655.0 \n",
+ " tfbqm 633.0 \n",
+ "PostgreSQL-32-8-32768-1 2pf8r 946.0 \n",
+ " 5szs7 1008.0 \n",
+ " cfgn7 971.0 \n",
+ " j2j7f 929.0 \n",
+ " lc8b4 929.0 \n",
+ " mt7d6 823.0 \n",
+ " p9tms 975.0 \n",
+ " rt62c 971.0 \n",
+ "PostgreSQL-32-8-49152-1 5wh9k 2353.0 \n",
+ " 998gf 2247.0 \n",
+ " ghk57 2293.0 \n",
+ " rvqs4 2231.0 \n",
+ " sfzq5 2133.0 \n",
+ " sgxpf 2301.0 \n",
+ " tqqdc 2257.0 \n",
+ " xwgtc 2269.0 \n",
+ "PostgreSQL-32-8-65536-1 5spjq 3931.0 \n",
+ " l25nl 3859.0 \n",
+ " lrgp7 3897.0 \n",
+ " nws4x 3851.0 \n",
+ " rh8zl 3753.0 \n",
+ " vc88w 3865.0 \n",
+ " wp69b 3907.0 \n",
+ " z58tr 3917.0 \n",
+ "PostgreSQL-32-8-81920-1 9hk6b 3241.0 \n",
+ " 9wm6b 3347.0 \n",
+ " b7bh7 3315.0 \n",
+ " kfjzh 3347.0 \n",
+ " krdkb 3395.0 \n",
+ " tt4fm 3363.0 \n",
+ " vhthf 3367.0 \n",
+ " xn2w5 3275.0 \n",
+ "PostgreSQL-32-8-98304-1 45zhr 3517.0 \n",
+ " bhvd9 3495.0 \n",
+ " k4r5r 3579.0 \n",
+ " kq9kf 3465.0 \n",
+ " mlt4b 3449.0 \n",
+ " rksk7 3267.0 \n",
+ " vn5b4 3613.0 \n",
+ " wjjww 3525.0 \n",
+ "\n",
+ " [UPDATE].Return=OK \n",
+ "connection pod \n",
+ "PostgreSQL-32-1-114688-1 mwnxg 15000966 \n",
+ "PostgreSQL-32-1-131072-1 zp9vj 14999563 \n",
+ "PostgreSQL-32-1-16384-1 dpz6r 14999798 \n",
+ "PostgreSQL-32-1-32768-1 k6vs7 15000722 \n",
+ "PostgreSQL-32-1-49152-1 klpvs 14998304 \n",
+ "PostgreSQL-32-1-65536-1 7w4z9 14996210 \n",
+ "PostgreSQL-32-1-81920-1 chmc5 15001854 \n",
+ "PostgreSQL-32-1-98304-1 7lqx2 14995937 \n",
+ "PostgreSQL-32-8-114688-1 2jq82 1874504 \n",
+ " 8tw89 1877114 \n",
+ " fzvfv 1875507 \n",
+ " hg76g 1873433 \n",
+ " jwcxm 1874515 \n",
+ " knc8q 1875905 \n",
+ " kp9r9 1875886 \n",
+ " sf8fh 1874330 \n",
+ "PostgreSQL-32-8-131072-1 6zf7s 1875599 \n",
+ " 82tzj 1874712 \n",
+ " cdllj 1875603 \n",
+ " dxbqh 1873868 \n",
+ " fg7g6 1876344 \n",
+ " g2lp7 1875315 \n",
+ " gtfsx 1875976 \n",
+ " qkjzm 1875211 \n",
+ "PostgreSQL-32-8-16384-1 28mm2 1873921 \n",
+ " 6qp9s 1875349 \n",
+ " 77mw4 1874880 \n",
+ " cpwg6 1875427 \n",
+ " cxgj6 1875337 \n",
+ " jpmmp 1875014 \n",
+ " rt4r9 1873638 \n",
+ " tfbqm 1875605 \n",
+ "PostgreSQL-32-8-32768-1 2pf8r 1874112 \n",
+ " 5szs7 1875046 \n",
+ " cfgn7 1874994 \n",
+ " j2j7f 1876703 \n",
+ " lc8b4 1873702 \n",
+ " mt7d6 1874082 \n",
+ " p9tms 1875937 \n",
+ " rt62c 1876930 \n",
+ "PostgreSQL-32-8-49152-1 5wh9k 1875039 \n",
+ " 998gf 1874709 \n",
+ " ghk57 1873652 \n",
+ " rvqs4 1875591 \n",
+ " sfzq5 1874898 \n",
+ " sgxpf 1874523 \n",
+ " tqqdc 1874986 \n",
+ " xwgtc 1876064 \n",
+ "PostgreSQL-32-8-65536-1 5spjq 1875000 \n",
+ " l25nl 1875272 \n",
+ " lrgp7 1875517 \n",
+ " nws4x 1875071 \n",
+ " rh8zl 1875343 \n",
+ " vc88w 1875539 \n",
+ " wp69b 1874271 \n",
+ " z58tr 1872314 \n",
+ "PostgreSQL-32-8-81920-1 9hk6b 1876646 \n",
+ " 9wm6b 1874917 \n",
+ " b7bh7 1873757 \n",
+ " kfjzh 1874551 \n",
+ " krdkb 1874516 \n",
+ " tt4fm 1875823 \n",
+ " vhthf 1875332 \n",
+ " xn2w5 1875864 \n",
+ "PostgreSQL-32-8-98304-1 45zhr 1874362 \n",
+ " bhvd9 1874785 \n",
+ " k4r5r 1873140 \n",
+ " kq9kf 1876173 \n",
+ " mlt4b 1873546 \n",
+ " rksk7 1876248 \n",
+ " vn5b4 1875485 \n",
+ " wjjww 1874342 \n",
+ "\n",
+ "[72 rows x 30 columns]"
+ ]
+ },
+ "execution_count": 38,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_plot = evaluation.benchmarking_set_datatypes(df)\n",
+ "df_groups = df_plot.groupby(['connection', 'pod'])\n",
+ "\n",
+ "df_groups = df_groups.sum('target')\n",
+ "df_groups"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Get Maximum Number of Parallel Pods"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "8"
+ ]
+ },
+ "execution_count": 39,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "max_pod_count = df_groups['pod_count'].max()\n",
+ "max_pod_count"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Plot Variations"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Throughput"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAGNCAYAAAC2Wc0RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACX4klEQVR4nOzdd1gU19cH8O/uAksTEKRKEcUCoqLY0FiICComGtHExCi2WIIFMGpMjAUTjRrFrokxYuzlp8ZYwa4Ro2KJJVhRVKRYKILAspz3D96dsC4o4LJLOZ/n2Udn5s6cexe4c3bmzl0REREYY4wxxpjGiLVdAcYYY4yx6oYTMMYYY4wxDeMEjDHGGGNMwzgBY4wxxhjTME7AGGOMMcY0jBMwxhhjjDEN4wSMMcYYY0zDOAFjjDHGGNMwTsAYY4wxxjSMEzDGKhiRSIQZM2ZouxpV3vHjxyESiXD8+PE3lpsxYwZEIhGePn2qmYoxxqoFTsBYtREREQGRSKT0srKygre3Nw4cOKDt6r2zGzduYMaMGbh//762q8LKYMWKFYiIiNB2NUqsstWXsYqGEzBW7YSFhWH9+vX4/fffMWnSJKSkpKBHjx7Yu3evtqv2Tm7cuIGZM2dyAlZJVbaEprLVl7GKRkfbFWBM07p3746WLVsKy8OGDYO1tTU2b96Mnj17arFmlUdeXh7y8/Ohp6en7aqwN8jOzoaenh7EYv6szVhFw3+VrNozMzODgYEBdHSUP49kZmZiwoQJcHBwgFQqRcOGDfHTTz+BiAAAr169QqNGjdCoUSO8evVK2O/58+ewtbVFu3btIJfLAQCDBw+GsbEx7t27Bz8/PxgZGcHOzg5hYWHC8d7k0qVL6N69O0xMTGBsbIwuXbrg7NmzwvaIiAj069cPAODt7S3cYn3b+Kbt27fDzc0N+vr6cHd3x65duzB48GDUqVNHKHP//n2IRCL89NNPWLRoEerVqwepVIobN24AAI4ePYoOHTrAyMgIZmZm6NWrF/7991+lOK8fU0ExvqowkUiEMWPGYOPGjWjYsCH09fXh6emJkydPquz/+PFjDB06FNbW1pBKpWjcuDF+++03lXKPHj1C7969YWRkBCsrK4SEhCAnJ+eN783rnj59io8//hgmJiawsLDA+PHjkZ2dLWzv1KkTmjVrVuS+DRs2hJ+fX7HHrlOnDq5fv44TJ04IP7vOnTsDKPh9+uqrr9CkSRMYGxvDxMQE3bt3x5UrV5SOoRjTtmXLFkydOhW1a9eGoaEh0tPTAZTsZw0A+fn5WLRoERo3bgx9fX1YW1tj5MiRePHiRYnqyxgrGb4CxqqdtLQ0PH36FESE5ORkLF26FC9fvsTnn38ulCEifPjhhzh27BiGDRsGDw8PHDp0CBMnTsTjx48RHh4OAwMDrFu3Du3bt8e3336LhQsXAgCCgoKQlpaGiIgISCQS4ZhyuRzdunVD27ZtMW/ePBw8eBDTp09HXl4ewsLCiq3v9evX0aFDB5iYmGDSpEnQ1dXFzz//jM6dO+PEiRNo06YNOnbsiHHjxmHJkiX45ptv4OrqCgDCv0XZt28fPvnkEzRp0gRz5szBixcvMGzYMNSuXbvI8mvXrkV2djZGjBgBqVQKc3NzHD58GN27d0fdunUxY8YMvHr1CkuXLkX79u1x8eLFIpOukjhx4gS2bt2KcePGQSqVYsWKFejWrRvOnTsHd3d3AEBSUhLatm0rJGyWlpY4cOAAhg0bhvT0dAQHBwMoSJS7dOmC+Ph4jBs3DnZ2dli/fj2OHj1aqjp9/PHHqFOnDubMmYOzZ89iyZIlePHiBX7//XcAwMCBA/HFF1/g2rVrQh0B4Pz587h16xamTp1a7LEXLVqEsWPHwtjYGN9++y0AwNraGgBw79497N69G/369YOzszOSkpLw888/o1OnTrhx4wbs7OyUjjVr1izo6enhq6++Qk5ODvT09Er1sx45ciQiIiIwZMgQjBs3DnFxcVi2bBkuXbqEv/76C7q6um+sL2OshIixamLt2rUEQOUllUopIiJCqezu3bsJAH3//fdK6/v27UsikYju3LkjrJsyZQqJxWI6efIkbd++nQDQokWLlPYLDAwkADR27FhhXX5+Pvn7+5Oenh6lpKQI6wHQ9OnTheXevXuTnp4e3b17V1iXkJBANWrUoI4dOwrrFLGPHTtWovejSZMmZG9vTxkZGcK648ePEwBycnIS1sXFxREAMjExoeTkZKVjeHh4kJWVFT179kxYd+XKFRKLxTRo0CCl9hc+psL06dPp9W5I8XO5cOGCsO7Bgwekr69PH330kbBu2LBhZGtrS0+fPlXav3///mRqakpZWVlERLRo0SICQNu2bRPKZGZmkouLS4neL0UdP/zwQ6X1X375JQGgK1euEBFRamoq6evr0+TJk5XKjRs3joyMjOjly5dvjNO4cWPq1KmTyvrs7GySy+VK6+Li4kgqlVJYWJiw7tixYwSA6tatK7RdoaQ/61OnThEA2rhxo9L+Bw8eVFlfXH0ZYyXDtyBZtbN8+XJERUUhKioKGzZsgLe3N4YPH46dO3cKZfbv3w+JRIJx48Yp7TthwgQQkdJTkzNmzEDjxo0RGBiIL7/8Ep06dVLZT2HMmDHC/xVXbnJzc3H48OEiy8vlckRGRqJ3796oW7eusN7W1hafffYZTp8+LdxiKo2EhARcvXoVgwYNgrGxsbC+U6dOaNKkSZH7BAQEwNLSUlh+8uQJLl++jMGDB8Pc3FxY37RpU3Tt2hX79+8vdb0UvLy84OnpKSw7OjqiV69eOHToEORyOYgI//vf//DBBx+AiPD06VPh5efnh7S0NFy8eBFAwc/S1tYWffv2FY5naGiIESNGlKpOQUFBSstjx44Vjg8Apqam6NWrFzZv3izcVpbL5di6datw+7MspFKpMIZLLpfj2bNnMDY2RsOGDYU2FhYYGAgDAwNhuTQ/6+3bt8PU1BRdu3ZVek89PT1hbGyMY8eOlakNjDFVnICxaqd169bw8fGBj48PBgwYgH379sHNzU1IhgDgwYMHsLOzQ40aNZT2VdzSe/DggbBOT08Pv/32G+Li4pCRkYG1a9eqjGsCALFYrJREAUCDBg0AoNgnF1NSUpCVlYWGDRuqbHN1dUV+fj4ePnxY8sb/P0X9XVxcVLYVtQ4AnJ2dizxGcXV7+vQpMjMzS103AKhfv77KugYNGiArKwspKSlISUlBamoqfvnlF1haWiq9hgwZAgBITk4W6uni4qLyMymq3qWpU7169SAWi5V+doMGDUJ8fDxOnToFADh8+DCSkpIwcODAUsUqLD8/H+Hh4ahfvz6kUilq1aoFS0tL/PPPP0hLS1MpX9zPqSQ/69u3byMtLQ1WVlYq7+vLly+F95Qx9u54DBir9sRiMby9vbF48WLcvn0bjRs3LvUxDh06BKDgqbPbt2+rnASrgsJXVUqrqIQUgPCQQmnl5+cDAD7//HMEBgYWWaZp06ZlOnZJFdUmPz8/WFtbY8OGDejYsSM2bNgAGxsb+Pj4lDnO7Nmz8d1332Ho0KGYNWsWzM3NIRaLERwcLLwPhb3Lzyk/Px9WVlbYuHFjkdsLXwFljL0bTsAYQ8G0CgDw8uVLAICTkxMOHz6MjIwMpatgsbGxwnaFf/75B2FhYRgyZAguX76M4cOH4+rVqzA1NVWKkZ+fj3v37glXvQDg1q1bAFDsYHVLS0sYGhri5s2bKttiY2MhFovh4OAAoPgkpyiK+t+5c0dlW1Hr3nSM4upWq1Yt4bZbzZo1kZqaqlKu8JXEwm7fvq2y7tatWzA0NBSSgBo1akAul781uXFycsK1a9dARErvUVH1fpPXE+s7d+4gPz9f6WcnkUjw2WefISIiAnPnzsXu3bvxxRdfKD2MUZzifn47duyAt7c31qxZo7Q+NTUVtWrVeutxS/OzrlevHg4fPoz27du/NZErze8bY0wV34Jk1Z5MJkNkZCT09PSEW4w9evSAXC7HsmXLlMqGh4dDJBKhe/fuwr6DBw+GnZ0dFi9ejIiICCQlJSEkJKTIWIWPR0RYtmwZdHV10aVLlyLLSyQS+Pr64o8//lC61ZWUlIRNmzbhvffeg4mJCQAIyU5Ric7r7Ozs4O7ujt9//11IOoGCpw+vXr361v2BgnFoHh4eWLdunVLMa9euITIyEj169BDW1atXD2lpafjnn3+EdU+ePMGuXbuKPHZ0dLTS+KaHDx/ijz/+gK+vLyQSCSQSCQICAvC///0P165dU9k/JSVF+H+PHj2QkJCAHTt2COuysrLwyy+/lKidCsuXL1daXrp0KQAIvwsKAwcOxIsXLzBy5EiVp2vfxMjIqMifnUQiUZmqZPv27Xj8+HGJjluan/XHH38MuVyOWbNmqRwnLy9PqX7F1ZcxVkJafACAMY1SPAUZFhZG69evp/Xr19OCBQvI09OTANDXX38tlJXL5eTt7U0ikYhGjBhBy5cvp169ehEACg4OFspNmzaNRCIRHT16VFj3/fffEwDat2+fsC4wMJD09fWpfv36NGjQIFq+fDn17NmTANA333yjVE+89hTktWvXyMjIiGrXrk0//PADzZ07l+rWrUtSqZTOnj0rlHvy5AlJJBJq27YtRURE0ObNmykpKanY92PPnj0kEomoadOmFB4eTtOmTSNzc3Nyd3enOnXqCOUUT0HOnz9f5RhRUVGko6NDjRo1ovnz51NYWBhZWlpSzZo16d69e0K5p0+fkpGREdWtW5cWLVpEs2fPJgcHB2rRokWRT0G6u7tTrVq1KCwsjObOnUtOTk6kr68vPHFIRJSYmEhOTk5kaGhI48ePp59//pnmzJlD/fr1o5o1awrlFE88Kp5QXLRoEXl6elLTpk1L9RRkkyZN6IMPPqDly5fT559/TgDos88+K3Ifd3d3AkCurq5vPHZhX375JYlEIpo1axZt3ryZjhw5QkQFv2MAaPDgwfTLL7/Q2LFjydzcnOrWrav0FKLiKcjt27erHLukP2siopEjRxIA6t69O4WHh9OyZcto/PjxZGdnp3Ts4urLGCsZTsBYtVHUNBT6+vrk4eFBK1eupPz8fKXyGRkZFBISQnZ2dqSrq0v169en+fPnC+ViYmJIR0dHaWoJIqK8vDxq1aoV2dnZ0YsXL4ioIAEzMjKiu3fvkq+vLxkaGpK1tTVNnz5dZYqB1xMwIqKLFy+Sn58fGRsbk6GhIXl7e9OZM2dU2rh69WqqW7cuSSSSEiUXW7ZsoUaNGpFUKiV3d3fas2cPBQQEUKNGjYQyb0rAiIgOHz5M7du3JwMDAzIxMaEPPviAbty4oVIuMjKS3N3dSU9Pjxo2bEgbNmwodhqKoKAg2rBhA9WvX5+kUik1b968yLYkJSVRUFAQOTg4kK6uLtnY2FCXLl3ol19+USr34MED+vDDD8nQ0JBq1apF48ePF6ZWKGkCduPGDerbty/VqFGDatasSWPGjKFXr14Vuc+8efMIAM2ePfuNxy4sMTGR/P39qUaNGgRASK6ys7NpwoQJZGtrSwYGBtS+fXuKjo6mTp06lTgBIyrZz1rhl19+IU9PTzIwMKAaNWpQkyZNaNKkSZSQkPDW+jLGSkZEVIJpuBlj72Tw4MHYsWOH0i2gisrDwwOWlpaIiorSSnyRSISgoCCV27+VyeLFixESEoL79+/D0dFR29UplrZ/1oxVZzwGjLFqSiaTCQ8fKBw/fhxXrlzhr5V5B0SENWvWoFOnThUm+eKfNWMVDz8FyVg19fjxY/j4+ODzzz+HnZ0dYmNjsWrVKtjY2GDUqFHarl6lk5mZiT179uDYsWO4evUq/vjjD21XScA/a8YqHk7AGKumatasCU9PT/z6669ISUmBkZER/P398eOPP8LCwkLb1at0UlJS8Nlnn8HMzAzffPMNPvzwQ21XScA/a8YqHh4DxhhjjDGmYTwGjDHGGGNMwzgBY4wxxhjTME7AGGOMMcY0jBMwxhhjjDEN4wSMMcYYY0zDOAFjjDHGGNMwTsAYY4wxxjSMEzDGGGOMMQ3jBIwxxhhjTMM4AWOMMcYY0zBOwBhjjDHGNIwTMMYYY4wxDeMEjDHGGGNMwzgBY4wxxhjTME7AGGOMMcY0jBMwxhhjjDEN4wSMMcYYY0zDOAFjjDHGGNMwTsAYY4wxxjSMEzDGGGOMMQ3jBIwxxhhjTMMqbQI2ePBgiEQiiEQiuLu7a7s6lVJwcLDwHhobG6vtuIMHD1br8TRtxowZEIlEePr0qbarUqR58+ahUaNGyM/P13ZVtE4mk8HBwQErVqzQaFzuf94d9z9F4/6n8njX/qfSJmAAUKtWLaxfvx4//vij0nqZTIYlS5agVatWqFGjBoyNjdGqVSssWbIEMplMKLdw4UKIRCIcPny42BirV6+GSCTCnj17AACdO3cWOo3XX40aNRL2i4iIUNqmo6OD2rVrY/DgwXj8+HGx8VasWAGRSIQ2bdoUW0YkEmHMmDFvfG86d+781hPDwIEDsX79enTo0OGN5V5vS3GvOnXqvPE4rGRmz56N3bt3F7ktPT0dc+fOxeTJkyEWV4w/36tXr0IkEuHcuXMaj62rq4vQ0FD88MMPyM7O1mhs7n+Kx/1P5cX9T8m9a/+jUw510hgjIyN8/vnnSusyMzPh7++PEydOoGfPnhg8eDDEYjEOHjyI8ePHY+fOndi3bx+MjIzQv39/TJw4EZs2bYKPj0+RMTZt2gQLCwt0795dWGdvb485c+aolDU1NVVZFxYWBmdnZ2RnZ+Ps2bOIiIjA6dOnce3aNejr66uU37hxI+rUqYNz587hzp07cHFxKe3bUmKenp7w9PTE4cOHcfHixWLLdezYEevXr1daN3z4cLRu3RojRowQ1lXmT50VyezZs9G3b1/07t1bZdtvv/2GvLw8fPrpp5qvWDH27dsHKysrtGrVSivxhwwZgq+//hqbNm3C0KFDNRaX+593w/1PxcT9T+m8U/9DlVRgYCA5OTmprB8xYgQBoKVLl6psW7ZsGQGgUaNGCeu6dOlCpqamlJ2drVL+0aNHJBaLlcp36tSJGjdu/Nb6rV27lgDQ+fPnldZPnjyZANDWrVtV9rl37x4BoJ07d5KlpSXNmDGjyGMDoKCgoDfGL2k9iQreSyMjoxKVVTAyMqLAwEC1HU9BJpNRTk5OmfZVl+nTpxMASklJ0Ur8N723TZs2pc8//1yzFXqLDh06FFtfTenZsyd16NBBY/G4/+H+p7xw/1M6lbn/qRjXENXk0aNHWLNmDd5///0iL5EHBQXB29sbv/76Kx49egQA+Pzzz5GWloZ9+/aplN+yZQvy8/MxYMAAtdVRcbn97t27Kts2btyImjVrwt/fH3379sXGjRvVFlcbHj9+jN69e8PY2BiWlpb46quvIJfLhe3379+HSCTCTz/9hEWLFqFevXqQSqW4ceMGAODo0aPo0KEDjIyMYGZmhl69euHff/9VijF48OAibz0oxlEU9urVK4wbNw61atVCjRo18OGHH+Lx48cQiUSYMWOGyjFSU1MxePBgmJmZwdTUFEOGDEFWVpZSGcXtmI0bN6Jhw4bQ19eHp6cnTp48WaZ6ikQiZGZmYt26dcKtlcGDBwMA4uLi8M8//xR5tSQzMxMTJkyAg4MDpFIpGjZsiJ9++glEVKb6ZmRkIDg4GHXq1IFUKoWVlRW6du2qcqUiNTUVZ86cgb+/v7Buy5Yt8PT0RI0aNWBiYoImTZpg8eLFKvsFBwcL9XVxccHcuXNVxpXk5+dj8eLFaNKkCfT19WFpaYlu3brhwoULSuW6du2K06dP4/nz5yrvjaZw/1OxcP9T+npy/6PZ/qdKJWAHDhyAXC7HoEGDii0zaNAg5OXl4eDBgwCAPn36QF9fH5s2bVIpu2nTJjg5OaF9+/ZK6+VyOZ4+faryyszMfGsd79+/DwCoWbOmyraNGzeiT58+0NPTw6efforbt2/j/Pnzbz1mRSSXy+Hn5wcLCwv89NNP6NSpExYsWIBffvlFpezatWuxdOlSjBgxAgsWLIC5uTkOHz4MPz8/JCcnY8aMGQgNDcWZM2fQvn174T0srcGDB2Pp0qXo0aMH5s6dCwMDA6U/3Nd9/PHHyMjIwJw5c/Dxxx8jIiICM2fOVCl34sQJBAcH4/PPP0dYWBiePXuGbt264dq1a6Wu4/r16yGVStGhQwesX78e69evx8iRIwEAZ86cAQC0aNFCaR8iwocffojw8HB069YNCxcuRMOGDTFx4kSEhoaWqb6jRo3CypUrERAQgBUrVuCrr76CgYGBygno0KFDEIlE8PX1BQBERUXh008/Rc2aNTF37lz8+OOP6Ny5M/766y9hn6ysLHTq1AkbNmzAoEGDsGTJErRv3x5TpkxRqe+wYcOEjnLu3Ln4+uuvoa+vj7NnzyqV8/T0BBEJ75E2cP9TcXD/w/1Ppeh/1HodToOKugUQHBxMAOjSpUvF7nfx4kUCQKGhocK6fv36kb6+PqWlpQnrYmNjCQBNmTJFaf9OnToRgCJfI0eOFMopbgEcPnyYUlJS6OHDh7Rjxw6ytLQkqVRKDx8+VDruhQsXCABFRUUREVF+fj7Z29vT+PHjVdqASnALAACFhYUprW/evDl5enoKy3FxcQSATExMKDk5Wamsh4cHWVlZ0bNnz4R1V65cIbFYTIMGDVKKVdStIMVlfIWYmBgCQMHBwUrlBg8eTABo+vTpKvsOHTpUqexHH31EFhYWSusUP/sLFy4I6x48eED6+vr00UcflbqeRMW/t1OnTiUAlJGRobR+9+7dBIC+//57pfV9+/YlkUhEd+7cKXV9TU1N3/o7RkQ0cOBA6tSpk7A8fvx4MjExoby8vGL3mTVrFhkZGdGtW7eU1n/99dckkUgoPj6eiIiOHj1KAGjcuHEqx8jPz1daTkhIIAA0d+7ct9ZZHbj/4f5HEYv7H+5/ytr/VKkrYBkZGQCAGjVqFFtGsS09PV1Y9/nnnyM7Oxs7d+4U1ik+kRZ1+b9OnTqIiopSeQUHB6uU9fHxgaWlJRwcHNC3b18YGRlhz549sLe3Vyq3ceNGWFtbw9vbG0DBpdpPPvkEW7ZsUbpsXpmMGjVKablDhw64d++eSrmAgABYWloKy0+ePMHly5cxePBgmJubC+ubNm2Krl27Yv/+/aWui+KKw5dffqm0fuzYsaWq/7Nnz5R+dwDAy8sLnp6ewrKjoyN69eqFQ4cOqfVn9+zZM+jo6KgMNt6/fz8kEgnGjRuntH7ChAkgIhw4cKDU9TUzM8Pff/+NhISEYuuTn5+PgwcPKn2KNzMzQ2ZmJqKioordb/v27ejQoQNq1qypdAXHx8cHcrlcuB3xv//9DyKRCNOnT1c5xuu3dxRXdLT56D73PxUL9z/c/xSlIvU/VSoBU3Ruio6wKEV1kt27d4e5ubnSbYDNmzejWbNmaNy4scoxjIyM4OPjo/Iq/Bi4wvLlyxEVFYUdO3agR48eePr0KaRSqVIZuVyOLVu2wNvbG3Fxcbhz5w7u3LmDNm3aICkpCUeOHCndG1EBKO6XF1azZk28ePFCpayzs7PS8oMHDwAADRs2VCnr6upa4tstrx9TLBarxHrTU16Ojo5Ky4o/stfbUL9+fZV9GzRogKysLKSkpJSqnmXx4MED2NnZqZz4XV1dhe2FlaS+8+bNw7Vr1+Dg4IDWrVtjxowZKiev8+fPIyUlRakD/PLLL9GgQQN0794d9vb2GDp0qHDyUbh9+zYOHjwIS0tLpZdibElycjKAgnFKdnZ2SifB4tD/jzV5vWPUJO5/Kg7uf7j/qQz9T6WehuJ1ih/4P//8Aw8PjyLL/PPPPwAANzc3YZ2uri4+/vhjrF69GklJSYiPj8ft27cxb968d65T69at0bJlSwBA79698d577+Gzzz7DzZs3hU8SR48exZMnT7BlyxZs2bJF5RgbN24U7nFXFhKJpMRlDQwMyhynuF94dXzyK64N9NrA0pJQRz0tLCyQl5eHjIyMN15lUYePP/4YHTp0wK5duxAZGYn58+dj7ty52LlzpzAlwv79+1GnTh2lvyUrKytcvnwZhw4dwoEDB3DgwAGsXbsWgwYNwrp16wAUfHLt2rUrJk2aVGTsBg0alLq+ipNSrVq1Sr2vunD/U3Fw/6OM+5+K2f9UqStg3bt3h0QiUZkzprDff/8dOjo66Natm9L6AQMGQC6XY+vWrdi0aRNEIpHa5zqRSCSYM2cOEhISsGzZMmH9xo0bYWVlhe3bt6u8Pv30U+zatQuvXr1Sa10qMicnJwDAzZs3VbbFxsaiVq1aMDIyAlDwqTA1NVWl3OufupycnJCfn4+4uDil9Xfu3Hnn+t6+fVtl3a1bt2BoaCh8Ci9pPYHiO0vFFY7X2+Dk5ISEhASVKy+xsbHC9tLWFwBsbW3x5ZdfYvfu3YiLi4OFhQV++OEHYfu+ffvQo0cPlWPp6enhgw8+wIoVK3D37l2MHDkSv//+u/Be16tXDy9fvizyKo6Pj4/wyb9evXpISEgo0ZNFivdEkQRpA/c/VQP3P9z/KMqVd/9TpRIwBwcHDBkyBIcPH8bKlStVtq9atQpHjx7FsGHDVMZAtG/fHnXq1MGGDRuwdetWdOrUSaWMOnTu3BmtW7fGokWLkJ2djVevXmHnzp3o2bMn+vbtq/IaM2YMMjIyhJmwNeXu3btFPqquCba2tvDw8MC6deuUOo1r164hMjJS6Y+uXr16SEtLE64sAAVjOHbt2qV0TD8/PwBQ+cqIpUuXvnN9o6OjlR6PfvjwIf744w/4+voKn2JLWk+g4BZTUZ2ll5cXAKg8At2jRw/I5XKlkyoAhIeHQyQSKU3iWZL6yuVypKWlKe1jZWUFOzs75OTkAACSkpJw8eJFlae4nj17prQsFovRtGlTABD2/fjjjxEdHY1Dhw6ptDE1NRV5eXkACsbmEFGRT369fhUgJiYGIpFIeI+0gfsf9eH+p+S4//lPZet/qtQtSKDghx4bG4svv/wSBw8eFD5pHjp0CH/88YfwOPLrRCIRPvvsM8yePRtAwQzSxUlLS8OGDRuK3Pb6zNhFmThxIvr164eIiAjUrFkTGRkZ+PDDD4ss27ZtW1haWmLjxo345JNPhPUXLlzA999/r1K+c+fOeO+99wAAKSkpRZZxdnZ+69xCXbp0AYAyP3L9rubPn4/u3bvDy8sLw4YNw6tXr7B06VKYmpoqzZnTv39/TJ48GR999BHGjRuHrKwsrFy5Eg0aNFD6I/f09ERAQAAWLVqEZ8+eoW3btjhx4gRu3boF4N3GDrm7u8PPzw/jxo2DVCoVOtnCf7glraeirocPH8bChQthZ2cHZ2dntGnTBnXr1oW7uzsOHz6sNOPyBx98AG9vb3z77be4f/8+mjVrhsjISPzxxx8IDg5GvXr1SlXfjIwM2Nvbo2/fvmjWrBmMjY1x+PBhnD9/Xvjb2b9/P/T19YVB2wrDhw/H8+fP8f7778Pe3h4PHjzA0qVL4eHhIXw6nDhxIvbs2SPMFO/p6YnMzExcvXoVO3bswP3791GrVi14e3tj4MCBWLJkCW7fvo1u3bohPz8fp06dgre3t9JcW1FRUWjfvj0sLCzK/HNUB+5/uP/h/of7nxIr1TOTFUhxj9USEeXk5FB4eDh5enqSkZERGRoaUosWLWjRokWUm5tb7DGvX79OAEgqldKLFy+KLPOmx8ALv53FzURNRCSXy6levXpUr1496tmzJ+nr61NmZmax9Ro8eDDp6urS06dPiYjeGH/WrFlvrWeXLl1U3svXHwN3cnIq9v0lKttM1K8/8qx4DHz+/PlFHufw4cPUvn17MjAwIBMTE/rggw/oxo0bKuUiIyPJ3d2d9PT0qGHDhrRhw4YiH6/OzMykoKAgMjc3J2NjY+rduzfdvHmTANCPP/6oUs/XZ6JW/Ezj4uKEdfj/R/I3bNhA9evXJ6lUSs2bN6djx46VuZ6xsbHUsWNHMjAwIABK7/PChQvJ2NiYsrKylPbJyMigkJAQsrOzI11dXapfvz7Nnz9f5XHpktQ3JyeHJk6cSM2aNaMaNWqQkZERNWvWjFasWCGU6du3L/Xo0UOljTt27CBfX1+ysrIiPT09cnR0pJEjR9KTJ09U6jtlyhRycXEhPT09qlWrFrVr145++uknpb/RvLw8mj9/PjVq1Ij09PTI0tKSunfvTjExMUKZ1NRU0tPTo19//VWlPuWF+x/ufxS4/+H+p6z9T6VOwBwcHCglJaXYzoq92cuXLyklJYX69+9f5q/uqOwuXbpEAGjDhg1l2l/RoWhKamoqmZublznZUEd9ZTIZmZiY0PLly9/pOOoSHh5Otra2KieF8sT9z7vj/of7n7KoSv1PpR4D9vDhQ1haWgqXvFnpfPvtt7C0tCzyyaeqqKiBxIsWLYJYLEbHjh21UKPSMzU1xaRJkzB//nyVr83QlOfPnyMkJAQfffSRVuIXJpPJsHDhQkydOvWdnmYrC+5/3g33P9z/lEVV6n9ERGV4prUCuHHjhjBJm7GxMdq2bavlGlU+t27dQnx8PABAR0cHnTt31m6FytnMmTMRExMDb29v6OjoCI8pjxgxAj///HOZjikSiRAUFKQyALWiqmz1rai4/3l33P9w/1PdVdpB+G5ubkrzf7DSa9CgQZnmPKms2rVrh6ioKMyaNQsvX76Eo6MjZsyYgW+//VbbVWOVDPc/7477H+5/qrtKewWMMcYYY6yyqtRjwBhjjDHGKqNSJ2CPHz/G559/DgsLCxgYGKBJkyZKE7MREaZNmwZbW1sYGBjAx8dHZebb58+fY8CAATAxMYGZmRmGDRuGly9fKpX5559/0KFDB+jr68PBwaHIr+XYvn07GjVqBH19fTRp0qRMX5LKGGOMMaZppRoD9uLFC7Rv3x7e3t44cOAALC0tcfv2beFLQoGCL9FcsmQJ1q1bB2dnZ3z33Xfw8/PDjRs3oK+vD6DgazeePHmCqKgoyGQyDBkyBCNGjBC+jDY9PR2+vr7w8fHBqlWrcPXqVQwdOhRmZmYYMWIEAODMmTP49NNPMWfOHPTs2RObNm1C7969cfHiRbi7u5eoPfn5+UhISECNGjW0+iW+jLGCD28ZGRmws7ODWFz1L85z/8NYxaGV/qc0c1ZMnjyZ3nvvvWK35+fnk42NjdLEdqmpqSSVSmnz5s1ERHTjxg2VCQIPHDhAIpGIHj9+TEREK1asoJo1a1JOTo5S7IYNGwrLH3/8Mfn7+yvFb9OmDY0cObLE7Xn48OEbJxXkF7/4pfnXw4cPS/w3XJlx/8MvflW8lyb7n1JdAduzZw/8/PzQr18/nDhxArVr18aXX36JL774AkDBF1ImJibCx8dH2MfU1BRt2rRBdHQ0+vfvj+joaJiZmaFly5ZCGR8fH4jFYvz999/46KOPEB0djY4dO0JPT08o4+fnh7lz5+LFixeoWbMmoqOjERoaqlQ/Pz8/7N69u9j65+TkCN8HBUD4Pqe4uLhSfbu7TCbDsWPH4O3tDV1d3RLvV1aajqeNmNWhjdqIWZnamJGRAWdn51L9LVZminY+fPgQJiYmJd5PJpMhMjISvr6+Gv2ZajImt7FqxKxMbUxPT4eDg4NG+59SJWD37t3DypUrERoaim+++Qbnz5/HuHHjoKenh8DAQCQmJgIArK2tlfaztrYWtiUmJsLKykq5Ejo6MDc3Vyrj7OyscgzFtpo1ayIxMfGNcYoyZ86cIr9YMzo6GoaGhiV5CwSGhob4+++/S7XPu9B0PG3ErA5t1EbMytLGrKwsAO/2vXiViaKdJiYmpU7ADA0NYWJiotGTmiZjchurRszK2EZN9j+lSsDy8/PRsmVL4QtjmzdvjmvXrmHVqlUIDAwslwqq05QpU5SumikyXl9f31J3gFFRUejatavGfok1GU8bMatDG7URszK1MT09vRxrxRhjFUupEjBbW1uVyQddXV3xv//9DwBgY2MDAEhKSoKtra1QJikpCR4eHkKZ5ORkpWPk5eXh+fPnwv42NjZISkpSKqNYflsZxfaiSKVSSKVSlfW6urplOjmVdb+y0nQ8bcSsDm3URszK0EZN148xxrSpVEP927dvj5s3byqtu3XrFpycnAAAzs7OsLGxwZEjR4Tt6enp+Pvvv+Hl5QUA8PLyQmpqKmJiYoQyR48eRX5+Ptq0aSOUOXnyJGQymVAmKioKDRs2FJ649PLyUoqjKKOIwxhjjDFWUZUqAQsJCcHZs2cxe/Zs3LlzB5s2bcIvv/yCoKAgAAX3ToODg/H9999jz549uHr1KgYNGgQ7Ozv07t0bQMEVs27duuGLL77AuXPn8Ndff2HMmDHo378/7OzsAACfffYZ9PT0MGzYMFy/fh1bt27F4sWLlW4fjh8/HgcPHsSCBQsQGxuLGTNm4MKFCxgzZoya3hrGGNOu/Px8ZGdnq7x0dHSQk5MDuVyu7SoyxsqoVLcgW7VqhV27dmHKlCkICwuDs7MzFi1ahAEDBghlJk2ahMzMTIwYMQKpqal47733cPDgQWEOMADYuHEjxowZgy5dukAsFiMgIABLliwRtpuamiIyMhJBQUHw9PRErVq1MG3aNGEOMKDge7U2bdqEqVOn4ptvvkH9+vWxe/fuEs8BxhhjFVlubi7i4uKQn5+vtJ6IYGNjg/j4eIhEIpiZmcHGxqbaPLzAWFVR6i/j7tmzJ3r27FnsdpFIhLCwMISFhRVbxtzcXJh0tThNmzbFqVOn3limX79+6Nev35srzBhjlQwR4cmTJ5BIJHBwcFCaGDI/Px8vX76EkZERsrOzhTG1hcfdMsYqvlInYIwxxspXXl4esrKyYGdnpzJFTn5+PnJzc2FgYAAjIyMAQHJyMqysrCCRSLRRXcZYGXACxpgaJaSlYevl/x4wyXyZjttX/1umfEJiUhL+d/08ROKCW0b1m3jCyLhgGhQbU330dm8OAx0DtcQsKl7hmGWJx8qfYmxX4cmoi6NI0GQyGSdgrNrJyspCbGyssPzyVQ7OXL2LmrUuwNigYNaDRo0alXquT03gBIwxNdp6OQa/3R+vvPL1O0O1gSeFFi8+3Q08/W/Z3CgCfvU91RfztXivxyxtPKY5JRnXxWO/WHUWGxsLT0/V/mteof/HxMSgRYsWmqtUCXECxpgafeLhCWCxsFzcFTAba+tir4B1dFaea+9dYhYVr3DMssRjjLGKolGjRkrTWt18korQ7VexsF8TNLQ1E8pURJyAsSqt8O25ktwOBN7t9pydqSlCOr2vvNK/t/BfmUyG/fv3o0ePHmqbePRNMcsjHmOsbArfLivqVhlQcW+XlZZcLseJEydw8uRJGBkZwdvbu1xukRsaGipd3RI/eAbpqVdwdW8GDycLtcdTJ07AWJWmcnvuLbcDAb499zbaGOfGWFVQ1O2yea+Vqai3y0pj586dmDBhAu7fvw8AWLhwIerUqYMFCxagT58+2q1cBcIJGNOYdxksDpTtxF349lxJbgcWjsm354qmjXFujFUFhW+XFXWrTFGmMtu5cyf69u2Lnj17Yv369Xj06BHs7e0xb9489O3bFzt27OAk7P9xAsY05l0HiwOlP3Gr3J4r59uB1YE2xrlVV0T01jKvT9TKKq7Ct8sq062ykpLL5ZgwYQJ69uyJ3bt3Qy6X49mzZ2jTpg12796N3r1746uvvkKvXr34iV1wAsY06F0GiwN84q4otDHOrbrR1dWFSCRCSkoKLC0tlZ50VMwD9urVK+Tl5SElJQVisbhEU1YwVp5OnTqF+/fvY/PmzRCLxUpflSUWizFlyhS0a9cOp06dQufOnd8pVtzTTGTm5Kmsv5uSKfyro6Oa4hhJdeBcy+idYqsLJ2BMY3iwOGMlI5FIYG9vj0ePHgnjaBSICK9evYKBgQFEIhEMDQ3h6OioNFs+Y9rw5EnBPYzivhJQsV5RrqzinmbC+6fjbywzYcfVYrcd+6pzhUjCOAFjjLEKyNjYGPXr14dMJlNaL5PJcPLkSXTq1AlSqRQ6Ojo8F1gFVhWu1JSU4uuwrl27hrZt26psv3btmlK5slK8n4s+8YCLlbHytlc52Hs8Gj07e8Go0NOlAHAn+SWCt14u8uehDZyAMcZYBSWRSFTGykgkEuTl5UEqlfLV4gquqlypKakOHTqgTp06mD17Nnbv3q20LT8/H3PmzIGzszM6dOiglnguVsZwr22qtE4mkyHREmjhVLPC/31wAsYYY4yVg6pypaakJBIJFixYgL59+6J3796YOHEiXr16hbNnz2L+/PnYu3cvduzYwQPw/x8nYIwxxlg5quxXakqjT58+2LFjByZMmICOHTsK652dnXkKitdwAsYYY4xVQdr6ouo+ffqgV69eOHbsGA4cOIDu3burdSb8HHk2xPqPEZd+E2J95SuLeXl5SMhLwL/P/1UZWxeX/hJi/cfIkWcDUE6ItYETMMYYY6wKUQz8v3H1Mj7p3llle+HZ97ceOA63Jh4A1DvwXyKRoFOnTsjMzESnTp3UetsxLi0ORs5L8c254susOLiiyPVGzkBCpgc8Ya22+pQVJ2CMMcZYOdDGlZrCA//zZdmwCVz0xvJfRT2F+PhpYbksA/8LP+n56lUW4u7cAlAwMevlq3eRpXNKKQFzdmkAAwPDMid8rzLNkRk3FgCQn5eDvNTkN5bXMbOCWOe/cXb1u9UrdczywAkYY4wxVg4SMh9o/ErN86yC5O2rrg3gYG4JwEHY9ionF6cuXEWHlk1gIFWeuPfh8yz8FHULz7NewhklT4pef9IzJ/EOEtcFv3Efm8BFkNq4AChbwuffpA50xd1Qz8oYcbFXi7zKV1h5XeV7V5yAMcYYq3Y0MT7KzsgJmXFjsfgTD9SzUr0C9tfpv9D+vfYqV8DuJr/E+K2XYeftVOqYiqRv5Z1iCugCx68UvaksSZ9ywmeInJwaeBywHgCQny/HzdibaNioIcTi/66A1XZwRHJmfpkSPgAwN9JD/9aOAIDGVq2E79cECn6O+45Fw9/bq1zHuakDJ2CMMcaqhcK3yjQxPio/Xxf52bWRmWGDfBPlW4mvXuUg4YUdXmXYqExDIc9+ifzsFEgl+qWKB2g+6VOMxyo24bMB/kr9U3nd84J/1DEeq/D3awIFT5e+eJoMr9YtK/zTpZyAMcYYq/Jik56hx8r/Ccv5eTmoHTT1jftMOv0PxGdvCsv7RwegkXXJvzj7bvJLAMDXO4ubbFUH6++cL3Z/I2npT9FSiT7ys2vD2aQh3CxUp76I04mDq7mrSnKSn51WpqSv8HgsoPRjsirKeCxt4ASMMcZYlXct+TaMnJe+0zFuP/coVQLm29gGAFDPyhgGuspPAd58koYJO65iQd8maGirOtC+zAPUZQVfgH3tcZrKtsxXObiQAtg8eFHk5K9lUXg8loGupNgri4UprixWpPFY2sAJGGOMsSrvXa/UAKW/WlN4rNLr8vIKboXWszRSmaT1XRS+6pYvy4bs2SOVMr+evi/8X9fCHmLd/656lfaq2+ttrFvzvzFZRY3HAirumCxN4wSMMVZl1KlTBw8ePFBZ/+WXX2L58uXIzs7GhAkTsGXLFuTk5MDPzw8rVqyAtfV/Y1Di4+MxevRoHDt2DMbGxggMDMScOXOUxswcP34coaGhuH79OhwcHDB16lQMHjxYE01kZfQuV2qAivX03JsUvupW8IRg3zeWV3cbC4/JqkzjsbSBEzDGWJVx/vx5yOVyYfnatWvo2rUr+vXrBwAICQnBvn37sH37dpiammLMmDHo06cP/vrrLwAF8xb5+/vDxsYGZ86cwZMnTzBo0CDo6upi9uzZAIC4uDj4+/tj1KhR2LhxI44cOYLhw4fD1tYWfn5+mm80K5E3XakBKtfTc29SVZ4QrA44AWOMVRmWlpZKyz/++CPq1auHTp06IS0tDWvWrMGmTZvw/vvvAwDWrl0LV1dXnD17Fm3btkVkZCRu3LiBw4cPw9raGh4eHpg1axYmT56MGTNmQE9PD6tWrYKzszMWLFgAAHB1dcXp06cRHh7OCVgloo2n5wpPfXHzSSpyEu/g32sGyH9mJpRRZ0JUmZ8QrA44AWOMVUm5ubnYsGEDQkNDIRKJEBMTA5lMBh8fH6FMo0aN4OjoiOjoaLRt2xbR0dFo0qSJ0i1JPz8/jB49GtevX0fz5s0RHR2tdAxFmeDgYE01jVVSsbGx8PT0VFr32TrlMjExMUpJE6u6OAFjjFVJu3fvRmpqqjA2KzExEXp6ejAzM1MqZ21tjcTERKFM4eRLsV2x7U1l0tPT8erVKxgYGBRZn5ycHOTk5AjL6enpAAquSshkshK3S1G2NPu8K03HrKptrFevHv7++28ABbcDD506D78OrZQGqNerV6/c6sA/x7fvp0mcgDHGqqQ1a9age/fusLOz03ZVAABz5szBzJkzVdZHRkaW6ZZTVFSUOqpVoWNW9Ta2a1IPGanPkZH637onT56Ue1z+OarKysoqp5oUjxMwxliV8+DBAxw+fBg7d+4U1tnY2CA3NxepqalKV8GSkpJgY2MjlDl3TvmL+5KSkoRtin8V6wqXMTExKfbqFwBMmTIFoaGhwnJ6ejocHBzg6+sLExOTErdNJpMhKioKXbt21dg4Hk3H5DZWjZiVqY2KK9KaxAkYY6zKWbt2LaysrODv7y+s8/T0hK6uLo4cOYKAgAAAwM2bNxEfHw8vLy8AgJeXF3744QckJyfDysoKQMEnaRMTE7i5uQll9u/frxQvKipKOEZxpFIppFKpynpdXd0ynZzKut+70HRMbmPViFkZ2qiNhxLEGo/IGGPlKD8/H2vXrkVgYKDS3F2mpqYYNmwYQkNDcezYMcTExGDIkCHw8vJC27ZtAQC+vr5wc3PDwIEDceXKFRw6dAhTp05FUFCQkDyNGjUK9+7dw6RJkxAbG4sVK1Zg27ZtCAkJ0Up7GWOVE18BY4xVKYcPH0Z8fDyGDh2qsi08PBxisRgBAQFKE7EqSCQS7N27F6NHj4aXlxeMjIwQGBiIsLAwoYyzszP27duHkJAQLF68GPb29vj11195CgrGWKlwAsYYq1J8fX1BREVu09fXx/Lly7F8+fJi93dyclK5xfi6zp0749KlS+9UT8ZY9ca3IBljjDHGNIwTMMYYY4wxDeMEjDHGGGNMwzgBY4wxxhjTME7AGGOMMcY0rFQJ2IwZMyASiZRejRo1ErZnZ2cjKCgIFhYWMDY2RkBAgMqM0fHx8fD394ehoSGsrKwwceJE5OXlKZU5fvw4WrRoAalUChcXF0RERKjUZfny5ahTpw709fXRpk0bldmrGWOMMcYqqlJfAWvcuDGePHkivE6fPi1sCwkJwZ9//ont27fjxIkTSEhIQJ8+fYTtcrkc/v7+yM3NxZkzZ7Bu3TpERERg2rRpQpm4uDj4+/vD29sbly9fRnBwMIYPH45Dhw4JZbZu3YrQ0FBMnz4dFy9eRLNmzeDn54fk5OSyvg+MMcYYYxpT6gRMR0cHNjY2wqtWrVoAgLS0NKxZswYLFy7E+++/D09PT6xduxZnzpzB2bNnARR86eyNGzewYcMGeHh4oHv37pg1axaWL1+O3NxcAMCqVavg7OyMBQsWwNXVFWPGjEHfvn0RHh4u1GHhwoX44osvMGTIELi5uWHVqlUwNDTEb7/9po73hDHGGGOsXJU6Abt9+zbs7OxQt25dDBgwAPHx8QCAmJgYyGQy+Pj4CGUbNWoER0dHREdHAwCio6PRpEkTWFtbC2X8/PyQnp6O69evC2UKH0NRRnGM3NxcxMTEKJURi8Xw8fERyjDGGGOMVWSlmgm/TZs2iIiIQMOGDfHkyRPMnDkTHTp0wLVr15CYmAg9PT2YmZkp7WNtbY3ExEQAQGJiolLypdiu2PamMunp6Xj16hVevHgBuVxeZJnY2Ng31j8nJwc5OTnCsuLbz2UyGWQyWQnfBQhlS7PPu9B0PG3ErA5t1EbMytRGTdaRMca0rVQJWPfu3YX/N23aFG3atIGTkxO2bdsGAwMDtVdO3ebMmYOZM2eqrI+MjIShoWGpjxcVFaWOalXYeNqIWR3aqI2YlaGNWVlZ5VQTxhireN7puyDNzMzQoEED3LlzB127dkVubi5SU1OVroIlJSXBxsYGAGBjY6PytKLiKcnCZV5/cjIpKQkmJiYwMDCARCKBRCIpsoziGMWZMmUKQkNDheX09HQ4ODjA19cXJiYmJW63TCZDVFQUunbtCl1d3RLvV1aajqeNmNWhjdqIWZnaqLgizRhj1cE7JWAvX77E3bt3MXDgQHh6ekJXVxdHjhxBQEAAAODmzZuIj4+Hl5cXAMDLyws//PADkpOTYWVlBaDgU7KJiQnc3NyEMq9/EW5UVJRwDD09PXh6euLIkSPo3bs3ACA/Px9HjhzBmDFj3lhfqVQKqVSqsl5XV7dMJ6ey7ldWmo6njZjVoY3aiFkZ2qjp+jHGmDaVahD+V199hRMnTuD+/fs4c+YMPvroI0gkEnz66acwNTXFsGHDEBoaimPHjiEmJgZDhgyBl5cX2rZtCwDw9fWFm5sbBg4ciCtXruDQoUOYOnUqgoKChMRo1KhRuHfvHiZNmoTY2FisWLEC27ZtQ0hIiFCP0NBQrF69GuvWrcO///6L0aNHIzMzE0OGDFHjW8MYY4wxVj5KdQXs0aNH+PTTT/Hs2TNYWlrivffew9mzZ2FpaQkACA8Ph1gsRkBAAHJycuDn54cVK1YI+0skEuzduxejR4+Gl5cXjIyMEBgYiLCwMKGMs7Mz9u3bh5CQECxevBj29vb49ddf4efnJ5T55JNPkJKSgmnTpiExMREeHh44ePCgysB8xhhjjLGKqFQJ2JYtW964XV9fH8uXL8fy5cuLLePk5KRyi/F1nTt3xqVLl95YZsyYMW+95cgYY4wxVhHxd0EyxhhjjGkYJ2CMMcYYYxrGCRhjjDHGmIZxAsYYY4wxpmGcgDHGGGOMaRgnYIwxxhhjGsYJGGOMMcaYhnECxhhjjDGmYZyAMcYYY4xpGCdgjDHGKgy5XI4TJ07g5MmTOHHiBORyubarxFi54ASMMcZYhbBz5064uLiga9euWLhwIbp27QoXFxfs3LlT21VjTO04AWOMVSmPHz/G559/DgsLCxgYGKBJkya4cOGCsJ2IMG3aNNja2sLAwAA+Pj64ffu20jGeP3+OAQMGwMTEBGZmZhg2bBhevnypVOaff/5Bhw4doK+vDwcHB8ybN08j7auqdu7cib59+6JJkyY4deoUNm/ejFOnTqFJkybo27cvJ2GsyuEEjDFWZbx48QLt27eHrq4uDhw4gBs3bmDBggWoWbOmUGbevHlYsmQJVq1ahb///htGRkbw8/NDdna2UGbAgAG4fv06oqKisHfvXpw8eRIjRowQtqenp8PX1xdOTk6IiYnB/PnzMWPGDPzyyy8abW9VIZfLMWHCBPTs2RO7d+9GmzZtYGBggDZt2mD37t3o2bMnvvrqK74dyaoUHW1XgDHG1GXu3LlwcHDA2rVrhXXOzs7C/4kIixYtwtSpU9GrVy8AwO+//w5ra2vs3r0b/fv3x7///ouDBw/i/PnzaNmyJQBg6dKl6NGjB3766SfY2dlh48aNyM3NxW+//QY9PT00btwYly9fxsKFC5USNVYyp06dwv3797F582aIxWKlREssFmPKlClo164dTp06hc6dO2uvooypESdgjLEqY8+ePfDz80O/fv1w4sQJ1K5dG19++SW++OILAEBcXBwSExPh4+Mj7GNqaoo2bdogOjoa/fv3R3R0NMzMzITkCwB8fHwgFovx999/46OPPkJ0dDQ6duwIPT09oYyfnx/mzp2LFy9eKF1xU8jJyUFOTo6wnJ6eDgCQyWSQyWQlbqOibGn2eVflHfPhw4cAgIYNGyq9H4p/GzZsKJQrrzpo+n2tij9Hbcd7l5iarKMCJ2DVWEJaGrZejgEAZL5Mx+2rMcI2yickJiXhf9fPQyQWCevrN/GEkbEJbEz10du9OQx0DDReb8aKc+/ePaxcuRKhoaH45ptvcP78eYwbNw56enoIDAxEYmIiAMDa2lppP2tra2FbYmIirKyslLbr6OjA3NxcqUzhK2uFj5mYmFhkAjZnzhzMnDlTZX1kZCQMDQ1L3daoqKhS7/OuyivmgwcPAACrV68Wkq3C8WJjY4Vy+/fvL5c6vB5TU6rSz7GixCtLzKysrHKqSfE4AavGtl6OwW/3x/+3wva1ArWBJ6+tuvh0N/C04P/mRhHwq+9ZjjVkrHTy8/PRsmVLzJ49GwDQvHlzXLt2DatWrUJgYKBW6zZlyhSEhoYKy+np6XBwcICvry9MTExKfByZTIaoqCh07doVurq65VFVjcf08/PDmjVrcPLkSYwfPx5yuVyIJ5FIsHr1ajg7O+Orr76CRCJRe3xA8+9rVfw5ajveu8RUXJHWJE7AqrFPPDwBLAZQ/BUwG2vrYq+AdXR203SVGXsjW1tbuLkp/166urrif//7HwDAxsYGAJCUlARb2/8+cSQlJcHDw0Mok5ycrHSMvLw8PH/+XNjfxsYGSUlJSmUUy4oyr5NKpZBKpSrrdXV1y3RyKut+76K8Yurq6mLBggXo27cv+vXrh4kTJ+LVq1fCAw779+/Hjh07oK+vr/bYRdVFk+9rVfo5VpR4ZYmp6foBnIBVa3ampgjp9P5/K/x7C/+VyWTYv38/evTooZVfTMbKon379rh586bSulu3bsHJyQlAwYB8GxsbHDlyREi40tPT8ffff2P06NEAAC8vL6SmpiImJgaengVXeI8ePYr8/Hy0adNGKPPtt99CJpMJfx9RUVFo2LBhkbcfmSqVIRC3LsF7eD+ciT4B34G+QjkjE1N4D++HP25dwo19Yh4CwaoMTsAYY1VGSEgI2rVrh9mzZ+Pjjz/GuXPn8MsvvwjTQ4hEIgQHB+P7779H/fr14ezsjO+++w52dnbo3bs3gIIrZt26dcMXX3yBVatWQSaTYcyYMejfvz/s7OwAAJ999hlmzpyJYcOGYfLkybh27RoWL16M8PBwbTW90ilyCIQtYNveEoClUtlk3EAybvAQCFalcALGGKsyWrVqhV27dmHKlCkICwuDs7MzFi1ahAEDBghlJk2ahMzMTIwYMQKpqal47733cPDgQaXbWxs3bsSYMWPQpUsXiMViBAQEYMmSJcJ2U1NTREZGIigoCJ6enqhVqxamTZvGU1CUAg+BYNUdJ2CMsSqlZ8+e6NmzZ7HbRSIRwsLCEBYWVmwZc3NzbNq06Y1xmjZtilOnTpW5ntUdD4Fg1R3PhM8YY4wxpmGcgDHGGGOMaRgnYIwxxhhjGsYJGGOMMcaYhnECxhhjjDGmYZyAMcYYY4xpGCdgjDHGGGMaxgkYY4wxxpiGcQLGGGOMMaZhnIAxxhhjjGkYJ2CMMcYYYxrGCRhjjDHGmIZxAsYYY4wxpmGcgDHGGGOMaRgnYIwxxhhjGsYJGGOMMcaYhnECxhhjjDGmYZyAMcYYY4xp2DslYD/++CNEIhGCg4OFddnZ2QgKCoKFhQWMjY0REBCApKQkpf3i4+Ph7+8PQ0NDWFlZYeLEicjLy1Mqc/z4cbRo0QJSqRQuLi6IiIhQib98+XLUqVMH+vr6aNOmDc6dO/cuzWGMMcYY04gyJ2Dnz5/Hzz//jKZNmyqtDwkJwZ9//ont27fjxIkTSEhIQJ8+fYTtcrkc/v7+yM3NxZkzZ7Bu3TpERERg2rRpQpm4uDj4+/vD29sbly9fRnBwMIYPH45Dhw4JZbZu3YrQ0FBMnz4dFy9eRLNmzeDn54fk5OSyNokxxhhjTCPKlIC9fPkSAwYMwOrVq1GzZk1hfVpaGtasWYOFCxfi/fffh6enJ9auXYszZ87g7NmzAIDIyEjcuHEDGzZsgIeHB7p3745Zs2Zh+fLlyM3NBQCsWrUKzs7OWLBgAVxdXTFmzBj07dsX4eHhQqyFCxfiiy++wJAhQ+Dm5oZVq1bB0NAQv/3227u8H4wxxhhj5U6nLDsFBQXB398fPj4++P7774X1MTExkMlk8PHxEdY1atQIjo6OiI6ORtu2bREdHY0mTZrA2tpaKOPn54fRo0fj+vXraN68OaKjo5WOoSijuNWZm5uLmJgYTJkyRdguFovh4+OD6OjoYuudk5ODnJwcYTk9PR0AIJPJIJPJStx+RdnS7PMuNB1PGzGrQxu1EbMytVGTdWSMMW0rdQK2ZcsWXLx4EefPn1fZlpiYCD09PZiZmSmtt7a2RmJiolCmcPKl2K7Y9qYy6enpePXqFV68eAG5XF5kmdjY2GLrPmfOHMycOVNlfWRkJAwNDYvdrzhRUVGl3uddaDqeNmJWhzZqI2ZlaGNWVlY51YQxxiqeUiVgDx8+xPjx4xEVFQV9ff3yqlO5mTJlCkJDQ4Xl9PR0ODg4wNfXFyYmJiU+jkwmQ1RUFLp27QpdXd3yqKpW42kjZnVoozZiVqY2Kq5IM8ZYdVCqBCwmJgbJyclo0aKFsE4ul+PkyZNYtmwZDh06hNzcXKSmpipdBUtKSoKNjQ0AwMbGRuVpRcVTkoXLvP7kZFJSEkxMTGBgYACJRAKJRFJkGcUxiiKVSiGVSlXW6+rqlunkVNb9ykrT8bQRszq0URsxK0MbNV0/xhjTplINwu/SpQuuXr2Ky5cvC6+WLVtiwIABwv91dXVx5MgRYZ+bN28iPj4eXl5eAAAvLy9cvXpV6WnFqKgomJiYwM3NTShT+BiKMopj6OnpwdPTU6lMfn4+jhw5IpRhjDHGGKuoSpWA1ahRA+7u7kovIyMjWFhYwN3dHaamphg2bBhCQ0Nx7NgxxMTEYMiQIfDy8kLbtm0BAL6+vnBzc8PAgQNx5coVHDp0CFOnTkVQUJBwdWrUqFG4d+8eJk2ahNjYWKxYsQLbtm1DSEiIUJfQ0FCsXr0a69atw7///ovRo0cjMzMTQ4YMUePbwxirTGbMmAGRSKT0atSokbBdk/MUMsbYm5TpKcg3CQ8Ph1gsRkBAAHJycuDn54cVK1YI2yUSCfbu3YvRo0fDy8sLRkZGCAwMRFhYmFDG2dkZ+/btQ0hICBYvXgx7e3v8+uuv8PPzE8p88sknSElJwbRp05CYmAgPDw8cPHhQZWA+Y6x6ady4MQ4fPiws6+j8182FhIRg37592L59O0xNTTFmzBj06dMHf/31F4D/5im0sbHBmTNn8OTJEwwaNAi6urqYPXs2gP/mKRw1ahQ2btyII0eOYPjw4bC1tVXqoxhj7E3eOQE7fvy40rK+vj6WL1+O5cuXF7uPk5MT9u/f/8bjdu7cGZcuXXpjmTFjxmDMmDElritjrOrT0dEpciyoYp7CTZs24f333wcArF27Fq6urjh79izatm0rzFN4+PBhWFtbw8PDA7NmzcLkyZMxY8YM6OnpKc1TCACurq44ffo0wsPDOQFjjJUYfxckY6xKuX37Nuzs7FC3bl0MGDAA8fHxAN4+TyGAYucpTE9Px/Xr14UyRc1T+KY5CBlj7HVqvwXJGGPa0qZNG0RERKBhw4Z48uQJZs6ciQ4dOuDatWsam6fQwMCgyLpV1omgtRGT21g1YlamNmpjImhOwBhjVUb37t2F/zdt2hRt2rSBk5MTtm3bVmxipCmVfSJobcTkNlaNmJWhjdqYCJoTMMZYlWVmZoYGDRrgzp076Nq1q0bmKSxOZZ0IWhsxuY1VI2ZlaqM2JoLmBIwxVmW9fPkSd+/excCBA+Hp6SnMUxgQEACg6HkKf/jhByQnJ8PKygpA0fMUvv4QUeF5CotT2SeC1kZMbmPViFkZ2qiNiaB5ED5jrMr46quvcOLECdy/fx9nzpzBRx99BIlEgk8//VSj8xQyxtjb8BUwxliV8ejRI3z66ad49uwZLC0t8d577+Hs2bOwtLQEoLl5Chlj7G04AWOMVRlbtmx543ZNzlPIGGNvwrcgGWOMMcY0jBMwxhhjjDEN4wSMMcYYY0zDOAFjjDHGGNMwTsAYY4wxxjSMEzDGGGOMMQ3jBIwxxhhjTMM4AWOMMcYY0zBOwBhjjDHGNIwTMMYYY4wxDeMEjDHGGGNMwzgBY4wxxhjTME7AGGOMMcY0jBMwxhhjjDEN4wSMMcYYY0zDOAFjjDHGGNMwTsAYY4wxxjSMEzDGGGOMMQ3jBIwxxhhjTMM4AWOMMcYY0zBOwBhjjDHGNExH2xVgBRLS0rD1coywnPkyHbevFixTPiExKQn/u34eIrFIKFO/iSeMjE0AADam+ujt3hwGOgaarThjjDHGSo0TsApi6+UY/HZ/vPJK20L/rw08eW2fi093A0//WzY3ioBffc9yqiFjrDqSy+U4ceIETp48CSMjI3h7e0MikWi7WoxVepyAVRCfeHgCWCwsF3UFzMba+o1XwDo6u2m0zoyxqm3nzp2YMGEC7t+/DwBYuHAh6tSpgwULFqBPnz7arRxjlRwnYBWEnakpQjq9r7zSvzcAQCaTYf/+/ejRowd0dXU1XznGWLWzc+dO9O3bFz179sT69evx6NEj2NvbY968eejbty927NjBSRhj74AH4TPGGFMil8sxYcIE9OzZE7t370abNm1gYGCANm3aYPfu3ejZsye++uoryOVybVeVsUqLEzDGGGNKTp06hfv37+Obb76BWKx8mhCLxZgyZQri4uJw6tQpLdWQscqPEzDGWJX1448/QiQSITg4WFiXnZ2NoKAgWFhYwNjYGAEBAUhKSlLaLz4+Hv7+/jA0NISVlRUmTpyIvLw8pTLHjx9HixYtIJVK4eLigoiICA20qHwkpKUh/MRR4fXz8X3Qd9LHkshdCPzxOwybPxPLj+7FsPkzEfjjd1gatQv6TvqIOHsM4SeOYvPlM3iV90rbzWCsUuExYIyxKun8+fP4+eef0bRpU6X1ISEh2LdvH7Zv3w5TU1OMGTMGffr0wV9//QWg4Pabv78/bGxscObMGTx58gSDBg2Crq4uZs+eDQCIi4uDv78/Ro0ahY0bN+LIkSMYPnw4bG1t4efnp/G2viuVp7CdAZeZLriK/f+te+1JbJeZLojBTsTc3wmAn8JmrLQ4AWOMVTkvX77EgAEDsHr1anz//ffC+rS0NKxZswabNm3C++8XPPSydu1auLq64uzZs2jbti0iIyNx48YNHD58GNbW1vDw8MCsWbMwefJkzJgxA3p6eli1ahWcnZ2xYMECAICrqytOnz6N8PDwSpmAvf4U9su0F1j8bRBMzWuhvV8vACLhSWyA8NehP5D1MgMTf1oDkVjMT2EzVgacgDHGqpygoCD4+/vDx8dHKQGLiYmBTCaDj4+PsK5Ro0ZwdHREdHQ02rZti+joaDRp0gTW1tZCGT8/P4wePRrXr19H8+bNER0drXQMRZnCtzpfl5OTg5ycHGE5PT0dQMFTzjKZrMRtU5QtzT5vY2loiDHtOiita5gtR//+/eFaow4mTJiApKQkWFtbY8GCBYg7dQNbtmzBR+91+m8HUl+dyqONFS0mt7FixdRkHRVKlYCtXLkSK1euFOaEady4MaZNm4bu3bsDKBhbMWHCBGzZsgU5OTnw8/PDihUrlDqy+Ph4jB49GseOHYOxsTECAwMxZ84c6Oj8V5Xjx48jNDQU169fh4ODA6ZOnYrBgwcr1WX58uWYP38+EhMT0axZMyxduhStW7cu49vAGKsqtmzZgosXL+L8+fMq2xITE6GnpwczMzOl9dbW1khMTBTKFO6zFNsV295UJj09Ha9evYKBgeo3UsyZMwczZ85UWR8ZGQlDQ8OSN/D/RUVFlXqf0pBKpZg0aRLWrl0rXC0ECto5adIkSKVS7N+//w1HeHfl3caKEJPbWDFiZmVllVNNileqBMze3h4//vgj6tevDyLCunXr0KtXL1y6dAmNGzfW2NiKrVu3IjQ0FKtWrUKbNm2waNEi+Pn54ebNm7CyslLzW8QYqywePnyI8ePHIyoqCvr6+tqujpIpU6YgNDRUWE5PT4eDgwN8fX1hYmJS4uPIZDJERUWha9eu5T4vYI8ePTBjxgwcP35ciNm5c+dynwlfk23UVkxuY8WKqbgirUmlSsA++OADpeUffvgBK1euxNmzZ2Fvb6+xsRULFy7EF198gSFDhgAAVq1ahX379uG3337D119//c5vCmOscoqJiUFycjJatGghrJPL5Th58iSWLVuGQ4cOITc3F6mpqUpXwZKSkmBjYwMAsLGxwblz55SOq3hKsnCZ15+cTEpKgomJSZFXv4CCK0pSqVRlva6ubplOTmXdryxxunTpgpycHHTp0kWjk0Frqo3ajMltrBgxtTHJeZnHgMnlcmzfvh2ZmZnw8vLS2NiK3NxcxMTEYMqUKcJ2sVgMHx8fREdHv7HOFXkMRkWKp42Y1aGN2ohZmdqojjp26dIFV69eVVo3ZMgQNGrUCJMnT4aDgwN0dXVx5MgRBAQEAABu3ryJ+Ph4eHl5AQC8vLzwww8/IDk5WbiiHhUVBRMTE7i5uQllXr/9FhUVJRyDMcbeptQJ2NWrV+Hl5YXs7GwYGxtj165dcHNzw+XLlzUytuLFixeQy+VFlomNjX1j3SvbGAxtx9NGzOrQRm3ErAxtVMcYjBo1asDd3V1pnZGRESwsLIT1w4YNQ2hoKMzNzWFiYoKxY8fCy8sLbdu2BQD4+vrCzc0NAwcOxLx585CYmIipU6ciKChIuII1atQoLFu2DJMmTcLQoUNx9OhRbNu2Dfv27XvnNjDGqodSJ2ANGzbE5cuXkZaWhh07diAwMBAnTpwoj7qpXWUcg6GNeNqIWR3aqI2YlamNmhqDER4eDrFYjICAAKWHhRQkEgn27t2L0aNHw8vLC0ZGRggMDERYWJhQxtnZGfv27UNISAgWL14Me3t7/Prrr5VyCgrGmHaUOgHT09ODi4sLAMDT0xPnz5/H4sWL8cknn2hkbIVEIoFEIimyjOIYxamsYzC0FU8bMatDG7URszK0sbzqd/z4caVlfX19LF++HMuXLy92Hycnp7c+4de5c2dcunRJHVVkjFVD7/xVRPn5+cjJyYGnp6cwtkKhqLEVV69eRXJyslCmqLEVhY+hKKM4hp6eHjw9PZXK5Ofn48iRIzz+gjHGGGOVQqmugE2ZMgXdu3eHo6MjMjIysGnTJhw/fhyHDh2CqampxsZWhIaGIjAwEC1btkTr1q2xaNEiZGZmCk9FMsYYY4xVZKVKwJKTkzFo0CA8efIEpqamaNq0KQ4dOoSuXbsC0NzYik8++QQpKSmYNm0aEhMT4eHhgYMHD6oMzGeMMcYYq4hKlYCtWbPmjds1ObZizJgxGDNmzBvLMMYYY4xVRO88BowxxhhjjJUOJ2CMMcYYYxrGCRhjjDHGmIZxAsYYY4wxpmGcgDHGGGOMaRgnYIwxxhhjGsYJGGOMMcaYhnECxhhjjDGmYZyAMcYYY4xpGCdgjDHGGGMaxgkYY4wxxpiGcQLGGGOMMaZhnIAxxhhjjGkYJ2CMMcYYYxrGCRhjjDHGmIZxAsYYY4wxpmGcgDHGGGOMaRgnYIwxxhhjGsYJGGOMMcaYhnECxhhjjDGmYZyAMcYYY4xpGCdgjDHGGGMaxgkYY6zKWLlyJZo2bQoTExOYmJjAy8sLBw4cELZnZ2cjKCgIFhYWMDY2RkBAAJKSkpSOER8fD39/fxgaGsLKygoTJ05EXl6eUpnjx4+jRYsWkEqlcHFxQUREhCaaxxirQjgBY4xVGfb29vjxxx8RExODCxcu4P3330evXr1w/fp1AEBISAj+/PNPbN++HSdOnEBCQgL69Okj7C+Xy+Hv74/c3FycOXMG69atQ0REBKZNmyaUiYuLg7+/P7y9vXH58mUEBwdj+PDhOHTokMbbyxirvHS0XQHGGFOXDz74QGn5hx9+wMqVK3H27FnY29tjzZo12LRpE95//30AwNq1a+Hq6oqzZ8+ibdu2iIyMxI0bN3D48GFYW1vDw8MDs2bNwuTJkzFjxgzo6elh1apVcHZ2xoIFCwAArq6uOH36NMLDw+Hn56fxNjPGKidOwBhjVZJcLsf27duRmZkJLy8vxMTEQCaTwcfHRyjTqFEjODo6Ijo6Gm3btkV0dDSaNGkCa2troYyfnx9Gjx6N69evo3nz5oiOjlY6hqJMcHDwG+uTk5ODnJwcYTk9PR0AIJPJIJPJStwuRdnS7POuNB2T21g1YlamNmqyjgqcgDHGqpSrV6/Cy8sL2dnZMDY2xq5du+Dm5obLly9DT08PZmZmSuWtra2RmJgIAEhMTFRKvhTbFdveVCY9PR2vXr2CgYFBkfWaM2cOZs6cqbI+MjIShoaGpW5nVFRUqfd5V5qOyW2sGjErQxuzsrLKqSbF4wSMMValNGzYEJcvX0ZaWhp27NiBwMBAnDhxQtvVwpQpUxAaGiosp6enw8HBAb6+vjAxMSnxcWQyGaKiotC1a1fo6uqWR1W1HpPbWDViVqY2Kq5IaxInYIyxKkVPTw8uLi4AAE9PT5w/fx6LFy/GJ598gtzcXKSmpipdBUtKSoKNjQ0AwMbGBufOnVM6nuIpycJlXn9yMikpCSYmJsVe/QIAqVQKqVSqsl5XV7dMJ6ey7vcuNB2T21g1YlaGNmq6fgA/BckYq+Ly8/ORk5MDT09P6Orq4siRI8K2mzdvIj4+Hl5eXgAALy8vXL16FcnJyUKZqKgomJiYwM3NTShT+BiKMopjMMZYSfAVMMZYlTFlyhR0794djo6OyMjIwKZNm3D8+HEcOnQIpqamGDZsGEJDQ2Fubg4TExOMHTsWXl5eaNu2LQDA19cXbm5uGDhwIObNm4fExERMnToVQUFBwtWrUaNGYdmyZZg0aRKGDh2Ko0ePYtu2bdi3b582m84Yq2Q4AWOMVRnJyckYNGgQnjx5AlNTUzRt2hSHDh1C165dAQDh4eEQi8UICAhATk4O/Pz8sGLFCmF/iUSCvXv3YvTo0fDy8oKRkRECAwMRFhYmlHF2dsa+ffsQEhKCxYsXw97eHr/++itPQcEYKxVOwBhjVcaaNWveuF1fXx/Lly/H8uXLiy3j5OSE/fv3v/E4nTt3xqVLl8pUR8YYA3gMGGOMMcaYxnECxhhjjDGmYZyAMcYYY4xpGCdgjDHGGGMaxgkYY4wxxpiGcQLGGGOMMaZhpUrA5syZg1atWqFGjRqwsrJC7969cfPmTaUy2dnZCAoKgoWFBYyNjREQEKDytR3x8fHw9/eHoaEhrKysMHHiROTl5SmVOX78OFq0aAGpVAoXFxdERESo1Gf58uWoU6cO9PX10aZNG5WvEGGMMcYYq4hKlYCdOHECQUFBOHv2LKKioiCTyeDr64vMzEyhTEhICP78809s374dJ06cQEJCAvr06SNsl8vl8Pf3R25uLs6cOYN169YhIiIC06ZNE8rExcXB398f3t7euHz5MoKDgzF8+HAcOnRIKLN161aEhoZi+vTpuHjxIpo1awY/Pz+lrxBhjDHGGKuISjUR68GDB5WWIyIiYGVlhZiYGHTs2BFpaWlYs2YNNm3ahPfffx8AsHbtWri6uuLs2bNo27YtIiMjcePGDRw+fBjW1tbw8PDArFmzMHnyZMyYMQN6enpYtWoVnJ2dsWDBAgCAq6srTp8+jfDwcGG26YULF+KLL77AkCFDAACrVq3Cvn378Ntvv+Hrr79+5zeGMcYYY6y8vNMYsLS0NACAubk5ACAmJgYymQw+Pj5CmUaNGsHR0RHR0dEAgOjoaDRp0gTW1tZCGT8/P6Snp+P69etCmcLHUJRRHCM3NxcxMTFKZcRiMXx8fIQyjDHGGGMVVZm/iig/Px/BwcFo37493N3dAQCJiYnQ09ODmZmZUllra2skJiYKZQonX4rtim1vKpOeno5Xr17hxYsXkMvlRZaJjY0tts45OTnIyckRltPT0wEAMpkMMpmspE0XypZmn3eh6XjaiFkd2qiNmJWpjZqsI2OMaVuZE7CgoCBcu3YNp0+fVmd9ytWcOXMwc+ZMlfWRkZEwNDQs9fGioqLUUa0KG08bMatDG7URszK0MSsrq5xqwhhjFU+ZErAxY8Zg7969OHnyJOzt7YX1NjY2yM3NRWpqqtJVsKSkJNjY2AhlXn9aUfGUZOEyrz85mZSUBBMTExgYGEAikUAikRRZRnGMokyZMgWhoaHCcnp6OhwcHODr6wsTE5MSt18mkyEqKgpdu3aFrq5uifcrK03H00bM6tBGbcSsTG1UXJFmjLHqoFQJGBFh7Nix2LVrF44fPw5nZ2el7Z6entDV1cWRI0cQEBAAALh58ybi4+Ph5eUFAPDy8sIPP/yA5ORkWFlZASj4pGxiYgI3NzehzP79+5WOHRUVJRxDT08Pnp6eOHLkCHr37g2g4JbokSNHMGbMmGLrL5VKIZVKVdbr6uqW6eRU1v3KStPxtBGzOrRRGzErQxs1XT/GGNOmUiVgQUFB2LRpE/744w/UqFFDGLNlamoKAwMDmJqaYtiwYQgNDYW5uTlMTEwwduxYeHl5oW3btgAAX19fuLm5YeDAgZg3bx4SExMxdepUBAUFCcnRqFGjsGzZMkyaNAlDhw7F0aNHsW3bNuzbt0+oS2hoKAIDA9GyZUu0bt0aixYtQmZmpvBUJGOMMcZYRVWqBGzlypUAgM6dOyutX7t2LQYPHgwACA8Ph1gsRkBAAHJycuDn54cVK1YIZSUSCfbu3YvRo0fDy8sLRkZGCAwMRFhYmFDG2dkZ+/btQ0hICBYvXgx7e3v8+uuvwhQUAPDJJ58gJSUF06ZNQ2JiIjw8PHDw4EGVgfmMMcYYYxVNqW9Bvo2+vj6WL1+O5cuXF1vGyclJ5Rbj6zp37oxLly69scyYMWPeeMuRMcYYY6wi4u+CZIwxxhjTME7AGGOMMcY0jBMwxhhjjDEN4wSMMcYYY0zDOAFjjDHGGNMwTsAYY4wxxjSMEzDGGGOMMQ3jBIwxxhhjTMM4AWOMMcYY0zBOwBhjVcacOXPQqlUr1KhRA1ZWVujduzdu3rypVCY7OxtBQUGwsLCAsbExAgICkJSUpFQmPj4e/v7+MDQ0hJWVFSZOnIi8vDylMsePH0eLFi0glUrh4uKCiIiI8m4eY6wK4QSMMVZlnDhxAkFBQTh79iyioqIgk8ng6+uLzMxMoUxISAj+/PNPbN++HSdOnEBCQgL69OkjbJfL5fD390dubi7OnDmDdevWISIiAtOmTRPKxMXFwd/fH97e3rh8+TKCg4MxfPhwHDp0SKPtZYxVXqX6LsjqJCEtDVsvxwAAMl+m4/bVGGEb5RMSk5Lwv+vnIRKLAAD1m3jCyNgEAGBjqo/e7s1hoGOg+YozVo0dPHhQaTkiIgJWVlaIiYlBx44dkZaWhjVr1mDTpk14//33AQBr166Fq6srzp49i7Zt2yIyMhI3btzA4cOHYW1tDQ8PD8yaNQuTJ0/GjBkzoKenh1WrVsHZ2RkLFiwAALi6uuL06dMIDw+Hn5/fO7ejtP0P8F8fxP0PY5UDJ2DF2Ho5Br/dH//fCtvXCtQGnhRavPh0N/D0v2Vzowj41fcsxxoyxt4mLS0NAGBubg4AiImJgUwmg4+Pj1CmUaNGcHR0RHR0NNq2bYvo6Gg0adIE1tbWQhk/Pz+MHj0a169fR/PmzREdHa10DEWZ4OBgtdS7tP0PoNwHcf/DWMXHCVgxPvHwBLAYQPGfQG2srYu9AtbR2U3jdWaM/Sc/Px/BwcFo37493N3dAQCJiYnQ09ODmZmZUllra2skJiYKZQonX4rtim1vKpOeno5Xr17BwED16lNOTg5ycnKE5fT0dACATCaDTCZTKtuncTPk54cDADIz0nDn2iWldiWnpMDK0hJi8X+jSFzcm8OohimsTaTwsq+vcsx3oTiWOo9ZkeJpIya3sWLF1GQdFTgBK4adqSlCOr3/3wr/3sJ/ZTIZ9u/fjx49ekBXV1fzlWOMvVVQUBCuXbuG06dPa7sqAAoeEJg5c6bK+sjISBgaGqqsdxH+p4NmjVu9PQABSM8E0jNx7NGxd6lqsaKiosrluBUlnjZichsrRsysrKxyqknxOAFjjFU5Y8aMwd69e3Hy5EnY29sL621sbJCbm4vU1FSlq2BJSUmwsbERypw7d07peIqnJAuXef3JyaSkJJiYmBR59QsApkyZgtDQUGE5PT0dDg4O8PX1hYmJSYnbJpPJEBUVha5du2rsA6CmY3Ibq0bMytRGxRVpTeIEjDFWZRARxo4di127duH48eNwdnZW2u7p6QldXV0cOXIEAQEBAICbN28iPj4eXl5eAAAvLy/88MMPSE5OhpWVFYCCT9MmJiZwc3MTyuzfv1/p2FFRUcIxiiKVSiGVSlXW6+rqlunkVNb93oWmY3Ibq0bMytBGbdzN4gSMMVZlBAUFYdOmTfjjjz9Qo0YNYcyWqakpDAwMYGpqimHDhiE0NBTm5uYwMTHB2LFj4eXlhbZt2wIAfH194ebmhoEDB2LevHlITEzE1KlTERQUJCRQo0aNwrJlyzBp0iQMHToUR48exbZt27Bv3z6ttZ0xVrnwPGCMsSpj5cqVSEtLQ+fOnWFrayu8tm7dKpQJDw9Hz549ERAQgI4dO8LGxgY7d+4UtkskEuzduxcSiQReXl74/PPPMWjQIISFhQllnJ2dsW/fPkRFRaFZs2ZYsGABfv31V7VMQcEYqx74ChhjrMogoreW0dfXx/Lly7F8+fJiyzg5OancYnxd586dcenSpTeWYYyx4vAVMMYYY4wxDeMEjDHGGGNMw6r1LUjF7YrSPn4qk8mQlZWF9PR0jT3Kq8l42ohZHdqojZiVqY2Kv8OS3EasCipL/6ONmNzGqhGzMrVRG/1PtU7AMjIyAAAODg5argljTCEjIwOmpqbarka54/6HsYpHk/2PiKrLx80i5OfnIyEhATVq1IBIJHr7Dv9PMYHiw4cPSzWBYllpOp42YlaHNmojZmVqIxEhIyMDdnZ2Sl+xU1VVlv5HGzG5jVUjZmVqozb6n2p9BUwsFivNkl1aJiYmGvul0kY8bcSsDm3URszK0sbqcOVLobL1P9qIyW2sGjErSxs13f9U/Y+ZjDHGGGMVDCdgjDHGGGMaxglYGUilUkyfPr3I73WrCvG0EbM6tFEbMatDG6ub6vAz5TZWjZjVoY3voloPwmeMMcYY0wa+AsYYY4wxpmGcgDHGGGOMaRgnYIwxxhhjGsYJGGOMMcaYhnECxiqMvLw8jcRJS0vDzZs3cfPmTaSlpWkkpsLx48fx6tUrjcZkVU9SUhISExO1XQ3G2DvgBKyMIiIiNH7yLs8HVq9cuYLvv/8eK1aswNOnT5W2paenY+jQoWqLdfDgQVy9ehVAwdexzJo1C7Vr14ZUKoW9vT1+/PHHcmnrr7/+Cjc3N5ibm8PNzU3p/2vWrFF7vKL4+vri/v37GolVGJ+wK6fnz5+jb9++cHR0xOjRoyGXyzF8+HDY2tqidu3aaNeuHZ48eVKudbh9+zaOHDmCO3fulGuc182cOVOlL2LvTht9gaY+XCto4/xcJsTKRFdXl27cuKH242ZnZ9OECROoQ4cO9OOPPxIR0axZs8jIyIiMjIzo008/pbS0NLXGPHToEOnp6VHjxo3J0dGRLCws6OjRo8L2xMREEovFaovXsGFDOnnyJBERzZ49mywsLGjhwoV04MABWrRoEVlbWwttV5d58+aRoaEhff3113Ts2DG6ceMG3bhxg44dO0ZTpkwhIyMjmj9/vtriNW/evMiXSCQiV1dXYVndnj17RgEBAeTg4ECjRo2ivLw8GjZsGIlEIhKLxeTl5UUJCQlqjZmVlUWnTp2i69evq2x79eoVrVu3Tq3xqpOhQ4eSu7s7LV26lDp16kS9evWipk2b0unTp+nMmTPUqlUrGjRokNrizZ49mw4fPkxERM+fP6cuXbqQSCQSfn+6detGL168UFs8IqK0tDSVV2pqKunq6tLff/8trFOn3NxcmjhxItWrV49atWpFa9asUdqu7j5P4fr16zR69Gjy8PAgGxsbsrGxIQ8PDxo9enSRfz/vQht9wYEDB+iff/4hIiK5XE5hYWFkZ2dHYrGYateuTXPmzKH8/Hy1xixKeZ2f1Y0TsLeoWbNmkS+RSESmpqbCsrqEhISQnZ0dTZgwgVxdXenLL78kR0dH2rBhA23atIlcXFxo7NixaotHROTl5UXffPMNERHl5+fT3LlzydjYmA4cOEBE6u+MpFIpPXjwgIiI3N3dadu2bUrb9+7dSy4uLmqLR0Tk6OhIW7duLXb7li1byMHBQW3xdHR0qFu3bjRjxgzhNX36dBKLxfTll18K69RN0yfsmzdvkpOTk9Cpd+zYUalTL68TWXVha2tLf/31FxEVvJcikYgiIyOF7adPn6batWurLZ69vT1dvHiRiIiGDx9OzZs3p4sXL9KrV6/o8uXL1LZtWxo2bJja4hERicXiIl+K3ynFv+o0ffp0sra2pvnz59O3335LpqamNGLECGG74r1Wp/3795Oenh61bduWpk+fTitWrKAVK1bQ9OnTqV27diSVSungwYNqi6fpvoBI8x+uNX1+VjdOwN7C2NiY/P39KSIiQnitXbuWJBIJ/fDDD8I6dXFwcKCoqCgiIrp79y6JxWLavXu3sD0yMpKcnJzUFo+IyMTEhO7cuaO0buPGjWRkZER//vmn2k+itra2FB0dTURE1tbWQoevcOvWLTIwMFBbPCIifX39N34iun79ulpjnj59murVq0fTpk0juVwurNfR0VH7J93CNH3C7t27N/n7+1NKSgrdvn2b/P39ydnZWUiwOQF7N4aGhnT//n1hWVdXl65evSos37t3j4yMjNQWTyqVCvHq1KlDJ06cUNp+4cIFsrW1VVs8IqLatWuTv78/HT16lI4fP07Hjx+nY8eOkUQiobVr1wrr1MnFxYX+/PNPYfn27dvk4uJCgwcPpvz8/HL5vW3atCl99913xW6fPn06NWnSRG3xNN0XEGn+w7Wmz8/qxgnYW9y+fVv4pJCRkSGsL68TqYGBgfALTFTQ4V67dk1YjouLI0NDQ7XGtLS0pAsXLqis37x5MxkaGtLKlSvV2hl9+eWX1LNnT8rLy6MRI0bQ8OHDlS5Ljx07lry8vNQWj4ioQ4cONGjQIJLJZCrb8vLyaNCgQdSxY0e1xkxNTaX+/ftTmzZthAS3vBMwTZ+wrayshFsORAVXUEeNGkWOjo509+5dTsDeUbNmzWjZsmVEVHAFpUaNGrRgwQJh+8qVK8nd3V1t8Ro0aEB79+4lIiJnZ2fhBK5w6dIlMjExUVs8ooJbZb179yZvb2969OiRsL48/1YMDAwoLi5Oad2jR4+oQYMGNGDAAHr8+LHaf2/19fUpNja22O2xsbGkr6+vtnia7guINP/hWtPnZ3XjBKwEZDIZTZo0ierVq0enT58movL7ATds2JC2bNlCRETnzp0jPT09+u2334TtW7Zsofr166s1ZteuXYsd/7Rp0ybS1dVVa2eUmppKLVu2JBcXFxo4cCDp6+uTk5MTde3alZydncnU1JTOnj2rtnhERFeuXCEbGxuysLCgjz76iEaNGkWjRo2ijz76iCwsLMjW1lapc1Kn3377jWxsbOjnn38mXV3dcu0YNH3CrlGjRpFXFoOCgsje3p5OnjzJCdg72LBhA0kkEnJxcSGpVErbt28nOzs7+vjjj6l///6kp6cn/LzVYf78+eTq6kq3b9+mBQsWkJeXl/Dh4d69e9S5c2fq27ev2uIVtmLFCrKzs6NNmzYRUfmeRJ2dnYWxboU9fvyYGjRoQF27dlX7722jRo2U/hZft2DBAmrYsKHa4mm6LyDSzodrTZ6f1Y0TsFI4cuQIOTo60pQpU8rtRBoeHk76+vrk4+NDNWvWpCVLlpCNjQ1NmjSJvv76azI1NaWwsDC1xty5cycFBwcXu33jxo3UuXNntcbMzc2llStXUo8ePahRo0bUoEED6tSpE33zzTf08OFDtcZSSE9PpxUrVtCgQYPI19eXfH19adCgQbRy5Uq1D/J93a1bt6hVq1YkEonKtWPQ9Am7VatW9Pvvvxe5LSgoiMzMzDgBe0enT5+mn376Sbgadf36dRo4cCAFBASUy+2VsWPHkq6uLjVq1Ij09fVJLBaTnp4eicViatmyJT158kTtMRWuX79OzZo1o08//bRcT6LDhg2joUOHFrnt0aNH5OLiovbf223btpGOjg598MEHtHjxYtqyZQtt2bKFFi9eTB9++CHp6enRjh071BZP030BkXY+XCto4vysbvxl3KX07NkzfPHFFzh27BjOnj2Lhg0bqj3Gpk2bEB0djXbt2uHTTz/F8ePHMW3aNGRlZeGDDz7Ad999B7GYZxCpbPLz85GRkQETExOIRKJyi/PXX3/h7Nmz8PLyQrt27XDjxg38+OOPwu9PYGCg2mLNmTMHp06dwv79+4vc/uWXX2LVqlXIz89XW0xW/v7991/s3bsX9+7dQ35+PmxtbdG+fXv4+PiU6+8uAOTm5uLrr7/GsWPHsHPnTjg7O6s9xoMHDxAbGws/P78ityckJCAqKkqtfysAcObMGSxZsgTR0dHCVBA2Njbw8vLC+PHj4eXlpdZ4muwLFGQyGdasWYM///xT5fdn9OjRsLe3V3tMBU2cn9WJEzBWLJlMBl1dXY3FIyLk5+dDIpFoLGZ5y8vLw/Xr15U6Wzc3N42+r6zqmTlzJoKCglCrVi1tV4UxVkZ8GaUE5HK5kMkDQE5ODrZt24YtW7YgKSmp3OPn5OTg7t27yMnJKZfjb9u2Dbm5ucLysmXL4OTkBH19fdSqVQthYWFqjZeXl4epU6eiU6dOmD59OgBg/vz5MDY2hqGhIQIDA5Xqow4ymQyTJk2Ci4sLWrdujd9++01pe1JSkloTv/z8fEydOhWWlpZo3rw5unfvju7du6N58+awsrLCd999V65XheRyudLyuXPncPbs2XL7HWLlIz09XeWVlpaGH374Affu3RPWqVtmZiZOnjyJrVu3Yvv27YiJiSnXiaCL8v777+PBgwflGuPo0aMICwvD6NGjERQUhAULFuD27dvlGvN15T1paEXoC4hIpR7qou3z8zvR4u3PSuHKlStka2tLYrGY3N3dKT4+ntzd3cnIyIiMjY2pZs2adO7cObXFW7t2LZ05c4aICiaxHDp0KEkkEhKLxaSjo0MjR46k7OxstcUjKpiHJykpiYgKBozr6+vTtGnTaN++ffT999+TkZERrV69Wm3xpk6dStbW1hQaGkpubm40atQocnBwoA0bNtC6deuodu3aNHfuXLXFI9L8vD8TJ04kS0tLWrVqFcXFxVFWVhZlZWVRXFwc/fzzz2RlZUWTJk1SWzyF+/fvk6enJ0kkEurWrRulpaWRj4+PMJmms7Mz3bx5U23x3N3dKSwsjOLj49V2TPYfTc+RJZfLaeLEiWRgYKAUSyQSkZOTE+3Zs0dtsRT++OOPIl8SiYSWLVsmLKtTUlIStW7dWuhXxWIxeXp6ko2NDUkkEpo4caJa471JeU0aqum+gKhgQPy3335LHTt2pGnTphHRf5Ng6+np0aBBgygnJ0dt8TR9flY3TsDews/Pj/r27UtXr16l8ePHk6urK/Xr149yc3NJJpPR559/Tj4+PmqL5+zsLAxS/Oqrr6hOnTq0c+dO+vfff2n37t3UoEEDtXcOIpFISMBat25N8+bNU9q+YsUKtc7aXrduXWEOntu3b5NYLBae/CQi2rp1q9qfztH0vD/W1tZvnFTx4MGDZGVlpbZ4CgEBAdSpUyf6888/6eOPP6b27dtT586d6dGjR5SQkEB+fn7Uu3dvtcUTiURkYWFBEomE/Pz8aMeOHUVO9cHKRtNzZE2ePJlcXV3pzz//pKioKOrYsSPNnTuX/v33X/ruu+9IKpXSoUOH1BaPiJSSyeJe6h4Q/8knn1Dv3r0pLS2NsrOzacyYMcKkpEeOHCELCwtatGiRWmNqetJQTfcFRJr/cK3p87O6cQL2FjVr1hQ+nWRlZZFEIqG///5b2H7t2jWysLBQW7zCE9k1aNBAmI1e4cSJE+To6Ki2eEQFHWBycjIREdWqVYsuX76stP3OnTtUo0YNtcXT19dXumKir69P//77r7B87949tcYj0vy8P4aGhkrzY73uypUrap+Dh6hgTrdLly4RUcETSSKRiE6dOiVsj4mJIWtra7XFE4lE9PjxY9q1axd98MEHpKOjQ5aWljRhwoRK8VUgFZ2m58iytbUVZjInKvgbMTY2Fq66h4WFqX0agW7dupG/v7/wIVChPJ+CNDExUZpf8eXLl6Srqys8Db1+/Xq1TglBpPlJQzXdFxBp/sO1ps/P6sZjwN6CiKCjowMAKv8CgEQiUetYHhsbG9y9exdAwTiM1wfZWlpa4tmzZ2qLp3Dw4EHs2bMH+vr6yMrKUtqWnZ2t1iefTE1NkZqaKiy3aNECNWrUEJZzcnLU/qRV4fdVoXbt2jh27BjOnz+PwYMHqzVe586d8dVXXxX5ZcJPnz7F5MmT0blzZ7XGBAp+VqampgCAGjVqQCKRKL23JiYmKj/fd6Wjo4PevXtjz549iI+PR0hICPbs2QN3d3e0a9dOZbwdKzlzc3Ps2rUL/fr1Q+vWrbF58+Zyjffy5UvUrl1bWLa1tUV2djZevHgBAAgICMCVK1fUGvPAgQPo0qULWrZsib1796r12MWRSqVKfYxYLIZcLhe+NLpdu3a4f/++WmNeunQJycnJOHr0KAICAhAYGIjBgwdDJBKhd+/eCAwMVOtTidroCxISEtCsWTMAgIuLC/T09IRlAGjVqpVax/Vp+vysbpyAvYWnpyfmzp2Lx48fY86cOXB2dsayZcuE7UuXLoW7u7va4g0YMADffvstUlNTMXDgQISFheHly5cAgKysLMyYMQPt27dXWzyFwMBA9O7dG48fP8bRo0eVtp09exb16tVTWyw3NzdcvHhRWP7rr7+UOv2rV6+ifv36aosHFAzo3bRpk8p6Ozs7HD16FHFxcWqNt2rVKiQkJMDW1hYtWrQQBuG3aNECtra2SEhIwMqVK9UaEwAaN24sJDzr1q2DhYUFtmzZImzfvHkzGjRooLZ4ryfKtra2mDJlCm7duoUjR46gXr16GDdunNriVVejR49GVFQU5s6di88++6zc4jRp0kQpydu2bRuMjY1hY2MDoODhEqlUqva4iqR98uTJGDlypNoTg9e99957mDZtGjIzMyGTyfDNN9+gbt26MDc3BwCkpKSgZs2aao3p4uKCM2fOwMbGBh4eHvjrr7/UevzXabovADT/4VrT52e10/YluIru3LlzZGFhQWKxmCwtLenatWvUpk0bsrGxITs7OzIwMChyRuWyysnJoQ8//JBq1qxJXbt2JX19fTI0NKT69euTkZEROTo6qn3g5Nv8+eefav2S2Js3b9K9e/eK3b5x48Y3fnF2Wdy/f/+NbXj8+LHaJ7WUy+W0f/9+mjZtGo0YMYJGjBhB06ZNowMHDih9P6Q6HTx4kPT19UlPT4/09fXpxIkT1KBBA2rdujW1bduWJBKJWt/bwuMHi1Pek9xWJzk5ORQSEkIeHh5v/Bsqq8OHD5NUKqXWrVtTx44dSUdHh8LDw4Xt8+fPp/fff1/tcRWysrJo5MiRVL9+fZJIJOV2C/Lu3btUr1490tHRIV1dXTIzMxO+g5eo4GGor7/+ulxiE2lm0lBN9wVERN7e3m/sR7dt20aenp5qi6fp87O68TxgJZCZmYnY2Fg0bNgQxsbGyM7OxsaNG/Hq1St07dq1XCZ7O3jwYJET2X322WcwMjJSezxWddy/fx8xMTHw9PREnTp1kJSUhOXLlyMrKwv+/v7w9vZWW6whQ4ZgyZIlSp9yWeV25coVbNu2DTk5OfDz80PXrl01Xoc9e/bg2LFjmDJlCqysrMolRlZWFv766y/k5OSgbdu2Gp9TTROThmqyLwCAW7duQVdXt9jJczdt2gQdHR18/PHHaoupjfOzunACxt4qMzMTMTEx6NixY7nFkMlkuH//PqysrIRxC+Xh6NGjOH36NJ48eQKxWIy6deviww8/VPstT6BgfML9+/fh4OAAHR0d5ObmYteuXcjJyUGPHj14Ek1WYufOnVOZPb1du3Zo1aqVlmvGGCsrTsBKQJMn0qdPn1a4E/OVK1fQokULtU2kN2/ePIwdOxYGBgaQy+WYPHkyli5diry8PIjFYgwcOBA///yzWmeLT05OxgcffIALFy5ALBYjPz8fzZs3x+PHj5GSkoLQ0FDMmzdPbfFu3rwJPz8/PHz4EHXr1kVkZCT69euH2NhYEBEMDQ1x5syZckn8CsvLy8OxY8cQHx+POnXqoHPnzuXyTQM843/5SE5ORkBAAP766y84OjrC2toaQMHEwfHx8Wjfvj3+97//qf0qUVEJn5eXF1q3bq3WOCWRlJSEn3/+GdOmTavSMasSuVyu1M/8/fffyMnJgZeXl9r7hEr9QVdb9z4ri9jYWHJyciKxWEwuLi5079498vT0JCMjIzI0NKRatWrRrVu31BZPLBbT+++/Txs3blT7hKtldfnyZbVO0VB44tf58+dTzZo16bfffqPr16/Thg0byMrKSu0TsWp63p9evXrRhx9+SP/88w8FBweTq6sr9erVi3Jzcyk7O5s++OAD+vzzz9UWT2HMmDHCY+APHz6kRo0akUQiIWtra5JIJNSkSROl6QzelVwup2+//ZbMzMxU5m4yMzOjqVOnltt4t+ogICCAvLy8KDY2VmVbbGwstWvXjvr27au2eElJSdS+fXth4tXWrVtT69atycnJiUQiEb333ntvHfOnburuf7QVMzc3lyZOnEj16tWjVq1a0Zo1a5S2q3suQk3HIyJKSEig9u3bk0QioY4dO9Lz58/J399f6BMaNGhACQkJaoun6fOzunEC9haaPpGKRCLq1q0b6enpUc2aNWnMmDHCXC7lpbgJAhUvExMTtf6hFh643bx5c/r555+Vtm/YsIEaN26stnhEmp/3p/AcPC9fvlSZg+evv/5S+3xuRAUTwF69epWIiD7++GPy8fGhlJQUIiqYU6pnz55qPWFra8b/6sLY2JguXrxY7PYLFy6QsbGx2uJpOuEjKpgT702vrVu3qj1R0EZMTX8bh6bjERENHDiQ2rVrR3v27KFPPvmE2rVrRx06dKBHjx7RgwcPqH379hQUFKS2eNr6oKsunIC9haZPpIrkJCUlhX766Sdyc3MjsVhMLVq0oBUrVpTLE2WGhoY0YcIEpQkCC79mzpyp9gRMMfGrhYWFkDAo3Lt3jwwNDdUWj6jg51j4SaOsrCwSi8X07NkzIip4KkoqlaotnoGBgTChLlHBifTOnTvCcnx8vFrjKejr6wtPx9nb2ytNSkhEdPXqVapVq5ba4mlrxv/qwsLC4o0z3R87dkytE01qOuEjevNM+OXxdUvaiqnpb+PQdDyigol8o6OjiajgA59IJFJ6CvHIkSNUt25dtcXT1gdddeF5wN7i5cuXwtwwRkZGMDIygq2trbDdwcGhXL7ws1atWpgwYQKuX7+O06dPw8PDA5MnT4atrS0GDRqk1lgeHh5wcHAQJgJ8/dWrVy+1xgOA1atXY8mSJdDT08Pz58+VtmVkZKh9riFNz/tjZ2eH+Ph4YXnevHlK43TKY54hAGjQoAHOnTsHoGDyxde/qDkjI0OtExNmZGTAzs6u2O22trbIzMxUW7zq5pNPPkFgYCB27dql9LNMT0/Hrl27MGTIEHz66adqiyeVSt/45d7l8bdpbm6O1atXIy4uTuV17969cpmcVRsxHz9+rDQnlYuLC44fP44zZ85g4MCBav+yak3HA4AXL14Iczqam5vD0NAQTk5OSnV48uSJ2uJp6/ysLjpvL1K9KU6kjo6OAMr/RFrUJHVeXl7w8vLCkiVLsGXLFrXPLO7v7680ed7rzM3N1Zr0OTo6YvXq1QAKOvyLFy8qPWF57NgxtT86/NNPP8HX1xdmZmYQiUQwMjLC9u3bhe3//vuvWmfD9/HxQWxsLN577z0ABRNpFhYZGYkWLVqoLZ5CSEgIvvrqK1hbW2PKlCkYN24cli5dCldXV9y8eRPjx49Hnz591BZPMeP/xo0bVQa7lueM/9XFwoULkZ+fj/79+yMvLw96enoAgNzcXOjo6GDYsGH46aef1BZPkfCFh4ejS5cuMDExAVCQ8B05cgShoaFqTfiAgsk0ExISlE7UhaWmpoLU/KyYNmIqvo2jTp06wjrFt3F4e3ur/ds4NB0PAKysrPDkyRM4ODgAAMaMGSMkSEBBgqbOaZQ0fX5WO21fgqvoRo4cSatXry52+5w5c6hHjx5qi1eSiS2ruujo6DfeBimrzMxMioyMpD///FMYF6Ut9+7dU+tg1MIWLFhAhoaGZGBgQHp6eiQWi4VX7969KSMjQ22x4uPjyd3dnXR0dKh58+bUrVs36tatGzVv3px0dHSoadOmSt/7ycomLS2Njh49Sps2baJNmzbR0aNHy2U4QnZ2No0aNUr4vdHX1yd9fX0SiUSkp6dHo0ePVvvDQTt37qT169cXu/358+dqnyRZGzGHDRtGQ4cOLXLbo0ePyMXFRa23BDUdj4joww8/fOPDTMuWLVPrRL6aPj+rG09D8Y7i4uKgr6+vdNnzXaxbtw79+/cvl6/7YNVHamoqoqKiVCbyLY9pL/Lz83Ho0CGcPXtWZdoCX19fiMU80qGySU9Px4ULF4TbN9bW1mjZsqVwRYyV3oMHDxAbGws/P78ityckJCAqKkpt3wep6Xglce7cORgaGmrs64HUfX5WN07AmECTk5QWRkQ4fvw47ty5A1tbW/j5+Wl8/qjymPdn7969OHfuHPz8/NC+fXscPXoUP/30E/Lz89GnTx+MGDFCbbFY1fXq1SvExMTA3Nwcbm5uStuys7Oxbds2tY8LfZ2enh6uXLkCV1fXco3DWLWi1etvlcDDhw+VbledPHmSPvvsM3rvvfdowIABdObMmXKJW9zcSXK5XOnpOnVISkqi1q1bk1gsJh0dHRKLxeTp6Uk2NjYkkUho4sSJao3XvXt3Sk1NJaKCJ2XatGlDIpGILC0tSSwWU6NGjYSnJDVF3fP+rFq1inR0dMjT05NMTExo/fr1VKNGDRo+fDiNHDmSDAwM1Drv2Nt4e3vT/fv3NRZP4eXLl3TixAmNx60qbt68KczBJRaLqWPHjvT48WNhu7qfZAsJCSnyJRaLadCgQcKyOsXExCh9r+Xvv/9O7dq1I3t7e2rfvj1t3rxZrfEUli5dSgMHDhSO//vvv5Orqys1bNiQpkyZQjKZTO0xc3JyaOvWrRQcHEz9+/en/v37U3BwMG3bto1ycnLUHo+o4BxW1LCD3Nxcjf1tOjs7l8t8XNo6P6sLD8J/i4CAAHz33Xfo2bMn/vjjD/Tp0wc9e/ZE+/btcevWLXTq1Ak7d+5Ez5491RIvPT0dw4cPx59//gkTExOMHDkS06dPF2YVTklJgbOzs1qfYBk3bhzs7Ozw4sULSKVSfPXVV8ItiKNHj+Ljjz9G7dq1MX78eLXEO3jwIHJycgAAU6dORUZGBu7evQtnZ2c8evQIvXv3xrRp07By5Uq1xAOAf/75543bb968qbZYALBkyRKsWLFC+K63Hj16YMGCBfjyyy8BAG3btsW8efPU9p4q7Nmzp8j1J0+exN69e4XBsR9++KFa4xbnzp078Pb2LpcnrqqDyZMnw93dHRcuXEBqaiqCg4Px3nvv4fjx48LAY3VatGgRmjVrBjMzM6X1RIR///0XRkZGRT4o9C6GDBmCBQsWwNnZGb/++ivGjRuHL774AgMHDsTNmzfxxRdfICsrC0OHDlVbzO+//x7z5s2Dr68vQkJC8ODBA8yfPx8hISEQi8UIDw+Hrq4uZs6cqbaYd+7cgZ+fHxISEtCmTRvhWw0uXbqEVatWwd7eHgcOHICLi4ta4j158gS9evVCTEwMRCIRPvvsM6xYsQLGxsYAgOfPn6v9b3PJkiVFro+Pj8fatWthY2MDoOCcow6aPj+rnbYzwIrOyMhI+HTWpk0b+vHHH5W2L126lJo3b662eOPGjaMGDRrQ9u3bafXq1eTk5ET+/v7Cp6PymDxP05OUFn7QoGHDhvTHH38obT98+DA5OzurLZ4ipibn/Xl9HjBdXV2l+c7i4uLUPtcZ0ZvbWbi9mqKNWcyrEisrK/rnn3+E5fz8fBo1ahQ5OjrS3bt31X4FbM6cOeTs7ExHjhxRWq+jo6M0j546GRgYCFdnmzdvTr/88ovS9o0bN5Kbm5taY9arV4/+97//EVHB76hEIqENGzYI23fu3EkuLi5qjenj40O9evUq8uGJtLQ06tWrF/n6+qot3qBBg6hNmzZ0/vx5ioqKIk9PT2rZsiU9f/6ciMrnXCISicje3p7q1Kmj9BKJRFS7dm2qU6eOWvt2TZ+f1Y0TsLcwNTWlK1euEFFBZ6j4v8KdO3fUeiJ1dHSkY8eOCcspKSnUunVr8vX1pezs7HKZPE/Tk5QWnojVyspKKfkjIrp//77aJym1sLCgNWvW0P3794t87du3T63vq729PZ08eZKIiB4/fkwikYj27dsnbD9+/DjZ29urLZ5Ct27dyN/fX+VJ2vI6gWr6WxSqmxo1atCNGzdU1gcFBQm/Y+p+f8+dO0cNGjSgCRMmUG5uLhGVbwJmYWFBFy5cIKKC/uDy5ctK2+/cuUMGBgZqjVnUB6TC/dD9+/fV/gHJwMBAZdLpwv755x+1ttPOzk5pImbFzPAeHh707NmzcjmXjBw5kjw8PFR+Z8vr90fT52d148eT3qJTp07YvHkzAKB58+Y4fvy40vZjx44JE8+pQ0pKitLcNLVq1cLhw4eRkZGBHj16ICsrS22xFDQ9SSkADB48GH369IFMJkNcXJzStsTERJVbIO+q8Lw/Rb1q166t1nl/evXqhWHDhuGHH37ARx99hEGDBmHChAk4ePAgDh06hLFjx8LX11dt8RQOHDiALl26oGXLluUymeTrcnJyMHToUISHhxf5mjBhQrnXoSpr1KgRLly4oLJ+2bJl6NWrV7ncSm7VqhViYmKQkpKCli1b4tq1a2q/7VhY9+7dheEGnTp1wo4dO5S2b9u2TW235RRsbGxw48YNAMDt27chl8uFZQC4fv262r/g3MzMDPfv3y92+/3799Xa76WlpSn121KpFDt37kSdOnXg7e2N5ORktcVSWLVqFaZNmwY/Pz8sW7ZM7cd/nabPz2qn7Qywortx4wZZWFjQoEGDaNasWWRsbEyff/45/fDDDzRo0CCSSqW0du1atcVr2LCh0pUShYyMDPLy8qJmzZqp/VPL3bt3qV69eqSjo0O6urpkZmZGUVFRwva1a9fS119/rbZ4gwcPVnpt3bpVafvEiRPJz89PbfGIND/vz8uXL+mLL74gd3d3GjFiBOXk5ND8+fNJT0+PRCIRde7cuVzne7t06RK5ubnRiBEjKDMzs9w+gbZr1+6NDxPwLch3M3v2bOrevXux20ePHq3220iFbd68maytrUksFpfbFbDHjx9TnTp1qGPHjhQaGkoGBgb03nvv0RdffEEdO3YkPT29IvvEdzF16lSytLSk4cOHk7OzM3399dfk6OhIK1eupFWrVpGDg4PaHzb47rvvqGbNmrRw4UK6cuUKJSYmUmJiIl25coUWLlxI5ubmNH36dLXFa9Kkyf+1d/8xUdd/HMCfx6+OH4c/gOGRBBhKkdqBFANqEDErF8ksjYAMCi3MjBmeOReFcgiaKzabLs1NMcPKYPoHElNqA1EQ8pYOhVCD+LGCUOJHItz7+4fz1gWkfv3c54B7PjY2vTd3z/eH4X1efu79eb3Ft99+O+LxGzduiLi4OPHAAw+Y7d/mb7/9JqKjo8Wzzz4r2tvbzfb+I/f5WWoswO7AL7/8IuLj44VKpTKuo7G3txfh4eGiqKhI0qx33nlnzM1ue3p6RGhoqFn+0fT19YnS0lKTJqUGg0HynDvR29srBgYGLJJtbgMDA6Knp0eWrP7+fvHmm2+K2bNnC1tbW7O8Aep0OvHRRx+NOd7c3CySk5MlzyX5tLS0iOLiYtHb22u2jO7ubrF+/XoRGBgolEqlcHBwED4+PiIhIUHU1NRInjc8PCx0Op14/vnnRU5OjjAYDOKrr74S3t7ews3NTSQnJ5vleHNzc4VarTauxby1XlOtVou8vDxJs7Ra7Zhrym7cuCFeeOEFsxbvBoNB5OTkGO+mN1cBL+f5WWrsA3YXhBD4/fffYTAY4O7ubpZeVd3d3Whra8Mjjzwy6vhff/2Furo6REZGSp79b+z9c2/a29uxc+fOEb3V4uLikJycbLyz1dyOHDmC8vJybNiwQfKPVYjo7l2+fNmkabGfn5/kGUNDQ+jv7x+zee7Q0BBaW1vH3I5JKrW1taioqMDy5cvNui2QHOdnqbEAu0ctLS348MMPJd2fsb6+HqdOnUJYWBgeeughXLhwAfn5+bh+/TqSkpIQHR0tWRYArF27dtTH8/PzkZSUBDc3NwA396WTQl1dHaZNm2Z80ykoKMCuXbvQ3NwMHx8frF69GvHx8ZJk/dOOHTtQXV2NRYsWIT4+HgUFBdiyZYuxMeqmTZtgZydNZ5YzZ84gJiYG/v7+cHR0RFVVFRISEjA4OIjS0lIEBgbi2LFjUKlUkuQR0cRmjnPJeMqzRKYljvGuWPLy22Qg9RqXkpIS4eDgIKZPny6USqUoKSkRHh4eIiYmRkRHRwtbW9sRt4jfK4VCITQajYiKijL5UigU4rHHHhNRUVHiqaeekixv/vz5xjVmu3fvFo6OjmLNmjVi586dIj09Xbi4uIgvvvhCsjwhhNi8ebNQqVTixRdfFDNmzBC5ubnCzc1NZGdni5ycHOHh4SEyMzMly4uIiDD5aK6goECEhoYKIW6uN9NoNGLNmjWS5d2pjo4OkZWVJelrdnZ2ihMnThjvmv3jjz9Ebm6uyMrKGvUOPiIaSe71kpZYn2kNx3g3eAXsNsZqbHnLpUuX8N5770nWzC48PBzR0dHIzs5GYWEhVq1ahbS0NOh0OgDAhg0bUFtbi++//16SPADIzc3F559/jj179phcXbO3t4derx+x/cm9cnJyQn19PXx8fBAcHIy0tDSsWLHCOH7w4EHodDqcP39eskx/f39s3boVS5YsgV6vx4IFC7Bv3z4kJiYCAIqKiqDVatHY2ChJnpOTE86dO4dZs2YBuLlfolKpREtLCzw9PVFWVobk5GS0trZKknen9Ho9goODJft9ra6uxsKFC9HT04OpU6eirKwMS5cuhZ2dHQwGA9ra2lBRUYHg4GBJ8ogmKrnPJXLnWSLTEscoKUtXgOOd3I0tXV1dRWNjoxDi5kJROzs7UVdXZxz/+eefhaenp2R5t8jZ+8ca+v74+PiIiooK49/b2tqEQqEQ/f39QoibjViVSqVkebfo9fr//Dp06JCkv68xMTEiNTVV9PT0iG3btomZM2eK1NRU43hKSoqIi4uTLI9oopL7XGKJpszWcIxSYh+w21Cr1fjuu+9gMBhG/aqrq5M881bPHRsbGyiVSkyZMsU4plKpcO3aNckz5ez9Yw19f+Li4vDWW2/h2LFjKC8vR2JiIiIjI+Ho6Ajg5tZH5uhPo9FoEBQUBI1GM+IrKChI8rV1tbW1WLt2LVQqFd599120tbWZXM1cvXo1ampqJM0kmojkPpdY4txlDccoJe4FeRsLFixAbW0tFi9ePOq4QqGQtIGnr68vGhsb8eCDDwIAqqqqTPZ8a25uhlqtlizvn1xcXLBv3z4UFhYiJibGbJdt8/LyEBERgcjISISEhGD79u344Ycf8PDDD+PixYs4deoUioqKJM1MTEzE8uXLsXjxYhw/fhxarRYZGRno6uqCQqGATqfDSy+9JFlednY22tvbERsbi+HhYYSFheHAgQPGcYVCgS1btkiWd8v06dOxdetWPP3006OOnz9/HrGxsZLlDQ4OGotKe3t7ODk5wd3d3Tju7u6Orq4uyfKIJiq5zyVy51ki0xLHKCUWYLexbt069PX1jTnu7++P8vJyyfLS0tJMCp+5c+eajJeUlEh+F+S/xcfH44knnkBtba1ZblH28vLCTz/9hNzcXBw9ehRCCFRXV6OlpQURERGorKxESEiIpJlZWVnGuxFXrFiB999/H48++ii0Wi36+/sRGxuLzZs3S5bn4uKCQ4cO4e+//8bQ0JBxA9xbzNEFHzDt+D+aq1evSvqG5O3tjUuXLsHX1xcAUFhYaPIfhPb2dpOCjMhayX0ukTvPEpmWOEYpcRE+0SRSVFSEvr4+JCUljTre3d2NI0eO4LXXXpMkLysrCwEBAWN+tLlx40ZcuHABhw8fliSPiGiyYAFGRGbT398PW1tb3HfffZaeChHRuMJF+ERWpKWlBa+//rpseV1dXUhLS5Mtj4hoouAVMCIrInUfsPGWR0Q0UXARPtEkcieNCSdyHhHRZMErYESTiI2NzW1vvVYoFJJdkZI7j4hosuAaMKJJhI0QiW4vKioK6enplp6G0XibD8mDBRjRJHKrMeFYzNUIUa48ovFicHDQ0lOgCY4FGNEksm7dOoSHh485bo5GiHLmEd2r5ORk/Pjjj8jPz4dCoYBCoUBTUxPeeOMN+Pn5wdHREQEBAcjPzx/xvLi4OOh0Onh5eSEgIAAAcPLkSWg0GiiVSoSEhKC4uBgKhQJnz541PvfcuXN47rnn4OLiAk9PT7z66qvo7Owccz5XrlyR68dBFsRF+ESTyJNPPvmf487OzoiMjJyweUT3Kj8/Hw0NDZg7dy42bdoEAJg2bRpmzpyJb775Bm5ubjh58iRWrlwJtVqNZcuWGZ97/PhxuLq6oqysDADQ09OD2NhYLFq0CAcPHsSvv/464qPEq1evIjo6Gqmpqfjkk08wMDCA9evXY9myZThx4sSo8/Hw8JDnh0EWxQKMiIisxpQpU+Dg4AAnJyfMmDHD+HhWVpbxz35+fqiqqsLXX39tUoA5Oztjz549cHBwAADs2rULCoUCu3fvhlKpRGBgIFpbW002pN+xYweCgoKQk5NjfGzv3r3w9vZGQ0MD5syZM+p8aPJjAUZERFbvs88+w969e9Hc3IyBgQEMDg5Co9GYfM+8efOMxRcAXLx4EfPnz4dSqTQ+9vjjj5s8R6/Xo7y8fMR+sADQ1NSEOXPmSHsgNGGwACMiIqtWWFiIjIwMbN++HWFhYVCpVNi2bRtOnz5t8n3Ozs53/dq9vb2IjY1FXl7eiLF/blxP1ocFGBERWRUHBweT3nSVlZUIDw/HqlWrjI81NTXd9nUCAgJw4MABXL9+3bjfaU1Njcn3BAcH4/Dhw/D19YWd3ein3H/Ph6wD74IkIiKr4uvri9OnT+PKlSvo7OzE7NmzcebMGZSWlqKhoQEffPDBiEJqNAkJCTAYDFi5ciXq6+tRWlqKjz/+GMDNFiwA8Pbbb+PPP//EK6+8gpqaGjQ1NaG0tBQpKSnGouvf8zEYDOY7eBo3WICRRYy3xoPjbT5EZD4ZGRmwtbVFYGAgPDw88Mwzz2DJkiV4+eWXERoaiq6uLpOrYWNxdXXF0aNHcfbsWWg0GmzcuBGZmZkAYFwX5uXlhcrKSgwPD2PhwoWYN28e0tPTMXXqVNjY2Iw6n+bmZvMdPI0b3IqILCIqKgoajQaffvrp//0ag4ODJgtiLT0fIqIvv/wSKSkpuHbtGhwdHS09HRrHeAWMZMdGiEQ0Wezfvx8VFRW4fPkyiouLjT2+WHzR7XARPsmOjRCJaLLo6OhAZmYmOjo6oFarsXTpUuh0OktPiyYAFmAkOzZCJKLJQqvVQqvVWnoaNAGxAKNxg40QiYjIWrAAo3GBjRCJiMiasAAji2AjRCIisma8C5Isgo0QiYjImrEAI4tgI0QiIrJmbMRKkw4bIRIR0XjHNWA04e3fvx+zZs3C/fffD71ez0aIREQ07rEAowmPjRCJiGii4UeQRERERDLjInwiIiIimbEAIyIiIpIZCzAiIiIimbEAIyIiIpIZCzAiIiIimbEAIyIiIpIZCzAiIiIimbEAIyIiIpIZCzAiIiIimf0PM7R6/0uqJGIAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "by='target'\n",
+ "column='[OVERALL].Throughput(ops/sec)'\n",
+ "groups = df_groups.groupby('pod_count')\n",
+ "#print(groups)\n",
+ "#print(len(groups))\n",
+ "rows = 1#(len(groups)+1)//2\n",
+ "#print(rows, \"rows\")\n",
+ "row=0\n",
+ "col=0\n",
+ "fig, axes = plt.subplots(nrows=rows, ncols=2, squeeze=False, figsize=(6,4*rows))#, sharex=True\n",
+ "#print(axes)\n",
+ "for key1, grp in groups:#df3.groupby(col1):\n",
+ " #print(len(axs))\n",
+ " #for key2, grp2 in grp.groupby(column):\n",
+ " #print(grp2)\n",
+ " #labels = \"{} {}, {} {}\".format(key1, 'pod_count', key2, column)\n",
+ " #print(row,col)\n",
+ " ax = grp.boxplot(ax=axes[row,col], by='target', column='[OVERALL].Throughput(ops/sec)', figsize=(6,4), layout=(rows,2), rot=90)\n",
+ " #ax.set_ylim(0, df[y].max())\n",
+ " col = col + 1\n",
+ " if col > 1:\n",
+ " row = row + 1\n",
+ " col = 0\n",
+ "plt.legend(loc='best')\n",
+ "plt.tight_layout()\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAEGCAYAAACKK0t7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9sElEQVR4nO2deVgUx/b3vzMDzLCDyCrb6IhCQEHcwLjghglBcd+XuEVcrkRjjDdRYhJFEzHxatTE6/aLxiURjUvUEBSjiKIoKIqKIoIIaFQGRdaZ8/7BS19bwMzgKEvX53n6ga5Tffp0T/e3q6uqq0RERGAwGIJEXNcBMBiMuoMJAIMhYJgAMBgChgkAgyFgmAAwGAKGCQCDIWCYADAYAoYJAIMhYJgAMBgC5o0IQI8ePSASiSASiZCUlPQmdllvycjI4M6Ft7f3K/lydXXFd999p5O4Xgeff/75Kx/jq1JaWgqFQoHTp0/XaRyvkxEjRiAyMrJW276xEsCUKVOQk5MDT09PLm3r1q3o0KEDjIyMYGpqiu7du+PgwYOcfdasWXB3d6/WX2ZmJiQSCfbv3w8A3E314rJz504AQGxsLC/d2toa7777Li5fvlyt/8DAQEgkEpw7d66KbcKECQgJCanxWF92Yzo5OSEnJwdz586tcfsJEybUeDwikQiurq41bitEKkW1uofL+vXrIZfL4e/v/8bjWrx4McaMGfPa9/PZZ59hyZIlUCqVWm/7xgTAyMgIdnZ20NPTAwB89NFH+OCDDzB8+HBcunQJCQkJePvttzFgwACsWbMGADBp0iRcu3atWvXesmULbGxs8O6773JpmzdvRk5ODm958Ua9fv06cnJycPToUZSUlCAoKAilpaW8PJmZmTh9+jRmzpyJTZs26fQ8SCQS2NnZwcTEpMY8q1at4h3Di8dWnShpSllZWa23bWgQEdasWYNJkybVyf5/++039O/f/7Xvx9PTEy1atMC2bdu03rZO6gDOnDmDyMhIfPPNN/joo4+gUCjg7u6OJUuWICwsDHPmzEFWVha8vb3Rrl27KjchEWHLli0YP348JygAYGFhATs7O94ik8l429rY2MDOzg7t2rVDWFgYsrKycO3aNV6ezZs347333kNoaCh27NiBoqKi13cyqsHc3Jx3DAD/2Kytrbm8z549w8SJE2FqagpnZ2f8+OOPnK3yybhr1y50794dMpkM27dvh1qtxhdffAFHR0dIpVJ4e3vjyJEj3HaVpaX8/HwuLSkpCSKRCBkZGVzahg0b4OTkBCMjIwwcOBArV66EhYVFleP56aef4OrqCnNzc4wYMQJPnjzhbD169MDMmTMxc+ZMmJubo2nTpli4cCGe/0ZNJBJh3759PJ8WFhbYsmULAEAulwMAfHx8IBKJ0KNHDwBAYmIibt26haCgIN62ly9fRs+ePWFoaAgrKytMnToVT58+5eyVJbzFixfD2toaZmZmmDZtGu9B8euvv8LLy4vz0bt3bxQWFnL2rKwsXLlyBf369QMR4fPPP4ezszOkUikcHBzwr3/9i8tbUlKCjz76CM2aNYOxsTE6deqE2NhYXsxxcXHo0aMHjIyMYGlpicDAQDx+/JizBwcHc6VdbagTAdixYwdMTEzwwQcfVLHNnTsXZWVl2LNnD4CKUsDu3bt5Jzc2Nha3b9/GxIkTax2DUqnkTpiBgQGXTkTYvHkzxowZg9atW0OhUODXX3+t9X5eN5GRkWjfvj0uXryI6dOnIzQ0FNevX+fl+eSTTzB79mykpqYiMDAQq1atQmRkJFasWIFLly4hMDAQ/fv3R1pamsb7jYuLw7Rp0zB79mwkJSWhT58+WLJkSZV8t27dwr59+3Dw4EEcPHgQJ06cwLJly3h5tm7dCj09PSQkJGDVqlVYuXIl/vvf/2ocS0JCAgDgzz//RE5ODqKiogAAJ0+ehJubG0xNTbm8hYWFCAwMhKWlJc6dO4dffvkFf/75J2bOnMnzGRMTg9TUVMTGxmLHjh2IiorC4sWLAQA5OTkYOXIkJk6cyOUZNGgQT7T279+PHj16wMzMDHv27MG3336LH374AWlpadi3bx+8vLy4vDNnzkR8fDx27tyJS5cuYejQoejXrx/3eyQlJaFXr17w8PBAfHw8Tp06heDgYKhUKs5Hx44dkZCQgJKSEo3PGwCA3gDdu3en2bNnc+v9+vWjtm3b1pjfzMyMQkNDiYjo8ePHJJPJaPPmzZx97Nix9Pbbb/O2AUAymYyMjY15y507d4iI6Pjx4wSASwdAAKh///48P3/88QdZW1tTWVkZERF9++231L17d16e8ePH04ABA2qM38XFhb799tsa7URE4eHhLz0HLx7b3r17q93PmDFjuHW1Wk02Nja0bt06IiK6ffs2AaDvvvuOt52DgwMtWbKEl9ahQweaPn06Ef3vXD1+/JizX7x4kQDQ7du3iYho+PDhFBQUxPMxevRoMjc35x2jkZERFRQUcGnz5s2jTp06cevdu3cnd3d3UqvVXNr8+fPJ3d39pcdvbm7OXROVx3nx4kVentmzZ1PPnj15aT/++CNZWlrS06dPubRDhw6RWCym3NxcIqr4fZs0aUKFhYVcnnXr1pGJiQmpVCpKTEwkAJSRkUE10adPH1qzZg0REUVGRpKbmxuVlpZWyXfnzh2SSCSUnZ3NS+/VqxctWLCAiIhGjhxJXbp0qXFfRETJycn/GFN11FkzIGk4DIGFhQUGDRrEvQYUFBRgz5491b7Xffvtt0hKSuItDg4OvDwnT55EYmIitmzZAjc3N6xfv55n37RpE4YPH869WowcORJxcXG4detWbQ7ztdOmTRvuf5FIBDs7O9y/f5+Xp3379tz/BQUFuHfvHrp06cLL06VLF6Smpmq83+vXr6Njx468tBfXgYoK0eefwPb29lXi69y5M0QiEbfu5+eHtLQ03hOuNhQVFVV5BUxNTUXbtm1hbGzMpXXp0gVqtZpXcmrbti2MjIx4MT19+hRZWVlo27YtevXqBS8vLwwdOhQbNmzgFccLCgpw4sQJ7v1/6NChKCoqQvPmzTFlyhTs3bsX5eXlACpeR1QqFdzc3GBiYsItJ06c4K65yhLAyzA0NARQ8UqoDXr/nEX3uLm54dSpUygtLeUVvwHg3r17KCgogJubG5c2adIk9OrVCzdv3sTx48chkUgwdOjQKn7t7OygUCheum+5XA4LCwu0atUK9+/fx/Dhw/HXX38BAB49eoS9e/eirKwM69at47ZRqVTYtGlTtUXcukZfX5+3LhKJoFareWnPX+yaIBZXPBeeF+naVh5qEt8/IRKJqjwwNImnadOmNbbyvAoSiQTR0dE4ffo0/vjjD6xevRqffvopzp49C7lcjsOHD8PDwwNOTk4AKlp+rl+/jj///BPR0dGYPn06vvnmG5w4cQJPnz6FRCJBYmIiJBIJbz+VFcWVN/fLePToEQDw6oc0oU5KACNGjMDTp0/xww8/VLGtWLEC+vr6GDx4MJcWEBAAuVyOzZs3Y/PmzRgxYoTWF3V1zJgxAykpKdi7dy8AYPv27XB0dERycjKvFBEZGYktW7a88hOpPmBmZgYHBwfExcXx0uPi4uDh4QHgfxdRZQsEgCpNbK1atarSGlHb1omzZ8/y1s+cOYOWLVtyN4S1tTUvlrS0NN6TrvIh8uLv4+Pjg2vXrvHEw93dHcnJybw6pbi4OIjFYrRq1YpLS05O5lX+njlzBiYmJtxNLRKJ0KVLFyxevBgXL16EgYEBdx399ttvGDBgAC8WQ0NDBAcH4z//+Q9iY2MRHx+Py5cvw8fHByqVCvfv34dCoeAtlRXAbdq0QUxMzEvPYUpKChwdHdG0adOX5nuROikB+Pn5Yfbs2Zg3bx5KS0sREhKCsrIybNu2DatWrcJ3333HnWig4mRPnDgRK1euxOPHj/Htt99W6zc/Px+5ubm8NFNT0xrFwsjICFOmTEF4eDhCQkKwceNGDBkyhNdXAahQ8AULFuDIkSNcjbJSqaxyU1hZWXFxZ2dnV7G7uLjA0tKy2ljWrFmDvXv3/uMPrQvmzZuH8PBwtGjRAt7e3ti8eTOSkpKwfft2AIBCoYCTkxM+//xzLFmyBDdu3KjS0WTWrFno1q0bVq5cieDgYBw7dgyHDx/mFeU1JTMzE3PmzMEHH3yACxcuYPXq1bz99ezZE2vWrIGfnx9UKhXmz5/PK1nY2NjA0NAQR44cgaOjI2QyGczNzREQEICnT5/iypUr3G86evRohIeHY/z48fj888/x4MEDzJo1C2PHjoWtrS3ns7S0FJMmTcJnn32GjIwMhIeHY+bMmRCLxTh79ixiYmLQt29f2NjY4OzZs3jw4AHc3d1RXl6Ow4cP46OPPuJ8VT48OnXqBCMjI2zbtg2GhoZwcXGBlZUVRo8ejXHjxiEyMhI+Pj548OABYmJi0KZNGwQFBWHBggXw8vLC9OnTMW3aNBgYGOD48eMYOnQod8OfPHkSffv21frc10klYCUbN24kX19frvKua9eutH///mp9ZGVlkVgsprfeeqtaO/5/pd6LS0REBBFVX7FFRJSZmUl6enq0bNkyAkAJCQnV+n/nnXdo4MCBRFRRSVTdviZNmkREFZVz1dl/+uknzt+LlYDh4eHk4uJS47HVVAn4YmVj27ZtKTw8nIhqrhxTqVT0+eefU7NmzUhfX5/atm1Lhw8f5uU5deoUeXl5kUwmo65du9Ivv/zCqwQkqqhQa9asGRkaGlJISAh99dVXZGdnV+MxElVUqj5/nN27d6fp06fTtGnTyMzMjCwtLenf//43r1IwOzub+vbtS8bGxtSyZUv6/fffeZWAREQbNmwgJycnEovFvErbYcOG0SeffMKL4dKlSxQQEEAymYyaNGlCU6ZMoSdPnnD2ykreRYsWkZWVFZmYmNCUKVOouLiYiIiuXr1KgYGBZG1tTVKplNzc3Gj16tVERPTnn3+So6Mjb3979+6lTp06kZmZGRkbG1Pnzp3pzz//5OylpaW0aNEicnV1JX19fbK3t6eBAwfSpUuXuDyxsbHk7+9PUqmULCwsKDAwkLuWi4qKyNzcnOLj40lb6lQAhIw2rQANhcmTJ1dpnfknXve1kZycTDY2Nrwb/J/4p1aelzFr1iyuBetNsXbtWurTp0+ttn1jdQBr166FiYnJa6mUaUhkZmbCxMQES5curetQXpkVK1YgOTkZN2/exOrVq7F161aMHz++rsPi0aZNGyxfvhy3b99+I/vz9PREaGjoG9lXJfr6+li9enWttn0jdQDbt2/nKlScnZ3fxC7rLQ4ODlzdgFQqrdtgXpGEhAR8/fXXePLkCZo3b47//Oc/mDx5cl2HVYUJEya8sX1NnTr1je2rklc55yIiNi8AgyFU2HgADIaAYQLAYAgYJgAMhoCpk45AbwK1Wo179+7B1NS0Vp1TGIxXgYjw5MkTODg4cF2r6yONVgDu3bvH603IYNQFWVlZcHR0rOswaqTRCkDlF2hZWVkwMzOr42gYQqOgoABOTk68LyHrI41WACqL/WZmZkwAGHVGfX/9rL8vJwwG47XDBIDBEDCN9hWAwdAVz5494waOLS5T4e7jZ3C0NIJMX4LWrVvzRg5qaDABYDRaVCoVTp48iZycHNjb26Nr165VRt3RhGvXrsHX17daW2JiItq1a/eqodYZTAAYWtMQnohRUVGYO3cubxhzV1dXREZGYtCgQVr5at26NRITEwEAN+8/weydSVg1whsKG1O0bt1al2G/eXT5XXJ9QqlUEgBSKpV1HUqjo3JU3OqWxMTEug6P9uzZQyKRiIKDgyk+Pp6ePHlC8fHxFBwcTCKRiPbs2VNr35fv5pPL/IN0+W7+S/M1lOuv0X4NWFBQAHNzcyiVStYMqGOeLwFU90SsyxKASqWCQqGAl5cX9u3bx+uFp1arERISgpSUFKSlpdXqdSAlW4n3Vp/CwVlvw7OZeY35Gsr1x14BGFpjZGTEvfcaZCshjX0KDy/vl94Qb4qTJ08iIyMDO3bsqNIFVywWY8GCBfD398fJkye5GYRexu2/C1FYUs6t37z/lPe3EmOpHuRNX32g2jcNEwBGo6Jy9OAXB3atpDL9+VGGa+L234UIWBFbrS1sV1KVtOMf9WhwIsAEgKEV9f2JaG9vD6BimOzOnTtXsaekpPDyvYzK4/xuuDcUNhVj9FdUehbB0dIQMv2KV4ib958ibFcS77w0FJgAMDSmITwRu3btCldXVyxdurTaOoCIiAjI5XJ07dpVY58KGxPe6017V11GXLcwAWBozOt6IuqyWVEikSAyMhJDhgxBSEgIFixYAE9PT6SkpCAiIgIHDx7Er7/+qlEFYH5xIcSybETfTMTtgorjLSlX435BMWzMZJDqVYhL1qNnEMuyUaIqBlD39SDawASAoTElqmKIZdmQyKwhllXcEEYywM0UAJRcPonsqcY3xO2/C3Hu/HkMf6dHtfZdh2Ph4eWt8SvF7b8L4dTGDx9+uhg/bVgLf39/zmZjZ49lqzfArVMv3P678B/9nbt7Dcby1diUASDj5fs1lgOPy3wB2L48Yz2DNQMKAF09YQ+kJuDfCVUnZa2JpR03Iti96oShlVzLe4h31+2BurwE5fn3q82jZ2EDsV7F6Mm/hw5Ga1urf/RX+ncWHh5cUW0eq/c+gkFTJ4383VMqsSspEeWP72JRWNWp7AFg2eoNaK5wg6GBBF1cPGCoVzGPX0O5/lgJoJGjyyespYEjCm/PwqwABfcKUFOReEX0DTgEuLzUX9qjWzCWaz6efdoj75fesCn302AsXw1jOWDZoaZJYvdp7M/B3Bwfdu+JZ8+eoVdURetBfe35WFuYADRiLmbdx+CN+6AuL0GzGZ9Vm+fjU5cgPlMxLfY/PRHvPiyHurgZVh0uAlD0grXwhfVmaGJk8tL4dC0oRYVNUHh7lsYlipb9WrzUXyXP93tobDABaMTEpqdo9YS9+9T3pQLQ962K2Wpb2JjA8IUKv+crBgHNmgErBeXb/Y9R9rD6GaP0rRwh1pdBE0EJ8nKFvrgfyu7fwrjgntXm0bZOobHDBKARM9zbF8Aqrd5hX0YTYwOM6Fj9zE4vNpVpQqWgVNywQ6rNo80NWxnfs2dN8db//3insRXZdQ2rBBQAuv56T9ffAjSErwu1paFcf0wAGFpz4cKFRvt9vK5oKNcfewVgaM3z38dX98RmNByYADC0pjHXigsNNigogyFgmAAwGAKGCQCDIWCYADAYAoYJAIMhYJgAMBgChgkAgyFgmAAwGAKGCQCDIWCYADAYAoYJAIMhYJgAMBgChgkAgyFgmAAwGAKGCQCDIWCYADAYAoYNCFKPUalUOHnyJHJycmBvb4+uXbvWak57BqMmWAmgnhIVFQWFQoGAgACMGjUKAQEBUCgUiIqKquvQGI0IJgD1kKioKAwZMgReXl6Ij4/HkydPEB8fDy8vLwwZMoSJAEN3kJbcvXuXRo8eTU2aNCGZTEaenp507tw5zq5Wq2nhwoVkZ2dHMpmMevXqRTdu3OD5ePjwIY0aNYpMTU3J3NycJk6cSE+ePOHlSU5OprfffpukUik5OjrS8uXLtYpTqVQSAFIqldoeYp1SXl5Orq6uFBwcTCqVimdTqVQUHBxMcrmcysvL6yhChiY0lOtPKwF49OgRubi40IQJE+js2bOUnp5OR48epZs3b3J5li1bRubm5rRv3z5KTk6m/v37k1wup6KiIi5Pv379qG3btnTmzBk6efIkKRQKGjlyJGdXKpVka2tLo0ePppSUFNqxYwcZGhrSDz/8oHGsDeUHeJHjx48TAIqPj6/Wfvr0aQJAx48ff7OBMbSioVx/WgnA/Pnz6e23367Rrlaryc7Ojr755hsuLT8/n6RSKe3YsYOIiK5evUoAeKWGw4cPk0gkouzsbCIiWrt2LVlaWlJJSQlv361atapx38XFxaRUKrklKyurQfwAL/Lzzz8TgColokoKCgoIAP38889vODKGNjQUAdCqDmD//v1o3749hg4dChsbG/j4+GDDhg2c/fbt28jNzUXv3r25NHNzc3Tq1Anx8fEAgPj4eFhYWKB9+/Zcnt69e0MsFuPs2bNcnm7dusHAwIDLExgYiOvXr+Px48fVxhYREQFzc3NucXJy0ubQ6g329vYAgJSUlGrtlemV+RiMV0ErAUhPT8e6devQsmVLHD16FKGhofjXv/6FrVu3AgByc3MBALa2trztbG1tOVtubi5sbGx4dj09PTRp0oSXpzofz+/jRRYsWAClUsktWVlZ2hxavaFr165wdXXF0qVLoVareTa1Wo2IiAjI5XJ07dq1jiJkNCa06gegVqvRvn17LF26FADg4+ODlJQUrF+/HuPHj38tAWqKVCqFVCqt0xhelXtKJXYlJaLLpJHYs/E7tAxoA3efjjBr0hQFj/5G6sUE5GSmY9TMBdh9+SxCPH1gqGdY12EzGjBaCYC9vT08PPgzyLq7u2PPnj0AADu7itle8/LyeEXUvLw8eHt7c3nu3+fP3V5eXo5Hjx5x29vZ2SEvL4+Xp3K9Mk9jZFdSIjZlzAacAMXnFXPX38G5CqMLYOQjQgu0wFnsxtnk3WhivAWBLaufo4/B0AStBKBLly64fv06L+3GjRtwcXEBAMjlctjZ2SEmJoa74QsKCnD27FmEhoYCAPz8/JCfn4/ExERugsljx45BrVajU6dOXJ5PP/0UZWVl0NfXBwBER0ejVatWsLS0rP3R1nMqp/MufFqAtMuJILUaD3LuovhZIWRGxrC2d4Rb2w4wNjGDnbkM3eQvn86bwfhHtKkxTEhIID09PVqyZAmlpaXR9u3bycjIiLZt28blWbZsGVlYWNBvv/1Gly5dogEDBlTbDOjj40Nnz56lU6dOUcuWLXnNgPn5+WRra0tjx46llJQU2rlzJxkZGQmiGZDROGgo15/WHYEOHDhAnp6eJJVKqXXr1vTjjz/y7JUdgWxtbUkqlVKvXr3o+vXrvDwPHz6kkSNHkomJCZmZmdH777//0o5AzZo1o2XLlmkVZ0P5ARiNk4Zy/YmIiOq2DPJ6aCjzszMaJw3l+mPfAjAYAoYJAIMhYJgAMBgChgkAgyFgmAAwGAKGCQCDIWCYADAYAoYJAIMhYJgAMBgChgkAgyFgmAAwGAKGCQCDIWCYADAYAoYJAIMhYJgAMBgChgkAgyFgmAAwGAKGCQCDIWCYADAYAoYJAIMhYJgAMBgChgkAgyFgmAAwGAKGCQCDIWCYADAYAoYJAIMhYJgAMBgChgkAgyFgmAAwGAKGCQCDIWCYADAYAoYJAIMhYJgAMBgCRq+uA2hMqFQqnDx5Ejk5ObC3t0fXrl0hkUjqOiwGo0ZYCUBHREVFQaFQICAgAKNGjUJAQAAUCgWioqLqOjQGo0aYAOiAqKgoDBkyBF5eXoiPj8eTJ08QHx8PLy8vDBkyhIkAo94iIiKq6yBeBwUFBTA3N4dSqYSZmdlr249KpYJCoYCXlxf27dsHsfh/mqpWqxESEoKUlBSkpaWx1wEB8aauv1fllUoAy5Ytg0gkQlhYGJdWXFyMGTNmwMrKCiYmJhg8eDDy8vJ422VmZiIoKAhGRkawsbHBvHnzUF5ezssTGxuLdu3aQSqVQqFQYMuWLa8S6mvhnlKJDzesRi7lQt3cGu9/HY7xyxZyy/tfh8Ohz9vIUefgix0/oqi8qK5DZjB41LoS8Ny5c/jhhx/Qpk0bXvqHH36IQ4cO4ZdffoG5uTlmzpyJQYMGIS4uDkDFEzMoKAh2dnY4ffo0cnJyMG7cOOjr62Pp0qUAgNu3byMoKAjTpk3D9u3bERMTg8mTJ8Pe3h6BgYGvcLi6ZVdSIo4bboRisQJ3kIA7NeRTLFYgSrUW/rc7IrCl7xuNkcF4KVQLnjx5Qi1btqTo6Gjq3r07zZ49m4iI8vPzSV9fn3755Rcub2pqKgGg+Ph4IiL6/fffSSwWU25uLpdn3bp1ZGZmRiUlJURE9PHHH9Nbb73F2+fw4cMpMDBQ4xiVSiUBIKVSWZtD1Ijs/Hyate5bkrnIKGj2RBoX8VmV5YP/LCeZi4wW/bSWnpU9e22xMOoXb+L60wW1EoBx48ZRWFgYERFPAGJiYggAPX78mJff2dmZVq5cSURECxcupLZt2/Ls6enpBIAuXLhARERdu3blfFayadMmMjMzqzGm4uJiUiqV3JKVlfVGfoDy8nJydXWl4OBgUqlUPJtKpaLg4GCSy+VUXl7+WuNg1C8aigBoXQewc+dOXLhwAREREVVsubm5MDAwgIWFBS/d1tYWubm5XB5bW9sq9krby/IUFBSgqKj69+iIiAiYm5tzi5OTk7aHViskEgkiIyNx8OBBhISE8FoBQkJCcPDgQaxYsYJVADLqJVoJQFZWFmbPno3t27dDJpO9rphqxYIFC6BUKrklKyvrje170KBB+PXXX3H58mX4+/vDzMwM/v7+SElJwa+//opBgwa9sVgYDG3QqhIwMTER9+/fR7t27bg0lUqFv/76C2vWrMHRo0dRWlqK/Px8XikgLy8PdnZ2AAA7OzskJCTw/Fa2Ejyf58WWg7y8PJiZmcHQ0LDa2KRSKaRSqTaHo1MGDRqEAQMGsJ6AjAaFVgLQq1cvXL58mZf2/vvvo3Xr1pg/fz6cnJygr6+PmJgYDB48GABw/fp1ZGZmws/PDwDg5+eHJUuW4P79+7CxsQEAREdHw8zMDB4eHlye33//nbef6Ohozkd9RSKRoEePHnUdBoOhOa9aifB8JSAR0bRp08jZ2ZmOHTtG58+fJz8/P/Lz8+Ps5eXl5OnpSX379qWkpCQ6cuQIWVtb04IFC7g86enpZGRkRPPmzaPU1FT6/vvvSSKR0JEjRzSOq6FUwjAaJw3l+tO5ABQVFdH06dPJ0tKSjIyMaODAgZSTk8PbJiMjg9555x0yNDSkpk2b0ty5c6msrIyX5/jx4+Tt7U0GBgbUvHlz2rx5s1ZxNZQfgNE4aSjXH+sKzGC8BhrK9cc+BmIwBAwTAAZDwDABYDAEDBMABkPAMAFgMAQMEwAGQ8AwAWAwBAwTAAZDwDABYDAEDBMABkPAMAFgMAQMEwAGQ8AwAWAwBAwTAAZDwDABYDAEDBMABkPAMAFgMAQMEwAGQ8AwAWAwBAwTAAZDwDABYDAEDBMABkPAMAFgMAQMEwAGQ8AwAWAwBAwTAAZDwDABYDAEDBMABkPAMAFgMAQMEwAGQ8AwAWAwBAwTAAZDwDABYDAEDBMABkPAMAFgMAQMEwAGQ8AwAWAwBIxWAhAREYEOHTrA1NQUNjY2CAkJwfXr13l5iouLMWPGDFhZWcHExASDBw9GXl4eL09mZiaCgoJgZGQEGxsbzJs3D+Xl5bw8sbGxaNeuHaRSKRQKBbZs2VK7I2QwGDWilQCcOHECM2bMwJkzZxAdHY2ysjL07dsXhYWFXJ4PP/wQBw4cwC+//IITJ07g3r17GDRoEGdXqVQICgpCaWkpTp8+ja1bt2LLli1YtGgRl+f27dsICgpCQEAAkpKSEBYWhsmTJ+Po0aM6OGQGg1GJiIioths/ePAANjY2OHHiBLp16walUglra2v8/PPPGDJkCADg2rVrcHd3R3x8PDp37ozDhw/jvffew71792BrawsAWL9+PebPn48HDx7AwMAA8+fPx6FDh5CSksLta8SIEcjPz8eRI0c0iq2goADm5uZQKpUwMzMDANxTKrErKRGFTwuQdjmx2u1aevnC2MQMduYyhHj6wFDPsLanhyFgqrv+6iN6r7KxUqkEADRp0gQAkJiYiLKyMvTu3ZvL07p1azg7O3MCEB8fDy8vL+7mB4DAwECEhobiypUr8PHxQXx8PM9HZZ6wsLAaYykpKUFJSQm3XlBQUCXPrqREbMqYXbFiX72fC3/vA/6u+L+J8RYEtvStcZ8MRkOn1gKgVqsRFhaGLl26wNPTEwCQm5sLAwMDWFhY8PLa2toiNzeXy/P8zV9pr7S9LE9BQQGKiopgaFj1qRwREYHFixe/NObh3r4AVmlcAugm93ipPwajoVNrAZgxYwZSUlJw6tQpXcZTaxYsWIA5c+Zw6wUFBXBycuLlcTA3x4fde1asBIW8wegYjPpJrQRg5syZOHjwIP766y84Ojpy6XZ2digtLUV+fj6vFJCXlwc7OzsuT0JCAs9fZSvB83lebDnIy8uDmZlZtU9/AJBKpZBKpbU5HAZDsGjVCkBEmDlzJvbu3Ytjx45BLpfz7L6+vtDX10dMTAyXdv36dWRmZsLPzw8A4Ofnh8uXL+P+/ftcnujoaJiZmcHDw4PL87yPyjyVPhgMho4gLQgNDSVzc3OKjY2lnJwcbnn27BmXZ9q0aeTs7EzHjh2j8+fPk5+fH/n5+XH28vJy8vT0pL59+1JSUhIdOXKErK2tacGCBVye9PR0MjIyonnz5lFqaip9//33JJFI6MiRIxrHqlQqCQAplUptDpHB0AkN5frTqhlQJBJVm75582ZMmDABQEVHoLlz52LHjh0oKSlBYGAg1q5dyxXvAeDOnTsIDQ1FbGwsjI2NMX78eCxbtgx6ev97I4mNjcWHH36Iq1evwtHREQsXLuT2oQlKpRIWFhbIysqq180wjMZJZR1Ufn4+zM3N6zqcGnmlfgD1mbt371apBGQw3jRZWVm8erL6RqMVALVajXv37sHU1LTGkgvwP6XWVUmB+WP+gIr6sidPnsDBwQFicf395OaVOgLVZ8RisVbKa2ZmptNXBeaP+avPRf9K6q80MRiM1w4TAAZDwAheAKRSKcLDw3XWiYj5Y/4aEo22EpDBYPwzgi8BMBhChgkAgyFgmAAwGAKGCQCDIWCYADAYAoYJACrGGqgcjehVSUtLQ0xMDG7evKkTfwCwePFi/P333zrzx2BUIigBePToEYYMGQJnZ2eEhoZCpVJh8uTJsLe3R7NmzeDv74+cnByN/UVERHDjFjx+/Bi9e/dGq1at0KdPH7Rq1QrvvPMO8vPzNfZXUFBQZVEqlViyZAnS09O5NE0pKyvDxx9/DIVCgY4dO2LTpk08e15eHiQSicb+3hS6FGQAVYacf1W2bNnCjYfZ4KmzD5HrgIkTJ5KnpyetXr2aunfvTgMGDKA2bdrQqVOn6PTp09ShQwcaN26cxv4cHR3pwoULREQ0efJk8vHxoQsXLlBRURElJSVR586dadKkSRr7E4vF1S4ikYj3V1PCw8PJ1taWvvnmG/r000/J3Nycpk6dytlzc3NJJBJp7I+I6MqVKxQaGkre3t5kZ2dHdnZ25O3tTaGhoXTlyhWtfD18+JAGDx5MTk5ONG3aNCovL6dJkyZxx+nn50f37t3T2N/hw4fp0qVLRESkUqnoiy++IAcHBxKLxdSsWTOKiIggtVqtVYzVoa+vT1evXn1lP/UBQQmAvb09xcXFEdH/Lv4//viDs586dYqaNWumsT+pVEoZGRlEROTq6konTpzg2c+fP0/29vYa+2vWrBkFBQXRsWPHKDY2lmJjY+n48eMkkUho8+bNXJqmKBQKOnDgALeelpZGCoWCJkyYQGq1mnJzc7USlN9//50MDAyoc+fOFB4eTmvXrqW1a9dSeHg4+fv7k1Qq1WrQFl0LcqtWreivv/4iIqKlS5eSlZUVrVy5kg4fPkzfffcd2dra0rJlyzT2Z2lpWe0iEonI3NycW2/ICEoAjIyMuBuWqELJL1++zK2np6eTsbGxxv7c3Nzo4MGDREQkl8s5cank4sWLZGZmprG/hw8fUkhICAUEBNDdu3e5dD09Pa2frkREhoaGdPv2bV7a3bt3yc3NjUaPHk3Z2dlaCUCbNm1o4cKFNdrDw8PJy8tLY3+vQ5Dv3LlDRESenp60e/dunv3gwYOkUCg09mdiYkJBQUG0ZcsWbtm8eTNJJBJasmQJl9aQEZQAtG3bltasWUNEFU8zU1NTioyM5Ozr1q0jT09Pjf1988035O7uTmlpaRQZGUl+fn508+ZNIqoQkx49etCQIUO0jnPt2rXk4OBAP//8MxHVXgDkcjn9+eefVdKzs7PJzc2N+vTpo5UAyGQyunbtWo32a9eukUwm09ifrgXZ3t6e4uPjiYjI1taWez2r5MaNG2RoaKixv7S0NK4U8uTJEy69tr9HfURQArBt2zaSSCSkUChIKpXSL7/8Qg4ODjRs2DAaMWIEGRgYcAKhKbNmzSJ9fX1q3bo1yWQyEovFZGBgQGKxmNq3b085OTm1ivXKlSvUtm1bGjlyZK0vuEmTJtHEiROrtd29e5cUCoVWAtC6dWueYL5IZGQktWrVSmN/uhbk6dOn03vvvUfl5eU0depUmjx5Mu+df9asWbzxKTWhrKyMPv74Y2rRogWdOnWKiJgANGhOnTpFK1as4IqeV65cobFjx9LgwYNrXZy7evUqff311zRt2jSaOnUqhYeH0x9//PHKFU4lJSX04Ycfkre3N6Wnp2u9fUZGxkvfybOzs7U65t27d5Oenh4FBwfTqlWraOfOnbRz505atWoV9e/fnwwMDOjXX3/V2J+uBTk/P5/at29PCoWCxo4dSzKZjFxcXKhPnz4kl8vJ3Nyczpw5o7G/54mJiSFnZ2dasGAB6evrNxoBYF8DMrTi9OnT+M9//oP4+Hiuqc7Ozg5+fn6YPXu21kO3x8XF4cyZM/Dz84O/vz+uXr2KZcuW4dmzZwgODsb48eO18ldWVoaNGzfiwIEDSE9Ph1qthr29Pbp06YLQ0NBXGp/v4cOHmDJlCo4fP44zZ86gVatWtfZVX2ACgIqONjNmzEDTpk1rtX1hYSESExORk5MDsViM5s2bo127di8di1Abevbsic2bN8PFxaVW2x87dgynTp3ixde/f3+0bNlSJ/ExGi6CEoDqOtEQEaytrXHq1Cm0bt0aADQeO06tVuOTTz7BmjVruIlJK0+ns7MzVq9ejeDgYI3j279/f7XpgwYNwqpVq7hRjvv376+Rv/v37yM4OBjnz5+HWCyGWq2Gj48PsrOz8eDBA8yZMwdff/21xvHVxJYtWzBw4MBaj4GnUql4HZISEhK4WHUx8AYRQa1W16rTk0qlwp07d+Dq6gqxWIySkhL89ttvUKvVCAgIqDKHZYOjzl4+6gBdd7SZP38+ubu704EDByg6Opq6detGy5cvp9TUVFq4cCFJpVI6evSoxv6ej6OmRZv4hg8fTiEhIaRUKqm4uJhmzpzJtavHxMSQlZUVfffddxr7q4nadozJyMggX19fkkgk1K9fP1IqldS7d2/uWOVyOV2/fl1jf2VlZfTpp59St27daNGiRURE9PXXX5ORkREZGBjQuHHjqKSkRGN/ycnJZG9vT2KxmDw9PSkzM5M8PT3J2NiYTExMyNLSkhISErQ+7vqEoARA1x1t7O3tuY4nRBU16yYmJlRcXExERF988YVWtc79+vWjoKAgysvL46XXttbZzMyMUlJSuPWnT5+Svr4+N1vNTz/9pFWtva47xgwePJi6d+9OBw4coGHDhlGXLl2oR48edPfuXbp37x4FBgZSSEiIxv4+++wzsrW1pTlz5pCHhwdNmzaNnJycaNu2bbR161Zq1qwZLV++XGN/gYGBNGTIELp8+TLNnj2b3N3daejQoVRaWkplZWU0ZswY6t27t8b+6iOCEgBdd7QxNTWlW7ducesqlYr09PS4pr8rV66QkZGRVj5XrlxJTk5OvB58tY3P2tqat92zZ89ILBbTw4cPiYjo1q1bJJVKNfan644x1tbWdPHiRSKqqMEXiUR08uRJzp6YmEi2trYa+2vevDl33tLS0kgsFtPOnTs5+65du7RqVrS0tORKNs+ePSOJREJnz57l7CkpKWRlZaWxv/qIoASgEl11tPH396evvvqKW9+xYwdZWFhw65cvX65VV9GLFy+Sh4cHTZ06lQoLC2sd38CBA2nw4MH09OlTKi0tpbCwMF5PuDNnzpCdnZ3G/nTdMcbU1JRr3qwUz6SkJN7+TE1NNfYnk8koMzOTt56amsqtp6ena+XPwsKCbty4QUREpaWlJJFIKDExkbOnpqY2+K7AgvoasJLQ0FBER0dj+fLlGDVqVK39fPHFF/jyyy/RqVMndO/eHWPHjkV4eDhnP3LkCHx8fLT26+3tjfPnz0MkEsHb25urWNSWFStWICkpCRYWFjA2NsaWLVuwbt06zp6amqrVfIsKhQKnT5+GnZ0dvL29ERcXV6u4Knnrrbe4LxS3bt0KKysr7Ny5k7Pv2LEDbm5uGvszNzfnfX3Zrl07mJqacuslJSVatcz4+vpi+fLlyM7ORkREBORyOdasWcPZV69eDU9PT4391UvqWoHqklftaENElJSURP/+979p7ty5vH7suuK3336jsLCwKvUCmlJYWEh//PEHHThwgB48eKCzuHTRMebIkSMkk8nIwMCAZDIZnThxgtzc3Khjx47UuXNnkkgktGvXLo39BQQEvPQVZPfu3eTr66uxv4SEBLKysiKxWEzW1taUkpJCnTp1Ijs7O3JwcCBDQ8Nqu1o3JATVDMjQLbroGJORkYHExET4+vrC1dUVeXl5+P777/Hs2TMEBQUhICBAY183btyAvr4+5HJ5tfaff/4Zenp6GDZsmMY+CwsLce3aNbRq1QomJiYoLi7G9u3bUVRUxI370JARpAAkJCRU6cnm7++PDh066Myfn58fOnbsqLOYgYqBMn744QcsWrSoXvpjNDwEJQD379/H4MGDERcXB2dnZ64TR15eHjIzM9GlSxfs2bMHNjY2GvsbNGgQTp8+rRN//0RycjLatWsHlUpVL/3VF17sWHT27FmUlJTAz88P+vr6WvkiImRkZMDJyQl6enooLS3F3r17UVJSgnfffbfWvUfrDXX4+vHGGTx4MPn5+VX7Seu1a9fI399fq893de0vOTn5pcuuXbu06gika3+lpaU0b948atGiBXXo0IE2btzIs2s7wIiu/d27d4+6dOlCEomEunXrRo8ePaKgoCCuY5Gbm5tWIwxdu3aNXFxcSCwWk0KhoPT0dPL19SVjY2MyMjKipk2bcq0EDRVBCYCJiUmVb8Sf5/z582RiYlJn/l7WE7A2PRV17U/XQ4zp2t/YsWPJ39+f9u/fT8OHDyd/f3/q2rUr3b17l+7cuUNdunShGTNmaOxvwIAB1L9/f7p06RKFhYWRu7s7DRgwgEpLS6m4uJiCg4NpzJgxGvurjwhKAKysrF7a0+/48eNadex4Hf42btxIGRkZ1S6HDh3S6obVtT9dDzGma3/PDwjy8OFDEolEvFr6mJgYat68ucb+nu+o9PTp0yodleLi4sjZ2Vljf/URQQnA9OnTycXFhaKiorjusERESqWSoqKiyNXVlWbOnFln/vr27UtffvlljfakpCStnoi69qfrIcZ07e/FjkDGxsaUlpbGrd+5c0erEYEMDQ25IcaIKkp8lSM+ERFlZmZq1ZOyPiIoASguLqZp06ZxI/bIZDLeKD6hoaFcP/5X8ScSiWrlLyoqin766aca7Y8ePdKqq62u/el6iDFd+3N2duZ11Z0/fz7X7ZmoQvCaNm2qsb8WLVrwnvhr166lgoICbj0xMVGrnpT1EUG1AlRSUFCAxMREXrOdr6+vxp8BV+fv/PnzyMvLAwDY2tqiffv2tfZXX5k8eTKICBs3bqxiy87ORo8ePZCenq5xq4Ku/Q0YMAA9e/bE7Nmzq7V///33iIqK4uZy+CemTZuG9u3bY/LkydXaly1bhpMnT+LQoUMa+auPCFIAXjcGBgZITk6Gu7t7XYeiU+7cuYNr164hMDCwWvu9e/cQHR2t8Sg+uvb3TyQkJMDIyEhn3Xdv374NmUwGe3t7nfirCwQnAEVFRUhMTESTJk3g4eHBsxUXF2P37t0YN26cRr7mzJlTbfqqVaswZswYWFlZAQBWrlypkb8LFy7A0tKS68n2008/Yf369cjMzISLiwtmzpyJESNGaOSrkjVr1iAhIQHvvvsuRowYgZ9++gkRERFQq9UYNGgQvvjiC+jp6Wnlk9GIqLu3jzfP9evXycXFhWv+6tatG2VnZ3N2bWudRSIReXt7U48ePXiLSCSiDh06UI8ePSggIEBjf23atKHo6GgiItqwYQMZGhrSv/71L1q3bh2FhYWRiYlJlbbyl/Hll1+SqakpDR48mOzs7GjZsmVkZWVFX331FS1dupSsra25gTM0paSkhHbt2kVhYWE0YsQIGjFiBIWFhdHu3bu1GmzjebKysnhfF1ZSWlpaZbKV2iCXy2vVXp+VlcX7fuKvv/6iUaNG0dtvv02jR4+m06dPv3JsdY2gBCAkJISCgoLowYMHlJaWRkFBQSSXy7maXm0FICIiguRyOcXExPDSX2Uij8px8n18fOjHH3/k2bdv304eHh4a+2vRogXt2bOHiCoqwCQSCW3bto2zR0VFaTVRRlpaGjVv3pxkMhl1796dhg0bRsOGDaPu3buTTCYjhULBq3X/J+7du0cdOnQgsVhMEomExo4dyxMCbX+PVatWVbtIJBJasGABt64pHTt25Jop9+3bR2KxmPr370/z58+ngQMHkr6+Pq8ZsyEiKAGwsbHh5o4jIlKr1TRt2jRydnamW7duaX3BEVV8Mebm5kZz586l0tJSIqq9AFhZWdH58+e5WJ//Np6I6ObNm6/UjKWvr88bISgjI0OrAUt69+5NAwYM4DV5VqJUKmnAgAHUt29fjf2NGzeOOnXqROfOnaPo6Gjy9fWl9u3b06NHj4hI+45AIpGIHB0dydXVlbeIRCJq1qwZubq6klwu19ifsbEx95Vop06dqkwrtnr1avLx8dHYX31EUAJgampa7dh1M2bMIEdHR/rrr7+0FgAioidPntC4ceOoTZs2dPny5Vp/HjtmzBhuMtGhQ4fSZ599xrMvXbpUq6m35HI5HT58mIgqZsURi8W86bIOHTpErq6uGvszNDTkzdzzIpcuXdJKoBwcHHjNdpW967y9venhw4daC/IHH3xA3t7eVX7j2gqyubk5JScnE1GFIFf+X8nNmze1HvGpviEoAejQoQP93//9X7W2GTNmkIWFRa0EoJIdO3aQra0ticXiWl1w2dnZ5OrqSt26daM5c+aQoaEhvf322zRlyhTq1q0bGRgY0KFDhzT299lnn5G1tTVNnjyZ5HI5ffLJJ+Ts7Ezr1q2j9evXk5OTE3344Yca+7O3t39pkXf//v1aTYZqbGxc5d28rKyMQkJCqE2bNnTp0iWtf4+oqChycnKi1atXc2m1FYD+/fvTJ598QkQV4wO++PqwYcMGatmypdZ+6xOCEoClS5fSO++8U6M9NDRU6+myXyQrK4v27dtHT58+rdX2jx8/pvnz55OHhwc3WIaLiwuNGjWKzp07p5UvlUpFS5Ysoffee4+WLl1KarWaduzYQU5OTmRlZUUTJkzQKs6FCxeSpaUlrVy5kpKTkyk3N5dyc3MpOTmZVq5cSU2aNKHw8HCN/Xl5eVU7k1ClCDg7O9dKkO/evUs9e/akfv36UU5OTq0F4OrVq2RlZUXjxo2jL7/8kkxMTGjMmDG0ZMkSGjduHEmlUtq8ebPWfusTghIAxquzbNkysre351pSKj8qsre312rEXSKijz/+uMY6g7KyMurfv3+tBVmtVtPSpUvJzs6OJBJJrafyunnzJo0YMYJMTU25D6n09fXJ39+f9u7dWyuf9QnB9QNg6Ibbt2/zelLWNArPyygvL8ezZ89q7DFZXl6O7OzsWs+IBACJiYk4deoUxo0bB0tLy1r7ISLcv38farUaTZs21XpcgXpLHQsQoxGRmZlJ77//PvPXgGAlAIbOqO8jFtV3f3UB6wPK0Jia5i6sJD09nflrYLASAENjxGIxRCLRS+cpEIlEGj8RheavPiLIiUEYtcPe3h5RUVFQq9XVLhcuXGD+GhhMABga4+vri8TExBrt//S0FLq/+girA2BozLx581BYWFijXaFQ4Pjx48xfA4LVATAYAoa9AjAYAoYJAIMhYJgAMBgChgkAgyFgmAAwGAKGCUAjokePHggLC6vrMDjqWzyMqjABYPAoLS2t6xAYb5K6+ASRoXvGjx9PAHjLzZs3aeLEieTq6koymYzc3Nzou+++q7LdgAED6KuvviJ7e3tujMC4uDhq27YtSaVS8vX1pb179xIAbrJMIqLLly9Tv379yNjYmGxsbGjMmDHcMNrVxfPiPICMuocJQCMhPz+f/Pz8aMqUKZSTk0M5OTlUXFxMixYtonPnzlF6ejpt27aNjIyMaNeuXdx248ePJxMTExo7diylpKRQSkoKKZVKatKkCY0ZM4auXLlCv//+O7m5ufEE4PHjx2RtbU0LFiyg1NRUunDhAvXp04ebB6G6eMrLy+vi1DBeAusK3EgwNzeHgYEBjIyMYGdnx6UvXryY+18ulyM+Ph67d+/GsGHDuHRjY2P897//hYGBAQBg/fr1EIlE2LBhA2QyGTw8PJCdnY0pU6Zw26xZswY+Pj5YunQpl7Zp0yY4OTnhxo0bcHNzqzYeRv2CCUAj5/vvv8emTZuQmZmJoqIilJaWwtvbm5fHy8uLu/kB4Pr162jTpg1kMhmX1rFjR942ycnJOH78OExMTKrs89atW3Bzc9PtgTBeC0wAGjE7d+7ERx99hMjISPj5+cHU1BTffPMNzp49y8tnbGyste+nT58iODgYy5cvr2JryJNlCg0mAI0IAwMD3uAUcXFx8Pf3x/Tp07m0W7du/aOfVq1aYdu2bSgpKYFUKgUAnDt3jpenXbt22LNnD1xdXWucXPTFeBj1D9YM2IhwdXXF2bNnkZGRgb///hstW7bE+fPncfToUdy4cQMLFy6sciNXx6hRo6BWqzF16lSkpqbi6NGjWLFiBYCKb+ABYMaMGXj06BFGjhyJc+fO4datWzh69Cjef/997qZ/MR61Wv36Dp5RK5gANCI++ugjSCQSeHh4wNraGoGBgRg0aBCGDx+OTp064eHDh7zSQE2YmZnhwIEDSEpKgre3Nz799FMsWrQIALh6AQcHB8TFxUGlUqFv377w8vJCWFgYLCwsIBaLq40nMzPz9R08o1aw8QAYGrF9+3a8//77UCqVMDQ0rOtwGDqC1QEwquX//u//0Lx5czRr1gzJycmYP38+hg0bxm7+RgYTAEa15ObmYtGiRcjNzYW9vT2GDh2KJUuW1HVYDB3DXgEYDAHDKgEZDAHDBIDBEDBMABgMAcMEgMEQMEwAGAwBwwSAwRAwTAAYDAHDBIDBEDD/D+4UkSgWRPThAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "y = \"[OVERALL].Throughput(ops/sec)\"\n",
+ "\n",
+ "plot_variation(df_groups, max_pod_count, y)\n",
+ "#ax = df_groups[df_groups['pod_count']==max_pod_count].boxplot(by='target', column=y, rot=90, figsize=(3,3), grid=False)\n",
+ "#ax.get_figure().suptitle('')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### UPDATE"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAARAAAAEGCAYAAACthcqTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABD1ElEQVR4nO3deVhTx/oH8G8SSYCwiMimbFFERLAobmDrVhQtorhUtHWt1p+K3rpbb1ttbRWXauvVanvrWtu6VdS6l4uoqFQFBcEFUUAUWVoRkC1A8v7+4OZcjgRNYhQk83me82jOTN7MgfDmZGbOHAERERiGYXQgrO8GMAzz+mIJhGEYnbEEwjCMzlgCYRhGZyyBMAyjM5ZAGIbRGUsgDMPojCUQhmF0xhIIwzA60yqB9O7dGwKBAAKBAAkJCS+pSQ3D559/zh3rt99+W29t8PHxqZfXri9PH/OECRMQEhJSb+1piD777DNMmTJFb/G6d++O/fv36/Rcrc9APvzwQ2RnZ8PLywunT5+GQCBAQUFBrXqurq68PzzVH6NAIIClpSV69OiBU6dOceUTJkzgyo2MjGBnZ4d+/fph69atUCqVatsSGBgIkUiEy5cvAwAyMjJ4r6Nu2759O9dudVtOTg4AYN68ecjOzoajo+Mzfx5PnjzBrFmz4OLiAhMTE/j7+3PtUcnNzcWECRPQokULmJqaYsCAAUhNTeXVEQgEOHjw4DNfS52aPzexWAw3NzcsXboUVVVVWsd61dQd87x58xAVFaVzTNV74EU+4J5+7zYkOTk5WLduHT755BO9xfz000/x8ccf1/l39ixaJxBTU1PY29ujSZMmWr/Ytm3bkJ2djfPnz6N58+YYNGgQ0tLSuPIBAwYgOzsbGRkZOH78OPr06YOPPvoIgwYNqvUHkZmZiQsXLmDGjBnYunUrAMDJyQnZ2dncNnfuXLRv3563LzQ0lIuRkpLCK8vOzoatrS0AwMzMDPb29hCJRM88psmTJyMyMhI7d+5EUlIS+vfvj4CAAGRlZQEAiAghISFIS0vDoUOHcPXqVbi4uCAgIAAlJSVa/wzVUf3cUlNTMXfuXHz++edYvXq1TrEUCoVObyR9MTMzg7W1db29fkO3efNm+Pv7w8XFRW8xBw4ciCdPnuD48ePaP5m00KtXL/roo4+4x9HR0QSAHj9+XKuui4sLffPNN9xjAHTgwAHucVZWFgGg77//noiIxo8fT0OGDKkVJyoqigDQjz/+yNv/+eef06hRo+jmzZtkaWlJpaWltZ67ZMkSeuONN2rtf1a7n3ccNZWWlpJIJKIjR47w9nfq1Ik++eQTIiJKSUkhAJScnMyVKxQKsrGx4Y7JxcWFAHCbi4sLr/0//fQTubi4kIWFBYWGhlJRUREXS93PrV+/ftS9e3ciIiovL6e5c+dSixYtyNTUlLp27UrR0dFc3W3btpGlpSUdOnSI2rVrRyKRiNLT06m8vJwWLFhAjo6OJBaLqXXr1rR582bueUlJSTRgwACSSqVka2tLY8aMob/++osr79WrF82cOZPmz59PVlZWZGdnR0uWLOH9XJ91zHUdn0KhoOXLl5OrqysZGxtThw4daN++fVx5eno6AaCrV6+q/Z3duXOHBg8eTLa2tiSVSqlz584UGRnJa3fNdtX8E4mJiaE333yTjI2NydHRkWbOnEnFxcW8Y1q2bBlNnDiRzMzMyMnJiX744Qfe69+/f59GjRpFVlZWZGpqSr6+vvTnn39Seno6CQQCunz5Mq/+N998Q87OzqRQKIiIqH379rRhwwZeHXXv0TfeeIP7eSuVSlqyZAk5OTmRWCwmBwcHmjlzJq/+xIkTacyYMWp/Zs9Sb52oJiYmAICKiopn1uvbty/eeOMNREREcPuICNu2bcOYMWPg4eEBNzc3/Pbbby+1vepUVVVBoVDA2NiYt9/ExATnzp0DAMjlcgDg1REKhZBIJFwd1Vce1Rlaza9Ad+/excGDB3HkyBEcOXIEZ86cwYoVK57ZLhMTE+7nOmPGDMTGxmL37t24du0a3n333VpfoUpLS7Fy5Ups3rwZ169fh62tLcaNG4ddu3bhX//6F27evIkffvgBZmZmAICCggL07dsXHTt2RFxcHE6cOIHc3FyMHDmS144dO3ZAKpXi4sWLWLVqFZYuXYrIyMjnHvOzhIeH46effsL333+P69evY/bs2RgzZgzOnDmj0fOLi4vxzjvvICoqClevXsWAAQMQHByMzMxMAEBERAQcHR2xdOlS7qwUqP49DBgwAMOHD8e1a9ewZ88enDt3DjNmzODFX7NmDTp37oyrV69i+vTpmDZtGlJSUrjX7tWrF7KysvD7778jMTERCxYsgFKphKurKwICArBt2zZevG3btmHChAkQCoXIz8/HjRs30LlzZ42OVWX//v345ptv8MMPPyA1NRUHDx6Et7c3r07Xrl0RExOjVVwA9XMGUlJSQtOnTyeRSESJiYlEVPcZCBFRaGgotWvXjnv8xx9/kI2NDVVWVhJRdZbu1atXrec97wxEKpXyNk9Pz+cex9P8/PyoV69elJWVRVVVVbRz504SCoXk7u5OREQVFRXk7OxM7777LuXn55NcLqcVK1YQAOrfv7/an0/N9puamvLOOObPn0/dunXjHtf8uSmVSoqMjCSJRELz5s2je/fukUgkoqysLF7ct99+mxYtWkRE1WcgACghIYErV5011fxkrunLL7/ktZ2o+pMVAKWkpBBR9XvlzTff5NXp0qULLVy48LnHXNcZSHl5OZmamtKFCxd4z5k0aRKNHj2aiJ5/BqJO+/btaf369dxjdb/zSZMm0ZQpU3j7YmJiSCgUUllZGfe8mp/iSqWSbG1tadOmTURE9MMPP5C5uTk9evRIbTv27NlDVlZWVF5eTkRE8fHxJBAIKD09nYiIrl69SgAoMzOT97znnYGsWbOG3N3dqaKios6fwaFDh0goFHJnOprSviPjBYwePRoikQhlZWWwsbHBli1b0KFDh+c+j4ggEAi4x1u3bkVoaCjXDzN69GjMnz8fd+/eRevWrTVuT0xMDMzNzbnHRkZGWhxNtZ07d+KDDz5Ay5YtIRKJ0KlTJ4wePRrx8fFczIiICEyaNAnNmjWDSCRCQEAABg4cCNJgKRZXV1deGx0cHJCXl8erc+TIEZiZmaGyshJKpRLvvfcePv/8c5w+fRoKhQLu7u68+nK5nNfPIBaLeb+HhIQEiEQi9OrVS22bEhMTER0dzZ2R1HT37l3u9Z7+3apruzbu3LmD0tJS9OvXj7e/oqICHTt21ChGcXExPv/8cxw9ehTZ2dmoqqpCWVkZdwZSl8TERFy7dg2//PILt4+IoFQqkZ6ejnbt2gHgH7NAIIC9vT13zAkJCejYsSOaNWum9jVCQkIQFhaGAwcOYNSoUdi+fTv69OkDV1dXAEBZWRkA1DrjfZ53330X3377LVq1aoUBAwbgnXfeQXBwMK8f08TEBEqlEnK5nPt2oIkXSiAWFhYAgMLCQjRt2pRXVlBQAEtLS96+b775BgEBAbC0tISNjY3Gr3Pz5k3IZDIAQH5+Pg4cOIDKykps2rSJq6NQKLB161YsW7ZM47gymaxWu7XVunVrnDlzBiUlJSgqKoKDgwNCQ0PRqlUrro6vry8SEhJQWFiIiooK2NjYoFu3bhqdij6d1AQCQa1Ozj59+mDTpk0Qi8Vo0aIF98YoLi6GSCRCfHx8rc7gmn/8JiYmvAT9vDdQcXExgoODsXLlylplDg4OWrVdG8XFxQCAo0ePomXLlrwyiUSiUYx58+YhMjISX3/9Ndzc3GBiYoIRI0Y896t0cXEx/u///g//+Mc/apU5Oztz/3/WMT/v5yoWizFu3Dhs27YNw4YNw6+//op169Zx5c2bNwcAPH78mPf3IxQKa30YVVZWcv93cnJCSkoK/vOf/yAyMhLTp0/H6tWrcebMGa69+fn5kEqlWiUP4AUTSJs2bSAUChEfH8/rFU5LS0NhYWGtTz57e3u4ublp9RqnTp1CUlISZs+eDQD45Zdf4OjoWGv4748//sCaNWuwdOnS546cvAxSqRRSqRSPHz/GyZMnsWrVqlp1VAk1NTUVcXFx+PLLL7kyIyMjKBQKnV9b3c+1Y8eOUCgUyMvLw1tvvaVxPG9vbyiVSpw5cwYBAQG1yjt16oT9+/fD1dVVp9E4FW2P2dPTExKJBJmZmXWeHT3P+fPnMWHCBAwdOhRAdWLIyMjg1RGLxbXa1alTJ9y4cUPr929NHTp0wObNm5Gfn1/nWcjkyZPh5eWFjRs3oqqqCsOGDePKWrduDQsLC9y4cYP3t2VjY8P11QBAUVER0tPTeXFNTEwQHByM4OBghIWFwcPDA0lJSejUqRMAIDk5WeOzuJpeqBPV3NwckydPxty5c/H7778jPT0dZ8+exfvvv4/u3bvD399fq3hyuRw5OTnIysrClStXsHz5cgwZMgSDBg3CuHHjAABbtmzBiBEj4OXlxdsmTZqEv//+GydOnND49fLy8pCTk8PbamZudd5++21s2LCBe3zy5EmcOHEC6enpiIyMRJ8+feDh4YGJEydydfbt24fTp09zQ7n9+vVDSEgI+vfvz9VxdXVFVFQUcnJy8PjxY42P4Vnc3d3x/vvvY9y4cYiIiEB6ejouXbqE8PBwHD16tM7nubq6Yvz48fjggw9w8OBBpKen4/Tp09i7dy8AICwsDPn5+Rg9ejQuX76Mu3fv4uTJk5g4caJWCUHbYzY3N8e8efMwe/Zs7NixA3fv3sWVK1ewfv167Nixg1c3JSUFCQkJvK2yshJt2rRBREQEEhISkJiYiPfee6/WWZGrqyvOnj2LrKws/P333wCAhQsXctMGEhISkJqaikOHDtXqRH2W0aNHw97eHiEhITh//jzS0tKwf/9+xMbGcnXatWuH7t27Y+HChRg9ejTvjEAoFCIgIIDrfFfp27cvdu7ciZiYGCQlJWH8+PG8D9Ht27djy5YtSE5ORlpaGn7++WeYmJjwPvRjYmJ470eNadNh8nQnKhFRWVkZLVmyhDw8PMjExIRkMhlNmTKFN6RHpL7DrKbx48dzw2ZNmjQhGxsbCggIoK1bt3IdO3FxcQSALl26pDbGwIEDaejQodzj53WiqttiY2N5dZ/uoHJxceENR+7Zs4datWpFYrGY7O3tKSwsjAoKCngx1q1bR46OjmRkZETOzs706aefklwu59X5/fffyc3NjZo0aVLnkCZRdYexqlz1c6ur85mouhN38eLF5OrqSkZGRuTg4EBDhw6la9euEdH/hnGfVlZWRrNnzyYHBwcSi8Xk5uZGW7du5cpv375NQ4cOpaZNm5KJiQl5eHjQrFmzSKlUEpH698qQIUNo/PjxWh3z08enVCrp22+/pbZt25KRkRHZ2NhQYGAgnTlzhoj+14mqbrt//z6lp6dTnz59yMTEhJycnGjDhg212hobG0sdOnQgiUTCG8a9dOkS9evXj8zMzEgqlVKHDh1o2bJlXPnzOjOJiDIyMmj48OFkYWFBpqam1LlzZ7p48SLvOVu2bKnzfX7s2DFq2bIlr7OzsLCQQkNDycLCgpycnGj79u281z1w4AB169aNLCwsSCqVUvfu3ek///kP9/wHDx6QkZER3b9/v9brPc8LJ5DG7nmjMAyjb0uXLiVvb2+1ZUqlkrp06UK//vqr3l5vwYIF9OGHH+r0XK2/wmzcuBFmZmZISkrS/nTnNbJ8+XKYmZk9t3eeYfSluLgYycnJ2LBhA2bOnKm2jkAgwL///W+9Xqpga2vL64/ThoBI89s6ZGVlcUNJzs7OEIvFOr3o6yA/Px/5+fkAqjupnh5RYhh9mzBhAnbt2oWQkBD8+uuv9TIYoC2tEgjDMExNbD0QhmF0xhIIwzA6YwmEYRidvdJrYV41pVKJhw8fwtzcnDdVm2FeBSLCkydP0KJFCwiFjfSz+kXHkMPDwwkAb35IWVkZTZ8+nZo1a0ZSqZSGDRtGOTk5vOfdu3eP3nnnHTIxMSEbGxuaN28ed3WtSnR0NHXs2JFbj2Lbtm1atU11hSjb2Fafmy4TtF4XL3QGcvnyZfzwww+1rrqcPXs2jh49in379sHS0hIzZszAsGHDcP78eQDVF74FBQXB3t4eFy5cQHZ2NsaNGwcjIyMsX74cAJCeno6goCBMnToVv/zyC6KiojB58mQ4ODggMDBQo/aprmK9f/8+d+Efw7wqRUVFcHJy4l1N3ejomnmePHlCbdq0ocjISN4M1YKCAjIyMuKtEnXz5k0C/jdN/NixYyQUCnlnJZs2bSILCwtuiveCBQuoffv2vNcMDQ2lwMBAjdtYWFhIAKiwsFDXw2QYnRnC+0/nL2ZhYWEICgqqdbVmfHw8Kisrefs9PDzg7OzMXTQUGxsLb29v2NnZcXUCAwNRVFSE69evc3Wejh0YGMi78OhpcrkcRUVFvI1hmJdHp68wu3fvxpUrV9QuQ5eTkwOxWFxrnQ07OztuxfOcnBxe8lCVq8qeVaeoqAhlZWVq1y0IDw/HF198ocshMQyjA60TyP379/HRRx8hMjJS65WRXrZFixZhzpw53GPVd1CmWmlpKW7duoXySgUePC6Fo5UpjI2qp0t7eHjA1NS0nlvIvG60TiDx8fHIy8vjFiIBqjtFz549iw0bNuDkyZOoqKhAQUEB7ywkNzcX9vb2AKoXFrp06RIvbm5uLlem+le1r2YdCwuLOldNkkgkGq9MZUjS/y5BibwKN5ISEDqwt9o6e46fRpfOnSFrLn21jWNea1onkLfffrvWlbgTJ06Eh4cHFi5cCCcnJxgZGSEqKgrDhw8HUL24S2ZmJvz8/AAAfn5+WLZsGfLy8rj7sERGRsLCwgKenp5cnWPHjvFeJzIykovBaOZW7iO8s6n6rmPKKjlahn2qtt6Cc9cg/DMFx6YNh4cduy8LoxmtE4i5uTm8vLx4+6RSKaytrbn9kyZNwpw5c9CsWTNYWFhg5syZ8PPzQ/fu3QEA/fv3h6enJ8aOHYtVq1YhJycHn376KcLCwrgziKlTp2LDhg1YsGABPvjgA5w6dQp79+595kpaTG3JeamQytZrXD8136fRJBD2le3leykzUb/55hsIhUIMHz4ccrkcgYGB2LhxI1cuEolw5MgRTJs2DX5+fpBKpRg/fjyWLl3K1ZHJZDh69Chmz56NdevWwdHREZs3b9Z4DghTraykGUrSq9eWUFbJUfU4B5X5D6AsL4HQWAqjZo6AQIgmTW0hbCJBmwGar2rf0N26dQu+vr5qy+Lj43lfwxndNOrL+YuKimBpaYnCwkKDnUiWX1KBP67noLWtGXZv+Q5rv1qstl5j7ANRnYHcyXuCj3YnYN0oH7jZVk/qehVnIIbw/mvU18IwQDOpGKO6OiMiIgLfLFuCnj174v1x42HczAHl+dn45acdiImJgeLxw0aVPIDq+zh36tQJ4qxCSE4Xw9PbB14tLeu7WY0KSyAGQKFQYO7cuRg0aBAOHjzIu7Br8sQJCAkJwSeffIKRI0e+FqtgMQ1HI71EkKkpJiYGGRkZ+Oc//1nrqlChUIhFixYhPT1dt3ujMgaNJRADoLrp0NOjZyqq/TVvTsQwmmBfYQyA6naTycnJ3FB6TcnJybx6rzvVxDmVO3nFvH9VpJImja7f51VjozAGQKFQwM3NDd7e3rX6QJRKJUJCQpCcnIzU1NTXvg8k/e8S9Pn6tMb1o+f1fmlJxBDef+wMxACIRCKsWbMGI0aMQEhICBYtWgQvLy8kJycjPDwcR44cwW+//fbaJw8AyC8thtA4C/P6ucOpWfUwrbxKibyicthaGEPSpDp53s8vxdeRt5FfWgwZ2FmIrlgCMRDDhg3Db7/9hrlz5/LuWSyTyfDbb7/xbuJcX/Qxc/RhyT1IZeux6c7zX08qAx6W+MAXds+vzKjFEogBGTZsGIYMGYKYmBhkZ2fDwcEBb731VoM589DHzNEWUheUpM/EulAftLY1q7Pe3bxifLQnAS36uOjcXoYlEIMjEonQu3fv+m6GWh4eHoiPj69z5qgmlEojKMtbouSJPZQW1ZPGqs9oyuBoZcKd0SjKi6Es/wsSUcNakuJ1wxII02DoY+bo3f+OtHwcodm9m6US9ifwIthPj6l3+hx27d++ej2Z1rZmMPnv2cadvGLM2pOAb0N94Fbjaw0bxn1xLIEw9armeiU1CY2BOYeyau1/3nolqmt/gP91ylbkPYE85w4qcs1QQa/uYjpDwBIIU69S8+++tPVKnu6UDd3xvzJ2Ob9+sATC1CsrsSNK0mdiZh83OFk2Qdb9TLX1SGqDf529p9WoiapTtq5hYW2xBYpqYwmEqVcPHlVBWd4S646XQZ5zBzk7ZqmtZz/+W0js3dDMtO6h2aepOmVfFFtTtm5sKjujM318Itdc8AhVcqTfua22nszNHc2bWrzyP9CaU+OVleWofPRAbT0ja0cIjYx5U+MN4f3HzkAYnelj4lfNTk8A6OLWsC7oU40O1RzBUTevRDXSU3M0yRCwBMJopayqDOfv3UBZhQJyYTm+/X0ncovK8VPsPYzzc4GdRfXErDRhMfLvxqOHiydMmqi/DYc6CoWiQc2UlSvKITTOgsjYBkLj6gRiagy4mwNAIVdPZFx9DY5cUQ7AcFY9YwmE0cr5ezcw+9yEWvutugCHqwDk/3fHf//9BtsR0Fr9WcrTIiIiMHfuXGRkZHD7XF1dsWbNmnq7Vkd1bc0/Lz2/riFeW8MSCKMVYzigJH0mQnxawMmquo+jrEKBzPwSODeTwkRcfbbwV7Ecuy/fh1UfR43iRkREYMSIERg0aBB27drFXS28fPlyjBgxot4u+Ks5SqT6CvOsq3sN7doalkAYrahGTSL+BICyGiVGACqeqt1So1GTutZs7d69Ow4ePIiQkBDMmzcPQ4YMeeVfZ2qOEikrHz+nE1Wz421MWAJhtPIypoqr1mzdtWtXnWu2+vv7IyYm5pVfCFjzeNNvJSF04Ai19Qx1GJclEEYrL2OqeENes7Xm8ba37fLMiWlsIhnDaEFfU8VflzVb9TUxrTFhE8kYnelrandjXbPVEN5/7AyE0Zm+PpENac3WxoYlEKZBeB3WbGVqY19hmAaloc1EfRGG8P5jZyBMg9KQ12xlatP61pabNm1Chw4dYGFhAQsLC/j5+eH48eNceXl5OcLCwmBtbQ0zMzMMHz4cubm5vBiZmZkICgqCqakpbG1tMX/+fFRV8S9COn36NDp16gSJRAI3Nzds375dtyNkGOal0TqBODo6YsWKFYiPj0dcXBz69u2LIUOG4Pr16wCA2bNn4/Dhw9i3bx/OnDmDhw8f8r6/KhQKBAUFoaKiAhcuXMCOHTuwfft2LF68mKuTnp6OoKAg9OnTBwkJCZg1axYmT56MkydP6uGQGYbRG9IDKysr2rx5MxUUFJCRkRHt27ePK7t58yYBoNjYWCIiOnbsGAmFQsrJyeHqbNq0iSwsLEgulxMR0YIFC6h9+/a81wgNDaXAwECt2lVYWEgAqLCwUNdDYxidGcL7T+szkJoUCgV2796NkpIS+Pn5IT4+HpWVlQgICODqeHh4wNnZGbGxsQCA2NhYeHt7w87uf1csBgYGoqioiDuLiY2N5cVQ1VHFqItcLkdRURFvYxjm5dEpgSQlJcHMzAwSiQRTp07FgQMH4OnpiZycHIjFYjRt2pRX387ODjk5OQCAnJwcXvJQlavKnlWnqKgIZWVlqEt4eDgsLS25zcnJSZfDYxhGQzolkLZt2yIhIQEXL17EtGnTMH78eNy4cUPfbdPaokWLUFhYyG3379+v7yYxTKOm0zCuWCyGm5sbAMDX1xeXL1/GunXrEBoaioqKChQUFPDOQnJzc2FvX31Vo729PS5d4q/OohqlqVnn6ZGb3NxcWFhYwMSk7tWtJBIJJBKJLofEMIwOXqgPREWpVEIul8PX1xdGRkaIioriylJSUpCZmQk/Pz8AgJ+fH5KSkpCXl8fViYyMhIWFBTw9Pbk6NWOo6qhiMAzTQGjb6/rxxx/TmTNnKD09na5du0Yff/wxCQQC+uOPP4iIaOrUqeTs7EynTp2iuLg48vPzIz8/P+75VVVV5OXlRf3796eEhAQ6ceIE2djY0KJFi7g6aWlpZGpqSvPnz6ebN2/Sd999RyKRiE6cOKFVWw2hF5xpuAzh/ad1Avnggw/IxcWFxGIx2djY0Ntvv80lDyKisrIymj59OllZWZGpqSkNHTqUsrOzeTEyMjJo4MCBZGJiQs2bN6e5c+dSZWUlr050dDT5+PiQWCymVq1a0bZt27Q+OEP4BTINlyG8/9i1MAzzkhjC+08vfSAMwxgmlkAYhtEZSyAMw+iMJRCGYXTGEgjDMDpjCYRhGJ2xBMIwjM5YAmEYRmcsgTAMozOWQBiG0RlLIAzD6IwlEIZhdMYSCMMwOmMJhGEYnbEEwjCMzlgCYRhGZyyBMAyjM5ZAGIbRmU63dWBejdLSUty6dQvllQo8eFwKRytTGBuJAFTf8c/U1LSeW8gYOpZAGrBbt27B19dXbVl8fDw6der0ilvEMHwsgTRgHh4eiI+Px528J/hodwLWjfKBm605V8Yw9Y0lkAYo/e8SlMirAABiu9YQC4ohsS+G2M4NYlszAEDa40pIS0sgay6tz6YyBo4lkAbmVu4jvLNpf639QmNgzqGsWvuPTRsODzvrV9E0hqmFJZAGJjkvFVLZeo3rp+b7sATC1BuWQBqYspJmKEmfCQAoTorCk/jf1dazHjQP4uZOaDOg9atsHsPwsATSwAR5u8JIOACZV6Lx8dJ96NTVDyGh78PZVYbMjHQc3PMLrlyKxT/aueLd0FGsD4SpV+zWlg2QQqGAm5sbvL29cfDgQQiF/5vvp1QqERISguTkZKSmpkIkEtVjS5lneV3ff9pgM1EboJiYGGRkZOCf//wnL3kAgFAoxKJFi5Ceno6YmJh6aiHDVGMJpAHKzs4GAHh5eaktV+1X1WOY+sISSAPk4OAAAEhOTlZbrtqvqscw9UXrBBIeHo4uXbrA3Nwctra2CAkJQUpKCq9OeXk5wsLCYG1tDTMzMwwfPhy5ubm8OpmZmQgKCoKpqSlsbW0xf/58VFVV8eqcPn0anTp1gkQigZubG7Zv3679Eb6G3nrrLbi6umL58uVQKpW8MqVSifDwcMhkMrz11lv11EKG+S/SUmBgIG3bto2Sk5MpISGB3nnnHXJ2dqbi4mKuztSpU8nJyYmioqIoLi6OunfvTv7+/lx5VVUVeXl5UUBAAF29epWOHTtGzZs3p0WLFnF10tLSyNTUlObMmUM3btyg9evXk0gkohMnTmjc1sLCQgJAhYWF2h5mvdu/fz8JBAIKDg6mCxcuUFFREV24cIGCg4NJIBDQ/v3767uJzHO8zu8/TWmdQJ6Wl5dHAOjMmTNERFRQUEBGRka0b98+rs7NmzcJAMXGxhIR0bFjx0goFFJOTg5XZ9OmTWRhYUFyuZyIiBYsWEDt27fnvVZoaCgFBgZq3LbX/Re4f/9+cnV1JQDcJpPJWPJ4Tbzu7z9NvHAfSGFhIQCgWbNmAKqvEq2srERAQABXx8PDA87OzoiNjQUAxMbGwtvbG3Z2dlydwMBAFBUV4fr161ydmjFUdVQx1JHL5SgqKuJtr7Nhw4bhzp07iI6Oxq+//oro6GikpqZi2LBh9d00hgHwghPJlEolZs2ahR49enAjAzk5ORCLxWjatCmvrp2dHXJycrg6NZOHqlxV9qw6RUVFKCsrg4mJSa32hIeH44svvniRQ2pwRCIRevfuXd/NYBi1XugMJCwsDMnJydi9e7e+2vNCFi1ahMLCQm67f/9+fTeJYRo1nc9AZsyYgSNHjuDs2bNwdHTk9tvb26OiogIFBQW8s5Dc3FzY29tzdS5dusSLpxqlqVnn6ZGb3NxcWFhYqD37AACJRAKJRKLrITEMoyWtz0CICDNmzMCBAwdw6tQpyGQyXrmvry+MjIwQFRXF7UtJSUFmZib8/PwAAH5+fkhKSkJeXh5XJzIyEhYWFvD09OTq1IyhqqOKwTBMA6Btr+u0adPI0tKSTp8+TdnZ2dxWWlrK1Zk6dSo5OzvTqVOnKC4ujvz8/MjPz48rVw3j9u/fnxISEujEiRNkY2Ojdhh3/vz5dPPmTfruu+8MahiXef0ZwvtP6wSCGkOKNbdt27ZxdcrKymj69OlkZWVFpqamNHToUMrOzubFycjIoIEDB5KJiQk1b96c5s6dS5WVlbw60dHR5OPjQ2KxmFq1asV7DU0Ywi+QabgM4f3HrsZlmJfEEN5/7FoYhmF0xhIIwzA6YwmEYRidsQTCMIzOWAJhGEZnLIEwDKMzlkAYhtEZSyAMw+iMJRCGYXTGEgjDMDpjCYRhGJ2xBMIwjM5YAmEYRmcsgTAMozOWQBiG0RlLIAzD6IwlEIZhdMYSCMMwOmMJhGEYnbEEwjCMzlgCYRhGZyyBMAyjM5ZAGIbRGUsgDMPojCUQhmF0xhIIwzA6YwmEYRidsQTCMIzOWAJhGEZnLIEwDKMznRLI2bNnERwcjBYtWkAgEODgwYO8ciLC4sWL4eDgABMTEwQEBCA1NZVXJz8/H++//z4sLCzQtGlTTJo0CcXFxbw6165dw1tvvQVjY2M4OTlh1apVujSXYZiXRKcEUlJSgjfeeAPfffed2vJVq1bhX//6F77//ntcvHgRUqkUgYGBKC8v5+q8//77uH79OiIjI3HkyBGcPXsWU6ZM4cqLiorQv39/uLi4ID4+HqtXr8bnn3+Of//737o0mWGYl4FeEAA6cOAA91ipVJK9vT2tXr2a21dQUEASiYR27dpFREQ3btwgAHT58mWuzvHjx0kgEFBWVhYREW3cuJGsrKxILpdzdRYuXEht27bVuG2FhYUEgAoLC3U9PIbRmSG8//TeB5Keno6cnBwEBARw+ywtLdGtWzfExsYCAGJjY9G0aVN07tyZqxMQEAChUIiLFy9ydXr27AmxWMzVCQwMREpKCh4/fqz2teVyOYqKinjbq1RaWoorV67gwsXL2HviDC5cvIwrV67gypUrKC0tfaVtYZhXoYm+A+bk5AAA7OzsePvt7Oy4spycHNja2vIb0qQJmjVrxqsjk8lqxVCVWVlZ1Xrt8PBwfPHFF/o5EC2k/12CEnkVbiQlIHRgb7V19hw/jS6dO0PWXPpqG8cwL5HeE0h9WrRoEebMmcM9LioqgpOT00t9zVu5j/DOpv0AAGWVHC3DPlVbb8G5axD+mYJj04bDw876pbaJYV4VvScQe3t7AEBubi4cHBy4/bm5ufDx8eHq5OXl8Z5XVVWF/Px87vn29vbIzc3l1VE9VtV5mkQigUQi0ctxaCo5LxVS2XqN66fm+7AEwjQaek8gMpkM9vb2iIqK4hJGUVERLl68iGnTpgEA/Pz8UFBQgPj4ePj6+gIATp06BaVSiW7dunF1PvnkE1RWVsLIyAgAEBkZibZt26r9+lJfykqaoSR9JgCgOCkKT+J/V1vPetA8iJs7oc2A1q+yeQzzcunS8/rkyRO6evUqXb16lQDQ2rVr6erVq3Tv3j0iIlqxYgU1bdqUDh06RNeuXaMhQ4aQTCajsrIyLsaAAQOoY8eOdPHiRTp37hy1adOGRo8ezZUXFBSQnZ0djR07lpKTk2n37t1kampKP/zwg8btfBW94I+K5bTr4j1auWk7CQQC8u3mT1+u/Y52RByjL9d+R77d/EkgENDKDZsp7a/il9YOpuExhFEYnRJIdHQ0Aai1jR8/noiqh3I/++wzsrOzI4lEQm+//TalpKTwYjx69IhGjx5NZmZmZGFhQRMnTqQnT57w6iQmJtKbb75JEomEWrZsSStWrNCqna/qF1hVVUWurq4UHBxMCoWCV6ZQKCg4OJhkMhlVVVW91HYwDYshJBABEVF9nf28bEVFRbC0tERhYSEsLCxe2uucPn0affr0QWxsLLp3716rPDY2Fv7+/oiOjkbv3r1fWjuYhuVVvf/qE7sWRg+ys7MBAF5eXmrLVftV9RimsTD4BKJQKHD69Gns2rULp0+fhkKh0DqGarQpOTlZbblqf81RKYZpFOr7O9TL9LzvoPv37ydXV1deP46rqyvt379fq9dhfSCMOobQB2KwZyAREREYMWIEvL29ERsbiydPniA2Nhbe3t4YMWIEIiIiNI4lEomwZs0aHDlyBCEhIbx4ISEhOHLkCL7++muIRKKXeEQMUw/qO4O9THV9ArysMwZ1ZzQymUzrMxqmcTCEMxCDHIV5maMmCoUCMTExyM7OhoODA9566y125mGgDGEUplFdC6OpxNvpAAC5SXPsPXGmVnnZf6+cTbydrnUCEYlEbKiWMRgGl0Cu3s/D6vgbMHYxRuiqcBSe/1VtPWMXY6yOv4HA3Efs2hWGqYPBJZDTacmw8j8BK383AJdg09/tGbVP4EHxKJZAGKYOBpdAQn18AaxDzq04rF/xOerqAhozeRpCR7+PHi6er7aBDPMaMbgE0sLSErN79QV69YWPhRPmzZuHhw8fcuUtW7bErFmzMH36dJiamtZjSxmm4TPIUZia2KgJ87KwURgDwEZNGEZ3BjsTlWGYF8cSCMMwOmvUX2FU3Tuv+vYODAP8733XiLsZG3cCefLkCQC89JXZGeZZnjx5AktLy/puxkvRqEdhlEolHj58CHNzcwgEgjrrqW7/cP/+fb30lrN4LB5Qfebx5MkTtGjRAkJh4+wtaNRnIEKhEI6OjhrXt7Cw0OtwG4vH4jXWMw+VxpkWGYZ5JVgCYRhGZyyBoPqOdkuWLNHbXe1YPBbPUDTqTlSGYV4udgbCMIzOWAJhGEZnLIEwDKMzlkAYhtEZSyAMw+iMJZD/ys3NRU5Ojl5ipaamIioqCnfu3NFLPAD44osv8Pfff+stHsPog8ElkPz8fIwYMQLOzs6YNm0aFAoFJk+eDAcHB7Rs2RL+/v5a3QQ7PDwcUVFRAIDHjx8jICAAbdu2Rb9+/dC2bVsMHDgQBQUFGscrKiqqtRUWFmLZsmVIS0vj9mmqsrISCxYsgJubG7p27YqtW7fyynNzcxvsCmz6TOoAUFVVpbdYALB9+3YUFhbqNeZrp37uZ1V/PvjgA/Ly8qL169dTr169aMiQIdShQwc6d+4cXbhwgbp06ULjxo3TOJ6joyNduXKFiIgmT55MHTt2pCtXrlBZWRklJCRQ9+7dadKkSRrHEwqFajeBQMD7V1NLliwhOzs7Wr16NX3yySdkaWlJU6ZM4cpzcnJIIBBoHE/l+vXrNG3aNPLx8SF7e3uyt7cnHx8fmjZtGl2/fl2rWI8ePaLhw4eTk5MTTZ06laqqqmjSpEncsfr5+dHDhw81jnf8+HG6du0aEVXfaXDp0qXUokULEgqF1LJlSwoPDyelUqlVG9UxMjKiGzduvHCc15nBJRAHBwc6f/48Ef3vj+ePP/7gys+dO0ctW7bUOJ5EIqGMjAwiInJ1daUzZ87wyuPi4sjBwUHjeC1btqSgoCA6deoUnT59mk6fPk3R0dEkEolo27Zt3D5Nubm50eHDh7nHqamp5ObmRhMmTCClUkk5OTlaJSQiomPHjpFYLKbu3bvTkiVLaOPGjbRx40ZasmQJ+fv7k0QioRMnTmgcT99JvW3btnT27FkiIlq+fDlZW1vT2rVr6fjx4/Ttt9+SnZ0drVixQuN4VlZWajeBQECWlpbcY0NkcAnE1NSU+4Mnqv4USUpK4h6npaWRVCrVOJ67uzsdOXKEiIhkMhmXnFSuXr1KFhYWGsd79OgRhYSEUJ8+fejBgwfc/iZNmmj9yU5EZGJiQunp6bx9Dx48IHd3d3r//fcpKytL6wTSoUMH+uyzz+osX7JkCXl7e2sc72Uk9Xv37hERkZeXF+3du5dXfuTIEXJzc9M4npmZGQUFBdH27du5bdu2bSQSiWjZsmXcPkNkcAnkjTfeoA0bNhBR9Sepubk5rVmzhivftGkTeXl5aRxv9erV1K5dO0pNTaU1a9aQn58f3blzh4iqk1Hv3r1pxIgRWrdz48aN1KJFC/r111+JSPcEIpPJ6D//+U+t/VlZWeTu7k79+vXTOoEYGxvTrVu36iy/desWGRsbaxxP30ndwcGBYmNjiYjIzs6O+4qpcvv2bTIxMdE4XmpqKncW9OTJE26/rr+TxsTgEsjPP/9MIpGI3NzcSCKR0L59+6hFixY0cuRIGjVqFInFYi7BaGrmzJlkZGREHh4eZGxsTEKhkMRiMQmFQurcuTNlZ2fr1Nbr16/TG2+8QaNHj9b5zTpp0iT64IMP1JY9ePCA3NzctE4gHh4evKT7tDVr1lDbtm01jqfvpD59+nQaNGgQVVVV0ZQpU2jy5Mm8Po+ZM2eSn5+fxvGIiCorK2nBggXUunVrOnfuHBGxBEJkgAmEqPqU+Ouvv+ZOm69fv05jx46l4cOH63wqeuPGDVq1ahVNnTqVpkyZQkuWLKE//vjjhTvr5HI5zZ49m3x8fCgtLU3r52dkZDyzPyIrK0vrY967dy81adKEgoODad26dbR7927avXs3rVu3jgYPHkxisZh+++03jePpO6kXFBRQ586dyc3NjcaOHUvGxsbk4uJC/fr1I5lMRpaWlvTnn39qdcwqUVFR5OzsTIsWLSIjIyODTyDsalxGJxcuXMC//vUvxMbGckOt9vb28PPzw0cffQQ/Pz+t4p0/fx5//vkn/Pz84O/vjxs3bmDFihUoLS1FcHAwxo8fr1W8yspKbNmyBYcPH0ZaWhqUSiUcHBzQo0cPTJs2TauV6p726NEjfPjhh4iOjsaff/6Jtm3b6hzrdccSyH998cUXCAsLQ/PmzXV6fklJCeLj45GdnQ2hUIhWrVqhU6dOz1yLVRt9+/bFtm3b4OLiotPzT506hXPnzvHaN3jwYLRp00Yv7WMMk8ElEHWTsIgINjY2OHfuHDw8PABA47UzlUolPv74Y2zYsAFyuZyLBwDOzs5Yv349goODNW7f77//rnb/sGHDsG7dOm6F+cGDB2sULy8vD8HBwYiLi4NQKIRSqUTHjh2RlZWFv/76C3PmzMGqVas0bt+zbN++HUOHDtV5HVCFQsGb1Hbp0iWuvfpYvIeIoFQqdZo4p1AocO/ePbi6ukIoFEIul+PQoUNQKpXo06cP7OzsXrh9r6V6+/JUT/Q9UWvhwoXUrl07Onz4MEVGRlLPnj1p5cqVdPPmTfrss89IIpHQyZMnNY5Xsx11bdq0LzQ0lEJCQqiwsJDKy8tpxowZ3JyKqKgosra2pm+//VbjeM+i68SqjIwM8vX1JZFIRAMGDKDCwkIKCAjgjlcmk1FKSorG8SorK+mTTz6hnj170uLFi4mIaNWqVWRqakpisZjGjRtHcrlc43iJiYnk4OBAQqGQvLy8KDMzk7y8vEgqlZKZmRlZWVnRpUuXtD7uxsDgEoi+J2o5ODhwk5aIqkc2zMzMqLy8nIiIli5dqlWP/4ABAygoKIhyc3N5+3Xt8bewsKDk5GTucXFxMRkZGVFhYSEREe3cuVOrERMi/U+sGj58OPXq1YsOHz5MI0eOpB49elDv3r3pwYMH9PDhQwoMDKSQkBCN43366adkZ2dHc+bMIU9PT5o6dSo5OTnRzz//TDt27KCWLVvSypUrNY4XGBhII0aMoKSkJProo4+oXbt29O6771JFRQVVVlbSmDFjKCAgQON4jYnBJRB9T9QyNzenu3fvco8VCgU1adKEG7q9fv06mZqaahVz7dq15OTkxJtBqmv7bGxseM8rLS0loVBIjx49IiKiu3fvkkQi0SqmvidW2djY0NWrV4moegRFIBBQTEwMVx4fH092dnYax2vVqhX3s0tNTSWhUEi7d+/myvfs2aPVsLCVlRV3ZlVaWkoikYguXrzIlScnJ5O1tbXG8RoTg0sgKvqaqOXv709fffUV93jXrl3UtGlT7nFSUpJO05yvXr1Knp6eNGXKFCopKdG5fUOHDqXhw4dTcXExVVRU0KxZs3izMP/880+yt7fXKqa+J1aZm5tzQ9SqBJyQkMB7PXNzc43jGRsbU2ZmJu/xzZs3ucdpaWlaxWvatCndvn2biIgqKipIJBJRfHw8V37z5k2DncpucFfjqkybNg2RkZFYuXIl3nvvPZ3jLF26FF9++SW6deuGXr16YezYsViyZAlXfuLECXTs2FHruD4+PoiLi4NAIICPj4/O91f9+uuvkZCQgKZNm0IqlWL79u3YtGkTV37z5k1MmDBBq5hubm64cOEC7O3t4ePjg/Pnz+vUNpX27dtzVwnv2LED1tbW2L17N1e+a9cuuLu7axzP0tKSdwV0p06dYG5uzj2Wy+VajY75+vpi5cqVyMrKQnh4OGQyGTZs2MCVr1+/Hl5eXhrHa1TqO4PVtxedqEVElJCQQP/85z9p7ty5vGs49OXQoUM0a9asWv0imiopKaE//viDDh8+TH/99Zde26aPiVUnTpwgY2NjEovFZGxsTGfOnCF3d3fq2rUrde/enUQiEe3Zs0fjeH369HnmV6i9e/eSr6+vxvEuXbpE1tbWJBQKycbGhpKTk6lbt25kb29PLVq0IBMTE7WXCxgCgxvGZfRPHxOrMjIyEB8fD19fX7i6uiI3NxffffcdSktLERQUhD59+mgc6/bt2zAyMoJMJlNb/uuvv6JJkyYYOXKkxjFLSkpw69YttG3bFmZmZigvL8cvv/yCsrIybu0XQ2SwCeTSpUu1ZlH6+/ujS5cueovn5+eHrl276q3NQPUiOz/88AMWL17cIOMxhsXgEkheXh6GDx+O8+fPw9nZmZsAlJubi8zMTPTo0QP79++Hra2txvGGDRuGCxcu6CXe8yQmJqJTp05QKBQNMl5D8vTEtIsXL0Iul8PPzw9GRkZaxSIiZGRkwMnJCU2aNEFFRQUOHDgAuVyOd955R+cZzK+9evz6VC+GDx9Ofn5+ai9Hv3XrFvn7+2t1+b2+4yUmJj5z27Nnj1YTyfQdj6h6JGL+/PnUunVr6tKlC23ZsoVXru0iRfqO9/DhQ+rRoweJRCLq2bMn5efnU1BQEDcxzd3dXasVzm7dukUuLi4kFArJzc2N0tLSyNfXl6RSKZmamlLz5s25URpDY3AJxMzMrNb6EDXFxcWRmZlZvcV71kxUXWbK6jsekf6XSdR3vLFjx5K/vz/9/vvvFBoaSv7+/vTWW2/RgwcP6N69e9SjRw8KCwvTON6QIUNo8ODBdO3aNZo1axa1a9eOhgwZQhUVFVReXk7BwcE0ZswYjeM1JgaXQKytrZ850zQ6OlqrSUEvI96WLVsoIyND7Xb06FGt/uD1HY9I/8sk6jtezQWFHj16RAKBgDdKEhUVRa1atdI4Xs2JbsXFxbUmup0/f56cnZ01jteYGFwCmT59Orm4uFBERAQ3nZuIqLCwkCIiIsjV1ZVmzJhRb/H69+9PX375ZZ3lCQkJWn0a6zsekf6XSdR3vKcnkkmlUkpNTeUe37t3T6sVyUxMTLglEomqzzpVq84REWVmZmo9m7exMLgEUl5eTlOnTuVWDDM2NuatIjZt2jTuOpYXiScQCHSKFxERQTt37qyzPD8/X6tp4vqOR6T/ZRL1Hc/Z2Zk31XzhwoXc1H2i6qTZvHlzjeO1bt2ad8axceNGKioq4h7Hx8drPZu3sTC4URiVoqIixMfH84ZdfX19Nb6MX128uLg45ObmAgDs7OzQuXNnneM1ZJMnTwYRYcuWLbXKsrKy0Lt3b6SlpWk8sqPveEOGDEHfvn3x0UcfqS3/7rvvEBERwd3P53mmTp2Kzp07Y/LkyWrLV6xYgZiYGBw9elSjeI2JwSaQl00sFiMxMRHt2rWr76bo3b1793Dr1i0EBgaqLX/48CEiIyM1XkVM3/Ge59KlSzA1NdXb9PP09HQYGxvDwcFBL/FeJwaZQMrKyhAfH49mzZrB09OTV1ZeXo69e/di3LhxGsWaM2eO2v3r1q3DmDFjYG1tDQBYu3atRvGuXLkCKysrbhblzp078f333yMzMxMuLi6YMWMGRo0apVEslQ0bNuDSpUt45513MGrUKOzcuRPh4eFQKpUYNmwYli5diiZNmmgVk2EAGN48kJSUFHJxceGGL3v27ElZWVlcubY9/gKBgHx8fKh37968TSAQUJcuXah3797Up08fjeN16NCBIiMjiYjoxx9/JBMTE/rHP/5BmzZtolmzZpGZmVmteRLP8uWXX5K5uTkNHz6c7O3tacWKFWRtbU1fffUVLV++nGxsbLhFd7Qhl8tpz549NGvWLBo1ahSNGjWKZs2aRXv37tVqsZ6a7t+/z7u6V6WioqLWDbt0IZPJdJqvcf/+fd41RGfPnqX33nuP3nzzTXr//ffpwoULL9y215XBJZCQkBAKCgqiv/76i1JTUykoKIhkMhnXy65tAgkPDyeZTEZRUVG8/S9yIyjVPVI6duxI//73v3nlv/zyC3l6emocr3Xr1rR//34iqu48FIlE9PPPP3PlERERWt1kiah6mLVVq1ZkbGxMvXr1opEjR9LIkSOpV69eZGxsTG5ubrxRj+d5+PAhdenShYRCIYlEIho7diwvkWj7O1m3bp3aTSQS0aJFi7jHmuratSs3zHzw4EESCoU0ePBgWrhwIQ0dOpSMjIx4w9CGxOASiK2tLXffVCIipVJJU6dOJWdnZ7p7965Ot3q8dOkSubu709y5c6miooKIdE8g1tbWFBcXx7W15roYRER37tx5oSFIIyMj3gplGRkZWi94FBAQQEOGDOENW6sUFhbSkCFDqH///hrHGzduHHXr1o0uX75MkZGR5OvrS507d6b8/Hwi0n4imUAgIEdHR3J1deVtAoGAWrZsSa6uriSTyTSOJ5VKuSu1u3XrVuu2mOvXr6eOHTtqHK8xMbgEYm5urnbdzrCwMHJ0dKSzZ89qnUCIiJ48eULjxo2jDh06UFJSks6Xto8ZM4a7Gfe7775Ln376Ka98+fLlWt02UiaT0fHjx4mo+o5sQqGQd6vHo0ePkqurq1ZtNDEx4d057mnXrl3TKsm1aNGCN+yqmt3p4+NDjx490jqp/9///R/5+PjU+j3rmtQtLS0pMTGRiKqTuur/Knfu3NE6CTcWBpdAunTpQj/99JPasrCwMGratKlOCURl165dZGdnR0KhUKc3a1ZWFrm6ulLPnj1pzpw5ZGJiQm+++SZ9+OGH1LNnTxKLxXT06FGN43366adkY2NDkydPJplMRh9//DE5OzvTpk2b6PvvvycnJyeaPXu2Vm10cHB45in777//rtUNxaVSaa2+icrKSgoJCaEOHTrQtWvXtP6dREREkJOTE61fv57bp2sCGTx4MH388cdEVL0+6tNff3788Udq06aN1nEbA4NLIMuXL6eBAwfWWT5t2jStZ2Y+7f79+3Tw4EEqLi7W6fmPHz+mhQsXkqenJ7fQjouLC7333nt0+fJlrWIpFApatmwZDRo0iJYvX05KpZJ27dpFTk5OZG1tTRMmTNC6nZ999hlZWVnR2rVrKTExkXJycignJ4cSExNp7dq11KxZM1qyZInG8by9vdXeyU6VRJydnXVK6g8ePKC+ffvSgAEDKDs7W+cEcuPGDbK2tqZx48bRl19+SWZmZjRmzBhatmwZjRs3jiQSCW3btk3ruI2BwSUQRj9WrFhBDg4O3GiW6sI8BwcHrVY8JyJasGBBnX0mlZWVNHjwYJ2TulKppOXLl5O9vT2JRCKdb0V5584dGjVqFJmbm3MXIxoZGZG/vz8dOHBAp5iNgUHOA2H0Jz09nTebt65VwJ6lqqoKpaWldc7araqqQlZWls535QOA+Ph4nDt3DuPGjYOVlZXOcYgIeXl5UCqVaN68udbrijQ69ZzAmEYoMzOTJk6cyOIZAHYGwuhdQ181raHHe52w+cuM1uq6f69KWloai2cg2BkIozWhUAiBQPDMe9UIBAKNP5ENLV5jYrA3lmJ05+DggIiICCiVSrXblStXWDwDwRIIozVfX1/Ex8fXWf68T2tDj9eYsD4QRmvz589HSUlJneVubm6Ijo5m8QwA6wNhGEZn7CsMwzA6YwmEYRidsQTCMIzOWAJhGEZnLIEwDKMzlkAamd69e2PWrFn13QxOQ2sPo18sgTC1VFRU1HcTmNdFfVwCzLwc48ePJwC87c6dO/TBBx+Qq6srGRsbk7u7O3377be1njdkyBD66quvyMHBgVsj9fz58/TGG2+QRCIhX19fOnDgAAHgbjRNRJSUlEQDBgwgqVRKtra2NGbMGO4WCOra8/Q9cJnXG0sgjUhBQQH5+fnRhx9+SNnZ2ZSdnU3l5eW0ePFiunz5MqWlpdHPP/9MpqamtGfPHu5548ePJzMzMxo7diwlJydTcnIyFRYWUrNmzWjMmDF0/fp1OnbsGLm7u/MSyOPHj8nGxoYWLVpEN2/epCtXrlC/fv24++Coa09VVVV9/GiYl4RNZW9ELC0tIRaLYWpqCnt7e27/F198wf1fJpMhNjYWe/fuxciRI7n9UqkUmzdvhlgsBgB8//33EAgE+PHHH2FsbAxPT09kZWXhww8/5J6zYcMGdOzYEcuXL+f2bd26FU5OTrh9+zbc3d3VtodpPFgCMQDfffcdtm7diszMTJSVlaGiogI+Pj68Ot7e3lzyAICUlBR06NABxsbG3L6uXbvynpOYmIjo6GiYmZnVes27d+/C3d1dvwfCNDgsgTRyu3fvxrx587BmzRr4+fnB3Nwcq1evxsWLF3n1pFKp1rGLi4sRHByMlStX1iozxBtNGyKWQBoZsVjMW9jm/Pnz8Pf3x/Tp07l9d+/efW6ctm3b4ueff4ZcLodEIgEAXL58mVenU6dO2L9/P1xdXeu8OffT7WEaFzaM28i4urri4sWLyMjIwN9//402bdogLi4OJ0+exO3bt/HZZ5/VSgTqvPfee1AqlZgyZQpu3ryJkydP4uuvvwZQvf4FAISFhSE/Px+jR4/G5cuXcffuXZw8eRITJ07kksbT7VEqlS/v4JlXjiWQRmbevHkQiUTw9PSEjY0NAgMDMWzYMISGhqJbt2549OgR72ykLhYWFjh8+DASEhLg4+ODTz75BIsXLwYArl+kRYsWOH/+PBQKBfr37w9vb2/MmjULTZs2hVAoVNuezMzMl3fwzCvH1gNhNPbLL79g4sSJKCwshImJSX03h2kAWB8IU6effvoJrVq1QsuWLZGYmIiFCxdi5MiRLHkwHJZAmDrl5ORg8eLFyMnJgYODA959910sW7asvpvFNCDsKwzDMDpjnagMw+iMJRCGYXTGEgjDMDpjCYRhGJ2xBMIwjM5YAmEYRmcsgTAMozOWQBiG0dn/A6bCLTtjRch2AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "y='[UPDATE].99thPercentileLatency(us)'\n",
+ "plot_variation(df_groups, max_pod_count, y)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### READ"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOgAAAEGCAYAAABvkNk+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5SUlEQVR4nO2dd1wUx/vHP3cH3B1VRKoinCIgAoLYQGNvCSIo9hpjiYQYayyJ5atGLNFEfxo1McQSewwaa5QYKxILCgHFCohSLXSk3T2/P/jefj0BvcMDjnPer9e+dGdmn3322M/O7MwzszwiIjAYDI2EX9cOMBiMqmECZTA0GCZQBkODYQJlMDQYJlAGQ4NhAmUwNBgmUAZDg2ECZTA0GCZQBkODqVOBduvWDTweDzweD9HR0XXpylv5z3/+w/m6bt26unaHUcN06dIFe/bsUYutZ8+ewcLCAk+ePFH52DqvQSdNmoS0tDS4uroiKSmJEwGPx0PDhg3RtWtXXLx4UeGYV8Xy6ubs7FzB/t69eyEQCBAcHFwh79y5c9yxfD4fJiYm8PT0xJw5c5CWlqZQdvbs2UhLS0OTJk2Uuq7IyEgIBAL4+vqq8GvUD7Zv344GDRpU+3j531lTH8pHjhxBRkYGhg8frhZ7jRo1wtixY7F48WKVj61zgerr68PKygo6Ojpc2l9//YW0tDRcuHABNjY26N+/PzIyMhSOa9WqFdLS0hS2S5cuVbAfGhqKOXPmYO/evSgqKqrUh7t37yI1NRXXrl3D3Llz8ddff8HV1RWxsbFcGUNDQ1hZWUEgECh1XaGhoZg6dSouXLiA1NRUpY6pLkSEsrKyGj3H+8T//d//Yfz48eDz1SeP8ePHY/fu3Xjx4oVKx9W5QCvDzMwMVlZWcHV1xVdffYXc3FxcuXJFoYyOjg6srKwUtkaNGimUSUxMxOXLlzFv3jw4OjoiLCys0vNZWFjAysoKjo6OGD58OCIiImBubo6goKBq+Z+fn4/9+/cjKCgIvr6+2L59O5c3cuRIDBs2TKF8aWkpGjVqhJ07dwIAZDIZVqxYAYlEArFYjNatW+PgwYNceXnNf/LkSXh5eUEoFOLSpUt4+PAh/P39YWlpCUNDQ7Rr1w5//fWXwrnS0tLg6+sLsVgMiUSCPXv2wN7eXqHZnp2djYkTJ8Lc3BzGxsbo0aMHYmJilL7+P//8E507d0aDBg1gZmaG/v374+HDh1y+RCIBAHh6eoLH46Fbt25c3s8//4yWLVtCJBLB2dkZmzZt4vLkNW9YWBi6d+8OfX19tG7dGpGRkQrnj4iIQLdu3aCvrw9TU1P07dsXWVlZ2LlzJ8zMzFBcXKxQPiAgAGPGjAEAPH36FH///Tf8/PwqnPfVGj87Oxs8Hg/nzp0DAGRlZWHUqFEwNzeHWCxGixYtsG3bNq58q1atYGNjg0OHDin9OwIaKlA5L1++5G5aPT09lY/ftm0bfH19YWJigtGjRyM0NFSp48RiMaZMmYKIiAhkZmaqfN4DBw7A2dkZTk5OGD16NH755RfIJw2NGjUKR48eRX5+Plf+1KlTKCwsxMCBAwEAK1aswM6dO7FlyxbcunULM2bMwOjRo3H+/HmF88ybNw8rV65EfHw83N3dkZ+fj48++ghnzpzBzZs30a9fP/j5+SE5OZk7ZuzYsUhNTcW5c+fw+++/46effqpwjUOGDEFmZiZOnjyJqKgotGnTBj179lT66V9QUICZM2fi+vXrOHPmDPh8PgYOHAiZTAYAuHr1KoD/tZTkD87du3dj0aJFWL58OeLj4xESEoKFCxdix44dCva//vprzJ49G9HR0XB0dMSIESO4FkR0dDR69uwJFxcXREZG4tKlS/Dz84NUKsWQIUMglUpx5MgRzlZmZiaOHz+OTz75BABw6dIl6Ovro2XLlkpdq5yFCxfi9u3bOHnyJOLj47F58+YKFUb79u0rvK69FapDunbtStOmTeP2ExMTCQCJxWIyMDAgHo9HAMjLy4tKSkq4cosXLyY+n08GBgYK26effsqVkUqlZGtrS4cPHyYioqdPn5Kenh4lJCRwZc6ePUsAKCsrq4JvJ0+eJAB05coVhXQ7Ozv6/vvv33hdPj4+tG7dOiIiKi0tpUaNGtHZs2cV9nfu3MmVHzFiBA0bNoyIiIqKikhfX58uX76sYHPChAk0YsQIBb/l1/YmWrVqRRs2bCAiovj4eAJA165d4/Lv379PALhrunjxIhkbG1NRUZGCnebNm9OPP/5IRETbtm0jExOTt55bztOnTwkAxcbGEtH//s43b96scI49e/YopC1btoy8vb0Vjvv555+5/Fu3bhEAio+PJ6Ly37JTp05V+hIUFEQffvght7927Vpq1qwZyWQyIiL6/vvvqVmzZgrHVOZvVlYWAeD+rn5+fjR+/Pg3/g4zZsygbt26vbHM62hkDbp//37cvHkTv//+OxwcHLB9+3bo6uoqlHFyckJ0dLTCtnTpUi4/PDwcBQUF+OijjwCUv6j37t0bv/zyi1I+0H9rPB6Pp5Lvd+/exdWrVzFixAgA5U3xYcOGcbW3jo4Ohg4dit27dwMor23++OMPjBo1CgDw4MEDFBYWonfv3jA0NOS2nTt3KjQTAaBt27YK+/n5+Zg9ezZatmyJBg0awNDQEPHx8VwNevfuXejo6KBNmzbcMQ4ODjA1NeX2Y2JikJ+fDzMzM4XzJyYmVjh/Vdy/fx8jRoxAs2bNYGxsDHt7ewBQqMlfp6CgAA8fPsSECRMUzvvNN99UOK+7uzv3f2trawDgWgHyGrQqJk2ahNOnTyMlJQVAeYfXxx9/zP2dX758CZFIpNR1vkpQUBD27dsHDw8PzJkzB5cvX65QRiwWo7CwUCW7Om8vUvvY2tqiRYsWaNGiBcrKyjBw4EDExcVBKBRyZfT09ODg4FCljdDQULx48QJisZhLk8lk+Pfff7FkyZK3dgDEx8cDAHdzKUtoaCjKyspgY2PDpRERhEIhNm7cCBMTE4waNQpdu3ZFZmYmwsPDIRaL0a9fPwDgmr7Hjx9H48aNFWy/ev0AYGBgoLA/e/ZshIeHY82aNXBwcIBYLMbgwYNRUlKitP/5+fmwtrbm3q1eRdmeWz8/P9jZ2WHr1q2wsbGBTCaDq6vrG/2QX/fWrVvRoUMHhbzXO+ZefVjLhSVvPr/6964MT09PtG7dGjt37kSfPn1w69YtHD9+nMtv1KgRsrKyFI6R3yv0ytoGpaWlCmU+/PBDPHr0CCdOnEB4eDh69uyJ4OBgrFmzhivz4sULmJubv9G/19HIGvRVBg8eDB0dHYXOgrfx/Plz/PHHH9i3b59CDXvz5k1kZWXh9OnTbzz+5cuX+Omnn9ClSxeVftCysjLs3LkTa9euVThvTEwMbGxssHfvXgCAj48PbG1tsX//fuzevRtDhgzhbjoXFxcIhUIkJyfDwcFBYbO1tX3j+SMiIvDxxx9j4MCBcHNzg5WVFZKSkrh8JycnlJWV4ebNm1zagwcPFG7INm3aID09HTo6OhXO//o7VWU8f/4cd+/exYIFC9CzZ0+0bNmywg0v70+QSqVcmqWlJWxsbJCQkFDhvPJOJWVwd3fHmTNn3lhm4sSJ2L59O7Zt24ZevXop/K6enp5IT09X8Fl+D7w69FbZEJG5uTnGjRuHXbt2Yd26dfjpp58U8uPi4uDp6an0tQAaWoO+Co/HwxdffIH//Oc/+PTTT6Gvrw+gXAzp6ekVylpaWuLXX3+FmZkZhg4dWqGJ+tFHHyE0NJSrsYDy5lFRURHy8vIQFRWF1atX49mzZ1X2+r5Kz549MXDgQHz++ec4duwYsrKyMGHCBJiYmCiUCwwMRGhoKKZMmQKgvDd3y5YtuHfvHs6ePcuVMzIywuzZszFjxgzIZDJ07twZOTk5iIiIgLGxMcaNG1elLy1atEBYWBj8/PzA4/GwcOFCrmYBAGdnZ/Tq1QuTJ0/G5s2boauri1mzZkEsFnO/U69eveDt7Y2AgACsXr0ajo6OSE1NxfHjxzFw4ECuWS2VSivcpEKhEE5OTjAzM8NPP/0Ea2trJCcnY968eQrlLCwsIBaL8eeff6JJkyYQiUQwMTHBkiVL8MUXX8DExAT9+vVDcXExrl+/jqysLMycOfOtfwsAmD9/Ptzc3PDZZ59hypQp0NPTw9mzZzFkyBDuATNy5EjMnj0bW7du5Toh5Xh6eqJRo0aIiIhA//79AZTXyh07dsTKlSshkUiQmZmJBQsWKBy3aNEieHl5oVWrViguLsaxY8cUOpoKCwsRFRWFkJAQpa6DQ6U3VjVTVSfR650HBQUFZGpqSqtWrSKi8k4iABU2oVBIRERubm702WefVXrO/fv3k56eHj19+pTrbAFAPB6PjIyMqHXr1vTll19SWlpapce/3klkZ2dHixcvJiKi/v3700cffVTpcVeuXCEAFBMTQ0REt2/fJgBkZ2fHdVDIkclktG7dOnJyciJdXV0yNzenvn370vnz54mo6s6txMRE6t69O4nFYrK1taWNGzdW+I1TU1Ppww8/JKFQSHZ2drRnzx6ysLCgLVu2cGVyc3Np6tSpZGNjQ7q6umRra0ujRo2i5ORkIirvJKrs92/evDkREYWHh1PLli1JKBSSu7s7nTt3jgDQoUOHuHNs3bqVbG1tic/nU9euXbn03bt3k4eHB+np6ZGpqSl16dKFwsLCuOt7/f54vbOGiOjcuXPk4+NDQqGQGjRoQH379q3wW40ZM4YaNmxYoTOMiGjOnDk0fPhwhbTbt2+Tt7c3icVi8vDwoNOnTyucd9myZdSyZUsSi8XUsGFD8vf3V+iQ3LNnDzk5OVU419vQKIHWB5Tpxa1PPH78mADQX3/9Vdeu1Co9evSgqVOnVpqXlpZGDRs2pKSkJLWdr0OHDrR7926Vj6vzd9BNmzbB0NBQIWpHEwkJCYGhoeEbeyLrA3///TeOHDnCBXEMHz4c9vb26NKlS127VitkZWXh0KFDOHfuXKXhnwBgZWWF0NBQtf2tnz17hkGDBnE9+6rAI6q7ZTdTUlLw8uVLAEDTpk2rFYxQW7x48YIbqDc3N6/wjllfOHXqFGbNmoWEhAQYGRnBx8cH69atg52dXV27VivY29sjKysLCxcuxOzZs+vanbdSpwJlMBhvps6buAwGo2qYQBkMDYYJlMHQYDQ+UKEyZDIZUlNTYWRkpHKsLIPxrhAR8vLyYGNjo9Y5o5VRLwWampr61rA3BqOmefz4sdIrbFSXeilQIyMjAOU/kLGxcR17w3jfyM3Nha2tLXcf1iT1UqDyZq2xsTETKKPOqI3XK9ZJxGBoMEygDIYGUy+buIz3l8LCQty5cwcAUFQqxZOsQjQx1YdIVwBnZ2duOqK2wATKqBSpVIqLFy8iLS0N1tbW+OCDD5RecrQmuXPnDry8vCrNky9wpk0wgTIqEBYWhlmzZimsxmBvb4+1a9di0KBBdeZX4rMCSI2tsf/kOQDA4xcvseb0Xczu4wTbhmJIja0Rl5IDA6EOJI0M3mysnsAEylAgLCwMgwcPRv/+/bF37164uroiLi4OISEhGDx4MA4ePFgnIk18VoDua85VSBdaOWDDv1IA+cC5G1z62dndtEKk9XI2S25uLkxMTJCTk8OGWdSIVCqFg4MD3NzccPjwYYUoGZlMhoCAAMTFxeH+/fu13tyNS8lB/w2XsG6YBxwsDAHI30FfoompGCLdcn8eZOZj+v5oHJvaGa6NlZ8SqEqTvjbvP1aDMjguXryIpKQk7N27t0IIG5/Px/z58+Hj44OLFy8qrAZfmzhYGCoIr639u9vU1CY9wIZZGK8gX7XO1dW10nx5+usflqrPyJv0bm5uiIyMRF5eHiIjI+Hm5obBgwcrtXBcTcJq0HqOOocd5ItAx8XFoWPHjhXy4+LiFMrVd6RSKWbNmoX+/fsrNOk7duyIw4cPIyAgALNnz4a/v3/d9WCrbVWkWiQnJ4cAUE5OTl27UudERUVVusIeAIqKilLJVllZGdnb25Ofnx9JpVKFPKlUSn5+fiSRSKisrEydl6AUsU+yyW7uMYp9kq2WckT/Wx0xMjKy0vzLly9XWDGQqHbvP1aD1mPUPewgEAiwdu1aDB48GAEBAZg/fz7Xi7tixQocO3YMBw8eVKk20eTAgvrQpGcCrafU1LDDoEGDcPDgQcyaNQs+Pj5cukQiqdYQiyYHFtSHJj0TaD2loLj8c3vKDjvIyyvDoEGD4O/vr5ZIImdnZ0RFRf3XlzxM2xeN9cM94GBhVOkX0auiWFoEvigFibl3wRcZVlkuMTcffFEKiqVFAN48zPLBBx/A3t4eISEhlQ4ryb/R+sEHHyjtp7phAq3n1MSwA1De3FXHUIq+vj5XS+ql5EB4Lh8ubh4qjVECQGrBIxhINuCrq28vayABUgs84AXLN5YTCAQICQnBqFGj0L17d4waMxbChjYofpGK3b/uxMWLF1Vu0qsbJlBGvcDGwA4FiVOxfpgHmltUXYM+zMzHtP3RsOmu3Dq/Tk5OICJcuHABFy5cUMj79ttv63wclAmUUS8QCkSQFTWGxNgJLmZV176yohzIip5CKFDuG5/yJrhUKsWxsxFYf+wGpvVvg/7dO6FVq1bqcr/aMIEy3mtebYKLbRyx40ULDBmlWphgTcIiiRgMDYbVoIwaI/FZgULv8YPMfIV/5dTV9DBN9w9gAmXUEFWN0wLA9P3RFdJqe3qYpvsnhwmUUSPU5Djt++CfHCZQhgLqDs2rqXHad0Ue+CAQmXOBD/oiwNEIAHK4cgKR8oEPNQETKEMBTQ7NUyeJOYlqD3yoCZhAGRzv05o/LwsaoiBxqtLlW/RrXoPeVA0TaD1F3bGpmr7mz8tSKYDypU/kVPXOqAy+bvbQ5fdDcwtDiF9733z1vRRgvbiMaqDu2FRN7zR5+F/hzQuLVaq8gfDNt3ZDAz0Mb9+00rzX35vrEibQekpNxaZqaqdOn1ZWAKD2Gu/VTrEHmXkoTn+A27GGKMkwqvP5qgATaL1FJtOFrKgxCvKsIDMuF1RlNZ60KF+l2FR1oe4meE3VeJV1ig3bUf6vJnSKMYHWU9Td5FO3oGpielhN8Op81cqGleoaJtB6irqbfOoWVE01wdXNq8HymggTaD1F3U0+dQuqpqaHvW8wgTIAaP47rRxN79RRN0ygDADqf6dV97ilHE3v1FE3TKAMAOp/p1W34OVoeqeOumECZQD43zvtq03Ikv82IUsyDFFCqjUha2rcUtM7ddQNE2g9R93vZOpqQtaXSB1Nhwm0nqPud7L3rQmp6TCB1jLqnm+pbkG9b01ITYcJtJZR93xLJijthgm0llHXpxDqC+/buKW6YQKtZdT1KYT6wvs2bqlumEBrkfqwzKO6YZ1O7waPiKiunVCV3NxcmJiYICcnB8bGxnXtjlK8aZnHyqirZR4Zb6c27z9Wg9YSmr5iAUMzYQKtZTR1xYL3HalUqpbvoaqbd/o2y8qVK8Hj8TB9+nQuraioCMHBwTAzM4OhoSECAwORkZGhcFxycjJ8fX2hr68PCwsLfPnllygrYzUGo24ICwuDg4MDunfvjpEjR6J79+5wcHBAWFhYXbtWfYFeu3YNP/74I9zd3RXSZ8yYgaNHj+K3337D+fPnkZqaqvCNRalUCl9fX5SUlODy5cvYsWMHtm/fjkWLFlX/KhiMahIWFobBgwfDzc0NkZGRyMvLQ2RkJNzc3DB48OC6FylVg7y8PGrRogWFh4dT165dadq0aURElJ2dTbq6uvTbb79xZePj4wkARUZGEhHRiRMniM/nU3p6Oldm8+bNZGxsTMXFxUqdPycnhwBQTk5OddyvE2KfZJPd3GMU+yRbLeUY705ZWRnZ29uTn58fSaVShTypVEp+fn4kkUiorKxMIa82779q1aDBwcHw9fVFr169FNKjoqJQWlqqkO7s7IymTZsiMjISALink6Xl/5bL6Nu3L3Jzc3Hr1q1Kz1dcXIzc3FyFjcF4Vy5evIikpCR89dVX4PMVpcDn8zF//nwkJibi4sWLdeRhNTqJ9u3bhxs3buDatWsV8tLT06Gnp4cGDRoopFtaWiI9PZ0r86o45fnyvMpYsWIFlixZoqqrGoW6F+VivDtpaWkAAFdX10rz5enycnWBSgJ9/Pgxpk2bhvDwcIhEtbfkxfz58zFz5kxuPzc3F7a2trV2fnVQX1a5e5+wtrYGAMTFxaFjx44V8uPi4hTK1QUqCTQqKgqZmZkK4VlSqRQXLlzAxo0bcerUKZSUlCA7O1uhFs3IyICVVfkEXisrK1y9qniXynt55WVeRygUQigUquKqxlFfVrl7n/jggw9gb2+PkJAQHD58WKGZK5PJsGLFCkgkEnzwwQd15qNK76A9e/ZEbGwsoqOjua1t27YYNWoU939dXV2cOXOGO+bu3btITk6Gt7c3AMDb2xuxsbHIzMzkyoSHh8PY2BguLi5quizNQ2FRrqLGkBU1RmGeFe4lm6DwlTTpf/9lq9zVPAKBAGvXrsWxY8cQEBCg0IsbEBCAY8eOYc2aNXU6HqpSDWpkZFShvW5gYAAzMzMufcKECZg5cyYaNmwIY2NjTJ06Fd7e3lwTok+fPnBxccGYMWOwevVqpKenY8GCBQgODq73teSbqKk1ehjvxqBBg3Dw4EHMmjULPj4+XLpEIsHBgwcVhgjrArXfBd9//z34fD4CAwNRXFyMvn37YtOmTVy+QCDAsWPHEBQUBG9vbxgYGGDcuHFYunSpul3RKGpqjR7GuzNo0CD4+/trZCQRC5avQ+JSctB/wyUcm9pZa6ebaSO1ef+9U6gfg8GoWZhAGQwNhvVE1DJsCRCGKjCB1jJsCRCGKjCB1jJsCRCGKjCB1jJsmUyGKrBOIgZDg2ECZTA0GCZQBkODYQJlMDQYJlAGQ4NhAmUwNBgmUAZDg2ECZTA0GCZQBkODYQJlMDQYJlAGQ4NhAmUwNBgmUAZDg2ECZTA0GCZQBkODYQJlMDQYJlAGQ4NhAmUwNBgmUAZDg2ECZTA0GCZQBkODYQJlMDQYJlAGQ4NhAmUwNBgmUAZDg2ECZTA0GCZQBkODYQJlMDQYJlAGQ4NhAmUwNBgmUAZDg2ECZTA0GCZQBkODYQJlMDQYJlAGQ4NhAmUwNBgmUAZDg1FJoJs3b4a7uzuMjY1hbGwMb29vnDx5kssvKipCcHAwzMzMYGhoiMDAQGRkZCjYSE5Ohq+vL/T19WFhYYEvv/wSZWVl6rkaBkPLUEmgTZo0wcqVKxEVFYXr16+jR48e8Pf3x61btwAAM2bMwNGjR/Hbb7/h/PnzSE1NxaBBg7jjpVIpfH19UVJSgsuXL2PHjh3Yvn07Fi1apN6rYjC0BXpHTE1N6eeff6bs7GzS1dWl3377jcuLj48nABQZGUlERCdOnCA+n0/p6elcmc2bN5OxsTEVFxdXeY6ioiLKycnhtsePHxMAysnJeVf3GQyVycnJqbX7r9rvoFKpFPv27UNBQQG8vb0RFRWF0tJS9OrViyvj7OyMpk2bIjIyEgAQGRkJNzc3WFpacmX69u2L3NxcrhaujBUrVsDExITbbG1tq+s2g1GvUFmgsbGxMDQ0hFAoxJQpU3Do0CG4uLggPT0denp6aNCggUJ5S0tLpKenAwDS09MVxCnPl+dVxfz585GTk8Ntjx8/VtVtBqNeoqPqAU5OToiOjkZOTg4OHjyIcePG4fz58zXhG4dQKIRQKKzRc1RFYWEh7ty5AwAoKpXiSVYhmpjqQ6QrgLOzM/T19evEL8b7gcoC1dPTg4ODAwDAy8sL165dw/r16zFs2DCUlJQgOztboRbNyMiAlZUVAMDKygpXr15VsCfv5ZWX0TTu3LkDLy+vSvOioqLQpk2bWvaI8T6hskBfRyaTobi4GF5eXtDV1cWZM2cQGBgIALh79y6Sk5Ph7e0NAPD29sby5cuRmZkJCwsLAEB4eDiMjY3h4uLyrq6oncRnBZAaW2P/yXMAgMcvXmLN6buY3ccJtg3FkBpbIy4lBwZCHUgaGdStswytRCWBzp8/Hx9++CGaNm2KvLw87NmzB+fOncOpU6dgYmKCCRMmYObMmWjYsCGMjY0xdepUeHt7o2PHjgCAPn36wMXFBWPGjMHq1auRnp6OBQsWIDg4uM6asFWR+KwA3decq5AutHLAhn+lAPKBcze49LOzuzGRMtSOSgLNzMzE2LFjkZaWBhMTE7i7u+PUqVPo3bs3AOD7778Hn89HYGAgiouL0bdvX2zatIk7XiAQ4NixYwgKCoK3tzcMDAwwbtw4LF26VL1XpQYKisuDJ9YN84CDhSEA+TvoSzQxFUOkKwAAPMjMx/T90Vx5BkOdqCTQ0NDQN+aLRCL88MMP+OGHH6osY2dnhxMnTqhy2jqhWFoEvigFApE5+KJygeqLAEcjAMjhyglE+eCLUlAsLQJgUie+MrSXd34H1VZSCx7BQLIBX119e1kDCZBa4AEvWL69MIOhAkygVWBjYIeCxKlYP8wDzf/bxK2Mh5n5mLY/Gjbd7WrRO8b7AhNoFQgFIsiKGkNi7AQXs6qbrrKiHMiKnkIoENWid4z3BTbdjMHQYJhAGQwNRuuauOoKzXtZKgUAxKX8r8e2qmEWBqOm0DqBqis07+F/hTcvLFap8gZCrfspGRqA1t1Vzs7OiIqKAgA8yMzDtH3RWD/cAw4WRnB2dlbaTp9W5bHBzS0MIX4tKOHV4AUALNSPUWNonUD19fW5WlIvJQfCc/lwcfOAa2PVgggaGuhhePumleY5WBiqbI/BqA6sk4jB0GCYQBkMDUarmriJzwoUgtblPayv97Syd0ZGfUFrBFrV9DAAmL4/ukKastPDXh22eZCZh+L0B7gda4iSDCO2ogKjxtEagdbU9LDKhm2G7Sj/l62owKhptEagcl7vYW1r/272Xh22qSzwgcGoSbRGoPL5m4m5d7n5m5WRmKva/M1Xh20YjNpGawTK5m8ytBGtESibv8nQRrRGoGz+JkMbYYEKDIYGwwTKYGgwWtPEZfM3GdqI1giUzd9kaCNac5ey+ZsMbURrBMrmbzK0EdZJxGBoMEygDIYGwwTKYGgwWvMOKofN32RoE1onUDZ/k6FNaJ1A2fxNhjahdQJl8zcZ2gTrJGIwNBgmUAZDg2ECZTA0mHr5DkpEAIDc3Nw69oTxPiK/7+T3YU1SLwWal5cHALC1ta1jTxjvM3l5eTAxqdkYbx7VxmNAzchkMqSmpsLIyAg8Hq/Kcrm5ubC1tcXjx49hbGz8zudl9pg9oLzmzMvLg42NDfj8mn1LrJc1KJ/PR5MmTZQub2xsrJY/ILPH7Mmp6ZpTDuskYjA0GCZQBkOD0WqBCoVCLF68GEKhkNlj9mrdnjqol51EDMb7glbXoAxGfYcJlMHQYJhAGQwNhgmUwdBgmEAZDA1G6wWakZGB9PR0tdi6f/8+zpw5gwcPHqjFHgAsWbIEz549U5s9hpZBWsLz588pMDCQbG1tacqUKVRWVkYTJkwgHo9HfD6fvL29KTU1VWl7ISEh9NdffxER0YsXL6hnz57E4/E4e/369aOsrCyl7eXk5FTYsrOzSVdXl65cucKlKUtJSQl9+eWX1Lx5c2rXrh2FhoYq5KenpxOfz1faXm2Snp5OaWlparNXWlqqNltERNu2baPs7Gy12qwuWiPQTz75hFxdXWnDhg3UtWtX8vf3J3d3d7p06RJdvnyZ2rVrR2PHjlXaXpMmTejGjRtERDRx4kTy9PSkGzdu0MuXLyk6Opo6duxIEyZMUNoen8+vdJMLXv6vsixevJgsLS3p22+/pa+//ppMTExo8uTJXH56ejrxeDyl7cm5desWBQUFkYeHB1lZWZGVlRV5eHhQUFAQ3bp1SyVb6n5onjx5kv79918iIpJKpbR06VKysbEhPp9PjRs3phUrVpBMJlPJx8rQ1dWl27dvv7MddaA1ArW2tqaIiAgi+t/Nefr0aS7/0qVL1LhxY6XtCYVCSkpKIiIie3t7On/+vEL+9evXydraWml7jRs3Jl9fX/r777/p3LlzdO7cOTp79iwJBALatm0bl6YsDg4OdPToUW7//v375ODgQB9//DHJZLJq1aAnTpwgPT096tixIy1evJg2bdpEmzZtosWLF5OPjw8JhUL6888/lban7oemk5MTXbhwgYjKWzhmZmb03Xff0cmTJ2ndunVkaWlJK1euVNqeqalppRuPxyMTExNuvy7RGoHq6+tzgiIqfwrGxsZy+wkJCWRgYKC0PUdHRzp27BgREUkkEk78cm7evEnGxsZK23v+/DkFBARQ9+7d6cmTJ1y6jo6OyjUTEZFYLKbExESFtCdPnpCjoyONGjWKUlJSVBaou7s7LVy4sMr8xYsXk5ubm9L2auKh+ejRIyIicnV1pQMHDijkHzt2jBwcHJS2Z2hoSL6+vrR9+3Zu27ZtGwkEAlq+fDmXVpdojUBbt25NGzduJKLymsDIyIjWrl3L5W/evJlcXV2Vtvftt99Sy5Yt6f79+7R27Vry9vamBw8eEFG52Lt160aDBw9W2c9NmzaRjY0N7dmzh4iqL1CJRMK9I79KSkoKOTo6Uu/evVUWqEgkojt37lSZf+fOHRKJRErbU/dD09ramiIjI4mIyNLSknsFkXPv3j0Si8VK27t//z5Xi+fl5XHp1f2b1ARaI9Bdu3aRQCAgBwcHEgqF9Ntvv5GNjQ0NHTqUhg8fTnp6epyAlWXq1Kmkq6tLzs7OJBKJiM/nk56eHvH5fGrbtm21Ozpu3bpFrVu3phEjRlT7ZpgwYQJ98sknleY9efKEHBwcVBaos7OzwkPtddauXUtOTk5K21P3Q/Ozzz6j/v37U1lZGU2ePJkmTpyo8M45depU8vb2VtoeUXkH05w5c6h58+Z06dIlImICrTEuXbpEa9as4ZpVt27dojFjxlBgYGC1myq3b9+m1atX05QpU2jy5Mm0ePFiOn369Dt3RhQXF9OMGTPIw8ODEhISVD4+KSnpje+DKSkpKl/zgQMHSEdHh/z8/Gj9+vW0b98+2rdvH61fv54GDBhAenp6dPDgQaXtqfuhmZ2dTW3btiUHBwcaM2YMiUQisrOzo969e5NEIiETExP6559/VLpmOWfOnKGmTZvS/PnzSVdXV2MEymazMBS4fPky/u///g+RkZHc+LGVlRW8vb0xbdo0eHt7q2QvIiIC//zzD7y9veHj44Pbt29j5cqVKCwshJ+fH8aNG6eSvdLSUoSGhuLo0aNISEiATCaDtbU1OnXqhKCgIJVW2nid58+fY9KkSTh79iz++ecfODk5VduWutB6gS5ZsgTBwcFo1KhRtY4vKChAVFQU0tLSwOfz0axZM7Rp0+aNayGpQo8ePbBt2zbY2dlV6/i///4bly5dUvBvwIABaNGihVr8Y9QtWiPQypbgJCKYm5vj0qVL3HdZlF27RiaTYd68edi4cSOKi4s5ewDQtGlTbNiwAX5+fkr7d+TIkUrTBw0ahPXr13MrFA4YMEApe5mZmfDz88P169fB5/Mhk8ng6emJlJQUPH36FDNnzsTq1auV9u9NbN++HQMHDqz2OjxSqRQCgYDbv3r1KuevOiZHExFkMpnCOVTx7dGjR7C3twefz0dxcTH++OMPyGQydO/eHZaWlu/s3ztRZ41rNaPuQIC5c+dSy5Yt6ejRoxQeHk5dunShVatWUXx8PC1cuJCEQiGdOnVKaXuv+lHVpop/w4YNo4CAAMrJyaGioiL6/PPPuTHFM2fOkJmZGa1bt05pe2+iugP3SUlJ5OXlRQKBgPr160c5OTnUq1cv7nolEgndvXtXaXulpaX09ddfU5cuXWjRokVERLR69WrS19cnPT09Gjt2LBUXFyttLyYmhqytrYnP55OrqyslJyeTq6srGRgYkKGhIZmamtLVq1dVvm51ojUCVXcggLW1NTcoTlTeM2poaEhFRUVERLR06VKVegz79etHvr6+lJGRoZBe3R5DY2NjiouL4/bz8/NJV1eXCxf89ddfVepxJVL/wH1gYCB17dqVjh49SkOHDqVOnTpRt27d6MmTJ5Samkp9+/algIAApe0tWLCALC0taebMmeTi4kJTpkwhW1tb2rVrF+3YsYMaN25Mq1atUtpe3759afDgwRQbG0vTpk2jli1b0pAhQ6ikpIRKS0tp9OjR1KtXL6Xt1QRaI1B1BwIYGRnRw4cPuX2pVEo6Ojrc0MqtW7dIX19fJZvfffcd2draKkQAVdc/c3NzheMKCwuJz+fT8+fPiYjo4cOHJBQKVbKp7oF7c3NzunnzJhGV98DyeDy6ePEilx8VFUWWlpZK22vWrBn3292/f5/4fD7t27ePy9+/f79KwzampqZcy6CwsJAEAgFduXKFy4+LiyMzMzOl7dUEWiNQOeoKBPDx8aFvvvmG29+7dy81aNCA24+Nja1WGNjNmzfJxcWFJk+eTAUFBdX2b+DAgRQYGEj5+flUUlJC06dPV4ii+eeff8jKykolm+oeuDcyMuKGkOQPuOjoaIXzGRkZKW1PJBJRcnKywn58fDy3n5CQoJK9Bg0a0L1794iofPKBQCCgqKgoLj8+Pr7OQ/20brpZUFAQwsPDsWrVKowcObLadpYuXYply5ahQ4cO6Nq1K8aMGYPFixdz+X/++Sc8PT1Vtuvh4YHr16+Dx+PBw8Oj2t/3WLNmDaKjo9GgQQMYGBhg+/bt2Lx5M5cfHx+Pjz/+WCWbDg4OuHz5MqysrODh4YGIiIhq+SanVatW+OWXXwAAO3bsgJmZGfbt28fl7927F46OjkrbMzExQXZ2Nrffpk0bGBkZcfvFxcUq9a57eXlh1apVSElJwYoVKyCRSLBx40Yuf8OGDXB1dVXaXo1Qp4+HGuRdAwGIiKKjo+mrr76iWbNmKcSQqos//viDpk+fXuG9VFkKCgro9OnTdPToUXr69KlafVPHwP2ff/5JIpGI9PT0SCQS0fnz58nR0ZHat29PHTt2JIFAQPv371faXvfu3d/YxD5w4AB5eXkpbe/q1atkZmZGfD6fzM3NKS4ujjp06EBWVlZkY2NDYrG40nDK2kRrhlkY6kcdA/dJSUmIioqCl5cX7O3tkZGRgR9++AGFhYXw9fVF9+7dlbZ179496OrqQiKRVJq/Z88e6OjoYOjQoUrbLCgowJ07d+Dk5ARDQ0MUFRVh9+7dePnyJXr37l3nwQpaJ9CrV69WiILx8fFBu3bt1GbP29sb7du3V5vPQPnKDz/++CMWLVqkkfYYdUSd1t9qJCMjgzp37kw8Ho/s7Oyoffv21L59e7KzsyMej0edO3dWqSmZkZFBnTp1Upu9txEdHa3WFRDUbU+TKCsrU9j/559/6Pz581RSUqKyLZlMRgkJCdyqDMXFxbRv3z7asWOH2l8bqoPWCDQwMJC8vb0rnS51584d8vHxUWl6mLrtxcTEvHHbv3+/SoJStz0i9S+jom57qamp1KlTJxIIBNSlSxd68eIF+fr6coEPjo6OKq3QcOfOHbKzsyM+n08ODg6UkJBAXl5eZGBgQPr6+tSoUSOul7eu0BqBGhoaVpgf+CrXr18nQ0PDOrP3pkii6kQ6qdsekfqXUVG3vTFjxpCPjw8dOXKEhg0bRj4+PvTBBx/QkydP6NGjR9SpUycKDg5W2p6/vz8NGDCA/v33X5o+fTq1bNmS/P39qaSkhIqKisjPz49Gjx6ttL2aQGsEamZm9sZIobNnz6o06FwT9kJDQykpKanS7fjx4yoJSt32iNS/jIq67b06Yfv58+fE4/EUelnPnDlDzZo1U9req4EU+fn5FQIpIiIiqGnTpkrbqwm0RqCfffYZ2dnZUVhYmMLqeDk5ORQWFkb29vb0+eef15m9Pn360LJly6rMj46OVqk2Ubc9IvUvo6Jue68HKhgYGND9+/e5/UePHqm0ooJYLOaWUCEqbzXJV80gIkpOTlY5GkvdaI1Ai4qKaMqUKdyKByKRSGEVhKCgIC6O9l3s8Xi8atkLCwujX3/9tcr8Fy9eqBRGp257ROpfRkXd9po2baoQijd37lwutJGo/KHUqFEjpe01b95cocbctGkT5ebmcvtRUVEqR2OpG60bZsnNzUVUVJTCsIiXl1e1P5Gem5uL69evIyMjAwBgaWmJtm3bqvWT65rCxIkTQUQIDQ2tkJeSkoJu3bohISEBUqm0Tuz5+/ujR48emDZtWqX5P/zwA8LCwnDmzBml7E2ZMgVt27bFxIkTK81fuXIlLl68iOPHjytlrybQOoHWNHp6eoiJiUHLli3r2hW18+jRI9y5cwd9+/atND81NRXh4eFKr4Kgbntv4+rVq9DX11dbeF5iYiJEIhGsra3VYq86aJVAX758iaioKDRs2BAuLi4KeUVFRThw4ADGjh2rlK2ZM2dWmr5+/XqMHj0aZmZmAIDvvvtOKXs3btyAqakpFwXz66+/YsuWLUhOToadnR0+//xzDB8+XClbcjZu3IirV6/io48+wvDhw/Hrr79ixYoVkMlkGDRoEJYuXQodHR2VbDI0jLprXauXu3fvckEEfD6funTpQikpKVy+qj2GPB6PPDw8qFu3bgobj8ejdu3aUbdu3ah79+5K23N3d6fw8HAiItq6dSuJxWL64osvaPPmzTR9+nQyNDSsME74JpYtW0ZGRkYUGBhIVlZWtHLlSjIzM6NvvvmGQkJCyNzcnJvUrArFxcW0f/9+mj59Og0fPpyGDx9O06dPpwMHDqg0GfpVHj9+rDA7Rk5JSUmFBcGrg0QiqdZ45ePHjxWCES5cuEAjR46kzp0706hRo+jy5cvv7Nu7ojUCDQgIIF9fX3r69Cndv3+ffH19SSKRcL10qgp0xYoVJJFI6MyZMwrp77LQtHyNWE9PT/rpp58U8nfv3k0uLi5K22vevDn9/vvvRFTeOSIQCGjXrl1cflhYmEqLOBOVD4M0a9aMRCIRde3alYYOHUpDhw6lrl27kkgkIgcHB4Ve07eRmppK7dq1Iz6fTwKBgMaMGaMgVFX/JuvXr690EwgENH/+fG5fWdq3b88NAx0+fJj4fD4NGDCA5s6dSwMHDiRdXV2FYaK6QGsEamFhwX23g6g8hGvKlCnUtGlTevjwYbU+hXD16lVydHSkWbNmcWFk1RWomZkZXb9+nfP11XmRREQPHjx4pyECXV1dhRUWkpKSVJ5Q3qtXL/L396/0I045OTnk7+9Pffr0Udre2LFjqUOHDnTt2jUKDw8nLy8vatu2Lb148YKIVA9U4PF41KRJE7K3t1fYeDweNW7cmOzt7UkikShtz8DAgJvp1KFDhwqfjdiwYQN5enoqba8m0BqBGhkZVbpuTnBwMDVp0oQuXLhQrdjUvLw8Gjt2LLm7u1NsbGy1p16NHj2a+9jSkCFDaMGCBQr5ISEhKn1WQSKR0MmTJ4mofEV1Pp+v8CmE48ePk729vUo+isVihZXfX+fff/9V6SFiY2OjMCwij87x8PCg58+fq/zQ/PTTT8nDw6PC37m6D00TExOKiYkhovKHpvz/ch48eKDyQ07daI1A27VrRzt37qw0Lzg4mBo0aPBOweN79+4lS0tL4vP51boZUlJSyN7enrp06UIzZ84ksVhMnTt3pkmTJlGXLl1IT0+Pjh8/rrS9BQsWkLm5OU2cOJEkEgnNmzePmjZtSps3b6YtW7aQra0tzZgxQyUfra2t39ikO3LkiEofjDIwMKjwblhaWkoBAQHk7u5O//77r8p/k7CwMLK1taUNGzZwadUV6IABA2jevHlEVL4+0evN461bt1KLFi1UtqtOtEagISEh9OGHH1aZHxQUVK3P8b3K48eP6fDhw5Sfn1+t47Oysmju3Lnk4uLCTWS2s7OjkSNH0rVr11SyJZVKafny5dS/f38KCQkhmUxGe/fuJVtbWzIzM6OPP/5YZT8XLlxIpqam9N1331FMTAylp6dTeno6xcTE0HfffUcNGzakxYsXK23Pzc2t0pXo5SJt2rRptR6aT548oR49elC/fv0oLS2t2gK9ffs2mZmZ0dixY2nZsmVkaGhIo0ePpuXLl9PYsWNJKBTStm3bVLarTrRGoAz1sHLlSrK2tuZ6w+WB99bW1iqtmEdENGfOnCrfWUtLS2nAgAHVfmjKZDIKCQkhKysrEggE1f5Uw4MHD2j48OFkZGTETTbQ1dUlHx8fOnToULVsqhOtGgdlqI/ExESFaKyqVjF4E2VlZSgsLKwy6qqsrAwpKSnVXlUfAKKionDp0iWMHTsWpqam1bZDRMjMzIRMJkOjRo2gq6tbbVtqpY4fEIx6RHJyMo0fP57Zq0VYDcpQmpiYGLRp00bp2Flm791hcWAMjqq+HyMnISGB2atlWA3K4ODz+eDxeG9cq5fH4yldo7xv9moCrVu4mlF9rK2tERYWBplMVul248YNZq+WYQJlcHh5eSEqKqrK/LfVNu+7vZqAvYMyOL788ksUFBRUme/g4ICzZ88ye7UIewdlMDQY1sRlMDQYJlAGQ4NhAmUwNBgmUAZDg2ECZTA0GCbQekK3bt0wffr0unaDQ9P80VaYQN8jSkpK6toFhqrUxRQahmqMGzeOAChsDx48oE8++YTs7e1JJBKRo6MjrVu3rsJx/v7+9M0335C1tTW3RlFERAS1bt2ahEIheXl50aFDhwgA9yEhIqLY2Fjq168fGRgYkIWFBY0ePZpborIyf17/BgtDPTCB1gOys7PJ29ubJk2aRGlpaZSWlkZFRUW0aNEiunbtGiUkJNCuXbtIX1+f9u/fzx03btw4MjQ0pDFjxlBcXBzFxcVRTk4ONWzYkEaPHk23bt2iEydOkKOjo4JAs7KyyNzcnObPn0/x8fF048YN6t27N7cOcGX+vP5RXYZ6YKF+9QATExPo6elBX18fVlZWXPqSJUu4/0skEkRGRuLAgQMYOnQol25gYICff/4Zenp6AIAtW7aAx+Nh69atEIlEcHFxQUpKCiZNmsQds3HjRnh6eiIkJIRL++WXX2Bra4t79+7B0dGxUn8Y6ocJtB7zww8/4JdffkFycjJevnyJkpISeHh4KJRxc3PjxAkAd+/ehbu7O0QiEZfWvn17hWNiYmJw9uxZGBoaVjjnw4cP4ejoqN4LYVQJE2g9Zd++fZg9ezbWrl0Lb29vGBkZ4dtvv8WVK1cUyhkYGKhsOz8/H35+fli1alWFvLr8kND7CBNoPUFPT09h4nBERAR8fHzw2WefcWkPHz58qx0nJyfs2rULxcXFEAqFAIBr164plGnTpg1+//132NvbV/nxpdf9YdQMbJilnmBvb48rV64gKSkJz549Q4sWLXD9+nWcOnUK9+7dw8KFCysIrTJGjhwJmUyGyZMnIz4+HqdOncKaNWsAlM9/BIDg4GC8ePECI0aMwLVr1/Dw4UOcOnUK48eP50T5uj8ymazmLv49hgm0njB79mwIBAK4uLjA3Nwcffv2xaBBgzBs2DB06NABz58/V6hNq8LY2BhHjx5FdHQ0PDw88PXXX2PRokUAwL2X2tjYICIiAlKpFH369IGbmxumT5+OBg0agM/nV+pPcnJyzV38ewybD8rA7t27MX78eOTk5EAsFte1O4xXYO+g7yE7d+5Es2bN0LhxY8TExGDu3LkYOnQoE6cGwgT6HpKeno5FixYhPT0d1tbWGDJkCJYvX17XbjEqgTVxGQwNhnUSMRgaDBMog6HBMIEyGBoMEyiDocEwgTIYGgwTKIOhwTCBMhgaDBMog6HB/D8dRpejtRg8jAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "y='[READ].AverageLatency(us)'\n",
+ "plot_variation(df_groups, max_pod_count, y)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Plot Comparison"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Throughput"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOYAAADvCAYAAADmZahzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4h0lEQVR4nO2deVhU1f/H33f2GXAY9gEVwRQVQVQURM0lSTR+bZq7hVRqiVuWmblgi2Fafi01l3pc2lyo9JtKECloGZK4ghBuIG6AqTDsMDOf3x/E/XoFlUFwBjiv57mPc8/5nHM/93Lfnnt2jogIDAbDohCZ2wEGg1ETJkwGwwJhwmQwLBAmTAbDAmHCZDAsECZMBsMCYcJkMCwQJkwGwwJhwmQwLBAmzDqQkJAAjuPwww8/mNuVepGVlQWO4/DJJ5+Y25U6wXEcfzQVn2tj9uzZ/H1YW1ublLbFCvPOP/79joSEBHO72uSJjo7GkiVLTErz/PPP45tvvkFISEjjOFUPVq9eDRsbG1RWVtbJ/sUXX8Q333yDxx9/3ORrSUxO0Uz45ptvBOdff/014uLiaoR36dIF6enpj9K1Zkd0dDTWrl1rkji7deuGiRMnNp5T9WDfvn0YOnQopFJpnez9/Pzg5+eH3377DcePHzfpWi1WmHf/0Y8cOYK4uLhaX4aHFWZJSQlUKtVD5cEwLyUlJTh48CDWrVv3SK7XYj9l64PRaMTSpUvRpk0bKBQKDBkyBOfPnxfYDBo0CN7e3jh27BgGDBgAlUqFd999FwCQl5eHV155Bc7OzlAoFPD19cXWrVsF6avrs3d/QlfXE7ds2SIIj4qKgpeXFxQKBby9vbFr1y5MmjQJ7u7utd7Dxo0b8dhjj0Eul6N37944evSoIH7SpEmwtrbGxYsXERwcDCsrK7i6uuL999/HnROR6urnpEmTsHbtWgDC6kN9uXjxIkaNGgU7OzuoVCr06dMH+/btE9hU+7Zjxw68++670Gq1sLKywjPPPIPLly8LbM+dO4eRI0dCq9VCoVCgTZs2GDt2LAoKCgR2+/fvR3l5OYYPHw4AqKysxHvvvYeOHTtCoVDA3t4e/fv3R1xcXL3v7U5abIlZH5YtWwaRSIS33noLBQUFWL58OSZMmICkpCSB3c2bNzF8+HCMHTsWEydOhLOzM0pLSzFo0CCcP38e06dPh4eHB6KiojBp0iTk5+dj1qxZJvuzb98+jBkzBj4+PoiMjMTt27fxyiuvoHXr1rXaf//99ygsLMTUqVPBcRyWL1+OESNG4OLFi4LPM4PBgGHDhqFPnz5Yvnw5YmJiEBERAb1ej/fff98kH6dOnYpr167VWk0wldzcXPTt2xclJSWYOXMm7O3tsXXrVjzzzDP44Ycf8Pzzzwvsly5dCo7jMG/ePOTl5WHVqlUICgrCyZMnoVQqUVFRgeDgYJSXl2PGjBnQarW4evUq9u7di/z8fNjY2PB5RUdHw8/PD87OzgCAJUuWIDIyEq+++ir8/f2h0+mQnJyM48eP48knn3yo+wQAEIOIiMLDw+lejyM+Pp4AUJcuXai8vJwP/+yzzwgApaSk8GEDBw4kALR+/XpBHqtWrSIA9O233/JhFRUVFBgYSNbW1qTT6QTXio+PF6TPzMwkALR582Y+zMfHh9q0aUOFhYV8WEJCAgGgdu3a1Uhrb29Pt27d4sP/+9//EgDas2cPHxYaGkoAaMaMGXyY0WikkJAQkslkdOPGDZP9vN+zrQ0AFBERUSN89uzZBIB+//13PqywsJA8PDzI3d2dDAaDwLfWrVvzz5WIaOfOnQSAPvvsMyIiOnHiBAGgqKioB/rk5uYm8MnX15dCQkLqdD+hoaFkZWVVJ9tq2KesCYSFhUEmk/Hn1a1tFy9eFNjJ5XKEhYUJwqKjo6HVajFu3Dg+TCqVYubMmSgqKsLBgwdN8uXatWtISUnBSy+9JGiKHzhwIHx8fGpNM2bMGNja2j7QfwCYPn06/5vjOEyfPh0VFRX47bffTPKzIYmOjoa/vz/69+/Ph1lbW2PKlCnIyspCWlqawP6ll15Cq1at+PMXXngBLi4uiI6OBgC+RIyNjUVJSck9r5uamors7GxBC7FGo8GZM2dw7ty5Brm3u2HCNAE3NzfBefVLfvv2bUF469atBQIGgEuXLqFjx44QiYSPvEuXLny8KVTbd+jQoUZcbWFA3f0XiURo3769IMzT0xNAVR3SXFy6dAmdOnWqEX6vZ9ixY0fBOcdx6NChA38PHh4emDNnDr766is4ODggODgYa9eurVG/3LdvH5ydndGrVy8+7P3330d+fj48PT3h4+ODuXPn4vTp0w1xmwCYME1CLBbXGk53rc6iVCrrfY17NYwYDIZ651lNXf2vC43p56Pk008/xenTp/Huu++itLQUM2fORNeuXXHlyhXeJjo6GsOGDRPc84ABA3DhwgVs2rQJ3t7e+Oqrr9CzZ0989dVXDeIXE+Yjol27djh37hyMRqMg/O+//+bjgf+VYvn5+QK7u0uDavu7W4XvFWYKRqOxxuft2bNnAYBv7a2rn8C9RWwq7dq1Q0ZGRo3wu59hNXd/ZhIRzp8/X6PF2sfHBwsXLsShQ4fw+++/4+rVq1i/fj2Aqvv7888/ax3oYGdnh7CwMGzbtg2XL19Gt27dTB5IcS+YMB8RTz31FHJycrBjxw4+TK/XY/Xq1bC2tsbAgQMBVL1cYrEYhw4dEqT/4osvBOeurq7w9vbG119/jaKiIj784MGDSElJeWh/16xZw/8mIqxZswZSqRRDhgwxyU8AsLKyAlBTxKby1FNP4a+//kJiYiIfVlxcjI0bN8Ld3R1eXl4C+6+//hqFhYX8+Q8//IDr16/zXR46nQ56vV6QxsfHByKRCOXl5QCAX3/9FQAwdOhQgd3NmzcF59bW1ujQoQOf7mFh3SWPiClTpmDDhg2YNGkSjh07Bnd3d/zwww84fPgwVq1axTdS2NjYYNSoUVi9ejU4jsNjjz2GvXv3Ii8vr0aeH330EZ599ln069cPYWFhuH37NtasWQNvb2+BWE1FoVAgJiYGoaGhCAgIwC+//IJ9+/bh3XffhaOjo8l++vn5AQBmzpyJ4OBgiMVijB071mS/3nnnHWzbtg3Dhw/HzJkzYWdnh61btyIzMxM//vhjjfq7nZ0d+vfvj7CwMOTm5mLVqlXo0KEDJk+eDAA4cOAApk+fjlGjRsHT0xN6vR7ffPMNxGIxRo4cCaCqftm/f39B1wkAeHl5YdCgQfDz84OdnR2Sk5Pxww8/CBrNHgqT2nCbMXXpLrm7Wb22roGBAwdS165da80nNzeXwsLCyMHBgWQyGfn4+AjSVnPjxg0aOXIkqVQqsrW1palTp1JqamqNaxERbd++nTp37kxyuZy8vb3p559/ppEjR1Lnzp1r+LlixYoa18JdXRPVTfsXLlygoUOHkkqlImdnZ4qIiOC7I0z1U6/X04wZM8jR0ZE4jntg18ndPt3JhQsX6IUXXiCNRkMKhYL8/f1p7969Apvqv9e2bdto/vz55OTkREqlkkJCQujSpUu83cWLF+nll1+mxx57jBQKBdnZ2dHgwYPpt99+I6KqbiInJydavnx5DT8+/PBD8vf3J41GQ0qlkjp37kxLly6lioqKGrb16S5hwmyG+Pr6UlBQUL3S1uclamgA0Ny5c+nGjRtUUlJicvp7/UdqKklJSQSAzpw5U6/0RUVFdOPGDRo7dizrx2xJVFZW1qgjJSQk4NSpUxg0aJB5nGogVqxYAUdHR344n7n46KOPatRd68qCBQvg6OiI7du3m5yW1TGbMFevXkVQUBAmTpwIV1dX/P3331i/fj20Wi1ee+01c7tXb+4cb1rdf2oO/P394e/vX+/006ZNw//93/8BACQS06TGhNmEsbW1hZ+fH7766ivcuHEDVlZWCAkJwbJly2Bvb29u9+pNUFCQuV1oEDw9Pev9HwtHxPYuYTAsDVbHZDAsECZMBsMCadF1TKPRiGvXrqFVq1YNNmyMwagNIkJhYSFcXV1rDISojRYtzGvXrqFt27bmdoPRgrh8+TLatGnzQLsWLczqYXCXL1+GWq02szeM5oxOp0Pbtm0F80Pvi6mjGa5cuUITJkwgOzs7UigU5O3tTUePHuXjjUYjLVq0iLRaLSkUChoyZAidPXtWkMfNmzdp/Pjx1KpVK7KxsaGXX35ZMAufiOjUqVPUv39/ksvl1KZNG/r4449r+LJz507q1KkTPxxt3759Jt1LQUEBAaCCggKT0jU39Ho9xcfHU3x8POn1enO70ywx9V0zSZi3bt2idu3a0aRJkygpKYkuXrxIsbGxdP78ed5m2bJlZGNjQ7t376ZTp07RM888Qx4eHlRaWsrbDBs2jHx9fenIkSP0+++/U4cOHWjcuHGCm3B2dqYJEyZQamoqbdu2jZRKJW3YsIG3OXz4MInFYlq+fDmlpaXRwoULSSqVCpb5eBBMmFUUFRURAAJARUVF5nanWdKowpw3bx7179//nvFGo5G0Wq1gsHR+fj7J5XLatm0bERGlpaURAEEp+8svvxDHcXT16lUiIvriiy/I1tZWsL7OvHnzqFOnTvz56NGja6y5EhAQQFOnTq3z/TBhVsGE2fiY+q6Z1F3y888/o1evXhg1ahScnJzQo0cPfPnll3x8ZmYmcnJyBCM3bGxsEBAQwM+hS0xMhEajESzTEBQUBJFIxK82l5iYiAEDBgiW5wgODkZGRga/DEZiYmKNESLBwcGCuXp3U15eDp1OJzgYjAbDUAmU13+63Z2YJMyLFy9i3bp16NixI2JjY/H6669j5syZ/NqoOTk5AMAv8VeNs7MzH5eTkwMnJydBvEQigZ2dncCmtjzuvMa9bKrjayMyMhI2Njb8wVpkGfWisgzISQFSfgAOLAV2vAisDQCWugB//KdBLmFSq6zRaESvXr3w0UcfAQB69OiB1NRUrF+/HqGhoQ3iUGMyf/58zJkzhz+vbiljMGqlvBD45yxwI+OO428g/xJAxtrT3LrQIJc2SZguLi41psB06dIFP/74IwBAq9UCqFqY18XFhbfJzc1F9+7deZu7Z7nr9XrcunWLT6/VapGbmyuwqT5/kE11fG3I5XLI5fI63SvDRCpKgILLQH521Yubn131WaewAZQaQKH591+bO35rALkaqEOHO1DVSd8oA0FKblWJ7p8MoQh1V+6dRmEDOHYGHDsBDp3+91td+2LbpmKSMPv161djMaSzZ8/yiyB5eHhAq9Vi//79vBB1Oh2SkpLw+uuvAwACAwORn5+PY8eO8UtOHDhwAEajEQEBAbzNggULUFlZya8QHhcXh06dOvGLQAUGBmL//v2YPXs270tcXBwCAwNNfASMOlFZ+q/o7hDenUfxjXplS5wIRpkalVI1yiStUCJuhUJYo4BUuGVU4R+9EjkVClwvV+BmpRQSzgAFZ4BcZIAM//7LVR1yTg8ZZ4AUBsg5AySoOpdBDylngBT6f4+qOCuUwFV/BWrD7Xv7Z+UEzrFTlegcOwMOnlX/WjsBjThazCRhvvHGG+jbty8++ugjjB49Gn/99Rc2btyIjRs3AqhaDW327Nn48MMP0bFjR3h4eGDRokVwdXXFc889B6CqhB02bBgmT56M9evXo7KyEtOnT8fYsWPh6uoKABg/fjzee+89vPLKK5g3bx5SU1Px2Wef4T//+d/3+6xZszBw4EB8+umnCAkJwfbt25GcnMz7wqg7UqkUy5ctA0puQpp1CCi5Vovwaq7lczdGqTUq1W1RbtUGpVatUSK2hr44H1RyG1xZPsQVOsj0Oij1hbCiIihQAY6MEJfnQ1yeDwUAzb0y5wDI7hFX3ab8EFwle5w3tsY5ao3z1BrnjFX/FpRZo1WRBLZ5MthayWCnksLW6jrsVDerzq1ksFVV/WtnJYWjtQI2qrrtBnY/TJ72tXfvXsyfPx/nzp3jF8ytXtwIqPrciIiIwMaNG5Gfn4/+/fvjiy++EMxLu3XrFqZPn449e/ZAJBJh5MiR+PzzzwUrip8+fRrh4eE4evQoHBwcMGPGDMybN0/gS1RUFBYuXIisrCx07NgRy5cvx1NPPVXne9HpdLCxsUFBQUHLHvlTcgu69UOh1t1/VfFiKHEFTrhCjrhsdMBlowOukGPVOTlABytUKahuyFEBNYrhqiiHm7ICrvIyaGVlcJSWwl5UCo2oGK2oCFbGIigMhZAaSkEiCUgkg1EkBYkkMIqk/G8DJwVxEhhEUhg5KQycBEaRBHpOCiMnqSorOQkMnAR6ToJyyHBd0hpZnCtyy2S4XVyBWyUVVf8WV+B2SQWMJgp+ZM82+HS0b41wU9+1Fj0fkwkTgEGPmxv+D/Z5iSglGbLImRfbFbpTeI73FZ5UzEEmFkEuFUMuEUEuEUEpk8DBWgYHazkcrGWwt5bD3koGh1ZyOFjJ4dCqqqSRS2pfiNrcGI0EXVklL9JbxZW1irfq3yq7Mb3b4t2nutTIy9R3rUWPlWUAJdELoMn5E4euibHd9S0EDhsFhUwKe6kYrhIRHpeIIJOIIJdUCU4hrfot+1d81b/FouY3O0ck4qBRyaBR3esbuiYNVc6xErMFl5h0aju4XVNRXEGwjqxaGLmoqIhfoJnRcJj6rrGJ0i2Vaydg+O9MAMBGw9NmdoZxN0yYLZGiG9B/Px4SYzn2G3pANvhtc3vEuAsmzJaGoRIUFQpJ0TVcMLrg+9YL8VK/x8ztFeMuWONPSyN2AbhLh1FISrwhmot1Y/tBJLrH8DKG2WAlZkvixLfAXxsAAHMqX8fLzw5Da0399/JkNB5MmC2FK8mgvW8AAP5TORIy76fxbHdXMzvFuBfsU7YlUJgL7JgIzlCBXw1+2KEai5jnvPkB4VKpFBEREfxvhvlhwmzu6CuAnS8Bhddxztgacypfx7qXegg6zWUyWYPthMxoGNinbHMnZh5w+QgKocKUyjl4oa8XHu/oaG6vGA+AlZjNmeTNQPImGMFhRkU4RA4d8M7wzjXMjEYj0tPTAVTN/qnLgsSMxoUJs7mSnQREzwUAfFI5Cn+gJ3aP7QGFtOaA8dLSUnh7ewNgQ/IsBfZfY3NEdx3Y+SJgrEQs9cEXhmfxxpOe8G5tY27PGHWECbO5oS8HdkwEinKRLXHHG+VT4NfODlMHtDe3ZwwTYMJsThAB++YAV5NRJlFjYvEscDIrrBztC4mY/ambEqyO2Zw4+hVw4lsQJ8LrZeHIJmd8/LQX2tmzOmNTg/032lzIOgzEvAMA+Eoeini9D4K6OGN0L7Y8Z1OECbM5UHClahCBUY8zdk9iaX4QHKxlWDbSh+372URhn7JNncpSYPsEoOQfFNl64YXr4wFwWDaiGxys67aGrlQqxVtvvcX/ZpgfJsymDBGw9w3g+kkYlXZ4qXgmSkmOcf5tEeTl/OD0/yKTybBixYpGdJRhKuxTtimTtB44tQ3gxFjnsBDHdWq0s1dhYYjXg9MyLBomzKbKxYNA7AIAQKr3XKw4p4WIA1aO7g4ruWkfQkajEVlZWcjKyoLRyCZNWwLsU7YpUvwP8EMYQAaUdhmFCSk9AegxfXAH+LWzNTm70tJSeHh4AGBD8iwFVmI2RRKqtjMgJy+E615CQZke3drYYMaQjub2jNFAMGE2NW6cBZI3AQBi276BAxcKoZCK8J8x3SFlo3uaDewv2dSIWwyQAUXtnsSspFYAgHef6oLHHK0fkJDRlGDCbEpkHgLO/gLixHirYATK9UYM8HTEi33amdszRgPDhNlUMBr/1wrrMhIxOTbQqKRY8UI3NrqnGcKE2VQ4vR3IOQ2jrBUmZwcBABaFeMFZrTCzY4zGgHWXNAUqSoD9HwAAtitGI0dnjf4dHDCiZwNtKy6RYNq0afxvhvlhf4WmQOIaoPAaipWueC/vcSikIix93rvBPmHlcjnWrl3bIHkxGgb2KWvpFOYAf6wCALxfNhrlkGF2kCebY9nMYcK0dOKXApXFyFJ0wY7S3vByUePV/h4Negkiwo0bN3Djxo0G23iV8XCwT1lLJvdM1X4jAOYUjIGI47BspE+DLxNSUlICJycnAGxInqXASkxL5teFABlxQBSI4+SJsH4e6NZGY26vGI8AJkxL5dxvwIUDMHASLCkdjdYaJeY86WlurxiPCPYpa4kY9FWlJYDNlUORTc7Y/Ly3ydO5GE2Xhyoxly1bBo7jMHv2bD6srKwM4eHhsLe3h7W1NUaOHInc3FxBuuzsbISEhEClUsHJyQlz586FXq8X2CQkJKBnz56Qy+Xo0KEDtmzZUuP6a9euhbu7OxQKBQICAvDXX389zO1YDie+AW6kQ8e1wuf65/CMrysGd3Iyt1eMR0i9hXn06FFs2LAB3bp1E4S/8cYb2LNnD6KionDw4EFcu3YNI0aM4OMNBgNCQkJQUVGBP//8E1u3bsWWLVuwePFi3iYzMxMhISEYPHgwTp48idmzZ+PVV19FbGwsb7Njxw7MmTMHEREROH78OHx9fREcHIy8vLz63pJlUF5Y1RIL4D8Vz4FT2mLx02xFghYH1YPCwkLq2LEjxcXF0cCBA2nWrFlERJSfn09SqZSioqJ42/T0dAJAiYmJREQUHR1NIpGIcnJyeJt169aRWq2m8vJyIiJ6++23qWvXroJrjhkzhoKDg/lzf39/Cg8P588NBgO5urpSZGRkne+joKCAAFBBQUHdb76x+e19ogg1ZS72pA7zdtOOo9mNfsmioiICQACoqKio0a/XEjH1XatXiRkeHo6QkBAEBQUJwo8dO4bKykpBeOfOneHm5obExEQAQGJiInx8fODs/L/FooKDg6HT6XDmzBne5u68g4OD+TwqKipw7NgxgY1IJEJQUBBvUxvl5eXQ6XSCw6IouAJKXAMAiKwch17tnTHKr02jX1YikSA0NBShoaFsSJ6FYPJfYfv27Th+/DiOHj1aIy4nJwcymQwajUYQ7uzsjJycHN7mTlFWx1fH3c9Gp9OhtLQUt2/fhsFgqNXm77//vqfvkZGReO+99+p2o+Zg/wfg9GVIMnZGvMgfsSMezbqwcrm81jo8w3yYVGJevnwZs2bNwnfffQeFounNapg/fz4KCgr44/Lly+Z26X9cO1E1gwTAh5UTMWuIJzwcWEd/S8UkYR47dgx5eXno2bMnJBIJJBIJDh48iM8//xwSiQTOzs6oqKhAfn6+IF1ubi60Wi0AQKvV1milrT5/kI1arYZSqYSDgwPEYnGtNtV51IZcLodarRYcFgEREFvVPbLL0A+Vzr6Y8gh35yIiFBcXo7i4mA3JsxBMEuaQIUOQkpKCkydP8kevXr0wYcIE/rdUKsX+/fv5NBkZGcjOzkZgYCAAIDAwECkpKYLW07i4OKjVanh5efE2d+ZRbVOdh0wmg5+fn8DGaDRi//79vE2TIiMauPQHykiKT/RjEDnC55Gu31NSUgJra2tYW1ujpKTkkV2XcR8etrXpzlZZIqLXXnuN3Nzc6MCBA5ScnEyBgYEUGBjIx+v1evL29qahQ4fSyZMnKSYmhhwdHWn+/Pm8zcWLF0mlUtHcuXMpPT2d1q5dS2KxmGJiYnib7du3k1wupy1btlBaWhpNmTKFNBqNoLX3QVhEq6y+ggyf9SSKUNOaBRMp4r+pj9wF1irb+Jj6rjW4MEtLS2natGlka2tLKpWKnn/+ebp+/bogTVZWFg0fPpyUSiU5ODjQm2++SZWVlQKb+Ph46t69O8lkMmrfvj1t3ry5xrVXr15Nbm5uJJPJyN/fn44cOWKS7xYhzCPriSLUlLe4DQ1Z+jMVllU+OE0Dw4TZ+Jj6rnFELbdSodPpYGNjg4KCAvPUN0vzoV/VHZLy21hQ+TKemPgOhnSp+54jDUVxcTGsratW2WOzSxoHU981NojdjBgPrYCk/DbOGltD5zXeLKJkWCZMmObidhboyAYAwCrRi1j0jI+ZHWJYEkyYZqIkehHEVInfDd4YMHw8nFo1vX5hRuPBxl+ZAcpOgurczzAShz3O0/Cxv5tZ/RGLxXjhhRf43wzzw4T5qCHC7V1zYQfgRxqI18Y8a/YFmxUKBaKioszqA0MI+5R9xBQdj4Ld7VMoITkK+8xDe7bnCKMWmDAfJfpylMdUzTv9QTESE4f2MbNDDEuFCfMRkhW9EvaV15FDtvAZtRAyiWU8/uLiYnAcB47jUFxcbG53GGDCfGSUFeTB/vjnAIDEdq+jR4eG2d6A0TxhwnxEpG5bgFYowVnOHUFjZ5nbHYaFw4T5CLh07jR8r/8IANA9vgStVKzPknF/mDAfATl7PoCUMyBF6Y9eTzxvbncYTQAmzEYmK+MUehXEAQCshy0yszeMpgITZiOTu28pxBzhtKoPPHwHmNsdRhOBjfxpRLLOnoZfQRzAAdZDF5jbnXsiFovx1FNP8b8Z5ocJsxHJ3fsh3DkjTqsC0K275ZaWCoUC+/btM7cbjDtgn7KNxKVz/5aWAKyGLjSzN4ymBisxG4mcPR+iHWdEiioAPhZcWt4Lg8GAyspKc7vRZJBKpQ1aDWDCbAQunUvh65ZWFly3rKa4uJjfuDY3NxeFhYU1liBlPBiNRgOtVtsgs4WYMBuBnL3/lpbKAPh0H2hud+pE9bKVN2/e5HeYVqlUZp+S1hQgIpSUlPBLsrq4uDx0nkyYDcylcynwy/8V4ABVEygt78TKygpFRUXQarWwt7c3tztNCqVSCQDIy8uDk5PTQ3/WssafBiZn74eQcEakKP3xWI+mUVpWUy1GlUplZk+aJtXPrSHq5kyYDUjWudSq0hJNr7QEwH+2ss/X+tGQz40JswHJFZSWg8ztDqMJw4TZQFw6nwq//Kodr5tiacmoguM47N6929xusMafhoLvt1T6w6fHIHO7YxIikQgDBw6Ek5MT+4y1EJgwG4Ds6tKyCbbEAlUtigkJCSgrK0NmZqa53WGAfco2CNf3VNctezfbuuWgQYMwc+ZMvP3227Czs4NWq8WSJUv4+KysLHAch5MnT/Jh+fn54DgOCQkJAICEhARwHIfY2Fj06NEDSqUSTzzxBPLy8vDLL7+gS5cuUKvVGD9+/H23A9yyZQs0Gg12796Njh07QqFQIDg4uMZGxOvWrcNjjz0GmUyGTp064ZtvvhHEnzt3DgMGDIBCoYCXlxfi4uIE8RUVFZg+fTpcXFygUCjQrl07REZG1u8BmggT5kOSff4MX7dUPtn0SktT2Lp1K6ysrJCUlITly5fj/fffr/Ey14UlS5ZgzZo1+PPPP3H58mWMHj0aq1atwvfff499+/bh119/xerVq++bR0lJCZYuXYqvv/4ahw8fRn5+PsaOHcvH79q1C7NmzcKbb76J1NRUTJ06FWFhYYiPjwdQtZ/qiBEjIJPJkJSUhPXr12PevHmCa3z++ef4+eefsXPnTmRkZOC7776Du7u7yfdbLxpz6zFLpyG24TuycixRhJpOLxvSgJ49WoqKisjBwYG6d+9OqampVFpaWsNm4MCB1L9/f0FY7969ad68eURElJmZSQDoxIkTfPzt27cJAMXHxxNR1daKAOi3337jbSIjIwkAXbhwgQ+bOnUqBQcH39PfzZs3EwDBtovp6ekEgJKSkoiIqG/fvjR58mRBulGjRtFTTz1FRESxsbEkkUjo6tWrfPwvv/xCAGjXrl1ERDRjxgx64oknyGg03tOXOyktLaW0tLRan5+p7xorMR+CyxfS4JcfAwBQPvmumb15OP755x/cvn37vjbdunUTnLu4uAh2Bq8rd+bj7OwMlUqF9u3bC8IelK9EIkHv3r35886dO0Oj0SA9PR0AkJ6ejn79+gnS9OvXTxDftm1buLq68vF370Y+adIknDx5Ep06dcLMmTPx66+/mnin9YcJ8yG4tucDvm7ZoecT5nan0ZFKpYJzjuNgNBoBVLXsAlXjRqu51wiYO/PhOO6++ZqTnj17IjMzEx988AFKS0sxevRofo+XxoYJs55cuZAGv9vNo7RsCBwdHQEA169f58PubAhqaPR6PZKTk/nzjIwM5Ofno0uXLgCALl264PDhw4I0hw8fhpeXFx9/+fJlgb9HjhypcR21Wo0xY8bgyy+/xI4dO/Djjz/i1q1bjXFLAlh3ST25uudDtOGMSFH0gk8LKC0fhFKpRJ8+fbBs2TJ4eHggLy8PCxc23gRxqVSKGTNm4PPPP4dEIsH06dPRp08f+Pv7AwDmzp2L0aNHo0ePHggKCsKePXvw008/4bfffgMABAUFwdPTE6GhoVixYgV0Oh0WLBA23q1cuRIuLi7o0aMHRCIRoqKioNVqodFoGu2+qmElZj24ciENPf8tLRVBrLSsZtOmTdDr9fDz88Ps2bPx4YcfNtq1VCoV5s2bh/Hjx6Nfv36wtrbGjh07+PjnnnsOn332GT755BN07doVGzZswObNmzFo0CAAVZ/eu3btQmlpKfz9/fHqq69i6dKlgmu0atUKy5cvR69evdC7d29kZWUhOjqa/2xvVOrURNRMqW+r7JH/jKtqiY18opE8e7QUFRURAGrXrt09W2Utic2bN5ONjY253ahBQ7bKsk9ZE+FLSw6QN5PSUiQSoVevXnB2dmZD8iwEJkwTqapbGpCq8IN3ryHmdqdBUCqVOHr0KBuSZ0GwOqYJXL2YztctZc2ktGyKTJo0qdmvSWSSMCMjI9G7d2+0atUKTk5OeO6555CRkSGwKSsrQ3h4OOzt7WFtbY2RI0ciNzdXYJOdnY2QkBCoVCo4OTlh7ty50Ov1ApuEhAT07NkTcrkcHTp0wJYtW2r4s3btWri7u0OhUCAgIAB//fWXKbdjMld+/rBqDxKFHzx7BTXqtRgtG5OEefDgQYSHh+PIkSOIi4tDZWUlhg4dKtjs9I033sCePXsQFRWFgwcP4tq1axgxYgQfbzAYEBISgoqKCvz555/YunUrtmzZgsWLF/M2mZmZCAkJweDBg3Hy5EnMnj0br776KmJjY3mbHTt2YM6cOYiIiMDx48fh6+uL4ODgeo1EqQtVpeUvAAD5kOZVWpaUlMDd3R1DhgyxiI59Bh6uVTYvL48A0MGDB4mIKD8/n6RSKUVFRfE21WMYExMTiYgoOjqaRCIR5eTk8Dbr1q0jtVpN5eXlRET09ttvU9euXQXXGjNmjGD8pL+/P4WHh/PnBoOBXF1dKTIy8p7+lpWVUUFBAX9cvny5zi1lR1aN/7cldvADbZsaTa1V1lKxmLGyBQUFAAA7OzsAwLFjx1BZWYmgoP995nXu3Blubm5ITEwEACQmJsLHxwfOzs68TXBwMHQ6Hc6cOcPb3JlHtU11HhUVFTh27JjARiQSISgoiLepjcjISNjY2PBH27Zt63SfVzMz0PNWVWkpa2alJcMyqbcwjUYjZs+ejX79+sHb2xsAkJOTA5lMVmNkhLOzM3JycnibO0VZHV8ddz8bnU6H0tJS/PPPPzAYDLXaVOdRG/Pnz0dBQQF/3D1/715c+blqf8tURU906s3qlozGp97dJeHh4UhNTcUff/zRkP40KnK5HHK53KQ0VaVlNMABUlZaMh4R9Soxp0+fjr179yI+Ph5t2rThw7VaLSoqKmo0Zefm5kKr1fI2d7fSVp8/yEatVkOpVMLBwQFisbhWm+o8Gorq0jJF0ROdej/ZoHkzGPfCJGESEaZPn45du3bhwIED8PDwEMT7+flBKpVi//79fFhGRgays7P5uW6BgYFISUkRtJ7GxcVBrVbzI/8DAwMFeVTbVOchk8ng5+cnsDEajdi/f3+NOXUPw7Wsf0tLANInWGnZHDh06BCefvppuLq6WsyKeLViSqvT66+/TjY2NpSQkEDXr1/nj5KSEt7mtddeIzc3Nzpw4AAlJydTYGAgBQYG8vF6vZ68vb1p6NChdPLkSYqJiSFHR0eaP38+b3Px4kVSqVQ0d+5cSk9Pp7Vr15JYLKaYmBjeZvv27SSXy2nLli2UlpZGU6ZMIY1GI2jtfRAPaik78tlEogg1pXw00ISn1PQoLi4mLy8vGjJkSLNvlY2OjqYFCxbQTz/9JFitoCFoyFZZk4QJoNZj8+bNAuemTZtGtra2pFKp6Pnnn6fr168L8snKyqLhw4eTUqkkBwcHevPNN6myslJgEx8fT927dyeZTEbt27cXXKOa1atXk5ubG8lkMvL39xcsNVEX7vewrmb+TRWLbYki1JSeFFNL6ubH/V6sB2E0Gqm4vNIsR12X/rgbSxYm96+DLRKdTgcbGxsUFBRArVYL4pI+fxEBt35GqrwHvOcnmMfBR0z1WFkPDw8oFAqT0pZU6OG1OPbBho1A2vvBUMlMb8fkOA67du3Cc8891yB+3O/53e9dqw02VrYWrmVloOfNqq3PJU/MN7M3jJYIm11SC9nRn8KVM1SVlgHB5nan0SkpKUHv3r3h4uKCzz77rF55KKVipL1vnmellDbcTs6WAhNmLfiGfoqk3W2g6dTvwcbNACJCWlqaYMyzqXAcV6/PSUbtsCdZC0qrVgiYsPjBhgxGI8GEyWhRFBUV4fz58/x5ZmYmTp48CTs7O7i5uZnRMyFMmIwWRXJyMgYPHsyfz5kzBwAQGhpa65xfc8GEyWhRDBo0CE2hh5B1lzAYFggTJgMcx6Fdu3Zo3bq1uV1h/Av7lGVApVIhKyuLrZJnQbASk8GwQJgwGQwLhAmTgdLSUvTu3RsvvPBCk2ixbAmwOiYDRqMRycnJaNeuHROmhcBKTAbDAmHCZDAsECZMBsMCYcJktCgMBgMWLVoEDw8PKJVKPPbYY/jggw8srm7NGn8YLYqPP/4Y69atw9atW9G1a1ckJycjLCwMNjY2mDlzprnd42HCZAAAHBwcYGtrW/8MiIDKkoZzyBSkKqCOG+7++eefePbZZxESEgIAcHd3x7Zt2xp9pzhTYcJkwMrKCjdu3Hi4IXmVJcBHrg3rWF159xogs6qTad++fbFx40acPXsWnp6eOHXqFP744w+sXLmykZ00DSZMRovinXfegU6nQ+fOnSEWi2EwGLB06VJMmDDB3K4JYMJkNAxSVVXJZa5r15GdO3fiu+++w/fff4+uXbvy+6+6uroiNDS0EZ00DSZMBkpLSzF8+HA4OTlhyZIl9cuE4+r8OWlO5s6di3feeQdjx44FAPj4+ODSpUuIjIxkwmRYFkajEQcPHmwRQ/JKSkogEgl7CcViscXtpM2EyWhRPP3001i6dCnc3NzQtWtXnDhxAitXrsTLL79sbtcEMGEyWhSrV6/GokWLMG3aNOTl5cHV1RVTp07F4sWWtVwpEyajRdGqVSusWrUKq1atMrcr94UNyWMwLBAmTAbDAmHCZACoWpBLqVSa2w3Gv7A6JgNWVlYoLi5mq+RZEKzEZNSgufdlNhYN+dyYMBk8UqkUQFUnPMN0qp9b9XN8GNinLANlZWUYOXIkAGD9+vXIy8sDUFXv5Oo4naolQ0QoKSlBXl4eNBoNxOKH30iXCZMBg8GA6OhoAICtrS0kEgkvTkbd0Wg00Gq1DZIXEyZDAMdxcHFxgZOTEyorK83tTpNBKpU2SElZDRMmo1bEYnGDvmgM02jyjT9r166Fu7s7FAoFAgICLG6JCAajPjRpYe7YsQNz5sxBREQEjh8/Dl9fXwQHB7P6EaPJ06SFuXLlSkyePBlhYWHw8vLC+vXroVKpsGnTJnO7xmA8FE22jllRUYFjx45h/vz5fJhIJEJQUBASExNrTVNeXo7y8nL+vKCgAACg0+ka11kLp7i4mP+t0+lgMBjM6E3zpPodq+sghCYrzH/++QcGgwHOzs6CcGdnZ/z999+1pomMjMR7771XI7xt27aN4mNTxNXVTCvdtRAKCwthY2PzQLsmK8z6MH/+fMyZM4c/NxqNuHXrFuzt7ZtkR7pOp0Pbtm1x+fJlqNVqc7vzSGiq90xEKCwsrPN/fE1WmA4ODhCLxcjNzRWE5+bm3rOTVy6XQy6XC8I0Gk1jufjIUKvVTeolbQia4j3XpaSspsk2/shkMvj5+WH//v18mNFoxP79+xEYGGhGzxiMh6fJlpgAMGfOHISGhqJXr17w9/fHqlWrUFxcjLCwMHO7xmA8FE1amGPGjMGNGzewePFi5OTkoHv37oiJianRINRckcvliIiIqPF53pxpKffMEZt8x2BYHE22jslgNGeYMBkMC4QJk8GwQJgwGQwLhAnzEbJkyRJwHCc4OnfuzMeXlZUhPDwc9vb2sLa2xsiRI2sMoMjOzkZISAhUKhWcnJwwd+5c6PV6gU1CQgJ69uwJuVyODh06YMuWLTV8aczpcocOHcLTTz8NV1dXcByH3bt3C+KJCIsXL4aLiwuUSiWCgoJw7tw5gc2tW7cwYcIEqNVqaDQavPLKKygqKhLYnD59Go8//jgUCgXatm2L5cuX1/AlKioKnTt3hkKhgI+PD79Sgym+mAViPDIiIiKoa9eudP36df64ceMGH//aa69R27Ztaf/+/ZScnEx9+vShvn378vF6vZ68vb0pKCiITpw4QdHR0eTg4EDz58/nbS5evEgqlYrmzJlDaWlptHr1ahKLxRQTE8PbbN++nWQyGW3atInOnDlDkydPJo1GQ7m5uQ1yn9HR0bRgwQL66aefCADt2rVLEL9s2TKysbGh3bt306lTp+iZZ54hDw8PKi0t5W2GDRtGvr6+dOTIEfr999+pQ4cONG7cOD6+oKCAnJ2dacKECZSamkrbtm0jpVJJGzZs4G0OHz5MYrGYli9fTmlpabRw4UKSSqWUkpJiki/mgAnzERIREUG+vr61xuXn55NUKqWoqCg+LD09nQBQYmIiEVW98CKRiHJycnibdevWkVqtpvLyciIievvtt6lr166CvMeMGUPBwcH8ub+/P4WHh/PnBoOBXF1dKTIy8qHv8W7uFqbRaCStVksrVqzgw/Lz80kul9O2bduIiCgtLY0A0NGjR3mbX375hTiOo6tXrxIR0RdffEG2trb8fRMRzZs3jzp16sSfjx49mkJCQgT+BAQE0NSpU+vsi7lgn7KPmHPnzsHV1RXt27fHhAkTkJ2dDQA4duwYKisrERQUxNt27twZbm5u/DS2xMRE+Pj4CAZQBAcHQ6fT4cyZM7zNnXlU21TnUT1d7k6bB02Xa0gyMzORk5MjuL6NjQ0CAgIE96nRaNCrVy/eJigoCCKRCElJSbzNgAEDIJPJeJvg4GBkZGTg9u3bvM39nkVdfDEXTJiPkICAAGzZsgUxMTFYt24dMjMz8fjjj6OwsBA5OTmQyWQ1BtU7OzsjJycHAJCTk1PrNLfquPvZ6HQ6lJaW3ne6XHUejUn1Ne53/ZycHDg5OQniJRIJ7OzsGuRZ3Bn/IF/MRZMektfUGD58OP+7W7duCAgIQLt27bBz5062bwhDACsxzYhGo4GnpyfOnz8PrVaLiooK5OfnC2zunMam1WprneZWHXc/G7VaDaVSWa/pcg1J9TXud32tVltj3Sa9Xo9bt241yLO4M/5BvpgLJkwzUlRUhAsXLsDFxQV+fn6QSqWCaWwZGRnIzs7mp7EFBgYiJSVF8NLGxcVBrVbDy8uLt7kzj2qb6jzMPV3Ow8MDWq1WcH2dToekpCTBfebn5+PYsWO8zYEDB2A0GhEQEMDbHDp0SLD2bVxcHDp16gRbW1ve5n7Poi6+mA2zNj21MN58801KSEigzMxMOnz4MAUFBZGDgwPl5eURUVV3iZubGx04cICSk5MpMDCQAgMD+fTV3SVDhw6lkydPUkxMDDk6OtbaXTJ37lxKT0+ntWvX1tpdIpfLacuWLZSWlkZTpkwhjUYjaO19GAoLC+nEiRN04sQJAkArV66kEydO0KVLl4ioqotCo9HQf//7Xzp9+jQ9++yztXaX9OjRg5KSkuiPP/6gjh07CrpL8vPzydnZmV588UVKTU2l7du3k0qlqtFdIpFI6JNPPqH09HSKiIiotbvkQb6YAybMR8iYMWPIxcWFZDIZtW7dmsaMGUPnz5/n40tLS2natGlka2tLKpWKnn/+ebp+/bogj6ysLBo+fDgplUpycHCgN998kyorKwU28fHx1L17d5LJZNS+fXvavHlzDV9Wr15Nbm5uJJPJyN/fn44cOdJg9xkfH08AahyhoaFEVNVNsWjRInJ2dia5XE5DhgyhjIwMQR43b96kcePGkbW1NanVagoLC6PCwkKBzalTp6h///4kl8updevWtGzZshq+7Ny5kzw9PUkmk1HXrl1p3759gvi6+GIO2LQvBsMCYXVMBsMCYcJkMCwQJkwGwwJhwmQwLBAmTAbDAmHCZDAsECZMBsMCYcJkMCwQJkwGwwJhwmwBDBo0CLNnzza3GzyW5o8lwoTJqBMVFRXmdqFlYe7BuozGJTQ0tMZg8vPnz9PLL79M7u7upFAoyNPTk1atWlUj3bPPPksffvghubi4kLu7OxFVzdjw9fUluVxOfn5+tGvXLgJAJ06c4NOmpKTQsGHDyMrKipycnGjixIn8omO1+ZOZmfmoHkeTgQmzmZOfn0+BgYE0efJkfmW+srIyWrx4MR09epQuXrxI3377LalUKtqxYwefLjQ0lKytrflpVampqVRQUEB2dnY0ceJEOnPmDEVHR5Onp6dAmLdv3+anoqWnp9Px48fpySefpMGDB9/TH71eb45HY9GwpUWaOTY2NpDJZFCpVIJZ+Xduee/h4YHExETs3LkTo0eP5sOtrKzw1Vdf8QterV+/HhzH4csvv4RCoYCXlxeuXr2KyZMn82nWrFmDHj164KOPPuLDNm3ahLZt2+Ls2bPw9PSs1R+GECbMFsratWuxadMmZGdno7S0FBUVFejevbvAxsfHR7AKXUZGBrp16waFQsGH+fv7C9KcOnUK8fHxsLa2rnHNCxcuwNPTs2FvpJnChNkC2b59O9566y18+umnCAwMRKtWrbBixQp+achqrKysTM67qKgITz/9ND7++OMacS4uLvX2uaXBhNkCkMlkMBgM/Pnhw4fRt29fTJs2jQ+7cOHCA/Pp1KkTvv32W5SXl/Mbxx49elRg07NnT/z4449wd3eHRFL763W3P4yasO6SFoC7uzuSkpKQlZWFf/75Bx07dkRycjJiY2Nx9uxZLFq0qIbAamP8+PEwGo2YMmUK0tPTERsbi08++QQAwHEcACA8PBy3bt3CuHHjcPToUVy4cAGxsbEICwvjxXi3P0ajsfFuvonChNkCeOuttyAWi+Hl5QVHR0cEBwdjxIgRGDNmDAICAnDz5k1B6Xkv1Go19uzZg5MnT6J79+5YsGABFi9eDAB8vdPV1RWHDx+GwWDA0KFD4ePjg9mzZ0Oj0UAkEtXqT/Vq9Iz/wdb8YTwU3333HcLCwlBQUMAWrW5AWB2TYRJff/012rdvj9atW+PUqVOYN28eRo8ezUTZwDBhMkwiJycHixcvRk5ODlxcXDBq1CgsXbrU3G41O9inLINhgbDGHwbDAmHCZDAsECZMBsMCYcJkMCwQJkwGwwJhwmQwLBAmTAbDAmHCZDAskP8HnPLXKtfyfugAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "column = \"pods\"\n",
+ "x = \"target\"\n",
+ "y = \"[OVERALL].Throughput(ops/sec)\"\n",
+ "title = \"Throughput [ops/s]\"\n",
+ "plot_comparison(df_aggregated, x, y, column, title, peak_benchmark)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### UPDATE"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAN0AAADvCAYAAAB2dtG8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5VUlEQVR4nO2deVxUVf/HPzMDM8OwDfsAsgmCIohLgriXJKLt7loh+qilZGb5mFZCPpmGPf40Na2n1NLU1LJFURMTNVRSUxFQFAQxk0UQhn2Z+f7+GLlyZZHBgWE579frvrj3LPd+7zCfueee8z3nKyAiAoPBaDWE+jaAwehsMNExGK0MEx2D0cow0TEYrQwTHYPRyjDRMRitDBMdg9HKMNExGK0MEx2D0cp0etHFxsZCIBBg7969+jalWWRkZEAgEODTTz/VtylNQiAQcFt7sbk+5s+fz92HiYmJVnU7pOhq/2Mb22JjY/VtarsnOjoakZGRWtV58cUXsW3bNowZM6ZljGoG69atg7m5OaqqqppU/pVXXsG2bdswZMgQra9loHWNdsC2bdt4x99++y2OHDlSJ71Hjx64cuVKa5rW4YiOjsaGDRu0El6vXr3w8ssvt5xRzeDAgQMYOXIkDA0Nm1S+X79+6NevH2JiYvDXX39pda0OKbqH/6FnzpzBkSNH6v1HP67oSktLIZPJHuscDP1SWlqK48ePY+PGja1yvQ7ZvGwOarUay5cvR5cuXSCVSjFixAikpqbyygwfPhw+Pj44f/48hg4dCplMhiVLlgAAcnJyMGPGDNjZ2UEqlcLPzw/ffPMNr37N++PDzdqa97KtW7fy0vfs2QNvb29IpVL4+Phg3759mDZtGlxdXeu9hy+//BLu7u6QSCTo378/zp49y8ufNm0aTExMcOPGDQQHB8PY2BgODg5YtmwZak82aaqd06ZNw4YNGwDwm/TN5caNGxg/fjwsLS0hk8kwYMAAHDhwgFemxrbvv/8eS5YsgUKhgLGxMZ577jncunWLV/b69esYO3YsFAoFpFIpunTpgkmTJqGwsJBX7ujRo6ioqEBISAgAoKqqCh9++CG6desGqVQKKysrDB48GEeOHGn2vdWmQz7pmsPKlSshFArxzjvvoLCwEFFRUZg6dSri4+N55fLy8hASEoJJkybh5Zdfhp2dHcrKyjB8+HCkpqYiPDwcbm5u2LNnD6ZNm4aCggK8+eabWttz4MABTJw4Eb6+vlixYgXu3buHGTNmwNHRsd7yO3bsQFFREWbPng2BQICoqCi89NJLuHHjBq/JpFKpMGrUKAwYMABRUVE4dOgQIiIiUF1djWXLlmll4+zZs/HPP//U23TXluzsbAwcOBClpaWYN28erKys8M033+C5557D3r178eKLL/LKL1++HAKBAIsWLUJOTg7WrFmDoKAgXLx4EUZGRqisrERwcDAqKirwxhtvQKFQ4Pbt29i/fz8KCgpgbm7OnSs6Ohr9+vWDnZ0dACAyMhIrVqzAv/71L/j7+0OpVOLcuXP466+/8PTTTz/WfQIAqBMwd+5cauhWjx07RgCoR48eVFFRwaWvXbuWANDly5e5tGHDhhEA2rRpE+8ca9asIQC0fft2Lq2yspICAwPJxMSElEol71rHjh3j1U9PTycAtGXLFi7N19eXunTpQkVFRVxabGwsASAXF5c6da2srCg/P59L//nnnwkA/frrr1xaaGgoAaA33niDS1Or1TRmzBgSi8WUm5urtZ2Nfbb1AYAiIiLqpM+fP58A0MmTJ7m0oqIicnNzI1dXV1KpVDzbHB0duc+ViGj37t0EgNauXUtERBcuXCAAtGfPnkfa5OzszLPJz8+PxowZ06T7CQ0NJWNj4yaVrYE1L+8TFhYGsVjMHdf0St24cYNXTiKRICwsjJcWHR0NhUKByZMnc2mGhoaYN28eiouLcfz4ca1s+eeff3D58mW8+uqrvO7oYcOGwdfXt946EydOhIWFxSPtB4Dw8HBuXyAQIDw8HJWVlYiJidHKTl0SHR0Nf39/DB48mEszMTHBrFmzkJGRgeTkZF75V199FaamptzxuHHjYG9vj+joaADgnmSHDx9GaWlpg9dNTExEZmYmrydVLpcjKSkJ169f18m9PQwT3X2cnZ15xzVf4Hv37vHSHR0deeIEgJs3b6Jbt24QCvkfZ48ePbh8bagp7+HhUSevvjSg6fYLhUJ07dqVl+bp6QlA886mL27evAkvL6866Q19ht26deMdCwQCeHh4cPfg5uaGBQsW4KuvvoK1tTWCg4OxYcOGOu9zBw4cgJ2dHZ544gkubdmyZSgoKICnpyd8fX2xcOFCJCQk6OI2ATDRcYhEonrT6aHVLIyMjJp9jYY6GVQqVbPPWUNT7W8KLWlna/Lf//4XCQkJWLJkCcrKyjBv3jz07NkTf//9N1cmOjoao0aN4t3z0KFDkZaWhs2bN8PHxwdfffUV+vbti6+++kondjHR6QAXFxdcv34darWal3716lUuH3jw9CkoKOCVe/hXvKb8w72nDaVpg1qtrtPkvHbtGgBwvaJNtRNoWKDa4uLigpSUlDrpD3+GNTzc9CMipKam1unZ9fX1xfvvv48TJ07g5MmTuH37NjZt2gRAc3+nTp2qd5De0tISYWFh2LlzJ27duoVevXpp7QTQEEx0OmD06NHIysrC999/z6VVV1dj3bp1MDExwbBhwwBovjgikQgnTpzg1f/88895xw4ODvDx8cG3336L4uJiLv348eO4fPnyY9u7fv16bp+IsH79ehgaGmLEiBFa2QkAxsbGAOoKVFtGjx6NP//8E6dPn+bSSkpK8OWXX8LV1RXe3t688t9++y2Kioq447179+LOnTtct79SqUR1dTWvjq+vL4RCISoqKgAAv/32GwBg5MiRvHJ5eXm8YxMTE3h4eHD1Hhc2ZKADZs2ahS+++ALTpk3D+fPn4erqir179yIuLg5r1qzhXvjNzc0xfvx4rFu3DgKBAO7u7ti/fz9ycnLqnPPjjz/G888/j0GDBiEsLAz37t3D+vXr4ePjwxOitkilUhw6dAihoaEICAjAwYMHceDAASxZsgQ2NjZa29mvXz8AwLx58xAcHAyRSIRJkyZpbde7776LnTt3IiQkBPPmzYOlpSW++eYbpKen44cffqjzvmxpaYnBgwcjLCwM2dnZWLNmDTw8PDBz5kwAwO+//47w8HCMHz8enp6eqK6uxrZt2yASiTB27FgAmve5wYMH84YPAMDb2xvDhw9Hv379YGlpiXPnzmHv3r28DqjHQqu+znZKU4YMHu5arq97fNiwYdSzZ896z5OdnU1hYWFkbW1NYrGYfH19eXVryM3NpbFjx5JMJiMLCwuaPXs2JSYm1rkWEdGuXbuoe/fuJJFIyMfHh3755RcaO3Ysde/evY6dq1atqnMtPNQ9X9O9nZaWRiNHjiSZTEZ2dnYUERHBdclra2d1dTW98cYbZGNjQwKB4JHDBw/bVJu0tDQaN24cyeVykkql5O/vT/v37+eVqfl/7dy5kxYvXky2trZkZGREY8aMoZs3b3Llbty4QdOnTyd3d3eSSqVkaWlJTz75JMXExBCRZqjE1taWoqKi6tjx0Ucfkb+/P8nlcjIyMqLu3bvT8uXLqbKysk7Z5gwZdArRdST8/PwoKCioWXWb8wXRNQBo4cKFlJubS6WlpVrXb+hHUlvi4+MJACUlJTWrfnFxMeXm5tKkSZPYOF1Hoaqqqs47SWxsLC5duoThw4frxygdsWrVKtjY2HAuZPri448/rvOu2FTee+892NjYYNeuXVrXZe90bZTbt28jKCgIL7/8MhwcHHD16lVs2rQJCoUCr732mr7Naza1/Rdrxgf1gb+/P/z9/Ztdf86cOXjmmWcAAAYG2smIia6NYmFhgX79+uGrr75Cbm4ujI2NMWbMGKxcuRJWVlb6Nq/ZBAUF6dsEneDp6dnsHw0BEYtlwGC0JuydjsFoZZjoGIxWpsO+06nVavzzzz8wNTXVmasSg1EfRISioiI4ODjUGcSvjw4run/++QdOTk76NoPRibh16xa6dOnyyHIdVnQ1rle3bt2CmZmZnq1hdGSUSiWcnJx48/sao8OKrqZJaWZm1qlFp1KpcPLkSQCaia0NTQFiPD5NfY3psKJjaCgvL8eTTz4JACguLuZmBTD0B+u9ZDBaGSY6BqOVYc1LRpMor1LhXMY9xKXdxanUu8jIK4W/myVG+yowoocdzKRNWxmZwUTHaIBqlRoJtwtxKvUu4lLzcD7zHiqr+ctRHEnOxpHkbBiKBBjsYY0QX3uM9LaDXCZu4KwMgImuc3H2a8DcCpCYAhITQGzK7ZPYGCn3gFM3CnAq7S7ib+SjqII/tcjOTIJB7tYY6GENN2tjHL+Wi4OX7+B6TjGOpeTiWEoulggFCHS3QoiPPUb2tIO1iURPN9t26bAOz0qlEubm5igsLOzUQwYlJSXc2pnFi01hLG68W7uUJCiGEYpJinKhEURSc8hMzSGXW8LEzAICiQkgMQPEMkBoCAiFyCmuQsI/Jbh0uxi3CiqgghAqCEECIbramaOvqzX6uljDwsQIEIoAgQgQGtzfF97fN9D8ABjJAbEJ0I68iLT9rrEnXQfHMP86ooIkgEAEdfdnkF2iRFlRAVRlSohVpTAWlMEEZRALNMvryQQVkKECtjXf+fL7W27D17AFEHR/w8Mty/z7mzaBbYQGgNT8/ibXCFEq1xzXt28kf1BWaq4RcxuGia6DI776IxYOkiDOcAB8k6fy8kRCAXo7yTHI3QqD3EzR284AkuoSoLIYqCgCKoqByqJa+zXpRUBlCaCuBkgFqNW19lX399WoqKxEYUk5lKXlKK+sgggqiKCGCGrIDABjsQAyA8AAakBdBZQrNX/V1UBpnmZrDhIzwMgC6PkCMOQdQNq2WjpMdB0ZtQpI2AMA+LZkAACgu8IUgzysMcjDCv5uVjCRtNxXQALNU9AWwJ3CMhxOzEJ0YhbOZuSDKgHcX+28p4MZRvVUwK+LOTwsRVAYlkNYUQiUFwBlBUB57f37xzX7tfOr7p+wQqnZ4tYCF3cCQZGA32SgCc7IjUFEOnGeZ+90HZkbsVBtfQ7H/xFjRvW7OLn6NXSx1C5Ub0uQU1SO35KycSgxC6dv5EGl5n8FZWIRutoYw93G5MFmawxXK2NIDRtpOlZX3BdgIZCdBBxdBuSnafIc+gIhUYBT/warExEKy6pwK78MmfmluHWvVPP3/uYgN8KOmQPq1NP2u8ZE15HZ9zpKzn4HkxWaRVnbohtYfkkljiRnITYlF9dzipFxtwTV6vq/kkIB4GQpuy/E+6K01YjS0rieYYrqSiB+I3B8laaZDEDlOxGZff+NjEozTkwaYZXhVn5pnR7b2tiZSRC/pO5yE0x09+n0oqssBT7thpLiojYtuoepUqlxK78UabklSMstRmpOMfe3qLxhQVjIDOFh++DJ6GIlg7K8Gpn5pSjMuYVhf2/EU2WaRZFKSIL11S/ia1UIKlF3UN/WVAInSxmcLWVwsjCCk6WM2xzldWNZMNHdp9OLLmEP8OO/cKXCBt4rNU2s9iC6hiAi3C2uRFpucS0xliAtpxi3C8qadI5egjREGn6DvkJNPIgcAwccc52PMten4WxtDGdLGbpYyBpvwtYDGzJgaEjQrMf4i2oAgDT92qIDBAIBbEwlsDGVYEBX/mpopZXVSL9b8kCIucW4mVcCcyNDTkjOljI4WQ6Cs8UsUOo+CGIiYVv8Dyam/hugpwCvlYCNXevcjLYr2x4/fpyeeeYZsre3JwC0b98+Xr5araYPPviAFAoFSaVSGjFiBF27do1XJi8vj6ZMmUKmpqZkbm5O06dP50UcJSK6dOkSDR48mCQSCXXp0oU++eQTrewsLCwkAFRYWKjtLbZ/lFlEkXKiCDMatGADASAAVFxcrG/L2g7lSqIjEUTLrIkizIgiLYiiFxGV3tP6VNp+17TuQy0pKYGfn1+Dq/NGRUXhs88+w6ZNmxAfHw9jY2MEBwejvLycKzN16lQkJSXhyJEj2L9/P06cOIFZs2Zx+UqlEiNHjoSLiwvOnz+PVatWITIyEl9++aW25nZOEvcCpEaS0AuZ1Eq/3u0NialmKGHOGcBrjGaMMX4jsK4vcG6LZrilpdBa1rXAQ086tVpNCoWCF8yioKCAJBIJ7dy5k4iIkpOTCQCdPXuWK3Pw4EESCAR0+/ZtIiL6/PPPycLCghcDfNGiReTl5dVk2zr1k27jIKIIM3pvyZvk+vYP7EnXFFKPEq3rr3nqRZgRbRxMlBHXpKot/qRrjPT0dGRlZfFW8TU3N0dAQAAXd+z06dOQy+W8cLNBQUEQCoWIj4/nygwdOpQXZjg4OBgpKSl1wvnWUFFRAaVSyds6JdnJQNZlqAQG2K8agL6uVoiIiEBERAQMDdn0mwZxfwp4PQ4YtRKQmANZCcCWEGDvdKDw70fX1wKdii4rKwsAYGfHb9LY2dlxeVlZWbC1teXlGxgYwNLSklemvnPUvsbDrFixAubm5tzWaVcCu9+BkmAUgAKY4qmejoiMjERkZGSdWOmMhxAZAgNeB+b9BfQLAyAAEn8A1j0BxH4CVDWtl/RRdJiZ44sXL0ZhYSG33bp1S98mtT613L62FgcAAIZ52ujTovaJsTXw7Bpg9gnAeSBQXQbEfgxs8Nd4uzwmOhWdQqEAAGRnZ/PSs7OzuTyFQlEnomd1dTXy8/N5Zeo7R+1rPIxEIuFW/uq0K4BlnASK/kGV2BwHK/1gbSJBdzsTJCUlISkpqU5MdMYjsO8FhEUD4zYDZl2ALv01sxgeE52Kzs3NDQqFAkePHuXSlEol4uPjERgYCAAIDAxEQUEBzp8/z5X5/fffoVarERAQwJU5ceIEqqqquDJHjhyBl5cXF4SeUQ+XNDHPL5s/hUoYYqinNSoqyuHj4wMfHx+UlemmedSpEAgAn7FA+FkgZJVOTqm16IqLi3Hx4kVcvHgRgKbz5OLFi8jMzIRAIMD8+fPx0Ucf4ZdffsHly5fx6quvwsHBAS+88AIAoEePHhg1ahRmzpyJP//8E3FxcQgPD8ekSZPg4OAAAJgyZQrEYjFmzJiBpKQkfP/991i7di0WLFigk5vukFSWAld+AQBsK9U45Q73sm2sBkMbxDLAWEchyrTtWa0JP/vwFhoaSkQPBsft7OxIIpHQiBEjKCUlhXeOvLw8mjx5MpmYmJCZmRmFhYU1Ojju6OhIK1eu1MrOTjdkcGk3UYQZVa32JZdFv5Lbu/spv7iCiouL2ZBBC6Ptd435XnYUto8FUmOQ6PEankkcij7OcuybM4i/XEM79r1sy2j7XeswvZedmqJsIO13AMDuyoEAWK9lW4aJriNw3+1L7dgf+25KAbD3ubYME11H4JJmQDyzy7MoqqiGhcwQvo6P37XNaBnY1J72Ts4VjcuS0BC/VA8AcBdDPW0gEmrW8jA0NMQ777zD7TP0DxNde+f+Uw7dRuJweiUAYLjXg/c5sViMVat0M77E0A2sedmeUauByxq3r0LPl5D0j8bJe0g31onSlmGia89knASUtwGpOWKq+wAAenUx5y1lrlarkZGRgYyMDOYG1kZgzcv2TILG7Qs9X8SxNI0j7sNDBWVlZXBzcwPAxunaCuxJ116pLAWSfwYAVPtMwMnrdwHw3+cYbRMmuvZKSrRmmXO5Cy4JeqCwrApmUgP4dZHr2zLGI2Cia69c2qn56zcJx69ponsM8bSBgYj9S9s67D/UHqnl9oVeEznRMdev9gETXXvkvtsXuvRHnqQLEm5rOlGGM9G1C5jo2iM1A+K9JuLk9bsgAnrYm8HWTKpfuxhNgg0ZtDdquX3BZyxif7kJoOFeSwMDA8yZM4fbZ+gf9l9ob9Ry+1JLLXDiumbZi4aalhKJpMGFgRn6gTUv2xO13L7gNxGXbxciv6QSphID9HVha8e0F5jo2hO13L7gOQqxKZpey0Ee1jBsYKiAiJCbm4vc3Fx00EUC2h2sedmeqOX2BQMJjl/TLGU4rBEvlNLSUm5xX+YG1jZgT7r2Qi23L/SahILSSly8VQCAjc+1N5jo2gu13L7gPAAnr9+FmgBPOxM41BMdlNF2YaJrL9Qam4NAwL3PsbVQ2h86F52rqysEAkGdbe7cuQCA4cOH18l77bXXeOfIzMzEmDFjIJPJYGtri4ULF6K6uuF40x2e4pwHbl9+k6BWE3P9asfovCPl7NmzUKkeBNRLTEzE008/jfHjx3NpM2fOxLJly7hjmUzG7atUKowZMwYKhQKnTp3CnTt38Oqrr8LQ0BAff/yxrs1tH1zeqwla6PgEYOWO5NuFuFtcAZlYhCdc2VBBe0PnorOx4f/yrly5Eu7u7hg2bBiXJpPJGgwE8ttvvyE5ORkxMTGws7ND79698Z///AeLFi3qvOGe7oe/gt8kAOCecgPdrSAx0C4oPUP/tOg7XWVlJbZv347p06dDIBBw6d999x2sra3h4+ODxYsXo7S0lMs7ffo0fH19efHpgoODoVQqkZSU1OC1OmxQyJyrwJ1LgNAA6PkSAOD4/fe5YU14nzMwMEBoaChCQ0OZG1gboUX/Cz/99BMKCgowbdo0Lm3KlClwcXGBg4MDEhISsGjRIqSkpODHH38E0LyAkIAmKOSHH36o+5vQNwkP3L5gbIXCsiqcz9REo23KrAKJRIKtW7e2oIEMbWlR0X399dcICQnhovEAwKxZs7h9X19f2NvbY8SIEUhLS4O7u3uzr7V48WJeVB+lUtn+o7Gq1UDCbs1+r4kAgFOpd6FSE7raGMPJUtZIZUZbpcVEd/PmTcTExHBPsIaoiUmXmpoKd3d3KBQK/Pnnn7wyjwoICWh+0SUSSYP57ZIaty+Jxu0LwIOhAs+mDRUQEdd8l8lkvGY+Qz+02Dvdli1bYGtrizFjxjRaribOnb29PQBNQMjLly/zorUeOXIEZmZm8Pb2bilz2yac29cLgKEURLWGCpq4AFFpaSlMTExgYmLCe3dm6I8WedKp1Wps2bKlzst7WloaduzYgdGjR8PKygoJCQl46623MHToUPTq1QsAMHLkSHh7e+OVV15BVFQUsrKy8P7772Pu3Lkd70nWGLXdvu73WqZkFyFLWQ6poRABbpZ6NI7xOLSI6GJiYpCZmYnp06fz0sViMWJiYrBmzRqUlJTAyckJY8eOxfvvv8+VEYlE2L9/P15//XUEBgbC2NgYoaGhvHG9TgHn9uUMOGkiq9b0Wg7oagWpIRsqaK+0iOhGjhxZ7zQSJycnHD9+/JH1XVxcEB0d3RKmtR9qu30JNW8BD97nmBdKe4b5XrZFart99dI0LYsrqnHuZj6Apo3PMdouTHRtkdpuX9YeADRDBVUqgouVDG7WbE5ce4aJrq1RXgic+1qzf78DBQBimYNzh4H5BbUlqsqBnVOAvFTA2BbwGQtAM9Z2nJvKo53oRCIRxo0bx+0z9A8TXVtBVQ3snQ7c/AOQmAEv7wVkmmGBtNxi3C4og1gkxICuVlqdViqVYs+ePS1hMaOZsOZlW4AI2P8mkHIAEEmAyTsBez8uu6bXMqCrJWRi9jvZ3mGiawvERAIXtgMCITBuM+A6mJfNJqx2LJjo9M2pdUDcGs3+s58BPZ7hZZdWViP+hmaooDmx50pKSrgZ+iUlJY9rLUMHMNHpk4s7gN/ue+MERQJ9X6lT5MyNPFSq1HCUG8HdxqR17WO0CEx0+iLlIPBzuGY/MBwYNL/eYg8mrNqwGQIdBCY6fXDzFLBnmmYA3G8y8PR/gAYEVTM+x1y/Og5MdK1NViKwYxJQXa6ZI/fcOs638mHS75bgZl4pDEUCDPSwbmVDGS0FE11rkp8ObH8JqCgEnAOBcVsAkWGDxY+naOYUPuFiCRMJGyroKDDRtRbFOcC2F4HibMC2JzB5FyBufLmFWC0nrDLaB+znszUoL9Q84e6la+bHvfIjYCRvvEqVCmdu5AFo3lBBDSKRCKNHj+b2GfqHia6lqfGnzLoMGNsAr/wEmDa81ksN8en5KK9SQ2EmhZedabMvL5VKceDAgWbXZ+ge1rxsSVTVwA8zavlT/gBYNW3FM26owJMNFXQ02JOupSAC9s8Hru7X+FNO2sHzp3wUsU2IPddcVCoVqqqqdH7ejoqhoaFOm+ZMdC1FTCRwYdsDf0q3IU2ueiu/FDdySyASCjDoMYcKSkpKuKCQ2dnZKCoqQkFBwWOdszMil8uhUCh00upgomsJeP6Ua+v4Uz6Kml7Lfs4WMDdqeEihqdQsvZeXl8dFZmVrYDaNmnVDa5aErFkq8nFgotM1F3c+8KccEQH0fVWr6kSE35I0y8frsmlpbGyM4uJiKBQKWFlpNyevs2NkpAm6mZOTA1tb28duarKOFF2SchD4WROHD4HhwOC3tKpeVF6F17afx8nrdwEAI3robgGiGqHVDkvGaDo1n5su3oV1LrrIyMg6QR+7d+/O5ZeXl2Pu3LmwsrKCiYkJxo4dyy2bXkOLBoVUq4DiXM1irvUsE9hsbp5usj9lfVzPLsLz6+NwOCkbYpEQK1/yRXeFmc7Mq2lKsiZl89Dl59YizcuePXsiJibmwUVqrfL81ltv4cCBA9izZw/Mzc0RHh6Ol156CXFxcQBaIShkQSbwWe/7BwJAbKLxDBEbazZD4wf7vM0EMJQ92BfX2q9QArunafwpuwU36k9ZHwcS7mDh3ksorVTB3lyKjS/3Q28n+ePfK6NN0iKiMzAwqDfYR2FhIb7++mvs2LEDTz31FABNzIMePXrgzJkzGDBgQMsHhawqq3VAQGWRZtMFTgOA8Vsb9aesTbVKjU8OXcX/TqYD0AR5XDe5D6xMOtHy8a2MQCDAvn378MILL+jNhhYR3fXr1+Hg4ACpVIrAwECsWLECzs7OOH/+PKqqqhAUFMSV7d69O5ydnXH69GkMGDCgwaCQr7/+OpKSktCnT596r1lRUYGKigruuMGgkHbewNJ8oKpU08SsLAYqS+4f399/eGs0rwSoKAYc+wFj//dIf8oacosqEL7jL8Sna2aFzx7WFQtHesFApNsWv1AoxLBhw2Bra8ualm0EnYsuICAAW7duhZeXF+7cuYMPP/wQQ4YMQWJiIrKysiAWiyGXy3l17OzsuICPrRIUUigCJKaaDXaPLK5r/sq8hznb/0KWshzGYhE+He+HEN/H74quDyMjI8TGxqK8vBzp6ektcg2Gdui8IyUkJATjx49Hr169EBwcjOjoaBQUFGD37t26vhSPxYsXo7CwkNtu3brVotdrDkSEbWduYuIXp5GlLIe7jTF+Dh/cYoLThuHDh2PevHn497//DUtLSygUCkRGRnL5GRkZEAgEXGgzACgoKIBAIEBsbCwAIDY2FgKBAIcPH0afPn1gZGSEp556Cjk5OTh48CB69OgBMzMzTJkypdGwXVu3boVcLsdPP/2Ebt26QSqVIjg4uM7/dOPGjXB3d4dYLIaXlxe2bdvGy79+/TqGDh0KqVQKb29vHDlyhJdfWVmJ8PBw2NvbQyqVwsXFBStWrGjeB6gFLT5kIJfL4enpidTUVCgUClRWVtbxiMjOzubeARUKRZ3ezKYGhTQzM+NtbYnyKhXe2ZOAD35KRJWKEOKjwM/hg+Fh23bWPfnmm29gbGyM+Ph4REVFYdmyZXW+qE0hMjIS69evx6lTp3Dr1i1MmDABa9aswY4dO3DgwAH89ttvWLduXaPnKC0txfLly/Htt98iLi4OBQUFmDTpwYrX+/btw5tvvom3334biYmJmD17NsLCwnDs2DEAmnBtL730EsRiMeLj47Fp0yYsWrSId43PPvsMv/zyC3bv3o2UlBR89913cHV11fp+tYZamKKiIrKwsKC1a9dSQUEBGRoa0t69e7n8q1evEgA6ffo0ERFFR0eTUCik7OxsrswXX3xBZmZmVF5e3uTrFhYWEgAqLCzU3c00k8y8EgpZc4JcFu0nt3f30xfHU0mtVrfKtYuLi8na2pp69+5NiYmJVFZWVm+5YcOG0eDBg3lp/fv3p0WLFhERUXp6OgGgCxcucPn37t0jAHTs2DEiIjp27BgBoJiYGK7MihUrCAClpaVxabNnz6bg4OAGbd6yZQsBoDNnznBpV65cIQAUHx9PREQDBw6kmTNn8uqNHz+eRo8eTUREhw8fJgMDA7p9+zaXf/DgQQJA+/btIyKiN954g5566qkm/S/KysooOTm53s9P2++azp9077zzDo4fP46MjAycOnUKL774IkQiESZPngxzc3PMmDEDCxYswLFjx3D+/HmEhYUhMDAQAwZoYrDVDgp56dIlHD58uF0HhYxNycEz6/5A8h0lrIzF2P6vAMwa6t6qnRp3797FvXv3HlmuJjBnDfb29ryIuE2l9nns7Owgk8nQtWtXXtqjzmtgYID+/ftzx927d4dcLseVK1cAAFeuXMGgQYN4dQYNGsTLd3Jy4sW7DwwM5JWfNm0aLl68CC8vL8ybNw+//fablnfaPHTekfL3339j8uTJyMvLg42NDQYPHowzZ87Axkbj0vR///d/EAqFGDt2LCoqKhAcHIzPP/+cq99RgkKq1YT1x1LxfzHXQAT4OcmxcWpfOMiN9G1agxga8oc6BAIB1Go1AE0vKABe3MGGvDNqn0cgEDR6Xn3St29fpKen4+DBg4iJicGECRMQFBSEvXv3tuh1dS66Xbt2NZovlUqxYcMGbNiwocEy7T0oZGFZFRZ8fxFHr2p+zacEOCPiWW9IDNrvzO2aH807d+5wwza1O1V0TXV1Nc6dOwd/f38AQEpKCgoKCtCjRw8AQI8ePRAXF4fQ0FCuTlxcHBeXvkePHrh16xbu3LnDOSmfOXOmznXMzMwwceJETJw4EePGjcOoUaOQn58PS8uWCy/d6RyeK6pV2PxHBhwtjNDl/mZjItFZc+/KHSVe234eN/NKITYQ4qMXfDDhCSednFufGBkZYcCAAVi5ciXc3NyQk5PDC1utawwNDfHGG2/gs88+g4GBAcLDwzFgwABOhAsXLsSECRPQp08fBAUF4ddff8WPP/7IeUIFBQXB09MToaGhWLVqFZRKJd577z3eNVavXg17e3v06dMHQqEQe/bsgUKhqDOkpWs6nejuFJTjk0NXeWkSAyEcLYzgKDdCFwsZJ8aafRsTCYTCR4vy54u3seiHBJRXaVZk/uKVfvBxNG+pW2l1Nm/ejBkzZqBfv37w8vJCVFQURo4c2SLXkslkWLRoEaZMmYLbt29jyJAh+Prrr7n8F154AWvXrsWnn36KN998E25ubtiyZQuGDx8OQNMc3rdvH2bMmAF/f3+4urris88+w6hRo7hzmJqaIioqCtevX4dIJEL//v0RHR3NNaVbCgGRLr1+2w5KpRLm5uYoLCzkDR9k5pViTcw1/H2vDH/fK0WWshzqR3wCYpGQezJqhFlbnDJYGBtiRfRVbD2VAQAY6mmDtRN7w8L4MV3WdEBJSQlMTEzg4uKCAwcOwN3dHVKpVN9mNcrWrVsxf/78NjXZtsa5wM3Nrc7n19B3rSE63ZPO2UqG1RN7c8dVKjWyCstx617pfSFqxHj7/v6dwjJUqtRIv1uC9Lv1B+AQCB5MWHjjKQ/MD/KEqAlPxtZAKBTiiSeegJ2dHXMDayN0OtE9jKFICCdLGZws6/eZrBHl3/fKcLtAI8gaYWpEWQ6VmmAqNcDqCb3xtHfru5U1hpGREc6ePcvcwNoQnV50j+JRoqxWqZFdVAErYzGkhu23d7ItMW3aNEybNk3fZrQYTHSPiYFICMc2PPbGaHuw5Ro6OKWlpXB1dcWIESPaxIA0gz3pOjxEhJs3b+rbDEYt2JOOwWhlmOgYjFaGiY7BaGWY6BiMVoaJjtGhOHHiBJ599lk4ODhAIBDgp59+0rdJdWCi6+AIBAJ4e3vDw8ND36a0CiUlJfDz82t06pi+YUMGHRyZTIakpKTHcgMjIpRVqXRsWdMwMhRp5TMaEhKCkJCQFrTo8WGiYzySsioVvJce1su1k5cFQybuWF9T1rxkMFqZjvUTwqhDaWkp+vfvD3t7e6xdu7ZZ5zAyFCF5WbCOLWv6tTsaTHQdHCJCcnIySkrqnwvYFAQCQYdr4ukT1rxkMFoZ9vPF6FAUFxcjNTWVO05PT8fFixdhaWkJZ2dnPVr2AJ0/6VasWIH+/fvD1NQUtra2eOGFF5CSksIrM3z48DqBI1977TVemRYNDMnosJw7dw59+vThlglcsGAB+vTpg6VLl+rZsgfo/El3/PhxzJ07F/3790d1dTWWLFmCkSNHIjk5GcbGxly5mTNn8haQrR2Wt8UDQzI6LMOHD0dbX2tL56I7dOgQ73jr1q2wtbXF+fPnMXToUC5dJpM1GBCkxQNDMhh6pMU7UgoLCwGgzoq53333HaytreHj44PFixfzQic1FBhSqVQiKSmp3utUVFRAqVTyNoam59HFxQWOjo76NoVxnxbtSFGr1Zg/fz4GDRoEHx8fLn3KlClwcXGBg4MDEhISsGjRIqSkpODHH38E0LzAkFoFhexEyGQyZGRksNXA2hAtKrq5c+ciMTERf/zxBy991qxZ3L6vry/s7e0xYsQIpKWlwd3dvVnXWrx4MRYsWMAdK5VKODm1/+XMGR2PFmtehoeHY//+/Th27Bi6dOnSaNmAgAAA4Lp6mxMYsq0HhWQwatC56IgI4eHh2LdvH37//Xe4ubk9sk5N9Jea6CqBgYG4fPkyL4bZkSNHYGZmxkVlYTSNsrIy9O/fH+PGjWvzvXqdBZ03L+fOnYsdO3bg559/hqmpKfcOZm5uDiMjI6SlpWHHjh0YPXo0rKyskJCQgLfeegtDhw7lggnWDgwZFRWFrKysdh0YUp+o1WqcO3cOLi4uTHRthSbFa9UCAPVuW7ZsISKizMxMGjp0KFlaWpJEIiEPDw9auHBhndCxGRkZFBISQkZGRmRtbU1vv/02VVVVNdmOthT+WJ8UFxcTAHJxcWk0/DGjcXQZ/ljnTzp6xK+pk5MTjh8//sjztPfAkAxGQzCHZwajlWGiY3QYVCoVPvjgA7i5ucHIyAju7u74z3/+0+beZdksA0aH4ZNPPsHGjRvxzTffoGfPnjh37hzCwsJgbm6OefPm6ds8Dia6ToC1tTUsLCyafwIioKr00eVaAkOZJupmEzh16hSef/55jBkzBgDg6uqKnTt34s8//2xJC7WGia6DY2xsjNzc3MdzA6sqBT520K1hTWXJP4DY+NHlAAwcOBBffvklrl27Bk9PT1y6dAl//PEHVq9e3cJGagcTHaPD8O6770KpVKJ79+4QiURQqVRYvnw5pk6dqm/TeDDRMR6NoUzzxNHXtZvI7t278d1332HHjh3o2bMnLl68iPnz58PBwQGhoaEtaKR2MNF1cMrKyhASEgJbW1tERkY27yQCQZObePpk4cKFePfddzFp0iQAGmf6mzdvYsWKFUx0jNZDrVbj+PHjncINrLS0FEIhfxRMJBK1uQi0THSMDsOzzz6L5cuXw9nZGT179sSFCxewevVqTJ8+Xd+m8WCiY3QY1q1bhw8++ABz5sxBTk4OHBwcMHv27Da1KBHARMfoQJiammLNmjVYs2aNvk1pFOYGxmC0Mkx0DEYrw0TXCZDJZDAyMtK3GYz7sHe6Do6xsTFKSkrYamBtCPak62R09LG6lkKXnxsTXSfB0NAQAHiL+jKaTs3nVvM5Pg6sednBKS8vx9ixYwEAmzZt4lZYk8lkWsXy7qwQEUpLS5GTkwO5XA6R6PGDVDLRdXBUKhW31oyFhQUMDAx4SxsymoZcLm9wzVVtYaLrRAgEAtjb28PW1hZVVVX6NqfdYGhoqJMnXA1MdJ0QkUik0y8RQzvadEfKhg0b4OrqCqlUioCAgDY37Z7BaA5tVnTff/89FixYgIiICPz111/w8/NDcHAwex9htHvarOhWr16NmTNnIiwsDN7e3ti0aRNkMhk2b96sb9MYjMeiTb7TVVZW4vz581i8eDGXJhQKERQUhNOnT9dbp6KiAhUVFdxxTTDKzh4csqSkhNtXKpVQqVR6tKZjUvMda+oAepsU3d27d6FSqeoNDHn16tV66zQUFJLFqHuAg4OeVvTqJBQVFcHc3PyR5dqk6JrDw0Eh1Wo18vPzYWVl1S4HgWuCWt66datTxdprj/dNRCgqKmryj1qbFJ21tTVEIlG9gSEbCwr5cBgtuVzeUia2Gp01wGV7u++mPOFqaJMdKWKxGP369cPRo0e5NLVajaNHjyIwMFCPljEYj0+bfNIBwIIFCxAaGoonnngC/v7+WLNmDUpKShAWFqZv0xiMx6LNim7ixInIzc3F0qVLkZWVhd69e+PQoUN1Olc6KhKJBBEREZ0u8mxnuG8BsQlWDEar0ibf6RiMjgwTHYPRyjDRMRitDBMdg9HKMNHpiMjISAgEAt7WvXt3Lr+8vBxz586FlZUVTExMMHbs2DqD/5mZmRgzZgxkMhlsbW2xcOFCVFdX88rExsaib9++kEgk8PDwwNatW+vY0pJTok6cOIFnn30WDg4OEAgE+Omnn3j5RISlS5fC3t4eRkZGCAoKwvXr13ll8vPzMXXqVJiZmUEul2PGjBkoLi7mlUlISMCQIUMglUrh5OSEqKioOrbs2bMH3bt3h1Qqha+vLzdDXhtb9AIxdEJERAT17NmT7ty5w225ublc/muvvUZOTk509OhROnfuHA0YMIAGDhzI5VdXV5OPjw8FBQXRhQsXKDo6mqytrWnx4sVcmRs3bpBMJqMFCxZQcnIyrVu3jkQiER06dIgrs2vXLhKLxbR582ZKSkqimTNnklwup+zsbJ3cZ3R0NL333nv0448/EgDat28fL3/lypVkbm5OP/30E126dImee+45cnNzo7KyMq7MqFGjyM/Pj86cOUMnT54kDw8Pmjx5MpdfWFhIdnZ2NHXqVEpMTKSdO3eSkZERffHFF1yZuLg4EolEFBUVRcnJyfT++++ToaEhXb58WStb9AETnY6IiIggPz+/evMKCgrI0NCQ9uzZw6VduXKFANDp06eJSPNlFgqFlJWVxZXZuHEjmZmZUUVFBRER/fvf/6aePXvyzj1x4kQKDg7mjv39/Wnu3LncsUqlIgcHB1qxYsVj3+PDPCw6tVpNCoWCVq1axaUVFBSQRCKhnTt3EhFRcnIyAaCzZ89yZQ4ePEgCgYBu375NRESff/45WVhYcPdNRLRo0SLy8vLijidMmEBjxozh2RMQEECzZ89usi36gjUvdcj169fh4OCArl27YurUqcjMzAQAnD9/HlVVVQgKCuLKdu/eHc7OztxUpdOnT8PX15c3+B8cHAylUomkpCSuTO1z1JSpOUfNlKjaZR41JUqXpKenIysri3d9c3NzBAQE8O5TLpfjiSee4MoEBQVBKBQiPj6eKzN06FCIxWKuTHBwMFJSUnDv3j2uTGOfRVNs0RdMdDoiICAAW7duxaFDh7Bx40akp6djyJAhKCoqQlZWFsRicR0HbDs7O2RlZQEAsrKy6p3KVJPXWBmlUomysrJGp0TVnKMlqblGY9fPysqCra0tL9/AwACWlpY6+Sxq5z/KFn3RZt3A2hshISHcfq9evRAQEAAXFxfs3r2bxRFg8GBPuhZCLpfD09MTqampUCgUqKysREFBAa9M7alKCoWi3qlMNXmNlTEzM4ORkVGzpkTpkpprNHZ9hUJRZ52b6upq5Ofn6+SzqJ3/KFv0BRNdC1FcXIy0tDTY29ujX79+MDQ05E1VSklJQWZmJjdVKTAwEJcvX+Z9IY8cOQIzMzN4e3tzZWqfo6ZMzTn0PSXKzc0NCoWCd32lUon4+HjefRYUFOD8+fNcmd9//x1qtRoBAQFcmRMnTvDW5jxy5Ai8vLxgYWHBlWnss2iKLXpDr904HYi3336bYmNjKT09neLi4igoKIisra0pJyeHiDRDBs7OzvT777/TuXPnKDAwkAIDA7n6NUMGI0eOpIsXL9KhQ4fIxsam3iGDhQsX0pUrV2jDhg31DhlIJBLaunUrJScn06xZs0gul/N6RR+HoqIiunDhAl24cIEA0OrVq+nChQt08+ZNItJ008vlcvr5558pISGBnn/++XqHDPr06UPx8fH0xx9/ULdu3XhDBgUFBWRnZ0evvPIKJSYm0q5du0gmk9UZMjAwMKBPP/2Urly5QhEREfUOGTzKFn3ARKcjJk6cSPb29iQWi8nR0ZEmTpxIqampXH5ZWRnNmTOHLCwsSCaT0Ysvvkh37tzhnSMjI4NCQkLIyMiIrK2t6e2336aqqipemWPHjlHv3r1JLBZT165dacuWLXVsWbduHTk7O5NYLCZ/f386c+aMzu7z2LFjBKDOFhoaSkSarvoPPviA7OzsSCKR0IgRIyglJYV3jry8PJo8eTKZmJiQmZkZhYWFUVFREa/MpUuXaPDgwSSRSMjR0ZFWrlxZx5bdu3eTp6cnicVi6tmzJx04cICX3xRb9AGb2sNgtDLsnY7BaGWY6BiMVoaJjsFoZZjoGIxWhomOwWhlmOgYjFaGiY7BaGWY6BiMVoaJjsFoZZjo2jnDhw/H/Pnz9W0GR1uzpy3CRMdAZWWlvk3oXOjb+ZPRfEJDQ+s4HqemptL06dPJ1dWVpFIpeXp60po1a+rUe/755+mjjz4ie3t7cnV1JSKN576fnx9JJBLq168f7du3jwDQhQsXuLqXL1+mUaNGkbGxMdna2tLLL7/MLcBUnz3p6emt9XG0G5jo2jEFBQUUGBhIM2fO5FYgKy8vp6VLl9LZs2fpxo0btH37dpLJZPT9999z9UJDQ8nExISbOpOYmEiFhYVkaWlJL7/8MiUlJVF0dDR5enryRHfv3j1uutGVK1for7/+oqeffpqefPLJBu2prq7Wx0fTpmHLNbRjzM3NIRaLIZPJeLOha4eBdnNzw+nTp7F7925MmDCBSzc2NsZXX33FLf6zadMmCAQC/O9//4NUKoW3tzdu376NmTNncnXWr1+PPn364OOPP+bSNm/eDCcnJ1y7dg2enp712sPgw0TXAdmwYQM2b96MzMxMlJWVobKyEr179+aV8fX15a22lZKSgl69ekEqlXJp/v7+vDqXLl3CsWPHYGJiUueaaWlp8PT01O2NdFCY6DoYu3btwjvvvIP//ve/CAwMhKmpKVatWsUtb1eDsbGx1ucuLi7Gs88+i08++aROnr29fbNt7mww0bVzxGIxVCoVdxwXF4eBAwdizpw5XFpaWtojz+Pl5YXt27ejoqKCC8h49uxZXpm+ffvihx9+gKurKwwM6v/qPGwPoy5syKCd4+rqivj4eGRkZODu3bvo1q0bzp07h8OHD+PatWv44IMP6oinPqZMmQK1Wo1Zs2bhypUrOHz4MD799FMAgEAgAADMnTsX+fn5mDx5Ms6ePYu0tDQcPnwYYWFhnNAetketVrfczbdTmOjaOe+88w5EIhG8vb1hY2OD4OBgvPTSS5g4cSICAgKQl5fHe+o1hJmZGX799VdcvHgRvXv3xnvvvYelS5cCAPee5+DggLi4OKhUKowcORK+vr6YP38+5HI5hEJhvfbUrHLNeABbI4XRIN999x3CwsJQWFjIFszVIeydjsHx7bffomvXrnB0dMSlS5ewaNEiTJgwgQlOxzDRMTiysrKwdOlSZGVlwd7eHuPHj8fy5cv1bVaHgzUvGYxWhnWkMBitDBMdg9HKMNExGK0MEx2D0cow0TEYrQwTHYPRyjDRMRitDBMdg9HK/D/77Zot8jzTFAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "column = \"pods\"\n",
+ "x = \"target\"\n",
+ "y = \"[UPDATE].95thPercentileLatency(us)\"\n",
+ "plot_comparison(df_aggregated, x, y, column, title, peak_benchmark)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOgAAADxCAYAAADBcPsrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABCoUlEQVR4nO2de1hU1frHvzPADAwwgFwGUK4qIIiKmDreLyReslJTMyu0k+XBLh5NzV+lVseDaXlMQ61zjpfMNK20Mi+hgKYiAoKCIt5QSAUUhOEOM/P+/tjOlnEAGRhggPV5nnmY2evda7972N9Zt3etJSAiAoPBMEqEre0Ag8GoGyZQBsOIYQJlMIwYJlAGw4hhAmUwjBgmUAbDiGECZTCMGCZQBsOIYQJlMIwYJlAGw4hhAmUwjBgm0CewYsUKCAQC3L9/v7VdYRiYWbNmQSAQQCAQoGfPns12nXXr1vHX0fdZarMCTUpKwtixYyGVSmFtbY0xY8YgJSWl0XanT5/GihUrUFhYaFA/t23bBoFAgMTExCbnpa+PT/px6dmzJ0aMGKHjq+Zlbm4OHx8fvPXWW8jNza3XztXVFaGhoVi/fj2Ki4vr9Wvjxo0QCAQYMGCATlrNfOt7xcbG1urL468zZ87U64uDgwN27NiBVatW1WvXFMaOHYsdO3Zg0qRJep9r2gz+NDvnzp3DkCFD4ObmhuXLl0OtVmPjxo0YPnw4zp49C19fX73sAO7h//jjjzFr1izY2tq20p3VT0v5+Mknn8DLywsVFRU4efIkNm3ahIMHDyItLQ0SiUTHrrq6Gjk5OYiNjcX8+fOxdu1a/Prrr+jVq1et+e/cuROenp44e/Ysrl27hm7duvFpO3bs0LL99ttvERUVpXO8R48etfr8ODXzrg1LS0u8/PLL9do0FT8/P/j5+eHatWvYt2+ffidTG2T8+PFkZ2dH9+/f54/duXOHrKysaPLkyXrbERGtWbOGAFBmZqbW8eXLlxMAunfvXqN83bp1KwGghISERp3fEB/r4km+BwQE0PDhw5/o64IFCwgAff/99/XaEREdO3aMLCwsyMPDg8rKynTSb9y4QQDo559/JkdHR1qxYkW99zBv3jyq7zFtyvcbFhZGHh4eep/XWBrzLLXJKu6ff/6JkJAQ2Nvb88dcXFwwfPhwHDhwACUlJXrZrVixAosWLQIAeHl58dWjmzdv8ucVFhbyJZeNjQ1mz56NsrIyg9zPrVu3EB4eDl9fX1hYWMDe3h5Tp07Vun5DfGwuRo0aBQDIzMxskO1HH32EW7du4bvvvtNJ37lzJ+zs7DBhwgS88MIL2Llzp8H9NRTe3t61lq4jR47E8OHDAQDFxcWYP38+PD09IRaL4eTkhKeffhrnzp0ziA9tUqCVlZWwsLDQOS6RSFBVVYW0tDS97CZPnowZM2YAAP79739jx44d2LFjBxwdHflzpk2bhuLiYkRERGDatGnYtm0bPv74Y4PcT0JCAk6fPo0XX3wR69evx9y5c3Hs2DGMGDGC/xFoiI/NxfXr1wFA64euPl555RUAwB9//KGTtnPnTkyePBkikQgzZszA1atXkZCQ0GQfi4qKcP/+fa1Xfn5+o/MrKSnBzZs30bt3b520Cxcu8NX3uXPnYtOmTZgyZQo2btyI9957DxYWFkhPT2/0tWvSJtugvr6+OHPmDFQqFUxMTAAAVVVViI+PBwDcvn1bL7tevXqhb9++2LVrF55//nl4enrqXDMoKAj/+9//+M/5+fn43//+h88++6zJ96MpTWoyceJEyOVy/PTTT3jllVca5KOh0DzsFRUVOHXqFD755BNYWFjgmWeeadD5Xbp0gY2NDS9sDUlJSbh8+TI2bNgAABgyZAi6dOmCnTt34qmnnmqSzyEhITrHxGIxKioqGpVfWloaiEhHoH/99RcKCgp4gf7++++YM2cOvvjiC95m8eLFjbpmbbTJEjQ8PBxXrlzB3/72N1y6dAlpaWl49dVXcffuXQBAeXm5XnYNYe7cuVqfhw4divz8fCgUiibfT81Svrq6Gvn5+ejWrRtsbW0NVlXSh5CQEDg6OsLNzQ0vvvgirKyssG/fPnTu3LnBeVhZWen05u7cuRMymQwjR44EwPXYTp8+Hbt374ZKpWqSz5GRkYiKitJ6HTp0qNH5aWpXjwv0/PnzAMAL1NbWFvHx8bhz506jr1UfbbIEnTt3LrKzs7FmzRps374dANCvXz8sXrwYK1euhJWVlV52DcHd3V3rs52dHQDgwYMHkEqlTbqf8vJyREREYOvWrbh9+zaoxjJRRUVFTcr7SQgEAp1jkZGR8PHxgampKWQyGXx9fSEU6vdbXlJSAicnJ/6zSqXC7t27MXLkSK227IABA/DFF1/g2LFjGDNmTKPvo3///ujXr1+jz3+c1NRUyGQyyGQyreMXLlyAUCjkx01Xr16NsLAwuLm5ITg4GOPHj8err74Kb29vg/jRJktQAFi5ciVyc3Px559/4sKFC0hISIBarQYA+Pj46G33JDRV5MchA6y59vbbb2PlypWYNm0a9uzZgz/++ANRUVGwt7fnfW0M5ubmAOquKZSVlfE2Nenfvz9CQkIwYsQI9OjRQ29x/vXXXygqKtIa4oiOjsbdu3exe/dudO/enX9NmzYNAIyusygtLa3W9mdKSgq8vb1haWkJgOubuHHjBjZs2ABXV1esWbMGAQEBTSq9a9ImS1ANdnZ2GDJkCP/56NGj6NKlC/z8/PS2q60kaSl+/PFHhIWFabVjKioqdAIS9PXRw8MDAJCRkQE3NzettLKyMmRnZzep1KoLzZhlaGgof2znzp1wcnJCZGSkjv3PP/+Mffv2YfPmzbV26rUGqampmD59utYxtVqN6OhoDBs2TOu4i4sLwsPDER4ejry8PPTt2xcrV67EuHHjmuxHmxZoTX744QckJCTg888/r/cXvy47zS+ioSOJGoKJiYlOSbxhwwaddpm+Po4ePRoikQibNm3CqFGjtO73m2++gVKpNMhDVJPo6Gh8+umn8PLywsyZMwFwJfjPP/+MqVOn6nSGAYCrqyt27dqFX3/9VUcUrUFeXh7u3bvH91VoWL9+Pe7fv4/AwEAAXLW9pKQENjY2vI2TkxNcXV1RWVlpEF/apEBPnDiBTz75BGPGjIG9vT3OnDmDrVu3YuzYsXj33Xf1tgOA4OBgAMAHH3yAF198EWZmZpg4caLBfN6yZQsOHz6sc/zdd9/FM888gx07dsDGxgb+/v6Ii4vD0aNHdYY16vJRI9zHcXJywrJly/Dhhx9i2LBhePbZZyGRSHD69Gns2rULY8aMadI9Hjp0CJcvX4ZSqURubi6io6MRFRUFDw8P/Prrr3z1+ddff0VxcTGeffbZWvMZOHAgHB0dsXPnzkYLVOPL4wwaNEjv9mBqaioAbpgoPDwcfn5+OHPmDI4cOQKA642Oj4+Hr68vunTpghdeeAG9e/eGlZUVjh49ioSEBK3aUJNopqCJZuXatWs0ZswYcnBwILFYTH5+fhQREUGVlZWNstPw6aefUufOnUkoFPIRO3VFf2giWJ4U1aOxq+uVnZ1NDx48oNmzZ5ODgwNZWVlRaGgoXb58mTw8PCgsLOyJPj6J7777jgYOHEiWlpb89/Dxxx9TRUVFrb4+KSrn8XsSiUTk7OxMTz/9NH355ZekUCi07CdOnEjm5uZUWlpaZ56zZs0iMzMzragvooZHEtX12rp1a53n1hVJ9O9//5tMTEzo999/p65du5K5uTk9/fTTlJqaSl27dqUuXbpQUlISVVZW0qJFi6h3795kbW1NlpaW1Lt3b9q4cWOt12tMJJGAiK0sz+iYzJo1C9HR0Th37hxMTU35+ObXX38dJ06cwJUrVwxynYqKCpSUlGD16tVYs2YN7t27BwcHhwad22Z7cRkMQ5CdnQ1HR0etTsTU1FT4+/sb7BqbN2+Go6Mj1qxZo/e5bbINymAYgsWLF/OxtpoxcSLCpUuXMHr0aINdZ8qUKVrzTWt2Kj0JJlBGh8Xf31+npMzMzERJSYlBS1A3NzedYa6GwtqgDIYRw9qgDIYRwwTKYBgx7bYNqlarcefOHVhbW7dqGB+j/UNEKC4uhqurq95xy0+i3Qr0zp07jW6YMxiNITs7G126dDFonk0S6KpVq7B06VK8++67WLduHQBuUHbhwoXYvXs3KisrERoaio0bN2pN28nKysLf//53xMTEwMrKCmFhYYiIiICp6SN3YmNjsWDBAly8eBFubm748MMPMWvWrAb7Zm1tDYD70po6HYzBqA+FQgE3Nzf+mTMoDY45eoyzZ8+Sp6cn9erVi959913++Ny5c8nNzY2OHTtGiYmJNHDgQBo0aBCfrlQqqWfPnhQSEkLJycl08OBBcnBwoKVLl/I2N27cIIlEQgsWLKBLly7Rhg0byMTEhA4fPtxg/4qKiggAFRUVNfYW2wVKpZJiYmIoJiaGlEpla7vTLmnOZ61RAi0uLqbu3btTVFQUDR8+nBdoYWEhmZmZ0d69e3nb9PR0AkBxcXFERHTw4EESCoWUk5PD22zatImkUikfI7t48WIKCAjQuub06dMpNDS0Tp8qKiqoqKiIf2VnZzOBElFJSQkfl1pSUtLa7rRLmlOgjWrRzps3DxMmTNBZByYpKQnV1dVax/38/ODu7o64uDgAQFxcHAIDA7WqvKGhoVAoFLh48SJv83jeoaGhfB61ERERARsbG/7F2p+M9oDeAt29ezfOnTuHiIgInbScnByIRCKdRZVlMhlycnJ4m8eXkdB8fpKNQqGoc3WApUuXoqioiH9lZ2fre2sMhtGhVydRdnY23n33XURFRdW6VEZrIhaLIRaLW9sN4+bWacD/6db2gqEHepWgSUlJ/JIOpqamMDU1xfHjx7F+/Xp+gamqqiqdGf+5ublwdnYGADg7O2vt86FJ16TVZyOVSo1mSYw2Q3WNZSd/eBnI/LP1fGHojV4CHT16NFJTU5GSksK/+vXrh5kzZ/LvzczMcOzYMf6cjIwMZGVlQS6XAwDkcjlSU1ORl5fH20RFRUEqlfIBynK5XCsPjY0mD4YeXI9+9L66HNg5FbhxvPX8aW7UaiDjEPdjdH53a3vTdJray1SzF5eIG2Zxd3en6OhoSkxMJLlcTnK5nE/XDLOMGTOGUlJS6PDhw+To6FjrMMuiRYsoPT2dIiMj2TBLIyn5duajXtz/Pk+0XEr0qYzoekxru2ZYVEqiC3uJIuXcPWpev80nqq59BQ1DYXTDLDV5XKDl5eUUHh5OdnZ2JJFIaNKkSXT37l2tc27evEnjxo0jCwsLcnBwoIULF1J1dbWWTUxMDPXp04dEIhF5e3vXu3RFbTCBElFlCVWukNHqEDGt/uAdqixVEH039aFInYiuRbe2h02nuoIocRvRl30eiXJlZ6LdLxMtt+E+/2c0UdHtZnOhOZ+1djvdTKFQwMbGBkVFRR03kijtJ+DH1wA7T+CdFEAgAJSVwJ5XgSuHAVNzYMYuoOuo1vZUf6pKgXPfAqfWA8UPV3W3sAMGhgP953Dvr/wB/Pw6UFEEWDoCU7cDnoMN7kpzPmtsNkt7Ju1n7m/AZE6cAGAqBqZ9C/iMA5QVwPcvAteOtp6P+lJeCJz4HFgXCBx+nxOntQsQ+i9gfhowfDEnTgDwGQO8EQs4BQCl94BvnwXObAbaUJnEStD2SkURsKY7VNUVODfoG8C+K/r27ftohXxlFbB3FpDxO2AiBl78HuiuuwGRhmqVGrcflONWQRmy8kuRX1oF904S+Mis0dXRChai2lfeNxgl94AzG4GE/wKVD/fDsfMEBs8H+rzE/fDURVUp8Os7QNqP3OfAqcDE9YBIUvc5etCczxoTaHslZRewfy5KrbvC6r1kANx+KVpr6CqrgB9nA5cPACZiVLzwLTJtB+FWfhmyCkof/i3DzfxS3CmsgEpd+6MiEADunSTo7mSF7jJr+Mis0N3JGt2crGBu1kThFv0FnN4AJG0HlA+DVBz9gKELuZqBSQOH8omAM5uAPz4ESAXIegLTvwM66e7KrS/N+ay12+lmHZ6LD6u3/s8D4ARKRMgvqXxYCpbhVn4ZsgX/wFRxAQZUnoZg90x8Vv0PxKqDas1SbCqEeycJPOwt0cnSDDfzy3A1txgPyqpx62F+R9MfDZ89Eq41usus9BNu/nXg5L+5oRJ1NXfMNQgY+h7gOx7Qd96lQADIwwGXXlzNITcN+GY4MOV/QHfjDd5gJWh7pKwA+Lw7oFaidNZxWHlxguvx/n6Uke5vsimUWG/2FcabnEUVTLFK+gHuuYyERycJ3O0l8HgoSidrMYRC7cnvRIT80ipcyS3G1dwS7m9eCS/c2qgpXB+ZFbrLrOArk6KHizUEuReBk2uBi/sAerhxlOdQYOgCwHvko7Z0Uyi6zXWU3U4EIABGfsCVyI2cbM2quI2gQws0aTvw2zuALBClrx7hl5R0+8ePEIrM4Sw1h7u9BJ72nPDcO0ngYWeGHqcWwCzjV0BoBkzfAfg2ft8WIsL9kipczash3NwSXMkrRmEtwg0SXMUSywMYqKyx23b3UE447gMa7UedKCuBQ0uApK3cZ9/xwKTNgLnukpgqNeFoei6EAgGe9pfppDOBNoIOLdDtzwKZx4HRy5Hu8TL8PbiHKuHqHfT0cKq7eqmqBn6ew5VeQjOut9dvvEFd44WbW4zMO3mwuPILeuX+jG7V3CruahIg1nQQquXzMXJECESmzTzQcO5b4PeFgKoK6NQVeHEn4NQDAFBcUY09iX9h2+lMZBeUw9vBEkcXDNepRbA2KKPhlOQBNx/G2wZMwqnz+XxSDxdp/W0/EzNg8n8BCLg27J5XganbgB7PGMw9gUAAx7LrcLyyFYPO7+Z7ZElohkuOY7E0LwQXSh2Bo9VwSYjBG8O88eJT7s3XS9z3VUAWAPzwKlBwHfjPaNwbvRYb7wVib+JfKKlUAgBsJWYI7emMKpUa5sJm7rGuARNoe+PSL1zbrXMw0MkLp67pGRxvYgpM/g/X1kv7Cdgb9lCkTdzprbqc8y1xK5B95tFxO08geBYEfV5GgJUjdlUqsetsFr45cQN3iyrw8W+X8FX0Nbw2xAuvyD0gNTdrmh+10TkY9EYsFN+9ApucODgefhMy5USUK6ehm5MNXhvshUlBnZt/KKkWmEDbGzWCE6pVapy9VQSbwTMwo787zMwa+HCbmAKTvgEEQiB1L9fr+cJWwL/27QPr5f5VTpTnvwfKH3DHBCZc1Tl4NtfxU3OfVrEpXh/qjVfkHvgx6S9sPn4d2QXlWHMkA5tjr+PVQR54bbAX7K0MM7WwolqF387fwZZTN3HlbjgWm3bCm6a/Y67pb5jeOR+2r3wLgZWjQa7VGFgbtD1RdBv498MtC/5xCYkPLPDC5jjYScyQ+OHTMBHq2QOqVgH75gKpezhRvbAFCHj+yecpq4DLv3HCvFmjBLdxA/qGAUEvA1KXBrmgVKlx4MJdRMZcw9W8EgCAuZkQM/q7441h3nCxadz0w7ziCuw8k4Wd8bdwv6SKz/eF4C54yykVzjHvAdWlnM/TvgU6960zL9YGZTSMi/u4v+5ywKYzTpzlOl4Gd3PQX5wAIDThejYFQuDCbi6uFwQETKrdviATSNoGJH8HlN3njgmEXG9sv9lAtxAuTz0wNRHi+aDOeLa3K6LScxEZcw0X/irC1lM38d2ZW5jStwvmDu8KT4faNzF+nLTb3Lm/nb+DKhU3jONiY45X5Z6Y0d8NthIRgECgax9uylrBdWDLWOCZtdwPSwvDBNqe0AQn9JwCAPjz6j0QqeElLMDFixfRo0cP/RdWFpoAz2/k2qTndwE//o2Lyuk5mUtXVXPzL5O2as89tXbhOmD6vgrYNH2tWKFQgNAAZ4zxl+Hktfv4Kvoa4jMLsDshG3sSs/FML1eEj+wKP2fdEkwzTLLlZCbiMwv440HutnhtsBfG9nSGmclj34vMH5gTzdUgrhwCfpkH3E4Cxn4GmIqafD8NhVVx2wsFmcD6PlyJtTADRUI7BH36B5SVFcj+9wsAagn10we1Cvj1bSBlJ1fdHb8aKM4Bzu0ASnIeGgmAbqO5tqXP2IaH4TWSxJsF2Bh7HdGXH0UvhfRwwryR3RDkbqczTAIApkIBxge6YPZgTwS52z35Imo18OfnQMy/AEdf4PWjgFh7/VtWxWU8GU311nMoYOWE06l3oSagq6MlDLJ8mtAEeHYDAAGQ8h03dqjB0hEIegUIDuN6ZVuIfp6dsGVWJ1y8U4SNsddxMPUujqbn4Wh6Hvq42eJaXonWMMlL/d3xitxDv3arUMjNkHHpw8Xtipthcep6YAJtL2h6bx9WPU9cvQcAGNTNHrGGuoZGpCZmXJXWazjXtvSd0KLVvscJcLVB5Et9cf1eCTbHXse+5NtIyS4EAHRzsjLMMInPGMM4qydMoO2Be1eA3FRAaAr0eBZEhBNXuE6awV0dDHstoRCYuA4YGwGYGdcCbl0drbBmam/Mf9oHh9Ny0M3JCsO6O7TpzbOYQNsDms6hrqMASSdk3ivB7cJyiEyEeMqrU/Nc08jEWZPOthb425CmTyMzBtiKCm0dIi7iB+DmRwL48ypXevbztINExH6D2zJMoG2d3IvA/SvcqggPA9v/fNj+HNq99SJgGIaB/by2dTTV2+5PA+Y2qFKqEXedC5Af2t0BZmZmeO+99wCg4aF+DKOBCbQtU7N6+7D3NjnrAUqrVLC3FMHfRQqhUIA1a9a0opOMpsCquG2ZO8nAg5uAmYQLDMCj9ueQ7g468xYZbQ9WgrZlNKWnz1hAxEUIPd7+VKvVyMrKAgC4u7vrH+rHaFWYQNsqajVwcT/3/mH1tqC0ChduFwHg2p8AUF5eDi8vbsihSaF+jFaB/Zy2Vf46Cyj+AkTWQDduVbpT1+6DCPCVWUMmNa7tIRmNQy+Bbtq0Cb169YJUKoVUKoVcLsehQ4f49IqKCsybNw/29vawsrLClClTdLYRzMrKwoQJEyCRSODk5IRFixZBqVRq2cTGxqJv374Qi8Xo1q0btm3b1vg7bK9oQvv8JgBmnBgfVW8NHD3EaDX0EmiXLl2watUqJCUlITExEaNGjcJzzz3Hb13/j3/8A7/99hv27t2L48eP486dO5g8eTJ/vkqlwoQJE1BVVYXTp09j+/bt2LZtG5YtW8bbZGZmYsKECRg5ciRSUlIwf/58vP766zhy5IiBbrkdoFYBl/Zz7x9OLSMivoNomA8b/2w3NHX3JTs7O/rvf/9LhYWFZGZmRnv37uXT0tPTCQDFxcUREdHBgwdJKBRSTk4Ob7Np0yaSSqVUWcltEbd48WIKCAjQusb06dMpNDRUL7/a9e5mN45zu3ZFuPNb613NVZDHkgPU/YODVF6l5E1LSkoebT9YUtJaHrdrmvNZa3QbVKVSYffu3SgtLYVcLkdSUhKqq6sREvJofw8/Pz+4u7sjLi4OABAXF4fAwEDIZI/WFg0NDYVCoeBL4bi4OK08NDaaPOqisrISCoVC69Vu0fTe+j/LzyLRBMcP8OrU9O0WGEaD3gJNTU2FlZUVxGIx5s6di3379sHf3x85OTkQiUSwtbXVspfJZMjJ4Sb05uTkaIlTk65Jq89GoVCgvLy8Tr8iIiJgY2PDv9zc3PS9tbaBqppbHQ/gY28B1v5sr+g9zOLr64uUlBQUFRXhxx9/RFhYGI4fb/0t1ZcuXYoFCxbwnxUKRfsU6Y3j3Op4lo7c5GwAlUoVztzglvJ4PP7W1NQU4eHh/HtG20Lv/5hIJEK3bt0AAMHBwUhISMCXX36J6dOno6qqCoWFhVqlaG5uLpydnQEAzs7OOHv2rFZ+ml7emjaP9/zm5uZCKpXCwqLuKU5isRhisWGWYjRq+Ort8/ySIkm3HqC8WgUHKzH8nLVn/IvFYkRGRrawkwxD0eRxULVajcrKSgQHB8PMzAzHjh3j0zIyMpCVlQW5XA4AkMvlSE1NRV7eozVkoqKiIJVK4e/vz9vUzENjo8mjQ6Os5LYKBB4t2oVH7c+2PjmZUQv69Ci9//77dPz4ccrMzKQLFy7Q+++/TwKBgP744w8iIpo7dy65u7tTdHQ0JSYmklwuJ7lczp+vVCqpZ8+eNGbMGEpJSaHDhw+To6MjLV26lLe5ceMGSSQSWrRoEaWnp1NkZCSZmJjQ4cOH9er9ape9uOkHuN7bz/2IVCr+8PgvT5DHkgP087lsnVPUajXl5eVRXl4eqdXqlvS2w9Ccz5peAn3ttdfIw8ODRCIROTo60ujRo3lxEhGVl5dTeHg42dnZkUQioUmTJtHdu3e18rh58yaNGzeOLCwsyMHBgRYuXEjV1dVaNjExMdSnTx8SiUTk7e1NW7du1fvG2qVA977GCfTQox+0e8UV5LHkAHksOUB5igqdU9gwS/PTnM8aW3azrVBVBqzpxq12/no00CUYAPBLym28uzsF/i5SHHx3qM5ppaWl/PaDLBa3eWjOZ43F4rYVrh7hxGnrobUNgab9OdSHDa+0R5hA2wo1J2Y/7AgiIn78cxhb3qRdwgTaFqhQAFejuPc1ghOu5JYgr7gS5mZCBHs0YJV0RpuDCbQtkHEIUFYA9t0B50D+sKb0HOBlz8L72ilMoG2BizVWja8xznn8Cgvva++w2C9jp/wBcO1h4EaN6m1FtQpnH+7UVd/0MlNTU4SFhfHvGW0L9h8zdtIPAOpqwCkAcPLjDyfcLEClUg1nqTm6O1nVebpYLGYT3tswrIpr7Dy2rKYGzeTsoSy8r13DSlBjpuQekHmCe/+YQE9o2p9PWD2BiFBWVgYAkEgkTMxtDFaCGjPpvwCkAlyDgE7e/OE8RQUu5xRDIACGdKu/g6isrAxWVlawsrLihcpoOzCBGjNpDzflfbjukIaT17jqbU9XG3SybL19ORnNDxOosaK4C9w6xb0PmKSVVLP9yWjfMIEaK5f2AyDAbSBg04U/rFZTDYGy8L72DhOosVJH7216jgL3SyohEZmgr4dty/vFaFGYQI2RB7eAvxIAgZBb2qQGmtJzoLc9xKYsvK+9wwRqjFx82DnkMRiw1l7h8NHsFdb+7AiwcVBjJO1H7u9jvbflVSokZD4A8OTxTw0mJiZ44YUX+PeMtgUTqLFxJxnISQVMRID/c1pJ8Zn5qFKp0dnWAt4ODVsZwdzcHHv37m0OTxktAKviGhuJW7m//s8Bkk5aSSy8r+PBBGpMVCiA1IfV2+DZOsmPb87LaP8wgRoTaT9y6w45+AAeg7SScooqcCW3BAIBMLibfYOzLC0thUAggEAgQGlpqaE9ZjQzTKDGAtGj6m3wLK2J2QBw4mHp2auLLWwlLLyvo8AEaizcOQfkXABMxEDvGTrJ/N6fbHilQ8EEaixoSs+A53U6h9RqwknW/uyQMIEaAxWKR6F9wbN0ki/eUeBBWTWsxKYIcrdtUdcYrQsTqDGQugeoLgMcfAF33U2iNO1PeVd7mJmwf1lHQq//dkREBJ566ilYW1vDyckJzz//PDIyMrRsKioqMG/ePNjb28PKygpTpkzR2U4wKysLEyZMgEQigZOTExYtWgSlUqllExsbi759+0IsFqNbt27td10dIiBxG/e+32ydziGAhfd1ZPQS6PHjxzFv3jycOXMGUVFRqK6uxpgxY7S67//xj3/gt99+w969e3H8+HHcuXMHkyc/mpGhUqkwYcIEVFVV4fTp09i+fTu2bduGZcuW8TaZmZmYMGECRo4ciZSUFMyfPx+vv/46jhw5YoBbNjJunwNyU7nOoV7TdZJLK5VIuvUwvK8R7U8TExOMHz8e48ePZ6F+bZGm7LyUl5dHAOj48eNERFRYWEhmZma0d+9e3iY9PZ0AUFxcHBERHTx4kIRCIeXk5PA2mzZtIqlUSpWVlUREtHjxYgoICNC61vTp0yk0NLTBvrWZ3c32h3M7lv30Rq3Jx9JzyGPJARry2TG2faCR0pzPWpMaNEVFRQCATp24XsekpCRUV1cjJCSEt/Hz84O7uzvi4uIAAHFxcQgMDIRM9miWRmhoKBQKBS5evMjb1MxDY6PJozYqKyuhUCi0XkZPRRGQ9nBR6n66kUNAjc2Rujuy8L4OSKOD5dVqNebPn4/BgwejZ8+eAICcnByIRCLY2tpq2cpkMuTk5PA2NcWpSdek1WejUChQXl4OCwsLHX8iIiLw8ccfN/Z2WocLDzuHHP0AtwG1mpxohvanSqVCdXW1wfJr75iZmbVa86DRAp03bx7S0tJw8uRJQ/rTaJYuXYoFCxbwnxUKBdzc3FrRoydABCRt494H19459NeDMty4VwoToQDyro0TaGlpKZycnAAAubm5KC4uRmFhYSOd7rjY2trC2dm5xWsxjRLoW2+9hQMHDuDEiRPo0uXRejnOzs6oqqpCYWGhVimam5sLZ2dn3ubs2bNa+Wl6eWvaPN7zm5ubC6lUWmvpCXArqIvF4sbcTuvwVyKQmwaYmgO9dTuHAODkw+ihPm62sLEwa/SlNMtt5ufno6ysDE5OTmyN3AZCD9cVzsvLAwC4uLi06PX1EigR4e2338a+ffsQGxsLLy8vrfTg4GCYmZnh2LFjmDKFm2yckZGBrKwsyOXc+J5cLsfKlSuRl5fH/7JHRUVBKpXC39+ftzl48KBW3lFRUXwe7YIkTeTQZMCi9q0DDbl6n6WlJUpKSuDs7Ax7+4YH2zPAFwqaZ7ZFq7v69Cj9/e9/JxsbG4qNjaW7d+/yr7KyMt5m7ty55O7uTtHR0ZSYmEhyuZzkcjmfrlQqqWfPnjRmzBhKSUmhw4cPk6OjIy1dupS3uXHjBkkkElq0aBGlp6dTZGQkmZiY0OHDhxvsq1H34pY9IPpUxvXe3jpTq4lSpaZeK46Qx5IDlHizoNGXKikpIQDk7u5OaWlpWv8rRsMpKyujS5cuUXl5uU5acz5regkUQK2vrVu38jbl5eUUHh5OdnZ2JJFIaNKkSXT37l2tfG7evEnjxo0jCwsLcnBwoIULF1J1dbWWTUxMDPXp04dEIhF5e3trXaMhGLVAz3zNiTNyIFEdQyfJWQ/IY8kB6rn8MFUrVY2+lEagHh4elJaWVusDxngy5eXlrSJQvau4T8Lc3ByRkZGIjIys08bDw0OnCvs4I0aMQHJysj7utQ2IHlVv6+gcAoA/H+69MrirA0xZeF+Hhf3nW5q/EoC8S4CpBdBrWp1mfPvTh4X3GRKBQID9+/e3thsNhi0a1tJoppX1nAxY2NZqUlxRjXNZXHjfsCZOLxMKhRg+fDicnJxYr20bhAm0JSl/8Gg7+1rWHNIQdz0fSjXB014Ct06SJl3SwsICsbGxqKioQGZmZpPyYrQ8rIrbklzYAygruN2yu/Sr06w19l4ZMWIE3nnnHSxevBidOnWCs7MzVqxYwaffvHkTAoEAKSkp/LHCwkIIBALExsYC4GYgCQQCHDlyBEFBQbCwsMCoUaOQl5eHQ4cOoUePHpBKpXjppZfq3Qpx27ZtsLW1xf79+9G9e3eYm5sjNDQU2dnZWnabNm1C165dIRKJ4Ovrix07dmilX716FcOGDYO5uTn8/f0RFRWllV5VVYW33noLLi4uMDc3h4eHByIiIhr3BTYTTKAtRc01h+qYVgYASpUa0Ze5QfFhDVyc2lBs374dlpaWiI+Px+rVq/HJJ5/oPNQNYcWKFfjqq69w+vRpZGdnY9q0aVi3bh2+//57/P777/jjjz+wYcOGevMoKyvDypUr8e233+LUqVMoLCzEiy++yKfv27cP7777LhYuXIi0tDS8+eabmD17NmJiYgBwoaiTJ0+GSCRCfHw8Nm/ejCVLlmhdY/369fj111+xZ88eZGRkYOfOnfD09NT7fpsVg/cLGwlGN8xyK44bWvlURlReWKfZT0nZ5LHkAAV98geVVSqbfNmSkhJycHCgPn361DvMMnz4cBoyZIjWsaeeeoqWLFlCRESZmZkEgJKTk/n0Bw8eEACKiYkhIm5oDAAdPXqUt4mIiCAAdP36df7Ym2++We/MpK1btxIAOnPm0RixZlZUfHw8ERENGjSI5syZo3Xe1KlTafz48UREdOTIETI1NaXbt2/z6YcOHSIAtG/fPiIievvtt2nUqFENmiXUWsMsrARtKfjOoSmAuU2tJio14auYawCAvw3xgoXIMBEr9+/fx4MHD55o16tXL63PLi4ufIibPtTMRyaTQSKRwNvbW+vYk/I1NTXFU089xX/28/ODra0t0tPTAQDp6ekYPHiw1jmDBw/WSndzc4Orqyuf/ngk2qxZs5CSkgJfX1+88847+OOPP/S80+aHCbQlKCt4tCFSHdPKAOBQ2l3cuFcKGwszvCr3aCHnHmFmph3vKxAIoFarAXC9wYD2WHhdM2Jq5iMQCOrNtzXp27cvMjMz8emnn6K8vBzTpk3j97ExFphAW4ILPwCqSkAWCHQOrtVErSZ8Fc2VnrMHe8LavPHB8c2BoyPXHr579y5/rGaHkaFRKpVITEzkP2dkZKCwsBA9evQAAPTo0QOnTp3SOufUqVN8PHePHj2QnZ2t5e+ZM2d0riOVSjF9+nT85z//wQ8//ICffvoJBQUFzXFLjYINszQ3Wp1Ds+rsHIpKz8XlnGJYiU0xe5BXrTatiYWFBQYOHIhVq1bBy8sLeXl5+PDDD5vtemZmZnj77bexfv16mJqa4q233sLAgQPRv39/AMCiRYswbdo0BAUFISQkBL/99ht+/vlnHD16FAAQEhICHx8fhIWFYc2aNVAoFPjggw+0rrF27Vq4uLggKCgIQqEQe/fuhbOzs8585taElaDNTdYZ4H4GYCYBAqfWakJE2BB9FQDwqtwDNhLjKj01bNmyBUqlEsHBwZg/fz7++c9/Ntu1JBIJlixZgpdeegmDBw+GlZUVfvjhBz79+eefx5dffonPP/8cAQEB+Prrr7F161aMGDECAFcl37dvH8rLy9G/f3+8/vrrWLlypdY1rK2tsXr1avTr1w9PPfUUbt68iYMHD/LVeaPA4N1ORoLR9OL+NIfrvd0/r06T6Mu55LHkAPl9eIjuF1cY9PJtMVh+69atZGNj09puaNEmguUZelJWAFzcz72vo3OIiLDhGFd6vjzQHfZWhp10LhQK0a9fP8hkMhbq1wZhAm1Ozu/mOoecAwHXvrWanL6ej3NZhRCZCjFnqHetNk3BwsICCQkJLNSvjWJEle12RgOnla1/WHrOeMoNTlLzlvLOqJk1axZbN+khTKDNxa3TwP0rgJllnZ1DZzMLEJ9ZADMTAd4c3rWFHWS0BZhAmwtN6Rk4BTCX1mqi6bl9IdgNrra1L4bWVMrKyuDp6YnRo0cbRXAAQz9YG7Q5KCsALv3Cva9jWllKdiH+vHofJkIBwkc0X+lJRLh161az5c9oXlgJ2hykfA+oqgCX3kDn2juHND23z/fp3OQ5n4z2CxOooXl8QepaSLtdhGOX8yAUAPNGsrYno26YQA3NrVNA/lVAZAUE1h54HflwxsozvVzh7WjVkt4x2hhMoIZGE3cb+AIgttZJvpJbjENp3B40b43q1pKeMdogTKCGpDQfSP+Ve19H9VYzY2VcT2f4yHQFzGgaJ06cwMSJE+Hq6trmVvCrDSZQQ3Je0znUB3Dto5N8414JDly4AwCYN7JlSk+BQAB/f39069YxSuvS0lL07t273nWZ2xJsmMVQ1OwcqiPudmPsdagJGO3nhJ6da19VwdBIJBJcvHixSaF+RITyapWBPWsYFmYmesUQjxs3DuPGjWtGj1oWJlBDcfNPIP8a1znUU7dzKLugDPuSbwMA3h7dvaW9axLl1Sr4LzvSKte+9EkoJKKO+5iyKq6h4DuHpgJi3Z7ZjbHXoVIThnZ3QB8325b1jdF20Xd+2vHjx+mZZ54hFxcXrRXSNKjVavroo4/I2dmZzM3NafTo0XTlyhUtm/z8fHrppZfI2tqabGxs6LXXXqPi4mItm/Pnz9OQIUNILBZTly5d6LPPPtPLzxadD1pyj+hje27e550UneQ7hWXU7f9+J48lByj+Rn7z+1OD0tJS8vf3p9GjRzd6PqharabSyupWeTVkxb26qO35bCxtZlW/JzXCV69ejfXr12Pz5s2Ij4+HpaUlQkNDUVFRwdvMnDkTFy9eRFRUFL8R8BtvvMGnKxQKjBkzBh4eHkhKSsKaNWuwYsUKfPPNN/q62zKk7ATU1dyUMpfeOslfH7+BahVhgFcn9Pfq1KKuEREuXbqEa9euNToPgUAAici0VV4dfg5rU9SNx36h1Go1OTs705o1a/hjhYWFJBaLadeuXUREdOnSJQJACQkJvM2hQ4dIIBDwa5hu3LiR7OzsqLKykrdZsmQJ+fr61ulLRUUFFRUV8a/s7OyWKUGzE4m+6MGVnonbdJJzFeXk88FB8lhygE5evde8vtRCW1xRwVA8/nw2hTZTgtZHZmYmcnJyEBISwh+zsbHBgAEDEBcXBwCIi4uDra0t+vV7tPVBSEgIhEIh4uPjeZthw4ZBJBLxNqGhocjIyKhzfdeIiAjY2NjwLzc3N0Pemi7FucD+cOC/owDFbUDamVvz9jH+c+IGKpVq9HW3xaCubGfr5qakpAQpKSn8ioOZmZlISUlBVlZW6zrWSAwq0JwcLkJGJpNpHZfJZHxaTk4OnJyctNJNTU3RqVMnLZva8qh5jcdZunQpioqK+Nfj+3gYDGUVcHoDsCGYq9oCQO+XgDnROp1DBaVV+O4M92C8Pbo7q661AImJiQgKCkJQUBAAYMGCBQgKCsKyZcta2bPG0W76r8ViMcRiw67no8O1o8Ch97lYW4Brc45fU+dGSP87eQPl1SoEdrbBiBbeZ6WjMmLEiAZtNN1WMKhAnZ2dAQC5ublwcXHhj+fm5qJPnz68zePL/iuVShQUFPDnOzs7Izc3V8tG81lj06IU3ACOfABkPNwV3NIRCFnBlZx1LNFYVFaN7ae5eZhvjerGSk9GozBoFdfLywvOzs44duwYf0yhUCA+Pp7fF0Mul6OwsBBJSUm8TXR0NNRqNQYMGMDbnDhxQmtrgaioKPj6+sLOzs6QLtdPZQlw7BMgcgAnTqEpIH8LeDsJCHq5TnECwNbTmSipVMLP2RpP95DVadfcCAQCeHh4oHPnzq3mA6MJ6NurVFxcTMnJyZScnEwAaO3atZScnEy3bt0iIqJVq1aRra0t/fLLL3ThwgV67rnnyMvLS6v3a+zYsRQUFETx8fF08uRJ6t69O82YMYNPLywsJJlMRq+88gqlpaXR7t27SSKR0Ndff91gP5vUs6ZWE13YS/S5H9c7u1xKtP05orzLDTpdUV5FvVYcIY8lB+i387effEILUF8vJOPJtFYvrt4C1Wwx9/grLCyMiB4FKshkMhKLxTR69GjKyMjQyiM/P59mzJhBVlZWJJVKafbs2fUGKnTu3JlWrVqll5+N/tLunCf6X+gjYf47kCj9ACfaBhIZc5U8lhygkZ/HkFLV+IF2Q8IE2jRaS6AConbUoq6BQqGAjY0NioqKIJXWvmiXFqX5QMw/uYB3UnNbNQxdAMjfBswavhxmWZUSQz6LQUFpFdZO643Jfbs0/iYMiCZY3svLC+bmbHlPfanv+9P7WdODdtOL22hUSm4Fvuh/AhWF3LGeU4CnPwFs9BfX9/FZKCitgoe9BM/2dn3yCc1MeXk5hg0bBplMhtWrV7e2Oww96dgCzfwTOLQEyLvIfZYFAuM+AzwH139eHVRUq/D1iRsAgPARXWFq0vpzEdRqNRITE+Hh4dGuhh86Ch1ToIXZQNRHjzbVtbADRn0EBM8ChI3f1XpPYjbuFVeis60FJgUZR9WW0bbpeAK9Hg3seglQlgMCIdDvb8DI/wMkTQtir1KqsTn2OgBg7nBviExbv/RktH06nkA7B3MheZ2Dueqsc0+DZPvTub9wp6gCTtZiTO3XzHHAjA5Dx/uZN7cBXj8GzDpgMHEqVWpsjOWmc705vCvMzRpfTWY0HpVKhY8++gheXl6wsLBA165d8emnn7bptnfHK0EBwM7DoNn9knIH2QXlsLcU4aX+7gbNm9FwPvvsM2zatAnbt29HQEAAEhMTMXv2bNjY2OCdd95pbfcaRYcT6J3Cciz7JQ0qNUGpJqiJoFLXeBGgUquhUgNqNUH1ePrDY2rN+epHC2q9PtQbFiLjKz0dHByaFiJJBFSXGc4hfTCT1Ll14+OcPn0azz33HCZMmAAA8PT0xK5du3D27Nnm9LBZ6XACLa9W4Wh63pMN9cTVxhyvyA1bMhsCS0tL3Lt3r2kb+FaXAf9qpTHd/7sDiCwbZDpo0CB88803uHLlCnx8fHD+/HmcPHkSa9eubWYnm48OJ1BHazFWTQ6EiVDAv4QCAUyFAgiFApgIBDAxefi3FhvN+5ppJgIBnKRi1vZsZd5//30oFAr4+fnBxMQEKpUKK1euxMyZM1vbtUbT4QQqNTfDi6ydqB9mEq4ka61rN5A9e/Zg586d+P777xEQEICUlBTMnz8frq6uCAsLa0Ynm48OJ9CORnl5OcaNGwcnJyesWLGicZkIBA2uZrYmixYtwvvvv48XX3wRABAYGIhbt24hIiKCCZRhnKjVahw/frxDhPqVlZVB+NgcXRMTkza9szgTKKPdMHHiRKxcuRLu7u4ICAhAcnIy1q5di9dee621XWs0TKCMdsOGDRvw0UcfITw8HHl5eXB1dcWbb77ZZhcMA5hAGe0Ia2trrFu3DuvWrWttVwxGxwv1YzDaEEygDIYRwwTaAZBIJLCwsGhtNxiNgLVB2zmWlpYoLS1tWqgfo9VgJWgHo72PhTYXrfW9MYF2EMzMzABwg/kM/dF8b5rvsaVgVdx2TkVFBaZM4XZd27x5M7/thkQiYdtRNAAiQllZGfLy8mBrawsTk5adEMEE2s5RqVQ4eJDbU8bOzg6mpqY6e+MwnoytrW2r7AvEBNqBEAgEcHFxgZOTk9a+N4z6MTMza/GSUwMTaAfExMSk1R44hn4YdSdRZGQkPD09YW5ujgEDBrTppSsYjMZgtAL94YcfsGDBAixfvhznzp1D7969ERoaytpPjA6F0Qp07dq1mDNnDmbPng1/f39s3rwZEokEW7ZsaW3XGIwWwyjboFVVVUhKSsLSpUv5Y0KhECEhIYiLi6v1nMrKSlRWVvKfi4qKAHA7T3VkSktL+fcKhQIqlaoVvWmfaJ6x5ghmMEqB3r9/HyqVCjKZ9s7UMpkMly9frvWciIgIfPzxxzrH3dzYKu8aXF1bf7e19kxxcTFsbGwMmqdRCrQxLF26FAsWLOA/q9VqFBQUwN7evk0OyCsUCri5uSE7O9vge04aM23xvokIxcXFzfIDaJQCdXBwgImJCXJzc7WO5+bm1jlYLBaLIRaLtY7Z2to2l4sthlQqbTMPqiFpa/dt6JJTg1F2EolEIgQHB+PYsWP8MbVajWPHjkEul7eiZwxGy2KUJSgALFiwAGFhYejXrx/69++PdevWobS0FLNnz25t1xiMFsNoBTp9+nTcu3cPy5YtQ05ODvr06YPDhw/rdBy1V8RiMZYvX65TbW/vdNT7rgsBsQmCDIbRYpRtUAaDwcEEymAYMUygDIYRwwTKYBgxTKAGYsWKFRAIBFovPz8/Pr2iogLz5s2Dvb09rKysMGXKFJ1AjKysLEyYMAESiQROTk5YtGgRlEqllk1sbCz69u0LsViMbt26Ydu2bTq+NOc0vRMnTmDixIlwdXWFQCDA/v37tdKJCMuWLYOLiwssLCwQEhKCq1evatkUFBRg5syZkEqlsLW1xd/+9jeUlJRo2Vy4cAFDhw6Fubk53NzcsHr1ah1f9u7dCz8/P5ibmyMwMJBfOUIfX4weYhiE5cuXU0BAAN29e5d/3bt3j0+fO3cuubm50bFjxygxMZEGDhxIgwYN4tOVSiX17NmTQkJCKDk5mQ4ePEgODg60dOlS3ubGjRskkUhowYIFdOnSJdqwYQOZmJjQ4cOHeZvdu3eTSCSiLVu20MWLF2nOnDlka2tLubm5BrnPgwcP0gcffEA///wzAaB9+/Zppa9atYpsbGxo//79dP78eXr22WfJy8uLysvLeZuxY8dS79696cyZM/Tnn39St27daMaMGXx6UVERyWQymjlzJqWlpdGuXbvIwsKCvv76a97m1KlTZGJiQqtXr6ZLly7Rhx9+SGZmZpSamqqXL8YOE6iBWL58OfXu3bvWtMLCQjIzM6O9e/fyx9LT0wkAxcXFERH34AuFQsrJyeFtNm3aRFKplCorK4mIaPHixRQQEKCV9/Tp0yk0NJT/3L9/f5o3bx7/WaVSkaurK0VERDT5Hh/ncYGq1WpydnamNWvW8McKCwtJLBbTrl27iIjo0qVLBIASEhJ4m0OHDpFAIKDbt28TEdHGjRvJzs6Ov28ioiVLlpCvry//edq0aTRhwgQtfwYMGEBvvvlmg31pC7AqrgG5evUqXF1d4e3tjZkzZyIrKwsAkJSUhOrqaoSEhPC2fn5+cHd356fPxcXFITAwUCsQIzQ0FAqFAhcvXuRtauahsdHkoZmmV9PmSdP0DElmZiZycnK0rm9jY4MBAwZo3aetrS369evH24SEhEAoFCI+Pp63GTZsGEQiEW8TGhqKjIwMPHjwgLep77toiC9tASZQAzFgwABs27YNhw8fxqZNm5CZmYmhQ4eiuLgYOTk5EIlEOsH7MpkMOTk5AICcnJxap9dp0uqzUSgUKC8vr3eaniaP5kRzjfqun5OTAycnJ610U1NTdOrUySDfRc30J/nSFjDaUL+2xrhx4/j3vXr1woABA+Dh4YE9e/awfVEYjYaVoM2Era0tfHx8cO3aNTg7O6OqqgqFhYVaNjWnzzk7O9c6vU6TVp+NVCqFhYVFo6bpGRLNNeq7vrOzs866UkqlEgUFBQb5LmqmP8mXtgATaDNRUlKC69evw8XFBcHBwTAzM9OaPpeRkYGsrCx++pxcLkdqaqrWwxsVFQWpVAp/f3/epmYeGhtNHq09Tc/LywvOzs5a11coFIiPj9e6z8LCQiQlJfE20dHRUKvVGDBgAG9z4sQJrbV7o6Ki4OvrCzs7O96mvu+iIb60CVq7l6q9sHDhQoqNjaXMzEw6deoUhYSEkIODA+Xl5RERN8zi7u5O0dHRlJiYSHK5nORyOX++ZphlzJgxlJKSQocPHyZHR8dah1kWLVpE6enpFBkZWeswi1gspm3bttGlS5fojTfeIFtbW63e4aZQXFxMycnJlJycTABo7dq1lJycTLdu3SIibmjD1taWfvnlF7pw4QI999xztQ6zBAUFUXx8PJ08eZK6d++uNcxSWFhIMpmMXnnlFUpLS6Pdu3eTRCLRGWYxNTWlzz//nNLT02n58uW1DrM8yRdjhwnUQEyfPp1cXFxIJBJR586dafr06XTt2jU+vby8nMLDw8nOzo4kEglNmjSJ7t69q5XHzZs3ady4cWRhYUEODg60cOFCqq6u1rKJiYmhPn36kEgkIm9vb9q6dauOLxs2bCB3d3cSiUTUv39/OnPmjMHuMyYmhgDovMLCwoiIG9746KOPSCaTkVgsptGjR1NGRoZWHvn5+TRjxgyysrIiqVRKs2fPpuLiYi2b8+fP05AhQ0gsFlPnzp1p1apVOr7s2bOHfHx8SCQSUUBAAP3+++9a6Q3xxdhh080YDCOGtUEZDCOGCZTBMGKYQBkMI4YJlMEwYphAGQwjhgmUwTBimEAZDCOGCZTBMGKYQBkMI4YJtI0zYsQIzJ8/v7Xd4DE2f9o6TKAMVFVVtbYLjLpo7WBgRuMJCwvTCVq/du0avfbaa+Tp6Unm5ubk4+ND69at0znvueeeo3/+85/k4uJCnp6eRMTNEOnduzeJxWIKDg6mffv2EQBKTk7mz01NTaWxY8eSpaUlOTk50csvv8wvjlabP5mZmS31dbRLmEDbMIWFhSSXy2nOnDn8SoIVFRW0bNkySkhIoBs3btB3331HEomEfvjhB/68sLAwsrKy4qdzpaWlUVFREXXq1IlefvllunjxIh08eJB8fHy0BPrgwQN+Clx6ejqdO3eOnn76aRo5cmSd/iiVytb4atoNbMmTNoyNjQ1EIhEkEonWKgEff/wx/97LywtxcXHYs2cPpk2bxh+3tLTEf//7X35hrs2bN0MgEOA///kPzM3N4e/vj9u3b2POnDn8OV999RWCgoLwr3/9iz+2ZcsWuLm54cqVK/Dx8anVH0bjYQJth0RGRmLLli3IyspCeXk5qqqq0KdPHy2bwMBArVXzMjIy0KtXL5ibm/PH+vfvr3XO+fPnERMTAysrK51rXr9+HT4+Poa9EQYTaHtj9+7deO+99/DFF19ALpfD2toaa9as4Ze01GBpaal33iUlJZg4cSI+++wznTQXF5dG+8yoGybQNo5IJIJKpeI/nzp1CoMGDUJ4eDh/7Pr160/Mx9fXF9999x0qKyv5zXMTEhK0bPr27YuffvoJnp6eMDWt/dF53B9G02DDLG0cT09PxMfH4+bNm7h//z66d++OxMREHDlyBFeuXMFHH32kI7TaeOmll6BWq/HGG28gPT0dR44cweeffw4AEAgEAIB58+ahoKAAM2bMQEJCAq5fv44jR45g9uzZvCgf90etVjffzXcAmEDbOO+99x5MTEzg7+8PR0dHhIaGYvLkyZg+fToGDBiA/Px8rdK0LqRSKX777TekpKSgT58++OCDD7Bs2TIA4Nulrq6uOHXqFFQqFcaMGYPAwEDMnz8ftra2EAqFtfqjWV2f0TjYmkSMOtm5cydmz56NoqIitvh2K8HaoAyeb7/9Ft7e3ujcuTPOnz+PJUuWYNq0aUycrQgTKIMnJycHy5YtQ05ODlxcXDB16lSsXLmytd3q0LAqLoNhxLBOIgbDiGECZTCMGCZQBsOIYQJlMIwYJlAGw4hhAmUwjBgmUAbDiGECZTCMmP8HZIPieV+OKUwAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "column = \"pods\"\n",
+ "x = \"target\"\n",
+ "y = \"[UPDATE].99thPercentileLatency(us)\"\n",
+ "title = \"99th Lat UPDATE [$\\mu$s]\"\n",
+ "plot_comparison(df_aggregated, x, y, column, title, peak_benchmark)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAANwAAADxCAYAAACgaNlpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4dklEQVR4nO2deXxMV//HPzOTWTOZyb6RRIKIoNaKUEWFUEVrV+0v1KOLUB6qqq2tfZSHVpVqaPvY1dpS1NKIrYiIfUtTS0hEJotkJstMtpnv74+RKyNBEskscd6v133NzDnfe873zp3PnHPPyiMiAoPBMAt8SzvAYDxPMMExGGaECY7BMCNMcAyGGWGCYzDMCBMcg2FGmOAYDDPCBMdgmBEmOAbDjDDBMRhmhAmOwTAjTHCMesPo0aPB4/HA4/HQsmXLOstnyZIlXD48Hg9ZWVlVPtdmBPfDDz+Ax+MhJCTEon6sWbMGPB4PZ86ceea0Tp48iTlz5kCtVlfJfs6cOU+8wS1btkT37t0r+Fp2SCQSBAYGYsKECUhPT3+inbe3N8LDw7F06VLk5eU90a8n3Zvy6T7pOHLkSAU/Hj1OnTr11O/I1dUV69evx4IFC55qW1P69OmD9evX44033qj2uXZ14E+dsHHjRjRq1AinT5/GjRs30KRJE0u79MycPHkSc+fOxejRo+Ho6Fhn+XzxxRfw9/dHYWEhjh8/jqioKOzduxdXrlyBTCarYFdSUgKVSoUjR45g8uTJWLx4MXbt2oUXXnih0vSfdG/Wr19vYrtu3TpER0dXCG/evDlu375t4sejVOWe29vb46233nqq3bMQFBSEoKAg3LhxAzt27KjWuTYhuKSkJJw8eRK//fYb3nvvPWzcuBGzZ8+2tFs2Q9++fdGhQwcAwL/+9S+4uLhg8eLF+P333zFy5MhK7QBgxowZOHToEF577TUMGDAACQkJkEqlJmk/7d48+uM/deoUoqOjnyiKR/2oT9hElXLjxo1wcnJCv379MGTIEGzcuNEkfvv27eDxeDh69GiFc1euXAkej4crV65wYUeOHEGHDh0gkUjQuHFjrFy5kquu1QZ37tzB+PHj0axZM0ilUri4uGDo0KHcPzhgrB5OmzYNAODv789Vm8rb1BWvvPIKAKNYqmI7c+ZM3LlzBxs2bKgQ/7R7Yy0EBARUKvIePXqgW7du3Oe8vDxMnjwZjRo1glgshru7O3r16oVz587Vih82I7hBgwZBJBJh5MiRuH79OuLj47n4fv36QS6XY+vWrRXO3bJlC1q0aME9RJ8/fx59+vTB/fv3MXfuXIwdOxZffPEFdu7cWWv+xsfH4+TJkxgxYgSWLl2K999/HzExMejevTu0Wi0AYNCgQVzp8u2332L9+vVYv3493Nzcas2Px3Hz5k0AgIuLS5Xs3377bQDAn3/+WSHuafemJmg0GmRlZZkc9+/fr3F6+fn5uH37Nlq3bl0h7tKlSyZV5ffffx9RUVEYPHgwfvjhB3z00UeQSqVISEiocf4mkJVz5swZAkDR0dFERGQwGKhhw4Y0adIkE7uRI0eSu7s7lZaWcmFpaWnE5/Ppiy++4ML69+9PMpmMUlNTubDr16+TnZ0dVeXrWL16NQGg+Pj4x9potdoKYbGxsQSA1q1bx4UtWrSIAFBSUtJT8yUimj17NgGgzMzMSuNbtGhB3bp1q+DrwYMHKTMzk1JSUmjz5s3k4uJCUqmU7t69W+VrUiqV1LZtW5Owqt6b8kRGRj72ey7zo7JDLBY/Ns0yIiIiyM/Pr0J42Xd/4MABk/CUlBQCQD/++KPJdUZGRj41L6Kn34/KsPoSbuPGjfDw8ECPHj0AGFu9hg8fjs2bN0Ov13N2w4cPR0ZGBo4cOcKFbd++HQaDAcOHDwcA6PV6HDx4EK+//jq8vb05uyZNmqBv37615nP555ySkhLcv38fTZo0gaOjY61VTapDWFgY3Nzc4OPjgxEjRkAul2PHjh1o0KBBldOQy+UVWiurem+qy/LlyxEdHW1y7Nu3r8bplT1OPFrCXbx4EQBMSjhHR0fExcXh3r17Nc7vSVh1o4ler8fmzZvRo0cPk+eNkJAQfPPNN4iJiUHv3r0BGJtqlUoltmzZgp49ewIwVifbtGmDwMBAAEBGRgZ0Ol2lrV212eqp0+kwf/58rF69GqmpqaByy8ZoNJpay6cyKnsOXb58OQIDA2FnZwcPDw80a9YMfH71/mvz8/Ph7u7Ofa7OvakuHTt2rNVGk8uXL8PDwwMeHh4m4ZcuXQKfzzfps1u4cCEiIiLg4+OD9u3b49VXX8X//d//ISAgoFZ8seoS7tChQ0hLS8PmzZvRtGlT7hg2bBgAmDygi8VivP7669ixYwdKS0uRmpqKEydOcKWbOZk4cSLmzZuHYcOGYevWrfjzzz8RHR0NFxcXGAyGGqcrkUgAGAVdGVqtlrMpT8eOHREWFobu3bujefPm1Rbb3bt3odFoTP6UqnNvLM2VK1cqfX67cOECAgICYG9vz4UNGzYMt27dwrJly+Dt7Y1FixahRYsWz1TClseqS7iNGzfC3d0dy5cvrxD322+/YceOHVixYgVXhRs+fDjWrl2LmJgYJCQkgIhMBOfu7g6JRIIbN25USK+ysJqyfft2RERE4JtvvuHCCgsLK3RwV7dV1M/PDwCQmJgIHx8fkzitVouUlJQalypPoqzPLDw8nAur7r2xJJcvX67wx2swGHDo0CG8/PLLFey9vLwwfvx4jB8/HhkZGWjXrh3mzZtXK48dVis4nU6H3377DUOHDsWQIUMqxHt7e2PTpk3YtWsX92WGhYXB2dkZW7ZsQUJCAjp27GjSgSoQCBAWFoadO3fi3r173HPcjRs3au0frCwfemT1wWXLllV4rin7Z63qSJOePXtCJBIhKioKr7zyiklJ9eOPP6K0tLRWn0UBY0n25Zdfwt/fH6NGjQJQs3tjKTIyMpCZmYm0tDST8KVLlyIrKwutWrXiwvR6PfLz86FUKrkwd3d3eHt7o6ioqFb8sVrB7dq1C3l5eRgwYECl8Z06dYKbmxs2btzI3VShUIhBgwZh8+bNKCgowNdff13hvDlz5uDPP/9Ely5d8MEHH0Cv1+P7779Hy5YtceHChSr7t2rVKuzfv79C+KRJk/Daa69h/fr1UCqVCA4ORmxsLA4ePFihGb59+/YAgM8++wwjRoyAUChE//79Tao45XF3d8esWbPw+eef4+WXX8aAAQMgk8lw8uRJbNq0Cb1790b//v2rfA2Psm/fPvz9998oLS1Feno6Dh06hOjoaPj5+WHXrl1cdbUm96YmfjxK586dq/0sdfnyZQDGLo3x48cjKCgIp06dwoEDBwAAZ8+eRVxcHEJCQpCXl4eGDRtiyJAhaN26NeRyOQ4ePIj4+HiT2sozUeX2TDPTv39/kkgkVFBQ8Fib0aNHk1AopKysLC4sOjqaABCPx6OUlJRKz4uJiaG2bduSSCSixo0b088//0xTp04liUTyVL+e1HQNgFJSUignJ4fGjBlDrq6uJJfLKTw8nP7++2/y8/OjiIgIk/S+/PJLatCgAfH5/Cp3EWzYsIE6depE9vb2JBaLKSgoiObOnUuFhYWV+vqk5v7KrkkkEpGnpyf16tWLvvvuO8rNzTWxr+m9Iap5twAAWr169ROvo7JugW+//ZYEAgH98ccf1LhxY5JIJNSrVy+6fPkyNW7cmBo2bEhnz54lIqKioiKaNm0atW7dmhwcHMje3p5at25NP/zwQ6X51aRbwGoFZ24GDhxITZo0sbQbjGcgIiKCfHx8KDMzk3JycoiIaOzYsdS0adNazUen01FmZiZNmzat/vXD1QWPtvJdv34de/fuNRlpz7BNUlJS4ObmhpdeegmAsUoZHBxcq3msWLECbm5uWLRoUbXPtdpnuLokICAAo0ePRkBAAO7cuYOoqCiIRCJ8/PHHlnaN8Qx8/PHH3HhJuVwOIsK1a9e4ftnaYvDgwSZ9d+UbWZ7Gcym4Pn36YNOmTVCpVBCLxQgNDcVXX32Fpk2bWto1xjMQHBxsUprdunUL+fn5tV7C+fj4VOiWqSo8IrZ7DoNhLp7LZzgGw1IwwTEYZsQmn+EMBgPu3bsHBweHWps0ymBUBhEhLy8P3t7e1R6DWhk2Kbh79+7V+KGVwagJKSkpaNiw4TOnY5OCc3BwAGD8EhQKhYW9YdRncnNz4ePjw/3mnhWbFFxZNVKhUDz3gtPr9fjrr78AAF27doVAILCwR/WT2np0sUnBMR5SWFjIzbjOz89/7MBnhnXAWikZDDPCBMdgAMgvKjVLPqxKaeMYDA8HChWXGsAqlJWjLS5Fao4OKTla3M3RISVbi5RsHe6qja8aXQn+/rIPJMK6fQZmgrNxfjx2k3vf7sto+Hk4obGbHAFu9mjsJkdjdzkCXO3hbC+q132WhSV63FPrkJKjw92cB2LK0SIlR4fUHC2y8oufmsY9tQ4BbvI69ZMJzoYpKCrFmpN3uM96A+H2fS1u39ci5pEJ044yIQJc7R+IUY7GbvYIcJPDz0UGocA2niwKS/S4kZGPv1V5uJ1VwAnqbo4W6blPXwLBQWIHHycZGjpJ4eP84NVJhobOUjR0kkEurns5MMHZMJvjU6DRlXCfj0zrDlUB4WZmPm5mFuBmZj5uZRYgVa2DWluCc8lqnEtWm6Rhx+fB11nGibCsdPRxlsFNLgafb/5S0WAgpKp1+FuVh7/Tco2vqlwkZRXA8ISh9lKhAD7O0gqiaugkg4+zDEqp0HwX8RiY4GyU4lIDfv7rFngCAUZOmIG2vk5o6OKAAC8ROjdxNbHVFeuRlPVQgDcz83Ery/heW6zHrawC3MoqwMFHVvMWCnjwVErgrZTC21EKb0fJg1fpgzAJHCTP9iPW6EqQ+EBQZQL7Jz3/sY0YjjIhgjwd0NhNblpKOUltotrMBGej/H4hFWmaQng4yrF6+pcQ2z3+YV8qEiDYW4Fgb9NBAkQEVW4hbmYU4FZWPm5m5BvFl1mANI0OJXpCSrYOKdmVr4MJGKtpDRyl8FI+FGP5z55KCYQCPkr0BtzKLDARVqIqD/c0hZWmKxTw0MTdAUGexqOZpwOaeyng7iC2elE9CSY4G8RgIKw8dgsA8H4nN4jjVwJSR8CpkfGQewJVGGjL4/HgpZTCSynFS01NS8VSvQHpeUVIU+uQqtbhnroQ99Q6pGl0SH3wXqMrQV5h6YMqX+WbNvJ4gKtcDLW2GCX6yuuDDRylaPaIsPxd7W3m2bI6MMHZIAcT0nEjIx8OEju8qfov4o/sAgC08+JDwOcBAjHg5Ac4+T8UYflDJHt84g+wE/DR4EFp9bhFxwuKSh8KMEeLrPtZyL9/D0VqFQz5GRBoM+FIarjocpHFU+KGuAmK3FrC3dsfQV4KBHkpEOjhYBXPVuai2oJLTU3F9OnTsW/fPmi1WjRp0gSrV6/m1oInIsyePRs//fQT1Go1unTpgqioKJPlC7KzszFx4kTs3r0bfD4fgwcPxnfffQe5vG6bZOsDRISoo8augLmBt6G/sgcdfy4AAOQvaAH7wnuAvgjI+sd4VIbcoxIhPhCn3ONh6UgEFKqB/EygIAPIzwAKMo2v+emwL8hEk/wMNCkL0z/SUlhZLTcLgNYFKGj98PBqbczfhquKVaVagsvJyUGXLl3Qo0cP7Nu3D25ubrh+/TqcnJw4m4ULF2Lp0qVYu3Yt/P39MXPmTISHh+PatWvcQqKjRo1CWloaoqOjUVJSgjFjxuDdd9/FL7/8UrtXVw85nZSN88lqONkVYuC9b2HyBDQhDpCIAM1dIOc2kJP04PXBkX0bKNIA+enGIyWuYgZ2EkDZECjRGcWlf3r/lQkiOWDvBsjdH77KXI0+qS4BGQmA9j5w85DxKEOsBDxbGcVXdrg2Bfj1azB2tdY0+eSTT3DixAludPqjEBG8vb0xdepUfPTRRwCMu8V4eHhgzZo1GDFiBBISEhAcHIz4+HiuVNy/fz9effVV3L1712QbqceRm5sLpVIJjUbz3M0WGL36NI4kZmJTg18Rev9XFMh8IZ9u3I6pSoOXdTlA9iNCLDs0dwGqZJspsRKQuwH27uVeywmqfPjTqqslOiDjGpB28eGRfq1i6QgAQhng0RLweuGhCN2aA3aip39RtURt/9aqVcLt2rUL4eHhGDp0KI4ePYoGDRpg/PjxGDduHADjFrYqlQphYWHcOUqlEiEhIYiNjcWIESMQGxsLR0dHk+2IwsLCwOfzERcXhzfeeKNCvkVFRSZru+fm5lb7QusDCWm5OJKYifb8f9Dp/m/GwL7/Bab3q3oiUieggRPQoF3FOH0JoEkxCk9o/1BEwoo78tQYoRRo0N54lM83M9FUhKrLQEkBcPe08SiDLwQ8ggGXpoDCC3DwAhw8H77KPav0jGopqiW4W7duISoqClOmTMGnn36K+Ph4fPjhhxCJRIiIiIBKpQKACvtweXh4cHEqlcpknzEAsLOzg7OzM2fzKPPnz8fcuXOr42q9ZMXRmxCiFMvka8ErJqD1m0BAt6efWFUEQsA5wHiYE4EQ8GxpPNoaNwyBQQ9k33ogwAsPhVioefj+cUiUFYVYmTDNWFKWUS3BGQwGdOjQAV999RUAoG3btrhy5QpWrFiBiIiIOnEQAGbMmIEpU6Zwn8tm4T5PpGRrsfviPXwg2APv4iRA5gKEzzOuul8f4QuMz3CuTYFWD3boIQLUd4C0S4A6GchLe3CojK+5aUCpzijKQg2QWXFDEBNkLuWE6Am8Mgtw8HjyOc9ItQTn5eVVYVHN5s2b49dffwUAeHp6AgDS09Ph5eXF2aSnp6NNmzacTUZGhkkapaWlyM7O5s5/FLFYDLFYXB1X6x0//XULfkjDJOEOY0CfBYDMGSgosKxj5oTHe9iqWhlEQFHuQwE+6VVfbGy80d4H0o3PwOg5p84voVqC69KlCxITE03C/vnnH26jQH9/f3h6eiImJoYTWG5uLuLi4vDBBx8AAEJDQ6FWq3H27Fluu6ZDhw7BYDAgJCTkWa+nXpKVX4Qt8clYY/c/iFACNO4JtBoKwLhF1+zZs7n3zzU8nrE6KVECbs0eb0cEaLMrilDm8vhzaovq7Bpy+vRpsrOzo3nz5tH169dp48aNJJPJaMOGDZzNggULyNHRkX7//Xe6dOkSDRw4kPz9/Umn03E2ffr0obZt21JcXBwdP36cmjZtSiNHjqyyHxqNhgCQRqOpjvs2y6L9f9O0T6cSzVaQ4T+eRNlJlnbpuaG2f2vV3q5q9+7d1LJlS25fsh9//NEk3mAw0MyZM8nDw4PEYjH17NmTEhMTTWzu379PI0eOJLlcTgqFgsaMGUN5eXlV9uF5ElxeYQl1m72Z1LM8iWYriE4stbRLzxW1/Vuzyb0Fnqd+uJ+O3YJn9AfoLzgF8moN3r8OAYKHTwIGgwEJCcZh/s2bN6+VxUoZD7FoPxzDvBSV6pFwbBvGCU7BwBOA33+pidgA4153ZVsnsVW7rB/2d2jF/BF/A1NKfgQAGEI+ALzbWNYhxjPDBGelGAwEw6Ev0ZCXhTyJN+xe+dTSLjFqASY4K+XU8Wi8UbwHAGA38DtAxKqK9QEmOCuESovheXQ6BDzCNdc+kDbvbWmXGLUEE5wVkvzHIgTobyGH5PAYttjS7jBqESY4ayP7FrwuLAEAHPKbBBf3Bpb1h1GrsG4Ba4II+dsnQE7FOG5oiY4DI596ilAo5OYePvdDu2wAJjhr4uJmyO+dQCEJcajxDMxyeXpDiUgkwqJFi8zgHKM2YFVKa6EgC/r9MwAAS0oHY0ivly3sEKMuYCWctbB/BgSFObhm8MP1xhEV1pB8HAaDAcnJyQAAX19fNrTLymGCswZuHAQub4WeePik5F/4tPsTppY8gk6ng7+/PwA2tMsWYH+Hlqa4ANjzbwDAGn0fCHzaI8Tf2cJOMeoKJjhLc2Q+oE7GPbjim9KheL9bY5teypvxZJjgLMm9C0DscgDAp8Vj4OXmgl7N63ZNDYZlYYKzFPpSYPeHABlwgNcFRwxt8X63xhbZHophPpjgLEVcFJB2EUVCBT7TvQUvpQQD27BRJfUdJjhLkHMbOGxcavA7fgSyoMTYl/whsmO3o77DugXMDRGwZwpQosV9t474IaUTlFIhRnb0rVFydnZ2GD9+PPeeYd2wO2RurvwK3IwBCcT4rPRfAHiICPWDfQ33lxaLxVi+fHnt+sioM1gdxpyUFgMxxiXbk1uOx/40OSRCPiI6N7KsXwyzwQRnTi7+Ylyi294dczN7AACGd/CBi7zmq0oTETIzM5GZmQkbXIDtuYMJzlyUFgPHvgYA3Gv1Pg7dyoeAz8O/uj7bxhlarRbu7u5wd3eHVqutDU8ZdQgTnLm4sMG4FZTcEwszOwMABrT2ho+z9W6txKh9mODMQWkRV7rdbxuJ369lAwDe62bmbaEYFocJzhycWwfkpgIO3liS0xlEwCtB7gjyrN+rRjMqwgRX15QUAn8ZFwLKe3EitlzIBAC8362xJb1iWAgmuLrm3Dog7x6gaICV+S+huNSAdr6OeLGRk6U9Y1gAJri6pKQQOG4s3Qo7TcLa02kAwKbgPMewkSZ1ydk1xs3+FA2xvuhl5BXeQhN3OcJqcQqOnZ0dt90zG9pl/bA7VFeU6LjSraTLFPx0MBUA8O7LAbU6BUcsFmPNmjW1lh6jbmFVyrrizGogPx1Q+mInuiMjrwieCgleZ1NwnmtYCVcXFGuB498CAAxdpyLqaAoA1MkUHCLiRpjIZDL2bGjlsBKuLjizCijIABx9ES3qiVuZBVBI7DAypGZTcJ6EVquFXC6HXC5nQ7tsgGcS3IIFC8Dj8TB58mQurLCwEJGRkXBxcYFcLsfgwYORnp5ucl5ycjL69esHmUwGd3d3TJs2DaWlpc/iivVQXACcWAIAoK4fIeov45qRb4f6QV7DKTiM+kONBRcfH4+VK1fihRdeMAn/97//jd27d2Pbtm04evQo7t27h0GDBnHxer0e/fr1Q3FxMU6ePIm1a9dizZo1mDVrVs2vwpqI/x9QkAk4NcJpZTgupKghsuNjdGd/S3vGsAaoBuTl5VHTpk0pOjqaunXrRpMmTSIiIrVaTUKhkLZt28bZJiQkEACKjY0lIqK9e/cSn88nlUrF2URFRZFCoaCioqIq5a/RaAgAaTSamrhfdxTmEf03gGi2gujceopYFUd+0/fQp79dqrMs8/PzCQABoPz8/DrL53mltn9rNSrhIiMj0a9fP4SFhZmEnz17FiUlJSbhQUFB8PX1RWxsLAAgNjYWrVq1gofHw76o8PBw5Obm4urVq5XmV1RUhNzcXJPDKon/CdBmAU7+SHB/FUcSM8HnGbsCGAygBq2Umzdvxrlz5xAfH18hTqVSQSQSwdHR0STcw8MDKpWKsykvtrL4srjKmD9/PubOnVtdV81LUR5wYqnxfbePsfKvOwCAvq284FeFXXAYzwfVKuFSUlIwadIkbNy4ERKJpK58qsCMGTOg0Wi4IyUlxWx5V5nTPwK6bMC5MVIavobdl4zDuD5gg5QZ5ahWCXf27FlkZGSgXbt2XJher8exY8fw/fff48CBAyguLoZarTYp5dLT0+Hp6QkA8PT0xOnTp03SLWvFLLN5FLFYDLG45ssQ1DmFucDJZcb33abjfydToDcQXmriipYNlHWatUAgwJAhQ7j3DOumWiVcz549cfnyZVy4cIE7OnTogFGjRnHvhUIhYmJiuHMSExORnJyM0NBQAEBoaCguX76MjIwMziY6OhoKhQLBwcG1dFlm5vRKQJcDuDRFdsAAbI43dgWYYwqORCLBtm3bsG3bNrPWOhg1o1olnIODA1q2bGkSZm9vDxcXFy587NixmDJlCpydnaFQKDBx4kSEhoaiU6dOAIDevXsjODgYb7/9NhYuXAiVSoXPP/8ckZGR1l2KPY5CDXDye+P7btOx9lQKCksMaNlAgS5NXCzrG8PqqPWe2G+//RZ8Ph+DBw9GUVERwsPD8cMPP3DxAoEAe/bswQcffIDQ0FDY29sjIiICX3zxRW27Yh7iVgKFasC1GbSBA7B251EAbAoOo3J4RLa3tlpubi6USiU0Gg0UCgsuU6BTA9+9YCzlBv8Pq3PbY+7ua/BzkeHQ1O4QmGFjjoKCAsjlcgBsQ8a6oLZ/a2ws5bMQt8IoNrcglAQNxM9/JQEAxnUNMIvYGLYHE1xN0amB2AdV5W7TsedKOlLVOrjKRRjSvqFFXWNYL0xwNeXUD0CRBnAPBgUPxMqjtwAAY7r4QyJkzfOMymGCqwm6HOBUlPF9t+k48s99/K3Kg71IgLdC/CzrG8OqYYKrCbHLgaJcwKMl0HwAoo7eBAC8GeILpUxoYecY1gwTXHXRZgOnVhjfd5uOc3c1OJ2UDaGAh3deYlNwGE+GzYisLieXAcV5gEcrIOg1rNhwDgAwsE0DeCmlZndHIBDg1Vdf5d4zrBsmuOpQcN84SBkAun+CG1laRCcYx4G+b6F9AiQSCf744w+L5M2oPqxKWR1OLgWK8wHPF4Cgfvjx2E0QAWHNPdDE3cHS3jFsAFbCVZWCLOD0T8b33WdAlVuEHeeNa01+0N16Jpjq9XqUlJRY2g2bQSgUmrUqzgRXVU58B5QUAF5tgGZ9sWrf3yjRE15s5IT2fs4Wc6ugoADu7u7g8Xi4evUqW7mrBjg6OsLT09MsY1+Z4KpCfiYQ/7PxfY9PoSksxS9x5puC8zS0Wi3eeecdFBQUwMPDg61PWUXowZqeZVPFvLy86jxPJriqcGIJUKIFGrQHmvbGhiM3kV9UikAPOXo0c7e0d7C3t8eAAQPg5uYGFxc2Jag6SKXGluWMjAy4u7vXefWSNZo8jbx049J3ANB9BgpLDVh94jYA4L2XG9fqPgE1xcXFBSKRiPvxMKqHTGbc9tkcz76shKsMIiD7FnDzEHBpC1CqAxp0AJqE4dfTycjKL4K3UoIBbbwt7SkAgMfjcQej+pjze2OCK0OXAyQdM4rs5iFAnfwwjm8HhM2GnoCfjhkHKY/tGgChgFUQGNXj+RWcvgS4ewa4ddgosNSzABkexvOFgG8noHEPoNmrgHtz7L+Uhtv3tVBKhRjxoo/lfGdUCo/Hw44dO/D6669b2pXH8vwIrnw18eZhY2lWnGdq49oMaPyK8fDrDIjl5U4nrHgwSDki1A/2VrJPAJ/PR8eOHSEWi1mV0gawjl9NXaFTP1JNvGMaL3UGAro/EFkPQPn4iaMnb97H5VQNJEI+Ijo3qkuvq4VUKsW6deuQlJQEPp9Vca2d+nWHDHogOQ44PB/4uRew0B/Y+jZwdrVRbHwh0Kgr0HMW8O4RYNpNYOhqoN3bTxQbAK50G9bBBy5y21pdrHv37vjwww/x8ccfw9nZGZ6enpgzZw4Xf/v2bfB4PFy4cIELU6vV4PF4OHLkCADgyJEj4PF4OHDgANq2bQupVIpXXnkFGRkZ2LdvH5o3bw6FQoE333zziZ3va9asgaOjI3bu3ImmTZtCIpEgPDy8wuK+UVFRaNy4MUQiEZo1a4b169ebxF+/fh0vv/wyJBIJgoODER0dbRJfXFyMCRMmwMvLCxKJBH5+fpg/f37NvsBapH6VcPoSYN1AY6tiGa6B5aqJXUyqiVXlSqoGf13PgoDPw7iu1jOMqzqsXbsWU6ZMQVxcHGJjYzF69Gh06dIFvXr1qlY6c+bMwffffw+ZTIZhw4Zh2LBhEIvF+OWXX5Cfn4833ngDy5Ytw/Tp0x+bhlarxbx587Bu3TqIRCKMHz8eI0aMwIkTJwAAO3bswKRJk7BkyRKEhYVhz549GDNmDBo2bIgePXrAYDBg0KBB8PDwQFxcHDQajcmWaQCwdOlS7Nq1C1u3boWvry9SUlKsY8XuWtkSxMw8cUeT7WOJtkYQnV1LlJNcK/lFbjxLftP30MRfztVKerVJfn4+tWnThg4cOPDY3XO6detGL730kknYiy++SNOnTycioqSkJAJA58+f5+JzcnIIAB0+fJiIiA4fPkwA6ODBg5zN/PnzCQDdvHmTC3vvvfcoPDz8sf6uXr2aANCpU6e4sLIdluLi4oiIqHPnzjRu3DiT84YOHUqvvvoqEREdOHCA7OzsKDU1lYvft28fAaAdO3YQEdHEiRPplVdeIYPB8FhfytDpdHTt2jXS6XQV4qxi9xyrZvDPwNA1QLv/AxyfvSUx+b4Wey8b9wl4z0JTcJ5GTk4ODAbDE20e3cfPy8vLZPXrqlI+nbJhZAEBASZhT0vXzs4OL774Ivc5KCgIjo6OSEhIAAAkJCSgS5cuJud06dLFJN7Hxwfe3g/7QctW9i5j9OjRuHDhApo1a4YPP/wQf/75ZzWvtG6oX1VKANvP3kV+YQlK9IRivQElegOKS42vJXpCEff+YVyxnlBSaqhgX6w3IFdXCgMBLwe6oYV33e4TUJcIhaZLP/B4PE6kZY0tVG6J0seNuiifDo/He2K6lqRdu3ZISkrCvn37cPDgQQwbNgxhYWHYvn27Rf2qd4JbsO9vZOUX1WqafB7w4StNajVNa8LNzQ0AkJaWhrZt2wKASQNKbVNaWoozZ86gY8eOAIz7T6jVajRv3hwA0Lx5c5w4cQIRERHcOSdOnOD2nmjevDlSUlKQlpbGDTg+depUhXwUCgWGDx+O4cOHY8iQIejTpw+ys7Ph7Gy52R31TnBhzd2RV1QKkYAPkYAPoR0PwgfvRXZ8CAXGQ2THh0jAM/lsfOVBJBBAKOBBaGc8z1Uuhqey/m6UIZVK0alTJyxYsAD+/v7IyMjA559/Xmf5CYVCTJw4EUuXLoWdnR0mTJiATp06cQKcNm0ahg0bhrZt2yIsLAy7d+/Gb7/9hoMHDwIAwsLCEBgYiIiICCxatAi5ubn47LPPTPJYvHgxvLy80LZtW/D5fGzbtg2enp4V9i40N/VOcAsGv/B0I0YFVq1ahbFjx6J9+/Zo1qwZFi5ciN69e9dJXjKZDNOnT8ebb76J1NRUdO3aFf/73/+4+Ndffx3fffcdvv76a0yaNAn+/v5YvXo1unfvDsBYBd6xYwfGjh2Ljh07olGjRli6dCn69OnDpeHg4ICFCxfi+vXrEAgEePHFF7F3717L91XWStOLmbHaPb4tQH5+Pvn5+dG+fftsYo/v1atXk1KptLQbJrBWSkaV4fP5aNmyJUQiERvaZQMwwdk4UqkU27dvh5eXl+WrS4ynwu4Qw6yMHj0aarXa0m5YDCY4BsOMMMHZOFqtFj179sTdu3eh1+st7Q7jKTDB2ThEhNTUVCY2G4EJjsEwI9US3Pz58/Hiiy/CwcEB7u7ueP3115GYmGhiU1hYiMjISLi4uEAul2Pw4MFIT083sUlOTka/fv0gk8ng7u6OadOmobS09NmvhsGwcqoluKNHjyIyMhKnTp1CdHQ0SkpK0Lt3bxQUFHA2//73v7F7925s27YNR48exb179zBo0CAuXq/Xo1+/figuLsbJkyexdu1arFmzBrNmzaq9q2IwrJVn6TXPyMggAHT06FEiIlKr1SQUCmnbtm2cTdlcp9jYWCIi2rt3L/H5fFKpVJxNVFQUKRQKKioqqjSfwsJC0mg03JGSksJGmjzA1kaaWCM2M9JEo9EAADf6+uzZsygpKUFYWBhnExQUBF9fX8TGxgIAYmNj0apVK3h4eHA24eHhyM3NxdWrVyvNZ/78+VAqldzh48NWzHoeOXbsGPr37w9vb2/weDzs3LnT0i5VmxoLzmAwYPLkyejSpQtatmwJAFCpVBCJRBVGZHt4eEClUnE25cVWFl8WVxkzZsyARqPhDquYKm8l8Hg8NGnSpMK8tPpIQUEBWrdujeXLl1valRpT49kCkZGRuHLlCo4fP16b/lSKWCyGWGxbC/eYC5lMhj179iApKalG6+ITEXQllulSkAoF1Rr/2bdvX/Tt27cOPap7aiS4CRMmYM+ePTh27BgaNny42pWnpyeKi4uhVqtNSrn09HR4enpyNqdPnzZJr6wVs8yGYT50JXoEzzpgkbyvfREOmajezRB7ItWqUhIRJkyYgB07duDQoUPw9zfdRL59+/YQCoWIiYnhwhITE5GcnMytOREaGorLly+brHsRHR0NhULBzehlMOor1fp7iYyMxC+//ILff/8dDg4O3DOXUqmEVCqFUqnE2LFjMWXKFDg7O0OhUGDixIkIDQ1Fp06dAAC9e/dGcHAw3n77bSxcuBAqlQqff/45IiMjWbWxBmi1WgwYMAAzZsyAr69vtc+XCgW49kV4HXhWtbyfO6rTpAmg0mP16tWcjU6no/Hjx5OTkxPJZDJ64403KC0tzSSd27dvU9++fUkqlZKrqytNnTqVSkpKquwHm4D6kOe1WwDllsR7VszZLVCtEo7Krer0OCQSCZYvX/7EliQ/Pz/s3bu3OlkzGPWC5+uJlWHT5Ofn48aNG9znpKQkXLhwAc7OzjWqTlsCJjiGzXDmzBn06NGD+zxlyhQAQEREBNasWWMhr6oHExzDZujevXuVHmusGTY9h8EwI0xwNg6Px0ODBg1qNMqEYX6Y4GwcmUyGmJgYNGzYkInOBmCCYzDMCBMcg2FGmOBsHJ1OhyFDhiAtLc0qtoliPBkmOBvHYDDgypUrKC4utvkm8+cBJjgGw4wwwTEYZoQJjsEwI0xwDJtAr9dj5syZ8Pf3h1QqRePGjfHll1/a3HMrG0vJsAn++9//IioqCmvXrkWLFi1w5swZjBkzBkqlEh9++KGl3asyTHD1ACcnp5rvDUcElGhr16GqIpQBVVxE6OTJkxg4cCD69esHAGjUqBE2bdpUYX0ca4cJzsaxt7dHbGxsjVftQokW+Mq79h2rCp/eA0T2VTLt3LkzfvzxR/zzzz8IDAzExYsXcfz4cSxevLiOnaxdmOAYNsEnn3yC3NxcBAUFQSAQQK/XY968eRg1apSlXasWTHDPO0KZsaSxVN5VZOvWrdi4cSN++eUXtGjRAhcuXMDkyZPh7e2NiIiIOnSydmGCs3F0Oh0iIiLwwQcfwM/Pr/oJ8HhVrtZZkmnTpuGTTz7BiBEjAACtWrXCnTt3MH/+fJsSHOsWsHEMBgNOnz6NoqIim2sirw5arbZCw5BAILC58aOshGPYBP3798e8efPg6+uLFi1a4Pz581i8eDHeeecdS7tWLZjgGDbBsmXLMHPmTIwfPx4ZGRnw9vbGe++9Z3P7CjLBMWwCBwcHLFmyBEuWLLG0K88Ee4ZjMMwIExyDYUaY4OoBUqm0WvusMSwHE5yNY29vj/Pnz8PX15et2mUDMMHVI+pzP1xdYs7vjQmuHlC2v7dWa6FR/zZO2fdmjn3SWbeAjVNYWIjBgwejW7dueO211wAYF4dlz3RPh4ig1WqRkZEBR0dHs1TJeWSD9ZDc3FwolUpoNBooFApLu2NRCgoKIJfLwePxkJSUxEq5GuDo6AhPT89K/6Rq+7fGSrh6AhHB1dUVEokEJSUllnbHZhAKhWZtbGKCq2cIBALWWmnFWKzRZPny5WjUqBEkEglCQkJsbqo8g1ETLCK4LVu2YMqUKZg9ezbOnTuH1q1bIzw8HBkZGZZwh8EwGxYR3OLFizFu3DiMGTMGwcHBWLFiBWQyGVatWmUJdxgMs2H2Z7ji4mKcPXsWM2bM4ML4fD7CwsIQGxtb6TlFRUUoKiriPms0GgDGFqTnnYKCAu59bm4u9Hq9Bb2pf5T9xmqrMd/sgsvKyoJer4eHh4dJuIeHB/7+++9Kz5k/fz7mzp1bIdzHx6dOfLRVvL0ttPrWc0BeXh6USuUzp2MTrZQzZszAlClTuM8GgwHZ2dlwcXGxyQ7e3Nxc+Pj4ICUl5bnqR7TF6yYi5OXl1dqfmdkF5+rqCoFAgPT0dJPw9PR0eHp6VnqOWCyGWCw2CXN0dKwrF82GQqGwmR9ebWJr110bJVsZZm80EYlEaN++PWJiYrgwg8GAmJgYhIaGmtsdBsOsWKRKOWXKFERERKBDhw7o2LEjlixZgoKCAowZM8YS7jAYZsMighs+fDgyMzMxa9YsqFQqtGnTBvv376/QkFJfEYvFmD17doVqcn3neb3u8tjk4GUGw1Zh8+EYDDPCBMdgmBEmOAbDjDDBMRhmhAmuisyZMwc8Hs/kCAoK4uILCwsRGRkJFxcXyOVyDB48uELnfnJyMvr16weZTAZ3d3dMmzYNpaWlJjZHjhxBu3btIBaL0aRJE6xZs6aCL3U1tenYsWPo378/vL29wePxsHPnTpN4IsKsWbPg5eUFqVSKsLAwXL9+3cQmOzsbo0aNgkKhgKOjI8aOHYv8/HwTm0uXLqFr166QSCTw8fHBwoULK/iybds2BAUFQSKRoFWrVti7d2+1fbFKiFElZs+eTS1atKC0tDTuyMzM5OLff/998vHxoZiYGDpz5gx16tSJOnfuzMWXlpZSy5YtKSwsjM6fP0979+4lV1dXmjFjBmdz69YtkslkNGXKFLp27RotW7aMBAIB7d+/n7PZvHkziUQiWrVqFV29epXGjRtHjo6OlJ6e/szXuHfvXvrss8/ot99+IwC0Y8cOk/gFCxaQUqmknTt30sWLF2nAgAHk7+9POp2Os+nTpw+1bt2aTp06RX/99Rc1adKERo4cycVrNBry8PCgUaNG0ZUrV2jTpk0klUpp5cqVnM2JEydIIBDQwoUL6dq1a/T555+TUCiky5cvV8sXa4QJrorMnj2bWrduXWmcWq0moVBI27Zt48ISEhIIAMXGxhKR8cfM5/NJpVJxNlFRUaRQKKioqIiIiD7++GNq0aKFSdrDhw+n8PBw7nPHjh0pMjKS+6zX68nb25vmz5//zNdYnkcFZzAYyNPTkxYtWsSFqdVqEovFtGnTJiIiunbtGgGg+Ph4zmbfvn3E4/EoNTWViIh++OEHcnJy4q6ZiGj69OnUrFkz7vOwYcOoX79+Jv6EhITQe++9V2VfrBVWpawG169fh7e3NwICAjBq1CgkJycDAM6ePYuSkhKEhYVxtkFBQfD19eWmHMXGxqJVq1Ymnfvh4eHIzc3F1atXOZvyaZTZlKVRNrWpvM3TpjbVFklJSVCpVCZ5K5VKhISEmFyjo6MjOnTowNmEhYWBz+cjLi6Os3n55ZchEolMrjExMRE5OTmczZO+h6r4Yq0wwVWRkJAQrFmzBvv370dUVBSSkpLQtWtX5OXlQaVSQSQSVRhQ7eHhAZVKBQBQqVSVTkkqi3uSTW5uLnQ63ROnNpWlUVeUpf+kvFUqFdzd3U3i7ezs4OzsXCvfQ/n4p/lirdjE9BxroG/fvtz7F154ASEhIfDz88PWrVshlUot6BnDlmAlXA1xdHREYGAgbty4AU9PTxQXF0OtVpvYlJ9y5OnpWemUpLK4J9koFApIpdIaTW2qLcrSf1Lenp6eFdalKS0tRXZ2dq18D+Xjn+aLtcIEV0Py8/Nx8+ZNeHl5oX379hAKhSZTjhITE5GcnMxNOQoNDcXly5dNfpDR0dFQKBQIDg7mbMqnUWZTloYlpzb5+/vD09PTJO/c3FzExcWZXKNarcbZs2c5m0OHDsFgMCAkJISzOXbsmMnamdHR0WjWrBmcnJw4myd9D1XxxWqxdKuNrTB16lQ6cuQIJSUl0YkTJygsLIxcXV0pIyODiIzdAr6+vnTo0CE6c+YMhYaGUmhoKHd+WbdA79696cKFC7R//35yc3OrtFtg2rRplJCQQMuXL6+0W0AsFtOaNWvo2rVr9O6775Kjo6NJ62dNycvLo/Pnz9P58+cJAC1evJjOnz9Pd+7cISJjU7yjoyP9/vvvdOnSJRo4cGCl3QJt27aluLg4On78ODVt2tSkW0CtVpOHhwe9/fbbdOXKFdq8eTPJZLIK3QJ2dnb09ddfU0JCAs2ePbvSboGn+WKNMMFVkeHDh5OXlxeJRCJq0KABDR8+nG7cuMHF63Q6Gj9+PDk5OZFMJqM33niD0tLSTNK4ffs29e3bl6RSKbm6utLUqVOppKTExObw4cPUpk0bEolEFBAQQKtXr67gy7Jly8jX15dEIhF17NiRTp06VSvXePjwYQJQ4YiIiCAiY3P8zJkzycPDg8RiMfXs2ZMSExNN0rh//z6NHDmS5HI5KRQKGjNmDOXl5ZnYXLx4kV566SUSi8XUoEEDWrBgQQVftm7dSoGBgSQSiahFixb0xx9/mMRXxRdrhE3PYTDMCHuGYzDMCBMcg2FGmOAYDDPCBMdgmBEmOAbDjDDBMRhmhAmOwTAjTHAMhhlhgmMwzAgTnJXTvXt3TJ482dJucFibP7YGE9xzQHFxsaVdYJRh6cGcjMcTERFRYSDxjRs36J133qFGjRqRRCKhwMBAWrJkSYXzBg4cSP/5z3/Iy8uLGjVqRETGUfitW7cmsVhM7du3px07dhAAOn/+PHfu5cuXqU+fPmRvb0/u7u701ltvcYslVeZPUlKSub6OegETnBWjVqspNDSUxo0bx60UVlhYSLNmzaL4+Hi6desWbdiwgWQyGW3ZsoU7LyIiguRyOTcF5sqVK6TRaMjZ2Zneeustunr1Ku3du5cCAwNNBJeTk8NNGUpISKBz585Rr169qEePHo/1p7S01BJfjc3ClliwYpRKJUQiEWQymclM5vLbL/v7+yM2NhZbt27FsGHDuHB7e3v8/PPP3GI9K1asAI/Hw08//QSJRILg4GCkpqZi3Lhx3Dnff/892rZti6+++ooLW7VqFXx8fPDPP/8gMDCwUn8YVYcJzgZZvnw5Vq1aheTkZOh0OhQXF6NNmzYmNq1atTJZGSsxMREvvPACJBIJF9axY0eTcy5evIjDhw9DLpdXyPPmzZsIDAys3Qt5DmGCszE2b96Mjz76CN988w1CQ0Ph4OCARYsWccvQlWFvb1/ttPPz89G/f3/897//rRDn5eVVY58ZD2GCs3JEIhH0ej33+cSJE+jcuTPGjx/Phd28efOp6TRr1gwbNmxAUVERtyFifHy8iU27du3w66+/olGjRrCzq/yn8ag/jOrBugWsnEaNGiEuLg63b99GVlYWmjZtijNnzuDAgQP4559/MHPmzArCqYw333wTBoMB7777LhISEnDgwAF8/fXXAAAejwcAiIyMRHZ2NkaOHIn4+HjcvHkTBw4cwJgxYziRPeqPwWCou4uvhzDBWTkfffQRBAIBgoOD4ebmhvDwcAwaNAjDhw9HSEgI7t+/b1LaPQ6FQoHdu3fjwoULaNOmDT777DPMmjULALjnOm9vb5w4cQJ6vR69e/dGq1atMHnyZDg6OoLP51fqT9nq04yqwdY0eY7ZuHEjxowZA41GwxazNRPsGe45Yt26dQgICECDBg1w8eJFTJ8+HcOGDWNiMyNMcM8RKpUKs2bNgkqlgpeXF4YOHYp58+ZZ2q3nClalZDDMCGs0YTDMCBMcg2FGmOAYDDPCBMdgmBEmOAbDjDDBMRhmhAmOwTAjTHAMhhn5f9jFmi57bQLWAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "column = \"pods\"\n",
+ "x = \"target\"\n",
+ "y = \"[UPDATE].AverageLatency(us)\"\n",
+ "title = \"Avg Lat UPDATE [$\\mu$s]\"\n",
+ "plot_comparison(df_aggregated, x, y, column, title, peak_benchmark)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAANcAAAEACAYAAAAgMeOWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA58UlEQVR4nO2deVxU1fvHP8MwCwOyyqrIooCCCriAaLkkimuZpWSWaGX1VSuztKzc6mtk5lKGWl9/YimKWmKbG6JkromKG6iggKgguLAP28zz+2OGKyPbDMwwM3Ler9d9zdxzz73nuTPzmXPOc59zDo+ICAwGQ+uY6NsABuNJhYmLwdARTFwMho5g4mIwdAQTF4OhI5i4GAwdwcTFYOgIJi4GQ0cwcTEYOoKJi8HQEUxcDIaOYOJiGC1Tp04Fj8cDj8dD9+7ddVbO6tWruXJ4PB7u3bun1nkGK661a9eCx+MhODhYr3Zs2rQJPB4PSUlJLb7W8ePHsXjxYhQUFKiVf/HixY1+md27d8fgwYPr2FqzicVieHt7Y9asWbh7926j+VxcXBAWFobvvvsOxcXFjdrV2HdT+7qNbYmJiXXseHw7efJkk59R+/btsXnzZnz11VdN5m0uI0aMwObNm/H8889rdJ6pjuxpMTExMXB3d8e///6L9PR0dOnSRd8mtZjjx49jyZIlmDp1KqytrXVWzueffw4PDw+Ul5fj6NGjWLduHfbs2YNLly5BIpHUyVdVVYXc3FwkJiZi9uzZWLlyJX7//Xf07Nmz3us39t1s3rxZJe/PP/+M+Pj4OundunVDZmamih2Po853bm5ujldeeaXJfC2ha9eu6Nq1K9LT0xEXF6f2eQYproyMDBw/fhy7du3CW2+9hZiYGCxatEjfZhkNI0eORJ8+fQAAb7zxBuzs7LBy5Ur89ttvmDRpUr35AGD+/Pk4dOgQxowZg2effRapqakwMzNTuXZT383jP/STJ08iPj6+UQE8bseTgkE2C2NiYmBjY4PRo0fjxRdfRExMjMrxX375BTweD3///Xedc3/44QfweDxcunSJS0tMTESfPn0gFovRuXNn/PDDD1yTSxtkZWVhxowZ8PHxgZmZGezs7DBhwgTunxlQNPHmzp0LAPDw8OCaPrXz6IpnnnkGgEIY6uRdsGABsrKysGXLljrHm/puDAVPT896BT1kyBAMGjSI2y8uLsbs2bPh7u4OkUgEBwcHDBs2DGfPnm2xDQYrrvHjx0MoFGLSpElIS0vD6dOnueOjR4+GhYUFduzYUefc7du3w8/Pj+vgnjt3DiNGjMD9+/exZMkSvP766/j888+xe/durdl7+vRpHD9+HC+99BK+++47vP3220hISMDgwYNRVlYGABg/fjxXa6xatQqbN2/G5s2bYW9vrzU7GuL69esAADs7O7Xyv/rqqwCAAwcO1DnW1HfTHAoLC3Hv3j2V7f79+82+XklJCTIzM+Hv71/n2IULF1Sau2+//TbWrVuHF154AWvXrsWHH34IMzMzpKamNrt8DjIwkpKSCADFx8cTEZFcLqeOHTvSe++9p5Jv0qRJ5ODgQNXV1VxaTk4OmZiY0Oeff86ljR07liQSCd2+fZtLS0tLI1NTU1Ln9qOjowkAnT59usE8ZWVlddJOnDhBAOjnn3/m0pYvX04AKCMjo8lyiYgWLVpEACg/P7/e435+fjRo0KA6th48eJDy8/MpOzubYmNjyc7OjszMzOjWrVtq35OVlRUFBgaqpKn73dRm5syZDX7ONXbUt4lEogavWUNERAS5ubnVSa/57Pfv36+Snp2dTQDoxx9/VLnPmTNnNlkWUdPfx+MYXM0VExMDR0dHDBkyBIDC+xQeHo7Y2FjIZDIuX3h4OPLy8pCYmMil/fLLL5DL5QgPDwcAyGQyHDx4EOPGjYOLiwuXr0uXLhg5cqTWbK7dL6mqqsL9+/fRpUsXWFtba6V5oSmhoaGwt7eHq6srXnrpJVhYWCAuLg4dOnRQ+xoWFhZ1vIbqfjeaEhUVhfj4eJVt7969zb5eTZfg8Zrr/PnzAKBSc1lbW+PUqVO4c+dOs8trCINyaMhkMsTGxmLIkCEq/YPg4GCsWLECCQkJGD58OACFe9TKygrbt2/H0KFDASiahAEBAfD29gYA5OXlQSqV1ut10qb3USqVIjIyEtHR0bh9+zao1rQkhYWFWiunPurrN0ZFRcHb2xumpqZwdHSEj48PTEw0+x8tKSmBg4MDt6/Jd6MpQUFBWnVoXLx4EY6OjnB0dFRJv3DhAkxMTFSeiX399deIiIiAq6srevfujVGjRmHKlCnw9PRssR0GVXMdOnQIOTk5iI2NhZeXF7dNnDgRAFQ6zyKRCOPGjUNcXByqq6tx+/ZtHDt2jKu1WpN33nkHS5cuxcSJE7Fjxw4cOHAA8fHxsLOzg1wub/Z1xWIxAIV466OsrIzLU5ugoCCEhoZi8ODB6Natm8bCunXrFgoLC1X+gDT5bvTNpUuX6u1vJScnw9PTE+bm5lzaxIkTcePGDaxZswYuLi5Yvnw5/Pz8WlRz1mBQNVdMTAwcHBwQFRVV59iuXbsQFxeH9evXc82w8PBw/PTTT0hISEBqaiqISEVcDg4OEIvFSE9Pr3O9+tKayy+//IKIiAisWLGCSysvL6/zsFhT76SbmxsA4OrVq3B1dVU5VlZWhuzs7GbXFo1R80wqLCyMS9P0u9EnFy9erPMnK5fLcejQIQwcOLBOfmdnZ8yYMQMzZsxAXl4eevXqhaVLl7a462Aw4pJKpdi1axcmTJiAF198sc5xFxcXbNu2Db///jv3wYWGhsLW1hbbt29HamoqgoKCVB5G8vl8hIaGYvfu3bhz5w7X70pPT9fKP1PtcuixGerWrFlTpx9S84+pboTG0KFDIRQKsW7dOjzzzDMqNdCPP/6I6upqrfYdAUUN9cUXX8DDwwOTJ08G0LzvRl/k5eUhPz8fOTk5Kunfffcd7t27hx49enBpMpkMJSUlsLKy4tIcHBzg4uKCioqKFttiMOL6/fffUVxcjGeffbbe4/369YO9vT1iYmK4L1AgEGD8+PGIjY1FaWkpvvnmmzrnLV68GAcOHMCAAQPwn//8BzKZDN9//z26d++O5ORkte3buHEj9u3bVyf9vffew5gxY7B582ZYWVnB19cXJ06cwMGDB+u4vnv37g0A+PTTT/HSSy9BIBBg7NixKs2U2jg4OGDhwoX47LPPMHDgQDz77LOQSCQ4fvw4tm3bhuHDh2Ps2LFq38Pj7N27F1euXEF1dTXu3r2LQ4cOIT4+Hm5ubvj999+5Jmdzvpvm2PE4/fv317jvc/HiRQCKxwgzZsxA165dcfLkSezfvx8AcObMGZw6dQrBwcEoLi5Gx44d8eKLL8Lf3x8WFhY4ePAgTp8+rdIKaTZq+RRbgbFjx5JYLKbS0tIG80ydOpUEAgHdu3ePS4uPjycAxOPxKDs7u97zEhISKDAwkIRCIXXu3Jk2bNhAH3zwAYnF4ibtasxdDICys7Pp4cOHNG3aNGrfvj1ZWFhQWFgYXblyhdzc3CgiIkLlel988QV16NCBTExM1HbLb9myhfr160fm5uYkEomoa9eutGTJEiovL6/X1sZc7PXdk1AoJCcnJxo2bBh9++23VFRUpJK/ud8NUfNd8QAoOjq60fuozxW/atUq4vP59Ndff1Hnzp1JLBbTsGHD6OLFi9S5c2fq2LEjnTlzhoiIKioqaO7cueTv70/t2rUjc3Nz8vf3p7Vr19ZbnqaueIMRV2vz3HPPUZcuXfRtBqMFREREkKurK+Xn59PDhw+JiOj1118nLy8vrZYjlUopPz+f5s6da9zPuXTB4962tLQ07NmzRyWinGGcZGdnw97eHk899RQARbPQ19dXq2WsX78e9vb2WL58uUbnGUyfS5d4enpi6tSp8PT0RFZWFtatWwehUIh58+bp2zRGC5g3bx4XP2hhYQEiQkpKCvfcU1u88MILKs/GajtAGqNNiGvEiBHYtm0bcnNzIRKJEBISgi+//BJeXl76No3RAnx9fVVqqRs3bqCkpETrNZerq2udRyHqwCNiq5wwGLqgTfS5GAx9wMTFYOgIJi4GQ0cwcTEYOsKoxHXkyBGMHTsWLi4u4PF4Go8mrhna//jWUPgRg9ESjEpcpaWl8Pf3rzcyWx0+/PBD5OTkqGy+vr6YMGGCli1lMGA4sYWaAoDi4uJU0srLy+mDDz4gFxcXkkgkFBQURIcPH27wGsnJyQSAjhw5oltjGW0So6q5mmLWrFk4ceIEYmNjceHCBUyYMAEjRoxAWlpavfk3bNgAb29vPP30061sKaNNoG91Nxc8VnNlZWURn89XmYiGiGjo0KE0f/78OudLpVKysbGhZcuW6dpURhvliQl/unjxImQyGTd/Rg0VFRX1TikWFxeH4uJiREREtJaJjDbGEyOukpIS8Pl8nDlzBnw+X+WYhYVFnfwbNmzAmDFj6kxiwmBoiydGXIGBgZDJZMjLy2uyD5WRkYHDhw/j999/byXrGG0RoxJXSUmJysQyGRkZSE5Ohq2tLby9vTF58mRMmTIFK1asQGBgIPLz85GQkICePXti9OjR3HkbN26Es7Oz1uefYDBU0HenTxMOHz5c73DwmqH0lZWVtHDhQnJ3dyeBQEDOzs70/PPP04ULF7hryGQy6tixI33yySd6ugtGW4ENOWEwdMQT9ZyLwTAkmLgYDB1hFA4NuVyOO3fuoF27dlpbU4vBqA8iQnFxMVxcXDSeBvxxjEJcd+7cadYcBgxGc8nOzkbHjh1bdA2jEFe7du0AKG7Y0tJSz9YwnmSKiorg6urK/eZaglGIq6YpaGlp2abFJZPJ8M8//wAAnn766TqRKAztoY3uh1GIi6GgvLycW3iupKSEDfI0cJi3kMHQEUxcDIaOYM1CXUIEbHsJuPE3IGqn2MSWyveWyq12Wq30Omkt72AzWhcmLl1SkgdcU67pVS0FSvNaeEHJo7cbhgHtLAGBGSCQKF9rv28s7bFjYmtAUHf5V0OgWibH2ZsFqJLJIRaYQGTK515FAhOIBXyITfkQ8HkG9wyUiUuXPLiueLXsCLy8HagoBiqKFK/lhcr9Wmkq6bXSqssV16ksfXTtu5eAh1r6MZmaAUM+AUJmAiaG44HMvFeK93ck49zNgibzmvCgIjyVVwEfIlOlEJXvuzq1wxtPt3xR8cZg4tIl95XDY+y9AafujedtjOoKoKIE1fl3gMieAIAlFp/CSgiIUAExVUCMCoioEmKUQ0QVEKMSIqqACBWKVypXeRUqNxGVw6RaCsQvAK7uBcatBWw9mjBItxARYk9n44s/U1BWKYO5kI+ONhKUV8tQXiVDRbUc5VUylFc9WsxdToC0SgZplQxAVZNlDPS2Z+Iyau4ray7bzi27jqkIpTI+3om/AuvB0wAA2x/6gMcXtNBAACBM5CdioelmWNw8Dlo3ALwRXwK9IgA9NLPyiyvw8a8XkHBF0YTu52mLFRMD0MG67kLmRIRKmRzlVXJU1BJdbfFVVCteVdKrZehoI6lzPW3DxKVLamouu5aJK6+oHK/9dBqXbhfBYcAELBzrC1cbCeREIAAgKN7XvELxw1PsA4RHx4DaeRXvD1x2xIgrflghWI/gqivAH+8BV/4Cnl0DtHNqke2aEJ9yFx//egH3Sysh5Jtg3ggfvDbAAyYm9Yucx+Mp+l6mfMBMG3802kUjcUVGRmLXrl24cuUKzMzM0L9/fyxbtgw+Pj6Nnrdz504sWLAAmZmZ8PLywrJlyzBq1KgWGW4UPLiheLXr0uxLXLtbjGnRp3G7QApbcyE2RPRBr042WjJQwYTeHXEgxRXv/9YRI0vjMM90B0RpByCP6geTMSuB7uO1Wt7jlFRU44s/UrA9KRsA0NWpHVa/FICuTpbA3RQgZTcgqwL4AsDEVNEvNKl5r9zn196vtfEFyvw1acp9sVWL//SaQiNx/f3335g5cyb69u2L6upqfPLJJxg+fDhSUlIajBY4fvw4Jk2ahMjISIwZMwZbt27FuHHjcPbsWZXV+p445PJH4rJtXtv+ePo9vLXlDIrLq+HR3hz/N6UX7mddxem7QK9evbQW/sTj8RDm54SnurTHqvgOeO6EP5bz16JHeSbwyzTIU/+EyehvAImtVsqrzZmsB3h/+3ncfFAGHg9482lPzBnmBdHtU0DMt0Dafq2XCQDo/Azwapxurq2kRSOR8/Pz4eDggL///hsDBw6sN094eDhKS0vx559/cmn9+vVDQEAA1q9fr1Y5RUVFsLKyQmFhofHEFhZkA6u7K/4tP70L8DVrge86ewsf/XoBVTJCHzcb/G9KHwhRxc1kpcvwp8t3CrFwVzIG5m7CTP5umPLkqJI4QPD8OsArVCtlVFbL8W3CNaxLvA45AR2szbDixe7oV3kSOPYtcDtJmZMH+IwCrDsB8mpAXqV8lSlqM3l13U1We79KkVdeXSu/DHAfAIz/sY5d2vyttajPVVhYCACwtW34H+3EiROYM2eOSlpYWFijiyhUVFSgoqKC2y8qKmqJmfqhxg1v466RsIgIaw6lY2X8NQDA6J7OWDHBH2IBH6WlTXvBtIGfixV2zhiIrf+645V9fbBUvgady3KAmBdQGRAB4cgvAVHd6erUJT2vGLO3J+PSbcX3OjGgPZa4X4TZng8ffW58ERDwMtD/HZ0333RFs8Ull8sxe/ZsDBgwoNHmXW5ubp25AR0dHZGbm9vgOZGRkViyZElzTTMMmuEprJLJ8cmui9h55hYA4K1BnvgorGuDHXpdYmLCwyv93BDm9wa+/qM3uqWswmum+yBM/gmlaYcgmfgjeG79NbqmXE74+UQmIvdeQUW1HK5mFdjgewE+mTGA0jsIsRXQdzoQ/BZg4aCDO2s9mi2umTNn4tKlSzh69Kg27QEAzJ8/X6W2qxljY1TUiEtNZ0ZReRVmbDmLo+n3YMIDljzXHa/2c9Ohgeph306E5S/3w7H0KMz5ZSvmSL9Fx9JsyKNHoajXf2A1ajFgKmryOrmF5Zj7y3n8k3YPzriPhfaJCCvfB5PLygfjlh0VD7F7TWlRrWhINEtcs2bNwp9//okjR440OVrTyckJd+/eVUm7e/cunJwadvGKRCKIRE1/YQZNTfPGrmlnRk6hFNOiT+NKbjEkQj6+fzkQz3Q1rJmAB3Rpj94fzMTGhKfgcHwJXjRJhNXZtbh/ZT/avbwRwo4BDZ7754U7+DTuEhzLb2CV8C88xz8Ok+JqxUEHP2DAewqPpFae2xkOGkXFExFmzZqFuLg4HDp0CB4eTT/JDwkJQUJCgkpafHw8QkJCNLPU2OCecTVec12+U4hxUcdwJbcY9u1E2P5miMEJqwaxgI8ZI3qh1zsxWGm3CPlkCbuy6+BtGIqbuz9XOBJqUSitwvux57B521asql6KA6KP8LzJEZhQNeD+NDD5V+A/xwD/8CdOWICGNdfMmTOxdetW/Pbbb2jXrh3Xb7KysoKZmeIJ+pQpU9ChQwdERkYCAN577z0MGjQIK1aswOjRoxEbG4ukpCT8+GNdT80Tg6waeJipeN9In+vva/mYseUMSitl8HKwQPS0vq0SOdBSPO0t8P6s97Hv32EQ7ZuDZ+hfdEpegayre2E56f9g08kXJ9Ly8Mf2HxFRuQsBIkUtTjwT8Lo9Cwx4F+jQW893oXs0Ete6desAAIMHD1ZJj46OxtSpUwEAN2/eVJk1p3///ti6dSs+++wzfPLJJ/Dy8sLu3buf7GdchTcVLl9TMWDZod4ssf/exKe7L0EmJ4R42mH9q71h1USUgUAgwKJFi7j3+oTH42FkcA8Udv8LO2O/RdjNlXCTpkC6cRASbZ6D2/1/8KVJLmACyPkimAS+Al7ITKP1/DUHo5hx1+iec6XFAzEvAg6+wIwTKoeICN8cuIqow4p/8/GBHfDVCz0hNDXucasXUy6jatcM9KpO5tLK+O1g2u8tCEPeBizs9WecBhjMcy5GA3BueFVnRkW1DPN+uYDfku8AAN4d6oX3Q70MbhxSc+jh64dq7wQc2/kNbG/8Dp7f8+g68j9PjOevOTBx6YJ6nBmFZVV4c3MSTmU8gKkJD1+O74GJfTR7vCCXy5GamgoA6NatW4snrdQ2pqamGDDpYwAf69sUg4CJSxdwbnhF/yL7QRmmRv+L6/mlsBCZYt0rvfC0l+bNJKlUyvVV2exPhg8Tly6oFZ1x4VYBXtuUhHslFXC2EiN6Wl9FtDfjiYeJS9tUVwCFiqET1TaeeP17hbC6OVsiempfOFkZ5lwVDO3DxKVtHmYCJAeEFsiqsEB+cQXMBHzsfDsEFiL2cbclDKtH/CRQ48yw9URaXgkAwMvRggmrDcLEpW1qBexeu6sUlwObc7AtwsSlbWp5CmvXXIy2B2uraJtaNVfahWIAgLeWxCUQCPDhhx9y7xmGDROXtlGKq9raAzfyHwDQXrNQKBRi+fLlWrkWQ/ewZqE2qSwFihWhTdkmzqiUyWEm4Nc75x7jyYfVXNqkZrYnMxtcLVQ027wcLbQ2TF8ul+PmzZsAgE6dOhlc+BNDFSYubVIrMiNN6Sns4qA9Z4ZUKuUGqLLwJ8OH/fVpk1oBu9eUnkJvR+aGb6swcWkTbobdzki7q/AUemmx5mIYF0xc2kTZLJRZe+BGvmJWI1ZztV2YuLSJsll4R9CReQoZTFxaQ1oAlN0DAFypUIzV6uKgPU8hw/hg4tIWNWFP5g648kAxLQkLe2rbMFe8trj/aLkgLqZQywG7pqammDFjBveeYdiwb0hb1Jph91qGdmMKaxCJRIiKitLqNRm6gzULtYXSmSGz6cw8hQwAzRDXkSNHMHbsWLi4uIDH4zW6FBAAJCYmgsfj1dkaW+XEKFG64fOFuvMUEhHy8/ORn58PI5huss2jsbhKS0vh7++vcfPk6tWryMnJ4TYHB+NeHkYFIq5ZmC5TzPOuC09hWVkZHBwc4ODggLKyMq1em6F9NO5zjRw5EiNHjtS4IAcHB1hbW2t8nlFQdh8oVywEeLHMFkAJi8xgtF6fKyAgAM7Ozhg2bBiOHTvWaN6KigoUFRWpbAZNTcCuZUek3lOs9OHF+lttHp2Ly9nZGevXr8evv/6KX3/9Fa6urhg8eDDOnj3b4DmRkZGwsrLiNoNf+I4L2O2Ma3d14ylkGB86d8X7+PjAx8eH2+/fvz+uX7+OVatWYfPmzfWeY3QrSyr7W3JbT9xIU3gK2aQ0DL085woKCmp0uVejW1lS2Sx8KHZFZbUcYoEJOtqwmMK2jl6ecyUnJ8PZ2VkfResGpbiy4AKAxRQyFGhcc5WUlCA9PZ3bz8jIQHJyMmxtbdGpUyfMnz8ft2/fxs8//wwAWL16NTw8PODn54fy8nJs2LABhw4dwoEDB7R3F/qklhs+paI9gEp466hJaGpqioiICO49w7DR+BtKSkrCkCFDuP2avlFERAQ2bdqEnJwcbp4HAKisrMQHH3yA27dvQyKRoGfPnjh48KDKNYya4hygqgzgmeBMkRWAfJ15CkUiETZt2qSTazO0D1tZsqVk/AP8NAaw8cBIrEFqThE2TOmDUF/DXDSc0Tja/K2x2MKWomwSkm1nXM/X7bwZRITS0lKUlpay8CcjgImrpSifcRWZu+ncU1hWVgYLCwtYWFiw8CcjgImrpSjHcd3hM08hQxUmrpaibBamVSkCkXXlKWQYH0xcLUEu46ZTO1fWHgDQhYU9MZQwcbWEwluArBLgC/HvAwkAVnMxHsHE1RKUzgyy8UDaPSkANikN4xFMXC1B2SQsa/fIU+hqI9GzUQxDgcXQtARlTGGeoCMA3XsK+Xw+XnzxRe49w7Bh4moJymZhJimCkHU9zEQsFmPnzp06LYOhPVizsCUo3fCXyhWeQtbfYtSGiau5yKqAh1kAgH+LbACwAZIMVZi4msvDLIBkIIEE/94XAtD90P7S0lJuarrS0lKdlsVoOUxczUXZJKy0dEdFNZQxhcxTyHgEE1dzUTozHpop5vbobG8BPospZNSCiau5KN3wt3mKgF02dTXjcZi4mouy5rqqDNjV5sLijCcDJq7moozOOFtqB4DVXIy6MHE1hyqpImgXwLGHVgDYJKCMurAIjebwIAMAQS60RE65BUSmreMp5PP5GDVqFPeeYdgwcTUHpRu+2LwTUMRDF4fW8RSKxWL89ddfOi+HoR1Ys7A5KD2FdwUdAICtaMKoF1ZzNQelp/CGzAmAflc0kclkqKqq0lv5xoZAIGi1JjUTV3NQegovSBUBu63lKSwtLeUWDbx79y6Ki4tRUFDQKmU/SVhbW8PJyQk8nm6b8hqL68iRI1i+fDnOnDmDnJwcxMXFYdy4cY2ek5iYiDlz5uDy5ctwdXXFZ599hqlTpzbTZANAWXM9CthtvWZhzZRq9+/f51aalEgkOv+hPAkQEcrKypCXlwcAOl+vQGNx1Szb+tprr2H8+PFN5s/IyMDo0aPx9ttvIyYmBgkJCXjjjTfg7OyMsLCwZhmtVyqKgZK7AIBr1Q4QmZrA1bZ1YwrNzc1RUlICJycn2NnZtWrZxo6ZmWJOyby8PDg4OOi0iajzZVvXr18PDw8PrFixAgDQrVs3HD16FKtWrTJOcSmbhJVCGxSVW8BXDzGFNYKSSFigcHOo+dyqqqp0Ki6dewtPnDiB0NBQlbSwsDCcOHGiwXMMetlWZZPwvrgTAP08PK5pArKmYPNorc9N5+LKzc2Fo6PqogSOjo4oKiqCVCqt9xyDXrZVOcNuNvTvKWQYNgb5nGv+/PkoLCzktuzsbH2b9AhlzXVFGbDLnnHpBx6Ph927d+vbjEbRuSveyckJd+/eVUm7e/cuLC0tuc7l4xj0sq3K6IwzJa0fsGtiYoJBgwbBwcGBNQmNAJ2LKyQkBHv27FFJi4+PR0hIiK6L1g3K6Iw0PXgKzczMkJiYiPLycmRkZLRauYzmoXGzsKSkBMnJyUhOTgbwaNnWmtUk58+fjylTpnD53377bdy4cQPz5s3DlStXsHbtWuzYsQPvv/++du6gNSl7AEgfAAAyyckgRx8PHjwY7777LubNmwdbW1s4OTlh8eLF3PHMzEzweDzu+wOAgoIC8Hg8JCYmAlA8l+TxeNi/fz8CAwNhZmaGZ555Bnl5edi7dy+6desGS0tLvPzyy40uZbRp0yZYW1tj9+7d8PLyglgsRlhYWJ1m/rp169C5c2cIhUL4+Phg8+bNKsfT0tIwcOBAiMVi+Pr6Ij4+XuV4ZWUlZs2aBWdnZ4jFYri5uSEyMrJ5H6A2IQ05fPgwAaizRUREEBFRREQEDRo0qM45AQEBJBQKydPTk6KjozUqs7CwkABQYWGhpuZql+zTRIssqXhpZ3L76E96b9tZvZghlUopJSWFpFJpnWODBg0iS0tLWrx4MV27do1++ukn4vF4dODAASIiysjIIAB07tw57pyHDx8SADp8+DARPfqO+/XrR0ePHqWzZ89Sly5daNCgQTR8+HA6e/YsHTlyhOzs7Oirr75q0M7o6GgSCATUp08fOn78OCUlJVFQUBD179+fy7Nr1y4SCAQUFRVFV69epRUrVhCfz6dDhw4REZFMJqPu3bvT0KFDKTk5mf7++28KDAwkABQXF0dERMuXLydXV1c6cuQIZWZm0j///ENbt25t1uenzd+axuLSBwYjruRYokWWlLZsILl99Cd9fyitVYsvKSmh9u3bU0BAAF26dKlBcT311FMqaX379qWPPvqIiDQT18GDB7k8kZGRBICuX7/Opb311lsUFhbWoL3R0dEEgE6ePMmlpaamEgA6deoUERH179+fpk+frnLehAkTaNSoUUREtH//fjI1NaXbt29zx/fu3asirnfeeYeeeeYZksvlDdpSm9YSl0F6Cw0WpacwXaZ4tKAPT+G9e/fw8OHDRvP07NlTZd/Z2ZkL+dGE2tdxdHSERCKBp6enSlpT1zU1NUXfvn25/a5du8La2hqpqakAgNTUVAwYMEDlnAEDBqgcd3V1hYuLC3f88f761KlTkZycDB8fH7z77rs4cOCAhneqG5i4NEHpKbxQVjPDrmE+4xIIBCr7PB4PcrkcgMLjCEBlTeWGouprX4fH4zV6XX3Sq1cvZGRk4IsvvoBUKsXEiRO5OfX1CROXJnA1l8JT2KmVYwq1gb29PQAgJyeHS6vt3NA21dXVSEpK4vavXr2KgoICdOvWDYAiHO7YsWMq5xw7dgy+vr7c8ezsbBV7T548WaccS0tLhIeH43//+x+2b9+OX3/9FQ8ePNDFLakNG3KiLkRcdMYNcjZIT6E6mJmZoV+/fvjqq6/g4eGBvLw8fPbZZzorTyAQ4J133sF3330HU1NTzJo1C/369UNQUBAAYO7cuZg4cSICAwMRGhqKP/74A7t27cLBgwcBAKGhofD29kZERASWL1+OoqIifPrppyplrFy5Es7OzggMDISJiQl27twJJycnWFtb6+y+1IHVXOpSmg9UFoPAQzY5GPWiCxs3bkR1dTV69+6N2bNn47///a/OypJIJPjoo4/w8ssvY8CAAbCwsMD27du54+PGjcO3336Lb775Bn5+fvjhhx8QHR2NwYMHA1A0Y+Pi4iCVShEUFIQ33ngDS5cuVSmjXbt2+Prrr9GnTx/07dsXmZmZ2LNnD9cE1hstdom0AgbhLcw8RrTIku7911svnkIihbcQALm5uTXoLTQkoqOjycrKSt9m1KG1vIWsWaguysiMLOVaXPqYBNTExAR9+vSBo6MjC38yApi41EXpzEitVDgE9DEJqJmZGU6fPs3Cn4wE1udSF6UbPl3mCKGRegpbm6lTp7bpOT6YuNRF6SnMMNCYQobhwcSlDnI5V3NlkLPepq4uKyuDu7s7hg4dahAPbxmNw/pc6lB8B6guhwx83CJ7TNDTAEkiQlZWll7KZmgOq7nUQekpzDVxhAx8gw17YhgWTFzqoPQUpikDdtlyQQx1YOJSB+V0atdlTsxTyFAbJi51UNZczFPI0AQmLnW4X+MpdGKzPbUSR44cwdixY+Hi4mIUMz3VBxNXU8iqgYeZAIBMuZNeV5Dk8Xjw9fVFly5d9GZDa1EzbXpUVJS+TWk2zBXfFIU3AXkVKiHAHdjp1VMokUhw+fLlFoU/ERGkVTItW6YeZgK+2jGRmk6bbogwcTWFMjIjkxxBMDH6ZqG0Sgbfhfv1UnbK52GQCNvOT441C5uixpkhZ55Chma0nb+R5lIr7MmzvTlM+fr7PyorK0Pfvn3h7OyMb7/9tlnXMBPwkfK5flaXMRO0rUXSmbiaopanUN8Pj4kIKSkpKC0tbfY1eDxem2qa6ZNm/Q1HRUXB3d0dYrEYwcHB+PfffxvMu2nTJvB4PJVNLBY32+BWp1azUJ+eQobxofFf2Pbt2zFnzhysX78ewcHBWL16NcLCwnD16lVuvd7HsbS0xNWrV7l9oxlFW10BFCqmXs4gJ7zmwMKeWouSkhKkp6dz+zXTptva2qJTp056tEx9NK65Vq5cienTp2PatGnw9fXF+vXrIZFIsHHjxgbP4fF4cHJy4rbH1+syWB5mAiRHKYmRD2tWc7UiSUlJCAwMRGBgIABgzpw5CAwMxMKFC/VsmfpoVHNVVlbizJkzmD9/PpdmYmKC0NDQRleKLCkpgZubG+RyOXr16oUvv/wSfn5+DeavqKhARUUFt6+3lSVr9beEfD7zFLYigwcPVpm41BjRqOa6d+8eZDJZvStF5ubm1nuOj48PNm7ciN9++w1btmyBXC5H//79cevWrQbLMZiVJZWewkxygqe9fj2FDOND57+WkJAQTJkyBQEBARg0aBB27doFe3t7/PDDDw2eYzArS9YK2DWEMVw8Hg9ubm7o0KGDvk1hqIFGzcL27duDz+fXu1Kkk5OTWtcQCAQIDAxU6aw+jsGsLFnTLJQ7wdsAIjMkEgkyMzPZ7E9GgkY1l1AoRO/evZGQkMClyeVyJCQkqL1SpEwmw8WLF+Hs7KyZpfrgQU3ok2HUXAzjQmNX/Jw5cxAREYE+ffogKCgIq1evRmlpKaZNmwYAmDJlCjp06MCt7Pf555+jX79+6NKlCwoKCrB8+XJkZWXhjTfe0O6daJvKMqDoNgDF3PDGPH01Qz9oLK7w8HDk5+dj4cKFyM3NRUBAAPbt28c5OW7evKkyR/fDhw8xffp05ObmwsbGBr1798bx48e5VSwMFmWtVUDmKONbwc0APIVSqRQDBw6Eo6Mjvv76a32bw2iCZsXBzJo1C7Nmzar3WM26ujWsWrUKq1atak4x+kXpzDAkT6FcLkdSUhLc3NyM3k3dFtD/L8ZQUbrhFU1C1t9iaA4TV0PUjOMyEE8hw/hg4moIlWdcTFwMzWHiagB6UGtSGtYsbHVkMhkWLFgADw8PmJmZoXPnzvjiiy+Mqq/JBvbUR3kheKX5AIDbJi4G4Slsayxbtgzr1q3DTz/9BD8/PyQlJWHatGmwsrLCu+++q2/z1IKJqz6UkRn5ZAVHe3uD8BTW0L59e9jY2DT/AkRAVZn2DNIEgQRQc7jR8ePH8dxzz2H06NEAAHd3d2zbtq3RsYOGBhNXfTx4tFyQITUJzc3NkZ+f37Lwp6oy4EsX7RqmLp/cAYTmamXt378/fvzxR1y7dg3e3t44f/48jh49ipUrV+rYSO3BxFUf3OhjZ6Of7clY+fjjj1FUVISuXbuCz+dDJpNh6dKlmDx5sr5NUxsmrvq4/2ioif+T5ikUSBQ1iL7KVpMdO3YgJiYGW7duhZ+fH5KTkzF79my4uLggIiJCh0ZqDyaueqD718GDoln4ggEN7ZdKpRg5ciQcHBywePHi5l2Ex1O7aaZP5s6di48//hgvvfQSAKBHjx7IyspCZGQkE5fRQgS6nw4egFs8F7jbGY6nUC6X4++//24T4U9lZWUqMaoAwOfzjWpFTSauxyl7AJOKQgAAv72HQXkK2xJjx47F0qVL0alTJ/j5+eHcuXNYuXIlXnvtNX2bpjZMXI+jdGbcIVu4OrbXszFtlzVr1mDBggWYMWMG8vLy4OLigrfeeuvJnaCmTVATmSF31vskoG2Zdu3aYfXq1Vi9erW+TWk2rM3zOLU8hcwNz2gJTFyPQcpm4Q0De4DMMD6YuB6jKk8hrls8Z4PyFNYgkUhgZmambzMYasD6XLUhgkmBIvRJZu1pcJ5Cc3NzlJaWstmfjAQmLgCQy4Drh4Ez0TCtLoOMeDB3NvylUZ/0Z126orU+t7YtrsJbwLktiq3w0cSju+VPwdPRVo+GNY5AIACgeNDKmoiaU1amGBVQ8znqirYnLlkVcG0fcOYnIP0gAOW/mJkN0PMlzLraHX/m2mCdAcYUlpeX44UXXgAArF+/Hnl5eQAU/TCjWTlGjxARysrKkJeXB2tra/D5ul2Mr+2I6/514NxmIHkrUFJrxmD3p4HeU4GuY1BGpjh04iAAmUF6CmUyGfbs2QMAsLGxgampKScwhvpYW1urPUN0S3iyxVVVDlz5EzizCcj851G6uQMo4GXkdp6Af4tscObGQ5xNPI3UnGLI5AQBnwc3A/QU1obH48HZ2RkODg6oqqrStzlGg0Ag0HmNVcOTKa68VEWz70IsIH0IACDwUNRhEE7ZjsHu0p44/W8x8hOyAGSpnOpsJUZEf3cIDMxT2BB8Pr/VfiwMzWiWuKKiorB8+XLk5ubC398fa9asQVBQUIP5d+7ciQULFiAzMxNeXl5YtmwZRo0a1Wyj66WyFLgcpxDVrUdDwQuFjthrOhTrCvsj67otcB0A7gEATE148Otghd6dbNDLzRq9OtnAxZo5CBjaQefLth4/fhyTJk1CZGQkxowZg61bt2LcuHE4e/Ysunfv3vI7uHMOsqRNwMVfwK8qAQBUg4+Dsl6IlQ3BkfKekCuflbe3EKJXJxv0crNBbzcb9OhgBXEbW2Ge0XrwSEOnf3BwMPr27Yvvv/8egGKMkaurK9555x18/PHHdfKHh4ejtLQUf/75J5fWr18/BAQEYP369WqVWVRUBCsrKxQWFsLS0pJLv753DTqf+ozbz5Q7YrtsCH6RDcR9njW6Olmil5s1ervZoFcnG3SyNW6vWmlpKSwsFF7MkpISmJsb/qBHY6Oh31pz0PmyrSdOnMCcOXNU0sLCwrB79+4Gy3l82dbCQsX4qseXb71lEwxJuQCJ8kDs4Q+GvGM/+LvaYqmrNbp3tIKFqPbtyVBcXKzmnRompaWl3PuioiLIZDI9WvNkUvMb08aDZo3E1diyrVeuXKn3nNzcXI2WeQUUy7YuWbKkTnrDy7ceVG7A1obNf6JwcdHTDE5thOLiYlhZWbXoGgbpLZw/f75KbSeXy/HgwQPY2dkZZbOuqKgIrq6uyM7ObnFTw5gwxvsmIhQXF2vlz0vny7Y6OTlpvMxrfcu2Wltba2KqQWJpaWk0PzJtYmz33dIaqwadL9saEhKikh8A4uPj1V7mlcEwWkhDYmNjSSQS0aZNmyglJYXefPNNsra2ptzcXCIievXVV+njjz/m8h87doxMTU3pm2++odTUVFq0aBEJBAK6ePGipkUbLYWFhQSACgsL9W1Kq9JW77sGjcVFRLRmzRrq1KkTCYVCCgoKopMnT3LHBg0aRBERESr5d+zYQd7e3iQUCsnPz4/++uuvFhltbJSXl9OiRYuovLxc36a0Km31vmvQ+DkXg8FQD+MIoGMwjBAmLgZDRzBxMRg6gomLwdARTFz1sHjxYvB4PJWta9eu3PHy8nLMnDkTdnZ2sLCwwAsvvFDnQfnNmzcxevRoSCQSODg4YO7cuaiurlbJk5iYiF69ekEkEqFLly7YtGlTHVuioqLg7u4OsViM4OBgra6seOTIEYwdOxYuLi7g8Xh14j2JCAsXLoSzszPMzMwQGhqKtLQ0lTwPHjzA5MmTYWlpCWtra7z++usoKSlRyXPhwgU8/fTTEIvFcHV1xddff13Hlp07d6Jr164Qi8Xo0aMHN+JaE1sMDv06Kw2TRYsWkZ+fH+Xk5HBbfn4+d/ztt98mV1dXSkhIoKSkJOrXrx/179+fO15dXU3du3en0NBQOnfuHO3Zs4fat29P8+fP5/LcuHGDJBIJzZkzh1JSUmjNmjXE5/Np3759XJ7Y2FgSCoW0ceNGunz5Mk2fPp2sra3p7t27WrnPPXv20Keffkq7du0iABQXF6dy/KuvviIrKyvavXs3nT9/np599lny8PAgqVTK5RkxYgT5+/vTyZMn6Z9//qEuXbrQpEmTuOOFhYXk6OhIkydPpkuXLtG2bdvIzMyMfvjhBy7PsWPHiM/n09dff00pKSn02Wef1XkWqo4thgYTVz0sWrSI/P396z1WUFBAAoGAdu7cyaWlpqYSADpx4gQRKX60JiYm3IN1IqJ169aRpaUlVVRUEBHRvHnzyM/PT+Xa4eHhFBYWxu0HBQXRzJkzuX2ZTEYuLi4UGRnZ4nt8nMfFJZfLycnJiZYvX86lFRQUkEgkom3bthERUUpKCgGg06dPc3n27t1LPB6Pbt++TUREa9euJRsbG+6+iYg++ugj8vHx4fYnTpxIo0ePVrEnODiY3nrrLbVtMURYs7AB0tLS4OLiAk9PT0yePBk3b94EAJw5cwZVVVUIDQ3l8nbt2hWdOnXiht2cOHECPXr0UBkNEBYWhqKiIly+fJnLU/saNXlqrlEzvKd2nqaG92iTjIwM5ObmqpRvZWWF4OBglfu0trZGnz59uDyhoaEwMTHBqVOnuDwDBw6EUCjk8tQMrn348CGXp7HPQh1bDBEmrnoIDg7Gpk2bsG/fPqxbtw4ZGRl4+umnUVxcjNzcXAiFwjqBxLWH0TQ0zKbmWGN5ioqKIJVKGx3e09hwHW1RU0Zj5efm5tYZfW5qagpbW1utfBa1jzdliyFikENO9M3IkSO59z179kRwcDDc3NywY8cONgknQ21YzaUG1tbW8Pb2Rnp6OpycnFBZWYmCggKVPLWH0TQ0zKbmWGN5LC0tYWZm1qzhPdqkpozGyndycqozb2J1dTUePHiglc+i9vGmbDFEmLjUoKSkBNevX4ezszN69+4NgUCgMozm6tWruHnzJjeMJiQkBBcvXlT54cXHx8PS0hK+vr5cnsaG4jRneI828fDwgJOTk0r5RUVFOHXqlMp9FhQU4MyZM1yeQ4cOQS6XIzg4mMtz5MgRlbkV4+Pj4ePjAxsbGy5PY5+FOrYYJPr2qBgiH3zwASUmJlJGRgYdO3aMQkNDqX379pSXl0dECld8p06d6NChQ5SUlEQhISEUEhLCnV/jih8+fDglJyfTvn37yN7evl5X/Ny5cyk1NZWioqLqdcU3NrynpRQXF9O5c+fo3LlzBIBWrlxJ586do6ysLCJSuL+tra3pt99+owsXLtBzzz1Xrys+MDCQTp06RUePHiUvLy8VV3xBQQE5OjrSq6++SpcuXaLY2FiSSCR1XPFNDUtSxxZDg4mrHsLDw8nZ2ZmEQiF16NCBwsPDKT09nTsulUppxowZZGNjQxKJhJ5//nnKyclRuUZmZiaNHDmSzMzMqH379vTBBx9QVVWVSp7Dhw9TQEAACYVC8vT0pOjo6Dq2NDa8p6UcPnyYoJgsX2WrGTIkl8tpwYIF5OjoSCKRiIYOHUpXr15Vucb9+/dp0qRJZGFhQZaWljRt2jQqLi5WyXP+/Hl66qmnSCQSUYcOHeirr76qY0tTw5LUscXQYENOGAwdwfpcDIaOYOJiMHQEExeDoSOYuBgMHcHExWDoCCYuBkNHMHExGDqCiYvB0BFMXAyGjmDiMiAGDx6M2bNn69sMDkOzx9hg4nrCqKys1LcJjBr0HdzIUBAREVEngDY9PZ1ee+01cnd3J7FYTN7e3rR69eo65z333HP03//+l5ydncnd3Z2IFJHm/v7+JBKJqHfv3hQXF0cA6Ny5c9y5Fy9epBEjRpC5uTk5ODjQK6+8wk3EU589GRkZrfVxPBEwcRkIBQUFFBISQtOnT+dmnCovL6eFCxfS6dOn6caNG7RlyxaSSCS0fft27ryIiAiysLDghnRcunSJCgsLydbWll555RW6fPky7dmzh7y9vVXE9fDhQ24YTGpqKp09e5aGDRtGQ4YMadCe6upqfXw0Rgsb5m8gWFlZQSgUQiKRqIyurb18rYeHB06cOIEdO3Zg4sSJXLq5uTk2bNjATQKzfv168Hg8/O9//4NYLIavry9u376N6dOnc+d8//33CAwMxJdffsmlbdy4Ea6urrh27Rq8vb3rtYehPkxcBk5UVBQ2btyImzdvQiqVorKyEgEBASp5evTooTK70tWrV9GzZ0+IxWIuLSgoSOWc8+fP4/Dhw7CwsKhT5vXr1+Ht7a3dG2mDMHEZMLGxsfjwww+xYsUKhISEoF27dli+fDk3bVkN5ubmGl+7pKQEY8eOxbJly+occ3Z2brbNjEcwcRkQQqEQMpmM2z927Bj69++PGTNmcGnXr19v8jo+Pj7YsmULKioquLWlT58+rZKnV69e+PXXX+Hu7g5T0/p/Bo/bw9AM5oo3INzd3XHq1ClkZmbi3r178PLyQlJSEvbv349r165hwYIFdURSHy+//DLkcjnefPNNpKamYv/+/fjmm28AADweDwAwc+ZMPHjwAJMmTcLp06dx/fp17N+/H9OmTeME9bg9crlcdzf/BMLEZUB8+OGH4PP58PX1hb29PcLCwjB+/HiEh4cjODgY9+/fV6nFGsLS0hJ//PEHkpOTERAQgE8//RQLFy4EAK4f5uLigmPHjkEmk2H48OHo0aMHZs+eDWtra5iYmNRrT82swwz1YHNotBFiYmIwbdo0FBYWsolNWwnW53pC+fnnn+Hp6YkOHTrg/Pnz+OijjzBx4kQmrFaEiesJJTc3FwsXLkRubi6cnZ0xYcIELF26VN9mtSlYs5DB0BHMocFg6AgmLgZDRzBxMRg6gomLwdARTFwMho5g4mIwdAQTF4OhI5i4GAwd8f817GQCyENmWwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "column = \"pods\"\n",
+ "x = \"target\"\n",
+ "y = \"[UPDATE].MaxLatency(us)\"\n",
+ "plot_comparison(df_aggregated, x, y, column, title, peak_benchmark)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOQAAADxCAYAAADbTBulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABCu0lEQVR4nO2de1xU1fr/PzMwMzDgAHIZQLkKiCAqYiKadxLNzNSUzAqtLI928Whq/iq1Oh5NOx7TUOv09ZKZqJVW5g0FNBVREBSU8IZCKhdBGO4wM8/vj+1sGQaQywADrPfrtV8zs9az1372zP7Muq8lICICg8EwCIRt7QCDwXgMEySDYUAwQTIYBgQTJINhQDBBMhgGBBMkg2FAMEEyGAYEEySDYUAwQTIYBgQTJINhQDBBMhgGBBMko1Mxc+ZMCAQCCAQC9O7du8Wus379ev46AoEADx48aNB5HUqQmzZtgkAgQGBgYJv6sX37dggEAsTHxzc7rbNnz2LFihUoKChokP2KFSvqfQB69+6NESNG6PiqOUxMTODl5YV33nkH2dnZ9do5OjoiJCQEGzZsQFFRUb1+1ffbVE+3viMmJkbHj5rHuXPnnvgd2djYYOfOnVi9evUTbZvK2LFjsXPnTkyaNKlR5xm3kD9twq5du+Dq6orz58/jxo0b8PDwaGuXms3Zs2fx6aefYubMmbC0tGyx63z22Wdwc3NDeXk5Tp8+jc2bN+PQoUNISUmBVCrVsauqqkJWVhZiYmIwf/58rFu3Dr/99hv69OlTa/r1/TY7d+7Usv3+++8RGRmpE96rVy/cvn1by4+aNOQ3NzMzwyuvvPJEu+bg7e0Nb29v3LhxA/v372/weR1GkOnp6Th79ix++eUXvP3229i1axeWL1/e1m61G8aNG4cBAwYAAN58801YW1tj3bp1+PXXXzF9+vRa7QBg6dKliIqKwnPPPYfnn38eqampMDU11Ur7Sb9NTXGcO3cOkZGR9Yqmph8dhQ5TZN21axesrKwwfvx4vPjii9i1a5dW/E8//QSBQICTJ0/qnPvNN99AIBAgJSWFD4uJicGAAQNgYmKCHj164JtvvuGLg/rgzp07mDt3Lnr27AlTU1NYW1tj6tSpfA4AcMXPRYsWAQDc3Nz4Yll1m5Zi1KhRADgxNcT2k08+wZ07d/DDDz/oxD/ptzEU3N3da/0TGDlyJIYPH85/Lioqwvz58+Hq6gqJRAI7Ozs888wzuHjxYrN96FCCnDx5MsRiMaZPn47r16/jwoULfPz48eNhbm6OvXv36py7Z88e+Pr68pX8xMREjB07Fnl5efj000/xxhtv4LPPPsOBAwf05u+FCxdw9uxZvPTSS9iwYQPmzJmDEydOYMSIESgtLQUATJ48mc+d/vvf/2Lnzp3YuXMnbG1t9eZHXdy8eRMAYG1t3SD7V199FQBw7Ngxnbgn/TZNobCwEA8ePNA68vLympxecXExbt++jb59++rEXb58WasoPmfOHGzevBlTpkzBpk2b8MEHH8DU1BSpqalNvj4PdQDi4+MJAEVGRhIRkVqtpu7du9P777+vZTd9+nSys7MjpVLJh92/f5+EQiF99tlnfNiECRNIKpXS3bt3+bDr16+TsbExNeQr27ZtGwGgCxcu1GlTWlqqExYbG0sA6Pvvv+fD1q5dSwAoPT39idclIlq+fDkBoNzc3FrjfX19afjw4Tq+Hj9+nHJzcykzM5MiIiLI2tqaTE1N6e+//27wPVlYWJC/v79WWEN/m+rMmzevzu9Z40dth0QiqTNNDWFhYeTi4qITrvnujx49qhWemZlJAOjbb7/Vus958+Y98VpET/49atIhcshdu3ZBLpdj5MiRALhWu9DQUEREREClUvF2oaGhyMnJQUxMDB/2008/Qa1WIzQ0FACgUqlw/PhxvPDCC3B0dOTtPDw8MG7cOL35XL2eVVVVhby8PHh4eMDS0lIvRZ/GEhwcDFtbWzg5OeGll16Cubk59u/fj27dujU4DXNzc53W1ob+No0lPDwckZGRWsfhw4ebnJ6mulIzh7x06RIAaOWQlpaWiIuLw71795p8vbpo9406KpUKERERGDlypFZ9JzAwEP/5z39w4sQJjBkzBgDXFG1hYYE9e/Zg9OjRALjiar9+/eDl5QUAyMnJQVlZWa2tdfpstS0rK8OqVauwbds23L17F1RtaaPCwkK9Xac2aqsHh4eHw8vLC8bGxpDL5ejZsyeEwsb9XxcXF8POzo7/3JjfprEMHDhQr406ycnJkMvlkMvlWuGXL1+GUCjU6rNcs2YNwsLC4OTkhICAADz77LN47bXX4O7u3mw/2n0OGRUVhfv37yMiIgKenp78MW3aNADQakCQSCR44YUXsH//fiiVSty9exdnzpzhc8fW5N1338XKlSsxbdo07N27F8eOHUNkZCSsra2hVqubnK6JiQkATvC1UVpayttUZ+DAgQgODsaIESPQq1evRovx77//RmFhodafVmN+m7YmJSWl1vpjUlIS3N3dYWZmxodNmzYNt27dwsaNG+Ho6Ii1a9fC19e3WTm0hnafQ+7atQt2dnYIDw/Xifvll1+wf/9+bNmyhS8ihoaGYseOHThx4gRSU1NBRFqCtLOzg4mJCW7cuKGTXm1hTeWnn35CWFgY/vOf//Bh5eXlOgMAGtuq6+LiAgBIS0uDk5OTVlxpaSkyMzObnCvVh6bPMCQkhA9r7G/TliQnJ+v8MavVakRFRWHYsGE69g4ODpg7dy7mzp2LnJwc9O/fHytXrmx2taZdC7KsrAy//PILpk6dihdffFEn3tHREbt378Zvv/3Gf9nBwcHo2rUr9uzZg9TUVAwcOFCrg9nIyAjBwcE4cOAA7t27x9cjb9y4oZd/wOrXoRorcG7cuFGnXqX5Z27oSJ3Ro0dDLBZj8+bNGDVqlFZO9+2330KpVOq1LgxwOeHnn38ONzc3zJgxA0DTfpu2IicnB7m5ubh//75W+IYNG/DgwQP4+fnxYSqVCsXFxbCwsODD7Ozs4OjoiIqKimb70q4F+dtvv6GoqAjPP/98rfGDBg2Cra0tdu3axf/oIpEIkydPRkREBEpKSvDll1/qnLdixQocO3YMQ4YMwT/+8Q+oVCp8/fXX6N27N5KSkhrs39atW3HkyBGd8Pfffx/PPfccdu7cCQsLC/j4+CA2NhbHjx/X6WYICAgAAHz00Ud46aWXIBKJMGHCBK0iVHXs7OywbNkyfPzxxxg2bBief/55SKVSnD17Frt378aYMWMwYcKEBt9DTQ4fPoy//voLSqUS2dnZiIqKQmRkJFxcXPDbb7/xxeGm/DZN8aMmgwcPbnRdLjk5GQDXZTN37lx4e3vj3LlzOHr0KAAgISEBcXFxCAwMRFFREbp3744XX3wRffv2hbm5OY4fP44LFy5olXaaTIPaYg2UCRMmkImJCZWUlNRpM3PmTBKJRPTgwQM+LDIykgCQQCCgzMzMWs87ceIE+fv7k1gsph49etB3331HCxcuJBMTkyf6VV/TPADKzMykhw8f0qxZs8jGxobMzc0pJCSE/vrrL3JxcaGwsDCt9D7//HPq1q0bCYXCBneB/PDDDzRo0CAyMzMjiURC3t7e9Omnn1J5eXmtvtbXnVHbPYnFYrK3t6dnnnmGvvrqK1IoFFr2Tf1tiJre7QGAtm3bVu991Nbt8d///peMjIzojz/+oB49epCJiQk988wzlJycTD169KDu3btTQkICERFVVFTQokWLqG/fvtSlSxcyMzOjvn370qZNm2q9XmO7Pdq1IFubiRMnkoeHR1u7wWgGYWFh5OTkRLm5ufTw4UMiInrjjTfI09NTr9cpKyuj3NxcWrRoUefrh2wJarZSXr9+HYcOHdKaKcFon2RmZsLW1hZPP/00AK7I6uPjo9drbNmyBba2tli7dm2jzmvXdciWxN3dHTNnzoS7uzvu3LmDzZs3QywWY/HixW3tGqMZLF68mB+vam5uDiLC1atX+X5pfTFlyhStvsvqjUD1wQRZB2PHjsXu3buRlZUFiUSCoKAg/Pvf/4anp2dbu8ZoBj4+Plq54a1bt1BcXKz3HNLJyUmn26khCIjY7lcMhqHA6pAMhgHBBMlgGBAdtg6pVqtx7949dOnSRW+TihmM2iAiFBUVwdHRsdFjgGvSYQV57969JlWqGYymkpmZie7duzcrjWYJcvXq1Vi6dCnef/99rF+/HgA3QHrhwoWIiIhARUUFQkJCsGnTJq1pLRkZGfjHP/6B6OhomJubIywsDKtWrYKx8WN3YmJisGDBAly5cgVOTk74+OOPMXPmzAb71qVLFwDclySTyZpzmwxGvSgUCjg5OfHPXLNo6kiE8+fPk6urK/Xp00dr9vecOXPIycmJTpw4QfHx8TRo0CAaPHgwH69UKql3794UHBxMiYmJdOjQIbKxsaGlS5fyNrdu3SKpVEoLFiygq1ev0saNG8nIyIiOHDnSYP8KCwsJABUWFjb1FjsESqWSoqOjKTo6WmulBIb+0Oez1iRBFhUVkaenJ0VGRtLw4cN5QRYUFJBIJKJ9+/bxtqmpqQSAYmNjiYjo0KFDJBQKKSsri7fZvHkzyWQyqqioICKixYsXk6+vr9Y1Q0NDKSQkpE6fysvLqbCwkD80Sy90dkEWFxfz4zyLi4vb2p0OiT4F2aQa6Lx58zB+/HgEBwdrhSckJKCqqkor3NvbG87OzoiNjQUAxMbGws/PT6sIGxISAoVCgStXrvA2NdMOCQnh06iNVatWwcLCgj9Y/ZHRHmm0ICMiInDx4kWsWrVKJy4rKwtisVhnQV+5XI6srCzepuYyCZrPT7JRKBR1zoRfunQpCgsL+SMzM7Oxt8ZgtDmNatTJzMzE+++/j8jIyFqXgWhLJBIJJBJJW7th2Nw5C/g809ZeMOqhUTlkQkICv1yBsbExjI2NcfLkSWzYsIFfHKmyslJndnt2djbs7e0BAPb29lp7RmjiNXH12chkMoNY7qFdUVX++P2eV4D0P9vOF8YTaZQgR48ejeTkZCQlJfHHgAEDMGPGDP69SCTCiRMn+HPS0tKQkZGBoKAgAEBQUBCSk5ORk5PD20RGRkImk/EDfIOCgrTS0Nho0mA0gptRj99XlQG7pgK3dFdv7zCo1UDaYe7P51JEW3vTeJrbKlS9lZWI6/ZwdnamqKgoio+Pp6CgIAoKCuLjNd0eY8aMoaSkJDpy5AjZ2trW2u2xaNEiSk1NpfDwcNbt0USKv5/xuJX1uxeIlsuIPpcT3Yxua9f0i0pJdHkfUXgQd4+a4/f5RFUVLXrpNu/2qE5NQZaVldHcuXPJysqKpFIpTZo0ie7fv691zu3bt2ncuHFkampKNjY2tHDhQqqqqtKyiY6Opn79+pFYLCZ3d/cnLs1QEyZIIqoopooVcloTLKE1H71HFSUKoh+mPhKlHdGNqLb2sPlUlRPFbyf6qt9jEa7sRhTxCtFyC+7z/0YTFd59YlJNRZ/PWoedfqVQKGBhYYHCwsLOO1In5Wfgp9cBK1fgvSRAIACUFcDe14BrRwBjE2D6bqDHqLb2tPFUlgAXvwfObACKHq0gbmoFDJoLDJzNvb92DPjlTaC8EDCzBabuAFyH6N0VfT5rbLZHRyblF+7VdzInRgAwlgDTvge8xgHKcuDHl4Abx9vOx8ZSVgCc+hJY7wcc+ZATYxcHIOTfwPwUYPhiTowA4DUGeCsGsPMFSnKB758Hzm0BDDgPYjlkR6W8EFjrCVVVOS4O/haw7oH+/fvDyMiIi1dWAvtmAml/AEYS4KUfAc/gOpOrUqlx92EZ7uSXIiOvBHkllXDuKoWXvAt62JrDVGzUsvdTnAuc2wRc+A6oUHBhVq7AkPlAv5e5P5q6qCwBfnsPSPmJ++w3FZiwARBL6z6nEejzWWOC7Kgk7QYOzEFJlx4w/yARALf3htZ6rspK4KdZwF8HASMJyl/8HumWg3EnrxQZ+SWPXktxO68E9wrKoVLX/qgIBIBzVyk87czhKe8CL7k5PO26wMPOHCaiZgq18G/g7EYgYQegfDQoxNYbGLqQy/mNGtiVTgSc2wwc+xggFSDvDYT+AHTV3YW5sejzWeuw0686PVceFVd9XgDACZKIkFdc8SiXK8WdvFJkCv6JqZJ8BFachSBiBr6o+idi1P61JikxFsK5qxQu1mboaibC7bxSXM8uwsPSKtx5lN7x1MfdWY+F2gWecvPGCTXvJnD6v1zXhbqKC3P0B4Z+APR8FmjsvEOBAAiaCzj04UoG2SnAt8OBKf8HeBrOYAmWQ3ZESvOBLz0BtRIlM0/C3I0TWK8PD6CUdP+DjaHEBtHXeNboPCphjNWyj5DrMBIuXaVwtpbC5ZEI7bpIIBRqT/YmIuSVVOJadhGuZxdzrznFvFBro7pQveTm8JSbo6dchl4OXSDIvgKcXgdc2Q/Qo02HXIcCQxcA7iMf14WbQ+FdrmHrbjwAATDyIy7HbeLkYlZkbQCdWpAJO4Df3wPkfih57SjMzc0BAE7//AlCsQnsZSZwtpbC1ZoTmnNXKVysROh1ZgFEab8BQhEQuhPo2fQ9QIgID4orcT2nmlCzi3EtpwgFtQjVX3AdS8wOYpCy2s7KniGcUJwDm+xHnSgrgMNLgIRt3OeezwKTtgAmuss1qtSE46nZEAoEeMZHrhPPBNkAOrUgdzwPpJ8ERi9Hqssr8HHhHqIL1++ht4td3cVFVRXwy2wudxKKuNZY72f16hov1OwipN/Lgem1X9En+xd4VF0DAKhJgBjjwagKmo+RI4IhNm7hjoCL3wN/LARUlUDXHsBLuwC7XgCAovIq7I3/G9vPpiMzvwzuNmY4vmC4TimB1SEZdVOcA9x+NF7VdxLOXMrjo3o5yOqvuxmJgMnfARBwddC9rwFTtwO9ntObewKBALalN2F7bRsGX4rgW0xJKMJV27FYmhOMyyW2wPEqOFyIxlvD3PHSU84t14rb/zVA7gvseQ3Ivwn8bzRyR6/Dplw/7Iv/G8UVSgCApVSEkN72qFSpYSJsuRZlJsiOxtVfubpXtwCgqxvO3GjkYHIjY2Dy/7i6WsrPwL6wR6Js+o5ZALhxtFd/BeK3AZnnHodbuQIBMyHo9wp8zW2xu0KJ3ecz8O2pW7hfWI5Pf7+Kr6Nu4PWn3fBqkAtkJqLm+VEb3QJAb8VA8cOrsMiKhe2RtyFXTkCZcho87Czw+hA3TPLv1vJdO2CC7HhUGwxQpVLj/J1CWAyZjukDnSESNfBhNjIGJn0LCIRA8j6uVfLFbYBP7VvL1cuD65wIL/0IlD3kwgRGXFE4YBbXUFOtMcVMYow3h7rj1SAX/JTwN7acvInM/DKsPZqGLTE38dpgF7w+xA3W5vqZaldepcLvl+5h65nbuHZ/LhYbd8Xbxn9gjvHvCO2WB8tXv4fA3FYv12oIrA7ZkSi8C/z30ZL4/7yK+IemeHFLLKykIsR//AyMhI1soVSrgP1zgOS9nIhe3Ar4vvDk85SVwF+/c0K8XS2HtnAC+ocB/q8AMocGuaBUqXHw8n2ER9/A9ZxiAICJSIjpA53x1jB3OFg0bTpeTlE5dp3LwK64O3hQXMmn+2JAd7xjlwz76A+AqhLO52nfA93615kWq0MyaufKfu7VOQiw6IZT57mGkiEeNo0XIwAIjbiWR4EQuBzBjYsFAb6TarfPTwcStgOJPwClD7gwgZBrLR0wC/AI5tJsBMZGQrzg3w3P93VEZGo2wqNv4PLfhdh25jZ+OHcHU/p3x5zhPeBqU/sGtjVJucud+/ule6hUcd0qDhYmeC3IFdMHOsFSKgbgB/Tox03hyr8JbB0LPLeO+yNpYZggOxKawQC9pwAA/ryeCyI13IT5uHLlCnr16tX4hXyFRsALm7g65aXdwE9vcKNeek/m4lVV3PzDhG3acy+7OHANJv1fAyyat1YpAAiFAoT42mOMjxynbzzA11E3EJeej4gLmdgbn4nn+jhi7sge8LbXzaE03RZbT6cjLj2fD/d3tsTrQ9wwtrc9REY1vhe5DzA7iishXDsM/DoPuJsAjP0CMBY3+37qghVZOwr56cCGflyOtDANhUIr+H9+DMqKcmT+90UAtQydawxqFfDbu0DSLq74+uwaoCgLuLgTKM56ZCQAPEZzdUOvsQ0f1tZE4m/nY1PMTUT99Xh0UHAvO8wb6QF/ZyudbgsAMBYK8KyfA2YNcYW/s9WTL6JWA39+CUT/G7DtCbx5HJBor7/KiqwMXTTFVdehgLkdzibfh5qAHrZm0MtyX0Ij4PmNAARA0g9c350GM1vA/1UgIIxrNW0lBrh2xdaZXXHlXiE2xdzEoeT7OJ6ag+OpOejnZIkbOcVa3RYvD3TGq0Eujat3CoXcDBKHfty4V4keFkOuBybIjoKmdfVRUfLU9VwAwGAPa8To6xoaURqJuCKq23CubthzfIsW456Er6MFwl/uj5u5xdgScxP7E+8iKbMAAOBhZ66fbguvMfpx9gkwQXYEcq8B2cmA0Bjo9TyICKeucY0qQ3rY6PdaQiEwYT0wdhUgMqwFx3rYmmPt1L6Y/4wXjqRkwcPOHMM8bdrVZktMkB0BTWNOj1GAtCvSc4txt6AMYiMhnnLr2jLXNDAxVqebpSneeLr506raArZiQHuHiBtRA3DzAwH8eZ3LHQe4WkEqZv+57QkmyPZO9hXgwTVu1v+jgeB/Pqo/DvVsvREmDP3A/j7bO5riquczgIkFKpVqxN7kBpQP9bSBSCTCBx98AAANHzrHaDOYINsz1Yurj1pXEzMeoqRSBWszMXwcZBAKBVi7dm0bOsloDKzI2p65lwg8vA2IpFxHPB7XH5/2tNGZt8cwfFgO2Z7R5I5eYwExNwKnZv1RrVYjIyMDAODs7Nz4oXOMVoUJsr2iVgNXDnDvHxVX80sqcfluIQCu/ggAZWVlcHPjugCaNXSO0Sqwv8v2yt/nAcXfgLgL4MGtmnbmxgMQAT3lXSCXGdZ2gYyG0ShBbt68GX369IFMJoNMJkNQUBAOHz7Mx5eXl2PevHmwtraGubk5pkyZorOtXEZGBsaPHw+pVAo7OzssWrQISqVSyyYmJgb9+/eHRCKBh4cHtm/f3vQ77Khohsp5jwdEnPgeF1f1PDqH0Wo0SpDdu3fH6tWrkZCQgPj4eIwaNQoTJ07ktyL/5z//id9//x379u3DyZMnce/ePUyePJk/X6VSYfz48aisrMTZs2exY8cObN++HcuWLeNt0tPTMX78eIwcORJJSUmYP38+3nzzTRw9elRPt9wBUKuAqwe494+mWhER36AzzIv1P7Zbmrtbj5WVFX333XdUUFBAIpGI9u3bx8elpqYSAIqNjSUiokOHDpFQKKSsrCzeZvPmzSSTyaiigtsybPHixeTr66t1jdDQUAoJCWmUXx1696tbJ7ldnVY581utXc9WkMuSg+T50SEqq1TypsXFxY+3oysubiuPOzT6fNaaXIdUqVSIiIhASUkJgoKCkJCQgKqqKgQHP94fwtvbG87OzoiNjQUAxMbGws/PD3L547UtQ0JCoFAo+Fw2NjZWKw2NjSaNuqioqIBCodA6Oiya1lWf5/lZFprB5IFuXZu/fD+jzWi0IJOTk2Fubg6JRII5c+Zg//798PHxQVZWFsRiMSwtLbXs5XI5srK4CaxZWVlaYtTEa+Lqs1EoFCgrK6vTr1WrVsHCwoI/nJycGntr7QNVFbd6G8CPXQVY/bGj0Ohuj549eyIpKQmFhYX46aefEBYWhpMn236L7KVLl2LBggX8Z4VC0TFFeeskt3qbmS03GRlAhVKFc7e4pSlqjl81NjbG3Llz+fcMw6bRv5BYLIaHhwcAICAgABcuXMBXX32F0NBQVFZWoqCgQCuXzM7Ohr29PQDA3t4e58+f10pP0wpb3aZmy2x2djZkMhlMTeue8iORSCCR6GdpQIOGL66+wC+RkXDnIcqqVLAxl8DbXntGu0QiQXh4eCs7yWgqze6HVKvVqKioQEBAAEQiEU6cOMHHpaWlISMjA0FBQQCAoKAgJCcnIyfn8RookZGRkMlk8PHx4W2qp6Gx0aTRqVFWcFvHAY8XmcLj+mN7m4zLqIXGtAB9+OGHdPLkSUpPT6fLly/Thx9+SAKBgI4dO0ZERHPmzCFnZ2eKioqi+Ph4CgoKoqCgIP58pVJJvXv3pjFjxlBSUhIdOXKEbG1taenSpbzNrVu3SCqV0qJFiyg1NZXCw8PJyMiIjhw50qjWqg7Zypp6kGtd/dKbSKXig5/96hS5LDlIv1zM1DlFrVZTTk4O5eTkkFqtbk1vOw36fNYaJcjXX3+dXFxcSCwWk62tLY0ePZoXIxFRWVkZzZ07l6ysrEgqldKkSZPo/v37Wmncvn2bxo0bR6ampmRjY0MLFy6kqqoqLZvo6Gjq168ficVicnd3p23btjX6xjqkIPe9zgny8OM/sNyicnJZcpBclhykHEW5zims26Pl0eezxpaBbC9UlgJrPbjVtN+MAroHAAB+TbqL9yOS4OMgw6H3h+qcVlJSwm9Hx8aytgz6fNbYWNb2wvWjnBgtXbSWtdfUH4d6se6OjgATZHuh+kTkRw03RMT3Pw5jy3V0CJgg2wPlCuB6JPe+2mCAa9nFyCmqgIlIiACXBqzCzTB4mCDbA2mHAWU5YO0J2PvxwZrcMdDNmg2X6yAwQbYHrlRblbxaP+PJa2y4XEeDjaUydMoeAjceDZSoVlwtr1Lh/KOdnOqbbmVsbIywsDD+PcOwYb+QoZN6EFBXAXa+gJ03H3zhdj4qlGrYy0zgaWde5+kSiYRN8G5HsCKroVNjmUcNmsnIQ9lwuQ4FyyENmeJcIP0U976GIE9p6o9PWB2AiFBaWgoAkEqlTLwGDsshDZnUXwFSAY7+QFd3PjhHUY6/soogEABPe9TfoFNaWgpzc3OYm5vzwmQYLkyQhkzKo01YH62bo+H0Da642tvRAl3N2m5fRob+YYI0VBT3gTtnuPe+k7SiqtcfGR0LJkhD5eoBAAQ4DQIsuvPBajVVEyQbLtfRYII0VOpoXU3NUuBBcQWkYiP0d7Fsfb8YLQoTpCHy8A7w9wVAIOSW6qiGJncc5G4NiTEbLtfRYII0RK48asxxGQJ00V6B7/HsDlZ/7IiwfkhDJOUn7rVG62pZpQoX0h8CeHL/owYjIyO8+OKL/HuGYcMEaWjcSwSykgEjMeAzUSsqLj0PlSo1ulmawt2mYTP/TUxMsG/fvpbwlNECsCKroRG/jXv1mQhIu2pFseFyHR8mSEOiXAEkPyquBszSia65GSuj48EEaUik/MStm2PjBbgM1orKKizHtexiCATAEA/rBidZUlICgUAAgUCAkpISfXvM0DNMkIYC0ePiasBMrYnIAHDqUe7Yp7slLKVsuFxHhQnSULh3Eci6DBhJgL7TdaL5vR9Zd0eHhgnSUNDkjr4v6DTmqNWE06z+2ClggjQEyhWPh8oFzNSJvnJPgYelVTCXGMPf2bJVXWO0LkyQhkDyXqCqFLDpCTjrbiqkqT8G9bCGyIj9ZB2ZRv26q1atwlNPPYUuXbrAzs4OL7zwAtLS0rRsysvLMW/ePFhbW8Pc3BxTpkzR2V4uIyMD48ePh1QqhZ2dHRYtWgSlUqllExMTg/79+0MikcDDw6PjrgtDBMRv594PmKXTmAOw4XKdiUYJ8uTJk5g3bx7OnTuHyMhIVFVVYcyYMVrN6f/85z/x+++/Y9++fTh58iTu3buHyZMfz1hQqVQYP348KisrcfbsWezYsQPbt2/HsmXLeJv09HSMHz8eI0eORFJSEubPn48333wTR48e1cMtGxh3LwLZyVxjTp9QneiSCiUS7jwaLteE+qORkRGeffZZPPvss2zoXHugOTv15OTkEAA6efIkEREVFBSQSCSiffv28TapqakEgGJjY4mI6NChQyQUCikrK4u32bx5M8lkMqqoqCAiosWLF5Ovr6/WtUJDQykkJKTBvrWb3a8OzOV2tPr5rVqjT6RmkcuSg/T0FyfYdnIGij6ftWZVSAoLCwEAXbtyrYIJCQmoqqpCcHAwb+Pt7Q1nZ2fExsYCAGJjY+Hn5we5/PEshpCQECgUCly5coW3qZ6GxkaTRm1UVFRAoVBoHQZPeSGQ8mgR5AG6I3OAapvpeNqy4XKdgCYPLler1Zg/fz6GDBmC3r17AwCysrIgFou1tjQHALlcjqysLN6muhg18Zq4+mwUCgXKyspq3dp81apV+PTTT5t6O23D5UeNObbegFNgrSanWqD+qFKpUFVVpbf0OjoikajVivtNFuS8efOQkpKC06dP69OfJrN06VIsWLCA/6xQKODk5NSGHj0BIiBhO/c+oPbGnL8fluJWbgmMhAIE9WiaIEtKSmBnZwcAyM7ORlFREQoKCprodOfF0tIS9vb2LV5KaZIg33nnHRw8eBCnTp1C9+6P13uxt7dHZWUlCgoKtHLJ7Oxs2Nvb8zbnz5/XSk/TClvdpmbLbHZ2NmQyWa25I8Ct0C2RSJpyO23D3/FAdgpgbAL01W3MAYDTj0bn9HOyhIWpqMmX0iz/mJeXh9LSUtjZ2bE1WhsIPVrXNicnBwDg4ODQotdrlCCJCO+++y7279+PmJgYuLm5acUHBARAJBLhxIkTmDKFm1yblpaGjIwMBAVx/WtBQUFYuXIlcnJy+H/uyMhIyGQy+Pj48DaHDh3SSjsyMpJPo0OQoBmZMxkwrX0rOX2uLmdmZobi4mLY29vD2rrhg9MZ4DMBzTPbosXXxrQA/eMf/yALCwuKiYmh+/fv80dpaSlvM2fOHHJ2dqaoqCiKj4+noKAgCgoK4uOVSiX17t2bxowZQ0lJSXTkyBGytbWlpUuX8ja3bt0iqVRKixYtotTUVAoPDycjIyM6cuRIg3016FbW0odEn8u51tU752o1UarU1GfFUXJZcpDib+c3+VLFxcUEgJydnSklJUXrt2I0nNLSUrp69SqVlZXpxOnzWWuUIAHUemzbto23KSsro7lz55KVlRVJpVKaNGkS3b9/Xyud27dv07hx48jU1JRsbGxo4cKFVFVVpWUTHR1N/fr1I7FYTO7u7lrXaAgGLchz33BiDB9EVEdXRmLGQ3JZcpB6Lz9CVUpVky+lEaSLiwulpKTU+kAxnkxZWVmrCLLRRdYnYWJigvDwcISHh9dp4+LiolMkrcmIESOQmJjYGPfaB0SPi6t1NOYAwJ+P9u4Y0sMGxmy4XKeB/dKtzd8XgJyrgLEp0GdanWZ8/dGLDZfTJwKBAAcOHGhrN+qELXLV2mimWfWeDJha1mpSVF6FixnccLlhzZxuJRQKMXz4cNjZ2bFW1XYAE2RrUvbw8fbktayZoyH2Zh6UaoKrtRROXaXNuqSpqSliYmJQXl6O9PT0ZqXFaHlYkbU1ubwXUJZzuyF3H1CnWVvs3TFixAi89957WLx4Mbp27Qp7e3usWLGCj799+zYEAgGSkpL4sIKCAggEAsTExADgZugIBAIcPXoU/v7+MDU1xahRo5CTk4PDhw+jV69ekMlkePnll+vdGm/79u2wtLTEgQMH4OnpCRMTE4SEhCAzM1PLbvPmzejRowfEYjF69uyJnTt3asVfv34dw4YNg4mJCXx8fBAZGakVX1lZiXfeeQcODg4wMTGBi4sLVq1a1bQvUE8wQbYW1dfMqWOaFQAoVWpE/cV1Qg9r4GLI+mLHjh0wMzNDXFwc1qxZg88++0znIW4IK1aswNdff42zZ88iMzMT06ZNw/r16/Hjjz/ijz/+wLFjx7Bx48Z60ygtLcXKlSvx/fff48yZMygoKMBLL73Ex+/fvx/vv/8+Fi5ciJSUFLz99tuYNWsWoqOjAXBDOydPngyxWIy4uDhs2bIFS5Ys0brGhg0b8Ntvv2Hv3r1IS0vDrl274Orq2uj71SvNbqc1UAyu2+NOLNfV8bmcqKygTrOfEzLJZclB8v/sGJVWKJt92eLiYrKxsaF+/frV2+0xfPhwevrpp7XCnnrqKVqyZAkREaWnpxMASkxM5OMfPnxIACg6OpqIuK4qAHT8+HHeZtWqVQSAbt68yYe9/fbb9c7c2bZtGwGgc+ce99FqZg3FxcUREdHgwYNp9uzZWudNnTqVnn32WSIiOnr0KBkbG9Pdu3f5+MOHDxMA2r9/PxERvfvuuzRq1KgGzaJprW4PlkO2FnxjzhTAxKJWE5Wa8HX0DQDAG0+7wVSsnxEhDx48wMOHD59o16dPH63PDg4O/JCxxlA9HblcDqlUCnd3d62wJ6VrbGyMp556iv/s7e0NS0tLpKamAgBSU1MxZMgQrXOGDBmiFe/k5ARHR0c+vuZIr5kzZyIpKQk9e/bEe++9h2PHjjXyTvUPE2RrUJr/eAOdOqZZAcDhlPu4lVsCC1MRXgtyaSXnHiMSaY+XFQgEUKvVALjWWkC7L7quGSPV0xEIBPWm25b0798f6enp+Pzzz1FWVoZp06bx+6C0FUyQrcHlPYCqApD7Ad0CajVRqwlfR3G546whruhi0vTB5C2BrS1Xn71//z4fVr2BR98olUrEx8fzn9PS0lBQUIBevXoBAHr16oUzZ85onXPmzBl+PHSvXr2QmZmp5e+5c+d0riOTyRAaGor//e9/2LNnD37++Wfk5+e3xC01CNbt0dJoNebMrLMxJzI1G39lFcFcYoxZg91qtWlLTE1NMWjQIKxevRpubm7IycnBxx9/3GLXE4lEePfdd7FhwwYYGxvjnXfewaBBgzBw4EAAwKJFizBt2jT4+/sjODgYv//+O3755RccP34cABAcHAwvLy+EhYVh7dq1UCgU+Oijj7SusW7dOjg4OMDf3x9CoRD79u2Dvb29znze1oTlkC1NxjngQRogkgJ+U2s1ISJsjLoOAHgtyAUWUsPKHTVs3boVSqUSAQEBmD9/Pv71r3+12LWkUimWLFmCl19+GUOGDIG5uTn27NnDx7/wwgv46quv8OWXX8LX1xfffPMNtm3bhhEjRgDgitj79+9HWVkZBg4ciDfffBMrV67UukaXLl2wZs0aDBgwAE899RRu376NQ4cO8cXzNqHZzUIGisG0sv48m2tdPTCvTpOov7LJZclB8v74MD0oKtfr5dvj4PJt27aRhYVFW7uhhUEOLmc0ktJ84MoB7n0djTlEhI0nuNzxlUHOsDbX7yRroVCIAQMGQC6Xs6Fz7QAmyJbkUgTXmGPvBzj2r9Xk7M08XMwogNhYiNlD3Wu1aQ6mpqa4cOECGzrXTmB1yJaigdOsNjzKHac/5QQ7mUlreWfQzJw5s9Ou+8ME2VLcOQs8uAaIzOpszDmfno+49HyIjAR4e3iPVnaQYYgwQbYUmtzRbwpgIqvVRNOy+mKAExwta1+8q7mUlpbC1dUVo0ePNojOeEb9sDpkS1CaD1z9lXtfxzSrpMwC/Hn9AYyEAswd0XK5IxHhzp07LZY+Q7+wHLIlSPoRUFUCDn2BbrU35mhaVl/o163Zcx4ZHQcmSH1TcwHkWki5W4gTf+VAKADmjWR1R8ZjmCD1zZ0zQN51QGwO+NU+UDn80YyO5/o4wt3WvDW9Yxg4TJD6RjNu1e9FQNJFJ/padhEOp3B7mLwzyqM1PWO0A5gg9UlJHpD6G/e+juKqZkbHuN728JLrCpbRPE6dOoUJEybA0dHR4FeYqw0mSH1ySdOY0w9w7KcTfSu3GAcv3wMAzBvZOrmjQCCAj48PPDw6R25cUlKCvn371rsusCHDuj30RfXGnDrGrW6KuQk1AaO97dC7W+2rBugbqVSKK1euNGvoHBGhrEqlZ88ahqnIqFFjcMeNG4dx48a1oEctCxOkvrj9J5B3g2vM6a3bmJOZX4r9iXcBAO+O9mxt75pFWZUKPsvaZjv5q5+FQCruPI8pK7LqC74xZyog0W053RRzEyo1YainDfo5Wbaub4z2Q2Pna508eZKee+45cnBw0FrBS4NaraZPPvmE7O3tycTEhEaPHk3Xrl3TssnLy6OXX36ZunTpQhYWFvT6669TUVGRls2lS5fo6aefJolEQt27d6cvvviiUX626nzI4lyiT625eY/3knSi7xWUksf/+4NclhykuFt5Le9PNUpKSsjHx4dGjx7d5PmQarWaSiqq2uRoyIpwdVHb89lUDHbVuSdVmtesWYMNGzZgy5YtiIuLg5mZGUJCQlBeXs7bzJgxA1euXEFkZCS/8etbb73FxysUCowZMwYuLi5ISEjA2rVrsWLFCnz77beNdbd1SNoFqKu4KVYOfXWivzl5C1UqQqBbVwx069qqrhERrl69ihs3bjQ5DYFAAKnYuE2OTjeHszlqRo1/ILVaTfb29rR27Vo+rKCggCQSCe3evZuIiK5evUoA6MKFC7zN4cOHSSAQ8Gtobtq0iaysrKiiooK3WbJkCfXs2bNOX8rLy6mwsJA/MjMzWyeHzIwn+k8vLneM364Tna0oI6+PDpHLkoN0+npuy/pSC+1xxQB9UfP5bA4Gm0PWR3p6OrKyshAcHMyHWVhYIDAwELGxsQCA2NhYWFpaYsCAx0vpBwcHQygUIi4ujrcZNmwYxGIxbxMSEoK0tLQ61xddtWoVLCws+MPJyUmft6ZLUTZwYC7w3ShAcReQdePWXK3B/07dQoVSjf7Olhjcg+1c3NIUFxcjKSmJXxEvPT0dSUlJyMjIaFvHGoheBZmVxY1AkcvlWuFyuZyPy8rK4rcy12BsbIyuXbtq2dSWRvVr1GTp0qUoLCzkj5r7QOgNZSVwdiOwMYArqgJA35eB2VE6jTn5JZX44Rz3ILw72rPzFb/agPj4ePj7+8Pf3x8AsGDBAvj7+2PZsmVt7FnD6DDtyRKJBBKJftej0eHGceDwh9xYVYCrMz67ts6Nc/7v9C2UVang180CI1p5n47OyogRIxq0sbCholdB2tvbAwCys7Ph4ODAh2dnZ6Nfv368Tc1l5JVKJfLz8/nz7e3tkZ2drWWj+ayxaVXybwFHPwLSHu36bGYLBK/gcsY6lgwsLK3CjrPcPMR3Rnmw3JHRIPRaZHVzc4O9vT1OnDjBhykUCsTFxfH7KgQFBaGgoAAJCQm8TVRUFNRqNQIDA3mbU6dOaS1VHxkZiZ49e8LKykqfLtdPRTFw4jMgPJATo9AYCHoHeDcB8H+lTjECwLaz6SiuUMLbvgue6SWv066lEQgEcHFxQbdu3drMB0YjaGwrUFFRESUmJlJiYiIBoHXr1lFiYiLduXOHiIhWr15NlpaW9Ouvv9Lly5dp4sSJ5ObmptU6NXbsWPL396e4uDg6ffo0eXp60vTp0/n4goICksvl9Oqrr1JKSgpFRESQVCqlb775psF+NqvlS60muryP6EtvrvV0uYxox0SinL8adLqirJL6rDhKLksO0u+X7j75hFagvlZCxpNprVbWRgtSs+VYzSMsLIyIHg8MkMvlJJFIaPTo0ZSWlqaVRl5eHk2fPp3Mzc1JJpPRrFmz6h0Y0K1bN1q9enWj/Gzyl3TvEtH/hTwW4n/9iFIPciJtIOHR18llyUEa+WU0KVVN79jWJ0yQzaO1BCkgasc14HpQKBSwsLBAYWEhZLLaF5nSoiQPiP4XN0Cc1NzS/0MXAEHvAqKGL89YWqnE019EI7+kEuum9cXk/t2bfhN6RDO43M3NDSYmbLnJxlLf99foZ60eOkwra5NRKbkV4qL+BZQXcGG9pwDPfAZYNF5MP8ZlIL+kEi7WUjzf1/HJJ7QwZWVlGDZsGORyOdasWdPW7jCeQOcWZPqfwOElQM4V7rPcDxj3BeA6pP7z6qC8SoVvTt0CAMwd0QPGRm0/dl+tViM+Ph4uLi7tujugs9A5BVmQCUR+8ngTVVMrYNQnQMBMQNj0XYv3xmcit6gC3SxNMcnfMIqqjPZF5xPkzShg98uAsgwQCIEBbwAj/x8gbd6g70qlGltibgIA5gx3h9i47XNHRvuj8wmyWwA3xK1bAFc8te+tl2R/vvg37hWWw66LBFMHtPA4WkaHpfP9jZtYAG+eAGYe1JsYlSo1NsVw05veHt4DJqKmF3sZTUelUuGTTz6Bm5sbTE1N0aNHD3z++eftqu7c+XJIALBy0WtyvybdQ2Z+GazNxHh5oLNe02Y0nC+++AKbN2/Gjh074Ovri/j4eMyaNQsWFhZ477332tq9BtHpBHmvoAzLfk2BSk1QqglqIqjU1Q4CVGo1VGpArSaoasY/ClNrzlc/XgDqzaHuMBUbXu5oY2PTvCGHREBVqf4cagwiaZ1b+dXk7NmzmDhxIsaPHw8AcHV1xe7du3H+/PmW9FCvdDpBllWpcDw158mGjcTRwgSvBuk359UHZmZmyM3Nbd6GrVWlwL/bqE/1/90DxGYNMh08eDC+/fZbXLt2DV5eXrh06RJOnz6NdevWtbCT+qPTCdK2iwSrJ/vBSCjgD6FAAGOhAEKhAEYCAYyMHr3WYqN5Xz3OSCCAnUzC6o5tzIcffgiFQgFvb28YGRlBpVJh5cqVmDFjRlu71mA6nSBlJiK8xOp5jUMk5XKqtrp2A9m7dy927dqFH3/8Eb6+vkhKSsL8+fPh6OiIsLCwFnRSf3Q6QXY2ysrKMG7cONjZ2WHFihVNS0QgaHCxsS1ZtGgRPvzwQ7z00ksAAD8/P9y5cwerVq1igmQYBmq1GidPnuwUQ+dKS0shrDFH1cjIqF3tHM0EyegwTJgwAStXroSzszN8fX2RmJiIdevW4fXXX29r1xoMEySjw7Bx40Z88sknmDt3LnJycuDo6Ii333673SxwBTBBMjoQXbp0wfr167F+/fq2dqXJdL6hcwyGAcMEyWAYEEyQnQCpVApTU9O2doPRAFgdsoNjZmaGkpKS5g2dY7QaLIfsZHT0vsiWorW+NybIToJIJALAdZ4zGo/me9N8jy0FK7J2cMrLyzFlCrcr15YtW/htHKRSKdveoAEQEUpLS5GTkwNLS0sYGbXsBAImyA6OSqXCoUPcniRWVlYwNjbW2VuF8WQsLS1bZV8ZJshOhEAggIODA+zs7LT2TWHUj0gkavGcUQMTZCfEyMio1R4wRuMw6Ead8PBwuLq6wsTEBIGBge1qKQYGoykYrCD37NmDBQsWYPny5bh48SL69u2LkJAQVv9hdGgMVpDr1q3D7NmzMWvWLPj4+GDLli2QSqXYunVrW7vGYLQYBlmHrKysREJCApYuXcqHCYVCBAcHIzY2ttZzKioqUFFRwX8uLCwEwO1M1JkpKSnh3ysUCqhUqjb0pmOiecb0MXjAIAX54MEDqFQqyOXaOw/L5XL89ddftZ6zatUqfPrppzrhTk5sFXENjo5tvxtXR6aoqAgWFhbNSsMgBdkUli5digULFvCf1Wo18vPzYW1t3S47wBUKBZycnJCZmdnsPQfbE+3xvokIRUVFevnDM0hB2tjYwMjICNnZ2Vrh2dnZdXbOSiQSSCQSrTBLS8uWcrHVkMlk7ebB1Cft7b6bmzNqMMhGHbFYjICAAJw4cYIPU6vVOHHiBIKCgtrQMwajZTHIHBIAFixYgLCwMAwYMAADBw7E+vXrUVJSglmzZrW1awxGi2GwggwNDUVubi6WLVuGrKws9OvXD0eOHNFp6OmoSCQSLF++XKcY3tHprPetQUBsghyDYTAYZB2SweisMEEyGAYEEySDYUAwQTIYBgQTpJ5YsWIFBAKB1uHt7c3Hl5eXY968ebC2toa5uTmmTJmiM/AhIyMD48ePh1QqhZ2dHRYtWgSlUqllExMTg/79+0MikcDDwwPbt2/X8aUlp62dOnUKEyZMgKOjIwQCAQ4cOKAVT0RYtmwZHBwcYGpqiuDgYFy/fl3LJj8/HzNmzIBMJoOlpSXeeOMNFBcXa9lcvnwZQ4cOhYmJCZycnLBmzRodX/bt2wdvb2+YmJjAz8+PXxmhMb4YHMTQC8uXLydfX1+6f/8+f+Tm5vLxc+bMIScnJzpx4gTFx8fToEGDaPDgwXy8Uqmk3r17U3BwMCUmJtKhQ4fIxsaGli5dytvcunWLpFIpLViwgK5evUobN24kIyMjOnLkCG8TERFBYrGYtm7dSleuXKHZs2eTpaUlZWdn6+U+Dx06RB999BH98ssvBID279+vFb969WqysLCgAwcO0KVLl+j5558nNzc3Kisr423Gjh1Lffv2pXPnztGff/5JHh4eNH36dD6+sLCQ5HI5zZgxg1JSUmj37t1kampK33zzDW9z5swZMjIyojVr1tDVq1fp448/JpFIRMnJyY3yxdBggtQTy5cvp759+9YaV1BQQCKRiPbt28eHpaamEgCKjY0lIu5BFwqFlJWVxdts3ryZZDIZVVRUEBHR4sWLydfXVyvt0NBQCgkJ4T8PHDiQ5s2bx39WqVTk6OhIq1atavY91qSmINVqNdnb29PatWv5sIKCApJIJLR7924iIrp69SoBoAsXLvA2hw8fJoFAQHfv3iUiok2bNpGVlRV/30RES5YsoZ49e/Kfp02bRuPHj9fyJzAwkN5+++0G+2KIsCKrHrl+/TocHR3h7u6OGTNmICMjAwCQkJCAqqoqBAcH87be3t5wdnbmp5PFxsbCz89Pa+BDSEgIFAoFrly5wttUT0Njo0lDM22tus2Tpq3pk/T0dGRlZWld38LCAoGBgVr3aWlpiQEDBvA2wcHBEAqFiIuL422GDRsGsVjM24SEhCAtLQ0PHz7kber7LhriiyHCBKknAgMDsX37dhw5cgSbN29Geno6hg4diqKiImRlZUEsFusMdpfL5cjKygIAZGVl1TrdTBNXn41CoUBZWVm909Y0abQkmmvUd/2srCzY2dlpxRsbG6Nr1656+S6qxz/JF0PEYIfOtTfGjRvHv+/Tpw8CAwPh4uKCvXv3sn01GA2G5ZAthKWlJby8vHDjxg3Y29ujsrISBQUFWjbVp5PZ29vXOt1ME1efjUwmg6mpaZOmrekTzTXqu769vb3OukhKpRL5+fl6+S6qxz/JF0OECbKFKC4uxs2bN+Hg4ICAgACIRCKt6WRpaWnIyMjgp5MFBQUhOTlZ62GNjIyETCaDj48Pb1M9DY2NJo22nrbm5uYGe3t7resrFArExcVp3WdBQQESEhJ4m6ioKKjVagQGBvI2p06d0lo7NjIyEj179oSVlRVvU9930RBfDJK2blXqKCxcuJBiYmIoPT2dzpw5Q8HBwWRjY0M5OTlExHV7ODs7U1RUFMXHx1NQUBAFBQXx52u6PcaMGUNJSUl05MgRsrW1rbXbY9GiRZSamkrh4eG1dntIJBLavn07Xb16ld566y2ytLTUar1tDkVFRZSYmEiJiYkEgNatW0eJiYl0584dIuK6GiwtLenXX3+ly5cv08SJE2vt9vD396e4uDg6ffo0eXp6anV7FBQUkFwup1dffZVSUlIoIiKCpFKpTreHsbExffnll5SamkrLly+vtdvjSb4YGkyQeiI0NJQcHBxILBZTt27dKDQ0lG7cuMHHl5WV0dy5c8nKyoqkUilNmjSJ7t+/r5XG7du3ady4cWRqako2Nja0cOFCqqqq0rKJjo6mfv36kVgsJnd3d9q2bZuOLxs3biRnZ2cSi8U0cOBAOnfunN7uMzo6mgDoHGFhYUTEdTd88sknJJfLSSKR0OjRoyktLU0rjby8PJo+fTqZm5uTTCajWbNmUVFRkZbNpUuX6OmnnyaJRELdunWj1atX6/iyd+9e8vLyIrFYTL6+vvTHH39oxTfEF0ODTb9iMAwIVodkMAwIJkgGw4BggmQwDAgmSAbDgGCCZDAMCCZIBsOAYIJkMAwIJkgGw4BggmQwDAgmyHbOiBEjMH/+/LZ2g8fQ/GlvMEEyUFlZ2dYuMDS09WBaRtMJCwvTGeR948YNev3118nV1ZVMTEzIy8uL1q9fr3PexIkT6V//+hc5ODiQq6srEXEzKPr27UsSiYQCAgJo//79BIASExP5c5OTk2ns2LFkZmZGdnZ29Morr/CLedXmT3p6emt9HR0CJsh2TEFBAQUFBdHs2bP5le7Ky8tp2bJldOHCBbp16xb98MMPJJVKac+ePfx5YWFhZG5uzk9vSklJocLCQuratSu98sordOXKFTp06BB5eXlpCfLhw4f8lLDU1FS6ePEiPfPMMzRy5Mg6/VEqlW3x1bRb2BIe7RgLCwuIxWJIpVKtWfDVt3Z3c3NDbGws9u7di2nTpvHhZmZm+O677/iFpLZs2QKBQID//e9/MDExgY+PD+7evYvZs2fz53z99dfw9/fHv//9bz5s69atcHJywrVr1+Dl5VWrP4yGwwTZAQkPD8fWrVuRkZGBsrIyVFZWol+/flo2fn5+Wqu6paWloU+fPjAxMeHDBg4cqHXOpUuXEB0dDXNzc51r3rx5E15eXvq9kU4IE2QHIyIiAh988AH+85//ICgoCF26dMHatWv5JRY1mJmZNTrt4uJiTJgwAV988YVOnIODQ5N9ZjyGCbKdIxaLoVKp+M9nzpzB4MGDMXfuXD7s5s2bT0ynZ8+e+OGHH1BRUcFvlnrhwgUtm/79++Pnn3+Gq6srjI1rf3Rq+sNoHKzbo53j6uqKuLg43L59Gw8ePICnpyfi4+Nx9OhRXLt2DZ988omOsGrj5ZdfhlqtxltvvYXU1FQcPXoUX375JQBAIBAAAObNm4f8/HxMnz4dFy5cwM2bN3H06FHMmjWLF2FNf9RqdcvdfAeECbKd88EHH8DIyAg+Pj6wtbVFSEgIJk+ejNDQUAQGBiIvL08rt6wLmUyG33//HUlJSejXrx8++ugjLFu2DAD4eqWjoyPOnDkDlUqFMWPGwM/PD/Pnz4elpSWEQmGt/mhWb2c0DLamDqNOdu3ahVmzZqGwsJAt9txKsDokg+f777+Hu7s7unXrhkuXLmHJkiWYNm0aE2MrwgTJ4MnKysKyZcuQlZUFBwcHTJ06FStXrmxrtzoVrMjKYBgQrFGHwTAgmCAZDAOCCZLBMCCYIBkMA4IJksEwIJggGQwDggmSwTAgmCAZDAPi/wMpXWPjHUKFCAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "#column = [\"threads\", \"pods\"]\n",
+ "column = \"pods\"\n",
+ "x = \"target\"\n",
+ "y = \"[UPDATE].99thPercentileLatency(us)\"\n",
+ "plot_comparison(df_aggregated, x, y, column, title, peak_benchmark)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### READ"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAN0AAADxCAYAAABPqrJXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+0UlEQVR4nO2dd1hU19bG36HMwAADSEdpFkAQuyDGLopKjLHHmFw01ahJTEHjNVGTXC9ezTWWWJLcT0nU2BJJjFEUxRIVEVAUBFEEBJVmoQydmfX9cZyjIwgzMMxQ9u955uGUdfZZZ5zXvc/ae68tICICg8HQGnq6doDBaG8w0TEYWoaJjsHQMkx0DIaWYaJjMLQMEx2DoWWY6BgMLcNEx2BoGSY6BkPLMNExGFqGiY7B0DJMdBpixYoVEAgEuH//vq5daffMnj0bAoEAAoEAPXr0aJZ7rFu3jr+Huv/ubV508fHxGDt2LCQSCczMzDBmzBgkJCQ02u78+fNYsWIFCgsLNepnWFgYBAIB4uLimlyWuj4q7q34GBgYoGPHjpg9ezbu3r3boP2znwsXLtS6ZvPmzRAIBPDz81PZDyMjIzg6OiIwMBAbNmxASUmJyt+BtbU1duzYgVWrVql8jTqMHTsWO3bswKRJk9S+1qAZ/GkxXLp0CYMHD4aTkxOWL18OuVyOzZs3Y9iwYbh48SI8PDzUsgO4H/SXX36J2bNnw8LCQkdPVj+N9fGrr76Cm5sbKioqcOHCBYSFheHs2bNISkqCkZHRc+2fpWvXrrWO7dq1C66urrh48SLS0tLqtHm23OrqauTm5uLUqVNYuHAh1q5di4MHD6Jnz54NPouJiQlee+21Bu0ai6enJzw9PZGWlobw8HD1LqY2zPjx48nS0pLu37/PH7t37x6ZmprS5MmT1bYjIlqzZg0BoIyMDKXjy5cvJwBUUFDQKF+3b99OACg2NrZR16vio7r3Xrx4MQGgvXv3NsnX9PR0AkAHDhwgGxsbWrFihVp+EBGdOHGCjI2NycXFhcrKyuq9X3BwMLm4uKjkW1NpzL97m25e/v333wgICICVlRV/zMHBAcOGDcOhQ4cglUrVsluxYgVCQkIAAG5ubnwzKDMzk7+usLCQr2HMzc0xZ84clJWVaeR5bt++jXnz5sHDwwPGxsawsrLCtGnTlO6vio+qMmTIEADArVu3muT3rl27YGlpiaCgIEydOhW7du1Su4yRI0fiiy++wO3bt7Fz585G+9K5c+c6a8ARI0Zg2LBh/H5JSQkWLlwIV1dXiEQi2NraYvTo0bh06VKj762gTYuusrISxsbGtY6LxWJUVVUhKSlJLbvJkydj5syZAIBvv/0WO3bswI4dO2BjY8NfM336dJSUlCA0NBTTp09HWFgYvvzyS408T2xsLM6fP49XXnkFGzZswNy5c3HixAkMHz6cF7YqPqqKQqiWlpZ1ni8qKsL9+/eVPg8ePKhlt2vXLkyePBlCoRAzZ87EzZs3ERsbq7Y/r7/+OgDg2LFjal8LAFKpFJmZmejVq1etc1evXlVqts6dOxdbtmzBlClTsHnzZnz66acwNjZGSkpKo+6tRDPWvDrHx8eH3N3dqaamhj9WWVlJzs7OBIB+/fVXteyIGm5evvHGG0rHJ02aRFZWVg36qkqTra5mVXR0NAGgn3/+uUEfG7r38ePHqaCggLKzs+nXX38lGxsbEolElJ2dXad9XR+RSKRkGxcXRwAoMjKSiIjkcjl16tSJPvzww0Z9B+bm5tSnT596n+d5zUvFd3X06FGl49nZ2QSAfvjhB6X7zJ8/v977ELHmZS3mzZuHGzdu4M0330RycjKSkpLwj3/8Azk5OQCA8vJytexUYe7cuUr7Q4YMwYMHD1BcXNzk53m6Nq6ursaDBw/QtWtXWFhYaKTZExAQABsbGzg5OWHq1KkwMTHBwYMH0alTpzrtN23ahMjISKXPkSNHlGx27doFOzs7jBgxAgAgEAgwY8YM7NmzBzKZTG0fTU1N1YpiPo2ixfJsTXflyhUAUKrpLCwsEBMTg3v37jXqXvXRpkU3d+5c/POf/8Qvv/wCb29v+Pj44NatW1i0aBEA7h9QHTtVcHZ2VtpXNM0ePXrU5OcpLy/HsmXL4OTkBJFIBGtra9jY2KCwsBBFRUVNLl8hol9//RXjx4/H/fv3IRKJnmvv6+uLgIAApY9CXAAgk8mwZ88ejBgxAhkZGUhLS0NaWhr8/PyQl5eHEydOqO2jVCqFmZlZo54vMTERdnZ2sLOzUzp+9epV6OnpKfXprV69GklJSXBycoKvry9WrFiB9PT0Rt33Wdq06ABg5cqVyMvLw99//42rV68iNjYWcrkcAODu7q62XUPo6+vXeZw0kP/p/fffx8qVKzF9+nTs27cPx44dQ2RkJKysrHhfm4JCRFOmTMHBgwfRo0cPvPrqq3wgSV2ioqKQk5ODPXv2oFu3bvxn+vTpAKB2QOXOnTsoKiqqt7uhPpKSkup8n0tISEDnzp1hYmLCH5s+fTrS09OxceNGODo6Ys2aNfD29q5VkzeGNt1Pp8DS0hKDBw/m948fP45OnTrB09NTbTuBQND8Dj+HX3/9FcHBwfjvf//LH6uoqKjVCa4JH/X19REaGooRI0bgu+++w2effaZ2Gbt27YKtrS02bdpU69yBAwcQHh6OrVu31hnEqosdO3YAAAIDA9X2BeBquhkzZigdk8vliIqKwtChQ2vZOzg4YN68eZg3bx7y8/PRt29frFy5EuPGjWvU/RW0C9E9zd69exEbG4tvvvkGenrPr+ifZ6f431DTI1JUQV9fv1aNuXHjxlrvRprycfjw4fD19cW6deuwcOHCOjvIn0d5eTkOHDiAadOmYerUqbXOOzo6Yvfu3Th48GAtIdRFVFQUvv76a7i5uWHWrFlqPQcA5Ofno6CggH9PV7Bhwwbcv38fPj4+/DGZTAapVApzc3P+mK2tLRwdHVFZWan2vZ+lTYvuzJkz+OqrrzBmzBhYWVnhwoUL2L59O8aOHYsPP/xQbTsA6NevHwBg6dKleOWVV2BoaIgJEyZozOdt27YhIiKi1vEPP/wQL774Inbs2AFzc3N4eXkhOjoax48fV+pfrM/Hp5tPqhISEoJp06YhLCysVpDoyJEjuH79eq1rBg0ahNjYWJSUlOCll16qs9yBAwfCxsYGu3btqiU6Rbk1NTXIy8tDVFQUIiMj4eLigoMHD6olfgWJiYkAuO6GefPmwdPTExcuXMDRo0cBcMMAY2Ji4Ofnh5KSEnTq1AlTp05Fr169YGpqiuPHjyM2NlapldFoVI5ztkLS0tJozJgxZG1tTSKRiDw9PSk0NJQqKysbZafg66+/po4dO5Kenh4fmn9e6FgRBm8ofF9fGB4AZWdn06NHj2jOnDlkbW1NpqamFBgYSNevXycXFxcKDg5u0MeG7l1XqF4mk1GXLl2oS5cufJdKQ75u376dJkyYQEZGRlRaWvrc+86ePZsMDQ35kUDPlisUCsne3p5Gjx5N69evp+Li4nq/QwV1dRl8++23pK+vT3/99Rd16dKFjIyMaPTo0ZSYmEhdunShTp06UXx8PBFx3UUhISHUq1cvMjMzIxMTE+rVqxdt3ry51r0a02UgIGIZnhlti9mzZyMqKgqXLl2CgYEBLCws8NZbb+HMmTO4ceOGRu5RUVEBqVSK1atXY82aNSgoKIC1tbVK17b56CWjfZKdnQ0bGxs+MJaYmAgvLy+Nlb9161bY2NhgzZo1al/bpt/pGO2TRYsW8eMrTU1NQURITk7GqFGjNHaPKVOmKPXrPR10aQgmOkabw8vLS6lWS09Ph1Qq1WhN5+TkBCcnp0Zdy97pGAwtw97pGAwtw0THYGiZNvtOJ5fLce/ePZiZmel06Baj7UNEKCkpgaOjY72jnBS0WdHdu3ev0S+6DEZjyM7Ofu40qKdps6JTTP/Izs6GRCLRsTeMtkxxcTGcnJxUnnLUZkWnaFJKJJJ2LTqZTIa///4bADeh9nlTjxhNR9XXmDYrOgZHRUUFP7FUKpU2atAzQ7Ow6CWDoWWY6BgMLcNE154o0MwIe0bTYKJr61RXPNk+rpn8m4ymoZbotmzZgp49e/IRQX9/f6VELRUVFZg/fz6srKxgamqKKVOmIC8vT6mMrKwsBAUFQSwWw9bWFiEhIaipqVGyOXXqFPr27QuRSISuXbsiLCys8U/Y3rl18sl2ehSQfkpnrjA41BJdp06dsGrVKsTHxyMuLg4jR47ExIkTce3aNQDARx99hD///BP79+/H6dOnce/ePUyePJm/XiaTISgoCFVVVTh//jx++uknhIWFYdmyZbxNRkYGgoKCMGLECCQkJGDhwoV46623+Gn1DDVJ+UN5/9gXgAYyhzGagMpzzJ+DpaUl/e9//6PCwkIyNDSk/fv38+dSUlIIAEVHRxMR0eHDh0lPT49yc3N5my1btpBEIuFTIyxatIi8vb2V7jFjxgwKDAxUy6+ioiICQEVFRY19tNZPZSlVrrCn1QEiWh3yFlV+1ZFouYQoYY+uPWtTqPtba/Q7nSKRaGlpKfz9/REfH4/q6moEBATwNp6ennB2dkZ0dDQAIDo6Gj4+PkrJPgMDA1FcXMzXltHR0UplKGwUZTyPyspKFBcXK33aPTePQkhlCAlyR8h/foBw+Mfc8aivld/1GFpFbdElJibC1NQUIpEIc+fORXh4OLy8vJCbmwuhUFhrPTQ7Ozvk5uYCAHJzc2tl11XsN2RTXFxcb3rz0NBQmJub8x827hJA0gHur/ckQCAABr4HSDoCRdnAxe9161s7Rm3ReXh4ICEhATExMXjvvfcQHByM5OTk5vBNLZYsWYKioiL+k52drWuXdEtlCXDzGGRyQmyNO2JjYyHTEwIjP+fOn/kvUPZQtz62U9QWnVAoRNeuXdGvXz+EhoaiV69eWL9+Pezt7VFVVVUrwWleXh7s7e0BAPb29rWimYr9hmwkEkm9mYBFIhEfVW3v4y0BAKlHgJoKVJi5wXf8a/D19UVFRQXQcwZg1wOoLAL+1kAOR4baNLmfTi6Xo7KyEv369YOhoaHSohCpqanIysqCv78/AMDf3x+JiYnIz8/nbSIjIyGRSPj8Ff7+/rUWloiMjOTLYKiIomnpNVH5uJ4+MPorbvviD8CjTK26xYB60cvPPvuMTp8+TRkZGXT16lX67LPPSCAQ0LFjx4iIaO7cueTs7ExRUVEUFxdH/v7+5O/vz19fU1NDPXr0oDFjxlBCQgJFRESQjY0NLVmyhLdJT08nsVhMISEhlJKSQps2bSJ9fX2KiIhQx9X2Hb0se0T0pRXRcglJ0+P45K1SqfSJzU8TuUjm/jeeVwpDRdT9raklujfeeINcXFxIKBSSjY0NjRo1ihccEVF5eTnNmzePLC0tSSwW06RJkygnJ0epjMzMTBo3bhwZGxuTtbU1ffLJJ1RdXa1kc/LkSerduzcJhULq3Lkzbd++XR03iaidi+7STk5Q3/mRVCqtW3T3rhAtN+fs7sTrzNW2gLq/tTabDay4uBjm5uYoKipqf+93O6cAaceBEUtR2n8+v75erak94XOBK7sBl8HA7ENchJOhNur+1tjYy7ZG2cMnQ728J9drihFLAX0RcPsscION+NEWTHRtjZSDgLwGsPcBrBtYPNHCieu7A4DjywFZTf32DI3AZo63NfgOca6WMzQ0xPLly/ntWgz+CLj0E1BwHUjYBfQL1panzUf6aSD2R6DbGKDP6y2u2cze6doS0nzgvx4AyYEPEoAObqpdF70ZOLoEMLUHPrgECFtpSof860DkMuDmU03l7hOACRsAcYdmuy17p2vPJP/BCc6xr+qCA4ABbwGWroA0F4iuvVRxi6ckD/hzIbDFnxOcngHQ/SVAzxBI+RPYOhjIPKtrL3mY6NoSiqZljycBFLlcjmvXruHatWuQP29Kj4EQGPV4etW59VyN2RqoKgNOrwE29gXit3P/4XSfAMy/CMzYAbx1HOjQBSi+C/w0AYha2SLeW5no2grF94CsxzMxvCfxh8vLy9GjRw/06NGj3gHj8J7M1ZBVUuDUqmZ2tonIZcDlXZzYTv6L87ljP2BOBDBjJ2DVhbNz7A28ewbo/RonyDOrgbDxwKPbOnWfia6tcO13AAQ4DQTMG84yXAuBABjzNbcdH9Zy86ncigK+Hwr8MQ8oyQEsnIGp24C3TgAudQwVFJkCL28CpvwfIJIA2THA1iFPWgU6gImurXCtdtNSbVwHA+7jAJIBJ1pYPpW8ZK7Tf8ckIC8JMDIHxvwLWBAH9JjScITSZyow92+gky832PvXOcAf84GqUu34/xRMdG2BwizgTiwAQe0Bzuoy+ktAoAdcPwTcrn/isFYoyQUOvg9sfYEbZaNnCAycx0VnB70PGIhUL8vSFZhzBBgaAkAAXN7J1Zo5V5rJ+bphomsLXAvn/roOBszsm1aWjQfQ9x/cduQXgK56lKpKuXfLDX2ASz9z72ReE4H5McDY0MZ3AegbcHMKg/8EzByBB2nA/wK4qK2Wcscw0bUFnp4hrgmG/xMwNOFqz+Q/GrbXJHIZJ7INfYFToUB1GdBpAPDGMWD6z0+CJE3FbQjw3jnA80VAVgUc/SfwyzStRG6Z6Fo7D24BOQmAQL/pTUsFZnZc0w0Ajq8Aaqo0U25DpB3n+tQOvs/1GVq6AtPCgDcjAWc/zd9P3IGLdgatBQyMuPtvedyMbUbYMLDWjqJp6TYUMLGuddrQ0BCffvopv60yg94H4rYBjzK4PjC/dzXhbd3cuwyc+IqLTAKAkQUwbBHXaa/OO1tjEAiAAW8Czv7Ab28C+Y8DNv4LgFHLuT5MTd+SDQNr5Wx5gYvmvbTxybuYpojbBhz6CDDuAHyYwEUMNUluEteEvH6I29cz5MQ95JNmHbb1XKrLubygsT9y+w69gCnbGhw4zoaBtScKUjnB6Rly7yaaps8/AGt3oPwhcHad5sotSAX2z+YiktcPARBwuVsWXAQCV+pGcABgaAwEfQO88gtgbMlFNb8fynXEa7BuYqJrzSgCKF1GPveHKpfLkZmZiczMzOcPA3se+gZAwOP+ugubgaK7TXAW3PvngXeBzQOfNIu9J3ERyck/AB06N618TeEZBLx3HnAdAlSXch3xv70JVBRppHgmutYKkUod4uXl5XBzc4Obm1v9w8Ceh8c4wHkQUFMBnFzZOF8Ls4A/FgDfDQCu7uHC/x5BwNyzXKDExqNx5TYnEkfgH39wY1IF+kDSb1yQRwNpC5noWit514D7N7iZ3x7jm+8+Tw8PS/iFew9TleJ7wKGPufD/5R3cSJeuo4G3TwIzf+Em2rZk9PS598s3jgIWLlzNp4GmL4tetlYUtVy30YBRMweKOvXnmoHXwrn5aq83MG6xJA84+y0XiJFVcsfchnHpIZoj9N/cOA3ghpAJNLNeOxNda4RI8x3iDTFqGZByCLh1ggvtdxlZ26b0AXB+PRDzA1DzuCnr7M+JzW2IdvxsLjQYuWWia43kJHD9ZwbGgPtY7dyzQ2eu3yxmC1fbuQ0H9B6/nZQXAtHfARe2cNNsAG6qzYilnDhbWLoEXcNE1xpR1HLugdzUlWaGiJBTVIGsTm+gb/wOCHMTsW3rf5BjPxKBJeHodWcnDKtLOFv7nhCMWMr5xsRWJ0x0rQ2ix3Pn0LRpPHVQUS1DekEp0u9LcSu/FLcKpEi/L0V6QSnKqmQAgPf0X8Riwz14KW8z9PO+g6WAq9muy53wbc0UnM/xR8cjYjjFxKOTpTGcLMXc3w7cXzMjNUbFtFGY6Fobd+KAoixAaMplu2oAAwMDzJs3j98mIhSUVCKtgBPTrQIpbhWUIr1AiruF5c/tAzbQE8DZSozbVv9A8b0oWFdxA4PzhE7YIXoVe8v6o6CqGqiU4XpuCa7nltRZjoXYsE4xOncwQRcbEwjaQe3IhoG1NiKWcB3VPtOBKT+qdMmV7EL8FJ3JiStfipLK5+cJMTc2RBcbE3SxMUVnG1Nu29YUzh3EMNR//A6X8TeXS6XHFMBnGteJDqC8Soa7hWXIflSOOw/LcOdRObIfPf77sAyPyqrr9dOpgzEm9e6Il/t0RGeb5m82q8qdR2WISMqFyEAPr/u71jqv7m+Nia41IZcD33pxaQpm7uE6rhuAiDDyv6eRcf/JDGk9AeDUQYwuj0XFiYvb7mAibLbaRlpZgzuPynDn4RMx3nlUhuyH5ci4X4ryahlv28vJApP7dMSLPR1gZdrMg57rIOtBGQ4n5eBIYg6u3OFGonS0MMbZxSNqfT/q/tZY87I1kRXNCU5kXnfIvg6ibz1AWtY9iA31sDZ4KLrZmcHFSgyRgWb6nNTBVGQAT3sJPO1r/zDLq2Q4lpyL3y/fxZmb93EluxBXsgvx9aFkDHO3waS+HRHQ3Q5Ghs3nd8b9UhxOzMGRpBwk3X2yfLaeAPB164DxPg6olhGEBk37T4mJrjWh6BDv/qLKU152nr2BOxtnAQCGf/XMAiItCGOhPib27oiJvTuioKQSh67eQ/jlu7h6pwgnrufjxPV8mIkMMM7HHpP6dIKfWwfo6TW9Rk7Ll+JIYg7+SsxReg/VEwD+XawwrocDAr3tYWOmudqWia61IKt5Mou7oYVBHlNYVoVjyXkNG7YwbMxEmPOCG+a84Ia0fCl+v3wX4Zfv4m5hOfbF3cG+uDtwNDfCxD4dMalPR7jbmalcNhHhRp6Ur9Fu5En5c/p6AgzqYoUgHweM9rJrtmYtE11r4fZZoLSAm9vWeZhKlxy4dBdVNdrJ+9FcdLU1xaeBHvh4tDtiMx/i94S7OHQ1B/eKKrDl1C1sOXUL3o4STOrTES/1doStmVGtMogIKTklOJKUg8OJObhV8OT91lBfgMFdrTHOxwGju9vB0kTzk1afhYmutaDoEO8+AdBvuK+LiLAnNquZndIeenoC+HW2gl9nKyyf4I2o6/k4cOkuTqXm49q9Yly7V4x/H07B4G42mNTHEWO87JFxvxR/JXLBkMwHZXxZQn09DHW3xrgeDgjwsoO5sXb7DpnoWgOyam4JLEDlDvFLWYW4kSeFkWHbm0hiZKiP8T4OGO/jgIelVfjr8fvfpaxCnLlRgDM3CqCvdxUy+ZPAvMhAD8M9bDDexwEjPW112knPRNcaSD8NlD8CTGy4VVNVYM9FrpYb6+2Am83pm47pYCLE6/6ueN3fFZn3SxF++S5+T7iL2w/KYGSoh5GethjXwwEjPG1hKmoZP/eW4QWjfhRRS6+X+Y7o+iipqMahqzkAgKn9O2JjM7rWknC1NsFHo92xMKAbbj8og61EBLGw5f3EW55HDGVqKrkpNYDKTcuDV+6hvFqGrram8O1sg+BgbqFHA4P28c8tEAjgat0yu0YANWeOh4aGYsCAATAzM4OtrS1efvllpKamKtlUVFRg/vz5sLKygqmpKaZMmYK8POWwdVZWFoKCgiAWi2Fra4uQkBDU1CgPTTp16hT69u0LkUiErl27IiwsrHFP2Nq5FcXl3jdz5BYHUYE9F7MBAK8McIKRkRHCwsIQFhYGkUj7IzsYtVFLdKdPn8b8+fNx4cIFREZGorq6GmPGjEFp6ZMQ7EcffYQ///wT+/fvx+nTp3Hv3j1Mnvzkf2iZTIagoCBUVVXh/Pnz+OmnnxAWFoZly5bxNhkZGQgKCsKIESOQkJCAhQsX4q233sLRo+1wMfqk37i/3i8/mb9Wn/ndIiTeLYJQXw+T+zZi9R5G80NNID8/nwDQ6dOniYiosLCQDA0Naf/+/bxNSkoKAaDo6GgiIjp8+DDp6elRbm4ub7NlyxaSSCRUWVlJRESLFi0ib29vpXvNmDGDAgMDVfatqKiIAFBRUVGjn0/nVJURrXQkWi4hyrqo0iVLw6+Sy+JDNH9XPBERyeVykkqlJJVKSS6XN6e37RZ1f2tNiicXFXEDQTt04JK1xMfHo7q6GgEBAbyNp6cnnJ2dER3NrQATHR0NHx8f2NnZ8TaBgYEoLi7GtWvXeJuny1DYKMqoi8rKShQXFyt9Wj03j3Ezsc2duTwlDVBWVYM/Lt8DAMz0deaOlZXB1NQUpqamKCsrq+9yhpZotOjkcjkWLlyIF154AT169AAA5ObmQigUwsLCQsnWzs4Oubm5vM3TglOcV5yrz6a4uPi5aeRCQ0Nhbm7Of5ycnBr7aC0HPg/KyyrNwv7rag5KKmvg3EEM/85Wzesbo9E0WnTz589HUlIS9uzZo0l/Gs2SJUtQVFTEf7Kzs3XtUtOolAI3Hr/Dqhi13BPLPfOMAU4aGQzMaB4aFUNesGABDh06hDNnzqBTpycv6/b29qiqqkJhYaFSbZeXlwd7e3ve5uLFi0rlKaKbT9s8G/HMy8uDRCKBsbFxnT6JRKK2FZ27EcFl1LJ0Axx6N2yeV4L424+gryfAtH4sgNKSUaumIyIsWLAA4eHhiIqKgpubm9L5fv36wdDQECdOnOCPpaamIisrC/7+3HrQ/v7+SExMRH7+k3XAIiMjIZFI4OXlxds8XYbCRlFGu0CRdlyVpX3xpJtgpKctbCW1B/0yWhDqRGnee+89Mjc3p1OnTlFOTg7/KSsr423mzp1Lzs7OFBUVRXFxceTv70/+/v78+ZqaGurRoweNGTOGEhISKCIigmxsbGjJkiW8TXp6OonFYgoJCaGUlBTatGkT6evrU0REhMq+turoZXkR0Vc2XNQyN6lB84rqGur15VFyWXyITqTkKp2TSqUEgACQVCptLo/bNer+1tQSneIf79nP9u3beZvy8nKaN28eWVpaklgspkmTJlFOTo5SOZmZmTRu3DgyNjYma2tr+uSTT6i6ulrJ5uTJk9S7d28SCoXUuXNnpXuoQqsWXcJuTnAbBxCpEOb/I+EuuSw+RAP/fZxqZMr2THTNj7q/NbXe6UiFdCpGRkbYtGkTNm3a9FwbFxcXHD58uN5yhg8fjsuXL6vjXtsh6amFQVRqWnKDm6f1d4L+MwEUfX19TJ06ld9m6J72MRivNfEwA0iL5LZ7TGnQ/PaDUpy/9QACATC9f+0AipGREfbv369pLxlNoO1NtmrtXNjCLSXVZRRg3a1Bc0U3wdBuNuhkKW5u7xgagImuJVH2ELi8k9se9H6D5tUyOfbH3QEAzPRtA4MB2glMdC2J+O3cyp92PkDn4Q2an0jJx31pJaxNRRjV3a5Om9LSUggEAggEAqWB6QzdwUTXUqipBGK+57YHLVAtgPI4B8rUfp2eZF9mtHjYv1RLIfFXQJrHzZtTIcXe3cJynL5RAIAb9sVoPTDRtQSIgPOPkyoMnAsYNJwGbn9cNoiAgZ07wK0Fz5Jm1IaJriWQdgIoSOFW4ukb3KC5TE7Y9zhqqZjCw2g9MNG1BKIf13J9gwFjiwbNz9wswL2iCliIDRHobd+8vjE0DhOdrsm5CqSf4haRHzhXpUsUI1Am9enYrAtqMJoHNiJF10R/x/31fhmwaLipmF9SgRMp3AwNVZqW+vr6GD9+PL/N0D1MdLqk6O6TxEP+C1S65Nf4O6iRE/o6W6i0cIaRkRH++uuvpnjJ0DCsealLYrYC8hrAdQjQsW+D5nI5Ye/jAMorLIDSamE1na6oKAbiw7htFWu5C+kPcPtBGUxFBnixp0Ojby2TyVBdXf9SxIwnGBoaarRpzkSnKy7vACqLAWt3oNsYlS7Z/biWe6m3o8rpwktLS2FrawuAS3lRUlKCwsLCRrncnrGwsIC9vb1GloZmotMFsmpuNgHA1XIqJJF9VFqFo0lctrSZA9RrWipS7z148ABlZWWwtbWFWCxutrXF2xJEhLKyMj69iIND41sYCpjodEHyH0BRNrcKT88ZKl1y4PJdVMnk8HaUwKeTudq3NDExgVQqhb29PaysWHo+dVAkw8rPz4etrW2Tm5oskKJtiIDzG7ht33cAw4aTCBER3zfX2ACKQmhiMZtz1xgU35sm3oWZ6LRN5lkg5wpgYAz0f1OlSy5lPcLNfCmMDfUxsbdjo26raEqyJmXj0OT3xkSnbRQDm3u/Cpio1szb/Ti9XlBPB0h0uIIoQzMw0WmTglTg5lEAAsB/vkqXFFdU49BVxfoEbApPUxEIBPj999916gMLpGgTxZAvzyDAqotKl/yRcA8V1XJ0szVFX2dLtW+pp6eHYcOGwdbWljUtWwhMdNpCmg9cebzugwr5TxQoAigzBjg1SjTGxsY4deoUKioqkJGRofb1DM3Dmpfa4uKPgKwK6DQAcPJT6ZKku0W4dq9YKws8Dh8+HB988AEWLVqEDh06wN7eHitWrODPZ2ZmQiAQICEhgT9WWFgIgUCAU6dOAeBWzxUIBDh69Cj69OkDY2NjjBw5Evn5+Thy5Ai6d+8OiUSCV199td5lu8LCwmBhYYHff/8d3bp1g5GREQIDA2stCrNlyxZ06dIFQqEQHh4e2LFjh9L5mzdvYujQoTAyMoKXlxciIyOVzldVVWHBggVwcHCAkZERXFxcEBoa2rgvUA2Y6LRBVRkQ+yO37a9a/hMA2P24lgvsYY8OJg3PJm8qP/30E0xMTBATE4PVq1fjq6++qvVDVYUVK1bgu+++w/nz55GdnY3p06dj3bp1+OWXX/DXX3/h2LFj2LhxY71llJWVYeXKlfj5559x7tw5FBYW4pVXXuHPh4eH48MPP8Qnn3yCpKQkvPvuu5gzZw5OnjwJgFvKbfLkyRAKhYiJicHWrVuxePFipXts2LABBw8exL59+5Camopdu3bB1dVV7edVm+ZMN61LWlRa9ZgfuDTp3/oQyWpUuqS0spq8l0WQy+JDdO5mQaNvLZVKydramnr37k1JSUlUXl5ep92wYcNo8ODBSscGDBhAixcvJiKijIwMAkCXL1/mzz969IgA0MmTJ4mIS4UPgI4fP87bhIaGEgC6desWf+zdd9+td1Xd7du3EwC6cOECf0yxom9MTAwREQ0aNIjefvttpeumTZtG48ePJyKio0ePkoGBAd29e5c/f+TIEQJA4eHhRET0/vvv08iRI1Vaoba8vJySk5Pr/P60uhIrQwXkMuDCZm7bfwGgp9pohkNXcyCtrIGLlRgDm7jA4/379/Ho0aMG7Xr27Km07+DgoLS6kqo8XY6dnR3EYjE6d+6sdKyhcg0MDDBgwAB+39PTExYWFkhJSQEApKSk4IUXXlC65oUXXlA67+TkBEfHJ/2az676NHv2bCQkJMDDwwMffPABjh07puaTNg4muuYm9TDwMB0wsgD6zFL5sqcDKNpa4NHQULkPUCAQQC6XA+CioIDyehbPG53xdDkCgaDecnVJ3759kZGRga+//hrl5eWYPn06v+5Dc8JE19woOsMHvAkIVcvadSOvBJeyCmGgJ8DUFrLAo42NDQAgJyeHP/Z0UEXT1NTUIC4ujt9PTU1FYWEhunfvDgDo3r07zp07p3TNuXPn+DUOu3fvjuzsbCV/L1y4UOs+EokEM2bMwI8//oi9e/fit99+w8OHD5vjkXhYl0Fzkn0RyI4B9IXcOEsVUQRQRnW3ha1Zy1jg0djYGAMHDsSqVavg5uaG/Px8fP755812P0NDQ7z//vvYsGEDDAwMsGDBAgwcOBC+vr4AgJCQEEyfPh19+vRBQEAA/vzzTxw4cADHjx8HAAQEBMDd3R3BwcFYs2YNiouLsXTpUqV7rF27Fg4ODujTpw/09PSwf/9+2NvbK60i3Bywmq45UdRyPtMBM9Wydt0rLOfT672i5hSe5mbbtm2oqalBv379sHDhQvzrX/9qtnuJxWIsXrwYr776Kl544QWYmppi7969/PmXX34Z69evxzfffANvb298//332L59O4YPHw6Aaw6Hh4ejvLwcvr6+eOutt7By5Uqle5iZmWH16tXo378/BgwYgMzMTBw+fJhvSjcbKoVbWiE6j14+uEW03JyLWuYlq3SJXC6nN7ZfJJfFh2jy5nMkkzUcVWsIxaKQLi4u9UYvWxLbt28nc3NzXbuhhCajl6x52Vxc2AKAgK6jAdvuKl1yODEXJ67nw1BfgFWTfTQSQNHT00P//v1hZ2fHhoG1EJjomgOlJa9Uy39SVFaN5QevAQDeG94V3VTI9KUKxsbGiI2NZcPAWhDsna45iPs/oLoMsPcB3IapdEnokRTcl1ais40J5o9QbTB0W2X27NltOo8LE52mqakEYn7gtgd9oNKQrwvpD/gVVVdN7gmRAUsK25ZhotM0V/cBpfmApCPgPalB84pqGf55IBEAl7HZ162DRt0pKyuDq6srRo0a1SI6pBmNEN2ZM2cwYcIEODo61jkhkIiwbNkyODg4wNjYGAEBAbh586aSzcOHDzFr1ixIJBJYWFjgzTffhFQqVbK5evUqhgwZAiMjIzg5OWH16tXqP522IXoyZ85vLqDf8CzvTSfTkH6/FLZmInw2zrMZXCLcvn0bd+/e1XjZjMahtuhKS0vRq1cvbNq0qc7zq1evxoYNG7B161bExMTAxMQEgYGBqKio4G1mzZqFa9euITIyEocOHcKZM2fwzjtPOo+Li4sxZswYuLi4ID4+HmvWrMGKFSvwww8/NOIRtUjacaDgOiA0A/o1vORVam4Jtpy6BQD48iVvmBuzVAztgqb0XeCpEdtEXD+Tvb09rVmzhj9WWFhIIpGIdu/eTUREycnJBIBiY2N5myNHjpBAIOBHhG/evJksLS2psrKSt1m8eDF5eHg815eKigoqKiriP9nZ2drvpwt7keuXi/hng6Y1Mjm9vOksuSw+RG/9FKvSSPfG0Br76VoiLXaWQUZGBnJzcxEQEMAfMzc3h5+fH6KjowEA0dHRsLCwQP/+/XmbgIAA6OnpISYmhrcZOnQohMInc8gCAwORmpr63NHyoaGhMDc35z9OTlrOJ5JzBcg4wy155dfwklc7L9zG5axCmIoM8PXEHqwPrR2hUdHl5nIZiO3s7JSO29nZ8edyc3P5NN8KDAwM0KFDByWbusp4+h7PsmTJEhQVFfGfZ2cZNzvnH7/L9ZgMWNQv+HuF5VgdcR0AsHisB+zNW8b4SoZ2aDPRS5FIBIlEovTRGkV3VF7yioiw7I8klFbJ0NfZArP8XLTgYPuhoUBfS0CjorO35wb15uXlKR3Py8vjz9nb29eawFhTU4OHDx8q2dRVxtP3aFFc2AKQjFvyyrF3vaaHE3NxPOXxUK8pPZt9rpxAIICXlxe6du3arPdpKTQU6GsJaHQYmJubG+zt7XHixAn07t0bABeJjImJwXvvvQeAm71bWFiI+Ph49OvXDwAQFRUFuVwOPz8/3mbp0qWorq7mJ0BGRkbCw8MDlpbqp6FrNmoqgbPfAjHfc/uDPqjXXGmo17AuKi3q2FTEYjGuXbvWpGFgRITyapmGPVMNY0N9td53x40bh3HjxjWjR01HbdFJpVKkpaXx+xkZGUhISECHDh3g7OzMT/no1q0b3Nzc8MUXX8DR0REvv/wyAG5y4dixY/H2229j69atqK6uxoIFC/DKK6/wU+tfffVVfPnll3jzzTexePFiJCUlYf369fj2228189Sa4HY08OeHwP1Ubt/rZaBrQL2XrIp4MtRr3ojWU/OUV8vgteyoTu6d/FWgysuCtRbUfpq4uDiMGDGC3//4448BAMHBwQgLC8OiRYtQWlqKd955B4WFhRg8eDAiIiJgZPQkWLBr1y4sWLAAo0aNgp6eHqZMmYINGzbw583NzXHs2DHMnz8f/fr1g7W1NZYtW6bUl6czyguBE18Ccdu4fRMbYNx/AO/J9Q75upD+gE+PvmpyTxgZsqFe7RUB0VNJL9oQxcXFMDc3R1FRkWaCKkRAykHg8CJA+jiC2ud1YPRXgLj+oVsV1TKMX/830u+XYqavM0In+zTdHxUpKyvDgAED4ODggPXr16NLly5K/wGqQmtqXj6NQCBAeHg438pqCormuZubW63vT93fWtuqt5uLorvA4RAg9S9u36or8OI6wG2ISpcrhnrZNNNQr/ogIiQnJ6O0tLTRZQgEgjbXxNMl7JusD7kMiP0/4MRXQFUJoGcADP4IGPKpSuvKAWyoF6M2THTPI+8aFyi5E8vtd/IFJqwH7LxULkIuJ3x24Cpq5ISA7nYY16MFdne0MRoK9LUEmOiepboCOLMGOLcOkNdwg5cDlnMLOKqZsGZnzFNDvV72ZkO9tEBDgb6WABPd02T8zdVuD7nmIDyCgPFrAPOOaheVU1SO1RFcd8KisR5wMDfWpKeM5zB8+HC09NggEx3A5TSJ/OJJXhNTeyDoG6D7hEYVR0T44vdrkFbWoK+zBV5jQ70YT9G+RUfEjZmM+AwoLeCO9X+Ta04amTe62CNJuTiekqe1oV71IRAI4OLigo4d1a+tGc1D+xXdo9vAX58AaY+XgrL2AF7aADgPbFKxuhjqVR9isRiZmZksG1gLov2JTlYDXPweiPoXl7FLXwgMDQFe+BAwEDW5+FUR11FQ0vqGejG0R/sTXeph4Og/uW3nQVw3gI27RoqOSX/Ar0MQOsmHDfVi1EmbmU+nMt0nAN1f4sQ2+y+NCa6iWoYl4YqsXk7wa+KacpqivLwcAwYMwNSpU1t8VK+90P5qOoEAmLGjYTs12XwyDekFiqFeqqVR1wZyuRxxcXFwcXFhomshtL+arhm4kVeCLafZUC+GarS/mq4eiAiVNXIUl1ejuKIaxRU1j7drUFJRjeLyGhRXVPPbJY9tbj8oRbWMDfViqEa7E929wnKsP34TJZVPi6iGF1q1rHFNMIkRG+rFUI12J7qKahn2xtWfKUxPAJgZGUJibAAzEfdXYmTIH+O2DSAxNoTEyBASIwN0tTNtMaumtldkMhlWrFiBnTt3Ijc3F46Ojpg9ezY+//zzFvWfYbsTnY2ZCJ+OcecF87R4FNsmwsZPnGTojv/85z/YsmULfvrpJ3h7eyMuLg5z5syBubk5Pvig/vw12qTdic7MyBALRnbTtRtaxdraumkJnYi4gQS6wFCs0spHAHD+/HlMnDgRQUFBAABXV1fs3r0bFy9ebE4P1abdia69YWJigoKCgqYNA6suA/7tqFnHVOWf9wChiUqmgwYNwg8//IAbN27A3d0dV65cwdmzZ7F27dpmdlI9mOgYbYbPPvsMxcXF8PT0hL6+PmQyGVauXIlZs2bp2jUlmOgYDWMo5mocXd1bRfbt24ddu3bhl19+gbe3NxISErBw4UI4OjoiOLjhVZS0BRNdG6e8vBzjxo2Dra0tVqxY0bhCBAKVm3i6JCQkBJ999hleeeUVAICPjw9u376N0NBQJjqG9pDL5Th9+nS7GAZWVlYGvWdSaujr67e4FWiZ6BhthgkTJmDlypVwdnaGt7c3Ll++jLVr1+KNN97QtWtKMNEx2gwbN27EF198gXnz5iE/Px+Ojo549913sWzZMl27pgQTHaPNYGZmhnXr1mHdunW6dqVe2CwDBkPLMNExGFqGia4dIBaLYWzM8m62FNg7XRvHxMQEpaWlLBtYC4LVdO2Mtt5X11xo8ntjomsnKJaRLivT0WyBVo7ie1N8j02BNS/bOBUVFZgyZQoAYOvWrcjPzwfAveexOYMNQ0QoKytDfn4+LCwsoK/f9LSKTHRtHJlMhsOHDwMALC0tYWBgwAuPoToWFhawt9dM/hsmunaEQCCAg4MDbG1tUV1drWt3Wg2GhoYaqeEUMNG1Q/T19TX6I2KoR4sOpGzatAmurq4wMjKCn59fi5t2z2A0hhYrur179+Ljjz/G8uXLcenSJfTq1QuBgYHsfYTR6mmxolu7di3efvttzJkzB15eXti6dSvEYjG2bduma9cYjCbRIt/pqqqqEB8fjyVLlvDH9PT0EBAQgOjo6DqvqaysRGVlJb9fVFQEACguLm5eZ1s4paWl/HZxcTFkMpkOvWmbKH5jqnagt0jR3b9/HzKZDHZ2dkrH7ezscP369TqvCQ0NxZdfflnruJOTU7P42BpxdNRRRq92QklJCczNG17Bt0WKrjEsWbIEH3/8Mb8vl8vx8OFDWFlZtcpO4OLiYjg5OSE7OxsSiUTX7miN1vjcRISSkhKV/1NrkaKztraGvr4+8vLylI7n5eU9t4NSJBJBJFJeSdXCwqK5XNQaEomk1fz4NElre25VajgFLTKQIhQK0a9fP5w4cYI/JpfLceLECfj7++vQMwaj6bTImg4APv74YwQHB6N///7w9fXFunXrUFpaijlz5ujaNQajSbRY0c2YMQMFBQVYtmwZcnNz0bt3b0RERNQKrrRVRCIRli9fXqvJ3NZpD88tIDbBisHQKi3ynY7BaMsw0TEYWoaJjsHQMkx0DIaWYaLTECtWrIBAIFD6eHp68ucrKiowf/58WFlZwdTUFFOmTKnV+Z+VlYWgoCCIxWLY2toiJCQENTU1SjanTp1C3759IRKJ0LVrV4SFhdXypTmnRJ05cwYTJkyAo6MjBAIBfv/9d6XzRIRly5bBwcEBxsbGCAgIwM2bN5VsHj58iFmzZkEikcDCwgJvvvkmpFKpks3Vq1cxZMgQGBkZwcnJCatXr67ly/79++Hp6QkjIyP4+PjwM+TV8UUnEEMjLF++nLy9vSknJ4f/FBQU8Ofnzp1LTk5OdOLECYqLi6OBAwfSoEGD+PM1NTXUo0cPCggIoMuXL9Phw4fJ2tqalixZwtukp6eTWCymjz/+mJKTk2njxo2kr69PERERvM2ePXtIKBTStm3b6Nq1a/T222+ThYUF5eXlaeQ5Dx8+TEuXLqUDBw4QAAoPD1c6v2rVKjI3N6fff/+drly5Qi+99BK5ublReXk5bzN27Fjq1asXXbhwgf7++2/q2rUrzZw5kz9fVFREdnZ2NGvWLEpKSqLdu3eTsbExff/997zNuXPnSF9fn1avXk3Jycn0+eefk6GhISUmJqrliy5gotMQy5cvp169etV5rrCwkAwNDWn//v38sZSUFAJA0dHRRMT9mPX09Cg3N5e32bJlC0kkEqqsrCQiokWLFpG3t7dS2TNmzKDAwEB+39fXl+bPn8/vy2QycnR0pNDQ0CY/47M8Kzq5XE729va0Zs0a/lhhYSGJRCLavXs3ERElJycTAIqNjeVtjhw5QgKBgO7evUtERJs3byZLS0v+uYmIFi9eTB4eHvz+9OnTKSgoSMkfPz8/evfdd1X2RVew5qUGuXnzJhwdHdG5c2fMmjULWVlZAID4+HhUV1cjICCAt/X09ISzszM/VSk6Oho+Pj5Knf+BgYEoLi7GtWvXeJuny1DYKMpQTIl62qahKVGaJCMjA7m5uUr3Nzc3h5+fn9JzWlhYoH///rxNQEAA9PT0EBMTw9sMHToUQqGQtwkMDERqaioePXrE29T3Xajii65gotMQfn5+CAsLQ0REBLZs2YKMjAwMGTIEJSUlyM3NhVAorDUA287ODrm5uQCA3NzcOqcyKc7VZ1NcXIzy8vJ6p0QpymhOFPeo7/65ubmwtbVVOm9gYIAOHTpo5Lt4+nxDvuiKFjsMrLUxbtw4frtnz57w8/ODi4sL9u3bx9YRYCjBarpmwsLCAu7u7khLS4O9vT2qqqpQWFioZPP0VCV7e/s6pzIpztVnI5FIYGxs3KgpUZpEcY/67m9vb18rz01NTQ0ePnyoke/i6fMN+aIrmOiaCalUilu3bsHBwQH9+vWDoaGh0lSl1NRUZGVl8VOV/P39kZiYqPSDjIyMhEQigZeXF2/zdBkKG0UZup4S5ebmBnt7e6X7FxcXIyYmRuk5CwsLER8fz9tERUVBLpfDz8+Ptzlz5oxSbs7IyEh4eHjA0tKSt6nvu1DFF52h0zBOG+KTTz6hU6dOUUZGBp07d44CAgLI2tqa8vPziYjrMnB2dqaoqCiKi4sjf39/8vf3569XdBmMGTOGEhISKCIigmxsbOrsMggJCaGUlBTatGlTnV0GIpGIwsLCKDk5md555x2ysLBQioo2hZKSErp8+TJdvnyZANDatWvp8uXLdPv2bSLiwvQWFhb0xx9/0NWrV2nixIl1dhn06dOHYmJi6OzZs9StWzelLoPCwkKys7Oj119/nZKSkmjPnj0kFotrdRkYGBjQN998QykpKbR8+fI6uwwa8kUXMNFpiBkzZpCDgwMJhULq2LEjzZgxg9LS0vjz5eXlNG/ePLK0tCSxWEyTJk2inJwcpTIyMzNp3LhxZGxsTNbW1vTJJ59QdXW1ks3Jkyepd+/eJBQKqXPnzrR9+/ZavmzcuJGcnZ1JKBSSr68vXbhwQWPPefLkSQJQ6xMcHExEXKj+iy++IDs7OxKJRDRq1ChKTU1VKuPBgwc0c+ZMMjU1JYlEQnPmzKGSkhIlmytXrtDgwYNJJBJRx44dadWqVbV82bdvH7m7u5NQKCRvb2/666+/lM6r4osuYFN7GAwtw97pGAwtw0THYGgZJjoGQ8sw0TEYWoaJjsHQMkx0DIaWYaJjMLQMEx2DoWWY6BgMLcNE18oZPnw4Fi5cqGs3eFqaPy0RJjoGqqqqdO1C+0LXgz8ZjSc4OLjWwOO0tDR64403yNXVlYyMjMjd3Z3WrVtX67qJEyfSv/71L3JwcCBXV1ci4kbu9+rVi0QiEfXr14/Cw8MJAF2+fJm/NjExkcaOHUsmJiZka2tLr732Gp+AqS5/MjIytPV1tBqY6FoxhYWF5O/vT2+//TafgayiooKWLVtGsbGxlJ6eTjt37iSxWEx79+7lrwsODiZTU1N+6kxSUhIVFRVRhw4d6LXXXqNr167R4cOHyd3dXUl0jx494qcbpaSk0KVLl2j06NE0YsSI5/pTU1Oji6+mRcPSNbRizM3NIRQKIRaLlWZDP70MtJubG6Kjo7Fv3z5Mnz6dP25iYoL//e9/fPKfrVu3QiAQ4Mcff4SRkRG8vLxw9+5dvP322/w13333Hfr06YN///vf/LFt27bByckJN27cgLu7e53+MJRhomuDbNq0Cdu2bUNWVhbKy8tRVVWF3r17K9n4+PgoZdtKTU1Fz549YWRkxB/z9fVVuubKlSs4efIkTE1Na93z1q1bcHd31+yDtFGY6NoYe/bswaeffor//ve/8Pf3h5mZGdasWcOnt1NgYmKidtlSqRQTJkzAf/7zn1rnHBwcGu1ze4OJrpUjFAohk8n4/XPnzmHQoEGYN28ef+zWrVsNluPh4YGdO3eisrKSX5AxNjZWyaZv37747bff4OrqCgODun86z/rDqA3rMmjluLq6IiYmBpmZmbh//z66deuGuLg4HD16FDdu3MAXX3xRSzx18eqrr0Iul+Odd95BSkoKjh49im+++QYAIBAIAADz58/Hw4cPMXPmTMTGxuLWrVs4evQo5syZwwvtWX/kcnnzPXwrhYmulfPpp59CX18fXl5esLGxQWBgICZPnowZM2bAz88PDx48UKr1nodEIsGff/6JhIQE9O7dG0uXLsWyZcsAgH/Pc3R0xLlz5yCTyTBmzBj4+Phg4cKFsLCwgJ6eXp3+KLJcM57AcqQwnsuuXbswZ84cFBUVsYS5GoS90zF4fv75Z3Tu3BkdO3bElStXsHjxYkyfPp0JTsMw0TF4cnNzsWzZMuTm5sLBwQHTpk3DypUrde1Wm4M1LxkMLcMCKQyGlmGiYzC0DBMdg6FlmOgYDC3DRMdgaBkmOgZDyzDRMRhahomOwdAy/w91JL/lZ8Ti0AAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "column = \"pods\"\n",
+ "x = \"target\"\n",
+ "y = \"[READ].99thPercentileLatency(us)\"\n",
+ "title = \"99th Lat READ [$\\mu$s]\"\n",
+ "plot_comparison(df_aggregated, x, y, column, title, peak_benchmark)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 51,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAANMAAADxCAYAAABRY4LkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2/klEQVR4nO2deVwT19rHfwmQhTXsi6wugLhvIHbTSkXrtXrdqLUtUl9bq7b1tlXr27pUa/Vqr7XuXV6lte5etdYNUbSLCyKCgiKKoiCCuBAgELbkef8YGYlBIBBMCOf7+cyH5Jwzc54Z5pdz5sw5zyMgIgKDwWgyQkMbwGCYCkxMDIaeYGJiMPQEExODoSeYmBgMPcHExGDoCSYmBkNPMDExGHqCiYnB0BNMTAyGnmBiYjD0BBMTw6iZMGECBAIBBAIBOnfu3Gz1rFixgq9HIBDg/v37Oh/D5MS0du1aCAQChISEGNSO6OhoCAQCnDt3rsnHOnXqFObPnw+5XK5T3dWbubk52rRpgwkTJiAnJ6fOsk9uZ86cqbWO+q7zk8eVSCTw8PBAeHg4Vq5cieLi4gafv5OTEzZt2oQlS5Y0eB9dGTx4MDZt2oR//vOfjT6GuR7tMQo2b94MX19fnD17FhkZGWjfvr2hTWoyp06dwpdffokJEyZAJpM1eL8FCxbAz88PZWVlOHPmDKKjo/H3338jNTUVEomk1rJP8rTr19DrXH3cyspK5OXl4cSJE5g+fTqWL1+Offv2oWvXrvWeh5WVFd58880GnHHjCQwMRGBgIDIyMrBnz57GHYRMiBs3bhAA2r17Nzk7O9P8+fMNZsvGjRsJACUkJDT5WMuWLSMAlJmZ2aS6Z82aRQBo+/btTbKzIde5ruMeO3aMpFIp+fj4UGlpaZ11RUZGko+PT4Ntayrz5s0jAHTv3j2d9zWpbt7mzZthb2+PoUOHYvTo0di8ebNG/q5duyAQCPDHH39o7fv9999DIBAgNTWVTztx4gR69+4NiUSCdu3a4fvvv8f8+fMhEAj0Yu+tW7cwZcoUBAQEQCqVwtHREWPGjMHNmzf5MvPnz8eMGTMAAH5+fny3qWaZhvLCCy8AAK5fv94ku+u7zvXx8ssvY86cObh16xZ+/fXXJtnStm3bWlutAQMG4KWXXgIAFBcXY/r06fD19YVYLIaLiwteeeUVnD9/vkl1P4nJiWnkyJEQiUQYN24crl27hoSEBD5/6NChsLa2xo4dO7T23b59Ozp16sQ/5CYlJWHw4MF48OABvvzyS0ycOBELFizA3r179WZvQkICTp06hddffx0rV67E5MmTcezYMfTv3x+lpaUAgJEjR2LcuHEAgG+//RabNm3Cpk2b4OzsrHN91QK0t7fXyissLMT9+/c1tgcPHtR6nPquc0N46623AABHjhzR7SRqoFAocPPmTXTr1k0r7+LFi3wXcvLkyVi3bh1GjRqFtWvX4tNPP4VUKkVaWlqj666VZmgpDcK5c+cIAMXGxhIRkVqtJk9PT/roo480yo0bN45cXFyoqqqKT8vNzSWhUEgLFizg04YNG0aWlpaUk5PDp127do3Mzc2pIZetId2n2ro4p0+fJgD0yy+/8GmN7eYdPXqU7t27R9nZ2bRr1y5ydnYmsVhM2dnZWmVr28RisdaxG3qdG3L+dnZ21KNHjzrPpa5uXvW1iomJ0UjPzs4mAPTDDz/w9UydOrXOeqph3Txwv5aurq4YMGAAAEAgECAiIgLbtm2DSqXiy0VERCA/Px8nTpzg03bt2gW1Wo2IiAgAgEqlwtGjRzFixAh4eHjw5dq3b48hQ4bozWapVMp/rqysxIMHD9C+fXvIZDK9dEHCwsLg7OwMLy8vjB49GlZWVti3bx88PT21yq5ZswaxsbEa26FDh7TKNfQ6NwRra2udRvWepLpL/mTLdOHCBQDgWyaZTIb4+HjcuXOn0XU1BJMQk0qlwrZt2zBgwABkZmYiIyMDGRkZCAkJwd27d3Hs2DG+7ODBg2FnZ4ft27fzadu3b0f37t3h7+8PAMjPz4dSqax1hEqfo4NKpRJz586Fl5cXxGIxnJyc4OzsDLlcjsLCwiYfv1ogu3btwquvvor79+9DLBbXWjY4OBhhYWEaW7VgqtHlOjcEhUIBGxubRp9fSkoKXF1d4erqqpF+8eJFCIVCvsu+dOlSpKamwsvLC8HBwZg/fz5u3LjR6HqfhkmIKS4uDrm5udi2bRs6dOjAb2PHjgUAjQdksViMESNGYM+ePaiqqkJOTg5OnjzJt0rPkg8++ACLFi3C2LFjsWPHDhw5cgSxsbFwdHSEWq1u8vGrBTJq1Cjs27cPnTt3xhtvvAGFQtGo4+lynevj9u3bKCwsbNKPU2pqaq3PS8nJyWjbti2srKwAAGPHjsWNGzewatUqeHh4YNmyZejUqVOtLW9TMIn3TJs3b4aLiwvWrFmjlbd7927s2bMH69ev57tVERER+Pnnn3Hs2DGkpaWBiDTE5OLiAolEgoyMDK3j1ZbWWHbt2oXIyEj85z//4dPKysq0Xs7qY/TQzMwMixcvxoABA7B69Wp89tlnOh9D1+tcF5s2bQIAhIeH62xHNSkpKVo/gmq1GnFxcXjxxRc10t3d3TFlyhRMmTIF+fn56NmzJxYtWqTXbnuLF5NSqcTu3bsxZswYjB49Wivfw8MDW7duxb59+/gLHxYWBgcHB2zfvh1paWkIDg7WeGFpZmaGsLAw7N27F3fu3OGfmzIyMvT6a2ZmZgZ6wtPaqlWrtJ49qn9hGzoD4mn0798fwcHBWLFiBaZPn6714rYuGnOdn0ZcXBwWLlwIPz8/jB8/XufzALiu+L1795Cbm6uRvnLlSty/fx9dunQBwHVNFQoF7Ozs+DIuLi7w8PBAeXl5o+p+Gi1eTPv27UNxcTFee+21WvP79u0LZ2dnbN68mf8nW1hYYOTIkdi2bRtKSkrwzTffaO03f/58HDlyBM899xzef/99qFQqrF69Gp07d0ZycnKD7duwYQMOHz6slf7RRx/hH//4BzZt2gQ7OzsEBQXh9OnTOHr0KBwdHTXK9urVCwDw+eef4/XXX4eFhQWGDRvGi0wXZsyYgTFjxiA6OhqTJ0/m0w8dOoQrV65ole/Xrx/atm3bqOtc87hVVVW4e/cu4uLiEBsbCx8fH+zbt08nQdckJSUFADe0PmXKFAQGBuLMmTOIiYkBACQmJiI+Ph4BAQHw9PTE6NGj0a1bN1hbW+Po0aNISEjQ6BHoBZ3H/4yMYcOGkUQioZKSkqeWmTBhAllYWND9+/f5tNjYWAJAAoFAY6i4JseOHaMePXqQSCSidu3a0U8//USffPIJSSSSeu2qa8gZAGVnZ1NBQQFFRUWRk5MTWVtbU3h4OF25coV8fHwoMjJS43gLFy6kNm3akFAorHeYvK5haZVKRe3ataN27dpRVVVVvXZu3LiRiHS/zk8eVyQSkZubG73yyiv03XffUVFRUb3XkOjpQ+PffvstmZmZ0YEDB6hdu3YkkUjolVdeoZSUFGrXrh15enpSYmIilZeX04wZM6hbt25kY2NDVlZW1K1bN1q7dm2t9TVlaLzFi+lZM3z4cGrfvr2hzWg1REZGkpeXF927d48KCgr49IkTJ1KHDh30Vo9SqaR79+7RjBkz2Hum5kCpVGp8v3btGg4ePIj+/fsbxqBWSnZ2NpydnfH888/zaSkpKQgKCtJbHevXr4ezszOWLVvW6GO0+Gem5qRt27aYMGEC2rZti1u3bmHdunUQiUSYOXOmoU1rNcycOZOfe2dtbQ0AICJcvnwZAwcO1Fs9o0aN0lgvVXPAoqEwMdXB4MGDsXXrVuTl5UEsFiM0NBRff/01OnToYGjTWg1BQUFaLVBmZiYUCoVeWyYvLy94eXk16RgCIhYFg8HQB+yZicHQE0xMDIaeaJHPTGq1Gnfu3IGNjY3eFuoxGLVBRCguLoaHhweEwrrbnhYppjt37jT5YZHB0IXs7Oxal67UpEWKqXrafnZ2NmxtbQ1sDcOUKSoqgpeXV4OWirRIMVV37WxtbVu9mFQqFf766y8AnI8HMzMzA1tkmjTkcaJFionxmLKyMn4Rn0KhaNTkV4Z+YKN5DIaeYGJiMPQE6+YxWgaVZUDmH8CVA8C1WEAgBLyCAe9QwDsEcOkEmBn2dmZiYhgvpQ+BqzFA+gEgIw6oLNHMv3QbuLSb+yyyBjx7A159OXF59gHEjXfW0hiYmBjGRcFN4MpBrgXKOg1QjSX8Nh5A4KtAwBBAaAFkxwNZZ4DbCUB5EXDjBLcBXMvl2umRuPoCXiGArHnfTTIxtXRqzlNW6+a3ziggAu4kAekHORHlX9LMd+0MBLzKici9O1BziLot5/4YahWQnwZknwGy4rm/8iwgL4XbEn7kytm24UTl/Uhgeu4atshZ40VFRbCzs0NhYWHrfs+kLEDFjkn47tf9AICPQi0hcvQCZD6Avc+jv76P/1o5ad6MhqKqArj5Jyee9ENAcQ3nkAIzwKcfEDiUa4HsfRtXR1GuprhyL2q2coB219A7FLDQ9Kyky73GxNRSyUsFtr8JFGQCQnOuW6OqqHsfC8snhPbEX0kzXkulnBs4SD8AXDsKVNTw5GphBbQfyAmowyDA0kH/9VeUADmJj8WVnQCUP+Hoc0o84BKokaTLvca6eS2RlF3Avg+AylJA5g1E/Aq4dgGKcwH5LaDgFvfsUf1ZfgsousOVv5fGbbUhtedEJfMGzCUAqQEQ95ff6NFWI62+Mqpyrrulrnpcl7Ur1/IEDAX8XgQsGuelqMGIrLh6/B7501OrgHtXuGeu7Hium+jk36QqWMvUklBVArHzgDOPnEC2exmqET/g/JWbAICePXs+fTpRVTlQeFtbZAU3uc/Kh81vv3Pgo+efoYBHT6CeWdjGAGuZTBFFPrAzCrj1N/f9hU+AAZ+jTFmG4OBgrkhd04nMxYBjO26rjfLixwIrvM21IgIhAAH3V/Dk35p5wtrL1Mx36fj0uk0EJqaWQHYCsONt7kFdZAP8cx3QcZh+6xDbIFfaDsn3HJFW2B7WEnN42luijUwKT3spHKxEbO1YPTAxGTNEQOJG4OBMQF3J9ekjNgPOTevbA0BJeRUu3i5EcrYcydkFSM6W427R090FSy3M0MaeExa3PRaap70lnKyZ2JiYjJXKMuDgJ0DSozCVHV8DRqxt1Ft9lZqQka/gRZOUJcfVu8VQP/G0LBQAAW626NLGFmWVauTIlbhdUIq7ReVQVqqQka9ARn7tETTE5sJHYqspMu67p70ULjZikxcbE5MxIs8GdrzFvcwUCIGBc4Hnpjf4HVF+URmSsuVcq5Mlx8XbcpRUaL/QdbeToLuXjN+6eNrBUqR9S5RXqXBHXoacAk5ctwuUvNBuFyiRV1SG8io1btwrwY17JVr7A4C12BztXawR4GqDDq7WCHCzgb+rjUmJjInJ2LhxAtj1DlD6AJA6AKM3AO0GPLV4zcHY6duScCm/HHcKy7TKWYrM0NXTDt297NHdS4Ye3jK42jZsOFpsbgY/Jyv4OdU+uFFRpUZeYRkvrts1hJZToERuoRKK8qpHXUq5xr52UgsNgXVwsUGAmw0crEQNsk0fVKrUKFRWwrGJz4VMTMYCEXBqJXB0Pvduxr0b9/5I5l3HLoRFBy7z32Mu3YVQJIFQAPi72jxudbxl6OBiAzNh87QAInMhvB0t4e1oWWt+pUqNm/dLkH63GFfvKnA1rxhX7xbj5oMSFCorcfbmQ5y9qTk072Qthr+rNfxduRYswM0aHVxtYCuxeKod5VUqFJZWQq6shLy0EvLSCsiVlY/SKlBQ+vgzl1+JQmUlFOXc+6+L8wfVefz6YGIyBsqLgd+mApd/4753Hw8M/Y/W1JYnWRWXgS3n7sDuuXFo62yNCUM6ondbF3T1lMFabDz/WgszITq42qCDq+bzXlmlCtfvKXC1psjyi5H9UIn7inLcV5Tj1HXNiO/udhL4u9rAUmTGCUJZicJSTijKysbPTRQIgMLSyiaJib20NTT3r3HTgu5d4WZCD/k30Pudep+PtsRn4X/3cDGKvnytEyL7+T4DY58NJeVVuJb/SGR5xUi/W4xrdxXIK9Luvj6JUMB1HWWWokd/LSCr8d3e8tHnGukyqQVspRa1ttw63WtNCcOxePFiAqARtl6pVNKUKVPIwcGBrKysaOTIkZSXl6ex361bt+jVV18lqVRKzs7O9Omnn1JlZWWD6y0sLCQAVFhY2BTzDc/l34kWtSGaZ0v0TQBRVnyDdjuUkkt+n+0nn1n76ZuYK81spPEgL6mghMwH9OuZm/TzqUzam3SbTqTnU3JWAd28ryB5SQWpVGq91qnLvdbovkBCQgK+//57Pjx8Nf/6179w4MAB7Ny5E3Z2dpg2bRpGjhyJkydPAuC86QwdOhRubm44deoUcnNz8fbbb8PCwgJff/11Y81pWahVwPGvgb8eRSz07geMiQZsXOvcDQDibzzAh9uSoCbg9T5emD6wPS5d4pYtdOzYsV5HiS0ZO0sL9PZ1QG/fZpgIqw8ao9bi4mLq0KEDxcbG0ksvvcS3THK5nCwsLGjnzp182bS0NAJAp0+fJiKigwcPklAo1Git1q1bR7a2tlReXt6g+lt0y1T6kGjTSK41mmdLdHAWUVVFg3a9fKeQOs87TD6z9tP//JxAlVUqUigUfHQ+hULRzMa3PnS51xr1MzZ16lQMHToUYWFhGumJiYmorKzUSA8MDIS3tzdOnz4NADh9+jS6dOkCV9fHv8Lh4eEoKirif2GfpLy8HEVFRRpbi+W3aUDGUcBcCoz8CRiyBDCr/6E3+2EpIjecRXFZFYJ9HbBqXA+Ym5luK9QS0bmbt23bNpw/fx4JCQlaeXl5eRCJRJDJZBrprq6uyMvL48vUFFJ1fnVebSxevBhffvmlrqYaH1nxwJX93IvYqANAm14N2u2BohyRG84iv7gcgW42+DGyNyQWzNmksaHTT1t2djY++ugjbN68udFRshvD7NmzUVhYyG/Z2dnPrG69QcS9QwK4oe8GCqmkvApR0Qm4cb8EbWRS/PxOMOykjR++ZTQfOokpMTER+fn56NmzJ8zNzWFubo4//vgDK1euhLm5OVxdXVFRUQG5XK6x3927d+Hm5gYAcHNzw927d7Xyq/NqQywW866QW6xL5GtHgKxT3KK7/rMbtEtFlRqTf03ExduFsLe0wC8Tgxs8a4Hx7NFJTAMHDkRKSgqSk5P5rXfv3hg/fjz/2cLCAseOHeP3SU9PR1ZWFkJDQwEAoaGhSElJQX5+Pl8mNjYWtra2eg2raFSoVcDRR93U4HcBuzb176ImzNh1AX9duw+phRk2RgWjnbN1MxvKaAo6PTPZ2NhoBNEFACsrKzg6OvLpEydOxMcffwwHBwfY2trigw8+QGhoKPr27QsAGDRoEIKCgvDWW29h6dKlyMvLwxdffIGpU6dCLBbr6bSMjJSdnNcdiR3w/L/qLU5E+OpAGn5LvgNzoQDr3uyJ7l6y5reT0ST0Pufk22+/hVAoxKhRo1BeXo7w8HCsXbuWzzczM8P+/fvx/vvvIzQ0FFZWVoiMjMSCBQv0bYpxUFUOxC3iPj83vUHOQr7/8wY2nMwEACwb0xX9A1yeWtbCwgKffvop/5lhONh0oubmzDrg8GeAjTvwwXlAVPtk0Gp2nsvGjF0XAQBfDO2I/3mh7bOwkvEUdLnX2IuK5qSsCPhzGff5pVn1Cinuyl18tpubb/fei22ZkFoYxjO12BQ5tYpbl+TYHujxVp1FE289xJTN56FSE0b2bINZgwPrLF+NWq1GVlYWAMDb29ukpxMZO0xMzYUiHzj9yCXXwLl1uuG9drcY70SfQ1mlGgMCnPHvUV0hbODaI6VSCT8/P65KFuzMoLCfsebij6Vc1IY2vTj/DU/hjlyJtzecRaGyEj28ZVgzvics2DShFgn7rzUHD29wXoUAIGz+U9cmyUsr8PaGs8gtLEM7ZytsiOxTqw8GRsuAiak5iFvEOXFsN/CxO94nUFao8E50AjLyFXCzleCXiSGwf4Z+Dxj6h4lJ3+ReAFJ3cZ/D5tVapFKlxtQt53E+Sw5biTl+mRiMNrK6l6gzjB8mJn1TPW2o82jOKcoTEBFm705B3JV8iM2F2DChD/xdn22EO0bzwMSkTzL/BK4f40K8vPx5rUXWnriOXYm3YSYUYM0bPY131ShDZ9jTrr6oucSiVxTgoP3C9daDEnx37BoAYOHwzggLqn+Zen2Ym5tjypQp/GeG4WBXX1+k7eOCaVlYAS/N1MomIszbdwkVVWo8394J44L1E19VLBZjzZo1ejkWo2mwbp4+UFUBxx5N1A2dClhrT0w9cvkuTqTfg4WZAF8O72QyLoEZj2Etkz5I2gQ8yAAsHYF+H2hll1ZUYcHvnOfVd19sq9d1SUSE+/fvAwCcnJyYSA0IE1NTqSgFTizhPr84o9a4sKvjMpAjV6KNTIppAzrotfrS0lK4uHAtIZtOZFhYN6+pxK8HFHmcT/De72hlZ+Qr8ONfNwAA84YFQSpijlBMFSamplD6EPh7Bfd5wOdcqMsaEBHm77uEShVhQIAzXtHD6B3DeGFiagp/fwuUFwIunYAuY7SyD6Tk4u+M+xCZCzH/NTboYOowMTWWwhzg7A/c57B5gFCz+6Yor8LC/dygw5T+7eDjyJ5lTB0mpsZyYjFQVcb5Ce8wSCv7u6NXcbeoHD6Olpj8kmlHGWdwMDE1hnvpQPJm7vMrX2otsUjPK8aGkzcBAPNf68S8r7YS2NB4Yzi2gIvuFzAU8ArWyCIizPktFSo1IbyTKwbU4VlIH5ibmyMyMpL/zDAcOrVM69atQ9euXXmvqqGhoTh06BCfX1ZWhqlTp8LR0RHW1tYYNWqUlvfWrKwsDB06FJaWlnBxccGMGTNQVVWln7N5FmQnPPYXPnCuVvbe5ByczXwIiYUQc/7R/E41xWIxoqOjER0dbbp+B1sIOonJ09MTS5YsQWJiIs6dO4eXX34Zw4cP56NX/Otf/8Lvv/+OnTt34o8//sCdO3cwcuRIfv/q2EwVFRU4deoUfv75Z0RHR2PuXO2b0ighAo4+WqPU7Q3ARdPpSaGyEosOXAEAfPByB3ja1+2NiGFiNDV+jb29Pf3000/PLDYTkQHjM6XHcDGVFjgTybO1suf9lko+s/bTgG+OU3ml6pmYpFarSaFQkEKhILVav1HzGM8gPhPAtTLbtm1DSUkJQkNDmy02E2Ak8ZnUauDYo4V/Ie8Cdp4a2ak5hfjl9E0A3PIKkfmzGdspLS2FtbU1rK2tUVpa+kzqZNSOzv/xlJQUWFtbQywWY/LkydizZw+CgoKaLTYTwMVnsrOz4zcvL/0sX9CJlJ3A3VRAbAc8/7FGllpNmPtbKtQE/KOrO55r7/Ts7WMYHJ3FFBAQgOTkZMTHx+P9999HZGQkLl++3By28Rg8PlNVOXD8K+7z8x9p+QvflXgb57PksBKZ4YuhJhrJg1EvOo+likQitG/fHgDQq1cvJCQk4LvvvkNERAQfm6lm6/RkbKazZ89qHK++2EwAN2Jl0JGqcxsBeRZg7QaEvK+RJS+twJLD3KDD9DB/uNmx+EmtlSZ37NVqNcrLy9GrVy/TjM1UXvzYX3h/bX/hS2PS8bCkAv6u1pjwnO+zt49hNOjUMs2ePRtDhgyBt7c3iouLsWXLFpw4cQIxMTGws7MzvdhMxXnAkTlA6X3AoZ2Wv/AL2XJsPcv5+V44vDPzxNrK0UlM+fn5ePvtt5Gbmws7Ozt07doVMTExeOWVVwCYUGymu5eB06uBizsAdSWXFjZfIyq6Ss3NdCACRvZog5C2joaxlWE0sPhM1RABN05wIso4+jjdqy8X7S9gsEbxX8/cwhd7U2EjNkfcp/3hbGOYlrWsrAxvvcW1mJs2bXqmgbtbA7rca2wyl6oSSN3NhX+5y8VGgkAIdBwGhH4AePXR2uWBohzLYtIBAJ8M8jeYkABAIpFg586dBquf8ZjWK6ayQiDxZ27ZeVEOl2ZhCfR4E+j7fq1+76pZcugKCpWVCHK3xZt9fZ6RwQxjp/WJSZ7NCSjxZ6CimEuzcgFC3uN8ONQTczbx1kPsTLwNAFg4ojPM2aAD4xGtR0x3krnnodTdAKm4NOdAIHQa0HWslv+G2qhSqfHFXm7aU0RvL/TysW9GgxtGSUkJrK0512HMO5FhMW0xqdXcYMKplcDNvx6n+70I9PsQaB/21NhJtbHpzC2k5RZBZmmBWUMaFiaT0XowTTFVlXPD2qdXA/e42QkQmAGdRwH9ptUanaI+8ovKsPzIVQDAzPBAOLBYSownMC0xVZQAZ9YC8T8AJY9mWYhsgF6RQMhkQNb4CbJfH0xDcXkVunnaIaKPASbaMowe0xKTQAicWc/NWLBtw43K9XwbkNg16bBnbjzA3uQ7EAi4QQezBgZvZrQuTEtMFlJupoK5GOj0T40ZC42lUqXG3N9SAQDjQ7zR1VPW5GMyTBPTEhMA9Hyr/jJPoaxShTtyJXLkStwuUOJ2QSlScopw9a4CjlYizBjEBh0YT8f0xFQHygoVcuSlyC5QIqeAEwwnnFLcLlDiXnH5U/f931c7ws6y6S2dvjEzM8Orr77Kf2YYDpMSExHh6l0FbheUarQu1cJ5UFJR7zEsRWbwtJfC094SbWRSeNpL0d1LZrQTWSUSCQ4cOGBoMxgwMTEBwKh1p6Aof7rrMGux+SOxcILxtJc+Eg33WWZpwXyCMxqFSYlJIBAgyN0WivKqx60LLxwpPGWWsJWam7RYVCoVKisrDW1Gi8HCwkJv3WOTEhMA7JgcamgTniklJSVwcXGBQCDApUuXmIeiRiCTyeDm5tbkH1mTE1NrpLS0FO+88w5KSkrg6uoKS0tLk2599QURobS0lHej4O7u3qTjMTGZAFZWVnjttdfg7OwMR0fjHCgxVqRSKQBuFbmLi0uTunxs/YAJ4OjoCJFIxN8YDN2wtOSc5DT1WZOJyQQQCAT8xtAdfV03JiYGQ0/oJKbFixejT58+sLGxgYuLC0aMGIH09HSNMq0irAzDKBEIBNi7d6/B6tdJTH/88QemTp2KM2fOIDY2FpWVlRg0aBBKSkr4MiYfVsbIEAqFCA4OhlgsZt08Q9OUcBv5+fkEgP744w8iomcWVsZgIWWMFKVSSZcvXyalUmloUwwKANqzZ4/O+9V1/Z5JSBkAKCwsBAA4OHBOSJorrIxRhJRpwfTv3x8ffvghZs6cCQcHB7i5uWH+/Pl8/s2bNyEQCJCcnMynyeVyCAQCnDhxAgBw4sQJCAQCxMTEoEePHpBKpXj55ZeRn5+PQ4cOoWPHjrC1tcUbb7xR54vj6OhoyGQy7N27Fx06dIBEIkF4eLhWMIZ169ahXbt2EIlECAgIwKZNmzTyr127hhdffBESiQRBQUGIjY3VyK+oqMC0adPg7u4OiUQCHx8fLF68uHEXsIE0WkxqtRrTp0/Hc889h86dOwNAs4WVMYqQMi2cn3/+GVZWVoiPj8fSpUuxYMECrRuwIcyfPx+rV6/GqVOnkJ2djbFjx2LFihXYsmULDhw4gCNHjmDVqlV1HqO0tBSLFi3CL7/8gpMnT0Iul+P111/n8/fs2YOPPvoIn3zyCVJTU/Hee+8hKioKx48fB8DdeyNHjoRIJEJ8fDzWr1+PWbNmadSxcuVK7Nu3Dzt27EB6ejo2b94MX19fnc9XJ3RuEx8xefJk8vHxoezsxxH0Nm/eTCKRSKtsnz59aObMmURENGnSJBo0aJBGfklJCQGggwcP1lpXWVkZFRYW8lt2djbr5j1CoVBQ9+7dKSYmhhQKRa1lXnrpJXr++ec10vr06UOzZs0iIqLMzEwCQElJSXx+QUEBAaDjx48TEdHx48cJAB09epQvs3jxYgJA169f59Pee+89Cg8Pf6q9GzduJAB05swZPq36USA+Pp6IiPr160eTJk3S2G/MmDH06quvEhFRTEwMmZubU05ODp9/6NAhjW7eBx98QC+//HKDoikatJs3bdo07N+/H8ePH4en5+MIem5ubnxYmZo8GVbmydG9+sLKiMViPih19cZ4TEFBAdRqdZ1lunbtqvHd3d1dIxpJQ6l5nOqpS23bttVIq++45ubm6NPnsafcwMBAyGQypKWlAQDS0tLw3HPPaezz3HPPaeR7eXnBw8ODz6+OtFLNhAkTkJycjICAAHz44Yc4cuSIjmeqOzqJiYgwbdo07NmzB3FxcfDz89PIN9mwMiaAhYXmwkaBQMALUCjkbgOq4Xb+abMBah5HIBDUeVxD0rNnT2RmZmLhwoVQKpUYO3YsRo8e3ax16iSmqVOn4tdff8WWLVtgY2ODvLw85OXlQalUAoBGWJnjx48jMTERUVFRTw0rc+HCBcTExBh3WJlWgLOzMwAgNzeXT6s5GKFvqqqqcO7cOf57eno65HI5OnbsCADo2LEjTp48qbHPyZMn+R/bjh07Ijs7W8PeM2fOaNVja2uLiIgI/Pjjj9i+fTv++9//4uHDh81xSgB0nOi6bt06ANzoUE02btyICRMmADChsDKtCKlUir59+2LJkiXw8/NDfn4+vvjii2arz8LCAh988AFWrlwJc3NzTJs2DX379kVwcDAAYMaMGRg7dix69OiBsLAw/P7779i9ezeOHuWik4SFhcHf3x+RkZFYtmwZioqK8Pnnn2vUsXz5cri7u6NHjx4QCoXYuXMn3NzctAbH9IlOYqIGRJ+RSCRYs2YN1qxZ89QyPj4+OHjwoC5VM5qZDRs2YOLEiejVqxcCAgKwdOlSDBo0qFnqsrS0xKxZs/DGG28gJycHL7zwAv7v//6Pzx8xYgS+++47fPPNN/joo4/g5+eHjRs38j/iQqEQe/bswcSJExEcHAxfX1+sXLkSgwc/DvtjY2ODpUuX4tq1azAzM0OfPn1w8OBBvkvbLNQ7RGGEsJe2j1EoFOTj40OHDh166mieMbFx40ays7MztBkaGMVLW4bhEQqF6Ny5M0QiEZtOZGCYmFo4UqkUu3btgru7e/N2YRj1wq4+45kyYcIErfeQpgITE4OhJ5iYWjilpaUYOHAgbt++DZVKZWhzWjVMTC0cIkJOTg4TkhHAxMRg6AkmJgZDTzAxMRh6gomJwdATTEyMFsOff/6JYcOGwcPDw+CeiGqDiamFIxAI0L59e611RaZISUkJunXrVuckakPCfI23cCwtLbF//35kZmY2yk82EUFZaZhhdamFmU7zCYcMGYIhQ4Y0o0VNg4mplaOsVCFoboxB6r68IByWItO5BVk3j8HQE6bzs9BKKS0txWuvvYbZs2fD29tb5/2lFma4vCC8GSxrWN2mBBNTC4eIkJGR0ehwKAKBwKS6WoaEdfMYDD3BfpIYLQaFQoGMjAz+e2ZmJpKTk+Hg4NCoLq6+YWJitBjOnTuHAQMG8N8//vhjAEBkZCSio6MNZNVjdO7m1fcWmogwd+5cuLu7QyqVIiwsDNeuXdMo8/DhQ4wfPx62traQyWSYOHEiFApFk06EYfr0798fRKS1GYOQgEaIqb630EuXLsXKlSuxfv16xMfHw8rKCuHh4SgrK+PLjB8/HpcuXUJsbCz279+PP//8E++++27jz4LBMAaa4iIJT8TDUavV5ObmRsuWLePT5HI5icVi2rp1KxERXb58mQBQQkICX+bQoUMkEAg0HLHXBXP19ZiSkhLq168fHTlypEW4+jJGjNLVV2ZmJvLy8jTiM9nZ2SEkJEQjPpNMJkPv3r35MmFhYRAKhYiPj6/1uCw+09OxtLTEsWPH4Onp2ajpRAz9oVcxVcdXqi3+Us34TC4uLhr55ubmcHBwYPGZGC2aFvGeafbs2SgsLOS3J6PMMRjGgF7FVB1fqbb4SzXjMz0Zv6eqqgoPHz5k8ZkagVKpxOjRo5Gbm2sUoVxaM3oVk5+fH9zc3DTiMxUVFSE+Pl4jPpNcLkdiYiJfJi4uDmq1GiEhIfo0p1WgVquRmpqKioqKBgVWYDQfOr+0re8t9PTp0/HVV1+hQ4cO8PPzw5w5c+Dh4YERI0YA4GLrDB48GJMmTcL69etRWVmJadOm4fXXX9eIBMdgtDh0HUasjm365BYZGUlE3PD4nDlzyNXVlcRiMQ0cOJDS09M1jvHgwQMaN24cWVtbk62tLUVFRVFxcXGDbWBD449paVEwjBF9DY3r3DJVv4V+GgKBAAsWLKgzeJmDgwO2bNmia9UMhlHTIkbzGAyVSoU5c+bAz88PUqkU7dq1w8KFC43qOZFNdGW0CP79739j3bp1+Pnnn9GpUyecO3cOUVFRsLOzw4cffmho8wAwMZkE9vb2jY/NRARUlurXoIZiYQk00KHKqVOnMHz4cAwdOhQA4Ovri61bt+Ls2bPNaaFOMDG1cKysrHD69OlGeydCZSnwtYFGUf/3DiCyalDRfv364YcffsDVq1fh7++PCxcu4O+//8by5cub2ciGw8TEaBF89tlnKCoqQmBgIMzMzKBSqbBo0SKMHz/e0KbxMDG1diwsuRbCUHU3kB07dmDz5s3YsmULOnXqhOTkZEyfPh0eHh6IjIxsRiN1QP+j9s0Pe8/0mNLSUhozZgzFxcVRSUmJoc1pNjw9PWn16tUaaQsXLqSAgIAmH9sol2Awnj1qtRpnz55FeXm5UQ0T65vS0lKtQRYzMzOjmo/IunmMFsGwYcOwaNEieHt7o1OnTkhKSsLy5cvxzjvvGNo0HiYmRotg1apVmDNnDqZMmYL8/Hx4eHjgvffew9y5cw1tGg8TE6NFYGNjgxUrVmDFihWGNuWpsGcmBkNPMDExGHqCickEkEqlOsU5YjQPTEwtHCsrKyQlJcHb25t5JzIwTEwmhCm/Z2pO9HXdmJhMgOp4tqWlBpr93cKpvm5NjQvMhsZbOGVlZRg1ahReeukl/OMf/wDAOaZkz1D1Q0QoLS1Ffn4+ZDJZk7vJAmqBfYOioiLY2dmhsLCw1bv9KikpgbW1NQQCATIzM1nr1AhkMhnc3Nxq/QHS5V5jLZOJQERwcnKCRCJpdBTB1oiFhYXeBm6YmEwMMzMzNqpnIAw2ALFmzRr4+vpCIpEgJCTEqJYfMxiNwSBi2r59Oz7++GPMmzcP58+fR7du3RAeHq7lNpnBaEkYREzLly/HpEmTEBUVhaCgIKxfvx6WlpbYsGGDIcxhMPTCM39mqqioQGJiImbPns2nCYVChIWF8TGcnqS8vBzl5eX898LCQgBgcZrAjeZVU1RUBJVKZUBrTI/qe6whg97PXEz379+HSqWqNYbTlStXat1n8eLF+PLLL7XSWZwmTZiv9uajuLgYdnZ2dZZpEaN5s2fP5iNrA9xS7YcPH8LR0bFFvpwsKiqCl5cXsrOzW9V7spZ43kSE4uLiBv1QPXMxOTk5wczMrM4YTk8iFoshFos10mQyWXOZ+MxorbGmWtp519ciVfPMByBEIhF69eqlEcNJrVbj2LFjfAwnBqMlYpBu3scff4zIyEj07t0bwcHBWLFiBUpKShAVFWUIcxgMvWAQMUVERODevXuYO3cu8vLy0L17dxw+fFhrUMJUEYvFmDdvnlbX1dQx9fNukRNdGQxjhK1nYjD0BBMTg6EnmJgYDD3BxMRg6AkmpgYyf/58CAQCjS0wMJDPLysrw9SpU+Ho6Ahra2uMGjVK68V0VlYWhg4dCktLS7i4uGDGjBmoqqrSKHPixAn07NkTYrEY7du3R3R0tJYtzbV85c8//8SwYcPg4eEBgUCAvXv3auQTEebOnQt3d3dIpVKEhYXh2rVrGmUePnyI8ePHw9bWFjKZDBMnToRCodAoc/HiRbzwwguQSCTw8vLC0qVLtWzZuXMnAgMDIZFI0KVLFxw8eFBnW545TY7H0UqYN28ederUiXJzc/nt3r17fP7kyZPJy8uLjh07RufOnaO+fftSv379+Pyqqirq3LkzhYWFUVJSEh08eJCcnJxo9uzZfJkbN26QpaUlffzxx3T58mVatWoVmZmZ0eHDh/ky27ZtI5FIRBs2bKBLly7RpEmTSCaT0d27d5t8jgcPHqTPP/+cdu/eTQBoz549GvlLliwhOzs72rt3L124cIFee+018vPz0wjFMnjwYOrWrRudOXOG/vrrL2rfvj2NGzeOzy8sLCRXV1caP348paam0tatW0kqldL333/Plzl58iSZmZnR0qVL6fLly/TFF1+QhYUFpaSk6GTLs4aJqYHMmzePunXrVmueXC4nCwsL2rlzJ5+WlpZGAOj06dNExN2oQqGQ8vLy+DLr1q0jW1tbKi8vJyKimTNnUqdOnTSOHRERQeHh4fz34OBgmjp1Kv9dpVKRh4cHLV68uMnnWJMnxaRWq8nNzY2WLVvGp8nlchKLxbR161YiIrp8+TIBoISEBL7MoUOHSCAQUE5ODhERrV27luzt7flzJiKaNWuWRpylsWPH0tChQzXsCQkJoffee6/BthgC1s3TgWvXrsHDwwNt27bF+PHjkZWVBQBITExEZWUlwsLC+LKBgYHw9vbml5WcPn0aXbp00XgxHR4ejqKiIly6dIkvU/MY1WWqj1G9fKVmmfqWr+iLzMxM5OXladRtZ2eHkJAQjXOUyWTo3bs3XyYsLAxCoRDx8fF8mRdffBEikUjjHNPT01FQUMCXqes6NMQWQ8DE1EBCQkIQHR2Nw4cPY926dcjMzMQLL7yA4uJi5OXlQSQSaU2+dXV1RV5eHgAgLy+v1mUn1Xl1lSkqKoJSqaxz+Ur1MZqL6uPXVXdeXh5cXFw08s3NzeHg4KCX61Azvz5bDEGLWIJhDAwZMoT/3LVrV4SEhMDHxwc7duyAVCo1oGUMY4G1TI1EJpPB398fGRkZcHNzQ0VFBeRyuUaZmstK3Nzcal12Up1XVxlbW1tIpdJGLV/RF9XHr6tuNzc3LT8eVVVVePjwoV6uQ838+mwxBExMjUShUOD69etwd3dHr169YGFhobGsJD09HVlZWfyyktDQUKSkpGjcbLGxsbC1tUVQUBBfpuYxqstUH8OQy1f8/Pzg5uamUXdRURHi4+M1zlEulyMxMZEvExcXB7VajZCQEL7Mn3/+qeHbLzY2FgEBAbC3t+fL1HUdGmKLQTDY0EcL45NPPqETJ05QZmYmnTx5ksLCwsjJyYny8/OJiBsa9/b2pri4ODp37hyFhoZSaGgov3/10PigQYMoOTmZDh8+TM7OzrUOjc+YMYPS0tJozZo1tQ6Ni8Viio6OpsuXL9O7775LMplMY5SwsRQXF1NSUhIlJSURAFq+fDklJSXRrVu3iIgbjpbJZPTbb7/RxYsXafjw4bUOjffo0YPi4+Pp77//pg4dOmgMjcvlcnJ1daW33nqLUlNTadu2bWRpaak1NG5ubk7ffPMNpaWl0bx582odGq/PlmcNE1MDiYiIIHd3dxKJRNSmTRuKiIigjIwMPl+pVNKUKVPI3t6eLC0t6Z///Cfl5uZqHOPmzZs0ZMgQkkql5OTkRJ988glVVlZqlDl+/Dh1796dRCIRtW3bljZu3Khly6pVq8jb25tEIhEFBwfTmTNn9HKOx48fJwBaW2RkJBFxQ9Jz5swhV1dXEovFNHDgQEpPT9c4xoMHD2jcuHFkbW1Ntra2FBUVRcXFxRplLly4QM8//zyJxWJq06YNLVmyRMuWHTt2kL+/P4lEIurUqRMdOHBAI78htjxr2BIMBkNPsGcmBkNPMDExGHqCiYnB0BNMTAyGnmBiYjD0BBMTg6EnmJgYDD3BxMRg6AkmJgZDTzAxGTn9+/fH9OnTDW0Gj7HZY0wwMbUCKioqDG1C68CgMwMZdRIZGak16TQjI4Peeecd8vX1JYlEQv7+/rRixQqt/YYPH05fffUVubu7k6+vLxFxs7G7detGYrGYevXqRXv27CEAlJSUxO+bkpJCgwcPJisrK3JxcaE333yTdxxTmz2ZmZnP6nIYPUxMRoxcLqfQ0FCaNGkS7xGprKyM5s6dSwkJCXTjxg369ddfydLSkrZv387vFxkZSdbW1vwyh9TUVCosLCQHBwd688036dKlS3Tw4EHy9/fXEFNBQQG/LCQtLY3Onz9Pr7zyCg0YMOCp9lRVVRni0hglbNm6EWNnZweRSARLS0uNFaQ1Q5L6+fnh9OnT2LFjB8aOHcunW1lZ4aeffuIdl6xfvx4CgQA//vgjJBIJgoKCkJOTg0mTJvH7rF69Gj169MDXX3/Np23YsAFeXl64evUq/P39a7WHwcHE1AJZs2YNNmzYgKysLCiVSlRUVKB79+4aZbp06aLhASg9PR1du3aFRCLh04KDgzX2uXDhAo4fPw5ra2utOq9fvw5/f3/9noiJwcTUwti2bRs+/fRT/Oc//0FoaChsbGywbNky3pVWNVZWVjofW6FQYNiwYfj3v/+tlefu7t5om1sLTExGjkgkgkql4r+fPHkS/fr1w5QpU/i069ev13ucgIAA/PrrrygvL+eDjSUkJGiU6dmzJ/773//C19cX5ua13xpP2sN4DBsaN3J8fX0RHx+Pmzdv4v79++jQoQPOnTuHmJgYXL16FXPmzNESRW288cYbUKvVePfdd5GWloaYmBh88803AMBHrJ86dSoePnyIcePGISEhAdevX0dMTAyioqJ4AT1pj1qtbr6Tb2EwMRk5n376KczMzBAUFARnZ2eEh4dj5MiRiIiIQEhICB48eKDRSj0NW1tb/P7770hOTkb37t3x+eefY+7cuQDAP0d5eHjg5MmTUKlUGDRoELp06YLp06dDJpNBKBTWak+1V1sGC8PZqtm8eTOioqJQWFjIHGnqAfbM1Ir45Zdf0LZtW7Rp0wYXLlzArFmzMHbsWCYkPcHE1IrIy8vjI9y7u7tjzJgxWLRokaHNMhlYN4/B0BNsAILB0BNMTAyGnmBiYjD0BBMTg6EnmJgYDD3BxMRg6AkmJgZDTzAxMRh64v8BBOBb48rAOeMAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "#column = [\"threads\", \"pod_count\"]\n",
+ "column = \"pods\"\n",
+ "x = \"target\"\n",
+ "y = \"[READ].AverageLatency(us)\"\n",
+ "title = \"Avg Lat READ [$\\mu$s]\"\n",
+ "plot_comparison(df_aggregated, x, y, column, title, peak_benchmark)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 52,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAANMAAADxCAYAAABRY4LkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5JUlEQVR4nO2dd3xUxfr/35uyu+mB9ECAAIHQqwlNhUswcBFBOqI3IF+8CqiIF5GfUhQRBESkq/dSRKQKiAhiCKDSQpFORAIBIiSEAOl9d35/LDmyJCTZZMOmzPv1Oq/smZkz85yT/eyZM2fmeVRCCIFEIikzVpY2QCKpKkgxSSRmQopJIjETUkwSiZmQYpJIzIQUk0RiJqSYJBIzIcUkkZgJKSaJxExIMUkkZkKKSSIxE1JMkgrNiBEjUKlUqFQqmjdvXm7tLFiwQGlHpVKRmJhoch1VTkxLly5FpVIRHBxsUTtWrVqFSqXi+PHjZa7r0KFDTJ8+naSkJJPazt9sbGyoVasWI0aM4MaNG0WWfXg7cuRIoW0Ud50frler1eLr60toaCgLFy4kNTW1xOfv7u7OmjVrmD17domPMZWePXuyZs0ann/++VLXYWNGeyoEa9eupV69ehw9epTo6GgaNmxoaZPKzKFDh/jggw8YMWIErq6uJT7uww8/xN/fn6ysLI4cOcKqVas4cOAA586dQ6vVFlr2YR51/Up6nfPrzc3NJT4+nv379zN+/Hjmz5/P9u3badmyZbHn4eDgwIsvvliCMy49gYGBBAYGEh0dzdatW0tXiahCXLlyRQBiy5YtwsPDQ0yfPt1itqxcuVIA4tixY2Wua+7cuQIQMTExZWp70qRJAhAbNmwok50luc5F1RsRESHs7OxE3bp1RUZGRpFthYWFibp165bYtrIybdo0AYjbt2+bfGyV6uatXbuWGjVq0Lt3bwYOHMjatWuN8jdv3oxKpeKXX34pcOwXX3yBSqXi3LlzStr+/ftp3749Wq2WBg0a8MUXXzB9+nRUKpVZ7L127RpjxoyhcePG2NnZ4ebmxqBBg7h69apSZvr06UycOBEAf39/pdv0YJmS8uSTTwJw+fLlMtld3HUujn/84x9MmTKFa9eu8c0335TJlvr16xd61+rWrRtPP/00AKmpqYwfP5569eqh0Wjw9PSkR48e/P7772Vq+2GqnJj69++PWq1m2LBhXLp0iWPHjin5vXv3xtHRkY0bNxY4dsOGDTRr1kx5yD158iQ9e/bkzp07fPDBB4waNYoPP/yQbdu2mc3eY8eOcejQIYYOHcrChQt59dVXiYiIoGvXrmRkZADQv39/hg0bBsBnn33GmjVrWLNmDR4eHia3ly/AGjVqFMhLTk4mMTHRaLtz506h9RR3nUvCSy+9BMDPP/9s2kk8QFpaGlevXqVVq1YF8s6cOaN0IV999VWWLVvGgAEDWLp0Kf/5z3+ws7MjKiqq1G0XSjncKS3C8ePHBSDCw8OFEELo9XpRu3Zt8eabbxqVGzZsmPD09BR5eXlKWlxcnLCyshIffvihktanTx9hb28vbty4oaRdunRJ2NjYiJJctpJ0nwrr4hw+fFgA4uuvv1bSStvN27Nnj7h9+7aIjY0VmzdvFh4eHkKj0YjY2NgCZQvbNBpNgbpLep1Lcv4uLi6iTZs2RZ5LUd28/Gu1e/duo/TY2FgBiC+//FJpZ+zYsUW2k4/s5mH4tfTy8qJbt24AqFQqhgwZwvr169HpdEq5IUOGkJCQwP79+5W0zZs3o9frGTJkCAA6nY49e/bQr18/fH19lXINGzakV69eZrPZzs5O+Zybm8udO3do2LAhrq6uZumChISE4OHhgZ+fHwMHDsTBwYHt27dTu3btAmWXLFlCeHi40bZr164C5Up6nUuCo6OjSaN6D5PfJX/4znT69GkA5c7k6upKZGQkN2/eLHVbJaFKiEmn07F+/Xq6detGTEwM0dHRREdHExwczK1bt4iIiFDK9uzZExcXFzZs2KCkbdiwgdatW9OoUSMAEhISyMzMLHSEypyjg5mZmUydOhU/Pz80Gg3u7u54eHiQlJREcnJymevPF8jmzZv55z//SWJiIhqNptCyQUFBhISEGG35gsnHlOtcEtLS0nBycir1+Z09exYvLy+8vLyM0s+cOYOVlZXSZZ8zZw7nzp3Dz8+PoKAgpk+fzpUrV0rd7qOoEmLau3cvcXFxrF+/noCAAGUbPHgwgNEDskajoV+/fmzdupW8vDxu3LjBwYMHlbvS4+T1119n5syZDB48mI0bN/Lzzz8THh6Om5sber2+zPXnC2TAgAFs376d5s2b88ILL5CWllaq+ky5zsXx119/kZycXKYfp3PnzhX6vHTq1Cnq16+Pg4MDAIMHD+bKlSssWrQIX19f5s6dS7NmzQq985aFKvGeae3atXh6erJkyZICeVu2bGHr1q0sX75c6VYNGTKE1atXExERQVRUFEIIIzF5enqi1WqJjo4uUF9haaVl8+bNhIWF8emnnyppWVlZBV7OmmP00NramlmzZtGtWzcWL17Mu+++a3Idpl7nolizZg0AoaGhJtuRz9mzZwv8COr1evbu3ctTTz1llO7j48OYMWMYM2YMCQkJtG3blpkzZ5q1217pxZSZmcmWLVsYNGgQAwcOLJDv6+vLunXr2L59u3LhQ0JCqFmzJhs2bCAqKoqgoCCjF5bW1taEhISwbds2bt68qTw3RUdHm/XXzNraGvGQp7VFixYVePbI/4Ut6QyIR9G1a1eCgoJYsGAB48ePL/DitihKc50fxd69e5kxYwb+/v4MHz7c5PMAQ1f89u3bxMXFGaUvXLiQxMREWrRoARi6pmlpabi4uChlPD098fX1JTs7u1RtP4pKL6bt27eTmprKc889V2h+hw4d8PDwYO3atco/2dbWlv79+7N+/XrS09OZN29egeOmT5/Ozz//TOfOnXnttdfQ6XQsXryY5s2bc+rUqRLbt2LFCn766acC6W+++SbPPvssa9aswcXFhaZNm3L48GH27NmDm5ubUdl27doB8N577zF06FBsbW3p06ePIjJTmDhxIoMGDWLVqlW8+uqrSvquXbv4448/CpTv1KkT9evXL9V1frDevLw8bt26xd69ewkPD6du3bps377dJEE/yNmzZwHD0PqYMWMIDAzkyJEj7N69G4ATJ04QGRlJ48aNqV27NgMHDqRVq1Y4OjqyZ88ejh07ZtQjMAsmj/9VMPr06SO0Wq1IT09/ZJkRI0YIW1tbkZiYqKSFh4cLQKhUKqOh4geJiIgQbdq0EWq1WjRo0ED897//FW+//bbQarXF2lXUkDMgYmNjxb1798TIkSOFu7u7cHR0FKGhoeKPP/4QdevWFWFhYUb1zZgxQ9SqVUtYWVkVO0xe1LC0TqcTDRo0EA0aNBB5eXnF2rly5UohhOnX+eF61Wq18Pb2Fj169BCff/65SElJKfYaCvHoofHPPvtMWFtbix9//FE0aNBAaLVa0aNHD3H27FnRoEEDUbt2bXHixAmRnZ0tJk6cKFq1aiWcnJyEg4ODaNWqlVi6dGmh7ZVlaLzSi+lx07dvX9GwYUNLm1FtCAsLE35+fuL27dvi3r17SvqoUaNEQECA2drJzMwUt2/fFhMnTpTvmcqDzMxMo/1Lly6xc+dOunbtahmDqimxsbF4eHjQpUsXJe3s2bM0bdrUbG0sX74cDw8P5s6dW+o6Kv0zU3lSv359RowYQf369bl27RrLli1DrVbzzjvvWNq0asM777yjzL1zdHQEQAjBhQsX6N69u9naGTBggNF6qQcHLEqKFFMR9OzZk3Xr1hEfH49Go6Fjx458/PHHBAQEWNq0akPTpk0L3IFiYmJIS0sz653Jz88PPz+/MtWhEkJGwZBIzIF8ZpJIzIQUk0RiJirlM5Ner+fmzZs4OTmZbaGeRFIYQghSU1Px9fXFyqroe0+lFNPNmzfL/LAokZhCbGxsoUtXHqRSiil/2n5sbCzOzs4WtkZSlUlJScHPz69ES0UqpZjyu3bOzs7VXkw6nY7ffvsNMPh4sLa2trBFVZOSPE5USjFJ/iYrK0tZxJeWllaqya8S8yBH8yQSMyHFJJGYCSkmyd8IAcdXwtwAWDsYrhfuGllSOPKZSWIg/Q5sfx0u/mjYv7TbsNXtDE9OgAbdQb7TKxIpJglc3gtbX4O0eLCyhacnQfJ1OLUOrh00bN4t4cm3oUkfsJIjhoUhxVSdycuGiA/h8GLDvntjGPBf8LnvTP/pd+HwEjixEuLPwKYwcGsIncdDyyFgo7aY6RWRSjlrPCUlBRcXF5KTk6v9e6acnBw+//xzwOBXQq0u4Rc84Q/47v/glsGXAk/8H/SYAWr7gmXT78DRLyDyC8hKMqQ514JOb0DbfxV+TBXBlO+aFFN1Qwg49l/4+X3IywJ7N+i7FBr3LP7Y7FTDAMXhxZB2y5Bm7wYdXoMnRoOda7mabgmkmCSFk3Ybvh9rGFgAw6BCv2Xg5FX0cQ+TmwWnv4UDCyDpmiFN7QRPjIIOY0yvrwIjxVSN0Ol0il/ytm3bPno60aU9sO01SE8Aaw30+BCCXoFiZkIX3XgenN8KB+ZDwgVDmrUG2r5k6ALWqFv6uisIUkzViPT0dMU3QqHTiXKzYM80iFxu2Pdsahhk8GpmPiP0esPd7rdP4a/7oWVU1tBiEHR5CzwDzdfWY0aKqRpRpJhunTcMMuTfNYJfhZDpYFu8++JSIQRcPWAQ1ZV9f6cHPgt1OhhGD3W5oMu5v+U+9PfBz8WU9WlluLt6Nimfc7mPFFM1olAxCWG4E4VPM3wpHTyh31II6PH4DLvxu6H7F7UDgx/KckBlDUGjoeu7YFcwgJs5kGKqRhQQkz4Nvh8D0XsMBRr1hOcWg6PpkQbNwu2LcHwFZCaBtS1Yq+9vhXy20TyizENpeh0cWghRPxjasHeD7lOhzUtmf6EsxVSNMBLT71txCJ8AGXfARguhM6H9qKo7DejyPvjpXbh930e6TyvoNcfQpTQTpnzX5ETXqsSmfxmE5NUCXvnF8CK2qgoJoEE3ePUA9JwNGheIOw0rQuG70ZBSvlECC0OKqbJz75rxfsdxMDqiUo+gmYS1reGl8Ru/Q9swQAVnN8Ki9vDbfMOgx2NCiqmSYxs+mWlPq5nWoya2L20ydO1sCg+1WaVxcIfnFsIr+6B2EOSmQ8QHsCQYLv5kGJQpZ0wSk06nY8qUKfj7+2NnZ0eDBg2YMWOGUcAuIQRTp07Fx8cHOzs7QkJCuHTpklE9d+/eZfjw4Tg7O+Pq6sqoUaNKHRqyWhO9B/W1/Uzv7sz09cdQNyl9FL4qg28bGPUzPP8lOHrDvRhYNwTWDoLES8UfXxZMCZkxc+ZM4ebmJnbs2CFiYmLEpk2bhKOjo/j888+VMrNnzxYuLi5i27Zt4vTp0+K5554T/v7+IjMzUynTs2dP0apVK3HkyBHx22+/iYYNG4phw4aV2I7k5GQBiOTkZFPMr1ro8oRY0kGIac5C/PT/LG1NxSQrRYifpwrxgZvhOn1QU4jd7wmRWfLvjSnfNZPE1Lt3b/Hyyy8bpfXv318MHz5cCCGEXq8X3t7eYu7cuUp+UlKS0Gg0Yt26dUIIIS5cuFAgENeuXbuESqUSN27cKJEdUkxCiBOrhZjmLHQz/cS5YwfFuXPnhE6ns7RVFZPEaCG+GWQQ1DRnIeY0FOLkWiFKcL1M+a6Z1M3r1KkTERER/PnnnwCcPn2aAwcOKEF2Y2JiiI+PJyQkRDnGxcWF4OBgDh8+DMDhw4dxdXWlffv2SpmQkBCsrKyIjIwstN3s7GxSUlKMtmpNdhrsnQlAZofxNH+iM82bNy8QT0pyH7cGMHwjvLARajYwzE/c9hr8rwfcOGG2ZkwS07vvvsvQoUMJDAzE1taWNm3aMH78eCXIb3x8PABeXsazhr28vJS8+Ph4PD09jfJtbGyoWbOmUuZhZs2ahYuLi7JVe2+uhxcbVsXWqAftRljamspDo1AYc8QwDUntCDeOw1f/gG1jIS2hzNWbtNJ248aNrF27lm+//ZZmzZpx6tQpxo8fj6+vL2FhYWU25lFMnjyZCRMmKPv5XjarJanxcNCwGJCQ6aUeucvO03ErOZubyZnEJ2cRl5xFXHImcclZ3E7Nxt/dgWD/mgTXd6Oem33V8eluo4bObxpWCu+ZDqfXwalvIGo7DN8MdYJLX7UphSdOnKjcnQBatGjBtWvXmDVrFmFhYXh7ewNw69YtfHx8lONu3bpF69atAfD29iYhwfhXIC8vj7t37yrHP4xGo0GjqYbDvYWxbybkZkDtJ6BpP8jIKFAkK1fHrRRjgcQnZ3EzKYv4lEzikrK4k55TZDOnYpPYevIGAJ5OGoLuC6uDf00aejpWfnE5ecPzy6H9y7BzIqQngneLMlVpkpgyMjIKRAKwtrZGr9cD4O/vj7e3NxEREYp4UlJSiIyM5LXXXgOgY8eOJCUlceLECdq1awfA3r170ev1BAeX/lehWnDrApz8xvD5mZmgUnE79e+Xkv2XHiQxS1WsUPLR2Fjh46LF20WLr4sd3i5afFy01HTQEBWXQmTMHU7HJpOQms2OM3HsOBMHgJuDmiD/mgaB+bsR6O2ElVUlFZdfEIzeZ3AgU8bl9yaJqU+fPsycOZM6derQrFkzTp48yfz583n55ZcBgz/m8ePH89FHHxEQEIC/vz9TpkzB19eXfv36AdCkSRN69uzJ6NGjWb58Obm5uYwbN46hQ4fi6+tbppOp8oRPBaGHpn2V7shn4X8q2VFxqViptQBoba3wcbHD21mLj6v2vmjs8L0vHh8XO2rY2z7yDtO7paFnkZWr4+T1JCJj7hB55S6/X7/HnfQcdp2LZ9c5wzOui50tT9SrSYf6BoE19XHGxroSzQewsjI8f5YRkya6pqamMmXKFLZu3UpCQgK+vr4MGzaMqVOnKo48hBBMmzaNL7/8kqSkJLp06cLSpUtp1KiRUs/du3cZN24cP/zwA1ZWVgwYMICFCxcqEzaLo1pOdL28F9Y8b3DFNTYS3BqQmJZNhw92cnlefwB2nLiMv7c7vq5aXOweLZSykJ2n4+xfyUTG3OXIlTucuHaPjBydURlHjQ3t69Ug2N+NIP+atKztgu0D4srV6cnM1ZGVoyMz17Bl5BjvZ+boyFI+6+//zbufr0drY4WHkwZPJw0eTlo8nDTKvoPGfE635KzxqoZeB188BbfOGXws9JwFwKKIS8z76Ty2JzfyfJtazJw5s+TeicxErk7P+ZspRF65Q2TMXY5dvUtqVp5RGTtbaxy1NopY8vTl+5WzV1s/IDQNHo75QjMWXU0HdbF3UCmmqsbJtYY1SloXeOMU2NckJ09Pl0/2kpCazedDW9O3dS1LWwmATi/uP2/dJfLKHY5evUtSRm6hZa1UBqHZqe9vtoZNa/vA/gPpdmpDntbWmqxcHbdTs5UtIdUwCpn+0F2yKFQqw/Ofu6MGT2ctcwa0xNtFa1TGlO+adEJZ0cnJgL0zDJ+fmgj2NQHYdS6OhNRsPJ009GruU0QFjxdrKxXNa7nQvJYLo7r4o9cLriSmk52nw87WGnu1jUEwaivU1lZm74qmZ+cZBJZ2X2QpWX9/fkB8iWnZ6AUkpuWQmJbDH/GpqG3K9pwnxVTRObwEUuPAtY7Bm9B9Vhy8CsDwID9u/nUdgDp16hQbd/VxY2WloqFnyZ6FzYGDxgYHjQ313IuOU6XTC+6m5yjCS0jJwtXOtkxtSzFVZFJvwYHPDJ+7T1Ne0P5+/R6nY5NQW1vRr6UH9bzdABnszBSsrVTK85O5qFg/YxJj9s8yrMup1Q6aD1CSV92/Kz3X2hd3R/kyu6IgxVRRSfgDfl9t+PzMR8ry8/jkLHaeNbw8Hdm5noWMkxSGFFNFJf8FbeCzULeTkvzNkWvk6QVB/jVp5utiQQMlDyPFVBG5st/gIdXKBkI+UJKzcnV8e9Qw2PCyvCtVOKSYKhp6vSFCBRjcdLk3VLK2n7rJ3fQcarnaEdKk6jjHrypIMVU0zmyA+LOgcTZE8LuPEIIVB2MA+FfHupVr7ls1QQ6NVyRyM/9+Qfvk2+DgpmRFxtzlj/hU7GytGfpEHSXdxsaGMWPGKJ8llkNe/YrEkaWQcgNc/AxO9h9g5f27Uv+2tXCx//vlokajYcmSJY/VTEnhyL5CRSHtNvz2wAta27/niMXezSD8giFSnxwOr7jIO1NF4ZfZkJNq8Pv2wAtagK8PX0Uv4MkAdxp6OhnlCSFITEwEwN3dvfKvgK3ESDFVBG7/aYgVC4YXtA/Mr0vPzmP9sVig8LtSRkaG4qBGTieyLLKbVxHYMw2EDhr/E+p1Mcra8vtfpGbl4e/uQNdGno+oQFIRkGKyNDG/wcWdhsBdD7ygBdDrBasOXQUgrGPdyutnoZogxWRJjF7QjgSPRkbZv0Uncvl2Ok4aGwa2r6auzSoRUkyW5NxmiDsFaid4+t0C2fnD4YPa++FoRr8GkvJBislS5GZCxIeGz0++VSBM5uXbaey/eBuVCsI61bWAgRJTkWKyFJHLITkWnGsZnKQ8xOr7z0rdAz2p6yZH6CoDJovpxo0bvPjii7i5uWFnZ0eLFi04fvy4ki9kfKbiSU80RLUDQ2BjWzuj7JSsXDaf+AuAkZ39i6zKxsaGsLAwwsLC5HQiC2OSmO7du0fnzp2xtbVl165dXLhwgU8//ZQaNf4OGz9nzhwWLlzI8uXLiYyMxMHBgdDQULKyspQyw4cP5/z584SHh7Njxw5+/fVXXnnllcKarJr88glkp4B3S2gxuED2xmOxZOToaOzlRKcGboVU8DcajYZVq1axatUq6ULa0pgS5mbSpEmiS5cuj8yX8ZlKwO1LhqBb05yFuLy/QHaeTi+6fBIh6k7aIb6NvGYBAyUPUm7xmbZv30779u0ZNGgQnp6etGnThq+++krJl/GZiiErBbb8H+jzoFFPqP90gSIRUbeIvZuJq70t/UrgC08IQXp6Ounp6UbhUCWPH5PEdOXKFZYtW0ZAQAC7d+/mtdde44033mD1aoOvAhmfqQhyMmDdULh5EuzdIPTjQoutvO8sZegTdbBTWxdbbUZGBo6Ojjg6OpJRSEQMyePDJDHp9Xratm3Lxx9/TJs2bXjllVcUB/zlyeTJk0lOTla22NjYcm3P7OTlwMaX4NpBw6K/F7cYotk9RFRcCoev3MHaSsW/Osrh8MqGSWLy8fGhadOmRmlNmjTh+nWDX4IH4zM9yK1bt5S80sZncnZ2NtoqDbo8Q9cueg/Y2sPwTeDbutCi+cPhPZt54+tqV2gZScXFJDF17tyZixcvGqX9+eef1K1r+BV9MD5TPvnxmTp27AgYx2fKp8rGZ9Lr4Yc34cL3YK2GId9AnQ6FFr2bnqMEF5NrlioppoxsHD16VNjY2IiZM2eKS5cuibVr1wp7e3vxzTffKGVmz54tXF1dxffffy/OnDkj+vbtK/z9/UVmZqZSpmfPnqJNmzYiMjJSHDhwQAQEBIhhw4aVywiLxdDrhdj5jmHUbnoNIS5sL7L44r2XRN1JO0Tvhb8KvV5f4mbS0tIEIACRlpZWVqslD2HKd80kMQkhxA8//CCaN28uNBqNCAwMFF9++aVRvl6vF1OmTBFeXl5Co9GI7t27i4sXLxqVuXPnjhg2bJhwdHQUzs7OYuTIkSI1NbXENlQKMUV8ZBDSNGchTn5bZNGcPJ0InrlH1J20Q2w+HmtSM1JM5Ysp3zUZUqY8OLgQwqcYPv9zHgSNLrL4D6dv8vq6k7g7ajj4bjc0NsWP4uWTnp6uBImTiwPNjwwpY0mOr/xbSN2nFisk+Ht2+PDgOiYJCQwxhQcOHKh8llgOKSZzcnYz7HjL8LnLWwZ3XcVwOjaJ368nYWutYniHOsWWfxitVsumTZtMPk5ifuSscXNxcRdseQUQ8MT/GTwMlYD8lbTPtvTF00lbdGFJhUaKyRxc+QU2hhn8OLQcCr3mKlEriiIhJYsdZ24Ccji8KiDFVFZij8G6YaDLNkSs6LvEyLtQUXwTeZ1cnaBd3Rq0rO1aqubT09NRqVSoVCrS09NLVYfEPEgxlYX4c7B2gCEgWf1uMHAFWJfsMTQ7T8e3kdcAeVeqKkgxlZbEaFjTD7KSwS8Yhq5VwmSWhB2n40hMy8HHRUtos8KnUUkqF1JMpSEpFr7uC+m3wbsFvLAR1CV/vyOEYOUhw3D4ix3qYisjWlQJ5H/RVNISDEJK+QvcAuDFrWDnalIVx6/d49yNFDQ2VrwQZPpwuKRiIsVkChl34et+cPcyuNSBf31fwKtQSch/Sft8m1rUcFCb2UiJpZBiKinZqbB2ECScB0cv+Nc2cCl+JezD3EjKZPd5wxKVEXLgoUohZ0CUhNwsw/D3jeNgVwNe2lbo4r7iuJOWzeQtZ9HpBZ0auBHoXfZ5hdbW1vzzn/9UPksshxRTcehyYdMIuPobqB3hxe/Aq2mxhz1M+IVbTN5yhsS0HGytVbzRPcAs5mm1Wn788Uez1CUpG1VPTNvGGJ5t9HkPbDrQ5z60/3B+EfsANlp4YQPUameSOalZuczYcYGNxw1+8Bp7OTF/SCua+bqY+8wlFqbqiSk6AtIKd8xSajQuMOC/BcK9FMeRK3d4e+NpbiRlolLBK0/VZ0KPRibPDDcFnU5Hbm5uudVf1bC1tTVb97jqianHh4apPVY29zfrBz4Xtl+CMhpno7CYxZGVq2Pe7ov872AMQoBfTTs+HdSaIP+aZj/d9PR0PD09UalUnD9/XnooKgWurq54e3uXOepi1RNTqyEWbf7cjWTe2nCKSwkGd8/Dgvx4r3fTco1ikZGRwcsvv0x6ejpeXl7Y29vLcJwlQAhBRkaG4uDHx8enTPVVPTFZiDydnmX7L/N5xCXy9AJ3Rw1zBrbgH4FexR9cRhwcHHjuuefw8PDAza1od8oSY+zsDF6gEhIS8PT0LFOXT4rJDFy+ncaEjac5HZsEwD9bePNRvxbUfEwvZN3c3FCr1coXQ2Ia9vb2AOTm5koxWQq9XrDmyDVm7YoiK1ePs9aGGf2a81wr38fazcpfgiG7dqXDXNdNiqmU3EzK5J3NZzgQnQhAl4buzB3UEh8XeXeorpRpOtHs2bNRqVSMHz9eScvKymLs2LG4ubnh6OjIgAEDCnh4vX79Or1798be3h5PT08mTpxIXl5eWUx5bAgh2HbyBqELfuVAdCJaWys+7NuMr18OkkKyMCqVim3btlms/VLfmY4dO8YXX3xBy5YtjdLfeustfvzxRzZt2oSLiwvjxo2jf//+HDx4EDC8B+nduzfe3t4cOnSIuLg4/vWvf2Fra8vHHxfuzL6icDc9h/e3nWXnWcN7rNZ+rswf3Ir6Ho4Ws8nKyoqgoCA0Go3s5lma0jjmS01NFQEBASI8PFw8/fTT4s033xRCGGIx2draik2bNillo6KiBCAOHz4shBBi586dwsrKSsTHxytlli1bJpydnUV2dnaJ2reEE8o9F+JFuxnhou6kHaLB5B/Foog/RW6e7rG1XxSZmZniwoULRl5zqyOA2Lp1q8nHFXX9yi0+Uz5jx46ld+/eRnGYAE6cOEFubq5RemBgIHXq1DGKz9SiRQujsDOhoaGkpKRw/vz5Qtsrr/hMQgjydHoyc3QkZ+aSmJbNzaRMrt1JJzohlQs3UzgVm8S7351h1OrjJKZlE+DpyLaxnRn3jwBsKsmivq5du/LGG2/wzjvvULNmTby9vZk+fbqSf/XqVVQqFadOnVLSkpKSUKlU7N+/H4D9+/ejUqnYvXs3bdq0wc7Ojn/84x8kJCSwa9cumjRpgrOzMy+88EKRL45XrVqFq6sr27ZtIyAgAK1WS2hoaIHIJsuWLaNBgwao1WoaN27MmjVrjPIvXbrEU089hVarpWnTpoSHhxvl5+TkMG7cOHx8fNBqtdStW5dZs2aV7gKWEJO7eevXr+f333/n2LFjBfLi4+NRq9W4uroapT8cn6mw+E35eYUxa9YsPvjggxLZN2btCRLTcsjV6Q1bniBHpycnT/93ms6QlqvTU1J/tioV/F8Xf95+pjFa28o3O3v16tVMmDCByMhIDh8+zIgRI+jcuTM9evQwqZ7p06ezePFi7O3tGTx4MIMHD0aj0fDtt9+SlpbG888/z6JFi5g0adIj68jIyGDmzJl8/fXXqNVqxowZw9ChQ5VHga1bt/Lmm2+yYMECQkJC2LFjByNHjqR27dp069YNvV5P//798fLyIjIykuTkZKPndoCFCxeyfft2Nm7cSJ06dYiNjS33UEQmiSk2NpY333yT8PBwtNrH5+Nt8uTJTJgwQdlPSUl5ZMCz41fvkZCaXeq21NZW2FqrsLWxuv/ZCk9nDZN6BtKhfsV7IZqenk6XLl345JNPqFPn0at2W7ZsybRpBl9+AQEBLF68mIiICJPF9NFHH9G5c2cARo0axeTJk7l8+TL169cHYODAgezbt69IMeXm5rJ48WIl6snq1atp0qQJR48eJSgoiHnz5jFixAjGjDFEoZ8wYQJHjhxh3rx5dOvWjT179vDHH3+we/dufH19Afj444/p1auX0sb169cJCAigS5cuqFQqJVJLeWKSmE6cOEFCQgJt27ZV0nQ6Hb/++iuLFy9m9+7d5OTkkJSUZHR3ejg+09GjR43qzR/tKyo+U0mDH8/o1xydXmB7XxRqaytsbayM9tXK/n3B2KiwtbbCxqpyvqu5d+8eer2+yDIPDxT5+PgUiJNVEh6sJ3/qUr6Q8tMe/v8+jI2NDU888YSyHxgYiKurK1FRUQQFBREVFVUgYHjnzp35/PPPAYiKisLPz08REqCELMpnxIgR9OjRg8aNG9OzZ0+effZZnnnmGZPP1xRMElP37t05e/asUdrIkSMJDAxk0qRJ+Pn5YWtrS0REBAMGDADg4sWLXL9+3Sg+08yZM5XpGwDh4eE4OzsXCKRWGqSnn8KxtbU12lepVIoAre77+RMP9HkfNfP8wXpUKlWR9VqStm3bEhMTw65du9izZw+DBw8mJCSEzZs3l1ubJj1BOzk50bx5c6PNwcEBNzc3mjdvjouLC6NGjWLChAns27ePEydOMHLkSDp27EiHDoYgX8888wxNmzblpZde4vTp0+zevZv333+fsWPHlvjuIzEvHh4GPxZxcXFK2oODEeYmLy+P48ePK/sXL14kKSmJJk2aAIZolPnPT/kcPHhQ+bFt0qQJsbGxRvYeOXKkQDvOzs4MGTKEr776ig0bNvDdd99x9+7d8jgloBxmQHz22WdYWVkxYMAAsrOzCQ0NZenSpUq+tbU1O3bs4LXXXqNjx444ODgQFhbGhx9+aG5TJCXEzs6ODh06MHv2bPz9/UlISOD9998vt/ZsbW15/fXXWbhwITY2NowbN44OHToQFBQEwMSJExk8eDBt2rQhJCSEH374gS1btrBnzx4AQkJCaNSoEWFhYcydO5eUlBTee+89ozbmz5+Pj48Pbdq0wcrKik2bNuHt7V1gcMyclFlM+UOn+Wi1WpYsWcKSJUseeUzdunXZuXNnWZuWmJEVK1YwatQo2rVrR+PGjZkzZ065PWPY29szadIkXnjhBW7cuMGTTz7J//73PyW/X79+fP7558ybN48333wTf39/Vq5cSdeuXQFDt3Tr1q2MGjWKoKAg6tWrx8KFC+nZs6dSh5OTE3PmzOHSpUtYW1vzxBNPsHPnTqVLWy6Y/IarAlApIgc+JtLS0kTdunXFrl27KkXkwJUrVwoXFxdLm2GERV/aSioOVlZWNG/eHLVaXSlHIqsSUkyVHDs7OzZv3oyPj0/5dmEkxSKvvuSxMmLECJKSkixtRrkgxSSRmAkppkpORkYG3bt356+//kKn01nanGqNFFMlRwjBjRs3pJAqAFJMEomZkGKSSMyEFJNEYiakmCQSMyHFJKk0/Prrr/Tp0wdfX1+LeyIqDCmmSo5KpaJhw4YF1hVVRdLT02nVqlWRk6gtiXRCWcmxt7dnx44dxMTElMq1rxCCzFzLDKvb2VqbNJ+wV69eRkvTKxpSTNWczFwdTafutkjbFz4MxV5ddb6CspsnkZiJqvOzUE3JyMjgueeeY/LkyUV6J3oUdrbWXPgwtBwsK1nbVQkppkqOEILo6OhSh95UqVRVqqtlSWQ3TyIxE/InSVJpSEtLIzo6WtmPiYnh1KlT1KxZs1RdXHMjxSSpNBw/fpxu3bop+/lefsPCwli1apWFrPobk7p5s2bN4oknnsDJyQlPT0/69evHxYsXjcpU9fhMEsvRtWtXhBAFtoogJDBRTL/88gtjx47lyJEjhIeHk5ubyzPPPEN6erpS5q233uKHH35g06ZN/PLLL9y8eZP+/fsr+fnxmXJycjh06BCrV69m1apVTJ061XxnJZFYgrK4SEpISBCA+OWXX4QQVTs+U0UlPT1ddOrUSfz888+VwtVXRaRCuPpKTk4GoGbNmkDli89UFbC3tyciIoLatWuXKVK4pOyUWkx6vZ7x48fTuXNnmjdvDpRvfCYXFxdle1Q4GYnEkpRaTGPHjuXcuXOsX7/enPYUyuTJk0lOTla28g5aJZGUhlKJady4cezYsYN9+/ZRu3ZtJd3b21uJz/QgD8dnenh0ryTxmZydnY02iYHMzEwGDhxIXFxchQjlUp0xSUxCCMaNG8fWrVvZu3cv/v7+Rvnt2rVT4jPlU1h8prNnzxoF2jJnfKbqhl6v59y5c+Tk5BjFV5I8fkx6aTt27Fi+/fZbvv/+e5ycnJRnHBcXF+zs7IziM9WsWRNnZ2def/31R8ZnmjNnDvHx8TI+k6RqYMoQIlDotnLlSqNhxjFjxogaNWoIe3t78fzzz4u4uDijeq5evSp69eol7OzshLu7u3j77bdFbm5uie2QQ+N/U9miYFREzDU0btKdSZSgGyHjM0mqK3LWuKRSoNPpmDJlCv7+/tjZ2dGgQQNmzJhRoZ4T5URXSaXgk08+YdmyZaxevZpmzZpx/PhxRo4ciYuLC2+88YalzQOkmKoENWrUKH1sJiEgN8O8BpUUW3sooUOVQ4cO0bdvX3r37g1AvXr1WLduHUePHi1PC01CiqmS4+DgwOHDh0vtnYjcDPjY1/yGlYT/dxPUDiUq2qlTJ7788kv+/PNPGjVqxOnTpzlw4ADz588vZyNLjhSTpFLw7rvvkpKSQmBgINbW1uh0OmbOnMnw4cMtbZqCFFN1x9becIewVNslZOPGjaxdu5Zvv/2WZs2acerUKcaPH4+vry9hYWHlaKQJmH/UvvyR75n+JiMjQwwaNEjs3btXpKenW9qccqN27dpi8eLFRmkzZswQjRs3LnPdFWIJhsTy6PV6jh49SnZ2doUaJjY3GRkZBQZZrK2tK9R8RNnNk1QK+vTpw8yZM6lTpw7NmjXj5MmTzJ8/n5dfftnSpilIMUkqBYsWLWLKlCmMGTOGhIQEfH19+fe//12h3B1IMUkqBU5OTixYsIAFCxZY2pRHIp+ZJBIzIcUkkZgJKaYqgJ2dnUlxjiTlgxRTJcfBwYGTJ09Sp04d6Z3IwkgxVSGq8num8sRc102KqQqQH882I8NCs78rOfnXraxxgeXQeCUnKyuLAQMG8PTTT/Pss88CBseU8hmqeIQQZGRkkJCQgKura5m7ySpRCfsGKSkpuLi4kJycXO3dfqWnp+Po6IhKpSImJkbenUqBq6sr3t7ehf4AmfJdk3emKoIQAnd3d7RabamjCFZHbG1tzTZwI8VUxbC2tpajehbCYgMQS5YsoV69emi1WoKDgyvU8mOJpDRYREwbNmxgwoQJTJs2jd9//51WrVoRGhpq5OVVIqlsWERM8+fPZ/To0YwcOZKmTZuyfPly7O3tWbFihSXMkUjMwmN/ZsrJyeHEiRNMnjxZSbOysiIkJESJ4fQw2dnZZGdnK/v5caFknCaMojampKSg0+ksaE3VI/87VpJB78cupsTERHQ6XaExmv74449Cj5k1axYffPBBgXQZp8kYX18LeRmqBqSmpuLi4lJkmUoxmjd58mQlsjYYlmrfvXsXNze3SvlyMiUlBT8/P2JjY6vVe7LKeN5CCFJTU0v0Q/XYxeTu7o61tXWhMZqKis/0cISMh6MTVkaqa6ypynbexd2R8nnsAxBqtZp27doZxXDS6/VEREQoMZwkksqIRbp5EyZMICwsjPbt2xMUFMSCBQtIT09n5MiRljBHIjELFhHTkCFDuH37NlOnTiU+Pp7WrVvz008/FRiUqKpoNBqmTZtW7YK7VfXzrpQTXSWSiohczySRmAkpJonETEgxSSRmQopJIjETUkwlZPr06ahUKqMtMDBQyc/KymLs2LG4ubnh6OjIgAEDCryYvn79Or1798be3h5PT08mTpxIXl6eUZn9+/fTtm1bNBoNDRs2ZNWqVQVsKa/lK7/++it9+vTB19cXlUrFtm3bjPKFEEydOhUfHx/s7OwICQnh0qVLRmXu3r3L8OHDcXZ2xtXVlVGjRpGWlmZU5syZMzz55JNotVr8/PyYM2dOAVs2bdpEYGAgWq2WFi1aFAgoXhJbHjtljsdRTZg2bZpo1qyZiIuLU7bbt28r+a+++qrw8/MTERER4vjx46JDhw6iU6dOSn5eXp5o3ry5CAkJESdPnhQ7d+4U7u7uYvLkyUqZK1euCHt7ezFhwgRx4cIFsWjRImFtbS1++uknpcz69euFWq0WK1asEOfPnxejR48Wrq6u4tatW2U+x507d4r33ntPbNmyRQBi69atRvmzZ88WLi4uYtu2beL06dPiueeeE/7+/kahWHr27ClatWoljhw5In777TfRsGFDMWzYMCU/OTlZeHl5ieHDh4tz586JdevWCTs7O/HFF18oZQ4ePCisra3FnDlzxIULF8T7778vbG1txdmzZ02y5XEjxVRCpk2bJlq1alVoXlJSkrC1tRWbNm1S0qKiogQgDh8+LIQwfFGtrKxEfHy8UmbZsmXC2dlZZGdnCyGEeOedd0SzZs2M6h4yZIgIDQ1V9oOCgsTYsWOVfZ1OJ3x9fcWsWbPKfI4P8rCY9Hq98Pb2FnPnzlXSkpKShEajEevWrRNCCHHhwgUBiGPHjilldu3aJVQqlbhx44YQQoilS5eKGjVqKOcshBCTJk0yirM0ePBg0bt3byN7goODxb///e8S22IJZDfPBC5duoSvry/169dn+PDhXL9+HYATJ06Qm5tLSEiIUjYwMJA6deooy0oOHz5MixYtjF5Mh4aGkpKSwvnz55UyD9aRXya/jvzlKw+WKW75irmIiYkhPj7eqG0XFxeCg4ONztHV1ZX27dsrZUJCQrCysiIyMlIp89RTT6FWq43O8eLFi9y7d08pU9R1KIktlkCKqYQEBwezatUqfvrpJ5YtW0ZMTAxPPvkkqampxMfHo1arC0y+9fLyIj4+HoD4+PhCl53k5xVVJiUlhczMzCKXr+TXUV7k119U2/Hx8Xh6ehrl29jYULNmTbNchwfzi7PFElSKJRgVgV69eimfW7ZsSXBwMHXr1mXjxo3Y2dlZ0DJJRUHemUqJq6srjRo1Ijo6Gm9vb3JyckhKSjIq8+CyEm9v70KXneTnFVXG2dkZOzu7Ui1fMRf59RfVtre3dwE/Hnl5edy9e9cs1+HB/OJssQRSTKUkLS2Ny5cv4+PjQ7t27bC1tTVaVnLx4kWuX7+uLCvp2LEjZ8+eNfqyhYeH4+zsTNOmTZUyD9aRXya/DksuX/H398fb29uo7ZSUFCIjI43OMSkpiRMnTihl9u7di16vJzg4WCnz66+/Gvn2Cw8Pp3HjxtSoUUMpU9R1KIktFsFiQx+VjLffflvs379fxMTEiIMHD4qQkBDh7u4uEhIShBCGofE6deqIvXv3iuPHj4uOHTuKjh07KsfnD40/88wz4tSpU+Knn34SHh4ehQ6NT5w4UURFRYklS5YUOjSu0WjEqlWrxIULF8Qrr7wiXF1djUYJS0tqaqo4efKkOHnypADE/PnzxcmTJ8W1a9eEEIbhaFdXV/H999+LM2fOiL59+xY6NN6mTRsRGRkpDhw4IAICAoyGxpOSkoSXl5d46aWXxLlz58T69euFvb19gaFxGxsbMW/ePBEVFSWmTZtW6NB4cbY8bqSYSsiQIUOEj4+PUKvVolatWmLIkCEiOjpayc/MzBRjxowRNWrUEPb29uL5558XcXFxRnVcvXpV9OrVS9jZ2Ql3d3fx9ttvi9zcXKMy+/btE61btxZqtVrUr19frFy5soAtixYtEnXq1BFqtVoEBQWJI0eOmOUc9+3bJ4ACW1hYmBDCMCQ9ZcoU4eXlJTQajejevbu4ePGiUR137twRw4YNE46OjsLZ2VmMHDlSpKamGpU5ffq06NKli9BoNKJWrVpi9uzZBWzZuHGjaNSokVCr1aJZs2bixx9/NMoviS2PG7kEQyIxE/KZSSIxE1JMEomZkGKSSMyEFJNEYiakmCQSMyHFJJGYCSkmicRMSDFJJGZCikkiMRNSTBWcrl27Mn78eEuboVDR7KlISDFVA3JycixtQvXAojMDJUUSFhZWYNJpdHS0ePnll0W9evWEVqsVjRo1EgsWLChwXN++fcVHH30kfHx8RL169YQQhtnYrVq1EhqNRrRr105s3bpVAOLkyZPKsWfPnhU9e/YUDg4OwtPTU7z44ouK45jC7ImJiXlcl6PCI8VUgUlKShIdO3YUo0ePVjwiZWVlialTp4pjx46JK1euiG+++UbY29uLDRs2KMeFhYUJR0dHZZnDuXPnRHJysqhZs6Z48cUXxfnz58XOnTtFo0aNjMR07949ZVlIVFSU+P3330WPHj1Et27dHmlPXl6eJS5NhUQuW6/AuLi4oFarsbe3N1pB+mBIUn9/fw4fPszGjRsZPHiwku7g4MB///tfxXHJ8uXLUalUfPXVV2i1Wpo2bcqNGzcYPXq0cszixYtp06YNH3/8sZK2YsUK/Pz8+PPPP2nUqFGh9kgMSDFVQpYsWcKKFSu4fv06mZmZ5OTk0Lp1a6MyLVq0MPIAdPHiRVq2bIlWq1XSgoKCjI45ffo0+/btw9HRsUCbly9fplGjRuY9kSqGFFMlY/369fznP//h008/pWPHjjg5OTF37lzFlVY+Dg4OJtedlpZGnz59+OSTTwrk+fj4lNrm6oIUUwVHrVaj0+mU/YMHD9KpUyfGjBmjpF2+fLnYeho3bsw333xDdna2Emzs2LFjRmXatm3Ld999R7169bCxKfyr8bA9kr+RQ+MVnHr16hEZGcnVq1dJTEwkICCA48ePs3v3bv7880+mTJlSQBSF8cILL6DX63nllVeIiopi9+7dzJs3D0CJWD927Fju3r3LsGHDOHbsGJcvX2b37t2MHDlSEdDD9uj1+vI7+UqGFFMF5z//+Q/W1tY0bdoUDw8PQkND6d+/P0OGDCE4OJg7d+4Y3aUehbOzMz/88AOnTp2idevWvPfee0ydOhVAeY7y9fXl4MGD6HQ6nnnmGVq0aMH48eNxdXXFysqqUHvyvdpKZBjOas3atWsZOXIkycnJ0pGmGZDPTNWIr7/+mvr161OrVi1Onz7NpEmTGDx4sBSSmZBiqkbEx8crEe59fHwYNGgQM2fOtLRZVQbZzZNIzIQcgJBIzIQUk0RiJqSYJBIzIcUkkZgJKSaJxExIMUkkZkKKSSIxE1JMEomZ+P8JVHaE5BnHAAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "column = \"pods\"\n",
+ "x = \"target\"\n",
+ "y = \"[READ].95thPercentileLatency(us)\"\n",
+ "plot_comparison(df_aggregated, x, y, column, title, peak_benchmark)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### INSERT"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 53,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[INSERT].99thPercentileLatency(us) not avalable\n"
+ ]
+ }
+ ],
+ "source": [
+ "column = \"pods\"\n",
+ "x = \"target\"\n",
+ "y = \"[INSERT].99thPercentileLatency(us)\"\n",
+ "title = \"99th Lat INSERT [$\\mu$s]\"\n",
+ "plot_comparison(df_aggregated, x, y, column, title, peak_benchmark)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 54,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[INSERT].AverageLatency(us) not avalable\n"
+ ]
+ }
+ ],
+ "source": [
+ "#column = [\"threads\", \"pod_count\"]\n",
+ "column = \"pods\"\n",
+ "x = \"target\"\n",
+ "y = \"[INSERT].AverageLatency(us)\"\n",
+ "title = \"Avg Lat INSERT [$\\mu$s]\"\n",
+ "plot_comparison(df_aggregated, x, y, column, title, peak_benchmark)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[INSERT].95thPercentileLatency(us) not avalable\n"
+ ]
+ }
+ ],
+ "source": [
+ "column = \"pods\"\n",
+ "x = \"target\"\n",
+ "y = \"[INSERT].95thPercentileLatency(us)\"\n",
+ "title = \"95th Lat INSERT [$\\mu$s]\"\n",
+ "plot_comparison(df_aggregated, x, y, column, title, peak_benchmark)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### SCAN"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[SCAN].99thPercentileLatency(us) not avalable\n"
+ ]
+ }
+ ],
+ "source": [
+ "column = \"pods\"\n",
+ "x = \"target\"\n",
+ "y = \"[SCAN].99thPercentileLatency(us)\"\n",
+ "title = \"99th Lat SCAN [$\\mu$s]\"\n",
+ "plot_comparison(df_aggregated, x, y, column, title, peak_benchmark)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[SCAN].AverageLatency(us) not avalable\n"
+ ]
+ }
+ ],
+ "source": [
+ "#column = [\"threads\", \"pod_count\"]\n",
+ "column = \"pods\"\n",
+ "x = \"target\"\n",
+ "y = \"[SCAN].AverageLatency(us)\"\n",
+ "title = \"Avg Lat SCAN [$\\mu$s]\"\n",
+ "plot_comparison(df_aggregated, x, y, column, title, peak_benchmark)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[SCAN].95thPercentileLatency(us) not avalable\n"
+ ]
+ }
+ ],
+ "source": [
+ "column = \"pods\"\n",
+ "x = \"target\"\n",
+ "y = \"[SCAN].95thPercentileLatency(us)\"\n",
+ "title = \"95th Lat SCAN [$\\mu$s]\"\n",
+ "plot_comparison(df_aggregated, x, y, column, title, peak_benchmark)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Show Infos about Connections"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "found 16 connections\n"
+ ]
+ }
+ ],
+ "source": [
+ "import ast\n",
+ "\n",
+ "with open(path+\"/\"+code+\"/connections.config\",'r') as inf:\n",
+ " connections = ast.literal_eval(inf.read())\n",
+ "\n",
+ "print(\"found\", len(connections), \"connections\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import json\n",
+ "#pretty_connections = json.dumps(connections, indent=2)\n",
+ "\n",
+ "#print(pretty_connections)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Loading Time per Number of Loading Threads"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "PostgreSQL-32-1-114688-1 1068.2056978940964 [s] for 32 threads on ip-192-168-92-229.eu-central-1.compute.internal\n",
+ "PostgreSQL-32-1-131072-1 1087.3417482078075 [s] for 32 threads on ip-192-168-92-229.eu-central-1.compute.internal\n",
+ "PostgreSQL-32-1-16384-1 1834.0904397517443 [s] for 32 threads on ip-192-168-92-229.eu-central-1.compute.internal\n",
+ "PostgreSQL-32-1-32768-1 1062.0822292342782 [s] for 32 threads on ip-192-168-92-229.eu-central-1.compute.internal\n",
+ "PostgreSQL-32-1-49152-1 1065.0029773414135 [s] for 32 threads on ip-192-168-92-229.eu-central-1.compute.internal\n",
+ "PostgreSQL-32-1-65536-1 1033.139736406505 [s] for 32 threads on ip-192-168-92-229.eu-central-1.compute.internal\n",
+ "PostgreSQL-32-1-81920-1 1056.9990959092975 [s] for 32 threads on ip-192-168-92-229.eu-central-1.compute.internal\n",
+ "PostgreSQL-32-1-98304-1 1077.2663244530559 [s] for 32 threads on ip-192-168-92-229.eu-central-1.compute.internal\n",
+ "PostgreSQL-32-8-114688-1 1129.2390964254737 [s] for 4 threads on ip-192-168-92-229.eu-central-1.compute.internal\n",
+ "PostgreSQL-32-8-131072-1 1094.283723473549 [s] for 4 threads on ip-192-168-92-229.eu-central-1.compute.internal\n",
+ "PostgreSQL-32-8-16384-1 1835.2130344808102 [s] for 4 threads on ip-192-168-92-229.eu-central-1.compute.internal\n",
+ "PostgreSQL-32-8-32768-1 1074.2522376477718 [s] for 4 threads on ip-192-168-92-229.eu-central-1.compute.internal\n",
+ "PostgreSQL-32-8-49152-1 1054.188381895423 [s] for 4 threads on ip-192-168-92-229.eu-central-1.compute.internal\n",
+ "PostgreSQL-32-8-65536-1 1095.2031724601984 [s] for 4 threads on ip-192-168-92-229.eu-central-1.compute.internal\n",
+ "PostgreSQL-32-8-81920-1 1076.1312694624066 [s] for 4 threads on ip-192-168-92-229.eu-central-1.compute.internal\n",
+ "PostgreSQL-32-8-98304-1 1073.1441322341561 [s] for 4 threads on ip-192-168-92-229.eu-central-1.compute.internal\n"
+ ]
+ }
+ ],
+ "source": [
+ "connections_sorted = sorted(connections, key=lambda c: c['name']) \n",
+ "\n",
+ "for c in connections_sorted:\n",
+ " print(c['name'], \n",
+ " c['timeLoad'], \n",
+ " '[s] for', \n",
+ " c['parameter']['connection_parameter']['loading_parameters']['YCSB_THREADCOUNT'], \n",
+ " 'threads on',\n",
+ " c['hostsystem']['node'])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Get monitoring metrics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Loading\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Transform Monitoring Results to DataFrame\n",
+ "\n",
+ "This has to be done only once. Transformed Results are stored in result folder.\n",
+ "\n",
+ "We also show a list of available metrics."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 62,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['total_cpu_memory',\n",
+ " 'total_cpu_memory_cached',\n",
+ " 'total_cpu_util',\n",
+ " 'total_cpu_util_max',\n",
+ " 'total_cpu_throttled',\n",
+ " 'total_cpu_util_others',\n",
+ " 'total_cpu_util_s',\n",
+ " 'total_cpu_util_user_s',\n",
+ " 'total_cpu_util_sys_s',\n",
+ " 'total_cpu_throttled_s',\n",
+ " 'total_cpu_util_others_s',\n",
+ " 'total_network_rx',\n",
+ " 'total_network_tx',\n",
+ " 'total_fs_read',\n",
+ " 'total_fs_write',\n",
+ " 'total_gpu_util',\n",
+ " 'total_gpu_power',\n",
+ " 'total_gpu_memory']"
+ ]
+ },
+ "execution_count": 62,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "evaluation.transform_monitoring_results(component=\"loading\")\n",
+ "\n",
+ "evaluation.get_monitoring_metrics()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Plot all Metrics"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAABwWCAYAAACx0tk5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gc1dXA4d/MbF9p1ast23LvGNu40EwxGDAEQgkkAUwPxPABTgghIYSSQEISSoBASAFCCR0CmGZMxxUb494lN1m9rLTaOjPfH7NaW9iSm6SV7fM+j4L3zt27Z3eV1d0zd85VTNM0EUIIIYQQQgghhBCiC6nJDkAIIYQQQgghhBBCHH4kKSWEEEIIIYQQQgghupwkpYQQQgghhBBCCCFEl5OklBBCCCGEEEIIIYTocpKUEkIIIYQQQgghhBBdTpJSQgghhBBCCCGEEKLLSVJKCCGEEEIIIYQQQnQ5SUoJIYQQQgghhBBCiC4nSSkhhBBCCCGEEEII0eUkKSWESJrS0lIUReHpp59OdihCCCGEELuQuYpIhqeffhpFUfj66687/bEuu+wy+vTp0+mPI0RbJCklxGFszpw53HnnndTX1+/X/f/2t7/JJE0IIYQQnUbmKkIIcWiTpJQQh7E5c+Zw1113yURPCCGEEN2SzFWEEOLQJkkpIYQQe800TYLBYLLDEEIIIYTYLZmrCHFwkaSUEIepO++8k1tuuQWA4uJiFEVBURRKS0uJxWLcc8899OvXD6fTSZ8+ffjVr35FOBxO3L9Pnz6sWLGCzz77LHHfE044AYDa2lp+/vOfM2LECFJSUvD5fJx++ul8++23HRJ7KBTizjvvZODAgbhcLgoKCjj33HPZsGEDsKP+w5///GcefPBBevfujdvtZtKkSSxfvrzVWCeccEIi7p3tz/X1J5xwAsOHD2fp0qVMmjQJj8dD//79efXVVwH47LPPGD9+PG63m0GDBvHRRx/tMsa2bdu44ooryMvLw+l0MmzYMP7973+36vPpp5+iKAovv/wyd911Fz169CA1NZXzzz+fhoYGwuEwN910E7m5uaSkpHD55Ze3eu+AvXqPwXqfzzzzTD744APGjh2L2+3m73//O5MmTeKII47Y7eswaNAgpkyZsk+vnRBCCPFdMlexyFyle8xV5s+fzxlnnEFGRgZer5eRI0fy8MMPJ44vXbqUyy67jL59++JyucjPz+eKK66gpqZmt6/hlVdeSWFhIU6nk+LiYq677joikUirfuFwmBkzZpCTk4PX6+X73/8+VVVVu4z33nvvcdxxx+H1eklNTWXq1KmsWLFil35vvvkmw4cPx+VyMXz4cN544419eg2E6Ay2ZAcghEiOc889l7Vr1/Lf//6XBx98kOzsbABycnK46qqreOaZZzj//PP52c9+xvz587nvvvtYtWpV4o/XQw89xA033EBKSgq//vWvAcjLywNg48aNvPnmm1xwwQUUFxdTUVGRmBysXLmSwsLC/Y5b13XOPPNMZs+ezUUXXcSNN95IY2Mjs2bNYvny5fTr1y/R9z//+Q+NjY1Mnz6dUCjEww8/zEknncSyZcsSsXa0uro6zjzzTC666CIuuOACHn/8cS666CKef/55brrpJq699lp+9KMf8ac//Ynzzz+fLVu2kJqaCkBFRQUTJkxAURSuv/56cnJyeO+997jyyivx+/3cdNNNrR7rvvvuw+1288tf/pL169fzyCOPYLfbUVWVuro67rzzTubNm8fTTz9NcXExd9xxR+K+e/Met1izZg0//OEP+clPfsLVV1/NoEGDSElJ4eqrr2b58uUMHz480XfhwoWsXbuW22+/vVNeXyGEEIcPmavIXKW7zFVmzZrFmWeeSUFBATfeeCP5+fmsWrWKd955hxtvvDHRZ+PGjVx++eXk5+ezYsUKnnzySVasWMG8efNQFAWAsrIyxo0bR319Pddccw2DBw9m27ZtvPrqqzQ3N+NwOBKPe8MNN5CRkcFvf/tbSktLeeihh7j++ut56aWXEn2effZZpk2bxpQpU/jjH/9Ic3Mzjz/+OMceeyzffPNNInH54Ycfct555zF06FDuu+8+ampquPzyy+nZs+devw5CdApTCHHY+tOf/mQCZklJSaJtyZIlJmBeddVVrfr+/Oc/NwHz448/TrQNGzbMnDRp0i7jhkIhU9f1Vm0lJSWm0+k077777lZtgPnUU0/tdcz//ve/TcB84IEHdjlmGEarcd1ut7l169bE8fnz55uAefPNNyfaJk2atNvnMG3aNLN37957HVfLWID5wgsvJNpWr15tAqaqqua8efMS7R988MEuz/3KK680CwoKzOrq6lbjXnTRRWZaWprZ3NxsmqZpfvLJJyZgDh8+3IxEIol+P/zhD01FUczTTz+91f0nTpzY6rnsy3vcu3dvEzDff//9Vn3r6+tNl8tl3nrrra3a/+///s/0er1mU1NTey+VEEIIsVdkriJzlZ0lY64Si8XM4uJis3fv3mZdXV2rYy3vp2maiee+s//+978mYH7++eeJtksvvdRUVdVcuHDhLv1bxnvqqadMwJw8eXKrx7j55ptNTdPM+vp60zRNs7Gx0UxPTzevvvrqVuOUl5ebaWlprdpHjRplFhQUJO5rmqb54YcfmsA+/x4J0ZHk8j0hRCvvvvsuADNmzGjV/rOf/QyAmTNn7nEMp9OJqlofL7quU1NTQ0pKCoMGDWLx4sUHFN9rr71GdnY2N9xwwy7HWs5AtTjnnHPo0aNH4va4ceMYP3584jl2hpSUFC666KLE7UGDBpGens6QIUMYP358or3l3xs3bgSs+gevvfYaZ511FqZpUl1dnfiZMmUKDQ0Nu7x2l156KXa7vdWYpmlyxRVXtOo3fvx4tmzZQiwWA/b9PS4uLt5liXtaWhpnn302//3vfzFNE7De65deeolzzjkHr9e7Ny+XEEIIsc9krnJgZK6yb3OVb775hpKSEm666SbS09NbHdv5/XS73Yl/h0IhqqurmTBhAkDidTEMgzfffJOzzjqLsWPH7vJY3/39uOaaa1q1HXfccei6zqZNmwBrdVZ9fT0//OEPW70fmqYxfvx4PvnkEwC2b9/OkiVLmDZtGmlpaYnxTjnlFIYOHbpXr4MQnUWSUkKIVjZt2oSqqvTv379Ve35+Punp6Yk/gu0xDIMHH3yQAQMG4HQ6yc7OJicnh6VLl9LQ0HBA8W3YsIFBgwZhs+356uMBAwbs0jZw4EBKS0sPKIb29OzZc5cJRVpaGkVFRbu0gbWEHqCqqor6+nqefPJJcnJyWv1cfvnlAFRWVrYao1evXrsdc3ePZRhG4rXf1/e4uLh4t8/10ksvZfPmzXzxxRcAfPTRR1RUVHDJJZfstr8QQgjREWSucmBkrrJvc5WWOmA7XwK4O7W1tdx4443k5eXhdrvJyclJxNXyvKqqqvD7/Xscq8V3X7+MjAxgx3uybt06AE466aRd3pMPP/ww8X60vF67+30bNGjQXsUiRGeRmlJCiN367mRlX9x777385je/4YorruCee+4hMzMTVVW56aabMAyjA6M8cIqiJM6e7UzX9f0aT9O0fWpveeyW1+Xiiy9m2rRpu+07cuTIDnmsFnv7Hu985m9nU6ZMIS8vj+eee47jjz+e5557jvz8fCZPnrxX4wohhBAHQuYqMldp0R3mKj/4wQ+YM2cOt9xyC6NGjSIlJQXDMDjttNP2+3dqb9+TZ599lvz8/F367U1iVIhkk99SIQ5ju/tD37t3bwzDYN26dQwZMiTRXlFRQX19Pb179273/gCvvvoqJ554Iv/6179atdfX1yeKlO6vfv36MX/+fKLRaKvl4LvTcvZoZ2vXrm21U01GRkZiWfrO9uYsa0fKyckhNTUVXdc7PamzL+9xezRN40c/+hFPP/00f/zjH3nzzTe5+uqr25xACSGEEPtK5ioyV0n2XKWlMP3y5cvbfN51dXXMnj2bu+66q1Wx9u++vzk5Ofh8vl12WNxfLbHl5ua2+560vF67+31bs2ZNh8QixP6Sy/eEOIy1XEtfX1+faDvjjDMAa8eanT3wwAMATJ06tdX9d75vC03TdjnT9corr7Bt27YDjvm8886jurqaRx99dJdj333MN998s9VjLliwgPnz53P66acn2vr168fq1atbba/77bff8tVXXx1wrPtC0zTOO+88Xnvttd1OVHa3/e/+2pf3eE8uueQS6urq+MlPfkJTUxMXX3xxh8UphBBCyFxF5io7S8ZcZfTo0RQXF/PQQw/t8rvU8n62JLm++/5+N35VVTnnnHN4++23+frrr3d5rN2tiGvPlClT8Pl83HvvvUSj0V2Ot7wnBQUFjBo1imeeeabV5amzZs1i5cqV+/SYQnQ0WSklxGFszJgxAPz617/moosuwm63c9ZZZzFt2jSefPJJ6uvrmTRpEgsWLOCZZ57hnHPO4cQTT2x1/8cff5zf/e539O/fn9zcXE466STOPPNM7r77bi6//HKOPvpoli1bxvPPP0/fvn0POOZLL72U//znP8yYMYMFCxZw3HHHEQgE+Oijj/jpT3/K2Wefnejbv39/jj32WK677jrC4TAPPfQQWVlZ/OIXv0j0ueKKK3jggQeYMmUKV155JZWVlTzxxBMMGzYMv99/wPHuiz/84Q988sknjB8/nquvvpqhQ4dSW1vL4sWL+eijj6itre2QxzniiCP2+j3ekyOPPJLhw4fzyiuvMGTIEEaPHt0hMQohhBAgcxWQuUqy5yqqqvL4449z1llnMWrUKC6//HIKCgpYvXo1K1as4IMPPsDn83H88cdz//33E41G6dGjBx9++CElJSW7jHfvvffy4YcfMmnSJK655hqGDBnC9u3beeWVV/jyyy93KabeHp/Px+OPP84ll1zC6NGjueiii8jJyWHz5s3MnDmTY445JpEcve+++5g6dSrHHnssV1xxBbW1tTzyyCMMGzaMpqamfXpNhOhQXbnVnxCi+7nnnnvMHj16mKqqJrZcjkaj5l133WUWFxebdrvdLCoqMm+77TYzFAq1um95ebk5depUMzU11QQS2xWHQiHzZz/7mVlQUGC63W7zmGOOMefOnbvLlsb7s82yaVpb7v76179OxJefn2+ef/755oYNG1qN+6c//cn8y1/+YhYVFZlOp9M87rjjzG+//XaX8Z577jmzb9++psPhMEeNGmV+8MEH+73N8rBhw3Zp7927tzl16tRd2gFz+vTprdoqKirM6dOnm0VFRYnndvLJJ5tPPvlkok/LNsuvvPJKq/u2bB/83S2Gf/vb35qAWVVVlWjb2/e4rdh3dv/995uAee+997bbTwghhNgfMleRuUp3mKt8+eWX5imnnGKmpqaaXq/XHDlypPnII48kjm/dutX8/ve/b6anp5tpaWnmBRdcYJaVlZmA+dvf/rbVWJs2bTIvvfRSMycnx3Q6nWbfvn3N6dOnm+Fw2DTNtl+nltf1k08+2aV9ypQpZlpamulyucx+/fqZl112mfn111+36vfaa6+ZQ4YMMZ1Opzl06FDz9ddf36/fIyE6kmKa+7hGUAghurnS0lKKi4v505/+xM9//vNkh3PIe/jhh7n55pspLS3dZZcYIYQQQuxK5ipdS+YqQnRfUlNKCCHEfjNNk3/9619MmjRJJnlCCCGE6HZkriJE9yY1pYQQ3UIkEtljHYK0tLQ2t/ztTLW1tUQikTaPa5pGTk5OF0aUfIFAgLfeeotPPvmEZcuW8b///S/ZIQkhhBCdSuYqB5e9mavI6yZE8klSSgjRLcyZM2ePRSufeuopLrvssq4JaCfnnnsun332WZvHe/fuTWlpadcF1A1UVVXxox/9iPT0dH71q1/xve99L9khCSGEEJ1K5ioHl72Zq8jrJkTySU0pIUS3UFdXx6JFi9rtM2zYMAoKCroooh0WLVpEXV1dm8fdbjfHHHNMF0YkhBBCiK4mc5VDj7xuQiSfJKWEEEIIIYQQQgghRJeTQudCCCGEEF2sT58+KIqyy8/06dMBCIVCTJ8+naysLFJSUjjvvPOoqKhoNcbmzZuZOnUqHo+H3NxcbrnlFmKxWKs+n376KaNHj8bpdNK/f3+efvrpXWJ57LHH6NOnDy6Xi/Hjx7NgwYJOe95CCCGEEDuTmlLtMAyDsrIyUlNTURQl2eEIIYQQohswTZPGxkYKCwtR1f07v7dw4UJ0XU/cXr58OaeccgoXXHABADfffDMzZ87klVdeIS0tjeuvv55zzz2Xr776CgBd15k6dSr5+fnMmTOH7du3c+mll2K327n33nsBKCkpYerUqVx77bU8//zzzJ49m6uuuoqCggKmTJkCwEsvvcSMGTN44oknGD9+PA899BBTpkxhzZo15Obm7tVzkfmSEEIIIb5rr+dLpmjTli1bTEB+5Ed+5Ed+5Ed+5GeXny1btnTYnOPGG280+/XrZxqGYdbX15t2u9185ZVXEsdXrVplAubcuXNN0zTNd99911RV1SwvL0/0efzxx02fz2eGw2HTNE3zF7/4hTls2LBWj3PhhReaU6ZMSdweN26cOX369MRtXdfNwsJC87777tvr2GW+JD/yIz/yIz/yIz9t/expviQrpdqRmpoKwJYtW/D5fEmORgghhBDdgd/vp6ioKDFPOFCRSITnnnuOGTNmoCgKixYtIhqNMnny5ESfwYMH06tXL+bOncuECROYO3cuI0aMIC8vL9FnypQpXHfddaxYsYIjjzySuXPnthqjpc9NN92UeNxFixZx2223JY6rqsrkyZOZO3dum/GGw2HC4XDithkvTyrzJSGEEEK02Nv5kiSl2tGyBN3n88kkSwghhBCtdNSlam+++Sb19fWJbeTLy8txOBykp6e36peXl0d5eXmiz84JqZbjLcfa6+P3+wkGg9TV1aHr+m77rF69us1477vvPu66665d2mW+JIQQQojv2tN8SQqdCyGEEEIk0b/+9S9OP/10CgsLkx3KXrnttttoaGhI/GzZsiXZIQkhhBDiICUrpYQQQgghkmTTpk189NFHvP7664m2/Px8IpEI9fX1rVZLVVRUkJ+fn+jz3V3yWnbn27nPd3fsq6iowOfz4Xa70TQNTdN226dljN1xOp04nc59f7JCCCGEEN8hK6WEEEIIIZLkqaeeIjc3l6lTpybaxowZg91uZ/bs2Ym2NWvWsHnzZiZOnAjAxIkTWbZsGZWVlYk+s2bNwufzMXTo0ESfncdo6dMyhsPhYMyYMa36GIbB7NmzE32EEEIIITqTrJQSQgghhEgCwzB46qmnmDZtGjbbjilZWloaV155JTNmzCAzMxOfz8cNN9zAxIkTmTBhAgCnnnoqQ4cO5ZJLLuH++++nvLyc22+/nenTpydWMV177bU8+uij/OIXv+CKK67g448/5uWXX2bmzJmJx5oxYwbTpk1j7NixjBs3joceeohAIMDll1/etS+GEEIIIQ5LkpQSQgghhEiCjz76iM2bN3PFFVfscuzBBx9EVVXOO+88wuEwU6ZM4W9/+1viuKZpvPPOO1x33XVMnDgRr9fLtGnTuPvuuxN9iouLmTlzJjfffDMPP/wwPXv25J///CdTpkxJ9LnwwgupqqrijjvuoLy8nFGjRvH+++/vUvxcCCGEEKIzKGbLPr5iF36/n7S0NBoaGmQ3GSGEEEIAMj/4Lnk9hBBCCPFdezs/kJpSQgghhBBCCCGEEKLLSVJKCCGEEEIIIYQQQnQ5SUoJIYQQQgghhBBCiC4nSSkhhBBCCCGEEEII0eUkKSWEEEIIIYQQQgghupwkpYQQQgghhBBCCCFEl5OklBBCCCGEEEIIIYTocpKUEkIIIYQQQgghhBBdTpJSQgghhBBCCCGEEKLLSVJKCCGEEEIIIYQQQnQ5SUoJIYQQQgghhBBCiC4nSSkhhBBCCCGEEEII0eUkKSWEEEIIIYQQQgghupwkpYQQQgghhBBCCCFEl5OklBBCCCGEEEIIIYTocpKUEkIIIYQQQgghhBBdTpJSQgghhBBCCCGEEKLLSVJKCCGEEEIIIYQQQnQ5SUoJIYQQQgghhBBCiC7X6UmpP/zhDyiKwk033ZRoC4VCTJ8+naysLFJSUjjvvPOoqKhodb/NmzczdepUPB4Pubm53HLLLcRisVZ9Pv30U0aPHo3T6aR///48/fTTuzz+Y489Rp8+fXC5XIwfP54FCxZ0xtMUQgghhBBCCCGEEPugU5NSCxcu5O9//zsjR45s1X7zzTfz9ttv88orr/DZZ59RVlbGueeemziu6zpTp04lEokwZ84cnnnmGZ5++mnuuOOORJ+SkhKmTp3KiSeeyJIlS7jpppu46qqr+OCDDxJ9XnrpJWbMmMFvf/tbFi9ezBFHHMGUKVOorKzszKcthBBCCCGEEEIIIfZAMU3T7IyBm5qaGD16NH/729/43e9+x6hRo3jooYdoaGggJyeHF154gfPPPx+A1atXM2TIEObOncuECRN47733OPPMMykrKyMvLw+AJ554gltvvZWqqiocDge33norM2fOZPny5YnHvOiii6ivr+f9998HYPz48Rx11FE8+uijABiGQVFRETfccAO//OUv9/gc/H4/aWlpNDQ04PP5OvolEkIIIcRBSOYHrcnrIYQQQojv2tv5QaetlJo+fTpTp05l8uTJrdoXLVpENBpt1T548GB69erF3LlzAZg7dy4jRoxIJKQApkyZgt/vZ8WKFYk+3x17ypQpiTEikQiLFi1q1UdVVSZPnpzoI4QQQgghhBBCCCGSw9YZg7744ossXryYhQsX7nKsvLwch8NBenp6q/a8vDzKy8sTfXZOSLUcbznWXh+/308wGKSurg5d13fbZ/Xq1buNOxwOEw6HE7f9fv9ePFshhBBCCCGEEEIIsa86PCm1ZcsWbrzxRmbNmoXL5ero4TvVfffdx1133ZXsMIQQQohuqcIfotLfRMj/AdneME57Knl5U9E0T7JDE0KIw0LFkjIC25oI+GuJhpvZvnYptfUVhCLNBIw6TMNAw44NHVQFFMA0UU0wFRMFUBQIOVT8qZmEPNlkK37cWghD0Ygo1ve3mGkQNEwCpOB2aWR6NRwpOs26RnbEJBQ0sLszUV25ZDhNCnwR7IU52LKKwJMBzbW4QjX0tZkouUPAm5XU100cfMrqg2ytC+72mKJY/zWNAEZ024723fxrR//Wbbvr19J5l9bdtbW0KLs+qk1VKM5OwWH34HIV7vY5iB06PCm1aNEiKisrGT16dKJN13U+//xzHn30UT744AMikQj19fWtVktVVFSQn58PQH5+/i675LXszrdzn+/u2FdRUYHP58PtdqNpGpqm7bZPyxjfddtttzFjxozEbb/fT1FR0T6+AkIIIcShZ015I6c//DkTCuZz5fDnaVlLHI3V07vX1UmNTQghDmWhtXU0zS3DX1pBKBTlK20Dpah4ts1hzNo1VPbMadXfAKJ7Ma6ntgaPsh1TsRN2DMPmHofNaAZ0bKi4UMlQVKyKLwoBNYrTdCc+/3XCFLnmo6oB5ver5x73dKgLAi2JBC+3b3yC6+s/g5uWgdYpF+mIQ0gkZjDj5SWsKW9kXWXTbvukORo4oegr3LYgp/T+rIsj3HvVJdZ/fb5R9OzxI7KzT8Ful7qLu9Phnwwnn3wyy5Yta9V2+eWXM3jwYG699VaKioqw2+3Mnj2b8847D4A1a9awefNmJk6cCMDEiRP5/e9/T2VlJbm5uQDMmjULn8/H0KFDE33efffdVo8za9asxBgOh4MxY8Ywe/ZszjnnHMAqdD579myuv/763cbudDpxOp0d80IIIYQQh4A3v9nGSwu3UBtoYkD6WoZnrWl1PBqpS1JkQghxeKh7vwS9LIADO9/aNvEfw8cWI4Nrmirxux3xXk4U1YOipqMoNhQjApjsbkcrxYSYsdm6YTZhmhALfUksvADMSNuBKKmYvotRVDcAOk5KQ8cDcOK23/NYjzJiqhebYRD12Gm0p7DINwy2/BfuyYKUfLj8Xcjq12GvjTi0LN1azztLt7dq65/rJNVex6isL+jh3UBx6q6leJqiPsxW66Ta2stt1/bdrZ9qq29bFGVHX8Ow/p3iaAbA71/CSv8Seva8lEEDf7vXYx5OOjwplZqayvDhw1u1eb1esrKyEu1XXnklM2bMIDMzE5/Pxw033MDEiROZMGECAKeeeipDhw7lkksu4f7776e8vJzbb7+d6dOnJ5JG1157LY8++ii/+MUvuOKKK/j44495+eWXmTlzZuJxZ8yYwbRp0xg7dizjxo3joYceIhAIcPnll3f00xZCCCEOSX/+cA1b64JcPeIZJhQs2uW4iZGEqIQQ4vARqg1jB1b7l7PZs42MQC6/2fYPHLU1bEmxVknZPRPQnGO4+KZcfL16YmpuotvKaGhqYsk3n2KUzCKiq6yvcJO3tZqBZRVEvS7MUJR5/XtYD9ReQgrAbKTcfILtvgYq8/JJD/dgQPUYspoL+ZNnNFnb/8yQtQUMKmugtP9IXpn8Az7NmsCxR/2Hsys/5pZNT8Mjo8GTBVPuhSMu6tTXTRx8GoLWGr++2V5+e9YARvX0svzbcwiFtuzSNy1tLGlpo8jNOY20tCO7OtQ2+UNRTn/oCyr9DVw46E36p2+kKLWMSKQ62aF1W0lZQ/nggw+iqirnnXce4XCYKVOm8Le//S1xXNM03nnnHa677jomTpyI1+tl2rRp3H333Yk+xcXFzJw5k5tvvpmHH36Ynj178s9//pMpU6Yk+lx44YVUVVVxxx13UF5ezqhRo3j//fd3KX4uhBBCiN2rb7YmiKMLG8AE1d6DlRVuIoaPkdmL2ZcziUIIIfaDblCl+FlmL6XRZnDZijfYlObA36PPjj6KFwBn0SAUjx0FcPYtJhc41T8bSj4DdyrmiEKMa29GOeIH1FdWUT55MpOXl+B3Wyf+773i/6jMyuNHkRgT/vccjnCESMRgYXYuemw7GX6TDL8PfE24vM34nbVkNRcyduvpjN16OrbsVzmhxzy2BysIVOYR0RwsSBvOY30utZJSAM01sPw1SUqJXTSFYwAc02MxetlP+HpbLHFMVV24XIUUF/8fTmc+GelHJSvMdvlcdj7/xYlUNYaZcJ+DE4s+5+Ihr4Ip86W2dElS6tNPP2112+Vy8dhjj/HYY4+1eZ/evXvvcnned51wwgl888037fa5/vrr27xcTwghhBC719AcpawhmJggpjjCRMKQ1eP3/Gmmn0uGvW11lEmWEEJ0KjMS4nPnShoy3Hg2rqCkwNvquOZxotqs1U42h7rrALGQ9d+RF6Cc+SChmM6aphB3lPlpnnEHxWVbuPztV8ny1/PAX/+42xhO1QO8dcRQlNpKbM1NDF2mAtuAbcRcZaDkoDlHEas+n4+c4xjjfZV/r7ojcf8Pso6muu8F2PsNp+6TezAj9Zj1GzExSbGnkOeVRQOHs/WVTfzlwzVsqLLqSPVJXYpp7khI9ejxIwYPuidZ4e0zTVXwua1Ui2Fa/5800ZMZUrcm1eaEEEII0UpNU5jj7v+E5ohOrqeSNEcjht4AgKalAP6dJlmSlBJCiM4SDYdpJkyjEgLTQAtbRcTtMZ2G3GYKpl7HCHUsX7+1GUUBzbabpFTUuk+VLZ3VtY1c8O2GHcf6DmR9v0Eco5lM/N+rqMaOS7IVVSX11FOpf+UVlK3b+F7Zdip8Xr7pndfqsz8WWg6AacvGbiuCcC8+1s4hy7aRAaq1M9qUmjlQA03r3sRveLg1tpWt/zs7McYjJz3CMT2Owa7aO+y1EweP/y7YzHvLy3FpIQZmbCXLVQnA4EG/Iz//+2iaK8kR7js1viufabb8V8odtEWSUkIIIYRoZV1lE80Rnb5pW/j1+D8BEIufsNRsqcDOC6QkKSWEEJ3B/8lmXvz8TcrctVaDvuNL7ckrS1k8qhf+d3L5GqtoucNjQ1F2U7Y5FiKGxsmOKVTulJDKd9gp9jj4z4i+pJ5wBPzq57vc1TQMgsuXE161CsUwyK9v5ILxR9PzoQfZvOxb1n49j5LFC2isqqQu8j+UmJN0ox8Yds5P/z55ho1RmQb31T6KhkGKFmWkFuW9bX7qDDvPedN4Mt/DDbOtK1uO63Ecfzvl8Q58FcXBoKVUwO+O/zsZ9h2/o05n/kGZkIIdSSmDeKJYklJtkqSUEEIIIVppKTQ6vsjaWU/TPDid+aSljUGz5QFrMOTMnxBCdKqmr8rYbtRZ24PFYNhnC9lcaEc1TFQTNMXapdzltdNjUAb9jszZ/UDRIDWONCoV68v9YK+Lc3LTualP/h5jUFSV4ldeJlZTQ+OHs6j4/e8xG/0oikLvkaPoPXIUX3o8zH/jZXzhCBBBZwnOMFzsN5k3NMBHmy/mPduTjO2ziRNZwqXl1uXfGWqUG4LVnLfZRo4eww4ENv2XyPqVKJ4c7KMvgoFTwJECu0u2iUNGY8iad6TbrYLmbncv3O7eZGSMT2ZYB0SN/8omVkrJxjBtkqSUEEIIIQCI6gaPfbKeeRtrAEhzWXVIsrMnM3zYgwBsjNd72LE+SlZKCSFEZwgFwphOE0wT75pVGM4gYEczDLZlgmrzAZDbO5XTrhm+6wBVa6hc9hbPB7Mp623tPp7jsPHpuMH7FIdis2HPy8Pe06pbFSndRMm552GErL8RvUcdQY/b7mLT1grmznwXR30NGI2opsLRK1I4mjeZV5TB1tWD+Y3rIv7b/zy+H6rjmuqbASjUd9QO8pomVCyxbpTMAiCmOtiUNwWf0YxqRACV2pxjaUobCkCv4UeQ1aNon56T6B6+3VLPR6sqWFXuR1NiKFg7QB419k3s9rQkR3dgtHhWKlHuwJSaUm2RpJQQQgghAJizoYaHPlpHnqeSCwd9yUCfVQvEFv/iAyQuDWk58yeFzoUQonMY8fpOWsCPqjazNcv6LA56HMwbdzvZ26zbTk8bX+neu5VHlaE82fMHiaZC5/7XbLJlZAAQLSsjWlaWaI9s3EhmRgYje/Rgy1FjqFrsQ2tcih6rxoxtAmDCljpgLn0ysli5ujcPuQp4lX/ye72WFCATN7qZjkNdjabUkm57AkWx/r7YjAj9tr/dKpasqs+oCnkA8C7NAW/Kfj+vLvGTz0GTr97fdfNLS9hYHUBVdDKcDYl2TfO2c6+DQ2K+hMyX9kT+nyGEEEIIAKobwwD8cOhHjMicl2h3OXfsirTrcnSZZAkhREfTIzEMxVpZocRXErmiBg7TS33GKWSEChJ7eWUWtpGQCVRRHU8kTaCOkQV9+H7h/u9y5xo+nPQLzidSugk0DfcRR9D0ySeE166l9l//BiD37O+xIdvNmZedRfkqg42fLkUPr8LUyzGNBob45zG0aR2qlgWKyvtGNRAjoELUO5hJtgIKzDwMHiAYq0NjA25tK7jXk5GWja54GRiZA0COqzn+PDdBYL+flkiiysYwPoefPxx/P07VD1glA1T10EhTaKoiu+/thUPj3RZCCCHEAfPHazrkea3ZfU7OaaSlHUlhwY6z7Aoty9FbWqRGghBCdLTSxYvQFevzVdGtL7O6o4hI+oV44n0mXzuI9LRUcnun7n6QaDPBeJHocweO4NIe2QcUk2KzUXDPPa3aUk8+ifo33iD47beEV66i8KPZnOqwQ3oGx/74Kly6l/JNBayu/ICM6gZMvRpTr8aw/twknosHILiedcC63T56Xxo9OZQUHYuR+ROK9C07lZlSdvrfHf9t6dCqGpXCbvsquxzf0XFIgY8LxvRs55XZC8pudkU8zJmmSSASY3jWlkRCCiA7++QkRtWxVAWpwbkXJCklhBBCHOZmLt3Oa4u3UlpjJaOcmrV9eEHBueR8Z3LY8iXAkOXoQgjR4UzTpOqjDbw/7yuaHFbNJjW+UsrQXGhATnYNAyaNZ9CoHu0PFmkmpDoAcGudkxRxjxyJe+RI/O+9x7abZ2ALBMgIAE88wddvvUXMbiPUoyfpnhjbe2dQ66jEFdDxhDVcUS9200dapA96+FvABMVG1G5DMTVQHKjRBlTTqjOU2lzFsPWfEfKOiT/6rtUNDQVWuxqIqO2vStldXcS2/prV+huxx2sdtc5w7UTZw9/Cb3bsKNfyd9Sm2Cnyta6FVTBgCJk9ctE66f3qToJRHdMEt836PU9PH8+Ro55CVZ1JjqzjqIqy0+V7kpRqiySlhBBCiMPcfe+tYmtdkGN7zGXKyFWk2KxaITvXkmqhyOV7QgjRaaJlAdZ9spQqhx8UCJh2KiI++lOGqVgJpqMnrKPnKRfsxWDNBFVrpZRb7dwkR+ppp9GnqBeL3vofWf95FoAe8bpTvTdtBmDBCZMoyZ+IkaawMSuFMtcKtvrguDVhMoKTKK4bCYBrp3FN08TUKzH0amLNH6DptXj9s9qNZVxDu4f33XbYsKyDx4xb/Z3b9pRzuOBXF1DQ7+Au8t2eLbXN3PnWCqoDERQMvHbrMky7zXdIJaTASkrtuHxPklJtkaSUEEIIcZirb46iKTqXDXsZZaeaBy5n4S59VeU7l+/JmT8hhOgw4boQsfiXV08E7Bv9DKtbRk26HUWxipR73K72hoDZ97B9yWu8mXMam9wFALg6eeWNoii4hw9jeM8eLM7KQt2yBffmLWSEw1BWhl5VxenDhhE+5xyiUevaPdM8h9O2NvJuVhOq0UBOQ4ijKmyk2zTG5aVRkGfjpTUv0hD0EwmH6VXqwd0c2+WxVUVBUVRsMQfOsJfdLWdqa4FTm/bqfMs+j7rHERRlD+/tIeDtpWXMXl3J2LxvePzkZ7Fr1ntqs7VxGepBTFOVHSfxZL7UJklKCSGEEIexmG7QFI6RYg8mElIDB96J19MXt3vXS0O+u1JKCCFEx2koD6DHC5zH6rbg1supSY/vmNeSlHK52x/k2/9yd48reCNvcqIp3aZ1SrzflZ6ezkk/+UmrtqpHHqX6sceo+fuTqE8/g6NPH7S0NPSGBp6NRKnWTb4aNJyvjhjL20OLQVF4Frg8O5ufjLiD4ame3T+YOCg1BK2k5JT+GxMJKVDJyJiYvKA6iaKQWCklNTjbJkkpIYQQ4jDUFI7xvUe+ZGO1VUfKY7PqSGmal6Kel7R5v+8WOpfl6EII0XH0sIEe/1y1BZswW7Y8xUS1FWBi4CgY1v4g0WaqHNaue0enuTkuM43RvuQldjxjx4CqQiyGEYsRWrEicSwt/tNv4zoufe8NPvvJDdw56mgAntpWzVPbqhmZsvskXHuLmfa00GlPl563Vy5xT2O/PKofOQ77HnodvvxBKxGV5bGSU/37/5IehT/EZmtjF8mDmKbuqCllmrL7XlskKSWEEEIchlZsa2BjdYAsVw2/Gvcg6S5r55s9LZ9v+X5kSqFzIYTocJXrViQu38Ow/uuyjcX0jkNRXUTVMGrfye2MAERDhOK1ea4uyuP0nPROjHjPvBMnMuCrLzEaG2l4839EK8pBUXD06IGjbz+qH3+cWGUlem0tZ20roeD4YynZuIlZVXUE3B6W9u7HTlvtdXtRQ/4u7s4b32zlX1+WsLnGqiHlUINggtORd0gmpKB1TSmZL7VNklJCCCHEYcgfss5Untx3WyIhBex5+XzL7nuJQueyUkoIITpKffkmYlr85ED8S6zuzEWLFyyvy9zW/gCmCbFgIinl6uQC53vLlpEBGRnk/N8NuxzzTTmV+tdeZ/uvf43/nXcY+M47DASmxI/HinoROu74fX7MA81j7ffdF3xIhbrrvVNPnoxn9JEHFNPB7B+fl7Byu58jc7/l+6Nn4jZrAQ7ZhBTEd99LzJdkpVRbJCklhBBCHEZM0+SLddV8vLoCgAy3tc11dvZkhgz+PXZ7Vrv3byl0vuOEn5z5E0KIAxWrDfH286/zrasKqAJA06PxozYi9k3knN/IaSOn7mGgEAAhzdqpz9lNklJ74p04AVtBAbEq67nbMjJ2/HvLZlJeeC6Z4e2Ttjb/sxcWHtZJKX/I+n2+cvQy3EZ5vFXF4+mXvKA6maqAQXz3PSl03iZJSgkhxF5YEwjxXFk1EcMkxabx06JcshzyESoOPos21XHpvxdgU6IMydxIgacUAKcjB4cje4/331HdJHEdnxBCiANUM3szG6o3Jz5k+yxeTdRsxu9xgqLhVAJcPOJMyOjb9iClX0L5cgBCqpWUcmkHx2Vv9sJCBnzycas2o7mZ2meeQfc3JimqjuUaMiTZISRVY3yFdrorTLgZ+vX9Ofn5Z+Ny7brT76FCdt/bO/KNSggh9sKfS8p5u6o+cfuxzZWcnOnjksIsTstJS15gQuyjTfFaDhcPm8lxhTu+ANjse/d7vGOllFy+J4QQHSVYEyQWv7ynX0WUvLKtbOxhFSdXsIE9DPZ2ipXXlhB7+nv8sfgKtg7+DdX2TADcB8lKqd1RPR6yr7su2WGIA/T+8u28vXQ7jfGVUpjWPMTnG3lIJ6TgOzWlZL7UJklKCSHEXvDHrImiTYFYfGXI7Fo/ZeGIJKXEQaVlK+aBWTUAuFw9cbl6kJ9/zl7dX/luoXNZKiWEEAfMiBmJAucVdUup7Je+46BiQ9Vi4Erf7X0BaNzOvPSRPNLr4kSTCmTLqm6RZHe+tZJyf5CjCxeQ761Hj1YCoB3CtaRaqCqYhuy+tyfyKSWEEHshEl9y+5i6Am+wim+VLP5kH0FDTP7AiIPD/I01/OmDNWytCwLg0qwzlQMH/IacnD3s5LQTpWWlFLIcXQghOkos0GytlDJNlJ136VJTUbQstDwn2F3tDBDCr1lf8nu5HFzVM5shXjc5DnsnRy5E+2oDEYrTNnHl8OcBiFlX8eGIr+Y7lFkrpWS34j2RpJQQQuyJaRKNWatLnN8+z+Sar+jjLuJP454joMsXcnFweHbeJr7eVMfAjHWM7buBFFu8gKzNt0/jJFZKmbJSSgghOoJh6NRuXw/pwE7zCmfadaA4URQVd293+4NEQ4Q0a8e93m4H1xTldl7AQuylUFQnohukO63y7w5HDjk5p5DiHYzbXZTk6DqfpiiY8cv3wtF61pf8C4et+11Sm5E+ntTUoUl7fElKCSFEWwwd/GXw2lVEcq6A1EHYzRhk9cfbWA9AU0ynKabjVFXsu9n+V4juoiEYRVV0fj72n2hKMNG+N8XNd7ZLKkrO/AkhxH4zDIN3Z75LqdfajUzZefWp4qIiZTVfDH+Df5z8ePsDxUI7ipsfxHWkxKFBN0x+P3MVG6qaAHDbrF0hU1OGMHjQPckMrUupqkKzbv3/0tD9bCq5N8kR7d7AAXdIUkoIIbqlp8+EzXMAiOT+BACHqsGJt5Py+k8B0IH+XywjRVN548j+jEhtpwipEElgmiZN4Rj1zVE8tmAiIVVYeCEp3oF4ve3s5LQbuxY6l6SUEELsr3X/W8LX3y6C+FV2K/1ZjAMUU0FRFIZoYW6/dCbO+CqoNsXCBFWrjySlRLJ9s7mOf39VAkCWq4b+GXXA4VFHamdnH1HIk18Eebf0TPLc5RzRK50e6XtY9ZgEHk9xUh9fklJCCPEdekMDC/50G4tqNoCSR75u0GxYf0QdF78C6SmkfP5nJtQvYV76KACadIN5dU2SlBLdzqX/XsAX66oByPVYdaQ0zcuQwft3tm7XQudyCasQQuyPWEOYxgVbwQke08HR5Q5On/cMXw4uQo0n/l022k9IRYOwZQFm+VKCmlVzyqXJym2RXHXNVtmL8wfP4fReLybabdrhlZS64eQB3HDyAOC0ZIfSrUlSSgghvuObN95gRu9FNA3YMQlUQqXgy0Wpq4X0FJQrZ/FG1RpCs37Lb+2j+U/h2VR9+gDGUcejDjkjecELsZOobvDFumoUDH4+9lH6pW8C9r2O1M6+u1JKLt8TQoj9Y4ZixBQj/u8mllUvQ+9XED9qrXZy+vbwef3mdazbuIizRz1Cbd90ANyyUkokWVM4vtNvxhYAVNWN3Z5Obq7MkcWuJCklhBBx36z4hhkLZlBPPTGHtTWIK+YmZAsS0SpRjACaP/6x6fCg9DgS97CzyF6+HIC/Fl3EK2UBPuwXld1uRLfQFLJ+j3PcNQzOXJ9oT08f2wGjy+V7QghxIMyoYe24B8Saqmm2mbR8PWv2ppEGOPoc1f4gNeuZnzaSWkc6ABomE9IPr9UoovtoCEZ569syvoqv0G6pJTVw4G/oUXhhMkMT3ZgkpYQQAoiGdV7//H/k+QczIGQVfla1AB8PDNJ3eyXu6nXEtqxkVt9RjDli+I47HnUVx/aq4G8rthJSNLarXr5tDDI5S5JSIrmqGsMsL7N2u8nwhAFwOHIZO+ZVXK7C/R63ZaWUsWvJcyGEEPtAD0WJxS+BVgwrOWVTslBTTsWp5QDgcjvaHyQaIuSyVnafnp3Go0N64bVpnRe0EO345xcbeeTj9SgYZDgb8NitQueH22V7Yt9IUkoIcVh6979fsmTdHEwMbHaVAvJpChkcV3FBq34jtra+X0VwCZzduu3ovDxWr3+VH1SlsiBtJE0xvXODF2IP1lY0ctpDn2OYVoHRgRnbALDb03G7exzQ2Mp3c1Fy+Z4QQuwzwzCYs2gOJVp81z0jfhmf5kO1FVDp3UzQ3sgF40a3P1A0SNBjJa58Nk0SUiKptjdYK6N+c/Q/6J2yItFus6UmKyRxEJCklBDisGKaJtUV9Sz59hsiLqvoczQMm6OlqDarBkPQ1oQ7tvszOn2X68yePBbzuKOY/Nsd2zO77A7SYtbZoIAuhZ9Fcq0s82OYMCZvBT894u+J9gOpJdUiUVMqXu/ElELnQgixzzZt2sQXq74GDeyhMJnb62lyA4qVYCod9CzHTLiQ3IL09geKBQmr1n2cqhQ4F8kVCFtlA3qlrAVAUey43UX4fEckMyzRzUlSSghxWHn++edZv349uMATCJBT6WGrs4mFFEKuSl+gylnPS16NTENBcWk4PRpnbfoaH+NwR+wUbg3Afz9l7axjcfTpQ9Hf/oZmc5ESsy6V+rCmAX9MZ0p2Gn09e9jCWYhO0BifFB5fbG3BrKpuHI5MehT+4IDH3vWiPVkpJYQQ+0JvirDtg3UAeE0nxeu24awvZ607CxTr69nvXYX0HHnNngeLhgip1lxDCpyLZGsKx7ApURSsQufHH7dQVkmJPZKklBDisNFQ1cyG9RsBsEcinPbuu9h1g7DDx+jC46kK9CGQCoYZAQVqNROiMVy1jej+DUSUzVTYIviddnzhKHp1DcHqGr7663NMOC2XtKiVlPqg2s8H1X7uXz2HucdMIN+bn8ynLQ4zoahOXSACgNceBKBnzx8zoP9tHTK+kth0r2UXPlkpJYQQ+yKwuJLo5npwQLrhxdtsEGn5cI0npdzOdmpJGQa8fAmxbd+wVUujypEJgEuTpJToeoZh8vNXvmVFmZ/Ntc247aHEMU3zJDEycbCQpJQQ4pCiRw3WLCinqTZE1eZGQoEYYGKaUFPagJlnfYG+oHYQum4QU2FLz5PZ3GtyYozB5WU80jwLe9igRHPQrOrgbsIADODVY7MpT6/nnPkhhm412br5YT77aDg93GsoUGzk1SvEXIOIKs08NOf3DC08iuN6HkdxWnFSXhNx+LjllW95ZdFWvPYAgzLKSLNvBzrmsr0WSuLyPblMRAgh9ofRHEVXrPmIv/xbVqVUoKRkxI9aX888fSa2PUDDFlj9Ducf8TDz0kclmuXyPZEMJTUBXv9mG15bgNvG/ZUsVw0AmuZFUaTGmdgzSUoJIQ4p6xdV8Mmzq/GoMNiltfqQG5um8XT832oshA5UpMP8ISMpCIC3sYTc6pUMMD7GrAxQr7gJZKZS53XRgAsUF5gh8qs95Fd7KM2CitQoSm2Mk4ILGW8PM3nOi7vEVJL3EX+4/HX+ftmbnf78xeHto1UVKBjcOfGPZLrqE+0dmZQCa7VUor65rJQSQoh90lhZQwxrUxSzqQrUHYl+1ZaHrsRwjbuy7QGi1irYb3xDAXCrChl2GydlduxnvRB7wx+0LtUbXbCVHinbE+1pviOTFZI4yEhSSghxSGmqDwMw2BWksDleTye1AEVzECIKponP78cs24wJNKTk4jKtZe/VylbGb3qXmGqCobG6OIsq345lx3bnEcRiW8FoxDT8AAQddsDOy/Y7cZvp2MaFcQarsEVKsUXDFFR8TZ8KPzfOWkp59oMsWVXJ2uXrMA2TlIxMLrjjXrzp6Wg2e5e+TuLQY5om/lAMty2USEh5vQOw2zPIyT65Qx9LVZSdCp1LTSkhhNgXlevXo7dsEhHP8KfYTybq7o2ipRNRQ4lVqbsVC2KgJAqcL5w4jGyHfK0TydEUr2OZ7bWSU2lpoxk65M+43T2TGZY4iMinlxDikBIJ6biC1aR/djfNpnUW0l48iPw7H6cxFKDX05uZOHceMaCkz5mU9zmdDGsTPqqdMUzVJGiz0+hy0OSxEkXD0irIdgbITttEtTmCVdWX0GCaaGYFwcBXmHo5emQpAS0bzdGHen0NhroJXFCSmgPkQAx4dnarWOsrtvOP6ZejajZOv34Gg48+vuteKHFImbO+mvVVTeiGidcZAKw6DhPGv98pj9f6q5IkpYQQYm/V1tay3CinUdPBNFHiSamopz+K6gWgOm1L+4NEQ4TUHTWn3HLZnkiCqsYwf529jjUVjQD4nFZSyuHIxuPpnczQxEFGklJCiENKNKST0lQCpo6paiiGTrRkDVVL3sJvRMmqsq5zb7S7qMyy/mCGMYloAU73fUja2TXMLhlDxNzx8egZP5aGSArvVHg59rRjUT/VUUrtGPRG1dag6+UY0fUQXY8emtdufA4jit2M4VUDVCrZABh6jA1v/4OMLfPR+59BQziTaDhGsDFKU51VLDItx82Y0/u0f+ZUHJY2VDXxo3/OB0wuHvIKgzI2AB1/yd7OVEXBkELnQgixT2L1YT5+4T1KbPUAbIumMrjloGInomyi5NSvOXnElD0MFEzsuAfglF33RBK8tngrz87bRI+UMn4y4kMGZ1UBYNNSkhyZONhIUkoIcdALLlvOxudmEvr4AzKba8gyrWXEW3sUkFdegSMaJfTgQziAgfH7vDj4eFLzveQGoCw6n19kPUauvYm6iIuIacNUFOrze9Gj/0BGXTqdt156ESrW8+X7X6LqDpwpeSgomO4CjGANih7G1tSAjoGhGDR7bORp16GHl2OaIRTFQ7/ybYRcOZiqjWZnNh6XHV3fSjj4BWtKddZtqwdeaPN5zn2tCU0L79Nr094aFkUBVVXa7vOdA67vTnoVQHOC1w32HZcfaqqG2+Zu1bXv2DMYeeIg7E4peNnRNtdYS/2K0xs4sejLRLvX07/zHlRJ/A/NIT9Vtd/itHW/L0Vud2/sdqmxIoToHprmlBGoaAANCoMu+n/zMRUZLZ+ddjSa+euUe8CTufsBTBO2fwtbFyWSUjYFbLJSSiRBbXyn3x8Nn89g3+JEu8vVI1khiYOUJKWEEAe9bTfdhLptG9/ddLYup5Dqvv3J2NaEEnbSlDIAM77SKDUrn/SQtVKpIW8pAV3hw+r+BJR0qy01ncqrb+F3w/oAUFhYyPr16wEwtAi2gnoyNI1Uv5+17hyijtZbN9epMcqNeWQ2p9HLfzQAm/qM2iV2s6XQqeFHD3/b7vPU9y0f1eGaD+C+5Zt6MXhCP0lKdbCqxjCryq36ZiMLrS82dnsGQ4f+mfS0MZ32uKoChmk9XiS0iqVLzu20xzoQI0c+2eH1tIQQYn8Fa4LEMMA0ado0l8Z4Qko1FBRFIeIxwZ3R9gAr/wevTGOBbzhLciYBuzlhJEQXaQxZJ4ELU60Jan7eOWRlTSInZ3J7dxNiF5KUEkIc1EzTJFpZCUB53lGkFOXxST6kO9MZlzOE1X7YGE807SwXQIdoaD6DNjTyOqNaHa9PzcSx06VyJ554IqNHj0bXdex2Oz7fjtUX9WvWsPCvf0UPh7EbBp5oFNUwsAUNStOG8HJGIzkxFwBhAL2Koyu+whWqBDNMSGlCV0xUYuxu3ZKupRF29cVU9m3i2fnnTU1AJZCiEt1plYzT5iTHnd2qZ0aPnmh2mTh3pNXlfs54+AuM+K9Mhsc6Y2m3Z5GddUKnPvaFY4v4aEUzpf5i0hz1ZKU4sGvd7/3VVFeyQxBCiISKdZvjBc5NzHjdy8ymZqK9comaEM30WcuY21KznmUpA/jekY8lmrzd8LNXHNo2VDXx/vJylmypB8ChNoMJWVmTyM//XnKDEwclSUoJIQ5qZiQCUauw4uIjx+HKitGs1xPQHfxt6Rf0tU0gVYWYGUEnSplSybY+iwDQTJW+6zeRtlP6ZnTmdr7JGcqHY87mzJ2WwyuKQnp6+m5jSB80iFMee2y3x8YA5+32yMX78WyF2GHFNj+GCUfkrOb7A96nKC0MOthsqZ3+2HedPZy7zh5OW7/dQgghWotFIgTrtqJn6CTOJgBa2kUE1WzQQbHtYeOIWJgtznwAfDaVUakezstr41I/ITrJL19bysLSOo7MWcqdE9/FaVYDXTP/EIcmSUoJIQ5aelOApm92XPLWmFZFo65gmPByZACh3KFc0ugkVYc3U0xK7CqK3UFKwRdoUTv/OeERvrrndzSjcV7RMoq8DWiKyYI+k2jwZeKQJfGiG2sMWcnYC4bMo8C1kfiVoHg9fZMYlRBCiN2JhkOoioaOgbLTBhH+1H4ounUSzEgLtT9ILEhIs2pJjUzx8PKoTqwdKEQbyv3W7+l5QxZQ4CqLt6p4vf2SF5Q4qElSSghx0DENAzMWY/3pUzGqKgCI2RygKKTrblKVDE5Qt9G7qQcpulXryZv5MvnuMvQ0B44mG9/7qoBZs+4DrBpHPnsYTTHh/KeIqMOhohmHFA4V3VAwojNnQzWLN9cD4LZZ1b769LmejPRxpHViLSkhhBD7p6K8nGp7mJASBcNKSimmiqIorMj7kjU5C5g0clz7g8TChFRrXuOSy/ZEkjTFa0n1zjCJBKFf35+Rl3cWbndRkiMTBytJSgkhDioNb7/N9l/9GjN+yR5A2JFGqM9wagwPX8aKiaZ/zQ9KdmynHI58zcRVFSioQAxntPWuIPmpMdK9KsSA/JFE6lxAM8726joIkST3f7Cap74qTdx2qEEAMtLHkZl5TJKiEkII0Za67TU888J/MVNNtFiMiR9/xrLemYCVWNKdW8npk8JZ/c9qf6BokGB81z2XnDgTXWxzTTMbq5sSBc4VMwCAL+1ISUiJAyJJKSHEQaHyL3+h4c3/EauqatW+reBoqs+6gHDdRtbHPBQ1p5EZHQ5ASC+lvuhz0jdU4Yruekbx1IK1jEivgCN+BCuWsMLbj2vXNbM1Yq08kcv3RHdUUh3ApkT56ejXyPPW4dXKMU2p5SCEEN3Vpv9+g2maaKZKUYNBWigAZMZPlsH5kTCnnPli2wMYBlSvgaZKQqq1O5/suie6Un1zhMkPfkYkZjAgfQP90kuIReO1pLSUJEcnDnaSlBJCHBTq/vsiRlNT4nafl19i1QaNZZ+uoME/DzTIah7O2LANM5SDaTaC/03SVxi07EP3g15L8dgikD8Se8FQfClDwOaEsVfC0hf5KGsi60I76jwMSZGdu0T34w9GGZCxkSOy5gBgmqAoNpyuwiRHJoQQYnfC9c2ggicQJFS1ga+LrWLlMZuGA3CNvrD9Ad66nrkly7iz73S2ZecC4JbL90QX2loXJBIzcNtj/Gzs49jVCHq8lqXdLsX2xYGRpJQQ4qBghMMAFP3znwTTi5j3bTPBZWsYkBLmM9OO3hBmQM1MQtEAmM2J+znVGL29deT36kHRiTdCZl8Y9v3Wg+sxMI1EnYazc9P5dd8CermdXfb8hNiTT9ZU8tW6akprmumbYi2Z93oHUFz8f3g8fXE6spMcoRBCiO+q2LieaDQCTojVbyNgNoPDDoBh9wHgzCluf5DtS/lv/lS+9Q1ONPWTOYroQv745ioDc8CuRgCFgvxzSUkdgtvdo/07C7EHkpQSQnR7pmFAvIaUa9hQ5rxextoF2xiubaYuM4UPI4OYUvMuKZGqXe57ZG4txwxPgfMfgIw+u38A3Up4RRRrkpjvtEtCSnQrhmHy0+cWE4zqaIpOaqaVlHK7e5OXe0aSoxNCCNGWio0bMFvKP8ULnKfGcgmnT8JpKwDA6XS0P0gsSLPmBuCqntmcm5fBqFRPZ4UsRCsl1QG+Lq0DINNjzcdtthSGDr0/mWGJQ4gkpYQQ3Z4ZiST+rTochAJRmr2lfJZag61mBccE7GRFawGwuU/EP8DOjD7zcK55F9uZf4JxV7f/ALo1flS1PhIdUuBcdDONoRjBqM64/EVcPeJ5VMUqMmq3+ZIcmRBCiPbooQgxrGSUIxrFAMLeAah2qzB0WAuS22MPn+U77bo31OtmtM/bmSELkVBaHeCkv3yKaYLH1ky+px4ATepIiQ4kSSkhRLdnxi/dA3jlf/9jTc0GDJ9ONKqTUrWVfomjGppjCM7o53hLPwHVBHdG2wNHAvDPU6BmHQBhxZrwOWRHG9HNtCybH5W7KpGQUhQbGbLbnhBCdFt6OEZVZQM1ajOeQABfQz31bjtmPMH0ysj7qXdVcm3ml+0PFA0Sjt/HJbWkRBcqqQ5gmjC59xx+OGhHMX6bTZJSouNIUkoI0e211JNC01i1di0oEDAdfBLsyQ/5BgMbDs8kTGcGde46XO6vIBivK5U7pO2BK1ZA5YrEzUiqdU28Q5EJn+geKvwhLv7nfMobQgD4nEEABg78LYUFP0DTpBi/EEJ0R6H1dax8eg5zbOvBBoNWbyISjYLbDvGTYI3OWrJSMnDZ9vBZHgsRUq2yAi45cSa6UGPYOhF2VGFpok1RbOTmnJ6kiMShSJJSQohuLbhsOaEVywEwNOsjSzVhcHgUn5kVVifNgc15BO8P+ielmcu4ur4Bvvcc5A2zCpu3JWZ90SezL0x7m+jWGFTWy0op0W3M3VDDusom+qdvZNqQ2fRN2wiA05knCSkhhOjGIqV+mgzrRILD0AiGbJgtq5wUaz7z1+KzGHL0dNS2ToZt+JjQ9uWsdxRQH79c26XKiTPRdQLxpJTHZs2Zhwz5I4UF5yczJHEIkqSUEKLbCq1dS+kFFyRu66YJgMO0oxgaKbEm60B8cocaJSumc1xzEPpPBru7/QeIxWtVObyQ1pPwllLrpiSlRDfRcobyx8O+oJd3WaLd4+6TpIiEEELsjXBjKFFLStu8nDpvAGg5mWDDxODoMVeguDJ3P0CgBp47n7NH/Y1vx/wz0SxJKdEV/rdkG8/O3URVYyODMtaSaq8GpJal6BySlBJCdFuRklIA1JQUAulpNGYPA8DeHKBuy9+Yig6AgrWk/cGqTfSv2wautD0npCCx695r6RP596K1rG+2bktSSnQXjfFaUikOa7e9nj0vJTfnNFJSBiUzLCGEEHuwbs5X6A5rLqKFg4l2m6Ki2gowVAMlrUfbAzRXg6mzIqU/ADlKlH6+dEb5ZNc90fke+2Q9ayuauHToi0zqOSfRbpOklOgEkpQSQnRbur8BgEBhX94abdWGCpo2tgR0hsYTUqBit1tf0NO8bjjyp9YqqTYEdJ259QGihoEZ0CDrOH6fNZUyf3OiTy+Xs3OekBB76ZWvt/Dmkm1sqrF+L52q9YUmJ3syGRnjkxmaEEKIvRALhog54vMJw1rp7XVfhO4qtJril0O1KRokhkYsvjPwZ8ccSaZdvrqJrlHfbJ0UG1/UCCY4nT3x+YaRlnZkkiMThyL5ZBNCdDvBZcupevABIps2A1DTZCWgXKadylg+AX0TAJrzSMzU8ZSlbKLB8xE/7ZUPp93X7ti3rd3Ky+V18Vv5MPx3iWNPDO1Nb7eTUal7scpKiE70x/fXUNMU5JTen3Jcbh1urQoATXa7EUKIbs80DFRUdAwwTRSspFTMkY4ClKeUYAyoA85oe5CddtwDuWxPdA3TNPGHYjQEraRUmitKOAhDBt9NVtakJEcnDlWSlBJCdDv1r75KYM7cHQ2+NAB6x7LRQtkEjTVWu+KgPGUT7w59giHhCErm99sc86712/iyron1zdaZycFeFymhGpTajSjuDI4ZMIZz8jI67TkJsbdM06SuOUL/9BIuHPRmq2NOR05yghJCCLFXAgvL2fDJctakR2hQG+i/cjUVLfmkeA3MN4c/xE+P/Gn7A8WCBLWdk1JSWkB0vp8+v5j3lpfvaDCtFdua5k1SROJwIEkpIUS3Y0asAuRpZ3+P7TVe/LkFwDZqt81DDVYxPN5PUZxEtRD/DHkZOuYmGHbebsfz127m8S21idtuDF5bfQdZdWugrhSGngN9z+zMpyTEXllf2cj6ygC6YZLhqgfA5epJft5ZeFMG4Ypf9iGEEKJ7appTxrLG9WyxWfOOkZu2UFHcUszchkGUWRfMIt+b3/YgwTqo2UBItS7/c6oKqiJJKdH5PltbhabEOH/AW/TPbiYasXa6lpXaojNJUkoI0f0Y1uV6gewc5tsMmm01NOsqoWDVTp0cqLaemNpGxueMhLFX7n4s08T/3I9gxKPYjSj/WX4bfYNbyQpt39EnvVfnPRch9tKmmgCnPPg5pgkDM9YxNs/abS81dTj9+v08ydEJIYTYG5GmCFF0MAy8patZ1dNa7a1goigqui3afkKqsQLz4SN4I/MYlvU4F7CSUkJ0Nt0waY7oDMtax6l9PgXAMEBRNFmpLTqVJKWEEN2OqVtbKC/7ehWVQ4oAWB7OJw8wUHGnT8dEoSp1K2VZc8A5ZNdBQg2w9GVorqEp1AhAqhnhRJ8D0vqDOgj6HAv5R0Dx8V311IRo08aqAKYJOZ5mbhn7GKpi/f9AJoJCCHFwCDU1EaqvR3cZaMEAariZiF0DwOa06kqhme0PUrOOhZ5+/HTIbxJNaTb5yiY6X1M4BkCqowkAj6cfRT0vxZsyCIcjK5mhiUOcfMIJIbodU7f+KKqKAYZO/vYajgxZRc9jmoqi2Gl01vDGiAcZEo5Ayom7DjLvcfj0PrY7slmebu0U4vVmwOXvdtnzEGJf+ENWUdEJvXVUxUBVXeTlnUlR0bQkRyaEEGJvlK1btaPAeXzVtzcU4YgtlWw8q5D6CjD3lJSKhqh0WJf7ZdttTM7y8b3c9E6OXBzOQlGdn73yLSVVAQBSHVb9Va93AD17XpzM0MRhQpJSQohux4xZE7mYCramBgL+zbRUYwi74pM5Ncw5nj58r2AwHLWbS/cat7PAN5yzRz2CqVgVRlM02blGdD+hqM7Ds9cxf2MNYO10A+By9WDokD8mMzQhhBD7IBaJ4FBs6IqBYlqrXR0xHTvphJR4TUDN2MMgocSue0NTXDw0REoMiM71dWkdM5duJ8XexDUjXmVg5lYAbLbUJEcmDheSlBJCdDuBmmoAdAUU3UpQVTnT2JY6lOyMRnKqwaNGuO2Ct9seJBJgWcoATEXFqSpk2Gz8uFCWHovu55PVlTz+6QbctmbG5a9iYHo9ADYpKiqEEAeNWH0YsyyKTbVjxiLkbyujAQh6ejB/3GUQ39BM0fY0UGinAudyMk10vqawdTJsSr+1jC9YnGj3uHsnKyRxmJGklBCi2zBjBhv/s4i68gbSgYhiYBrxujq2FCboE8HKV6FpkfYHiwQIaBkAfD83Q840im6rOmD9Lv9k1DuMyPwy0W63pSUrJCGEEPvACMao+MvXeKNWxiltSwmZ27bQ0CMH3ZaCBoS1ZnQ1hntIc/uDxUKE4iulpMC56ApNYesEcF6KNR9JTzuKXr2uIjPzuGSGJQ4jkpQSQnQb4U1+lm5cgc8Mkg40o7IyksMYtuDAmqD5nZXE7A2c0HPZ7gfZ+CmUL4eqNTSlnQRAik3ONIruyTRN/EHrDGXPVOvyvdSUYThd+fQquiqZoQkhhNhLekMYPRrjU/sKaiKVmJFtlPewNqnQNQcaoI74D/0m/5jJvc/e/SCGAXUlUL85cfmeS1ZKiU5kmibbG0KU1QcB8NjDAKSkDCYnZ3IyQxOHGUlKCSG6jUhDiDARFNNkc2YqTZEqxkSrAFAVa4I2LOtFvjcoBSZM33WAQA08ey7rXD14Kf80Pss4CoAUbU9r5YXoei/M38xv31pOVLfqpDk1q8Bo//63kpl5TDJDE0IIsQ/MqEG10shGrRJbpAY31ue6YprgsFZqn3DkjxnVv42EFMDbN9C49HU+yDqGhTmTAElKic71s1e+5fXF28hy1TIuv4RsZwkAms2b5MjE4UaSUkKIbmPrt8uIKDqKaVLp80J81bquKGiOHmCC15cOFz69+wGaKsDUubfftbyXteNLfbZDPupE9/PRqgqiusn3+r7H0Kw1uFWr4IjN5ktyZEIIIfbFhgXziSnWJVBK1LoEKsffzIm2DbyV+TMAvD1HtD9I2RL+0nsaTxRdlGjyykpv0YkWltYC8IujHiHbXZNot8s8RHQx+aQTQiSdEY5R++paQiVBmpUwimmix88OrssdyfZep+FQhgLgdbbzsRVpAqDalQvA1Jw0ft23gAvzM9u+jxBJ0hiK4tJCnN3/PQZkbEQhgqI4cLl6JDs00UW2bdvGxRdfTFZWFm63mxEjRvD1118njpumyR133EFBQQFut5vJkyezbt26VmPU1tby4x//GJ/PR3p6OldeeSVNTU2t+ixdupTjjjsOl8tFUVER999//y6xvPLKKwwePBiXy8WIESN49913O+dJC3EIqi4pJYZVA1ONWZdkh1y5fJL3+0Qft9vV/iDRIGVOa/4y2Ovi+7npXCobtIhO5A/GUDASCan09HHk5pxOXt5ZSY5MHG5k+YAQIumCq2v56pt5LLJvBGCQATHNWiY1JNAbW3QAAAYGhSntJKXCjQA0aR4ALi3MZlKmbGcruqfGUAyv3bpkT1UdDBv6EB5vXxwOSaIeDurq6jjmmGM48cQTee+998jJyWHdunVkZGQk+tx///389a9/5ZlnnqG4uJjf/OY3TJkyhZUrV+JyWV9wf/zjH7N9+3ZmzZpFNBrl8ssv55prruGFF14AwO/3c+qppzJ58mSeeOIJli1bxhVXXEF6ejrXXHMNAHPmzOGHP/wh9913H2eeeSYvvPAC55xzDosXL2b48OFd/+IIcZAxIjom1kopbzBEFAh6ConaCgFodNThdbnbHyQWStSSurJnNpcUZndmyOIwtr6yibkbqq2TY7ZQov3IUU+jxnd+FKIrSVJKCJF0dZsaqVGthJKqG4RQiWpW8klRrC9ezpxn6aWW0qvwpF0HiDTDc+dB5UoAApp1H68mi0FF9xIIx7jsqQVsqQ0SjVYwJGstADZbOrm5U5IcnehKf/zjHykqKuKpp55KtBUXFyf+bZomDz30ELfffjtnn23VofnPf/5DXl4eb775JhdddBGrVq3i/fffZ+HChYwdOxaARx55hDPOOIM///nPFBYW8vzzzxOJRPj3v/+Nw+Fg2LBhLFmyhAceeCCRlHr44Yc57bTTuOWWWwC45557mDVrFo8++ihPPPFEV70kQhx09KYIjZ9tJTuQTyVhemzdSm5pKevzMzHjCaYPBv6LMt96bnSc0f5g0SCheEJAakmJznTlMwvZVNOMTYmS424AQFEckpASSSOfeEKIpGusqCWKDqaJe8O3rOzhpdlpTeYUxY6uRLlqjIdTL/0NTLp11wHKFsPmObycNp6fDbyFKlsaIEkp0f0s3lzHwtI6Gppruefoe7h82H8BsNvTkhyZ6GpvvfUWY8eO5YILLiA3N5cjjzySf/zjH4njJSUllJeXM3nyjh2Q0tLSGD9+PHPnzgVg7ty5pKenJxJSAJMnT0ZVVebPn5/oc/zxx+NwOBJ9pkyZwpo1a6irq0v02flxWvq0PI4QYveaF1dS80Upm2ikRKvEVhXAVOIFMRU7ANvS1uHzeXFqe/jCHwsR0iQpJTpfWX2QLFctj5z8G3478T4AbLaUJEclDmeyUkoIkXQVa74h6omBaaDqeqI9anfh1LKIqhHoOQb67WaVFEC4iSbNzU2DfomhWBM5FSlwLrqfumar1sjE3hGcWgQUG15PX3oVXZHkyERX27hxI48//jgzZszgV7/6FQsXLuT//u//cDgcTJs2jfJyq/B9Xl5eq/vl5eUljpWXl5Obm9vquM1mIzMzs1WfnVdg7TxmeXk5GRkZlJeXt/s43xUOhwmHw4nbfr9/X5++EIcEPRBlhbaFxfYSnNtLcbgaqXW1XIJrzUF+c8yvmVg0AVVpI9FU+iWsehuizYTiOw27VKULoheHo3BMJ6qb9MnehENtTrTn5JyaxKjE4U6+sQkhkia8yc/SLxax0dlMg9IMMatIKKbJ6Us38tzZo0htsGOoTeBsZyeQSBP1tlQMRcWmwM/75DMsxU2Ow941T0SIPQhFdf7+2UbmbKgGoNBn/a573L2YMP69ZIYmksQwDMaOHcu9994LwJFHHsny5ct54oknmDZtWpKja999993HXXfdlewwhEi61V98Tki1TjbY/XWJdsU0UeP1pCb1Pp4Md8Zu7w/A/67nf7Y+zBr8a0o91kYXblnpLTpJIGyd/HXHa0llZU3iiJH/QFG0ZIYlDnOSlBJCJE3V8yv5IPwlMbv1B3JhqICT+BbVNFk1+BJSm+Nn7tUwONso+FlbAjXradS8AKTZbNzUJ78rwhdir32yupIHP1qLQwszMns9/dKsLy82mxTiP1wVFBQwdOjQVm1DhgzhtddeAyA/3/ocq6iooKCgINGnoqKCUaNGJfpUVla2GiMWi1FbW5u4f35+PhUVFa36tNzeU5+W49912223MWPGjMRtv99PUVHRnp+0EIeYiL8JPT1+AsywTjYcvXYrGYNMZjv6EVMiuOx72HUvWMctYx7Bv9Pfg1w5qSY62NqKRn752lLq4yu2Ux3WalebzScJKZF0koYXQiRNtDFMTLFqSWVt3syUEmvFiGbaKM+fgC9qXXJS4I5An2N3HWDR0/DXUXy55H1ezD8dgFSbfKyJ7qeqyZr8XTvqLW4c/Xd6OV4GrMmgODwdc8wxrFmzplXb2rVr6d27N2AVPc/Pz2f27NmJ436/n/nz5zNx4kQAJk6cSH19PYsWLUr0+fjjjzEMg/Hjxyf6fP7550Sj0USfWbNmMWjQoMROfxMnTmz1OC19Wh7nu5xOJz6fr9WPEIcbQ9dR0dAVA0wTBROAVcOu59M0q05PTI3iUB3tDYMRiyQSUr8ozueZEcUM9O4hkSXEPnprSRmLN9eTqX3JX0/8Jd/v/z9ATo6J7kFWSgkhksI0THTTWiGlxKJEApVgt2oo2A07BuB0beK4i06j55BjwLGbAqHbl1LuyOKCkQ9gxms1ZNrlY010P/6glRDo5bMu3/N4+uFwZNOr6MpkhiWS6Oabb+boo4/m3nvv5Qc/+AELFizgySef5MknnwRAURRuuukmfve73zFgwACKi4v5zW9+Q2FhIeeccw5graw67bTTuPrqq3niiSeIRqNcf/31XHTRRRQWWpcO/ehHP+Kuu+7iyiuv5NZbb2X58uU8/PDDPPjgg4lYbrzxRiZNmsRf/vIXpk6dyosvvsjXX3+diEUI0VqsNkTDJ6VkO3uwgS2JVVIAzd4eKIo1Z6lO3YqmtrMKxTQJGmbi5k+KcvBqsmpFdLyG+Dzk7MFr8Np31JJK8x2ZrJCESJBvb0KIpIgEgsTYkZQCsOk6R26q4LnTj+WISvAO6MmgCQVtDxINUuHIwlRU3KrK6Tlp/LggsyvCF2KvvLpoK3e/vYLmiPW77tQCAAwa+FsyM49JZmgiyY466ijeeOMNbrvtNu6++26Ki4t56KGH+PGPf5zo84tf/IJAIMA111xDfX09xx57LO+//z4u145VFM8//zzXX389J598Mqqqct555/HXv/41cTwtLY0PP/yQ6dOnM2bMGLKzs7njjju45pprEn2OPvpoXnjhBW6//XZ+9atfMWDAAN58802GDx/eNS+GEAeZpjllBBdWkWJPRzdLmPTJJyzumR4/akNRSnn+iGcxU8PAdW0PZMQI7bSSyi277olO0BSOUROwVmynuyJgwoD+vyI//xwcjqwkRyeEJKWEEEkQqw6y+IMvKbWVAqDoMQBsukFOYxDD5gEgJ2MPtaGizQQ0NwA9XXb+NrR3p8UsxP54Z2kZ/lCME3p+weDM9bhVq/6PzZ6W5MhEd3DmmWdy5plntnlcURTuvvtu7r777jb7ZGZm8sILL7T7OCNHjuSLL75ot88FF1zABRdc0H7AQggAIo1BALY3b6TJ2ECI+OWxJiiKRoU7hN9dTU9Xz/YHioUIataqKqeioCqy657oWK98vYVbX1uKYYJdjWBXAmCC210kCSnRbUhSSgjRpUzDZOvfvuZDfS6mzcQ0TBxljdYx1c3XR87gqKo8YkCKx9P+YNFmmjVrxYDsVCO6I38wilMLc/HQVxP1RhRFw+mUYvxCCHEwMnSdjQsWUOaFjZ5S2FTKyp451kHNSirZXHD1iKuZVDSpzXF00+TfW6tZ2fsyQOYxonPM3VCDYcIZxR9y3oB3IH6lqdS0FN2JJKWEEF3KjOoEg0FMp4liQurWRoZuWsbKnjlEHRn40/rRcsIxLde9+0FiYWLlK1gWdbE8JRcAr0zmRDfSEIyyvrKRqqYwKfYACiaKYmfAgF+R4h2I09HGbpJCCCG6tXBzgGYjzFJbOagGqYZ1eXZWoJmK/oUQgsyMQqaPPqftQcqXM/fd+/hN8S1QMNW6v9TEFJ2gMWxdjXDmoE2JhJTTmU9KypAkRiVEa/LpJ4ToUrFALFFLSvXXQmBj4gyjGa+rMGj45ww+5UYKB6TvfpBnz+VXjnH8p/fPEk1SGFR0F4ZhcsbDX7Ct3rq8o2eK9V+7PZ2inpcmMzQhhBAHKBaJYMZrP2n6jvajt2/hpXHDoQw0+x5OlK19n9rmJgB6hCr4fvNyTp98bWeFLA5jgXhSyqZYxc1Hjvg72dknoigybxbdhySlhBBdKtQQJBY/VaOFrKLPqmGCoqE5hmNi0HvyaHoOymh7kIrlrBl8IQC5MT/pqVlS4Fx0G02RGNvqg+S6q7jlqCfwOfyALJUXQohDQSwShnjtp1R/wDrNZsJHo/9KZplVH8pm38MX/mgwUUtqYFY+t59yItgc7d9HiH3w7NxS3lm6nRVl1hxEw0pKORxZkpAS3U6HX+/y+OOPM3LkSHw+Hz6fj4kTJ/Lee+8ljp9wwgkoitLq59prW58Z2Lx5M1OnTsXj8ZCbm8stt9xCLBZr1efTTz9l9OjROJ1O+vfvz9NPP71LLI899hh9+vTB5XIxfvx4FixY0NFPVwixjzbMm7tj1734knfNMQxH5k1ozmFE7WF6DZjS/iCRAM2qVUvqwdGj+HzCME7PSe/MsIXYa00h6+/VyJw1ZLqqsKnWjjdpvlFJjEoIIcSBMg2TaE0zqDacoRBHfzYbAAUVM55kMjDwFO1hoFiIkGr1d7t9kpASHe7+D9awaFMFZxe/wPWjngSjGgDNlpLkyITYVYevlOrZsyd/+MMfGDBgAKZp8swzz3D22WfzzTffMGzYMACuvvrqVjvJeHYqZqzrOlOnTiU/P585c+awfft2Lr30Uux2O/feey8AJSUlTJ06lWuvvZbnn3+e2bNnc9VVV1FQUMCUKdaX2ZdeeokZM2bwxBNPMH78eB566CGmTJnCmjVryM3N7einLYTYAz0QZd3zC3h/22LCTutLu6pbSSlD86AB2dkhBp80Amd8YrdbsQgY0USBc4/UkhLdiGGY+ENWUbR0dwiA3JzT6dfvFtzuXskMTQghxAGqeWYF4TW1OBw+vI0BFMXawALFmovM7/U2K/K+5PGjHmt/oGhzIinlknmM6GCGYdIYijEyew0n9frSajRBURw4HfI9WHQ/HZ6UOuuss1rd/v3vf8/jjz/OvHnzEkkpj8dDfv7udx768MMPWblyJR999BF5eXmMGjWKe+65h1tvvZU777wTh8PBE088QXFxMX/5y18AGDJkCF9++SUPPvhgIin1wAMPcPXVV3P55ZcD8MQTTzBz5kz+/e9/88tf/rKjn7YQYg9Ca2sp3VRK2G4lpLbFUvFEUulFHYpiBzPKhRf44Yh2vrg318LmedY/40kpKXAuuov3lm3nppeWoBJgbN5q+qaVAuByFeLx9E5ucEIIIQ6IHosR3FDLB/YlbNVqydYNjPhlfEa8xtQAe5SfnvEIR+Uf1f5g0RCh+Ak4l6p0atzi8BOMWid9UxxWmQyvdyBFRZeRkjIYuz0tmaEJsVud+m1O13VefPFFAoEAEydOTLQ///zzZGdnM3z4cG677Taam5sTx+bOncuIESPIy8tLtE2ZMgW/38+KFSsSfSZPntzqsaZMmcLcuXMBiEQiLFq0qFUfVVWZPHlyoo8QomvVbW5M1JJKaQgw4evPOaJmjXVQsYMZAXsbu+0BmCY8OYmnP3uRY4/6DxWOLEBWSonuY/bqSsIxgx8Ofo3rjniKQelLAbDb26mPJoQQ4qCwYdF89KjOVq0W9BhGoJ7NWfFagfEaPb1TsplQMAFFaSPRVLOB1V88yciUi/hDnysBcKkyjxEdJxzTqW6yygZ4bNaKba+3Pz0KLyTNd0QyQxOiTZ1S6HzZsmVMnDiRUChESkoKb7zxBkOHDgXgRz/6Eb1796awsJClS5dy6623smbNGl5//XUAysvLWyWkgMTt8vLydvv4/X6CwSB1dXXour7bPqtXr24z7nA4TDgcTtz2+/37+QoIIb4r5I8QU+KX69WUUp+mA/EklOIgaouAI73tAfQI1G/mX/1/x/r4qpNUTaXAYe/cwIXYSw1B67K9MT2awISUlCG43b3Jzz87yZEJIYQ4UIG6OhyKVY/HUVNONNTA5uz4qpP4pXiO4rHtD/L2jcyNZFE5YJx1N0zGpXk7LWZxePl0TSXXPLsIzCBnFH/GqNxVANg0qSMlurdOSUoNGjSIJUuW0NDQwKuvvsq0adP47LPPGDp0KNdcc02i34gRIygoKODkk09mw4YN9OvXrzPC2Wv33Xcfd911V1JjEOJQFaiuRI+vlFJ06xI+p+5G96ah2fsTcASgz7FtDxC1VlS2XLb3wKAiTsn24bXJDiIiub7dUs8naypZtd06keFQA6DDwAG3k5ExIcnRCSGE6Ah6KLJjHhPfgMkbUdDsWTR5jwHA4dzDibKmSsKuAgCmmmU8MP4Y0rxyOZXoGHM21BCJGRxduITzBryTaHc4pY6U6N46JSnlcDjo378/AGPGjGHhwoU8/PDD/P3vf9+l7/jx4wFYv349/fr1Iz8/f5dd8ioqKgASdajy8/MTbTv38fl8uN1uNE1D07Td9mmrlhXAbbfdxowZMxK3/X4/RUV72j5DCLE3ajevJuaNJ5AMa1Jnpn8Pm60HADFPHdjaKXAesZJSwXhSakyalxxZJSW6gZ8+v5ht9UGGZK7h6hHzUA1rVa/N5ktyZEIIITqKHowmklJazFoZG0sZj+49mpa989wpe5iXxIKEVat3euFwSUiJDuWPr9g+Y6j1O5aSMpjcnNPp0eOHyQxLiD3qkouYDcNodVnczpYsWQJAQYF11mDixIksW7aMysrKRJ9Zs2bh8/kSlwBOnDiR2bNntxpn1qxZibpVDoeDMWPGtOpjGAazZ89uVdvqu5xOJz6fr9WPEOLARCsCvP7IC8xPrWGtth0AJT6pAxuNzi1sGbqQURe0nTC2BgoCEFStpJRbCoOKbsA0Tcr9Vs2Gq0e9y4SCRWCGURQNp5yZFEKIg55pmjTN307KFi8xxaBw2zYKy8oAMFSrDMGqos/5aMAz+ArbObkGVoHzeFLKIbWkRAcJRXU+WV3JusomALx2a16Snj6e4uLrccTrsArRXXX4SqnbbruN008/nV69etHY2MgLL7zAp59+ygcffMCGDRt44YUXOOOMM8jKymLp0qXcfPPNHH/88YwcORKAU089laFDh3LJJZdw//33U15ezu2338706dNxOq0P+muvvZZHH32UX/ziF1xxxRV8/PHHvPzyy8ycOTMRx4wZM5g2bRpjx45l3LhxPPTQQwQCgcRufEKIrlH+xnqWVq9NpMAHzltKtTdG1KaBYiPHvppfTv8NaG18HBkGrHwTti/BBILx3WrcUuBcdAOBiI5uWFuC53iaiUSgV6+rycqahMORneTohBBCHKjo1ibq31hPGmnUKU14KxvQWwqZxxNM8/LeI2xvJtOV2f5gsVBipZRTTq6JDvLYJ+t55OP15LirOLN4MV42AmCzpSY5MiH2TocnpSorK7n00kvZvn07aWlpjBw5kg8++IBTTjmFLVu28NFHHyUSREVFRZx33nncfvvtiftrmsY777zDddddx8SJE/F6vUybNo2777470ae4uJiZM2dy88038/DDD9OzZ0/++c9/MmXKlESfCy+8kKqqKu644w7Ky8sZNWoU77///i7Fz4UQnStQH4D4vKt/eZieVZuoSLX+f6hgx6ZF2k5IAZR8RtX/ZvCLgT+jatRjiWa3nGEUSfb7mSv5eLW1qtehqeh6IwA9Cn+IJ16MXwghxMGtsaySbWotn9iXEyFKYVRDa0koKdb85bwBZzCwYDiDMwe3P1g0SFixklKy657oKCXVAQAuH/E2g9KXgLWvkJwcEweNDk9K/etf/2rzWFFREZ999tkex+jduzfvvvtuu31OOOEEvvnmm3b7XH/99Vx//fV7fDwhROfR48VAMXTKa5dR0b9gx0HFht21h/oLjdt5P/tY3ss+LtGUbbfJSimRVIFwjH98UYLP4ef/jvwvud4gum7VPbPb5dJvIYQ4VGxaspRNag0hJYoW8BO1hYgkTqZZ/7123I1kuNN3P4BhwKuX82rIy4Zel7AwbTggK6VEx2kKW3PtfplBMCAr60RSU4aQnye7/4qDQ6cUOhdCCLDqMAQDdeAENRJBUQAT0Hyoth6guHEMPL79QaJBmjSrZsPEdC9X98xhRKoHTZHJnEie+ngx0TF5yzkiZ0Wi3W7PQtNkubwQQhwqgvUhdAyUaAT35rU0uwGsE2qK4kBXYrjtrrYHqCthfckirh/3XKvmNNk9WBwg3TApqw9SG4gAoClW/dXeva4hI2NcMkMTYp9IUkoI0SlM02TNsqVsM6zLm1TdWktsM23Y0q4ipAWo8JQwetSR7Q8UCyWKm/f3uDgjJ70zwxaiXaZpsqLMzzdb6gHI8ljFRDMzjqGo6DJSUoagqvKnVQghDhVmVCemGCixGAqgmJDrD+HMtFNh60FMjeDU2ilwHm2m2pEBQJpqcl6OjzSXh/PyMrrmCYhD1o/+MY/5JbUoGNgUHcW0VmzbbN4kRybEvpGZsxCiU2ycu4oXP3wDrEVObImlMRBQ4hXPm/IWkXGGj/FDRrU/ULQ5UdzcI/UXRJLN21jLD/8xL3E7zWXtLOtNGUh29knJCksIIUQnMWMmOjr527bRCNgNjYY+vwKskpm6GkNpb/X2Tjvu9fS4uXdov84PWhzyTNNk8eY6Ml213DHhz6Q6mmjZ3FrTUpIbnBD7SJJSQogOFy0PsOWdFeAAu6lRUBNk2LIFbM53oWAtVz/J5eO4sTPaHsQ0obkWgvWJlVJSR0ok2/oqa7vlU/rM53t938Jts1ZK2eSSPSGEOKSYUZ3g6jq8EQ+6Vk/v0lKWF2bQcumeSZSwLUJJ/jfA99oeKBZMzGOkuLnoKOGYQVQ36ZddaiWk4jye/rhcBe3cU4juR5JSQogOF2sIE1Osy/XSgwZsW0ldmnUWUYl/7Lg9e/gS/8plLN28gv8b9Cs2F+Rb95HJnEgyf7yW1KnF3+CxNcZbFXy+kckLSgghRIfzf7oV/+xNOBQvISWKYZjWAbs1F1nU4yO+7vU+QzKHtD9QNERItVZ8S1JKdJSW4uYtJ8eysiYxfNjDaJoXRZHfM3FwkaSUEKLDmRGDaHw/2sa6DYQcMcCakDV70vECjkEntj/Ixk95N/88Vqf0TTQNTmmnkKgQnWhLbTOvLtrKF+uqAHBqVt2GIUP+SFbmJJzOnGSGJ4QQooOFKhr4Rithsb0EJRIi32mt9DZsGiqQ4vbw50l/ZnTu6LYHaSyHupJEGQJJSokDFY7p/O6dVWyIr9z2xcsI2G0Z2GyyalscnCQpJYTocKF6P7F4UkqJFzhXtZ5oriNw2noD4EzdQxHGaJCgZiWhfpCXwYzifPq42ykkKkQn+uP7q3ln6XZyPZWMzduGU60DIMU7UBJSQghxiNFjUUq+/pqa1CBKJIR3w3JKc9Ksg4p1+V6qN4Upfaa0Pcia96l47TrOHPU3tg38OQBuTXYOFgdm3sZanp23iSNylvGHY1/H57SSU5KQEgczSUoJITpUfX09L897h/qWS5vMeHLKlofmGMTmtFXgidF7xHFtD2LooIcJxpe793Y7JSElkqrSH8amRrnr6L/gUIOJdrs9PXlBCSGE6BThQABFBx0DNRJGAVTDwB1V0TMGAaDZ97DqqewbvvYNY4t7R32fcWmyK5o4MPXNEQBO6fMNOZ6aRHtq6rBkhSTEAZOklBCiQ61avJzyQC0okLGtgqxtVVRkuEGxYRDFNfodTjn217i89rYHiVqXRjVLgXPRTTSGY/gcjfGElEp6+lH4UofjchUlOzQhhBAdLBaJoKk2dHRyK8ppApyGBz3/p4k+mmMPq56igUQtqfFpXv49vJgsh3z1EgfGH7JqSWW4reRUv74/Izf3DDyePkmMSogDI5+MQogO0/jVNmpnl4AdeupZ5G9cSUCJAm4U7OhqlLsyxkKPY9seZN1HULEMgFC8BoMkpUSyfLqmkm31QSr9ITw2a4WU3Z7BmNEvJDkyIYQQnSUaCaMpdhxNdfRat54lvfMw4wkm0+5ni3crzp6N7Q8SaSasOgDw2TRJSIkDsq6ikcc/3cDK7X4AXJo1J/GmDJKElDjoyaejEKLDBDY2JHbdU/xVVLibicbrQqHYiGlR8LZTf6dyFTx/HvcWX83cUY+yztsHAJcqNRhE11u+rYHLnlqI2xbk7H7vUugtB8Bu9yU5MiGEEJ2l8bMthOZvJcORh9q0GD0+B2kpcP5Fz/dZmf8VF3oubH+gaHOiDIEUOBcH6l9flvD6N9s4vsdXXD3pPdJs8VpSmtSSEgc/SUoJITpMxB8ghgGmQV35YhQvgHWWUFHd6FoMRl/a9gD+bdTafPy118Wtmnu7pJ6U6Hpbaq3LSI8vWs4pvT9LtLuchckKSQghRCfzf7qVxmATTVqIZl1HV6ykVNhpww3oagy3zc2xba36rlwNn/wONs8nnGHtNOySAufiANUGrMv1zhywhHSHtVpK0zx4vX3bu5sQBwVJSgkhOkzdllJiNh0Mg5bpl5cBRN3pKPYBmLZ6cKe3PUA0SEBzA+BQFJ4Y1ptch50xPk9nhy7ELvyhKAADc6z6DT7fKPLzziI7e3IywxJCCNFJYpEI/lAjLzvngh7B01xFRbw4uaFYJ8jOHDCVy875Z9uDLHoaVr1NQHXTkGOtYpGVUuJANYWtuUi6Owo6DB58L7k5p8vqbXFIkKSUEKJDbN68ma+1rdSrYRTduoQPE/TMs2iZioVSGtofJBokGL/cz6upnJGT3mnxCtGWNeWN/HX2OtZVWvVCUhxW3Ya0tCMpKrosiZEJIYToTOsXzKVRCWEqJs6actRIHTWp1okxNT4/ceypNlSkkf8UnMWtA36GGV9lJWUIxP5atKmWz9ZWs7EqAIBGCIAU7wBJSIlDhiSlhBAHLLimlg9efYttdivptNXvYQigxtNRjfZVlB61gbMnntr+QDvVX5Di5iJZnp5Tysxl2xmXv4jfHfMeue543QabTP6EEOJQ1tzgR8cAQAtbl0tlNAXJo4mVBWdDCOz2PXx9ioX5Mn10IiHlVhWOy5C6P2L//OTZxVQ3hUmxN1HgbUIxA5iApnmTHZoQHUaSUkKIAxaYu51QOAwq9CpvonjTYqp9HjTDSix51GqeuPSBtgdoqoLFT0PpV4ntk92y1F0kSV28bsP5QxaQZa9MtKd4ByUrJCGEEF3ACEfRgbT6etIrK6j1OlAdg/D7jsAZ6QWAw2Fvf5BoMLF78B8H9uTiwiw0RVZKiX2nGybVTWEKvNu5++j7URUd08qZomkpyQ1OiA4kSSkhxAFrKGtCR0eJRqirWw3xGlAq1sQtmpfR/gBzH6VqwTP8csBNlAzoCchKKZE8LbWk0l0h0GHggDvIzDwGr7d/kiMTQgjRmfRIFB2VXps20xyLAg4a0gdhcw5AiycDvBmO9geJhQk5rKSUV1MlISX2W0sdqV6pW1EVHUWxYbOl4vMdgctVkOTohOg4kpQSQhyQaChEU/VmYikGimHVklINg8Kwh4o+Y9AioGZktj9IczXvZh/HzJwTEk29XHuY9AnRwWa8vITXF28j213NSUUr0YxqANLSx0hCSgghDnGh9XW4K10ElBCxGOjxOlAKNoK2Br7o+xoNrmruz7m7/YFiIUKqNYeRAudif1U2hlhZZu2yl+qwVnBnZ5/MyBF/S2ZYQnQKSUoJIQ5IXXkZqqmgKwYY1mlERXFRXfhTNOtvKJprD2cJo0GaNGt11cR0L1f1zOHYdFmWLLrWO0u3A3D1iP/QP70UTKvdYc9KXlBCCCE6XWR7gOp/LieTTCq0rRgxMLT43EWx0WwPsDHrW9w2N8VpxbsfpPRLWD0TqtcRyrRWSrlk1bfYDxurmjjlwc/RDRNN0Ul3Wxuu2OSSPXGIkqSUEOKANPobaNKiRNFRWi50V6zL9qq8W6hzVzB44B5WSkVDNGtWEdABHhdTZdc90cVCUZ1IzPr9HZTdjB6DrMzjycg8RpbICyHEIS5S08QWtYZP7Msx/BWkpEQwFGu3PRQbqs3k7bP/R5Ynh1RHG0XL37yOzcEIi31DqbZbZQtk1z2xP9aUN6IbJicWzeOHg15EU635ic0mBfPFoUmSUkKI/Va2bgvPvf4WZoqJPRJhyMJvKM31ABoAC4veZVvmGi7ss4elxtFmgvGtlj1yVlF0sQ1VTawpbwRAVQDD2m1v4MA78Xh6JzEyIYQQXeHzp5+iyZVNRInh9teiqwAKCqCqWSi2Jvqk921/kOZavn/kv9jmyk80eTWtM8MWh6iWWlLH91qbSEgpioOMjAnJDEuITiNJKSHEfjENk/UvLMTERDEVcivqyQo0UIoHJb5S6te6g+EXfY7P4dv9IJEAlC+DQDXB1JGA7Lonutb6ykYmP/A5AMcUzqNvRgW60QzIGUkhhDgcmKZJc10dsQJrdZMaDgMwqKwGfWAvtmo+TJt/j+MY0VAiITU+zcsgr4uRqe7OC1wcsgLxpJTLZl22N2TwH8nLOwstvqujEIcaSUoJIfaL3hwhEomAHTJr/QQat/JNb2syFrXZsAE9jrm27YQUwH/O4SmjkD/0u4+AZk3cZKWU6ErrKqxVUb18tVwx/IVEu6q6JCklhBCHAUOPoaERU3SOXLyYGj1AXYqbqvyTiNmHAaBoZvuD6FFCyo5VUS+M7IvXJqukxL6Zv7GGt74tY0VZPamORtyaNUdxOLMlISUOaZKUEkLsl5WffEIMa0lxsGEzmmJAfNtjxVYIgKfniPYHqVrNm0MuocFufflXgZGpnk6LWYjvaghGATg6XrfWZkunR+EPSM8Yj6rakxiZEEKIrhCLRNFUGzEMcraWU9XDOpnW6CtGwzrZpqeE2h8kGiSs7tg12CmrvsV++PWby1lf2cStRz3MwCEbEu1ykkwc6iQpJYTYL/7yKvT4vxXDOoPocByD4h6Kolp/PJ2uPXypjzYTVK0zPw8MLmJKVhpZDvlYEp2vIRjld++sZMmWegDSXdblGm53Ef3735rEyIQQQnQVvSlC01fbKHD3o5x6FN3AUFqKk2tsyFzCmtwFDBuxh/qCsRCh+HzGpoBNCpyL/VDVGEZTYgzM2JGQ8nj6keIdnMSohOh88u1PCLFfYoEoMUVFMQyckRBRBUx7DqqaSkVKKQ2pFaRmndj2AHoUjBhB1Spw3sfllISU6DKzVlbwyqKt9E/fyDUjPmeYLwDI2UghhDicNH6+lZVfLmV+xnaaCXOUHkWPJ5QUxUajZwu9h2Xw45E/2v0AWxfBSz+GYB1hm7XTsEtWSYn9YBgmjaEobls40XbiCWtQVZkbi0Of/JYLIfZJZEsj6/63mDl124jYdIYtW0ltNEzU7QTFhmmGeWPEg+R58lCU29oeKGoVb2yOXyPvllpSogvVN0cAuHjYLIq8KxLtLlePZIUkhBCiizVsqmaDVk6TYl2eZ9djrVZKZadkcd8pt7c9wPpZmI3b+TDraJakWqtZ5NI9sa/ufXcVby0pwzDBpVm/i6rqloSUOGzIb7oQYp8EFpazafsWInbr4j2zIYKRYk3AFMVGTItwTPpgzhwxre1BajZgbF9Kk+YlGC9w7tZkqbvoOv6QtbNNhssqItqz5zRSvAPJyTk1mWEJIYToIrFIhLJVy9DTDIjFSNmwnA9G9EnUx0TR0Dx72D0vFmKBbwTTht+XaEq1SVJK7D3TNHnqqxI0mvnJyBcp8tUCYLOlJDkyIbqOJKWEEPskVBdExwDTJHXTerZl6BiJgtB2TC3CEyc9Aqn5ux+gtgT9kaM4dczfWXHsu4lmt5xZFF3gpYWbeW95OVtrqhiWtQqnWg9AQf738fn2UJhfCCHEISMUaEJFRcfAHvCjGLEdG7aobhQ1Hc2+rf1BoiG2O3MAyLLbmJju5fy8zM4OXRxCwjGDqG4yMm814/K/SbS73XuoYybEIUSSUkKIvabHYmxdvpSY9//Zu+8wOcty8ePft03dme29pPdKEhJC7xFiBRWxcUDwgOBROEeUczxY0IP6O4qcA4oKCnosgIoFlA5BSEJJJ723zfYys9Pf8vvjnQxEsrMBs5kt9+e6ci37zjsP90J25pn7uZ/7scCxIdGLneu9oKFoxeBL9Z+QAujaSbunhI1Fk3KXZhb5qfN6+n+OEMfJ1/+8iVja4qb5dzOjfGvuumGUFC4oIYQQJ5yZTqMpOoHOQyxcvZL1Y6rwWn4o+yQoPhRFQ/MOUMVtJkhmT92bE/Jz78xxJyByMZL0pdzK7aAeByAcnsOYpn+mpGRBIcMS4oSSpJQQ4pgl+6IotoOJhWLbueve0BWghVEUAzyJ/IOk47nm5kFNZdPpM/EoCooi2/fE4EpmLGJpd9vp1IoucMAfGE9Z6Sn4fA0Fjk4IIcSJZKZTaIpOqPMQKu4pwiheFDVIwn+IXeFdVA/01mCmcqfuSW9M8XakTZuXdnSwt9M9aKU4ewpwIDCeqqolhQxNiBNOklJCiGNiJ03i2zpB95BU+tBT7punYjsoejk2GfaWbqDipAFeVjJxEtnm5gFNlYag4oR4/WAvL+7oAEBTFTxqHMuCubN/TCAgK9tCCDGaJDZ2kFrRRtgoA/ONE/dSRV58wCu1y9hcvYKrglf1P0g6Duk+UtmFNpnPiLfjFyv3ctujm6jwd3DLwp9TF2wHQNfDBY5MiBNPklJCiGPS/qP1/K19Da+H9gNwyksvs7GhGD27uJjSelk//y/cdtpt+QdKx3KVUtJHSpwIKdPish+tIJa2KPN10VicwbLclUldDxU4OiGEECda9yM72BNv5oC3E91KY2WrtR3HndQ0qAqnzLiSj0796NEHeOI/YMVdACSbPg6AT5WKb3Hs9nS485BzxmxhYsme3PWi4OQCRSRE4UhSSghxTDLtcVrVXnAc9Eg3CcPdvqfgTsJ0j8MTH3yi/wHSMXj6a8T3vUqbx20CKqXu4kToiWeIpS2ml2/lX+fffcRjmiZJKSGEGE0sM0MmmuBZ3+tYWEyxMzje7IEtitsfal7NTD6+4LP9D7LjadqNEh6pOp8Xy04GwCcLbeJtiCYzACwc6wMbKisuYNy4z1FUNLXAkQlx4klSSggxoFQ8DqaD6bHRYr34m3exq7oUgExQwQsofl/+QbY/yerNL3DJnDtJZrfvyaqiOBEiCXfiN6WsGQBV9WHoxZRXnIOW/bsohBBidOjcvx9HUbAUG6OzlWa/Bf4S98FsJbdROSH/IJkE/z3mSh6of3/uUljXBidgMaL0JjI8ubGFra19APi0JNjgD4wlFJpW4OiEKAxJSgkhBrRjxQqK8WBhoWbcD/jejElpLEnbwkZoB2WgV5NkL6+FZ+QSUipwUUXx4AYuRrVYyuSu53awvTUKQIkvCUBd3WVMmXxrIUMTQghRIGYyjYmNlTAZt2MHHWEfumXj1TVinqnggMc7wKTGTNHhcRfnFoQDzAkF+GRd+QmIXgx3dz69nZ++tJsKfycnV+/Fp+wCQNeCBY5MiMKRpJQQYkCpSB9QhqXYYLunl5X3JZncadMSrMsmpQaoesokSWjuCuRHasq4Y2qjnLgnBtUTG1v44fM7Kfd1cvXMx5hRsRcAQ5dkqBBCjFZ2Mo2JhdmaxrBNAAzfIqyiM/Bl+2R6fUb+QcwEieypex+vK+cjtZKQEsfmYE8ccPjPU75PkdELafe6NDgXo5kkpYQQeSW3duE96L5UqMkYlYdaiWrQVTaTleMvwbfHvU8dYP5GJk5SdXs1+DVVElJi0HXF3JneJVPXcErVa7nrfn9ToUISQghRYGYyk11kc3INzjNGMTrQXbKfZu8+5jacO8AgKVLZOY30khJvRyxl4dHSbkIKKClZiGGUUVV1UYEjE6JwJCklhOhX+mAfHT/bSJAgSdKU79iON9JFtCxExlOGAaS0BJZqUj9jgJeTTIK4nLonTqBI0l0Bbyxxk1MVFedTW3MJFRUDfNgQQggx4thJk7Z7N9Db1ka30odq2VjZ3paK4q6sPTLpbtJ6gqv0PAkCKwNmMpeU8kp/TPE29KVMArrbTkBRNOad9CtZqBWjniSlhBD9snpT9CpxHvG8AtEO/HoMyrKnlWVPqKk652FqT/4EZzaeefRBWjfBzmdh3wqS+gIAfJq8+YrBs25/Dy/u6GDFzg4AfFoCgNKSRVRVLSlkaEIIIQokvS/KukObWWFsAw9oloWdSyi5SSlLzVBfVM+UsilHH+SR62DdrwDelJSShTaRXzJj8cmfvsKu9j4C6h5mVewBQNOKJCElBJKUEkLkEWntoE3pxVQsPCn3g71u2RRpGeKeSTjYXHLhfxEI1/U/yIMf569KLXc1fZTd/npAKqXE4Lr656/RHk3xkSm/412LdlGidQGg66ECRyaEEKJQMvEM3UoMAKO7HY99gJ5A9uTg7Gktr33yVTRV6z9RsOUxMorGAW8NUW8ZINv3xMA2Nkd4ZXcX44t38x+L7shdlz5SQrgkKSWE6NfWF5ZhKu4HeTUVB6Cqz6GqdhJbtErSWhJfqCb/INEWfjz9s6wKz8hdGuf3DlrMYnRLmRbt0RTFnl4uGLPsiMcCwfEFikoIIUShrXz4YSxVI+4YeLoj+BQLBwXFcVC1MizVRNcGOnUvwbvn/oB14am5S7J9TwwkmnRPrp5d0wOAqhURDIyhvu6jBYxKiKFDklJCiH6ZiRRm9ohaI+O+obZVLqTLexYAaT2OquRZIXQcyMSJaX4Abh5Xw9mlIU4KBwY3cDEqxVIm6w70ABD0uElUTSti5ozv4/VWUVQ0vYDRCSGEKBTHcYi07Mesa+JQl5dpyRQoMLE1hlZdxl41jKOl8g9iW1iWmUtIBTWViQEv04v8J+AnEMNZX8rtcVnmd0+wrig/k1kz/7eQIQkxpEhSSgjxFlYsQ3xNG6VWFQe0FDWHDlHc2kpzcRGoXsBmZ9l6DtVuAT7Y/0BmEnBIZBucn1JcxLzi4In4EcQoY1o2F3xvGc29SVTFojbkbjf1eMqoqDinwNEJIYQoJCuTQVM0TGw+/sqj7K/U6Q362Dv+cjTPRAAczc4/SCaRO0UYYP1pMwhq2mCGLYa5LS0RvvanTRzocRfKijxu4lPXigoZlhBDjiSlhBBvEX1+P61/28UhT4aDWhfluw9h4rgPKgamkuapKT9jfPEA26EybmIgrmVP3dOk74IYHF3xNM29ScaE93HzgrvwZU+2kT5SQgghMqkkqqJjYRFOxrDVEvcBxcBSMsQ8ETKT2vIPYiZJaG+0H5D+mGIgv199kBW7OplbuZ5rT/sjFQG3p5mmS1JKiDeTpJQQ4i3SXTFW6TvZpjXj37+dWIkNyuFT93TSeobPzPkMZzWe1f8gG34LW/8KQCKXlJK+C2JwRJNuafycqp25hBRAefnZBYpICCHEUGDHM2x8fi3N5T561D48dgYrm1BSFJ3m8C4em/5DvrTwS/0MYMOK/4XWTSRVNynlVRVUOTVNDCCScFtffGj6emq87bnrRUX9nO4oxCglSSkhxBEsM8Pe1WtIFKXBttFjEcjOuxQcVK0aW81w3dzr8gySgT9cx3+MvZZX5v2EnuzpIrKqKAZDbzzD/i63NL7E65bG19ddzqRJ/4GmSa8PIYQYzZp/sprnul4i5kuh9fXSGvaRzlVu69T6wyy/fDlFnn6qVw6ugqduBSDhbwLkxD1xbKLZXlIlvgw4MGH8v1JZ+S6CcvCKEEeQpJQQ4gjxSC+KrWBhozjZ/gqOw8n7LPpmNbJbq8HSBihxT8doV4Pc13Bp7lKRplLhkZcccXz9YuVe/vMPrxPUYyyo3kpTeC8AhqdcElJCCCGIH+wi7TdRk3EC+7ezuaHijQcVD54iT/8JKYBENzHVz80z/oOdZbMA8MmJeyKP1w/28uTGFjYe7AVAV+NgQVHRVElICXEU8glRCHGEVHsMr+rDVGyw3KSUgsqGuf+au8fWzfyDmCn6NPeEPb+q8tOZY5kc9ElDUHHcrdjZAcAnpz/Igpq1ueuGUVKYgIQQQgwpCgomNplomiBgmBZlfQn2T6jHa5WgGcn8A5hJXiidz+/KzshdavR58jxBjHb/+tA6trZGmVy6g1PrOtGdTgA0TQ77EeJoJCklhMjpfXIPyWf3U+qtwXL2MmbXLjoB1XHL1FX6aC5qp3X8JuDj/Q9kJohlq1RCuso55eHBD16MSr3Zfg0n1feBBaGiGfgDY6iuWlrgyIQQQgwFCipmwuTM1cvZ0FRFUdKkLjmG/UVzUCIKujHAVjwzmVtomx708bmx1ZxaIo2qRf9aIklqgy188eT/cS9kNx7oRnHhghJiCJOklBAiJ7U3AoDlmBg9rYzfuZ3O8XWojlumvif0On+Z+WumlU3LP1AmmTtxLyAn7olBsHxnB/f+bTfrD7il8RpRAKZMvY3i8JxChiaEEGIIcRQFPZo83B6TRKCSzY1XEHanPHh8A3wcMpMks6fuNfo9vK+qdPCCFcOe4zj0pUzGlruNzXU9THHxSQQDEykKSoNzIY5GklJCCADMTIZD27ZzwBNnW2Ijdvs2Xh1fB4Clq2hAPJCh3FfO+ya+r/9xbIenuhOsrDgTgIA0AxWD4IfP7+Rv2zu4cMyznNv4N7C6ADB0qcoTQgjh2rhhI9uNg6imjZXtA9Ub9lEMdAQOEilq4+qz+5/TAJBJklTd7XrS4Fzk88ruLna09WHZDgE9AUA4NJu5c35a4MiEGNokKSWEAKDzwD66nT5eNXaj2g5Bx3IfcBwS5aV4bJjfMJ//vewr/Q9ycBWPvvgw11Z9BBovAyCsSx8pcfx1x9MAvH/yS3gVt1eDYZTi9dYWMiwhhBBDgGPabL7rBR7ueR50MDIpErnDVtx5ySmhpzn71h/jzVZBvUX3Xtj+JOxeRlJ1FzwkKSX6s68zzod/tAIFm8/Pu4cppTsB0A1ZLBNiIJKUEkIAYKZSmNm5lpFxAPBmTM7vaeM3k8+GDvD4+pm4Hbb6FxyMJqAK6pJtzHE6uWrOuwc3cDEqRRJus32vFgcbZs68i7LSxWjZbaNCCCFGr0xrnEhbD3jA39WBHt/Druy2OwcDgNIJp/efkAL4w2dg74skVA/dY68C5NQ90b/93XEAGosjzKrYkrteXDyvUCEJMWxIUkoIAUAmncJWAMeh7uAhOgBb8/PM5P+m0j3gDK/HyD9IOkYi2+D8gvIQ3559CvhCgxq3GD0cx+HzD65l5a5O2qJJFByw3UlgScnJcuKeEEIIAHqaD2Fmu0srfd0AqLaNx7Ho89eDCf6pF+QfJHqIVaHpXDr3f0iq7vzHJ30yRT+iSffglWnV7t8Rwyhj4cl/xOerK2RYQgwLkpQSQpDc0YOzNg6qRmV7O+O3b6RjQh226kMDLMUkqfdRMak+/0CZOHGtDAB/WRP4pGRZHD9dsTR/XNtMU2g/d559N0EjnntM1yT5KYQQwtW2fQcWFomMihG30YCphzoJFnXxnOdjblLKN0BlrZlkVfikXEIqoKmcXSrvNeJItu3w0Gv7eXZLGwDFPjc5peshSUgJcYwkKSXEKOeYNp0PbOSAdYi9ehdGIoWtuOXpjuq+RDw+5V6iNYf49PQ/5x8sHSOhuqXwfum7II6zaNLdsjenavsRCani4gVo+bZgCCGEGFXstImp2FRuO0h1tIW24iDxQD276q+lJFENgM/ryT+ImSSVbXB+WU0Z35/aiKLI9j1xpOU7O/nS7zfg1VJcNPYFZpe6fS51vajAkQkxfEhSSohR7uD610lmUjzjfR0UqM1YpAy3CailuS8R/1TUyPs+9Iv+ey84Dh3RTu4NnsZL3omAu6IoxPHUl3KTUiW+FAB1dZcxYfy/YhhyPLcQQog3OGkLC4tQvC936l5z9XRUYwy6AygOxZWB/IO86dQ9v6ZKQkocVWskCcC7xq/jvePeWLz1eCoKFZIQw44kpYQY5fauXUeJUgUKeNqb6ct0sKGxCgBFcUvWKyaekb8Z6IMf5+fxMr4/7lO5S+UeeXkRx8eGA738z7Pb6YjGmFG+mcbQfgC8nio8nvICRyeEEGKosOMZ1v7gOZ6PbiWhp6m2LCzdXSTrDnkpt+Hki5uYvKiOUNnA2/cOV0p5pcG56MfhBbOJFW5yqqhoOuVlZ1BT+4FChiXEsCKfGoUY5TLxDCYWAHosmruuOKDobtWTr7Ix/yC7ltHdeAUAJ/dtZem0hby/SqpXxPHx05d289SmVs5vep7L5/8+d10amwshhHiz1L4o23v2EtETqMkESW8CR3cX2DTHTULVTiqjpLqfKinbhp3PQqwNHItktiWBT1oSiL+TNm1e2d3F+gO9AAQNt4q7vOwMJk68uZChCTHsSFJKiFHOTmawsifUaKbbnNHjvwjVNy13T1HQ3/8AjgOZWG7ids7Ms7h2XM3gBSxGnc5YGoAzxrl9pAxPLcXhGVRVXVTIsIQQQgwxTsbCVNw5TaB5DymfBbgtCVSlCBzQjTwJpm2Pw28uz30rlVKiP999cis/emEXpd5uzmncQJmxHZBeUkK8E5KUEmKUslMWkWf2UtVbQ1yxmLh9O4lIL5GAF0fzgWOzo2oNrcG9LC39t/4HstLg2LkG53Jcsjhe2qMpnt7cyu6OPgDqiy1Iwtimq2hquqrA0QkhhBhqtr30GiYWnXaAlOOnghi1PX14arrZpVaBDbpH63+Ann0APNj0YZ6tPovVAbdi3CuVUuLv7GyPAfDpOQ8zueT13HXpcynE2ydJKSFGqeTmTiIvHCCtaLSrPfhbe+kLuiuBCjqWmuLpiT9HUzRKvN/of6CMW72SzPacktVEcbx89U8beWzDIRbWrOKD815GTbfgALoRLnRoQgghhqC2Hduw/BrtPQY1qbjbL1NpZHN4IWEzCIDuyZNgysRxgJvH/jMp5Y2PSdXSJ1P8nb6Uu7tgYnkMLCgtXUwwOJGqqosLHJkQw4+8wgoxSjW/vpl1+k426O6q4PQMuRNqUAxSeobPnfQvTCufTomv5OiDRFuhZQMASdXt1eCX1URxnBzodhOeH5n6F4o97Tjujgz8/jEFjEoIIcSQZTuY2Fz58h/ZV20Q8Xtprj+HsszY3C3egNH/8zMJUoonl5C6dUIdNV6Dd1cWD3LgYrg53OBcxZ2rTJxwM+Hw7EKGJMSwJUkpIUap1u176VFiYFv4922npdzB1LMvCYqOrVpcPfua/gfo3kPbD8/j8lnfomXxH4hk99DL9j1xvESS7oSv2BsHByZOvIVQaAYlxQsKHJkQQoihpqenh14lQ0KBkmQfu5UyIFv9rXcxbmaQSXPnEgh7+h8kEyfxptOGr2moxJAKcPEmn/nlKv76egseNUVtsBtst8WApkkvKSHeKUlKCTFK2WkbU7fQ4n3oiT4yhjvpUnFQlCJsrS//AO3bWF48m41Fk3KXNAWmBQc4YlmIAdz7t128uqeLgz0JFGxw3FXImur34fVWFjg6IYQQQ03PxhbuevjHmCG3pNawMti56m8NozTGez59CfRXzW1b8Nw3Yetfcwe3aAqSkBJHsGyHv2xowVDT3H761yn2RsFxH5MG50K8c5KUEmKUUiwH07AJ9fZgAb6Mitd7Onaogozqw9F68w+QiRPX3ATU4pIgt09uoNzQqfTkKYsXYgC98QzfeGwzJd4erpnxW8LePg7P+HQ9VNjghBBCDEltq/diYqM4CsWROLuqwqS1bENzRUcrLuk/IQWw/2X423cBSPrqAfBJOwLxdw5v2Svz9bgJKdzG5iXFC/B4ZNFMiHdKklJCjDKOaZPeF8HvBDDpYPLWrWyuLQOtmNSbtkUliyL5B8okiGf7SFV6DKYG/YMZthgluuNpABbXrWVe9frcda+3BlX19vc0IYQQo1j7frc/pjdjYzVvZO+bekApii//iXsASXchLl0yjo7TvwJRSUqJtzqclAp53bmK11vD6ae9VMiQhBgRJCklxCjT8+edRF5uRtGDpJ00imUB4OgGCrC29hn2lW5izKSq/AO9qe+CNDcXx0s020eq3J9yv5afRW3tBwmH5qAoso1CCCHEW/V2dWMHoTXtoSF7rb7HYcuUyfjSITTDzD9AJs4eXx0Xzvohkai7yOaTrXsiK5YyueX3G9jbGQOgzO+evCd9pIQ4PiQpJcQoE9vbwQvGJnaqLXh6u+nJ9oDKeD14AK08zvtOv4B3jXvX0QewbTi0lp62nbR5ygHwS3Nz8Q9qj6a49Y+vs6czjl9PUOp3y+JDoZlUy/HKQggh8rBwOJQMcvlzv2PNxAoUR6Fz3E1UugUt+Hx5mpsDZJKsCU0jor5R9b2kQk7cE66/bW/nT+uamVC8mxvmPk19yJ2j6HqwwJEJMTJIUkqIUSTa2UHnnn30hGNosQjeQ7toLs326cluxWuqGs9n5n6m/0Fe+j7LX/sDH5rzPawG9yXEL6uJ4h/0+MYW/vp6C5dO+hP/Nuvp3HVDlw8FQgghjs5xHH75y1+yo+gQwRaHUCaefcRdLDP1HrQyD2eefVr+gcxErvr7nLIQD8wah0eqwEVWJOFW2n142gtMDG/IXff5Gvp7ihDibZCklBCjSF9XJ5pqYGKjZtztUbrl4KGYjGceAB7vAC8L7VtZG5qKpeiojk2ZrnBBuSQOxD+mO+YuZy+q2567puthSktPKVRIQgghhjjTNNmxYwcAqmXlTtyzsk3OF8xt4bSr8yy0ASS6IdZBUnWrqQKaKgkpcYRI0t2uV+JLANBQ/wmKi0+ivPzMQoYlxIghSSkhRpFMKoWuGKipGFM2b2ZvaRBDrcMuu5zDLUA9RQNMxNJ9JNUyAD5eX8l3pjQObtBiRHMch10dMfZ2uqvbRR53wrdg/sOEw3NRFPlgIIQQ4q0c06b1p+ty34/NlOaSUo7izmr80y7MP8jqX8CfPgs4JBsuc58jCSmR1dmX4rENh/jb9g4AvJo7R6moOFcSUkIcR5KUEmKUSO3pxV4fw6v5KWk/hCeZAoI42RPNDlasYVPpOpZWnpF/oHQfCa0WkJNpxD/uq3/ayAMr9jKheDcfnrwOQ+kG3COWJSElhBCiP5nWOPHdPeADNRHHTO5iY12F+6CSbS/g8+UfZN9KwAEgabjtDGRuIw773lPb+OXL+zit7mWunrmVgNoCgK5Lg3MhjidJSgkxCjgZm477XkfNmFiqRtq0sLKriUmfgQ9YU7mCAyVbqQxccvRB+tphy6PQtZtE+SxAGpyLf9zaA+4x3J+a+Suqg60AKIqGYZQXMiwhhBBDnJOxsBQbAE93K47TRW/28BZHcxtQBwZKSpkJevQiHj/7Tl4LnQRdUXya9MkUruaeBJpicsWM36ApVu6611tTwKiEGHkkKSXEKJCJpeg2o/zJ+xppO0k4ncbjdyuk7Gyl1GmNi5g955O8a2w/p+49dSus+xUAiSp3kicNzsU/Kppw+zRUhxJgQ13dZZSXn4VhhAscmRBCiKFs5yuvYGMTcwzSlkE5EDJLSRbNwvBOBsAYqE9mJsntY6/hgcxE6Mqe+qpp+Z8jRo1o0sSvJ3IJqYkTb6EoOAmfr67AkQkxskhSSohRYPPzz9CpxEkrJr7W/ThONx3hAACK4iaYFjedynkT8pxOE23mBw2X8e1x15BSDUAqpcQ799KODtbu76EtmgIcsGMAjB/3Obze6sIGJ4QQYsjr2LmLYhrpaoZTD+2lJ+QlGZqH5psDgKarFFf68w9iJmjxuVv+ZhX5mVrk4/LassEOXQxx+7virNnfw6HeJH49CYCmBRnTdHWBIxNiZJKklBCjQF97F5biJpK0hNukMZRIUaon2O+ZCs4x9F3IJHi08qxcQspQFOaGAoMatxiZ+lImV/7sVTKWydSy7YRLI4C7Cqlp0qdBCCFEfq2traxPdaEYMaY370TLvoeQneu89z1dVJz5XvwhT/6BzBTp7Lzm042VfKhGElKjneM4fPCe5bRGUsyp3MCs2s0A6HqowJEJMXJJUkqIUcBOm5hoNO7bh93TTSTghaLz6C6ajtdxkwB+nzf/IJk4CdVNXN0zfQznlYcJ6VLiLt6+zr4Uactmcd0arp75QO66ohhomiQ6hRBC9M9OmLx4/+N0kAI1RbmVwdaz7QSyDc5rpo/ByJeQat8KHdsh2kKyxL3PKw3OBZAybVojKUKeKDfMvRdVcRvhG4YkLIUYLJKUEmIUsNMWFjZ1+w+yz59tcO6vQVPdhFTM6CVUMib/IJkkCc1NXDX4PJKQEu9YNGkCMK64CwCvpxp/YAyVFRegKNKnTAghRP9SeyMk+5KgwXizij62kDncByqblNLGLOh/gL52+OGpYLvvRakxblLKJ30yBW/MUUq8EVTFQVX91NZeSk31ewocmRAjlywJCDGCWb0p2u5ZR2P7OEzFIp1RcqfuKYrOodBOfj33m/z6pNsI+fvZNmXbkOiBTJy46vZmkF5S4p3oTWS47dFNfPvxLQCEvW6fhpqa9zN/3q9parqqkOEJcUJ99atfRVGUI/5MnTo193gymeT666+nvLycoqIiLr30UlpbW48YY9++fSxdupRAIEBVVRVf+MIXME3ziHuef/555s2bh9frZeLEidx///1vieXuu+9m7Nix+Hw+Fi1axCuvvDIoP7MQx4OTsTCz2/Xa979IoriPPt/hqigDW7FQ8yWYIgfdhJTmgcZFpAJVgFRKCbeS+/Vm91TgUr97EIvXW8XUKV+jpCRPolMI8Q857q++P/zhD5k9ezbhcJhwOMzixYv561//mntcJllCnDiJrV207m3mNXUPezN76fFDOlfhZJDR+xhTX8FlMz9MVXZSdgTHgfsuwPn2GMxIS65Syi8TN/EOPLb+EPe9uJuW9pe5eubPmVK6HgDdKC5wZEIUxowZMzh06FDuz4svvph77MYbb+TPf/4zDz/8MMuWLaO5uZlLLrkk97hlWSxdupR0Os3y5ct54IEHuP/++7n11ltz9+zevZulS5dyzjnnsHbtWj7/+c9z9dVX88QTT+TuefDBB7npppv4yle+wurVq5kzZw5Lliyhra3txPxHEOJtshImFjYAtun2yTRMi4xhouo1aMYAcxTTXRChuAE+9SSpcAMAHqmUGtW2tkRZ+F/PcM39y1lc+wqLa18DpJeUECfCcf9k2dDQwLe+9S1WrVrFa6+9xrnnnsv73vc+Nm7cCMgkS4gTxXEcXn/qWdbou9mkHyDZupmOsI6VrXJSVB/FoVJ++Z4H+dLCLx1921QqinlwDe866Uc0nPUsUT3bf0qTiZt4+7piKQA+OfMvLK57jbDhLkj4vLWFDEuIgtF1nZqamtyfigr3FLDe3l7uu+8+vve973Huuecyf/58fvazn7F8+XJWrlwJwJNPPsmmTZv4v//7P+bOnctFF13Ebbfdxt133006nQbgnnvuYdy4cXz3u99l2rRp3HDDDXzwgx/kjjvuyMXwve99j2uuuYYrr7yS6dOnc8899xAIBPjpT3964v+DCHEMXv3D7zCx2ZSpIkIQgGnNEXylBopi4PUM0Nw8kyCt6Fzb9BmWvLaVfQn398UrSalRbdOhXizb4fSG17h61v+xsPoFAAyjtMCRCTHyHfek1Hve8x4uvvhiJk2axOTJk/nmN79JUVERK1eulEmWECdQrKebrr27SeKWH6sZNyFQ3dtHKFSGooZQ9QEmYJk4h7wVrAu/saVkStBHpWEMWtxi5Iqm3IrXUl8fAI0N/8T06d+lqupdhQxLiILZvn07dXV1jB8/no997GPs27cPgFWrVpHJZDj//PNz906dOpWmpiZWrFgBwIoVK5g1axbV1dW5e5YsWUIkEsktBK5YseKIMQ7fc3iMdDrNqlWrjrhHVVXOP//83D1CDCXpdIrOzjbSSoalLz1NY9Rd3Ng87SqMzI0AaPrAlVJrQtP4Q/HJrIsmSDsOmgIN3gGSWWJE68v2kprf4M6b/f6x1NS8n/HjPl/AqIQYHQZ1D45lWfzmN78hFouxePHiIT/JSqVSRCKRI/4IMVxlUkk0xcBULOa9tgp/wi1xd4JnY3kuAkAdKLeUiZNU3S17xbrG5tNn8uzJU9BlNVG8Dc9tbePrf97E8u3NVPg7MBQ3KVVXdxm1Ne9HVeWDgBh9Fi1axP3338/jjz/OD3/4Q3bv3s0ZZ5xBNBqlpaUFj8dDSUnJEc+prq6mpaUFgJaWliPmSocfP/xYvnsikQiJRIKOjg4syzrqPYfHOBqZL4lCSKfT3Hnn/7CxVqVDjTKpe/8bfTJVDw4WmqEy+eTq/ANlEsQ0t0fmGJ+HX8waxwsLp1LllQW30ezwwlnAcBdxqyovZMb071JcPLeAUQkxOgzK6XsbNmxg8eLFJJNJioqKeOSRR5g+fTpr1649IZOs7u7ufidZW7Zs6Tfu22+/na997Wvv6GcWYqgx02l0VSfjWEzYsYO9M8YC0FM2HdV2t4goISv/IJlEro9UQFMpNeTATvH2OI7DDb9cTcpMcvvpX6fM15t7zJBeUmIUu+iii3L/PHv2bBYtWsSYMWN46KGH8Pv9BYxsYDJfEoXQ2dJBLBYDQHNUfHYaWzm8vq4TbXqGW265Hfo7xdW2YcVdsPPZ3NymymNwQYW8F41mj7/ewjce20R3zN2R49PcpJSmBQsZlhCjyqBUSk2ZMoW1a9fy8ssvc91113HFFVewadOmwfhXHVe33HILvb29uT/79+8vdEhCvCPJnT0k/nSIQKiRjJVEBazcJE1nc+VKnph8H97ZsaMP4DjQvg1aNpBQfYA0NxfvTDRlEktblPu6cgkpVQtQXn42Hs9RmusLMUqVlJQwefJkduzYQU1NDel0mp6eniPuaW1tpaamBoCampq3HBRz+PuB7gmHw/j9fioqKtA07aj3HB7jaGS+JAqhZ4X796woo9O4+wDLJ9WSNLKHtyg6Ws2E/hNSAPtfhqf+E3Y9l6sClx6Z4pE1BzjQneCiMb/nK6d8mypjOQCaLkkpIU6UQfmU6fF4mDhxIvPnz+f2229nzpw53HnnnUN+kuX1enOnBh7+I8RwFHluP8ta1/FEYBMx2z1lxj5c4q5oJIq3sejU6Xx4xoeOPsCKu+Duk+GRfyapycRNvDPt0RTLtrYDUOp3Vx59vnrOOWsDc+fcd/Tm+kKMUn19fezcuZPa2lrmz5+PYRg888wzuce3bt3Kvn37WLx4MQCLFy9mw4YNRxzg8tRTTxEOh5k+fXrunjePcfiew2N4PB7mz59/xD22bfPMM8/k7jkamS+JQuhtdv+uK/FeOlPNpAwdFAVH0VHU0MCn7iW63K/hehLTLwXAr8mC22jXlzLxaikuGvcMTeGDqLgtBoKBCQWOTIjR44S8Etu2TSqVGvKTLCFGAtu2aN+5l26lDxwbT3cHO6pKcN5UKTWxfi7/ccp/UBPsJ0nbupHdvnoumv9j/mXalwHwSaWUeBuSGYvzv7eMz/56NePCe5lduRMAXZcPr0IA/Nu//RvLli1jz549LF++nA984ANomsbll19OcXExn/rUp7jpppt47rnnWLVqFVdeeSWLFy/mlFNOAeDCCy9k+vTpfOITn2DdunU88cQTfPnLX+b666/H63UXE6699lp27drFzTffzJYtW/jBD37AQw89xI033piL46abbuInP/kJDzzwAJs3b+a6664jFotx5ZVXFuS/ixBHk4rHaDuwFwDLchfbQkmTMX3jsSo+hKJ4qAyV5x8kkyCjaNw99pM8UrwQkLmNgGjSJKDHAVAUnblzH2DhyX+mrOyMAkcmxOhx3BvE3HLLLVx00UU0NTURjUb51a9+xfPPP88TTzxxxCSrrKyMcDjMZz/72X4nWd/5zndoaWk56iTrrrvu4uabb+aqq67i2Wef5aGHHuKxxx7LxXHTTTdxxRVXsGDBAhYuXMj3v/99mWSJUaF97x7sZALTsNCjPXh6DrKt9vBETQHFwPB58w+SifNExWmsKZqSuzQ56Bu8oMWI0x5N0ZvIcHLNGq6dfX/uuiSlhHAdOHCAyy+/nM7OTiorKzn99NNZuXIllZWVANxxxx2oqsqll15KKpViyZIl/OAHP8g9X9M0Hn30Ua677joWL15MMBjkiiuu4Otf/3runnHjxvHYY49x4403cuedd9LQ0MC9997LkiVLcvdcdtlltLe3c+utt9LS0sLcuXN5/PHH39KXU4hC6unsJKqZOA7sMUuYAJhGBa2176fI7U/NOVMGSCJkEjxXupDbSt8FPW41TLn0yhy1frvqAMu2tbOnPUq51z2sQdfDlJedXuDIhBh9jvsrcVtbG5/85Cc5dOgQxcXFzJ49myeeeIILLrgAkEmWEIMtk0igKQb+SBfl23bQEVIxLAPbPxlVb0RRdDy+AX71Mwniqtv4810VYf5lTDWziwInIHoxUkSS7pHKE0vd7XuGUYbf10BT4z8VMCohho7f/OY3eR/3+Xzcfffd3H333f3eM2bMGP7yl7/kHefss89mzZo1ee+54YYbuOGGG/LeI0Sh2LbNL37zIH2BGH1JjfM3PsvumjBkT26tLt3L5AsvoH5KWf6BMgm6sgdsjPF5+FBNGR+rG+A5YkSybYd///0GbDvFV0/9NrVBd4eOrocKHJkQo9NxT0rdd999eR+XSZYQgyuTTqGpBjU7dmBEu+kIlaNpNWhBN2kb9XZSWjnQIIlcL6kmn5d5YWn2KI6NbTtsbI6w9kAPAMVed5tFfd1lTJjwbwWMTAghxHBkmiZ92VP3qruTeOxM9hH3Y8y4xhZmn9PQ/wCZJOx6Dg6+RkJzq75nhvz827j++8yKkS2WNklbNjWBrlxCCqCi4rwCRiXE6CU1q0KMILFXW1BeieNTAyiZDFa2uXna68UD/HXKj9lbuokvBb949AEcB9IxSPeR8LtJKZ8qzajFsfvuU1u5+7mdNBQd5N8W/J6x4RYAdEOO3BZCCPH2ZTJuEkpNJfD0bGNrnduSoCfkoRjwzX5//gFe/B4s+zYAiYbLAAhIg/NRLZayAAh63ENYvN4aFp/yLJo2QHsLIcSgkKSUECOEnbLo/v121mm76PBGqDTNXFLK0txf9VqvyozxF7Fk7JKjD/LQJ2DznwFITHJXi+RkGvF2bD4UBeCCsa8yrWx77nowMLFQIQkhhBimnIxFy0/WAqDH+rBwE1SK42B5qsABf/EADc579rlfS8eRqJwBgF8anI9avYkM+7vdxualfvfvk66HJCElRAFJUkqIESJyqJU+J8kafTdKJo3HY5PxumXqCu4b7WWTlnL+mR/rf5DtT/NiyUn8rO79rC2eCcjETbw9vQl3gnfqeC8kobb2g9TXfYRweG5hAxNCCDHs9Gw5QLK1D7ygOu61ykgKxVNK2pgBafB6jPyDmEk6jGK+Pe/brPQ0QTwlC26j1B/WHOTGh9ZS4unmXWNXMbmsFQBNkzYVQhSSJKWEGCE6d+8lrZjgOBTv3U5bkc7hX3FFdZuU+2om9z+A44CZ4L/HXMnKkjm5y7W+ASZ7QgAvbGvnpy/tZsuh7Ak2ShwbCIfnUFx8UmGDE0IIMSztfGUdHgwcB7pMjWqgp3QGWvi9hNLuPYZPyz+ImeZPlefwC7MaTHe7Vu1AiSwxIq3c1YnjwAcn/4lTalflrnsMaXgvRCFJUkqIEcJKpjGx0Pb2Eu7uorvIj98qQg1UkdHcJJPPl6c02XQbUkd0d7XomoYKFhUX8a4K6QUkBnbXszt4ZU8nH5v6MGOL90OqE5CTbIQQQrxzmXgKDY1WJ0SXDdXswtaDaEBVuJOy6TOoaBzgfcZMEtVLATg5HOST9eUsrSwZ9NjF0HP4ZOCT6jLgQFnp6QQC46ir/0iBIxNidJOklBAjhJUyMRUL+kys7JY7s/gCNGMcKpBWk4SK/f0PkEkAkFTdxNXSyhJOKSka7LDFCNEdT1Ph7+TcphcBsG33ejAwvoBRCSGEGK527NjBsq6t2B4IdaaYt3810ZDC4Y8vH1j0AvqlHxp4IDNFUvUAMCvk50M1UhUz2vTE0zy5qZXtrX0A6GocLGhquory8rMKHJ0QQpJSQgxzdsKk94k9GJshhYlmvdHgXMHAUtI8OfV+Ov3NfMj/q/4HOpyUyjZ6lH4L4u2IJk2KDPfIbsMoY/q0b+P11hAKTS9wZEIIIYajTZs2kXRMUGDGnm2Ekr1EQyWg6ODYaMe6Bc9MkvAePlFY5jaj0Xee2MqvXt5HUI8xqaQFzekFQNNl8VWIoUCSUkIMc4mNnbz86sus1LeDBwKWhXU4oaQYpLUUe0s24tf9lPn6WR188suw7Ql3PNVtji4TNzGQvpTJf/7hdVojSRyzmTFlBwDweiqpqDi3wNEJIYQYrhzHIdXuVrXUHGilMxijM1gCgIKGrWZQKiflH2TlPdC2Cbp2kaw/HQBvdtFOjC4HuxMo2HzzjO8QMrohW82ta9JiQIihQJJSQgxzia4EB9QuUMDobkfztpFUsk0/FR3FgDvPuZNJJZMIGIG3DpCKwvL/JaoF2BecQEI7nJSSiZvI74Vt7Tyy5iBzKjfwX6f/JHddN6QPmRBCiHeub2s38T09oEE8ejB33QEUvQ4MYNG1/Q/QuRMe/2Lu28OtCaQKfHTqS5kEjbibkAICgfEUFU0lGJxQ4MiEECBJKSGGNduyWPfXP2OGLLpsPxUdHaBagIKCg6KGUPU05zblqVpJx0ioHk5Z+Cs6PaW5ywGZuIkBdMfdo48WNbQDoCg+vN5y6mqPoceHEEII0Y/1jy3HxAbHwcmWtXjC/4SiFqEoHnwBDZQ8i2cJN/nwr9P+gyerziKCu9VPFtxGl7Rpc7AnQXcsjU93D/TRtACLT3mqwJEJId5MklJCDGN93Z1k4jHMkIGxq5uiVBxHg8ZIiHjtBGKKB7Jvwv3KxGn1VOQSUlUenUXFRVQY8vIg+teXMmmNuEdrVxWZADQ1XsHEiTcXMiwhhBAjQNfezVjFXnDs3DVFDaEoDiWVBjPPHpt/gEycjKLxy6oLj7g8vSjPgS9iRHEch/fe9SJbWqIUe3qZWLofAE2TPlJCDDXyqVOIYSyTTKIpOqZj8cnVj/HCtAbSaLQ2fABVqwBA8Tr5B0nHc1v2Kj0660+bOdhhi2HuZy/t5uuPbsKjpphRvosSj7u1QtelN4MQQojjwHawFIvWTJA33ll0UF7nY1+8HIqq8j8/k8j1yAR4csFkKj06tV7PYEUshphkxmZLS5RxxXv494V3oCrufFjmKkIMPZKUEmIY64tEiBtg2Uk8tomZK0s36PW201y8g0mnVPY/QDoGkYPEsxM3vzQ3F8fgpR0dOA58auYvmF+9PnddekkJIYT4R23bto29wRR9SobxG7ZDEBQHFEUBJQ26d+BBMnES2dOENQVmFfnd54tRoy/lVnGPCR9AVRxU1YOul1Bfd1mBIxNC/D1JSgkxTLX/disPbXiUWHkSbyJORlOxs0klRTGIFr9O4NxeLpn3yaMPcGgd3Hehe1RyyUmANAAVxyaScCd6J9X1ggWBwDh8vgYqK84vcGRCCCGGuz/96U/0+S08HQcoU5qJ4kF13PmJ5UuDnmcLnpWBZ74Ge5cfcZqwJKRGn8NJqbAnA0BV1cXMmP7dQoYkhOiHJKWEGKZ6Xz1AzJ9ETcbx7N3CUzPHvfGgojO9aSGfOHtJ/wMcXE3cdvhV3SWsLp4BQEAqpUQeHX0pNjZHaIm4fcpUJwbAjBnfJxySbZ9CCCH+MYlomlhfHCwLb/tBogF3u13SZ2AAjs8Bzeh/gL3LYfn/umMFxwNSBT7a9MTT3PjgWvZ3JwAIed1DWaSXlBBDlySlhBiGHNPGyu6NtyN9RzQCzfhDeDHweAdYFcwkeKTqfL486XO5S6WGNijxiuHPcRze+78v0tyboDF0kBnlUXCiAOia9GcQQgjxjzvw8FYcbJTD8xrHYWKnyso5cwjFoXbMwvyn7iV7cYDPzfoGy8sXgiNV4KPNsm3tPLe1nabQfq6asYwZlQcA0HVJSgkxVElSSohhyEykMRULuyfN/NfXsaO2lJreJNVOAysbTkOJKXi8eVYS3UFo85QBMDng44zSIj5aV34CohfDUTxt0dybZErpDm4+2V2FJttD3zDChQtMCCHEiOA4Dta2g+ADbDcppaByYNKNNMTdexqrxucfxEzS7K3kobIzcu9REwPH0INKjBiRhLtd75OznmFc0ercda+3plAhCSEGIEkpIYahTCyJiYW/O+J2/wQi4Qn0lF1GqbujCn9ggBNmMoncqXtnlRVx26SGwQxZDHORpDvJawofAkDXi/H7GigtPQXDKC1kaEIIIUaAWE83luX2AbJtd26j4FZw60YPVWPHMunkARILmQRJ1U1CBTWVX84ez5xQYPCCFkNONNtLqsTrTojraj9McfF8qqvfXciwhBB5SFJKiGEmuq+TRx97jC6jA820sbK9ErpDQYqBQ6FdpMIRPnLaVfkHyiRIZCdu0m9B9CdlWvzvMzvY0dZHibeHccUtAFRXXczUqd8ocHRCCCFGikwyiZ2djmztDnMyQDYpVdW4jA/86yXHMMiRSalTSmTL1mixrTXKz17azZp9PQB4Nbe8rrrmvZSVLi5gZEKIgUhSSohhJN3cx2v3PMNWzy4UM0mR2UNXkVvtpOJWRl1Rv5Lx//IjNLWf/lCv/AQ2/RE6d5Co+Rgg/RZE/57b0s5dz+2g1NvNt8/4GrrqbqmQ6ighhBDHSywW495f/B8xfxx/X4zPvvpHVk6qR1HcuYxHH2CeYqZg99/g0FpSqjsf8sqC26jyP89s59H1h/jgpD/y4bFb8avuIpqhS4sBIYY6SUoJMYykmiNkFAuAUMshHCL0BrJJKcUtTw+f9s/9J6QAnv4abY7BTxouZWXJbEAqpUT/2vtSACxsiLgJKcUgFJxMVfXSAkcmhBBipDh06BCxeBwcB6O3k0i2D5STTUp5jQE+srzw3/DCdwBIFs8BwKcOcOCLGFG642l8WoKLxj2Tu6aqXny++gJGJYQ4FpKUEmIY2bNmNSYWtgOJdAIfUBmJEQzE2O2ZCjboddP6H8BxIB3lZ2Ov4n+bPp67XOGRlwLxVm2RJHs63J4Mk6vdayXFJzF/3q8LGJUQQoiRpmdTOwAl7Z1YkTY21VcAkNF1PEBowukDDLDX/VrSRKpuISCVUqNNX8rCrycBUBSdObN/TCAwHsMoKWxgQogBySdRIYaRTDSOiYWxrYvKWDdRv5eqmI/NdafgcUoA0D15qqRMt+qlSy8G4JTiIO+uKuHdlSWDHLkYbv62vZ1P3PcKmmIxvWw7NT53wq/roQJHJoQQYqSJrjwIHlDSCQA8GRNFsTBLpwPQMOHM/AOYSbYGxrDs5G+wpXwuHOrCK5VSo0LatImnTaKJDD7dnedqWpDy8rMKHJkQ4lhJUkqIYcTJ2JiKzYSWvfQWu5OtfY0X4DHmggOO4uAN5Pm1Nt3JXlJzy+LPKw9zdUPlYIcthqH1B3oBuGjc83xg4h9z13XpzSCEEOI42vziMsDtV2haaQAqUtWkyheT1CZiWaAZA1Q9ZZJ8asZt7Eg3waEuAEJankU6MSJ09KW48I4X6IqlGBPez4zyXQDoujS4F2I4kaSUEMOA2ZFg5X1P83J8Dwktw2TLwlbcCVpvUZgAMPWUGsbMqsAXNPofKHM4KeX2ofJJabvoRySRAeC0se72PZ+vHr+/iYb6jxUyLCGEECPM9hUvEVDGA2BZKTSgvXIemm8yWKAoUFTqzT+ImeSQx11ku7A8TFjXuDK7BVCMXK8f7KUrlmZa2Tb+bcHduetS1S3E8CJJKSGGgeT2brb07SGqJdGiPXSW2KR0dwVQww/A/IvGUlIdOPoAqSisfxB69rnjae5zfJqUtosjHepN8PTmNlbt7QbAlz1SecyYa2mo/2ghQxNCCDECWSkTE5sOO0Cx7aWMOGRP0DvvzA7KT7+IolJf/kHMFEnNfc63pzRQ6/UMdthiCIgmTQBOaeoDQNeLCfjH0NB4RSHDEkK8TZKUEmIYSEVTmNlT9/yH9hL3H65wstGdYlDA8OYpU3/1Pnj6K7lvk3rQHUsqpcTf+Y9HXufZLW3Mq1rHtbNXEVTcXlJypLIQQojjLZVK0ZW20NUeggfXML6nnZ6gj8MfUSZNtdGa8lS9mGlI9pBJx7EU9zlSBT467GrvY8NBt9VAyOv2kqqsvJDp075VyLCEEO+AJKWEGAY2PvMcptdio1nNdLyEyTChtZudc/vQkm51lJ4vKRVtwUTjfQvvY61vDFZ2659M3MTfO9DtVkZdMfP3FOndues+X0OhQhJCCDFCvfjii+xXFXBaaehpJpPteYmigWOjBsv6f3IyAnctgL5WktobleIytxn5Vu/r5pIfLAdAVzOEDHfuIr2khBieJCklxDCQiUcxvTYL1q/G64lgaSotY67Ck2zM3WN48kzC0n0c8FWzyj8udymgqcwM+QczbDEMuaXwDkVGHzgwfvxNFAWnEA7PKXRoQgghRphdGw8CEG5rJa2HSGc/mSjo6DooE8/p/8md26GvFQfo04K5yz45dW/E294aBeA9E57lfeP/iKI4AOia9JISYjiSpJQQw4BqK5h2hvdue5EnZrqJpYynFDX7Kxxu8KBqeZJSmTiJbHPzMkPjuZOnEtI1AvmeI0aVX768l3X7e+joS2GoGXDcRueNDVfIyqMQQojjrm9LJ2pbFHQIxNPEANW2MXQb9Go0rwe0/Ie3dOshzj/5AQ56ygHwqwqKIkmpke5wL6nTGrfnElKq6qe0dFEhwxJCvEOSlBJiCOvZ3spPH/o50YoYmpnBAazsCqCi6ARLXuPSf72WYHk/K0O2Bdufgo5tJFS3JD6oaVR780zyxKjTHk3xH4+8jkdN8/l591Ad6Mg+oqK9afVZCCGEOF7a/rYFFBvLUYg7bmJhfJef5PhqOhQDzRhg4SyTYEPR5FxCCuCMUqmUGQ36Um5Syqe5JwTPnnUP5eVno6oyvxViOJKklBBD2PYn1xPJxNxG5tEe9lQUu2cjA6DjnTSPUGWeBtTbn4RffwSAeMlJgDQ3F2/VGXMbhE6v2MfUsh2566GiabLiLIQQ4rhzbJv969ZgltqsNhuY5eymEtg7dimaNhYY4AAXgEycZLYH1awiPw/NnUCJPsBzxLD253XN/NdfNqNYrZzdsB6f2gWAx1MpCSkhhjFJSgkxhPW0twEQTlg4rXvZXF8BgAOgGBi+Ad6Ae/YD0Fk8ib1TLgXAr0mSQRwpknBXHGvD7teioqlMm3o7weCkQoYlhBBihMqkUyQVm7SSoaSri9JkL6huLykPbVRPnsC0M5v6H6BjBzSveVMVuEqpIR9rRrpH1hzkUG+SLyx44IhFNM+bquWEEMOPvHoLMYQl4nEyPoXu9iglgGo7FJl+Wqun4UfD5/XkHyATZ1npAi6f9f+wsyfuSaWUOGxPR4x/fXgdzT0JAIqzRyp7vdWEw7MLGZoQQogR7Lnnn2dFuVvlctWaP7K1poqE1wBFo1x/lvfe8B7w9LN9vG0L/MDtHZSqXgLIiXujRV+2l9SEMnfbXmnpqZSVnorf35jvaUKIIU6SUkIMUS3Nh+gyEkTbHC5bt4yVE+tRlSDp6mspzd4TDg3QgDoTZ21oKraioinuSuIHqkvzP0eMGk9sbGHV3m4uHPMsX5j7DEGP29xcTq8RQggxmJqbmwHQHJVwMomtvtGaoDLQB9lteUfVma2Q0f0kSycC4JMq8FEhmu0lZahJsGHypC9TVDSlwFEJIf5RkpQSYgiKx+P85L57sQyLor6+XHNzW3Uro5zQHsLjG1l42tT8A2XiudL2f6qr4JuTGwY1bjG89CbcJNRF418lbERz16VKSgghxGBJ9aWJHugCx2Fqu8Oe8nIyh08DVjTKi4pBy/MRxUwCsH/s+Rw4+QbY1yaVUiOY4zjcv3wP+7sSHOyOZy+6X+UwFiFGBklKCTHEOI5Dx6p9WJaF6igETLCyW+8yuoEH+MD7plJ/+qn9D9K2GVb/AnY9TyJ0NgB+TSZs4g227eSSUn7d3b43a+YPCIWmSxm8EEKIQbPlnlWopoqWiLKvcxtUlOQeUxQf+vlfyj9AJsEDte/li/X/Cvvc3pteSUqNWKv39fC1P28iaMT42NSHCXv6wHHbDWhaoMDRCSGOB0lKCTHEpHf30vmXneAFv6VgWDE6Qn4AFMVtbG40zsw/yDO3wdbHAIgXvwuQXlLiDXc+vZ3vP7ONSn8bsyva0BS3SioUmoHfL9V0QgghBkcmlSS+bxNWiU1HxksTYFgamjEZx9+EogbQ/QMkGjIJ1oXcLVt+VaHU0HlPVcmgxy4Koz3qJqDOGbOZRbWrc9d1vQRdl3YDQowEkpQSYoixImlMLPebQzux1E72VRQDoOJuxdM9Axx5nOgio2hsmHU1B8pOBwcCUiklsh7f2EJAi/H1xd/C0MzcdcMoLmBUQgghRrp4bw+qo9BiG2zNVNAE2J5atPBFHO4KVVztzz+ImSCuuffcMr6WTzdWDWrMorCiSbequ6nE/VpSsoj6uo8QDs9CVQc4hVoIMSxIUkqIIWbvmg1Yik3K0dAyaQKA1/KS9hajeU8GQPcMkGDKxPmXKf/OI6Xng+Neku174rBIIkO5vwtDM1EUg1BoOqWlp8qKoxBCiEFj2zar1qzlQLCXHkVhbNRtdk62Cvy8iX+m9opvUlzZT6XUnhfhif+A3gPEx90EQEAbYJFODFt9KZPb/7KZVXu7UbAJed1eYqGiadTUvLfA0QkhjidJSgkxxLRs2Yyh1dG2D06K9JLyqtjFS/EaYwE3IeUv8uQfJJNgW3AMAFUenQafh/PKw4McuRjqXj/Yy5aWKF2xNGNCbh+pQGAsJy/4fYEjE0IIMdIdOHCAF1asBB94e1NcuOslNtdX4GSTUo3lXQT7S0gBrPklHFoLQFzzAVIFPpI9s7mVX768j8ml27nr3B/j091tfLou81khRhpJSgkxhGxcu4FXvd04SoTT9qwjVWwCHhTFwCHNBe8JUjH3JAzvACuDmQTJ7Kl7P54xllNKigY/eDGk9SYyXPLD5WRMk3ePf4IppTsBpDpKCCHECZFIuIshPlunItWZO1n4cL/MAVsTZGJEtCA/XvRttvtmguX2lBIj0+HDWM4euyeXkFIUDyUlCwoZlhBiEEhSSoghIrU3worfP09ctQALj5UmoRxeAdRJ60mmnDUPivpJMNk2vPoT6D0A8c5cUkqOSRYArZEkadNmatle3j/xr7nrPm9dAaMSQggxWhxYeQCAoniadG8r+w5XcCvuxxF96gX5B8gk+F31Bfy3MYvDrTcrPdJTaKSKJt2elzUh9392Y+NVTBh/E5o2QM8xIcSwI0kpIYaI9P4oGdw34Em9RcSK0qT1bEJJMXAMoChPM8+9L8Ffb859m8gmpbyyiihw+0gBjCl1Vxt9vgYaG66gqvriQoYlhBBiFGhZuwV1aycxw6C9u53xZpxkNqGkqMUoqoI67yP5B8kk6NZrAJhd5OeT9RXMDw9wUp8Ydjr6UjyxsYWVuzoB8GluLymPp0ISUkKMUJKUEmKIsFMWJjYAzS1/Qw25v54OoCh+VN3KP0C8w/0arocZHyDpcVcgpcH56NbZl+KOp7exvbUPBZsyv7t9IhicSFPTVQWOTgghxGjQ8vo2LMWm1Q5RZLcAoHlmonomoepNhMp9KMoAi2iZBEmPu+C2qCTIx+vKBztsUQDf+usWfrvqACdVrePz816iXHf/vuiatKIQYqSSpJQQQ8SeNesxsWi3g3jQ8GLR0Blh59QS/Kaf6vAAq0OZBCYafxjzYdqmfYbkTvdUG9m+N7r9YW0z/7dyH/Or1/DD836BobnVeIZeXODIhBBCjBZWwsTExrahJBUBQNXr0YxxnHfaAeqXfrj/J+94BrY/Cd27SdUuAsArc5sRq7nHXTy7fOoTlPsO5K77/Y2FCkkIMcgkKSXEENDX3UXbji2YVTbl6w7gN1LYmkK88hKK7VoAvN4B+iZk4jxXdjI3lL0fsgkpFSiSSqlRrSvmbtc7d+yuXEJKUTRKy04tZFhCCCFGCcuyaO+L0KWkmb9tFSWxA3QV+XO9pCZPSqGW+fof4PfXQNzdypWQfpkjXizlzlXKAimwYfz4mygOz6W0dHGBIxNCDBZJSglRYH19ffzovp8Sre7DtOHyrc/w5KxxgEKsaCyK7W7DK853TDJAJkGLtxKAeq/B4pIiTikpokgf4DQbMaJFEtlGoWF3++fECV+koeHjaJr04RBCCDH4XnzxRVb27gEdGpKHcqfuuR9DTNTslryjchyId7n/fMpnSBadCRnwSb/MESuaTUopThyA6qqLCQTGFTIkIcQgk6SUEAW2f+seon19oIBiOSiArb7R4Jy6F3nfh2+gZkI/263ScVhxN2x/krg6BoCFxUHumj7mxPwAYkj69Sv7uGfZTtqjbqWUR02AAx5PpSSkhBBCnBBWymT3S9sBCJju3CatZRfLFB2PkgItT1LKSgMOP6t7P8tqrmRdPANk8EkV+IjSlzK56v5XOdidIKBs4oz6Q5BNSml6qMDRCSEGmySlhCiw7pX7AahMaNj7NvDErPFvPKjo6LPH0zC1rP8BNv8ZnvsGAPGmKQAEZLI26v1ixV72d0X53Ek/ojF0kEB2cqfr0ihUCCHEidH8wkFIpEAD/57N9Po9uccUxUBTMmDk2bqXSZBWdL488bNY3fHc5dqBWhqIYeW1PV28sruLsCfCV8/6PqriZB9RpcG5EKOAJKWEKCDbtuhtbQcVrGg7GTsO2ZJ02ygFdLxvmsAdVbbPApXTiI8/HxxJSgmIJDPUBVuYWbEld01RdIqKphQwKiGEEKNJrK0bE5tOy08oEwVAJ4RtlKFo1ehGDMad1f8AZpK45sPK9p/61uQGqjw6F5bLYR0jSV92y97JjRlUxUFRfZSXnU5Z2WloWp6kpRBiRJCklBAF1LZ7F8lUAvyQNONoQEnSi1W8lKS/HkVRmFQ1Mf8gmRibguO5euq3aVZKwHEIaNJHarRKmzbd8TSRRIZav7uq7PM1Mnv2PXg9lXg8coS2EEKIE2Pf+hexPBZ/S49lLH8DQCv5JLribtkrnTAW/CX9D5BJkMw2N1eBK+rKURTpJzXS9CWz/S9D7teAv4k5s39UyJCEECeQJKWEKBDHcXjupZfY7+0gYnpwuk3CKqT8DTiBsWiAZqjMmzQz/0DpOE+Vn8outRhst9x5ZpF/8H8AMeQkMxbnfXcZB3viXND0PFPLtwHg9VYSKppa4OiEEEKMNsl0grRXoSgefdNVHVXZwfuvPYfK6eOP/sS+NrjvAug9QNJTBYBPUyUhNcLs74pz34u7WXegmyp/O5X+FkBaDQgx2khSSogC6erqYuuuPaBC+GCUWZ072FNZAtnVw7PmbGb8x67BX5Rn+55lQrqPmOYmoT5YXcot42up9w2w5U+MSAe6ExzsSTCheA8fmfpI7rrXW1PAqIQQQoxGzz//PKuLYwB8Ye2D7KirBgcURUNVe6idXAFGP5XdB16F7j0AJLKVUn5VWhOMNPf+bRcPrNjLhyc/wg1nPJe7Ln2khBhdJCklRIGk02kAPCmTUF8Lh0rcN+C04cEAKuYtIBDOk1x66X/g6a+AYxOf8FkA6n0eSUiNYtFkBoBxZUkAvN5a6uo+TG3NBwoZlhBCiFFo7+bNADi2QlnCfV9ScCudirwJMPKcBGu693c0ncOas78HeyP4VKmSGmk6Y+5c+KTaZgBUNYCuB6mueV8hwxJCnGCSlBKiAOx4hrbfupM1b28XaXrBcH8dTU8pBmA0zMg/yPYnwbEBiBluQisgq4ijVjxt0hZNAVDscyd5RcFJjB/3L4UMSwghxCjUvSdCz6EYKA6T2232lbunCKuam1iqUzKg5VlEyySJqX4Wj/kS0b0RQA5xGYkONzgv85tgw+xZd1NefmaBoxJCnGiSlBKiAFpXbCN5KAoeUGwLByjvy9AXCmHq0wDQPQM0K88k2O2r57tn3MNyyiBtEtRlwjYa/fiFnfzXX7ZQX9TMeyesZWbZIQA06ckghBCiADoe2IiOihaL0NK1HUpCABiqO7fRxp8C+fpDmQlavOVEVR8KMN7v5aqGyhMQuTgRoskMrx+M0NLrVsRpJNyverCQYQkhCkSSUkIUwM6X16ISIOOotJoqVUCk/DS0wOkY2Xs8vgGSUmaSB+rey2/TYcBdaarzGvmfI0akF7Z1AHDF9F8zoWRv7rrHU1GokIQQQoxiajyO6bHZkw4zHTBsA8U7E3yTANBrBjh8w0zlTt2r9Oi8dMq0QY5YnEgf+fFKNjZHWFC9ho9M2YXidAHSS0qI0UqSUkKcYLZt05OKg2KzyyqnxOykCnBUHzgWNRUxaufPxB8aoDeUmSSarYR5V0WYD9WUcWF58eD/AGLI6Um42/XGlyXAhqqqpfh8dTQ2fLLAkQkhhBht+ro6UWybg46XZgumA7ZRg1F0Tu6eisY8yYdMElLRXFLKJ60JRhTHcdjWGsWnJfnn2Q+gKjY4AAqGp7zQ4QkhCkCSUkKcYI8//jivKQfBgAWbmqnp3UZLSRGgozp9XHrhDjjr/QMPlEnmTqRZXFLE0sqSwQxbDEGPrT/E/ct3s721DwDFcb9OGH8TgcDYAkYmhBBitEonE2iqTgKFha2bQAMUd6Ht4rJvUn7To4Qr/Ed/8pr/gz/9CzgWiZKTAElKjTQp0yZjOYR9MVTFRlEMxjRdTVFoBl6p8BZiVJKklBAnWFtrGwD+SJSS+EEi/mxFlKJj6ykw+pmoHRbvgngnZGIkNJ87lkzYRqUfLtvB6wd7uXzK72kMN4MTB0DXwwWOTAghxGjkOA5r128gYrQSt02WtG5ia10FjurOdaoDrQT6S0gB7HoeHAuAZLa/kE+TU/dGij0dMVbs6gQgaLj9pAyjmAkT/q2QYQkhCkySUkKcQMm9EWK7u8CxMA5uoyeoAO5ETVH82D4Lpr27/wE6dsAPTgE7A5CrlPLLiTSjUk88Q22wlfPHLMtdM4xSSUoJIYQoiP379/PCypdBh7idwsk2M1eyHzl0zwAJJjNJp17M/5x5D68XTYTeuCy8jRAZy+b9P3iJeDLGxeOeZ3xJCwC6HipwZEKIQpOklBAn0IaHXsXCRrFMHBxwwKtPJeMpQTXGEijToHRs/wO0vg52hjubPsH64umsL54JSKXUaBVJZKj2xQDweqqZNOnfCYVmoary0i6EEOLEe/3PmwEIJDPM3beZbTVl7gNKNik1/tT8A5gpfl99Pj+y6qDXrf6t9Mh72kgQTZr0xDMsrl3LpZMezV33eKoKGJUQYiiQV3khTqCuPeuwym0UxwZARUUJX8zhluYTJzXkHyAT54C3itvHXX3EZTl1b/TIWDYfvGcFGw/24tcj1AZbAfD6aqiuzlNlJ4QQQgwy78FeTEOhL2pTbJmQrZRS9TpUTUH94I/yD5BJ0KPXATA/HOA9lSW8p6pkkKMWJ0I06Vb5VwTc/pfB4GQqKs6jpvo9hQxLCDEESFJKiBNIsR1MxaLFDDIBUNAAUI2XufzLn6O4aoB+UukYvdky55Cm8uUJddR6DU4KBwY5cjFU7O2MsW5/DydVruczc+9DVRxA+kgJIYQorEh7OygOG60asDs4HVCNiRiBC1FUX//Nzd/MTJEy3KW6BeEg1zZJFc1I0B1Lsy17KEuxNwVAaekiJkovKSEEkpQS4oR54YUX2FQSJ2ZbzF+zmp5y0Gx3252q91JSfQyJpXSMeLa5eZmhc0W9nFIy2kSSJgBzqvejKg6KYqBpQamSEkIIUVCRllZMLGKOh7DtNitXFD+K6uOCM5qpu/hDAw9iJkl63X6ZPumXOSKsP9DDJT9YTom3naXjVjGpdCsAuia9pIQQLklKCXECpFIpnn32WTBs/Hu3Ei0xATVXKaUErPwDdO+Fh6+Azl3EA5MACMhkbdTp7Euxs81daQx50wCMHXMd48d/rpBhCSGEEHR39dCrxGnsOMjp+56nKxwExZ3nTJyYRC319v/k526HTX+Arl0kQxcC4FPl1L2RYN2BXkzb4fIpjzC3akPuuscjC6tCCJckpYQ4AbY9twcANZVAT8awsgmlztIQFYAnVJR/gO1PQvMatgbGsLJ4NgBBSUqNKs9tbeOq+1/FcRzCnijF3iggp9YIIYQovD27d/O7554GHeYdeo3iZIauMICO4pioHl/+AV68Ayx3W1cyWxHuk0NcRoTDvaTGlrqN68vLzyFUNJWamg8UMiwhxBAiSSkhTgD7b7vBAN12V/08pkJYPxPFOxFMmDznw/kHyMTZ66vh7AUP5I5XLtK0wQ5bDCFr9vXgOHDVzF9zWt3K3HVJSgkhhCi0lq3bANAdFY+Zxj5c5aRoaGoa9DxJKdsGK8Vvqy7gR7NuZq/tBdvBK5VSw5rjOBzoTnCwOwGAR3O/jmn6NKWlCwsZmhBiiJGklBCDrLv5kDvhAtTsV0sP0Vc6H6/bHoia2gFKmNNx9vnqcBQFn6ows8jPpxqk7Hk0iSTclcYFtbsBUBQNj6eSkhKZ2AkhhCgc27LZ/konAPXJAKaqEPW5zcoVdAwlA55g/wNkK6R+3PBBNpgewD3AY3wgz3Y/MeT9vye28oPnd1Lm6+LM+i14lV5AFtOEEG8lSSkhBllfaxsWNo4DG5LFzAMUxf3VGzt2DXPefyX1k0vzD5KJk1DdydnUoJ9H508e5KjFUHGwJ8Ezm1tZu78HAF1xt+2dsugJAoFxBYxMCCGEgJ7nD1CestlpQM+BldgBAzDcBxUDzWPAuLP6H8BMApDMznO+MqGOs8pCTC86htP6xJB1eN7yz7N/wcSSnbnrhlFcoIiEEEOVJKWEGEQ9PT384blniXsS6L0JPr5mGZsaKzg8Waup7qBhaln/A1gZOLjabfyZnaxJ48/R5ebfruOlHR1cMvFRzjipGQ23J4OuhwscmRBCCAGJQ91Y2LyYHsNF5msAqHoDKEE0z2T04grw5Dlh2HQrpdKqW121oDgoCakRIJZytwNMKIuCDaWliykrPQ2fr67AkQkhhhpJSgkxiHbu3ElnpBcci5KOfSS87q+ck62UCngHKE1/7CZY/XMAEtVLAPBLg/NR5WB3gtpgK0vHP5W7puvF6LqsNAohhCgsx7bZ/doKrCIf3Yk35jRG8L0oaprymlJmndeYf5C/S0p5ZPFtROjLJqUUJwbA1Cm3SYW3EOKoJCklxCBq/ds+AMqaW8hkouyuKgHA0j0YQGjq+fkHaHcbhxKqI1k+BZDTaEabvpRJieFO6DyeSiaMv4lweA6qKi/fQgghCss0M9gZEwubL6/4GbuasokpRcPwPMlHPv8lKKk/+pMdBzq2QdsmAFKqW0XuUSQpNVw5jsNvVx2guSdJPNnBuOJWcNwKb016SQkh+iGfaoQYJH3NvTjtfe5OvYx74kgglcE0bBzfXADCTfPzD2Im+FH9h3hhxjXs14ohnpTte6OAbTss29ZOR1+KSMKkrtT9++P11lBXN8BJjUIIIcQJ0rlqFV1Ghl4lztRkO7toyD6ikQ6nQfP0/+Q1/wd/uiH37eFKKa8svg1bq/d184Xfrieox/h/Z30Fr5bOPaZrRQWMTAgxlElSSohB8sID92Eq5QBkTDepoAUvwA7Ny92je7S8YyRMi69O+wxOSgXcRqD1vjwTPDEiPL+tjavuf40yXxefnPYotcFWQE6sEUIIMbT85qmn6SlxD3OZ7liAe3aeoqjUOKn8San2Le5Xbxj8paQ1t8pKtu8NX60RdyvmlMoIXi2Ng4rfV0t5+Tlomq/A0QkhhipJSgkxSKLtbeiBEjKOStoBD5DyV3N4/a9qbBh/kZF3jD4HHMV9xh1TG/GrKheUS4PrkW5Ph1vqvmTcayyuey133e9r6O8pQgghxAkXtW0Aiu0gmvuPKIq74DY1kwAtzzzHTGGj8NSiW2mb+gFSWw8A4JWk1LDVl3T7SE2pcv8OFAUncMqixwsZkhBiGJCklBCDxDQdLDK0dPUwMxPHVjVAR7ejfOoLJWgT56MM0DchYbkzPL8Cl9eWn4CoxVDQm8gAMKXK/f9fUX4uVVXvoqLivEKGJYQQQhwhm4fivPRsMmTnNNmklKZk8ldKWSmeK1vIFcrJkE1IKYBftu8NO47jsLO9jx3tfQCEvO62PU0LFjIsIcQwIUkpIQbBs88+y/YyP3CIM3e+RK+/DFsFFAONFLo/CP0lpJIR+N3VEGkmnna37Pll1XBUWL2vm0///DW6Yu5kLqC72z5LShdRW3tpIUMTQgghjmDbNs6b/tnOzlWUbIW3hglqvkqpNC2eCgCqPDrzwgFOLSmiSM/f2kAMPT9+YRe3/3ULlf52lo5bzbhgFwCaFihwZEKI4UCSUkIcZ47jsOE1t0+Ct/UAHUUVuQSUgo4/YEHN7P4H2L0Mtj+BjUJfeDoAfk0maKPBsq3tdPSluXjck1zQtIyw5ialDF22bAohhBha4n1u/yAsk9WtfyA1rsb9PpupUnUF8lU9WanciXsLi4PcO3PcIEYrBtPrzREAPj79D8ws35C77jHKChWSEGIYOe71sbfffjsnn3wyoVCIqqoq3v/+97N169Yj7jn77LNRFOWIP9dee+0R9+zbt4+lS5cSCASoqqriC1/4AqZpHnHP888/z7x58/B6vUycOJH777//LfHcfffdjB07Fp/Px6JFi3jllVeO948sxBHantyL1ucmE0KRvlxCylAdUIPolY2g5ylnT/Wx3d/EjNMf490n/QCAgKwajgqRpLtt7+IJrxL2RgETUCkKTS9oXEIIIcTf2/bj1QA4sRg9qYMkPG6CSVHdRIR20uX5BzDTcuLeCBHNzl+mVrqJyoryc2ls+CfGjfuXQoYlhBgmjvs7wLJly7j++utZuXIlTz31FJlMhgsvvJBYLHbEfddccw2HDh3K/fnOd76Te8yyLJYuXUo6nWb58uU88MAD3H///dx66625e3bv3s3SpUs555xzWLt2LZ///Oe5+uqreeKJJ3L3PPjgg9x000185StfYfXq1cyZM4clS5bQ1tZ2vH9sIXK6Xt2KiU3M8ZDMnkQzJlJDRckiFEVDNwb4tcvEeKV4Ft1v2od/ZqmcujaSOY7DwZ4ErRF3u6ZHjQIwZ/a9nH76CsKhmYUMTwghhHgLo60bx4F1yWr3e6cIT9GHMYrc7eahxe/LP4CVIq24iSw5cW94smyH9Qd6aOl15y+a4n7eGzPmn5k8+T8JBicUMjwhxDBx3LfvPf74kScs3H///VRVVbFq1SrOPPPM3PVAIEBNTc1Rx3jyySfZtGkTTz/9NNXV1cydO5fbbruNL37xi3z1q1/F4/Fwzz33MG7cOL773e8CMG3aNF588UXuuOMOlixZAsD3vvc9rrnmGq688koA7rnnHh577DF++tOf8qUvfel4/+hCEO3soK+tBbPU4qXMWN5tv4YXONRwEapTCoA3mP/EPdIxEqp7LPLFFcV8f1oTYamUGtG++Lv1PPTaARbXvsJn565Fwz19Lxyeg8cjpe9CCCGGHhsbI5niU+ufYlt9KSpeFKOB6srlnHXN5yivLzr6E1//Paz9JRxcRarKTVx5Bjj4RQxNX//zRh5YsZcppdtZMnYfit0NgK7LYqoQ4tgNeq1sb28vAGVlR36w+uUvf0lFRQUzZ87klltuIR6P5x5bsWIFs2bNorq6OndtyZIlRCIRNm7cmLvn/PPPP2LMJUuWsGLFCgDS6TSrVq064h5VVTn//PNz9whxvO3bu4fNgW6SpHnfpsfw2W4Zs6LolOibmXVWPae8b/zRn5zshcf/HdY/TEJzk1IhXZOE1Cjw2h53EvfRqb9jbtXrAOh6MYZRXMiwhBBCiP4pCsW9vXjtTPZ7d75SXNRMZVOepMSzt8GOpyHRTTrbU0q27w1Pm1ui+LQkN83/IR+e/Edw3M9zhlFa4MiEEMPJoDY6t22bz3/+85x22mnMnPnG9pOPfvSjjBkzhrq6OtavX88Xv/hFtm7dyu9//3sAWlpajkhIAbnvW1pa8t4TiURIJBJ0d3djWdZR79myZctR402lUqRSqdz3kUjkHf7kYrRa9tIK2nw9KJbJJVtW89c5h8uWdcaVLOPUy6/v/8mb/ggr7wYgMWYBAH5NJmmjQSRpomATMNxeZJMmfZmy0lNRFElICiGEGFocx2HrsmXs1TrBdrCzVU59AZ0QoGsDVD2l3S1ezjn/STp4BkRl+95wFUuZhDxRdNVEUQyqq99NODwbr7eq0KEJIYaRQU1KXX/99bz++uu8+OKLR1z/9Kc/nfvnWbNmUVtby3nnncfOnTuZMKFwe49vv/12vva1rxXs3y+GN8dx6OtxE5lNMQ/dQd8bDyo69YEBEgwJt1qG2rkkJl0EGfDLJG3EchyHra1ROvvSRBIZfHoy91hD/UdRs1s4hRBCiKHk0P79/Ob558EDYRK5pJST3YBhDJSUMpP8rO79/Kd9PqbbQlGSUsNUX8rEn52/eIwyZkz/7wJHJIQYjgYtKXXDDTfw6KOP8sILL9DQ0JD33kWLFgGwY8cOJkyYQE1NzVtOyWttbQXI9aGqqanJXXvzPeFwGL/fj6ZpaJp21Hv662V1yy23cNNNN+W+j0QiNDY2HsNPKwRsuGMVjqmgxXrpOridlRPr3/SohnHKlfkHyCR4uOpCvjHxRnqtIOBIpdQItnxnJx+792UCepzzm16k1NsDgKp6JCElhBBiyOrt6ADA4+h4eKNSSs1+rKjTBuidaaZ5qmwxh8/U9igKJ4eDeZ8iho5oMsM//2IVzT0JxgeeYmqDuwNFkz5SQoh36Lh/4nUchxtuuIFHHnmEZ599lnHjxg34nLVr1wJQW1sLwOLFi9mwYcMRp+Q99dRThMNhpk+fnrvnmWeeOWKcp556isWLFwPg8XiYP3/+EffYts0zzzyTu+fveb1ewuHwEX+EOBaJaARn/24yjkVfwgFAdRRUx4fum4OiqOgTTsk/SCbOb6svpFUNkLTdMWYV+Qc7dFEg21rd5eEl45Zz6aRHObfJrSj1GBWFDEsIIYTIy0ynASh1gjSYJTjZIqewFgDAo+f5eOE4YCZzvaT+35QGNp8xk3PKZc49XLyyu4vlOztJJPbw8WkPsqB6HYBs2RNCvGPHvVLq+uuv51e/+hV//OMfCYVCuR5QxcXF+P1+du7cya9+9SsuvvhiysvLWb9+PTfeeCNnnnkms2fPBuDCCy9k+vTpfOITn+A73/kOLS0tfPnLX+b666/H63UrCK699lruuusubr75Zq666iqeffZZHnroIR577LFcLDfddBNXXHEFCxYsYOHChXz/+98nFovlTuMT4njp2LcHVVHY5xTRbdpUAYp3BkbwQgAUBYIlA1S/pOPENDcJ9Y1J9SytLKbW6xnkyEWh9CbcxrBz69yvxcXzKA6fREXF+fmeJoQQQhSUlXHft1RHxXIyKIe371k26KDmS0pZGcDJJaXKDJ2gJv0Th5NI0v3/P6/BBkDTS2hs+Dg11e8pZFhCiGHsuCelfvjDHwJw9tlnH3H9Zz/7Gf/0T/+Ex+Ph6aefziWIGhsbufTSS/nyl7+cu1fTNB599FGuu+46Fi9eTDAY5IorruDrX/967p5x48bx2GOPceONN3LnnXfS0NDAvffey5IlS3L3XHbZZbS3t3PrrbfS0tLC3Llzefzxx9/S/FyIf0Q8HmfZy68QD0SIWTrTena4DyhuQumcmasou/jTBIv7SUq99jN47r8g2UtsrlvFNzngk4TUCLWzvY9bfreBne0RmkL7CRlu4r6q6mKaGiVhLoQQYmjLpNxKKTvWycFEM1RkT4p1cxRo/jxb8Sz3QKG04ialDEV6SQ03fUl342VtyAIg4G9kwvgbCxmSEGKYO+5JKcdx8j7e2NjIsmXLBhxnzJgx/OUvf8l7z9lnn82aNWvy3nPDDTdwww03DPjvE+Kd2rJlCzv2HQAdGpoPMqd9N3sqS0DRUewM08e3wfji/gdY/yDE3K2qhyulgtJLasT687pmXtnTxcXjnuTSSY/mrht6SeGCEkIIIY7R+hc6QIVMpJmMY4LuVjqZah0aoC74xNGf+OIdsPERgFyllFeV+c5wsbUlyt3P7WB7aycLqtfQGDwIgK4XFTgyIcRwN6in7wkxGsRjCQDKzSDxVC8Jw/21UjBAS4F3gMaP6RjPli7kX+b8Fx2OO0kLSFJqxDq8bW9Ro3vaomGUEghMoLz8jEKGJYQQQgwo0xmnybTZZ0DMAg+geeejeaajaBXohkqoqenoT37u9jcqpXS3/5RUSg0fP31xN39a18z5Tc9z+dTf567LopoQ4h8lSSkh/gGRve20/XUbpqHQ1bKfomSc1pLsipGiE/QqMO+T+QfJxHm84vxcQqrSo9Pkl617I1EyY9ETd5NSpT53Yj5p4i3U1l5ayLCEEEKIY9K2aRe24hDa005l2y46wgEUrRxVr+T952+n9MIr8QWPcvqebecSUlzyE9LRRkhbeFVJSg0XPQl32+aipiQAPt9YQqGpNI25ppBhCSFGAElKCfEP2PrH51FVhZ1WBY2pvbjpKC+KWoRqjMMorYLSsfkHSceJqz4A/qWpihvH1uCXSqkR5xuPbuLeF3dTX9TMuY3b8SoHwQFdlxOHhBBCDA+ZWBIbh9q2FjLZfJKCu32vtiaNGu5nUc1Kv/HPk5eQXnUAsPBIUmrY6Eu5vaQaSxxIQ339hxk75p8LHJUQYiSQpJQQ/4BMXxILmwQGHtudcBlF70HT66mqdph1YT8l7ACtG+HQekj2ktDcJui1Po8kpEaoZ7e4fcM+d9KPKPd3Q7b9nmGUFjAqIYQQ4tiZKRMbG822SOuHs1IaDjaKnqfK20rhANdM/xrPv7KXPsvtim5IUmrIa4smWbuvh5aeGA1FBzFoB0DXpJeUEOL4kE+/QrxDlmXRnU4QURKcum05dTH3TVpRdDQnwoc+ZjF1ce3Rn5yOw73nwx+uhUyMpOompfwyORuxIkkTBZtyfw8AlZUXMmbMtRQXn1TYwIQQQ8K3vvUtFEXh85//fO5aMpnk+uuvp7y8nKKiIi699FJaW1uPeN6+fftYunQpgUCAqqoqvvCFL2Ca5hH3PP/888ybNw+v18vEiRO5//773/Lvv/vuuxk7diw+n49FixbxyiuvDMaPKYYxx7KIb9+JhQ1OEjvXD0oDxULRj7Jt7zAzTVz182jl2bmEVLmh0ygnDQ95H/nRSj79i1Vc1PA/fO3Ub0P6NQA0Pc8pi0II8TZIUkqId+ixxx7jVZrZq7Uztms7Vi6hZKBoKdB9/T850QWZOKDAxPNJlE8GwCen0IxYfakMPj3J4RKpmTO+z8QJX0BRtMIGJoQouFdffZUf/ehHzJ49+4jrN954I3/+8595+OGHWbZsGc3NzVxyySW5xy3LYunSpaTTaZYvX84DDzzA/fffz6233pq7Z/fu3SxdupRzzjmHtWvX8vnPf56rr76aJ554InfPgw8+yE033cRXvvIVVq9ezZw5c1iyZAltbW2D/8OLYeNP993H7/u2s9rYja31vJGUUlRQTFDzJKWsFKk3Pb580TReXTydoC7vgUOZbTvs7owBMLG0GQBdLyVUNIOy0lMLGZoQYgSRT8BCvAORPRH2rdoJQDCeJmEYmIe33Sk6YS0Bhr//ATIJbBQ+M+OrnDnpm6xWKwA5dW+k2dHWx8JvPs2kf3+Us+qf4iNT3KOwVdWLmq2OE0KMbn19fXzsYx/jJz/5CaWlb2zn7e3t5b777uN73/se5557LvPnz+dnP/sZy5cvZ+XKlQA8+eSTbNq0if/7v/9j7ty5XHTRRdx2223cfffdpNPulvJ77rmHcePG8d3vfpdp06Zxww038MEPfpA77rgj9+/63ve+xzXXXMOVV17J9OnTueeeewgEAvz0pz89sf8xxJC2/U1JSs2yjqiU8jkmaHmqnswUKdV9XFdgfMArc55hIJoycbLtBkp87mvKyQseZuHCP+H1VhUwMiHESCLvBkK8A4ee24fj2GBZaPs20hEuws5WOSmKF0NJgzdPA+tMnJ3+Rn5fcTbb4kmStvuOP84viYqRZPnODtqiKcYXb+fDk//I6fUvA+D1VBc4MiHEUHH99dezdOlSzj///COur1q1ikwmc8T1qVOn0tTUxIoVKwBYsWIFs2bNorr6jdeUJUuWEIlE2LhxY+6evx97yZIluTHS6TSrVq064h5VVTn//PNz9/y9VCpFJBI54o8Y+TKWBcDSxFws9Y3FOEXR0JQMaPkqpTKks5VSHqkKHxZe2d3FH9ceBMCrg2W5FVOaHipkWEKIEUganQvxDvQc2ImJxYZUJac6Fjigeiai6nUoagC9rA6qpvU/QDpOXHO395UbOj+aMYZ6r4dxAUlKjSTRpNvX5dzJ7kutz9dATc37qKg4r5BhCSGGiN/85jesXr2aV1999S2PtbS04PF4KCkpOeJ6dXU1LS0tuXvenJA6/Pjhx/LdE4lESCQSdHd3Y1nWUe/ZsmXLUeO+/fbb+drXvnbsP6gY9mzbJmU7oMDO9hc5VFz2pkc1VCzQjjKH2fkc/PZKSEZI+RsA8CrSP3Oo23Cglw//aAWaYvG5k35CY6iVw+0HdE16SQkhji9JSgnxDkRbdhMvt9ltlnIqoKLhKXovkCFQ7GHKkpPhaJOuTAJW/xwOrsolpUp0jdNLZdVpJLFsh82HIuxs6wOgzJ8EIBSawYTxNxUyNCHEELF//34+97nP8dRTT+Hz5elBOATdcsst3HTTG69lkUiExsbGAkYkBsPKVct59i9/pKa7FHP/q9TTiql4aFbcOYthGWi+II5Wiap2Qt1RDu7Y8TQkugFy2/e8Uik15O3J9pGaVtHC7MpNuet+fxOqOrxer4QQQ58kpYR4m9avX8/6kih9qFy57Vekgxqq406wAv7nufLbt/f/5I1/gL/eDECidKH7HOmpMOJ87c8b+fmKvZzV8BJfOeVFao04ALqeZ0unEGJUWbVqFW1tbcybNy93zbIsXnjhBe666y6eeOIJ0uk0PT09R1RLtba2UlNTA0BNTc1bTsk7fDrfm+/5+xP7WltbCYfD+P1+NE1D07Sj3nN4jL/n9XrxeqWydyRLpVI88acnwNJJHFxNXUcLu6oO9zxzt/GpZVeCWoQCeGvHQ3HDWwcy3UUZTrme9Ox/hq3deOSk4SHvcKX3nHp3y6Xf18SMGXcQDE5EkUo3IcRxJp+GhXibXnj6aSKGhWWmOOmQuz1Cyf4q+bxmvqdCrB2AROUMDk37IAB+SUqNOJua3f4qS8c/Q1P4IIbirhIHgxMKGZYQYgg577zz2LBhA2vXrs39WbBgAR/72Mdy/2wYBs8880zuOVu3bmXfvn0sXrwYgMWLF7Nhw4YjTsl76qmnCIfDTJ8+PXfPm8c4fM/hMTweD/Pnzz/iHtu2eeaZZ3L3iNHnxd9txVEUPO3NJIm/KSEFmvckvP5F+LSNTJ6jMuvsBs74yJSjD2Qm6dZDXO87k1ua3QSVV5JSQ5ZlOzy3pY0VuzoBCHvd5uYeTznFxXPR9aJChieEGKGkUkqIt6F9cyd9PXHAZkxXkoPZbXe2R0UDxut2/gEyCdqMMk6f9n0iilvG7pcy9hHn8ApjeSANNkyb+i2CwQmEw3MLG5gQYsgIhULMnDnziGvBYJDy8vLc9U996lPcdNNNlJWVEQ6H+exnP8vixYs55ZRTALjwwguZPn06n/jEJ/jOd75DS0sLX/7yl7n++utzlUzXXnstd911FzfffDNXXXUVzz77LA899BCPPfZY7t970003ccUVV7BgwQIWLlzI97//fWKxGFdeeeUJ+q8hhhLLNOl9dRkUg2a672eaUoFjVKB7ZqMaDZx6yUROurBp4MHMFM+UncLvnBqIJgCo9+Y5pU8U1DObW/n0L1ZRZET5wMRlTAi6i6maJKOEEINIklJCHCPHcej7xWYwFPTeLpLdezhQ7m7H8qs6JuAZtyj/IJk4m4rGvykhpXBxZfEgRy5OlN0dMTY299LelwIcsN2eDGXlZ+DzHn0bjBBC9OeOO+5AVVUuvfRSUqkUS5Ys4Qc/+EHucU3TePTRR7nuuutYvHgxwWCQK664gq9//eu5e8aNG8djjz3GjTfeyJ133klDQwP33nsvS5Ysyd1z2WWX0d7ezq233kpLSwtz587l8ccff0vzczE6tOzcxnjvONbTieK4za0V/zwMr5ss1T0q9VNKjm0wM5nroTkn5Oe6xirpozmE7e92E4fvmbiS8xufzF33eqoKFZIQYhSQpJQQx8iMpzBsh5ij0JwKMx3QnAB4J5D2zkIFjImn5h8kkyCRbRC5IBzg0fmTBz1ucWKkTIv33vUifck0l0/9HfVFhzjcd0PXZAIuhBjY888/f8T3Pp+Pu+++m7vvvrvf54wZM4a//OUvecc9++yzWbNmTd57brjhBm644YZjjlWMXGYyhaMoqB0xAl3dJL0KChoZ9nHd5Um0U69BN7RjHCxFWnXfA8f6vby/unSAJ4hCiiYzAEytcr+WlCykrPRUamsvLWRYQogRTpJSQhyj1m3bANhjh8lY2cadvkkYgfMA0A2VqrH9NLJOdLvHIrdtIpFdMZReUiNLZ1+aaNJkTPgg5zX9LXfd46lA0wIFjEwIIYQ4NlZvL60//yUZ76nU7tqPpiRJev2gaGSMNF6/BseSkIp1wOu/g84dpALuwS7S4HzochyHXR0x9ne5lVI+3Z3nVlScx5imqwsZmhBiFJCklBDHKBVLoGFhWQ4X7VlBR6kXMMCxuXLaNzA+8wyGp5+J2qM3wsZHAEjULAWkl9RI05twVxXrQikAfN46Jkz4AsXFc+WkGiGEEMPCjj8/yuMBP7a2ngalFyf3/qWR8qZBP8bK3+e/Ba/+BIB00WkAeBWZ9wxVtz26mZ++tJuqQBvnNW2mSNsDgH6s/7+FEOIfIEkpIY5BS0sLDz73FGmfiS+SJmAlAS+KYgBpAn4H+ktIAfTswwHWN13MlpoLAAhIpdSIYNkOn/31atbu66HU282YYvdYdZ+/gZqa9xY4OiGEEOLYHerpwdbc+YzqpLEOz1UUjfFWArTyYxsolj0Rsn4B6bFnAGBIpdSQteFgDwDXzf45TeF9ueuGUVKYgIQQo4okpYQ4Bq/85TXSlomSSVMZ2U5nkd99QNGxjBQEK/IPkElyT8OH+dq463OXJCk1MmxrjfKXDS0sqnmVTy/6Re66rvezlVMIIYQYoqzsaXsTrGp0SyVivFEpVWqnQTOOcSC3eph5nyBdcgbsa5Pte0PY4VODm0piYEN5+dkEAxMoLzurwJEJIUYDSUoJMQA7baHs7MbRIdyVpCiaIOZzT89TlCClXi8suT3/IGaCbSVjASgzNOq8Hj5YXTbIkYsT4fC2vVlVzQCoqg/DKKGm5n2FDEsIIYR42w4npaxUHxlDIZ2tmlIUDU3JgOY5toFMdys7moe0bQPgla3sQ1Zfyv3/jhMHYMrkr+D3NxUwIiHEaCJJKSEG0LljL7Ziscasp8RMMgdQ9UZUzxRUz2R8lWVQOcApeplErsH5jWNquKaxcvADF4Ouoy/FrvYYAKU+tyno+HGfY8yYTxcyLCGEEOIdMbNJqe4DK7CDb0pAKQYaGShuPLaBrDS/rr6I23qmEO3pBMAjvTSHlFjK5MYH19ISSdLSm0TBBsdtdC4HtAghTiRJSgkxgK49ezGx6XCCVNjuZE3VmzCMqcyZ7zBpyQAJKXCTUqoXkFP3RorHX2/hul+uYnx4F5dNWUtdcAcAulFc4MiEEEKIt2/Tk3+jucOCoINtpQFQjfEoWgWKWoF39hKom3tsg1lp/lR1Dl2OBjgowOyQf7BCF+/A8p2dPLmpFZ+W4OJxz1Hm68s9pmnBAkYmhBhtJCklRB7pdJrtu3fTrkZYtHctJ3Wspz1cBIqObvVx2jnFMKaf3kG2Db/6EOxbCem+XKWUX3oqjAhr9nXjOHDFjAepLzqUu+71VhcwKiGEEOKd6XvpEGW+Wg44u3LXjOBSFLWHBRePY+YZ9cc+mJUmqbqVVt+YVM/7qkqo9BxjPypxQkSTbvuBD0zbxPl1j+eua1oRquorVFhCiFFIklJC5PHqM8/wWvs+UGFR82pM/fCvjIaipkHP86bd1wI7nialGGwtmkSn192yJ5VSI0MkO5mrDkYBqK//KMHgJMpKTy9kWEIIIcQ7oloKFjavpBo4jzXZqxqq1syi94x/e4OZaVLZpFSjzyMJqSHocB+pupDbRyoUmkl5+dmUlS5Gkf5fQogTSJJSQuSxf7vbvLrYDuCxLNKHJ1WKTsibACNPKXrG3Zf/obl38kp4Ru6yX3oqDGur9nbz53XNrNzVhYKNpriTuXFjP4vXW1Xg6IQQQoi3L/rsc9g9EZxQmhue/w2bx4bAAUVRUVTr2Adq3QTduyHRTVpxk1JeqRAfUnriaf76egsvbOsAIKC7PTHLSk9lwvgbCxmaEGKUkqSUEP3oXNmM1eqA7hBo3svBsmLMbJWToujoShqKG/ofwHTf5DcHxgJQ6dEZ6/OyoFj26Q9nX/nT67x+MMLHpz3ITbNWu41BAV2XXlJCCCGGpxf/8AdeLS8l1NvDmfEuNhNCwU0m2X772AbpPQA/PBVwAHKVUl5ZjBtSvv/0du5fvocppdv4zJy/UetzWxDoeqjAkQkhRitJSgnRj8TadlTFZncyRCi6Cow3fl0UtQy9oRFCNf0PkE1KHZ6UPT5/MvW+YzxKWQxZHdE04HBWwwpUxZ2oFxVNRdO8hQ1MCCGEeIf2+rzYCiiWjZ2tbDI1BS/gOdapS89+wHFbG9TMJukrBcArW8GGlOYet5L/Y9OfpD64LXfd58uz0CqEEINIklJCHIVlZmjbsZmkz2Z9pprZAGh4Qh8EJYiqlVA2tjL/IJkkNgpp1d3yJyuFI0M0mcGnpXIJqYULHyMYeJu9NoQQQoghxHbc6qY56UbsbBJJz36doB1jVspKAZAsm8TaDz5C34bdYFp4pZfmkBJNur2kasIZsKCp8VMUF8+jouK8AkcmhBitJCklxFH0tLZgZzIkvQ5ffuUB9tT7UNBQ9XqCgd/y7hu/TXl90dGf7DjQtQs6tpFS32js6ZOeCsNWxrL549pmumIpDKWT8aUHAVAUD0XBKdIQVAghxLBmApgm26PrMMe5VeCHPyQYTfOOcZA0AJ9puIa/rNmRuyzzn6GhJ57m9YMRWiNuJb+G2xOzuvrdhMOzCxmaEGKUk6SUEEex54knOODJ0GdFOSnWzh4aUXBX+rTwISoa8+y7f+H/wXPfBCCtvZG4kkqp4evx11v4t4fX8f/Zu+/wKKvsgePfd97pKZNOGoQWelFAqooozYK4q6KLsrCWlRV0XVZF3VUUcV1d0FWxF3R/C9a1IKhIESnSpEsVCAQIgUBIz/T7++NNBiIhBAQmhPN5njwhb7lzZ5KQM+fee25KRC7/uvRpTJoxomw2R0lCSgghxDnt8N4SPBYX5rIDFAcKoGJTF6vZQQDQY1Nr11DASEpttzUAIM1moasrgiYOWd5eF/z2lR/YcbCUZq4d9Gm4B4KFgNSSEkKEnySlhPgFn8/HV7t2E4jQ8JUFQ9PY/bqOFWhkjCceX+4647M1Ek+EsT7fBJgld3HOqqy/cEHKIUyaQmHFYU8kNWVImHsmhBBCnDpPWRkbX/gSs92KO2gMuFhUNFr0lfj1JDTAVNvldxXL93ya8fbi5TYZdI85zqxycVYFgoodB0txmMt58KLJmE3+ynr0slGLECLsJCklxC+43W4CFYmoJH/UkdoKFQXLm3KCrZH9HnbbGjDhkjc4EJEGBaXYTCaZUXMOK3L7AOiQaoweJyZcQscOb4SzS0IIIcSvtmP1CvTyMgK2IGt9KfQgi6A5Fos5DY0AtggzDdvE1a6xiuV73oqklFXinjqj1GsMqEZbizGb/GiahcTEfrhcnbBaa/n9FUKIM0SSUkL8gt9v/OE2KY3O3ozQLjRaRZCln2jKk9/Npw368YUvBgpKAUizW2q+R9RJ6/YU8N+lu1i56zAaQSItxowpsy5T3YUQQpz7ynNz0TUzfr+fgduWUhgDVMQ7w5L+RNT4bTXeX0XFTCm/pgNgkVpSdUZJRXHzCIvxPbJa42nf7qVwdkkIIUIkKSXELwQCxkwoXcFBdxb+KKdxomJau66fKCnlodTsAKBPXBS/aRBLd1fEGeuvOHMmfruVBVvzGNrqEx65cEHouG6W5QhCCCHOffn/+x+xidfiyj9AaulBCmMSUBWbtNR60zxvGcx6GLKXGV9KUqpOefm7bczfcgCAGIeRnNJ1iUuFEHWHJKWE+IUtH20GwFx0mO3F2yAxBgCFUahTj29YcwN+Nx6rsdSvXaSDIckyLfpclVdsjChenL4+dEzTdGJju4WrS0IIIcRp4Xa7Wd8glWBkNpZS75GZ4RhJJb227xKyFsDKd0Nf+kLL92SDl3A7XOrlX7O2EGs7zOgLPqFhdD4Auu4Mc8+EEOIISUoJcZRgIIgj+zBBG2z0RNMBMGEHSzq67UIArNc9W3Mjfg9uzUhKyY575yalFAdLvBSUGfUxbHoZKOh60Zc4HBmYzTLCKIQQ4ty2a9cuCl0xgJcY5QvV0KQyKWVStWvIW2J8TmgBvcfiy7dBUMlMqTqgoNyoidk9dS0XJh0ZYHM6MsLVJSGEOIYkpYQ4StDrI6gBxV76/byc/fF2LKY0tMhrSYrNJvOK5kQnHaee0PpP4OfZULgHT2xlUkoCsnPRg5+s4+OVe2gXv5F2jfaDMmZMORwNJSElhBCiXvD5jISFK2An05eETzNmiqNVzpTSa9dQwBjAIaYRtL8B73drACl0XhcUV2zUEu804pj4+N6kpf6O2Nju4eyWEEJUIUkpIY4ScPsIakGSDxwgyl/GfuxU/pq0bbyWNn1HVH+jUvDFKPC7AXDrxlI/u8yUOict2XGIJOcB/tL5tdAxk8kqNRiEEELUGz6PkUyyFBWw3bOFQKKr4oyOCR+auZZvE/weFLDVmkpZURnBisMyUyp88oo9PPbFT+w8VAZAtM2IT6Mi25KY2C+cXRNCiGNIUkqICh6Ph29ffZk8PQItGAhNY3fbzDgAm6WGEcOAF/xuykw2Vvf+B/vMHcArM6XOVUXlPtKchwEwm6OJi7uEhPjL0KQ+hhBCiHpg7+aN7PloJTggWJKHDx9UDKSZzInomh90a+0a83t4Jf1mnky8HVZuDR2WmVLh882GXL7+KZfMmO08c8n/EWsvAsBsiQ5zz4QQ4liSlBKiwroFC1jpLQe9nBi94EhtBc3YhcZmreHXxVcOwF1tHmd2sAtUzGS313rrGlEX7MgrIb/US4nHT4SrFIDIiJa0b/dimHsmhBBCnD7Z69dhM0eiFLiDCh0w23uh29qgmaKItu2DHqNq11jAw6aIpgBEm01E6TqXxkURWdvlf+K0K6qoJXVNiy0kOPIrjmpERbULX6eEEOI4JCklRAV3sVGoMzYYgSMIgYqklI6RlIqw2I5/c8WyvSxHOgCN7FYaO6z0iTtO/SlR5yzYmsfv31lOtLWICT1fIL4iiDNbXCe4UwghhDi3+MvdBLCQG4gk1qdIBDTdhSlYxsDrY0nucSNE13amlBePybh2bJMUbk9PPHMdF7VS6vEDkBBhfG6YPoKMjJHYbPK9EULUPZKUEqKC32+MKiWoKAiYUBVL78wVSSndUsOvS2UtKZORuHqtbQadoqX+0Llkc64xtb1D4k4aROSFjsfEdAlXl4QQQojTLlhaSv7Hn2HucANttm4mqiybwxEOQEdTRTRt06x2CSml4NB2KNqL19QckFqa4XagyM3aPYVszi0GwKYb8anD0VASUkKIOkuSUkJUCPiM0aSAp5SyoBfNYQdAqYpdaGqqKeUz/uh7TUYCS4Kyc09RufH9v7iZkViMi+1FmzaTJIgTQghRr3h378YXUAQ1PzGle/BW1r/UdEqcHtAttWto4USYNwEAT/t/AWCVWpph9dtXf2DP4XKSnAe4MGkfTlMuALoeGeaeCSHE8UlSSgggGFRs3+IBExTl/YRHU+AwRgmV5gRAb32c3UrWTIOtswBC09clKDt3ZB0s5fPVe1n0cy7NXFnEWrMAsNqSJCElhBCi3lm9dSs/XXQhaLtoioegVpmEMhNnKQC9hnIFR8v9yfhsjcRtNQpo22RQLmw8/gB7Dpdj192M7/ksFpM3dM5skXISQoi6S5JSQgCH1uWSFIS9GpT7fZgAk6UZJr0BujUTs03HktH52BvL8uHzuwEFgLcyKSU7zpwzJszYyNzNB/hN8xlc0+bb0HGLWWpJCSGEqH+y9+8HTQOlCAD+ik1ZNM1MWsBd+133AhVJjwFP4aUTFJVhl0G5sCl2GzO+Y2yFWExeNM1MdHQHbLZk4mJ7hbl3QghxfJKUEgI4uG4rARTxm/diLz9AicOKbrsQszmJXpf4aNCrB7qlmtE/TxGgwGRBXfIAboxATpbvnTtyi4yllxekGIXNLdYkHPZUkpOvC2OvhBBCiDMj4K8ofr33MPmRR9e/1NE1H5hrn5TKN0cz25/E/oBRl1NmiofHtgPFLNh6EIB4pwcAmy2ZLp0/Dme3hBCiViQpJQTgK/cQJEjjfdnkxBnHNE0HUzkdO1mgyXFmzfiNP/yHnMlkdRqNWvUzIEHZuaRyZDEjNkjADS0z/0aDBteEuVdCCCHE6Xdg5w7y8vYD4PUWAmBSVpS1AZqeYCSlajtTyu/hsWaj+aQsFTCSUhF6DfU3xRlR7g0wePJiSr0BuiX/SNfUrQCYzdFh7pkQQtSOJKWEAJQvQJAg5mCQoFY5y0knaPaDXsMuen4PhXokXS94k9KKhBRITYVzwfvLs1m56zAufS2/bb4J5d8FSBAnhBCi/pr3+luYTS6wlKNUEAA9/GCYSAABAABJREFUahC6JQOAaH3/SSzf85FrSwCgQ5SD7q5IOkU7z0i/xfEdLPFQ6g2QFrmPP3b4T+i41Rofxl4JIUTtSVJKnPd+njePddt+pCDaSZRWRFCLNU5oOprmr3kau9/DXnsSpboDE5Bis3BFfDQOXZJSdVlBmZdHPluPUoqX+ryF01JO0JgwhdWWFN7OCSGEEGeIszSCQpcdt/JSXpGU0tDRtB1cE/N/pMUdAFstB2cCntAGL3/JaMCViTFnqNeiJpUzvtNd5QBYLLE0aHAtqSk3hrNbQghRa5KUEuc1pRSfLFiAJwagmEzlJhhaemfGocprHjEMeHCbjF1q0uxWVvRoc4Z7LE6HgyVelIIoWwCnxQji0tN/T4SzOZERLcPcOyGEEOLM0IKKoBZklrcVg9RGXACajsl0iEZD74HmV4Bey7cHAd9Ruw7LYFw45Ba62bivCIAYu7GE0uloTMsWj4WzW0IIcVIkKSXOa36/H0/Fv1v4UzEHggQrds7T0IlU3pqTUn43blNlcXOpI3UuKCz3sSOvBIB0V6DiqIkWmY+hya6JQggh6qnyDRtQbi8BHPx+9QzMzsN4LWagYmZ4WmdwxNa+Qb8nFAPZJAY6637YdpChby0DQNf8xNiNjVt0c2Q4uyWEECdNklLivObxeEL/dubuZm2jjCMnNR1d81eflNr1A8x/Gor34zEZ09xlx726b8XOfH73xlI0PNza+jOaxRo77pnNUZKQEkIIUa+VzJ2LCRNBFJfuXc3iFmnGCU0nYPOB2XbiRnzl8J/rIH87lB3C00x2HQ6XDTnGDKnfZn7N1U2+Dh0365KUEkKcWyQpJc47u4p28eTSJwmU+EjOz8CGCV1pZJduDF1jMwOaA5MWBFfDYxtZ/gZkLQDAE9/LuEdGCeu8VbsO4w8qLkzaTJ+Gi0PHHY5qvsdCCCFEPZJTXs6hCI1yvFgCvtDMcNCxmE8wM7zSvrWwe2noS29FCQOJgc6+Eo9RS+rSRluOOmoiNq5neDokhBCnSJJS4rzi8/n48N9v0iiQTtSe/bTbNJ0diQl4zHZ8Fb8NUdbrCEYmEFAm9IwuEFHN7iXeUuNz1z/iTr0KDsuOe+eCwnKj3kL/VnYAIiNb0zB9OLGxEsAJIYSovw4fPsxn5eUQo7DmbGZxi0YEKjZl0TSd5v4T1NCs5DeWiM3JuI7/th/DoRIFSmKgcKhMSllMRm3MCy54jxhXJ3RddkAUQpxbJCklzisLv1xPWdCM7cBugiX7Wdcwvcp5zRSHL6IpKOPr2PS46hvylbMmsiV3R9zIgSI7EJRRwjrsQJGb177fwcKf8wCItBrLNiMiMklNld1phBBC1G9rvp8LgO71YSvKp8xmMb62OEFzYMNXu6SUz0hKPZt8A+uKjWDJrEG8Rd5SnC1zN+3n9QU72JFnDJCatTIAbNZESUgJIc5J8hdEnDd8HjcHFi4BF1hLS486o6Hb2qBbOxLX2E1mx1IatbkY3WImIf046/L9br6N78mOoBUwtlRuF+k4489BnJppy7N5Z3EW7RM28GTPz0k2VQRy5lpuey2EEEKco4rzD7J+xixIT8MZ1AEwBcGlX4I/oQM+txmd49TQ/KWKmVJlFcv2RjVK4qoEF/FWeUtxtry+YAfLs/L5TfMZNHHtQqcYMOpjCiHEuUj+gojzRtbSH8lwpLKZPDSlUIAl8gZ0S6PQNVfe1o241IgTN+Zz47EYwduQ5Fj+nNGApo5aFAgVYXGwxJgZNbjFKlIj94eOR0a2DFeXhBBCiLPCU1JCm7heLGInZiz4ATQL5TEXgZFjwmU5ALVZguc3/p56TMZMq6sTXHRy1SJuEqdNUbmPWNthrmn6beiYrkdisRxndr8QQtRxkpQS5w1fcTl+Alh2F2ApLcZrMaFpOh7zVm4a3JCIjn2ISarFtOeyfPCW4Ik0klKpNivNnPYz3HvxaxSVG3UXkqP8oKBpk/tITBpIhLN5mHsmhBBCnFl+nw+9YmZTuSeABUAzElAXRnxKU9syGhw1YFNzY0YWy6cZbyGsUrrgrCv1+omwGEv2zOZoWrZ4gsio1ui6xKJCiHOTJKXEeaFwyRI2fvQR/kYXkbl9M3mxACbAjNeWT1pGU6hNQmr2Y7D4BQA8CUZSSgKyuuu9H3byf0t3cbCogIzoHCxaPiiIimpHZERmuLsnhBBCnHF+nxelgb80QJcfvmVtk0Q0jGV8DRy7SW7dBFrfe4JGPDD/6dDOw96KpJRFCpyfFUoplmfls7/YQ0GpjwYOIzlotcaTnHxtmHsnhBC/jiSlxHlh+fz5bGiaBuTQgUKCWoxxQtMxWb1gruXSu52LQv/0OBIA2XGmLntr0Q5255fzZM9njGV7RvkvzBapJSWEEOL8UDR/PkqLx364BHvAW3G0orZUVALc8vaJG9kxHxY9H/qyMill1WRg7mxYlX2Ym95YisXkpWfqCpq6dgLGsj0hhDjXSVJKnBdKfD4AooIOLMEgwdDsJp1O3pLaJ6X8FcHcrZ/i8TSDAwWy614dVljmw6z5QnWkbLZkIpzNiI5qF+aeCSGEEGeev7iYrV98SVnn36CULxT/eC06FkA31zKGcRcZn+OaQfc/4S2zgJLZ4mfLrkPGcr3LM1YzJPPD0HGrJTZcXRJCiNNGklLivOAPBEGDpoFENKUIVIzsaZoZh/LWbscZAL8bBeRip9AXAJCkVB0VDCpKPH6cZk/oWM8e32MyyX97Qgghzg/Z27ezplt3CO7B6i3mUMVOwVbNiHv02k72DlT8LY1vjrroDrzz1xrtSAx0VpR4jNqY7ZKN74PT2ZyYmC6kpf0unN0SQojTQt6difOCL+ADXWf3rm/xpSYddUbHrHnBVsttdAMe7mv5EB/ujoCKLXitmizfq0u25BbzhynLyS/zElRgNxt1F0wmhySkhBBCnDfKS4r54u1XIT4F5/4cdO8hdiQZM2tMlUmp2s6UqhiUW2XPYP/BwtBhiyzfO+PcvgD5pcZMfafFiGkSE/vSvNkD4eyWEEKcNvIOTdR7P81YwGGfEy1Ygs9XEjqumdNAc2Bu2gPia7kLm9/Limhj6ZdF02hgM9M9RrZCrksWbM0jp9BNm7jN3NH+/3BajFFFs1nqLgghhDh/5O3MwuuuKIjtCxAAItw+PFYdW0QX/OpkklJe5sdexO/iboGfdoYOS13NM+u/S3fx2Bc/YTWV0yFhBy7LHgDMei0HU4UQ4hwgSSlR75UvyCHSFstBn1EPwaR0LLH3opmKadQ6nuZDekBtR/r8btwV2yrP6JxJx6ha7Ngnzqoit1E/7Ia223HZikPHXa4Lw9UlIYQQ4qwLlnrpmHAFS9mBphQAKqoP5siu+I0v0S21TCoFPOyypwIQY9Zp5rRxaWwUjlqv/xOnYv6WPIIKbms3lc4N1oWOy4YtQoj6RJJSol5TSmEJmgmoIOuKEugJaEpD0zRsUesYdO91J9dgwIu7ov6U1JKqewrLfBwsMWZGRdnKAWjceBSpKTdit6eFs2tCCCHEWRXM92MyWYwvlLH9rM8agw44HX4SAmuJiSytXWN+L96KtvrERfFq28anv8PiGJUDbRekFEEQIiIycdgbkpjQN8w9E0KI00eSUqJeyxo7llyVibskj78snc6yzDRMGKN6ZkstGyncA1OugpL9FTOljKSUQ6as1ynPfrOZV+ZvJ8l5gD4NNxNh2gWAw9EIh6NhmHsnhBBCnF3KGyBIEO9BL1rhYbBCZeg//MYdmL6dAObra27EWwY7voPcdXhMxpIxq8Q/Z1xhmY9F2w6y97AxwKZrRvKwTZuJsoOwEKLekaSUqNdmeb3sj9lL/J5cVMXMJqXpAGgRtQyqspdCgZHgUIDbZAfALkFZnbJo20EA7u74Dg2jckLHrZb4cHVJCCGECAulFCVLlxMwJdJk+3aUxYMPG2g6SgUwffeEceGJdh+eNwGWvgyAJ2M4IDPFz4aHP1vHV+tzibYW0bnBdggaJSiklpQQoj6SpJSo14ptRv0nW0AjWFE3qtRuwgU0sNhq14jfKBJa0uQK1lz+L4LbjDpFdgnK6pSicmOKe8PoQlAQH9+HCGdT4uJ6hblnQgghxNnl3bED98bNBNvFY9L34dOMATUNnaApAL4y48Lk9jU3VJhtfI5vjjehFSBJqbNh1yHj+zO269skO7OMUVHAYnGFsVdCCHFmSFJK1GtBzQTBABHuADmxxu5rMUpDAckxqbVrxG/UKPptyh9Zt+1I4WzZcaZu2JBTyMacIg6VeDFpAVAVU9xbP4PVKrOkhBBCnH9KDh8mOzGKg54sAlYrflNFyK+ZsWg+6PYn6P4niM2ouaGAMeBDr/vwRF0Oe/Jk+d5ZUOLxA5ASeRAVhOjojsTHXYrFEhPejgkhxBkgSSlRb5Xku/GbrVgKD5Ib3AexxpRnXbPgB/TM3rVrqCIptc0cB0Bjh5UB8S7ssuNM2JV4/Fz/6g94fH6uaTqLlIj9oXNms0xxF0IIcX5a/NNPbEiPxLFrM2aLPXRcMzmx4YPo1BMnpCAUA+VoTg75jESJzJQ6cwrKvGQdLKWgzAcoVNCYMdW+/SvYbcnh7ZwQQpwhkpQS9VJ5STEb/zkH5dDR/MYon1lFoGxN8Vo7YuLktkEG8Fb8unx2YXNSbCeowSDOioPFHty+IM1i9nBd869Dx63WREwm+R4JIYQ4/wSKvRzONmYNWwLGyq+GhwrJ7dgJrTQanYNgrmUJg4CPfzS5kxcLmgGHAbBpMih3Jrh9AS6f9D35pV4ALCYfEADArEeGsWdCCHFmSVJK1Es/fTcbuy+Ax67I9ifSkRyUPROL83LASEglNqzlTBq/hyAa/oogzCLBWJ1ROb09NdpIHNpsyTRsOILY2B7h7JYQQggRNps/nYvfFwQdbErHDaQUlFIYm4K3FEya/8QFzisFvKxytQaMGVLxFjOXxctM5DMhr9hDfqmX1Mhc/tRxKjH2stA5XXeGsWdCCHFmSVJK1EuFa9eQrF2IVuKlb9Zy8mJtgA4qyPDM8VhHz8Nqr+WPv9+NV7OEvpRp63VHZVIq2mbMhnM4GpHR6M5wdkkIIYQIqz3rNxBwGHGL218CQE7KxQSKmgKgczJJKQ+eipnHr7bJ4KrEmNPeX2Eo9RoxTa+0DaRG7Aodj4hogSYDokKIekySUqJeOrh8OY6WbUjJ2YfTXw7YQDOjNB+R9nKoTUIqdz1MHQIl+/GZjkxzt2iSlAq3cm+AG177gZ/3lxBpKSbJaSwp0PWIMPdMCCGECLMgBLQgmVu3ctjjwWPROdCgK6aiBADspmIwN6hdWwEfHpOR4JINXs6s0oqBtiibMfu7QYNBNEwfTkREi3B2SwghzjhJSol6Z/v27Wzu1J3NbCaecoIVM5s0dAK6r/ajgzvmQ3EOQGiUEMAqM6XCbuO+QjbkFNEjZTl3tP9v6LhZklJCCCHOYyoYBF+AABqt129kSfPK4tg6enw5nWyraOb5EPR/1K7BgDcUA8lM8TMjr9jDl2tz2Lrf2OE5wuIGwOlsist1YTi7JoQQZ4UkpUS9sz/HSCTpyoQeDBKsnPKs6UQpD+iWGu4+it8ICmj7W7x9/wlr9mHWwCQzpcKusNxYrndR6m4ANE1H1yNITBoYzm4JIYQQYZX75JOoMgjEOtGDXoKVIYtmIoX/0TX4P7BQ8wCd3wv/uw3ys+DwLrxNK5NSMlPqTJj07RY+WLGbJq6dPNb9I1IiDwKyi7AQ4vwhSSlR7/g8xrTnhmV2AgFFgbNy6Z0Zi3YSM6UqtkEujEghzxwF7MMqAVlYlXr8zFy3j6VZhwBw2coByMx8lIbpw8LZNSGEECLsluUdZGuDeNxaGeagIhgaSNNJ85UYCSlbNCS3O34jOath05ehLz0VcZPMFD8z9hYYscx1LdaTEb0ndDxSlu0JIc4TkpQS9Urutp/Z991WsEBJ3kY8WhnYjWBKM9nRNe9JJKXc/CtjBJMcQ+DHrQBYZZZUWL23ZCfPfrOFJtG7GNVxNinOnQBYzK7wdkwIIYQIM6UUa+PjUBoQCGBSoI5KSjnxw4B/QJfbwOI4fkM+Y9e34riW7Og3kbI8FwSULN87Qyo3bWmTooMb0tOGkZ7+eyIimoa5Z0IIcXZIUkrUKxtmzsWqGYGWN+AFwGRpicncAJOlOXbtZ2jUvXaN+T0sjulU5dBViZL8CKecitHEG1otoFXMutBxhzMjXF0SQggh6oRgMBhKQnUra0KBw3akrqZmQtf84IyvOSEFEPDiR+fSVs+yLzcaUADYZbb4abU6+zDLs/LZnW/ENmatlCAQGdlKElJCiPOKJKVEveI5VEiAeHb6XDTz+XECZvuFmEw6F/aMILPHYGjRsHaN+T24K4p7/qd9E/rFR6PJTKmwKio3RhMzYv2gIC1tKEmJA3FFdwxzz4QQQojw8hwsNf4RDLI1Zwb+FulHndUx4QNTLUJ/v5sicwT7LDEApNksdIhy0shey5nm4oSCQcXwd5ZT5PbTpcFqhjRbCV6jTqbZHBnm3gkhxNl12oc8nn76aS666CKioqJISkriuuuuY8uWLVWucbvdjBo1ivj4eCIjI7n++uvZv39/lWuys7O5+uqrcTqdJCUl8cADD+D3+6tcM3/+fDp16oTNZqN58+a8++67x/Tn5ZdfpnHjxtjtdrp168by5ctP91MWdYR7yxbcGzYRQHHp6iXEeYoqzuhoZNHzt81JrE1CqvwwbPgMDv4c2nHGYTJJQiqM5m7az/Ozt/LT3kIALJoxqpgQ34e4uF7h7JoQQghRJxyeuxMAze/DHzTqYjq8Ppxx7UFzGDOlarPZi9+L12Rcp2uwsmdbprRvIhu9nEalXj9FbuN9zYh20+ncYB3BwGEA7Pb0mm4VQoh657Qnpb7//ntGjRrF0qVLmT17Nj6fj/79+1NaWhq65i9/+QtffvklH3/8Md9//z05OTn89re/DZ0PBAJcffXVeL1efvjhB9577z3effddHnvssdA1WVlZXH311fTp04c1a9Zw3333cccddzBr1qzQNR9++CFjxoxh3LhxrFq1io4dOzJgwAAOHDhwup+2qAMOb9vGoTgX+aYSYsv3EKisfaCZKYvygNlWcwOVpt8DH4+A7B9wm4x7pI5C+Bwu9fLH/1vJi3O30Db6E25r91/MyigEqusymiiEEEIAlFcscdeUsdzOHAjQe3M28Q1/i6ZpmDR/7epq+t14KpJSVk2W7J0JlXWkzCaNCItRw6tZ0/vp2PFtomX2txDiPHPal+998803Vb5+9913SUpKYuXKlVx66aUUFhby9ttvM23aNC6//HIApkyZQuvWrVm6dCndu3fn22+/ZePGjcyZM4cGDRpwwQUX8OSTTzJ27Fgef/xxrFYrr732Gk2aNGHSpEkAtG7dmkWLFvH8888zYMAAAJ577jnuvPNO/vCHPwDw2muvMXPmTN555x0eeuih0/3URZjN+fln9qbFAoU0DPqPJKUw01wrBb2WSakCY/o0DdrhsRk1pOy6BGXhklfiIRBUtIrfw3XNvzYOGvE2dnty+DomhBBC1BHu0hLydmeDDQr9ViIA0NnY8laKDpZXfOUHUy1mSgU8+DTjOhmUO72UUizPymd9xczvaLuJYND4/qSmDsFqjQ9n94QQIizO+DvtwkLjP924uDgAVq5cic/no2/fvqFrWrVqRaNGjViyZAkAS5YsoX379jRo0CB0zYABAygqKmLDhg2ha45uo/Kayja8Xi8rV66sco3JZKJv376ha37J4/FQVFRU5UOcO0q8RmHzuIJycmKiCVYU5NQ0M0nKXfuZUhUF0v39/4HbHgOATYp7hk1huQ+ARi4jaLPb02je/CE6dngTh6NROLsmhBBC1Alrn56Ax13M4aCDBX6jSHbAHMGB5B54yoxZOQ5TEeg1jEfvXAwvXgizHw8t37NIUuq0Wp6Vz01vLGXCzE2YtAANIn2hczL7Wwhxvjqjhc6DwSD33XcfvXr1ol27dgDk5uZitVqJiYmpcm2DBg3Izc0NXXN0QqryfOW5mq4pKiqivLycw4cPEwgEqr1m8+bN1fb36aef5oknnji1JyvCyltehtvjBsCUt4sSu904oZlBs2HW/GDSa9eY3824pnfzerYLCABgl6DsrCv1+Lnu5cVsyyuhgfMATWN2ARAR0ZyMRneGuXdCCCFE3VBWVsbici/eqBzK/FZu2fY/Ak5AM+KeTgMzSPhpAvG+nTXPlNr4BeTvAMBjSwPAKnWkTqtdh4yleoOaLeTapv/DpAUBYwDVZJJC8kKI89MZnf4xatQofvrpJz744IMz+TCnzcMPP0xhYWHoY/fu3eHukqilTx4dh89jBE6BoDHqZLZfjDXqd2iaGavZW/vG/F6+jT9SPLu500aKrRbT3cVptXFfET8fKCEjahf/uHgCFyXMAMBijglvx4QQQog6ZNeuXRRFReM2+Ykr3EaXnD0VZ4yx546XNyQzciWaRs01pfzG4B4X3YHvhv8AMlP8dCuuqCXVM31zKCEFEBd3sWyoI4Q4b52xmVKjR49mxowZLFiwgPT0I7tIJCcn4/V6KSgoqDJbav/+/SQnJ4eu+eUueZW78x19zS937Nu/fz/R0dE4HA50XUfX9WqvqWzjl2w2GzZbLZd4iTrFVexin9OMR0FAGbObTNaWmC1ltLXPpEXSz7VvLODBXRG0/e+CZnSPiUSXQOGsK6pYtndRegEAuu7E6WhCSuqNYeyVEEIIUbdU7k4d47cT67cSrIxZKoqU63MegdKDxrGalu9VlC/Y5WrBRnM8sEeW751G+4vcZB8yNn6y68aMqXZtXyAu7lLM5qhwdk0IIcLqtA9/KKUYPXo0n332GfPmzaNJkyZVznfu3BmLxcLcuXNDx7Zs2UJ2djY9evQAoEePHqxfv77KLnmzZ88mOjqaNm3ahK45uo3KayrbsFqtdO7cuco1wWCQuXPnhq4R9YeOGS+KL8pbE1RGcKZpZuy21Vx6YzOcw96qfWN+T2jXvUSrRRJSZ1kgaBQBXb4zH4BYuxEkJ8RfTteu04mLld9fIYQQolIgYAzG2TBjUaBCcYuxfM+09j3wVeyC7Yg7fkN+N4tdF9DN142HthqzraTQ+emxYGse3f4xl6nLtnFB4jrsuhHj2GzJWCzRMktKCHFeO+0zpUaNGsW0adP44osviIqKCtWAcrlcOBwOXC4Xt99+O2PGjCEuLo7o6GjuueceevToQffu3QHo378/bdq0YdiwYTz77LPk5uby97//nVGjRoVmMo0cOZLJkyfz4IMPcttttzFv3jw++ugjZs6cGerLmDFjGD58OF26dKFr1678+9//prS0NLQbn6gfDv73v5g0E+UqwD8WvM72jMrZbjomzQfdRkJtpp+7i8BdCH53KCklwdjZ958lO3niy404zGW0jd9FsjMbQEYRhRBCiGpUJqVMCjyeIg5EOyvOGEkpPa0DtOgPiS0hNuP4Dfm9bI1oDIDDZKKBzcywVNkN7nSo3G3vqibzGdzsy9BxiyU2XF0SQog647QnpV599VUALrvssirHp0yZwogRIwB4/vnnMZlMXH/99Xg8HgYMGMArr7wSulbXdWbMmMGf/vQnevToQUREBMOHD2f8+PGha5o0acLMmTP5y1/+wgsvvEB6ejpvvfUWAwYMCF1z0003kZeXx2OPPUZubi4XXHAB33zzzTHFz8W5rWTVKnQtHZO3jKZFe9mOsesMmhnN5qtdQmr/RnjjMgh4UIC7otikQ2opnHXb80oAGNv1NRpG7gwdN5ujw9QjIYQQou6qTEoFivLwufPJTnABoGkWNAKYGnWDy8bWoiEPXs1IaF2Z6OKVNjUksMRJKamoJdWtkbGTsMORQWJCX5zOpuHslhBC1AmnPSmllDrhNXa7nZdffpmXX375uNdkZGTw1Vdf1djOZZddxurVq2u8ZvTo0YwePfqEfRLnpvLycmbbbBQ6SvGVHuZAdMRRZ3XiTIHaNbRvrVFLSrOxydUSVVGHwa5LUupsKyo3Are0SKMeXEREJhZLLMnJg8PZLSGEEKJOKt9ZAIAWMP5+2r0+lNmMsndDxw/mWu7q5vfgrdidT3bdO71KK5JSdt0oJt+w4Qgapv8+nF0SQog644wVOhfibNi84Sf22mxo3jJi921nbYYxC04zmdE0jUb4a9eQ3xi5+m33d1llTQ0dtsvyvbNmX2E5P2w7xLYDJZi0ACaM70mnC6dhtdZQA0MIIYQ4TwX9QUrW7adcN5OtrCQAzkA03pjL8VvS0bUS0E+wic+2ObDhc8jbjDuhGQBWiX9Oi0nfbmHupgPkFBoxjVV3gwKzHhnmngkhRN0hSSlxzio8sJ85b70OyelEuYMowBRUWJQda0I3fAHQ9Vo25jNGrjZZEgFItJq5MsGFVZbvnTV3/d9K1u0ppHPSGq5usi90XGpJCSGEENU7sGM7QaVY708hKphNAlDoysRiawmA01Rw4plSM8ZAwS4AvEnGTCmpqfnref1BXpq3DV0LMPaif5MRvQdzxQ7RZrMkpYQQopIkpcQ569CeXbSJ6cUKdhGBgxLAZIpBi70dX8WqPZvFV7vGfMbWvJ6KoqBzurSkgc1yBnotjic7v4z0yL3cfcE7oWNmswuTqf59HwKBAD5fLX82hRBnncViQa/1qIYQ4eMuKCKoKXx+Ey0OZ4MGaMbP7sUtV9Lo0BTQ7z5BI0YRbrqPwhvdFzzIoNxpUFlHKsl5gGYxu0LHdd1JZGTbcHXrnCLxkhB12+mKlyQpJc5Z/jIvum6M/pX7ggAozUhgNLYtJ8G8k4yYHbVszI0fnWBFLSmZtn52KaUodvtpFHcYAIsljoT4y0hI7Bvmnp1eSilyc3MpKCgId1eEECcQExNDcnKybNUu6qzs7Gy+nj+PEt1P290lXJj3M1lJMYARy3RIWYdWuBf0E8yUCniNz93+iCfPDHsPykyp06DYbSRTYh3GZ5sthS6dP8ZicaHrzppuPe9JvCTEueN0xEuSlBLnrKDbR4Ag/nwPLVbOZ1PDeNCMH+mLYr4kKSkA3UfW3EjpQZg3AXYuwmM6ErTZZITwrHD7Akxfk0NeiYdAUOG0GDUXoiLb0KbNv8Lcu9OvMsBKSkrC6XTKm10h6iClFGVlZRw4cACAlJSUMPdIiOr98OUM9peVggZ2tRdV+SdF01H40TZPN74+0fI9v4cZCZfy3JYS9lQM8tk0iYN+jRfn/syinw8CR5JSFksMdrv8f1IbEi8JUfedznhJklLinKR8Pg69/yH+lB648g5hqVijT8VMKb3hhXDH5BM39NP/YOUUADzm6NBhGSE8O75Ys5ex/1tPA+cB7mj3DelRuQCYLdEnuPPcEwgEQgFWfHx8uLsjhKiBw+EA4MCBAyQlJclSPlEn+UpLAGjpT2WztoVg6I27CV2r2OjFGglpXY7fSMAPKsB7qYPZWH5kc5imzhMURxfHlVvo5rnZW0lwHOLPF35Mw2hjFrgUN68diZeEOHecrnhJklLinHRozRrWWXXKTbkorZRARRIpoJuxALqllkklT5HxuWE3vJ3+CAWga6DLiMxZsbfAKDD/mxZLuCjpx9Bxuz0tXF06YyprIjidMmVfiHNB5e+qz+eTpJSokwJBY1ZTknKxLRhAVcQuGjoW/HDpg3Dp/WCuIcEU8ADgNhnXjG2SzIAEF60j7Ge28/VYQbmxHPKS9NV0SNwYOu5wNg5Tj84tEi8JcW45HfGSJKXEOSfg9zN/8UL2N0jEXJyDPVBMVmIMADrGFHWzpZa/EH4jGCOlI55Wg2DpJqwyZf2sqay30Cy+ohho0lUkxPchMbFfOLt1RskUdCHODfK7Kuq6yqSUSWlowcCRmVKaCZMWAHt0zQkpCMVBlSUMOkQ5aRPpOGN9Ph+UuI2YJs5hvLYJCX1JS72J2Nju4ezWOUf+Dxbi3HA6flclKSXOOVmrf2Tr1o2QlE7EwTyCBCmr3CnPZCz70i21TCz53fwU0Zwx9qs4tHobIEv3zoaVu/L5YPluVuzMB8CmG7sfxsf3JiXlt+HsmhBCCHFOCAYVACZMmFSAYCh8MWHCDyfavXbfWtj6LXBkppTEQKeuxOPn3cVZbMgxZuFHWo2kVFRUWxISLg9n14QQok6TpJQ455QfLCQjsh0/U4ApECQIuAIZlEY1Qbd2AEC31vJH2+fmy8TLWKfFgseYtdNc6iiccU9/tZkfdx1mWOsPeeTCJegYo70Wc/2rJSWEEEKcCYGgYmcglk/2L6FRwM9+V2XNIh2T5ge9hqSUUvCfwVBu1Dvy6EbsY5eNXk7ZZ6v3MvHbrcTaDnNp2kZSI3YDUktKCCFORP7yiHOOfgCcVhcAShnJjPKYnphtndA0MxGmg5ittV2+58ZdEYjd0CCWLztl8tEFzc9Iv8UReSXG6OHF6avQTcb3UNcjiYpqF85uieMYMWIEmqahaRpWq5XmzZszfvx4/H7/iW+uwfz589E07axu+ZyVlcXQoUNJTU3FbreTnp7O4MGD2bx5c5XrZsyYQe/evYmKisLpdHLRRRfx7rvvVrlm586daJrGmjVrav34jz/+OK1atSIiIoLY2Fj69u3LsmXLqrR5++2306RJExwOB82aNWPcuHF4vd4a2923bx9Dhw6lRYsWmEwm7rvvvlr1Z8GCBQwaNIjU1FQ0TePzzz+v9rpNmzZx7bXX4nK5iIiI4KKLLiI7Ozt0/q677qJZs2Y4HA4SExOrfU1XrFjBFVdcQUxMDLGxsQwYMIC1a9dW+3jbtm0jKiqKmJiY0/YchKhPvHtL8Psd/OyPp3HJFkxAsGKWk0mPx0QA9Bp23Qv4QgkpWl+Lx5kIyEypXyOvyKiTeW/nDxne9kMSbNsBsFhc4eyWOIskXpJ4SeKlUyNJKXHOUd4gAYJ4D3gIessqjppRlHLdxSu5OWEMphNtf+wpMaasH96JWzOuzXBYucgVgVOXX4szZX+Rmy/W7OVgsQeTFsCslQPQretXXHLxMuz21DD3UBzPwIED2bdvHz///DN//etfefzxx/nXv/4V7m6FnCgIAaMAY79+/SgsLOTTTz9ly5YtfPjhh7Rv375KoPfSSy8xePBgevXqxbJly1i3bh0333wzI0eO5P777/9V/WzRogWTJ09m/fr1LFq0iMaNG9O/f3/y8vIA2Lx5M8FgkNdff50NGzbw/PPP89prr/HII4/U2K7H4yExMZG///3vdOzYsdb9KS0tpWPHjrz88svHvWb79u1cfPHFtGrVivnz57Nu3ToeffRR7PYjhZA7d+7MlClT2LRpE7NmzUIpRf/+/QkEjJ1RS0pKGDhwII0aNWLZsmUsWrSIqKgoBgwYECpqW8nn8/G73/2OSy655LQ9ByHqm9wVmwiiUBVL+ACaH04kLu4yTJaGFTOlakpKGYND5SYrS6/4N6UVsZBNZkqdsqKKWlJJEQUAxMR0Iy31dyQm9g9jr8TZJvGSxEsSL50CJY6rsLBQAaqwsDDcXREV/IWFasUf/6E++Nsb6oPeV6p/Xz9QTRxytXrxjk/US3e9r9TjMUqNi1Zq7oSaG/rgVuO6cdHq3mn/UA3mrVYv7sw9O0/iPDbopYUqY+wM1ecfL6lRr92j5sxtqubMbaoCAW+4u3bGlZeXq40bN6ry8vJwd+WkDR8+XA0ePLjKsX79+qnu3bur/Px8NWzYMBUTE6McDocaOHCg2rp1a+i6nTt3qmuuuUbFxMQop9Op2rRpo2bOnKmysrIUUOVj+PDhSimlioqK1NChQ5XT6VTJycnqueeeU71791Z//vOfQ+1mZGSo8ePHq2HDhqmoqKjQvQsXLlQXX3yxstvtKj09Xd1zzz2qpKREKaXU6tWrFaB27tx53OeanZ2tLBaLGjNmzDHnXnzxRQWopUuXKqVU6DmsXr365F/UCpV/Z+bMmXPca5599lnVpEmTWrf5y9eqtgD12WefHXP8pptuUrfeeutJtbV27VoFqG3btimllFqxYoUCVHZ2duiadevWKUD9/PPPVe598MEH1a233qqmTJmiXC7XaXkOp6Km31mJD6qS1+Ps+/aB59Tzjz6jejzwnpo45Go1ccjV6qU/fqsm3zVXTb5rrvp49CtKrf/f8RsoOajUuGh1y8cvqwbzVoc+dpW5z96TqCdWZB1SYz5coy59dp7KGDtDfTO3k5ozt6kqLt4c7q6dkyReknipOhIv1e94SYZDxDml7McfCRSXESCIjf0EKnbK0zQzPpsfVBA0HdI619zQ4Z3G5/jmeKIbAVJH4WzIOliKRpD7u7zGbzJnAmA2x2A6UTHWekopRZnXf9Y/jL9Fv47D4cDr9TJixAh+/PFHpk+fzpIlS1BKcdVVV4VGc0aNGoXH42HBggWsX7+eZ555hsjISBo2bMj//vc/ALZs2cK+fft44YUXABgzZgyLFy9m+vTpzJ49m4ULF7Jq1apj+jBx4kQ6duzI6tWrefTRR9m+fTsDBw7k+uuvZ926dXz44YcsWrSI0aNHA5CYmIjJZOKTTz4JjUj90ieffILP56t2hO+uu+4iMjKS999//1e/fmCMVr7xxhu4XK4aR+sKCwuJi4s7LY95soLBIDNnzqRFixYMGDCApKQkunXrVuOU79LSUqZMmUKTJk1o2LAhAC1btiQ+Pp63334br9dLeXk5b7/9Nq1bt6Zx48ahe+fNm8fHH39cN0fxhKgjNm3axM+mUko1D5dnLT/qjAmr+SCt4tfRM+q9mmtKVcyU2uEwYqB0u4UbGsTS0H6CmebiGM98s5n/rdpDzuECIi0l6Biz+HU9Isw9qz/CFS+djphJ4qVfT+Kl+h8vSaFzcU7ZmpPD0oY6nvxVWBOSUKHaB2bigh64aiK0vwEcsTU3FKiYunr1c3hKG8HBQqmjcIYFg4oSjx+nuRybbizbS07+DYmJ/cLcs/Ap9wVo89iss/64G8cPwFnbzQB+QSnF3LlzmTVrFldeeSWff/45ixcvpmfPngBMnTqVhg0b8vnnn3PjjTeSnZ3N9ddfT/v27QFo2rRpqK3KwCEpKSm0Fr64uJj33nuPadOmccUVVwAwZcoUUlOPXdp5+eWX89e//jX09R133MEtt9wSqg+QmZnJiy++SO/evXn11VdJS0vjxRdf5MEHH+SJJ56gS5cu9OnTh1tuuSXUr61bt+JyuUhJSTnm8axWK02bNmXr1q2n9NpVmjFjBjfffDNlZWWkpKQwe/ZsEhISqr1227ZtvPTSS0ycOPFXPeapOnDgACUlJfzzn/9kwoQJPPPMM3zzzTf89re/5bvvvqN3796ha1955RUefPBBSktLadmyJbNnz8ZqNd7gRkVFMX/+fK677jqefPJJwPj+zJo1C7PZ+Fk8dOgQI0aM4L///S/R0bLpgRDH8+nHH+OzG/UYr9y2iKUt0kEZdWzsfM8Vjk/A7655+Z7fSEp5Kq55s20TLox2nvG+10f5pV4aRu3h0e4voGue0HGzWQqcny7hipfg1GMmiZckXpJ4qfZkaog4ZyhfkBW7cjnsAK1gPwHdKGauWR2g2YjAC1HJJ05IAfg9LHZdwJj8CNYWGyNaUkfhzAgGFf/4ahN3/OdHlAKHxSgEajLZadtmIkmJA8LcQ1EbM2bMIDIyErvdzpVXXslNN93EiBEjMJvNdOvWLXRdfHw8LVu2ZNOmTQDce++9TJgwgV69ejFu3DjWrVtX4+Ps2LEDn89H165dQ8dcLhctW7Y85touXbpU+Xrt2rW8++67REZGhj4GDBhAMBgkKysLMEYic3NzmTp1Kj169ODjjz+mbdu2zJ49u9avRWXgUJOpU6dW6cfChQtD5/r06cOaNWv44YcfGDhwIEOGDOHAgQPHtLF3714GDhzIjTfeyJ133hk6fnS7I0eOrFWfFy5cWOW+qVOn1uq+YNB44zt48GD+8pe/cMEFF/DQQw9xzTXX8Nprr1W59pZbbmH16tV8//33tGjRgiFDhuB2G7/v5eXl3H777fTq1YulS5eyePFi2rVrx9VXX015uZGkvvPOOxk6dCiXXnrpaX0OQtQnwWAQX8XvZUd/BuagMYtBacbAWmx0vpGQAohtcvyGKgbnPKbKWlIyMHeqSj0BmsdkVUlIxcb2wGyWAufnI4mXjpB4SeKl2pKZUuKckTNrHV4PYAKz0ggCXXbsI/uWP1O02YSOH8z2EzVjCHj5e+a9bCo2A8a02aRTnDkiarZubyFvLNhBpKWYgY2X0TC6EACzOSrMPQs/h0Vn4/izn5RzWGq5O+VR+vTpw6uvvorVaiU1NRWz2cz06dNPeN8dd9zBgAEDmDlzJt9++y1PP/00kyZN4p577jmVrlcREVF1aURJSQl33XUX99577zHXNmrUKPTvqKgoBg0axKBBg5gwYQIDBgxgwoQJ9OvXj8zMTAoLC8nJyTlmtNHr9bJ9+3YGDDjx9+zaa6+tEnympaVV6Xfz5s1p3rw53bt3JzMzk7fffpuHH344dE1OTg59+vShZ8+evPHGG1XaPnr3mtqOkHXp0qXKfQ0aNKjVfQkJCZjNZtq0aVPleOvWrVm0aFGVYy6XC5fLRWZmJt27dyc2NpbPPvuM3/3ud0ybNo2dO3eyZMkSTBUDANOmTSM2NpYvvviCm2++mXnz5jF9+vTQKKdSimAwiNls5o033uB3v/vdKT0HIeqTo5fSdPBlkI+RTNJMRgzT1O+Bm9+E9C4Q17TaNoDQTCmvZizxs0pS6qSVewPsKyynxOPHYTbeLKYkX0/r1s8AoGnymp4u4YqXKh/7ZEi8JPHS0SReqh15Fy7OGZtnf0/AZWShlTKCMp89A+WJAUDXfDVPVT+a30NRxbTq29IS6Bjl5NI4SZKcCYfLjNHYG1ou4JLUI1Ovrdbqp9+eTzRNO+VldGdbZWBwtNatW+P3+1m2bFloOvqhQ4fYsmVLlT/KDRs2ZOTIkYwcOZKHH36YN998k3vuuSc0gnb0m6ymTZtisVhYsWJFKDAqLCxk69atxx0RqtSpUyc2btx4TD9romkarVq14ocffgDghhtuYOzYsUyaNIlJkyZVufa1116jrKyM3//+9ydsNyoqiqio2v2fEgwG8XiOjLDv3buXPn36hHZoMf1iFufJPL9KDofjlO6zWq1cdNFFbNmypcrxrVu3kpGRcdz7lFIopULPq6ysDJPJVOVNWuXXlaOLS5YsqfKz8MUXX/DMM8/www8/kJaWdsrPQYj65OjfEZNSoRlSmma8cdY1PzTqATENq2/gwGaYOx5KcgHwVtR0lNniJ8ftC3Dpv74jr9iDw1xOjK0IMAbcJBl1+km8JPESSLxUn+Ml+QskzhnK58evBcjYuRNVMV19c+sRFGcZySWz5jmpmVLlJhsAv0+L56aUOHQJIs6IkootklOijIDN5epCetowWrZ8IpzdEqdBZmYmgwcP5s4772TRokWsXbuWW2+9lbS0NAYPHgzAfffdx6xZs8jKymLVqlV89913tG7dGoCMjAw0TWPGjBnk5eVRUlJCVFQUw4cP54EHHuC7775jw4YN3H777cf8ga7O2LFj+eGHHxg9ejRr1qzh559/5osvvggV7lyzZg2DBw/mk08+YePGjWzbto23336bd955J9TfRo0a8eyzz/Lvf/+bv/3tb2zevJnt27fz3HPP8eCDDzJhwgTatWtX5XG3bNnCmjVrqnz8ctteMApaPvLIIyxdupRdu3axcuVKbrvtNvbu3cuNN94IGAHWZZddRqNGjZg4cSJ5eXnk5uaSm5t7wu9H5WOXlJSQl5fHmjVr2LhxY433lJSUhO4DyMrKYs2aNWRnZ4eueeCBB/jwww9588032bZtG5MnT+bLL7/k7rvvBowlBE8//TQrV64kOzubH374gRtvvBGHw8FVV10FQL9+/Th8+DCjRo1i06ZNbNiwgT/84Q+YzWb69OkDGEF7u3btQh9paWmYTCbatWtHbOzxl2XX5jnURa+++iodOnQgOjqa6OhoevTowddffx0673a7GTVqFPHx8URGRnL99dezf//+Km1kZ2dz9dVX43Q6SUpK4oEHHsDv91e5Zv78+XTq1AmbzUbz5s159913j+nLyy+/TOPGjbHb7XTr1o3ly5cfc42oGwKBAG6l87mnLdcHCwlW/rdYkZQycYIBulXvwZaZsHclCnBXLt+TGOik5BSUk1fsoV38Rl7o8zBXNFoAyCxwUT2JlwwSL0m8dFynZR/Aekq2OK47/AUFas7ISerZh8epda1aH9n++M4Z6s37v1Gf/vkVtfuhXkrtXV27BscnqqbfLlYN5q1WWbL98Rmx62CpenPBdnX3f1eqjLEz1H9m/EbNmdtU7c35ONxdC4v6tsVxpcotjl0ul3I4HGrAgAFVtjgePXq0atasmbLZbCoxMVENGzZMHTx4MHR+/PjxKjk5WWmaVuMWx127dlUPPfRQ6L6MjAz1/PPPH9Of5cuXq379+qnIyEgVERGhOnTooJ566imllFJ5eXnq3nvvVe3atVORkZEqKipKtW/fXk2cOFEFAoEq7Xz++efqkksuUREREaEtmN9///0q11S3TXPlx+7du4/pW3l5ufrNb36jUlNTldVqVSkpKeraa69Vy5cvD10zZcqU47Z5ItXdk5GRUeM93333XbX3VX4vKr399tuqefPmym63q44dO6rPP/88dG7v3r3qyiuvVElJScpisaj09HQ1dOhQtXlz1e3Qv/32W9WrVy/lcrlUbGysuvzyy9WSJUuO27fabnFc2+dwsk7HFsc1mT59upo5c6baunWr2rJli3rkkUeUxWJRP/30k1JKqZEjR6qGDRuquXPnqh9//FF1795d9ezZM3S/3+9X7dq1U3379lWrV69WX331lUpISFAPP/xw6JodO3Yop9OpxowZozZu3Kheeuklpeu6+uabb0LXfPDBB8pqtap33nlHbdiwQd15550qJiZG7d+/v9bPReKlsyc/O0/d9vfnVMbYGardfR+ohZ0uUBOHXK2eu2WomnzXXLV9bF+lSg8dv4EvRis1LlqpD3+vPGs+Ug3mrVYN5q1Wh72+s/ck6oF1uwtUxtgZ6m/v3aPmzG2q5sxtpr5f0EUVFKwMd9fOeRIvSbwk8dL5Fy9pSp2GvcHrqaKiIlwuF4WFhfWmsv25asfQW9gZ04UlkXkM/vJzZnUw6iTYYkbTNeF5ulqWGhfevQySWlXfSPF++Oj3ULIfDmeRfslc/CYza3q2JdlWw7bJ4pTc+tYyFm07SLfkHxnS8nOirSWYtCAd2r9KYmL/cHfvrHO73WRlZdGkSRPs9lrO6BOAMWKWlpbGpEmTuP3228/64+fn53PFFVcQHR3N119/jdMpO1SdD2r6nT1T8UFcXBz/+te/uOGGG0hMTGTatGnccMMNAGzevJnWrVuzZMkSunfvztdff80111xDTk5OqF7Ea6+9xtixY8nLy8NqtTJ27FhmzpzJTz/9FHqMm2++mYKCAr755hsAunXrxkUXXcTkyZMBY3lEw4YNueeee3jooYdq1W+Jl86enf9dxeNbFrKmLIHf7f0fZmUskTdZY7FG/IGrY5+k8eNfgu04O799ehfe9Z9wfe9P2WiKpTRgLAfJurQDDl0WUNTWku2H+N2bSxl54XQuSpxDRsafaN7s/nB3q16QeOnUSbwkwuF0xEvy10fUeYFAgBnJDViQVEgpHoJVpqTqJAY94IyHzP6QkHn8hnbMh91L4XAWfnT8FUVBZceZM2NvgVH08+rMdcTYijBpQUwmK5GRbU5wpzjfrV69mvfff5/t27ezatUqbrnlFoDQlPGzLS4ujjlz5nDFFVewZMmSsPRB1G+BQIAPPviA0tJSevTowcqVK/H5fPTt2zd0TatWrWjUqFHoZ3DJkiW0b9++SgHTAQMGUFRUxIYNG0LXHN1G5TWVbXi9XlauXFnlGpPJRN++fWv8Wfd4PBQVFVX5EGeHr8SNHxMN3PtDCSkAs60xgLHpS03L9wIetjkbsUK5QgmpVhF27BIL1cqOvBKemrmRtxftAMBpMerAmPXjJAGFOIMkXhL1xblRMU6c14qLi8mvyKyqYJBglcDJhAUf3PgeNLmk5ob8RpLkP23vY0PTa6EihrZLcc8zorDcWCPeJC6ItxxatHic5AbXYrHIFsnixCZOnMiWLVuwWq107tyZhQsXkpAQvuL48fHxPPbYY2F7fFE/rV+/nh49euB2u4mMjOSzzz6jTZs2rFmzBqvVSkxMTJXrGzRoEKqXkZube8yOOpVfn+iaoqIiysvLOXz4MIFAoNprNm/efNx+P/300zzxhNQFPNt8bjc5P28h4DChY9TWtJhSMUVfj1axi55Z84Jew+xvvxdPRR2pZKuFzy5sTprdIsW5a+n5OT/z5docrmw8mzGdttI0yvhd080RJ7hTiDND4iVRH0hSStR5lQXwzAFolB/gp/TEijNGIT9dO8GoYKghNzscaTyY8JtQQipCN8lMqdMoEFTc/t4K1u8pxOM5TIvYfajAIQAiIzIlISVq5cILL2TlypXh7oYQZ1zLli1Zs2YNhYWFfPLJJwwfPpzvv/8+3N06oYcffpgxY8aEvi4qKqJhw+Ps9iZOm4IDuQSVIoCJOHchAEGTE12zEJ0CqYfnkWTbCTUlmAIevBUJLKduoonTdhZ6Xn/kFbtxmMu5ocWXVY47HPLzL84+iZdEfSFJKVHnHZ5tTJG2eDwcLt0BLmM0ylQxVVrXfDWPClbyuykwGzOuos0mbktLpFdMJCYZHTxtdh0qZf6WPDSCPHPJs8Q7DuOrWF1gNkudESGEOJrVag1t29y5c2dWrFjBCy+8wE033YTX66WgoKDKbKn9+/eTnJwMQHJy8jG75FXuznf0Nb/csW///v1ER0fjcDjQdR1d16u9prKN6thsNmw2SWacTUUFBfzn1dcojnQSXWDht1vmsCktAVVRiqCLdgetYw7BiWbs+D14TUbMZJVBuZNW7PbjNJcBoGlWWrd+Gqs1gbjYnmHumRBCnLtk3ZKo80p3G6OBesCoyW/z+Wl46BCRiUbxV53aJ6U8FYFYA6uFh5qmcEmcbN17OhW5ja3IG8Uq4h2HAXA6m5CYOJDIyJbh7JoQQtR5wWAQj8dD586dsVgszJ07N3Ruy5YtZGdn06NHDwB69OjB+vXrOXDgQOia2bNnEx0dTZs2bULXHN1G5TWVbVQu9zj6mmAwyNy5c0PXiLph58aN7LLEMtV7ASXl+aFSBho6ABGV9aWaXFp9A0U5sP4TKN4XioUkKVV7K3fl89r329lX6MZhdgNgsbhISb6O+LiL0TR5SyWEEKdKZkqJOq28pJiSwkKwQpHfiwswB80Q0Y1AMA4I1n75nt8dqqMggdjppZRiQ04Ry3YYS/UaRBnFU00mKz26zwln14QQok56+OGHufLKK2nUqBHFxcVMmzaN+fPnM2vWLFwuF7fffjtjxowhLi6O6Oho7rnnHnr06EH37t0B6N+/P23atGHYsGE8++yz5Obm8ve//51Ro0aFZjGNHDmSyZMn8+CDD3Lbbbcxb948PvroI2bOnBnqx5gxYxg+fDhdunSha9eu/Pvf/6a0tJQ//OEPYXldRPUCPh95wUh86Fi0sqM2fTGSUqnxTeG2z8ERW30D04ZA7noAvPEpANgkkVIr/kCQ4e+soMzr4Z4L3qSJaxcAZrMMbAohxOkgSSlRpy3+yz2YYvuyT49iWzCeq9hKuTOFvOhrwWckPixaec0zpbbOgrlPQtEevM7WANikuPlpNXP9PkZPWw0ooqwlpEWVAqDLbjRCCFGtAwcO8Pvf/559+/bhcrno0KEDs2bNol+/fgA8//zzmEwmrr/+ejweDwMGDOCVV14J3a/rOjNmzOBPf/oTPXr0ICIiguHDhzN+/PjQNU2aNGHmzJn85S9/4YUXXiA9PZ233nqLAQMGhK656aabyMvL47HHHiM3N5cLLriAb7755pji5yK8Al4vQYxEVONg4EhSSjOSUiarBZxxx2+gYLfxOf0ivCl9ABmgq60it58Sj5+0yP10SNwYOh4V1TaMvRJCiPpDklKizsrNzWVZQjIB63Z8pVZu2v41xVF20Iwf21Y9U0jaMIEI/XDNM6VWvgv7jdFBd0TFTCmpI3Vabd1fAsCdHT6ie/Li0HEZRRRCiOq9/fbbNZ632+28/PLLvPzyy8e9JiMjg6+++qrGdi677DJWr15d4zWjR49m9OjRNV4jwsvv94eSUpagj4DpyEwpjQAm8wnKGAS8eDQL317+Ct977bAvX5JStVTsNjbcibEbSyRtthQ6dnyLyIjMcHZLCCHqDUlKiTpr+7Zt+Gx2QNHw0EqaHC5iXZQd0NGUlyuGtYInKpYg1JSU8pUbny+5H2/atbBPyUyp06yo3AjYLmywreKIhqbpNEi6KnydEkIIIeqJgM9HEI0U9z6cpfvZmRhjnNB0Y8MX0wlCer+HqSmDeGRXGWAU6o7QJRY6ke+35jF/i1G3Lc5pJKWsljiiIluFs1tCCFGvSFJK1Fl+n5HoyPAnUBTQCVYO6Gk6uu6HZ5sARvHzGpfv+d3kWWJ5NfJSVpc7gVJsMjp4Whws8TB1aTZLthu1pMxaMQA9us/G6WwSzq4JIYQQ9UbZjrKKpFQuRyIYEyZzesWGLzUMzgUDoALssyUCkGG30i7Kwd0Nk850t89p+aVebnt3BTHWg/yp4+dkRBuxjm6W0gRCCHE6yRCJqLP8XmNEyq4s6AF/aKcZ0LHihnJjdzdiMsAWXUNDbv6bcg2vlLlYUmDUOoq3Sj72dHhnURbPz9mKI7iYJ3o8jV4x+mo2u8LcM3E6jRgxAk3T0DQttIX9+PHj8fv9v6rd+fPno2kaBQUFp6ejtZCVlcXQoUNJTU3FbreTnp7O4MGD2bx5c5XrZsyYQe/evYmKisLpdHLRRRfx7rvvVrlm586daJrGmjVrav34jz/+OK1atSIiIoLY2Fj69u3LsmXLqrR5++2306RJExwOB82aNWPcuHF4K/4/PJ59+/YxdOhQWrRogclk4r777qtVf1599VU6dOhAdHQ00dHR9OjRg6+//jp0Pj8/n3vuuYeWLVvicDho1KgR9957L4WFhaFr3n333dDPxy8/jt4ZzuPx8Le//Y2MjAxsNhuNGzfmnXfeqdKff//736HHatiwIX/5y19wu901PodPP/2U/v37Ex8ff9LfDyHOBcofxJvnI6g0dBUAQLe0xhZzD7olA6uprOaklN8DgFczBvAGJcXwdrsmdHJFnPG+n8vyij0EgopL0n+kS4O1JDr2AOB0ZIS5Z6KuknhJ4iWJl06NvDMXdVagYqaUr+wgHr+HTSkJxglNR8cPvf4MF9wCMY3ApB+/Ib+HArtR26ibK4K+8dHckHyc3WnESdlfZAS6g1usID1iHwA2WzIWiySl6puBAwcyZcoUPB4PX331FaNGjcJisfDwww+Hu2sAeL1erNaad+H0+Xz069ePli1b8umnn5KSksKePXv4+uuvqwR6L730Evfddx9jx47l1VdfxWq18sUXXzBy5Eh++uknJk6ceMr9bNGiBZMnT6Zp06aUl5fz/PPP079/f7Zt20ZiYiKbN28mGAzy+uuv07x5c3766SfuvPNOSktLa3xcj8dDYmIif//733n++edr3Z/09HT++c9/kpmZiVKK9957j8GDB7N69Wratm1LTk4OOTk5TJw4kTZt2rBr1y5GjhxJTk4On3zyCWAUyh44cGCVdkeMGIHb7SYp6chMjCFDhrB//37efvttmjdvzr59+wgGg6Hz06ZN46GHHuKdd96hZ8+ebN26NRTgP/fcc8d9DqWlpVx88cUMGTKEO++8s9bPXYhzhQoECaIIomGi4nfGZEPTdNq0KKJZ3mugNzx+A4GKpJTJSEpZpK5mrZR4jERCQsWyvYSEK0hOvo74uEvC2S1Rx0m8JPGSxEunQInjKiwsVIAqLCwMd1fOS9Pf/VCNGzdOvX7nPWrikKtDH/8ePlH99+73lFr2Ru0aeuECNfb/HlMN5q1Wz+7IObOdPs/c+d4KlTF2hvrqu2vUnLlNVVbWK8rrLQh3t+qk8vJytXHjRlVeXh7urpy04cOHq8GDB1c51q9fP9W9e3eVn5+vhg0bpmJiYpTD4VADBw5UW7duDV23c+dOdc0116iYmBjldDpVmzZt1MyZM1VWVpbCWH8b+hg+fLhSSqmioiI1dOhQ5XQ6VXJysnruuedU79691Z///OdQuxkZGWr8+PFq2LBhKioqKnTvwoUL1cUXX6zsdrtKT09X99xzjyopKVFKKbV69WoFqJ07dx73uWZnZyuLxaLGjBlzzLkXX3xRAWrp0qVKKRV6DqtXrz75F7VC5d+ZOXPmHPeaZ599VjVp0qTWbf7ytTpZsbGx6q233jru+Y8++khZrVbl8/mqPX/gwAFlsVjUf/7zn9Cxr7/+WrlcLnXo0KHjtjtq1Ch1+eWXVzk2ZswY1atXr1r1+3R8P45W0++sxAdVyetxZh3cvkt99rcp6qpH3lR3/f4+NXHI1er5YY+pyX+co9SSV5QaF63Ux384fgNFuUqNi1Z//e941WDeavV81r6z1/lz2PdbDqiMsTPUcx+PUHPmNlU7siaHu0vnBYmXJF6qjsRLR9THeEmW74k6yV/kpuznQjxK52DQ+DFNKrFij+qD2X6hUdTTbK+5kV0/wIJ/Qekh3CYbAHYpcH5avDp/O6OmrmJVdgEAZs1YthftukBmSZ0MpcBbevY/lPrVXXc4HHi9XkaMGMGPP/7I9OnTWbJkCUoprrrqKnwVMx1HjRqFx+NhwYIFrF+/nmeeeYbIyEgaNmzI//73PwC2bNnCvn37eOGFFwAYM2YMixcvZvr06cyePZuFCxeyatWqY/owceJEOnbsyOrVq3n00UfZvn07AwcO5Prrr2fdunV8+OGHLFq0KLSrWGJiIiaTiU8++YRAIFDt8/rkk0/w+Xzcf//9x5y76667iIyM5P333//Vrx8Yo5VvvPEGLpeLjh07Hve6wsJC4uJq2Or9NAkEAnzwwQeUlpbSo0ePGvsTHR2N2Vz9ZOv//Oc/OJ1ObrjhhtCx6dOn06VLF5599lnS0tJo0aIF999/P+Xl5aFrevbsycqVK1m+fDkAO3bs4KuvvuKqq2TDBHH+OrB3L9Peep1dpjyaHcim3+4VxgnNBAQgp2JnRVM1tTX9HvjwVvjPtQB4KuImi8RCNZqxLoeLn5nHQx8vpHOD1SQ5jJngZl2WO4ZNuOKl0xAzSbz060m8VP/jJVm+J+qk7FVrCaBY6sugmSqgNZCf2A2z+UIAbFopmGuoIxXww9QbwVsCgMdkTFOVAue/3p7DZTzzzWYizKU81PXfxDvyMQWMP6hmc1SYe3eO8ZXBP1LP/uM+kgPWUwuulVLMnTuXWbNmceWVV/L555+zePFievbsCcDUqVNp2LAhn3/+OTfeeCPZ2dlcf/31tG/fHoCmTZuG2qoMHJKSkoiJiQGguLiY9957j2nTpnHFFVcAMGXKFFJTj32dLr/8cv7617+Gvr7jjju45ZZbQvUBMjMzefHFF+nduzevvvoqaWlpvPjiizz44IM88cQTdOnShT59+nDLLbeE+rV161ZcLhcpKSnHPJ7VaqVp06Zs3br1lF67SjNmzODmm2+mrKyMlJQUZs+eTUJCQrXXbtu2jZdeeulXTYE/kfXr19OjRw/cbjeRkZF89tlntGnTptprDx48yJNPPskf//jH47b39ttvM3ToUBwOR+jYjh07WLRoEXa7nc8++4yDBw9y9913c+jQIaZMmQLA0KFDOXjwIBdffDFKKfx+PyNHjuSRRx45vU9YiHPI/E8/5ZDVApQSGdiA0o7U18Tkh3UfGl9aqhmo2/MjbPoy9KXXFgNILHQiH/+4hz2HyxnT+S3axm8JHTfXFHeKMytc8RKccswk8ZLESxIv1Z4MlYg6qSg3n6AWxOT2kVmwu+KojoaPjg1WcHH0O2CuqahneSghxQW34knpBIBNRgd/tfxSo7ZC+wZ7SI3cj003ElIWSxxOR+Mw9kycSTNmzCAyMhK73c6VV17JTTfdxIgRIzCbzXTr1i10XXx8PC1btmTTpk0A3HvvvUyYMIFevXoxbtw41q1bV+Pj7NixA5/PR9euXUPHXC4XLVu2PObaLl26VPl67dq1vPvuu0RGRoY+BgwYQDAYJCsrCzBGInNzc5k6dSo9evTg448/pm3btsyePbvWr8WJajGAEWwe3Y+FCxeGzvXp04c1a9bwww8/MHDgQIYMGVKlwGWlvXv3MnDgQG688cYqa/+PbnfkyJG16vPChQur3Dd16tTQuZYtW7JmzRqWLVvGn/70J4YPH87GjRuPaaOoqIirr76aNm3a8Pjjj1f7OEuWLGHTpk3cfvvtVY4Hg0E0TWPq1Kl07dqVq666iueee4733nsvNPo3f/58/vGPf/DKK6+watUqPv30U2bOnMmTTz55wtdUiPqqvLScFb6GLPK0xW8qIViRlNLQjVnjDdpD837Q+Q/H3uyvGFmPbQK3foqv8aUAWKWmVI0Ky424pkW8UaA4KrIdSUlXk5BweTi7Jc4REi8dIfGSxEu1JTOlRJ3z/ddfM3/TMpQOF2fnkl5ygNyYSMCESXdzcfyHkJ9V8/I9n7H7QAAT2/pOJH/rHigsldHBX0kpFQrWUqKMzy5XJ9q2eR6rNQFdP8GSSlGVxWmMwIXjcU9Snz59QkUsU1NTMZvNTJ8+/YT33XHHHQwYMICZM2fy7bff8vTTTzNp0iTuueeeU+l5FRERVUcuS0pKuOuuu7j33nuPubZRo0ahf0dFRTFo0CAGDRrEhAkTGDBgABMmTKBfv35kZmZSWFhITk7OMaONXq+X7du3M2DAgBP27dprr60SfKalpVXpd/PmzWnevDndu3cnMzOTt99+u0oR1JycHPr06UPPnj154403qrR99G4p0dG1G7nv0qVLlfsaNGgQ+nflDkEAnTt3ZsWKFbzwwgu8/vrroWuKi4sZOHAgUVFRfPbZZ1gs1SwVAt566y0uuOACOnfuXOV4SkoKaWlpuFxHlve2bt0apRR79uwhMzOTRx99lGHDhnHHHXcA0L59e0pLS/njH//I3/72txpfUyHqq31+CxsCyQB0CgYIVoYxmgkrfrjmOWjYtfqb/cYg0oaYdqyLuICd+XkAWCQWqpYvEGTTviLyio3C8BZTGQShTduJREZkhrl357lwxUuVj30SJF6SeEnipZMnSSlR52z48UdURbzkMGWHRgXRdDCVQP5242uLo/oGAPxGUuqOdhP4esWRqddSU+rUFZb5uGbyQnbnl9Eoag8NI42tka3WRByO9DD37hylaae8jO5sqwwMjta6dWv8fj/Lli0LTUc/dOgQW7ZsqTKduWHDhowcOZKRI0fy8MMP8+abb3LPPfeERtCOrlfQtGlTLBYLK1asCAVGhYWFbN26lUsvvbTGPnbq1ImNGzce08+aaJpGq1at+OGHHwC44YYbGDt2LJMmTWLSpElVrn3ttdcoKyvj97///QnbjYqKIiqqdstZg8EgHo8n9PXevXvp06cPnTt3ZsqUKZh+8f/WyTy/Sg6Ho9b3/bI/RUVFDBgwAJvNxvTp07Hbq08+l5SU8NFHH/H0008fc65Xr158/PHHlJSUEBkZCRhT/00mE+npxv8fZWVlxzxXXTd2VlVKndRrKkR94anIQkWhSA4Gj8REVOxErNcwEyHgodxkZVD6PZRt3h06HKHXsGPxeWzMR2v5cm0ONt1DA2chBI16mWY9Msw9ExIvSbwEEi/V53hJklKizqn8D7ePty0/Bn8I1U/Q0IlSXnA1gtQLIP04I4NgFPcE1kUaI1sus0663UKPGAksTtX6vYXszi/nysZzuKHFkRoVUmPh/JWZmcngwYO58847ef3114mKiuKhhx4iLS2NwYMHA3Dfffdx5ZVX0qJFCw4fPsx3331H69atAcjIyEDTNGbMmMFVV12Fw+EgKiqK4cOH88ADDxAXF0dSUhLjxo3DZDKhnWDJydixY+nevTujR4/mjjvuICIigo0bNzJ79mwmT57MmjVrGDduHMOGDaNNmzZYrVa+//573nnnHcaOHQsYI4TPPvss999/P3a7nWHDhmGxWPjiiy945JFHmDBhAu3atavyuFu2bDmmL23btj1mdKy0tJSnnnqKa6+9lpSUFA4ePMjLL7/M3r17ufHGGwEjwLrsssvIyMhg4sSJ5OXlhe5PTk6u8flXjuyVlJSQl5fHmjVrsFqtx613APDwww9z5ZVX0qhRI4qLi5k2bRrz589n1qxZgBFg9e/fn7KyMv773/9SVFREUVERYBRC1Y96c/vhhx/i9/u59dZbj3mcoUOH8uSTT/KHP/yBJ554goMHD/LAAw9w2223hWopDBo0iOeee44LL7yQbt26sW3bNh599FEGDRpU5XF+KT8/n+zsbHJyjFH0yu9HcnLyCV8zIeo6b0WN5XbFm8Bt50DoT64Jk3aCpJTfQ5E5krKKzV76xkeTZDVzedy59WblbNm8rwi7Xs6zl44nwlIaOm42S+wofh2JlwwSLxkkXqrGadkHsJ6SLY7D4/nHxqlx48apZQ9/oZ7/zeVqypV91MQhV6sX/vCy+nDUG0qt/+TEjexbr9S4aNVm1nzVYN5qtbG47Mx3vJ6buS5HZYydoSZ/equaM7ep+n5BF7V02VUqP39ZuLt2TqhvWxxXqtzi2OVyKYfDoQYMGFBli+PRo0erZs2aKZvNphITE9WwYcPUwYMHQ+fHjx+vkpOTlaZpNW5x3LVrV/XQQw+F7svIyFDPP//8Mf1Zvny56tevn4qMjFQRERGqQ4cO6qmnnlJKKZWXl6fuvfde1a5dOxUZGamioqJU+/bt1cSJE1UgEKjSzueff64uueQSFREREdqC+f33369yTXXbNFd+7N69+5i+lZeXq9/85jcqNTVVWa1WlZKSoq699lq1fPny0DVTpkw5bpsnUt09GRkZNd5z2223qYyMDGW1WlViYqK64oor1Lfffhs6/9133x23P1lZWVXa6tGjhxo6dOhxH2vTpk2qb9++yuFwqPT0dDVmzBhVVnbk/2afz6cef/xx1axZM2W321XDhg3V3XffrQ4fPlzjczjeazZu3Lga7zuR07HF8flCXo8z58HHnlMZY2eov906Qk0ccnXo44Xbpqipd7+n1MFtx7/5x3fVzqdbqAbzVqvG89eevU6fo7o9NUddMuFVNWduUzVnbjM1//sL1Pr196pgMBjurp1XJF6SeEnipfMvXtKUOg17g9dTRUVFuFyu0HaO4uyY9NhjFJtMDPJ0YcmmiTh9OocjHVgiBpEaEeSGu9Oh9aDjN1B6CLZ8BdNH0+zibyjVHSzp1pomTtvZexL1iC8QZOmOQ8zZuJ/3luxi/CVTSHOspnWrp0lNHRLu7p0z3G43WVlZNGnS5LjTeUX1SktLSUtLY9KkSccUhDwb8vPzueKKK4iOjubrr7/G6Tz5mlzi3FPT76zEB1XJ63FmePeVMvbl9/jMn8HwvR8S7c0nxt+MYOIFeMkg3pzFzRP6QUyj6htY/iZb57/EpRf9hxizzuZL2p/dJ3COCAYVbn+AiybMIS1iM2Mvegmnsxk9un8b7q6dlyReOnUSL4lwOB3xkizfE3VOANjld/H+wcWkme0UmSvXzOroeEGvIbnkLYUXLwSPsWOK22RMa7frUtTzVL21MItnvtlMnD2fbsk7cFmMXS90s0z/F2fG6tWr2bx5M127dqWwsJDx48cDhKa4n21xcXHMmTOHl19+mSVLloS2XhZCiDPp8Pc78WEsxTCpIAClMReiYyShIvVD1cdEvnLYOguyl+LVjGUxstFL9Tz+AFe9sJDtecZyPYfLqEkqS/bEuUDiJVFfSFJK1Cnlm/MJajZ+drtoVzSXoH7kR1QzRWHSisBcQ/2E4tyKhJSGP64ZAc0I5qTA+anbnlcCwIMXvUaiIzd03GJ2He8WIX61iRMnsmXLFqxWK507d2bhwoUkJCSErT/x8fE89thjYXt8IcT5Z8/69fgxFjRoym981nQizAe5OHIK6db1oN9x7I0/vATfPQWAJ8qokWKTOKhau/PL2J5XSgPnfm5p9Qlp0YcB0PVzo6i2EBIvifpAklKiTtk1bwUBgqhgZRAGDTyNKW3YBp8/EV3bdYKinsYI16aETnx37Qew3SjkJkmpU1dQ5gMUCQ5jhlRMTFecjsbExHQJb8dEvXXhhReycuXKcHdDCCHCJhgMUuItw2eFq7J+IN5bgNtqBkw4yn6meYKxAxbmamZKFRq74xLfHE9ab0BmSh1PsdtI9vVrspa2CUeKMDudTcLVJSFqTeIlUV9IUkrUKXs2bCCYoDAFjWnqaDYKUn4LRsyAXSuuefleRVLqlsy/kVORkLJqmgRjp+DV+dv5+Mfd5BSWY9O9aBjfkws6vo2uyxpxIYQQ4kx545lnWGp3siWQxL0H3udQrKPijAnN5oWIRMgcANZqZvT4PZSZbEzp+DfWxHWCvAKZKXUclUmpaJsRPyYlXU1qyo3ExNSww7MQQojTSpJSok4IBoO8+/bb7EkoQqkg962cys7USEwVtRSiIrNpY/mRluavQb/x+A35vQDst8QAMDAhmqsSYzCdYGtUcazXF2zH4y2kT/piXDZjS1NN0zGZHCe4UwghhBCnKhgMssft43tfUxQmrPpBVEUdKTQTTqcH7pgLsRnVN+B3MzOhN08GmkJeAQCxluNvE34++nl/MX/5aA25hR4AIi3G5+iotsTHXxLOrgkhxHlHklKiTigqKiJ7717QwObxklxWyE4iAWNkz2X6iC62xcbF5hp24vC78aOHakk936oRsRb5MT9ZSimK3X76N1rMDS2+DB23WhPRJMEnhBBCnDHBYBA/JlRFDKQrRTD0p1fHpbwnKGXgocBibEaS6bTRP8HFDQ1iz2ynzzGzNuTy094iOiau5+bmS2kcZSx5lE1chBDi7JN366JO8PuN6dN6UGNw2QUc0oxteP0WCxagjbkUElpCcnuIb15DQx48piOBmtSSOjVl3gCBoCLGZuxiGB3dkejoC0hM7BfmngkhhBD1m9/vJ4iRhdIJogcUKjQgZELXfNXXkqoU8ODVjM1ILoh28miz1DPc43NPsceIO0e0n0W0OTt03GFPD1eXhBDivCVJKVEnBAIBwJgXZVMWghXBl7kiwRSBF0Ytg+PN0incA+s+gtz1lB81eii1pE5OuTfA7e+tYOdBY2vkSGs5AElJV5LR6M5wdk0IIYQ4LwQCAQLKiF8sWgBzkFBSStNMmPCDbjl+A34PXpNx3qbJ4Fx1SiuSUg7d2GG4SeN7iY5uT1zcxeHslhBCnJckKSXqhEAgQKmysMTXlA3BYu48apo6gMmkjp+QApjzBKz/CACPLREwCpxLLamTszr7MD9sP0TnBqv5W+dp2M1GjQWL2RXmngkhhBDnh0AgEJopZdYCBCxpocG60Eyp6pbv5f4ES1+FA5vwNmgJgEUG56rYW1DOxpwith8wBt90rQyA5OTrcDqPU6NLCCHEGSVJKVEnlOcUsTsQwx4VTYQvC0+oDlRFPQXzCUb6SvMA8Da5nLykboDMkjoVRW4fAL0bbQ4lpEwmO9HRHcPZLSGEEOK8UbwylyAmHIEyrsz9hm0JcUBZxVkdh6mo+qTUoufgp/8B4NOMOMoqsVCIPxBk0EuLyC/10iNlOTe2yMGEseueWWpJCSFE2MicXlEnFC3cgx+dRmXZ9CucxYb0xIozxkwp/USbxvg97LUl0j7j7wy0DwSQ7Y9PQVFoa2QjIdW8+UNceskKIiNbhrNbIsxGjBiBpmlomobVaqV58+aMHz8+VAvuVM2fPx9N0ygoKDg9Ha2FrKwshg4dSmpqKna7nfT0dAYPHszmzZurXDdjxgx69+5NVFQUTqeTiy66iHfffbfKNTt37kTTNNasWVPrx3/88cdp1aoVERERxMbG0rdvX5YtW1alzdtvv50mTZrgcDho1qwZ48aNw+v11tjuvn37GDp0KC1atMBkMnHffffVuk+V/vnPf6Jp2jH3bt++nd/85jckJiYSHR3NkCFD2L9/f5VrnnrqKXr27InT6SQmJqba9it/ho7++OCDD0LnP/30U/r16xd6nB49ejBr1qwT9vvTTz+lf//+xMfHn/T3Q4i6qHhTHkE0GpXvIbl8P4GKhJRudnCp611aOhdVP3vcbeyUS7vr8bYaBBizxoWhsNxHfqmXBMdB7mj/XwY2ngeAyWTDbI4Mc+9EfSDxksRLEi+dGnnXLsJOKUV5cQl+TDTwHEBDgQJNmdDNmUAtZkr53ayPbEGhOpK9GpggS85q67PVe7h28iJemrOBGFshEeZiAOy2VHTdGebeibpg4MCB7Nu3j59//pm//vWvPP744/zrX/8Kd7dCThSEAPh8Pvr160dhYSGffvopW7Zs4cMPP6R9+/ZVAr2XXnqJwYMH06tXL5YtW8a6deu4+eabGTlyJPfff/+v6meLFi2YPHky69evZ9GiRTRu3Jj+/fuTl2fM9ty8eTPBYJDXX3+dDRs28Pzzz/Paa6/xyCOP1Niux+MhMTGRv//973TsePIzG1esWMHrr79Ohw4dqhwvLS2lf//+aJrGvHnzWLx4MV6vl0GDBhEMBkPXeb1ebrzxRv70pz/V+DhTpkxh3759oY/rrrsudG7BggX069ePr776ipUrV9KnTx8GDRrE6tWra2yztLSUiy++mGeeeeakn7cQdVFpkZsgGroy6m2atTiskTfSp1EsHSK+xXK8clIBY0CJllfhjW0KyEypo1UOvCVHGHWkzGYXjRrdQft2L2My1bCboRAnQeIliZckXjoFShxXYWGhAlRhYWG4u1Kv7du2Vc194D/q6kfeVDff+Xc1ccjV6vlb/6Ym3zVXTb5rrnr5rm9V+cSuNTfycg/12eTBqsG81Wrwyq3KFwienc7XE/2f+161fORj9b+vOqo5c5uGPg4e/D7cXas3ysvL1caNG1V5eXm4u3LShg8frgYPHlzlWL9+/VT37t1Vfn6+GjZsmIqJiVEOh0MNHDhQbd26NXTdzp071TXXXKNiYmKU0+lUbdq0UTNnzlRZWVkKqPIxfPhwpZRSRUVFaujQocrpdKrk5GT13HPPqd69e6s///nPoXYzMjLU+PHj1bBhw1RUVFTo3oULF6qLL75Y2e12lZ6eru655x5VUlKilFJq9erVClA7d+487nPNzs5WFotFjRkz5phzL774ogLU0qVLlVIq9BxWr1598i9qhcq/M3PmzDnuNc8++6xq0qRJrdv85Wt1IsXFxSozM1PNnj37mHtnzZqlTCZTlb+DBQUFStM0NXv27GPamjJlinK5XNU+DqA+++yzWvdLKaXatGmjnnjiiVpdezq+H0er6XdW4oOq5PU4fbK2/aw++NurauSj/1JX/+lpNXHI1eqFm/6oJt81V229p69S46KVeqlL9Te/1V/5xsWqrLUz1Z0/ZakG81arf2flnt0nUEf9tLdATZ73s8oYO0MNe/l5NWduU7Vs+aBwd0tUQ+IliZeqI/FSzc71eElmSomw8ng8LPjv/5FlzcfuLqd77nrjhGYGFeTCJmu4Kuaf2K2Bmhvyu/FUjHI5dBNmGRk8KQXlXlIi9+OyGTOkNM2Mw9FYakmdYUopynxlZ/1DKfWr++5wOPB6vYwYMYIff/yR6dOns2TJEpRSXHXVVfh8Rn2yUaNGGb/nCxawfv16nnnmGSIjI2nYsCH/+59R+2TLli3s27ePF154AYAxY8awePFipk+fzuzZs1m4cCGrVq06pg8TJ06kY8eOrF69mkcffZTt27czcOBArr/+etatW8eHH37IokWLGD16NACJiYmYTCY++eST0I6fv/TJJ5/g8/mqHeG76667iIyM5P333//Vrx8Yo2VvvPEGLperxtG6wsJC4uLiTstjVmfUqFFcffXV9O3b95hzHo8HTdOw2Y5sP2+32zGZTCxatOiUHishIYGuXbvyzjvv1PizGAwGKS4uPqPPXYi6xOPx8J///B9r9DzKfRoDcr8CQKssZWDyweBX4NZPq28g4GHQhZPpfiiV6QcKACl0DnC41Mt1Ly/muW83clOLT+nXaCYAZnN0mHsmaitc8dLpiJkkXvr1JF6q//GSFDoXYbV69myWB+2sDsbQbv9SUksPke1wVSSlvFxU/gQWO+DoWn0DSoGnCHzleGxGUsoutaRqrdjtY1+hm8JyH4kuo2ZFVGRbunadHuaenR/K/eV0m9btrD/usqHLcFpObVmmUoq5c+cya9YsrrzySj7//HMWL15Mz549AZg6dSoNGzbk888/58YbbyQ7O5vrr7+e9u3bA9C0adNQW5V/PJOSkkLr6ouLi3nvvfeYNm0aV1xxBWBMYU5NTT2mL5dffjl//etfQ1/fcccd3HLLLaE1/pmZmbz44ov07t2bV199lbS0NF588UUefPBBnnjiCbp06UKfPn245ZZbQv3aunUrLpeLlJSUYx7ParXStGlTtm7dekqvXaUZM2Zw8803U1ZWRkpKCrNnzyYhIaHaa7dt28ZLL73ExIkTf9VjHs8HH3zAqlWrWLFiRbXnu3fvTkREBGPHjuUf//gHSikeeughAoEA+/btO6nHGj9+PJdffjlOp5Nvv/2Wu+++m5KSEu69995qr584cSIlJSUMGTLkpJ+XEOcit9vNfhXJV95WdD6wjqZ5PjanApoR11gsXuh4M5iqL7Sp/F5WR7cBwKmbiLPoXBYnBbxzi9z4Aor2CTvo33h+6Ljdnh6+TomTEq54CU49ZpJ4SeIliZdqT969i7AqKy5mWyCB7cEEzKZDoS2PNXT8Fh/m2MbQ8164upr/YJSCt/vDPxtBcU5oppTsulc7JR4/lzz7HVf+ex43NH+f3zafAYDZIiOH4lgzZswgMjISu93OlVdeyU033cSIESMwm81063YkUIyPj6dly5Zs2rQJgHvvvZcJEybQq1cvxo0bx7p162p8nB07duDz+eja9Ugi2uVy0bLlscX2u3TpUuXrtWvX8u677xIZGRn6GDBgAMFgkKysLMAYecrNzWXq1Kn06NGDjz/+mLZt2zJ79uxavxZW64lrj0ydOrVKPxYuXBg616dPH9asWcMPP/zAwIEDGTJkCAcOHDimjb179zJw4EBuvPFG7rzzztDxo9sdOXJkrfq8cOHCKvdNnTqV3bt38+c//5mpU6dit9urvS8xMZGPP/6YL7/8ksjISFwuFwUFBXTq1AnTSQ4APProo/Tq1YsLL7yQsWPH8uCDDx63zsa0adN44okn+Oijj0hKSgJqfk2FqA8CgQCHgk4UJuxBL8GKcEazRwBgsQaPm5AC8AaOFFNe27MtP/ZoS5tIxxnt87mg1GO8LukuY0aKw9GY1q3+SWbzseHslqinJF46QuIliZdqS2ZKibDy+/34K1aRJgYCBCsTSpoZl/KgpVwA/Z+s/mZvKexZHvrSE2mMDMiue7Wz82ApBWU+2iX8TJ+Gi0PHHY6MMPbq/OIwO1g2dNmJLzwDj3uy+vTpw6uvvorVaiU1NRWz2cz06SeeUXfHHXcwYMAAZs6cybfffsvTTz/NpEmTuOeee06l61VERERU+bqkpIS77rqr2pGkRo0ahf4dFRXFoEGDGDRoEBMmTGDAgAFMmDCBfv36kZmZSWFhITk5OceMNnq9XrZv386AAQNO2Ldrr722SvCZlpZWpd/NmzenefPmdO/enczMTN5++20efvjh0DU5OTn06dOHnj178sYbb1Rp++jdUqKja5dE7tKlS5X7GjRowNy5czlw4ACdOnUKHQ8EAixYsIDJkyfj8XjQdZ3+/fuzfft2Dh48iNlsJiYmhuTk5CqjuKeiW7duPPnkk3g8nirT3T/44APuuOMOPv744ypT5Gt6TYWoD4LBIAojDmqtAkcG6nTjjZ1JP86gm7cM8rfj8R0pYCwDdEcUVySlomxGUsrpzCA19cZwdkmcpHDFS5WPfTIkXpJ4SeKlkydJKRFWAZ+PYEUAFhXw49MrE0o6uuYDs+34N/uNXWYOWlx8dstSFhaUweESCcRqqajcCM6axhlrxSMiMmmc8Sfi4/uEs1vnFU3TTnkZ3dlWGRgcrXXr1vj9fpYtWxaajn7o0CG2bNlCmzZtQtc1bNiQkSNHMnLkSB5++GHefPNN7rnnntAI2tH1Cpo2bYrFYmHFihWhwKiwsJCtW7dy6aWX1tjHTp06sXHjxmP6WRNN02jVqhU//PADADfccANjx45l0qRJTJo0qcq1r732GmVlZfz+978/YbtRUVFERdVu2UwwGMTj8YS+3rt3L3369KFz585MmTLlmBG2k3l+lRwOxzH3XXHFFaxfv77KsT/84Q+0atWKsWPHoutVZ2RUTpmfN28eBw4c4Nprrz3pfhxtzZo1xMbGVgmw3n//fW677TY++OADrr766irXn8xrKsS5KBAIEKiIiSxBXygppZQJjeMkpZSC1y+BQ9vwWGJDhy2axELfb83jpbk/c7DEg9NcRozdqJup6xEnuFPUNRIvSbwEEi/V53hJklIirPw+P0HMtC7ehFsFcEdXBApaRVJKP96+x4DfDcC/M0bwVtaRqZzR5uNPbRcQDCpemb+NpTvy0QgS6zBeR6ezGcnJg8PcO3EuyczMZPDgwdx55528/vrrREVF8dBDD5GWlsbgwcbP0n333ceVV15JixYtOHz4MN999x2tW7cGICMjA03TmDFjBldddRUOh4OoqCiGDx/OAw88QFxcHElJSYwbNw6TyYR2gjdZY8eOpXv37owePZo77riDiIgINm7cyOzZs5k8eTJr1qxh3LhxDBs2jDZt2mC1Wvn+++955513GDvWWMbRqFEjnn32We6//37sdjvDhg3DYrHwxRdf8MgjjzBhwgTatWtX5XG3bNlyTF/atm2L5Rf7tpeWlvLUU09x7bXXkpKSwsGDB3n55ZfZu3cvN95ojNrv3buXyy67jIyMDCZOnBja+hggOTm5xudfObJXUlJCXl4ea9aswWq1Vgl4jxYVFXXMc4mIiCA+Pr7K8SlTptC6dWsSExNZsmQJf/7zn/nLX/5SZYlAdnY2+fn5ZGdnEwgEQn1p3rw5kZGRfPnll+zfv5/u3btjt9uZPXs2//jHP6oUSJ02bRrDhw/nhRdeoFu3buTm5gJGgOhyuY77vCsfNycnBzjy/UhOTj7hayZEXRIMBkMDdeagD68louK4CR3Qq0tK+d1waBsA7kijtovdpJ3w/8vzwTuLsvhx12F+3+YDenf+IXTcrEeGsVfifCTxkkHiJYmXjuu07ANYT8kWx2dWwONXHz76hur7yBQ1/PYH1MQhV6uJN16tJt08RL14xyfqw1FvKPXlfcdv4OA2pcZFqz9+9IJqMG+1uvLHLerhLbvVnnLP2XsS56Afd+arjLEz1I3PP6G+/raFmjO3qZozt6nauPGhcHetXqtvWxxXqtzi2OVyKYfDoQYMGFBli+PRo0erZs2aKZvNphITE9WwYcPUwYMHQ+fHjx+vkpOTlaZpNW5x3LVrV/XQQ0d+RjMyMtTzzz9/TH+WL1+u+vXrpyIjI1VERITq0KGDeuqpp5RSSuXl5al7771XtWvXTkVGRqqoqCjVvn17NXHiRBUIBKq08/nnn6tLLrlERUREhLZgfv/996tcU902zZUfu3fvPqZv5eXl6je/+Y1KTU1VVqtVpaSkqGuvvVYtX748dM2UKVOO2+aJVHdPRkbGCe87WnXbI48dO1Y1aNBAWSwWlZmZqSZNmqSCwWCVa4YPH17t43/33XdKKaW+/vprdcEFF4S+Lx07dlSvvfZalde9d+/e1bZR+XNxPMd7zcaNG3dSz/2XTscWx+cLeT1Oj927d6vr/vaa6nHvG2rSkBvUpJuGqIlDrlbP/368mnzXXFX0z57H3lR2WKlx0UqNi1Y/FxaqBvNWqxYL1p31vtdF105epDLGzlBfzekeinXmfddG7d//Tbi7Jmog8ZLESxIvnX/xkqbUadgbvJ4qKirC5XJRWFhY63WoovZ8B8r45MX/8lbQRuP962lTshmz42LMdqNgXxPbUq4aWAhXPlN9A/s3wqs9+EOHZ/k6thv/apnOsNTqd2QQR8zakMtd/7eSezv9l44JRk0uTdNp0/pfMlPqDHK73WRlZdGkSZPjFkkU1SstLSUtLY1JkyZx++23n/XHz8/P54orriA6Opqvv/4ap/PcWEIgfp2afmclPqhKXo9fL+jxs/6173n0wA7Sc9bRrCwrdC4xvR/N+ZkeDRei3be26o0lB2BiJv9NvobZPZ9k1qEikqxm1vVqx/nu8knz2ZFXytsD/wbBYrp1/ZqIiOZomtQercskXjp1Ei+JcDgd8ZL8ryzCJuANENQUQTR0VblGWsekuel/0Xoud70Meg27NgSMNcVu3fjht0qQUSvFbqPgZ5zTqCmVmfl3Lr1ktSSkRJ2xevVq3n//fbZv386qVau45ZZbAEJT3M+2uLg45syZwxVXXMGSJUvC0gchRP3mzS7Gs7+EIBpmZfyd1m0dsUQM5tbIx+gZ9X9o5mpiIr+HQj2SB1r8lVmHigBItJ7f1Tle/347F47/luxDRURaSiBYCoDF4pKElKhXJF4S9cX5/VdLhE1JcTFfvP4ShZqd9MOFdDmwieIIM6BjMnnJTMqC3SXVJ6UCPlgzDXJWAeA1GddIgfOard9TyPS1e9mQU0CMrZAIs1Hw02ZLxmyWop+ibpk4cSJbtmzBarXSuXNnFi5cGCocGQ7x8fE89thjYXt8IUT9lrdzF0EU6qiBOpM5Hd3SkFB407zvsTcGvJTqDpRmwgT8rVkqfePP79lqn6zcQ7mnmKcvfoo4e2HouNl8bhX+FaI2JF4S9YEkpURY/O/V18jSvYCXdgfX4vB7KMYMmg7BIlg5xbiwuqTUz9/Cl0e2MPVUzJSSpFTN/v7FT6zdXcBfO0/m9mZbQ8clSBN1zYUXXsjKlSvD3Q0hhDgrlFLsW7WKILG0zv2RlvnbKXI6MBY0BKB5P7jp/8BSzdb0fg9ek1Ek2K6bGNUo6az2vS4qdvtJjthfJSEVH3cpJlM1r58Q5zCJl0R9IUkpERaHS8tY6U8noJz0Ns8iWBEoaOjoFmNZGZYIaNzr2JtLK3ZXcDWC5lfgdWWAF2wmmZJdk9zCckDRKm5bxREdp7MR0VEdwtktIYQQ4ry288svWZWzFVzJtMndSrBykE3T0TQ/WOzVJ6QAAkeSUjbZcQ+AYreP2EhjZ+GIiEy6df1Klu0JIUQdJkkpERY7A9GsDxhbF18eDBLUjgRgMcoLf14H0WmgV/Mj6jdqSX3V9Ca2dbiTnN15gB+rzJSqVn6plzW7D3O4zIdN92LSggBc1nstui6jhkIIIUQ4Ld28he+iGrHLH8sdAQjqlfGMCafJCybLsTcV74ePfg8Fu/BqxhJ8y3kcBwWCirunrmTjviJKvQHsZiMpZdYjJSElhBB1nCSlRFiUKyNASFZBIgIQCAVSOiY8YIuqPiEF4HeTZU/jtuhrYMe+0OFos36Ge31uuvWtZWzcV0SL2G2kR+YAoGkWTCbZ0UQIIYQIN28wwEp/On50TMEgAa0yntExEai+lEHW97B7qXF/VCuA83pwLutgCbM27CfZuZ8xnT4hOTIfAN0cGeaeCSGEOBFJSomw8GEETpcf+JYyPREqdwzVdHTNB2bb8W/2e8izxgIQpZu4JimGpg4b7SNl1k91tuWV0ChqN2MvejF0zNiB5vwNXoUQQoi6IhAM4q/YEDs+GCBHM5JQmqZj0vw1zhqnYTe8l/4D9pzfuxAXVews3LfxKtombAkddzqbhKtLQgghakmSUuKsU4Egvorgy+XOCR03m52Y9Abo2iHQa0pKuXGbjPNpdivPt2p0Rvt7LnP7Anj9QZKcRh0us9lFdFR7kpPDs1WsEEIIIaryB4JQMVjnDAYIhsaMTOia9zg7EXuNzxGJeONbwp7t5/VMqVKPkZSKsRvL9ho0GERK8m+JiekWzm4JIYSoBUlKibMu/7NtBDDqI2jKqG9kjb4Nkx4DUDFVvYYfTb8Ht8kI0OxS3LxawaDijYU72H6gBIAIixGkxcR0oWOHN8LZNSGEEEIcxRdUADQr3c7uqBjcVjMQwFi+56u+plTAR6nJzjuRPVmTcxA4P5fvlXj8fLA8m9W7CwCIsBrxTnRUe+LjLw1jz4QQQtSWJKXEWXdg3bbQ8r3KpJSm6egmP5HaAVpFLq7+xuVvwjcPQ9CHO+EyAOznYQBWG6uyD/PPrzcTZS2mf8YKLkgydtwzm6PC3DMhhBBCVAp6A3iDZkwqwIADczhs1zASUqCZ7CRY1oFeXVLKy5eJl/FURC/IKwQg1nz+hfUfrdjNhJmbaOLayf1dviSjonamxDtCCHHukGkm4qxSSlFWXIAfuGTvGkzKX3HGRKPALG5NHEXT6J+qv3nL1xD0AeAxG/WjZKZU9Q6WGLUmbm41l5tafk7LWOM1tVriw9ktcY4aMWIEmqahaRpWq5XmzZszfvx4/H7/iW+uwfz589E0jYKCgtPT0VrIyspi6NChpKamYrfbSU9PZ/DgwWzevLnKdTNmzKB3795ERUXhdDq56KKLePfdd6tcs3PnTjRNY82aNbV+/Mcff5xWrVoRERFBbGwsffv2ZdmyZVXavP3222nSpAkOh4NmzZoxbtw4vF5vje3u27eP/2fvzONrutb//95nyjmZJRIZRIh5rqHGqqaGUEVbpS1XuUXp11DVIahWuXTQqGsq1V9L772oW23VjWrFPJaWpJSKodEQghgy54zr98dODkciYqgjsd6v13mx937W2s/aOTnnk2et9Tz9+/enTp06aDQaxo4dW2af0tLS+Nvf/kZgYCAmk4nGjRvzyy+/OK9f/fMvenXr1s2lj+rVqxezef/9953Xk5OTiY6OpkqVKhiNRqKiopg0aRJWq9Wln8uXLzNy5EhCQ0Px8PCgTp06fP/996X6/80339C1a1cCAwNv+uchkbibzA2pWBwmtMKOFnWiTmtshTGoAwO67OdR3/nXCUqZuaT3BaCOp5Ex1YKZUjvsbrp+T3AuW9U7T9TeQ/2Ao3hocgEwyVxSEjcg9ZLUS1Iv3Rr335SKxG3Y7XY+njaNJG9f0u1VmHzk/3GwenDhVQ06bb7637BmJXdgK+CSzof/PLqI3Z614FIeRq1cKVUSmfnqB1e4bzYAfn4t8fVpRETEYDd6JSnPdOvWjcWLF2M2m/n+++8ZOXIker2eCRMmuNs1ACwWCwZDCXlXrsJqtdKlSxfq1q3LN998Q2hoKKdOnWLt2rUuQm/u3LmMHTuW2NhYFixYgMFg4LvvvmPEiBH89ttvxMXF3bKfderUYd68eURFRZGfn8+sWbPo2rUrx44dIygoiMOHD+NwOPjkk0+oVasWv/32G8OGDSM3N7fU+5rNZoKCgpg0aRKzZs0qsz+XLl2iffv2REdHs3btWoKCgjh69CiVKlVysSv6+Rfh4VE879/UqVMZNmyY89jH58pKBb1ez/PPP0/z5s3x9/fn119/ZdiwYTgcDt59911A/Rl26dKF4OBgVq5cSXh4OH/++Sf+/v6ljiE3N5eHHnqIfv36udxfIikPnE48hA3QCrvznM7YDgM/UelgnJpq6jrb9yyFqQxa+nkyseb9F5CCK7mkIvzV5xcePoDQ0D74+jRxp1uS+xipl6ReknrpFhCS65KZmSkAkZmZ6W5XKgQXLlwQr749XUTGxovICV+Jja3qi7h+PURcvx5i7otrxfbXBguRcUwIu63kDj55RMz67P9ElY2JztfLh/68u4O4x9lx9LyIjtskGk/+QUTGxosv1/YU6zdEiTPpq93t2n1Pfn6+OHTokMjPz3e3KzfNoEGDRO/evV3OdenSRbRp00ZcvHhRDBw4UPj7+wuTySS6desmjhw54rQ7ceKEePzxx4W/v7/w9PQUDRo0EGvWrBEpKSkCcHkNGjRICCFEVlaW6N+/v/D09BQhISHio48+Eh07dhQvv/yys9/IyEgxdepUMXDgQOHj4+Nsu23bNvHQQw8Jo9EoqlatKkaPHi1ycnKEEEIkJiYKQJw4ceK6Y01NTRV6vV6MGzeu2LU5c+YIQPz0009CCOEcQ2Ji4s0/1EKKvmfWr19/XZsZM2aIGjVqlLnPa59VacTGxoqHHnqoVJuSfv7XEhkZKWbNmlU2Bwt55ZVXXO69YMECERUVJSwWy031U8Sd+HlcTWm/s1IfuCKfx62z+9UvxDuTPhKdR01TNVHfHmLe8A3i05HvCDHZV4gpgUIcSSjeMGGyeH/xWFFlY6KITT559x2/R3jly0QRGRsvVm94StU7Z75zt0uS20TqJamXSkLqpYqtl+TeJ8ldw263UyDU2T6jxozGcfVVDd4aBwTWBI225A5sZi7o/QFo6mPipYggXqle5S/1ubzxXdJp/jify6Ph3zG9/T8IMBwBQK/zc7NnkpIQQuDIy7vrLyHEbftuMpmwWCwMHjyYX375hdWrV7Nr1y6EEDz22GPOZcYjR47EbDazdetWDhw4wAcffIC3tzcRERF8/fXXgLpU+cyZM8yePRuAcePGsWPHDlavXk1CQgLbtm1j3759xXyIi4ujadOmJCYm8tZbb3H8+HG6detGnz592L9/PytWrGD79u2MGjUKgKCgIDQaDStXrsRutxfrD2DlypVYrVZee+21YteGDx+Ot7c3y5cvv+3nB+pM16JFi/Dz86Np06bXtcvMzCQgIOCO3PNaVq9eTcuWLenbty/BwcE0a9aMTz/9tJjd5s2bCQ4Opm7durz00ktcuHChmM37779PYGAgzZo148MPPyx1u8KxY8f44Ycf6Nixo4svbdu2ZeTIkVSpUoVGjRrx7rvvXvdnJZGUdyyXLpHrMGPBwTN/xAOgFObc1GmtMHwrjP8Tane+0shmgex0yL+MRVE1lcd9ll9TCMH/Ld1L0ynrOJ0eT6+a3+OhnAJAp/N2s3eSvwJ36aU7oZmkXrp9pF6q+HpJbt+T3DXsdjv2QrFVSXGgdVwtorRoNTf40LflYy5cqt4l0I/XaoT8RZ6WX7IKrICgR9QGNIr6AacoWjw9a7rXMUmJiPx8kpu3uOv3rbtvL4qn5y21FUKwYcMGfvzxR7p3786qVavYsWMH7dq1A2Dp0qVERESwatUq+vbtS2pqKn369KFx48YAREVFOfsqEg7BwcHOJcfZ2dl88cUXLFu2jE6dOgGwePFiwsKKb0159NFHefXVV53HQ4cOZcCAAc78ALVr12bOnDl07NiRBQsWEB4ezpw5c3jjjTeYMmUKLVu2JDo6mgEDBjj9OnLkCH5+foSGhha7n8FgICoqiiNHjtzSsysiPj6eZ599lry8PEJDQ0lISKBy5col2h47doy5c+fe1hL40vjjjz9YsGAB48aNY+LEifz888+MGTMGg8HAoEGDAHUp+lNPPUWNGjU4fvw4EydOpHv37uzatQutVp1EGDNmDM2bNycgIICdO3cyYcIEzpw5w0cffeRyv3bt2rFv3z7MZjMvvvgiU6dOdfFl48aNDBgwgO+//55jx47xf//3f1itViZPnvyXjF8icSefzJxJuo+B0w5fGlpsZAIo6nxxhLYAvKuAwetKA0sezG0B2Woyb3PN0QB4KPdXUOpSnpXvD6RT2ZTBsMaF22QKJaTeIHNnVkTcpZfg1jWT1EtSL0m9VHbkSinJXcNms+EQhTOAig1FFIkoNcmbRnudoJQQcDEFLLn37axgWckusGHQWpwBqWYP/It2bTdjMoW72TNJeSc+Ph5vb2+MRiPdu3fnmWeeYfDgweh0Olq3bu20CwwMpG7duvz++++A+uU7bdo02rdvz+TJk9m/f3+p9/njjz+wWq20atXKec7Pz4+6desWs23ZsqXL8a+//sqSJUvw9vZ2vmJiYnA4HKSkpADqTGR6ejpLly6lbdu2fPXVVzRs2JCEhIQyP4sb5WIAVWxe7ce2bduc16Kjo0lKSmLnzp1069aNfv36ce7cuWJ9pKWl0a1bN/r27euy9//qfkeMGFEmn7dt2+bSbunSpQA4HA6aN2/Ou+++S7NmzXjxxRcZNmwYCxcudLZ99tln6dWrF40bN+aJJ54gPj6en3/+mc2bNzttxo0bxyOPPEKTJk0YMWIEM2fOZO7cuZjNZhc/VqxYwb59+1i2bBlr1qxxEY8Oh4Pg4GAWLVpEixYteOaZZ3jzzTedvpT2TCWS8obD4eC8VscqcyM2WWujLVyNoegKdQ420F7zWXP5T2dACkWDRa+uCvK4z4q+FOXNDPFS82Zqtb6Ehw+gVq3xMpeUxO1IvXQFqZekXiorcqWU5K6RfyoTOwpah43I7BR+r9EBOAmokWPt9ZKWrx4Fif8BwFKY7NMgg1JO7A7BmC8TSU7P5nLOWaL80gB1hVSlSu1Q7rMZ1PKEYjJRd99et9z3ZomOjnYmsQwLC0On07F69eobths6dCgxMTGsWbOGdevW8d577zFz5kxGjx59K6674OXl5XKck5PD8OHDGTNmTDHbatWqOf/v4+NDz5496dmzJ9OmTSMmJoZp06bRpUsXateuTWZmJqdPny4222ixWDh+/DgxMTE39K1Xr14u4jM8/Epg2MvLi1q1alGrVi3atGlD7dq1+eyzz1ySoJ4+fZro6GjatWvHokWLXPq+ulqKr6/vDX0BVZBe3a5KFXXrc2hoKA0aNHCxrV+/vnOrQElERUVRuXJljh075pydvZbWrVtjs9k4ceKEi0COiIgAoEGDBtjtdl588UVeffVVtFotoaGh6PV652xikS/p6elYLJZSn6lEUt6w2+1Y0JGLmgS3aLG4UrhSSqvYilfdsxUA8EvIIyx5eA57MnOhwHJfaaJTl/LYfvQ8AJW91OCUp2ck9epOLa2ZpJzjLr1UdO+bQeolqZeKkHqp7NzxqZWtW7fSs2dPwsLCUBSFVatWuVwvS6nEixcvMmDAAHx9ffH392fIkCHk5OS42Ozfv58OHTpgNBqJiIhgxowZxXz56quvqFevHkajkcaNG9+wTKLkr+Xy9pM40FA/5zDNTu8jU3dSvaDo8dacI9QnteSGaYV7o/WemL3VLXv326xgaRw5m82a/WfIyvmD6e3e5PWW8wDQ6XxlQOoeR1EUNJ6ed/11K++LImFQrVo1dDp1PqN+/frYbDaXEr0XLlwgOTnZ5Ys7IiKCESNG8M033/Dqq6869+AXzaBdvQc+KioKvV7Pzz//7DyXmZlZpiXgzZs359ChQ04Bc/XrerN1iqJQr149cnPVMuJPP/00Op2OmTNnFrNduHAheXl5PP/88zf0xcfHx+X+plJErcPhcJkhS0tL45FHHqFFixYsXrwYzTWfd1f3GxwcfG13JWIymVzaFVV6ad++PcnJyS62R44cITIy8rp9nTp1igsXLpS4ZL+IpKQkNBpNqf45HA6sVisOh8Ppy7Fjx5zHRb6EhoZiMBhu6plKJPc6drsdR2FKAy2gL1opVRiU0mAD7TVVm2zq58SMsH6sPHuJ1AK19HkVjxKq81VALudZ6DRzC2999xvNgn+lWZCqD3U6nxu0lJR33KWXbkUzSb0k9VIRUi+VnTu+Uio3N5emTZvywgsv8NRTT5Voc6NSiQMGDODMmTMkJCRgtVr5+9//zosvvsiyZcsAyMrKomvXrnTu3JmFCxdy4MABXnjhBfz9/XnxxRcB2LlzJ8899xzvvfcejz/+OMuWLeOJJ55g3759NGrU6E4PW1IGCrLNOFDwsucBoFF8QBdKu1qXac1wMBZfbgo4ZwYZ+C3my8FwIeu+mhW8EZfz1JnCB0LOodM4QNGh1/kRHvaMmz2TVHRq165N7969GTZsGJ988gk+Pj6MHz+e8PBwevfuDcDYsWPp3r07derU4dKlS2zatIn69esDEBkZiaIoxMfH89hjj2EymfDx8WHQoEG8/vrrBAQEEBwczOTJk9FoNDcUhrGxsbRp04ZRo0YxdOhQvLy8OHToEAkJCcybN4+kpCQmT57MwIEDadCgAQaDgS1btvD5558TGxsLqDOEM2bM4LXXXsNoNDJw4ED0ej3fffcdEydOZNq0acW+Q64VKQANGzZEr3f9QzE3N5fp06fTq1cvQkNDycjIYP78+aSlpdG3b1/gisCKjIwkLi6O8+fPO9uHhJSeR69oZi8nJ4fz58+TlJSEwWAoNrN3Na+88grt2rXj3XffpV+/fuzZs4dFixY5ZxtzcnKYMmUKffr0ISQkhOPHj/PGG29Qq1Yt5wzorl272L17N9HR0fj4+LBr1y5eeeUV/va3vzlLJS9duhS9Xk/jxo3x8PDgl19+YcKECTzzzDPO5/TSSy8xb948Xn75ZUaPHs3Ro0d59913S5zJvZqLFy+SmprK6dPqtqain0dISMgNn5lE4i6cQSkh6HBxJ2l+hbmQFHXmW1PiSin1j7FsnZrfZkBoAG39vekV7H+33HYrpy7lY7Y5qFPpT0Y98JnzvF5fqZRWEon7kXpJReolqZeuyx2pA3gdAPHtt9+6nLtRqcRDhw4JQPz888/Oc2vXrhWKooi0tDQhhBAff/yxqFSpkjCbzU6b2NhYUbduXedxv379RI8ePVz6bt26tRg+fHiZ/Zclju8cSbt3i39PnC/+Nmm2eG7YRBHXr4eY3T9WzBu+QZyLbayWPf4spuTGM+uL7KlVxMHj+8RjvySLKhsTxcozF+7uAO5Rfj15Sbz3/e8iMjZevLl0qli/IUr8+mvZ3+OSu0dFK3FcRFGJYz8/P2EymURMTIxLieNRo0aJmjVrCg8PDxEUFCQGDhwoMjIynNenTp0qQkJChKIopZY4btWqlRg/fryz3fVK6u7Zs0d06dJFeHt7Cy8vL9GkSRMxffp0IYQQ58+fF2PGjBGNGjUS3t7ewsfHRzRu3FjExcUJu93u0s+qVatEhw4dhJeXl7ME8/Lly11sSirTXPQ6ebJ4ifb8/Hzx5JNPirCwMGEwGERoaKjo1auX2LNnj9Nm8eLF1+3zRpTUJjIy8obt/ve//4lGjRoJDw8PUa9ePbFo0SLntby8PNG1a1cRFBQk9Hq9iIyMFMOGDRPp6elOm71794rWrVsLPz8/YTQaRf369cW7774rCgoKnDZffvmlaN68ufPn0qBBA/Huu+8W+33YuXOnaN26tfDw8BBRUVFi+vTpwmazler/9Z7Z5MmTbzj20rgTJY7vF+TzuHky/kgXr7z1rmg0bpmI69fD+fqo//+JecM3iF9ee6F4o+QfhZjsKx5dGy+qbEwUGzPur+e981iGiIyNF//3/2aI9RuixJatD4qDB18XWVmH3O2a5A4i9ZLUS1Iv3X96SRHiDtQGvw6KovDtt9/yxBNPOM8NHjyYVatWYTAYqFSpEo8++ijTpk0jMFCdIfr888959dVXuXTpkrONzWbDaDTy1Vdf8eSTT/L888+TlZXlsjVw06ZNPProo1y8eJFKlSpRrVo1xo0b56wqADB58mRWrVrFr7/+WqK/ZrPZZUlgVlYWERERZGZmlnkfqqQ4Fy5cYM6cuVwWRs7nKjx8fA25Hr7oDQ+g9XqU/lXGUanDk9CoD4QUX8VW8GFdWjZZQIbhSonP/9ewOo/fJzOD1+PI2Wy6ztqKtz6bAfVXUj/wND76s4SGPk2D+h+42z3JNRQUFJCSkkKNGjUwGo3udqdckZubS3h4ODNnzmTIkCF3/f4XL16kU6dO+Pr6snbtWjxvsXKhpHxR2u9sVlYWfn5+Uh8UIp/HzXNk0S7mn9rC1pyq/C3tS0CP3qsbGl1V9FroGfQhYVM3uzY6tBr+O5AObb/iqCGYrx+oSftK98fWtTyLjXUHzzJ2RRLPNdpP57D/R2BgRx5o+rm7XZPcYaReunWkXpK4gzuhl+56Yp5u3brxr3/9iw0bNvDBBx+wZcsWunfv7twjm56eXmxPpU6nIyAggPT0dKdNUdKxIoqOb2RTdL0k3nvvPfz8/JyvogRjktsjOzubY/ZAvrM0JjA9lcBsNQ4qUJcgak1e0HlyiQEpgLMaL2dAKsigo4m3idb+XiXa3k+cyFD3dLcLP0irkER89GcB8DTVcKdbEsltk5iYyPLlyzl+/Dj79u1jwIABAM4l7nebgIAA1q9fT6dOndi1a5dbfJBIJBWL9CNHcaCgoTAniKJHa6hNB89YhgYPJMz7pGuDEzvgj80AmDVq9o37Jb/mliPnaTplHWNXJAHg46Hm0tJqpRaU3N9IvSSpKNz16nvPPvus8/+NGzemSZMm1KxZk82bN183K/3dYsKECYwbN855XLRSSnJ72MxmMoWaYM3bbsZRtM9ZoybS0xq012sKQEHhWr5KWoUD7WU+sCKyC2wA1KysClp//9ZEVhtKQEB7d7olkdwR4uLiSE5OxmAw0KJFC7Zt20blypXd5k9gYCBvv/222+4vkUgqDkIIHA47DjTolKJCPqoWMnrY0dZ+VF09XsS532HJY85Di3J/VSLek3IBq13Qrfp6aldKoWHlTBCg03q72zWJxO1IvSSpCNz1oNS1XFsqMSQkhHPnzrnY2Gw2Ll686EzAFRISwtmzZ11sio5vZFNaEi8PD49iSdclt4/dbHFWmKnlcFwJShUm87y6nKULu+bDmV8pKBJq98mM4I3IMdtISr3Mr6cuA+BtULecenvXo3LlR93omURyZ2jWrBl797qn9LNEIpH81aS+Mg6rrhE2BKawZXDK31l1z8M/BP620rVBZpr6r8EHanTAovcGx/0TlMopsOGtz6ZvndXqicLJSg9j2PUbSST3AVIvSSoKbv8r/9pSiW3btuXy5csuv2AbN27E4XDQunVrp83WrVuxWq1Om4SEBOrWrevMXN+2bVs2bNjgcq+EhATatm37Vw9Jcg02i/lK2WOHFYdTRBUGpfQlvA0vn4QfJ8L+FZgLV1QZtW5/u94T/N/Sffzts90cTvmGFxsvIcKklpeVJZElEolEIrm3ycjI4N/eXuzwPolHfiY99+YVXlE1URWDvngjuzr5lFulCYd7fU5B4aSeh3J/6KIcsx0vfT4AGo2JevXepWGDWURWu/s5cyQSiURy57njK6VycnI4duyY8zglJYWkpCQCAgIICAi4YanE+vXr061bN4YNG8bChQuxWq2MGjWKZ599lrAwdUakf//+TJkyhSFDhhAbG8tvv/3G7NmzmTVrlvO+L7/8Mh07dmTmzJn06NGDL7/8kl9++cVZtlFy97BbLNjR4GvNxEw+lyuFg8i8slJKX8JKKXOW+q/Bm4JWI8AKxuutqLrPOHo2GxAMbvglHtorifmNHqHuc0oikUgkEskNOXPmDBatjj/tlWh6/GceTIU9NQFFgyLs6L1KWLFvM2NRdLSvNp70PVdKqlf0lVLfJaXxn5/+5Ni5HHx1BQDo9f6Ehz3jZs8kEolEcie540GpX375hejoaOdxUY6mQYMGsWDBAvbv388XX3zB5cuXCQsLo2vXrvzjH/9w2Ta3dOlSRo0aRadOndBoNPTp04c5c+Y4r/v5+bFu3TpGjhxJixYtqFy5Mm+//TYvvvii06Zdu3YsW7aMSZMmMXHiRGrXrs2qVato1EjmJLqb2HOtZP+SgUModMrYTI62AIQqLBTFQKj+EIrOULyhTbVZGfY4CZU6wLnLcvteIZn5VgwaqzMgVavWeAz6ygQHP3aDlhKJRCKRSNyJ3W4n1VGJLdZa1LXsu5LSAC1arOh8TCU0spChr0S6Tq1cFKjX0dLPkzCPElZVVSDmbTzGH+cv07JKIlF+fwKg08k8UhKJRFLRuONBqUceeQQhxHWv//jjjzfsIyAggGXLlpVq06RJE7Zt21aqTd++fenbt+8N7yf56yj4/QLms/k4UPCyq0vUNbpINFpvBkd8hA8ZKLoS8iDZzBw1VWNU5Etw7jIA/iWtqLqPmJVwhFVJadjseYR4qXnXFEVLtYihKErFni2VSCQSiaQiYLPZyBdqMMlH2BDOr28NWo0NSpyoM2PRqG28tBoOPnR/TLBmFVh5MCSRYY3/7Tyn11dyo0cSiUQi+Stwe6JzScXm5P7DOBA4UNA71BK+OlNbtFoFX2WhahTWrHhDWwEX9X4A+Om0PBMSwHOhAXfL7XuST7f9gaf2LLM6vo9RV/gsdX4yICWRSCQSSTnBbrc782wGOuycD2wIXARFg0axgbbkoFRBYX5Njwq+Ze9qsgtsVA68CIDJVA0/3+aEhz/nZq8kEolEcqeRQSnJX4Y1PZ1zSfuw+4TQ+/BXGLBg1utQ33ZmaPocRL8J/hHFG9vMzgTnoR56ptYOv6u+32tYbA7yLHYaVDnpDEgpip4qVR53s2cSiUQikUjKSkF6Ng4U6mUf5qx3Lg5NYUoDtHhqLhUPSlkLwJLtXCnlUcFTGQghmL/pGL+nZ5NnseNZmOA8KKgrtWtNcLN3EolEIvkrqNjfbBK3suHzxWz0y2ajNoWaF9Kv5E1QNBh0FvCqXDwgZbfC4e/h+EbMhQKsoifyvBF/Xshlc7K6Xc9Tp4qzypU782j0YerWmexO1yT3CYMHD0ZRFBRFwWAwUKtWLaZOnYrNZrutfjdv3oyiKFy+fPnOOFoGUlJS6N+/P2FhYRiNRqpWrUrv3r05fPiwi118fDwdO3bEx8cHT09PHnzwQZYsWeJic+LECRRFISkpqcz3f+edd6hXrx5eXl5UqlSJzp07s3v3bpc+hwwZQo0aNTCZTNSsWZPJkydjsVhK7ffMmTP079+fOnXqoNFoGDt2bJn8sdvtvPXWWy73+8c//uGyDf+bb76ha9euBAYGXne8x48f58knnyQoKAhfX1/69evH2bNnb3pc+/fvp0OHDhiNRiIiIpgxY8YNx7B161Z69uxJWFgYiqKwatWqMo1dIrnbCJuD7F/ScaBQO/c4Do0A1M/Rap5n6OY/wzUodWAlvBcOG6Y6J+oMFXx19IkLecStO8KmQ8cZ/+A/eSRiBwB6nb97HZNIyoDUS1IvSb10a8iglOQvI9ls4WtbI1ZYHkBx4JLMM0BjLnmJ+q9fwpfPwZ5FzlnB+znB+fHzOXT8cDMv/Wc39QKOUDcgFQCdzsfNnknuN7p168aZM2c4evQor776Ku+88w4ffvihu91yciMRAmC1WunSpQuZmZl88803JCcns2LFCho3buwi9ObOnUvv3r1p3749u3fvZv/+/Tz77LOMGDGC11577bb8rFOnDvPmzePAgQNs376d6tWr07VrV86fPw/A4cOHcTgcfPLJJxw8eJBZs2axcOFCJk6cWGq/ZrOZoKAgJk2aRNOmTcvszwcffMCCBQuYN28ev//+Ox988AEzZsxg7ty5Tpvc3FweeughPvjggxL7yM3NpWvXriiKwsaNG9mxYwcWi4WePXvicDjKPK6srCy6du1KZGQke/fu5cMPP+Sdd965YdXc3NxcmjZtyvz588s8bonEHWSdPYfDYcchFLTCDoDO1BGD7yCeCtuIv/48VH/oSoM/NoND/WPWrFUToFf0lVKX8tTP8hahJ6hd6Q9nURdvn/rudEsiKTNSL0m9JPXSLSAk1yUzM1MAIjMz092ulEumv/UPERkbLyJj48Wats3FR08/JuL69RBzh30rvh09S4hN7xVvtPFdISb7CjGzgfj66ymiysZE0Wff0bvu+73C2gNnRGRsvHj98xFi/YYo5ys5eaq7XZPcJPn5+eLQoUMiPz/f3a7cNIMGDRK9e/d2OdelSxfRpk0bcfHiRTFw4EDh7+8vTCaT6Natmzhy5IjT7sSJE+Lxxx8X/v7+wtPTUzRo0ECsWbNGpKSkCMDlNWjQICGEEFlZWaJ///7C09NThISEiI8++kh07NhRvPzyy85+IyMjxdSpU8XAgQOFj4+Ps+22bdvEQw89JIxGo6hataoYPXq0yMnJEUIIkZiYKABx4sSJ6441NTVV6PV6MW7cuGLX5syZIwDx008/CSGEcwyJiYk3/1ALKfqeWb9+/XVtZsyYIWrUqFHmPq99VqXRo0cP8cILL7ice+qpp8SAAQOK2V5vvD/++KPQaDQu35WXL18WiqKIhISE69772nF9/PHHolKlSsJsNjvPxcbGirp165ZpLEIIAYhvv/22zPalUdrvrNQHrsjnUTZ2Lf1SfPPmYvH4xEXilYFDRVy/HmL23xeIucPjhfh3HyHMOa4Nvh4mxGRfcXrLXDE/JU1U2ZgoOu857B7n7xJbks+JyNh4MW7Je2L9hiix5+c+Ijf3+p/ZkoqH1EtSL5WE1EsVWy9V7OkWiVsxF5aU8UDgY7fj0LiWPUZbQiljuzojRv2emNuOVNtX8FnB0sgusAJQP0hN9Gk0VsXfvzWhoX3c6ZZEgslkwmKxMHjwYH755RdWr17Nrl27EELw2GOPYbWq792RI0diNpvZunUrBw4c4IMPPsDb25uIiAi+/vprAJKTkzlz5gyzZ88GYNy4cezYsYPVq1eTkJDAtm3b2LdvXzEf4uLiaNq0KYmJibz11lscP36cbt260adPH/bv38+KFSvYvn07o0aNAiAoKAiNRsPKlSux2+0ljmvlypVYrdYSZ/iGDx+Ot7c3y5cvvyPP0GKxsGjRIvz8/EqdrcvMzCQg4K8p9NCuXTs2bNjAkSNHAPj111/Zvn073bt3L3MfZrMZRVHw8PBwnjMajWg0GrZv337ddteOa9euXTz88MMYDFdW0cbExJCcnMylS5duZlgSyT2HxWLh+Nl0zmgu4kCj6iAAtAhsYPAEg5drI5uZ83p/WtvbMTVF3cZfUVePCyFITs/mQFomAD4eqh40GkPx9Ix0p2sSyW0h9dLtI/VSxddLMtG55C/DWrjFNiI/jbRKVa66okWr2EDrXbyR3UqO1sS3+jpsvpAF3F+VZorIs9jY8Ps5dhzLAMBTlwtArZpvUKVKD3e6JrmDCCGwWRx3/b46g+aWqzYKIdiwYQM//vgj3bt3Z9WqVezYsYN27doBsHTpUiIiIli1ahV9+/YlNTWVPn360LhxYwCioqKcfRV9wQYHB+Pv7w9AdnY2X3zxBcuWLaNTp04ALF68mLCwsGK+PProo7z66qvO46FDhzJgwABnfoDatWszZ84cOnbsyIIFCwgPD2fOnDm88cYbTJkyhZYtWxIdHc2AAQOcfh05cgQ/Pz9CQ0OL3c9gMBAVFeUUJLdKfHw8zz77LHl5eYSGhpKQkEDlypVLtD127Bhz584lLi7utu55PcaPH09WVhb16tVDq9Vit9uZPn06AwYMKHMfbdq0wcvLi9jYWN59912EEIwfPx673c6ZM2dKbFPSuNLT06lRo4aLXZUqVZzXKlWSpeAl5ZcDv/zC0cxLoAGH7gh+Ig3wAEUDir3klAZ2CyeNIVjQoFMgymRkcHjgXff9brAqKY1XVvxKmNcZhjZKoJ6/mmNFV5JWlNx3uEsvwa1rJqmXpF66FqmXro8MSkn+EuzZFqzo8bTl0S39f6T5Fa2KUkDR4aM9D9oSItk2M5+F9+E9bXM4r86Weesq5qxgaczbeIyPNx+nYeDvvNpiA/76wlxSej83eya5k9gsDha9vOWu3/fF2R3Re2hvqk18fDze3t5YrVYcDgf9+/fnqaeeIj4+ntatWzvtAgMDqVu3Lr///jsAY8aM4aWXXmLdunV07tyZPn360KRJk+ve548//sBqtdKqVSvnOT8/P+rWrVvMtmXLli7Hv/76K/v372fp0qXOc0IIHA4HKSkp1K9fn5EjR/L888+zefNmfvrpJ7766iveffddVq9eTZcuXcr0LK6emboeS5cuZfjw4c7jtWvX0qFDBwCio6NJSkoiIyODTz/9lH79+rF7926Cg4Nd+khLS6Nbt2707duXYcOGOc97e1/5I+1vf/sbCxcuvKE/27Ztc5nN++STTxgwYAD//e9/Wbp0KcuWLaNhw4YkJSUxduxYwsLCGDRo0A37BXVG9auvvuKll15izpw5aDQannvuOZo3b46mhFUd1xvXrY5BIikPZKelAeDn8OSlzb9wxjeAHBOAFr2wlhyUspmxFCY4jzR6sLV1vbvn8F3mcHo2AI/X3EzrkF+c543G4n9gS+4/3KWX4OY1k9RLV5B6yRWpl66PDEpJ/hLOf30Eu6LF5MhHARShoBjqYAwMoFuNtVS99B/QlpAEzm7mrEGdBazvZaSFrxcvRgTdXefvAVIv5gHQp84mIn2KZhkUPE3V3OeU5L4mOjqaBQsWYDAYCAsLQ6fTsXr16hu2Gzp0KDExMaxZs4Z169bx3nvvMXPmTEaPHn3bPnl5uW51ycnJYfjw4YwZM6aYbbVqV353fHx86NmzJz179mTatGnExMQwbdo0unTpQu3atcnMzOT06dPFZhstFgvHjx8nJibmhr716tXLRXyGh4e7+F2rVi1q1apFmzZtqF27Np999hkTJlwpd3769Gmio6Np165dscSVV1dz8fX1vaEvoArSq9sVzai9/vrrjB8/nmeffRaAxo0b8+eff/Lee++VWWQBdO3alePHj5ORkYFOp8Pf35+QkBCXmd4bjSskJMSlAg3gPA4JCaF69eoljkEiKQ/YbTbyhB67LYRWORbS/NXziqLFW2O5TkoDCxbl/qhEnGtWE7rXK/y1rlKlJ4EBDxMUdOPPW4nkXkLqJamXSkPqpZKRQSnJX8L5349iNVypLqNBj967Bz7a76hxeQkoXGdW0OIse9w72J+x1UPuntP3ENkFqjgL97OCA6pXH0lQUFdMMihVodAZNLw4u6Nb7nuzFAmDq6lfvz42m43du3c7l6NfuHCB5ORkGjRo4LSLiIhgxIgRjBgxggkTJvDpp58yevRo5wza1fkKoqKi0Ov1/Pzzz05hlJmZyZEjR3j44YdL9bF58+YcOnSomJ+loSgK9erVY+fOnQA8/fTTxMbGMnPmTGbOnOliu3DhQvLy8nj++edv2K+Pjw8+PmWrkulwODCbzc7jtLQ0oqOjadGiBYsXLy42e3Yz4yvCZDKV2C4vL69Y/1qt1lkF5mYpWla/ceNGzp07R69evZzXbjSutm3b8uabb2K1WtHr1T/EExISqFu3rnMp+q2MXSK5F7DZbKy11CNbGHnM7kBQFGTSoNOYQVNCUMpmxqy5X4JS6veAXlMAAioHRhMS0tvNXknuFdyll4rufTNIvST1UlmQeskVGZSS/CU4LBZsBnj44hpAXSkFoFWs4OEL3sGuZY+LsJspKAxK3Y8JzpPTs0nJyOHUJXWllBY1l1TlwEfx9WnkTtckfwGKotz0Nrp7idq1a9O7d2+GDRvGJ598go+PD+PHjyc8PJzevdU/JsaOHUv37t2pU6cOly5dYtOmTdSvr5b2joyMRFEU4uPjeeyxxzCZTPj4+DBo0CBef/11AgICCA4OZvLkyWg0N87pEBsbS5s2bRg1ahRDhw7Fy8uLQ4cOkZCQwLx580hKSmLy5MkMHDiQBg0aYDAY2LJlC59//jmxsbGAOkM4Y8YMXnvtNYxGIwMHDkSv1/Pdd98xceJEpk2bRqNGrr+LycnJxXxp2LChUygUkZuby/Tp0+nVqxehoaFkZGQwf/580tLS6Nu3L6AKkUceeYTIyEji4uKcpY9Bnf0qjaJZsZycHM6fP09SUhIGg8FF8F5Lz549mT59OtWqVaNhw4YkJiby0Ucf8cILLzhtLl68SGpqKqdPn3YZb0hIiNOnxYsXU79+fYKCgti1axcvv/wyr7zyinMbQVnG1b9/f6ZMmcKQIUOIjY3lt99+Y/bs2cyaNavUcefk5HDs2DHncUpKCklJSQQEBLjM+Eok7sRhs5Ej1OS2VmMIBUY/EHmAFg0214m6ownw+//g4nEsnurvb0XVRPM3HWN3ykUOnVZTNugUMwjQaj3d7JnkXkLqJamXpF6q4HrpjtQBrKDIEse3xtr33xeLJs4UQyfNFN92bKGWPH76aTFv+Abx/etDijew24XYPluINa8L8c8m4oUVs0SVjYni81Pn777zbuRsZr6ImrBGNH5rmfjXd23F/36sL9ZviBLrN0SJnJzj7nZPcptUtBLHRRSVOPbz8xMmk0nExMS4lDgeNWqUqFmzpvDw8BBBQUFi4MCBIiMjw3l96tSpIiQkRCiKUmqJ41atWonx48c720VGRopZs2YV82fPnj2iS5cuwtvbW3h5eYkmTZqI6dOnCyGEOH/+vBgzZoxo1KiR8Pb2Fj4+PqJx48YiLi5O2O12l35WrVolOnToILy8vJwlmJcvX+5iU1KZ5qLXyZMni/mWn58vnnzySREWFiYMBoMIDQ0VvXr1Env27HHaLF68+Lp93oiS2kRGRpbaJisrS7z88suiWrVqwmg0iqioKPHmm2+6lBm+nk+TJ0922sTGxooqVaoIvV4vateuLWbOnCkcDsdNj+vXX38VDz30kPDw8BDh4eHi/fffv+G4N23aVGK/Re+nW+VOlDi+X5DP48as+mSRiIyNF32GTxEz+z4u4vr1EHH9eog5Q/8rtr8yWoh1b18xjqsrxGRfISb7im/mPSmqbEwUTycedZ/zfxGXcy0iMjZePPD2v0Xc8l5iwcpOYv3GBmL9hihx4cJ2d7sncRNSL0m9JPXS/aeXFCGEuNWAVkUnKysLPz8/MjMzy7wP9X4nKyuLmTM/Yo+tGukOH6bs+ICjoSHo9P7ovF+gvd+/eeCDxa6N/twJi68kYxvQ6H02BLblo3oR9A+tmFVmSuLnExfpu3AX7cKSGNLoc+d5D0MV2rbdiFZrdKN3ktuloKCAlJQUatSogdEof5Y3Q25uLuHh4cycOZMhQ4bc9ftfvHiRTp064evry9q1a/H0lDP49wOl/c5KfeCKfB6lY8+xsGLWF0zMDePZtP8SZLkAgEZrZFjbHLwv7IKHX4dHJ6kNpoeCNQ/ajuLLSg8xNjeUTgG+LG0aVcpdyh+pF/J4+MNNdKuxmb61v7nqikK7tpswmSLc5pvEfUi9dOtIvSRxB3dCL8nte5I7itls5pIw8btdTaimFIY8NXp1ybpWW0IMNO8iAEeDHmRj/b+ToqkJAkwVdKl6SVhsDtIu5QNQPVB9RgGV2lO37lQ8PEJkQEpyX5GYmMjhw4dp1aoVmZmZTJ06FcC5xP1uExAQwPr165k/fz67du1yll6WSCSSslCQfAlrQWEaA6HmH9F79SDQ5zTeF+aoRh5XiXWbmV+96/Ca33OctgDY8KiAOaWyzVYAAk0F6r+B0YSH9cNoqiYDUhJJGZB6SVJRkEEpyR3FbrdjQw0m+aOgFCbyVFD3gWtL2g5uU8XIiFqvclAJVRcSAj668rt3/GY4k5lPt39uIyvfTL2AY1T3OQqAh0cVPD2ru9c5icRNxMXFkZycjMFgoEWLFmzbts2ZFNIdBAYG8vbbb7vt/hKJpPxycv8xrKjBKE1hARhF441OI6Dpc+AbDs3+pho77CDs/C/oEQ7k25x91PL0uOt+/1XkW+ws3pnC72eyMWrzCTRdBsDHpwFBQV3d65xEUs6QeklSEZBBKckdxW6340CDRtjpcGEHpwLUCgAoaoBJoy1hps+qrhA6p1UrL3QJ9KWul5GHK3nfFZ/dzf5TmWTmW2kWfIBRD3zmPK/XV3KjVxKJ+2jWrBl79+51txsSiURyR/hz/x6sXl5oPE6j0+QUntWoxV86TQbf0CvGNrWyVFEl4qerVGJYRBCNvU132eu/ju8PnGHGD8kEmc4z65H3MWjVFVM6XdkqcEkkEhWplyQVBRmUktxRcpMzcAiFkIKzVM8+SK5RFVU2qx96A2hLCkoVrpQyK+rb8Z1aYdT0vH+2q2Xlq2KsTTX1ORgMQfj6NCYsrJ873ZJIJBKJRHKbbN++nZ98M8khH4+gRLR/WFDltxajYnWtugdgV4NSFkWtRhVpMtDUp2LlZTmfo46xbcSFwoCUgodHCIEBpZexl0gkEknFRAalJHeUjG0p2FHQCzXQomh80Zk6oNVXw1uTQYh3WvFG1wSlKmrZ42vJt9jZcuQcu46rCU+9DapICw7qRt2677jRM4lEIpFIJHeC/evXIxQQNsEba1PINAVh1wKKhgBhAd21QSlVP1k0alDKoFQ8TZRToG5LrB+ijq1yYDRNm37qTpckEolE4kZkUEpyx7BazBTkZuPw0KApTOSJ4oVBW50Blfvjo3fA1bNgeRdh7Rtw6hcEVwelKl4yz5KYu/EoH28+jofWTGVTNv4easJ3re7+2LYokUgkEklFx5ZfACYjD2V4Ufd4LusaBRVe0aJVbMVXShVu37Nq1RxShgqkiS7mWth4+BxJJy8D4KlXxyp1j0QikdzfyKCU5I5x7ot/IRQTNsDDdw+cAxQtisOKR1BdePA5qPf4lQZHfoADXwFXlqkDGO+TlVJ/XsjDW5/NBw9Pw6jNd57XaaU4k0gkEomkIuBAkCf0ZNoLj5WiIJMGjWKHwhVR5F+Cz2Lg0gkAzIVVd/UVKCj19ne/Eb//DHUqHWViq9WEaLMB0MmglEQikdzXyKCU5I6QmZnJmt27yQutQ74ul4icZCAIBS0ahw1dSANo/7JrI0uu+m94S8ztxqlBLCrWrGBpZBVYCfdOLwxIKWi1JnQ6PwIDZU4FiUQikUgqAucx8ZW5KUfsR6nrWwNH4cSbomjRKA4omohL2wsZyc52Vk+1elZFWj1+8mIeAL3r/EJNvz+d5z09o9zlkkQikUjuAWRQSnJH+G3/fk5XrUqWw87D+3+j3hnBgQhA0aBx2FCMJVSNsRWQrzHQr/prHLtYFVCnEQ1KxRFgJbH7jwtsOXKeo2dzCPVQV0j5+j7Agy1XutkziUQikUgkd5IMTAgUTHYLxyM7AxsLr2jw1OdcMSzctkdIY3h2GeYTVriUjb4CaaLMwsIujUI02PKhWrWhBAfF4Ov7gHsdk0gkEolbkUEpyR3Bkp/PMXsg261RTMrcftXydC16vQVFX0I1PVsBv3nX5mddKNjUgFRjbxNKBRJgJTFy2T4u5+bSIDCZBoGHAdDLMsgSiUQikVQ47GgJsFygecFO0jV25/lo34XU8fn9imFhUOrdKk/zS4qFgznqpFVFKP6y41gGX+87xZlMtbCNBnWlvJ9vM/z8mrvTNYlEIpHcA5T/bzrJPYHNauWSQ10N5eGwIa4KShmMZihM2OnayEyBRj1fw2Rgc6u6xLeofZc8dg9Wu4OMHAudIrfycvNFPFptOwA6vb97HZNISmHw4MEoioKiKBgMBmrVqsXUqVOx2Wy31e/mzZtRFIXLly/fGUfLQEpKCv379ycsLAyj0UjVqlXp3bs3hw8fdrGLj4+nY8eO+Pj44OnpyYMPPsiSJUtcbE6cOIGiKCQlJZX5/u+88w716tXDy8uLSpUq0blzZ3bv3u3S55AhQ6hRowYmk4maNWsyefJkLBZLqf2eOXOG/v37U6dOHTQaDWPHji2TP9nZ2YwdO5bIyEhMJhPt2rXj559/drHJyclh1KhRVK1aFZPJRIMGDVi4cKGLzfDhw6lZsyYmk4mgoKASn2lqaio9evTA09OT4OBgXn/99eu+h3bs2IFOp+OBBx644Ri++eYbunbtSmBg4E3/PCSSv5Kc45exa42EmM+h4UpAytvkoIHXNrTVW18xtpk5r6/EHP9H2Hk5h8zCybpwD/213ZY7/hF/iG/2pfFA5d2MaLIEu+UPAHRyQk5SwZB6SeolqZduDRmUktwRbBYLDjQgBH7YOR3cSL2gaNEq1uIljwFsBRRo1PO+Oi31vEwVYkawNLIKl66HeJ4FwGSqRmDgI0REDHajVxLJjenWrRtnzpzh6NGjvPrqq7zzzjt8+OGH7nbLyY1ECIDVaqVLly5kZmbyzTffkJyczIoVK2jcuLGL0Js7dy69e/emffv27N69m/379/Pss88yYsQIXnvttdvys06dOsybN48DBw6wfft2qlevTteuXTl//jwAhw8fxuFw8Mknn3Dw4EFmzZrFwoULmThxYqn9ms1mgoKCmDRpEk2bNi2zP0OHDiUhIYF///vfHDhwgK5du9K5c2fS0tKcNuPGjeOHH37gP//5D7///jtjx45l1KhRrF692mnTokULFi9ezO+//86PP/6IEIKuXbtit6t/WNvtdnr06IHFYmHnzp188cUXLFmyhLfffruYT5cvX+b555+nU6dOZRpDbm4uDz30EB988EGZxy2R/NXYbVZOf/ITDs2VisQGJQwP/5dpFG5GefUwPLv0qgZm8ooq7ikKnzSM5LtmtXjQz8sd7t9RLuVZAMGQxv/lwZB92O1ZAHh4hLrXMYnkL0DqJamXpF66BYTkumRmZgpAZGZmutuVexqH3SFWxi0RXSd+Loa8ME7E9evhfM36W6xYO+YfQmx890qD/EwhDq4S4l9PitVze4oqGxNFr71H3DeAu8DlPIvo8/EO0Wp6gmjxzhfi45XdxPoNUeLkqaXudk1yl8jPzxeHDh0S+fn57nblphk0aJDo3bu3y7kuXbqINm3aiIsXL4qBAwcKf39/YTKZRLdu3cSRI1d+n0+cOCEef/xx4e/vLzw9PUWDBg3EmjVrREpKigBcXoMGDRJCCJGVlSX69+8vPD09RUhIiPjoo49Ex44dxcsvv+zsNzIyUkydOlUMHDhQ+Pj4ONtu27ZNPPTQQ8JoNIqqVauK0aNHi5ycHCGEEImJiQIQJ06cuO5YU1NThV6vF+PGjSt2bc6cOQIQP/30kxBCOMeQmJh48w+1kKLvmfXr11/XZsaMGaJGjRpl7vPaZ3U98vLyhFarFfHx8S7nmzdvLt58803nccOGDcXUqVNLtbmWX3/9VQDi2LFjQgghvv/+e6HRaER6errTZsGCBcLX11eYzWaXts8884yYNGmSmDx5smjatOkNx1HEnfh5XE1pv7NSH7gin0dxzp34Q6S8vkH0f/Nj0XPEeyKuXw8x59mXxLzhG8SeSR2EcDhcG/y0UBx5v5GosjFR1Nm63z1O/0U0fPsHUXPCt2L9hiixfkOUOPHnInE+Y5O73ZLco0i9JPVSSUi9VLH1UsVeliK5K9gy8rFcMuNAIcR8tvCsFhQjD1ZKItpvPuivSnT+w3j47/NwfAPmwpVSFam6TEnsSbnIL39eIlD3Kx90mEKdSkcA0Mtte5JyislkwmKxMHjwYH755RdWr17Nrl27EELw2GOPYbWqqwJHjhyJ2Wxm69atHDhwgA8++ABvb28iIiL4+uuvAUhOTubMmTPMnj0bUGeaduzYwerVq0lISGDbtm3s27evmA9xcXE0bdqUxMRE3nrrLY4fP063bt3o06cP+/fvZ8WKFWzfvp1Ro0YBEBQUhEajYeXKlc4ZqWtZuXIlVqu1xBm+4cOH4+3tzfLly+/IM7RYLCxatAg/P79SZ+syMzMJCAi4I/e8GpvNht1ux2h0zflnMpnYvn2787hdu3asXr2atLQ0hBBs2rSJI0eO0LVr1xL7zc3NZfHixdSoUYOIiAgAdu3aRePGjalSpYrTLiYmhqysLA4ePOg8t3jxYv744w8mT558J4cqkdx18lNS0CgabA54NO2nwrOq7NZrgKvzZ9rMUJCJRaNu1atIVYiFEORabJh0Bc5z1SKGUDnwEfc5JZHcRaReun2kXqr4ekkmOpfcNoc2bcauOLA7FDSisIKeT1+EAdpXmwqhD0HDJ640uJyq/htUH3P4gwAY75Nte22qXQBAo/HEx7suAZXaudMtiZsRQmAzm+/6fXUeHrdcUEAIwYYNG/jxxx/p3r07q1atYseOHbRrp76Xly5dSkREBKtWraJv376kpqbSp08fGjduDEBU1JXS30XCITg4GH9/f0Dds//FF1+wbNky53LkxYsXExYWVsyXRx99lFdffdV5PHToUAYMGODMD1C7dm3mzJlDx44dWbBgAeHh4cyZM4c33niDKVOm0LJlS6KjoxkwYIDTryNHjuDn50doaPFtJQaDgaioKI4cOXJLz66I+Ph4nn32WfLy8ggNDSUhIYHKlSuXaHvs2DHmzp1LXFzcbd2zJHx8fGjbti3/+Mc/qF+/PlWqVGH58uXs2rWLWrVqOe3mzp3Liy++SNWqVdHpdGg0Gj799FMefvhhl/4+/vhj3njjDXJzc6lbty4JCQkYDOrEQ3p6uovAApzH6enpABw9epTx48ezbds2dDopTyTlF4fDwd5//QtDaGeEOE2ty2dJNgWCor6vDRpxxfjc7/D/uoAlG4tPPfV6BSj4kpKRy4v/+oWsvFweCPqVIJOqf7RabxSlYms+yZ3HXXoJbl0zSb0k9ZLUS2WnYoxC4jaEEBw/kkwuGhx4oRVF0XQdKAXQuC/ETHdtZDNzUefLoKazOSo8wWav8LmksgvUoFRlT3Ufd1hYX+rWKb43WHJ/YTObmTPo6bt+3zFfrERvLKEiZinEx8fj7e2N1WrF4XDQv39/nnrqKeLj42nd+kqy3sDAQOrWrcvvv6tVpcaMGcNLL73EunXr6Ny5M3369KFJkybXvc8ff/yB1WqlVatWznN+fn7UrVu3mG3Lli1djn/99Vf279/P0qVX8rQIIXA4HKSkpFC/fn1GjhzJ888/z+bNm/npp5/46quvePfdd1m9ejVdunQp07MoEg6lsXTpUoYPH+48Xrt2LR06dAAgOjqapKQkMjIy+PTTT+nXrx+7d+8mODjYpY+0tDS6detG3759GTZsmPO8t7e38/9/+9vfiiXRLIlt27bRvXt35/Enn3zCgAED+Pe//80LL7xAeHg4Wq2W5s2b89xzz7F3716n7dy5c/npp59YvXo1kZGRbN26lZEjRxIWFkbnzp2ddgMGDKBLly6cOXOGuLg4+vXrx44dO4rNLJaE3W6nf//+TJkyhTp16pRoU9ozlUjuJf744w9+rVYdOIbdcRkH6h+0Vr0ODyCIq4JSp34BSzYAFp0nUDEq7m1OPsfRcznERG6gX93vnOf1Ol83eiUpr7hLL8HNayapl64g9ZLUS2VFBqUkt8WuDRvYb88ELZhNZ9EruYACigYUG2hLqBpjK2Cn/wP8bPWAwmo09bxu7g/k8sKPB9N589vf0HGWrpH7qGJUv3ikKJOUN6Kjo1mwYAEGg4GwsDB0Op1L4sbrMXToUGJiYlizZg3r1q3jvffeY+bMmYwePfq2ffLyck0AnJOTw/DhwxkzZkwx22rVqjn/7+PjQ8+ePenZsyfTpk0jJiaGadOm0aVLF2rXrk1mZianT58uNttosVg4fvw4MTExN/StV69eLuIzPDzcxe9atWpRq1Yt2rRpQ+3atfnss8+YMGGC0+b06dNER0fTrl07Fi1a5NL31dVSfH3L9lnSsmVLl3ZFs241a9Zky5Yt5ObmkpWVRWhoKM8884xzJjQ/P5+JEyfy7bff0qNHDwCaNGlCUlIScXFxLiLLz88PPz8/ateuTZs2bahUqRLffvstzz33HCEhIezZs8fFp7Nn1e3eISEhZGdn88svv5CYmOjcPuBwOBBCoNPpWLduXanPVCK5l8jNzQXAU3jgbdNRlCxDr1G1jlZ31aoLe+Hqj3qPY+nyMexPQV8Btu9l5auVolpUVbftGY3V8PKsTkjIk+50SyL5y5F6SeolqZduHhmUktwWZwuXZRqFntiEVZwIDMOuVQAtOqxQWEnGBZvZmUuqmY8nH9WLqLBBqTX7z5CRY2bUA/+lWfBvzvN6Q6AbvZLcK+g8PBjzxUq33PdmKRIGV1O/fn1sNhu7d+92Lke/cOECycnJNGjQwGkXERHBiBEjGDFiBBMmTODTTz9l9OjRzhm0q/MVREVFodfr+fnnn53CKDMzkyNHjhRb/nwtzZs359ChQ8X8LA1FUahXrx47d+4E4OmnnyY2NpaZM2cyc+ZMF9uFCxeSl5fH888/f8N+fXx88PEpW7lzh8OB+aptCWlpaURHRzsrtGiuWTVxM+MrwmQyldrOy8sLLy8vLl26xI8//siMGTMAtQKP1Wot5oNWq8XhcFy3PyEEQgjnuNq2bcv06dM5d+6cc4YzISEBX19fGjRogF6v58CBAy59fPzxx2zcuJGVK1dSo0YNvLy8yvxMJRJ3YrfbuewwkmStjuASVq2qcYpSuWq0V+eTKqyEpTNiKVxR5VEBtu8VrRD3M6rjqxr+HJGRL7rTJUk5xl16qejeN4PUS1IvXY3US2VDBqUkt4XdbifT4YHWGkndM2b+qKwKKUXREabkl7xSym7GrFM/XIMMOup7m4rbVBCKRFn9YHWmMKDSQ3h71yWkSi93uiW5R1AU5aa30d1L1K5dm969ezNs2DA++eQTfHx8GD9+POHh4fTu3RuAsWPH0r17d+rUqcOlS5fYtGkT9evXByAyMhJFUYiPj+exxx7DZDLh4+PDoEGDeP311wkICCA4OJjJkyej0WhumNMhNjaWNm3aMGrUKIYOHYqXlxeHDh0iISGBefPmkZSUxOTJkxk4cCANGjTAYDCwZcsWPv/8c2JjYwF1hnDGjBm89tprGI1GBg4ciF6v57vvvmPixIlMmzaNRo0audw3OTm5mC8NGzZEr3f9/MvNzWX69On06tWL0NBQMjIymD9/PmlpafTt2xdQBdYjjzxCZGQkcXFxztLHoM6QlUbRzF5OTg7nz58nKSkJg8HgInivpagccd26dTl27Bivv/469erV4+9//zugzix27NiR119/HZPJRGRkJFu2bOFf//oXH330EaBuIVixYgVdu3YlKCiIU6dO8f7772MymXjssccA6Nq1Kw0aNGDgwIHMmDGD9PR0Jk2axMiRI/EoFPzXPtfg4GCMRmOx89dy8eJFUlNTOX36NHDl5xESEnLDZyaR/BXY7XZ+s4dwTPhQS9g4HdoGrPtxODRoAa32amMzv3nV4rlKQ7iw/w+gfCc6T0y9xCsrkjiTqeoeg1b9Q0ur8y6tmURSKlIvSb0k9VLF1ksyKCW5LXKtNv5naYjG7qAPIJxCSoteYwVtCQEnm5kCU1HVvfKfN6E0sgvU5esGbQHYoUaN0fj7t7xBK4mk/LB48WJefvllHn/8cSwWCw8//DDff/+9U2DY7XZGjhzJqVOn8PX1pVu3bsyaNQtQlxNPmTKF8ePH8/e//53nn3+eJUuW8NFHHzFixAgef/xxfH19eeONNzh58uQN99o3adKELVu28Oabb9KhQweEENSsWZNnnnkGgKpVq1K9enWmTJnCiRMnUBTFefzKK684+3nllVeIiopi5syZzJ4927kVZ/ny5Tz77LPF7lvSuZMnT1K1alWXc1qtlsOHD/PFF1+QkZFBYGAgDz74INu2baNhw4aAOht27Ngxjh07Vqy9EILSaNasmfP/e/fuZdmyZURGRnLixInrtsnMzGTChAmcOnWKgIAA+vTpw/Tp010E4pdffsmECRMYMGAAFy9eJDIykunTpzNixAgAjEYj27Zt45///CeXLl2iSpUqPPzww+zcudM5y6fVaomPj+ell16ibdu2eHl5MWjQIKZOnVrqmMrC6tWrnaIQrvw8Jk+ezDvvvHPb/UskN4vdbscq1MhTTbsWR6HW8TQJapt+xNsj74qxzcL2Ss05r/F0nmrlV34DOD8cTOfEhTy6Rm6kht+f+GpSwQFareeNG0skFRipl6Reknrp+ijiRj+1+5isrCz8/PzIzMws8z7U+405783ko8x6VDJfYvJv8RwPyAHAw+//qGXaR7f+QdC6MNHa929AyhbIOMKC8KeZUnMkT1epxLwGkW4cwZ2nwGqn3ye7OHYuBy2Z6DUWPnzkn+C4TOtW3+PtXTwBoaTiU1BQQEpKCjVq1ChTIkPJFXJzcwkPD2fmzJkMGTLkrt//4sWLdOrUCV9fX9auXYunp/zj6n6gtN/ZO6EP3nvvPb755hsOHz6MyWSiXbt2fPDBBy5JagsKCnj11Vf58ssvMZvNxMTE8PHHH7tU5klNTeWll15i06ZNeHt7M2jQIN577z2XijybN29m3LhxHDx4kIiICCZNmsTgwYNd/Jk/fz4ffvgh6enpNG3alLlz57ok0C0NqZdcWfnFGmYnX8KYdYGuFzejsQNYaVf5T9oGpUKVRvDSDtV4/RRmp57jvRrDeCLYn3/UDifIUMIq83LCm98eYE3SAWZ2fMvlfPNmy6lUqWzvJ8n9jdRLt47USxJ3cCf0UsVepiL5SxEOgcWmvoV6nPvRGZAC8PIwU9u07cr2vYJM2PMJnD8MwoG5cBm3sQKulDp0Jov9pzJpEvgT/3xkIh8+/A44LgOg1XqV2lYikUBiYiLLly/n+PHj7Nu3jwEDBgA4l7jfbQICAli/fj2dOnVi165dbvFBUvHYsmULI0eO5KeffiIhIQGr1UrXrl2dM82gzkL/73//46uvvmLLli2cPn2ap556ynndbrfTo0cPLBYLO3fu5IsvvmDJkiW8/faV6q4pKSn06NHDWcVo7NixDB06lB9//NFps2LFCsaNG8fkyZPZt28fTZs2JSYmhnPnzt2dh1GBcJjt5B6/hAOF+jmH0ditgLqVP9BXC5XrQqsr1aGwWygozLPpr9eV64AUQI7Zho9BrSao0/lQp85kGjf+GH//B93smURS8ZB6SVJRkNv3JLdM3t6z2Mzq9jxvuypAFE0gAd42BgcOVo20hQnurGpugQy9H6t6rGCnzReyrXiU47wJ1yMrXxWfD4b+WXhGi0ajw8+3GUZjqPsck0jKEXFxcSQnJ2MwGGjRogXbtm2jcuXKbvMnMDDQ5Q99ieR2+eGHH1yOlyxZQnBwMHv37uXhhx8mMzOTzz77jGXLlvHoo48C6vaP+vXr89NPP9GmTRvWrVvHoUOHWL9+PVWqVOGBBx7gH//4B7GxsbzzzjsYDAYWLlxIjRo1nIlo69evz/bt25k1a5azMtJHH33EsGHDnMv6Fy5cyJo1a/j8888ZP378XXwq5Z/T/0vE32HHgR6tUJMS64wPoddWpU7vbGjzkmp4bANs/RAuHMMSrAYay7MmWrwjhV/+vMS+E+eJ8FIrRRkMwURUvXGiY4lEcutIvSSpCMiglOSWuXjkfOHcH2iEWlXA4PMUYf5r1JM6I4Q2Vf9fWPL4wxrD+OKSiaJZQ1/d1dk+yzdCCA6kZbLvz0sA+BnzAahT5y0iqg50p2sSSbmiWbNm7N27191uSCR3lczMTECdaQY1z4XVanUpI12vXj2qVavGrl27aNOmDbt27aJx48Yu2/liYmJ46aWXOHjwIM2aNWPXrl0ufRTZjB07FlBLd+/du9elxLZGo6Fz587Xnek2m80uFZCysrJub/AViMt/nsGBwCE0zqCUoq2EVvECbcEVwz2fQqr6fIsqEpfXqnuX8yxM+d8hACa2mklNf3VSTq+TWzklkr8SqZckFQUZlJLcMsf3bMPmo6BostBQVOpSg16xw7jD4OEDHoXJOm2qeD3voUbum/t60tTHk4FhgW7w/K9h2Z5U3vz2N4JN53mrzWKqFs4U6vX+7nVMIpFIJPc0DoeDsWPH0r59e2f1nPT0dAwGA/7+/i62VapUIT093WlzdUCq6HrRtdJssrKyyM/P59KlS9jt9hJtDh8+XKK/7733HlOmTLm1wVZg7Dk5ZB/+HUuVSoTlphCel4ZDqwNFiyLsoL2qtLxNnbii7SjMgb0hu/wWf7mUp040ehqEMyCl1XpTJURWGpZIJBLJjZFBKcktsXnjRnb5nicDb0zha1COF13R4qFxgO8129Rs6uyguVCQDQwL5LnQihOQAjh6Vs2p1a7q71T3PVV4VsHbu577nJJIJBLJPc/IkSP57bff2L59u7tdKRMTJkxg3LhxzuOsrCwiIiLc6NG9wbbv17I5PA/Io+ufG9AIT3JMADoUxQ5awxVjmwU7Gg5Wac8ZTSCQVW6372UXqEGpKt4O57mHO+xBo/G4XhOJRCKRSJzIoJTklti9cSNmnQ5tvpnY70+R4V1YilPR4qOUUNCxcKWUpWiJejmdDSyNolxS7aM8QEBwUHdq156I0RjmZs8kEolEcq8yatQo4uPj2bp1q0tZ65CQECwWC5cvX3ZZLXX27FlCQkKcNnv27HHp7+zZs85rRf8WnbvaxtfXF5PJhFarRavVlmhT1Me1eHh44OEhAw7XcirjvPP/RpuVgsKc5YqixWgwg87nirHdwqt1XufLS2GAuv3RqC1/2mjZ7lS2HVXHHeip6iCNxiADUhKJRCIpM+Xv209yT2AXauDpoTM2mp2wXnVFg1Z7zUxf1mm16h5gLhQphnKaN6EkElMv8e73v7Mv9RIGjQWTVk367ulZXQakJBKJRFIiQghGjRrFt99+y8aNG6lRo4bL9RYtWqDX69mwYYPzXHJyMqmpqbRt2xaAtm3bcuDAAZcqeQkJCfj6+tKgQQOnzdV9FNkU9VGUHPdqG4fDwYYNG5w2krJhs9uxCg3h5kZo7QKHU+to0Wusriul7BYOe6k/80C9jiY+JjoFlK8cTH+cz2HitwfYevg4sQ/O5vk67wPq1j2JRCKRSMqKXCkluSWsaDhqq4yv7SJ1XAJMGrRX5y7/cxcs7g6oQSxnMs9yukS9JGK/3s+Rszn0rvk9b7X4AWzqeZ1M8CmRSCSS6zBy5EiWLVvGd999h4+PjzMHlJ+fHyaTCT8/P4YMGcK4ceMICAjA19eX0aNH07ZtW9q0aQNA165dadCgAQMHDmTGjBmkp6czadIkRo4c6VzJNGLECObNm8cbb7zBCy+8wMaNG/nvf//LmjVrnL6MGzeOQYMG0bJlS1q1asU///lPcnNzndX4JGUjz5LHGksDcu063vAIxqzXoYoCLRquySllt2LRqEup5tWvRnRg+dMMGTkWAFqE/kGdSs48Dnh713WXSxKJRCIph8iglOSWOEZldthq4Os4S/XIbsBhQIuiKGh0VwWczh0EhCrEvCpj8QwCUbG276VnqvmyOkYec57Tar3wr9TaXS5JJBKJ5B5nwYIFADzyyCMu5xcvXszgwYMBmDVrFhqNhj59+mA2m4mJieHjjz922mq1WuLj43nppZdo27YtXl5eDBo0iKlTpzptatSowZo1a3jllVeYPXs2VatW5f/9v/9HTEyM0+aZZ57h/PnzvP3226Snp/PAAw/www8/FEt+Likdm83OZWGix/m1ZBnBOUul6PDSXgTtVcEau9kZlDKU04m6XLM6vlBf9V8/v5bUrjUBb+/67nRLIpFIJOUMGZSS3DQOh4N8xQOTPY+qjpOc8vMGO4AWnVJAkNeVnApY1YDNz01eJKX1OC4cPw0WW7kVYFeTY7Zx+EwWWQWqGAvysmAxQ7MH/oW/fys0hWJTIpFIJJJrEaKE/IvXYDQamT9/PvPnz7+uTWRkJN9//32p/TzyyCMkJiaWajNq1ChGjRp1Q58k18fmUBN9+1kzAVA0/hh1eh7x/zfVg89ByItXjO1WLIqqE4zlcKLucp6Fs1mqxvP1UPOGGo1h+Pk94EavJBKJRFIeKX/fghK3Y7mQgx2F+tnJGJUMrPYTAJh0BbwQNBh//yvVV7AVcMIYRk/fpxnzeyrnLGoAx6scJvO8lqc+3sHTC3cR7n2aNqE/Y7ddBMBgCJIBKUmFYvDgwSiKgqIoGAwGatWqxdSpU7HZbLfV7+bNm1EUhcuXL98ZR8tASkoK/fv3JywsDKPRSNWqVenduzeHDx92sYuPj6djx474+Pjg6enJgw8+yJIlS1xsTpw4gaIoJCUllfn+77zzDvXq1cPLy4tKlSrRuXNndu/e7dLnkCFDqFGjBiaTiZo1azJ58mQsFkup/Z45c4b+/ftTp04dNBoNY8eOLZM/W7dupWfPnoSFhaEoCqtWrSpm880339C1a1cCAwNvOF4hBN27d79uX0uWLKFJkyYYjUaCg4MZOXKky/Uff/yRNm3a4OPjQ1BQEH369OHEiRMuNkuXLqVp06Z4enoSGhrKCy+8wIULF257nBLJ7WDNtWAtzGyuQdVBes+uVPO20ODNuXi+tgNMlSBtH/yxBSw55Xal1Ic/HuaBqQnMW/cDQxv9i3p+WwHQ6WQuKcn9jdRLUi9JvXRrlP/IgOSuYs0v4ETcLhxCwcOhzoxpNFXQGdvRPuIS+g4joPsHVxrYCjjtEQSAp1ZDdIAPw6pWpqG3yR3u3zHsDsGRszkYtQW81fojhjX+N3Z7DgB6fSU3eyeR3Hm6devGmTNnOHr0KK+++irvvPMOH374obvdcnIjEQJgtVrp0qULmZmZfPPNNyQnJ7NixQoaN27sIvTmzp1L7969ad++Pbt372b//v08++yzjBgxgtdee+22/KxTpw7z5s3jwIEDbN++nerVq9O1a1fOn1dXmB4+fBiHw8Enn3zCwYMHmTVrFgsXLmTixIml9ms2mwkKCmLSpEk0bdq0zP7k5ubStGnTUlfi5Obm8tBDD/HBBx9c16aIf/7znyjXKWTx0Ucf8eabbzJ+/HgOHjzI+vXrXbaQpaSk0Lt3bx599FGSkpL48ccfycjI4KmnnnLa7Nixg+eff54hQ4Zw8OBBvvrqK/bs2cOwYcNue5wSye1waP4GFIe6AUEjCifnFA0axQY6IygKJC2FT6PhX70g/9JVQanyJce3H1P/qOlWfQNtw37BX38KAKNHuDvdkkjuCaReknpJ6qVbQEiuS2ZmpgBEZmamu125Z/hj5x5xLHaD6DHxU9F/6EQR16+HmP23SWLe8A0i/f2OxRv8+KbY+M9OosrGRPHont/vur9/FZn5FhEZGy9aTflcrN8QJTZsrCP27XteHD/+T3e7JrlHyc/PF4cOHRL5+fnuduWmGTRokOjdu7fLuS5duog2bdqIixcvioEDBwp/f39hMplEt27dxJEjR5x2J06cEI8//rjw9/cXnp6eokGDBmLNmjUiJSVFoFZAcL4GDRokhBAiKytL9O/fX3h6eoqQkBDx0UcfiY4dO4qXX37Z2W9kZKSYOnWqGDhwoPDx8XG23bZtm3jooYeE0WgUVatWFaNHjxY5OTlCCCESExMFIE6cOHHdsaampgq9Xi/GjRtX7NqcOXMEIH766SchhHCOITEx8eYfaiFF3zPr16+/rs2MGTNEjRo1ytzntc+qrADi22+/ve71G403MTFRhIeHizNnzhTr6+LFi8JkMpU6zq+++krodDpht9ud51avXi0URREWi0UIIcSHH34ooqKiXNrNmTNHhIeH33iAhdxonEWU9jsr9YEr8nkIsWvs52L6pDgRGRsvJvfvK+L69RBzhiwVP/7fk0LkXVKNEiYLMdlXiPerCzG/jYjasFtU2ZgoUvIK3On6TRP94SYRGRsvNu38m1i/IUr8dvBVcfr0N8Jmy3W3a5IKgNRLUi+VhNRLV6iIeql8Tc1I3E723n3YcSAcdtqcTQJAKOrMoIf+mmhv5inITr+q4l7FeLtZ7Q4uFFac8fVQ8yl4GIJp1uwLoqJedqdrEsldw2QyYbFYGDx4ML/88gurV69m165dCCF47LHHsFqtgFphzGw2s3XrVg4cOMAHH3yAt7c3ERERfP3114Ba5v7MmTPMnj0bUCuB7dixg9WrV5OQkMC2bdvYt29fMR/i4uJo2rQpiYmJvPXWWxw/fpxu3brRp08f9u/fz4oVK9i+fbszT05QUBAajYaVK1dit9tLHNfKlSuxWq0lzvANHz4cb29vli9ffkeeocViYdGiRfj5+ZU6W5eZmUlAQMAduedfRV5eHv3792f+/PmEhIQUu56QkIDD4SAtLY369etTtWpV+vXrx8mTJ502LVq0QKPRsHjxYux2O5mZmfz73/+mc+fO6PXqipK2bdty8uRJvv/+e4QQnD17lpUrV/LYY4/dtbFKJCUiFKwIKvmuxoOswpNatBoraFUdhE1dYf5xy38w5OFl5CnqecN1ZsvvNax2B7+lZXIpT9VAGvIACKrchdDQJ9FqPd3pnkRyTyL10u0j9VLF10sy0bmkzORkZ7N7fxK6KjYC8n+jSm4WJ01+UBiU0uuuCjod+g7++zwA5qBoADzKWc6Ekth4+Cwv/WcfPvpz9Km9k6o+6hJ2nb78lXKWuB8hBMLquLHhHUbRa667ZPhGCCHYsGEDP/74I927d2fVqlXs2LGDdu3aAer+9YiICFatWkXfvn1JTU2lT58+NG7cGICoqChnX0XCITg4GH9/fwCys7P54osvWLZsGZ06dQLUamRhYWHFfHn00Ud59dVXncdDhw5lwIABzvwAtWvXZs6cOXTs2JEFCxYQHh7OnDlzeOONN5gyZQotW7YkOjqaAQMGOP06cuQIfn5+hIaGFrufwWAgKiqKI0eO3NKzKyI+Pp5nn32WvLw8QkNDSUhIoHLlyiXaHjt2jLlz5xIXF3db9/yreeWVV2jXrh29e/cu8foff/yBw+Hg3XffZfbs2fj5+TFp0iS6dOnC/v37MRgM1KhRg3Xr1tGvXz+GDx+O3W6nbdu2Lkm827dvz9KlS3nmmWcoKCjAZrPRs2dPuS1P4lY2L1jIQc/L5CmCuNW7OBgejlUHKBqqCMtVQakCzuv9mappBOfVZOhGjYKfTus+52+CEf/ey4bD5wj3Ps0DEccRttOAzCUl+etxl16CW9dMUi9JvVQSUi+VjAxKScrM/qQk0sKqAOdRyEIUBZkUVUzprg5KpR9Q/9UZMftWBcBDKf8rpbYeycBsczCg3g+0D9vjPO9hCHajV5LyirA6OP32zrt+37Cp7VAMN/dHUHx8PN7e3litVhwOB/379+epp54iPj6e1q1bO+0CAwOpW7cuv//+OwBjxozhpZdeYt26dXTu3Jk+ffrQpEmT697njz/+wGq10qpVK+c5Pz8/6tatW8y2ZcuWLse//vor+/fvZ+nSpc5zQggcDgcpKSnUr1+fkSNH8vzzz7N582Z++uknvvrqK959911Wr15Nly5dyvQsDAbDDW2WLl3K8OHDncdr166lQ4cOAERHR5OUlERGRgaffvop/fr1Y/fu3QQHu36OpKWl0a1bN/r27euSA8Db+8ofgH/7299YuHDhDf3Ztm0b3bt3dx5/8sknDBgw4IbtysLq1avZuHFjqdXdHA4HVquVOXPm0LVrVwCWL19OSEgImzZtIiYmhvT0dIYNG8agQYN47rnnyM7O5u233+bpp58mISEBRVE4dOgQL7/8Mm+//TYxMTGcOXOG119/nREjRvDZZ5/9peOUSErCbrezJf0MwqBgtRsIu2zlt6pFVzX4eBWApvDz1lpAnlbNqemhUZhSK5wm3ia8yklQ6uDpLEDwxoPz8dZnY1MXeKDT+7nVL0nFx116CW5eM0m9dAWpl1yReun6yKCUpMwU5OcD4G0PwMOuweGcNVA/qLVXiyqbuq2NVsMwNxoLyafw0Jb/lVKZ+aoCaxqqVtGoXLkz3t71CKnSy51uSSR/OdHR0SxYsACDwUBYWBg6nY7Vq1ffsN3QoUOJiYlhzZo1rFu3jvfee4+ZM2cyevTo2/bJy8vL5TgnJ4fhw4czZsyYYrbVqlVz/t/Hx4eePXvSs2dPpk2bRkxMDNOmTaNLly7Url2bzMxMTp8+XWy20WKxcPz4cZdkk9ejV69eLuIzPPxKAmAvLy9q1apFrVq1aNOmDbVr1+azzz5jwoQJTpvTp08THR1Nu3btWLRokUvfV1dz8fUt2yrNli1burSrUqVKmdqVhY0bN3L8+HHn7G0Rffr0oUOHDmzevNk5k9qgQQPn9aCgICpXrkxqaioA8+fPx8/PjxkzZjht/vOf/xAREcHu3btp06YN7733Hu3bt+f1118HoEmTJnh5edGhQwemTZv2l45TIikJu92OKNRDD1irA1yljzTo9KhJzgFsBRQUpjTw0moYHF7yjP+9SnaBFZ3Ghrc+G1C37Xl51cbHu6GbPZNI7h2kXpJ66XpIvXR9ZFBKUmZsFgs/WyM4aA+hteNnMn2rAxcoKuKovXqllM1MuiGQT3UPsDf9ElC+c0qdzzbzbeIp9p+6DICHNh8cEBb6NEFBZZstkEiuRdFrCJvazi33vVmKhMHV1K9fH5vNxu7du53L0S9cuEBycrLLl2lERAQjRoxgxIgRTJgwgU8//ZTRo0c7Z9CuzlcQFRWFXq/n559/dgqjzMxMjhw5wsMPP1yqj82bN+fQoUPF/CwNRVGoV68eO3eqM7BPP/00sbGxzJw5k5kzZ7rYLly4kLy8PJ5//vkb9uvj44OPj0+ZfHA4HJjNZudxWloa0dHRtGjRgsWLF6O55rPzZsZXhMlkuqV2ZWH8+PEMHTrU5Vzjxo2ZNWsWPXv2BNRl5KDmw6haVV1GcvHiRTIyMoiMjATUPAvXjlWrVSc7HA6H00an05VoI4T4S8cpkZTE1Z9f1WyVSAtth0NzDhAoigbt1RNyNnO5zLNpsTnIzLeSa7HjYyhwnm/c+GOUCrAKXnLv4y69VHTvm0HqJamXrofUS9dHBqUkZcZutXLWoS6D9LP7km/UgfUCKFq8NedRdFct0bQVsDjsSeYrtSAzF4AAffl9u83ecIT//JRKvYAjdAjPQI9ajlQr8yhIbgNFUW56G929RO3atenduzfDhg3jk08+wcfHh/HjxxMeHu7cKz927Fi6d+9OnTp1uHTpEps2baJ+/foAREZGoigK8fHxPPbYY5hMJnx8fBg0aBCvv/46AQEBBAcHM3nyZDSaG+d0iI2NpU2bNowaNYqhQ4fi5eXFoUOHSEhIYN68eSQlJTF58mQGDhxIgwYNMBgMbNmyhc8//5zY2FhAnSGcMWMGr732GkajkYEDB6LX6/nuu++YOHEi06ZNo1GjRi73TU5OLuZLw4YNnckmi8jNzWX69On06tWL0NBQMjIymD9/PmlpafTt2xdQBdYjjzxCZGQkcXFxztLHQIkJMa+maMYrJyeH8+fPk5SUhMFgcBG815KTk8OxY8ecxykpKSQlJREQEOAUuRcvXiQ1NZXTp0+7jDckJMTldS3VqlWjRo0agFrauXfv3rz88sssWrQIX19fJkyYQL169YiOVvMO9ujRg1mzZjF16lTncvSJEycSGRlJs2bNAOjZsyfDhg1jwYIFzuXoY8eOpVWrViXm0biZcUokt4LdbidP6PjRUo81jhxeDn4QiAdAq1jw87gAGcdgSQ/IScfiq64qKi/JzbMKrHSauYXz2WZMunzCvNIB0Gq9ZUBKcteQeknqJamXKrheKnNNwPsQWeLYlS/m/ks0G79CPDx6vvjwb31F3DNqyeON/9dV5EyKFOI/fa8Yfz1MvP6fd0SVjYniyX1HxewT6SK9wOI232+XIUv2iDZT/59YvyHK5ZWVdcjdrknKCRWtxHERRSWO/fz8hMlkEjExMS4ljkeNGiVq1qwpPDw8RFBQkBg4cKDIyMhwXp86daoICQkRiqKUWuK4VatWYvz48c52kZGRYtasWcX82bNnj+jSpYvw9vYWXl5eokmTJmL69OlCCCHOnz8vxowZIxo1aiS8vb2Fj4+PaNy4sYiLi3MpqyuEEKtWrRIdOnQQXl5ezhLMy5cvd7EpqUxz0evkyZPFfMvPzxdPPvmkCAsLEwaDQYSGhopevXqJPXv2OG0WL1583T5vREltIiMjS22zadOmEtsV/SxK82ny5Mml+nJtGeHMzEzxwgsvCH9/fxEQECCefPJJkZqa6mKzfPly0axZM+Hl5SWCgoJEr169xO+//+5iM2fOHNGgQQNhMplEaGioGDBggDh16tRtj/Na7kSJ4/uF+/l5XL58WQya9E8RGRsvmo/5t1jyzDwR16+HiOvXQ1yeGC7E8v5C7P1CiMm+Qkz2FdvmdBVVNiaKh34qH/ph758XRWRsvGg95TOxdl0dp/7Ztq2tu12TVFCkXpJ6Seql+08vKUIIcasBrYpOVlYWfn5+ZGZmlnkfakXFnmNh0btL+EQE0P3U/6hsueC81ifiANW9L0PnKfDQWPXkf59njL0+/w3pzqSoUEZFlu+8Hv0W7sKcu4UxzT5Fp/PD378lXp41qVnzjVuuYia5vygoKCAlJYUaNWpgNBrd7U65Ijc3l/DwcGbOnMmQIUPu+v0vXrxIp06d8PX1Ze3atXh6yrLn9wOl/c5KfeDK/fw8Tv2WysQVqziU40e/M9+iFTbntdHz5mGoHAk//z/4/jWoHcPGzvPof+g0jb1NJDxYPCHxvca2o+cZ+Nkenqz7G49HLgI0aLUmqlYdSK2ar7vbPUkFROqlW0fqJYk7uBN6qfzup5LcVVKX7sZXK7DbFPQOCwBajwcxCj2RA56Deo+BqRLs+xfs/gQu/UlBzQcAMGrL5/Juh0PwjzWHSMnI5WTGKdqE/AmAr28TmjZZdIPWEonkVklMTOTw4cO0atWKzMxMpk6dCnDd8rl/NQEBAaxfv5758+eza9cuZ+lliURyf2OzWDj9r59xeChUMZ9zCUj5+xnQV45Uk5zbLQhgtn80W09nAWDQlI8JrVyzmsPGx0PNJRUU1IUmjT92p0sSiaQQqZckFQUZlJLcECEE2X+exqF14BAKWqEKFK2hLh72HBTvYDUgBbDrYzivljYt0HgAYCxHyTyv5rfTmSzecQKDxsLMjlPw1KvVBw36ADd7JpFUfOLi4khOTsZgMNCiRQu2bdtG5cruq1QVGBjI22+/7bb7SySSe48LaSfRKQYcQkGDGpDSayLQ+PaheaMVV1ZS28z87hXF+55t4XIOAMEG/fW6vSfILrCy6/gFdqeoK+O9DeqEpE4rc2lKJPcSUi9JKgIyKCW5ISc3b+ag5SQZng66ntmKvyUbm1YLig5F2EDnccXYpgZu6P4hBUpryBUYy8ls4LVczFUFWL3g/MKAlAYf7/qEhvV1r2MSSQWnWbNm7N27191uSCQSSak4bDZQFITdTodLPwA+oOhRFA0G/VVJme0WsrVqSfYAvZZXIkN4LMjPPU6XkfHfHGDN/jO0Dd3DvEe/wqgtDErpylYlSyKR/PVIvSSpKMiglOSGrNu7l1Pe6sxexz9/JyWoKGO/Fp3OCtqrg1IW4is/zLeaVvxm1gD2clX2uIgCq53Tl9Wl6pGV1LRrRo8QWrVa7U63JBKJRCKR3AMIIUjYuo10j3NUO32OBqcsJIcBqMGoyi4Vic1YNarkDjLoGRYRdPcdvklSzquVkx+udgiTrqgEu4KfX3P3OSWRSCSSCokMSkluSL7VCkCkPQid3YGjcDm6oujw98yHq4WX3cw7Nf+PUzkA6ja/MI97e4n6taReyKP77K2YbQU8HL6HJgFqiVGd/v5K3iqRSCQSiaRkMjMy+OPkKVBAbzfjKFoVXqiJrl0pZdYUni8nxVGyClTt1yBEiy0f6tR5h5AqPdHr/d3rmEQikUgqHDIoJbkhBTYL263VSbBXZrzGS03aCYAWLTbQXZVl32YhV6tWWniteghNfUw09y1flRd+PXWZXIudh8J+YVDDFc7zBn2gG72SSCQSiURyr5C1Zw8AOqGlss2HfKOab1Io6kScRqeFrDNw8Fs49TNWRZXc93qC853HM/jfr6c5l62ujtKgrpgyGavKgJREIpFI/hJkUEpyQzLtWo7Zg4g5l8CRkKsCM4oWnVIAWteVUgWFs4F9QyoRafKgvJFdoCYrbRmhzhJ6etbC378l4WHPuNMtiUQikUgk9wjWTLWKng4NWodCenBzsOxDCHWFlN4AJLwFB74CwFL5EfX8Pb5S6u3vDnLsXA69otbyQPBvWAvOAqDVyQTnEolEIvlrKH/JfiR3HZtDFVDV8/50ntPrAony+Jmm/pvAJ0Q9KQTiqiXq5a3qnhCCs1kFnL6sJmv3MhSVP+5M/XrT8fVt4k73JBKJRCKR3CPYrBYyHF78aK1BKg6EouafDNCl8ZDP/8PT1wNy1e3/VGuHpXY3gHs+z+bFXAsKDnrV/IFI35MIYUFRtJhMEe52TSKRSCQVFLlSSlIq2X9kYhPqUnQtDgAMvoNo4fkJ7V4bBQEvgRDw2zdgycWmaHEo6iyhxz2+RP1aRi1LZM2BMzSp/BvjWmwh3KMwl5RO5pKSSCQSiURyBbvVxiFbMGctOvT2DBwOVSvV8j9I0/bNoeUL8N0o1bj1cCwBHeDwSfT3uDbKMdsw6gpQCoNsTZt8iqdnDYweIW72TCKRSCQVFRmUkpTK8UUbsevVWT2NUBOXK4oHHnog4kHVaN1bsHMOAGatydn2Xp8NvJZdf1wAoGfUOqL8TzjPe5qqu8chiUQikUgk9yRnL2iwo+Ghizvxc5xHFJ43BETAE/PVA7uFbK0nu6w+JGXlqdfv0e17FpuDfIsdi81BJQ81n5SiGKhc+VE3eyaRSCSSik75ihpI7jqioAA7Ao3uPFdklBa91nHFKPMkAPlBjUit/YTzdHlaKSWEIDNfzSFVr4oqLWvUGEuzB/5FUFAXd7omkbidwYMHoygKiqJgMBioVasWU6dOxWaz3Va/mzdvRlEULl++fGccLQMpKSn079+fsLAwjEYjVatWpXfv3hw+fNjFLj4+no4dO+Lj44OnpycPPvggS5YscbE5ceIEiqKQlJRU5vu/88471KtXDy8vLypVqkTnzp3ZvXu3S59DhgyhRo0amEwmatasyeTJk7FYLKX2e+bMGfr370+dOnXQaDSMHTu2TP5s3bqVnj17EhYWhqIorFq16qZ9Bpg+fTrt2rXD09MTf3//Eu+VmppKjx498PT0JDg4mNdff93lPXT1++zqV8OGDZ027733Hg8++CA+Pj4EBwfzxBNPkJycfMNxlsU/iaSsWDJyMF72x44GT7u65V/RhqE1NKBBjatyL9ktvFI3lucvBfKv0+rEl1F770nvfamXaDplHW3eXcWjEVvpErkZAJ3MIyWR3BRSL0m9JPXSrXHvfTNK7hkykpK4rDNjUxT6nF105YKiwUsvrhxbC8jQ+/FAg9k8WmUEoCby1Nyjs4HXsioxjVHLE7E71DEJRw4AwUFdCQhoj6LIXxOJpFu3bpw5c4ajR4/y6quv8s477/Dhhx+62y0nNxIhAFarlS5dupCZmck333xDcnIyK1asoHHjxi5Cb+7cufTu3Zv27duze/du9u/fz7PPPsuIESN47bXXbsvPOnXqMG/ePA4cOMD27dupXr06Xbt25fx5dbvw4cOHcTgcfPLJJxw8eJBZs2axcOFCJk6cWGq/ZrOZoKAgJk2aRNOmTcvsT25uLk2bNmX+/Pm37DOoz79v37689NJLJfZht9vp0aMHFouFnTt38sUXX7BkyRLefvttp83s2bM5c+aM83Xy5EkCAgLo27ev02bLli2MHDmSn376iYSEBKxWK127diU3N7fUcd7IP4nkZjjywzYURcGBgkaok3Q6Y3MMxtZ4el1VkdhuJdWobnur7enBQ/7eDA679yr57km5SL7VTtfIzQyov5KY6psA0OsrudkziaT8IfWS1EtSL90CQnJdMjMzBSAyMzPd7cpdp6CgQPxj0iQxefJk8fJr/xC/1q8v4vr1EHH9eoi5L/4oMv4RfcV4SU+x46MOosrGRFFlY6KI2JQkRh864T7nbwKHwyHqvPm9qB67Wsz/qotYu66uWL8hSqzfECXy89Pc7Z6kApGfny8OHTok8vPz3e3KTTNo0CDRu3dvl3NdunQRbdq0ERcvXhQDBw4U/v7+wmQyiW7duokjR4447U6cOCEef/xx4e/vLzw9PUWDBg3EmjVrREpKigBcXoMGDRJCCJGVlSX69+8vPD09RUhIiPjoo49Ex44dxcsvv+zsNzIyUkydOlUMHDhQ+Pj4ONtu27ZNPPTQQ8JoNIqqVauK0aNHi5ycHCGEEImJiQIQJ05c//MpNTVV6PV6MW7cuGLX5syZIwDx008/CSGEcwyJiYk3/1ALKfqeWb9+/XVtZsyYIWrUqFHmPq99VmUFEN9+++0N7UrzefHixcLPz6/Y+e+//15oNBqRnp7uPLdgwQLh6+srzGZziff59ttvhaIopf68zp07JwCxZcuWG/pdmn8lUdrv7P2sD0rifnsev8xfIbZP+Fo8+NZC8caQx0Vcvx5i9t8/EfOHrhBi9ZgrhrMfEA//72tRZWOi2HYxy30O34AZP/wuImPjxb/XvijWb4gSu/f0EgcPvSEuXNjubtck9yFSL0m9VBJSL1VsvSSXgEhKJCsrC5tWCwJ8rBqEy6onDTrjVW8dW4Gz4l5jbxOpjzRlTv3Iu+vwLZJrsWO2OahsukDdgOPoteoWPpOpGgZDkJu9k1R0hBBYLJa7/hJC3Ni5G2AymbBYLAwePJhffvmF1atXs2vXLoQQPPbYY1it6u/SyJEjMZvNbN26lQMHDvDBBx/g7e1NREQEX3/9NQDJycmcOXOG2bNnAzBu3Dh27NjB6tWrSUhIYNu2bezbt6+YD3FxcTRt2pTExETeeustjh8/Trdu3ejTpw/79+9nxYoVbN++nVGj1GTDQUFBaDQaVq5cid1uL3FcK1euxGq1ljjDN3z4cLy9vVm+fPltPz9QZ6MWLVqEn59fqbN1mZmZBAQE3JF73i5l9fladu3aRePGjalSpYrzXExMDFlZWRw8eLDENp999hmdO3cmMvL63yeZmZkA98zzkVR8HA4HZ/OzOaO5TJh5LyFZaqVeFC0abKDRXzG2W7Eoqj66V/Nsmm12LucVah+duhUxNPRpGtT/gICA9u50TSJx4i69dCc0k9RLt4/USxVfL8lE55ISKdq3ahQ66lkiOVe5MZADKCiKBq3uKnFlzadAo1aoK695pPwKk3oaDEE82PIbDIbKaK4WlhLJX4DVauXdd9+96/edOHEiBoPhltoKIdiwYQM//vgj3bt3Z9WqVezYsYN27doBsHTpUiIiIli1ahV9+/YlNTWVPn360LhxYwCioqKcfRV9MQYHBzv3rWdnZ/PFF1+wbNkyOnXqBMDixYsJCwsr5sujjz7Kq6++6jweOnQoAwYMcOYHqF27NnPmzKFjx44sWLCA8PBw5syZwxtvvMGUKVNo2bIl0dHRDBgwwOnXkSNH8PPzIzQ0tNj9DAYDUVFRHDly5JaeXRHx8fE8++yz5OXlERoaSkJCApUrVy7R9tixY8ydO5e4uLjbuuftcjM+l0R6erqLwAKcx+np6cXsT58+zdq1a1m2bNl1+3Q4HIwdO5b27dvTqFGjMvsikdwO+3ftYk/2SdBB96TjoNGQYwLQ4IUVtFd9ttotzkm7e1Ef/XP9Ef65/igGjYWafqcwajIA0GllLinJvYW79BLcumaSeknqJamXys69OW0jcTt2u51shwffWWvzH0cuf0Z2LbyiQacU4GGwQ9pemN0Uzv52legqH2+pM5n5tH53A+3f34i/x2VqBZwBQK/3x2gMQ6O5tT/YJZKKSnx8PN7e3hiNRrp3784zzzzD4MGD0el0tG7d2mkXGBhI3bp1+f333wEYM2YM06ZNo3379kyePJn9+/eXep8//vgDq9VKq1atnOf8/PyoW7duMduWLVu6HP/6668sWbIEb29v5ysmJgaHw0FKSgqgzkSmp6ezdOlS2rZty1dffUXDhg1JSEgo87MoizhdunSpix/btm1zXouOjiYpKYmdO3fSrVs3+vXrx7lz54r1kZaWRrdu3ejbty/Dhg1znr+63xEjRpTJ523btrm0W7p0aZna3azPd4ovvvgCf39/nnjiievajBw5kt9++40vv/zSeW7EiBEu45RI7jTn9u4FwCQMGK02RGHeSQUtBoMFcs/DrEbwfjXIOUtBoZ4w3INBqY2H1d/hV1p8zMTW/8SImgRXJjiXSG4dqZeuIPWS1EtlRa6UkpSIzWYj1eHPGeFNFdtJLHgAoFEc9AkYjz68AySvhUsnAMjXq29mYzkJSv1y4hLnss00qnyIV5ovdJ7X6Xzc6JXkfkOv198wIeNfdd+bJTo6mgULFmAwGAgLC0On07F69eobths6dCgxMTGsWbOGdevW8d577zFz5kxGjx59K6674OXl5XKck5PD8OHDGTNmTDHbatWqOf/v4+NDz5496dmzJ9OmTSMmJoZp06bRpUsXateuTWZmJqdPny4222ixWDh+/DgxMTE39K1Xr14u4jM8PNzF71q1alGrVi3atGlD7dq1+eyzz5gwYYLT5vTp00RHR9OuXTsWLVrk0vfV1Wt8fX1v6AuogvTqdtfOwt2IsvhcGiEhIezZs8fl3NmzZ53XrkYIweeff87AgQOvK2hHjRpFfHw8W7dupWrVqs7zU6dOve3kqhJJadgLkwRH2itj0YeSZ9KAyAJFg1Zjg8t/OqsSA5i1qn66F/VRToG6Kr5OwDkQYDSGYzJVo1KlNm72TCJxxV16qejeN4PUS1IvSb1088iglKRETv2YjB0NtXOO0SF7M/mF53VaqPzK1xBQE9YXVgF4YADmpuPhxEWM2ntvJrAkcsyqEHukhlqiWaPxQKfzIzT0aXe6JbnPKCoZXB4o+pK9mvr162Oz2di9e7dzOfqFCxdITk6mQYMGTruIiAhGjBjBiBEjmDBhAp9++imjR492jv3qfAVRUVHo9Xp+/vlnpzDKzMzkyJEjPPzww6X62Lx5cw4dOlTMz9JQFIV69eqxc+dOAJ5++mliY2OZOXMmM2fOdLFduHAheXl5PP/88zfs18fHBx+fsgW5HQ4HZrPZeZyWlkZ0dDQtWrRg8eLFaK75Y/ZmxleEyWS6pXbX41qfb0Tbtm2ZPn06586dIzg4GICEhAR8fX1d3iugVow5duwYQ4YMKdaPEILRo0fz7bffsnnzZmrUqOFyPTg42Nm/RPJXYCv8vFKEBochHEFa4RWFSI+9UJh/5t+t3yUptCP5l1S9cS9u38s22wABIg+Ali2+wsPj5v4Ak0juBlIvSb0EUi9VZL0kg1KSYpw/+geaP/OwKwqVLRmFZ3WgGKhT3QMq11ZP2SykeQTxhO/fOP3nRaD8bN8rmh3081ATlFat+jy1a413p0sSSbmjdu3a9O7dm2HDhvHJJ5/g4+PD+PHjCQ8Pp3fv3gCMHTuW7t27U6dOHS5dusSmTZuoX78+AJGRkSiKQnx8PI899hgmkwkfHx8GDRrE66+/TkBAAMHBwUyePBmNRoOilP5HXWxsLG3atGHUqFEMHToULy8vDh06REJCAvPmzSMpKYnJkyczcOBAGjRogMFgYMuWLXz++efExsYC6gzhjBkzeO211zAajQwcOBC9Xs93333HxIkTmTZtWrH9+MnJycV8adiwYbHZ1dzcXKZPn06vXr0IDQ0lIyOD+fPnk5aW5izjm5aWxiOPPEJkZCRxcXEuZYSvnSG7lqKZvZycHM6fP09SUhIGg6GYiLmanJwcjh075jxOSUkhKSmJgIAAqlWrViafAVJTU7l48SKpqanY7XanL7Vq1cLb25uuXbvSoEEDBg4cyIwZM0hPT2fSpEmMHDkSDw8PF58+++wzWrduXWLeg5EjR7Js2TK+++47fHx8nPkV/Pz8MJlM1x3njfyTSMqK3W5nk6UmSxwBvEMy4ACgb2AsIaZs0D1Eht6P143toTAgZVAUfLVaN3rtyj/iD5GYeokLOWYMGitFY9BqvUpvKJFIbgmpl1SkXpJ66bqUqc7ffcr9VuK4iCObtomtE1aKxyd+Kl4YPljE9eshZg18W8wbvkFk/feNK4bfjRbfzntCVNmY6Hx9dvKc+xwvA0t/+lM8MX+76B63TAxfMFZ8sy5GrN8QJVJS5rvbNUkFp6KVOC6iqMSxn5+fMJlMIiYmxqXE8ahRo0TNmjWFh4eHCAoKEgMHDhQZGRnO61OnThUhISFCUZRSSxy3atVKjB8/3tkuMjJSzJo1q5g/e/bsEV26dBHe3t7Cy8tLNGnSREyfPl0IIcT58+fFmDFjRKNGjYS3t7fw8fERjRs3FnFxccJut7v0s2rVKtGhQwfh5eXlLMG8fPlyF5uSyjQXvU6ePFnMt/z8fPHkk0+KsLAwYTAYRGhoqOjVq5fYs2eP02bx4sXX7fNGlNQmMjKy1DabNm0qsV3Rz6IsPguhvkdK6mfTpk1OmxMnToju3bsLk8kkKleuLF599VVhtVpd+rl8+bIwmUxi0aJFZR4jIBYvXlzqOMvi37XciRLH9wv3y/NwWO3iv2/HicjYeNF2zCKxoM/fRVy/3iKuXw+RET9DiOQfhPhmuEh5r56osjFRRGxKEv9MSRdbLmS523Unpy/nicjYeNFs8r/E+8ueFAu/7irWb4gS6zfUFA6H/cYdSCR/MVIvSb0k9dL9p5eUQqclJZCVlYWfnx+ZmZll3oda3hFC8MOy/3Lu8AV2ZxzjkSM/c7KyH1pja/Sm9gzpvhFj72mq8TfDWXH2Ei/Xm0g7f28WNaxOZcO9vfiu1fT1nMs2M67FfBoGXonW16v3LuFhz7jRM0lFp6CggJSUFGrUqIHRaHS3O+WK3NxcwsPDmTlzZolLlP9qLl68SKdOnfD19WXt2rV4enredR8kd5/SfmfvR31QGvfL88g7kMF3X67iTVswL/75OXphc1578cOZ+FSrC1/9neSUvXR88F8E6LUceqixGz0uTnJ6NjH/3MoTtTbQM+o753mTsRrt2m1yo2cSiYrUS7eO1EsSd3An9FL52GsluWucOXWK3Ud/J0V7jvDL6VC4/FNBXXauvTroZCtwVt3z1Wnu+YCUEILLeVYA6gWp+RMCAqKJrDacKsGPudM1iURyFYmJiSxfvpzjx4+zb98+BgwYAOBc4n63CQgIYP369XTq1Ildu3a5xQeJROJ+sk5lYwX0DqszIKU1NMTkHYpPcOF2EZsZS1HFPeXek9k5ZlUHBXqq2UIrBz5KwwazaNbsP+50SyKR3AJSL0kqCvd2FEFy1zlfWObTQ+gxOMCiL9xzqhQGpfR6yDkPKVvgUgoWjZoIznCP55Lal3qJ7UczsNjVvAlGbT5WB9Sq+So+PvXd7J1EIrmWuLg4kpOTMRgMtGjRgm3btlG5cmW3+RMYGMjbb7/ttvtLJBL34nDYSfx+FRZfL7RCDewgQO8Vg0m/FvIuwYqBkLYXq0cEAPp7KLl5jtnGkh0pHDydhbc+m8omNReor98DhIT0crN3EonkVpF6SVIRkEEpiQuWS5cB8BFGFOHF+cAqYD0KaNFgRWMwwMq/w4ltAJirqgEdww0S6rkTIQR/X/wzmfkWnq37DbX8U7FaVTGm01XcbQYSSXmlWbNm7N27191uSCQSiZO8y5exF2Rh9fNiUOoiUDxRKFxNrrGpk3UpWwAwm9SkvfdSxb3vktKIW3eEqt5pfNTxQ7QadZJOr/Nzs2cSieRWkXpJUlG4t5e3SO46VquF4/ZAFltrkI2RooosProLtPL+Egw+kHlKNQ5rhiWsOQDGe3ilVL7VTma+lUDjRbpEbqGGXwrgQKfzwWAIdLd7EolEIpFI7nEcdjuKosEqHEQnF1V5UoNOYZoCsFvUU9XaYem9ELi3JuzOZaklydtWu1AYkNLh6VmTwMDSS8dLJBKJRPJXc8cjCVu3bqVnz56EhYWhKAqrVq1yuS6E4O233yY0NBSTyUTnzp05evSoi83FixcZMGAAvr6++Pv7M2TIEHJyclxs9u/fT4cOHTAajURERDBjxoxivnz11VfUq1cPo9FI48aN+f777+/0cCscFouFw7ZgTHnn0XIeh00tH9mqylZadPSDxk9fEV49PsJST13ybbiHZgOvJbtAzfvgY1DzSOn1lWjSeAGtHlyNVisTKEokEolEIimdVUu+YF+InZPKRecKKXTqhoMAvf2KNvILx+JbFbi3UhsUaaH6VdR0DMHBXWnbZh0mUzV3uiWRSCQSyZ0PSuXm5tK0aVPmz59f4vUZM2YwZ84cFi5cyO7du/Hy8iImJoaCggKnzYABAzh48CAJCQnEx8ezdetWXnzxRef1rKwsunbtSmRkJHv37uXDDz/knXfeYdGiRU6bnTt38txzzzFkyBASExN54okneOKJJ/jtt9/u9JArDMJq51xuNewoPPT/2bvv8Kiq/PHj7zstM2mTBNIJIYFQQpMiHTFSElBgXaUIi7ACgksVwQC7EkAQxQAr4FL8KuhvAyqsIgKiVKlSE0BKaAk9dNIz9fz+GDIyAqEFAuG8nmcenXvPPedzJ+3DOeeec2ULKiUHRC4AHhWfhfb/Bo+yYDWxxP8FXj+r5vsLV4HHs1Mqu8DCgm0n+XJLOgBl3B1rQGi1ZfD3byMTMUmSJEmS7siSn8/x3FxsKhB2O5d9KztOCEenlFoFWE1c0Pox2LM1iemOAb3HITfKyCxg7NL9rE+9AIC71jFjSqP2LMmwJEmSJMmp2NeUatu2LW3btr3lOSEE//73v/nXv/7l3BXgq6++IjAwkCVLltC1a1cOHjzIypUr2bFjB/Xr1wdgxowZtGvXjsTEREJCQkhKSsJsNvPFF1+g0+moXr06KSkpTJ061dl59cknnxAXF8eIESMAeP/991m1ahUzZ85k9uzZxX3bpcLpn1Pw0+ix21Xo7I4RP7XbM6hVGsLL3/CtYjMzPvItzuYIwFEuxE1bAhEX7YtN6UxbfZhGwTuY2mIJBo0jVq3Gq4QjkyRJkiTpSWHNd+xUZxYqKpmqkRGoATYhhGPWkZfuKtjMLA2I4VtdFch2lA96DHKj//52gvlb0on2O8ToBsspo2SDALXGo6RDkyRJkiTgEa8plZaWRkZGBq1atXIeMxqNNGzY0Llt5NatW/Hx8XF2SAG0atUKlUrFtm3bnGWee+45dDqds0xsbCypqalcvXrVWebGdgrLyO0pb+/cvoPYsWNTrKgVx0iaWlcDjS4Yldbtj4JWEzkax658oyOD+ax6BV4PKbldHm7n9FXH43qtKqRgdMtGp3bck7fxmRKMSpIkSZKkJ4nVZMImFL431WSW3Yr9+mN5WnU+r/iNpGJEPlhN5KoduVEjowf/rhrGB1HlSjJsAC7nOgbkXq22g4o+J1AJx0Yv7u6RJRmWJEmSJDk90t33MjIc05kDAwNdjgcGBjrPZWRkEBAQ4HJeo9Hg5+fnUiYiIuKmOgrP+fr6kpGRUWQ7t2IymTCZTM73WVlZ93J7T7w8i5lcRcFbuxODLR9Qg6JCwQrq66N9QoDNRIHK0Un1SqAvoXrd7SstQVkFjsf1Qo02sEOVyuMoU+Y59PqwEo5MkiRJkqQnhdVkwoSGfHS42/OvbwEDao2doMFfgH8VWD2WApUjH6rmaaBr8OOxkUqOybGWVICnFQSEh/fHv2xLvL2fKdnAJEmSJOm6R9op9bibNGkS48aNK+kwSsS2VatYbz8JGui3NYWrXt5Y1QBqfIQJrs+MwmbBhgrz9cTrcdx1b+baI3y94xTXcrMJ9byAhkwAPDwqyXWkJEmSJEm6J2f2XsImFMrln+aFixvIsjsGMFUqFQTVgKxzkHcFs+JYHuBxWEvqWp6ZXSeucvKyY21QrZIPAnyM9TAa65ZwdJIkSZL0h0faoxAUFATA+fPnXY6fP3/eeS4oKIgLFy64nLdarVy5csWlzK3quLGN25UpPH8ro0aNIjMz0/k6derUvd7iE+vEb78BoBYq/HJN2K9vY6ygxktvgstH4ZNn4JNazq2b+7IAAQAASURBVJFAAP1jkHj92bzN6Zy5msuoZycxvsmHqOxnANDItaQk6b706tULRVFQFAWdTkelSpUYP348Vqv1gepdv349iqJw7dq14gn0LqSlpdGtWzdCQkLQ6/WUK1eOjh07cujQIZdyy5Yto0WLFnh5eeHu7s6zzz7L/PnzXcqkp6ejKAopKSl33f7YsWOpWrUqHh4e+Pr60qpVK+ej6YV19u7dm4iICAwGAxUrViQhIQGz2XzHupOSkqhduzbu7u4EBwfzxhtvcPny5SKvudOOuYUOHjxIhw4dMBqNeHh48Oyzz3Ly5Enn+X79+lGxYkUMBgP+/v63/Ex37NhBy5Yt8fHxwdfXl9jYWPbs2XPL9o4ePYqXlxc+Pj53vO+7vQdJul+2HZexo1A15zBGWyYCx+Y8Hu4aWDsRplaFPQswqxyzyt2Uks+Nen+5k95f7uRa1j7qByajxvG7QK2Wa0lJ0sMi8yWZL8l86f480k6piIgIgoKCWLNmjfNYVlYW27Zto3HjxgA0btyYa9eusWvXLmeZtWvXYrfbadiwobPMhg0bsFgszjKrVq2iSpUq+Pr6Osvc2E5hmcJ2bsXNzQ1vb2+X19PCYnH8ANe1RmDyrIFd5Vi8E0WFRm2GM8lwNQ2yz2G6sVNK/XjNlBJCkFVgQa8pIMjjIgBarR++vo3x8KhcwtFJ0pMrLi6Oc+fOceTIEd555x3Gjh3Lxx9/XNJhOd1NEmKxWGjdujWZmZl89913pKam8s0331CzZk2XRG/GjBl07NiRpk2bsm3bNvbu3UvXrl3p378/w4cPf6A4K1euzMyZM9m3bx+bNm2iQoUKtGnThosXHb+vDh06hN1uZ86cOezfv59p06Yxe/ZsRo8eXWS9mzdv5vXXX6d3797s37+fRYsWsX37dvr27VvkdXfaMRfg2LFjNGvWjKpVq7J+/Xr27t3Le++9h16vd5apV68e8+bN4+DBg/z8888IIWjTpg02mw2AnJwc4uLiKF++PNu2bWPTpk14eXkRGxvr8rccHF+n1157jebNmxcZ+73cgyTdr/ycbLBYsaOgFo7vZzd1NXRer1Ezugyc3u4oqNJgcvNxnH8MZpEfv5hDoPt5xjRK5K3a81Dsjt8xGs3Tk9tKUkmQ+ZLMl2S+dB9EMcvOzhbJyckiOTlZAGLq1KkiOTlZnDhxQgghxIcffih8fHzEDz/8IPbu3Ss6duwoIiIiRH5+vrOOuLg4UadOHbFt2zaxadMmERUVJV577TXn+WvXronAwEDRo0cP8fvvv4uvv/5auLu7izlz5jjLbN68WWg0GpGYmCgOHjwoEhIShFarFfv27bvre8nMzBSAyMzMLIZP5vE2b/RIMWLMBDF11Nfivy+/JxI7vygSO78o/tP3O3Ho3fZCzGou8saVFZ3W/CLqbkgWgWuTRbl1KSUdtot8s1WcvJwrwuOXiboJX4nVayLF2nVVSzosSRJCCJGfny8OHDjg8rvuSdGzZ0/RsWNHl2OtW7cWjRo1EleuXBE9evQQPj4+wmAwiLi4OHH48GFnufT0dPHSSy8JHx8f4e7uLqKjo8Xy5ctFWlqaAFxePXv2FEIIkZWVJbp16ybc3d1FUFCQmDp1qmjRooUYMmSIs97w8HAxfvx40aNHD+Hl5eW8duPGjaJZs2ZCr9eLcuXKiUGDBomcnBwhhHD+XUpPT7/tvZ48eVJotVoxbNiwm85Nnz5dAOK3334TQgjnPSQnJ9/7h3pd4d+Z1atX37bM5MmTRURERJH1fPzxxyIyMvKmeENDQ+86FkB8//33Nx3v0qWL+Nvf/nbX9QghxJ49ewQgjh49KoQQYseOHQIQJ0+edJbZu3evAMSRI0dcrn333XfF3/72NzFv3jxhNBrvqd3b3cP9KOpn9mnKD+5Gaf48Un5eIZJHLhP9E94XQ/u2F4mdXxQzu08QM/utEfvnviXE57FCJHgLsX+JGHzghAhcmyymp2eUaMx2u11Ejlou2n/8kVi9JlKsW19L7Nz1mjh46D1ht9tKNDZJuhOZL8l86VZkvlS686ViH8rZuXMnderUoU6dOgAMGzaMOnXqMGbMGADeffddBg0axJtvvsmzzz5LTk4OK1eudOlBTEpKomrVqrRs2ZJ27drRrFkz5s6d6zxvNBr55ZdfSEtLo169erzzzjuMGTOGN99801mmSZMmLFiwgLlz51K7dm0WL17MkiVLqFGjRnHfcqlQYIPvTTX5xO6Jwh/TznsH9qaKx2bQ6NjjVZUNij9nrs9ArezhdpvaHr3LOSYaTVpD88lrCTBcJMLomCapVstH9qTHlxACmy3vkb8cf4sejMFgwGw206tXL3bu3MnSpUvZunUrQgjatWvnHM0ZMGAAJpOJDRs2sG/fPj766CM8PT0JCwvjf//7HwCpqamcO3eOTz75BHD83di8eTNLly5l1apVbNy4kd27d98UQ2JiIrVr1yY5OZn33nuPY8eOERcXxyuvvMLevXv55ptv2LRpEwMHDgTA398flUrF4sWLnSNSf7Z48WIsFsstR/j69euHp6cnCxcufODPDxyjlXPnzsVoNFK7du3blsvMzMTPz6/Iuho3bsypU6dYsWIFQgjOnz/P4sWLadeu3QPFaLfbWb58OZUrVyY2NpaAgAAaNmxY5JTv3Nxc5s2bR0REBGFhjo0lqlSpQpkyZfj8888xm83k5+fz+eefU61aNSpUqOC8du3atSxatOjxHMWTnkrm/HzsCDQFx6hzKttxUHEsyeqt0YLVxBk3fz4v8OVgbj4AbiW4tMG245dZsP0kNrvAoHHE4+1Vg3p1F1C1yngUpeRncUnSvSqpfKk4ciaZLz04mS+V/nyp2Bc6f/7554v84VUUhfHjxzN+/PjblvHz82PBggVFtlOrVi02btxYZJlOnTrRqVOnogOWKDh2jTxNeWwW6Hj+R85r/liLSzVgK3j7w9fdKFA5vq6RBjdmVitPVU9DSYV8k0MZ2VzLs9Cq/K+8VvU753G5jpT0OLPb81n/a81H3u7zLfahVrvf17VCCNasWcPPP/9M27ZtWbJkCZs3b6ZJkyaAY1AhLCyMJUuW0KlTJ06ePMkrr7xCzZqO+4yM/GMb8sLEISAgwPksfHZ2Nl9++SULFiygZcuWAMybN4+QkJCbYnnhhRd45513nO/79OlD9+7dGTp0KABRUVFMnz6dFi1aMGvWLEJDQ5k+fTrvvvsu48aNo379+sTExNC9e3dnXIcPH8ZoNBIcHHxTezqdjsjISA4fPnxfn12hZcuW0bVrV/Ly8ggODmbVqlWULVv2lmWPHj3KjBkzSExMLLLOpk2bkpSURJcuXSgoKMBqtdK+ffsHTlYuXLhATk4OH374IRMmTOCjjz5i5cqV/PWvf2XdunW0aNHCWfY///kP7777Lrm5uVSpUoVVq1ah0zke9/by8mL9+vX85S9/4f333wccX5+ff/4ZjcaRily+fJlevXrx3//+96l6fF56fGVmZrJ+VwoWnQ6/89nO9TaFSosCeGh0UGBmRNRw1mZ6A45OIE+NukTiPXE5ly5zf0OjslDb/xDRZY4CMheSnnwllS/B/edMMl+S+ZLMl+6eHC6RyNl/GTMKvpZrlM8/jV1x9NirNRrUgZXB3Q8s+c4d93y0auoaPXB/jNaTysp3xFw/5BwAarUnbrpAQkNfK8mwJKnUWLZsGZ6enuj1etq2bUuXLl3o1asXGo3Gud4fQJkyZahSpQoHDx4EYPDgwUyYMIGmTZuSkJDA3r17i2zn+PHjWCwWGjRo4DxmNBqpUqXKTWXr16/v8n7Pnj3Mnz8fT09P5ys2Nha73U5aWhrgGInMyMggKSmJxo0bs2jRIqpXr86qVavu+rMoTByKkpSU5BLHjYMoMTExpKSksGXLFuLi4ujcufNNG3wAnDlzhri4ODp16uSy1sGN9fbv3x+AAwcOMGTIEMaMGcOuXbtYuXIl6enpzvMbN250uS4pKemu7tVutwPQsWNH3n77bZ555hlGjhzJSy+9xOzZs13Kdu/eneTkZH799VcqV65M586dKShwLAidn59P7969adq0Kb/99hubN2+mRo0avPjii+TnO/4h37dvX7p168Zzzz13y1ju9x4k6X4d3bOHXJUKs2JFZbdhvz7LSNE6ZvertCqwmrigKwNAEx9P+pQry4tljSUS7+mrjp+lDhXXM7jOZzQL3QKARutTIvFI0tNI5kt/kPmSzJfuVrHPlJKeLHa7jUMbf8PiBhrheC5PJXRovDvj77saJe8ybJ0JV9Mp8HwGAN1jsKtMIZPVxsbDl9h09BIKdjy0eQBUjnqPkJBXSzg6SSqaSmXg+Rb7SqTdexUTE8OsWbPQ6XSEhISg0WhYunTpHa/r06cPsbGxLF++nF9++YVJkyYxZcoUBg0adD+hu/DwcN1FKicnh379+jF48OCbypYvX975/15eXrRv35727dszYcIEYmNjmTBhAq1btyYqKorMzEzOnj1702ij2Wzm2LFjxMbG3jG2Dh06uCSfoaGhLnFXqlSJSpUq0ahRI6Kiovj8888ZNWqUs8zZs2eJiYmhSZMmLo+vAy671xSOkE2aNImmTZsyYsQIwDGb2MPDg+bNmzNhwgTq16/vcl1gYOAd7wGgbNmyaDQaoqOjXY5Xq1aNTZs2uRwzGo0YjUaioqJo1KgRvr6+fP/997z22mssWLCA9PR0tm7diur6ItALFizA19eXH374ga5du7J27VqWLl3qHOUUQmC329FoNMydO5fXXnvtvu5Bku6X9fo/AIJtPthtQWR6+4H9PDa7BjWg0mjAasJ0fde94RWCaOLrWWLxZhc48riKflcBMBjCcXePpFy5v5VYTJJUHEoqXyps+17IfEnmSzeS+dLdkZ1ST7kLaccx51zA4qYn7uK3gAYVGlSaALQ6BXZ/BZumAWDydvR26x+DXWUK/d/GND7+OZWKxjSmx8zCXevoZdbKUUHpCaAoyn0/RveoFSYGN6pWrRpWq5Vt27Y5p6NfvnyZ1NRUlz/KYWFh9O/fn/79+zNq1Cg+++wzBg0a5BxBu3G9gsjISLRaLTt27HAmRpmZmRw+fPi2I0KF6taty4EDB26KsyiKolC1alW2bHHMKHj11VeJj49nypQpTJkyxaXs7NmzycvL4/XXX79jvV5eXnh53d0jM3a7HZPJ5Hx/5swZYmJinDu0qP70O/dW95eXl+ec1l1IrXY8QiSEwGAw3NPnUkin0/Hss8+Smprqcvzw4cOEh4ff9johBEII533l5eWhUqlQbhjUKHxfOLq4detWl++FH374gY8++ogtW7YQGhp63/cgSffLZrViEwpH7D4EiTKolLOOE4oaf81RPELLQ7rJuStxSa0lJYTg8PkcDpzNBMBd48iFyof1ply57iUSkyQVJ5kvyXwJZL5UmvMl2Sn1lDMX5IOiQpOfS8yhC2yvGELhU53BGhsUXHMULNcAc63ekAtu6sdnplTapVwAmoQdd3ZIaTRGvL1rlWRYkvRUiIqKomPHjvTt25c5c+bg5eXFyJEjCQ0NpWPHjgAMHTqUtm3bUrlyZa5evcq6deuoVq0aAOHh4SiKwrJly2jXrh0GgwEvLy969uzJiBEj8PPzIyAggISEhJv+QN9KfHw8jRo1YuDAgfTp0wcPDw8OHDjAqlWrmDlzJikpKSQkJNCjRw+io6PR6XT8+uuvfPHFF8THxwOOEcLJkyczfPhw9Ho9PXr0QKvV8sMPPzB69GgmTJhw04YZf05AAKpXr45Wq3U5lpuby8SJE+nQoQPBwcFcunSJTz/9lDNnzjjXPzxz5gzPP/884eHhJCYmOrc+BggKCrrtvbdv356+ffsya9YsYmNjOXfuHEOHDqVBgwa3XF+iUE5ODkePHnW+T0tLIyUlBT8/P2eSO2LECLp06cJzzz1HTEwMK1eu5Mcff2T9+vWA4xGCb775hjZt2uDv78/p06f58MMPMRgMzoVDW7duzYgRIxgwYACDBg3Cbrfz4YcfotFoiImJAXB+XxTauXMnKpXqjhuU3M09SNL9sFksnLD7stPkTjfLRQx2R87Rockewn3NKCm/Q+4lzNdnSpVUp1TStpP8a8nvqBUblX3T8NZdBuRaUpL0uJD5koPMl2S+dFvFsQ1gaVWatzgWQgizySQ+/udokZCQIIYPHSPW168rEju/KP7dvYeY2W+NSH2/txAr3nVsdbx6nPi/UxdE4Npk0WdfWkmH7tTnyx0iPH6ZWPJrvFi9JlIcSh0rbDZTSYclSTcpbVscFyrc4thoNAqDwSBiY2NdtjgeOHCgqFixonBzcxP+/v6iR48e4tKlS87z48ePF0FBQUJRlCK3OG7QoIEYOXKk87rw8HAxbdq0m+LZvn27aN26tfD09BQeHh6iVq1aYuLEiUIIIS5evCgGDx4satSoITw9PYWXl5eoWbOmSExMFDab6zbpS5YsEc2bNxceHh7OLZgXLlzoUuZW2zQXvk6dOnVTbPn5+eLll18WISEhQqfTieDgYNGhQwexfft2Z5l58+bdts47mT59uoiOjhYGg0EEBweL7t27i9OnTxd5zbp1627ZVuHXotDnn38uKlWqJPR6vahdu7ZYsmSJ89yZM2dE27ZtRUBAgNBqtaJcuXKiW7du4tChQy51/PLLL6Jp06bCaDQKX19f8cILL4itW7feNra73eL4bu/hXhXHFsdPi9L6eaxZ+K149Z//EX3/PkQkdn7R+Tr3/QeO3Oj6q+rPv4rAtckiNadkfr//8/u9Ijx+mXjvyz5i9ZpI5+vixbUlEo8kPQiZL8l8SeZLT1++pAhRDHuDl1JZWVkYjUYyMzNLzcr2NzqTnMxnP/wAQN5VO8+kXeac4QSKOhg379eIC/+aijXcWXt8PwNrTSRL0WEV8GqgLzOjbz8N8VFYd+gCH608RPrlHDw1F5nYciMa8zoqRr5DhQr/KNHYJOlWCgoKSEtLIyIiAr1eX9LhPFFyc3MJDQ1lypQp9O7d+5G3f+XKFVq2bIm3tzc//fQT7u5PxiME0oMp6me2tOcH96o0fh6WS3n8NG0RXyr5hJ3aTVjBWRR1CG6Khn8MqI7yy2hHwe7/I/JsWfLssK1RNcINbo881qFfJ7Mk5SwzYr/EXezCzS0YL89q1KjxyRPzyJMkFZL50v2T+ZJUEoojX3p8FgeSHjlrQQFCwDFLAFZTea55RzhOKGo0SgFlPK+A1cQvZZpwBUeHFEBd75L/BbNw+0kOZWTTNSqJj5qPR2NeB4BaTlWXpCdecnIyCxcu5NixY+zevZvu3R1rohROcX/U/Pz8WL16NS1btmTr1q0lEoMkSY/W6a37sSsCOwpq4VjHQ6Ovh7u2PIrKsf7IksA2jFeiyXecxq2E1tzMMTkWONcqjs1eqlROoHbtz2SHlCSVcjJfkkoLuabUU8xqMnFN6NloC6eK/QQVr+dSfrqTdK8yDm3TgXBsLQUqx6jfgPIB9CvnT4CbtohaH42sAgsAz4Y6Fh1VqQy4uflTxq9ZSYYlSVIxSUxMJDU1FZ1OR7169di4cSNly5YtsXjKlCnDmDFjSqx9SZIerQvHj2FHYBcKelvhwrpqFMUKKFzSGnmryijEKcf25BoFPNWPtlNqyi+p/Pe3E9isWUT5nEXNNUcscoBOkp4aMl+SSgPZKfUUu3ohHzMavCxZVCk4guX6Kv46T0+0Q1c4CqX+5NxVJlCnKfEOKSEEVrsgM98xKqhX54Ed6tVdiLd3zRKNTZKk4lGnTh127dpV0mFIkvQUs1qsmLESlrmV8OwMsg1uoKhQhBUUyNJ4IhQVOkWhd7my1Dd64KlRP9IYv95ximt5Jj5q/iFlDFfh+owt2SklSU8HmS9JpYXslHpKCZudgj0mbCqF5le2EG5Ko3BjSTedGrbNhW2zIesspsqNHMdLaFr6jXrN28Gvhy/ircsi1DMHRA4gEzBJkiRJkopHeno6a3KOYdcIfAuOI5TCdaLUaLwKAIFJcQzYeWnUJFQKLZE4cwqsuKnNjg4pwGCogKdnZTw8qpRIPJIkSZJ0P2Sn1FMqN+MyKiGwo8Ld5liDQKUJQ1H7Ua96HmyfC1eOAVBwfaZUSW11XKjAYuPXwxeJ8D7B6IZTUSnCsWcAslNKkiRJkqTikX7wIPbrCYbW7kee3g3IQVHUVNDkAQpmlWPmeEnlRja7IN9iw8et8NFCFY0brb7jVvCSJEmS9LiRnVJPqd/XrsGGlnx1HsGKYz0Etb4+am0EgWV/hWv5joIdP8VkrQ05NvQlPFPqWp5jHakI4ylUikBRtGg0Xvj6NkKr9SvR2CRJkiRJKh2ubfgV3PRUsYZwllzsyunrg2AqyurSYesGzCrHIuK6R9wpZbba+eVABheyHJ1RbuoCADQaD9khJUmSJD2RZKfUUyo7Kwub4knQ5V2Uu2oix6ADHGshqLUasBaw2q8hS6nFIZMjySmpTimLzc68zWkcPu94VM/P3ZGIBQX9hehqH5ZITJIkSZIklU4FudngpkeNCgUFcX2xpg5NUwg/8StcA5NPHQB0yqPNjZaknOHdxXvxdbtKp8q/4m+4BoBa7fFI45AkSZKk4iI7pZ5CB3fvZvOFM6BVCMzMxX49n1KUwk4pLVhNxEcN48w1O4UrZ/rrSubbZX3qRT5YcYjyXqfoFb2RqmVPA6DVeJdIPJIkSZIklV52ITALNelmCxpLDggzAJ5lvOEEUL4x5mdHwaVHP1Pq9BXHkguvVt1Eo8C1zuNuuoBHGockSZIkFRfZKfUUOrV/PygKilBQ2xQsGjccHU+OTimVTgvWArI0ngAMLB9ADU8Ddb3dSyTeC9mOqeldq62mik+y87heXzILi0qSJEmSVDoJuwC1J8tNVeh86hvUdpPznEa5vpClMQxz0DNwKe2Rd0plFTh2H67s71jSwM+vOUZjXQL8Yx9pHJIkSZJUXGSn1FPIanUkNNVt5bikqkWuJg1EPihqtEo+isYN7BYKVI7dZt4ILUuIXldi8WblO+IN8HCMDgYHv4rRWJegwA4lFpMkSZIkSaVPQeoVVB6VMZnV6K93SCnqYDwx4e2p4ZB7Bd40duP8oZMA6B7ROk7nswr4YlMaG49cdLSrcqz9GRjQjpCQzo8kBkmSJEl6GEp25WqpRNisVk7bjIy2+JOLCoQNgEjvQ8RUWA6Zp7GhwnJ9Zxm9umS+TdYdukDcvzcwd8MxVIoNN3UuAMFBLxMa0gW12lAicUnS06ZXr14oioKiKOh0OipVqsT48eOdHdz3a/369SiKwrVr14on0LuQlpZGt27dCAkJQa/XU65cOTp27MihQ4dcyi1btowWLVrg5eWFu7s7zz77LPPnz3cpk56ejqIopKSk3HX7Y8eOpWrVqnh4eODr60urVq3Ytm2bS529e/cmIiICg8FAxYoVSUhIwGw237HupKQkateujbu7O8HBwbzxxhtcvny5yGtmzZpFrVq18Pb2xtvbm8aNG/PTTz85z1+5coVBgwZRpUoVDAYD5cuXZ/DgwWRmZjrLzJ8/3/n98efXhQsXnOVMJhP//Oc/CQ8Px83NjQoVKvDFF1+4xPPvf//b2VZYWBhvv/02BQUFRd7Dd999R5s2bShTpsw9fz0k6c8O/rwFCwLV9dwIwM37NfzdAlCEnTV+jTis9iXT6jgf7flocpH5W9KZs+E4eXnHeCHsV9xVjqUM1NdntUuSVPJkviTzJZkv3R85U+opZLVYOWv3psXF9WA+7DzevH0w3uunwjYoUOmdx0tqu+MF209yKCObv1b6kRcjVzmPa+RaUpL0yMXFxTFv3jxMJhMrVqxgwIABaLVaRo0aVdKhAWA2m9Hpip7RabFYaN26NVWqVOG7774jODiY06dP89NPP7kkejNmzGDo0KHEx8cza9YsdDodP/zwA/379+f3338nMTHxvuOsXLkyM2fOJDIykvz8fKZNm0abNm04evQo/v7+HDp0CLvdzpw5c6hUqRK///47ffv2JTc3t8h2N2/ezOuvv860adNo3749Z86coX///vTt25fvvvvutteVK1eODz/8kKioKIQQfPnll3Ts2JHk5GSqV6/O2bNnOXv2LImJiURHR3PixAn69+/P2bNnWbx4MQBdunQhLi7Opd5evXpRUFBAQMAf69x07tyZ8+fP8/nnn1OpUiXOnTuH3W53nl+wYAEjR47kiy++oEmTJhw+fNiZ4E+dOvW295Cbm0uzZs3o3Lkzffv2vePXQJKKcv7YIazeRlQUfm86ciA1VrBZMKkcv2de9DcyvEIQVTz0t6mpeF3OcczaGvHsFxh1GYXLfaLV+j6S9iVJujsyX5L5ksyX7oOQbiszM1MAIjMzs6RDKTZ56dfEf/85W8SO/ly81+01kdj5RZHYub34pGsnYds6R4gEbyEmhojLS0eIwLXJInBtsrDa7SUSa6fZW0R4/DKxbHULsXpNpFi9JlJs2vycsFrzSiQeSXoQ+fn54sCBAyI/P7+kQ7lnPXv2FB07dnQ51rp1a9GoUSNx5coV0aNHD+Hj4yMMBoOIi4sThw8fdpZLT08XL730kvDx8RHu7u4iOjpaLF++XKSlpQkcm6w7Xz179hRCCJGVlSW6desm3N3dRVBQkJg6dapo0aKFGDJkiLPe8PBwMX78eNGjRw/h5eXlvHbjxo2iWbNmQq/Xi3LlyolBgwaJnJwcIYQQycnJAhDp6em3vdeTJ08KrVYrhg0bdtO56dOnC0D89ttvQgjhvIfk5OR7/1CvK/w7s3r16tuWmTx5soiIiCiyno8//lhERkbeFG9oaOg9x+Tr6yv+7//+77bnv/32W6HT6YTFYrnl+QsXLgitViu++uor57GffvpJGI1Gcfny5dvWO2DAAPHCCy+4HBs2bJho2rTpXcVdHF+PGxX1M1sa84MHUZo+j5/+8ZGY8885Ykj3v4vEzi+KKZ3ai5n91ogf/z5QiJWjxYfzhorAtclidOqpRxrXP/67S4THLxOr1lQVq9dEipSUPuLwkUnCZrv1z6EkPalkviTzpVuR+dIfSmO+JB/fe8qkrdyNUAQ2VM6p6Tqv1yjjXh6VSsGOwpTIvsRH/AMAraKgfkTrJRQSQpBrspKZ51jEU692rCVVt+7XNG60Rj62J5UaQghybbZH/hJCPHDsBoMBs9lMr1692LlzJ0uXLmXr1q0IIWjXrh0Wi+Pnd8CAAZhMJjZs2MC+ffv46KOP8PT0JCwsjP/9738ApKamcu7cOT755BMAhg0bxubNm1m6dCmrVq1i48aN7N69+6YYEhMTqV27NsnJybz33nscO3aMuLg4XnnlFfbu3cs333zDpk2bGDhwIAD+/v6oVCoWL16MzWa7qT6AxYsXY7FYGD58+E3n+vXrh6enJwsXLnzgzw8co5Vz587FaDRSu3bt25bLzMzEz8+vyLoaN27MqVOnWLFiBUIIzp8/z+LFi2nXrt1dx2Oz2fj666/Jzc2lcePGRcbj7e2NRnPrydZfffUV7u7uvPrqq85jS5cupX79+kyePJnQ0FAqV67M8OHDyc/Pd5Zp0qQJu3btYvv27QAcP36cFStW3NM9SNKDKEhNBasVMzYaX3D8zlGur3ShM1jBZnbOlNI+olnkZqud389kkpFVgFqxoeB4NCU6+mOiKo1EpZIPPUilX0nlS8WRM8l86cHJfKn050vyL9lT5uqZE9iwo1it6G3Xd5RR1KiwgBCkeFXl48C/wMVrAAToHu23iBCC1z77jd+OX6GaXyptws+A3fEsrt4tRCZfUqmSZ7dTccO+R97usedq4qFW39e1QgjWrFnDzz//TNu2bVmyZAmbN2+mSZMmgOM5/bCwMJYsWUKnTp04efIkr7zyCjVr1gQgMjLSWVdh4hAQEICPjw8A2dnZfPnllyxYsICWLVsCMG/ePEJCQm6K5YUXXuCdd95xvu/Tpw/du3dn6NChAERFRTF9+nRatGjBrFmzCA0NZfr06bz77ruMGzeO+vXrExMTQ/fu3Z1xHT58GKPRSHBw8E3t6XQ6IiMjOXz48E3n7sWyZcvo2rUreXl5BAcHs2rVKsqWLXvLskePHmXGjBl3nALftGlTkpKS6NKlCwUFBVitVtq3b8+nn356x3j27dtH48aNKSgowNPTk++//57o6Ohblr106RLvv/8+b7755m3r+/zzz+nWrRsGwx8DCMePH2fTpk3o9Xq+//57Ll26xD/+8Q8uX77MvHnzAOjWrRuXLl2iWbNmCCGwWq3079+f0aNH3/EeJKk47Fu8mFOedi4qebh7NwVOYL++6UuARy6kbsJctiMAbqpHM67ba952thxzrHXiofljvRC12uORtC9Jj4OSypfg/nMmmS/JfEnmS3dPzpR6iphMJs6KbLKUPBqf/wZDYacUahSVBRBkaRxJTpBOy3sVQ5hfM+KRxlhgsfPb8St467IYVu8/dKmyBLACKrRan0caiyRJf1i2bBmenp7o9Xratm1Lly5d6NWrFxqNhoYNGzrLlSlThipVqnDw4EEABg8ezIQJE2jatCkJCQns3bu3yHaOHz+OxWKhQYMGzmNGo5EqVarcVLZ+/fou7/fs2cP8+fPx9PR0vmJjY7Hb7aSlpQGOkciMjAySkpJo3LgxixYtonr16qxateqm+m/nTmsxgCPZvDGOjRs3Os/FxMSQkpLCli1biIuLo3Pnzi4LXBY6c+YMcXFxdOrUyeXZ/xvr7d+/PwAHDhxgyJAhjBkzhl27drFy5UrS09Od5zdu3OhyXVJSkrO+KlWqkJKSwrZt23jrrbfo2bMnBw4cuCmerKwsXnzxRaKjoxk7duwt73vr1q0cPHiQ3r17uxy32+0oikJSUhINGjSgXbt2TJ06lS+//NI5+rd+/Xo++OAD/vOf/7B7926+++47li9fzvvvv3/Hz1SSHpTNZmOl2cwZLxvXVHmY9RUcJxQVOiWXYO1+yDyJ+fomMI9q1739Z7MI9z7JR80nMLnFBABUKjdU1+OQJOnxIvOlP8h8SeZLd0tOO3mKbN68mf1qx2ibT0EWNpU/AIqixt8rF4TNOS09VK9lQPmA29b1sGQXOKaw+uozUSkClcpAgH8bfHwbotHIUUGpdHFXqTj2XM0SafdexcTEOBexDAkJQaPRsHTp0jte16dPH2JjY1m+fDm//PILkyZNYsqUKQwaNOh+Qnfh4eH6OyEnJ4d+/foxePDgm8qWL1/e+f9eXl60b9+e9u3bM2HCBGJjY5kwYQKtW7cmKiqKzMxMzp49e9Noo9ls5tixY8TGxt4xtg4dOrgkn6GhoS5xV6pUiUqVKtGoUSOioqL4/PPPXRZBPXv2LDExMTRp0oS5c+e61H3jbine3o6NHyZNmkTTpk0ZMWIEALVq1cLDw4PmzZszYcIE6tev73JdYGCg8/8LdwgCqFevHjt27OCTTz5hzpw5zjLZ2dnExcXh5eXF999/j1Z7638Q/9///R/PPPMM9erVczkeHBxMaGgoRqPReaxatWoIITh9+jRRUVG899579OjRgz59+gBQs2ZNcnNzefPNN/nnP/9Z5GcqSQ/KYrFgu97RFGb3B3IAcCeL3gGvo1Ls0GYCZqUOFIDuETy+J4Qgx2QlJmQfZQ1//EPMy6vGQ29bkh4nJZUvFbZ9L2S+JPMlmS/dO9kp9RQ5v3EDAD52D9SaxpgtR6+fUROkzoUzuym4Pk39USRbf2ax2bmc61grwc9wfT0pfQjVq99+FwFJepIpinLfj9E9aoWJwY2qVauG1Wpl27Ztzunoly9fJjU11WU6c1hYGP3796d///6MGjWKzz77jEGDBjlH0G5cryAyMhKtVsuOHTuciVFmZiaHDx/mueeeKzLGunXrcuDAgZviLIqiKFStWpUtW7YA8OqrrxIfH8+UKVOYMmWKS9nZs2eTl5fH66+/fsd6vby88PLyuqsY7HY7JpPJ+f7MmTPExMRQr1495s2bh+pPCfGt7i8vL++mNQvU17+3hBAYDIa7/lz+HE9WVhaxsbG4ubmxdOlS9Ppb7zaWk5PDt99+y6RJk24617RpUxYtWkROTg6eno4t7A8fPoxKpaJcuXLOe/jzvd54D/fymUrSvbrx91BlewhncTx2olJrHB1SAM90x5KeDQVXH3qeZLXZuZJnxmYXuGsdo+MhIV0JK/c67u6Pdha7JJU0mS/JfAlkvlSa8yXZKfUUyT+fAQFBVLYFk6bKcR6v6LWfCLftsC8TU6CjR1v/iNZKKLR87zne/iYFyKdm2aPULHsKAI3G85HGIUnS3YuKiqJjx4707duXOXPm4OXlxciRIwkNDaVjR8e6K0OHDqVt27ZUrlyZq1evsm7dOqpVqwZAeHg4iqKwbNky2rVrh8FgwMvLi549ezJixAj8/PwICAggISEBlUqFcofHZeLj42nUqBEDBw6kT58+eHh4cODAAVatWsXMmTNJSUkhISGBHj16EB0djU6n49dff+WLL74gPj4ecIwQTp48meHDh6PX6+nRowdarZYffviB0aNHM2HCBGrUcJ2lkJqaelMs1atXv2l0LDc3l4kTJ9KhQweCg4O5dOkSn376KWfOnKFTp06AI8F6/vnnCQ8PJzExkYsXLzqvDwoKuu29t2/fnr59+zJr1ixiY2M5d+4cQ4cOpUGDBrdcX6LQqFGjaNu2LeXLlyc7O5sFCxawfv16fv75Z8CRYLVp04a8vDz++9//kpWVRVZWFuBYCFV9wz8SvvnmG6xWK3/7299uaqdbt268//77/P3vf2fcuHFcunSJESNG8MYbbzjXUmjfvj1Tp06lTp06NGzYkKNHj/Lee+/Rvn17l3b+7MqVK5w8eZKzZ88Cf3w9goKCivzMJOlGhf/Yy7WqOXJlOxqb42dPrXX8YzCh4gDW7j3HObOjnPYhPr53Lc9M62kbuJjt+MeOu8bRKeVuCMfT8+ZHcyRJerzJfMlB5ksOMl+6hWLYBbDUKk1bHAshxGf93xTvjUkQ38TPF592HykSO78oEju/KMwr/ilEgrcQ02qKr77/UASuTRY99x57pLEN/zZFhMcvE2O+7C5Wr4l0vnYn93ykcUjSw1LatjguVLjFsdFoFAaDQcTGxrpscTxw4EBRsWJF4ebmJvz9/UWPHj3EpUuXnOfHjx8vgoKChKIoRW5x3KBBAzFy5EjndeHh4WLatGk3xbN9+3bRunVr4enpKTw8PEStWrXExIkThRBCXLx4UQwePFjUqFFDeHp6Ci8vL1GzZk2RmJgobDabSz1LliwRzZs3Fx4eHs4tmBcuXOhS5lbbNBe+Tp26ebv4/Px88fLLL4uQkBCh0+lEcHCw6NChg9i+fbuzzLx5825b551Mnz5dREdHC4PBIIKDg0X37t3F6dOni7zmjTfeEOHh4UKn0wl/f3/RsmVL8csvvzjPr1u37rbxpKWludTVuHFj0a1bt9u2dfDgQdGqVSthMBhEuXLlxLBhw0ReXp7zvMViEWPHjhUVK1YUer1ehIWFiX/84x/i6tWrRd7D7T6zhISEIq+7k+LY4vhpURo+j/3bjomB730k2gyY6syPEju/KL7s21Xkjy0rAtcmu7zWX856aLFsPnpRhMcvE39J/EAs+7maMyc6fXrBQ2tTkh4XMl+S+ZLMl56+fEkRohj2Bi+lsrKyMBqNzu0cn2TCamfuO6OY61abv576H3r7H1MN3349GtWOOdD8Hf6vylv868gZOgb4MKd6hUcW35tf7eSXA+f5NPYz9GIf7u6R6HRlqRD+FmXKFD0FVZKeBAUFBaSlpREREXHb6bzSreXm5hIaGsqUKVNuWhDyUbhy5QotW7bE29ubn376CXd390ceg/ToFfUzW5ryg+JQGj6PXeN+4RPrIa5ezuf5yxtRKT6o3KJpXTOb0PyvqNJsOQCLn6lIgE5LZY+H93t89YHz9PlqJ8OeXUR1X8cCtSqVG/Xr/Q8vr2oPrV1JehzIfOn+yXxJKgnFkS/J3feeEjm/nSPHKwKVxXxDh5QOX60Bld3MWt8G1FDFMu6oYzqf2yNaU+rA2SyGL9rD7pPXHBGpcgGoUnks9eoulB1SkvQUSk5OZuHChRw7dozdu3fTvXt3AOcU90fNz8+P1atX07JlS7Zu3VoiMUiS9PDkXruKOt+MHQW1cDyep1KVQWNohK/R4NwERgU09fF8qB1SALlmKwAeugIAKkaO4LnmO2WHlCRJLmS+JJUWck2pp8Tvy9dhUQtnsqVgwM33LSL4GqwmVpZtxiXc4PrEuTrej2anu0/XHWX5vnM0Dt7OS+WPorJnAKDRPFmLs0mSVLwSExNJTU1Fp9NRr149Nm7cSNmyZUssnjJlyjBmzJgSa1+SpIcn88J5hKJgFwpau2OjFRRHiqzOTiNf7eiUcruLtVoeRJ7ZSsrJa+w9nQmAXu1YS0qvD0atljMOJEm6mcyXpNJAdko9BYQQ5F+7iKWMHjebY3c75fokOa3aBjYrZsWxwNyA8gG8Wc6fQLdbb19Z3C7lmNCpzLxRY4FjdxvhiM7NLfBOl0qSVErVqVOHXbt2lXQYkiQ9JWwmM2bFilfuJWIPryItwPePTqmzWzEFOHYm1j/kWeRvf5PCz/vP06HiCj5stgM/N8ciuWq56YskSbcg8yWptJCdUk8Ba1YWKkWFGTu9jyzgotEXlbNTyg5Ws3NqeqBO88g6pACyC6x4aHNRKXYURU1kxNt4elaVnVKSJEmSJD10VquVb1b+RI4uH79LqeR4hgNZiOuDdVoPNaaIFwDHTKmH6ch5x87IcRXW46YuuH5UhYf73W/bLkmSJElPGtkp9RQ4OXUKBZoyXNNkYbD7AQK7yjHq5200Q+ZpzL4NgIefcBWa8+sxfj18keOXcvC7vmaCRuNNhQpvPZL2JUmSJEmSrmZkkJPreExOLbRc8Y0E005Q1KgwkxlQge/qjIBTFx/6epuZ+RYU7M4OqWdqz8PDszJ6txLeqluSJEmSHiLZKVXKmUwmvrHbMftdJVNl51JAM7BsRBR2SlnT4Nx+Csp0BUD3CBY4L7DY+HDlIfz1F/lrxfWUNVwFQKOW60hJkiRJkvToZP/2GwBuQoPR5gXYAQhz20cTv5UkBP+dpacuAuClUT+UGL7deYolyWe4mmfGoClwHvf1bYjqer4mSZIkSaWV7JQq5a5du4ZZ7fgyK4qCTeX4fw/lKs29PyVEdwDKNcDsFQKA/hHMlMoqsCAExEWsoUW5Lc7jbvrgh962JEmSJElSIWtuHoBjWQMhAMeGMMFhOoLth9hsrAVASz9v+oY9nMWDE39O5UK2ib9WWkqdwAOOeFQ62SElSZIkPRVkp1QpZ7U6thXW29TUoTxCuQSAtzaTaPffQKOHPqsw7z4CmbkPfaZUgcXGqSuOafJ+esfaCf7+sRi9a+Pv3+ahti1JkiRJknQjm8Wx257aYkGYLiGEY+c7tcEbcsGMY3bU+1GhRLo/nE6ia/kWdGoTL0audh5zd6/4UNqSJEmSpMeN7JQq5axWK0LABbMWj6yd+Fmur9/kHYgVNd1qTOb3TfvItDpGBnUPcavjI+ez6fjpZvLMVnzdruGrzwYgMPAlAgPaPbR2JUmSJEmSbuVsujdoQMm8iLDlOY+769WQCxbF0SmlfUiDdiarDbPVjlH3x8Lmz9T+HG/v2g+lPUmSJEl63MhOqVLuyNoTpNn9yL92lUbX0q6vlAAGdy3H3cuxwVgbLH90SFX20D+0WJJPXiPPbOOvlX50GQ3UaowPrU1JkiRJkqRbsRdY8ba5cUoxYrDmEQGoNGFotRFUYzECMF2fKeVWzIN2QgiStp3kyHnHAJ1eU7jpixdlyjxXrG1JkiRJ0uPs0Wy1JpUIS64Jw5FL5Ag3dHYzAIomFI2hBY3qVCD/+loF/joNvzaoSkrT6oQbHt76Bdkmx6OEDcudAUClcsPTsyre3rUeWpuSJD24Xr16oSgKiqKg0+moVKkS48ePdz4efL/Wr1+Poihcu3ateAK9C2lpaXTr1o2QkBD0ej3lypWjY8eOHDp0yKXcsmXLaNGiBV5eXri7u/Pss88yf/58lzLp6ekoikJKSspdtz927FiqVq2Kh4cHvr6+tGrVim3btrnU2bt3byIiIjAYDFSsWJGEhATMZvMd605KSqJ27dq4u7sTHBzMG2+8weXLl+86tg8//BBFURg6dKjL8WPHjvHyyy/j7++Pt7c3nTt35vz58y5lJk6cSJMmTXB3d8fHx+eW9Rd+D934+vrrr53nv/vuO1q3bu1sp3Hjxvz88893jPu7776jTZs2lClT5p6/HtLT7VL6CWyKnW3WcK4KLQCKOgCtNhzN5VSsihpxvTOquJc32H82i38t+Z2kbUd5MeJnOldxfK9rNJ7F2o4kSY+OzJdkviTzpfsjO6VKsdMpexGAHQX19YU7VZpyaPT18DbqKLjeKeWpVlHFQ4+f9uFOnMspcPxCdlM7psfXqjWXhg2Wo9HIXfck6XEXFxfHuXPnOHLkCO+88w5jx47l448/LumwnO4mCbFYLLRu3ZrMzEy+++47UlNT+eabb6hZs6ZLojdjxgw6duxI06ZN2bZtG3v37qVr167079+f4cOHP1CclStXZubMmezbt49NmzZRoUIF2rRpw8WLjt29Dh06hN1uZ86cOezfv59p06Yxe/ZsRo8eXWS9mzdv5vXXX6d3797s37+fRYsWsX37dvr27XtXce3YsYM5c+ZQq5brIEFubi5t2rRBURTWrl3L5s2bMZvNtG/fHrvd7ixnNpvp1KkTb731VpHtzJs3j3Pnzjlff/nLX5znNmzYQOvWrVmxYgW7du0iJiaG9u3bk5ycXGSdubm5NGvWjI8++uiu7lWSCh35bQsCgUWoUInr38+KGkVYwb8a5raJzrLF/fjexRwTAM3DUvlr1HKe8d8JgE4XUKztSJL0aMl8SeZLMl+6D0K6rczMTAGIzMzMkg7lvhxcuV6sH7VIdH5nmvjolY4isfOL4t+vTxQz+60R1nFBYv2/XxCBa5PF89sOPtQ4/rPuqGg9db149d+fiAFzBoqVq2uK1WsiRWbmnofariQ9TvLz88WBAwdEfn5+SYdyz3r27Ck6duzocqx169aiUaNG4sqVK6JHjx7Cx8dHGAwGERcXJw4fPuwsl56eLl566SXh4+Mj3N3dRXR0tFi+fLlIS0sTgMurZ8+eQgghsrKyRLdu3YS7u7sICgoSU6dOFS1atBBDhgxx1hseHi7Gjx8vevToIby8vJzXbty4UTRr1kzo9XpRrlw5MWjQIJGTkyOEECI5OVkAIj09/bb3evLkSaHVasWwYcNuOjd9+nQBiN9++00IIZz3kJycfO8f6nWFf2dWr1592zKTJ08WERERRdbz8ccfi8jIyJviDQ0NvWMM2dnZIioqSqxateqmz/nnn38WKpXK5e/gtWvXhKIoYtWqVTfVNW/ePGE0Gm/ZDiC+//77O8Zzo+joaDFu3Li7KlscX48bFfUz+6TnB8XtSf08Ns75Qmwa9T9RdfT/iXf+/rJI7PyimPb6+2JO7y+FWPR3ccVsEYFrk0Xg2mRhsdmLte1le86K8PhlYuzCsWL1mkix9bdYcfTYVJGdfahY25GkJ43Ml2S+dCsyXyrak54vyZlSpZTVamXzoX3s1hyn2sVNBOVd7xW/vmCnypZHgUoHgEH9cL8N/rPuKOkXr/BG9H94udIKNEouADrdw9laWZKeFEII8szWR/4SQjxw7AaDAbPZTK9evdi5cydLly5l69atCCFo164dlus7Wg0YMACTycSGDRvYt28fH330EZ6enoSFhfG///0PgNTUVM6dO8cnn3wCwLBhw9i8eTNLly5l1apVbNy4kd27d98UQ2JiIrVr1yY5OZn33nuPY8eOERcXxyuvvMLevXv55ptv2LRpEwMHDgTA398flUrF4sWLsdlst7yvxYsXY7FYbjnC169fPzw9PVm4cOEDf37gGC2bO3cuRqOR2rVvv6hxZmYmfn5+RdbVuHFjTp06xYoVKxBCcP78eRYvXky7dnfeRGLAgAG8+OKLtGrV6qZzJpMJRVFwc/vj0W69Xo9KpWLTpk13rPtWbZUtW5YGDRrwxRdfFPm9aLfbyc7OvuO9S9L9EBYL13Zsx4ad14/+lwYnHbsTK6hRYSXJUIu5pxwj8ipAU8wzpXLNjtnjnlrHWlJG7zpUjHwbT88qxdqOJJUGJZUvFUfOJPOlByfzpdKfL8mFzkup9IMHOXX1EqjAzabhsl81sKQCalQUkBEZy+a6CXDJgl718DqlzFY72SYrfvocdGoLoCYkpBNeXtXR60MeWruS9CTIt9iIHnPnZ8CL24Hxsbjr7u/XvxCCNWvW8PPPP9O2bVuWLFnC5s2badKkCeB4Tj8sLIwlS5bQqVMnTp48ySuvvELNmjUBiIyMdNZV+MczICDA+Vx9dnY2X375JQsWLKBly5aAYwpzSMjNvy9eeOEF3nnnHef7Pn360L17d+cz/lFRUUyfPp0WLVowa9YsQkNDmT59Ou+++y7jxo2jfv36xMTE0L17d2dchw8fxmg0EhwcfFN7Op2OyMhIDh8+fF+fXaFly5bRtWtX8vLyCA4OZtWqVZQte+tO+qNHjzJjxgwSExNveb5Q06ZNSUpKokuXLhQUFGC1Wmnfvj2ffvppkdd9/fXX7N69mx07dtzyfKNGjfDw8CA+Pp4PPvgAIQQjR47EZrNx7ty5u7vh68aPH88LL7yAu7s7v/zyC//4xz/Iyclh8ODBtyyfmJhITk4OnTt3vqd2JOlubF++nJTAMthVBwjNN3DNuwxwFRQV7joLw9yfhxOOtUC8NOpia3fz0Uss3H6Ss1cu0DBoJ4GGowByKQNJKkJJ5Utw/zmTzJdkviTzpbsnZ0qVUpm//gqAl92AAW+4vqaUr+Yczb3n09P/NeZecvTMezykmVLzNqfR+0vHD66HNh8ArdaHalUnUi6020NpU5Kkh2PZsmV4enqi1+tp27YtXbp0oVevXmg0Gho2bOgsV6ZMGapUqcLBgwcBGDx4MBMmTKBp06YkJCSwd+/eIts5fvw4FouFBg0aOI8ZjUaqVLl59kD9+vVd3u/Zs4f58+fj6enpfMXGxmK320lLSwMcI08ZGRkkJSXRuHFjFi1aRPXq1Vm1atVdfxY6ne6OZZKSklzi2Lhxo/NcTEwMKSkpbNmyhbi4ODp37syFCxduquPMmTPExcXRqVMnl7UObqy3f//+ABw4cIAhQ4YwZswYdu3axcqVK0lPT3ee37hxo8t1SUlJnDp1iiFDhpCUlIRef+udV/39/Vm0aBE//vgjnp6eGI1Grl27Rt26dVHd44DGe++9R9OmTalTpw7x8fG8++67t11nY8GCBYwbN45vv/2WgICAO36mknSvDp46hVWjwarYsXnHkOteuJaTmmueBgAqGtzoHOTLlCphxdbu5JWHWLb3HLWNX/Fmra8I1jtmNWg03sXWhiRJJUfmS3+Q+ZLMl+6WnClVSllzHYuJG9BhFwqW651SdSukUsn2G3sNjkXgmvt60i/Mv9jbL7DYeH/ZAYSwM/CZz6nkexIArdZY7G1J0pPKoFVzYHxsibR7r2JiYpg1axY6nY6QkBA0Gg1Lly6943V9+vQhNjaW5cuX88svvzBp0iSmTJnCoEGD7id0Fx4eHi7vc3Jy6Nev3y1HksqXL+/8fy8vL9q3b0/79u2ZMGECsbGxTJgwgdatWxMVFUVmZiZnz569abTRbDZz7NgxYmPv/DXr0KGDS/IZGhrqEnelSpWoVKkSjRo1Iioqis8//5xRo0Y5y5w9e5aYmBiaNGnC3LlzXeq+cbcUb2/HP2QnTZpE06ZNGTFiBAC1atXCw8OD5s2bM2HCBOrXr+9yXWBgIGvWrOHChQvUrVvXedxms7FhwwZmzpyJyWRCrVbTpk0bjh07xqVLl9BoNPj4+BAUFOQyins/GjZsyPvvv4/JZHKZ7v7111/Tp08fFi1a5DJFvqjPVJLuldXmeHyuniWK88pluL7QeYXAixyKuAbUIqaMFxOiyhVru5dzHcsp1Ap25GnuHtF4eUQSHPzXYm1HkkqTksqXCtu+FzJfkvmSzJfuneyUKqVMJkdyJfIyMVsvUPgUqtoYRH7mHz28C2tVLPZ1EgCy8i3YBYR5ZVAnYJ/zuKdn1WJvS5KeVIqi3PdjdI9aYWJwo2rVqmG1Wtm2bZtzOvrly5dJTU0lOjraWS4sLIz+/fvTv39/Ro0axWeffcagQYOcI2g3rlcQGRmJVqtlx44dzsQoMzOTw4cP89xzzxUZY926dTlw4MBNcRZFURSqVq3Kli1bAHj11VeJj49nypQpTJkyxaXs7NmzycvL4/XXX79jvV5eXnh53d3jOHa7HZPJ5Hx/5swZYmJiqFevHvPmzbtphO1W95eXl4dG4/q9pFY7EmkhBAaD4abrWrZsyb59+1yO/f3vf6dq1arEx8c7ry9UOGV+7dq1XLhwgQ4dOtzV/d1OSkoKvr6+LgnWwoULeeONN/j666958cUXXcrfy2cqSXditznyJJ1wQ0ENON5HBF4k+fqsKZ1S/DPJs/Ids9TLulsxF0BUpXcoW+b5Ym9HkkoTmS/JfAlkvlSa86Un46dbuif2Aium/AiE7iDWzLMILM5zPgY75mwt8HAW7iyUVeBos4y7Y0RQ7xZCzZqf4ulZ7aG0J0nSoxcVFUXHjh3p27cvc+bMwcvLi5EjRxIaGkrHjh0BGDp0KG3btqVy5cpcvXqVdevWUa2a4/dAeHg4iqKwbNky2rVrh8FgwMvLi549ezJixAj8/PwICAggISEBlUqFohT9+yo+Pp5GjRoxcOBA+vTpg4eHBwcOHGDVqlXMnDmTlJQUEhIS6NGjB9HR0eh0On799Ve++OIL4uPjAccI4eTJkxk+fDh6vZ4ePXqg1Wr54YcfGD16NBMmTKBGjRou7aampt4US/Xq1dFqtS7HcnNzmThxIh06dCA4OJhLly7x6aefcubMGTp16gQ4Eqznn3+e8PBwEhMTnVsfAwQFBd323tu3b0/fvn2ZNWsWsbGxnDt3jqFDh9KgQYNbri8BjqTlz/fi4eFBmTJlXI7PmzePatWq4e/vz9atWxkyZAhvv/22yyMCJ0+e5MqVK5w8eRKbzeYcZaxUqRKenp78+OOPnD9/nkaNGqHX61m1ahUffPCBywKpCxYsoGfPnnzyySc0bNiQjIwMwLFIrNF4+1m2he2ePXsW+OPrERQUVORnJj3dTGbHP+4uXN1LruUEdhybsKjtBZivbwTjVow50ow1R/h21ymyC8y4awpA5ACgUXsWWxuSJD2eZL7kIPMlmS/dVrHsA1hKPalbHOelXxWrRn0tGo9KEm/+fYhji+O/jRJz/v6hEAneIn1SZRG4NllUWL+n2Ns+cSlXNJm0RkSNXiGq/fNbMfD/xovVayLF9h0vF3tbkvQkKW1bHBcq3OLYaDQKg8EgYmNjXbY4HjhwoKhYsaJwc3MT/v7+okePHuLSpUvO8+PHjxdBQUFCUZQitzhu0KCBGDlypPO68PBwMW3atJvi2b59u2jdurXw9PQUHh4eolatWmLixIlCCCEuXrwoBg8eLGrUqCE8PT2Fl5eXqFmzpkhMTBQ2m82lniVLlojmzZsLDw8P5xbMCxcudClzq22aC1+nTp26Kbb8/Hzx8ssvi5CQEKHT6URwcLDo0KGD2L59u7PMvHnzblvnnUyfPl1ER0cLg8EggoODRffu3cXp06fveN2N/rzFsRBCxMfHi8DAQKHVakVUVJSYMmWKsNvtLmV69ux5y5jXrVsnhBDip59+Es8884zz61K7dm0xe/Zsl8+9RYsWt6yj8Pvidm73mSUkJNzTvf9ZcWxx/LR40j6PrLRM8e9/JYruI6eKxM4vurxODA8Tw5LeF4Frk8W0tHPF1mbtcT+LCvFLxdzvYsTqNZHOV3b2oWJrQ5JKA5kvyXxJ5ktPX76kCFEMe4OXUllZWRiNRjIzM53PoT4JfpuTxOUTKgbYvWl7fiWV8tLQuLfES6PhjdB/ccS7Ks3rzMFHo+ZQ85rF2va3O07x7v/2Uqvs7wyq8xkqxfHt5efbjDp1vizWtiTpSVJQUEBaWhoRERG3XSRRurXc3FxCQ0OZMmUKvXv3fuTtX7lyhZYtW+Lt7c1PP/2Eu7v7I49BevSK+pl9UvODh+VJ+zwyfkrj6y3/4//yw/j7qf8HgNajHWGa5fwldBuDot9jcdkWjKkYwj/KB9yhtjsTQlDpnz/hpsplxgsjncc9PKJ4tv4PqNVuRVwtSU8XmS/dP5kvSSWhOPIlufteKZR7+SomBCgWtErW9aNqFKzQeCCm3o5dE4pzWnqhbJNj4dDWlc5f75BSoVZ7EBDQttjbkiSpdEpOTmbhwoUcO3aM3bt30717dwDnFPdHzc/Pj9WrV9OyZUu2bt1aIjFIpc+GDRto3749ISEhKIrCkiVLXM4LIRgzZgzBwcEYDAZatWrFkSNHXMpcuXKF7t274+3tjY+PD7179yYnJ8elzN69e2nevDl6vZ6wsDAmT558UyyLFi2iatWq6PV6atasyYoVK4r9fh8n186exuocJAZQodZVxehm5b89d3OoQhxQfHlSntmGzS4waBw7EatUbsQ8f4iGDX6SHVKSJN03mS9JpYXslCplbDm5FJw4hRnB3099Qr2MUwAoqFApVpbrKrLyimPHF909bk95N3IKHJ1S3m6ORegiIgbxfIu9hIZ2Lfa2JEkqvRITE6lduzatWrUiNzeXjRs3OheOLAllypRhzJgxtGzZssRikEqX3NxcateuzaeffnrL85MnT2b69OnMnj2bbdu24eHhQWxsLAUFBc4y3bt3Z//+/axatYply5axYcMG3nzzTef5rKws2rRpQ3h4OLt27eLjjz9m7NixLjsUbdmyhddee43evXuTnJzMX/7yF/7yl7/w+++/P7ybL0EFuTkc2/4rFqBy3s7rRx2L1CpqOyPSrvB7jqPzyEtz7zuV3ijfbOO1ub/RauqvAHjqHF87jcYLlUp7x3VfJEmS7kTmS1JpIBc6L2XWfZ1ESlkdOepTNDiv45y3EcgDRY1BZ6M3dSHdsRiau7r4OqVW/p7Byt/PceLCCZqE7MaoTQMciZckSdK9qFOnDrt27SrpMCTpoWrbti1t2956FrEQgn//+9/861//co54f/XVVwQGBrJkyRK6du3KwYMHWblyJTt27KB+/foAzJgxg3bt2pGYmEhISAhJSUmYzWa++OILdDod1atXJyUlhalTpzo7rz755BPi4uKc22O///77zsVuZ8+e/Qg+iUfLlJuLCgULNgbv+IVdkeVRro/R6tSOxc+reeh5zteLtmVvv2Ds3Ug+eZWtxy9T1nCZiU1n4ad3zF5Xy8XNJUkqBjJfkkoLOVOqlNl3/gIWrRoTgquBL1PgVphQqTnr5w9AhEFHjJ8X70YU3yr7//x+H0tSztIqZBa9ayThpXKs5q/V+hZbG5IkSZL0NEhLSyMjI4NWrVo5jxmNRho2bOh8JGLr1q34+Pg4O6QAWrVqhUqlYtu2bc4yzz33nHM7cYDY2FhSU1O5evWqs8yN7RSWKa2PXlxa9iMmtYJFWMnyqQuAUBxjtAYvxw5QLwf6Mi4q9IFnShUuafBCRDpBHhfQqR0zpYzGZx6oXkmSJEkqTeRMqVLGZrcDUMdaCZO6AK6/jwpM56dIx2KdvULL0i/swRfuLGS12bmcawYg0tcxCujlXQ9Pj0j8y8qpm5IkSZJ0Lwq3dw4MDHQ5HhgY6DyXkZFBQIDr33KNRoOfn59LmYiIiJvqKDzn6+tLRkZGke3cislkwmQyOd9nZWXdtuzjxG63szgtjfwALfkWKyfDXoDcb1EUDWBnYXgboPjWksq93inl5+7IkcqWbUVUpVEYDOWLpX5JkiRJKg3kTKlSxn59M0W9VYcdEwgLANFBh8l1dyRZbsW4ltTBc1l8tfWE871B41ivqkb0R0RX+1A+vidJkiRJpcykSZMwGo3OV1hYWEmHdFcsFgv5asdsKJUdxPW+J4M6l5f9/sUVb8dOUQ+65ubZa/n897cTrEu9CICn1tGBp3cLxt29Aooi029JkiRJKiRnSpUiBdcKsFg1WOwmTp76f2D/YzFU9dXj5Ic6pufri2kE0GKz03nOVrILrDQL2UpF3/PYbI5df2RnlCRJkiTdn6Agx+P158+fJzg42Hn8/PnzPPPMM84yFy5ccLnOarVy5coV5/VBQUGcP3/epUzh+zuVKTx/K6NGjWLYsGHO91lZWU9Ex5TNZnP+f3NzVdJELgAGJZMQ3UFMGkenlNsDLkA+fNEethy7TP3A3XzQdDll3AtzI7mWlCRJkiT9mRyqKUXOr0zHBvyaG3ZDh5QaD40Vf1s6JpVjTQl9Mc2UupZnIbvASlnDJf5eYyHPha4FHFsdazTexdKGJEmSJD1tIiIiCAoKYs2aNc5jWVlZbNu2jcaNGwPQuHFjrl275rLI7dq1a7Hb7TRs2NBZZsOGDVgsFmeZVatWUaVKFXx9fZ1lbmynsExhO7fi5uaGt7e3y+tJYDU7HqdTbDaOnfsBS+6PAGhUdmg8EHNgDQB0Dzh4d+aaY/e+9lE7CfS4iEZxvPf0rPZA9UqSJElSaSQ7pUoRy9VsstFguz4fXVGM6H2H8FxIBvtfmMjlMo5kqLg6pbIKHElusJdjpFGj8SE8/C1q1ZyFSqUr6lJJkiRJeqrl5OSQkpJCSkoK4FjcPCUlhZMnT6IoCkOHDmXChAksXbqUffv28frrrxMSEsJf/vIXAKpVq0ZcXBx9+/Zl+/btbN68mYEDB9K1a1dCQkIA6NatGzqdjt69e7N//36++eYbPvnkE5dZTkOGDGHlypVMmTKFQ4cOMXbsWHbu3MnAgQMf9Ufy0F39+RgAarMFmy3feTzS6yoXY8aSq3XM8n7Qx/eyCxydX5FlHPlYpUojadxoNYGBLz5QvZIkSZJUGsnH90qJrEsXOb1vK9YyEGBxJF0ojl1j8nQGXqIxONY8R69+sBHAzHwL4388QPplR2dUWYNjAU+DoRyVKg5/oLolSZIk6Wmwc+dOYmJinO8LO4p69uzJ/Pnzeffdd8nNzeXNN9/k2rVrNGvWjJUrV6LX653XJCUlMXDgQFq2bIlKpeKVV15h+vTpzvNGo5FffvmFAQMGUK9ePcqWLcuYMWN48803nWWaNGnCggUL+Ne//sXo0aOJiopiyZIl1KhR4xF8Co9WzqkszELFXkswTfkdFC8Mnj0QlT6m5ub9znL3u9D5lVwzySevkn190A7hWGfTy6sG7u4RRVwpSZIkSU8vOVOqlLh25hSKomCz5zJo1y+Og9e3OLZrHZ1T/joNz/l68qy3xwO1tfrAef63+zSXruzh/SYT6VTpcwC0GuMD1StJ0uOpV69eKIqCoijodDoqVarE+PHjsVqtD1Tv+vXrURSFa9euFU+gdyEtLY1u3boREhKCXq+nXLlydOzYkUOHDrmUW7ZsGS1atMDLywt3d3eeffZZ5s+f71ImPT0dRVGcM13uxtixY6latSoeHh74+vrSqlUrtm3b5lJn7969iYiIwGAwULFiRRISEjCbzXesOykpidq1a+Pu7k5wcDBvvPEGly9fvuN1Z86c4W9/+xtlypTBYDBQs2ZNdu7c6Tx/49e/8BUXF+dSR4UKFW4q8+GHHzrPp6amEhMTQ2BgIHq9nsjISP71r3+5PFYGcO3aNQYMGEBwcDBubm5UrlyZFStWFBn/d999R5s2bShTpsw9fz1K0vPPP48Q4qZX4feZoiiMHz+ejIwMCgoKWL16NZUrV3apw8/PjwULFpCdnU1mZiZffPEFnp6u6xbVqlWLjRs3UlBQwOnTp4mPj78plk6dOpGamorJZOL333+nXbt2D+2+S4rdZuNKRgZn7UYyNI41nhRFjQobZ9z8He+Bcnotda8veH6veny+jd5f7qCO/07aVliFzeJY6FyjlmtJSdLTQOZLMl+S+dL9kTOlSom0BQu45BaK2pzNhYDGQDqFX958Lx8A3q8Uyl8CfR+4rat5jh/2F6NSCfH8Y3FUL6/qD1y3JEmPp7i4OObNm4fJZGLFihUMGDAArVbLqFGjSjo0AMxmMzpd0Y8NWywWWrduTZUqVfjuu+8IDg7m9OnT/PTTTy6J3owZMxg6dCjx8fHMmjULnU7HDz/8QP/+/fn9999JTEy87zgrV67MzJkziYyMJD8/n2nTptGmTRuOHj2Kv78/hw4dwm63M2fOHCpVqsTvv/9O3759yc3NLbLdzZs38/rrrzNt2jTat2/PmTNn6N+/P3379uW777677XVXr16ladOmxMTE8NNPP+Hv78+RI0ec6w0VKvz6F3Jzc7uprvHjx9O3b1/ney+vPza80Gq1vP7669StWxcfHx/27NlD3759sdvtfPDBB4Dja9i6dWsCAgJYvHgxoaGhnDhxAh8fnyI/09zcXJo1a0bnzp1d2pekG11IP44QBZgVKx4BS+GEP6BGsVspuL7kwOaG1Yh0v/l7+24dv5hLRWM6/Wp9CUDhuupard+Dhi9J0hNC5ksyX5L50n0Q0m1lZmYKQGRmZpZ0KEXKyckRY8e8JxISEsTwt4eLT/7+qUjs/KKY2q2/mNt/qej03X9F4NpkseLC1WJpb+ovqSI8fpmYv+IfYvWaSHHw0L9ETs4RYbfbi6V+SSqN8vPzxYEDB0R+fn5Jh3LPevbsKTp27OhyrHXr1qJRo0biypUrokePHsLHx0cYDAYRFxcnDh8+7CyXnp4uXnrpJeHj4yPc3d1FdHS0WL58uUhLSxOAy6tnz55CCCGysrJEt27dhLu7uwgKChJTp04VLVq0EEOGDHHWGx4eLsaPHy969OghvLy8nNdu3LhRNGvWTOj1elGuXDkxaNAgkZOTI4QQIjk5WQAiPT39tvd68uRJodVqxbBhw246N336dAGI3377TQghnPeQnJx87x/qdYV/Z1avXn3bMpMnTxYRERFF1vPxxx+LyMjIm+INDQ0t8rr4+HjRrFmzIsvc6uv/Z+Hh4WLatGlFlvmzt99+26XtWbNmicjISGE2m++pnkLF8fW4UVE/s09KfvCoPAmfx4nf94n173wlXk34QLw8obVI7PyimPJaL/FZr2/FpHlvi8C1yeJUvum+67dYbSI8fpl4Zer7YvWaSLFhY0Oxf/8IceLkF8V4F5JU+sl8SeZLtyLzpdKdL8nH90qB7OxshKJCEeBhcwPhGJorqztNpzLDuaJ3PFbn9oALd361NZ1Os7fww+5UapXdj7f2NADu7pF4eFRCecAtlCXpqSMEmHMf/UuIBw7dYDBgNpvp1asXO3fuZOnSpWzduhUhBO3atXNOMx4wYAAmk4kNGzawb98+PvroIzw9PQkLC+N///sf4JiqfO7cOT755BPAsbbO5s2bWbp0KatWrWLjxo3s3r37phgSExOpXbs2ycnJvPfeexw7doy4uDheeeUV9u7dyzfffMOmTZucCzb7+/ujUqlYvHixy9bwN1q8eDEWi4Xhw29eH69fv354enqycOHCB/78wDHSNXfuXIxGI7Vr175tuczMTPz8ip5p0bhxY06dOsWKFSsQQnD+/HkWL158x8ewli5dSv369enUqRMBAQHUqVOHzz777KZy69evJyAggCpVqvDWW2/dcpr7hx9+SJkyZahTpw4ff/xxkY8rHD16lJUrV9KiRQuXWBo3bsyAAQMIDAykRo0afPDBB7f9WknSvfjlwC9c1uRR7uJFYo6+fP2oGo3dwpxynYH7X0sq12TlyAXHI4EGjWMBdW+vmkRHT6Z82N8fOHZJeuqVVL5UDDmTzJcenMyXSn++JB/fKwUKv5H1NjXuOZlYzY5nfb1UF/HRZGDSOtZGeNBd9z5emUq2ycqwurOoXjbVeVyuJSVJ98mSBx+EPPp2R58F3f2tLSeEYM2aNfz888+0bduWJUuWsHnzZpo0aQI4ntMPCwtjyZIldOrUiZMnT/LKK69Qs2ZNACIjI511FSYOAQEBzinH2dnZfPnllyxYsICWLVsCMG/ePOduYjd64YUXeOedd5zv+/TpQ/fu3Rk6dCgAUVFRTJ8+nRYtWjBr1ixCQ0OZPn067777LuPGjaN+/frExMTQvXt3Z1yHDx/GaDQSHBx8U3s6nY7IyEgOHz58X59doWXLltG1a1fy8vIIDg5m1apVlC1b9pZljx49yowZM+44Bb5p06YkJSXRpUsXCgoKsFqttG/fnk8//bTI644fP86sWbMYNmwYo0ePZseOHQwePBidTkfPnj0Bx1T0v/71r0RERHDs2DFGjx5N27Zt2bp1K2q1Y83CwYMHU7duXfz8/NiyZQujRo3i3LlzTJ061aW9Jk2asHv3bkwmE2+++Sbjx493iWXt2rV0796dFStWcPToUf7xj39gsVhISEi44+cqSbeTn5XF6d+vcVqfRXTqBfJ9qwCgsZmonLuUfPVI4P4G785nFfBC4nryLWYaBiXzTMABR90arztcKUnSXSupfAnuO2eS+ZLMl2S+dPfkTKlSIHt3BgCagjzMOUewW08AoNcCf/+JAvdAx/v7HAEEsNjsZJscnV/V/K8B4OFRmbJlW1G2bEwRV0qSVBosW7YMT09P9Ho9bdu2pUuXLvTq1QuNRkPDhg2d5cqUKUOVKlU4ePAg4PjjO2HCBJo2bUpCQgJ79+4tsp3jx49jsVho0KCB85jRaKRKlSo3la1fv77L+z179jB//nw8PT2dr9jYWOx2O2lpaYBjJDIjI4OkpCQaN27MokWLqF69OqtWrbrrz+JOazGAI9m8MY6NGzc6z8XExJCSksKWLVuIi4ujc+fOXLhw4aY6zpw5Q1xcHJ06dXJ59v/Gevv37w/AgQMHGDJkCGPGjGHXrl2sXLmS9PR05/mNGze6XJeUlASA3W6nbt26fPDBB9SpU4c333yTvn37Mnv2bGd7Xbt2pUOHDtSsWZO//OUvLFu2jB07drB+/XpnmWHDhvH8889Tq1Yt+vfvz5QpU5gxYwYmk8nlnr755ht2797NggULWL58uUvyaLfbCQgIYO7cudSrV48uXbrwz3/+0xlLUZ+pJBXl/Nq1cH1GudauBhyjyQHadKrX2eAsp7uPGd8Hz2WRa7bxjP/vvFnrK57xd/yO02offA1PSZKePDJf+oPMl2S+dLfkTKlSIHvveaxCxSmLnjAAxRM3dTh5VY4Qke5Jvt0xLdRNfX99kFabneMXc53vtapcbDaoVfM/cotjSXoQWnfHCFxJtHuPYmJinItYhoSEoNFoWLp06R2v69OnD7GxsSxfvpxffvmFSZMmMWXKFAYNGnQ/kbvw8HAduczJyaFfv34MHjz4prLly5d3/r+Xlxft27enffv2TJgwgdjYWCZMmEDr1q2JiooiMzOTs2fP3jTaaDabOXbsGLGxsXeMrUOHDi7JZ2hoqEvclSpVolKlSjRq1IioqCg+//xzl0VQz549S0xMDE2aNGHu3Lkudd+4W4q3tzcAkyZNomnTpowYMQJw7Ljm4eFB8+bNmTBhAvXr13e5LjDQMVgRHBxMdHS0S/3VqlVzPipwK5GRkZQtW5ajR486R2f/rGHDhlitVtLT010S5LCwMACio6Ox2Wy8+eabvPPOO6jVaoKDg9Fqtc7RxMJYMjIyMJvNRX6mklQUc2YWAG5Ci8GuIdPueNROq1cwV3zOWe5+Ht/LNTk6uJ4JcWwCo9eH4ufXjLCwng8atiRJhUoqXyps+x7IfEnmS4VkvnT3ZKfUEy4/O5+8nFyOacpwmSuEASq1L3ptNKm+VvLtdgDKaDWE6+/cW/1ndrvgpRmbSM3IpLb/fvzd87DZHB1Uajk1XZIejKLc92N0j1phYnCjatWqYbVa2bZtm3M6+uXLl0lNTXX5wx0WFkb//v3p378/o0aN4rPPPmPQoEHOEbQbn4GPjIxEq9WyY8cOZ2KUmZnJ4cOHee655yhK3bp1OXDgwE1xFkVRFKpWrcqWLVsAePXVV4mPj2fKlClMmTLFpezs2bPJy8vj9ddfv2O9Xl5eLrupFMVut7uMkJ05c4aYmBjq1avHvHnzUP3pkaJb3V9eXh4ajeuf9MJkRQiBwWC45XVNmzYlNTXV5djhw4cJDw+/bbynT5/m8uXLt5yyXyglJQWVSkVAQMBty9jtdiwWC3a7HbVaTdOmTVmwYAF2u915z4cPHyY4OBidTodOp7vrz1SSbmS7vkW4KvsKpw3nId+xc/AlNz9aR74HZgu661tz36vc67PIPXQFAPj5NqVa1Q+KKXJJkgCZL8l8CZD5UmnOl2Sn1BPu6M6dCKxka/Jw918BGWUANYqwYrq+xfHWhtUIctNiuI+ZUpn5Fg5lZFMvYC//eOaLG86o0MpOKUl6qkVFRdGxY0f69u3LnDlz8PLyYuTIkYSGhtKxY0cAhg4dStu2balcuTJXr15l3bp1VKtWDYDw8HAURWHZsmW0a9cOg8GAl5cXPXv2ZMSIEfj5+REQEEBCQgIqleqO/2CMj4+nUaNGDBw4kD59+uDh4cGBAwdYtWoVM2fOJCUlhYSEBHr06EF0dDQ6nY5ff/2VL774gvj4eMAxQjh58mSGDx+OXq+nR48eaLVafvjhB0aPHs2ECROoUaOGS7t/TlIAqlevjlardTmWm5vLxIkT6dChA8HBwVy6dIlPP/2UM2fO0KlTJ8CRYD3//POEh4eTmJjIxYsXndcHBQXd9t7bt29P3759mTVrFrGxsZw7d46hQ4fSoEGDW64vUejtt9+mSZMmfPDBB3Tu3Jnt27czd+5c52hjTk4O48aN45VXXiEoKIhjx47x7rvvUqlSJecI6NatW9m2bRsxMTF4eXmxdetW3n77bf72t785t0pOSkpCq9VSs2ZN3Nzc2LlzJ6NGjaJLly7Oz+mtt95i5syZDBkyhEGDBnHkyBE++OCDW47k3ujKlSucPHmSs2fPunw9goKCivzMpKdHwTVHuqsuyAMFQAWKBnOggQyzYzZ5FQ/9PdV5KCOLFXvPkXL6Kr5uV/HWZQJyLSlJkm4m8yUHmS/JfOm2imUfwFLqSdjiePvSFWLNyAWi1ftjxJvv/lUkdn5RTO0+WHzVY5bo9/XHImRd8gPVn34pR4THLxOD5g4Tq9dEio2bmojklN7i5Mn5xXMDkvSUKG1bHBcq3OLYaDQKg8EgYmNjXbY4HjhwoKhYsaJwc3MT/v7+okePHuLSpUvO8+PHjxdBQUFCUZQitzhu0KCBGDlypPO6222pu337dtG6dWvh6ekpPDw8RK1atcTEiROFEEJcvHhRDB48WNSoUUN4enoKLy8vUbNmTZGYmChsNptLPUuWLBHNmzcXHh4ezi2YFy5c6FLmVts0F75OnTp1U2z5+fni5ZdfFiEhIUKn04ng4GDRoUMHsX37dmeZefPm3bbOO5k+fbqIjo4WBoNBBAcHi+7du4vTp0/f8boff/xR1KhRQ7i5uYmqVauKuXPnOs/l5eWJNm3aCH9/f6HVakV4eLjo27evyMjIcJbZtWuXaNiwoTAajUKv14tq1aqJDz74QBQUFDjLfP3116Ju3brOr0t0dLT44IMPbvp52LJli2jYsKFwc3MTkZGRYuLEicJqtRYZ/+0+s4SEhDvee1GKY4vjp8Xj/HlYck3it5FLxMgx48WoN4eIxM4vimk9xohP+v1XzPi/fqLx1gMiOTNX5Fltd67sBi9/ukmExy8TMxbFitVrIp2vY8f+/ZDuRJKeDjJfkvmSzJeevnxJEaIY9gYvpbKysjAajWRmZjqfQ32c2O12JkweSXBuKOdPHsJLqYQ1fx0qbWVCKc+wvzdDp9Vx/Lla91y3zS74ZX8G+85k8p/1x3i9+k+0CP2JcuV6UqXymIdwN5JUuhUUFJCWlkZERAR6/b2NyD/tcnNzCQ0NZcqUKfTu3fuRt3/lyhVatmyJt7c3P/30E+7u974ml/TkKepn9nHPDx61x/nzOLs3jZNf7yFBuYr/hSPUydqL2u1ZFI8IbM/u4Jdag1hZv/I919v0w7WcuZbHZ63fRqXYQdGg1RipXWsORmOdh3AnkvR0kPnS/ZP5klQSiiNfkrvvPcGOr1+PvcCdM+qrRFzOp3A3GfeCK1RgJVaV5r533Ft36AJvJe3m+x2bGFF/Os8GbgJAqzEWV/iSJEm3lJyczMKFCzl27Bi7d++me/fuAM4p7o+an58fq1evpmXLlmzdurVEYpAk6f4c2boBO4I8oUWN41E9FBUoVqyKGt195knZBRZ0KoujQwpo0Xw3zzXfLjukJEl6ZGS+JJUWck2pJ9jV3bsBMAgdGqEB4eiUCvf9Hf31xfvdVPfX73j6ah4ArSrsoarfUedxD4+KDxCxJEnS3UlMTCQ1NRWdTke9evXYuHEjZcuWLbF4ypQpw5gxcpaoJD1pbCYzagRG9R5qmrIBUFCDYsWi0qC9x8XN16de4PD5bHJMFrx1+dePqlCr5YwASZIePZkvSaWB7JR6glktjhE/j3wrV9yuYTPvB+CyMYxljQaB5f62NwbILnDsJhNZxjECGBTYkXLlXsfbu3YxRC5JknR7derUYdeuXSUdhiRJTzhht5N/LA2Nhy/tjlsxq4zYOA2KCg/lAufUHvc0Uyojs4C/z9+BEIIR9Wc4B+00Gs/72rlPkiTpQch8SSotZKfUE8xq0gEmbFdPY9IWgN2xHXGaRxkWW/wA8NHc25f4fFYBySevsu+MYxcZg8YxCujlVQOj8Zlii12SJEmSJOlhOrV5M/v0AqFNJdCqwqRzDLRVMG+lwjNefBzQj0b30Cl1LjMfISDAo8BlFrmvb5Nij12SJEmSnhayU+oJVXAhF6s5DIv2ELl2BTdApasKejdyIlWE63W08zfSMcD3nup97bPfSLuYzdC6s/lLy2PoVI5HAuUWx5IkSZIkPUlS09MoMLgBFscje8IxCzwstgm7Wr5B5pEz9/T4XpZzFrljaQSVSk/TJhvRau8t15IkSZIk6Q+yU+oJdWJ7KjbFzkZLJNXtF6kEqDShoAezNpcaXgYSKoXeU512uyDtUi5GtyxqlD3kPK4oOry8axbzHUiSJEmSJD085uvLHETYAhCcBBwzpTZa3dlxxbG+lO4u1t4ssNh459s97D/rmEXu5+6oV632QKfzewiRS5IkSdLTQ3ZKPaHSd21BwY8soUWt5F0/qgalAIuiua8FzrNNVoQA9+uP7Gk0Rho8+yNarbecKSVJkiRJ0hPFar2+9qZwI1eoKeyUWmYysO9yFgBe6jvnS7tOXGX5vnN4arNpXX4njQIdeZdG4/FwApckSZKkp4jslHpC2UxmFEXQ1LSRiiYtdkBBhVBZMavcMNzDdHST1cbYpQdIv5RLqOdZ6gU6FkzXan0wGO5ttpUkSZIkSVJJE0Jw4aIAIC/7LLmcxW4zAWBXqXnBz4twgxv9wvzvWFdWvqNzq0eNddT3X+08rtWWeQiRS5IkSdLTRXZKPYHyDh/m0sVzqILcaXCmLFc0GY4TipoK2gOsdosl+h4W7tx67DILt5/EqMvk4+cmo1Y5RhK1Wp+HEL0kSZIkSdLDdfVMDvlZatDZuJixCxRROFGKfL2BtysE8azx7mY6ZZsca0n5uztmVxmN9fD0qExw8F8fSuySJEmS9DSRnVJPoLWrfuZ4qAeQQUWhQQhHltXMfw0H2rRnh1KDOvfw+N7lHDMA9coVoFbZURQ3jMbalA/7+8MIX5IkSZIk6aHK33CKAC3stXpRDQEC1IYGGDQnSC8Xhe4uBu+u5Jr5bvdpth67DIBB49jlODTkNYKDX36o8UuSJEnS0+LeFx6SStyVvBwAPIXesZsMjh3ysl/oxm/Bz4Oi3FWyZbHZWbzrNCv3O2ZaRVyfhe7hUZF6dRfi79/mYYQvSdITplevXiiKgqIo6HQ6KlWqxPjx47FarQ9U7/r161EUhWvXrhVPoHchLS2Nbt26ERISgl6vp1y5cnTs2JFDhw65lFu2bBktWrTAy8sLd3d3nn32WebPn+9SJj09HUVRSElJuev2x44dS9WqVfHw8MDX15dWrVqxbds2lzp79+5NREQEBoOBihUrkpCQgNlsvmPdSUlJ1K5dG3d3d4KDg3njjTe4fPlykdfYbDbee+89l/bef/99hBDOMt999x1t2rShTJkyt73fY8eO8fLLL+Pv74+3tzedO3fm/Pnz93xfe/fupXnz5uj1esLCwpg8efId73vDhg20b9+ekJAQFEVhyZIld7xGKv3O79uHVQh2mss5DigqtIZm6L18savVuN1FnjRnwzEmLD/ImkMXANBrHI//ybWkJEm6FZkvyXxJ5kv3R3ZKPYFsNkcnVHVrGCgaCuejv3vezuLzVwHuqlNqzcHzDF+0h19TT1KjzAHKezh+ychFzSVJ+rO4uDjOnTvHkSNHeOeddxg7diwff/xxSYfldDdJiMVioXXr1mRmZvLdd9+RmprKN998Q82aNV0SvRkzZtCxY0eaNm3Ktm3b2Lt3L127dqV///4MHz78geKsXLkyM2fOZN++fWzatIkKFSrQpk0bLl68CMChQ4ew2+3MmTOH/fv3M23aNGbPns3o0aOLrHfz5s28/vrr9O7dm/3797No0SK2b99O3759i7zuo48+YtasWcycOZODBw/y0UcfMXnyZGbMmOEsk5ubS7Nmzfjoo49uWUdubi5t2rRBURTWrl3L5s2bMZvNtG/fHrvdftf3lZWVRZs2bQgPD2fXrl18/PHHjB07lrlz5xZ5D7m5udSuXZtPP/20yHLS08VWYMKsCIL0B68fcTwcIFSOf0C4KXdOgc9nFqBTm/i4xSQ+bzMYb3Uq4Nh1T5Ik6VZkviTzJZkv3QdRAhISEgTg8qpSpYrzfH5+vvjHP/4h/Pz8hIeHh/jrX/8qMjIyXOo4ceKEaNeunTAYDMLf318MHz5cWCwWlzLr1q0TderUETqdTlSsWFHMmzfvnuLMzMwUgMjMzLzvey1uNqtN/HvMRyIhIUEsHpIo5nQeKhK7dBKJnV8U9f77nai2ca9ovPWASMnKvWNd/7fxuAiPXyamfvuaWL0m0vlK2fPmI7gTSXq65OfniwMHDoj8/PySDuWe9ezZU3Ts2NHlWOvWrUWjRo3ElStXRI8ePYSPj48wGAwiLi5OHD582FkuPT1dvPTSS8LHx0e4u7uL6OhosXz5cpGWlnbT34GePXsKIYTIysoS3bp1E+7u7iIoKEhMnTpVtGjRQgwZMsRZb3h4uBg/frzo0aOH8PLycl67ceNG0axZM6HX60W5cuXEoEGDRE5OjhBCiOTkZAGI9PT0297ryZMnhVarFcOGDbvp3PTp0wUgfvvtNyGEcN5DcnLyvX+o1xX+nVm9evVty0yePFlEREQUWc/HH38sIiMjb4o3NDS0yOtefPFF8cYbb7gc++tf/yq6d+9+U9nb3e/PP/8sVCqVy9/Ka9euCUVRxKpVq27b9p/v6z//+Y/w9fUVJpPJeSw+Pt4lP7gTQHz//fd3Xb4oRf3MPo75QUl6HD+PHUP/n5j1z5li8Ltvi8TOL4rELp3EzH5rxH/j+4nAtcnidL7pjnX0nr9DvPDBDJcc6dcN9YTJdOkR3IEkPZ1kviTzpVuR+VLpzpdKbKZU9erVOXfunPO1adMm57m3336bH3/8kUWLFvHrr79y9uxZ/vrXPxaTtNlsvPjii5jNZrZs2cKXX37J/PnzGTNmjLNMWloaL774IjExMaSkpDB06FD69OnDzz///Ejvs7idSbmIsBhQzCbSz60jmyMgHFsTW7Q61jxbhS2NqlHby/2OdRXuJlPB6Jiu6O4egdFYn7Byrz+8G5AkyUkIQZ4l75G/xA1Tje+XwWDAbDbTq1cvdu7cydKlS9m6dStCCNq1a4fF4vj9MmDAAEwmExs2bGDfvn189NFHeHp6EhYWxv/+9z8AUlNTOXfuHJ988gkAw4YNY/PmzSxdupRVq1axceNGdu/efVMMiYmJ1K5dm+TkZN577z2OHTtGXFwcr7zyCnv37uWbb75h06ZNDBw4EAB/f39UKhWLFy92zjj9s8WLF2OxWG45wtevXz88PT1ZuHDhA39+4BitnDt3Lkajkdq1a9+2XGZmJn5+fkXW1bhxY06dOsWKFSsQQnD+/HkWL15Mu3btiryuSZMmrFmzhsOHDwOwZ88eNm3aRNu2be/6PkwmE4qi4Obm5jym1+tRqVQuf9vvdF9bt27lueeeQ6fTOY/FxsaSmprK1atX7zoeSUr9ZiFHtJfJNF2gYaoj1VXbrTTYPoGNYZEAuN3F2pu5Jiv66+tIeXhE0bzZdpo13YxOJ3fdk6RHqaTypeLImWS+9OBkvlT686USW+hco9EQFBR00/HMzEw+//xzFixYwAsvvADAvHnzqFatGr/99huNGjXil19+4cCBA6xevZrAwECeeeYZ3n//feLj4xk7diw6nY7Zs2cTERHBlClTAKhWrRqbNm1i2rRpxMbGPtJ7LU6WdcfxUAt25Rp5BlBQo2grofG8xPmywejvIsnafzaT//52kt0nrj/qp3Z0alWtOglfn2cfYvSSJN0o35pPwwUNH3m727ptw117547rWxFCsGbNGn7++Wfatm3LkiVL2Lx5M02aNAEcz+mHhYWxZMkSOnXqxMmTJ3nllVeoWbMmAJGRkc66Cv/ABgQE4OPjA0B2djZffvklCxYsoGXLloDjb0BISMhNsbzwwgu88847zvd9+vShe/fuDB06FICoqCimT59OixYtmDVrFqGhoUyfPp13332XcePGUb9+fWJiYujevbszrsOHD2M0GgkODr6pPZ1OR2RkpDMhuV/Lli2ja9eu5OXlERwczKpVqyhbtuwtyx49epQZM2aQmJhYZJ1NmzYlKSmJLl26UFBQgNVqpX379necoj1y5EiysrKoWrUqarUam83GxIkT6d69+13fT6NGjfDw8CA+Pp4PPvgAIQQjR47EZrNx7ty5u76vjIwMIiIiXMoFBgY6z/n6+t51TNLT7ed9e7ni7ob7+fOohGNJApUQnPJ3Z3lUDACG2yxzYLXZ6ff/dnEoI5uL2SZqlc0HQKv1lZ1RklRCSipfgvvPmWS+JPOlP5P50u2V2EypI0eOEBISQmRkJN27d+fkyZMA7Nq1C4vFQqtWrZxlq1atSvny5dm6dSvg6B2sWbOm88MHR+9gVlYW+/fvd5a5sY7CMoV13IrJZCIrK8vl9TgRQpB77ixXhYrjNsc3mwp3dJ4vogkKAkV1VyN/01YdZuH2E1gL9lAvMBmd4rhPuZaUJEm3s2zZMjw9PdHr9bRt25YuXbrQq1cvNBoNDRv+kSiWKVOGKlWqcPCgYx2XwYMHM2HCBJo2bUpCQgJ79+4tsp3jx49jsVho0KCB85jRaKRKlSo3la1fv77L+z179jB//nw8PT2dr9jYWOx2O2lpaYBjJDIjI4OkpCQaN27MokWLqF69OqtWrbrrz+LGkanbSUpKcolj48aNznOFM3i3bNlCXFwcnTt35sKFCzfVcebMGeLi4ujUqZPLWgc31tu/f38ADhw4wJAhQxgzZgy7du1i5cqVpKenO89v3LjR5bqkpCQAvv32W5KSkliwYAG7d+/myy+/JDExkS+//PKuPw9/f38WLVrEjz/+iKenJ0ajkWvXrlG3bl1Ut/ibdLv7upPb3YMk/ZkZR4dTGZsBm+L4f7PBjUGjJlDDz8jg8gF4aNS3vPbw+RzWHLpAVt4FxjYax5s1vwJkjiRJ0t2R+dIfZL7kSuZLt1ciM6UaNmzI/PnzqVKlCufOnWPcuHE0b96c33//nYyMDHQ6nbMXuFBgYCAZGY5d4jIyMlw6pArPF54rqkxWVhb5+fkYDIab4po0aRLjxo0rrtssdnabFUVAnmKnju53xzG14fp/Hd/I+rtY4PxSjplIYzqjG/7b5bhW4128AUuSVCSDxsC2btvuXPAhtHuvYmJimDVrFjqdjpCQEDQaDUuXLr3jdX369CE2Npbly5fzyy+/MGnSJKZMmcKgQYPuJ3QXHh6uiw3n5OTQr18/Bg8efFPZ8uXLO//fy8uL9u3b0759eyZMmEBsbCwTJkygdevWREVFkZmZydmzZ28abTSbzRw7duyuZtt26NDBJfkMDQ11ibtSpUpUqlSJRo0aERUVxeeff86oUaOcZc6ePUtMTAxNmjS5aeHKG3dz8fZ2/N6eNGkSTZs2ZcSIEQDUqlULDw8PmjdvzoQJE6hfv77LdYV/H0eMGMHIkSPp2rUrADVr1uTEiRNMmjSJnj173vE+C7Vp04Zjx45x6dIlNBoNPj4+BAUFuYz03um+goKCXHagAZzvg4KCqFChwi3vQZL+zH79v2Useq6qHDsWo6goq9XwU/3KRV6bVeB4lKZRudMEelx0Hvcx1nsYoUqSdBdKKl8qbPteyHxJ5ktFkfnSrZVIp9SNz17WqlWLhg0bEh4ezrfffnvLzqJHZdSoUQwbNsz5Pisri7CwsBKL589ydu+mQLGRwxUiL3nieMJZhXtuBmd8QacoqJQ7d0plF1gIdHckWhqNEU+Pyngba6PX3zzdU5Kkh0dRlPt+jO5RK0wMblStWjWsVivbtm1zTke/fPkyqampREdHO8uFhYXRv39/+vfvz6hRo/jss88YNGiQcwTtxvUKIiMj0Wq17Nixw5kYZWZmcvjwYZ577rkiY6xbty4HDhy4Kc6iKIpC1apV2bJlCwCvvvoq8fHxTJkyxfn4d6HZs2eTl5fH66/fed09Ly8vvLzubmaF3W7HZDI53585c4aYmBjq1avHvHnzbho9u9X95eXlodG4/klXqx0zQYQQGAyG21735/rVarVzF5h7VTitfu3atVy4cIEOHTrc9X01btyYf/7zn1gsFrRaLQCrVq2iSpUqzqno9/K1lZ5edgCbleN5vyO0jmxJqO48m9xmF1zOcexMVdbd0Tnl69OI6tX/jZub/8MMWZKkIsh8SeZLIPOlQqUxXyqxNaVu5OPjQ+XKlTl69CitW7fGbDZz7do1l9lS58+fd65BFRQUxPbt213quLF3sPC/t+pB9Pb2vm3Hl5ubm8vCY4+b//e/RVzy8qTsmeP45IRyVQXu+Zepf+QDJnafhVsRs6RsdsHnm45z9loBGZkFRAQ51pHy82tGzRrTH9UtSJJUikRFRdGxY0f69u3LnDlz8PLyYuTIkYSGhtKxY0cAhg4dStu2balcuTJXr15l3bp1VKtWDYDw8HAURWHZsmW0a9cOg8GAl5cXPXv2ZMSIEfj5+REQEEBCQgIqlQrlDp3u8fHxNGrUiIEDB9KnTx88PDw4cOAAq1atYubMmaSkpJCQkECPHj2Ijo5Gp9Px66+/8sUXXxAfHw84RggnT57M8OHD0ev19OjRA61Wyw8//MDo0aOZMGECNWrUcGk3NTX1pliqV6/uTBQK5ebmMnHiRDp06EBwcDCXLl3i008/5cyZM3Tq1AlwJCLPP/884eHhJCYmOrc+Bm65DmOh9u3b07dvX2bNmkVsbCznzp1j6NChNGjQ4JbrS9x43cSJEylfvjzVq1cnOTmZqVOn8sYbbzjLXLlyhZMnT3L27FmX+w0KCnLGVLj2o7+/P1u3bmXIkCG8/fbbzscI7ua+unXrxrhx4+jduzfx8fH8/vvvfPLJJ0ybNu228YNjxPfo0aPO92lpaaSkpODn5+cy4is9HTJ2X0Co3FGZsxAIEKCojVj8w4vMky5mm2j7yUYu5ZjQqsz46R1LG+jc/GWHlCRJD0TmSw4yX5L50m0Vyz6ADyg7O1v4+vqKTz75RFy7dk1otVqxePFi5/lDhw4JQGzdulUIIcSKFSuESqUS58+fd5aZM2eO8Pb2FgUFBUIIId59911Ro0YNl3Zee+01ERsbe9dxPW5bHI//179EQkKCSHy9q/is0yiR2PlFMa1bV9FmdpIIXJssXt595LbXbj5yUYTHLxM131sgPlzwslj447Ni9ZpIcfDQvx7hHUjS06u0bXFcqHCLY6PRKAwGg4iNjXXZ4njgwIGiYsWKws3NTfj7+4sePXqIS5f+2E59/PjxIigoSCiKUuQWxw0aNBAjR450XhceHi6mTZt2Uzzbt28XrVu3Fp6ensLDw0PUqlVLTJw4UQghxMWLF8XgwYNFjRo1hKenp/Dy8hI1a9YUiYmJwmazudSzZMkS0bx5c+Hh4eHcgnnhwoUuZW61TXPh69SpUzfFlp+fL15++WUREhIidDqdCA4OFh06dBDbt293lpk3b95t67yT6dOni+joaGEwGERwcLDo3r27OH36dJHXZGVliSFDhojy5csLvV4vIiMjxT//+U+XbYZvF1NCQoKzTHx8vAgMDBRarVZERUWJKVOmCLvdfs/3tWfPHtGsWTPh5uYmQkNDxYcffnjH+163bt0t6y38frpfxbHF8dPicfo8fh+zWXwwZoIY9+47jjyp0ytiZr814l9TPhMvbD942+vWHjwvwuOXiecm/Ecs/6WKWL0mUuZJklQCZL4k8yWZLz19+ZIiRDHsDX6Phg8fTvv27QkPD+fs2bMkJCSQkpLCgQMH8Pf356233mLFihXMnz8fb29v57O0hdMFbTYbzzzzDCEhIUyePJmMjAx69OhBnz59+OCDDwBHz1+NGjUYMGAAb7zxBmvXrmXw4MEsX778rnffy8rKwmg0kpmZ6XwOtSSNGzMGoVJR7fA5rtk8ySGVAr9g1r7xDrOjKxBhcENzm1HA75NP8/Y3e3i16lbalv9je86oSqMpX773o7oFSXpqFRQUkJaWRkREBHq9vqTDeaLk5uYSGhrKlClT6N370f++unLlCi1btsTb25uffvoJd/cn4xEC6cEU9TP7uOUHJe1x+TyEEOwf+QvfuO1iT7Y7Lc6uRi3c0fr153TVNFKaNb/tmlJL95xl8MJk/v7MTpoFOBY3V6kM1KjxCf5lWz7K25Ckp5rMl+6fzJekklAc+VKJ7L53+vRpXnvtNapUqULnzp0pU6YMv/32G/7+junR06ZN46WXXuKVV17hueeeIygoiO+++855vVqtZtmyZajVaho3bszf/vY3Xn/9dcaPH///2bvzuCir/Q/gnxlgYGCGQRBkFUFwQY1MczdCRUBT6ppLehFLvdp1vS6hVqKEmQZaLrl0Fb03NH+aGRcrRXPBJTUFNRdIhFDABReQdYA5vz+IyYlVRUbh83695vVinuc85/meZxj5ep7znKMt4+Ligt27dyM2Nhaenp6IiIjAv//971p3SD1rhBAQUikk6kJcL01HLsqGA5YaGEBlaAh3M5MqO6Tu56uRmlX2uF6LJmVzJFha9oan5wY4OgbWTwOIiGopPj4eW7duRXJyMs6cOaNdbrd8iHt9s7S0xL59+9C3b99qV3AlIv26cz0Nper7uKZRwNDq+7KNfzzGUiI1qPbxvbyiEgCAUlY2p5Sd3VC86nWOHVJE9MxivkQNhV7mlPr666+r3W9iYoLVq1dj9erVVZZxdnbG999/X209r776KuLj4x8rxmfN5a/Llgs1KCr4c6PEBA9smle74l582j0MXXscpZpSuFukwMokDQCgVLZHU6tXn2bIRESPLTw8HImJiZDJZOjUqRPi4uK0k0Lqg5WVFebPn6+38xNRzQrzciGFAfKlufBMfxHARWikZXdtr8mtK53o/EZ2IaJO/I5TqXcBAKZGhQAAQ0MFJBK93LslIqo15kvUEDwTE51TzTRnbwImQLFGAjkAQ4kNDC3+jjv2N2FSzWoyZ6/dR4lGoI/TMYxq+3/a7UZGFk8/aCKix9CxY0ecPn1a32EQ0XPm8m8nYCUxR4us+2iiboViXAQkZanuJatmeMdCUeGYdYeTEXk0FR2tzyHI4wIc5NcBAAYGZhXKEhE9S5gvUUPBTqnnQO69u9CU5uF6qTnuiXyULSRa1hFVZGAA82pGSj0oLBuO3tslDwAgk9lAoWgNG2v/pxw1ERERUf0ouncPvxy+hEJzMyjvqwGULdMtK7mD3D5A3OCOMDc0qHBcVm7Z43r/8IyCTPrnaHRj42b1EjcREVFjx06p58D1i+cBCXDDsARNzS4DAIS0bOnMAkNjWFcyUkoIgd/v5OPavbK5pOSGZYmWk9MYtHCeUE+RExERET19WVevotCsbHSTRCMAaVmnVHZTU5S+1KbSDikAyC0shqGkWNsh5dJiCmQya9jZvlE/gRMRETVy7JR6DtzNuQ2lRA7He/fRNrsPSrAPQmoMAPhN4YAXjSp+jIt2X8K/j6SgmelNdGqWATODDACAoaGyXmMnIiIietpKi8sWcjHRGKKJRomiPzqlNFJppROc38wpxO938pGZXQgTwyLtdheXKZBIKu/AIiIiorrHTqlnXF56Ok58/xNEE2e4pecBhqUAAGP1AzyweYB3XmyLvztUnMzu7PX7kBkUIaT7pzA2UGu3Gxly6WoiIiJqWErUZbmOFFJACECUdUqVVrLq3r08NV5ZegBFJaV4yeYc+jRPBwAYGJiyQ4qIiKiesVPqGZdy6hSyrWwAFMBcSFA+R0KGgxQu/+iBsY7WlR6XU1ACC1kOjA3UkEgMoFJ1gkxmDSsrr/oLnoiIiKge5N8tWzXPoKQE6pIslKJs9JNGKoXsL9McpN7JQ1GJBq2bpGDSixu0242MmtRfwERERASAnVLPvOKisqRKpTGFiSYPapSNlCowkUNeyVxSp3+/hxvZhbidWwSlUdn8CDKZNTq9tLX+giYiIiKqJyX5JXhwogAwBnDzKtSaLOCPQeIlhrIKI6Vy/lgExqNZeZ7UFE2adEezZoPqM2wiIiICO6WeeeVzJMghgxQSQJR1SpUYGFZIss5fz8aQNccgN8zHa6574aDIBAAYGarqN2giIiKielJwrwBSCXBTo4C6WAIrABIDe0glBrje1h0ef9zEE0Jg55l0HEy6DQBQGZf1XKnMO6J9u8/0FD0REVHjVnGoDT0zhBDI+r3sI9I8yEKB5jpK1YkAgBKpIUwMdD++q1m5AAAvp7Pwa/ETOjS9BAAwNrGrx6iJqKEZM2YMJBIJJBIJZDIZ3NzcEBoaipKSkieq9+DBg5BIJLh//37dBFoLKSkpGDlyJOzt7WFiYgJHR0cEBATg8uXLOuViYmLg5eUFpVIJU1NTvPzyy9i0aZNOmdTUVEgkEiQkJNT6/AsWLECbNm1gZmaGJk2aoF+/fjhx4oROnWPHjoWLiwvkcjlatmyJkJAQqNXqamotExUVBU9PT5iamsLOzg7vvPMO7ty5U+0xDx48wPTp0+Hs7Ay5XI4ePXrg1KlTOmVyc3MxefJkODo6Qi6Xw8PDA2vXrtUpM2HCBLRs2RJyuRzW1taVXtO0tDQMHDgQpqamsLGxwezZs6v8HTp69CgMDQ3x4osv1tjunTt3on///rCysnrkz4MahoxLF6GBBuelAgqUPcZnKO8CE3lH3LdqCnfTssVh4q/dx8ztZ/G/sxkwMSiElWkeAMDA0ExvsRNRw8F8ifkS86XHw06pZ9idX+9Alm8AjQDybv+GEuRAaO4CAPJNFTB+6PE9IQTu5ZV9CT1sy0ZTmZu/CDe3uWjdamH9B09EDYqfnx8yMzPx22+/YebMmViwYAE+/fRTfYelVZskpLi4GD4+PsjOzsbOnTuRmJiIbdu2oUOHDjqJ3sqVKxEQEICePXvixIkTOHfuHEaMGIGJEydi1qxZTxRnq1atsGrVKpw/fx5HjhxBixYt0L9/f9y+XTZy4/Lly9BoNFi3bh0uXLiA5cuXY+3atZg3b1619R49ehSjR4/G2LFjceHCBWzfvh0nT57E+PHjqz1u3LhxiI2NxX//+1+cP38e/fv3R79+/ZCenq4tM2PGDPz444/46quvcOnSJUyfPh2TJ09GdHS0tkynTp0QGRmJS5cuYc+ePRBCoH///igtLft7VFpaioEDB0KtVuPYsWPYvHkzNm3ahPnz51eI6f79+xg9ejT69u1bq2ual5eHXr16YcmSJbUqTw1P+sXz0EDAEZkwKTH5Y6sBTDS3sbZjO3S1UAAAbuWUdVi91vIEVvUJhofy/wAAhgZcmZiI6gbzJeZLzJceg6AqZWdnCwAiOztbL+dP/vGC2Dtvi3hl3loRNvJ1ET5soFg+eqFYGTRddPkuWhy9+0AIIcTlzBzx4sI9wjk4RjgHx4gNu6eLfftdRdJvi/USNxFVVFBQIC5evCgKCgr0HcojCwoKEgEBATrbfHx8RLdu3cTdu3dFYGCgsLCwEHK5XPj5+YmkpCRtudTUVPHaa68JCwsLYWpqKjw8PMTu3btFSkqKAKDzCgoKEkIIkZOTI0aOHClMTU2Fra2tWLZsmfDy8hLTpk3T1uvs7CxCQ0NFYGCgUCqV2mPj4uJEr169hImJiXB0dBRTpkwRubm5Qggh4uPjBQCRmppaZVvT0tKEkZGRmDFjRoV9K1asEADEzz//LIQQ2jbEx8c/+kX9Q/nfmX379lVZZunSpcLFxaXaej799FPh6upaIV4HB4cqj8nPzxcGBgYiJiZGZ/tLL70k3n//fe37du3aidDQ0GrL/NXZs2cFAHHlyhUhhBDff/+9kEql4saNG9oya9asEebm5qKoqEjn2OHDh4sPPvhAhISECE9PzyrP8Vd18Xk8rLrvrL7zg2eNvq/HF+/PFIfmbhdrh48SESMCRfiwgSLm1TdE4pQRQmg02nLbf7lWlidFjxD79ruKfftdxU8HPMSt21V//4iofjFfYr5UGeZLDTtf4kipZ9jVk4ehgYCl6W8wKS37qAxkbWEsawJfJwe8rCobbn48OQv38ovxQtNfMbvzSjjJjwAAjAzN9RY7EdVMCAFNfn69v4QQTxy7XC6HWq3GmDFj8MsvvyA6OhrHjx+HEAIDBgxA8R/z4U2aNAlFRUU4fPgwzp8/jyVLlkChUMDJyQnffPMNACAxMRGZmZn4/PPPAZTdaTp69Ciio6MRGxuLuLg4nDlzpkIM4eHh8PT0RHx8PD788EMkJyfDz88PQ4YMwblz57Bt2zYcOXIEkydPBgBYW1tDKpVix44d2jtSf7Vjxw4UFxdXeodvwoQJUCgU2Lq1bhaOUKvVWL9+PVQqFTw9Passl52dDUtLy2rr6t69O65du4bvv/8eQgjcvHkTO3bswIABA6o8pqSkBKWlpTAxMdHZLpfLceTIEe37Hj16IDo6Gunp6RBC4MCBA0hKSkL//v0rrTcvLw+RkZFwcXGBk5MTAOD48ePo0KEDmjVrpi3n6+uLnJwcXLhwQbstMjISV69eRUhISLXtJSqXdy0NkswHyJI+gCK/FPhjQZhMSymK/zEfkPw5/2ZeUdnjDyaGZSOm2rZdgle9zsG6ae3uMhORfugrX6qLnIn50pNjvtTw8yVOdP4My7p/A+YmCvRJegC10AAALLJT4GGdgPGe7wN/THSe+0eSFdjhECyNfivrQwcgN22hj7CJqJZEQQESX+pU7+dtfeY0JKamj3WsEAL79+/Hnj174O/vj127duHo0aPo0aMHgLLn9J2cnLBr1y4MHToUaWlpGDJkCDp06AAAcHV11dZVnjjY2NjAwsICQNkz+5s3b8aWLVu0w5EjIyNhb29fIZY+ffpg5syZ2vfjxo3DqFGjMH36dACAu7s7VqxYAS8vL6xZswYODg5YsWIF3nvvPSxcuBCdO3eGt7c3Ro0apY0rKSkJKpUKdnYV5+KTyWRwdXVFUlLSY127cjExMRgxYgTy8/NhZ2eH2NhYNG3atNKyV65cwcqVKxEeHl5tnT179kRUVBSGDx+OwsJClJSUYNCgQVi9enWVxyiVSnTv3h0fffQR2rZti2bNmmHr1q04fvw43NzctOVWrlyJf/zjH3B0dIShoSGkUim+/PJLvPLKKzr1ffHFF3jvvfeQl5eH1q1bIzY2FjKZDABw48YNnQQLgPb9jRs3AAC//fYb5syZg7i4OBgaMj2h2vll+3bccLLDDfyO1pBA/JEvrRz+Nl5xcQEAfHHwCjYeSUW+uhgmBoUwMSibS8rI0AISiYHeYiei2tFXvgQ8fs7EfIn5EvOl2uNIqWdU2pk4FObm474kD/Z3/rzz53blazSfsBCQ/plEPfhjaWO5QdlE564u09Gx41ewsfar97iJqGGKiYmBQqGAiYkJ/P39MXz4cIwZMwaGhobo2rWrtpyVlRVat26NS5fKFlqYOnUqwsLC0LNnT4SEhODcuXPVnufq1asoLi5Gly5dtNtUKhVat25doWznzp113p89exabNm2CQqHQvnx9faHRaJCSkgKg7E7kjRs3EBUVhe7du2P79u1o164dYmNja30tyhOH6kRFRenEERcXp93n7e2NhIQEHDt2DH5+fhg2bBhu3bpVoY709HT4+flh6NChOnMdPFzvxIkTAQAXL17EtGnTMH/+fJw+fRo//vgjUlNTtfvj4uJ0jouKigIA/Pe//4UQAg4ODjA2NsaKFSvw1ltvQfrQnIUrV67Ezz//jOjoaJw+fRoRERGYNGkS9u3bpxPvqFGjEB8fj0OHDqFVq1YYNmwYCgsLa3VNS0tLMXLkSCxcuBCtWrV65GtKjdf9wgIAgIkwglQYoDxfKpUaaFcp/vrkNWTlFmF8uy+wuu97UBkmAwAMDTmXFBHVLeZLf2K+xHypthpG11oDdOqb3Ui1MwWQiQ5CCqDszt/oBctwrl07AMCC6AvYfT4TxcU5aK68BSPJAwBAU2sfKBVt9BQ5EdWWRC5H6zOn9XLeR+Xt7Y01a9ZAJpPB3t4ehoaGOhM3VmXcuHHw9fXF7t27sXfvXixevBgRERGYMmXK44Suw8xMd8Ws3NxcTJgwAVOnTq1Qtnnz5tqflUolBg0ahEGDBiEsLAy+vr4ICwuDj48P3N3dkZ2djYyMjAp3G9VqNZKTk+Hr61tjbIMHD9ZJPh0cHHTidnNzg5ubG7p16wZ3d3ds2LABc+fO1ZbJyMiAt7c3evTogfXr1+vU/fBqKebmZY9pL168GD179sTs2bMBAC+88ALMzMzQu3dvhIWFoXPnzjrHld91a9myJQ4dOoS8vDzk5OTAzs4Ow4cP194JLSgowLx58/Dtt99i4MCB2roTEhIQHh6Ofv36aetUqVRQqVRwd3dHt27d0KRJE3z77bd46623YGtri5MnT+q04+bNmwAAW1tbPHjwAL/88gvi4+O1jw9oNBoIIWBoaIi9e/dWe02p8Sp/tMS1tBkkSIK2U8rAALKHRpRLoMEL1he1xxkb20GhaFvv8RLRo9NXvlR+7kfBfIn5EvOlR8dOqWfUA01ZJ5SpkOHhAW2FxnIYSyUQQuC/P/8OCdT49JWFMJflastwLimi54NEInnsx+jqW3li8LC2bduipKQEJ06c0A5Hv3PnDhITE+Hh4aEt5+TkhIkTJ2LixImYO3cuvvzyS0yZMkV7B+3h+QpcXV1hZGSEU6dOaROj7OxsJCUlVRj+/FcvvfQSLl68WCHO6kgkErRp0wbHjh0DALz55psIDg5GREQEIiIidMquXbsW+fn5GD16dI31KpVKKJW1G4Wh0WhQVFSkfZ+eng5vb2/tCi0P34UDUGn78vPzKwzhNjAoG1ErhIBcLq/2upiZmcHMzAz37t3Dnj17sHTpUgBlK/AUFxdXiMHAwACaP/5OVUYIASGEtl3du3fHokWLcOvWLdjY2AAAYmNjYW5uDg8PDxgZGeH8+fM6dXzxxRf46aefsGPHDri4uMDMzKzW15QaB6ERKC2RAZIiFObeQJFhPiDK5mfRSA0gk0ghhMCDwmLtPFIA4PVKAgwMzCCR8IEBoucB8yXmSwDzpYacL7FT6hlV+scvb4cSZ+Thuna71NAQUokEDwqLUaoRsJHf/6NDSgJj42ZQqV6CsXHFZ3uJiOqau7s7AgICMH78eKxbtw5KpRJz5syBg4MDAgICAADTp0+Hv78/WrVqhXv37uHAgQNo27ZsdIKzszMkEgliYmIwYMAAyOVyKJVKBAUFYfbs2bC0tISNjQ1CQkIglUoheWjC4soEBwejW7dumDx5MsaNGwczMzNcvHgRsbGxWLVqFRISEhASEoLAwEB4eHhAJpPh0KFD2LhxI4KDgwGU3SFcunQpZs2aBRMTEwQGBsLIyAjfffcd5s2bh7CwMLRv317nvImJiRViadeuHYyMjHS25eXlYdGiRRg8eDDs7OyQlZWF1atXIz09HUOHDgVQlmC9+uqrcHZ2Rnh4uHbpY6DsDllVBg0ahPHjx2PNmjXw9fVFZmYmpk+fji5dulQ6v0S58uWIW7dujStXrmD27Nlo06YN3n77bQBldxa9vLwwe/ZsyOVyODs749ChQ/jPf/6DZcuWASh7hGDbtm3o378/rK2tcf36dXzyySeQy+XaiUP79+8PDw8PBAYGYunSpbhx4wY++OADTJo0CcbGxgBQ4bra2NjAxMSkwva/unv3LtLS0pCRkQHgz8/D1ta22mtGz7+cMzchKbUBJKm4nXkakP05IXGRzATR8enYf/4GiksFlCZlnVJSqYyP7RFRvWK+VIb5EvOlKj3ZAoANm76WOC66/kBsnLdMhHz4oVgT9I5Y/uZgET5soAgfNlC0PJggcgrU4sDlm8I5OEb0XbxG7NvvKuKO9KjXGIno0TS0JY7LlS9xrFKphFwuF76+vjpLHE+ePFm0bNlSGBsbC2traxEYGCiysrK0+0NDQ4Wtra2QSCTVLnHcpUsXMWfOHO1xzs7OYvny5RXiOXnypPDx8REKhUKYmZmJF154QSxatEgIIcTt27fF1KlTRfv27YVCoRBKpVJ06NBBhIeHi9LSUp16du3aJXr37i3MzMy0SzBv3bpVp0xlyzSXv65du1YhtoKCAvHGG28Ie3t7IZPJhJ2dnRg8eLA4efKktkxkZGSVddZkxYoVwsPDQ8jlcmFnZydGjRolrl+/Xu0x27ZtE66urkImkwlbW1sxadIkcf/+fZ0ymZmZYsyYMcLe3l6YmJiI1q1bi4iICKHRaIQQQqSnpwt/f39hY2MjjIyMhKOjoxg5cqS4fPmyTj2pqanC399fyOVy0bRpUzFz5kxRXFxcZWy1XeK4qmsWEhJS47HVqYsljhsLfV2PpM0XxLb3vxQL5s0ty5OGDhTLA+eL5ePmiUGnk0S7+T8Kz/lfif/b/ZLYt99V7NvvKg4d7lyvMRLRo2G+xHyJ+VLjy5ckQtTB2uANVE5ODlQqFbKzs7XPodaHq1+ex8G0Q7iuToVZ6uU/dxiZYcs/58PwYCay87LRr/khtGySgReaxkNh1hpdu35fbzES0aMpLCxESkoKXFxcKiwpS9XLy8uDg4MDIiIiMHbs2Ho//927d9G3b1+Ym5vjhx9+gOlz8ggBPZnqvrP6yg+eVfq6HpfWJ+Bs2kmcKU5Gs9QLkAgJjC3/BSOTS3g7fCLcP/gRnZudwbuem7TH2NgMQIf2K+stRiJ6NMyXHh/zJdKHusiX+DD9M6gwRw0NBCSlagCAocYIMuXfYezYGR86NcPNnCJ0tTuNN9x344Wm8QAAmbGNPkMmIqoz8fHx2Lp1K5KTk3HmzBmMGjUKALRD3OubpaUl9u3bh759++L48eN6iYGIdJWo1Ug7uw/FQuCeLAcAICRls1JI5QrkqcvmXjExLJunw7JJT/TudQLt263QT8BERHWM+RI1FJxT6hlTolbjfsZF5MqB+wZ3YQoAUhNIDW1gqXqAtkZlz5I2U+QDAJSKdrBq6g3bZoP1FzQRUR0LDw9HYmIiZDIZOnXqhLi4ODRt2lRv8VhZWWH+/Pl6Oz8R6cq9dweipBjFEsDpfmsA1wBJ2bwkuQZKzN5Rtpy6wqjsBp+RURPIZPr7N4SI6GlgvkQNATulnjEZVy6jpDAHuaZSNM32BHAIpQamMARw19gJ//05FQBgblx256+JZXe0dP2X3uIlIqprHTt2xOnT+ln6mYieDzdupkAqkaJYlMLmPpAHwLC0GO0ubEBYO2/ckhbB1/kUOtn+BgAwMDSrtj4ioucN8yVqKNgp9YxJTj4DI4kBSkuLoSqUQQ3AqKQQDumHsUjeASXZZ9G3+Tm4mF8FABgacAUZIiIialzydv0PElihVFMKoz9W2zYoLUaB6X38rrTGuHbfobP1IW15mZGlniIlIiKi6rBT6hlTGr0XxsbeMMnLAlDW4WSanwXz3JvIknVC8Iv/hbvqvLa8kYxJFhERETUu9+/lIEtugTxRCPM/HttTKw3w0bRFKP7hd9gqcgEAFhZdoFS2h6NjoD7DJSIioiqwU+oZc0siQ6npAxQVFkH+R6dUtp0CH7/5PsSBTNgryibztGzSE6ZmbmhmM1Cf4RIRERHVq5KSEhxXWqFEWoD7pUZQSGQAACGVIK+gGABgYlAIAHBwGAnbZoP0FisRERFVj51Sz5B79+4hyb4FgBzc1sigQgkAoFRmgBsPyn42kpZNcO7aciZU5p56ipSIiIhIP9RqNUqkUkAIKG+no6D4XtkOiQS3s/IhA2D8R6eUoYFCf4ESERFRjdgp9QzJzy/rcDJUq9E8/RJKNGV3+zSGBii5dxue1udhKCkbjs4ki4iIiBqj9EtZAABpYQGU99Ig/tguMZJisslmvNTvKIykZQvCGBgyXyIiInqWsVPqGXL+60sAAHmBGvijQwqQQEgM8JnLezCSFmrLGhqa6yFCIiIiIv26878rAACZKBtFDokcRmYDUdJ0H7pa7teWMzBQwMy0pT5CJCIiolpip9QzxOxOHiAD7EQmMgFIDB0gUwwBLL6CkbQQEokhlMr2sFB1grGxtb7DJSIiIqp30uJSwAh4SZzDeZhAIpHBwKg5Sgwl2jLduu6FsbEtDA3N9BgpERER1USq7wDoT0JoIARgXpwNAJDAEBIA9wzLJjw3NrbDy52/gbv7PD1GSUSNzZgxYyCRSCCRSCCTyeDm5obQ0FCUlJQ8Ub0HDx6ERCLB/fv36ybQWkhJScHIkSNhb28PExMTODo6IiAgAJcvX9YpFxMTAy8vLyiVSpiamuLll1/Gpk2bdMqkpqZCIpEgISGh1udfsGAB2rRpAzMzMzRp0gT9+vXDiRMndOocO3YsXFxcIJfL0bJlS4SEhECtVtdYd1RUFDw9PWFqago7Ozu88847uHPnTrXHHD58GIMGDYK9vT0kEgl27dpVoczOnTvRv39/WFlZ1dheIQT8/f2rrGvTpk144YUXYGJiAhsbG0yaNEln/549e9CtWzcolUpYW1tjyJAhSE1NrZd20vOhtKQEpaX5KNZIkVT40h9bDQAApwzcAABSqTHMzFqyQ4qI6hXzJeZLzJceDzulnhG/nTgGjSjCtRJLJOf3L9sokUKiUcOt/VkAgJERH9kjIv3w8/NDZmYmfvvtN8ycORMLFizAp59+qu+wtGqThBQXF8PHxwfZ2dnYuXMnEhMTsW3bNnTo0EEn0Vu5ciUCAgLQs2dPnDhxAufOncOIESMwceJEzJo164nibNWqFVatWoXz58/jyJEjaNGiBfr374/bt28DAC5fvgyNRoN169bhwoULWL58OdauXYt586q/GXH06FGMHj0aY8eOxYULF7B9+3acPHkS48ePr/a4vLw8eHp6YvXq1dWW6dWrF5YsWVJj+z777DNIJJJK9y1btgzvv/8+5syZgwsXLmDfvn3w9fXV7k9JSUFAQAD69OmDhIQE7NmzB1lZWfjb3/5WL+2k58Plo4dQUpyDTI0Cmvy2ZRslUkhL8jGq6xYAnOKAiPSH+RLzJeZLj0FQlbKzswUAkZ2d/dTPtenTmeKnOVvFqHkR4rMxy0X4sIFi1dC3xX+H/EPs2+8q9u13FefPT33qcRDR01FQUCAuXrwoCgoK9B3KIwsKChIBAQE623x8fES3bt3E3bt3RWBgoLCwsBByuVz4+fmJpKQkbbnU1FTx2muvCQsLC2Fqaio8PDzE7t27RUpKigCg8woKChJCCJGTkyNGjhwpTE1Nha2trVi2bJnw8vIS06ZN09br7OwsQkNDRWBgoFAqldpj4+LiRK9evYSJiYlwdHQUU6ZMEbm5uUIIIeLj4wUAkZqaWmVb09LShJGRkZgxY0aFfStWrBAAxM8//yyEENo2xMfHP/pF/UP535l9+/ZVWWbp0qXCxcWl2no+/fRT4erqWiFeBweHWscCQHz77bdV7q+pvfHx8cLBwUFkZmZWqOvu3btCLpdX287t27cLQ0NDUVpaqt0WHR0tJBKJUKvVQoj6aWe56r6z9ZkfPA/q83r8d8NH4vDMr8TouUvE5+/8W4QPGyi+eP01sc/LS5svXbr0/lOPg4ieDuZLzJcqw3zpTw0xX+JIqWfE/WspgEQCt5u3AVEKAGiSfRVOOAMTE0d06PAF2rQJ03OURFSXhBAoLiqt91fZ35knI5fLoVarMWbMGPzyyy+Ijo7G8ePHIYTAgAEDUFxctljDpEmTUFRUhMOHD+P8+fNYsmQJFAoFnJyc8M033wAAEhMTkZmZic8//xwAMGPGDBw9ehTR0dGIjY1FXFwczpw5UyGG8PBweHp6Ij4+Hh9++CGSk5Ph5+eHIUOG4Ny5c9i2bRuOHDmCyZMnAwCsra0hlUqxY8cOlJaWVtquHTt2oLi4uNI7fBMmTIBCocDWrVuf+PoBZXcr169fD5VKBU9PzyrLZWdnw9LSstq6unfvjmvXruH777+HEAI3b97Ejh07MGDAgDqJtSb5+fkYOXIkVq9eDVtb2wr7Y2NjodFokJ6ejrZt28LR0RHDhg3DtWvXtGU6deoEqVSKyMhIlJaWIjs7G//973/Rr18/GBkZPRPtJP3Lv54GIQWc7twBhAYAICsugMw4H4aG5vB+9SLzJaIGRl/5Ul3kTMyXnhzzpYafL3Gi82dA7vnzMM0EbrbKhnGJBkBZkvXAzBQZfSRwN7aBjbVv9ZUQ0XOnRK3B+mmH6v28//jcC0bGBo91rBAC+/fvx549e+Dv749du3bh6NGj6NGjB4Cy59ednJywa9cuDB06FGlpaRgyZAg6dOgAAHB1ddXWVZ442NjYwMLCAgDw4MEDbN68GVu2bEHfvn0BAJGRkbC3t68QS58+fTBz5kzt+3HjxmHUqFGYPn06AMDd3R0rVqyAl5cX1qxZAwcHB6xYsQLvvfceFi5ciM6dO8Pb2xujRo3SxpWUlASVSgU7O7sK55PJZHB1dUVSUtJjXbtyMTExGDFiBPLz82FnZ4fY2Fg0bdq00rJXrlzBypUrER4eXm2dPXv2RFRUFIYPH47CwkKUlJRg0KBB9Tb8+l//+hd69OiBgICASvdfvXoVGo0GH3/8MT7//HOoVCp88MEH8PHxwblz5yCTyeDi4oK9e/di2LBhmDBhAkpLS9G9e3d8//33z0w7Sb+Ks7IgP5OBWx65KJEYAij7z1KuuRnO+qrQ0eAWpFJj/QZJRHVOX/kS8Pg5E/Ml5kuVYb5UOY6UegacOXsW6R4dcNkwA1KNBOVJ1k13GzRtcx2Ghgr9BkhEjV5MTAwUCgVMTEzg7++P4cOHY8yYMTA0NETXrl215aysrNC6dWtcunQJADB16lSEhYWhZ8+eCAkJwblz56o9z9WrV1FcXIwuXbpot6lUKrRu3bpC2c6dO+u8P3v2LDZt2gSFQqF9+fr6QqPRICUlBUDZncgbN24gKioK3bt3x/bt29GuXTvExsbW+lrIZLIay0RFRenEERcXp93n7e2NhIQEHDt2DH5+fhg2bBhu3bpVoY709HT4+flh6NChOnMAPFzvxIkTAQAXL17EtGnTMH/+fJw+fRo//vgjUlNTtfvj4uJ0jouKiqp1e2sSHR2Nn376CZ999lmVZTQaDYqLi7FixQr4+vqiW7du2Lp1K3777TccOHAAAHDjxg2MHz8eQUFBOHXqFA4dOgSZTIY333xTe6dan+0k/Us6fx7JL3bGr7JMSIVA+U28QpUxXJ0uwoATmxORnjFf+hPzJV3Ml6rGkVLPgOy8PACAQphAoikEJGVJlqthIqTQwMjQQo/REdHTYiiT4h+fe+nlvI/K29sba9asgUwmg729PQwNDREdHV3jcePGjYOvry92796NvXv3YvHixYiIiMCUKVMeJ3QdZma6/wHNzc3FhAkTMHXq1Aplmzdvrv1ZqVRi0KBBGDRoEMLCwuDr64uwsDD4+PjA3d0d2dnZyMjIqHC3Ua1WIzk5WWeyyaoMHjxYJ/l0cHDQidvNzQ1ubm7o1q0b3N3dsWHDBsydO1dbJiMjA97e3ujRowfWr1+vU/fDq7mYm5dN6Lx48WL07NkTs2fPBgC88MILMDMzQ+/evREWFobOnTvrHNesWbMa21BbP/30E5KTk7V3b8sNGTIEvXv3xsGDB7V3Uj08PLT7ra2t0bRpU6SlpQEAVq9eDZVKhaVLl2rLfPXVV3BycsKJEyfQrVs3vbaT9K98gl1jYQhRqtY+vmdjdBPGUMPAgDfxiBoifeVL5ed+FMyXmC9VhflS1dgp9QzIzilbJtS91A6pIhvij5FSMrkVmtl0QfPmY/UZHhE9JRKJ5LEfo6tv5YnBw9q2bYuSkhKcOHFCOxz9zp07SExM1Plj6uTkhIkTJ2LixImYO3cuvvzyS0yZMkV7B+3h+QpcXV1hZGSEU6dOaROj7OxsJCUl4ZVXXqk2xpdeegkXL16sEGd1JBIJ2rRpg2PHjgEA3nzzTQQHByMiIgIRERE6ZdeuXYv8/HyMHj26xnqVSiWUSmWtYtBoNCgqKtK+T09Ph7e3Nzp16oTIyEhIpboJcWXty8/Ph6Gh7p90A4Oy3y0hBORy+SNdl0cxZ84cjBs3Tmdbhw4dsHz5cgwaNAhA2TByoGw+DEdHRwDA3bt3kZWVBWdnZ20b/trW8jZoNBptGX21k/SvML/se+JYaolrmgKIP0ZKGRgawdzcE82bv6PP8IjoKWG+xHwJYL7UkPMldkrpWWlhCUruGwBGwN3b51FSkgSU9VHBoklHtG//kX4DJCKqgru7OwICAjB+/HisW7cOSqUSc+bMgYODg/ZZ+enTp8Pf3x+tWrXCvXv3cODAAbRtW7aMu7OzMyQSCWJiYjBgwADI5XIolUoEBQVh9uzZsLS0hI2NDUJCQiCVSqtcOrdccHAwunXrhsmTJ2PcuHEwMzPDxYsXERsbi1WrViEhIQEhISEIDAyEh4cHZDIZDh06hI0bNyI4OBhA2R3CpUuXYtasWTAxMUFgYCCMjIzw3XffYd68eQgLC0P79u11zpuYmFghlnbt2mknmyyXl5eHRYsWYfDgwbCzs0NWVhZWr16N9PR0DB06FEBZgvXqq6/C2dkZ4eHh2qWPAVQ6IWa5QYMGYfz48VizZg18fX2RmZmJ6dOno0uXLpXOL1EuNzcXV65c0b5PSUlBQkICLC0ttUnu3bt3kZaWhoyMDJ322tra6rz+qnnz5nBxcQFQtrRzQEAApk2bhvXr18Pc3Bxz585FmzZt4O3tDQAYOHAgli9fjtDQULz11lt48OAB5s2bB2dnZ3Ts2PGpt5OefdcvFwIGgKYgB0aFv6MUNwAAclMHvNx5s56jIyKqHPOlMsyXmC9VqXYLAjZO9bHE8YMjp8TmD1aLT0LeE6ve8hPhwwZqX/ExG57aeYmofjW0JY7LlS9xrFKphFwuF76+vjpLHE+ePFm0bNlSGBsbC2traxEYGCiysrK0+0NDQ4Wtra2QSCTVLnHcpUsXMWfOHO1xzs7OYvny5RXiOXnypPDx8REKhUKYmZmJF154QSxatEgIIcTt27fF1KlTRfv27YVCoRBKpVJ06NBBhIeH6yyrK4QQu3btEr179xZmZmbaJZi3bt2qU6ayZZrLX9euXasQW0FBgXjjjTeEvb29kMlkws7OTgwePFicPHlSWyYyMrLKOmuyYsUK4eHhIeRyubCzsxOjRo0S169fr/aYAwcOVHqu8s+iuphCQkKqrBeVLCOcnZ0t3nnnHWFhYSEsLS3FG2+8IdLS0nTKbN26VXTs2FGYmZkJa2trMXjwYHHp0qV6aedf1cUSx41FfVyPkvv54pv3N4qQkBCxLuhNnXwp5pN3n9p5iah+MV9ivsR8qfHlSxIh6mBt8AYqJycHKpUK2dnZ2udQ60qJugQ5dx/gzjff4MCdNNhIfsHVXyUQkECmfAsGkisYv2IijOScD4OoISgsLERKSgpcXFxgYmKi73CeK3l5eXBwcEBERATGjq3/x5nv3r2Lvn37wtzcHD/88ANMTU3rPQaqf9V9Z59mfvA8etrX44ulYdDkPUB+UTFMSrNgmH4LBaWGMDDuBCmKMWJmG9h41vyYCBE9+5gvPT7mS6QPdZEv8fE9PdmyZiluHzuBspVjBB48tBCixMAGRUa32SFFRI1SfHw8Ll++jC5duiA7OxuhoaEAUOXyuU+bpaUl9u3bh9WrV+P48ePapZeJqH4UnP4FQAkMABQDKP4jfTUwfgES3Ialx+t6jI6ISD+YL1FDwU4pPTE2kQMorbBdatQSBppSKD2t6j8oIqJnRHh4OBITEyGTydCpUyfExcWhadOmeovHysoK8+fP19v5iRo36UMvCQApDAyawahUAngYwNCIo9WIqHFivkQNATul9MR78JuIuZMOmYkMJkobNHNqiZZt2kBpaQVjUzPIDI31HSIRkV507NgRp0+f1ncYRPSMmBD2CYyMZJAYGEAik8FIz0tXExE9C5gvUUPBTik9sbFzwjvzwvUdBhEREdEzTeHeSt8hEBER0VMirbkIERERERERERFR3WKnFBERERERERER1Tt2ShERERERERERUb1jpxQREREREREREdU7dkoREREREREREVG9Y6cUERERERERERHVO3ZKERFRtcaMGQOJRAKJRAKZTAY3NzeEhoaipKTkieo9ePAgJBIJ7t+/XzeB1kJKSgpGjhwJe3t7mJiYwNHREQEBAbh8+bJOuZiYGHh5eUGpVMLU1BQvv/wyNm3apFMmNTUVEokECQkJtT7/ggUL0KZNG5iZmaFJkybo168fTpw4oVPn2LFj4eLiArlcjpYtWyIkJARqtbrGuqOiouDp6QlTU1PY2dnhnXfewZ07d6o95vDhwxg0aBDs7e0hkUiwa9euR44ZABYtWoQePXrA1NQUFhYWlZ4rLS0NAwcOhKmpKWxsbDB79myd36GHf88efrVr105bZvHixXj55ZehVCphY2OD119/HYmJiTVem9rER0RE9CSYLzFfYr70eNgpRURENfLz80NmZiZ+++03zJw5EwsWLMCnn36q77C0apOEFBcXw8fHB9nZ2di5cycSExOxbds2dOjQQSfRW7lyJQICAtCzZ0+cOHEC586dw4gRIzBx4kTMmjXrieJs1aoVVq1ahfPnz+PIkSNo0aIF+vfvj9u3bwMALl++DI1Gg3Xr1uHChQtYvnw51q5di3nz5lVb79GjRzF69GiMHTsWFy5cwPbt23Hy5EmMHz++2uPy8vLg6emJ1atXP3bMQNn1Hzp0KN59991K6ygtLcXAgQOhVqtx7NgxbN68GZs2bcL8+fO1ZT7//HNkZmZqX9euXYOlpSWGDh2qLXPo0CFMmjQJP//8M2JjY1FcXIz+/fsjLy+v2nbWFB8REVFdYL7EfIn50mMQVKXs7GwBQGRnZ+s7FCJ6zhUUFIiLFy+KgoICfYfyyIKCgkRAQIDONh8fH9GtWzdx9+5dERgYKCwsLIRcLhd+fn4iKSlJWy41NVW89tprwsLCQpiamgoPDw+xe/dukZKSIgDovIKCgoQQQuTk5IiRI0cKU1NTYWtrK5YtWya8vLzEtGnTtPU6OzuL0NBQERgYKJRKpfbYuLg40atXL2FiYiIcHR3FlClTRG5urhBCiPj4eAFApKamVtnWtLQ0YWRkJGbMmFFh34oVKwQA8fPPPwshhLYN8fHxj35R/1D+d2bfvn1Vllm6dKlwcXGptp5PP/1UuLq6VojXwcGh1rEAEN9++22N5aqLOTIyUqhUqgrbv//+eyGVSsWNGze029asWSPMzc1FUVFRpef59ttvhUQiqfbzunXrlgAgDh06VGPc1cVXmeq+s8wPdPF6EFFdYb7EfKkyzJcadr7EkVJERHoihEBxYWG9v4QQTxy7XC6HWq3GmDFj8MsvvyA6OhrHjx+HEAIDBgxAcXExAGDSpEkoKirC4cOHcf78eSxZsgQKhQJOTk745ptvAACJiYnIzMzE559/DgCYMWMGjh49iujoaMTGxiIuLg5nzpypEEN4eDg8PT0RHx+PDz/8EMnJyfDz88OQIUNw7tw5bNu2DUeOHMHkyZMBANbW1pBKpdixYwdKS0srbdeOHTtQXFxc6R2+CRMmQKFQYOvWrU98/YCyu1Hr16+HSqWCp6dnleWys7NhaWlZbV3du3fHtWvX8P3330MIgZs3b2LHjh0YMGBAncT6qDH/1fHjx9GhQwc0a9ZMu83X1xc5OTm4cOFCpcds2LAB/fr1g7Ozc5X1ZmdnA0CN14eIiJ5f+sqX6iJnYr705JgvNfx8yVDfARARNVYlRUVYEfRmvZ936uYdMDIxeaxjhRDYv38/9uzZA39/f+zatQtHjx5Fjx49AJQ9p+/k5IRdu3Zh6NChSEtLw5AhQ9ChQwcAgKurq7au8j+MNjY22ufWHzx4gM2bN2PLli3o27cvACAyMhL29vYVYunTpw9mzpypfT9u3DiMGjUK06dPBwC4u7tjxYoV8PLywpo1a+Dg4IAVK1bgvffew8KFC9G5c2d4e3tj1KhR2riSkpKgUqlgZ2dX4XwymQyurq5ISkp6rGtXLiYmBiNGjEB+fj7s7OwQGxuLpk2bVlr2ypUrWLlyJcLDw6uts2fPnoiKisLw4cNRWFiIkpISDBo0qNph5k8r5srcuHFDJ8ECoH1/48aNCuUzMjLwww8/YMuWLVXWqdFoMH36dPTs2RPt27evdSxERPR80Ve+BDx+zsR8ifkS86Xa40gpIiKqUUxMDBQKBUxMTODv74/hw4djzJgxMDQ0RNeuXbXlrKys0Lp1a1y6dAkAMHXqVISFhaFnz54ICQnBuXPnqj3P1atXUVxcjC5dumi3qVQqtG7dukLZzp0767w/e/YsNm3aBIVCoX35+vpCo9EgJSUFQNmdyBs3biAqKgrdu3fH9u3b0a5dO8TGxtb6WshkshrLREVF6cQRFxen3eft7Y2EhAQcO3YMfn5+GDZsGG7dulWhjvT0dPj5+WHo0KE6cx08XO/EiRMBABcvXsS0adMwf/58nD59Gj/++CNSU1O1++Pi4nSOi4qKqnV7HyXmurJ582ZYWFjg9ddfr7LMpEmT8Ouvv+Lrr7/Wbps4caJOO4mIiOoT86U/MV9ivlRbHClFRKQnhsbGmLp5h17O+6i8vb2xZs0ayGQy2Nvbw9DQENHR0TUeN27cOPj6+mL37t3Yu3cvFi9ejIiICEyZMuVxQtdhZmam8z43NxcTJkzA1KlTK5Rt3ry59melUolBgwZh0KBBCAsLg6+vL8LCwuDj4wN3d3dkZ2cjIyOjwt1GtVqN5ORk+Pr61hjb4MGDdZJPBwcHnbjd3Nzg5uaGbt26wd3dHRs2bMDcuXO1ZTIyMuDt7Y0ePXpg/fr1OnU/vHqNubk5gLJVVnr27InZs2cDAF544QWYmZmhd+/eCAsLQ+fOnXWO++tduJrUJubq2Nra4uTJkzrbbt68qd33MCEENm7ciMDAwCoT2smTJyMmJgaHDx+Go6OjdntoaOgTT65KRETPFn3lS+XnfhTMl5gvMV96dOyUIiLSE4lE8tiP0dW38j+yD2vbti1KSkpw4sQJ7XD0O3fuIDExER4eHtpyTk5OmDhxIiZOnIi5c+fiyy+/xJQpU7R/QB+er8DV1RVGRkY4deqUNjHKzs5GUlISXnnllWpjfOmll3Dx4sUKcVZHIpGgTZs2OHbsGADgzTffRHBwMCIiIhAREaFTdu3atcjPz8fo0aNrrFepVEKpVNYqBo1Gg6KiIu379PR0eHt7o1OnToiMjIRUqjuoubL25efnw9BQ90+6gYEBgLKkRS6XP9J1edSYa9K9e3csWrQIt27dgo2NDQAgNjYW5ubmOr8rQNmKMVeuXMHYsWMr1COEwJQpU/Dtt9/i4MGDcHFx0dlvY2OjrZ+IiBoG5kvMlwDmSw05X2KnFBERPRZ3d3cEBARg/PjxWLduHZRKJebMmQMHBwcEBAQAAKZPnw5/f3+0atUK9+7dw4EDB9C2bVsAgLOzMyQSCWJiYjBgwADI5XIolUoEBQVh9uzZsLS0hI2NDUJCQiCVSiGRSKqNJzg4GN26dcPkyZMxbtw4mJmZ4eLFi4iNjcWqVauQkJCAkJAQBAYGwsPDAzKZDIcOHcLGjRsRHBwMoOwO4dKlSzFr1iyYmJggMDAQRkZG+O677zBv3jyEhYVVeB4/MTGxQizt2rWDkZGRzra8vDwsWrQIgwcPhp2dHbKysrB69Wqkp6drl/FNT0/Hq6++CmdnZ4SHh+ssI/zXO2QPGzRoEMaPH481a9bA19cXmZmZmD59Orp06VLp/BLlcnNzceXKFe37lJQUJCQkwNLSEs2bN69VzACQlpaGu3fvIi0tDaWlpdq7jG5ublAoFOjfvz88PDwQGBiIpUuX4saNG/jggw8wadIkGP/lLvSGDRvQtWvXSuc9mDRpErZs2YLvvvsOSqVSO7+CSqWCXC6vsp01xUdERPS0MF8qw3yJ+VKVarXOXyPFJY6JqK40tCWOy5UvcaxSqYRcLhe+vr46SxxPnjxZtGzZUhgbGwtra2sRGBgosrKytPtDQ0OFra2tkEgk1S5x3KVLFzFnzhztcc7OzmL58uUV4jl58qTw8fERCoVCmJmZiRdeeEEsWrRICCHE7du3xdSpU0X79u2FQqEQSqVSdOjQQYSHh4vS0lKdenbt2iV69+4tzMzMtEswb926VadMZcs0l7+uXbtWIbaCggLxxhtvCHt7eyGTyYSdnZ0YPHiwOHnypLZMZGRklXXWZMWKFcLDw0PI5XJhZ2cnRo0aJa5fv17tMQcOHKj0XOWfRW1iFqLsd6Syeg4cOKAtk5qaKvz9/YVcLhdNmzYVM2fOFMXFxTr13L9/X8jlcrF+/fpK463q2kRGRlbbztrE91d1scRxY8HrQUR1hfkS8yXmS40vX5L8ETRVIicnByqVCtnZ2drnUImIHkdhYSFSUlLg4uICk+dkCPqzIi8vDw4ODoiIiKh0iPLTdvfuXfTt2xfm5ub44YcfYGpqWu8xUP2r7jvL/EAXrwcR1RXmS4+P+RLpQ13kS1x9j4iIninx8fHYunUrkpOTcebMGYwaNQoAtEPc65ulpSX27duHvn374vjx43qJgYiIiOhhzJeooWCnFBERPXPCw8Ph6emJfv36IS8vD3FxcWjatKne4rGyssL8+fPRt29fvcVA9LStXr0aLVq0gImJCbp27VphBSAiInq2MF+ihoATnRMR0TOlY8eOOH36tL7DIGpUtm3bhhkzZmDt2rXo2rUrPvvsM/j6+iIxMfGZWqGHiIjKMF+ihoIjpYiIiIgauWXLlmH8+PF4++234eHhgbVr18LU1BQbN27Ud2hERETUgLFTioiIiKgRU6vVOH36NPr166fdJpVK0a9fP84LQkRERE8VH98jIqpHGo1G3yEQUS00pu9qVlYWSktL0axZM53tzZo1w+XLlyuULyoqQlFRkfZ9Tk7OU4+RiBqXxvRvMNHzrC6+q+yUIiKqBzKZDFKpFBkZGbC2toZMJoNEItF3WET0F0IIqNVq3L59G1KpFDKZTN8hPXMWL16MhQsX6jsMImqAmC8RPR/qMl9ipxQRUT2QSqVwcXFBZmYmMjIy9B0OEdXA1NQUzZs3h1Ta8Gc6aNq0KQwMDHDz5k2d7Tdv3oStrW2F8nPnzsWMGTO073NycuDk5PTU4ySiho/5EtHzpS7yJXZKERHVE5lMhubNm6OkpASlpaX6DoeIqmBgYABDQ8NGc3deJpOhU6dO2L9/P15//XUAZcPx9+/fj8mTJ1cob2xsDGNj43qOkogaC+ZLRM+HusqX2ClFRFSPJBIJjIyMYGRkpO9QiIi0ZsyYgaCgIHTu3BldunTBZ599hry8PLz99tv6Do2IGiHmS0SNBzuliIiIiBq54cOH4/bt25g/fz5u3LiBF198ET/++GOFyc+JiIiI6hI7pYiIiIgIkydPrvRxPSIiIqKnpeHP3klERERERERERM8cjpSqhhACQNmqMkRERETAn3lBeZ7Q2DFfIiIior+qbb7ETqlqPHjwAAC4zDERERFV8ODBA6hUKn2HoXfMl4iIiKgqNeVLEsHbfFXSaDTIyMiAUql8KstC5+TkwMnJCdeuXYO5uXmd1/+saCztBBpPWxtLO4HG01a2s+FpLG3VRzuFEHjw4AHs7e0hlXImBOZLdaOxtBNoPG1tLO0EGk9b2c6Gp7G09VnOlzhSqhpSqRSOjo5P/Tzm5uYN+gtQrrG0E2g8bW0s7QQaT1vZzoansbS1vtvJEVJ/Yr5UtxpLO4HG09bG0k6g8bSV7Wx4Gktbn8V8ibf3iIiIiIiIiIio3rFTioiIiIiIiIiI6h07pfTI2NgYISEhMDY21ncoT1VjaSfQeNraWNoJNJ62sp0NT2Npa2NpZ2PWWD7jxtJOoPG0tbG0E2g8bWU7G57G0tZnuZ2c6JyIiIiIiIiIiOodR0oREREREREREVG9Y6cUERERERERERHVO3ZKERERERERERFRvWOnFBERERERERER1Tt2ShERERERERERUb1jpxQREREREREREdU7dkoREREREREREVG9Y6cUERERERERERHVO3ZKERERERERERFRvWOnFBERERERERER1Tt2ShERERERERERUb1jpxQREREREREREdU7dkoREREREREREVG9Y6cUERERERERERHVO3ZKEVGDk5qaColEgk2bNuk7lGfGmDFj0KJFC51tEokECxYs0Es8REREVDvMaypiXkPUcLBTiojq3LFjx7BgwQLcv3//sY7/4osvmHg9hoyMDCxYsAAJCQn6DoWIiKjBYF6jH8xriBoHdkoRUZ07duwYFi5cyOStnmVkZGDhwoWVJm9ffvklEhMT6z8oIiKi5xzzGv1gXkPUOBjqOwAiInr6jIyM9B0CERERUZ1gXkPUcHCkFBHVqQULFmD27NkAABcXF0gkEkgkEqSmpqKkpAQfffQRWrZsCWNjY7Ro0QLz5s1DUVGR9vgWLVrgwoULOHTokPbYV199FQBw9+5dzJo1Cx06dIBCoYC5uTn8/f1x9uzZOom9sLAQCxYsQKtWrWBiYgI7Ozv87W9/Q3JyMoA/53QIDw/H8uXL4ezsDLlcDi8vL/z66686db366qvauB9W2RwINWnRogXGjBlTYfvD5zh48CBefvllAMDbb7+tvXbld2Yf57xERESNHfOaMg0xr3m4/atXr4arqytMTU3Rv39/XLt2DUIIfPTRR3B0dIRcLkdAQADu3r2rU8d3332HgQMHwt7eHsbGxmjZsiU++ugjlJaWastcunQJcrkco0eP1jn2yJEjMDAwQHBw8BO1g+h5x5FSRFSn/va3vyEpKQlbt27F8uXL0bRpUwCAtbU1xo0bh82bN+PNN9/EzJkzceLECSxevBiXLl3Ct99+CwD47LPPMGXKFCgUCrz//vsAgGbNmgEArl69il27dmHo0KFwcXHBzZs3sW7dOnh5eeHixYuwt7d/7LhLS0vx2muvYf/+/RgxYgSmTZuGBw8eIDY2Fr/++itatmypLfuf//wHDx48wKRJk1BYWIjPP/8cffr0wfnz57Wx1re2bdsiNDQU8+fPxz/+8Q/07t0bANCjRw+9xENERNQQMK9p+HlNVFQU1Go1pkyZgrt372Lp0qUYNmwY+vTpg4MHDyI4OBhXrlzBypUrMWvWLGzcuFF77KZNm6BQKDBjxgwoFAr89NNPmD9/PnJycvDpp59q2/LRRx9h9uzZePPNNzF48GDk5eVhzJgxaNOmDUJDQ+u8TUTPFUFEVMc+/fRTAUCkpKRotyUkJAgAYty4cTplZ82aJQCIn376SbutXbt2wsvLq0K9hYWForS0VGdbSkqKMDY2FqGhoTrbAIjIyMhax7xx40YBQCxbtqzCPo1Go1OvXC4X169f1+4/ceKEACD+9a9/abd5eXlV2oagoCDh7Oxc67iEEMLZ2VkEBQVV2P7Xc5w6darKdld2XgAiJCTkkWIhIiJqbJjXNMy8prz91tbW4v79+9rtc+fOFQCEp6enKC4u1m5/6623hEwmE4WFhdpt+fn5FeqdMGGCMDU11SlXWloqevXqJZo1ayaysrLEpEmThKGhoTh16lSt4yVqqPj4HhHVi++//x4AMGPGDJ3tM2fOBADs3r27xjqMjY0hlZb9s1VaWoo7d+5AoVCgdevWOHPmzBPF980336Bp06aYMmVKhX0SiUTn/euvvw4HBwft+y5duqBr167aNhIREVHDxrym4Rg6dChUKpX2fdeuXQEAf//732FoaKizXa1WIz09XbtNLpdrf37w4AGysrLQu3dv5Ofn4/Lly9p9UqkUmzZtQm5uLvz9/fHFF19g7ty56Ny589NsGtFzgZ1SRFQvfv/9d0ilUri5uelst7W1hYWFBX7//fca69BoNFi+fDnc3d1hbGyMpk2bwtraGufOnUN2dvYTxZecnIzWrVvrJB9VcXd3r7CtVatWSE1NfaIYiIiI6PnAvKbhaN68uc778g4qJyenSrffu3dPu+3ChQt44403oFKpYG5uDmtra/z9738HgAqfYcuWLbFgwQKcOnUK7dq1w4cffljnbSF6HrFTiojq1V/vzj2Kjz/+GDNmzMArr7yCr776Cnv27EFsbCzatWsHjUZTh1E+uara+fDEl/qoi4iIiOoO85rnP68xMDB4pO1CCADA/fv34eXlhbNnzyI0NBT/+9//EBsbiyVLlgBApZ/h3r17AQAZGRm4c+dOXYRP9NzjROdEVOcqSzacnZ2h0Wjw22+/oW3bttrtN2/exP379+Hs7Fzt8QCwY8cOeHt7Y8OGDTrb79+/r5149HG1bNkSJ06cQHFxcY3LDP/2228VtiUlJemsAtOkSRNcvXq1Qrna3Dn9qyZNmuD+/fuV1uXq6qp9/ySJMREREVWOeQ3zmsocPHgQd+7cwc6dO/HKK69ot6ekpFRafu3atYiNjcWiRYuwePFiTJgwAd999119hUv0zOJIKSKqc2ZmZgCgk3AMGDAAQNkqNA9btmwZAGDgwIE6x1eWrBgYGGjvTpXbvn27zrP9j2vIkCHIysrCqlWrKuz76zl37dqlc86TJ0/ixIkT8Pf3125r2bIlLl++jNu3b2u3nT17FkePHn3k2Fq2bImff/4ZarVauy0mJgbXrl3TKVfZdSciIqInw7yGeU1lykdSPXw91Wo1vvjiiwplU1JSMHv2bAwZMgTz5s1DeHg4oqOj8Z///Kfe4iV6VnGkFBHVuU6dOgEA3n//fYwYMQJGRkYYNGgQgoKCsH79eu1w55MnT2Lz5s14/fXX4e3trXP8mjVrEBYWBjc3N9jY2KBPnz547bXXEBoairfffhs9evTA+fPnERUVpXNX7XGNHj0a//nPfzBjxgycPHkSvXv3Rl5eHvbt24d//vOfCAgI0JZ1c3NDr1698O6776KoqAifffYZrKys8N5772nLvPPOO1i2bBl8fX0xduxY3Lp1C2vXrkW7du2Qk5PzSLGNGzcOO3bsgJ+fH4YNG4bk5GR89dVXOss5A2VJnoWFBdauXQulUgkzMzN07doVLi4uT3ZxiIiIGjHmNcxrKtOjRw80adIEQUFBmDp1KiQSCf773/9W6PQTQuCdd96BXC7HmjVrAAATJkzAN998g2nTpqFfv36wt7fXRxOIng36W/iPiBqyjz76SDg4OAipVKpdRrm4uFgsXLhQuLi4CCMjI+Hk5CTmzp2rs2SuEELcuHFDDBw4UCiVSgFAuzxwYWGhmDlzprCzsxNyuVz07NlTHD9+vMISwo+zdLIQZcv6vv/++9r4bG1txZtvvimSk5N16v30009FRESEcHJyEsbGxqJ3797i7NmzFer76quvhKurq5DJZOLFF18Ue/bseaylk4UQIiIiQjg4OAhjY2PRs2dP8csvv1S6PPN3330nPDw8hKGhoc41qIulk4mIiBor5jUNL695uP0PO3DggAAgtm/frrM9MjJSABCnTp3Sbjt69Kjo1q2bkMvlwt7eXrz33ntiz549AoA4cOCAEEKIzz//XAAQ33zzjU59aWlpwtzcXAwYMKDWMRM1RBIh/tKVS0RElUpNTYWLiws+/fRTzJo1S9/hEBERET025jVE9CzgnFJERERERERERFTvOKcUETVoarUad+/erbaMSqWCXC6vp4j+dPfuXZ1JPv/KwMAA1tbW9RgRERERPcuY19SstLRUZ0L2yigUCigUiqceCxHVjJ1SRNSgHTt2TGey0cpERkZizJgx9RPQQ/72t7/h0KFDVe53dnZGampq/QVEREREzzTmNTW7du1ajZOhh4SEYMGCBU89FiKqGeeUIqIG7d69ezh9+nS1Zdq1awc7O7t6iuhPp0+fxr1796rcL5fL0bNnz3qMiIiIiJ5lzGtqVlhYiCNHjlRbxtXVtU5WOSSiJ8dOKSIiIiIiIiIiqnec6JyIiIiIiIiIiOod55SqhkajQUZGBpRKJSQSib7DISIiomeAEAIPHjyAvb09pFLe32O+RERERH9V23ypQXdKtWjRAr///nuF7f/85z+xevXqGo/PyMiAk5PT0wiNiIiInnPXrl2Do6OjvsPQO+ZLREREVJWa8qUG3Sl16tQplJaWat//+uuv8PHxwdChQ2t1vFKpBFB2Ec3NzZ9KjERERPR8ycnJgZOTkzZPaOyYLxEREdFf1TZfatCdUtbW1jrvP/nkE7Rs2RJeXl61Or58CLq5uTmTLCIiItLBR9XKMF8iIiKiqtSULzWaiRDUajW++uorvPPOO0wiiYiIiIiIiIj0rEGPlHrYrl27cP/+fYwZM6bKMkVFRSgqKtK+z8nJqYfIiIiIiIiIiIgan0YzUmrDhg3w9/eHvb19lWUWL14MlUqlfXHSTiIiIiIiIiKip6NRjJT6/fffsW/fPuzcubPacnPnzsWMGTO078sn5qqOEAIlJSU6E6oT0bPFwMAAhoaGfHSXiEhPmC8RPR+MjIxgYGCg7zCIqBFpFJ1SkZGRsLGxwcCBA6stZ2xsDGNj41rXq1arkZmZifz8/CcNkYieMlNTU9jZ2UEmk+k7FCKiRoX5EtHzQyKRwNHREQqFQt+hEFEj0eA7pTQaDSIjIxEUFARDw7prrkajQUpKCgwMDGBvbw+ZTMZRGETPICEE1Go1bt++jZSUFLi7u0MqbTRPLhMR6RXzJaLnhxACt2/fxvXr1+Hu7s4RU0RULxp8p9S+ffuQlpaGd955p07rVavV0Gg0cHJygqmpaZ3WTUR1Sy6Xw8jICL///jvUajVMTEz0HRIRUaPAfIno+WJtbY3U1FQUFxezU4qI6kWD75Tq378/hBBPrX6OuCB6PvC7SkSkP/w3mOj5wJGMRFTfmCEQEREREREREVG9Y6cUERERERERERHVO3ZKNUJjxoyBRCKBRCKBTCaDm5sbQkNDUVJS8kT1Hjx4EBKJBPfv36+bQGshJSUFI0eOhL29PUxMTODo6IiAgABcvnxZp1xMTAy8vLygVCphamqKl19+GZs2bdIpk5qaColEgoSEhFqff8GCBWjTpg3MzMzQpEkT9OvXDydOnNCpc+zYsXBxcYFcLkfLli0REhICtVpdbb2ZmZkYOXIkWrVqBalUiunTp9cqnsOHD2PQoEGwt7eHRCLBrl27Ki136dIlDB48GCqVCmZmZnj55ZeRlpam3T9hwgS0bNkScrkc1tbWlV7TU6dOoW/fvrCwsECTJk3g6+uLs2fPVnq+K1euQKlUwsLCos7aQERE9DQxX2K+xHyJiOjpY6dUI+Xn54fMzEz89ttvmDlzJhYsWIBPP/1U32Fp1ZSEAEBxcTF8fHyQnZ2NnTt3IjExEdu2bUOHDh10Er2VK1ciICAAPXv2xIkTJ3Du3DmMGDECEydOxKxZs54ozlatWmHVqlU4f/48jhw5ghYtWqB///64ffs2AODy5cvQaDRYt24dLly4gOXLl2Pt2rWYN29etfUWFRXB2toaH3zwATw9PWsdT15eHjw9PbF69eoqyyQnJ6NXr15o06YNDh48iHPnzuHDDz/Umfy7U6dOiIyMxKVLl7Bnzx4IIdC/f3+UlpYCAHJzc+Hn54fmzZvjxIkTOHLkCJRKJXx9fVFcXKxzvuLiYrz11lvo3bt3nbWBiIioPjBfYr7EfImI6CkTVKXs7GwBQGRnZ1fYV1BQIC5evCgKCgr0ENmTCQoKEgEBATrbfHx8RLdu3cTdu3dFYGCgsLCwEHK5XPj5+YmkpCRtudTUVPHaa68JCwsLYWpqKjw8PMTu3btFSkqKAKDzCgoKEkIIkZOTI0aOHClMTU2Fra2tWLZsmfDy8hLTpk3T1uvs7CxCQ0NFYGCgUCqV2mPj4uJEr169hImJiXB0dBRTpkwRubm5Qggh4uPjBQCRmppaZVvT0tKEkZGRmDFjRoV9K1asEADEzz//LIQQ2jbEx8c/+kX9Q/nvzL59+6oss3TpUuHi4lLrOv96rWoLgPj2228rbB8+fLj4+9///kh1nT17VgAQV65cEUIIcerUKQFApKWlacucO3dOABC//fabzrHvvfee+Pvf/y4iIyOFSqWqkzY8juf5O0tEz5bq8oPGiPkS86VHxXyJ+RIRNXy1zZc4UqoOCSGQry7Ry0s84QqDcrkcarUaY8aMwS+//ILo6GgcP34cQggMGDBAezdn0qRJKCoqwuHDh3H+/HksWbIECoUCTk5O+OabbwAAiYmJyMzMxOeffw4AmDFjBo4ePYro6GjExsYiLi4OZ86cqRBDeHg4PD09ER8fjw8//BDJycnw8/PDkCFDcO7cOWzbtg1HjhzB5MmTAZQtWSuVSrFjxw7tHam/2rFjB4qLiyu9wzdhwgQoFAps3br1ia5dObVajfXr10OlUlV7ty47OxuWlpZ1cs5HpdFosHv3brRq1Qq+vr6wsbFB165dqx3ynZeXh8jISLi4uMDJyQkA0Lp1a1hZWWHDhg1Qq9UoKCjAhg0b0LZtW7Ro0UJ77E8//YTt27fzLh4REWkxX2K+xHyJ+RIRUTlDfQfQkBQUl8Jj/h69nPtiqC9MZY/+cQohsH//fuzZswf+/v7YtWsXjh49ih49egAAoqKi4OTkhF27dmHo0KFIS0vDkCFD0KFDBwCAq6urtq7yxMHGxkb7LPyDBw+wefNmbNmyBX379gUAREZGwt7evkIsffr0wcyZM7Xvx40bh1GjRmnnB3B3d8eKFSvg5eWFNWvWwMHBAStWrMB7772HhQsXonPnzvD29saoUaO0cSUlJUGlUsHOzq7C+WQyGVxdXZGUlPTI1+1hMTExGDFiBPLz82FnZ4fY2Fg0bdq00rJXrlzBypUrER4e/kTnfFy3bt1Cbm4uPvnkE4SFhWHJkiX48ccf8be//Q0HDhyAl5eXtuwXX3yB9957D3l5eWjdujViY2Mhk8kAAEqlEgcPHsTrr7+Ojz76CEDZ57Nnzx4YGpb9Ht65cwdjxozBV199BXNz8/pvLBERPZOYLzFfYr7EfImIqBxHSjVSMTExUCgUMDExgb+/P4YPH44xY8bA0NAQXbt21ZazsrJC69atcenSJQDA1KlTERYWhp49eyIkJATnzp2r9jxXr15FcXExunTpot2mUqnQunXrCmU7d+6s8/7s2bPYtGkTFAqF9uXr6wuNRoOUlBQAZXcib9y4gaioKHTv3h3bt29Hu3btEBsbW+trUZ44VCcqKkonjri4OO0+b29vJCQk4NixY/Dz88OwYcNw69atCnWkp6fDz88PQ4cOxfjx47XbH6534sSJtYo5Li5O57ioqKhaHafRaAAAAQEB+Ne//oUXX3wRc+bMwWuvvYa1a9fqlB01ahTi4+Nx6NAhtGrVCsOGDUNhYSEAoKCgAGPHjkXPnj3x888/4+jRo2jfvj0GDhyIgoICAMD48eMxcuRIvPLKK3XaBiIiovrCfOlPzJeYLxERPQ0cKVWH5EYGuBjqq7dzPwpvb2+sWbMGMpkM9vb2MDQ0RHR0dI3HjRs3Dr6+vti9ezf27t2LxYsXIyIiAlOmTHnc0LXMzMx03ufm5mLChAmYOnVqhbLNmzfX/qxUKjFo0CAMGjQIYWFh8PX1RVhYGHx8fODu7o7s7GxkZGRUuNuoVquRnJwMX9+aP7PBgwfrJJ8ODg46cbu5ucHNzQ3dunWDu7s7NmzYgLlz52rLZGRkwNvbGz169MD69et16n549Zra3iHr3LmzznHNmjWr1XFNmzaFoaEhPDw8dLa3bdsWR44c0dmmUqmgUqng7u6Obt26oUmTJvj222/x1ltvYcuWLUhNTcXx48chlZb1bW/ZsgVNmjTBd999hxEjRuCnn35CdHS09i6nEAIajQaGhoZYv3493nrrrcdqAxERPd+YLz0Z5kvMl4iIGhJ2StUhiUTyWEPC9aE8MXhY27ZtUVJSghMnTmiHo9+5cweJiYk6f5SdnJwwceJETJw4EXPnzsWXX36JKVOmaO+gPTxfgaurK4yMjHDq1CltYpSdnY2kpKQq7wiVe+mll3Dx4sUKcVZHIpGgTZs2OHbsGADgzTffRHBwMCIiIhAREaFTdu3atcjPz8fo0aNrrFepVEKpVNYqBo1Gg6KiIu379PR0eHt7a1doKU9Kyj1K+8rJ5fLHOk4mk+Hll19GYmKizvakpCQ4OztXeZwQAkIIbbvy8/MhlUohkUi0Zcrfl99dPH78uM7vwnfffYclS5bg2LFjcHBweOw2EBHR8435EvMlgPkS8yUiojLPR0ZA9cLd3R0BAQEYP3481q1bB6VSiTlz5sDBwQEBAQEAgOnTp8Pf3x+tWrXCvXv3cODAAbRt2xYA4OzsDIlEgpiYGAwYMAByuRxKpRJBQUGYPXs2LC0tYWNjg5CQkAp/oCsTHByMbt26YfLkyRg3bhzMzMxw8eJFxMbGYtWqVUhISEBISAgCAwPh4eEBmUyGQ4cOYePGjQgODgZQdodw6dKlmDVrFkxMTBAYGAgjIyN89913mDdvHsLCwtC+fXud8/41AQGAdu3awcjISGdbXl4eFi1ahMGDB8POzg5ZWVlYvXo10tPTMXToUABlCdarr74KZ2dnhIeHa5c+BgBbW9tq219+Vyw3Nxe3b99GQkICZDJZhbt2D8vNzcWVK1e071NSUpCQkABLS0ttkjt79mwMHz4cr7zyCry9vfHjjz/if//7Hw4ePAig7BGCbdu2oX///rC2tsb169fxySefQC6XY8CAAQAAHx8fzJ49G5MmTcKUKVOg0WjwySefwNDQEN7e3gCg/b0o98svv0AqlVa43o/TBiIiIn1hvlSG+RLzJSKiOvHU1v9rABrTEsflypc4VqlUQi6XC19fX50ljidPnixatmwpjI2NhbW1tQgMDBRZWVna/aGhocLW1lZIJJJqlzju0qWLmDNnjvY4Z2dnsXz58grxnDx5Uvj4+AiFQiHMzMzECy+8IBYtWiSEEOL27dti6tSpon379kKhUAilUik6dOggwsPDRWlpqU49u3btEr179xZmZmbaJZi3bt2qU6ayZZrLX9euXasQW0FBgXjjjTeEvb29kMlkws7OTgwePFicPHlSWyYyMrLKOmtS2THOzs7VHnPgwIFKjyv/LMpt2LBBuLm5CRMTE+Hp6Sl27dql3Zeeni78/f2FjY2NMDIyEo6OjmLkyJHi8uXLOnXs3btX9OzZU6hUKtGkSRPRp08fcfz48Spjq+0Sx7Vtw6N6nr+zRPRsqe0Sx40F8yXmS8yXmC8REf1VbfMliRBPuDZuA5aTkwOVSoXs7OwKz64XFhYiJSUFLi4uMDEx0VOEz6e8vDw4ODggIiICY8eOrffz3717F3379oW5uTl++OEHmJqa1nsMVP/4nSWiulJdftAYMV96OpgvkT7wO0tEdaW2+RJX36OnLj4+Hlu3bkVycjLOnDmDUaNGAYB2iHt9s7S0xL59+9C3b18cP35cLzEQERERPYz5EhERNUacU4rqRXh4OBITEyGTydCpUyfExcWhadOmeovHysoK8+fP19v5iYiIiP6K+RIRETU27JSip65jx444ffq0vsMgIiIiemYxXyIiosaIj+8REREREREREVG9Y6cUERERERERERHVO3ZKERERERERERFRvWOnFBERERERERER1Tt2ShERERE9R1avXo0WLVrAxMQEXbt2xcmTJ6ss++WXX6J3795o0qQJmjRpgn79+lUoP2bMGEgkEp2Xn5/f024GERERETuliIiIqHZu5RTi1/Rs/JqeDXWJRt/hNErbtm3DjBkzEBISgjNnzsDT0xO+vr64detWpeUPHjyIt956CwcOHMDx48fh5OSE/v37Iz09Xaecn58fMjMzta+tW7fWR3OIiIganHt5am2+lK8u0Xc4zzxDfQdAREREz77k27nov/wwSjUCANDTzQpR47rpOarGZ9myZRg/fjzefvttAMDatWuxe/dubNy4EXPmzKlQPioqSuf9v//9b3zzzTfYv38/Ro8erd1ubGwMW1vbpxs8ERFRA5ddUIxeS35CnroUANDCyhQHZr0KiUSi58ieXRwp1Qg9PExfJpPBzc0NoaGhKCl5sl7cgwcPQiKR4P79+3UTaC2kpKRg5MiRsLe3h4mJCRwdHREQEIDLly/rlIuJiYGXlxeUSiVMTU3x8ssvY9OmTTplUlNTIZFIkJCQUOvzL1iwAG3atIGZmZn2sYgTJ07o1Dl27Fi4uLhALpejZcuWCAkJgVqtrrbezMxMjBw5Eq1atYJUKsX06dNrFc+aNWvwwgsvwNzcHObm5ujevTt++OEH7f67d+9iypQpaN26NeRyOZo3b46pU6ciOztbW2bTpk0VHuMofz18J76oqAjvv/8+nJ2dYWxsjBYtWmDjxo068Xz22Wfaczk5OeFf//oXCgsLq23Dzp070b9/f1hZWT3y50FET09qVp62QwoAkm/l6TGaxkmtVuP06dPo16+fdptUKkW/fv1w/PjxWtWRn5+P4uJiWFpa6mw/ePAgbGxs0Lp1a7z77ru4c+dOlXUUFRUhJydH59UQMV9ivsR8iYge1Y3sQm2HFACk3snXyZ+oIo6UaqT8/PwQGRmJoqIifP/995g0aRKMjIwwd+5cfYcGoCzxlslk1ZYpLi6Gj48PWrdujZ07d8LOzg7Xr1/HDz/8oJPorVy5EtOnT0dwcDDWrFkDmUyG7777DhMnTsSvv/6K8PDwx46zVatWWLVqFVxdXVFQUIDly5ejf//+uHLlCqytrXH58mVoNBqsW7cObm5u+PXXXzF+/Hjk5eVVe96ioiJYW1vjgw8+wPLly2sdj6OjIz755BO4u7tDCIHNmzcjICAA8fHxaNeuHTIyMpCRkYHw8HB4eHjg999/x8SJE5GRkYEdO3YAAIYPH15hLpExY8agsLAQNjY22m3Dhg3DzZs3sWHDBri5uSEzMxMazZ+P82zZsgVz5szBxo0b0aNHDyQlJWkT/GXLllXZhry8PPTq1QvDhg3D+PHja912IqofRgYSFJcyudKHrKwslJaWolmzZjrbmzVrVqFzoSrBwcGwt7fX6djy8/PD3/72N7i4uCA5ORnz5s2Dv78/jh8/DgMDgwp1LF68GAsXLnyyxjwnmC8xX2K+RESPg/nSIxBUpezsbAFAZGdnV9hXUFAgLl68KAoKCvQQ2ZMJCgoSAQEBOtt8fHxEt27dxN27d0VgYKCwsLAQcrlc+Pn5iaSkJG251NRU8dprrwkLCwthamoqPDw8xO7du0VKSooAoPMKCgoSQgiRk5MjRo4cKUxNTYWtra1YtmyZ8PLyEtOmTdPW6+zsLEJDQ0VgYKBQKpXaY+Pi4kSvXr2EiYmJcHR0FFOmTBG5ublCCCHi4+MFAJGamlplW9PS0oSRkZGYMWNGhX0rVqwQAMTPP/8shBDaNsTHxz/6Rf1D+e/Mvn37qiyzdOlS4eLiUus6/3qtHlWTJk3Ev//97yr3/9///Z+QyWSiuLi40v23bt0SRkZG4j//+Y922w8//CBUKpW4c+dOlfVOmjRJ9OnTR2fbjBkzRM+ePWsVd118Hg97nr+zRM+CfRdvCOfgGOE2b7dwDo4RXRdV/e9cQ1ddfvA0paenCwDi2LFjOttnz54tunTpUuPxixcvFk2aNBFnz56ttlxycnK1f8sKCwtFdna29nXt2jXmS8yXHgnzpT8xXyJqWC5n5ujkS87BMaK4pFTfYelFbfMlPr5Xl4QA1Hn6eYkn64WVy+VQq9UYM2YMfvnlF0RHR+P48eMQQmDAgAEoLi4GAEyaNAlFRUU4fPgwzp8/jyVLlkChUMDJyQnffPMNACAxMRGZmZn4/PPPAQAzZszA0aNHER0djdjYWMTFxeHMmTMVYggPD4enpyfi4+Px4YcfIjk5GX5+fhgyZAjOnTuHbdu24ciRI5g8eTIAwNraGlKpFDt27EBpaWmF+gBgx44dKC4uxqxZsyrsmzBhAhQKRZ1N5qpWq7F+/XqoVCp4enpWWS47O7vCYxNPQ2lpKb7++mvk5eWhe/fu1cZjbm4OQ8PKB07+5z//gampKd58803ttujoaHTu3BlLly6Fg4MDWrVqhVmzZqGgoEBbpkePHjh9+rR2laerV6/i+++/x4ABA+qohUREjUvTpk1hYGCAmzdv6my/efNmjfNBhYeH45NPPsHevXvxwgsvVFvW1dUVTZs2xZUrVyrdb2xsrH3sqfz1SJgvAWC+xHypDPMlImrs+PheXSrOBz6218+552UAMrNHPkwIgf3792PPnj3w9/fHrl27cPToUfTo0QNA2QSpTk5O2LVrF4YOHYq0tDQMGTIEHTp0AFCWuJYrTxxsbGxgYWEBAHjw4AE2b96MLVu2oG/fvgCAyMhI2NtXvE59+vTBzJkzte/HjRuHUaNGaecHcHd3x4oVK+Dl5YU1a9bAwcEBK1aswHvvvYeFCxeic+fO8Pb2xqhRo7RxJSUlQaVSwc7OrsL5ZDIZXF1dkZSU9MjX7WExMTEYMWIE8vPzYWdnh9jYWDRt2rTSsleuXMHKlSufaAh8Tc6fP4/u3bujsLAQCoUC3377LTw8PCotm5WVhY8++gj/+Mc/qqxvw4YNGDlyJORyuXbb1atXceTIEZiYmODbb79FVlYW/vnPf+LOnTuIjIwEAIwcORJZWVno1asXhBAoKSnBxIkTMW/evLptMBFRIyGTydCpUyfs378fr7/+OgBAo9Fg//792g6IyixduhSLFi3Cnj170Llz5xrPc/36ddy5c6fSv511gvkSAOZLzJeYLxERAZzovNGKiYmBQqGAiYkJ/P39MXz4cIwZMwaGhobo2rWrtpyVlRVat26NS5cuAQCmTp2KsLAw9OzZEyEhITh37ly157l69SqKi4vRpUsX7TaVSoXWrVtXKPvXRPns2bPYtGkTFAqF9uXr6wuNRoOUlBQAZXcib9y4gaioKHTv3h3bt29Hu3btEBsbW+trUdNcDEBZsvlwHHFxcdp93t7eSEhIwLFjx+Dn54dhw4ZVujR3eno6/Pz8MHToUJ1n/x+ud+LEibWKOS4uTue4h1dXat26NRISEnDixAm8++67CAoKwsWLFyvUkZOTg4EDB8LDwwMLFiyo9DzHjx/HpUuXMHbsWJ3tGo0GEokEUVFR6NKlCwYMGIBly5Zh8+bN2rt/Bw8exMcff4wvvvgCZ86cwc6dO7F792589NFHNV5TInr2CXCeBH2YMWMGvvzyS2zevBmXLl3Cu+++i7y8PO1qfKNHj9aZ72jJkiX48MMPsXHjRrRo0QI3btzAjRs3kJubCwDIzc3F7Nmz8fPPPyM1NRX79+9HQEAA3Nzc4Ovrq5c2PkuYL/2J+RLzJSJ6PMyYqseRUnXJyLTsDpy+zv0IvL29tZNY2tvbw9DQENHR0TUeN27cOPj6+mL37t3Yu3cvFi9ejIiICEyZMuVxI9cyM9O9c5mbm4sJEyZg6tSpFco2b95c+7NSqcSgQYMwaNAghIWFwdfXF2FhYfDx8YG7uzuys7ORkZFR4W6jWq1GcnJyrZLuwYMH6ySfDg4OOnG7ubnBzc0N3bp1g7u7OzZs2KDzn4KMjAx4e3ujR48eWL9+vU7dD6+WUttHIDp37qxz3MOT3pavEAQAnTp1wqlTp/D5559j3bp12jIPHjyAn58flEolvv32WxgZGVV6nn//+9948cUX0alTJ53tdnZ2cHBwgEql0m5r27YthBC4fv063N3d8eGHHyIwMBDjxo0DAHTo0AF5eXn4xz/+gffff7/aa0pERJUbPnw4bt++jfnz5+PGjRt48cUX8eOPP2r/DqSlpUEq/fOe45o1a6BWq3UeKQKAkJAQLFiwAAYGBjh37hw2b96M+/fvw97eHv3798dHH30EY2Pjp9MI5ktPhPkS8yUienbxpt2jY6dUXZJIHmtIuD6UJwYPa9u2LUpKSnDixAntcPQ7d+4gMTFRZzizk5MTJk6ciIkTJ2Lu3Ln48ssvMWXKFO0dtIfnK3B1dYWRkRFOnTqlTYyys7ORlJSEV155pdoYX3rpJVy8eLFCnNWRSCRo06YNjh07BgB48803ERwcjIiICEREROiUXbt2LfLz8zF69Oga61UqlVAqlbWKQaPRoKioSPs+PT0d3t7e6NSpEyIjI3X+swDgkdpXTi6X1/q4v8aTk5MDX19fGBsbIzo6GiYmJpUel5ubi//7v//D4sWLK+zr2bMntm/fjtzcXCgUCgBlQ/+lUikcHR0BlC07/te2lq/iJIR4pGtKRM8OCSTgPT/9mjx5cpWP6x08eFDnfWpqarV1yeVy7Nmzp44iqyXmSwCYLzFfYr5E1JAxX6o9dkqRlru7OwICAjB+/HisW7cOSqUSc+bMgYODAwICAgAA06dPh7+/P1q1aoV79+7hwIEDaNu2LQDA2dkZEokEMTExGDBgAORyOZRKJYKCgjB79mxYWlrCxsYGISEhkEqlkEgk1cYTHByMbt26YfLkyRg3bhzMzMxw8eJFxMbGYtWqVUhISEBISAgCAwPh4eEBmUyGQ4cOYePGjQgODgZQdodw6dKlmDVrFkxMTBAYGAgjIyN89913mDdvHsLCwtC+fXud8yYmJlaIpV27dhXujuXl5WHRokUYPHgw7OzskJWVhdWrVyM9PR1Dhw4FUJZgvfrqq3B2dkZ4eDhu376tPb6mSWnL7+zl5ubi9u3bSEhIgEwmq3K+AwCYO3cu/P390bx5czx48ABbtmzBwYMHtf/hyMnJQf/+/ZGfn4+vvvoKOTk5yMnJAVA2EerDS39v27YNJSUl+Pvf/17hPCNHjsRHH32Et99+GwsXLkRWVhZmz56Nd955RzuXwqBBg7Bs2TJ07NgRXbt2xZUrV/Dhhx9i0KBBlS4xXu7u3btIS0tDRkbZXfTyz8PW1rbGa0ZET88Tzg9N1GAwXyrDfKkM8yUiqlT1/3TTw57qGoDPueqWMHyel0utbInjcuVLHKtUKiGXy4Wvr6/OEseTJ08WLVu2FMbGxsLa2loEBgaKrKws7f7Q0FBha2srJBJJtUscd+nSRcyZM0d7nLOzs1i+fHmFeE6ePCl8fHyEQqEQZmZm4oUXXhCLFi0SQghx+/ZtMXXqVNG+fXuhUCiEUqkUHTp0EOHh4aK0VHfZzV27donevXsLMzMz7RLMW7du1SlT2TLN5a9r165ViK2goEC88cYbwt7eXshkMmFnZycGDx4sTp48qS0TGRlZZZ01qewYZ2fnao955513hLOzs5DJZMLa2lr07dtX7N27V7v/wIEDVcaTkpKiU1f37t3FyJEjqzzXpUuXRL9+/YRcLheOjo5ixowZIj8/X7u/uLhYLFiwQLRs2VKYmJgIJycn8c9//lPcu3ev2jZUdc1CQkKqPa4mz/N3luhZEHvhhnAOjhHu874XzsExosuiWH2HpDe1XeK4sWC+xHyJ+RLzJSIqcykzuyxfer8sX3IOjhHqktKaD2yAapsvSYTgvc+q5OTkQKVSaZeAfVhhYSFSUlLg4uJS5XBeqlxeXh4cHBwQERFRYULI+nD37l307dsX5ubm+OGHH2Bq+mjzS9Dzid9Zoiez7+JNjPvPL5AZSqEu0cBGaYyT7/fTd1h6UV1+0BgxX3o6mC+RPvA7S/RkLt/Igd9ncdp8CQB+W+QPI4PGt8ZcbfOlxndlqN7Fx8dj69atSE5OxpkzZzBq1CgA0A5xr2+WlpbYt28f+vbti+PHj+slBiIiIqKHMV8iIqLGiHNKUb0IDw9HYmIiZDIZOnXqhLi4ODRt2lRv8VhZWWH+/Pl6Oz8R0fOKUyQQPT3Ml4iInm+VPYfGZ9Oqx04peuo6duyI06dP6zsMIiIiomcW8yUiooaDN/Fqj4/vERERERERERHVkRoWTqWHsFOKiIiIHhlHohMRERHRk2KnFBEREdWInVBEREREVNfYKUVERES1xuHoRERERFRX2ClFREREtSbh1J1EREREtSY43rxa7JQiIiIiIiIiInpCgv1Pj4ydUkREREREREREdYQjy2uPnVKN0JgxYyCRSCCRSCCTyeDm5obQ0FCUlJQ8Ub0HDx6ERCLB/fv36ybQWkhJScHIkSNhb28PExMTODo6IiAgAJcvX9YpFxMTAy8vLyiVSpiamuLll1/Gpk2bdMqkpqZCIpEgISGh1udfsGAB2rRpAzMzMzRp0gT9+vXDiRMndOocO3YsXFxcIJfL0bJlS4SEhECtVldbb2ZmJkaOHIlWrVpBKpVi+vTptY6p3CeffAKJRFLh2OTkZLzxxhuwtraGubk5hg0bhps3b+qUWbRoEXr06AFTU1NYWFhUWn/579DDr6+//lq7f+fOnfDx8dGep3v37tizZ0+Nce/cuRP9+/eHlZXVI38eRFR/eCeQGjrmS8yXmC8R0ePiHJy1x06pRsrPzw+ZmZn47bffMHPmTCxYsACffvqpvsPSqikJAYDi4mL4+PggOzsbO3fuRGJiIrZt24YOHTroJHorV65EQEAAevbsiRMnTuDcuXMYMWIEJk6ciFmzZj1RnK1atcKqVatw/vx5HDlyBC1atED//v1x+/ZtAMDly5eh0Wiwbt06XLhwAcuXL8fatWsxb968austKiqCtbU1PvjgA3h6ej5yXKdOncK6devwwgsv6GzPy8tD//79IZFI8NNPP+Ho0aNQq9UYNGgQNBqNtpxarcbQoUPx7rvvVnueyMhIZGZmal+vv/66dt/hw4fh4+OD77//HqdPn4a3tzcGDRqE+Pj4auvMy8tDr169sGTJkkduNxERUV1ivsR8ifkSEdFTJqhK2dnZAoDIzs6usK+goEBcvHhRFBQU6CGyJxMUFCQCAgJ0tvn4+Ihu3bqJu3fvisDAQGFhYSHkcrnw8/MTSUlJ2nKpqanitddeExYWFsLU1FR4eHiI3bt3i5SUFIGyFcO1r6CgICGEEDk5OWLkyJHC1NRU2NraimXLlgkvLy8xbdo0bb3Ozs4iNDRUBAYGCqVSqT02Li5O9OrVS5iYmAhHR0cxZcoUkZubK4QQIj4+XgAQqampVbY1LS1NGBkZiRkzZlTYt2LFCgFA/Pzzz0IIoW1DfHz8o1/UP5T/zuzbt6/KMkuXLhUuLi61rvOv16omDx48EO7u7iI2NrbCsXv27BFSqVTnd/r+/ftCIpGI2NjYCnVFRkYKlUpV6XkAiG+//bbWcQkhhIeHh1i4cGGtytbF5/Gw5/k7S/Qs2HvhhnAOjhFtP/xBOAfHiE4fVfw3o7GoLj9ojJgvMV96VMyXqsd8iej5dSE9Wydfcg6OEYXFJfoOSy9qmy9xpFQdEkIgvzhfLy/xhM9RyOVyqNVqjBkzBr/88guio6Nx/PhxCCEwYMAAFBcXAwAmTZqEoqIiHD58GOfPn8eSJUugUCjg5OSEb775BgCQmJiIzMxMfP755wCAGTNm4OjRo4iOjkZsbCzi4uJw5syZCjGEh4fD09MT8fHx+PDDD5GcnAw/Pz8MGTIE586dw7Zt23DkyBFMnjwZAGBtbQ2pVIodO3agtLS00nbt2LEDxcXFld7hmzBhAhQKBbZu3fpE166cWq3G+vXroVKpqr1bl52dDUtLyzo5Z2UmTZqEgQMHol+/fhX2FRUVQSKRwNjYWLvNxMQEUqkUR44ceaxzNW3aFF26dMHGjRur/T3UaDR48ODBU207ET09T/p3hqgc8yXmS8yXmC8RNSZMoapnqO8AGpKCkgJ03dJVL+c+MfIETI1MH/k4IQT279+PPXv2wN/fH7t27cLRo0fRo0cPAEBUVBScnJywa9cuDB06FGlpaRgyZAg6dOgAAHB1ddXWVf7H08bGRvtc/YMHD7B582Zs2bIFffv2BVA2hNne3r5CLH369MHMmTO178eNG4dRo0Zpn/F3d3fHihUr4OXlhTVr1sDBwQErVqzAe++9h4ULF6Jz587w9vbGqFGjtHElJSVBpVLBzs6uwvlkMhlcXV2RlJT0yNftYTExMRgxYgTy8/NhZ2eH2NhYNG3atNKyV65cwcqVKxEeHv5E56zK119/jTNnzuDUqVOV7u/WrRvMzMwQHByMjz/+GEIIzJkzB6WlpcjMzHykc4WGhqJPnz4wNTXF3r178c9//hO5ubmYOnVqpeXDw8ORm5uLYcOGPXK7iIio4WC+xHyJ+RLzJaKGSoA9UI+KI6UaqZiYGCgUCpiYmMDf3x/Dhw/HmDFjYGhoiK5d/0wUrays0Lp1a1y6dAkAMHXqVISFhaFnz54ICQnBuXPnqj3P1atXUVxcjC5dumi3qVQqtG7dukLZzp0767w/e/YsNm3aBIVCoX35+vpCo9EgJSUFQNmdpxs3biAqKgrdu3fH9u3b0a5dO8TGxtb6WshkshrLREVF6cQRFxen3eft7Y2EhAQcO3YMfn5+GDZsGG7dulWhjvT0dPj5+WHo0KEYP368dvvD9U6cOLFWMcfFxekcFxUVhWvXrmHatGmIioqCiYlJpcdZW1tj+/bt+N///geFQgGVSoX79+/jpZdeglT6aP8cfPjhh+jZsyc6duyI4OBgvPfee1XOs7FlyxYsXLgQ//d//wcbGxsA1V9TInoeMOmiho/50p+YLzFfIqLa4zzntceRUnVIbijHiZEnai74lM79KLy9vbFmzRrIZDLY29vD0NAQ0dHRNR43btw4+Pr6Yvfu3di7dy8WL16MiIgITJky5XFD1zIzM9N5n5ubiwkTJlR6J6l58+ban5VKJQYNGoRBgwYhLCwMvr6+CAsLg4+PD9zd3ZGdnY2MjIwKdxvVajWSk5Ph6+tbY2yDBw/WST4dHBx04nZzc4Obmxu6desGd3d3bNiwAXPnztWWycjIgLe3N3r06IH169fr1P3wainm5uY1xgKUJaQPH9esWTPs378ft27dwksvvaTdXlpaisOHD2PVqlUoKiqCgYEB+vfvj+TkZGRlZcHQ0BAWFhawtbXVuYv7OLp27YqPPvoIRUVFOsPdv/76a4wbNw7bt2/XGSJf3TUlomcXkyx6UsyXngzzJeZLRPTsk3D5vVpjp1QdkkgkjzUkXB/KE4OHtW3bFiUlJThx4oR2OPqdO3eQmJgIDw8PbTknJydMnDgREydOxNy5c/Hll19iypQp2jtoD89X4OrqCiMjI5w6dUqbGGVnZyMpKQmvvPJKtTG+9NJLuHjxYoU4qyORSNCmTRscO3YMAPDmm28iODgYERERiIiI0Cm7du1a5OfnY/To0TXWq1QqoVQqaxWDRqNBUVGR9n16ejq8vb3RqVMnREZGVrjD9ijtKyeXyysc17dvX5w/f15n29tvv402bdogODgYBgYGOvvKh8z/9NNPuHXrFgYPHvzIcTwsISEBTZo00Umwtm7dinfeeQdff/01Bg4cqFP+Ua4pET07mGTRk2K+xHwJYL7EfImIqAw7pUjL3d0dAQEBGD9+PNatWwelUok5c+bAwcEBAQEBAIDp06fD398frVq1wr1793DgwAG0bdsWAODs7AyJRIKYmBgMGDAAcrkcSqUSQUFBmD17NiwtLWFjY4OQkBBIpdIa/2MTHByMbt26YfLkyRg3bhzMzMxw8eJFxMbGYtWqVUhISEBISAgCAwPh4eEBmUyGQ4cOYePGjQgODgZQdodw6dKlmDVrFkxMTBAYGAgjIyN89913mDdvHsLCwtC+fXud8yYmJlaIpV27djAyMtLZlpeXh0WLFmHw4MGws7NDVlYWVq9ejfT0dAwdOhRAWYL16quvwtnZGeHh4dqljwHA1ta22vaX39nLzc3F7du3kZCQAJlMppPwPkypVFZoi5mZGaysrHS2R0ZGom3btrC2tsbx48cxbdo0/Otf/9J5RCAtLQ13795FWloaSktLtbG4ublBoVDgf//7H27evIlu3brBxMQEsbGx+Pjjj3UmSN2yZQuCgoLw+eefo2vXrrhx4waAsgRRpVJV2e7y82ZkZAD48/OwtbWt8ZoRERE9bcyXyjBfYr5ERFQnnt4CgM+/xrTEcbnyJY5VKpWQy+XC19dXZ4njyZMni5YtWwpjY2NhbW0tAgMDRVZWlnZ/aGiosLW1FRKJpNoljrt06SLmzJmjPc7Z2VksX768QjwnT54UPj4+QqFQCDMzM/HCCy+IRYsWCSGEuH37tpg6dapo3769UCgUQqlUig4dOojw8HBRWlqqU8+uXbtE7969hZmZmXYJ5q1bt+qUqWyZ5vLXtWvXKsRWUFAg3njjDWFvby9kMpmws7MTgwcPFidPntSWiYyMrLLOmlR2jLOzc43HPayy5ZGDg4NFs2bNhJGRkXB3dxcRERFCo9HolAkKCqr0/AcOHBBCCPHDDz+IF198Ufu5eHp6irVr1+pcdy8vr0rrKP+9qEpV1ywkJOSR2v5Xz/N3luhZsOfXTOEcHCPazf9ROAfHiE4f7dV3SHpT2yWOGwvmS8yXmC8xXyKiMr+m39fJl5yDY0SBukTfYelFbfMliRBcoLAqOTk5UKlUyM7OrvDsemFhIVJSUuDi4lLlJIlUuby8PDg4OCAiIgJjx46t9/PfvXsXffv2hbm5OX744QeYmj4fjxDQk+F3lujJ7L1wA//472kojA2RW1QCKzMZTn/oo++w9KK6/KAxYr70dDBfIn3gd5boyfyano3XVh7R5ksAcPkjP5gYGdRwZMNT23yJq+/RUxcfH4+tW7ciOTkZZ86cwahRowBAO8S9vllaWmLfvn3o27cvjh8/rpcYiIiIiB7GfImIqOHgDJy1xzmlqF6Eh4cjMTERMpkMnTp1QlxcnHbiSH2wsrLC/Pnz9XZ+IqLnTfmwaiZZRE8P8yUiImps2ClFT13Hjh1x+vRpfYdBRERE9MxivkRE1IDwLl6t8fE9IiIiqj0mWURERERUR9gpRURERERERET0FHBpueqxU4qIiIgeGfMrIiIiInpS7JQiIiIiIiIiIqojnO2g9tgpRURERLXGJIuIiIiI6go7pYiIiIiIiIiI6ohEwtt4tcVOKSIiIqoRJ+kkIiIiorrGTqlGaMyYMZBIJJBIJJDJZHBzc0NoaChKSkqeqN6DBw9CIpHg/v37dRNoLaSkpGDkyJGwt7eHiYkJHB0dERAQgMuXL+uUi4mJgZeXF5RKJUxNTfHyyy9j06ZNOmVSU1MhkUiQkJBQ6/MvWLAAbdq0gZmZGZo0aYJ+/frhxIkTOnWOHTsWLi4ukMvlaNmyJUJCQqBWq6utNzMzEyNHjkSrVq0glUoxffr0WseUnp6Ov//977CysoJcLkeHDh3wyy+/aPc//PmXv/z8/HTqaNGiRYUyn3zyiXZ/YmIivL290axZM5iYmMDV1RUffPABiouLdeq5f/8+Jk2aBDs7OxgbG6NVq1b4/vvvq41/586d6N+/P6ysrB758yCi+iPYS0UNHPMl5kvMl4ioLgguD1MtQ30HQPrh5+eHyMhIFBUV4fvvv8ekSZNgZGSEuXPn6js0AIBarYZMJqu2THFxMXx8fNC6dWvs3LkTdnZ2uH79On744QedRG/lypWYPn06goODsWbNGshkMnz33XeYOHEifv31V4SHhz92nK1atcKqVavg6uqKgoICLF++HP3798eVK1dgbW2Ny5cvQ6PRYN26dXBzc8Ovv/6K8ePHIy8vr9rzFhUVwdraGh988AGWL19e63ju3buHnj17wtvbGz/88AOsra3x22+/oUmTJjrlyj//csbGxhXqCg0Nxfjx47XvlUql9mcjIyOMHj0aL730EiwsLHD27FmMHz8eGo0GH3/8MYCyz9DHxwc2NjbYsWMHHBwc8Pvvv8PCwqLaNuTl5aFXr14YNmyYzvmJ6NnA4ejUmDBfYr7EfImI6CkTVKXs7GwBQGRnZ1fYV1BQIC5evCgKCgr0ENmTCQoKEgEBATrbfHx8RLdu3cTdu3dFYGCgsLCwEHK5XPj5+YmkpCRtudTUVPHaa68JCwsLYWpqKjw8PMTu3btFSkqKQNkK4dpXUFCQEEKInJwcMXLkSGFqaipsbW3FsmXLhJeXl5g2bZq2XmdnZxEaGioCAwOFUqnUHhsXFyd69eolTExMhKOjo5gyZYrIzc0VQggRHx8vAIjU1NQq25qWliaMjIzEjBkzKuxbsWKFACB+/vlnIYTQtiE+Pv7RL+ofyn9n9u3bV2WZpUuXChcXl1rX+ddrVZ3g4GDRq1evastU9vn/lbOzs1i+fHntAvzDv/71L51zr1mzRri6ugq1Wv1I9ZSri8/jYc/zd5boWfDD+UzhHBwjPBfuEc7BMeLFhXv0HZLeVJcfNEbMl5gvPSrmS8yXiBqqc9fu6+RLzsExIq+oWN9h6UVt8yU+vleHhBDQ5Ofr5SWe8DEKuVwOtVqNMWPG4JdffkF0dDSOHz8OIQQGDBigHWY8adIkFBUV4fDhwzh//jyWLFkChUIBJycnfPPNNwDKhipnZmbi888/BwDMmDEDR48eRXR0NGJjYxEXF4czZ85UiCE8PByenp6Ij4/Hhx9+iOTkZPj5+WHIkCE4d+4ctm3bhiNHjmDy5MkAAGtra0ilUuzYsQOlpaWVtmvHjh0oLi7GrFmzKuybMGECFAoFtm7d+kTXrpxarcb69euhUqng6elZZbns7GxYWlrWyTn/Kjo6Gp07d8bQoUNhY2ODjh074ssvv6xQ7uDBg7CxsUHr1q3x7rvv4s6dOxXKfPLJJ7CyskLHjh3x6aefVvu4wpUrV/Djjz/Cy8tLJ5bu3btj0qRJaNasGdq3b4+PP/64ys+KiIgaB+ZLzJeYLzFfIiIqx8f36pAoKEDiS530cu7WZ05DYmr6yMcJIbB//37s2bMH/v7+2LVrF44ePYoePXq+PeRVAAEAAElEQVQAAKKiouDk5IRdu3Zh6NChSEtLw5AhQ9ChQwcAgKurq7au8sTBxsZGO+T4wYMH2Lx5M7Zs2YK+ffsCACIjI2Fvb18hlj59+mDmzJna9+PGjcOoUaO08wO4u7tjxYoV8PLywpo1a+Dg4IAVK1bgvffew8KFC9G5c2d4e3tj1KhR2riSkpKgUqlgZ2dX4XwymQyurq5ISkp65Ov2sJiYGIwYMQL5+fmws7NDbGwsmjZtWmnZK1euYOXKlU80BL46V69exZo1azBjxgzMmzcPp06dwtSpUyGTyRAUFASgbCj63/72N7i4uCA5ORnz5s2Dv78/jh8/DgMDAwDA1KlT8dJLL8HS0hLHjh37f/buPKypK/8f+DsIIYGEIAiyiCkIIihalyqCllKFgC3Qfq1LoYhToTIjLnWL2ipKUauCjqjj0p9FZwap1bowUavYuuBS3EBsUVCEwQJWcQmyyJbz+4Ph1sgWRI3C5/U8eR5zc+65n3sh+vaee+/B/PnzUVRUhNWrV6ttz83NDZcuXUJlZSU+++wzREVFqdXy888/IygoCAcPHsSNGzfwt7/9DdXV1YiMjHwh+08IIeTVR3mJ8hLlJcpLhBBSj66U6qAUCgVEIhEEAgF8fX0xbtw4TJw4Ebq6uhgyZAjXztTUFI6Ojrh69SqAun98o6Oj4e7ujsjISGRkZDS7nZs3b6K6uhqDBw/mlkkkEjg6OjZoO2jQILX3ly9fxrZt2yASibiXTCaDSqVCbm4ugLqRyNu3byMhIQFDhw7Frl270Lt3byQnJ2t8LFp6FgNQFzafrCMlJYX7zNPTE+np6Thz5gx8fHwwduxY3Llzp0EfBQUF8PHxwZgxY9Tu/X+y3/DwcI1qTklJUVsvISEBAKBSqTBgwAAsW7YM/fv3x2effYawsDBs2rSJW3f8+PHw9/eHi4sLPvjgAygUCpw/fx7Hjx/n2sycORPvvPMO+vbti/DwcMTGxmLdunWorKxUq2Pnzp24dOkSduzYgQMHDqiFR5VKBXNzc2zZsgUDBw7EuHHj8MUXX3C1NHdMCSGvPnpkJ+kIKC/9ifIS5SVCiOboCZyaoyulniOeUAjHSxe1tu3W8PT05B5iaWVlBV1dXSQlJbW4XmhoKGQyGQ4cOIAjR45g+fLliI2NxdSpU5+1dI6hoaHa+9LSUkyePBnTpk1r0LZ79+7cn8ViMfz8/ODn54fo6GjIZDJER0fDy8sLDg4OUCqVKCwsbDDaWFVVhZycHMhkshZr8/f3Vwuf1tbWanXb29vD3t4erq6ucHBwwNatW9UeglpYWAhPT0+4ublhy5Ytan0/OVuKkZFRi7UAdYH0yfW6du0KALC0tISzs7NaWycnJ+5WgcbY2dmhS5cuuHHjBjc6+7QhQ4agpqYGeXl5agHZxsYGAODs7Iza2lp89tlnmDVrFjp16gRLS0vo6elxo4n1tdy+fRtVVVXNHlNCCCHtF+WltqG8RHmJEELaEzop9RzxeLxnuiRcG+qDwZOcnJxQU1OD1NRU7nL0e/fuISsrS+0fbhsbG4SHhyM8PBzz58/HN998g6lTp3IjaE/eA29nZwc9PT2cP3+eC0ZKpRLZ2dl4++23m61xwIAByMzMbFBnc3g8Hnr16oUzZ84AAD766CPI5XLExsYiNjZWre2mTZtQXl6OCRMmtNivWCxWm02lOSqVSm2ErKCgAJ6enhg4cCDi4+Oho6N+gWJr9q+eUChsdD13d3dkZWWpLcvOzoZUKm2yr99//x337t1r9JL9eunp6dDR0YG5uXmTbVQqFaqrq6FSqdCpUye4u7tjx44dUKlU3D5nZ2fD0tISfD4ffD5f42NKCHl10MgfaSvKS5SXAMpLlJcI6Tja+DjDdo9OShGOg4MDAgICEBYWhs2bN0MsFmPevHmwtrZGQEAAAGDGjBnw9fVFz5498eDBAxw7dgxOTk4AAKlUCh6PB4VCgVGjRkEoFEIsFiMkJARz5syBiYkJzM3NERkZCR0dnRanFZfL5XB1dUVERARCQ0NhaGiIzMxMJCcnY/369UhPT0dkZCSCg4Ph7OwMPp+PEydO4Ntvv4VcLgdQN0K4cuVKzJ49GwKBAMHBwdDT08P+/fuxYMECREdHo0+fPmrbfTqkAEDv3r2hp6entqysrAxLly6Fv78/LC0tUVxcjA0bNqCgoABjxowBUBew3nnnHUilUsTExODu3bvc+hYWFs3uf/3IXmlpKe7evYv09HTw+fwGI3tP+vzzz+Hm5oZly5Zh7NixOHfuHLZs2cKNNpaWlmLJkiUYPXo0LCwskJOTg7lz58Le3p4bAT179ixSU1Ph6ekJsViMs2fP4vPPP8cnn3zCTZWckJAAPT09uLi4QF9fHxcuXMD8+fMxbtw47jj99a9/xfr16zF9+nRMnToV169fx7JlyxodyX3S/fv3kZ+fj8LCQgB//jwsLCxaPGaEkBeJEhUhAOWlepSXKC8RQhpilJda7wXPAvha60hTHNern+JYIpEwoVDIZDKZ2hTHERERrEePHkxfX5+ZmZmx4OBgVlxczH0eFRXFLCwsGI/Ha3aK48GDB7N58+Zx6zU1pe65c+eYl5cXE4lEzNDQkPXt25ctXbqUMcbY3bt32bRp01ifPn2YSCRiYrGYubi4sJiYGFZbW6vWz759+9jw4cOZoaEhNwVzYmKiWpvGpmmuf926datBbRUVFezDDz9kVlZWjM/nM0tLS+bv78/OnTvHtYmPj2+yz5Y0to5UKm1xvf/85z+sT58+TF9fn/Xq1Ytt2bKF+6y8vJx5e3szMzMzpqenx6RSKQsLC2O3b9/m2ly8eJENGTKESSQSJhAImJOTE1u2bBl7/Pgx1+a7775jAwYM4H4uzs7ObNmyZQ2+D2fOnGFDhgxh+vr6zM7Oji1dupTV1NQ0W39TxywyMrLFfW/O6/ydJeRVcOhKIZPKFezN/01x3G/JYW2XpDWaTnHcUVBeorxEeYnyEiGkzuVbD5hUrmD9o44wqVzBpHIFK31cre2ytELTvMRjjC4ma0pJSQkkEgmUSmWDe9cfP36M3Nxc2NraQiAQaKnC11NZWRmsra0RGxuLSZMmvfTt379/HyNGjICRkREOHToEg9fkFgLSNvSdJaRtfvy1COH/vgQTQz7ul1XB2EAP6Yu8tV2WVjSXDzoiyksvBuUlog30nSWkbTJ+fwj/9ae5vAQAvy2RwVC/492kpmleotn3yAuXlpaGxMRE5OTk4NKlSwgKCgIA7hL3l83ExARHjx7FiBEjcPbsWa3UQAghrzsa0iLk+aK8RAgh7Qc9g1NzHe90HdGKmJgYZGVlgc/nY+DAgUhJSUGXLl20Vo+pqSkWLVqkte0TQgghhDyN8hIhhJCOhk5KkReuf//+uHhRO1M/E0IIeb5o5I+QF4PyEiGEtE90cXnz6PY9QgghhBBCCCGEEPLS0UkpQgghhBBCCCGEkDaqf+Ymjy4t1xidlCKEEEJIi55+sDlN3ksIIYQQQtqKTkoRQgghhBBCCCGEkJeOTkoRQgghRGN0OTohhBBCSEsoMGmKTkoRQgghpBUoZBFCCCGEaIoeedA8OilFCCGEEEIIIYQQQl46OinVAU2cOBE8Hg88Hg98Ph/29vaIiopCTU1Nm/o9fvw4eDweHj58+HwK1UBubi4CAwNhZWUFgUCAbt26ISAgANeuXVNrp1Ao4OHhAbFYDAMDA7z11lvYtm2bWpu8vDzweDykp6drvP3FixejV69eMDQ0ROfOnTFy5Eikpqaq9Tlp0iTY2tpCKBSiR48eiIyMRFVVVbP9FhUVITAwED179oSOjg5mzJihUT21tbVYuHCh2va++uortbPze/bsgbe3N0xNTZvc35ycHHz44YcwMzODkZERxo4diz/++KPV+5WRkYHhw4dDIBDAxsYGK1eubHEfTp48CT8/P1hZWYHH42Hfvn0a7Tsh5OWiMT/S3lFeorxEeYkQ0lr1f4vQ4w40RyelOigfHx8UFRXh+vXrmDVrFhYvXoxVq1ZpuyxOSyEEAKqrq+Hl5QWlUok9e/YgKysLO3fuhIuLi1rQW7duHQICAuDu7o7U1FRkZGRg/PjxCA8Px+zZs9tUZ8+ePbF+/XpcuXIFp06dwhtvvAFvb2/cvXsXAHDt2jWoVCps3rwZv/32G9asWYNNmzZhwYIFzfZbWVkJMzMzfPnll+jXr5/G9axYsQIbN27E+vXrcfXqVaxYsQIrV67EunXruDZlZWUYNmwYVqxY0WgfZWVl8Pb2Bo/Hw88//4zTp0+jqqoKfn5+UKlUGu9XSUkJvL29IZVKcfHiRaxatQqLFy/Gli1bmt2HsrIy9OvXDxs2bNB4vwkhhJAXgfIS5SXKS4QQ8oIx0iSlUskAMKVS2eCziooKlpmZySoqKrRQWduEhISwgIAAtWVeXl7M1dWV3b9/nwUHBzNjY2MmFAqZj48Py87O5trl5eWx999/nxkbGzMDAwPm7OzMDhw4wHJzcxnqTgxzr5CQEMYYYyUlJSwwMJAZGBgwCwsLtnr1aubh4cGmT5/O9SuVSllUVBQLDg5mYrGYWzclJYUNGzaMCQQC1q1bNzZ16lRWWlrKGGMsLS2NAWB5eXlN7mt+fj7T09NjM2fObPBZXFwcA8B++eUXxhjj9iEtLa31B/V/6n9njh492mSblStXMltbW437fPpYNee9995jn376qdqy//u//2NBQUEN2ja1v4cPH2Y6Ojpqv/cPHz5kPB6PJScnN7ntp/frH//4B+vcuTOrrKzklsnlcubo6KjRvjDGGAC2d+9ejds353X+zhLyKjiYUcikcgUbFJ3MpHIF6xP5o7ZL0prm8kFHRHmJ8lJrUV6ivERIe5WW/0AtL0nlClZSUaXtsrRC07xEV0o9R4wxVFfWauXF2vjwNKFQiKqqKkycOBEXLlxAUlISzp49C8YYRo0aherqagDAlClTUFlZiZMnT+LKlStYsWIFRCIRbGxs8MMPPwAAsrKyUFRUhLVr1wIAZs6cidOnTyMpKQnJyclISUnBpUuXGtQQExODfv36IS0tDQsXLkROTg58fHwwevRoZGRkYOfOnTh16hQiIiIAAGZmZtDR0cHu3btRW1vb6H7t3r0b1dXVjY7wTZ48GSKRCImJiW06dvWqqqqwZcsWSCSSZkfrlEolTExMnss2n+bm5oaffvoJ2dnZAIDLly/j1KlT8PX11biPyspK8Hg86Ovrc8sEAgF0dHRw6tSpJtd7er/Onj2Lt99+G3w+n1smk8mQlZWFBw8etGa3CCGvALpdjzwvlJcoL1FeorxESHtHd+9pTlfbBbQnNVUqbJl+Qivb/mytB/T0O7V6PcYYfvrpJxw+fBi+vr7Yt28fTp8+DTc3NwBAQkICbGxssG/fPowZMwb5+fkYPXo0XFxcAAB2dnZcX/X/wJqbm8PY2BgA8OjRI2zfvh07duzAiBEjAADx8fGwsrJqUMu7776LWbNmce9DQ0MRFBTEPR/AwcEBcXFx8PDwwMaNG2FtbY24uDjMnTsXS5YswaBBg+Dp6YmgoCCuruzsbEgkElhaWjbYHp/Ph52dHRdInpVCocD48eNRXl4OS0tLJCcno0uXLo22vXHjBtatW4eYmJg2bbMp8+bNQ0lJCXr16oVOnTqhtrYWS5cuRVBQkMZ9uLq6wtDQEHK5HMuWLQNjDPPmzUNtbS2KiooaXaex/bp9+zZsbW3V2nXt2pX7rHPnzs+wh4QQQl53lJcoL1FeorxESEdCA3vNa/dXShUUFOCTTz6BqakphEIhXFxccOHCBW2XpXUKhQIikQgCgQC+vr4YN24cJk6cCF1dXQwZMoRrZ2pqCkdHR1y9ehUAMG3aNERHR8Pd3R2RkZHIyMhodjs3b95EdXU1Bg8ezC2TSCRwdHRs0HbQoEFq7y9fvoxt27ZBJBJxL5lMBpVKhdzcXAB1I5G3b99GQkIChg4dil27dqF3795ITk7W+Fg8OTLVlISEBLU6UlJSuM88PT2Rnp6OM2fOwMfHB2PHjsWdO3ca9FFQUAAfHx+MGTMGYWFh3PIn+w0PD9eo5pSUFLX1EhISAADff/89EhISsGPHDly6dAnbt29HTEwMtm/frlG/QN2I6q5du/Cf//wHIpEIEokEDx8+xIABA6Cj0/CvjKb261n3gRBCCHlVUF76E+UldZSXCCHk+WjXV0o9ePAA7u7u8PT0xKFDh2BmZobr16+/sBEHXb4OPlvr8UL61mTbreHp6YmNGzeCz+fDysoKurq6SEpKanG90NBQyGQyHDhwAEeOHMHy5csRGxuLqVOnPmvpHENDQ7X3paWlmDx5MqZNm9agbffu3bk/i8Vi+Pn5wc/PD9HR0ZDJZIiOjoaXlxccHBygVCpRWFjYYLSxqqoKOTk5kMlkLdbm7++vFj6tra3V6ra3t4e9vT1cXV3h4OCArVu3Yv78+VybwsJCeHp6ws3NrcGDK5+czcXIyKjFWoC6QPrkevUjanPmzMG8efMwfvx4AICLiwv++9//Yvny5QgJCdGobwDw9vZGTk4OiouLoaurC2NjY1hYWKiN9La0XxYWFmoz0ADg3ltYWOCNN95odB8IIa8JGvYjz4jyUttQXqK8RAh59dHse5pr1yelVqxYARsbG8THx3PLnr489nni8XjPdEm4NtQHgyc5OTmhpqYGqamp3OXo9+7dQ1ZWFpydnbl2NjY2CA8PR3h4OObPn49vvvkGU6dO5UbQnnxegZ2dHfT09HD+/HkuGCmVSmRnZ+Ptt99utsYBAwYgMzOzQZ3N4fF46NWrF86cOQMA+OijjyCXyxEbG4vY2Fi1tps2bUJ5eTkmTJjQYr9isRhisVijGlQqFSorK7n3BQUF8PT0xMCBAxEfH99g9Kw1+1dPKBQ2ul55eXmD/jt16sTNAtNa9ZfV//zzz7hz5w78/f25z1rar6FDh+KLL75AdXU19PT0AADJyclwdHTkTgw/y74TQrSLMhZpK8pLlJcAykv1KC8R0r609dmFHVG7PimVlJQEmUyGMWPG4MSJE7C2tsbf/va3Vl0y25E4ODggICAAYWFh2Lx5M8RiMebNmwdra2sEBAQAAGbMmAFfX1/07NkTDx48wLFjx+Dk5AQAkEql4PF4UCgUGDVqFIRCIcRiMUJCQjBnzhyYmJjA3NwckZGR0NHRAa+F08dyuRyurq6IiIhAaGgoDA0NkZmZieTkZKxfvx7p6emIjIxEcHAwnJ2dwefzceLECXz77beQy+UA6kYIV65cidmzZ0MgECA4OBh6enrYv38/FixYgOjoaPTp00dtu1lZWQ1q6d27NxcU6pWVlWHp0qXw9/eHpaUliouLsWHDBhQUFGDMmDEA6oLIO++8A6lUipiYGG7qY6Bu9Ks59aNipaWluHv3LtLT08Hn89UC79P8/PywdOlSdO/eHb1790ZaWhpWr16NTz/9lGtz//595Ofno7CwUG1/LSwsuJri4+Ph5OQEMzMznD17FtOnT8fnn3/O3UagyX4FBgZiyZIlmDRpEuRyOX799VesXbsWa9asaXa/S0tLcePGDe59bm4u0tPTYWJiojbiSwjRDhr5Ix0d5aU6lJcoLxFCyHPxIqcA1DZ9fX2mr6/P5s+fzy5dusQ2b97MBAIB27ZtW6PtHz9+zJRKJfe6detWh5niuF79FMcSiYQJhUImk8nUpjiOiIhgPXr0YPr6+szMzIwFBwez4uJi7vOoqChmYWHBeDxes1McDx48mM2bN49bTyqVsjVr1jSo59y5c8zLy4uJRCJmaGjI+vbty5YuXcoYY+zu3bts2rRprE+fPkwkEjGxWMxcXFxYTEwMq62tVetn3759bPjw4czQ0JCbgjkxMVGtTWPTNNe/bt261aC2iooK9uGHHzIrKyvG5/OZpaUl8/f3Z+fOnePaxMfHN9lnSxpbRyqVNrtOSUkJmz59OuvevTsTCATMzs6OffHFF2rTDDdVU2RkJNdGLpezrl27Mj09Pebg4MBiY2OZSqVq9X5dvnyZDRs2jOnr6zNra2v29ddft7jfx44da7Tf+t+nZ/U6f2cJeRUcyChkUrmCDV5aN8Vxn0U/arskrdF0iuOOornj8Tr/3Ut5ifIS5SVCSGtd+u99tbwklSuYsqJK22VphaZ5icdY+72+jM/nY9CgQdylyUDdgyfPnz+Ps2fPNmi/ePFiLFmypMFypVLZ4N71x48fIzc3F7a2thAIBM+/+HasrKwM1tbWiI2NxaRJk1769u/fv48RI0bAyMgIhw4dgoGBwUuvgbx89J0lpG0OXinC3xIuoauRPv4oqYRYXxdXlrT8jJn2qKSkBBKJpNF80BE1dzzo795nR3mJaAN9Zwlpm7T8B/jwH2dgYSTA7ZLHAIDLkd6QCPVaWLP90TQvtevZ9ywtLRtcuuvk5IT8/PxG28+fPx9KpZJ73bp162WU2e6lpaUhMTEROTk5uHTpEjfdbv0l7i+biYkJjh49ihEjRjR6cpIQQkjL2u2IFiFaQnmJEEJIR9Sunynl7u7e4H737OxsSKXSRtvr6+tDX1//ZZTW4cTExCArKwt8Ph8DBw5ESkoK91BIbTA1NcWiRYu0tn1CCHndtN/rqgl5dVBeIoSQ9oGewam5dn1S6vPPP4ebmxuWLVuGsWPH4ty5c9iyZUuDqVjJi9W/f39cvHhR22UQQgh5Dng0/x4hLwTlJUIIef3RGF7rtevb99566y3s3bsXiYmJ6NOnD7766iv8/e9/5y6HJoQQQgghhBBCCCHa0a6vlAKA999/H++//762yyCEEELaBbocnRBCCCGEPC/t+kopQgghhLwY7XjyXkIIIYSQNlEbw6PI1Cw6KUUIIYQQQgghhBBCXjo6KUUIIYQQQgghhBDynPDoeQcao5NShBBCCNEYRSxCCCGEkMbR0w1aj05KEUIIIaRFjB6IQAghhBBCnjM6KdUBTZw4ETweDzweD3w+H/b29oiKikJNTU2b+j1+/Dh4PB4ePnz4fArVQG5uLgIDA2FlZQWBQIBu3bohICAA165dU2unUCjg4eEBsVgMAwMDvPXWW9i2bZtam7y8PPB4PKSnp2u8/cWLF6NXr14wNDRE586dMXLkSKSmpqr1OWnSJNja2kIoFKJHjx6IjIxEVVVVs/0WFRUhMDAQPXv2hI6ODmbMmKFRPY8ePcKMGTMglUohFArh5uaG8+fPq7UpLS1FREQEunXrBqFQCGdnZ2zatEmtzeTJk9GjRw8IhUKYmZk1ekzz8/Px3nvvwcDAAObm5pgzZ06Tv0OnT5+Grq4u3nzzzRb3Yc+ePfD29oapqWmrfx6EEELI80J5ifIS5SVCCHnx6KRUB+Xj44OioiJcv34ds2bNwuLFi7Fq1Sptl8VpKYQAQHV1Nby8vKBUKrFnzx5kZWVh586dcHFxUQt669atQ0BAANzd3ZGamoqMjAyMHz8e4eHhmD17dpvq7NmzJ9avX48rV67g1KlTeOONN+Dt7Y27d+8CAK5duwaVSoXNmzfjt99+w5o1a7Bp0yYsWLCg2X4rKythZmaGL7/8Ev369dO4ntDQUCQnJ+Nf//oXrly5Am9vb4wcORIFBQVcm5kzZ+LHH3/Ev//9b1y9ehUzZsxAREQEkpKSuDYDBw5EfHw8rl69isOHD4MxBm9vb9TW1gIAamtr8d5776GqqgpnzpzB9u3bsW3bNixatKhBTQ8fPsSECRMwYsQIjfahrKwMw4YNw4oVKzTeb0LIy0fXTZGOgPIS5SXKS4SQtqKrzVvASJOUSiUDwJRKZYPPKioqWGZmJquoqNBCZW0TEhLCAgIC1JZ5eXkxV1dXdv/+fRYcHMyMjY2ZUChkPj4+LDs7m2uXl5fH3n//fWZsbMwMDAyYs7MzO3DgAMvNzWWo+z8K9woJCWGMMVZSUsICAwOZgYEBs7CwYKtXr2YeHh5s+vTpXL9SqZRFRUWx4OBgJhaLuXVTUlLYsGHDmEAgYN26dWNTp05lpaWljDHG0tLSGACWl5fX5L7m5+czPT09NnPmzAafxcXFMQDsl19+YYwxbh/S0tJaf1D/p/535ujRo022WblyJbO1tdW4z6ePVVPKy8tZp06dmEKhUFs+YMAA9sUXX3Dve/fuzaKioppt87TLly8zAOzGjRuMMcYOHjzIdHR02O3bt7k2GzduZEZGRqyyslJt3XHjxrEvv/ySRUZGsn79+rW4H/Wex8/jSa/zd5aQV8F/LhcwqVzB3Jb/xKRyBXNaeEjbJWlNc/mgI6K8RHmptSgvUV4ipL26kHdfLS9J5Qr2oKyy5RXbIU3zEl0p9RwxxlD9+LFWXqyNT1QTCoWoqqrCxIkTceHCBSQlJeHs2bNgjGHUqFGorq4GAEyZMgWVlZU4efIkrly5ghUrVkAkEsHGxgY//PADACArKwtFRUVYu3YtgLqRptOnTyMpKQnJyclISUnBpUuXGtQQExODfv36IS0tDQsXLkROTg58fHwwevRoZGRkYOfOnTh16hQiIiIAAGZmZtDR0cHu3bu5Eamn7d69G9XV1Y2O8E2ePBkikQiJiYltOnb1qqqqsGXLFkgkkmZH65RKJUxMTJ7LNp9UU1OD2tpaCAQCteVCoRCnTp3i3ru5uSEpKQkFBQVgjOHYsWPIzs6Gt7d3o/2WlZUhPj4etra2sLGxAQCcPXsWLi4u6Nq1K9dOJpOhpKQEv/32G7csPj4eN2/eRGRk5PPcVUIIIa8xykuUlygvUV4ipL2jyfc0p6vtAtqTmspKxIV8pJVtT9u+G3pP/eOqCcYYfvrpJxw+fBi+vr7Yt28fTp8+DTc3NwBAQkICbGxssG/fPowZMwb5+fkYPXo0XFxcAAB2dnZcX/XBwdzcHMbGxgDq7tnfvn07duzYwV2OHB8fDysrqwa1vPvuu5g1axb3PjQ0FEFBQdzzARwcHBAXFwcPDw9s3LgR1tbWiIuLw9y5c7FkyRIMGjQInp6eCAoK4urKzs6GRCKBpaVlg+3x+XzY2dkhOzu71cftSQqFAuPHj0d5eTksLS2RnJyMLl26NNr2xo0bWLduHWJiYtq0zcaIxWIMHToUX331FZycnNC1a1ckJibi7NmzsLe359qtW7cOn332Gbp16wZdXV3o6Ojgm2++wdtvv63W3z/+8Q/MnTsXZWVlcHR0RHJyMvh8PgDg9u3bagELAPf+9u3bAIDr169j3rx5SElJga4u/VVDCCGkDuUlykuUlygvEUJIPbpSqoNSKBQQiUQQCATw9fXFuHHjMHHiROjq6mLIkCFcO1NTUzg6OuLq1asAgGnTpiE6Ohru7u6IjIxERkZGs9u5efMmqqurMXjwYG6ZRCKBo6Njg7aDBg1Se3/58mVs27YNIpGIe8lkMqhUKuTm5gKoG4m8ffs2EhISMHToUOzatQu9e/dGcnKyxseiPjg0JyEhQa2OlJQU7jNPT0+kp6fjzJkz8PHxwdixY3Hnzp0GfRQUFMDHxwdjxoxBWFgYt/zJfsPDwzWqOSUlRW29hIQEAMC//vUvMMZgbW0NfX19xMXF4eOPP4aOzp9f9XXr1uGXX35BUlISLl68iNjYWEyZMgVHjx5V20ZQUBDS0tJw4sQJ9OzZE2PHjsXjx481qq+2thaBgYFYsmQJevbs2Wib5o4pIYQQ8iqgvPQnykuUlwghmqDnR7UWnY5/jnT19TFt+26tbbs1PD09sXHjRvD5fFhZWUFXV1ftwY1NCQ0NhUwmw4EDB3DkyBEsX74csbGxmDp16rOWzjE0NFR7X1paismTJ2PatGkN2nbv3p37s1gshp+fH/z8/BAdHQ2ZTIbo6Gh4eXnBwcEBSqUShYWFDUYbq6qqkJOTA5lM1mJt/v7+auHT2tparW57e3vY29vD1dUVDg4O2Lp1K+bPn8+1KSwshKenJ9zc3LBlyxa1vp+cLcXIyKjFWoC6QPrkevWjbj169MCJEydQVlaGkpISWFpaYty4cdxIaEVFBRYsWIC9e/fivffeAwD07dsX6enpiImJwciRI7k+JRIJJBIJHBwc4Orqis6dO2Pv3r34+OOPYWFhgXPnzqnV9McffwAALCws8OjRI1y4cAFpaWnc7QMqlQqMMejq6uLIkSPNHlNCyKuvjXdBkQ6M8lLbUF6ivEQIIe0JnZR6jng83jNdEq4N9cHgSU5OTqipqUFqaip3Ofq9e/eQlZUFZ2dnrp2NjQ3Cw8MRHh6O+fPn45tvvsHUqVO5EbQnn1dgZ2cHPT09nD9/ngtGSqUS2dnZDS5/ftqAAQOQmZnZoM7m8Hg89OrVC2fOnAEAfPTRR5DL5YiNjUVsbKxa202bNqG8vBwTJkxosV+xWAyxWKxRDSqVCpWVldz7goICeHp6cjO0PDkKB6BV+1dPKBQ2u56hoSEMDQ3x4MEDHD58GCtXrgRQNwNPdXV1gxo6deoElUrVZH+MMTDGuP0aOnQoli5dijt37sDc3BwAkJycDCMjIzg7O0NPTw9XrlxR6+Mf//gHfv75Z+zevRu2trYwNDTU+JgSQrSPTkKR54XyEuUlgPIS5SVCCKlDJ6UIx8HBAQEBAQgLC8PmzZshFosxb948WFtbIyAgAAAwY8YM+Pr6omfPnnjw4AGOHTsGJycnAIBUKgWPx4NCocCoUaMgFAohFosREhKCOXPmwMTEBObm5oiMjISOjg54LTz9TS6Xw9XVFREREQgNDYWhoSEyMzORnJyM9evXIz09HZGRkQgODoazszP4fD5OnDiBb7/9FnK5HEDdCOHKlSsxe/ZsCAQCBAcHQ09PD/v378eCBQsQHR2NPn36qG03KyurQS29e/eGnp6e2rKysjIsXboU/v7+sLS0RHFxMTZs2ICCggKMGTMGQF3AeueddyCVShETE8NNfQzUjZA1p35kr7S0FHfv3kV6ejr4fL5a4H1a/XTEjo6OuHHjBubMmYNevXrhL3/5C4C6kUUPDw/MmTMHQqEQUqkUJ06cwD//+U+sXr0aQN0tBDt37oS3tzfMzMzw+++/4+uvv4ZQKMSoUaMAAN7e3nB2dkZwcDBWrlyJ27dv48svv8SUKVOg/79R6KePq7m5OQQCQYPlT7t//z7y8/NRWFgI4M+fh4WFRYvHjBDy4tGDO0lHR3mpDuUlykuEkKY9+Vc3Dey14AXM/NdudKQpjuvVT3EskUiYUChkMplMbYrjiIgI1qNHD6avr8/MzMxYcHAwKy4u5j6PiopiFhYWjMfjNTvF8eDBg9m8efO49aRSKVuzZk2Des6dO8e8vLyYSCRihoaGrG/fvmzp0qWMMcbu3r3Lpk2bxvr06cNEIhETi8XMxcWFxcTEsNraWrV+9u3bx4YPH84MDQ25KZgTExPV2jQ2TXP969atWw1qq6ioYB9++CGzsrJifD6fWVpaMn9/f3bu3DmuTXx8fJN9tqSxdaRSabPr7Ny5k9nZ2TE+n88sLCzYlClT2MOHD9XaFBUVsYkTJzIrKysmEAiYo6Mji42NZSqVijHGWEFBAfP19WXm5uZMT0+PdevWjQUGBrJr166p9ZOXl8d8fX2ZUChkXbp0YbNmzWLV1dVN1qbpFMdNHbPIyMgW123O6/ydJeRVkJRewKRyBXP/um6K415fHtJ2SVqj6RTHHQXlJcpLlJcoLxFC6lzIu8ekcgUbtqIuL0nlCna/tFLbZWmFpnmJxxidt2tKSUkJJBIJlEplg3vXHz9+jNzcXNja2jaYUpY0r6ysDNbW1oiNjcWkSZNe+vbv37+PESNGwMjICIcOHYKBgcFLr4G8fPSdJaRt/nO5EFMT09CtsxC/P6iAUK8Trn7lo+2ytKK5fNARUV56MSgvEW2g7ywhbXPxv/cxeuNZdDcxQP79cgBA2kIvdDZsebKI9kbTvESz75EXLi0tDYmJicjJycGlS5cQFBQEANwl7i+biYkJjh49ihEjRuDs2bNaqYEQQl5X9ZejM5pdhpDnivISIYS8/uiSn9ajZ0qRlyImJgZZWVng8/kYOHAgUlJS0KVLF63VY2pqikWLFmlt+4QQQgghT6O8RAghpKOhk1Lkhevfvz8uXryo7TIIIYQQQl5ZlJcIIYR0RHT7HiGEEEI0xgNNv0cIIYQQoim6o695dFKKEEIIIYQQQggh5Dnh0RiexuikFCGEEEJaRKN8hBBCCCGaoXNSmqOTUoQQQghpNZpdhhBCCCGEtBWdlCKEEEIIIYQQQghpIxqzaz06KUUIIYQQjdEzEgghhBBCyPNCJ6UIIYQQojE6J0UIIYQQojlGzzxoFp2U6oAmTpwIHo8HHo8HPp8Pe3t7REVFoaampk39Hj9+HDweDw8fPnw+hWogNzcXgYGBsLKygkAgQLdu3RAQEIBr166ptVMoFPDw8IBYLIaBgQHeeustbNu2Ta1NXl4eeDwe0tPTNd7+4sWL0atXLxgaGqJz584YOXIkUlNT1fqcNGkSbG1tIRQK0aNHD0RGRqKqqqrZfouKihAYGIiePXtCR0cHM2bM0KiekydPws/PD1ZWVuDxeNi3b1+DNnv27IG3tzdMTU1b3F/GGHx9fZvsa9u2bejbty8EAgHMzc0xZcoUtc8PHz4MV1dXiMVimJmZYfTo0cjLy1Nrk5CQgH79+sHAwACWlpb49NNPce/evTbvJyGEENIWlJcoL1FeIoQ8Kx5dWq4xOinVQfn4+KCoqAjXr1/HrFmzsHjxYqxatUrbZXFaCiEAUF1dDS8vLyiVSuzZswdZWVnYuXMnXFxc1ILeunXrEBAQAHd3d6SmpiIjIwPjx49HeHg4Zs+e3aY6e/bsifXr1+PKlSs4deoU3njjDXh7e+Pu3bsAgGvXrkGlUmHz5s347bffsGbNGmzatAkLFixott/KykqYmZnhyy+/RL9+/TSup6ysDP369cOGDRuabTNs2DCsWLGixf7+/ve/N/kX6urVq/HFF19g3rx5+O2333D06FHIZDLu89zcXAQEBODdd99Feno6Dh8+jOLiYvzf//0f1+b06dOYMGECJk2ahN9++w27du3CuXPnEBYW1ub9JIS8WDTmRzoCykuUlygvEUKeBZ2SagVGmqRUKhkAplQqG3xWUVHBMjMzWUVFhRYqa5uQkBAWEBCgtszLy4u5urqy+/fvs+DgYGZsbMyEQiHz8fFh2dnZXLu8vDz2/vvvM2NjY2ZgYMCcnZ3ZgQMHWG5uLkPd/1G4V0hICGOMsZKSEhYYGMgMDAyYhYUFW716NfPw8GDTp0/n+pVKpSwqKooFBwczsVjMrZuSksKGDRvGBAIB69atG5s6dSorLS1ljDGWlpbGALC8vLwm9zU/P5/p6emxmTNnNvgsLi6OAWC//PILY4xx+5CWltb6g/o/9b8zR48ebbLNypUrma2trcZ9Pn2sNAWA7d27t8nPW9rftLQ0Zm1tzYqKihr0df/+fSYUCpvdz127djFdXV1WW1vLLUtKSmI8Ho9VVVUxxhhbtWoVs7OzU1svLi6OWVtbt7yD/9PSftZ7nb+zhLwK9qcXMKlcwTxW/sykcgVz+OKgtkvSmubyQUdEeYnyUmtRXvoT5SVC2pdzufeYVK5gnquOMalcwaRyBSt+9FjbZWmFpnmJrpR6jhhjUFXVauXF2nifqlAoRFVVFSZOnIgLFy4gKSkJZ8+eBWMMo0aNQnV1NQBgypQpqKysxMmTJ3HlyhWsWLECIpEINjY2+OGHHwAAWVlZKCoqwtq1awEAM2fOxOnTp5GUlITk5GSkpKTg0qVLDWqIiYlBv379kJaWhoULFyInJwc+Pj4YPXo0MjIysHPnTpw6dQoREREAADMzM+jo6GD37t2ora1tdL92796N6urqRkf4Jk+eDJFIhMTExDYdu3pVVVXYsmULJBJJs6N1SqUSJiYmz2WbL0p5eTkCAwOxYcMGWFhYNPg8OTkZKpUKBQUFcHJyQrdu3TB27FjcunWLazNw4EDo6OggPj4etbW1UCqV+Ne//oWRI0dCT08PADB06FDcunULBw8eBGMMf/zxB3bv3o1Ro0a9tH0lhGim/t8ZuhydtBXlJcpLlJcoLxHSXtHjo1pPV9sFtCesWoXCRWe0sm2rKDfw+J1avR5jDD/99BMOHz4MX19f7Nu3D6dPn4abmxuAuvvXbWxssG/fPowZMwb5+fkYPXo0XFxcAAB2dnZcX/XBwdzcHMbGxgCAR48eYfv27dixYwdGjBgBAIiPj4eVlVWDWt59913MmjWLex8aGoqgoCDu+QAODg6Ii4uDh4cHNm7cCGtra8TFxWHu3LlYsmQJBg0aBE9PTwQFBXF1ZWdnQyKRwNLSssH2+Hw+7OzskJ2d3erj9iSFQoHx48ejvLwclpaWSE5ORpcuXRpte+PGDaxbtw4xMTFt2uaL9vnnn8PNzQ0BAQGNfn7z5k2oVCosW7YMa9euhUQiwZdffgkvLy9kZGSAz+fD1tYWR44cwdixYzF58mTU1tZi6NChOHjwINePu7s7EhISMG7cODx+/Bg1NTXw8/Ojy8wJIaQdo7xEeYnyEuUlQgipR1dKdVAKhQIikQgCgQC+vr4YN24cJk6cCF1dXQwZMoRrZ2pqCkdHR1y9ehUAMG3aNERHR8Pd3R2RkZHIyMhodjs3b95EdXU1Bg8ezC2TSCRwdHRs0HbQoEFq7y9fvoxt27ZBJBJxL5lMBpVKhdzcXAB1I5G3b99GQkIChg4dil27dqF3795ITk7W+Fjw+fwW2yQkJKjVkZKSwn3m6emJ9PR0nDlzBj4+Phg7dizu3LnToI+CggL4+PhgzJgxas8AeLLf8PBwjWpOSUlRWy8hIUGj9TSRlJSEn3/+GX//+9+bbKNSqVBdXY24uDjIZDK4uroiMTER169fx7FjxwAAt2/fRlhYGEJCQnD+/HmcOHECfD4fH330ETdSnZmZienTp2PRokW4ePEifvzxR+Tl5XHH4UXuJyGEENISykt/orykjvISIURTdPFU8+hKqeeIp6cDqyg3rW27NTw9PbFx40bw+XxYWVlBV1cXSUlJLa4XGhoKmUyGAwcO4MiRI1i+fDliY2MxderUZy2dY2hoqPa+tLQUkydPxrRp0xq07d69O/dnsVgMPz8/+Pn5ITo6GjKZDNHR0fDy8oKDgwOUSiUKCwsbjDZWVVUhJydH7WGTTfH391cLn9bW1mp129vbw97eHq6urnBwcMDWrVsxf/58rk1hYSE8PT3h5uaGLVu2qPX95GwuRkZGLdYC1AXSJ9fr2rWrRutp4ueff0ZOTg43eltv9OjRGD58OI4fP86NpDo7O3Ofm5mZoUuXLsjPzwcAbNiwARKJBCtXruTa/Pvf/4aNjQ1SU1Ph6uqK5cuXw93dHXPmzAEA9O3bF4aGhhg+fDiio6Nf6H4SQgjRDspLbUN5ifIS5SVCSHtCJ6WeIx6P90yXhGtDfTB4kpOTE2pqapCamspdjn7v3j1kZWWp/WNqY2OD8PBwhIeHY/78+fjmm28wdepUbgTtyecV2NnZQU9PD+fPn+eCkVKpRHZ2Nt5+++1maxwwYAAyMzMb1NkcHo+HXr164cyZutsCPvroI8jlcsTGxiI2Nlat7aZNm1BeXo4JEya02K9YLIZYLNaoBpVKhcrKSu59QUEBPD09MXDgQMTHx0NHRz0Qt2b/6gmFwmdaTxPz5s1DaGio2jIXFxesWbMGfn5+AOouIwfqnofRrVs3AMD9+/dRXFwMqVQKoO45C0/va6dOdd8PlUrFtdHV1W20DWPshe4nIeTZcE+UomE/8owoL1FeAigvUV4ipJ2jR3BqjE5KEY6DgwMCAgIQFhaGzZs3QywWY968ebC2tubulZ8xYwZ8fX3Rs2dPPHjwAMeOHYOTkxMAQCqVgsfjQaFQYNSoURAKhRCLxQgJCcGcOXNgYmICc3NzREZGQkdHp8WH5crlcri6uiIiIgKhoaEwNDREZmYmkpOTsX79eqSnpyMyMhLBwcFwdnYGn8/HiRMn8O2330IulwOoGyFcuXIlZs+eDYFAgODgYOjp6WH//v1YsGABoqOj0adPH7XtZmVlNaild+/e3MMm65WVlWHp0qXw9/eHpaUliouLsWHDBhQUFGDMmDEA6gLWO++8A6lUipiYGG7qYwCNPhDzSfUjXqWlpbh79y7S09PB5/PVAu/TSktLcePGDe59bm4u0tPTYWJiwoXc+/fvIz8/H4WFhWr7a2FhofZ6Wvfu3WFrawugbmrngIAATJ8+HVu2bIGRkRHmz5+PXr16wdPTEwDw3nvvYc2aNYiKisLHH3+MR48eYcGCBZBKpejfvz8AwM/PD2FhYdi4cSNkMhmKioowY8YMDB48uNHnaLRmPwkhhJAXgfJSHcpLlJcIIeS5eFHT/7UHHWmK43r1UxxLJBImFAqZTCZTm+I4IiKC9ejRg+nr6zMzMzMWHBzMiouLuc+joqKYhYUF4/F4zU5xPHjwYDZv3jxuPalUytasWdOgnnPnzjEvLy8mEomYoaEh69u3L1u6dCljjLG7d++yadOmsT59+jCRSMTEYjFzcXFhMTExatPqMsbYvn372PDhw5mhoSE3BXNiYqJam8amaa5/3bp1q0FtFRUV7MMPP2RWVlaMz+czS0tL5u/vz86dO8e1iY+Pb7LPljS2jlQqbXadY8eONbpe/c+iuZoiIyObreXpaYSVSiX79NNPmbGxMTMxMWEffvghy8/PV2uTmJjI+vfvzwwNDZmZmRnz9/dnV69eVWsTFxfHnJ2dmVAoZJaWliwoKIj9/vvvbd7Pp73O31lCXgX70n6vm+I4pm6KY4cFB7VdktZoOsVxR0F5ifIS5aU/a6G8REjH9ktOsVpeksoV7O6jx9ouSys0zUs8xmjSwqaUlJRAIpFAqVQ2uHf98ePHyM3Nha2tLQQCgZYqfD2VlZXB2toasbGxmDRp0kvf/v379zFixAgYGRnh0KFDMDAweOk1kJePvrOEtM3+9AJM/y4ddmaGuHm3DPxOOshe6qvtsrSiuXzQEVFeejEoLxFtoO8sIW2TevMexm35hctLAHDhy5HoItLXcmUvn6Z5iWbfIy9cWloaEhMTkZOTg0uXLiEoKAgAmpw+90UzMTHB0aNHMWLECJw9e1YrNRBCCCGEPInyEiGEtE90GVDz6JlS5KWIiYlBVlYW+Hw+Bg4ciJSUFHTp0kVr9ZiammLRokVa2z4hhLzuGD3pnJDnjvISIYSQjoZOSpEXrn///rh48aK2yyCEEEIIeWVRXiKEkPaDB4DHo6ukNEG37xFCCCFEYzTDMSGEEEIIeV7opBQhhBBCCCGEEEIIeenopBQhhBBCNMbj0bVShBBCCCGNobv1Wo9OShFCCCGk1egZCYQQQgghLaPJYZpHJ6UIIYQQQgghhBBCyEtHJ6UIIYQQojG6eY8QQgghpGWUmTRDJ6UIIYQQ0iK6XY8QQgghRDP0DE7N0UmpDmjixIng8Xjg8Xjg8/mwt7dHVFQUampq2tTv8ePHwePx8PDhw+dTqAZyc3MRGBgIKysrCAQCdOvWDQEBAbh27ZpaO4VCAQ8PD4jFYhgYGOCtt97Ctm3b1Nrk5eWBx+MhPT1d4+0vXrwYvXr1gqGhITp37oyRI0ciNTVVrc9JkybB1tYWQqEQPXr0QGRkJKqqqprtt6ioCIGBgejZsyd0dHQwY8YMjeo5efIk/Pz8YGVlBR6Ph3379rW6ZgBYunQp3NzcYGBgAGNj40a3lZ+fj/feew8GBgYwNzfHnDlz1H6Hnvw9e/LVu3dvrs3y5cvx1ltvQSwWw9zcHB988AGysrJa3E9N6iOEEELagvIS5SXKS4QQ8uLRSakOysfHB0VFRbh+/TpmzZqFxYsXY9WqVdoui9NSCAGA6upqeHl5QalUYs+ePcjKysLOnTvh4uKiFvTWrVuHgIAAuLu7IzU1FRkZGRg/fjzCw8Mxe/bsNtXZs2dPrF+/HleuXMGpU6fwxhtvwNvbG3fv3gUAXLt2DSqVCps3b8Zvv/2GNWvWYNOmTViwYEGz/VZWVsLMzAxffvkl+vXrp3E9ZWVl6NevHzZs2PDMNQN1x3/MmDH461//2mgftbW1eO+991BVVYUzZ85g+/bt2LZtGxYtWsS1Wbt2LYqKirjXrVu3YGJigjFjxnBtTpw4gSlTpuCXX35BcnIyqqur4e3tjbKysmb3s6X6CCGEkOeB8hLlJcpLhJDWoCvLnwEjTVIqlQwAUyqVDT6rqKhgmZmZrKKiQguVtU1ISAgLCAhQW+bl5cVcXV3Z/fv3WXBwMDM2NmZCoZD5+Piw7Oxsrl1eXh57//33mbGxMTMwMGDOzs7swIEDLDc3l6FuBkzuFRISwhhjrKSkhAUGBjIDAwNmYWHBVq9ezTw8PNj06dO5fqVSKYuKimLBwcFMLBZz66akpLBhw4YxgUDAunXrxqZOncpKS0sZY4ylpaUxACwvL6/Jfc3Pz2d6enps5syZDT6Li4tjANgvv/zCGGPcPqSlpbX+oP5P/e/M0aNHm2yzcuVKZmtrq3GfTx8rTQFge/fubbFdczXHx8cziUTSYPnBgweZjo4Ou337Nrds48aNzMjIiFVWVja6nb179zIej9fsz+vOnTsMADtx4kSLdTdXX2Ne5+8sIa+CvZd+Z1K5go2MPc6kcgWzm39A2yVpTXP5oCOivER5qbUoL1FeIqS9OnOjmEnlCjYi9jiznadgUrmC/aHsmN8nTfMSXSn1HDHGUFVVpZUXa+MpWaFQiKqqKkycOBEXLlxAUlISzp49C8YYRo0aherqagDAlClTUFlZiZMnT+LKlStYsWIFRCIRbGxs8MMPPwAAsrKyUFRUhLVr1wIAZs6cidOnTyMpKQnJyclISUnBpUuXGtQQExODfv36IS0tDQsXLkROTg58fHwwevRoZGRkYOfOnTh16hQiIiIAAGZmZtDR0cHu3btRW1vb6H7t3r0b1dXVjY7wTZ48GSKRCImJiW06dvWqqqqwZcsWSCSSZkfrlEolTExMnss220rTmp929uxZuLi4oGvXrtwymUyGkpIS/Pbbb42us3XrVowcORJSqbTJfpVKJQC8MseHENIQPSKBtBXlJcpLlJcoLxFCSD1dbRfQnlRXV2PZsmVa2faCBQvA5/NbvR5jDD/99BMOHz4MX19f7Nu3D6dPn4abmxsAICEhATY2Nti3bx/GjBmD/Px8jB49Gi4uLgAAOzs7rq/6fxjNzc25+9YfPXqE7du3Y8eOHRgxYgQAID4+HlZWVg1qeffddzFr1izufWhoKIKCgrjnAzg4OCAuLg4eHh7YuHEjrK2tERcXh7lz52LJkiUYNGgQPD09ERQUxNWVnZ0NiUQCS0vLBtvj8/mws7NDdnZ2q4/bkxQKBcaPH4/y8nJYWloiOTkZXbp0abTtjRs3sG7dOsTExLRpm23Vmpobc/v2bbWABYB7f/v27QbtCwsLcejQIezYsaPJPlUqFWbMmAF3d3f06dNH41oIIS8Xj+aSIW1EeYnyEuUlykuEdAQ8Ho/u59MAXSnVQSkUCohEIggEAvj6+mLcuHGYOHEidHV1MWTIEK6dqakpHB0dcfXqVQDAtGnTEB0dDXd3d0RGRiIjI6PZ7dy8eRPV1dUYPHgwt0wikcDR0bFB20GDBqm9v3z5MrZt2waRSMS9ZDIZVCoVcnNzAdSNRN6+fRsJCQkYOnQodu3ahd69eyM5OVnjY6FJOE1ISFCrIyUlhfvM09MT6enpOHPmDHx8fDB27FjcuXOnQR8FBQXw8fHBmDFjEBYWxi1/st/w8HCNak5JSVFbLyEhQaP1Wlvz87J9+3YYGxvjgw8+aLLNlClT8Ouvv+K7777jloWHh6vtJyGEEPIyUV76E+UlykuEEM3REJ7m6Eqp50hPT6/FBzK+yG23hqenJzZu3Ag+nw8rKyvo6uoiKSmpxfVCQ0Mhk8lw4MABHDlyBMuXL0dsbCymTp36rKVzDA0N1d6XlpZi8uTJmDZtWoO23bt35/4sFovh5+cHPz8/REdHQyaTITo6Gl5eXnBwcIBSqURhYWGD0caqqirk5ORAJpO1WJu/v79a+LS2tlar297eHvb29nB1dYWDgwO2bt2K+fPnc20KCwvh6ekJNzc3bNmyRa3vJ2evMTIyarEWoC6QPrne06NwLdGk5uZYWFjg3Llzasv++OMP7rMnMcbw7bffIjg4uMlAGxERAYVCgZMnT6Jbt27c8qioqDY/XJUQQsirhfJS21BeorxEeYkQ0p7QlVLPUf2Uwdp48Vr5kI/6f2S7d+8OXd26c5NOTk6oqalRm+723r17yMrKgrOzM7fMxsYG4eHh2LNnD2bNmoVvvvkGwJ8jaE8+r8DOzg56eno4f/48t0ypVGp0CfiAAQOQmZnJhYEnX039Y83j8dCrVy9uNpKPPvoIurq6iI2NbdB206ZNKC8vx4QJE1qsRSwWq21fKBQ22ValUqGyspJ7X1BQgHfeeQcDBw5EfHw8dHTUv3ZP9mtubt5iLUDdMy2eXE8sFmu0nqY1t2To0KG4cuWK2mhhcnIyjIyM1H5XgLoZY27cuIFJkyY16IcxhoiICOzduxc///wzbG1t1T43NzdX209CiPYwqF9+3tZn85Bnt2HDBrzxxhsQCAQYMmRIg//0Pumbb77B8OHD0blzZ25a+6fbM8awaNEiWFpaQigUYuTIkbh+/foLq5/yEuUlgPIS5SVC2qen8xJpGV0pRTgODg4ICAhAWFgYNm/eDLFYjHnz5sHa2hoBAQEAgBkzZsDX1xc9e/bEgwcPcOzYMTg5OQEApFIpeDweFAoFRo0aBaFQCLFYjJCQEMyZMwcmJiYwNzdHZGQkdHR0WgyGcrkcrq6uiIiIQGhoKAwNDZGZmYnk5GSsX78e6enpiIyMRHBwMJydncHn83HixAl8++23kMvlAOpGCFeuXInZs2dDIBAgODgYenp62L9/PxYsWIDo6OgG9+NnZWU1qKV3794NRlfLysqwdOlS+Pv7w9LSEsXFxdiwYQMKCgq4aXzrA5ZUKkVMTIzaNMJPj5A9rX5kr7S0FHfv3kV6ejr4fH6DEPOk0tJS3Lhxg3ufm5uL9PR0mJiYoHv37hrVDAD5+fm4f/8+8vPzUVtby9Vib28PkUgEb29vODs7Izg4GCtXrsTt27fx5ZdfYsqUKdDX11eraevWrRgyZEijzz2YMmUKduzYgf3790MsFnPPV5BIJM0G2ZbqI4SQ9mrnzp2YOXMmNm3ahCFDhuDvf/87ZDIZsrKyGv2P+vHjx/Hxxx/Dzc0NAoEAK1asgLe3N3777TfuKpaVK1ciLi4O27dvh62tLRYuXAiZTIbMzEwIBIKXvYuvPMpLdSgvUV4ihJDn4oXN/9cOdKQpjuvVT3EskUiYUChkMplMbYrjiIgI1qNHD6avr8/MzMxYcHAwKy4u5j6PiopiFhYWjMfjNTvF8eDBg9m8efO49aRSKVuzZk2Des6dO8e8vLyYSCRihoaGrG/fvmzp0qWMMcbu3r3Lpk2bxvr06cNEIhETi8XMxcWFxcTEsNraWrV+9u3bx4YPH84MDQ25KZgTExPV2jQ2TXP969atWw1qq6ioYB9++CGzsrJifD6fWVpaMn9/f3bu3DmuTXx8fJN9tqSxdaRSabPrHDt2rNH16n8WmtTMWN3vSGP9HDt2jGuTl5fHfH19mVAoZF26dGGzZs1i1dXVav08fPiQCYVCtmXLFo33EQCLj49vdj81qe9pr/N3lpBXwZ5Lt5hUrmCyNSeYVK5gtvMU2i5JazSd4vhFGDx4MJsyZQr3vra2lllZWbHly5drtH5NTQ0Ti8Vs+/btjDHGVCoVs7CwYKtWreLaPHz4kOnr6zf4d7IplJcoL1FeorxECKlz+sZdJpUr2MjY48xu/gEmlSvYbWXH/D5pmpd4jNH1900pKSmBRCKBUqlscO/648ePkZubC1tbWxpFbKWysjJYW1sjNja20UuUX7T79+9jxIgRMDIywqFDh2BgYPDSayAvH31nCWmbvWm/4/Odl9HLQoxrtx9BhwfcXP6etsvSiubywYtUVVUFAwMD7N69W+1ByCEhIXj48CH279/fYh+PHj2Cubk5du3ahffffx83b95Ejx49kJaWhjfffJNr5+HhgTfffBNr165tsU/KSy8G5SWiDfSdJaRtzuQUI/CbVDiYi3CzuAy1KobUBSPQ1ajjfZ80zUv0TCnywqWlpSExMRE5OTm4dOkSgoKCAIC7xP1lMzExwdGjRzFixAicPXtWKzUQQgghrVVcXIza2tpGp5hvbHr5xsjlclhZWWHkyJEA/pyWvjV9VlZWoqSkRO1F2o7yEiGEtC80A59m6JlS5KWIiYlBVlYW+Hw+Bg4ciJSUFHTp0kVr9ZiammLRokVa2z4hhLzu6DLr18/XX3+N7777DsePH2/TFRDLly/HkiVLnmNlpB7lJUIIaR9aOa9Gh0YnpcgL179/f1y8eFHbZRBCCCGvtS5duqBTp07clPL1/vjjjxYfBh0TE4Ovv/4aR48eRd++fbnl9ev98ccfsLS0VOvzydv5njR//nzMnDmTe19SUgIbG5vW7g55CuUlQgghHRHdvkcIIYQQjbU0Exh5ceqvnvnpp5+4ZSqVCj/99BOGDh3a5HorV67EV199hR9//BGDBg1S+8zW1hYWFhZqfZaUlCA1NbXJPvX19WFkZKT2IoQQQgjoUvJnQFdKEUIIIYS8JmbOnImQkBAMGjQIgwcPxt///neUlZXhL3/5CwBgwoQJsLa2xvLlywEAK1aswKJFi7Bjxw688cYb3HOiRCIRRCIReDweZsyYgejoaDg4OMDW1hYLFy6ElZWV2sPUCSGEEPJsaGq55tFJKUIIIYS0iALVq2HcuHG4e/cuFi1ahNu3b+PNN9/Ejz/+yD2oPD8/Hzo6f14Iv3HjRlRVVeGjjz5S6ycyMhKLFy8GAMydOxdlZWX47LPP8PDhQwwbNgw//vgjzbxFCCGEkBeOTkoRQgghhLxGIiIiEBER0ehnx48fV3ufl5fXYn88Hg9RUVGIiop6DtURQgghBKCHnWuKnilFCCGEkFajK6cIIYQQQhrHA52R0hSdlCKEEEKIxihiEUIIIYSQ54VOShFCCCFEY3QpOiGEEEJI4+hC8tajk1Id0MSJE8Hj8cDj8cDn82Fvb4+oqCjU1NS0qd/jx4+Dx+Ph4cOHz6dQDeTm5iIwMBBWVlYQCATo1q0bAgICcO3aNbV2CoUCHh4eEIvFMDAwwFtvvYVt27aptcnLywOPx0N6errG21+8eDF69eoFQ0NDdO7cGSNHjkRqaqpan5MmTYKtrS2EQiF69OiByMhIVFVVtdh3QkIC+vXrBwMDA1haWuLTTz/FvXv3ml3n5MmT8PPzg5WVFXg8Hvbt29dou6tXr8Lf3x8SiQSGhoZ46623kJ+fz30+efJk9OjRA0KhEGZmZo0e0/Pnz2PEiBEwNjZG586dIZPJcPny5Ua3d+PGDYjFYhgbG7e435ruAyGEEPIiUV6ivER5iRDyPDA6VdUsOinVQfn4+KCoqAjXr1/HrFmzsHjxYqxatUrbZXE0CSHV1dXw8vKCUqnEnj17kJWVhZ07d8LFxUUt6K1btw4BAQFwd3dHamoqMjIyMH78eISHh2P27NltqrNnz55Yv349rly5glOnTuGNN96At7c37t69CwC4du0aVCoVNm/ejN9++w1r1qzBpk2bsGDBgmb7PX36NCZMmIBJkybht99+w65du3Du3DmEhYU1u15ZWRn69euHDRs2NNkmJycHw4YNQ69evXD8+HFkZGRg4cKFarMsDRw4EPHx8bh69SoOHz4Mxhi8vb1RW1sLACgtLYWPjw+6d++O1NRUnDp1CmKxGDKZDNXV1Wrbq66uxscff4zhw4c3W3tr9oEQQgh5GSgvUV6ivEQIIS8YI01SKpUMAFMqlQ0+q6ioYJmZmayiokILlbVNSEgICwgIUFvm5eXFXF1d2f3791lwcDAzNjZmQqGQ+fj4sOzsbK5dXl4ee//995mxsTEzMDBgzs7O7MCBAyw3N5eh7mpF7hUSEsIYY6ykpIQFBgYyAwMDZmFhwVavXs08PDzY9OnTuX6lUimLiopiwcHBTCwWc+umpKSwYcOGMYFAwLp168amTp3KSktLGWOMpaWlMQAsLy+vyX3Nz89nenp6bObMmQ0+i4uLYwDYL7/8whhj3D6kpaW1/qD+T/3vzNGjR5tss3LlSmZra9tsP6tWrWJ2dnYN6rW2tta4FgBs7969DZaPGzeOffLJJxr3wxhjly9fZgDYjRs3GGOMnT9/ngFg+fn5XJuMjAwGgF2/fl1t3blz57JPPvmExcfHM4lE0qrtNrUPz+J1/s4S8ir44eItJpUr2Ki1J5lUrmBSuULbJWlNc/mgI6K8RHmptSgvUV4ipL06df0uk8oVzHv1Ceaw4CCTyhWs8GG5tsvSCk3zEl0p9RwxxlBbW66VF2vjNEhCoRBVVVWYOHEiLly4gKSkJJw9exaMMYwaNYobzZkyZQoqKytx8uRJXLlyBStWrIBIJIKNjQ1++OEHAEBWVhaKioqwdu1aAMDMmTNx+vRpJCUlITk5GSkpKbh06VKDGmJiYtCvXz+kpaVh4cKFyMnJgY+PD0aPHo2MjAzs3LkTp06d4qbBNjMzg46ODnbv3s2NSD1t9+7dqK6ubnSEb/LkyRCJREhMTGzTsatXVVWFLVu2QCKRoF+/fk22UyqVMDExabavoUOH4tatWzh48CAYY/jjjz+we/dujBo1qk01qlQqHDhwAD179oRMJoO5uTmGDBnS7CXfZWVliI+Ph62tLWxsbAAAjo6OMDU1xdatW1FVVYWKigps3boVTk5OeOONN7h1f/75Z+zatYtG8QhpB2i2PfK8UF6ivER5ifISIYTU09V2Ae2JSlWB4ydctLLtdzyuoFMng1avxxjDTz/9hMOHD8PX1xf79u3D6dOn4ebmBqDuPn0bGxvs27cPY8aMQX5+PkaPHg0Xl7r9tLOz4/qqDw7m5ubcvfCPHj3C9u3bsWPHDowYMQIAEB8fDysrqwa1vPvuu5g1axb3PjQ0FEFBQZgxYwYAwMHBAXFxcfDw8MDGjRthbW2NuLg4zJ07F0uWLMGgQYPg6emJoKAgrq7s7GxIJBJYWlo22B6fz4ednR2ys7NbfdyepFAoMH78eJSXl8PS0hLJycno0qVLo21v3LiBdevWISYmptk+3d3dkZCQgHHjxuHx48eoqamBn59fm8PKnTt3UFpaiq+//hrR0dFYsWIFfvzxR/zf//0fjh07Bg8PD67tP/7xD8ydOxdlZWVwdHREcnIy+Hw+AEAsFuP48eP44IMP8NVXXwGo+/kcPnwYurp1f63cu3cPEydOxL///W8YGRm1qW5CyKuDHnRO2oryEuUlykuUlwhp7ygvaY6ulOqgFAoFRCIRBAIBfH19MW7cOEycOBG6uroYMmQI187U1BSOjo64evUqAGDatGmIjo6Gu7s7IiMjkZGR0ex2bt68ierqagwePJhbJpFI4Ojo2KDtoEGD1N5fvnwZ27Ztg0gk4l4ymQwqlQq5ubkA6kYib9++jYSEBAwdOhS7du1C7969kZycrPGxqA8OzUlISFCrIyUlhfvM09MT6enpOHPmDHx8fDB27FjcuXOnQR8FBQXw8fHBmDFj1J518GS/4eHhAIDMzExMnz4dixYtwsWLF/Hjjz8iLy+P+zwlJUVtvYSEBI32VaVSAQACAgLw+eef480338S8efPw/vvvY9OmTWptg4KCkJaWhhMnTqBnz54YO3YsHj9+DACoqKjApEmT4O7ujl9++QWnT59Gnz598N5776GiogIAEBYWhsDAQLz99tuN1vKs+0AIIYS8LJSX/kR5ifISIYS8CHSl1HOkoyPEOx5XtLbt1vD09MTGjRvB5/NhZWUFXV1dJCUltbheaGgoZDIZDhw4gCNHjmD58uWIjY3F1KlTn7V0jqGhodr70tJSTJ48GdOmTWvQtnv37tyfxWIx/Pz84Ofnh+joaMhkMkRHR8PLywsODg5QKpUoLCxsMNpYVVWFnJwcyGSyFmvz9/dXC5/W1tZqddvb28Pe3h6urq5wcHDA1q1bMX/+fK5NYWEhPD094ebmhi1btqj1/eTsNfUjZMuXL4e7uzvmzJkDAOjbty8MDQ0xfPhwREdHY9CgQWrrde3atcV9AIAuXbpAV1cXzs7OasudnJxw6tQptWUSiQQSiQQODg5wdXVF586dsXfvXnz88cfYsWMH8vLycPbsWejo1J3b3rFjBzp37oz9+/dj/Pjx+Pnnn5GUlMSNcjLGoFKpoKuriy1btuDjjz9+pn0ghBDyeqO81DaUlygvEUJeXY3dJU6PQGgenZR6jng83jNdEq4N9cHgSU5OTqipqUFqaip3Ofq9e/eQlZWl9o+yjY0NwsPDER4ejvnz5+Obb77B1KlTuRG0J59XYGdnBz09PZw/f54LRkqlEtnZ2U2OCNUbMGAAMjMzG9TZHB6Ph169euHMmTMAgI8++ghyuRyxsbGIjY1Va7tp0yaUl5djwoQJLfYrFoshFos1qkGlUqGyspJ7X1BQAE9PT26GlvpQUq+x/SsvL+cu667XqVMnAHVhRSgUtuq41OPz+XjrrbeQlZWltjw7OxtSqbTJ9RhjYIxx+1VeXg4dHR3wnrgutf59/eji2bNn1X4X9u/fjxUrVuDMmTOwtrZ+5n0ghLw6GGNqfw8QognKS5SXAMpLlJcIIaQOnZQiHAcHBwQEBCAsLAybN2+GWCzGvHnzYG1tjYCAAADAjBkz4Ovri549e+LBgwc4duwYnJycAABSqRQ8Hg8KhQKjRo2CUCiEWCxGSEgI5syZAxMTE5ibmyMyMrLBP9CNkcvlcHV1RUREBEJDQ2FoaIjMzEwkJydj/fr1SE9PR2RkJIKDg+Hs7Aw+n48TJ07g22+/hVwuB1A3Qrhy5UrMnj0bAoEAwcHB0NPTw/79+7FgwQJER0ejT58+att9OoAAQO/evaGnp6e2rKysDEuXLoW/vz8sLS1RXFyMDRs2oKCgAGPGjAFQF7DeeecdSKVSxMTEcFMfA4CFhUWT++7n54ewsDBs3LgRMpkMRUVFmDFjBgYPHtzo8yXqlZaW4saNG9z73NxcpKenw8TEhAu5c+bMwbhx4/D222/D09MTP/74I/7zn//g+PHjAOpuIdi5cye8vb1hZmaG33//HV9//TWEQiH34FAvLy/MmTMHU6ZMwdSpU6FSqfD1119DV1cXnp6eAMD9XtS7cOECdHR0GhzvZ9kHQoj28EAnoUjHRnmpDuUlykuEkBZQZNLMi5j6r73oSFMc16uf4lgikTChUMhkMpnaFMcRERGsR48eTF9fn5mZmbHg4GBWXFzMfR4VFcUsLCwYj8drdorjwYMHs3nz5nHrSaVStmbNmgb1nDt3jnl5eTGRSMQMDQ1Z37592dKlSxljjN29e5dNmzaN9enTh4lEIiYWi5mLiwuLiYlhtbW1av3s27ePDR8+nBkaGnJTMCcmJqq1aWya5vrXrVu3GtRWUVHBPvzwQ2ZlZcX4fD6ztLRk/v7+7Ny5c1yb+Pj4JvtsSVxcHHN2dmZCoZBZWlqyoKAg9vvvvze7zrFjxxrdVv3Pot7WrVuZvb09EwgErF+/fmzfvn3cZwUFBczX15eZm5szPT091q1bNxYYGMiuXbum1seRI0eYu7s7k0gkrHPnzuzdd99lZ8+ebbI2Tac41nQfWut1/s4S8irYfeEWk8oVzG9dCpPKFUwqVzCVSqXtsrRC0ymOOwrKS5SXKC9RXiKE1EnJvsukcgWTrTnBHL44yKRyBSt4UK7tsrRC07zEY4zucGxKSUkJJBIJlEplg9kwHj9+jNzcXNja2kIgEGipwtdTWVkZrK2tERsbi0mTJr307d+/fx8jRoyAkZERDh06BAOD1+MWAtI29J0lpG1+uPg7Zu26jL7dJMj4XQkAyF0+qkPevtdcPuiIKC+9GJSXiDbQd5aQtjl1vRifbE1FLwsxbhaXoapGhTPz3oWVceueadgeaJqXaPY98sKlpaUhMTEROTk5uHTpEoKCggCAu8T9ZTMxMcHRo0cxYsQInD17Vis1EELI64ZGsAh5sSgvEUII6YjomVLkpYiJiUFWVhb4fD4GDhyIlJQUdOnSRWv1mJqaYtGiRVrbPiGEEELI0ygvEULI6401MoxHA3vNo5NS5IXr378/Ll68qO0yCCGEPGeMAR3w7j1CXgjKS4QQQjoiun2PEEIIIYQQQggh5DmicTvN0EkpQgghhGiMAhYhhBBCCHle6KQUIYQQQjRH9+sRQgghhJDnhE5KEUIIIYQQQgghhDwnPBrE0xidlCKEEELIM6HZZAghhBBC/sQaCUessYWEQyelCCGEEEIIIYQQQshLRyelCCGEENKi+lE+uhidEEIIIaRldAefZuikVAc0ceJE8Hg88Hg88Pl82NvbIyoqCjU1NW3q9/jx4+DxeHj48OHzKVQDubm5CAwMhJWVFQQCAbp164aAgABcu3ZNrZ1CoYCHhwfEYjEMDAzw1ltvYdu2bWpt8vLywOPxkJ6ervH2Fy9ejF69esHQ0BCdO3fGyJEjkZqaqtbnpEmTYGtrC6FQiB49eiAyMhJVVVUt9p2QkIB+/frBwMAAlpaW+PTTT3Hv3r1m19m4cSP69u0LIyMjGBkZYejQoTh06BD3+f379zF16lQ4OjpCKBSie/fumDZtGpRKJddm27Zt3O/H0687d+5w7SorK/HFF19AKpVCX18fb7zxBr799lu1ev7+979z27KxscHnn3+Ox48fN7sPe/bsgbe3N0xNTVv98yCEEEKeF8pLlJcoLxFCyIunq+0CiHb4+PggPj4elZWVOHjwIKZMmQI9PT3Mnz9f26UBAKqqqsDn85ttU11dDS8vLzg6OmLPnj2wtLTE77//jkOHDqkFvXXr1mHGjBmQy+XYuHEj+Hw+9u/fj/DwcPz666+IiYl55jp79uyJ9evXw87ODhUVFVizZg28vb1x48YNmJmZ4dq1a1CpVNi8eTPs7e3x66+/IiwsDGVlZc1u9/Tp05gwYQLWrFkDPz8/FBQUIDw8HGFhYdizZ0+T63Xr1g1ff/01HBwcwBjD9u3bERAQgLS0NPTu3RuFhYUoLCxETEwMnJ2d8d///hfh4eEoLCzE7t27AQDjxo2Dj4+PWr8TJ07E48ePYW5uzi0bO3Ys/vjjD2zduhX29vYoKiqCSqXiPt+xYwfmzZuHb7/9Fm5ubsjOzuYC/urVq5vch7KyMgwbNgxjx45FWFhYiz8DQggh5EWhvER5ifISIYS8YKwdi4yMZKh7Div3cnR01Hh9pVLJADClUtngs4qKCpaZmckqKiqeZ8kvRUhICAsICFBb5uXlxVxdXdn9+/dZcHAwMzY2ZkKhkPn4+LDs7GyuXV5eHnv//feZsbExMzAwYM7OzuzAgQMsNze3wbEOCQlhjDFWUlLCAgMDmYGBAbOwsGCrV69mHh4ebPr06Vy/UqmURUVFseDgYCYWi7l1U1JS2LBhw5hAIGDdunVjU6dOZaWlpYwxxtLS0hgAlpeX1+S+5ufnMz09PTZz5swGn8XFxTEA7JdffmGMMW4f0tLSWn9Q/6f+d+bo0aNNtlm5ciWztbVttp9Vq1YxOzu7BvVaW1u3uqbOnTuz//f//l+Tn3///feMz+ez6urqRj+/c+cO09PTY//85z+5ZYcOHWISiYTdu3evyX6nTJnC3n33XbVlM2fOZO7u7hrV/Tx+Hk96nb+zhLwKvj+fz6RyBQtYf4pJ5QomlStYdU2ttsvSiubyQUdEeYnyUmtRXvoT5SVC2pcTWXeYVK5gvn8/yRy/PMikcgW7db9M22VphaZ5qd3fvte7d28UFRVxr1OnTr2wbTHGUFZbq5UXa+MT/YVCIaqqqjBx4kRcuHABSUlJOHv2LBhjGDVqFKqrqwEAU6ZMQWVlJU6ePIkrV65gxYoVEIlEsLGxwQ8//AAAyMrKQlFREdauXQsAmDlzJk6fPo2kpCQkJycjJSUFly5dalBDTEwM+vXrh7S0NCxcuBA5OTnw8fHB6NGjkZGRgZ07d+LUqVOIiIgAAJiZmUFHRwe7d+9GbW1to/u1e/duVFdXY/bs2Q0+mzx5MkQiERITE9t07OpVVVVhy5YtkEgk6NevX5PtlEolTExMmu1r6NChuHXrFg4ePAjGGP744w/s3r0bo0aN0rie2tpafPfddygrK8PQoUObrcfIyAi6uo1fOPnPf/4TBgYG+Oijj7hlSUlJGDRoEFauXAlra2v07NkTs2fPRkVFBdfGzc0NFy9exLlz5wAAN2/exMGDB1u1D4SQVw89H4G0FeUlykuUlygvEdKR0OR7zWv3t+/p6urCwsLipWyrXKVCj5NXXsq2npbztgsMO3Vq9XqMMfz00084fPgwfH19sW/fPpw+fRpubm4A6u7Tt7Gxwb59+zBmzBjk5+dj9OjRcHFxAQDY2dlxfdUHB3NzcxgbGwMAHj16hO3bt2PHjh0YMWIEACA+Ph5WVlYNann33Xcxa9Ys7n1oaCiCgoIwY8YMAICDgwPi4uLg4eGBjRs3wtraGnFxcZg7dy6WLFmCQYMGwdPTE0FBQVxd2dnZkEgksLS0bLA9Pp8POzs7ZGdnt/q4PUmhUGD8+PEoLy+HpaUlkpOT0aVLl0bb3rhxA+vWrWvxEnh3d3ckJCRg3LhxePz4MWpqauDn54cNGza0WM+VK1cwdOhQPH78GCKRCHv37oWzs3OjbYuLi/HVV1/hs88+a7K/rVu3IjAwEEKhkFt28+ZNnDp1CgKBAHv37kVxcTH+9re/4d69e4iPjwcABAYGori4GMOGDQNjDDU1NQgPD8eCBQta3AdCyKuLzkmRtqK8RHmJ8hLlJULaKzr/1Hrt/kqp69evw8rKCnZ2dggKCkJ+fr62S3olKBQKiEQiCAQC+Pr6Yty4cZg4cSJ0dXUxZMgQrp2pqSkcHR1x9epVAMC0adMQHR0Nd3d3REZGIiMjo9nt3Lx5E9XV1Rg8eDC3TCKRwNHRsUHbQYMGqb2/fPkytm3bBpFIxL1kMhlUKhVyc3MB1I1E3r59GwkJCRg6dCh27dqF3r17Izk5WeNj0dKzGIC6sPlkHSkpKdxnnp6eSE9Px5kzZ+Dj44OxY8eqPeCyXkFBAXx8fDBmzBi1e/+f7Dc8PBwAkJmZienTp2PRokW4ePEifvzxR+Tl5XGfp6SkqK2XkJDA9efo6Ij09HSkpqbir3/9K0JCQpCZmdmgnpKSErz33ntwdnbG4sWLG93vs2fP4urVq5g0aZLacpVKBR6Ph4SEBAwePBijRo3C6tWrsX37dm707/jx41i2bBn+8Y9/4NKlS9izZw8OHDiAr776qsVjSgghhLwKKC/9ifIS5SVCCHkR2vWVUkOGDMG2bdvg6OiIoqIiLFmyBMOHD8evv/4KsVjcoH1lZSUqKyu59yUlJa3anoGODnLedmlz3c/CQKd15xc9PT25h1haWVlBV1cXSUlJLa4XGhoKmUyGAwcO4MiRI1i+fDliY2MxderUZy2dY2hoqPa+tLQUkydPxrRp0xq07d69O/dnsVgMPz8/+Pn5ITo6GjKZDNHR0fDy8oKDgwOUSiUKCwsbjDZWVVUhJycHMpmsxdr8/f3Vwqe1tbVa3fb29rC3t4erqyscHBywdetWtYegFhYWwtPTE25ubtiyZYta30/OlmJkZAQAWL58Odzd3TFnzhwAQN++fWFoaIjhw4cjOjoagwYNUluva9eu3J/rZwgCgIEDB+L8+fNYu3YtNm/ezLV59OgRfHx8IBaLsXfvXujp6TW63//v//0/vPnmmxg4cKDacktLS1hbW0MikXDLnJycwBjD77//DgcHByxcuBDBwcEIDQ0FALi4uKCsrAyfffYZvvjii2aPKSGEkPaL8lLbUF6ivEQIeT3w6PpyjbTrk1K+vr7cn/v27YshQ4ZAKpXi+++/bzCSAdT9w7ZkyZJn3h6Px3umS8K1oT4YPMnJyQk1NTVITU3lLke/d+8esrKy1C5ntrGxQXh4OMLDwzF//nx88803mDp1KjeC9uTzCuzs7KCnp4fz589zwUipVCI7Oxtvv/12szUOGDAAmZmZDepsDo/HQ69evXDmzBkAwEcffQS5XI7Y2FjExsaqtd20aRPKy8sxYcKEFvsVi8WNnshsjEqlUju5WVBQAE9PTwwcOBDx8fHQeSoQN7Z/5eXlDZ5Z0Ol/v1uMMQiFQo2Py9P1lJSUQCaTQV9fH0lJSRAIBI2uV1paiu+//x7Lly9v8Jm7uzt27dqF0tJSiEQiAHWX/uvo6KBbt27cPjy9r0/uQ2uOKSFE++hydPK8UF6ivARQXqK8RAghddr1SamnGRsbo2fPnrhx40ajn8+fPx8zZ87k3peUlMDGxuZllad1Dg4OCAgIQFhYGDZv3gyxWIx58+bB2toaAQEBAIAZM2bA19cXPXv2xIMHD3Ds2DE4OTkBAKRSKXg8HhQKBUaNGgWhUAixWIyQkBDMmTMHJiYmMDc3R2RkJHR0dMBr4Wm5crkcrq6uiIiIQGhoKAwNDZGZmYnk5GSsX78e6enpiIyMRHBwMJydncHn83HixAl8++23kMvlAOpGCFeuXInZs2dDIBAgODgYenp62L9/PxYsWIDo6Gj06dNHbbtZWVkNaundu3eD0bGysjIsXboU/v7+sLS0RHFxMTZs2ICCggKMGTMGQF3AeueddyCVShETE4O7d+9y6zf3rDM/Pz+EhYVh48aNkMlkKCoqwowZMzB48OBGny9Rb/78+fD19UX37t3x6NEj7NixA8ePH8fhw4cB1P1Oe3t7o7y8HP/+979RUlLCXRFoZmbGhSAA2LlzJ2pqavDJJ5802E5gYCC++uor/OUvf8GSJUtQXFyMOXPm4NNPP+WepeDn54fVq1ejf//+GDJkCG7cuIGFCxfCz89PbTtPu3//PvLz81FYWAjgz5+HhYXFS3s+HCFEM3SiinRElJfqUF6qQ3mJEELa6IXM/feKevToEevcuTNbu3atRu070hTH9eqnOJZIJEwoFDKZTKY2xXFERATr0aMH09fXZ2ZmZiw4OJgVFxdzn0dFRTELCwvG4/GaneJ48ODBbN68edx6UqmUrVmzpkE9586dY15eXkwkEjFDQ0PWt29ftnTpUsYYY3fv3mXTpk1jffr0YSKRiInFYubi4sJiYmJYba36NOX79u1jw4cPZ4aGhtwUzImJiWptGpumuf5169atBrVVVFSwDz/8kFlZWTE+n88sLS2Zv78/O3fuHNcmPj6+yT5bEhcXx5ydnZlQKGSWlpYsKCiI/f77782u8+mnnzKpVMr4fD4zMzNjI0aMYEeOHOE+P3bsWJP15ObmqvU1dOhQFhgY2OS2rl69ykaOHMmEQiHr1q0bmzlzJisvL+c+r66uZosXL2Y9evRgAoGA2djYsL/97W/swYMHze5DU8csMjKy2fVa8jp/Zwl5Few8n8+kcgX7cMMpJpUrmFSuYFU1tS2v2A5pOsVxR0F5ifIS5SXKS4SQOsez7jCpXMFGrT3Jen15iEnlCpZ/r0zbZWmFpnmJx1j7naBw9uzZ8PPzg1QqRWFhISIjI5Geno7MzEyYmZm1uH5JSQkkEgk3BeyTHj9+jNzcXNja2jZ5OS9pXFlZGaytrREbG9vobZQv2v379zFixAgYGRnh0KFDMDAweOk1kJePvrOEtM33F25h7u4MDJR2xsX/PgAAXF/qC71O7X7OlAaaywcdEeWlF4PyEtEG+s4S0jbHs+5gYvx59LYyws27ZaiorkXKXE/YmHS8v0M1zUvtOkn+/vvv+Pjjj+Ho6IixY8fC1NQUv/zyi0YnpMjzk5aWhsTEROTk5ODSpUsICgoCAO4S95fNxMQER48exYgRI3D27Fmt1EAIIYQQ8iTKS4QQQjqidv1Mqe+++07bJZD/iYmJQVZWFvh8PgYOHIiUlBR06dJFa/WYmppi0aJFWts+IYS8rmgeGUJeHMpLhBDSfrTwSEDyP+36pBR5NfTv3x8XL17UdhmEEEKes/b7AABCXj7KS4QQQjqidn37HiGEEEIIIYQQQgh5NdFJKUIIIYRojC5FJ4QQQghpHuUlzdFJKUIIIYS0jG7VI4QQQghpNXrcQfPopBQhhBBCCCGEEEJIG9H5p9ajk1KEEEIIeSaMohchhBBCSKPoDj7N0EkpQgghhBBCCCGEEPLS0UkpQgghhGiMR+N+hBBCCCHkOaGTUh3QxIkTwePxwOPxwOfzYW9vj6ioKNTU1LSp3+PHj4PH4+Hhw4fPp1AN5ObmIjAwEFZWVhAIBOjWrRsCAgJw7do1tXYKhQIeHh4Qi8UwMDDAW2+9hW3btqm1ycvLA4/HQ3p6usbbX7x4MXr16gVDQ0N07twZI0eORGpqqlqfkyZNgq2tLYRCIXr06IHIyEhUVVW12HdCQgL69esHAwMDWFpa4tNPP8W9e/c0ru3rr78Gj8fDjBkz1Jbn5OTgww8/hJmZGYyMjDB27Fj88ccfam2WLl0KNzc3GBgYwNjYuNH+63+Hnnx999133Od79uyBl5cXt52hQ4fi8OHDLda9Z88eeHt7w9TUtNU/D0LIS0DnpEgHQXmJ8hLlJUJIW5gIimFvnIPH5b+BMZW2y3ll0UmpDsrHxwdFRUW4fv06Zs2ahcWLF2PVqlXaLoujSQiprq6Gl5cXlEol9uzZg6ysLOzcuRMuLi5qQW/dunUICAiAu7s7UlNTkZGRgfHjxyM8PByzZ89uU509e/bE+vXrceXKFZw6dQpvvPEGvL29cffuXQDAtWvXoFKpsHnzZvz2229Ys2YNNm3ahAULFjTb7+nTpzFhwgRMmjQJv/32G3bt2oVz584hLCxMo7rOnz+PzZs3o2/fvmrLy8rK4O3tDR6Ph59//hmnT59GVVUV/Pz8oFL9+RdlVVUVxowZg7/+9a/Nbic+Ph5FRUXc64MPPuA+O3nyJLy8vHDw4EFcvHgRnp6e8PPzQ1paWrN9lpWVYdiwYVixYoVG+0oIIYS8KJSXKC9RXiKEPAtT/QIsdo3E/MFrcev6eNy8uUbbJb26GGmSUqlkAJhSqWzwWUVFBcvMzGQVFRVaqKxtQkJCWEBAgNoyLy8v5urqyu7fv8+Cg4OZsbExEwqFzMfHh2VnZ3Pt8vLy2Pvvv8+MjY2ZgYEBc3Z2ZgcOHGC5ubkMdZMNcK+QkBDGGGMlJSUsMDCQGRgYMAsLC7Z69Wrm4eHBpk+fzvUrlUpZVFQUCw4OZmKxmFs3JSWFDRs2jAkEAtatWzc2depUVlpayhhjLC0tjQFgeXl5Te5rfn4+09PTYzNnzmzwWVxcHAPAfvnlF8YY4/YhLS2t9Qf1f+p/Z44ePdpkm5UrVzJbW9tm+1m1ahWzs7NrUK+1tXWLNTx69Ig5ODiw5OTkBsf58OHDTEdHR+13+uHDh4zH47Hk5OQGfcXHxzOJRNLodgCwvXv3tljPk5ydndmSJUs0avs8fh5Pep2/s4S8Cnaey2dSuYKN2XSGSeUKJpUr2OPqGm2XpRXN5YOOiPIS5aXWorzUPMpLhLy+fr76B5PKFWxa/Fp29Cc77nXlyjRtl/bSaZqX6Eqp54gxhvKqGq28GGvbDEhCoRBVVVWYOHEiLly4gKSkJJw9exaMMYwaNQrV1dUAgClTpqCyshInT57ElStXsGLFCohEItjY2OCHH34AAGRlZaGoqAhr164FAMycOROnT59GUlISkpOTkZKSgkuXLjWoISYmBv369UNaWhoWLlyInJwc+Pj4YPTo0cjIyMDOnTtx6tQpREREAADMzMygo6OD3bt3o7a2ttH92r17N6qrqxsd4Zs8eTJEIhESExPbdOzqVVVVYcuWLZBIJOjXr1+T7ZRKJUxMTJrta+jQobh16xYOHjwIxhj++OMP7N69G6NGjWqxjilTpuC9997DyJEjG3xWWVkJHo8HfX19bplAIICOjg5OnTrVYt+NbatLly4YPHgwvv3222Z/D1UqFR49etTivhNCXk2NzbTXxn96SAdFeYnyEuUlykuEdDQ0Y3HTdLVdQHtSUV0L50Ut3wP+ImRGyWDAb/2PkzGGn376CYcPH4avry/27duH06dPw83NDUDdffo2NjbYt28fxowZg/z8fIwePRouLi4AADs7O66v+n88zc3NufvqHz16hO3bt2PHjh0YMWIEgLpLmK2srBrU8u6772LWrFnc+9DQUAQFBXH3+Ds4OCAuLg4eHh7YuHEjrK2tERcXh7lz52LJkiUYNGgQPD09ERQUxNWVnZ0NiUQCS0vLBtvj8/mws7NDdnZ2q4/bkxQKBcaPH4/y8nJYWloiOTkZXbp0abTtjRs3sG7dOsTExDTbp7u7OxISEjBu3Dg8fvwYNTU18PPzw4YNG5pd77vvvsOlS5dw/vz5Rj93dXWFoaEh5HI5li1bBsYY5s2bh9raWhQVFWm2w/8TFRWFd999FwYGBjhy5Aj+9re/obS0FNOmTWu0fUxMDEpLSzF27NhWbYcQQkj7QnmJ8hLlJcpLhHQ8dFKqKXSlVAelUCggEokgEAjg6+uLcePGYeLEidDV1cWQIUO4dqampnB0dMTVq1cBANOmTUN0dDTc3d0RGRmJjIyMZrdz8+ZNVFdXY/DgwdwyiUQCR0fHBm0HDRqk9v7y5cvYtm0bRCIR95LJZFCpVMjNzQVQN/J0+/ZtJCQkYOjQodi1axd69+6N5ORkjY8Fn89vsU1CQoJaHSkpKdxnnp6eSE9Px5kzZ+Dj44OxY8fizp07DfooKCiAj48PxowZo/asgyf7DQ8PBwBkZmZi+vTpWLRoES5evIgff/wReXl53OcpKSlq6yUkJODWrVuYPn06EhISIBAIGt0PMzMz7Nq1C//5z38gEokgkUjw8OFDDBgwADo6rfvrYOHChXB3d0f//v0hl8sxd+7cJp+zsWPHDixZsgTff/89zM3NWzymhJBXFz3nnHQklJf+RHmJ8hIhhLwIdKXUcyTU64TMKJnWtt0anp6e2LhxI/h8PqysrKCrq4ukpKQW1wsNDYVMJsOBAwdw5MgRLF++HLGxsZg6deqzls4xNDRUe19aWorJkyc3OpLUvXt37s9isRh+fn7w8/NDdHQ0ZDIZoqOj4eXlBQcHByiVShQWFjYYbayqqkJOTg5kspZ/Zv7+/mrh09raWq1ue3t72Nvbw9XVFQ4ODti6dSvmz5/PtSksLISnpyfc3NywZcsWtb6fnC3FyMgIALB8+XK4u7tjzpw5AIC+ffvC0NAQw4cPR3R0NAYNGqS2XteuXfHTTz/hzp07GDBgALe8trYWJ0+exPr161FZWYlOnTrB29sbOTk5KC4uhq6uLoyNjWFhYaE2ivsshgwZgq+++gqVlZVql7t/9913CA0Nxa5du9QukW/umBJCCGm/KC+1DeUlykuEENKe0Emp54jH4z3TJeHaUB8MnuTk5ISamhqkpqZyl6Pfu3cPWVlZcHZ25trZ2NggPDwc4eHhmD9/Pr755htMnTqVG0F78nkFdnZ20NPTw/nz57lgpFQqkZ2djbfffrvZGgcMGIDMzMwGdTaHx+OhV69eOHPmDADgo48+glwuR2xsLGJjY9Xabtq0CeXl5ZgwYUKL/YrFYojFYo1qUKlUqKys5N4XFBTA09MTAwcORHx8fIMRtsb2r7y8HLq66r9LnTrVBWnGGIRCYYP1RowYgStXrqgt+8tf/oJevXpBLpdz69erv2T+559/xp07d+Dv76/R/jUlPT0dnTt3VgtYiYmJ+PTTT/Hdd9/hvffeU2vfmmNKCCGk/aC8RHkJoLxEeYmQ9o3He+p2PXoQZ5Nej0RAXgoHBwcEBAQgLCwMmzdvhlgsxrx582BtbY2AgAAAwIwZM+Dr64uePXviwYMHOHbsGJycnAAAUqkUPB4PCoUCo0aNglAohFgsRkhICObMmQMTExOYm5sjMjISOjo64PGavwlELpfD1dUVERERCA0NhaGhITIzM5GcnIz169cjPT0dkZGRCA4OhrOzM/h8Pk6cOIFvv/0WcrkcQN0I4cqVKzF79mwIBAIEBwdDT08P+/fvx4IFCxAdHY0+ffqobTcrK6tBLb1794aenp7asrKyMixduhT+/v6wtLREcXExNmzYgIKCAowZMwZAXcB65513IJVKERMTw019DAAWFhZN7rufnx/CwsKwceNGyGQyFBUVYcaMGRg8eHCjz5cA6kLL0/tiaGgIU1NTteXx8fFwcnKCmZkZzp49i+nTp+Pzzz9Xu0UgPz8f9+/fR35+Pmpra7lRRnt7e4hEIvznP//BH3/8AVdXVwgEAiQnJ2PZsmVqD0jdsWMHQkJCsHbtWgwZMgS3b98GUPeQWIlE0uS+12+3sLAQwJ8/DwsLi2aPGSHk5Wjhr25C2j3KS3UoL1FeIoQ01NQDzelB5814QbP/tQsdaYrjevVTHEskEiYUCplMJlOb4jgiIoL16NGD6evrMzMzMxYcHMyKi4u5z6OiopiFhQXj8XjNTnE8ePBgNm/ePG49qVTK1qxZ06Cec+fOMS8vLyYSiZihoSHr27cvW7p0KWOMsbt377Jp06axPn36MJFIxMRiMXNxcWExMTGstrZWrZ99+/ax4cOHM0NDQ24K5sTERLU2jU3TXP+6detWg9oqKirYhx9+yKysrBifz2eWlpbM39+fnTt3jmsTHx/fZJ8tiYuLY87OzkwoFDJLS0sWFBTEfv/99xbXe9LTUxwzxphcLmddu3Zlenp6zMHBgcXGxjKVSqXWJiQkpNGajx07xhhj7NChQ+zNN9/kfi79+vVjmzZtUjvuHh4ejfZR/3vRlKaOWWRkZKv2/Wmv83eWkFfBd+f+y6RyBRu3+QyTyhVMKlewiqoabZelFZpOcdxRUF6ivER5ifISIaTOT1dvM6lcwaZv+zs7+pMd97qc8Tdtl/bSaZqXeIzRdWRNKSkpgUQigVKp5O5dr/f48WPk5ubC1ta2yYckksaVlZXB2toasbGxmDRp0kvf/v379zFixAgYGRnh0KFDMDAweOk1kJePvrOEtM3O8/mQ/3AFQ+1McfbmPQDAta98IGjlM3rag+byQUdEeenFoLxEtIG+s4S0zc/X/sCn2y7gQ6freN9mHbfczEyGvi7/0GJlL5+meYlm3yMvXFpaGhITE5GTk4NLly4hKCgIALhL3F82ExMTHD16FCNGjMDZs2e1UgMhhLxuaAiLkBeL8hIhhLRnFKSaQs+UIi9FTEwMsrKywOfzMXDgQKSkpHAPjtQGU1NTLFq0SGvbJ4QQQgh5GuUlQghpp2h0r0l0Uoq8cP3798fFixe1XQYhhJDnjPIVIc8P5SVCCCEdEd2+RwghhBBCCCGEEPKcPD1vKs2+1zQ6KUUIIYQQjbUwOz0hhBBCSIdFV5G3Hp2UIoQQQgghhBBCCCEvHZ2UIoQQQojG6EopQgghhJCWPH3JFF1C1RQ6KUUIIYQQQgghhBDyotB9fU2ik1KEEEIIeSb00E5CCCGEkJZRZmoanZTqgCZOnAgejwcejwc+nw97e3tERUWhpqamTf0eP34cPB4PDx8+fD6FaiA3NxeBgYGwsrKCQCBAt27dEBAQgGvXrqm1UygU8PDwgFgshoGBAd566y1s27ZNrU1eXh54PB7S09M13v7ixYvRq1cvGBoaonPnzhg5ciRSU1PV+pw0aRJsbW0hFArRo0cPREZGoqqqqsW+ExIS0K9fPxgYGMDS0hKffvop7t271+J6BQUF+OSTT2BqagqhUAgXFxdcuHCB+/zJn3/9y8fHR62PN954o0Gbr7/+mvs8KysLnp6e6Nq1KwQCAezs7PDll1+iurparZ+HDx9iypQpsLS0hL6+Pnr27ImDBw82W/+ePXvg7e0NU1PTVv88CCEvDkUp0tFQXqK8RHmJEPKs6HEHmtPVdgFEO3x8fBAfH4/KykocPHgQU6ZMgZ6eHubPn6/t0gAAVVVV4PP5zbaprq6Gl5cXHB0dsWfPHlhaWuL333/HoUOH1ILeunXrMGPGDMjlcmzcuBF8Ph/79+9HeHg4fv31V8TExDxznT179sT69ethZ2eHiooKrFmzBt7e3rhx4wbMzMxw7do1qFQqbN68Gfb29vj1118RFhaGsrKyZrd7+vRpTJgwAWvWrIGfnx8KCgoQHh6OsLAw7Nmzp8n1Hjx4AHd3d3h6euLQoUMwMzPD9evX0blzZ7V29T//evr6+g36ioqKQlhYGPdeLBZzf9bT08OECRMwYMAAGBsb4/LlywgLC4NKpcKyZcsA1P0Mvby8YG5ujt27d8Pa2hr//e9/YWxs3OwxLSsrw7BhwzB27Fi17RNCXg28BpMcE9J+UV6ivER5iRDSGk3fpUfDe01ipElKpZIBYEqlssFnFRUVLDMzk1VUVGihsrYJCQlhAQEBasu8vLyYq6sru3//PgsODmbGxsZMKBQyHx8flp2dzbXLy8tj77//PjM2NmYGBgbM2dmZHThwgOXm5jLUfdO4V0hICGOMsZKSEhYYGMgMDAyYhYUFW716NfPw8GDTp0/n+pVKpSwqKooFBwczsVjMrZuSksKGDRvGBAIB69atG5s6dSorLS1ljDGWlpbGALC8vLwm9zU/P5/p6emxmTNnNvgsLi6OAWC//PILY4xx+5CWltb6g/o/9b8zR48ebbLNypUrma2tbbP9rFq1itnZ2TWo19rautn15HI5GzZsWLNtGvv5P00qlbI1a9Y02+Zpn3/+udq2N27cyOzs7FhVVVWr+qn3PH4eT3qdv7OEvAp2pP6XSeUKFvTNL0wqVzCpXMHKKqu1XZZWNJcPOiLKS5SXWovyEuUlQtqr5N9uM6lcwWZuX82O/mTHvdLS/6Lt0l46TfMS3b5HAABCoRBVVVWYOHEiLly4gKSkJJw9exaMMYwaNYq7zHjKlCmorKzEyZMnceXKFaxYsQIikQg2Njb44YcfANRdqlxUVIS1a9cCAGbOnInTp08jKSkJycnJSElJwaVLlxrUEBMTg379+iEtLQ0LFy5ETk4OfHx8MHr0aGRkZGDnzp04deoUIiIiAABmZmbQ0dHB7t27UVtb2+h+7d69G9XV1Zg9e3aDzyZPngyRSITExMTncgyrqqqwZcsWSCQS9OvXr8l2SqUSJiYmzfY1dOhQ3Lp1CwcPHgRjDH/88Qd2796NUaNGNbteUlISBg0ahDFjxsDc3Bz9+/fHN99806Dd8ePHYW5uDkdHR/z1r39t9DL3r7/+Gqampujfvz9WrVrV7O0KN27cwI8//ggPDw+1WoYOHYopU6aga9eu6NOnD5YtW9bkz4oQQgh51VFeajvKS5SXNJWRkYF//etf+Oc//4mTJ09quxxCyIvyEk6QvbZaPfKnUjFWWaqdl0ql8X49OfKjUqlYcnIy09fXZx988AEDwE6fPs21LS4uZkKhkH3//feMMcZcXFzY4sWLG+332LFjDAB78OABt6ykpITp6emxXbt2ccsePnzIDAwMGoz8ffDBB2r9TZo0iX322Wdqy1JSUpiOjg533NevX88MDAyYWCxmnp6eLCoqiuXk5HDtw8PDmUQiafJY9O3bl/n6+jLGnn2k6T//+Q8zNDRkPB6PWVlZsXPnzjXZ9vr168zIyIht2bKlxX6///57JhKJmK6uLgPA/Pz8WhxF09fXZ/r6+mz+/Pns0qVLbPPmzUwgELBt27ZxbRITE9n+/ftZRkYG27t3L3NycmJvvfUWq6mp4drExsayY8eOscuXL7ONGzcyY2Nj9vnnnzfY3tChQ5m+vj4DwD777DNWW1vLfebo6Mj09fXZp59+yi5cuMC+++47ZmJi0uTvz9No5I+QV0tjV0qVPqYrpQjlJcYoL2mC8hLlpdZas2YNi4yM5F6PHz/WdkmEtKjJK6XSJmq7tJdO07xEz5R6nqrLgWVW2tn2gkKAb6hxc4VCAZFIhOrqaqhUKgQGBuL//u//oFAoMGTIEK6dqakpHB0dcfXqVQDAtGnT8Ne//hVHjhzByJEjMXr0aPTt27fJ7dy8eRPV1dUYPHgwt0wikcDR0bFB20GDBqm9v3z5MjIyMpCQkMAtY4xBpVIhNzcXTk5OmDJlCiZMmIDjx4/jl19+wa5du7Bs2TIkJSXBy8tLo2PR0rMYgLqHaE6ePJl7f+jQIQwfPhwA4OnpifT0dBQXF+Obb77B2LFjkZqaCnNzc7U+CgoK4OPjgzFjxqjd+y8Sibg/f/LJJ9i0aRMyMzMxffp0LFq0CDKZDEVFRZgzZw7Cw8OxdetWpKSkwNfXl1tv8+bNCAoKgkqlwqBBg7jnFPTv3x+//vorNm3ahJCQEADA+PHjufVcXFzQt29f9OjRA8ePH8eIESMA1I3W1uvbty/4fD4mT56M5cuXqz1PYefOnXj06BEuX76MOXPmICYmBnPnzgUAqFQqmJubY8uWLejUqRMGDhyIgoICrFq1CpGRkc0eU0LIq4se3EnajPJSA5SX/kR5ifJSvaevFlOpVFqqhJC2o9n3mkYnpTooT09P7iGWVlZW0NXVRVJSUovrhYaGQiaT4cCBAzhy5AiWL1+O2NhYTJ06tc01GRqqh8TS0lJMnjwZ06ZNa9C2e/fu3J/FYjH8/Pzg5+eH6OhoyGQyREdHw8vLCw4ODlAqlSgsLISVlXoArqqqQk5ODmQyWYu1+fv7q4VPa2trtbrt7e1hb28PV1dXODg4YOvWrWoPQS0sLISnpyfc3NywZcsWtb6fnC3FyMgIALB8+XK4u7tjzpw5AOqCjqGhIYYPH47o6GgMGjRIbb2uXbsCACwtLeHs7KzWv5OTE3erQGPs7OzQpUsX3LhxgwtZTxsyZAhqamqQl5enFpBtbGwAAM7OzqitrcVnn32GWbNmoVOnTrC0tISenh46deqkVsvt27dRVVXV7DElhBBCXgWUlygv1aO8RAhpDR6dhNIYnZR6nvQM6kbgtLXtVqgPBk9ycnJCTU0NUlNT4ebmBgC4d+8esrKy1P7htrGxQXh4OMLDwzF//nx88803mDp1KjeC9uSohp2dHfT09HD+/HkuGCmVSmRnZ+Ptt99utsYBAwYgMzOzQZ3N4fF46NWrF86cOQMA+OijjyCXyxEbG4vY2Fi1tps2bUJ5eTkmTJjQYr9isVhtNpXmqFQqVFZWcu8LCgrg6emJgQMHIj4+Hjo66o9ya2z/ysvLoaur/vWsDyuMMQiFwkbXc3d3R1ZWltqy7OxsSKXSJuv9/fffce/ePVhaWjbZJj09HTo6Og1GM5+kUqm4keROnTrB3d0dO3bsgEql4vY5OzsblpaW4PP54PP5Gh9TQggh7QjlJQCUlygvUV4ipD2iU1GtRyelnicer1WXhL9qHBwcEBAQgLCwMGzevBlisRjz5s2DtbU1AgICAAAzZsyAr68vevbsiQcPHuDYsWNwcnICAEilUvB4PCgUCowaNQpCoRBisRghISGYM2cOTExMYG5ujsjISOjo6IDXwj0gcrkcrq6uiIiIQGhoKAwNDZGZmYnk5GSsX78e6enpiIyMRHBwMJydncHn83HixAl8++23kMvlAOpGCFeuXInZs2dDIBAgODgYenp62L9/PxYsWIDo6Gj06dNHbbtPhxQA6N27N/T09NSWlZWVYenSpfD394elpSWKi4uxYcOG/8/emcdHUWV9/1fVS9LZSVgSAgTCDgIqiCwiIjsKPA4iCMOiwIAvILgguAwRBnRAQEUUl0fBmUFkREWeiAsgYtgVwg4BQmIgCyEJdPbe6r5/dFd1VXf1ErLD+fqJdFXduvfU1n3vr845F5mZmRg7diwAewfroYceQlxcHFatWoXr169L+0dHR3s89pEjR2LGjBlYv3695I4+f/589OzZ0+0NppznnnsOffr0wRtvvIEnnngCR44cwccffyy9bSwuLsaSJUswZswYREdHIzU1FS+99BLatGkjvQE9ePAgDh8+jAEDBiA0NBQHDx7Ec889h7/+9a/SVMmbNm2CTqdDly5dEBAQgD/++AMvv/wyxo0bJ52nZ555BuvWrcO8efMwd+5cXLx4EW+88Ybqm1w5BQUFyMjIQFZWluJ6REdHez1nBEFUL56nOCaICkL9JeovUX+J+ksEcadBHSnP1EB+q3rLnTTFsYg4xXF4eDgzGAxs6NChiimO58yZw1q3bs0CAgJYo0aN2KRJk1heXp60fenSpSw6OppxHOd1iuOePXuyRYsWSft5mlL3yJEjbPDgwSwkJIQFBwezrl27suXLlzPGGLt+/Tp79tln2V133cVCQkJYaGgo69KlC1u1apUigSRjjG3bto3169ePBQcHS1Mwb968WVFGbZpm8e/KlStutpWVlbHHHnuMNW3alOn1ehYTE8NGjRqlSNy5YcMGj3X6Yu3ataxTp07MYDCwmJgYNnHiRHb16lWf+/3f//0fu+uuu1hAQADr0KGDIkloaWkpGzJkCGvUqBHT6XQsLi6OzZgxg+Xk5Ehljh49yu6//34WHh7OAgMDWceOHdkbb7yhSC755ZdfsnvvvVe6Lp06dWJvvPGG2/Nw4MABdv/997OAgAAWHx/Pli9frkgQqoanc5aQkODz2L1Rn59ZgqgLbDpkT3T+1/91JjovokTntW1KnYD6S9Rfov4S9Zeqg1WrVikSnZeWlta2SQThk58dic5f/HyVItH5sWOTatu0Gsff/hLHGEl2nigsLER4eDiMRqMUuy5SXl6OtLQ0tGrVCoGBgbVkYf2kpKQEsbGxWL16NaZNm1bj7RcUFGDgwIEICwvDDz/8gKCgirnyE/UTemYJonJ8cTgDr3x7Cv3aNkTSxTwAwOklQxEScOc5XXvrH9yJUH+peqD+ElEb1KVndvXq1SgqKpKWFy5cCIPBUIsWEYRvdp69hhn/+gNjO53HsGYfSOsjG/TFPff8qxYtq3n87S/xHrcQRBWRnJyMzZs3IzU1FceOHcPEiRMBQHJxr2kiIyOxa9cuDBw4EAcPHqwVGwiCIOorvkKJCIK4Nai/RBDeIV8Koj5Ds+955s57vUnUCqtWrUJKSgr0ej26d++OpKQkNGzYsNbsiYqKwuLFi2utfYIgCIIgCFeov0QQBHGb4PYOj0QpT5AoRVQ799xzD44ePVrbZhAEQRAEQdRZqL9E1FX+zC/BjlM5EBhDZLAef7k3FgFaTW2bRRB1GndNikQpT5AoRRAEQRCE31DwHkEQxJ3Fa9tOS7kEASAkQIuR3TzPblhVULgeUR+h+7biUE4pgiAIgiBuCep4EQRB3P4UllkAAGJKwcJySy1aQxD1BeayRH0mT5AoRRAEQRCET6gzRRAEcWej42noSBBE1UPfLARBEARB+A1NvkcQBEEQBEFUFSRKEQRBEARBEARBEH5BkdsE4RuOc31Q6MHxBIlSBEEQBEEQBEEQhCo0lCaIKoDUXI+QKEUQBEEQxC1B3SuCIIg7CArfJgifeOobUW5Oz5AodQcydepUcBwHjuOg1+vRpk0bLF26FFartVL1/vrrr+A4Djdv3qwaQ/0gLS0NEyZMQNOmTREYGIhmzZph9OjROH/+vKJcYmIi+vfvj9DQUAQFBeG+++7Dxo0bFWXS09PBcRyOHz/ud/uvv/46OnTogODgYDRo0ACDBg3C4cOHFXVOmzYNrVq1gsFgQOvWrZGQkACz2eyz7k2bNqFbt24ICgpCTEwMnn76aeTn53vdx2az4e9//7uivX/84x+KGbK++eYbDBkyBFFRUR6PNzU1FY899hgaNWqEsLAwPPHEE7h27VqFj+vkyZPo168fAgMD0bx5c6xcudLncf/2228YOXIkmjZtCo7jsG3bNp/7EARRc9CYhLhToP4S9Zeov6RE/P6noTVB+Ib6S/5DotQdyrBhw5CdnY2LFy/ihRdewOuvv4633nqrts2S8KcTYrFYMHjwYBiNRnzzzTdISUnBli1b0KVLF0VH77333sPo0aPRt29fHD58GCdPnsT48eMxa9YsvPjii5Wys127dli3bh1OnTqFffv2oWXLlhgyZAiuX78OADh//jwEQcBHH32EM2fO4O2338aHH36IV155xWu9+/fvx+TJkzFt2jScOXMGX331FY4cOYIZM2Z43W/FihVYv3491q1bh3PnzmHFihVYuXIl3nvvPalMSUkJHnjgAaxYsUK1jpKSEgwZMgQcx+GXX37B/v37YTabMXLkSAiC4PdxFRYWYsiQIYiLi8PRo0fx1ltv4fXXX8fHH3/s9RhKSkrQrVs3vP/++17LEQRRO3CU6Zy4g6D+EvWXqL9EEETVQHKuRxjhEaPRyAAwo9Hotq2srIydPXuWlZWV1YJllWPKlCls9OjRinWDBw9mvXr1YgUFBWzSpEksIiKCGQwGNmzYMHbhwgWpXHp6Onv00UdZREQECwoKYp06dWLff/89S0tLY7A/adLflClTGGOMFRYWsgkTJrCgoCAWHR3N1qxZw/r378/mzZsn1RsXF8eWLl3KJk2axEJDQ6V9k5KS2AMPPMACAwNZs2bN2Ny5c1lxcTFjjLHk5GQGgKWnp3s81oyMDKbT6djzzz/vtm3t2rUMADt06BBjjEnHkJycXPGT6kC8Z3bt2uWxzMqVK1mrVq281vPWW2+x+Ph4N3tjY2O97vfII4+wp59+WrHuL3/5C5s4caJbWU/H+9NPPzGe5xX3/c2bNxnHcWznzp0e23Y9rg8++IA1aNCAmUwmad3ChQtZ+/btvR6DHADs22+/9bu8N+rzM0sQdYH/HEpncQsT2VMbjrC4hYksbmEiM5aZa9usWsFb/+BOhPpL1F+qKNRfql/9pUfXJrG4hYms/Ws7WNzCRPavg57vparkrbfeYgkJCdJfSUlJjbRLEJXhx9PZLG5hIlv475Vs1+546e/3Px6vbdNqHH/7S+QpRQAADAYDzGYzpk6dij/++APbt2/HwYMHwRjDiBEjYLFYAACzZ8+GyWTCb7/9hlOnTmHFihUICQlB8+bN8fXXXwMAUlJSkJ2djXfffRcA8Pzzz2P//v3Yvn07du7ciaSkJBw7dszNhlWrVqFbt25ITk7G3//+d6SmpmLYsGEYM2YMTp48iS1btmDfvn2YM2cOAKBRo0bgeR5bt26FzWZTPa6tW7fCYrGovuGbOXMmQkJCsHnz5io5h2azGR9//DHCw8PRrVs3j+WMRiMiIyO91tW7d29cuXIFO3bsAGMM165dw9atWzFixAiv+/Xp0we7d+/GhQsXAAAnTpzAvn37MHz4cL+Pw2QygeM4BAQESOsCAwPB8zz27dvn93EdPHgQDz74IPR6vbRu6NChSElJwY0bN/y2hyCIukmgphypFxbg6LEJOH78KRQWnqxtkwii2qH+UuWh/hL1lwjizoA8o/xFW9sG3E4wxlBmLauVtg1awy2FVDDGsHv3bvz0008YPnw4tm3bhv3796NPnz4A7HH6zZs3x7Zt2zB27FhkZGRgzJgx6NKlCwAgPj5eqkv8gW3cuDEiIiIAAEVFRfj888/xxRdfYODAgQCADRs2oGnTpm62PPzww3jhhRek5enTp2PixImYP38+AKBt27ZYu3Yt+vfvj/Xr1yM2NhZr167FSy+9hCVLlqBHjx4YMGAAJk6cKNl14cIFhIeHIyYmxq09vV6P+Ph4qUNyqyQmJmL8+PEoLS1FTEwMdu7ciYYNG6qWvXTpEt577z2sWrXKa519+/bFpk2bMG7cOJSXl8NqtWLkyJE+XbQXLVqEwsJCdOjQARqNBjabDcuXL8fEiRP9Pp5evXohODgYCxcuxBtvvAHGGBYtWgSbzYbs7Gy/jysnJwetWrVSlGvSpIm0rUGDBn7bRBBE7eM6aUz7yIsoyPs/aVkf0ASdwrrWsFVEfYT6S9Rfov5S/ewvcWKWnBqaRYzRbGXE7QTdzx4hUaoKKbOW4f4v7q+Vtg9POIwgXZDf5RMTExESEgKLxQJBEDBhwgT85S9/QWJiIu6/33kMUVFRaN++Pc6dOwcAePbZZ/HMM8/g559/xqBBgzBmzBh07ep5EHL58mVYLBb07NlTWhceHo727du7le3Ro4di+cSJEzh58iQ2bdokrWOMQRAEpKWloWPHjpg9ezYmT56MX3/9FYcOHcJXX32FN954A9u3b8fgwYP9OhfyN1Oe2LRpE2bOnCkt//DDD+jXrx8AYMCAATh+/Djy8vLwySef4IknnsDhw4fRuHFjRR2ZmZkYNmwYxo4dq8h1EBISIn3+61//ig8//BBnz57FvHnzsHjxYgwdOhTZ2dlYsGABZs2ahU8//RRJSUmKt3kfffQRJk6ciP/+97/YtGkTvvjiC3Tu3BnHjx/H/Pnz0bRpU0yZMsWv89GoUSN89dVXeOaZZ7B27VrwPI8nn3wS9957L3je3bnS03H5wtMxEARRP9BySo8LxiqX/Jm4c6D+kjvUX3JC/SUl1F9yQiIVUZ9wfQFCd69nSJS6QxkwYADWr18PvV6Ppk2bQqvVYvv27T73mz59OoYOHYrvv/8eP//8M958802sXr0ac+fOrbRNwcHBiuXi4mLMnDkTzz77rFvZFi1aSJ9DQ0MxcuRIjBw5EsuWLcPQoUOxbNkyDB48GG3btoXRaERWVpbb20az2YzU1FQMHTrUp22jRo1SdD5jY2MVdrdp0wZt2rRBr1690LZtW3z66ad4+eWXpTJZWVkYMGAA+vTp45a4Uj6bS1hYGADgzTffRN++fbFgwQIAQNeuXREcHIx+/fph2bJl6NGjh2I/8Y3aggULsGjRIowfPx4A0KVLF/z555948803/e5kAcCQIUOQmpqKvLw8aLVaREREIDo6WvGm19dxRUdHK2agASAtR0dHo2XLlqrHQBBE3YbSnBN3EtRfov6SN+60/hLNc0EQvnFqp64yFMlSniBRqgoxaA04POGw74LV1HZFEDsGcjp27Air1YrDhw9L7uj5+flISUlBp06dpHLNmzfHrFmzMGvWLLz88sv45JNPMHfuXOkNmjxfQXx8PHQ6HX7//XepY2Q0GnHhwgU8+OCDXm289957cfbsWTc7vcFxHDp06IADBw4AAB5//HEsXLgQq1evxurVqxVlP/zwQ5SWlmLy5Mk+6w0NDUVoaKhfNgiCAJPJJC1nZmZiwIAB6N69OzZs2OD29kzt+EpLS6HVKh9PjUYDwP6WyGAweNzPtX6NRiPNAlNRRLf6X375Bbm5uRg1apTfx9W7d2+8+uqrsFgs0Ol0AICdO3eiffv2kit6Ra4tQRB1DI46V8StQf0l6i8B1F8SqQ/9JeYymKZvf4IgqhISpaoQjuMq5BJe12jbti1Gjx6NGTNm4KOPPkJoaCgWLVqE2NhYjB49GgAwf/58DB8+HO3atcONGzewZ88edOzYEQAQFxcHjuOQmJiIESNGwGAwIDQ0FFOmTMGCBQsQGRmJxo0bIyEhATzP+8zpsHDhQvTq1Qtz5szB9OnTERwcjLNnz2Lnzp1Yt24djh8/joSEBEyaNAmdOnWCXq/H3r178dlnn2HhwoUA7G8IV65ciRdffBGBgYGYNGkSdDodvvvuO7zyyitYtmwZ7rrrLkW7KSkpbrZ07txZ6iiIlJSUYPny5Rg1ahRiYmKQl5eH999/H5mZmRg7diwAe0fkoYceQlxcHFatWiVNfQzY3355YuTIkZgxYwbWr18vuaPPnz8fPXv2VM0vId9v+fLlaNGiBTp37ozk5GSsWbMGTz/9tFSmoKAAGRkZyMrKUhxvdHS0ZNOGDRvQsWNHNGrUCAcPHsS8efPw3HPPSWEE/hzXhAkTsGTJEkybNg0LFy7E6dOn8e677+Ltt9/2aD9gf+N76dIlaTktLQ3Hjx9HZGSk4o0vQRAEUT+h/hL1l6i/VD/7S+QoRRCVgeRcj1TT7H+3BXfSFMci4hTH4eHhzGAwsKFDhyqmOJ4zZw5r3bo1CwgIYI0aNWKTJk1ieXl50valS5ey6OhoxnGc1ymOe/bsyRYtWiTtFxcXx95++203e44cOcIGDx7MQkJCWHBwMOvatStbvnw5Y4yx69evs2effZbdddddLCQkhIWGhrIuXbqwVatWMZvNpqhn27ZtrF+/fiw4OFiagnnz5s2KMmrTNIt/V65ccbOtrKyMPfbYY6xp06ZMr9ezmJgYNmrUKHbkyBGpzIYNGzzW6Yu1a9eyTp06MYPBwGJiYtjEiRPZ1atXve5TWFjI5s2bx1q0aMECAwNZfHw8e/XVVxXTDHuyKSEhQSqzcOFC1qRJE6bT6Vjbtm3Z6tWrmSAIFT6uEydOsAceeIAFBASw2NhY9s9//tPnce/Zs0e1XvF+ulXq8zNLEHWBfx9MZ3ELE9nTG46wuIWJ7C9r/qGY6vj0mRdq28Qaw98pju8UqL9E/SXqL93e/aVH1v7G4hYmss6Lf2RxCxPZ5wfS3Pa7/sEH7OLDA9nFhwey9L9OYtaiokrZwRhjK1euZAkJCdJfcXFxpeskiOrmh1PZLG5hInv5PysU/aQjR/6ntk2rcfztL3GMUcY4TxQWFiI8PBxGo1GKXRcpLy9HWloaWrVqhcDAwFqysH5SUlKC2NhYrF69GtOmTavx9gsKCjBw4ECEhYXhhx9+QFBQ/X1bS/gPPbMEUTn+c+hPvLbtNAZ1bIxd53LRo0kynum2QdoeHf0YOnfyPlPW7YK3/sGdCPWXqgfqLxG1gdoz++h7STidWYiQAC2KTVYsHd0Zk3u3VOx3oV8/2K7nScvN//d/EfJA30rZ8tZbb6GkpERaXrBggVtONYKoa/x4Ogez/nMUE7qcwcCYj6T1YaFdcd9939aiZTWPv/0l96khCKKKSU5OxubNm5Gamopjx45JM4aILu41TWRkJHbt2oWBAwfi4MGDtWIDQRDE7Qe94yKIykD9JaK+oOrSIDhWOnJ6qRciiDsX19xshBPKKUXUCKtWrUJKSgr0ej26d++OpKQkKSlkbRAVFYXFixfXWvsEQRD1DWdXirKKEER1Qf0loi5SIX2J5wGbDfSigrhzsd/7HM2+5zckShHVzj333IOjR4/WthkEQRAEQRB1FuovEXUdr68kyDOKIHxAz4gnKHyPIAiCIIhbgDpXBEEQdxR+OMpKRapApKLUxwRxZ0CiFEEQBEEQBEEQBOEXXsUijkK8CcKO/TkRGCdfJFQgUYogCIIgCIIgCIJQxS+HJbGQKEqRlxNBAACYQ5SiROeeIVGKIAiCIAi/Eccb9C6cIAjizsKv733ylCIIBSRF+YZEKYIgCIIg/IaGGwRBEHcmHCd6fHgtZC9DnlLEHYqr06BsS02bUm8gUYogCIIgiMpDfS2CIIg7FxKhCEIVJr3Oo2fEEyRKEQRBEARBEARBEF7xKzKvGnNKkfcVUS9hlGfNFyRK3YFMnToVHMeB4zjo9Xq0adMGS5cuhdVqrVS9v/76KziOw82bN6vGUD9IS0vDhAkT0LRpUwQGBqJZs2YYPXo0zp8/ryiXmJiI/v37IzQ0FEFBQbjvvvuwceNGRZn09HRwHIfjx4/73f7rr7+ODh06IDg4GA0aNMCgQYNw+PBhRZ3Tpk1Dq1atYDAY0Lp1ayQkJMBsNvuse9OmTejWrRuCgoIQExODp59+Gvn5+V73KSoqwvz58xEXFweDwYA+ffrg999/V5QpLi7GnDlz0KxZMxgMBnTq1AkffvihoszMmTPRunVrGAwGNGrUSPWcZmRk4JFHHkFQUBAaN26MBQsWeLyH9u/fD61Wi7vvvtvncX/zzTcYMmQIoqKiKnw9CIKoRlw6UxxHnSvi9ob6S9Rfov6SnYp821OIN0GIMMf/6anwBYlSdyjDhg1DdnY2Ll68iBdeeAGvv/463nrrrdo2S8KfTojFYsHgwYNhNBrxzTffICUlBVu2bEGXLl0UHb333nsPo0ePRt++fXH48GGcPHkS48ePx6xZs/Diiy9Wys527dph3bp1OHXqFPbt24eWLVtiyJAhuH79OgDg/PnzEAQBH330Ec6cOYO3334bH374IV555RWv9e7fvx+TJ0/GtGnTcObMGXz11Vc4cuQIZsyY4XW/6dOnY+fOnfj3v/+NU6dOYciQIRg0aBAyMzOlMs8//zx+/PFH/Oc//8G5c+cwf/58zJkzB9u3b5fKdO/eHRs2bMC5c+fw008/gTGGIUOGwGazAQBsNhseeeQRmM1mHDhwAJ9//jk2btyIxYsXu9l08+ZNTJ48GQMHDvTrnJaUlOCBBx7AihUr/CpPEETNQjlsiTsJ6i9Rf4n6S+6oOnyIK23l9n/3vQ1kHq0xmwiirsKkf+llnkcY4RGj0cgAMKPR6LatrKyMnT17lpWVldWCZZVjypQpbPTo0Yp1gwcPZr169WIFBQVs0qRJLCIighkMBjZs2DB24cIFqVx6ejp79NFHWUREBAsKCmKdOnVi33//PUtLS2OwP3PS35QpUxhjjBUWFrIJEyawoKAgFh0dzdasWcP69+/P5s2bJ9UbFxfHli5dyiZNmsRCQ0OlfZOSktgDDzzAAgMDWbNmzdjcuXNZcXExY4yx5ORkBoClp6d7PNaMjAym0+nY888/77Zt7dq1DAA7dOgQY4xJx5CcnFzxk+pAvGd27drlsczKlStZq1atvNbz1ltvsfj4eDd7Y2NjPe5TWlrKNBoNS0xMVKy/99572auvviotd+7cmS1dutRrGVdOnDjBALBLly4xxhjbsWMH43me5eTkSGXWr1/PwsLCmMlkUuw7btw49tprr7GEhATWrVs3j224UhXXQ059fmYJoi7wrwNpLG5hIvvbv35ncQsT2di3l7Bdu+Olv9On3b9nb1e89Q/uRKi/RP2likL9pfrVXxr2zm8sbmEiu3vJTyxuYSL7NOmy234pPe9nZ9t3YOfvasfOtu/ACqc3Yuy/Uytly4oVK1hCQoL0V1RUVKn6CKIm2HEyi8UtTGSvbnqD7dodz77/uQPbtTueHTw0tLZNq3H87S+Rp1QVwhiDUFpaK3+skjGqBoMBZrMZU6dOxR9//IHt27fj4MGDYIxhxIgRsFgsAIDZs2fDZDLht99+w6lTp7BixQqEhISgefPm+PrrrwEAKSkpyM7OxrvvvgvA/qZp//792L59O3bu3ImkpCQcO3bMzYZVq1ahW7duSE5Oxt///nekpqZi2LBhGDNmDE6ePIktW7Zg3759mDNnDgCgUaNG4HkeW7duld5IubJ161ZYLBbVN3wzZ85ESEgINm/eXKlzJ2I2m/Hxxx8jPDwc3bp181jOaDQiMjLSa129e/fGlStXsGPHDjDGcO3aNWzduhUjRozwuI/VaoXNZkNgYKBivcFgwL59+6TlPn36YPv27cjMzARjDHv27MGFCxcwZMgQ1XpLSkqwYcMGtGrVCs2bNwcAHDx4EF26dEGTJk2kckOHDkVhYSHOnDkjrduwYQMuX76MhIQEr8dLEARB3DlQf4n6S9Rfqp/9Jc6HqywDYOZ5mDU8BMYBNt+efARxu8KJ4XvkIOUTbW0bcDvBysqQcm/3Wmm7/bGj4IKCKrwfYwy7d+/GTz/9hOHDh2Pbtm3Yv38/+vTpA8Aep9+8eXNs27YNY8eORUZGBsaMGYMuXboAAOLj46W6xI5D48aNERERAcAes//555/jiy++kNyRN2zYgKZNm7rZ8vDDD+OFF16QlqdPn46JEydi/vz5AIC2bdti7dq16N+/P9avX4/Y2FisXbsWL730EpYsWYIePXpgwIABmDhxomTXhQsXEB4ejpiYGLf29Ho94uPjceHChQqfNzmJiYkYP348SktLERMTg507d6Jhw4aqZS9duoT33nsPq1at8lpn3759sWnTJowbNw7l5eWwWq0YOXIk3n//fY/7hIaGonfv3vjHP/6Bjh07okmTJti8eTMOHjyINm3aSOXee+89/O1vf0OzZs2g1WrB8zw++eQTPPjgg4r6PvjgA7z00ksoKSlB+/btsXPnTuj1egBATk6OooMFQFrOyckBAFy8eBGLFi1CUlIStFr6qiEIgiDsUH+J+kvUX6rf/SXV6D0Av8fHIC/U/nwZimPxtJkhUKWs3+3QaJ6ohzjvWs7lX8IT5Cl1h5KYmIiQkBAEBgZi+PDhGDduHKZOnQqtVov7779fKhcVFYX27dvj3LlzAIBnn30Wy5YtQ9++fZGQkICTJ096befy5cuwWCzo2bOntC48PBzt27d3K9ujRw/F8okTJ7Bx40aEhIRIf0OHDoUgCEhLSwNgfxOZk5ODTZs2oXfv3vjqq6/QuXNn7Ny50+9zIXYcvLFp0yaFHUlJSdK2AQMG4Pjx4zhw4ACGDRuGJ554Arm5uW51ZGZmYtiwYRg7dqwi14G83lmzZgEAzp49i3nz5mHx4sU4evQofvzxR6Snp0vbk5KSFPtt2rQJAPDvf/8bjDHExsYiICAAa9euxZNPPgmedz7q7733Hg4dOoTt27fj6NGjWL16NWbPno1du3Yp7J04cSKSk5Oxd+9etGvXDk888QTKy8v9Oqc2mw0TJkzAkiVL0K5duwqfU4Ig6iM0eCBuP6i/5IT6S3duf8lfcSg/2CB9LmN63ChW98wjiDsJKacUiaweqR9yfD2BMxjQ/ljtJPTjDAbfhWQMGDAA69evh16vR9OmTaHVahWJGz0xffp0DB06FN9//z1+/vlnvPnmm1i9ejXmzp17q6ZLBAcHK5aLi4sxc+ZMPPvss25lW7RoIX0ODQ3FyJEjMXLkSCxbtgxDhw7FsmXLMHjwYLRt2xZGoxFZWVlubxvNZjNSU1MxdOhQn7aNGjVK0fmMjY1V2N2mTRu0adMGvXr1Qtu2bfHpp5/i5ZdflspkZWVhwIAB6NOnDz7++GNF3fLZUsLCwgAAb775Jvr27YsFCxYAALp27Yrg4GD069cPy5YtQ48ePRT7iW/dWrdujb1796KkpASFhYWIiYnBuHHjpDehZWVleOWVV/Dtt9/ikUcekeo+fvw4Vq1ahUGDBkl1hoeHIzw8HG3btkWvXr3QoEEDfPvtt3jyyScRHR2NI0eOKI7j2rVrAIDo6GgUFRXhjz/+QHJyshQ+IAgCGGPQarX4+eefvZ5TgiDqLpzjjR9HIhRxi1B/qXJQf4n6S7WFv/4eWn13cLoYHPpTi4ZbLqD3X1pDq9NUq20EUddwhu+JTw71mzxBolQVwnHcLbmE1wZix0BOx44dYbVacfjwYckdPT8/HykpKejUqZNUrnnz5pg1axZmzZqFl19+GZ988gnmzp0rvUGT5yuIj4+HTqfD77//LnWMjEYjLly44Ob+7Mq9996Ls2fPutnpDY7j0KFDBxw4cAAA8Pjjj2PhwoVYvXo1Vq9erSj74YcforS0FJMnT/ZZb2hoKEJDQ/2yQRAEmEwmaTkzMxMDBgyQZmiRv4UDoHp8paWlbi7cGo39x5wxBoPB4PW8BAcHIzg4GDdu3MBPP/2ElStXArDPwGOxWNxs0Gg0EATBY32MMTDGpOPq3bs3li9fjtzcXDRu3BgAsHPnToSFhaFTp07Q6XQ4deqUoo4PPvgAv/zyC7Zu3YpWrVohODjY73NKEETdgWbfIyoL9ZeovwRQf6k+9pe8fv8zZletOAO0wf0BAFlGIGvPVbToHIW4u6JqxEaCqHtQx8kXJEoREm3btsXo0aMxY8YMfPTRRwgNDcWiRYsQGxuL0aNHAwDmz5+P4cOHo127drhx4wb27NmDjh07AgDi4uLAcRwSExMxYsQIGAwGhIaGYsqUKViwYAEiIyPRuHFjJCQkgOd5n8kSFy5ciF69emHOnDmYPn06goODcfbsWezcuRPr1q3D8ePHkZCQgEmTJqFTp07Q6/XYu3cvPvvsMyxcuBCA/Q3hypUr8eKLLyIwMBCTJk2CTqfDd999h1deeQXLli3DXXfdpWg3JSXFzZbOnTtDp9Mp1pWUlGD58uUYNWoUYmJikJeXh/fffx+ZmZkYO3YsAHsH66GHHkJcXBxWrVolTX0M2N+QeWLkyJGYMWMG1q9fj6FDhyI7Oxvz589Hz549VfNLiIjTEbdv3x6XLl3CggUL0KFDBzz11FMA7G8W+/fvjwULFsBgMCAuLg579+7Fv/71L6xZswaAPYRgy5YtGDJkCBo1aoSrV6/in//8JwwGg5Q4dMiQIejUqRMmTZqElStXIicnB6+99hpmz56NgIAAAHA7r40bN0ZgYKDbelcKCgqQkZGBrKwsAM7rER0d7fWcEQRRvdD7PYKwQ/0lO9RfunP7S97DkERRUIAhoATl5lD8WVyOGEGAnqfMMcSdB1P5RCghUYpQsGHDBsybNw+PPvoozGYzHnzwQezYsUPqYNhsNsyePRtXr15FWFgYhg0bhrfffhuA3Z14yZIlWLRoEZ566ilMnjwZGzduxJo1azBr1iw8+uijCAsLw0svvYQrV664zXriSteuXbF37168+uqr6NevHxhjaN26NcaNGwcAaNasGVq2bIklS5YgPT0dHMdJy88995xUz3PPPYf4+HisXr0a7777LkpKSgAAmzdvxvjx493aVVt35coVNGvWTLFOo9Hg/Pnz+Pzzz5GXl4eoqCjcd999SEpKQufOnQHY34ZdunQJly5dctvf2w/61KlTUVRUhHXr1uGFF15AREQEHn74YaxYscLrOTMajXj55Zdx9epVREZGYsyYMVi+fLmig/jll1/i5ZdfxsSJE1FQUIC4uDgsX75cyr8QGBiIpKQkvPPOO7hx4waaNGmCBx98EAcOHJDe8mk0GiQmJuKZZ55B7969ERwcjClTpmDp0qVe7fOH7du3S51CwHk9EhIS8Prrr1e6foIgCIKoLNRfov4S9Zd8wXApNALN8m34+8VMBOtKsKO7et4sgrgt4Vw/kCjlCY5Rxi2PFBYWIjw8HEajUYpdFykvL0daWhpatWrls7NAKCkpKUFsbCxWr16NadOm1Xj7BQUFGDhwIMLCwvDDDz8gqJ6EEBCVg55Zgqgc/zqYjsXfncHwu6Lxw+kc3B/9O/7W9d/S9ugmo9G585patLDm8NY/uBOh/lL1QP0lojZQe2aHvfMbzucUoWFIAPKKTXjtkY6Y3i9esV/KfT3xfatGYHwoAiP+BgYbrkYFoHm+Ff/tG4KrcYFIfbBrhWxZsWIFysrKpOUXX3wRISEhlT9IgqhGvj+ZjdlfHMPkbifQv8mnKDIHI1RfgqCgVujda5fvCm4j/O0vkQ8lUe0kJydj8+bNSE1NxbFjxzBx4kQAkFzca5rIyEjs2rULAwcOxMGDB2vFBoIgCIIgCDnUXyLqOpXJKVgZLwjOYgZvKsPNnCyawYyot9C96xkK3yNqhFWrViElJQV6vR7du3dHUlISGjZsWGv2REVFYfHixbXWPkEQRH2FEp0TRPVB/SWiPmMfcnPSZyb7vbjV8bi28AYMmakAgC2vPo+eox9HvwlTK2ElQdQM7rMUkyjlCRKliGrnnnvuwdGjtTP1M0EQBFE9uIpTjDpbBFEpqL9E1Gu8qE5Omari8KYyxXLelT9vqR6CqC0EJganUT/JExS+RxAEQRCE33A0tTFBEMQdhag31fS3vzzciZGbLkHctpCnFEEQBEEQBFFvYYyh3FoOBgYNr0GAJqC2TSKI2xqvoXhq2hGrOh8RystD1B+Y10XCCYlSBEEQBEH4xHUc4J4rgSBqh8ziTBhNRmk5LiwOIXqaoYsgqhqvzkqMeS1AvxjEnQpjYgArPQWeoPA9giAIgiAIot5itpkVyyabqZYsIYjbG3/Ct51lqsw3SqoZAASbAJtNqKK6CaLqYYqU/wCjtAc+IVGKIAiCIAiCqPfwHHVrCaIuIc6+x+HWZ99zYq/sytkCbFiwDzdzSytbIUFUL477X5YZrZYMqfvQrzdBEARBEEQ94v3330fLli0RGBiI+++/H0eOHPFY9syZMxgzZgxatmwJjuPwzjvvuJV5/fXXwXGc4q9Dhw7VeATVA8dRiARBVAeuz5Tr8tn9WTjcaa6POioHx5zeJqZSK67/WVTJGgmipqhq78HbDxKlCIIgCIKoAqizVRNs2bIFzz//PBISEnDs2DF069YNQ4cORW5urmr50tJSxMfH45///Ceio6M91tu5c2dkZ2dLf/v27auuQ6hynKESDlGKEiETRLXgKWXU8Z0ZKApu7nXfqhKLRYdIQaDnnKgfiDmlqsBd8LbljhKl/vnPf4LjOMyfP7+2TalVpk6dKr0J1ev1aNOmDZYuXQqr1Vqpen/99VdwHIebN29WjaF+kJaWhgkTJqBp06YIDAxEs2bNMHr0aJw/f15RLjExEf3790doaCiCgoJw3333YePGjYoy6enp4DgOx48f97v9119/HR06dEBwcDAaNGiAQYMG4fDhw4o6p02bhlatWsFgMKB169ZISEiA2Wz2UqudTZs2oVu3bggKCkJMTAyefvpp5Ofne93nt99+w8iRI9G0aVNwHIdt27a5lfnmm28wZMgQREVF+TxexhiGDx/usa6NGzeia9euCAwMROPGjTF79mzF9p9++gm9evVCaGgoGjVqhDFjxiA9Pb1GjpMgCOJ2ZM2aNZgxYwaeeuopdOrUCR9++CGCgoLw2WefqZa/77778NZbb2H8+PEICPA8K51Wq0V0dLT017Bhw+o6hGpDEqWqaPBL/SXqL1F/SYmnzDiM1YAYLCliJD4T9QW6R/3ljhGlfv/9d3z00Ufo2rVrbZtSJxg2bBiys7Nx8eJFvPDCC3j99dfx1ltv1bZZEv50QiwWCwYPHgyj0YhvvvkGKSkp2LJlC7p06aLo6L333nsYPXo0+vbti8OHD+PkyZMYP348Zs2ahRdffLFSdrZr1w7r1q3DqVOnsG/fPrRs2RJDhgzB9evXAQDnz5+HIAj46KOPcObMGbz99tv48MMP8corr3itd//+/Zg8eTKmTZuGM2fO4KuvvsKRI0cwY8YMr/uVlJSgW7dueP/9972WeeCBB7BixQqfx/fOO+9I4RCurFmzBq+++ioWLVqEM2fOYNeuXRg6dKi0PS0tDaNHj8bDDz+M48eP46effkJeXh7+8pe/1MhxEgRB3G6YzWYcPXoUgwYNktbxPI9Bgwbh4MGDlar74sWLaNq0KeLj4zFx4kRkZGRU1twapzrC96i/RP0l6i85sdrsguy58yk4ePAgBMGecNwfgeiWn0ppRzFBlX0Fo1znRD1BTHRuMufh6LEJyMvbU8sW1UHYHUBRURFr27Yt27lzJ+vfvz+bN2+eX/sZjUYGgBmNRrdtZWVl7OzZs6ysrKyKra1+pkyZwkaPHq1YN3jwYNarVy9WUFDAJk2axCIiIpjBYGDDhg1jFy5ckMqlp6ezRx99lEVERLCgoCDWqVMn9v3337O0tDQG+8+G9DdlyhTGGGOFhYVswoQJLCgoiEVHR7M1a9a4XYe4uDi2dOlSNmnSJBYaGirtm5SUxB544AEWGBjImjVrxubOncuKi4sZY4wlJyczACw9Pd3jsWZkZDCdTseef/55t21r165lANihQ4cYY0w6huTk5IqfVAfiPbNr1y6PZVauXMlatWrltZ633nqLxcfHu9kbGxvrty0A2Lfffutxu6/jTU5OZrGxsSw7O9utroKCAmYwGLwe51dffcW0Wi2z2WzSuu3btzOO45jZbGaM1cxxitTnZ5Yg6gIb96exuIWJ7P9tOspaLkpkT777d7Zrd7z0d+r0vNo2scbw1j+oTjIzMxkAduDAAcX6BQsWsJ49e/rcPy4ujr399ttu63fs2MH++9//shMnTrAff/yR9e7dm7Vo0YIVFhaq1lNeXs6MRqP0d+XKlVrtL126cYmdvn6aXSy4yE5fP81yinOqpF7qL9mh/hL1lwat/pXFLUxkd738LYtbmMjGvLqeJSQksIyMDMYYY//++wH23t92sVVPPMJWj5/A1s3czdbO/Im9+Npetm7mbvbQ54dZzC/Jftsq8uabb7Llz0xnq554hK0a9xhb9cQj7J1Jc9i6mbvZmX2ZFa6PIGqC7cczWdzCRPb65qVs1+549tHXD7Ndu9tI/aWjxybWtok1hr/9pTvCU2r27Nl45JFHFG8WqwPGGCwmW638sUq6sBoMBpjNZkydOhV//PEHtm/fjoMHD4IxhhEjRsBisQCwn0uTyYTffvsNp06dwooVKxASEoLmzZvj66+/BgCkpKQgOzsb7777LgDg+eefx/79+7F9+3bs3LkTSUlJOHbsmJsNq1atQrdu3ZCcnIy///3vSE1NxbBhwzBmzBicPHkSW7Zswb59+zBnzhwAQKNGjcDzPLZu3QqbzaZ6XFu3boXFYlF9wzdz5kyEhIRg8+bNlTp3ImazGR9//DHCw8PRrVs3j+WMRiMiIyO91tW7d29cuXIFO3bsAGMM165dw9atWzFixIgqsdUXpaWlmDBhAt5//33VHCQ7d+6EIAjIzMxEx44d0axZMzzxxBO4cuWKVKZ79+7geR4bNmyAzWaD0WjEv//9bwwaNAg6na5OHCdBEAQBDB8+HGPHjkXXrl0xdOhQ7NixAzdv3sR///tf1fJvvvkmwsPDpb/mzb3nknGlqvtLVrMAm5nBZmGwmb3XTf0l6i9VJXdaf8nVC9FkMvm1H8eq0H9RTM9DOaWIesINUziiWn2JFi2mAwAYU/8evpPR1rYB1c2XX36JY8eO4ffff/dZ1mQyKb5cCwsLK9SW1Szg43l7K2xjVfC3d/tDF6Cp8H6MMezevRs//fQThg8fjm3btmH//v3o06cPAHv8evPmzbFt2zaMHTsWGRkZGDNmDLp06QIAiI+Pl+oSOw6NGzdGREQEAKCoqAiff/45vvjiCwwcOBAAsGHDBjRt2tTNlocffhgvvPCCtDx9+nRMnDhRygHWtm1brF27Fv3798f69esRGxuLtWvX4qWXXsKSJUvQo0cPDBgwABMnTpTsunDhAsLDwxETE+PWnl6vR3x8PC5cuFDh8yYnMTER48ePR2lpKWJiYrBz506PuTguXbqE9957D6tWrfJaZ9++fbFp0yaMGzcO5eXlsFqtGDlyZI2Fqz333HPo06cPRo8erbr98uXLEAQBb7zxBt59912Eh4fjtddew+DBg3Hy5Eno9Xq0atUKP//8M5544gnMnDkTNpsNvXv3xo4dO+rMcRIE4T+VHcwTladhw4bQaDS4du2aYv21a9e8JjGvKBEREWjXrh0uXbqkuv3ll1/G888/Ly0XFhZWSJiq/v5SLoDzqluov0T9parkTu0v8byLX4Pqz0PlfzPsvztiPcrwSBKliLqP8x7V6tsgTKc+IQlxm+eUunLlCubNm4dNmzYhMDDQZ/nKvvmrTyQmJiIkJASBgYEYPnw4xo0bh6lTp0Kr1eL++++XykVFRaF9+/Y4d+4cAODZZ5/FsmXL0LdvXyQkJODkyZNe27l8+TIsFgt69uwprQsPD0f79u3dyvbo0UOxfOLECWzcuBEhISHS39ChQyEIAtLS0gDY30Tm5ORg06ZN6N27N7766it07twZO3fu9Ptc6PV6n2U2bdqksCMpKUnaNmDAABw/fhwHDhzAsGHD8MQTT6jOgpSZmYlhw4Zh7NixihwA8npnzZoFADh79izmzZuHxYsX4+jRo/jxxx+Rnp4ubU9KSlLst2nTJr+P1xfbt2/HL7/8ojptuIggCLBYLFi7di2GDh2KXr16YfPmzbh48SL27LHHSefk5GDGjBmYMmUKfv/9d+zduxd6vR6PP/64NLitzeMkCKJyeEp4S1Qfer0e3bt3x+7du6V1giBg9+7d6N27d5W1U1xcjNTUVFWBAgACAgIQFham+Ltdof6SE+ovKbkT+0uuE9srX1aoiESc1623ZoOjToFyShHEbcNt7Sl19OhR5Obm4t5775XW2Ww2/Pbbb1i3bh1MJhM0Gufbssq++dPqefzt3f5VY3wF0eorpi8OGDAA69evh16vR9OmTaHVarF9+3af+02fPh1Dhw7F999/j59//hlvvvkmVq9ejblz596q6RLBwcGK5eLiYsycORPPPvusW9kWLVpIn0NDQzFy5EiMHDkSy5Ytw9ChQ7Fs2TIMHjwYbdu2hdFoRFZWltvbRrPZjNTUVEWySU+MGjVK0fmMjY1V2N2mTRu0adMGvXr1Qtu2bfHpp5/i5ZdflspkZWVhwIAB6NOnDz7++GNF3fLZXMSO/Ztvvom+fftiwYIFAICuXbsiODgY/fr1w7Jly9CjRw/Ffk2aNPF5DP7yyy+/IDU1VXp7KzJmzBj069cPv/76qzRQ6dSpk7S9UaNGaNiwoZQc9/3330d4eDhWrlwplfnPf/6D5s2b4/Dhw+jVq1etHidBEER95Pnnn8eUKVPQo0cP9OzZE++88w5KSkrw1FNPAQAmT56M2NhYvPnmmwDsv3Vnz56VPmdmZuL48eMICQlBmzZtAAAvvvgiRo4cibi4OGRlZSEhIQEajQZPPvlktRxDVfeXUo2pMFvNMOgMKLOUISIgAjEh6oIa9Zeov1RV3In9JVGD4ly9ltTKVnnr5ClF1FMYvcbzxW0tSg0cOBCnTp1SrHvqqafQoUMHLFy4UCFIAfY3f96mS/YFx3G35BJeG4gdAzkdO3aE1WrF4cOHJXf0/Px8pKSkKH5MmzdvjlmzZmHWrFl4+eWX8cknn2Du3LnSGzR5voL4+HjodDr8/vvvUsfIaDTiwoULePDBB73aeO+99+Ls2bNudnqD4zh06NABBw4cAAA8/vjjWLhwIVavXo3Vq1cryn744YcoLS3F5MmTfdYbGhqK0NBQv2wQBEERBpqZmYkBAwage/fu2LBhg5vLs9rxlZaWQqtVPp7i/coYg8FgqNB5qQiLFi3C9OnTFeu6dOmCt99+GyNHjgRgdyMH7PkwmjVrBgAoKChAXl4e4uLipGNwPVbxGMTZWmrzOAmCuHVUu1cU3lcjjBs3DtevX8fixYuRk5ODu+++Gz/++KM0CM3IyFB892ZlZeGee+6RlletWoVVq1ahf//++PXXXwEAV69exZNPPon8/Hw0atQIDzzwAA4dOoRGjRpVyzFUdX9Jq+dh4znodBqYOQ4WjQmFwk2E6cOg0+gqVTf1l6i/5Ik7qb8kBdBxjgUxr5Pq9341D8C9tk0QdQcPE3ISKtzWolRoaCjuuusuxbrg4GBERUW5rSfsOQhGjx6NGTNm4KOPPkJoaCgWLVqE2NhYKVZ+/vz5GD58ONq1a4cbN25gz5496NixIwAgLi4OHMchMTERI0aMgMFgQGhoKKZMmYIFCxYgMjISjRs3RkJCAnie9zh1rsjChQvRq1cvzJkzB9OnT0dwcDDOnj2LnTt3Yt26dTh+/DgSEhIwadIkdOrUCXq9Hnv37sVnn32GhQsXArC/IVy5ciVefPFFBAYGYtKkSdDpdPjuu+/wyiuvYNmyZW73QkpKipstnTt3lpJNipSUlGD58uUYNWoUYmJikJeXh/fffx+ZmZkYO3YsAHsH66GHHkJcXBxWrVolTX0MwGv+j5EjR2LGjBlYv349hg4diuzsbMyfPx89e/ZUzS8hUlxcrMgBkpaWhuPHjyMyMlLq5BYUFCAjIwNZWVmK442Ojlb8udKiRQu0atUKgH1q59GjR2PevHn4+OOPERYWhpdffhkdOnTAgAEDAACPPPII3n77bSxduhRPPvkkioqK8MorryAuLk4aIFXncRIEQdyuzJkzR0pi7YooNIm0bNnS5+Dtyy+/rCrTahUNZx+kl1vLkWPNQam1FM1Dqz4VA/WX7FB/6Q7sL4meUn6Otl2/eRhjfu/rCXFvgTyliDoK3ZkV57YWpYiKs2HDBsybNw+PPvoozGYzHnzwQezYsUPqYNhsNsyePRtXr15FWFgYhg0bhrfffhuA3UV7yZIlWLRoEZ566ilMnjwZGzduxJo1azBr1iw8+uijCAsLw0svvYQrV674zPPVtWtX7N27F6+++ir69esHxhhat26NcePGAQCaNWuGli1bYsmSJUhPTwfHcdLyc889J9Xz3HPPIT4+HqtXr8a7776LkpISAMDmzZsxfvx4t3bV1l25ckV6wyWi0Whw/vx5fP7558jLy0NUVBTuu+8+JCUloXPnzgDss65cunQJly5dctvf2yBh6tSpKCoqwrp16/DCCy8gIiICDz/8MFasWOH1nP3xxx9SJweAFI46ZcoUbNy4EYA9B4IY5iE/3oSEBLz++ute65fzr3/9C8899xweeeQR8DyP/v3748cff5TulYcffhhffPEFVq5ciZUrVyIoKAi9e/fGjz/+CIPBUO3HSRBEdUPdLqJuERYQBq1Gi3JrOUotpbAJ1TfDEfWXqL/kL7dXf0l5LaRro0hI7o48F9WtS1Kc4h8K3yPqC253Knn5ucEx8n30SGFhIcLDw2E0Gt2SeJaXlyMtLQ2tWrXyK4k64aSkpASxsbFYvXo1pk2bVuPtFxQUYODAgQgLC8MPP/yAoKCgGreBqHnomSWIyrFxfxpe/7+zeLRrDHacykbvmEN4+q4vpO1NGj+Ku+56txYtrDm89Q/uRGq7v3TpxiWYbCa0DGuJYH0wjCYjrhZdRZAuCK3CW1VLmzUB9ZeI2kDtmR20Zi8u5RYjlDOhiAWglyEHHdgVPPnkk2jfvj3+/doBGK+XwHTzXXB8BALCn4YNFmQ0NqBVrhXf9A7GmRYByHyoGzQV8JR68803wa6kIiA/B+CCAFYKfXAr8PrHcP+oePQY0bKazgJB3DrbT2Th2c3JmHbPUfRp9Dl+z7kbj/b/DI10B3D69BxEhN+H7t1vDw9lX/jbX7qtZ98j6gbJycnYvHkzUlNTcezYMUycOBEAPE6fW91ERkZi165dGDhwIA4ePFgrNhAEQRAEUcXU8/wd1F8i6g/2h60mfBs4lzY4yilF1FNcJwggnFD4HlEjrFq1CikpKdJ01klJSWjYsGGt2RMVFYXFixfXWvsEQRD1DdfuP0fhe0QdpT53/Km/RNRF3AQgMeG53xWI9eDWxWOOU7RJOaWI+gKrx79JNQWJUkS1c8899+Do0aO1bQZBEARRRVQ2US1BVCXsNhFIqb9E1HU46d9b85SqyieVckoRdR+6R/2FwvcIgiAIgqg0t4swQNw+0D1JENWEy3sJuzblNtcemGu5Cj6TaqKXFL4nVKgqgiDqMCRKEQRBEARRcchZiiAI4o5G3VPK/cehan4ulLWQpxRRVxGfC+mOdVFn6YWJOyRKEQRBEARBELcf1O8niCqBuX1yc4GqYD2VwNG0QInOiboOJ3ty6Hb1ColSBEEQBEEQRL1HzHNDOc8Ionqp8Ax48kTnt96q7P/A6V8zsWHhPlz841plKiWIGoR+mzxBohRBEARBEBWCulVEfYBCJAiiuri1X4GqeCJ1ARoAgM0qoNRoxqWjuVVQK0FUH/RL5BsSpQiCIAiC8BvRC4WjbhZBEMQdhTT7Hqecfc8uACt/E9zX3CrKkEFDqB5T3uyLniNb2bdSbimijkIv8PyHRCmCIAiCIAii3kIeUQRRl/Cc6PyWnlSVnUIaBCA4IsC+mR5/gqj3kCh1BzJ16lRwHAeO46DX69GmTRssXboUVqu1UvX++uuv4DgON2/erBpD/SAtLQ0TJkxA06ZNERgYiGbNmmH06NE4f/68olxiYiL69++P0NBQBAUF4b777sPGjRsVZdLT08FxHI4fP+53+6+//jo6dOiA4OBgNGjQAIMGDcLhw4cVdU6bNg2tWrWCwWBA69atkZCQALPZ7LPuTZs2oVu3bggKCkJMTAyefvpp5Ofne93nt99+w8iRI9G0aVNwHIdt27ZV2GYAWL58Ofr06YOgoCBERESotpWRkYFHHnkEQUFBaNy4MRYsWKC4h+T3mfyvc+fOUpk333wT9913H0JDQ9G4cWP8z//8D1JSUnyeG3/sIwiiaqGOP1Ff4Kro/TT1l6i/RP0lBy7f/66eUv4nOq/8D4lYh5TXijyliDoOI58pn5AodYcybNgwZGdn4+LFi3jhhRfw+uuv46233qptsyT86YRYLBYMHjwYRqMR33zzDVJSUrBlyxZ06dJF0dF77733MHr0aPTt2xeHDx/GyZMnMX78eMyaNQsvvvhipexs164d1q1bh1OnTmHfvn1o2bIlhgwZguvXrwMAzp8/D0EQ8NFHH+HMmTN4++238eGHH+KVV17xWu/+/fsxefJkTJs2DWfOnMFXX32FI0eOYMaMGV73KykpQbdu3fD+++/fss2A/fyPHTsWzzzzjGodNpsNjzzyCMxmMw4cOIDPP/8cGzduxOLFi6Uy7777LrKzs6W/K1euIDIyEmPHjpXK7N27F7Nnz8ahQ4ewc+dOWCwWDBkyBCUlJV6P05d9BEFUP+5dLBoYELcf1F+i/hL1lypBlY7FlYnOOd4hjJEoRdRZ5PNWMtX1hANGeMRoNDIAzGg0um0rKytjZ8+eZWVlZbVgWeWYMmUKGz16tGLd4MGDWa9evVhBQQGbNGkSi4iIYAaDgQ0bNoxduHBBKpeens4effRRFhERwYKCglinTp3Y999/z9LS0sTQcelvypQpjDHGCgsL2YQJE1hQUBCLjo5ma9asYf3792fz5s2T6o2Li2NLly5lkyZNYqGhodK+SUlJ7IEHHmCBgYGsWbNmbO7cuay4uJgxxlhycjIDwNLT0z0ea0ZGBtPpdOz5559327Z27VoGgB06dIgxxqRjSE5OrvhJdSDeM7t27fJYZuXKlaxVq1Ze63nrrbdYfHy8m72xsbF+2wKAffvttz7LebN5w4YNLDw83G39jh07GM/zLCcnR1q3fv16FhYWxkwmk2o73377LeM4zuv1ys3NZQDY3r17fdrtzT416vMzSxB1gU+TLrO4hYlszhfHWJtXvmeT1r7Cdu2Ol/5OnppT2ybWGN76B3citd1fSslPYaevn2Yl5hLGGGNFpiJ2+vppdvHGxUrVS/0lO9RfsnMn95cGvLWHxS1MZF0XfcXiFiayicv/xRISEtjJkycZY4xtXLSPvfe3H9mqJx5hq8dPYutm7mbvzPyBPZewl62buZsN+uwQa/JLMiu2WP2yQWT58uXsjZlPsVVPPMJWjZ/AVj3xCPvXwhcYY4ydP5TN1s3czb5751iF6iSI6mZb8lUWtzCRLduymO3aHc+W/WcsO3HlBrt27Ue2a3c8+/2PsbVtYo3hb3+JPKWqEMYYLOXltfLHKhlXYTAYYDabMXXqVPzxxx/Yvn07Dh48CMYYRowYAYvFAgCYPXs2TCYTfvvtN5w6dQorVqxASEgImjdvjq+//hoAkJKSguzsbLz77rsAgOeffx779+/H9u3bsXPnTiQlJeHYsWNuNqxatQrdunVDcnIy/v73vyM1NRXDhg3DmDFjcPLkSWzZsgX79u3DnDlzAACNGjUCz/PYunUrbDab6nFt3boVFotF9Q3fzJkzERISgs2bN1fq3ImYzWZ8/PHHCA8PR7du3TyWMxqNiIyM9FpX7969ceXKFezYsQOMMVy7dg1bt27FiBEjqsTWitrsysGDB9GlSxc0adJEWjd06FAUFhbizJkzqvt8+umnGDRoEOLi4jzWazQaAcDn+SEIgiDqL1XdX7KaTLCazLCWm2TrzLCaTNRfAvWXatJmV27b/pJr+J4q7tsq9/Qp3a54h6eUIFSqUoKoOSiKzyPa2jbgdsJqMmHtlMdrpe1nP98KXWBghfdjjGH37t346aefMHz4cGzbtg379+9Hnz59ANjj9Js3b45t27Zh7NixyMjIwJgxY9ClSxcAQHx8vFSX+MPYuHFjKW69qKgIn3/+Ob744gsMHDgQALBhwwY0bdrUzZaHH34YL7zwgrQ8ffp0TJw4EfPnzwcAtG3bFmvXrkX//v2xfv16xMbGYu3atXjppZewZMkS9OjRAwMGDMDEiRMluy5cuIDw8HDExMS4tafX6xEfH48LFy5U+LzJSUxMxPjx41FaWoqYmBjs3LkTDRs2VC176dIlvPfee1i1apXXOvv27YtNmzZh3LhxKC8vh9VqxciRI726mVeXzWrk5OQoOlgApOWcnBy38llZWfjhhx/wxRdfeKxTEATMnz8fffv2xV133eW3LQRB1Bbkfk7cGtRfov4S9Zfqd3/J+9jaudU1l05FfzUYk9Xg2ijllCLqOByJUH5DnlJ3KImJiQgJCUFgYCCGDx+OcePGYerUqdBqtbj//vulclFRUWjfvj3OnTsHAHj22WexbNky9O3bFwkJCTh58qTXdi5fvgyLxYKePXtK68LDw9G+fXu3sj169FAsnzhxAhs3bkRISIj0N3ToUAiCgLS0NAD2N5E5OTnYtGkTevfuja+++gqdO3fGzp07/T4Xer3eZ5lNmzYp7EhKSpK2DRgwAMePH8eBAwcwbNgwPPHEE8jNzXWrIzMzE8OGDcPYsWMVuQ7k9c6aNQsAcPbsWcybNw+LFy/G0aNH8eOPPyI9PV3anpSUpNhv06ZNfh9vRWyuKj7//HNERETgf/7nfzyWmT17Nk6fPo0vv/xSWjdr1izFcRIEQRBETUL9JSfUX7pz+0vuso/SU8r+j2dxiKuUbiTurO4pVVnvR4Igah/ylKpCtAEBePbzrbXWdkUYMGAA1q9fD71ej6ZNm0Kr1WL79u0+95s+fTqGDh2K77//Hj///DPefPNNrF69GnPnzr1V0yWCg4MVy8XFxZg5cyaeffZZt7ItWrSQPoeGhmLkyJEYOXIkli1bhqFDh2LZsmUYPHgw2rZtC6PRiKysLLe3jWazGampqRg6dKhP20aNGqXofMbGxirsbtOmDdq0aYNevXqhbdu2+PTTT/Hyyy9LZbKysjBgwAD06dMHH3/8saJu+ew1YWFhAOyzrPTt2xcLFiwAAHTt2hXBwcHo168fli1bhh49eij2c30L5wt/bPZGdHQ0jhw5olh37do1aZscxhg+++wzTJo0yWOHds6cOUhMTMRvv/2GZs2aSeuXLl1a6eSqBEEQRN2iqvtLF25cgFWwoVV4Sxi0BpRYSvBnYQb0Gh3aRLRxa7siUH+J+kvUX3Li9FrywwVEpUhVykfOROdVWClBVAOMkcuUL0iUqkI4jrsll/DaQPyRldOxY0dYrVYcPnxYckfPz89HSkoKOnXqJJVr3rw5Zs2ahVmzZuHll1/GJ598grlz50o/oPJ8BfHx8dDpdPj999+ljpHRaMSFCxfw4IMPerXx3nvvxdmzZ93s9AbHcejQoQMOHDgAAHj88cexcOFCrF69GqtXr1aU/fDDD1FaWorJkyf7rDc0NBShoaF+2SAIAkwmk7ScmZmJAQMGoHv37tiwYQN4XumgqHZ8paWl0GqVj6dGowFg77QYDIYKnZeK2uyL3r17Y/ny5cjNzUXjxo0BADt37kRYWJjiXgHsM8ZcunQJ06ZNc6uHMYa5c+fi22+/xa+//opWrVoptjdu3FiqnyCIugF1rYjKUtX9JW1AACBYoQsMhE4bCJ3GBq1JD61GX+l2qL9E/SVvNvvi9usv2WUl8Xegol5KlfNqklq1L4nhe+QpRdQxxFuSozQHfkOiFCHRtm1bjB49GjNmzMBHH32E0NBQLFq0CLGxsRg9ejQAYP78+Rg+fDjatWuHGzduYM+ePejYsSMAIC4uDhzHITExESNGjIDBYEBoaCimTJmCBQsWIDIyEo0bN0ZCQgJ4ngfn4y3LwoUL0atXL8yZMwfTp09HcHAwzp49i507d2LdunU4fvw4EhISMGnSJHTq1Al6vR579+7FZ599hoULFwKwvyFcuXIlXnzxRQQGBmLSpEnQ6XT47rvv8Morr2DZsmVu8fgpKSlutnTu3Bk6nU6xrqSkBMuXL8eoUaMQExODvLw8vP/++8jMzJSm8c3MzMRDDz2EuLg4rFq1SjGNsOsbMjkjR47EjBkzsH79egwdOhTZ2dmYP38+evbsqZpfQqS4uBiXLl2SltPS0nD8+HFERkaiRYsWftkMABkZGSgoKEBGRgZsNpv0lrFNmzYICQnBkCFD0KlTJ0yaNAkrV65ETk4OXnvtNcyePRsBLm+hP/30U9x///2qeQ9mz56NL774At999x1CQ0Ol/Arh4eEwGAwej9OXfQRBVD3yrhUHjnIlEHcs1F+yQ/0l6i9J+CkM3dIQ3cNOTk8pGvgTdR/lI0L3rCskShEKNmzYgHnz5uHRRx+F2WzGgw8+iB07dkgdDJvNhtmzZ+Pq1asICwvDsGHD8PbbbwOwu2gvWbIEixYtwlNPPYXJkydj48aNWLNmDWbNmoVHH30UYWFheOmll3DlyhUE+nh72bVrV+zduxevvvoq+vXrB8YYWrdujXHjxgEAmjVrhpYtW2LJkiVIT08Hx3HS8nPPPSfV89xzzyE+Ph6rV6/Gu+++i5KSEgDA5s2bMX78eLd21dZduXJF4SYN2N/EnT9/Hp9//jny8vIQFRWF++67D0lJSejcuTMA+9uwS5cu4dKlS277e3uzM3XqVBQVFWHdunV44YUXEBERgYcffhgrVqzwes7++OMPDBgwQFp+/vnnAQBTpkzBxo0b/bIZABYvXozPP/9cWr7nnnsAAHv27MFDDz0EjUaDxMREPPPMM+jduzeCg4MxZcoULF26VGGP0WjE119/Lc0s5Mr69esBAA899JBi/YYNGzB16lSPx+nLPoIgCOLOhasBfz7qL1F/Cbhz+ktu18Dr7HvV9fyJbTqWeOUyQRD1F46Rz6NHCgsLER4eDqPRKMWui5SXlyMtLQ2tWrXy2VkglJSUlCA2NharV69WdVGubgoKCjBw4ECEhYXhhx9+QFBQUI3bQNQ89MwSROX4dF8a/pF4FqO6NcWPp3PQOyYJkzttkbY3bjwCXe56rxYtrDm89Q/uRGq7v5RSkAKrYEXriNYI1Aai1FKKNGMa9Bo92jZoWy1t1gTUXyJqA7Vn9qG39iA9vxQRXClusiA82KAQ8WUpGD16NO655x5sWLgPJTeLYLr5Pji+IQLCJ8PKmZAWHYK22RZ81zMYJ1sF4NwDd6GBzn+fiOXLl4PPuAT9zeuAJgqw5aNRy/aYvGI1rpwtwPa1xxHVLATjX+vpuzKCqCG2JWdi/pbjmNn9MHpGbcLBrB4Y2f8jNA08gpOnnkF4+L3o0f2r2jazRvC3v0Sz7xHVTnJyMjZv3ozU1FQcO3YMEydOBADJxb2miYyMxK5duzBw4EAcPHiwVmwgCIKo/9A7LaJuw+rZPUr9JaK+wHn1lLKj9vxV6RPpGMVS+B5B1H8ofI+oEVatWoWUlBTo9Xp0794dSUlJaNiwYa3ZExUVhcWLF9da+wRBEARBVA31TXzyBvWXiLqMX4F5XgoZszNhNpvAa7Vo1KIlOL4i/hFSZnMAAM9RTimifsBoihifkChFVDv33HMPjh49WttmEARBEFUF9a+I+kA9G6tSf4moN7h6SvnxrHW4eALffOgMWbpv1Bg8OPEpPxpzzWfl+IdyShF1FCbNUkk3p7+QKEUQBEEQRIWhzhZR1zCXlQK8FdBRdgqCqEpcv+1V30t4UYc4BkTdzFOsK8jK9N2uok6lp5Q4KSV5ShH1AbpLvUOiFEEQBEEQfuNjdnqCqHHEQWlRfh40Ng66CPtU97dTWB9B1ClcPKX8e9LspTRaLWxWq997SU267OH0lKLnnKjbuIXv0T3rBolSlYS+CAmifkDPKkFUDp/PED1jhBeq9ztYWbdgs9FUPgRxi1Tls8rUFm75zYZyP0mUEm6xuiqmzGzDYx/sx+W8EgDAo11isGbc3bVrFFG7cNQv8hf6yb5FdDodAKC0tLSWLSEIwh/EZ1V8dgmCIIjqpyb7Sxy58RFEpTGbzQAAjUbjsYz32fe8P4ccqsbDia9jnlIp14pwPqcIZqsAs1XA9hNZtW0SUeeg3yhPkKfULaLRaBAREYHc3FwAQFBQEHWGCKIOwhhDaWkpcnNzERER4bWTRRCEf3CgMD7CP2qivyRYBAhgsFpt4GyAYLFC4AUInIDy8vIqbYsgbmcEQcD169cRFBQErVaLry58hTN5Z1BQ1gVAoOdcgj6EIQ6yPIScMjeUTyQPK5VKAZQYzfji9UNo2bUh+vyljX91VgOiOKblOVgFCh4mZNDN4BMSpSpBdHQ0AEgdLYIg6i4RERHSM0sQBEHUHNXdX7pWnAsGhmKTFrwAcIE6FHFl4DkeuFEtTRLEbQvP82jRogXyy/Ox9OBSAECxJR5AoFtZpZeSysibU/xj/1zJ8D2xzZAGAdBoedisAm7klOJGTgZ6/09rKayvphGPnuc5QGB1xoOLqHnES0/v7vyHRKlKwHEcYmJi0LhxY1gslto2hyAID+h0OvKQIgiCqCWqu7+04NsXYYYFw040g8EoILR7e/wreA/CA8Lx7xH/rvL2COJ2Rq/Xg+d5mIpNAGAXd91wTdzsR8UuOaUEsw3Wm+XQhAf4KVQpyxhC9PjrP3rhekYRdqw/5cf+1YsoRIiaGElShBwSKb1DolQVoNFoaMBLEARB3GFQB4uoGNXVX7pmykE5Z0ZZUTBYgQX6sqbI1mWjnCtHYKC7dwdBEP6j5dyHi95zSrnDMSaF74nSkin1JnL++TuCe8Wgwf94DrtzDxl0Loc0CIRWp1FsqW3vFF46N7VsCFFncJt9j3CDEp0TBEEQBEEQ9R8Xjw4BdWRaLoKoh4iCk9yLyb+htVhKpsrIp8hz8YrK3H8SH/+/p3Do6y/9rLeuohTdCMLTyzvSK90hUYogCIIgiEpDaV2J2kK89zS8vVsrzsJN4RIEUXlUw/dcPKV8PWmcrADnItvYrBYU5V/Hid0/3pqBdUQFkvII0SwgBFFhSJQiCIIgCMJvxJn3qNtN1DVcB7sklBJE9eDP9z+DUqzifGV/VhGRlcKyH8maalGIdkmZZV9HwjihgHpOniBRiiAIgiAIgqi3iOITJ3pKoWL5bgiCcMerqHsLOaWkz+LzKYW7iWLT7fG88jJV6jY5JOIWIQnKf0iUIgiCIAiCIOotTg8Fl/A98pQiiCqC87IEh/ri5/NWyfC2uvpcO8P3ZOtqxxSillETI+le8A7NvkcQBEEQBEHUY+zdfd5lsEueUgRReVzDYgHnAFv+jFl0xTA1bAqeNUCAIO3srEclcbpand4s8UVtPvHiuVB6SlX9fIBZ2VuRdvldMGZDUFAr3H33Z+D5gCptg6giJCdA8pnyBYlSBEEQBEFUiAZBetB7P6KuwfG8fUp48pQiiMqjSE7ukh+K4xCIcrQ69wGQ+QkeCryO00GhSNa0h9YSAuQDes7X7Jd+Pp/1RFwWreSrWX/Izv4G5aYsAIDJfA3FxSkIC+tavY0St4ine7d+3NM1CYlSBEEQBEFUiM+m3oejZ5Nr2wyCACAL3wMHuV8CeUoRRFXBOf7vfKY64hJiruwEALTWAXFMg+NoJ4lInp4+TspH5bLB5/Oqnuhc4XhVi4+803yZp1T1tOSyRN9zRP2HckoRBEEQBFEhOsaEoXtcg9o2gyAciInONbIlQGACCs2FtWQTQdweqIXbcRwHLaz2hag2AAAtZwPAFJqJJBgzJhO0bu9QJl4x+141NOBaKYnvdR66Qr4hUYogCIIgiFvA7TV3rVhBEM6wGdGbw45ZMKPv5r5YcnBJrdhFEPUZXx44ksgU3ly2zr6n1/0kkUspUvn2bHTdT6rQx36Vp7DwJDIyPkNGxmfIz09SLSPNJsi5r6tKGFzDIum3t67idmfWwL1aX6HwPYIgCIIg/MZTklqCqG3EezPUZkCnqE44m38WAHAo61BtmkUQtyGy9OcOD0U7zLNG4pwms9qsqg59hjEByccnw2otcqzh0LfvPgQGRKu2rUx0XvX20Auhuo/aFSGHNu+QpxRBEARBED6hDhVRV3F6KNi7tRrw+PKRL7Hl0S0AgHJbea3ZRhD1Hbv8pBSSOE7mKcXxsrKA2pCck/2A3LIkVUsvRBizKgQpgMFqMbqXc/zrOgtoNRjk0i79ONd96GWeL0iUIgiCIAii4lA/mKhj8Ly9W8sYA8dxCNYFAwDKrSRKEXUHi+UGysuzIQim2jalEsgG2ZxvTym7rOUSrudek1+4hvlV/3Df2R7P632WrnZNym0F/RjXVTjqKPkNhe8RBEEQBEEQ9RZnVJAy50ygJhCAb1HqWsk1/N/l/4PFZkGQLgiPtX0MYfqwarKWuJPJztmGs2dfBMCg1zdGn96/QKMx1LZZqqh54HCKz+6eUoVCAMwsBA3gIp4w5wpfIeAlNhseO3YJl8tMsNw/FBNyM9GwsMDZupfdqyWHk6JKUfh2zevkLKfIKVUj4Xu3PxcuLkd+/q8AgCZNRiG+1dzaNajS3HnX0BckShEEQRAEUXHIG52oM9g7+DynDAAI1NpFKSuzwiJYoON1qnt/cOIDfHPxG2nZbDNjRtcZ1WRr1XDj5u+4kJIAm60M4Dg0bz4VzZtNrm2zCB8UFh6HeL+azbkoL89CcHDrWrXpllCE7zl/DLabOyNSCEQ7AOXQg6n9TrglOncsORScc8XlOFlcZl+p06MkwICGioJVcQAVQRZ6KHmFuRshhRHLfhyrJ7TuzgrfEwQLrlz5TFrOyPik3olSjDpMPqHwPYIgCIIgCKLeI+aUEr0TDFqnB0r3f3fHX7b/RdVrymiy54cRPatyS3Or2dLKk3vtexSXpKCsPANlZX8iM/OL2jaJ8Af32KtqaaasLAPXr+/C9eu7UFh4slJ1cR4G1GqeUvK3FYLsMydzlXKvTbnG8xnxMLCXr65mzyTRy8t9Bjzn9w5f3Z5SrpXe5uF7rl5pNlupHzM11hVcQ01JnPIEeUoRBEEQBHEL0AxARN1A9MbgeGWHX8fr0KVhF5zKOwUGhos3LiK9MB0dIjsoytkEGwAgOjga6YXpKLWW1ojdlYHBbnNo6F0oKjqtGk5E1D1cvVqqw8vFZivF4SOPwGZz3sc9enyD8LBuFaqHKZKTuw6m5Tml5InOnfu4hu9xvmbfc7TnW3Co6d8aeXsOTykVG9USnVePn9Sd9ltrc1lmEAQTNI6XCHUR9Xv4TrtuFYM8pQiCIAiCIIh6jzN8T5yNj8O/h/8bv4z9BY2DGgMArILVbT8bsw96wgLseaSuFF3BwayDKLXUXXFKFKF02nBxTe0ZQ1SA6vdysVhuSoKUVhsKACgtTauSuuWik/SZ16huV+4n+yx5G/l77LeaEr1qUIhzLt8xaihzSlV/+N7t/uwz5ipKQSG41gfqjWNXLUKiFEEQBEEQBFEvUR8wOtHwGjQKaoQATQAA76JUREAEACA5Nxl/2/k3PLvn2WqwuKpwDZ2iUU/9oOoFBcZsKCo6i8LCUyguviAJljwfiAYN+gIAbNbiW29ALrLABm3oKVzTHcGRkGIU8LyLp5RXS72WYi7/SnVW4BRVz1Mgr9WzoCZ+F/lK5F619qgt314ovUDt5/b69Z9QWHiqdgyqANV+K9xGUPgeQRAEQRA+cSZxda4hiNpGPjjkeTGnlPu9qeXtXV5VUcoRvtcvth8EJiCjMAMZRRnILMqsDpOrBmkATO+X6xXV4DJx7twiZOc4E/XHxDwOwH5vaLUhAICS0lSUlWXCYIj1u1414cUWdhaGpttxGcDlQOBGcQOs5Hjpd4ED85KDyvFvJQfqNZ9PSCXRuZfwvRpMceVYvN1/i52ilFYbBqvViPMprwEA7u/5A0JC2tWWYUQVQr9kBEEQBEEQRL3DZDMhs9gpHHkTaDSOwaSVefGUCozA+kHr8Ua/NwDUl8Gew3OD4kPqBdWRU6qkNBUAwPN6+3LJJccWTgrfu3r1Xzhw8EEUFOxXrSM/sxipyblITc5FUYH7ZACSvdoSxwf7fZen0eD06bPSdtfwPUmokd2fAjPZt1U4YbcHsasG3VGc3zEqOdykROeyVzfV8Fi63TP15NlnjCH3+k/IyPgMGRmfIb9gn5/7OcP3Wrd+EeHhPcDz9kksTKacarG16nG5R+vJNatJyFOKIAiCIAiCqFeYbWY88s0juFZ6TVon5ZRS6fDreB0A7+F7Ws7eLebh2eOqMuz6cxc+PvkxrMyKlmEtseLBFZJdFcXpuUjhe/4iCFakpq5EWXkmeF6HFs2nISysS80a4ZqQvgruMTG8KSLifhQUJMkG8RyaNB6B/PzfUF5+FYJgQknJJURG9lXsX3LThC3LjkimhDQIwJQ37WW0TIN+N+5BohAAuxxlL6ThdLDBDIEDrILzmDx7CTHpWE22HAABsOmLHPv4mn3PzTXIM9UhAikSvju+G1StFL0Xq9ee+hq+V1x8FqdO/T/ZGg4P9D2IgIBGXvdzhu9xaBY7Ac1iJ+DIkVEoKj6Dun/sdd2+ugOJUgRBEARBVBx600fUIvll+ZIgpRM0aJyngwF6j+XF8D0xVE+OuE4UtcR/BTVvCA8cu3YMp/NOAwA6RnXEfdH3uZXZkrIF5wrOAQAu3riIp/KfQpdGtyqKUE6pimI0HkPGlU+lZcYEdLlrbS1aBFTNdbPfp5xDVBVFKY7jER5+L3r3+hmnT8/DtdxEMJV7urTQrPg6L77p8GQCQ9/CuzE3azz2oAglYJJ8xHMa2BhgcwTseYRzBva5hu8x3qIse4ueUtWf/1xmlxfhWyqimH3Pv+trMufBajFCowlCYGCM//bUI8zmfAD2EDybrRyMmWG1Gn2LUtL97UyoL95E9WnWUfstQ0mmPEGiFEEQBEEQBFEvCdAE4IXUh3El5TyEu7Ueh2tS+J43TymHcCWOG/z1lCq1lGLGzzNgFsxSPb+N+w2h+lBFOcFlAGVTmVXKb8ScUpKxt17VnYIgmLwu1wTuIkVVeEqJHjoax7J4j8vCWSUxxfMgntdwEGxKe8JsIY464eIGJQq3rmnAPcy+J3+WfITbudXglvnc6+7VgPtkCuqJzu3/8pz7Om8UFBxA8vHJUjudO72N6OhRnq1xuYb1I8zYKZYaDC1QXp4Ji8Xsn+1MFKXk4dl1W9ypn75stQuJUgRBEARBVB7ynCJqic8sXXCxVX/ACEQ0a4NFQqpbGVFwsjCL2zZRHBKFq4qG75VaSyVBigMHq2BFiaXETZSq2sGjq6cU4Zu6MFSs+pxS3jylRJxiyq15lrjlwrLaAC1g4wBBJn5N1vyMv3Ap+AFLEM0VIJvZZ73k7IYBALTXGaABuKx8lGd9BbTrr9qG03iXD16ey+rJrSav07OnlLiqoimuiktSFG0UFZ32Kkq53kNmcx4OHR4u5VcKC+uGu7t9VucmQVB6PInX0vf96AxHrbr7uabwJNIS7tStu5UgCIIgCIIg/MRmteIii5SWb+oikGsLdCvnbfY9cd2thu+JHlA8x0OvsYcQqg2OXddVRpBw7ut5inrClTqQILrCyb39qVIZ3uT0lHKqIxw0irLK/T3YwJyeeEy+EpASnQsu4XsjNEdg4OwCrQ5WhFqLXfYHHJsBANbs454PTCzvQ+ypbp8ZRU4pL4nOxVKKROd+1a/0mLQJnhPNq2E0HkNJyQVYrYWwWgtRUJAEk+ma7x1rGlEsBY+KXDWnyCoL3/NDoCTqFyRKEQRBEARRceq29zxxm1NaaAQAMFmS5RDePnixMPeb01tOKVFUksL3HPjrdSEXpbwJWm7eJpUZUEkhW5RTyl/qRthTdYTvifefq6eU7DmQwvf8CBn1apJSlLJxQJEQ4GwGgnqOKY5X/8lQFck8GWSvwWItxNWr/0Fh0WlvhlYhclHKIe55OUmKnFL+POMu18RXWKmbuO3YPzS0szQDY138PpCeP04jnSP/nkHX7zp5hrK67SnlhDpMviBRiiAIgiAI/6G+FVEHsFrMbuuCA+wDRjNz796KM+sl5ybjp/SfUGgulLa5he95yRujhihKaWRv8qvbU8p1oF4XB6F1n5o/Z27CZJWG73nOKSWFO3kLl6rAdzsnyyn1p+D0VOS9huAx50fALl7J7XHT6xj0glmZjwqAxZyPlAsJOHZsIgTBPRy36lFmzbKv8uxxVtHJ91yviWDz5Snl6m3nECV5A1BNM4dWBUqPJ/89ndTC91AhUav28PRI1XW7awMSpQiCIAiC8Ekd7OMSdzTuN6RBax8CmFW6twFauzfH1xe/xot7X8Q/Dv5D2uYavie+hXdNTO4JKWE5EwCHIGC2FHrZw1G8Eg+Vc/p5jVjZLdd156A+mK9ZE6ozfM9LTin4zsHDuQyhVQfOnLKsDRxssv3kopQ8n06LglyEC0axYrnxcB26MzCAMWw7PhcZSYPRv/APFxvs97zNVgzGLNX+okQpSXluTJKJK5jo3Cki2vEdvqcubNptq7seRPL7koPnMEjP+8nD93zPgkjUL0iUIgiCIAjiFqDOIFF7MMH9/gt0jFmMgh6F5UoPir92/Cv6xfZDuwbtAADZJdkQmIC8sjxYHN4WYvheRT2lJHGJmcEcCc8zs7e4l6tSLxlxIOrelbdai5CZ+SUyrmzA1cwvYLEYK9HO7UP1eClV3Arvy7eCQ5TilaKUQq2RxMsqEivEnFKcUhPiXUQGUZiKLizA3dZkcWdZPc7ycpE21FaCXoWnXEvb2+D0qvuoFq4KpDY4rx46UqJzhTn+eAI5PC01wQCAkpILuHz5HRQVnfG0h2LJWGoP97MKrE6H80qJzqGpkKeTU4B3D9+rsx5HKmbVUUvrDDT7HkEQBEEQBFGvUAtDCtJyABi+KW+J75buxEd/7Y5BnZoAAO5ufDc+GPQBfrv6G2bvng2zzYwpP0zB8evHpf0lTynO3VOKMYZ9mfuQW5oLAOgQ2QGdG3YG4PSU4uCYDp4BZhUhqEpDalxGwPLB2Z8Z/4v09HXScllZBtq2WVR1bddX6oBXhfsguio8pZRec6Lnjerse/7klFJrw+UTx5yeUhAYLAKPXC2HZY15BJRFoksBUMqrexUp1qqFwQHgVa+VWn3Mq/dS1SAPlRU9dNTEPfE6cOA4/283Bvs10eujUFZWgrKyDKSlv4e8vF/Qs+d29/IuFe88l4O+TYGjGUZ0jFIvUydQ8eDzz5VM/H6VeUpx3q5D3aMuXo66BolSBEEQBEFUmjr7xpK4LVHr5PdpwuNkrglWXgebwHDi6k1JlBIRZ8crs5bhXME5aX3r8NaID48HIAvRkbWRnJuM/7f7/znr4fX4bfxvCNYFSwNA+RicqSRUr8pE586QHXfPCLPJLpxxnBaMWWGx3Lzldm4v6kD4XnXmlHIM2gWbIxxMlvDfGb7npT0XbYcxL4KPI6dUl5NNYLxWgrXoC15nxsmYa4i06dAFQCHPwyVWT/GPvQ1B1oJ66J9HA10rqzZkYpMfOdyUopsftTvuw8jIBxEYEI2iojPIvf4DLFZPIcDKSkXvNIEBgnTN655YI090XpFceJKQqjr9Yh3vd1AOTr8hUYogCIIgiArjmnyWIGoSNU+poc214BL/F8nt/gf7LDGqwpXeMTuVPNH50b8elcQqAKoz6OWV5QEAwgPCYTQZYRbMKDYXI1gXLHlKyYfggkueGKB6wvfAuYfvCcweQqjVhsJiuYHaGLhlZm1BYeEJAEBAQAxaxs2UzQxWW9SB8L1qzCllK7Dfc8xqATSArdA5GYAz95iKWFoBEzjpX/unhnlB0jbBokeDYh2COXuF7tmilHUwAGAC9jQNxjddJoLTaHE15QqGNgz3IEq51uCOfC9BsKKo6BQEZoVWG4qQ4PbKGQn9xHmfyML3vMwayDlCGhn8fPLEiRb4ALRs+QyMxuPIvf6Dl72V6zlOFPsc9tXRn2Z5biiuAiHSbvnz4GfifqJeQaIUQRAEQRAEUa9Q8zISx5uSr4BKGVF8EkUpnuOh43Uu9aiE7zkGRm0i2uDk9ZOwCBZpnVhOPty1qYhSbo46VTB65FQS/gqOvFY8H+C2rSawWG7g/PlXFOvCw7ohKurBGrXDFfd7puZH79UjhDlEoHLHv5zjvrXJc0qJYorn8L2KyDVi+J6oh2g4G2xMAzAgxIOXjtE1DxxnPx+fdIzEtSC7R+OlrHyEaTXqopSKgYwJ6g40AC5eegNXr34uLXfutAbR0aO9H5ga8pxSfgpinCN+z79E56InEC/urFKjh4bgTC4vyOyri2KNlFOK41GR2fdUw/fqmQsSq2f21gaU6JwgCIIgCIKoXwjioEsWouQYzHGSWOS+myhAiTPuBWgC3Lwn1EKWnCF6vNOTigmKf3mOOeeUEvzwlKqMWCR3y3DBKUrVjmeSzVbm+MQjMKCpy7rapOq9lCprQ1WIVNLse8wxaOfF2SDl4Xsa3+25hu85yl7jbqKcM0trAYDXKeuxyQRhg6SHOMuYeDMumMUyMgGVCbA44l45xzNtZkwSu+zH5/TPcsfzNS0rS7fv5fCwKSo+q7K/PzhFKWeCbS+eUoogP//D00Q7OR+CjWudnChCMvveSpvrDlKuM1Q0fE8M+1MLR6174psczx5/de/61DbkKUUQBEEQBEHUK+S+C4AjZEYSpRxlvHhKiRi0BrcyrqKTvT0xhxPnUZTipHKcevgeqzpBwjmTlXsYjCDYZ+Pi+UCpdG3A81oEGpqh3JRVJwaP/oRPCoIZfxwdi+LiFABAVFR/dO3y4S2FfakbUR3CmOiBolFcak4h2N5aonMOQBZ/A7CFKtZrNKIQZm/DzHPQOy5xmCC/1naDbJwNaqISxwTJZJ4JsIEHmPpgXv0KeDl/jnNrMLRCaeklFBaeQk7OdkRG9oVeH+V5Pw9wHGQJtr2Le5x3XUlpJpSilHO9L0GDByBI4XtM7ilVB0UPuUeYP7m5CgtP4uKlf8JstodOK85PRU5wHaEemVorkChFEARBEIRP5O+K7cvUwyJqD9fwFJ6TD8FFTynfolSgJtCtjFiTXJSShCdZsmNRZJKLUuJYSfAj0XnlHiHXnFKew/dq+ll1Xht5mE7ti1LuJ9z9vJSVZaCo6LS0nJe3C4JggkblPrk1CyoWQng57T1kZn4BgKFBxP3o3PkdN4FM8pSCUtSQe0o57xOV66BiglxAldscggAUyMo50xnZP/QrtqAtV24vwykrlqyRC2dMABPFZMZkm9XOi7vHFGPMY9yPaHeAviFKSy/h5s3DuHnzMCIj++Geuzeq76RWj2r4nrt9TuFa/A5RKcMYbt78HSbzNXDgENGgl/v1U3mmXVsC7EIjY4IUvudsHXXkeXOBycRTL7m5RLKzv8HNm4el5cDAWOmz89u+Dh4n1J5z0ZWQwvg8QaIUQRAEQRAEUa9w9TriZYqQNEhTGdNFBUYhIiACN003AQCtI1q7lREH/fKBhaqnlGNAVCuJzploj3MAazLl4tq1/0N52RW7PWJOqRpHJmFz1Rtmc+PGIZSUpAIADIbm3vNW+eGlJA6SeT5A8jirqHeRdyomSmVlfQmz2T6b4rXcRLRvvxQ6XbiyBk+ilEytkcL3vIkVrmKXqreS6I3IK5YFx65PFJUhJYRJwpXk8aSWDwoOIUrFg5BTPHvO1tVrkS2pnM5GjYYgIKAJSkpTUVR0GiZTjko93pDfz77D9zxbBxiNR3Es+UlpOTy8B4KD29hr55Tn1GP4nkL0dYbvMSYTgesgyjBFd2H1zz8/Qln5VQBAo0aDITALACC6yWg0aTISERE9nDuofEfXRbwn7CfkkChFEARBEESFoRd+RK3i0tfnFPlG7KjllArUBiLxsURkFGaA4zi0b9DerQwvhTrJBsaynFKuidCds0M5nUNsqrOcVWX4njKnFGMMqZfXIDv7K6mMThsmla5ZxPPByRKxV70oVV6ejWPJf4X8+O6//0cczYzAF4f/hMCAzk3DMH9QO4VdTivVzotouw6AybGuKm2v2D3gLiKp2SLmFHL1lJJ99hK+ZzHZ1zG1B4apf9FzUM7yJnpKcXCmdJYnd2ZgTuc+WS2A00OKYwzBN77AtowfATAMbNYU76SWoNymnIjAxUDPMoyjXq0uHJ07r8GNG0dwLPnJW0gCruIp5UWA4uTFXJ75clO2o4wWjFlRXnYFwUHxjnXi9fMluDifL8bgnH1Pvm8d9JRiMk8pV+G/sPA4Ui+vksrm5+1BVFR/AEBwcBs0bDjApTY/wiiJegWJUgRBEARBVBzqDBK1iOAy6OIASaBxJjpXv0fDA8LRpVEXj3WrhaiqeUqJA06b4PSUEq1S85RypVKJziVbnZ5SVstNAEB42D2IjHoQPB+AvPxfalyTcg6IOZkYUvWDZLMlHwADzweA5/WwWotgNuVizc5cnLhyEwCw8+w1PN69GZo1CFIZ5Hu2ied1sIn5wqvSU6rCOaVcPYHUPHRETynlsE4tp5QoDlpsAnafuwZjmQX532YAAGwWz+fDKcs4xFnGK8QgUbtSeob4N+cYJyVqZwgoOyq11jgjEj9flnsyusfp+ZD0HDY5vhd40VvM97OpWo9MZFX3lHK258xr51rGfi8F6Buj3JQFq63EaY+LKOX7weUd/xfD9zgAvkL/ag8pd5YirNdup9VaYt/mEOtsQqnseXW/7v7kpKpLUHfJNzT7HkEQBEEQBFGvUMspJeIt0bk/uHpCyT9zHAcenhOdSx4Aap5SVRm+5+IpJa8vJmYM4ls965Y4ueaQhTtVZ+4Xx3nX66IQZGhlb0UwwWRRnnuzVfQk8iN8T2UgXJWiVEVzSvkX7ieKIa6eUirhe47rsC05E7P+cwwLvz6FohsmuKHwgnLfrGMBeDDfGUYYIojCkr01t/JakzMjlKuXo+AUpZzXhEdImV1kM2jMaBZsBK9rLt/LYZw3IU05QyfH2eur6PVU5JTifIshHAfPnsSOtrU6uxejzVaq8CCSKvDWhiLHlSx8T1nIo301jdGYjD+OjsPVq/8BIB6na44zMWzWnruNMQbIvnPdqEaxm6gdSJQiCIIgCIIg6hcuYy6ekydSZmpF/Ibn5IIEU/zLyfLKiDmlxH95ztmxLjPlIjV1Na7l7nCrq0pwyyklR/QYq11vAo7jJO+PKj12B87ZvDRS/iyb4C6wqGUncl8SV4oDYac3R3UOfCsavqd2Hj3nlJJ7SilFnLxiezL8BkGeQ+MY8+7p1P+GU5QKZU5hxDUzFQA0apzutk4s2MjkmF0NzLkNvCRe3dMgC6NbnAfHB8l2l93bnhQg8VxJHpSikHFrnlLK8D0fopSnuQId50krhdYKKCo+49hP42hFOZGCuzVOzy3RKnt5pxpWl8Sa7OyvYTT+IeVGCwxs5ha+5xTmnMKh6FkFzptcUXfEN18or2f9sbumIFGKIAiCIAiCqF+4eAsoPKXEGfBu1VPKNReO7F+e493C9wRB7ill32ax3ED6nx/g9Om5MJlyFXU4D6HqckoBcs8CXr1sNVBenoXS0jSYTNec7cmuDedt1rdK4kyczEuilCCYPDpE+Re+5xT7nAPkiooYXnAVCyp8D6iVF+tUilKcYvY9+zazJR9FRWcQmHMFT59OxLzziQiyllfQBkeVis+iXRUfeCekrXUUd8+NpL4EN1FDrUl5yK19H/F63mpOKXlor/dE55wH7Uq8Z7WaEMkrqKTkomNdsMd21deLic7l34V1L3xPPOaY6DG4994vERc3Q75RUYbnxRBUwavw7pxAoe4cpxz3x5qScPqCckoRBEEQBEEQ9QrXpMycbPY9MXGyWt5mf5B7SglMAM/xCk8pt/A90VMKgIYPBFCGho2GgS/eBUEww2otQkBA42oJ33N6fzBZfZzLv9XDn39+hEupK6Xlzp3WIDp6NJwiSfV6G8nDnniNTJTyFPJWkfA9zi6o2SPKqs72iobvuXlKec1l5Bq+Jxdq7dvy8/ciP38vYr7ujF6X7GLIvt4DYNYYvFqt9pmT+UWJIozMl8jjkblujzQb7euZzFPKTWR2rc23x5JrWY671ZxSoh2cZ7UJ7iKYfJ1z2XnPdu68BgUF+wAAOl0DNG48XGGvZ8Rz5MgpJc2+57nd2kQ85qDg1mgQcZ9jretd4OopxZz3uqqnVEWuf23i8jtF4pRHSJQiCIIgCMJvaNY9oi7gOjjneXlOKWXIXaXaEQUuadCkEr4nhU8xyWOrWbPJKLt4CIJQIA2C3Wbfq4x9zHXAJg99EhWC6g3fKyw6rVguKj6LaIxWhBc5PRqqQZSCc4p5fzyl3MP3VM6LbGdnTq4qTHRe2ZxSqgKZ7/C9hlEPISf7W5SbsmCx3ICmvBQAYAyL8tq650E0pzhXvCTICAqTnc8iEFqqXpN2XxleuPwxvu/bH7l69Zbd/abU5vhzxSV8TxKlbj2nFOeHJxInCyX25CkFToPGjYaicaOh6hXAsxgqF8jt/4renP6FF4qYzQU4ljwRJlM2AA6xTZ9EmzYv+dyvokgejSqJ993D98RwUkEWlqqW6Lx6vles1iJYLEYAHAIDm6rns6oA1F/yHwrfIwiCIAjCJ3X+hSRxR+HqKcXLxCIR4RbHK4qcUi4Cl3z2PbPNjO8ufYedf+60b5PlkmGMyQbBHgaXlRCLnF4ZvGKtY6VL4Wp6eB31asSwIylOTiWcqDpy3MgGrTxvVzNSU9/CU+0XIyLA6Cym8kl9Wb7OaXuVzr5XYW8539fOY04pmedMUFAr9Oy5He3b/0NR5EaDJj5b9eXxBAA8L96P6iJRcDaHe1KlOEpFBXyaFY/u34Mndv3gvlH6xJTrPIz2FefTLSH4rYlSSps8hA1C+Zg5wwtdCzlDTj3hW/hShu/xHJPWOs++7/umsPA4SkouwGotgtVaiOycb33uc0tIub3kx6wUz5iU6FyejF5tP3H3qhfcS0pSkbSvJw4c7I8DBx/E6TPPKraXlqahsOg0iksuVviFAnWffEOeUgRBEARB3AIVfeNPEFWH66BQ5igl8xy4tXvSNXwPcIpS8pxSP6f/jP+c+49UNoADymVeVK7hQm6eUlXxzChySrmHD1Unck8l+7IgbXGaV42eUjKvk9CQzsjBNthspWhiKEW7BpdwJKe7o5xolVxccJ4vRZ2SlxdfCRHDq9Hel92KuyY6F2SfGexeUuqiFAfeIY7KBR6lGMABFXLnUHgvyb3KFGF9CosBAJoyp/tQaYBjUyjQ+G4jcoqiwKdaEV5cBMXviMzDzR7B5+47xRjzGO0mhcq55ZSqhCjlLXxP4SEmrnP1jnSZaU8VPwUXx7MlnXsmF818P2+iLRpNkGMWwCrMnSZvB2oeT8pjdOaH00rrnR5W3sL3qu57pbj4PATBLC0XFp6SPmdmfonzKa9Ky/Hxz6NVy9l+1Er9In8hUYogCIIgCIKoV0gikejNYrKBv2nfJg53bjWnlLdE5xzHSdvzy/IBAE2Dm6JjaDjuEpLxbZHYtuAm1nhLylxh3JIAu+eUciZlrp6BkfuMWQJgs4CV3ZRs46rRU0qe6LxFi6fRqNEgnD4zH4WFJ5TlpEE7HOU1YMzqI3yPqxZRqvLXwhEyKljxx9G/oKjojLSFY549pZy4rPMiSDEwN4FTrLKBUIoomHEZka47AbL7jlOst5PSDGh+HWBaDlFtSpCV1wR8qhXBZfL4PnmInhrSU+6ljKun1K15vqk9+67tMsYc30kOEdCjUCYKLZ5FKc6nF5DyuKScUvYl0SCP9TsRvZMCqlWUUpuAwW1mULfwPbno7H4y4zW20gABAABJREFUq+O7TTx+jSYENlsx5Oe/pPSSomxJiXLZvr8N58+/hpLSy4goNeGpzkHg0di5XVG4ysy+bSBRiiAIgiAIgqhfuIoyFgH6s/aPzkTnt9bzl3uWSDmlmNPrQvSUsggWAMC9Te7FrLjWuHTpKPgi8Q0+3D2lqnQkogxtYUzm+eMW7uLers1WiqzsrbBa7GFukZH9EB5+dwVNcAxqxYGktRx4uzPA8oDuDYDSPCC8Oo7d0byLd4XB0AIaTZB9nTxoT+ZxY8dbeJS7KFVenoWMjP+F1VoEjtehRfNpFT9Xno/Cx3Z38QMATKZrCkEqJKQDtMURirIceLhEvTkdTMT6/PSScg0Lu6c8Hd35YvyOXvJq4V1IUq+Tc+SRap6bg2e3Mfy3H8P1Bm5ymMtHD8KNIu5QGc5qtoneVRUUX+RhgCqz/qWlrcPltHfRAALeeSgYe67/HRzC1KyTCbm+M+h4ChFjLt994ux7jLmHHftTP++4AFUbpiprRy1huUveLCZ9lzilCfE6qXpKcRUR3/xDcHyf87weNpvdcldbtNpQWK1FqueqqPgcsrL/CwDQAXggFsgpv8u+fw15r9ZnSJQiCIIgCOIWoFd9RO3hHFCZ8L3+ZZhggM78/wDIwvdu8RZVDd+TeUu4ilIaTgNI2x37QXCslw+8qi58T22mL7it8zwQys7ZhgsXlkjLmZmb8cADBypog0MUEvPAlN0Aiq8BwQ4vEMEGzlTiKFydic49hwUBzvuAyZLV29d5FqU4mSiVlb0V16//KKvPiq5d1iv2EgQzsrK3wmy2e89FhN+LyMi+KtW7zqbnK3zPdbt4L9kHyTxvwAN990GrDYVxTzqCr3eFpUEumAkIv/qgW31SKJvkNcb5vAvl2+V3VrbQwG27S2OKrUyxHhBEL8cQ+4ogUzn6nwauh3P4b3/OqbvC5U7mZDmbXMIT1ezmwOPfh/7EWzsO4u2H7C3nGMsQHa6ccTA9/UMUFCQBAHT6KLRvlwC9PsrlCN3FkLz8XyBel1B9CZoEpgC4z7WYYz9nyKlnfAkYSvFZTDIvC8j068tPeh54nWMXi899bgk3r077ktIW5XeJfTfP+bfcPK2qxEynKGVfloXKCg6BTFRQVb7PmCP0T69viDILBw27Dg1ncrOcUIdEKYIgCIIgCKJewQTRc0lAZ/4qAMBo2ytutf//Vj2l1ML3mFyssG+3OgYqWl4rG3g5ckoxAVoprE3dM6Ny3kPuXlGu4XveQrNED6mAgGiYTDmwWG9W3AK3/DiOgVpoDIByKYjQXrbqvTDUEnw78wfJykkhQqJw6DkBvbSOAziH54nFcgOAM6xHsJW77ZeXtwcpKX+Xlnk+AA/2S4ZGE6Ao5x7CWRFJSI4zMbROF2H/zOnQLPl5ZDUOQNNc+2C43GKDIUA+3FMm4PboKSWFo6nDAfjANhqxOA8onhfl86MWvid+FMR7N5TH/Of+jsnfb8W9F85Bb3UXoRT/evGUEk3OMZajzGwXGWwCsP9iHmyC81k5m3VDIUrZbKVIvfyWoq6oyAfRtOnjCkPUxBDx3mYwgEMZeE7wGILnFFoqk1NK6fHnDN/j4N0L0LUa8R6yCy2CUF05pUQhrqLhe6I9nhOdV2WuOkEUpUThSeUaS4KVyoyczhxdIRCsWocoVU1C320Izb5HEARBEMQtI6jmLSGI6kU+YDYx+0CGk8I97NxyTinZQF3VUwpKTym755TSU4ox5pZPSayDl4fc3SpuSc0ZPA5EVduxrwsJae8oUnHRyDnAFj0tHMepSDpfjXmtmPtg15lP61bD9yCVEcMCbdZiAIBeF+moz30gbLEUAAACA5sBAATBBJutSM1oH8uuqCc6d14vmbjhqOpCbrG06v9OZLnU539OKUXFjCHIUo5AsxV6iygkqIufPmt0FCh0zNrIgeFEu05Ia2o/d7xgX6uMOnQ9T56Fm9OZRvT+526kXLOf/w9+vQyBMdjk4W3CDYUIY7HcdByKFqGhXexlHCKF/NmXh+/9fCYHff/5C85n2wVei2B/DnjYPOZD9yfRua+cUs77TxRg3b3R/Ep0LgqbkhAkqN7blYXJQp8l/ArfE79fvORGq8LwPckbihe9odzD99S8qJxl5IKj/ZxKohQ5lvuEPKUIgiAIgiCIeoUzfA0wQYcAWMBJSYTt2245p5Tc80OcslzFU0oevsdc9mVgsgTgytn3ePAQIICB4eKNizhXcA4A0DaiLTpGdfTLRqYmsEg5dHyH7zkH2qKgdAueTG4DSZf25R4t1TnYlQ/wfSTuthfx/E5eLkAwx7m1OsQlrTbU0a67R4noZREW1hUWSwFstlLYbKVu5VTiuTzaolZcSprvJbRJvsuNEudsYldvlOJE+g0EQi6I+koobjdi2b5P0Dk/DQAgcMDJ/jzyQkQxg4PNIQzLc+cwuVDK5Ovt2FxsF722eJdjVgsw9BSyBwCp14sV4ZnZxnKwAECQJ4K/NgoHjc3R6/4fUVZ+BQX5vwEAtNpwBAbGoKjolJuHnfxc5eR8h/TM/YC1CwTHtSizcNAH2D2XPMlK6iGnbkfnaNbX95fSK5DJZt/zS6wRv9NEEQb2e1sKUasy3L065d9bq35KweU/T2NMG+BoRiFahTq2CBaXsk5Ewb9qE527hO9585RS+Q6QcmBxPJhDlOK5akoefxtCohRBEARBED6RiwD2ZYKoPZjMDcrqGKCUhpxF7AMaXDUWA8X2MVd6XgmOX7kJAIiLCsI9LRr4rJtXCYmTezlJOaVs9kGMVpYHhZeF7zmTkLt7W4EBZpsZk36YhBKLPe+Sjtdh77i9CNWH+nMGnHXBPoB1PqPiVPFevJRcQtkABsYEvxIwOy0Qc9JoFctObyWZfVUYZiO17yUUSuE94nb4yuviUqlYg3QupPA9bYi9iMqxMMlrTgeeNzhEqTL3cq7hXBX0lIIkkqoIcipV2WTPyZOfHEID/jLm3QuYreI96XnQLM2+xwRJkALsolFklgHNo++GFSfBMR4F1pYAsnHtWBj4HvIwLc9Iea1EEVnMkSRAxfuKSbXJf4m8CTdamT7DGINZ0OFcfjt0jLoAACgvv4LikhQcOzYegiMfkE7XAO7CjvOe0GntCcxv3jyM1sHAX9r8Cd5xIBbB/hxwnE1VNGOMgQkqHm5uiOfP0zOjFHmcOaUqFr7nFFpUZryrQtTDbKWt+OroFXQKtz8/N8sY4Pj6E2QijxueXNEqgTPRudNzTNomeUoFOJr1HL7HcVowh7CngVMUPpJWgJBW7t8JhB0SpQiCIAiCqDxV2DkkCF/IB/M2x2DHashEeEwDRPx+FvcYOYSkpuOv72Xgqsk56Hryvqbo2jwKo7o1RXCAejdY7in17rF30Smqk8JTSjXRuWN7sck+ePk15RpGNvDgKeXYv9RSKglSHDhYBAsKzYX+iVKSV5RTVHLzVHIWVqvAUVQ52xUnzcTFIAj2vEQ8r1f3yHEJ35MEE1kZ6Vx68ZRijKGo6LQUQmUwNENQUCuP5Z1H4O51wskEMWc5pceLs7zn8wJwkleE1Wr3lBIFCbUBqTSA5nXQaoJhseQjL/9XWK1FCA/v7tmzx+fXprpnlfPYNUDBZeDsd9BnFCBYI4CzPQgxfMhic573HGM5GjRQnh+zI+zQbrsVTHB/JuQWfH9vPB45dhkCQsBLnkdODx1LiRaa6xog0GVvBkXom9qx2Xi5p5RKXirFshSk61zpqE6QrrP9XxuD49pzWHV0NjScgI+GvA6OGWExFzgEKR4REfehWexEXMvd4WKf89mPj38OhqCWKCo6i+vXf0SgthwaRztWx7lTeEo5qigxWTHyvX24t8FFDG8FfHU0E/NaWBAa6Pxuko5PFr7HmIDi4nMQBDM0mmAEB7eF/B4V27OXds+F5x3R01HpKVX1OCcYkJDdCwJzCpM2mTeb8zlzf3Y4n8JdxZFC9GTfga62iKKUaqJzxfeRQ5TixNlHOazZeQF7mpzHnG5V6+F1u0CiFEEQBEEQBFGvKDY78/VYocGpm01w6UYDXN7TCCEoxAM4CBQAXUJa45FoE4K5MpiYHlt/fxCbf49EicmK6f3iVevmOA6hulAUWYrw9cWv8fXFr/FYm8ekbaLwIYlSvHP2PZPDA2Xz73/i0SEueVNk3lYAYJOJGwGaAJTbyv3OM+XqFeVoSDwCl3/V9ofDFrko5RxonTg5Dfn5ewEAgQFN0bPn99DpwpR1yDwD7HXKBAKpEd85pfLyduHkqVmyNTz69P4VBkOsx33slbp7YEAlH49rTilvopRzhj4ecS3+hitX/wVAgF7fEA0bDsT1vJ3qXhIOTxue00keVampKwEAd3fbgKgocSY8V08pAZmZm5Gd8w3AGAICY9Cp4wpoNEEO213Ki9dIOnYe2LEAuLQLgQACdUBzpgeEhwEoPaUE5kMD42SzjXkoYtFoHEWdKpAivI4DOJu7gFlWHgqDrIyyDYfQJnr+OO4bTlGtB08ptWvoos3aPaWcNdmFD/HZtF9LjSYI3e/9AgCQm/uDom6pDY5DYGBTtGo5G7m5P+L69R/Bc4LkKWUV7OeGlyXBFve9mFuMy3kl6BFpX75ZKuB8ThHuaxnpZr/8OC6nvYv09HXSug7tl8vuCYdHJCd6z8k8pfyZfU8K33MKY4Jwa4m5c3N/wtlzCyAI5eB5Azp3XoNGDQc62hHvK5XZ9xwJ9UVhTRDkopToKeXZq6wqxR3BJXxP+R3imlNKxaNM9n0khu/peHsIb3RYIDgOMFtJjPIEiVIEQRAEQVQYcSDCGAfF6IEgaoCCMufgqdSqw8/ZbSEXYQq1oQizFqG17Qpe1O2W1rfRZ+K5stm4UWqGzVaKs+cWwlSeDXAcYmIeR2zTcQCAdwa8g0PZh7D5/GYUW4pRbLEnj/boKSXzpgAAPvAKrpZbEA537wP5DH0iFU9+7uoVJQ/fc01A7c1Tyn0QCAD5jhw7AFBuykLq5dUIDemIJk1GQqsNdmxR5pRyS8AM5xXxFhZUVm6fPVGrDYMglEMQzCgvz/QoSjHGcOPGAdy4ecTRnI9E59K/ysG86rmWrYuOHoXo6FHScl7eHo/HIg5oOV6Hli2fwdUr/0JJ6SVYLDdQVpYhq97Vw4IhLX0dTKYc+2JhMprGPI6oqP5izTKbBeloJBs4DVB201ETBw4Meq5Eql0uStkE5hAuZChOnXtooetXu1UjejPJXJMUHjqAWhodm0WvKKPcy44g5pQSvIf9ATKvGzfRjkkTHIh12BinItKIopZKMm3H559OZ+HaibNoH5kN16BfUdjUKEQpMXxPcIsuKzXuwDsP/RNBWvvMjQLjpBBKlaMTjwalpZdl6xhKSi/B9Qyq3ev+eRDJE53b6/f2nFqtJcjP3wObUA4OPCIj+yEgoBEAID//V9hs9vvOZitGfv5eSZRy91B0iumipxQvebXJQqfF7yPV8D3lJBKV4fLld5GZtRlWx4QGnKoo5Tr7nlqic9FeDQTOLjbynH2/x3p0xMcnaH45b5AoRRAEQRAEQdQrzuY6RSmTzPMhpmcuLlra4NesBzDq2g5oBDF8wl4iNuA6UGYfJ924cRi5UqgOYDJdk0SpnjE90TOmJ35I+wHFlmIpf5Qip5TgzCnlKgjpo37D66nA4hhOGtC4hu+JnlI8x8tyL1VMlFKffc9lSO9FfOFUZruy22nfHh7eA0bjH8jM/A8AwGo1Ii5upqK8sw5x9j15+34kOnfY0jBqAIpLUlBcfF5KOqxGUfEZJB+fLC1r+EDZVk7xj/N4nDY4B8dqNnmSTJwCnrqnlDOnVJPGI9Ck8QicPbsA2TnfSIN1Zf2ScVI+I57XQxDMUiiga9uMCfCa6JzTAi7nzWoTy4teP8rjcpWhfCHwHMwaHtd0QbCWH5YbKH3U5OqAcEBnYbCo1cmpLJptEGyu4XtO0UUtgEtus1wikzyAHEKHIKi9N1F6MSqNsn8+eDkfuzPSEBeWgcW9lGXEe57jBMnLxyJ6SnGCrH57eVPRboTqnfdBRlFzmKweBCC5mOyoQK+Pgtmc58hTphRXeYWnlP/fI9Kxczw4TgfGzDh1ejYC9I3Rtu0rCAxsqiif/ucH+PPPD6XlyMh+uOfujY72HAIXb4AglCmeEQaVMDzZMQqMOa8VeDDw4CA4PaVUE53LveYqR1bWFpjN16Xl0JAOyM/f4xK+5xra5y2nlAbF+snYdppHp+gAjOvZHtHRowHsqwJrb19IlCIIgiAI4pYhHymiprHZbLiccQ1oYR/mBHLigEFAk3vycT69A0w59twfgknAuxeGIDSoPRoFRSCysRiaIw8P0YMxszQluBx7aB5gET1hONnsezZ5Tin757ZohOySRtAYrgC8FUYbh6ysLThw/hByi0oBHjA5QjhETyne8Z98nU+kGCXeuSgNMv2rwr67uyglf6pbxz+H7JxtKCw8jpKSizCb82XlXRKdSzbJ6vdjkOwM++Ok/FSiUKOG2ZQLwD4bXoMGfdCixTS39tS9R1y8w7x8eXFeRCn4yCklwjtC8JQJz10bZbLQIIP9uF1mfLS3zTuusdJTym6Tqz3O/ayCeK+5mezYH4CnfFdSdc570sZzuBIVhtwAA2A+b68DOsVR8WX28xRaApQ1FBvyUr+N4a5f/8CTeT/a9xcAHbOBY1r1fZnaStlml9tQYHA/AY7JBpzXUt3bTqfhpHtJcU+IoYZyTymHvTxssgkoRWHMnp/tt5wnkFbyIP64JsBkUX/W5UKz+Gxo+CBHPeXiCYCxzIogXp5TSnYc/oTviaGq4BAYEI2y8gwYjUcBAGHhdyOuxXRFebPJLtzodFGwWPJRXp4pq0wUpXQQhDLFPcPcxGB7q6KdgsDAS2KrGIIoyO5xlWvtqOv69R9RXpaB6OjHEBnZx+cxqyGeh7vuWoew0C4QBDPS/1wPuWgt2SKF76l5SjmfScZFYHdGf/AhTdCsWY9bsutO47b2I1u/fj26du2KsLAwhIWFoXfv3vjhhx9q2yyCIAiCuA0gOYqoHSwWi6p4I75t5zjgpi4CNodAYLWV4WbpNWSY74WxtCMA+5jN+XZfnM7e/Z7WOIQIqyC+teckAUktp1QTLhxlGTPBrOGOOoEbNw8hXNgCHvbQHbNFDFWRDbpcBrG+cPrzOPMjua7zLgjJvS2U+XXkz3ZISAd06vhPNGo4CIA958yOdaux6dXncSP7qsN+F08p0Q7GIE90fqWgFO/vuYR3d13E5wfSUWa2Sdskyx3XQmCeRSkxVC44uC26dvkAYWFdnRs5Z+hggMaExkG5sJoyIAhm9/A91XxETu8RV0RRSnARpWw2k+QNxXNOUUrrEKXKTdkoK7tiF5lcw80UopTrrF/Oe5xTJLR3FaWkUrISdjQnd+M/Lz+HL159DvcYj0vhe07RTlba1Z1IRfyxanhYecf9pWkCBPZEGLpJ2xu0LYE1xuxeHVP5KIpHNgHD+SNoxucBsHtKBdnKXY5KjlMYlud7clbr4inFnMnPpTJM6SklFz7kOciC9FrnTI6yMmIeMx7OfEhiTilOlujcWaf9nJTaGkqhXSYf4Xv2+8UhSmnsGbkEm0k6luvFonee6AUnv2f9+B6RTZZwzz3/QedOb6NBg96OdsrdizvuxwYNegEAbLZSt22iqKwMWVYK6PYj5KT9GJNfK5m3l/SSwP1Z1OkiAADFxeeRnfMNLl560/fxesTedlBQKxgMzRSJ5qUSLjml1IRpVe9Fwm9ua0+pZs2a4Z///Cfatm0Lxhg+//xzjB49GsnJyejcuXNtm0cQBEEQBEFUEJtV6dFkk0QYOxwnoFwTiF1dpmPk5V0wF12EUzCRDWbdcp24DxJFTylJlOKcOaVMNrv3g5bTykKHxA+OcMKmExBqPo6iotPOhMSOIZnkKcXxfnkUKXEf6MmlKt97O70/OE4LxixSmI3SC8AhYjgGmyXGApxL+h0AEH6PCTo4hRinp5R7KFR2ztfIubQLRy71wN6rfQEAAVoe43u2kOzmwDsHtV4SLruHDcqxt2fQlmFlvwSE6EtRdAU4UtAOTWPGOvaTfGhUz4y8HmXVogDkHJAW3DiIEyemSZ4wcptET6ns7K3Izt6KuBYz3a8uc4pSUsJ4FU8pZx4s8T52hgq5J7h37hd4Zg+uOeq/j89AEh5QNu/XrIBKTynJIm0sBENf6E3npLaDGptxo8R5fpxeRrI591Sa1HDORFI88+Q1IT8+9ZxS8lW8TJRyC9/jeNi/AtxDy5gsLE6v5WUCnjx8z+kpJc3yJ86+Bysei/83YoIuIz89EjeCXgMTzPaARE6HAK3j+8NT+J6Kp5TkdSfYJ0PgAPAOcTDcoAUE8bgrEL4nS+pvMMTCYIjFTeNR3LhxUBJ+lTvY69Q6EvnLRSlxmyTwq3lKqUxIkJ//K5b02oMgrV3UFZgYvifzPlQReVo0n44AfRMUl1xAZuZ/YLUW4fCRkSguPgsACAiIQc/7tkGvb+i2r/thOT3GHMY51jMYjcdxPW+nlBfOW6Jz799LhC9uaylv5MiRGDFiBNq2bYt27dph+fLlCAkJwaFDh2rbNIIgCIKoV6iON+1r7NvJc4qoAbIunMMnc6Yp1tlkg8iCiw8jJO1+DCjTQWMJBOeSlFsa7jH5oMwl/EyGq6cUDx5aR7iaKErpNDq4ihmi+NWkyUiEhXZxrFOWsQnOnFK3nOhcsez6kHoTp5wxTuKgjwnunlLiNmc+JTGhNy/zTBMHm+4iT6AmCgBgNuchUp+KEa12QtQ1jI5k9U4xi5cGfd5mAWOCUsRRI8pQgBC9c9BcUnJBNtD2FuKkEqol7qWSU8p48w9JkNJoghHR4H5pW8OohxAYGAvekfPKWHgc7tfNWZ+Yr8ZZxrOnlOipoRjou+wNuOYx9xUa6m4bz1sR2suZR8gcUCoTlZxecIrMZqq3nXwlU9/iuJ/EROdu1SgqdhfgxEX3ROfunlLO4mqilBO9hpdLUc5PnDN/lBh6ZmX2dSHaXPRssg/NQ7NgKT+NrKwtYMzk2FGPAJ39qhxOK8C+i3nuz7x88gLHNRO97ozGP8DBfv8Hau33f4D0GMiyb/kTBqyST8s5aYF7KLP4fanVOEWpkpLLsFpLZN5pjmdEEVJq32/x9jN4eNWveG3bKanN69d/RniAETqNvb2MombSNjXBUESnC0OzZhMR3WQkAKC8/IokSAGAyZSNwsJTvs+BAtfvTYZz5xfhzz8/lCYi0OkaqBwfFOs4jvejP0T9JVfuGCnPZrPhq6++QklJCXr37l3b5hAEQRAEQRAVJDPlHKymckWXXmDOwURu8pMwAOgBIOMGcw/FkMJ2mGxQxivLyHAL3+M4TOw4EeW2ctgEGyICIvBw84dRdv0rlxo4h22CSiiYQ5SShAXO6SnlpyjlfLsvs525CCreZt+TedfYxR2TNBBVs4GTPCDEWah4aezGuYQ/MnCwQgMLA2JD+iOk1SgUF53FhYtLwXM26DQ8TFZBZpXTU8HpieDNU8rzVPHS7IcOgaPcGoBArV0QEL2vnANnFYEILoqGonJ3UUq8Dk2bjkf7dkvAy3J0hYV1Qd8+vyEv7xecODkDNlupm9cHk+fOcZvZSy4OahTbVMMMxTxJHuAAmWjhXCntojL7niGgGHxgEQC7bVatzaUMwMnvF4VwpB6/5yzi9KKSp7bimUudbvbJnheZ2OwMSBQFEseyqiilnL1Nfl2cOansnlKwiPXJRSmHV5TMU0qcfS9Qc1PRktVaCDjC9zhOjyCdvdw3xzLxzbFMfDWrN+5rGemsW37zOe4NQ1AccGM/rNYiAIDJpoeFhTgKyb1AvTzzLsg9paS2eW+eivY6NQ5PKcasOHR4MMptoYiIuNdRl/J7wv7Zvl+20YzLeSW4nFeC0c3t28R8a99fHoQCjMLeq8BfOyVK9bva54rrNo0mBEGGOBQVn4HaDHllZVeQnv4BbEIZAA4x0f/jlvPKWSeD1VIIAIhu8j8IDe2M4JB2+PPPD1U9paDmESa31Q8P1juZ216UOnXqFHr37o3y8nKEhITg22+/RadOnVTLmkwmmEwmabmwsLCmzCTqOd9fv4nzxfb46/sjgvFAg9BatoggCKK6YbL/E0TtYXPJoSTCWxlcvWKk8D3mHNjzkseNH6IUODzc4mE83OJhRbnLuS4hPo6RtwABbrNHMZlgBeXse4JfU7k7bXV6MDE3TyxnUc8eQXZRyjV80d3XRvKgED0EOE4ajDvD9+z7v91gDD7hHgVCgHY5Vuxsfa/kXWHPweO8BvL9xFnAAO+Jzp2eRTr3jVJOKXudNqaR7ec6yPUu1rlXrSJKQRTpdApBSo5GY/fWs9lKoXF4vEj7y5LrS/tL4Xvytl3uY0VOKTWvOXXcbgXFYTo3FpvEyQOU1dnU9FUmm23OpUpF6JvXMTmTtvOCa9pxFaPlipOMjCsbEWQuQJOgaGk/1fA9sVW18D1RNeMALc+5e4bBeT0Uic4dolSwJlfRhsVyA2BieGcApvZpicIyCw6nFcBYZsH1IhOUyG2x38fhYfcgJvovMJmu4deUXKzeZ8Ps7j8rythPhed8aSoH72jNebbF51xgVuw5n4vNRzIgMMDw/9k773A7rvLq//bMnH5ur9JV75aM3LuNbWxjTCc000sgIYQkxCmEFBLSCIEQCCGBhPAFSCD0Di7YuFdsS7YlW71eSbfXU6fs74+ZPe2ceyXZli2bWc8j3TNtz95T916z3vWmdd682r0nU0Yr26fOYSC/hUKqTFafYdvgLpa2wmTFIQMx0iZsYu7NkVHybKLWjpXpBkb98EnX1D1oU3NELyohjHl9nw4O/g+HDn/Tn56c2goNz031fAqyXS5Z+l5aiuuYmLjPXxaH3+aId1Z8nYSYmgvPe1Jq7dq1bNq0iampKb797W/zjne8g9tuu60pMfWxj32Mj370o89CLRM8l3GoWufXH9vrT+c0je2XvICUljx4EiRIkCBBgqcVUrKm9Wzu9yaFBNfZyB26RLQZYaPtkBoHf70gbMxd/9g8peaomKqeqpm7V+mERiax8D0ZhO81U0rdtO8mHhp6CCEEVyy5grP6zmrYX1QN5UTmzfdlXu3l2w8O8oJOSSEFgxMzrM5DNGzMK8vPPGehZy1a+mpoqWj2PbXd7fnAeHy7ZXCgWqffVyFIP3wvUFYpgk3zPWkGB7/G1NTDLF/+O+Tzy6J1n0cppY5tQBQE6wThe3P7EQXqnWZp6OdWSs2ljgB8Iso0xxsUYOFpX2XSzOicqLorHCoU1Hx+LYYIUUbNuqiaXscGigsf5oebVnDGWrfUMGw9FCKGwHCsYwgLDGoQQUiR5LbFIzkVPzUHr6Lr2VBZ6ni4xNi+ff9Ba36St69f5d8atiPQGwzmo/d8/DgCGEKiawKrGdnrh+9JnwCdNV3yMaW56h/L0TE0m6mph/yrQ9PSnDrQxn+8/Wyu/Y97uHf3OHYsM2DEdJ2AfGxrOwOAicd3MVR+wveUCtfbL+k4su9FDNx9gtnkEzdsY+vhQKBxYecsvSm37d/f+362Dc3wuSs+TFYv+WbvszVBJhO/R2y/fsG+ozCdFCldEfM5dGb9+3zLYQttfJT+tgyremMf/WNKKTc7qiLWGkmpWt1tz+DsAgaKhxmcmKSvOLdSSobUrO6yxmdAvJ2Jp9STw/P+qKXTaVatWgXAWWedxQMPPMBnPvMZvvCFLzSs++EPf5jrrrvOn56enmbx4sXPWF0TnNyQUjJSdx+QXWkD3XuIj5ruvJymUXEcKo5D2bZpm+OLWYIECRI8r5B8+UvwDKM3txTY508f8XyLZGyk3deaoVARuEPEqH9KWCnV4NcTgq+UUtmX5gglCYeuuQh7REW3ac9MM+3A8MjP/TLjZFfFqvDHt/+xT4bdfvB2fvyaH4d36LUmHL6n5sW++Dcd3bvzpqsWluOut3P7H1GbPIU1q/88tJ4aqCnCxGbNa/aSaW0kU3aPzHI6YMUG2ZYMkyEOmhZVSoXDKDPpXgBmS9uYLW0jnelh9ao/iZTnyPk8pRQh5xYeUUodV/je3Eopx6kyPn4XbW1nHoUgc2EY7kDaNCdc1YzXVnD8tkA4s1cQiBbsPAg3k9L2lWSCRqPzGMUR/JJBi3V1r4jQOh6xUFzwCEcqr/DaFc0kN9KWCqmlBCnb8kiZJscrXJsQSdLslSFiSqlwIFqwoToGcxOu6jwUU6WjKKVU7RrJBXX5ahpoInQ3RbLvhY3O3eN2z6FzmKq1cvqA4PCUyV0HV/O7Z36ZltQ4AEPlbgqFlX4ZSjHYGFrYqJQCwR07RvjID7Yw6imrdP8+Cqu95rvnY2gIAQ4IZulYzNTc+2X9gla2Hp6OhAyrOmdTrsn6ovY02AEJHCFtfHVfWCkVrYppG+R1tx4HnN/nksVbMW2H/7irzI9vnEXiKpR+8rsXs2FhW+hIxa8DEbpXGs9tte6qrw7P9jFQPOwqTOfyG5OS+IcLRVhVqwe4665L6O29hlWrPkyptMM3Q0+y7z05/MqNmh3HiYTohZHJZMhkMs9wjRI8V/C2R/fw8zGXYT+tJcf1Z61BCEHFdh/S/RmDfZU6DlB1JG3zlJUgQYIEz30kgXsJTg74uhJNi9A/SzoKGAjcRPNqcKz+BMoiMZ9Sqkn4XnM0D9+zpd0QLmYIG9CYKe0CUq7RuQpZ8epQs2r+PgFm6jOxvbll/XJ0F/81nMGW0DJ+hFe3NhvOzxOmJmGy1kFbZoa03MnQ0E56eq72V/OVUt5g1XFqPiFVGctQncywbMVaAGZrda/N0f3bMqRCCIXvBbULVGzLl/8OxeIpDA3/mLGxW0MhPOGqW5E6hRF4SoVDhnTAbpLN6/jC95SKy7JmeHjT2+npvopcbolX5tykVC63lEWL3sbMjGvEnM0upFYbZnLyPr5w6zYuX+jt0SPZ9o7Ncrg+wZKOyN4B+Lcbv8eZne8mrXvHpekAOEQAhQbcGg5rBnfCOcEq4VNl1lrcvQiJ49hIKRv0YlOFFLecJlg1SMBlhTOtETpykcMbqHgaKBg/C6ZXTxk9+k3vONGcfFGm8kJIvzxH4rMguiY8ZVKU0AkTM4pY1oVLTAnReE34Ruc4fsuqdoYb972IVNsCNg1OMjhV4Q9u/QgCmzecs4QXru7n1Wt7g7rGwlibtThQ32j8cNMh9oyW/GUtmZT3CAtf6+62YzMV6kaZgfacTwLHIWOEi1snL3xWmlTqbrkre4ueYipQVjmh0D8JaMJGAqbTSAip+9uRoWMca7PlpEh5WQl/vG0RY+ZpXLyqmx/tug9NQD6lU6rb7Bye9Ump6arJ7tDxUMcpMGtvQjh6SQksmfbWDzIcBh8PAhVe3Lsvm1uCpqVxnDrV2iEOHPwq+fwKntj2Z6E6/MrRK08LntdH7cMf/jDXXHMNS5YsYWZmhq997Wvceuut3HDDDc921RI8B3Hf5Kz/e/NMhZojyeqCqveiy2kaWV2jbDtUnWOVMidIkCBBggQJjhVSSm9AGhq4OWqZ0bhuw293u+1HZvj+pkHWZGC6ImniTgQE4XumrVQ2c5BSDT5AQThePBQsGnjkESmxkDY7NqBSZNWRIz9kaPgn/lf57+67h101jxCpV1hm6FwRU0rNUWHvf8GXHv9tejPb+Y3TryfFIDLi5xQNW7Fl0Bfa9p3lIDVWXahRHl2JPdVDyd7fsCfTkQhD98oJhe/FFUFCYBgtLFjwGiqVfYyN3TqHd8s86iQ/3DCsXHNJqSCj2Dyk1Fy+XLjkUlf3qxkeux9dHuLw+G76e/q91ecmpYQQrF3zV5F5mza9G4DR2WBQXfIO+2d+vo17DrfR32Lxd15upqrl1qhFPBIQUkBnx4XAt+asc7iNAugfPzJnPR075buz+aFPovH411Ph60sS9pSK16H5XEVoROum5Exd05ILNltUK0039rd2JwJCSxIQAlpI4eVI4a/nk1KKjWtiGK8uS03Di4qYh5TSHD98T0rNX+uUBS0MTlawpYau6bzjwtWs7Y+GnimyyJGSr9+/n+sfc8/NlevyLPQrE/gU2V7F3nXRMt5y3lIqQz9jeCS4jyQwXjLpy8I9j36GwZlvcch5F59/x4sBmJp6mAMHv4KUFvncMjTdI/AiSikVvmdRNd19F9JRJalABEqnkIebBCxHEfxhpVTYiB2vzdGTajopOvMuUbT5wCSbD0zywF5XYdZZSHPW0g5u2DLEdNW9h6umzWWfuJWitou/jOQvC5RS85FSpuORUsjQNdQYvhf/cJFJd3PRhXcwM7OFTZvfjZQW5fJuwFVEptN9LOh/NZt3Nuy6mfgyQQjPa1JqeHiYt7/97Rw+fJi2tjY2btzIDTfcwFVXXfVsVy3BcxDxrovlPcSUUiqra2Q1QdmGSkJKJUiQ4FcEct6Bb4IEJwZhhcTY1PnAJiyrBR0wRBVLZiPGv/5XfukSQHftGkNUhllzKgzPmgwUQ+uEoML1VPjesSilXHPoqPLJXRRVhPjf54Xm70dKieNI/uWWbZHSbccdYO3Y+ffU6yP+/LLt1iuvScqOcIOR1A6aS1a8OUF9a047Dw2fhi3uJiUHiaaDV2FK7mDVtl3FlmMJkAKJ5Pb/bEGvuiF2X+WtpOsW5EJ1D4XvZUSdP9L/Hzen12PJ1V5lGsOImmW68+vuKPXIXFRiQHhIVZYMh+9pXlsqHBz8Gq2tG2ltOdVbXw1Cm4XvaXxj5zt4aMci/vicf2VousS+mWFWFo4/ZEc9NzO6y0RZjkY8kmyqYobW1xBAW85d6faD5/Pel/0Li7q6gG+qCgZtPlaEw/fC9XMsQPcG7dGaxzamwYjczwIYhD/FRFPePOFPCiSa4a41MA5vvMHigeWSkdZw+c30U7FgRV/BFGTetB3ph+/p/jFqFvrmlSgDpZShmXRkphrWiSilhAoTVISo4AtvO5s9o7NI6ZIqXcXGSBxFzjoS/v4njzPjmcs/vLfGP1+m6hIouRyPCRpoz7Gqt8ijw9E2SASHZwv0ZWFZ60GWtR7k+7uXAy4ptWfvZxkbu83ff0/3VaoxoXa51ECteoTe7C5KtcXkYqQUQguFHHpks3fxluvuffDYoQlGzE+TNm9Gmnv942NoAsuRyBgFUbNTvPvi5fS3Zbl/zzi3bR/hyJRLvmYMndase6//fOsQNdPm7GWdjJfqFFriJKjmt6E5KaXut4zX3sDMPE6hSumESPHg/k6nu2lp2aBK9PczMPBW7ht9Pe/7121UzK0N+44iUZrH8bwmpf7rv/7r2a5CgucR4l1VU0qGaib7qi7rntM0cpoG2FTt5GGTIEGCXzUkz70Ezw7qVrv7Q0BRG6a/ZTM7p66CiNF548A2bSilQtj/KQrDG+CYitCYg5QKqxUMTfP34xqdN1dKKbWBEIHyYE+lijU4xVfu2UNxdbDNdK3Giz55K39xdhmAlSv+gJbWjVRu+wcACh4pJSX89JEjVLRdnN5VVpVrVmP//7SuQm6CwZhfV1955B4HyxkDwDaDjId6Ne2vb5MhV3UIexhYUiKEG+bz1/rfsuvCNQDcKSv8pu00DSMSIQ+lhpofk9F5iIT0Dco9XzAvxMu2S2zb9hcA5Irn09m2grbW0yPlxDE8XfN9qnRhU7Pm87c6Ol658noAHKnjSJeWS+mSjKFFyR7vGs0ZXuiklQMtFy1MHcbIzPmm4h8VgtBTR5pItEZD9LBwyC8kFL7nk1HR/ZlS83lK/06MXZeFvjo3nSHomIGzd0q0eb7vBgkLoisJYXjhZOGsl8JXGfleWvHwvRAxo0pM6yZvX/lHFFMTDeuIJkbn4WBHXRONptwx+J5SjqRmBe2o2+FwyCDbpe91JaJtCAh3+P6uN/LgkTW8YtUD9Ga3Y4hA9WhZ0VA305r2SgmF73m+ZpNTD/Bn5z3A15/4NfJp9SAKQvZ8UsrPQmhjEyilZio1Oib/A90ILHMmqh3kUjozNQu9+EaK6Tq2XednT2jsnFxBVzHNb1++ir7Wg9y2fYSJslv3TErzSb3bto9w2/YRLlndDUAuFbvvhGieJVPa2HYZx3GPgSVVcozQtaqeORGj80YjfHc6nEAhCAv+0eZDETL51IE2EhwbntekVIIETyfifbofDk/yoe0H/emsppH1MmG86uEd9KZTfOv0lSzLJT5lCRIkeP4gPihPqKgEzzq8gUM2O8E7en+Tx7Wz2Tl1lWtmHhu4ha/XbEoweyhH+UCG4UwnqYLAucRG04MBhwrfU0qloxmdu9sEGcp+/pUtnN03SPuqYN2AJnN/mY5g1LTQgfdt2cuV3W0g4l/5HXaPlqhYJhKYTG9gf9lhsuaqOHJaQDL97/0HeGI8x4uX7+WNq2mOkPlwxlBp5BU516iUSqXavWXuILNuFbHyLRjlIJwPYYE0Gp4JpnTDpcrk2aWt8edPCcnBat33JAo/W5plutuz51+Zmt5EubzHrVkTpVSQJatRKaUGj/ncUg7MrmX74CbO6nsEgMrsvQzO3otpNqpiwrClDEgpzfYJiWbZ+uZDW/tFjI7d5mcJfGz0FE5brMKHwNBExA1anRtDU+FHqZAfelM26tgQ2iZ83hxHkSHRsylFTBsrA1ImUqa/2dzhkMHq0ldK/dfVGo4QfP0frLk38UN4aeicC5HywvgCTykJvsrINwdvopSSUnLPrjEGJ6p0CmhLT/mElBRF+npfHtpTYHSuCFBfKTVnS6MIlFLSJ81UXYKmKqWU7q8TeNSrNlhemzSm6wXunjqPS5cdopfthOV30bBcsG2PtA4907q6LmXn5Br68oO0pEssbRunkDG8/YU8pdRPnzp197NhoAvq0JKBnEdIPTx9Hd95NMNwpYeeFpeU+vX/s+lteTf/8faz+NK37/Da5bYnl3Lvr3LdLTNj6LzjwqXULJvNByZ5aP8kw9Nu2YYeJaZdpVQ0fM9xatx730upVPYGbfc8pRDuhwMNMG1JOK9jNHwvToCHEygESQdUJsWPvnIDV67vY6A9ShwnyvK5kZBSCRIcI+Jmig9Nuw/ztBC0Gjqv6Wvn9okZdlVq1BzJgWqdW8dneOdAQkolSJDg+Yykk5Xg2YWIhcUpkkNK6StMwn4oCrpjs+unS5C2RgVXPbPv3IdZfsbZ/jqKhCpbagDXvA6BUkpg6ALLG6DWKiaWGXHBiQcUYkWWSvbV60B8sO1gtP2SDw/qOORh8AOR5Tk/MZnwB3czVRXWMz91nNIVKTW3Uqqj43wODV6BaY2AhLGxxVgtJka5FFpXIiU4Ma7IliAci6p3jA3HotWaZTzdjo1E9we7jUopiU29Pk65vJvde/45Um4609PYGKXcUEowqaGGOz7ZJgQHzDfzb5vPZkFxktVtW3n5qjvpyhzEsV0jo7kUcbYjsR2llHJQg/H5jM6boX/h23nxf3SiCYeuQobD05IvLPqGW3chMXQtQlQoUirlKV9MO4XtSA7MHODv07PMLOgDoXPNLCwZO4YKhJR9jZ5NwlfoxMP3NDtD4I7ukTCh8Ez31xxqQhH9G8YcwXiRZc3D92LliIAs8jNgIrA8FsWIK6VCnkEP7J3gzV+8j7eeMsXli8HjRqhaGWT/z1i+fGFoP+7CtB4QPYqUUvfT0aDuLUfikxkA4XyHYaNzGVN7KU8otU7duybC9dNChKEjAwUPBKRUmFDNZvr5zKbf48pFP+ZVq37GK07r4/7x6NkRBHUJsoy6dVjQVmR4BFb1QNl7ZB6snMPhkhtyfOaSdm7YMkTVdNg/XuauncHFqk5NPh29lzKGxoK2HH/5ig387337eGj/JKX6HNlQhQjC97xruFo9HCGkJmutHCwt99oicRwHTYMv3LabP3zpAOFQPfUs/K879yK1Ei/fuJBl3YWIckodVyE0//j3t2UbCKkE8yMhpRIkOEbEu3Sztvuwe8+iHj6yyn1Rvbavgz9avoBP7DnMN49M8Nl9Q3znyASv7mvn1xc16TwlSJAgQYIECY4T0v9zxtYuKjOb3GlvkKepAbcTCrnxiSrhj2d1aSO9/PZG3sIqG1Rmo1nuzuo7i5v23eSuIwxO6zltjhoFdTI0gaUGvULOme3ND99DCylSpJetLq4+cUgVdvoDVkPoDLQsomDkaKs9hiEk2zx6JxsPaZmnvhJB2ohmnQqUUtFwpYmJUxkfH0erzOLkiqQYaqijKjMMS0pwbGpeAFfRLqN7A0ZHgh7K5BXeH8DExL3cedf5/qA3k1nAiuUfRNdzdHdf0dCuQCkVUsZ5ZTm+okHD9A6+Zizg9sF2LlnyhEtKqYH7HK7EtiP9cE9dhJRSx0lK2Y7E8tg7V59R9Y+b7imlbJqQUppLmtWdFI6U3Lz3Ru7ULdDdD6B7jDY+Pn4c+tVmzZQCx7GQyFDmORdGrQ3BEW9TVycTzr63q3oBmXCY2zFoacPryNC2jVuGNIZzZd8TKdzclgG1I6XAsucP3wPB4KT3sdlT36xfWICaSzbFoyUMoxVb6uieotGWac5ZMYCh53jHhUuP2mYI/K3suA+tDJNSgd9RQDi5y5cseQ/gKoHu3l3m9sELfPLN93oKKS7V9a9pWRynGlJKRS8C03awvWs8o4eyZYaSRQShx1FSSmXErNXcZ4Pp6FSs4L7+x9eexp+/zOQvfvAYt24boR4KW/SVUk1IKQVF+CkVlVKyBtD850hwbr1zrxfpXHEz7/ncPZzaN+mVF3zUODxV89oUPv7us/A/79jLZG2CX+6b4L/fdW6ElAqHEyv3Fr3J8yP5fDc/ElIqQYJjRPyFVPIepBkt3GkTLM6mObetyDePTDBYMxmsmWwvVxNSKkGCBM8zJIF7CZ55yJAqo302xYoDrdi4RFJWKwCQ8wyD5ehOyAVkj4vgna2FXuzZjiqz5SIyNkB8yylv4fyWDFOlXaQ1ne70LM2gipIIdE3DVxAIJzSAjtbA37sQISLHC+URStlhYDneoEdzCZNXtdX585c9QDbVimlOcfsdZ/LdCZU1C4xjUmoEbU/pqn7xwVwsVFeRR3Mkc3EcHdGwlUtKTdQsBhkAoGBXsJXZuJQYTZRS6net5hEgQkfX8yxZ/C4WLnzdPO1SnlLhox31lEIILM+3pyXreYZ55KQyQ58zfM+REU+pucN75kdIGIOhjr8M6q5rIsIVSK8NPillu6SUujZW1evsTKdxItniGlvR0Ko5RsqOuubi4XtN1tWtil/Q3trZ5DPueRZSIspWw4ZSNKObZHzGUfYaI0qE91zwVDJu+F5AvFpzhO/52e3QqJruuexpcRVIC9vSDA+76zpOtA6pVCvf3/dHWLUneOM5izln1UW8+IpzmtRzbniOH37dmrU2rJRSq6k2FAurWX/KxwH414ceZLx6BMXnBNdjyJ/Ku7YNo5V6vYpluc9NEVEGSUw7uMYjZuEiUJU5DUopyyvb9dGybfc5OVsvRvyyNA0Wd+Z94/IwKaWu9zV9LbRmDT/T3tnLOvx10j4p5e0vZnomwkopZQDvZ9cTOBieV5pbTmtWx/QuUTumAPSOCBCo4CbL6vkQ8pRSzwyh+wSjricU1PEiIaUSnDAcqNb57L4hSrZDRhO8b3EvawrZZ7tax4QvD47yxYMjSOD0ljyfPWWJl+w0gFJKZRpcIOFNCzpZlkuzv1Lnum0HKNvNO3AJEiRIkCBBgicHNbYVIoWRv4a1Le3UUz9D1LzBqF1H1FV4TTTDkpYeRqb2BWWp8LfYF6hKZT97t3/Inx4CisV1pNJdlGbdDHmtrRtD2wmX5FGm4a7tcrTeykvG3yJE5UgVdOL+n9bSIVKq5s2DtJ71tw7+d4dQKS0ajtfU6Nz3lGoSvkcwEG6KgE1rmC3C+/Xwy6kS795fxRbucczbVcpe/W0Z1CUSnBUjefr6XsGG9f/kTz82OMXmg5MAdBczXHlKnztY9/12woNJt6xKRfmABqoT5ZejDJqdo2RZjITvaTbCN6I+Pk+pMMmhBtZB9jZJSteohmjMWe1lmLOjFNOCsUqeR0fX48hAKdRlO+zEOzWpERUTOjdCJGpw3sOLQ+F7MYjI+Zf0Dt3JSGYRsyl3SyuUelHUGjOgBTuRzJhpto52UDcr3KkvJbdAo5KNbtNctDZHwJ/nH+YanQfqRUVCNiqlgmyLNVOpb6Im+1KKEAkTYH9pHY8NLuRNLzqHjvbeuds5BxRZbcWSI0Xun1D2N3XNNBl2+MfIV0r5Ruzh8D33WZhKtVGvD/vE0Q1bh1m92lWfmba6bwKyyU92EFFKKaInSmS3t51NOtVNtTrIntESX9m6lGJbUAd1/BURW7eDc62UUp2FNPf/2ZVMlOvomqC3JRg7KlWnIhB1PU4Gi4Y6BddIEF4XhP05vtoxTrSF0V3MMj1OSK0WJvLC4XteO+dQWiaYGwkp9SuOOydm2DrrfnVZlE1zTXdb0zS4TwZfGRzlK4eCWGEJ/PO6JU9L2ScaXzw4wo6y2/nbWa7xpysWNAnfc588aa3x4aULwcUdLYwWLNh2ANMzMUweUgkSJHi+oWlirwQJTiAa1R4GenoVhmZy13mdVA8X4S48Yig6eFXXq57fg517FPC8RZSqIpbtzTQn3fX1PEIYWNY0dXOchx5+G6bp9nFaW8+gUDzD34s74AqTUnFPFheOA1c/8R4WTa/BQbK1705u6MVTSrnrpvW072eleUopA4nwTL5Vn00NVCXNBmqNN6kMER5++J4X2iid5kqp+cqLLvbC0KSFLQzunyphe9MZqrx+6Hq+uuCV7jGQ0vf1iXhKEW1DOLtd3XK49j/uZbYWMC//753ncPm6Xr/OEYWPcAe15fJOADQt4w++ixmVXVGRFEcJ3wsZnbvEx7EppXaPzPI7X3+YybJJS9bgQ9es85cZMVJQE+7gXYTO0bR2DX9z51JedfpC7to5xli15h07dU2F1FFayDsoKpxqxByEj3RMpGwM3xPxKQmGVSJfHmG2reC1w2hYXxK+JwI8OD7AtvFOoMZ9LGHDnil+ecrkvFV27+E5SClv35qQkX3PGb5HcK1XLUVcaZFlMkRihqH4H+1J9u3VdmZD+F74Z1gpJSPbheET3VKV7YXvhT2lvPC9gYXXcsvD/w9d1KlZGb77+Cn8xssdMobuZ/5T17gjreCc+959gWoLEVVKCaGzYsXvAfD4gwd5ZHQzZxUaQ/QUcd4sfA8gm9JZ0NboyRT364ofCyG04FmhlFIh3zCfVFLnWIZJO5VooPH4fvCqdfzuN3Y3eHZBOCw4pJRqxhyGkXScGpCQUs8TDNdM7p9yzSZbDZ2LOopHJUBG6iZv2LQrkjPj+rPWcHpr/mmpU8W7MVt0jRnbYax+tM82xwdbSirewzOraQ0SzqeCeuzlYxM86DOaoOZISnZj+F4cudCyquNQaOgoJkiQIMFzFA2dqqSTleAZQOi6awxN0hATAmc2HKITDE3N0s8ZdYbR2y2kk2o+HpfxSXdGKtWJruewrGlsa9YnpMBVU+UVKSUFhqb5+5XCwXGig3FHpAGLaWsh50+8wC9n9ehZ3EBduS0BLikVNNAd/Bia3jBwCg/RhRAYWqMPjsJPHz3MxOFx+g33GKV9UiQ+wDxKv0rAvWdcymV73UlTN8iEunoGFjYGB6tuvS/n57yL/+RFB0b53wVuJjPb3aFXXKPReTAdDFmqlu0TUp2FNOOlOqOznh+MT+wE/lai9bfo1m8CHHQtz6KBN2NtdfvMRS98z8s+z67hKXqyXuOawA3fa+YpNf+Q6pYnhtlyaNqf/tmjh73tAlWFT5gKVz3lG/eLIHxMF8InIG1XKkW8tsfzJG66rgTTtvivO/ewMbZSyJJtnhLCHmpKyRcmCYOfVTt63FKe/5CApobofhH+MYsSOpowQHpkTIhQM2NkQdzUXyCoxpRSfvY2qTW9lwKSaO56zge1nWnNrZQKh9IqQVVTUipOFwoVYmpx4MCXqdWO+Mqorq5L+et7eyNEm2qfaSnVUHAMgt0F5LGvlIqTg6H7VqmhalaghmpQSkVIqYZmNSAVC4tLNYyrtBBRZkcbFyIXw0opBSe0XhydBdezralSymk0Oj8qKZWgAQkp9TzBGzbv4olS1Z/+1NrFvHlhFwA3jk7xd7sPYzqSRdkU/+8FyynoOpOmjQOkhKCoa0xYNiN1c449zI+SbfOah3ayp+J2Cl7T14HhPcX6MylmyjWmrXkkvMeJWcvm0vufYLDm1rc/neLWc9fSfgzmnscCK/b2cb9GuUgLQQ3JpBeEnG2ilFLIhJbVHEkh4aQSJEjwvEPS+UrwzELSfChs73uAvh+lmWzV2Xsm2JaOltVxw7ds7PojjNVhaeYA+1oK0SANpTRoUC2oMKaAaHJk/CObExkcX7K6m28dUKSUJBadw0EWo7OHPayKleNuY0vpG3Vn9CCDb3tulEkJKc1o2MZXX0nX6tdVFITVWi6myiYf+NpDXLt2iv4l7uBeETPBQP1oSqkAg32LYS9eW5Usx1NDSJOayPp9tRbP+0sK0GUQMtNUKRVTHmkiSOkX5iE2LGzljh2jIdIgSoJIKSB7ARvXvTpSnuU8CsCyrjxLu/L+ILxm1iAbJcjCCHtKGVoo+94c6ytU6tE+sPLZ0YQIqVwUoeZ5SvkDZi3iieQTK6HwPcW/yND/zRCiO+aprWDLwXEenK5w2pIm9hNNvXeCciPhZ74CMdhjeM+qzWhAk12pvYSs5OIT0ZU1AxylYlNrCD/cqyH7nnet7xuv8s1NB4BGUkoiIpkQG+v35N6Bioy0GjzaGkkpIfSG7HtzbOKvD7Cucxvbd9wWWVGKYoPyyyelbHVfBj5sigSLhO81UQy5S0KkVBM1lGqzUjzVQ/YmxxKpk44rpRqMzgNPqf0H/pux8TtZvuz9Qb19IjEe4hcQcc2ua2WoHj5X7jmxQ8kR9AbfrwTHjoSUep7gsPfCbzU0pi2HQ7WAXPr64XG2eYTV7kqNh6bKXNLZ4mf1aDE0VuayPDBdwnyScsLHZio84oUBAnzzyDhv7O/06uTeyNvLVf7gif2szGf5rcU98z58Jk2LqiNJa4LOJkTTjnLN7+QAHKmb7CjXOKft6bmk48ch/OzOesqvGe9BmpvHUNTQBIYAS0LVdiA156oJEiRIcFIjMAuNzX8W6pLgVx3N+w9ydshb6vmi2G4oR6r4KjR7H/XaTqQzRcqpA5pvHo0Irutp02RPuUZbSqczZQRkk9D8AdgPH7X46eZfB6A/P8wbT7nNH9VJBH/x8vWM/aKf2wefcEmDmOTDQUcnPMjzdiHdpbYEvKxZKS3oOOhaDWyNrGcmDHC4ZrGfJcwyC54LUVkbwmiZYDo1yIwNHaG7dLZuucSVRxZcvaGfO4+oLHDxkKZo/ybstzWUHeKhDQ9QZRPwt952akW3nKvrN7FJnoeUDi12ifOLdwVtkSpMCJ9luvnxYf7lvodJ6Rpv2FCLHptwuEyoHoavfFFKjWj4nqS5Ykx5DOXTBjdfdymPbr2B8ZH70DU7Uk4cYU8pgAX53Q31a4Zq7MOsGqjrQjSodzQhyadqtKZVJkgRCQtSJIHthMP3jhHxFUOD54A0Eqxsv59sDorFscjqEcpJxBRQsZ0IwPBJuwaJFUJKP0eeECJCnkZvmcZ9KCJoZOQmhDACVZmfdS6grjO6Ti6ls7qvyOKOPNuHZv1WPH5okhagVLM4NOWOlVqyKbBDpNQcnlJPVSnle0odg9E5QsN2FEHVpKyGst3xkLqGMpl++npfRkvLqTiivWF7R0qklFRMtb+AlPL3p8L3CCvHYmOgUOUCpVTY6NxTSmnRZcd6DNNGdH96gzBAkM8vA8CyJpma+iVj43d4VQsM7xt9p4Lz2cxLT5FS0VPlfuwIlFK6T1o1I6WeLnuc5ysSUup5AsXgn9Va4BfjMxFT7ji7r1RAftwxgpR38zxZUkptl9c1yrZDSFHMomyaB6fLjJs2/3t4HIDLO1s4pdgYKwzww+FJ3rdlr//B5G9WDfDexdHMderBsSibIiUEeyr1pi+MJ4u4Uiqclvd3l/Tx/eEJHAm9GYPLOlvim0eQ1TRmbYc3bt7FqnyWz61fSv6YMuMkSJAgwcmMhI5KcHJBZYVzsopIEkgp0FPLyGS7MM1xpDOFQFJrO42ftn6a3+RT7pXsDbj+btchNmUfxxDwgzNWsyKkVFAqgE/+QlCzTvP3e07/Y+TavIx/0h0gqrASKZwQ2RMND9HmUEjYIS2YruloCBwkFccAHFZ7ni13Tszwuk17QfwzefFtCvyAw6bGjvTXoQ8OAp8fyfL33cEe7Ji3zqreFu4e8hZKDURYnTHHIEpKDhUOUc7U0J0Q2RJb/cL6PfzFQ1+hX0zwsL6K8YsmvWMCmh+kGCilNh2Y5id7DgHQpY9yTnuo6JA6LNzfU+0IBovR8D2vug1Qg1NDExi6RjblEnO6mF/VbzuSmp3Gljl0UaGYckPy0unuebdTSh0FRUppWhCOpdqwqu0JXrr0Oz5BJgQoP+hwVj5FJAStbqYijJ6UfCpKns0VvnfV0huD6Urj8nDZomEvwXqni11sYTUtohSQXj5hGFanNKttHO7Simmjaa5P2MHBrzJ46GtI+TkgUNRpwvHvt+994GJaiq6H13Xf2KQqAcAv941y+WLX7vq9lyzn4tU99LGJwYNRpVQ8+x4E5+vJkg2Kt7BiyZBkiJHz78WIyqdxf/F5ylMqq7vkbqGwmtWr/xSA4ZkqcYyX6lz5qXs47BFzGkEGuzhtKYTACRnEhxFWjfnEk9lI1CgftXpIMXgsGOjIoYng2C9sj1rObB8qsU+8iJedcy7btn+UqakHkY5StgZm8XE1HIDtHK9SyiXnlFJKoPk+Y4mH8PEjIaWeJ1C3SDwuPbwsPq0ebrpwQ9IAzCYP3WOBInGymqBsux0qVdQphSwv27CMPeUanz8wzIRl+ybhzfDLqVKkzvdPlRpIKUW0pYTwwwSfzvx28eMQlt6/rr+joT7zYUUuwyOzFXaUa+wo13hwqsQlRyGyEiRIkCBBggRHQbzLYnuDDyOkklEeIth+eJjm6TMcGtUtSr1kSXi8VGV5NpSJzutvKItMXdjYUqdiaTx6cJLleQBXyeKHhyCR0lPrxOrbNLOZU0KMfYl0zy63KcJAF+6AtOK4jFdrYTkAj85UIqUBjFveYEgKEJIJW7Dl0BQr15m05VL+oEqNDwUi8OdpCN87lg9owTFsMmwn7ZFD95hrWct9wVbeoHbL4Wl6h6Zo9fbf05JhZKZGLeYmIULhewEZEAyKVb9X+ESJChtrruWJG18rZYmu0t7P5SklJbY02Mc/ctfW2+luyfDH11xIV9cLm66voPyKhHDrqsKWtJBHlPQMmxa37PEJKYlGR+c12EeC8LMwEaeIl/CZat5iF74nTyBra6zrxBIeHtqIbsyS0aY4MKXxdqZC5Yfgx+UFOqswVF3S0iSqfXPL8cP3mkbjiYb/ASp1i0L3b5PN/YCRkRs9c3qPMPHIAw3pf1AOn0vhjxkCVRpAb0uOd7/oFIQQ7NgRvQ+kFHzzlwfZeniGD7xoFQPt7kf1p+4p5Y295sm+FxDEIcKjqQonXrZ7HFK6+7DStAzTVZOv37ffJ54MLVAOPTY45c8HWNHb5u3fCtSHoXBSJ5QVMLZn/5cRC9ELVzsVU1EdKym1oC3HLX9wGfvHyxia4NQFNR4IHitI4O7d41x73hmkUh3evIDYa/SECqnzfKVUE1LKW98OnSuljnSOUSmVYH4kpNTzBDJE0kCUoIkriNS06nLoniEmQP1Jqo2UR5/roWRjy0BdpAnBK3vbAfj20DgTlk294etggKq3bEEmxeGaSV02rhuuu3rZnEilVLjs433MfOv0lTw8U+aPtx1kf7X+tJJnCRIkSPCsITyQSpDgZIDyetIVKRUM5FyPJm8gKiWiPoWQ7d7C5iExMqQ7EUL3ByFq0GhoJratu8qrUHiWEMFA2NIkW0WeI185hbd6Y76DPRY/PxtErH8jEGTKD6KX7wZPANCZ66RtNsNoveIrTLrzripHJVzplKNUVUiXV5ZOAZtZbAnTlTr37R7jxRv6/UFoMGYKlDeB0XlULVSp24yVagxNV8ngEg2+6kuGSSlvXnU76cphUjWbrBvhgh0mr4RA8/pVH79+G+/omeDiAfdZsn5BK7fNjDT4cIXD42RIMaLaEe8DapHwvcb+oRo8Km8bNYhXZNCD+yf5s9vvwNA1fufyVVy5vg8IjI5tYy23HpQs7y7Q23tZQ/kKtiMZnqkyWXYHrsW0wUzN8gfjughIQccjpXThXse3HriQrz5+Lfm0zis2upSOFgrfa6aUctt8HP1hEeic1FbT+y7i85NnIvN7WbDofzCtGd6u2qPVwxt7W4k5hbO/kKfT4+/Hq1+oslWn4BWlA2Gvtvlb4aTP5gXLr+D2O87BNMeD2ityUXNC6qYwKeWV7lVb83rl/a25gIyIhXY5UuPRwSkeHZyip5jmuhevDcrgKSilPF5E+TgFJFG4vDARNDcJ1jArZryvaRm+cf8BPvazJ/x5HYU0IzPudaWeC2v6inzrNy+kOiN4bAtIxwpTZG7RQvPFAQ2eUmGjc6+iZY/FDxNPym/KT1BwHIdwWXeBZd3udVOtHYksC4da+iF6nlJKIkL7a9yhPY9XmspoGo4+CkIA6/60PQ9xGKlnojRvQEJKPU8QKKW86dBNE7/sA6WU+1cQKKXicc3HCrVdOnST201elOljCBNUme+KimFvUidVtkbQIbEkfPHgCIPVOgLBS7pbObe9+OTaI+PTwYzjTf3aljK4rLOVFiP4apogQYIECRIkOH40IxhUT2OSWdoAywiHYaiv/DbqK75AIqTlqzh0TQR+KaHyHRlXDUWzcOmhDG+qXyI95ZHuDdYeWHYXyw/OcHE1CO9aNOKQsgRpZ1dDO4R0mSu7uoAB/Qo+esE72fT4X3Dv4G08OLyR05dey4q2FYCbZAYgR4Wq1zbLG1j1FFo4Up71yR3VL1QKocDvOSA5FMEcVmdMVUwu/cQvmCybvDbtkGkQT4X7RDUgg5i6gTZnL/tnUxhCqU1iBsUefWaGPlKeu7yLfGc/t20f8TPc+euHBtl2aHAe1D0knyJQdcQFaj/YNMi9u8d55KCr/FG+Nyo80PAIoamK7WfL+/I9extIKUVmzfdBVErJr/3bXWw+GKiMChmXlFJhS0IE50KRnSqEMG2k0DVBuW5z585Rt35aiIgL9Y/j/mRzQ8w7GUddWFHCS1ihpHZH7w87DZRGAMPUOCzWAvvAbgPGmpbZrNutiJx41kMtPLQV0WsCCJGYLgHoh3mG1vGVVd590FHIcMGKLu7ZPUY15I8k5yGJjgXq2vXvSc0la8PDHscJER7zhO/FSZa4AbiuZRjxCJlTB1o5a0kHV67v423/dT8Qva7b8inqJcPbfw2dWe9+Um0X86iKgumM9xxWoathk3LlDfXw/kmvfk/uIMYTDDiEPeTUuMvd/9B0jT+53U1woDXxjQoeRY11MRQpFRmTumUMT5doScFjh2ZxZCuQKKWeDBJS6jkIKSV/+r3H2HLIfcldsKILO+/eJM1C2eKcjnqBBuF7gafUk1dKeaRU6CZUxE744ZkScxNNCqoOyiC91pSUcv8aoXv+3slZ/nnfkD/9s9FJ7jl//XG0woWUsoE0C3+xSx4zCRIkSACJp1SCZx/RN3LF8wU6bCwA1CDf6xeJYH1NOiCd6CWsRBJhUoooQSOEFgmtKUjJ5aUUPPRGhMgyu/6gvzRruJ43NkdAul/1j3TW6B9X2fQEIqYydL2ZXVLEqfXQlb2EIrP06GUubrHYe3AlS3JnUHMcHpwqs6vsDjLzlJhQflRS7d9LYe6VrZplN1NKqXUawvcEu0ZmfZVP829y4cGdRxR4hNKkkKS8Qb8VIpnC2fcQwjclf9Ep/Tw26Z5Dy44dm6bhe2GVV9Aet30eSSgDIrFq2vzhtzZHwqU68mmvLKWwUWFz7uD9scFpnzSA8OBdRKabwXKkT0gZmqCzkHYzMz540CdVwsbljiNAA0Nzr4E3nrOcQaeP67ccYXDSDdXMpvSIB1Vzo/P5ns1K4SYb1hzXJQttN8P0nGjgtCRChmZH+s/SC6GdoWRPYsUSF2kOoAdG3g3FB4VG7jsgpPgzIuuGSSpFTEbC9/xr3KuDCJRI8R0rMqMlm2bjojbu2T0WIQKfuqdUVBCgC4HjhepqWh7HKbvhc4Cu53HkTGS7MOJzNE2PDAY1LUOp5pZ15Sl9fPDKNRGCP5zd0W2TexynZx6hl1fydxd3o4usanCo7TFPsND0xkXtvOr0hewbKwPw8o0L/GVXre/lZ48dZqriPltesXHhXIfpKIi1XIZC9GLPM6WEyqV0Ll/XC7EQYbW8qdG5UJ5S4fPvhfR54Xs3bh3Bsvvd9ZuFWELDdZwgQEJKPQexZ7TE1+/f708/cnAK5/J+SOsBKRXpVEVfLuoZZfukVBD218xTatay+dHIJDVHktUEL+1p9wkjBUVKZUJZENS88JrHopSqeVR1i65HpsOwQ4SaKmnKk87nNEHFkYybdsN2Ydw6Ps23jkwggd60wR8vX0Be1yIEVFoI6lJG5JpP1qI8/iJMkCBBgucVkodbgmcZujfQN41omB2ALQQRTynH9pVSQgTD1qhSKjDhDhudK6yop1lvGjC+HA0Ye/ylsOwRAN6x4R08/tARtnU6WOk6ME65cCqM73Drs/iz1E0dHg477QhP0QUybbCk807uve8L/tK6ncZ2JH+07QDfPDLhz89T9tuqej6KFJO4g1zVvfM9pTS1xyAjlgrfI0TEVeru77V9LQyQY2qqHmEyRKSXFw2hAgmOGhBGvacCUioIoRJo/mDOjhN2IeWHExrE+6FvsVAtETLTVv+XapZPSF131Rq6ixmuPKXPW98tP6N74WlS0FP0iL3QNRFXSs332AuTWZv/8sUUMgb/fdcevvVgKPteJBzPXVcRJULofOBFq9B1Qd1yKGYM3nD2Ym7aOuStH6fiPGXYcYx7pWvMFZk3o8lwYF5IGQVSyBCZKryV5k4tLYF66afUnCOQdQlAWwsK9LNbquto3teI8P83faVZ6FojGk4msCPbQXDdKy8rzc8oF96N6q9b3qQW8l1zP15XTacJwXt88CM9Qj5v6lQMLP84TvVeAAr5FeTzK3EcN1StqQonNkuLhdVpWoaydy8X0obXLuF7nKnsjqqdLS2nkk73Uq8PA9CXH8VyMt6uglDC+DMxXJG0ofGZa89o2vZVvS388AMXN112PIgTgg6hTIk+Yx2oJtf1t3D9B19IvT7GHXdGy3LmDN8Tvj9WM6WUUlfOVB3/Hk6Mzo8fCSn1HMSE98WqpyVDpW4zW7OQdccnpUTJZM+eSW6o6Zy3vBPblmhDFYTpIIVgeoW7ffBtIFBKhcPUvnhwhG8eHueR2WjajSdKVf5q1UBkXlOlVJOHdZz8cqTkIzsH/a99L+5u85VRReMYwvdE0CFQdehMGQzWTMrzmKkDfHj7QfZUgtj489oKXNPTHiHM0pqgbkdJqYTkTpAgQYIwkodigmcQ/vu4sW+Qr7r9FScUvmf7KeIdfwAlpAQpAwIqEFRFypUQEDRoILSIh5qhKA/NRDgpbDuL4xFfK9tXctXIO9k+kKZWeBj4AU6IWNG0NIaWhbj9s/Kx6c7zla4Xs0bexCp9mPFaH1vG1nKxhL1e32Ugk2JJNsWpk/eyXSwBQh6feiYoEhmE783nKRUL3wPhqytyaR38LpNEOJJT9kty9eADYGBPEBoQh/xcfAjQCUgp4YdZab4PjWlHB9UHxi2WLJYIIUIqlygZ4xdIQHQRCudRg/KMofG7V6yOlJ/J9HlluitP1Vv9DF2OI3nfVx/klm3DPpnULHyvXLf42n37mSyb6JrgilN6/WUqTFCPmT+H1V7x7q7QUpw60Mbn3nxmdL7yD3Mkh6cqoVY34qhP5xDjpIf2v2FhK3auhaEGbUf8vpNEP9fGlwtwZgHomK1Qbq9xqKvC6TvbvXXVdaA31De40xtb4R8/LTaUDSmldKHurfD2UQJQ14JrL1hD3QfBSCnsXfbrX/4ltzwxHKz/JAkItV04fE84Lh1YbLuchUtfGlk/8EpqUlbsGNnGBiq1DDmjhhApdk+vYdeIex5y6TBx5x5nNWRS7cxkern4oruQ0ubm2y5Ek+MYWnA8/cs+ripqojI6sYjuz/WU8qqCukctf1khowi5Yw/fE0LzPbDCpJQi8VO6O66eqti+t2ASvnf8SEipkxDSstxOl64jNI1NByb5waZBpIRMSmPakzr2t2aZqZrM1ixSD40hszrlSwuk7x7mVgduZS+XrO5mtEMnvWncL/+b5m7e9K6eCLGjyKJP7xvifw6N8fG1i/jsviGG6oHpYFYTVB3JYDWmdySslApuQtMvP8Sax5RSj8xU+OLBUX/57RMznNHiunseS/ieLoRvqK7KLBo61ExMKTEd6RNu4D7Q/3DbAbaXquzzOnXKUL1sOzw8Xeamsalofe2ox5T2JAdgjR2nBAkSJHjuoEERICN/EiR49uBdhC2VEgC6FlIJBXF5qDdxqyO9UDnZUEhYKVWammTCOeRtr3vhewHUVN2ATB0OOsv59rL1vGumzGleX8YRQZky7G0jIZ4lTSDoTsF0LfBg2s9Srlz6Gn72y4uZrB1g6+FpHp2xoWhQeXiUjYta6Wk5DCx19+e1Matng5aJgC5q5inlD8KbhO9VPNV5IRMmpeCFmyZ46T02tlbiNpV4zledeEo1AUKFzqDjSIHm1UWZvBuaRdZTJwmCzHL7Z9eyr3QOjjXErJnny7e18K/FMS5a1R0yfG5UGfnH0g/fC46yyoCXT0cJL4CFC17H739zPym9TFexwM93r+TStW7ZFdPm+i2BoXJ3McOSTu/8hq6XH246xN/+5HF/WvlAue30VBXKLiNkdO63oWEw3FhPt93u3xu3HuG7uw6S6Y73MRufylJoCOlgmlZkvphj4lvvu5BHJwu87yfxcsIUkYhvFi1bKmWRu8/1h0Z5oreMaYQzUAcqucjdeJSu9shMjXf/9wNc3VujOwuqzbqexZTtpMQk4JK/6XSXv13EUwowtIC8DNXcrYOvGAz7rsGt2wJCamFblpU9hfkrOwdUmfVIKKeqX5OxTyzELowGoiq1lt/7xccwNJs3nrOcr9xwCLwMii3ZYPiveeGCtq/WCp1dP2Q5EylahoiguCJrrqyVJwrNPK0Cfzml/Ay8/4J7v5GUUmPLxjI1X2EXUUp5BGjGI6UqZpBJMZtqfu8mmBsJKXWSYfwrX2Xo4x9H2jb/dv5bOXDGRWw+XGq6bncxzUB7jr1jZbSKDRWb/bsmECGB0IHxMvWMm7rUyw7M1Kz78g9LDE8puuuUbIeSXecHw5M+yfOJtYs4s7XAozNlPvjEAWbtxrA4/8tciHlWRFX4to8rpZRJZ386xbRtU7Ydfjntxh6r8L391RqveXgH71/cy1XdbUCQ2c8IfTFTZRZDRnpVxyEV+jK5rVTla4cDgq43bbCukOVwzcSS8J7H9jDo5SHOaMLPJhgOgUy47wQJEvwqI1GlJzhZEL8Uty9exmD3ak4fkkwCbg9EkVIOqkdyRk2jcyrHTY9OAFC2DAYn1tDPcISUuvf736Iwez3Lr4JaqUS+pSuyV0V31DWdDKDbEktLc+/kLKe15BGAowm/TEfT/JAoTUr0+MhbwuKMzpZZEFV3mzIF3EGRu+5NW49QPcsdZM9UTP7vgYP83ouCtilkjGAgaROYMqtB1f25s7iLM2gZXsP+VJ36qR3cLjbyOn7hD8bHSyZ/8fPHAMiF/IAyWp6OmSi54VZfHbsmAz48lZmQjHWmXVYOeNv6b3K6/qh/RNWAu2an+Z9t72P3aAlNuH3WQ56vkh1SjPgm4YF0w/s/oGfc8CTJqNf/zacbhz+aluaRsdOoWQ7LuwtUrJKvbjJDyvub/+BSBtpz7BktecczKGPa+2ib0gWmLf3MZkIERIIeJ6U04Q9445lMxRxhcaqM3SPB+GDux7JHpug6wnIwzeiHZdlAjbpbHP7rj5KaOUzqBUFIqLu+jHFe0t8mPO1PCYEqQXOiqX6ErCJtLyVlXPHSVDMVTN+0dYhbnhjmknYgG/KIwuCR6me4/fF7eOmp/bzr0stIpdqCfcZUaUopFVHO+ARUQJiFySK17e1/dDkDHbknrYpRm/lkU4z8iiNQCDYhpWLThiawpYFtGxycdO/VFd0FzlzawYvWBQo+tyzZNLrF36/IRE5B5Do9yZRSjhShRFvusjt3HGFNu1vvXEopZ5sopULtklLzMra6JJUilS1HMlmu05JNkW55PQcG/5eULsjnFrBq0UUsHWjhtEXt9LRkGspPMD8SUuokw+ydd4BtM5Tv5Md9p3HGE3dxuTnpLlu5jntaVyJsh7Su8a7LV3LuQDsP7p/gTd9+GG2ijoyFrFVMG8djjGRWR1RsLO9FGLb2e9dAN5d1tPDfg6N84eAIlpQ+qXRRewsr8hn2eCF2pSZhcc3C90z/ARfMU6ql/z08xqOzFU71yLDetME1bW18eXAUiateelVvO/95cISqI7lnsoTGSEBK+S+fUEy2V4espqF57XvVQzt4aU87f7jcNZ6renXqShn809rFvKAlx59sP+iVGfhQvbq3nWt62vjbXYcj+4PmD+xjQaKUSpAgwfMTCUuV4JmDsjxuNmj799e+heEOjX/49GfcdUP9j3xxN/bENLO4BsYt9TS6WfLKhIlaewMpJQkUN1bNhFYRGZCpYY3pdQwyXqjaLffeT/rnI5gMIEUmRJAIpHBJKg1J/Fu6QFCpu+oa5bl0I9ew+0iG7pRbRtV0wunasB1FK0Tvw5SWQhMajnS8f147HAcnp3NbwfNzKQG6AwN5vscLuUJ+mT5P2WI7MOOF721Y2Iocc8voyy3x+1z1UCMCWshnWULLBLbU0XF4fG0Ls946uu5l5kr30tFxPgdqQWhazeuvduTTjJXqfhv8rGda4CkV7MoL31OZEaWgZtlc+anbfCIpm2o+cA6Mp6MhevVQxrWB9lzEbDxsFq3IirZcitHZOmUv2iAV8ltVBunR7HtK7RU9h3EVit9Cb/1SzfKvz/B1q8i0Y0Jo1fAtNf29H2A4dfT1BaKfoqNKKaWxa26uJSMhsJq3TilnUcpYFGpehjdNQ9e7wdrnb+lESIPG9qhMcoFXmVIjatRlJ4+NruciuYJcbnGsudFjrYvgqo3vTym8CHlKhZUyxazxlMK01LbDMy4xp0X8xZoopebNvhedDl8DKqTsLecv5dcvXt50O98cvGlsYJRgCY8C4+s3ekydaET373roqUXusnLd9Nddt6C16XYQVVseql9Fq7iTXEpn2cJXBV53juT0v76JFT0FPvrKN/PhO1exqrfIz6+7lJc2lDhfVZPRYBwJKXWywbtGrbZ2uutjXDx+T7Bs0+NcLHV2LF6BlevE+srtPCJN9GIvffVORminPhH1JqiaDoYikVIaVGz/i0/YLBxAlkxmBmfQhipM5/O++kk915TH0yMzZS6/fRNXHdjNe4b2oRUK1C9/CRDPvteolOr2vrQ9OF3mwekyawuuvDyjaXxszSI+tmZRpP43n7OW7w5N8Nn9wxHD83DmQEUY+cbqAlbmM+wo19haqvJ46QgfXNqHoQl/nRZD4yU9LsGlzOFtAiLuIysXsjCb5u98UiqslEoGYAkSJEiQdKoSPBuoPv4EWbE6NtfrxwilSgrCNVQckJGdYE32Lh6qDLhLZHggJ/xMShFSKuT3AwIh9MiQXHoDZ0VKGV4/ZbcwuKVksi41jCO6IuF70nMW1qVEb9KfKFcOAxqLs4eYBIZFP8MVWJUJh42oCkhsR5DSCw2jUk1opIROTTo8ZJaYGLuBV8t3u+F7XscuKyu8t2uIR0dWcSt10DWq5Hxzd4ngIy9fz6Vre1jRXeCfH/WPROQYBYgqpcJPCBuNn+x5Gaf3PMTK4j40j4yyMHh8Yi0feO1PAdC1MXe+4/hhTbm0DqXADyswBA/7MQXEH4TC9xAcnKj4hBTAlev7Go67u41XltfdDPytgpYEiqfofsO/M579RKnmkgFhgkD5VCmyTw8Ra40hiM2Haaq42ZrlXwuqry1DPrHzQkb+NC5WB0MQicCIuJ4LV8I2397cpSFSSsBZh15BvXcJHdMLEAi2L7iNlfsKDcUHKsfYNDA8rUipWPY3tMj1EUegeHL/6koNE6HaomFfrlKqkZR6qrZB6lp6bHAacD/cV2P1A/jpo4e5aesQR6aqc+43To7pmuabmFdNj/g1GgmjeAbA5m1KR6ZmqgFNaejF6H71fLMCThjmC99T51ER1Is6Crz5otX+enGESeEnqr/F1+57Gb9/5RquXrMax5GcuaSdh/ZPAq5K8bB3PhJT86cHCSl1UkJw4OpXUTjkvkDTlk3de8FZwmb5wR30TpV4uDXvv0GvBb686M1Ys9EHR8W0KXgvdek9jKwYKaUJ98X2sn+5k4ppkwbu2jKJc/kCEMHNtjyXQeCqjR4H9nQt5KX/8Ff81yvfyKO7DkC2QDr0NaiZp9QfLV/A6kKWm8em+cX4DIdrrpQ6M8eT/ZRijvNqJp/dP0w9nP0kRECpl7MVIqq+f8ZqHpwu8fZH9yBxwwTbNMNXb6VCdQq2D8pQL/S4Cis877gRfNhMkCBBggQJEhwnzCNHmLnxJrJnewOL2AvVjQ6LjKBRL18HERhqSydKrBAmV6KkFCFvorjvjRtaB6bm6rMNr49xoKufA139HBwab/CUUvvRcImpKIJ8YcvFHk6vfJ/92RZuE1dgR4QcHvHiuP4uq1d9FPlg1PzHEAbFVI5azeRRs8yjg59m3cPr2DPY4fdHslR5S9sRvju8nlvtGuhgkvIVIhLB0q48K3uiA091ZN02BfOkTwRF1SvgklI37b+SG3dfwlcv/D20onue/lP8NqmOGqdPzHBxR0tEkaDURCrkxvFJqaB/6SuWGuoXKGBUOZ2FNPf96RW+AiqOOPHQLHxP9YmbKWdU/ZQSS/lxGaGO48aBNlqyBjNV9xhfuLLbNyuPK6XmIqVUPWdrFmTVADyAS8s6aMyvNgpmq2PY2ENtoJwi2fdCO2wGiUfseKGKjkTSymmHr/AaAnWtipkuN988ouKK7nPQC+WUMaUUQvPb0azF6ryNlUwW5sJG5yK8kle25U+rxVbofD9Zg3OFV56+kIf2TzBbsxAI3nD2Ij5xwzYgSnb+6fceZbIchF12FtINZb3q9AE2HZiiatr0tGS4cGUXmnBD2ZSXWrqJgi6ulGpG5EmRi0z/5lc3ASsAWLL09yjmF+FIi1xuMS0tpx77AXha0Bi+F8++p8Lw0obun7N4+F5kO0JqTEX6aoLv/NaFOBI2/tUNlOo2NfP4Tc2TJMVzIyGlTjZIibHiMsaHx7ho2E0bXKzWOW3/MDsX9OJIi8HOFsaKORACw3bdjmxd4xV776B4IM+4BXctPZNDmXbqlkPWVEop7+VarjDxzW9inX8J4L5gx2frVEzbZ9Ut08Gq25DRcY4cxmptYWlnJ3ees5bNh4d5/8EJaqk0D1z9cr515cv86ncb7nc/SUgpFbpXu9MG71nUgyMlvxifYdrrKGS0ueWeikAKvwgCFVfQyVTzBNCVNnhxdxspITClZNZ2aEsFdTJCD131u+4EzlG632ls/Hr1VPlwmTyREiRI8DyCeqQ1G9AkSPB0wimXXeWG+1/jciEiGp2wIa8Uws+shueLI/zBq2Cp6Q5uT91X4/CiOvv60u4SpVxAZ1wWmJTtfplqgKNrVSCNYUtOLW3liLaY0VwL09k0UgiWH3E/wC0dtvwBvSZlQ+IUIYXfl0kJh1Oc3aTJcRtXYIRVDiGlFEA2u5j4AdE1nT857U38aOu/ct9smhqSv/rxg9jlldCS8opx3AE3+B0di5TvpSOl8L2sIvUM7ctpopRq6tfip5EXaI5kPY+xWZ6BFBqmyHDreIyUkgEppcyJ1cBZKZnC2feCAaX6qKjaEJBKKV3MSUgFWwYfPpWPTJApD/94NPP+UX3FXMxIPbzPZd0FHvzzq/w+d2s2xbv/+4HI9n594pnlPGh+2FeNdDa6kRRhQu4Y+qwR4if6t1kZTmSpaLJ2+APyJOlq4OOqSYn0fLJsYXHnohs41PUwG8dXNNQ0ynvF7hMgrWsUswatOZcwEZ6B/qOD02w+MOnurwnBctbSDr567z4/DLc9p7L+NRJ4krBSymv/06iUWtffyv/9xgWRef9003Z336HDqgjM37tiNRsWtrK6r4U4zl/Rxc9+75LIPC9XU0BKzaeU8hMgNDbKzL6WvQdGyaYcBme62DvtZvq8eFU3nW1r6Gr/02Np7glBnBiUiCAUUYUIh7yhAjTzlAqV05SrFOgCDN31G1YKtCTT3tODZzrwM8ExYKrYghi8iy7pZnfImBZp22aqvZO+ac9Y0XvBtVdqFDxj7hfvv59XP/JT3r31p/z6Yz/yy5s+4KYAFYYipWoc+chfMnXjjYB7EagXbjato5SwtjfvwOvfyI6LLmb6+hvQ3/NujPe+hXd86195x7c/x6HpEfLlWTpK07xw28O8rD7VoC5qdpEVjegLOztP/LtXbV95BYHRuS6E36lTpFVYRqlMz++YmGFHqTovKRXO8qeIsGZKqacolEqQIEGCBAmeEj73uc+xbNkystks5513Hvfff/+c627ZsoXXvva1LFu2DCEEn/70p59ymScrJG74niJIpdCwbNcPxZisgyd8cKyDpGfup9XywmakoN1TXHRPW7xwS9Xb3mU9JPDn+vt408Q7uU78m78/9V7v0bwMfbbB6x4Y4tVbRtxJIUjZDqsPu6RUS1WiOx6RRWP/SLg0kbtcuMSK7mmnBjpy/NPrT+NvXrWBjmJaNdhrULg2LjShcWb3an6tw6QQ+vDX05LhrGUd3v5c/YkmhB82ZWFElFJhlU+zj2pOeLkfE9YYvucgsDyja82RvIwf8o/VP+c18lsA7C7X2DJbQelBbFtGw/cIh+81UUr5O1NKiCB8T3lTzUdIudt4+45lOTMtlSkwaGuzLGnqdzbWx417PKUNjbZcitZsKlKW7RybUkplewufjnjLGs7UHJ3QZp8SIjSjiK8R1yxJ/zqKzHVKTNl30DZxZ1BHR4KnorO0OvtbdjKVG4npDxsr+k+dLZy5LPCGymLyseK9fLx/Gy3pqN/R/bsn/RCrODkI8IrTFrL5L1/Mxat7AOjJbG3Yb8D5KqVUoLAxI6TU09+zj3uV2Y70r8d3XLiMF2/oP+ayVJ398D298XgE17wTmQ7DTl3APzzwQf7t0Q/zn4++g9Zcjt1//1K++uvnPmW12FNHzCBfNnpKaX78aegcx+rtSBF5vgWkVGP7lC9c9UkopRLMjUQpdZLh8XyO/WkJY2DYNu2lGrXOFJ88V3D2ji10z0DPdAlL15jNpegszzJScGXVjiaopiBrgm4Mc0X5R9TTh5nOwbaeFiqtb4ZBsL2UxrXJKcAlcdRXJF3XXGdLR/pvKt0zMJx+6EEemZ1ld28HvWNBatzf/so/sG/xanqlw8TWg2ivfCm2rmP6X7Iab9b22As7N49SSoUEmpEXv1c3EbzMg3DBYNsWQ2fCsvngEwcA+P2lro9AmJRSJFalmTzbm7bDX52e4gM40RIkSJDg+YFg0JfgmcM3vvENrrvuOj7/+c9z3nnn8elPf5qrr76abdu20dvb27B+uVxmxYoVvP71r+f3f//3n5Yyn324ipsA3kBOEPGEckSKUXslAH13DzOjZ6EfpD1EujTE+WZ307JzdbeMRYV1ZOs3USfNbm1Rw5q+SkevIzQH6WjYQ6fRPyTJvcDB1gTCVvVVIYJKKeU0GJ0DWMqA2RvsawQDqtee5dbhE3c9BnXHHznZ0mkYTRqa0cQDU3LJ6m7e/pI1vOTB7SiDdE3gd6zc8D0bVetmfilRT6nwgiCESu1Pwc2+5z4vPDspitoknbgeUj8dneKno1P0GjpSuB9L1WBcZctTpI8T6u+p6kkp+fdbdyGmR1hdxCc6JCKklDoaKaVUI4GyCoIPt+H+rPpdtx2+/eBBTh1oDYXvxUipefq44f1O1gci8wv5VU3X/5tXncq15yzBciTf2fswP9obD98LjntOb8G0xhoLaSYFORYIGTqtggbOSh13p+zVREM3Bmixa2jsAs+83REOyqxKD/exfeVtUK9hwwBshMgBGtJx2LvpQQD6Xn0+dscT/ro7JlZwzrIOTl/czhvOjpqcKxQzBp1tG5ievM0nnoot60Jt9EhVGShsgtDOYKxwYkgp968a54RN9pspneaDuneV0XmqiQCg0VOqyf3ehKxtpqB8dtCEIp3DUyqq4Gz8JBAJ35tntKbu55qVKKWeTiRKqZMI42Pj3NPZyVDONe8rVk02HDrMp64Z4sHVGnUDDEdyzp4jXLDzEBj7ufHMWeqGe+NsGxD8+8s0ZjMpxlrzrB86yOkHbF643aZXbCWdeQTDMXndoe/ws9NWMvrAjfzaj7+MhsS0HU4Z28s1O+/k5bvvZs3EfrAdChNf5+/eupS/urbI3+i7+dEZl2N6hNJYe49f96UHdpA5sh/RspK0aZEyazim+2WwWafr0o4WXtfXwUXtRV7U2cK7FzXrGLowmnyd8D2lCJRS4XkKv7Wkl7WFLHmvI7Kt5H79DJtAqmd0c6WUKtud/1RumMQgPUGCBAkSPFV86lOf4r3vfS/vete7WL9+PZ///OfJ5/N86Utfarr+Oeecwyc+8QmuvfZaMpnmaaqPt8yTFVLzMtvZM7RPbEOza2h2jXx5iJbpPSwanWVFwUYz3PCTjOMlhwmRRQBp76Xfmuuku60bi5S/7Cx5n//bz/xmmCy++Et0nfITEK4/TK4usWI+Va7yyutfNMm+B0HyFl1IhJBonlIqrNi24v0d6ZYYhi50v01hLZMmhB+CpanwvRApZWNQLu9x154jfA8ZIg9CA70ggE6FRAVw/MBKgeY1MqtPs5GH6TJH6PWIp2HLhrTGeKnub9uolPL2IwKT8MHJCh+//gn2jLr+RLrmqAr6A/tmg/Iw4oSA4fUdldF5ePCZMYJlf/itzbz23+6mXHfPVQMpdZT9KvLgiZkr+PCdf8439vw1F114Bx0d5zZd39A1TlvczllLO2jLeWor3+g9CD4D6MoujG48X2xeU8QG/aIpDdDki6uX6VvLkm55PS1al6q9O1/YfmVcW6fGijRUVcuRbnkTV77nd2npcscgNe1sPnjrxzAd12D7UGkhrz9rMX/2svX0tDR/3gGsWHEdF5x/C+efdwMXnH8zq1b+SajFSq2kHN6C8D0rZHp/IkRCgem9u58IKXUUUjUOVWdluN88fM/9G1cHNqvTfNn/ni00hO9FlFJRUmo+pVRkO6LJFOJIGU9OKXXyHLWTE4lS6iTC8Hddpl8LZZKwNYNipcgSp59SQQNcmemR3rPRWl/PykqKmdYfoNUO8rNTltExk6eactOjVFMOUkhydZ1cTUfT67SIKTrMSb/8lQd3cNftO7l5yX4+fue/kfK+ClT1FK+/7EPk6j9lbzvQDtnKQ7Qc3Mga270Jv3vNWzn/sU3MpCUXPngrwrY5NPJL3v/fXwPcdK7XX/YatPVLG9paMHT+tcn8ZkiFlFA7SlX+etchdpaDjAfzKaXeNdDNuwa6eeeju7l+dJpp72tB8/C9sFLK/avOhHoQP5XncPIwSpAgwXMZTz2IOcFTRb1e58EHH+TDH/6wP0/TNK688kruueeeebZ8Zss8YQgNvJsuxg1Jk7rOmZv/BT3tYNc1Mu0mU4Ui6QmHFTmb/XIdjrU/ZIoeJqUkKc/YaWzZz9C0+zFp99aSpGRgOBymnPL995Hvh7Edl4NlkLIklaz3rT7id+QpoSRonszIERJNuqqTwDNTesSVl5wm1OqAlHIjEl2FTvS+1Jr4OiHcfpMvkvGOmBDCz/NuYlCtHgSgZmeaD1JDv2Xkt5pqEr4nA6pE90Z8ab1CNxV+7ci3+Zu3f4H1dz7KuGljZA1sLxFOb0uGQrq50bmuiYaBt8pu111M41hu2KBSSh1NsRQ3Oo9nsQsfi97WLL93xWo2H5zk1m0jlOq27/2zsD3L2r4Wtg3NAHDJ6rk/vAKoam09NM1ouZcJs4NsnEyaA83NyQME6pBoW0xNUE4ZkRDAZvdVY/lRpVTjL7XQ8/SKRR4oKtbRLH8LnaD/fTRoRh/r1i1gc7HIzNhIU6P7Y1HxCCHI5+cah0RJKSGaZ987EQqZeFhozVZ1ODqpGoeqnzLczxjNwvei7WrWJDXLnsd36tlDLHyviaeUr5RibqWUjCul5hESprwbtuqNKZPse08PElLqJII14n7dMbwbpZLr5pfn/Slv3eR+URszbkGRUkO9ZyNEkZQD0snjAEsGe9AxGS26pn+TxTqahFxdx7AFUquTW3oz7IVy2iZf975kFf+Mn+w3eYl0sDQwHMjaJsXSBHYKUnYWU6/ykvt7aC/dGNTXuY9Hlk9Q1wwufBCQDjPlw/5yTTqc9/DtjKdMJl72cjr6j+0FG4e6+S0p+drhMW4am/aXLcyk2FGOfkVs9rDMe3HUipSKZt9TpJT6chiU0eiPlTx4EiRIkMBFEoz8TGN0dBTbtunri6a07+vr44knnphjq6e/zFqtRq1W86enp6ebrvdMwxECTUrqba4RsPrWJDSJ46kMRIjAUSFe8WFzxpScurdGqj0HrVCrpyELKWwMAlJKbVMsnsJpG7/ID3/0cyzpdq5TlqTkkyCBUkqE9u2HmAm1isDylhtCIkKeUiGBRmCGrmk+KWVmViG1AsIpIaTBeQvOa2gZSDSNUECgRBBVSt2cfR+7jUm6d/+Ce/as4R9PD7YuGWl+tuE8fppq4W27c8A0MjK2i5JSYdghpdSiQ1XMlMaWzAaOlNM8OHwhAB2Gwbhp03fZAJ1o/GZHBxcsauefPfNnpZSSTcL3LO9kK3VTSoOaVyUVfpc6SviTH6bkk14x9VlsxP77V60BYMWHf4IjwXSUd4/Gz37vEsqmjQAKmfmHWx151yNsdLYWmT4WBKFKkbnB07nJY3rk0Q4Gu9t4orsNrS7JpO3GlebaX6zAZn5S0R3HlobD97x1OsPqI8Cp9YMIxhMNvlY7grFIMxLlOAVFTaAKDe6UZtn3TqynlDutlFJpXTtu+5DfumwVP9g0CMCijjxnLGlvsj/3r2pXs33E234yhasJoaFpWRzHFSvUrEzgDRX3lBLh7QRCBP55ttRiBG2z+8qF4XtKOZHpBE8NCSl1EsJ06u7XLyPvC8YdBB3OFdx7zgZW7/oOZqrgry9EFoBllf0A7O7rcMtJSYp1l6AybA3dHCRXeRzooxYipQzpkPI+WJQzkK6nyNomabNKtirpG89SNSzaS25tDmd6ObA8S27m65hAxhTAEvdF4rhftm4772ouve8GuiZHmLzxh9w1M8HLP/ihJ3U8FIFkOpJR063o6/o6eEVvO5d0tPAbW/YC0S+HceS8B+i03Uwp5f6tep2J8Jcx1Xn0peJPqgXett7GyTDuuQ3LkXxraJyRujt0eGlPGyvz2We7WgkSJEjwjOFjH/sYH/3oR5+VfQdDhSbmysL1lHI0tycgbY+UEeCkPFLKlv673fAGJGmsoDQpSdnwmvtKOPp5iDM2s+X+PLwJDGyfJFK1AEilO+nuPpNyaYvvk5OycT2lQrX2KCAArHod3euFO8INeBMIFqUc8ppkY97GsR1/fVtKvnhwhF9Olaj6yh+/ytipAaYH/g3tpv28aF0fVy29gJHRm2M1dQdjvicTDq6nlEDUXC3W5loHm2sd0LccvTLDXrPOWd62u1o72de9wK2Pp8CJZN8TcVIq6PE4BIqdthmL0x+b5lNdv8Ptg66qCWB1IcOuSo3d1Tq7gTe3GXQXM77BuBML3wsbnasQO9XZkihfLEHdaq58iiOuGokPNo05ttc1gWNLvw6a57lTPAoZpXDdVWtY199CzXIwNMHVpx67mbUaPEd4mKN0VssjQZ/FkQJJBcjN2T+NcEIiuH8EAmQzXVww7Yd3+ou9TIrC8mdmZaCUWlRqwzz0duAjc7cjtH6zVeJk4vHCD6HzxjRzKaVOBDfjU+PSDQ8bnnGJyuP1kwL4rctW8luXrZx/f8eklIquczIJg4TQOHXDZxifuIuDkybf27mCng5/KRB8fIiT5StX/iGjo7cwUzX57sMrIkopoo+TCOKeUsdHTp5EB+8kQ0JKnUSoVSzQw9/q3F+9Z5QYftglocqFfjZv/G2E4zG7WhU9ew5TmRRVq0y2NkhPdQwHjbP0FyHqQwyxm1xNJ2VOoHsdNEvXfbm45gjk6LnAPZgGmFoXewcu4zUPtbN49CUMpx5HijZvf5IbXvQASJfsso3lmPZ+vw2WXUMAu3pXop17FQuG9rNq3zbK01NP6phI24ZRN4tNyXa4c8LNJHhhe5Gru906qUdMfR6Tvpz32WSs7h638LNdKaUUKRWWYcbD906ijwMJniXcMj7N73vG+QA3j03z/TNXP4s1SpDg2UVidP7Mobu7G13XGRoaiswfGhqiv//YB7JPtcwPf/jDXHfddf709PQ0ixc3NxV+JiGFQEMilVTCCxkTmsT2XvwZs47qaaU91VP4Gj6k22hFm0WzOpqtYwyfja1vJ1N3+LX7KvSU1rFmNsMh3aHufR+0Zt3Bq23bSI+UuvrhMoOdOvetDQiAsNG5Y5loHumhkq5pQuMP+6v++mPS9j+0jdQt/nzHoL8sLQQpb2w+7ilspNBwWvPsbk3zL/uG0KsZVpD2wvTclupCRJRSeDYIqW1TnFrMM9uf9f037WUtfH50nNeuclV0dW/DFRPTDVoSt3RFGTZ+HnSaqKdcciFQgHz2lKXcN1Xin/Yc4eGZckA+eZ0vpdQID4790CI/ZEcpTbzwMQRjJff4HNXoPFZWnISaa/Dpzpd+lr7jHbR3FTO87YJlx7eRh7hSSrozQ4omEfnTvBB1H4QxJyMUIql8iV9kufsn6uNjqoMiAk+paA3d/1OOztGGp+Hj2+ycPNVwKqG5JKlS0WhapsHs263H0//uU2XuHy/zpv+8l9maW4fMkyCljgVxpVSz4xmsc3Iae/f0XElPz5Uc2T7CkfL9dLWr50M8fC9a76VL3svSJe/lof0T3PLDu1ncGQrf8/428wNWikvlKTUXWZ3g+JAYnZ9EsC2n6fwVFy1h2tnE984L1FFSM5AC0qkKmt5Gt3Epi7LXMNP6Wi5/fD+nH5jmhZlLkLgmf+c80cGbf2bSNe0+aGuZTmzv7C/b3895+0vcsWYRjw4MsGfRqRxaeAmt+gpGW4p+PDiASK/hqh3vRIgaL9rxNl5773t5zSN/FCz3/m7c+y26S0Ok8eSUE+OM/8//Mv4//0t1jnCAkX/5F7ZdeBH3X3oJ977mley9+w52v+WtjL3ylRiWhQMcrrkvziW5QNrsm/TJ6HQYLV743oz3dTEf+oqiVFMz3vHPODYHn9jCga2P0jJ6GKT0v4s+JaWU97dJRuUEzyGMKGLTO6ET1rHL3hMkSJDgqSCdTnPWWWdx8803+/Mcx+Hmm2/mggsueMbKzGQytLa2Rv49I5jzBeoRER5JIbUYKaJBKeMaIY9vKfqjWgO7oYxBw+G+Hp26Ny4uWKdi6zrLhyyWH3IoThXptzXOrBsUPZW5OVoB3ONm626/p2fa5vS9dRaM27GQJ+/rvRPQNH4Gu1jz+lsNP/veVMh+4G9XD/Ct01eS9jb84P9tAtx+UP3Mbp5o1/n73Yf5m0NF7uZiHBUy1WowocuQIiAgckTNYU0FbjhrDX+5ciH5Ebcd06HMxKbya6rU0BTpEyF6lLxAaWeCBtmhIYejiLmYOqPF0Lmyq5U+T2GktleDPvWB0AnZNahBvPKNElF6BikFD++fdI/dUQb28QG5ESOx5hp8Gj5p1vhx80TDJwLn8IZqXpXoTCnNZis1rO0ATT2mQugY24zM30jvsJsdT3reUbP+sVMKOztU6cb7WhIliyPkgJR+w+JCLMFTD9/r6305Cxa8ju7uK+ntuYZlS38rlKVOqWOe2j7mghqefH/ToE9IAVy94cl9dDjq/mJZBefLvhdkPj85SRjdb0tzTyma+ewRtDlkLew/Y5p7Srkz793tZrU8ZqPzk/S4nSxIlFLPARjpDEvb0ywr3MOWC1LIiQHuW7SItx40eckhg82Gwz0FjeXDFsuzeWbzC5juXMOumsOQvgBH247u2KRswYAn2TUzvVhGnZRdYePuIjmnxEzOJbDK7EFM/x+6MQDeV8SMcTqi5UUArByD/VYLa6a8VLVmgSo6hDp3F+1/HULL4ZgHqLOP0r69DP3sNmzgQ29YyfiiDJZWQU9XSemCtZ2n8gdfu49BbDb39wEOfObj7v7ac3z0c3/NoQUr6XnnW2mdnaR/Z5XS6rUU2jv8h5A5j+/TmxZ0sr9aZ8aySWuC31wcpLhWpNRtE64h5WW3fIdvbNsEwIXAxAtW8IC4GhhIHii/YhirW7zsoe0crLpfwdcXc/xar6sLbjV0xk07IRkT/MpDyuS5+Eziuuuu4x3veAdnn3025557Lp/+9KcplUq8613vAuDtb387AwMDfOxjHwNcI/OtW7f6vwcHB9m0aRPFYpFVq1YdU5nPFTiahmbTaGMjJPuWDbBwx5Bnbq7UNGrFQMEkkOBIbE0DJLc5kvtOfyFZLwTsUB56yxIDgZf8mCmnxBe+8AVmZmaQrbOceflKNv18grRpsGx0mGgok7ufJTsfY8Xub1MtmUhNw85ehJZZgyMFmjdYz6dBr7gjpbJHuhR0jfcscjOPvWzjAr56zz5qiqwRQNodeC3LpdlbqTNBB8PaAnR7H/bqVr6ds1k5VQLcsBbfUwqo1G1mKya/uaiHzx3aQrknSz2c9c8j+1KORHOUkXVwnCXeIFo2KqUqhDOhuQobx3EA/ajhL0oppYyWVZVco3OPLLCjnjjKpDqf1lnSmcfQBW88e341X7wacWPpuQy01fz6s2gELULEjgCX8IkQVUL9wLa7ACu0zIzeMvP1a0RUKSUAZEAfmXIY09xB94jg4NI+v7BiTeOxU94FuJkvHS3IviekhFD94v2qxldMKISuSZ//qR7/TKaH9ad8PFbmXmB+RdHTARUadtNWV7l67TmL+YfXbjwh+4KwOtCbPgYS82QdCqnbM8gr4X0AaJJ9r9l201WTL9y2i/NWdIWMzhu3WdSR45f7JkKJDXJPR/V/5ZGQUiclok9j7etv4s353bzZ7VNSEnk2nPp97DGNrCYYKBg8sjjF8mEL4ej88uwP4WgpqDrkjNOh7XTM8s3Ytc30Trqk1GnbH2c2Y+BokPPM4ZaOTLKvp92tgX0Iyz6ElnI7rFLPRW7lX5/sYLeAXGWESq4HRBak28lxBCA8NyzhKpoqusbmxb0MF1OMLTyIqTnUU94L04L7hm/h9o4+equVhqOxq68DcFi16yEOfWoHJeAHQMeCAd796S8ED1TlKdXkmbMkl+Fzc2T7u7ijyH8dHPFVVEtKU1473PDGBdWHuGPfnbD48wj9yXsHBd/uEhbjuYKHpkvsrQRpqR+ZqbCu4F4DOU3DzYeUnM8ECRI8c3jjG9/IyMgIH/nIRzhy5Ainn346119/vW9Uvn//frSQGvjQoUOcccYZ/vQnP/lJPvnJT3LppZdy6623HlOZJx3mGBRJQK/MkhqfiK6uwSMXbuArV7+MP//s1wlIqVCBfpYwV0mk1OQ/Wt3F9oWLOHuH21eaSoHKpaZ75YzJGhOHxigIB83QOPfK9Rze9CgTh8usHAlIKTfeTICE5ds3kam6CW6EDXZtC1pmLbbU0ITnhyQtNO+Dn/rwlgkRI3/x8vX8xcvX84b/vo/bQ+3VHcmF7UX2VsaZoQ1H6G5AndfP2ee911T2PTXAvn7LEa7fcoRzlnUgPYKlKSllOxTq7vFIOSkCeKSR3u5Odq2ChZfyxc017nY2hNbylAlSqZuiELHzM5dSyjUr9urmOLFt3enzV/Twm6+5nGNBnGiIKyDmUkSo+pnWiVXRzIewPuxo3wlMcxGw15+ul74HJShmN0LuSnRshOYE0pgQnHDApsA/Sbp3bU0WcjCcY3ePGzKZrUsogCYGGO5b7286nRkLignJvJTGZd42hKrV1PPnBBhPN3ovnZiT/JsvXMH/3LcPKSGX0nnzeUtOyH4UgnYdXSmlcLKF7yn4XmB+SKv7ENdV+N4c5yzvZfecqVp87GdP0JZL8cI1PV4Zjfi717yAV56+EMuWpA2N81d0PZ3N+JVFQkqdhGhhFtVdAFz/KAEVLU3OqVOQZd52+If89sT/IfOTZMmypP5poAtp6UhNoNl1euqPk0qbHDJegJZagV17DFfNJFgyOsGu3nYqmaAzsXh8hpRmMdR1GTM8AVg4lpv9wtFyaIBhlbGMPIdMC9KQrYxST7WQyl+JNO8mpafJ5TZSlu6lJbQCEvfr5WCnmw3n9b9YBEBd03CExu4FZR5af4S7N9ZZNVwgX4b+mQnaZ0zK6TT7u9sBONTREjlOU8NHgOABavqk1PE9LC/uaGHHC4OvEF+7Oc1hYLJo0jmT5gW7W1l7oMid59zD7o3H1rFJ8PzArNfJOqe1wKFancGayYQXQ658yhJKKkGCBM80PvCBD/CBD3yg6TJFNCksW7YsyEb0JMt8rsARAt0yEfVoNkChSSSCaj6Lo4NPSgVr+PME7ljc1lw1j+WFfPQcGQEKmAJsdxGaV8CwLHJH7TT+4KJu3nzhKgqFAilvoOOqhjyyxjM6l4BhuUp0YQwgrUF3HQm2Y5DSPFLKsfzwPYVMExPnvK5HQpoyTqACrxPYHYhZE4pBYhiBA0Jw7vJOOvIpJspunR7YO0G61d2u6kgsR7KlVGE6m/PKd3y1TCoUlmemF0NZgkrTM3AWXPwR/mPLzzEJsjUqyHkyfkFwfpRx9b6xMtd85g5GPPNnTQQEUNzofF6n4jnQoJQ6Sva9+Hw/tOsZHLQ3z753bH0TzZE4obpm6jshdyVX5r/Hqa/di1XTQBQisXHTojH7JEhWjEwx1HceqdJmZnJZ6oZ7/Wseu2Sn3XFBXkzw3dX/y4GOPWRKvf72R2/o/CqX6Lyn//jHFXlP0Ut9Tlx77hKuPffEElFhqHaY8xqdx7Y5SaVS6j70w5NjnlJzfc1Y2VPkj1+yli2HpvnJI4eZqph+aHGzphYyBi9a99Q+2BzLO/lXDQkpdRJBKS5OE1t5gCC8TCy7mC/vO58/ufgF7L7zJeScGq8bupF8dRSAArOcUXoMuNR/aOcqI2z45X8AsFJL8cgL3kcp+xZq2XZAUJ74Z7JWLSClpGDfsteywN5PWV/ALEeQ9qivfhKa62eVrYwy27KEatq9GdPmDClzFju3EtIrkXj9EQAchFak1nkZj3X9kJWHsxQrBobtdsrSjgM4rDuYZvnwALl6IPf+9oU2OxdXgAp9Y1Uu2NKJYWvYmmTzqileuLkbx7ZxbLvBjPzpelSOtNfonEmTsjVStsaG7ZvZu/HiJ12eaOgEJzjZMetla+xM60zbOtRMJrwMkFnvTZ68VxL8qqDxWk8u/gTPHqJXn/fmF4KuWrnRfF8oQshBaqFQoSYm0EJKbCdQSmkS1h6ss3SoBhQwpfRpIi2loZx2ACYp0NXlfjXXvA8XQmr+zRMeV+uKlBIFb2s3054dCn1zpNlgGZ5pMmpsMXSMx6fI9eUo1WzOyGZjpFSUqAnsDtxjcepAGw9/5MXULYc1f/4zAGp19/1XdRze/dgebhybhu6FgKuUanr/C1dBHJB+cw/sIBiYxQf48dWVh8stTwxH5i/vLjQoWOLhe8fTK4zXsyVruMI2r6mt2VTjRgSD9GcjfC+eul6iwuHm3QiAtYfHsM57CfsmllEvfRtNRj0yjYyDEE5ks/ZZnbQZtbdHQs6yyBtn0jZzNzO5rEfqhtYqujtNa2UOduzC1hykCOoe+NeKcMmRvw0NIBSyFVp6IpQ8vn/tCVZKPdPwPaXmuXbj807WtqtzpAR+Kjw7MDpvziQKIXj/ZauYLNf5ySOuGMOaRzmW4MQgIaVOQqSFF+ft3Qcf6noVDy/pQwqBKQxy1GixXbJoKN1JX32cjDYT+QbVkg5ksbpjcsbmz/LABS+iLl4LwFhbL2c+8SDblp/DcNdGNL2bEWMh49TpmN1JKnsVufGbmS0OILQCWmo5IFm653uMd59NuZCiOFtj8dRjzFqjDLatwnbSOELH0QwEku7RR9m39Go664uYbhvnxiVQ0towJy5g9UQf58lRWg5sB9P0CSlHSHYvrLC/v+zXf6irxs1nH8LSoZIRbgbBze4yy6wHSinnySmlwqhs3kxt1D12B3srPLSgm+UTM5y/I02qvp/03vex7dT/YW3n2ie9jwQnP2wp+cHwJLeMuT5jRRwKVgnQmayUAOEPDJJheYJfNSR9tATPGmKDbRF7AH9+wzLOu/pU9v/kuzgEBIarlPLC1TRozPMTKKXWzz7Osm0HoO2VQA/rDtTZuNcEOgFYMS190mt12cZC0K2VWDE5Ru+WEWZbx8hu3Iie8pRXIaWUS9po/h7dH1FTb8sJaCg3fC96w2WbSDRyKQ3jQIm2CQtztsbC0xY2J6W8kDbTNwKOqrDShkZa16jbjp89xgaXkPLQPTPJxtHJoI6ikUSIq5XiAzvphTCq8L25Bn6qvBdv6Oemx4eYrphomuBFa3t55ekLOWVBK5+8cZvbJjsevnf8SUji9ehuyfDZN53BY4PTaML18GqGZzN8L05KufPCVhGNxGu1NOv/ti0bIfLelFv/caeH0miGQnctsumennZee3+YmFO6v9C0N+n44bDqr3tdC2ETz2gmIkYIoRbNdRylDJUbL+vEGHE3Gp0/P16EQbvmVi0+F8P3PvzdR6mO7+LlK8JG5/PXO9z2+T22nmz9kjHDfEhIqecA9ljC/+Jge5LoNtv1Xho3WuirjzNQ+h6TnMl462Kc1C4ulv9D27Vp5Ogg+9MLeOs5/8ALHy+yfNhGAG21DDnTosXqYzyzkY7qKFMpB1ummSiuQiPNBmFxILOGMa0HISaxq4+RreznlO3b/boVFtXoetd5XPrIhzBLOtVJg8OPdGBPaUy3LGXf0qtJ2zqf/C+bmZxg98taaZt5hFRdsltbxaqrXsZPb3+QsmPQkrLJLeimT2i8ZNCkUqxQr9e54uyLWfc7H8XSBHu/9Of86RMf8/dv1et+17Kqvl48yeNsDg+z901vxly9CLyvYaWMxiSLgGE0KRCyytaxrU+KlFIPtuSBdPLjxtEp3r91nz/d8chXGcotgY6z2F8zQUsHSqnkjCb4FUeDKiVBghOMuZ66Z7UXyKUzpDQj8qFOaC4RIpAuk9VwyQo0vRsbMKRNqzlFpbwHMj10TbujkypVKlqalCNwhEtx5SzBDNBameFzt/4zAAf+G4Za8hzacD51UyDqBfBMvmWI/Ar2rML8PBLICXox0rHQY72aZqRUNuWWMVF2zR80EYTvmSFSShEGpq8slw2D+kJGp152wHTQxqrQ5foobijmuOyGb2NaJgusxVR8ziNESonoD7VK4wDeGzw6jYRKrEgA1va38MMPNFeqB9nDFPHnHguVUU6IYx/qNIYpwcs3LuTlGxfOu50WC997JpPi+OF7YZ+luOl57JdZrfoDwOnREcipFHZu/R2pNU1gMetFV9QNh4LQ0IzFUBv19yekjaauYy1+nXuhVJGMl2Et1DzHbB5+qtmxPiHhkzGl1POEk/KPqwp5a5a5MN7Wk5ST8ut1aLLC1+/fz6tWujN0ESNo50CYbLN9j7oEzxQSUuq5ACE4szXPFzYso/2hPMxM0iVdg8nuYhbK0J4SjFXuhXVLSRXupm9wB4daN7KQvaQzDgf6B8hvnvJvrkrxfJ5YM0At0wZAS22c1IIswxNFbM9/YNX5U3T11Vi961qEkDgS7htcCgdUxSTFvgqdC/LwCKQKNqmCjVwww3fG3oxjux5QtmYggZaK5Kpdmxl+2N3nAAep3nk347/3BW7ZPsYfk+GKmqQqanzN+RRXP7aIaVmm95EHyF50HT8f+SbbvvwlOE9iC4kuBVat5nv7qE5W7knkgpVScsd39nDwjD/CFreCOeode6jNnAP8BCy3YzZRbvRFSPAchZRwxz/B2E53evVVsPpqdu24G1jIsspBLprcxHsOfJN/WfIWAOqae38syrp/E0oqwa8uYld/Esua4JlAs1FCfNBUKESm00ULiUBDeuF70X6CRKCn13BV1xRfGV9H9+xhJA5m5W669h2gBrSWq5y/bw+PrXsbo+3LXaWPt33WjPYLdvZ3UKl4HzYskKkV7n5EIymVKv4SezyDup8cqYOX0diRJosZ4srWGvusVgwheNeibuJY3OEqXdSAua816++mRqZBuWSFSKl4fYpZg4mym40t/csxHvizK+lpcUm1j1/vYMa2aG71o77CNR/AKyJbHqNSaj6oLZXSY8f0+bx07TCWNYOmpVk08OZjKIWm9ThWcsn3lLJlZPqZhLqipRCeUsqbbrZyqHqO7QTEqHdF12WBqmyhSBXZ5LPDIyuneNlsD1PlPCCVdQ9L993AbEyVImRUKRX1SAtfh9HKRbM6xlsRTDc71sYJCd+LKoqeL0qpIFHA3O2KE9fPpGfa8aC31csw79+H7oXZntexrMZ2xBFW2Fk+yX1ytvX5iISUOgkRyQaD++jtTBkszqZB92Szphve1tO5Goa3cX5rPwtelOVe80Zqtts52mrkWQik1NciCYUilGZhpnUpM61L/X1WUxovv3wHI7/4IbJ9OcXpB+lKQb6wy8+KoQnoPDfLqnP3UxEGtVwLnWYZpgfdQvJdUB4jrZmMdnYgnTyFMZCZVpx8K3p5mtIR94GhpR2cuka2Vqe6dw/QCggKZMjXJW//2RCac9ir3RbE+StYu/jVmNkdfPR/BjnQ7mDpOnf/1nt540c/hrWgk6rtUNB13r7w+LMglKfqbN08Q70nR2rCBjM4A+bqNjgSGJrWLGfOcuaD3yVMxm0nD4a3wi1/408+vP9x3jmyiFHZCwJeOnoHH9n9eehdz1/1abzQeQBz2420rbyE1gXv5htHxpslp0mQ4FcLyT2Q4CSB+PY7IT2LXq/Sd/YE2VYboUuynWbgKdWEiFGDlaJhsSrbxuTsYSxZxa4+BLiX+HQastYEC0Y2M9y+HLNyF5PWARwJhkghgSPLTuGMd18L3/862IEhtJRuv0w2G/D5nj2Oty/hSbtspLTQcfj00hLd3efN2e53XLiMFT0FSnWbjKHxwtU9/MtBN3wxbHSuOiC+qbFndB7Gb126iv/1sn+dtbTDJ6Rsy6FmaqAFnlHq6PnFN9Rs/gG8nIO0Oh74fk5e32zKHODMM/7nyRXWoAg5PlKqbj+b4XvNH8TzVUX42/uUFlJKDtXO5pucwWvqfwbUfRVW9PpVZJNE80jZ/pEH2dUbTUqkFFKOClsVjWGVc9V9rldLdH3ZsO6JIE0aPaWe9l08K1DX+CMHJ4E5iNgneV880xhoz/G991/I3jHX4mZp+gkmhkKhvGJ+0UJYhKoI5pOzpc9PJKTUcwKCvFL/6OnoooKXsnJoC8vYwrLQohnd/XKme1JZIeHSge8xeWiKA8NrGGENUmikzVnOv6qDnDHMkswm6MlDZT9YfRSyZmR3a9cuhN3bKBa7KLYuhEPjsPUHQV3KY6QxOV27mym5gCFOAyz0lBtuWDri1r9zdYmR7a0IU/LWX/wfZxU6Eae+jofz2zlttgfNcXA0nXIuS7FUwqlOsqL/hViOZMHBGzjc4pJSW3Sb1Mc/wie/9HV0o7kB5bHAcST1zBjT7Y+Tn6ijA69+4Awy+nosuYNJAlIqCdd6HsF0FYekCmCWuL3lVIbIgABNOpzf3gLXfh3WvZRW4NU3/zUM3wjLV/CQMlN99mqfIMFJgSR8L8EzDeENp8NzAMSBe0GfQIx3kFrukO+t+2soT6mo0bla5k6nhKRda2USOKxXafWW647A1iSmrmFi4Tg17Op9/vYaUEkZ2EKj4w1vwLjvVji4P7QD1ytUCtHAwBjqY6PXnjX/WEH0CcbfA1Z1ArIw8u+fp+03NmB0dWFPu/5OemsrwnC78WlD44pTotmglDm4SdpvX29umP3ATHkv0Ki4AnjzeUuapqGvlS3/o1q4BbVwe1QGvGkLckFIUMMAXnlKzaHOCD7iHf0NK2JkwVNRycxVj6NBKSxM+5n3G2qefS+slZq/LtKRfsgjQFEbpiy7keiMW0uAnY3biFC5ksjX1oOx78KBRk8ppUKkVNwUjnif6ujHsdmxPrGeUs+eGu5EoLc1w47hWSa9zJu9HgkdRvwYn4jj+3ThjCUdnLGkA4A9ezJMEJBSx6OUer4Z2j8XkJBSJxHmevVKISjMRUqtfSlIG2aOwI4bI4tE3jXlTEuTYsWhvWzTm97L8sLtbDjtPEau/08cW0dvb6U3dxFY7vpkvK8cVhXqLttMKu+qs2aOuNPpPHQshUMPwZQXz9ezDjm6HU06XCXuZFr08FXejCNBW5CjWs6QNl1zxVxXnVRLDmu8zPKR7SwfgVsLBTo1A9Pcy5Hes5noXE0pl2XR4GNkZvbSPtxFvroTiWDJ2DgTxRZGWvKYtSpWvf6USCkAR3MfyMpUtNpyNmZ6JY55AGYf8NPaqpj740VUPJ/gpEK+E6YCc/1XDt/CxxcX6XjRn8dWDIUk+P2x5Iwm+FVFcu0neGYhZbNgohA6V8DMZk8CEhumCwFSYBjxADSQXsY7gYPhDc4cPCIJyNZrlLJpLE3jsGYilZwagduVNnE0ge19iZdOtJ/gaCWEDWnLati3LgKVCkBmxEEbhtQBgbXArUP14c1M/+xnTH7zW9R37wYgvWwZK370Q0Sqed+nmdF5e2aS/UC5NgqiG83L+HcskKH3HoAt3XpPhTcvW4CGVnLbP1FyFTQNRufKU+ppUEoJnyzwCKGnRErFp59c+N6zmX0vPj/AHOo2KSMKkrf0vJ/vTPw9Y+ZRvFP9IoL9fPNPzuOBw1u5fFOkIu4foePmGXD8kL6ANgsRxR6fFql9mARTK3mT8XMmODGEUZz8fCZ9w04kPv3GM7hr5yiOlORSOpev621YJ97SJrZ2JyWEd107jvcB+ihKqfB1E/jDPY31iUwl/ac4ElLqpEZw+a7Mecy1Hut85DrglZ91f4/tgps/6hJJuU5efta74b+/TdE0+bN7qrQtbSObdjsI6Re9i4Hah6A2BozB43tg3cvdcnxSqgZ1L0NHSz+M74aRx93pVAGu+QSsvAIc0yXL1r4UsfoqrF23I/fcjj7tPgQcUvy8/2PQ59BbuYVz2/dQ7Pwpy9r2MHs4w/a9S2gdneaFW2/j4dN/l01dK6E/aOLW1jN5wSOf5r7OFsqtr4RLX0776A2csf16blzvhiAey9e0Y0UK3euKgnBM/yGmlFJJuNbzEEJAptWfLNplOnKNL+awL0eQ4ecZqF+CBAkSJAgw10Ch0A0lo+lAQiJgtgvdEU2JmG5jN53Gfl+5ZDh+TwDDG6CMtuSxtSrS7yWkvFA7EwnYmjLZjr4YpKwjgJRjoRlLsO0RANJ6G0Zmyq9huHHCAql66Q6YBwd9Qgqgvncv1vAwqYGBxsaWxzH23Q0sj5BSys/H9rr/IhK6dewI51yLZN/zFeUulHKokSTwSClHomOTxgKrDkbaLz9cznxQRVtPQwbmhkxux1jUsxq+10Qp5TDfx9No6Ju7bnAN2FJESps7sE6F74X2m0sjY5eTulacUPa9eF0aCbX5p8MdLxFSMGXUdX4ilVLPwjk+kehpyfDqM5o8Q0JoNDp/bjQ+lfLEFt4VlEp1zLt+JPteE1VoghOLhJQ6qdD84fyJdUu4Zok3QE4XowvTITPPrpXwhq/4k8akKx3P6Bbven+Hq/D55ri7sNgL778bRp6A77wHKhMw66VPznqDc6sKj//Q/b3sEpjY56qyABadDcUeOPNt0fqc8VaMM94KP/gAxkNfZXnmfg7X11GTBaTQGc5fya32IK+0HmHa6GVb92VM5dtIHxqjZ2QTU20rQ4fDQWAjRQo71UG54KXiFRpjPZeyzW4FXPn84Z2TLNmQRzeeXvpecywcxZY3d/M8biQcxsmE0NkodEfPjRcaG4H6yiKd5EWVIMFxDBwTJHg60ZDuXk1puvecbnZVCnL1FqozGVLZWeqhJW2pQd7Y/Qc4Umd6yiWMUtLyl6e8geiuvg5gCmG56wiR8usihaBWk9x/9xYmPYWQq6oVIYW1IJW/FC1/DprUWZfNcET7NOCEBtoBKeUlXEbY4MzMAKDl84h0GntyEqdabTw2jsPE3/0Oq/ce5v3tZ/DgxvU80aZKdvdhKYIA+aSkADHNSuPyWJnvuWQ5X757H46UnL64HbHVXX6RfIjvZP6H3FQd/hY4653wis8cZ12iKqWnopJ5soNvtc9y3e0jP5NG0Or600InwhcKNka4NsCxo6SUI7V5IjfUPqM1UEVftezFHNj9YGSpqoZE87cNtpCxv6GthDgmRmBxR46BdglTbhmL2nOs6CkcZavjRzzL43OFmHk6ECdrnyuhi/39r0HT0pjWFJpI0dNz9VG30TWB7UiffHz6T/Nz49g9G0hIqecA1hdzwZefyz4ED3SBY0P3Gug9Ze4NVaifXYd/Oz+6LNMKbYvcf4Uej5TyQvNaFkDPKSFVVB7Ofz9c+VdQnQJNh7bF81c624YQ8NKOjwHw/bG/ZtB8AQCz9gB3DXyViT1jTFd19124CIbPeCGMQEdvjquvXcPtj97G4ZtTIFLU0656KyXrVDUNXeY50ncBTLqk1E8+t5mNV5R54RvXBHUY3w2HHnZ/Lz7PbeuxIPZuFCo7TOIp9byCZdrMjjsIq59WKRAv/xRs97wT+jfCisubbBWE76lb8skFcyZI8NzDXGEiCRKcLBC65pJSolHFKgFdCgyhcerWL3HfqpAkWwYhdNVaCTKgy0AptXx4EltozORSWLqOYXn9JWGE/KJAyhS//p3tvKZcow3QHYmtCzTbCtUCdPIgwNr6PRbPHmJoST++0bk3ik8PZ5GpKqlaC+k9FewlrnJdZDKIbBYmJ3HKFQ792Z8x9cMfueW2ttL1nvcw/J2HWAS8nsNcuPmX/PYH3Laq/oxSSmk46J7/6FEhg/pHZjcdtal57v7eeM4S3nhO4FNV90ipc3mMnAjRg9tvcLduSn40hxofl+vuMX4qhFCcTDvWMKW2nMseKsJCTT9bCPdT5w3PlFCrVkgJgdsZd7hvbDFl8yBSXx2U0TQSMOgPKZzbfw4by0P8t+jF9EJiM3aeCmDVDUjBsFjYUA3X7L/xI8fc5z9YUswY3PHHl/PfH7qTyozJF99xNtmUPueWTxbq0lDJjn6lSKl4iORzpO26nmHBgl87vm2EwEY+78I0nwtISKmTCXM9fcP3w/IXuv+OBcU+WHMNHLjP66R5/7pXw4KNwXpZ7xOap6zCyML77nSJKnDVWGmv05Lv5JjQsiAyuaB7kolyGiEEpcka+zZPgvelrj19gMn6YuoTBiApdGbpWt+FsSuFmQLDhnrarWPa0Pjumi/QP7OUlzy8kMHQFTwzFvpi6NjwxSuhPOZOd62G3/nl/HWe47mjqa8iEpaOn4rck2VPeoSBtR2ks8d+CwWdrITUerbh2A5f/+h9TI9WgX9nefURXrriMtDWwZ4jiIWn+2EEEYTC9/whTHI6E/yqIrn4EzzT8C85L0zHEZFphKuUahq+JwQagmWyn3HnQHShIxje3IJ0BPnqKOMZaDVL/uKe2Qppc4qd/QWG2ovkKkoNYhDOmmdrGjOptN+d6J0ucaijxVOuCMxiipRdIV8qkarP0jP6CFU/nCmqlOq4oxfr8GGy61dQtbb6SimRyaBls1RSBv/7uU9QGh2BNQMsH5li9fAYMze4xI7UQDhQqFb8d5fw6ipS3WBBPreInu7YR8tjQDgAMhK+5xPXRwlvFyqc0G37I8YL2Gg9+qSeKR0F912trBW6C03e3ceIJ+sp9dFXbuDHjxzGdiRdxTRXb+g/+kZPE1T4XljfJEP/H8tXBDfjYwZkhYfGB4BNpFs3zunf1l1aRN1c7xdfTWfI1WsgBK3pOr8+8ADbblwAus6BgdM4SBC+J8O+PkJdL/Of92bhe2GyQNNEcI2fIBIhn3brr8JE1fSvAuKHVH8e8zSaBtjBeX4eN/WkQ0JKnYQIf9+Ap8DGCwFv/r+jr7f+1XB4MziW61G1/IWgG2543pPFmW93/9amIdvOeWe+nfMyReoVi2/83f0eGQAD6UfoK2zlofq1YLkt71xQ8KovkF5nbabFVWbpmmCwfTuHWrfz+1+HwVOX+ruUQ1vhR19yww/PfndASAGM7XSJKq35S0RKlRckDO/4eyGLGTvFNdveC9vgp7c8yikXLuBFb59HqZbgpEWtbPnXIMBI9SjKPx8hpZQ3JyEZEyRQSO6FBM8gpOCKHe8ArvdnCU0neE7HVkeQcSS6MBoGwc6Mw9h2V5Gd7x2B9i4WzQ4zk8v4KpGanqF7tsJQe2CjkEkPUDP3Im1X4WRqnleTp0haMTLJ0MLTmFrShlar0Ds5SO/ULtZtuh8BWK191KxoCJODQAek7WWMyucAsGZnGO3qwuzvR8tmqMxMMDUxBl4inEMLe1g9PIFTd0MHdd3BcTQKToll9m4OEZBSGK1gmRRyS49ZKTUXXxQmGZroqOYozSMQHBt0qItMZP3j6fW+7qxFZFM60xWTlKHxkqdACDUoQo5xuxU9RX73itVHX/EEoJmCVcTWaDZXYdXZ57N3CFKFl5Cb+TFVrUJdGiDrDeuqktaMnEsle6ZbqmP6RU9ZNj1AWrfJmRaYFppUCkDNq0WYPAubkEXrV0u1Ucu0AxU2Hr6Mh7OPB+1rkrXvROPCld1cd9UaDk9VEQJesbFR8fV8xakDbazqLXJgvExa155R0vWZhopMSpRSzzwSUuqkRPRhe8JviAs/4P57OpFtbVpmOmfw1r++AMeWcOQRtC/+JTWRZXebhrbqai6++FIWrmoHPFJKcztlEx3rAN9eAamBo1uhkiVy4gA8+P/cSSdspOgu59Z/gEwRNrwG2qPpju3hMqdkNe5tqLFE88pS70BhzCKtIrOTtWM+HHAMXw4TPGtQFNNRT03Y6FwkfjoJErhIOm0Jnnmk7TRFs833hmqf3EYmbXpeNI1P5hdM2CwfKaO3L4Ejd0cXei/mTJuJrbskkO3FbmVNdw9VQ2fp2BgjRh9/f+7bSOHwa4XHKew00Wz3PWL6A+8AGjpoOi2lCpfedrs/39Y0hgsa+UmvCt7bpGpkSNXr4JFSWs4ljYaBm6+60t++Q3dgdpxc3aSSTmEpLq5cceugSzBBlzYZj2BQpJQXgXRMfil7p/YyWhmlNmthCxsNrz8jI3qcCAKj8uZvSLVfw1NKpVIpMHlSHaRsSud1Zx2jPcNRcPbSTh4bnAagtyXDQEfuaSn3RKIZKSVjAXyxDSJwMi4hqKeWc84Th7hnRRv1THSdZpeJro3QfXgvrcMP+GVe9eAO3rb4LVy3+0tk1qyktn1XsB/NU7CJIFFMs0qJusnbd32VB5a2g3Cv5SWTG5CH5ieB/N7ZCeqUpQ3tWSMen220ZlP8/LpLn+1qPCNQ4b9+9r2nseyE4JofCSl1ksGSAtM7Lf63jefZRSw04ZrktfeDEGSp8pbc1xmeepjenbfCd78FwBWkOZh/J6mWS0jt2Yee72J5sYAuwRZgNcT6Cyj0QmkYpg+5s/SMG55YGobb/9Gdd+B+uPZ/I1s6Y9U5w+vUVx5lVJpqfYD6+OUJu/Q8gjxWE3v/IgmMzpOrIMGvLrxB6dOUBCJBgmNF/IrLVYZ5we7PIV57the+Zze8ot+8r86MpZFaejEZ7ZsQ+q4lDEHb8hILzpnix/t/Ayq3UzXcz2C6yryXb2fJ9DDrx/bz93d+kbFcGz3FKgdSJjVDBwGOpurnEQUSv6/QVXf7dnYqw2TfYnb2FlkwMhYoR7w+Rk1P0QI+KSVyOb65+nIe713NSL2TLCYvSB2hns2izULGtKmkU5ieb1V97153Oz9lcPi4ufNMP+Rr/nt30/Am3vazIKHNgr6FXDh8QXSleT2lmsPQNTBhw4ICDMOGRR2wHeJKqWe6m/VXr9zAb1++CkdK2vMpMsbJH6LlZ9872rEKnRJdGP6s6QOS5ueryfzQuU6nHmfD499gIlMM+snArR1n8wfal1j+lX/n86Nwx4/3ctETJtKLVNBE2IlTmYYH6nPNsilSCu06jaZ3krJLoc2aqK0SJHga4Bva20opdaL2lFy3cSSk1EmGXXY3ldhpeb6RUj5a+uGt3+aOG77FJSP/R7E2BA99FZXhL0uJU7J3MbDkCP3j30Fr6cdJr+VPhiQHczNIwpJz6apdFp4OO26E8qg7O5WFV33OzSI4dRB2/yLIMjgHTKfm+gV5h71l9iCTWXcf5dQMudRBd4/H+Tx5np7F5yQaDXCjDOfcxqCN4XtO8l5JkCBBgmcUc+hvPE8pETVi9pdqaJ6SKR9LUaG1GCw8bSoyr2Kkycg6M9kcnzjzTVQKOc48sp28VWPdxH7wbDePrF1MzdBxhODlLddzk7YaIQNyRUgJUpKulgGot/XRcep7+a61jdeO3Ee7HIq0quolqXFsm0c3vJfxyjq6+wXnVaf4F6uI1AQF26Qr426Xsdw+kyME2/s6SFs2i8dnSIW+nATOW57RuTy2Adfuqd3edgKJpJTyzNZDZUY9pfwdudNzdJTUO7Yr5/Z3DY8APBk+9vW0ZI6+0kmIePheNDQuCl0z/DvAqVqQnbvccBa/qPpKZaaWpE3TW1fwcHEtZ533TQa2T3FRdxe/XJVngyFZe8sv0Ow6pdNCO1NWcE0IsKzTguy4FlMHIYuISD+tSYoZf/Nn/xpK8NyF7iulFGGajN6eKSSk1MkEATUM/Jyrvmnfs1inE41VV3LPQ4JLRv6PvOn18IQO57wH7v8CnUyycv/XoQ9gP7CfaytABe4Xefx0y4A0cjBwlkdKjbtlGTlY82L3365bXFLKLB9XFVfu/hEH1i9FYrI79RnyIy1IaR19wwQnJaSUfGPbN4ABf55Dg+yuOSLhe+pX0gFKkCBBgmcG8+SAFIBmoLLvNT6ag2FtqzTpTJcZr+cByYJ8EPLfNr2P0RR+yNt0zuCW/rPoYYYPXPZBuitTnH9kC13VaQbEBLrhDpB7XjBNz6JprpYPMCNmqGOAlJzr3Mv0DTkWT7ok0ngqz05d8kh2PZdpWyJtc6wjTLZqWJlWsrbOSM/p/tK03ssZlT08VOjHQsOuuR/Q0paN5jg4msbOfjcZTcp2WG5Puq12IJfWwbJ9r6tAKTU/qpbrvdieaWeiNhFyJwoRUc1d5f02NYWfvtbrS2lqOBJTSiXv16Oi2R3hHPW4NR9YiOMgBUWT/RakxZBmMJjtY7BkkUqVmC7oDF3Rwa99/itgWWw6+y2R2kf/huuig9aC1Mpgg2hQ5D6fB0cJni34Sinn2Ij740WiLJ8bCSn1HMC86VyfB6ikuxiRbfQI7yvlgtOgayUA69kBgFXTMO2F5PKuSmnWTMdeYRK56HwoPOROTnqZdVKhLzIpT1lVLzE/oiWnbMd9UQvBqsE8VWxSxQMwPALOxjnN0+NIwr1ODmwZ28K/bf433snf+fOklw786OcmMNB9vt+XCRLMh3p9HMuaOvqKCRKcEDT60khw38fCDUqbOZil0FdD6OAYi6g76/wBh0DyzhUP+s/8fbWz/XKyTsor3V06mXf7DpqQ7GpfxK72Rdy3YANZafIbg7+gR9sMNdjcsYp1+ghnO9u5TfZ7+4FFtSFmJj2fKqFxfd96FnqDf1vTAiJAWtRnvs3+nhyQAynJOLMIrYhulbGNPAvNKdY98QgrzSPY2TIzBhi2w2n7hzm8YgnTlVnKmTR1Qw9kvBI0pWrx2lSyVVr7+Y9yzXa9M7NGFmr+UQ4d8DD/FFBIgefi/EbnDaTUSaCUes5B+Z2GZkV+++ci6joVXfd4+zNNWV9+8NBvMtjVz++v/RCPF1dSbyIlb3LXNs++p+ot1LUb2jK5ThKcIHh5I3ylVIJnDgkpdRIh/rXD/6sdo4rjOQqppbi69nH++Ey49tzFLik1/AQS4ae4LQ1lGCu9mfTyC/lp6kZmdj7CRexufC3m3K+E1LzBUrYtWKZIKbPSpBJzd51SjsOZByb4j0sWsHa4RLFigDSRszMw/Dj0n/oUWp/g/7N33nFyG+f5/w6w9Xavd15h7yIpUaJ6syTLvURuih33XuM4Thzbqf4lcWzHiVuKU9xLZFm2bMuSZfVCVVKk2Hu93tt2APP7A2WBLXdHiiKPJB59qFtggcGgLOadZ573mdONZAmlXOG0x2VHRtxKKfuT3275OE9gP+s16g4e3/gGpCycUMKHj9MHj5WzxErbU0AoVDRn6Hmqnv2/ioKQNLzmtextmCDeX8WYBhdo2XyWH+CefzdmhJE1H+SH8XEkClUN22HcJKXcgYIQCrHKlyGSWwGYMsxBsEqSTgshJCg5c6dkIMxbXvl3VCgKb8+aZIyuqq7WJz/bmZASKQTSSIISQ1jkzTWpUeZ1Pcazi1odhZIiJS3jCaLhGMcGh0iGQ+iKQCiS0eolDNevpnO/QAuMEK857rmGyyqmydsC0rqplIoEvNt5lFIlCY38AE5JzKSU8icSmTVkCWLHrZQqFd220EUPZprihsAvuZ+10x6j5KCq4w2VX1ujTdG46EKqa+dBDrLSRSi5COG8Eb63/FJHNaxZuHEpTDwkVgEp58dkPl4IXszZ9/yh7Onhk1JzDKXepee6IkNVBCNUcbRqMSwwZ9mjYwOPbvgvdjz7KGvXXUjDHV8nvNIAAhj2lM+eyyLNhmjZy+GaP4WpfjM4XXtrfpNQzPw71Q/fuAhe9VVYfMOs6tiQzLCjPUr7xLhJSoFZhxPolIkZYjQfpw+FMvDZy2ntm+gbnfs4f1EZOGwRUioj6Tjbhlbxko6NfqqNj9OD6V7XSgAQVHWkib/iOtj6U1j9OpQ//AfueOBjLPv5a1FlgOr2G2jlZ85u7hRuxdARSpSV4d18K/gNKjMJZPi/+JVxDZ8x3pc/loQAWZOsApJWJz8uUi7HG4mwSKlMIISmBNDQOZI9DqHFbGteymW9z3tOwVCDIASKlgV083dlxRoVo8OMR8MmISUlAd2gcTKJIUyXHdXqkRtCIBTYtfxdZMK1dByDDiBX/QX+6qoGEuE6gorCsorp/ZMymqWUUovJK+c2iOLWcKbZ9/JKKSuGsry+ChkFn2CYGeUSWvPrC73VJDEmwXpe25Tdnr0KDdO9RJR7odTsZBIu/wihgTiMTs2slBJuQq10ep5hHUeZrc2CDx8vAPbse1ltdmpSH6cOPik1B1H4Cj/XTdbsH7xREH3kwnUM0sBUpI1GlyYqUWEgQsuQHPRMDiKlhFAF3PjXpQ9U2WoqqVIjMHIIdt5ZQEqVkg/bX8nSYmU/YjrrYAdqupIhHe1DCgNFGPT19c18O12Bs08y+jh/YT71jY0v570/fhmXtWziJR0bz3CdfJyXcL+0BU76HoCi6BCQEApaXwsGY8dpmVqIIbzhbyaUcT4raCgSrle20iAmrLJ1blKeBd7n2S8gso5qIyvNMitJOgMdAjBy5ueMatZDkwYj2UFgMXuaFvDhG/6c9x77vqMMl8EwlcYYSQIgdUIii7B8LCPj46SsxqdjZII1agUk0miKQAqBYrjSAhVJLmAqxKUwEFKhaUBlYTgAle6JYopx+77buefwPRybOGYe11JKlVK2SJEnC4rbwxk8peyBvTKeUj5mhjP73kwbnuhFldKj+POWlU9vVYXhIigBNUTQeiZyJYIqxbXKUFyEZlH9yiul3DGYDx+nEkErfy9rpTgHXjRWyu89FMInpc4CnLOz71mwSTejYERFsdIWpW1mbsmADQVCVTeDuMdDFMkSk3F4EKqAT2yBh/4Rnvn2iamcpDQbROdWSCvoPBFTSPLn4+OMwSalUrEuUrFuZ/3dd98NL3nl9Du7RoTtqbQLyVQfPs4XlPYq8eHjRYT1vi371rWNziGfGmYtCyH41QXfoDJTizLVy+WT+d2OVO5htWU3KaSOAMKYM4o9IRZxpTxEiPwEJyo6Hw38gqsq+9lsOQLoljdhSORjCyFhssv0k8pZM8wZCOatWgt9EECSVqPc1/RSXjWRAASJlkmaep8gSQBpWpqjoJEDKrIJkpa4SZEQyGTRMM3Gs1JDdeIkgVRACjMt0QhoqLkQBmr+ukyDb235FiPpEWe5Pd7OloEtlKKlSguNT9ZTyruV37qWx3O/P8pz9x5lfvalvJ2roOl/ofaY9a0se+1VoeTv4gleYK9qqowflBoiZKtNjDxhZkfMLYpwFTSzUkpavyeP4qtUxf2RQh+nAB++bjE/fvooEmiuinDF4oYzXaXzBj4pNQchChv9czzet6WShSpfp8MjJSgK+cZLIIVBXrtkythnRfZEa6DamnXNmInFAhflVeI74SulzkJIJ73BDIYVPYyhZshk8iPl5X9yjizPT9/zcd6iqI3y4eM0o5StgRSAUIv9iixiRhEKUhhMRIbJpL3ektXROkiYfoMKXlJqRMStVL082XSZspuPBX8JQdjCGgB0FztjuGafk4b5OVlrWggYCMLxKkAjokVBhcMV8wnkKs09wk8QsP16pElIaUGzjHSokvGQyZ4phkTr6zPLFDCcHiFiBVKDlVGeMuah6wMoyjykYpenzIqUsg3O/+LSv2BB1QJCaojfHPqN871HKeVYZUs29O9muP6CmV8Ns5x9z0d57Humn0xCQyVEjBDG1MWYs1SXw8n2KcoZi1j3qvDrQIig9byVSt9boihEMhkyATfFWUJjZw9Y20bn0k/f8/Hi480bOnjzho4XrXy/z1AePil1FkA5xxNa7dP75ZZu9vRN8E+3rKWjrsJLSrmUUgoCKaRXyXsiP3MnBWsmpZRXKlyIGcZrS5TmG3fOKViRlKpVYKiZ2ZGabqNzf1DOx3kLn5TyMUcRCOXf03qBUmoac+6r26+HoR8BoBiaSUoJk5SawlQ6uZVSDZhpfeNaC+N6C5AmPDDM/4xewmvadjvlt10/TLWSBQGLKgf4Yu5WVqpHebXWQ3tgkr36xRxjKYanPiJPSqGjCJ2q2jAjE/Doxe/g4ORDXDSxDcM1Cc5wvAJNGoRzZlyTDIdIEkJJP0UoeAuGouXP2ygR++z6FWy/3Yx1qtvRLbLo+o7raYu3WSopL+xZA/uq4+STAW2iwhW/lUQhKWUZzRd6SpXZ2wfOtUrXjRIZqS0gCqfbz/BsMP22AsNrAuX67J3R0flaDRESJqmZLZXCIO2657MNSs6+58TMJZRSrufESV/0myMfcxz+Mzo9fFJqDqEcsSLOcXO/jloznBlJZNl4YJj7dvXznqsXekgpIfKqJEUq6HYj5W5YZzt9p7CDH5cV6Uy7Wg2oqxnEVErN7pA+5g4Kf2du0/OZb6evlPLhIw8/wvIxh6AE4MK3mQQLuAgPM4Za07iG+4/dD0BAqN59h/fni7GUUiFLKTUlTIWTKgwUDAwU4sJUWg1r85niAmATEsF4LsqhqTqnXThi1LGuro+g0FCBdfpBvhn8FuG+HFcGoFd5il9lv4bu8mUS0iBgKU2M3GGyYoyQqANqqU4rLDKrxf7ly9h72dUII0qkP02tliQm97Pm+AAjsQjddVVIac7opxvmXykVeOo/zFmOL/qjfC/p3r+E8bzKRlu0wDznAnWK3VzaBIEBTAYNwrljSFQXCTVDC+kopaw4rEAp5WP2MIIzK9/ApfTzDMiW8nKaBh7utMy9UkMEFfN5yxkuwkgUx0+zMjq30/dmPSGNDx8+zkb4pNRZgHPd6PzNl3SwtLmSr/5+L08cHC6ahtNWSuXNHAWp8GRB6CJnn0nn+E14RwtL7S4LPxWNGJ2Ep9Ss9/DxosDlZZBRMgzGj6EFJxEoxGba11HZnQCh6cPHOQfvO9qHj9MGx1OqxIs3FIWGpWU9pd5zwXt47abb0Y4/TV3zOmA4v+/xp52PQmoo5NP3prItYHFYbWKQ1yhPcrk1Y1lGVhCIXoMaXouR+AGarjGYiWG3+I8PLeSeugt4dewhLkln6BCDjgILIE7CPqqzTsUgpJjxiZ7dyVQWpqZADa1GDbRRp5vakeb6eQzGY0SPXYAajpIMw9YL4bKn/45QboruuiqwiAjbl0ci4Nn/Ng/UsBQ6Lzc/55L5ayUNdEMHIQjc/Sl4y09LzOBmYn9LHdXZSXLZnwPQr4QRqRSxtOLZrhg2QVFgdF6gevGb1/KwYw9nlr3CWYWRJJQUv214kqUTQXqjI7QmTcP6LFXlSj2BGtgpofk1AkANErRu4JReSinlnuFvmnRN63freEoVpu/57Y8PH+cUfFJqTqJAydG1CSoi0LwKorXWJhL6tkF63FxuWm36JQ3uMcmWQBgalp0VL21FEVw8v5aWKnt2lxKklKJ40veeWHsb1z/iLWfWBuJKsVKqPOzGXloZ9HmPKWkedHbH9DFnYM4nY3UYWh5nLDzmfPfaxM1A8dTXDtxG547Js/8M+Dg/UOz/MffbFx/nE4T3b4GnFEBDIAa6Dj3PlS1FQSeqjBHHVEP1GDGHlPp04HZepz7hbJvSqxFCINQaCNdAcoj9k43O92tuej131j/J5AGzQ90mhjzHUoXBS+QRFqm7kfwBAkGMFJfWHycjKzk2VYFNLOnZncjsLtTgIgDmNy4gF9bIHbZjJx2BymhlNYergtYRLMWVNXuf0bgKkvthqo9/2fNDfvPUZwGorA/zJS3IypyOQd7PR+nbUXB1vO1dMuTtRugiA+mNrO6Os31F8fZFKOMp5eOFwY5LDoW7mNCngFoMl7JpXCwGjs+qFEleFJUvQRAulb4HoIZYFA17tu+MhKY90nTpe46n1AyWGvmv/GfIh4+zET4pNSdRMCJ121tBpKF2AXxsExzdCFt/Attuy29U3QkLr4GtP86vu+4z8JLPvXjVNAzo2QLZKajphLqFZkMx0W0SPuHKPIlWuN/QPjDyo4UEK9yZUUCxUipPECkkwuOYU9LamIVSauwY/OB1MG7NuHb0CbMuyizSI538d+dwnLBSyh/5m1OQQpIKWGa31u2dTPcAi6bZy0/f8+Ejj0JSyv81+DjdcMs07NyyAqWU4krVu/bTEIrBnrvBSmkrxMILH+XaSN7UGz0KFsezQpgpbo/qa9hvLEBJvsbZrHbeRfQfuI9URR3RpDlz3RONPezMHOCVVt3eqd4LgIZKAB0VnU/Pz7J64If8O69DorJebqMlOsWVTQn6A58hoj3O8vA2No8Y6FJDGpPW6aqEAiqa03mfQpXV1K77IJWyl42DdzqDb7ZHFO2XwdhemOrjZ/1PkbCuwVBA5eGKKCvHp3BryFW9XGqYMIkK67wC0eswZJpQ6hBpMUhA17ig91rmDS/muXuPsnBdA7UtLi1yOaNzaRMQ1qJPMMwIOc0ggRSyxGu5dJrc7JDftj2XtSuQR6QKlCAf6Gjkspo4SV0nqihcWFXBPlEQ5Lt2nnb2vRKeUl4Sy39GfJx98N9txfBJqTmEcs2CCFdCNg2jR+Cfl0FqpHAL0wtgxx3mYjAGuQT0bX9xKtq9GXb8wjzeZK9VBQX++Hl46Ivw/E/y27ZeCM0XwI1/BZUt5rp7PwtP/2dRsUrT/wAVzix8ZT2lsFL5BHgao9GjoK8HtcxjfeRxGDmUX04MmPWvbmPmRq2wYbc9pfyXytkGr9rN/BwyQmTVLLqbKC0Ft9G5/cl/BHycZ3BmXToLlLg+zj0UmpQ7KEdKufya6Lzc/PeVJZAYLFlMR2Tc+ZwM1/GP73wN+vf+DVXoLFe6APgf/ZXsN9bzR0ZeARIIWipblzLrwe4HGI2P8FwkzKsTSVRLcrI7chFr0ptQ0QnkxrznZ2hoMkTKqEQIhXi0g3mRe3lmuN78XjfVVhOZSRJhNd8WWQSEEooT0W0CSLeIHsMqW5qDgEDaau8ua7mMp/uetpy0QHf9rgPWNk48Zq0X1v/yzZ9CIHolVVOSdGCQgK5y9ZE3APDkvoMc2jrIGz9ziessbVLKTt8rbXTuozwKL5XX6Hx217HUL2m6dfnfXt6M37P9m38AioICXFRVQWm4jDE8nlKFW5k0lFEqfc9/Tnz4OOdwbjton2UofsWar3qx9o2mEgm8hNSSm+BPdsK8C81lLQ2BKNz8BXM5O1V8kN5t8JWl8IUG+PtmeOxfTryiv/ljePJbeUIKzKBncC8ceazgeFth649gyw/NVMPjz8LBh8zvorUQb4GQOQ2ySJn+DoXpe3v37uV3V17B0WrzcVWk4qITXFXIJMz0xXLIWt4NjSvz67b8EP51DTz0JVdBJfa1jc49YqkTU0p5ivJxxlBqdEKVZkBsm8HO2NX2lVI+fOCn7/k4o3CRJ57WuIiUKjA1d29TBhKQa26l4rOHCdS3M5BbQk6GyMoQXXoHF4VSvDE16dnHJpyiLrJLFzo3z7+Zy1fdigSuSX+Ny9Pf5D1j7wFAwXDqaXfMA3oN/9v/A+4d/4yzjZ1+Z50YANt6uxk4YNVX6EiL2DEAXdoeUjpC6ki3/08wSg7QreM1VpjphoYApPQqpTSLlCpo8SIyWND4mQYHAUd9ZqUNWoRCJlmguBJlSClHOeMlwXyUgJNWUPoqFUbJs/EJ90weZK6ZrgIFf4GWC2Y8hvR4SlnHLdUDsonQMp5ShT5nfnPkY+5D4D+o5eErpeYgigSswQp47TdNdRISYk1mal7AGqF7y49NMkhKaF5tps8BZKZMEqp/p0lYjR6BY0+ZCiEw0+e2/Qyu+ZS1bMDdfwoDe0zya/Ro/njvuguCUdAyMGrN0HLxu6FuEez/vXn83b+BKavsjz4D3c/B3t+a6x/6Ijz4994Te+dvoGUNbPou3PVJFN2cQtZuZ2trzdS/dDpNurqavYrGMsyGyJBGQRQqkVJAZgLu/Tz0Pm+uXnwDrHkjxBrzRp7hynwdHv6i+Tc76YzYlLoTApzpjz3wGaazDrJEIKVYwY5eJp3DgcvoPJ+O6T8DPs43+M+8jzOEfH6/uej+zlFKWX/1nHfZs20ZUioQgVWvQ2y7DQIBZ9sjmUv5xcg/OZu9pe5zPKQtY8y1azwUwjSfsjrRaiPZ4BBXtV3FzSOmumlBpcFjk03UMgGAIiTodrtjno2Ra0HD9uSRLAg/i4YZvwxUvoQ2WYuhRKmbanI67gZph1GQgLQ9M6WBIg2nbCklBKNkXdckdvxZACsNUHqUUqpDmHmvYaOspgeRJ7CsfTq6HqFnUTWG0Hhs4e3EG2u56JmbSgwGWeVpVgp9gdG5j9mjVPqeOy6ZKcn65K64yCtm3fdsOvXsNOl7TvaBC1ogTgAwSqTv+W2QDx/nHnxSag6i8FWrhOOw6HrzXylUt8G6W/PLtvn5wC749jWl91n/DnjuBzC4G/6uDuLN8Op/gU3fKd52/Bj85C3mtm7c9LemufrALnP5ue9bXwiobofG5VC/BPbekx+xVMNQ1WqSUU2rzHWW75QY7wKWIJ/6T7jwY6xYsYIPfOAD7Nmzh0cffdS5LgGpOtl0Be5bJhH25Lfyq448Bg/8HVTUw5o3WwWYwR5KEMJxECr6olfD3kzpa5Uv3YMTVUrlxxn9xnSuoVApVRaugEuxfTz82+njvEN5DxMfPs4YCkmpIhWOe9sS62zULy3YRlChjHo2CQdzReqOyngt4ZqPMBXoJ56rBRHFUD5HUAk6MdAPlm1k/FX/iUiPwzes0g1v7KFJM+1pYeRBYpm7uLTyMPuS7QAkAjFUFuCu/cHqR2ie0ghjpseZ7gb2RC46ucxzhCc3kUYhd38V+quaSbvasujgfqipMpVS4KTxAah66ZR2AShSeFRVANHMGFCNIXR2tjzOpfqrzC8k7BjawcPHHwYgHg9zy6SgyrDqGanB2RD/zXJCsB/7oljEzikQztJJIy9DdFYpttG5u9jZpHTL4vtbajepmEZu6cC4dRz3RsUTFRUpp3z48HFWwSel5goMM+e/lFeCqG4/sbIi1eZfLZ1ft/hGk4CpXWASNOvfCUc2wshBkDpM9sDeu81tK1vhFV+C6g7Y+HXYdWeekFKCZoC35Kb8ca74qJkap1mB1eKXmEaiAB0b4M8OQHrC3K+qrbj1aVkDSsAZczMSQ/C7zyHmX8m81a9nrMX0orLbo5eNX8k1O9bTxyddhZhzqvGIlYZX02mOkqZGzXolh03FFpgjoQALroZ33AnAyA8eBrqcskrB2yD6nlJnO6TIJ4GqhhniD3aNQvN0e+VH+vz0PR/nKxxXEd9TysdcQpGnVM677Ea5CU4M3YyJIE9mCcHK6P2AJLv0DVQf/C71FcMgvB3jSDiHEEEq9XZQwFByaEqWkBpyyhRqgJqKEKjRfLWdwRCz/odSawHYoQW4zPomFDTrOyz7eSKykNVSJRzqZf5r67j32ftpSFzgtGcSOJyLmztKjVx2B0Ka10IfHuR4y60cWn4A0nsJGwYB20sKIBhDN0z1kiIlSoGnVBFE/oOC4RAUimHXJV+nzz72WY5MHLFOCOTaV/HuyuVmzLnwWqu+fos6W+QvVflrVvIbWX4XL3Eli/ok7uEIYT3/AaOQmjwBWA+MUoJkqpg6ygX7vsYzr6yDUfMJK1lnOf2yDx8+zg74pNRcwWRv2UZCWfGqEyur+QK4/COmx5OiwqUfgKUvLd7uo0+bZM1vPgn77oEJyyMq3gSrXmd+rp3v3eePfl6s2GpZA2/5Yfn6RGtLz8Jno34x/OlexJ07YfuUeRn2/tb8d/wpxNrPAyC1NFLNIkSICiNSVIzESt8DM23vNV83P//f22DPXTBhkU6RKmuHfENquBpVpUyLJmSeGJPe/80KvkfC3EA+jSB/J2yl1NH0HdR1/57Bik8AHcU7u43O3c+CDx/nFXyllI85CFHwYTpPKUuFUQRDyyusXEqpkJJmXey3cNEN0PMYqM1FSqmF7eN0H/01d0bm0aDrJJonMRSdkBIqnmVOyYffimEOIArLqDyNORAXSBlIy6VhJJ4iGHsdhKJsjGrUI1hfNcjV2yUdxifZHT3MaMasT07CoG6fn4aUXu+rT235KvuDZrwXkdLp6mtCQNMKtL6tZr3A9As1DFf8UuBTVKCcsVO5hJU+6N5+ImvGZ80VzfQn+5nsvAzWf8L6stcp0bwW7iUfpZDKmeThcHqESuZ538ZuE/qZXtczDC5IUfzTAoES0BmtqqJ2wryvwbY21MrKEiUUHEdKp07eFEBvPULZYWrHjiDZYG3jp+/58HEuwyel5gzc+d8FL9tAmeCpHBQFXv7FmbdTg+aMeHHT5NIxLg/F89usvgUOPGCSPXWLoOOy4nJOBWINiIo6YAqj7TKoTsG+38GBBxDd48DFSC2NId7JA00f5+bxKwvS9ySyso0B5UNog6PweISqqkeIX3cdvPQLUL+Yfx3bxtPaKBjHqW9u5P9JjboSVRGytMhZ9ay0RpBOYkjGb0rPLCSyILiBmmwNE8EEqhFA15P0Dm8EbimxdylPBB8+zjfYKTYFnRn/d+HjtMPtZ6N4/zpEUAlSKtZgKsWbVpkWBErQUlbJ4v3cnXY73UwN0RQ8wIhmDtxFq0JUVSRprfw9m1qbWZLNolbOgwymUqqwTFedbKXUwtgWDkxdijTSGPoAJA9iBM1jj6ChhhZDIOWc9fXjzWgTnbQBfeGkQ0rpUoKIo4bWEE7uRMmlkeGFJNQxkAmGk0NQDW0GvG5iEnvOI8M6L9063YD9e37g7yBuKePL8hfC87XwTs3neTcsql5Ef7Lf9AZ1dvfb1hNFUkuiEnVM7OMeL4G8Uq20qnua6zzLrxRF8uef+ywbovX807J2gvPmIQKz6Fa67rEiTMcopZTtm/Sq7dztjXBm4HbvMHP9ffg4k/Dyv/6DWgiflJpDKPd4vugpEmFLOdS/w/zrJqXmXQgf3vjiHt+CYhuXLrkRrnwz/OsqyCURuS7gYqQQKOEIGcWUkxcKlfRkluE7f+0sJzc/x5LrroP6xSSu/wzf+cnl+Y0rojxmJHjdjLXKH+BbP9zEM4sbSTsc4Ql6SvmigjmBwK5DvPdenYFl+Xu3tvcabhxd5wQ929ZtK72zWynlpkSl9FOZfJz7KGdW7MPHaYIsaZJsoSh9T/cuu2F7Sy6+wSSlAhHIWul+tvG4SynlwPHHDHJD1bfY0PIo8j33UlEdJvjUk87gVVYIFGvGPJOUslMCAwVlg5HNggILK3dxYOpSECoXh79KKhAkXm2Wkd/aHI6TQECYszJPaBpCxZmsRcOMG0OxG3hV24OMHR1nu/5yEjzjnE/IkPzu6HEA/qvajAF1IUirKkeCQe8xN34NQkFoay2+jh5Ij+m1kFA1vht4OUz2O4p0xUqd9A7/eRkFZ8nvt5WF/VvorOqEUagx8iSfdP2/aD/gmCGoLrnJ7N/xAoNsKMzovDbCCxeeSM1LeKwWp+/lsxls7yp/wngfPs5l+L/wuYJpWl7lxe7sdl7uDdo6XyQ11AwQ7igkVg8f2gh/eBvi2j83VyPgtf+GgcGwmMQwteX2Tkjd8myoME1C9fFxUtt3kD12jIyeNxJdFzMDuZQu2f1EL1t+f4xjPTCViZRsj7OVpn4+ntGoTLmOB6a0PT0Bfduhb0d+tp/p4AdZZxSx/7uXDfvNUTY7iA9nazwkU+1ITemdXbPvuUf2SoRTPnycsxC2cYw9kDCbucZ9+DiFKNmXLiKlpkvfs8gh2wvTns0Y8qRUKaWU3VFWwwgBVWo/1Y0VBEMq6BqqVbNjwSBHsmMAHqPzfPqe4vxutEzO850QQa5o7OKm1oNc2m6SZ6vNgMcZSTasmNGQkiOG5mm/dOviqCJHZ2QPa5f3IhW3Gh9i0oAlpq2DHf3lgDfRy4damsz97bg0VFVMTUhLVV6Q1+UmpRQJim6mJkotjbT8qVTrfngIxnKzIfooC/v6hW2C1ftt8SrXTRxxETyFaX+lUGyiLhwz/VkbjDvthSwqz6uzs9fZkVWp4/iBtI+zEz7RXh6+UmpOofQIhVLOkPNUYeVr4M8OQi4Jasj0lDoDsMk3R4HcsMT8J/YBe0FA8u//lQ0tl9PbOoonqVFCxoDvv+kPGSXGDZsfZ+2hPRx505sAqPzq3wNmMNQWqeP5xDESYyt48Af2jIICqCMQjlOIoy9fTHTsWuoe+Z+ChlTA4D64432QGDRXLbkJ3vZzmOgxUwGUgGPu7nfb5ghyOaQQJWeiySkaQSOAMMrdrWKjc2vRF434OI9QJn3Ph4/TgBk5UJtEsgeJSg3s2eSQPWClukgpm6gqmb5nk1JWBGKTTQBGjsXZHM2aRr+VxtRc0czimsWlCTJhqq0rK9IgoWlhPXSbX41onTww/nE6kzu4omI/gYzp1RO267K0FhF5hsiu7/Oya17CL59ag/27zFhBlIprkEwaZo6UNDeriNTCq78J/7LCSdObVBSOWPvUEuD1k5ZHZ3YSQub5eNpNj1hcWDPyub6Wwhn4QQqHRFEsAqpk+h7gnUjE78GVg31tFGewTBR9K0WeAPLq0ryKtMKSyy0ZSv53IoSc+bdYsvh8ifnUvOL7LIwCUkp6n5FCO4W8D5n/zPjwcTbCJ6XmIopGEE5D4F9RByUdlk4/ChsUOy1KIjAOHaWh4lKGWykiejTgztxa0gS5fuJhV3mC5O49iAaBgcHuwd1cfGg540cToP2YQChEIHQ5UulAGG6qyzquqpCrasAoCGwlAob35wkpgMOPwpcWQHosv+6yD8Mr/slPd58rKDFM4Zi42gPt5SItT/qeq8hTVzsfPuY88h0In5TycWZQ8skrl75XylOqSCnlUps4ZFaJ9D1HKWV1zj2klEallNx7vIeMEHDtnxO+7jOoilqyLhYnRVtzCvqgsjE/KHYgfSVD2iIac4cAmMpVe04xUhmirTkBB/aBvIrGzj0c3WXO2qf1PQH1V6CIfN2Ey4VTADVVHc452DVKugZAHw6vRhn9jX3Spa+3zF+bvJeUVyllk1ImF2aRZbZSqmT6HgWkhY9ysC9TqYHrk75uJXc0V/a0XMFUVRi04yDySqYTbgVKiriKR/bsZylPXPlqOh8+zmX4pNQcQum2wDhvvGqKlFIW7PMPdrQTeulLoEcii6gr084xbemnAlbgOFi9hB0r30B68328Uy5DU3IMtlQzry+E1PuACXIpUIgjIiVmW6NccGQt9VreQ9UdkBozRxRt6b+NnudmdwF8nB7Iog8ODGuK4xNWSpUIqHz4ONdxvrRNPuYQyva2ZbHRueMNVaIza5NDNimlukmp6ZRSttG5rZTSXfvl/Z8qHMZA9W6nuMNuq9y+5731BZJGDQDhsLlfpTrE2oq76FHWAE1m+p5dh+wUas92YI2nvio5sjJCSKQJS90RNr2kfh2v3vAxZ3/Fuqgpi9wIGRLFSrWjqg0mukt4StuDhd5zcavJhRSe7wuVPWWVUgWejT7KwSb5Sjzfpr+EJ1IupyCaLYGViLUCIwDE1WE6Qs+XoytLwhHWuUlH64EJBQZQRcat7XMRnCWUUu7fuw8fZwn8t9r08EmpOQNrROA8HhYqN/mK3fERsRiB+Z3oPVMzNqJquI4nLnsX6WgDWupJpDEOQECHuhHNkcRkAi2EtT5m1SyXepscf8r8W9kCb/hfOGqZwtctNGfzue1tJaTFPs4k3LMrFlGbVoA0K6WUK4j276mP8wu+UsrHmYcoHsGy/lqdVS1lLZdQSolCUqqEp9S0SqnS6XseuD0mCz2lAKK1kByy1gchUuN8tTd1PQDh+hZIQG2gm2uq/pcWYxU/zv6lOXhn12/0GBUksX+XerTerKLQSFBLiF4C6M55vG/5W5nXvB5ypt9TwLqMCev6haV0roGuRNiTfCnHUvWsFWGO1romAZF4nWmFRVFICUJw+c46amQAaaRAEU5sV1op5YKvlJoVnHRIRynljkmm95QqW2aRc5OXWLTvyJXVP6U60G9uf6LNgMtTyrDKC6gJVlf/lM1TNSXqVNzelEr3c+3gw4ePsxA+KTXncf68XZ3ufgEr5aTvSQmqgpSGOf4j3KNyEiFVlmRhMKCTrlpKMphDT9yPoZkmDUJtROqDKLpEWuMxx2IGS8dnrptlw1AkLqZuIUTr4MqPmwbxbpP4PXdbO/s22HMJzvPlMQizVHozklJ5o3P3FoV9Ix8+zm3YvyGflPJxpiBYMDgE5GeEM8KW2mnZy+HoEyaBFKmBBVcV726TQ8eftpZV8/0ujTyZpBQor8DlKWUdy9DMdf07YLLXewybiMomTM9O93EB5q2HA7+3ts2h9G+lWm1lXJ+HQRAEKCtfxtZHnqM+cJSO8PNUiVFzcylhx8/NfbueZj2wgyEmaWY4bKq+VaFxSF7K1MA2dEM4eXq7dylEOxLUNkXNKiGpTNcRTldQl9NRQ8eda3A8sYqHJ94DwJXjUJmpcZ2gLCAsACEJaQbZoMrC3hgAesU+csF2DEvxYiulvEbnBVSI/2opizv23cFvD/+WZcYriWBfz+IgJJ/2Vri+PKnjXV9AR4lT1yOJp2HAVblqwyDjSjf1wiLfpFq0zvzkB2A+zkb4z20hfFJqDuJ8bYsVpVAObkIIgSFhT7ICXYsiq0IIqbKiiCIK8AfJAEkhkWqIXOpRpEVIAShqK7o+iDB0ZyROVh6C8WJz82LYlJRbYyPgFf8MS28qvYtLVQMu0s1/Ec0RSGxq6bBexzryo3bKLNL33APE/h31cT5BlPgE/rvNx+mDRGK43sKZaJied36MiwGu/Jj5bzpUWWRWasRangf9O01SqttKuRcl0vdKeUrd/Wew6X+Lj7HnLth+u5escvtbrX87jB6GqQHIjCOOPcGtDb9nvO0WeNVXicSCJMYz3H7Xu2kK7Kcj/DwBzI67lLjKNWOTGrWfSVajKREAKtUBssTYNNJOp6ZB0DyPXY91Mz64h1s+fTGseTPG3sO8bf/nnGrtbL8DWg+Y19WIeU4prFVAIO0c1YEpkQIhuORwL0evCLEtV0P9RAhkjqSL2LOVUp70vQJPqfwgZfFlPd/xzS3fZDg9zFL5CgCiwSjjJPFcQ8fLaybVWcFw6yw7IHm/pxPosbjSIT7+a51f3jCfqfo4b9Y2ckk6w8bCGkr7jzVro0VKGeiUhM9k+vBxVsMnpeYKyra850+LPJ1S6ohRx6PD1qyALc1gwL+THx0SxnGySpigUU2FFOTCNSBN+XnbyAQ9jXHU8Gr07DZUXXcCy4X9duM2s5pJujkpp8bT3B+XqsbHHIJNSAKGI1U3/6+fQPqeJ4Y+j36nPs5f5J/ykzS49eHjFCIbCGCb0CSqYiy97urZ73z9Z6HtEjN9T1Fh0Uvg29fARDckBsxtYo3Wxm5PqYL0PYDdliF4vNn817YeNn8PRg55jxmKw3yXamvVa81/j30VHvgCpEYICKivzUKbOViWSZoklG6F6w4pRT7FDiUARo6F8ftYGd2CqmURSOaFdvIkbwegqfcxejuryVlhSTphqVLe8N/IX/0OjuWrVZNqAn2XeZyC1Edvi+n9Jr9/hgtjx8lNLmWABmd94ex73pn83A2qHzNNh6x136vD1cgMVIUr6SNZfgdnBhd7xYm8uUXB5/zA7MlD0jYCG443MxBo5lXcB1BsY24dOhHs5/nWh6hNtoCQZOLbQEZ83zEfZyn857YcfFJqzuP86eyKEkbnR4YSfH/TIHs1MzjsCOQQiSyD4ahnKtr42jCHMt3Ej1QTk5CKzYcp0++pbXSK3pYQCHP0UMiMs9/yLoNDzThExbgRIalWUWeMOtvYI0GeO2H7Ek07jOc1yXKMQc+fWzo3Id1BlRUkO6N+Nsk5Q6MhC5wX/Hvq4zxCoVLKf/x9nDZ4GtB8J7k5qLEiFp19OaEYrH69d93bfg5HHjc/R2tNwghKK6VCMVMtpWfzJNZ774Pa+ZBLwfyrIWN5A9QugAXXmMortUTYHS2Y+TiUVyeFY+b2hrRIKSvFyTDIk1KWl1VYZFgUfAo1oDHavZKpxo8wFqgFdhHOjhLKKuQiITN+cQVaS6uXMsxRZ3lVxnDKLCKlZCF1UKCWFOYaVUoaDN1M0bLUOLYSWbXUYrLoXjqllPjkw4YmzWcgokZIoeVDzRLblk7Gy2O23WNzvK54a/t+nwhmc98LD/7kgjtN43whWZHJAjcXb3aC9fDhw8fcgk9KzXWcRy1yKaPzf7x7N7/fNQBUAfDmmjSv3L6ZHWsuMPextpOKiq4IhlWDmKZiqBHs0XxFSgK6hlCqEeo80PqQQiGeDRLWLJNRq6ARWUGja3JjG15ayV45QxPoK6XmJA7UNdF1/RL0QCq/0jbdnLVSyhsA6ZiBlj8bmY/zAvbvxJ/9yMe5hOZV5r8iuJVSVnsejMKbfwjHnjSXW9aYhJT93do3zf64i2+A+qUmuRWsgFWvd76KVYe5/m3LmThgwFEIKjoxUixOPp83aZ93EfRsIUwW1SIsRntXEKq/HoFpTC49KU8SQ8/HJRE14r0MGo6n1EykVL6pFJbvkEAg+U7uXfTpQ1Ras7WZRzXhzL5Hmdn3/JG7aaFZXmV51VoJssj134sB4SjOTyZ9z1os/LqgrkJ619uk1EzwHx8fcxV+F2F6+KTUHMHup59BWg209316/rxdLUsp08DTwljKDIzalDHaKwxeU2ug2w2tS0n82FCAyqjk/oosS3Pw/h0/53DlKJmg2Xgu68pxYJVCNHYLjUPP09+8gfZDvwCOmwU4aqbyKOYpZkrfK1RKWYvTHMPHi4+9ja1oaoBCE0/Ik1JK0WhwwZYFRufLHttOXVDlFxctObHReh8+zkr4bzEfZxqnMXnHY3Su5dctf7n574Widj58fFPZr1df0wZrgX8FlRw/Cf0D63pdqYGXfRh++QEqyA+0GJpF/KgC2wHRHYMYLqWULJipQyfgqLAkpdP3oGCukIK78bx+ITmeZyUj5K21LaWUmFkp5XtwlocuvZ5KwkUMetYX/C051ianJ5aKrr4sZpRO+JdYZnbFsh12WaJX5F7ns1A+fJwT8Ic55wh6Dh12LZ2fL9hSDZtmjeYtUwe5Ij5MVVBYqXNeomfXRJBdqSqCtXdB9Vdp6X8KIU1CS0iomrQCNCXA0ep5AKSC+WDLmzVffP2Lx5tmkb4nfBpqLsIOwOLjy6DgOZr97HuSsCK4uKrC+Wokp7NpfBpfBx8+zjX4w34+ziRO1+NXKn3vdKsELWN11cixUpipdoeNZp5uejPETN+mekzbAWkoSCsFXSqC3oWXI5RKV2ESqbsc4twElZSMJUfZ3BVl88g8prLeGdG8M6CVGES1rpVSFDOJE/CU8mOmcjCkkTeIty9TCVJK2hYTQrpu0myua3E6nWN44FaKG7a32ckZnU93vPI1m2Fbvzny4eOshq+UmlMoFrOeT4RGKaWUbuQ9f6TENCSVpjOBUiDjTRlZ/u2Oh6mbMpftBlSRkqhmjSAKBSViklJ2o2pt7fo/ReuhnLHndKSUN32vQLns4wzjhlA9P5CSSFoStMxrbVIqnImw7aHj1LbE6Fjp8vtwEY1CCH6zfiljms7Hdh3lwZFJf1TXx3kBUdwb8uHj9MLT2X7RD5b/aJwpUipvrB4SZh1elf0ib2pbzmUNVUiholiEWTZb5XT842nBQ0tu552bmvOEGoVKqfxhDO0Y3VP76B6vA+qomuyBcP77/IBNuYEbuyCZX7DsG+0jzkopJXy/ulLQjRIzz5UaHBCQEZni9fbXZYi/2aTH2cgFokwGYic+NlHm2KWSEL1/C3coc2Cf1PRxNsB/TIvgk1JzELoMOZ9LqXbOWdhBiOuUc7qXlBKqOeOeLGisBBIll3EIqZFYBVnLUFQAqp4imJ0kF6okZDV9wWze6wDLb0GZ5np7DR2lOUJ0AkbnPuYWIlLna/+do3VUsnv5Tnpbr6QinQCqiWYqeOy2/QC84x+vpLLO9tzw3lNFCOqCAUKKb2Lv43xCSZc9Hz5OA2ae5P6UYy4opQJhz6ImgiQJm1egppPtL72Np35/B52dnax6bI/DNC3rFdx6PEMwrCIcXynpIaW8BNUkAKow0KVCTtO9pFRhgkWBSsfmrN7z+LfY3NHIZFylMH0vP6mN21PKVa7fkJZFzjKgNyFc/8eTn1c/ajC57UekFrUh4kVfT4tSSYB5rsr6cPUf88vlV5AcCHHiyCvU3Xc6VmYGwZL9IP8R8eHjnIOfvjdHYI8YhQ2V/ZO3nOHanBmU8hDwKqUkKGpellwAzTUK+NRNXyJlBXFCShRpcOmmf0TpvovfxKf4XmWa2FQ+ZVKxUv3Wsbds/UqTULNXSs1iDx+nE6kRWke9io9osovn2u7jeMthAkHz/qUms/l9yqRkOjMrvpj19eFjzsBXSvmYW3hxJ5koYXR+ulNXAxFovsBZ7KlaBwhHWa5HG9hpLODf+1fyt6vfwpdWXccxdNTaRbyy5tOge+srdcnmR37GT7/+YbY89gvAFKIjLS+pgKnMKmzTvEbn0pW+ZRqca9UmSVGRTVCdSXiPaf11lFLl0vfcnlJnQaP6L5v/hRtvv5Ebb7+R1935OnYO72TcnnnxFMPtJ1XGSgqA+nGd6qOHGe/eQvVUsOj7kxvwdh2o41ImqheWO3yZ3Yu3NFAwLLasTpn0fKfYfqwlfVndnlJ28X4c5mNuQ5xfUpMThq+UmmOo0INI67YIqROZehJ45Zmt1GmC4oye5dflDDv1zRxps5VSIE3lkrVtpPV20smVgBl7vVyEuNfM9HMatHB2glxmkGMBnaRl3unKkAegSiTpLqiXdbSi+s6olPI9peY07GcnEYauqnrziZCSZzrvorH6IlY9u5LJ4TSG7r5/pdVv/p32cT6g6HUn8h1SHz5OP06TxYG7M+02Oj+dEAI+8DBM9ABw56YU9B904iUhBHv0ZvaOW8qViibqyfHxYISa4FKmMiAcUYs5+174w3/DhQYc6QxxaNFadCOJlKZaJaeGUXNJDF1FAaQ0AIlieAmCQgxf30xy5HpqnrrH1f2Snj0cT6ly6XtnAxPlwm17biOpmddtgAFuvetWAkqA2159G8tql53SY3nS9wrIGC8kmxe0kApG6Bww1xizSM0rl9ZnfescVCBO+jZJF8mUJcRj8lXUif0YEahsDbB1ooOEUsHq7oecczH/+O2MDx/nMnxSag6hcPrWutE9hMUg8P/OXKVOI0p5IOaVUjhKKdNTSnoMN9XQMMHAc+Y+CsSFQEWiAYqrvPFQLH+FRb6BNQqmPS4Fb3s4Q647FHtK2XucZQHXuQtrvE24dB/ONMcGimqRpG6W1L6nqVE4cD+0b4BIte8X5uO8gu8p5eOMQogTM1g+BcdzcKbS98D0laqdbx3eTC+XLmJCs1RM4YBCRjNI1yTJPr+J0PyrkckkxO04R2JoBqoBmgJSKGjpLWiph5xDSUV1ytcyO9CS9wMGdWOQbWyDOKVn31MUMjWN5NQgkCn+nrxSysCdvldaKXU2wE5DfO3i1/Lw8YeZyk2hGRr7R/efclJKkyYp6kmdduKP/Do9NUwiMg/QGa7KkAnBgfYEy7psw/sClZr7XnpESAUpgu59vIefPQrC551cwgBLMQQ8unYNR/aZdgnvzN7n2c4bgkt/ng0fPs4x+Ol7cwzZ0JinbVCUYtntuQrFIaXyV0DzeEpJcyMrfa9Ci+V3lhBW0gAYitmG6brZeDe8//2Ebn0rP112I3cuvvoFhDuFDiozKaVKp+/5mIsoeCakRLEeSI9SSrF4/OH98KM3wI/eeJrq58PH3IPfJ/Bx2nHGBnXsmVjOICnlguL4GOZ9muzYpjJitlN6EIzJXnMHw3vd7MWhKgAFQ+vKfykCyGiTtSAxckeA/OBaYGrM2TQ/WFeYOuUmOrzHtpVSHk8pa/+doSDveOCjPPL8R6ke+BLJzHDpCzCHYJ/Hxy78GBv/cCOXt14OeFPtThU0S6mnKur0QwNaBsOKV564YIQn100wHs8VbVa4rzc+9t43817bz1s+g+CE0/dkKZbJhKqCDNqzMxbWo3zd3Nj9eA87Hu1G1/3Y24ePswm+UmrOwFZtGLi5wnlVp3aUZS5DlDA61+z0PcfoXLVIKXOUxJ08ErBG5TRFMJbpR1r7NrzzHSTVKD/4+/sBCFhmn2bjW9holWpehUdN48VMUuf8Cfm+Q3MTEpxgyW3mqahWYOQmpeZfCctfZZJSQ/tg7Ji3LF8F5+M8gKOUOsMdcx/nL047ISqsQagzqZQqAbdSyo5mwgFTiaR7Bs7cqY5mOt1IrIptLS3EA/WAmeMViN6AGl5HKDdMloMW8WCWrAQ6MLTjmPSXy2vRLt5VesEqD2yllCcYstrgu+IxtgxvByAEdI8+A1zAXIZNStlkm31+JWfKewGQUjqkVFAJui50cRp1USTizaA8SXWTe68X8Ass8ojK11ZRIHN1EyKhwYP2kQyKBoVLxFrBsHnd9zzVx56n+qisizD/gvqTr6cPHy8i/Nm6i+GTUnMMNYkkUOUshwIVZ64ypxl2u2qUVUphtlgYls9TgXGnFQBs62hhrPt7znpFDRAN5tPztCI/qYJ6lFkvPfYVs5h9z1dKzW247l3hJ0PLOel7ntG2cBz+8CfQtwP+8yqng+J7Svk4v+Cn7/k431CglDrDz37eg7NYKRUOmLGHhuKJP5waWz/fv7rxzzgmolyeDnDx8N0A6IE0qpI2JefYAy32793sMrTRx5Lw29hFp5dXcpFeUrgJEolw+R84SimKlVK5gpwsw/bwOgOQUvJY92P0JfoIKkFu6LyB6nB10Xb2eTiklJX6eCqVUpv6NvHxBz/OVM6cYlp1WU6UT2NzK5LKP6+abHM+64Vkqyxt5WQ+b/nPJ4Rp4uaW8WF2zFuIrA0jjTCQwhBV6GoFnaMVHKg9XFQfu3N/7a3L2PdsP4e2DJIYy5BJFSvDfPg4k/BTTqeHT0rNKQgWDwxAME9K5Vpaz2B9Ti9KKYk0x1SzWCnl2VgKFCu+mQqbs+5VVNewYO1FROLmfLivb5zg6Z40RijCfGGgzvhyKDRRLWwJZzBZLTA6932H5iakK2BzPKVy2bynlF7ijin2SK+t5PNVcD7OPxQmNPvwcbpgEh2n8Y0rFHMQwiZ5znT6njOIZ/71kFLWIJzmHjjz+AaZH94wUUdCSPYHNWddKtaNkAkC2nrX0bzKSClBCAMVHa9evZwblFemozp+VQW+RoBWSEoVqdlPH7YPbeejD3zUWd45vJO/vPwvi7azlVI2OfNiKKWe7H3SIaQALmm+ZNZDA/bVL00gwqj2Iac3+GK6eZUd8HXVZfFQDx2P30X00A6kNCs1WfNxppqX0Hr0vzhQe9jZqxAti6ppWVTNaG+CxFjGD8h8zEmcXY55pxc+KTVX4Jn61Px8vGMelZ/45Jmr02lGoVIqpxtolkrFo5SyPKWky6hcAAErdjGsaO2tf/9VqpuaOfTcs2z82Y9YOjhAixIk3baINr2u5Iuh/GSd1mx/7mWYQSlVkD/vY+6iIBCWUjqklDRK3D97lNIKOv3RDx/nFUS57pD/rvNxulDg8Phiv4OdAGVupO/lB7ncSikTo4P9QBRdCpdSKk8hVyR6yATngwgQk4Jmw3DiFCkE6VAd8ZTIl++UYSucXOcuij44UVm5W+LMvldotg0UalvkLImd4dQwH7jvA/Qn+xEIbl1xKx+98KMz7zgNehI9nuX+ZH/RNm5fLJuMckipU6iUSmkpAN664q18aN2HqAnX8N3fPW5+Werh9+a6matcsUye0J3dO9uMtl3UlpvvnFUJJepT5tuQrlGRTpbbzfpckI9Y6ih+c+TDx1mFuZEU7yMPV+OSqohA8PwzOkfC39+1i6Wfv4dEVre+M43OhaqaG5Ro1BTDXGso5mOdmpxk8NgRnvrlbQwcPkh6atLZtkhpNQ3c4nUvZlBKFXlK+ZhLkNYIrFcKrjvfljQ6t1F2ZsVTXk0fPuYc8p5SwidkfZxeWINSRbloLzrs9nxukFJ2+p7d5jQ0NOQH2gyT2tE8JEL+h9oysIlw7jZGLXl5yKX6jqTT1I6OkFc+uSMg85wn9EaemnwrBqGCqy+dOsiiF4NLKWXPvlfC2kAvHCCapVJq6+BW9o3uYzwzzlhmjF8f+PWs9psOiWzCs5zTi9PB3OfwYqbv2aRUTaSG2kitJ2Uu/7H8y1gg+OSv8nVdOtbl+daLwgyBYvbphahknYG+GcLwaRyypoXfJvnwcXbCV0rNIUghPVPsyvMsOcKdAnX/7vyI1IK6KBWJHBAk0NSElBLpnYuYaC6EaqTQlfwV+/HnPunZ5ob3fIjxySQP79hVoomzRgmnIZq831mjNL6n1FkLKfNaOfvZs0cPDWnk0/dKKaUs4tNRSr2oNfXhY67CT1v1cSZxGt+8RUqpufHWt1PgmpqamL9gIV2HRlEtIkdzKaUEAtsKveoNtzBqTJLbY+7rJqUu3Po8DUmVxy/f4JTvWKhbMU3GqGRz4k3Ux5Og2WqiEtejjBrHUUoVxU+CQgepUsRVKdipcmE1TEbPvOC0v5H0CL0Jc+bCgBJAMzQyeqZoO/c5lErfS2tpDo4dBGBh9UIqgifnE2uTUhWlfGYd1ZyLxhHF388flPRXmp9Deo5EiS5gIcnoFFGQ+onbU2oW9bf3KVXvcpDTfnZ3lgqeIz9LwYePsxLntFLqi1/8Ihs2bKCyspKmpiZe//rXs3fv3jNdrbKYGyHOmYM7fS+jmQHFT99/OT9/74WOUipywQXUv++9rvQ9E289cCW37r2OrZ3NReVWVNfQsXota254GdX1jdZaOWNQOZs8/ekL8NU0cxHFJpnFswFJJMIinoxS0woLr6dUviz/5vo4dyHxdjLP9zbLx5mFmGbpRTva0Y3W4txQSnnGTKw2S7V+nzoCKQ2SZBgM51U+IyGBqK8ja51SSCp4CQhztjMwf/P277636pB5GHvmPRGepsUrHFTNL5U2OgeEKPKUkrMkpWzyKqgErf1Ovi3+6Z6fct1t1/Htbd8GoC5cB0BWzxZt61ZDlUrfe/fv3s2tv72VW397K2/8zRtPuF6Pdj3KJx78BM/0PgNANBB1vsunz5V+9j1v60LJv7WLOKHqiBKfTgLTzL5X8qilBganuY6upAsfPnycRTinlVKPPPIIH/3oR9mwYQOapvG5z32Om2++mV27dhGLxc509TyQssRr+TyL+IVLjm6TUvXxEAFVt9ZLhBBE1y5Hbt9q7mPtm8lOMZg5DtXmfQ0rFVQ013DLZ79ATXOL+yDT16FojamIstMFvBkDMyml/KZxTsNliOCo9Kz4Mp3LK6WO7hjG0CVLNzQTilivTIdw9Gff83E+4oTHyH34OLvRtAJ6toBNTDSuOKPVyRud51sd3eq8ByyyJ63DhBIgKSbIuXingaE+QtF5aNaKsFTJeojmPCnlZjPGokM0U4kiNOeb/HY2iSVKkAzSMxpUOAjkQCguUsqeaXl2KXCaNOvkmKi/gNZ4++B2p56VoUpuXnAzP9r9I7JGMSlleGY3NOseUMw4QZc6B8YOON8fnzyOZmgE1dnbcnxry7fYPbLbWW6NlZj8aBb8qJgu86JAVeVelIVfOh/LO7DOiIK4uVw5hSmgRTRnuXjeD8h8zFEUJif78OKcJqV+97vfeZa/973v0dTUxObNm7n22mvPUK1ODHNEIX5a4A6yMjlLih1QEMJs9A3DYGRkhAMTB5iqN8wGy/pN65lRACoyWRZNCmIX/gFXf/UPi47hEF8UvA5mfDdYXgkF6ZVMJxEvp5TyX0RzDkGEabBq3ZpsThKKmMHtwecGOfjcINm0zkUv7TQ3UAqNzr3+Hj58nBc4nxooH+c33v07GNpnfo5UQ+38M1oddyxjwyalVCtm2jmm8YYLX8sGqfNh3GptA90wWHv4XtLNV2MoKjkrNU1IyVgwhs10CJfRuaFY6e0IVOvbckyH9DIbHpRVSrnS91QliG5kZp2+Z28XEAHrHE++Mbbr9ScX/wnvXP1Onu17lh/t/lHp9D3XydmEmH1+uqEX7aNJjSCzJ6Xs/d+9+t1c3HwxV7Vd5T44UMApSYrU4O7v8rvO/t09OwppFiibVleQkDerqk1XDz8e8+HjbMQ5TUoVYnx8HIC6urqS32cyGTKZfAMyMTFxWuo1Hc4nVyn34EbaUkpFgipYI2CGYfCNb3zD2d49Tjmhj4OqUpnO0TIJo0uWlzmI+yjF11ZokqjmCiLKXn47z2vmhtFvGecmpCsQqkIwDAQDecH7+pfPJxBU6D04zmhfknTCZXLqjPT6Sikf5x/sMfLzqX3yMUdwptrTYARa156ZY5eA4oQXxUqpBpGgR9SQkCb5sRPFE8tIw5zZeN2xB4kduhtdCJ5Z1Mpo3EwNO1LVjDf4KTUpCAXbCEsjlX87uI7oWS5rdO5K31MsUkrO0izc9pSyVUovZPDPrpdNLoXUEAD9iX4+//jnaa9s54NrP4giFE/6nmIRefb5pfRUUT30Wc4mWFiX6zqu4+Lmiz3fOWU7cW1pw3Lz6r/wd7XnTNyeUidatDPbuLdc87oVX5+SZzer94AfkfmYgyjHGvs4tz2l3DAMg09+8pNcddVVXHDBBSW3+eIXv0h1dbXzr6Oj4zTXEkpoeM4b2LOd5TTDCa7CAYV4PE5DQ4Nn2xUrVqBcczVRzdxOU80gIKrGiL7rg1z5rtLB4/RiYKg9PEZDatyztUNTlHyPTJe+V6CUKjGy6eNMoEBAK3CiKuEEcZL6eXFe8vaVdK6utzZ03TlbKWWt90kpH+cX8ul7J95R8OHjVMD7rJ13or0S6lx7otgKkeXt1Xt54PVtAGTwKmOy6RS5nIZixSaHG9udVCkhJX0VtXjbSZMoMEoYEJVP5BUeZY77e8fovDh/L6+UwlY8naBSSnnhSil7X7ue9REzBkhqSX598Nf8+9Z/Z9fwrqLj2DGeXYdkLllUtmZo3HvkXr6343v8ePePGUwOTlsXm/RyUh5LIB9/iNKxyIy/DTdjOd1mecuKFzT7XpHEy1y2yb/C2BuKU/k85RXU2fc59+Hj7MR5o5T66Ec/yo4dO3j88cfLbvPZz36WT33qU87yxMTE6SOmZKmm/fwah7bPdcvxMWddOKCiqiof+chHHBVbOBxGsQw9f/YPTxI6tM8cnxMBln7wWpbd0DnNQaYnhtSsDq62Xw+4ZcXu+2Gn8/meUmcrvEGrl5Ry3zMnwHHHxm6T2xMc+fTh4+yH7ynl40zD276eb61saU8pt1WApDJqeRtZLZtNEk2N9JPWDVSrUXts+SU0j+wEdLY2LuM3C67gVs0jrQKgdaSwfSz0G3JNheBlqwvqXjz73lBqiOdiMYatAUZVy1rnN8vZ9wrIm1OhlLIjvvbKdr51w7c4PH6Y7+38HsPpYRK5RFH97GPb52fPmOfGtqFtfPqRTzvLu4Z38Q9X/8OMdVFKGeufyGtYljc195A/ZQiqon1F/v7NuhUoIpa88Xi5cuxZkWedRug3Sz58nJU4L0ipj33sY9x11108+uijtLe3l90uHA4TDodPY81KQHo/nk/v1rqYee0HJ03yqToaJBwwG2JFUYhGo0X7XHjzQp6/P4BhSKKVIRavL559zw3F1SiWDppKqGgKtshDlFyb/9qffW9uwh6lK3FHS0xhXVLh5g4QpZ4nrk5dJX34mPtwHvzzqaXyMRdwvr9rS82+Z08UKzBnK47X1QJHAZtsyCtUdMNwlFJDVbWQrqc5O8CvFl9Nd7QRxoqVUpftNTjQgjdOdXKryqfrOQd16m55SrkInY/c/xF218edZdUaHTwjSim8Sikw0+eu67iO3x7+LcPpYTTD1HS50/fsWMH2lrJJqbAaRjM0dKkXKaP6En3T1mU6pZR9jtpAf35lmUy+QqPzF/r7KWsyPhs4ZFYZiVN+xfRllPPOOvma+fDxokK4vJB9FOOcJqWklHz84x/nl7/8JQ8//DALFy4801WaFuf7c3rz6ma+9daLGEmYI2QXz691UvrKYdmGFpZtaJl2Gw8cguHEKT8z+HKTFjMopXxPqTmKUsSjFUzaBGJwlA/d9yFeOv+ltIp15nbl0vdcSqkXEgj78HG2oJRrjA8fpwPemYpdgwdnojJnEKUGufJKKZOUquhoQ2EzBiq9sgrIWxMYKCg2OSDMNWCSV6qh4e4e2MRQfhxnOm2Ly2vIE9UWe0q57+SxyWMArG1YS2fPDvaE6plgktnOvueQN6dg9r3p1Em2kbpNShWm+rm3ebzbzMwIqSGklOhSJ62nPeVNZie55/A93LH/DqSURAIRPnHRJ1heZ/qiGkb5ushUCggx8atfw/yXoWeUknek1O+lPGTB4LitIs//H+tzmSTuWR3C/ffk7tUsshT8cMyHj7MK5zQp9dGPfpSf/OQn/OpXv6KyspK+PnNEorq6uqTq5kyi3Ev5fPJJCKoKr14770U9Rllfp2mvs8iTWO7GWpYsyX0w94Yvqu+QYWhIqSGEgqKEZt7BB9IJwsG+O/Nz5oijUHJs7NnItsFtfDX6Q3MHT/qe21PK8D2lfJw2pFLddHV9H91IoSpROjreRSTy4r43bchZdUp9+PDxYkNxPKUkd23r4Z/v3UvXaMr6Lk+WxEMTTGRr0RztEZZzqUBxKafcvkRBckjcMbJJ+NjbF7h5OX89IoBC5ZR7TMciWI6MH+Hrz32dNy57o5MO9/Ubvk7D/7ycN4VOUillEUKzTfubrqxSaiBbiWWTUqUIrM4q00LCVkotrFrI/rH9YOTXBZUgOSPH8cnj/Pmjf+45xrzYPD5/+eeBPNlWkpQypOUMbF5cQ/duk78XJebaE+6P5d7jhQlzebXdSfVNCmPiWZcxU2RV+nt/kNDH3Ib/fBbinCal/uM//gOA66+/3rP+u9/9Lu9617tOf4VOAvnRMB1dN00TVTWGKJVf7mNm2K2gkDNm3xVCegK3WSilCtL3XixMTu3hueduRdMmESLEBau/RlPTy17UY54LcN86OwUhJCU/6OljVzjEP9XXkdJSrjjKbbBQkL7nd87Pa2Qy/eRyYwBEo52o6os36HHs+P/S1fV9Z1lKnWXL/uqUlS+lRFozngoRmD5N43waNfEx93A+x/QuT6nbN3VxZNiMDwOKoFJknPbqipaHWdt1EyGhOUboUghv6CJASHuGPYWgzGF42jRrltmi9PaiBCynYoU0iN1GCgTxkJmm15/s53+2/w8Hxw4628WDcRCKs/2sPaVO4ex7jvqpxFxQdvk5I+epn3vb1y1+HSvqVjCZnQRgdf1qbrr9JgAyumlP0RZv48jEEaZyU85+17VfxyNdjzhlu8uf1ug8FLLq7YpRS7BQpTylCjcrZSg+05U84VZAFpJdZTZzFWwIwWBlTX77aWJvv1ny4ePsxDlNSp2NLLnnXWp7BhhZnn7mNSSTBwCIx5azYcOvUZRTf/smJneQTBxCCJW6uqsIBmtO+THOJNwdLHfQJFwDeeXtUQrSvmb0lCqtn3khT6VhZDhw8Ctk0n0gBC3NryGTHULTzOBHyiwjo4/7pNQsYCulcKXvAcxPh1iQS/JP9XVoUiudhamoSCAbEpDuRxC2yvRxvmFsbBObn7sV++5HI51cccX9iGk6ES8EudwIAIFAJZo2SU4bn2GP2UNKyfPb3svw8CMARKMLuOzS36CqFZ7thLA7iuKFeYv48HEyENa/Mulh5wMUl+pbs1K8PvXSZbxyRQ0/+u9nkNJ8/1w//0qqujUm8i0eG1lGtWtGl7iaJT/zLNTnRpE05g9mkdTKtBJzMx6SuO5K8QcUoXBZ62X8xaV/wZaBLdx75F4eOv4QYKqcwmoYRN4BSTJLUqrQ6PwFxP8G5VPmgkoQcJFSJbYVQrCiboVnPzutMKOZpFRnVSefvPiTDiF3UdNFPD/4PI90PeLxqXKUUkr5gWjh2FzYPwwveWiL+mfrKVVIJzo7uH9zwpW+d6I/vaJ7Y+vVSxckDImhqDy57EJqBu7x7HNCh/HhYw7AfyzL45wmpc42lM7Oh1TquENIAUwl9pLNDhKJtJ7wMXK5UQ4c/GdyuVFUNcqihX9MNGpKjTOZQTZtugVpNYKNjTezds1/nMypzHnMqrFyBX1l6afTrJQaHX2K48e/6yxPTGyns/O9nm203MQpO965iFLhUFo3UweElKQIUyMTzvdZ3Zqk2qOUUtmyporR2hA89wqGQ38FXPhiVrskUqluNH0SRQSpqFh0RgiCXG4UKXVUtaKIvDgfMJXYB0iECCFlllT6GLncGKFQ/YtyPFsxG4m0MzW1G8PInLKypcw5hBRAKnWEROIAVVVrS27vKwR9nFmIkh/PB+Rn3wPNkh7laOoAAQAASURBVEAtbozTVGkNkFjt1R8s+wPue+I3RESOnENSCHpdpFODmiIqTC/Py4NHqe/fD7Hl5COf0kopA6OkIsdkQEQBZaVYfwVBJcjbVr6NVy96NTuHdtI11QXAzQtuNtswkdcdnbTR+SnwlDrZ9L1SsMkyd/rejZ03cmPnjc42O4Z2eMp0fy5pdG79FapNxJUedAXrXS29a5xCRIn1JeEayD2ZH1zRQG0ZOw1nK/P7eWNDHJsaJ6F4n4WyJJY/UOLDx1kJn5SaIxhOj2FSTF76Y2JiK10jDwMQjc4nlxtD08bR9USJUkwkEgfZvuOj5HKjCFQWLPwY7W1vBaB/4B56ev7P2bav706qqy+huvpCWppf6xBSAOl07yk8w7mBco2VFPZ5l8lNL7lmpvy/0vnzL4QltxVRqhpD1xPoetJJtbGRTB1lePhRqqrWEQxWv4Cjnduwg1ZNESS0wxjZLFPkSIkwTS4CajhpBpHedD/BWE3QWc5lh2bM5kwmD5NO9wBQWbmGYLDqBdW/f+Buduz4uLM8f/6HWLL4z15QmSeKffv+H8e7vgeAooRYv/7/qK5ad1rrcKYhrRHzxsaXMjLyGJo2QSp1lECg+kVRs2qame4RCtYBYBQY574QuAmuSKSNdLobvWT59mh5oYeJPwbo40VGYcf6PH3k3GnlujUFn6rklYuOUkiYnpgxJcekvS8QyCTorY6ZK3IZFMtAvlrJoFr6JDWygVx2PyoCDEFVqss5fi71BH2BY0DQVWo5uAd08h+rw9Xc84Z7ijd3pe8Njm/lM49+hoXVC/ng2g+WjeFsRdEpmX2vhHm5DYeUkidISllKKdvo3FZcuWGXYRNeML2nlGM/Po2KyrP1C/itBDSFrEjkjedd8c6JC6W8PqsuW7KSWN17hM5N49yxxjUQP+2A8Cy28eHDx5yDT0rNERxP9tGKN0NfAkeO/icNPAtAJNyKNHJo2jjaNKTU0ND9JBL7neWentscUqqUimZ8fBPj45uorl7vWe8mO9LpHnbs/KSTOlJfd920PiZS6oyOPu2oOOLxFahqxZlPB/QENO5RVlsiXW5UTnrMQAF0BFsT3WzZYSqX6iJ1vHLRK/PBxjRKqXS6hyNHv42uJ1CUMJ0d7yEWWzxj9XXDCmiCdeh6Aik15z7Z6TyTk9vZ+vy7qapax4ZLfjFjmSeKdKaP7q4foRtpVCVCW/sfEQmfwAyIs4SUBpmMOTmBokQIhepOcfnmb+1ofSMZbStoW9kVgLpAJYtdPJ9ue224Ahwpc2W8F0oHQVOJ/Tz99Mud5crKNVy64c4XVP+pyV3WJ5McnZra+4LKK4fJqT0cPPhldD2FooRZvOhTjnJmdOxpZzvDyHLo0L9SU7OBlubXOArMU4Gjx/6bnp6fAZJQqIm1a/6NYLD2lJVf6njHj38fkFRVrmHNmn8v6+NnSJOUUkSQYLAGTZtg0+Y3EYl0cPll96Kq4VNSp5GRjRw+8i0mJ83R9KClxDqVSildT1mfFAKBaqAb3UgWbVfKScaHj9MHXwmRNzoHzSKlAq7Zip2OvwKGxUbYpETIyHLd8D1sWWC229GjeyGQJ0kEkpyQxKNXE4xeDYA28SxCPm+XjqEdzx8rEEaodUCiIKGy4D0hS/s0FUMQwfRJSqR7ufuwOUB6U+dNLKldUnIPR1F0CmffK6XEcTyldK+n1EzqHNuAPa2lPeWUKnu2SikbQrVjTfdaV7wiSvxiRPF25lLxdQvlFC7b2UZv8Ln8hC8vRI1U9FjMkL5X0nDdtVxAPvmclA8fZyd8UmqOwBZVF75DBZJwuIX6umtpa/tDdu3+c8jA8NBDZLNDRMKtCBEgFluC3TE100nMju/k5HZy2RHnpW13MNrb3k5z86vJZofYuetPMYw0Wm7Sc2w3KTU09BDj45ud5WTyMIsX/2nZdJ3e3jvYveezRes72t9Fa+sb6Or+EdLQCASriEY7Eag0NLzkRZlFKpk8THfP/2EYOSYyQ1RUKNRUHkUPJiBrDzeWG6rJ3xEhvSNbmhB88OgdJA/nTSkHur7LJdXVCKFQHVlOZW2Q+jHTMlQapjxe1zN0dd9Gd/eP8keROqtW/tOM52JYJpmBQNzZT1oGn3V112AYWVKpoyQS+0kmD81Y3nSQUkdKiRCKp0N+9Oi36er6gbOsGxmWLf38rMt98NiDjodEe7yd9699f8lRwG3bPsjQ8IPO8gWrv0Fz86vK1FXS1f1DUsmjANTXX099/TXTn591q3Oq6zUoYEKPmiPJEjQBZEYAxRPgFBMBLu+GEkglDwOgKGEMI8Pk5E6OHvsfKqKdNDbeXLT9wYP/zNFj/wsYhEINXLz+p0Ukj27VIRxuJpPpcxQ7NjRtklxuAqGohEPNJy1p7+7+qSelKxxuZpVFStkkRkPDTQwN3c/IyGOMjDzG5MR21q79z5M6no10uoe9e/+GbG6YiYnnnfXJ5GGGhx+lpeV1L6j86dDV9SMyGbMjNJjpI53uKkuySWtUWyhBmppeydGj3wYk6fRx0uluYrFFp6ROx7t+wNjYM85yPLaMfvJE9amAYZWlqlHHrN2rxNLprDxOQJhtRd73xScJfJxZnK9PoFFGKQWwb98+fnf3PUwGJtjgukDzjGGCUnOl4xnInNmeSGsKvY3RKdpzZnyXFrA6c8ghB4Qukar5+aIjfWy64TWI0RBgDpaavlJuFVs+XWtW7ZAQzKeVB+qu4uoqONLzUyayE47KqBQcpZR44Uop2ydquvS9faP7eLr3aWrCNcD0pBHkybKRtDmwO51SqqSn1DRKLFsp5c7EKz57r9G5+3vP+9tzyuZW8aRKwFDMRSVKVTBL88LFyN6x4l2mQ+GGs9zxhO/k+foy8OHjLIdPSs0VyKLEbrDWdHS8m/md7wNMNQzA4SPf9Gw3b96tSKnR2/tzZ11V5QVMTm4nnenhwYeWEAzWU119EQCqWkFNzSUA7Nn7lxhGGl2f8pRpuDq5NplVV3cNo6NPIWWOXG7MIaUy2SHSKXPkLBZbQjJ5BIBwqBndyKBpY4CprEiluxgaur/oXAcGr2DVyq8wMHA3htQQQqW56ZUvmKg6dOhr9A/c5SwvWNhGRTALQiIcMspxMChRgiWR1qMgU852EkHSukbVqsG4rtA3sYsRiyQa5lFYU80lW8YZ3PU39PfXgHgJh498k6GKbQCoahxdn5o2HdMNu9MYUG1SKoe0lBqBQBUrV/wDmcwgj2+8HE2bQkrjpGZq7O+/i127/4zJXJZ9uWo6F3yEJfXrWd+8nkymH4BgsJZcbpRcdtjZT9czTE5ud45bWXkBY2PPcOjw1zCMHJHIPP521y5GM2POPlfOu5I1jWuK6jDq6oAD7Nj5Cbq6f8ySxZ8uUvVNTe1h376/c5b7+n/FtddsmvYcbQq40BMjoURBh7A00IRC7uhvgNeRSnUBK6zz9AbH7kDQMDR27voUyYTpA9fQcAOx2DIAqqvXMzHxPLqe5MCBLwJw6Ya7qKxc6Smvf+AepDRJzEymj5GRJ2hr85IihkUIBQKVZDJ9GDLH8PCj9PTeTjY75CEwAoFqWlvfgBAqQgQIqDFa572JcKhh2msEkM0OARAOt5DJ9DmeRpB/Hjva30EstoSpqb0MDz9E2lK4nQiSyaOMjDyGRFJVeQETE897SEmAutqrGBndyODgfQih0tj4MpQSwf3JYmJiO8nkYbLZAc96TSv/+3SUUkqQJYv/jMWLPs3jG68kmx1wrs9MMIyMky4dDjchRJAtW9/J5OROVDXCqpVfdojQjo5309ryBjJZ83c4ObmdJ596KYoSYdHCP0ZVK6iuXo+qRk74/G2SUVHCzrs9mTpKOt1DJDKP+erX+ZsrHsjv4M8C6+MM4nxW7JVSShWSUtu2bWNkbNTczhVfdgqLGNF0BJAJFnYFJJcYT7A9GyNe38DSbBNa2CUflhJbMqNI6aiGhRUXmX7b5VQvsyOlAihk4lezeF4jw0N3MZGd8JA1hTiVnlLTzb4XtpSvd+y/gzv23+Gsn62n1DN9ZrtcipSytzlppdS0g6rlfWtnWmOvUwkRrPkwGyq/QzB84u2LjeyhQ06dCmo5w56u76WcRq2V/2348DFn4T+gRfBJqTmOVau+yvyWdmd5wfyPcOz4d5BGjnSmF02bRNPGmZjY6vhBBYP1hMPNtHe8k9GxZx2T9FxumOFhU6HinrJcUcxGtjAl0K2Usjvh0Ug7U8EastlB9u37AhUVi2jveAdPPnkThmF2aMLhVhrqrwdg3rw3s3DhHzM29jTPbXkbhpF1fJEaGm4ioMbJZgcZGd1IKtXF/gP/yMDA3c5xx8c3z8psPZk8wp49n0fTJolE5rF69decTlnWSjmMxZaSSOwnGMygqBpSKC4Fs/WpTBsnAZTyeoC2IIzrUN9wE0s7NjA2tomx0afIaWOkw4Ke537EvIFXc5l8mLgyyNiSwwRjEAo1kEpNYVgqKhuGoTmdUFWNOsSSrYpQHaWU5tx3RZhBjk1cgiSROEAk0kYgEJvxGroxPPI4hpHljrEQzyVzMPh1AH5wzafIWAqseGw5o2NPeZ6bHTs/4SEc6+uvR6A4SpepqV1M5cz6RQNRUlqKyewk6XQPx49/D90wU8Ta2/7IIeouuOCbjnfS2NjTdPfcVkRKaZqZlmorkXK58VmcZekG4d66K2nMhlHkYUByT1ThMqB3+BnAnNbZJhsUqYDUEda0RFJCIrGXgYHfOuVNJfayfJlJmKlqjJUrv8zQ4P0MjzxKLjdCOt1dRErZqjr7mR0Z3YgaiFFfd53jRWU/C4FAlbPPgYNfYWpqF4XQtHGOH/+OZ102NzKtwm3/gX+ip+d2h6yOVSw2yS/Xs2q/F8LhZpYs/jPGxjYxPPwQ2knMCLdj58eZnNwJmPexs/P9ANTWXklH+zuorFxNV9cPGRndyMDgPQwM3sPqVf9KS8trPeXoeobevjvIZUcQQqWp6ZVUVMyf8fjpdC+bNr/B5asnCIUayWYHpiWN7XslrBF6IQSqYr57ZkNKSanz9DOvImmp6YLBOtau+Q/GrNRIXZ9icPA+531cVbmWysqVqMkKQGAYWUcVuW37BwFobbmFVau+MuOxbeRyY+zc9SlSqWOApZSyzuHgwS9z8OCXqaq6iGrlCABZo5b66nnU112LoPh58+HjxUS6IsaIkpxBn3puwyalTKWUTch4SSlNM98ZV111FYsHBhk8ZL5fa9MKCUA1JArg1v0KBELXaUr3cfnYCO2tF9CZruZrC5cxUP8c8wbA1kJhfZyt6bXJVc2GlMoTPBLpEDK6UUxKPXjsQe4+fDd7R8z09VLEzoliOp+oNyx9A8cnj7O5f7NnfWWosmhbN1635HV8f+f3MaRBJBDxGJzbKFRKSSmnrYsTkbqMzot8msivmI2nVOE2DslYsDb//9nff7WyCn1wCG3AHPQR4ZCnvBkpKemmGsufTP4ROz/fDT58nK3wSak5hsKXcjDgbegaGl5CQ8NLnOXJqT0843RozBfw+ot+SDy+HIDLL7ubXG6cQ4f/le7unzgdLpvUAFCE2TDolhrAnkXKTUrZqgxFjRKJtJHNDjI4dJ+5n5HCMFIIEUBKjUymN9+5CcQQQqAo5jGkkXM6ca2tt9DU+DISiUM89fRL0bQxUikz/aqy8gImJ3cwNPQgjz1+BXV1VzKv9c0cPfZtDCNHIFDJ0iWfJRrtAKCv/9eMjj1lXZOdjI4+6Vwne/S/tvZyEon9qKqGUDXAbhCnRzQ6TlY9ghTuIEcijCjveeZLbJ33APryBwCdmtqr6ex4K50d72br1vcwPPIIejDIgc1tdPYcpBNz+t/esUY6r+slGKgiBY7aCSCV6uKZZ1/rdOxjsaUsmP8R9u77W6dzHFBNkklK3VFq2FPQK0rYuRdPP/MKVDXOFZffT5gIJEcYGn6Ugex2IiODtOx8nmigARGKwUu/AC1rnPsEMKZ5n8hNe/+RRWHDui6djI495emwJ5Pm+d0+VskzUxp0PUNMDfCeeoXOkLmfPX11bbiWlJYio2c4dux/HcNswPJHMp/nxoYb2XDJL+nu/ik9vT8r6aFjX4NgsNbyoTIwDG1ao+lygxRDgRp+UvduYiO/RIk+62yY1A10Pc3BQ191PNvUUDUyPYo7+NEsJZGtLAKcv6oSobnpFTQ3vYKtW9/N8MijZDL9GEbGIYfN88la13g+icR+BgbudsjaurprqKu90rkONglpyJxD+HZ2vp9YxWKaml7O0PDDJBL7rXRMjYmJ7YyNPe1RuHV1/4Tjx7+DlAaKEmbZ0r+ku/unDiElRIjq6osZGd3oSedyyDmLwAhYxvqp1DEeefRCwuEW1l/046KZ6I4d+w5Hjv4HUhoEgzWsW/vfpNN9rnIzTv0qovNpbHwpAG1tbyObHWZ07GnS6S7SmeLJGAYG7mbv3rzf3ejY01x04feKtnPulzbJ6NgzTE7usmYRjFNVtZb6+mvp6/u1RUoV+yrZsN+TNikMoFij6aVNwr3I5cYdQgoEudwI3a7JKMC8t/k0QfOZrqiYz5VXPEw608vw0EOMjG5E0yZJpY4yNraJkZGNVFVdSCAQM2dp1MYRQiUWW1qknhwZedyTolkRXUBzy2uZmNjmKLImJrYQtF4HW9P/wmdvutba2ielfJw+HB0c4ND6y4BjZ7oqZxTuiVPKKaV03Yz3amtrCUciTjMVsNpg1ZAoBQ3h4rpKeo/opKfMtkRRVQSQCwR4dpngdY6I1EUkFBFNpvI/zw3k6YvIbBSc7gFDSqe12fjKs19xZu8DaIg2WDU4BZ5SJQi0C5su5Hsv/x6GNLh97+30J/sRQnB9+/XTlvm+Ne/jfWveN+02heSbm1ibTimllDM6d7tTlFFKzQrOpXxheXHzvvJlph5+2PQWi8c4NDYGY2Nliy/l2zkr2Oftc1I+5hjM7Gg/v7QcfFJqDqHo/SlmHn+IRtocdQiYnUN3upsQKqFQHe3t7yCVPIqmJwgGa2hqfFl+G4swshUvqhpF07IF6XsmsaMqEVat/ApDQ/czMPg7JiaeZ2RkIwCV8VWkM71ks4OMjZupU3aambA6bIbMOh1umwyzlR+mSbc5krdk8Z+zfcfH0LQJstkB+vruJJ3u8XqqxFdSXbWO7u6fMDm1x3NdDh/5Jn39v6K15RYMq0MZCjZY10gzlVKEiq+6xBVgCRCSzvnbGGjaS+7ONmeznJImCIT0CEuG1nNwxSOAbgYRx56GR/6JJeM7aTPG0W74DKnNvwdgpLqBuvEhtJQZYNgqF/e1Hhvf5FGaJBL7ObjnZ4z3mjOPhKt6qa65xElJtEkCu7MqhKC15Rb6+n/jpGUmeh4i+OOPoGg5GgDqgmRCChV9GbCIsi3P7eaRwZXc+N4PQ6NZH++8fmYjX1NzGRXR+dTXX09P78+YmHieZ559PfH4CocAfDYhyFnqszFNY29aYUm8nnRm0AkWwxbJ19X/W6LGTuuermBqag+jo09Y9yqMooSpqlrL+MTz0Jv38PHUy7p+qppXhJlEX+lXnKJoTHY8QrzEdzc9/BjHr3gpramr+MHgnXxatY4nBcPDj3gUR+FwM9nkGHa8KMkTuKYZfRJNm3AMwRWXQjFgmf7v3ffX7N3311RXrycYrKO56VWOGqm97a0oIkgiecAhwmzfJqcci5SSRs4hiVqaX0tl5Srr82s859fV9WPGxp72eBEdP/4dFzECh4/8m0NIXXLJL6iIzmdk9EkAstlBduz8E3LZ4TwpZXU0opF2S100aKk4Jxkb20RTk/m+GRvbxNTUXo4d+x9n0gRNG2Nk5FFHaWnDfh8JV5pDNNrOqlVfZu++v6Or6wfo1kx05ox0ElWNOeXaqbH2jIflsHvP5zzqzJqaS7hw3f8CMDhoqv6e3/Y+hFDpaH83NTUbqKm5xEMGmvXMk9yKSyk1PPwoudwYCEFd7VVFhv22yk9VY1RVrmF07Cn6+n7p2UYaGoZDfuWf6Wi0nWi0ndqaDYA58+pTT99MKn2MLVvfQX3dtbS3v4Pnt+U7Q21tf8S81jcwZnkExioWO+RZVdU6Fi36FNVVFxIIxGlueiW6nuLAwS+RzQ6zp3eS3+9voKNj5rRPHz5eDIwlzfY8KFU81MV5FucrTsc77ykVUEsrpRRF8RBHU1kzpU81DBoSWSYqTBI9Xt9A27w2ep8DPWe+18KxGHLUVNDY0ZL51yJuCnr+0kqqLEyLB3h1dD43XP6JWZydy7Cd0gbgzrnkzDbg/Wvez/yq+axrXMdP9vzkBYlk7BhlupQ8RSi8ZcVbTv4gJWD7Ttnn6T7fssSTuSNgKqVsFF7/6X8e3us905522qxDNc7ytxddvZro6tX5cv7t30sfq6DAYvUWXsapjNG5L5Ty4ePsgk9KneUIBCq55OLbmZzaDUBlfKUrfSuPeGwpF130g6L1gKNisjuhJik1jpQak5O72LX7M560jlhsEbHYB9D0KSYmnnfUMaFwI4FgNSMjgw5JVlGx0HMMw8g6HW57XTBYS0XFEifNMBRqpKrqQlMFkO7hmWdfCxiOt00o1EQ2O0AuN8LBg//M5NRO51yi0U5SqWNMTDzPxMTzjI9tdjqNtlojEMiiqDqaayTPGkhCyuKGX9NC6OlKTN8pM0jY1fwEi2IHqe16L0iDyoR5voY04Nn/hoMPEgf2jsxj89ZHSCetmWTm1VM3PoTUzSMHgnbqVQ5dT3Ls2HcYsQiZO554Ew8kLyUAvG+0ipBVt1BU5fobL2bfvr8175tFDAhXZ3Xlyi+ycuUX2fzcHzI29gwD2+/jyNirMVCpCXTTOfkUw7XWfVdANSDekETvyXFo87MsfJlFShVcDx246MLvoSghEomD1nOTZHJyO5OT253tctZI3/Kwzt6Mii6huupCEoP3OdsoukkedPX9mnkxc/tFCz9Jd8//Wf5N0Nz86vz2wg5Mc+RyEwwNPYAhs0TCLY7SzG28bxhZJ031wMGvMDh4LwAXbRhhfKyF9JRJwhTGLcsPHqIm9CBHVt1gXlfs2fcE2Zyp3olGF9DZ8R7q6q5iy6Mvdfbt7rmNVKjRqkuEUKgeTZtgfPw5AIIWCQnQUH89AwP3OHW3t5mY2Or8RioqFrNmzbes77eQTB5h1+5Pe+pbEV3oXJdC5VIp2Coew0izb//fMzm5i5TlB9fZ+X6OHftvJ3VMiCBVlWs9KWlTib1MJfIz/alq3FF0qmqUK694iEymj927P8vY+LPWLJE6mewgz215m0eBWVt7JaOjT6Bpk66Z30zYCjy3Ail/TJN81PQEu3Z/xvHSi8WW0dz0SvNzxSImJrdZpPavCIUaqK290um0HTnynxzv+i65nNlBq4yvJhCopLMzT+DU1GxgfHyTpTLTOXrs2xw99m0aG17qGLnbhLKbLLKv1fYdH/ek8NXXX8eF6/Kk5sTENoYshVIgUMX8+R9CYiCNHEIJoqpRhocfMZVS1nUTJa6HjYqKRcxrfTOjY8+QSh0hmTrClEPYm2+5ycmdbOn/laOqA5g//0MA1qQaVxdc6yjLl/0tAHd37eG+Ywd5T0e5Gvi9AB+nB816FWnpTns/v1gp4aTvgabbSimlpFLKJqUimrmsW21ORU5j+eAUay75K9r+9gpCkSipyQkC4TC5dIpAKMySDVdw5FvWLKvu3r49u5/3C3cNi4zO/1/txajzb5rFySkesms6pZQ9m90tS2+hvbKdweSgeV0oJrBmCydlblYzBZ46FJ6n+3xLK6Wsqx9QwQAjq/DOe3V+t144Ma1n2zJG58WlliF5TjHyar+TaDdGj8BEmTjnhcwM6MOHjzMGn5SaUygxRjGLl2tl5WoqK1fPuF052ORQnngyO/ZS6vQP3O3xqInFljqf57W+mWTyCLo+hRBB5s//APHYcsbHt2DPGhaPr/Icw0tKha1zVLns0rvIZExdeCjU4EyjHgxWo6oRdD1pqg0wia5sdoCpqT2k0mZnetHCTxKPL6em5lIGBu9F0yY4cOCfSGfyKolwuNkq0wpkS1xaKYsb/gMHLkNqN1Kj/xwwibv68SDRowkyxjepGIP63XFYMWUGM1aQpAfDbB2Zx2TOPFhEyfGB8V9zD8shJzzX05A5Bvb/mMiDX2B+zqBdFXxzspklIz3EDUHIUtUAZFM6OVf/3XBIqeK620qsrc+uZnhqrXWOOtfon+feSISp8CC5qizr0mkuFwaRujTS0NDGzY66XjjcpkScexmLLeayS+8mne5h957Pks2awWBWBpwgY4IOoIdobCmrVn2VyoHfQ9dfm/cDM+DKSUFT4yuoiC2ivv4lTqpWIWzFjJQ5Dh76qmf2Qtt/yCShzHDMfs6klBw79t9O6mosBrHYOOk9pdM3DSFQxDgZi4DKB2gC3erIR6MdtLe/zSwvG0CEzG3SmX4GB0xySVWiLFjyEXp77zB9MdQobW1vdY7T0vI6mppeiWGkGRy8j2x2iAMHv0QuN573CXOpb6qrL6K6+iLq6q8xFYPS/I0pSojDR76BYeTQdduHrDwpZRMmk5O7PClbgUAVC+Z/mKnJ3c7vqrnpVc47yF0XME3HW1vfQGXlak/qoapGqahYSNAigUdGHvemngaqqa29gprq9WSyA4yOPmGRfVbHSo2h6wlL/eRVIDl1tUipwcHfk3WlISYS+0inLwQgHGmFyW1o2iQ7d30KgIsu/AF1dVcB0NNzm0N0B4N1rF//0yLvtSWLP01H+ztJp7s5cPDLZLNDJJMHSaWPMzm5k+7unzoqOLeiy05jLPSUSqW6nc/Z7AibNr/JIZuCwVrq66/xzBrZ1fVjhocfsSY0sEmpaQxvhWDlyi8yMbmDZ599HYaecUhrk7A/SjY75BBSihLFMFIOKem+jz58zH2cv51PZ3INKTEsAqfQU8ompVRVBSFY3jtMLrqSmvQRwtks9cODoERRlSCRmKkbjtXUctWb/8gpIzk+VnBEGxYp5SKPbKNz6Vr2wJgl+SBEXo0jy/tESSmdGfkigYi1q3C+O1nY+57sjLUnC/d5/vK7T9C9Kcl75VfIqimGrkgQW1baG1SNRiEBhq7w0ucN4kkB9eDWthUbnc9GZVh4Db0b2pf45K+S8BylfDm2h5lri8HdiOEAUAMbvwaZx+CGvyyonz9I4sPH2QSflJrDKHgFv2iwO6m2UkN1/IpyThrZvNY3mz41runNo9F21lzwjaLy3J0qG8JK1ZMyV6SUMj8HiUbbivYzv7NJKZMoiYTNNDZ3Kl9b29uctJi2eaakWtOmGBl5HDCnT6+vv46K0JWMTDyPIhWEEQRyeFCmDZsQKapEXkbcMhL2mDtGRuLAlDmyZfk1GBXVDqnzstZ9LIoPczxdY26vzuOyS/+TTKaPyWyc8W6Vqv2/ZflU3i/pE7t+Qev+IdLhWp644u+BHIoawNAF9x6+nxpru23PPUbTPKAEoRaJmNcqm8kriLTkQ9w/1oR6DKqp4pF1g9zVluS25AAr3nSYxPY0ya19sArSmgrkR+tW7hqHbYth2cvovemveH7QVBv1ZCvokGZKwVPyUqLZgywYvQAtuIIl+jbqVl5EIBCjpi7vh5YQlcAYB9IKe4KXc03zTQih0jXZhS516iJ1HvNQWzFjGDkyBV5CNqGqiCCKEsQwso4CyVa5AMzv/ADbtv0SIaBiohLoohBSgGK4ZhSSdnAsnM686lIire2qoak+DU0AgrFx87lU1GiRB1whFMWsb2vrLWjaJAcOfsnjL1ZIBAGEQw2OGghgYnKHdV3Szox905ELdgqhTSKGwy0sXfJZKitXEwxWc9FF3y+5X8hSgNmor7+OlpbXlT2OTRz1D9ztOaf29rezeNGfAHD4sDmL6MDAvfn9AlXoemJapVQkYr4r7OcgGKzFMDJWuqR5jyLhVhYu/GPGxzaTSB4gk+lj1+7PEKtYxIoV/4hmKUPXrvlPamsvLzsZQDjcSDjcyMXrf8LY2CY2P/cWdD3FwUP/6kwcARAK5tPyFi36E8KWgi+gxqmtu5Lnn3+vk0oMkMkOIKWGECHq6q6i3UVY2rBnFpSG5iKlZm627eczq6U4OmSl6gRqgaPOfRciQDTaTiKxH80i/Es9b7OBH/r7OG1wdTTP5+dOcSulynhKedP3IGBIOoaHqB89ni+nqnn66yjyVJMUeZJjek+pQt+UE7SkL0ibsxVEhaRU1jXpRlgNk5wY5+Dzz1jHeuGeUjPNqHeqcHzPCI/8ZC9TqRC35j5P7/otHNk8SkiPEiRE0AjRs2eC+cuazB0yk/DMfyExPUAjS9rheVDDZpwTzoIcCKJEdAxF8OG7DO68VvemwXlu2fR0UGH63Kmf9dJmt8rUo+Bw2VAVLFkNR02/Q3q3w6MPwvp3QE1n8f4+fPg4K+CTUnMF8oU0oS8MHR3vRjcySKmhKCHa2t7Krl1/imHknGnKY/FlHkLqRGF3rtxKqenSUNxQlYhFHZlXqLn5VRhGxlE51NReVuTTArB40Z84nV8bjVV/xr33/4Jqo4LV2u+RhaRUmbvQpQ7T5CJnHEJKVIKcRDHyQZNhSDQjSja80Cm9MppADQr6hdmxl0aQeHw5j+3r5U8e/nskCh9Qf8PnXJekatLslGuWz4CQ0gk4n+59lpvDZuxWFTU74cPdKRYv9tZ7wYKPEYm006vU5s/QMNPmDCFRpKBzuJWV4y9ls6ajTA3S1voUglYMvZdAMkBUgUxIYigG5LKQGoetP+bd2kG6E3kl2tvqVDbEdMaIc9WRW1gybM+QdyHZlqNwKdw3NOJsv0e5iCgPsSUVYMvTX4Knv0Q8EGPKMtyPBqLc9Qd30VRhBmJ5pZTmMduGvC+PUAIWAZp1UkilK8Vj4cKP86MfJkEIXtZTA3y72FwTQWaiEXTzeVdsg3spHPWOm/RRhEI4Z6X4gSv1biEnApMM9oruZ0MS2KSNTTaY+82slLIRjXZ60iTLIR5fxpoL/p1U6ghqoJLWltdPu70asBWX5q9g4cJP0tnxHg/5E412WnU3VZLhcIuTcqk7nlLFzVRT0ytR1aijnqyqvpAtW97ueHiBee0WLTT9S7q6fsTefX9DJtNLJtNLf/9dzr2srFxdMuW5FOz7bs7waJI9LS1/QHX1elpc16MyvoIVy//OWZ6a2meek0s5ZTiG+M1cuO5/Sh5PuFJWHVKqxFTixfU073Eml+KxXce4sRN29AoWxPPqLVWNOapY+zru7c/wxNAhKkIBXrOulcrIzMfyMyV8nBnMbjaxcxVuo3PHU6qMUkpxpfWp9qBg1Ty01a8hXn8BuRmiz9Lupna76F0r7TZMiOJwKpeC5AhEa6d/cQjF41tUava9nJFjOJVXyUbUCL/8179m/4Gt9iS5ZJIJwhUnNvMwmDMatkwsJHkERgIJ6lpPvIwTwYHNA4wPpABBDU1kuuc71y7TNEp4oNabSrj9dnjgC8DtACi9zwDXoIYtLywJ9IRgkTm0fcExyd5j3hmeHRTev5K3xU7StOPeEyQZy6DwEQhkC5RwJbRdEkhF6uAtd8CeP4b9B5Gq1U7p9qQ/1v7n8fvBx9yE+5k/c73+uQuflJpDEAjriXXLoV98NDbeRGNjPs8/m7WJA8NRAri9cE4G+c61dIyIZzsqrxSkIoXDLY7PzgnDeSNIz9vBGf8rESjFJxNE46GSN0MoEaQ+6RSgawY/3fRGxlLvhwGYkt8ggMYHWhv5j8lxstaMf1o2x2hfgt37JRWGQkKBKGbQYAgVRepUaQl0FKYqbJWTdAYQdV1HzykEwgaRWnM/LV2sjgmHGpjf+T4eJ+/lZHduExGNylSQ1omF1KgrmQA4CM31XaixPnb/dDGvSVhkopB0N6Y4rFdwef0BVFVzCKn6SD3D6WGGrZn6dCmozpgkYU7RCRoqMqWw49Fu+jb3cePQO0gFE/z+kosJ6AO0Gzs4kjH3tQkpgJSW4vD4YYeUciulpPCandvqGCGCKEoIXYf9B75ILLaMjo535e+XcD1zZXo0Ughr6mHzePngOK+U8jyTrgkJ5rW+iYtaXo2ihKiqXFey/HIQQiEUanDIJUWJziqdKhqdTyTSQdpKuauuXu/x1ipEPL6CYLCenJWeWF933azraBuWzwYN9S+hr+9OdD1JMFhLU+PNRWqkpqZXEQhUOqRIdfV6tm//CACaVl4ppSiBojRPm4jJOQRl/l63tf0h8fgKurp/TH//r+nrv9MhK2dLSEH+vut62iHNWltuoa7uymn3yxNt+bxb+7PqMr8vhEPEGjkMy+D/3x8+zLgWYnFjnA9cu6hkioldz5CaIxIwz3MoGWWBy9lfVSuc58T2Snvq0CS37TP9CR/bP8hnX7GSjrroaU9j8eFj9njBOURnJWyl1KGBKVI5K01vGlLKvkCK3XEPxVHqFiECYY/PX2lIRJE+xlZKSW9cVWZ/ALnpO7D5P2HtW+CW/5rmeN6bWaiUGs+M8/pfvZ6h1JDzfUAJMDU67KlCKjFFuCJG12QX33jmawyN9BIkwAcu/hAL5y1nc/9mpJQ0VTSxrnGdc+06963n2v2XcHinwWGe5o1/cQnNC2aOgXO5HLquoygKodDsVafS8gQTAZAaGIZEWH6eCxvn0zMwgXSnPqYnvFdLL56RuJCQUUqZhedLmLZ+xUqpUwu7eEWX2NzbrLrrYSueKBy4mulx9OHDx5yET0rNNbzIL//ZIBispbHxZkZHTRl0ONxIbe30na6ZoKpxwqFma3pxaS5bHk8z1idQ7VkOFCyfCOxArlxbVep6dx7tYmpFs/V9QVMuIqa82RrgMSZVxlJ5VZJqWGSLKvh2/XVc1pUFJhgbGec7f/w2AtHL+UjkUn5dkSUSMcvOxpqJTPUgNB1QyMTsjqyBoprpdLqmc/yJVqrnm2oPPVvJoqXeNDGpG0jd4PDu7YyP70XPqua1s5QrmaBBZQqCegBcmX8GBl/uDnN9Ih+oKlLQMVDBCBUcDI3QUjfkfNcfvIRA+l5ntr1MLkRIMzva49E0DYkYMiN49Kd7USUs5WIADgzHmOp4M3850sfxPQoHag8iBCzO5bitqZM9RsIzMmqrRqTMOQFaMFhLLjeaJ4tEkHCokVxuhKGhBxgaeoCYo1gSXj8eOy0PL6QwVWmG9XoU5JVSdsqohyxymbKGws3U1bZysrhg9TcYHn4YgNray6f1D7KhqhGuvOIBdEt5o6rxaUmEUKieq6/aaClmlLJpa9NBSsmhoQRZzSAeDtBRV0yC1ddfx3XXbp22HEUJ0NBwg2edTSY5aWazUAZB3kfLUUq5yCwhVGpqLiGVOkp//6+dmQxVNT4tgVd0DMV8rg0jjW6RZuosrp9NPBlGit27P0s8vpxIpN3zXSk4RKzUHMXZ73cNc3TCTDt9yYomljUXk2qq6/lcWXcIgMFkHYoScZRS0Winc+6ZTB8AOSMfEtyzo497dvQxv76CD1y7iPWd+feaDx9nCn4/00Rjpfkbn8xYnnSqoC4WmtZTCkCxZ/pVgqiK9e6bJiVYCOFYSbhVNI7vUj6TL/+dvW9hYVKYK488XnQcKSVDdx8mtXOYwOT7ySwYdcoqNADfM7LHIaQArm+/HiEEhlHoOWUu/2L/L7inK58iPnHX3xBc2sKWgS3Ouh+98kesazQHkiIJLwE12peYkZTas2cPP/vZzzAMAyEEr371q7n44oun3ceppxXPKEHQNVMRJqyLHQrYcY9nB+uDrWDynneeRMqzM0KWHocrjhQKfaPKbyEdYvKFQcqc+XwWqtZnLLj0BvYwoa9E8TEn4T+WZeGTUnMEpZ/RMzP0J4Rg7Zr/OKVlKkqAyy67x5mpLxqdTyAQn2EvE0uX/iW9fb8EqROPryzrPTUbFHbWS13h4nshCKCaY4VFvo9Rz06GbhQ26eZ6BR4NGbQPvRXE90GmAA09u5dA5FJemwxhJN/O07EQiyZH6d2+kGTiCCEkPTF76EhaI546es5g/HAV44fNQEmozSxaXG1tJtn+jV9R21tHX/IQj/b/3KlNToTAUmvVpxYCPQS1kL0KgCFdMBY8BswjFdK57+IxalINrDqUpmEizM9iVTzUbiuoKsiICJd030jlxBJ2ZupZotQSzZhkSiqUgwTInHCCqpFoL3WpVoI5iegLUvmFPlYjeNk1KSqX18DUGD+3rBM01wiurayTRg7DMYeuIZcbdREYAVZf8HWGhx+hu/unpFJHyGQGnf3d9z8fxgnXX4lhK6WsQNgJwKRwjPO9/krFiruTRW3tpdTWXnrC+wmhnpjix/KyOll8/YH9fO3+/c7yv7x5Hbesbz/p8tyIx1dYMzmaVzMeWzar/Wyi0E7rLaXEbG5+Nbor9a6m5tJZEX/OMSziyzDSZKyUQ9s7azqoaqVDCPX0/sz7nTILpZTMoVtKKSlV6mMhhhNZRhP5lIyNB4Y4MmwSZRvmV2EQQSFNXcR8/nun6tlwyS9JJPaBUKituYzh4UcYHX0aKXOMp0PsGF7F7R+6gs//cjv7+k3C++hwks//0vQtW9T44qax+PBxsjjPhFKsnlfF/33gcnrGzEGrZc2V1FSEPObOXk8p8wpVVSsYSRBqkEAgDBKC0em7AsUaKbenVGnVOQWzvQEYf/Rb+MlNLlIlj/u+s4v9z5oeQUFRhdba5HynKl6j84msOfCwrnEd333ZdwmqtqLUJF+uOfQmFg9fxM+37qW2pZvkNeY1CmgCLSBJ6SmGEqY1hSpUdKnTM9XjkFLC8HpJ5dLFs/4V4ujRow4pJqXkyJEjsyalbKN6uynSdA1hSYYCNinlVkrZ18+57NZxbR/MEscQZdaXRNlAxitBeuHpe+7yhGlKOl2hsz2gr5Ty4eOshE9KzRWUSH6WnFt+HcFgNdXV62fesADV1RdSXX3hqamEqxGUZZwSvDCDr6BU0YG20Un2tTcxUDlJlCoaM8sxcvsQliLK0CWeLq4VPBhCouaOolBBuPo9NIv7OTa6FyFHMHL7QdSgBBrpya6m8oH/RBjS4YnGKgVhqy52+p4smMVGGpP07OvlO3/WhZbTUTMxllROsFda08GLCMis+c9KE1SJYwBC6iSDk1QIDbK1JNQkijVEpRsVHBt5J4Mrf8GiHh0moFdrZ5IuIIsIdFKVquTyY3m1i0015pQsYxUZOkZBTo4AJpk4Fh2gLtWKIkFXVELtHeS6ujByCoTiQL/zYtKMPCllK6WmEnuddeFwK8nkYUclFAhUEo8tJR5bytjYs6RSR8hpY9b+XhKmeBTNJPxGYhEyappALg2KaxRSbSIT/QCIKHr0Dfnd3P4Xp8nE4N8eOsD2rnEALltUx7uvOjH/qheKXT3e9IHdvRNltpwZ/RNp7t3Zh6ZLqqNBXrX2C2bKpdQJBmuJRObNqhxbUZmf5a+YpFOUcElD8dkiGKgiEKhB08YsD77IrBSfqhrmwnX/y/j4cxw89FXPd7av1uGhBMNTGSJBlVWtVSiKQLGe+bHxbSgWI14ZCVMdijKcyJLMmp2lg4NTvO1/nnbKbK4K87Erv8Cm/Q8yv76CHb0KT/etpTfRyg+ezJLVDKKhPj543Su4/rpbAFjyubvRDEl7bZTf/8l16Ibky7/bw6GhBPftMjuLhwbNa1s1QyfWh48XDXYH3lw4kzU5oxBCcPmi+pLrbXjS92yllJY1WzQlSFAIkHJ6UkoIx9vHq1xxKaXsTZ3/Sw8DYre1yR1jZixTgpTq2pP3m8xoo8R2beXlfRCLVxBrNeOArJHluzu+y1O9TwFQHa52CCmwlVGCFQNXoEqVrGbQf3gCY6UZTYU0BS2gYyCd2KIuUsdgapCsnif4lQJSKpvW2PNkL2P9ZpxR1RBl5VWtnmttt/3BYJBcLndCsYCdvqeo5rXLapqTvqcG7NRFNylVoNiXpZVS0r0s8cyUWLYunt9UOSVUYcbAC+uovPBf8cyDzT58+Jj78CPLOQRZQgc9G9rEx+whPOl7s7y2EgIoaEIQz+TYG6/gmcsPsHK0laYdZsfXjgk279jCpSx17Wx+8Yeb59EXsUbbVMnFtXdxbHQphqGTnfoNAKHKW9FVFWFIDAQ/vHQJPfMPsnBM0JQzA4/UZBYQtD1/IbDPVcckfbseRw9cAkAOlQOT3RhjVrATmI/Uh5BG3hg0YChkgb7qbfz+ovt577Y/BUCTCqp1PjohZLaS+cMdzB8LoLOT1X1XUK2E0asPM1K3np0VJiGRVdM823E3k6FRNDXDaDTJilGTAMimUlQAutAxhJVSYICmBggtXEiuq8uMs8KV9iUy6+IipWKxpU66HphqpeXL/pae3tvR9SSqEqG9/e3O9nZqkpYzyZti5UxhrmwQpE5vbSWQZVnPw9AOirXd8dEwX//VBQDUVuxg01+2oiqCQlNWgJ89e5wv37uHnC6JhwP8+9vWs66jhhOBphvkrGA1Eswb1faMpfjKvXli7t5dfbzx4nYqI0E03eDt//sM27vHrf1U/vimpTTGw9y0somAWjyb0PGRJOOpHKoiWNIUJ2hts6tngnd/7xnGkjni4QD/9rb1Ticoq5sPSEtVhL6JNFnNYOvxMX769DE0Q7K4KcaHr1s8q2D1b361k9/t7HOWdWMtq+a1sqN7HNBY2jzKxfNnTh1bvPjTRHo6kFLnqSM5/vr7FaT1+6iKBvnWWy9i9Txv2m86p/PdjUcYnsoQDam8/fL5NFUVG8R3jSY5NmJ2RhbUx7js0t8wNWVe/1hs8awVarW1l1NbeznVjX/IX972I4anUhhSRd99IX+sDvKO7+RnE/3Tly7j4zcuJRZbiiSCIsyUu/FMJcvaltIzbl7XRNb8fRy36lcZDjCZ0eifyNCbXs2vDkZ4bXweDx43FX5fvnevQzABfO+JI7xhfTvvuXqBM4NXJGDS6qoi+OwrVwLms/Dgnn6khIpwgDeWVcWdvySBDx9zBUIIpJRks/ZsrIqpQgGMpDUDqBIwp+4DlIpp0vcwlcNeElDi0RoXKKWks6d7LRhpOxW+mJTSrMlCAuRIpp4gMLGXNdbcHc1NQbgENnZv5O7Ddzv72H6TzlEMU6muWjMRq0GBnpMOORewfS8xnNiiIlgBKe9MfliklBICIwtP3XmoRH11Fq5rpLLObDNsEspUs5/YAJWddRgOhsiSQZGKY2xuElXgydCT9sQq9hUuTOfDER/h+sbdGntSMaepmyyheHO+k+6jnjhmSh0sV3LZtLyCCp2uQUIfPmYLv08/PXxSysf5BVHQSjso64KAYaSJ6gqa1fAbVrAwoU9hmzHZI1PBSYk0pkyCg5BT2kueOEou3MjTl5rxxPEtDSzURxmKVJAOBcgpKoY+zECikdVAMhjlF+vmE244zMItAnKg6gZBfYxMqJbqkQpSFGBqCGqgItlHsqKFtFyKFh6HFCAUwqGLUaZ+ReWUTnUmTSD3GLvaG5EiTU7JgDW7YFfPMpT4AfNcLWlW/WQdYJuQ67ROLEHJVmAEghAzO/tZNcX21kfMLTJN5MY22DEvSb2SGkAKnUxkBWAab+qqilAtbZkhHFLKHvu0PSQAQqE6rr5qo+MfFQhUoSghli75i6J7BnmvnlHHB8pLStnxih2cBcIXUZd7hsxEgvFYhKBmBu+OUkqYPh6DkxlGkzkm0zlqKkKYRudeUuqXW7oZmjKD3PFUjtf920ZWz6vi6iUNTkffWxfJ4FQGKSEWDtA9muKN//GE4xdyYUcNv/jwlSiKYDJtrouHAySzGoaEZFanMhLk0FCCJw/licepjMZf3WmmXv3H29bzijVev6sHdvfz3u9v8qy7fnkjGxbUEVAE/ROmgWpGy/LQngGHlMpZpFQ8EoAJk6T6yr172Hggf+wbVzSzvGVmwqbbSj+xCZVdvRP89a93kM7lo/CrltQzvz7Ga9fNIxRQuGBeNaGAl2CrrFzDPz2R5pF9g661WYYTWX6/s7+IlLpvVz9f+t0eZzmjGXzOujcP7O7nL36xnbFk1iEGAcIBhac/dyMNDaZ6aySRZduhYQwJA5NpDCmZVx3lshIKBhvbuzV+u889k2naQ0gB7B+Y4qG9A9y9bZDDg1/j8EAvN61s5pMvu4w/qK527tl3Hj/MEweHmW95eq1uq+K5o2NkdYN7LaKvpiKvJHhoj5ly2FQZZmDSvLd3PNfFaDLfIYsEi9MZV82rYtW80p4qfpDlY27Afw5tVFZWMjEx4XTKKysrSdtm4QmzHY8sbaDq5QsAiK4q/75yIMsppQqVNW76qkDRLR2pd1HxWkZDSz9LOpX3mzrSvpgFXQdR02Y5A4e3AtAWaOB1q9/MLUtvKShfOl5MkCelNMubMqBb1wANLWNehwqriunJJLn+BCKoOul7kTqFZF9xXQEeu20/j/1sP29+9REa61IYg25TeYr8raaDfZ8CwQCQ4eaOl3Fo2LIdsEgpr1KqQBlV4ClVirOZ9a+jxEBSEVV0yn5qXqqzXLEnPMvmuZRi4uMchk+aFsInpeYyin3/fLxAeJVSs4Shs/XI7Vyas6aQx+zMaSJHPp9OcMnuGlYe7ibDfwEKwfgf5I8rIRU2f26KodN0aARzjG+ErZ1N9NRWgswSz5qKiOFoNUKYhqQ9sThNaTP4E4ZOLvkgemZrUTXt0aPq1ADJihZrpRmsNA1uo2Pk9+gNgpajGQJRnUPRGvO7gQr+6N4O9KpjqGIexwPzUAx7RFGlXteom4iBpdYw0AjrMUgspfNYhkfnm4RVUI+Q6nkj2uQaJGGEAbLKlORHrNn1DCHRgjVIOUnD4DGyuSybjx5gGRZJFDKT/wJWAOZWSoGZfhUKzTwjHeR9n1KpI4DpP2XejNLPgFCbWK2EmOzvYtOiVjTdQJN5FVQlKW5a2cydW7pJ5XQmUppFSilFFgZJS8Fy08om7t9tEgE7eybY2TPBR29YQlXEm0r4uV9u56fPHHeWG+Ihh5AC2Hp8jENDCebXV5C2ZlqqjpplTGU0njs6ysN7B+kZNwmeRQ0x3nXVAh7fP8TOngm6x1IctdQ0bmw5NuZcEjvmfXjvIA/vHeSPLu/0bGunigFkNYuUsp7pjGYwnsp5th9zER3TYTJt7reuo4bHDwzxyL5B0jmDcEAhYx1n44FhNh4Y5idPHwPg1Wtb+fyrVnLP9j40w6CjtoKLOms9hNSC+gquXNLAT54+VrIuw1OZguX8Nr/d3svgZP776miQZFYjoxkcH0lRUxFC0w1e8fVHHeLOjbs/cU1ZEmfMuk4XddawvLmS/3vWvO+qIrhuWSMP7hkgkdH43C+20zuetvaqp7NpMa01NQA0W4qu546N8Zx1D+16ttdGOTSU4KCVatcYD7OsOc6+/ik0QxIKKPzm41ez6cgoTx4a4kdPHePhvQNOGeFAsZpuRszsSOvDxymF/8SVx7ve9S6OHTPflfX19dTW1jJ1880knngCI51GiUape/sfELuiY+bCSihq3IRTWRcjDzFgp7dbi4bXo0kaEikFRu5ofl0wzpPrrzdJqYy5fSpzGMJhlo/38t7GtxGKVRWUY3jqoii2DYFNSllxCDpKNsiK0YtY0B9DF00M33eE/rHnzP2s+Kd1xTDN1RkyRgXq6D5Wat9iWCzm8Yn3MGk0o8sAY4/eQWP0cSQ3gFxHIFvJVLqG/34uzt/t+B3BgMLfvnYVf3BRaXXpSE5j48gkrcC+TIZGTG9S5xzs93EpTyn7UhdlWBRHuEIW3iX3AK0otdZ1PFHwbeHxXiDKkEgzxull9sv7gJ50jXz48HEG4JNScwwC4XmT2i/XREbj248eYjSRRVUEt6xvY01btdNpUxXhpN2cDCbTOcaSZmeprSbqNObnHAqNFaffGIBwTkeLZNF0s4MYstQ7uYDAPX/tvCG3YbGBoeVJBkVKjrSYagZVN8kGoUqMmCBgBSBG7igJkeaOJdeyuW0dKFsA6K6pYN1QhlQoRzxleAI3L8znpkUfp2XLv6IFY3THM/RUQyiXJJzLktLNzuxkOEZNMmMZegsChoKR6UKNwHAwTvPEfCBNgxHgPZOVwFpyPArA8ertROJR2kYuIaCrqNboZ1CPoI1fwuqJnTQaw6BJlg+FIdDGoj7BWK3pX2UIQS5xL6t2HGAVcLAqTE1VBS1yDCyizNZqFJJSJ4KO9neiKhHLY0jQ2HhzwRYlRjKFdAI6IQ1GiSOsYbpmxhgNq1RFA6RyOl+7fx85Q/KJwSTM80Y/CYvAec/VC/nEjUsZTeb4wA82kdEMxhK5IlLq0X1DnmVbZfWJG5fyi+e66BpNcdO/PEIspPJnL1vO/2fvveMsOas7/eetqhs75+nJeUaaoDDKOSAkkUROxgQbr43B2AuO2GYXszYOixcT/MN4MeDAEk0GGSEQAuU4kkbS5Dw93dM53FhV7++PCjd394SOcx59NH1vxfdWek+d95zvAYhFDOK2yXjW5q/vfpHDAwWn04auet5+9WrefvVqPvK9XXzhgUOMpvO4riZru3z6Z3v5wgOHwufH7790E9etb2dv3zj/4zvPMZFzODGcKWlTUHYcCk6phrgVfk/nSl80UvnS7+U8tH+A546PhL91XUcdv9zXz8F+z5myubuRz7z1Eu5+7iRPHR3mxZ5RJrIOJ0cz7O0d56Pff54fPltI+wsigjobYnzrvdfS3RjnXx44CMA3nzzO/Xv7Wd6S4PoN7dywsaOifel84VoLotE+eNtG3nj5Croa47z0//ycPb3jjGby/HjXSQ4PpOgdzWIoWNNeR1t9jL29Ywyl8uw7NR46pcYyeX6xt590zuFg/wRPHvHST7sa4vz167bzoZdfgO1oYpbBT1/s46cv9jGetcNIpvfdvJ6uxhivKUqZ+/2XbuSC7gbu39PPT14opOOt76znd27ZwL0v9KHxUkffcNkK3n39Wvb1eU717uY47fUxXr69myvWtPKtJ4+H1+vWZY2L99kvLAqqq28KxbS2ttLa2loyrf7661h/70/OcItVFDh9x4jSuiJ9z6NK2lfg3CjzFjhOkI7m6zIl72Bs00UMN3rTjZzm1sc6GO0ag5UZkjqHOzIEbRrSQ2DGoLHbd0oV7GAjEA73Bd9Dp5SCbcfvZNvJmwFYBaTaXuQ31n6EY7FeXvPsfwcgdveXMB7bz1BzPa5hkGpv46Lte/iVjvfxlYn/Q//oSk5lDCK6g3FXk3SXEk+tZw2wBrgvnuexeJ4fPXuyplPq8ZEJxvIO3UA2SHMsis4tREpVHnvCYixBX+a7CMs1pYqmTUUVd9bMOYCDy+GcbfAs8wkFQZhTxCk1T4iO5yBBzafzD5/t4ZP3Fqpd7ToxQlMiEkZhJKMmX/q1K7h8dakhkrUdvvbYUQYmciSjJm/YsYKWutI0pmNDKV7y9z8P02Vu2tTBF991+hXA5oITw2k+d/8B0jmHWMTgXdeuYU177QpRU2nclI+sKDTJnM3t+Shq6QrYszc0eRwjjwrS9xxFy5j32bBW4tpH0HZfyZZOdCSpByK+U8qMOUSTmqjtGRSufYgUh/jlqps50rAS1GNs39fIpXvGyPIZALLmpWiqO2rCPHtl0jLipd8NWq3Q1IKhNZYLyrdl+uKtrBo+QWc+wX9tGeLivQnc/DA2T9MxNM7FJ2/F4Qfh7wPIWXnMLIzG++jp/j7LBi9DuRqj6JjV2ePcMnB/0a+uh5abcf0qYqYGx/CE2QFcpTC0JhWNwLIrYc2NsPP/eZFSqrT6XvXzpfng13fy5GHvRf/SlS18/I0XoZQiGm1l9er31Fy3WnC9Qof3oKFsfjP3AbqtA7Th2TnJqEVnQ5ze0Sz/+dRxAN4WLUQIua5mcCLHeFGK3fblzQC01kXpGcnw5995jta6KFuWNvKpn+7D1Tp0gvzg/dfx3adPMJ61qY9bvPOa1WTyDp+739O0mMg53OdHA8Utk3zU+xWBQ+qNly1n85JG7ty2JGxTEFH1rw8d5gsPHCpxLgFYhuKKNa1ctKKZi1Y08w/37mFiMB1WdWqvj9I/nitxOmXLIqVyths+P4IIp0yu0imltebpo8Mc7J/gA1/bWTLvV69ejWEohiZyGIbiLVesZHlLkndfX0h1e/LIEK/9xweZyNkVTrPAqb6hq55lzZ6DOHAMjWdtxrM2B/sn+MXefr78yBFeeZGXglcXNZnIOaRyDlprxrJ2GFm1ur0ujEpq8B2J7/n3JxjNFK7L1e113PvBmwB435ef5PvP9PDh7zzH3979Iqvakjx5eLjimAMsafK2W+ygrIt599u+vnEc/y3kfbesr0ipa6uPhU5Hz7GXJWaZXLa6hYhpsHVZaaoiwLblldM6GmI89KFbw6iwFS3JimUEYT6hTyMtSjh7lFKgfcdEaD4VK0cVm63eYJ/2rZHQPeQbVtqtnr7npDOl01WEHA7peB1uLI6RzbDiVJLUWJTHVh4n7rqYu78MX/vrcBsjucuxh6OoSMG+1ToDRLB9TalIkL6nNDHb1wPFRWEwpDIci3kOfkObaDfDRNrh2c0ryVuF52+mP8LtHbvJujZO9nEeGtbAZsDGjD5GXh3ByT4LwOVGjOOdt+HqUu2rkt+udegwcnwHlFMUKTXot/1oKstAzqYtalVJf6widF5uy2pd9f2ialRVzdYGcXGlyZlnqylVWQm5CiVOucndWCWXqSDMM7R4TWsiTql5QGb3HpY+dwouL5+jwsCeAb/0d/CCeHQwzWOjQ+GSqZzDw/sHKpxSP97Vy59/Z1f4fSSd5w9u31yyzIs9YyX6LU8fHa7azt/7ylN8+2lPMLchZvH5d17OFWtaqy57uhzqn+Af79tHOu8JVb720mXctKl2Rx7wpQcP8cUHD4Xf847mY6/dVnP5u5/zIitOt69KAmZbGyn2YhZi0Alr+FJI4VJmO9hHcO1Cu47d8i52d+9hxzHCSin13VmUqVl5YJTRujZONTWg3VHqrKO4HYcw40fp7i8tF593ewi0n67vsxhfs4OTx35CT0uDL5QPyigYUK4qjJyZDhjBcJufJpdwFOP+LrQ9im3/lK37QCVuAsA009zS+Cm+mz/Auj1JDne0ceHBerInNW60F6w2DP/SOdVoksiXKV1pz1HgGn5ZY23gRcZ7K6US9dSnxlAJl/q2fnjo095+XRvMQqRUf87mz/ceYyBvM5ax2RqJ8rqWJpY1J/jPJ4+Huzs0kOL3b9/E0ubS4zY9ShMRIjg8qTewQw9xIV5H0tkQ5WOv3cb3n+lBa00sYtLxdDw00r7x5DG+8Pmnwy3WxQqP2BWtSXpGCppH33qq0G6AVW1JNnU1VGhOfehlF/CB2zby0e8/z388ciSMJEpEzVDbKeANl62oeAZc2F1wzBTT1RjjK//talqTUZqKdIc8J0maF096jsO2uhj94zle6BnlU/fu5dYLukKh89Ap5bih46WtLsqJkQyjmTwPHxgI23v12jZePDnKb/37kyXteO0ly9i+vIn1nfX8j1duYTKC/U1k7TDN7HO/uoPRjE3OdjEUJc+Na9a189MP3sjgRI4fP9/LyZEM3915gsODKV7o8X5fe0OMiYEUJ0cyXPFX95ak7TUmCselzXfmFzukbruwizddVkiBuWh5M99/pofhlBd5emyocD80xCwuX9PKmvY6WpIR3nh5ZepMa52Xmho875sSkaoaT8VUc0CdDo3xSEXkniDMV3a/GAwClCUjiZ0/QwSaieXy0kFEcZmAtv+/qSrdHaHp5NtAI9//AcNf+ChqvQX8BcWC3T3GEI7VzOC7fx9+/Fe073WxbIvOsVUk3OeI7Pzrkm0bfc+i9aVFNhnEU8dJsxrn1F5oBdOPlLLNgvaUNrMoJ8Gw6UWSbh1fz6rxRkbS97MbBVbp83fC8foBAxfteDZ4zHTJOgbKGcVxhwhsNNNNsTp9GMe9qObR7fnmv9O992GyjiZpXAhcjWsXjtx/9A5yA/DzgTG+9NNH+OrJvRhHDqCzhQE3x24Jj7139Px/i9PyylKsa9vAVW6kGXLuxAI9Ub+dUWUV7auo6mPRlOqUtbkkI0IQhIWCOKXmAXZfL5M9bqGgu7JlaRM/33OKk6PeyJJlKN521Sq++OAhxrI239t5gl5/3uYljfSMlDoJekezPHNsmH996DC249KYiLC+03NQdDfF6RnJhKk5Ad9/5gQPHxjgOztPFNqTtfnF3lOTOqUyeSesCrW6vW7S9MIvPniIrz1+LPz+7PGRaTmlgtSfpkSEkXSe0TJdm3K+vfMEV+CbV2XlfMNvNYzb4LAk/VDw+kweZdRhRrcTH3+MTKSOiOrEjV0C9jFc7QCabHMEt3kJw01H4Bj0NiV448v/J2+I/4K2VTnajgxy0L2ExqOjOLldxBofI9LuVbQztFdu3ohswM3vReMQGDzGwAGW161gNFcWTVTklArsEENrLAcMP2AjH/WiNCKOy1gywXNrRtnQu5FYegilszjZZwCImsNckPwFRx9bTXQ8x+EO0IZBNAuO2kvEbMf0Syk7CmJ+BRvtG7Lab6vri4w72i9s4xul2WiM+tQYusOAU8+TOwWROrByaUhYOId+CaPj/FCv4FupQvTPU6k0X/vGC9zqXyMNMQvDUIyk82HU0dRUSrEqQ4fCrTFsPnHnUr75cPCYVLzmkqUkY9ESR8DwvoJTanAiF4q0X9jdWBJ58vE3XMRPXuhlX984D+0fwNUa01B88KWbuKC7ke6meNXqeOCJT3c0eA6LICoqETGJmIq9RQF5S6pUj3vpliX87Pdv8irsKcXKtiQRUxG3zKqpWtetb2fXCe/6i1kGt17Qye7eMQ70T/Dxe/bw8Xv2kPAdJfV++t4Th4bCSnAtvlPqj775bNXfEnDRimZ+/bo1vMqPWJoOgZNvLGOH1eKWNid46SSOmbUd9aztgMtWt+K6mrt3nSRnu2HaW1dDnMMDqdAJF7CkMc62ou3+7ks20JKMkndc6mIWv3PrejobSo/3u69fw42bOkjnHL7+xNEwmmt9Zz1/fMfmKVPjLlrexJ/cuTms9nfrBVM/AwXhfCKd1lBeSFWYUTR+xFQQ0qOAMGWsIIVQ/O8KTAoCBjb5iZ/wnQfGaHEuZktLLy8+eYxt3/shD7W+l7GRZf6arteTFuk0Ol3LWOVcR4b7idpRXvvc+1jS+v/oidxLSkd5Sm/g9eb9DNQ18oXGtxFR8E6/Jku/pTFt2O9Hl4+rFmCCvFFISjOV4/0CbfCSPe9g/cClpBRewRqgIZ2lNZsmOWHzwrJ2bD/aStk22o/krm+F7CkwdR47qMIX2YSb303cyZK2HW7/4c8Z1AoLzbvqLVamx3jk8Yepf/ZxLP8o1g0+Ds1X4xTZ4I5RiE465liknluGst7ti6N7+89mNxSdl+qpemfqsy0WuijfRugsOsONb25pYeB734d1a2l51auIP5jn7twDFcvVejuqyHyoqL53Zu0ShJlCVclqFgqIU2reURoIPZzK8dV9R0JB4jXtdTywrz98IVvekghH8H+862SY5gNeBeDX+joklqGwXc14xubjP95TIgi82a+Q1RC36BmhxCk1nrX5va88He6vs8HTIvnCA4cqIi+KcVzNHZ+4n0P+C/Rlq1r4+m9dzfM9owyM5zCU4uKVzWHkQ78vOnzDxg7u33OKwwMTvPlzD7Gxq4EP3LaRD35tJ31jWZSCX7lyJW+6fKXfPs8JtbI1ybPHR8jak+vYjGUdCHWyS3UQFLXT+wbHs+w+NcilgDGe4sP/4bBiIM0Tl0MkcTO5tSeI9L7dO+6AlbwB11qJcm0i7jdZ63RhuN6LfDZiMRap54u8jNSGpTQvHWPdsZ3cdtQzgoIRrdzAtZDrBzIo5b385kwwfKeYoTVGLo3h97yuaWIAKtmOVpqcaZH3o0kMrTF1wSmV9cXC622Dlacu43eaPsOj2TeRyu/Hze9Bu55AedOJMQazdTTmozSNjnPFnpOcbE1wpL0J3IyXKnj42zi59TQfe4DbtecEHatroHFiFFTglAoipVz/sHvXWC7itSPda7H/Sc8BV9edwX2dA1hkXvguz/b0MGq9klfX1zPRaHLPloT3ZDdVGNXXmIhgmZ5TKrgmpqKirLAqHpvzPq/vSNAQj/rLK5JW5fVhGkaJQ7O7Kc4Df3QLSpVeTytak7zr2jXTals1Xr6tm5+80MtIOk/EMHjT5SvYvKSB7+08gaM1G7saWNFaPf1qspTWcv7kZRfwnpvW4biaRNTENBRRy+DIQCpMWQyionasauELDxwKRdnrYxavvngZL/SMhhoYrXVRBicKIuKmofjXX7uCa9e3n/YxaIxbKAW2W0h5bK2b/huqYSj+8PZNfP+ZHm97iQgfetlm/u7u3WEVwDu2LuG3b1qPZagSJ9KWpU38zeu3T7p9pRQbu7zn6UUrmk/np4Xr/+aN6057vTmlJExCzC1BWEwUm0TZiMtEzKYu6xdt0ZYnP1DWLbraJlaU2OfpYNqM5WCMBoayUf7qazt5r7mcpPIcUgk1jGEMk3IADBrGU3SfGiCqktSNLyUoswIwMfJ6bo3fQSoS55XGg7zevJ/hZD3Dupk6N6iS7DBoKk84HBOtDY6oy4hzjFQkEjqlksplArhm9GJGMonQKjBUDhdY2zfManuYA1EvGinvpyAa2IBna5iWp2XlVcjz+kZlNkEelmT7mNj1IL3WDoa6GhhPGPxbz1FuffEJcEpt6KCKnjM+RPB6FmQ8Kg35SARlVQ486dBLW6QpVZbupiq1Kaoyec2KcxuOGDVNNu/eTV1HBytvuoldDz9Y3poz2r8ETQrCwkScUvOBSQz59/z7k5hDhRe65S0JPvu2HTx5ZAil4LYLl/C0L5wbOIBWtyUZSecZSuX5xhNe9NGylgSHB1IcGUwx6kddLW2Kc2IkE0ZdBZoptqvpH8/yZ996juPDaWzXE8z99evWcNOmjrDk/HiViJRM3uEff7aPY8PpsD0ATx0d5uEDg7zlnx8Op12/oZ0vvPNynj0+wlE/zeUV27vZdXyEgYkcDx8Y5OEDgzQlItz7YiEcZDi1n5dc0MWPnjvJXl+8t70+6u/fK4X+vZ0n0EB3Y5w/vGMzjqt58eRoRbrTdF3W9sgoDb43a9XQBFuParLRYFRGYdpeipTr9rLs5D766nZC02+jlcGFO5+k/qa30ZYLRCl9Q81/4TW062kfBCWbRy9gfO+NaLsF8t8AMqB8o0PnCYye3o7LaHAfQmm/Ao1fipjmpey9qY59g91h+wODxPQdjhlfd8FwXDQWl2RzHHCz9CRvZCKfJK4bsewMF5z4GikdxTa9a+PfrryLt2a+xZF0E05+L+7YANtPpXByWQx7kMD1cWLJShr3Pwdo8qmfeVoS+hoM7fKaff0c8o0vyw2ilQpmRGYwQsSPpPpUcxupPe/B1CbbBr374NGVEUYaLDBV6OxIRk2ivgPuT7/1HB0NMbqb4hhKcfW6Nu66eBkHRg7w2ac/SxLfcVMUJl5MaLxpePS5H5GyvWtTpy7gkx/8CZe/aQVXX701XD4WsYoMPsX6zvoZEYve0NXA93/n+orpH3jppnO+r+ZkqaPn916yEfCE25/ynzdrO+q5Zl0bq95XF0ZnblriOcZ+9epV2K7GUJ4Ol+24YUpaMmqGz5rTpSEe4S9fvY3HDnlO063Lmk47VfPd168t0akC+Pw7K3KnBUGYj9TSMpb8vZlBqSKbBb51w3H+9Nu30dN9FZ2nnsDUuykf4OvPnmA4N1DUx/q2oqoDPUHG8V49duYmuNp/C3lN0wf47sQaUtQBBnf84j62HLqFVFIx7jaUbEcNHeNTx+/nnlUbGFru61UOOPzbox/FMOI8fcWHARfHDxl612CK3+//U4yIZ0e6Zj70vhj+wFm9U8ew3+DLoo9w0HqR4/lGb/DP1Ji+rWL7g4sGbihPYPkaBq52CRxnyvDssrb8AG09P2PN4CiZ1pv4xKuawYpiODF2Zbq4gqcLx9q3e9zhHsBL73aLop9spTg6sZvRvd8j3tiL2/QHGGYLhdIwhfNQrjpVHj01PdO3oBtWsq2wmmL1+dOlfBC4ok3TvacrGuin/ckYiSAsKMQpNc+wTStM//EiNzy2LWvigu4G7rp4GR0NMV5yYVe4TswyaIhbjGVsoqbBH92xmZ3HRvjsz/cDXmTCzZs6+eKDh3i+ZzRc7+KVzZx49mQoEBxU0gL40XMnuXtXobLVJSub+e+3eS+mzx0fAeAXe/t5z78/wRsvX8HNfhrVf+06ySd/ui9cb1NXA7t7x3BczT//woviikcMMnmX/X3j/PWPXuT//vJguHxbXZRv/fa1PHN8mI9873lOjWXp80uudzbE6BvLMpbJ83f/tTsspQ7Q7b+YZvIO/+M7u0JHG8C1G9r5yx+8wL6+cZYU5agXhyVP1UU3jfQTJPKsHvOOUyoaWAsGCcciDeT181yw5xvojQlONnnz0GC7eRJ+2HcsqBDjOy6sfA6cFIEsqM50o5PeqJwZGDjKc4gpt+Do27/hjTQcz6Ky3vFzcTDwDIXhrOceUmgSZp72Mc+xYuW83zlieX8Tgz1c94xBanWEpJlBGQ1ssOroMS8jkeojbjuk8itJ5rzffON4hJYlGTgK6DTaPs6SYxZ2zDPAHmm+jAMNa+i5+ULWH3oBy3Fwsk/hAJFcB5gr0Pl0GKW04tQpMgb0NNUxnoiwpneEJZlxLshl+KGOY2gTU3sGl2OA6UIk7xtEZqEqTF3MYllLgl0nRnnx5FhJKtZXHjvKH3/zWaKd3yUSu59X8Hr/jFcR+CwxbjQHH/gvDq3s5lJlY2oLMxPjwV8+W+KUikYslG+wXr+hnY9vX12x3cXC1mVNFRpG25Y3sY3SaeU6SJZphILhZ8tbr1zJW69ceU62JZwbxPYXZotqz21hZtFFulF2BGJuDMNsxyh3hviej7ybYdQeKi6EB4BhtuLaE+S1iaEdsmYYto6Vd3HDMB2FY5ikkp6dG7NyBEp/WmtGGlYwsvnNrMj0c5LD3hq9Lu2ZEdLxIIrLRSsX1xki2+dwjd5JKpZj32rQpl1I3/MdXcVOnHo3XVC30hpl6XBAL+ca/Lx3DYMTz+A63qBo1LbxckoLkfpmZAM6NuIVvXF60TpNQ0ZjupByNW2nruRA8iTFJYUUGq01TvgW4Ia6oIaGJScP8mDft/G623bUxA+JNf4K6NJBHqUhVyT4XqqWWYYuzPOcTOWOouJ8oxnSaprKuTWFQ63gfCrbjnilBGFBIU6peYZtmGF3ZAC/c+VqLu9umlRf6YLuRp7689uwXU+jJmIa3Lmtm1+7djW2q6mLWkQtg76xTKhxsmVpI8tbkiUl1YvFbgOx3yvWtPLr163hyiLtqGUtngPo5GiGHz13kn194wxN5PjRcyc55IsaX7Simdsu6OSlW5bw5s89zOBEjp/60U63XtDFD57pYSxjh06yzoYYG7sauHJtG/Uxi5VtST517z5OjWUZ8ithLWtJ0DeWZTxrh7o6l61qYcfqFi5b1cqXHzlCOu9wyk8FDCLBjg+lw3LozXVR0JBXNjnlUO01udCNeV3bc61riA7m6U55EWJdcQsbaIzXh0uuzhm8ACjbOzbbJrIER3bvUsXIwD3kmzzjJ+V6Bow/4Ebb8DDx9Cj4cUZGcS2SsBpN3P9eEGEGiwkaw/S9nMpiARlD4/ox33ctf5619YO8+KSn2xPNeEbTSIN3PTWmhrhm3xDP966g77omfx++Uef6IuV2Mwk/wiymInQmU7y24zm+O/Zb2Jlf+g4+77fddvBJlg//nNzOOP917Ua27RohHQHt9KP1BFq7jKZPgfbakU9cBNnHyUUsBiIWdMCSI+OsVcvo7/4QicxQ+GvzpsJ0Ncovl9zdmqQ3NYZS8JILOnn7Nat51UVLyTsuJ0cyZPIO//vHewAv3ewdv9jNq55x+NqbS890IVxdgXILI4oauuNdDLhJlq7+bZ4ffy1tp+7wR0OLKYwkb+xqoPMcOV8EQRCEySjPUxLONeHQT0lely6dp4rnFIlrl2/MaAg/vufg/8VyQLdfgVIRtFOsUWQw3FywOXc8/Lf8bIPnoGrt/QknYy/4NoeibnyTJ2Lup+3lfKkAfKeUnX6Anjxcyk4A+o9tY7yll6TtOcRyfnU7p+gyMpUOHWSGBmVqDH9AbzQT4/HMcqA/XN6rrjde8lPzZoxo8nrszBPY6V4Ct5fleDaMk9vPSk74x8wIU/dAk3Z9e1/p8LArDY1jnj1kuC6uYaB1oBkbSAx4x9+22sjEygtkqJpOn6nuoFpr6inmnxVno70TXLLnqi2CIMwK4pSaD1R4873vO+oc3nDThmltwjKN8iIhFS/H//grO0q+/9tDh0q+1xdFSg1OeM6PDZ313L5lSclyN27s5LNv28G+vjH+94/3VC3v/uqLl4b6OX/56q384FlPw6UhbvErV67ynFJFzqWPv/Eirt/QUbKNeNT7QUEkV3u9Z0TkHc2eXi8S5ndfsoHrN3Tw4H7PQNjbWyilvnVZEydGMhwe8BxllqH49/92HZ/+p13YyiWnHKaT+NPwq29nYj/w2b/1JvhGjBEpun20ZxSsd7woMrMoTfD7V1rc/NSzjNqevpcdOEPi3u+LRXJAFvAMNqPoejB9B4hhtmPXbWQg8iLayLFyZCNKmTh2pCjdzEVrmz++rJXf+C8/3W75q/jvo18nHdMksgrTt7wev/AKjnY2cdMT+9i+/wHyWZMXrTUsB05YO/x2+KHyTh6lNS5gGSauMlieGMJIe+HljlkoUbxh+DhdoykYhW0/38MRYyPPdV1Iln6UM0Emd4yG9DhDMW+824xeQKqhhY0vfovD7fW4hkJriBBhazbN9r5fAm8FIIINmLRELU4B665fxrtaGnj3svZQILz8Wv2tG9dxaCDFs8eHSf7OSMm8WgZLQVRTc2HLhWiO8/r0Kf5ZD5GrtqIqDAfLKL4gCIKwaAgj9kv1TqsvWrqMUWbbKpVEmZ1opw9DubgWuHYPZmQlytElkVJdiZHQ7WNkC4NxTQM/o2dpoEeoSaY9W9DQLi6KvFWIMtJoKBnIg1jvVai+CKvtTjKAN4Z5ghNjP8fWnpblc52EbVFaYxiapnSWhJ0nbUUATdSqx41cyb62RurGm4AvFe1F89mXJXn/5z7LmrFj7O1KhjZSxHbYuvtZ8hP3c40vyG6qCG7YTpdhTOoAWyu08iKYIplBWoe9I5LM2YzHo+E2A00pBTyz7T0MtG3hhHZh+BOFY1+ZG1c+wd/W1BNVNSX1c0EN39bULq/JosAEYf5QUNoTqiFOqXlHkUNihiUSLl3VQiJiks47mIbiyjWtfP3xo+Qdzc6j3gt8fazyEjENxR1bl5DOdfDJe/eF5eEB/vI1W2mMR3jplkJ64Z3burlzW0HfKGs7GApcTSguHFQWKyYR8V72g0ip9vpo2N5An6a7yXO8rWqrw1CEbVnbXke7v81//oWX3tacjNDa2sr2Jx5n6KKXTvMoaa5d386oaXI8mOI7pVSRU8rxw6eblHfcdL5wHjcO3Y4Vj7J6vMnfoia3vQW3NYaZO0Yfn6MxGQV1A1AWKRV8Vga5ph386KJ7AHjPT2/00g9dE8PflZE9TDb7SW78xQocX4jgqLWMN+c+wspXfop1R2wydddwYslmjnQv58Fta4hnPKdUzMmzYUWO9PMFR2bL+F7vt+UzGEEIea4HrRXKAMvJkQNcpVCBuKcGI+Li5g2yPVG6OMSwM8r+rhYaB37JaHwlhy5YjzqY8/MnDZqcbZxYXQfj3yYTbWAi1kGdm+bzz/0Rx7TBE75Tqp4MaepYkYyxhzw/HRzjp4NjvLyzmRVmdbFryzRY31nP+s56HkqU6xhVSd+j1HjT+RwR7Xi2nyrVUSisVBA6l85GEARBWExoNAYGbrYdI9ZP2NMVOZEKy3rlQrSh6Rqe4IXuRvY2tJAwFCvNbViJa7jpxO/xMEsZScbRdg+uSuAqipxSBjpasK8sXShekjdLR1+DghoJN8sEcZQZOJMcdIXiN1w+/AQZI0Y+diUYLURUhEzmKRy7J1ymJ5WgXheKxCgToo7Lnb17OXlzJ1caL/D9kQ9yNHMxo3Uu9nipvqppaDJRk1h2iGh+AkiG0eER2yGZ8QZjtWWyKtbPmLqFofGnwiMYDHO5eE4pJ/MoK/c8QJC0Hg0L+ni/zTI8DSqNYrShemr75K8TtS0YXbJmdQ2oc/WqMt+2IwjC7CJOqXnCXLzMblnaxFMfvo1UziFqGdTHLP7nd3cxlMrzrK8bVS54XEwiavL/ve1SHjnoiQ7fsrmTq9a2TbnfmGXy4VdcyP17vVGfDV31bOpqqFgu0KU54TuuklGLT7/1En65z1vPczZ46y1rTnDvB2/iqF9KfduyJh7Y389XHzsaRk7dsKEDlGL5kSO0buksCr4uUPM8RAoODXfcC9M2iowm24+UMv1qLCfsNgwnh2tGWTdyPSRgiS9zlDfzuN2e2HZ09Bny7iC22UmhckrBKWWGn010kV7B8S6HpaPQ12XQ15FFaxfT16zqGjzKhJ8Euv34fvbWv4pnl1g8uEEz1PUy7FhB5DlveMvFnDybLsuxo/9XObW7icHn66hPDJEjgho/GR6X/vFHafOGQNmw79vsXAaGzmLlXK8yoNY0LMtw6lQT0QnvWNj+yOVAQ5IE/Zw4maBNG8SAtDL8pEXvXGfizTy75fW8LfV+LNfhhFW4ngJn3R+sWsINSYdPHu5jIG/z88Extjck2FqfCJ1nVSnXJahysotHACO5HEv+4//xZWBvrAvrDmpESqkwWk0kDITzDXkBEGYTN3zGypU3K6hAkUgxcfD9tNc/h/ZT1SY9A4ZL1HGJ0Mj3l7yMFWqE1UOeVmajbZNwbUaSYGcegMwDPJ9oL3KAGLi+baJwiDcVnD55s1SoKufbOpZvK9VF/cJA2sXFRft2w4jVSJM9SnvOk2HI6d2YyTUc7+ik7ahvW6k46Ax9dU3Eg1Q5rVGmn66oFXksDAWG8qsgOxqIoMwOtONVtW5LpnnVwM+4sW43B8ebw98BEM27GI5nG0Xq2uio20R/egcQOKVcEo4DhgVoz1nnbzdnRYk4ObqHxxmsTxAYI4OJ70Lmvd4ZCQYQnSC1r3KwDQr+xGoFA8qXnbE7bQohc326ew4MsFDoXAwyQVhIiFNqHlD84FSTjErMBPGIWSJK/Bd3bQ0FzhvjEV536bJJ17/1gi5uvaBr0mWq8c5r1/BOP72vFq2+Q2wi53XmrXXRSfe3pr2ONe114fdXbF/KTZs6ydkuCi9SinxhxK1qh1ejD1NFTimd84wes66wr5N5rwKaG6TmOZqtz3+eoe6LuG+dw6reOo4ucRhNjPO8YQCb/TU9g2nzUVD++FiEggFWiJoycFUhDD0fd2AU9qw1+e5ah63pfex45q9QQ98Edyz8bfeabdx16Qq+0RcB8mxIHeEF3ynVajtctyEob6w5PHCQi0/lMIYniOY18aV5RjMJ4jmvPemIxYFOBXiRUq0j+2HZatA2lp0hZ0Zp6MhQd0GWhmvvIPnE5xgzkrx365/zhu/8P6JjaYbr4nSMnwoNul80HmHd4Ue4YWyQg02AdslGGzEdr8z0WLzFPy0uSnnHojsW4TdXtPGDUyMMjNj8/m5P8P63VnTwP9dPdr2WW1oV3iWUKpRONtyCc9DJmsTGIUUVx5MyCtVoJtm7IAiCcHbk7HJNP2GmCdPydBQj0wVqLJwDlVXUAAjOk+vpmDpF9pajTVYMjjKUTJKNJUBnOTncQN4yvfEppZjw9adMbFbf0I86tBGN4qmutbQ5A3iqqy4ZHeW3c+/n9ugxeq57A47l62/iaUoFKW6PNu+g3sjTMX6C9akDuG4eE5iIKFoDjSxVh9YZlh8+Tk6bEPWjv83CoFOuKQHjYPpV+6K29/ujDW9ldNv3ee+J/4cRM/jVPU/SRwNKN/vHrhApZdm+/lRuLbuMa9C6MOCI1r5DKtD11AR24oFLLmL30s0cevZ51hx4gsDi+GJTPTf48ptBnFXx4Ca6WvredKi0kQr/VtE/P1PKnElTtWNKmQQJXReEBYk4peYR8+H5+cqLlvLKi5bOdTMArwz9kqY4OdulPm7x1itOv+JWfcyCoszAqVURqqFQfrSP2d6OMk3s3l5a7noFkQcVeVuTcj1RzozfuUYcm5aB5+iInOLTV0+w7FAXuzpyHGvvgRO38Gf5JI8+d4qJJZo9QF1Oh9pEa/UEt2WeJ9sQI+ZHXqEMPxTdw/IdVzn/Fq5Do1QMK3YpefunpEzNQGOOgxu+R+p4PYmmOsbTKf5x2yY2NsagdS2GFeXF42vg77xtXvIHX+QI7YV9xF2euvpCRgbHaLpgDUMvHmKgaQLtO2+CtEFXGbh+2/9082/Qr5q5u34EM6ppIM3nD/0v6vMj7O7p5JH1y2jOjpKKRdBK8eXYX3HYWsJon8nBpuWAg1Ymb8v+Ca5hUN+e4+J9QfqAZ7jpXd+BU1ne1XQlg/kYg3mbwbzD/lSpdsRU6IqiycHZLuVoc5IVw6mCdlfFCgWnlCCcz8hdIMw0tV5Ip1s9Xjg9gjIehYpmJpMlbmkUTkMz+aY2GBoPB5PsIqF017XoGEuzulexf+OV2On7yaYVbn0hUupg3aVYKa/q7g+iV3knWOM7pPCjmlIY2uWH7lVsie8FqyA/EE3vR6s4gUMnZ0Z5tnMTF9gu61MHwl/gGCpcBr/Kseu62H5EVqzdpm5JlpFDSdBgRwP9Jt8p5fuTTKUZammjqT8bHh7XUSWan97ybpEt4VdVrn8ehr0pHX1PkI97A68HjRTv+MF+euq84/K+o1+hedRg/89aeGpVc9huy/AGlrUCHVbrK00pnL5TqoqsQcWkmYkMrxgoDiKeaiwfOkPLbn7xSQkLAonkq0CcUvOY893IWtmW5A/v2Dz1gqeDKopFKzq+hirMr7qaHyllNjdhJJLYvb1ElyzhhuuWcuqR40zYY9SZ8OxIF8vxnFLeelbBmRRoP+FwnRFD7clyoNlljxlERHlGUCLXwPbMNgaaHi0SCjVwi5woQTTVhPKdUq6LQmHFd3Bg8/f5acugZ6EomHB7ifojcWb7OsyWjWituX9vP08eHuKKWAOt2bFw20bEJdaUp2l1CuUmcI0J6q0mhpTizgteRfbo10ioPoxCHgU5X2W/l1byRHBNT0LexGVN5jj5dQZRf+Q0bxqhsWAoTbs9zLj2nHpau2hl8qy1nlE7wRX53d505YLjOZ30A5+C6G5eA7xmxZV8relK3t/2OuwTO6FjHLq3Vz+HumCwFZ2OKgv58/3qL6lYA5Aq/N4q6XuTblMQBEE4p5zn5tHsoZT/8hT0f4X+O3RWqIIbwHCcMNoJClFWjjJwgzpz2gJsMtEkKM/JYxtmUf9p4EYbIeWQURYfyvwW2xsfZ0PuAChozGSwIhtwsjsxgmIweC6a5UM/Y/Xzd5NpTbF3yf8EnvHbAal4PBxAw3cqxXPp8OVQGQm0A6lYITK+6eosZq8vKK4V1/ZpsMD0129Pe7/TVDmOxbv4eMfbWJ7ro2NnPy3H+1Hhprzl/+m5v+CFiTxHaQTffpto3o95zHP9bdr3VWK+ZtTuTS+hc3manmHP2Xbf6G9jZbfgbhuC0S+E7d7QtQUO+PeEqhIpxfTvF30GUswzrQV12g418UoJ85SqUaVCiDil5gNai4U1WxSNvFRL3ysNTg6WLDildD4fDo0p06C1NU59LMJJGqg3DVqUF3Jen/Py+fsmHI6PvIWHWibQ7i/9JrgY/iic4zuLNGO4gdCmdtH548SPHwQ3COsujZSq94U/tfZu4aW2jfKFOfMEI3IJclYKFztMETV8x9cTh4d4x788CsDaq9/N9uFnSHbcz3uyfaxY6rVdR+owBj1jKDPuOa2a61oZavgLnKGnMdwvYDneiKLre/XSZoKIm8cx47BkG5x8FoADdSs5vGUd7MuRKxKIP/KTVsx0sV/Hi5Ra0znKzhMJtA4MSF1IkTOKQt+OPoKZbYC21+GkBuDRe+GuT1ONGoN9RdMVVsxBG8E1ohhpagLlOdiUqz3Lt2JD4pQSzm9OW/tDEIQFgyoWltBmsTeqYtkrHn4Uo9OseCa4ftkWA3BcbxBrwkqgfKfUcCKKE+pFqTB4yVWavKF4qPUq7rv+Lojn+IOvfBVle9WaA6dU0MKeaDMb8+MM5FrI6iYKUVAQdW0cX78yYnv6o5e98DTHkr5jy1qB6Zo0Dj+NMjTxtQZ1MbugNalhmAwNQFR5dlK7r+UZU+O4GHyn8WZ27NrFf3v4K95umwI9Km8fO0fexUjmZ0AvwUDkmJmg1RMpKLEhTNcldslL4Wc/L/mN5V6Xlx18nMe4JBSZ9/ZXlBKIRunS81HNVqn1whyuq0r3O7PVhs+8TpkSr5QwjxF7qTbG1IsIs488SGeDqVWACh1xUGlP5/PoQGvItMJKL/5ipBqW4BY9cF6MdZDKbubx5h2kfDF0FRlmf+5FsmYK1zccLKVw8161Oze/h/z4t4iMnQqdZErFwnQzS2uuzniaBDvSNh/sc3jr6HioSeXWNQPQWu+l4jk6Hzq/DMNbJqh62FoXJbMxzt3XDvC9yzQf2tHIvm13wfUfRL353zGjvlNqwtufFYngRtvJuFdjKJPLD5xg84l+Np/ox01czoRVh8LFVRb8xn0cf9k3+Ke9V/C13B30Wd2sTAwTsR0itkPn+AR62MTJmkURYQ7aMIn5eg3KryKolcao94xQ/avfgQ/uhjf9O7zhi5hX/Ia/pgH5grjnVIQGVZEhZsVdPvw7H/COo2ly9KYbcfxqPzXFzJVRNE/uXUEQhFmh5HErhv5M4GXNFSKI0VaF1bTl1I/Cz6bjEssVUumDuCq3SCHT9QebUlYcpeoByEasMJJZqRjRUd+pYhg4fvSPNhRom7ahfoLiKMFWg7Pv+INKlmN7c3RhfjKf4SVHHvO25dtEyfEjmL6DynA1G/MWiQtbeMvmnaxencVVZrhxraHf8jSyNiZ+ytH4ELsbbbqTj3BT0z/hKINoPkejXwznQNdyDF91QmnvmIy4S8m5ge6V9xvua7o4dHwVR3Nb2qE9PUyjeQKA7uwzXHfsY6GtF5yUlvSwf4wLQufKLTilPKFzNckdUhCzL1+q+AW63CVWPv1sKbannWR9UR3Ccso1psrT/vzpYo4JwoJCIqWE84swpPz0OtIgUsruO4XT72kaKNNAGQWhT4VivGU177j9T9nRPEjPGDxnrQq3MW42edtof5YPn/wAiYvruZTrAEhHPQ0BL4C7SDsqcR3KXIIy4kzEhgEwNSR9vYAVOZOnx17DF8wJmn1Dz21bCWOHqIvWQcZzSpVHSqV98fhLVzbzf95yFQ/3dOO4Do2xRtYsuRJ8jQIrejcAY/1e9RczEg0NB2vZDlqOPUZTKseJ+naOtV3i70PjYoJpkY+3M27HaBw9wX9s288tWy7iVz58HwCOaaCApVcOsTfZDYOAzpNP/ZSmkTpgaWhUaNywTRoFDUvggld67egbhl2HcJQJrk1qZJjjLz6PRpMeHSE9OgrAcCRCY9E5rTXKN9DSEpx1OnNZ+vz9Gq4O7OBSROhcOI+RaHRhVjln6srC9CiPHzfCvtPwI2givpi5AnJjJmZdpkK/09UGpmuDESE9GifJGKYJjrWMePxmVh78BgAvbL0F5Ra0oSaaoziBk8uAqGNiGpeFjhnLdy4pQLsT5J0j7OlqIROJYNqDBJFSO9JRUkcPsmXwBM/WNYfTe5Y30NzzMKca69i07+tc1NHDdza9lOhxB7TGVUZJgJDj77fZHOXSWA8/6zjKlvv/FT2U5Tef+A+eXbGWdMQrgvP0us1c0/woHIdE+hQXHvkk2ZWtPG35Va2VieHmedUTvwiDz4oDmkzXIXYiT73ZzzBNtO1/EjXhwtLSSKCcX6nwaLybhlSQvleqKWXo2q6k5FUt8DDVceHi/YE7sXq01WTurkkpi7xqbEuAryThJOqBgXBRa3wYmLzwUkEwvayBgiAsCMQpNR+oreI3q804LyjW/zmN42t1daGiUXQuF56uyLJlZA4Vxo4M5Y179SeaOdQRY4+TRdsmyhpG282MTFxNrKGPRMwhp06Rjo4znvccJqOJDShzhHRXHfWZa7CcJKg6lDIZatzDI93/zPEmL5LKsGIYF74MHoV9mRuoz0Bdkd5U2vFG/eoi3giko/PkfI2rf7r/IMvrC+l88YhJQ7SB21bdVvV3d2/YzPEXn/cPnUHX2vXkx2JwbJzkZe+Gy97N77sjPGwobsLTiVBak6lfRT6TAT+qzDAMxqJjjLQURr5Mx5uX7MrSHRlFDS5F4+Jkn2bl3gbo3h6m72mlw1NXHo1k+TPGdYwXDqd48MN/yPDJExW/RTU20m0MAvCL/EoOGc/zR+XLoIs0JzSPDvWw3I8uU244uWwlhQidC4IgzAXy7J15So/xoS5FDMhZiv1LINKsoR90w3JyYxHM5iy2H10e9KY2EHOy2EaEnVveSyQ3RkYdx1SKiLWe9X3DADzdAZeke3hs5Xr+aUOUjoyGh3xPhaGI5hRaGaF2UvdEP5f07UFhYmcew83vY98ST6OyefinYduXu3UYxgZe3JyEie+RMS2SwBXu8zwdprxpDEsTc70Kyx3DEIvaRZE3Kkz/i2KwxGli47EncPdAmhjL6SExMsFD2y4DIBONYhfZE81DuxltaYLmC/1pBoaT5xUP/owfb1sNhhft5BgGpusScR3+QfVwReBr0ZrGrjEKXhdfp9Ov1mcZNtoXazdK0veotFGCRACtiXbH/TNUNMNvc37C5JZnNE+tnvk7zYwURUYV2ecdZh7n+BFga+kKtdIN/b/yZBCEhYU4peYZ4oaaXcqPd61cX6ulhXV3/4jc4cMARJYuJbpyJcYxz/mhfAH1IJAm77po1xsN++M7N7H7uInjLsU0ruPtV6/mXT+7BVvnyeGNMBqYdDpX4Pb3M5bUYAQxPZqx5DEOtT4XtsU0onTfcgfRZ54ilwlGCQudeUpPAFDnj9Y5Ok/GtlEGfOXRY+h8iq5Gz3BJRquF/hS44VfexSW3vwLXcYgmkyQbm3hh/AQ/fvAkCWcX17deTEJZgMOjvlGj0Hzr7/4SZRhsvMqLBAsiyvLKwTGN0CEFYEQ0rVaGly/bw49OvRYntwvTd6LhBPpOuhDe7paaGoFI/UCujh8+nga8FL6utRuIxGM0tLbzwgM/RwOOYeBoTc+Kr7OSI2W/1ttQ4JTyUhZ0mL5X32PCaoim7LLVDLlvBUEQhEWHUpVDLrtWKy49DvdvU/x8ncXfHfIHbiJRlvzP/8HAw48wvGdPsAEAHG0RT59iPFJPOtFBOtFB3qn3NNGLRLnvTdzAE5k817ku2ajBMeUSxk0ZinqtyVsJApdDa3aMP3v0S+y88F1o7Q3IJbN5UrEIjamTWBZ4cVaBF8ZPx3dHyE38kMM4uKGDxiv0EvedUhHbxLYyBQ0tDY720vkMxrgk8b+xhppKjk3M0UTznuZnOhrH8V+zspbJ3Ret8xZy+rw/QCZ9ONx30Mx8xMDMusR1lgY1iqtVuEzr2pGKKLRAiitKPnTWGW6pU4ppaEpVQ7tGuKr2o8ZDWyxo8gwonXuOR+9zxLZZf3KQd/zgZziuw+M78lNsR/L3BGEhIk6peYI8OmeJM+o9/RD1pUuJLF1aMieWtJjw/1q2i+mfyP4RC1zv9nrV1i10X5soWS+iIr5TyjN+DG2w7tAPaB7ZTzbaiL1jDYkOmzHL5aC1tmRdU5l0rW7k1//+BrSj2fdEL3ueOMn9x35Bb8NBRo0hAOp9p5SLTVDXZtuyFp45BL2jnpmWiEzulFJK0djRWTKtrjlGWkPar6a3WpmAQ8qf32R70V/adTm6y6984xtKtmvT06JZ3u//lqSDYWniaoINDSl+PLodJ7cr1JjSOtCUKkiAltsZQaSUa5TqD9z1B39KQ6unq7X7oV/gOoGovMZMHAvtH7Pk7iuOlAIch+GkJ15vev5DGgYyZQepSFMKQTifkTtAmGFU8ceiMhUyMjAzqJI/aFT44hAM4kWLlm1585tZs3IlT/2v/1WyXl7DpTs/yVjDSiYuv4g9+Zsx/NJ0gVPKUQaHhm1Qije4ml9/YYJnJnI862/DVHB57wCp5BJwegEYTcR4dMMKDPcZ0F5f3TaeJhWLYLk5VFZDNMJlT/wtP77kVuojl/v7zODmXmQPEI/5ep9oEq154m42/H2mE0cpz07TGkZ1Iy4RDJWnwTzERW6UI7SHhyvqQDTvLZ+KJ3Fdz57IFhV4MVyXfCTOP7e1s2q0l5dSuJZPNtWRVDl0Ns4lkee4RB3nm2zx1kNjmhrHLVzsWmvSOd++ss3wXBQLnSsN2UihomA5xTZVeZafL9MOFNtYM/OcL9l10Q3ddfgonb1DbOz1bNtVgyPwe9W2UNxa6Y2E+UdpHKJcoeWIU2peUJwHLRfpTKI81U6g7EiHvXLp8Z/SzvUXaO9Kkj85QZ3tTRidCCrEuTTEK42BiIqQBjJOGiKgtIllexE+yYRi1e/+LrGuJPuO9qJ+fE/JupYfqm0YCgzFpqu6WXdFBx/6t7cD0JDzDLOWhBdtZSaOoAwvuudNl63gmUPHwm2taE1O9QsrWLG5lVf+zkWMD22g/7EXeUvG5FKdwFzaTMv1K7lo6UvYdc8y7v+PL5DP+mOUvjGTttP8+dsM1vdo/uzKP2fVvs+hBnsBjRcA5S2XzKT5nw99nh/edTPgPbyDiCjtapysTXbvMNpx0VHPoC1xJgHReKkj0GtI+E9IRGuK5dGLnVtmPksq4tJwfYr0qDc6V1meuMhAfObrENkBa2+c7BAKgiAIZ414omaH0hjyzROejbEyB787OMzaXDMvFM1v7+hg5WEvErkj6/XDUdfGcrK0DO8lFmmBPNQphzyE9lfaDN1bNN+ylrv/81kGMl6/G9Hw2X0WHDzGPrUSDM920UqTigL0ohzPGdS/bA1kBsI0OABDg21F0JEuonWvJKfGUBMPgc4yHothaYfsDXUkk7kwfU9jYLkJUN5Am50yWfbtvex2l4F2iMSytG3xRM2VqdGOwrRzJDOeRZFJxjiSX8qO1hc4fqQZ7Sg6cllWnhji/qtuImPGyZqefWi4gAl7uttKjvyRY43k/SrLSnuBXnnthrHxBjkc/+zYTsEpRVH0mUdR9FCZB/d4ugfooIKpXkfKJJzOlpLqf6pQSdDKeefDNg0sxyWWm6Jh4pUShAWJOKXmMWcsHihMkyrHt0IMcqpN+GlpxzzD5Cosmlrvp7VuLcfGjtHSPEh97JUVq0WMCDiQcfz0Pa3Y/KPvUN8cBdNE+SljCfc4UN0pVYypTDxlI81Y3tNfWNe82muiH+ITN+PctW09K5uWMpTKUx8zuW59FUNkqp9sKFZuaQPa4LoVAGwsW8aKeqaR7QuUBlX/RrIjTCQUO9cqNtzxBkzn1dC3i8PfOcBPTz4fRhwpNFf2vsDOvov9nerQG9T3v/8eNxUhuu4lAIy1mnB5kubRgigmQCQeL/pW7VyX/An3m4klyC3ZSkPfAbJuCsvNk283cYJw+PJrpHs7atgzyXU+Bbt/JE4pQRCEGaRyfEHspZlAoTw/hv9dA212lDFga0bz8pFRjgaaTEEhmXiciB+ZvFWd5LM/+VtSd94RbjNm+tXujBhoMA2Hnu52vrzk1nCZiZwdOqQ2NyZYdtLGdbRfsU7hZJ7Eil+LY7WjJ34MOh2m72XrmyAzgG0oVJh7BrlYkohjY0Y3EFMO+dTTaJ0NxdKdmGdbXTf8JADjkXFcDJrqbJTlom0DK+eCH+GeT1lMnPQGIM2oi502MfNZrnjeixBfMXqKny2/hXb3JlY/8nlaU2Ok4p7eVaRjtddWX/R8bd8wR7ubiI/nUBFNzrUYrovTn6pnyGikjgmU1ihT81zsFNuHvZ91c9NnGI94bdBuYUBN6fL0vdrn+C93f4pb+Qu/wnNlqNTM+Xb8SPgqaXbFmq+G72DLRiJYTrZi2fI2K3FKCfMYfbrvmecR4pSaNwQdp1yss4Iu9UhoVWR0hadAeerWk+QFxNY0EVlahzPqGSk99cdxm39INtZAvH6MjoaVVdeLR+OQB+J+Fb2NbTR01lcst3TpUl7xsldw97N3h9Mss/K2VUrxxk1v5N4j9wKwtmktr9/4eja3bqYv5ekXbGzZSH2sjus31NX8PecK0w8V1/4oZRAp1TPeA0DSSmIapldRb9kOsok4KY6GUUp5K87uDW8invW241JI38vs249adw09aohnrSMcMBqAi9jxzEPh/iMo+j/xSVre+hYiS5YUJAaK2qiqfPK+KtJbX8Ov7s/xn4f/gbybwdYGNS2cq9+LatkNPWlviYoRSkFYvMjgiTC7FOcayVvn7FB+nIsEkKrMNYoGhJxUmlXjffD1f/VnWoza3oBS1k+3iyZyPHjtxfzEvjxcbzRd0A36m+s28ssv70G7Gq08p5Sb342b30269f0kU3G0ToP2HBa2pb1IIqXIW94A3ydveD03tB/B7c3iYnnOKlUaxe7YFphQ73iRTk83n+A/Gxr4EK/hkZflaE2P8mzX8zxSl+AD/2Ww5lAeJ+PZLJE6m7G6NhL9w14bIjG2us1sGbC4XK9ln/KcT5btDRK64xqaCk6plQOjtE6M05h2qOvK0DdUz88vWIXjKjqzQ0zEoyjAMDWDkYmwzevjD/CUfol/NsqcUiWprqVUu3OqTyteM3A+li4/Iz1AsVPK1yC1/cHaQnmhMnT5dSnPB0FYSIhTaj4ghtWsEvZ1RZ3eqLJpqr74pJgNUbref2n4/fvPfA6egrGcF620vGF51fViviFi1mtIw9rtXTXaqth+4XZCUQUgGamecvdnV/0Zf3bVn5VMu7Tr0qrLzjSmVWrsRS1vJC/nh8UvrS/V5lKG8kZk/TRDrRTHl91AU+6Y/11jBHlzSuFEIuy0DnPMHKDf8EYEAx2H7uFxVvWPcOzFb3B0MEnzXa8MnWNNq9KsqhA4D1uBL6mO49+Thi+K6mgzFPesTN8DFW8G0r4BJ/ezIAiCsAhQClvnSVDo082yLq68QIxKFFLn7ePHCzOsCJGlV5AwNrAi+hQpt4U0US5Kfpfj7vqSbQyn8sHuiVqes8V1/UipolT9mJMBFS1Z17YMrEgMI+85qTpi4/xr68cxteZL3MY4db4Dp/QVaFd+M9e+9reIxBM8eLSHXPMW3tnQxv5MlL/d/wzXX5igedk/0Tv0PANtCdYcymNnfWFxS3Ph3/4tp76WZdzRJCyTq80IJ+wJTGWE8gJR24vmyvmVhSeicfKmScRxaEx7tkzT2jSM+TpbpoFrl1YHNIqlzrUqKJ0Xn4MSp5SuarcUNhKs5P2jSmYUjdjO9ABESfpe4VcqN3BKVf7O6tvx/4opJggLCnFKzWdkAHpmUApQKLeK8ONZHvN3bX0X29q3kbEzGMrgkq5Lqi4XMbx9j+Y8rQJT1RYcb4m38OdX/TnPnHoGpRSvWPuKs2vkLGBapY+W+lgDn33JZ+mZ8CKlruy+snQF3+4Za9pPYhjwQ88ttyCpGlhVecNkqC6JrYYBiPgh60EJ5OWDo9RbMR656A/I9zfC51/E9YVBu7aP8k71n3ySlRVGmiJwSyn2ZV2eGXkkdErlteGJUgBuNadUiXqhREoJgiDMJErePGcFpRQvDD/McvNaSEKjThLJeU6nIintknXM+nqia9eSO3AAFY+jMxlULMbKr/2UwS/sIudoXtn2Vyhts89dynrjBD/Iby7ZxogfKZWImBi+M8J1NIafvhdQZ4+RVZHSciWGQbZjKXZTG+9y/h+rzJNFv6eo1WXr9bkNDLbv4M//6ziPHnKAU8Ap1vtR7EasHqthKQw9Tyrm2yPjvt6TAUY0irLANDQRv4kpMwtuHQ8tvYi79t2HqTUD8Qa+GOkGIGdF+fSv/SY3/+T7dFiKOvcES7o0dV0ZOOhtIxP19pFclcdKOtzhPhsWltFAQWGqKP5bl56djtxQyfEtFrAvr+ZXTmWVvaCwS6mw+LmkJH3PLY2UKh/I12XZDPLqJMxb5OKcFHFKzSMqQ03l6p1Rpl2uZ/rnIWJEuHrp1VMuV+dXxgs0pRJWFVHuIt646Y28cdMbp92OucYsq/SilOLaZdfWXsFXMXcsv7KddtHaxsj1enX9VBq0lwqZN02UMsP7JeqPOIaCpq4m095OPuoJvWvscDf5fIREpJomQQHtW2m2zofOQtstpO9VC2wsrkwkkY+CIAjCYmHcHuLo6LOQXEEUi1P+oFoQIaWq2FJ1V11F7sABdMbr083WVlTET3VT4OgoFjZJ5aez+ZFEyahJKueETql4xMQw/XQsV+OWOaU0LspsB/tY2CaVqENPeDqfXz15BS/Z/SRN6SzDn/9bnM8VlTUxSqUMHtAbOPyDI/SMem1qr4/SP55jX5+3LctQnuwAcKLF378/4BWps1GRCJAjbhkY/ujVymUr4eg437zwTv7lwjtYnTc4FPF+RQyXN+t7+JWuNr7XGCG/ei2nDlk8eHAlt/3uJ+CTHwKdCp0urRdmUAquNZ7hHrzoehfFRD6oYljsyHGgaKwzaZdVDS5i+UQhor/auazQbJopR3DRvnU0Fn6vcErVpFR5XSwxQVhYiFNqPlD0Els9Q184p8yD2tHvv/T9fH3P13Fdl5Z4C7esvGWum3ROKXdKGcbkYddB+l6xQqWd/iU6+yR5wJqAseh1wBVoZWBg4GgHXIeI7Y0IBoaL0pCwi9IhrcHw49eH/o43xf40XK6sFYTh6mi/4p/3iLS0Rim3xnoFtFISKSUIgjBDqJL69UW209x364scHf7rKM/fEbxAmH7/XnwO6q6/jpHvfAc3nQalaHzZnRhRv4CLoVA6CipFC57Dx0xGYbTglPrBs15UddwyvErDeOl7hjYodZK4WImbMKNbAJfxpl5sY5hYUz0pF3b0H6fFsEi+9ldZt/21vGh+lZQ/ThVJ3MAFzc/x7YaXMmjU059vI9c/EV5Wd128jM//8mC4J8NQYaGZH263+bX0EC1ZjTI0dV05dDIKTIQOKSwDFfeWDyyiUT/i+r8R47et/6DB+k/2Wn8EgJMv6GjVJ+qJNryREetZErk6Um291EU8HYckBQfTT0a381jT5b6LqnqkFDoM9C6KjCpyYBVpMFWoh5VMKL3JChFUZ3jzlYlTKeUJ02ulcWOFgVrlF5mpSN+bYr+7fn6cgztP8fLf3k778oYza6MgzBjyrl+OOKXmHXKRzjhqMt2f6chBnj07unawo2vHjGx7PhCJxUu+lzupylGG8pw9RU4p7Q4HcwFNJus5l7RSjOYHye79BQ3aoQG4xsyHugOG1uR8DSuAWGIfQWxUngRD9gqgEMpeUltA6VAXynHcMFJqKJ/g+HiOLF/FdvP0H7iJ9rWbKn7HE40X8hmznfdojSFvScJ5h/Rfwgxy4mmiOsPE1EsK5xJVmiwZ3OWnchv55sBfMeG2V6zScPPNbHri8ZJp2tEczbnUG9AZbcBUwySUpwWZNTwnxCUrW7jn+V4c37Fz8cpmVOCUcrSv31gcKeWglIGyfLeMNYSDQcpP69980TGWrd4I7/xjAIxYnMAgUEYdmzas4VPv/+/0jWa44q/uZSxbiKzubiqzY5SiOdYMQIY8LM3TaBeWpyFG29suINfjXaGx1Y30POqlDsZ9u2LQF+RqQkGsHjq2Y3RvBx7ELdqWETExzFao24BFB07yoTBNL65yBANoL55qwrCPAltKJcnLBsc8Z26pWlThS+Ac0rhVnuGz9VQ3DYNr7U3sUQcZTPWEHrFaQue16FzZCMpzYo4PZjn24pA4pQRhASBOqfmMvNPOEMGokBzgmWLpxs1suekljPb1YlgWl975qkmXNyxVWsVLAdofNVT1oMdwxiagAWK2y9i+H0JLIZR7w6EXMf3RNENrHjcK85KJ50ipHLYuDf2udfaD68LVhUipx3q7ARc4jg3suu/H3FjklGqOeNvel1zFR1nFlaMpLmua+SqHgjDXiO9VmC1G+n7O+hu+jI5kiGCy93svnesmnZe4ynOeTLjtJQ6phrbJZQiUqXg64+K6Gsv8TczI/TxOHqXbeLpuO5DlDTuW85ev2Uom56IULGtOcGTXAOCl7+lkJzBc3JqSfdzAw5jJDKT6aGKMpfSCcWE432jshtHxQptu+wuv7XE/JbHIA3NBd2PJtjsbY/z61l+nJdZC1snS2P9pGOst+oEGia3tJLYWjonuTdHzZB+3RiJ8hxyu1rTHI1yeteCWP4Zrl6GeegwA2w5sHoXpO2AsHcXUlv9LvYdtjByNkSyj+TiGY1Pf/wK6+aWFiCXtVmhKGZN6libL0agUOg8dlKXZcueEzc4yYs4wjx5/IGxPEAXvTCV07jdo7SUdvOtvruO+/3iRgzv7z2HrBEGYScQpNQ/I5PMMLl1O2uhHPFFzRNWcrEAJUs7J6WJaEe54z+9Ne/nWpfWwU5UIVmodVN+JojUYeRcHGGi/iFT+SWAYJ5bAzKZpGxsqiZTqtyK0AGiHGPmSfYWRURUSbp5bTCvYduMyovssunNr6c8cK7LJ4qAzOH6lv4DXdrWQ2XMvn8y2cyraxrjjIAjnC1rLM1KYefoyO4k3Fr1kquLnrFyDM4VXBKSQvpeL9HCj+SSjbid1xhBtiT7ib/8SnasaJ90OQLIpyvhQlp3jWxlKXsjfmBkuSsTQsRiQxTQUnQ2lEUrF6XvK1b7zxYs8cn2VqYBONcD6Sy6HB+4p2kDhVSfQpwp/m+WtHY8YRE2DnB+VoxRctbaNL/3aFZwcSRO1DG69oIvGeITfvOg3vZX3PAIvft/7HKmDuo6K32s0xnh0wmFjU4zvqxgaTXJDO+nnBsIIMMMfRHNyOf97IWUx5iS9ATut0EEFP/K8ZdXT/DhzBQeOGSg0TuYxtNmEjmzCQE8ZKVUyj4Kzx9PFpOh7NfQk884NMSOJwqtibfkRZAWh8/LmVP6uZGOUSNxbXmQ+hfmC9FKTI06pecCzvb30r14PDFAcW6Hk8p0RVMWHqnOFWcSKmmVjcID2HT/KT8XTNq4zxMnGKE6uEexh+uvH6cqaKNdB+eH+SmteH32Ae3kFprbp0v0cJ1mxz+pn2kvfSzbFMKMGW5JXM9bUyj0tj9B5qJO2dAIn8zCuY5esVWea/IZ5nK9n4VS0DVuMIEEQhHNKoHgzNtZKQ8Ng6ViSdN0zR/FgEeAaDpcmv824bqNeDUCsCTa0TGtTd/3eJfTsHwbg6YkU3LsbsyMROoMCZ0zJ7ouEzrXfz9e3djI+2Et5pJTxsr+B1r2lGyhySqny7auCWPt7b17PD30tq5du6cI0FDdurHQ0hbzu83DiSU9Hsm09xCudcoETzM5riCqUUujAQPDbonxNLsd3vhiGGf7maNazXZQ2cf22JkkRiTgkI5a3DdfBzjzgHaOGBjC6SrTXDq66E9t8CihUIQzRU79rlKvelnOubr0g0stSUV6x4jf5v7m72TR0BFO75EyDF1Yv58JDx2auAYIgzCnilJoHZP2OqMWtIx8WehVmijJtxVLEmTA3GL5dUTVSKoYG6seP0K/+DUcVHEKuWQ+kUbZNcPIMrfl+c4wEntjntcZOniKoiKjRRaOC2WgTObMOiir0hWmd/hvPOns5H+n+B+46/OpwRFE7VcTMlcL0Q+ZdGZoTBEE4x3jPVceOVkwTZpbiSCnb7wfDKmyn4RRo7krS3OU5Wo4976W+ORpsx9uWWSUyPdBndB1PVBzglnf/D+LxYXb+dIzDuwoVdaOdyyE6WLqBaGFQqiJSqmh/v/uSDfzuSzZM/8dE4rDqmkkXCfaXzTgQ9V65tO1HY4WRUoFTyrd5TJPGtjjKUKETbqlxEZHGLhjtI4JnZ4yTxK6PYmctErkx0Gm0OwFKY7gFMfSDq19O1L6EzfxVWMulOLgorNqn9KTn0vSLvQS20VnfeTXyAGPEsYwo399wM/++4SY+a2h27f8sh7o7S1evuFZKWyQD+4KwsBCn1DxiqdvCUYpD0+euLecH0+2y5ETMNGE4ftGhdvU4BtAx8Dy9TQm0zuEoT/fBsFaCkWRV5mqyfDE0jpWrsRyXoWiEhANoF6NGuTyl4cCaV5I3nwd3BICIX566OGorcGF5dltgHJdGSnmLG5h+yLwjTilBEIQZQZ6us4sqS+k6V/VlA4kgrXU4kGNNEinluhrD33k8Uc+KC1fStCTNCw/0YOdd6ptjLN3YAvo6uP6DMHIMzAhc+Z5wW+WRWDOtzpBs9CK9A+F2AJ3z007LI6X86nuGYVDfEudtf3EVowOeTdKxop5Y+kLY9S0GT4zy2M6jvBBbhhk7xZC7jDrnJK59BLSDQrPsxAMc2Njm/0ZFPrKMX1z7N+ixf6ZQZbg6quKbN8XE8dec2YM21fZPe+/ywBCEBYE4peYBuuYLrDhDZoRqVoh/CtJmtdojwoyjihxBygTtYPhnIpnNAgnyViHCadOpCPvXbcPQLfQv3UZ97Mesz+dZ+guDiKvJmyY4oFyHx3ZuxI4WCWQWDRHaVkGY9cLEj1kS2V2IlPJHZIPROK0AX9Nh+J6fc3LCZMmffqjkR5gETqlzcVAEQRCEALdsLECKlcwSCorf7N1wsi5e4LQJIqAcV4dOm2rpe8E07erQXva7YhrbElz5qrVla1hw64er7rNrbRPH9wwDEEtaNHVOLs5+trQurePl793O6KkU/PgwADpfFilllhVh8b83tidobC9qX3Id3PD7jOw8xdNPfAcndoyOvMtExIKsr5+EA9olmh8DPKdU3UQPE3Xd5CP1BNWnXcMCPAeWKrKJSu8p71in460A2MQwATfWwLNjKfpyQTT72R6l4IcHf0s3OJU5Jc8BYWEiLwrliFNqXiIX6oxS7GQowy6Lqkm4ci5mg+jKRk9wVCtyy9ZDahgAZ9ylPtsH4DmaAKVd1hz5McfXj5DTb0fHlvLVC7LUOwb//CNvVDEdNyAHhutQ/8I4amsH2vSMseIzWvz5gsTPMJRbqI4cRLT7Bs9oIk7XhD9im88z/NWvljqllIHhp+/ZEiklnCeUPEbluhdmEl3uBJHrbbYpTt87W8K0PO39D2BWc0r5kVITI7nQQVWhDTVNrn71OrbftBzX1cTrI0Si5tQrnSWrt3nV+I7dcxh0IX2vPFIqwDAmP77KKOTfjTS1kEmbEMq9O0RzoyXLX/74X3NkYwtD8TfTU217voevlqRFz5IrwXkcR0cxga91Xc8/PL6nsP6krT19akVKnbbzKZTqkOeEICwEzk3PIpwjxNs/W1SIapfNCYjrcxWoLkyG1RonsdETSs3VN5LtWkFn/Xp0tBXDt1YzEc+HHlSVWZL3KrOsHFnD63f+dy47+Ca09h5px9q9ZfOmP6patK/wtaaGnVLQlPL+BA/JTCwSftOAzuXQbtH1oQysQFPqNH67IAiCcBpUHVkQ+2mmUKrgJjiBSypwpoSaUmd27M2iqnphpFSVbSUaoqDAybvks14fm2yMViw3XeqaYzS0xmfFIVWCn6+oc6VOqaD6XsBUTinDUJiulxaYTiYZao5xOOJtq+vkQ2x99v8Ll9VaY2ibTRNHuWTnpzDc0srAjhEl4jSU7aEo1RCFa3iyCTFjhGsavsCLXV5JptaIydb6BHe2N031y6dHIDpfkUBYdk3U8jHJoIgwz1FKSWTfJEik1HxDnqmzwOmOtsgDZDYopMl5N0FbpIsXmw1s5Rlstm/QGa73fWv2EEeSgE7QnlpNe2o19994FdHsMDtOeBFTmUjtG6rirIajap4JpAzlpQBWUZjSQVuzWVQiEfwA0ZQSzlPkGSnMHmLUzz51zgQAGbykLzj7Ue3AtHJ0wSlVLVKqoTXOaz5wCUMnvUJATR0JWpbUVSw331GmQtug855jSNWIlFLG5M4yZSriqSU0NzfTfGGGozuPMuZvo378KPXpkSK5A28fEa3JlmzFO97PbPstlo+sDhe1rTHAc1JpnWF/9iAZ35GVMPq5pO5+bOM2AP583VLe0t12egeh+HeEVYfK7aXaw8antf3gg5hjgrAgkEipeUBZ4QlhplGqSh9VpdeSEzKrlFdSiRIhmozxe9f+Ac/Ub2Nvcj276jeTHPN86Y25Hq547C/Z/uz/R/14oUxwLtZMS2YJAFlzvPYONVUdjoUXniDKqrhMjSqa4zmlCvMMDHFKCYIwC3zmM59h9erVxONxrrzySh599NFJl//617/O5s2bicfjbNu2jR/+8Icl89/5znd6ETFF/99xxx0z+RPOmuKnt4wdzSSK1vwwnxk+xUdI8KqM5xwyCnHHZ7TVoNJez3Ca/vFsybRylm5oYcv1y9hy/TKWb249o/3NNaFge9oXRzODSKmy9D1z6kgphUHSbed1r3sdK1Y24viDd46hMIoS1oKjmdVx/1OpbeKaUTSavJFlT/tj2NZEYZ7dQ9rNAJ52VMKPxnL9rVozdNOVR0aVB0NWWvBy8wvCYkAipeYF8gI7m4QuB7Fi5xXlTilLWXQpm9uS+0irJnLxLhrtUdqPeQbbl9O38pKJx6mfOEHbwHOk4+1owyKV6OTTr9hOPrqHtv6xiv1UjrKXpfgF7fAjpWKGyZv77+CQVoSRUkHaQTZLYUxTYfqlmkXoXBCEmeKrX/0qH/jAB/jsZz/LlVdeySc+8Qluv/12du/eTWdnZ8XyDz74IG95y1v42Mc+xite8Qq+/OUv8+pXv5onn3ySrVu3hsvdcccdfOELXwi/x2KxWfk906fag1UetjOO3yVeYOeJEsFw8v6Ms0vfa2/wrq+JXCGlrK3+zNPy5jtmWwI3NRYeNqvF+/3lkVHlwuflBLpaqdEcD35zH2bWCp1Szy9Zwu7OJXSPDpass08tYxUnKFg6BZGBoTqbL1z/COsOPFK2pyClshmr4dUsa/w3gDB6vZYD8Ywp0/E8feRZIAgLGXFKzWPKX9KFc4PVFoQba4JOLJ4HahZhkfMwG5Rf7yYGJgZtxjgqkkWbGSLDvbS0NsNhSOU84zVnRok6OZKZfgDqUic50NZMNvYk/Y03AS8UncGC0VKmilHaFhSOX3s6ali849Sr+Avr8XAtN3BKjY+jOzq88HulQk0piZQSBGGm+Pu//3t+4zd+g3e9610AfPazn+UHP/gB//Iv/8If//EfVyz/D//wD9xxxx38wR/8AQAf/ehHueeee/j0pz/NZz/72XC5WCzGkiVLZudHnA3VqpQIM48+OydUOes66vm3X7+CwwOp8PvS5pmthjeXdPzaVnJHvYEysylKxNdmqkjfU5NHSkWT3qtbNmXz9E+OMmYqRq1Gbx45MKCvpRN0KlxnLOHZR+1jE/Q11Xtt0AmU2YZtGqSaXs3qfgUcKtpTcL4jGGZraKM5/uCcOUO3YalkQnFrzkzoXBDmI1reEyqQ9L15hjxDZ56l//vvUEAmUhgFjuZrPBxqqWEL55wKp5Q2sHzhch31ztWVr7iLlUu9SjbLLN8BZMZJm6Uj+jHbm6erSo77Bk/FqdVhWDpAxpzg6YGfcjA1QMpIY7lRlP/ItP3FDrz8Fey98UbyvX2gVFh9zynftCAsUmTwZHbJ5XI88cQTvOQlLwmnGYbBS17yEh566KGq6zz00EMlywPcfvvtFcvfd999dHZ2smnTJt7znvcwMDBw7n/A2aBL/pQNKMh1OFNU3uPlQzpnfuyv39DB265axduuWsXV685cn2ghYCQs4htbiG9sCR1SAFa0NDrMik4eodjaXcfNb9vMxbetBCCWh2cat/LNJXfxUMsV3kJFDinvu3euLjp+ioNbPkCs+XeZWPoulIph+/pTY123lPl7y40k77vjO83Mc3zPFa6z6tsN54aXndzzwsJCrtjJkUipecnZd/RCbSJdXnrDg5su5Ui0jkZOFs1VFHV9s92085rKSCnFenspA0YGxwHLjHHxjsvI/eKXZIHLe3bhAnVtjRxadyltj/8UFBxZs4Xu3AijddAw+qy3sUlHJIrS94raoAyD3aOPEbFbubJpKbFsPShPo2qsaDDXOdVP5vldRBoMEToXBGFG6e/vx3Ecurq6SqZ3dXXx4osvVl3n5MmTVZc/ebLQ991xxx289rWvZc2aNezfv58PfehD3HnnnTz00EOYVdKJstks2SJNvdHR0YplzjXlpd2lh54tAi3F6k4K4exobO/g6te/hd4D+0Aptt96+6TLK6W48LqlADz/yxN0jCd56amfMNC6GjPZgjMawfRTLBP+QJrrejpWWkE+EkWpHPloFDIOrvLsluOtkVp79PfrfQucUmetKVVD6LymptRUlNtdgQao2GOCsCAQp9Q8oPDAFBNr1tAwHq/jge5t3Hnq5OTLymmZFdauXcuuXbtwXZeEFSPZtISe/XlWt69kqD9F69I62tvb6V++AvBS5wASG9Zw++f+JtxO8vnnid79vwDIm76uQlEZlvyEyd9+3qZ1DA6tq92eQHxU+//5UwE43m7w7t+P8+93ryfz3HO+MSTV94Tzm8qXVmGh8OY3vzn8vG3bNrZv3866deu47777uPXWWyuW/9jHPsZHPvKR2WyiMNfo0n4wRCJWzppr3vArZ7Teygtb2feEzVZ9OeMcIxsbIbVhOwDD0WGufrrHWzAsqKRw/NMXtb2JruH9HY+bkz7Bk0nvPNu+kmaVQolnR6ApVeN6qpW1K72OICwOxCk1n5F+foaocmDlWM85l1xyCdu3b0drjWEYPHn3YU7tPki9L4Jq+AIGbb/xbpKXX4abzqAMReLii0u2o5Ri9fhqXDtNxskCB0usluxAhNV9RSvo4o+FEUEVWlwadGmRYsM1SVsGKuKPLLouKANTi9C5IAgzR3t7O6Zp0tvbWzK9t7e3ph7UkiVLTmt58AYJ2tvb2bdvX1Wn1J/8yZ/wgQ98IPw+OjrKihUrTuennAEygDcX1PY5SUc317z03VtouHmC3/vZP9Kh2rkivwPt3+rN+RbAc0pdkGkBBomaUVrNQaCe+rQDKLSfDzfUUB4RWXq/maYGl1BUfaaq7wWEOQtFg4rVF5w83U8QhIWBaErNI+QBOk9QVT8Ks4BpmliWhWEYoVPIznrRR6ave6BMk+SOHdRfdy1111yDkUyWbEMpRdSNsqV/Pe3ja6vsxdvuoxsVEy3LKTV0itL3ArFRnaM+bfjLedM6hxO89Z4t7M55KSt6+DgohYlESgnnH3K1zx7RaJQdO3Zw7733htNc1+Xee+/l6quvrrrO1VdfXbI8wD333FNzeYBjx44xMDBAd3d31fmxWIzGxsaS/2eNKhecBOvMJEUDNCXfy+cLs41SitbWJtLRMY5EDvKN5Df47srvMhAbIGWmsOo87arISS9q3EgkaGs4BYDphx5lI95gWiZmgCrW26z+ZHf8m+2cV98LflON9L1yofPKiCrpiQRhISORUsJ5SZhmIpbsvMUwPQdQZiLvf5/euSo2VCJ5b93iNQN/0UgSGiOl1fhG4wWh1cAp5uYPovQ6smaOmAXeFm2UPche5bIS4Kf/C9Z+uChSSqO1FhFoQRDOOR/4wAd4xzvewWWXXcYVV1zBJz7xCSYmJsJqfG9/+9tZtmwZH/vYxwD43d/9XW688UY+/vGP8/KXv5yvfOUrPP7443zuc58DYHx8nI985CO87nWvY8mSJezfv58//MM/ZP369dx+++T6NnOBvHrOMhU+qDKhc+nn5pRNLZv46LUf5djYMY6OHeXY2DEGuga4qvsq7lr9xwz80+dwfM23hltvIRN/kAcmforlRlk+so6IGWfrsSxmbmnpzVUmKB6c5SB975xX3wv3U7bhsE21itQIwsJAHpWTI04p4bxDKeXLmU+3Z5OnyFzQvb6JSMwkn/UcPSsuaJ3WesUVXJb1HCmb62k/lX73uflP+Me2i8GTqsKKeBVxXPuIpyplulzW9c80t5/km33vwxx7AB3sKzMKrhNqSv31wZP8zcGTvG9lJ3+6bum0f7MgLDTk6Tj7vOlNb+LUqVN8+MMf5uTJk1x88cXcfffdoZj5kSNHQk08gGuuuYYvf/nL/Nmf/Rkf+tCH2LBhA9/+9rfZunUr4EWoPvPMM3zpS19ieHiYpUuX8tKXvpSPfvSjxGKTVwKbG+Sqm00CJ0EwmFc4+uIdmA8opXj1+lfXnN/1J39c8t18+GEOtj0DQMyNsCm1lOv3Pkd7X1PBpgEqzq/vDXKD6nszJHRecX9PuZsaC9TavCDMC+TCLEecUvOAWpUhKkYLhBlEtCrmG0vWNPHrf389rq1RCqxoZQWoaoROKQVROzfJgmXfN97BqWwUxgdRwKUvexV7Hz8O2iZnuhhoemllffwAbrQTE0IDTrsK3DxXjDzLf3S/AlcZaODu/hFxSgmCcM553/vex/ve976q8+67776KaW94wxt4wxveUHX5RCLBf/3Xf53L5s0M5bZSSea19N0zTlnESgE59guJJXUFLTnti5wHDseJEh90dbvYPlfV98oJTbfq11fN3emyv4IgLEjEKTUvCctkCDPBFMe1NKFLerm5xDQNqlQjn5TiSKnpUT0FYenGzUQb7vIqNSb6wFV8KP/r3J5fR4u/aDBiCICT4w19P+aORoMHbv8c73zu4Ok1XBAEQahJQeqm+BkvffSME/aN5cdajv1C5O0Xvp0NzRtI2SnMvU08+OCPQ3Ppn2+3uPVJiOaL1yi1jRxfW/M0TbOpqemUOqvNCcK8QtcqIymI0LlwvhKEo09nUXmALCQm13EqpO95nyY/t4a/rQ53GQaaYRr4mX0J2n90BqOLWgMD+wFocDM0RcxwH4Jw/iBXvDBzOHm75Lv0zLNDZZda5qQSG2lBETWj3LjiRu5ccydru1f6U71z2ddicLKluhMyeGF0gvQ941yf9xqaUlMsP+Xi0i0JwoJAnFLzAV0am1P4Ih39zFGrl5JjvtAJtVRqaCPUPPOqUmUs0ejpStkZl9CZpYyCVkHxRh//vPc5M1ow2cUYEgRBOCcMDvrVTue4HectNTs0sZsWKh0rGwBQ2qUh8+0aN5d3fh2gN9pKTnlJNjMWKeU7vcJ4SBUMAk4ldC5PBmF+I7I8kyPpe/MNeabOOJM/FOQELHSKI6WCKNnQiCk6vbp8QhVe+f6LOLFnmMg9hwoefK1C4yis4pjsBOMEuHnIp8JlXbmehPOA8lLdgjAT/J99L+OZp94DWtEQHeMu++lwnlyBM0kNjR/p3xY8qig1sz775KTLPl3fwR9e/K3w+1kLndcQ0I9G45AtLGUlEme4+Vppp4IgzEckUmoeUJASFLNqNik52tJnLRoCI8vUJoqms9pW29J6tt20HDNqhga4xoCisHUN6Fv+DNrW+xN02Aa5rIRFj3RbwiyQs12eHl2Lq01cDEZyTTh5ecbOCuUv9+XOCInqX7CEtopSKF2rOrE3La+82ChDu2ypj7M2OVOVOatX3xMpHkFY3EiklHD+UcWAKnTFpfMU5Z20MN8JjCwDRbT+DuCFkvlhVIcqTCler/pGi8tiGyWRIVoBrgtB2qB2JX1PEAThHLM9a3Jl1sJQilPKlYG8OUMiUBYLhWrFyhtQ84wdn7Lzq2Dz+AHuO/q/4bcfnIHGlO624u6e6nIrN7jk8SAICwpxSs1jxOAShNOnEKVU7f6Z3KopDyMv2mqRnVaatKBRaNeFoBKf1kXpe4IgCMLZotFsy1k0u97TtRGTMaMorUeidWaMQp9aq/qeHPuFSvFgnHKpInFA0b2lvIHaGbvXqg0NT7L0NBeUwUFBWBhI+t58QB6Yc0DpQa/et4mhtRApjPxBtUdcTf2bKSOl/PQ9VZq+5yrA1eCHtqPdIiF0ubkFQRDOFq1h+fipkmnL9ABiQM0B4gBcNBQ7pUbqO6mevhcsrDFmcqitRgCeLvN9qgovk1yPwsJBeqzaiFNqPiJX7IwSdMLTTs0TA2xBEZxf1wDHyHjTqixXiImaxg1XlL5HRfqeAtcpREqhC6l+ci8LgiCcNTqfpy6fKZkWTztz1JrzlHLvQC2NKWHBEFYrBg6uuhhdpQpx8fmuXfnuDFDh6F0pVQrTTEat2spyVQrzDXlUTo44peYBxSlDcr3OFuVHOjgH1acLC4fAyMpHTUZbXqyyxNRxcZX6UoUrQ0dK52il0I4LRiFSSu5j4fxEnpfCDKG1GEhzREV/WKE4LSdmoRKPx1ln2bSfOkU0ly6dWTaqppXyI6Vm6HxPsVmp8ioIixtxSs1nxKU668gr1cKno6OD5sw4Vt6hlvMRqtnVkxS4Vl58lLee8tf1Hp9HWhvZefBQqaaUv23RlBIEQZgZbKP4iS320sxTGhklR3xxsDFuc+u9P6Wj/yiTVd/T040sP1vK0/dqzldlf8uQdyhBWFCIU2peIq6R2WJ6R1o6toWEZVlc3rOXqx48STTbem42qsJ/0PgOLeWFTO3tbuWp3Y8zmPIfpxOnUD/7S29ZuZWFRY4C6bKEGcd1q6XbS988K4RpVuU3uj/sIqdhQRNEIFVqNQUUbB9jJiMWa6Xzha04sx2LHSYICwNxSgnnJ+VhyTU+CwsUVTaiV/yxxrBbZcpe6faCh+WYWw9oIslbsdwGTMczzFNu3FvATqN23+1vWa4mQRCEGUEer7NCWH0v7CLFC7WYCHVWXcpCyMuFzgsFX2alXcFff5cV0e3liPdJWFDI9VqOOKXmA/IgnVUmdT5M2esJC4ViIfuCITX5vRbcilUy+2hUNgAuJhowo5tJuN3E8950HWvyFu7cElaokfQ9QRCEs0drd/Knt3TdM0+YzeX3q6HqtRz8BY0qREqVnslKYXtjugWCprXfYLNld3aZ4XSmtfbC5eQdSxAWBOKUmgcUHpelj9pJnSfCWSOqCIscrWuEexdGfVWV6VVR0Kxs7oo+x42J+1CB00kZBbtK+ULnLatq2lqCIAjCuWHWNG4EnxoFYcRWXdCoIqeUN4RXGSEFnp5m7RS/s8dIWv7ugnRBXfJXEBYH8ryshTilhPMPvwPuMsaIk68yv+yDGFwLD6WqmVYV6KJ/J+0n/GugxUizzDpask5gpOmi0UR0yZYFQRCEs0BX1ZQSZoPCAKn0aIsSv2Jx4JSqpEhTagbjv+suW0Lzq9Zhr9HsSjvkyvYVRrKHevtTVMuWx4UgLCjEKTWPkOfn7NJoZLnBOFQyTfxPiwjtVrehVcHAmvbpVqD81M6UXSibXBzsroPUT10w3GSETzivkMtdmEXOVPhYOEMqqp7V+i4sSGqXufO/+XfcDBnKRsyk/pqlOKthX3aKdN3TQLolQVgYiFNqPiMekhlj+jnp0p0tSIJ7p+JEl7uJCgsUj7pVrKYKrz8ZJ4sO0/cKo3ZjewZxcgq0K+l7wnmDpJkLs4HWelKbSK7DGaQiUkqO9WJC+ZFSRhApVWkAAb7kgZ4DpcwpLrtyJSxBEBYm4pQSBKZyPkmHtxBRtTSldM0vk2ws/IdtndvDybZhhNfOwC8O07+rAdBFKX2CsPiRlwJBOI8Rh+CCJrRTtJ7SPlKnF2M+OcF1o2sNFZ4mtbYjhpgwT5DBk8kRp9Q8QFeEU8gTdLaRI7648B78LqGcfdU0vvCf4gk1txfMvXzJFeH0Xcs6GI0mw9WdrOELrItTShAE4VwR2ElO7gC58e+RG/8u44zOcavODwpxUoGYj7w6LCZCoXMXSu2gco0m5UdTzQ5Tvr7L+72wgKl89xesuW6AUIrUkpl5lJKkvPOB6lViytP3CqLkxQMYNaLXKSzohbD3LH+S5vE0XcMxNMrflA41pVzpdARBEM4ZdvoXaHcAgFHA0unJVxDOHr9zHKhLUFd9gdlsjXCuCdP3aqXmFeQQFJOn0c4kutYgY632SFSKICwoZLhjHiHSkXOBHOXFiFZBYePJK8lUrFdrg6q4TLGi3n8PUtpA+xaSDjzK46dI2Bkibl6cn4IgCOcA28n7z3OnZLrWNiA9+UzS1NkFgG0G2kJlR1te/hc0YaSUhpI7SZcP4SmM2bBqyi6n6SuZicUlzH/CokhCBeKUmg9M9iYszCqVToy5GxUSzh3Vz6AqnTNNEd1jx2y6hr3v0fF14SZ0kA54cifd+QH+9ODnxEQSBEE4BxRSHUTuYLZ57Z98hCsP9WI5QSSN2ESLijB9T4dVhssWKHyajejvMlssTB8VW1wQFjXilJpvSLrPzFOkD1TNByUG1+LAcHJVT6WeJFKq5rYsI9zUcN8gE/XN3helcFVhHE/XdUCiFYBlmV5cuZ2FRY68JwizgevWSi0KdI7kQpwpovEE7encJHpCcuwXNqro32LbqCxSSilfmuDcnG9VQ+i8aI+nOb18B8HmxRAThIXAonZK3X///bzyla9k6dKlKKX49re/PddNqkrhcVkWuSHMPNJXLUoUipbh3Rjm8KTLFcuRq6IajOXvN41rmzD9x+XRyEnScW8B27VLt7XyWth4h789jVxgwvlEuWKbIJwral5b8sI5e4THelG/Opx/GIVIqeoEaZuz1J4yagVJVlRXlmeBMM+RN/zJWdQ9y8TEBBdddBGf+cxn5ropU1DjQSojfzOCKpaTrxDymjx0WVg4mK6Nsvr9b5VWzekYWC23r+am19zGarWEejde0P3UKtyOVgpcN7yGDO3KK7ogCMI5wAtirvbQrhVBJZxT1OnaTcJCIXDueE6p2tX3NL4Y+lyd79PcrVyVwvxG3hDKWdTV9+68807uvPPOuW7GGSAX6uwTRMsUUzEOIywUzsRomkxTylCsvnQj198zzGNjO+nxrxdTmWH6nga0dsNy2QZa0vcEQRDOAXqq9D1hZinpH8UyWlSE1fd8p1R4eivvrdmoXR1carWusvLqe9UL2pQsIAjCAmBRO6VOl2w2SzabDb+Pjo7OYWuEmWSyPkr6r8VDNbeirggQ9R2SxZrntbZnlG+xyIBTgKtBmYBESgmCIJwrdKj3KELnc0VBm0dqRS8qwsjvqdP3QsfVbDTotPcjzwJh/iNXaW0Wdfre6fKxj32Mpqam8P8VK1bMzo5rZu9JRz8jqPCfaS4v52HBUeucTaE5MKUgplEZSxem7wXb9yOlTFzR2BEEQTgHaO1FSlU+USV9b1Yo6lMrelexkRY0yrdZlEuZrkF5+p46t5FSUwqdexTu8FJB9imvu2LbTBCEeY84pYr4kz/5E0ZGRsL/jx49Oiv7DV5cy0NShZmn4pDLOVhUhOO6Vc5rpabUNAzr0CnlbdDAIIiHKmhK+QaelvQ9YfEjr6PCrKBruPhF3HhWaLj5JqTS4SJFBc6eyRPhtPJkCWaL8N1oyiXlehQWBvLonBxxShURi8VobGws+X+2ket15lHFgp1lVHbJYvAuSELf0XTO3/TPsZe+V3aNFI3G6SIR0IK7ShAEQTgbdK0SXGH6tVhPM8myv/97rM5OAJRhls2VY7+QCe4dw4WqQuf+fI2f4jdL91qFNT7VbsvsPVGFFYSFhTil5jXyQJ0pJCrtPOE0jCdVkp5QfT1lFowzAEMbBUNJKV9TqiAaKpeZcH4hV7wwQ9TUspFrbtYQk3Rx4gudm05ltb1SFGoW0mUrh4bLHNKne8vLI0IQFgSLWuh8fHycffv2hd8PHjzI008/TWtrKytXrpzDlk0TMQBmnkmqjFRZSFgo1HRGFV5sKqLi1DRslyB9TwVh5Qq3KFKq98BeVqgrUXiRUuCN8MsoviAIwplTU+dc3jhnjUIvVjaeLf3bgsa9YB0jyaCyXrFqVKWwfZmq08wg15NwXiB9VzmL2in1+OOPc/PNN4ffP/CBDwDwjne8gy9+8Ytz1Cph7qnd4ZX2hdIxLnQqSwefnQSJMoySq0K5EYKO5UBnM0dthyUnxllBUKWm2A0mCIsTPWVehSCcHbXiTrUInc8atbtOuf8XMnpFN//t/SY78h2gjxTNKFvOUBj6HN5vYVrgNI2yQK+zbP0CZduZ1qCzIAjzhUXtlLrpppumrqY1DwjaqCh/QEtHLwhnRqkgedU7aRKh81oDddE6q2Q504kxlrQByEYsshGL3YdHWWEQhrnP/yeQIAjC/Ea7LtVDpUR8e9aQQ7woUUqhlUIbCuzie6zwLqJ9jUzFLGhKTRboLggLGHW61d/PM0RTat4hF+tMo9T0R2ZmpQMWZpGi8+4qHGeiZNpUV0W8PhK6jgGUVuxcP0J/t0330BgAjj+QGEZKiSElLGIkNVWYDWo+R+UBO+tUFvuQZ8BCpnhAvPTcltpGWqnQrpmtlhVTOyC3xgy5LAVhQbGoI6UWJmJgzSbVhByFRUCg81TFitEoJqIWkewKhrJfL6wyHcPaKF1GaQNtQCapqcvm/e37i/qRUsH4oiAIgnBmaF2rmqmk780a0o0tSgLbp1ZmifIjFD2X1Ry8o9QIjqw1u2J1ea0ShAWBRErNZ8QAmDGkVOxip0yOs8woGYtHUeHjz6A1DnUtLVNvtcwpZZSMMPq78vdVrCklCIIgnDm141knSdEWzjGq7G/5dGEhEkZKKY1yo0VzdPFCaBTGLA6ylTvAptyreJ8EYUEjTinh/KMkIqZKJI3YVwue0EFUrnQO/vn3lrCsTuItv8eNK00Mw5x6w2awrrfdwCnlAso3iNzAKRVW3zuz3yAIgiD46Fovw/KAnS1U6ACUV4fFiNaaplM34eQ6KuehfdNHQ7LtHO/4zBabylQXnXNBWFhI+t48YPKQWWFGqKUlX7XXk/Ow0NDTrsoy6VIVGIlIyapLss1sPHU5UdshHwkio7wlgkgpSS4Rzh/E+hdmBrfCTgoGB+Samy2GI4M0pzuIGGW9mphIiwKNJpLtxM0sA/ZSbihrFGr5ZXDR28/RHqd34UzpjBJNM2FBIn1XOeKUmtfIg3YmUEWRLsLipFaSwWkUH65K/VXdRF+Mo3d7Rnl3qpPufW8D4OiKRyH9yzAyqlB9T641QRCEs0KXFx0xAAfOZYl6YVLGokN858in2L42wW0lc8RWXciEepoVp7E4adYTKTDaN0Bj9wy35zRX0BUfSjYkFpgwX5Bgk8mRGNx5hELhZRvJI3S2mEw/UR4eC5gyG6t23NTpnWMjYRFb20a67hjx6DinEoMMx3txyIbbCt6RzOCD3M7CIsZz8cuzUphZKiPKwyRt/6tcg7OHdGqLiWJbV1UdRlOkoiNzV7KlPLNBLj9hASOXb23EKSUIxVQzbMXYXbDoao+4aYiGTbaEMgzsyATNjf3s6niBr1zyV/RGfhGuFYzbh5pSp9dkQRAEoQqlpSMM/5s9R605DwkiT9zqESnCwiQUOi9z/OaNDADHm/bywws+jVaqvADxrFDThpLrThAWFeKUmg/UeOJOq0S9cPqo2p1ctXQvYQGiJhtSqy2Wezqi5BowfAeXa7iEL0ll1fe+dGKAXw6NTX/DgiAIQgmuU65j5L9I28fnoDXnJ0oFjkCxixYj5YVhtPLuuZH4Kcbjg56m1IzseLpOzin2XrYdVWO6IAjzE3FKzQPkcTkfkLNwfnC69Vsm31ah+l7hhWnX+FFvy3763kf3n+ANT+/nZDZ/FvsSBEE4f9FlyUNGZF3R49xgxfolc9Gs84raYz0ygLqQUaH2UvUKQMXB5da5HCyfYlO1XVNirwvCYkSEzoXzD6Um6dRU1Y/CAuM0DafypSdN3yvattKeX99WbriW66c2WM4wsYmHcequxEYxlLdZEoucVrsEQRAEKPeEWPEddGRgoPUODPsomy6WNL6Zp4ZwtET1L2hqpe+VLgPdE6d45dK2WWjP6a5QYw1/sriwhPmCPConRyKl5gXeI1MV/SvMEVV7LzknC5fie6t4Sq2lp2++aMDy0xmyhgP+545oEwBJN0XjwGdIGmISCecJkiYhzBCFF+bq0RzCzBMOyMh9vrioURGmLJuP2449zEUNyVlpkt8CoHC5af/6K29XAbkuhYXDZE7g8xVxSs1nxOaaecqOsTwiFheq/D3GTwGp0Do/jXtNFeUwXErUmxYZDDcSSzcCxQ/XUnleQVhMyMifMCtUM+CLrz25EGeemj4pOfYLmTBSKqxkWTo/PN1zdY/VSBudSndXHgmCsLAQp9Q8Q3KlZx6vA55ObzVZmp8wv/GNrJqn+dxYK5dnl2E5CtcopI7k8941Y4T2nffBlVERQRCEM8LVuvItcxqVVIVzR4XzQlgUhPLlNVUt9CTRSeeAmkLnZcLrZ7z9M11REGYA6bdqIk6peUCNehHI6NPsUzWFUoZbFh6TnLLa91vR1EnOeUEUFFbluvnCN5fQaV1JoUS5h3GuDCpBEITznOrpe9I3zyqG/8ow7WppwkKivPrejDqiYPrXzRTt0LpmCJ8gCAsIcUoJ5x9KUbOXE+NqkVDrPJYZXSpY+sxT7OpzJhEjWdin4wAQdzWvHBtnx/AzZ7xtQRAEwUNXPNcr8rOFGSSMX5HDvagor75XcPuWC9vPjn187vYiSufC/ELeMCdHnFLzConQmW2kr1qchLqd+hyHgVdBA8o0QgMu0d/LqWcbSGqXv+of5MtP/XfWpI7hysUmCIJwhlTTlJLI8lmlRlqVHPuFjapx/gw3XKD8w6xQsbcpquwJgrCwEafUfKBi2KmyYpgwl8iZWGjoMuOl9rca6XuTbLt8VBFtMNHWWlhLQaovyp5YgpS/7JJcvzhABUEQzpCq4trF02QQb8YJ+z5J31uUaO3FIqZMr8Je4KxKRx0Uet5I4Uy7+t48aa8gCNPDmusGCMJsUz17T4d/xHmw8AltkVk5mQo3Hg8Nc1cpXEfxH+1dvK3vOBvyeQztijissEgRy1+YebRbLVVPrr25QNL3FhflA22PNe8gbp1iuPsZMFwOdKf9l8UZut+mcHIGs89072J7CcLCQJxS84jKB64YXDOOHOLFiSr7G6Cr6ZKc5qYDA65IYMM0jXBnw80beLzhZUT0v+L4y1jaEW+nsOgR41+YKVwvUXqum3FeoyR9b1ETCJ3njSi9da0cWTkezou4tdY6cyYrKOMvUfJNV50qCMJiQdL35gEl3XvxiIE8eWcI0aFY/ExSurro3eZsHVQAsS3vIjMwRsZMh/s81bgdC01gx5na4fPPfeGs9yUIgnBeorV013NNmL43x+0QzimhoHnRiY2m2lmfTtBuO7TbDq8fG2fe34C1svfkehXmEXI51kacUvMB6eHnLQoxhBcktYo0lVffq7H8dDSlVMT7ayS70CMZ7l/3NX8XGm2YXLsXnL4o2vWcUs/0P3OaP0IQFgbnwrkrCJNRoWOEovhJXUusWTh3hJEtrls+Y/YbI5wzVJVBvL2JVUQPv5FvHBnl7iO9vLMfxnTjbDWohELibpk6qFx3wkJDrtlJEafUvEMu2Nkgr3O1Z8opWDxUdfiqmskHp+Mfjq6MkXrwE7iZYUxtoFVgqHsbaf6hiXV3E0P7kpi44nsWBEE4Q5TWVZyf0lnPJgXtIWExETp3im6ncSvBI/oCrs9+ipvzn+KPet5Mmrq5aWA51YoeVEMeD4KwoBCn1Dyj+HVZRv5mBqUUzw8/ONfNEGaB4B5SpRPLp5wZJjh9z4OdJoHCDVICdQon+wJjzQkA8hMWlnbEkBcEQThD3MCrL979OaRW+p7YqguZapFSAavMQV4a3cPWsReYNaHzUF+hUIBo0tWrfKo+XxCE+Yw4peYB8sCcZRSknTGg2oBLtU5XDK4FR80QWV1m/9QSbp1s0+Wx5S7XEcE1/G24I+RTP+LhZS3kTQPXUZjaxZUbXViESDS6MPfIw3VWqCXSIw+BhU3oA6q8jyyKUjXP9Xmusb1CnZrqkZFytQnC4kScUvMNpRADa2YxDJPWru3el1DwuhrS9S14pu1kVFMuUWvbWju0aove1gz7lo2jrZWAgVaKF9a/ignaMLUjlckEQRDOkGovzCWIY2TGCQZkZIBlcTIRnQBK9cIsVeyUmt32BDZToere6TlDwwFEuV6FeYlcmOWIU2o+4F+Xkq43e3Quv7rke+0jLw+NBUnN0tWTTZ3e2a7Q1dAuCoVjwoPbhhlvei2oOAB9nZdwqO4GTO0gTk5h8SPPS2Fm8JxSxYN28jydfcrSqsqnCwuS4N0jY2UYtE6UzDNLnFSzdJ5r7EaL41lY4MgVPDnilJrHSGWJuUCO+eKmujFdKX1+GptyHYxAk0FpvlOXI6v8R6t2sIliaQdXXtgFQRDOiOqRUtJfzybKqOWUEhYyxZpSDk7JPGsunFJT7a3mqKJcl8L8R6oV10acUvMRea7OOBWyQBUfJllYWACUp+Pp0nlTnNLJTnlFpRrtoHTBqBsyNWkjeLQ6aG146XtyXwuLFLm2hVlhEq1AYeYJnRcVYztiIy1kigfAI4nDGNpzRFk4dBgTVZc7l1RIG5zr3UgHJQgLAmuuGyBATYNKOvoZpPzY6uqThQVJKJRZ5daazDw5E90n7ToYgX9faUDjKtObpx1yqQhv/NR32f3OTae9bUEQBAG0dsumSGc964QSPZK+t5gojpRKLXmSdx6+hHTnKBYuZrERNctC5+XUts7k+hOExYBESglCGWUxNcJCZBYcuoXoukL6XjDHUYVIKTBoGJ5gy/7hGW+TIMw28owUZotS2WMoufqUmLMzTainKJEnixJXu2ilMaOdxJRT6pCaE6aqzldO9Yiruf4VgiBMD+nF5wFagnRmn9M62HJmFhxhap1/c02an3l6PqxC+p7/13VQuvhRqnH8SCm0i9XgjfDHs6VaDYIgCML0cN3ySCmQvnm2qXG8Jap/QRNESuWcXDil1pKzSfne5CoTFjqlj0pxl5YjTql5iVyoM03tSoeqxmdhYVHmOCpCFylM1RIcnE4lzGC0WLtuaaSU0rjho9VG+UnSW0YGwRXHlCAIwpkhffKcEkZKzXE7hHNKMpL0Kghrzz6prh2lZ+/2q6X5qqrOnu5mBEGY54im1LxGHqmCMJtMx9auMNi0XebEKkRK5VP3sB9oi0e5+kQf6R99gdjNb8VIJs9VkwVBEBY9BU0p7yk9nYED4dwSdH2V+l7CQqYt0cbf3vC3PD/4PAB1L7bTo6kSqjRD91yF4aVKJk+110IgfA0LTpyowrxC+q5aiFNqHuAU9+8lcgly4c4Y01ZS1HIeFjDl2gNu/jAjZKmrOKdnYbXkMxhl6Xv90TZWZI6DzpID+hqTNB7NMfbBjxPb+D3Wfvc7Z74/QRCE842q2tqq9Kswo6hAt0te8hcdd6y5gzvW3AHAv337Ibw7aqYF7U9PM0prucsFYTEj6XvzgJMj8bluwnlHra4tk+ieZK6wYCgM6QJg+H+d3LMcZpiTzfWTrz7ppktTA3P7f0zDtcvC+QYuv2y9hviSWzCimwHI1kewEl5ofO7gwdP9NYIgCOc1U4pry+DRzBN2q+WC0nLsFx1VHUBzc56rjRUDheuu1vWnSiOuBEGY34hTah5ghzIz0rHPHV63NdJyiZyGRYXCBdb3DmFE14DynFFZywxm+39P32wJ1nBTA7TeuS6cbuCCUqhIPUo1ANB/QSurbztVsp4gLAZUWcSKIMwM5VHLiqKKFnPQnvMPVfN4y/2/2KiWHltda2oWmPbtLc8BQVjIiFNqPiP9/AxSGiAcsdM0D+3CtCfmrknCOaPceGqdyBBtuA0jshwoHgQsvQ7OSMBV65L9GUHhcg3KVznPa6uwK8eBqpWkBEEQhGqIuPY8wO/nMvmy6dG62W+LMGNsuKyTRKYVHBsch8bUIErPopRFjd0Edpsqdz7VeDZIAJ8w35BLcnLEKTWPKB73877L5TtbKNfmghf+kbrxA2Vzqqk9CguH8ooxk2sYTAdVHhKuNaYvbA5g+FFXLi6oCAB51yzsQztw70dOY4+CIAjnNxoduPuLpkrfPJvUNbcAMJBNcu/JdRxruh6ufh/c+uE5bplwLrnqrnX81h++gYY9T9O89wk2jT01szs8a4/zFM8B8WgL85ApU9LPQ0TofF5QeKBq7QD23DXlfKFKH1aZwSUG74Il1JSquUDZ3+pzp4XrlkRKWas/RzzbhXvweoJHbGbQ4WvRLWw1hoi4LvS9cDp7EARBOK/Rk0WXKpAx1pnnkjtfSVPnEvKZNGY0Suell0NCKskuRgJRe60pcuqcY5t4mqFMBTOudPnKSsjyki8ICxlxSs0jjvU+TJoDkJ3rlix+KrK3QqRTW0yU1o8pRL3VOsvTOfu1dBWWmks44ZxExfqIxPqYsHZQbzYDEMtm6Mk2s6QhQ/fIBDo7Li5PQRCE06L0qamZavBBOJdEojE2XX3dXDdDmAWU4Tuliq2oWUvfm3w/pysBKo8HYT4hvtPayNDSHOOF73lX6ET6ZNEcg2Ub18xJm84LqkVKUaOzk8T0hYd/zmqduYrCMmchdA7effxPSz/BXx1+P9iemLqNxrBWM7biLk52LPWmmf4jNzd+2vsThPmOhKMLM0XltSUCB4IwUxjFTqng3pvlG64geTDF7uVBIAiLAnFKzTW68mO04c0kG69l1ZaNc9Kk8xt5qVpc6IIDShe/xvgRU6r0e8gkRk7VSCnXpTnSxCWpzeBGAXhOt6OUwokvZbihFQAnWDc1CCefA9ep3JYgLCDENSDMCjqIdJU+WhBmnCI7x3VnKH3vNJk6wr10CRlPFuYbc1bBcoEgTqk5puQRGo4EmihDLtyZpcqlr8N/QuQsLEzUFJpSgaPK8UcDK6q5nC5aY0U9sXNLe9vMGF52tGsrbCtSsj+Gj8Jnr4Xvvf/s9isI8wBxEwgzja4oWlGUvicIwjnFMArFW9CentuMDUDoye3us+5fpIMShAWBOKXmGq0rU4nE0Jp5ah5i6b0WN5PfW6dz9ssdysryHqedvjEXd9PeHjXkQ6eUwlXQ43bTk25g/Oju09ijIAjCecqUhUjEbhKEc0WgKQXgBvdWxznO3jjtW7bWPS/3viAsBkTofI6Z/CVYfIazjq4cjZUOb+FSPLKnqwZ5n/65rRZ+q7VGmd70iPKcUgZ5f6YiH/FS+o60NbJvSSvs9WYZhzW//uY+Gts7T7sdgiAI5wtal4kuU1K3eA5aJAiLl+JsDb3xZfDEo7D88lnaefXJwQB+TQnQKrpz1acLwnxArstyxOsx1+hqX8QJMhdMXpdNWFgUjJHSSMTpjaxN5w6sSL31jThDBwKhfsi7huEmT1MqFykdB3C1YvhkzzT2JgiCcP6i/RSiUsRWEoSZoDhSal4UsJhMi2ceNE8QhLNHnFJzTdVqb7VmCOeK6eXG+6OysYaZbo4wGxSd8sqU2dPYjKoy+qZ1OLJo+I9VpQpOqZ0XXMb3r23hsgM9XHagh3e85810xLwKfI5tn3ljBEEQzndUcdEKQRDOFqM4fc/1HcJzfI+ddvU9eSQI84zJ64ILkr43x5SmFJVHSsmFO1voMCugzBnYsQlaVs1Bi4SzosjdPh3p+lNGkpc/sIvB/Bk6iIoipUxHQaTgvGrKWLzm4RSHG9bQOfY4AC2tLZi+08p1xCklLFzEFyDMBpXRGioUOtco3I71s98oQVikKFUUKeVWi1I8h9QQOg+7llpj9BV9T/UFZYhfEBYGEik11+gan0Gs/Rmk2pHdvaSNXu4vnVjXMSvtEWaXclWSASPByVyenPZeczYk4zXXDSOliu9P18Vs9HSjDNdP37O8vcRtk61Hclxz4NLijWD6wggSKSUsHsT8F2YG78oq7bkdTP+vAlPGWAXhXFGcvjcxPDQz+6j1jiPvPoJwXiK9+BxT3YSXB/KMU+UQn2qsC6ebZgOo2Oy2STiHBEGyBeF677Mqnh0SpH783abl3NbWxJJYZMo9FN+7PX/+YcyOTlp/5e0Yj3kvSkPRUb6TzLKpLsfmUw1EneJtGuKUEgRBmCbaddG6dBxVXKCCMDMopTBME9dx6D9yyJtmzE0cg8aT3AgiIyuFzqu/M4W+LXlQCMKCQJxSc01JylhZCKv4pmYV1z/gkfrX0xC3STmGnINFRGlQoqo6b3U8Ni2HVIBRV4c7McHoD38IQOLCzRgRE1xQhsvuqEu0Nc3mUw1hBJWHwgjS98QpJSx45EEpzAIlHbJCrjtBmDmufdOvsv/xRwCINzSw/rKrZmfHp3lbi89JEBYH4pSaY6pXtRBDa8ap4m0KomWUkQCVnu0WCeeSUIy8yGCparmUXgfTcUIWp++t/Pz/JfXkU4x861tk9+7FTWcKQuf+Dl2/Cp+pzXAbmuL0vfx0fpEgCML5SxVbqdRFJXaTIJxLrrjr9Vxx1+vnuhkFprrFa1QJFKeVMD+RK7Mc0ZSaR5QKnWvEOTVzTH5k5bZYvPjCuLWkDE5jS1prEhdfTNuvvYvomjX+RBfDFwg1lAPABF71RqssUioQOpf0PUEQhMnRTGbCi3EvCAuWGs6kcHaNcjU1NakEYZ4il+zkyNv3XKPF9TQnqELVnoCCo8JAzsrCplA5Rhed18leaQINqqnPe1VDKLieXJdoJBBJ95xOWf+boY3C9aYVhh8pNXqqj+Hek1PuVxDmI/KkFGYDrwKYOJ8EYdFQ8w39dKcLwsJBerHaiFNqjnFSeTqt4EVVLtXZwjTLp6giB5VoVSxeKp2R3nfv3jNO47SXpN4GK7oa0/Cyog3/b/Fd7QQVopQRRko9/r3/5PPvfzdP//iH09+5IAjCeUf5A1r6aUFYrKiyL1O/IZXr8sq7lSAsJMQpNcc4A+kqL8JB+p4wU6y7sKFiWhBRo1RRRIvYvAubCmOk1nlV1SdXoVqkVBiZpV1MVaop5RTdy0NNG8hGm9Bas6mxn8ZoHivmVXnsP3JwGnsXhPmM9FvCDDHNiluCICxspkxxkm5GEBYl4pSaY4rfmR0daMuosr/CuaausbLCmlYSKbVomMKqKdx2pTWDjTNN+PZLJWvXxVSm3wQvEqprdBDX3/6z29/Lg1f9BamUYk39EL9x8RGufPUbAXBs58z2LQiCsOippiol/bQgLFbK65Krmvf/FM8BcWIJwoJAqu/NNZM9LEURbVYpOKXEV7vQKb5zggg4XVw8QJUaM/o0IqUCDh8+zD/+4z+ilMJOJmi48gpe4RSEzg8t+QF1Hfehj93E00sOs2b0UlrH42jD4u4j47wJPGF0P5dUu+KUEhYmulblAEE4R7iSgiMIi5TJ721ffrNQIbvmZuQZIcxvpErs5Mjb91zjlteVkIt2Vihz+JW+UxloLbfGgmYq4yVYzL/7AmNnOme9tbUVgHw+T19fH729vQwYBofWrGEon2NjYj0ArpHHiAyzv7GfezOX8S9rdhHLDgJw96lRb2NFTimpwicIglAdrbUM1AnCYqLW/TxN+23q7Z/tBgRhJhEnajkSKTXH6Gqe/UK901lty/mEKvtQKnytKiJphIWJrigmXI6a9Gs1Vq5cyXvf+17Gx8fRWqO15hv/+q+klSLnOLy9661c9eBqPtX8Y55s/yWG8urvGWMOSnvRUMoNLjwHwxc/dx2JlBIWHlKWW5gVKkbvStPsDTMxq80RBGF20JxdPyOv/oKwMBCn1FxT9WmpxBcy00wWKaWM8tApYaFRU6e++nkNbkNjmjdeR0cHHR0d4fcYkAbyjosyFEvy7VyQa+NJYIk6xUF/L4Z2g0/+jl1My4uUEqeUIAhCLdzaWudKUZdcP8vtEQRhLlA1vUzifhLmPyJ3UBvJUZpjtDupqNSsteO8o8IpVRYpJfz/7N13eBTl2gbwe7ZlN9nNppBOCAkJHVFBumJESEABG4ggggLKORQRUURFitiQoogHxE9RzwHkgIgcihgFlCY1FAUSCIQWSiCkty3v98dmJ9l0QsiS5P5d1yo7887MO7PZ3WefeUstVzBW1E3GKFW9GWcfNt9stUAqmE7TxaoBAFgV9m55isKWUvIIntYiLaXYfY+IqDSiyH+LkyCxxR5RHVHZd3JFb3mpsCsEEdUCTErdkSTYOpQxyLp9HK+t1eGZolh3Pqp1Kt1SquoDnRdlb3KaajYj35IPANAKFwBAmv4KXBt/DqXuNOzRUWH3PSGPKcWWUkREZbACKN7Nnt/TRLVeqcOYlKqsn6z8HKBagn+q5WJSyslEKQOdU81zbCmlgP2Tgzdfayv7CydKX1xAYU9HFjRdquoHoqrgD2VHZib+tX4pMpGLgDxb9z6L0gSl7jxU7n8DBS2lCqcEtDIpRXUIv83o9nCYPZWI6oCyBjp3fFrRt4q8vnhyix8XRLUKk1J3EKmUf9HtUfwKWxWFzXwliXdga70iOanC7tslf9QohL1TiD0JWbXXPUKS4JKbCwmA2WJGqiILETmN0XeHP0LPtbUdCxagYEwpyV4pKwc6JyKqiMSEJ1E9UazbnbAtq+onAG/9053oZocXqQ+YlHI2q0CZ9wHYTOe2KZxcz/YWEPIUtHxL1AVSWS2lKlDVV7+pQonH1v4E34JWTxZYIQHwTneBR3oDAIAKFkiwt5SyV88KRcFA5xaOKUW1FGMrut2sVlFshGPGR0R1Wcl3eMHwB2XOeEBEtRl/gTuZnCkVDLacweqiQ56XN4JSMhCUkgEvSyMA4JhStV2RhK5w+FfpY0pZcYsUto9SZcFTW1KqINFZkIeySqJkSylhhbKgpdSNS0nY9Pk8HNjw063WhoiobilrpmIiqlMq/a4uceNelL6ad02IagUmpZyt1PZ7DLRuO/u3lSQh39Mbbc9fRdvzV+Fm8bIXcFrVyHkUVWydaJ9xT1Hwd2OBVf4TUhRkvIRkhVSQlIK1MCmlc3cHAORmpOPYH1uw7bsvkX4tuWonQERUBwmIUm4W8XuaqNarbNKIvUeI6jQmpZxMmHKdXQUqorDXOr/86gSHxlHlDJQrd9+sIsneUsr292ORrPK+FPLY5lagoPuefANPWHEj34JHJ0zGA0Oeh0pjm7HPnJ9X1ZoQEdVB5Qx1QES1z00mmaQi/z9+/DiElZ8HVLvwl2X5mJRytvP7C/5R2ocrX57bpqwvw2IDX1NtVdnXr9jA51V92Yt137MW7b5n7xsoCbmllGS1J8EEmv23K5rtHo37HrgPKhdbUorBFhFRofIHheXnJVGdUUogJklw+BBYuXIl0tJSHQuV8SHBAaWJagdmPZxMmHJKCackMMi6zcpISjEVVUcUaR3lOFpb6a+wnDeq6uEKgqjCMaUK05qSw6R6tiPlSxokagILtrEC6ReAs7vk2f+ElTPxUe0jGP3T7SJKjvzH72uius/+raLIz3VYYDJzchiiukTl7ArUe/YWEQzmnadogsr+OgiGu7VaKS9fZd5hZSWtKt6woKVUwUHilBdxTHcB2c3aI89qkIspC35XNUtSYLH+Q/jnJKOZ4hTudYmBX16GfPzsjDxkpeUBwvZDXwhAq1dDrVGCiKjeEZA/Z22kwtQ/v66J6iz5Bl/xJFQFo21IHIOK7mj83V8ck1LOVpAECcFFpNiX2T9IlWqnVKk+KPvLyvFbjt9ptZPcdU4U5he9blzCdRepWDkbUfBC32r3PdeCv59URXbhMUThDymF6ToAwJCngyEPAAw4jTCczuwFtxUmZGeYAAA/zY+FQnXR4RAurioMmdEJOoOmipUkqn62bhX8oKSaUGx2rYJPcIb2RLVYGTflK/pWEXznE9UpTEo5mf2z2IDMwqQUJORLKkDr7qRa1TdSiX9xTKm6QiBLK8E9R0CfdQPXXYondEpPUt20gmxWW0mBhv0exbF1J6HIMiMECvyt9MABqwqSwgz36+sRkHwKFqUWWW5+OBruD3fTPQCArBx1YQ0kAUkqSJ5KgNUikJdtRsqlLAQxKUVE9Yy1lO57RFT3FU89ScVWsKMJ1RaSxN+X5WFSytkKuu9JcAy48hXspnNbVTDQOdVyRV7fT/q54N7T+WiR4lJKQVHkv7cwplTB8VyEwL333ou2be7GjSvZ+HveJuiVLsi9/Bi89Sew+YGrCEu4gLvP5KLJ1X3Y3SwAHT22I9x8AwCwKUOLTLMaAya3g394U3n/qz7Yh6tnM2DK41hTRETss0dUy91Mt7tSlonKRm6M64lqBQ507mS2gWEFFMWGYy78L9WsW01P0B2hyMt3xk+BH7opoDJfgCHjXKkF5Ve9qv01C8Y6EQV385VqBRo01OOKVyPE5VhgTmsP74vDEGl+FCeCOyHJ2zbOlCSsiFMGIThUQiOvJCgKRkUvPmC0qmAsKSaliKg+sppFiR+XvONMVH+IwobkZRRg8omoNmNLKWcraCmlYNP0GiaV/k9RbCEHlaqlbK+b2WKSlyisWfC5EYcbAd4lysllqno4+2BUVsegSKFWIqMgjyQgoJLUUAgBi9KWZJKsVlyBD8TILZAOr4B0+Gtb2WKfB2qtrXxupgkWixVKJe8nEFE9x69nonrLnoO6km8CVMAX56/ihv4SGmhU6O/rIX8+CABWYWtXJQFQSBISsnPxx41MCCHgq1HjER9jiZuScVm5+OFyCswC0CgkPBPghRBdyRb3l/NMuJibD0kCFJCglGzHiHB1gUbBWI2ospiUcjZh775XsqUUOYO9Oxdfg9pMrbCNu2QWZsitoSRFKa9qwfuuoKVTlbvv2QMPq2MySaEsnM/PCkApqSAJK8z2pFRB8kkIASjVUBRkRUWx5JbaxVb+j+/jsWfdaQyYch+MProq1paIqHYRKH7jTiq7xQQR1R5ltnCqaCID25oci+2z4VBGNn48ewUA8PbJi7g/IQ8PAvg9JQOj/ziCHKstsr/P6Ia9aVkOexoe1ADrL56EOWMXIMwId9Miy2LF+RvJUOZdAWDGNwoLtC6AySpg8eyPplkR6H0+E0czcmCRVDgZ5I27zuZDbRZQmq8C7km4EHEQYQ0a4637p2DZX8uRmp4BRb4avrkNcSnjMk7lxcEl2IypzWchJSkL+TlmpF/LhRACrR8IgnsDxnlUfzAp5WwF2XtFiYALYHLq9pGKTLPmkA5kkFsn+Ln64hoAb60XgEsAAKtCUUp04xj0KKqp+56dQqlwSEqpoIJkFbAUjBmXp1TjhtHblpRSFH4ci2LJrZBW3jgdmywPeJ58LoNJKboj2Gbfsz/jByjdJqX9cGVLZqJ6o2h8/nvE3Ug5FYuQIusf9DLghqcB225kAAByC27upZosyLEWjh9aPCEFAN9cvAb35H/DJWcfAOBsqm25Q5RlBSw5thb1issf4+6jr8Ca2RitoAcA3HW+6H69gBteCD7bGgDw6Yb/wS0jBPZ2VjcAaNEErdEEe9J+xKo1+2ExO8Z9oW19mJSqYySH3/WMl4pjUsrZ2FLK6aQi05kXDjjP16BWK3j5AvVBAP4GAAiFVOaressjiRW0lMpPOI30n3+G/qGHoNBooCzWUspVcoOnpJdbSuWq1FjXthvezslDI6W6cPbHYsmt5p0DENHBD+s+OYSkk6klxpwiIqrLrAXjbxJR3VDWGJ5FbxrLy4pFZ8cDG6PhqSMIAaAs2M/T/l54+q4mSDOZcd1kwd85F3Au9izuNujwxF1huEuvw9aUDOQXxFft3d2QZxWYHH8e2RYrMpEBMwDoWiNH0QCwCiiTciDMRoR5N4Kn0Q0RjVT48e95AAC1RQsAOOtxDG757pCggIAVyW4X4J0diAZZQVDAFuu5ZXjJdReSQJ5LFhRWJTT5OjyqfwrJZgsUCgn+TYxwNWrg5uECNyNnWqb6hUkpJ7P/tpRKBFsMvm4nqZxnACAEk1K1WkGQYj19Fgi1LRKSAmW9r241KaVwsQUPObGxuBgbC/9p78DzmWccuu8JAI2sDfGCpiH+tBwCAKgsFkCScM1kRiOFGpK9+14pSSelUgGlquC8LPx8oDsHc6R0+5XyR8a/O6I6z/42F8WSWC4FN5EDXByTN0a1Cka1Cpk6Dc4BCNG54GFvdwDA0wFeKG5z+2a2dckKHMsBnm7+LPaZmyI/24TjB89ArZTw86Q+cvkXm/XEhcwLOBqXg/wcgReHP4Mc7yRk5GfgbMZZNDT5QSEJRAZH4GzqOfz081bArIBGpcbwR55C84bhAICYr/9G/N4r8Fb4IBmXodWr8fir91bHJaM7Gn9floVJKWdzGOjcPiCeVOz/VO3KavZf7NcVX4HaSeVlG8zcmpoGe+8iq1RywMnid9+q2hvE0Ls3co+fQPa+fTBdvAhzcjIAQKFSFElK5SJdCbhb9Aiy2D561fmX4X3hH9jd4DXcq3OXZ+EsPqaUXL+CO4hlrSciqpNKZD4ldt8jqjeK9Ggo+ChQFzzPy8kG1MD169fhXco2lb1pkmfOAwD09GmAtwMicPZ6FrqvPwNNsYllGhoaoqGhIeKlXchHLvQaFcJ92gAAuqCLQ9nGxsbo/tIDpR5PqVYU1N/s8JyovuI7wMnsH5YKdt9znlIn4uNrUJsZn3gcQfPmwuWetvIyq1TamFKOyu7gVz61ry8CP/wAhod7AACEyRZkKJSFg/FK0jV867sWAOAm2cYgUFkBhTUTBy79ASjU8v6E1VLqcRQFSSkrk1JEVI+U9oknyl1LRLVCGVmjiqIxRcHYm3l5tmRSZmbGLVUj15ILAHBR2kZ+yi8Y40mjKv2nsv3moEJZtbhRVbDfvGxbvKhiUorqOb4DnK1goHOllF9ilULB/sS3TSVbSlHtpNBo4N6nD7QRESicfa+cMaUKVpQylMHNUdpaQAmLLamkLDLQeZrFD/rsBgAAV7gBACSlrdm4yWoGlOV33wPYUoqI6qffzlx1dhWIyFmk0m4ZO8ZBRqOxrE0qJc9iS25pVbaxovIqSEpZLLeWlGJLKSJH7L7nbAWfqUqFWV4kSRIUSheoVHonVaruK2v+g8KuVmwpVRco1BqgoNGRVVHxF/6tvuqSqiApZTYBALwb6iHtt627ISmxJu0+mJCLIQWz76msttZRZqsJUBQd6Lz0pJPcUopjStEdoqqtC4luRttL7WGFSX4uSRL/9ohqszKzRqUNdI4SDSILW6HbynsYPcrYX/nx0ozdM7Dv8j6k5KYAKNJSylJBSyl7UqoSsWVplAX7zS9oKaUs4zhUd7DHefn4DnAyUTCjTNGkFABIBTM20G1S5idDsSGv+QFSqynURbrElTKmlCj4CLQnIW/1A1FSFbxvzbZM2D09G+H5Se2hBGCVgBtQYwXyIUm2ck3PX8NDh6xQZeYCSlXhmFJ//wic21Ny/0r7GAlMStGdiH+XdJtYcyBEnrNrQUS3W1kdGYotV9hnKZYKbyffrLS8NKyOX42z6WdhFVa4qd3g5+oHoEj3PWXpkaH1Frvv2VtGZabaPtfYfa++YbxUHFtKOZt9TCnJ6vCcyZDbzKEpcNEBFAteAM6+VydIqsKk1FmFBJ+SJRyf3eptDKUt2WTvvgcAEaGeWBQB/ByrwRp9PkwAhMp2J+7uU0m4+xSwK/0s0MNdro710PfA+e+AN84CisIENVtKEVF9ZMpcArNw/NHGFs1E9UWR97o8HV8lfzCVEy7lmm3jSCklJZZGL0UjQyMk3bBiyP/9imuZtmFVNKrSGwlYC1pSVTUp5eHnaqteQXLL6Otapf0Q1RVMSjlZmvEYQppuhdfJNKDYvBFUUwq/UJQFXw4MdusGqUgwcU6pQPti0YkQ9pZSNrfeUsqWBLN337Pz1SrQ0Fy4d9G0G86f3wGTVoOwpOvQp+cB3k0geTQCclJtFcrPAMy5gMatcP8c6JzuSPy8pNsrX6GCouBHoFJR8vYCEdVSlWz5bchMd3iutZjLKFl5+RZb4slF6YJ7fO8BAGw8fBZX0gtbZbYP8Sx1W3scJlVxMNLwdr4w+uiQl22GQinBP8xY8UZU67GjQ9mYlHKi/Nw8/LkpEOnuM3DCdAbAVmdXqd5Qq9WQrFYIhQJCoUKmFtDnApKwt3CxJRAUtzzyNTmTQq2GCgImACrvXUCC43orVFCisGvfrY8p5dh9z06phEOHXIu+AY4G++J840C89NN2KE228pIxCLiUWpgUNec5JKUUHOiciOqhv9s/g1/uagr3nExMWH0Upc9PSkS1nRyHiSL/k4DmCUcB2KLzxw9uQ0BOBqxFtyj2a78yDd/tg5vbx5ECgJx8W7IrupU/ZvZvBR+DS6nbWm9xoHNJkuAb4l6lbYnqIialnOjo3n3INbRGfsZ/AJFZsLR6fhxT+Vz9/PCQRoO4K1eRq9Zj6/3t0NSyGxC74KFsCJ3PXVB5+KNtj2BnV5VuQYPwcLhcUMOkzMPxsAxEx6ogWQWEQgIgQaHyg9blCr4P6QYPlRIuVRywUlZK9z3A1gOvaFLKVJBUMhUMjK4sGLvAPmCmfawrFDQtt5PHlGJSiojqEQU0sCqVMBXpks1IiagWKytrVMbyokv9MlLl7nMVJZ/Ki5byrLaklEZZONt5dr4tfvPSa+Drri19n1ZROPxKFZNSVP9woPPy1Yuk1Oeff46PP/4Yly9fRtu2bfHZZ5+hQ4cOzq4WLicnwawwyAkphSoYrvlKmMFQqybc//bbuL/oAnM+YM4BFGpAw77ddUFYeDjmWuZg05G1yFPkY/NwN9znei+8tBrcF+qJ00FtkWyy4HkAdxl0UN1iy7jC7nuOzcqVSttMUQohYJUkmAqGkLMnpVQFC+TueYqCAMnsOLCvQuKYUnRnYZDlHDcb16xatQpTp05FYmIiIiIi8NFHH6FPnz7yeiEEpk2bhi+//BKpqano2rUrFi1ahIiIiJo4nQqF+NkS9ZYiY+yVaFJBRHVGRV8tVmG95dv4Rbvv2eUUJKVc1aWPJZWWnI0bl7Pl54oyBkK/GVaLBaf27UZuVhYAoHHbe+DewPeW90tUm9T5pNTKlSsxceJELF68GB07dsQnn3yCqKgoxMXFwdfXuW/4jJQUCBR2zVHrn4Rbyn6kAcxKOYNKY3tQndKlWVd0ada11HWB1XwsuftesbEO7HfSlACsAMwFv6EsyoKklNk+i0xBcKMsaA1QLClVOPtetVabiGqRm41rdu3ahWeeeQYffPABHn30USxfvhyPPfYYDh48iNatWwMAZs+ejQULFuDbb79FaGgopk6diqioKBw7dgxabemtBWpSq4jGQBZgUnJmYqK6xnzjBjJ/+w2SWg2ENylYaot3dsCMUI+H0CT7JIDzAADPExeRqcmFFsD5q2psuNIMuae/gsVtJQQE0vPzkW8NhFk0x5ndWfi/PxcCSgGdixtcVa7Iz0lFujUf192Avvlt4JWtwLINE6BRuqJBbjomWS1w2+qFg5daISszDdeuXoAy5Sp0IhPH8+8qbM0OCX/NWY28KynIkLSAWgcJJkgKCS7eblBqlZAUCmj9wtAgrDmy8oDcrMwiMZwAhMBfv/+G5MTT8vV4fPI0JqXqASGsSEr6L/Lyk21/7ZKiYPIt28M2+ZJUcPdPggQF9IYWMLq3RVbWKVgs2ZAkFdzd20AICzKzTsJiyUZ2VgIs1hwoJDX0+uawWHORmXEcVms+hDAXPCxwcfGDSuVe8NwKD4/20OubOe161Pmk1Lx58zBq1Cg8//zzAIDFixdjw4YN+Prrr/HGG284rV4Z6Rm4evIcJGH/0FFBkhSAxKQIUW0lFbR8EqaSLaUAQAkBEyS5+565IPmkMFkwZ+MvMBaMLZVf0Nlvb/JV5KmCbPsEkJRvG0A9MSsXOSm2QT9F0XEXCliEBSZLHnLM2biYFg+rfepkAGnZJtwoGMTT3U0Nz4LxEoQQQCYgJTsO/l50fptw19LHVihOr9EjzBhWYnnDFp5QlXH3kYgq52bjmk8//RTR0dF47bXXAADvvvsuYmJisHDhQixevBhCCHzyySd4++230b9/fwDAd999Bz8/P6xduxaDBg2quZMrQ6OmEUDsKTmRDwBCqvMhLFGdZ7pyBSc7dwEAqHx94f/Vv2z/FgoAVvwME+DaCHoXHVZhEwCg16EdiPP3QoKfJzKEBifgC+QByLPHXkoAVwBcgRlATsHStAzHY6szCqeYuoxUh3V5F85j64XDpdR4p8OzbX/Z/5XpWOx80SfHAWwo7fRLaNK+I1yNHpUqS7WXEBZs2XpntES2a9p0GpNSt0t+fj4OHDiAKVOmyMsUCgUefvhh7N69u0T5vLw85OUVtkxIT08vUaa6bFj2JUxn/wJgG7hPKngpsvVNytmKiO5oBT+Ysg8cQOKgZwAALs2aQdHJ1lJLJRSABMzMyoEy5EXoru8FAPinmJH98WRcMnoDLlr8ntAAO62ewJGZDrs3qTxhURmRtM6CSz+VPfOMKPLf4s0u3QsehSUluZRQaEp0hJGKLDlV0fkXcajYc7Xbo3jh40eg8mBSqq7Ky7uM/QcGOLsaDsKbTIaHR3tnV6Pa3GxcAwC7d+/GxIkTHZZFRUVh7dq1AIAzZ87g8uXLePjhh+X1RqMRHTt2xO7du0tNStVkvAQA7YxumNTYH+dy8+RPtHQj4yWi2krlY5tFU+QWjp2paRIGg4cK3d0XwWxti52m9tinskBIQKbKiK8eVqP5RTO6HhcITU6F2myBRaFAtosSVzxsN9RUwtbWxCqpYFYHQRT8vrJarjgc38XqCbWwDdWRp0iFRbJ15VMIFcxSDopTqJsBki1+MVivwZByGlarQK5KBUiAm9oEV2GCVShhyrAP0C7BpFQgU6uBRZIgCcCzcWPowpoURmaSrUWMi6sbug4aCp3eUD0XmO44XZo0gK9egqRwh7AWfmcqlW7w8+sLe8s5AVHk39aCfwPXrm+D2ZwKAJAkNVQqd5hM1x2OoXUJhEpthKtrKLKyTsFkSrEt1zaEQd8CkkIFSVLDbE5HXt4VSJISkqSCJCmh0zp3HOU6nZS6du0aLBYL/Pz8HJb7+fnhxIkTJcp/8MEHmDFjRs1UzmIGUNh6QamwTTlq0tg+jCQ9++8R1TbqQFuHQGtGBnIOHbItVCjg/nhfAGnwsCqQqbDilGQFJCV8EAgrAI0ZaH4pFyZFHs67aGFSqmFSqks5Qg5gybl9I6jcximtvAK1HBC0jkrNMwKQYLXmIy3toLOr48BkTnN2FarVzcY1AHD58uVSy1++fFleb19WVpniajReAqCUJEwK9QcA/DsEyLhshlCoAGGBunGNVYOIqommUSM0/n4F8s/bmhRpgoOhu/tuIC8Drb32oHXuLxgrVEg2BeMU/GGGEldDQ5Hc7wHsTM9EWEIW2oW0xQ11Ps629YVeUiBMfzeMLh7Qu6hg1KmRmZ+JbHM28kxWKE06pF25hAs3smF2cYWbUoV7Guig1Sih8va2dR2ErdV41sEDOHXoAPLzTVAa3eHfpDkU+oaQdG5QKCU0aKgvdyypvNOnkXvsOGC1QJgtEBYzYLH92/W++6Bt1rQmLjHdYcZEhgMIR35+DLKybN01lUotDIZWkKTK3bC1WHIACEiSBgqFCpmZ8cjNvQgAcHNrCp0u6DbV/var00mpmzVlyhSHu4np6ekIDr49WcOeA4djr9YVuVYFlB7+0Hp64vwfh2GxCqiMrnhi9JDbclwiun1cO9yHxiu/h/naNXmZ0miEa9t7MXD4dtxz9ip2XM6HyqSCxWSGyaTAmiG90MAqIS8/HxaLFYrcPLgoBLTWDKg0GiiKfFEJAGaTEcJaykd3kXyPAhL0Cm1BD3QFJEmCUgG4qBVQQIK6SDBVPE1k0OVCoyo9OyUVLy0pAe8waMLCoDQayx0KL7B5S2i07J5c18x6rDWy81ughe89UCPJ2dUpwd3QxtlVqJNqMl4qbujMsQ4zkEq3OEEFETmH7u67bYmoolwMwISjQNpFKHNT4X8jEf72IQhc3IGW/RyK+wNoUcb+9Ro99Bq9/DywgbHMsnaSJEHfrj3ublf1FrYuYWFwCSs5hAERAGg0DaDRNKjStkqlzuG5Xt8Uen3dSHLW6aRUgwYNoFQqceWKY5PNK1euwN/fv0R5FxcXuLhUbsyUW+Xt64veI8c6LuwZWSPHJqLbQ5Ik6Nq2LXWdT6cH4NMJ6FLDdSK6ne6P8Cn4lz+A1s6sSr1ws3ENAPj7+5db3v7/K1euICAgwKHM3cV/MBaoyXipNExEEdVhWqPtAQAhjJqI6oNbn8fyDqbRaNCuXTv89ttv8jKr1YrffvsNnTt3dmLNiIiIiG5OVeKazp07O5QHgJiYGLl8aGgo/P39Hcqkp6djz549jJWIiIjotqvTLaUAYOLEiRg2bBjat2+PDh064JNPPkFWVpY8aw0RERFRbVFRXPPcc88hKCgIH3zwAQDg5ZdfRvfu3TF37lw88sgj+P7777F//34sWbIEgK2F54QJEzBr1ixEREQgNDQUU6dORWBgIB577DFnnSYRERHVE3U+KfX0008jOTkZ77zzDi5fvoy7774bP//8c4kBPYmIiIjudBXFNefOnYNCUdgQvkuXLli+fDnefvttvPnmm4iIiMDatWvRunVhd8vXX38dWVlZePHFF5Gamopu3brh559/hlarrfHzIyIiovpFEkLctomcarv09HQYjUakpaXB3d294g2IiIiozmN84IjXg4iIiIqrbHxQp8eUIiIiIiIiIiKiOxOTUkREREREREREVOOYlCIiIiIiIiIiohrHpBQREREREREREdU4JqWIiIiIiIiIiKjGMSlFREREREREREQ1jkkpIiIiIiIiIiKqcUxKERERERERERFRjWNSioiIiIiIiIiIahyTUkREREREREREVOOYlCIiIiIiIiIiohrHpBQREREREREREdU4JqWIiIiIiIiIiKjGMSlFREREREREREQ1jkkpIiIiIiIiIiKqcUxKERERERERERFRjWNSioiIiIiIiIiIahyTUkREREREREREVOOYlCIiIiIiIiIiohrHpBQREREREREREdU4JqWIiIiIiIiIiKjGMSlFREREREREREQ1jkkpIiIiIiIiIiKqcUxKERERERERERFRjWNSioiIiIiIiIiIahyTUkREREREREREVOOYlCIiIiIiIiIiohqncnYF7mRCCABAenq6k2tCREREdwp7XGCPE+o7xktERERUXGXjJSalypGRkQEACA4OdnJNiIiI6E6TkZEBo9Ho7Go4HeMlIiIiKktF8ZIkeJuvTFarFUlJSTAYDJAkqdr3n56ejuDgYJw/fx7u7u7Vvv87RX05T6D+nGt9OU+g/pwrz7PuqS/n6ozzFEIgIyMDgYGBUCg4EgLjpepRX84TqD/nWl/OE6g/58rzrHvqy7neyfESW0qVQ6FQoGHDhrf9OO7u7nX6DWBXX84TqD/nWl/OE6g/58rzrHvqy7nW9HmyhVQhxkvVq76cJ1B/zrW+nCdQf86V51n31JdzvRPjJd7eIyIiIiIiIiKiGsekFBERERERERER1TgmpZzIxcUF06ZNg4uLi7OrclvVl/ME6s+51pfzBOrPufI86576cq715Tzrs/ryGteX8wTqz7nWl/ME6s+58jzrnvpyrnfyeXKgcyIiIiIiIiIiqnFsKUVERERERERERDWOSSkiIiIiIiIiIqpxTEoREREREREREVGNY1KKiIiIiIiIiIhqHJNSRERERERERERU45iUIiIiIiIiIiKiGsekFBERERERERER1TgmpYiIiIiIiIiIqMYxKUVERERERERERDWOSSkiIiIiIiIiIqpxTEoREREREREREVGNY1KKiIiIiIiIiIhqHJNSRERERERERERU45iUIiKnSExMhCRJ+Oabb5xdldtq27ZtkCQJq1evdnZVyiRJEqZPn15t+7Of87Zt26ptn0RERHVVfYmJbsbw4cPRuHFjh2XVHa9UxvTp0yFJEq5du1ajxyWqT5iUIqqndu3ahenTpyM1NbVK2//rX/9i8FTE8uXL8cknnzi1DtnZ2Zg+fXqpyaCNGzfWeCBHRERUGzAmco6kpCRMnz4dhw4dcnZV8P7772Pt2rXOrgZRvcSkFFE9tWvXLsyYMYMBWDW5U5JSM2bMKDMpNWPGjJqvFBER0R2OMZFzJCUlYcaMGaUmpb788kvExcXVWF2YlCJyHialiIjuYNnZ2c6uAhEREVGNUqvVcHFxcXY1agzjParPmJQiqoemT5+O1157DQAQGhoKSZIgSRISExNhNpvx7rvvokmTJnBxcUHjxo3x5ptvIi8vT96+cePG+Pvvv/H777/L2z744IMAgJSUFEyaNAlt2rSBXq+Hu7s7evfujcOHD1dL3XNzczF9+nQ0bdoUWq0WAQEBeOKJJ5CQkACgcFyGOXPmYP78+QgJCYFOp0P37t3x119/OezrwQcflOtdVGnjGJTnwQcfxIYNG3D27Fn5ehTf3mq14r333kPDhg2h1WrRo0cPnDp1qsR+WrdujQMHDuCBBx6Aq6sr3nzzTQDA1atXMWLECPj5+UGr1aJt27b49ttv5W0TExPh4+MDAJgxY4Zcj+nTp2P48OH4/PPPAUBeLklSued08eJFvPDCC/Dz84OLiwtatWqFr7/+ukS5Cxcu4LHHHoObmxt8fX3xyiuvOPytEBER3ckYE9lUV0wE2K7J8OHDSywveoxt27bhvvvuAwA8//zz8rWztzirynFLk5WVhVdffRXBwcFwcXFBs2bNMGfOHAgh5DKSJCErKwvffvutXI/i9U9NTcXw4cPh4eEBo9GI559/vtRE0n/+8x+0a9cOOp0OXl5eGDRoEM6fP1/iOpQV7+3fvx9RUVFo0KABdDodQkND8cILL9zydSC6k6mcXQEiqnlPPPEE4uPjsWLFCsyfPx8NGjQAAPj4+GDkyJH49ttv8dRTT+HVV1/Fnj178MEHH+D48eP48ccfAQCffPIJxo0bB71ej7feegsA4OfnBwA4ffo01q5diwEDBiA0NBRXrlzBF198ge7du+PYsWMIDAyscr0tFgseffRR/Pbbbxg0aBBefvllZGRkICYmBn/99ReaNGkil/3uu++QkZGBMWPGIDc3F59++ikeeughHD16VK5rdXnrrbeQlpaGCxcuYP78+QAAvV7vUObDDz+EQqHApEmTkJaWhtmzZ2PIkCHYs2ePQ7nr16+jd+/eGDRoEJ599ln4+fkhJycHDz74IE6dOoWxY8ciNDQUq1atwvDhw5GamoqXX34ZPj4+WLRoEf7xj3/g8ccfxxNPPAEAuOuuu5CVlYWkpCTExMTg3//+d4Xnc+XKFXTq1AmSJGHs2LHw8fHBpk2bMGLECKSnp2PChAkAgJycHPTo0QPnzp3D+PHjERgYiH//+9/YsmVLNVxVIiKi248xUfXGRJXVokULzJw5E++88w5efPFF3H///QCALl26VNsxhBDo168ftm7dihEjRuDuu+/G5s2b8dprr+HixYtyzPbvf/8bI0eORIcOHfDiiy8CgMP1A4CBAwciNDQUH3zwAQ4ePIj/+7//g6+vLz766CO5zHvvvYepU6di4MCBGDlyJJKTk/HZZ5/hgQceQGxsLDw8POSypcV7V69eRa9eveDj44M33ngDHh4eSExMxJo1a6rtmhDdkQQR1Usff/yxACDOnDkjLzt06JAAIEaOHOlQdtKkSQKA2LJli7ysVatWonv37iX2m5ubKywWi8OyM2fOCBcXFzFz5kyHZQDE0qVLK13nr7/+WgAQ8+bNK7HOarU67Fen04kLFy7I6/fs2SMAiFdeeUVe1r1791LPYdiwYSIkJKTS9RJCiEceeaTUbbZu3SoAiBYtWoi8vDx5+aeffioAiKNHjzrUB4BYvHixwz4++eQTAUD85z//kZfl5+eLzp07C71eL9LT04UQQiQnJwsAYtq0aSXqMWbMGFHWR37xbUaMGCECAgLEtWvXHMoNGjRIGI1GkZ2d7VCv//73v3KZrKwsER4eLgCIrVu3lno8IiKiOwljouqNiUJCQsSwYcNKLC9+jH379pV53qUdt6wYpyxr164VAMSsWbMclj/11FNCkiRx6tQpeZmbm1updZ42bZoAIF544QWH5Y8//rjw9vaWnycmJgqlUinee+89h3JHjx4VKpXKYXlZ8d6PP/4oAIh9+/ZV+hyJ6gJ23yMi2caNGwEAEydOdFj+6quvAgA2bNhQ4T5cXFygUNg+WiwWC65fvw69Xo9mzZrh4MGDt1S/H374AQ0aNMC4ceNKrCveHe2xxx5DUFCQ/LxDhw7o2LGjfI417fnnn4dGo5Gf2+8Inj592qGci4sLnn/+eYdlGzduhL+/P5555hl5mVqtxvjx45GZmYnff/+92uophMAPP/yAvn37QgiBa9euyY+oqCikpaXJr+PGjRsREBCAp556St7e1dVVvstIRERUWzEmqv02btwIpVKJ8ePHOyx/9dVXIYTApk2bKr2v0aNHOzy///77cf36daSnpwMA1qxZA6vVioEDBzrETv7+/oiIiMDWrVsdti8t3rO3pFq/fj1MJlOl60ZU2zEpRUSys2fPQqFQIDw83GG5v78/PDw8cPbs2Qr3YbVaMX/+fERERMDFxQUNGjSAj48Pjhw5grS0tFuqX0JCApo1awaVquKexxERESWWNW3aFImJibdUh6pq1KiRw3NPT08AwI0bNxyWBwUFOSSvANvrEhERIQe2di1atJDXV5fk5GSkpqZiyZIl8PHxcXjYg6erV6/Kxw0PDy8R/DZr1qza6kNEROQMjIlqv7NnzyIwMBAGg8FheVXip4riuJMnT0IIgYiIiBLx0/Hjx+XYya60eK979+548sknMWPGDDRo0AD9+/fH0qVLOVYn1XkcU4qISqhoEOzyvP/++5g6dSpeeOEFvPvuu/Dy8oJCocCECRNgtVqrsZa3TpIkh4Eu7SwWS7UfS6lUlrq8+PF1Ol21H/tm2F+jZ599FsOGDSu1zF133VWTVSIiInIaxkQ3HxOVdc0sFkuZ8dCdrqI4zmq1QpIkbNq0qdSyxccaLS3ekyQJq1evxp9//on//e9/2Lx5M1544QXMnTsXf/75Z4l9ENUVTEoR1VOlBQwhISGwWq04efKkfBcJsA18nZqaipCQkHK3B4DVq1cjMjISX331lcPy1NRUefDQqmrSpAn27NkDk8kEtVpdbtmTJ0+WWBYfH+8wk4unp2eJ7nNA1Voe3UrQWpGQkBAcOXIEVqvVobXUiRMn5PUV1aGy9fPx8YHBYIDFYsHDDz9cYb3++usvCCEc9h8XF1epYxEREd0JGBNVb0zk6emJ1NTUUvcVFhYmP7+dsRNgew1//fVXZGRkOLSWKh4/VUddmjRpAiEEQkND0bRp01vaV6dOndCpUye89957WL58OYYMGYLvv/8eI0eOvKX9Et2p2H2PqJ5yc3MDAIegoU+fPgBsM8kUNW/ePADAI4884rB9aQGHUqkscadt1apVuHjx4i3X+cknn8S1a9ewcOHCEuuKH3Pt2rUOx9y7dy/27NmD3r17y8uaNGmCEydOIDk5WV52+PBh7Ny586br5ubmdstN8cvSp08fXL58GStXrpSXmc1mfPbZZ9Dr9ejevTsA23hOAEp9XUp7vUujVCrx5JNP4ocffigxXTQAh2vVp08fJCUlYfXq1fKy7OxsLFmypNLnRkRE5GyMiao3JmrSpAn+/PNP5Ofny8vWr1+P8+fPO5SrbGxSVX369IHFYilxjebPnw9JkhzOv6zXsLKeeOIJKJVKzJgxo8T1F0Lg+vXrFe7jxo0bJba9++67AYBd+KhOY0sponqqXbt2AIC33noLgwYNglqtRt++fTFs2DAsWbIEqamp6N69O/bu3Ytvv/2IimMDAAEAAElEQVQWjz32GCIjIx22X7RoEWbNmoXw8HD4+vrioYcewqOPPoqZM2fi+eefR5cuXXD06FEsW7bM4c5YVT333HP47rvvMHHiROzduxf3338/srKy8Ouvv+Kf//wn+vfvL5cNDw9Ht27d8I9//AN5eXn45JNP4O3tjddff10u88ILL2DevHmIiorCiBEjcPXqVSxevBitWrWSB66srHbt2mHlypWYOHEi7rvvPuj1evTt2/eWzxkAXnzxRXzxxRcYPnw4Dhw4gMaNG2P16tXYuXMnPvnkE/nun06nQ8uWLbFy5Uo0bdoUXl5eaN26NVq3bi2/3uPHj0dUVBSUSiUGDRpU6vE+/PBDbN26FR07dsSoUaPQsmVLpKSk4ODBg/j111+RkpICABg1ahQWLlyI5557DgcOHEBAQAD+/e9/y8kxIiKi2oAxUfXGRCNHjsTq1asRHR2NgQMHIiEhAf/5z3/QpEkTh3JNmjSBh4cHFi9eDIPBADc3N3Ts2BGhoaG3dnEK9O3bF5GRkXjrrbeQmJiItm3b4pdffsFPP/2ECRMmONSnXbt2+PXXXzFv3jwEBgYiNDQUHTt2rPSxmjRpglmzZmHKlClITEzEY489BoPBgDNnzuDHH3/Eiy++iEmTJpW7j2+//Rb/+te/8Pjjj6NJkybIyMjAl19+CXd3dzlJSlQn1fh8f0R0x3j33XdFUFCQUCgU8lTIJpNJzJgxQ4SGhgq1Wi2Cg4PFlClTRG5ursO2ly9fFo888ogwGAwCgDzFb25urnj11VdFQECA0Ol0omvXrmL37t0lpgGuyvTHQgiRnZ0t3nrrLbl+/v7+4qmnnhIJCQkO+/3444/F3LlzRXBwsHBxcRH333+/OHz4cIn9/ec//xFhYWFCo9GIu+++W2zevLlK0x9nZmaKwYMHCw8PDwFA3n7r1q0CgFi1apVD+dLOv3v37qJVq1al7v/KlSvi+eefFw0aNBAajUa0adOm1Gu3a9cu0a5dO6HRaBymTjabzWLcuHHCx8dHSJIkin78o5Qplq9cuSLGjBkjgoOD5evco0cPsWTJEodyZ8+eFf369ROurq6iQYMG4uWXXxY///yzACC2bt1aqWtHRETkbIyJqi8mEkKIuXPniqCgIOHi4iK6du0q9u/fX+K8hRDip59+Ei1bthQqlcrhGpR23NLilYpkZGSIV155RQQGBgq1Wi0iIiLExx9/LKxWq0O5EydOiAceeEDodDoBQAwbNkwIIcS0adMEAJGcnOxQfunSpfLfSVE//PCD6Natm3BzcxNubm6iefPmYsyYMSIuLk4uU1a8d/DgQfHMM8+IRo0aCRcXF+Hr6yseffRRsX///ps6Z6LaRhKilBHtiIhqqcTERISGhuLjjz+u8I4UERERUV3FmIiIagOOKUVERERERERERDWOY0oRkdPl5+fL4xSVxWg0ljp97u2WkpLiMFBncUqlEj4+PjVYIyIiIqqrGBNVzGKxOAzIXhq9Xg+9Xn/b60JEt45JKSJyul27djkMGFqapUuXYvjw4TVToSKeeOIJ/P7772WuDwkJQWJiYs1ViIiIiOosxkQVO3/+fIWDoU+bNg3Tp0+/7XUholvHMaWIyOlu3LiBAwcOlFumVatWCAgIqKEaFTpw4ABu3LhR5nqdToeuXbvWYI2IiIiormJMVLHc3Fzs2LGj3DJhYWHVMsshEd1+TEoREREREREREVGN40DnRERERERERERU4zimVDmsViuSkpJgMBggSZKzq0NERER3ACEEMjIyEBgYCIWC9/cYLxEREVFxlY2XmJQqR1JSEoKDg51dDSIiIroDnT9/Hg0bNnR2NZyO8RIRERGVpaJ4iUmpchgMBgC2i+ju7u7k2hAREdGdID09HcHBwXKcUN8xXiIiIqLiKhsvMSlVDnsTdHd3dwZZRERE5IBd1WwYLxEREVFZKoqXOBACERERERERERHVOCaliIiIiIiIiIioxjEpRURERERERERENY5jShER1TCLxQKTyeTsahBRGdRqNZRKpbOrQURUrzFeIrqzVVe8xKQUEVENEULg8uXLSE1NdXZViKgCHh4e8Pf352DmREQ1jPESUe1RHfESk1JERDXEHmD5+vrC1dWVP3aJ7kBCCGRnZ+Pq1asAgICAACfXiIiofmG8RHTnq854iUkpIqIaYLFY5ADL29vb2dUhonLodDoAwNWrV+Hr68uufERENYTxElHtUV3xEgc6JyKqAfYxEVxdXZ1cEyKqDPt7leOZEBHVHMZLRLVLdcRLTEoREdUgNkEnqh34XiUich5+BhPVDtXxXmVSioiIiIiIiIiIahyTUkREVK7hw4dDkiRIkgSNRoPw8HDMnDkTZrP5lva7bds2SJJUo7PrnDlzBoMHD0ZgYCC0Wi0aNmyI/v3748SJEw7l1q9fj+7du8NgMMDV1RX33XcfvvnmG4cyiYmJkCQJhw4dqvTxp0+fjubNm8PNzQ2enp54+OGHsWfPHod9jhgxAqGhodDpdGjSpAmmTZuG/Pz8cvd76dIlDB48GE2bNoVCocCECRMqVZ8//vgDffv2RWBgICRJwtq1a0std/z4cfTr1w9GoxFubm647777cO7cOXn9Sy+9hCZNmkCn08HHx6fUa7pv3z706NEDHh4e8PT0RFRUFA4fPlzq8U6dOgWDwQAPD49qOwciIqLbifES4yXGS1XDpBQREVUoOjoaly5dwsmTJ/Hqq69i+vTp+Pjjj51dLVlFQQhg6+ves2dPpKWlYc2aNYiLi8PKlSvRpk0bh0Dvs88+Q//+/dG1a1fs2bMHR44cwaBBgzB69GhMmjTplurZtGlTLFy4EEePHsWOHTvQuHFj9OrVC8nJyQCAEydOwGq14osvvsDff/+N+fPnY/HixXjzzTfL3W9eXh58fHzw9ttvo23btpWuT1ZWFtq2bYvPP/+8zDIJCQno1q0bmjdvjm3btuHIkSOYOnUqtFqtXKZdu3ZYunQpjh8/js2bN0MIgV69esFisQAAMjMzER0djUaNGmHPnj3YsWMHDAYDoqKiSoxBYDKZ8Mwzz+D++++vtnMgIiKqCYyXGC8xXqoCQWVKS0sTAERaWpqzq0JEtVxOTo44duyYyMnJcXZVbtqwYcNE//79HZb17NlTdOrUSaSkpIihQ4cKDw8PodPpRHR0tIiPj5fLJSYmikcffVR4eHgIV1dX0bJlS7FhwwZx5swZAcDhMWzYMCGEEOnp6WLw4MHC1dVV+Pv7i3nz5onu3buLl19+Wd5vSEiImDlzphg6dKgwGAzyttu3bxfdunUTWq1WNGzYUIwbN05kZmYKIYSIjY0VAERiYmKZ53ru3DmhVqvFxIkTS6xbsGCBACD+/PNPIYSQzyE2NvbmL2oB+/fMr7/+WmaZ2bNni9DQ0Ervs/i1qiwA4scffyyx/OmnnxbPPvvsTe3r8OHDAoA4deqUEEKIffv2CQDi3LlzcpkjR44IAOLkyZMO277++uvi2WefFUuXLhVGo7FazqEqynvPMj5wxOtBRNWF8RLjpdIwXqrb8RJbShEROYkQAtn55hp/2L6Lbo1Op0N+fj6GDx+O/fv3Y926ddi9ezeEEOjTp498N2fMmDHIy8vDH3/8gaNHj+Kjjz6CXq9HcHAwfvjhBwBAXFwcLl26hE8//RQAMHHiROzcuRPr1q1DTEwMtm/fjoMHD5aow5w5c9C2bVvExsZi6tSpSEhIQHR0NJ588kkcOXIEK1euxI4dOzB27FgAgI+PDxQKBVavXi3fkSpu9erVMJlMpd7he+mll6DX67FixYpbvn6A7W7lkiVLYDQay71bl5aWBi8vr2o55s2yWq3YsGEDmjZtiqioKPj6+qJjx47lNvnOysrC0qVLERoaiuDgYABAs2bN4O3tja+++gr5+fnIycnBV199hRYtWqBx48bytlu2bMGqVavuzLt4RETkFM6Kl6ojZmK8dOsYL9X9eEnl7AoQEdVXOSYLWr6zucaPe2xmFFw1Vfv4F0Lgt99+w+bNm9G7d2+sXbsWO3fuRJcuXQAAy5YtQ3BwMNauXYsBAwbg3LlzePLJJ9GmTRsAQFhYmLwve+Dg6+sr94XPyMjAt99+i+XLl6NHjx4AgKVLlyIwMLBEXR566CG8+uqr8vORI0diyJAh8vgAERERWLBgAbp3745FixYhKCgICxYswOuvv44ZM2agffv2iIyMxJAhQ+R6xcfHw2g0IiAgoMTxNBoNwsLCEB8fX6VrZ7d+/XoMGjQI2dnZCAgIQExMDBo0aFBq2VOnTuGzzz7DnDlzbumYVXX16lVkZmbiww8/xKxZs/DRRx/h559/xhNPPIGtW7eie/fuctl//etfeP3115GVlYVmzZohJiYGGo0GAGAwGLBt2zY89thjePfddwHYXp/NmzdDpbL9LV6/fh3Dhw/Hf/7zH7i7u9f8yRIR0R3JWfESUPWYifES4yXGS5XHllJERFSh9evXQ6/XQ6vVonfv3nj66acxfPhwqFQqdOzYUS7n7e2NZs2a4fjx4wCA8ePHY9asWejatSumTZuGI0eOlHuc06dPw2QyoUOHDvIyo9GIZs2alSjbvn17h+eHDx/GN998A71eLz+ioqJgtVpx5swZALY7kZcvX8ayZcvQuXNnrFq1Cq1atUJMTEylr4U9cCjPsmXLHOqxfft2eV1kZCQOHTqEXbt2ITo6GgMHDsTVq1dL7OPixYuIjo7GgAEDMGrUKHl50f2OHj26UnXevn27w3bLli2r1HZWqxUA0L9/f7zyyiu4++678cYbb+DRRx/F4sWLHcoOGTIEsbGx+P3339G0aVMMHDgQubm5AICcnByMGDECXbt2xZ9//omdO3eidevWeOSRR5CTkwMAGDVqFAYPHowHHnigWs+BiIiopjBeKsR4ifFSZbGlFBGRk+jUShybGeWU496syMhILFq0CBqNBoGBgVCpVFi3bl2F240cORJRUVHYsGEDfvnlF3zwwQeYO3cuxo0bV5WqO3Bzc3N4npmZiZdeegnjx48vUbZRo0byvw0GA/r27Yu+ffti1qxZiIqKwqxZs9CzZ09EREQgLS0NSUlJJe425ufnIyEhAVFRFb9m/fr1cwg+g4KCHOodHh6O8PBwdOrUCREREfjqq68wZcoUuUxSUhIiIyPRpUsXLFmyxGHfRWevqewdsvbt2zts5+fnV6ntGjRoAJVKhZYtWzosb9GiBXbs2OGwzGg0wmg0IiIiAp06dYKnpyd+/PFHPPPMM1i+fDkSExOxe/duKBS2+2HLly+Hp6cnfvrpJwwaNAhbtmzBunXr5LucQghYrVaoVCosWbIEzzzzTJXOgYiIajdnxUv2Y98MxkuMl4pivFQ5TEoRETmJJElV7kZX0+yBQVEtWrSA2WzGnj175Obo169fR1xcnMOXcnBwMEaPHo3Ro0djypQp+PLLLzFu3Dj5DlrR8QrCwsKgVquxb98+OTBKS0tDfHx8mXeE7O69914cO3asRD3LI0kSmjdvjl27dgEAnnrqKUyePBlz587F3LlzHcouXrwY2dnZeO655yrcr8FggMFgqFQdrFYr8vLy5OcXL15EZGSkPEOLPSixu5nzs9PpdFXaTqPR4L777kNcXJzD8vj4eISEhJS5nRACQgj5vLKzs6FQKCBJklzG/tx+d3H37t0Ofws//fQTPvroI+zatQtBQUFVPgciIqrdGC8xXgIYL9XleKl2vLuJiOiOExERgf79+2PUqFH44osvYDAY8MYbbyAoKAj9+/cHAEyYMAG9e/dG06ZNcePGDWzduhUtWrQAAISEhECSJKxfvx59+vSBTqeDwWDAsGHD8Nprr8HLywu+vr6YNm1aiS/o0kyePBmdOnXC2LFjMXLkSLi5ueHYsWOIiYnBwoULcejQIUybNg1Dhw5Fy5YtodFo8Pvvv+Prr7/G5MmTAdjuEM6ePRuTJk2CVqvF0KFDoVar8dNPP+HNN9/ErFmz0Lp1a4fjFg9AAKBVq1ZQq9UOy7KysvDee++hX79+CAgIwLVr1/D555/j4sWLGDBgAABbgPXggw8iJCQEc+bMkac+BgB/f/9yz99+VywzMxPJyck4dOgQNBpNibt2RWVmZuLUqVPy8zNnzuDQoUPw8vKSg9zXXnsNTz/9NB544AFERkbi559/xv/+9z9s27YNgK0LwcqVK9GrVy/4+PjgwoUL+PDDD6HT6dCnTx8AQM+ePfHaa69hzJgxGDduHKxWKz788EOoVCpERkYCgPx3Ybd//34oFIoS17sq50BEROQsjJdsGC8xXipTtcwDWEdximMiqi51bYpjO/sUx0ajUeh0OhEVFeUwxfHYsWNFkyZNhIuLi/Dx8RFDhw4V165dk9fPnDlT+Pv7C0mSyp3iuEOHDuKNN96QtwsJCRHz588vUZ+9e/eKnj17Cr1eL9zc3MRdd90l3nvvPSGEEMnJyWL8+PGidevWQq/XC4PBINq0aSPmzJkjLBaLw37Wrl0r7r//fuHm5iZPwbxixQqHMqVN02x/nD9/vkTdcnJyxOOPPy4CAwOFRqMRAQEBol+/fmLv3r1ymaVLl5a5z4qUtk1ISEi522zdurXU7eyvhd1XX30lwsPDhVarFW3bthVr166V1128eFH07t1b+Pr6CrVaLRo2bCgGDx4sTpw44bCPX375RXTt2lUYjUbh6ekpHnroIbF79+4y61bZKY4rew43qzqmOK4veD2IqLowXmK8xHip/sVLkhDVMDd4HZWeng6j0Yi0tLQ6M7I9ETlHbm4uzpw5g9DQUGi1WmdXp1bJyspCUFAQ5s6dixEjRtT48VNSUtCjRw+4u7tj06ZNcHV1rfE6UM0r7z3L+MARrwcRVRfGS1XHeImcoTriJc6+R0REd5TY2FisWLECCQkJOHjwIIYMGQIAchP3mubl5YVff/0VPXr0wO7du51SByIiIqKiGC9RXcExpYiI6I4zZ84cxMXFQaPRoF27dti+fTsaNGjgtPp4e3vjnXfecdrxiYiIiIpjvER1AZNSRER0R7nnnntw4MABZ1eDiIiI6I7FeInqCnbfIyIiIiIiIiKiGsekFBERERERERER1TgmpYiIiIiIiIiIqMYxKUVERERERERERDWOSSkiIiIiIiIiIqpxTEoREREREREREVGNY1KKiIiIqBb44IMPcN9998FgMMDX1xePPfYY4uLiKtxu1apVaN68ObRaLdq0aYONGzc6rBdC4J133kFAQAB0Oh0efvhhnDx58nadRrXJs1oRvT8eob8fQfgfR/DF+avOrhIRERHdJCaliIioXMOHD4ckSZAkCRqNBuHh4Zg5cybMZvMt7Xfbtm2QJAmpqanVU9FKOHPmDAYPHozAwEBotVo0bNgQ/fv3x4kTJxzKrV+/Ht27d4fBYICrqyvuu+8+fPPNNw5lEhMTIUkSDh06VOnjT58+Hc2bN4ebmxs8PT3x8MMPY8+ePQ77HDFiBEJDQ6HT6dCkSRNMmzYN+fn55e730qVLGDx4MJo2bQqFQoEJEyZUqj6LFi3CXXfdBXd3d7i7u6Nz587YtGmTvD4lJQXjxo1Ds2bNoNPp0KhRI4wfPx5paWlymW+++Ub++yj+uHq1MEmQl5eHt956CyEhIXBxcUHjxo3x9ddfO9Tnk08+kY8VHByMV155Bbm5ueWew5o1a9CrVy94e3vf9OtR2/z+++8YM2YM/vzzT8TExMBkMqFXr17Iysoqc5tdu3bhmWeewYgRIxAbG4vHHnsMjz32GP766y+5zOzZs7FgwQIsXrwYe/bsgZubG6Kioiq89s52KjsPhzKykWO1ItNixf+upjq7SkRUjzFeYrzEeKlqVM6uABER3fmio6OxdOlS5OXlYePGjRgzZgzUajWmTJni7KoBAPLz86HRaMotYzKZ0LNnTzRr1gxr1qxBQEAALly4gE2bNjkEep999hkmTJiAyZMnY9GiRdBoNPjpp58wevRo/PXXX5gzZ06V69m0aVMsXLgQYWFhyMnJwfz589GrVy+cOnUKPj4+OHHiBKxWK7744guEh4fjr7/+wqhRo5CVlVXucfPy8uDj44O3334b8+fPr3R9GjZsiA8//BAREREQQuDbb79F//79ERsbi1atWiEpKQlJSUmYM2cOWrZsibNnz2L06NFISkrC6tWrAQBPP/00oqOjHfY7fPhw5ObmwtfXV142cOBAXLlyBV999RXCw8Nx6dIlWK1Wef3y5cvxxhtv4Ouvv0aXLl0QHx8vB/jz5s0r8xyysrLQrVs3DBw4EKNGjar0uddGP//8s8Pzb775Br6+vjhw4AAeeOCBUrf59NNPER0djddeew0A8O677yImJgYLFy7E4sWLIYTAJ598grfffhv9+/cHAHz33Xfw8/PD2rVrMWjQoNt7UtXIIpxdAyKq7xgvMV5ivFQFgsqUlpYmAIi0tDRnV4WIarmcnBxx7NgxkZOT4+yq3LRhw4aJ/v37Oyzr2bOn6NSpk0hJSRFDhw4VHh4eQqfTiejoaBEfHy+XS0xMFI8++qjw8PAQrq6uomXLlmLDhg3izJkzAoDDY9iwYUIIIdLT08XgwYOFq6ur8Pf3F/PmzRPdu3cXL7/8srzfkJAQMXPmTDF06FBhMBjkbbdv3y66desmtFqtaNiwoRg3bpzIzMwUQggRGxsrAIjExMQyz/XcuXNCrVaLiRMnlli3YMECAUD8+eefQgghn0NsbOzNX9QC9u+ZX3/9tcwys2fPFqGhoZXeZ/FrdbM8PT3F//3f/5W5/r///a/QaDTCZDKVuv7q1atCrVaL7777Tl62adMmYTQaxfXr18vc75gxY8RDDz3ksGzixImia9eulap3dbweRZX3nr1T4oOTJ08KAOLo0aNllgkODhbz5893WPbOO++Iu+66SwghREJCQqnX7YEHHhDjx48vdZ+5ubkiLS1Nfpw/f94p1+OvjGzhtyVWfvTcd6JGj09E1Y/xEuOl0jBeKlQX4yV23yMichYhgPysmn+IW29OoNPpkJ+fj+HDh2P//v1Yt24ddu/eDSEE+vTpA5PJBAAYM2YM8vLy8Mcff+Do0aP46KOPoNfrERwcjB9++AEAEBcXh0uXLuHTTz8FAEycOBE7d+7EunXrEBMTg+3bt+PgwYMl6jBnzhy0bdsWsbGxmDp1KhISEhAdHY0nn3wSR44cwcqVK7Fjxw6MHTsWAODj4wOFQoHVq1fDYrGUel6rV6+GyWTCpEmTSqx76aWXoNfrsWLFilu+foDtbuWSJUtgNBrRtm3bMsulpaXBy8urWo5ZHovFgu+//x5ZWVno3LlzufVxd3eHSlV6Y+vvvvsOrq6ueOqpp+Rl69atQ/v27TF79mwEBQWhadOmmDRpEnJycuQyXbp0wYEDB7B3714AwOnTp7Fx40b06dOnms6wbrFarZgwYQK6du2K1q1bl1nu8uXL8PPzc1jm5+eHy5cvy+vty8oqU9wHH3wAo9EoP4KDg2/lVKqNlS2liOomZ8VL1RAzMV66dYyX6n68xO57RETOYsoG3g+s+eO+mQRo3Kq0qRACv/32GzZv3ozevXtj7dq12LlzJ7p06QIAWLZsGYKDg7F27VoMGDAA586dw5NPPok2bdoAAMLCwuR92QMHX19feHh4AAAyMjLw7bffYvny5ejRowcAYOnSpQgMLHmdHnroIbz66qvy85EjR2LIkCHy+AARERFYsGABunfvjkWLFiEoKAgLFizA66+/jhkzZqB9+/aIjIzEkCFD5HrFx8fDaDQiICCgxPE0Gg3CwsIQHx9fpWtnt379egwaNAjZ2dkICAhATEwMGjRoUGrZU6dO4bPPPrulJvAVOXr0KDp37ozc3Fzo9Xr8+OOPaNmyZallr127hnfffRcvvvhimfv76quvMHjwYOh0OnnZ6dOnsWPHDmi1Wvz444+4du0a/vnPf+L69etYunQpAGDw4MG4du0aunXrBiEEzGYzRo8ejTfffLN6T7iOGDNmDP766y/s2LGjxo89ZcoUTJw4UX6enp5+RySmLNWQcCeiO5Cz4iWgyjET4yXGS4yXKo8tpYiIqELr16+HXq+HVqtF79698fTTT2P48OFQqVTo2LGjXM7b2xvNmjXD8ePHAQDjx4/HrFmz0LVrV0ybNg1Hjhwp9zinT5+GyWRChw4d5GVGoxHNmjUrUbZ9+/YOzw8fPoxvvvkGer1efkRFRcFqteLMmTMAbD/kL1++jGXLlqFz585YtWoVWrVqhZiYmEpfi4rGYgBswWbRemzfvl1eFxkZiUOHDmHXrl2Ijo7GwIEDHQa4tLt48SKio6MxYMAAh77/Rfc7evToStV5+/btDtstW7ZMXtesWTMcOnQIe/bswT/+8Q8MGzYMx44dK7GP9PR0PPLII2jZsiWmT59e6nF2796N48ePY8SIEQ7LrVYrJEnCsmXL0KFDB/Tp0wfz5s3Dt99+K9/927ZtG95//33861//wsGDB7FmzRps2LAB7777boXXtL4ZO3Ys1q9fj61bt6Jhw4bllvX398eVK1ccll25cgX+/v7yevuyssoU5+LiIg/2an/cCTimFBE5G+OlQoyXGC9VFltKERE5i9rVdgfOGce9SZGRkfIgloGBgVCpVFi3bl2F240cORJRUVHYsGEDfvnlF3zwwQeYO3cuxo0bV5WaO3Bzc7xzmZmZiZdeegnjx48vUbZRo0byvw0GA/r27Yu+ffti1qxZiIqKwqxZs9CzZ09EREQgLS0NSUlJJe425ufnIyEhAVFRURXWrV+/fg7BZ1BQkEO9w8PDER4ejk6dOiEiIgJfffWVwyCoSUlJiIyMRJcuXbBkyRKHfRedLaWyyYD27ds7bFe0q5Z9hiAAaNeuHfbt24dPP/0UX3zxhVwmIyMD0dHRMBgM+PHHH6FWq0s9zv/93//h7rvvRrt27RyWBwQEICgoCEajUV7WokULCCFw4cIFREREYOrUqRg6dChGjhwJAGjTpg2ysrLw4osv4q233ir3mtYXQgiMGzcOP/74I7Zt24bQ0NAKt+ncuTN+++03hxmGYmJi5C4HoaGh8Pf3x2+//Ya7774bgC2gtgfdtYkVzEoR1UnOipfsx74JjJcYLzFeunlMShEROYskVbkbXU2zBwZFtWjRAmazGXv27JGbo1+/fh1xcXEOzZmDg4MxevRojB49GlOmTMGXX36JcePGyXfQio5XEBYWBrVajX379smBUVpaGuLj48ucXczu3nvvxbFjx0rUszySJKF58+bYtWsXAOCpp57C5MmTMXfuXMydO9eh7OLFi5GdnY3nnnuuwv0aDAYYDIZK1cFqtSIvL09+fvHiRURGRqJdu3ZYunQpFArHRs03c352Op2u0tsVr096ejqioqLg4uKCdevWQavVlrpdZmYm/vvf/+KDDz4osa5r165YtWoVMjMzodfrAdia/isUCrmlT3Z2dolzVSqVAGzJmJu5pnXVmDFjsHz5cvz0008wGAzymE9Go1Fu/v/cc88hKChIfh1efvlldO/eHXPnzsUjjzyC77//Hvv375eDd0mSMGHCBMyaNQsREREIDQ3F1KlTERgYiMcee8wp51lZolh3PY4pRVRHMV4CwHiJ8VLdjZeYlCIioiqJiIhA//79MWrUKHzxxRcwGAx44403EBQUJE8tP2HCBPTu3RtNmzbFjRs3sHXrVrRo0QIAEBISAkmSsH79evTp0wc6nQ4GgwHDhg3Da6+9Bi8vL/j6+mLatGlQKBSQJKnc+kyePBmdOnXC2LFjMXLkSLi5ueHYsWOIiYnBwoULcejQIUybNg1Dhw5Fy5YtodFo8Pvvv+Prr7/G5MmTAdjuEM6ePRuTJk2CVqvF0KFDoVar8dNPP+HNN9/ErFmzSgwqHRcXV6IurVq1KnF3LCsrC++99x769euHgIAAXLt2DZ9//jkuXryIAQMGALAFWA8++CBCQkIwZ84cJCcny9uX1ZXKzn5nLzMzE8nJyTh06BA0Gk2Z4x0AtrGBevfujUaNGiEjIwPLly/Htm3bsHnzZgC2AKtXr17Izs7Gf/7zH6SnpyM9PR2AbSBUexAEACtXroTZbMazzz5b4jiDBw/Gu+++i+effx4zZszAtWvX8Nprr+GFF16Qkyl9+/bFvHnzcM8996Bjx444deoUpk6dir59+zocp7iUlBScO3cOSUm2u+j218Pf37/Ca1bbLFq0CADw4IMPOixfunQphg8fDgA4d+6cQ7DapUsXLF++HG+//TbefPNNREREYO3atQ5/x6+//rp8lzU1NRXdunXDzz//XGZAfafimFJEdCdivGTDeMmG8VIpqmUewDrqTpnymYhqv7o2xbGdfYpjo9EodDqdiIqKcpjieOzYsaJJkybCxcVF+Pj4iKFDh4pr167J62fOnCn8/f2FJEnlTnHcoUMH8cYbb8jbhYSElJjmXggh9u7dK3r27Cn0er1wc3MTd911l3jvvfeEEEIkJyeL8ePHi9atWwu9Xi8MBoNo06aNmDNnjrBYLA77Wbt2rbj//vuFm5ubPAXzihUrHMqUNk2z/XH+/PkSdcvJyRGPP/64CAwMFBqNRgQEBIh+/fqJvXv3ymWWLl1a5j4rUto2ISEh5W7zwgsviJCQEKHRaISPj4/o0aOH+OWXX+T1W7duLbM+Z86ccdhX586dxeDBg8s81vHjx8XDDz8sdDqdaNiwoZg4caLIzs6W15tMJjF9+nTRpEkTodVqRXBwsPjnP/8pbty4Ue45lHXNpk2bVu52FamOKY7rC2ddj6PpWcJvS6z8aLfrrxo9PhFVP8ZLjJcYL9W/eEkSgreVypKeng6j0ShP50hEVFW5ubk4c+YMQkNDa13rA2fLyspCUFAQ5s6dW2JAyJqQkpKCHj16wN3dHZs2bYKr682PyUW1T3nvWcYHjpx1Pf7KyMbD+wtndwp0UeNgl1Y1dnwiqn6Ml6qO8RI5Q3XES5x9j4iI7iixsbFYsWIFEhIScPDgQQwZMgQA5CbuNc3Lywu//vorevTogd27dzulDkRUMXbfI6L6hPES1RUcU4qIiO44c+bMQVxcHDQaDdq1a4ft27ejQYMGTquPt7c33nnnHacdn4gqZmFOiojqGcZLVBcwKUVERHeUe+65BwcOHHB2NYjoTpedjSGbfoQxMwPJnl7Y2utRZ9eIiKjGMF6iuoJJKSIiIiKqfbZuwch1/5WfXgppAnS/23n1ISIiopvGMaWIiIiIqPbJynZ46pKbXUZBIiIiulMxKUVEREREtZ6wclApIiKi2oZJKSIiIiKq9SRhdXYViIiI6CYxKUVEREREtZBjyyi2lCIiIqp9mJQiIiIiolpPsKUUERFRrcOkFBERERHVflYBIdhaioiIqDZhUoqIiMo1fPhwSJIESZKg0WgQHh6OmTNnwmw239J+t23bBkmSkJqaWj0VrYQzZ85g8ODBCAwMhFarRcOGDdG/f3+cOHHCodz69evRvXt3GAwGuLq64r777sM333zjUCYxMRGSJOHQoUOVPv706dPRvHlzuLm5wdPTEw8//DD27NnjsM8RI0YgNDQUOp0OTZo0wbRp05Cfn1/ufi9duoTBgwejadOmUCgUmDBhQqXrZPfhhx9CkqQS2yYkJODxxx+Hj48P3N3dMXDgQFy5csWhzHvvvYcuXbrA1dUVHh4epe7f/jdU9PH999/L69esWYOePXvKx+ncuTM2b95cYb3XrFmDXr16wdvb+6ZfD6rliiWgJAiwrRQROQvjJcZLjJeqhkkpIiKqUHR0NC5duoSTJ0/i1VdfxfTp0/Hxxx87u1qyioIQADCZTOjZsyfS0tKwZs0axMXFYeXKlWjTpo1DoPfZZ5+hf//+6Nq1K/bs2YMjR45g0KBBGD16NCZNmnRL9WzatCkWLlyIo0ePYseOHWjcuDF69eqF5ORkAMCJEydgtVrxxRdf4O+//8b8+fOxePFivPnmm+XuNy8vDz4+Pnj77bfRtm3bm67Xvn378MUXX+Cuu+5yWJ6VlYVevXpBkiRs2bIFO3fuRH5+Pvr27QurtfDnf35+PgYMGIB//OMf5R5n6dKluHTpkvx47LHH5HV//PEHevbsiY0bN+LAgQOIjIxE3759ERsbW+4+s7Ky0K1bN3z00Uc3fd5UtyiEgIUtpYjIiRgvMV5ivFQFgsqUlpYmAIi0tDRnV4WIarmcnBxx7NgxkZOT4+yq3LRhw4aJ/v37Oyzr2bOn6NSpk0hJSRFDhw4VHh4eQqfTiejoaBEfHy+XS0xMFI8++qjw8PAQrq6uomXLlmLDhg3izJkzArZRiuXHsGHDhBBCpKeni8GDBwtXV1fh7+8v5s2bJ7p37y5efvlleb8hISFi5syZYujQocJgMMjbbt++XXTr1k1otVrRsGFDMW7cOJGZmSmEECI2NlYAEImJiWWe67lz54RarRYTJ04ssW7BggUCgPjzzz+FEEI+h9jY2Ju/qAXs3zO//vprmWVmz54tQkNDK73P4teqIhkZGSIiIkLExMSU2Hbz5s1CoVA4fA+mpqYKSZJETExMiX0tXbpUGI3GUo8DQPz444+VrpcQQrRs2VLMmDGjUmWr4/Uoqrz3LOMDR866Hke//Eoca9Zcfjz7wQKRbbbUaB2IqHoxXmK8VBrGS+Wr7fESW0oRETmJEALZpuwaf4hqaEmg0+mQn5+P4cOHY//+/Vi3bh12794NIQT69OkDk8kEABgzZgzy8vLwxx9/4OjRo/joo4+g1+sRHByMH374AQAQFxeHS5cu4dNPPwUATJw4ETt37sS6desQExOD7du34+DBgyXqMGfOHLRt2xaxsbGYOnUqEhISEB0djSeffBJHjhzBypUrsWPHDowdOxYA4OPjA4VCgdWrV8NisZR6XqtXr4bJZCr1Dt9LL70EvV6PFStW3PL1A2x3y5YsWQKj0Vju3bq0tDR4eXlVyzFLM2bMGDzyyCN4+OGHS6zLy8uDJElwcXGRl2m1WigUCuzYsaNKx2rQoAE6dOiAr7/+uty/RavVioyMjNt67lS3SELAypZSRHWOs+Kl6oiZGC/dOsZLdT9eUjm7AkRE9VWOOQcdl3es8ePuGbwHrmrXKm0rhMBvv/2GzZs3o3fv3li7di127tyJLl26AACWLVuG4OBgrF27FgMGDMC5c+fw5JNPok2bNgCAsLAweV/2L09fX1+5X31GRga+/fZbLF++HD169ABga8IcGBhYoi4PPfQQXn31Vfn5yJEjMWTIELmPf0REBBYsWIDu3btj0aJFCAoKwoIFC/D6669jxowZaN++PSIjIzFkyBC5XvHx8TAajQgICChxPI1Gg7CwMMTHx1fp2tmtX78egwYNQnZ2NgICAhATE4MGDRqUWvbUqVP47LPPMGfOnFs6Zlm+//57HDx4EPv27St1fadOneDm5obJkyfj/fffhxACb7zxBiwWCy5dunRTx5o5cyYeeughuLq64pdffsE///lPZGZmYvz48aWWnzNnDjIzMzFw4MCbPi+qJ4qPKSUESv/5RES1mbPiJaDqMRPjJcZLjJcqjy2liIioQuvXr4der4dWq0Xv3r3x9NNPY/jw4VCpVOjYsTBQ9Pb2RrNmzXD8+HEAwPjx4zFr1ix07doV06ZNw5EjR8o9zunTp2EymdChQwd5mdFoRLNmzUqUbd++vcPzw4cP45tvvoFer5cfUVFRsFqtOHPmDADbnafLly9j2bJl6Ny5M1atWoVWrVohJiam0tdCo9FUWGbZsmUO9di+fbu8LjIyEocOHcKuXbsQHR2NgQMH4urVqyX2cfHiRURHR2PAgAEYNWqUvLzofkePHl2pOm/fvt1hu2XLluH8+fN4+eWXsWzZMmi12lK38/HxwapVq/C///0Per0eRqMRqampuPfee6FQ3FwIMXXqVHTt2hX33HMPJk+ejNdff73McTaWL1+OGTNm4L///S98fX0BlH9NiQBAIawcU4qInIrxUiHGS4yXKostpYiInESn0mHP4D0VF7wNx71ZkZGRWLRoETQaDQIDA6FSqbBu3boKtxs5ciSioqKwYcMG/PLLL/jggw8wd+5cjBs3ripVd+Dm5ubwPDMzEy+99FKpd5IaNWok/9tgMKBv377o27cvZs2ahaioKMyaNQs9e/ZEREQE0tLSkJSUVOJuY35+PhISEhAVFVVh3fr16+cQfAYFBTnUOzw8HOHh4ejUqRMiIiLw1VdfYcqUKXKZpKQkREZGokuXLliyZInDvovOluLu7l5hXQBbQFp0Oz8/P/z222+4evUq7r33Xnm5xWLBH3/8gYULFyIvLw9KpRK9evVCQkICrl27BpVKBQ8PD/j7+zvcxa2Kjh074t1330VeXp5Dc/fvv/8eI0eOxKpVqxyayJd3TYkAQBKAlTkpojrHWfGS/dg3g/ES4yXGSzePSSkiIieRJKnK3ehqmj0wKKpFixYwm83Ys2eP3Bz9+vXriIuLQ8uWLeVywcHBGD16NEaPHo0pU6bgyy+/xLhx4+Q7aEXHKwgLC4Narca+ffvkwCgtLQ3x8fF44IEHyq3jvffei2PHjpWoZ3kkSULz5s2xa9cuAMBTTz2FyZMnY+7cuZg7d65D2cWLFyM7OxvPPfdchfs1GAwwGAyVqoPVakVeXp78/OLFi4iMjES7du2wdOnSEnfYbub87HQ6XYntevTogaNHjzose/7559G8eXNMnjwZSqXSYZ29yfyWLVtw9epV9OvX76brUdShQ4fg6enpEGCtWLECL7zwAr7//ns88sgjDuVv5ppS/VA8/yQJK6wllhJRbcd4ifESwHipLsdLTEoREVGVREREoH///hg1ahS++OILGAwGvPHGGwgKCkL//v0BABMmTEDv3r3RtGlT3LhxA1u3bkWLFi0AACEhIZAkCevXr0efPn2g0+lgMBgwbNgwvPbaa/Dy8oKvry+mTZsGhUIBSZLKrc/kyZPRqVMnjB07FiNHjoSbmxuOHTuGmJgYLFy4EIcOHcK0adMwdOhQtGzZEhqNBr///ju+/vprTJ48GYDtDuHs2bMxadIkaLVaDB06FGq1Gj/99BPefPNNzJo1C61bt3Y4blxcXIm6tGrVCmq12mFZVlYW3nvvPfTr1w8BAQG4du0aPv/8c1y8eBEDBgwAYAuwHnzwQYSEhGDOnDny1McA4O/vX+752+/sZWZmIjk5GYcOHYJGo3EIeIsyGAwlzsXNzQ3e3t4Oy5cuXYoWLVrAx8cHu3fvxssvv4xXXnnFoYvAuXPnkJKSgnPnzsFisch1CQ8Ph16vx//+9z9cuXIFnTp1glarRUxMDN5//32HAVKXL1+OYcOG4dNPP0XHjh1x+fJlALYA0Wg0lnne9uMmJSUBKHw9/P39K7xmVMsV66qnEAIW5qSI6A7DeMmG8RLjpTJVyzyAdRSnfCai6lLXpji2s09xbDQahU6nE1FRUQ5THI8dO1Y0adJEuLi4CB8fHzF06FBx7do1ef3MmTOFv7+/kCSp3CmOO3ToIN544w15u5CQEDF//vwS9dm7d6/o2bOn0Ov1ws3NTdx1113ivffeE0IIkZycLMaPHy9at24t9Hq9MBgMok2bNmLOnDnCYnGcRn7t2rXi/vvvF25ubvIUzCtWrHAoU9o0zfbH+fPnS9QtJydHPP744yIwMFBoNBoREBAg+vXrJ/bu3SuXWbp0aZn7rEhp24SEhFS4XVGlTY88efJk4efnJ9RqtYiIiBBz584VVqvVocywYcNKPf7WrVuFEEJs2rRJ3H333fLr0rZtW7F48WKH6969e/dS92H/uyhLWdds2rRpN3XuxVXHFMf1hbOux5EvvhTHmjWXHyOnzxYXcvJqtA5EVL0YLzFeYrxU/+IlSQiOCFmW9PR0GI1GpKWlVbofKhFRaXJzc3HmzBmEhoaWOUgilS4rKwtBQUGYO3cuRowYUePHT0lJQY8ePeDu7o5NmzbB1bV2dCGgW1Pee5bxgSNnXY+jS/4PqnmF3UY+GfQ83pr8MhrpXMrZiojuZIyXqo7xEjlDdcRLnH2PiIjuKLGxsVixYgUSEhJw8OBBDBkyBADkJu41zcvLC7/++it69OiB3bt3O6UORFQxSQhYnV0JIqIawniJ6gqOKUVERHecOXPmIC4uDhqNBu3atcP27dvlgSOdwdvbG++8847Tjk9EpSjW1l8SAhZ2ACCieoTxEtUFTEoREdEd5Z577sGBAwecXQ0iqmU40DkR1SeMl6iuYPc9IiIiIqr12FKKiIio9mFSioiIiIhqn2IJKI4pRUREVPuw+x4RERER1XqSELA6saXUL9fScDwzFwoJ6ONjRBNXzhxGRERUESaliIiIiKjWUwir08aUuppnwrCjZ+Sx17ekpOPHeyKcUxkiIqJahN33iIiIiKj2E3BaS6lUs8VhMsAUk8Up9SAiIqptmJQiIiIiotqnWAJKIaz41/mr+P7S9RqvSvEB1k1WDrhORERUGey+R0RERES1niQE1ienYX1yGpq76ZBqNuMBTwMUknTbj108KZUvbn7IdSEEruabMet0ElJNFixtHQqV4vbXvagDaVk4kpkDCcADngaEubpUets8qxX/+PssOnvoMSrY5/ZVkoiI6hS2lCIionINHz4ckiRBkiRoNBqEh4dj5syZMJvNt7Tfbdu2QZIkpKamVk9FK+HMmTMYPHgwAgMDodVq0bBhQ/Tv3x8nTpxwKLd+/Xp0794dBoMBrq6uuO+++/DNN984lElMTIQkSTh06FCljz99+nQ0b94cbm5u8PT0xMMPP4w9e/Y47HPEiBEIDQ2FTqdDkyZNMG3aNOTn55e730uXLmHw4MFo2rQpFAoFJkyYUOk6Xbx4Ec8++yy8vb2h0+nQpk0b7N+/X15f9PW3P6Kjox320bhx4xJlPvzwQ3l9XFwcIiMj4efnB61Wi7CwMLz99tswmUwO+0lNTcWYMWMQEBAAFxcXNG3aFBs3biy3/mvWrEGvXr3g7e19068H1W7F2yJ1NbrJ/44+EI9Bh0/j30nXIYTA5TwTkvNNuF3MxSqTX4WWUlNOXkTbXX9j1eUbiLmejsMZ2didmon/u5CMZUnXkW6+vV0CM80WPHHoFKbEX8Ab8Rcw+EgCRCndIW+YzFh75QZ+vHID1/Nt3wObklPRbPtRbLyWhqmnLt7WehLdqRgvMV5ivFQ1bClFREQVio6OxtKlS5GXl4eNGzdizJgxUKvVmDJlirOrBgDIz8+HRqMpt4zJZELPnj3RrFkzrFmzBgEBAbhw4QI2bdrkEOh99tlnmDBhAiZPnoxFixZBo9Hgp59+wujRo/HXX39hzpw5Va5n06ZNsXDhQoSFhSEnJwfz589Hr169cOrUKfj4+ODEiROwWq344osvEB4ejr/++gujRo1CVlZWucfNy8uDj48P3n77bcyfP7/S9blx4wa6du2KyMhIbNq0CT4+Pjh58iQ8PT0dytlffzsXl5KtJ2bOnIlRo0bJzw0Gg/xvtVqN5557Dvfeey88PDxw+PBhjBo1ClarFe+//z4A22vYs2dP+Pr6YvXq1QgKCsLZs2fh4eFR7jlkZWWhW7duGDhwoMPxqf6538MNr4T4Yf7ZK/Kyf527iv3pWVh1+QYAoIWbFhvaNYWrsnrvyxYfy6q07nsXcvPx4elL6OKpx+AA7xLr96dlOTw/m5uP8cfPygmv0zl5mNoksPoqXUyKyYy8IvVOzMnHiaxcfHkhGTdMFvi7qDE9PBCT4y9g3dVUAIBakrC/c0uM+juxRGKOqD5ivMR4ifFSFQgqU1pamgAg0tLSnF0VIqrlcnJyxLFjx0ROTo6zq3LThg0bJvr37++wrGfPnqJTp04iJSVFDB06VHh4eAidTieio6NFfHy8XC4xMVE8+uijwsPDQ7i6uoqWLVuKDRs2iDNnzgjYGjrIj2HDhgkhhEhPTxeDBw8Wrq6uwt/fX8ybN090795dvPzyy/J+Q0JCxMyZM8XQoUOFwWCQt92+fbvo1q2b0Gq1omHDhmLcuHEiMzNTCCFEbGysACASExPLPNdz584JtVotJk6cWGLdggULBADx559/CiGEfA6xsbE3f1EL2L9nfv311zLLzJ49W4SGhlZ6n8WvVXkmT54sunXrVm6Z0l7/4kJCQsT8+fMrV8ECr7zyisOxFy1aJMLCwkR+fv5N7ceuOl6Posp7zzI+cOSs63H4X4vFsWbN5cfVBZ+J6/km8fHpSyLij8PCb0usGHo4QbTf9bfw2xIrP9ZduVGl45mtVjHy6BnRZfcx0f9AvEjOM8nr9tzIEH5bYoV/wTHCfj9cYvtZpy7KdcgyW0qsv//P48JvS6wI3Gor816R8n5bYsULR0/fdJ2tVqtIyMoV8Zk5IruUYxYVl5kj/LbEiuZ/HBEh2w4Jvy2xDnX22xIr1l+9IaL2xTks+9+VGw7P/bbE3nQ9iewYLzFeKg3jpbodL7H7HhGRkwghYM3OrvGHqIbZqXQ6HfLz8zF8+HDs378f69atw+7duyGEQJ8+feRmxmPGjEFeXh7++OMPHD16FB999BH0ej2Cg4Pxww8/ALA1Vb506RI+/fRTAMDEiROxc+dOrFu3DjExMdi+fTsOHjxYog5z5sxB27ZtERsbi6lTpyIhIQHR0dF48sknceTIEaxcuRI7duzA2LFjAQA+Pj5QKBRYvXo1LJbSu8GsXr0aJpMJkyZNKrHupZdegl6vx4oVK275+gG2O11LliyB0WhE27ZtyyyXlpYGLy+vajlmcevWrUP79u0xYMAA+Pr64p577sGXX35Zoty2bdvg6+uLZs2a4R//+AeuXy85kPSHH34Ib29v3HPPPfj444/L7a5w6tQp/Pzzz+jevbtDXTp37owxY8bAz88PrVu3xvvvv1/ma0VUghDwUqswKdQfsyIaAgBMQiCr2N9QVbvBnczOxf+SU5GQk4c/07LQeudf6L73BJ6MPYX8gs9VrcIWWhdvKbX04jVsupYmP88spQ7mgn14qmwdGa6bHN9DG5LTMPNU0k0N5P5a3AV02XMc9+89gV7745BvLXusq9yCdVqlAqqCcbiS8x3rcCorD9kWx32kF7u+2hoeB4vqPmfFS9URMzFeunWMl+p+vMTue0RETiJychB3b7saP26zgwcgubpWaVshBH777Tds3rwZvXv3xtq1a7Fz50506dIFALBs2TIEBwdj7dq1GDBgAM6dO4cnn3wSbdq0AQCEhYXJ+7IHDr6+vnKT44yMDHz77bdYvnw5evToAQBYunQpAgNLdll56KGH8Oqrr8rPR44ciSFDhsjjA0RERGDBggXo3r07Fi1ahKCgICxYsACvv/46ZsyYgfbt2yMyMhJDhgyR6xUfHw+j0YiAgIASx9NoNAgLC0N8fHyVrp3d+vXrMWjQIGRnZyMgIAAxMTFo0KBBqWVPnTqFzz777JaawJfn9OnTWLRoESZOnIg333wT+/btw/jx46HRaDBs2DAAtqboTzzxBEJDQ5GQkIA333wTvXv3xu7du6FUKgEA48ePx7333gsvLy/s2rULU6ZMwaVLlzBv3jyH43Xp0gUHDx5EXl4eXnzxRcycOdOhLlu2bMGQIUOwceNGnDp1Cv/85z9hMpkwbdq023L+VLeIIoOLawqSKnlWgUyzbXl7d1fsT89GjtWKIxnZOJmVC0mS8ICnAQ00FYfE9v0UFZeVizgAfbM9AAA6pYQcK5AvBIQQkCQJF3LzMSX+gsN2WZaS+7IPjm5QKXDNBKSWkrj61/mrAIC7DK5oqddVWOc/0zLlf5/MzsPhjBzcV2TsraJyCuqkVUjIU0iABUgrVoeEnFxkWx2XZRQrk2stPPfK+vpCMt5NuASzEAjVuWBjuwjoVcpKb091m7PiJaDqMRPjJcZLjJcqjy2liIioQuvXr4der4dWq0Xv3r3x9NNPY/jw4VCpVOjYsaNcztvbG82aNcPx48cB2L58Z82aha5du2LatGk4cuRIucc5ffo0TCYTOnToIC8zGo1o1qxZibLt27d3eH748GF888030Ov18iMqKgpWqxVnzpwBYLsTefnyZSxbtgydO3fGqlWr0KpVK8TExFT6WlQ0FgNgCzaL1mP79u3yusjISBw6dAi7du1CdHQ0Bg4ciKtXr5bYx8WLFxEdHY0BAwY49P0vut/Ro0dXqs7bt2932G7ZsmUAAKvVinvvvRfvv/8+7rnnHrz44osYNWoUFi9eLG87aNAg9OvXD23atMFjjz2G9evXY9++fdi2bZtcZuLEiXjwwQdx1113YfTo0Zg7dy4+++wz5OXlOdRj5cqVOHjwIJYvX44NGzY4BI9WqxW+vr5YsmQJ2rVrh6effhpvvfWWXJfyrikRAKBI6ySXgtY6mRaL3IrJR6MGACTm5KH3gXiMOX4O/zx2FhNOnJO3SzGZ8d3Fa8i1WPFzchqePXIaQw6fxopL15FZzl1oe5JJpygMre1jLBVvbWQrX3Jf9tZV+oIfL6kmWxlvdcmE2cH07DLrYmcVAhdzba0wglxs5z7kSAJejzuPry4kY8eNDIdZA3Otha297C2lUgvu4IdobZ9753Ly5ZZSXmpbPe2JK3WRJJTpJluXbExOQ47VCpMQiM/OxfGs3JvanuhOwXipEOMlxkuVxZZSREROIul0aHbwgFOOe7MiIyPlQSwDAwOhUqmwbt26CrcbOXIkoqKisGHDBvzyyy/44IMPMHfuXIwbN64qVXfg5uZ4tz8zMxMvvfQSxo8fX6Jso0aN5H8bDAb07dsXffv2xaxZsxAVFYVZs2ahZ8+eiIiIQFpaGpKSkkrcbczPz0dCQgKioqIqrFu/fv0cgs+goCCHeoeHhyM8PBydOnVCREQEvvrqK4dBUJOSkhAZGYkuXbpgyZIlDvsuOluKu7t7hXUBbAFp0e38/PwAAAEBAWjZsqVD2RYtWshdBUoTFhaGBg0a4NSpU/Ld2eI6duwIs9mMxMREhwA5ODgYANCyZUtYLBa8+OKLePXVV6FUKhEQEAC1Wi3fTbTX5fLly8jPzy/3mlI9VTzxUeS5uiA5dMNUmPyxt4Y6lpkLS5FNT2bl4nhmDibFnceBgmRPmtmC7y+lICHH9kNhS0o6Pmhq6xIowTawi5daCReFApfyTHJ3PF2RAdSzLBZsv5aJ/yWnAgAiXF1gFgJncvKx9moqtEoFAjRqSJIEV6VCTuS4FezDnuxprNPgQS8Dcq1WGJRKfH85BUl5+fgjJQOdPfRQl9JdLiE7F98lXUeO1QpXpQJPB3hhXuIVpJut+C6psDvJIz5GTGrsj2ePnMbFPFsCSyVJcoIpreD6BWrVOJubjwyLRU5KeatVSDFZ5JZSeqUCNwr+nW8V0NzErW9zsdeyOrqZU93hrHjJfuybwXiJ8ZId46XKY1KKiMhJJEmqcje6mmYPDIpq0aIFzGYz9uzZIzdHv379OuLi4hy+uIODgzF69GiMHj0aU6ZMwZdffolx48bJd9CK9oEPCwuDWq3Gvn375MAoLS0N8fHxeOCBB8qt47333otjx46VqGd5JElC8+bNsWvXLgDAU089hcmTJ2Pu3LmYO3euQ9nFixcjOzsbzz33XIX7NRgMDrOplMdqtTrcIbt48SIiIyPRrl07LF26FAqF4y+7mzk/O51OV+p2Xbt2RVxcnMOy+Ph4hISElLmvCxcu4Pr166U22bc7dOgQFAoFfH19yyxjtVphMplgtVqhVCrRtWtXLF++HFarVT7n+Ph4BAQEQKPRQKPRVPqaUj1VpPueS0FS5UbBuExahQR9QbJnV6qtS1sDtQrXTGZcM5nx38spckIKAN47fclx1wDOFiSoHvJyx6yIIEgS8NyRM7gEk5yoKdpS6j9J1zGryH5OZuehrcH2A3fhuatYeM52x18tSfiuTWhhS6mCbmvJ+bYkkatSgc9b2t6TsxKSAADzEq8AuIJZEUFordfh30nXYRECPb3dEdXAiIf3xSOnYIyoBz0NGN/ID15qFTLMFhzJyMGWlHTkWQX2p2VhW0qGnJACgKZuWhxIt80EaE8y+Ra0Mrueb5FbVPlq1DiZnScnz1yLJKXyrAL60l+lUt1syyqqXxgvMV4CGC/V5XiJSSkiIqqSiIgI9O/fH6NGjcIXX3wBg8GAN954A0FBQejfvz8AYMKECejduzeaNm2KGzduYOvWrWjRogUAICQkBJIkYf369ejTpw90Oh0MBgOGDRuG1157DV5eXvD19cW0adOgUCgqHJ9k8uTJ6NSpE8aOHYuRI0fCzc0Nx44dQ0xMDBYuXIhDhw5h2rRpGDp0KFq2bAmNRoPff/8dX3/9NSZPngzAdodw9uzZmDRpErRaLYYOHQq1Wo2ffvoJb775JmbNmoXWrVs7HLd4kAIArVq1glqtdliWlZWF9957D/369UNAQACuXbuGzz//HBcvXsSAAQMA2AKsBx98ECEhIZgzZw6Sk5Pl7f39/cs9f/udvczMTCQnJ+PQoUPQaDQl7uwV9corr6BLly54//33MXDgQOzduxdLliyR7zZmZmZixowZePLJJ+Hv74+EhAS8/vrrCA8Pl++A7t69G3v27EFkZCQMBgN2796NV155Bc8++6w8VfKyZcugVqvRpk0buLi4YP/+/ZgyZQqefvpp+Tr94x//wMKFC/Hyyy9j3LhxOHnyJN5///1S7+QWlZKSgnPnziEpyfZj3f56+Pv7V3jNqG4RRQbx1sjd92zL3JTKEt3g2hh02JqSgSyLFfFZjl0n7HwLWlddzTfL3fD0KgVCXW3TfGuVtuPYu+9pFJLckupsbr7Dvv4R7IMHPA34d9J1bCwy6LlJCOxKzZQTM/bk2ZWC4zV11cplG+scpxdfeuEavDUq7E2zJZE2JKdhQzstcqxWKAB09dRjbCNfaJUKjGzoI293Pjcf9+0+hlSzRe6W+ISfJ/4Z7INwVy167re9j+yJsSAX24/iywXPXRSSfG0yCsba0ikVUEsSTEIg22qFd5F6CiHwfxeuoYVei26eJX8sFU9KMUVFdQnjJRvGS4yXylQt8wDWUZzymYiqS12b4tjOPsWx0WgUOp1OREVFOUxxPHbsWNGkSRPh4uIifHx8xNChQ8W1a9fk9TNnzhT+/v5CkqRypzju0KGDeOONN+TtyppSd+/evaJnz55Cr9cLNzc3cdddd4n33ntPCCFEcnKyGD9+vGjdurXQ6/XCYDCINm3aiDlz5giLxXGq9LVr14r7779fuLm5yVMwr1ixwqFMadM02x/nz58vUbecnBzx+OOPi8DAQKHRaERAQIDo16+f2Lt3r1xm6dKlZe6zIqVtExISUuF2//vf/0Tr1q2Fi4uLaN68uViyZIm8Ljs7W/Tq1Uv4+PgItVotQkJCxKhRo8Tly5flMgcOHBAdO3YURqNRaLVa0aJFC/H++++L3Nxcucz3338v7r33Xvl1admypXj//fdLvB927dolOnbsKFxcXERYWJh47733hNlsLrf+ZV2zadOmVXju5amOKY7rC2ddj8ML/yWONWsuPy7Pni2vO5CWKfy2xMqPDrv+FjfyTeKTM5fF9JMXxGsnzom4zBwRsu2Q8NsSK1psP+JQ3m9LrDiQminOZueKrn8eE35bYsXA2FPCb0usePX4Ofk4/Q7EC78tsWL0X2eE35ZY0e9AvGhUsM8XC5ZNP3lBXM83CYvVKm93366/hd+WWNF7f5y8z4CC4756/JxDPb6+kCxvl2O2iGUXr4m2O/4SfltixUt/nRHdCupnf6y+dF34bYkVzf44Uua1yzCZ5fKT487L9bSL3HPcYZ9fnb/q8Lz9rr/FK8fPCr8tseKJgyeF35ZY8eCe46LLbltdgrbGiuFHTgur1SoyTWbxf0W2L81Dex2P9+eNjKr8SVAdwHiJ8RLjpfoXL0lCsL1sWdLT02E0GpGWllbpfqhERKXJzc3FmTNnEBoaCq1WW/EGJMvKykJQUBDmzp2LESNG1PjxU1JS0KNHD7i7u2PTpk1wrSVdCOjWlPeeZXzgyFnX48jni6D+bIH83OuFF+D3+msAgOOZOYjcV3hXPshFjQNdWpXYR/vdf+NCbmHXtZeCffDF+WR09dDjh3tsXTh67ovD0cwctHDT4nhWLl4K9sGMcNsYHU8fSsDvNzLQ09sdMdfT0cVDjyMZ2ci0WBHpZcDWlAy8EuKHyWGO3TfO5uThWr4ZRzJzMCX+Ano3MGJTQeup0cE+WHy+8K7/N61DEe1jdNh+1eUUjDt+Dt09DTiZnYukIt3v3g0PwtRTF+GnUeFwV8eWCnZCCIRvP+owC+Ckxv6YFGq7Wx61Pw6HM3Lkdf9t2wSDjyTIg7cP8veCm1KBry5ew116HY5k5uAugw6dPfT4okjdY9o3xdAjZ+QWVgBwOfLuEvV5YM8JxGcXDm6+9p5wdPK4mQ6AVFcwXqo6xkvkDNURL3H2PSIiuqPExsZixYoVSEhIwMGDBzFkyBAAkJu41zQvLy/8+uuv6NGjB3bv3u2UOhBRJRS5z9rUTYtHiiRyOpeR4Hjc1xMqyRYQ321wxZthAdhwbwS+axMql7EPXm6fEU5fZDDz4t33lFJh18H0UgY/twvRuaCd0Q0NC2bFsyekJAC9vI3wUiuhlGyz3t1ndCuxvb0rYorJLHe/MxQcJ6VgHC2NouwwX5IkdCi2X3t9AceZ9ABbN8CvWodiQogfpjcJxEfNGkJbcLzUgu00koQZ4UE40qWVXJe9aVkOCSmgcJbBVZdT0OdAPGLTs0sMdE5EFWO8RHUFx5QiIqI7zpw5cxAXFweNRoN27dph+/btaNCggdPq4+3tjXfeecdpxyeim6OUJHzVOhRCCMRl5yJcV3qLi7eaBOKtJo4zR7UrlqxxLZbc8SwyNpVLwTp7YqjozHVyUqqc5FBnDz2CXNTyQOOP+3mii6cex7q1Kff8vArqcDSzsDWTv4saGdl5uF6QlHIpZVa+oj5t3gi/paRjW0oGfrmWhsf9POV1D3u7ywO/vxEaAKUkIaqBEVENChN99vO6XFB3o8pWJ18XNYK1GhzLykV8QSKvrUEnt7xKNZuRmJOPccfP2epx9jLHlCKqIsZLVBcwKUVERHeUe+65BwcOOGfqZyKqRYq3rimltY0kSWjudnNTuhfn6+IYLhdtgaW1D6hutreUkqAuWGYfANzemqo0epUSf3ZqiTSzBRIAL7WyzLJF+RWrk5tSgWCtBiez8/Bd0nUAgALlJ6V8XdR4JsAbzwR4wyIElEVaR01o7I9/NrLNBlVWiyv7uecXXHcvTWHd7a2o7IPDe6tVMCgVyLBY8cPlG5heMIsgAKSbrSVaSrHhFFHFGC9RXcGkFBERERFRGUK0hTPeqSUJDYrMFKVV2JMvttZCBqUCGsm27JrJvqz8RJNaIaGB5uZC8gAXDT5o2hAH07NwJc+Ex/w8kZidhy0pGXKZomM0VURZymxd5XX/AwBjsQSar6bwuthbadmTUu4qJdxVSmRYrNiXnuWwnbdahZM3UVciIqpbmJQiIiIiotrvNjWveTbQG1fzTcgoGLxcXaRbnL0LW0bBmFIGlVJebx8UvGiypjo9H9QAzwcVdtM5n5uPY1m5+PV6+m05XnGP+njgaEYOUkxmuCmVGBboLa+zj7FlT0C5q5TwUCtxMc+EDclpBcsUSDdbkWWxwGwt3n2PTaWIiOoLJqWIiIiIiMrg56LGR82CS12nLTaIubtKiTCdC+KyClv+NNJpbmv97IK1GvznrjDEZ+Wiz4F4jA72va3H81SrMLuM63KkyMx99rqdzckHUHhdglw0SDfnIttilceUUktSifGliIiobmNSioiIiIhqnxLJi5pPZngX68Lmp1FjUmN/HEzPxumcPBhUCjTU1kxSyq6pmxZx97cptUteTVFKgEXYuvEtaNEIvbyN8gyIv9+wdTHs5qnH8axcZFsLx5RSFSSlmJYiIqo/mJQiIiIiolpPOKGFzaAAb+RaBdLMFhhVSgwK8IJWqUAXTz26eOprvD52zkxIAcAPd4dj8fmreDeiIYILknLtjW5YeXcTHMvMgUUIpJgs+PLCNZitQm4dpVFIyLE6s+ZERFTTmJQiIiIiIqoCd5US40P8nF2NO04nDz06eZSelGupt82GuLOgxZRJCFgK8okqJyfTiIio5pU/rQYRERER0Z3I+b336BbYZ/fLsRY2jVIzKUVEVO8wKUVEROUaPnw4JEmCJEnQaDQIDw/HzJkzYTabb2m/27ZtgyRJSE1NrZ6KVsKZM2cwePBgBAYGQqvVomHDhujfvz9OnDjhUG79+vXo3r07DAYDXF1dcd999+Gbb75xKJOYmAhJknDo0KFKH3/69Olo3rw53Nzc4OnpiYcffhh79uxx2OeIESMQGhoKnU6HJk2aYNq0acjPzy93v5cuXcLgwYPRtGlTKBQKTJgwoVL1sVgsmDp1qsPx3n33XYduUGvWrEGvXr3g7e1d5vkmJCTg8ccfh4+PD9zd3TFw4EBcuXLlps/ryJEjuP/++6HVahEcHIzZs2dXeA5//PEH+vbti8DAQEiShLVr11bq3Kn2Yw6qdrO3isq2FCalVAW/TDjWOdVGjJcYLzFeqpo7Kin1+eefo3HjxtBqtejYsSP27t1bbvlVq1ahefPm0Gq1aNOmDTZu3Fhm2dGjR0OSJHzyySfVXGsiorovOjoaly5dwsmTJ/Hqq69i+vTp+Pjjj51dLVlFQQgAmEwm9OzZE2lpaVizZg3i4uKwcuVKtGnTxiHQ++yzz9C/f3907doVe/bswZEjRzBo0CCMHj0akyZNuqV6Nm3aFAsXLsTRo0exY8cONG7cGL169UJycjIA4MSJE7Barfjiiy/w999/Y/78+Vi8eDHefPPNcvebl5cHHx8fvP3222jbtm2l6/PRRx9h0aJFWLhwIY4fP46PPvoIs2fPxmeffSaXycrKQrdu3fDRRx+Vuo+srCz06tULkiRhy5Yt2LlzJ/Lz89G3b19YC1pAVOa80tPT0atXL4SEhODAgQP4+OOPMX36dCxZsqTcc8jKykLbtm3x+eefV/q8qY5iJqNW0ShsSamcIkkpjWT7acJXkmorxkuMlxgvVYG4Q3z//fdCo9GIr7/+Wvz9999i1KhRwsPDQ1y5cqXU8jt37hRKpVLMnj1bHDt2TLz99ttCrVaLo0ePlii7Zs0a0bZtWxEYGCjmz59f6TqlpaUJACItLa2qp0VEJIQQIicnRxw7dkzk5OQ4uyo3bdiwYaJ///4Oy3r27Ck6deokUlJSxNChQ4WHh4fQ6XQiOjpaxMfHy+USExPFo48+Kjw8PISrq6to2bKl2LBhgzhz5oyA7XeH/Bg2bJgQQoj09HQxePBg4erqKvz9/cW8efNE9+7dxcsvvyzvNyQkRMycOVMMHTpUGAwGedvt27eLbt26Ca1WKxo2bCjGjRsnMjMzhRBCxMbGCgAiMTGxzHM9d+6cUKvVYuLEiSXWLViwQAAQf/75pxBCyOcQGxt78xe1gP175tdffy2zzOzZs0VoaGil91n8WpXnkUceES+88ILDsieeeEIMGTKkRNmyznfz5s1CoVA4fFempqYKSZJETExMmccufl7/+te/hKenp8jLy5OXTZ48WTRr1qxS5yKEEADEjz/+WOny5SnvPcv4wJGzrsehTxeKY82ay49LM9+t0ePTrTmRmSP8tsQ6PB7Yc1z4bYkVv19Pd3b1yEkYLzFeKg3jpbodL90xLaXmzZuHUaNG4fnnn0fLli2xePFiuLq64uuvvy61/Kefforo6Gi89tpraNGiBd59913ce++9WLhwoUO5ixcvYty4cVi2bBnUanVNnAoRUaUIIWDKs9T4Q1RDawKdTof8/HwMHz4c+/fvx7p167B7924IIdCnTx+YTCYAwJgxY5CXl4c//vgDR48exUcffQS9Xo/g4GD88MMPAIC4uDhcunQJn376KQBg4sSJ2LlzJ9atW4eYmBhs374dBw8eLFGHOXPmoG3btoiNjcXUqVORkJCA6OhoPPnkkzhy5AhWrlyJHTt2YOzYsQAAHx8fKBQKrF69GhaLpdTzWr16NUwmU6l3+F566SXo9XqsWLHilq8fYLtbuWTJEhiNxnLv1qWlpcHLy6tajllcly5d8NtvvyE+Ph4AcPjwYezYsQO9e/eu9D7y8vIgSRJcXFzkZVqtFgqFAjt27Chzu+LntXv3bjzwwAPQaDTysqioKMTFxeHGjRs3c1pUX7BlVK2mKTZ+lARAWfBvvrJUlLPipeqImRgv3TrGS3U/XrojZt/Lz8/HgQMHMGXKFHmZQqHAww8/jN27d5e6ze7duzFx4kSHZVFRUQ59I61WK4YOHYrXXnsNrVq1ui11JyKqKnO+FUte/r3Gj/vip92hdlFWXLAUQgj89ttv2Lx5M3r37o21a9di586d6NKlCwBg2bJlCA4Oxtq1azFgwACcO3cOTz75JNq0aQMACAsLk/dl/4L19fWFh4cHACAjIwPffvstli//f/buOy6qK23g+G8GGOoAoiBFRVDsJYnGnhhiATVIssayuqiJurKvNTG2NKKLMTGoiWXVZA26u2hc3cS4agomFiyxghpRbBAVsCtIL3PeP0ZGRqrGFdHn+/lMwtx77rnPvQP4cO4pq+jWrRsAkZGReHp6lojlxRdfZNKkSab3I0eOZMiQIab5Afz8/FiwYAFdu3ZlyZIleHl5sWDBAqZMmcKMGTNo27Yt/v7+DBkyxBTXyZMncXJywsPDo8T5dDodvr6+poTkfm3cuJFBgwaRlZWFh4cH0dHR1KpVq9Syp0+fZuHChURERPyuc5Zl2rRppKen06RJEywsLCgsLGTWrFkMGTKk0nV06NABe3t7pk6dyocffohSimnTplFYWEhqamqpx5R2XRcvXsTHx8esXO3atU37atSocR9XKJ4o0khVrVhqzRulZJJzUZaqypfg/nMmyZckX7qb5EtleyR6Sl29epXCwkLTzSxSu3ZtLl68WOoxFy9erLD8xx9/jKWlJePHj69UHLm5uaSnp5u9hBBCGBMDBwcHbGxs6NWrFwMHDmT48OFYWlrSvn17U7maNWvSuHFjjh8/DsD48eMJDw+nc+fOhIWFceTIkXLPc/bsWfLz82nXrp1pm5OTE40bNy5Rtm3btmbvDx8+zIoVK3BwcDC9AgICMBgMJCYmAsYnkRcvXiQqKoqOHTuydu1amjdvTnR0dKXvRfEnU2WJiooyiyMmJsa0z9/fn7i4OHbv3k1gYCADBgzg8uXLJepITk4mMDCQ/v37M2rUKNP24vWGhoZWKuaYmBiz46KiogD497//TVRUFKtWreLQoUOsXLmSiIgIVq5cWal6wfhEde3atfz3v//FwcEBJycnbt68yTPPPINWWzLNKOu67vcahBDV0909pSw0Goo2KekrJaopyZfukHzJnORLZXskekr9Lxw8eJDPPvuMQ4cOoankk5fZs2czY8aM/3FkQghhZKnT8ufPulbJee+Vv78/S5YsQafT4enpiaWlJRs2bKjwuJEjRxIQEMCmTZv48ccfmT17NnPnzmXcuHH3E7oZe3t7s/cZGRmMHj261AcR9erVM32t1+sJCgoiKCiI8PBwAgICCA8Pp0ePHvj5+ZGWlkZKSkqJp415eXmcOXOGgICACmPr27evWfLp5eVlFnfDhg1p2LAhHTp0wM/Pj+XLl5v1Fk5JScHf359OnTqVmLiy+Goujo6OFcYCxoS0+HFFD3UmT57MtGnTGDRoEAAtW7bkt99+Y/bs2QwbNqxSdQP07NmTM2fOcPXqVSwtLXF2dsbd3d3sSW9F1+Xu7m62Ag1geu/u7k79+vVLvQYh7pCGjOrE8q78PNtgKKOkeNJVVb5UdO57IfmS5EvlkXypdI9ET6latWphYWFR6s11d3cv9ZiyPoyi8jExMVy+fJl69ephaWmJpaUlv/32G5MmTaJ+/fql1jl9+nTS0tJMr/Pnz//+ixNCiDJoNBqsrC0e+quyDfXFFSUGRb9TAZo2bUpBQYHZEr3Xrl0jISGBZs2ambbVrVuX0NBQvv76ayZNmsQXX3wB3HmCVny+Al9fX6ysrNi/f79pW1paWqW6gD/zzDPEx8ebEpjir7Ke1mk0Gpo0aUJmZiYAr776KpaWlsydO7dE2aVLl5KVlcXQoUMrjEWv15ud39bWtsyyBoOB3Nxc0/vk5GReeOEF2rRpQ2RkZImnZ8XrdXNzqzAWMM5pUfw4vV4PQFZWVon6LSwsTKvA3KtatWrh7OzMzz//zOXLl+nbt2+lr6tjx47s2LHDNL8GQHR0NI0bN6ZGjRplXoN4kpk3Qj2I+fLEw1PDyoI2jnZm2zQY/32Sj1IUV1X50v3kTJIvSb5UGZIvmXskekrpdDratGnDTz/9xMsvvwwYv+l++ukn04Rrd+vYsSM//fSTaSwsGD+Mjh07AhASEkL37t3NjgkICCAkJITXXnut1Dqtra3NJh4TQghRNj8/P4KDgxk1ahTLli1Dr9czbdo0vLy8CA4OBmDixIn06tWLRo0acePGDbZu3UrTpk0B8Pb2RqPRsHHjRnr37o2trS16vZ5hw4YxefJkXFxccHNzIywsDK1WW2FiOHXqVDp06MDYsWMZOXIk9vb2xMfHEx0dzaJFi4iLiyMsLIyQkBCaNWuGTqdj+/btfPnll0ydOhUwPiGcM2cOb731FjY2NoSEhGBlZcW3337L22+/TXh4OC1atDA7b0JCQolYmjdvXmJxjczMTGbNmkXfvn3x8PDg6tWrLF68mOTkZPr37w/cSUS8vb2JiIgwLX0MlPmQpkjRU7GMjAyuXLlCXFwcOp3OLOG9W1BQELNmzaJevXo0b96c2NhY5s2bx+uvv24qc/36dc6dO0dKSorZ9bq7u5tiioyMpGnTpri6urJnzx4mTJjAG2+8YRpGUJnrGjx4MDNmzGDEiBFMnTqVX3/9lc8++4z58+eXe90ZGRmcPn3a9D4xMZG4uDhcXFzMnvgKIR4tWo2Gjc/4sejcZWadNZ9PRdqkxONE8iUjyZckXyrTA1kH8AH46quvlLW1tVqxYoWKj49Xf/7zn5Wzs7O6ePGiUkqpkJAQNW3aNFP5Xbt2KUtLSxUREaGOHz+uwsLClJWVlTp69GiZ5/D29lbz58+vdEyy5LMQ4kF53JY4LlK0xLGTk5OytbVVAQEBZkscjx07VjVo0EBZW1srV1dXFRISoq5evWraP3PmTOXu7q40Gk25Sxy3a9fO7N+Asn6f79u3T/Xo0UM5ODgoe3t71apVKzVr1iyllFJXrlxR48ePVy1atFAODg5Kr9erli1bqoiICFVYWGhWz/r169Vzzz2n7O3tTUswr1692qxMacs0F73Onz9fIrbs7Gz1yiuvKE9PT6XT6ZSHh4fq27ev2rdvn6lMZGRkmXVWpLRjvL29yz0mPT1dTZgwQdWrV0/Z2NgoX19f9c4775gtM1xWTGFhYaYyU6dOVbVr11ZWVlbKz89PzZ07VxkMhnu+rsOHD6suXbooa2tr5eXlpT766KMKr3vr1q2l1lv0/XS/HsQSx0+KqrofcZ8uUPGNm5heKcW+J0X1kZZfoJ7Z9asaG5+kuu87oWr/HKt+uio/W08qyZckX5J86cnLlzRKPTodZBctWsQnn3zCxYsXeeqpp1iwYIFpjOkLL7xA/fr1WbFihan82rVreffdd0lKSsLPz485c+bQu3fvMuuvX78+EydONOtdVZ709HScnJxIS0ur9DhUIYQoTU5ODomJifj4+GBjY1PV4VQrmZmZeHl5MXfuXEaMGPHQz3/9+nW6deuGo6Mj3333HXZ2dhUfJKq98n5mJT8wV1X34/BnC9Et+ZvpvfOggXh88MFDO794cAxKodVo6LE/gaMZ2US18qVbTfnZehJJvnT/JF8SVeFB5EuPxPC9ImPHji1zuN62bdtKbOvfv7+pC19lJCUl3WdkQgghHpbY2FhOnDhBu3btSEtLY+bMmQCmLu4Pm4uLC1u2bGHx4sXs2bPHtPSyEKKK3f1c9ZF5zCrulfb2cKN7n/FQiCeX5EvicfFINUoJIYQQABERESQkJJjmHIyJiaFWrVpVFk/NmjV5//33q+z8QgjxRLjdKiXti0JUjuRL4nEgjVJCCCEeKU8//TQHDx6s6jCEENXNozMjhRBC/M9JviQeF9qKiwghhBBCCPFoKTEtqjRKVXtFw/ceoSlvhRBC/I9Jo5QQQgghhBBCCCGEeOikUUoIIYQQQjwGpHdNdae53VdKPkkhhHhySKOUEEIIIYQQQgghhHjopFFKCCGEEEJUPyWmlJL+NdWdpuIiQgghHjPSKCWEEEIIIao/aZSq9jS3W6XkkxRCiCeHNEoJIYQQQgghhBBCiIdOGqWEEEKUa/jw4Wg0GjQaDTqdjoYNGzJz5kwKCgp+V73btm1Do9Fw8+bNBxNoJSQmJjJ48GA8PT2xsbGhTp06BAcHc+LECbNyGzdupGvXruj1euzs7Hj22WdZsWKFWZmkpCQ0Gg1xcXGVPv8HH3xAkyZNsLe3p0aNGnTv3p29e/ea1TlixAh8fHywtbWlQYMGhIWFkZeXV269qampDB48mEaNGqHVapk4cWKl4rl16xYTJ07E29sbW1tbOnXqxP79+83KZGRkMHbsWOrUqYOtrS3NmjVj6dKlZmVGjx5NgwYNsLW1xdXVtdR7eu7cOfr06YOdnR1ubm5Mnjy5zO+hXbt2YWlpyVNPPVXhNXz99df07NmTmjVr3vPnIaq7u8fvVU0U4sEpGr4nnd5EdST5kuRLki/dH2mUEkIIUaHAwEBSU1M5deoUkyZN4oMPPuCTTz6p6rBMKkpCAPLz8+nRowdpaWl8/fXXJCQksGbNGlq2bGmW6C1cuJDg4GA6d+7M3r17OXLkCIMGDSI0NJS33nrrd8XZqFEjFi1axNGjR9m5cyf169enZ8+eXLlyBYATJ05gMBhYtmwZx44dY/78+SxdupS333673Hpzc3NxdXXl3XffpXXr1pWOZ+TIkURHR/PPf/6To0eP0rNnT7p3705ycrKpzJtvvsn333/Pv/71L44fP87EiRMZO3YsGzZsMJVp06YNkZGRHD9+nB9++AGlFD179qSwsBCAwsJC+vTpQ15eHrt372blypWsWLGC999/v0RMN2/eZOjQoXTr1q1S15CZmUmXLl34+OOPK33d1dmOHTsICgrC09MTjUbD+vXryy1f/I+k4q/mzZubynzwwQcl9jdp0uR/fCUPgLRcCCEeMZIvSb4k+dJ9UKJMaWlpClBpaWlVHYoQoprLzs5W8fHxKjs7u6pDuWfDhg1TwcHBZtt69OihOnTooK5fv65CQkKUs7OzsrW1VYGBgerkyZOmcklJSeqll15Szs7Oys7OTjVr1kxt2rRJJSYmKoz9GkyvYcOGKaWUSk9PV4MHD1Z2dnbK3d1dzZs3T3Xt2lVNmDDBVK+3t7eaOXOmCgkJUXq93nRsTEyM6tKli7KxsVF16tRR48aNUxkZGUoppWJjYxWgkpKSyrzWc+fOKSsrK/Xmm2+W2LdgwQIFqF9++UUppUzXEBsbe+839baif2e2bNlSZpk5c+YoHx+fStd5970qS1ZWlrKwsFAbN2402/7MM8+od955x/S+efPmaubMmeWWudvhw4cVoE6fPq2UUmrz5s1Kq9WqixcvmsosWbJEOTo6qtzcXLNjBw4cqN59910VFhamWrduXeF1FHkQn0dx5f3MVmV+sHnzZvXOO++or7/+WgHqm2++Kbf8zZs3VWpqqul1/vx55eLiosLCwkxlwsLCVPPmzc3KXblypdIxVdX9iI2Yp+IbNzG9kqdNf6jnFw9enwMJqvbPsWrz5RtVHYqoIpIvSb5UGsmXHu98SXpKCSFEFVFKkZ+T89Bf6gH0LrC1tSUvL4/hw4dz4MABNmzYwJ49e1BK0bt3b/Lz8wEYM2YMubm57Nixg6NHj/Lxxx/j4OBA3bp1+c9//gNAQkICqampfPbZZ4DxSdOuXbvYsGED0dHRxMTEcOjQoRIxRERE0Lp1a2JjY3nvvfc4c+YMgYGB9OvXjyNHjrBmzRp27tzJ2LFjAXB1dUWr1bJu3TrTE6m7rVu3jvz8/FKf8I0ePRoHBwdWr179u+8fGJ9Wfv755zg5OZX7tC4tLQ0XF5cHcs7iCgoKKCwsxMbGxmy7ra0tO3fuNL3v1KkTGzZsIDk5GaUUW7du5eTJk/Ts2bPUejMzM4mMjMTHx4e6desCsGfPHlq2bEnt2rVN5QICAkhPT+fYsWOmbZGRkZw9e5awsLAHeamPlV69ehEeHs4rr7xSqfJOTk64u7ubXgcOHODGjRu89tprZuUsLS3NytWqVet/Eb4QlSJ94ERxVZUvPYicSfKl30/ypcc/X7Ks6gCEEOJJVZCby4Jhrz70845fuQ6ru/5hrSylFD/99BM//PADvXr1Yv369ezatYtOnToBEBUVRd26dVm/fj39+/fn3Llz9OvXj5YtWwLg6+trqqsocXBzc8PZ2RkwjtlfuXIlq1atMnVHjoyMxNPTs0QsL774IpMmTTK9HzlyJEOGDDHND+Dn58eCBQvo2rUrS5YswcvLiwULFjBlyhRmzJhB27Zt8ff3Z8iQIaa4Tp48iZOTEx4eHiXOp9Pp8PX15eTJk/d174ps3LiRQYMGkZWVhYeHB9HR0WU2AJw+fZqFCxcSERHxu85ZGr1eT8eOHfnrX/9K06ZNqV27NqtXr2bPnj00bNjQVG7hwoX8+c9/pk6dOlhaWqLVavniiy94/vnnzer729/+xpQpU8jMzKRx48ZER0ej0+kAuHjxolmCBZjeX7x4EYBTp04xbdo0YmJisLSU9OR/Zfny5XTv3h1vb2+z7adOnTLNHdKxY0dmz55NvXr1Sq0jNzeX3Nxc0/v09PT/acyVJsP5qj2NaVYpIe6oqnwJ7j9nknxJ8iXJlypPekoJIYSo0MaNG3FwcMDGxoZevXoxcOBAhg8fjqWlJe3btzeVq1mzJo0bN+b48eMAjB8/nvDwcDp37kxYWBhHjhwp9zxnz54lPz+fdu3ambY5OTnRuHHjEmXbtm1r9v7w4cOsWLECBwcH0ysgIACDwUBiYiJgfBJ58eJFoqKi6NixI2vXrqV58+ZER0dX+l4UJQ7liYqKMosjJibGtM/f35+4uDh2795NYGAgAwYM4PLlyyXqSE5OJjAwkP79+zNq1CjT9uL1hoaGVirmmJgYs+OioqIA+Oc//4lSCi8vL6ytrVmwYAF//OMf0WrvpAcLFy7kl19+YcOGDRw8eJC5c+cyZswYtmzZYnaOIUOGEBsby/bt22nUqBEDBgwgJyenUvEVFhYyePBgZsyYQaNGjUotU949FZWTkpLCd999x8iRI822t2/fnhUrVvD999+zZMkSEhMTee6557h161ap9cyePRsnJyfTq+gJ70N3dxuUNEo9NuSTFNWV5Et3SL4k+VJlPR5Na0IIUQ1ZWlszfuW6KjnvvfL392fJkiXodDo8PT2xtLQ0m7ixLCNHjiQgIIBNmzbx448/Mnv2bObOncu4cePuJ3Qz9vb2Zu8zMjIYPXo048ePL1G2eI8PvV5PUFAQQUFBhIeHExAQQHh4OD169MDPz4+0tDRSUlJKPG3My8vjzJkzBAQEVBhb3759zZJPLy8vs7gbNmxIw4YN6dChA35+fixfvpzp06ebyqSkpODv70+nTp34/PPPzeouvlqKo6NjhbGAMSEtflzRU7cGDRqwfft2MjMzSU9Px8PDg4EDB5qehGZnZ/P222/zzTff0KdPHwBatWpFXFwcERERdO/e3VRnUQOFn58fHTp0oEaNGnzzzTf88Y9/xN3dnX379pnFdOnSJQDc3d25desWBw4cIDY21jR8wGAwoJTC0tKSH3/8sdx7Kipn5cqVODs78/LLL5tt79Wrl+nrVq1a0b59e7y9vfn3v//NiBEjStQzffp03nzzTdP79PT0qmuYEo8VjXSUEqWoqnyp6Nz3QvIlyZckX7p30iglhBBVRKPR3PcwuoetKDEormnTphQUFLB3715Td/Rr166RkJBAs2bNTOXq1q1LaGgooaGhTJ8+nS+++IJx48aZnqAVn6/A19cXKysr9u/fb0qM0tLSOHnyZInuz3d75plniI+PLxFneYpWGdu9ezcAr776KlOnTmXu3LnMnTvXrOzSpUvJyspi6NChFdar1+vR6/WVisFgMJgNhUpOTsbf39+0Qkvxp3DAPV1fEVtb23KPs7e3x97enhs3bvDDDz8wZ84cwLgCT35+fokYLCwsMBgMZdanlEIpZbqujh07MmvWLC5fvoybmxsA0dHRODo60qxZM6ysrDh69KhZHX/729/4+eefWbduHT4+Ptjb21f6noqSlFJ8+eWXhISEVPj02tnZmUaNGnH69OlS91tbW2N9H43bD1rJ3jTSv6a6K2qTkk5vojjJlyRfAsmXHud8SRqlhBBC3Bc/Pz+Cg4MZNWoUy5YtQ6/XM23aNLy8vAgODgZg4sSJ9OrVi0aNGnHjxg22bt1K06ZNAfD29kaj0bBx40Z69+6Nra0ter2eYcOGMXnyZFxcXHBzcyMsLAytVoumgkfoU6dOpUOHDowdO5aRI0dib29PfHw80dHRLFq0iLi4OMLCwggJCaFZs2bodDq2b9/Ol19+ydSpUwHjE8I5c+bw1ltvYWNjQ0hICFZWVnz77be8/fbbhIeH06JFC7PzJiQklIilefPmWFlZmW3LzMxk1qxZ9O3bFw8PD65evcrixYtJTk6mf//+gDHBeuGFF/D29iYiIsK09DEYn5CVp+jJXkZGBleuXCEuLg6dTmeW8N6taDnixo0bc/r0aSZPnkyTJk1Mk2A7OjrStWtXJk+ejK2tLd7e3mzfvp1//OMfzJs3DzAOIVizZg09e/bE1dWVCxcu8NFHH2Fra0vv3r0B6NmzJ82aNSMkJIQ5c+Zw8eJF3n33XcaMGWNq3Lj7vrq5uWFjY1Ni+92uX7/OuXPnSElJAe58HkUTdguj7du3c/r06VJ7Pt0tIyODM2fOEBIS8hAiu38aabkQQlQDki8ZSb4k+VKZHsAqgI+tqlzyWQjxeHncljguUrTEsZOTk7K1tVUBAQFmSxyPHTtWNWjQQFlbWytXV1cVEhKirl69ato/c+ZM5e7urjQaTblLHLdr105NmzbNdJy3t7eaP39+iXj27dunevTooRwcHJS9vb1q1aqVmjVrllJKqStXrqjx48erFi1aKAcHB6XX61XLli1VRESEKiwsNKtn/fr16rnnnlP29vamJZhXr15tVqa0ZZqLXufPny8RW3Z2tnrllVeUp6en0ul0ysPDQ/Xt21ft27fPVCYyMrLMOitS2jHe3t7lHrNmzRrl6+urdDqdcnd3V2PGjFE3b940K5OamqqGDx+uPD09lY2NjWrcuLGaO3euMhgMSimlkpOTVa9evZSbm5uysrJSderUUYMHD1YnTpwwqycpKUn16tVL2draqlq1aqlJkyap/Pz8MmOr7BLHZd2zsLCwCo8tz4NY4vh/4datWyo2Nta0ZPe8efNUbGys+u2335RSSk2bNk2FhISUOO5Pf/qTat++fal1Tpo0SW3btk0lJiaqXbt2qe7du6tatWqpy5cvVyqmqrofsXPmqvjGTUyvC5MnP9Tziwcv+OBJVfvnWLXh0o2qDkVUEcmXJF+SfOnJy5c0SsljprKkp6fj5OREWlpapcehCiFEaXJyckhMTMTHx6fEkrKifJmZmXh5eTF37txK9fJ40K5fv063bt1wdHTku+++w87O7qHHIB6+8n5mqzI/2LZtG/7+/iW2Dxs2jBUrVjB8+HCSkpLYtm2baV9aWhoeHh589tlnZpPAFhk0aBA7duzg2rVruLq60qVLF2bNmkWDBg0qFVNV3Y+4T+ZhvfwL03vHoCC8Ppnz0M4vHryXD53il7RMvmhenyA356oOR1QByZfun+RLoio8iHxJhu8JIYR4pMTGxnLixAnatWtHWloaM2fOBDB1cX/YXFxc2LJlC4sXL2bPnj2mpZeFqAovvPAC5T1PXLFiRYltTk5OZGVllXnMV1999SBCE+KBkSfmQlRM8iXxuJBGKSGEEI+ciIgIEhIS0Ol0tGnThpiYGGrVqlVl8dSsWZP333+/ys4vhCjNXU0X0vn/saGkWUqISpF8STwOpFFKCCHEI+Xpp5/m4MGDVR2GEEKIh6yC+ZmFEMVIviQeF9qKiwghhBBCCPFoKdGXRnpKVXsajK1S8lEKIcSTQxqlhBBCCCGEEEIIIcRDJ41SQgghhBCi+rm7O410r6n2ZPSeEEI8eaRRSgghhBBCPAakUUoIIYSobqRRSgghhBBCCFHlinpKSfOiEEI8OaRRSgghhBBCVHtKhu89NuSTFEKIJ4c0SgkhhBBCiOpHGqEeOxqZVEoIIZ440iglhBCiXMOHD0ej0aDRaNDpdDRs2JCZM2dSUFDwu+rdtm0bGo2GmzdvPphAKyExMZHBgwfj6emJjY0NderUITg4mBMnTpiV27hxI127dkWv12NnZ8ezzz7LihUrzMokJSWh0WiIi4ur9Pk/+OADmjRpgr29PTVq1KB79+7s3bvXrM4RI0bg4+ODra0tDRo0ICwsjLy8vHLrTU1NZfDgwTRq1AitVsvEiRMrFc+OHTsICgrC09MTjUbD+vXrS5T5+uuv6dmzJzVr1qzwepVS9OrVq8y6VqxYQatWrbCxscHNzY0xY8aY7f/hhx/o0KEDer0eV1dX+vXrR1JSklmZqKgoWrdujZ2dHR4eHrz++utcu3btd1+nqH7yCw0AGIoGfUkb1WNDer2J6kjyJcmXJF+6P9IoJYQQokKBgYGkpqZy6tQpJk2axAcffMAnn3xS1WGZVJSEAOTn59OjRw/S0tL4+uuvSUhIYM2aNbRs2dIs0Vu4cCHBwcF07tyZvXv3cuTIEQYNGkRoaChvvfXW74qzUaNGLFq0iKNHj7Jz507q169Pz549uXLlCgAnTpzAYDCwbNkyjh07xvz581m6dClvv/12ufXm5ubi6urKu+++S+vWrSsdT2ZmJq1bt2bx4sXllunSpQsff/xxhfV9+umnaMro6jBv3jzeeecdpk2bxrFjx9iyZQsBAQGm/YmJiQQHB/Piiy8SFxfHDz/8wNWrV/nDH/5gKrNr1y6GDh3KiBEjOHbsGGvXrmXfvn2MGjXqd1+nqH5SrmUDd9qi8gsKqy4Y8UBIRylR3Um+JPmS5Ev3QYkypaWlKUClpaVVdShCiGouOztbxcfHq+zs7KoO5Z4NGzZMBQcHm23r0aOH6tChg7p+/boKCQlRzs7OytbWVgUGBqqTJ0+ayiUlJamXXnpJOTs7Kzs7O9WsWTO1adMmlZiYqDD+LWl6DRs2TCmlVHp6uho8eLCys7NT7u7uat68eapr165qwoQJpnq9vb3VzJkzVUhIiNLr9aZjY2JiVJcuXZSNjY2qU6eOGjdunMrIyFBKKRUbG6sAlZSUVOa1njt3TllZWak333yzxL4FCxYoQP3yyy9KKWW6htjY2Hu/qbcV/TuzZcuWMsvMmTNH+fj4VLrOu+9VZQHqm2++KXN/RdcbGxurvLy8VGpqaom6rl+/rmxtbcu9zrVr1ypLS0tVWFho2rZhwwal0WhUXl6eUkqpTz75RPn6+podt2DBAuXl5VXxBd5W0XUWKe9nVvIDc1V1P9ZOeE/FN26ijjZuquIbN1EJoWMe6vnFgzcg9rSq/XOsWpt6rapDEVVE8iXJl0oj+dIdj2O+JD2lhBCiiiilMOQVPvSXegDDImxtbcnLy2P48OEcOHCADRs2sGfPHpRS9O7dm/z8fADGjBlDbm4uO3bs4OjRo3z88cc4ODhQt25d/vOf/wCQkJBAamoqn332GQBvvvkmu3btYsOGDURHRxMTE8OhQ4dKxBAREUHr1q2JjY3lvffe48yZMwQGBtKvXz+OHDnCmjVr2LlzJ2PHjgXA1dUVrVbLunXrKCwsvUfFunXryM/PL/UJ3+jRo3FwcGD16tW/+/6B8Wnl559/jpOTU7lP69LS0nBxcXkg5/xfycrKYvDgwSxevBh3d/cS+6OjozEYDCQnJ9O0aVPq1KnDgAEDOH/+vKlMmzZt0Gq1REZGUlhYSFpaGv/85z/p3r07VlZWAHTs2JHz58+zefNmlFJcunSJdevW0bt374d2reIRUvSr7PbT5sLbw/mEEI+XqsqXHkTOJPnS7yf50uOfL1lWdQBCCPGkUvkGUt7f/dDP6zmzExqdxX0dq5Tip59+4ocffqBXr16sX7+eXbt20alTJ8A4fr1u3bqsX7+e/v37c+7cOfr160fLli0B8PX1NdVVlDi4ubnh7OwMwK1bt1i5ciWrVq2iW7duAERGRuLp6VkilhdffJFJkyaZ3o8cOZIhQ4aY5gfw8/NjwYIFdO3alSVLluDl5cWCBQuYMmUKM2bMoG3btvj7+zNkyBBTXCdPnsTJyQkPD48S59PpdPj6+nLy5Mn7undFNm7cyKBBg8jKysLDw4Po6Ghq1apVatnTp0+zcOFCIiIiftc5/9feeOMNOnXqRHBwcKn7z549i8Fg4MMPP+Szzz7DycmJd999lx49enDkyBF0Oh0+Pj78+OOPDBgwgNGjR1NYWEjHjh3ZvHmzqZ7OnTsTFRXFwIEDycnJoaCggKCgIBmW98RSxf4LBQaZh6i6KxrMIp+kKK6q8iW4/5xJ8iXJl0oj+VLppKeUEEKICm3cuBEHBwdsbGzo1asXAwcOZPjw4VhaWtK+fXtTuZo1a9K4cWOOHz8OwPjx4wkPD6dz586EhYVx5MiRcs9z9uxZ8vPzadeunWmbk5MTjRs3LlG2bdu2Zu8PHz7MihUrcHBwML0CAgIwGAwkJiYCxieRFy9eJCoqio4dO7J27VqaN29OdHR0pe+FTqersExUVJRZHDExMaZ9/v7+xMXFsXv3bgIDAxkwYACXL18uUUdycjKBgYH079/fbA6A4vWGhoZWKuaYmBiz46Kioip1XGVs2LCBn3/+mU8//bTMMgaDgfz8fBYsWEBAQAAdOnRg9erVnDp1iq1btwJw8eJFRo0axbBhw9i/fz/bt29Hp9Px6quvmp5Ux8fHM2HCBN5//30OHjzI999/T1JSkuk+/C+vUzy6FNJTSgjxaJB86Q7Jl8xJvlQ26SklhBBVRGOlxXNmpyo5773y9/dnyZIl6HQ6PD09sbS0ZMOGDRUeN3LkSAICAti0aRM//vgjs2fPZu7cuYwbN+5+Qjdjb29v9j4jI4PRo0czfvz4EmXr1atn+lqv1xMUFERQUBDh4eEEBAQQHh5Ojx498PPzIy0tjZSUlBJPG/Py8jhz5ozZZJNl6du3r1ny6eXlZRZ3w4YNadiwIR06dMDPz4/ly5czffp0U5mUlBT8/f3p1KkTn3/+uVndxVdzcXR0rDAWMCakxY+rXbt2pY6rjJ9//pkzZ86Ynt4W6devH8899xzbtm0zPUlt1qyZab+rqyu1atXi3LlzACxevBgnJyfmzJljKvOvf/2LunXrsnfvXjp06MDs2bPp3LkzkydPBqBVq1bY29vz3HPPER4e/j+9TvEIKhpWowEUFBZK/5rqTiMLKYpSVFW+VHTueyH5kuRLZZF8qWzSKCWEEFVEo9Hc9zC6h60oMSiuadOmFBQUsHfvXlN39GvXrpGQkGD2j2ndunUJDQ0lNDSU6dOn88UXXzBu3DjTE7Ti8xX4+vpiZWXF/v37TYlRWloaJ0+e5Pnnny83xmeeeYb4+PgScZZHo9HQpEkTdu82Dgt49dVXmTp1KnPnzmXu3LlmZZcuXUpWVhZDhw6tsF69Xo9er69UDAaDgdzcXNP75ORk/P39adOmDZGRkWi15gnxvVxfEVtb2/s6rjKmTZvGyJEjzba1bNmS+fPnExQUBBi7kYNxPow6deoAcP36da5evYq3tzdgnGfh7mu1sDD+fBgMBlMZS0vLUssopf6n1ykePcr0f2NLhuEBzJcnHg3yUYriJF+SfAkkX3qc8yVplBJCCHFf/Pz8CA4OZtSoUSxbtgy9Xs+0adPw8vIyjZWfOHEivXr1olGjRty4cYOtW7fStGlTALy9vdFoNGzcuJHevXtja2uLXq9n2LBhTJ48GRcXF9zc3AgLC0Or1Za5dG6RqVOn0qFDB8aOHcvIkSOxt7cnPj6e6OhoFi1aRFxcHGFhYYSEhNCsWTN0Oh3bt2/nyy+/ZOrUqYDxCeGcOXN46623sLGxISQkBCsrK7799lvefvttwsPDadGihdl5ExISSsTSvHlz02STRTIzM5k1axZ9+/bFw8ODq1evsnjxYpKTk+nfvz9gTLBeeOEFvL29iYiIMC19DJQ6IWZxRU+8MjIyuHLlCnFxceh0OrOE924ZGRmcPn3a9D4xMZG4uDhcXFxMSe7169c5d+4cKSkpZtfr7u5u9rpbvXr18PHxAYxLOwcHBzNhwgQ+//xzHB0dmT59Ok2aNMHf3x+APn36MH/+fGbOnMkf//hHbt26xdtvv423tzdPP/00AEFBQYwaNYolS5YQEBBAamoqEydOpF27dqXOo3Ev1ymqr6L2C2mUEkI8iiRfMpJ8SfKlMlV6TcAnkCz5LIR4UB63JY6LFC1x7OTkpGxtbVVAQIDZEsdjx45VDRo0UNbW1srV1VWFhISoq1evmvbPnDlTubu7K41GU+4Sx+3atVPTpk0zHeft7a3mz59fIp59+/apHj16KAcHB2Vvb69atWqlZs2apZRS6sqVK2r8+PGqRYsWysHBQen1etWyZUsVERFhtqyuUkqtX79ePffcc8re3t60BPPq1avNypS2THPR6/z58yViy87OVq+88ory9PRUOp1OeXh4qL59+6p9+/aZykRGRpZZZ0VKO8bb27vcY7Zu3VrqcUWfRXkxhYWFlRvL3csIp6Wlqddff105OzsrFxcX9corr6hz586ZlVm9erV6+umnlb29vXJ1dVV9+/ZVx48fNyuzYMEC1axZM2Vra6s8PDzUkCFD1IULF373dd7tQSxx/KSoqvuxZuw7Kr5xExXbtIWKb9xE7R78+kM9v3jw/hh3WtX+OVatTrlacWHxWJJ8SfIlyZeevHxJo5Q8VipLeno6Tk5OpKWlVXocqhBClCYnJ4fExER8fHywsbGp6nCqlczMTLy8vJg7dy4jRox46Oe/fv063bp1w9HRke+++w47O7uHHoN4+Mr7mZX8wFxV3Y+1Y9+hxZavybGwwqYwnxtPd6TT6i8f2vnFgzf48Bl+vn6LT5vUZZBHzaoOR1QByZfun+RLoio8iHxJVt8TQgjxSImNjWX16tWcOXOGQ4cOMWTIEIAyl8/9X3NxcWHLli1069aNPXv2VEkMQoiymeaUMshz1upOc/uzlE9SiIpJviQeFzKnlBBCiEdOREQECQkJ6HQ62rRpQ0xMDLVq1aqyeGrWrMn7779fZecXQpR0d8OFzCklhHjSSL4kHgfSKCWEEOKR8vTTT3Pw4MGqDkMI8ai73Qalbk/qq26vOiSqr6L5maV5UYiKSb4kHhcyfE8IIYQQQlRD5k0XMnrvMSKfpRBCPDGkUUoIIYQQQlRbRXNKydo91V/5C9kLIYR4HEmjlBBCCCGEqHZKNkFJo9TjQj5JIYR4ckijlBBCCCGEqH5u94wyNWBIS0a1Jz2lhBDiySONUkIIIYQQotoyTXQuw/eqPZnoXAghnjzSKCWEEEIIIYQQQgghHjpplBJCCCGEENWPKvpfUfca6V9T3RUN31PSV0oIIZ4Y0iglhBCiXMOHD0ej0aDRaNDpdDRs2JCZM2dSUFDwu+rdtm0bGo2GmzdvPphAKyExMZHBgwfj6emJjY0NderUITg4mBMnTpiV27hxI127dkWv12NnZ8ezzz7LihUrzMokJSWh0WiIi4ur9Pk/+OADmjRpgr29PTVq1KB79+7s3bvXrM4RI0bg4+ODra0tDRo0ICwsjLy8vHLrTU1NZfDgwTRq1AitVsvEiRMrFc+OHTsICgrC09MTjUbD+vXr7zlmgFmzZtGpUyfs7OxwdnYu9Vznzp2jT58+2NnZ4ebmxuTJk82+h4p/nxV/NW/e3FRm9uzZPPvss+j1etzc3Hj55ZdJSEio8DorE5+ojm7PKSVDvoQQjwDJlyRfknzp/kijlBBCiAoFBgaSmprKqVOnmDRpEh988AGffPJJVYdlUlESApCfn0+PHj1IS0vj66+/JiEhgTVr1tCyZUuzRG/hwoUEBwfTuXNn9u7dy5EjRxg0aBChoaG89dZbvyvORo0asWjRIo4ePcrOnTupX78+PXv25MqVKwCcOHECg8HAsmXLOHbsGPPnz2fp0qW8/fbb5dabm5uLq6sr7777Lq1bt650PJmZmbRu3ZrFixffd8xgvP/9+/fnL3/5S6l1FBYW0qdPH/Ly8ti9ezcrV65kxYoVvP/++6Yyn332GampqabX+fPncXFxoX///qYy27dvZ8yYMfzyyy9ER0eTn59Pz549yczMLPc6K4pPVE93OkZJT6nHhYai+cGqOBAh7pPkS5IvSb50H5QoU1pamgJUWlpaVYcihKjmsrOzVXx8vMrOzq7qUO7ZsGHDVHBwsNm2Hj16qA4dOqjr16+rkJAQ5ezsrGxtbVVgYKA6efKkqVxSUpJ66aWXlLOzs7Kzs1PNmjVTmzZtUomJiQpjxwbTa9iwYUoppdLT09XgwYOVnZ2dcnd3V/PmzVNdu3ZVEyZMMNXr7e2tZs6cqUJCQpRerzcdGxMTo7p06aJsbGxUnTp11Lhx41RGRoZSSqnY2FgFqKSkpDKv9dy5c8rKykq9+eabJfYtWLBAAeqXX35RSinTNcTGxt77Tb2t6N+ZLVu2lFlmzpw5ysfHp9J13n2vKgtQ33zzTYXlyos5MjJSOTk5ldi+efNmpdVq1cWLF03blixZohwdHVVubm6p5/nmm2+URqMp9/O6fPmyAtT27dsrjLu8+EpT3s+s5Afmqup+rB49VcU3bqJ2t2yj4hs3UdFBgx7q+cWDN/zIWVX751i14sKVqg5FVBHJlyRfKo3kS493viQ9pYQQoooopcjLy3voL/UAHkHb2tqSl5fH8OHDOXDgABs2bGDPnj0opejduzf5+fkAjBkzhtzcXHbs2MHRo0f5+OOPcXBwoG7duvznP/8BICEhgdTUVD777DMA3nzzTXbt2sWGDRuIjo4mJiaGQ4cOlYghIiKC1q1bExsby3vvvceZM2cIDAykX79+HDlyhDVr1rBz507Gjh0LgKurK1qtlnXr1lFYWFjqda1bt478/PxSn/CNHj0aBwcHVq9e/bvvHxifRn3++ec4OTmV+7QuLS0NFxeXB3LO36uyMd9tz549tGzZktq1a5u2BQQEkJ6ezrFjx0o9Zvny5XTv3h1vb+8y601LSwN4ZO6PqGLSvaba01RcRDyBqipfehA5k+RLv5/kS49/vmRZ1QEIIcSTKj8/nw8//PChn/ftt99Gp9Pd17FKKX766Sd++OEHevXqxfr169m1axedOnUCICoqirp167J+/Xr69+/PuXPn6NevHy1btgTA19fXVFfRP4xubm6mceu3bt1i5cqVrFq1im7dugEQGRmJp6dniVhefPFFJk2aZHo/cuRIhgwZYpofwM/PjwULFtC1a1eWLFmCl5cXCxYsYMqUKcyYMYO2bdvi7+/PkCFDTHGdPHkSJycnPDw8SpxPp9Ph6+vLyZMn7+veFdm4cSODBg0iKysLDw8PoqOjqVWrVqllT58+zcKFC4mIiPhd5/y97iXm0ly8eNEswQJM7y9evFiifEpKCt999x2rVq0qs06DwcDEiRPp3LkzLVq0qHQs4jGiiuaUkuF7jwuNzA8mSlFV+RLcf84k+ZLkS5IvVZ70lBJCCFGhjRs34uDggI2NDb169WLgwIEMHz4cS0tL2rdvbypXs2ZNGjduzPHjxwEYP3484eHhdO7cmbCwMI4cOVLuec6ePUt+fj7t2rUzbXNycqJx48YlyrZt29bs/eHDh1mxYgUODg6mV0BAAAaDgcTERMD4JPLixYtERUXRsWNH1q5dS/PmzYmOjq70vahMchoVFWUWR0xMjGmfv78/cXFx7N69m8DAQAYMGMDly5dL1JGcnExgYCD9+/dn1KhRpu3F6w0NDa1UzDExMWbHRUVFVeq4e435QVm5ciXOzs68/PLLZZYZM2YMv/76K1999ZVpW2hoqNl1iidD0ep70pAhhKhqki/dIfmS5EuVJT2lhBCiilhZWVU4IeP/6rz3yt/fnyVLlqDT6fD09MTS0pINGzZUeNzIkSMJCAhg06ZN/Pjjj8yePZu5c+cybty4+wndjL29vdn7jIwMRo8ezfjx40uUrVevnulrvV5PUFAQQUFBhIeHExAQQHh4OD169MDPz4+0tDRSUlJKPG3My8vjzJkzBAQEVBhb3759zZJPLy8vs7gbNmxIw4YN6dChA35+fixfvpzp06ebyqSkpODv70+nTp34/PPPzeouvnqNo6NjhbGAMSEtftzdT+EqUpmYy+Pu7s6+ffvMtl26dMm0rzilFF9++SUhISFlJrRjx45l48aN7Nixgzp16pi2z5w583dPriqqMekp9diQT1IUV1X5UtG574XkS5IvSb5076RRSgghqkjRksHVQdE/ssU1bdqUgoIC9u7da+qOfu3aNRISEmjWrJmpXN26dQkNDSU0NJTp06fzxRdfMG7cONO1F5+vwNfXFysrK/bv329KjNLS0jh58iTPP/98uTE+88wzxMfHl4izPBqNhiZNmrB7924AXn31VaZOncrcuXOZO3euWdmlS5eSlZXF0KFDK6xXr9ej1+srFYPBYCA3N9f0Pjk5GX9/f9q0aUNkZCRarXmn5nu5viK2trb3dVxZ7o65Ih07dmTWrFlcvnwZNzc3AKKjo3F0dDT7XgHjijGnT59mxIgRJepRSjFu3Di++eYbtm3bho+Pj9l+Nzc3U/3iCaAUWTpLTng5odXoUda5FBYUYGEp6a0QjxPJlyRfAsmXHud8Sf7VFkIIcV/8/PwIDg5m1KhRLFu2DL1ez7Rp0/Dy8iI4OBiAiRMn0qtXLxo1asSNGzfYunUrTZs2BcDb2xuNRsPGjRvp3bs3tra26PV6hg0bxuTJk3FxccHNzY2wsDC0Wi0aTflT4E6dOpUOHTowduxYRo4cib29PfHx8URHR7No0SLi4uIICwsjJCSEZs2aodPp2L59O19++SVTp04FjE8I58yZw1tvvYWNjQ0hISFYWVnx7bff8vbbbxMeHl5iPH5CQkKJWJo3b17i6WpmZiazZs2ib9++eHh4cPXqVRYvXkxycrJpGd/k5GReeOEFvL29iYiIMFtG+O4nZHcrerKXkZHBlStXiIuLQ6fTlUhiisvIyOD06dOm94mJicTFxeHi4kK9evUqFTPAuXPnuH79OufOnaOwsNAUS8OGDXFwcKBnz540a9aMkJAQ5syZw8WLF3n33XcZM2YM1tbWZjEtX76c9u3blzrvwZgxY1i1ahXffvster3eNL+Ck5MTtra2ZV5nRfGJ6kkBqc4O3NQXfQ8VknziGPVaVH5SWfFoKfot/yAW5BDiUSH5kpHkS5IvlalS6/w9oWTJZyHEg/K4LXFcpGiJYycnJ2Vra6sCAgLMljgeO3asatCggbK2tlaurq4qJCREXb161bR/5syZyt3dXWk0mnKXOG7Xrp2aNm2a6Thvb281f/78EvHs27dP9ejRQzk4OCh7e3vVqlUrNWvWLKWUUleuXFHjx49XLVq0UA4ODkqv16uWLVuqiIgIVVhYaFbP+vXr1XPPPafs7e1NSzCvXr3arExpyzQXvc6fP18ituzsbPXKK68oT09PpdPplIeHh+rbt6/at2+fqUxkZGSZdVaktGO8vb3LPWbr1q2lHlf0WVQmZqWM3yOl1bN161ZTmaSkJNWrVy9la2uratWqpSZNmqTy8/PN6rl586aytbVVn3/+eaWvEVCRkZHlXmdl4rvbg1ji+ElRVfdj1ajJasNzHVTEgD6m17EdPz/UGMSDNeLoWVX751i1/Pzlqg5FVBHJlyRfknzpycuXNLeDFqVIT0/HycmJtLS0So9DFUKI0uTk5JCYmIiPjw82NjZVHU61kpmZiZeXF3Pnzi21i/L/2vXr1+nWrRuOjo5899132NnZPfQYxMNX3s+s5Afmqup+rP7zFBxOxHDSo6Zp2/N/ep1ng/7w0GIQD9aoX5P475WbzPLzYkQd16oOR1QByZfun+RLoio8iHxJVt8TQgjxSImNjWX16tWcOXOGQ4cOMWTIEABTF/eHzcXFhS1bttCtWzf27NlTJTEIIUpRynPVwry8KghEPGjyxFyIikm+JB4XMqeUEEKIR05ERAQJCQnodDratGlDTEwMtWrVqrJ4atasyfvvv19l5xdClE5hPneKwWCookjEg1DBVDhCiLtIviQeB9IoJYQQ4pHy9NNPc/DgwaoOQwhRDSlDYcWFxCNL2qSEqDzJl8TjQobvCSGEEEKIaqe0IV6GQmmUEkIIIaoTaZQSQgghhBDVTylzSsnwveqtqKeULMMkhBBPDmmUEkIIIYQQjwUZvieEEEJUL9IoJYQQQgghqqe7JiEyFEpPqerM1FNK1t8TQognhjRKCSGEEEKI6kfBLXsvs00yp9TjQZqkhBDiySGNUkIIIYQQohpSXHV9ymyLQYbvVWsajay/J4QQTxpplBJCCCGEENVPKd1plEx0Xq3JROdCCPHkkUYpIYQQ5Ro+fDgajQaNRoNOp6Nhw4bMnDmTgoKC31Xvtm3b0Gg03Lx588EEWgmJiYkMHjwYT09PbGxsqFOnDsHBwZw4ccKs3MaNG+natSt6vR47OzueffZZVqxYYVYmKSkJjUZDXFxcpc//wQcf0KRJE+zt7alRowbdu3dn7969ZnWOGDECHx8fbG1tadCgAWFhYeTl5VVYd1RUFK1bt8bOzg4PDw9ef/11rl27Vu4xO3bsICgoCE9PTzQaDevXry+13PHjx+nbty9OTk7Y29vz7LPPcu7cOdP+0aNH06BBA2xtbXF1dS31nu7fv59u3brh7OxMjRo1CAgI4PDhw6We7/Tp0+j1epydnSu87speg3j8lNZuIcP3hBBVRfIlyZckX7o/0iglhBCiQoGBgaSmpnLq1CkmTZrEBx98wCeffFLVYZlUJgnJz8+nR48epKWl8fXXX5OQkMCaNWto2bKlWaK3cOFCgoOD6dy5M3v37uXIkSMMGjSI0NBQ3nrrrd8VZ6NGjVi0aBFHjx5l586d1K9fn549e3LlyhUATpw4gcFgYNmyZRw7doz58+ezdOlS3n777XLr3bVrF0OHDmXEiBEcO3aMtWvXsm/fPkaNGlXucZmZmbRu3ZrFixeXWebMmTN06dKFJk2asG3bNo4cOcJ7772HjY2NqUybNm2IjIzk+PHj/PDDDyil6NmzJ4W3GwgyMjIIDAykXr167N27l507d6LX6wkICCA/P9/sfPn5+fzxj3/kueeeKzf2e7kG8ZgqpTtNxv4D5CQkVEEw4kG4M9G5ENWT5EuSL0m+dB+UKFNaWpoCVFpaWlWHIoSo5rKzs1V8fLzKzs6u6lDu2bBhw1RwcLDZth49eqgOHTqo69evq5CQEOXs7KxsbW1VYGCgOnnypKlcUlKSeumll5Szs7Oys7NTzZo1U5s2bVKJiYkK498dptewYcOUUkqlp6erwYMHKzs7O+Xu7q7mzZununbtqiZMmGCq19vbW82cOVOFhIQovV5vOjYmJkZ16dJF2djYqDp16qhx48apjIwMpZRSsbGxClBJSUllXuu5c+eUlZWVevPNN0vsW7BggQLUL7/8opRSpmuIjY2995t6W9G/M1u2bCmzzJw5c5SPj0+59XzyySfK19e3RLxeXl6VjgVQ33zzTYntAwcOVH/6058qXY9SSh0+fFgB6vTp00oppfbv368Ade7cOVOZI0eOKECdOnXK7NgpU6aoP/3pTyoyMlI5OTnd03nLuob7Ud7PrOQH5qrqfvxr+Bvqs5AZKmJAH9PrXz1fUBcmT36ocYgHZ8yxJFX751j1t98uVXUooopIviT5UmkkX3q88yXpKSWEEFVEKUVhYdZDf6kHMFmHra0teXl5DB8+nAMHDrBhwwb27NmDUorevXubnuaMGTOG3NxcduzYwdGjR/n4449xcHCgbt26/Oc//wEgISGB1NRUPvvsMwDefPNNdu3axYYNG4iOjiYmJoZDhw6ViCEiIoLWrVsTGxvLe++9x5kzZwgMDKRfv34cOXKENWvWsHPnTsaOHQuAq6srWq2WdevWmZ5I3W3dunXk5+eX+oRv9OjRODg4sHr16t99/8D4tPLzzz/HycmJ1q1bl1kuLS0NFxeXcuvq2LEj58+fZ/PmzSiluHTpEuvWraN3796/K0aDwcCmTZto1KgRAQEBuLm50b59+3K7fGdmZhIZGYmPjw9169YFoHHjxtSsWZPly5eTl5dHdnY2y5cvp2nTptSvX9907M8//8zatWsfzad44hFl/vvMoNFSePVqFcUiHhTpKSWKq6p86UHkTJIv/X6SLz3++ZJlVQcghBBPKoMhm23bWz70877Q9SgWFnb3daxSip9++okffviBXr16sX79enbt2kWnTp0A4zj9unXrsn79evr378+5c+fo168fLVsar9PX19dUV1Hi4ObmZhoLf+vWLVauXMmqVavo1q0bAJGRkXh6epaI5cUXX2TSpEmm9yNHjmTIkCFMnDgRAD8/PxYsWEDXrl1ZsmQJXl5eLFiwgClTpjBjxgzatm2Lv78/Q4YMMcV18uRJnJyc8PDwKHE+nU6Hr68vJ0+evK97V2Tjxo0MGjSIrKwsPDw8iI6OplatWqWWPX36NAsXLiQiIqLcOjt37kxUVBQDBw4kJyeHgoICgoKCfneycvnyZTIyMvjoo48IDw/n448/5vvvv+cPf/gDW7dupWvXrqayf/vb35gyZQqZmZk0btyY6OhodDodAHq9nm3btvHyyy/z17/+FTB+Pj/88AOWlsZU5Nq1awwfPpx//etfODo6/q64xZNIAygMWi0FD3HeFSHE/15V5Utw/zmT5EuSL0m+VHnSU0oIIUSFNm7ciIODAzY2NvTq1YuBAwcyfPhwLC0tad++valczZo1ady4McePHwdg/PjxhIeH07lzZ8LCwjhy5Ei55zl79iz5+fm0a9fOtM3JyYnGjRuXKNu2bVuz94cPH2bFihU4ODiYXgEBARgMBhITEwHjk8iLFy8SFRVFx44dWbt2Lc2bNyc6OrrS96IocShPVFSUWRwxMTGmff7+/sTFxbF7924CAwMZMGAAly9fLlFHcnIygYGB9O/f32yug+L1hoaGAhAfH8+ECRN4//33OXjwIN9//z1JSUmm/TExMWbHRUVFVepaDbdXMgsODuaNN97gqaeeYtq0abz00kssXbrUrOyQIUOIjY1l+/btNGrUiAEDBpCTkwNAdnY2I0aMoHPnzvzyyy/s2rWLFi1a0KdPH7KzswEYNWoUgwcP5vnnny81lvu9BvEYU6pYlxpjSqs0Ggw306osJPH7aG5PKiU9pUR1JfnSHZIvSb5UWdJTSgghqohWa8sLXY9WyXnvlb+/P0uWLEGn0+Hp6YmlpSUbNmyo8LiRI0cSEBDApk2b+PHHH5k9ezZz585l3Lhx9xO6GXt7e7P3GRkZjB49mvHjx5coW69ePdPXer2eoKAggoKCCA8PJyAggPDwcHr06IGfnx9paWmkpKSUeNqYl5fHmTNnCAgIqDC2vn37miWfXl5eZnE3bNiQhg0b0qFDB/z8/Fi+fDnTp083lUlJScHf359OnTrx+eefm9VdfPWaoidks2fPpnPnzkyePBmAVq1aYW9vz3PPPUd4eDht27Y1O6527doVXgNArVq1sLS0pFmzZmbbmzZtys6dO822OTk54eTkhJ+fHx06dKBGjRp88803/PGPf2TVqlUkJSWxZ88etFpj48GqVauoUaMG3377LYMGDeLnn39mw4YNpqecSikMBgOWlpZ8/vnn/PGPf7yvaxCPL/OGCy1QiEGjReXnVE1A4oF5EMPMxeOjqvKlonPfC8mXJF8qTvKlypFGKSGEqCIajea+h9E9bEWJQXFNmzaloKCAvXv3mrqjX7t2jYSEBLN/lOvWrUtoaCihoaFMnz6dL774gnHjxpmeoBWfr8DX1xcrKyv2799vSozS0tI4efJkmU+EijzzzDPEx8eXiLM8Go2GJk2asHv3bgBeffVVpk6dyty5c5k7d65Z2aVLl5KVlcXQoUMrrFev16PX6ysVg8FgIDc31/Q+OTkZf39/0wotRUlJkdKuLysry9Stu4iFhQVgTFZsbW3v6b4U0el0PPvssyTctZrZyZMn8fb2LvM4pRRKKdN1ZWVlodVq0RR1gwDT+6Kni3v27DH7Xvj222/5+OOP2b17N15eXvd9DeLxZmq60GhBGXtKqbtWKBLVh6biIuIJJPmS5Esg+dLjnC9Jo5QQQoj74ufnR3BwMKNGjWLZsmXo9XqmTZuGl5cXwcHBAEycOJFevXrRqFEjbty4wdatW2natCkA3t7eaDQaNm7cSO/evbG1tUWv1zNs2DAmT56Mi4sLbm5uhIWFlfgHujRTp06lQ4cOjB07lpEjR2Jvb098fDzR0dEsWrSIuLg4wsLCCAkJoVmzZuh0OrZv386XX37J1KlTAeMTwjlz5vDWW29hY2NDSEgIVlZWfPvtt7z99tuEh4fTokULs/PenYAANG/eHCsrK7NtmZmZzJo1i759++Lh4cHVq1dZvHgxycnJ9O/fHzAmWC+88ALe3t5ERESYlj4GcHd3L/Pag4KCGDVqFEuWLCEgIIDU1FQmTpxIu3btSp1fokhGRganT582vU9MTCQuLg4XFxdTkjt58mQGDhzI888/j7+/P99//z3//e9/2bZtG2AcQrBmzRp69uyJq6srFy5c4KOPPsLW1tY0cWiPHj2YPHkyY8aMYdy4cRgMBj766CMsLS3x9/cHMH1fFDlw4ABarbbE/b6faxBPAuPvB6XRoCqx5Ll4NGmKPscqjkOIB0nyJSPJlyRfKtMDWQfwMSVLPgshHpTHbYnjIkVLHDs5OSlbW1sVEBBgtsTx2LFjVYMGDZS1tbVydXVVISEh6urVq6b9M2fOVO7u7kqj0ZS7xHG7du3UtGnTTMd5e3ur+fPnl4hn3759qkePHsrBwUHZ29urVq1aqVmzZimllLpy5YoaP368atGihXJwcFB6vV61bNlSRUREqMLCQrN61q9fr5577jllb29vWoJ59erVZmVKW6a56HX+/PkSsWVnZ6tXXnlFeXp6Kp1Opzw8PFTfvn3Vvn37TGUiIyPLrLMiCxYsUM2aNVO2trbKw8NDDRkyRF24cKHcY7Zu3VrquYo+iyLLly9XDRs2VDY2Nqp169Zq/fr1pn3JycmqV69eys3NTVlZWak6deqowYMHqxMnTpjV8eOPP6rOnTsrJycnVaNGDfXiiy+qPXv2lBlbZZc4ruw13KsHscTxk6Kq7sc/h05Qn/7pAxUxoI+KGNhfRQzoo5b17aOOt2j5UOMQD874+N9U7Z9j1YKki1Udiqgiki9JviT50pOXL2mUkkHbZUlPT8fJyYm0tLTHZmZ7IUTVyMnJITExER8fH2xsbKo6nGolMzMTLy8v5s6dy4gRIx76+a9fv063bt1wdHTku+++w86uegwhEL9PeT+zkh+Yq6r78a9hE7lmcKYg7wAajT1KZeKQC8+fOEOT4/EV9hYQj56Jx8/x1cXrvOPrwTjvR38eFPHgSb50/yRfElXhQeRLsvqeEEKIR0psbCyrV6/mzJkzHDp0iCFDhgCYurg/bC4uLmzZsoVu3bqxZ8+eKolBCFGS8anq7YYnTdGwr9vvCwqqIiQhhHhoJF8SjwuZU0oIIcQjJyIigoSEBHQ6HW3atCEmJoZatWpVWTw1a9bk/fffr7LzCyFK0hTr7K9BYxyHcLtNSuXloblrnhLx6Cvq3CbDOISoHMmXxONAGqWEEEI8Up5++mkOHjxY1WEIIR5x5g0X5hNkywp81ZtMLiJExSRfEo8LGb4nhBBCCCGqNY3GmNKaekpJo1S1JLOACSHEk0capYQQQgghRLVW1JihiuaWkkapasn0OcoAPiGEeGJIo5QQQgghhKh+io/xKmqMKjanlBBCCCEefdIoJYQQQgghqjWNzCn1WLj7cxRCCPH4k4nOhRBCCCFEtaa5u6dUNWuUup5ygWvJ59FZ21KnWQssLMtP0Qvy8lDKgKXO2nTtQgghRHUkjVJCCCGEEKKaMvap0dw1RfajPnyvoNDAuetZAGguneXr8HdMwxFfGDqKNn2CSxyTlXaT8/G/smfdKq5dOAeAV5PmDAj7EK3W4uEF/z9U1L4mPaWEEOLJIY1SQgghhBCi+lEKtMZWDFNPqaJdj3hPqSF/38vexOsABObG4VdsfqyUhPhSG6U2zPuQ5BPxZtuSTxzjSlIitX0b/m8DFkIIIf5HZE4pIYQQ5Ro+fDgajQaNRoNOp6Nhw4bMnDmTgoKC31Xvtm3b0Gg03Lx588EEWgmJiYkMHjwYT09PbGxsqFOnDsHBwZw4ccKs3MaNG+natSt6vR47OzueffZZVqxYYVYmKSkJjUZDXFxcpc//wQcf0KRJE+zt7alRowbdu3dn7969ZnWOGDECHx8fbG1tadCgAWFhYeRVotdHVFQUrVu3xs7ODg8PD15//XWuXbtW7jFLliyhVatWODo64ujoSMeOHfnuu+9M+69fv864ceNo3Lgxtra21KtXj/Hjx5OWlmYqs2LFCtP3x92vy5cvm8rl5ubyzjvv4O3tjbW1NfXr1+fLL780i+fTTz81natu3bq88cYb5OTklHsNX3/9NT179qRmzZr3/HmI6s18nvOi4XvGjffTKJV14ABng4L4bdhwkqdMIffUqQcSZ5Hcs4lc/vRTLs+dy+Hf7vxsFqQbG6e8mjQH4OTeXXw9O4yEPTsxGAq5cTEFpRTXzht7R3n4NebF10Nx8aoLQMb16xzfncrB75M4G3flgcb8sJlW35OuUqIaknxJ8iXJl+6P9JQSQghRocDAQCIjI8nNzWXz5s2MGTMGKysrpk+fXtWhAZCXl4dOpyu3TH5+Pj169KBx48Z8/fXXeHh4cOHCBb777juzRG/hwoVMnDiRqVOnsmTJEnQ6Hd9++y2hoaH8+uuvRERE3HecjRo1YtGiRfj6+pKdnc38+fPp2bMnp0+fxtXVlRMnTmAwGFi2bBkNGzbk119/ZdSoUWRmZpZ73l27djF06FDmz59PUFAQycnJhIaGMmrUKL7++usyj6tTpw4fffQRfn5+KKVYuXIlwcHBxMbG0rx5c1JSUkhJSSEiIoJmzZrx22+/ERoaSkpKCuvWrQNg4MCBBAYGmtU7fPhwcnJycHNzM20bMGAAly5dYvny5TRs2JDU1FQMBoNp/6pVq5g2bRpffvklnTp14uTJk6YEf968eWVeQ2ZmJl26dGHAgAGMGjWqws9APJ4stFYAGDQKA5B/pXKNMzcuZrJ5yVFys/KxyrlJi3NXsTl1GgCttQ0ef50JQGFaGlkHDqDz9saydm0s9Pp7jvFiWBhZ+/ejAK+uE3DKz+KQW2NsCo1/SHi3eorkhHhQisS4g1xLPk/KyeMc2vwtgf/3BjmZGQC8POV97BydSDy0n+vJ57mQkMyvMRmm8wz+oD013O3vOb5HibRJiepK8iXJlyRfug9KlCktLU0BKi0trapDEUJUc9nZ2So+Pl5lZ2dXdSj3bNiwYSo4ONhsW48ePVSHDh3U9evXVUhIiHJ2dla2trYqMDBQnTx50lQuKSlJvfTSS8rZ2VnZ2dmpZs2aqU2bNqnExESF8e8O02vYsGFKKaXS09PV4MGDlZ2dnXJ3d1fz5s1TXbt2VRMmTDDV6+3trWbOnKlCQkKUXq83HRsTE6O6dOmibGxsVJ06ddS4ceNURkaGUkqp2NhYBaikpKQyr/XcuXPKyspKvfnmmyX2LViwQAHql19+UUop0zXExsbe+029rejfmS1btpRZZs6cOcrHx6fcej755BPl6+tbIl4vL697jqlGjRrq73//e5n7//3vfyudTqfy8/NL3X/58mVlZWWl/vGPf5i2fffdd8rJyUldu3atzHrHjBmjXnzxRbNtb775purcuXOl4n4Qn0dx5f3MVmV+sH37dvXSSy8pDw8PBahvvvmm3PJbt24t8bMGqNTUVLNyixYtUt7e3sra2lq1a9dO7d27t9IxVdX9WDl4rPo05AMVMaCP+vvr/6ciBvRREQP6qOWvvqWONG2uchMTK6xjW9QJtWj0T6bXT88PVfGNm6j4xk3Uhbcmm8qdC/2LaXt8i5Yq89Ahs3r2JV5TMzYcU0u3nVYnUtOVobDQbH/GwYOm4w8/3db0dcgbX6g3ho5UEQP6qOO7tqv4mK1q55p/qogBfdS8P/Y1XVPxV1HdmxZGqIgBfdQ3EX83u4aEveafbXUy+cQ5VfvnWPXJ2ep7DeL3kXxJ8qXSSL50x+OYL8nwPSGEqCJKKTILCx/6Sz2AcRG2trbk5eUxfPhwDhw4wIYNG9izZw9KKXr37k3+7aEzY8aMITc3lx07dnD06FE+/vhjHBwcqFu3Lv/5z38ASEhIIDU1lc8++wyAN998k127drFhwwaio6OJiYnh0KFDJWKIiIigdevWxMbG8t5773HmzBkCAwPp168fR44cYc2aNezcuZOxY8cC4OrqilarZd26dRQWFpZ6XevWrSM/P5+33nqrxL7Ro0fj4ODA6tWrf/f9A+PTys8//xwnJydat25dZrm0tDRcXFzKratjx46cP3+ezZs3o5Ti0qVLrFu3jt69e1c6nsLCQr766isyMzPp2LFjufE4OjpiWcbqYP/4xz+ws7Pj1VdfNW3bsGEDbdu2Zc6cOXh5edGoUSPeeustsrOzTWU6derEwYMH2bdvHwBnz55l8+bN93QNT4LMzExat27N4sWL7+m4op+zolfxp7Jr1qzhzTffJCwsjEOHDtG6dWsCAgLMhhM8klTR32jgZJsGGlsAbmiPc8KrDinvvmf8PXvwEJePp5BxI5fCAgM58fGk/Xcjmbt3c/NyllmVWnsLLIvuTeGdITd5v/12p1B+Ptf/8Q+UwcDZKxm8u+YwkxbuZfP2JGZvPsEf5nzHiWbNOX/7d8/Xhy7Qfl0ycbWM8z5Z+viYqpq+eS5eGcb7bG1rR9MuL9DhD4PQaLQYSvk9pa/phkZrTN91tnYAZKXd6SVVkHuYgxsj2bTgE1a9M4mDm9Zz/tgRDIbSf+c9akzD96SvVLVzJS+fCzl53Cp48N9rVZUvPYicSfKl30/ypcc/X5Lhe0IIUUWyDAYa7Dj60M975vmW2Fvc30pNSil++uknfvjhB3r16sX69evZtWsXnTp1Aozj9OvWrcv69evp378/586do1+/frRs2RIAX19fU11FiYObmxvOzs4A3Lp1i5UrV7Jq1Sq6desGQGRkJJ6eniViefHFF5k0aZLp/ciRIxkyZAgTJ04EwM/PjwULFtC1a1eWLFmCl5cXCxYsYMqUKcyYMYO2bdvi7+/PkCFDTHGdPHkSJycnPDw8SpxPp9Ph6+vLyZMn7+veFdm4cSODBg0iKysLDw8PoqOjqVWrVqllT58+zcKFCyvsAt+5c2eioqIYOHAgOTk5FBQUEBQUVKmGi6NHj9KxY0dycnJwcHDgm2++oVmzZqWWvXr1Kn/961/585//XGZ9y5cvZ/Dgwdja2pq2nT17lp07d2JjY8M333zD1atX+b//+z+uXbtGZGQkAIMHD+bq1at06dIFpRQFBQWEhoby9ttvV3gNT5JevXrRq1evez6u+M/Z3ebNm8eoUaN47bXXAFi6dCmbNm3iyy+/ZNq0ab8n3P+JX3/9lR0/bUNzKwNqGH92NNa3ONAkg7bHjd93t2xtyT5wgIxt24j5aAOJPkEA2NlCm+i3yLGphVV+BjeffxewQZebRp61EzWa5+Kr+5Wrx2zJL/bHteHWLbMY0r77np1plziprHDK1dHf7nm0ll4k5P/GsL2fcc7eFa8tP3Pj/A3e/PdhLAwGvmjVi89Pref0xd8odHXCPS0T27wCrLQW5FPIxX9/R/bcRax4+hXsatRDfz3JdD6tZV2UIYMG7QJM26xv/4xl38rEUHgTlZ9AQfYuUhIgJcFYJvW08YuyVvQT4kH4+4UrvHsqGQBrrYbv2zSiqYNtBUdVXlXlS3D/OZPkS5IvSb5UedJTSgghRIU2btyIg4MDNjY29OrVi4EDBzJ8+HAsLS1p3769qVzNmjVp3Lgxx48fB2D8+PGEh4fTuXNnwsLCOHLkSLnnOXv2LPn5+bRr1860zcnJicaNG5co27ZtW7P3hw8fZsWKFTg4OJheAQEBGAwGEhMTAeOTyIsXLxIVFUXHjh1Zu3YtzZs3Jzo6utL3oqK5GMCYbBaPIyYmxrTP39+fuLg4du/eTWBgIAMGDCi1R0pycjKBgYH079/fbOx/8XpDQ0MBiI+PZ8KECbz//vscPHiQ77//nqSkJNP+mJgYs+OioqJM9TVu3Ji4uDj27t3LX/7yF4YNG0Z8vPkKXwDp6en06dOHZs2a8cEHH5R63Xv27OH48eOMGDHCbLvBYECj0RAVFUW7du3o3bs38+bNY+XKlaanf9u2bePDDz/kb3/7G4cOHeLrr79m06ZN/PWvf63wnoqKPfXUU3h4eNCjRw927dpl2p6Xl8fBgwfp3r27aZtWq6V79+7s2bOnKkKt0IEDB7h84yqF6s4cG/mF8KvPZW64tQAgz8LY5+bGV2u4pfc2lcvKht1+L7O/7TR2dwwnI8/482yXdQmAAqXDwqoAt1a3QOVQcOMG6T/+SGF6ulkMN+1sSM5Mxz7rGtrCVApyYgHolH4LpXOmptLyRcu+9F28G+vCHHpc+Yk+1zZzpCCLY3VcOeFZi21NvdnSzId8rXFi3gNXm3D6hievfTENUgo46PQUl+2ewtKuJzp9f6ydXuP7Ay78Y08ScKenVNrFWPLSvyQ/+87n6mZT2/iFxljm0Pe/kn2r4gmA70Vadj7rDl5g1d5zJF68yS//+YqfVyxj7/q1FBbc3+qHd6+iKKqHLVfv/HzkGhTxGdnllH68Sb50h+RLki9VlvSUEkKIKmKn1XLm+ZZVct575e/vb5rE0tPTE0tLSzZs2FDhcSNHjiQgIIBNmzbx448/Mnv2bObOncu4cePuJ3Qz9vbmE/lmZGQwevRoxo8fX6JsvXr1TF/r9XqCgoIICgoiPDycgIAAwsPD6dGjB35+fqSlpZGSklLiaWNeXh5nzpwhICDg7upL6Nu3r1ny6eXlZRZ3w4YNadiwIR06dMDPz4/ly5ebTYKakpKCv78/nTp14vPPPzeru/hqKY6OjgDMnj2bzp07M3nyZABatWqFvb09zz33HOHh4bRt29bsuNq1a5u+LlohCKBNmzbs37+fzz77jGXLlpnK3Lp1i8DAQPR6Pd988w1WVlalXvff//53nnrqKdq0aWO23cPDAy8vL5ycnEzbmjZtilKKCxcu4Ofnx3vvvUdISAgjR44EoGXLlmRmZvLnP/+Zd955p9x7Ksrm4eHB0qVLadu2Lbm5ufz973/nhRdeYO/evTzzzDNcvXqVwsJCs+8JMH6P3L3KUpHc3Fxyc3NN79PvarD5Xys+4WuR/NuLDuVZGZsz8iyN/7+VZyDX2hkAbWEuBgtrfvNsTZ2iTlAaLZb5GdhlX+ZmjUYUGHTkGuw4kvUSv91qjfOwcLzObAFLGyCXNEcfLAuyyLI2H/ZnyE+kIHsPqRYJXGkzHlCka47xVPppulyLNg1LS3RzNo/bquj3sQ6Ntgbn63bH+9yPdE45zoqmU+iWZUW9vDvpur6ggFPRMeTVsSB/l7HRUBnuNABoLetQr157Lt7wxsYW8rN3Upizj8y0HCKn7uLlN57C06/GvdzuMs2PPsmK3UkAvGh5nuanNpr21co6TgM/L2gWDPal92wQj4+kHOPvAwcLLRmFBvIe8PKJVZUvFZ37Xki+JPmS5Ev3ThqlhBCiimg0mvseRvewFSUGxTVt2pSCggL27t1r6o5+7do1EhISzLoz161bl9DQUEJDQ5k+fTpffPEF48aNMz1BKz5fga+vL1ZWVuzfv9+UGKWlpXHy5Emef/75cmN85plniI+PLxFneTQaDU2aNGH37t0AvPrqq0ydOpW5c+cyd+5cs7JLly4lKyuLoUOHVlivXq9HX8nVuQwGg9kf+MnJyfj7+9OmTRsiIyPR3pUQl3Z9WVlZJeYssLj9vaWUwtbWttL35e540tPTCQgIwNramg0bNmBjY1PqcRkZGfz73/9m9uzZJfZ17tyZtWvXkpGRgYODA2Ds+q/VaqlTp47pGu6+1uLXcC/3VNzRuHFjsyfnnTp14syZM8yfP59//vOf91Xn7NmzmTFjxoMK8Z4ZbveQ0qKh6LdHUUNVnqVxS4GFDScb9sfmSio5txuC9LfOk+bckObZ10nTGb+Xmh1fgT79N1I8uwCQWWDPuhszuJnfEGzgkmcTUvQtybeyJ68gDYODceiK5tYOKDiAvYU1mYW5QD4FOcZGorx049Ld/RxvcjajA6X1Gdrp1hlXaw8apcRjaWWP1rI+Go3x+z/fyoG6Bemc+bA3S/9vKwBnLPJpUGiFa6GGRj9v5fSq2dhbWuHc6FluWl001avTD+DWhRS4/TeoXfYVbmkAFMqguHIuw7xR6tf/wMEVoLWCrlOh3p0/ZMqSlZXFmTNn+O3STeO9UAZuXblkViZ3/z/h5GVIiYXgRRXWWcQ0p5R0lapWbuYbf+48rK04lZVLnuHBfoCSL0m+BJIvPc75kjRKCSGEuC9+fn4EBwczatQoli1bhl6vZ9q0aXh5eREcbJy7ZOLEifTq1YtGjRpx48YNtm7dStOmTQHw9vZGo9GwceNGevfuja2tLXq9nmHDhjF58mRcXFxwc3MjLCwMrVZrGtZRlqlTp9KhQwfGjh3LyJEjsbe3Jz4+nujoaBYtWkRcXBxhYWGEhITQrFkzdDod27dv58svv2Tq1KmA8QnhnDlzeOutt7CxsSEkJAQrKyu+/fZb3n77bcLDw2nRooXZeRMSEkrE0rx58xJPxzIzM5k1axZ9+/bFw8ODq1evsnjxYpKTk+nfvz9gTLBeeOEFvL29iYiI4EqxZe3d3d3LvPagoCBGjRrFkiVLCAgIIDU1lYkTJ9KuXbtS55coMn36dHr16kW9evW4desWq1atYtu2bfzwww+AMcHq2bMnWVlZ/Otf/yI9Pd3UK8bV1dWUBIFxsuyCggL+9Kc/lTjP4MGD+etf/8prr73GjBkzuHr1KpMnT+b11183zaUQFBTEvHnzePrpp2nfvj2nT5/mvffeIygoyOw8d7t+/Trnzp0jJSUFuPN5uLu7l3vPnmTt2rVj586dANSqVQsLCwsuXTJvVLh06VKZ92/69Om8+eabpvfp6enUrVv3fxdwGayUhanBp/D2gK9cS+MQNYWBC3VeMCvveOs3buhrcF1loFWKGjdP4X5pP9d9dFyxTiE/exfHCtqhDDcoyF6OwoBG64RyeBmNRgfUNNWVb2kNBZBj0RAKj5UaX0K6M1or42TplrZd0SiFXUYiNdR1CuprqJlcm1xH4x+TpywLqWUwUMOgZX+bqXim7sZ+5TeAMwDNLuwi1+MFDBY6TjT5E1l2bpyr1xMAa6UgK4ZG545yqgZk2t/5ma919VduudpTw92WjHTIzys2abGhENa9fue9zr5SjVKbNm3i2LFjJOY1oFXaBZ67vhvtXQPuCtXt39fpKRXWJ6o3g1LcvD3/Wi2dJaeycsmXVkUzki8ZSb5kJPlSSdIoJYQQ4r5FRkYyYcIEXnrpJfLy8nj++efZvHmzKcEoLCxkzJgxXLhwAUdHRwIDA5k/fz5g7E48Y8YMpk2bxmuvvcbQoUNZsWIF8+bNIzQ0lJdeeglHR0emTJnC+fPny3ziVKRVq1Zs376dd955h+eeew6lFA0aNGDgwIEA1KlTh/r16zNjxgySkpLQaDSm92+88YapnjfeeANfX1/mzp3LZ599RmZmJgCrV69m0KBBJc5b2rbz58+bnmgVsbCw4MSJE6xcuZKrV69Ss2ZNnn32WWJiYmjevDkA0dHRnD59mtOnT5c4vrwVgIYPH86tW7dYtGgRkyZNwtnZmRdffJGPP/643Ht2+fJlhg4dSmpqKk5OTrRq1YoffviBHj16AHDo0CH27t0LlHzimJiYSP369U3vly9fzh/+8IdSJ9N2cHAgOjqacePG0bZtW2rWrMmAAQMIDw83lXn33XfRaDS8++67JCcn4+rqSlBQELNmzSr3GjZs2GCaoBvufB5hYWFlzuXwpIuLizNNTqvT6WjTpg0//fQTL7/8MmB8+vvTTz+ZVmK6m7W1NdbW1g8r3ErJvj1c75xLPA3P2KDINdtfw5BEzWtHOKVPAJUDWT+Qa+lJzd5pbE5+BrgCOVcozNmLxsIDZUgDQBluUePSj2TUehHyr1Nga/y5VOp2/Zo796FGXm3S7J0x5J8BCkDjgKHQOP+JRuuIhc6PXNu2XFQGRj+VTNQp47FnLfMJcvyMmxnduZj3FAYLay7U8eeC8UcPG3sLnj2ziRj35+F2b6qiBikAu5yrND/xC9a5NzljyMegvfMHnmVhLmBP/tXjoOtIQeJ+MNSF5EOw564eTJlXqIyMjDur/dXPPmdqkLLUFGKpNZBTaEWh4fZT/LyM0qooU/l/SotH0S83M01fu+qM33sPuqfU40DyJcmXiki+VJJGPYi1wR9T6enpODk5mZZzFEKI+5WTk0NiYiI+Pj4VJgvCXGZmJl5eXsydO7fEhJAPw/Xr1+nWrRuOjo5899132NnZPfQYxMNX3s9sVeYHGRkZnD59GoCnn36aefPm4e/vj4uLC/Xq1WP69OkkJyfzj3/8A4BPP/0UHx8fmjdvTk5ODn//+99ZuHAhP/74o2nFpjVr1jBs2DCWLVtGu3bt+PTTT/n3v//NiRMnSsw1VZqHfT/+vvzvXDh/gTr7z5FZsx4FuQfQ1irky3YX8Eh3IGBnTQwojvoV0uysJVZKgaH05o4eHqeITvUrdZ9lYSEFFha0OneZLJ0liW5O6JQz2Q4+WBQqCvOOYmnTEa2VN06XNtPmVCz7W9vR1N2VnRfNn/s+e12DcqzNr66DS5znktMOZtrOJ8fgQGpeU3adG0Sa452VtzwLDtFk53J+82rD1rYdqZfW1LTPPiOZdgc+RAOseU7LjpaONLzmTcfUl7DP/BGb86c55eFCgZMzDtrXae22jy4vFMKOOSUv2KUBjNkH34yGy8dB7w79/g525kusR0ZG8ttvv7E1rwGtU3bjnX0eL00OXdJP8YtdXX6zcOaFptCGGKjdAv6yq+S5yvDOyQssT77KRO/aTPMtuaqXeLQsO3+Z5Reuci4nDwsNDHR3YVXqdab7eDChfsW/O0oj+dL9k3xJVIUHkS9JTykhhBCPlNjYWE6cOEG7du1IS0tj5syZAKYu7g+bi4sLW7ZsYfHixezZs8f0h7wQVeHAgQP4+/ub3hcNoxs2bBgrVqwgNTWVc+fOmfbn5eUxadIkkpOTsbOzo1WrVmzZssWsjoEDB3LlyhXef/99Ll68yFNPPcX3339fqQapR4ex0UmnMaa2WjS0PmVptq+IPjuXW7bGXkpp+cb/J3lkct0hn1Zn9Fjna7AuyEPnYOBmvh1H6rmZjs3mFmQfMc1lhdYeraUntsoKLbD+qVwKNQlwsbnZOfcEHSEgMwuPi8+QmtvEbN8B3/W8onXnuawcIp0v8c+NC7hcuxP5Vg5olOKqq3GuKkPBQTY3O8zWM2k4a7JIjvck93QuOQ4WRPTScLa+PWmWGVxxOsZ1r1ie3WVBM4yT5RZqjHNunbzWFK8T+/Ay2KDTO0LmZeg8EXZ9CtfPGHtP/brOGNjlY5C0E5r1LfWOFx8mUuNcJucLW5IFoIdC325wNuaee0qJ6mVe0iXSbg/de9fXk99yjMNn81TJxQjEgyf5knhcSKOUEEKIR05ERAQJCQmmoUUxMTHUqlV1KzjVrFmT999/v8rOL0SRF154odyhCStWrDB7P2XKFKZMmVJhvWPHji1zuF51YKExNpAUas1TWwOK0955NPrN2PjUJeE8+pw8fmjRAIMFxGT6Yk0BuZYGjvilccQvjQYXbbjgks2rB9yxuln+ea/pb3DL8Re0tfexoI3ijKeGT3GgdcZN/M7b45BjRapLNj84OfIvJ0ciCn4kzpCCRlOIrsCBw54/c9OmENBx+vZkxlueKqDPge2mc/j8Zvz/FSdj41otrXFooUfz3/imgwP/0Ttw3FpH4xwDabcvP8Fax1MWhabmOEuDASwgu1DP5iPdaGRjSY+XG8Aztyci3vWp8f9bwswv0FDaNO23FZueKtmrK6dr9iQ/MxryjpJfcPvMeVmlH1uGoqlwZBhH9VA0d9TcxnUZ6O7CzDPGuWpk+N7DI/mSeBxIo5QQQohHytNPP83BgwerOgwhRDWiuf03sJ26M1xEU/ciUc3ysM7X0ui3OujyC3DMySP6KQ05Tq7obl7BOts4Ebm6vZKR9y1vrtVII1eXw6VaudS5aRyK8PRvqdS8lcOt2lbsda2Ds4OWhrrf0Ne4xgZNAAbDKHJrHQSOAHDYL43Dfmk4ZliSY32n18ghB/jF5Vua5ubxm5UVWdqSwwq/66oY4HGVaxYWWPy3Bla3G39O1LlT9oaqQaTejcha2aZtftmKFCsDtyyM15JnqSnWumN+nozCWmBpe2fDy0thfWjJG1tOA6im2K6826sZcrtx8PzNa7ePL0Q8pn54ByxeAgtbuuyYhmXwJ1jl3AQgvaCQlw+doq2TPe82KHvyaPH7SL4kHhfSKCWEEEIIIaqhO60iGowNMVqsaFo3g4LMHLa6elNocZIsi0L+0zWZpy44cMlNS0wLHS0u5eB7805Nllpb/pD4B/K0eex1M05WG++dwW+2BdS3VrzhdxpDgRYLnYEu2kTSnLvidDOJXw2dQQNXtOncwLxX0OAbfVhVYxMuOS5oCjVcs7nGydu9oSiog73KJ8vmBgD+1+qyteZ5AGpme1HPPoV6wP5+bfnG4gS79DakukCrnFyyNBp22TgQ6WpskPLItaZbzhWG37rFGTtXjlsYz2HQgsa0KuEtamnSyDY43b5zGrAq1ij11B+hbju4HG9siDqwHM5uM67Qd/ddNzVUadFos+76JIyNUreybt+LexzGVdR0JlPeVgNH/o16+iXj10kx8LE3Nt7Dof5rrEwxNkr+kpYpjVJCiAppqzoAIYQQQgghKkuVMrhL3W7NsFAW7HPowqHa3XHMbkHg6QG8kNyLhqoh7awH8m1HLbku1jR5pRO+NZ7nsruOww1vcqW2JRo01LCvgU2hsXdUinUBp+pmUEt3A60lWNoYyNDaA2B/6xgArgZvPPOME3JbGcyXNW9e6Meztp2pd7051oXG4YMHHI4DkFfoQOurbeh8vS3NbjTDIeMpnrnyDDVzatL8t4GmOp7VxhCmrjAizwI0GrK0Gt50q8V0jzs9n9qm12bq9ZvULixkwK1buBYYG4IMmju9mXKUDcNdXyfQuWiFKQ1Y3TWJdM0G0DTIOIfU7R5P5TUqaQBr7fVi7zCtDph52pZd6cNQMozr8VWQQ7FmRAA8cyu3gqMQQhQnPaWEEEIIIUS1VtT04aCxIcMyA1vs8HJuQsGvruhtsumWHsRlD+Ok24V5+QTtact/Gmxmv+MNrtik4ZdmnMzc3sYe1xxXzjucN9XdsMB43EVqcQlXWnMcy8KrAFgavNDe8MNV+WHrkGQ6RqM0uF5xp82pARRYZnBAt5YU+xTTfvt8B5zyneh/5XnSNFmcJw3nbHcC9P24kekAevPry8v3BU5zWqfj9O3OVvVyPaibWxubW3U5qUmmAUn0S88k4MaLrM52p/DSnXmpFBq0GgMaDKb3WJWzMtbtxqXyht+9eOoXvLIyuaq3uzMZVNHzboMiLutlGuQewb3ss5Q87e1GDmnKqgby7wwd1fi/Cztm0jzjdBUGJISorqRRSgghhBBCVGv5tyfk1rhbs9VmB0MPzqTwgg4NYHDMhzzQ3MoHZ8jR5PGR4W/scoszHW9TYOw1lH4xH28LbxxyapKnu04rw2/43KjPLza3OEpjbMmhpTqBVqMwKFvyDE3xfbY2bg2dydzzFA43NCitgdZZjbAtcAAKQWnwueWDTaEN+dp8rAxWvJz+HDVtXPDKcSQ/twb52R7U9bTnD0PbEO+Twondf6AJXwOQZ7DhakFznHKvkGZtnOTcutCKeUlvYW+wZbn1T6ziZexPHaata3v8bDrT2wouG7K5xAHjBSowWDlCTtFbDeg9yr6h2rJ7SuUZjCus+dy4SJ717WK326Jsc65RfL29jALnSnx6JUmj1COuMB8M+cbvI4BWA0CTw1Ob32LdjX+z66lxzP/tEg4WMihHCFExaZQSQgghhBDVT7GWi3yVC0B6ciZe+X5YGnTkZm7CkHcSW+tGYPsyhrQcqGssv8sxDoC66b445NvR8FprbHNrYWHQket4E9d8R8h35Br1qfHan/jX6n+ZzvWfwg/oXOCNwoECZY3W2oIWz3vRuMP/cfrTA1ikGcjPM3Ay19jLSKMs0KLFK8sLAAulpVlBPayyLAFFcvZ6KLhM3Ua9sLZtz9M960HPSHLSF/HpgTnUWvs02U7naXmhL9/lNcbB8gZvWGRhbyiaE0phHEalwUnnYIrT2cqVy7fvkQa40WYmmrgdcBOUvRu4+JR9b4t6SpUyp1ROQY6pziIFOg0WQI0bJ8mooUWjz4VCyCpwLPscpZ32nkqLKpGeCukpZps0Go3pe6ZL3m/U9XBh/m+XKJTWRSFEJUjztRBCCCGEqNYMt1szCtLO0f2YP3kZG1B5CWhQqOvGycTtlR1ueS6mY3RaHVNbfEDXk6Oofe1ZHDJ8sM5xxVVfh1oubtR0qUWHDh1o0KgBQS+9RCMPN1rZu/N0QSsM1OKahQWHM9OxsDKm01Y6HU2ndKLRrC5su1VASr6iSScPLAw2OGQ0wCotA93VVLrlNMUKC7g931JGxnVybqXz67Zos2uycbRnygsfkKsc0ac1Qp9eH7BEm1eDRtn1yNIXkJRx7M6k4Bo4nx3PL5f/S6EquNOwBKAUWd7BaPp8YnzvVK/8G2oavlf+ROXFp5o3264xHlegzOfZqpDm7nrFI+fLnvD3FwFQmmKfe7HvGa2maBimfJJCiIpJTykhhBBCCFGt6WyNE5BrFBgKEjHk35nbxnB7XiQHSyeWnn0Xg0axvfBbuk+fhK+zL+2ezeOX9WfJzynAqbYdzwT0wEpnYVZ/Da0i9efNaNCQbh3LjdxUDLfnZ2p8aSTQyKz8n/7akVvXskm/msOJ3anY3PJEc3MNAC7WNlCsrSbfYOzlVZiXV+K6tFoN1naW5GaBVVYm2NhTaMhhx/l/Fgvu6dtfaDh9+RwA7nbeeGo0aIqvYlf8y4raCspplLqzMl7JSu40UajbZaXv02Pn5jnTl+r294kGzIZ8FjWHSk8pIURlSE8pIYQQ5Ro+fDgajQaNRoNOp6Nhw4bMnDmTgoKC31Xvtm3b0Gg03Lx588EEWgmJiYkMHjwYT09PbGxsqFOnDsHBwZw4ccKs3MaNG+natSt6vR47OzueffZZVqxYYVYmKSkJjUZDXFxcpc//wQcf0KRJE+zt7alRowbdu3dn7969ZnWOGDECHx8fbG1tadCgAWFhYeSV8sfq3aKiomjdujV2dnZ4eHjw+uuvc+3atUrH9tFHH6HRaJg4caLZ9jNnzvDKK6/g6uqKo6MjAwYM4NKlS2ZlZs2aRadOnbCzs8PZ2bnU+ou+h4q/vvrqK9P+r7/+mh49epjO07FjR3744YcK4/7666/p2bMnNWvWvOfPQ1R3d/phWFgbW3k0SkMtrzsNKT4dOpBdmGHsOQTYKhtsCnVYZhdQmxokxR3k8tl4urxan6YdDdRwTUGjKdkQk3H9mumM13KTTQ1SANnpqSXKO7naUqeJC5a6olQ7/05ddTO5mnOBWxY3OXFzLzmFmQAU5OeXqAeg+2vNaP6cJ/b62/u15g1mVta6EsdoyAeN1tRIpLl9pzTa2z1YKmqVKmdOqXKpov8Z7utw01pu0pjx6CpqsBx3CLS3f+6KbzcUYnG7p5ThCespJfmS5EuSL90faZQSQghRocDAQFJTUzl16hSTJk3igw8+4JNPPqnqsEwqk4Tk5+fTo0cP0tLS+Prrr0lISGDNmjW0bNnSLNFbuHAhwcHBdO7cmb1793LkyBEGDRpEaGgob7311u+Ks1GjRixatIijR4+yc+dO6tevT8+ePblyxbiM9okTJzAYDCxbtoxjx44xf/58li5dyttvv11uvbt27WLo0KGMGDGCY8eOsXbtWvbt28eoUaMqFdf+/ftZtmwZrVq1MtuemZlJz5490Wg0/Pzzz+zatYu8vDyCgoIwGO78tZmXl0f//v35y1/+Uu55IiMjSU1NNb1efvll074dO3bQo0cPNm/ezMGDB/H39ycoKIjY2Nhy68zMzKRLly58/PHH5ZYTj5FS/s4t2qRVcOnsUQBq1qnHKxPf4fnhr7M35zuSVDz5DWDP5W/Jy83iX9Mn8p/ZYayb9S4Lhr3Kv2e+zX/nf8Rnf3qFqLff4HD0Zm5dv8re9WvZ9s/lADTt8kKJcxfmZ5XcVpDP4ejNJMb+iKHgCqg7DU6F3lp+So1i8+llHL6xDQtL48CFgvy8UhuL6resxQtDmtDk2VrGDZZWjI1cw9A5Cxn/j3VYWBobBtoG9+Op+o3ofPI8kAdo7twYZWxQKxptVemeUqXMKVXGAbf/e7uH1O3/G+RPjceXzsH8R1EjPaVA8iXJlyRfuh8yfE8IIUSFrK2tcXc3Luz9l7/8hW+++YYNGzYQGhrKhAkT+O9//0tubi5du3ZlwYIF+Pn5AfDbb78xduxYdu7cSV5eHvXr1+eTTz6hWbNm+Pv7A1CjRg0Ahg0bxooVK7h16xahoaGsX78eR0dHpkyZwrfffstTTz3Fp59+CkD9+vUZMWIEp06dYv369fzhD39gxYoV7Ny5k+nTp3PgwAFq1arFK6+8wuzZs7G3t+fYsWOcOXOGn376CW9vbwC8vb3p3Lmz6TrPnz/PpEmTmDhxIh9++KFp+6RJk9DpdIwfP57+/fvTvn37+7qPgwcPNns/b948li9fzpEjR+jWrRuBgYEEBgaa9vv6+pKQkMCSJUuIiIgos949e/ZQv359xo8fD4CPjw+jR4+uVOKRkZHBkCFD+OKLLwgPDzfbt2vXLpKSkoiNjcXR0Thh8cqVK6lRowY///wz3bt3B2DGjBkAJZ6O3s3Z2dn0fXS3os+2yIcffsi3337Lf//7X55++ulSjwEICQkBjE9NxZPLNK1SseFiOjs7NBoNTwX04amAPgBcSz5P8pZTULIdyczFM6e4eOYUFiu/oLBYDyYHl5q4NfwjV5J2oApSAQPJx7eSefN17J1rcGrfbk7v20N8zFaz+mydWgJgYWWNtZ29+T69Ixk3roNSGAoLsLC0Ij8nh+8Wz+PW9at4t3yazgOGYMjPB6xRaLC2s8fV2zhRueZ2S1OLF3qguZrGlezvuA5oivWUut0qZSpbYQcWTcU9pUqtwtRTqmj4ntb44WgqN4zP1FPqCethU60Ua9Es+pzMekqpQtOcUsbi6s733RNA8iXJlyRfunfy+EIIIaqIUoqsvIKH/qpw2EYl2NrakpeXx/Dhwzlw4AAbNmxgz549KKXo3bs3+bf/iBszZgy5ubns2LGDo0eP8vHHH+Pg4EDdunX5z3/+A0BCQgKpqal89tlnALz55pvs2rWLDRs2EB0dTUxMDIcOHSoRQ0REBK1btyY2Npb33nuPM2fOEBgYSL9+/Thy5Ahr1qxh586djB07FgBXV1e0Wi3r1q2jsLD0p//r1q0jPz+/1Cd8o0ePxsHBgdWrV//u+wfGp2Wff/45Tk5OtG7dusxyaWlpuLi4lLkfoGPHjpw/f57NmzejlOLSpUusW7eO3r17VxjHmDFj6NOnjylhKi43NxeNRoO1tbVpm42NDVqtlp07d1ZYd2nnqlWrFu3atePLL78s93vRYDBw69atCq9dCLjzx7Ff2w74PvMsrvXq80yvviXKWemszd7bOjoR9MY0fJ5qQ4O2Hej3zl/pN32GaX9Rg5STW20adehCy24BdHilOx6NX8fKPshU7t8zprNj1Qo2zP2wRIMUQHaasfeWjb0dDZ41/yPNoWYt09cFt3sx/HY0jlP7dnPx9En2frOG5RNGkZedeftazf/AL/qDv/jPk7GRQHNn2F7RjqJ2g4r+HSjWwFBmkVLe3T2nlAHtfY3FkyapaqBYQ5NGg9mQT4ti3xwPordUVeVLDyJnknzp95N86fHPl6SnlBBCVJHs/EKavV/xGPAHLX5mAHa6+/v1r5Tip59+4ocffqBXr16sX7+eXbt20alTJ8A4Tr9u3bqsX7+e/v37c+7cOfr160fLlsZeAr6+vqa6iv7xdHNzM42rv3XrFitXrmTVqlV069YNMHZh9vT0LBHLiy++yKRJk0zvR44cyZAhQ0xj/P38/FiwYAFdu3ZlyZIleHl5sWDBAqZMmcKMGTNo27Yt/v7+DBkyxBTXyZMncXJywsPDo8T5dDodvr6+nDx58r7uXZGNGzcyaNAgsrKy8PDwIDo6mlq1apVa9vTp0yxcuLDcp34AnTt3JioqioEDB5KTk0NBQQFBQUEsXry43OO++uorDh06xP79+0vd36FDB+zt7Zk6dSoffvghSimmTZtGYWEhqakl59Epz8yZM3nxxRexs7Pjxx9/5P/+7//IyMgwPa28W0REBBkZGQwYMOCeziOeHMUbRYr687h6efNKUOnfUwD6mrXwbvU0544eRikD9Vs/Q6MOXWjUoYtZuXYv92ff+rUA1GnaggHvf4hGa2yoqeEOfm1rczbOhy1//5VbV85wPeUC179dZzq++8j/w9G1Nk5u7kS+Mdq03atxM/Qutfi/v69i37fryM/NpXnXF1n1jvF32Z51q6jt05DcLPOuXGmXL5GVdBaoXfI+FG+UKj4+T6O9a/ged1ZFq+jv7ErMKVV+FUXD+LS366jcc3ANT06PmupLlfIVd773DOaDNgtRWP7Oz7Wq8iW4/5xJ8iXJlyRfqjzpKSWEEKJCGzduxMHBARsbG3r16sXAgQMZPnw4lpaWZl2za9asSePGjTl+/DgA48ePJzw8nM6dOxMWFsaRI0fKPc/Zs2fJz8+nXbt2pm1OTk40bty4RNm2bduavT98+DArVqzAwcHB9AoICMBgMJCYmAgYnzxdvHiRqKgoOnbsyNq1a2nevDnR0dEl6i+LTldyUuG7RUVFmcURExNj2ufv709cXBy7d+8mMDCQAQMGcPny5RJ1JCcnExgYSP/+/c3mOiheb2hoKADx8fFMmDCB999/n4MHD/L999+TlJRk2h8TE2N2XFRUFOfPn2fChAlERUVhY2NT6nW4urqydu1a/vvf/+Lg4ICTkxM3b97kmWeeQau9txTivffeo3Pnzjz99NNMnTqVKVOmlDnPxqpVq5gxYwb//ve/cXNzq/CeiieZKvZfsNSW/8ejRqvl1Xf+yhur1vOXz/9FrzFvllruuT8OY9zKtYxbuZaBH3xkapAqzvcpN/q+MRZndw/snJxx82lAC/+e9Js+g9Y9euPzVBtquHvQ8NkO2OodadK5Ky+9MQ0wDtnr+qfX6T7iL3g0bIyNgx6Ag5u+ZfOiufz05RIAmnftTs069QC48lti0VWYX5NZT6ni+zTmE52rYnsr7ClV1MBQ2TmlzOs1zSmlLO5ptvPKji4UjwLNnWGzaMyGfFoU60VleMI+TMmX7pB8SfKlypKeUkIIUUVsrSyInxlQJee9V/7+/ixZsgSdToenpyeWlpZs2LChwuNGjhxJQEAAmzZt4scff2T27NnMnTuXcePG3U/oZuztzedlycjIYPTo0aU+SapXr57pa71eT1BQEEFBQYSHhxMQEEB4eDg9evTAz8+PtLQ0UlJSSjxtzMvL48yZMwQEVPyZ9e3b1yz59PLyMou7YcOGNGzYkA4dOuDn58fy5cuZPn26qUxKSgr+/v506tSJzz//3Kzu4qulFM1bMHv2bDp37szkyZMBaNWqFfb29jz33HOEh4fTtm1bs+Nq167NTz/9xOXLl3nmmWdM2wsLC9mxYweLFi0iNzcXCwsLevbsyZkzZ7h69SqWlpameQ6KP8W9H+3bt+evf/0rubm5Zt3dv/rqK0aOHMnatWvNusiXd0+FSLm9gp1WU8keOVotdk7O5ZbR2dhWWI97Az9GfPZFuecJfuvdCuvpM+4tzsYd4PCPmzEUGy5Ts249atatx45/fXlnEvG7/sApapQqPpmuMp4czV2NT6ZReZWeU6qyLQqlD9+701NKPM7unlOq+BRShgcxZUAV5UtF574Xki9JviT50r2TRikhhKgiGo3mvofRPWxFiUFxTZs2paCggL1795q6o1+7do2EhASaNWtmKle3bl1CQ0MJDQ1l+vTpfPHFF4wbN870BK34fAW+vr5YWVmxf/9+U2KUlpbGyZMnef7558uN8ZlnniE+Pr5EnOXRaDQ0adKE3bt3A/Dqq68ydepU5s6dy9y5c83KLl26lKysLIYOHVphvXq9Hr1eX6kYDAYDubm5pvfJycn4+/vTpk0bIiMjSzxhK+36srKysLQ0/16ysDAm0kopbG1tSxzXrVs3jh49arbttddeo0mTJkydOtV0fJGiLvM///wzly9fpm/fkvP13Iu4uDhq1KhhlmCtXr2a119/na+++oo+ffqYlb+XeyqePFnKuOS6g5VDFUdyf+o/1Yb6T7Wh/csDiP5iEbmZmfg83ZY2fYLRai1o0zuY42eS+ceXR9Hc1fBW9Dui+PC9ojmlTJQy2/8g5pSiRM+su9/de6PUnZ5clT5EVBWNxvxjKj6nVLHvhAfRJCn5kuRLIPnS45wvVY+fbiGEEI8cPz8/goODGTVqFMuWLUOv1zNt2jS8vLwIDg4GYOLEifTq1YtGjRpx48YNtm7dStOmTQHjSi4ajYaNGzfSu3dvbG1t0ev1DBs2jMmTJ+Pi4oKbmxthYWFotdoKV++ZOnUqHTp0YOzYsYwcORJ7e3vi4+OJjo5m0aJFxMXFERYWRkhICM2aNUOn07F9+3a+/PJLpk6dChifEM6ZM4e33noLGxsbQkJCsLKy4ttvv+Xtt98mPDycFi1amJ03ISGhRCzNmzfHysrKbFtmZiazZs2ib9++eHh4cPXqVRYvXkxycjL9+/cHjAnWCy+8gLe3NxEREaalj4EyV2EBCAoKYtSoUSxZsoSAgABSU1OZOHEi7dq1K3V+CTAmLXdfi729PTVr1jTbHhkZSdOmTXF1dWXPnj1MmDCBN954w2yIwLlz57h+/Trnzp2jsLDQ9JSxYcOGODg48N///pdLly7RoUMHbGxsiI6O5sMPPzSbIHXVqlUMGzaMzz77jPbt23Px4kXAOEmsk5NTmddedN6UlBTgzufh7u5e7j0T1d/dvYAAghoElVKy+rB3rsHLk98rsV1rYYHj7T907l6ZrrQ5pRTqdk+p22XUXROeP4A5pcpzv8P3xCOujMZMs55ShkK0ZhOdSwuj5EtGki9JvlQWaZQSQghx3yIjI5kwYQIvvfQSeXl5PP/882zevNmUYBQWFjJmzBguXLiAo6MjgYGBzJ8/HzB2J54xYwbTpk3jtddeY+jQoaxYsYJ58+YRGhrKSy+9ZFri+Pz582WO4y/SqlUrtm/fzjvvvMNzzz2HUur/2Tvv+CjK/I+/ZzfZ9EICgdBS6CAgTZqU0BJQxDukCEdRQOKBFBEBCwFFOZCAtAPxFLg74PyJiohYAgqGIkoTBQkktAChQxISkmx25/fH7M7uZEtCTYDn/XoluzPzPM88M7ObfOcz30KNGjXo168fAFWrViUyMpLp06dz4sQJJElSl8ePH6+OM378eKKjo0lMTGT+/Pnk5ChhQWvWrKF///4O+3W2Lj09napVq2rW6fV6Dh8+zMqVK7l06RKhoaG0aNGC5ORkGjRoAEBSUhKpqamkpqY69Hfn2TB06FCys7NZtGgREyZMIDg4mE6dOpWoxHFxpKSkMGXKFK5cuUJkZCSvv/665nwBTJ06lZUrV6rL1pLEP/74Ix07dsTT05PFixczfvx4ZFmmZs2azJ07V5P7YdmyZRQWFjJq1ChGjRqlrreWvnbF+vXree6559Rl6/VISEhg2rRpt3PogjKKrMkjZbv5qhlckyAv1wb5g0LRPwVaUcq+ka36HnIeF44fovojjW1t3aF6SrkTlCRkyfa+yCwtv2/NU0rIGPcDRTylXOWUuqdzKrsIe0nYSyDsJVdI8p2oDf6AkpWVRVBQEJmZmWocqkAgENwKeXl5HD9+nKioqGKNBYGWnJwcqlSpQmJiIsOGDbvn+79y5QqdO3cmMDCQb775Bl9f33s+B8G9x913VtgHWu71+Vj2r2WcPX2WaruOk10hClP+bg5H3KBe3yd4ubnzxOUPAqev5vL4rB8xeOg4MqO7un7BggVcuXKF559/Ht/vvuNi4lyudBpMlZwATh5azu7ocLJ9jLR6rB+Pdu/NZ7P2EBDqzeB32rje2TeTYdcSePxl6JKg2TRvyTwyz2dS+6c/yfe5xBV/HzwDYtB7NKHKkVmkVfDEHFYZX2N/6vpspvO7E8EnuETH+E7aWRaeusALVSvwVq2ynwflocNshrfKKe8nHqPSL+kA/N62ARVOboVVvaFSQ+SRyYRv+c22zeDpakQHhL106wh7SVAa3Al7SVTfEwgEAkGZYt++faxZs4a0tDT27t3LwIEDAVQX93tNSEgImzZtonPnzuzcubNU5iAQCByx982p5uH/QAtSYPOIKupGZO8ppQnbkSR0lmfPATdAn5Vpq8dXbKJzN55SasU1+0Ek7TprFT75Vj2lxDPzMk/REDGdLYu+JElapz3BXUHYS4IHhTIlSi1evJjIyEi8vb1p2bIlv/zyi9v2n376KXXr1sXb25uGDRuyceNGdZvRaGTSpEk0bNgQPz8/KleuzODBg9UYSoFAIBCUXebMmUPjxo3p0qULOTk5JCcnq4kjS4PQ0FCmTp1K586dS20OAoHANZ4lrLp3P+NKsHGWU0rZoFNFKd98meBtW+2q7xWjFOiKT3TudATrSss0zLdYfU/oGGUV25Vx+AzZ5ZQC1LxSJnE17yrCXhI8CJSZnFKffPIJL7/8MkuXLqVly5a8//77xMbGkpKSQlhYmEP7HTt28OyzzzJz5kyefPJJVq9ezdNPP83evXt55JFHyM3NZe/evbz55ps0btyYq1evMnbsWJ566il2795dCkcoEAgEgpLQpEkT9uzZU9rTEAgE9xHu0/o+GKiOUu5ySlnXWQQqndnisSRJ6PNuqNuL9V6xqVclm5xcdNFseb1JT6liEjQLShm7z4PWT07S5JQC0CNhQsYsNKm7hrCXBA8KZeaxkjWB13PPPUf9+vVZunQpvr6+fPzxx07bz58/n7i4OCZOnEi9evV4++23adq0KYsWLQIgKCiIpKQk+vbtS506dWjVqhWLFi1iz549nDp16l4emkAgEAgEAoHgrvDw3PFaA6KKHrFWlLJrY+cpZZYkJLPJLgSwuETnFoHB7NpTSovOMkftuPJNVt8TIV/3EXYCoqb6nsW7Tm/1lBIXUyAQFEOZEKUKCgrYs2cPXbp0UdfpdDq6dOniMh51586dmvYAsbGxbuNXMzMzkSSJ4ODgOzJvgUAgEAgEAkFp8XDd7OpUPamE4XtIiscUiiiFyVRyB6gSVN9z6tNkHde631sM3xOUVZx7SgGg03pKWT+XSZezOHkj/x7MTSAQ3K+UCVHq0qVLmEwmKlasqFlfsWJFzp0757TPuXPnbqp9Xl4ekyZN4tlnn3WZ+T0/P5+srCzNj0AgEAgEAoFAUOpY8zS5C9+TbJmnJL2hiKeUWR2k+JxSVoHB0VPKmtPK2QhF817ddPie2l9Q1pHtZElJwiZk3rgK2+fjZfnsvH70DE/sOYpZeEwJBAIXlAlR6m5jNBrp27cvsiyzZMkSl+1mzpxJUFCQ+lOtWrV7OEuBQCAQCAQCwa1wS5mI/vgM9qy801O5a0gujtJpTilkdOUiOd/qEWWbJCGZTA4F01zvrHhPqaKz02IRw24yfE9QxnEhLEkABj9l4cZVSJrK5OMf0jJIWXfJWIhRiFICgcAFZUKUKl++PHq9nvPnz2vWnz9/nkqVKjntU6lSpRK1twpSJ0+eJCkpyaWXFMCUKVPIzMxUf9LT02/xiAQCgUAgEAgEdwOr+HLLt7j51yH7HKx9Hr4aA9nni+9zJ5Fl+O512LfqprrZC0oaAcqyISsry04bkpAkHRkdmwNg1knsqBTA6UN7lf7F6UQlzCnlkN9KndeteUq5GldQ9pCLCpFh9aHTm1C/FwBDTn3C6kbR6maTuKgCgcAFZUKUMhgMNGvWjM2bN6vrzGYzmzdvpnXr1k77tG7dWtMeICkpSdPeKkgdPXqUTZs2ERoa6nYeXl5eBAYGan4EAoFAIBAIBGUPSeN5UUIXoMJ8WNgUEuvY1hVcv6PzKpaT22HnIvjy7+7bnfoZvn8Djm6CzDOaI7Q/dJ1OMee/+uorLhYUaBroPA0UeBQCkOup59je7ZbNxSU6tyawciMolcDzxYwefvtEEQJvAqFflFXceEpJErR/BeJmWZrK6O2UVJHwXCAQuKJMiFIAL7/8Mh9++CErV67kzz//5MUXXyQnJ4fnnnsOgMGDBzNlyhS1/dixY/n2229JTEzk8OHDTJs2jd27dzN69GhAEaSeeeYZdu/ezapVqzCZTJw7d45z585RYP2HLRAIBAKBQCB4eMi5CNeLeEbda1EqP9v23uxG9PkiHnYshFW9YVELJLt+9rf3rVq1Ut//7+xZMuyiBiS9jl/qnyH6wlXL7kpYTa9I0uriUcQHB08pWQdb3oWlj5dIxCpxeKGg1HHwlLJil9fMXpQqFKKUQCBwQZkRpfr168ecOXOYOnUqjz76KPv37+fbb79Vk5mfOnWKjIwMtX2bNm1YvXo1y5Yto3Hjxqxdu5Z169bxyCNK7PyZM2dYv349p0+f5tFHHyU8PFz92bFjR6kco0AgENyPDB06FEmSkCQJg8FAzZo1eeuttygsLLytcbds2YIkSVy7du3OTLQEHD9+nAEDBlC5cmW8vb2pWrUqvXr14vDhw5p2GzZsoEOHDgQEBODr60uLFi1YsWKFps2JEyeQJIn9+/eXeP/Tpk2jbt26+Pn5Ua5cObp06cKuXbs0Yw4bNoyoqCh8fHyoUaMGCQkJJXqYsmrVKho3boyvry/h4eE8//zzXL58udh+Z86c4W9/+xuhoaH4+PjQsGFDdu/erW63v/7Wn7i4OM0YkZGRDm3+8Y9/qNtTUlKIiYmhYsWKeHt7Ex0dzRtvvIHRaNSMc+3aNUaNGkV4eDheXl7Url2bjRs3up3/559/Trdu3QgNDb3p6yF4gCipmGF28ncrL8u9OFS0bV4mFN7GA04PL9t7d4LY1eO298YcpMxT6qK9p9MjjzxCjx491OUcPz/1dEgy5BtkfAosx20RmeSi2dKLctM5pbSoIZY6y7FePV5sKCDYJToXAkbZxO66uPZTVMtEorfb8DCE7wl7SdhLwl66NTxKewL2jB49WvV0KsqWLVsc1vXp04c+ffo4bR8ZGSn+oQkEAsEdIi4ujuXLl5Ofn8/GjRsZNWoUnp6eGg/W0qSgoACDweC2jdFopGvXrtSpU4fPP/+c8PBwTp8+zTfffKMx9BYuXMi4ceOYNGkSS5YswWAw8OWXXxIfH88ff/zBnDlzbnmetWvXZtGiRURHR3Pjxg3mzZtHt27dSE1NpUKFChw+fBiz2cwHH3xAzZo1+eOPPxgxYgQ5OTlu97t9+3YGDx7MvHnz6NmzJ2fOnCE+Pp4RI0bw+eefu+x39epV2rZtS0xMDN988w0VKlTg6NGjlCtXTtPOev2teHl5FR2Kt956ixEjRqjLAQEB6ntPT08GDx5M06ZNCQ4O5rfffmPEiBGYzWbeffddQLmGXbt2JSwsjLVr11KlShVOnjxJcHCw23Oak5PD448/Tt++fTX7FwicYhVGDAEQWgMy9sPKJ0HnCT3fhyZ/c913/Uuw99/Ke68geOFHZYzbYV4DCKgElRpCUFXoMBkMvpZ9BEJ+Fui9wJSPtGYAkAg4BlE99thjHD9+nD///BMku+2FRgr1Ng8ms0V8K9ZEdpdTymlfye63rZG50qOQb11lJ3CZLDfp+jJ1KyK4Gey8oCR7Fzc7TymdJKEDzDw84XvCXhL2krCXbh7xn0AgEAgExeLl5aUWknjxxRf54osvWL9+PfHx8YwdO5avvvqK/Px8OnTowIIFC6hVqxYAJ0+eZPTo0Wzbto2CggIiIyN57733qF+/PjExMQDqP/QhQ4awYsUKsrOziY+PZ926dQQGBvLqq6/y5Zdf8uijj/L+++8DyoOHYcOGcfToUdatW8df//pXVqxYwbZt25gyZQq7d++mfPny/OUvf2HmzJn4+flx8OBB0tLS2Lx5MxEREQBERETQtm1b9TjT09OZMGEC48aNU//5A0yYMAGDwcCYMWPo06cPLVu2vKXzOGDAAM3y3Llz+eijjzhw4ACdO3cmLi5O81QtOjqalJQUlixZ4tbI2rlzJ5GRkYwZMwaAqKgoRo4cyaxZs9zOZ9asWVSrVk1jQEVFRTm0s7/+rggICHDZJjo6muhoW8LbiIgItmzZQnJysrru448/5sqVK+zYsQNPT09Auc7FMWjQIEB5aip4eHFVmc4Bq8ii00ONGEWUAjAb4ej37kWpI9/b3udnwtl9JROlLh2FlI2KElQ7VslrpY6TpfxcOqIshzcG31C4mGIL8wurCxm/IRVkqd3c3d/LdmdDOrkds6edB5JVlDIXwoonlf35h0GDv0Kwper0H59DsiJ+kbYZci6Dn4u8rA6nXbYdlwfIeTl2bSzbvhoHeyx/cx4bCT1m2w0n2bcUlDnsPaVcXSXth0IvSZhl+aEJ3xP2krCXhL1085SZ8D2BQCB46JBlKMi59z93wDD08fGhoKCAoUOHsnv3btavX8/OnTuRZZkePXqobsajRo0iPz+fn376id9//51Zs2bh7+9PtWrV+OyzzwDFVTkjI4P58+cDSo7B7du3s379epKSkkhOTmbv3r0Oc5gzZw6NGzdm3759vPnmm6SlpREXF0fv3r05cOAAn3zyCdu2bVM9cCtUqIBOp2Pt2rWYTM7DSNauXYvRaOSVV15x2DZy5Ej8/f1Zs2bNbZ8/UJ50LVu2jKCgIBo3buyyXWZmJiEhIW7Hat26Nenp6WzcuBFZljl//jxr167VhPQ4Y/369TRv3pw+ffoQFhZGkyZN+PDDDx3abdmyhbCwMOrUqcOLL77o1M39H//4B6GhoTRp0oT33nvPbbhCamoq3377LR06dNDMpXXr1owaNYqKFSvyyCOP8O6777q8VgKBFhmuX1C8mTZNUyrbXb/o2MwavqfzgC7TYPIpiLXcUJlcfGaNeXDhT8i1fO4r1LO0L2EI37oXIWkqbEqAtcOgME9ZXy4SRvwIPeZAxYbKuowD8O+n4ZtXlWOS9ND9PWgxAqo9Zne0jn/HNd4qlu2SDLKkvALIVm+lQiOcSFYSridNVRKq/7kB1v1dyWN144rSLvcyHPhfyY4T236sXlHmy2l2UzLDjWs2QQrgz/UlHltQtpBlO08p+w3aMpF4WBZvy1OqtOylO2AzCXvp9hH20oNvLwlPKYFAICgtjLnwbuV7v9/XzoLB75a6yrLM5s2b+e677+jevTvr1q1j+/bttGnTBlDi9KtVq8a6devo06cPp06donfv3jRsqNxw2T/9sRoOYWFhqstxdnY2K1euZPXq1XTu3BmA5cuXU7my43nq1KkTEyZMUJeHDx/OwIEDGTduHAC1atViwYIFdOjQgSVLllClShUWLFjAq6++yvTp02nevDkxMTEMHDhQndeRI0cICgoiPDzcYX8Gg4Ho6GiOHDlyS+fOyoYNG+jfvz+5ubmEh4eTlJRE+fLlnbZNTU1l4cKFxbrAt23bllWrVtGvXz/y8vIoLCykZ8+eLF682G2/Y8eOsWTJEl5++WVee+01fv31V8aMGYPBYGDIkCGA4or+17/+laioKNLS0njttdfo3r07O3fuRK9XQnzGjBlD06ZNCQkJYceOHUyZMoWMjAzmzp2r2V+bNm3Yu3cv+fn5vPDCC7z11luaufzwww8MHDiQjRs3kpqayt///neMRiMJCQnFnlfBw46khNZZw+tAKU0f+y4kz1VuLsPqQo1OyjadxQT2DgLvYOW9M5FJlmF+Y7h+zrYusDJc/FPr8WQldRNsfFXxctIbIHYGZNslVr9wEE7uVN6HREOVpspPxm9w/nc4/hMgK+GBNTtDdAeo3hKqt0SXvBRSLdOa2xDajYbWdhX8nFa4kyyilCXHk9VTqqiLU84l+GSgk/4oyeGtFORA3lVA77AfZ8j2z7+/nwoRRapqZ2co51gqGv4nKJO4EGic5pSytFeSncu3l1OqtOwluGWbSdhLwl4S9lLJEZ5SAoFAICiWDRs24O/vj7e3N927d6dfv34MHToUDw8PjWt2aGgoderUUfKaoPzznTFjBm3btiUhIYEDBw643c+xY8cwGo089pjNIyAoKIg6deo4tG3evLlm+bfffmPFihX4+/urP7GxsZjNZo4fVxIGjxo1inPnzrFq1Spat27Np59+SoMGDUhKSirxuSguFwMoxqb9POzdrmNiYti/fz87duwgLi6Ovn37cuHCBYcxzpw5Q1xcHH369NHE/tuPGx8fD8ChQ4cYO3YsU6dOZc+ePXz77becOHFC3Z6cnKzpt2rVKkDJL9O0aVPeffddmjRpwgsvvMCIESNYunSpur/+/fvz1FNP0bBhQ55++mk2bNjAr7/+qsn1+PLLL9OxY0caNWpEfHw8iYmJLFy4kPx87U37J598wt69e1m9ejVff/21xng0m82EhYWxbNkymjVrRr9+/Xj99dfVubg7p4KHFPsb5JwL8MPb2u2Xj8Evy2D3R4q3z6ZpSlgc2KrLAeiV8AcHUUqWFe8mqyDlHQRNBoF3oPP2ANsXwJU0ZT5Zp+G3T6DwhrbNLx8or56+tnXXLX8Dzlq8HMIbQZ/l0Gyo2kSKtIXOyDkX4bfVtv7Hf4K0TZaGOIgHaviexdtLFaWaP285liICm8GW4wRjnu39b2uce6DZJbdWxrfklLIXr35dZju+4Oq2Ph92gp+XQEGuk3EFZRXZVanEIh571gp8D0v4nrCXbAh7SdhLJUV4SgkEAkFp4emrPIErjf3eJDExMWoSy8qVK+Ph4cH69cWHXQwfPpzY2Fi+/vprvv/+e2bOnEliYiIvvfTSrcxcg5+f9snl9evXGTlypJonwJ7q1aur7wMCAujZsyc9e/ZkxowZxMbGMmPGDLp27UqtWrXIzMzk7NmzDk8bCwoKSEtLIzY2tti5PfXUUxrjs0qVKpp516xZk5o1a9KqVStq1arFRx99pEmCevbsWWJiYmjTpg3Lli3TjG1fLSUwULk5njlzJm3btmXixIkANGrUCD8/P9q1a8eMGTNo3ry5pp+1sm14eDj169fXjF+vXj01VMAZ0dHRlC9fntTUVPXpbFFatmxJYWEhJ06c0BjI1aopOWvq16+PyWTihRdeYMKECej1esLDw/H09FSfJlrncu7cOQoKCtyeU8HDitYjA1D+vnWbAV+/DLmXICtD2yUvU3l1JkqZC+HqSSWP0vdTlcp41hvsio/Ai9uV95+PVF6deUrduKq8RrZTwuMKroOxiCjlFah4R7V60bYuuiMc/c4yNw/Fy6vo0YbVA5QKfDKSNgl5+i9IdiF9kiV8TlfUU+riEfBGiekD8LGEuhTmgV+YIqY1HQyBVWGLJazRaCcWXUu3m5GTEMIiy7JvmHZFziXltVIj8PBWcmmd3av8+JRDCuroYmTBvWbpb0v55dwvAHjrvXmpyUvUC7D9L3Vdfc8Ouwp8ptu5qqVlL1n3fRMIe0nYS1aEvVRyhCglEAgEpYUk3XIY3b3GahjYU69ePQoLC9m1a5fqjn758mVSUlI0/7irVatGfHw88fHxTJkyhQ8//JCXXnpJfYJmHwMfHR2Np6cnv/76q2oYZWZmcuTIEdq3b+92jk2bNuXQoUMO83SHJEnUrVuXHTt2APDMM88wadIkEhMTSUxM1LRdunQpubm5DB48uNhxAwICNNVU3GE2mzVPyM6cOUNMTAzNmjVj+fLl6HRap2Znx5ebm4uHh/ZfutVYkWUZHx8fp/3atm1LSkqKZt2RI0fUxKbOOH36NJcvX3bqsm9l//796HQ6wsLCXLYxm80YjUbMZjN6vZ62bduyevVqzGazesxHjhwhPDwcg8GAwWAo8TkVPCRIoN4aS0Dff0PtOCUP0tcvK6Fhv/+ftk9BjvKqs/u+6C1P800FsPY5OLPHts0qdv3lA9s6D2t7J6JUgSWErmoLRZTKz9aKOqAkFx/8pXZdsyHgGwJ1eoBXQBFvE8sh2mtwACYjnNgG+9fY9otjaJ69FGA9HHWdr1WUKgDJ8remxQhbAnhQRLW0H5XQxLQfAWc5XVxU3zMEa5vlWnJV6Q0w9GvYuVjJK3XlmCIYBmnnKSgdco25LN6vDWeq7F+ZN5qOt1sjOX1b1FPKw7J8W+F7wl4ChL0k7KUH114SopRAIBAIbolatWrRq1cvRowYwQcffEBAQACTJ0+mSpUq9OqlPOUfN24c3bt3p3bt2ly9epUff/yRevWUJMERERFIksSGDRvo0aMHPj4+BAQEMGTIECZOnEhISAhhYWEkJCSg0+mKJPF1ZNKkSbRq1YrRo0czfPhw/Pz8OHToEElJSSxatIj9+/eTkJDAoEGDqF+/PgaDga1bt/Lxxx8zadIkQHlCOHv2bF555RW8vb0ZNGgQnp6efPnll7z22mvMmDGDRx55RLPfokYKQIMGDdSKKFZycnJ45513eOqppwgPD+fSpUssXryYM2fO0KdPH0AxsDp27EhERARz5szh4kVbmIy7ai49e/ZkxIgRLFmyhNjYWDIyMhg3bhyPPfaY0/wSVsaPH0+bNm1499136du3L7/88gvLli1TnzZev36d6dOn07t3bypVqkRaWhqvvvoqNWvWVJ+A7ty5k127dhETE0NAQAA7d+5k/Pjx/O1vf1MrBa1atQpPT08aNmyIl5cXu3fvZsqUKfTr1089Ty+++CKLFi1i7NixvPTSSxw9epR3333X6ZNce65cucKpU6c4e/as5npUqlSp2Ao4ggcHCcC/Enh4QUA4RLW35GdCEUDMJpBNNq8le1FKZxe+Z/WsqtRQEX1qx0JoLahk972XLE+nf5iheP60GA4hNcCYY6uYF2C5Cbl+Xk36raLX/m0AlBvuxv2LOUZ7yUdSKgaueMKuhV2iXqtWp1NK76meUh5etv6SzhJGhyKwWROwe/rYBCqAY1s04p4s2UQph9xURbxhHMQlqyeZh7dS9a/rdLh2ShGlZMfRBKWDSbaJH52qdeKH9B/YeHwjRy7/yVseHkQWFjoVThWKJjp/uML3nCHsJQVhLwl7yRVClBIIBALBLbN8+XLGjh3Lk08+SUFBAe3bt2fjxo3qP06TycSoUaM4ffo0gYGBxMXFMW/ePEBxJ54+fTqTJ0/mueeeY/DgwaxYsYK5c+cSHx/Pk08+qZY4Tk9Px9vb2+1cGjVqxNatW3n99ddp164dsixTo0YN+vXrB0DVqlWJjIxk+vTpnDhxAkmS1OXx421Pf8ePH090dDSJiYnMnz+fnBzFs2LNmjX07+940+hsXXp6OlWrVtWs0+v1HD58mJUrV3Lp0iVCQ0Np0aIFycnJNGjQAICkpCRSU1NJTU116C+7MeiHDh1KdnY2ixYtYsKECQQHB9OpU6diSxy3aNGCL774gilTpvDWW28RFRXF+++/z8CBA9U5HzhwgJUrV3Lt2jUqV65Mt27dePvtt/HyUm5uvby8+N///se0adPIz88nKiqK8ePH8/LLL6v78fDwYNasWRw5cgRZlomIiGD06NGa816tWjW+++47xo8fT6NGjahSpQpjx45VDWBXrF+/nueee05dtl6PhIQEpk2b5rav4P5G0nwlZEWQAuVmedA6yExXVBHfEEW8Ofe7zWtJ4yllFaWMNk+qvv9WEpE744Rdfo5dSxXPrIspcM4uB0ygRZTKLhI+WHTfN4HWU6pI+B5owvdUUal6a+QL+205pUJrQxaADoZ8BQZ/ZUNhvi0c0cPLJryBEtJn5fGXYX8hXHcRYqdW37MmVi/SylrVz3qtNAdmE6WcVRcUlA7+ls9IdkE2+y4dYLOfD8MyszWCo6TxmtJ6Sums4XtFPwsPGcJeEvaSsJdcI8nurtpDTlZWFkFBQWRmZqpxqAKBQHAr5OXlcfz4caKiooo1FgRacnJyqFKlComJiQwbNuye7//KlSt07tyZwMBAvvnmG3x9bz4nl+D+w913VtgHWu71+fjgww/IOJNBxM40MitGYcrfi7nyVSZO+UipsOeMDzvDmd1KaNqvH0LFhvDiNmXbie2woofi7XQlTVn3Sir4V3A+1rKOcHafbblKM23IX8VHYPhm+HwEXFCSGFM7Fg78nyLwtJ8Ind646ePOM5qo++a3ABzwGkZgQBD4lFMqAZavzVpDX/44m0OTvXupWKk5VUNi2NrsTz44v4C3V3qxOzqcCtWjyc5+GoC/L4lBupgC/2wJnn4WwU6GV44qYXpfvKAkPPcKAE9v6P4e1OpC4uJEsi9mU2vrH+T5XeOanzee/k+g96xDrd/f4veq/hT4mQg0KDlb/l7xLzadwjsY8q5By3jobrkJXDsM/lgLsTN5P/yv/OP4OQaGh5BYtzqC0iG7IJs2a5Qws6dqPMX6NFtOpNFXrzHyWhbXJ52l5s9HATjWvhG+eosQmpcF/1Dy4fD6eVrtOcaJGwV81bQWLYKKD8ET9tKtI+wlQWlwJ+wl4SklEAgEgjLFvn37OHz4MI899hiZmZlqGVyri/u9JiQkhE2bNrF48WJ27tzpMlmlQCAoZTzd3MBa80ZZK+FpEp1btmWfs61zl7/mqUWQ9KbiSfXrv2zeVXoDTE63eBpJ0O8/2n4tR8L5gxAdU7LjKYKjp1ShzeOo2ztwIAvO/qEJqZNAk+jcbBdKKMsgeVnyjhhzbD08fW3np0pTGOI8SbPGU80aLmj1kLILx/nq6lTaBqwg1POUgZ4ZMAABAABJREFUIkiBG08pyX44QVmgyMUwO1mtCRZzkVPK+JB7St0NhL0keFAQopRAIBAIyhxz5swhJSUFg8FAs2bNSE5Opnz58qU2n9DQUKZOnVpq+xcIBCXAw50oZRFJCpyE71mTfVuFGYO/klfJFZUegUFfwO9rLaKUZUy9l3thLLi6LYfTLSBps0krOaVMRsu+PTV5ZKzvJFkJ6lNlH7uQP1mWIagKdJluS2we+Th4+duEhaL5sOzQSgySZq3soSco1IfMCzdIL2jCtmyJXiHTbc1D7RIJW0MN3exLcG/RhE8WSU9UaF3h5PPmsGSXJ8wspMa7grCXBA8CQpQSCAQCQZmiSZMm7Nmzp/iGAoHgoUYq6qvhHeS6sdUbypr83F6UCq0Bf/1QCbUzF0J0BzdJnO3HtAhdVjHLWQLzO4hO4ykFmAptFQCtx6dtoWCf6Nxsdmzy+DjHnVlzSt2kUKROUYYn/t6Ibz74g6sZORTIvvC3L5Rz5BWgVCAs2kuWbVrYTe1VcDeRikhO5uKuURFPqaL9BXcOYS8JHhSEKCUQCAQCgUAguG+wpkPVSFJ+5d17N5kKlNfcS8qrRxERp1Hfm5+IVQiyD9+7i9h7QpnRgbnAdlyacDj1F1bpTvVWMduH77mRfqzeS0WSqbvpoPy2G7NcJT9a/6UGG/95QNleoTYEVXXSVetlpcythLsV3HNMaoilnaeUNn7P9tZeaBTXVCAQuECIUgKBQCAQCASC+5viKtpFtIXjWxXhqFpLaP3S7e/T6hlVmGdZvsuilN17GZTwvcICdS6S5NACHdqcUrJZm1PKJTo7T6krxyD9F2W5aguHfTjFMri955TrHdp5SrmZkqB0KOrpZHJykdzllHKUHAUCgUCLEKUEAoFAIBAIBPcpJbzV7fAqNPkbBISDTndndl1UhLrL4XsOic5lM+RnWfbtVWSbcl6yLNttOaWchO853ZnlHJ3+BZb3gOwMZdkvDHzinQxh9ZQqOo7de1ehgM48pdxMTXCPKSJC2RKdu5IQtZ5S1m+buKYCgcAVd+i/skAgEAgEAoFAcO9wEEDcNpaUpN53SpAC0BURoe5h+J566EZLknWDtvS61bvlz8uHlbaWDnJJw/cCKtneWwUpgJwLxbhYyZoX21rJTX4qEd9V1rD/bDh4Sqnhey7aFPWUUnNQiesrEAicI0QpgUAgEAgEAsF9jVSSxOR3GgdPqXsXgCCHWKrX1ewKHadAcHXNOQjyCgRAh6SE71mr4pU0b1PlJtrl0Fo3OUEnLlMuPaXUTnahXkLAKCsU/W6Z1cWSVt9Tls3ikgoEAheI8D2BQCAQCAQCgeBmsU8uDnfdUwoUJxRZBgZvAH+d8+TuEvh6KJ5TUYFRJBu327bZZz0vzjOpyzT4eYmSr6vlSNj4imV4bWU/BZ12UbbOV7ItliCnlKDsUdRTqhC7a+q0g8gpJRAIbg7hKSUQCAQCgUAgENws5WtDuSi75Tp3fZfqDb5e77LaoCID2BKNy9hCHWXZMdG50WQkz5qs3UJejpEL1YbBK0fg5UPwSO+Sza+osKTxqnEhS1jzV8myVsQSlEmsnlKynfjktvqe9e3dnphAILhvEaKUQCAQCNwydOhQJElCkiQMBgM1a9bkrbfeorCw8LbG3bJlC5Ikce3atTsz0RJw/PhxBgwYQOXKlfH29qZq1ar06tWLw4cPa9pt2LCBDh06EBAQgK+vLy1atGDFihWaNidOnECSJPbv31/i/U+bNo26devi5+dHuXLl6NKlC7t27dKMOWzYMKKiovDx8aFGjRokJCRQUFBQ7NirVq2icePG+Pr6Eh4ezvPPP8/ly5fd9jGZTLz55pua/b399tuafCKff/453bp1IzQ01OXxpqWl8Ze//IUKFSoQGBhI3759OX/+/E0f14EDB2jXrh3e3t5Uq1aN2bNnF3vcP/30Ez179qRy5cpIksS6deuK7SMQ3BE8DPDCFhi2SXl9auFd36Uq2ji5w3cWwiihK6IR2Dpez7/OkG+G0HxVc1qsasHU7VPVbT/97wifztzN4vgfWDtrN5mX8u3GdLZzdQ/KYpHqe25zSjlJdC4oOxRkaf9OZ+MohrquvmdbdJvD7AFB2EvCXhL20q0hRCmBQCAQFEtcXBwZGRkcPXqUCRMmMG3aNN57773SnpZKSYwQo9FI165dyczM5PPPPyclJYVPPvmEhg0bagy9hQsX0qtXL9q2bcuuXbs4cOAA/fv3Jz4+nldeeeW25lm7dm0WLVrE77//zrZt24iMjKRbt25cvHgRgMOHD2M2m/nggw84ePAg8+bNY+nSpbz22mtux92+fTuDBw9m2LBhHDx4kE8//ZRffvmFESNGuO03a9YslixZwqJFi/jzzz+ZNWsWs2fPZuFC2811Tk4Ojz/+OLNmzXI6Rk5ODt26dUOSJH744Qe2b99OQUEBPXv2xGxJqlyS48rKyqJbt25ERESwZ88e3nvvPaZNm8ayZcvcHkNOTg6NGzdm8eLFbtsJBHcFn2Co1kLJwXQPckrpSpo02nKjpLNISFKR9QAHLh7gwpEc+u15jWf3vonHlzU5dzwTgKO/2m6Szh/P4sSfWSWa3y1V37ML3ytpZKHg3nHtz2ua5SzJDwBZLln1Pam4cL8HDGEvCXtJ2Es3j8gpJRAIBIJi8fLyolIlpRrTiy++yBdffMH69euJj49n7NixfPXVV+Tn59OhQwcWLFhArVpKUtyTJ08yevRotm3bRkFBAZGRkbz33nvUr1+fmJgYAMqVKwfAkCFDWLFiBdnZ2cTHx7Nu3ToCAwN59dVX+fLLL3n00Ud5//33AYiMjGTYsGEcPXqUdevW8de//pUVK1awbds2pkyZwu7duylfvjx/+ctfmDlzJn5+fhw8eJC0tDQ2b95MREQEABEREbRt21Y9zvT0dCZMmMC4ceN499131fUTJkzAYDAwZswY+vTpQ8uWLW/pPA4YMECzPHfuXD766CMOHDhA586diYuLIy4uTt0eHR1NSkoKS5YsYc6cOS7H3blzJ5GRkYwZMwaAqKgoRo4c6dIwsrJjxw569erFE088ASjndc2aNfzyyy9qm0GDBgHK0ztnbN++nRMnTrBv3z4CA5XkyitXrqRcuXL88MMPdOnSpUTHtWrVKgoKCvj4448xGAw0aNCA/fv3M3fuXF544QWXx9C9e3e6d+/u9jgFDwGlkOe8NJAsYXBuk0bbnQtronOrymP/VN9kMhF9uTFB+RWUFfnw5/azVIwMJLCCD1kXb+DppceYb8Jssh9ejQV0snNt9T1bPiLhKXW/Ihdqr4vJyXVy7Sn18IXvCXtJ2EvCXrp5hKeUQCAQlBKyLJNrzL3nP3fChd7Hx4eCggKGDh3K7t27Wb9+PTt37kSWZXr06IHRaARg1KhR5Ofn89NPP/H7778za9Ys/P39qVatGp999hkAKSkpZGRkMH/+fABefvlltm/fzvr160lKSiI5OZm9e/c6zGHOnDk0btyYffv28eabb5KWlkZcXBy9e/fmwIEDfPLJJ2zbto3Ro0cDUKFCBXQ6HWvXrsVkMjmMB7B27VqMRqPTJ3wjR47E39+fNWvW3Pb5A+Vp5bJlywgKCqJx48Yu22VmZhISEuJ2rNatW5Oens7GjRuRZZnz58+zdu1aevTo4bZfmzZt2Lx5M0eOHAHgt99+Y9u2bTdltOTn5yNJEl5etqTP3t7e6HQ6tm3bVuLj2rlzJ+3bt8dgsCWLjo2NJSUlhatXr5Z4PoKHh4dEh9LiJhTKeQXCognIZXXBjKyE9wGFkvI3+8/tGST/31GM+crfyOCKSsJ0s8n5/w2XjlGydoUSvld8ovOH8pqWcYp65e3xz0eWLWKnM6QinlJ3II99adlLd8JmEvbS7SPspQffXhKeUgKBQFBK3Ci8QcvVt/YE6XbYNWAXvp6+t9RXlmU2b97Md999R/fu3Vm3bh3bt2+nTZs2gPL0plq1aqxbt44+ffpw6tQpevfuTcOGDQHliY8V6z/YsLAwgoODAcjOzmblypWsXr2azp07A7B8+XIqV67sMJdOnToxYcIEdXn48OEMHDiQcePGAVCrVi0WLFhAhw4dWLJkCVWqVGHBggW8+uqrTJ8+nebNmxMTE8PAgQPVeR05coSgoCDCw8Md9mcwGIiOjlYNkltlw4YN9O/fn9zcXMLDw0lKSqJ8+fJO26amprJw4UK3T/0A2rZty6pVq+jXrx95eXkUFhbSs2fPYl20J0+eTFZWFnXr1kWv12MymXjnnXcYOHBgiY+nVatW+Pn5MWnSJN59911kWWby5MmYTCYyMjJKfFznzp0jKipK065ixYrqNusTYoFAe5NcRP14wClJeJu9AKQDjXggyzI6SUKWZcVxSdb6scgy/P7jabW9t59yq2DWODm5CsOzC9+TVVcpu50X7yn1sHnV3I/45Qfx8YW3qf7lcbA42TkXREF7TW/9qpaWvQS3bjMJe0nYS0UR9pJrhKeUQCAQCIplw4YN+Pv74+3tTffu3enXrx9Dhw7Fw8ND45odGhpKnTp1+PPPPwEYM2YMM2bMoG3btiQkJHDgwAG3+zl27BhGo5HHHntMXRcUFESdOo5VrZo3b65Z/u2331ixYgX+/v7qT2xsLGazmePHjwPKk8hz586xatUqWrduzaeffkqDBg1ISkoq8bmwfzLlilWrVmnmkZycrG6LiYlh//797Nixg7i4OPr27cuFCxccxjhz5gxxcXH06dNHk+vAftz4+HgADh06xNixY5k6dSp79uzh22+/5cSJE+r25ORkTb9Vq1YB8H//93+sWrWK1atXs3fvXlauXMmcOXNYuXJlic9HhQoV+PTTT/nqq6/w9/cnKCiIa9eu0bRpU3Q6RzPD1XEVh6tjEAgeJlze+2saga36ns4SvqdskjV5m2z5fjxkx79rXr4e+JXzBoqKUi53qu6owGRm17HLdpqUm/A97oArjeCe0fRMLHlyIEd+OOOmle2a6h6ynFLCXrIh7CUtwl5yjfCUEggEglLCx8OHXQN2Fd/wLuz3ZomJiWHJkiUYDAYqV66Mh4cH69evL7bf8OHDiY2N5euvv+b7779n5syZJCYm8tJLL93K1DX4+flplq9fv87IkSPVPAH2VK9eXX0fEBBAz5496dmzJzNmzCA2NpYZM2bQtWtXatWqRWZmJmfPnnV42lhQUEBaWhqxsbHFzu2pp57SGJ9VqlTRzLtmzZrUrFmTVq1aUatWLT766COmTJmitjl79iwxMTG0adPGIXGlfTUXa06CmTNn0rZtWyZOnAhAo0aN8PPzo127dsyYMYPmzZtr+lmfqE2cOJHJkyfTv39/ABo2bMjJkyeZOXMmQ4YMKfY4rXTr1o20tDQuXbqEh4cHwcHBVKpUSfOkt7jjqlSpkqYCDaAuV6pUicjISKfHIBDAw+InZcvRVGz1PTtHJYdE5zrArBWliuLt78mzU1uy59sTgDZ8T1IFL9tv236t1ffgo23HmfpYtG06JfGUUsP9BGUVQ6F38Y0kq7fenbmmpWUvWfd9Mwh7SdhL7hD2knOEKCUQCASlhCRJtxxGd6+xGgb21KtXj8LCQnbt2qW6o1++fJmUlBTq16+vtqtWrRrx8fHEx8czZcoUPvzwQ1566SX1CZp9voLo6Gg8PT359ddfVcMoMzOTI0eO0L59e7dzbNq0KYcOHXKYpzskSaJu3brs2LEDgGeeeYZJkyaRmJhIYmKipu3SpUvJzc1l8ODBxY4bEBBAQEBAieZgNpvJz7eVWz9z5gwxMTE0a9aM5cuXOzw9c3Z8ubm5eHho/6Xr9XpAufH08fFx2a/o+Hq9Xq0Cc7NY3ep/+OEHLly4wFNPPVXi42rdujWvv/46RqMRT09PAJKSkqhTp47qin4z11YgeBCx3eAXd4tfxFNKDc+TLeKVrOTKcTFM5ZrB+AYa0OmV72lJ/yTYS1RZeUa7Cdu5a7nqJTylygzO8ih5m73J0+XhafbSrHcuazrmCXObnL8YhL0k7CUQ9pKVB9FeEqKUQCAQCG6JWrVq0atXL0aMGMEHH3xAQEAAkydPpkqVKvTq1QuAcePG0b17d2rXrs3Vq1f58ccfqVevHqBUcpEkiQ0bNtCjRw98fHwICAhgyJAhTJw4kZCQEMLCwkhISECn07nJWaEwadIkWrVqxejRoxk+fDh+fn4cOnSIpKQkFi1axP79+0lISGDQoEHUr18fg8HA1q1b+fjjj5k0aRKgPCGcPXs2r7zyCt7e3gwaNAhPT0++/PJLXnvtNWbMmMEjjzyi2W9KSorDXBo0aKAaClZycnJ45513eOqppwgPD+fSpUssXryYM2fO0KdPH0AxRDp27EhERARz5sxRSx8DajUfZ/Ts2ZMRI0awZMkSYmNjycjIYNy4cTz22GNO80vY93vnnXeoXr06DRo0YN++fcydO5fnn39ebXPlyhVOnTrF2bNnNcdbqVIldU7Lly+nXr16VKhQgZ07dzJ27FjGjx+vhhGU5LgGDBjA9OnTGTZsGJMmTeKPP/5g/vz5zJs3z+X8QXnim5qaqi4fP36c/fv3ExISonniK3jAeUhcpUqcU8qCrkiic1k2a8L3DCatF4i3vyd5141EN1GSBen0SmtNonO34pHNU8pstr8sbhKdS5YbriJzE5QtdLJynYp6Sjn96kmS1T1O5AlD2EtWhL0k7CVXCFFKIBAIBLfM8uXLGTt2LE8++SQFBQW0b9+ejRs3qgaGyWRi1KhRnD59msDAQOLi4tR/mlWqVGH69OlMnjyZ5557jsGDB7NixQrmzp1LfHw8Tz75pFriOD09HW9v9yEDjRo1YuvWrbz++uu0a9cOWZapUaMG/fr1A6Bq1apERkYyffp0Tpw4gSRJ6vL48ePVccaPH090dDSJiYnMnz+fnJwcANasWaO6bdvjbF16ejpVq1bVrNPr9Rw+fJiVK1dy6dIlQkNDadGiBcnJyTRo0ABQnnSlpqaSmprq0N/dTdrQoUPJzs5m0aJFTJgwgeDgYDp16lRsieOFCxfy5ptv8ve//50LFy5QuXJlRo4cydSpU9U269ev57nnnnM43oSEBKZNmwYohteUKVO4cuUKkZGRvP7665pzWpLjCgoK4vvvv2fUqFE0a9aM8uXLM3XqVLfljQF2796tlssGpRoR2EpmCwQPEtabTWd/DexvRK25oyS0TkrmvDxkYwHgQe4piairDTVjVK4VSLO4KCpUVzwXdDqLKGXn5uLudleym5jZrtJfScP3cHgnKG2sXnn6Qg/Q4+Ap5RxH77fbSXT+ICDsJWEvgbCXXCHJ4lGES7KysggKCiIzM1ONQxUIBIJbIS8vj+PHjxMVFVWssSDQkpOTQ5UqVUhMTGTYsGH3fP9Xrlyhc+fOBAYG8s033+Dre3+EEAhuD3ffWWEfaLnX52PJB0s4n3GeqB2pXK0UiSl/P7r6voxP+L+7vu/SpmHCd2TnF/LDhA5EV/DXbPvqq6/Ys2cPj/z+O4+Fd0Tn/yhbah9gtrSEFXMlfqwfgc5sxidoFCYPHwLKXSP7ajAARl0+nmYvopuWp/sLjdQxf/36OL98dZz6bSsSk6aEHS0oN5ErVwup/eNv5AReJ8vXC0//v6D3jKLJL5PYWasiuQaZfa1fY1HX+nyRuI9g/RkGTqoF1Vs5HtS3r8HPi6HtOD6sO5o3U8/wdFgwSxtE3q3TKCiGa3nXaPdJOwDaXGjDjrAdBOYHk+V1jWf3vkFQvuJJ93a/EPQSnOn4qHaAtyuAqQDGH+Svx/LYce06S+tH8HTF4quCCXvp1hH2kqA0uBP2kqi+JxAIBIIyxb59+1izZg1paWns3btXLbdrdXG/14SEhLBp0yY6d+7Mzp07S2UOAoGgGB6W8D3LcZY0P48OSVONz/5EmS/bcrNcN1xT1hXJj+IsfE9zqqWib+zC92Tbetld9T3hKXVfoDfrqXWxuSpIWSlpTinBnUfYS4IHBRG+JxAIBIIyx5w5c0hJScFgMNCsWTOSk5PVpJClQWhoqMZFWyAQlDUejltfyYmA47gNWxU8dJqW9knP8yVfu+Z5FOb9woU0PZdPhxJSpSp/3/x3buz3oQVPcvjnC1QJiqGG1w6n+1bnYL8vu/A9ZUUxCYFlW6U2QeniLNSuyrW6PH6i702PpSY6v805CZwj7CXBg4AQpQQCgUBQpmjSpAl79uwp7WkIBAJBmUNyTNXjgOKbYhWllE6SXYdCDw8koEDnjU4GGTP63KMU3jjAlVOw5d/ZdBw/lm1nttGQDmq/zZljyA0IKpH8JwGmknrJCE+pMotk55LnZdKGYnkFKrmQJGdX2e6a2j6z4qreaYS9JHhQEOF7AoFAIBAIBIL7DgmZh02+0Fnu8N2G79lpBNbqe9bmMlZvKZAs1dRkyYRkylH7ZF++xHXjdWU/kq0EPUCuqRz2glfRaajil6X6HpJ9+J6rSZdAaRPcc/QmmcR/mcBk+QxYLk+O5zXAlgTfOY7he+LqCgQCVwhRSiAQCAQCgUAguA/wsAgBRpNjMJTz8D2rAqU2suthFaxkJHOeuvby6VNkF2QDkBq6lxzPTHWbSfYspvqeTbAya0QmN73s5qQKGELBKHVCsqHqZcf1sqXEovUaOb2ydp5SOjWvmEAgEDhHiFICgUAgEAgEgvsa6SFJRmTwUEz3AieilDMkJ15IsiW3k33YlSQXaPptW/BPap/yx9NHx3+aTeXXiK8BKMSAc3nB8fzLchENzJUsIVluR4rLOSUoFWwp8i3ikqRcJ2s4nvOvnp2nlPXt3ZuiQCC4zxGilEAgEAgEAoFAcB+gilKFrgUc+1A5NXzPXjhwEBFkDJJesyYn5RRt/gil1pVyIIFRUkSr4jyl1F3IWk+pkobv2fxrhIRRVjFbro3JZHLdyFmeMHFJBQKBC4QoJRAIBAKBQCC4b1AFi4fwJtegV0z34sL3ZLu8T/av9ttsHWU8dMq4/qHNifZvpG76yxfXaPeHmULJCIBJNtgN5KQCoF34nsm++p5ckvA9kei8rKD5jBS9dJbwvRvGXKebNZ3shEazuKoCgcAFQpQSCAQCgUAgEAjuA7xK4CllrxJITvP5OIoDZnM+ABfLZRFeoS4Rl5Q8UpJZ4qWvzJhRPKUKZU+n/dX92WVUVzQp+/2XwFPqIQnDvB+QHC6Xcm30ZotXXYlySrn6DAoEAoENIUoJBAKBQCAQCAT3AZ76EohSdljD97TKgVYeaLpvGcYCJaP1DxW2MrfcIjwsnliFlsTqoVmFAJjwdLs/CWu+Kkv4nmTb4rqTzVNKSFJlEa3XnafJy7K6ZNX3dI6OcAKBQKBBiFICgUAgcMvQoUORJAlJkjAYDNSsWZO33nqLwsLC2xp3y5YtSJLEtWvX7sxES8Dx48cZMGAAlStXxtvbm6pVq9KrVy8OHz6sabdhwwY6dOhAQEAAvr6+tGjRghUrVmjanDhxAkmS2L9/f4n3P23aNOrWrYufnx/lypWjS5cu7Nq1SzPmsGHDiIqKwsfHhxo1apCQkEBBQYGbURVWrVpF48aN8fX1JTw8nOeff57Ll52UTrIjOzubcePGERERgY+PD23atOHXX3/VtLl+/TqjR4+matWq+Pj4UL9+fZYuXappM3LkSGrUqIGPjw8VKlRwek5PnTrFE088ga+vL2FhYUycONHlZ2j79u14eHjw6KOPFnvcn3/+Od26dSM0NPSmr4fgfufhkzDcJTp3Vn0P1UvFXhHQqgM+Ny7jWaDkBzLpZCjIVcPwZMuYrQ4r4Xtn9d7IsptcQnaY7ZJca+fkMPNitgtKA5ffLmtBR1WUctJSXWWfJ+zBR9hLwl4S9tKtIUQpgUAgEBRLXFwcGRkZHD16lAkTJjBt2jTee++90p6WSkmMEKPRSNeuXcnMzOTzzz8nJSWFTz75hIYNG2oMvYULF9KrVy/atm3Lrl27OHDgAP379yc+Pp5XXnnltuZZu3ZtFi1axO+//862bduIjIykW7duXLx4EYDDhw9jNpv54IMPOHjwIPPmzWPp0qW89tprbsfdvn07gwcPZtiwYRw8eJBPP/2UX375hREjRrjtN3z4cJKSkvjPf/7D77//Trdu3ejSpQtnzpxR27z88st8++23/Pe//+XPP/9k3LhxjB49mvXr16ttmjVrxvLly/nzzz/57rvvkGWZbt26qYlwTSYTTzzxBAUFBezYsYOVK1eyYsUKpk6d6jCna9euMXjwYDp37lyic5qTk8Pjjz/OrFmzStRe8OAg2d3mPizylFWUGvu//aScy3baRpEBrInOHUOn/NDe3OjkQnW7SS/jmy+jswhEZouqFH1eEcHO6TxJ97gAKOe/6BWwXhNJBrNGN7PNyQEnnlJCnyo7OH7LrDndLNdcVN/TIOwlYS8Je+nmEaKUQCAQCIrFy8uLSpUqERERwYsvvkiXLl1Yv349V69eZfDgwZQrVw5fX1+6d+/O0aNH1X4nT56kZ8+elCtXDj8/Pxo0aMDGjRs5ceIEMTExAJQrVw5Jkhg6dCigPI0aOHAgfn5+hIeHM2/ePDp27Mi4cePUcSMjI3n77bcZPHgwgYGBvPDCCwBs27aNdu3a4ePjQ7Vq1RgzZgw5OTkAHDx4kLS0NP75z3/SqlUrIiIiaNu2LTNmzKBVq1YApKenM2HCBMaNG8e7775L/fr1qVmzJhMmTOC9994jMTFR86TuZhkwYABdunQhOjqaBg0aMHfuXLKysjhw4ACgGLPLly+nW7duREdH89RTT/HKK6/w+eefux13586dREZGMmbMGKKionj88ccZOXIkv/zyi8s+N27c4LPPPmP27Nm0b9+emjVrMm3aNGrWrMmSJUvUdjt27GDIkCF07NiRyMhIXnjhBRo3bqwZ+4UXXqB9+/ZERkbStGlTZsyYQXp6OidOnADg+++/59ChQ/z3v//l0UcfpXv37rz99tssXrzYwUCOj49nwIABtG7dukTndNCgQUydOpUuXbqUqL1AcD9TOdhHff/04u3OG9npP9bwPXvdIEiXq2muM5tUjygP2QuffFs+Idnga3ljEblkMEtuPKXs8gyZ7XJEuRckhKdUWUOWZceLVjQ/vrsBnAiN5ofk+gp7SdhLwl66eYQoJRAIBKWELMuYc3Pv+Y98BwxDHx8fCgoKGDp0KLt372b9+vXs3LkTWZbp0aMHRqMS6jFq1Cjy8/P56aef+P3335k1axb+/v5Uq1aNzz77DICUlBQyMjKYP38+oDxp2r59O+vXrycpKYnk5GT27t3rMIc5c+bQuHFj9u3bx5tvvklaWhpxcXH07t2bAwcO8Mknn7Bt2zZGjx4NQIUKFdDpdKxdu9ZlKeu1a9diNBqdPuEbOXIk/v7+rFmz5rbPHyhPK5ctW0ZQUBCNGzd22S4zM5OQkBC3Y7Vu3Zr09HQ2btyILMucP3+etWvX0qNHD5d9CgsLMZlMeHt7a9b7+Piwbds2dblNmzasX7+eM2fOIMsyP/74I0eOHKFbt25Ox83JyWH58uVERUVRrVo1QDECGzZsSMWKFdV2sbGxZGVlcfDgQXXd8uXLOXbsGAkJCW6PVyBw5OHwlZrSvS4j20cDcMNoIrfA5vXkLEm4s9CpCO+zBAfr8LlxkdBLvyIVXlc9ogIKg/ApQPWU0pWvxTctPGweUEh4m+0q8BXdn93/F60IIbkWnSTr7cjDFep1vyA7fK6KeEo57WVffe/2E52Xlr10J2wmYS/dPsJeevDtJY/SnoBAIBA8rMg3bpDStNk932+dvXuQfH1vqa8sy2zevJnvvvuO7t27s27dOrZv306bNm0AJU6/WrVqrFu3jj59+nDq1Cl69+5Nw4YNAYiOjlbHshoOYWFhBAcHA8pTv5UrV7J69WrVHXn58uVUrlzZYS6dOnViwoQJ6vLw4cMZOHCg+oSwVq1aLFiwgA4dOrBkyRKqVKnCggULePXVV5k+fTrNmzcnJiaGgQMHqvM6cuQIQUFBhIeHO+zPYDAQHR3NkSNHbuncWdmwYQP9+/cnNzeX8PBwkpKSKF++vNO2qampLFy4kDlz5rgds23btqxatYp+/fqRl5dHYWEhPXv2ZPHixS77BAQE0Lp1a95++23q1atHxYoVWbNmDTt37qRmzZpqu4ULF/LCCy9QtWpVPDw80Ol0fPjhh7Rv314z3j//+U9effVVcnJyqFOnDklJSRgMys3ruXPnNAYWoC6fO3cOgKNHjzJ58mSSk5Px8BDmiSt++ukn3nvvPfbs2UNGRgZffPEFTz/9tMv2n3/+OUuWLGH//v3k5+fToEEDpk2bRmxsrNpm2rRpTJ8+XdOvTp06DnkuyjQPhyZFgLcnE7rV4YOfjgFgNLm4YZatIpIi+NjnpK7klUmDXr6cGjKN06ESl4Jk1bPl719cIPK8mROhlpxSegOHI31pkWYvRBQRm5wsSTKY7Zq5TWGuxnfZ4v1kIUuVOkWvmORwrd34Nth5SlkTnd+WKFVK9hLcus0k7CVhLwl7qeQITymBQCAQFMuGDRvw9/fH29ub7t27069fP4YOHYqHhwctW7ZU24WGhlKnTh3+/PNPAMaMGcOMGTNo27YtCQkJqtu1K44dO4bRaOSxxx5T1wUFBVGnTh2Hts2bN9cs//bbb6xYsQJ/f3/1JzY2FrPZzPHjxwHlSeS5c+dYtWoVrVu35tNPP6VBgwYkJSWV+FxYDQd3rFq1SjOP5ORkdVtMTAz79+9nx44dxMXF0bdvXy5cuOAwxpkzZ4iLi6NPnz6aXAf248bHxwNw6NAhxo4dy9SpU9mzZw/ffvstJ06cULcnJydr+q1atQqA//znP8iyTJUqVfDy8mLBggU8++yz6HQ282DhwoX8/PPPrF+/nj179pCYmMioUaPYtGmTZr4DBw5k3759bN26ldq1a9O3b1/y8vJKdE5NJhMDBgxg+vTp1K5d+6bP6cNETk4OjRs3dmtA2/PTTz/RtWtXNm7cyJ49e4iJiaFnz57s27dP065BgwZkZGSoP/ZPf+8Hit4wP8h46m3HanSS8Nw+p5T1vNh7MOGpB5Olmp5OJtvHNl61C3mWfkr77eRzytjCzlOqZLcOEhKFPr9wPve8ZmauWiubZRf5iQSli/PrJpXQU8r9KA8ewl6yIewlYS+VlAdDWhMIBIL7EMnHhzp795TKfm+WmJgYlixZgsFgoHLlynh4eGgSN7pi+PDhxMbG8vXXX/P9998zc+ZMEhMTeemll25l6hr8/Pw0y9evX2fkyJGMGTPGoW316tXV9wEBAfTs2ZOePXsyY8YMYmNjmTFjBl27dqVWrVpkZmZy9uxZh6eNBQUFpKWlaTxMXPHUU09pjM8qVapo5l2zZk1q1qxJq1atqFWrFh999BFTpkxR25w9e5aYmBjatGnDsmXLNGPbV0sJDAwEYObMmbRt25aJEycC0KhRI/z8/GjXrh0zZsygefPmmn7Wp241atRg69at5OTkkJWVRXh4OP369VOfhN64cYPXXnuNL774gieeeEIde//+/cyZM0eTlyAoKIigoCBq1apFq1atKFeuHF988QXPPvsslSpVcsjXcP68crNaqVIlsrOz2b17N/v27VPDB8xmM7Is4+Hhwffff+/2nD5MdO/ene7du5e4/fvvv69Zfvfdd/nyyy/56quvaNKkibrew8ODSpUq3alp3l00heQelltdG5Ik4aGTKDTLFNp5SjkL37MmOjfbbUqu8zj5u07SGjDrINfLdlOlk+GTdjoOV9bR4jDIspkUY3eQlyv7kCVNgnkH7LydCkPW8PauFNozpBhPKbWzuupygYl9Wbk8GuDj9LgEdx+pyGU2FqnkKFlCMp3nOXeWvP7Wv6ulZS9Z930zCHtJ2EvCXrp5hCglEAgEpYQkSbccRnevsRoG9tSrV4/CwkJ27dqluqNfvnyZlJQU6tevr7arVq0a8fHxxMfHM2XKFD788ENeeukl9Qmafb6C6OhoPD09+fXXX1XDKDMzkyNHjji4PxeladOmHDp0yGGe7pAkibp167Jjxw4AnnnmGSZNmkRiYiKJiYmatkuXLiU3N5fBgwcXO25AQAABAQElmoPZbCY/P19dPnPmDDExMWqFFvuncIDT48vNzXVw4dbr9YByI+Dj4+P2vPj5+eHn58fVq1f57rvvmD17NqBU4DEajQ5z0Ov1mM2OHhpWZFlGlmX1uFq3bs0777zDhQsXCAsLAyApKYnAwEDq16+Pp6cnv//+u2aMf/7zn/zwww+sXbuWqKgo/Pz8SnxOBa4xm81kZ2c75N04evSoWvq7devWzJw5U3NzYk9+fr7mM5uVlXVX51wiHjLdwkOviFLOPKUURylrFTzHCmlv78um4cXTtAZMElwJUP526MxmCnU6vmsqEXZVaauTzXjLRtdClOR2kXM552xbXGoSNq8aveX9r1k5dN9zhLdrVmFEtQquOgruEs7CJ3NR/qeU7LvmmFPK9X+MEowm7CVA2EvCXnpw7SUhSgkEAoHglqhVqxa9evVixIgRfPDBBwQEBDB58mSqVKlCr169ABg3bhzdu3endu3aXL16lR9//JF69eoBEBERgSRJbNiwgR49euDj40NAQABDhgxh4sSJhISEEBYWRkJCAjqdrtin5ZMmTaJVq1aMHj2a4cOH4+fnx6FDh0hKSmLRokXs37+fhIQEBg0aRP369TEYDGzdupWPP/6YSZMmAcoTwtmzZ/PKK6/g7e3NoEGD8PT05Msvv+S1115jxowZPPLII5r9pqSkOMylQYMGeHp6atbl5OTwzjvv8NRTTxEeHs6lS5dYvHgxZ86coU+fPoBiYHXs2JGIiAjmzJmjlj4G3Hqx9OzZkxEjRrBkyRJiY2PJyMhg3LhxPPbYY07zS1ixliOuU6cOqampTJw4kbp16/Lcc88BypPFDh06MHHiRHx8fIiIiGDr1q38+9//Zu7cuYASQvDJJ5/QrVs3KlSowOnTp/nHP/6Bj4+Pmji0W7du1K9fn0GDBjF79mzOnTvHG2+8wahRo/Dy8gJwOK9hYWF4e3s7rC/KlStXOHXqFGfPngVs16NSpUr3j+fPPWTOnDlcv36dvn37qutatmzJihUrqFOnDhkZGUyfPp127drxxx9/ODVsZ86c6ZCDqjSQHkIvKSueeh15RrNzUcoOnSWJuPZMyWoic5MOtjTypdUfYJY8mNqlM9d9f6T8NUuic8wYKLTLUVU0p5RrFE8ba1s3/ey8amJCA2gb7M+fOTe4YjRxMi/feR/BPcOWj8wxOZROxnnIpZOcUg8zwl5SEPaSsJdcIUQpgUAgENwyy5cvZ+zYsTz55JMUFBTQvn17Nm7cqBoYJpOJUaNGcfr0aQIDA4mLi2PevHmA4k48ffp0Jk+ezHPPPcfgwYNZsWIFc+fOJT4+nieffJLAwEBeffVV0tPTHaqeFKVRo0Zs3bqV119/nXbt2iHLMjVq1KBfv34AVK1alcjISKZPn86JEyeQJEldHj9+vDrO+PHjiY6OJjExkfnz56slktesWUP//v0d9utsXXp6OlWrVtWs0+v1HD58mJUrV3Lp0iVCQ0Np0aIFycnJNGjQAFCehqWmppKamurQ313ow9ChQ8nOzmbRokVMmDCB4OBgOnXqxKxZs9yes8zMTKZMmcLp06cJCQmhd+/evPPOOxoD8X//+x9Tpkxh4MCBXLlyhYiICN555x01/4K3tzfJycm8//77XL16lYoVK9K+fXt27NihPuXT6/Vs2LCBF198kdatW+Pn58eQIUN466233M6vJKxfv141CsF2PRISEpg2bdptj/8gsXr1aqZPn86XX36pXhtAEw7YqFEjWrZsSUREBP/3f//HsGHDHMaZMmUKL7/8srqclZWlVg66t0hO3j0ceOoVsanQ7CJ8TxWRLIt2myRk/D0Uz5VT5arR6g/FC6PAw4v9fp3wPO9LwfWLwHl0splCyQM1R5XdQFpRUFlfNOOUfFNeNRDuZeCzJjWZeSyD+SfPP4zRmWUfu7i+rvtyORnlLLzN3lNKfftQI+wlYS8Je8k1knwnaoM/oGRlZREUFERmZqYahyoQCAS3Ql5eHsePHycqKqpYY0GgJScnhypVqpCYmOj0Bvluc+XKFTp37kxgYCDffPMNvvdJCIHg9nD3nS0r9oEkScVW37Pyv//9j+eff55PP/1UzXfhjhYtWtClSxdmzpxZbNt7fT7+ufSfXDh3gZrbjnIpPAJTwQEMjQJ56fXVd33fZYXH3tnEhex8Nrz0OI9UCQLg+++/Z8eOHdT48wjpYZ3I9IsgsNI1/lfuLf71fiHbatcA4F/Vh/DkjXT6/7ScLfUiAEVyygisx2ehHenbvCq5P68jKv1XznmFsT78KZZv/Zh9j44j0+scBTW3wOXK1Nu8l2sheVz3NuDp3we9ZzXa/fQSSQ2jAPh33EmqmmvR49fReEuZDBvvB7WdlEbfNg82TYNHB8LT/wTgH8cyeP/keZ6vUp53a1d17CO4q1y6cYmBSzry/jITc4a14ZewX6hz6iliznTmhuc1JNkT70IlT9E1fx2vz+moHSCxLmRnwMifePFKEF9cuMZbNSvzQrUwx50VQdhLt46wlwSlwZ2wl0T1PYFAIBCUKfbt28eaNWtIS0tj7969DBw4EEB1cb/XhISEsGnTJjp37szOnTtLZQ4Cwe2wZs0annvuOdasWVMiQer69eukpaU5LfUtKBs485Sy8od/dZb5hfMJBfzropKDRtbkmZLx95DI91DyqOR4m7lerzlp1doB0KhqMNW9bgDgIZsoRF+sm4vNIcrOc0u2z03kzmXKsVKbLfhLUNaQJVhffxHHQ5W8Nl5GZ1fJvqKiNUG64E4j7CXBg4II3xMIBAJBmWPOnDmkpKRgMBho1qwZycnJlC9fvtTmExoaytSpU0tt/wKBlevXr5OamqouHz9+nP379xMSEkL16tWZMmUKZ86c4d///jeghOwNGTKE+fPn07JlS86dUxJP+/j4EBSkeNi88sor9OzZk4iICM6ePUtCQgJ6vZ5nn3323h/grfKQVWjz1CvHa59Tynrzf9YQ4tBexpbVSQJkk4kCiyhl9JTRA7KfAXJNGDx0SHrlFsHDXIgJyVZxrUg8XlGhQSqyZA3IkN3mlLI8I5cd82MJIaMsYQuzvOJ3ll+qbyDqckN0ztKaOa2+dw+m+BAi7CXBg4AQpQQCgUBQpmjSpAl79pRO6WeBoKyze/duYmJi1GVrbqchQ4awYsUKMjIyOHXqlLp92bJlFBYWMmrUKEaNGqWut7YHOH36NM8++yyXL1+mQoUKPP744/z8889UqFDGq55JTt8+FHhYPKWcJTrP0SvhE15AgeXMyHaKVHR5X1rqg5B3YdsGGC1DeXno0HkoeVKCCzPpk/E5md62ROeS09psCnbphojK8MVUrgRKhOToFyWpjjZCySgtpGJOfSFGS7tiPKUsa26n+p7AOcJeEjwoCFFKIBAIBAKB4D6hY8eObm/UrUKTlS1bthQ75v/+97/bnNW9xbUk8vDgYSlpVmhyPBc3dEri8kroOGWRBMw6LGKSxKrhj3Hof1+Ta1F+zJKEWYZCe1HK00MVESrlX+CcJRWI5DLzhzKWXpYxGAsp8PTg8QPlyQowWe42JDeuMiJ8r6wi4xiCKatCp/IJcesptWMhUq1X1LEEAoHAGSKnlEAgEAgEAoFAcB9hzSllsssplZYpk1wQxZ++SiXE8kjIZk8w6zFLNs8X2WzGYOe3UoCO7wrq2nlK6dF7aEu0F+gtb2T1l0uqXcniopcSGuqdZ+3mLnzPiafUQ+f7dv9hlpR8ZTpnl9XXEkJ68HOklG8A4fUmEAhcI0QpgUAgEAgEAsF9h2Tx43gY0Vs9pexEqRWHCkkz23LJVEYHsgHfU/0xY7CFUZnNVAn0RpZsni8XZH/yFY0BX4MenV6PPVZRqiRiUfnrN0iq1PImjkZ4St0XqBfD6mFn8ZSSQS6acL/XPyGirdLabNR2FwgEgiIIUUogEAgEAoFAcP/gJoXNw4ItfM/m8XQ1XzkxgZ7QL0CipSVLhykvCpPZWxV9jv92gRuXc9TTKEuKMHW9UBnTz8sDnbcPJh8/8i2hgDYkixiI+mpDmYtSdU8rK8nuwvesnlJ/rIV5DeHULnSOOpXgHlM0p5SkrlduH62eUgDmoheq0iPw3EZAUnNObbh4jQG/pXGxwHiXZiwQCO5XhCglEAgEAoFAILgPkVy8f/Bx5illDb+b0kzilfKe+FrOySXZH7OkU8/Q4Z1nSdlxRk1wbraIQll5hQDkZpzkyulT5EbUZUP404AtGbok6xwFCAesNf5KSEC47X3mKTjyrV1ybKFKlQbOQ+2snnVQLbOSmlMKQHaS20zpokNnESt/y77BD1ey+SD94h2erUAguN8RopRAIBAIBAKB4P5Dc+P8cIkXRXNKGU1mrPqUpw7Q66hgJwyZJZ3qsVJYUEhhQaEtYXWRsY/8+C3mwkKQJMyYNNukEgTwSdhELG3Il4trVL8XDN8MjzyjdpJczE1w73B3nSV0mO3ykpmLhu9Z0enxkIt+hgQCgUCLEKUEAoFAIBAIBPc1D1ti7KKeUnlG242/p05G0uuJQk9LKYOKUhY6zDbvI5MZnTFfVQfsz12lQG+8CnOV7YCHxRvGlTikik+SbRQ/2UfdrtGm3IXvVW0O/hUtjWU1ok+E75UusiQhF4njkwGdLCHbh++58ZTqe/47WvjZCr7X9PW+G1MVCAT3MUKUEggEAoFbhg4diiRJSJKEwWCgZs2avPXWWxQWFt7WuFu2bEGSJK5du3ZnJloCjh8/zoABA6hcuTLe3t5UrVqVXr16cfjwYU27DRs20KFDBwICAvD19aVFixasWLFC0+bEiRNIksT+/ftLvP9p06ZRt25d/Pz8KFeuHF26dGHXrl2aMYcNG0ZUVBQ+Pj7UqFGDhIQECgoKih171apVNG7cGF9fX8LDw3n++ee5fPmy2z4//fQTPXv2pHLlykiSxLp16xzafP7553Tr1o3Q0NBij1eWZbp37+5yrBUrVtCoUSO8vb0JCwtj1KhRmu3fffcdrVq1IiAggAoVKtC7d29OnDhxT45TcJ/zcGlSak4pk1kRjfKssXvIeEiATjHxW+nP0d0rBT/TDTVHkP+5P4g89rUqNAVIOl5tX4MvR7Ul6eX26GQz3hkniSt4lPI6y995NXzPzuPJhQ7hiQeOtxgluECSrY1IdF4GkMGMxJHCCpYVtuujk3VqonNwL0o1zzrIV7X86RQSYBn2wb2qwl4S9pKwl24NIUoJBAKBoFji4uLIyMjg6NGjTJgwgWnTpvHee++V9rRUSmKEGI1GunbtSmZmJp9//jkpKSl88sknNGzYUGPoLVy4kF69etG2bVt27drFgQMH6N+/P/Hx8bzyyiu3Nc/atWuzaNEifv/9d7Zt20ZkZCTdunXj4kUlx8bhw4cxm8188MEHHDx4kHnz5rF06VJee+01t+Nu376dwYMHM2zYMA4ePMinn37KL7/8wogRI9z2y8nJoXHjxixevNhtm8cff5xZs2YVe3zvv/8+kuT85nPu3Lm8/vrrTJ48mYMHD7Jp0yZiY2PV7cePH6dXr1506tSJ/fv3891333Hp0iX++te/3pPjFNx/aG9tHy5VyuopZTRpPaX0mJWbYkt4nzUnkyzZEpRXObBWXQfgKUm88FgEjasFE+DtidlsRpLNVDWH0lGXq7S17Fcq0a2DE9lBdhO+56S/m5EE95BTAWGcl/01685IPmRKHiCB2aJ0OlTfsyJZPi+yGZ3l82Z23vKBQdhLwl4S9tLN41F8E4FAIBA87Hh5eVGpUiUAXnzxRb744gvWr19PfHw8Y8eO5auvviI/P58OHTqwYMECatWqBcDJkycZPXo027Zto6CggMjISN577z3q169PTEwMAOXKlQNgyJAhrFixguzsbOLj41m3bh2BgYG8+uqrfPnllzz66KO8//77AERGRjJs2DCOHj3KunXr+Otf/8qKFSvYtm0bU6ZMYffu3ZQvX56//OUvzJw5Ez8/Pw4ePEhaWhqbN28mIiICgIiICNq2baseZ3p6OhMmTGDcuHG8++676voJEyZgMBgYM2YMffr0oWXLmyl3bmPAgAGa5blz5/LRRx9x4MABOnfuTFxcHHFxcer26OhoUlJSWLJkCXPmzHE57s6dO4mMjGTMmDEAREVFMXLkyGINo+7du9O9e3e3bQYNGgTg8ASuKPv37ycxMZHdu3cTHh6u2Xb16lXeeOMNvvrqKzp37qyub9Sokfp+z549mEwmZsyYgc7i5fHKK6/Qq1cvjEYjnp6ed/U4BYL7iaI5pbLylIpmnpiVJNU6HWBSJR2Dzkf1lLKG3B2tWhkwApJG05PNNtkgSJK5gr1MpIhbbqUiWbbtxL1Tlcv+wlOqdJEtGcdMOr3T7Zf1SlVGMzI6JNc5pVRRSmlneftAI+wlYS8Je+nmEZ5SAoFAUErIsowx33TPf5xX1bk5fHx8KCgoYOjQoezevZv169ezc+dOZFmmR48eGI3KDdKoUaPIz8/np59+4vfff2fWrFn4+/tTrVo1PvvsMwBSUlLIyMhg/vz5ALz88sts376d9evXk5SURHJyMnv37nWYw5w5c2jcuDH79u3jzTffJC0tjbi4OHr37s2BAwf45JNP2LZtG6NHjwagQoUK6HQ61q5di8lkchgPYO3atRiNRqdP+EaOHIm/vz9r1qy57fMHytPKZcuWERQUROPGjV22y8zMJCQkxO1YrVu3Jj09nY0bNyLLMufPn2ft2rX06NHjjsy1OHJzcxkwYACLFy9WjXF7kpKSMJvNnDlzhnr16lG1alX69u1Lenq62qZZs2bodDqWL1+OyWQiMzOT//znP3Tp0gVPT88ycZyCssvD5SelzSm179RVVu86BYCPpPztlSxigtWTxVvvD3ZeU6crtye9khKWJQHobGfQXpRSUcP33M3KqkCZ1STqmoC84v732IfvSQ+HgHG/UihbPl+Wa242ufB/UpODmdWP2K1UVCwte+lO2EzCXrp9hL304NtLwlNKIBAISonCAjPLxm695/t9YX4HPL2cP/0sDlmW2bx5M9999x3du3dn3bp1bN++nTZt2gBK/Hq1atVYt24dffr04dSpU/Tu3ZuGDRsCypMsK1bDISwsjODgYACys7NZuXIlq1evVp8QLV++nMqVKzvMpVOnTkyYMEFdHj58OAMHDmTcuHEA1KpViwULFtChQweWLFlClSpVWLBgAa+++irTp0+nefPmxMTEMHDgQHVeR44cISgoyOHJFYDBYCA6OpojR47c0rmzsmHDBvr3709ubi7h4eEkJSVRvnx5p21TU1NZuHCh26d+AG3btmXVqlX069ePvLw8CgsL6dmz5z1zvx4/fjxt2rShV69eTrcfO3YMs9nMu+++y/z58wkKCuKNN96ga9euHDhwAIPBQFRUFN9//z19+/Zl5MiRmEwmWrduzcaNG8vMcQrKIg+namHNKZVnNDHoo1+4nq/krPGTCgBf8FD+xqthd5IOSbYlLTd6+oJ83bpRIwiZ7UUpqzhkW6GGAUqac69xtbITI6wvJZENbf5RD5vIWBaRZO2VsE+Ir7e8N0lmkPWYjK48pSy2htmEznLb6cqpyh2lZS/BrdtMwl4S9pIzhL3kHOEpJRAIBIJi2bBhA/7+/nh7e9O9e3f69evH0KFD8fDw0Lhmh4aGUqdOHf78808AxowZw4wZM2jbti0JCQkcOHDA7X6OHTuG0WjkscceU9cFBQVRp04dh7bNmzfXLP/222+sWLECf39/9Sc2Nhaz2czx48cB5UnkuXPnWLVqFa1bt+bTTz+lQYMGJCUllfhcGAyGYtusWrVKM4/k5GR1W0xMDPv372fHjh3ExcXRt29fLly44DDGmTNniIuLo0+fPpocAPbjxsfHA3Do0CHGjh3L1KlT2bNnD99++y0nTpxQtycnJ2v6rVq1qsTHWxzr16/nhx9+UEMFnGE2mzEajSxYsIDY2FhatWrFmjVrOHr0KD/++CMA586dY8SIEQwZMoRff/2VrVu3YjAYeOaZZ9Qn1aV5nIIyjovcHA8qVk+p81l5XM8vRCfB41X0NPE4gyzLSDptTilJ0tuF70nIkodaVU1Cp0ZZAchmxTNClmWbECFJalstTs67bHIhFZZQjRDhe2UG2e63PYUoIk2hpQJfodG5N419TilJ9ZR6sBH2kg1hL2kR9pJrhKeUQCAQlBIeBh0vzO9QKvu9WWJiYliyZAkGg4HKlSvj4eHB+vXri+03fPhwYmNj+frrr/n++++ZOXMmiYmJvPTSS7cydQ1+fn6a5evXrzNy5Eg1ft6e6tWrq+8DAgLo2bMnPXv2ZMaMGcTGxjJjxgy6du1KrVq1yMzM5OzZsw5PGwsKCkhLS9Mkm3TFU089pTE+q1Spopl3zZo1qVmzJq1ataJWrVp89NFHTJkyRW1z9uxZYmJiaNOmDcuWLdOMbV/NJTAwEICZM2fStm1bJk6cCCi5B/z8/GjXrh0zZsygefPmmn4VK1Ys9hhKyg8//EBaWpr69NZK7969adeuHVu2bFGfpNavX1/dXqFCBcqXL8+pU0rY0eLFiwkKCmL27Nlqm//+979Uq1aNXbt20apVq1I9TkHZ4+GSobR4WHJKnb2WB0CFAC+GN/RgyxYlMbk+OBjIUbM/SZJO9WySAVnSocoDEhpRzxa+J2sS8cqyrK2+5wqzGetzb801upnwPXUGgrKCl2z9/Nhyhull5TpvXXOEuq0q8UiHKtrkzfaJzi1X1XwL4XClZS9Z930zCHtJ2EuuEPaSa4QoJRAIBKWEJEm3HEZ3r7EaBvbUq1ePwsJCdu3apbqjX758mZSUFM0/02rVqhEfH098fDxTpkzhww8/5KWXXlKfoNnnK4iOjsbT05Nff/1VNYwyMzM5cuQI7du3dzvHpk2bcujQIYd5ukOSJOrWrcuOHTsAeOaZZ5g0aRKJiYkkJiZq2i5dupTc3FwGDx5c7LgBAQEEBASUaA5ms5n8/Hx1+cyZM8TExNCsWTOWL1+uJrG04uz4cnNz8fDQ/kvX6y3hO7KMj4/PTZ2Xm2Hy5MkMHz5cs65hw4bMmzePnj17AqjJUVNSUqhatSoAV65c4dKlS2oS1dzcXIdjtR6DNZyoNI9TIChLWMP3Mm8olbSCfDyxl3B0Pt4AyB56kE0g6Wz5oCRILf87ZwIzqXSunOINZacjaML3NLJScWKCfU6potxM+J4txdWdyIEouHms5122c6Hzk+29oZT1vmbl//iFE1lcOJFFpeggKlS3+9+nqb5neXsL8xH2krCXQNhLD7K9JEQpgUAgENwStWrVolevXowYMYIPPviAgIAAJk+eTJUqVdRY+XHjxtG9e3dq167N1atX+fHHH6lXrx6gVHKRJIkNGzbQo0cPfHx8CAgIYMiQIUycOJGQkBDCwsJISEhAp9O5LJ1rZdKkSbRq1YrRo0czfPhw/Pz8OHToEElJSSxatIj9+/eTkJDAoEGDqF+/PgaDga1bt/Lxxx8zadIkQHlCOHv2bF555RW8vb0ZNGgQnp6efPnll7z22mvMmDGDRx55RLPflJQUh7k0aNBATTZpJScnh3feeYennnqK8PBwLl26xOLFizlz5gx9+vQBFAOrY8eOREREMGfOHLX0MeA0IaaVnj17MmLECJYsWUJsbCwZGRmMGzeOxx57zGl+CSvXr18nNTVVXT5+/Dj79+8nJCRENXKvXLnCqVOnOHv2rOZ4K1WqpPkpSvXq1YmKigKU0s69evVi7NixLFu2jMDAQKZMmULdunXVqkJPPPEE8+bN46233uLZZ58lOzub1157jYiICJo0aXLXj1MguJ/QqzmllBsQD0u1PdAKOWannlISZ4NOIqFU8iqaU8rqKeUoHpgt4XzuZQVJNqEKTJqcUjcTvlc0l5Wg9LCGedrnDXPuPVSQV6hdofGUUrgVT6n7HWEvKQh7SdhLrhCilEAgEAhumeXLlzN27FiefPJJCgoKaN++PRs3blQNDJPJxKhRozh9+jSBgYHExcUxb948QHHRnj59OpMnT+a5555j8ODBrFixgrlz5xIfH8+TTz6pljhOT0/H29vb7VwaNWrE1q1bef3112nXrh2yLFOjRg369esHQNWqVYmMjGT69OmcOHECSZLU5fHjx6vjjB8/nujoaBITE5k/fz45OTkArFmzhv79+zvs19m69PR09QmXFb1ez+HDh1m5ciWXLl0iNDSUFi1akJycTIMGDQCl6kpqaiqpqakO/d15DAwdOpTs7GwWLVrEhAkTCA4OplOnTsWW/t29e7dq5IBSyQds5aZByYHw3HPPORxvQkIC06ZNczu+Pf/+978ZP348TzzxBDqdjg4dOvDtt9+qn5VOnTqxevVqZs+ezezZs/H19aV169Z8++23+Pj43PXjFNx/2FeCK+4m7EHD6imVX6gIUR56ySHUzoQZs1m2hOfp7HJKgUlnf/4kTUou2Umic8sWQFdMBT5cVN8rAZrqe8rrg55/qCwj2aL0APCy/3y5uLIO/6YsVSAVT6mHW2gU9pKwl0rKw2gvSbLwi3VJVlYWQUFBZGZmqnGoAoFAcCvk5eVx/PhxoqKiijUWBFpycnKoUqUKiYmJDBs27J7v/8qVK3Tu3JnAwEC++eYbfH197/kcBPced99ZYR9oudfnY9E/F3HpwiVqJR/hYuXqmAr+wKdpCH+f9O+7vu+ywj++OczSrWlUD/Hl1JVcmlQPZlyDQn788UeaNGnCmdRTXMi+rLbv8+Nv7ArI4qqfD02Pn+PLNjfIN1Sj5kkPypWLZuj7c9F5K8+ql7/8IlfOpNMn8hW2ePzBxdRvAfAKHo0s6blWbyWmqzVpsGk3F8sbueHliSGgPx4eFei4ZZyyv14TeO7EOsySjG/wBMDMqNFZ8MhfXR/UpumwbS60+jv/euRl3jh6hp4Vgvnwkci7dBYFrjifc57hizoz9MuqTO7ZCu/Kn9H1RG9qZLTnsGch39f4BEO5X4jfOV/Tr9e4R6laN8S24v2GcO0UDP+B0VnlWXv+Kgk1KvNi9TCX+xb20q0j7CVBaXAn7CVRfU8gEAgEZYp9+/axZs0a0tLS2Lt3LwMHDgRwWT73bhMSEsKmTZvo3LkzO3fuLJU5CAQC99zIPcqNG6dLexr3DA81fE/xlPK0yy+SnZ2tEaTCgssTUK+SLZROApMeml5tCkB5UzkXic6LIpcofA9w4k2lK1E/ZTf21ffEs/PSoqgvlCd2OZ1kRcBc2/A99lZJwivY4gVV9HKp4XsmNaeU8H67cwh7SfCgIML3BAKBQFDmmDNnDikpKRgMBpo1a0ZycjLly5cvtfmEhoYyderUUtu/QCBwjxkTWVm/4eNTtfjGDwB6NXzPrC5bw/esiW490DO0fByVRzbl7MvjVJFhX2QlKp8z4mX/QLsk4XuyEgpoXSNpFAithKEzq8mkSo5kk6JE9b0yhEVhtF7SwPwcGh+qwIFGDbgUeJBL/qd5LLUToHe8YHY5paw5qR7GnFJ3E2EvCR4EhCglEAgEgjJFkyZN2LNnT2lPQyAQlHGUxN22G9zCwuzSm8w9pqinlIfeJgpZK3TpvTyoOroFAJKngZDrN7jir+QbMRR6kl9wXmkneSDpbP3NmkTn2pxSUgmDLHSyk95mV5mIrNjnlHq4coSVNWRkkEHWXAfl/aOXUvnboc8Y6PsGN2qZ8Ag4bOtXVHC6Q9X3BM4R9pLgQUGE7wkEAoFAIBAI7nvy8s+W9hTuGR56xYS3ekp5OBGV7EuG6/x8qX3+Kl3+OE5grlJSPa8wCwBPvbfL8D3JIdG5+yTC6v6cVWwrKfbhe0LBKDMUvZLlzTk2nzbJWtmxaCdRfU8gEBSPEKUEAoFAIBAIBPchkubdiROLuXz5p9Kbzj3EXoQCRaQqGr6nEaV8/QAwmMx4WjypCsw3AAhuWg3JztNKlq2iVFGhQVlfEplJ7zIvlRtE+F6ZwnX2MGWtKdALZJ1mnWwu6inlWH1P5JQSCARFEaKUQCAQCAQCgeCBIDNrf2lP4Z6gLypKlcBTyoqnSSsLBNYP1yyrnlKqvlBUIpJsv10oVNWzLtnGk60eVs7b2pAc3olE56WLLFkS1MsyIVfzNNtu+HqhXilXKqImp5RCUd1KIBAIRE4pgUAgEAgEAsF9h2O2GzCb8pw1feCwzyGlLNsEKGtOKa0o5a++D8m5wblgf/QeHsgybF21HC8/f35YvpTrly9TaCzQ7kx1mbGqCa5VBVlSIrne/Pl/bHokqsjGYtQIq6eULNveuu8huIvYV1Bs/adM0z8uc7SWbV2BhyfWb57s4FVnHcQ+p5TVU0pcVYFAoEV4SgkEAoFAIBAI7juc3dqaLCFpDzrOPKXche/5x8TgVbcu+d5eeJjMIMuYCgsxmwq5fvkSP61azrVzGY6CFKAKD7LWU0ou0kZCJrNyOTD4o6Xkuais7XXqPkvYRXBXsJ7+ZqmOF0LRKbWeUo7he5YNZltOKXFNBQJBUYSnlEAgEAgEAoHg/sNJ6NjD4inlqdM+V3YWvmefpNwrOorodV9QWFDAwa2bqbDpGy6nn8Rs8aq6mnFGbVupZm0qVI+ENMuKIp5Skp2qUFRfuBxVifJVYzDuXmq3tqQqhLPwPUFZQLb/rlkuiq/JCOSjyJguMkU5qb4nckoJBIKiCE8pgUAgELhl6NChSJLyFN5gMFCzZk3eeustCgsLb2vcLVu2IEkS165duzMTLQHHjx9nwIABVK5cGW9vb6pWrUqvXr04fPiwpt2GDRvo0KEDAQEB+Pr60qJFC1asWKFpc+LECSRJYv/+/SXe/7Rp06hbty5+fn6UK1eOLl26sGvXLs2Yw4YNIyoqCh8fH2rUqEFCQgIFBc68F7SsWrWKxo0b4+vrS3h4OM8//zyXL1922+enn36iZ8+eVK5cGUmSWLdu3U3PGeCdd96hTZs2+Pr6Ehwc7HRfp06d4oknnsDX15ewsDAmTpyo+QzZf87sfxo0aKC2mTlzJi1atCAgIICwsDCefvppUlJSij03JZmf4H7HknzZ/HCIUkU9pfy8bM+ZnXlKWfEwGGjctTuDZy1g/Oov6fR8PAAmoxGAeo93ZOA7c+k2coylh4TrnFLOJSNJp3euJt1E+B4ifK9MIEuu051LyHTT71Xa5SuVHB284TTV9yyefA+wq5Swl4S9JOylW0OIUgKBQCAolri4ODIyMjh69CgTJkxg2rRpvPfee6U9LZWSGCFGo5GuXbuSmZnJ559/TkpKCp988gkNGzbUGHoLFy6kV69etG3bll27dnHgwAH69+9PfHw8r7zyym3Ns3bt2ixatIjff/+dbdu2ERkZSbdu3bh48SIAhw8fxmw288EHH3Dw4EHmzZvH0qVLee2119yOu337dgYPHsywYcM4ePAgn376Kb/88gsjRoxw2y8nJ4fGjRuzePHiW54zKOe/T58+vPjii07HMJlMPPHEExQUFLBjxw5WrlzJihUrmDp1qtpm/vz5ZGRkqD/p6emEhITQp08ftc3WrVsZNWoUP//8M0lJSRiNRrp160ZOTo7b4yxufoL7E8nJza3Z9HCE7wV4a4MdGlUNchu+54qKUTXtqt5BWFQN9b2aZFzdrK3K5wwZGXR6h7VwM2Fbsl1S7AdXwCjrSMVpiMjorNfH6qFoWcwzmvjPzyeZf60N/yrsQeamOUgpG4EH31NK2EvCXhL20i0gC1ySmZkpA3JmZmZpT0UgENzn3LhxQz506JB848aN0p7KTTNkyBC5V69emnVdu3aVW7VqJV+5ckUeNGiQHBwcLPv4+MhxcXHykSNH1HYnTpyQn3zySTk4OFj29fWV69evL3/99dfy8ePHZRTzVf0ZMmSILMuynJWVJQ8YMED29fWVK1WqJM+dO1fu0KGDPHbsWHXciIgI+a233pIHDRokBwQEqH2Tk5Plxx9/XPb29parVq0qv/TSS/L169dlWZblffv2yYB84sQJl8d66tQp2dPTU3755Zcdti1YsEAG5J9//lmWZVk9hn379t38SbVg/T+zadMml21mz54tR0VFuR3nvffek6Ojox3mW6VKlRLPBZC/+OKLYtu5m/Py5cvloKAgh/UbN26UdTqdfO7cOXXdkiVL5MDAQDk/P9/pfr744gtZkiS31+vChQsyIG/durXYebubnzPcfWeFfaDlXp+PBYsXyAkJCfLqTv3leX97VZ7T9wk5MaGFvGlztLxv/3P3ZA6lTZ6xUP7nj6nyu18fkv+VfEzON5rkbdu2yQkJCfLs2bPlhIQEecmSJSUaK+vyRfncsVT5Uvop2Ww2q+uPT9ws//uNJfLsZ3vJc/o+IS8Y/om8aORmecbcAXJCQoK8tk13edHT3ZRtw1bJS0ZulNcPe1pOHfYv+bd69eQ5fZ+Q5/R9Ql74wnfyopGbZePuNe4n8uM/ZDkhUJbXj5XXnL0kV/xhn9x/f+rtnCbBLZJxPUN++p0G8prHn5BrznxDXtK7nvxdp3h50cjN8v89PUs+VKeu3H7GKvmNhZHyIysekRdPXC4vGrlZPrr7vCzLsvzl/jNyxKQN6s/814fI01a+Klf8YZ887ehpt/sW9pKwl5wh7KUH214SnlICgUAguGl8fHwoKChg6NCh7N69m/Xr17Nz505kWaZHjx4YLaEgo0aNIj8/n59++onff/+dWbNm4e/vT7Vq1fjss88ASElJISMjg/nz5wPw8ssvs337dtavX09SUhLJycns3bvXYQ5z5syhcePG7Nu3jzfffJO0tDTi4uLo3bs3Bw4c4JNPPmHbtm2MHj0agAoVKqDT6Vi7dq1anaooa9euxWg0On3CN3LkSPz9/VmzZs0dOYcFBQUsW7aMoKAgGjdu7LJdZmYmISEhbsdq3bo16enpbNy4EVmWOX/+PGvXrqVHjx53ZK43O+ei7Ny5k4YNG1KxYkV1XWxsLFlZWRw8eNBpn48++oguXboQERHhctzMzEyAYs+P4GHAmhj7QffDUPDy0PNixxpM6VGPYY9HYfCwmfQ34ykFEBBSnopRNQitWk2Th8oBi1eM8xa25OeSzqNImxJ6O0n2OaXczENw15Fl2ZJKzHJd7S6HNWxTJ8u2kBtJmww/84ZRM97V0KaqV9XD8Q21Ieyl20fYSw++vSQSnQsEAkEpIcsyhfn593y/Hl5e7m883CDLMps3b+a7776je/furFu3ju3bt9OmTRtAidOvVq0a69ato0+fPpw6dYrevXvTsGFDAKKjo9WxrP8Yw8LC1Lj17OxsVq5cyerVq+ncuTMAy5cvp3Llyg5z6dSpExMmTFCXhw8fzsCBAxk3bhwAtWrVYsGCBXTo0IElS5ZQpUoVFixYwKuvvsr06dNp3rw5MTExDBw4UJ3XkSNHCAoKIjw83GF/BoOB6Ohojhw5ckvnzsqGDRvo378/ubm5hIeHk5SURPny5Z22TU1NZeHChcyZM8ftmG3btmXVqlX069ePvLw8CgsL6dmzp1s387s1Z2ecO3dOY2AB6vK5c+cc2p89e5ZvvvmG1atXuxzTbDYzbtw42rZtyyOPPFLiuQgeHCQnS7Ls/AbqYeBWwvdKOLDljax5lex+a3AI37P0KlqZzSWyJr2UoPSQJcllHN+3V15iZlCQslDkIyIXuXAm3zA8OGXZdgvzKCV7CW7dZhL2krCXhL1UcoQoJRAIBKVEYX4+C4Y8c8/3O2blWjy9vW+qz4YNG/D398doNGI2mxkwYAB//etf2bBhAy1btlTbhYaGUqdOHf78809lX2PG8OKLL/L999/TpUsXevfuTaNGjVzu59ixYxiNRh577DF1XVBQEHXq1HFo27x5c83yb7/9xoEDB1i1apW6TpZlzGYzx48fp169eowaNYrBgwezZcsWfv75Zz799FPeffdd1q9fT9euXUt0LgwGQ7FtVq1axciRI9Xlb775hnbt2gEQExPD/v37uXTpEh9++CF9+/Zl165dhIWFacY4c+YMcXFx9OnTR5PrwN/fVm79b3/7G0uXLuXQoUOMHTuWqVOnEhsbS0ZGBhMnTiQ+Pp6PPvqI5ORkunfvrvb74IMPGDhwYImO92bmfKdYuXIlwcHBPP300y7bjBo1ij/++INt27ap6+Lj4/nvf/+rLl+/fv2uzE9Q9rCJGA+vKGUl33LzfsdEKRWr4uDaV0pGVhKd3xI2JUpU3ytbuEp1rrPmC7N81qx5yMxFBMhCWcJH9ZS6+ataWvYS3LzNJOwlG8JeEvZSSRGilEAgEAiKJSYmhiVLlmAwGKhcuTIeHh6sX7++2H7Dhw8nNjaWr7/+mu+//56ZM2eSmJjISy+9dNtz8vPz0yxfv36dkSNHMmbMGIe21atXV98HBATQs2dPevbsyYwZM4iNjWXGjBl07dqVWrVqkZmZydmzZx2eNhYUFJCWlkZsbGyxc3vqqac0xmeVKlU0865ZsyY1a9akVatW1KpVi48++ogpU6aobc6ePUtMTAxt2rRh2bJlmrHtq9cEBgYCSpWVtm3bMnHiRAAaNWqEn58f7dq1Y8aMGTRv3lzTr+hTuOIoyZzdUalSJX755RfNuvPnz6vb7JFlmY8//phBgwa5NGhHjx7Nhg0b+Omnn6hataq6/q233rrt5KqC+xXhKVXUm+NWPWKt2BKdq2nHrRvczQJ0HkWca+Tiu1m6Fn0rC1mq9JCt1fcsFP08yXYVs6yilOUjUtQpziRL6CyfnxI7zN2nCHtJ2EvCXrp5hCglEAgEpYSHlxdjVq4tlf3eLNZ/svbUq1ePwsJCdu3apbqjX758mZSUFOrXr6+2q1atGvHx8cTHxzNlyhQ+/PBDXnrpJfUfqH2+gujoaDw9Pfn1119VwygzM5MjR47Qvn17t3Ns2rQphw4dcpinOyRJom7duuzYsQOAZ555hkmTJpGYmEhiYqKm7dKlS8nNzWXw4MHFjhsQEEBAQECJ5mA2m1XPBlCe+MXExNCsWTOWL1/u4O3g7Phyc3Px8ND+S9frFW8FWZbx8fG5qfNys3MujtatW/POO+9w4cIF9WlhUlISgYGBms8KKBVjUlNTGTZsmMM4sizz0ksv8cUXX7BlyxaioqI028PCwu7a00hBGUK2vTiIFg+xKBUdHU1ISAhZWVkUFhZSo0aN4jsVw83nhpKRJBeeUjcTvncTexTcPaxyord9iijLxXkidB5R5n8COYqHnEM/G0azpFbLvJWcUqVlL1n3fTMIe0nYS+7mXBwPq70kRCmBQCAoJSRJuukwurJErVq16NWrFyNGjOCDDz4gICCAyZMnU6VKFXr16gXAuHHj6N69O7Vr1+bq1av8+OOP1KtXD4CIiAgkSWLDhg306NEDHx8fAgICGDJkCBMnTiQkJISwsDASEhLQ6XTFPvWfNGkSrVq1YvTo0QwfPhw/Pz8OHTpEUlISixYtYv/+/SQkJDBo0CDq16+PwWBg69atfPzxx0yaNAlQnhDOnj2bV155BW9vbwYNGoSnpydffvklr732GjNmzHCIx09JSXGYS4MGDfD09NSsy8nJ4Z133uGpp54iPDycS5cusXjxYs6cOaOW8T1z5gwdO3YkIiKCOXPmaMoIF31CZk/Pnj0ZMWIES5YsUd3Rx40bx2OPPeY0v4SV69evk5qaqi4fP36c/fv3ExISQvXq1Us0Z4BTp05x5coVTp06hclkUp8y1qxZE39/f7p160b9+vUZNGgQs2fP5ty5c7zxxhuMGjUKryIG/0cffUTLli2d5j0YNWoUq1ev5ssvvyQgIEDNrxAUFISPj4/L4yxufoL7E81fBGui5YcujbKNihUrMmbMGMxmMyaTyeFv0K3jQiJykhxIlnESvldSackufE9NnF3iSQruMNar3u5YOq0Py6RbnCwkqxucLNsS0lvWWXNJOeSUAtVTqui2Es1F2EvCXhL20gNtLwlRSiAQCAS3zPLlyxk7dixPPvkkBQUFtG/fno0bN6oGhslkYtSoUZw+fZrAwEDi4uKYN28eoLhoT58+ncmTJ/Pcc88xePBgVqxYwdy5c4mPj+fJJ58kMDCQV199lfT0dLyLMUgbNWrE1q1bef3112nXrh2yLFOjRg369esHQNWqVYmMjGT69OmcOHECSZLU5fHjx6vjjB8/nujoaBITE5k/fz45OTkArFmzhv79+zvs19m69PR0jZs0KE/iDh8+zMqVK7l06RKhoaG0aNGC5ORkGjRoAChPw1JTU0lNTXXo786QHzp0KNnZ2SxatIgJEyYQHBxMp06dmDVrlttztnv3bmJiYtTll19+GYAhQ4awYsWKEs0ZYOrUqaxcuVJdbtKkCQA//vgjHTt2RK/Xs2HDBl588UVat26Nn58fQ4YM4a233tLMJzMzk88++0ytLFSUJUuWANCxY0fN+uXLlzN06FCXx1nc/AT3P6ps8hB7SlnR6XR3KJ+URWAoknXcZUYpSfFbk9DhTIgqVoywu5G2zl5oUqWD1QNRbzLx8k+7nbbR2V1P1VPKsspc5FoXmiW1/cN6TYW9JOwlEPaSKyT5VuTqh4SsrCyCgoLIzMxU41AFAoHgVsjLy+P48eNERUUVaywItOTk5FClShUSExOduijfba5cuULnzp0JDAzkm2++wdfX957PQXDvcfedFfaBlnt9PhYuXsjli5epm5xCRuVqmAsOoW9wlYaPn8Pfvz4tH/vqrs/hYeD4q5vZ7nWUsyc2oS/Iw9O/D3rPamTX+oi87Fo0+n4XZyvJ5Ht6YAj4GwbPQMIKltEsYBjZ373Kt42U8EGvoL8j6bwZPuQsXq3/5nqHyXNh83Ro8jfWtZpB/KGTtAn25/Mmdy6URlAyzl4/y5j53ej/dVUaXDkJwA/te4GuG5Uu/UL9P1YydsCrRAZ+yM5y2YxIfQX9xWp0GlyXem0qs3RrGv/45rA6XlzlG9T1/5F/RI3gb+GhzKlbzeW+hb106wh7SVAa3Al76U6X5RAIBAKB4LbYt28fa9asIS0tjb1796pVT6wu7veakJAQNm3aROfOndm5c2epzEEgEDjB2WNV4Sl157A+t1Y9mNxX37Mh3Z47jGxXTfGh9aspW1zxhzOVtAKDJEu28D2rV50rTynZ5il1K9X3BM4R9pLgQUGE7wkEAoGgzDFnzhxSUlIwGAw0a9aM5ORkypcvX2rzCQ0NZerUqaW2f4FA4IikeS9ySt19ZM2r5ERcuFo+hD8K04l00q9YgckufE+9nkK/KD2KVN8rKkBJkqwKlOq1taWbAkCvkzCZZQrNID0k1ffuNcJeEjwICFFKIBAIBGWKJk2asGfPntKehkAguK+wihjCU+pOYdMOrGJEcYKfTIGPN7/lnSwiSjkM6AKb6CGq75VFnCW61342iiY699QropRJeErdFYS9JHhQEKKUQCAQCAQCgeD+Rs3FXVi683igsIbvFVl2ii0ZuuxQ+UvrRaPdJMOJbZBzAS6nqeuEKFW6qInLrVUQnURsSth5SqnV95RtVm8oT72OPKNZCd8TnlICgcAFQpQSCAQCgUAgENzXWEugy7II37vzWAUns/2SU+SiOpb9Nmcdjv0I//mLQ0tJUgbT5YvrWZq4lSHNshrSl51nJATUD4A1p5SXh45soNDMQ199TyAQuEaIUgKBQHAPEQVPBYL7A/FdvV+w5jeyLInwvbuG2XgcnUe4y0TnkuXHtaeUk+/UlWOO6wrzkIAndufS9NhV/vP1ZWo0DaP1X2qo4qPg7iMVuVwS2u+WnG8L3zPJ1vA9ZZvVG8pDp9TU0npKlexvq/gbLBDcH9yJ76qovicQCAT3AE9PTwByc3NLeSYCgaAkWL+r1u+uoOyhNYO13jyCO4c+LwcAU8Hv5GetdttWc02K3Kg4vXHJz1ZePf1s6w5+Qc3dC6l7ugCArEt57Pv+FNev5t/s1AW3iSa1fREvOEOIDr1FoMzyzAPgfM55SwdLTikPq2gFkppTyj3CXhII7i/uhL0kPKUEAoHgHqDX6wkODubChQsA+Pr6iie+AkEZRJZlcnNzuXDhAsHBwej1+tKekqBEWKuACU+pu4qcDQTbFh22u/OUcjKeVZSq0x3SNsONqwCUy9hDvmc7fAtsnQoLxLW997i2Uzy8JeplS/yELafUttPb6EIzTU4pgEKZEueUEvaSQHB/cCftJSFKCQQCwT2iUqVKAKqhJRAIyi7BwcHqd1ZQtpCdhYNZbloLCi5x+PAbVAr/C8FBzUphdg8OsqvsPyUM1ZDQ6lBOe1lFqXKR0O4V+P51APSFN/AwaXuYTSKc615h9WrTSkGOwlDM1UCqeR3m10LFQ+JG4Q0KTAVqiJ7BIkqZzDdXfU/YSwLB/cOdsJeEKCUQCAT3CEmSCA8PJywsDKPRWNrTEQgELvD09BQeUvcZ9rfLZ86uISvrAI89tr7U5vMgYz3XSjiWZLfSksjalaeUMwqVsC88fVRhEUBvysOjSJyXqdCseFKd+hkqNQKfcmDwvcWjEBSHJNvJkvaXVLJt16Gj1/UcDhcqt5Tp2adp9t9m1PHpDnTA4KGIUkZZUqr1UTJNU9hLAsH9wZ2yl4QoJRAIBPcYvV4vbngFAoHgdrG7UZZ0Bry8wsnPzwAg98ZJZFkWYT+3SYmr6KnbJPsFkECyZhFypkaYLSF5Ou0tic54A73VM8ricmU2yfDdG7D/v8p6gz+8uAPKRZTgSAS3gtnZ98fqRSWbkWVFdCovXSMPkCw5plJvbAIex0Nnyymlo+SeUlaEvSQQPByIROcCgUAgEAgEgvsaCR1tWv/I4213AmAyXcdsvlHKs3owyI2oQ9D1AnW5aFU2DXbCk1oR0ck2FXOh8qrzwF4C0xfeUD2lDF6KKGE2meHQOlvfguswvxEkTYWCnJIcSsnJ+A02TYekBDi29c6OfR/hxEHKzjnO5ilnoFCz0YQRdEZbTikz6OSS5ZQSCAQPH0KUEggEAoFAIBDcd0hFFnQ6Tzw9Q9RVZnOBQx/BzWPyDaDqRVeij6R5lbAP39PUbnPuH2MnSqUcPcfPl6pxKDOM6zlmdNZk2d6KF5XJJIPeUt2p+TDbGNvnw+GNN3dQbjBdv8LexHls/MrAT99kY/q/5+/Y2PcT9t8vGcfrJ8lgtnhGWb2grJ5SAJJUqIbvmezC90R9TIFAUBQRvicQCAQCgUAguH9wom5Yb4V1Og8kSY8sm4Qodds4JpJ3h4SsDd+zW68M59pTqtAMG7/Zh9kcCUC5y/lgSRflafWUKpTBaPF+e3wcRLWHT4coyzkXi51fSfn18z/Yc32wulzl2kFqGG8oea8eEpwluZcAk/E4F6VUjFUrEHoxHat/g/Uaa4Vik5roXOspZRs7NTcPPRJRvl534zAEAsF9gvCUEggEAoFAIBDcpzi5eZYMAJjN+fd6Mi6RZRNXr/6CyXR/hhTKLhectLUIWLYwPzcJri05pfILZMx2cV3ZBZ7qew+DcrtiLjTZJUb3hQZPQ7PnlOX8rOIPooRkpJs0y5cLqysJ1h82ZJCLaIzGnE1cly5wOjSQqGP7MVkuqk71f7K7tZRMeOiVAQrtckpZr3JWoYnHdx2m9a4/1XEEAsHDiRClBAKBQCAQCAT3IZKTd6DTWUWpsuMpderUR+zd9ywHD00o7amUGFnz3ml2IeeZ0IuiqlNOGls8pfKN2qCuQllCtggVHp6Kp5Qp305k9PBWXr0Dlde8OyNKGQtM3MhV9lve+6xlLl5aUerqSfgiHo4m3ZF9lmWs112WrFfP9p3SyTImWae2VNbZfzZMak4pkyxpckotPHmebrtT1KZ5JhHUJxA8zIjwPYFAIBAIBALBfYhz74qyKEqdOPlPAC5e/K6UZ3ITuHBekdy5SsmyXU4p7UDOeskmIxJw6crvAHjpjOSbPbEEiwEe6D2V8cwFdqKUNZTOEKC8FmS7OZCSkfzJEQ78eFpdDvS6xqW8yhTKBq0otW0e/LZG+ZmWqR0k4wBcOaYkbo9qbxPN7kMcJERZcnB3s4pWkqR4l0myHh8PH24U3kAqGr5n+QRkFpr4x/EMTHZD5Zll/O7KUZQOsixzKv0jCvIv4GkIJaxCLL6+kaU9LYGgzCJEKYFAIBAIBALBA4MqSsllR5QqLLx90aR0kDQvYCdEaGQmSbOtSBcFJ2XXjAUXMQAZ538EauHrYSTfGronG5ElPXpLsmyz0SJK6Q2gU7yn1Ffz7Xva2AtSOoyE+FzkWCaYinpK2eev+u8z0Kiv8nMtHT5ojyq/NewDvf912/MqWxQVpay5pBSPN73sgdHooVx8qZBLOcp3sFC25ZRKzyvQCFIABfKD5SmVk3OE1NSZ6vKVK8k0bfLfUpyRQFC2EeF7AoFAIBAIBIL7BmMxoT5WUcpYcOVeTMctmZl7+fPwa6U9jRJz48ZpUo5M49ix+WRHbEHyyHNoI9kJCk59popU37OKV1ev7eL69SNqWB6A2ZIjymwJA8sygKTmJypEhxmdrIhR5gKLyGifcNwqSllFDVlWBKpbyVFk1d8kmcf8/4fBw6jMQvaEL0fBZ8OVcQOr2PqkJsH3byrvs86iOSNXT9z8HMoQynUuKi1qv3veOiVsUtIpopTOrKfAaBEVJRNnryk51ArNts9BvkVArOzliZ/FkyrfiWB5P3Pjxim3yw8SsmwiO/tP8vPvXLEBwcOH8JQSCAQCgUAgENw3ZOcpN8CSi/tYnU4RLX47MJyQcm1p2HAxx48vJCc3jfDw3oRV6I5Ugmpyd4Kjqf8gM3OPZt2VK9sJDm6JTlf2zPB9+wdz48ZJZaEB+J1oDadqahsVzX6t2aZcFDMSOuv1kQtBgqtXfyb1l+7UrDmZiOojlG1mq/CjjHlOryfIAwyFYMz9CQ/P6ugKGgA6TKoo5Wvbn2R5vi6b4Md3YediKLgOke1gyFcgSVzLLWDM//az+8QVCs0yozrWZGyXWtppmxUfLxkY8nwufl9/zu/6FwEwyQaycgyc+Pk6sm8KVXPKEWrf2Zpk3VTEM68gV1ltyudU+r8oLMyiSuVnuXwikNQ959F76GjUqRrBFX0x5pvIvpJHuUq+9+yz6RZZ8+KSi3lBEKj1lJJl5XMtSSZ0knUcSfVmswpQnpKEl04ixwR5lm2yLJeN479N8gsUgcbfvx7Xr/9JQcHFB+bYinLoz0mcO/cFkuRB61ab8PGpVtpTEtyHCE8pgUAgEAgEAsF9Q3E3ytWqDVHfX7m6nV9+fYpT6R9x+fIW/vjjJQ4eHHdX52dPfv45h3X79g/mzJmbD+U5mjqT/b89z40b6Xdiak5RBSkL/pE7qVTpSJGk586vgOIJY02MLaEzW3NJmSyvCpcvbbF1MimiVL5FlDLrZDL9lXVmYwoFuUnk52YoywXKetnDm/yTWeSfzEK23sqYTfDrvxRBiv9n76zjJKvO9P89V0q62r3H3RUbhsE1QAiEYFFISEiy0SXyixDd7MY2WYgRI8kmSAgJsgTPIIMMNsrMMO49LdPeXX7vPb8/rlRVd/UIPvT5fj7QXVfPvSXT56nnfV5g55MQ7wDg0Y3tLNu8n0TGJmM53P9Sy5Cx25YTmKtM3T2PobtCiTXuNB7t+xxP9l/DU/fs496n57vbLviAu0M24Z5/sCiVjQNujtj27T9l9+7f8/LG63jkTxvY8HQLLz3RzPP3bgfgju+/wG3feY61j+7ljSKVtfnSHWu45MZnOO+GJ7npqR0H3N57hgqWresOwXv/yhrGAaA7Ovjh58Jib/fQbpNZ70aHNEFYc7fNOJKtW3/Ek08dRyq171Vd11uB/qT73GepBdx8u7dSN9DXkt7eVQBIafHsc+fieM0LFIrDQYlSCoVCoVAoFIq3DaOaLuGkE5+nsnIRMLR0pq39fmx76GT5QGSz3WQynYc9loxXQrj4+EeZPPnLwfKe3pWHdZx0poPdu39PZ+cTtLbec9jjANjbfCvLnjyWF168hO7u5w95v/qG7XkleRAO9xMKJYZ1qoErQAlf5ZGuKGXoFYB7LQH+BNZ0J+9SwNNzOumYXA6ixNvEzeOys67ok+2U7L9xDftvXENynXt/0+l2pOVO+jNOhOX9H+Spf2zn5WdaSGTsgrFli+RPOXnlY5pw14cMrzOgHaY9MzlYH09FSDhVEC7LO2gidy162P2ZcYWJvv61wWY9Hc0k+3LiVfOWHu7+6Uq6W11XVceeNyZ7LJPp4ukte7hjxV5e3NXNhpY+frts25Dt/ND6nDmu8El3AKafSxK3G6ImDXLTS0kqm7tW6RS6hAwhCHnHTzuSXbt/Qzbbxc6dvyo65vb9D7Fm7TVs2PBlstnuotu8FUhmbH7z+EYAHtucK3+17cRhHSeb7aW5+a+kUkNF1Fc8tuQe9u69hT17/0J397Ov+nhSStLptuCx4yTpz3u9vxHYdootW3/Anr1/ZvWaj7Jx0zcLSoQVRwZvPd+wQqFQKBQKhUIxLMUmHIUT3lCohokTP8OaNWsRQicSaWLWrP9mxYpLcZwMmUwX0ejoIscpZNeu3xJPbKe9/X5sO86ECZ+ionwBtbWnB9t0di5jb/PNaFoYQy9l8uQvkkq3EA414DhJbzy1TBj/caLRsaxb95mCidyhYOcFpXf3PMt45xOHXf7X3HwL2WwX2WwXK1e9l7kLH6S6fDKGrtHTu4KtW39QdL+Kiv0kZe5elZZ0MGfhOgbunZS3VS5HavLk55EINH9iKFyxxvDKKvMdI9K26LEaGeitBrI4QtJTnmVPQzV1uyyklQBveyfrOaUII5HEa18inNlFCdDT/Sx12QwCeKD3a+xNz4XlcVj+MuGLxxLSMrxz6kpi2i6EXo3jnIhAR3j1ZU5e8raQ7ngjIfe8rdv7gAiGSGJGwyQTGhtGjeLYUIlbPigdeOKHoHlZStFKGGiDTALbTrNnzx+DY2fT8YJ7m+zLkOjNCTeaObxfwHEsentXEgrVEItNHna7A5HN9rBz56/YvecmbGMOcA1VJSbdiSzjS9fT0aFTU3Oqdx8Gnb+kSEabt03EdgXEKWmTpXnlnTWRbvYnPbfQoF1NTRCSviiVW9vX/1LRsW/Z8l+kUq6TrLxiAWNGv+8QrvjQ6O5+nmRyJ+Xl8yktnV50m87OZWh6lKrKYw94rI6BNLb3ms3YIbK2galbhy2Eb9nyPVpa76S29kzmz/vNYe1bDCkdVq2+imRyp7dEY8kJTxCJjBp2n87OZZhmJeXl84qut6z+4DPOJ5ncQ0XFUa96rPH4Fix7gEi4iVCoftjPu7a2/2P37t8VLBs/7qNEo+Ne1Rh8LKuf7TtuIB7fSiQymunTvo3mv9cVrxlKlFIoFAqFQqFQvO2orlrMKSevRgg9yHIxzWrS6VaeWX4y9fXnMWf29QihF90/ldrH1m0/LFi2c+cvAThh8bJA1Nq+42f09a0KtunpXUEisQ1fqNG0CLruTtr1IsIMQH//Brp7nkPXomTNM6mIlVMVCwXr8ye03d3LWfvSJ1gw/9A6uzU330Zr6z0MDGwsWP7Rm+5kfuN+zpn4POl0c7BcYqLX/wn2fBwn7JbDGVqepHCAnHndSDNq9CakKAlEKSltBLmsr1Qmydn/8wQA/9F5Gi92vA8rvR54CMfTZGwri8BEAsnETmA+zr713vFCpCZuoXnqT2FfkroOV0DRJNjSYF96VsGY0imLS6bdwxnjngyWbXjxTJbfWsa04xo55X3TcWwHKSXZgX/w85/sxbZOYvqUlcB7gn3GhVbTrE8B6miprAKhQ8VY6NkFz/w8d8JwmStKWSmSqUKXnhyUx+XrdqXVYQa60kU7FPrs3PkLdux0zxOJjOboo/5KJDKKe9fsw3Yk75o/Ck0bPrOov38Dz79wQfBYt9Zx3sSH2Zq4mFJ9Bx+f8zPWrAUhQtSO/ujQA2hDy7Kk92LwK/bqUmFyifGyoEPjvoZIwb4hIch478uunhXEgnGu44UXL2HqlK9QWXkMAB0djwaCFEAm3213ELLZbhxpY+hl6L6LzSOdbieb7WblqvcGy8aN+yhNTZcQCTdhGKVYVj/btv2Evc1/AeC0UzegaYXHySeVtTE0150XDUXIOCFM3Roi3uQjpaSt7V7iiW1owmDs2Ktoab3Tu/Z/kcl0EgrVDLu/ZQ0AAsOIDVknpWTDy19i//5HsG33/azrpdj2APHE9mFFqVS6ldVrPhzcE8dOM23at4LP0kymg1WrrwJA08swS04g3f8QmeyrbzCxadM3ad53W8GyObNvQNOjWNkeqqoWB+Mu5kDLZnuGiFK9vatpafk71dUnUlt7etAQw8e2E2hadEju1+bN3w2eC4B9+/5KSclkpk//DtVVi4uO37aTdHQspat7OePGXk0sNqnodoocSpRSKBQKhUKhUByZHKRMY/C36+FwQ5Dz1N5+P/3jrqG8fG6Rw8qiE1/DKHMnqdt/THnZXKLRcVhWYcmVK0iBbyMJmdXBRMefCOWLUh2dj7NmzdXB479vfpaW5CR+dvl0RtUvQdejQyZevb2rcJws6XRLweTLttP09a0mWjKeSLiRdLqdjZuuC9YLEUZ63ew+d9RvAUj7Q9Eq+fmKS9jaM5GBbCcPZf+Lrcf9nEjdlkF3YTjhQxKKpIIr9zOlhFe+p+muKJWxUmxuG2B82W7aE77jxxU3HM+ek0olQXgCnu26i5z9W6EMJFFWWjuoJVdeFjFqgBZsaeLgioxCzyDtENmMQ120sPRy+6oBMqkS1i1rJjXQTkPoiyC/hmPlRKRNW2uIzn2WaKaSUfY2TtDu4jfpnxIF7EwJK3mA2tPfzbiXNkDrOuh3s5CkHnLvkLRJe6VXpbHpDMQ3IZ2hAmgoqjNrySiev3cHDjYbXv4K8fhmtiUdzJrzqIhN4pjaGbS13xfsk0o109X9DO3WmXzmNlcQbaqIsGhSTrjo6nqavc23MnHCv1FWNpsXX/rOkHO/Z+o/aU5s459bj8s9izJDZ8v/EjYkTrkDbcEK8jYCIRCGp1B6L4nuzGzgAX8jLJm73lSo8Nq3tPaDqYEp2LbjZ+R7cfr6VtG87zZKSibQ27uaDS9/qWDfg3XWlNIhnW6lp+dF1m/4d8AVRY9aeDMVFQuIx7fR0/MCGzd9fci+u3f/nt27f49p1nDC4qU077s9EKTcsb0UiGXFSFsOpifglUaipO0QMTNBX/86otGxRQWt3t4VwTgBNL1QwHvyqeM55pi/U142j5db+omFdcbXxEgmm1m1+gNBifLkSV9iwoRPFOybTO6ktfWu4HFV1WI0LURn5xPB67MYmXR7wT0BqKs/h6rK4wCNZ587l6wnQG3qqKMl3svJY8A5REeY6/xbQTQ6jkikadD9cMubNS2E47hOwnXrPxesLy2dwaLj3PeD/7kCglhsCvH4Fl5ccTljxryfqVO+GnzpsG7dZ0il99G87zZMs5rjFz2IpoXo6nqalta76Oj4F5oWYcrkLzNmzIeCz+xkKifY+yQS22huvq2oKGXbaZYvP4N0xn3jpNMtLJj/h0O6JyMZJUopFAqFQqFQKEYE06Z+g5bWO2luvhWA9Xte5o71Nhv29VES0vn1B44m1XMLO3b+nAnj/w1wXSnHHnMnplnDiysuoa9vNW1t99LWdu8hnXPMmA8Ev/sTUsdJ09n5JNu2/zf9/esKtm+KtXHJtHvZshG2bIRwuImpU93JczjUQDrThmX18NjjMwBXKGtouIAJ4z/Jtm3/TWubmzk1fvwnqMwrNfr7tqtZ21bHd08YWqb3y3Xf5vhpx7B6//a8pYKel95N9ZKfF2RKOY7XXa2IIDhq7GZvV5HnlEqDk4S4OznUhDvJvGLGnfQ/7pdgFYpSWdsC4ZbIRBIZ+nTXBdXlzMK2L8IxXaGsJD4TeAG9bRStKxLEZuTGZGhJsnYIPfUgesRV3toStTSUdGCEciVzW1dmGVfehJSDgsqBqmP/QI0paN16PGX7OglrA0A5TraEblro7riFxkufJfTQf7B+/S38I1bKBdntLPT2t7I97ljMSqZP/w/WPn+jew/MBE7Wdc9lkjabnvMC8cMraWm5gz0ZwU/aorDddUadVJrlPVXZgrHtffwGrl5v4k/nuuKF41+z9hocJ8X+/Q9y9NF/Y/Veh3luJR1fffIbfPeE72PqFqNLXubMcYVCgmPHefcx0BKxYIuXEZYXRaxJcARMefcK1q//AhlzYu55DJ4CyeXT7+K3a6/CljpZvVDM7E9kkSENzJDbnQ+YPOkLxONbaW27B9uKs2r1VQwMvBzsU1NzGp2djx3UjbP2pU/S0fGvwmtykvT0vkB397Ns2/7jA+4PkM120t3zPKlBokR393IqK4/BthPsbb6VutqzKCkZH6x3nVKeq0yESGSjVEd62LDhC2zY8AUWHXd/UCLY0nInQjOHlPP6IlDe6Hl49WNc9/A+0pb7XrnnU0sos+4syMzr7Fo2RJTyRXPTrGbmzB9QWXEUGzd9E8i5jKSUrFz1fvr717HouH96YvvAkHuyatUHiETGsmD+7wNB6qWOGfxp/fs4d8K/Co55MPbu/V+2bP0vTLOGE5c8XVAS5+fOHXP0nVhWHytXFZZqDgxsxLL6MYyyQARrqD8fy44Tj29Bygx79vyR2prTKC2dzt7m20ilcwH62WwXL637DPH4VrLZnGDtOCk2b/kuFRULg5JFXxSrrFxET89zwbbx+OYh1/TM1g6Wb3mJBeHc89nZ9fQh3Y+RjhKlFAqFQqFQKBRHNofYab2iYiEVFQux7QStrXeTaPsqseQSuvpOY0rDKtas/DKa4woEfuleJDyKUMidzZtm1bDHnj7tO2ze8h9IaTF27IepqT6J6uqTC8pB8kWpHTt/EQhShlHGc63Hc3TtIywZXRhCnk630Ne3GoBwpCn4Bt7Hsvppbr4VXY/RnTdp2rXr18GEKs4CHtg2H4A/rHsfH5x1Fw/s/iA9iR5e7ppGe6Ka3qx73PljKliztzc4ju3o5HtcHDs3fRgsS5VXd5BEL8iUSg88CjxB7/5SmAKGyHB89Qaa4hXsy47xDuR16POb6Ukb4U1T/Iq21YmL2MppHBs1IeQFxVsRBvaF2bOsBYiRyBowwV0lPGFgdGgpFdWuey2ejQEdOHZhDWLSqYAiolS9KclgsifcAEBEDJABEh1TiTVswIx10bxrK+tfWMhzmfG8rK9nZ9WT/KHbdYwl4243Q10vob7uHEIhV8gUeoZwNEO6rxKA3nZPFIq6ZY29dmG2VJeVe2xkHSxTo8LaxhxnE8uZjSGy2MmlbN6yk1CojnFjr8JxciHbK1ZcFghSt7z8HtqTdXxy6X/zvSX/SWNsP5MrdwLQ2HQFrS1/BaAkTMETLLI50cAVJAVSQmvb3cS19wGzAI2QHcYGPjbnzxxTnuB3QoKErDYoL8vJHV+iccLix4hGx9HSejetbfeQTO0tEKQA7lhbzemjCQSR4RgsSPlY2V46Oh8vus4t3dKDEjdwHVmtrf/njTGEIMO+zm2YoVvZsuU/cZwUe3b/gRNPfIYdHXGSGZt42mJUqetAEiLEXVvP5zMLcyLTc8+fR2XlcUye9IXAAVZXexYA0eh4ksldBS7N2toz6OhYytrdO0lbU4PlW9oHmB3LnUfKDJbVN+S6fJHINKupqz0DAF1znVj+aySb7QwEl2eWn8bUqdexbVtx4S6V2kNP74rg8fUrPwkI0rbrAt2560Y6u56ktvZMdC2EpkcZO+ZDQ47T1f10cO7HHp/BscfcTXn5XBzHCp7fULiOsrKZjBv3sSG5Ual0K1Z8c/B8anqUaZM+T0vZrKDMurPzCVatzp07HG5E10tIJLYXCExDr3Ffnijl3qMJ4z9B+dxfkcl08exzZxGPb6Gre3mBW+rfbl1JqbaTBSfkjuU4kvX7etGEQAhoqohSEVWZVINRopRCoVAoFAqF4ojjEHWookSjE4LfTx37NKeO9b7NLpKXVFo2M/i9qup4OjsfQ4gQs2b9iF27fh1kNdXWnk5j44VoWnhIXolPTpTKTSAnTvw848Z+hKW3f3vI9qZZTTbbFbghTLOShQv+wpq1VweCk8/gSRtAPO46ijK2e97Tptfx6dP/nTmjvs3tN6/gib37g219p82Y6hJ2dSWg1/LGWihK2c7wEyqJm5skBYSs/K53NnvbLfx+dWfsH0XzdteJpmExpHwvnQXhTlP6yQmBA4kKnhj9KKMaXeHOWZ9lz7JcyVpqwL3vAhtbuvuHRK5UciDjZu7Yg0SplCxDSteJJHRXI/O78LVldfaHqgGYmt7KeqbRt/ME+naewKjFv+GvD++lvGccjYyjrncOfzt6FVuSU1nW9zHsn4eoP2oh9fUlhEI1zJrxSzbduxohHEad9m2s5H+y52H3ruyu2MB0sgigWY4jVzcHWREC3OuIJWx6KzT2jo5yXuRezgndx9iyvTAAezw9JV/UCIcbg5JVgC++43guji+kL2kRSb0D7FxpmmHWYxjlOXEjX3XMy8PSpMQG0r0RotUZ0Gx00tiEec+W93HP3P8mbLgd8vyYq5goLHMtcSCjCzKAg0DzhBLdK8fKF6QsR2Nbz0TWtNVx+mjXrbR+wxcYPfp9VJQfRXf3M9h2nIqKowiFatH1kgLHTnX1SXR1PUnW6gtcSZMmXUsivp2JEz/D7j1/ZPSoy9D1UqS02L7jBtrb7yOZ3IVl9QCwuWss06u3keq7l019OZdkOtPGu6//A33JOBEjzbVH38hM9+WC0ExW75/HTu33THByOV09Pc+zaXOunHJ/xyPeOJfQ3Lyr4D5FI2MBCImcULy46XlK+m5iX+8aAJqaLmbfvr+SSu1l6aNuSWx52TymTv06llf+ani5dpArD7TtFH19a9nhiTg+W7Z8L/h9zJgrmTDh3wjlOUUTCddRmZFV+J/E/mcMuLlg+Q7Q6qoTKSmZgBA5YXJwV8GOzscoL5/rPT8S0Ah5XwLU1p7B7t2/IxqdgBA6icQ2nnvuHQX763qEkpKJTJ50LY6dYveem9i956ZgfVXl8Ywf/wmktFiz1n0uhDCZMuX/0dhwIY6TZvPm77C/45GCTqt+qbUlQ+zpMWgqbwzWrVr1AcaP/yRTJn8R25H0JLKcNKmw+6AjYf2qM4hnS7hx7Yf52gVnc9HCgzfZGGkoUUqhUCgUCoVCcURjO5J71+wjmbWpLglx+oz6A4Y+jxp1KcnETlrb7h6yLhSqDSb1jY3vZty4T/HE5v0k0hbHT3wfs2c3EI2MpaJiAXW1Z/P4E26wtq6XYhhlQ46Xj+5NBv0ueAA11SdhGDFe2H8aTZE1RI0kK9vm8/5TP0AofiNd3U/R1+dOdEyjkurqEzjt1JfJZvvQ9SidXctYu/aa4BwlJZOJxaawf/9DxBM7Adje6QosC8ZWcfR4d8b8vXfP5aF1rVz/r830pSy6E64oEzF0wkZu8ug4er4egWXr2PbgKYS7QevGmayPH8X53MfMfZ08Pi/L9D3u+db3xel7dAzHzu8h0+9myNSam5kRWcbjKS9RyBOlTD0dlO9VTC5l/14H6bmHlu8+iRU98/jvk7+J3F8oLmXiriilYWNJN9tJ5uUaZb3SQytbGDSfcsoDp1TYtEnZOo7UuLE1TKqtgjIzzK5kJU5eJpRjd9L6ok5o4FGydh1G9ER0DCbEG3i49wvegaFvz7Hox7oCzZ7dbli30BwSeoofD3ydd0a/RnWykZdHP8pZhiuk/F1eRIxcx7W+rMH63ndydPRhpm3r5oWj3Mn6qJpcSVI+e/a4GTa6XsqJS56mp38HN9z9deLZEr5y3JnMKi0HYPee8WzJiwwTWjVTJn+Znc23kxp4qUCTEpmc6OC74DpeGk3lxD4QkmpjD/utKVSnaxjTOx3Z+CzTp/8HcqkJSBpkG9+UX6ODeu7cdD6lA+V0za2hC5AIntraz5JpNeh6YVi3NGfx8fvckrSqcDeOFGhC0tp6N62td5MxTyeUfTTY/qiFt2Dbrrtl0aIHse0EvT0rXFEq20PWK6kc1XQJYc8BN2N6Yd6W/z7en+e4+vuWd/HlY3+GqdkM5tPz/nPIst5MPT320QDE7TFMnXZdgdgzMLChYHshDGqqTw5Ki8F1UMVKpwFwQtMyklkY0M7inMa/EfZer0KYNDZcyL59fy3It+vrX8uKle9lwgRX/NXzQtD9hgsdnY+yY+fPhozd56iFt1BZuShwe0Yio+jrW03ay5typPseNTRBT7p82OM8+9xZGEYZCxf8OXAg5Qs/AEjJmrXX0NGxFHBdqX4eVFXlsRxz9D8oKRnP+g1fyMvtyxEJ5wLbi30OL1z45+B4Z5y+DcuKI4QefCYDmF6YfL6o64tSn7ltPc83u2O+4d3XUxr/PAB79vyRyZOupb3jeebXvcRFU/xMNR1bgqHZ1ES7qYl2c9LY9URMV0zr6HiM7p5nASiJTmDUqCuGhKyPJJQopVAoFAqFQqE4oumKZ/jxbbkOeLd+dBEnTKkddvtIuJHZs3/ClXeezeyqx0mJ+azaF+Jr5y3kqiUT2b//XxhGKVVVx3Pb87v56p1um/pzZjfwmw/mdTDTwyyY/0ccJ4VpDj8p83EnS4J8C4rfmS+eifLDF3Jhvh84axqGWQEQOF22d+m0vtzGadPrg/PVVJ/MpEnXks12Ew43UltzKnv33uzul9oDQH/anTxWx3Iup9GVUT5y4kQG0hY/fSSXjxI2NcJGnvji6OT70hxHY+2as5jOxiF2td7W0TgxE4kgYtnsGN3HrJ5LsPsfJZKAyJYy1mcaqQX0UD/nVH+HqAOPyznuATwhUUiC8r2yqmou/szJfP7by5gxoBGSwi3D23UGdLuKSunoJAPNURxPgBI4GDrYWUh2REj3lBMvlWzsnsbRDWux0qmCcaedUsAV5Ur1DCncSfvCB8YTyejAY/yduTRNjIO3q5V6gUxfH9CHzW40YzR6aApNPQsLjr03OZPH+iSX7e+hNO0KCVLCnoxGQgoc4TrSLKkhwltwEJSkwkzuWMi2mlUgYCCr8dPnzuax+vWUDexjVEuS/lKT/jL3HvWkyimJ1tBYNYaurlyXwbFjrwLADI3lj+vfD8C3QznHTH7ntd50GctfqueDJ57ImBkn8Kebz6Yx7wkWVm7a6OeJJdpjVFWdQF3M4kL7W/y+/Rb3aZQ6M2f+iDGjL0ITDwAS29GZziams4lmqrlg/iP80Pg6XcxAonHNzev5zBk2Vy8qLJG1zFMA9/Xa3APffvZbfPqEFuqlK9rlC1IAXd3P4DvvIuFGDKMscAymU/uCdYZRwXCY3jp/v87sfLb3TuTzj32fEjNBxg7xrskPcsa4ZUX339o7l8aJvyS7qxvYxY6OON1Tz2XmzCoMPcpL6z5Nvi1z+rTvECudTnnZbCKRMWQynRx91G1ESmbz+Zvv4D1eLwP3fLlzvpT4ImfMPoY719fS1nUNur2NyeXrqAoyjRx273U7xz2xJcPPVj/PH648NnBs5ruZTLOGxcc/gu0k6e9fT23NaQXOJsh9VvlZabZ0ReCKqMmzrcegCYcrZ98ebF9Xe1bgArOsfl548d0smP8HSstmB1lOjQ0X0tp2DwPxzYEgBSCjZ5G1HUzdHUNFxQIApk65jnR6P1a2h0hkNKNGXYqml1Bbc3ruvHVns2fvX3hu3zRuWvtubKnx8LwUE2tzwlyxToV+mfaOnT9j2caNPN9xPuc3DRDRobk393x97i6N577yFOtWnojjpGhtvZsNL3+Jz+a99XU9wonHLyWdbqG5+Tb2tfyNd01+lNDAap5+Ol2QcQWwafN3WDD/JqqrlwwZ10hAiVIKhUKhUCgUiiOOfD1EIomaOmFToyeRpb0/Pex++aRteGLvicwfW0nG7iFru5Pturozg222789lzDy0vo142iIWzv0JXVNz8iGP2TSrmDXzh7S23hNkqvgTRNuRBdtatoNpFk6cf7W8kZe7XgTgnfOa+M67ZlNTGmbihE8VbOdPrgK0Ui6YP4rz5hZ2uQKojhWWGvpOKekJD45tFGpPToiBZC3FCiiFFwrld8UTErTQJESJoCX0CHU9GgOJcmrdQaJJ0IWFxBVmpu2BjOmwd4wWlO/ZGUn7z1cTsbxuht5tqth6Kek9nwQgWmthp9Mk4pp3XptoSNCXzLD3qVqkV66nHe+6XDKZeMG4szKMlO4YykWCPs0k4xieIJW3XXQf7+CHPD3wITpl4Wssm3gEK/Us5ZUTC5Zb6XIeSFSyfOMebvRCqlPpEtZvOh5qVyF0d5nplRs66HzoyfHEMpM5qvkcnppwB80lnd5zYSGAmVvitOs6nw+9m6rGc7nv5SjXnT+TEyen2GTHKS+fz5TJXwm6T1p2fgB8TmiorTmd6dP/g8/9vYcVLeMBi/9bt5y/fXoKW1sNJiwvXobqGdpwbJ3ps/7IdeXLMf/yW2pC6+nMzEZIEXRFi4UN0lYGO8+xdsqYZ4gaCYQnzkoEttTZ05WktHQeU6Z8BSvby4QJn+KeNZ3AGmJhd//2RA1ruxewaafFpxbc5O0fYuyY97J37/+SiOfC+jXPEeSLTL19rnCt6eVc8IsXSGZtwobGBfNH8anTpgT7NTZeRFvbvYFw0J523T2jqmvYvt911ty28WJGl2coM9u5ecP5fPOis0g3vwuA0+cez9Qpo9nQ4pZB3rWqmbtWNfPp02byxXOmc9RRt9LVuQxHZmlsuJCyvBLhxccvBWw0Lcy65l7u31jKrv2f5LSxT7KwPicibe6ezPUvjGNVu+SJzRuAOd5/F/KjS+ZxTM3d7NhxPY7lXsP+RIzHN+2nuScZlEj6TJz4eSZO+DRCCEwqiIQbKYa/X3aQKDW6KkpnPMOy5iWs75zJVxf9iuNmf4ympkuoar2TRGJn0MFw9ZqP5B2vNOge2tWVE9uufvgGQMDfH+C/3j2X9y3KdRiNxSYxf+Hd/GzpFjpbMkwaiHH5sWPR9dxrtbR0OvOPfpoP3fdwsOwnD2/iuInVREydM2bUU1M6tAtiOFQX/D428jAv2xmkdFVoyymUTdJ2RVBenZ+x5VNffx7hcB3hcB3pdBv7Wv6GZfViWb0F22laBMdJIWWW9v0PKlFKoVAoFAqFQqE4Ujl9Zj3xtMXjm/aTHZQZNBwZTyQo9Sa8WWfofp0DhdlNl/x6Oe+c18TCcZWcMHl4N9ZwNDW9Bz12Hl0vuu6g/YlSxpeANejcliODyTTAP7a8kx39M/EdFv9c28I/17ZQHjE4dkI1v/vQMUHJYqx0brDf3v5RfOU9/49YyYSi47lg/ihuf2EPLzW7k6XqmEnY9MQdYPfueUyX64Pt7exQh4G7rQyErNwyEEJDD8+nveoh6no0pHTPY0QqiOgSzbbACxMe3w6nrnf4yifAn6YsX7eTGRVzSXpCV8jPsLFybqfSJovamf0knnXLsYR0kECm7zakk5sEHtXtZvCIftcxJkQWKU0sGQFv8mkIhwvHbOCRyNH0bC7seCeFYHLkWV6MXxyEs2PWQLYTZBJpJwl1hkGHmNVO3KgnlHXvSY9lk7Vyz3HWuw4z5E2mHQNbgoVGLONee02iibM3f4TbF/2AOCAdmwzwaKyEn1ZX0mI8z1SxAJhExnYoK5vFMUffgeNIWvtSbN/fg6ELptSXBuc187rgaZrJmNHv44vv7OTuVc3c/uIe2vvTbGrtd4WnrPCum0BAApGTI4Xkn2v3cXm9+/6JGEDGdUr5r4Wo6a4bvzOFURvGGpWmIeZmmRl6BBzIClcESWQshBCMH/exYIx+tzlfCM7aEst2WNk+n+ue/irTqrZz2pwlzCx1xeP2/W75lK6XBqLcYFdUnzU5EIwAdnRsKRClSkunsWTJk/zxyZX8c20rK/a413L5MWOpLQ1z9+pmntzSwcP7PklvMsvO7gTRSBPT5vyKltZ/MH6cW0777oWjWbunl52dcVp6U2xqc8vrqiqPpSqvM2Y+7pgN79rd19j6zpms75zJhxc8x6ULy1m9T2dzejog2dudy84SwnXhrdnTw5jImILjdiSrg/vZWHsGW3b9g2QmTZ/5GY5pfNchlY75ZX85Ucp9H50zu5EPLBrPIy+38cgG+J81/8nT57rOpbFjr0JKB12Psmv3bwuON3rU5UFZoZ8BFpdzyRe8712zr0CUAnhwXSu/ejxXwrdsy35u+ejxweOM5fCrJ7YW7ON/XgKcO6eRGz9w9JDrq6s7i/b9D9Hd/QwAleFewrr7+Z+ywpRFDHRN0JPIkrZsDL2UbLaroEPj5p7pXLDoA4xquqzguIsWPYiV7UUi3ScJSVnZLHS9hHXrP097+/1IeWj/br0dUaKUQqFQKBQKheKIprokzJcvnc+nb3WdENYg11ExpJRkPPGqJDTUUQJw63O7uXNVYUv4l1v6eLmlj6ips+ZbZxMyCktcDoUfPLCJh9f9J4Zm0/Pws9z5bycETqmQoZGxHGxHYkRyk+mBTIybrjyWhvIwX/r7Wlbt7gGgL2WxdGM7P3lkE589YypSwmV/ckgmr0Mg6Uw3cuWFE4YdS0XU5J5PLeFPz+ykL5XlfYvG89imXAB6X189lszvgjb8vQ0cNHlOKX9rP5dK8wLFU9oAJg5b+6twbLfcSHcgbIFuiyBTqqp3J3f3/Jz5malkGi8InFJOwnUPaSGHcIXnWtJ9Mc0BmS0QpDR0wu3uBNjYYUIFGOkk2ZBJVoYBVzCQhkamtpz2o+exOfsoc3bkngN/+i80Gzx3F5GFhCKN2Om12Jm1GH17sGMbIWlBRT3RjJXbPwh/l9jC/d3wSiU1x+DZnrHMLu8uuKdRqxTHdo+RSGX4WXUl/1uRKxVNa7uASWQtyQMvtfD4pv3c/uKegmP86v1HebdHFBUfFk+uYfHkGu5e3UzacvjEzSs5afBGnsjkyVTuueuqeXTFJi4/t9RbZ3s/hTv59s4JUNllkyLMQEOErG2Rciopr58C/TbJyEeBHcQzQ/Oa0ll3WSyUm7b6QlVLvImWeBMLpk8lEm4t2K++/tzg99LSqUGAeyw2lRf2fxJIcfasBh7e0EbacgpKxQC+c+96/vh0YRh3acTgPUePobEiwpNbOkhbTiBsm7pGff051NefE2w/o7Gc2645nntWN/O5v64mnrY4HNJZ99jTGkr528cXUx45D00TzJoOlS+1cNfalXR6DQqqSkwuO3Ysv3liO7c8t5vbXxB8dM4CSowkG7un8kK7+4xmLId+exwfe+Da4DzXPfgof73meI6fVDN0EHloXvleMuU2Xsh42XKxkM5lx45l4bhKHtnQRjxjsbmtn78+vwdNQE1pmA8cfy0NDe/k+RdcN1lN9clMnPQVvv63mzm9TsPQHDqS1eyTlwBQXxamvT8dfEYDvLizi//512ae3lqYR7W7K1Hw+IF1Lfzmie0MpjRsMJC22NebGrIOIBxuYP78P/P+n3+Hj839C1Oq+9G8D7WkFaW8REPz3j9pywkENb9k9v4dZ/JU26V88uIzhxy7NDZ1yLLcuum0c/+w60cCSpRSKBQKhUKhUBxx5EsjpqERMXUMbwKcL0rd/sJu/vKs29HqqhMmcsH8Jv6xopm2vpQ/zyYWcoWB3mSWnz68ia5EhvqyCE9uyYkzd/3bCVz7tzXs6HBLv5JZm989uZ2fP7oFR8KiidV864LZgSvlxZ1d/HbZdnZ2xulPWYypilJbGubMmQ209qUYyObCeH/x6NagdDDiiVJZ26Gm+mT2Rv7Cvp4sG7qmY2iCKfVl/OaDR/PJm1fSOZBmZ6c7IfvlY9u4+dndfOb0Kd6yegBmNOZcMsOhaYKPnJgrOzt3TiNs6T7AHgQiRfFFeaKUN6nzhSrdcSf+Rl+azVo5/2yegd9pznDcbYyshm6MJWNUoVndIKAstZNOwJSCyT17CW1xyx/NmIXwOuVJ3T+vDU6ycGxIGpnLF564lP9nu0HGup0mC1h55Xt3NZ7NNce9m4uNB3hxRg/rJ/Zz0poaRnVG6Re+6GIjpf+7gWbUY4nxkHED6bPx++mREUzmoDmCmK4Rtx3iVu6e+aKUn6OlS4M7BjpZnV3EGYPuq541EHo/D5SmuDlPkAKIedli//OvzQyH/5o1DhD+D1BZYtLWN0zpa95z64uPdiRCyb4V3PbCZN6LJwbilnE6nuvDP+d7Mt/hI/vvZ2fzVTy6sZ3Zo8qJNkWBAUKm68BZtnk/d69qZmx1CVUlJpUlIX7+qOt48cv3AFKeUBXSNTK2ww1Lt/DoBvjcvEpMHebO/QVVlYuC7U2zihOXPE1Xfxf3vJTh10+5Iuu8MRU8vMF97SXSNhUl7muzJ5Hhj0/vHHILQp5o5QvRacshY/vh/MOL076gdtiilCfIhA2dypLCUsqo95nV4zUoiJo6F84fzbPbOulPWUjgweZPI4FTp9VR0t1OdzJJx0Ca8372JIP59v+t577PnhSIiMVYsQeq8x4/2+x2BjS9++G72XoSWd71i6dIZXOCUtjQeP+x9cFjJ/Z+vvz3tdy5pob/M/4LKQUpO8oZM+qBdmpLPVEqz134h6d3FAhS1541jZ8+srngPAAteaLTqIpIIEItGFvJU1s7AqGzGJbj0OuFtleH3NeeLXUyjompa8H9ydhOEJzu05msYu7oymGPfXAO/mXK25W3lCj1y1/+kh//+Me0trYyf/58fv7zn3PccccNu/0dd9zBN77xDXbu3MnUqVP54Q9/yHnnnResl1LyrW99i9/97nf09PSwZMkSbrzxRqZOHV6pVCgUCoVCoVAcmRieKGHlfbv+q8e3scsTbr54xxpW7e7mlud2F+xX4k2m7lndTMegcj2A//3IcSwcV8XSa08hYzvM+MaDgFta4k+IntzSwU8f2cSv3u+Whdz4+DaWbmwPjuFPlB7e0MZUT7iaUFPCzs4EA2krcEpFTJ2+lPu4tHQ6S05Yxkk/epSOZBLDm/jWl0X4xydPAGD5tk6+ec86trQP0JvM8r373Al3adjgQ4vHc87s4vkwB+KjJ01i8905d5Qcdp5auMLxVKkgU8p9VLCp7gjQoM4upSWdE8z00DxqB9xcGcMWCL2cxKiPsPC5r7OlqZqs5k2+HYdfPH59sF+oNG+C6eUladLBkUnvtBoSB4mDJgWNlWMQ0u18qNteaU46Cp6DyzJMIgOP8mTXrSAgEXFwvCydlO8WEg6+U0rgTkwdo1A0sEUKQ0o0oVEmBHHgxd3dTCEGAiwv4Lwvk6UE0L3Mmt0DuVLJjJ7FSHczri3G5LmPcXNqaHlPabi4GFJfFmbu6AqWbmynL+le24GEE4Bz5zTxp2d2ujqZxK0HY+hU2Reljn/mGVYefQJ/WxHhvWHAE6I0qQVOqWMnVLPdE8XutxcxyRMEDE34elwgagB8/vbVRcfWWJ7rkpbyhIryqBG8X19qgZvLfs4fP7x4iBustTfFjY9v53+X7ypYPr4mFghb8YxFRYnrzutN5so2a0vDdAy4Qp0vRvndKdNZOygVPpBjssQT1Nbs7WXa1x/g7NkN/OJ9Rw27vY/vlCp27BKzUBCJhnRmjSrnnk+fWPRYT255HIAt7bmMvC+/YzohXeN7973MxtZ+lm3Zz2nT64vuv7c7wXUPjeaUMRdhaBYdyRpWtrtZW77olp+1N1go6k5kCIfrmDnzh6ze63DxTWnAdaFGw5XYjiSVzLLVy/Cr9J6LfFHKvx9nzqznJ5ctoGMg7YlShSKT/3r/8JIJnDC5lq/8Yy0RU+fcuY08tbVjyPaJjMWLO7uJmDqzR5Wzo3ccWUcPOi2m7RJAEDLyRCnLoTQ6IQiLX77vGGKVF/DTKwobHRwS/uu1iNA/Ujh8v/HrxO233861117Lt771LVauXMn8+fM555xzaG9vL7r9M888w3vf+16uvvpqVq1axUUXXcRFF13EunW5ALgf/ehH/OxnP+PXv/41zz33HLFYjHPOOYdUqrhlT6FQKBQKhUJx5OH/Te9PuvPL8DoGhZ6v3tNT8LiqxKTMm0zlC1IVUZOaWIjjJ1WzaKLrD9A0QcTUg0mp71LwyX/sT2zPnFnPTy+bzw1XLADcQPPWPvdv0dNmuBPAtOUEmVIR08+3yl2DFbgxipdePXLtKbwjT3wqixj87L0L+PI7ZjB/bOWQfV4N5v7T0ayhIcFuXLUfXO2SX77neEpGJJMrsUt55T9m6HjM2Jnonvpl2H5guYMWTNTc+1MlcxPf+ITZ1M/LZQNlw+XBfnbcvcemnsvAkkLwy0vnBKKZ5rjPUVbE8EUmWzco7fpLsI+jleN4Xcj8qawQdpApJbxAdoqKEu6Yrbh7no5+//UlcTx3V8p2j3P8LresSctTANNGhszAXSx+KcwxdzXzjucaOC2e4GsdXXyg173uWaNj/OTS+cE+Fy8czU1XHsM/PnkCpRF3bP5r0Sjy+snn2++azfb/Oo9Hrj05EJ4CgvI9ETzP4UyaMW17kIE46Qt1uaD8H7xnLn86w73GLEZQeqdrAs3bb3xNCcdPqmZcdQkTa2PB+9HH0ASfOj2X+ZTyyvzOmNFATV5QfyJbvDzxw396oUCQmj+mgu9dNIdzZjcGgtEJP3iUPy/fCUBzjytoNlVEmJTXsS0ciFLuPvnle6EDCH5NFblg8Yzt8M+1LUgpebmlj42tfUOy2Hz8TKlwMVEqVHiPfOfUcPjCVrdX7je5Lsa/nTqFi4/KZU+19Aw/R+5LWqTtMM+0ns3CmZ/jytM/xsVHTeTKxeM5Y6b7OVYeMTh3TiOlYYPa0hDvPW4sH1kyMbhugFFNl7C1LyfcvHvhaO74xGKaKlzR0f8CoSJqFuwHOQfsuXOaqIiawWdl2ioUwPy8qfKIyVmzGljxjbN4+iunM39MJTBUMPvqnS/xoT88z2W/Wc6fl+8iZUf5r+euZcCZTPNAE8+1u6YXU9eC5zljOUyd+jWqGv8f1z39Nf6x/Wp++YElBZ1LDxXBgd+XI4G3jFPqpz/9KR/72Mf48Ic/DMCvf/1r7rvvPv7whz/wla98Zcj2N9xwA+94xzv40pe+BMB//Md/8Mgjj/CLX/yCX//610gpuf7667nuuuu48MILAfjzn/9MQ0MDd999N1dcccUbd3EKhUKhUCgUitcdI6+04t9vX80Tm/cHOTWLJ9WwfHsnfSl3gn7a9DouXDCauWMquGdQbtS1Z03js2cM76wPGRppywkm++9bNI5bn9tdMDnyz/uhxRM4eZrb1elb/7eenkQ2EK8qo+6EOp21A+HJn4DaecHnfmlffue0wdz4gaPY3hFHABNrY4cUXHwg5DAPtEwDVZ2jcMQTeRt4jhrpO2ty5Xs+J26QDBhQ2+tgRyAp+gl73fr81vO27otSnmgEgSglnJzgt3bOxynpWUdsxixCZY8Eyx3d9Mbr4HhB6KZWQsb28qKkZEK5yXP+eL3yG1sPg1e+Z+kGwhNXHDuMNCsCEcv2ygtDIkGQKYV7zoGSNGVaOdLJiWRCZkBEScctCIfIr4zKiVLucTSvO53m3RNbWK6QJ3OdAhu7InymrYOQgJ9WVXr32uI9R4/h4qNGk7VlgavGFy7uXOm+vg/0+vHRNBHk5shhXkOGJxRYmoZpZZg1ToO2wvI93yklhKA2mntd+EKLm2/l3UFD56/XLC44x0Da4uH1rUgJZ85soCyS58LxjnHsxGp+eMk8/rWhjY/++cVhy7J2dbr3cGp9Kf9x0ZyC7KS5oyt4cotbzvmdezdwyrQ63ve75wBX1Jg3poLnd3aha4KpDW7Jrf8e9fOc4MAutIm1MX7zwaNZs6cnEEz+8uwuvnmP64r78SXzuPSYsfSnsqzc3UN5xGDB2Mqc4FVElJraUMrsUeWs3+e+3mY0lg/ZJh//GF0Jd8y+q6k6FuKiBaO4e/U+Epnhywv9560qZvKxkycBcP68wm6eQoghAeI/fHAjUOh48p1KV50wgW+/azYAFy0czQ8e2BhsU+t1x8vfz3eT+uJqxMgJRI4j0TRBa17p3oTakoKxRLwGDikr9zpZs6eHe1bvCx7v7nJfK7v7x7LN+Tk/e2YroyoiQIqQrgVfDLT3pwmHxyBKL6Ul/gxjql6NrKJEqbeEKJXJZFixYgVf/epXg2WapnHmmWeyfPnyovssX76ca6+9tmDZOeecw9133w3Ajh07aG1t5cwzc0FjFRUVLFq0iOXLl7/potTmdWu4/3e/eFPHoFAo3ggEcpj6fAlITaIbxb5xBsMwg9DW1wNDE0W/dR+OUm3QN3lCkA2XY1WUIsNmsNjUTCpDhZ1uotW1lI4OoR3G+RRHDmOrSg76Le2bQUl0AqZZcfANjyCWLVvGj3/8Y1asWEFLSwt33XUXF1100QH3efzxx7n22mtZv349Y8eO5brrruOqq64q2OZwIxTeVA5Q4eBPVtbv6+X+l3LBx/PHVFBT6gpA/Sl34jWqMspFC0cDMK0xl+/UUB7mXfNHHXAIYUOnH4ukN7mqjA4tNfEnePlZOLGQUeCm8ktUUlk7cAH43/7/++1rCBs6581tClxUB/rMFkIwue7g+VGvBDlo0qRJA6mHkRQ6xXwHjZMnZvjixKgO2NyYKwVs1F4k7otSXvFGxtTZMf4dzG9384CEYyN8F4nMYmQHsMxSOmrnEYrVM5E2/ru6kqeirsvi3S2+GOYg8UqutBi+rCMBJ5VCeiJYPJabVPuZUk6ecHPus3VkShpxtC5yPiko1fW8TCn3Oexs3Eo4+R5Kk5Du+6N7n+wUjhbF9DrwxUTOSebfl0naHmBC4JbQPCeYI2wvj0vDd1yBN3kTGiHvvmQ9sU4IQcgofJ58Icd3m+S/Fg+GX8HnPxB5vxve69HSNcysRSjkjc+7J1peppQ/Nve6ReBSyXdKOUXe1KVho8DFA278liMh6Qm+/vvBf8+ksg5PbN7Pbc/tprLE5MSptZwzu5GEt/3tH19MdaywzPKPVx3Lmr09vOfG5diO5PkdXcG69xw9mo+dNIn3LhpHZdSkxhNKqkpCmLoIxGJ3DAf+e+2c2Y2cMq0uEKVe2psL4f/S39dSWRLipqe28+z2riH7FnNKRUyd+z57ErYj2b5/gEkHee/7Dp8VO92suPzgeL98OZ5271NPIsPzO7pYNLEmKGn0BffDdQLlO4t8/GNF8koQP3HKZM6YUc/vntxOadjk3LmN/OXZXaQth4G0RWnYCD4H/RK6/P1vWLqFk6fVFbzGL5hX+Dnuj70nkeX4/1rK+xaNG5Khlc5zUUW8v2v8TKqQkROlvnjHGr7yj7XB53Zp+NXLKvJA/7i9zXlLiFIdHR3Ytk1DQ0PB8oaGBjZu3Fh0n9bW1qLbt7a2Buv9ZcNtM5h0Ok06nbN49/X1Fd3utWDlsn9ht7YcfEOFQvG2Z7i4xeFjGF8bhokyHZaew9i2bdDjUPmHmHrRDzCjvUW3VxzZrN9z8G3eDObN+y11tYMjg49s4vE48+fP5yMf+QgXX3zxQbffsWMH559/Pp/4xCe45ZZbWLp0KR/96EdpamrinHPcLlF+hMKvf/1rFi1axPXXX88555zDpk2bqK8vni/yVqBY2o3vBMnPhFn2pdMYUxXlS393Q6j9vJH8Cc07541i3uhKMrbN5LrSg7qMBk8S/VKTtGWzrrmX257fHZSh5JfZ5Ls9AMZUuWU9flg5wLiaEl5qdj8rf/DARleU8p1Sr+MXFUPJ3VtRsNQZ9nt9I1MoUmkyJ0L5dzvowids7KBUzb2ugZIqdky8gJh3mIxhBU4pW9M5ZuVPeHHBJ7HC9VhGCQlhFXSiW1cKE+JgZXqxLdf9YOp5k3UJ/ct2gidKxQyNgWAO6ok7eekm9f0abWGTpOk5pQrujOdwwhUqBsp6uP6i8fz+hn9jc7gOKQSalcQxq6jJJOgiTJnIha8bGZtLHh2NiOwCcRJC+nlYXkaVsL17VVhqJBGgmZgUilLFuPio0by0t5d4xqK+LMxlx4wddttDRQjB8rlHM2XXRvZWlxHCZky1CXsGOaXyStL8OyrJOW4MTTvsKB1Dd5sApPKOAYUOmB8/tJF1ze4c7q8v7CkIdx/8/vOPefT4aipLTHoS2SD77dgJVVxz8mSAIWJvRYnJzVcv4rFN+1m1u5ujx1cNCSIvRv7nRk+y8Hm7c+Vetu2PD94FgKPHVw17zHwH14Eo9z6jNrW5rkFfpIdco4f/Xb6Tm57aTp8n3J8+o54/XHUskC9KHd5nkO/Q8rO3+lPZ4DN48LGmNpTxo0vcUtRtXrZUx0CaOd96iPctGhc4pXSRE6XCnmv1hqVbuGHpFj55qvucja8pGfJ5WVcWpjxi0JeyaO1L8fsntw8RpfJdVJFBAtwJk2uojoVYs6eXjO0UNNQYVRnlleOPQYlSCuD73/8+3/nOd96QcxlhEyFen2+zFAqF4o1EisIQXMFQI7IW6ac3U4muqX923o7UxMIHDHl9s9C1yME3OsI499xzOffccw++ocevf/1rJk6cyE9+8hMAZs6cyVNPPcX//M//BKLU4UYovPkM/4e775TyRalZTeWMq3FLOMLexNWfRwyeEPnbHQrDi1IO37hnHat29wCuSyB/svKREydy05M7EAL+37kzGFUxdCLzHxfO4bTp9XzxjjXs7krw+Kb2YEJ3sO5pbwhSFq02EQLmbN2CWXlMruxL5r7990v5/GdPwyLtuJNpXwhKRHIC0/w1v2DN1AZ8k66laZQk2xm7+z52TP0wUhg067nnzLTD9JVU4fTuo8d6IFgeNXKlWqYWof/RHYHzq94QBDFinlMqHspdnOZA06y5bN32GAC2f+0iG2wvvOmUo4VAGKQx0ByJrQu8RoNc8Yxkw5h+8EvzpEZTm6Q0ZWCn2hHRF9HCbmi0L0rZmo0zSJDybz96CNN3StnDi1IzGsu57Zrjh11/UIap4eysqmPKro10x9zX7yktexloCRMtl5DCS53KEzW1vPI9z4mi5ZXvDb3K4hiaIEMuE8gY5JRq7k5SV1boPveFg1hIP2iHvJ5Eln+s3Au4pXsHYtGkGhbllQEeCkKIIFi913NMlkUM+lMWiYxNv1dafOr0OmpLw7xzXhNzRlcEpWyvhmvPmhbkNkVNnfcuGhesK/OutSte2ORha14oul9yd9iiVJ5T6tv/t54/PbMzWBcxh3ddDRYQ/7lmH5O9BhG+kKRrgp+9dyFLX27jby+6z9uNnhOtmHMpYur86wunsKVtgPf//rlAfAOoLQ3RMZAJXp+6JlgypZZRFRH6UxbfeOcsLjvWFXU/etIk1uzp4ZM3r8ByJMdOrOYb5886rPtSwKsstX478JaYHdTW1qLrOm1thd+tt7W10dhYvGNIY2PjAbf3f7a1tdHU1FSwzYIFC4oe86tf/WpBSWBfXx9jx776bxSKccnVn4WrP/u6HFuhUCjemlz9Zg9AoRhxLF++vCDKANy4g89//vPAK4tQeCvjTzr7kkNL5wYHEb+SQFofv+zOPY4WCFrprMM+LyT57FkNfOXcGYFgBXDZMWML3Cp7unIOKYAbrlhAdSzEuxeO5ot3rAHc7nr+xPotJf4WmUiVZjOsij/IGD9TijxRyi/VEhJr4D5arU4GnLFAm5dBBNGse6+iyf3UdL/M6c+/THOlOxG1PFdMXc8+dgCOZtDrZUiZ2SjvW30dUasUy1rpnk/qYDZSHZ3G7r7HkUhX/HKyQfleSJPk8rBcQcDPtRJS4+LGq1mXMNnhqSaOt7lDlsA35QWdi04JjRaWU4YmJTZgGZHAJTRrb5ZdVe5rY68usfOeSiu5DEOE0Ryd8lS1d5/souU8jiNANzA9UexATqlXin9eGTzOfwQvzD+R+bubKenYiqNpyN/8kz3pGvR3udtog5xS+T6Qdq/xgCuweq+JQ7RK+aLsfu8YufI9r8GBIwOn0yP/fjIrdnWzYlc3bf1pzptz4C6U/meF73Csih3c+fRKCBuuKNWTdAWg+WMqeWprBz2JTCC2/c9lC17z888ZXcF/vntu0XXvXjiaDfv62NkZpzeZ5ahxVdz3UgvxtPsaS2SsILvqsMv3vM+su/Nym3wOJHDVl0X47oWz+fPyXWxtH6AsYg7JlAK3LPKc2Y2Mqy7hvx/eHCxvKC/+pVR9WYT6sggfPXEiSze2EzY0Zo9yy7t/u2x7LohfCKY3lvHMV4u7reePrRx23StmBHffe0uIUqFQiKOPPpqlS5cGuQiO47B06VI+/elPF91n8eLFLF26NPijCuCRRx5h8WI3JG/ixIk0NjaydOnSQITq6+vjueee45Of/GTRY4bDYcLhV69EKxQKhUKhULwVGC7uoK+vj2QySXd392FHKLyRcQeHTu6bc4DdntgTzSudCw/KfDlYBsyB+O6Fc7h3zT6qYiEuWjA6cDj4XfUAvvWu2Yw+SEnHmKooHz9lEuub+7hwwSguXDA6uI4vnTOdHz+0iTtXNecmY2+WU6rgtHLoomAzQUokC7vv+WHWXgliRk9DdhN7sxAz/KoBzynl/R2u2TnHhl++1+W5qPyOeVLo2MIVhmLpOqKWeyzpuOVJMTkKq+zSPPHDbQUonWxQvlemOTSYW+hP1kCqhZQJWc+9ccZqh/RDX2cqMDCunpaqsrw5Y14gtBeWHu4pw9gTBwyEl61UOrCbREV1sGlG7wImYZbvIGE7kFcqKJ1ezt78ESZ0zwHAEVbRoPGeXVHq55mYnoj2eohSQJHue7lfk9EYidoplLdtJqNpQYaY7dVCGrZW4PLKvWxz1xPSNbKH6ZQqi5gF7hbfaTO+xu3Y15/OrWuoiHDFceO44rhxQ45TjDmjKtjcNuAdV+NjJ006xFEdHiFDgzTBufwyujV5GVOlRcoMX0/GVpfw6w/mAsr39SS576UWepJZ3nH9Mja29gfrDvdz80BC+oGcUuA2iThqXBXv/PlTWI4TlDHrRQL73zlvFI9v2s9A2mJ6YxmfO0CjCoDr3jmL696Zczf9/sntQK689BB6Arxm5CfwjVTeEqIUwLXXXsuVV17JMcccw3HHHcf1119PPB4PrOQf+tCHGD16NN///vcB+NznPscpp5zCT37yE84//3z++te/8uKLL/Lb3/4WcO2Rn//85/ne977H1KlTmThxIt/4xjcYNWrUQQNBFQqFQqFQKBTFeSPjDg5IkW+VB4tADXmlPIPLcc6YWSjEHQ5zRlcwZ3QuRL8iatJQHqatzxXrIqZW0Kp+OIQQfPXcmUXX+YHMvitE18RbsqGAiyv66MJgRvVMHOG6vDQnF2IdsYYKLHFrwNvbdUptGhOjAugot/j+h65m0cbNpDr7gX46Y+V85sqvsnj7HhoBhIbtdbDTnNxzm9X2oAGGDGHhun6E0JDScZUWJ4v0wsl1IVkY+hFr9zbRFXLFo0QkDBKm7su9vnRPFAzcPzK/S5lXvudEEP1ZkBqat378zvtZNWsPRE8nYsUwbPc5zZBCG9ToTDoDTOg+EYC0nmFz3YuM6y7sZAZgpQzQTUzn4OV7r5oCUcx3v7k/s2Yo54DyfhnYLWEMzNotCp1SwvfM5Y535QkT+EPSFTsO1Sn1/Yvn8uD6VnqTWapKTI4Z7z5npq6x4htn8ZU717KrM8GSyTUHLb8bzI8vnc/HT5mMEG6G1OCsodeKwVlSfq6czzHjqw5YZvhGUB0LETV1klm7QJCaVBvjg4vHH9axqgZlbd32seP5+l0vIQQsmXLw8sdQXoe9A4nzE2pj/P2TJxzW2PLxj5nvlHrjUOV7bxlR6vLLL2f//v1885vfpLW1lQULFvDggw8G39zt3r0bLU+yPOGEE7j11lu57rrr+NrXvsbUqVO5++67mTNnTrDNl7/8ZeLxONdccw09PT2ceOKJPPjgg0Qib7+MCYVCoVAoFIrBDBd3UF5eTjQaRdf1w45QeCPjDg6XK44dy/iaEra1D2A5sqCL3mXHjKU7nsFyJP926mTqhynveCVEQzrLvnwaK3f1sHJ3NwvHVR7UBXAwTppay5T6Uvb3p4maOl84e1pBaPrrz4GFguHWjq8YD2I1ALokiEXXHUFtfycDJRNI6f0F+2gihgN0lUeo6IPuWJZHFp3AM0efzuj7nuVdbfcjSjTWHT+PTDLM5e2gIXC8EjrhiVIDoR6cZD8hXFEKXMFDBCV6AuwsUrjrNByWtk6mPxQJrikdiUISwtncRDHoKuhddMpzY3nFaoBDWoQQWQchc+6ucLoTy3qIVGghESuG6bgiqSMcYpk0ECWtRwnbSZCuyy5h9vH7JXcSSq9iXM9RQ+6vIwWU1GAO9ACQbX4Rtj8BTfMgOnwg9uEigv8VxzbM4Dp9sUl4HfemtAiqf3Y31ndOx6itxRcthRB84/xZnD2rgbHVJfxpvSdKHeKYTp5Wx8nT6oquCxkaP71swSEeaSi65pZrvd6cObOeh9a3URY2+MLZ01g0qYZfPubmIAkBv/vQMa/7GA5GxNS55WOLWLmrG8uRxMIGlx8z9hWVD58+o57vXjibjoEMZ86sZ96YSh794qmHvL9fdp215ZDue68lfih6fubZG43qvvcW4dOf/vSw5XqPP/74kGWXXnopl1566bDHE0Lw3e9+l+9+97uv1RAVCoVCoVAojhgWL17M/fffX7AsP+7glUQovJXjDgxd46SpdZw0dejEta4sXFCu8VoTNnQWT65h8eTDCz8ejjFVJfzr2lNek2O9EvKL9PzOcIeC0DRKvP6ursMoN9EqzfYQtWfSXnMcE51byThjmPnu43n6jhQWYHiijaVnQDpIBxyvPK6xs4Vrbv4xraExgBvS7zulhC9AkUFYrgXJkK5QpYn9aELHllkcQNq58j2BJGm7243p6mNf00Qsw73mcJ6hJQhp9x09jldeKHSEEGhYZDAg46A5rkMMwNEEugNCeM6ptIYNODiUZtyNeqJRGgaSSMcVpVaN/hdBf1w5VK55rulraPZaTLkVgGyiA/78LqgYB59f+7qEJkuRE+Z8oSprhoL74pfv+aKUFBrVS1fRd/yDVH/wA7nyPSG4+sSJwXGDrnwjaC5+4/uPprknyZiqKEK4jrLrzp/Jtv0DHD2++nXLsjpcjhpXxVHjXr3IGTI0PrR4wive3/SdUrYTiMKvhyjl55PlOju+gaJU8J4dQW+EQbylRCmFQqFQKBQKxfAMDAywdevW4PGOHTtYvXo11dXVjBs3jq9+9as0Nzfz5z//GYBPfOIT/OIXv+DLX/4yH/nIR3j00Uf529/+xn333Rcc42ARCm9VVMHD64udl1VkkO/68rvpyYLOqz5C03Id9hxyio6AlCnQdB0hQlSZUfaGwtzX+wiVuGVruud4soVXeCclGZGbrlQM9FJGH7LyTITQg9wi4Rg42b2Y3f9AeO4pwzuWIfagC4MsuCV8TjbIauo0LSyv293M5k7sikZMKckCIe/ybd1ASN8p5f/0Q849x5WwSEtziFPKEQLNgbCXQVVhmXQByCxGyut4FoOGAQhrKe6acz1tpTsQ0s3DkUOCnaAlPYplL5vUjvsHQJDLRO9uV8QSr77EU/r5WwfYxjLM4L74r4PcY6/TZdINdhciz6mWh+ZnUY0gVUrTBGOrc10jhRB89HXKr3o74ItFWdsJupC+Lk4prdAp9XqVbxZH/WumRCmFQqFQKBSKI4QXX3yR0047LXjsl9FdeeWV/OlPf6KlpYXdu3cH6ydOnMh9993Hv//7v3PDDTcwZswYfv/733POOecE2xwsQuGti/pD/vVkS+8KesxIkdnCcAKCBOmWaPmij+bkl6QI0iEwda9bnZQsa9zArr3rebd0s2BM28tnEg7ggJSk9MIySw2JdHoRenVwbM0xsbPbAkEKO4ohvYGLFJpwBSBHWkhLIkMaVvJZVibWuW4dKTEch7JEnLCELBD2Mp8ysZJcdpLvBHK8lZ4opWOTJgS2REiZK2sToDvQpYcpBSwZwbFaGL/1RTTP3WWb7raWTJMw+7xKNy/M3b8e7/65917Sb9fR5J0ja+YEDl6+F2ZfNMzzc/j0lk+E5vVF12VC0TwRShAqzwYB73EvqFtmXUdZIEoNOoZ/Xw+1fE8x8gjrrsgqpZsrBa+Pi8nv6Oc3q9De0Ewpj5GjzQ5BiVIKhUKhUCgURwinnnpqQYDwYP70pz8V3WfVqlUHPO6BIhTe2niuHaVPvebEsz10Z4CS4hk++Yg8gVAILXDOjO6Eurgk4+lKfVGTMsMNiN9g2qT0LLqVKw2rjLsimBQOAol0JGktJ0o5QqBJie3E0fTqwCmlSQPH2gvAYzUnclpzZyAMuQHs7sS2q3sdW5t3Iad8Fiu1HN/TVa6lEcDEnTuZvnULa+pkkClll5ahOa7jJykH+FzvAsbv9zpOCq9boLBJY3guKafAKaU7YGvu4z67ETv7VLB+f0WaC9ZsY0dNNaQHOHpLhsfngsAXpfy6QeG9yF1RKiNL0T3RLWvlOj5yx5Uw+iWoPLSOcwcjEakfdt3+2iZswx2DbRr0T85gtLpjyRpeRlfWvQ4tEKUGO6Xcn4cadK4YeZhG7jXTntf04bVmcF7fG+mUyn1+jtz3wZsb7a9QKBQKhUKhUCjeeuTNyQaLCcMiBUITYLuOmdPWOkHnuo6aORjlPyYVmwbAy2YfjnAzmPxQIc1xxSNHOEGmVFoLBWHpbbVucL2dXIaVWkmLmXNKSacHgOZoI+FUV5Bv5EiBoblOqf16kpfG1ZOV+/EngBeMfpnzYpsB0B2H//en27lyqUPIK+MRVdXo3vjKEwbj9pUhvWvSDNdNqGGR9jr6GZadE6U0t3zPETkvkLS7AVg5vZv7F7cwvs0L+xaSDz/cg25LhJ9Z5XuIhMg9IZ4bSVilAGQHK7LxDnYn0/xgews/2tHC31u7XpHoM3zQuScwaRoDZW4w+J5rr+DW2SEM2xXvrEGilD/EwY4ofRgHlULhE9I1ImahZBF9lU0kinHilFouXjg6eJzM2gfY+rXGfx+M3HeCckopFAqFQqFQKI5ARu4f8G8FxDBClVu+5/5emgL/eeqqmonw8qEiyQ4ypbtxaESX+SHaXqmOsN39HIkUGr+dfDX68RUsWvEYTfubwW7DSraxRXMD+zXHAOmW1GU1A91KIEyv1A5JY3QUtdl+dqd7SJsGjuHgmZGYUtZBIhymubQBM5slkk4zujMXdG6VlaG1u+Or6S3Bv6Jw+VUIzQ2C1oRF1hOlwvEUWsjLVPKcUqvKtzCue4K7rxMHoLfEoixJIHg5mkYkI6ntg3213smFHzcvch3unCzooDueU2rw02Cl+dmudm5u6QwWNYRMTqp+bTrLifyfnqgU74yz1WjifMsVpWw96l5rNluw1xCnlPfzqe4BrhxdS7nx2osNiiMbQ9e48f1H88y2DjoGMoyvKWFibew1P080pPPTyxfwyIY2+tMWja9hd9aDoqy+SpRSKBQKhUKhUCgUh4oc9BPwu7NJ6ZbveYvD2ZyI0V7RRFRCWfu/OGbDXWw820BK23VSBU4eX8xxM6WkdGWMjBkmbIR4fPG5WL0GC1teQCCJWlkSeKKUl79kCw1L03Od4KRgfsUyogMb+b/UTNKmASITXIEmIFsS4v53nk9jSwunPLGMkpQk5MVGWXYXunesUNYtocuWCKJ6dXD5mrQpyVpgQDiTRpPuhLazNAoyw65QD0nNIepoIBMAJMM2sRRoTu4+OgJq+yQt1d74gu57OaeU5mRwAE2agD3UKWWl6MhmCxbtSWc4LGQunx68IPOibiv33B2b93OceQK67TZhcHS3rDEo3/PUJ2dQ0LnvlHqiu5/jlm/g5RPnBPlTCoXPaTPqOW3G8KWkryW3f3wxT2/teMPOV8jI/aJFle8pFAqFQqFQKBSKobyCOZLQtCDoPJzNdWKLesHeZb2tCOAjD1t85pYdNHbnnFLC6/IncQCJr8lITWDYFulwlJ11U4Msp5BXJljj5EQXS9O98jFPlBKS2vAW7LSWCyCXbsmcn3WUESbhdC9JqxdwHV6hrLttxpCBcGT4ApJWWNpj9Ul++c8f8f7tDxKys+iOe+59VWUMGKMw0jEerNjLzjqDtO46pbKGQ8hyM6h8HKFRkiYo38tk/PNo4N1H4YWsh233XrUaBt+pqSLtazlWmoTXpcxf1PMalCIVaQSYc8tJiaNpQdC54401KN8b5piXNFQxtcR9Lnssm2XdA696nArFq2HWqHI+dvIkptSXvvEnH8HZakqUUigUCoVCoVAoFMNyqN4VCWiGHpTvmTakw5XB+qRw2JDXLC6WcpjWLAnUJ5GfKSVzof6awLS98rxIKOh6F/YEmoiTG6ElNMSoowqcUrrIkI3rgbgkpZ915He+05my658kMq0AVMQh5Ok4O7OTgxI7H9soTEcyLdf9tKBrOSHbYuL+Xhx9AMN2QGhU9UfIGHHaqvRA50slp6G1L0aTBJPRFyc1UttdihCWdz/znVLerXDcsRvSoFa6U7m/l5fxVDTq3YAUcU+UGh1xSwq7sxaviAPMkQVQ4mmBJVVRpBDBPfcFNLzzDhd0flxlKU8umhk8bssUOrwUipHAcKXQIwklSikUCoVCoVAojjjEsA8Ubxyi8KeUzD75DMJl5cEWja3PAdBmJng8FufWGafw4/dobBjrrg9lQQwq33O77zng5EQpw3FVonQ0jPREqZC3THd8h5WbZ5XRzUAg6e612ft4Gb07YoFTyvbyp0wvgDyDidSgP6pjC0E4T8MZCJUHYe0+SaPwBWd4olQkaxOys5SnMlRqUcqTbrewaH8N4zIOui0xLffgA+0XY/bMRACm7R6/OxalvrMmOK7tC2tCC+6N75TaaJZwk1UVbLs86mXg2JnAKVVtukktGeeVOTB8cXG4vf27YJg6jqYF4povPuWCzt3HzjBv1NO9vCvVhU8xkhnJQedKlFIoFAqFQqFQKBTDIvNzforVceXRMGkKo2bMDh7P2Hwbm6Nf4Jb6LXSGksTNUl6YppEMuceMZIcGnQeZUoEoBaZXqpeuiiK8KcyJnVM4e/USxuzY5Y5T0xFCskMjEKW0Dkmy3RWxfMeT5bmNQsI9ZlaYIMDWBMvmjcPyZki76sewYWwlNf1JSjKC/ZEY7ZVpXmwKYYtcSZyZdUvyylIOvhcqm5jnOqUAU1qkqOCoEIEwZmkGYdu1GjV02tRnXFeTQAtUoKzmq2MaQaYUnmMMk0m2w0X9bsnb6rBbBsedHyPe0wxAue7eT+uVdN8bVokSeb+6NyrT3uWV7xU6pWQ2U7DLcIf0nVSvUDtTKI5w/PfUyH0DKFFKoVAoFAqFQnHEkPuzXdmjXl/y7+/hTZaEXthFLWNkQGpEsMArObO8TUJZcuV7fqaUV74XVK9pgkjPfjSrg2z4CaTmjkeXklH79hFOpwBIRysBSadmBAJJIlpPb9kEzJiFiFS4x/fK93TvOBlpIDWJFHDTeXN53/8zeP+XZ3HVd35MV3kE03GoTcIdUxZx/wmt7Kkf4OkJ/yChbaOyexOVHSsAqEvkplaRUAmGly0VcrJAOWY2l32VFSYRT5TCMYnoue543rDIeGV8rsiT130PiMePYU/POI5KuW6s/EldwrM4+d3sXnmilBzye/6rIoix6o+75XveNr6I6SSS3nbFy/d8dG+xU3StQvE2R4X7K1FKoVAoFAqFQnGkMnK/WX69GX6aJIv8VrhADur+ljXAyVbSpPcjvPwnX5QKZ2Ve0Hlh972gHEwThDJpYj13UNJ/FwPhHv9E+FKGET2VrvopgGRVWS2tFa4A1V09kxVHf4nKd5RA7bS8/UD3yvdatRqk5oai+2Hd/WU13tjdErg5O7dy2x1/5tS1DkJk2ND4NPu16zlqzc8IWX0AaFlXHHMQxI1Q4JQKORkkgkjGFWkyuokUGhHLFaXShsm2qpwo9dW/OlT1SxKaHxSeE6V02xWhUr1n8n87PkJt0i3hywi44NR/8o3pXyKuu/lSZZ4odbhlcXKwfFTkxSAAXa/3d4C8TCnba7eX3raNzN7mXHXnMK8qzVtuq/I9hWJEokQphUKhUCgUCsURSP4EVn3T/LozWDAQgx/KnCiV11EubRhkrPNYQh8z7X3B5CNwSll5x/bL97Bxu+/lBZ1bGTTb7Y4XD7nd89J6f3AePTwPyzRASLJC4+mJZUwMPxesb87MRXjHF54otYsGrshcxx9DF4LwMpSk705yxagPtjweHKMsk+aEDRKhuWJS2NfeQjlBCSCjGySFFjilTCfLhK5n6HvpjwCkDDftvSrR511HiO2jxwf7z9oDR22TTIg+6V6bncKwXcGrqeUZyvvWI3DFKWz33Bkh2JKR/K7xnSQ9Uarcckv7Xkn5HoAjM3mPhr7H/G6J/vP38omj3CF5opTV2sq2M88k/ru/BvvIImPRlFNKMaLJZfKNVJQopVAoFAqFQqE4slGa1OvM4d3gmg9/hNCECdhCcN+7LmBSLMYUvRPDyqLhdsTLupoPkUxeplRe+Z4gv3wParr3I6TnRPJED0l+VzkdR7hiFkBCtziv6gfMLbkXgH67Ds3POvLElh5RyrPOLGxHQ2oSR0jMbI93jhI0x+HcqpfJRnJySciSTOyI86W/2xy32V2eDeeC3QEymklSaEG3P0NaNPa9TNZxx2+6uejEMu5jS+g8sPCkYH8pwLBgob7Z3d6KY2Zdl1VZfC9j9/4dw3IFOd27dem88jmf0hW/A8B+JXNdKQiJvvwFQzbxRT5/XU9TzFtROMW0tu/JHaXIWJRTSjGSUd33lCilUCgUCoVCoVAoXgmD51KeqBA7fhF1n/0MupSc1pNloTWRWdlxjN/X5wZ9Sz0IEy90SuWV70knUFOkoTFxzxaqvQBvTRaKSxKBEKJAlOqXrlsopvUAsE2rZV+42xuoK2ZZnqii2Q4DlZKM4VDTtQWAmVu38ovHfko0kmXDFQO0RSsB1x312f+zOXaLZEqLd7TIYKeUSVKIINTclFk0T2Gbx1R6nQYAoiUh7zo0xj63I+i+JYXAcKA+a3vXm+tbJwFbaFiaq+o9XnWCe8688/mUel0BX4nYM5HpNERHB+f0Sx2DbCuZm0z73RMdUdh9LyDv/MVKCXVlFFEoVPc9hUKhUCgUCoXiiGLk/v3+JnNoN94vvRudcTjamsTC7BTG6NWeOKPlnFJZEJ5gI4TbQU56mVLC8oQQXXBZ0yocvK55juGNJD9zCRxh49SamDGDmF0KQFRzS/426JWkknXe4Fwxy/ZEqdLZU9m6aDZPze9kV5Nb8tbY0UVpNkGmx6J8r0HWE4EiGYMxnYOu1YyBtx7c8r24pqF792DMQFuwrvGlh7ho21MsallPSdQVpeKmTjIr8AUfCVzT2Usq0wi4Hft84UcKQWdpBZ1l1QDc1fAO95xCcPXoGp5ZNJN5pRHOSW3B9EoRX4koVUah+0sXQ+PSc04p/0Z4P4TGT96t8cRR7vXlt9UrNhK/+55ySilGJqr7nhKlFAqFQqFQKBRHDmri+oYjKVLAV/A0iMEL8txPuR+6EcZwbNcp5ekZkcxQZ01Wy7jH8+vODI2JoQ4/5okSy3VBaX52ld/tTThkZ1VQubCOy51eVsrZZL2w8OpkEyEnWjB43yllVDXQVdGI1FwHUFlcZ1RHFJmx2PZXm4n/KiGruduGU6VD7k+vkNh6KHic1k3iec6l8QOtwTrNkVSn+/n2c3/k5BceACBlGNhCC0QyKQTb0zN43J4f3LucG0lgWtmC+wquKHXthAYmlYR56Jjp/KnvHnQvtP1wu+9J6Xo28t9qGvEh2/liYBBIL/yuiILnZ+g8OdUqWD/o17xju6hMKcWIRHXfU6KUQqFQKBQKheLIRv1J/9oz/DxpeFFQFnlUcBjdwJA20gmTCrlrNAmTdt5XsGfajBNa2YG+xxVCpC6IOBmc4GDuFMawCx87wkYgyWjgSIe7OZtPWJ8EoDRTyeCpj+2pXJqAEi98fEx7lCuWNlERN5HpLEiBo0n2VZkAROwMg+lMbmJbTTmJcAl9oRKWjj2GuMg5pbK6e14hZdHJV0oPY6PjBNcBrVY9GWnm9ssTpWbs2k7FgJspVdX3CACWEDiOe0OEEAiho/vd8A5DyJVS4vzzXyx+OScRSQHB85n3hIogO0rm/R9KpUZVpMrbj4OW7/lB58oppRjZjNzXvxKlFAqFQqFQKBQKxWuLU+hiEgC6wdhkB9KOkDJzm5Yk2gp2TRlxRNZCeA39jDINDRlkFuXw2995Xfu8TKm0DhIHTUCf5uBQOBYfv0uchsZRDUe5R7IFWcOzcdnu8a2Y5M+nuU6oqBdO7tMTirG/NMbWhhiPLLqEz5/+Sf4x9VRaw7FASIqHvewoIYhPPIF7JywO9l9ZN42nxy7EQsfxg9iFQHdsUniimZTovijlKThlCbfMMJranHfL8zxRmo7hO6UOQ+xJb9yI/Z83UJEoXD7k1pNXvueX7Xm/OFJgaEZORJQH9kDpIle2qFCMWEawKGscfBOFQqFQKBQKheKthXJHvfnkT6EEhXMqGZTv5Z4pqRu8f8tSvj/XJBnObWtm42jZ/ThmHZaWpaukBXol1pgSrKnllJMuPJ8vYniZSblMKTeLKqsJtJoKyAyQ0hzunnI7tbZOQ3sf4/fmzus7pUxNx3LcYxl2brwi0eOeR5OkDVdFC9xHCN71rh/gCI0r9t1BSQZ028Z0XCFrV3kTu0obARkISQDxMcfR3LODr51wDTPmT+W2ltw6P87cDTp3ck4pwM8ZT4bCQDx3N4xI7v7mF8BpBhpux77D6b6XbfFLDQ/+DtO8kkY9ncTo70ZGbW8cGqZm5pxS+ZlSByrfG8GTcsXIRQRZciP39a+cUgqFQqFQKBSKI5SR+0f8G4sYcquLShb5ooIvRORtmNZKmLVnO8cNxAqcUgJJaP/1pHv/xENH/ZREqA+QENIhpFOTdsv4hjqlPGeQ59hxNAukJGMIds8fT080hoakpWwnGxqfpr10V8HefqbU6IpyUrbrgArlfWdfpnsijxkipZsF+3ZFy3E0HYTA8AStkGVgymywzX8e9VH6SmcVDtmxcYRgVf004nWjClf5TinAMHTSnihFXvneDZdfyaq584LnQ+QFrKfiGVY8uJNn797Gxn2Tgkwpq28f3HEVPPcb2PzwAR0Z2ebmvEfFtstzvkm/LNEhuncbYnePN1wNQzOQviB50O57ftD5sMNSKN7GqK9YlCilUCgUCoVCoTiiUX/Sv4EUFTTEoJ952+UFcm/MTGXZydfz4W1nYWffUXCEtdHjub3hVFK6l9kkJCW2TXWfzQe3LgMIysH0lOsAEnba29sVl9J6ErDJAj8sqeevx52FhkQIy9uqsFuc5Qk6NaZBynJFqWPPvIDTNuzihM17mX35f7mXUl5PZpAotbViDADl2T4qrD53O9KBUwrA1gxk3Vn8fMIn2FRxDCfWXwyOEwS7j6uJsWRKTe6WBY4vgS4l+6S3TuZC0+c1b/UymGTBbQZYt7yXZ+/ezooHd7F03XGQLHOP1/YyrL8LHvgy3Hop7FvJcPQ9+OCw6wZTFZkImEjPMUXG8q5DYIj88r1D677nKJFZoRiRKFFKoVAoFAqFQnGEo2Sp15tDucNOfx+7r7mG/kcfC3KE/DBskVfGJ0ITSJhn87MFl9B52nncPu10HhlzIm2RBhJ2Ljz7HXs7+NQDvZzcusk9vueUEpYnfji+KOXukzQHEHlOJfBCtDXL26owucT2RKlZsSgZL8A8pIeIZi0qk2nwzoOuI8mJUs2VpbQfM42LW+7m/c1/RQ/ElwyRYExuQPlYNBCCTVWLGB2bStpJBFlWhi645aPHc8cF1cxJbSGkeeVvAkzHyt1zKdC8jK7qnk7SuobwBJy+facH5+tuKwxhF7Y7ZlsMmvL1tTAcekUFAP3Rg/sQ55eN5vKJ11JWOdkbp/9Dx9Rz5XvyYEHnwbqDnFCheDsSfDaO3DeAEqUUCoVCoVAoFArF8ByS5uemkseXPUnHr36Vlynl/ghFdcqF5yjSXM/SAxOOZ+3ln+RPs84jYbrZSFLmRCk95jqF0hPfiTz3x4HIkRNrfFeVu0881MPF9WXMK43mhi4Azyk1MMgppXsOn1Jdw/FENC1PwJFZV+CSho6UOVFqV20FjbKH0akWDGkTirqd+3aVPcu8vnWMs15iev8mruhZTQN+SZ57P/aLPeyuLvfO5V5JVVjjxMQqDO/UlqYRSSUQvrBHrnwv1NVGh9OP5XS626bqiaUriGbK6GkfJMh5+1i6G7ROuevuwk5zMF6YVvxJDzxxem59VC/z71iwzMDIy5TK6+RXZN7tH+rAcegKxdsTob5UUaKUQqFQKBQKhUKhGMSQeZI88Oo8nFRySPmeTNmcWFPD/KiOFDnPUntfoUAiA+XJwfCEqmfXjOHWh+YOPZF0y/hMLcGLY/5Je+kurmgo4+Fjp1Pp5TxpGkH5HrKwBM/R3VHYjsyJUnkZTTLjiV66hrRjfGXJx/ntMcfRE4tgZ3MCkBlxxzmmI0qF1ceHazs5u+NRZqdbg8mW9I4vkUHWkpZf3iZlUAZn6RqN+3Zy6ZbH3FshJaO7B9CMSLCvLd3uewaCy1d/jStXfI/uNi+sPeR1FfSeg62RMXx56rVsKfMcTdbBRal8ZMGT7T6ITKmk9uo57pIgOyq3lSnMXPlevgWqiCiV9tbfsKuNc1/czMZ48rDGp1C8LRjBQf9KlFIoFAqFQqFQKBQFDP/tfZ6fRQyzTdbKEyKywYzDtGBCWMPUtMCz1JcqdPdIcqUstU2xQNTqbBnI20gG2wBEjF621b0IAjKOV4bnuXPGxNKBUyqWzDmlMoZJV7TevSIpsb1QcN89Ba4oldYMftR0Ltnu41lTN5VlU0YDYGXd82i6gREKFVzDklMvDMaZuxp3rLplE4SF+10E8UQpTyTbWVvBlvoqRsX3u9tJqB1IUt44F7vEdyW51xd2BCEn14GvtCpMaZX7uMxyA+I7QlX8edSFXN/gjcvLzzowggIFSeYtdgePMD3xy3+C8ybVc568gDH9Jw1ZXqx8b0VfPPh9VX+Cm/Z2HML4FIq3C6r7nhKlFAqFQqFQKBRHHKrg4a2IN7nKZvFVDCGy1H10HlWXTw+20iAQpdLZwqItR/rd3SRjplbyiV+c6h4zTwwbLJgJIYMQ87Ub1tLR0YHpOZPGN1kIL1Mq7OQEp19e9TV6SxqAwU6pPOFq927W1E3l2dgkpOWW3Jm6VzbnOaV0w2D2KWcSLSunsqGJq37yKyYfs8gbc+46HU+A0mUu6FzL606nJwdwdHdq1l0aZUtTNRvG1LnXF7jONHLWM7+0L3cvZhwf4ayPzA60wpnxHfzCep5L2h4GYK9Z6644kFMqXzQ6mHND+OKaV6KYt32st4ZJPe8YcpxiR0wOarvXms4W2UqheLui/jUzDr6JQqFQKBQKhULxFmY4x47iVeJ1eBvsmhlC4XppWUg/R0hohCdVEJKS7ts3BVsb3kRsID24fM/7zlw4rqNK12icVMGene3Dnl0ToHn7rXppFV3Lu+DoU8GM8HxtE7g6EvHyKNAPgGWYaF793HBOqe6bb6Z14hL3HJHdhGofpyKxC6gl1e/mY2mGzvEXX87xF1+eu4YgQynPKaVpICEUyTcdBcngaFaWPvbRNtPh5L7pdDXvCY5nBPdS5M1fC0UpicPR50SpbKpE+HWBUnCJtY0xLc/w94azaTNcYY0X/wilDTDtHAjFit7T/JI9yRDflHvWIONLC5adWHYTe7ML2Jk6GkN6Dq688j1ZROhKOSpNSqFQQecKhUKhUCgUCsWRhNKh3nKM+u//BlxRKpcplStV84UOTeQcRE81P1dwDCsv6NzwErCFBlIMP2ELkUX3XFAra1by8OiHId0NQGs0V9pWd8IENo7r5+7T3GwlXYAwO0lZmcAppQud6IIFwT494VJ3ebQZs2wDPeWFpW9mKDxkPMINskIi0QLRyMWoG5eTqhyv25631tFg/dQBjrng3cGxKvotJrf3+AcOMqUCUSrQtSSO43c89JcJyCYpt9zSx7jwMrU6NsHfPwxP/GjozTwMRJCN5ZfvwfzYPzmj+tcA6NLEEdqg7ntDjzNYlBq5U3PFiCTXueHNHMWbinJKKRQKhUKhUCgUildNeMoUwBOlfPVBy1MPhQApC8r3cFyhJCTjZESMrNS9CYrE8MrZhBCF5XuD5m6lIsE7dPgj4GgO/aF+Tirv5CExkYT0S8EEYyoquXlOF4nyEso6fkFi9HOUAjdtXEVF1PC2Eoy/5Wbsvj4SL7xA+rf/8nZ3M6QSUZt9H53C2dsm0re/nZknnVb0Xui6jszLlPJHr4fMPNVIFvyUApJWkmv2fYtLqxdx9uMP0RyrpyyV8TYbWr4XiF4iF6aecw5qYKUJOe49SOuDBLSB4d1nh0NQQuhdhylyQeW2HsaUDgIHiVY0N2dw+d4IzntWjEBU9z3llFIoFAqFQqFQHImoiesbymAhaLC4IABhugJTvlNK5JdW+k4pcqKUlK4YVBMShRsJSdR0txIaOGL4Ei9dSK51DB655BHm180H4IKpo9l26gJujCYAMNAxvM5603taiCRyDq0XOv7Fv15ucY+l6Qhdx6iqovzsswm/51JvDJnc+cIhzvnE57j0G//JnFPPLDomoeuADCZbgShlGEOdUt69MjT3/g1YAwxoDrqEsJ07b58IBYKTf/9zd1cicY9X4JSyUoS98PeMFoIPPwAnfynYZziGNtwrPF9++V6+UyphGaQtCZq7va2HwXHlqOFOeWZNecHjkRz4rBjBjGA1VolSCoVCoVAoFAqF4hA5gJBheB6nvKDzAnlDy5Xy+ZlSJXql99OTqfLK98ZVlwTb5593sK9AExKsFI2xRqrCVQAksq4Y5UjXtROSIRzLlYYi2b4hY896jqpAYPFIe0JRyMidf0L5hKEXP4hoaTkyL1PKN44JXQPNPUfXnl3s27wxEKXm1c3lznfdyby6eaRMdzyV2Vxnuk69JFcO6d2P3N3KL9/zhSvXKRXxRKmUI5HjFkPYE4EOaxI8SDR0T+Qt0YKLvHHLYn63aSEYrkBm62HPMSYL7kM+/z19DN+dMoqvT2ryxq1QjCRU9z1VvqdQKBQKhUKhOOIoCF1W1Q9vAkNirwOnFNlsLuxby4k8UriFKvlOqapwHQPxJLooFLHKZIJJdW4It9BE4JQScmi5iyYkdG4BIGpGAUhYCW7ecDN/2/c3AEKZEM8/+zxUQYYMgxGaK17pQi9Ynsi44soXjv0sR0+7Gk1ozKqZdeBbA1xw7VfY8/gqUlu9aw+6EWrghalveuYJbnvoVyy+5L3uuTWDqVVTKTPL2NDwAgBhyxWnskLnWWo4TkaohZwryjufFDLvHN4yKWDzA4T1XJh5RkrCgbOpiPusoFNekUmyGPq75t0zzeukaEkNU0sjMXA0E5y8wPcix6wwDa4ZW8/tLV1Dz6dQvO1R/4ApUUqhUCgUCoVCoVAUcPBp0tCOfMIwcw8sy1uY75TK7elLP6msHzAO57U9yAtNA6SAU6z1mPmZUp5oVSzvXM8r7SsxXHdVf6af36z9TRBgXp4tR/MGkPHyoSJ6BCEESSuJ0F1RarBTKpF1xZ+ySJh5dZOHvx2DaJoynWqzkee3rgJy5XtCF1Q1jYFuN3cKYKCr07tO73o0nUS4MFA9aYTZJksY75RTSzNBOV1wPyTSce+5333Pl4L88j2AtCMJi5xEdCjIIpsKkRtwmYwM3gV0V0xzNBPSaV4KX00Ii8yvauDUL8LiTw7ZZXDUlkIxIlDfqqjyPYVCoVAoFArFkUdhTzPF64ksmDQNc8+FzDmlgN577nEX5wWd66Y79cjvvpfyRB9D15mc2EGt1zVv6YTtvLT/Je8YBEHnQmpoFIogEd3K/W646zqTnYEg9bGmj3HV2KvQvNLAlEx5+0WImZ4bS3fL/QY7pVKeU6okVLj8UBC6llde55JGR1bWAxCrqAAIyu78V7UhDKxBp7O9fC1ncPe9vNIf/3oDcecdP4JPPU/o2vXBca7bspc1Tqm3wat7//jnqZZlRdb5opSBtC0iIosmJJF0BzzyzeLH836qd7ViRDKC1VglSikUCoVCoVAoFIpXjRYrDX5Pb/Hq1vI8V5onrJSWh4JMqbSX81RdX8/x73kvExqmBNu/7/734UjHc0r5IoxBRXhewXmjdePgohsBML0MqG5P3ArrYT579me58B0XBgJO1hNMwnqYsNeRTmjuMjHItZDIuoKXH7p+WIhcoaEN/Jk0n+oex/M7urxr8fAno965dU1nIFp4KCdqMk8M4ASld4WZUoj8EkHvyBXjoG46oqyBupBbIPO31m7+yxrvn/hAgy/qShsagA62tINFYc13a7k/Hc0cehpnaPlk/rFHcraOYuQhlByrRCmFQqFQKBQKxZHEyP3D/c1kcIHJcAUndddeO2jD3JaBa8qRgVMq44lSoXCIJZe9n5++/ya+tuhrwT5dqS6eMh/gsSm3AqBJDU2ECk5Rcd5XYMH7gJwo1ZvuBQicUKFQiHlzXDHL8gSTErMk2B5PqBouUyr6CpxSCNC8OxUHfks6L/ocHO9cgwPKDWGQLLxEnj/uOEwhcbzpW+Ac89ZLHByvm5+/UOY5L/537kTe21QNQKf0rtlzVkkpSfT2FGzvHrPw59Drc09UalYGi0rNtLvKdsPki4pSwx3uYOdTKN6WqPI9JUopFAqFQqFQKBSKQopZYjiIi0UI9PJBpVx5Qed+9z1p50QpH1N310WNKO+d8V5qo7UANA80c595Cy3l2wAoyVQQ0eqZt7udWRk4+xOfZfLRi/KOU+iU8kUpgPFjPYeQa44iakbznFKuUHXbc3uZ9+2HmPCV+3h4fSvJV1G+hxA0IBg76JYdN7GamliIScIdYxAK76FrOghBT71b3vfcccfRV1FBCJlXSum5ovL2k3JQ97288x5VHuO9ja4oNeDffW+Drc8v58ZrPsDPr7yUtYkesnqRKWJwLJH7v3fysBbFpJSKyhoMz9GmxZsB2D3mdPbVL2IIRUqVio1boRgpjGSHoAo6VygUCoVCoVAcgYzcP+DfHPwSs+L3XXjrzVGjCpbrlZW5bXxRKmMPmYSEBgkhVZEqOpIdtMRbgpDz83dcQmXXbDT6GdPdT7i2kUmnnV2wn+986kn1AFBq5koKDc09a8rOZUr5pXw+z+/oxkq5AtU1f1kRLH9FmVICTAQ3ORq/EQ7/8C7x9muOB+DWr99PK3lOKU/A88f5wHuPYdTqLG0NDQBEpU4q8BQMckoJieOV0eUq/Aqfq1LDvYYe6d99d/3qh+8DIJtOsZEUWmUph42mIzTd7YQI6NoAONBbOYXeiolUGI9ztNWT217KIQHPyimlGNmM3Fe+EqUUCoVCoVAoFArFa4AgtmQJTT/4PnZHByIcofyd5wdr9eoI2dY4SNAHlaxUlhTWq4U09/FAZsA9shTM6TqK3kwM6PNON7TsZXCmVIlZEqwzROHUJ2pEwWIQxQtJ6sqKdJg7GMI/osZ5jitKzY5kcplPvjPIK7vzr8YvIWwZm2ZXPIMUO7lCPxertYwtolCU0jzhSSIDESrnOCqc5MY84a8Hgx6jlEpvff3EyexetybYztb8EsEDh0r55xHClSSFlGjePuOjj3NLRYbjdp+PbUS5uWQSR/etzO0sHQbfayVKKUYkqvueEqUUCoVCoVAoFArFYVIgeAgIlYHmJihVXnRR0V2qr5hOZmcf0nKo2LEfntwWrKsaLErp7uP+TD8AhhNCUhjyXWwy5+9nOa7aVMwp5RMxIgUh3f61TGso5eoTJ/LVO1/CkXDVCROoiJocNn5GlBlioqNxFyFqzm3IW+2LUk7h9t44++lnfd16ZtfMZlHfAla37sL2BCsZiFL+0WRe+Z63pLAqkNHh3D3eWjKeY7wNHLvwHshDCBATiLzlAoRAIgKn1ChngA/LO9maXkLCiJK1y3Bkbv2QweWfX8lSipHICK5bVaKUQqFQKBQKheKIQ6hw2NeZ/Byp4dbnrYnVHPSIWkgnMq0KgMhAvGBdLFxYHuc7pfoyritKd0ykp5YIWSji5BMEl/vHzcuUGhxiHjEiZJ3C8j2koCRkcPmx43jX/NFIJCWhVzhl8oZnhiIIQxAayFI/bmxuted6Ghx07o8zYSUAt0sgQtCEyBOlXCHJdyZJAc6gTKnBk1xDE0yIhtiZzJB1NPoSDmVSYltD7GIMVaLk0OW+UypvrS86SQSLUyl82dEKCjwHH2/I4Uby3FwxAvH/LRvJYqwKOlcoFAqFQqFQHOEogeq1Rgz+Pc+R81pgaIXP2cnT6goe+4HlOaeUmde5bnin1GBRqjJcGfw+qXJSgZg5tXJqEHTuI6UeCGTRkP7KBamC8cniQx5GhdE19/zxrCvchfUwQsBcNILb5jm8cuV7TuCU4gCB4X43wLv2zuZ3D/Xzy49cQfe+PcWHf7BlBU4p93y6F3Ru187whuEOwkYEnQPdwQ11SimhWTEyUa975ZRSKBQKhUKhUByhjNxvlo90DL1wIja4PG6wU8oVpVxEUL439Lj5GVIAkyomBb/PqJ7BI5c8Qmeqk4geYWLFRJ7e9zTr2rext6cfma3ATk6gcyDzKq4sRzA8GfyvaCaTM0z5XleyC4CwEUZmHcoRLDRbvEM6CEDPews4fvj5MEHnEDRAJOuFnacTcTr3FopSfoc/f+9i7zKRN17hle7Z0qAHt2OgE66COIEyZiG8EfsHLeKUOsD5FArF2xclSikUCoVCoVAoFIpC8vUDMVT/ebXf7etaYcFGdFB3u8GZUrpj4shCZ1ExZ82SUUu4bNpltCfbqQpXce6kcwvWN8QaaIjlcp1OHH0i/3jXIj76vy/y3B5XBDp/btOruLI8ApVFFglqyutGOKh8ry7qusYs6ZbVjS4dTbbdLeXzVSVflMqV78lcYPoBnFK5bn258QSimL/ugBdTbFGuNK9N1GHS7T5Xebu4o81/URVzSh3o/ArF2xShXvlKlFIoFAqFQqFQHDkEhpPcH/CqedGbwBCV6vCeBHNQ+V7ULC5K+d33Csv3hs+UKjFL+MbibxzWWMoiJrd/fDHd8QwPrm/l4qNGH9b+wxKU5+UJRHlj9jOlfDHJv6mXTb+MhpIG0naaEqOExaMWY/V30P9Ib2CDyohOzMwWdK0BiAIyL1PKO61TzI3krqyJjCGi7ydlx3OimKblQtfdA+T9PvzlBeKgzC10pIYQufepJbVCp5TKlFIoPNQ/YEqUUigUCoVCoVAoFIeGlK9akALQ80QpUxeYeqFzys+GKijfG+SUeq3VyKpYiPceN+61O2BeGZ0IRKncan/4g4POw3qYsyecXXAoedpY7PER5G/uC5Zl4/dSZ8+B6NnIgu57B3BKeeecU30ytf0VrOl6jGwyBbhdArPp1JDnV4pCETg4ThB0LnJGMG+ZjQCRU+McGFS+dyCnlFKlFCOQEazGqqBzhUKhUCgUCoVCcVi82unTjMZyIqY7FVk4rmrIej8bqivlltQZdiinRb1OotRrTp5TqqiQFjilBnXNK3YoTRBqimFHS8lU1WNI9/4Y9oC3gUTamcJTFMuU8n5aVoLnO+4j7SSwbbcDYayyyhvuge5rkTJEV6FCIIOywETKYWt/TSCUpRGuUOVzAFFKoRhJqO57yimlUCgUCoVCoThSGbl/w78xBPf3wGVXr4RxNSW8eN1Z9CQyNFVEh6wvD5UD0JPuAbxMKV5fp9RrTTFxqLD53uCg80M4qKaRbhxHfWeCHrEhcDBJJM6up2H9fZD4t8GnHXJ+y+vsBxA2Sjjtmo/Tum0Lqx/656Fd05CLKfxlxfoOVjCLcq0FGA8Irh5VxZV9vcjeubzTcYYa7oLJuUIxklCZUkqUUigUCoVCoVAcMYzcP9vfaA5P8Hkl8lBp2KA0XHw6UhGuKHhsOCaW4+ZOOUJ/5Sd9QynmlMpbqw1ySh3kgkQRRUh4+VoSkBvuhnQG0TMHOAnZugEYU3AMLch8soJlUbOM2aecwf5d2911QpDSw9gieZDLy8vHynTTXzkOh8JsMItu97wSNkZM/iTK6ey6jJLN3ZyxsKbo4dR7XDGieMt/jr3+qPI9hUKhUCgUCsURR0GJkfqj/m3HmNJCMSWWyYlU7WUzgIOLOG86+QaIYkHn/mrn8J1fQYQTEimz6ANr2bh3PBt663Luqf7Wgn36/rULuyPJzC1r6N67NFiuBUKSe9Seqkq6o3V0aXEOxODhJkMG2eoGJp9zISGvNFOTrgvuHZb7MyvcMr9tnUMFrwNUHSoUI4CR+8JXTimFQqFQKBQKhUIxLG7Q9YF47cWhJaOXcP2p19OR7ECzDBqqZ/DSnjYAypIt3mmPEFGKYTrhDXJKHex6RIGg5TmlpMTJbsWIr2bvQCN7aWBWg5st5Vg5N5STtuj71244LsLZT9xD2soE6zQENK8MxKys4U8RDzJJLjIehODl555mTMSiPasFx5gkwgBYwhfShmZK+YzcqbliJJLrXjlyX/lKlFIoFAqFQqFQHHGIgj/g3+LixBHI4G5rh7v+1aIJjTPGn5FbMAcm73yS1fdtY1R6kzeIt/bzLvI6DGJ79yt/md8lz7Hdh4d3dO+ng3T6C5eX1kAXOJYdLHXirkAVi/cQsjIgdJDu+lK9DX53GkKeW3CGCifmjm+4geVfXsUsSlO99JR558skgVjwOvHdWDYCDYksMgFX3fcUI5O39ufYG4ESpRQKhUKhUCgURwyFf76ryesbhhz8i6Dg/r8B86qwIZm085/oVVXY8JYXpbQSk5JjGkhv7wUgNLYMvSIUrBde9z3nFTml/J8S6RSWwomoKybZWRuZdeh/qhmrzS3FC1lpd50GuqdZVZi73V/2vwyMJWqkCs4BDAm9F4M2MLQxhOxksI0z6PUiQq5alRWgDydK+SJd8ctXKN7WjOTXvRKlFAqFQqFQKBRHIG9tQeLty5s4dfJFmUMUcd4KVF8ybdh1QbC3J9CIw7oev3zPQcpBopSXGmxbDsmNXfQ9tDNYp3sB5/mnMoQftO6OI2KkD3bawgsAIsyiqxKgA4CeTGFHRW3yGdD3ADYC8yBOqRE9O1eMQFT3PRV0rlAoFAqFQqE4snnraxNHHEM7vQ2aML0p99xz0hTpZHck4julgu57h+OU8mrqNBxwEgXbabq7zrYcZMoVofSaCGWnjUUL+yV7OeFJF54oNsx5D6VQdvByx59mCn9Mrnur09AB5yDlewrFCOIIENdfb5QopVAoFAqFQqFQKA6JIEtqsEb1RkysBjml3vLd9w6Cf88cL1PqsLrveSHpESs91CnlNdNzrJwjyawvoeKcCVjJAQAqtAQx3Q07n1LW6e53OGNHFDzny8fdnb9yCFrewlT55qKhzkqUUoxsRu4rX5XvKRQKhUKhUCiOaLQjXJw4kvBFKQOnYOkbc/Ijr3zvgARB5wd2KhUlXA4ZAAmysNzOD1i3LQm2xBA7cRJ7uOWrv+GE7dsB6E5HuWLyerJZg8pYI2s6Y7SnYoXnOFg3sLwBf6PvIv6lv0zLkI38oPPcxtlwB8Um4EE54wienCtGHqr7nhKlFAqFQqFQKBRHEGrC+sZT7I7rwgavo9obxqAMpiNdlAqCvV9J0Hm0CjLucyMLBEIQfvmeDaGXv0dj+Ba2b6uidc+cYJuUY/IL4yPUapVc5CzGjuzFGfjdMCce5kHer2FMIpqfc5W/vRyyTEhjmPI9vzyz+DAUircnR/bn2GuBKt9TKBQKhUKhUBx5qL/j31DeCrdbvM2cUn4JnvTK9w6nBLKgdFHag47rrtvcOQtj/xMAZOxCL8Lihj1INBwke/syPNtbw17rFADsQb6FpBHBiQ8UnkMAmsAcXYrUIOXattx1RUQlTebGqzlaUVEquJxh1ygUb19G8hcuSpRSKBQKhUKhUBxxCGWneFOQQ355A/GdRel0weMjlVymlO90OgynlDeNk0KC75Qy3GV6yHWwacImlYzTnoqRcdxlsq6Ma2c8yYwaN0fKqIuyN2yQX0BoEQnO4whoLW9CeqKUpuWmj0II6v9tPtaXRpPUsnkjzb04/BELmdtPQyvqhlKZUoqRzch95avyPYVCoVAoFArFEc3I/VP+9aRIx73Bq99gQpMmFT4eP/6NH8RriS+yvYJugkHpH+ScUqYOlkP9aANWgy1NfrtxHrZ0mF7RC0BYsxACLK/0Uurg6IF0VHgOIG3oSK9LoB6eT0P14FJBDaFpSCTFjuJfW0EvRylU9z2FwkeoV74SpRQKhUKhUCgURygj94/4N5a3hiOp7LTTmPzIw9jd3SAEkZkz3+whvSoGZ0odrHyvYH3BRNYVpaThxolrkRJKtC4STjW2dI+9qbccgIhwy+wCUUpKHMd/H+UJXR5pw5su6gZmyRlEwk8PGVd1tJpeZLB//gGkJ5gJJzf2+WIXl238HJx8B1SOG3JJygSpGEkc6V1EXwtU+Z5CoVAoFAqF4ghEFPlN8VoxvD7y5ioGobFjic6bR3TuXIRxZH+/LoSfKXVoolQ+ml++B/jle9J0l9kltZy9aDe6yC+pc49t6K4olfW8CRk7w3DVgxKw/fByrXDamL9peaic8khFsEwr8hoxRS4U/53yJZoSG+GB/1f02kZyto5iBDOCX/ZKlFIoFAqFQqFQHHEM1xBM8friF2kNvuVHeLzTm4IfSO7YXvnd4XTfC6ZxDv5sVhre8SyLxP/+k8mb7hxyjKzmikO+U2pf/z7sYTOtis2Si49R13Ki06juAWKysCRJSslRlghGDEBmUHh60SMrFG93fIfiyFWllCilUCgUCoVCoVAoCoiJRO6BKN5RrWADxSugMFPqcMp4NM11Osm8rne+U8qxbeyublLh8iH72brG7yrKeTLqblvZ72Bbfve+oZlScohQVvyF4AtsACUZi+pBohSOgy4HHUEzB51vaPmgQvH2R31+KlFKoVAoFAqFQqFQFGAKa5g1hflDileOL+RYGb+b4KHva2gx77dc8LjjVTM6tsXu0gjtxvoh+yW7L2BVzzX8pEFjf2Q/Wyp2MpA4hO5/YqhgNXSByPu9UFrq+P0fuPqmLLotc0KXPkiUUplSihHNyH3hK1FKoVAoFAqFQnEEMnL/gH9TCSxT6v6/WirqGgoem5HoAbfPL9/TRQgIBY8lAscr38um06wbVUVPydCpnilrmN22BCE1ljUtoyU29HmUr0RwFDmfl0TkvTy88r1UiupumNCWt2qwKFWwh0IxQlDd91T3PYVCoVAoFArFkUfBn+8q0OiNI6/JmuLVceyF76FuwkSaX16P4zgsfMcFh7yvJjTM2Dk46U1IzSAV0bG1nQB079uLFBpZ3WHz2AHGtEeJmha7yk3m9FcAELIipM0EFanavKO+ismxNpyTyhOlvPdoMgzSrxbUQ8Pso1CMHFT3PSVKKRQKhUKhUCiOcNSf9K8DIl9WEIzkb/FfLzRNZ9LCY5m08NhD2r4g6FyAHpqKoY9H6iES5lq6M6uIYbB93yYA0iGHF2Z188Ksbn61K8SS8F7Wx9M4MkLYjnL61g8wrmdm/hkOeezFy/fyGFKD525ga+D4otSQTClvV/VaU4xERnDdqirfUygUCoVCoVAcOYzcv9sVIxxRxBEovcBzIW3iThKAra0vA5DVc3lTazMnE0tOIWW4QtCSnR9kfM/svC5+IDQ33H5Q5d0hjy0YXd4whwhM8gDle0IFnStGLiNZjFWilEKhUCgUCoXiiOPA3eAUrzeFt1+oEso3mJwA5E7npKPjeAtDWXeZZUhqM1W8s+tkErKSezmLpKEDcOrKDQBodh9rZ/2Rm477MgiHV4yWG5WbKeW+QizNm256rw9N5nX0S/bk2abynFLqva0YUajPTiVKKRQKhUKhUCgUikIONk9SwsGbyhAN0BFIzX1SYlYEAFuTfGLv+/hU2xVBj76sF94yUDoKgEi6k7TRSVZPFxUWh3uah7i2hCjY2F+b1XPup43TruCk3Z/nhcwCd+XGe2HnU0P2US8txchk5L7ylSilUCgUCoVCoVAoChgsTwwOrla8Ofhi0JDnx5E4nn3QzLrLpK4zI14HwIIXn+WiO++isasfgP11C91tMz2QGSg82IHq94ZzxOUFne8eezoJvbLwkKVV7Bt1EtWpSTTu/iLrE2e5K1K9uUMPf1aF4u2LcpkqUUqhUCgUCoVCcaSj/qh/o1Edo95c1hi7Ch43ZiqYmBkDgGa7so6m6dQY9Tjxdsbt2kk4k8HRch3vhGNR2fv/2bvvOLnqev/j73Nmttds2qZ3AgmEQCAh9BIJRYUrFrgqITQb/pQgYq4iRa8RUIqKYAEFAUG4igoCxkiwJLQgnQQICUlIdlO3ZLNlyvf3x8ycmTM7syW7O7Nn5vV8PJbMad/znTlnlnM++/l+zmtqs6pjcyR1FxRKvdTnt+PZUYUVaikY6lo/6Ctyrf926/Gd27NicwhLAfmEp+8BAAAA6Fo31a/5Y39mjB09Rps/2KJOVb3CloztzjewLFt7Aw0KNr4nX3TerNd/rtcP/IQOefO3qmzeJF+4QyevHqYNJ3UXCOr6APuLfElz3OuHkoJSzaERkRcJBaRigU5qSgH5hUwpAAAAeBR3rxmRMuKU+NkTkcqURf99vs5tO0YlKnTNt0xQU96tc82r2r1XH/zrOv3ZfsyZV7NnrWq3/EZDGt+VL9whSTru5Z2aty7Nd6nToU09fDAyI1WmVWQqOSjVYUq63xWQB8g6JSgFAAAALyI1Z4B18/ny8WeF7bNVrmJVmGLX/PLdb6u2rsk1b+amDo1ubNHZz26XJAV9kWymgmCwU7vFHX3sWNL30SRnStkFSctt51VyE4SagfxCUAoAAMBDbr/9dk2cOFHFxcWaN2+enn/++bTrnnjiibIsq9PPmWee6axzwQUXdFp+2mmnZeKt9ImVeDObxX7kLz71bLAKordv4fhwufnPXq0RW/+hglDYta4/7J5urKqKzA8Ftau0UpK0uTxSCN3qcSQozfBN20oqhh+bivQhZEcypUIKROfa2hcs0B8eXK71a56LtNHlHgDkKmpKAQAAeMRDDz2kJUuW6M4779S8efN06623auHChVq3bp1GjBjRaf3f//736uiIp0Ds2rVLhx56qD7xiU+41jvttNP0q1/9ypkuKnIPtUF+SwwxEDLILstna3flTvl2xueVtO1WiaSQZamiLSQrHFBhKKzNNRVqqa3W9IMO0rvrt2t7RYVOXPlMJFMqehiDduR20FLCke1BvDHNqL60wrZfoY51CgTWyi75kPbtfUR37D5K0ia9d+N3dMVDj8WDUpxiyEMmj098glIAAAAecfPNN+uSSy7R4sWLJUl33nmnHn/8cd199936xje+0Wn9mpoa1/SDDz6o0tLSTkGpoqIi1dbWDlzHkXtIlMqa7cO3ase2jVLJYRresNGZ7zNGjVVTVLtzrYYfOEMrdrbqV2MWqsNfLd+EJn1y7ypJUlEgICsckiQF7EjGlW1SHNLe3CQnZEoV21Jy3pOx/Qq0/CGyz3BY4dDO5BYStsjfm3PkI36ZEpQCAADwgI6ODq1Zs0ZLly515tm2rQULFmj16tU9auOuu+7Sueeeq7KyMtf8lStXasSIERoyZIhOPvlkffe739XQoUNTttHe3q729nZnuqmpKeV6GcU1fb9LLBHExzu4WD5b7aEGdQx9W23hHWo7+Fi9UlStNysP0NCaoCZNGq36cLnW+GrVYsqkfQFJJXpXkaF6vraAfNHxeoFYppSRAr7OlV2Sa0OlUzCyVFoXWXdioa1626fWUHx52IrfdhrT4tp2/MGHRvpgpSqUDiDXUVMKAADAA3bu3KlQKKSRI0e65o8cOVJ1dXVptop7/vnn9frrr+viiy92zT/ttNN07733asWKFbrhhhv0zDPP6PTTT1coFErZzrJly1RVVeX8jBs3bv/fVF+47lwJm2SaO3BgUXc+gw6Yd4xKKyI1oQLVQ7X14DF6Z+IMbagarVYV6uH2Q/WPwBS1+NzB5912ZBu/CckXzZQKRTOlLCMFe1BpPF2QqvLk8fIPiz9Rz2dFbzOj2VZhy5dqs+gqkXWoKQXkJ4JSAAAAeeCuu+7SIYccorlz57rmn3vuufroRz+qQw45RGeffbYee+wxvfDCC1q5cmXKdpYuXarGxkbnZ/PmzRnoPTIvsYpU4mvjvEJ2jJs5S0f9V3QIbjT4448WFF8f6pzhOMJqliRVjooEkAtDAflDkSfwhe3I9nZC4bAOf4HWjhyfMvxkpamIbvltFU+tliQZS0oOFLuDUklP6jNh19w8Lq2DvJa/Jz5BKQAAAA8YNmyYfD6f6uvrXfPr6+u7rQfV0tKiBx98UBdddFG3+5k8ebKGDRumd999N+XyoqIiVVZWun4yK38v3LOLz30wqa6udk0XN+6QJLWpoNO644cUS5Let8q0z18kvwnLHw0E2dGMKctEA1OSQj5bKw88XHv9CZVeep0Jl1RTqotMqeRTa2cgqIe27dZ/mvb1dqeAB5FmSlAKAADAAwoLCzVnzhytWLHCmRcOh7VixQrNnz+/y20ffvhhtbe36zOf+Uy3+9myZYt27dqlUaNG9bnPA49ASebxmQ8G06dP15GbNqp4y3rVbFmvwg53AKfCanNej62I3PJtaerQUxPimZK7iiu1zx8JWFlGKgiFXW10pKgxFZNquKbVRSGyrofvhTu1+ZW1m/SpV95VMMz5BuQ6Cp0DAAB4xJIlS7Ro0SIdccQRmjt3rm699Va1tLQ4T+M7//zzNWbMGC1btsy13V133aWzzz67U/HyvXv36rrrrtM555yj2tparV+/Xl//+tc1depULVy4MGPvC4NQQoTApPxDfvJM/tqfSZZlaVhHuwoCzQpIKqoY7Vp+iG+b2lSgKqtN42tmSu+3qz0Y1i8O/oj+MnG+/OGQ6spqtPTF+yRJtjGyLaOQJF80OOV+Cl5vjm/CWMBoG8EuasCZaOAplBR/agqGFTBGfs4t5IX8DcASlAIAAPCIT33qU9qxY4e+/e1vq66uTrNnz9aTTz7pFD/ftGmTbNud3bBu3Tr961//0l//+tdO7fl8Pr366qu655571NDQoNGjR+vUU0/Vd77zHRUVFWXkPfUHimxnXuJHbnEAsqLAjmcfTd63Qc+F5qrNV6zCcLtm7XxNRh0aOXmaps8+WPrPGkmSsWxtqRgR3eZ1xW6ELaNOX6SwZe3XbbK7bHlEyIRTrRpZPxypb9UQCHZaFs7jG3UgXxCUAgAA8JDLLrtMl112WcplqYqTT58+3Xm6VbKSkhI99dRT/dk95Agr6XWn+tbECrKuxvZrzO4mfVBTqfLQPn1u8280/sSFenflkyryWQoFgxpVdojmTB6uOROG6L0de1Ve7NfDnztaYatDD37+6zKaLin5+MYmehdsTAxOxl5XjaxVS/NOhUPvJ67p3nDHOknSEVVlml5WrKmlRXp8R6O7K0CuIqhPUAoAAABACikDAkQJBov219/QoXv3qrK1Q3vKijVpwhSFqkq10YQUfbieCktKVVzg0/994WjXtq1Bo8Q8KDvhsJBvA68AAQAASURBVLoH3qXW/W10ZA3b51NH071Jy0KuKdPeIkkqsm2tPHK62sJGj+94tds+AMgNBKUAAADgOfxxeYAlfL4mZQjC6nISAy+8d68kadLORs0582xVf/ITCg0bKn9hodpbWmT7fJp96pkpt7VkyViSiX6REoNSsUiQsdSr4xrLjkpsqm1voPOKxj1Mz0jSw4ulwz4ja+oprmBZ+kF/QK7J3xAsQSkAAAAAPWQS/iUSlU0lc+aodc0alR19tEYu/YYzf/455/W6rVTD98I9iEWmFj83isv9atmdvDTkWs9I0hu/l3a/J009RXZiQDTN0GMgV1j8HiUoBQAAAI8jbWoA8JkOdqOuvUaNf/qzqj/1qf1uI5YFZ5meVZKKr9Pd+RFZXjOqQLs2JS0KN7rWMbHHOwbbOrVNphSQ++zuVwEAAAAGGRIoBgUnSEEMK+OKpk3TiCuWqHDsmF5v6wy1ix43O8X3qbcBoVSFzkOxQJMxmrFlR+oNh0yM/Gs6P7ePrzmQ+whKAQAAwKO4Zc0UYk65Kp4p1Zv1u5IYWnpvzfOSpIJgSBN2NendcVtSrB9t00TCYO7hez3tF+Bt+TxUlaAUAAAAgN4hSpVTXEGpFDfHyYe7u8PfFnRnRZV2BGVJ6ijsXPg8vrvOmVJhAs9AziMoBQAAACCF9AEBQgW5IXYcUw3fS1weY3Vx5ONP3zMKhvc586fMmaeJOxsi66TcPPa4v7CrHQD5gaAUAAAAPI6b2H5npXlNOConxIuJJxQ67/JrFAs49ey7Fjbtzutp845WUSAU3498rnWdTKmEDK3YXsKcbsgb+XuyE5QCAAAA0LX8vV/KabFAVCSDKTng1FVWVKp5qUuUW7bt3o9d6t6LcWdKSfG6Upx2QO4jKAUAAAAPsnr0CHsMFD51rzNWd8P3LO3vca6tOFVlQ2p05le+HsvFiu+n6kOyfCM0paYpqUOdM6UMYSnkOoarEpQCAAAA4JaY9RIZsuWMsYosz+MnReWCVMP3erZd94ykkoJR+vyd9+rAo4+X7Pgt5wGlx8n4h6qo8jOqqogM8TNh97mV2D+G7wG5j6AUAAAAPMdVcJm/NGde0kdOcWpviwSlUkSAenFY4+eAkWSp4Q+PKrR3rywr/m2dWDLHaTQUjYQxfA+Q8vls92e7AwAAAAAGN0JOuSlW68nubU2pblu2tG3pUu1e+6qsE09O2E+8zZBlu/eSstB5/t6oIz9Y/HYlUwoAAABexQ1rpsVq/BjnaWzwtq6H7/Xm+LqGfEZf13/wtiw7sTaVcc6hUCwbKkWmlMX5BeQNMqUAAAAAuFiuOlLIOdEi587DAkzCKNi0Rc/jmVVdiSRd+fTW9E/LFzIaJiueKZVQJCoUnZkyKEXyCJA3CEoBAADAO1KVveEGFtg/ruF7vd4sDSNZ0rZRR0tGOiCQmAFlnABVODp8L2H8nrNebDgPhc6RN/L4XGf4HgAAAID9Q0DQ26I3wt0GpXpwnGPD94wky2p15ofDiXGneIAq2OXwPVf3gBzGL1GCUgAAAACSdK4PlKgnw7gweDk1m6x4TSnTT6GgfVa7OspWyygUaduynHRGK2yc1jvXlEoodB7LpiIsBeQ8glIAAAAA3Cz3y4QQVfLiyDRBKu9JPMapYj9dPPku1RPDYplSG3079FqhTw01rzprm06vpHByEauETCk7FjQjJoU8YfI4AEtQCgAAAADyWG9rSqVSWVnpmg752qKvEgJYCVGmoBN4SpEpFf03HqYCkKsodA4AAAAPSVXpPPO9yDspilHD+xKH78VYKV71xOGHHy7/i83asnmLXixYLyerznJnSsVexzKlnKCUOg/fy+fsEeQL/gdGphQAAACAtFKHBbiR8jJn+F304FpGziGNh5C6GL6X4vDbtq2xpSM1Pjys88pOTal47pNJ6oO70DnD94B8QVAKAAAAnmO5XhMg6X9pPlMngEC0ICfEAlFGrhjU66vO0pHB1/aroH2nTUxippTSZ0olnFN2UrwKyH35e7YTlAIAAADgRpwv5yWWrLeNZORzlg0LNOjQ0LqEtXt4QqRaLaFSfiRTykT3H/3XCUpFM6V2b5AdfZ2/t+lA/iAoBQAAAMDFPyxxCFZifgtyQexJeU4GU8Lh3avS/W83zdyUT9+Lrt3R1qZfvHukntw8QeaFu6UfzdY31/4wsg4Zech1PLqUoBQAAAAAt5LDDutmjaQbKW6sPM1y/iMFo7eIkQBSujBTVw0lz4unSlmJT9jzSwUFkeyspkCx3mgYruYnvidJ+uSWRyURCgXyAUEpAAAAeA93qwPKV1zsmo7FGozFB5+L7B4e1m5XcwUnYwME7YSHNyY8fc8vLb7gZJ171ddV4W+TJDW2uqNanG3IH/l7thOUAgAAgDcxtAfYb4lFzK0U3yU74Wl4veMOLC1/f3lCQfX4foyxVVFRrDHTDlCZPyBJ6gi49xnmK44cx4M6CEoBAADA47ioH2Cuj5coQS5wvjOJT9/ryXbdfdVSLF/+/t8SaleFE56+F5tpx2tNJQXCDOcbkPMISgEAAMBzCEMNLpSU8qZYyCfy9D03a39CQlbnEHGkpJTltBlbISwrmu1oOfOS90cyJPJGHp/sBKUAAAAAuCVHFtLcL+XvbVRuiB1mOzFBKcVB7UvM0STUlNr1/oZ4plTsqY4JmVLGUFMKyDcEpQAAAOA5hsycjDEpQhIEC7zNimYuxYfVpVini6Pco6fvRV8H/PF2mrfXOa/jw/fi2VWdMqXS9gBAriAoBQAAAG8jQJVB7jABH31u6D4o5Q5ipW0nxbzWEku7x/mi+4m3EDbR4XuW5Qz/TA6AhvN4SBOQLwhKAQAAwHMIhmRWp887FkTgQHhbNOZjS50Ock+Ln7s3SmjE2d5Sa1l0P4lP30sxfC9N94Ccl89F/QlKAQAAwNMsqmwPgK4/0/0KWGDwiRUgT3k8uxi+18V3Lv5kPxP9x1JQ4eiy+K13yGkjYfieSc6U6qLvAHICQSkAAAAAyGM9rynVTQA4zeJQLChl4kEpE3v6nmUrFgCLLWu3C6PTRKWQ6/ijyqAISu3evVuf/vSnVVlZqerqal100UXau3dvl9u0tbXpS1/6koYOHary8nKdc845qq+vd5a/8sorOu+88zRu3DiVlJTooIMO0m233TbQbwUAAAAZER36g+xIHurFfZXnJCYl2emeuJd8XPcjRc6SrZAJR/cTdupKhZ2MqsSaUhEBu0CS9Lu6PfrO+q3a0tbR6/0C8IZBEZT69Kc/rTfeeEPLly/XY489pn/84x+69NJLu9zm8ssv15///Gc9/PDDeuaZZ7R161Z97GMfc5avWbNGI0aM0H333ac33nhD3/zmN7V06VL95Cc/Gei3AwAAgIHmqk0DoC96+/S99A11jk5aRmoJ7ZMkHb5tk8bviSQfhFPWlIpsv6t4uCTpobrdun3Tdv1i847e9wXwlPz9P5k/2x1466239OSTT+qFF17QEUccIUn68Y9/rDPOOEM/+MEPNHr06E7bNDY26q677tIDDzygk08+WZL0q1/9SgcddJCeffZZHXXUUbrwwgtd20yePFmrV6/W73//e1122WUD/8YAAAAAj3LXDEp87R5mZRlfprqEfpcQCkpzP5zuNrl3iXGWKysrttew5ASXnZpStYdKrctVUVqtuVVler6xRZLUEgr3ao8AvCPrmVKrV69WdXW1E5CSpAULFsi2bT333HMpt1mzZo0CgYAWLFjgzDvwwAM1fvx4rV69Ou2+GhsbVVNT03+dBwAAQPYxdGzAJWfNdBRWSpLsaFDKV5D12wrsh9hXxzadA1CuY97T71iK9eaPOjrlUxpfLSrW5z74i57d8bJUMkSSZMbPlyTV+G396fBp+sak2sj8PM4iQY5j7HP2g1J1dXUaMWKEa57f71dNTY3q6urSblNYWKjq6mrX/JEjR6bdZtWqVXrooYe6HBbY3t6upqYm1w8AAAAGiVBQRaGW6ET8Qt4iKjUgLJMiEBCdF/SVRFeSps8u1byPTslgz9Bf7FimUuKhNon/9v279flZn5dld86oa/LZWtX6ge598zeyxs+N7jJ6e2pCkf5Fb9gJSQG5a8CCUt/4xjdkWVaXP2vXrh2o3bu8/vrrOuuss3TNNdfo1FNPTbvesmXLVFVV5fyMGzcuI/0DAABAD9S9ogITKXhMGCrb4kdgwceHatSUqiz2BfvLFw3+pBq+Z7tCQe5vXLrvn3vYZ2R727J10oRTEmZH5p/U0ipJCoQDsmw7YQtJ4bBrP2GiUkDOGrCaUldccYUuuOCCLteZPHmyamtrtX37dtf8YDCo3bt3q7a2NuV2tbW16ujoUENDgytbqr6+vtM2b775pk455RRdeuml+ta3vtVlf5YuXaolS5Y4001NTQSmAAAABotwKNs9yB8JsYVUQ6/c8wgRepIl+WMZSUZKrhe2X/lJVoqzwRhNHX2wdugpV7uTAsHolEkIZrkzpfrQE8ATyPQdwKDU8OHDNXz48G7Xmz9/vhoaGrRmzRrNmTNHkvT3v/9d4XBY8+bNS7nNnDlzVFBQoBUrVuicc86RJK1bt06bNm3S/PnznfXeeOMNnXzyyVq0aJH+93//t9u+FBUVqaioqCdvDwAAAMgfnaICDKvKBT4TzUgy6hRN6q9bZWOk6nPO0c9X3ab/WhVMyH6KBKBaO4JOJlQ8Uyrk6gM1pYDclfWaUgcddJBOO+00XXLJJXr++ef173//W5dddpnOPfdc58l7H3zwgQ488EA9//zzkqSqqipddNFFWrJkiZ5++mmtWbNGixcv1vz583XUUUdJigzZO+mkk3TqqadqyZIlqqurU11dnXbs4HGiAAAAnmRSFb5BVlgJtxEU6vUsX3SY3PAmqbSl3bUsZU2xaJgo7RG3Oi81RvIPGaLHTijVq7WjFfvuPhQ6SZL00qY9euadnZF1Y9vuXCdt+IeKOpqj84Ecl/L7lh+yHpSSpPvvv18HHnigTjnlFJ1xxhk69thj9fOf/9xZHggEtG7dOu3bt8+Zd8stt+jDH/6wzjnnHB1//PGqra3V73//e2f5I488oh07dui+++7TqFGjnJ8jjzwyo+8NAAAAA4A4SAZ1/rDz9/YptwR8fgXsyPEtb9rXaXnn47wfRz56s+2zfDKW5TTRZMqdNtuCJnHViHs+onMe/2Tn+QByyoAN3+uNmpoaPfDAA2mXT5w4USbpN1FxcbFuv/123X777Sm3ufbaa3Xttdf2ZzcBAAAwqESfHEaEqt+l/0xjnzm8z5JPYd26YIpOX7e+0zG19qumVIoAZrSZAl+BIueP+3vrs+MZUqZsuFRYIUUzpKobN/a+D4Cn8Nt0UGRKAQAAABi8km+bTOIchu95VkE4pFVTavTkHEvxLKiEYFSnQxsdvtfFIbcS/rUTmvNZ/kimVKc1E/ZXUCp9bZ30tXckSbYJyTYhMvOAHEZQCgAAAB5h3MEQZJyx0tcZgveMbtkpn6LFzp25kVf2/gzeSzgVbMvSAcW2M+LF7/MrsZ66lbBN7Hu977XXFNjTIvmLnXYKw0GFGb+HHJfPxfwJSgEAAADoJQJRuaA01K6Jvj2RYJGJPPEufm/c+Sa5u6S4wtHlzmsjqdiKDwL0234VmfZ4uybSWPXegA7Ys0mS1PjYY9p65ZWSr9Bpp8AE8vh2Hch9BKUAAAAAuHUTfXANw2L4njdZCf9Ykkw41eKUU+mUHVmr4V841LWVCUcLnds+WQo7RaYu8f1FknT2i3s0du9OZ4t9zz/vCkoVhQlKIZfx+3NQFDoHAAAAusUQnkGEG6lcY3UKSqUfvtfV0fdVxANKiSv6bXdNqfbdtu76U1BlbU16bVyR037p3LmSbUu2XwoHyZRCnsjfs5xMKQAAAHhOYmkjyyZAMpBMio/XJBYEIkDleUaS3UXQtzdH2LLc1akCbSFtenOXJpVPkZEVD3btLFBFW+SGtMMucDawCqNBLV8kUFUYDhCPBnIYmVIAAAAAumR1UWeI4XvelZgN1SlTqp8iQX+96w1J0odPXKzt1rPO/PFbIvkR9x03RPWhQ3VQy9uR3oSjta18BVIgGpTK4ywSINeRKQUAAACPSLwxJRAykJKzXdIjWOBViRlwxpIUK3QeZXURCrL24/v33ku7FErIaoy1va3ar5Dti8+P1qCSP5Ip9aN1yzRuz1u93h/gCQT1CUoBAADAi4wIiGSGiZSrjk5E/jVW7DaC4Xu5wsmUih7qVDWleqvYtDqva0aXqaWoMKE2XOS82V1pO6+NLCkc7Uf5SEnSYc1rddXKC6VAW5/7Awxe+fv/M4JSAAAAAJBnkrOd7GhQKj6/b8FGI6OhoW069eKZkiKj8hpKi9Thj96CWpYaKoapo/gAlYYTHgUYC0p95vfaMPlMSVJxqFUKtgpA7iEoBQAAAI8jU2cgpf50E+Yy/MTzjOKZUqkH7VldTCWt6TofLPkLIrecwUBYsqxItpSkJ08eqZfmXKcz15+raUG/0w/jZEoN179Pvjmhk/mbSYLctT9DYXMNQSkAAAB4Q5qbUi7ps40j4FkmflNsdcqUSmE/DrW/IFIvKhQIRQOYke/xiF0ndGo46LMVDoUS5nK7CuQ6vuUAAAAA0koVCjQEojwv8bgaS7IUDUoZnx7cebN2+qYqOQrV61wlI/kKI7ecjdtbJRNvwxcqjq8W2i1J2ji8Wn/WXm3f+F5kQWLWFZlSyGEmj89vglIAAAAAesdKqAHE8D1PSj5q5c2bnde7gpO0yT+v5xt3sWJFTbFkRYfvSYqFpXwmMoyvpWCvZBU6WwQl1b37dnRrzi0g1xGUAgAAgEfk71+Ssy0eGui+3hC8qaR9jyQpbAUlRbLhTB9qnsfOlIqaYn1y6ZE65IQxKRsK2gH5S05QRc0sVe2LPGHPyRpxrc73H8hFBKUAAADgQQRCBpKrWHXKTCg+/1xiXIczltHU+Rj35KgnFzqXpOHjKzT6gCEp1w/aHbJ9VaoZdbKKO4KxHkmSbIbvIW/k7/lNUAoAAACeY+XxBfxg4Pr0Gb7nSSb5uHX5leqvYxwvdB4TtAPO7mN7MWETXTtxv3zngVxEUAoAAADeRkwkC/jQc0lPwz0moZRYz3S/ZtCODxeM9ycalOI0A3IeQSkAAAB4gzE89S1bTPJk5yFa8DCrm+zDfkhSigeYkjOlOqJzrRSZUlI4Npfhe8hJ/P4kKAUAAADAzUrMWnELdbyjpoKdKdeFt1gyKQJOJvrf/asp1cXOUrYQG74no4TAUzwoFe8HQSkgF/mz3QEAAACg98jUyRRLCZ+wCSnQ8mcFChKXwovSVWuye5CR1NVRjxc6N641rTRbBX0dztrxDqUISpEpBeQkglIAAADwCG5Ksy/kvLLsGnWUjxGBKW9K+21KCP44r6KBJtOX72A3mVKu4XuxoBRZeEDOY/geAAAAPIog1UAZNm6C8zrxU058XVj5GYXKJ2esTxgYliyngHlP1u6p9N/ONE/fS5gdC0rZUkLf+L4jBxF4JSgFAAAAL4rfoKYbFoT9N2LiZB12+kcS5pikfxNwU+VJyVlIPTmKllPrqafHPHm9VJlSHc4yK3p6GVe2FsP3kA/y9/wmKAUAAAAPslK+RP8pLC7pwVruukHwmC4fuNe/xzXd0/cCdnvnuc7wvX7tAoBBiKAUAAAAvCFdpgQ3rlmTv3/b9z7XsEwrcUbCkqTvVk+G+TkZWMk1pCwr8pN00riH70Wf/GfiGVk8fQ+5jExfglIAAACecvvtt2vixIkqLi7WvHnz9Pzzz6dd99e//rUsy3L9FBcXu9Yxxujb3/62Ro0apZKSEi1YsEDvvPPOQL8NeIkrXSUxMBCNZJDO4nmpwz3pn3C5P4c8vklyTanY0/dSFDoXw/eQH0wen98EpQAAADzioYce0pIlS3TNNdfopZde0qGHHqqFCxdq+/btabeprKzUtm3bnJ/333/ftfzGG2/Uj370I91555167rnnVFZWpoULF6qtrW2g306fEAYZHIyVvzdS+aH3dafcG3QeZhvqeFPlJS0q9O3UGyP/7QSlQuGQE6/at2aN6v73exp+803aV18QbYBzDchFBKUAAAA84uabb9Yll1yixYsXa8aMGbrzzjtVWlqqu+++O+02lmWptrbW+Rk5cqSzzBijW2+9Vd/61rd01llnadasWbr33nu1detWPfrooxl4R73FTengwzHJCT2MNvW9zpSlcOAdffiolZoz5kv65+TfKWyHJEkbWt52Wt/7zDPa85vfqOrR32vX8+V93CeAwYygFAAAgAd0dHRozZo1WrBggTPPtm0tWLBAq1evTrvd3r17NWHCBI0bN05nnXWW3njjDWfZhg0bVFdX52qzqqpK8+bN67LNwcA9iIy8qYFmpao35Czk88916Ybe9WZL99P+LPljL6M1pYI+WwUzpkuSCqdOU/HMmZKkcJDhe8hl/P4kKAUAAOABO3fuVCgUcmU6SdLIkSNVV1eXcpvp06fr7rvv1h//+Efdd999CofDOvroo7VlyxZJcrbrTZvt7e1qampy/SCfuMOBhkwp73LqkVtpj6JJ+jdp09TNWokhrNRbGhn5YkXNFS9qXjjjIElS5Rmna9Sy76XpDZCL8vf8JigFAACQo+bPn6/zzz9fs2fP1gknnKDf//73Gj58uH72s5/td5vLli1TVVWV8zNu3Lh+7HE3EjIlIrfR+XsRnzWdYgxG/KXf+4zVOTSVaqhe75PiOteUiu5QPtM5KBXbgTFGlm3HOhL9l+87kIsISgEAAHjAsGHD5PP5VF9f75pfX1+v2traHrVRUFCgww47TO+++64kOdv1ps2lS5eqsbHR+dm8eXNv3wpyDcP3PCt9jlTnNfu+r/h/jWU5QS9jhRV9kZBlZaTkoBSAnERQCgAAwAMKCws1Z84crVixwpkXDoe1YsUKzZ8/v0dthEIhvfbaaxo1apQkadKkSaqtrXW12dTUpOeeey5tm0VFRaqsrHT9ZAeBkMzp6rMmYpB7Ysc0oR5U0ho9//alyZQKhzQxGJQkBfZOjy62pLefivRgzb3x1536BeQS/l/m734VAAAADAZLlizRokWLdMQRR2ju3Lm69dZb1dLSosWLF0uSzj//fI0ZM0bLli2TJF1//fU66qijNHXqVDU0NOimm27S+++/r4svvlhSpPbLV7/6VX33u9/VtGnTNGnSJF199dUaPXq0zj777Gy9TQxqqQID3FR50n5kuPXl6XuRBxJEs6Oa6+WPDscLtkyLLDe2tK9e0mipaZusZ38S3SmFzpEP8vf8JigFAADgEZ/61Ke0Y8cOffvb31ZdXZ1mz56tJ5980ilUvmnTJtl2PBF+z549uuSSS1RXV6chQ4Zozpw5WrVqlWbMmOGs8/Wvf10tLS269NJL1dDQoGOPPVZPPvmkiouLM/7+upf6op2n7w2MxILVqT9hCp3nCpPiAKc+st0f78TzJhwIaP3pZ6jyzDOlU86LrzTpeNlbH3O1mPg9NpLUvE3SyHy+VwfyAkEpAAAAD7nssst02WWXpVy2cuVK1/Qtt9yiW265pcv2LMvS9ddfr+uvv76/uohcY6mLwIChppSXGdc/6RYrOSzZ4yNupI4NG7T7179WaUJQykxdIPuot6XfL3ACm0XBUrWY0ZHlY4+UCodI2k5QCjnN4vcnNaUAAADgcVzTZ4BJ+jeKp+/lDKtT8CfFce3loS4YHQ0yhcPRbeND8ayKkbItW6Hojivbh+qDfYdHFk88TtZ5D7gbY/geclr+nt8EpQAAAOAN6W5K+UtzBpkupuBFlrEGLK5oxYYBm9TVqGzL1raCNr1b8x/tKtmqxKBV7Ol78a89ZxuQiwhKAQAAAOhainhAZNgJw/dyWqdDGzkRejzkKPG8sRIKnUcjTT7Lp5Ad1vID7tVfp98d3ywhKAUgt/FNBwAAgEeROQH0h1T5b6lzm7oPRiUGrOJJTtHWrIRMKEUypZxVrLDcQSvL1cift+/Rupa2bvcPwFsodA4AAABPI08nc0xSqCJSpJoj4E0pgkc9WLdXnFJkRrLiNfPv/+YSlQ+pUdmRfu2MnkOuJzkaI8t2B6VufG+r9jWUac3RM/evL8AgZvK4ZhqZUgAAAPCIdM8CQ7YYi+F7uSvVce3djXOoIaDiwy+Qr2Zq9DSJt7l3z24NbShwmk08l9zD96xYTEsftAd6+yYADHJkSgEAAADoghUPJXSKSeTvX/c9z0rzOu1K8enehCELxh8t34hIdpNdOF3h9v/ImEhwySdbcjKl4sP3RE0pIG/wTQcAAIBnpK5zg0yxk+r8RHBMckGPjqLVuyBk0dTyyGYFJZIsFZQcqxEHfF1jDowEqSxXTan4UNDNzZv1rw/+HW/IRMJWFT5uX5Fr+P3JtxoAAADekO5+mOFjGWM6HQSG73mZZWJFzfuxzYTzofzYodGZdvze28TXKbQKooEud02pf2x+Rlf9+xvudsnKA3ISQSkAAAAAabljTgQGco0lS8aS80Q8V73xhLUS/+1xGDJWrNyyE2NSTgNnTz07vq+Ep+8NLR7mOtNSdA1AjiAoBQAAAE8jT2dgDdiT2ZBVppvD1h9DZWNP0LMsO34eGeNUKZsxdIamVk9WcqbUEQUz9MTHn0zsjGQ65+kB8D6CUgAAAAB6iUCU96U7hl2FfnoZFkq427QSH3mfkH5XWVjpPH3PhPZIkja9/rJ++7Ur9P7QSqevVu/3DniAK4cwLxGUAgAAgEckjSsy+XsRnwmJtYHir1J85tSUylEpjmsvD7WV+AS9VF9XY6KnTyTkZMLNzqL2fS3aWl0eW42aUkCOIigFAAAAoAvpIxGJT0yDdxkrRb6G69D2/BgnBjNN4t1mOFpUPaE2fmQXVrQPRsmRq4Df5+oUcWgg9/iz3QEAAACg14iDZIwlEQ3IQYlfoQE7unbCXlzVyq34vGimlFFIUsi1+d7iQr0/tFLV7U3RTCnOQ+QWi0xTglIAAADwiHSBEa7pM4jhe7miu0LnUvoQUE8PuZUQlLKcmFRiqlS8nLqxjGTiQSnb51M4FNIbY4fr7Q9q5AsGe7ZTwJPyN+DK8D0AAAB4juV6TVAke/L3RiqnpPgKmX4INlqWJROOBppip4qJZ4cYyakpFXm2XjzwdOb/u1K1DXslSQHjkz8Y5GwDchBBKQAAAADpucZ5pQoLEBT0ugEL9liWk/1kpcl0tGRJxoo8fS8hU2ravGN02Pv1CZ00BKWAHERQCgAAAB6RdjBRRnuBJAzf86RYhmHPMg1jxch7sGZioXNJCocjr8Mpvr/Rp+9FqkWF5S+aLUkaf8jhkXZcT4AkJIVcxO9PakoBAADAg6yULzHQ3IEBPnrvSjySxkqc0X3wp8fHPSFTSuFo64nD96JBKSny+D9f8RGyC8bIf+J8tXaEZNnxHArbhKm3j5xl8vjkJigFAAAAD8rfC/hs6ByESAwKEppCGpYlWZHAUvAv72lWia33TDgpAyohs8qyZPvH6Ft/WqetAelk245FsSLLM9t7ABnA8D0AAAAAPdMp/kSYwKssues8OYfWCRhZSWvvB2NkwoHI66YOTSryqTqhNWOMjpk6LGX7O5rbI32MTtvRYYAAcgtBKQAAAHhD2uENZOpkHB95TnHXiooNrUu/fm+eeNnx1p8U3PmOM23HH7knGaMvnDhFw8qLJEk+X2S+LSsynClh+F5khCFBUOQaJ0Sb1V5kE0EpAAAAeBBRkcxJ+KzzuO5JzkpbS8pK8aoH9aYs99DOwMZ/qPVfN8kaUdJpnViQyY5OW3as+LoUNpJ8PlnRXU5Zv0GHvfmqWl9+WYasKSBnUFMKAAAAnmEIRmWcsdKHAHkimnclZke5j6JJeNXH71tSgCrtarEnAUZXsYwUNkaFEydIapNk6dMP/VElgaA2/kgacdVVGrr4gr71DcCgQKYUAAAAPIIASHZYvXoyG7yhN0PwnLCk+5/e7jDyj+uxf0l9SfgnbKThl13mBKrqRg7TnopKSVJgy5b96QGAQYigFAAAADyKAMlAcoZYdRWBIHHN8yxFUuEG/FC66qbH6lYZ17JQe2T6/OYi1bzcqJJjT5Dtiyy764JP6U/HLYhMGIbvIVdQU4rhewAAAPAcho1lUuecmt5l2WCwS/ttSvUgvt5IM2QvXnfKRJt3r1ckS9reoboNTfFtjOkczALgeWRKAQAAwNMsi0vageSuK+QOBlgEBzwrfQaciS5PVXTKXfsplcRC54ltxOZHhu/Fnr7nXjZydrG7JyETrzMlKRybCHPeAbmC/4MDAADAGwiAZIXpMgKRuX5g4HQ5RFNSvwwxcvYRDzTFMp5imVLTz6mQ/7/Gqt4XGZ4XNvGQqGVMQlCK4XvIDVZXv1/zBEEpAAAAAMh3neJNKW6We33/bKV8mdxQLChlZOQr9TtdMeHETKmwTDQr0lBTCjknf//oQlAKAAAAQHqWpfgNU/7eOOWjzke7d1EpV+232PC9FHtwiurLyLIshd2LI+uYhIwusiaBnEFQCgAAAB6ReCPKkIfMSf9ZcxS8K7G4uEn19L2UY/piw+16upOuC53HH74XL2BuJ5ayMsYJbFkmrHCsfhw1pYCcQVAKAAAAnkZJjoHlLnidHAwgOOBV+3PkerKNq9C5a0HCzKSMp8RtbMuSiRVbD8fXjWRKUVMKuSmfk/8ISgEAAMDTkh8nj/6VutA5n3kusIyR5R5k59wdJz1nMfrfXh5319P3Yi0ZVw2pxHaNIplSzmDRxELnCieci3l8Bw/kGIJSAAAA8IbEPyXn85+VsyBdKILQlHf1JcNwf4bvuYKb8cfvRSfjw/csy0oISsX3lZgpZRi+B+QMglIAAADwFGOUVHwbAyl1plRsGccgd3RxLC13ZlPPm4yvbyUMw1O6mlIysi1LYSdmZVwZVmGG7wE5h6AUAAAAgK6ZTi8kkSnlZYlHMmVN81TByN4ecFd2VA/6lFzoPCEjygqHZWKFzg1BKeQKhqQSlAIAAACQHpXk81eaQ99Vbam0hc5TNps0fC+aKeUavpcYpErIoAKQGwhKAQAAwCPS3IgSMxkQ8eBC4geclClFbMDDug8e9d8e4hOW1LmmVMKaVrpC58bEM6WoKQXkDIJSAAAAANLqsqZUBvuBAWQlBhjjR9X0Z8TXCUQlFjaP7T5e6Ny2LMUG5yWO0rMMNaWAXERQCgAAAB5HqtRAMkr1CUfmWKRK5SzjKjTlPgN6PKLTSp9llzjPNXzPTsqUSih0buxY8IqgFHKE8x3J39+lBKUAAADgDQl1ZLiIzaBuAwvwpMRaTSkW7/HFv2W+2Ap9KHRuJQzfi2dKuffcqaZUOCFXy5h45hanIZAz+P85AAAAAOSpdEXLG3w+53VBNHjUk1hQ2kLn0fmumlJJ20Qyoywn+JVY6Jzhe0BuIigFAAAAIK2uakohN5geHuI+nQrxlKeEHbsLnUcypeTUlHJnR8aH7xGUQq7o6kmW+YKgFAAAADzFKHZbyxiezLCUUOUnYR7VvHKCU2w8aYaL1cVU0pqJkSvX684v42dTfFheZPheZEkwHE7KlIrcvlJTCrknf/9/RlAKAAAAHpG/F+3Z1PWnzjHxLCsS6OlyhSRdrp6yiRQl8k3C/FimVEKh86Bpk1W4U5J03xv3pQ6AcdoBOYOgFAAAADzNssnXGVCWRRAgx6Ubvtefh92KJ0OpaWdr5HXS8L07XrlD3/zPR2UXfyBJ2rp3qxMbs4xR2I7evjJ8D8gZBKUAAAAApGVcuSruMAXhwNzV38c2Fjy2JG17t0lSPDgV88qOVyRJxooEnSwTr7hjmXC8vhnD95AzUj+JMp8QlAIAAIA3JD4SHpljxQMDeXzflIO6riKVtErq6V7wF0RuPUdWFWp0ca18ll+B9lCk2aRhfsG2UZIkW7543Skj5+l7+XwDD+Qaf7Y7AAAAAPSKMSJHB+hHKb9OVncr9LBtK/Kd9UUmh7SHdPTQI/SmL6BgNLhU5CtybRIOlUqSTNhSRzCkyMYJQekwQSkgVxCUAgAAgMcRoBpIxupi+J5FcMCzYrWanCffxY+lMabLglI9/cYlZjSVzKxSeK8U2NGq0O42lfjK1Rxddtnsy/Tw2w8rZEKaXDVVLZuGSR+E432TZBsjE6sfR00pIGcQlAIAAADQhVQhCAKBuaT70GLs6Xj7IZop5R9WpGGLD1bzM1vU+MSGSHvRoNXcUXM1d9RcZ5MnXnlZ732wW7YkK7rXczY9odcKZ0mSGsIBvfXTWyRZOvKsczR0zLj96RkwCDiDo7Pai2wiKAUAAACPSH3RnlyPBv0j9rkaPt8cZXUxlXpOj1u2rHiWVOJj9xKatWSlLVJmRzOiZtYdp9ZQvaRGvbxpmKStenP0UG0KNiv8zAqnvdO+8NX97iuA7CIoBQAAAI+xoje6+fuX5ezh6Xu5yHR3IC33v/0SCLaUNihVXhOpMVUWqFLAN1UKrnGWbRxe7Vr3nedWaeemjfIVFOq4c8/X2BkH971vADKGp+8BAAAASM+yCD7loi4Paj8GfK2k4UnOfi2ZNPuZcUqt/jjzR1o3/DkVlJ6giiO+qbMPfFvjfA0a0tKqobI16oADJUkdrftU/9672rruTb3296f6r99AJpCJSqYUAAAAPILHwGeF6WKKbLXcZpJTpHq7vTEJw/fc4/esyA5S8vlsbatcr5HNkyLr2n6VFoV0etnb2vLSUBXPmqVJ3/mBdm5+X007t+vdF57VayueUpgC6PCs/P1dSlAKAAAAnmIRnMqslH/J56/7uST18L3+OcbOQFuTIlMqzVfZdgb0RIJMxkjhxPMwuuGwcRM0bNwE7dm6NTqb3w2A1zB8DwAAAJ7CbWeGdTG8hJEn+cU4Rcq71pOaU5FC56kzm2zLju4v+m03RkZ2/HxLyoiKjxDktwPgNQSlAAAA4BHpnr7HJe1Acn3qyTf9xAA8zTJGliwZJQea0nzX9ud4Jw3fcyU8dbNprOaUkynlNJUUzIo9KXI/ugdkE3F9glIAAAAAumAsK30GCndUHma5X5q0SxNqS+3PbpJqSjlRqfTnVapMqXDirWs4eTtORMCrCEoBAADA47ghHUiJz96LPy0tMm9Yp+AAcpEzOq6Hw/diXIXOkxrrKtbpBKXSZEolb8jwPcC7CEoBAAAASKu5tNqJBRR1uG/6pwUJAnidZax0g/XSvN4/neNFKdKznCWx4XixTCkpLFtOT9M9ZY+gFOA5BKUAAADgDQk3nH0aToRe2T2kVs1FBZIkm5v+nNF1MfJohlLyKj0sKuVqO57GFJ1O2Eu6UaGxbaxYppSJfOe7rSnF+QmvSchEzdPfrwSlAAAAAKRlSfrn5NGSUuS1EBv0rPhATCsafOrihthZZCX8t4eSa0q52uimplRCppRxDd9L2oUTrepNxwAMBgSlAAAA4GmWTWRkoIXs2G0Dd/3oIyvhRZrMEGf4nhXJiDLO8L2o5OF7sUypPM00AbyMoBQAAAA8JFX9G4JSAy3dcEk++dzhPpbGNWd/h8sak7BlcnFyWWmDSFbycDxj3IXOk4JS8dGCBKUAryEoBQAAAKCTWGAgXRns6ELkgN6GcrosR5VuZdPzmlJSZAifcWpKSUa2q8ZU0k560SFgMEk8d/MzqEpQCgAAAJ5iOTek+XkBnxWdMlHSFPeB51jG6lzQPLIk5csetZmy0HmsKSthfvrzx0p8Op+RwpaVPuvKGb7Xu34CyD6CUgAAAPA0ciSyiU/fs/bj0PUp5pOUKdXd7i3LcjKlZEw0Uyq6sFNNqX7pIYAsICgFAAAAbyANIivc+Swcg/yUmN3U202TipAnFDo34fTnky07XlNKkUypGGPCqTah0Dk8x5VVmKe/XwlKAQAAwNOs/blRRi+YtPdKlpWfN1G5xEqTs5R6ruliWYq1jUmoKZWq5S6G71mWE5QyYaOwK1MqTU0pglKA5xCUAgAAgPcQiMqYsVZAdtrgE8fBy2L12Yzl1BCPMgn/7etOks4RZ/ie1YNC55GMKGMkY1nxIGiamlIAvIegFAAAADzCpJnihnQgVVshDbf2Js2l0HmusNI+X9FK8bpnxzt1kCjVtj0sdC7JJPYnTU0phu8B3kNQCgAAAB5HUGrAOTGJ5LpA8KyeZBd1WseK/rfnJ0CnJ+Y55amsLoNIyYXOw5adNvjUm/4Ag0tirbT8DKoSlAIAAPCQ22+/XRMnTlRxcbHmzZun559/Pu26v/jFL3TcccdpyJAhGjJkiBYsWNBp/QsuuECWZbl+TjvttIF+G/utdxVt0F/Sf+IcC88z6vFhNPtzuK2kek9OoMvSpldX6LFbb1D7vpZOm7kKnZvuMqWoKQV4FUEpAAAAj3jooYe0ZMkSXXPNNXrppZd06KGHauHChdq+fXvK9VeuXKnzzjtPTz/9tFavXq1x48bp1FNP1QcffOBa77TTTtO2bducn9/+9reZeDvwpNhNfyzdhSCA16XOMuqf45oq8yN5b+tW/1NvP/vvzuslZEoZI4UtOx7PSlNTirMR8B6CUgAAAB5x880365JLLtHixYs1Y8YM3XnnnSotLdXdd9+dcv37779fX/ziFzV79mwdeOCB+uUvf6lwOKwVK1a41isqKlJtba3zM2TIkEy8nd4zifVl4v+lxnE28eHngtRlzVPVlIpO9eawd8qUivzj8491Vgm0t6XYzErIlDIKd5UpFUOmFOA5BKUAAAA8oKOjQ2vWrNGCBQucebZta8GCBVq9enWP2ti3b58CgYBqampc81euXKkRI0Zo+vTp+sIXvqBdu3albaO9vV1NTU2un+wjMDLQTJrPmE/eyxJq2fTzgXQVOo9lMXWqR2Zr5JQjoh3oHEyyZcdrSkkylu1k5qWrvZOvNXngZYlfvvw8fwlKAQAAeMDOnTsVCoU0cuRI1/yRI0eqrq6uR21cddVVGj16tCuwddppp+nee+/VihUrdMMNN+iZZ57R6aefrlAolLKNZcuWqaqqyvkZN27c/r+p/ZV042lIlcqg/LxpymWWU7y8M+P824fvWJpi6a79pBrmZyU8fc9IYcvqdvgeAO/xZ7sDAAAAGHjf//739eCDD2rlypUqLi525p977rnO60MOOUSzZs3SlClTtHLlSp1yyimd2lm6dKmWLFniTDc1NWUwMEVAJBtMyteW6x/kmIHIOEouR2ZJJhCUJIX27u20uiVLRmGnPyYxnyIUlNr3SkXl8cZEphTgRWRKAQAAeMCwYcPk8/lUX1/vml9fX6/a2tout/3BD36g73//+/rrX/+qWbNmdbnu5MmTNWzYML377rsplxcVFamystL1kx1WwisiIwOhJ9knFoFCz7KcuGKs5lMX6+7nd8wY4wS4tl55pbZde61CDQ3O8vZ33pEk7fr1PZ22tS07qdC5pZD86igoV7hjn3TzDKllV7R/zg73q5/A4JCf5y9BKQAAAA8oLCzUnDlzXEXKY0XL58+fn3a7G2+8Ud/5znf05JNP6ogjjuh2P1u2bNGuXbs0atSofun3gMrP6/cs66oYNrzEJLxIWVMqxcze1p768Y9/rL8dOktBn0/tb7+thgcfUsuqxCftRRu0OzecWOjc3xTUm29cpbtbHtS/jrlBLxx6lUxbo7RjbWzl3nUMGDQ4dwlKAQAAeMSSJUv0i1/8Qvfcc4/eeustfeELX1BLS4sWL14sSTr//PO1dOlSZ/0bbrhBV199te6++25NnDhRdXV1qqur097oUJm9e/fqyiuv1LPPPquNGzdqxYoVOuusszR16lQtXLgwK++xS8Yo1QU8l/RA33QX3+00bLMbHR0dzuvtI0dq17Ch8WXvb3JaKpo8WZI09NJLO7Vx2sTTZFmpb1ebKyYoaIqk9uiDFuLFpnrUPwCDB0EpAAAAj/jUpz6lH/zgB/r2t7+t2bNn6+WXX9aTTz7pFD/ftGmTtm3b5qx/xx13qKOjQx//+Mc1atQo5+cHP/iBJMnn8+nVV1/VRz/6UR1wwAG66KKLNGfOHP3zn/9UUVFRVt7jfiFLYuDFx0clz4DHpR6aZ1J/r6LD6bo7+sm/P2rvuEOjb7xBktS+dm18gT99ieMrj7xSB4/6b7X692pfQbMmVD6jIfamhB5a0nsrpV3rnf4weg/wHgqdAwAAeMhll12myy67LOWylStXuqY3btzYZVslJSV66qmn+qlnmUZQBOgLS5asWBTH6vyNSnj2ndSDulOJzj33XL3zzjt64YUXFAgE1BEMqvyEE1R2wvEKt1Y5LdoFhZFm00STTLH0mznfVplvpAo0U5977Srd3fzbeJ+eu1N6+QHp2F9HNyAqBW9x1+7Lz/OXTCkAAAB4FFk7WcdHjxQmTZqkU089VZOjw/MCgYB8VVUa/7OfaeRVX09YMxbsSn0z7rNshe2QwlZYd0xarA8f/hNnmZl4XORFe5MUbI/My9ObesDLCEoBAADAI7jhzAoCTzkpVrTc2o9nKPb0lCgoKJAkrVq1KvXWTkwqdQ/iQwuNLEl1xcOcZeaT9yesZ2KrAfAYglIAAADwtP19XD16zih1IWnKeeWGtE/Vszq96JXy8nJJ0q5du1RfX+9qykqcSBeUihY6NyYsS1I4oR+ptkgX3AIweBGUAgAAgKcRGMkGPvRcYaWMSJmUkaq0was0jjnmGOf1vffeq+eeey7p1LGie0sdTLKjX+6QCSvcGlTIlxCUCoelaNCq97lewOCTrzHVQRGU2r17tz796U+rsrJS1dXVuuiii5xHFafT1tamL33pSxo6dKjKy8t1zjnnxKPvSXbt2qWxY8fKsiw1NDQMwDsAAADAgItesVvGEBMBMiL1F83qYSS4oqLCCUy1tLRozZo1KaPIJpz6btxvR25XWwMhtf99q6ydHfGFYZPQP5P0LwCvGBRBqU9/+tN64403tHz5cj322GP6xz/+oUsvvbTLbS6//HL9+c9/1sMPP6xnnnlGW7du1cc+9rGU61500UWaNWvWQHQdAAAAyCPc9OeqrsNM+x8FPuWUU3TGGWdIkkKhUEKL3T91bP7k4ZF1rchy0xqObxFKzJSKzuP0BDwn60Gpt956S08++aR++ctfat68eTr22GP14x//WA8++KC2bt2acpvGxkbddddduvnmm3XyySdrzpw5+tWvfqVVq1bp2Wefda17xx13qKGhQV/72tcy8XYAAAAwwDrfd5I2lXl85p5nxao6WT0elmf2Y6ysbdsaPXq0pGhQKrHOebS9dMGkCUPLJEnFBdHbVkuSiQSmwmHjBKXiHSQqBS/Lz/M360Gp1atXq7q6WkcccYQzb8GCBbJtOzLmOIU1a9YoEAhowYIFzrwDDzxQ48eP1+rVq515b775pq6//nrde++9su3u32p7e7uamppcPwAAABjkKCqVebFi1Xz0OaHzrXDi0LjOenvYfT6fpEhQyr1t6gL6MbYTdIosP6q6Il4/KhxOOAGjmVR5elMPL+OXaNaDUnV1dRoxYoRrnt/vV01Njerq6tJuU1hYqOrqatf8kSNHOtu0t7frvPPO00033aTx48f3qC/Lli1TVVWV8zNu3LjevyEAAAAMEJPwigv5zDFpXiP/7N/xTwxKORlaluQUOk9TU8rJpIrud1ZlmZMNtamlLSFTKro9mVKA5wxYUOob3/iGLMvq8mft2rUDtXstXbpUBx10kD7zmc/0apvGxkbnZ/PmzQPWPwAAAPQPiwDVgOi6mLWV9C+8xjmCxkpblClePrxvx9kVlEopTVAqKZOq2OdzXm9tbe/89D1iUoDn+Aeq4SuuuEIXXHBBl+tMnjxZtbW12r59u2t+MBjU7t27VVtbm3K72tpadXR0qKGhwZUtVV9f72zz97//Xa+99poeeeQRSZKJ/oIdNmyYvvnNb+q6667r1G5RUZGKiop6+hYBAACQFclDfgiMZEqne34+es9KrA/VfSynH4NSrqZiNaV6NnxPliXLRPKmwuFwn/sFDC75GVUdsKDU8OHDNXz48G7Xmz9/vhoaGrRmzRrNmTNHUiSgFA6HNW/evJTbzJkzRwUFBVqxYoXOOeccSdK6deu0adMmzZ8/X5L0f//3f2ptbXW2eeGFF3ThhRfqn//8p6ZMmdLXtwcAAIBMY2hO9jj3/hyDXJM60zDNcY4+BW9/a0oFg0EnAJUwei/tdzteCD1aMyohkBYOGXV6+h7nJzyHwOqABaV66qCDDtJpp52mSy65RHfeeacCgYAuu+wynXvuuc5TGj744AOdcsopuvfeezV37lxVVVXpoosu0pIlS1RTU6PKykp9+ctf1vz583XUUUdJUqfA086dO539JdeiAgAAgHd0uoTnmh7YL5aJZyBJ0YfbxZcmrpliXs/FglKSFAyHOgWP0mVKxQNmkSfuGdnOUD2TWOjcUFMK8KqsB6Uk6f7779dll12mU045RbZt65xzztGPfvQjZ3kgENC6deu0b98+Z94tt9zirNve3q6FCxfqpz/9aTa6DwAAgGziEXAZwGeca3p0RK1OL/ZLYlDqhw/eriGFZTq59UjFShx3N3wvtjRsKR54SghKJcemAHjHoAhK1dTU6IEHHki7fOLEiZ1+URUXF+v222/X7bff3qN9nHjiiWl/2QEAAMAbTLykMTIkdelry/UPclGqmlP7N3yvsLBQY8eO1ZYtWyRJe+wW7bNau9lKsuWuKWUScrkSh+8llmQHvMT9QIn8PH8HRVAKAAAA6F6abIqBe6A0ukFMyrt8duRWMDZELuxaahL+G1lLctd06g3LsnTRRRepvb1dt91yq1rb21Tqkw4MTtGQ6jaZcLoaVrHehJ39x4YchsPhTk/fIwkB8B7+Dw4AAABv4cZzECAc5XUnjjux88xuvlqWtf/fPcuyVFxc7AzJC8toRHioDhlyvAraU+dKxJ++F+ufcToZCWQ5USv3vwA8g0wpAAAAeBBBkUwy6T5uDoNnTameom2SLBPLgur5tn0p4+Y8US9h3ra1TXryZ6/J9lmy/bZGTanSxEOGKdARiq4bTtimc6YU0SjkgnzN9CMoBQAAAG/I0wv2bEtdUyqCmFRuSXz6ntVpSaymU9/Yvljx8vi5tK+hXfX/2eFMr3u2TtI67S3cI81x36zHemBCCYXOnXAVvyPgNfwWJSgFAAAAoGtp7/W5ofIqq9t0p8RC504oqM/7tf2RJ/HtGVWq8q3tKlGRhk+o1GHHH6BwyOiVv29Wa3OHQsGE4XlOzSglBKcTC53HZhGUAryGoBQAAAC8rS9jidA3fPSeZylx+F5iIEjqdIAt49pmv/YX/b5OPXuKQne9K7VLVTXFOuTEsZKkQ08Z56xb31yv+34f328kE6qL4XsEpQDPodA5AAAAPCL1DWf3GR/oG9M5+MRnnuNSf9f6ZfieHR2+14MAki+aVWUSMqWcoXqhsGInpuWqNgV4VX6ewQSlAAAA4D1WF9kc6Bepgn3JNXv45HNH17fD/XeknULnxsjEnuaXZudW8vC9yIaR12HTOThKphQ8h9+iBKUAAADgKYmVbjDw+JRzlFMkPMVNsYksiU/2X02pWFAqMvyu62ZtV80o44o5GROvKeVkShGUAjyHoBQAAAAA5KsUj9szycPhYi9sK3nVXnMN34s1FE4zNNe1J+P6N/Hpe2RIAd5FUAoAAADewI3nIGK5/oE3WcbEC513XtrpdX98BV2ZUk4/ul43wsjIxLOiwolP3+N3A3JBfp7HBKUAAADgOa5Ld4puD7D8vFHKF0Pah6i6vVpS+uBQXN/PhVSZUulaTQ5KJa5oEp6+x/A9eBf//yIoBQAAAE9JvvHk6XuZ0H81hTC4FJgCnfzBKTLyJS2x4ofd+Y71ffheYqaUcYbvpV7XTrxdtZIKnbvqXsUKpnN+Al5DUAoAAAAeka7uDAZSpp7KhkyLH7vOcV2Tcqo/4r+pMqXSNdu50Llx0rkiNaVimVKpeg3ACwhKAQAAAADcrBQ1pfrx6XuJGY89S3CKPH3Piq68ZtPv9OXidj1dWhJvgEwpeAyJvgSlAAAA4DGdr+G5qs8c96PauKHKHabTsUxxcK1uUpt6wFXoPJr1lK6WVXKmVOS/kX93NW7QSn9QP6muUvy8JCgFeA1BKQAAAHiMJQJRGcbHnftM8mG2EkI8/XcCuIfvdV3p3BWUsqLhKBMpQFVVPEqS1GFZBEcBDyMoBQAAAG9gaE7WcQRySFIkxyQ/6U4phu91/3i+Huw2RaHzNM1aCX3wFdVpY9s/nZUrikZE+yTnd8OebVu1+v9+q4a6bX3uJ5Bp+fr0SIJSAAAA8Kjo0B+bS9qB1GUdITJUPC05DNVd2NE9eHP/xDKlgsGgwgrpbXubtgSb1dbW1mldv+13XpdOvFPPt/xEsUf1FdmlKXu86nf3a+Vv7upDD4FM6jxENd/4u18FAAAAGEzy88J9cOCzzx/x0FNy3lSfWo1mSv35z3+OzCiUFJCq//lPfehDH5IkBRvaFG4JSpI+Oe7j+t3mRzr1qqp4rKRIiCq0e5NrH+3Ne/qpt8BAS/xmhbPWi2wiKAUAAACPSB0QIVknG6yE/yIndFmYqf+O94EHHqh33nmn0/ydG+u0/acvK7Q3oN17dusV30bZsjStpFbDhx2hre0hjfXVyB9qlyS1veOXDpGMLHU8+ytJM5y2zLZX+qGnwMCzEr53+Tp8j6AUAAAAgE5iN0vu26TkAVyEpXJXwrCi7oo/9cKcOXN02GGHqampSe//fJV2NDbpXwVrte6D9QqH9qlNAW0u2hnfICCVbzpabaHR8vvqVdhWL5VPVsXeEbr42ZtkydJf2t+R9KSzSf2+8fr1Vf9SzegyfeiimSoo8slf4Otz34H+x/A9glIAAADwOAIjmdLpaWz9UPgaWZL0tTHOf1Iujqxj9U/GlG3bqq6u1q4JFWr7T7tUEJn/js9doNwKdshub5NtDZVsye5o1/DtK7V72DxJkt8USpJCxt2jkPGrpbFDLY0duvtr/5JtW6quLVVhsV/GGJVUFOqkzxyo0srCPr4ToG9cmVJ5GpSiKiQAAAC8ITa0odN1O0GpzEn+8Pnsc4WRFPRHsokCLY8r2PFuwpC+gTnOkz5xtIZ/cqymjxqhikCrClqbVdreoloFNK2iWP/z7Wt09U036/gFp0qSKnyW/IG9mv3ybWr2bdbewgbtqtqss7/2Cdn+cbJ8IyVJBVarJh06zOl2OGy0e2uL6t5rVP2GJm18dafef33XgLwnoPeiJyrD9wAAAAAPsgmMDLTOt0p85rnMhLYrGNqhcOxeOb6kX/dj2z5NPvxITT78yB6tf8BRx6pwzaMasvltrRv6ql6c8lcNLRmhb89cpEtvv1Vv/f2veuahn6nGv0lnfP4QhU2kTk/9e41q3RuQZVla8+T72r6xSeFQfhaVxmBkKfLdys9zkqAUAAAAPMPIigxxSBjyYBEgyaBoUKKfhnFhMEk+mkbhpEwp4xQ8z/CRd+qbGRW0t0mSjnj3AzUWG22aGHlKX1l1kYaMLIlvY4xs25ZkafS0Ic7stavdQwSBbLMsS8YwfA8AAAAAUjAJQQHkjC6fthdhktfJUhTSKbNupPLt9ZKkk196RdfdF1JpSyi+nh25vTUJ/+3UVjSzMk9HSmFQioZl8vSkJCgFAAAAT0ksC4uBl+pTtih0njuiN8LGkspbO9yLnFfZzYmzEoYRVp3zMWe+PyyVt4U7rRgp2p56KJTzTvI0AIDBqP+ebulFBKUAAADgcQwiG2idA4EDWwAbmWdk6Zh3Nuut6fEhcCa50Hk0CNmDJKt+lThccNR3v6vNX7pIrYWRR/ZZ4YTQmRXLOLHSB50sMqUwuDhB1zw9KQlKAQAAwHPy89J9ELA6vUAO8RkpZEtODalOhc6zI37THq2/U1DoFGG3Em7kLTvy9MAuM6WckVLZfldATCwsk5/nJEEpAAAAeINzE+m+cLcynbaRh3j6Xv4wllHsNjHsZEhFbxuzftijmVq2JaczicEl15M409SUii3Nz/t/DEqxszI/n75HUAoAAAAel/U75ZzW5b07AUHPShfMtRRWPFPKvU7y4M1MSQ4kWbKcLK7UmVJW2kwpV4EqYBCIDTvN1+w9glIAAAAAesmK/jc/b6JykXHVWoreJA+SmKOVlBRl2VYk8KSkoJQSnr6X5gY/3+v3YDAiUwoAAADwjOgAnoQ5g+TOOWd1dfPOZ58rnKNshePFwJOzqbIUx7Gcp+rFc7VSZ0rFMk7SZ0pZFDoHBhWCUgAAAPCIaDiKm8nsY9heznE/YTEh4yhhqRkkd4/pa0oldjDd0/dim/GLBIMDw/cAAAAATyNAMhC6LiBvuf6BB1mxIZgRseFw4cSgVNq6U5nVafieZXdTU0pdZEpFX+Tn/T8GJYbvAQAAAB7EXWUmdP0MM+SexELn2e1JsvgQw3jAzAon3sjHhuZZXdSUiq3D7w8MDk6mVJ7+P42gFAAAALwh7U0ml7TZMshiFugDJwBlGcm5SU5++l52jrgldx0oy7Lj1aUSfi1YPl98Il3QiZMWg04sFZBMKQAAAMAj4neWxKQGXlmwLGkOw/dyT7yYeCwIFE46vpbV+TEDmeAM34vVlbPivXA98sBKrIXVTaZUft7/A4MO/wsHAAAA0KXiUEnSHCvpX+SKyLC21DWlmgsrs9CjhLPMSY9KV1MqIcMrXdSJQucYZBi+BwAAAABppbpRolq09yUPzYv+a6WvKfXvMR8a+G6lEM+Uik1b8YBZOHH8XnQ9o25rSgGDB8P3AAAAAA8gAJINXX/q3ODnGsukqikV+TfgL45MZTiwYyWdZ5ZlOeelnZgp5RrLmy4oFV0a5vcJBov8DvITlAIAAICHpKplRGAk86gplWuMkx01iJ++Z2I1pax4dEmJQalYXaz0w/fy+/YfgxHD9wAAAAAvo9L5wBtkwQkMgNhoOCusdDWlsnXLnDx8T2kypZTY33Q1o+zkxoBBguF7AAAAwCBGYeLBw3IP64IHpcg0kqTIA/ZimVLJj99z/ZNxsV8BlqvQeVIGlSRjepApxfA9DBJWnodl8vvdAwAAwHOspHvJ5HozyAQr+l9u7HNFbPheWPFMqbjsBiHjw/Ki07bl9MUyUjgagHKv13Whc85cDBpOMJVMKQAAAGDQ42Yys9Lc2if9C6+LP30v5B4Gl7hOlg63k93kZEta7kwpJWVKSemHQsUbG4CeAvsjvyudEZQCAACAR5iEV/G7Y57wPtCMkoNPTnZactoaPCwW0AmnHU6UrThOp1GEljtTyikQ7Sp03s3T9zh1MUjEv2/5eVISlAIAAIDHEZXKHj57r+t0BC2j7m4TM33Uk/NILFeh88SaUgn9TldTyhkq1f/9BPaLEyhl+B4AAADgAcl3kwRGBoLVZQoaw/c8r9PxTXwqXZrjmu3D7SREWa4i7PFMqeh0VwEnZx2iUhgs8jssk9/vHgAAAN4Vy47I+p1y/qLQee4wiUMyrdSFzrOVxxGvFeUepidFMqXihc5j/e7i6XtWYvANyD6LQucAAACAB5DZkBVdFjqnoFfuiAZ0TIoaYvF1Mtcd126TMqASh+9ZruF70fUSV+7UWKwtfp9gsKDQOQAAAOBZxEWyIb9vonJK0iGM1K533yZm+yuW/MA8y7adue6n78UCa+oiUyrW2IB0FdgPFDoHAAAAPKPzDXK2b5nzEJFA70s6hPEnWoaV6jbRsoyrjlNGpdiviSXrKSHryRkGZSltjh+FzjHI5PvwPX+2OwAAAAD0DHeR2VBvN8iXbiHBqZxjG3U6riW+3Tri2JD+Fp3O9GGPJzdFM6KSMqXCitWUSuhYuhv85LSrNDragmre1eZMV40okb8g7TcB6Af5+f84glIAAADwlLLWIXr7gAXSnp9E55D8PxCGDRsmSQpbRr5OQYhoQCBPb6Jy0ch9uyVJ//O7oFYc5v5OlVW/pYenLdCqhr2Sspdl5CREKX77brtqSsUKolvpOxkISJL2vfKKttc/ofJjjlHpkUe6V+kI6TffWq22vQFn3pDaUp13zbxunkoJ9J6V5/8Py+93DwAAAE8pb96r4Q21rnmFhVVZ6k1umzJliv679Gid3X6kprUNTVoayRjx+QhK5RrLmE5PtHypeprubilzptvCmR1mlPzAPMu2lfiwwNjT95Q4NC9NplT72rWSpNY339KuO3+mLV/5aqd19u5ucwJSvqKQJGlP3T794N2tFEhH/2P4HgAAADD4fbCnVVUNDQr6S6JzgpIku2Js9jqV4yrsEpWaErUVTJS/PKj6jj1qM6XyFR2iQ2pWaepJR2S7i+gnDSU1qm7drX/MaJc/0KJQwrLXhkyQJJ02rFINgZBOHZbZQHAsSGaM1BYIqS1kKRzNr7CM1BaMDLPz+SO3t2HZCodDKTMwwvtaJFXIroy8h9Du3TLBoCx//NY40B5592X+PTq/+mLdUf9/kqSfrq/XR0cP1Z7Gl/XyE48ptLNJQ4qHaMr4mZp71sejwwqB3tr/QufNe9eqo71ell2o6qrDZdtF/du1DCAoBQAAgEGr7u21enX5nxV+7x96e49UEahSR2GxJCngC6kgZDmPssfAKbALNXf46drcsl7FHzlSM4+frsJibiW8zESHsVnhsGTbWjfzszq08Q1tP6hShe+vV3G8nJImhT7QlTWTteCQ2VnpayxT6u9r6zXr2r+qI+TX/9o1Gq9dsozUEmiRJPlKy51t9u1tUXmqxjraJUkFo0Y5s8L79slXWSlJerHuRa1/b5ukMgWsfQpbYcnqkEyhhm+9UZcvD6h5ywad/c/RkqRtkratWqOxBx2sMQfO6LS79n0tam5vVmOoWb6CAg0tGaqKwoo+fybIHU7QVb3LlGpqelUvvPhfzvT48Rdr2tSl/dq3TOD/JAAAAB5y++2366abblJdXZ0OPfRQ/fjHP9bcuXPTrv/www/r6quv1saNGzVt2jTdcMMNOuOMM5zlxhhdc801+sUvfqGGhgYdc8wxuuOOOzRt2rRMvJ1u/e7q/1FAHc70bqtJBb53JVMWfXQ9MmF48ThJkm0ZjTuonIBUDujYsNE1vXFqnT4Ij5RthRQcN0XjdvnV2rJds4ev1ld3/Uu+4vS/Zwaa81xAI3WEIjfu4WgwetpWo8/e9n+yi7YpqDZ9wgrJMj7d9r3vam+VX22lZRq9aZ8sI/ksI1+oSOHiQ/VWwytaO+sASdIfL79QRYVDpbClpnCT5B+lIR1TtSe0W3+pr1Vby19lBer10ZUtskxIId8YSUbG8stYluxwQH+8+Xb5y2tUUGXJtts0SQX6z7p3FYwGzCRp/Zh2+Qtq9bH5X1aJXaBdW95Q885N2rnpTVmW0amfu1yTD58j26ZuVV6JHu5QaJ/27duoHTueUjjcofaOHTImKMvyqbJiloqKRqioqFY+X7ksy9aehucTGjCqr39MwWCziopqNX7cRbIsn3y+Yu3ctVK7d/9bkuT3lWvkyI/IsiwVF48eFJlV/N8EAADAIx566CEtWbJEd955p+bNm6dbb71VCxcu1Lp16zRixIhO669atUrnnXeeli1bpg9/+MN64IEHdPbZZ+ull17SwQcfLEm68cYb9aMf/Uj33HOPJk2apKuvvloLFy7Um2++qeLi4ky/RZcPtu1Q0PJLpkNOaWMTVqA18gwwf/RKvrKYmlIDpXBsmVp3tsiOBgCaA7vlL8z+TQz6LrRrpySpIBBQKDp0LWBHhsT6fIUaXjxW7+7drkMrNkQ2KK7ORjcldX7a3/EjjVr9kfPw9DVGp6/5tbNs1dQxaijzqbjNH832igeFwpLCapfaIjfzJtpuwd6QwvpAkqLZVU0KaJ18kt7RNElvy0gqaZciQ60iEXGfb5xkFyncsVatje9Lje8r2ox2pngfUz4okrRHazZen/J9/uWOl/WJ/5mmUVP4nZZPrGiNvtdf/3LadT7QA2mXVVUdpsbGl9TeXqetWx+SJG3YcJskyecrUyjU4lp/w8YfOa/9/mpNnXKlxow5d7/731cEpQAAADzi5ptv1iWXXKLFixdLku688049/vjjuvvuu/WNb3yj0/q33XabTjvtNF155ZWSpO985ztavny5fvKTn+jOO++UMUa33nqrvvWtb+mss86SJN17770aOXKkHn30UZ17bvYuUiVJhe2SiQwxGhGepSZ7j0JWUEYhhewm7Sm1NXn6gRo9ZnJ2+5nDhp57uN4I/FY76nbI2Laqj5ms6pG13W+IQa9wylRJ0vxVq/XekbNU9IFRWYtR9b4tGv2//6Ntr7+rD1dPlkZeLVWNlcbNy1pfZ46uUnGBrbZAWMUFthbPHalfvTxDh+16XSUdYVkmXpXn4C312jWsUO+XD9W+okKnjZFNe2RkqamkSh1FNTKWX9V2tRpNh8Khekm2bBXKZ3ySZctIsoI7JRNQ2C6WKRimwsLD1dH+nGRCsmRUbQrVHgqrVcUyCims2NP6LFlWhSyrWAUqV4l/tJq0WybcKBP8wPXeSiqnK9Dhk11wiCzfsEx8nBhkxoz5bzWve0vGxJ/2OGLEGSouGiXL8mtPw/MyJqBgsFkdHTtlTMj58flKNHHCFyNZVq0btX37E9q79y2nncSA1JDqo9S8d62kkILBZklSMNigcLg9Y+81FYJSAAAAHtDR0aE1a9Zo6dJ4vQjbtrVgwQKtXr065TarV6/WkiVLXPMWLlyoRx99VJK0YcMG1dXVacGCBc7yqqoqzZs3T6tXr856UGrM0LGacMlH1dTWoA+fskjVxUOcZTyWPXNmfva8bHcBA6Dm/M/K8tmafMIJOn78eLWtXSsTCqlw3Dj5hw3TtPlHZbuLjoPHVOmlqz+kve1BVRQVqKTQp6NmTVXdnk/q5ZY31G7bagwV6bCRR+uQinL9ZvUmbdiyU2UbXlR5oaXZB0/Ufwomqb49pJCRjpk2VOccOErGGIWCYQXaQvIVWnpu4y49v6NJu4IhTRpVpeNG7FNroFlqaNLEivGqKKyUr+YLzu+fjnBYde2RQEKF36cq21I4HNZ/tr+kvaF9si1bs0fMVlVRlYKBkAIdQb2yfpWa9+xQgV2gI2Yer/KaoQqHwgqHY9lX1MjLN6NHf0KjRn1cra3vSzIqLBwhv7+s2+1SmTTxSwqF2mRMSKFQizo6dkqyVFo6WT5fPMvVmLBaW9+XMWEVFiY/XTWzCEoBAAB4wM6dOxUKhTRy5EjX/JEjR2pt9BHnyerq6lKuX1dX5yyPzUu3TrL29na1t8f/qtrU1NS7N9JL5yxYPKDtA/nKLi7W0IsucqZLZs3KYm+6V1roV2lh/Pa1pKJSkyoqNUkHdVr3cydMkTRFUjy765QUbVqWJX+BT/6CyPCp46bX6rjpKTIBO4+OliQV2rbGl7iHs9o+n44c0zmrLLafo2ad1GmZ7bNl+1LvA/nBsiyVlk7sl7Z8vsjQe7+/TEVFqU9ey7JVWjqpX/bXV4RhAQAA0GPLli1TVVWV8zNu3LhsdwkAAHgUQSkAAAAPGDZsmHw+n+rr613z6+vrVVubusZPbW1tl+vH/u1Nm0uXLlVjY6Pzs3nz5v16PwAAAASlAAAAPKCwsFBz5szRihUrnHnhcFgrVqzQ/PnzU24zf/581/qStHz5cmf9SZMmqba21rVOU1OTnnvuubRtFhUVqbKy0vUDAACwP6gpBQAA4BFLlizRokWLdMQRR2ju3Lm69dZb1dLS4jyN7/zzz9eYMWO0bNkySdJXvvIVnXDCCfrhD3+oM888Uw8++KBefPFF/fznP5cUqWHx1a9+Vd/97nc1bdo0TZo0SVdffbVGjx6ts88+O1tvEwAA5AmCUgAAAB7xqU99Sjt27NC3v/1t1dXVafbs2XryySedQuWbNm2SbccT4Y8++mg98MAD+ta3vqX/+Z//0bRp0/Too4/q4IMPdtb5+te/rpaWFl166aVqaGjQscceqyeffFLFxcUZf38AACC/WMYYk+1ODFZNTU2qqqpSY2MjqekAAEAS1wfJ+DwAAECynl4fUFMKAAAAAAAAGUdQCgAAAAAAABlHUAoAAAAAAAAZR1AKAAAAAAAAGUdQCgAAAAAAABlHUAoAAAAAAAAZR1AKAAAAAAAAGUdQCgAAAAAAABlHUAoAAAAAAAAZR1AKAAAAAAAAGUdQCgAAAAAAABlHUAoAAAAAAAAZR1AKAAAAAAAAGUdQCgAAAAAAABlHUAoAAAAAAAAZR1AKAAAAAAAAGUdQCgAAAAAAABlHUAoAAAAAAAAZR1AKAAAAAAAAGUdQCgAAAAAAABlHUAoAAAAAAAAZR1AKAAAAAAAAGUdQCgAAAAAAABlHUAoAAAAAAAAZR1AKAAAAAAAAGefPdgcGM2OMJKmpqSnLPQEAAINF7Logdp2Q77heAgAAyXp6vURQqgvNzc2SpHHjxmW5JwAAYLBpbm5WVVVVtruRdVwvAQCAdLq7XrIMf+ZLKxwOa+vWraqoqJBlWf3eflNTk8aNG6fNmzersrKy39sfLPLlfUr5817z5X1K+fNeeZ+5J1/eazbepzFGzc3NGj16tGybSghcL/WPfHmfUv6813x5n1L+vFfeZ+7Jl/c6mK+XyJTqgm3bGjt27IDvp7KyMqe/ADH58j6l/Hmv+fI+pfx5r7zP3JMv7zXT75MMqTiul/pXvrxPKX/ea768Tyl/3ivvM/fky3sdjNdL/HkPAAAAAAAAGUdQCgAAAAAAABlHUCqLioqKdM0116ioqCjbXRlQ+fI+pfx5r/nyPqX8ea+8z9yTL+81X95nPsuXY5wv71PKn/eaL+9Typ/3yvvMPfnyXgfz+6TQOQAAAAAAADKOTCkAAAAAAABkHEEpAAAAAAAAZBxBKQAAAAAAAGQcQSkAAAAAAABkHEEpAAAAAAAAZBxBKQAAAAAAAGQcQSkAAAAAAABkHEEpAAAAAAAAZBxBKQAAAAAAAGQcQSkAAAAAAABkHEEpAAAAAAAAZBxBKQAAAAAAAGQcQSkAAAAAAABkHEEpAJ6zceNGWZalX//619nuyqBxwQUXaOLEia55lmXp2muvzUp/AABA97im6YxrGiC/EJQC0GurVq3Stddeq4aGhv3a/qc//SkXX/th69atuvbaa/Xyyy9nuysAAOQErmmyg2saADEEpQD02qpVq3TddddxAZdhW7du1XXXXZfyAu4Xv/iF1q1bl/lOAQDgYVzTZAfXNABi/NnuAACg7woKCrLdBQAAgD7LtWualpYWlZWVZbsbwKBFphSAXrn22mt15ZVXSpImTZoky7JkWZY2btyoYDCo73znO5oyZYqKioo0ceJE/c///I/a29ud7SdOnKg33nhDzzzzjLPtiSeeKEnavXu3vva1r+mQQw5ReXm5Kisrdfrpp+uVV17pl763tbXp2muv1QEHHKDi4mKNGjVKH/vYx7R+/XpJ8boOP/jBD3TLLbdowoQJKikp0QknnKDXX3/d1daJJ57o9DtRqjoI3Zk4caIuuOCCTvMT97Fy5UodeeSRkqTFixc7n13sr7P7s99UHnzwQc2ZM0cVFRWqrKzUIYccottuu63P7QIAMNhwTRORi9c0K1eulGVZWrlypWt+qhpedXV1Wrx4scaOHauioiKNGjVKZ511ljZu3Oja9oknntBxxx2nsrIyVVRU6Mwzz9Qbb7zhWueCCy5QeXm51q9frzPOOEMVFRX69Kc/3aM+BwIBXXfddZo2bZqKi4s1dOhQHXvssVq+fPn+fASAZ5ApBaBXPvaxj+ntt9/Wb3/7W91yyy0aNmyYJGn48OG6+OKLdc899+jjH/+4rrjiCj333HNatmyZ3nrrLf3hD3+QJN1666368pe/rPLycn3zm9+UJI0cOVKS9N577+nRRx/VJz7xCU2aNEn19fX62c9+phNOOEFvvvmmRo8evd/9DoVC+vCHP6wVK1bo3HPP1Ve+8hU1Nzdr+fLlev311zVlyhRn3XvvvVfNzc360pe+pLa2Nt122206+eST9dprrzl9zbSDDjpI119/vb797W/r0ksv1XHHHSdJOvroo/ttH8uXL9d5552nU045RTfccIMk6a233tK///1vfeUrX+m3/QAAMBhwTZO71zS9cc455+iNN97Ql7/8ZU2cOFHbt2/X8uXLtWnTJic49pvf/EaLFi3SwoULdcMNN2jfvn264447dOyxx+o///mPK4gWDAa1cOFCHXvssfrBD36g0tLSHvXj2muv1bJly3TxxRdr7ty5ampq0osvvqiXXnpJH/rQhwbgnQODhAGAXrrpppuMJLNhwwZn3ssvv2wkmYsvvti17te+9jUjyfz973935s2cOdOccMIJndpta2szoVDINW/Dhg2mqKjIXH/99a55ksyvfvWrHvf57rvvNpLMzTff3GlZOBx2tVtSUmK2bNniLH/uueeMJHP55Zc780444YSU72HRokVmwoQJPe6XMcZMmDDBLFq0qNP85H288MILad93qv1KMtdcc02P+/GVr3zFVFZWmmAw2ONtAADwMq5pcvOa5umnnzaSzNNPP+2an/x579mzx0gyN910U9q2mpubTXV1tbnkkktc8+vq6kxVVZVr/qJFi4wk841vfKPHfY059NBDzZlnntnr7QCvY/gegH7xl7/8RZK0ZMkS1/wrrrhCkvT4449320ZRUZFsO/JrKRQKadeuXSovL9f06dP10ksv9al///d//6dhw4bpy1/+cqdllmW5ps8++2yNGTPGmZ47d67mzZvnvMdcVV1drZaWFtLEAQB5jWua/FFSUqLCwkKtXLlSe/bsSbnO8uXL1dDQoPPOO087d+50fnw+n+bNm6enn3660zZf+MIXet2X6upqvfHGG3rnnXd6vS3gZQSlAPSL999/X7Zta+rUqa75tbW1qq6u1vvvv99tG+FwWLfccoumTZumoqIiDRs2TMOHD9err76qxsbGPvVv/fr1mj59uvz+7kctT5s2rdO8Aw44oFNtgVzzxS9+UQcccIBOP/10jR07VhdeeKGefPLJbHcLAICM4pomfxQVFemGG27QE088oZEjR+r444/XjTfeqLq6OmedWJDo5JNP1vDhw10/f/3rX7V9+3ZXm36/X2PHju11X66//no1NDTogAMO0CGHHKIrr7xSr776at/eIOABBKUA9Kvkv9D1xve+9z0tWbJExx9/vO677z499dRTWr58uWbOnKlwONyPvey7dO8zFAplta2+GDFihF5++WX96U9/0kc/+lE9/fTTOv3007Vo0aKM9gMAgMGAaxrvXtP0ph9f/epX9fbbb2vZsmUqLi7W1VdfrYMOOkj/+c9/JMk5Xr/5zW+0fPnyTj9//OMfXe0lZsn1xvHHH6/169fr7rvv1sEHH6xf/vKXOvzww/XLX/6y120BXkKhcwC9lup/9BMmTFA4HNY777yjgw46yJlfX1+vhoYGTZgwocvtJemRRx7RSSedpLvuuss1v6GhwSk+ur+mTJmi5557ToFAoNtHDadKm3777bddRSyHDBmi9957r9N6PfnrabIhQ4aooaEhZVuTJ092pvtycdxThYWF+shHPqKPfOQjCofD+uIXv6if/exnuvrqqzv9xRgAAK/jmiY3r2mGDBkiSZ36ku49TZkyRVdccYWuuOIKvfPOO5o9e7Z++MMf6r777nMKx48YMUILFiwY0H7X1NRo8eLFWrx4sfbu3avjjz9e1157rS6++OIB3S+QTWRKAei1srIySe7/0Z9xxhmSIk+iSXTzzTdLks4880zX9qkuWHw+n4wxrnkPP/ywPvjggz73+ZxzztHOnTv1k5/8pNOy5H0++uijrn0+//zzeu6553T66ac786ZMmaK1a9dqx44dzrxXXnlF//73v3vdtylTpujZZ59VR0eHM++xxx7T5s2bXeul+tz7065du1zTtm1r1qxZkuR6BDYAALmCa5rcvKaZMGGCfD6f/vGPf7jm//SnP3VN79u3T21tba55U6ZMUUVFhXPts3DhQlVWVup73/ueAoFAp30lfm59kXwdVl5erqlTp3INhpxHphSAXpszZ44k6Zvf/KbOPfdcFRQU6CMf+YgWLVqkn//852poaNAJJ5yg559/Xvfcc4/OPvtsnXTSSa7t77jjDn33u9/V1KlTNWLECJ188sn68Ic/rOuvv16LFy/W0Ucfrddee03333+/6y9r++v888/XvffeqyVLluj555/Xcccdp5aWFv3tb3/TF7/4RZ111lnOulOnTtWxxx6rL3zhC2pvb9ett96qoUOH6utf/7qzzoUXXqibb75ZCxcu1EUXXaTt27frzjvv1MyZM9XU1NSrvl188cV65JFHdNppp+mTn/yk1q9f7/rLXMyUKVNUXV2tO++8UxUVFSorK9O8efM0adKkvn04Cf3YvXu3Tj75ZI0dO1bvv/++fvzjH2v27NmuvxQDAJAruKbJzWuaqqoqfeITn9CPf/xjWZalKVOm6LHHHutU/+ntt9/WKaecok9+8pOaMWOG/H6//vCHP6i+vl7nnnuuJKmyslJ33HGHPvvZz+rwww/Xueeeq+HDh2vTpk16/PHHdcwxx6QMEPbWjBkzdOKJJ2rOnDmqqanRiy++qEceeUSXXXZZn9sGBrXsPvwPgFd95zvfMWPGjDG2bTuPUg4EAua6664zkyZNMgUFBWbcuHFm6dKlpq2tzbVtXV2dOfPMM01FRYWR5DwiuK2tzVxxxRVm1KhRpqSkxBxzzDFm9erVnR4jvD+PTzbGmH379plvfvObTv9qa2vNxz/+cbN+/XpXuzfddJP54Q9/aMaNG2eKiorMcccdZ1555ZVO7d13331m8uTJprCw0MyePds89dRT+/X4ZGOM+eEPf2jGjBljioqKzDHHHGNefPHFlI9o/uMf/2hmzJhh/H6/6zPoj8cnP/LII+bUU081I0aMMIWFhWb8+PHmc5/7nNm2bVuv3w8AAF7BNU3uXdMYY8yOHTvMOeecY0pLS82QIUPM5z73OfP666+79rVz507zpS99yRx44IGmrKzMVFVVmXnz5pnf/e53ndp7+umnzcKFC01VVZUpLi42U6ZMMRdccIF58cUXnXUWLVpkysrKetXPmO9+97tm7ty5prq62pSUlJgDDzzQ/O///q/p6OjYr/YAr7CMScrxBIA8tXHjRk2aNEk33XSTvva1r2W7OwAAAPuFaxoAXkFNKQAAAAAAAGQcNaUAeFpHR4d2797d5TpVVVUqKSnJUI/idu/e7Sr0mczn82n48OED3o9QKNRtEc7y8nKVl5cPeF8AAEBqXNN0z4vXNK2trWpsbOxynZqaGhUWFmaoR8DgQlAKgKetWrXKVXA0lV/96le64IILMtOhBB/72Mf0zDPPpF0+YcIEbdy4ccD7sXnz5m4Lh15zzTW69tprB7wvAAAgNa5puufFa5qHHnpIixcv7nKdp59+WieeeGJmOgQMMtSUAuBpe/bs0Zo1a7pcZ+bMmRo1alSGehS3Zs0a7dmzJ+3ykpISHXPMMQPej7a2Nv3rX//qcp3Jkyf3yxOBAADA/uGapntevKbZtm2b3njjjS7XmTNnjoYMGZKhHgGDC0EpAAAAAAAAZByFzgEAAAAAAJBx1JTqQjgc1tatW1VRUSHLsrLdHQAAMAgYY9Tc3KzRo0fLtvn7HtdLAAAgWU+vlwhKdWHr1q0aN25ctrsBAAAGoc2bN2vs2LHZ7kbWcb0EAADS6e56iaBUFyoqKiRFPsTKysos9wYAAAwGTU1NGjdunHOdkO+4XgIAAMl6er1EUKoLsRT0yspKLrIAAIALQ9UiuF4CAADpdHe9RCEEAAAAAAAAZBxBKQAAAAAAAGQcQSkAAAAAAABkHEEpAAAAAAAAZBxBKQAAAAAAAGQcQSkAAAAAAABkHEEpAAAAAAAAZBxBKQAAAAAAAGQcQSkAAAAAAABkHEEpAAAAAAAAZBxBKQAAAAAAAGQcQSkAAAAAAABkHEEpAAAAAAAAZBxBKQAAAAAAAGQcQSkAAAAAAABkHEEpAAAAAAAAZBxBKQAAAAAAAGQcQSkAAAAAAABkXFaCUnfccYdmzZqlyspKVVZWav78+XriiSec5SeeeKIsy3L9fP7zn3e1sWnTJp155pkqLS3ViBEjdOWVVyoYDLrWWblypQ4//HAVFRVp6tSp+vWvf52JtwcAAAAAAIBu+LOx07Fjx+r73/++pk2bJmOM7rnnHp111ln6z3/+o5kzZ0qSLrnkEl1//fXONqWlpc7rUCikM888U7W1tVq1apW2bdum888/XwUFBfre974nSdqwYYPOPPNMff7zn9f999+vFStW6OKLL9aoUaO0cOHCzL5hAAAAAAAAuFjGGJPtTkhSTU2NbrrpJl100UU68cQTNXv2bN16660p133iiSf04Q9/WFu3btXIkSMlSXfeeaeuuuoq7dixQ4WFhbrqqqv0+OOP6/XXX3e2O/fcc9XQ0KAnn3yyR31qampSVVWVGhsbVVlZ2ef3CAAAvI/rAzc+DwAAkKyn1wdZrykVCoX04IMPqqWlRfPnz3fm33///Ro2bJgOPvhgLV26VPv27XOWrV69WocccogTkJKkhQsXqqmpSW+88YazzoIFC1z7WrhwoVavXj3A7wgAAAAAAADdycrwPUl67bXXNH/+fLW1tam8vFx/+MMfNGPGDEnSf//3f2vChAkaPXq0Xn31VV111VVat26dfv/730uS6urqXAEpSc50XV1dl+s0NTWptbVVJSUlnfrU3t6u9vZ2Z7qpqan/3jAAAAAAAAAcWQtKTZ8+XS+//LIaGxv1yCOPaNGiRXrmmWc0Y8YMXXrppc56hxxyiEaNGqVTTjlF69ev15QpUwasT8uWLdN11103YO0DAAAAAAAgImvD9woLCzV16lTNmTNHy5Yt06GHHqrbbrst5brz5s2TJL377ruSpNraWtXX17vWiU3X1tZ2uU5lZWXKLClJWrp0qRobG52fzZs37/8bBAAAAAAAQFpZrykVEw6HXUPnEr388suSpFGjRkmS5s+fr9dee03bt2931lm+fLkqKyudIYDz58/XihUrXO0sX77cVbcqWVFRkSorK10/AAAAAAAA6H9ZGb63dOlSnX766Ro/fryam5v1wAMPaOXKlXrqqae0fv16PfDAAzrjjDM0dOhQvfrqq7r88st1/PHHa9asWZKkU089VTNmzNBnP/tZ3Xjjjaqrq9O3vvUtfelLX1JRUZEk6fOf/7x+8pOf6Otf/7ouvPBC/f3vf9fvfvc7Pf7449l4ywAAAAAAAEiQlaDU9u3bdf7552vbtm2qqqrSrFmz9NRTT+lDH/qQNm/erL/97W+69dZb1dLSonHjxumcc87Rt771LWd7n8+nxx57TF/4whc0f/58lZWVadGiRbr++uuddSZNmqTHH39cl19+uW677TaNHTtWv/zlL7Vw4cJsvGUAAAAAAAAksIwxJtudGKyamppUVVWlxsZGhvIBAABJXB8k4/MAAADJenp9MGhqSgEAAAAAACB/ZGX4HgAA8LZQaJ/efud/1d5en2aNdInYXSRod5G8bbraLo3Jk76iqqrDer0dAABAX4TD7Xrn3WVqb6tz5nV/LZOwPOmaqPO23UwnbN/dfseO+bSGD/9QN30bOASlAABAr+3e/W9t3fpgtrvRpbFjP5vtLgAAgDy0e/e/tWXLb7LdjR4ZNvSkrO6foBQAAOi1UGifJKmsbJrGj7u465Wt7hZ3tUI3G3exvKJ8RjfbAgAA9L+Ojt2SpPKy6Sn+SJZ07WJZSUtTXdskz0tuI3mym/UTpisrZ6XYX+YQlAIAAL0WDrdLkoqLx2r06I9nuTcAAACDQ0fHLrW1bZEklZVP15gx52W5R4MbQSkAANBr4XCHJMm2C7PcEwAAgMFh8+Zf6+13vuNMF/irstgbbyAoBQAAeo2gFAAAgNuehuejr2z5/RUaNuzkrPbHCwhKAQCAXosHpYqy3BMAAIDBIRhsliTNnPED1daeleXeeANBKQAA0GthQ6YUAACAJLW2fqC2ts1qb6+TJPn9lVnukXcQlAIAAD1mjFFz8+va17JekmRbBKUAAED+amuv0+pnT5YxQWee31+RxR55C0EpAADQYzt3/k2vvvZ5Z9r2FWexNwAAANm1b98GGROUbReqpGSCSkomqLJyVra75RkEpQAAQI/t2/eeJMnvr1ZZ2VSNHPmRLPcIAAAge0LROlLl5TN15BGPZLk33kNQCgAA9FgwtE+SVFv7EU0/4NrsdgYAACBLQqFW7djxV+3es0qSVMCQvf1CUAoAAPRYKNQiSfL5yrLcEwAAgOzZvPkerX/vJme6oKAmi73xLoJSAACgW4FAo3bv/pf27l0rSfL5SrPcIwAAgOxpa9siSSorm6by8gM1fvzFWe6RNxGUAgAA3Xpr7f9ox44nnWmeKgMAAPJZMFpLavToT2n8uMVZ7o13EZQCAADdam19X5JUUT5TJaUTNGL46VnuEQAAQOYFgy1qbn5NrW0fSJL8vvIs98jbCEoBAIBuxf4aOH369aqqmp3dzgAAAGTJK69erIaG551pssf7hqAUAABIyRijXbufUUf7DgUCeyRx4QUAAPJbS8s7kqSSkvEqKR6vIUOOznKPvI2gFAAASGlPw7N65ZWLXPMKCqqy1BsAAIDsMsY42eOHH/aAiotHZblH3kdQCgAApNTaukmSVFg4TBUVh6i66nAVFg7Lcq8AAAAyr7V1s/bte0/GBCWRPd5fCEoBAICUgsEmSVLNkGM1c+YPs9wbAACA7Ghr26bVz54iY0KSJMvyyecry3KvcgNBKQAA4LKn4QVt2PAjte7bKEnyF1Rmt0MAAABZtG/fBhkTkm0XqqRkokYMXyjLsrLdrZxgZ7sDAABgcNm8+dfas2eV2tq3SpJKSyZmt0N56h//+Ic+8pGPaPTo0bIsS48++qhruWVZKX9uuukmZ52JEyd2Wv7973/f1c6rr76q4447TsXFxRo3bpxuvPHGTLw9AAA8IxTaK0mqKJ+po+Y9ocmTv5rdDuUQMqUAAIBLMNAgSRo/7iLV1BynIUOOym6H8lRLS4sOPfRQXXjhhfrYxz7Wafm2bdtc00888YQuuuginXPOOa75119/vS655BJnuqIiXgOjqalJp556qhYsWKA777xTr732mi688EJVV1fr0ksv7ed3BACA97S2fqCWlvWSqCM1EAhKAQAAl9hTZYbUHK2hQ4/Lcm/y1+mnn67TTz897fLa2lrX9B//+EeddNJJmjx5smt+RUVFp3Vj7r//fnV0dOjuu+9WYWGhZs6cqZdfflk333wzQSkAQN7buvVhvbX2G860z1+exd7kJobvAQAASdJbby3VP/45V81735IkFfipJeUV9fX1evzxx3XRRRd1Wvb9739fQ4cO1WGHHaabbrpJwWDQWbZ69Wodf/zxKiwsdOYtXLhQ69at0549ezLSdwAABqum5lclSbZdoqKiWtWO/EiWe5R7yJQCAAAKhdq1ddvvnGmfr0ylpZOy2CP0xj333KOKiopOw/z+3//7fzr88MNVU1OjVatWaenSpdq2bZtuvvlmSVJdXZ0mTXIf55EjRzrLhgwZ0mlf7e3tam9vd6abmpr6++0AADAoBAOR/8dNmXKFxo9bnOXe5CaCUgAAQMFQc/SVpXlzH1dR0SgV8NQ9z7j77rv16U9/WsXFxa75S5YscV7PmjVLhYWF+tznPqdly5apqKhov/a1bNkyXXfddX3qLwAAg1lHxy41Nr6kfa0bJUl+H7WkBgrD9wAAyHOBwB7tbY4M2fP7y1VePp2AlIf885//1Lp163TxxRd3u+68efMUDAa1ceNGSZG6VPX19a51YtPp6lAtXbpUjY2Nzs/mzZv79gYAABhkXnn1Er362ufV3Py6JHFdNIDIlAIAII81712rF144S8ZE6gzxl0DvueuuuzRnzhwdeuih3a778ssvy7ZtjRgxQpI0f/58ffOb31QgEFBBQYEkafny5Zo+fXrKoXuSVFRUtN9ZVgAAeEHsaXsVFTNVUjJBNTXHZrlHuYugFAAAeay56XUZE5Rl+eXzlWrU6E9mu0uI2rt3r959911nesOGDXr55ZdVU1Oj8ePHS4rUc3r44Yf1wx/+sNP2q1ev1nPPPaeTTjpJFRUVWr16tS6//HJ95jOfcQJO//3f/63rrrtOF110ka666iq9/vrruu2223TLLbdk5k0CADDIhMNBhUJ7JUmzD/2VCguHZrlHuY2gFAAAeSwYjBTwHDHidB0889bsdgYuL774ok466SRnOlYfatGiRfr1r38tSXrwwQdljNF5553XafuioiI9+OCDuvbaa9Xe3q5Jkybp8ssvd9WZqqqq0l//+ld96Utf0pw5czRs2DB9+9vf1qWXXjqwbw4AgEHo3fU3aceOp5xpP08iHnCWMcZkuxODVVNTk6qqqtTY2KjKSk5GAEDuCAQatXPn37R9x1+1c+ffNGbMp3Xg9Ouz3S1P4PrAjc8DAJALwuGgnl55oKRIiKS0dIrmH/XX7HbKw3p6fUCmFAAAeejd9Tdo69aHnOmCgtT1gwAAAPJBZMheJCB12GH3qbLi4Ox2KE8QlAIAIA+1tkaemFZRcbDKSqdq9ChqSQEAgPxkTFiBwB5Jkm2XqGbI/Cz3KH8QlAIAIA8Fg42SpMmTvqphw07qZm0AAIDc1Nq6RS+8+F8KBHZLkvx+nkScSQSlAADII++8u0w7d65Ua+v7kiR/ATWAAABA/mpsXOMEpCRp6NATstib/ENQCgCAPBEKtWnTpl8605ZVqNKSCVnsEQAAQHYFg3slScOGnaKZM37Y50yptXVNem9HS6f5h46r1pjqkj61nYsISgEAkCdiQ/Ysy6fZs+9RackEFRYOy3KvAAAAsicYbJYkFfir+xyQ2t7cpg//6F8Khk2nZbedO1tjZo/pU/u5iKAUAAB5YPee1dq965+SJL+/igKeAAAgr617+zp98MGDMiYoqX9qSW3evU/BsFFxga1ZY6tdy2rKCvvcfi4iKAUAQI4LBPbo5ZcvcC66CguHZrlHAAAA2VVX9ycZ0xGdslVVfUSf2mtqC2jLnlZJ0vSRFfrd5/gDYE8QlAIAIMe1t2+XMUHZdpFGDD9dtaP+K9tdAgAAyBpjQk5Zg7lH/lnFxWNUUFC13+3dsvxt3bbiHWe6qpSsqJ4iKAUAQI4LBJskSUVFozRz5g+z3BsAAIDs2fLBA9q5c4WkSN2nsrKpsu2+BZH+8c4O57XftvShGSP71F4+ISgFAECO2rdvg9586+tqa9smSX36C2Ci5zfs1jNvb3emz5s7XmOHlPZL2wAAAAPFmJDefvs6p6RBUVFtnwNSktTYGpAkPXDxPB01eahs2+pzm/mCoBQAADlq+46/qrHxJWe6rGxav7T7xfvXaOfeDmf65ANHEJQCAACDXjDY7ASkpk//joZUH9Wn9lau266XNzdoe1O7JKm6tJCAVC8RlAIAIEcFA5FaCSNGnKFxYxepsnJWn9s0xmhXSyQgde6R41RS6NOIiuI+twsAADDQgsFmSZJtl2jsmP/uU1vNbQFdcu+LCoSMM29YBbWkeougFAAAOSoYilx4lZVOVXUfnygTEwgZmei119IzDlJVSUG/tAsAADBQ9ux5Tm+tXeoEpfz+ij63uWtvhwIho0KfrU8eOVazxlTzh7r9QFAKAIAcYozRa69/Ubt2rVQ4HElP748Lr5j2YMh5XeS3+61dAACAgVK//XG1tr7vTFdWHNznNpvaInWkhpYX6rtnH9Ln9vIVQSkAAHJIKNSiHTv+6kxbVoGqqmb3W/vtwbDzmqAUAADwglhJg/HjL1Ft7dkqK526/22Fwvr8fS/ptQ8aJIms8T4iKAUAQA4JRC+6LKtQR89fIb+/op8zpSJBqSK/LcuikCcAABi8QqF9am+vV3tH5KnBZWVTVVF+YJ/aXFvXrL+9Ve9MT6/tv+usfERQCgCAHLFp013aveffkqSCgmoVF4/u1/a3Nbbqlc0NksiSAgAAg1sotE//XnWiAoFdzrz++ENdU2tk2N64mhL96NzDdPCYqj63mc8ISgEAkAPa2rbpnXe/50yXFI/p1/bf3b5XH7rlGafIeXGBr1/bBwAA6E+trZudgJTfX6GiolEaUj23z+02tUVqdg4vL9Jh44f0ub18R1AKAIAcEAjslhS56Jo86XINHXpiv7a/YWeLjJEKfbZGVhXp3CPH92v7AAAA/SlW0qC0dJLmH/W3Prf3p1e26va/v6s9+zokSRXF1JLqDwSlAADIAbFHHBcWDte4cYv6v/1QpJbUoeOq9PDnj+739gEAAPpDINCkzZt/pea9b0qS/P7Kfmn3N6s3al19szN9wMjyfmk33xGUAgDAwxoaXtT7m36u9vY6Sf134ZUsGI6M2/PZFDcHAACD17Ztj2jDxh8500VFtf3SbmO0ltTVH56hw8ZX69Cx1f3Sbr4jKAUAgIe9v+kX2rlzhTNdUjIww+pC0aBUgY8C5wAAYPCK/aGusvIwDa05VrW1/9Uv7TZHa0nNnVijQ8ZS3Ly/EJQCAMDDAoEGSdLYsYtUVTlbQ4eeMCD7IVMKAAAMZuFwu3bv/ream9+QJA0fdoomTvxCH9s0uvCeF/Tixj3a2x4JSlUUE0bpT3yaAAB4WCi0V5I0bNjJGlpz7MDtJxypKeUnKAUAAAah9zf9Uu+9d7MzXVBY0+c265ratHLdDme6trJYtVXFfW4XcQSlAADwmHA4qPc23KK21i1qbd0sSfL7BrbYJplSAABgMGtt3SRJKiker4rKgzV82If63GasjlRNWaH+8MWjNbKyWMUFvj63iziCUgAAeExj4xq9//6dCXMsFRX3TxHPdIKhSFDKT00pAAAwCAWDkezx8eMv0tixn+lze0+8tk3PvB3JkhpSWqAJQ8v63CY6IygFAIDHdAR2S5JKSiZo3NjzVVY2TcX99GSZdGKZUgzfAwAAg4kxRsYEFQo2S5J8/r5nj7+/q0VfuP8lZ3p4RVGf20RqBKUAAPCYYLBJklRWNk3jxl2QkX3GakoxfA8AAAwW4XC7nn/hLLW0vOPM8/v6ntG0rbFNklRVUqCPHDpKnzxiXJ/bRGoEpQAA8Iidu1Zq7dpvOk/c8/srMrZvMqUAAMBg07Jvgzsg5a9WReUhfW43Vktq8vAyfffsvreH9AhKAQDgEdvrH1d7e50zXVl5aMb2HaKmFAAAGGSC0T/UlZRM1JFH/EE+X7Fsu3C/23v9g0Yt/f1rqmuKZ0phYBGUAgDAIwLRYXuTJ31Vo0ado+Li0RnbN5lSAABgMHl/0y9UV/dHSVJhYY0KCir73OafX9mq1z5odKanj8xcVnq+IigFAMAg19a2TfX1f9beveskSaVlUzMWkLr2T2/o16s2OtPUlAIAANkWDnfo3XdvlBSpeVlaMqlf2o0N2ztv7jh96sjxOmRMVb+0i/QISgEAMMi9u/5G1df/yZkuKhyesX3/5bVtzmufbWnOhCEZ2zcAAEAqweBexQJSBx/8Yw2tOa5P7XUEw1pb16TNe/ZJkg4aVanZ46r72Ev0BEEpAAAGufb2eklSzZBjNGTIUaqqOjwj+zXGqCH6F8PHvnysJg4rU3kRlw4AACC7QqG9kiSfr1QjR5zR5/Yu/c2LWrluhzNNLanM4coSAIBBLhhsliSNH3+Rhg49YcD3Z4zRL/75nt7dvlcdwchfIQlIAQCAbGtvr9eWLb9RW1skk9vnK++Xdt/cGqnbOaKiSGOGlOiYqcP6pV10j6tLAAAGqYbGNWpr26qOju2SJL8/M8U219Y163t/WetMVxb7VVboy8i+AQAA0tm06S5t2nyXM11U1D8lDZrbgpKkRz5/tMYPLe2XNtEzBKUAABiEmveu1Zo1n3TN8/szU2xze3O7JGlkZZHOnz9RR00eKsuiwDkAAMiu9ugf6mqGHKPKylkaMeL0PrW3valNm3bvU2sgJEmqKCZEkml84gAADEL79r0nKRKIqig/SOXlB6q0dPKA77eusU2vRx+FPGlYmb500tQB3ycAAEBPBIORYXYjR35Uo0d/vE9t7dzbrmNvfNopVSBJ5QSlMo5PHACAQaax8T/auXOFJGnIkKM065CfZmS/79Q369Rb/yFjItPVJYUZ2S8AAEBX3n7nf7Vt28MKhSJPxysoqOxzmxt3tqgjGJbftjS6ukQfmjFSBT67z+2idwhKAQAwiHR07Naal86VMZHaBoWFmSu0+ea2JhkjFfptjaku0SeOGJuxfQMAAKSzdevvnCfu2XaRystn9LnNWB2pA0dV6LEvH9fn9rB/CEoBADCItLfXy5igbLtQw4Z9SOPGnp+xfTdFL85Omj5cP/vsERnbLwAAQDrhcMAJSB15xB9UUjKxz5lS7cGQ9uzrkCRVFBX0uY/YfwSlAAAYRILBZklScfEYHXLwjzKyz3V1zVqxtl7PvbdbklRZzMUZAADIvt27/61du//hTJeXz5Bt9y2Mcdvf3tEtf3s73iZ1pLKKTx8AgEEgHA6quflVNTb9R5Lk85VnbN9fefA/WlvX7EwPLS/K2L4BAABSCYcDeuXVzykcbpUkFRQM7XNASpL+9la989q2pOOnZa5UAjojKAUAwCDwzrvf1ZYtv3GmC/x9L+DZUx80RC72zjxklEZUFmnR0RMytm8AAIBUgsFmJyA1duxnNWzoKf3SblNbQJJ074VzNXdSjYoLfP3SLvYPQSkAAAaBvXvXSZKKCkfKX1ClMWM+nZH9hsNGe9sjtaSu/ehMDa8gSwoAAGRfMNgkKZI9Pv2Aa/vc3vode7Wurlm790ZqSdVWFROQGgQISgEAMAgEA42SpIMOukFDhw78E2DagyFdfM+LWr99r4yJzKsqoZYUAADIrubmN7X+vR+qo2OXJMnvr+hzm3vbg/rwj/6l1kDImVfNdc+gQFAKAIAs2rz519q9Z7X2tW6SJBUUVGVkv69uadQ/39npTE8dUa5Cv52RfQMAAKTzwdbfateulc50aUnfywrUNbapNRCS37Z0+IQhmjNhiEZUFve5XfQdQSkAALIkGGzR2+98V1IkVcmyfCoqHp2RfTfsi9RTmD6yQjd+fJamjcxcYXUAAIB0AoEGSdKoUZ/Q0KEnaEj13D632dgaGbI3urpEv/vc/D63h/5DUAoAgCwJBhsl/X/27js+8qre//hrekky6XWT7b0vW2BBYGm7LEUQEClKFYS7oMLPhqKCXMELKqJy4SoKegEVr4IKSGdZyi4s23uv2fQ2SSbTv78/vsnsBrYlmUmy2ffz8VjN+c6ZzznDlnzz+Z7zOQYWi4Mxo39IWtooXM7UngATjcX5n0XbWbzNXBJfnOVmSllWSscUEREROVrRiFlLKjvrRAoL5vcoVjAS48rfLmFz+ynDKlXQ/ygpJSIi0gei0Wb8zWsAcDiyGDToyl4Z992ttTz06qZEuzhTS9dFRESk723e8p9UVPyNWKwVALuj5ycRr9vXxIrdjYn2tMFZPY4pyaWklIiISC+LRlt4/4M5RKONANjtvVNHCqDGHwJgeF4al04v5bLppb02toiIiMih7Nv3XCIhZbU6SU8b2+OY/qB5wvDownR+e80MBud4exxTkktJKRERkV7WFtzbnpCy4HTmMqjk8pSPaRgG22pa2FxlLl+fUpbFgjNGpnxcERERkSOJx6OJhNSM6X/D6x2Oo4crpaKxOI0Bs5ZUbpqLIblpPZ6nJJ+SUiIiIr2so1aC1zuU2Se90Stj/uqtrfz89c2JtmoqiIiISH8Qi4UIBssT7YyMCVitPbtPeWtjFf/xzHKCkbgZ063UR3+l3xkREZFeEosFaGhYQlPTcgDs9p7XSjhaq/c2AeBz28lLd3HB5OJeG1tERETkYEKhapZ8OI9o1HxgZ7V6epyQAli0uTaRkLJa4NRRqT1IRrrP2heDPvbYY0yePBmfz4fP52P27Nn8+9//TrweDAZZsGABubm5pKenc+mll1JVVdUpxu7duzn//PPxer0UFBTwzW9+k2g02qnPwoULOeGEE3C5XIwcOZKnnnqqNz6eiIjIQW3efB+rVt/Ezl2PAeDoxVpSHUch/+TSybz1jTnMGJrTa2OLiIiIHExz87pEQgqgsPD8pMT1ByMA3HH2aNbeO48vzR6alLiSfH2yUqq0tJSf/OQnjBo1CsMw+MMf/sBFF13EihUrmDBhAnfccQcvvfQSf/3rX8nMzOS2227jkksu4f333wcgFotx/vnnU1RUxAcffEBFRQXXXHMNDoeD+++/H4AdO3Zw/vnnc8stt/DMM8/w5ptv8uUvf5ni4mLmzZvXFx9bRESOc62BbQB4vSNwOvMoG3xjysd86v0dvLGhmvX7zBs+bdsTERGR/qIjIZWT/RmmTftDj+O1hWOsKW9iT30AgAKfC69TG8T6sz753bnwwgs7tX/84x/z2GOPsWTJEkpLS/nd737Hs88+y5lnngnAk08+ybhx41iyZAknnXQSr732GuvXr+eNN96gsLCQqVOnct999/Htb3+be+65B6fTyeOPP86wYcP42c9+BsC4ceN47733ePjhh5WUEhGRPtFx4zVm9A/JyTkl5ePF4wY/fnkDkZgBgMWCTp0RERGRPheLBaitfZu6+ncBsPewqHmHG55ayuLtdYm2z62Hcf1dn2zfO1AsFuPPf/4zra2tzJ49m2XLlhGJRDj77LMTfcaOHcvgwYNZvHgxAIsXL2bSpEkUFhYm+sybNw+/38+6desSfQ6M0dGnI8bBhEIh/H5/p18iIiI9tWvX/7Bi5XW0te0GwO7onW17LeFoIiH188un8Px/nEKZklIiIiLSx3buepy1675KZeXzADgcWUmJu6n9lOHBOV5OHpHLZ0aqllR/12fr2NasWcPs2bMJBoOkp6fz/PPPM378eFauXInT6SQrK6tT/8LCQiorKwGorKzslJDqeL3jtcP18fv9tLW14fF4PjWnBx54gHvvvTdZH1FERIRotJmt2x5MtC0WB25XScrHDUZiiaXrLruVS04oTfmYIiIiIkej40Gd1zuStLSRlA76Yo9jGoaBv82sJfXcV2ZTlOnucUxJvT5LSo0ZM4aVK1fS1NTE//3f/3Httdfyzjvv9NV0ALjrrru48847E22/309ZWVkfzkhERI51kUgjABaLk3Fj7yctbSROZ2qLjO+qa+X8X75HS8g8AER1pERERKQ/6ShpMGTwTZSUXNajWIZh8MfFu9ha3UI0bq4Q93lUR+pY0We/U06nk5EjRwIwffp0li5dyiOPPMIXvvAFwuEwjY2NnVZLVVVVUVRUBEBRUREfffRRp3gdp/Md2OeTJ/ZVVVXh8/kOukoKwOVy4XK5kvL5REREQqEampvNbeUORxbFxZ/rlXFX7mlMJKQAzp1Y1CvjioiIiBxOILCD8n1/oaV5IwB2R0aPY26qauaH/1yXaGe47Xgcth7Hld7Rb9KH8XicUCjE9OnTcTgcvPnmm1x66aUAbNq0id27dzN79mwAZs+ezY9//GOqq6spKCgA4PXXX8fn8zF+/PhEn5dffrnTGK+//noihoiISCo1Ni1j2bIvAOYTO0cv1ZEC8AfNhNTc8YU8/sXpWK2WXhtbRERE5FC2bf851dX7f053OQsP0/vo1DaHAchLd3LFzMGcMjIPi0X3PseKPklK3XXXXcyfP5/BgwfT3NzMs88+y8KFC3n11VfJzMzkxhtv5M477yQnJwefz8ftt9/O7NmzOemkkwCYO3cu48eP50tf+hIPPvgglZWV3H333SxYsCCx0umWW27h17/+Nd/61re44YYbeOutt3juued46aWX+uIji4jIcabZvwYwsFqd2O0+Skq+kPIxDcOgyh+iorENMLftKSElIiIi/UUoVA1Afv48cnNOxeeb0uOYLSGzjtSQ3DS+MW9Mj+NJ7+qTpFR1dTXXXHMNFRUVZGZmMnnyZF599VXOOeccAB5++GGsViuXXnopoVCIefPm8d///d+J99tsNl588UVuvfVWZs+eTVpaGtdeey0/+tGPEn2GDRvGSy+9xB133MEjjzxCaWkpTzzxBPPmzev1zysiIsefSNQ8/aWo6BLGjf1xr4x5y9PLeHXd/q3rGToGWURERPqRWPv9Uemgq8nJOaVHsfzBCEu21bFkez0A6a5+sxFMuqBPftd+97vfHfZ1t9vNo48+yqOPPnrIPkOGDPnU9rxPmjNnDitWrOjWHEVERLrD37yW8r3P0OQ3v/847L23ba/jpsxhs5DusnPm2IJeG1tERETkYOLxEJs23UMwWE6gbScAdnvPa0l986+rOj2M8+lgl2OSUokiIiJJtH37L6irezvRdrsH9cq48biBP2guX//gO2eRn6GDO0RERKTvNTZ+zL6K5xJti8WO213S47jbaloBGFuUQW66k2tnD+lxTOl9SkqJiIgkUThcC0Bx8efJ9E2lqOiilI4Xixvc//IGttW0YJg11cnUk0IRERHpJyKRBgDS0kYxdMh/4E0bjtOZ1+O4TW3mw7iffn4KEwf13sp0SS4lpURERJIkHo8QjTYBUFJ8GVlZM1I+5so9DfzuvR2JdnGmG6fdmvJxRURERI5GtL2OlMczhKKiz/YoVjxusODZ5aza00hNcwjQw7hjnZJSIiIiSbBl6wPs3v1Eom23+3pl3Jr2Y5CH5Hq59fQRzByW0yvjioiIiBxOY9Mytmx5gFBwHwB2e3qPY+5pCPDvtZWJdl66iwKfShYcy5SUEhERSYKamjcSX3s8Q/B4UlvXIByN89jCbSzZXgfAiPx0rpg1OKVjioiIiBytffuew+/ff/BYmndkj2N2bNnLS3fx5HUzGZLnxWW39Tiu9B0lpURERJIgGvUDMGP6X/H5pmCxpPYGadHmGh5+Y3OiPSjLk9LxRERERLoiEmkEoKz0OgoK5pOZOa1H8WqaQ6zaY8bMTXMyqVR1pAYCJaVERER6IBptJhptIRptAcDlKkp5Qgqgur2Owoj8ND4/o4xLTuidU/5EREREDicabaWldSOhUAUAmZnTelxns8of5NT/eptwLA6Az6NUxkCh30kREZFuavKvYtmyKzCMcOKa3Z6R8nGbgxGq/EEAppZlc8vpI1I+poiIiMjRWL7iSpqb1yXadnvPVzRtrW4hHIvjsFkoyfJwpUoWDBhKSomIiHSTv2lle0LKgsXiIDf3VGy2nhfxPJwn39/Bvf9an2jrxBkRERHpLwzDoKVlEwBudylez5CknEbcUUtqalkWf73l5B7Hk/5DSSkREZFu6qgjVVL8ecaNe6BXxnxvS23ia6/Txulj8ntlXBEREZEjicfbMIwoACfOehm7Pa1H8XbUtvKz1zaxtdosk6CHcQOPklIiIiJdZBgGweBegokjjlO/Za+DP2g+Kfz1VdM4b2IxVqul18YWEREROZS6undoaTUPYbFYbNhs3h7HfPbDXby4uiLRHpzTsySX9D9KSomIiHTR1m0/YffuJxLt3khKLd5Wx+LtdeyoDQCQ7XUqISUiIiL9gt+/hpWrbki07fYsLJae36fUt5oP486fVMzcCYWcObagxzGlf1FSSkREpIuampYDYLW6cTpzyc07I6XjxeMGN/3xY1pC0cS1ggxXSscUEREROVptwb0AOBw5ZGVOp6Dw/KTEbW5fIX7yyFwumqqThgciJaVERES6KBIxa0lNmfIEOdmzUz5eczCaSEh96aQhjCxIZ1Rh720ZFBERETmcjjqbmb6pTJ78eI9ixeMGtz6zjDV7m6htNU84znCrltRApaSUiIjIUdpb/iyNjUsJBssBcCThiOOj0VFHyu2wct/FE3tlTBEREZEjaWvbze49v8fvXwuA3e7rccxd9QFeXVeVaFssMK5ID+MGKiWlREREjkIk4mfTph8ABmAW8HS5ClM65p76AJc89gE1zSEAsjzOlI4nIiIi0hW7dv+W8vJnE22Xu6jHMevbV0cV+dz89poZ5Ge4KMp09ziu9E9KSomIiByFSKQeMLBaXYwY8U3S08fidOamdMylO+sTCSmAU0bmpXQ8ERERka4Ih2oAyM87h6zsEyku+ly3Y0Vicb7ztzWs3tsIQIHPxaTS3lmVLn1HSSkREZEjiEQaaW3dAoDDkc3gsut7ZdzmoFlH6uxxBTx42RSyvaqnICIiIv1DLBYiEmkEoKDwfIoKL+xRvJV7Gvnb8r2J9sj89B7Fk2ODta8nICIi0p81Ni3j3fdmsXrNLUDv1ZEKRWM0BsxaUjlpTnLSnEk5WlmOHYsWLeLCCy+kpKQEi8XCCy+80On16667DovF0unXueee26lPfX09V199NT6fj6ysLG688UZaWlo69Vm9ejWnnnoqbrebsrIyHnzwwVR/NBEROcbt2v1bFr4zgcampUBy7o86tu0Nz0/jiWtm8CPV0TwuaKWUiIjIYfj9qzGMGBaLDZvNS1HRxSkf8xt/XcX/Ldv/pFAnzhyfWltbmTJlCjfccAOXXHLJQfuce+65PPnkk4m2y+Xq9PrVV19NRUUFr7/+OpFIhOuvv56bb76ZZ58163/4/X7mzp3L2WefzeOPP86aNWu44YYbyMrK4uabb07dhxMRkWNaXe1COupsOp35ZGRM6HasllCUF1ftY8n2OgAG53g5e3xq63ZK/6GklIiIyGFEI+YRxyUlX2DsmPt6ZcxX11YmvnbarJw8IrW1q6R/mj9/PvPnzz9sH5fLRVHRwYvKbtiwgVdeeYWlS5cyY8YMAH71q19x3nnn8dOf/pSSkhKeeeYZwuEwv//973E6nUyYMIGVK1fy85//XEkpERE5pGisGYBJE/+b/PyzsVhs3Y71xLvb+cUbWxLtvHTXYXrLQKPteyIiIgcRCtWwt/zZxLL0ZBxxfDQisTjNIbOW1LvfOoPV98zlrHF6WigHt3DhQgoKChgzZgy33nordXV1idcWL15MVlZWIiEFcPbZZ2O1Wvnwww8TfU477TSczv0nO86bN49NmzbR0NBw0DFDoRB+v7/TLxEROT4YhkE8HiUaNZNSTmdujxJSAHsb2gAYX+zj89NLueX04T2epxw7tFJKRETkIDZvvpfqmn8n2k5HTkrHC0ZiLHhmOTvqWhPXSrI82KyqIyUHd+6553LJJZcwbNgwtm3bxne/+13mz5/P4sWLsdlsVFZWUlBQ0Ok9drudnJwcKivN1XiVlZUMGzasU5/CwsLEa9nZ2Z8a94EHHuDee+9N0acSEZH+yjAMlq+4msbGDxPX7PaMHsf1t5k1NK86cTBfPGlIj+PJsUVJKRERkYNoC+4BICtzJt604RQVXZTS8ZbvauDNjdWJ9ujCdCWk5LCuuOKKxNeTJk1i8uTJjBgxgoULF3LWWWelbNy77rqLO++8M9H2+/2UlZWlbDwREekfIpGGTgkpt7sMj6f7SaTHFm7juY/3UNFkrpTK9KiG5vFISSkREZFPOPCI45Ejv0Vm5gkpH7Oh/aS9sUUZ/ODC8Uwo6Z1T/mTgGD58OHl5eWzdupWzzjqLoqIiqqurO/WJRqPU19cn6lAVFRVRVVXVqU9H+1C1qlwu16cKqouIyMAXjZrbtW02L6ec/C42WzpWa/dTCr97bzu1LeFEe0xRz1ddybFHNaVEREQOsGnzj1j4zniCQfP0O3sSjjg+nFjc4Lmle/jnqnIASrO9nDwiT08Lpcv27t1LXV0dxcXFAMyePZvGxkaWLVuW6PPWW28Rj8c58cQTE30WLVpEJBJJ9Hn99dcZM2bMQbfuiYjI8ccw4vj9q2ls/Agw62w6HFk9SkgB+INmDc3Hvzidd791BqMLlZQ6HmmllIiIyAFqa99KfO31jsTjKU3peIs21/Ctv61OtPMztAJFTC0tLWzdujXR3rFjBytXriQnJ4ecnBzuvfdeLr30UoqKiti2bRvf+ta3GDlyJPPmzQNg3LhxnHvuudx00008/vjjRCIRbrvtNq644gpKSkoAuOqqq7j33nu58cYb+fa3v83atWt55JFHePjhh/vkM4uISP+zc+ejbN/xi0Q7GYe/hKIxwtE4ALNH5Oph3HFMSSkREZEDdCxNnznjBTIyJmCxpHZRcXmjWUehNNvDWWMLuOEzw47wDjlefPzxx5xxxhmJdkcdp2uvvZbHHnuM1atX84c//IHGxkZKSkqYO3cu9913X6etdc888wy33XYbZ511FlarlUsvvZRf/vKXidczMzN57bXXWLBgAdOnTycvL48f/OAH3Hzzzb33QUVEpF9radkEgNOZh92exeCy67sdq9of5L9e2UR9ayhxLd2ltMTxTL/7IiIiQDweIhxpIBZrAcDlKkh5Qqo1FKXaHwRg9vBc7r1oYkrHk2PLnDlzMAzjkK+/+uqrR4yRk5PDs88+e9g+kydP5t133+3y/ERE5PgQiTYCMGrk9ygq+myPYj2/opy/Ld+baJdkunWwy3FOSSkRETnuRaPNLF5yNuFwbeJaMo44Ppzfv7eD+15aT0fOIcurZesiIiLSf1RVvcT2Hb+gra29zqaj59v26lvNwuanjsrjvEnFzBqW0+OYcmxTUkpERI57gcCORELKYrGTmzsHq9WT0jEXbalJJKQ8DhunjspP6XgiIiIiXVG+788EAtsB8/4ozTuqR/FaQtHEaXuzhuZw5azBPZ6jHPuUlBIRkeNepL2OVHraGE488eVeGbO5/cSZX181jfkTi7V0XURERPqVaLQZgJEj76Kw8ALcrqJux/rPF9fzxHs7Em2fCptLOyWlRETkuBWPR2lp3Uhz8zoAbCnesgdmYfOKxjZqms0CnzlepxJSIiIi0u901Nn0ZUzuUUIKYOHmmsTXmR4HJw7Xtj0xKSklIiLHrU2bf8C+fX9JtFNdR2pPfYA5P11ILL6/eLWeFIqIiEh/EY9H2bXrcYKhCoLBSgDs9vQex/W3RQB4YcEpTBqUqQdykqCklIiIHLeam9cDHUccZzCo5PKUjre5qplY3MBpt1KS6WZUYQZji1K/OktERETkaDQ2fsj2HQ8fcMWC09n9updbq5tZtLmWxoCZlMpN0wpx6UxJKREROW5Fo00ATJr4KFlZM1I7VixOdfuWvZOG5/LHG2aldDwRERGRrgqFzW12Hs8QiosuIT1jHC5X95NStzy9nK3V5jZAq0WnDcunKSklIiLHnb17n2bP3v8lGCwHwOHISul422tauPjR9/G3FzfP1g2ZiIiI9EPR9sNfMtLHM2zYbT2Ot6c+AMA54wuZMyafDLfugaQzJaVEROS4s3vP72hr2w2AzZaOy1Wc0vGW7qxPJKTsVgunj+7+E0cRERGRZGtt3caKFV9KrJSyO3w9jhmMxAhF4wD87PIp+JSQkoNQUkpERI47HUccjx/3EDk5p2K3p6V0vI46Cp+dUsJDn5+My25L6XgiIiIiXVHf8AGhcFV7y0JW5sxux2oORrj8f5awq64VMLftpTuVepCD058MERE5rhiGkUhKZWfP7lGdhCNZtquBxxZuY0u1OV5OmlMJKREREel3OrbtFRZcwJgx9+BwZHc71qo9TWyo8CfaJwzOxqri5nIISkqJiMhxIRjcx7r13yASqccw2rfS2VN78t3j72zjjQ1VifbQXG9KxxMRERHpilgsSGtgK4HADgBcrsIeJaTAXCkFMGlQJo9edQIlWe4ez1MGLiWlRETkuFBd8yqNjR8m2i5XMTZbapNE9a1hAK47eSizR+RyxpiClI4nIiIi0hUfL/s8LS3rE227vee1pJrb62jmpTsZrAdycgRKSomIyHEhEmkEID/vHErLriUjfSwWizUlY1U3B1m/z09lUxCAueMLOXlkXkrGEhEREekOw4glElIuZyEORxb5+ed0O95r6yr52p9X0haJAeikPTkqSkqJiMiAFo22Uln1DxoalgCQljaKnOzZKRsvFje44JfvUd0cSlzL9OqmTERERPqXjjpSACef/A5Wa8/uV97eVJ1ISFksMHtEbo/iyfFBSSkRERnQysufYeu2/0q0nc7UrlhqCUYTCanxxT7GFmUwrqjnS+FFREREkiEeD7N120OJOlI2m7fHCSnYv23vm/PG8KXZQ/BppZQcBSWlRERkQAuG9gGQnj6O7OzZFBVdlNLx/O3FPd0OKy9/7dSUjiUiIiLSVfUNH7Bnz+8Tbbe7NClxW0JmUqogw6WElBw1JaVERGRAi0aaASgquoghg29K2TjNwQj/XlPJzrpWQHUUREREpH+KhOsAs6RB6aAvkpNzSrdjxeMGX/vLStbva6K8sQ2ADLfSDHL09KdFREQGpF27n6CpaTn+ppVAck6TOZzH39nGo29vS7RzvM6UjiciIiLSFYZh0Nq6mZaWTQCkp4+ltPSLPYq5vbaFf63a1+nayIKMHsWU44uSUiIiMuCEw3Vs3fpAp2ueJC1NP5RddQEAJpT4GJaXxudnlKV0PBERkYFoUX0ze4JhGiJR6tuLZhsYideNA/oe+PWBDSPx/4d430H6dn7fgX0PHuMQQ/O94cVkOfrnj9k7dz7K9h0PJ9p2e2aPYza1mWULinxuHrliKsWZHgbnenscV44f/fNvi4iISA9EIg2AWbhz5Mi7cDnzyU7RiXvBSIyt1S2JJes3fmYYl5yQ2gSYiIjIQFATjvBxUysr/AEWNjSzpy1MQzTW19PqkTuGFJLVT3fwN7esA8Buz8Llyqeo8MIexdte08LKPU0A5Ge4OHG4TtuTrlNSSkREBpyOI44djlxKB12V0rGu+u0Slu9uTLSzvP30TlRERKSfuWrVdta0tB30tfPyMilyOXBaLQBYDnjNckDLYjnw+qe/7nTtgM4H63ugQ8c9RIz2RobddpBo/UMkYiaQxoy5p8cJqRdX7+O2Z1ck2pke3f9I9ygpJSIiA0Zz8zqWr7iGaLQRAEeK60gZhsHafWYCrCDDxeAcLzOH5qR0TBERkWNZRSjMfdsqaIrEWNuekJru8+KwWLi+NI88h50ZmWm4rNY+nunA0dC4lD17nqSlZT2QnPujde33P+kuO3npTr4wU2ULpHuUlBIRkQGjvuGDREIKIDvn5JSOF4zECUfjALz1jTmku/RtVURE5HD+WtnA36saEu1il4MXTxjVaRWTJNfOHb+mvuG9RNvjGdzjmB21pL586jC+fvboHseT45funkVEZMCIRsyndiXFlzNy5LdxOLJSNtbDr2/m7U3VANitFtKc/Xe5voiISH+wqTXICr95MMi5eT7OzctkVma6ElIpFomaScCysuvJyzsLr3dYt2P9bdlenvxgB7vbD3jJ0rY96SElpURE5JgXjTbT0LCE5vZl6U5XfkoTUoFwlEfe3JJoD89P0w21iIjIYSz3t3Lesv3fO0/LzuCKYhXG7g3RaDMABfnnkpU1o0exHn9nG1uqWxLtUYUZPYonoqSUiIgc8zZs/C7V1S8n2g5HdkrHawiYS9YdNguPXnUC0wandjwREZFj3abWIADpNitTM7ycl5/VtxMa4OLxKLt3/4ZgqJJQqH1lt73nCaT61jAA939uElPKMhlfnNr6nTLwKSklIiLHvEBgBwDpaWNwe8ooKJifknEisTj/t2wvGyvMbYJZXidzJxSlZCwREZGBpDkaA+DsXB+PTxjat5M5DjQ0LGbb9p8dcMWK09m9lWmGYfDT1zaxoaKZhoCZlDprXAGFPncSZirHOyWlRETkmBaPh4lEzFoJ48b9BJ9vcsrGentjNXf9fU2iXZDhStlYIiIiA4E/GmOlP5A4ac9nVw3G3hAO1wDg8QyhqPAiMjLG43TmdSvW9tpWHn17W6Kd4baT7XUmZZ4iSkqJiMgxa9Ome9hb/r+JdirrSAHsazRvqIfkevnMyDw+N21QSscTERE51l2xahvL24ubg5JSvaWjjlRGxgSGD/9aj2LVNocA82HcN+aOYXJZJk67tcdzFAElpURE5BhWU/t64uu0tFG4XMUpGysai1PfXkvqlJF5/Phzk1I2loiIyECxpb2W1EivixyHnUsLVYcxlSKRJrZvf5jGpqVAz+pIRWJxfvSv9aza2whAWY6Xy2eWJWOaIglKSomIyDErGjVrO82a+S/S08disaTmqd1T7+/gvpc2EIsbAGTq+GMREZEjMgyDllgcgL9PHUmBS98/U626+t+dVpG7XSXdjrV0Zz3/u2RXoj00N61HcxM5GCWlRETkmBMI7CAcqScWM7cDuN3FKUtIAby5sTqRkHLarJw0XEdYi4iIHEkgFsdo/zpd2/Z6RSRSD0Bm5gmUFH+hR4e/dJy0NyI/jdvPHMUZYwqSMkeRAykpJSIix5Ta2rdZtfrLna7ZbOkpHdPfZm7b+9WV0zhnfCFuh26sRUREDiUQi3PN6u1sbzNrEVkBj9XSt5M6TkTaV5Fn+qZRUnJZt2I0tIb5cEcdH2yrA2B4fjoXq46mpIiSUiIickxpadkImIkopyOHvPyzsVpTsx1gd12AfU1t1LQX+CzKdCshJSIicgQr/K2819iSaE9I92CxKCmVSnvLn2X79oeJRs3/7na7r9uxvvrnFby7pTbRztFJe5JCSkqJiMgxJRJtAmBQyRcYNeq7KRtne00LZ/38HQxj/zWfW7UwREREjiTQXkdqtNfNL8aVMTbN08czGvgqK59PbN0DCz7f5G7H2lptJrYmlPjISXPyxZOGJGGGIgenpJSIiBwTgsEKdu56nIaG94GePQE8GpurWjAMcDuslGZ7GVuUwciC1G4TFBERGQgCcTMpleu0cYJPxbF7Q8cKqfHjHiQn93Rczrwux6htCbFidyN17bWkHv/idMpyvEmdp8gnKSklIiLHhPLyZykvfzrRdru7f5rM0eioI3XyiDx+f93MlI4lIiIykHSslPJYU3cIiXQWjTYDkJY2qlsJKYAvPvEhGyubE+3sNG3bk9RTUkpERI4J4bBZ2yA393QK8s+jsPD8lIyzak8j//XKRnbXmyf7ZXq0ZU9ERORo7Q2G2d1mrrTx2JSUSqVwuJ5Vq24kFKoiFK4GwG7P6FYswzDYVmOutpo4yMeZYwpIdyldIKmnP2UiItLvxeMhItFGAHJz53T7NJmj8cyHuxKnzYB5DLKIiIgc2f/uq+Wbm/Ym2l4lpVKqoWEx/ubVibbDkYPLVdStWIFwjEjMLKT53Fdm43UqVSC9Q3/SRESkX9u48W7K9/0p0XbYM1M6XkPA3Lb3pZOGMHdCIScNz03peCIiIgPF6uY2ANxWC9kOO5/Nz+rbCQ1wHYe/ZGWdyOhRd+PxlGGzda2ofCAc5eY/LmNnXSsADpsFj04all6kpJSIiPRrNbVvJr62231kZk5LyThV/iDLdzWwq/2m7KThuZw6Kj8lY4mIiAxEbe21pL45rJgFgwv6eDYDVzweoqFxKX7/KgA87kFkZIzvVqylOxt4b2ttoj2u2IfFYknKPEWOhpJSIiLSr3UU7jxx1st4vcOxWlNT4+mq3y5hW01rop3tVS0pERGRrgi2n7rntiqpkUrbtj/M7t2/TbTtjqxux+o42GXiIB/3fnYC44pTe7qxyCcpKSUiIv2SYcSJxyPE4+ZWAJerIGUJqXjcYHutmZCaWpbF8Lw0ZgzNSclYIiIiA1UwbtYk0ql7qRVo3QaAxz0Yt2cQJcXdq7UZjxs0tSelijM9TB+iex/pfUpKiYhIv+P3r2bFymsSq6QAbLb0lI3XHIpimPfR/OUrJ+Gyq5aCiIhIVwXbt++5VeA8pTpqSY0c+W0KCs7tVowHXt7A/yzanmj73FohLn1DSSkREel36hsWd0pIZWedlJJVUk2BCFf+dgl7GwIAeBw2JaRERES6aGG9n/UtQXYFw4C276VKTc1r7Nz1G1paNgBmrc3uenltReJrqwVmj9DBLtI3lJQSEZF+JxoxnwAOGnQ1I4b/vx7ddB3ORzvrWV/hT7SnlmWlZBwREZGBqjoU4apV24kfcM2nBzwpsXv37/H7V7S3rHi9Q7sdq6HV3Lb3woJTGFmQTrpLqQHpG/qTJyIi/UY02kxDwxKaW9YD4HTm43Bkpmy8hoD5RHfW0Bzuv2QiQ3PTUjaWiIjIQFQbiRLHXB11QX4WpW4nJ2Wmbsv98SwaNR+kDR9+JwX583C7S7oc4/svrOVvy/cSCMcAGJrrVUJK+pT+9ImISL+xfsN3qKl5JdFOVULKH4zwwMsbWbG7AYCSLDcjCzJSMpaIiMhAFmivI1XgdPDr8UP6eDYDWzTWAkBO9imkpY3sVoz/W7aXtoiZkBpdmK5aUtLnlJQSEZF+IxAwT5NJTxuD21NGQf68lIzz2roq/vTR7kR7sFZIiYiIdEtbe1LKq+LmKWEYMfbufZpQuJpwuA4Au717K9EisXgiIfXi7Z9hTFEGVtX/kj6mpJSIiPQbkfZaUuPHP0RGxoSUjdPQam7bmzY4i2tmD2Hu+KKUjSUiIjKQtcXNpJTHqqRUKtTXv8/mLT864IoFhyO7W7FagtHE12OKMnAokSj9gJJSIiLS57Zt+yl7y59OnLhnt6eujhSY2/cAJg/K5HPTSlM6loiIyEAUMwz+c9s+ljS2AloplSqhUDUAbncZ+fln48uYjNPZtZPyPt5Zz63PLMffZt7/eBw2JaSk31BSSkRE+ty+ir8lElJu9yBcroKUjHPX39fwz5XlhKLmU12fR3UUREREumNZUyuP7alJtItd+p6aCh3FzTMzpzJ61N3divHGhmpqmkOJ9oyh3VtpJZIKSkqJiEifi7UX7pw27WkyfSdgtTqTPoZhGPz14z1E4wYAFgtMLctK+jgiIiLHg6aoWZuo1O3gziFFzMtL7Srn402TfxU7dz5Ka+sWAOx2X/djtZllC278zDCuO3kog7I8SZmjSDIoKSUiIn3KMGLEYgHALHBus7lSMk5zKJpISL1x52lke53kpqdmLBERkYGurf17aqnLyVUlXdtOJke2e/fvqK19M9H2eAZ3OUZ1c5C/fryXj3eapw2XZXsoy/EmbY4iyaCklIiI9IlQqJotWx8gEq5PXLPbk38KnmEYfPkPH/Pe1loAvE4bIwsykj6OiIjI8aTj1D2PahOlRDTSCMCgQVeTm/MZcnNP73KMxxdu5/fv70i0C3zuZE1PJGmUlBIRkT5RVfUiVVX/TLRdzkKs1uSvXGoIRHhzY3WifeKwnKSPISIicrzpOHVPBc6TyzAM4vEwkWgjAHm5Z5CXd0a3YlU1BwHz3ue00fmcNS41NTtFekJJKRER6RPhiLlCKifnVIoKLyQz84SUjNPUftJMmtPGq3ecRkmm6iiIiIh0V2Mkyp0b97C6xdx677EqKZVMq1bdQF39okTbbu/+6u7mYBSAz88o47LpOm1Y+iclpUREpFcZhkFb206Cwb0AZPqmUlx8adLHicTiPL+8nPUV5qk1WV4npdmqoyAiItITb9c383JtU6I9xJP8w0mOV/F4pFNCyuUqIj19TJfjfLSjnrc3VbOlyjzZOMOtH/ul/+qTtPYDDzzAzJkzycjIoKCggIsvvphNmzZ16jNnzhwsFkunX7fcckunPrt37+b888/H6/VSUFDAN7/5TaLRaKc+Cxcu5IQTTsDlcjFy5EieeuqpVH88ERE5jI0bv8viJWdTVfUvAOyO1JzW8/r6Kr71t9U89cFOAPIyVNRcRESkp1rba0lNy/Dy5ynD+dqQwj6e0cARjTYnvj7t1OWccvKibq2Uuv1Py3ls4TYqmszte/m6B5J+rE9Spu+88w4LFixg5syZRKNRvvvd7zJ37lzWr19PWtr+Irc33XQTP/rRjxJtr3f/E+5YLMb5559PUVERH3zwARUVFVxzzTU4HA7uv/9+AHbs2MH555/PLbfcwjPPPMObb77Jl7/8ZYqLi5k3b17vfWAREUlo8q8EwGZLx+XKJzen64U7j8a+xjYAhuR6OWlYLp+foWXrIiIiPdVR4HyIx8mcHF8fz2bgMIwYkfbSBjabF0c3H9oZhkF1cwiAq08czKiCdKaVZSVrmiJJ1ydJqVdeeaVT+6mnnqKgoIBly5Zx2mmnJa57vV6KiooOGuO1115j/fr1vPHGGxQWFjJ16lTuu+8+vv3tb3PPPffgdDp5/PHHGTZsGD/72c8AGDduHO+99x4PP/ywklIiIn0kGjW3050w7Wl8vkkpG8ffXkfh1FF5/OfFqRtHRETkeBKM69S9ZGtr28PSjz9HJNIAgN3W/TpSgXAMwzC/vvv88XictmRMUSRl+sW/JE1N5p7knJzOJyI988wz5OXlMXHiRO666y4CgUDitcWLFzNp0iQKC/cvF503bx5+v59169Yl+px99tmdYs6bN4/FixcfdB6hUAi/39/pl4iIJMf27Y+wctWNhMO1AN1+AngkL67ex9f+vIKXVu8DwOd2pGQcERGR41GgfaWUWwXOk6ax8eNEQgogN7frq8hjcYOPdtTz2vpKAGxWC26Hfo+k/+vzimfxeJyvf/3rnHLKKUycODFx/aqrrmLIkCGUlJSwevVqvv3tb7Np0yb+/ve/A1BZWdkpIQUk2pWVlYft4/f7aWtrw+PpfALTAw88wL333pv0zygicrwLBvexY+cvE22bzYvTmZf0cQzD4Dt/W0NLaH99wZIsnbYnIiLSU+ta2nhibw3LmnTqXrJFo+Yijfz8eYwf9xB2e9oR3vFpf166m+89vzbRznDbsVgsSZujSKr0eVJqwYIFrF27lvfee6/T9Ztvvjnx9aRJkyguLuass85i27ZtjBgxIiVzueuuu7jzzjsTbb/fT1lZWUrGEhE5nkQijQDY7T5GjfoeGekTsNmSfxJeWySWSEh9Z/5YctKcfHZKSdLHERERGciqQxGerqgj2L4qCuCXu6s79Sl09fmPkse8SKSBbdt/QVPjUgCcztxuJaQAtla3AFCQ4aIo083npg1K2jxFUqlP/yW57bbbePHFF1m0aBGlpYcvQHviiScCsHXrVkaMGEFRUREfffRRpz5VVVUAiTpURUVFiWsH9vH5fJ9aJQXgcrlwuXQygYhIsnXUkXI6CygpviwlY7y0uoJFm2vMcWxWvnLacD0hFBER6YKNrW28W9/CPdvKiRkH73NZYTYnZaXzucKsXp3bQFRV9RLl5U8n2h539w9laWqLAHD9KcO4dU5qFnGIpEKfJKUMw+D222/n+eefZ+HChQwbNuyI71m5ciUAxcXFAMyePZsf//jHVFdXU1BQAMDrr7+Oz+dj/PjxiT4vv/xypzivv/46s2fPTuKnERGRQ/E3r2X16q8QDpunyTi6cazx0WgNRfnan1cQjZt30MVZbiWkREREuuja1TvYFQwn2sM9Ls7O3X/C3ug0N18sye2LqQ1I4XAdAFmZMykuuYzCgvO6HGPxtjrue3E9u+pazVhe1dKUY0ufJKUWLFjAs88+yz/+8Q8yMjISNaAyMzPxeDxs27aNZ599lvPOO4/c3FxWr17NHXfcwWmnncbkyZMBmDt3LuPHj+dLX/oSDz74IJWVldx9990sWLAgsdrplltu4de//jXf+ta3uOGGG3jrrbd47rnneOmll/riY4uIHHfq6t4hFKpMtDOzpqdknIZAmGjcwG61cOucEZw1rvDIbxIREZGEmGGwuz0hdX5+JkM9Lu4aVozdqoc8qdKxkjwza3q3V5L/ddke1lfsP6BrTFFqHgCKpEqfJKUee+wxAObMmdPp+pNPPsl1112H0+nkjTfe4Be/+AWtra2UlZVx6aWXcvfddyf62mw2XnzxRW699VZmz55NWloa1157LT/60Y8SfYYNG8ZLL73EHXfcwSOPPEJpaSlPPPEE8+bN65XPKSJyvItGzMKdg0quZOjQBbhcRSkZx99m1pHK8jr5f3PHpGQMERGRgcgwDP5R3cjWQIiOHXuPjx+KQ8molNm06R5qal8n0n6fZLf7jvCOQ/O3b9v7yunDuWLmYIblda8mlUhf6bPte4dTVlbGO++8c8Q4Q4YM+dT2vE+aM2cOK1as6NL8RESkZ0KhGvbs/QN19YsAcLtLcbuLkz7Osl0N/Oy1TdS1mE92fR4VXRUREemKlc1t3LJ+V6Kd47ApIZVC8XiYveX/2+laRvq4LscJR+PsqmulujkEwJTSLCWk5Jiku3cREUm6PXv/wK5djyXaLndqVkj97+KdfLCtLtEerpsxERGRLtnTvmWvwGlnTk4G5+dn9e2EBriOLXsAM2c8j8ORg8fT9QLnX/jNYlbsbky0M9z60V6OTfqTKyIiSRcOm6fgZWfPJi/vLAry56dknLpW80b6hlOGcfKIXGYNz0nJOCIiIgNNczTGyzVNvNPQDMAMXxq/HDekj2c1sAWD+/D71wBgt2fg803uVhzDMFi919z6l+V1MCTHy7TB2Umbp0hvUlJKRESSLho1b3AL8udTWnp10uN/sLWW37y7nZV7GgE4dVQeZ4wtSPo4IiIiA9WvdlXxy93ViXaeUz8aplJz8zo+WvrZRLsndaQC4Rix9hOHP/jOmXj1eyfHMP3pFRGRpNm+/Rf4m9fg968GzKeAqfDfC7fx3tbaRHuotu2JiIh0yc72bXuT0j2MSXNzc1l+H89oYGtp2QiA1erC6cyjtPRL3Yqzem8jG9pP27NZLXgctqTNUaQvKCklIiJJ0dZWzo6dv+p0zeMpS8lY9e3b9m6dM4JzxheqsKeIiMhRCsfjbAuE2NeelLqlLJ9Li7T9PdWi0RYA8vLOYtLEXx2h98Gt3+fns79+P9HO8jiwWFSUXo5tSkqJiEhSRCJmwXG7PYtRo+7C5SrC55ua1DEC4Sh76tsSSam54wtVQ0FERKQLLl2xjaX+1kQ7y6EfCVMtHo8QiZo1oOy29G7H2V5rJrYy3HZGF2ZwyQmDkjI/kb6kf4FERKTHwuF6WgPbAXC5CigpvizpY0Ricc7+2TvsawomrmV6HEkfR0REZKCKGwbLm82EVI7DxmC3i1mZWm2cSnvLn2Xz5nswjBjQs9IGjYEIACcNz+W318xIyvxE+pqSUiIi0iN1dYtYuepGIA6Aw56ZmnFawomEVF66k4mDMhmSqxtpERGRo/FRYwvvN7YQM+tjs+rkiTis/WDrVzwOFSsgHDh0H4cXSqf33pySqK5uYSIhZbE4yc4+qcsx3t1Sw73/Wk9NcwjQQzkZWJSUEhGRHmnyrwTiWCx2bDYvhYUXpmSc5qD5dDDb6+Dju89JyRgiIiIDUSge54rV2wnEzAdIeQ573yekPvwN7F4MW9+EUNPh++aPhQUf9s68kqzjROLx4x6koOACbDZXl2P8bdletla3JNoTSrp/cp9If6OklIiI9EjHzVZZ2fWMGvmdpMf3ByO8tq4qcTPm09NBERGRLmmMxAjE4liAy4qyuSA/q+8ms+ovsO1NWP2XT7+WP/bg78keZq6oikcPuGh07mN8on3Y13vy3q69brQ1gGHgdOZ3KyEF0NhmPpj76pkjuWBKCaMKul+XSqS/UVJKRES6xTDitAa2EQyWAz2rkXA4D7++mSff35loZ3udKRlHRERkoGqMmtvHsuw2fjVuSN9NpG4bPH9z52vzHwRPDnuHnMjS6mWUt5SzducbxNqaaIq2Em6NYavdQu49J+MIWw8a9pMpIQ6yCOxTfY4ijsX4dKCjifNJMVsJzy28Fyz75+9z+rho5EWd+o0/7UxySkoT7e01LSzdWc/OWrMO2PiSTEYXpuZ+S6SvKCklIiLdsn7Dt6isfD7RTlVSaledWWNi4iAfZdlerj6xD2+mRUREjiGv1TbxzU17aGnftpfpsPXNRKJh2PIq7F0KQH16Ac8Mm0xdZgkvb32CSCxCdEUs0T09YGfCjgzG1WTjCwzUFdIhPlzzXKcrJaPHdUpKfel3H1He2JZo56brwZwMPEpKiYhItzQ3rwXAbs/E5SokN+f0pMZvCUVZsq2OXXXm08HbzxzFvAlFSR1DRERkIPtndSNV4f1b3qb7+uaAkC0f/Iy9Sx7hsaxMtg0pI2y1QMtm81c7V8jKSetzKAwaeBs+vT3NmebGW5hPRnHB/ouW/SuZLAf87ycufvp6+3sPXlXL8oluh6i99anr+9uhYDlNTcuxO3xkpE/AZk/HZvdy4IhWixWfs3NtKF/+/s8WixuJhNTpo/MZnp/GCYOzDz4XkWOYklIiItItHbWkpk39Az7fpKTH//4La3l+RXminZump4NyfFm0aBEPPfQQy5Yto6Kigueff56LL74YgEgkwt13383LL7/M9u3byczM5Oyzz+YnP/kJJSUliRhDhw5l165dneI+8MADfOc7++u/rV69mgULFrB06VLy8/O5/fbb+da3vtUrn1FEUsvfvm3vO8OKuKggmyGe3v9eurd5L5/f8Sdihfmfeu30QBsjW2O4Vg8nEPJ86vXh02cxfNoMJp05D6utj1Z5dYFhGGzafA91tasIhqrIz5/G5Ek/61asluD+ZOJvr5mB037wrYsixzolpUREpEtisQDRWIBo1Cw8brenptjm9hoz/qiCdCaXZjG1LCsl44j0V62trUyZMoUbbriBSy65pNNrgUCA5cuX8/3vf58pU6bQ0NDA1772NT772c/y8ccfd+r7ox/9iJtuuinRzsjYv9XW7/czd+5czj77bB5//HHWrFnDDTfcQFZWFjff/Im6LyJyzGiOxninvpkdbSEARnjdDPN2r8h2d/1h3R94fOVjhGMhYhhkxOIMc+cyvrGKG+tqqG7MZmH5aCKGjcAB7xs9+1RGTJ9FRk4uZRMm9+qceyoUqqC8/OlEOz1tVJdjxOIGT76/I3HAi9thVUJKBjQlpURE5Kg1t2zk448vJR4PJq6lqpZUx0kz918yiZlDc1Iyhkh/Nn/+fObPn3/Q1zIzM3n99dc7Xfv1r3/NrFmz2L17N4MHD05cz8jIoKjo4Ftfn3nmGcLhML///e9xOp1MmDCBlStX8vOf/1xJKZFj2A+2lvOnivpEO7sPakn9Y9s/aIm2JtrXN/m5yTOFzVvL2REaxObmPCLG/nnNuugypl/wOby+zF6fa7JEIo0AOBzZTJr4azIzp3c5xoc76vjPlzYk2oU+d7KmJ9IvKSklIiJHralp+QEJKQvZ2SfhcCQvYWQYBt/52xo+2lnP3gazjkKWZ6AWOBVJrqamJiwWC1lZWZ2u/+QnP+G+++5j8ODBXHXVVdxxxx3Y7eYt4OLFiznttNNwOvdv6Zk3bx7/9V//RUNDA9nZql8icizaETBXSI1NczPN5+XEzNSsav4kwzB4cOmDrKldw47GHQDc/2YrYz1R0jINlu9YwdtV4zq9Z0ZjkKKMLMZcdV2vzDFVIpEmAgHzMzscuWRnn9StODXN5u9dabaHC6eUcPa4wqTNUaQ/UlJKRESOSjweIhjcB0BJyRcYN/b+pI9R2xLmLx/vSbQzXHZKsj5dY0JEOgsGg3z729/myiuvxOfbXzj3q1/9KieccAI5OTl88MEH3HXXXVRUVPDzn/8cgMrKSoYNG9YpVmFhYeK1gyWlQqEQoVAo0fb7/an4SCLSAx21pH44ooQzcn1H6J08+1r38fSG/dvXPEGD0hUu/Ce6+eeu4Z36Dq5twhOJkl/dSCSvlRe2vkB5SzlxI37Q2DdNugm3vX+uGqqv/4CVq67DMMz/7o4erCL3t9eSmlDi49vnjk3K/ET6MyWlRETkiMLhOpZ8OI9IpAEgqaujDtTUvmUvw2XnyetnMjQvjTSXvlWJHE4kEuHyyy/HMAwee+yxTq/deeedia8nT56M0+nkK1/5Cg888AAuV/fqyzzwwAPce++9PZqziKTGksYWyoPhxIl7PnvvbdtrjbSyduHfAMhsMbjplTgjMiK0zvSwK2ImuL0eN+nZeZROn0CdL8Db+5bwm8ZmYrZmdr//fQAscYOR+8D+idzUFwITiTnSwDDbkYhBOBTH7zeor49jGAYtLQaxmPHpyR3sknGQi4nXDvPmg7ytrW0PbW3XABYsFivNnsHUvPFWp/5Wnw+b13tAmM6B6lvClDe2sdJnfvB0l1aKy/FBd/oiInJELS0bEwkpmy2d3JxTkz5GRVMba8ubAMhKczBDdaREjqgjIbVr1y7eeuutTqukDubEE08kGo2yc+dOxowZQ1FREVVVVZ36dLQPVYfqrrvu6pTs8vv9lJWV9fCTiEhPrW0OcPGKrZ2uZfVSLamllUu5+fWbicbNZFi+H2bvivHRtBKqWvevGpp8+UW4ThjH9a9eDw2AB8bVwOTNcf7zGQtWw4IzFEv0j9jTCDvTCTkzWfnOXwm6smjOGEzM6qTZN7RXPtvRKW3/1a7xYH387b8OzQVsbQqBHQp9vVuYXqSvKCklIiJHFImaN1GZmTOYMf0vSY//wbZarvrth4l2hp4OihxRR0Jqy5YtvP322+Tm5h7xPStXrsRqtVJQUADA7Nmz+d73vkckEsHhMP/evf7664wZM+aQ9aRcLle3V1mJSOrsaAsDkGW3MSXDy/h0N8M9vfN39Z3nHiaaaSak7FGDc5pCpM2N0FBubsEfM7aMeJ6PBZUPMvlvY/l8w4mU1cQY3ZpO9ntvYFistKSXUpcznqA7D79vCHG7hzbXkevaWYwojniI3NBu7EYET7T5gBeP9ObDdLAc9MtO4vEQsVgAw4hgGHHs9ozOpxIf8EbvzJm4x4w96GsAP3ttE8FInLOmF1NUlM4VM5Xsl+ODklIiInJI8XiUpqblNDUtA8BhT01dio4VUi67lSyvgytn6UZMpKWlha1b96962LFjBytXriQnJ4fi4mIuu+wyli9fzosvvkgsFqOyshKAnJwcnE4nixcv5sMPP+SMM84gIyODxYsXc8cdd/DFL34xkXC66qqruPfee7nxxhv59re/zdq1a3nkkUd4+OGH++Qzi0j3ddSRmpWZxh8nDz9C7+Sq3b4OpsHFH8S5cpWFN4aO5M8HnKy3yuflC/vm8s/mmcSa9uJf+Qz12WNpdcZYOefRI8Z3ee1k5LrJKU7DarMwaEw2Lo+dQWOycbo7/0jbsS2vYwueccD1/V93vNa5Lwe83vGa1WLBfYgVZ0s/vgy/f0WiPWnioxQUnHvEz3OgvQ0Blu1q4D1bGGzw+IXjyEtX4l+OH0pKiYjIIe3Z83u2bvuvRNvuSE1SqjFg1pK6ctZg7vnshJSMIXKs+fjjjznjjDMS7Y4tc9deey333HMP//znPwGYOnVqp/e9/fbbzJkzB5fLxZ///GfuueceQqEQw4YN44477ui09S4zM5PXXnuNBQsWMH36dPLy8vjBD37AzTffnPoPKCJJ0RaL89+7q1nUYK4Q6s06Uk+s+g2Prf4fIlNjgIXBX7iG9NHvEfnIwEqcNHuYwWkwoXwu8bZqmhf+J1G7h9UTb8GfefDE2VpXlBiwwxEnZDGothtELUBrC8bWWgCMjeYpdwafTigl2/mTinn06hMO+lpHaYNhQ28nM3MaOTmf6XL8K3+7hD315onDVotOHZbjj5JSIiJySK2BbQC4XEW43aUMKrkyqfGfX7GXX725NXH8cbbXeYR3iBw/5syZc4RCvIf/SeyEE05gyZIlRxxn8uTJvPvuu12en4j0D/+ubeKhnZWJdlEvbYGP1tfzrzf+m3BeDCwWnCHwLqnkrc1hwEGBJ8oFpQU0V47G/+87iVusfDTz+7R5CxIxWiwGVbY4K11Rym1xQhY+vVfO4KDFxfuDaHt5g4KC+aSnj+n6+2PxREJq1rAc5o4vxG6zJnWOIv2dklIiInJIHTdbQ4cuoHTQVUmP/8yS3WyvbU20xxV3/whlERGR41FN2FxtPC7NzSWF2VxZfOT6cskQXLuWgDUKWPjm/8UYV5DOopYtgJkUy6CUuo2ltNWsYe2EL1ObN6XT+/fZ4rzhayDN0sZ4eyUnWKKJ1/bnpYyDXOv82tyzzmbKtGlYLPv7WNprRe1vd8TY32n/tUO/x4IF6ydyRIYRY8XKa/H7VxOLmfcw9m6WN2g9oKj70zeeiNOuhJQcf5SUEhGRT6mrW0R19b/x+1cDYLenJlnU2GbeSN930QROGZnH8Pz0I7xDREREDtRRS2pmZhq3DynstXFjjY20tZc+OvE3fyH80HXQAvmuFmbnlVO5vIXa5t00ZQ7vlJBa74iyK2M3edZW5tsbDggYxxoOgmFga2vGEotiC7VhDQYOO4/802eRn9F7NZja2vbQ0LA40Xa7y3A687oUIxKLs2R7XWKVlMtuVUJKjltKSomIyKds3Pg9gqF9ibbbVZzU+GvLm1i3r4lqfxCAaYOzlZASERHpgkX1zbxR52dJUwvQe7WkYo2N/OHnN7IxsoeWUeAN2tj+xrs0N5gPsIJOHy/4ZjHGE2LP2IsS76uyhlmd5mekZQsnBf3Y2mqxxKJY21rN/49FO41jsVix2uyABYvVcsgj8DpODu0t0Zj539vpzGPG9L/ichVitXZtDk8v2cW9/1qfaGeqjpQcx5SUEhGRTwlHzEKiQwZ/hbS0UWRmTk9a7EA4yucfX0xbZP+S9dx01ZISERHpilvX76Iusj+RU+jsncTG7oUv8/CIze0tC5M3ZrJ+18uA+XDJaM6hZGMJNQXmA60gMZqtFlrj1Xxmz1+xfKIeXtHI0aRn51A8aixOj5chk6ficLpIz+mdbYhdFY2aBeXt9iw8nsHdirG9xtz2NyjLw6AsD5ecMChp8xM51igpJSIincRiIeLxMABDh96a9K17Nc0h2iIx7FYLp4/OZ0pZFsWZnqSOISIiMpBF40YiIXVzaT75TjtXFOf0ytgNTWZRdVfMyhXZ88hq/JgmYEhaA1nWGButX6HRmpbov9XaTDy4iBGt27G014GadNY8ysZNZPCkqaRlZffKvHuqru4dtm1/OHHint3e/RXe/qBZvuD6U4by5VMPfgqhyPFCSSkREQHMZNTadV8lENjZfsWKzZZ2uLd0S1N7Han8DBe/u25m0uOLiIgMdM2x/auN7x5RjPOT1bhTwIjFCK5bR+PubTAYsmJuojEX3rBBExD2jqQqPhVLPA17pIXNRj3lHi9jGl/EF63HnZHNiOkzyC4uYdZFlyUKix8r9u59mubmNYl2mndEl2Nsrmrm8Xe2sWR7HQA+bdsTUVJKRERMTf7l1Na+kWinpY3AYkneTe7uugC3/2k5FU1mHSmfWzdiIiIiXRE3DH67t4bNreb3UrfV0isJKYDqh35K/VNPUTvEAlfZOHF5Lo76FVRgPsCqbTsdm2MoAPZgLf8elEdR2y5mROsBmDZvPid/Pvkn+faWSLQJgGFDv0p29olkZk7rcozfLNrO35eXJ9qlWVopLqKklIhIL4nGDcKGwc62EHuDYQzAMMDAIJ74uuOX0bltGBhwQD/jgNc+/Z445o2r8Yn+8YPE7OjT3BqjkktxOPPJyTkdp7OARTsqMAywWuCbw3pW7PyNDVWs2tuUaI8v6d7xySIiIserJY2t/HDr/oNIequOFEDFrvX89gIr5UUOMGJkNexf6eS1GMRsRdgjLeTXriIQ2Ml/uAxCrdUMnz6LOdd8mazC5B6a0lsMw8AwIkSjfgCysmaQnX1St2I1tJrlES6aWsK5E4qYPaJ/1s0S6U1KSomIpFAgFuejphbWNLfx4+0VfT2dI0gHy1UQAaoAGhOv2JKQlOrYtnfuhCJunTOCCUpKiYiIdEl12PxeWup28LmCbOblZfba2AuzKlg01grEsEctWA0zKXXb6A9Ys/UMPrS6sbXuYlNkD5uLi5jYugqAklFjyS4q6bV5JpNhGKxYeQ0NDR8krvWk1mZzyKwDNnd8EfMnHZtJOpFkU1JKRCQF/l7VwLsNzfypov5Tr9ksMMTtIsthw4J5wrHVYkl8DWCxgAVL+2u0v9bep72TFUt7PxLXO/pZLebr1gNe7xiDA/pasdDaspGWlg1ADIwYaZ4ycnJOaY/ZPoce/LeIxuJUNAXZ19gGwLD8NKaUZfUgooiIyPHJHzVrSU1M9/C9Eb2b6GnG3DI4q2UEkyoDxAALBr+vfpp4ptvsY7fRVJbOuMY1TDv3QkrHTWDYCcdu/chYrLVTQsrtHoS3i7WkDMPgj4t3sb2mhW3VLQCku/VjuEgH/W0QEUmyQCzOVzfsInrAicd5DjsjvS5+MKKECRkeXL1U/+FoLF7yZQLGtkR7dOkPKCsrS1r8Sx77gNUHbNvL0I2YiIhIl1SEwjyzr57FjWZSI8Nu67Wxgxs2ECkvJxAJMGJvGuNXR4nhBMCCnbjFTEhhxAmHK8kPbgZgwulnUTh8ZK/NMxU6tuxZLA5O/cxH2GxerNau3cdsrmrhh/9c1+laoc+VtDmKHOv0k4GISJKs9Ae4b9s+/NEYUQO8Nit3DClkhNfFeflZfT29Q+q44Zoy+QkyMsbjchUmLXYwEkskpDwOG9leB3NGFyQtvoiIyPHgl7uqebK8NtEu6KVaUqHtO9jxuUsACMy3kuM3ayDZrHG81jCW8GjCQNmuV0ir+Yi/jJ/F5aedR07JIAqGdf10uv6kra2c+vpFgLllz+HoXtmB6mZzhVleuourZpUxJDeNsUUqYSDSQUkpEZEkeaq8lvfbn2ACnJDh5fYhyUvwJJvfv4bW1q1EImbSKC1tdFITUm3hGKv3NgJgt1pY/6N5x9zxzyIiIv1BRy2p07LTme5L4/pBeb0ybmTPbl44ycLfPmMjbIeTV5srvWfn7uLEvL38af0F1AOLi0fRWBRkVGwXZ3/5wV6ZWypFo80s+XAe8bhZesDh6H7tro6amsPz07hz7pikzE9kIFFSSkSkh1qjMf64r44Pm8yE1M2l+XwmO51ZmWl9PLNDC4fr+HjZZRhGNHGtu08ADxo/GufMny2kosl8OpjldSohJSIi0k0dtaS+UJTDpUU5vTZuPBBg8TgrcSyMKPeS22yu0KqOjuOlmitpSRsMgCNay8jQdrKKBkbx7mBwH/F4GxaLnfT0sZQO+lKXY3ywtZav/nlFIinlc/feSYkixxIlpUREeugvlfXcu23/8czn5mVycnZ6H87oyILBfRhGFKvVRVbWLHKyZ/foNJlPqvIHD0hIObhqVvJqVImIiBwvNrS08UFjCzvaQkDv1pICMykVdMKUrZlM3LF/tdCO8NnYnKOhvTSSK9vDlMnnM+akU3p1fqkSiTQC4PGUMWvmP7oV4/UNVdS2hBPtmUOzkzE1kQFHSSkRkR4qD5lPwCale7ikMJuTsvrvCqkOHXWkPJ4hTJv6VNLjdzwVLMhw8dH3zk56fBERkePBF1dvT9xnAOQ6eufHNyMWo23FCtrWriWYC2lt5ri5rgC5thi7HMOwxUKU7n6VaoeTEbfO5ezzj/3v962t21i3/k5CoSoA7Pbub9trDpqr0W85fQQ3nDKUAp87KXMUGWiUlBIR6aatgSAr/QFW+gMAnJefya2D+3cR73g8zMaN38PfvAYAuz25hTar/UFeWFnO9ppWAHweLVUXERHpjrhhJBJS8/MyGel1Mc3n7ZWx6574HTUPPwxA8A4bzqhZS2pKTiU5ER+7Yw6s0QbeKGqj2FLLJdMn9Mq8Uq2m5jWam9cm2hnp47oVJxKLJx7QlWZ7lJASOQwlpUREuiEaN7hw2RYa2ms8AOQ5+/8/qY1Ny6io/Hui7fUOS2r8n7++mT8v3ZNo56U7kxpfRETkeNEaiye+fmz8ENw2a6+NHd6xgzdmeFl0YjZt7iocUbMupN0fo9GfCXlAPMLnTylm1nV34XC6em1uqRSNNgNQWHABgwd/mYyM8V2OcfcLa3h6ye5EO8Pd/+8PRfqS/oaIiHSDPxZLJKROz84gz2nnvLysvp3UUYhEGgBISxvFiOH/j+zsk5Mav7zRPKVm9vBchuWn8YUZqiUlIiLSVTHDoCZsbv9yWCy4rL17WEg8EODvJ1n4zHIbJ7UOSVxf1nwlhtc8QS5uRCmeds6ASUgBRGPmSm+vdxg+36RuxXh1XVXi6wy3nWllqiUlcjhKSomIdENze0LKY7Xwl6kj+ng2RxaPR2nyr6CpaTkAHs9g8vPPSVr85mCExdvq2F1vbmW8+bThnDG2f29lFBER6Y8qQmHOWrqJ+oh5r5Fht/baCbaRYJBYOEg8vJ20VitZrfu34dssVlqyZ2CxmlsI97o9lE6c1ivzSrXa2rdoaPyQxsYPAbDZu39gjb99294rXz+V4XnpOO29t8JN5FikpJSISBcFY3Eq2ms8pPfyKTjdtXv3E2zb/lCi7ehB4c6D+c7f1/DS6opEOydN2/ZERES6Y4U/kEhIAZyZk9z6jx2i8Sgvbn+R2kAtBMOE3nyH4MrWxOtnNJgPl0q8TVw0aANvVl7PbqsXd9Nm/KeN5vyzTsfp6Z0aV6kUj4dYs3YB8fj+k/Kczrwux9la3cy2mlZCUXPbZUmWRwkpkaOgpJSISBdsaGnj/OVbCLTXeciwHRtJqUBgGwAuVxFudwklg65Iavwd7YXNxxRmMG1wFhMHJTfpJSIicrxobk9qnJadzlOThuNNUS2pd/a+w/ff/z5nLc2nrObgyaW4xaDE10aDLY/K+CAAnMFq7rjkVCjseuKmP4pEmtoTUhYGD/4yTkcOBfnndilGeWMbcx9eRNww2zarhfRjoNaoSH+gvykiIl2wwh9IJKQA5ucfG8mXjsKdQ4cuoHTQVUmP7w+aK8ceuHQSJwxW7QQREZHuaomZq6Qy7faUJaQA9jbvBQNKazyJa3FHlIYpEWIOBxGjFF9bDv737KwN5eEszCDsBMMIg+PYXyEF5qnEgcBOAOz2TEaN/E634uysbSVugNthZUxhBnMnFGHt5TpgIscqJaVERLogEDcTUhfmZ/H4hCHYeqnGQ3dFIk0Eg/sIhasBsNu6XyPhU7FjcX6zaDtV/iA1zSEAfG7HEd4lIiIiB7MvGObpijoWN7YAkJ6irV+RWIS73ruL5VXLcUQtWDDvZRaM/oBI/Cya6r4KwPfLfk3R3onYo2G2jvps4v0xdxTSj/26kbFYkCVLziEY2geAw9H9bZKNAfPh3ORBWTx3y+ykzE/keKGklIhIF7S2L6lPt1v7fUIqGm3mg8WnJ1ZJAdjtGUmL/86mGh56dVOibbNayEtXLSkREZHueGRXFX/YV5do5ztS86Pah4v+zKu7XiWz1U5e0Dw5z0oclzVG887tBLY/SNM3r2BT9R4mGNNo8+QC0ESIakuYM2+9CpxpKZlbb2oL7kkkpCwWB4UFF3Q5Rn1rmOuf/IgdtWYZg0yvHs6JdJWSUiIiXdCxUspr7f+FKwOBne0JKStOZx5u9yCysmYkLX5VcxCAEflpnD+5hMmDMsnyKiklIiLSHdXhKACnZ2cwPdPL9YNSU7Npx+9+zeyiHMbs2f+gymk12Lcki+a9LUSNbTyz5X3mts7FsNYStRcD0OTYzdk3Xci5E4pSMq/eFo36AXC7yzjl5IXdivHBtlpW7W1KtCeWHBtlHUT6EyWlRESOwgp/gN/urWGlPwCQ0hoPyRKJmjdJ6WmjOPHEl5MXNxZnxe5GVu8x458wOJs7zxmdtPgiIiLHo+aoWUvqiuIcPleY/PqMgUiAVVUr2JDRQn6jmTxxWQ1slghjinKoOesJVldsZVNTC4PKy7AZNhzhCI2Z5qqoUZZdXDC5JOnz6m2GYdDWtpPWls1Az1aRN7WZ2/ZmD8/lvosnMCI/eWUSRI4XSkqJiByFX+6q4t+1+5+EFbv67/LsWKyN1Wtu3X+z5chKavyHXt3EbxZtT7Sz07Q6SkREpLt2tYVY2tTKnmAYgPQUPPgyDINv/PV6PgxsYHBpBjPXm6cHXz5kBQXuVpYWP8H7H9uAMXwy7RRp/zY/IqeOgWDbtofYtft/Eu3uJKVaQlHe2ljNB9vM/yaDsj2MLEheiQSR44mSUiIiR6Exai6pv7o4h5Oz0jk/P6tvJ3QYjU3LqK9/N9FOT0/uKqbNVWaNqpJMNyVZHi6eOiip8UVERI4nl63clkhIAWSnoJZUcNUqNlevY2pFDuN37i/o7c4eQaBgGHsqS4AQcXsDTfYwRY27GLZzf93IDRn5TJzVfJDIxx6/fxUANls6NpuX4uJLuhzjZ69t4sn3dybaOXpAJ9JtSkqJiByF1phZS+rcvEzOyevf9QI6aiSkp49j7JgfkZExOanxO5aq//CzE5g3QOpKiIiI9IVo3EgkpE7JSmek18U0nzepY7RF21i2/X38XkgPmD/+FbgDjPVV8r7vc2z/8CwwgmCx4GmJ44uEyG56n5LKrbwzaAp/Hn8OU0Y4ybvwy0mdV1/pOABm4sRHyMud060Yu+rMcg5jizIYkZ/OlbMGJ2t6IscdJaVERI5CW3tS6lioJRWLmkdJu13FZGaekLS4f1m6m4WbathaZcb3ufvvFkYREZFjQXMslvj6z1NG4LAm92TfaEMD1z5zARvS/dhtVtxhc9veibk7GZVex9PvlUAG0H6i8Kitf6egdmXi/VXeHL5zSgbnXnF5UufVF2pr36Kh8UPagnsAcNh9R3jHofnbH9B97axRzJ9UnJT5iRyvlJQSETmMDxpa2BsKUxcxt+95bbY+ntGhVVS+wN69TxMOVQFgsyev2GY0FufuF9YSiRmJa6XZnqTFFxEROZ4YhsGihhbWtbQB4LFakp6QAmh56y22u5o4++NCSmv2f9827BY2tQyl1TO0/UIcd6gBW6gCvycNAwuN9jQWDZrCBf18hfjRiMVCrF6zAMPYv03S6SzscpzfvbeD19dXsr7CXJWe6dEDOpGeUlJKROQQ1rW0ccnKrZ2u+ez9d6XUzp2PEQjsn6/XOzxpsZvaIomE1H0XmafLlOUkd3uBiIjI8WKFP8AXVm1LtFNRR8owDFoaawjbLZ0SUun2CI+kz2dclQWr3bz+D8suduXlEDrrm51iuG0Gk089Pelz622RSB2GEcZisVFWdj3paWPweLpWEzMeN3jg5Q1E4+b9kMUCg3N1LyTSU0pKiYgcwu62EACZdhsn+LxMSPcw3OPq41kdWjRqng44evQPSfOOJCtrZo9jGobB4u11rN9nPhHMcNv50uyhPY4rIiJyPNvdXkcqx2Fjui+NSwuzkxq/Zts6rnz/K1TZm3CF9z9Qu33M++wJDia+90YM0jGsgGGQWebhjCGDsVjAarFgsYDFYuGc8YU4XO6kzq03GUacuvpFNDevA8DhyGbUyLu6Fas5GE0kpB65YirD89IpzVZSSqSnlJQSETmEjuLmUzO8/GnKiD6ezaEZhoFhRBMFzvNyz8TjKU1K7A931HPVbz9MtHW6jIiISM911JKalZnGU5OSt7K5wzv3/gd1p/s5fU0eGe3FzZ3WKNWWIrZsmUK8MC/R1xqs4qELhjN06vSkz6Ov1dUvYtWqGxNtpyO3W3G217Swrv0Bncdh4yKdPCySNEpKiYgcQkt7UiqtHxc3j8WCfLT0ok7b9uw9KNz5SdtrWgHIS3cyrtjH5TPKkhZbRETkeNQai1EZMgtlp6egVqURidDYXENJbTrDKtIS19NdUR6NXcus0G4AHK37oHoR/xw8ma9MvjLp8+gP2trMz+p0FpCRMYFBg7r+OdeWN3HBr95LtLO8qiMlkkxKSomIfEIgFudXu6p4p8E8MjitH9eRCgS2dUpI+XzTsNszkhJ7R20rGyvNp4JnjCngoc9PSUpcERGR49UKf4DPrdhCsH0bWLo9uUmpTW+/wJMb/8jmmVacEfP+Jd8Fs/PWUxWZSKhqJFXFEwDY40njf6ddxKmj8rCmoMh6fxCNtK8izzuDcWPv71aMzVXm/aDXaWNQloerThyctPmJiJJSIiKf8lptEw/vqkq0C53994lYJNIIgNc7ghnT/w+7PR2Lpec3lm9trOKGpz5OtPVUUEREpOeW+VsTCak0m5WzcpLzIAkgHgrx+xd+wMsnGDgcVsbtMhNeua5qRvnqWLt+BrGcHGjPgzkdDSy7++oBuTW/qWkle/Y8SXOLWUuqJ6vI/W3mqrYzxhTw6NUnJGV+IrKfklIiIp9QF4kCMDbNzZXFOXy+KKePZ/RpkUgTe/f+L/7mNYBZuNPhSN62vXXl5pPFdJed0mwPF04pSVpsERGR41VL1KwldXVxDj8bm9wVN7GGBhrdMT6zKp+R5emJ6632DFaFT6HNMBNgtroVbLO1MfSa88lN778HuPTEzp2PUlv3VqLtcXe91mZdS4gXV1ewcHMNAD6PfnQWSQX9zRIR+YTAAQXOv1JW0MezObh9+/7C9h0PJ9ouV3Ln2dT+VPDqEwdz13njkhpbRETkeNVRrzLZtaT89ZWsXPNvqrMsTF/vSVy3W+LsiU+mdW8OuM17hUUFg/k4K53nJg1L6hz6k1DYTCQNGvRFsjKnk58/r8sxfvb6Zp79cHeiPRBXlIn0B0pKiYh8wrFQ4LzjZsvnm0pO9skUF1+WlLjvbK7hqfd3sLHSrJ/g82jbnoiISE/9o7qB7YEQixtbgOTWq2xbs5ZrX7qSrcVAsYWTV5mxbxr5EX7LIP5RcwcB7/4k2KnOdfzP979HhnvgfY9vaPiQpqblBIN7ASgq+ixZmd07VXBvQxsAM4dmM7bIxxdPGpK0eYrIfkpKiYi0qwiF+fG2CpY2mSfO9eekVDRqJo3y8s5k2NAFSYv7yBubWb67MdEempt26M4iIiJyRFsDQb6yblenazmO5P0Y1rZqFeXZBmcvLSTHb8dqmLUlN9hGsCE4Fyw2rLEQBMqpcTo555KTB2RCKh4PsXLVDcTjwcQ1lzO/2/E6Vo3ffNoIzhlf2OP5icjBKSklItLu/yob+L+qhkS71N3/lmkHAjuorX2b5ua1AEk7aa9DQ8C8AfvqmSOZNiSb00Z1/2ZOREREoCJofm/Nttu4oCCLTLuNywqzkxY/5K8nI+SmtGb/tr0sZ5hXwlfgChaTAaQFqvhJUTaTRhZy99mnJG3s/iQSaWpPSFkoLr6MjPRxeDxdr9t1519W8uq6SgIRs/5XplaNi6SUklIiIu387cVHT8/O4IsluczNS17h8GRZv+FbNDUtT7SdjuQUYa9rCbGzrpX61jAA508uYUxRchNeIiIixyN/zLy/GOl189CYsqTFbXrrTT5a8nf2lW/COcRc3Z3jbGVeyRZa/T7eqBtN3GYWMneGGln72Vqsp1+atPH7m2jUPKTFbvcxftxPuhUjEovz9xXlibbPbWdUQfph3iEiPaWklIhIu44C59N8Xi4syOrbyRxCsM28UcrLPRNv2nDy8s7qccxAOMoZP12IPxhNXMvy6qmgiIhIT8QNgz9X1PNmffuJtkmsIwXwp6e+xf+cHmEwXoZUegHIcIQpdAd4d+s44vlmQqpsz5tEA1uw5lye1PH7i1isjV27/oeW1i2AmZTqro4tewALvzGHAp8Lr1M/Moukkv6GiYi0a+3HBc7j8TDRqJ9ItBGA0aN/iMfT9eOND2ZfYxB/MIrVAmU5XmYMyaEgY2AeES0iItJbPmhs4c5NexLt/CQmN4xwmD3eION2ZjF98/6tgK2OdH4YuovR0Q1mv3iEF6aU8sXPTIPxFyVt/P6kpuZ1duz8VaLtcnW9/pNhGCzZXs+6fU0AZLjsDM1TXU2R3qCklIgc95b7W3mhqjFR4NzTz5JS0WgrSz6cSyhUmbjmcGQmLX7HU8FB2R7e+eYZSYsrIiJyPKsKmd9fS1wOzs/P5PpByanTGKmsJLRlK61uyGgzf5zLdbaR726mNTKRkrrxNBdOBcAwwvz+a6dB4YSkjN0fhcO1AKSnj6Ugfz4FBed2OcbSnQ1c+dsliXZ2Wv+rKyoyUCkpJSLHle2BEH+prCcYixM2DKKGwf/uq+vUJ5lPMpMhENjeKSGVm3MaNlvP6xtU+YP86MX17Kw1k3Eq5CkiIpI8zQeUBbhvVHJWN4e27+CVmy/gD2daKB9nYdZ680HalOxypuVU8Oe1l2Dk7S94Ho1Xg/uEpIzdX3WcSJyZeQLDht3WrRg768x7oZw0JxNKfHx+RvJqf4nI4fWvn7xERFLkX9WNfNTUwm/31h6yz3WD8hjhcXFuXvJWISVDx81WWtooTjrxlaTF/deqfby0uiLRHpqrZeoiIiLJUBOOsC9oHh6SzLIAoU0bWTgB3MFM5i9OxxOyAfCRN5d1LZdjsZgJqWjTcvLTV3LmyUDG9Ukbvz/xN69l797/xe9fBYDd1v0DWvztq8ZPHZXHI1dMS8r8ROToKCklIgNeazTGret3EjX2XzsvL5MxaW6cVgt2i4UZmWnMzup/p6tEIg20te0GwG5P7ml4HSftnT46n8/PKOXUkcnZViAiInI8+5891fxw675EO91mS0rcWGMjoR07CLitjN/hwxPuiGvgqJxCMJ4DaYMAiGc0ctVDP4HM5KzQ6o92bH+E2rq3Em23u6TLMdbv8/Pbd7cnakn53Fo1LtLblJQSkQGvKhwlaoDLauGWsgLGpbm5uDD7yG/sYzU1r7F6zX8AZjYtWUmpeNxgR10rexraAJhSlsUFk7t+IyciIiKf9mGjuRXMbgGf3ca8JKzAblu1ip1XfxGiUYJXeHBFzNVXnytdS5bRxvP11xHy5ib657mrwN2/Vn4nWyhcA0BJ8eVkZp5AYeGFXY7x+Dvb+Oeq/QnE0mzPYXqLSCooKSUiA9buthA3rt1JRXuh0SKng7uGF/fxrI5eY9NywMBisWG1eijIn5+UuHf9fQ1/+Xj/aUCqJSUiIpI8/mgMgF+NG8LnkvQQrG3NWlrsUVaOzqNsnxurYQGgLK2J3bWDCDvMB1cx/0YaXRGuKHoNnP1vBXgyRKOtNPlXEA5VA1BcfClZWTO6Fatj1fhl00uZPTyX+ZOKkjZPETk6SkqJyID1ep2fNS1tifZUn7d3J1C/Az76LUSDh+5TMA5m3XTQl6JRPwDDhn6124U7D2blnkbAPO443+fijDHaticiItJT+4JhVjQH2BsyEx0Z9uRs2wOIt7Rw35UOTl3hI7vJTEg5HBGe2DgfV0uc+GDztLiLhjzOkDGDYcy3wWJJ2vj9ybp1X++0bc/h6H7izx80H1zOn1jEWeMKezw3Eek6JaVEZMCJGQbrWtpY156Q+mxBFl8dXMDYtF5Ykm0YsPABqN0C6/5+5P6j5n4qKRUMVlBf/z4tzRsAsDt8SZ1iY5t5s/ynm09i4qCBvbRfRESkt1y4fAvl7auzAbKTmZRqbaXGZ0mskKobW87lW0LEN7fSmlbM6vZ+RUMK4boXkzZuf9Qa2AaA1zuMzMwZeL3Duxzj569t4o0N1WytaQHAp1XjIn1GSSkRGXC+t6Wcp8r3n7I32utmYkaKV0nF47Dij7Duedi+sPNrI8+BQdMP/r7cEZ+6tHbd12lq+jjRdtizejw9wzD43gtrWbWnkZrmEKBteyIiIskSjscTCakZPi8jvW6mJOHeo+aXv8T/0suEGuowbjATUjZLjPst21kenMLiE38AFrO+lIUwrrSBuWXvQNGomUiaNPFR0tPHdP39sTi/ensrRvsBOHarhSE5vbyaXkQSlJQSkQFndXMAgHynnSKngwsKemE10K734F9f63xt/oOQNRjGdK0WVFvbLgCysk7E6x1KXt6ZPZ7e3oY2nv1wd6Ltc9vJz3D1OK6IiIiAPxpPfP2PE0ZhS9LWubonfkcoawjvDxvMJQvNcgBOa5x9bbnsiY8GixXDiJJjr2SUZxG4kntSb38Ui5lJKZstrVvvbwlFEwmpJ6+fyfC8NAp87mRNT0S6SEkpERkwVjUHWOkPsLt9e9rvJgxlVlYvPDFs3AN7PjK/zh4KY86HGTdA3sguhYnHowSDe4hEzGOJJ4z/abeONz6YhoD53yQ3zcnPLp/CmKIM3I7kbSsQERE5Xm1oaWNV+wOxNJs1aQmpeChEiyXM2zOysJbXY2vfuucNxmj6h4uMwggUAdEqrhp0Jzi8MO7nSRm7v2lr28vqNV8hHK4nHjdXfNvt3bvHaw5GAXA7rJwxpiBpcxSR7lFSSkQGhEAszudWbCUQ2/+kstDVC9vTPvgVvHb3/vaw0+Dc+7sVasWKL9LYtDTRttt7vsIrHI3zyrpKVuxuACA/w8Uc3YCJiIgkxarmAPM+3pxoZya5uPlbUyx8lLWF2eW5lOe1sXF8FV//+2RWTbqIoDsHAIszBDe+euhSAQNAXd07tLRsTLTd7jLs9q6tCttTH+Dxd7ZR5TdXnKX3xn2iiByRklIiMiBUhiIEYnEcFgvn5PqYlOFhiKcXtqftXmL+v90DnmyYcMlRvS0SCrJz9Qqaa2v5+F9/Jx6PEQ41AiPBYsFqdbH1uVsxDhfEOPSrRvtrwUic5lAEC3AD4Cy38tjNvzns3IzDxD2aMQ/m0u8+QOGwIVisA/MkIBEROT5tbW1PcNisDPe6uLo4t8cx46EQVT++n/DO3TTlZOKKmDWjii1BrmiuZl3JeQTS9q+knuJdCe4zejxufxaJNgKQnz+XYUO/itc7BIulawnAP3ywk2cOKGVQkqUteyL9gZJSInJMC8XjXLh8C+vbT9ordTv4/aRhqR846IeqtdBo1n/ic4/BhM8dtGsgEmBvy152Nu1k2eqFsHIfznW1B+l54D/JMULUJ2WqnSouxKB9J1+v+utPPuKGnxaTlqk6ViIiMnD421don56Twe8mJuf+I/DhhzQ+9xyVsy4hu7KGnArz+ti9MfKW+YiONb+zF1heYVrmaoa4loH73qSM3d9Eoy1UVPwfdXWLAPB4BpORMa5bsWpazG1/Z48r5MRhOZw5TivHRfoDJaVE5Ji2qTXI6ua2RPvU7F4q8Pm7c6Bm/zJyvOaTUcMw2OXfRV2wjsdWPkYoFmJD+WrG7czAEbUyYaevU5iw3SDgdRJKK8FrDMMdySAt/Mlte91cXXTYt/VkxVLX32uxZmLEj9xPRETkWGAYBhtbg2xpXymVYUvetr1YUxNxC+yw12IJtV+0xHHVuNjlPJmIwzwp7qTcNygbVQpD/h+k9XyFVn+0r+KvbNnyn4m2y9n1RJJhGGyvbaWi0fy9mjuhkMtnlCVtjiLSM0pKicgxrSESA2CU18Vfp46k0NkL/6zFY/sTUjnDIXck67wZrFj/NE+ue5LqQDUArrCVWeuzuXLfp298bM5xWB1DcDnG4bNYIHjAi+0fwelpw+kJkTuoEqc7TFqWH4sVLO1JIQtgsRjtXx94DbZUt7CxsplILEY8DlMHZzO2KCPRx2RgaS/GasWCpX2zoMVq6Zx2sliwWsw+Vov5mhWwOLxYJl4C7a9ZLBasVisOqwOfy2fGtpjzsVgsWG3auiciIgPDT3dW8rOdVYl2ht2atNix5mYe+ayVjOatlLR6eH9SHTc0lbPP8QCtacWJfvnZdrj2n0kbtz8KBc1lYunp48nNOZXi4ku7HOPh1zfzy7e2JtqZHtWSEulPlJQSkWPS36saeHBHBc3tRzDnOx0U9VbBypAfgHgcFp7+fSqCNfzklWsSL+c1Ohm3M4MR+zqfCmOx5WO1D8Vqz8Pm7Lz0PK1wA1abwbATHAwZfhmDxmRjs3X/BvfuXyxiY2szAFYLXHr2bKYOzel2PBEREdlvXXvZgGy7jQKXg4sLsnscM1JdTdPf/05gVQ3bJ6Uxc6V5H5BtDTG5NcxLbnM1VEZGI2ONf+FOc/Z4zP4uEjXvuQoL5jN06H90K8bqcvNU4wyXnWH5aZw0bGCuKhM5VikpJSLHpD+W17KzbX9xpEnpntQPahiw/W2CH79DaKeHVytyuG/EDxMv5ze4mLU5m/y6znWTLLYC7J5TzISUNY5tVAOxtHqsI1rIN94g07KEUaO+yZAhX0naVP1tEQAe/+IJzByaQ266ajmJiIgkS8dDsftHl/K5wp4npADqHn+cphcXUTnjIqasz8TXaj5s+8a6ZgINecQHm0moi51fxedoBs9pSRm3P6qqeom95c/Q2roFALvdd4R3HFpzMArAQ5+fzLkTi4/QW0R6W/LWmXbBAw88wMyZM8nIyKCgoICLL76YTZs2deoTDAZZsGABubm5pKenc+mll1JVVdWpz+7duzn//PPxer0UFBTwzW9+k2g02qnPwoULOeGEE3C5XIwcOZKnnnoq1R9PRHpBXcT8u/6T0aW8MWM0PxxZcoR3JEH5MqJPXMqf//Qc3yjK5ekzzX9CC+rhjNXpnL+4qFNCyuaciN07jzGlEznvXA+3PTaH/3jsHL5y5+V84bICJqf9kRzHcixWA7sjKylT/GhHPX/4YCf17dXMxxb5lJASERFJsuaYWT4gvQermj8pWlND3J3BsrrXKalx4Yyases2D6KqeXKiX3q2D0acBZ+5M2lj9zc7dv6KxsYPiUTMQ1883qFdjlHdHGThpmqq/GaNBJ9b2/ZE+qM+WSn1zjvvsGDBAmbOnEk0GuW73/0uc+fOZf369aSlmadJ3HHHHbz00kv89a9/JTMzk9tuu41LLrmE999/H4BYLMb5559PUVERH3zwARUVFVxzzTU4HA7uv/9+AHbs2MH555/PLbfcwjPPPMObb77Jl7/8ZYqLi5k3b15ffHQR6aGnymv53d4atreZlT9nZaYxvhdWSUUqKmh68o9EVmfwxHk2mtLN+khjdqUze13nZeAWeynZrgg5BWmcPnUXmZfdTzwCrR+tJbB0CUYsSs32f+Js3Yv5zNNONP9dKhzroL2u08EYxiFea78ejsZZvHIfhgG3gFkj6qH32HewG+YjxDrq60DOddfiHte9k3BERESOJXdu3M3LNU34o2ZSKsOexALnLS381zlVTFprbrdfPKGOr7znZtX0HyT6WAhhnXwpzL0vaeP2R5GIueVu5Mi7yPRNJTNzepfebxgGn/3V+1T69xft9KmWlEi/1CdJqVdeeaVT+6mnnqKgoIBly5Zx2mmn0dTUxO9+9zueffZZzjzzTACefPJJxo0bx5IlSzjppJN47bXXWL9+PW+88QaFhYVMnTqV++67j29/+9vcc889OJ1OHn/8cYYNG8bPfvYzAMaNG8d7773Hww8/rKSUyDHqf/ZUs6N92166zUqZu3fqKVQ99BB/rnmDyhEZNKVbsMXg9kE34X9vNXEq23vZcKSdx/CMJs4cvZEG18U0fLCSiv88EaLBTvGsQBr7b2QDvEkgCfOc+4l22+6ltB20Z/JkzD9XSSkRERnwonGDZyvqE+00m5WRXnfP49bWEli1hlizm+05QSYBMatBSV41jvgMAOJGlILMFkYZ/wDXxB6P2d9F22tJFeTPw+Pp+kl5reFYIiE1ocTH6MIMxhV3fwugiKROv6gp1dRkZsJzcsynAsuWLSMSiXD22Wcn+owdO5bBgwezePFiTjrpJBYvXsykSZMoLCxM9Jk3bx633nor69atY9q0aSxevLhTjI4+X//611P/oUQkJRrbT9v79bjBnJadkdQnlIezrnkLfzh7/1gXLh5Eo/+1RNuRfjGTMzYyLf01ovGp1G06i9ZFN2MEGz8Vq3xEKWkFVVjz2qipGUYgkLX/xQMWJE2YMI7CokNsS7R8+iS7PfUB/rR0N9lpLm46dfgh3nfoz2g5SMwjjQngGn6IsURERAaQpvbVUQDvzBpLicuRlPuQnVdfTcQxipX5bk5dkQeANx7l+md91NnNpJdhVPOF9K9BPAquk3o8Zn8Uj4dZvvwqWlo3EY+bCaXu1pLqqK3psFl48fbPHPkeR0T6TJ8npeLxOF//+tc55ZRTmDjRzPpXVlbidDrJysrq1LewsJDKyspEnwMTUh2vd7x2uD5+v5+2tjY8ns5bfkKhEKFQKNH2+/09/4Ai0mPheJy/VTVQH4klbghPzc6gIMWn7RmGQflXv0bre++wb3AEsFEUinJO87nY/GbhTSxpuO0OTs/5J6M8S9m742KCjZW0NC/Bd0BC6t3PfIba/DzGzniLzOztiVVRW1cPpbHx4ImnoXNOI2/OmUec54YKP39cvJPdtgDvjx7FlLIs7rr5lJ59eBEREUlY3RxgTbO59jjNZmVMWs9XSAEY0SiRXbupnTKBfYHN5LRv7PcGYzRZxtOQM8lsO1vMhJTFBiXTkjJ2f9PaupUm/4pEOy1tFHZ7RpdixOMGr62vZP0+8+c4n9uhhJRIP9fnSakFCxawdu1a3nvvvb6eCg888AD33ntvX09DRD7h5Zom7ti4J9G2WyDLkfoVUrHGRpZseoP/ucaK32vFE3Qx5+NibG37t+u5Mm/mnKyHaQwavFc+hZLlC7ECHc/1Ph41iVcnnEKzzUyCV9TOxFIHccMGMTeRwBg4xGd5pSaNd1/rfAjEwUo7vbymgu21rYl2SzDCg69s7Py+g8SfNSyHM8YUHMV/CRERkePXcn8r5y3bkmhnJXGVdrylhVYX/O+oFYzZkkZNZogNIxr56itDWDfhxkS/QkcFXP5HGHoqeHOSNn5/0rFlz+MZwrSpf8DlKsJi6Voh+fe21nLL08sT7ey03inzICLd16dJqdtuu40XX3yRRYsWUVpamrheVFREOBymsbGx02qpqqoqioqKEn0++uijTvE6Tuc7sM8nT+yrqqrC5/N9apUUwF133cWdd+4/xcLv91NW1vU9zCKSXHuCZg2p4R4XMzK9nJqdgcua2sNDjUiEaGUl74+zUJljwRv2ccWHV2A0vwo0A5DtinJFwfXYAi1EXysk44DMz99GnkabzcWLw0+hiXRoX/G/asego5/Eslqgtstz31bTyn8v3HbEfvG4oaSUiIjIEWwNmDspfHazhtTVxblHeMfR8b/2Gi2LFrNldAFNthCQhj8tSl5mIzHbCQDY7BFGuT9kuvs5yLtyQCakYrEADY0f0dS4DACnI6dbdaQA9jaYq9mKfG6mD8nmsumlR3iHiPS1PklKGYbB7bffzvPPP8/ChQsZNmxYp9enT5+Ow+HgzTff5NJLLwVg06ZN7N69m9mzZwMwe/ZsfvzjH1NdXU1BgflD1euvv47P52P8+PGJPi+//HKn2K+//noixie5XC5cLh2dLtKf1IWjiaTUOXk+7h3ZhaRON4W2bGHnlVcRb2mh5WIrljict6UYS3AnBmC1l5KbNoT5nsfYu9hLW0s2TiNM0O5gR0YJz40+gyXF5nZku9XCSUOzKUwPYzMaqW9YjMViZVDJlZ9aTv7J1eWfXGz+yf41zSG2Vjezo7aVcMzgvElFFPo6byewcOgxZg4deDe2IiIiydZx0t7p2T5+O3FoUmLGW1sp/+Z3cZ7xfYIjouQ0vwvAiVVQvLeEuMX8mSTfsYmz0n8OGODq2la2Y8WmTfdQUfm3RNvuyOp2rKb2WlKnjMzjZ5dP6enURKQX9ElSasGCBTz77LP84x//ICMjI1EDKjMzE4/HQ2ZmJjfeeCN33nknOTk5+Hw+br/9dmbPns1JJ5mF/ebOncv48eP50pe+xIMPPkhlZSV33303CxYsSCSWbrnlFn7961/zrW99ixtuuIG33nqL5557jpdeeqkvPraIdNG/axq5Ye3OxNazZC6XP5zWpUtZmdfKR6dY2Vbk4Mx1J5O+ZzdxzK10Jb6tfKHwT2xdOojYXgMnZtLs30NO4jeTLgLga2eNYlC2h89PL6WldRMffXS+GbwYHI4cTjv1/h7P85L/fp9NVS2J9vfOH8+grE+vAhUREZGui8YNXqtr4v0G83ttZhLvQ2JNTVidPhbVv0h9qIKRpAOQVgXuYBFVhYMByDV2AQa4syAtL2nj9yeBth0AeL3DcDryGFx2fZdjvLG+iv96ZSPVzeaqtkxPauuOikjy9ElS6rHHHgNgzpw5na4/+eSTXHfddQA8/PDDWK1WLr30UkKhEPPmzeO///u/E31tNhsvvvgit956K7NnzyYtLY1rr72WH/3oR4k+w4YN46WXXuKOO+7gkUceobS0lCeeeIJ58+al/DOKSM991NSKAdgskO9wcGZuao/yNeJx2laupG3FSh4/z0ptpoWhdRMYVjOYKLuxWH3kuOCU8Cr2LckiWAU24JUhs1heMJoVxeP5yunDOW1UPqeM3H/jGAhsB8BmSyctbSTFRZ9LynxrWswbr6tPHMxpo/OVkBIREUmiF2sauWX9rkQ7O4n1LGMtLTT4nDREKgBoTA+TF4jSWHQJVRkTEv087hhc+WconAD2gbmjIxo1yyKMGf0jcnJO7laMPy/dzZbq/Q/qxhYPzFVlIgNRn23fOxK3282jjz7Ko48+esg+Q4YM+dT2vE+aM2cOK1asOGwfEemfGtuXy39raDFfG1p4hN491/TPf1LxnbswgMZv2khrszF5Rzqx6E4AStKiXFTyATv/lQFtYGtfw7Vs1CzCk07gtS9MpeQgiaFoxCzcmZ19IlMm/6bH82wNRaloCtLYai5Rv+EzwxiRn97juCIiIrJfR/mAQS4HJ2al88WS5NSSijU2Etm3j1+cVc/MVWYZkncnV3LHojD7ckcDkJkdIbN1DWMKtsCYXyRl3P4mHg8TDtcm7pPs9u7fyzQGzHuib84bw1njChhTqKSUyLGiz0/fExH5pMd3V/NRUysrmgMAZPbCSXsA4W3miqZYYS6GtZXTV5WRU1+e2D44yrsGt6WZWNCHDYOnx5zD3owCbvnq5XxmdP6n4rW0bKKm5nWamszCnV091vhgAuEopz34NnWt4cQ1LVEXERFJvub2h2Pz8zP5z1HJKZhd/8wz1PzqaSonn02ZMztx/VePRbBa7Ow93fyefkHmPWS51oNvVlLG7W/i8SgffnQegcCOxLXu3CftqmulvLGNquYgAFPLshhblNqV9SKSXEpKiUi/0hCJcs+2fZ2uDXH3znG+Lf46vneNjariECft+iyFTbsxqMFqH0qhq56MtVE2+Euwta/2dH7hC8wfWcYpow5e42H9hm/S3Lwu0XY6e14LYk99G3WtYSwWMxk1e3guuTruWEREJOlaYnEA0m3JezgWWPoxtsIJLG96hyLMBJTbCGMH2uz7V1tntG0yTzzJH520sfuTcKQ2kZCyWl1kZEzC7e7aiXu76lqZ89OFHLgJRw/qRI49SkqJSL9SF4kC4LFauXdkCQVOB6fnpHYJdu1jj1H7m9+yuijEliusDK60ULKvHiPWBECJL4/PGO/h32dPnGW3O6OQ719xMlbrJ8/I2y8YNA9xKCg4D7ermLLS63o8145TZYbmpvH2N+b0OJ6IiIh09h/rd/HvmibCRkdSypq02PGWFixeF/G4GfvD8fV8a3kjqyfcRHXWUKyAjRC2vGFwwS+gbGCulIpGzHss8/CXpd2KsaWqBcMAt8NKWbaX0YUZjCvWKimRY42SUiLSLxiGwcrmNpY2mUUq8512rhnUO6fMNL30EkZbG61OC46IhTkr8rEa+5eTn5f1a6LlDvxksS2zhH+ffgUTT5952IQUQCxmFu4cOeI7eDyDejTH5mCE/12yi3XlZt0Fn1v/fIuIiCRbOB7n71UNibbNAtN83qTENmJxjGgm64dsgB0W4haDDUOaaVs5mtr8qXSkvrLs+yCjGIadmpRx+5NIpJEtW+4n0LYTAIcjs1txwtE4lX5zy96Jw3L5ww0DM3kncjzQTzUi0i+8XufnmjX7E0HJPOHmSOItrQA0XfpZ0vxvYjUsgA2bayqTLB+w54V8LO1Lw2PFg3j0wZsOG6+q+t+0tm4lHjfrPiWjltT/LdvLg69sSrQLfO4exxQREZHO/NF44usPTxqHz24j29FlMhBbAAEAAElEQVTzH5nqnnyKliU11Jeeyn8VvcnndgwiZo0za5PBnuBgAOLRBi6auZKC8t+Ba06Px+yPqqv/TUXl3xJtj2dwl2NsrW7hc4++T3PIXF2f5dWWPZFjmZJSItIvbG41n3blOGwMcbu4ZfCnC4enyvKcJn5zWTq5Oz/k4u3nAiuwWNNweE+nqHLh/oSUxUrOmXMOGysQ2Mnatbcl2larC7s9rcdz7HgaOLk0k9kjcvn89K7VXRAREZHDa4pE2dTaBphb9oZ4XEmJaxgG1T//OU3jz+XDlg+5YHuxOUbQ4Ov/tLOvOE4DkEEVgyt+CVbAm33YmMeqcKQegKzMmRSXXEZuzuldjrF8V0MiIeW0WTljTEFS5ygivUtJKRHpFxrbT7j5fGEO947q2Va3oxEPhWh4+mmidfUsGRxi6J5cxu9MA1aYHSxecmy7cDdXEcbCqzPP5atP/ASr6/A3qMFQBQB2eyYFBfPJzTkVi6X7q75icYNtNS3srjNPIpw7vpDbzhzV7XgiIiLyaZtag5yzdBPh9qrZPnvyVmwbgQBEIlTaq4hGgzjaN+p5Yl4WfeanYDHbpd59MOw0yCiB2bcdLuQxxzDitLRsIhAwTzr2ZU6hpPiybsXyB836mhdMLuYXX5iKPYk1v0Sk9ykpJSJ96rHd1dy/vYJI+01gVi9t22t5802qH/opAIHPWsloNf85tNjy8dgszGr4AO/y9wm3lzbPHDfxiAkpgGjErPmUljaCcWN/3ON5fuOvq3h+RXmirVNlREREkm91c4CwYZiLlGxWLi/KSVrsWEsLEbeDddk7cNf4WDWiiVJbHUPWXE2wPSFls4QZ6v0Y5v0UiiYmbez+YtPmeygvfybRdti7XkuqJRTlvS01LNtl1vzK9jqVkBIZAPS3WET61Is1jYmElMNiYVZmz7e6HY1obS0A7hO/QHlZKe6wmQyzu0+iNHsc3p37zxduc3mZOf/wxUYbGj7ivfdOZt36O8w43bjZOphVexsBMxk1pjCDOVqiLnLcWLRoERdeeCElJSVYLBZeeOGFTq8bhsEPfvADiouL8Xg8nH322WzZsqVTn/r6eq6++mp8Ph9ZWVnceOONtLS0dOqzevVqTj31VNxuN2VlZTz44IOp/mgi/Y6/fcX2efmZbD1tMt8ZXtzjmIZhsPvLN7H3G8+w69LrqLGYD8BK6sPMXGkjZvMAEEnbwFeKvshI92JwJ+f+ob9pbl4PgMORTXraGPLyz+lyjPtf3sAtTy/n32vN041VS0pkYFBSSkT6VGPEvAl8auIwNn5mIqdk97wo+NGIt7ayvRCey9nFGe85yG8yV0FZLG6clgCYpQqo/PXTTFu6mInTRh82Xk3t64TCVcTjIQCyMk9Iyjz9beZE/nTTSbx6x2mU5STnBCAR6f9aW1uZMmUKjz766EFff/DBB/nlL3/J448/zocffkhaWhrz5s0jGAwm+lx99dWsW7eO119/nRdffJFFixZx8803J173+/3MnTuXIUOGsGzZMh566CHuuecefvOb36T884n0Fy3RGLVh8/ttMrftxWpraX3vPSrSXezZs5y8RvNeY+6KGGO3RInZzUNLTrAuwWJEwOoAb/JWaPUn0WgTAJMmPsqJJ75MelrXSxHsqjMPphldmM7c8YVcNr00qXMUkb6h7Xsi0if+WF7LUn8r+0LmCXVDPE7SkngjeDjx1laiDQ08/Dk70zfspYD2hJTVh8VegLF3TaJv+rAyLE7nEWNGI+bN1uDBN1FWei1ud/efsEZjcf6xch91rSGa2sz/Pj6P/rkWOd7Mnz+f+fPnH/Q1wzD4xS9+wd13381FF10EwB//+EcKCwt54YUXuOKKK9iwYQOvvPIKS5cuZcaMGQD86le/4rzzzuOnP/0pJSUlPPPMM4TDYX7/+9/jdDqZMGECK1f+f/buOzyqKn3g+Hd6SSaT3gsBQg9FehPpICoqoggirg1d7L0X7Iq6YtdV1N+KunYWG00UEJDeCS2hpJCeyUwmU8/vj5sMRlrKhHo+z5Nn987ce8+ZkUzeec8571nPK6+8Uid5JUlnqn8fKOLRnbnUzo+2aIIXi/gdShJlQ8VPOH1gQrl3pbUT+1sOwG5RNi1J1eRBj+sgYwToT8yM8ROl0r6dosJfcLkKAdDqGj8TrHag7oHR7RjSLi4o/ZMk6eST33IkSTrhyjxe7t9xIBAAalUQZzgxU7CL33ufoldeUfpxjxa9V6kZpQsdRyvtPkK2/ofoks0A5IVEkRkTdsz72R07KSlehK1SSWSZTKlNSkgBLNhWyN1fbggcq1UQbj5+YkySpLNHdnY2BQUFDBs2LPCY1Wqld+/eLF++nAkTJrB8+XLCw8MDCSmAYcOGoVarWblyJZdccgnLly/n3HPPRf+X5PvIkSN54YUXKCsrIyLizNwBTJJq/V5aGYhHTGo150UGZ8a2z+HBtqSIkJ5jcHm2AmrWtCmjc5mb/NCp+HSHkk9h2gI473MIPXE7D58o27Y9QGXlocE+vS6qQdcLIfhyzQEOlFZxoEzZ9MVilMv2JOlMIpNSkiSdcMVuLwIl+LsnPZ7MUBORuhPzceRYuhSVMZzSjoPReX9E71FWMatUJhJ8WzAVbWKvJY7QG6aS2rcnsWHGY95v65a7qbRvCRwb9E0PKGuDrtRIMz3SIujdMpJQg/y4liTpkIICpaZKXFzd2QJxcXGB5woKCoiNrVuHTqvVEhkZWeec9PT0w+5R+9yRklIulwuXyxU4ttlsTXw1knTy2H1+AN5sn8rFcRFoVKom39PvdlP21Z9UbxN8lVmBWKPEGt33lNO6wMiBDCUhNfjyZKIXTiBSewAMoU1u91TkctV8VsVeQGTUQAyGhsVJGw5UcN9XG+s8FhN6/I1nJEk6fchvOZIknVDbHU5WlCvT2WP1WqalntjC3X67neqWfVnu28z4X/9Si0ClpzpHYALyw+L4x41X1ut+1a48AGJiRhJibklU1LmN75tfsGZfGRsOKEsBz2sbw/SxZ94OPJIknd6ee+45nnzyyZPdDUkKCrtPqW0ZptUEJSEFUPTaa1SuKGOd1Ut58T6s6BAIzl/jx6fxc6CmnFKb3/qh1XlArQXtsQfBTle1taRatboPkympwdfnlzsBiAszMLJjPG3iLLSIPrOWOErS2U4mpSRJOmEWltiYtHFP4Dhcd2JqSPm8XgpzduN1u8l3OViQtouQEj8CUKFBpY1HrQrBUHwQgKLI+HrdVwiB16vMEGjb5nEMhqbVN/h2XW6dZXsRcsmeJElHER+vfE4dPHiQhIRDS4YPHjxI165dA+cUFhbWuc7r9VJaWhq4Pj4+noMHD9Y5p/a49py/e/DBB7nrrrsCxzabjZSUlKa9IEk6gfxCMHPvQXKcbnKcyqw/SxDrWrqz91IZUs0+RwFWlKVmRuGhNKI9WUn9ABD40OBRLmg1BIKUEDsV+P0eNmy8AYd9B36/UhtTpzt2OYS/E0Kwfn85K/aUAJCZFC4H6iTpDCWTUpIknTBb7cpoV5hWTYJBz/XJzVs7wef14Cgv5+e3XmX/lpqp36FaQkqUqfru0JZYdRdzTvX/YVrxGIZQG493uRZD7z7HvXfWjic4ePAHhFBGWLXapm/hvKtI2aY9xmKgXbyFi7s1fERRkqSzQ3p6OvHx8SxcuDCQhLLZbKxcuZKbb74ZgL59+1JeXs6aNWvo3r07AIsWLcLv99O7d+/AOQ8//DAejwedTvnyPH/+fNq2bXvUelIGgwGDQS6fkU5f621VPJ9dUOexhCDVtqz4ORtV2BXo9E9Bvp6KUDer25Zzz2+wqdNd+DXKgJNFXYaq7z9h0P1gbHoMcSpxOHZQWrokcGwypaLRNGx204o9pVz5/orAcWSIrCMlSWcqmZSSJOmEqfAqCZwr4iN5KqN5t/H1eb18dNc/KT+YX+dxrSaCao0AlR6LWkk+aVwHMbht7EkbwNT7r6ZHi2NvxyyEIDd3diAhFRKSgUbT9Gn3NqcyYjqxVyp3Dm/T5PtJknR6s9vt7Nq1K3CcnZ3N+vXriYyMJDU1lTvuuIOnn36ajIwM0tPTefTRR0lMTOTiiy8GoH379owaNYobbriBd955B4/Hwy233MKECRNITEwEYOLEiTz55JNcd9113H///WzevJnXXnuNV1999WS8ZEk6IYo8yi5uSQYd1yRFk2E2kmZqeqLVuWkT9mUH8fk15IlqQE+V3ktimQOHLRV/ipKQ6pywgfTqryF0HJjCm9zuqcbrVQbZjMZkOme+hdmcjkqlbtA9dtcM1IWbdbSPD2NS77Sg91OSpFODTEpJktTslpfb+eBAERsrlZlSVm3zfvTsr9zPy/OfJiWQkNKg0sSht4xHpdLw11KiauFBs78UgLDYGAa2P/4SPJ+vKpCQ6tnjW0JC2japvz9vLuD/VuSQVaAEYFaTHA2UJAlWr17N4MGDA8e1S+amTJnCRx99xH333YfD4eDGG2+kvLycAQMG8PPPP2M0HkqSf/rpp9xyyy0MHToUtVrNuHHjmDlzZuB5q9XKvHnzmDZtGt27dyc6OprHHnuMG2+88cS9UEk6gbx+QZFbSUq1CTFya1rTlt7XEkKw/8apuLvfzMLib/EKZblaqwIf5/3qx2m0sQ9QCQ8DxRNgAIzXBaXtU43Xp8Qzen0UFkvHRt2jomagbnj7OF4a3yVofZMk6dQjk1KSJDW7l7IL+KPcHjhOMzVPrSSf3Y57716+2jubdQdWkUIifo0Bc9g0is0HsBu2kROxiWptFT3K3Axb4MVUVYjJpRThVMccfzmh11uJw6HMXFCpdFgsmaiaWAfitYU72ZZ/aPeqdFnAU5Ik4LzzzkMIcdTnVSoV06dPZ/r06Uc9JzIyktmzZx+znc6dO7NkyZJjniNJZ4LsKhej1+yg3HuouHmw+GxV+D16nPyCVyh1lHxqQUJZNQD7rcqSfL3aCRHpEJ4KbUYFrf1Tga1yM3l5X1DlUOqHajUN31Fwc24FHyzNZlOuEpuFyYE6STrjyaSUJEnNrrhmRHJqSgzdw0IYHR382gnC42HnBWP4Jc5GTlwI3YRSoFeDCYCepu8xqt3kuLVsd2WQsGEdkWUHqNSZ+Kj9aKp0Bm4cf8Ux26iq2svKP0fj9ytFUbVaS5MTUgBlDiV4vW9UW7omh9OnZVST7ylJkiRJUl2rbI5AQkqrgiGRDSu+fTR+l5eD/9pA6LCnsDvuByLJjnfwW7di/v1qCMWRHSnrfSHYQK+qhss/gYTOQWn7VLJ794w6taQaswHM64t28suWQ5svJIWbgtI3SZJOXTIpJUlSsylye9jhqKbYo0zBviwugkyLuVna8hYVsdJSRKk5hdSDh0bVVCol4DQ42rLZPZDS2JWYhUBbE5SWGMNofecttEuwkJlx7JlSlfYtNQkpFWq1kYT4S5rU52K7i/IqT2CK+pjMBNKi5CwpSZIkSWoOFR7lb/8FMVbe7JCGQd2wOkdHY/tlKcKpQQg/br8yEKf1+2mTK9jd9mrKIttBzYRovboKjMFJhp1q3O5iABISxhMS0or4uIsafI/SmoG6CT1T6NkikjGdE45zhSRJpzuZlJIkqVk4fX4GrtweGJEECNcF/yNH+P04liyheutWisMgxKm0odF3ApWO1FA/CaYv2Wr2UKpagcoviCkoINquTKev0hmZ0CsFi/H408O93koAoqMG06XL+03q99p9ZVz29h/4/7IyJ6wefZAkSZIkqWFcfj/fF5bza6mSGYrUaYOWkPLZ7RTOmElep8Hstq2mTBWBCjh3s4/2830s7avM3I7Q7EWvrqaz+QcwXByUtk8VQgiE8OH1KEvukpKuxBrWuDpQNqeS1LugcyIDMqKD1kdJkk5dMiklSVKzyHd5KPf6UAOtzAa6h4WQHKTtlv/KvmgRvz19K5tTwvCrUjEIZTmd1jwEk7qKyNi3WUJXqmqW8bXYnU2vVasC11fpjIToj/9RKIQIJKW0WkuT+71xfzl+ATqNCrNey4CMaMLNMiklSZIkScH23cFybt++L3AcFaRBMuH141h9AG1cJpvLFuPyu1Ch/C03uz04dSo8OmUG9AWRzxEWaYCW54L52Lv8nk6E8LF6zRXYbOsCj+m0DZsJVlnt4R+zVnGgzElhpTJoGGaSX1Ml6Wwhf9slSQq6IreHLXZlp70ko54lvds3W1uu3Xt4+VINvTeHEVOhfKSpNNGoVFrMmnLy7S72qTbjx48fL+e5leCw0BROfkgUizoNY7L62HWhsnY8yYEDnwSONdqGF+78u7IqZcne5T1SeOaSzCbfT5IkSZKkIztQrSwJSzfpGRhhYXJicGo3OtYcxPZzEfqWvfDkrALULMssYcT2aqqiLuaPTn1RqZTYxBgZCXeuCEq7pxKX62CdhJTZnI7RmNSge6zeW8bqvWWB41CDlrRIWc5Aks4WMiklSVJQLS2rZPz63dSuSovQBW9nm7+q3rGD/Ecexbk/h+KbVBjdyjR8nXkkoaZIot0rSS5dSvXeIjpUFaL1CtR/WSr3devzSL5uCv9sF3vctgoLfwr8f5VKQ0R470b3e1VOKdfOWkWlS5meHmFunp0IJUmSJElS2GpKCZwfE86jrRKDck+/00nV2ixAg3Buw48Sh0Q4KmmVr2FXy96BhFSUNhudyRCUdk81tbPIdboI+vZZiFYbikrVsNjPVlNbs0uylWcuySQ5woRVzh6XpLOGTEpJkhRU62xVCECnUmHRqrk8vnmmqNt+/JG3YzbjjovmssUxhCgTs1BpE0kXy4lf+gMAR9qzpVJnYldyW2aOanfcdoQQeGpqJPTq+T9MplS0TZgp9VtWUSAhpdOo6JV+5kzhlyRJkqRTyS/FFSwpq2RpmR2AME3wBsqK/vUajg1+CmPi2FrxGwACwd3f+hAq2JGhDDpdEXUHkdr9qEwDgtb2qcJm20hx8a8AaLVWdLqG765cYndxoEwJ4uKtRjolBX+HZkmSTm0yKSVJUlDVFja/NjmaJ1s3bPp2Q9jKi/g9U8f4X/9S30llQKUOJdSdD0CRycrSxM7ssSayJrYtHrUWr1qDW6MjOerYiSUhBPv3f4ijajdCKNP+m5qQAgI77V0/IJ07h7chxCA/hiVJkiQp2HxCMHVLDtV/2VEkLkh/c51bS3CX9USTqmb5vn/hF7Vt+FABuZZDu/lGmkpRhyRDt8lBaftUUe0qYNXqcYAfUGZKNdTslft46NtNgeP6bDojSdKZR34bkiQpKLbZnTy8M5csh1KgMkLbPMv2it9/n9wNf7CteDuh1pqPMLURnfkCOuj/JKbsNYzF+fiBHeEpvJc5FoAwoxaDRo1ZrUKvVTOlX4tjtmN3ZLFz17OBY63WgkbT+PoGmw5UMGdDLsv3lADKaKBMSEmSJElS86jw+gIJqdvT4ojSaRgb2/DEyZE4t5agUutR+bfhF8pg3PrW5Zy/rZodrS8jP16Zia1VVaMecCucd39Q2j2VVDsPAH7UahPh4T1ISZ7S4HuszikFQKtWEWrUMrJjfJB7KUnS6UB+I5IkKSi+OljGH+X2wHFGiDHobXjLylg++xVevcjMiNI4Rq9Q6jeoVBY0ulTCsj5Hn7e3ZswOykLC+fPhoYQZdRgbWNvK7SoEQK+PJTlpIhERfVGpjl0Q/Vge+X4zG/aXB47jrcF/fyRJkiRJUtTWkTJr1DzYMiFo93Xn5ODasw8wYHC+BSTjV/lZ36aCy7a05UDy4MC5FnXRGbXT3l95vTYAQkJa063rR426h61aKWcwfWwnJvZODVbXJEk6zciklCRJQVHhUYK/8fER/CMpmm4Wc9Db8JWUsCtBRXypEZ1PHXhco2uNBheGCmUW0uo2fdiFmT8zB3OvpeHJH7e7FLtjB6DsIpOefmuT+15kU2aQXdY9mXbxFoZ3iGvyPSVJkiRJqksIwS3b9rGiZqDMGsSZ20IIciZPRp9xFdrYDrjVLgC0PsEnM7yURxggHnT+YvqH/5ek8DxInxW09k8F1a4CcnLewm7PAkCnDWvwPTw+PznFDorsyvtnMcqvpJJ0NpOfAJIkNYnXL3ALQZlXGe3qajFzTlhwt/EVXi+7bp/G2tKN7EhREemIBAQaQzeSw2JoWf4Tvk0/onMoAegrLUdQZgyjf3rDt3x2OHaz8s/zEaKmGHkjinYeSe1o4LTBrUmPltscS5IkSVJz2F/t5uuDZYHj9kGcuV325XZMfZ6k1FvM6vxPKFCnYAQMXj9GD/g0SlsWTQEdx42A3jcGre1TRV7uF+Tmfho4NhobXj904vsrWJVz6L+RTEpJ0tlNfgJIktRoOU4Xo1bvCBQ3h+COSNaqzsriLd1SylpEknowBWuVHnChUoUQrcvFuC4blU9ZWldmCOXCgR3o3y6O3o3Y2a6ycgtCeFGpdOj1UcTHjW10v3PLnfzz07WUOlzYa3bcC5OBlyRJkiQ1G7tPWcQfrtXwn84t6RR6pH14G85bWkrVhiJUGh05ZYsor87HiLLDntnlZW9CV3L6XgylEG0oAWP7oLR7qnF7lFnpUZHnEhU9hLjY0Q26XgjBun3lAISbdaRGmumeFpxaX5IknZ7ktyNJkhrtzwpHnYRUuFZDD2vwZ0l5DxZyIEpFn821s5aU6d5Jxjwyqn7DVpOQeqbXFLZFpPJM27hGF8usrZEQHT2EzplvNanvv24vrFNHKsFqJNysb9I9JUmSJEk6OntNXBKuC15M4ne52DPmQsyDngdA+DcD4eyNqySs2kFr23nsbns+KHW7MajtYGj4srbTgddTAUBk1LmkJDd8R0G7y4u3pgD98geGYtI3z8Y4kiSdPmRSSpKkRivzKLN/Loix8lr7VAwqNVp144uB/5192TL+9+I/2RbrpSpDGUUTqNCHjiNCV0rHle9hcyrtVWt0LE3ohEGnoVNSwwNBp/MAuXmfU16+CgCdtunL9iqcHgCGtY9j2uBWtIoNRRPE90eSJEmSJIXd62NDZRXrK50AhGqCl+xw5x5E+EMB8OPHjfK3/Pw1TtJKHGzuoAyEWTW5ROpy6Ri/BVIeClr7p4Lde15h//6P8PmU97ehtaSEEFz/8Wp+21EEgEGrlgkpSZIAmZSSJKkRcqvd3JO1n212pXh3tF5HSBCDv1ply5bw9jAVI/9MZcga5f4qlRmNLhWjuhxqElL7LLH8mnwOv9w5iIRwI2FGXYPbysl5k7z8/waO9YbYRve7strDsl3Fgenp6dFmuqXKqemSJEmS1FzGr9/NusqqwHGoRn2Ms+vPW+Gi+MO9hAx+hP2OLP7wr8XrNaMF9F4/Hg3YjOEA9Aj5knaPz4KQB4LS9qmkIP9bfD4HACqVHoulU4Outzm9LNxeGDju26rhdT8lSTozyaSUJEkN9r/Ccn4trQwctzEbgnp/4ffjr6ykpDSXqFAjRvehhFeoIZxUfie8bDkAFXozU4feh1mv4fl4S6PbdLkPAhAVNRhrWFeSkq5s9L0en7OFb9bmBo7lkj1JkiRJal5ZVcpAWUuTAaNaxbXJMU2+p3C7Kf9mAXjDcHhK+aPwOwC0KINfLlMSG1K74I1JAxcY1A4wnpnL9jw15Q26df0/LJZO6HQNe521s8eNOjW/3nMecY3YHVmSpDOTTEpJktRgZTX1GkZGhzE1OZbe4cGrIyW8XraPv5Q/vbsoCNeTHtEKcKHRt0ZrGkEv20yMK38PnF9pCKVFlJlLuiU3qV2vRwm2EhPHExszskn3yilWRhLbxVtIizJzcbeG70wjSZIkSVL9eP2CqpoC5/87J4MofXC+4th++omy/3yNqecNVFcsBUCt8bIlyUmLChf7zA/gNYTVlrokxOgGTcNna5/K3O5inNW5+HzKDsehoW0alJCq9vh497c97CxUBjMjzHoSrMEpPi9J0plBJqUkSaq3Sq+PP8rtbKqZHt8x1ES/iNCgtuEtLOTzmN3kREfRebeVpIM1kZ7KikpthJJyAIpDIijSh7H/3NEsvndwo9vbvv0RCot+wetVCncGs5bU4xd2lNPTJUmSJKkZFbk97HS4AsdhQdwF2J2bj8pgwSe8VOiVASet2sNN8woxu1T8ep6SnOkSsZjISB8xg68LWtunAre7hGV/DMLvrw48ptU2bFb6vK0HeXXBjsBxvFXOkJIkqS6ZlJIkqd7u3L6PuUUVgeNIXXA/Qnw2G65du8iNgqiKmiVvKiMqVQjtdAeIKXkDXbEy0vZ++zH8ntyVW4e0bnR7QvjIzfscUHaBUatNhIQ0/n5vLd7Fij2l7C9TioCGmeRHrCRJkiQ1lwPVbvqu2IZHKH/HTWoVuiBtKFK1vhDXvvaIDml8t+8NvH4l8eXxCkJc4NEeSq70HWpGM+zMqyNVVZWN31+NSqXFYIgjOnooanXDSjYcrFASWu0TwhjZMY7RnRKao6uSJJ3G5DcmSZLqbVeVEpC1CzGSZtIzJqbps4pqVa1dy+Ybp7A6HZztzCRWKR9PupDRhOgjSVn2MGq3CJwf3TqNt8adw+C2jS9I7vU6qE1I9eo5F6MxqcE1EmpVVHl48eeswLFeoyZRTk+XJEmSpGazw1GNRwh0KhUxei3j4oKzqUjF/+ZSPncfmohMKty7Agkpv0qg97vIi+/L+rSWKGkpL5qQxte0PJV5a+pIhYa2p1fP7xp07UFbNT9szGfxDqW4ee/0SO4Y1ibYXZQk6Qwgk1KSJNVbRU0tqZntU+lsMQf13lVr1vDxID9xRSmcs+PQR5NKZcKgdgQSUv/NGMyB0Bha9erO+ZmNH23z+aqocmYDoFYbsFjaN6n/JTVLB0w6DU9f3Im28RYiQmSBc0mSJElqLpU+JS7pHmbmu3MygnbfstmzEbo+aCJAlH8HmHBbHGRHFzI8ayjb211M7TypEHU5mKOD1vapwOOxkZf/BRUV6wDQaRs+YPfMD9uYsyEvcBxjCe6mOJIknTlkUkqSpGPyCcGEDbtZY6sKFBEND2K9Bl95OaWzZ2Nf/BslmQZaHlA+llSaWFSaKFSaWKxFvyrnqtR8mnk+1hAjN3WMa3SbVVU5rPzzAvx+ZZldQ+sj/N3nf+5j6a5iAKJC9Yzr3rSi65IkSZIkHZ/dq8QlliDGJcIv8Lu0qEMslLjy2G1WgwuiiwUXL/WTlaHMxtL5C2kRV05GKye0uyFo7Z8KcnP/w+49LweO9fqG72SYW67EWH1bRtE23sIVPVOC1j9Jks4sMiklSdIxHah2s6TMHjhONuqINwRvZ5myL/5L8czXyYqPJCNHGWkUah3GsKtoJX4jaek9aH3KLKT8kCg++EdvBmY0bZtnm21jICGlUumIi7uw0ffaX1rFA99sChzLJXuSJEmS1Lw2V1bx7J58sp1KfBCqUQft3sUfbkbf5ga2la9gY95vgDLDx+gSeLRmSkKVsgFm82ZG3DYZYtoGre1TRbWrAICwsC6EW3uQlHRlg+9Ru+nLrUNb06/VmTWTTJKk4JJJKUmSjqm8ZslejF7L3HMyiDfo0KuDF/x5Dx5kbp9Q1M4IwmtyX2q1EvAZ3GVofS6ywxKY07I/G6Jb87656UvivF6lWHpMzEg6Z77VpHsdtCkFPCPMOib3bcEFnWUBT0mSJElqTp/klbCotDJw3MIUnKVhvspKXDnKhi4VroMAOPU+HEYvLSpasGTAlMC5abp9YGhcHcpTXW0tqbjYC0hNvbbe15VXuZnw3gryyp1UurwAWE3BG8iUJOnMJJNSkiQdUbXPzzeFZay3VQHKTntpQQr6AIQQ4PNRaSvmh25+LvwDUBnRmYeg1qag8VZj2KrUfNptTeTnFn1IsBppGRPS6Da9Xgclpb9RVr4SAG0jaiT8tf+7i+ys21cOQGpUCHcNlwU8JUmSJKm5lXiUhMekhEhGRls5N6LphcZdu3eTfellhI6eCYCvahVgwWUoJd5RiTANqznTT4i6lC7GFWA8s5JSeflfkZf7OY6q3UDD46RVOWVsLziULIwM0ZMW1fi4TZKks4NMSkmSdETfFpZx1/b9geMYXfA+LoTPx96Jk7Bv3MiWZCsdfOEAqFQhaPTtGLb7Fnz7QYXAo9JQ1bUXqx4ehtWkQ69t/CytPXteYf+BjwLHOl3jdw/8fn0ed3yxPnAsRwIlSZIkqXlV+/x8X1jOdrsyS3lAhIUR0cHZCbh682aEX4XdU8aeyk2UaQzgg8GbfCRUCDZkKqXNe1o+pFcXF2TcA/ozK+GSk/0mzup9gWNzSHqDrq9dsterRSTPj8skLsxIiEF+3ZQk6djkp4QkSUe0v9oNQIbZQA9rCJMTo4J2b29hIc4NGyho24sDxhJa1WzOolKHolc58LsFKuC1rpexILUH15ybEZRdW6qcOQCEhGRgNrckKXFCo++1JU+Z3m8xaomxGJjYSxbwlCRJkqTm9M3BMu7K+suAmT44X2WEX1CdrcLY6XJWlf3Ofsd2QCkXYPD4qDBpyAtNwACEqcvhss/PuFlSAJ6aZXtt2zxJWFhnLJbMel1XWe1h/taD/LajCIA4q5GWMaHN1k9Jks4sMiklSdIRVXiUWlKjo6081CoxqPf22WxsS4bf2xSTsk+FSh2FWpdMqDqBpOwFiIOgAswJcdw+sgMTeqUGpd3aGgkt0+8kNnZkk+5VXqWMBt40qBXTBrduct8kSZIkSTq2XJcyYNbSZOCCGCt9rMFJfLj22vAURKBL609l/v8BcCCmCo1wkuuZSFlYImqDMjgXonGA/sxLuAgh8PmU4p7R0UMxGutfI/ONX3fx7m97AsdRIU2v/ylJ0tlDJqUkSarjXzkFvJhdgL/mODyYy/bcbir+9z+cmzfza2cTfk8VEIJan4EqNJN+ix5AJZRznRo98d27cOvQjCa3m539OkXF83E4dgGg1TV+dPOVeVm8t2QPrpptqMPNctmeJEmSJJ0I9pq/vaNjgjdg5ty8hdz7XsHY+Rr8VQfRiBxAT1qRjaTKKApTuwOgA1T4sIYDQdzw5WQTwk+FbR1udzFCKLW6tNqGJd32lSj1RzskhNEmLpSr+6YFvZ+SJJ25ZFJKkqQ6fiiqCCSkjGoVvazBq5dg+/ln8h9+hM1d+tCCQ8GkSmUkUtgCCanrh95HicnKvS2Sm9ymEH72ZM+EmlelUmkwm1o0+n7fb8ij2qPcS69R0y0losl9lCRJkiTp+Ow+ZRZ3qCZ4SaGqlSsQHiUAUbs24hdeQE+PXT5UehOFqaDylHNRy0+x9BpNWJd3gtb2qaCoaB6bNk/7yyNqNBpzg+5RO3t86qCWjO2aFMTeSZJ0NpBJKUmS6qjwKgHfp51b0jc8FHMQAz9PXh6FEToOGB1QDagMqFQhqHXpWPZvBJQZUhde0JfoUD1X9Gx6nSafz0FtQqpL5/cxm9MbNCX972w1RTw/vb43nZOtWIxyppQkSZIkNRchBDdu2cvCUhsuv/L33KLVBO3+vspqhMnK0sLvKPbn4PUoBc21fj/b4yMBqDb4SE71w/Drg9buqaJ2pz2dLhKTKYXo6KGoVPV7f/9vxV6e/WEbzpqSD3LTF0mSGkMmpSRJAmB3VTVZjmpKa7ZZTjHqg5qQAvBV2Jh+pZpBq22EoEUfehlx2h20W/osOq8y9fuPxEzuG9kWtVoVlDa9XmVrYpVKT3T0kEbfJ6/cSVmVG1u18v60igmVCSlJkiRJamZVPj//KyoPHGtV0MXSsJk8R+NYVYC7oDO2dAu5Bf+teVQNCDZ3uhOnOQ41kKzNOyPrSAF4PcrGLQkJl5LR+sEGXfvjxvxAQspi1NIh8cwr/i5JUvOTSSlJkqj0+hi2agdOvz/wWIQueKOQJR99RNGb77GlXTe6WBMxuzSAAJWBaE8pOm8Va2Lb8GTva7FazdwShISU03mAnL1v4XIVAg2vj/BXK/aUMOG9FXUesxjlx6ckSZIkNTdbzZI9jQqW9W6PVashIgj1Lu2//UbFgmIgFndNgW+XyUNhWCmdC87FGZJK7dBcmm4rGCxNbvNUUlr6BwcOfEKlfSsAWm3DE0q2amX2+L+u6MqoTvEYgxg7SpJ09pDfqiRJItflxun3o1Op6BZmppc1hBh98GYB2X78CWd0R3Lce0kqUkYgQYNKbSakQNna2WUKZXBmEhd0CU7h0gO5/0de3heBY6Oh8Uv2Nucqo4gGrRqrScfgtrGEGOTHpyRJkiQ1N1tNcfMwjYYWJkNQ7il8Pg7ccSeGzGvQJcaids4Gwokpd3HJCjvb2kbiBPBsZlLKR1hDHNDh9aC0farYk/0aFRWrA8cmY/1LJuwqrCSvvJqiShcAqVFmmZCSJKnR5LcqSTrLVXp9ZFfVBBVGPXPOafpud3/nrSjj370dtMwCn1qDwTCQBEceGSuexOgqB8AUF8t7V/cIWptuVzEA0dHDiIjoQ3TUeY2+V0VNHanLe6Tw1MWdgtE9SZIkSZKOwesXjN+wi3U2ZXl/MOtI+auqEE4nDo2PVSVfg1epI6V3q8lL6EdpuLJ7nNpSRvhNH0N8ZtDaPlV4PGUApKbegNXajeioofW6bsfBSka8+nudx2QtKUmSmkImpSTpLLasrJIJG/bgEcquM+FBHuUqevNN7GvX80dEGIYyL+AFtQWt8Rys+XswuspZltCJUmMY7kEXBKVNpzOXsvLl2B1ZAMREDyMxcXyj7rUlr4IvVu3nz+xSQAZdkiRJknSi7K12sbzcETgO6m7AC/dhHvok66o3UGrbBShJKY+xBdtTJwXOG2JYDvqrg9buqcTrtQEQH3cRFkuHel+386Cy1DFEryEtKoSOiWG0jA7efxtJks4+MiklSWexlRWOQELKoFZxYUx40O7tLSqi+PU32N9lBMXkk6SUdkKHFQB9lbIk7rPelxCSnMrjwzoGpd2Nm27CXlMfAUCnj2z0vV78OYvfdhQFjhPCjU3qmyRJkiRJ9VO7bC9er+N/3TNINgRnYMj+2284VvjRWBLwOH8FYG9cFflRTsZtHIgLUOuL6KRdQSvjmjOqlpQQfjZsvIGKivV4veVAw2tJ1daR6tsqmn9PCd4Md0mSzl4yKSVJZ7GKmh1TpqXG8mir4NRyquUtLUMAe8M9UA4qdSQqbQJJlR4sRXOIKdmIW61l2qX9uLRXi6C163TuAyAivA8mcwsiIwY0+l4HbdUAXNY9mcwkK5d2Sw5KHyVJkiRJOrZKrxKjhOs0pBj1Qbmnr7yc/f+8BcuFbwHgcu8EjAzeVEnLIjtbOioJmt7azzgn7FfQ6M+opFR1dR4lJYsDxwZDPAZDTL2u3VNk5/0l2WzJUwYVw0zya6QkScEhP00k6SyU5ahm+q48NtmVOg3hQazTAFD2xX+xr1jOL33j2BK2hfblFtT6DISlM5mrHgBgQYue/BHbkestpqC16/d78dXsoNOp00z0+qhG3aewsprlu0sCSamr+6bROTk8WN2UJEmSJOkottmd3Lglh0K3F4CwIMYo3tIyUOnYa9/K6rKF+LxK4XSTN5yDcT2oMikJmsiYMOh6E7QYANrgFFc/FdQu2dPpIul+zucYjYmo1fV7fe8v2cNnf+4PHCeFBy9+kyTp7CaTUpJ0FpqdV8LCUlvguLU5eAGXa88e8p+YzspzeuIWFtrtAxCoVEbM/kO1IV7tMh6/Ss0zQahD4Pd72L79IRxV2YHHGrO1ca1bZ69jZU0dKYDIkOCM0EqSJEmSdGy/FFews2YDFoDM0OAkP4Rf4FhTgqHjOLLtm/B6qwAVINjb8iq8pkO7zxlT28PoB4PS7qnC4ymnqmoPADpdBCEhrRp0fbHdDcCYzAT6tIrioiDtlixJkiSTUpJ0FirzKqOPl8VFMCEhkn7hoUG7t/fgQUR0K0q9RX/5gFGh1sRhKVYSPXatkVevPIeW0aG0jGl62zbbBvILvgkcm4ypqNWNrz2RU6Ikz7qlhtOvVRTJEeYm91GSJEmSpOOrrSU1Pj6CW1PjyAjSwJl7n42qNU706efizVOW763NKKH/dkcgIdXSsJwI7QHiEtOC0uaporRsOevWXQ0o761W2/AlibaanYhHZ8ZzQWeZkJIkKXhkUkqSzkK2mjoNvawhDIgIXq0E4fXiKi5mbmfQFoNfpcJomYLRe4DWuxYQWboNgJVJmUzrkohKpQpKux5POQBmczqtWt1LWFiXJt3P5lSSdq9d0Y3UKJmQkiRJkqQTpdKnxCgtjAbahARng5Hyr76i6L3/YTrnelxVRfhFEWDk+nnVRFXpWFJTfnJE+MtoNCpI/Soo7Z4qbBXrAD8qlQa12kR83IX1vvbJ/21h7sZ8yhzKTKkwo9yJWJKk4JJJKUk6S3j8ggvX7mR9ZVXgsWDWaSh+5x0KZr7O4o6t0KqVkTjUJtSaSCJtq4g/uIp/dxzDd63OpWt6NLcEKSHl97twu4sBMBqTiY0Z2aj7FFW6eOz7zZQ43DhrCsBbTTLwkiRJkqQT4euCUt49UMQ+p5L8sGjVQbt35fwFeFCxMO9DKn3laGpqSaGJpCiqdhMTL5rUnjDpv2C0Bq3tU0Ht4F1KyrVktH6g3tcJIfi/5Xvx+pWdmvVaNW3izpzC75IknRpkUkqSzhJ7q111ElIhGjXdwoI3C6hywULcrc/Dpd4beEynbQeApaQSgCqzhf/e1JsOydFBabOw8Gc2b7kDIZQp5Y2Zjl7rp835/LS5IHAcHaon1Cg/IiVJkiTpRHj3QBEbK52B4wxzcGZJAfjsdkoNOhyuItSAQIVfJdjS+R5UKiVBZVbbICT6jEpI2R072bXreSortwCg0zbstdld3kBC6vtp/UmJNMs6m5IkBZ38xiVJZ4mKmtk/SQYdP/doQ6hGg0kTvFFIX0UFnvgu4N6LX2PGZLmBBMc6TNn/w1qylo1RLclu3Y3uLeOC1mZJ6e+BhJRKpSUqclCj71VaMy19YEY0E3qm0jnZikYdnNlckiRJkiQdm9OnzLJ+rFUiAyNC6RSEAufC76f8242o4ydB2C4o/YViq5tlmcUM2dIeMwZUfhdRhjzaG+eDIbzJbZ5K8vO/oqRkceDYbG5Zr+s8Pj//WrCD7GKlxqZBq6ZLSngz9FCSJEkmpSTpjFfq8fKvnINkOaoBiNJpidEHb1ma7ccfqVy3gbXhVn5PXEZ6jgZUBlQqDWnFCwnZu4+XzrmSRand6RUfGbR2ATyeCgAyWj9McvKkem9r/FfFdheLtheyOqcMgMwkK2M6JwS1n5IkSZIkHZvTrySl+lhDyLQEZyZ3/mOP4SnvRrnWS6VvNQAqPIxaW805pQZ2J4DFuYsrEh9RLkiaEZR2TxVej7LTclzcRSQlXkF4eK96XffH7hLe/HV34Dg5Ijg7IEqSJB2JTEpJ0hnuq4JS3jtQFDhONgZv2rW3rIzce+5lW8ee7Fc7lYQUoEXZUU9VqWzpHBOh575RbRnVMT4o7ZaU/Mau3S9RVZUDgN4Q06iEFMBj32/mx02Hlu3JaemSJEmSdOK5apaJGYI4i7t6y1Z2RhnYXLky8FjrPB89ckzsT1YGyqzqchj0AJxzNViTgtb2qcDrswNgtXYjIqJPva8rtCkDma1jQ7miRwqD2sY0S/8kSZJAJqUk6YxX6FZ2kutjDWF0jJULYsKDdm9vYRH4/VQYdOAB1GGoVCY0hm4YqksxlJUCkNauDf88r3XQ2s3N+xy7fVvgODSkTaPvtbdEqbN1Tmo4LWNCGdv1zApIJUmSJOl0UF2zfM8YxKXzfrudinBlVrVT78Nh9JJa2ZIlA64OnBNmtUFkjzMqIXXgwH+w2TZQUbEWAK0mtF7XVXt8fLA0myU7lcHMzCQrN5xbvyV/kiRJjSWTUpJ0hrJ7fayocLDFrhQNPTfSwtSU2KDd3zZvHo6lyyiyasnVF2DygM48DLUulgF/PIVHeFgd05r8kGgs7TsErV04NB09vcWtxMdfjNncotH3qnAqNakeHtOB7mkRweieJEmSJEkNVDtTyqhu+kwp4fNT/NEW9J1ux1v2LQBr2pWRl2Cj21xll16BwKB2kh6yGgyDm9zmqcLlKiJrx+N1HjMY61eW4KfN+bz0S1bgON4avGLzkiRJRyOTUpJ0hrpt2z5+LK4IHEfogvfr7s7JIfe229nUvhNZHVpirFKKqKtUBvQ+Owa3jR1RLfnk3ItJSW/HU91Sg9Y2gNen7OYXFtalUQkpIQQPfrOJP3NKyStXknZWU/DqbEmSJEmSdHwFLg/Xbs6myO3FLWqW7zUxKeUpLOTAHY/jThjDLudGbB5lif6ALV7a/uanMlxJtGj5hRti31UuCk9pUpunEre7GACNJpT0FtMwGOKICO9dr2sLKpSyC+3iLYzJTODK3sGN3yRJko5EJqUk6Qy1s0qpB5BhNpBqNHB+dPC2OPYUHMSr1bFf78RcVfuoBpU6HLMtF4AyQyjPjGlN3z71K6p5PD6fi02bb8bp3IfTeQAArdbSqHsVVrr4fNX+wLHFqCUxXI4GSpIkSdKJ9FtpJWttgUCCeL0Oq1bTpHtWLV+OZ18+a4wLyXfsDDzed7uXiCoVq6OUv/eDYvfC+TMgPA3iM5vU5qnC73fhrN4HgMEQR1rajfW+ttBWHRio69cqmluHZjRLHyVJkv5OJqUk6Qxl8yqzl97qkBa0XWxq+SptuExKkkuoQB9yMSq1kfR9i7GWb2RZYiZfZQxmYGqnoLVZYVtLSclvgWOVSo+pkcv2Sh1uQJkd9d7k7qTHhGDWy49DSZIkSTqRanfcGxAeykOtEmhtNqJrYk0pb1kl6tA47D5lqX9utBNUTtx57fmj0xjcIfEgwBJmhF43NPk1nCo8nnKWrxiOx6PU89Rqw+p97Ys/b+etxYd225OzxyVJOpHktzBJOoN4/YKvDpZS5PZSXpOUCmviiONf2X//ncKPP2VjlYvV3cOIKAOXFky6luh8+2mZM5ffEzvzXK+rMek0JEcGbwthj6cMgNDQ9rRt8wRGUzIGfXSD7lFe5WbGvCz2FDkAiA7V07tlVND6KEmSJElS/TlripvHG3ScExbSpHsJv5+q1Vtwbk/G2PUq/LkzAdjc0kZqcRW5SYOoNieCABU+wsPcTe7/qcRuzwokpFQqHbGxo+p97Z/ZNYkstYqIED3nyd32JEk6gWRSSpLOIAtLbdyx/dCyNDXBrSVV/Nbb7PeEs1tbTESZMpJp8Cs7uoRUKssFnXoT/zelKy0TIgkzNn2kzeerZs+eVyivWA2A0ZhEeHiPRt3rfxvz+c+KfYHj1MjgziCTJEmSJKn+qv21O+41vbh50SuvUDF3NcWZQyl07sPttQMaRq/y0j/fw7YU5W9+P8ssWhmXExozrMltnkq8Pjug1Nvs2eObBl1bu+nLJ9f2ol/rhg34SZIkNZVMSknSGWR/tTLql2bU0yc8lN7hIUGdKeUtLcURlwpuENoodLr2qHWtAdB6HRSawtnYphd3tA/etsolJYvZt/+DwLHJ1PhipEWVSgHPXumRXNglkWHtg7cboSRJkiRJDVNdu+OepmlL9gCqt2fh0xlZXvg/BH5AiX8GbfFg8mjwtlBqSSVEVRA26E7oeGmT2zyV+LxKUkqrCa3X+UIIvl+fR35FNQU2ZWAxTC7bkyTpJJBJKUk6A3j8ggUlFSwrUwKS8yItvNA2eDvJ2H6ZR/na9Ww0GNlPNgBaTSpaYy9iKtaice5gocXIjyMfoW1c44qPH427Zip6aGg7kpOuIjb2/Abfo9Th5uM/cli0/SAAvdMjmdwnLaj9lCRJkiSpfqp9flZWONjpUJIhTd1xD5R6lx5dGAI/AsHG1hV03y3Y1vFWKs2R+PSRSlsxSdB3WpPbO1Vk57xJdvZMhPACoKnnJjB/Zpdyxxfr6zwWFaoPdvckSZKOSyalJOkM8NXBUu78y7K96CAW7faWlZF7550c6HUp2WYfuJVdclRqKyq/mw6bPkTjFczuez0qFYzsGBe0tgG83kpAqSWVlHRlo+7x6Yq9vLbw0A488Va5054kSZIknSyP78rl47ySwLG5CUkp9/79OP7Ygjp8BKpIP5R+j1vnZ12bCgbuzqQ8/NAucnqVg5Cw4M0gPxUUFv4cSEgBRITXb9fjvAplp734MCMDM6LJTLaSYA1eLVBJkqT6kkkpSToD7KlSlqWlGvV0DzMzISF4xbu9hYXg9+PSacEJKm0SGl1bNIYOmB1FaLzK1Pt/jB/Af0f1QtPEXXNqHTw4l4KD/6OqStkNRlvPkb8jqZ2W3qtFJEPax3Jx1+AtL2wMn8+Hx+M5qX2QJOnodDodGs2Z9cVVkk4le51KuYFUo54WJj0Xx4U36j7C7ydnwpW4U4axN0yDy70dAJ/az/C1flpW6NkeDhp3LmPjXydcm4++xRPBeRGniNrBuy6d/43Veg46nbVe19mcSiKre1oEL43v0mz9awoZL0nSqS1Y8ZJMSknSaczp87Oo1MZamzJ76cqESO5sER+0+1fv2EHlol9xG8y4/MUAaLRpqEwdaJv1DZFl25nR40r2hsbxaOuWQUtIAezY+Qxud2Hg2GRs+HJEl9fHtvxK9pYo78/ozHj+0T89aH1sKCEEBQUFlJeXn7Q+SJJUP+Hh4cTHx6NSBe9zTZIkRW2B80dbJXJhbHij7+N3OPCVlLAjtYDsigOBx6MqvVz2p599yUpx8yTtPhJGXArdJoP15A5MBYsQfnw+ZyApZTQl1yshtXx3Cc//vJ28cmWmVJjp1Ps6KOMlSTp9BCNeOvU+hSRJqrf39hfxXHZ+4DiYy/Y8+fnsGTeB5Z3aU94uAexKLSlURjQ+O8l5S3CptSxM7o5eqw5qLSkhBB5PGQCtWz+A0ZBAdPTwBt9n6v+tYXFWUeA43HxyC3jWBlixsbGYzWb5ZVeSTkFCCKqqqigsVJLiCQkJJ7lHknTmqS1wbmjiYJbfrtTStGs84If9MVWUWN1MWBbOmq53Yg9RSgqEmm0Qcc4Zk5Dy+938ueoiHI5DpQl02rB6XfvZn/vYsL88cNwqpn6F0U8kGS9J0qkvmPGSTEpJ0mlsj1NZttfabKCrxcyYmPCg3du9dx/+qFaU+ysOPagyotYlE1qlzDwqNVr57h8dSElKJCrUELS2/f5qhFCmayclXolW27iAaUueDVDqJSRFmBiYERO0PjaUz+cLBFhRUcFbXilJUvCZTEpdlcLCQmJjY+VSPkkKMlfNTCljE2pJ+SoqsP26C0PHcbjVygDdniQHOfEOLtp6ERXhrQPnRuoOgGFQ0zp9Cqmuzq2TkLJYMtHro+t1bVmVsnTypkGtGN4hjm4p4c3RxUaT8ZIknT6CFS/JpJQkncbKvUo9gKkpMUxOrF8wUl9+eyUuUyjgxK9WYwq7HYQPrd+DoXIt37ccwJrULnzZNnjL4Xy+ajZunEqVM6fmETUaTUij71fhVBJbX93cl+QIc9M72AS1NRHM5pPbD0mS6qf2d9Xj8ciklCQFmatmppSxkTOlqrdvJ2fKNCp7X8260Hwq3AdRA5ct9ZJR4COnlfL7G6JdwYiw/xGv2w6mW4LV/ZPO41UG3QyGBPr2mY9abTzubKKteTZW7ClhT5EDgJ4tIuieFtHsfW0oGS9J0uklGPGSTEpJ0mnG4xdcuHYnm+xV+JSYDqs2eL/Krp07Kf9+Hhu27WZnjAtc4NNoUKlUJJQtpf3GL3mj8yX80P5i2ifUb6p4fVVUrKW0bGngODS0bYOnbBfaqnl8zhZKHW7cXmUk1mo6ucv2/kpOQZek04P8XZWk4BNC4OdQTSmDpnEzpao3b0atCyXLtorKaiUhBdB+vxuTV4dHq3xJ6mrdQGLXdhAxElLqtyvdqczv91JatpTy8tUA6HThaDT12zHv6g//pNjuChxHB3GGe3OQn8GSdHoIxu+qTEpJ0mlmt7Oa9ZVVgWOzRk0XS/C28C149lkq7PFsUu8IPKb3hyv/W6kUxbTERPDSZZ3p2yq406q9NSN/oaHtadv2SUJD2jX4Hj9syuenzQWB4xiLgVCD/KiTJEmSpJNJCMHlG3azpMweeKyxNaV8lXZUOjMunxKXrG9dTlK1jd3+GyiJ6hQ4LzbSAONnNa3jp5CDhXPZuvXuwLFOW7+d9qo9vkBCakxmAq1iQshMqt+1kiRJza3xC7klSTopyjw+AFqY9Gzo15HN/TuRZgreaJe3sAhnqLIU0K/WoTUPRR86FgC1384fCZ3w9+zH+B4pQV0S53IX43TuBcBoSCDc2h2ttuFL98ocSq2EQW1ieGNiN765uZ8cbWuia665BpVKhUqlQq/X07p1a6ZPn463ZvloYy1evBiVSnVCd9fJzs5m4sSJJCYmYjQaSU5OZuzYsWzfvr3OeXPnzmXQoEFYLBbMZjM9e/bko48+qnNOTk4OKpWK9evX17v9J554gnbt2hESEkJERATDhg1j5cqVde553XXXkZ6ejslkolWrVjz++OO43e5j3jc/P5+JEyfSpk0b1Go1d9xxR7368/vvv3PhhReSmJiISqXiu+++O+J527Zt46KLLsJqtRISEkLPnj3Zt29f4PmpU6fSqlUrTCYTMTExR3xPV61axdChQwkPDyciIoKRI0eyYcOGI7a3a9cuLBYL4eHhQXsNkiSdXA6fv05CKtmoI9XY8PjFnV+Kc2cixp434hFKoiU/uppkb3WdhFSoupioiOqmd/wU4qzKAcBgiCcyciBpLW6u13W2mnIGKhW8fmU37hrRFnUQd0yWFDJekvGSjJcaRyalJOk04fD6GL16B5M37gEgRqcjzqDD3Mip70fiLatGWLrgM9UUFleb0Rq6EG3bTutdX/HfmFSe6n0N5sjwoLUJkJf3JUuX9mbX7hcB0GobvpNfldvLbzuK2JqvbI2cmWTlgs6JpETKmgTBMGrUKPLz89m5cyd33303TzzxBC+99NLJ7lbA8YIQUNa6Dx8+nIqKCr755huysrL44osvyMzMrBPovf7664wdO5b+/fuzcuVKNm7cyIQJE7jpppu45557mtTPNm3a8MYbb7Bp0yaWLl1KixYtGDFiBEVFyi6R27dvx+/38+6777JlyxZeffVV3nnnHR566KFj3tflchETE8MjjzxCly5d6t0fh8NBly5dePPNN496zu7duxkwYADt2rVj8eLFbNy4kUcffRSj0Rg4p3v37syaNYtt27bxyy+/IIRgxIgR+HxKEt1utzNq1ChSU1NZuXIlS5cuxWKxMHLkyED9kFoej4crr7ySgQMHBu01SJJ08jlrluwBbOnfiRW9OzQ4hin54AP2XHkzKw8uYvHBr6jyKDOsxy/x0mXtoc+kKTFTmBwzFUNC8Opengo8XmXzmYT4S+jW9SOiIgcc83whBLd+to7zZy4BIMyok8moZibjJRkvyXipEYR0VBUVFQIQFRUVJ7srkiR+L7GJuEXrAj+P7TwQ1PsXvf22WDvtNfGff9wunrp2tJhx+Rjx8pXXijemLhTLeo8QW9u2E9ff8KwY//YyselAeVDb3rL1frFgYUuxcFFb8dvv3cXBwp8bfI9bZq8VaffPDfy8//vuoPaxqZxOp9i6datwOp0nuysNNmXKFDF27Ng6jw0fPlz06dNHlJaWismTJ4vw8HBhMpnEqFGjxI4dOwLn5eTkiAsuuECEh4cLs9ksOnToIH744QeRnZ0tgDo/U6ZMEUIIYbPZxMSJE4XZbBbx8fHilVdeEYMGDRK333574L5paWli+vTpYvLkycJisQSuXbJkiRgwYIAwGo0iOTlZ3HrrrcJutwshhFi3bp0ARE5OzlFf6759+4ROpxN33XXXYc/NnDlTAGLFihVCCBF4DevWrWv4m1qj9u/MggULjnrOiy++KNLT0+t9z7+/V/UFiG+//fawx6+44gpx1VVXNeheGzZsEIDYtWuXEEKIVatWCUDs27cvcM7GjRsFIHbu3Fnn2vvuu09cddVVYtasWcJqtQblNTTGsX5nZXxQl3w/pPrY53SJuEXrROri9Y2+x95rrxNLRl0pZlw+JvDz0uXni/UdOoh1mb3FG1MXijdunC/8bw0QYtciITzVQXwFJ09R0SKxbt01YsmSvmLBwpYiZ+979bruYIWzTmw08f3lzdzTppPxkoyXjkTGS2d2vCRnSknSaaLCq2TQO4eaWN67PU+0SgzavT35+RT96zU2VGyhwLELk135aFBplF1ZDNVKDavLLhvOf2/qR6cg1yHw1oz8tcl4lHMHriY2ZmSD77GrUFkS0DI6hHPbxDA6MyGofZTqMplMuN1urrnmGlavXs2cOXNYvnw5QgjOP//8wGjOtGnTcLlc/P7772zatIkXXniB0NBQUlJS+PrrrwHIysoiPz+f1157DYC77rqLZcuWMWfOHObPn8+SJUtYu3btYX2YMWMGXbp0Yd26dTz66KPs3r2bUaNGMW7cODZu3MgXX3zB0qVLueUWZcelmJgY1Go1X331VWBE6u+++uorPB7PEUf4pk6dSmhoKJ999llQ3kO32817772H1Wo95mhdRUUFkZGRQWmzofx+Pz/88ANt2rRh5MiRxMbG0rt372NO+XY4HMyaNYv09HRSUlIAaNu2LVFRUXzwwQe43W6cTicffPAB7du3p0WLFoFrFy1axJdffnlqjuJJktQkrpqZUkZ1479++Coq8GiV3Z3KQz381rUIg8il2pzCntYdANCrnaii0qHVYNCe2sW86ys7eyYlpb/jch8EwGRKrdd1tbsQW4xafrhtALOuOf2LvZ9uZLzUdDJeOvPjpZOSlDreesa/rset/Rk1alSdc0pLS5k0aRJhYWGEh4dz3XXXYbfb65yzceNGBg4ciNFoJCUlhRdffLG5X5okBV2l18c6WxVb7Eoxz1iDjnSzIah1krzFJQjAidKGxtAFrXk4FjpiLVnPmx2Hcce5txLaskXQ2gSw27PYu+997HalqLpW1/jd/CqqlOnIr17RlU+u7UVSePCKvzcXIQRVbu8J/1EGSBrf5wULFvDLL7+QmprKnDlz+Pe//83AgQPp0qULn376Kbm5uYHP9X379tG/f38yMzNp2bIlF1xwAeeeey4ajSYQOMTGxhIfH4/VaqWyspKPP/6YGTNmMHToUDp16sSsWbOOGBQNGTKEu+++m1atWtGqVSuee+45Jk2axB133EFGRgb9+vVj5syZfPLJJ1RXV5OUlMTMmTN57LHHiIiIYMiQITz11FPs2bMncM8dO3ZgtVpJSDg8qanX62nZsiU7duw47LmGmDt3LqGhoRiNRl599VXmz59PdHT0Ec/dtWsXr7/+OlOnTm1Sm41VWFiI3W7n+eefZ9SoUcybN49LLrmESy+9lN9++63OuW+99RahoaGEhoby008/MX/+fPR6PQAWi4XFixfzn//8B5PJRGhoKD///DM//fQT2prdQ0tKSrjmmmv46KOPCAsL7s6ekiSdfNW+mh33GrF8rOzLLzlw571Uu6JwWpQBs/JQN9mJVaT7+rK6+33kx14FgF7lBMOZ9Rni9pQCkJ5+B127zCImevgxz/f6/PywMZ+v1hwAIDJET8dEK3rt6Tkf4WTFS02JmWS8JOMlGS/V30nZkqp2PeO1117LpZdeesRzRo0axaxZh3bLMBjqjnRMmjSJ/Px85s+fj8fj4R//+Ac33ngjs2fPBsBmszFixAiGDRvGO++8w6ZNm7j22msJDw/nxhtvbL4XJ0lB5BOC8/7cTq7r0Bpia80IYTAIISj9cBbl60opHHA1TtdSQIVG1xY9YfRf9SB/xrVjUd/rMek0ZMSFBq1tgI2b/onTmRM41usaNrrh8wsm/XsFa/eV4/YqwW6EWR/MLjYrp8dHh8d+OeHtbp0+ErO+YR//tYGBx+PB7/czceJELr30UubOnUvv3r0D50VFRdG2bVu2bdsGwG233cbNN9/MvHnzGDZsGOPGjaNz585HbWfPnj14PB569To0mmu1Wmnbtu1h5/bo0aPO8YYNG9i4cSOffvpp4DEhBH6/n+zsbNq3b8+0adO4+uqrWbx4MStWrODLL7/k2WefZc6cOQwffuwgv1Zt4HAsn376aZ3A6Keffgqs+R88eDDr16+nuLiY999/n8svv5yVK1cSGxtb5x65ubmMGjWK8ePHc8MNNwQeDw099Ht41VVX8c477xy3P0uWLGH06NGB43fffZdJkyYd9zp/zcyGsWPHcueddwLQtWtX/vjjD9555x0GDRoUOHfSpEkMHz6c/Px8ZsyYweWXX86yZcswGo04nU6uu+46+vfvz2effYbP52PGjBmMGTOGVatWYTKZuOGGG5g4cSLnnntuUF+DJEknn18IHL7GzZTyu90UPPEkjnYjWGLOw19zn3CHj/u/9OHW1cwc99mJ1BfTMWQhtDry94vTjddrx2bbiMdTDkBc7BhCQloe97qftxRwy+x1geOokNMnNjqSkxUvQcNjJhkvHSLjJRkv1ddJSUqNHj26zht1JAaDgfj4+CM+t23bNn7++WdWrVoV+CV7/fXXOf/885kxYwaJiYl8+umnuN1uPvzwQ/R6PR07dmT9+vW88sorMiklnTZKPd5AQirJoMOkUTM+PiJo93dt20bOG2/xe9tk/MIL1Ixeqo3oXcqsqb2WeH6+bQAJ4WasZl3Q2hZCUF2dC0BszGjM5nTCw3sf56q68sqdrNhTGjhOiTQRbzUe4wqpsQYPHszbb7+NXq8nMTERrVbLnDlzjnvd9ddfz8iRI/nhhx+YN28ezz33HC+//DK33nprk/sUElJ3d0a73c7UqVO57bbbDjs3NfXQUgeLxcKFF17IhRdeyNNPP83IkSN5+umnGT58OBkZGVRUVJCXl0diYt0lsm63m927dzNy5PGXl1500UV1gs+kpKQ6/W7dujWtW7emT58+ZGRk8MEHH/Dggw8GzsnLy2Pw4MH069eP9957r869/7p7TX1HyHr06FHnuri4uHpdFx0djVarpUOHDnUeb9++PUuXLq3zmNVqxWq1kpGRQZ8+fYiIiODbb7/lyiuvZPbs2eTk5LB8+XLUNV9IZ8+eTUREBN9//z0TJkxg0aJFzJkzhxkzZgCHAmStVst7773HlVde2ajXIEnSybXTUc3YdTsprdk9uKEzpfw2G/h8lBvA7/PjR+DW++m500HGQcGmjsqGJuHOX5lwXTtU3T8A3ZkRC6zfcC0VFWsCxzpd/conHChTYrikcBNdU8KZ1Kd+y/2kppPxkoyX/krGS/VzUpJS9bF48WJiY2MDUwaffvppoqKiAFi+fDnh4eF1sr7Dhg1DrVazcuVKLrnkEpYvX865555bJ0M7cuRIXnjhBcrKyoiICN4Xe0lqLmU1AVy4VsOafh2Dfn9vcTFlYRH4hReBChU6VNoYVOoIfOIAD/afyt7EDB5LDG4NKQC/34kQSsKtffsX0GpDjnPF4WprJcRYDHw/rT/RoYbTamq6Sadh6/SG188KRrsNVRsY/FX79u3xer2sXLmSfv36AcqU4qysrDp/lFNSUrjpppu46aabePDBB3n//fe59dZbA5/Pf51q3rJlS3Q6HatWrQoERhUVFezYseOoI0K1zjnnHLZu3XpYP49FpVLRrl07/vjjDwAuu+wy7r//fl5++WVefvnlOue+8847VFVVcfXVVx/3vhaLBYulfrtI+v1+XC5X4Dg3N5fBgwcHdmhR/21WQUNeXy2TydSo6/R6PT179iQrK6vO4zt27CAtLe2o1wkhEEIEXldVVRVqtbrOsuPa49rRxeXLl9f5t/D999/zwgsv8Mcff5CUlNTo1yBJ0sm1qsIRSEgBnBvRsB12fTZlV127HnDCrmQHKzKL6fVRF5b0uxyPTokfeiTuRBU64IxJSAE4HDsBMJvTiYwYgF4fVa/rbDXx0YiOcTx+YfDjxxPtZMVLtW03hIyXZLz0VzJeqp9TMik1atQoLr30UtLT09m9ezcPPfQQo0ePZvny5Wg0GgoKCg6btqfVaomMjKSgoACAgoIC0tPrbgNbmyUsKCg4YlLK5XLV+Ydus9mC/dIkqV5ynC6uWL+bQrcSVIQ3IolwPP5qF9U7K3EmtQbfflTGaIymyRg8u4g4uIp8bxHrOw2jX2r9AqD6EkKwcdNNFBcvAkCl0qLRmBt8j9cW7uTPbGWWVFSInsTToIbU36lUqgYvozuVZGRkMHbsWG644QbeffddLBYLDzzwAElJSYwdOxaAO+64g9GjR9OmTRvKysr49ddfad++PQBpaWmoVCrmzp3L+eefj8lkwmKxMGXKFO69914iIyOJjY3l8ccfP+wP9JHcf//99OnTh1tuuYXrr7+ekJAQtm7dyvz583njjTdYv349jz/+OJMnT6ZDhw7o9Xp+++03PvzwQ+6//35AGSF88cUXueeeezAajUyePBmdTsf333/PQw89xNNPP02nTp3qtPv3AASgY8eO6HR1ZxY6HA6eeeYZLrroIhISEiguLubNN98kNzeX8ePHA0qAdd5555GWlsaMGTMCWx8DR509XKt2VMxut1NUVMT69evR6/WHjdr9ld1uZ9euXYHj7Oxs1q9fT2RkZCDIvffee7niiis499xzGTx4MD///DP/+9//WLx4MaAsIfjiiy8YMWIEMTExHDhwgOeffx6TycT5558PwPDhw7n33nuZNm0at956K36/n+effx6tVsvgwYMBAv8uaq1evRq1Wn3Y+92Y1yBJ0snjqqnJMzI6jNfbpxFWzzIEwu8n7977qKop3OxSK1/IvFo/XZ0uyqLOwaNXvsyq8RCr331G1ZISwo/XqyTkzun2GQZDzHGv+WVLAYuzilizV4mPLMbgzXA/mWS8JOMlGS+d4fFSMLYBbArqsR3h7t2762wB+cwzz4g2bdocdl5MTIx46623hBDK9ps33nhjnee3bNkiALF169YjtvP4448ftuUmcotj6ST4+ECRiFu0LvBzy9ajb8naGLb588Xa4ZeLmVdeJl6q2VL55atuE29MXSh+73eZ2Nq2nXh5zLViw95SUe3xBrVtr9chFixsGfhZu25Kg++xObe8zhbH1330Z1D72BzOtC2Oa9VucWy1WoXJZBIjR46ss8XxLbfcIlq1aiUMBoOIiYkRkydPFsXFxYHnp0+fLuLj44VKpTrmFse9evUSDzzwQOC6tLQ08eqrrx7Wnz///FMMHz5chIaGipCQENG5c2fxzDPPCCGEKCoqErfddpvo1KmTCA0NFRaLRWRmZooZM2YIn89X5z7fffedGDhwoAgJCQn8Lfjss8/qnHOkbZprf/bv339Y35xOp7jkkktEYmKi0Ov1IiEhQVx00UXizz8P/fudNWvWUe95PEe6Ji0t7ZjX/Prrr0e8rva/Ra0PPvhAtG7dWhiNRtGlSxfx3XffBZ7Lzc0Vo0ePFrGxsUKn04nk5GQxceJEsX379jr3mDdvnujfv7+wWq0iIiJCDBkyRCxffvTtyeu7xXF9X0NDBWOL47OFfD+kY3l770ERt2id+OeWhsUyrpwcsbVte/HzZVPFBxMmiRcnXiRmXD5G3De1n/jwmgzx6eVvijemLhTzb7lROB9NEOLxMCEKtx//xqc4r7da5OZ+KbKz3wrESl5v9XGv8/v9ov2jP9WJj2av3HsCehxcMl6S8ZKMl86+eEklRBO2YQoClUrFt99+y8UXX3zM82JiYnj66aeZOnUqH374IXfffTdlZWWB571eL0ajkS+//JJLLrmEq6++GpvNVmdnv19//ZUhQ4ZQWlpa75lSKSkpVFRUnDGV7aXTw8y9B3l2Tz4XxFh5tFUiqUZ9UHfby3/iCdZuLmS7Zl/gMZ15JBpDR7pueJEqTxWfDprMRy/fcIy7NI7LdZCly/qhUmno328pen00KlXDltwtzirkmlmrSLQaufm8VgzvEH/K15Kqrq4mOzub9PR0jMZTu6+nGofDQVJSEi+//DLXXXfdCW+/tLSUoUOHEhYWxk8//YTZ3LCZfdLp6Vi/szabDavVKuODGvL9kI7ltZyDPJedz8SESF5pV//ReOeWLey79g5+Sg/BJ7yBxzvvPUh8pZe1XW/HbkllcMw7dLjkQohIg/RjL1s6HeTmfsb2rEcCxxpNCOcN2njc6+wuL50eV4qB3zY0g+hQPeO7p2DSB3+2fXOS8VLjyXhJOhmCES+dFvMgDxw4QElJSWDLyb59+1JeXs6aNWvo3r07AIsWLcLv9wcKpfXt25eHH34Yj8cTmBI4f/582rZte9R6UgaD4bBd/iTpRNrrdPH1wTIWlyrTtZOMetJMwf83WVSQjdMYCh7wmVIx6y/A4txLTN5c3m59LkuTutAxMfhfLJzO/dgdyvawWm0YBkPsca6oq7zKzWd/7mf9fiUhnR4TwuS+LYLdTekkW7duHdu3b6dXr15UVFQwffp0gMAU9xMtMjKSBQsW8Oabb7J8+XKGDh16UvohSZJ0OnIJZdmdvqG77tkd+HWHElKLuxbRrthNvLiOHZGHltmER4XCOZOD1+GTzFmzCYzZ3IowSybR0UOOe021x8fm3AoA9Bo1dw7LCOpgpnRqkvGSdKY4KUmpY61njIyM5Mknn2TcuHHEx8eze/du7rvvPlq3bh2o4N++fXtGjRrFDTfcwDvvvIPH4+GWW25hwoQJger/EydO5Mknn+S6667j/vvvZ/Pmzbz22mu8+uqrJ+MlS1K9PLU7j7lFFYHjOH1wawGUfPAh+3/+g10mK8XqPQAYvKGojEbaZv0Pqy0bd+r1xFgMXNEzJahtHzjwH7J2PB441moaVugU4OM/9vLqgh2B47gwOYJ2ppoxYwZZWVno9Xq6d+/OkiVLiI6OPmn9iYqK4rHHHjtp7UuSJJ2uXH5lUUZ9d93zV1dTMWcOzvUb8BlMgDJQtzehilEH3ZT/JSFl0RwkOtId9D6fTF6vEgfGxZ5Py5Z3HPd8t9fP0Jd/I7dc2XEvzKSTCamziIyXpDPBSUlKrV69OlCoC+Cuu+4CYMqUKbz99tts3LiRjz/+mPLychITExkxYgRPPfVUnVlMn376KbfccgtDhw5FrVYzbtw4Zs6cGXjearUyb948pk2bRvfu3YmOjuaxxx7jxhtvPHEvVJIaaH+1EliNjA6jQ4iJKxMig3r/ko9msSW1HQWuPYHHVBqlkLnGW025PoR//GMMo/u1C2q7ABW29Uo7GjMajZnExCsafI8CWzUA56SG07NFJBN7yyLGZ6Ju3bqxZs2a458oSZIkndLyXW5K3MpMJ0M9EyUV331PwdMvkHfOKPakmqCqEo9GIFQQ4jbhqDnvhtgJ6ExmVF1eaKben1hlZX+ybfuDuFzKpk1aXf12Pi6srA4kpKwmHVf0TG62PkqnFhkvSWeKk5KUOu+88zhWKatffvnluPeIjIxk9uzZxzync+fOLFmypMH9k6QTbZvdyQvZ+exwKEmX21PjOMcaEvR2POXlVKcqwaFa3x61Jg61oRMIP/cM/Ae5hjA+jm2e0RWvV9nNMqP1wyQlTWjUPWq3OL6oSyLX9E8/ztmSJEmSJJ0sL+zJ59W9BwPH9V2+5zlYADEZrHcdqqPk1Xp46vNeoE3AkQQqXzX6toNg0pdB7/fJcrDwB5zOnMCxJfToO4H9VUVNbBRjMbDq4WHN0TVJkqRmdVrUlJKkM90neSX8XKwkbXQqFalBriPlLS2lct1+7G2G4BYHANAaOmPy6ojf9yvaqnz29r0CtQrSo4ObDKus3MK+/R9SUbFeabeeI3+1/H7B9Z+sZt2+MuwuJaFmNZ8ZWxxLkiRJ0plqjU2Z06RXqYjUaRkSVb9l+/5KOx69AXDgVwn+bF/GxdujyE2bFDjHTDkYzqyi+rXL9lJTrycleQpGY+Ixz3e6fXyyPIet+Ur8GGaUX+skSTo9yU8vSToFlHiUZMv4+AhuTI4hWh+8X0370mXsv3kaa7ufS4F2D/hqnlAZCa/YTavsOWyMasm/J7SnRWIsieGmoLUNkJ3zFkVFPweOTcakBl1/oMzJou2FgWOtWkXHxIYltiRJkiRJOrGqa2pJvdUhjQtiw497vre4GPvSpVRv24ZPqwzOeTWC7S0qidzcinJA462ghWEDmZHzwNin+Tp/Avl8LhyOLKqr8wAICck4bkIKYO7GPJ77aXvgONYi62xKknR6kkkpSTqJCl0ecpwu9juVWlLnRljItAR3+1Tn+vWotGbKPEXKA6oQ1NpEVOpIvPrN3DPgZnJj0ljftWVQ263lcZcAkJhwOdHRQ7FYMht0fWmV8t7EWgzMvqE3kSEGIkP0Qe+nJEmSJEnBU+1Tdt0zauq3bC/voYdwLPuT7Ix43jmvgkGro3BrlXt4/cos7mpvGaPafAKWBOh8efN0/ARbv+EflJevDBzrtPWbAVZY6QKgXbyFQW1iuOSchg36SZIknSpkUkqSTpIKj5c+K7dRVRO0AVi1mqC34ysvo8ochtevJHf0lnGoNdGo/D4OunxsSW9FkjW4s6P+qraWVFzcBURG9q//dT4/93y5gY0HlOns0aEGWsc2fMc+SZIkSZJOPKe/JilVz133PAdycfe8ik2mtbTdrcwg13v9PPxVGm6tsiOwXuOEEc9A1yubp9Mngd2+DQCDPg6jKZnw8PrNAKutszmgdTQPnt++2fonSZLU3Oo3dCFJUtDlVLup8vnRqqClycDAiFD6hYcG7f6OFSvYOewCCnYbKezWG79QdmZRqQy03/5/nLv0bpz+QgakGLh3ZNugtVtr0+ZbWfxbZ+yOLAC02oYllDbmVvDd+jz2FCs1KTLigvfeSJIknSlatGiBSqU67GfatGmAsrnM35+76aab6txj3759jBkzBrPZTGxsLPfeey9er/dkvBzpDFK7fM9UzwLn/qoqdpGPttRGfJmyFC3cFUlJ0l0UxPUFIFZfCMYzp5aUEAKv1w5Az57f0aP7f9Hpjv36Vu4p4Z+fruHHzfkAWIyyzqYkSac3OVNKkk6Sco9S3CnDbOTXXu2Cfv/KefM4aE5gZdViqIJADlplwGUq44e0njguuIL/3Dg06G17vQ4KC38MHOt0EZjNDdstr7xm2V56dAhPXNSRni0igtpHSZKkM8GqVavw+XyB482bNzN8+HDGjx8feOyGG25g+vTpgWOz+dAycZ/Px5gxY4iPj+ePP/4gPz+fq6++Gp1Ox7PPPntiXoR0RtnucDKnsJzSmnqZ9V2+t09fySbTbixO2J1op7OhFMvuiZQDWl8FEZoCBkV+B8bhzdb3E8nv9+LzVQHKjLL6Dt69umAHK/aUBo6TI5pvtrskSdKJIGdKSdIJVu7x0m/FNq7csBuACF3z5IYrivMoCVECHKHSolJHojF0Q4WWLxJ68HaXSzEmJTRL215fJQAqlYa+fRbSv9/v9Q62Kqs9/N+KvXy3Tin4mRxhYlCbGMxBLP4uNcw111wTmGGh1+tp3bo106dPb/JMisWLF6NSqSgvLw9OR+shOzubiRMnkpiYiNFoJDk5mbFjx7J9+/Y6582dO5dBgwZhsVgwm8307NmTjz76qM45OTk5qFQq1q9fX+/2n3jiCdq1a0dISAgREREMGzaMlSsP1RLJycnhuuuuIz09HZPJRKtWrXj88cdxu93HvG9+fj4TJ06kTZs2qNVq7rjjjnr15+2336Zz586EhYURFhZG3759+emnnwLPl5aWcuutt9K2bVtMJhOpqancdtttVFRUBM756KOPjjhTR6VSUVh4aJMCl8vFww8/TFpaGgaDgRYtWvDhhx/W6c+//vWvQFspKSnceeedVFdXH/M1fPPNN4wYMYKoqKgG//c4E8TExBAfHx/4mTt3Lq1atWLQoEGBc8xmc51zwsIOzcSYN28eW7du5T//+Q9du3Zl9OjRPPXUU7z55pvH/XcnSUdyf9YBXsk5iKOmPEH4MUoT+KurKXztNfIeeZEFPaOpVCnxw4EYJ22shaAOB6CF9msu7/gBMR3bQ1KPZn8NzW3//o9Y/FsHfl/SDVDiJbW6foXKyxzKsr3rBqTz1qRzuKjr8YuiSyeGjJdkvCTjpcaRSSlJOsHW2qrY43RRW0kqmEv2AKq3b6f82//hLtRiNyuBi07TAoP1GjIKq+i55gV8Wi0jOsQxoVdqUNuu5fUqQaVGE4rZ3AKNpv7F2z9alsOj321mzgYlKRUTamiWPkoNM2rUKPLz89m5cyd33303TzzxBC+99NLJ7lZAfb48ezwehg8fTkVFBd988w1ZWVl88cUXZGZm1gn0Xn/9dcaOHUv//v1ZuXIlGzduZMKECdx0003cc889TepnmzZteOONN9i0aRNLly6lRYsWjBgxgqIiZSOC7du34/f7effdd9myZQuvvvoq77zzDg899NAx7+tyuYiJieGRRx6hS5cu9e5PcnIyzz//PGvWrGH16tUMGTKEsWPHsmXLFgDy8vLIy8tjxowZbN68mY8++oiff/6Z6667LnCPK664gvz8/Do/I0eOZNCgQcTGxgbOu/zyy1m4cCEffPABWVlZfPbZZ7Rte2jp8OzZs3nggQd4/PHH2bZtGx988AFffPHFcV+7w+FgwIABvPDCC/V+3Wcqt9vNf/7zH6699lpUqkN1fD799FOio6Pp1KkTDz74IFVVVYHnli9fTmZmJnFxcYHHRo4cic1mC/w7+DuXy4XNZqvzI0m1amdIjYmx8kq7FJKMR9+cxL5oESVvv4O3sh1lUdHoPcpXk+tX+kifGxLYha+1JR9uWgoTPwfd6b/LXFHxAoQ4NMMxMnJAnd/ZY7FVK7Hd2K6JnJ+ZgK6eM9GkE0PGSzJekvFSIwjpqCoqKgQgKioqTnZXpDPI1wWlIm7ROnHRmh2iyOUJ6r295eViW6dM8fuVD4p/TZ4oXp44Ssy4fIyYOekh8cbUhWJl92Fiaeee4sWPfghqu7X27ftILFt2nvh9SR+xYGFLsXTZuQ2+x/1fbRBp988VY2b+Lh74eqPYedDWDD098ZxOp9i6datwOp0nuysNNmXKFDF27Ng6jw0fPlz06dNHlJaWismTJ4vw8HBhMpnEqFGjxI4dOwLn5eTkiAsuuECEh4cLs9ksOnToIH744QeRnZ0tgDo/U6ZMEUIIYbPZxMSJE4XZbBbx8fHilVdeEYMGDRK333574L5paWli+vTpYvLkycJisQSuXbJkiRgwYIAwGo0iOTlZ3HrrrcJutwshhFi3bp0ARE5OzlFf6759+4ROpxN33XXXYc/NnDlTAGLFihVCCBF4DevWrWv4m1qj9u/MggULjnrOiy++KNLT0+t9z7+/Vw0VEREh/v3vfx/1+f/+979Cr9cLj+fIn1+FhYVCp9OJTz75JPDYTz/9JKxWqygpKTnqfadNmyaGDBlS57G77rpL9O/fv179DsZ/j7861u/sqRoffPHFF0Kj0Yjc3NzAY++++674+eefxcaNG8V//vMfkZSUJC655JLA8zfccIMYMWJEnfs4HA4BiB9//PGI7Tz++OOH/f6eiu+HdHL0+GOLiFu0Tqwutx/33JKPPxFb27YX30x9Qsy4fEzg57thV4ovL35evH3dXPHG1IUi9+GBJ6DnJ86KlWPEgoUtRcHBH4XbXS78fv8xz88rrxL9n18oMh76UaTdP1ek3T9XZBcd//09Hcl4ScZLRyLjpUPOxHhJptYl6QTZ4ajmpi05vLH3IACxeh3RQV6S5snPR3g87FYX4XVVILzKlHmhU6Z2v3HuEK4e+QghaW2C2m6t/Qc+wVm9D7dbmYIaGtrwWlkVNbvJjO+ewnOXZsod905RJpMJt9vNNddcw+rVq5kzZw7Lly9HCMH555+Px6P8d5w2bRoul4vff/+dTZs28cILLxAaGkpKSgpff/01AFlZWeTn5/Paa68BcNddd7Fs2TLmzJnD/PnzWbJkCWvXrj2sDzNmzKBLly6sW7eORx99lN27dzNq1CjGjRvHxo0b+eKLL1i6dCm33HILoCxzUqvVfPXVV3Vq8PzVV199hcfjOeII39SpUwkNDeWzzz4Lynvodrt57733sFqtxxytq6ioIDIyMihtHovP5+Pzzz/H4XDQt2/fY/YnLCwMrfbIn1+ffPIJZrOZyy67LPDYnDlz6NGjBy+++CJJSUm0adOGe+65B6fTGTinX79+rFmzhj///BOAPXv28OOPP3L++ecH6RWe+T744ANGjx5NYuKh5Tw33ngjI0eOJDMzk0mTJvHJJ5/w7bffsnv37ka38+CDD1JRURH42b9/fzC6L50h3DW77hnqseuez17J/jgDOz2bA4/p1W5yW0zgYFxPfFqlXlKI+cxYSlpRsZY/V12Ew7ETAJMxCZ3OetxZUn9ml3KgzIm7ZklkcoSJhPDTf8bY2UDGS00n46UzP16SRVok6QT5MLeY7wrLA8ctTEefzt4YfpcL9759CMBds9Oe1jQQtTYFvc9MaOlmfrd2JjxEx4DW0UFtu5bXq6yb7tTxNUym1AYlpZ77cRufLN9LtVf542c1nQW7yQgBnqrjnxdsOjPUc5nA3wkhWLhwIb/88gujR4/mu+++Y9myZfTr1w9QlgmlpKTw3XffMX78ePbt28e4cePIzMwEoGXLloF71QYOsbGxhIeHA1BZWcnHH3/M7NmzGTpUKcI/a9asOl+yaw0ZMoS77747cHz99dczadKkQH2AjIwMZs6cyaBBg3j77bdJSkpi5syZ3HfffTz55JP06NGDwYMHM2nSpEC/duzYgdVqJSHh8Hprer2eli1bsmPHjka9d7Xmzp3LhAkTqKqqIiEhgfnz5xMdfeTfyV27dvH6668zY8aMJrV5LJs2baJv375UV1cTGhrKt99+S4cOHY54bnFxMU899RQ33njjUe/3wQcfMHHiREymQ8V39+zZw9KlSzEajXz77bcUFxfzz3/+k5KSEmbNmgXAxIkTKS4uZsCAATU7Unm56aabjjsdXVLs3buXBQsW8M033xzzvN69ewPKv61WrVoRHx8fCGxrHTyoDJ7Ex8cf8R4GgwGDQS6tlo7MVbPrnv4Yu+5VZ+2g7LPZONeu45WxPs7ZVk4UBhb0KOSxnWWsVSulDfqEfUp0lAfrwKtOSN+bW37B91RWKst91GoTJlNava6zVStLIs9rG8Nzl2YSFWJArz2L5hacrHgJGh0zyXhJxksyXqo/mZSSpBOkxK0EFJfGRTA00sLIaGvQ7u0tLWXP6PMpbzWcTf2HYK/KAVSotakYfQYGLH+QA6ExZH++GFU9t2ZuCLt9B7m5s/F4ygEID++FwRB77Iv+5uu1uThrdiQ0aNVkJgfv/Tllearg2ZNQoPShPNCHNOiSuXPnEhoaisfjwe/3M3HiRC699FLmzp0b+JILEBUVRdu2bdm2bRsAt912GzfffDPz5s1j2LBhjBs3js6dOx+1nT179uDxeOjVq1fgMavVWmctfa0ePeoWu92wYQMbN27k008/DTwmhMDv95OdnU379u2ZNm0aV199NYsXL2bFihV8+eWXPPvss8yZM4fhw+u3o5Nef/yE8qeffsrUqVMDxz/99BMDBw4EYPDgwaxfv57i4mLef/99Lr/8clauXFmnngBAbm4uo0aNYvz48dxwww2Bx0NDD9Whu+qqq3jnnXeO258lS5YwevTowPG7777LpEmTAGjbti3r16+noqKCr776iilTpvDbb78dFmjZbDbGjBlDhw4deOKJJ47YzvLly9m2bRv/93//V+dxv9+PSqXi008/xWpVfrdfeeUVLrvsMt566y1MJhOLFy/m2Wef5a233qJ3797s2rWL22+/naeeeopHH330mO+ppHwZiY2NZcyYMcc8r7awae0Xib59+/LMM89QWFgY+Dc4f/58wsLCjhpsS9Kx1CaljjVTqviNN7AvXYO+3QWUWvej8yqxycQsB9F5ZkgFhJ9zujhQTfr8RHT7hKgdvEtOvpoWaTeh0x071vH5BRsPlLM1T6nbFmsxkGA9C3fbO1nxEjQ4ZpLx0iEyXpLxUn3JpJQkNbNCl4dVNgd7nMqOCEMjLYyLD+7UUldWFn6nnw2aA9jsRYASCKrUoeCt5McWfdiQ0ZPhzZCQAsjOnklhkbIDhVptQqcLb9D1QghsNcv2vr65H23iQrEYz4KZUqeRwYMH8/bbb6PX60lMTESr1TJnzpzjXnf99dczcuRIfvjhB+bNm8dzzz3Hyy+/zK233trkPoWE1A0S7XY7U6dO5bbbbjvs3NTUQ0X9LRYLF154IRdeeCFPP/00I0eO5Omnn2b48OFkZGRQUVFBXl7eYaONbreb3bt3M3LkyOP27aKLLqoTfCYlJdXpd+vWrWndujV9+vQhIyODDz74gAcffDBwTl5eHoMHD6Zfv3689957de79191S/rqL2rH06NGjznV/LWpdu0MQQPfu3Vm1ahWvvfYa7777buCcyspKRo0ahcVi4dtvv0WnO/Lv57///W+6du1K9+7d6zyekJBAUlJSIMACaN++PUIIDhw4QEZGBo8++iiTJ0/m+uuvByAzMxOHw8GNN97Iww8/fMz39Gzn9/uZNWsWU6ZMqbNMYPfu3cyePZvzzz+fqKgoNm7cyJ133sm5554b+LIzYsQIOnTowOTJk3nxxRcpKCjgkUceYdq0aXI2lNQorsDyvaPHHN7SUnQtzmVvYjyRpZpAgfOM1VoqVOFKUsrvQWWq32fc6aJ2IxhLaEcMhrjjnA0z5mXx9uJDS23DZGx0ypPxkoyXZLzUcDIpJUnN7IoNu9nmOLRFZ6Qu+L921eWloA+h2ucAQGPojlqXhkodQom2ig/PGceU/i2Pc5fGc7uLAYiLu4ikxAmo1fVbmujx+Zm/9SAldlegTsJZlZDSmZURuJPRbgPVBgZ/1b59e7xeLytXrgxMRy8pKSErK6vOqFFKSgo33XQTN910Ew8++CDvv/8+t956a2AE7a/1Clq2bIlOp2PVqlWBwKiiooIdO3Zw7rnnHrOP55xzDlu3bj2sn8eiUqlo164df/zxBwCXXXYZ999/Py+//DIvv/xynXPfeecdqqqquPrqq497X4vFgsVSv3pofr8fl8sVOM7NzWXw4MF0796dWbNmof7bF7uGvL5aJpOp3tf9vT82m42RI0diMBiYM2cORuOR65jY7Xb++9//8txzzx32XP/+/fnyyy+x2+2BkcsdO3agVqtJTk4GoKqq6rDXqtHU1MUTokHv6dlmwYIF7Nu3j2uvvbbO43q9ngULFvCvf/0Lh8NBSkoK48aN45FHHgmco9FomDt3LjfffDN9+/YlJCSEKVOmMH369BP9MqTT2F6niw8OFOP0+wO7Cx9rppTfbqfY5Gftga8ZfuDQl7413R8CXQwAJo0DjKf/rGm/38v6Df+gsnILPp8dAK22fp9l2/L/OkPKyMXdTv0vl83iZMVLtW03gIyXZLwk46WGk0kpSWpme6uV4pxdLCZam430DQ89zhX157PZsK/4k23zVpPbpRseRxagQmvshqXKRmT+fOYnxbLjoUkQ2rDldA3h9SpBU2LCZURE9D7O2Yd8vz6Pe77cEDjWa9WEGs6ijyWVqsHL6E4lGRkZjB07lhtuuIF3330Xi8XCAw88QFJSEmPHjgXgjjvuYPTo0bRp04aysjJ+/fVX2rdvD0BaWhoqlYq5c+dy/vnnYzKZsFgsTJkyhXvvvZfIyEhiY2N5/PHHUavVxy0Ee//999OnTx9uueUWrr/+ekJCQti6dSvz58/njTfeYP369Tz++ONMnjyZDh06oNfr+e233/jwww+5//77AWWE8MUXX+See+7BaDQyefJkdDod33//PQ899BBPP/00nTp1qtNuVlbWYX3p2LHjYaNjDoeDZ555hosuuoiEhASKi4t58803yc3NZfz48YASYJ133nmkpaUxY8aMwNbHcPT6PrVqR/bsdjtFRUWsX78evV5/zCVYDz74IKNHjyY1NZXKykpmz57N4sWL+eWXXwAlwBoxYgRVVVX85z//wWazYbMpv+8xMTGBIAjgiy++wOv1ctVVh9d+mThxIk899RT/+Mc/ePLJJykuLubee+/l2muvDdRSuPDCC3nllVfo1q1bYDr6o48+yoUXXlinnb8rLS1l37595OUpX1hq/3vEx8cf9z07U4wYMQIhxGGPp6Sk8Ntvvx33+rS0NH788cfm6Jp0lnh7fxEf5RYHjk1qFWbN4TOlXDt34ty0maLKAl7qWUjfTZG4tX4qzR7SbUm4tNHUftKnRR2ALhNO0CtoPk5nDmVlfwSOVSp9vWpuVjg9lNiVGPLpizsxouPZ8Xl2RDJekvGSjJfO7HgpKPsAnqFO1S2fpdOH3+8X8YvWibhF68TBanfQ77/vppvF76OurLON8ozLx4jXb/xZfH/RveK5MdeJMS8vCnq7Qgjh8VSK1WsmiKXLBoqFizLEgoUtRUXFxgbd4+Vftou0++eKgS8sEtd/vEp88ee+ZunrqeBM2+K4Vu0Wx1arVZhMJjFy5Mg6WxzfcsstolWrVsJgMIiYmBgxefJkUVxcHHh++vTpIj4+XqhUqmNucdyrVy/xwAMPBK5LS0sTr7766mH9+fPPP8Xw4cNFaGioCAkJEZ07dxbPPPOMEEKIoqIicdttt4lOnTqJ0NBQYbFYRGZmppgxY4bw+Xx17vPdd9+JgQMHipCQkMAWzJ999lmdc460TXPtz/79+w/rm9PpFJdccolITEwUer1eJCQkiIsuukj8+eefgXNmzZp11Hsez5GuSUtLO+Y11157rUhLSxN6vV7ExMSIoUOHinnz5gWe//XXX4/an+zs7Dr36tu3r5g4ceJR29q2bZsYNmyYMJlMIjk5Wdx1112iqqoq8LzH4xFPPPGEaNWqlTAajSIlJUX885//FGVlZcd8DUd7zx5//PFjXnc8wdji+Gwh3w/pxs3ZIm7ROjFpw27xcna+WFJqO+wcv9sttvfoKbZ16SO+un6KuGR6HzHj8jHi7psGi3fubCn+e/kL4o2pC8XX/7hfOFd8Lvx+/0l4JcFXXr5WLFjYUixZ2k/Y7buF211+3Gte+GmbSLt/buDnz+yjbw9/ppHxkoyXZLx09sVLKiGOMLQmAUrG02q1BrZzlKSGcvr8pP++EYBdAzMJ1R49e90Y24cPIyuyA7vYg1ejQUc0al0LdKb+uMrXMrNFe8Z3T+al8UffPrWxiksWs2HDdYFjjcZM/35Lj1u0868e/34zHy/fy7TBrbh3ZP136jsdVVdXk52dTXp6+lGn80pH5nA4SEpK4uWXX+a66647/gVBVlpaytChQwkLC+Onn37CbG748kfp9HOs31kZH9Ql3w9p8sY9zC+x8UrbFCYmRh3xHG9xMTsHDMTQZSL/7epiffUiem6PJNpRTfc9hWzqdCOlkR3o7X+XHndNgXan7/bmf1VSsoT1G64hNLQ9vXvNrdc1F76+lE25SlH0FlFm5t428KyZSS7jpcaT8ZJ0MgQjXjo7Pt0k6SRx+v2B/286wjT2pqqwlVKQVAlO0OrSMZguAkDnsZOk3swP/7yadskxQW8XwOtRpqRaLJm0azsdozGp3gmp937fzesLd1FVs9teuKl+Naiks8O6devYvn07vXr1oqKiIlDbpnaK+4kWGRnJggULePPNN1m+fHlg62VJkiRJ4aypC3msWMdXqRT53mGuRLV5G919EQC4jGn8du6hrcyt1gownF71UI7E4djF1m334aouAECrqX/5Blu1svnLf6f2pWeLiOMux5LOTjJeks4UMiklSc2gxO3lnf2FFLiVoMKgVqEJYkCR/+STrFyXxe4WieBU1lAbvcpa++5rZ2C1ZeO46yE6pjZPHSmncz+OKmU3GKMxgbCwo29ZeyTfrsuj0uUFQKNW0TU1PNhdlE5zM2bMICsrC71eT/fu3VmyZAnR0dEnrT9RUVE89thjJ619SZKkU1ntINyR6kgBlP33vziW/UFOLPwYtooWBSHU7hTsNncI1JEyqitJSFZBYtfm73QzKyz8CZvtUN3MkNC2x71mcVYhmw5UUFSpFE+OMOtkQko6JhkvSWcCmZSSpGbweUEpr+8rDBxHB3nHvfK5cylt1wXcNvwqQK1HGNqhAna2juFX7QCeG39xUNustX//R+zY+VTgWKtt+FKNModSuPPfV/egR4sIws1yppR0SLdu3VizZs3J7oYkSZJ0HF8XlPLsnnwO1gzCmdSHJ6U8+fkUPPY4KkMYe7vGoPMq52zKqOAqTTZZBXcAcE7Ys/R+8nvUppMzyyPYvDU77cXFXUhK8jVYLJ2OeX6F08P1H6/G6z9UWSUyRMZH0tHJeEk6U8iklCQ1gzKPMguoR5iZ8yLDGBIVvGnowu/HX+3BIxwAaENGoNcpgY7K50EM6c+z468mzto86/Bttk2AUkNKp4sgLvaCel/7yvwdzF65l+Ka3WTaxltkQkqSJEmSTlP/LSgj13VoVnhrs+Gwc7wlpagMYWhGTGd1/OdE7TgAwKUb9Jg9faGFkqTKNG5FbTxzatB4vUpSKsTcCqu163HPL7G78PoFeo2acd2T6JoSTlTo4e+nJEnSmUYmpSSpGVTV1FYYGGHhnvTgbLEphMC5fj1rf1jKkh6t0DptqFFh8IcjgFa7v8XlKqLtwzOIb6aEFIDXq9SSymj9MElJDduq+a8JqQSrkbgwWcBSkiRJkk5Xtcv2nmydyGVxkUTpD/9q4bfbUVviWV76E233F6EWSqIlL/wS9ocoW7Cr/W5CzVo4A5aq2e1ZHCz8gYoKZQaLRlu/WlKV1cqAZnSonucubVhZBEmSpNOZTEpJUjOoDdKCWdzcNncuB1/4kPUtzOg9LkCFQIVfF40KWGfws6TFAGZFNs86cq/Xgd2+jWpXTcFObcNmfwkhKK9SRlNnX9+brqnh6LXBL/4uSZIkSdKJUVvgPMNsPCwh5a+uxvbDj1StW8u/+5cTm7MTdU31KJXKh9fUAhUQJXbT2rwMwpJPdPebxfasRwMJKQC97si7EdYqc7iZt7WA7QVKIXiLUdes/ZMkSTrVyKSUJDWD2plSR6qt0FjOrCxU5gi8/nIAtKZBqHVpqNRG8HtZM3AIAzM7NNvso7XrrqSyckvguL61pIQQvPf7HnYX2QN1ErqlRmDSa5qln5IkSZIknRjVxxiEq/juOwqefBp92/NZMcrJ2BxlMGtR9/3cuxG2qM0g/FzRZw6qjhdBq0dPaN+bi8ul1BSNi72A0NC2xMSMOOb5L83LYvbKfYHjcLNMSkmSdHaRSSlJCqJPcot5/0BRoL7C0XahaQghBJ4DeeTsq2JJFx2q/S5UqNDo2xBS7SDMthJHiJOvbrkdQo49GteUPtjtOwAwGlMwm1sQHt6jXtduybPx3E/bA8cRZh1GnZwhJUmSJEmnu9pBOOMRC5wXoIlph67dGLxiIQACePFDD1UhCdATtP5qVBlDoNcNJ7LbzcrrVWY8tUi/hdCQjOOev7+0CoCuKeGkRJqZ3CetWfsnSZJ0qpFJKUkKon8fKGZnlStwfKSCnw1V8NhjlC7PZll0JWrho3YLZVQGYoqWkbjvF/685r5mS0gB+P3VCKEk2nr3mou2nvURAIrsyvsRH2bkqj6p9GsdLbc3liRJkqTT2LziCj7JK6HIrdRBMmkO/7vur6rCawhh7sFPGFqolBbQCsGy/s/j0SlxhEHtAF3Iiet4M/H73eTlf4XbXYLPpySljlfmoNrjI6fEwUFbNQC3D81gcLvYZu+rJEnSqUYmpSQpiKr8PgBeaptMv/BQWpmbvpTOsXo1pRGdQWxBACq1BY02HZVKz2/x7fiy87m8Nrxbk9s5Ep+vmqKiebhq6kiBGo2mYcFjbeHO9OgQbhly/BFDSZIkSZJObS9lF7DJ7gRAp1IRqz98yZnf4SAvxI+z6iDhKM+bhTaQkAJoYV4L+swT0+lmVFS8gKysQ8sPVSotOq31qOcLIbjw9aXsLLQHHrPKZXuSJJ2l5BoaSQqiap9SM6lHWEhQElIANruNha03KAeacIzWGwjR9cRi20tv/XxW3tGNsV2TgtLW3+XmfcaWrXeya/cLAOh0EfWe5fTLlgKufG8F/5qvLPuzGGUO/HR1zTXXoFKpUKlU6PV6WrduzfTp0/F6vU267+LFi1GpVJSXlweno/WQnZ3NxIkTSUxMxGg0kpyczNixY9m+fXud8+bOncugQYOwWCyYzWZ69uzJRx99VOecnJwcVCoV69evr3f7TzzxBO3atSMkJISIiAiGDRvGypUr69zzuuuuIz09HZPJRKtWrXj88cdxu93HvG9+fj4TJ06kTZs2qNVq7rjjjnr3qdbzzz+PSqU67Nrdu3dzySWXEBMTQ1hYGJdffjkHDx6sc84zzzxDv379MJvNhIeHH/H+tf+G/vrz+eefB57/5ptvGD58eKCdvn378ssvvxy339988w0jRowgKiqqwf89JElqHEfNsr070+L43zkZROoO/Y2v+P57ch9+gbwCH+913wNAsdXFhox8WrmUWd0h3m3cEHsl51nfAZ35xL+AIHNVK4N3JlMLkpIm0qHDDDQa01HPr3L7Agmp6FA9vdMj6ZhYv1qd0qlLxksyXpLxUuPIpJQkBVEwd90r//prltzzFL9kJOMtVO6rFUqiq/PGt+m59kVaDB1JXELzJKQAnM79AJjNrYiJGUnbNo/V+9o3Fu1i+Z4S9hQ7AGWmlHT6GjVqFPn5+ezcuZO7776bJ554gpdeeulkdyvgeEEIgMfjYfjw4VRUVPDNN9+QlZXFF198QWZmZp1A7/XXX2fs2LH079+flStXsnHjRiZMmMBNN93EPffc06R+tmnThjfeeINNmzaxdOlSWrRowYgRIygqKgJg+/bt+P1+3n33XbZs2cKrr77KO++8w0MPPXTM+7pcLmJiYnjkkUfo0qVLg/u1atUq3n33XTp3rrsNucPhYMSIEahUKhYtWsSyZctwu91ceOGF+Gs+70B5/8ePH8/NN998zHZmzZpFfn5+4Ofiiy8OPPf7778zfPhwfvzxR9asWcPgwYO58MILWbdu3THv6XA4GDBgAC+88EKDX7ckSY1TW+B8dIyVrmGHkkr+qiryHnoYb1kau9KToGawLqXIw4NfVeGuVhIvYeoy9CEmiO8MLQae+BcQZF6vDYDIyP60a/sU8XEXHvP8cqdSEkGvUbPq4WF8MbUvBq3cAOZMIOMlGS/JeKkRhHRUFRUVAhAVFRUnuyvSacDv94uERetE3KJ1Ir/a3aR7ufPyxNa27cQ7V00RMy4fE/h59aoHxRtTF4qnxt4lbp3ylCh3NK2d49m85S6xYGFLkZPzToOv7ffcQpF2/1zx1q+7xIKtBcLp9jZDD08fTqdTbN26VTidzpPdlQabMmWKGDt2bJ3Hhg8fLvr06SNKS0vF5MmTRXh4uDCZTGLUqFFix44dgfNycnLEBRdcIMLDw4XZbBYdOnQQP/zwg8jOzhYoNW8DP1OmTBFCCGGz2cTEiROF2WwW8fHx4pVXXhGDBg0St99+e+C+aWlpYvr06WLy5MnCYrEErl2yZIkYMGCAMBqNIjk5Wdx6663CbrcLIYRYt26dAEROTs5RX+u+ffuETqcTd91112HPzZw5UwBixYoVQggReA3r1q1r+Jtao/bvzIIFC456zosvvijS09Prfc+/v1fHU1lZKTIyMsT8+fMPu/aXX34RarW6zt/B8vJyoVKpxPz58w+716xZs4TVaj1iO4D49ttv690vIYTo0KGDePLJJ+t1bjD+e/zVsX5nZXxQl3w/zj7tl2wUcYvWie32ur8f7gMHxNa27cSuO74XT02bJB66briYcfkY8e6lU8RbN/ws3rhxvnhj6kLx+223C1G86+R0PoiqqvaJ9RtuFEuW9hMLFrYUO3e9dMzz88udYsiMX0WHR38SaffPFT2fPvxz9Gwn4yUZLx2JjJeO7XSPl+RMKUkKgg8OFHFP1n5q8+AmddMKeXuLS9jaKp5CbTEAGmNvdCEXojWfi7HqIN2vaMWL7z/YbPUHiosXsWRpXw4enAuA9hh1Ef5u7sY8nv9pe6DA+ehO8QxtH4dRJ0cA/04IQZWn6oT/CCGa3HeTyYTb7eaaa65h9erVzJkzh+XLlyOE4Pzzz8fjUUaBp02bhsvl4vfff2fTpk288MILhIaGkpKSwtdffw1AVlYW+fn5vPbaawDcddddLFu2jDlz5jB//nyWLFnC2rVrD+vDjBkz6NKlC+vWrePRRx9l9+7djBo1inHjxrFx40a++OILli5dyi233AJATEwMarWar776Cp/Pd8TX9dVXX+HxeI44wjd16lRCQ0P57LPPmvz+gTJa9t5772G1Wo85WldRUUFkZGRQ2jySadOmMWbMGIYNG3bYcy6XC5VKhcFwaNMGo9GIWq1m6dKljWorOjqaXr168eGHHx7z36Lf76eysrJZX7skSY3j8iu/u8a/xDueggIcy5cjULHSvwpTUTmRlXrlfHM6frUOVGpU+Eg0bQN9/TdNOVUVFHxPcfGCQO1Ns6nFMc//Y3cxu4scONzK36BzUiOau4tnhJMVLwUjZpLxUtPJeOnMj5dkkRdJaqK9ThcP78wNHJs1asyaxidghBDsXZ3F0g5RxOQ5AA0aXWuMfhO9/niUg4YQ0p/+rFmTPAcLf8DtLgSUYp1hYfUrQlpYWc2tn62j9nNTq1YRFapvrm6e9pxeJ71n9z7h7a6cuBJzI2t4CCFYuHAhv/zyC6NHj+a7775j2bJl9OvXD4BPP/2UlJQUvvvuO8aPH8++ffsYN24cmZnKv6GWLVsG7lX7xzM2Njawrr6yspKPP/6Y2bNnM3ToUECZwpyYmHhYX4YMGcLdd98dOL7++uuZNGlSYI1/RkYGM2fOZNCgQbz99tskJSUxc+ZM7rvvPp588kl69OjB4MGDmTRpUqBfO3bswGq1kpCQcFh7er2eli1bsmPHjka9d7Xmzp3LhAkTqKqqIiEhgfnz5xMdHX3Ec3ft2sXrr7/OjBkzmtTm0Xz++eesXbuWVatWHfH5Pn36EBISwv3338+zzz6LEIIHHngAn89Hfn5+g9qaPn06Q4YMwWw2M2/ePP75z39it9u57bbbjnj+jBkzsNvtXH755Q1+XZIkNS9XzXKU/2fvzOOirtY//p5hZphhGFbZRQRF3M0dt4xc0Ey9ZWpppjc17aZmK2oLZlo3w7y5pNmvtHuvWbfNTNtwKU3NFdwFFxRlUdZhhxnm/P4YGJ1ARBNxOe/Xa176/X6fc77P+cIMn3nOOc/jqLTOb5fn5XFq4AOo/HuQNOgx1ut/omO6O3lOpTQ0Z1Oq6wzAQ/0S8TjwJlplAWhu/239JrMRAK8G/Qho+DjubuE12hsrtu1FhHnx+uBWBHnc/vm0bgb1pZfg+jWT1EtSL0m9VHvkSimJ5C+SY7LOILiqHIgK9uW/bUJQX+dKqdKkJJLHv8S2LRtomFyCo9kaeFIonVCVF7GvQSM+bvUAru51O7NmNluTb4YET6dXzz8wGFrVqt3FvFKEAGdHFeN7BrP4sfYYtLKazJ3A+vXrcXZ2RqvVMnDgQEaOHMm4ceNQqVR07XpJKHp6ehIWFsaxY8cAmDZtGnPnzqVHjx5ER0dz8ODBGu9z+vRpTCYTXbp0sZ1zdXUlLCysim2nTp3sjg8cOMCqVatwdna2vSIjI7FYLCQlJQHWmaf09HRWr15Nt27d+PLLL2nVqhWxsbG1fhYazdUDratXr7bzY9u2bbZrERERxMfHs2PHDgYMGMCIESO4ePFilT5SUlIYMGAAw4cPZ+LEibbzl/c7efLkWvm8bds2u3arV6/m3LlzPPvss6xevRqttvrCDF5eXnz55Zd8//33ODs74+rqSm5uLh06dECpvDYJ8dprr9GjRw/at29PVFQUL7/88hXzbHz22We88cYb/O9//8Pb21oivaZnKpFI6h6LEGzJyuOLtGzMFZNPjhV6x5SSgiguxrHVw6Q30KAyWz8fWpwvJnx/OQql9TPG6+Br1oAUijsiwXllLikXl3Z4evREqax+vr/EVM6a3clsPm79rPdz0xHcQI/yL66sl9x6SL10CamXpF6qLXKllETyFymqqEDjrVHxXGPfv9RX3g8/UJKST7FnPgBKdQhKVSMUSgPFikK2DBxFxzat8DbcmMp+f0YIC0KYMJusM39OTsGo1bULgCVnFRF/LheAADcdrz3Ysk58vJPQqXTsGrXr6oZ1cN9rJSIigmXLlqHRaPD390elUrFu3bqrtpswYQKRkZFs2LCBX375hbfffpsFCxYwderU63HdDr3efpa9oKCASZMmVTuT1KhRI9v/DQYDgwcPZvDgwcydO5fIyEjmzp1Lv379CA0NxWg0kpqaWmW2saysjFOnThEZGXlV34YMGWInPgMCLhUk0Ov1NG3alKZNmxIeHk5oaCgff/wxM2fOtNmkpqYSERFB9+7dWbFihV3fl1dLcXGpXbWmTp062bXz8fFh06ZNXLx4kQ4dOtjOl5eXs3XrVpYsWUJpaSkODg7079+fU6dOkZmZiUqlws3NDV9fX7tZ3Ouha9euvPnmm5SWltotd//888+ZMGECX375pd0S+ZqeqUQiqXs2ZuXxxKEk27EC0FZ82bIUFIDKEbMCDjkkoTFZz+e5tWNbyN+s9sKMijJwbQQth8A1flG7lTh2/BVycnZQVmZNs6BSGWq0XxefysxvDtmOGzg71mAt+TP1pZcq730tSL0k9ZLUS9eODEpJJH8RW8W9vyiuhEVwPK2QT+/NIOxQKUoUqJ36oFAaUFjK8SaJL6c8DU51s1+4vLyIXbsfpLj4rO3c1URWJb8cSeep/+yzHddVrqs7DYVCcd3b6G42lcLgclq0aIHZbGbXrl225ehZWVkkJCTQsuWloGRgYCCTJ09m8uTJzJw5k48++oipU6faZtAuz1cQEhKCWq1mz549NmFkNBpJTEzk3nvvrdHHDh06cPTo0Sp+1oRCoaB58+bs2LEDgEceeYSoqCgWLFjAggUL7GyXL19OUVERTzzxxFX7NRgMGAy1e/9YLBZKS0ttxykpKURERNCxY0dWrlxZZYbtWsZXiU6nq9KuT58+HDp0yO7c3//+d5o3b05UVBQOf9qGXLlkfvPmzVy8eJEhQ4Zcsx+XEx8fj7u7u53AWrNmDU8++SSff/45gwYNsrO/lmcqkUhuPOdKrFW7vDQqWul13OthQOegxFJaijkzE4VKx5aLXxJ45jxgfa8W6wNRKayfJQGOR1AogH/sBMfbN5+UyZRLaurnduf0zlVXp1zO+dxiAJp46ekV6sXjXRvVaC+xR+olqZdA6qU7WS/JoJRE8hepXCmlc7j+oFTp6SQS/v0du09spQVgnX8EFI60PfgBDbKPkDluSp0FpAAKCk/YBaTUas9ab9s7nFKxskrjgIdew6OdA+vER8mtRWhoKEOHDmXixIl8+OGHGAwGZsyYQUBAAEOHDgVg+vTpDBw4kGbNmpGTk8OWLVto0cL6Wx4UFIRCoWD9+vU88MAD6HQ6DAYDY8eO5aWXXsLDwwNvb2+io6NRKpUoFDVvc4iKiiI8PJwpU6YwYcIE9Ho9R48eJTY2liVLlhAfH090dDRjxoyhZcuWaDQafvvtNz755BOioqIA6wzh/PnzefHFF9FqtYwZMwa1Ws13333HrFmzmDt3Lq1bt7a7b0JCQhVfWrVqhVptH5wtLCxk3rx5DBkyBD8/PzIzM1m6dCkpKSkMHz4csAqs++67j6CgIGJiYmyljwF8fWteiVk5s1dQUEBGRgbx8fFoNBo7wXs5BoOhylj0ej2enp5251euXEmLFi3w8vJi586dPPvsszz33HN2WwSSk5PJzs4mOTmZ8vJymy9NmzbF2dmZ77//ngsXLhAeHo5WqyU2Npa33nrLLkHqZ599xtixY3n//ffp2rUr6enWxME6nQ5X1ysXW6i8b2pqKnDp5+Hr63vVZyaRSGpPcYXeuc/DwOIWQQAU/vEH56e/gia4H8Wdh5GT96vNXoEFpco6Qz/2Hxr0X79hvXCbBBeuhMmUC4CDgxPt7/kUtdoTJ6egGtvkVeSSimzly8sDmte1i5JbDKmXrEi9JPXSFbkhdQDvUGSJY0lNJBQUi7/tTxQdth8WPpvjxMi46y9tnDRqtNjw0N9FzIhB4t0RD4qYkQ+L9x5/QSyZtEn8a+izYsQT74jE89k30PuqZGRuERs3hYg/dj0gTKY8UV5uqnXbV789JIKi1osFPx+vQw9vb+60EseVVJY4dnV1FTqdTkRGRtqVOJ4yZYpo0qSJcHR0FF5eXmLMmDEiMzPTdn3OnDnC19dXKBSKGkscd+nSRcyYMcPWLigoSCxcuLCKP7t37xb9+vUTzs7OQq/Xi7Zt24p58+YJIYTIyMgQ06ZNE61btxbOzs7CYDCINm3aiJiYGFFeXm7Xz9q1a0WvXr2EXq+3lWBes2aNnU11ZZorX+fOnaviW3FxsXjooYeEv7+/0Gg0ws/PTwwZMkTs3r3bZrNy5cor9nk1qmsTFBR01XaXU1155KioKOHj4yPUarUIDQ0VCxYsEBaLxc5m7Nix1d5/y5YtQgghfvzxR3HPPffYfi7t2rUTy5cvt3vuvXv3rraPyt+LK3GlZxYdHX1NY/8zN6LE8d2CfB53B/NPpwqfzXHi5ePJtnMXFy0WJx+aKc5FbRUvLBgvYkYMEjEjBon9rVqJ3ff0FEsmbRLLJv4oRPYZIaJdhHjTpx5H8Ne5cOEncezYK2LjphDx+/ZeNdpaLBYxftVuERS13vZa/uv1a8W7BamXpF6Seunu00sKIW5AbfA7lLy8PFxdXTEajbXehyq5e3g3KY0FZy7Yjp8MaMBbzRpecz9CCL4fMYwjHg5ocosxO4Xh7DgIx5JMXPPO4uf7I8GzvyTA2/NGum+jvLyIw0emU1BwnJKSFNzdu9Oh/X9q1fa3xAxe+F88OUUmyi2C1x5syfiewXXi5+1OSUkJSUlJBAcHXzFJoqR6CgsLCQgIYMGCBYwfP/6m3z87O5s+ffrg4uLCjz/+iJPT7T3LL6kdNb1npT6wRz6Pu4M5J1P54NxFJgd6MbupdQXUxZgYCvaUUBzSmZd9Y7h/h3V7ScvsxpS5enC+wX3oHAp5svOHcGYb6DwgKqmm29yylJSksn1HL9uxi8s9dO709RXti8vKafH6T7ZjjUrJmold6Rh0+5ZtvxlIvXT9SL0kqQ9uhF6S2/ckkuukctveYC83xgV40tn12ksbZ/93NXv2xpGoLEOTaz3nZHIGR2h7+CMMBecJfGUlznUUkALIydlFZuYm27Gzvlmt2/58JJ3MAmuOCZVSwT2BbjfaPcldSFxcHMePH6dLly4YjUbmzJkDYFvifrPx8PBg48aNLF26lJ07d9pKL0skEsndwNniUr65kMOOXGtl3stzaFqKS1A4aEhVZiMsFfluhILTTR622TgpLloDUgCu1z55d6tQWmqdiHRwcMbP9yF8/R6q0T63+JI+2jHzfvQaFXpH+dVLcuOQeklypyA/GSWS66TYYl1k2EzvSA/3a08mV3b+PBfmziU9/H4UgECBQuEEWmuugXN6Axd8u/N0+y41d/QXqcyNYDC0JrTpLFxd29e6rbEiR8K0PqGM7xEsE5xLbhgxMTEkJCSg0Wjo2LEj27ZtsyWOrA88PT15/fXX6+3+EolEUl/MOZXKhgyj7dhDfenrg6W0BKHUk1VwhnvPWHWREmvSXy9LIr6NlYQW/B80fxCaDYCQ3jfX+RuEEBZMphwAnHRBhIXNrtF+9a6zbEu0VuZzc1LXWdVkiUTqJcmdgAxKSSTXSWXCT+11Vt0zX8wgKagh53TZ6IpBre2BSmcNQDnnneXsxLH07tULRR2VTBZCUFh4goJCa5I7na4R7u5dr9LKyq8JFzmWls+x1DwAgjycZEBKcsNo3749+/btu7qhRCKRSOqczDIzAPd7GGhncGK4r7vtWnlxEZkOelLSt6PGumJciVUPNHH8nY6hGjiSAEFjocOYm+/8DSAnZxcHDk6kvLwQAJW65i2qF/NLeOXbw7ZjfzddnfonuXuReklypyCDUhLJdVJsub6qe0II8n/+mYM/beDXlu5o8rLQoQGlI5qyDLrvnEuOoxNjP9tVF27bOJu8glOn5tuOVara5QHJyC/lyVV7sFyWja6BwfHKDSQSiUQikdy2VE7CjW/oRR9Pq1bI+fwLCvdmYC7tglGfBiWgMZnxLCimJLANxYDO1QFKrZNXaJzryfu/Tlb2NltACsDDvWfN9hVpDZwdVTwT0ZR+Lb3r1D+JRCK53ZFBKYnkGvnuYg7/ScniaGExAE7XuJKp9Ngxzs6MZnczb3wQgAYAhcIJbUkhSmEmy8XrRrtdhfz8IwCoVK5oNF74+gypVbt0YwkWAU4aBwa18cPPVUuPJnWX80oikUgkEkn9YZuEq9A7lqIi0ufMQd/3Lb73TGCX4ic6ZDnhWlxK++SL7A1rSLEJ1KYsOFmRS8rx9g1Kmc0Vq8IbPUXjxv9ApbpyygZzucUWlPJ2ceTp+5rcFB8lEonkdkYGpSSSa+S9MxdIKCyxHTfSaa6pvSktjUL/DgjOIRQKVOo2KJR6lOpgtLm/869Ow2nYvx91naKw3JwPQLPQV/DzG1arNpkFpRw4nwtAIw8n3h3erq7ck0gkEolEcgtQWdilcmW4pagILBYUKkcStGcoKysBnDCp3dna43nMJut2NZXCOnmHzh0COtWH63+J4uIUsrJ/Iz/vEAAaR+8aA1L7k3N44uPdFJRatzu66mRaA4lEIqkNMiglkVwj+WZrdZlXQvzo6KKnm9u1Vd3bd+wIX7dOpfEZMKnU6PR9cS39jdY7X+NUsxa899GH6HV1tx2uuDiZ3Ny9FBUnA9QosC4nzVhM7/m/UlYhTqXYkkgkEonkzuWXTCN7jIVkm6y6R+egAMBSUmr910GFWVmOZ8UOvTJHTyxqqyZSKU14qs/CoAXQYRw43H5fOY4efYFc4x7bsVrtXoM17DiZaQtIAfRuVver3iUSieRO4Pb7CyGR1DOFFUGZgV6uNHWqfTWVwt27OfPWu+xzLKEx1oRMGosTAB6peTiW5aH09K3TgBTA/rgnKCk5ZztWXUVkVZKQnk9ZuQW1gwJvg5ZHuwTWlYsSiUQikUjqkaJyCxMOn6FMXEog6a6yfm0QpdbV4hYHB1yz8+gap+SMF6C0Tlb1DN5GC88DaM5ngNbttgxIARRXaCUP9x44OYXg1aBvjfaVFYnHdW/MywPCcNLcnuOWSCSSm438tJRIrpHKZezXmkvKuG4dqbrWYNmDQIHSoQEqbWcANGUFFDtocO7Z/Yb7ezlClNsCUu7u3XFyCsHVpX2t2laKrc6NPfhsYnid+SiRSCQSiaR+KTCX2wJSkxp60dqgw8fRGnSyFJeAUs3x3N345ORzxssNAFERlDLoS9EIo7UjtdNN9/1GUZlLKizsTZycgq5ot+dMNmt2JbMvOQcAL4OjDEhJJBLJNSA/MSWSWrIpK4+fMo2YKkSa/hqr7iWUpPFdk1yCT4BQu+PoPAaXghM4Z27jaOcW/O3lhXRoULeJQM0VeaQA7mn3MUrl1fNh7U7KZta3h8jIty7Xd3OS2/YkEolEIrmTuZTcXMEboQG288JiwZxZgEODMLLLUgFQWgQOohy9qx8FgEqtgJLKoJTuZrv+l7BYyti3fxSFhQmUlxcBoFa71thm/k/H2XMmx3bc0P32GrNEIpHUN9f2rVoiuYt57ngy/0nNAsDJQYnewaFW7Qq2b+f4rFl8rbyIKMgGwEFYt/2Fnvia5omfYwgJoVEdBqQsllKOJ7zGocNTAFAqdbUKSAGsjU/h5MUC20qpVv41izPJnce4ceNQKBQoFAo0Gg1NmzZlzpw5mM3mqzeugV9//RWFQkFubu6NcbQWJCUlMWrUKPz9/dFqtTRs2JChQ4dy/PhxO7v169fTu3dvDAYDTk5OdO7cmVWrVtnZnDlzBoVCQXx8fK3vP3v2bJo3b45er8fd3Z2+ffuya9cuuz7Hjx9PcHAwOp2OJk2aEB0dTVlZWY39pqWlMWrUKJo1a4ZSqWT69Om19iklJYXHH38cT09PdDodbdq0Ye/evbbrl//8K18DBgyw66Nx48ZVbP75z3/arickJBAREYGPjw9arZaQkBBeffVVTCaTXT+5ubk888wz+Pn54ejoSLNmzfjhhx9q9P+bb76hf//+eHp6XvPPQyKRVE+pxToBp71sVXhJYiInew8g7Qcj30V04DwZALQ+n0GL3DM46JoCoD67EbJOWBvdZkGpwsIT5OXF2QJSen0oKpVLjW0qq+2N696YhSPb8UAbvzr3U3JrIvWS1EtSL10fcqWURFJLcisSfU4O9KKfpwsqpaJW7dJmvcLOhk0INgvAmgBUqbAGoDSlRVhQ4OBXtwImJ+cPUlI+sx3rdLXPB5VTaP1wn9Q7hIfbN6SZz+1b1lly/QwYMICVK1dSWlrKDz/8wDPPPINarWbmzJn17RoAZWVlaDQ1B1pNJhP9+vUjLCyMb775Bj8/P86fP8+PP/5oJ/QWL17M9OnTiYqKYtmyZWg0Gr777jsmT57M4cOHiYmJuW4/mzVrxpIlSwgJCaG4uJiFCxfSv39/Tp48iZeXF8ePH8disfDhhx/StGlTDh8+zMSJEyksLKzxvqWlpXh5efHqq6+ycOHCWvuTk5NDjx49iIiI4Mcff8TLy4sTJ07g7m6fa67y51+Jo2PV3Hdz5sxh4sSJtmOD4VIRBbVazRNPPEGHDh1wc3PjwIEDTJw4EYvFwltvvQVYf4b9+vXD29ubr776ioCAAM6ePYubm1uNYygsLKRnz56MGDHC7v4SieT6KalYKaW9bFV40a7dCIuODFUBZ7UpGNTZNEDF+Yb9KPLsA9YF1agUZaAxgGcT8G1bH+5fNyaTdYWXThdE+3s+xdHRF4Wi5jn8vBJrwGFEp0Ba+tccwJLc+Ui9JPWS1EvXgZBcEaPRKABhNBrr2xVJPWO2WITP5jjhszlOZJaaat3OYrGI/w5uLWY/+YCIGTFIvDfqGbFwzCyxaML/xNKJP4vnhs8QwyctEgfO5dSd80KI1LRvxcZNIWLnH5EiJeVLUVR07qpt/vvHGTHsg+2idfRPIihqvfguPqVOfbzTKS4uFkePHhXFxcX17co1M3bsWDF06FC7c/369RPh4eEiOztbjBkzRri5uQmdTicGDBggEhMTbXZnzpwRDz74oHBzcxNOTk6iZcuWYsOGDSIpKUkAdq+xY8cKIYTIy8sTo0aNEk5OTsLX11e89957onfv3uLZZ5+19RsUFCTmzJkjxowZIwwGg63ttm3bRM+ePYVWqxUNGzYUU6dOFQUFBUIIIeLi4gQgzpw5c8WxJicnC7VaLZ5//vkq1xYtWiQA8ccffwghhG0McXFx1/5QK6j8O7Nx48Yr2syfP18EBwfXus8/P6uaiIqKEj179qzRprqf/58JCgoSCxcurJ2DFTz33HN29162bJkICQkRZWVl19RPJTfi53E5Nb1npT6wRz6PO49dOfnCZ3OcCN95xHbu4qLFIqHXMPHbzC/Fg4sfFLPG9xUxIwaJ95/8SCyZtEksmbRJrHr6C1G65P569Pz6MJtLRFrad+LYsVfExk0hYs/eR67aJubn42LMx7tEyMwNIihqvTiXXXgTPL3zkXpJ6qXqkHrpztZLcvueRFILKmcMAbQOtVshBZBx/jz/6e8FZusqK5WuG1pdd0LO7aZJwr+Z/e85/GfJP2jb0O1Gu2xHZS4pvVNT/P0fQadreNU27/2SyN6zOeRXzAA28dLXqY93I0IILEVFN/0lLqumdL3odDrKysoYN24ce/fuZd26dezcuRMhBA888IBtmfEzzzxDaWkpW7du5dChQ7zzzjs4OzsTGBjI119/DViXKqelpfH+++8D8Pzzz7N9+3bWrVtHbGws27ZtY//+/VV8iImJoV27dsTFxfHaa69x6tQpBgwYwLBhwzh48CBffPEFv//+O1OmWLetenl5oVQq+eqrrygvL692XF999RUmk4kXX3yxyrVJkybh7OzMmjVr/vLzA+tM14oVK3B1daVdu3ZXtDMajXh4eNyQe/6ZdevW0alTJ4YPH463tzft27fno48+qmL366+/4u3tTVhYGE8//TRZWVlVbP75z3/i6elJ+/bteffdd2vcrnDy5El++uknevfubedLt27deOaZZ/Dx8aF169a89dZbV/xZSSSSG0+2ycyUo2d5/WRFvqjkZE49MIhTDwwi+7//ReGgodRSQseD+fhnVX6NsG68GNf3Fx73moxGV7v0ALcSqWlfcOToc6SkWj/f1eqaP3NTc4tZvPkkWxMzKLcI9BoHPPV1Wz35bqa+9NKN0ExSL/11pF668/WS3L4nkdSCkvJLf5B0tai6Z0pL4+J7C4nNs9CjWIuutCKQpdDiWGwk5Mx60ly8cdHWbdLwrKzfSEicg8lk/UBUqQxXaWFFCEFuRQ6p+cPaEuZrkLmk6gBRXExCh443/b5h+/ehcLq+ikhCCDZt2sTPP//MwIEDWbt2Ldu3b6d7d2vlyNWrVxMYGMjatWsZPnw4ycnJDBs2jDZt2gAQEhJi66tSOHh7e9uWHOfn5/Ppp5/y2Wef0adPHwBWrlyJv79/FV/uv/9+XnjhBdvxhAkTGD16tC0/QGhoKIsWLaJ3794sW7aMgIAAFi1axMsvv8wbb7xBp06diIiIYPTo0Ta/EhMTcXV1xa+aLbUajYaQkBASExOv69lVsn79eh599FGKiorw8/MjNjaWBg0aVGt78uRJFi9e/JeWwNfE6dOnWbZsGc8//zyzZs1iz549TJs2DY1Gw9ixYwHrUvSHH36Y4OBgTp06xaxZsxg4cCA7d+7EoSK33rRp0+jQoQMeHh7s2LGDmTNnkpaWxnvvvWd3v+7du7N//35KS0t56qmnmDNnjp0vmzdvZvTo0fzwww+cPHmSf/zjH5hMJqKjo+tk/BKJxJ6fMo18deFS0u4G6WmUnT7N4SAFx1orcXDKQpX2FYYSZ0oqYk8KhQaFMKN3LAFFOWhuv4p7xcXJADg5NcFgaEmjwCdrtM8psqY2cNGqmD2kFS39XdBpapdrVHLt1JdeguvXTFIvSb0k9VLtkSulJJJaULlSSqNQoFRcfaVU7rffkrZ1D9mFZ3AqVaJAgULhiELpjEN5MYc8Q9h178N17TZp6WspLj5jWynlbGhx1TYpucX8fjKT8ookp0Pu8addoFtduim5DVi/fj3Ozs5otVoGDhzIyJEjGTduHCqViq5du9rsPD09CQsL49ixY4D1j+/cuXPp0aMH0dHRHDx4sMb7nD59GpPJRJcuXWznXF1dCQsLq2LbqVMnu+MDBw6watUqnJ2dba/IyEgsFgtJSUmAdSYyPT2d1atX061bN7788ktatWpFbGxsrZ/F1XIxgFVsXu7Htm3bbNciIiKIj49nx44dDBgwgBEjRnDx4sUqfaSkpDBgwACGDx9ut/f/8n4nT55cK5+3bdtm12716tUAWCwWOnTowFtvvUX79u156qmnmDhxIsuXL7e1ffTRRxkyZAht2rThb3/7G+vXr2fPnj38+uuvNpvnn3+e++67j7Zt2zJ58mQWLFjA4sWLKS0ttfPjiy++YP/+/Xz22Wds2LDBTjxaLBa8vb1ZsWIFHTt2ZOTIkbzyyis2X2p6phKJ5MZQULGyu5OLE699/gnPrllB0iOD2drSD31BY7QX1agqVlCryi14ORShcPBGpSyDA59bO1HfPkEpIQRlZdmUll4AwN9vGK1b/QsXl5pzYVWuIvcyOPJwh4Y095W5pCRWpF66hNRLUi/VFrlSSiKpgRXnLjL3VBqmiqW7td26V5aVxcuP59PvDx0alKj1g1GqAlEo1BQoTDT996c8eBMCPWazNWFncONp+Pg8iJNTSI3257KL6P3uFiriUWhUSrRqOfNXVyh0OsL276uX+14rERERtiSW/v7+qFQq1q1bd9V2EyZMIDIykg0bNvDLL7/w9ttvs2DBAqZOnXo9rtuh19tvKS0oKGDSpElMmzatim2jRo1s/zcYDAwePJjBgwczd+5cIiMjmTt3Lv369SM0NBSj0UhqamqV2caysjJOnTpFZGTkVX0bMmSInfgMCLhUUl2v19O0aVOaNm1KeHg4oaGhfPzxx3ZJUFNTU4mIiKB79+6sWLHCru/Lq6W4uNTui1CnTp3s2vn4+ADg5+dHy5Yt7WxbtGhh2ypQHSEhITRo0ICTJ0/aZmf/TNeuXTGbzZw5c8ZOIAcGWosstGzZkvLycp566ileeOEFHBwc8PPzQ61W22YTK31JT0+nrKysxmcqkUhuDIXF1i9GDY8d4f6tGznUog3nThylMZf+bgi1CdeiUnocvYC2i4EfFUprcnNzsdXA7/ZJbn484RVSU7+wHavUbjXabzuRwcLYRLIrisAY6njFu8RKfemlyntfC1IvSb1UidRLtUcGpSSSGtiQYaTssr3k3dxqrjxnzsig8I9d/JidSY5/GWqzNYilVPnT9PyPuGWeYn9QE7o3qV20/nopKUnDmBdHcfE5AAyGFuj1Ta7a7mRGARZhDUY1dNMxuF3VJcCSG4dCobjubXQ3m0phcDktWrTAbDaza9cu23L0rKwsEhIS7P5wBwYGMnnyZCZPnszMmTP56KOPmDp1qm0G7fI98CEhIajVavbs2WMTRkajkcTERO69994afezQoQNHjx6t4mdNKBQKmjdvzo4dOwB45JFHiIqKYsGCBSxYsMDOdvny5RQVFfHEE09ctV+DwWBXTaUmLBaL3QxZSkoKERERdOzYkZUrV6L805bhaxlfJTqdrtp2PXr0ICEhwe5cYmIiQUFBV+zr/PnzZGVlVbtkv5L4+HiUSiXe3t5XtLFYLJhMJiwWCw4ODvTo0YPPPvsMi8ViG3NiYiJ+fn5oNBo0Gk2tn6lEIrk+jKdOgdYN5elkVAGdMTk5gqmQsz5F5LuU8JK5iFOmQZjOOZIYauGivgkIUClKITAchi61Vt27TcjO3m77v1rtibtblxqsYdX2M+xPzrUdN/GSFYlvBlIvSb0EUi/dyXpJBqUkkhooLLdu21vWMogebs54aWp+y6S89DKpWRpyndN4PPXSTAMKR1yzknDNS8LoU/MfihvB/rhRtvwIACqVW63a5VXkkeoU5M5nE8PrwjXJHURoaChDhw5l4sSJfPjhhxgMBmbMmEFAQABDhw4FYPr06QwcOJBmzZqRk5PDli1baNHCuo00KCgIhULB+vXreeCBB9DpdBgMBsaOHctLL72Eh4cH3t7eREdHo1QqUVxl62xUVBTh4eFMmTKFCRMmoNfrOXr0KLGxsSxZsoT4+Hiio6MZM2YMLVu2RKPR8Ntvv/HJJ58QFRUFWGcI58+fz4svvohWq2XMmDGo1Wq+++47Zs2axdy5c2ndurXdff8sUgBatWqFWm0/g15YWMi8efMYMmQIfn5+ZGZmsnTpUlJSUhg+fDhgFVj33XcfQUFBxMTEkJGRYWvv6+tb4/grZ/YKCgrIyMggPj4ejUZTZWbvcp577jm6d+/OW2+9xYgRI9i9ezcrVqywzTYWFBTwxhtvMGzYMHx9fTl16hQvv/wyTZs2tc2A7ty5k127dhEREYHBYGDnzp0899xzPP7447ZSyatXr0atVtOmTRscHR3Zu3cvM2fOZOTIkbbn9PTTT7NkyRKeffZZpk6dyokTJ3jrrbeqncm9nOzsbJKTk0lNtSZmrvx5+Pr6XvWZSSQSe4rLykALzn4dKQwP4XjGctxyFXQ8VYRPkeCEayTnfftAZS7hink7ndIIzl7Q4Nq/BNYnZnMeAOFdf0avv7rvlbmkpt3flM7BHnRuXDdJlSV3FlIvWZF6SeqlK3JD6gDeocgSx5LwnUeEz+Y4sSsnv1b28RE9xbypI0XMiEG213ujnraWSR42Tjw6dblYszOpTn0uLzeJjZtCbCWNjxx9WZSX11wyNDE9TyyMTRB/X7lbBEWtF5P+vbdOfbwbudNKHFdSWeLY1dVV6HQ6ERkZaVfieMqUKaJJkybC0dFReHl5iTFjxojMzEzb9Tlz5ghfX1+hUChqLHHcpUsXMWPGDFu7K5XU3b17t+jXr59wdnYWer1etG3bVsybN08IIURGRoaYNm2aaN26tXB2dhYGg0G0adNGxMTEiPLycrt+1q5dK3r16iX0er2tBPOaNWvsbKor01z5OnfuXBXfiouLxUMPPST8/f2FRqMRfn5+YsiQIWL37t02m5UrV16xz6tRXZugoKCrtvv+++9F69athaOjo2jevLlYsWKF7VpRUZHo37+/8PLyEmq1WgQFBYmJEyeK9PR0m82+fftE165dhaurq9BqtaJFixbirbfeEiUlJTabzz//XHTo0MH2c2nZsqV46623qrwfduzYIbp27SocHR1FSEiImDdvnjCbzTX6f6VnFh0dfdWx18SNKHF8tyCfx+1PUlGJWJCUJu7fsE34bI4Tr634Q8x/+1URNbGviBkxSCwZu1gsmbTJ9vps+GKxof/z4oO5G8XuDz4TmbNaC/H1U/U9jFpzMWOjSEpaJjZuaiI2bgoRJSUXa7Q/eTFffLP/nOg6b6MIilovdpzMrNFecv1IvST1ktRLd59eUghxA2qD36Hk5eXh6uqK0Wis9T5UyZ1BuRCcLCrlobgTZJvK2dQ5jFbOV99T/srzD3DeMZ+2p11xcGyHg7Yngem/Y8hLRf/saMIf6lvnvptMuWzdZq1QEnHfcZTKq+c7eGTZDvaevVRt5/HwRsz9W5s68/FupKSkhKSkJIKDg9FqtfXtzm1FYWEhAQEBLFiwgPHjx9/0+2dnZ9OnTx9cXFz48ccfcbpNthBI/ho1vWelPrBHPo/bnycPJfFDptF2/PyxIg4XLqPR8Qu4F2hQOz+Cg7oRCAsmYSax7BiEBvJcPxdCk7+Aw19BpyfhwYX1OIraUVycwo6dl1atKxRq7ut9AKXSsVp7c7mFzvM2klNksp37efq9hPneXttjbhekXrp+pF6S1Ac3Qi/J7XsSSTU8deQMGzIuiTNnhysXqrSUlXF2zBjOFegRITpCsh0AgULhhKO5jLDEbwBQBLxwxT5uBBZLGadOxVBUZK2a4eDgVKuAFEBqrjU56aA2fvi7aXmiW+O6clMiuSpxcXEcP36cLl26YDQabWVwK5e432w8PDzYuHEjS5cuZefOnVdMVimRSCS3Kxml1m1pPVKTaXL4MN4XLtCuMAew5rJRKFR4mY+jcfySU5l6+tzTg2EdD8APiy51otFX0/OtR2lpGgAODs54ew/Aw73HFQNSALnFJltAqldoA5r5GGjmI3NJSeofqZckdwoyKCWRVMPBfGuQxk3lQGdXPYHaK5c0LT1xgrzDB9nXpT2eFy8r56k04FhmJCXYF2PbATzcuVWd+pyTs5Pkcx/bjrXaq1dauJhXwpmsIpvYenlAGEGet4eolNzZxMTEkJCQgEajoWPHjmzbto0GDRrUmz+enp68/vrr9XZ/iUQiqUvyU1LBxZ0hX39G5+QL/NjkkhZQlStQOHiiUV5E6+ZPQ+9Awh8aCgfeshq4NwaPEGg3qn6cv0bM5nwAnJwa07LFOzXaFpeVczTVmnfKRaviP+O71mgvkdxspF6S3AnIoJREUg1FFQnOv23flBZX2baXf+EiK4eEYLiYiRsaHDStUKg8aJiVjXvmFvyX/ZO+7epexJSVZQKg14cSEDAKD/eeNdobi03cF/MrRWWXKnm46a4cfJNIbhbt27dn3776Kf0skUgkdyPFFqvuUbV7hB+aH0VxajcA9x85w5F7wjEqHBGNWjFgxnNQmUR5r3UCj95RcM+tH5AqLy/l2PEZ5OcfBkClqnmraXFZOb3mbyGzwDrh6OYkNZLk1kLqJcmdggxKSSTVUFRRctWphm175UYjZx9/nHitK3ltNHiVWgWdg2MHnMvMtEycywWdO26N29W5vyUlaRQWngTAWR9GYMOrl2A9m1VIUVk5KqWCRh5O9GjaAFen2m33k0gkEolEcudQ4mD9SpDv6MBhx2O0ARCCo63+QZ6zPwAGv8BLASkAU0VQSnV75P3Jzd3NhQvrbMdOTsE12qfkFtkCUq46NSM6NaxT/yQSieRuRQalJJI/US4ExRZr/v+aglJF+/dTlFnO2caFtDpiAhwAUCi1qE0XAUjxDqKnc93OrOXk7GZ/3GO2Y5Xa9aptTOUWWx6ppt7O/DT93qu0kEgkEolEcqeRXmrit+x88jXWnEoOFjNJhpO0wQcFSnLdm9ts3X3/lLS4Miilvj2SGZvN1m14en0oTZtE4e4eXqN9XokZgEAPHdtevr/O/ZNIJJK7FRmUkkgu45XE83x14VIVOr2DwxVti7Iv8kFfM00SlQhAqfREqfIDhTMNzL+i+2cUwwY8hqqGwNaNIL/gCABKpSOOjr74eD9Yo31mQSn9F24lu9Ca1NRNro6SSCQSieSu5B9Hz7IjtwActWhLiig6+RMRFk8AHLCuivJUJhHx0nC8g/5Ubc4WlLo9VkqVlxcCoNU2pEGDiCvbWQRHU/OIS84FwOAodZJEIpHUJTIoJZFcxmdp2ba8Cs2ctOiUiio2JQmJZC5ZzMZywbGwLJok+mFx0KBzGUtA2mZC4l4iOcSLxpGvg/bK1VxuFOXmAgB8ff9Gi+ZvXdX+cIrRFpByUCro19K3Tv2TSCQSiURya5J8IQMcdbQ6lUDPsxcwF17AUPH1wNGsoRxQOTvhE1yRf6k0Hz7qA9mnwGJdSXSrr5QqLy/CmHeAvHzrJJ7KoeaCLvM2HOOT7Um2Yxed/LokkUgkdYn8lJVIKhBC2AJS69o3pZ2LEwpF1aBUzurVJCdBpnc2Efv9AHC0WJOha4vyUJuLCRr0KOjcb4rf5nJrUErlULvyxMZia6W98BAP/ju+a52v5JJIJBKJRHJrUlxmAkcdzx4vpqg4hxTAvbCYsLRschrcy1nAEBx6qUHaQchMuHSs84AGoX/u9pbi4KF/kJ29zXasUhlqsIYjqUYAGjg74qpTMbprUJ36J5FIJHc7MiglkVRQWpFHCqClsw5HZfXBmqKsC6S56FEU5lE512ZRWVcbOXgX0XjBF2jbtKlrdzl69GUuXFyPxWINMjlcRWSl5Bbza8JFdidlA9ZKezIgJZFIJBLJ3UupyvpVINFTkJ51DD9AW2bG4lCCW6iFs2bQe16Wq7LMugUOn9Yw+ktrUOoW375XWQhGpwtCrXbHz29YtXYWi+B0ZgEX863Jzf818h56hja4aX5KJBLJ3YoMSkkkFVSukgLQXiEgBbDOqYADLsdoc9qAUt0EB8e2+OeexzE7lozgUnRt29a5r0JYSEv/FrD6rFA44OpyT41tnv8inl0VASkAd70sbSyRSCQSyd1MmcqaL6nYUkCa7jx+uFGkD+RI4LMoyq3BJpXmMk1Ulm/9V+cOLv43293rwmy2+nxPu09wcmp8RbsXvzrAN/tTbMcy56ZEIpHcHOQyCYmkguJya4BHrVCg+lMuKVFWxtmx44h/JIpkVTk+2db8CQoHL7SiAa2OfE7T02vRe+puiq9mcwGVAalu4Zvo1XMPnp69amyTnF0EQM+mDXiofQDjezauYy8ldwrjxo1DoVCgUCjQaDQ0bdqUOXPmYDab/1K/v/76KwqFgtzc3BvjaC1ISkpi1KhR+Pv7o9VqadiwIUOHDuX48eN2duvXr6d3794YDAacnJzo3Lkzq1atsrM5c+YMCoWC+Pj4Wt9/9uzZNG/eHL1ej7u7O3379mXXrl12fY4fP57g4GB0Oh1NmjQhOjqasrKyGvtNS0tj1KhRNGvWDKVSyfTp02vlT3l5Oa+99prd/d58802EuLRy9JtvvqF///54enpecbynTp3ioYcewsvLCxcXF0aMGMGFCxeueVwHDx6kV69eaLVaAgMDmT9//lXHsHXrVgYPHoy/vz8KhYK1a9fWauwSyd1OucVCmVqNz8UU1Gf30fS8df13oT6QcrUbZmENSnk2rEgPYDwPF49Z/6+pOS/TrcDFjJ9JSlpMeWWaA5VLjfbx53IBcNGq6N7EkzDfmlegSyR/RuolqZekXro+ZFBKctdzvLCYh+JO8OiB0wDoHKpPbl60ew/pnh40PJ2Pd661Kp9C4YTaVEi5jwPHu/YmYvqbdeqrEOUkn1vJqVPWDx6lUoeTU2PUatcrtjmXXcTX+86TVZHc/O2H27Bw5D009ZZiS1J7BgwYQFpaGidOnOCFF15g9uzZvPvuu/Xtlo2riRAAk8lEv379MBqNfPPNNyQkJPDFF1/Qpk0bO6G3ePFihg4dSo8ePdi1axcHDx7k0UcfZfLkybz44ot/yc9mzZqxZMkSDh06xO+//07jxo3p378/GRkZABw/fhyLxcKHH37IkSNHWLhwIcuXL2fWrFk19ltaWoqXlxevvvoq7dq1q7U/77zzDsuWLWPJkiUcO3aMd955h/nz57N48WKbTWFhIT179uSdd96pto/CwkL69++PQqFg8+bNbN++nbKyMgYPHoylYgVqbcaVl5dH//79CQoKYt++fbz77rvMnj2bFStW1DiGwsJC2rVrx9KlS2s9bonkbkYIwctrf+Fv38QC0PnA76iNmbgUVawMcrDmxBziv5Axc7sR2skH0g/DwtawteJzX1O7PJb1RXHxOQ4d+genk/4FgEKhuWIuKSEEFosgp0In/W9yNz6bGI5apjiQXAdSL0m9JPXSdSAkV8RoNApAGI3G+nZFUoe8dSpV+GyOs7367Tlud91SViaMP/0s/v1QdzHphftEzIhBYsGjj4uFj78kVo1cIn6K+LsQMc1viq9ZWb+LjZtCbK/tOyKu2qbPgl9FUNR6ERS1XjSesV4UlJhugqeSP1NcXCyOHj0qiouL69uVa2bs2LFi6NChduf69esnwsPDRXZ2thgzZoxwc3MTOp1ODBgwQCQmJtrszpw5Ix588EHh5uYmnJycRMuWLcWGDRtEUlKSAOxeY8eOFUIIkZeXJ0aNGiWcnJyEr6+veO+990Tv3r3Fs88+a+s3KChIzJkzR4wZM0YYDAZb223btomePXsKrVYrGjZsKKZOnSoKCgqEEELExcUJQJw5c+aKY01OThZqtVo8//zzVa4tWrRIAOKPP/4QQgjbGOLi4q79oVZQ+Xdm48aNV7SZP3++CA4OrnWff35WNTFo0CDx5JNP2p17+OGHxejRo6vYXmm8P//8s1AqlXZ/K3Nzc4VCoRCxsbFXvPefx/XBBx8Id3d3UVpaajsXFRUlwsLCajUWIYQAxLfffltr+5qo6T0r9YE98nncXhxJOGmne6ZPnyZiRgwSX/TpJWLDu4jFT/0slkzaJEoXdL7U6MD/hIh2EeJNbyEWdRQi8crv7VuBnJw9YuOmELHl17bi6LGZIj19fbV2paZyMfBfW206KShqvUg33n5/p+8kpF6Seqk6pF66s/WSnAKQ3PUUmMsBeMjbjTVtQ/iyXRPbNdOFi5zodS87F63k+3sDUFpNcXBsi6uiPV3il6A1HgNtzUvCbxSlZdbZAa02kKBGT9GqZUyN9kIIzmRak5J2b+LJrIEt0DvKVHK3CkIITKXlN/0lLltqfL3odDrKysoYN24ce/fuZd26dezcuRMhBA888AAmkzUB/zPPPENpaSlbt27l0KFDvPPOOzg7OxMYGMjXX38NQEJCAmlpabz//vsAPP/882zfvp1169YRGxvLtm3b2L9/fxUfYmJiaNeuHXFxcbz22mucOnWKAQMGMGzYMA4ePMgXX3zB77//zpQpUwDw8vJCqVTy1VdfUV5eXu24vvrqK0wmU7UzfJMmTcLZ2Zk1a9b85ecH1tnKFStW4OrqWuNsndFoxMPD44bc8890796dTZs2kZiYCMCBAwf4/fffGThwYK37KC0tRaFQ4OjoaDun1WpRKpX8/vvvV2z353Ht3LmTe++9F43mUr67yMhIEhISyMnJuZZhSSSSGsgvsG5ncymz0P/ofjyNaQB45xVSYChHobDqBFWPpy41MllTABASAVP3Qmjfm+rztVJZmdhJF0SL5m/h4zOoWrszWYUcTcuzHTf3NdDA2bFaW0n9UV966UZoJqmX/jpSL935ekl+O5Xc9RRW5JJq6awjwtM+uFRy+BDl+UXkdG1Hw+S9eGa5ASZQOKIyF2NWKskJdAHNX9srXlvMZqtwcjG0pmnTqBpt80pMnM8uxlxRVfCTcZ3Rqh3q3EdJ7TGXWVjx7G83/b5Pvd8bteP1/S4IIdi0aRM///wzAwcOZO3atWzfvp3u3bsDsHr1agIDA1m7di3Dhw8nOTmZYcOG0aaiImVISIitr8o/sN7e3ri5uQGQn5/Pp59+ymeffUafPn0AWLlyJf7+VRPq3n///bzwwgu24wkTJjB69GhbfoDQ0FAWLVpE7969WbZsGQEBASxatIiXX36ZN954g06dOhEREcHo0aNtfiUmJuLq6oqfn1+V+2k0GkJCQmyC5HpZv349jz76KEVFRfj5+REbG0uDBtVXeDp58iSLFy8mJqbmAPT1MmPGDPLy8mjevDkODg6Ul5czb948Ro8eXes+wsPD0ev1REVF8dZbbyGEYMaMGZSXl5OWllZtm+rGlZ6eTnBwsJ2dj4+P7Zq7u/t1jFAikfyZkuJSQIN7QT6+yVuxlOcBKrI82pHXwPpZ6KBSouw64VKjyqCUxumm+3stWCxlZGf/Tla29Queg6rmbYa5RdaAQCMPJ757pgcuOjUOyqppHCT1S33pJbh+zST1ktRLf0bqpSsjV0pJ7noqg1K6anIHlBvzKDZ4kJK+nYCUErSlVvGiUDqhseTRcvh5/tZ+N4TVPkp+XT4WnuLYsZmkpX4FcMW8CJWk5hbTZd5GHli0DQBHlVIGpCR/ifXr1+Ps7IxWq2XgwIGMHDmScePGoVKp6Nq1q83O09OTsLAwjh2zJsOdNm0ac+fOpUePHkRHR3Pw4MEa73P69GlMJhNdunSxnXN1dSUsLKyKbadOneyODxw4wKpVq3B2dra9IiMjsVgsJCUlAdaZyPT0dFavXk23bt348ssvadWqFbGxsbV+FpfPTF2J1atX2/mxbds227WIiAji4+PZsWMHAwYMYMSIEVy8eLFKHykpKQwYMIDhw4czceJE2/nL+508eXKtfN62bZtdu9WrVwPwv//9j9WrV/PZZ5+xf/9+Pv30U2JiYvj0009r1S9YZ1S//PJLvv/+e5ydnXF1dSU3N5cOHTqgrKaS6ZXGdb1jkEgk10ZxRU6Zbju/x+dMJvoS6xx1asP+FDlbvzDrXP5Uea7Muuoa9c0p6HK9pKR+zoGDEzl/3voZpla7VW+XW8xT/97L698dBsBDr8Fdr5EBKclfRuqlS0i9ZI/US1dGrpSS3LV8fzGXz9KyOJhfDID+sqCUKT2dnDWfk3D8GB/8zZlOcQKBEpWmNY7lxfhePIehIA6HVz6GVg+Bsm4DPmfPfkha+te2Y0dtzWWYj6bmUWKyoFSAXqPioQ4Bdeqf5PpQaZQ89X7vernvtRIREcGyZcvQaDT4+/ujUqlYt27dVdtNmDCByMhINmzYwC+//MLbb7/NggULmDp16vW4bodeb1/9qaCggEmTJjFt2rQqto0aNbL932AwMHjwYAYPHszcuXOJjIxk7ty59OvXj9DQUIxGI6mpqVVmG8vKyjh16hSRkZFX9W3IkCF24jMg4NJ7UK/X07RpU5o2bUp4eDihoaF8/PHHzJw502aTmppKREQE3bt3r5K48vJqLi4utds63KlTJ7t2lTNqL730EjNmzODRRx8FoE2bNpw9e5a3336bsWPH1qpvgP79+3Pq1CkyMzNRqVS4ubnh6+trN9N7tXH5+vraVaABbMe+vr40bty42jFIJJJro7SsDDTgXGDd5qEuL8XJZKDEzQudOZuWfYMJ6tzUanzhCOxYDKlx1mP1rV11r7joLABabUP0+iY0CnyyWrvv4lP45eilz5sQr1t7XHc79aWXKu99LUi9JPVSTUi9VD0yKCW5a3knKY2TRaW240DtpWh+1sefkPPdryT1HopRfRRwRalwRK3vS+uDH9Ag+wgFDXWgc6vzgBRAmSkTAB/vB3Fz74qvz+Aa7Y3F1hVdPUO9+PeTXWq0ldQfCoXiurfR3WwqhcHltGjRArPZzK5du2zL0bOyskhISKBly5Y2u8DAQCZPnszkyZOZOXMmH330EVOnTrXNoF2eryAkJAS1Ws2ePXtswshoNJKYmMi9995bo48dOnTg6NGjVfysCYVCQfPmzdmxYwcAjzzyCFFRUSxYsIAFCxbY2S5fvpyioiKeeOKJq/ZrMBgwGGpX4dJisVBaeumzKCUlhYiICDp27MjKlSurzJ5dy/gq0el01bYrKiqq0r+Dg4OtCsy1UrmsfvPmzVy8eJEhQ4bYrl1tXN26deOVV17BZDKhVltXacTGxhIWFmZbin49Y5dIJFZKEhNJfz2aC+7eMOLvqE3WFVMdT2dSavDnmJ8CF0sK4YN6gaGiqu/29+HgF5c6cal5Uqy+MZmNADQMGEVQ0KQr2lVW2uvbwodHOjakR1PPm+Kf5PqQeknqJZB6qZI7US/JoJTkriWvIsH5zGA/2rs40cPtUt6B8qwsHFo9jMZRibLcmpNJgfUPgsHbiGMjM00bJYGja537WVp6gbKyiqCUzyC8vPpf0Xbf2RzmbjhKaq519ZebTn1FW4nkrxIaGsrQoUOZOHEiH374IQaDgRkzZhAQEMDQoUMBmD59OgMHDqRZs2bk5OSwZcsWWrRoAUBQUBAKhYL169fzwAMPoNPpMBgMjB07lpdeegkPDw+8vb2Jjo5GqVSiUNS8rSIqKorw8HCmTJnChAkT0Ov1HD16lNjYWJYsWUJ8fDzR0dGMGTOGli1botFo+O233/jkk0+IirLmaGvUqBHz58/nxRdfRKvVMmbMGNRqNd999x2zZs1i7ty5tG7d2u6+CQkJVXxp1aqVTShUUlhYyLx58xgyZAh+fn5kZmaydOlSUlJSGD58OGAVIvfddx9BQUHExMTYSh+DdfarJipnxQoKCsjIyCA+Ph6NRmMneP/M4MGDmTdvHo0aNaJVq1bExcXx3nvv8eSTl1YXZGdnk5ycTGpqqt14fX19bT6tXLmSFi1a4OXlxc6dO3n22Wd57rnnbNsIajOuUaNG8cYbbzB+/HiioqI4fPgw77//PgsXLqxx3AUFBZw8edJ2nJSURHx8PB4eHnYzvhLJ3U7ejz9yMruEfff3A8DBbP1yp7JYOB9g/Urg5FIM2su0TYk1yEPrR6BJhHV1+C1IXv5hkk6/jzEvHgCVqnp9Zi63kFlQxoU869jvCXRlQOuaP1slkr+K1EtWpF6SeumK3JA6gHcossTxnU2T3w4In81x4nRhSZVrJyZOENsmLxHvjx8v3hwzVMSMGCQWPPZ3sWTSJnFqchch3vAQ4oMeQpQW1qmPJ078U2zcFGJ7ZWf/UaN91FcH7MoaL96UWKO95OZxp5U4rqSyxLGrq6vQ6XQiMjLSrsTxlClTRJMmTYSjo6Pw8vISY8aMEZmZmbbrc+bMEb6+vkKhUNRY4rhLly5ixowZtnZBQUFi4cKFVfzZvXu36Nevn3B2dhZ6vV60bdtWzJs3TwghREZGhpg2bZpo3bq1cHZ2FgaDQbRp00bExMSI8vJyu37Wrl0revXqJfR6va0E85o1a+xsqivTXPk6d+5cFd+Ki4vFQw89JPz9/YVGoxF+fn5iyJAhYvfu3TablStXXrHPq1Fdm6CgoBrb5OXliWeffVY0atRIaLVaERISIl555RW7MsNX8ik6OtpmExUVJXx8fIRarRahoaFiwYIFwmKxXPO4Dhw4IHr27CkcHR1FQECA+Oc//3nVcW/ZsqXafit/n66XG1Hi+G5BPo/bg08+XCV8NseJfktWiLGvzhDvjHxQxIwYJD7722zxwVNrxJJJm0Ts0q32jVYNFiLaRYgD/6sfp2vJkaMv2+mlrOwdVWzKyy0icuFvdjrp3zuSbr6zkhqReknqJamX7j69pBDiBtQGv0PJy8vD1dUVo9FY632oktsDIQQBvx7AAhzo3gofx0sR+vLycmJeewVzgRHthXO280p1M7ROkQx2mkbD6Z9A4x517ueevY+QlxeHQqHCySmETh2/RFVDJZnJ/9nHT0fSGde9MQ+29aN9I3eZtPMWoaSkhKSkJIKDg9FqtfXtzm1FYWEhAQEBLFiwgPHjx9/0+2dnZ9OnTx9cXFz48ccfcXK6tatPSW4MNb1npT6wRz6P24OZq/7H594BTPn07UsnBTi6P4NCYS1R3vnBYLo8eFlVp//rB+d3w8jV0OLBm+xx7TlwcBKZmRvx9x+Jj89g3N3Cq6wWySoopePcjQColAo89Bo+mxhOU++aK/RJbi5SL10/Ui9J6oMboZfk9j3JXcf6i7kcKyymcgfw5QnOSxISyU5MJM/RAaPpHMGASumLQteBoJwjFBX8F7+2F0BzcxJims15ALS/51Pc3cOvaJeRX8q5nCJSjdZte+0budGpscdN8VEiudHExcVx/PhxunTpgtFoZM6cOQC2Je43Gw8PDzZu3MjSpUvZuXOnrfSyRCKR3E6UCgva0iIAzEoLme65tD0fRp7CEVdxkh4T+hN4T6B9I7NVV6C+NYMDFkspJlMeprIsADzce+Dh3q1a29yKfJsGrYpDs6+egFkiudWReklypyCDUpK7irPFpUw4csZ27KhUoKsISpkzMkh6+GEyWw4mtWs6osQIuKJQeuGgaU7XyDh8szdDmQBN3c2qCWEhPX0tpaUXKC21VlK4Um4EgNyiMu6dv4Vi06Xkh64yl5TkNicmJoaEhAQ0Gg0dO3Zk27ZttqSQ9YGnpyevv/56vd1fIpFI/iolAjQVyc21ZRae3JzD2UBn8oAGilSC2/uDqiKZdPohyDkDhdZgDypdvfhcE2ZzPjv/6GvLuwmgUlfVS+UWweT/7iP+XC4Abk5SI0nuHKRektwJyKCU5K4io8wMgMFByd983LnX3YBDxfJuU1oaWAT6Jj0wKT9HZ7YGq4TSOjvodH4LqAqsHdXhSqmc3F0cPfaS3TmN5spVYZIyCyk2laNSKvB30xHgpqOzXCUluY1p3749+/btq283JBKJ5LZHCEFqVBSlFxtwrt89qE2FADiarevFLXprERdHXTE4VARrspNgeU/7jm7SCvFrobDw5GUBKSU6XSAuhjZV7JIyC4g9eql8emv/ui9SI5HcDKRektwpyKCU5K6iuNwqwgK0Gt4Ns1+ibikqJtfNk5SS44QeycNQ0ABBKThYZwfVDmZwD4ZG4WCou0otpSXWig2Ojr54ePTCxaUtjo7e1dqWmMpJzrYuxW/uZ2D91F515pdEIpFIJJLbi/KsLPLWfU9G/+cIOhhLSKl15ZPKYsHs4Ig+SEApqJ10UJmDKfes9V+1E/i2hQah4Fs12FPfVKY4MDi3okuXdVe0MxZbJyR9XbT839hOhPnWrvy8RCKRSG4OMigluasotliDUjqlssq10ynn+TnyfpzO7MG52GINSAEKpQu6sos4BreFcVcWPTcKU4XIcnXtSMsW/7yi3YW8Evq+9xv5JVax5e6kqXPfJBKJRCKR3D5Yiooo0DlxsPQowRculQK3qDzY2msWFVIHdYdHLjUqs66mwqcVjP/5JnpbO4QQZGdv5WLGLwCoVFcOMpnLLeQWWbcsejpraB0gV0lJJBLJrYYMSknuKooqVkrpHKoGpTJzjZQpy9CIEhwAB20X1Ap3vPQH8dcfROl+T936VnSGg4eepqQkBQB1NXkRLufQeaMtIOWoUjKgdd2t3pJIJBKJRHL7UVJYyNjoBfTZ9i2Nc8GsKsCluBSdujemChu1owMNWwdcalRWVHHh1qyclZ9/iPgDT9qO1ZrqUxZ8/HsS8zYcxVJRZ9yglV97JBKJ5FZEfjpL7goyykx8kHyRA/nWKjKXr5QqOXqUtFdfI82vPQdaHKDLqXIcUeGgbooGwQj/76E0DxzvrVMfM7O2UFiYaDuuLi/C5eSVWOVkr9AG/Gd81zr1TSKRSCQSye1HdmEx2a5uqCsSnHc5kY9vXhH72rsBENlsAyHTY1AqK7buFWSA8Zz1/7dgHimA4pLzAKjVHri7hxPUaGK1dhuPXrAFpAB6hXrdDPckEolEco3IoJTkruA/qVksO5dhO/bSXPrVN27YQHGODl3LAPI1+ajLK0SYQoPOkmsNSIE1p0IdUm62JlH38hpA0yYv4+QUVK1dam4xWxMz2HHKmhfCRVbak0gkEolEchnCZOLcP6ZyxKUdPNgNjcm6T09lEVxwVZCvt67GdnTkUkAqfg2snXypk1t0pVSlXnJ1uYc2rRdf0S632Dp598HoDtzbzAtnR/m1RyKRSG5F5Kez5K4g22Td5hbuqqePh4GhKgtl58/zn9NfEq/8CfN9njRMOcCQU14oLBW5pBRqNKIEGnWH/nMhoEOd+mg25wOg0zW8YkAK4NnP49hzJsd27CFzSUkkEolEIrmM0hMnKDmaRmr3Zoz5aikeudYqdSqLhbQGSvTOavJLQKVxuNTo/G7rv0oVaJyh5ZB68PzKCGGhvLyQsjLrpJyDqvqVXHHJOXwbl8L5ikIw/m46GZCSSCSSW5iqiXVuAlu3bmXw4MH4+/ujUChYu3at3XUhBK+//jp+fn7odDr69u3LiRMn7Gyys7MZPXo0Li4uuLm5MX78eAoKCuxsDh48SK9evdBqtQQGBjJ//vy6HprkFqUyl1SEhwtD3phJ9oD+fDf2YfZ+v42Ge51oerQUrfGkLSCFQg8KJ5wdLoJfG2jY8VJVmhuIxWLi8OFn2b1nCGnp3wKgcnCusc2ZLKvI6hbiyZB2/oztfuUAlkQikUgkkrsPS1ERCrWOgqzD+Gam4WCxIBCcDhlFRtAC8kusK6XUTtpLjSpzSfV5HWachZZD68Hz6rFYzOzaPYjftt7DqdMxwJX10uzvj/LvnWfJL7VOSPq4ON40PyUSiURy7dRLUKqwsJB27dqxdOnSaq/Pnz+fRYsWsXz5cnbt2oVerycyMpKSkhKbzejRozly5AixsbGsX7+erVu38tRTT9mu5+Xl0b9/f4KCgti3bx/vvvsus2fPZsWKFXU+PsmtR2FlgnMlFP6xi0MNvUhu4E3T5DJUFgGUA6DAgeYZLvg7NCBJnUiJz35wqrscBPn5h7hwcT35+UcwmbIBcNI3qdY2u7CMLQkXbVVkYka0Y9Fj7WnqLUsbS+qWcePGoVAoUCgUaDQamjZtypw5czCbzX+p319//RWFQkFubu6NcbQWJCUlMWrUKPz9/dFqtTRs2JChQ4dy/PhxO7v169fTu3dvDAYDTk5OdO7cmVWrVtnZnDlzBoVCQXx8fK3vP3v2bJo3b45er8fd3Z2+ffuya9cuuz7Hjx9PcHAwOp2OJk2aEB0dTVlZWY39pqWlMWrUKJo1a4ZSqWT69Om18ic/P5/p06cTFBSETqeje/fu7Nmzx86moKCAKVOm0LBhQ3Q6HS1btmT58uV2NpMmTaJJkybodDq8vLyqfabJyckMGjQIJycnvL29eemll674O7R9+3ZUKhX33HPPVcfwzTff0L9/fzw9Pa/55yGR3KlYiopArcNisW5hszhk0Sg7g9wGnUBh3fbv5FiCS8SYS43KKiZ3b8FcUqWlF+zybiqVGjw8e1Vrm5lvnWAc1bURyx/viJ+r7qb4KJFIvST1ktRL10e9BKUGDhzI3Llzeeihh6pcE0Lwr3/9i1dffZWhQ4fStm1b/v3vf5OammpbUXXs2DF++ukn/u///o+uXbvSs2dPFi9ezOeff05qaioAq1evpqysjE8++YRWrVrx6KOPMm3aNN57772bOVRJPZNZZmbdxVySiqwCRXn0KKkN9JxvYJ0ZVDj4gaYRTq6dadBgJB1P5xKSGkeRPoMFDWbxsGpbnYozkykXACenYNq1+5hOHb/G22tgtbaPrfiDv6/cg6ncmrXT3UnmkpLcPAYMGEBaWhonTpzghRdeYPbs2bz77rv17ZaNq4kQAJPJRL9+/TAajXzzzTckJCTwxRdf0KZNGzuht3jxYoYOHUqPHj3YtWsXBw8e5NFHH2Xy5Mm8+OKLf8nPZs2asWTJEg4dOsTvv/9O48aN6d+/PxkZ1px3x48fx2Kx8OGHH3LkyBEWLlzI8uXLmTVrVo39lpaW4uXlxauvvkq7du1q7c+ECROIjY3lP//5D4cOHaJ///707duXlJQUm83zzz/PTz/9xH//+1+OHTvG9OnTmTJlCuvWrbPZdOzYkZUrV3Ls2DF+/vlnhBD079+f8nJrwL+8vJxBgwZRVlbGjh07+PTTT1m1ahWvv/56FZ9yc3N54okn6NOnT63GUFhYSM+ePXnnnXdqPW6J5E5GWATnkst4ecxo8ip2rfU4XkyzC4pKA54YfoonYgag8b8sX6apsurerReUMpdbUxyo1Z5E3HeM3vcewtsr0s7GYhGUmMoxVuSSmtgrRFYmltx0pF6SeknqpetA1DOA+Pbbb23Hp06dEoCIi4uzs7v33nvFtGnThBBCfPzxx8LNzc3uuslkEg4ODuKbb74RQggxZswYMXToUDubzZs3C0BkZ2dX60tJSYkwGo2217lz5wQgjEbjXxukpN4Yui9R+GyOs73efmqGeGzBo2L2E5EiZsQgsWj8f8XHY2eL7ZH3ioR7R4gDLVqLo2HNxaf/eEiIN32EWNhGiIvHb7hfFotFFBScEKdPLxIbN4WI/fufqNG+vNwigmesF0FR68WAf20V7/50432S1C3FxcXi6NGjori4uL5duWbGjh1b5fO0X79+Ijw8XGRnZ4sxY8YINzc3odPpxIABA0RiYqLN7syZM+LBBx8Ubm5uwsnJSbRs2VJs2LBBJCUlCcDuNXbsWCGEEHl5eWLUqFHCyclJ+Pr6ivfee0/07t1bPPvss7Z+g4KCxJw5c8SYMWOEwWCwtd22bZvo2bOn0Gq1omHDhmLq1KmioKBACCFEXFycAMSZM2euONbk5GShVqvF888/X+XaokWLBCD++OMPIYSwjeHPf6+uBaPRKACxcePGK9rMnz9fBAcH17rPPz+rK1FUVCQcHBzE+vXr7c536NBBvPLKK7bjVq1aiTlz5tRo82cOHDggAHHy5EkhhBA//PCDUCqVIj093WazbNky4eLiIkpLS+3ajhw5Urz66qsiOjpatGvX7qrjqORG/Dwup6b3bOXPTeoDK/J53Dpkr/lcnHhgnJix9EfhszlORI97VMSMGCT+aNdWrIx8WCyZtEl8OGm9EHtXXmq0+yMhVtwvxDx/IaJdhDiytt78r47i4hSRkvql2LgpROzY2ad6mzKziIjZIoKi1tteWQWl1dpKbm2kXpJ6qTqkXrqz9VK9rJSqifT0dAB8fHzszvv4+Niupaen4+3tbXddpVLh4eFhZ1NdH5ff48+8/fbbuLq62l6BgYF/fUCSeuVMsXU2oGWBkfv37KSdZxdKHcpQmyt+9RUaGmSU4X7mIuUXDqK2mDErlKidymHMNzD9IHiF3XC/UlLX8MeuSE4n/QsAldqlRvuCMrOtrPG3/+jOi5E33ifJzUcIgamk5Ka/hBBXd+4q6HQ6ysrKGDduHHv37mXdunXs3LkTIQQPPPAAJpN1pvqZZ56htLSUrVu3cujQId555x2cnZ0JDAzk66+/BiAhIYG0tDTef/99wDrTtH37dtatW0dsbCzbtm1j//79VXyIiYmhXbt2xMXF8dprr3Hq1CkGDBjAsGHDOHjwIF988QW///47U6ZMAcDLywulUslXX31lm5H6M1999RUmk6naGb5Jkybh7OzMmjVr/vLzA+ts5YoVK3B1da1xts5oNOLh4XFD7nk5ZrOZ8vJytFqt3XmdTsfvv/9uO+7evTvr1q0jJSUFIQRbtmwhMTGR/v37V9tvYWEhK1euJDg42PZ3dOfOnbRp08bu73JkZCR5eXkcOXLEdm7lypWcPn2a6OjoGzlUieSuwbhuHcLkwEVVCYryAjSmYgCUQmDqdA8AKmWp/Wqo3+ZDyt5L2/c8qk8jUB9kZf/O9h29OHYsCgCVQ/UpC5IyCzmdUWg7bt/IDTdZnfiOob700o3QTFIv/XWkXrrz9ZIsRXEZM2fO5Pnnn7cd5+XlycDUbU5hxQfpWwd2oPhxC0eah9HpXDmaiqCUQqHBySmf2LDOJDg2xKRUkeziy+va/9Tptr38/MMAqFQuaDQN8PN9uFq7nMIyHlm+g/M5VlGpVSvRqh2qtZXcfphLS1k09pGbft9pn36F+k9/WGuLEIJNmzbx888/M3DgQNauXcv27dvp3r07YN06HRgYyNq1axk+fDjJyckMGzaMNm3aABASEmLrq1I4eHt74+bmBlj37H/66ad89tlntuXIK1euxN/fv4ov999/Py+88ILteMKECYwePdqWHyA0NJRFixbRu3dvli1bRkBAAIsWLeLll1/mjTfeoFOnTkRERDB69GibX4mJibi6uuLn51flfhqNhpCQEBITE6tcuxbWr1/Po48+SlFREX5+fsTGxtKgQYNqbU+ePMnixYuJiYn5S/esDoPBQLdu3XjzzTdp0aIFPj4+rFmzhp07d9K0aVOb3eLFi3nqqado2LAhKpUKpVLJRx99xL333mvX3wcffMDLL79MYWEhYWFhxMbGotFYq4PWZqLoxIkTzJgxg23btqFSSXkikVwPloICFA6uOF04wcDTK1CbFYCCfOdgGuRkkgqoFSVw+WRYqXVrHEMWg9894Nu6Hjyvnvy8QwAolVrUajf8/UdUa1e5ZS+4gZ71U3vipHFAUQcFaiT1Q33pJbh+zST1ktRLUi/VnltupZSvr3Xv94ULF+zOX7hwwXbN19eXixcv2l03m81kZ2fb2VTXx+X3+DOOjo64uLjYvSS3L0IIW4Lzi8WF/HxvB3IKktCUVSSKU+hQm8px8k6n4atvMOy1p/j7rFEsDlxJd4ej1nLIdeKXBZMpB4CQkOfpFh5LgwYR1druO5vDqYxCSs3WcXQJ9qwTnySSq7F+/XqcnZ3RarUMHDiQkSNHMm7cOFQqFV27drXZeXp6EhYWxrFjxwCYNm0ac+fOpUePHkRHR3Pw4MEa73P69GlMJhNdunSxnXN1dSUsrOrqwE6dOtkdHzhwgFWrVuHs7Gx7RUZGYrFYSEpKAqwzkenp6axevZpu3brx5Zdf0qpVK2JjY2v9LCqFQ02sXr3azo9t27bZrkVERBAfH8+OHTsYMGAAI0aMqPI3DSAlJYUBAwYwfPhwJk6caDt/eb+TJ0+ulc/btm2za7d69WoA/vOf/yCEICAgAEdHRxYtWsRjjz2GUnlJHixevJg//viDdevWsW/fPhYsWMAzzzzDxo0b7e4xevRo4uLi+O2332jWrBkjRoywK1BSE+Xl5YwaNYo33niDZs2aVWtT0zOVSCRWygsKKFM5EHT4N1olKVEKBQg42vppUsut1fTUihJoUJFLymK5lEuq2UDwa1tPnlePyZwLQMOA0fTssZ2AgMfsrheXlfPZrmS+2nceADcnNXpHlQxISeoNqZcuIfWS1Eu15ZYLrQUHB+Pr68umTZtsWeTz8vLYtWsXTz/9NADdunUjNzeXffv20bFjRwA2b96MxWKxvdm7devGK6+8gslkQq22Lt+NjY0lLCwMd3f3mz8wyU0lPq+IX7PzsFQcZ6Wmcj64hDBAgQq1YRj+F+IpSfmUuFnzeKZRMay4D8pLL3WidrrhfuXlHyYu7nHM5sqEnW412udWzPx1DfZgwYh2+MsKMncUKkdHpn36Vb3c91qJiIhg2bJlaDQa/P39UalUdokbr8SECROIjIxkw4YN/PLLL7z99tssWLCAqVOnXo/rduj19qsZCwoKmDRpEtOmTati26hRI9v/DQYDgwcPZvDgwcydO5fIyEjmzp1Lv379CA0NxWg0kpqaWmW2saysjFOnThEZGfnn7qswZMgQO/EZEBBg53fTpk1p2rQp4eHhhIaG8vHHHzNz5kybTWpqKhEREXTv3r1K1djLq6XUdvKkU6dOdu0qZ92aNGnCb7/9RmFhIXl5efj5+TFy5EjbTGhxcTGzZs3i22+/ZdCgQQC0bduW+Ph4YmJi6Nu3r63Pyq3voaGhhIeH4+7uzrfffstjjz2Gr68vu3fvtvPp8omi/Px89u7dS1xcnG37gMViQQiBSqXil19+qfGZSiR3O8UHD5L3408c8HAntaEORRooLRZCMnIxevQkX6FBr8jA2d2RNn06XkpNUBmQgluq6l5ZWTZxcY9TWGT9gqxWV6/d/7f3HNHrLm1paeB87X/fJLc+9aWXKu99LUi9JPWS1EvXTr0EpQoKCjh58qTtOCkpifj4eDw8PGjUqBHTp09n7ty5hIaGEhwczGuvvYa/vz9/+9vfAGjRogUDBgxg4sSJLF++HJPJxJQpU3j00Udtb4rKCOL48eOJiori8OHDvP/++yxcuLA+hiy5yYw9dJoLFSui1CYTxe6BnHbeQBi+KFGhVAWQF3SE+NGzmdG9CZz+uiIgpQAHDQR1A2efmm9yHeTk/GELSKlUBlxd2ldrl1lQylf7zrPrdBYA3i5aGrrf+CCZpH5RKBTXvY3uZlMpDC6nRYsWmM1mdu3aZVuOnpWVRUJCAi1btrTZBQYGMnnyZCZPnszMmTP56KOPmDp1qm0G7fJ8BSEhIajVavbs2WMTRkajkcTExCrLn/9Mhw4dOHr0aBU/a0KhUNC8eXN27NgBwCOPPEJUVBQLFixgwYIFdrbLly+nqKiIJ5544qr9GgwGDIbqc5/8GYvFQmnppYB4SkoKERERtgotl8/CAdc0vkp0Ol2N7fR6PXq9npycHH7++Wfmz58PWCvwmEymKj44ODhgsViq6wqwrlQVQtjG1a1bN+bNm8fFixdtOSFjY2NxcXGhZcuWqNVqDh06ZNfHBx98wObNm/nqq68IDg5Gr9fX+plKJHcbabNnY8pSceS+1ihKCtEDarOFZuk5fNm0E55AJ8PXtB41ElpX5GSJWw0JP1T0oAD1rTPxlWvcQ0FhQsWRAheX6ldwpeZa0xuE+RjoEOTGmPDGN8dByU1F6iWpl0DqpTtZL9VLUGrv3r1ERFzarlSZx2ns2LGsWrXKtsfyqaeeIjc3l549e/LTTz/ZJRdbvXo1U6ZMoU+fPiiVSoYNG8aiRYts111dXfnll1945pln6NixIw0aNOD111/nqaeeunkDldQLFiFsAak+8bvpbHSlzJxDu9MV2zYVVtHV2ODM3x+tCAqV5Fn/bf0wPPJJnflmNlvv4+8/krBms1Eqq1/W+sGWU3yyPcl27CVn/iS3IKGhoQwdOpSJEyfy4YcfYjAYmDFjBgEBAQwdat0mMn36dAYOHEizZs3Iyclhy5YttGjRAoCgoCAUCgXr16/ngQceQKfTYTAYGDt2LC+99BIeHh54e3sTHR2NUqm86naMqKgowsPDmTJlChMmTECv13P06FFiY2NZsmQJ8fHxREdHM2bMGFq2bIlGo+G3337jk08+ISrKmkS3UaNGzJ8/nxdffBGtVsuYMWNQq9V89913zJo1i7lz59K6tX2+lYSEhCq+tGrVyrZKt5LCwkLmzZvHkCFD8PPzIzMzk6VLl5KSksLw4cMBq8C67777CAoKIiYmxlb6GK689bySypm9goICMjIyiI+PR6PR2AneP1NZjjgsLIyTJ0/y0ksv0bx5c/7+978D1pnF3r1789JLL6HT6QgKCuK3337j3//+N++99x5g3ULwxRdf0L9/f7y8vDh//jz//Oc/0el0PPDAAwD079+fli1bMmbMGObPn096ejqvvvoqzzzzDI4Vs9B/fq7e3t5otdoq5/9MdnY2ycnJpKamApd+Hr6+vld9ZncCs2fP5o033rA7FxYWxvHjxwEoKSnhhRde4PPPP6e0tJTIyEg++OADu5wVycnJPP3002zZsgVnZ2fGjh3L22+/fcfkqrgbKM/JRRH8NxJ8nCi0WLj3zDEchPWLkErvDKWgUpSCqkJLW8ph/XQorygP7+IPt9CWN7PJOoHn5taV1q0X4aipPo9MXol1Rfmgtn5M6xN60/yTSK4FqZesSL0k9dIVuQFVAO9YZInj25MCs1n4bI4TPpvjxMb7IsSKyS+JmBGDbK/3Rk8RSyZtEpuWVZT1LMwS4seZ1jLI656tE59KSzNFaurXYv/+MWLjphBx8tSCGu2f/u9eERS1XgxftkO8+f0RkZJTVCd+SW4ed1qJ40oqSxy7uroKnU4nIiMj7UocT5kyRTRp0kQ4OjoKLy8vMWbMGJGZmWm7PmfOHOHr6ysUCkWNJY67dOkiZsyYYWsXFBQkFi5cWMWf3bt3i379+glnZ2eh1+tF27Ztxbx584QQQmRkZIhp06aJ1q1bC2dnZ2EwGESbNm1ETEyMKC8vt+tn7dq1olevXkKv19tKMK9Zs8bOproyzZWvc+fOVfGtuLhYPPTQQ8Lf319oNBrh5+cnhgwZInbv3m2zWbly5RX7vBrVtQkKCqqxzRdffCFCQkKERqMRvr6+4plnnhG5ubl2NmlpaWLcuHHC399faLVaERYWJhYsWCAsFosQQoiUlBQxcOBA4e3tLdRqtWjYsKEYNWqUOH78uF0/Z86cEQMHDhQ6nU40aNBAvPDCC8JkMl3Rt9qWOL7SM4uOjr5q25q4ESWObwbR0dGiVatWIi0tzfbKyMiwXZ88ebIIDAwUmzZtEnv37hXh4eGie/fututms1m0bt1a9O3bV8TFxYkffvhBNGjQQMycObPWPtxKz+NuJaFruDgyfqkIiN0jwj9ZIWJGDBIfDu4rjoY1F1+89YdYMmmTOBEVKcSJWGuDknyr7ol2EWLHEiHSj9TvACqwWMpFrjFeHE+IFhs3hYhDh6dXa/e/Pcnihf/Fi57vbBJBUevFJ7+fvsmeSuoKqZekXpJ66e7TSwohbkBt8DuUvLw8XF1dMRqNMun5bURGmYk22635BaLWruSCIh2vtEIUDg1QqgLxLlDgXFpO0zfG0NIjHf7zMIiK5bA9noV+c264TwcPPUNGxk+249DQV2kU+Pcr2j/+f7v4/WQmC0e246H2DW+4P5KbT0lJCUlJSQQHB1cpKSupmcLCQgICAliwYAHjx4+/6ffPzs6mT58+uLi48OOPP+LkJLfS3g3U9J69lfTB7NmzWbt2rV0OjEqMRiNeXl589tlnPPKItXLV8ePHadGiBTt37iQ8PJwff/yRBx98kNTUVNvqqeXLlxMVFUVGRkatEtXeSs/jbmVn7/u40Hogv6pP45Z7FkOxCkOJhYCSZmS0f4TC3DIGub9J40lvQuOeUHARYipWFkXn3jKrpE4nLSIp6X3bccOAMYSFzbazKSg103b2z1gu+waz/PGODGh956+MvBuQeun6kXpJUh/cCL10y1Xfk0j+CiaLILNi655jWRmZbhouOqYBoFQFo9N0pmPB/0j0UdL0nmZwfq81IKVwAL03NBtQJ36VlFirwri43IOv70P4+AyuYmOxCF7+6gB/W7qduGRrdT4XrbqKnURypxMXF8eaNWs4deoU+/fvZ/To0QC2Je43Gw8PDzZu3EifPn3YuXNnvfggkdTEiRMn8Pf3JyQkhNGjR5OcnAzAvn37MJlMdglWmzdvTqNGjWy/yzt37qRNmzZ22/kiIyPJy8vjyJEjSG59UlJS+DniPg6okglMS8FQbN12WaJvxpngIRTmWrfoaRUFl7bvlRVa/1U73TIBKYDCwhMAqNWeGAyt8fX9WxWb7IIyLAI0KiUzBjbn3Ufa0reF9032VCKpf6RektwpyGQBkjuG1JIy+u5NINtkXfWkFQ4UqsowFDsDoFBoUIliwh72Imzym9ZGZQXWf7s8BQP/WWe+mc3W+4Q2nYmbW6dqbY6l5/G/veftzgU3uHUq4UgkN5OYmBgSEhLQaDR07NiRbdu20aBB9TlFbgaenp68/vrr9XZ/ieRKdO3alVWrVhEWFkZaWhpvvPEGvXr14vDhw6Snp6PRaHBzc7Nr4+PjQ3p6OgDp6el2AanK65XXqqO0tNQu2WxeXt4NHJHkWsmqKJFeGVryyisk+GIuBzs+A0Az7W94qJLxUZ8ArSsU50CuNXBZF5WG/wqVxWBCm87Az+/hKte3JmawNdGaO8ZTr2Fy7yY31T+J5FZD6iXJnYAMSknuGA7kF9kCUgBDt/6Ez6lT2BYEKjRoLMX2JY9LreIHR+c68cliMSGExSayHFRXvk9WgXUms5GHE68/2JKGHjpCvOrGL4nkVqZ9+/bs27evvt2QSG4LBg4caPt/27Zt6dq1K0FBQfzvf/9Dp6ubampvv/12leTqkptP6ekkzk+ZQoqzG6JlKI7CutVSX2oCBCitSXHvDfkNx6DW4DUXUvbDt5Os1wE0t1ZQqrxiEk9VjV5KN5YwduVuKhOPeBlkERjJ3Y3US5I7BRmUktwxFJZbq8x0KMih8x+/4Jhy/LKrapzLHGhW/hN4hUH6YTj4BZzZbr2sufHBn4yMXzh85FksljLbOZVD1fsUlZl59vN4jqdbZ5oDPXT0belTxU4ikUgkkqvh5uZGs2bNOHnyJP369aOsrIzc3Fy71VIXLlywVdrx9fVl9+7ddn1cuHDBdq06Zs6caaucDNaVUoGBgTd4JJKrUfj7NspOJyGGPM/a9iG0PPwHnS6cQCkE5zwv6Q1V8wjoH209+H461oCUApQO0Oqh+nDdjqKiJA4dnobJlENZmXUVlEM1einVWIwQoNc4ENnKlxGd5e+cRCKR3AnInFKSO4a8M2cBKM/IJMkjBRPFAKidh9PQ1I6GOb9QPDgSHlgAP82AHYsg45i1sfONDwJlZv1mF5DS65vh6Fj1Pn+cziL26AXOZVv9DfU23HBfJBKJRHJ3UFBQwKlTp/Dz86Njx46o1Wo2bdpku56QkEBycjLdunUDoFu3bhw6dIiLFVvAAGJjY3FxcblieWxHR0dcXFzsXpKbj6W4BBzU5Oj1XHDxQFWWC4DSIiirWAGlxISD9rLVUKYi67/934TXs+qkuMu1kpERS0HBUUpL0xDCjEKhwUkfUsXOWGwCIMhTz3sj7yE8xPNmuyqRSCSSOkCulJLcMRQY80DjiqOjO6IkH63J+uutUDrj6FRE5JovwLEi4FOYaf239TDwuwda3viEgCZTLgBNm84gwP8xHBycUCiqxoFzCq0iq21DV2YMaE7Hxu433BeJRCKR3Jm8+OKLDB48mKCgIFJTU4mOjsbBwYHHHnsMV1dXxo8fz/PPP4+HhwcuLi5MnTqVbt26ER4eDkD//v1p2bIlY8aMYf78+aSnp/Pqq6/yzDPP4Ogot0fdyhQWF5EYFsZ5VR7qwsP4XtwFGLjg2x2T+wMAqBWloL4sbcHlCc5vESr1ko/PEBoF/h1HrT+Omks5cfadzWbSf/aRW2TVS646WQRGIpFI7iRkUEpy21NYXs7mrHz2C2vAp92Or3HLNNmuKxSOuIkCe1FmqhBl4f+AhtUnHr9eioqSOHjoHxQVnQHAUeNTbW6EzIJSvt2fws7TWQA09tTTvWn9JSaUSCQSye3H+fPneeyxx8jKysLLy4uePXvyxx9/4OXlBcDChQtRKpUMGzaM0tJSIiMj+eCDD2ztHRwcWL9+PU8//TTdunVDr9czduxY5syp/xU0kprZlV/A0bYtMeUcZ8y35wnI1lGigWKdr03gN9QcBE3DS40qV0rdAkEpi6WMU6diyMiMBUDvFIKLS9sqdluOZ5BZcGnleZdgj5vmo0QikUjqHhmUktz2LEi6wAfnLtpWQemNFVsQFE6olH64GZMJYC8oL1ulVIczhZmZmyksTLS6oHDAYGhVrd2SzSdZteOM7Vgm7JRIJBLJtfL555/XeF2r1bJ06VKWLl16RZugoCB++OGHG+2apI4pKjeDsOB+7iQKBCWaSyvEFVh40v9pHD08IeQLOP0rHF0HF45aG98CCc6zc3aQfO5j27FO16hau7wS60TjuO6N+cd9TfB20d4U/yQSiURyc5BBKcltz5n0C4CCBnm56Ar34mCylql2dHmcxue30jRtEdnDeoAQcH4vFFy4VHXv8kp8NwiT2Zqw3Nt7EM1CX8PR0atau9Rcaw6pLo09aB3gypM9g2+4LxKJRCKRSO4ssv+7moxFiyju2AEaNEBRUUmv1fkMznp7YnJrioOiFG3fZ6H7FGujVQ+CMflSJ3WQS/NaMZVlA+Dk1JTgxs/g7T3Q7nqpuZzDKXmcybKu7mrorpMBKYlEIrkDkUEpyW2PMSUVvAPocO4kh3T/QUlFNRaFhpLGeTj/dx9h7k5wdjusGmTf2PHGJhU3mYy2yjFOukbVBqSEEOQWmcgutC5FH9MtiMHt/G+oHxKJRCKRSO5M8jZsQJhUCI/GKIR1IkwAjbLyuNAoELNCiYoyUOsuNSqypgqg69Pg0woCu958x/+EubwAAGd9KL6+Q6pcf2Z1HBuPXbAdu2hlLimJRCK5E5HV9yS3PcUo0JSW0HzPzzz+y+XlgdUEKEpp6KFHoVBA1knraZ07NOwCPaaD043LS3Dy1Lts3daB1NQvAFCpqq9G9PdVe2j/Zix7z+YAMmGn5NZn3LhxKBQKFAoFGo2Gpk2bMmfOHMxm81/q99dff0WhUJCbm3tjHK0FSUlJjBo1Cn9/f7RaLQ0bNmTo0KEcP37czm79+vX07t0bg8GAk5MTnTt3ZtWqVXY2Z86cQaFQEB8fX+v7z549m+bNm6PX63F3d6dv377s2rXLrs/x48cTHByMTqejSZMmREdHU1ZWVkOvkJaWxqhRo2jWrBlKpZLp06fXyp+tW7cyePBg/P39USgUrF27torNN998Q//+/fH09LzqeIUQDBw48Ip9rVq1irZt26LVavH29uaZZ56xu/7zzz8THh6OwWDAy8uLYcOGcebMGTub1atX065dO5ycnPDz8+PJJ58kKyvrL49TIrldsJSU4NCgGXlaLTuDWlScFSgApd4VAJWi7NJqcCEu5ZLq+Rx0GAMKxU33u5KiojMkJM4hPX0tACpV9ROEx9KsATd/Vy2dG7tzX1j1K88lklsFqZekXpJ66fqQQSnJbU+RQoFPZiqOJcW2c0pVIxQKBW6OOZcMS60zcjTtBxNiod8bN9SP7Ozttv+rVK64u3erYmOxCLYmZtiOA9x0tG3oekP9kEjqggEDBpCWlsaJEyd44YUXmD17Nu+++259u2XjaiIEwGQy0a9fP4xGI9988w0JCQl88cUXtGnTxk7oLV68mKFDh9KjRw927drFwYMHefTRR5k8eTIvvvjiX/KzWbNmLFmyhEOHDvH777/TuHFj+vfvT0aG9XPh+PHjWCwWPvzwQ44cOcLChQtZvnw5s2bNqrHf0tJSvLy8ePXVV2nXrl2t/SksLKRdu3Y15hsqLCykZ8+evPPOO1ft71//+pd1EqAa3nvvPV555RVmzJjBkSNH2LhxI5GRkbbrSUlJDB06lPvvv5/4+Hh+/vlnMjMzefjhh20227dv54knnmD8+PEcOXKEL7/8kt27dzNx4sS/PE6J5HbhuIuBLa18ifdy40Jh5UoiwfmA3phU1jyWKsVlK6XMJVCxxe9WyCV19uyHnD//KXl5BwBwdKx+K2FesTWX1H8ndOXLyd3l1j3JbYHUS1IvSb10HQjJFTEajQIQRqOxvl2R/Imycot4Iv6k6Pb7QeEfu1fct+RlETNikHhv5BNi8cTvxY99/yF2dBkkMt/scqnR5reEiHYR4vvn6sSn7TvuExs3hYicnD3CYrFUa5NbVCaCotaLoKj1oqjUfEU7yZ1HcXGxOHr0qCguLq5vV66ZsWPHiqFDh9qd69evnwgPDxfZ2dlizJgxws3NTeh0OjFgwACRmJhosztz5ox48MEHhZubm3BychItW7YUGzZsEElJSQLrtyTba+zYsUIIIfLy8sSoUaOEk5OT8PX1Fe+9957o3bu3ePbZZ239BgUFiTlz5ogxY8YIg8Fga7tt2zbRs2dPodVqRcOGDcXUqVNFQUGBEEKIuLg4AYgzZ85ccazJyclCrVaL559/vsq1RYsWCUD88ccfQghhG0NcXNy1P9QKKv/ObNy48Yo28+fPF8HBwbXu88/PqrYA4ttvv73i9auNNy4uTgQEBIi0tLQqfWVnZwudTlfjOL/88kuhUqlEeXm57dy6deuEQqEQZWVlQggh3n33XRESEmLXbtGiRSIgIODqA6zgauOspKb3rNQH9sjncfOwWCzijddeE9HR0WLoR/8R7z/cQ8SMGCQWPjJULJm0yfb635RlQiT+IoTZJET2Gav+iXYRotxc30MQ8fETxMZNIeLAwcni7NmPRVlZru2audwinv7vXhERs8Wml7IKSuvRW8nNRuolqZeqQ+qlS9yJekmulJLclhy8mMnP2fmcLitHiCxcjL9ZLyh1KJRONHI7hEtPFYbH/wWHvoIFLWD7+1YbR+cb6kte/mFSU7+krCJhp0rtWiXyXVRm5un/7uOxFX8AoFUr0Wkcrhghl9wdCCGwlJXf9Jf178xfQ6fTUVZWxrhx49i7dy/r1q1j586dCCF44IEHMJmsM9zPPPMMpaWlbN26lUOHDvHOO+/g7OxMYGAgX3/9NQAJCQmkpaXx/vvW9+jzzz/P9u3bWbduHbGxsWzbto39+/dX8SEmJoZ27doRFxfHa6+9xqlTpxgwYADDhg3j4MGDfPHFF/z+++9MmWJN9Ovl5YVSqeSrr76ivLy82nF99dVXmEymamf4Jk2ahLOzM2vWrPnLzw+ss5UrVqzA1dW1xtk6o9GIh8etXQK9qKiIUaNGsXTpUnx9fatcj42NxWKxkJKSQosWLWjYsCEjRozg3LlzNpuOHTuiVCpZuXIl5eXlGI1G/vOf/9C3b1/Uaus2527dunHu3Dl++OEHhBBcuHCBr776igceeOCmjVUiqU/MZjMWpRKFqYyuO2MRCuvWN4XCmibWU5ykucsf9AiNgwbN4L0W8H5ba2MHR1A61JfrNioLwvj6DKVRoydRqy+tGE+8kM8Ph9I5nWGtkuzropVpDiT1ppduhGaSeumvI/XSna+XZKJzyW1JTvI5QEm7k0fpvH89qhIvQIDSulS98cPtcHpssdV49XDIT73U2O+eG+aH2VzAvn0jsFhKbefUavcqdjtOZvHj4XTbcaj3jU2wLrk9ESYLqa/vuOn39Z/THYXm+r6YCCHYtGkTP//8MwMHDmTt2rVs376d7t27A9b964GBgaxdu5bhw4eTnJzMsGHDaNOmDQAhISG2viqFg7e3N25ubgDk5+fz6aef8tlnn9GnTx8AVq5cib9/1WIA999/Py+88ILteMKECYwePdqWHyA0NJRFixbRu3dvli1bRkBAAIsWLeLll1/mjTfeoFOnTkRERDB69GibX4mJibi6uuLn51flfhqNhpCQEBITE6/r2VWyfv16Hn30UYqKivDz8yM2NpYGDRpUa3vy5EkWL15MTEzMX7pnXfPcc8/RvXt3hg4dWu3106dPY7FYeOutt3j//fdxdXXl1VdfpV+/fhw8eBCNDL4aIAABAABJREFURkNwcDC//PILI0aMYNKkSZSXl9OtWzd++OEHWz89evRg9erVjBw5kpKSEsxmM4MHD5bb8iR3PMJi4dyEieQePgIPDMChMA9NQRZmB+tnuVnbABXQxvUXWr26GFz84NQWKLx4qZOwgdV3fpM4dfo9Ll78iZIS65er6nJJGSu27AW46Vg48h6a+TjjoJQTeHc79aWX4Po1k9RLUi9Vh9RL1SNXSkluSwqLrPmjOu3fgnt2HoYi6yyGQumCQpSjuXxWrTTf+m/kWzD9MLR++M/dXTdlZRlYLKUoFGo8PSMICXkeR03VD8ucIuv+7TYBrnw8thP/frLLDfNBIrkZrF+/HmdnZ7RaLQMHDmTkyJGMGzcOlUpF166Xqjh5enoSFhbGsWPHAJg2bRpz586lR48eREdHc/DgwRrvc/r0aUwmE126XHqPuLq6EhYWVsW2U6dOdscHDhxg1apVODs7216RkZFYLBaSkpIA60xkeno6q1evplu3bnz55Ze0atWK2NjYWj8LjUZzVZvVq1fb+bFt2zbbtYiICOLj49mxYwcDBgxgxIgRXLx4sUofKSkpDBgwgOHDh9vlALi838mTJ9fK523bttm1W716da3a1YZ169axefNm/vWvf13RxmKxYDKZWLRoEZGRkYSHh7NmzRpOnDjBli1bAEhPT2fixImMHTuWPXv28Ntvv6HRaHjkkUdsM9VHjx7l2Wef5fXXX2ffvn389NNPnDlzxvYc6nKcEkl9Ys7IoHDHDpRNrHlFFBbre8Izv4h7jyej8LwPAJWi9FLeqMrk5v4d4NWLMOLTm+22DSEEZ89+SFHRKSyWMhQKB5ycQuxsTmUUcOi8EQBvF0e6BHvg5nT1z1uJ5FZC6qVLSL1kj9RLV0aulJLcdgghyMgrAL0KTUkuAA7arqgULnjn5uOf+ykqXdClBpUJzr3CwC2waod/gcol6I4aL+5p939VrpeYytl5Oou9Z6wJ1xs30NOnRfUJPSV3Hwq1Ev853evlvtdKREQEy5YtQ6PR4O/vj0qlYt26dVdtN2HCBCIjI9mwYQO//PILb7/9NgsWLGDq1KnX47oder3e7rigoIBJkyYxbdq0KraNGjWy/d9gMDB48GAGDx7M3LlziYyMZO7cufTr14/Q0FCMRiOpqalVZhvLyso4deqUXbLJKzFkyBA78RkQEGDnd9OmTWnatCnh4eGEhoby8ccfM3PmTJtNamoqERERdO/enRUrVtj1fXk1FxeX6qt8/plOnTrZtfPxuXGfQ5s3b+bUqVO22dtKhg0bRq9evfj1119tM6ktW7a0Xffy8qJBgwYkJycDsHTpUlxdXZk/f77N5r///S+BgYHs2rWL8PBw3n77bXr06MFLL70EQNu2bdHr9fTq1Yu5c+fW6TglkvpElJQAYHH1wSwySDG70ZyzOJrLcS41oXM0YCkGtaIU1BWfjWUVQSlHZ1A51pPnViyWYoSwViC7p90q9PomaLWXVlh8F5/Cs5/H245dtHLLnuQS9aWXKu99LUi9JPXSlZB66crIoJTktuJCShqLln3MtpadMJR9itpUADjgoGmO1lRKX907OAeUgGMUpB2Ac7shP83aWHPjtswVFyeTkvI5RcVnAVCpq/+gW7TpBB/8esp27O4kRZbkEgqF4rq30d1sKoXB5bRo0QKz2cyuXbtsy9GzsrJISEiw+2MaGBjI5MmTmTx5MjNnzuSjjz5i6tSpthm0y/MVhISEoFar2bNnj00YGY1GEhMTuffee2v0sUOHDhw9erSKnzWhUCho3rw5O3ZYtwU88sgjREVFsWDBAhYsWGBnu3z5coqKinjiiSeu2q/BYMBgqN1njsViobT00hbglJQUIiIi6NixIytXrkSptBfE1zK+SnQ63XW1qw0zZsxgwoQJdufatGnDwoULGTx4MGBdRg7WfBgNGzYEIDs7m8zMTIKCrJMIRUVFVcbqULE1yWKx2GxUKlW1NkKIOh2nRFKfmIuKSQhrRoFrEds9w/BNPQJAmcaTg60GocwHC6ByKAeHiveIyZqXyRakqkfMZusEoULhgIdHzyo5NY+kWif5DI4qGhgcebTzjZ1ElNzeSL0k9RJIvXQn6yUZlJLcVnx89BQf93mQDod28sjhZBxN1jeXQuGIWmnEvWcjFA2aQutH4KMIKDVeaqyrmuvpejmd9D7p6Wttx44a72rtkjKtgjDI04lGHk482rlRtXYSye1IaGgoQ4cOZeLEiXz44YcYDAZmzJhBQECAba/89OnTGThwIM2aNSMnJ4ctW7bQokULAIKCglAoFKxfv54HHngAnU6HwWBg7NixvPTSS3h4eODt7U10dDRKpfKqhQGioqIIDw9nypQpTJgwAb1ez9GjR4mNjWXJkiXEx8cTHR3NmDFjaNmyJRqNht9++41PPvmEqKgowDpDOH/+fF588UW0Wi1jxoxBrVbz3XffMWvWLObOnUvr1q3t7puQkFDFl1atWtmSTVZSWFjIvHnzGDJkCH5+fmRmZrJ06VJSUlIYPnw4YBVY9913H0FBQcTExNhKHwPVJsS8nMoZr4KCAjIyMoiPj0ej0dgJ3j9TUFDAyZMnbcdJSUnEx8fj4eFhE7nZ2dkkJyeTmppqN15fX1+7159p1KgRwcHBgLW089ChQ3n22WdZsWIFLi4uzJw5k+bNmxMREQHAoEGDWLhwIXPmzOGxxx4jPz+fWbNmERQURPv27QEYPHgwEydOZNmyZURGRpKWlsb06dPp0qVLtXk0rmWcEsmtTNK5ZOLbtwcK0BlTGZS8lQtuBoxuYRQ4d4KK76p6Ny0YU2DXMji/13qycjtfPVBSkkrSmaWUlVk/yxwcnKv9LM+ryCX11L0hTO0TelN9lEjqGqmXrEi9JPXSFaltScC7EVni+Nbj+R9+FT6b48TcJ0aImBGDRMyIQWLBiIfE4qd+Ef/7+yIhEn6yGhZmXSp//PloIba8LYTFcsP82L//CbFxU4iIP/CUOHnqPVFQcLJau1Ef7RRBUevF2rjzN+zektuTO63EcSWVJY5dXV2FTqcTkZGRdiWOp0yZIpo0aSIcHR2Fl5eXGDNmjMjMzLRdnzNnjvD19RUKhaLGEsddunQRM2bMsLULCgoSCxcurOLP7t27Rb9+/YSzs7PQ6/Wibdu2Yt68eUIIITIyMsS0adNE69athbOzszAYDKJNmzYiJibGrqyuEEKsXbtW9OrVS+j1elsJ5jVr1tjZVFemufJ17ty5Kr4VFxeLhx56SPj7+wuNRiP8/PzEkCFDxO7du202K1euvGKfV6O6NkFBQTW22bJlS7XtKn8WNfkUHR1doy9/LiNsNBrFk08+Kdzc3ISHh4d46KGHRHJysp3NmjVrRPv27YVerxdeXl5iyJAh4tixY3Y2ixYtEi1bthQ6nU74+fmJ0aNHi/Pna/6Mrc04/8yNKHF8tyCfR92z6+tvRHR0tJg//QWb/okZMUgsfGKOWDJpk/jj1edE0rq1QuSeE+KnWZc0ULSLED/OuPoN6ogTJ98VGzeF2F5/7HrA7vqPh1LFm98fERExW0RQ1HqxantS/TgquWWQeknqJamX7j69pBDiBtQGv0PJy8vD1dUVo9FY632okrpl/Npf2ODizvMfzcXBUo7aaQBKdSMUSmcal21l0Ov9oHEPyE2Gf7Wxlj9+rWpCvL/Knr3DyMuLp22b5Xh59bO7JoRg/s8JnLxYwK7TWeSVmFn5985EhFW/mkpyd1BSUkJSUhLBwcFotdr6due2orCwkICAABYsWMD48eNv+v2zs7Pp06cPLi4u/Pjjjzg51d+qA8nNo6b3rNQH9sjnUXdYSkrI/fpr4o4cIVatI/9CCSE5B1CVl6MUFvB4EqWDFxM7vY9mwnfWRt8+DQc+gyb3Q3BvuGc0OHvVi//Hjs8iNfULPD3vw8OjJ54evdHrrQnOC0rN3PPGL5gtl76KLH+8AwNaV63mJbl7kHrp+pF6SVIf3Ai9JLfvSW4L8jdvxrhuE2c7d8O9YCYOFusvvFLdGP+Cffg5nKZ1w9/AsaKyXmXFPccbl0dKCEF6+lqKS85RXGxNNFddOeNjafksuyyPFECgu+6G+SGR3OnExcVx/PhxunTpgtFoZM6cOQBXLJ9b13h4eLBx40aWLl3Kzp07baWXJRKJpK7J++knLrw5l+Lugznn70a5JYMQICCngBJHMDpYg00qx8u2v5RVFHgJewC6TKza6U2kMpeUh0dPGgX+3e5aVkEpZotA46DkyZ7BNHDWcH9zWZxAIqktUi9J7hRkUEpyW3Dhn+9Q5NqJ4m4laAsuAhV7WhVqWrtuoZlPHDj7gHsQrHoQUvZZrzs63zAfCgqOcvTYi3bnNJoGVeyyCq0J+PxctUzrE0ojDyeaet+44JhEcjcQExNDQkICGo2Gjh07sm3bNho0qPp+u1l4enry+uuv19v9JRLJ3Ul5ZiYoVeDXGjMFqIU1eZTSIkBv/Ux0oBSl+rLqemUVCc41N04DXSu5uXspKDhOYeEJoOoknrHIxIkL1oCVp7OGGQOb33QfJZI7AamXJHcCMigluS34sXEz9rbvTJNjfxB6+vIPWhU6dTGMXA1N+0JeCpzZdulywy43zIeSkhQANBovvLz6o3dqgl5/qWqBxSKIO5fLrtPZADTycOKxLjKBrkRyrbRv3559+/bVtxsSiURS75iKS0j38ydbWUieg5awkhwA0n26I9wGAKBWlILaCYzn4cAayEy0NtbUT9U9k8nI/rjHEcJkO6dWudn+v+9sDiM/3Gnbtueqk5WJJZLrQeolyZ2CDEr9P3t3Hhd1tT9+/DXDzDAzMOwgi4gguOCWS+6maIpLaN1Su3pNS03LJbPMsoUy2wzrm+k17ZZ2f1erq5V60TI0F9w3XHFJhFBAZZF9mRnm/P4YGJ1QRMQlPc/HYx76+XzO55zz+cAw7zmfs0h3vawyE+8/+TR+F84xYvNRwDo+WaEwoFAo0DoWg1sDUGsvD9tz8oExv4J7wzqpQ0HBMbKyNgFgMITTtMmsKmmW7UnlzVVHbdtuehlkSZIkSZJUe7vy8zjYvTMmZRbaUi2dzh8lzcMFk9bDFsSHaHeC3hN+m21tlKqk97wjdS4ty0AIE0qlI16evXB0rIeHR3fb8YTUS5gtAqUCdGoHHm0TcEfqKUmSJN0dZKOUdFcr2rGDw7v2Itr0wKnQ2lMJhQGVriNKVSAKUY5Bd8n6hBAud1nXuoJHcJ3UwWwuYN/+IVgs1mF5GvXVg7zfL1gbxLwNjgS46RjZqWGdlC9JkiRJ0v0p12wGQFNURru03WQaKicOVgHlTOy7wvoArt3TsPp566GQnhASAQ063/b65ucfJj1jBQA6XQNatpxfJU1usbUH1chOQbwzuEWV45IkSdL9RTZKSXe1cy9O42K3p1A3O4Zb1lLAG4WDK2p1M0RIMVH576JVFlh7SWUnQeYJ64l1OJdUWdlFLJYyFAo1Xl4RBP5pos5KlUHWhB6NGNOtbhrEJEmSJEm6f5ktFlAocL+YjskERrU1dFcoXVApjNBlCvhWNOwYi63/tn8Gwm//RMdCCA4eGoPJZJ3GwFFjv+pw7OF05v92moy8UgBc9ZrbXkdJkiTp7iMbpaS7ljCbseTlkedRH5XxOOpyJQAKhRpVeQnPlo6Gynhm5wLY9c/LJ9fh5J5mcz4Ajo71aNVyYZXjn8ad4t87UygotT7NlHMjSJIkSZJ0M3KWLydr/gJK2rYhwbUVbc1ncAYaXbjEeS9/zOpGqBX5oLliyXVTRW9x9Z2ZS8piKbU1SPn5/o369UfaHf/3jj84cb7Att3UVy4CI0mSJMlGKekulpOdw4SZsyl1EDy68SAeuW4VRzSoy0utcyVo3SD4IbiYWHHIYO0l1frJmy7fZMrlTPK8K1aOcblquu/2pnKpopeUg1JBi4Crp5MkSZIkSaqJ/NVrQB1ApmsYh8oDaGmxrrrnnV9MsZ8DlxQKHCi7/BDOUn65p9SVDVW3UeVDPIXCgWbN5qBQKOyOXyo2AvDWI+F0buQpG6UkSZIkQDZKSXextceOczKwEb22xVL/QgHgAIDCwQ2VKIXeb0G70dbEX/a2/vu3RdB0YJ2Uf/7CGs6d+8a2rdX6V0kjhOBSkbVBavm4jjT1dcHDSXZHlyRJkiSp9iylpaj8OlCicMClrAhncwkA+S6NcHSsD2AdvqfWw38eh9MbLp+svr2NUmZzAUePvUhp6TlrvVQudg1SO5Ky+OlAGucuWa+hU4gnzfzkAzxJkiTJSjZKSXet3JJS0LviXJIHgFITjoO6CVrhRphYA46DLic2Flr/rcNhe0ZjFgCuru3x8emHj3ek3fHJ3ybwv0Pptu02ge7oNA51Vr4kSZIkSfenzQ0CSfUwku6gYPzun7AYijGqVZwOG4rSwQsAjYsrKJT2DVIuAeAZelvrmp2zjezsTbZtvb6R3fFZ/0u0DdtzUCrwddXe1vpJkiRJdzflna6AJP2ZKS2NtNffIOfEBTTF+9AU7wNA6VAPrVLPsw3H0qnhKnB0gcMrYPUkyLM+navLCc4ru6G7u3ekQeDTdj2lLBZB7OHLDVLtgmSDlHTvGj16NAqFAoVCgUajITQ0lFmzZmGuWBWqtjZv3oxCoSA3N7duKloDycnJDB8+HH9/f7RaLfXr12fw4MGcOHHCLl1sbCw9evTAYDCg1+t58MEHWbp0qV2alJQUFAoFBw8erHH5b7/9Nk2bNsXJyQl3d3cefvhhdu/ebZfnmDFjCA4ORqfT0ahRI6KjozEajdXmm5GRwfDhw2ncuDFKpZKpU6fWqD5bt24lKioKf39/FAoFq1atuuE6A7z33nt06dIFvV6Pm5vbVctKTU1l4MCB6PV6fHx8mD59ut3v0JW/Z1e+mjdvbkvzwQcf8OCDD2IwGPDx8eHRRx/l5MmT173OmtRPku4WFouFVE9PUECRypF6luNYlJU9jxxQK3MIaWGg4z+6gan48onTk+CFw3UaC9WE2WR9eOji0oYHWi/lgdb/sjueVWj9+zWmWzBLn35Q9iiX7lkyXpLxkoyXakc2Skl3nUvffU/+L/GUqvWojUmozBWBmEKNoygFYQGVDjwawaoJkPD/LveUcva96fL/+GMRmzaHc+7cf4CrzyVVZDQjhPX/21/txYrxt3/ZZUm6nfr160dGRga///47L730Em+//TYff/zxna6WzfWCEACTyUSfPn3Iy8vjxx9/5OTJk3z//fe0bNnSLtD7/PPPGTx4MF27dmX37t0cPnyYJ598kgkTJvDyyy/fVD0bN27M/PnzOXLkCNu2baNhw4b07duXzMxMAE6cOIHFYmHRokUcO3aMTz/9lC+++IKZM2dWm29ZWRne3t688cYbtG7dusb1KSoqonXr1ixYsKDWdQbr/R8yZAjPPffcVfMoLy9n4MCBGI1GduzYwTfffMPSpUt56623bGk+++wzMjIybK+zZ8/i4eHBkCFDbGm2bNnCxIkT2bVrF3FxcZhMJvr27UtRUVG113m9+knS3cRksk4LUC4U+Job4FhuxFIxHE6hUNHQ8SD9xzahQXNPMFb87qt04OQFDrd/EETlQzy9PghPz+6oVPZzRRWUWq9ndJeGdA/zvu31k6TbScZLMl6S8VItCOma8vLyBCDy8vLudFXuK7vfihbzJr8knlqwVHT95Gnx6RO9RMzQgeKzpxeI7575pxC7FwtRfEmIgotCRLtYX1s+FuLEuropf0+U2LAxRGzYGCI2/tZEXLq01+74+bwSsSspSwTNiBWhM9cKi8VSJ+VK97aSkhKRmJgoSkpK7nRVbtioUaPE4MGD7fb16dNHdOrUSeTk5IiRI0cKNzc3odPpRL9+/cSpU6ds6VJSUsQjjzwi3NzchF6vF+Hh4WLt2rUiOTlZAHavUaNGCSGEyM/PF8OHDxd6vV74+vqKTz75RPTo0UO88MILtnyDgoLErFmzxMiRI4XBYLCdGx8fL7p16ya0Wq2oX7++mDx5sigsLBRCCJGQkCAAkZKScs1rTU1NFWq1WkybNq3KsXnz5glA7Nq1SwghbNeQkJBw4ze1QuXnzIYNG66ZZs6cOSI4OLjGef75XtUUIH766afrpquuzkuWLBGurq5V9q9bt04olUpx/vx5276FCxcKFxcXUVZWdtVyfvrpJ6FQKKr9eV28eFEAYsuWLdetd3X1u5rq3rMyPrAn70fdyfnue3HsiWHizbeiRbvpy8T40ZPEPwdb46CYoQPF5+P+Jza/+LIQ5WbrCeePWeOgj2r+N6KupKevFL9tamqLmU6cfNt27FJRmXj1h0Ni3Dd7RdCMWBE0I1bkFhlvex2lvx4ZL8l46WpkvHRvx0uyp5R01/nBxZ3P+w4i4NAmHtt1kXKlruKIGpWyDDxCQOcGxoplhdVO8NDL0KR/nZRvNlnzbdXyCx7qvhc3t/a2Yz8lnKPj+xsZtngXAAatusrqMpJUU0IIjEbjbX+Jym5+N0Gn02E0Ghk9ejT79u1jzZo17Ny5EyEEAwYMsD3pnzhxImVlZWzdupUjR47w0Ucf4ezsTGBgID/88AMAJ0+eJCMjg88++wyAadOmsX37dtasWUNcXBzx8fEcOHCgSh1iYmJo3bo1CQkJvPnmmyQlJdGvXz8ef/xxDh8+zPfff8+2bduYNGkSAN7e3iiVSlauXEl5eflVr2vlypWYTKarPuEbP348zs7OfPvttzd9/8D6NGrx4sW4urpW+7QuLy8PDw+POinzZtW0zn+2c+dOWrZsSb169Wz7IiMjyc/P59ixY1c956uvvuLhhx8mKCjomvnm5VmHDd0t90eSblb2l19iVjfFiAqP4guEFSdT7GiNgxwUDqDQoFKaoSwfvv8H/DDWeqLG6bbXNTNrAxaLtdeFQuGAm1sH27G1RzL4ds9Zfk28AICrTo2zVk5lK9XOnYqX6iJmkvHSzZPx0r0fL8lPB+muc8zLD3VZKZ65WZd3KnQoVfUw6PZfnsy8sst6Hc2dYDRmUVycgsl8CQC9PrhKF/QDf+QCoFEp0akdGPZgYJ2ULd2fTCYT77///m0vd+bMmWg0tZvTQwjBxo0bWb9+Pf3792fVqlVs376dLl26ALBs2TICAwNZtWoVQ4YMITU1lccff5yWLVsCEBISYsur8oPRx8fHNm69oKCAb775huXLl9O7t3VVzSVLluDvX3X1y169evHSSy/ZtseOHcuIESNs8wOEhYUxb948evTowcKFCwkICGDevHm88sorvPPOO7Rv356IiAhGjBhhq9epU6dwdXXFz8+vSnkajYaQkBBOnTpVq3tXKTY2lieffJLi4mL8/PyIi4vDy8vrqmlPnz7N559/TkxMzE2VebNupM5Xc/78ebsAC7Btnz9/vkr69PR0fv75Z5YvX37NPC0WC1OnTqVr1660aNGixnWRpLuZpaQEi7MXZpFHcH4aAE5lFvTKZpR7hVKsUKHWauD3DXD8f5dP9Ai5Ro63jtlkHbbXpMm7+NaLsouZsivmkeoQ7MHgB/xp28AdB6V8iCfVzp2Kl6D2MZOMl2S8JOOlmpM9paS7hikjg5zvVlPm4Ijh0i/WnQodjm6T8HLuRDtDHB0N31nnj/qiO/x7sDVNHTwdLC8vZueuPuw/MAyz2dpT6mpzSV0qtgZZM/o15VB0X2b0a3rTZUvSX0FsbCzOzs5otVr69+/PsGHDGD16NCqVio4dO9rSeXp60qRJE44fPw7AlClTmD17Nl27diU6OprDhw9XW86ZM2cwmUx06HD5iburqytNmjSpkrZ9+/Z224cOHWLp0qU4OzvbXpGRkVgsFpKTkwHrk8jz58+zbNkyOnfuzIoVK2jevDlxcXE1vhc1CU6XLVtmV4/4+HjbsYiICA4ePMiOHTvo168fQ4cO5eLFi1XySEtLo1+/fgwZMoRx48bZ9l+Z74QJE2pU5/j4eLvzli1bVqPzbrTOdeWbb77Bzc2NRx999JppJk6cyNGjR/nuu+9s+yZMmGB3nZL0VyKEYHuzZqyvd4kys4LBZ7YBYNH4U+AzkGKl9e+gU9e/X55LM6Ad/P07GLL0ttXTYjFSVJSE0ZQNgFbrb2uQslgE+//IITHd2mDVtoE7IzoG0cyvakwlSfciGS9dJuMlGS/VlOwpJd01zk2egtHUkLK/90RfcBjQolCoUSg0hBl/obNhj7WXVHYSnL/iD7Vvy5suu7Q0o2KiTiU6XQPc3Nqj0VyejDP2cDpvrDpKfom1i627Xn3TZUqSWq2+7oSMt6rcGxUREcHChQvRaDT4+/ujUqlYs2bNdc8bO3YskZGRrF27ll9//ZUPPviAuXPnMnny5NpU3Y6Tk32DdGFhIePHj2fKlClV0jZo0MD2f4PBQFRUFFFRUcyePZvIyEhmz55Nnz59CAsLIy8vj/T09CpPG41GI0lJSURGRl63boMGDbILPgMCAuzqHRoaSmhoKJ06dSIsLIyvvvqK1157zZYmPT2diIgIunTpwuLFi+3yvnL1GheXmn3Ra9++vd15f34Kdz01qXN1fH192bNnj92+Cxcu2I5dSQjB119/zciRI68Z0E6aNInY2Fi2bt1K/fr1bftnzZp105OrStKdUlBQwB/1A4ByHIrNlFf0LDKpHFEBzfS/4T90IqHtfGD/TutJ7g3rbPqCmtq773EKCxNt21f2kPpu71lm/nTEtu0m4yWpDtypeKmy7Bsh4yUZL8l46cbJRinprrFXryM9wAWjg5Lw1BJAiwLrB4GPogTGbrQGX4f/az0h9GF4+B3wvvneSpW9o7Raf7p03ljl+M9HzpNbbG2Q0qiUtKrvdtNlSlLlksF/BZUfsldq1qwZZrOZ3bt327qjZ2dnc/LkScLDw23pAgMDmTBhAhMmTOC1117jyy+/ZPLkybZrv3K+gpCQENRqNXv37rUFRnl5eZw6dYqHHnqo2jq2bduWxMTEKvWsjkKhoGnTpuzYsQOAJ554ghkzZjB37lzmzp1rl/aLL76guLiYp5566rr5GgwGDAbDddOBtVt1WVmZbTstLY2IiAjatWvHkiVLUCrtOzXfyPVV0ul0tTrvWv5c5+vp3Lkz7733HhcvXsTHxweAuLg4XFxc7H5XwLpizOnTpxkzZkyVfIQQTJ48mZ9++onNmzcTHBxsd9zHx8eWvyT91ZhKSwFwEEo8jBbKK977xTo1LkAj5wSCOlUMlTEVW/9V6a6S061jsZTZGqRUKlec9CEYnC8vQ/77RWs85W1wpEk9AwNbVh3aI0k3SsZLMl4CGS/dy/GSbJSS7gr5+fn83L4zKW5ehB7fT7szXuRry0HhCICjzgL1K7qeVnZZdwkA35sbF1teXsr58z+Rn2/tefXnOaQq5ZZYh+299Ug4Q9rXx6CVT/4kKSwsjMGDBzNu3DgWLVqEwWDg1VdfJSAggMGDrcNrp06dSv/+/WncuDGXLl1i06ZNNGvWDICgoCAUCgWxsbEMGDAAnU6HwWBg1KhRTJ8+HQ8PD3x8fIiOjkapVF53UYEZM2bQqVMnJk2axNixY3FyciIxMZG4uDjmz5/PwYMHiY6OZuTIkYSHh6PRaNiyZQtff/01M2bMAKxPCOfMmcPLL7+MVqtl5MiRqNVqVq9ezcyZM5k9e3aV8fgnT56sUpfmzZtXebpaVFTEe++9x6BBg/Dz8yMrK4sFCxaQlpZmW8Y3LS2Nnj17EhQURExMjN0ywn9+QvZnlU/2CgsLyczM5ODBg2g0mipBzJUKCws5ffq0bTs5OZmDBw/i4eFBgwYNalRngNTUVHJyckhNTaW8vNxWl9DQUJydnenbty/h4eGMHDmSOXPmcP78ed544w0mTpyIo6OjXZ2++uorOnbseNV5DyZOnMjy5ctZvXo1BoPBNr+Cq6srOt21v5xfr36SdKeVnUmmMOk0eRZHdhX58fDF38gyWH+n3VTuWACV6oq/gSZrAxbq29soVfkQD+Ch7ntRKBzsjudV9Cgf0y2YCT0a3da6SdLdSsZLVjJekvHSNdVonb/7lFzi+Pa5kJ4uwtbGi4GfzrctexwzdKD4ZMSLYv6zcaLg/fZClBYIcXytEN8Oty5//MvMmy73XNp3tqWMN2wMEQcOPGV3/Ls9f4j31yaK9rPjRNCMWPHb8Qs3XaZ0f7rXljiuVLnEsaurq9DpdCIyMtJuieNJkyaJRo0aCUdHR+Ht7S1GjhwpsrKybMdnzZolfH19hUKhqHaJ4w4dOohXX33Vdl5QUJD49NNPq9Rnz549ok+fPsLZ2Vk4OTmJVq1aiffee08IIURmZqaYMmWKaNGihXB2dhYGg0G0bNlSxMTEiPLycrt8Vq1aJbp37y6cnJxsSzB/++23dmmutkxz5evs2bNV6lZSUiIee+wx4e/vLzQajfDz8xODBg0Se/bssaVZsmTJNfO8nqudExQUVO05mzZtuup5lT+LmtRZCOvvyNXy2bRpky1NSkqK6N+/v9DpdMLLy0u89NJLwmQy2eWTm5srdDqdWLx4cY2vERBLliyp9jprUr8/q4slju8X8n7cnILNm0Vik2Zi1xNTxLDX54txT79gFwstfOZtMX/8RnH+gyghTv4iRPwnQnzd3xoLrX/j9tWz4IRIS18hNmwMEZs2t7I79tHPx8WQhTvEA++sF0EzYsXy3X/ctnpJ9xYZL8l4ScZL91+8pKiotHQV+fn5uLq6kpeXV+NxqNKNy/tfLMn7cxjcKYhu27+m7alsFA5+OKga0sQ9nRDtHzQOvAANOsGBf18+MeJ16PHKTZV95sz/kZzyOXp9KG5u7Qjw/zsuLtY5qk5dKKDvp1vt0q+b0p1wf/m7IN240tJSkpOTCQ4ORqvV3unq/KUUFRUREBDA3Llzr9pF+VbLycmhd+/euLi48PPPP6PX6297HaTbr7r3rIwP7Mn7cXOyv/qarH/9QEHPCazM3E7DCwcp0qvwLCgj31WL1uUfmBTePBn+Lzxz1mH9jlCh91vQ/aVr5l1X8vMPs3ffY7ZtR0c/unW1TsSeWVDGg+9tsEv/3bOd6BTiecvrJd17ZLxUezJeku6EuoiX5PA96Y4qO32a9OnTKe4/E4ec3ehKUwADSnUDtKrm9HGfgwNA8DjIPGE9yasJeARDyyduunyT2bo6jLd3H0Ib2U/2lpFn7Rrv5ezIY238aejlRDO/mo15liSp9hISEjhx4gQdOnQgLy+PWbNmAdi6uN9uHh4ebNiwgQULFrBz507b0suSJEl1wVJWisLRmXKFheZnf8ekNlGEiiKvgTjoW2GqSKfq/AysXQtqJ2j+GGhdoM3I21LHoiLrsBUHB2f0uiD8A560HatcmdjgqOKjJ1rhbXCkfZD7bamXJN3PZLwk3Stko5R0R5VcuMCJsFBy9bloCnOpd8k6BlqhcERlKcWhWRREzQO9ByyqmLQv8j0I63NT5WZnb+Xcuf9HQcVkneo/zSWVmJ7PziTrUseN6znz+sBrjzGWJKnuxcTEcPLkSTQaDe3atSM+Ph4vL687Vh9PT0/eeuutO1a+JEn3roLiEo429OWS+jxCDaJist5ytQsOgLtTLj4tmuLilWM9wcUfHl1wW+tYOZeUp+dDtGzxuW3/ppMX2XLSOpeLt8GRAXJic0m6rWS8JN0LZKOUdEclpqSw78EOlBefZezGRBRUTKCm0KCxlIDOA3TukJsKJZesxxxvvrfSmeTPyM8/aNvW6YJs/z9yLo+o+dts2+76v8ZqH5J0r2jTpg379++/09WQJEm6LfYUF3GioTsFjrm0MV+i0NEanitQIRQmhnffCI/+DU79aj1Bc/uGxJSXl3Dp0k7yKmImlcPliW7P5hTz9JK9tm0vZ8c/ny5J0i0k4yXpXiEbpaQ7Kr3EyP9r9TC94lbjXblT4YhS5U+QMh40zvC/KfZzSdVBo5TJZG3gathwIq4ubfD0vLx06ulM69NAg6OKJr4GRnYOumoekiRJkiRJN6uk3EKGxUBerhMtAKOqYkU7hRotpaByhDNb4Pf11v2a27diZNKZuZw9u8S2rVK72v6fnlsCWOOlvs19Gd4x8LbVS5IkSbp3yEYp6Y4QFgslhw6RlOeAsOSgNacDoNJ1R6tqwJjG76IqSgXNdDi90XqSgyP4tQavxjddfmU39Ho+A3F2bmJ3LK/YOnvDQ429WTCi7U2XJUmSJEmS9GdlZ5LJi12LsaiULQ6tGJn6H3Jcr+gFpdCgUhjBVAT/HnR5v9a1ama3SHFxMgB6fTA6XRD+fpfn88wvNQMQ4uPM3KGtb1udJEmSpHuLbJSS7ohLy5aT+dlXFI94Dr3Ddzhq0gA9KLSoKLU2SAG4NwRjofX/z/wCAbVvJLJYzBxIGE5+/hGEsE7KqVJdXgVg9cE0Vu4/x9mcYgBcdOpalyVJkiRJklSdC++/j/G8jvI2wfT4fT/aitjEO7+InPpOKJRuqBQZYLbux9EVgrtD1xduWx3NFQvCNAqZjo9PJADxv2fy1bZkMnKtC8K4aOXXCUmSJKn25KeIdEdkn0nicNMmZKnK0BuzqZdbOcG5Gr0ogcH/BNcAaNgdfnnNetJNDtsrLT1LXt7lcdd6fTAajW3QIB/9fIL0ihX3AII85TKmkiRJkiTdGuacbIT7Q5RioXv6IS74gUIIHFyeQOXogcKssPaU0ntaT/BtCU8uuy11u3BhLdk58RQVJQGgumJBmM83nmZPSo5tu6Gn022pkyRJknRvko1S0h2xxWzmXKgvzmf2MCJdgQJdxRE1jopCaPE4HF0J62dCmXWo3c02SlUO2XPU1KN9+x/QaLxQKq1vASEEWUXWJ5HRUeH4u+no2cT7mnlJkiRJkiTdDFFSCq5ayihGhRlQYVE6kOvWDIV1ZByuYU3Ar6Lntlp3zbzqtF7CQuLx6VgsZbZ9Wu3lVfWyiqz7p/QKpamfCw81lvGSJEmSVHuyUUq6Iy6o1XzXtDsj1yxAgaJirwalygdXXQoUZcHqiZdPcHCs9RwKQgiKi5MoKDgGgFrtZhdc/Xwkg99OXMRotgAwtH0gTo7yrSFJkiRJ0q2T5OJCulcBie7uNFbmAZ5YFBU9x/WJRD0VhW94fUiwxi+3a9U9s7nQ1iDVKOQl9E6N0OuD2XUmmzWH0m3D9ga28qeJ780vPiNJkiTd3+Q3b+m2M18q5LBTIKUHc1BVzJOgMQzH05JBa7f/R4jbCSgeQsUB6PgsNOhc6yeESWdi+OOPL2zbDld0QRdCMO2/hygxlQPgplej1zjU8sokSZIkSZKuz2KxsKtJY0yKYkwFSgr0GgCEUgmAnyKDQN1xWPAIFGdbT1LfnmFylfNIKZWONGz4vG3/m6uO8vtF6zyfDkoF9Vwcb0t9JEmSpHub8k5XQLq/pL/+On9M/pJLFjXOIXNRCWvvJIXSFR9xiuaBKegeGnN5yJ6LH/R+C8L61LrMgvwjgHU+BEdHX/z9h9iO5ZeabQ1SL/dtzNejH0ShUFw1H0m6X40ePRqFQoFCoUCj0RAaGsqsWbMwm803le/mzZtRKBTk5ubWTUVrIDk5meHDh+Pv749Wq6V+/foMHjyYEydO2KWLjY2lR48eGAwG9Ho9Dz74IEuXLrVLk5KSgkKh4ODBgzUu/+2336Zp06Y4OTnh7u7Oww8/zO7du+3yHDNmDMHBweh0Oho1akR0dDRGo/G6eS9btozWrVuj1+vx8/PjmWeeITs7u9pztm7dSlRUFP7+/igUClatWnXVdMePH2fQoEG4urri5OTEgw8+SGpqqu34+PHjadSoETqdDm9v76ve071799K7d2/c3Nxwd3cnMjKSQ4cOXbW806dPYzAYcHNzu+511/QaJOluUXLkKOkfL8SsUPJLSSPaJW4m22B9YKZ1sPaG8hRlcPx/kJdqXX0PwK/VLa1XTs4Otm/vzp69jwD2i8EAXCyw9p56umtD/jWqPW4VDWmSJFnJeEnGSzJeqh3ZKCXdVlk7dnLWy4Vih2ICLhVePqBQYVCWweR98MAIyD5t3a9xvukyK+eSah7+Cd26bsff7wksFsGaQ+n8K/4MADq1A5N6hdG2gftNlydJ96J+/fqRkZHB77//zksvvcTbb7/Nxx9/fKerZVOTIMRkMtGnTx/y8vL48ccfOXnyJN9//z0tW7a0C/Q+//xzBg8eTNeuXdm9ezeHDx/mySefZMKECbz88ss3Vc/GjRszf/58jhw5wrZt22jYsCF9+/YlMzMTgBMnTmCxWFi0aBHHjh3j008/5YsvvmDmzJnV5rt9+3aeeuopxowZw7Fjx1ixYgV79uxh3Lhx1Z5XVFRE69atWbBgwTXTJCUl0a1bN5o2bcrmzZs5fPgwb775Jlqt1pamXbt2LFmyhOPHj7N+/XqEEPTt25fycmujf2FhIf369aNBgwbs3r2bbdu2YTAYiIyMxGQy2ZVnMpn4+9//Tvfu3aut+41cgyTdTTJmziTnlJIyVJSbBUoECouFwOx8PJy9AFA5WMBcYj2h6wsw5SB0eu6W1uti5i+UlqXb4iYXl9bW/fml7EvJIb/U+l59vmcoEU18bmldJOmvSsZLMl6S8VItCOma8vLyBCDy8vLudFXuCWVlZWL2zJkiOjpadIhZIL78+2wRM3SgiBk6UHz+7AaRMOEfQpz4WYhoVyGiXayvpY/UuryCghPiXNp3Ymt8R7FhY4jIubTHdmz76UwRNCPW9ur+0W91cIWSdG0lJSUiMTFRlJSU3Omq3LBRo0aJwYMH2+3r06eP6NSpk8jJyREjR44Ubm5uQqfTiX79+olTp07Z0qWkpIhHHnlEuLm5Cb1eL8LDw8XatWtFcnKyAOxeo0aNEkIIkZ+fL4YPHy70er3w9fUVn3zyiejRo4d44YUXbPkGBQWJWbNmiZEjRwqDwWA7Nz4+XnTr1k1otVpRv359MXnyZFFYWCiEECIhIUEAIiUl5ZrXmpqaKtRqtZg2bVqVY/PmzROA2LVrlxBC2K4hISHhxm9qhcrPmQ0bNlwzzZw5c0RwcHC1+Xz88cciJCSkSn0DAgJqXBdA/PTTT1X2Dxs2TPzjH/+ocT5CCHHo0CEBiNOnTwshhNi7d68ARGpqqi3N4cOHBSB+//13u3NfeeUV8Y9//EMsWbJEuLq63lC517qG2qjuPSvjA3vyftyYk127id0v/CDemvaamNt/uDUOeqyf2Nx1mFg2ca6YP36j2PV2tBDLn7TGQnu/vi31OnL0BbFhY4j4/fQcUVh4WlgsZpFZUCrCXl9nFzOVmcpvS32k+5OMl2S8dDUyXrq34yXZU0q6bfJyc7locCPe5Mfgfb+SV76z4ogKQ/l5QoJSIf0AIECpti6B3HJorcqyWMzsP/AkJ07MxGi0tqhr1Jd7QaVXTNJZz8WRv7UJ4J3BzW/m0iSpVoQQlJcX3/aX9bPo5uh0OoxGI6NHj2bfvn2sWbOGnTt3IoRgwIABtqc5EydOpKysjK1bt3LkyBE++ugjnJ2dCQwM5IcffgDg5MmTZGRk8NlnnwEwbdo0tm/fzpo1a4iLiyM+Pp4DBw5UqUNMTAytW7cmISGBN998k6SkJPr168fjjz/O4cOH+f7779m2bRuTJk0CwNvbG6VSycqVK21PpP5s5cqVmEymqz7hGz9+PM7Oznz77bc3ff/A+rRy8eLFuLq60rp162umy8vLw8PDo9q8OnfuzNmzZ1m3bh1CCC5cuMDKlSsZMGDATdXRYrGwdu1aGjduTGRkJD4+PnTs2LHaLt9FRUUsWbKE4OBgAgMDAWjSpAmenp589dVXGI1GSkpK+Oqrr2jWrBkNGza0nfvbb7+xYsWKu/MpniTVEVFaikWppPGZ03S8kAiASePG0RbPcsn8AADqDv8AY8WwPc2tnUtKCEFZWSZGo3X4il4XjJNTIxQKB1KyijCaLagdFAR56hnTLRiNSn59kG6vOxUv1UXMJOOlmyfjpXs/XpITnUu3Tf6J8+zxaUyDP7bjaLk8ttrfsYC/138efLpcDsA6TYC+s2tdltmcb5uo08urN85OjdHrG12uS4n1A+DBhh58MuyBWpcjSTfDYilh85aWt73cnj2O4OBQu1WchBBs3LiR9evX079/f1atWsX27dvp0qULYB2nHxgYyKpVqxgyZAipqak8/vjjtGxpvc6QkBBbXpWBg4+Pj20sfEFBAd988w3Lly+nd+/eACxZsgR/f/8qdenVqxcvvfSSbXvs2LGMGDGCqVOnAhAWFsa8efPo0aMHCxcuJCAggHnz5vHKK6/wzjvv0L59eyIiIhgxYoStXqdOncLV1RU/P78q5Wk0GkJCQjh16lSt7l2l2NhYnnzySYqLi/Hz8yMuLg4vL6+rpj19+jSff/45MTEx1ebZtWtXli1bxrBhwygtLcVsNhMVFXXTwcrFixcpLCzkww8/ZPbs2Xz00Uf88ssv/O1vf2PTpk306NHDlvaf//wnr7zyCkVFRTRp0oS4uDg0GuucMwaDgc2bN/Poo4/y7rvvAtafz/r161GprKFIdnY2o0eP5j//+Q8uLi5VKyNJ9wCLxUKKtzeXHDNRlFsor5jHUiitwztcnTNwb9CE0HqpcOaC9aRaLvRSU0eOPk9m5q+2bdUVC8JUDtlr6uvC/yZ3u6X1kKRruVPxEtQ+ZpLxkoyXZLxUc/JRh3RbnJ00iQs/HqCUUvQu1knqVJpWOLo+R1+/HOg5E6L+74qngjc3l1TlfAhKpY7WrRbTqNHLKBQKtp/OYuZPR1h9MA0AF536psqRpPtFbGwszs7OaLVa+vfvz7Bhwxg9ejQqlYqOHTva0nl6etKkSROOHz8OwJQpU5g9ezZdu3YlOjqaw4cPV1vOmTNnMJlMdOjQwbbP1dWVJk2aVEnbvn17u+1Dhw6xdOlSnJ2dba/IyEgsFgvJycmA9Unk+fPnWbZsGZ07d2bFihU0b96cuLi4Gt+LysChOsuWLbOrR3x8vO1YREQEBw8eZMeOHfTr14+hQ4dy8eLFKnmkpaXRr18/hgwZYjfXwZX5TpgwAYDExEReeOEF3nrrLfbv388vv/xCSkqK7Xh8fLzdecuWLavRtVos1sUoBg8ezIsvvsgDDzzAq6++yiOPPMIXX3xhl3bEiBEkJCSwZcsWGjduzNChQykttfZKLSkpYcyYMXTt2pVdu3axfft2WrRowcCBAykpsc6bM27cOIYPH85DDz101brU9hok6W5yJimJnR07cMIxjVxHLRZl5eIq1i8bfVuvZaDmRVzWPAaZFZPf3uKeUpcu7ar4nwKtNgBX17YUlpnZePwCO5OsvacMWvkcW5JqQsZLl8l4ScZLNSU/YaRbTpSXc+L4Cc53bIaZMtSVvUCVziiUOhzdDdBzhnWfqdj6r7p2vThMplzOn19NSYl1lQP1n1aOee3HI6TmFNu2fV20SNKdolTq6NnjyB0p90ZFRESwcOFCNBoN/v7+qFQq1qxZc93zxo4dS2RkJGvXruXXX3/lgw8+YO7cuUyePLk2Vbfj5GT/Ra2wsJDx48czZcqUKmkbNGhg+7/BYCAqKoqoqChmz55NZGQks2fPpk+fPoSFhZGXl0d6enqVp41Go5GkpCQiIyOvW7dBgwbZBZ8BAQF29Q4NDSU0NJROnToRFhbGV199xWuvvWZLk56eTkREBF26dGHx4sV2eV+5ek3lE7IPPviArl27Mn36dABatWqFk5MT3bt3Z/bs2bRv397uvHr16l33GgC8vLxQqVSEh4fb7W/WrBnbtm2z2+fq6oqrqythYWF06tQJd3d3fvrpJ/7+97+zfPlyUlJS2LlzJ8qKJe+XL1+Ou7s7q1ev5sknn+S3335jzZo1tqecQggsFgsqlYrFixfz97//vVbXIEl3k8x9KRQJNWdzlLiQx6EG1gnDFQprSO6t00NqxWIvXo3BMxQCO92y+gghMJutC89067oDR0drfaYtP8Dawxm2dK7yIZ50B92peKmy7Bsh4yUZL11Jxks1IxulpFvu4rlzbO/eDcgk8KIDzdNbYiYFFNYAx9FJCSufgbxzkPW79SRN7RqlUv74gtTUL23bao2n7f9CCM7nW1uhxz8Ugo+Llifa1a9VOZJUFxQKRa2H0d1ulYHBlZo1a4bZbGb37t227ujZ2dmcPHnS7kM5MDCQCRMmMGHCBF577TW+/PJLJk+ebHuCduV8BSEhIajVavbu3WsLjPLy8jh16tQ1nwhVatu2LYmJiVXqWR2FQkHTpk3ZsWMHAE888QQzZsxg7ty5zJ071y7tF198QXFxMU899dR18zUYDBgMhuumA+vTtbKyMtt2WloaERERthVaKoOSSle7vuLiYlu37koODg6A9W+fTqe7oftSSaPR8OCDD3Ly5Em7/adOnSIoKOia5wkhKuapKbPVT6lUolAobGkqtyufLu7cudPud2H16tV89NFH7Nixg4CAgFpfgyTdDYTJRNrLM8h3as9ZpRs+BUcRSoEZ6/tU4eCNijIUat3lB3Sj14LzrV3lzmIpAazvQZXqci/10xesDVWN6znj4aRhdJeGt7QeklQdGS/JeAlkvHQvx0uyUUq65fKzsymwOFJ4MZdelxIxUzFhoEKNe+FJHJRGOPqD/UnuwbUqq7TUOizP1aUNTk5h+Po+CsD6Y+fZdOIiRrP1zfzCw2HoNfLXX5JuRlhYGIMHD2bcuHEsWrQIg8HAq6++SkBAAIMHDwZg6tSp9O/fn8aNG3Pp0iU2bdpEs2bNAAgKCkKhUBAbG8uAAQPQ6XQYDAZGjRrF9OnT8fDwwMfHh+jo6Cof0FczY8YMOnXqxKRJkxg7dixOTk4kJiYSFxfH/PnzOXjwINHR0YwcOZLw8HA0Gg1btmzh66+/ZsYMa2/NBg0aMGfOHF5++WW0Wi0jR45ErVazevVqZs6cyezZs2nRooVduX8OQACaN2+OWm3fs6CoqIj33nuPQYMG4efnR1ZWFgsWLCAtLY0hQ4YA1gCrZ8+eBAUFERMTY1v6GMDX1/ea1x4VFcW4ceNYuHAhkZGRZGRkMHXqVDp06HDV+SUqFRYWcvr0adt2cnIyBw8exMPDwxbkTp8+nWHDhvHQQw8RERHBL7/8wv/+9z82b94MWIcQfP/99/Tt2xdvb2/OnTvHhx9+iE6ns00c2qdPH6ZPn87EiROZPHkyFouFDz/8EJVKRUREBIDt96LSvn37UCqVVe53ba5Bku600uPHyd+8nfJH2uKRdwm/oixQglepL9n1HkClaIbKoQiaDoCEf1tPqmWv8ZrIyzvAwUNjMZvzAFAoHFAqdZzNKWbr75lk5FmHiXw67AGa+7vesnpI0v1AxktWMl6S8dI11cEqgPcsucRx3Ti4frNoO+dHMfMfT4qYoQMrXlEieVKoKH/DRYglA6xLHv+zixCJa4T4Y6cQFssNlWGxmEVW1laxa1d/sWFjiMjIWG07Vl5uEU3f+Nm2lPED76wXlhvMX5Ju1r22xHGlyiWOXV1dhU6nE5GRkXZLHE+aNEk0atRIODo6Cm9vbzFy5EiRlZVlOz5r1izh6+srFApFtUscd+jQQbz66qu284KCgsSnn35apT579uwRffr0Ec7OzsLJyUm0atVKvPfee0IIITIzM8WUKVNEixYthLOzszAYDKJly5YiJiZGlJfbL3G+atUq0b17d+Hk5GRbgvnbb7+1S3O1ZZorX2fPnq1St5KSEvHYY48Jf39/odFohJ+fnxg0aJDYs2ePLc2SJUuumef1zJs3T4SHhwudTif8/PzEiBEjxLlz56o9Z9OmTVctq/JnUemrr74SoaGhQqvVitatW4tVq1bZjqWlpYn+/fsLHx8foVarRf369cXw4cPFiRMn7PL49ddfRdeuXYWrq6twd3cXvXr1Ejt37rxm3Wq6xHFNr+FG1cUSx/cLeT+ur3DXbnGkXS+xeuZSsaFjd/HlI71FzNCB4rNnvhTzx28U88dvFCs+3CtEwUVrTBTtIsSf/i7VpaSkT8WGjSG214EDI4UQQgz6PN4WLwXNiBUX8v96n1nSX5uMl2S8JOOl+y9eUghRB2uD36Py8/NxdXUlLy/vnpnZ/nYynksj64v/st45lHc9jjN6+284lapQOz+GGjPP9doADwyH/HRYPxOaPgJP1m4itoyMH0k8Pt22/cAD3+DpYV0lpqDURMu3ravKvNA7jIcae9EuqPrlQiWprpWWlpKcnExwcDBarZzL7EYUFRUREBDA3LlzGTNmzG0vPycnh969e+Pi4sLPP/+MXv/XGEIg3Zzq3rMyPrAn78f1XdywgZ+X/0hO/YZ0Xf09CQ09KdRqUDs/gULjT9QDO/D1KUObfxSSt4JKB2+cv2X1OXEymrS0/9AgcAwNgp5Fo/ZEoVDQ9t04coqMdA/zonuYF88+1Oj6mUlSHZLxUu3JeEm6E+oiXpKr70m3TO5333LpcCr5alCJs2hM1q6kCqUrTpjBpznkpsLJn60nONZsPPHVFJekWLNw9MXP92+4u11eiSKvxLqcsUal5MU+jWWDlCTd5RISEvj2229JSkriwIEDjBgxAsDWxf128/DwYMOGDfTu3ZudO3fekTpIkvTXdiItjeQGPuQqi3GwlFNeMbxGoVBRriyloeE42kP/tDZIAbjemjkvS0rOEb+tE2lp/wFAq/XHUeOFQqFACGGLmT5+orVskJKku5yMl6R7hZxUR7plzublsTfMlSRVDs9tysYiVIBAoVBjoATyUmH7p5dPcPKudVlmcwEAfr5/o1GjlwDYfPIiU75NoNhonQhOrhwjSX8dMTExnDx5Eo1GQ7t27YiPj8fLy+uO1cfT05O33nrrjpUvSdJfW0lJGWahhHwT+4K9KbXNa6nGojReTugRAt2mQcNut6Qeubl7MBqtc68olY64urYjPbeEN1YdJbvISLnFOoDCRSe/IkjSX4GMl6R7gfzEkW6ZXUJwzkmB69HNCEsRKConONfgrUuB8oogzKsJtPgbtHv6hssoLk4hM3M9eXkHAFCpLve2+jXxAvmlZtt2x2DZQ0qS/gratGnD/v3773Q1JEmSbpoQguJDZyg5p2ZteTMiM2Mp1DkCYFGAQmnATWRfPsG9IbQdecvqY6qY2NzL62FaNP8/HBx0/Df+DL+duGhL4+eqRad2uGV1kCSpbsh4SbpXyEYp6ZYpErC5MJAn8vciKhaBUDo48qTnK3iqU8Ey0LqzQSfo+Wqtyjhx4nUu5e6ybWs0nrb/5xZbG71e6tOYoQ8G4mNwrN2FSJIkSZIk1cL5WbPI252FqU0bvHOycDUVAqDS9cRBE4ZCqcWZUlBVzMNxi1bcM5sLyc6JJy/X+gXWUeONg4MOgEsV8VLvpj4MezCQVvXdrrt6lyRJkiTVFdkoJdU5YTZzKfYYyc71Ual3QxoohQaV63C8dL/iZcgFp0bgXDFc7ybmkiotywDAy7MXTk5heHv3Y9GWJP677yzpuaUANPDUU89FTpQoSZIkSdLtVXr4CMUuHRFFl/h0y1dsbhZIqUaNUuWP0sERnWMZTX3/gKzfrSdonG9JPU4nfWybRwpArXYjNbuYdUcz2JFk7anVIsCVvs2vvZS6JEmSJN0KslFKqnNnJzxHkaYnJx6ohy77JOCMEjVKBw+8HUzQ912Ii4aEiuDoJgKwyrmkGjV6GWfnJgAs3nqG7KLL8zM08a19o5ckSZIkSVJtWUpLMes0iJJslAjKlRVrDClUuDntYPiTIRD7OZRWnODif0vqUVLyBwBOTo3R64Px83uC5747ypZTmbY0Pi6yR7kkSZJ0+8lGKanOncy8SFazS5QqnHjigDulShMorV3EfVXlcPQHKM2tSK2AgLY3lL/FUkbq2aUYjVmYK+ZGqJxLSghBbsXKMV/8ox3N/AwEeTrVyXVJkiRJkiTdiAQfb44GXcI9PZtWgFlZOSxOhVpRBqYi62a9lvDgGOscm7eA2ZwPWB/ieXv1BiA919pQFdHEm8a+BqJa35oGMUmSJEmqjmyUkupUYWEh2x94gHLzeQZsjbc2SAEWB2vDkN7FBGXW+RSImgdNB4LTja0QkZm1kaSkObZthUKNWu3GL0cz+P1CoW3lmJ5NvNHKiTolSZIkSbpD0lxdADAJBRYFiIq5mhQKFa6iBMwVXaR8W0L7G1/wpTpCWEhOWUBpSSrFxWcAUKlcbMfzKh7ivdS3CS0CXOu0bEmSJEmqKdkoJdWpguxLlKFiT4E3A4wHbfu9NEYaO/2XII80MJZYd3qE3HCDFEBZ2QUAnJzC8PLqjZtrO05nljPhPwdsaZwdVbJBSpIkSZKkO0IYjRQlnMCoceZYkSsd8hP4pVWjK1KocFOYwVQRE2nqvld3fv5BkpP/z26fWl2PJxfvJCE1lzKzBQBXnbrOy5YkSZKkmpKNUlKdKYzfRtovf5Bs8ETNFrgACgdfnDV9eKzeNJzruUPwAOvwPQDHG59LymjMpqzUOrm5m1sHQhtNB+DwCWtDlYeThogmPjzczKduLkqSJEmSJOkGnX3uecr1Aznr4sdDCZswGsptxxQO9UDhiEpphN/jrDtvQaNUmdE6X5RWW5/6AcPRO4WSU+rFrjNHbGkaeOjxdZWLwUiSJEl3jvJOV0C6NwghOPfCCxSalBwIcMbR0TpPgULhiMpiwTE80vo0cM8iKM6ynuToUk2OVSUnf078tg6knv0KAHVFF/S03BJOXbAOCWzu78Lcoa3p39Kvjq5MkqTRo0ejUChQKBRoNBpCQ0OZNWsWZrP5pvLdvHkzCoWC3NzcuqloDSQnJzN8+HD8/f3RarXUr1+fwYMHc+LECbt0sbGx9OjRA4PBgF6v58EHH2Tp0qV2aVJSUlAoFBw8eLDG5b/99ts0bdoUJycn3N3defjhh9m9e7ddnmPGjCE4OBidTkejRo2Ijo7GaDRWk6vVsmXLaN26NXq9Hj8/P5555hmys7OrPWfhwoW0atUKFxcXXFxc6Ny5Mz///LPteE5ODpMnT6ZJkybodDoaNGjAlClTyMvLs6VZunSp7ffjz6+LFy/a0pWVlfH6668TFBSEo6MjDRs25Ouvv7arz//93//ZygoMDOTFF1+ktLSU6vz444/07dsXT0/PG/55SNKtUnbqFA46D4SxjND8NAAc8cXRbSJ610fwcjxHQ/VOyDhoPcHJu07LLy3NoLgo2Zq1UyhBQePx9uptG7LnbXBk+6u92DCtB2oH+XVAkuqCjJdkvCTjpdqRPaWkOlGYnc3u8GYUOqZDuYEHUzoCSaBQoyovw0HneLkxyrcl+La2Dt+7AZdyK/8QKVGrXfH07Mm3e1J57cfLT/zc9Jq6uSBJkuz069ePJUuWUFZWxrp165g4cSJqtZrXXnvtTlcNAKPRiEZT/fvfZDLRp08fmjRpwo8//oifnx/nzp3j559/tgv0Pv/8c6ZOncqMGTNYuHAhGo2G1atXM2HCBI4ePUpMTEyt69m4cWPmz59PSEgIJSUlfPrpp/Tt25fTp0/j7e3NiRMnsFgsLFq0iNDQUI4ePcq4ceMoKiqqttzt27fz1FNP8emnnxIVFUVaWhoTJkxg3Lhx/Pjjj9c8r379+nz44YeEhYUhhOCbb75h8ODBJCQk0Lx5c9LT00lPTycmJobw8HD++OMPJkyYQHp6OitXrgRg2LBh9OvXzy7f0aNHU1paio/P5V6rQ4cO5cKFC3z11VeEhoaSkZGBxWKxHV++fDmvvvoqX3/9NV26dOHUqVO2AP+TTz655jUUFRXRrVs3hg4dyrhx4677M5Ck28FSWoZSqYQyE+UV80gVa7U4KRwJ9/6Uh4LV8Mc5aDIA6j8IbUfWWdlpad9x4uTrtm21yhVTuYW4xAsc+OMSAO56NQFuujorU5IkKxkvyXhJxku1IKRrysvLE4DIy8u701W568Vv2CCio6PFOzOmi4+GjxCfDH9exAwdKD75x0viv49+KCyrXxAi2kWI9/xrXcbu3VFiw8YQkZm1ybbvlRWHRNCMWNH0jZ9Fx/c2iF+Pnb/5i5GkW6CkpEQkJiaKkpKSO12VGzZq1CgxePBgu319+vQRnTp1Ejk5OWLkyJHCzc1N6HQ60a9fP3Hq1ClbupSUFPHII48INzc3odfrRXh4uFi7dq1ITk4WgN1r1KhRQggh8vPzxfDhw4Verxe+vr7ik08+ET169BAvvPCCLd+goCAxa9YsMXLkSGEwGGznxsfHi27dugmtVivq168vJk+eLAoLC4UQQiQkJAhApKSkXPNaU1NThVqtFtOmTatybN68eQIQu3btEkII2zUkJCTc+E2tUPk5s2HDhmummTNnjggODq42n48//liEhIRUqW9AQMAN18nd3V3861//uubx//73v0Kj0QiTyXTV4xcvXhRqtVr8+9//tu37+eefhaurq8jOzr5mvhMnThS9evWy2zdt2jTRtWvXGtW7Ln4eV6ruPSvjA3vyflR1pHVbkTxjk3h+8myx6qHOImboQPHh6BfF/PEbxe7oXkJ82dsaFx2PrfOyjx2bLjZsDBG/bWomtsZ3FBcvxomV+86KoBmxttewRTvqvFxJqgsyXpLx0tXIeOmyezFekv11pTpRlJ1HpsWJkvRMHMy5WMzW4Xu++Sfo5vAFCo3emrAWcyYUFv3OmTOfUVJ6DrA+8at0qdjaRfP1gc3YNbM3fcLr3eSVSNLtI4SgqLz8tr+EEDddd51Oh9FoZPTo0ezbt481a9awc+dOhBAMGDAAk8k6RGTixImUlZWxdetWjhw5wkcffYSzszOBgYH88IN1frmTJ0+SkZHBZ599BsC0adPYvn07a9asIS4ujvj4eA4cOFClDjExMbRu3ZqEhATefPNNkpKS6NevH48//jiHDx/m+++/Z9u2bUyaNAkAb29vlEolK1eupLy8vEp+ACtXrsRkMvHyyy9XOTZ+/HicnZ359ttvb/r+gfVp5eLFi3F1daV169bXTJeXl4eHh0e1eXXu3JmzZ8+ybt06hBBcuHCBlStXMmDAgBrXp7y8nO+++46ioiI6d+5cbX1cXFxQqa7e2frf//43er2eJ554wrZvzZo1tG/fnjlz5hAQEEDjxo15+eWXKSkpsaXp0qUL+/fvZ8+ePQCcOXOGdevW3dA1SNLdIDszkzX9I1mq3Uw5BViUFSvuVQxQ0Kq4PMG5qu7nczKZrcNFwsLeoHu3XXh7P8wfOcWAdQ6pAS19efHhxnVeriTdKncqXqqLmEnGSzdPxkv3frwkh+9JN81SbCL/SA6/KzzpXF4EgFLdGBwEAzvsxMW9CeRbG5TQ3Pjk5idPvElu3l7btkbjzY8HzvH2mmMUlFnHaLvLYXvSX1CxxUKjrUeun7COJT3UEieH2q1OKYRg48aNrF+/nv79+7Nq1Sq2b99Oly5dAOs4/cDAQFatWsWQIUNITU3l8ccfp2XLlgCEhFwetlsZOPj4+ODm5gZAQUEB33zzDcuXL6d3794ALFmyBH9//yp16dWrFy+99JJte+zYsYwYMYKpU6cCEBYWxrx58+jRowcLFy4kICCAefPm8corr/DOO+/Qvn17IiIiGDFihK1ep06dwtXVFT+/qvPSaTQaQkJCOHXqVK3uXaXY2FiefPJJiouL8fPzIy4uDi+vq69Eevr0aT7//PPrdoHv2rUry5YtY9iwYZSWlmI2m4mKimLBggXXrc+RI0fo3LkzpaWlODs789NPPxEeHn7VtFlZWbz77rs8++yz18zvq6++Yvjw4eh0l4cGnTlzhm3btqHVavnpp5/Iysri+eefJzs7myVLlgAwfPhwsrKy6NatG0IIzGYzEyZMYObMmde9Bkm6m5xNTqZIoyWzWIWh+HcyDdYHc0qssYqPA2CyNhKh1tdZufkFRzmb+jV5eQnWrCse4qVmF5OSZY3PBrX25+XIJnVWpiTdDncqXoLax0wyXpLxkoyXak72lJJuijk7m+Pjp5GpUZISuBuNsgAAla4TKucwXAIaQepOSFxtPaEWE3mWlllX2/PxGUDTJu+h09Vn3ZEM8kvNCAFatZKWAa7XyUWSpJsRGxuLs7MzWq2W/v37M2zYMEaPHo1KpaJjx462dJ6enjRp0oTjx48DMGXKFGbPnk3Xrl2Jjo7m8OHD1ZZz5swZTCYTHTp0sO1zdXWlSZOqX6Lat29vt33o0CGWLl2Ks7Oz7RUZGYnFYiE52Trh78SJEzl//jzLli2jc+fOrFixgubNmxMXF1fje3G9uRjAGmxeWY/4+HjbsYiICA4ePMiOHTvo168fQ4cOtZvgslJaWhr9+vVjyJAhdmP/r8x3woQJACQmJvLCCy/w1ltvsX//fn755RdSUlJsx+Pj4+3OW7ZsmS2/Jk2acPDgQXbv3s1zzz3HqFGjSExMrFKf/Px8Bg4cSHh4OG+//fZVr3vnzp0cP36cMWPG2O23WCwoFAqWLVtGhw4dGDBgAJ988gnffPON7enf5s2bef/99/nnP//JgQMH+PHHH1m7di3vvvvude+pJN0NhNlM2qtvkfLdPhJM/jhn/IF/QR4FOkcA1MINAJ0oguIc60nqupvXKSVlIecvrMZksk7Yq9XV57/7zvLQx5tYcygdADe9us7KkySpKhkvXSbjJRkv1ZTsKSXdlGPr1/O/IDf+cC7Gr6gQR6MasABqXEUxlFu7pOLVBBpHQsshNc7bYjFhMudhMuUC0ChkGnp9MAC5xdZ8Zz/agkfbBODsKH+Vpb8evVJJ0kMt70i5NyoiIsI2iaW/vz8qlYo1a9Zc97yxY8cSGRnJ2rVr+fXXX/nggw+YO3cukydPrk3V7Tg52Q8HLiwsZPz48UyZMqVK2gYNGtj+bzAYiIqKIioqitmzZxMZGcns2bPp06cPYWFh5OXlkZ6eXuVpo9FoJCkpicjIyOvWbdCgQXbBZ0BAgF29Q0NDCQ0NpVOnToSFhfHVV1/ZTYKanp5OREQEXbp0YfHixXZ5X7laiouLdRXSDz74gK5duzJ9+nQAWrVqhZOTE927d2f27Nm0b9/e7rx69S4Pda5cIQigXbt27N27l88++4xFixbZ0hQUFNCvXz8MBgM//fQTavXVv9j+61//4oEHHqBdu3Z2+/38/AgICMDV9fIDhGbNmllXbj13jrCwMN58801GjhzJ2LFjAWjZsiVFRUU8++yzvP7669XeU0m6G5QeP07psQK0rZrQ/Xg8vmWnyXHWoVQ3Rqnyx8GxBS4OGTiX/Q6KitW4HA11Vr7JZG3o8vcbipdXb1wMrTh87igAThoHAtx19GrqU10WknRXulPxUmXZN0LGSzJekvHSjZPf5KWbcirzAmaVA5jKGLnbQJ7KOo+BQqGhARkgKlYKaNgV+r5b43zLy0vYtasvpWXptn0qlQtbTmWyIymL5Ipu6CFeTrJBSvrLUigUtR5Gd7tVBgZXatasGWazmd27d9u6o2dnZ3Py5Em77syBgYFMmDCBCRMm8Nprr/Hll18yefJk2xO0K+crCAkJQa1Ws3fvXltglJeXx6lTp3jooYeqrWPbtm1JTEysUs/qKBQKmjZtyo4dOwB44oknmDFjBnPnzmXu3Ll2ab/44guKi4t56qmnrpuvwWDAYKjZl02LxUJZWZltOy0tjYiICNq1a8eSJUusK3hd4WrXV1xcXGXOAoeK3y0hBDqdrsb35c/1yc/PJzIyEkdHR9asWYNWe/U5cAoLC/nvf//LBx98UOVY165dWbFiBYWFhTg7W4dxnzp1CqVSSf369W3X8OdrvfIabuSeStKdYCkqRuHojBkL9fMuUqq3/j47OIbjoK7P00Ez0ZYmozT4gF9r8G1xwysRX40QgvLyIttDPB+fAXh6dgcuP8R7qW8TnukWfNNlSdKdIOMlGS+BjJfu5XhJfpuXbkppWSlp5S40OLLf1iCFgAfPfUHbtjuhtI113w0+CSwpSb2iQUqBh3sXlA7uTPh/v1JiuvwHuZ5r3U8QKklSzYSFhTF48GDGjRvHokWLMBgMvPrqqwQEBDB48GAApk6dSv/+/WncuDGXLl1i06ZNNGvWDICgoCAUCgWxsbEMGDAAnU6HwWBg1KhRTJ8+HQ8PD3x8fIiOjkapVKKoWFb9WmbMmEGnTp2YNGkSY8eOxcnJicTEROLi4pg/fz4HDx4kOjqakSNHEh4ejkajYcuWLXz99dfMmDEDsD4hnDNnDi+//DJarZaRI0eiVqtZvXo1M2fOZPbs2bRo0cKu3JMnT1apS/Pmzas8HSsqKuK9995j0KBB+Pn5kZWVxYIFC0hLS2PIEGsv0rS0NHr27ElQUBAxMTFkZmbazvf19b3mtUdFRTFu3DgWLlxIZGQkGRkZTJ06lQ4dOlx1folKr732Gv3796dBgwYUFBSwfPlyNm/ezPr16wFrgNW3b1+Ki4v5z3/+Q35+Pvn5+YB1IlSHK74kfP/995jNZv7xj39UKWf48OG8++67PP3007zzzjtkZWUxffp0nnnmGdtcClFRUXzyySe0adOGjh07cvr0ad58802ioqLsyvmznJwcUlNTSU+3fmZU/jx8fX2rvWeSVNdEWSk4aChXlKM2myiyTXCuxuJQhr6eD6QmQftnoOeMuilTCA4kDCc3d49tn1rtyop9Z1mx7xwnL1inVXDVyWF7knSnyHjJSsZLVjJeuoq6WAbwXiWXOK6eMbNY/PPNz0TwG0vEh8MeETFDB4pPho8Xy58dKsQHgdaljitfW+bcUN6XLu0VGzaGiO07Imz7sgpKbUsZv/u/Y+K7PX/U9SVJ0i1zry1xXKlyiWNXV1eh0+lEZGSk3RLHkyZNEo0aNRKOjo7C29tbjBw5UmRlZdmOz5o1S/j6+gqFQlHtEscdOnQQr776qu28oKAg8emnn1apz549e0SfPn2Es7OzcHJyEq1atRLvvfeeEEKIzMxMMWXKFNGiRQvh7OwsDAaDaNmypYiJiRHl5eV2+axatUp0795dODk52ZZg/vbbb+3SXG2Z5srX2bNnq9StpKREPPbYY8Lf319oNBrh5+cnBg0aJPbs2WNLs2TJkmvmeT3z5s0T4eHhQqfTCT8/PzFixAhx7ty5as955plnRFBQkNBoNMLb21v07t1b/Prrr7bjmzZtumZ9kpOT7fLq3LmzGD58+DXLOn78uHj44YeFTqcT9evXF9OmTRPFxcW24yaTSbz99tuiUaNGQqvVisDAQPH888+LS5cuVXsN17pn0dHR1Z53PXWxxPH9Qt4Pq8Pf/z+x7IVZ4tPX3xf/7t1XzHusn4gZOlDMG7NczJu4QogvH7bGRDvm11mZZnOR2LAxxPbavqOnMJuLRKf3N9hipqAZseLAHzl1VqYk3UoyXpLxkoyX7r94SSFEHawNfo/Kz8/H1dXVtpyjdFl5YREXlh3kq7RjfOf3E89strbKOro+R3uv/9KpVwhs+8S62p57Q/jbl1Dv6qsT/JkQguzszRw6PBaDoTnt2q3mp4Q0Tl0oYPHWM7hoVRx++/pjlCXpblJaWkpycjLBwcHX7M4rXV1RUREBAQHMnTu3yoSQt0NOTg69e/fGxcWFn3/+Gb2+7lbLku5e1b1nZXxgT94Pqy9j3udwvgqXcyfwKLo8Ga/G5WkUulImBbwBJTkQ9Rm0G10nZZaVXWTb9s6Akp49jqBUagAFTd74BWO5hfcfa0lTPwNtG7jXSXmSdKvJeKn2ZLwk3Ql1ES/J4XtSreydPJljno056h9AvRItUDGhuUKFmwowFlq3Oz0Hvd6ocb5nz37D76ffRwjrBKAqBwPxv2fy8opDtjQ+LvIDSpLuZQkJCZw4cYIOHTqQl5fHrFmzAGxd3G83Dw8PNmzYwIIFC9i5c6dt6WVJkqRK5QVGyosdiDM25nGjdel6tUWLSe+NQumGuyXF2iAF4FK/zso1m63xlkrljFLpyKdxp0jKKsJYbp3T89E2/ug1MtyXpHuRjJeke4X8lJJqJd7LkyKnUhyK8vn7qX7k87+KIyq0jmYos85hgMb5hvLNzIqzNUgBuLt35vhF6/KXAW46uoZ68ugDd/8KApIk3ZyYmBhOnjyJRqOhXbt2xMfH4+Xldcfq4+npyVtvvXXHypck6e6V/fUSsjZdwtLQkacP/Q8nbRZlGgcUro+iVVnnKHFR5oBXU+j5CjSKuOky8wuOknR6DsaKFfdUDs4cSctj3m+nbWk8nTTo1H+NyaElSaodGS9J9wLZKCXdMCEEZRoNlJTwwNnNFFgqJvIUSsIv/URg8G5IsU7EhuONNUqZTdYJ4Zo3/z88PR7iUokjqSeSAejSyJM5T7Sus+uQJOnu1KZNG/bv33+nqyFJklQj+WvXUu4+iDKRxSPJO9kUXrmkugqDdhetG2oIyf4C6kdCi8frpMz09O/JubTdtq3TNySr0LoKVICbjrHdg+kQ7HHdCY8lSfrrkvGSdK9QXj/J7ff222+jUCjsXk2bNrUdLy0tZeLEiXh6euLs7Mzjjz/OhQsX7PJITU1l4MCB6PV6fHx8mD59Omaz+c9FSbVgKTNyXuHCyVxHHMpLEKIYAHdtCRGtf8KhNBPyUq2JXWrWq6m4OIULF9ZSZrT+HHXa+izelkmH9zeyaMsZANz0cuUYSZIkSZLuLpayMnBQYbSYUSKwVDYEKVS4GvbTOjwfg0MWqOtufhWTKRcAf/8naRq+kIsOb7DxuHUeqxBvJ57uGkxzf9c6K0+SJEmSbpW7tqdU8+bN2bBhg21bpbpc1RdffJG1a9eyYsUKXF1dmTRpEn/729/Yvt36xKi8vJyBAwfi6+vLjh07yMjI4KmnnkKtVvP+++/f9mu5l5iyczg77yBpSkdcdAmQC0p1M1TaNkQ1/QKFgzvkFULHCeDfBkL7XDdPi8XI3n1/w2zOs+1Tq93Yk2xd2lPtoMBVp6Z3s3q36rIkSZIkSZJqpbSkAJNKQbnZOr9mubKyd5IDWkrhkvXhGpqbb5QSQmA0ZmI0ZgPg5vYgq0404qNfTtjSeDppbrocSZIkSbpd7tpGKZVKha+vb5X9eXl5fPXVVyxfvpxevXoBsGTJEpo1a8auXbvo1KkTv/76K4mJiWzYsIF69erxwAMP8O677zJjxgzefvttNBr5YV0bQggS//E0zq1f4JxfOv3TMgEdSgc3lCpfDDoHKCyyJm43Gnya1ShfkynP1iDl5tYRgyEcna4huSXpAPxzRDv6hMsGKUmSJEmS7i5CCDY1b0mWx0mMheUIsPWUUihUOFECx7dZE9/gPJtXc/jws2Rl/2bbVqtc+CPbGnsFezkR6uPMmG4hN12OJEmSJN0ud+XwPYDff/8df39/QkJCGDFiBKmp1uFg+/fvx2Qy8fDDD9vSNm3alAYNGrBz504Adu7cScuWLalX73JDRmRkJPn5+Rw7duyaZZaVlZGfn2/3ki7LuXCBLWHBrNMk4F5kxqPsAesBhXVYndpRAybrUD40TjXO12y2ToquUrnQru1y1pwZwsB52zieYb3/7nLYniRJkiRJd6GStDzOufuwpSAAdUYScS3DQHG5p1RweTG4NoCG3aH5Yzdd3qXcXRX/U6LVBuLi0prcYmsPrWe6NuTLp9rTsr4ctidJkiT9ddyVPaU6duzI0qVLadKkCRkZGbzzzjt0796do0ePcv78eTQaDW5ubnbn1KtXj/PnzwNw/vx5uwapyuOVx67lgw8+4J133qnbi7mHHD18mBwPNxD5NMgpR4hyANTCSHPNWpTGPDCXWhOrr98oZTYXkJn5K0XF1onMVSoDZeZy5m+6vHKM2kFBkGfNG7gkSZIkSZJul/SvD1NUqGTK3v/HGT8XzBWPexVKFzRKEx6qc9B/ETQdeNNlWSxmysutD/8e6r6Hj+POM272XkpN1njMVS9HAkiSJEl/PXdlT6n+/fszZMgQWrVqRWRkJOvWrSM3N5f//ve/t7Tc1157jby8PNvr7Nmzt7S8v5qy4mKSyj3JOpdHs7NJWMwpADzk/g09PP4FF49XpFTUqKdUcsp8Eo+/wh9/LARArXYnr8T6tE+hgG+e6cDGaT3xNjjeisuRJEmSpL+8Dz74gAcffBCDwYCPjw+PPvooJ0+etEvTs2fPKgvITJgwwS6NXCDmxpgvXSJ17DhMxaXUy76Io8UIgFrhi8YwkqbNXRjd5H10ygJQ626+PHMhJSWptm0HB2d+2H+OYmM5FgEalZKWAbKHlCRJkvTXc1f2lPozNzc3GjduzOnTp+nTpw9Go5Hc3Fy73lIXLlywzUHl6+vLnj177PKoXJ3vavNUVXJ0dMTRUTaAXI05r4yLiTkkmr0YWBZfsdcBJY4E+jpD6UXwCAW3QAjtDWrtdfMsKbE2+hmcm6PVBYJ+EPtTLln3Oaro0dj7Vl2OJEmSJN0TtmzZwsSJE3nwwQcxm83MnDmTvn37kpiYiJPT5QdE48aNY9asWbZtvf7ypNtygZgbV7RtG0Xbd1L+6OMoyy22yc3LtE7oVd64uYOm3Pqg7WZX3cvK3szhw+MRwtpIqFRqUShU5FY8yPvp+S6E+jhj0MrpDiRJkqS/nruyp9SfFRYWkpSUhJ+fH+3atUOtVrNx40bb8ZMnT5Kamkrnzp0B6Ny5M0eOHOHixYu2NHFxcbi4uBAeHn7b6/9XZ87OJuW1rzCXmimu/wuOCuscUBqXEXg6PoSrW8XEnT1fhadWQZfJNcvXZJ3cvEGDsezPf5lBX5p5btkBAFzlPFKSdNcYPXq0rXeFRqMhNDSUWbNm3XQvis2bN6NQKMjNza2bitZAcnIyw4cPx9/fH61WS/369Rk8eDAnTpywSxcbG0uPHj0wGAzo9XoefPBBli5dapcmJSUFhULBwYMHa1z+22+/TdOmTXFycsLd3Z2HH36Y3bt32+U5ZswYgoOD0el0NGrUiOjoaIxG43XzXrZsGa1bt0av1+Pn58czzzxDdnZ2jev24YcfolAomDp1qt3+pKQkHnvsMby9vXFxcWHo0KG2Bz2V3nvvPbp06YJer68yvL7Sn3vqKBQKvvvuO9vxH3/8kT59+tjK6dy5M+vXr79uvX/88Uf69u2Lp6fnDf887gW//PILo0ePpnnz5rRu3ZqlS5eSmprK/v377dLp9Xp8fX1tLxcXF9uxygVi/vOf//DAAw/Qv39/3n33XRYsWFCj3737kaW4hFxXFy4o83AoL8diW3HP+nBTJwqhNNe6S3X9B3XVyb20x9YgBZBl7sYbq45SbhEANPNzkQ1SknQXkPGSjJdkvFQ7d2Wj1Msvv8yWLVtISUlhx44dPPbYYzg4OPD3v/8dV1dXxowZw7Rp09i0aRP79+/n6aefpnPnznTq1AmAvn37Eh4ezsiRIzl06BDr16/njTfeYOLEibInVC2kbNzIHn0Rh90UDDyhQGu0Bj4KhQatKIPCisY/rUs1uVyWnr6CrfEdyM3bC4Ba7cqRNGsDlYtWRX13HaM6N6zz65Akqfb69etHRkYGv//+Oy+99BJvv/02H3/88Z2ulk1NghCTyUSfPn3Iy8vjxx9/5OTJk3z//fe0bNnSLtD7/PPPGTx4MF27dmX37t0cPnyYJ598kgkTJvDyyy/fVD0bN27M/PnzOXLkCNu2baNhw4b07duXzMxMAE6cOIHFYmHRokUcO3aMTz/9lC+++IKZM2dWm+/27dt56qmnGDNmDMeOHWPFihXs2bOHcePG1ahee/fuZdGiRbRq1cpuf1FREX379kWhUPDbb7+xfft2jEYjUVFRWCwWWzqj0ciQIUN47rnnqi1nyZIlZGRk2F6PPvqo7djWrVvp06cP69atY//+/URERBAVFUVCQkK1eRYVFdGtWzc++uijGl3rvS4vz/p56uHhYbd/2bJleHl50aJFC1577TWKi4ttx250gRi5MAyUFRexsXcv4tXHobycQp0XAA7C2gClzzwIxRVfcm5g8ZerMVWsUBwSPJVUxw1M3zCIZbutQ/nc9Gq0aoebyl+SpLoj4yUZL8l4qRbEXWjYsGHCz89PaDQaERAQIIYNGyZOnz5tO15SUiKef/554e7uLvR6vXjsscdERkaGXR4pKSmif//+QqfTCS8vL/HSSy8Jk8l0Q/XIy8sTgMjLy6uT6/qrmvfeOyI6OlpMfust8dmTE0TM0IEiZuhA8fm4tWL9P14RItrF+krdU6P89u8fLjZsDBEbNoaI3zaFi3OZf4i/L94pgmbEiu/2/HGLr0aS7oySkhKRmJgoSkpK7nRVbtioUaPE4MGD7fb16dNHdOrUSeTk5IiRI0cKNzc3odPpRL9+/cSpU6ds6VJSUsQjjzwi3NzchF6vF+Hh4WLt2rUiOTlZAHavUaNGCSGEyM/PF8OHDxd6vV74+vqKTz75RPTo0UO88MILtnyDgoLErFmzxMiRI4XBYLCdGx8fL7p16ya0Wq2oX7++mDx5sigsLBRCCJGQkCAAkZKScs1rTU1NFWq1WkybNq3KsXnz5glA7Nq1SwghbNeQkJBw4ze1QuXnzIYNG66ZZs6cOSI4OLjafD7++GMREhJSpb4BAQHXrUNBQYEICwsTcXFxVe7z+vXrhVKptPsczM3NFQqFQsTFxVXJa8mSJcLV1fWq5QDip59+um59rhQeHi7eeeedGqWti5/Hlap7z96t8UF5ebkYOHCg6Nq1q93+RYsWiV9++UUcPnxY/Oc//xEBAQHisccesx0fN26c6Nu3r905RUVFAhDr1q2rUk50dHSV9+/deD9upVPz5osJb34snnx+lpgzJErEDI0SMUMHiv97araYP36jKHg7TIgFnYX44VkhystrVUZ+fqI4eGic2BrfQWzYGCJSz/5bzI49JoJmxIrH/7ldzF1/Quw+k13HVyZJd5aMl2S8dDUyXqreXz1euit7Sn333Xekp6dTVlbGuXPn+O6772jUqJHtuFarZcGCBeTk5FBUVMSPP/5YZa6ooKAg1q1bR3FxMZmZmcTExKBS/SWm0LrrFJvMJJj8qff7MUwW6zxQShT0VC2gZ9BScAuCThMhoG2N8jObrcP/mjZ9n+OW/9A15gg7kqxPE93kyjHSfUQIQbHRfNtfQoibrrtOp8NoNDJ69Gj27dvHmjVr2LlzJ0IIBgwYgMlknetk4sSJlJWVsXXrVo4cOcJHH32Es7MzgYGB/PDDD4B1CHZGRgafffYZANOmTWP79u2sWbOGuLg44uPjOXDgQJU6xMTE0Lp1axISEnjzzTdJSkqiX79+PP744xw+fJjvv/+ebdu2MWnSJAC8vb1RKpWsXLmS8vLyq17XypUrMZlMV33CN378eJydnfn2229v+v6B9WnZ4sWLcXV1pXXr1tdMl5eXV6XXy5917tyZs2fPsm7dOoQQXLhwgZUrVzJgwIDr1mPixIkMHDiQhx9+uMqxsrIyFAqFXS9jrVaLUqlk27Zt1837amV5eXnRoUMHvv7662p/Fy0WCwUFBde9dumyiRMncvToUbtu/gDPPvsskZGRtGzZkhEjRvDvf/+bn376iaSkpFqVc78vDFOeb6QwowEpJS40zTqOUmEBLIACH5ccOrl9iXP3p+D5HfC3RaCsXbidlraMrKyNGI1ZAMz6Od/WQ6pPeD2m9W1Ch2D5/pDufXcqXqqLmEnGSzdPxkv3frwkW2mkalmKTRSUO3IYF7qWlwHgoO1Ia6dNtHg4DA5vg9Z/h4jXrptXWVkmRUWnKDNau106OzVmZ3LFajUOCgI99DzY8K/7ZpKkG1ViKif8reuPAa9ribMi0Wtq9+dfCMHGjRtZv349/fv3Z9WqVWzfvp0uXboA1iFCgYGBrFq1iiFDhpCamsrjjz9Oy5YtAQgJCbHlVfnh6ePjYxtXX1BQwDfffMPy5cvp3bs3YO3C7O/vX6UuvXr14qWXXrJtjx07lhEjRtjG+IeFhTFv3jx69OjBwoULCQgIYN68ebzyyiu88847tG/fnoiICEaMGGGr16lTp3B1dcXPz69KeRqNhpCQEE6dOlWre1cpNjaWJ598kuLiYvz8/IiLi8PLy+uqaU+fPs3nn39OTExMtXl27dqVZcuWMWzYMEpLSzGbzURFRbFgwYJqz/vuu+84cOAAe/fuverxTp064eTkxIwZM3j//fcRQvDqq69SXl5ORkZGzS64wqxZs+jVqxd6vZ5ff/2V559/nsLCQqZMmXLV9DExMRQWFjJ06NAbKud+NWnSJGJjY9m6dSv169evNm3Hjh0B6+9Xo0aNbniBmPt5YRjzpUtcnPc9QtRnYOI29IoLXHLSodL1QqkO4O8hsyDvHDj1vOmyjKYcAPz8hvDz6ZbEJbkC1i+IcqU96X5yp+IlqH3MJOMlGS/JeKnm7sqeUtLdwVJSwqmYDRiFBr3//8MBawutyrEt9Q0mEBXjYx2dr5+XxcjuPQNIOPgURqN1Diq12o38ipVj/jmiHb+91BMPJ9lTSpLuRrGxsTg7O6PVaunfvz/Dhg1j9OjRqFQq2xdcAE9PT5o0acLx48cBmDJlCrNnz6Zr165ER0dz+PDhass5c+YMJpOJDh062Pa5urrSpEmTKmnbt29vt33o0CGWLl2Ks7Oz7RUZGYnFYiE5ORmwPnk6f/48y5Yto3PnzqxYsYLmzZsTFxdX43uh0Vz/79SyZcvs6hEfH287FhERwcGDB9mxYwf9+vVj6NChdgtzVEpLS6Nfv34MGTLEbq6DK/OdMGECAImJibzwwgu89dZb7N+/n19++YWUlBTb8fj4eLvzli1bxtmzZ3nhhRdYtmwZWu3VJ2L29vZmxYoV/O9//8PZ2RlXV1dyc3Np27Ytyhvs/fHmm2/StWtX2rRpw4wZM3jllVeuOc/G8uXLeeedd/jvf/+Lj4/Pde/p/UwIwaRJk/jpp5/47bffCA4Ovu45lZObVn6ZkAvE1Fx+7FoKt+7ArCjHvTifcoX1faBwcMHkqLI2SAE41myezasxmwvIydlBaak1Lw/3LiQXNAMUjO0WTPwrEXQJvfoXM0mS7iwZL10m4yUZL9WU7CklXVPi2LFc8H2Yk/W9GXrYC6iYsFOhwkPkQUpFV0TN9RuljKYcTKYcQIGzcxMyS4N4+adskjKLAOtEnZJ0v9GpHUicFXlHyr1RERERLFy4EI1Gg7+/PyqVijVr1lz3vLFjxxIZGcnatWv59ddf+eCDD5g7dy6TJ9dslc7qXLncPVhXah0/fvxVnyQ1aNDA9n+DwUBUVBRRUVHMnj2byMhIZs+eTZ8+fQgLCyMvL4/09PQqTxuNRiNJSUlERl7/ZzZo0CC74DMgIMCu3qGhoYSGhtKpUyfCwsL46quveO21yz1O09PTiYiIoEuXLixevNgu7ytXS6lcQe2DDz6ga9euTJ8+HYBWrVrh5ORE9+7dmT17Nu3bt7c7r169emzcuJGLFy/Stu3lodfl5eVs3bqV+fPnU1ZWhoODA3379iUpKYmsrCxUKhVubm74+vraPcWtjY4dO/Luu+9SVlZm1+vmu+++Y+zYsaxYscKui3x19/R+NnHiRJYvX87q1asxGAycP38esH450el0JCUlsXz5cgYMGICnpyeHDx/mxRdf5KGHHrJN1HrlAjFz5szh/PnzcoGYayjPz+O8pxtGRQnqcvMVq+6pMDtUTCCs94QGHa+Zx/UcODCCgsLLE8x/syuHfSnWv3fN/FwI9NDXOm9J+iu6U/FSZdk3QsZLMl6S8dKNk41S0lWVlpbyU3Aw5ao/KKUR/iW9yGcFAA7lZpxUF6Cg1JrYtfphAgBmk3XlGLXandZt1tA8ej3lFuvQAIUCAtx0t+ZCJOkuplAoaj2M7narDAyu1KxZM8xmM7t377Z1R8/OzubkyZN2vSsCAwOZMGECEyZM4LXXXuPLL79k8uTJtidoV85XEBISglqtZu/evbbAKC8vj1OnTvHQQw9VW8e2bduSmJhYpZ7VUSgUNG3alB07dgDwxBNPMGPGDObOncvcuXPt0n7xxRcUFxfz1FNPXTdfg8GAwWCoUR0sFgtlZWW27bS0NCIiImjXrh1Lliyp8oTtatdXXFxcZd5EBwdrIC2EQKfTVTmvd+/eHDlyxG7f008/TdOmTZkxY4bt/EqVXeZ/++03Ll68yKBBg2p0fddy8OBB3N3d7QKsb7/9lmeeeYbvvvuOgQMH2qW/kXt6P1m4cCEAPXv2tNu/ZMkSRo8ejUajYcOGDfzf//0fRUVFBAYG8vjjj/PGG2/Y0jo4OBAbG8tzzz1H586dcXJyYtSoUcyaNet2Xspfwh9FRfzWzB0UJ2ihKKdMrQfMKBQqhLIMvJvBcztqPY+UEILCot8B0OtDSEh34qt9rhgt1pirvruMl6T7j4yXZLwEMl66l+Olv8a7W7rt8vLyKFepMJoVNDh3mlJhfRKoAKI0b6LVlELXF8C/LTTqdc18hLBw7NiL5OUfBECtdiWvxES5RaBUwNuDmhPq7Yy/bJSSpL+csLAwBg8ezLhx41i0aBEGg4FXX32VgIAABg8eDMDUqVPp378/jRs35tKlS2zatIlmzZoB1gUpFAoFsbGxDBgwAJ1Oh8FgYNSoUUyfPh0PDw98fHyIjo5GqVSiUCiqqw4zZsygU6dOTJo0ibFjx+Lk5ERiYiJxcXHMnz+fgwcPEh0dzciRIwkPD0ej0bBlyxa+/vprZsyYAVifEM6ZM4eXX34ZrVbLyJEjUavVrF69mpkzZzJ79mxatGhhV+7Jkyer1KV58+ao1fY9QIuKinjvvfcYNGgQfn5+ZGVlsWDBAtLS0hgyZAhgDbB69uxJUFAQMTExtqWP4epz+1SKiopi3LhxLFy4kMjISDIyMpg6dSodOnS46vwSYA1a/nwtTk5OeHp62u1fsmQJzZo1w9vbm507d/LCCy/w4osv2g0RSE1NJScnh9TUVMrLy21PGUNDQ3F2duZ///sfFy5coFOnTmi1WuLi4nj//fftJkhdvnw5o0aN4rPPPqNjx462Hj86nQ5X12vPn1NZbnp6OnD55+Hr61vtPbtXXG8S3sDAQLZs2XLdfCoXiJGqd6HURL7QctGsI8jVH5MqD4QZUKNRXgKde60bpAAsljKEsPa4at/uR0b9bxtGi4VJEaGE1XOWE5tL0l+QjJesZLwk46VrqpN1AO9Rd+uSz7fDmYMnxLNvxIhBz0eLmKEDba8F/3hEiNm+QkS7CHHxxHXzKSg4KTZsDLG9ftk6Wnyw7rgImhEr2sz69TZciSTdHe61JY4rVS5x7OrqKnQ6nYiMjLRb4njSpEmiUaNGwtHRUXh7e4uRI0eKrKws2/FZs2YJX19foVAoql3iuEOHDuLVV1+1nRcUFCQ+/fTTKvXZs2eP6NOnj3B2dhZOTk6iVatW4r333hNCCJGZmSmmTJkiWrRoIZydnYXBYBAtW7YUMTExovxPS7avWrVKdO/eXTg5OdmWYP7222/t0lxtmebK19mzZ6vUraSkRDz22GPC399faDQa4efnJwYNGiT27NljS7NkyZJr5nk98+bNE+Hh4UKn0wk/Pz8xYsQIce7cueued6U/L3EshBAzZswQ9erVE2q1WoSFhYm5c+cKi8Vil2bUqFFXrfOmTZuEEEL8/PPP4oEHHrD9XFq3bi2++OILu/veo0ePq+ZR+XtxLde6Z9HR0Td07X9WF0sc3y/ul/tRmpwrfnp9ieg5cbH4YOhgu/hoyevviKzXw4VYO73W+WdmbRInTr4jNmwMEXEbQ8WC306JoBmxImhGrCgqM9XhlUjS3UvGSzJekvHS/RcvKYSog7XB71H5+fm4urqSl5dnG4d6PzCXlLHn3Vg+VP+BZ+lqWqQYUCjdUTh48XCHUlrmrYRyI7x47LpD93Jz97H/wDAcHf0wOr/Fs98XY7ZYW8Ob1DOw/sXqu5dK0r2itLSU5ORkgoODrzlJonR1RUVFBAQEMHfuXMaMGXPby8/JyaF37964uLjw888/o9fL+VzuB9W9Z+/X+OBa7pf7UbAznZ9jf8Hrl8UkVEw0rnDwQqEpZ2qHZBQXj0D3l6H3mzect8ViZMvWB7BYrENTckpdmb71XQCcNA4cfSfyur0fJOleIOOl2pPxknQn1EW8JFffk+xYysrYu+hfZCoLUZmyafdHYwAcNE3ROEcR7nLR2iAFoK7+D015eSllZdbuhI4ab9JKmmC2qAlw0/G3NgG8+Yhc0UeSpKoSEhL49ttvSUpK4sCBA4wYMQLA1sX9dvPw8GDDhg307t2bnTt33pE6SJJ0Z2V9sYjf/7OBEosJN2NRxV4Fji5PofSvZ22QAnCq3ap4JnN+RYOUApye5F9HRuKuV/O3NgHMeaK1bJCSJKkKGS9J9wo5p5Rk54/vv2f9pYugyqTZOSMmtSsYM0ChQW++iEPKBmtChUO1q+5lZ8dz6PCztnkRVCoXCopMAHRp5MnHQ1rf8muRJOmvKyYmhpMnT6LRaGjXrh3x8fG2iSPvBE9PT9566607Vr4kSXeOxWjk4mefkd3tWcrKVZgr5oyyKK1htFpZCk0GWOfZfGB4rcowm/IBUKmcydNO5OSlBDqHuPDJsAfq5BokSbo3yXhJuhfIRinJTtb5DFAoECVGnEoyERYLAOEOcXT1PQ7uweDbwjq5uUpzzXwu5e62NUgJHIg/25h1Z6yTqhm06mueJ0mS1KZNG/bv33+nqyFJkgSAKC7mTINAzroVkKbS4tKwH3AMpbDGQSpFKbQfA2EPV5/RVZjNhSSdiaG46AwABUYt/96RAoBBK8N0SZKuTcZL0r1CftpJdoqLS9hnqk+zjB24mLOonHCsYb0s9Kp86P1/0OLx6+ZjNluf+DVsOJG/Lw/nYmE5UACAv5scHy5JkiRJ0l+DqaiIAx06cA49Zy2uBOssIEAoHMjSn6OnZi9onqlV3llZv3Hu3P+zbafmurDvj0sAcmViSZIk6b4gG6Ukm7JzBZiMTUnTXOBBLgAKlOowVEoI1ieAGXC89jKTAGZzAbm5+ygqOg2AUula0SAFLz7cGG+DI4+2ufpym5IkSZIkSXeb4vRcSpVqzuSo6J25llxhjWtUjoU8E/ARgQXnQONUq7yNpmwADIaWLDvckm1nGzO6S0MCPfQ8+oCMlyRJkqR7n2yUkgAoz8vj2MJvsShcUOuPozM5ABZUui7oOYvKXGhN6OxTbT5Hjk4mJyfetv1/m84DvigVMLlXKEqlnKhTkiRJkqS/jotrM6C0nMeTf6XY6XIc4+5YYm2Qgmrn2ayO2WztRX4s0491ZzpjKheM6RZMoIdctUqSJEm6P8hGKQmAPYsWEedQRKahmKcPeFJsyQBAgRrf8jxwDYSuL4Bvy2rzKS62zomg04WyM9WRjWdCAWji6yIbpCRJkiRJ+kvJ+e6/mEtdqHfxAgZTEcU446huC/p2NPZ9FwI7gl9r8Ai5oXwzMzdwJvkzysqs8dbRDAumcoGjSomn87Xn7JQkSZKke41slJIAOJN3CYvakSKNI3qzlmKltWt6/bw9dKi/BgLaQYdx182nci4p3+BP+Xx1MmoHBd+O60jzAJdbWn9JkiRJkqS6ZLp4kZQP3sdhwPs4lJdjdrCGzSaNGxqlASelGcb8Wqu8z6X9h8LCRNt2eqEvEyMa0S3UG71GhueSJEnS/UN+6kkIi8BkUXPE6EOLfTvIUubajg1s+z3q0izwq34Cz/Pn11BUdApzxTC/Ffusk3S66jR0buR5y+ouSZIkSZJ0KxRevMiWHg8h1EcwqVwwuQVDeQYOWIfW6VXiOjlcW+VDPBfvSby0RkdqQX2+nBCKs6MMzSVJkqT7i/zkkyjae558B3/OGYvpYsy17deoVagsJuuGk9c1zy8pOcexxBdt26ZyFV9uzwTUeMku6JIkSZIk/QWdTk0lz8MDsyjBQaNFXZIFQLlCQZbhNPX1N94oVV5eQknJWUpKrXnNXOtAakEgDkoFThqHOq2/JEmSJP0VKO90BaQ77/cNhylE0NQSC4ADehxdn6NBPQ0KY541kWfoNc8vM14AQKVyodDhbyw6PBpfNxeGtKvPW1Hht7z+kiTdWqNHj0ahUKBQKNBoNISGhjJr1izMZvNN5bt582YUCgW5ubl1U9EaSE5OZvjw4fj7+6PVaqlfvz6DBw/mxIkTduliY2Pp0aMHBoMBvV7Pgw8+yNKlS+3SpKSkoFAoOHjwYI3Lf/vtt2natClOTk64u7vz8MMPs3v3brs8x4wZQ3BwMDqdjkaNGhEdHY3RaLxu3suWLaN169bo9Xr8/Px45plnyM7Ovu55aWlp/OMf/8DT0xOdTkfLli3Zt2+f7fiVP//KV79+/ezyaNiwYZU0H374oe34yZMniYiIoF69emi1WkJCQnjjjTcwmUx2+eTm5jJx4kT8/PxwdHSkcePGrFu3rtr6//jjj/Tt2xdPT88b/nlIUnVKc4vJtuhJzTDicukQwmJ9P+ka/chkl7fQag03lJ8Q5ezePYDde/pjMqZZyyjXYXBUMezBQBQKOfemJP2VyXhJxksyXqod2VPqPibMZvaNf5Y053AS/bzom9ieTHUiFgdnFEodjSmAATFQ/0HrJJ7XYDZZu6DrdA04WjiehMyTDG3vyZwnrn2OJEl/Lf369WPJkiWUlZWxbt06Jk6ciFqt5rXXXrvTVQPAaDSi0VTfM9NkMtGnTx+aNGnCjz/+iJ+fH+fOnePnn3+2C/Q+//xzpk6dyowZM1i4cCEajYbVq1czYcIEjh49SkxMTK3r2bhxY+bPn09ISAglJSV8+umn9O3bl9OnT+Pt7c2JEyewWCwsWrSI0NBQjh49yrhx4ygqKqq23O3bt/PUU0/x6aefEhUVRVpaGhMmTGDcuHH8+OOP1zzv0qVLdO3alYiICH7++We8vb35/fffcXd3t0tX+fOv5OjoWCWvWbNmMW7c5bkHDYbLX9jVajVPPfUUbdu2xc3NjUOHDjFu3DgsFgvvv/8+YP0Z9unTBx8fH1auXElAQAB//PEHbm5u1d7ToqIiunXrxtChQ+3Kl6SbYTpfRMGxUoyF5XQ+n0CxzgFQ4aDU8kzZb2jcfKDd6BvL05RLSWkqAELhRmJWPfw8mxI/oXvdX4AkSXeEjJdkvCTjpVoQ0jXl5eUJQOTl5d3pqtwSuceOiXdef11ER0eLQR98KRb8Y66IGTpQzB3+rPhq3EpR8EawEDnJ1zy/oOCE2LPnUbE1vpPYsDFErPz1MTHo83gRNCNWzPrfsdt3IZL0F1BSUiISExNFSUnJna7KDRs1apQYPHiw3b4+ffqITp06iZycHDFy5Ejh5uYmdDqd6Nevnzh16pQtXUpKinjkkUeEm5ub0Ov1Ijw8XKxdu1YkJycLwO41atQoIYQQ+fn5Yvjw4UKv1wtfX1/xySefiB49eogXXnjBlm9QUJCYNWuWGDlypDAYDLZz4+PjRbdu3YRWqxX169cXkydPFoWFhUIIIRISEgQgUlJSrnmtqampQq1Wi2nTplU5Nm/ePAGIXbt2CSGE7RoSEhJu/KZWqPyc2bBhwzXTzJkzRwQHB1ebz8cffyxCQkKq1DcgIKDa82bMmCG6detWbZqr/fz/LCgoSHz66afVpvmzF1980a7shQsXipCQEGE0Gm8on0p18fO4UnXv2Xs9PrhR9+L9KEi4INbM/EbMGfqs+HJgbxEzdKD47OnFYuGEWUIsjapVnoWFSWLDxhCxaXNr8d2eP0TQjFjx9JI9dVxzSfprk/GSjJeuRsZL93a8JIfv3cdys7IwO6g4XuBM6PF9lJmPAeCjTeZpv2dwdsgGjfM1z79wIZb8gsMYjRcB2HvOjUPnrMP96rlUbRWWJOlPhABj0e1/idpPzltJp9NhNBoZPXo0+/btY82aNezcuRMhBAMGDLB1M544cSJlZWVs3bqVI0eO8NFHH+Hs7ExgYCA//PADYO2qnJGRwWeffQbAtGnT2L59O2vWrCEuLo74+HgOHDhQpQ4xMTG0bt2ahIQE3nzzTZKSkujXrx+PP/44hw8f5vvvv2fbtm1MmjQJAG9vb5RKJStXrqS8vPyq17Vy5UpMJhMvv/xylWPjx4/H2dmZb7/99qbvH1ifdC1evBhXV1dat752z9K8vDw8PDyqzatz586cPXuWdevWIYTgwoULrFy5kgEDBlR73po1a2jfvj1DhgzBx8eHNm3a8OWXX1ZJt3nzZnx8fGjSpAnPPffcVbu5f/jhh3h6etKmTRs+/vjjaocrnD59ml9++YUePXrY1aVz585MnDiRevXq0aJFC95///1r/qwk6VYpjI8nZd5CzIpyHMwKSiuH6SnUFLmXgOONDdszGrM5dGgcR44+D8D5Ag0zfjgCICc2l6SauFPxUh3ETDJeunkyXrr34yX5SXgfyz6WT45wwjf7FP6l6Vgq9rs4FGGb1qCaRimTuaIByvdxJq9qSEp+IGO6BePl7MiwBxvc2spL0r3AVAzv+9/+cmemg8apVqcKIdi4cSPr16+nf//+rFq1iu3bt9OlSxfAOk4/MDCQVatWMWTIEFJTU3n88cdp2bIlACEhIba8KgMHHx8fW5fjgoICvvnmG5YvX07v3r0BWLJkCf7+Ve9Tr169eOmll2zbY8eOZcSIEUydOhWAsLAw5s2bR48ePVi4cCEBAQHMmzePV155hXfeeYf27dsTERHBiBEjbPU6deoUrq6u+Pn5VSlPo9EQEhLCqVOnanXvKsXGxvLkk09SXFyMn58fcXFxeHldfTGJ06dP8/nnn1+3C3zXrl1ZtmwZw4YNo7S0FLPZTFRUFAsWLKj2vDNnzrBw4UKmTZvGzJkz2bt3L1OmTEGj0TBq1CjA2hX9b3/7G8HBwSQlJTFz5kz69+/Pzp07cXCwTsw8ZcoU2rZti4eHBzt27OC1114jIyODTz75xK68Ll26cODAAcrKynj22WeZNWuWXV1+++03RowYwbp16zh9+jTPP/88JpOJ6Ojo695XSaorKd99z69e7pQ5pKF0cYPSArDkoVCoUDoUgFvQDeWXlbWRrOzfbNsZRfUAUCqgi1yhWJKu707FS1DrmEnGSzJekvFSzcmeUvcpc0EpxrNmMrUX0atTAHDQtESl60U3r7PWgKvDeFBrq55rLiQ7ZxvFRUkArE3Uk5wfBAolMwc047mejXDVqW/n5UiSdIvFxsbi7OyMVqulf//+DBs2jNGjR6NSqejYsaMtnaenJ02aNOH48eOA9cN39uzZdO3alejoaA4fPlxtOWfOnMFkMtGhQwfbPldXV5o0aVIlbfv27e22Dx06xNKlS3F2dra9IiMjsVgsJCcnA9YnkefPn2fZsmV07tyZFStW0Lx5c+Li4mp8L643FwNYg80r6xEfH287FhERwcGDB9mxYwf9+vVj6NChXLx4sUoeaWlp9OvXjyFDhtiN/b8y3wkTJgCQmJjICy+8wFtvvcX+/fv55ZdfSElJsR2Pj4+3O2/ZsmUAWCwW2rZty/vvv0+bNm149tlnGTduHF988YWtvCeffJJBgwbRsmVLHn30UWJjY9m7dy+bN2+2pZk2bRo9e/akVatWTJgwgblz5/L5559TVlZmd03ff/89Bw4cYPny5axdu9YueLRYLPj4+LB48WLatWvHsGHDeP311211qe6eSlJdOiXM5OsdKMOI2mJCCOvEuafq7aWTdh04XvuB3dUYjTkAuLl14V/HnmfxkVH88FxnjrwdyZMd5EM8SbqXyHjpMhkvyXippmRPqftQeUkJsS9NQ+ndCZf88/jmOmNWGnHQNEOpro+bqxamXvsP4ZGjk8jJufzLfSjd2scqyEOPg1KuHCNJNabWW5/A3Ylyb1BERIRtEkt/f39UKhVr1qy57nljx44lMjKStWvX8uuvv/LBBx8wd+5cJk+eXJua23Fysn9yWVhYyPjx45kyZUqVtA0aXP7iZzAYiIqKIioqitmzZxMZGcns2bPp06cPYWFh5OXlkZ6eXuVpo9FoJCkpicjIyOvWbdCgQXbBZ0BAgF29Q0NDCQ0NpVOnToSFhfHVV1/ZTYKanp5OREQEXbp0YfHixXZ5X7laiouLCwAffPABXbt2Zfr06QC0atUKJycnunfvzuzZs2nfvr3defXqWXtq+Pn5ER5uv0pqs2bNbEMFriYkJAQvLy9Onz5tezr7Zx07dsRsNpOSkmIXIAcGBgIQHh5OeXk5zz77LC+99BIODg74+fmhVqttTxMr63L+/HmMRmO191SS6oqwCMqVzhw3eRP+x3ZExWIuAO9YvsfDVALO9WqUV1HRadLSvyc3dw8A3x90ZGdaUwAaeDjhJIfuSVLN3Kl4qbLsGyDjJRkvVZLxUs3JT8P70P6ff+agfz3KHM7SIC0Es8MJEEZQaNBYClBep1W7soeUxjGYfed0JOa04P3HWtJZdkGXpBujUNR6GN3tVhkYXKlZs2aYzWZ2795t646enZ3NyZMn7T64AwMDmTBhAhMmTOC1117jyy+/ZPLkybYnaFeOgQ8JCUGtVrN3715bYJSXl8epU6d46KGHqq1j27ZtSUxMrFLP6igUCpo2bcqOHTsAeOKJJ5gxYwZz585l7ty5dmm/+OILiouLeeqpp66br8FgsFtNpToWi8XuCVlaWhoRERG0a9eOJUuWoFTad2q+2vUVFxejUtl/pFcGK0IIdDrdVc/r2rUrJ0+etNt36tQpgoKuPTzp3LlzZGdnX7XLfqWDBw+iVCrx8fG5ZhqLxYLJZMJiseDg4EDXrl1Zvnw5FovFds2nTp3Cz88PjUaDRqOp8T2VpNoqPZmDwjUcj6TfcRaVDVIqHJVq3Ho9D+71odWTNcor6cxcMjN/tW3nlLoB0Lq+K55O1+9BIElSBRkvATJekvHSvRsvyUap+1D2pUuYhJKC7GI8c0+BKAWgpfZXwlyOgeHabxwAk7kAgH35r/JZQhneBkeGd5TdzyXpfhMWFsbgwYMZN24cixYtwmAw8OqrrxIQEMDgwYMBmDp1Kv3796dx48ZcunSJTZs20axZMwCCgoJQKBTExsYyYMAAdDodBoOBUaNGMX36dDw8PPDx8SE6OhqlUolCUX1PzBkzZtCpUycmTZrE2LFjcXJyIjExkbi4OObPn8/BgweJjo5m5MiRhIeHo9Fo2LJlC19//TUzZswArE8I58yZw8svv4xWq2XkyJGo1WpWr17NzJkzmT17Ni1atLAr989BCkDz5s1Rq+2HMRcVFfHee+8xaNAg/Pz8yMrKYsGCBaSlpTFkyBDAGmD17NmToKAgYmJiyMzMtJ3v6+t7zWuPiopi3LhxLFy4kMjISDIyMpg6dSodOnS46vwSlV588UW6dOnC/2fvzuOqrPIHjn8uy4ULXEAUZBVBcMGtct8ycgE1ZMpc0iEtNZ1xTTOXJlFHWxS11Maln2nTkONoZY5WhqbmlqbikgsmQi6IGwqyL/f8/iDueGMRFbkK3/fr9fTqPs855/meB5Av53mec9555x369evHgQMHWLFihfFuY3p6OjNnzqRPnz64u7sTHx/Pm2++SUBAgPEO6L59+9i/fz/BwcHo9Xr27dvH66+/zp///GfjUsnR0dFYW1vTtGlTbGxsOHjwIFOnTqV///7G6/SXv/yFJUuWMG7cOMaMGcOvv/7KO++8U+Kd3DulpKRw/vx5kpKSTL4e7u7uZV4zIf4o65cTnF/8PTm19DxzKZaLnlZolAYbl7F4WHyFRec3QFv+pyZycwp/fl1de7FktzW7L7Vl15vBeDnrsJAny4WoNiRfKiT5kuRLpaqQdQCrqKq4xHFBTr5a994y9fxby9TfBg5UUf16qah+vdT8fmEq921npSIdlfp2SrF6BkO+unZ9u0pK+kLFbKuntm7zV03f/lz5Tt6kQj/40Qw9EeLxUtWWOC5StMSxk5OT0ul0KiQkxGSJ49GjR6t69eopGxsb5erqqiIiItT169eNx2fNmqXc3d2VRqMpc4nj1q1bqylT/vdvU2lL6h44cEB169ZNOTg4KHt7e9WsWTM1Z84cpZRS165dU2PHjlVNmjRRDg4OSq/Xq6ZNm6qoqChVUFBg0s6GDRtUp06dlL29vXEJ5jVr1piUKWmZ5qLtwoULxWLLyspSzz//vPL09FRarVZ5eHio3r17qwMH/rck/KpVq0pt824WLVqkgoKClE6nUx4eHmrQoEHq4sWLd6333//+VzVp0kTZ2Niohg0bqhUrVhiPZWZmqu7duytXV1dlbW2tfH191fDhw1VycrKxzKFDh1SbNm2Uk5OTsrW1VY0aNVLvvPOOys7ONpb597//rZ566inj1yUoKEi98847xX4e9u7dq9q0aaNsbGyUv7+/mjNnjsrPzy8z/tKuWWRk5F37XpaKWOK4uqgq1+PynDlq65B31P9NW6HWBvcuzJH6P6+WjNimNkwZqpTBcE/t7d3XXW3d5q8i161WvpM3Kd/Jm1RefsHdKwpRjUm+JPmS5EvVL1/SKFUBa4NXUWlpaTg5OZGammp8D/Vxd337Ob7fFsP/aW8RfGYPdnkGrO1CcOE0f372MnSaAD5twNJ0xPrqtS0cP/5X42eD0jDn0Ec8Vbc2L7bwpn29kldCEEIUys7OJiEhAT8/P2xtiy8gIEqXkZGBl5cX8+fPZ+jQoZV+/pSUFLp06YKjoyPffvstdnb3PieXePyU9TNbFfODB1FVrsdv06YQd82ZbxrWpcnBX0k17AeNA7bOr9GoxnKefXftXdswGPJJSPiQ7Jwkkq9sAZXFrH1v8NvtOrg72vLTtJLnFRFCFJJ86f5JviTMoSLyJVl9rxrJz8lh/w/fk2aRRVDqCezyCr/8Gisv7DS54NYQ6nYsNiAFkJX5GwA22trcVk+x7kw47QM9WdDvCRmQEkJUqNjYWNasWUN8fDyHDx9m0KBBAMZH3Cubi4sLW7dupUuXLuzbt88sMQghHr5tBTkcqp1DgsUt8jSFK+5hYSDb9Vs62B8qVxu3bu0n8bd/kJy8AVQWBqVBZ+vO33o14pMhrR5e8EKIakfyJVFVyJxS1ch//zaVo/aOKCDgRj0K+BkADVY01p0Bu6BS6+blF072uTUxiDWn+5CTb2Bk3eKDV0IIURGioqKIi4tDq9XSokULdu3aRa1a5hsAr1mzJtOnTzfb+YUQD1dubi7ndU7kpGfy9E+byPx9v5PmNsO89sETb5SznRsA6HR1uWHowbK94F7Li2Gd/B9S5EKI6kzyJVEVyKBUNXIzLR3s9NhfScKQk27c38HzPRpoToB+ZLE6WVnn+fXs+6SlHS1sI8uGnHwDULh6jBBCVLQnn3ySQ4fK91SCEEJUhGt7z5OSb4vtxSu/77FCY+FAYM00GLm73O3k/74YzN7fnPjH0UYYFPT2lpt4QoiKJ/mSqCpkUKqayL+VA3ofDqU78czNQxRNJGaFBU9wAiy14NG8WL3Ll7/k2rXvjJ+vZtZiw6gOuOlt8HTWVVL0QgghhBAPz82Yczhfu0HrpCPEedTEysofK/1zNPRcUq76WVmXOH78L2RmFU53kJFni+H3ZKu1n8vDClsIIYR47MmgVDVx6b/HuWnryo2sLAA02GBl342Gajua8UfB1hl0zsXq5eXdAiA5pw3/PvEEp282orm3012XGhVCCCGEeNQZMjK4vPADCgxPos3OJtPWuXC/hQ0Ato425WrnRspObqefMH7+Lc2b6GFtCPJwpIa9tsLjFkIIIaoKGZSqBjIOHODcvn2k1YQXbpwt3GnpiKW2Pi4F30GNuqXWzclNBWBnogfHrzfGu4ZOBqSEEEIIUSXc3r6D3UeOkt7Ikdu6fC7Xfgpyj6LRFA5GaR3sy9VO0Wt7yTktWXIwhMsZbrzj6iADUkIIIcRdyKBUNbDzs0+4Yu9Hgq6ANoYAsvkNsEZjyKeO42/Fyitl4MiRIdy89TNK5QGQXWDH+K6BBDdwq+TohRBCCCEejlvXr3GqSRCa3Es4p18lv6BwovIsXQo1vb5F99xbd21DKQP5vy8IczzZnssZtbHTWuJsJ3NJCSGEEHcjg1JVXGpqKgdquoPK5IrWlnxV+ORTTc0F+tR4FYeaxe/g5eReJeXmHuPnvAIrUnIDGN+1fqXFLYQQQgjxsGVlFk5rYJN6E+v8HOP+PwVeodEba+9a/5dfxnHl6qb/tZevY0K3+nQIqIWttWXFByyEEEJUMTIoVcWlp6eTrzSkp2TT/fQh8n/fb9BpuBnUEYcOrxWrk59XOHCVnmvHjH2TycrX4V3TfEuLCiGEEEJUNGVQ3Lrozg2r22jz7fAELKzrYW0dSMN6J+9eXymu3rEYTJ7BkjM36zG3sz82VjIgJYQQQpSHDEpVYcqg+G3VUc4V1MQi+zI+ABobNBoH2vqn4zP438XqXLsWw40bOwFIz7MnD1e8a9oytKNf5QYvhBBCCPEQZZ+KxwILshKzaHXlONecbdFYumJl5YLG1vGu9Q2GLJQqvN036ccZpOc6YKO1kwEpIYQQ4h5YmDsA8fDcPHcRlZlNlkqjafZlAKxsWmDjNJj69ZyLlc/Kusix4yO5lLQGgLRcPc8182DrhM681LpOZYYuhHiEDBkyBI1Gg0ajQavVEhAQwKxZs8jPz7975TLs2LEDjUbDrVu3KibQckhISGDgwIF4enpia2uLt7c34eHhnD592qTcpk2b6Ny5M3q9Hjs7O1q1asXq1atNyiQmJqLRaDhy5Ei5zz9jxgwaNmyIvb09NWrUoGvXruzfv9+kzaFDh+Ln54dOp6NevXpERkaSm5t717ajo6Np3rw5dnZ2eHh48Oqrr3Ljxo0y6xQUFPD222+bnO/vf/87SiljmS+//JLu3btTs2bNUvsbHx/P888/j6urK46OjvTr148rV67cc7+OHTtGp06dsLW1xcfHh7lz59613z/++CNhYWF4enqi0WjYsGHDXesIkXvxInGvDCUfA+0vHsaKwu95jcYKZZlXuCpxGbKzk7h6dQsABQYLCjRuPN3Ah5m9Gz/s0IUQjyjJlyRfknzp/sigVBWVc/06/175Dw5axdPk6m9ocSk8oLFGm3MTS/vidwBzcpIByFf2HEt5hv+c+ROOOpmkUwgBoaGhXL58mV9//ZWJEycyY8YM5s2bZ+6wjMqThOTl5dGtWzdSU1P58ssviYuLY+3atTRt2tQk0Vu8eDHh4eF06NCB/fv3c+zYMQYMGMDIkSN54403HijO+vXrs2TJEo4fP87u3bupW7cu3bt359q1awCcPn0ag8HA8uXLOXHiBAsXLmTZsmVMmzatzHb37NnDyy+/zNChQzlx4gTr1q3jwIEDDB8+vMx677//PkuXLmXJkiWcOnWK999/n7lz57J48WJjmYyMDDp27Mj7779fYhsZGRl0794djUbDDz/8wJ49e8jNzSUsLAyDwVDufqWlpdG9e3d8fX05dOgQ8+bNY8aMGaxYsaLMPmRkZNC8eXM++uijMssJcafjBw7w7bPt2Wl9AuUSyBXX5r8fsSZflws1fEutazDkcuDn3pw8VfjvQWa+juY+Nfi/wS154SnvSoheCPGoknxJ8iXJl+6DEqVKTU1VgEpNTTV3KPcsdvFiFRkZqSKnT1dzXh6q5g98TUX166Wi+/VX8cOeVCp+e7E61679oLZu81f/99XTynfyJuU7eZNauetc5QcvRBWUlZWlTp48qbKysswdyj0bPHiwCg8PN9nXrVs31bZtW5WSkqIiIiKUs7Oz0ul0KjQ0VJ05c8ZYLjExUT333HPK2dlZ2dnZqaCgILV582aVkJCgAJNt8ODBSiml0tLS1MCBA5WdnZ1yd3dXCxYsUJ07d1bjxo0ztuvr66tmzZqlIiIilF6vN9bdtWuX6tixo7K1tVXe3t5qzJgxKj09XSmlVGxsrAJUYmJiqX09f/68sra2VhMmTCh2bNGiRQpQP/30k1JKGfsQGxt77xf1d0W/Z7Zu3Vpqmblz5yo/P78y25k3b57y9/cvFq+Xl1eZ9Xr16qVeffVVk30vvPCCGjRoULGypfV3y5YtysLCwuR35a1bt5RGo1ExMTGlnvuP/frHP/6hatSooXJycoz7Jk+erBo0aFBmH+4EqK+++qrc5ctS1s/s45wfPAyP4/X45IMPVGRkpJr9l2FqYf9BKqr/CyqqXy+14JUFKvqTTUrl55VaNzv7itq6zV9t3eavPv06WL2y5E01KvpQJUYvRNUl+ZLkSyWRfKlq50vypFQVlXGrcDUZ/fXr2GQno/IvAVCjjR7/99eD/zPGsnl5N0lO/pqr17YDhSvHjOxcj7/1akS/Vj6VHrsQ1YVSisy8zErf1B2PGt8vnU5Hbm4uQ4YM4eDBg2zcuJF9+/ahlKJnz57k5eUBMGrUKHJycvjxxx85fvw477//Pg4ODvj4+PDFF18AEBcXx+XLl/nwww8BmDBhAnv27GHjxo3ExMSwa9cuDh8+XCyGqKgomjdvTmxsLG+//Tbx8fGEhobSp08fjh07xtq1a9m9ezejR48GwNXVFQsLC9avX09BQUGJ/Vq/fj15eXkl3uEbMWIEDg4OrFmz5oGvHxTerVyxYgVOTk40b9681HKpqam4uLiU2Va7du24cOEC33zzDUoprly5wvr16+nZs2eZ9dq3b8+2bds4c+YMAEePHmX37t306NGj3P3IyclBo9FgY2Nj3Gdra4uFhQW7d+8ud7/27dvH008/jVb7v1VhQ0JCiIuL4+bNm+WOR4jyyMvLhYJ8bG9cpkDdAlW48p71gCb0H9ITLEufdjU/Pw2AjDw7pu+dyA8XnibAzaEywhaiWjJXvlQROZPkSw9O8qWqny/JROdVkCEzj5xMX65Ynacg+wrOABodlha2dG7aAFz8TcqfPv02V699a/ycmWfHmyENsLDQVGrcQlQ3WflZtPm8TaWfd//A/dhZ291XXaUU27ZtY8uWLfTo0YMNGzawZ88e2rdvDxS+p+/j48OGDRvo27cv58+fp0+fPjRt2hQAf////ftT9AvWzc0NZ2dnAG7fvs2nn37K559/TpcuXQBYtWoVnp6exWJ59tlnmThxovHzsGHDGDRoEOPHjwcgMDCQRYsW0blzZ5YuXYqXlxeLFi3izTffZObMmbRs2ZLg4GAGDRpkjOvMmTM4OTnh4eFR7HxarRZ/f39jQnK/Nm3axIABA8jMzMTDw4OYmBhq1Sp5hdOzZ8+yePFioqKiymyzQ4cOREdH079/f7Kzs8nPzycsLOyuj2hPmTKFtLQ0GjZsiKWlJQUFBcyZM4dBgwaVuz9t27bF3t6eyZMn884776CUYsqUKRQUFHD58uVy9ys5ORk/P9NFNWrXrm08VqNGjXLHJERZCnLyybgNibmOFP7LpMHa/jk8tZvp07ULGk3J+U9e3i2uXP2GzMwEADLzbZkV3ph6rg609iv7DyEhxP0zV74E958zSb4k+dIfSb5UOnlSqgo6v/sQeRjYZqkl0yIJACtdB5zsn8LOufg36Y20wuQqIbUOsVeb8NOVUBmQEkKY2LRpEw4ODtja2tKjRw/69+/PkCFDsLKyok2b/yWKNWvWpEGDBpw6dQqAsWPHMnv2bDp06EBkZCTHjh0r8zznzp0jLy+P1q1bG/c5OTnRoEGDYmVbtmxp8vno0aOsXr0aBwcH4xYSEoLBYCAhofDfuVGjRpGcnEx0dDTt2rVj3bp1NG7cmJiYmHJfizvvTJUmOjraJI5du3YZjwUHB3PkyBH27t1LaGgo/fr14+rVq8XauHTpEqGhofTt29dkroM72x05ciQAJ0+eZNy4cUyfPp1Dhw7x3XffkZiYaDy+a9cuk3rR0dEA/Oc//yE6OprPP/+cw4cP8+mnnxIVFcWnn35a7uvh6urKunXr+O9//4uDgwNOTk7cunWLp556CguL4mlGaf26m9L6IMS9urEnCQzQ4kjhEwUarLHUBuJkk42mhO/ZIgmJS4iLe5sLFz4B4HauA92D3OkQUAtrS0mphRCSL91J8iVTki+VTp6UqmJy4uM5unIlefWe4a/xF1D5Hhi4iEZjjTW3QVv88fK8vNtYAN/81o9aLq14Jbj4CLsQouLprHTsH7j/7gUfwnnvVXBwMEuXLkWr1eLp6YmVlRUbN268a71hw4YREhLC5s2b+f7773n33XeZP38+Y8aMuZ/QTdjb25t8Tk9PZ8SIEYwdO7ZY2Tp1/reCqF6vJywsjLCwMGbPnk1ISAizZ8+mW7duBAYGkpqaSlJSUrG7jbm5ucTHxxMSEnLX2Hr37m2SfHp5eZnEHRAQQEBAAG3btiUwMJCVK1cydepUY5mkpCSCg4Np3759sYkr71zNxdGxcNGKd999lw4dOjBp0iQAmjVrhr29PZ06dWL27Nm0bNnSpF7RHbVJkyYxZcoUBgwYAEDTpk357bffePfddxk8ePBd+1mke/fuxMfHc/36daysrHB2dsbd3d3kTu/d+uXu7m6yAg1g/Ozu7k7dunVL7IMQ9yLz4EFufLaTHM98mt2+wRFnG9AULuqidcgrs25K6nkAzqXW4UqGG/uvtOflMFkQRoiHzVz5UtG574XkS5IvlUXypZLJoFQVs+G/GzjVyIt09RsNNE25TdFoszXedueg9nMAGAz5nL/wKWcuJ6AKrmOhgfoenrzXv2XpjQshKpRGo7nv1+gqW1FicKdGjRqRn5/P/v37jY+j37hxg7i4OIKCgozlfHx8GDlyJCNHjmTq1Kl8/PHHjBkzxngH7c75Cvz9/bG2tubnn382JkapqamcOXOGp59+uswYn3rqKU6ePFkszrJoNBoaNmzI3r17AXjxxReZPHky8+fPZ/78+SZlly1bRmZmJi+//PJd29Xr9ej1+nLFYDAYyMnJMX6+dOkSwcHBtGjRglWrVhW7e1ZS/zIzM7GyMv2VbmlpCRS+QqDT6Uqt98f2LS0tjavA3Kuix+p/+OEHrl69Su/evcvdr3bt2vHWW2+Rl5eHtXXhH/oxMTE0aNDA+Cj6vXxthSjJ5o1f8ZuHlrT8PE4H9ICcH0BT+G9RjaC2ZdbNyr0FwE9XuvFk/b5Ma+eCjZXlww5ZiGpP8iXJl0DypSJVMV+SQakq5uLtDFAK2+sXycy9gFIpABx8pgYjnp8DelcAbt7cQ3z8O1gCaMCgNDjoSn5HVwghShIYGEh4eDjDhw9n+fLl6PV6pkyZgpeXF+Hh4QCMHz+eHj16UL9+fW7evMn27dtp1KgRAL6+vmg0GjZt2kTPnj3R6XTo9XoGDx7MpEmTcHFxwc3NjcjISCwsLEqd56XI5MmTadu2LaNHj2bYsGHY29tz8uRJYmJiWLJkCUeOHCEyMpKIiAiCgoLQarXs3LmTTz75hMmTJwOFdwjnzp3LG2+8ga2tLREREVhbW/P1118zbdo0Zs+eTZMmTUzOGxcXVyyWxo0bGxOFIhkZGcyZM4fevXvj4eHB9evX+eijj7h06RJ9+/YFChORZ555Bl9fX6KiooxLH0Ph3a/ShIWFMXz4cJYuXUpISAiXL19m/PjxtG7dusT5Je6sN2fOHOrUqUPjxo2JjY1lwYIFvPrqq8YyKSkpnD9/nqSkJJP+uru7G2NatWoVjRo1wtXVlX379jFu3Dhef/1142sE5enXwIEDmTlzJkOHDmXy5Mn88ssvfPjhhyxcuLDU+KHwju/Zs2eNnxMSEjhy5AguLi4md3yFyMnJ4YSFNVjm45z4C9kF+QAUWOUT2+Aafx34TrE6Shk4eXoGxxKP4mR1FhtLcLKrwehnAys7fCHEY0rypUKSL0m+VKoKWQewinrcljjOvJKh3nl7tho3abqK6tfLZLt+8bxJ2UuX/qO2bvNX0f9trWZ8NlK9/9USFX/1tpkiF6Lqq2pLHBcpWuLYyclJ6XQ6FRISYrLE8ejRo1W9evWUjY2NcnV1VREREer69evG47NmzVLu7u5Ko9GUucRx69at1ZQpU4z1fH191cKFC4vFc+DAAdWtWzfl4OCg7O3tVbNmzdScOXOUUkpdu3ZNjR07VjVp0kQ5ODgovV6vmjZtqqKiolRBQYFJOxs2bFCdOnVS9vb2xiWY16xZY1KmpGWai7YLFy4Uiy0rK0s9//zzytPTU2m1WuXh4aF69+6tDhw4YCyzatWqUtu8m0WLFqmgoCCl0+mUh4eHGjRokLp48WKZddLS0tS4ceNUnTp1lK2trfL391dvvfWWyTLDpcUUGRlpLDN58mRVu3ZtZW1trQIDA9X8+fOVwWC4534dPXpUdezYUdnY2CgvLy/13nvv3bXf27dvL7Hdou+n+1URSxxXF4/L9bh9+7aKjIxUMydP+l+O1P8F9f3r7VRiZnaJdVLTjqut2/xNtlkbvqvkyIWoPiRfknxJ8qXqly9plKqAtcGrqLS0NJycnEhNTTW+h/oo++2zE6z8dSM/p6bTNfkoGo0dlrp2tHBcS8cPfzIpezbhY35LeI+fLrcgx2E6s8KblNKqEKIiZGdnk5CQgJ+fH7a2tuYO57GSkZGBl5cX8+fPZ+jQoZV+/pSUFLp06YKjoyPffvstdnaPxysE4sGU9TP7uOUHD9vjcj0ubjvNxz/+m+vpGvwv/ozGwhlb/Z/5q99wmHqhxDo3UnZz5MhgbmTVYO+1/jzfsiVtGjyNrbW8tifEwyD50v2TfEmYQ0XkS7JUSBVxK/YwiT/9QFpeJv0v/v6urYUeK5vm1HPOMpbLyIjnmx86c+Zs4bu/GXl2OOtkkk4hxKMjNjaWNWvWEB8fz+HDh43L7RY94l7ZXFxc2Lp1K126dGHfvn1miUEI8eDSfrnKZYMjv+X8PnGxxgqLglywKnmFqKRbWaw7ULgy1o1sF3Ktn6Vzk2AZkBJCPBIkXxJVhcwpVUX8d+U/yHEIRBVoSHOqBxmn0WissTTcxu2ZCGO5Gzd2YMNF+D2fSsqoS+8AmUtKCPFoiYqKIi4uDq1WS4sWLdi1a5dxUkhzqFmzJtOnTzfb+YUQD+Z2yhWuX06hTvI5OqbZcs0awBoLlQt+zxQrn5NzjdiDvalnXTifR2aeDg+ne1+5VAghHibJl0RVIINSVUBKSgrxtbzBkIFT0kXyswuXLLZwuMXlvzbHsvn/Rsvz8lMB+OlyC9o2m8b/dW6GlaU8MCeEeHQ8+eSTHDp0yNxhCCGqiPRjx/n4k5WkOTvjdfMmN11aQeZpNBorlOUNCPugWJ3U1EPYWlw1fvaq3Z6urepVYtRCCFE2yZdEVSGDUlXAjf2Fg1C2GRlY375K0SRhQTZJdGteF4D8/Gx2/fIV2an70ALXMmtR07muDEgJIYQQokq7EhtLmrMzlrdvkWaTCplbAbCyv0H8uFCwMV2OXClFTm7hTbwTNxrg4zeXAS1l7k0hhBDiYZBBqcecUoorexJJt7TipM0V2gAai5roLOvxtN9/jeV+PrkSQ8oCimZNSM+zx8Wu5DkUhBBCCCGqitysTABsM7PAuFK6Bd7eiuf8TJcOz8rNZdyny/G120VbD0jL0eNo71q5AQshhBDViAxKPeZOHTxEXn4WyfkZtLlSFziCxtIJW4va2NSobSx363Zi4RNSWbW5bWhAs8AXqVNTVkQQQgghRNWWdc2OXGVBfoGWGoClTSs09vV5Pmgr2NmYlP3l3Df0r/eB8XOe0tPUy6lyAxZCCCGqERmUeozlJCWx5bP/Q+fUgOBfrpPu1IB8AKxxzr8MYYswGBR7429wLe0GXjaQnN+N8eEzzRy5EEIIIcTDV5CeQ26WIyfy3Qi6XTjdgUZjhdLkgnMdk7L5BQZupiViCdzOc8anditebzkRZ0dZll4IIYR4WGRCocdY3Lp1pLq4c6XgCjkWaRTkFi5bbJ9/jmtDu0BNf7Yf/4GV30dRkHMWAFtrfVlNCiGEEEJUCfk3b3Kqz0DyMdA9/hi1LZ0LDxQNStk4GMtevZ1Nm3e2sfnoGQAuZrakxRPLcHYMNEPkQgghRPUhT0o9xm6n5gBgf/0aWVYZUJABgGroQmj71uTn38ZwYxR/bpRnrNM2UFaOEUIIIUTVd+HAATY3D8RgfQp3Sx23MPx+xJLbNY+Aa09j2eMJB2hR6zsa1Ci8iedZw3xLqgshhBDViQxKPaYykzPIya7LFavzZOdrcQUsrP1RNpYM7uSNrc6GzMwkLMgj32BJSkEbnvILIMA/1NyhCyGEEEI8dHFJl8iys6WgIJsCclEqF4CfG55m1ktDwbedsazhxkT6N0gxfm7p71/p8QohhBDVkby+95iK/c9/KdAUoG7lUTuncCkZC+tALBxqY1vLiwMJKfx9434AUnMcuchbNKgfiaWlzpxhCyEeQ0OGDEGj0aDRaNBqtQQEBDBr1izy8/MfqN0dO3ag0Wi4detWxQRaDgkJCQwcOBBPT09sbW3x9vYmPDyc06dPm5TbtGkTnTt3Rq/XY2dnR6tWrVi9erVJmcTERDQaDUeOHCn3+WfMmEHDhg2xt7enRo0adO3alf3795u0OXToUPz8/NDpdNSrV4/IyEhyc3Pv2nZ0dDTNmzfHzs4ODw8PXn31VW7cuFFmndu3bzN+/Hh8fX3R6XS0b9+en3/+2aRMeno6o0ePxtvbG51OR1BQEMuWLTMpM2LECOrVq4dOp8PV1bXEa3r+/Hl69eqFnZ0dbm5uTJo0qdTvoT179mBlZcUTTzxx135/+eWXdO/enZo1a97z10NUbTnZWaAMOJ07SaomAZV/CQB7j6fxq9MWgPScfL48dA4LVTggdSGrA97eL+Pu/rzZ4hZCPJ4kX5J8SfKl+yODUo+hjJMnOXfsANc0abS9mov6/XF0DZZY606TZ2PL4WNv4Gv9fwBk5uuo4yIr7Qkh7l9oaCiXL1/m119/ZeLEicyYMYN58+aZOyyj8iQheXl5dOvWjdTUVL788kvi4uJYu3YtTZs2NUn0Fi9eTHh4OB06dGD//v0cO3aMAQMGMHLkSN54440HirN+/fosWbKE48ePs3v3burWrUv37t25du0aAKdPn8ZgMLB8+XJOnDjBwoULWbZsGdOmTSuz3T179vDyyy8zdOhQTpw4wbp16zhw4ADDhw8vs96wYcOIiYnhs88+4/jx43Tv3p2uXbty6dIlY5kJEybw3Xff8a9//YtTp04xfvx4Ro8ezcaNG41lWrRowapVqzh16hRbtmxBKUX37t0pKCgAoKCggF69epGbm8vevXv59NNPWb16NdOnTy8W061bt3j55Zfp0qVLua5pRkYGHTt25P333y9XeVE9KKXIycqjIK8ATX7hdAcaCye0VrbMf7Y1Gk3hDb2Ptp9lxteFf+gYlIb4vDdoUD8SrdbFbLELIR5fki9JviT50n1QolSpqakKUKmpqeYOxcRXH0SpyMhINW3mLPXPvu+o+S+9qqL69VILR4WpjJ+WqvO/rVZbt/kbt+93DVY5eQXmDluIai0rK0udPHlSZWVlmTuUezZ48GAVHh5usq9bt26qbdu2KiUlRUVERChnZ2el0+lUaGioOnPmjLFcYmKieu6555Szs7Oys7NTQUFBavPmzSohIUEBJtvgwYOVUkqlpaWpgQMHKjs7O+Xu7q4WLFigOnfurMaNG2ds19fXV82aNUtFREQovV5vrLtr1y7VsWNHZWtrq7y9vdWYMWNUenq6Ukqp2NhYBajExMRS+3r+/HllbW2tJkyYUOzYokWLFKB++uknpZQy9iE2NvbeL+rvin7PbN26tdQyc+fOVX5+fmW2M2/ePOXv718sXi8vr1LrZGZmKktLS7Vp0yaT/U899ZR66623jJ8bN26sZs2aVWaZPzp69KgC1NmzZ5VSSn3zzTfKwsJCJScnG8ssXbpUOTo6qpycHJO6/fv3V3/7299UZGSkat68eann+KOK+Hrcqayf2Uc1PzCXR/F63PrhNxU9bbnqNGGliurXS83vF66WjNimvhj3urFMTs4Nte67ruqrb5uqrdv81TcxTdWvV26bMWohhORLki+VRPKlqp0vyZNSj6Hr6TmgFJpbN0nVnEEV3ATgp2eGcy0ggsTrlwE4nRKAndt0nm4dhdZKvtRCPGqUUhgyMyt9U0o9cOw6nY7c3FyGDBnCwYMH2bhxI/v27UMpRc+ePcnLK1xgYdSoUeTk5PDjjz9y/Phx3n//fRwcHPDx8eGLL74AIC4ujsuXL/Phhx8ChXea9uzZw8aNG4mJiWHXrl0cPny4WAxRUVE0b96c2NhY3n77beLj4wkNDaVPnz4cO3aMtWvXsnv3bkaPHg2Aq6srFhYWrF+/3nhH6o/Wr19PXl5eiXf4RowYgYODA2vWrHng6weFdytXrFiBk5MTzZs3L7VcamoqLi5lP7XRrl07Lly4wDfffINSiitXrrB+/Xp69uxZap38/HwKCgqwtTVd7l6n07F7927j5/bt27Nx40YuXbqEUort27dz5swZunfvXmK7GRkZrFq1Cj8/P3x8fADYt28fTZs2pXbt2sZyISEhpKWlceLECeO+VatWce7cOSIjI8vsrxBlyT5zhuSNu8kmj4FJvwCgNDYA2Or/9/1+69YBalifQ68tXCjGveaTBLg5FG9QCGFW5sqXKiJnknzpwUm+VPXzJZno/DFzLfYqOZmOqPwL1Lh0hpw7jo32r0fneTvo3+BXuvtCQqovPWr3wUYrCZYQjyKVlUXcUy0q/bwNDh9CY3d/r/Qqpdi2bRtbtmyhR48ebNiwgT179tC+fXug8D19Hx8fNmzYQN++fTl//jx9+vShadOmAPjfMXlwUeLg5uaGs7MzUPjO/qeffsrnn39ufBx51apVeHp6Fovl2WefZeLEicbPw4YNY9CgQYwfPx6AwMBAFi1aROfOnVm6dCleXl4sWrSIN998k5kzZ9KyZUuCg4MZNGiQMa4zZ87g5OSEh4dHsfNptVr8/f05c+bMfV27Ips2bWLAgAFkZmbi4eFBTEwMtWqVvNLX2bNnWbx4MVFRUWW22aFDB6Kjo+nfvz/Z2dnk5+cTFhbGRx99VGodvV5Pu3bt+Pvf/06jRo2oXbs2a9asYd++fQQEBBjLLV68mNdeew1vb2+srKywsLDg448/5umnnzZp7x//+AdvvvkmGRkZNGjQgJiYGLRaLQDJyckmCRZg/JycnAzAr7/+ypQpU9i1axdWVpKeiPu36V+fcsLRGofrN/DKsCZDBxZYUOvaEep0dyE330DEyv04s49+gYU38RrWj6R5k1bmDl0IUQJz5Utw/zmT5EuSL0m+VH7y+Mxj5vpXh9BoFAk5TgBoNHZY6Z6lkW9tbuWf5I0WS2jjHgtAXVc3/GrZmzNcIUQVsWnTJhwcHLC1taVHjx7079+fIUOGYGVlRZs2bYzlatasSYMGDTh16hQAY8eOZfbs2XTo0IHIyEiOHTtW5nnOnTtHXl4erVu3Nu5zcnKiQYMGxcq2bNnS5PPRo0dZvXo1Dg4Oxi0kJASDwUBCQgJQeCcyOTmZ6Oho2rVrx7p162jcuDExMTHlvhZFiUNZoqOjTeLYtWuX8VhwcDBHjhxh7969hIaG0q9fP65evVqsjUuXLhEaGkrfvn1N5jq4s92RI0cCcPLkScaNG8f06dM5dOgQ3333HYmJicbju3btMqkXHR0NwGeffYZSCi8vL2xsbFi0aBEvvfQSFhb/Sw8WL17MTz/9xMaNGzl06BDz589n1KhRbN261STeQYMGERsby86dO6lfvz79+vUjOzu7XNe0oKCAgQMHMnPmTOrXr3/P11SIOyUaDCgNZOZmkqK9AkCBRS5bO/9K4+cncvpyGr9dOYWTdeFcIKm5NWhY50ksLKzNGbYQogqQfOl/JF+SfKm8qsbQWjVx8/ABCm5ncsMmjVY3MsgFsHDEyvYJ6gbe4kzaahrV/N+IdN827YwTeQohHj0anY4Ghw+Z5bz3Kjg4mKVLl6LVavH09MTKyspk4sbSDBs2jJCQEDZv3sz333/Pu+++y/z58xkzZsz9hG7C3t500D09PZ0RI0YwduzYYmXr1Klj/H+9Xk9YWBhhYWHMnj2bkJAQZs+eTbdu3QgMDCQ1NZWkpKRidxtzc3OJj48nJCTkrrH17t3bJPn08vIyiTsgIICAgADatm1LYGAgK1euZOrUqcYySUlJBAcH0759e1asWGHS9p2rpTg6OgLw7rvv0qFDByZNmgRAs2bNsLe3p1OnTsyePZuWLVua1Cu661avXj127txJRkYGaWlpeHh40L9/f+Od0KysLKZNm8ZXX31Fr169jG0fOXKEqKgounbtamzTyckJJycnAgMDadu2LTVq1OCrr77ipZdewt3dnQMHDpj048qVwsECd3d3bt++zcGDB4mNjTW+PmAwGFBKYWVlxffff1/mNRXiTgVo0ORkY5d2hSzLwn0aOz3d+s1Bo9Fw48oK5nRcbiz/XPNAvJxldWIhHlXmypeKzn0vJF+SfEnypXsng1KPkXXRn5HkWBPLy+exy3EnVwO6nDSeOhzJaMcIXnWPQW8PCdkv8ULbntSo0dbcIQshyqDRaO77NbrKVpQY3KlRo0bk5+ezf/9+4+PoN27cIC4ujqCgIGM5Hx8fRo4cyciRI5k6dSoff/wxY8aMMd5Bu3O+An9/f6ytrfn555+NiVFqaipnzpwp9vjzHz311FOcPHmyWJxl0Wg0NGzYkL179wLw4osvMnnyZObPn8/8+fNNyi5btozMzExefvnlu7ar1+vR6/XlisFgMJCT87+XsS9dukRwcLBxhZY778IBJfYvMzOz2CPclpaFf40rpdDpdGVeF3t7e+zt7bl58yZbtmxh7ty5QOEKPHl5ecVisLS0xGAwlNqeUqpw9bPf+9WuXTvmzJnD1atXcXNzAyAmJgZHR0eCgoKwtrbm+PHjJm384x//4IcffmD9+vX4+flhb29f7msqqq/cS+koCxs0ebcB0CgrLO3a0e5JJ5q6OPHaPw/S3H4/DWtAToEdNfS18fHqbeaohRBlkXxJ8iWQfKkq50syKPUYSbZzBlWAZdZtbmsKJ+XM1Nvw2cRpFMQnorcu3NekXhguLm3KaEkIIR5cYGAg4eHhDB8+nOXLl6PX65kyZQpeXl6Eh4cDMH78eHr06EH9+vW5efMm27dvp1GjRgD4+vqi0WjYtGkTPXv2RKfTodfrGTx4MJMmTcLFxQU3NzciIyOxsLC465OfkydPpm3btowePZphw4Zhb2/PyZMniYmJYcmSJRw5coTIyEgiIiIICgpCq9Wyc+dOPvnkEyZPngwU3iGcO3cub7zxBra2tkRERGBtbc3XX3/NtGnTmD17Nk2aNDE5b1xcXLFYGjdujLW16atAGRkZzJkzh969e+Ph4cH169f56KOPuHTpEn379gUKE6xnnnkGX19foqKijEsfQ+EdstKEhYUxfPhwli5dSkhICJcvX2b8+PG0bt26xPklihQtR9ygQQPOnj3LpEmTaNiwIa+88gpQeGexc+fOTJo0CZ1Oh6+vLzt37uSf//wnCxYsAApfIVi7di3du3fH1dWVixcv8t5776HT6YwTh3bv3p2goCAiIiKYO3cuycnJ/O1vf2PUqFHY2BROQP3H6+rm5oatrW2x/X+UkpLC+fPnSUpKAv739XB3dy/zmomq6ebmc9zClsycdOwBC40NVratcKydwU8JN9h2KomnWqYBEJ87mjFtR5g3YCFElSf5UiHJlyRfKtWDLgFYlT1KSxwnH0xWkZGRataEcSqqXy/jtmrKeLVxayu1dZu/ccvKumTucIUQf1DVljguUrTEsZOTk9LpdCokJMRkiePRo0erevXqKRsbG+Xq6qoiIiLU9evXjcdnzZql3N3dlUajKXOJ49atW6spU6YY6/n6+qqFCxcWi+fAgQOqW7duysHBQdnb26tmzZqpOXPmKKWUunbtmho7dqxq0qSJcnBwUHq9XjVt2lRFRUWpgoICk3Y2bNigOnXqpOzt7Y1LMK9Zs8akTEnLNBdtFy5cKBZbVlaWev7555Wnp6fSarXKw8ND9e7dWx04cMBYZtWqVaW2eTeLFi1SQUFBSqfTKQ8PDzVo0CB18eLFMuusXbtW+fv7K61Wq9zd3dWoUaPUrVu3TMpcvnxZDRkyRHl6eipbW1vVoEEDNX/+fGUwGJRSSl26dEn16NFDubm5KWtra+Xt7a0GDhyoTp8+bdJOYmKi6tGjh9LpdKpWrVpq4sSJKi8vr9TYyrvEcWnXLDIy8q51y1IRSxxXF4/K9UiNPayOTdigRo2brZYOmqei+vVS8196RS0ZsU39uvVn9d2Pg03ypeSru8warxCiOMmXJF+SfKn65UsapSpgbfAqKi0tDScnJ1JTU43voZqDMhg4PnUr/7b9idtpl6mbdAFLjTMW9s/g8EQBvo3nYlAa8qhFndptaNz4A5lLSohHTHZ2NgkJCfj5+RVbUlaULSMjAy8vL+bPn8/QoUMr/fwpKSl06dIFR0dHvv32W+wek1cIxIMp62f2UckPHhWPwvXIT0lhzV//Qna9tly4cplahnrkZfwXjaUn1k7P8fxbnYg787/JfrVaV9q2+Q5ra2ezxCuEKJnkS/dP8iVhDhWRL8nqe4+Bs7H70RiyuZRtQb2bvgAoKxcsrf05dK1wzoSb2c7csF9LkyYfyoCUEOKxFhsby5o1a4iPj+fw4cMMGjQIwPiIe2VzcXFh69atdOnShX379pklBiFE2a4nJBDfsBGXrFPJ1NoChXOvpDml8GP3moQu/95YdvvN1XRov0sGpIQQjzXJl0RVIXNKPeKyky4Ts3QFlh7NCbyYhobavx+xwkLdJKjRDgD0djXo9eSjP7O+EEKUR1RUFHFxcWi1Wlq0aMGuXbuoVauW2eKpWbMm06dPN9v5hRBly05PB8Dm9m1sb10iXxUua+7h4IRN7sc8+8QlALLybenYIAALC+tS2xJCiMeF5EuiKpBBqUfc2Z/2cdXbF7iFVlkA+QDk2SRTM3wxXrYXAPCs6Y+9jXw5hRCPvyeffJJDh8yz9LMQ4vGUdTUTgwJ14yragnSK5qaoU8uSANcdxnJuNQJo3cTDLDEKIURFknxJVBUyivGIu3U1CwD97WxUzkUKNFcAyHVWeNle4FxqID1av4xrrS7mDFMIIYQQwiwMuQWkxeYQixdd8k9SAFjatsZSY8GVWpfxAc6nedH5qfF41m5v7nCFEEIIcQcZlHqE3b5wm9zzVmRbW2J75RzWhkzjnT9bbeFgVQ3np/D2Gmi+IIUQQgghzGjHN19gizUdkw9iKLAFMrGwqoOVJoWTmQX4ADdyPPD1fh5LC5l3UwghhHiUyETnj7CTW3ZQoDFwK+sm1vkGACxtWmJj60fDloVzJbT0q2POEIUQQgghzCbj+DEu/WczKZp0fK6noX6f5sD70h5SXWJo4vsLAJ3q15UBKSGEEOIRJINSj6jb58/x608/kEUunePSQOUB4JRXi7oOZ9A5F666p7PzNWeYQgghhBBmc+jbb4mv78c+m0QssDTmS+8PDKFx6EW8HC4DULuG5EtCCCHEo0he33tE7VqxgrNejmRZX6J1viVFSxv/Vussvj3OciF/EGGtQqlRo615AxVCCCGEMJMb2VmgFDbJF7hikwaq8MlyJ10KOjI5cr0tAzv1wc0t1MyRCiGEEKIk8qTUI+pKPqDRkJWXS6p1pnH//rBmKFt4of1LuLh0QKOxNF+QQgghhBBmUpCaQ35uTSwK8rC/kUS+ReGAFBprBlh8gQbo2OR5PDxewNLSzqyxCiGEEKJkMij1CLqy7TwW1nXQ5GThe/ogN21uFh7QWPC6xTsAWFk5mjFCIYQQQgjzurH/EgXKlpTcwsEojQKtvj9alw7UdrwKQKC7hzlDFEIIIcRdyKDUI0YpxaXdJ8lTBRTkpgKgwQoLbSN0tbywtFBYW9dAq3U1c6RCiOpiyJAhaDQaNBoNWq2WgIAAZs2aRX5+/gO1u2PHDjQaDbdu3aqYQMshISGBgQMH4unpia2tLd7e3oSHh3P69GmTcps2baJz587o9Xrs7Oxo1aoVq1evNimTmJiIRqPhyJEj5T7/jBkzaNiwIfb29tSoUYOuXbuyf/9+kzaHDh2Kn58fOp2OevXqERkZSW5u7l3bjo6Opnnz5tjZ2eHh4cGrr77KjRs3yqzz448/EhYWhqenJxqNhg0bNhQr8+WXX9K9e3dq1qx51/4qpejRo0epba1evZpmzZpha2uLm5sbo0aNMjm+ZcsW2rZti16vx9XVlT59+pCYmFgp/RSPl9zcHA58tZYcDNQsnGYTZWGHhZUXGjsDtpZpAJIvCSEqjeRLki9JvnR/ZFDqEZN4Ipb0q2e5jgUuNwMLd1rWRGvfA2sPO5o0/Zy2bbZgaWlj3kCFENVKaGgoly9f5tdff2XixInMmDGDefPmmTsso/IkIXl5eXTr1o3U1FS+/PJL4uLiWLt2LU2bNjVJ9BYvXkx4eDgdOnRg//79HDt2jAEDBjBy5EjeeOONB4qzfv36LFmyhOPHj7N7927q1q1L9+7duXbtGgCnT5/GYDCwfPlyTpw4wcKFC1m2bBnTpk0rs909e/bw8ssvM3ToUE6cOMG6des4cOAAw4cPL7NeRkYGzZs356OPPiqzTMeOHXn//ffv2r8PPvgAjabkFc4WLFjAW2+9xZQpUzhx4gRbt24lJCTEeDwhIYHw8HCeffZZjhw5wpYtW7h+/TovvPBCpfRTPF5Of/IRVgYNV2wscU8tHHjSaKxAGdDXPo1tjcE0avQ+Dg71zRypEKI6kXxJ8iXJl+6DEqVKTU1VgEpNTa20c8b85WW1ffQ/1F8il6jFgz9UUf16qcUvDlRfPjdF7fg+vNLiEEJUrKysLHXy5EmVlZVl7lDu2eDBg1V4eLjJvm7duqm2bduqlJQUFRERoZydnZVOp1OhoaHqzJkzxnKJiYnqueeeU87OzsrOzk4FBQWpzZs3q4SEBAWYbIMHD1ZKKZWWlqYGDhyo7OzslLu7u1qwYIHq3LmzGjdunLFdX19fNWvWLBUREaH0er2x7q5du1THjh2Vra2t8vb2VmPGjFHp6elKKaViY2MVoBITE0vt6/nz55W1tbWaMGFCsWOLFi1SgPrpp5+UUsrYh9jY2Hu/qL8r+j2zdevWUsvMnTtX+fn5ldnOvHnzlL+/f7F4vby8yh0LoL766qtSj9+tv7GxscrLy0tdvny5WFspKSlKp9OV2c9169YpKysrVVBQYNy3ceNGpdFoVG5urlKqcvpZpKyfWXPkB48yc1yPNZNeVx9MnqVenL9SLR34jorq10t92C9MzXt7uNr2Q0NlMBgqLRYhRMWRfEnypZJIvvQ/VTFfkielHiE5OTkcqOHFDpdkVNpF8vLjAVC26Zx/MR6HmjJJpxBViVKKvJyCSt8Kf888GJ1OR25uLkOGDOHgwYNs3LiRffv2oZSiZ8+e5OUVLss+atQocnJy+PHHHzl+/Djvv/8+Dg4O+Pj48MUXXwAQFxfH5cuX+fDDDwGYMGECe/bsYePGjcTExLBr1y4OHz5cLIaoqCiaN29ObGwsb7/9NvHx8YSGhtKnTx+OHTvG2rVr2b17N6NHjwbA1dUVCwsL1q9fT0FBQYn9Wr9+PXl5eSXe4RsxYgQODg6sWbPmga8fFN6tXLFiBU5OTjRv3rzUcqmpqbi4uJTZVrt27bhw4QLffPMNSimuXLnC+vXr6dmzZ4XEejeZmZkMHDiQjz76CHd392LHY2JiMBgMXLp0iUaNGuHt7U2/fv24cOGCsUyLFi2wsLBg1apVFBQUkJqaymeffUbXrl2xtrZ+JPopHg05OTmc1um5aZ3DU4c2kZG/p/CAfQENntmHtbVjqXeghRCPH3PlSxWRM0m+9OAkX6r6+ZKVuQMQ/3P8mxPkWmuxzrhFwKWz/L6GDDVq3aTZU03w8R5s1viEEBUrP9fAinE7K/28r33YGWub+1u5UynFtm3b2LJlCz169GDDhg3s2bOH9u3bA4Xvr/v4+LBhwwb69u3L+fPn6dOnD02bNgXA39/f2FZR4uDm5oazszMAt2/f5tNPP+Xzzz+nS5cuAKxatQpPT89isTz77LNMnDjR+HnYsGEMGjSI8ePHAxAYGMiiRYvo3LkzS5cuxcvLi0WLFvHmm28yc+ZMWrZsSXBwMIMGDTLGdebMGZycnPDwKD45slarxd/fnzNnztzXtSuyadMmBgwYQGZmJh4eHsTExFCrVq0Sy549e5bFixcTFRVVZpsdOnQgOjqa/v37k52dTX5+PmFhYZX2+PXrr79O+/btCQ8PL/H4uXPnMBgMvPPOO3z44Yc4OTnxt7/9jW7dunHs2DG0Wi1+fn58//339OvXjxEjRlBQUEC7du345ptvHpl+ikdD0p7zoNHglXOBtPyiV1GscHVNwU6TS223fmaNTwhRscyVL8H950ySL0m+VBLJl0omT0o9QrIOnEcpqJtd+K4sGgcstU/QrEkezZr+gxo12pg3QCFEtbVp0yYcHBywtbWlR48e9O/fnyFDhmBlZUWbNv/7t6lmzZo0aNCAU6dOATB27Fhmz55Nhw4diIyM5NixY2We59y5c+Tl5dG6dWvjPicnJxo0aFCsbMuWLU0+Hz16lNWrV+Pg4GDcQkJCMBgMJCQkAIV3IpOTk4mOjqZdu3asW7eOxo0bExMTU+5rodVq71omOjraJI5du3YZjwUHB3PkyBH27t1LaGgo/fr14+rVq8XauHTpEqGhofTt29dkDoA72x05ciQAJ0+eZNy4cUyfPp1Dhw7x3XffkZiYaDy+a9cuk3rR0dHl7u/dbNy4kR9++IEPPvig1DIGg4G8vDwWLVpESEgIbdu2Zc2aNfz6669s374dgOTkZIYPH87gwYP5+eef2blzJ1qtlhdffNF4p9qc/RSPhvy8PC7H/EKmsuZ2rgMAGosa2NYYi1eDLLoEx1G//ttmjlIIUV1JvvQ/ki+ZknypdPKk1CNizzdrMCgNF/IccUlvA3yPhZUrWtvWWDaMM3d4QoiHwEprwWsfdjbLee9VcHAwS5cuRavV4unpiZWVFRs3brxrvWHDhhESEsLmzZv5/vvveffdd5k/fz5jxoy5n9BN2Nvbm3xOT09nxIgRjB07tljZOnXqGP9fr9cTFhZGWFgYs2fPJiQkhNmzZ9OtWzcCAwNJTU0lKSmp2N3G3Nxc4uPjTSabLE3v3r1Nkk8vLy+TuAMCAggICKBt27YEBgaycuVKpk6daiyTlJREcHAw7du3Z8WKFSZt37mai6OjIwDvvvsuHTp0YNKkSQA0a9YMe3t7OnXqxOzZs2nZsqVJvdq1a9+1D+X1ww8/EB8fb7x7W6RPnz506tSJHTt2GO+kBgUFGY+7urpSq1Ytzp8/D8BHH32Ek5MTc+fONZb517/+hY+PD/v376dt27Zm7ad4NHy3eRVOuTouW+jwvt2CPH4DjRUaQy45fo7mDk8I8RCYK18qOve9kHxJ8qXSSL5UOhmUegQYcnM5ueZzfL1fovbNVFCFPzS22Wk4Zn2Bwan4+6ZCiMefRqO579foKltRYnCnRo0akZ+fz/79+42Po9+4cYO4uDiTX6Y+Pj6MHDmSkSNHMnXqVD7++GPGjBljvIN253wF/v7+WFtb8/PPPxsTo9TUVM6cOcPTTz9dZoxPPfUUJ0+eLBZnWTQaDQ0bNmTv3r0AvPjii0yePJn58+czf/58k7LLli0jMzOTl19++a7t6vV69Hp9uWIwGAzk5OQYP1+6dIng4GBatGjBqlWrsLAwTYhL6l9mZiZWVqa/0i0tC7+3lFLodLp7ui73YsqUKQwbNsxkX9OmTVm4cCFhYWFA4WPkUDgfhre3NwApKSlcv34dX19fYx/+2NeiPhgMBmMZc/VTmJ8hJ4eU/3xDQZ1e1ExLBVX4pJRtdip1bi/DycH+Li0IIR5Hki9JvgSSL1XlfKlaDEp99NFHzJs3j+TkZJo3b87ixYtNHnU0t2ObNnPJ70kuWZzBKTMXNPkA2BiS8e+Zj6fHdDNHKIQQxQUGBhIeHs7w4cNZvnw5er2eKVOm4OXlZXxXfvz48fTo0YP69etz8+ZNtm/fTqNGjQDw9fVFo9GwadMmevbsiU6nQ6/XM3jwYCZNmoSLiwtubm5ERkZiYWFx14mLJ0+eTNu2bRk9ejTDhg3D3t6ekydPEhMTw5IlSzhy5AiRkZFEREQQFBSEVqtl586dfPLJJ0yePBkovEM4d+5c3njjDWxtbYmIiMDa2pqvv/6aadOmMXv2bJo0aWJy3ri44k+zNm7c2DjZZJGMjAzmzJlD79698fDw4Pr163z00UdcunSJvn37AoUJ1jPPPIOvry9RUVHGpY+BEifELBIWFsbw4cNZunQpISEhXL58mfHjx9O6desS55cokp6eztmzZ42fExISOHLkCC4uLsYkNyUlhfPnz5OUlGTSX3d3d5Ptj+rUqYOfnx9QuLRzeHg448aNY8WKFTg6OjJ16lQaNmxIcHAwAL169WLhwoXMmjWLl156idu3bzNt2jR8fX158sknH3o/xaOfL8Xt28e5+k8Al7C7lQcU5ksauyxsQhOpUePufwAJIURlk3ypkORLki+VqnwLAj6+/v3vfyutVqs++eQTdeLECTV8+HDl7Oysrly5cte6lbXE8ap3FqvIyEg1Y9pUNf+lkWrBoNdVVL9e6psFkx7qeYUQlaeqLXFcpGiJYycnJ6XT6VRISIjJEsejR49W9erVUzY2NsrV1VVFRESo69evG4/PmjVLubu7K41GU+YSx61bt1ZTpkwx1vP19VULFy4sFs+BAwdUt27dlIODg7K3t1fNmjVTc+bMUUopde3aNTV27FjVpEkT5eDgoPR6vWratKmKiooyWVZXKaU2bNigOnXqpOzt7Y1LMK9Zs8akTEnLNBdtFy5cKBZbVlaWev7555Wnp6fSarXKw8ND9e7dWx04cMBYZtWqVaW2eTeLFi1SQUFBSqfTKQ8PDzVo0CB18eLFMuts3769xHMVfS3KiikyMrLUdilhGeHU1FT16quvKmdnZ+Xi4qKef/55df78eZMya9asUU8++aSyt7dXrq6uqnfv3urUqVOV0s8/qogljh8nj0O+9NWSf6nIyEg1Z9rbanbECLXwz5NVVL9eas3kl1Ru7s2Hem4hROWQfEnyJcmXql++pFGqAtYGf4S1adOGVq1asWTJEqDwkTYfHx/GjBnDlClTyqyblpaGk5MTqampxvdQK8rJIz/z3coVWBQYUAaFhcoj/9ZNkzJPdGlHl9feqtDzCiHMIzs7m4SEBPz8/LC1tTV3OI+VjIwMvLy8mD9/PkOHDq3086ekpNClSxccHR359ttvsbOzq/QYROUr62f2YeYH5vKo5ksA80cNAYPCIjcPDYqC9Nsmx/2CPHkhckXJlYUQjxXJl+6f5EvCHCoiX6rSq+/l5uZy6NAhunbtatxnYWFB165d2bdvnxkjg0M/xqCuXqbgxhUMN6+aDEhpLGtjae1M0y69zBihEEKYR2xsLGvWrCE+Pp7Dhw8zaNAggFKXz33YXFxc2Lp1K126dDH77w4hHoZ7zZdycnJIS0sz2R6q6zch5QaG9DSTASmNhROWVrV5MqT7wz2/EEI8giRfElVFlZ5T6vr16xQUFBSbTb527dqcPn26WPmcnByTydMeZpLl4FiT6xo9oAEs0GABaLC2dMfKug7ePbNwq/fEQzu/EEI8yqKiooiLi0Or1dKiRQt27dpFrVq1zBZPzZo1mT5d5vcTVdO95kvvvvsuM2fOrKzwsNDoAQUaC4pyJkuLGlhZ16dW+1v4tX2x0mIRQohHieRLoiqo0oNS96oyk6znh4yAISMq5VxCCPE4efLJJzl06JC5wxBClGLq1KlMmDDB+DktLQ0fH5+Hdr7X//2vh9a2EEI8riRfElVFlX59r1atWlhaWnLlyhWT/VeuXClx5vupU6eSmppq3C5cuFBZoQohhBBCmMW95ks2NjY4OjqabEIIIYQQ96NKD0oVPca4bds24z6DwcC2bdto165dsfKSZAkhhBCiurnXfEkIIYQQoqJU+df3JkyYwODBg2nZsiWtW7fmgw8+ICMjg1deecXcoQkhhBBCPBIkXxJCCCGEOVT5Qan+/ftz7do1pk+fTnJyMk888QTfffddsck8hRBCCCGqK8mXhBBCCGEOVX5QCmD06NGMHj3a3GEIIYQQQjyyJF8SQgghRGWr0nNKCSGEEEIIIYQQQohHkwxKCSGEEEIIIYQQQohKJ4NSQgghyjRkyBA0Gg0ajQatVktAQACzZs0iPz//gdrdsWMHGo2GW7duVUyg5ZCQkMDAgQPx9PTE1tYWb29vwsPDOX36tEm5TZs20blzZ/R6PXZ2drRq1YrVq1eblElMTESj0XDkyJFyn3/GjBk0bNgQe3t7atSoQdeuXdm/f79Jm0OHDsXPzw+dTke9evWIjIwkNzf3rm1HR0fTvHlz7Ozs8PDw4NVXX+XGjRtl1vnxxx8JCwvD09MTjUbDhg0b7jlmgDlz5tC+fXvs7OxwdnYu8Vznz5+nV69e2NnZ4ebmxqRJk0y+h+78Prtza9y4sbHMu+++S6tWrdDr9bi5ufGnP/2JuLi4u16b8sQnhBBCPAjJlyRfknzp/siglBBCiLsKDQ3l8uXL/Prrr0ycOJEZM2Ywb948c4dlVJ4kJC8vj27dupGamsqXX35JXFwca9eupWnTpiaJ3uLFiwkPD6dDhw7s37+fY8eOMWDAAEaOHMkbb7zxQHHWr1+fJUuWcPz4cXbv3k3dunXp3r07165dA+D06dMYDAaWL1/OiRMnWLhwIcuWLWPatGlltrtnzx5efvllhg4dyokTJ1i3bh0HDhxg+PDhZdbLyMigefPmfPTRR/cdMxRe/759+/KXv/ylxDYKCgro1asXubm57N27l08//ZTVq1czffp0Y5kPP/yQy5cvG7cLFy7g4uJC3759jWV27tzJqFGj+Omnn4iJiSEvL4/u3buTkZFRZj/vFp8QQghRESRfknxJ8qX7oESpUlNTFaBSU1PNHYoQ4jGXlZWlTp48qbKysswdyj0bPHiwCg8PN9nXrVs31bZtW5WSkqIiIiKUs7Oz0ul0KjQ0VJ05c8ZYLjExUT333HPK2dlZ2dnZqaCgILV582aVkJCgAJNt8ODBSiml0tLS1MCBA5WdnZ1yd3dXCxYsUJ07d1bjxo0ztuvr66tmzZqlIiIilF6vN9bdtWuX6tixo7K1tVXe3t5qzJgxKj09XSmlVGxsrAJUYmJiqX09f/68sra2VhMmTCh2bNGiRQpQP/30k1JKGfsQGxt77xf1d0W/Z7Zu3Vpqmblz5yo/P78y25k3b57y9/cvFq+Xl1e5YwHUV199dddyZcW8atUq5eTkVGz/N998oywsLFRycrJx39KlS5Wjo6PKyckp8TxfffWV0mg0ZX69rl69qgC1c+fOu8ZdVnwlKetnVvIDU3I9hBAVRfIlyZdKIvlS1c6X5EkpIYQwE6UUednZlb4ppR44dp1OR25uLkOGDOHgwYNs3LiRffv2oZSiZ8+e5OXlATBq1ChycnL48ccfOX78OO+//z4ODg74+PjwxRdfABAXF8fly5f58MMPAZgwYQJ79uxh48aNxMTEsGvXLg4fPlwshqioKJo3b05sbCxvv/028fHxhIaG0qdPH44dO8batWvZvXu3cTUxV1dXLCwsWL9+PQUFBSX2a/369eTl5ZV4h2/EiBE4ODiwZs2aB75+UHg3asWKFTg5OdG8efNSy6WmpuLi4lJmW+3atePChQt88803KKW4cuUK69evp2fPnhUS673G/Ef79u2jadOm1K5d27gvJCSEtLQ0Tpw4UWKdlStX0rVrV3x9fUttNzU1FeCu10cIIcTjy1z5UkXkTJIvPTjJl6p+vmRl7gCEEKK6ys/JYdHgFyv9vGM/XY+1re191VVKsW3bNrZs2UKPHj3YsGEDe/bsoX379kDhe/o+Pj5s2LCBvn37cv78efr06UPTpk0B8Pf3N7ZV9IvRzc3N+N767du3+fTTT/n888/p0qULAKtWrcLT07NYLM8++ywTJ040fh42bBiDBg1i/PjxAAQGBrJo0SI6d+7M0qVL8fLyYtGiRbz55pvMnDmTli1bEhwczKBBg4xxnTlzBicnJzw8PIqdT6vV4u/vz5kzZ+7r2hXZtGkTAwYMIDMzEw8PD2JiYqhVq1aJZc+ePcvixYuJiooqs80OHToQHR1N//79yc7OJj8/n7CwsDIfM39YMZckOTnZJMECjJ+Tk5OLlU9KSuLbb7/l888/L7VNg8HA+PHj6dChA02aNCl3LEIIIR4v5sqX4P5zJsmXJF+SfKn85EkpIYQQd7Vp0yYcHBywtbWlR48e9O/fnyFDhmBlZUWbNm2M5WrWrEmDBg04deoUAGPHjmX27Nl06NCByMhIjh07VuZ5zp07R15eHq1btzbuc3JyokGDBsXKtmzZ0uTz0aNHWb16NQ4ODsYtJCQEg8FAQkICUHgnMjk5mejoaNq1a8e6deto3LgxMTEx5b4WWq32rmWio6NN4ti1a5fxWHBwMEeOHGHv3r2EhobSr18/rl69WqyNS5cuERoaSt++fU3mOriz3ZEjRwJw8uRJxo0bx/Tp0zl06BDfffcdiYmJxuO7du0yqRcdHV3u/t5LzBXl008/xdnZmT/96U+llhk1ahS//PIL//73v437Ro4cadJPIYQQojJJvvQ/ki9JvlRe8qSUEEKYiZWNDWM/XW+W896r4OBgli5dilarxdPTEysrKzZu3HjXesOGDSMkJITNmzfz/fff8+677zJ//nzGjBlzP6GbsLe3N/mcnp7OiBEjGDt2bLGyderUMf6/Xq8nLCyMsLAwZs+eTUhICLNnz6Zbt24EBgaSmppKUlJSsbuNubm5xMfHExISctfYevfubZJ8enl5mcQdEBBAQEAAbdu2JTAwkJUrVzJ16lRjmaSkJIKDg2nfvj0rVqwwafvO1WscHR2BwlVWOnTowKRJkwBo1qwZ9vb2dOrUidmzZ9OyZUuTen+8C3c35Ym5LO7u7hw4cMBk35UrV4zH7qSU4pNPPiEiIqLUhHb06NFs2rSJH3/8EW9vb+P+WbNmPfDkqkIIIR4t5sqXis59LyRfknxJ8qV7J4NSQghhJhqN5r5fo6tsRb9k79SoUSPy8/PZv3+/8XH0GzduEBcXR1BQkLGcj48PI0eOZOTIkUydOpWPP/6YMWPGGH+B3jlfgb+/P9bW1vz888/GxCg1NZUzZ87w9NNPlxnjU089xcmTJ4vFWRaNRkPDhg3Zu3cvAC+++CKTJ09m/vz5zJ8/36TssmXLyMzM5OWXX75ru3q9Hr1eX64YDAYDOTk5xs+XLl0iODiYFi1asGrVKiwsTB9qLql/mZmZWFmZ/kq3tLQECpMWnU53T9flXmO+m3bt2jFnzhyuXr2Km5sbADExMTg6Opp8r0DhijFnz55l6NChxdpRSjFmzBi++uorduzYgZ+fn8lxNzc3Y/tCCCGqBsmXJF8CyZeqcr4kg1JCCCHuS2BgIOHh4QwfPpzly5ej1+uZMmUKXl5ehIeHAzB+/Hh69OhB/fr1uXnzJtu3b6dRo0YA+Pr6otFo2LRpEz179kSn06HX6xk8eDCTJk3CxcUFNzc3IiMjsbCwQKPRlBnP5MmTadu2LaNHj2bYsGHY29tz8uRJYmJiWLJkCUeOHCEyMpKIiAiCgoLQarXs3LmTTz75hMmTJwOFdwjnzp3LG2+8ga2tLREREVhbW/P1118zbdo0Zs+eXex9/Li4uGKxNG7cGGtra5N9GRkZzJkzh969e+Ph4cH169f56KOPuHTpknEZ30uXLvHMM8/g6+tLVFSUyTLCf7xDdqewsDCGDx/O0qVLCQkJ4fLly4wfP57WrVuXOL9EkfT0dM6ePWv8nJCQwJEjR3BxcaFOnTrlihng/PnzpKSkcP78eQoKCox3GQMCAnBwcKB79+4EBQURERHB3LlzSU5O5m9/+xujRo3C5g93oVeuXEmbNm1KnPdg1KhRfP7553z99dfo9Xrj/ApOTk7odLpS+3m3+IQQQoiHRfKlQpIvSb5UqnKt81dNyRLHQoiKUtWWOC5StMSxk5OT0ul0KiQkxGSJ49GjR6t69eopGxsb5erqqiIiItT169eNx2fNmqXc3d2VRqMpc4nj1q1bqylTphjr+fr6qoULFxaL58CBA6pbt27KwcFB2dvbq2bNmqk5c+YopZS6du2aGjt2rGrSpIlycHBQer1eNW3aVEVFRamCggKTdjZs2KA6deqk7O3tjUswr1mzxqRMScs0F20XLlwoFltWVpZ6/vnnlaenp9JqtcrDw0P17t1bHThwwFhm1apVpbZ5N4sWLVJBQUFKp9MpDw8PNWjQIHXx4sUy62zfvr3EcxV9LcoTs1KF3yMltbN9+3ZjmcTERNWjRw+l0+lUrVq11MSJE1VeXp5JO7du3VI6nU6tWLGixHhLuzarVq0qs5/lie+PKmKJ4+pCrocQoqJIviT5kuRL1S9f0vwetChBWloaTk5OpKamGt9DFUKI+5GdnU1CQgJ+fn7YPiaPoD8qMjIy8PLyYv78+SU+ovywpaSk0KVLFxwdHfn222+xs7Or9BhE5SvrZ1byA1NyPYQQFUXypfsn+ZIwh4rIl2T1PSGEEI+U2NhY1qxZQ3x8PIcPH2bQoEEAxkfcK5uLiwtbt26lS5cu7Nu3zywxCCGEEELcSfIlUVXInFJCCCEeOVFRUcTFxaHVamnRogW7du2iVq1aZounZs2aTJ8+3WznF0IIIYT4I8mXRFUgg1JCCCEeKU8++SSHDh0ydxhCCCGEEI8syZdEVSGv7wkhhBBCCCGEEEKISieDUkIIUYlkbQkhHg/ysyqEEOYj/wYL8XioiJ9VGZQSQohKYG1tDUBmZqaZIxFClEfRz2rRz64QQoiHT/IlIR4vFZEvyZxSQghRCSwtLXF2dubq1asA2NnZodFozByVEOKPlFJkZmZy9epVnJ2dsbS0NHdIQghRbUi+JMTjoSLzJRmUEkKISuLu7g5gTLSEEI8uZ2dn48+sEEKIyiP5khCPj4rIl2RQSgghKolGo8HDwwM3Nzfy8vLMHY4QohTW1tbyhJQQQpiJ5EtCPB4qKl+SQSkhhKhklpaW8gevEEIIIUQZJF8SonqQic6FEEIIIYQQQgghRKWTQSkhhBBCCCGEEEIIUelkUEoIIYQQQgghhBBCVDqZU6oMSikA0tLSzByJEEIIIR4VRXlBUZ5Q3Um+JIQQQog/Km++JINSZbh9+zYAPj4+Zo5ECCGEEI+a27dv4+TkZO4wzE7yJSGEEEKU5m75kkbJbb5SGQwGkpKS0Ov1aDSaCm8/LS0NHx8fLly4gKOjY4W3/6ioLv2E6tPX6tJPqD59lX5WPdWlr+bop1KK27dv4+npiYWFzIQg+VLFqC79hOrT1+rST6g+fZV+Vj3Vpa+Pcr4kT0qVwcLCAm9v74d+HkdHxyr9A1CkuvQTqk9fq0s/ofr0VfpZ9VSXvlZ2P+UJqf+RfKliVZd+QvXpa3XpJ1Sfvko/q57q0tdHMV+S23tCCCGEEEIIIYQQotLJoJQQQgghhBBCCCGEqHQyKGVGNjY2REZGYmNjY+5QHqrq0k+oPn2tLv2E6tNX6WfVU136Wl36WZ1Vl69xdeknVJ++Vpd+QvXpq/Sz6qkufX2U+ykTnQshhBBCCCGEEEKISidPSgkhhBBCCCGEEEKISieDUkIIIYQQQgghhBCi0smglBBCCCGEEEIIIYSodDIoJYQQQgghhBBCCCEqnQxKCSGEEEIIIYQQQohKJ4NSQgghhBBCCCGEEKLSyaCUEEIIIYQQQgghhKh0MiglhBBCCCGEEEIIISqdDEoJIYQQQgghhBBCiEong1JCCCGEEEIIIYQQotLJoJQQQgghhBBCCCGEqHQyKCWEEEIIIYQQQgghKp0MSgkhhBBCCCGEEEKISieDUkKISpOYmIhGo2H16tXmDuWRMWTIEOrWrWuyT6PRMGPGDLPEI4QQQojKU11yox07dqDRaFi/fr25QylVRedfRX3esWNHhbUpRFUkg1JCVCN79+5lxowZ3Lp1677q/+Mf/6jySdPDkJSUxIwZMzhy5Ii5QxFCCCHEHSQ3qliff/45H3zwgVljyMzMZMaMGSUOBn3zzTdy40+IR4wMSglRjezdu5eZM2dK4lXJkpKSmDlzZomDUh9//DFxcXGVH5QQQgghJDeqYI/KoNTMmTNLHZSaOXNm5QclhCiVDEoJIYQZWVtbY2NjY+4whBBCCCEeWZmZmeYOQQjxkMiglBDVxIwZM5g0aRIAfn5+aDQaNBoNiYmJ5Ofn8/e//5169ephY2ND3bp1mTZtGjk5Ocb6devW5cSJE+zcudNY95lnngEgJSWFN954g6ZNm+Lg4ICjoyM9evTg6NGjFRJ7dnY2M2bMoH79+tja2uLh4cELL7xAfHw88L/5GKKioli4cCG+vr7odDo6d+7ML7/8YtLWM888Y4z7TiXN7XQ3devWZciQIcX233mOHTt20KpVKwBeeeUV47Uruqt6P+ctyb///W9atGiBXq/H0dGRpk2b8uGHHwJw7tw5NBoNCxcuLFZv7969aDQa1qxZA8Dt27cZP348devWxcbGBjc3N7p168bhw4fLHUteXh4zZ84kMDAQW1tbatasSceOHYmJiXngfgohhBAVRXKjQhWVGz3zzDNs3ryZ3377zXg9/ljfYDAwZ84cvL29sbW1pUuXLpw9e7ZYO02aNOHQoUM8/fTT2NnZMW3aNACuXr3K0KFDqV27Nra2tjRv3pxPP/3UWDcxMRFXV1cAZs6caYxjxowZDBkyhI8++gjAuF+j0ZTZp0uXLvHqq69Su3ZtbGxsaNy4MZ988kmxchcvXuRPf/oT9vb2uLm58frrr5t8r5SX5FCiOrIydwBCiMrxwgsvcObMGdasWcPChQupVasWAK6urgwbNoxPP/2UF198kYkTJ7J//37effddTp06xVdffQXABx98wJgxY3BwcOCtt94CoHbt2kDhoMeGDRvo27cvfn5+XLlyheXLl9O5c2dOnjyJp6fnfcddUFDAc889x7Zt2xgwYADjxo3j9u3bxMTE8Msvv1CvXj1j2X/+85/cvn2bUaNGkZ2dzYcffsizzz7L8ePHjbFWtkaNGjFr1iymT5/Oa6+9RqdOnQBo3759hZ0jJiaGl156iS5duvD+++8DcOrUKfbs2cO4cePw9/enQ4cOREdH8/rrr5vUjY6ORq/XEx4eDsDIkSNZv349o0ePJigoiBs3brB7925OnTrFU089Va54ZsyYwbvvvsuwYcNo3bo1aWlpHDx4kMOHD9OtW7cK67cQQgjxICQ3qtjc6K233iI1NZWLFy8ab4Q5ODiYlHnvvfewsLDgjTfeIDU1lblz5zJo0CD2799vUu7GjRv06NGDAQMG8Oc//5natWuTlZXFM888w9mzZxk9ejR+fn6sW7eOIUOGcOvWLcaNG4erqytLly7lL3/5C88//zwvvPACAM2aNSMjI4OkpCRiYmL47LPP7tqfK1eu0LZtWzQaDaNHj8bV1ZVvv/2WoUOHkpaWxvjx4wHIysqiS5cunD9/nrFjx+Lp6clnn33GDz/8cM/XUHIoUS0pIUS1MW/ePAWohIQE474jR44oQA0bNsyk7BtvvKEA9cMPPxj3NW7cWHXu3LlYu9nZ2aqgoMBkX0JCgrKxsVGzZs0y2QeoVatWlTvmTz75RAFqwYIFxY4ZDAaTdnU6nbp48aLx+P79+xWgXn/9deO+zp07l9iHwYMHK19f33LHpZRSvr6+avDgwcX2//EcP//8c6n9Lum8gIqMjCx3HOPGjVOOjo4qPz+/1DLLly9XgDp16pRxX25urqpVq5ZJH5ycnNSoUaPKfe6SNG/eXPXq1euB2hBCCCEqg+RGFZsb9erVq8Q627dvV4Bq1KiRysnJMe7/8MMPFaCOHz9uEg+gli1bZtLGBx98oAD1r3/9y7gvNzdXtWvXTjk4OKi0tDSllFLXrl0rNZcaNWqUKu1P4D/WGTp0qPLw8FDXr183KTdgwADl5OSkMjMzTeL6z3/+YyyTkZGhAgICFKC2b99e4vlKIjmUqI7k9T0hqrlvvvkGgAkTJpjsnzhxIgCbN2++axs2NjZYWBT+c1JQUMCNGzdwcHCgQYMG9/TaV0m++OILatWqxZgxY4od++Mj13/605/w8vIyfm7dujVt2rQx9rGqcnZ2JiMjo8xHu/v164etrS3R0dHGfVu2bOH69ev8+c9/Nmlr//79JCUlPVA8J06c4Ndff73vNoQQQghzkdzo4XnllVfQarXGz0VPkJ87d86knI2NDa+88orJvm+++QZ3d3deeukl4z5ra2vGjh1Leno6O3furLA4lVJ88cUXhIWFoZTi+vXrxi0kJITU1FTj1/Gbb77Bw8ODF1980Vjfzs6O11577Z7PKzmUqI5kUEqIau63337DwsKCgIAAk/3u7u44Ozvz22+/3bUNg8HAwoULCQwMxMbGhlq1auHq6sqxY8dITU19oPji4+Np0KABVlZ3f9s4MDCw2L769euTmJj4QDE86v76179Sv359evTogbe3N6+++irfffedSRlnZ2fCwsL4/PPPjfuio6Px8vLi2WefNe6bO3cuv/zyCz4+PrRu3ZoZM2YUSxTvZtasWdy6dYv69evTtGlTJk2axLFjxx6sk0IIIUQlkdzo4alTp47J5xo1agBw8+ZNk/1eXl4mg1dQ+HUJDAw0DvYVadSokfF4Rbl27Rq3bt1ixYoVuLq6mmxFg2VXr141njcgIKDYgGCDBg3u+bySQ4nqSAalhBBA8Ttr9+Kdd95hwoQJPP300/zrX/9iy5YtxMTE0LhxYwwGQwVG+eBK62dBQYFZ23oQbm5uHDlyhI0bN9K7d2+2b99Ojx49GDx4sEm5l19+mXPnzrF3715u377Nxo0beemll0ySu379+nHu3DkWL16Mp6cn8+bNo3Hjxnz77bfljufpp58mPj6eTz75hCZNmvB///d/PPXUU/zf//1fhfVZCCGEeNgkN6r4fMbS0rLE/Uopk886na7Cz30vir5Gf/7zn4mJiSlx69ChQ4WfV3IoUR3JROdCVCMlJR2+vr4YDAZ+/fVX450mKJzc8datW/j6+pZZH2D9+vUEBwezcuVKk/23bt0yThp6v+rVq8f+/fvJy8vD2tq6zLIlPep85swZk5VfatSoUeKTP/dzd61GjRrcunWrxLb8/f2Nnx8kqS0vrVZLWFgYYWFhGAwG/vrXv7J8+XLefvtt453e0NBQXF1diY6Opk2bNmRmZhIREVGsLQ8PD/7617/y17/+latXr/LUU08xZ84cevToUe54XFxceOWVV3jllVdIT0/n6aefZsaMGQwbNqzC+iyEEEI8KMmNKjY3epg5j6+vL8eOHcNgMJjcUDt9+rTx+N1iKG98rq6u6PV6CgoK6Nq1613j+uWXX1BKmbQfFxdXrnP9keRQorqRJ6WEqEbs7e0BTAZSevbsCRSuIHOnBQsWANCrVy+T+iUNwlhaWha7w7Vu3TouXbr0wDH36dOH69evs2TJkmLH/njODRs2mJzzwIED7N+/32QwpV69epw+fZpr164Z9x09epQ9e/bcc2z16tXjp59+Ijc317hv06ZNXLhwwaRcSde9It24ccPks4WFBc2aNQMwWY7YysqKl156if/85z+sXr2apk2bGstB4R3RP75S4Obmhqen5z0ta/zHeBwcHAgICLivpZGFEEKIh0lyo4rNjezt7R/49cTS9OzZk+TkZNauXWvcl5+fz+LFi3FwcKBz585A4XxOUHLeVd6czNLSkj59+vDFF1/wyy+/FDt+57Xq2bMnSUlJrF+/3rgvMzOTFStWlLtvRSSHEtWRPCklRDXSokULoHDJ3gEDBmBtbU1YWBiDBw9mxYoV3Lp1i86dO3PgwAE+/fRT/vSnPxEcHGxSf+nSpcyePZuAgADc3Nx49tlnee6555g1axavvPIK7du35/jx40RHR5s8LXS/Xn75Zf75z38yYcIEDhw4QKdOncjIyGDr1q389a9/JTw83Fg2ICCAjh078pe//IWcnBw++OADatasyZtvvmks8+qrr7JgwQJCQkIYOnQoV69eZdmyZTRu3Ji0tLR7im3YsGGsX7+e0NBQ+vXrR3x8PP/6179MlmKGwmTP2dmZZcuWodfrsbe3p02bNvj5+T3YxbkjjpSUFJ599lm8vb357bffWLx4MU888YTJHV4ovJ6LFi1i+/btvP/++ybHbt++jbe3Ny+++CLNmzfHwcGBrVu38vPPPzN//vxyxxMUFMQzzzxDixYtcHFx4eDBg6xfv57Ro0dXSH+FEEKIiiK5UcXmRi1atGDt2rVMmDCBVq1a4eDgQFhY2AP3GeC1115j+fLlDBkyhEOHDlG3bl3Wr1/Pnj17+OCDD9Dr9UDhq39BQUGsXbuW+vXr4+LiQpMmTWjSpInx6z127FhCQkKwtLRkwIABJZ7vvffeY/v27bRp04bhw4cTFBRESkoKhw8fZuvWraSkpAAwfPhwlixZwssvv8yhQ4fw8PDgs88+Mw6O3QvJoUS1ZL6F/4QQ5vD3v/9deXl5KQsLC+MSyHl5eWrmzJnKz89PWVtbKx8fHzV16lSVnZ1tUjc5OVn16tVL6fV6BRiXD87OzlYTJ05UHh4eSqfTqQ4dOqh9+/YVW2L4fpY9VkqpzMxM9dZbbxnjc3d3Vy+++KKKj483aXfevHlq/vz5ysfHR9nY2KhOnTqpo0ePFmvvX//6l/L391darVY98cQTasuWLfe17LFSSs2fP195eXkpGxsb1aFDB3Xw4MESl1b++uuvVVBQkLKysjK5BiWdl1KWMS7N+vXrVffu3ZWbm5vSarWqTp06asSIEery5csllm/cuLGysLAwWSJaKaVycnLUpEmTVPPmzZVer1f29vaqefPm6h//+Ee5Y1FKqdmzZ6vWrVsrZ2dnpdPpVMOGDdWcOXNUbm7uPbUjhBBCVAbJjSouN0pPT1cDBw5Uzs7OCjDW3759uwLUunXrTMqX1P/OnTurxo0bl9j+lStX1CuvvKJq1aqltFqtatq0aYnXbu/evapFixZKq9Wa5FX5+flqzJgxytXVVWk0GnXnn8Ml5V9XrlxRo0aNUj4+Psbr3KVLF7VixQqTcr/99pvq3bu3srOzU7Vq1VLjxo1T3333nQLU9u3by3XtlJIcSlRPGqX+8IynEEI8ZhITE/Hz82PevHm88cYb5g7nkffkk0/i4uLCtm3bzB2KEEIIIR4CyY2EEI8LmVNKCCGqkYMHD3LkyBFefvllc4cihBBCCCGEqOZkTikhhFnk5uYa38UvjZOTk1mWBE5JSTGZvPyPLC0tcXV1fehxFBQUmEykWRIHBwccHBzu2tYvv/zCoUOHmD9/Ph4eHvTv3/+e48nKyrrr5KUuLi5otdp7blsIIYSo7iQ3qrokhxKidDIoJYQwi71795pMFFqSVatWMWTIkMoJ6A4vvPACO3fuLPW4r68viYmJDz2OCxcu3HUy9MjISGbMmHHXttavX8+sWbNo0KABa9aswdbW9p7jWbt2La+88kqZZbZv384zzzxzz20LIYQQ1Z3kRlWX5FBClE7mlBJCmMXNmzc5dOhQmWUaN26Mh4dHJUX0P4cOHeLmzZulHtfpdHTo0OGhx5Gdnc3u3bvLLOPv718hK/mUx+XLlzlx4kSZZVq0aEGNGjUqJR4hhBCiKpHcqOqSHEqI0smglBBCCCGEEEIIIYSodDLRuRBCCCGEEEIIIYSodDKnVBkMBgNJSUno9Xo0Go25wxFCCCHEI0Apxe3bt/H09MTCQu7vSb4khBBCiD8qb74kg1JlSEpKwsfHx9xhCCGEEOIRdOHCBby9vc0dhtlJviSEEEKI0twtX5JBqTLo9Xqg8CI6OjqaORohhBBCPArS0tLw8fEx5gnVneRLQgghhPij8uZLMihVhqJH0B0dHSXJEkIIIYQJeVWtkORLQgghhCjN3fIlmQhBCCGEEEIIIYQQQlQ6GZQSQgghhBBCCCGEEJVOBqWEEEIIIYQQQgghRKWTOaWEEEIIIYQQQjxSCgoKyMvLM3cYQohSWFtbY2lp+cDtyKCUEEIIIYQQQohHglKK5ORkbt26Ze5QhBB34ezsjLu7+wMt/iKDUkIIIYQQQgghHglFA1Jubm7Y2dnJSqdCPIKUUmRmZnL16lUAPDw87rstGZQSQgghhBBCCGF2BQUFxgGpmjVrmjscIUQZdDodAFevXsXNze2+X+Uzy0TnP/74I2FhYXh6eqLRaNiwYYPJcaUU06dPx8PDA51OR9euXfn1119NyqSkpDBo0CAcHR1xdnZm6NChpKenm5Q5duwYnTp1wtbWFh8fH+bOnfuwuyaEEEIIIYQQ4j4UzSFlZ2dn5kiEEOVR9LP6IPO/mWVQKiMjg+bNm/PRRx+VeHzu3LksWrSIZcuWsX//fuzt7QkJCSE7O9tYZtCgQZw4cYKYmBg2bdrEjz/+yGuvvWY8npaWRvfu3fH19eXQoUPMmzePGTNmsGLFiofePyGEEEIIIYQQ90de2RPi8VARP6tmeX2vR48e9OjRo8RjSik++OAD/va3vxEeHg7AP//5T2rXrs2GDRsYMGAAp06d4rvvvuPnn3+mZcuWACxevJiePXsSFRWFp6cn0dHR5Obm8sknn6DVamncuDFHjhxhwYIFJoNXQgghhBBCCCGEEKLymeVJqbIkJCSQnJxM165djfucnJxo06YN+/btA2Dfvn04OzsbB6QAunbtioWFBfv37zeWefrpp9FqtcYyISEhxMXFcfPmzRLPnZOTQ1pamskmhBBCCCGEEEIIISreIzcolZycDEDt2rVN9teuXdt4LDk5GTc3N5PjVlZWuLi4mJQpqY07z/FH7777Lk5OTsbNx8fnwTskhBBCCCGEEKJKGzJkCBqNBo1Gg1arJSAggFmzZpGfn/9A7e7YsQONRsOtW7cqJtBySEhIYODAgXh6emJra4u3tzfh4eGcPn3apNymTZvo3Lkzer0eOzs7WrVqxerVq03KJCYmotFoOHLkSLnPP2PGDBo2bIi9vT01atSga9euxodPitocOnQofn5+6HQ66tWrR2RkJLm5uWW2e/nyZQYOHEj9+vWxsLBg/Pjx5YrnbnNiFzl16hS9e/fGyckJe3t7WrVqxfnz543HR4wYQb169dDpdLi6upZ4TX/++We6dOmCs7MzNWrUICQkhKNHj5Z4vrNnz6LX63F2dq6wPpjDIzcoZU5Tp04lNTXVuF24cMHcIQkhhBBCCCGEeAyEhoZy+fJlfv31VyZOnMiMGTOYN2+eucMyutugDRROWN2tWzdSU1P58ssviYuLY+3atTRt2tRkYGzx4sWEh4fToUMH9u/fz7FjxxgwYAAjR47kjTfeeKA469evz5IlSzh+/Di7d++mbt26dO/enWvXrgFw+vRpDAYDy5cv58SJEyxcuJBly5Yxbdq0MtvNycnB1dWVv/3tbzRv3rzc8dxtTmyA+Ph4OnbsSMOGDdmxYwfHjh3j7bffxtbW1limRYsWrFq1ilOnTrFlyxaUUnTv3p2CggIA0tPTCQ0NpU6dOuzfv5/du3ej1+sJCQkpNpF4Xl4eL730Ep06daqwPpiNMjNAffXVV8bP8fHxClCxsbEm5Z5++mk1duxYpe+/ugAAAQAASURBVJRSK1euVM7OzibH8/LylKWlpfryyy+VUkpFRESo8PBwkzI//PCDAlRKSkq5YktNTVWASk1NvbdOCSGEEKLKkvzAlFwPIURFycrKUidPnlRZWVnmDuWeDR48uNjfn926dVNt27ZVKSkpKiIiQjk7OyudTqdCQ0PVmTNnjOUSExPVc889p5ydnZWdnZ0KCgpSmzdvVgkJCQow2QYPHqyUUiotLU0NHDhQ2dnZKXd3d7VgwQLVuXNnNW7cOGO7vr6+atasWSoiIkLp9Xpj3V27dqmOHTsqW1tb5e3trcaMGaPS09OVUkrFxsYqQCUmJpba1/Pnzytra2s1YcKEYscWLVqkAPXTTz8ppZSxD3/8+/5eFP2e2bp1a6ll5s6dq/z8/Mrd5h+vVXn9cfyiSP/+/dWf//zne2rr6NGjClBnz55VSin1888/K0CdP3/eWObYsWMKUL/++qtJ3TfffFP9+c9/VqtWrVJOTk4V0of7UdbPbHnzg0fuSSk/Pz/c3d3Ztm2bcV9aWhr79++nXbt2ALRr145bt25x6NAhY5kffvgBg8FAmzZtjGV+/PFHkxHFmJgYGjRoQI0aNSqpN0IIIYQQQggh7pdSiszcfLNshX+/3z+dTkdubi5Dhgzh4MGDbNy4kX379qGUomfPnsa/VUeNGkVOTg4//vgjx48f5/3338fBwQEfHx+++OILAOLi4rh8+TIffvghABMmTGDPnj1s3LiRmJgYdu3axeHDh4vFEBUVRfPmzYmNjeXtt98mPj6e0NBQ+vTpw7Fjx1i7di27d+9m9OjRALi6umJhYcH69euNT/D80fr168nLyyvxiagRI0bg4ODAmjVrHujaFcnNzWXFihU4OTmV+XRTamoqLi4uFXLOe2UwGNi8eTP169cnJCQENzc32rRpU+YrchkZGaxatQo/Pz/jtEENGjSgZs2arFy5ktzcXLKysli5ciWNGjWibt26xro//PAD69atezSferoPZll9Lz09nbNnzxo/JyQkcOTIEVxcXKhTpw7jx49n9uzZBAYG4ufnx9tvv42npyd/+tOfAGjUqBGhoaEMHz6cZcuWkZeXx+jRoxkwYACenp4ADBw4kJkzZzJ06FAmT57ML7/8wocffsjChQvN0WUhhBBCCCGEEPcoK6+AoOlbzHLuk7NCsNPe+5/MSim2bdvGli1b6NGjBxs2bGDPnj20b98egOjoaHx8fNiwYQN9+/bl/Pnz9OnTh6ZNmwLg7+9vbKtooMXNzc04d9Dt27f59NNP+fzzz+nSpQsAq1atMv4tfKdnn32WiRMnGj8PGzaMQYMGGedTCgwMZNGiRXTu3JmlS5fi5eXFokWLePPNN5k5cyYtW7YkODiYQYMGGeM6c+YMTk5OeHh4FDufVqvF39+fM2fO3PN1u9OmTZsYMGAAmZmZeHh4EBMTQ61atUose/bsWRYvXkxUVNQDnfN+Xb16lfT0dN577z1mz57N+++/z3fffccLL7zA9u3b6dy5s7HsP/7xD958800yMjJo0KABMTExxsXZ9Ho9O3bs4E9/+hN///vfgcKvz5YtW7CyKvw+vHHjBkOGDOFf//oXjo6Old/Zh8AsT0odPHiQJ598kieffBIoHOV98sknmT59OgBvvvkmY8aM4bXXXqNVq1akp6fz3XffmbyPGR0dTcOGDenSpQs9e/akY8eOrFixwnjcycmJ77//noSEBFq0aMHEiROZPn06r732WuV2VgghhBBCCCFElbdp0yYcHBywtbWlR48e9O/fnyFDhmBlZWV8owegZs2aNGjQgFOnTgEwduxYZs+eTYcOHYiMjOTYsWNlnufcuXPk5eXRunVr4z4nJycaNGhQrOydK9YDHD16lNWrV+Pg4GDcQkJCMBgMJCQkAIVPbiUnJxMdHU27du1Yt24djRs3JiYmptzXomigpSzR0dEmcezatct4LDg4mCNHjrB3715CQ0Pp168fV69eLdbGpUuXCA0NpW/fvgwfPty4/852R44cWa6Yd+3aZVIvOjq6XPUMBgMA4eHhvP766zzxxBNMmTKF5557jmXLlpmUHTRoELGxsezcuZP69evTr18/srOzAcjKymLo0KF06NCBn376iT179tCkSRN69epFVlYWAMOHD2fgwIE8/fTTFdoHczLLk1LPPPNMmY9CajQaZs2axaxZs0ot4+Liwueff17meZo1a2byjS2EEEIIIYQQ4vGhs7bk5KwQs537XgQHB7N06VK0Wi2enp5YWVmxcePGu9YbNmwYISEhbN68me+//553332X+fPnM2bMmPsN3cje3t7kc3p6OiNGjGDs2LHFytapU8f4/3q9nrCwMMLCwpg9ezYhISHMnj2bbt26ERgYSGpqKklJScWezsrNzSU+Pp6QkLt/zXr37m0yWOfl5WUSd0BAAAEBAbRt25bAwEBWrlzJ1KlTjWWSkpIIDg6mffv2Jg+oACar/ZX3iaKWLVua1Ktdu3a56tWqVQsrKyuCgoJM9jdq1Ijdu3eb7HNycsLJyYnAwEDatm1LjRo1+Oqrr3jppZf4/PPPSUxMZN++fVhYFD4/9Pnnn1OjRg2+/vprBgwYwA8//MDGjRuNT4UppTAYDFhZWbFixQpeeuml++qDOZllUEoIIYQQQgghhLgbjUZzX6/QmUPRQMqdGjVqRH5+Pvv37ze+vnfjxg3i4uJMBjF8fHwYOXIkI0eOZOrUqXz88ceMGTPG+MTRnfM7+fv7Y21tzc8//2wcSEpNTeXMmTOlPkFT5KmnnuLkyZPF4iyLRqOhYcOG7N27F4AXX3yRyZMnM3/+fObPn29SdtmyZWRmZvLyyy/ftV29Xo9ery9XDAaDgZycHOPnS5cuERwcbFzRrmgQp8i99K+ITqe7r3parZZWrVoRFxdnsv/MmTP4+vqWWk8phVLK2K/MzEwsLCzQaDTGMkWfi57G2rdvn8n3wtdff83777/P3r178fLyuu8+mNPj8dMthBBCCCGEEEI8ZgIDAwkPD2f48OEsX74cvV7PlClT8PLyIjw8HIDx48fTo0cP6tevz82bN9m+fTuNGjUCwNfXF41Gw6ZNm+jZsyc6nQ69Xs/gwYOZNGkSLi4uuLm5ERkZWWxAoySTJ0+mbdu2jB49mmHDhmFvb8/JkyeJiYlhyZIlHDlyhMjISCIiIggKCkKr1bJz504++eQTJk+eDBQ+UTV37lzeeOMNbG1tiYiIwNramq+//ppp06Yxe/ZsmjRpYnLePw7YADRu3Bhra2uTfRkZGcyZM4fevXvj4eHB9evX+eijj7h06RJ9+/YFCgeknnnmGXx9fYmKiuLatWvG+u7u7mX2v+gpovT0dK5du8aRI0fQarXFnnK6093mxAaYNGkS/fv35+mnnyY4OJjvvvuO//73v+zYsQMofOVy7dq1dO/eHVdXVy5evMh7772HTqejZ8+eAHTr1o1JkyYxatQoxowZg8Fg4L333sPKyorg4GAA4/dFkYMHD2JhYVHset9PH8ymQtYBrKJkiWMhhBBC/JHkB6bkegghKkpZy8s/6gYPHqzCw8NLPJaSkqIiIiKUk5OT0ul0KiQkRJ05c8Z4fPTo0apevXrKxsZGubq6qoiICHX9+nXj8VmzZil3d3el0WjU4MGDlVJKpaWlqYEDByo7Ozvl7u6uFixYoFq3bq2mTJlirOfr66sWLlxYLJ4DBw6obt26KQcHB2Vvb6+aNWum5syZo5RS6tq1a2rs2LGqSZMmysHBQen1etW0aVMVFRWlCgoKTNrZsGGD6tSpk7K3t1eAAtSaNWtMyiQkJBiP/XG7cOFCsdiysrLU888/rzw9PZVWq1UeHh6qd+/e6sCBA8Yyq1atKrXNuympjq+vb5l1tm/fXmK9oq9FkZUrV6qAgABla2urmjdvrjZs2GA8dunSJdWjRw/l5uamrK2tlbe3txo4cKA6ffq0SRvff/+96tChg3JyclI1atRQzz77rNq3b1+psa1atUo5OTndtd/l7cO9Kutntrz5gUapB1znsgpLS0vDycmJ1NTUKjOzvRBCCCEejOQHpuR6CCEqSnZ2NgkJCfj5+ZksciXuLiMjAy8vL+bPn8/QoUMr/fwpKSl06dIFR0dHvv32W+zs7Co9BlH5yvqZLW9+YJbV94QQQgghhBBCCHF/YmNjWbNmDfHx8Rw+fJhBgwYBGF8JrGwuLi5s3bqVLl26sG/fPrPEIB5PMqeUEEIIIYQQQgjxmImKiiIuLg6tVkuLFi3YtWsXtWrVMls8NWvWZPr06WY7v3g8yaCUEEIIIYQQQgjxGHnyySc5dOiQucMQ4oHJ63tCCCGEEEIIIYQQotLJoJQQQgghhBBCCCGEqHQyKCWEEEIIIYQQQgghKp0MSgkhhBBCCCGEEEKISieDUkIIIYQQQgghhBCi0snqe0IIIYS4J8cvprLn7FUc2IOluk4zb2f0tpbFCyp154ff/1t8n2lZVdLREo+bllXFzlm7di/s7Pzu0hshhBBCCGEuMiglhBBCiHsy/J8HcbQ8zuRWiwFIvgDJZo6pJA76RjIoJYQQQgjxCJPX94QQQghxT1Iyc9Fr0wHINThi7xRKbbfnCrfaYb9vvY2be+3wO7Y/FW7ud27P4+7+PB7uL9yx9SncPF68Y+tr3Dw9+hXfPPv/vg3A03MAtjaeZr5SQgghqoshQ4ag0WjQaDRotVoCAgKYNWsW+fn5D9Tujh070Gg03Lp1q2ICLYeEhAQGDhyIp6cntra2eHt7Ex4ezunTp03Kbdq0ic6dO6PX67Gzs6NVq1asXr3apExiYiIajYYjR46U+/wzZsygYcOG2NvbU6NGDbp27cr+/ftN2hw6dCh+fn7odDrq1atHZGQkubm5ZbZ7+fJlBg4cSP369bGwsGD8+PHlimfp0qU0a9YMR0dHHB0dadeuHd9++63xeEpKCmPGjKFBgwbodDrq1KnD2LFjSU1NNZZZvXq18fvjj9vVq1eN5XJycnjrrbfw9fXFxsaGunXr8sknn5jE88EHHxjP5ePjw+uvv052dnaZffjyyy/p3r07NWvWvOevx8MmT0oJIYQQ4p4opdD8/rqcm0sjWjz1kZkjEkIIIcwvNDSUVatWkZOTwzfffMOoUaOwtrZm6tSp5g4NgNzcXLRabZll8vLy6NatGw0aNODLL7/Ew8ODixcv8u2335oMjC1evJjx48czefJkli5dilar5euvv2bkyJH88ssvREVF3Xec9evXZ8mSJfj7+5OVlcXChQvp3r07Z8+exdXVldOnT2MwGFi+fDkBAQH88ssvDB8+nIyMjDLPm5OTg6urK3/7299YuHBhuePx9vbmvffeIzAwEKUUn376KeHh4cTGxtK4cWOSkpJISkoiKiqKoKAgfvvtN0aOHElSUhLr168HoH///oSGhpq0O2TIELKzs3FzczPu69evH1euXGHlypUEBARw+fJlDAaD8fjnn3/OlClT+OSTT2jfvj1nzpwxDoguWLCg1D5kZGTQsWNH+vXrx/Dhw8vd90qhRKlSU1MVoFJTU80dihBCCPHI8J+6WfVdOFNt3eavDh0eZO5wKp3kB6bkegghKkpWVpY6efKkysrKMnco92zw4MEqPDzcZF+3bt1U27ZtVUpKioqIiFDOzs5Kp9Op0NBQdebMGWO5xMRE9dxzzylnZ2dlZ2engoKC1ObNm1VCQoKicAJF4zZ48GCllFJpaWlq4MCBys7OTrm7u6sFCxaozp07q3Hjxhnb9fX1VbNmzVIRERFKr9cb6+7atUt17NhR2draKm9vbzVmzBiVnp6ulFIqNjZWASoxMbHUvp4/f15ZW1urCRMmFDu2aNEiBaiffvpJKaWMfYiNjb33i/q7ot8zW7duLbXM/7N373Ex5/sfwF9TzTRTM01K6SKjVBRpXZaIbVu62a1214ZTm+zKao/CuoWDaMNhiyMcl/0R55xYh6XtZC25h8RSsqJIbTZFiUkXNTWf3x9t3zW6J8K+n4/HPE7f7/fz+Xzfn286fffd57J69Wpmbm7e6jaffVZt1aVLF/Z///d/TV7/73//ywQCAVMoFI1ev3//PuPz+exf//oXd+7QoUNMKpWyBw8eNNnutGnT2HvvvadybtasWczR0bFVcXfE9+Npzf3Mtvb9gKbvEUIIIaRNapV/jJTi0UoAhBBCXiTGgOryzvmobNjRdiKRCNXV1Zg0aRJ+/vlnxMfHIzk5GYwxjBkzBgqFAgAwbdo0VFVV4fTp07h69SpWrVoFsVgMMzMzfP/99wCAzMxMFBQUYN26dQCAWbNm4ezZs4iPj0diYiKSkpJw+fLlBjFERkbC3t4eqampWLx4MbKzs+Hu7o6xY8ciPT0de/bswZkzZxAcHAwAMDAwgJqaGvbt24fa2tpG+7Vv3z4oFArMmTOnwbWpU6dCLBZj9+7dz/Xs6lVXV2Pr1q2QSqWwt7dvspxcLoeenl6H3LM5tbW1+O6771BeXo5hw4Y1G4+Ojg40NBqfnPavf/0LWlpa+OSTT7hz8fHxGDx4MFavXg1TU1NYW1tjzpw5qKys5MoMHz4cly5dwoULFwAAt2/fxo8//ogxY8Z0UA9fPpq+RwghhJBWY7+/oPN4v7+o8ygpRQgh5AVSVAArOmmNwIV3AYF2m6sxxnDs2DEcPnwYHh4eiIuLw9mzZzF8+HAAQGxsLMzMzBAXFwcfHx/k5eVh7NixsLOzAwBYWFhwbdUnWgwNDaGrqwsAePz4MXbu3Ildu3Zh1KhRAICYmBiYmDR8Tu+99x5mz57NHQcGBsLPz49bT8nKygrR0dFwcnLCpk2bYGpqiujoaMybNw/Lli3D4MGD4ezsDD8/Py6urKwsSKVSGBsbN7ifQCCAhYUFsrKy2vzcnpaQkIAJEyagoqICxsbGSExMRNeuXRste+vWLaxfv/65pgy25OrVqxg2bBiePHkCsViMAwcOwNbWttGyxcXF+Prrr/HFF1802d62bdvg6+sLkUjEnbt9+zbOnDkDoVCIAwcOoLi4GH/961/x4MEDxMTEAAB8fX1RXFyMESNGgDGGmpoaBAUFYeHChR3b4ZeI3iQJIYQQ0mrK+lwUN1KK14nREEIIIa+OhIQEiMViCIVCeHh4YPz48Zg0aRI0NDQwdOhQrpy+vj569+6N69evAwCmT5+OiIgIODo6IiwsDOnp6c3e5/bt21AoFBgyZAh3TiqVonfv3g3KDh48WOX4ypUr2LFjB8RiMfdxc3ODUqlETk4OgLqRW4WFhYiNjcWwYcOwd+9e9O3bF4mJia1+Fi2tXQXUJeeejiMpKYm75uzsjLS0NJw7dw7u7u4YN26cyoLg9fLz8+Hu7g4fHx+VtZKebjcoKKhVMSclJanUi42N5a717t0baWlpSElJwZdffomAgABkZGQ0aKO0tBTvv/8+bG1tsXTp0kbvk5ycjOvXr2Py5Mkq55VKJXg8HmJjYzFkyBCMGTMGa9aswc6dO7nRUidPnsSKFSvwz3/+E5cvX8b+/ftx8OBBfP311y0+01cVjZQihBBCSKspfx8ppUYjpQghhLwMfK26EUudde82cHZ25hb9NjExgYaGBuLj41usFxgYCDc3Nxw8eBBHjhzBypUrERUVhZCQkPZGztHWVh3pVVZWhqlTp2L69OkNyvbo0YP7WiKRwNPTE56enoiIiICbmxsiIiLg4uICKysryOVy3L17t8HorOrqamRnZ8PNza3F2Ly8vFSSdaampipxW1pawtLSEg4ODrCyssK2bdtUFo2/e/cunJ2dMXz4cGzdulWl7ad3l9PR0WkxFqAugfd0vW7dunFf1++oCACDBg3CxYsXsW7dOmzZsoUr8/jxY7i7u0MikeDAgQPg8/mN3uf//u//8NZbb2HQoEEq542NjWFqagqpVMqds7GxAWMMv/32G6ysrLB48WL4+/sjMDAQAGBnZ4fy8nJ88cUX+Nvf/tbsM31VUVKKEEIIIa1Wq6wfIaX8/X8pKUUIIeQF4vHaNYWuM9QnUp5mY2ODmpoapKSkcNP3Hjx4gMzMTJXpX2ZmZggKCkJQUBAWLFiAb7/9FiEhIdyIo6fXd7KwsACfz8fFixe5RJJcLkdWVhbeeeedZmMcOHAgMjIyGsTZHB6Phz59+uDcuXMAgE8++QShoaGIiopCVFSUStnNmzejoqICEydObLFdiUQCiUTSqhiUSiWqqqq44/z8fDg7O2PQoEGIiYmBmprq+0hb+ldPJBK1ut6z8ZSWlsLNzQ2ampqIj4+HUChstF5ZWRn++9//YuXKlQ2uOTo6Yu/evSgrK4NYLAZQN1VSTU0N3bt3BwBUVFQ06Ku6ujqAummjbXmmrwpKShFCCCGk1erXfKU1pQghhJCWWVlZwdvbG1OmTMGWLVsgkUgwf/58mJqawtvbGwAwc+ZMeHh4wNraGg8fPsSJEydgY2MDAJDJZODxeEhISMCYMWMgEokgkUgQEBCAuXPnQk9PD4aGhggLC4Oamhp4vOan1YeGhsLBwQHBwcEIDAyEtrY2MjIykJiYiA0bNiAtLQ1hYWHw9/eHra0tBAIBTp06he3btyM0NBRA3Yiq1atXY86cORAKhfD39wefz8cPP/yAhQsXIiIiAv369VO5b2ZmZoNY+vbt22A0UXl5OZYvXw4vLy8YGxujuLgYGzduRH5+Pnx8fADUJaTeffddyGQyREZGoqioiKtvZGTUbP/rR0KVlZWhqKgIaWlpEAgETa4PBQALFiyAh4cHevTogcePH2PXrl04efIkDh8+DKAuIeXq6oqKigr85z//QWlpKUpLSwHULRxfnzQCgD179qCmpgaffvppg/v4+vri66+/xmeffYZly5ahuLgYc+fOxeeff86tPeXp6Yk1a9ZgwIABGDp0KG7duoXFixfD09NT5T7PKikpQV5eHu7erRt1WP/9MDIyavGZvXAdsg/gG4q2OCaEEEJUlT1RMFloAvOPXsCOHrNgV65M7eyQXjp6P1BFz4MQ0lGa217+VRcQEMC8vb0bvVZSUsL8/f2ZVCplIpGIubm5saysLO56cHAw69WrF9PU1GQGBgbM39+fFRcXc9fDw8OZkZER4/F4LCAggDHGWGlpKfP19WVaWlrMyMiIrVmzhg0ZMoTNnz+fqyeTydjatWsbxHPhwgXm4uLCxGIx09bWZv3792fLly9njDFWVFTEpk+fzvr168fEYjGTSCTMzs6ORUZGstraWpV24uLi2MiRI5m2tjYDwACw3bt3q5TJycnhrj37uXPnToPYKisr2UcffcRMTEyYQCBgxsbGzMvLi124cIErExMT02SbLWmsjkwma7bO559/zmQyGRMIBMzAwICNGjWKHTlyhLt+4sSJJuPJyclRaWvYsGHM19e3yXtdv36djR49molEIta9e3c2a9YsVlFRwV1XKBRs6dKlrFevXkwoFDIzMzP217/+lT18+LDZPjT1zMLCwpqt15LmfmZb+37AY+w597l8g5WWlkIqlXLbORJCCCF/dqVPFOi/9Aicup/BRNv/wsDADf3t/tnZYb1U9H6gip4HIaSjPHnyBDk5OTA3N29y+hNpXHl5OUxNTREVFdVgAe2XoaSkBKNGjYKOjg4OHToELa22rcdFXk/N/cy29v2AxtwTQgghpNVY3VJS3ELntKYUIYQQ8vKlpqZi9+7dyM7OxuXLl+Hn5wcA3JTAl01PTw9Hjx7FqFGjkJyc3CkxkNcTrSlFCCGEkFar332PB25xqU6MhhBCCPnzioyMRGZmJgQCAQYNGoSkpCR07dq10+LR19fHkiVLOu3+5PVESSlCCCGEtBqXlKKRUoQQQkinGTBgAC5dutTZYRDy3OhNkhBCCCGtVvt7UkqN9/s8Ptp9jxBCCCGEtBO9SRJCCCGk1eq3R1H/fdYejZQihBBCCCHtRW+ShBBCCGk1JTdSitaUIoQQQgghz4eSUoQQQghptVrl70kpNVpTihBCCCGEPB96kySEEEJIqz07fY/WlCKEEEIIIe1Fb5KEEEIIabVnp+/xQNP3CCGEEEJI+1BSihBCCCGtpuSWkqr/gl4lCCGEEEJI+9CbJCGEEEJarX5NKfX6kVKUlCKEEEIwadIk8Hg88Hg8CAQCWFpaIjw8HDU1Nc/V7smTJ8Hj8fDo0aOOCbQVcnJy4OvrCxMTEwiFQnTv3h3e3t64ceOGSrmEhAQ4OTlBIpFAS0sLb7/9Nnbs2KFSJjc3FzweD2lpaa2+/9KlS9GnTx9oa2ujS5cuGD16NFJSUlTanDx5MszNzSESidCrVy+EhYWhurq62XYLCgrg6+sLa2trqKmpYebMma2Oqd7f//538Hi8BnWzs7Px0UcfwcDAADo6Ohg3bhzu3bunUmb58uUYPnw4tLS0oKur22j79f+Gnv5899133PX9+/fDxcWFu8+wYcNw+PDhFuPev38/XF1doa+v3+bvx4tGb5KEEEIIaTX27O579CpBCCGEAADc3d1RUFCAmzdvYvbs2Vi6dCm++eabzg6L01LSBgAUCgVcXFwgl8uxf/9+ZGZmYs+ePbCzs1NJjK1fvx7e3t5wdHRESkoK0tPTMWHCBAQFBWHOnDnPFae1tTU2bNiAq1ev4syZM+jZsydcXV1RVFQEALhx4waUSiW2bNmCa9euYe3atdi8eTMWLlzYbLtVVVUwMDDAokWLYG9v3+a4Ll68iC1btqB///4q58vLy+Hq6goej4fjx4/j7NmzqK6uhqenJ5RKJVeuuroaPj4++PLLL5u9T0xMDAoKCrjPhx9+yF07ffo0XFxc8OOPP+LSpUtwdnaGp6cnUlNTm22zvLwcI0aMwKpVq9rc7xeOkSbJ5XIGgMnl8s4OhRBCCHkl3CgoZbLQBDZ/RzA7esyC3cgM6+yQXjp6P1BFz4MQ0lEqKytZRkYGq6ys7OxQ2iwgIIB5e3urnHNxcWEODg6spKSE+fv7M11dXSYSiZi7uzvLysriyuXm5rIPPviA6erqMi0tLWZra8sOHjzIcnJyGACVT0BAAGOMsdLSUubr68u0tLSYkZERW7NmDXNycmIzZszg2pXJZCw8PJz5+/sziUTC1U1KSmIjRoxgQqGQde/enYWEhLCysjLGGGOpqakMAMvNzW2yr3l5eYzP57NZs2Y1uBYdHc0AsPPnzzPGGNeH1NTUtj/U39X/njl69GiTZVavXs3Mzc1b3eazz6oljx8/ZlZWViwxMbFB3cOHDzM1NTWV34OPHj1iPB6PJSYmNmgrJiaGSaXSRu8DgB04cKDVcTHGmK2tLVu2bFmrynbE9+Npzf3Mtvb9gP68SQghhJAWMcaQkH4Xe3++A4BGShFCCHk5GGOoUFR0yofVbznbTiKRCNXV1Zg0aRJ+/vlnxMfHIzk5GYwxjBkzBgqFAgAwbdo0VFVV4fTp07h69SpWrVoFsVgMMzMzfP/99wCAzMxMFBQUYN26dQCAWbNm4ezZs4iPj0diYiKSkpJw+fLlBjFERkbC3t4eqampWLx4MbKzs+Hu7o6xY8ciPT0de/bswZkzZxAcHAwAMDAwgJqaGvbt24fa2tpG+7Vv3z4oFIpGR0RNnToVYrEYu3fvfq5nV6+6uhpbt26FVCptdnSTXC6Hnp5eh9yzMdOmTcP777+P0aNHN7hWVVUFHo8HTU1N7pxQKISamhrOnDnTrnt17doVQ4YMwfbt25v9d6hUKvH48eMX2vcXTaOzAyCEEELIq+9y3iME7/pjaLhAvW7XPVpTihBCyItUWVOJobuGdsq9U3xToMXXanM9xhiOHTuGw4cPw8PDA3FxcTh79iyGDx8OAIiNjYWZmRni4uLg4+ODvLw8jB07FnZ2dgAACwsLrq36ZIOhoSG3DtHjx4+xc+dO7Nq1C6NGjQJQN+XLxMSkQSzvvfceZs+ezR0HBgbCz8+PWxPJysoK0dHRcHJywqZNm2Bqaoro6GjMmzcPy5Ytw+DBg+Hs7Aw/Pz8urqysLEilUhgbGze4n0AggIWFBbKystr83J6WkJCACRMmoKKiAsbGxkhMTETXrl0bLXvr1i2sX78ekZGRz3XPpnz33Xe4fPkyLl682Oh1BwcHaGtrIzQ0FCtWrABjDPPnz0dtbS0KCgradK/w8HC899570NLSwpEjR/DXv/4VZWVlmD59eqPlIyMjUVZWhnHjxrW5X68KepMkhBBCSIseltetQ9FFi4+PB5pihJU+AIBHrxKEEEIIgLpEilgshlAohIeHB8aPH49JkyZBQ0MDQ4f+kVjT19dH7969cf36dQDA9OnTERERAUdHR4SFhSE9Pb3Z+9y+fRsKhQJDhgzhzkmlUvTu3btB2cGDB6scX7lyBTt27IBYLOY+bm5uUCqVyMnJAVA3UqewsBCxsbEYNmwY9u7di759+yIxMbHVz0IgELRYJjY2ViWOpKQk7pqzszPS0tJw7tw5uLu7Y9y4cbh//36DNvLz8+Hu7g4fHx9MmTKFO/90u0FBQa2KOSkpSaVebGws7ty5gxkzZiA2NhZCobDRegYGBti7dy/+97//QSwWQyqV4tGjRxg4cCDU1Nr2nrR48WI4OjpiwIABCA0Nxbx585pcl2zXrl1YtmwZ/vvf/8LQ0BBA88/0VUUjpQghhBDSovqB4zJ9bawZ9xZu3voJeWUAeLzODIsQQsgbTqQhQopvSssFX9C928LZ2RmbNm2CQCCAiYkJNDQ0EB8f32K9wMBAuLm54eDBgzhy5AhWrlyJqKgohISEtDd0jra2tspxWVkZpk6d2ujImx49enBfSyQSeHp6wtPTExEREXBzc0NERARcXFxgZWUFuVyOu3fvNhidVV1djezsbLi5ubUYm5eXl0qyztTUVCVuS0tLWFpawsHBAVZWVti2bRsWLFjAlbl79y6cnZ0xfPhwbN26VaXtp3eX09HRaTEWoC6B93S9bt264dixY7h//z4GDhzIna+trcXp06exYcMGVFVVQV1dHa6ursjOzkZxcTE0NDSgq6sLIyMjlVFv7TF06FB8/fXXqKqqUpke+N133yEwMBB79+5VmVLY3DN9VVFSihBCCCEtUv6+ngFfrRq/5e+CXF63bgWNlCKEEPIi8Xi8dk2h6wz1iZSn2djYoKamBikpKdz0vQcPHiAzMxO2trZcOTMzMwQFBSEoKAgLFizAt99+i5CQEG7E0dPrO1lYWIDP5+PixYtcIkkulyMrKwvvvPNOszEOHDgQGRkZDeJsDo/HQ58+fXDu3DkAwCeffILQ0FBERUUhKipKpezmzZtRUVGBiRMnttiuRCKBRCJpVQxKpRJVVVXccX5+PpydnTFo0CDExMQ0GJHUlv7VE4lEDeqNGjUKV69eVTn32WefoU+fPggNDYW6urrKtfophsePH8f9+/fh5eXV5jielpaWhi5duqgkpHbv3o3PP/8c3333Hd5//32V8m15pq8KSkoRQgghpEX1a2xa6VxAZuYff41UU389/kOBEEII6QxWVlbw9vbGlClTsGXLFkgkEsyfPx+mpqbw9vYGAMycORMeHh6wtrbGw4cPceLECdjY2AAAZDIZeDweEhISMGbMGIhEIkgkEgQEBGDu3LnQ09ODoaEhwsLCoKamBl4LI5hDQ0Ph4OCA4OBgBAYGQltbGxkZGUhMTMSGDRuQlpaGsLAw+Pv7w9bWFgKBAKdOncL27dsRGhoKoG5E1erVqzFnzhwIhUL4+/uDz+fjhx9+wMKFCxEREYF+/fqp3DczM7NBLH379gWfz1c5V15ejuXLl8PLywvGxsYoLi7Gxo0bkZ+fDx8fHwB1Cal3330XMpkMkZGRKCoq4uobGRk12//6kVBlZWUoKipCWloaBAKBSoLwaRKJpEFftLW1oa+vr3I+JiYGNjY2MDAwQHJyMmbMmIGvvvpKZUplXl4eSkpKkJeXh9raWi4WS0tLiMVi/O9//8O9e/fg4OAAoVCIxMRErFixQmVB+V27diEgIADr1q3D0KFDUVhYCKAuoSaVSpvsd/197969C+CP74eRkVGLz+yF65B9AN9QtMUxIYQQUufH9LtMFprAvv5uITt6zIKdPfcey8pazp48udfZob109H6gip4HIaSjNLe9/KsuICCAeXt7N3qtpKSE+fv7M6lUykQiEXNzc2NZWVnc9eDgYNarVy+mqanJDAwMmL+/PysuLuauh4eHMyMjI8bj8VhAQABjjLHS0lLm6+vLtLS0mJGREVuzZg0bMmQImz9/PldPJpOxtWvXNojnwoULzMXFhYnFYqatrc369+/Pli9fzhhjrKioiE2fPp3169ePicViJpFImJ2dHYuMjGS1tbUq7cTFxbGRI0cybW1thrqZ/mz37t0qZXJycrhrz37u3LnTILbKykr20UcfMRMTEyYQCJixsTHz8vJiFy5c4MrExMQ02WZLGqsjk8larPc0JycnNmPGDJVzoaGhrFu3bozP5zMrKysWFRXFlEqlSpmAgIBG73/ixAnGGGOHDh1ib731Fvd9sbe3Z5s3b1Z57k5OTo22Uf/voilNPbOwsLA29f1Zzf3Mtvb9gMfYc+5z+QYrLS2FVCqFXC5v9TxUQggh5E3049UC/DX2MqYOPI0hXffBxGQ8bPqs6OywOgW9H6ii50EI6ShPnjxBTk4OzM3Nm1xUmjSuvLwcpqamiIqKwuTJk1/6/UtKSjBq1Cjo6Ojg0KFD0NKikdR/Bs39zLb2/YAWgiCEEEJIi+r/hKWhpgAAqKm1vKsOIYQQQl6M1NRU7N69G9nZ2bh8+TL8/PwAgJsS+LLp6enh6NGjGDVqFJKTkzslBvJ6ojWlCCGEENKi+oXO1Xm/J6V4lJQihBBCOlNkZCQyMzMhEAgwaNAgJCUlcQttdwZ9fX0sWbKk0+5PXk+UlCKEEEJIi+rn+mvwagAAamqaTRcmhBBCyAs1YMAAXLp0qbPDIOS50fQ9QgghhLSIcSOl6pNSNFKKEEIIIYQ8H0pKEUIIIaRFrLYUb3e7DF1B3VbClJQihBBCCCHPi6bvEUIIIaRFwopvEGR/ijtWU6dddQghhBBCyPOhpBQhhBBCWqRWmw8AeFBlDhszWxgauHdyRIQQQggh5HVH0/cIIYQQ0jJWBgBIefA57PpFQ1PToJMDIoQQQgghrzsaKUUIIYSQRjHG8ODBCVRV3YcakwMAFEzUyVERQgghhJA3BSWlCCGEENKohw+TcSV9CgCA9/s5BZN0XkCEEEIIIeSNQtP3CCGEENKoyso8AIBAYIAqDUfszfJCtVLayVERQgghr55JkyaBx+OBx+NBIBDA0tIS4eHhqKmpea52T548CR6Ph0ePHnVMoK2Qk5MDX19fmJiYQCgUonv37vD29saNGzdUyiUkJMDJyQkSiQRaWlp4++23sWPHDpUyubm54PF4SEtLa/X9ly5dij59+kBbWxtdunTB6NGjkZKSotLm5MmTYW5uDpFIhF69eiEsLAzV1dXNtltQUABfX19YW1tDTU0NM2fObHVM+fn5+PTTT6Gvrw+RSAQ7Ozv8/PPP3PWnv//1H3d31fU3e/bs2aDM3//+d+56ZmYmnJ2d0a1bNwiFQlhYWGDRokVQKBQq7Tx69AjTpk2DsbExNDU1YW1tjR9//LHZ+Pfv3w9XV1fo6+u3+fvxotFIKUIIIYQ0qqambsqenp4jfiubgZ9yr2K0Da+FWoQQQsifk7u7O2JiYlBVVYUff/wR06ZNA5/Px4IFCzo7NABAdXU1BAJBs2UUCgVcXFzQu3dv7N+/H8bGxvjtt99w6NAhlcTY+vXrMXPmTISGhmLTpk0QCAT44YcfEBQUhF9++QWRkZHtjtPa2hobNmyAhYUFKisrsXbtWri6uuLWrVswMDDAjRs3oFQqsWXLFlhaWuKXX37BlClTUF5e3ux9q6qqYGBggEWLFmHt2rWtjufhw4dwdHSEs7MzDh06BAMDA9y8eRNdunRRKVf//a+nqanZoK3w8HBMmTKFO5ZI/hiBzufzMXHiRAwcOBC6urq4cuUKpkyZAqVSiRUrVgCo+x66uLjA0NAQ+/btg6mpKX799Vfo6uo224fy8nKMGDEC48aNU7n/K4GRJsnlcgaAyeXyzg6FEEIIeWkKCn5gp04PZseO92FHj1mwzMxwFnv+VyYLTWCBOy92dnidjt4PVNHzIIR0lMrKSpaRkcEqKys7O5Q2CwgIYN7e3irnXFxcmIODAyspKWH+/v5MV1eXiUQi5u7uzrKysrhyubm57IMPPmC6urpMS0uL2drasoMHD7KcnBwGQOUTEBDAGGOstLSU+fr6Mi0tLWZkZMTWrFnDnJyc2IwZM7h2ZTIZCw8PZ/7+/kwikXB1k5KS2IgRI5hQKGTdu3dnISEhrKysjDHGWGpqKgPAcnNzm+xrXl4e4/P5bNasWQ2uRUdHMwDs/PnzjDHG9SE1NbXtD/V39b9njh492mSZ1atXM3Nz81a3+eyzak5oaCgbMWJEs2Ua+/4/SyaTsbVr17YuwN999dVXKvfetGkTs7CwYNXV1W1qp15HfD+e1tzPbGvfD2j6HiGEEEJU3LufAIWiBIzVDYPXkb4FBgbgj7WlCCGEkJeBMQZlRUWnfBhjzxW7SCRCdXU1Jk2ahJ9//hnx8fFITk4GYwxjxozhpmVNmzYNVVVVOH36NK5evYpVq1ZBLBbDzMwM33//PYC6qV0FBQVYt24dAGDWrFk4e/Ys4uPjkZiYiKSkJFy+fLlBDJGRkbC3t0dqaioWL16M7OxsuLu7Y+zYsUhPT8eePXtw5swZBAcHAwAMDAygpqaGffv2oba2ttF+7du3DwqFAnPmzGlwberUqRCLxdi9e/dzPbt61dXV2Lp1K6RSKezt7ZssJ5fLoaen1yH3fFZ8fDwGDx4MHx8fGBoaYsCAAfj2228blDt58iQMDQ3Ru3dvfPnll3jw4EGDMn//+9+hr6+PAQMG4Jtvvml2euetW7fw008/wcnJSSWWYcOGYdq0aejWrRv69euHFStWNPm9eh3Q9D1CCCGEqKipeQwAsLZaDEPD96GpaQBlzq8AADUepaUIIYS8PKyyEpkDB3XKvXtfvgSellab6zHGcOzYMRw+fBgeHh6Ii4vD2bNnMXz4cABAbGwszMzMEBcXBx8fH+Tl5WHs2LGws7MDAFhYWHBt1SdaDA0NuSlajx8/xs6dO7Fr1y6MGjUKABATEwMTE5MGsbz33nuYPXs2dxwYGAg/Pz9uPSUrKytER0fDyckJmzZtgqmpKaKjozFv3jwsW7YMgwcPhrOzM/z8/Li4srKyIJVKYWxs3OB+AoEAFhYWyMrKavNze1pCQgImTJiAiooKGBsbIzExEV27dm207K1bt7B+/frnmjLYnNu3b2PTpk2YNWsWFi5ciIsXL2L69OkQCAQICAgAUDd17+OPP4a5uTmys7OxcOFCeHh4IDk5Gerq6gCA6dOnY+DAgdDT08O5c+ewYMECFBQUYM2aNSr3Gz58OC5fvoyqqip88cUXCA8PV4nl+PHj8PPzw48//ohbt27hr3/9KxQKBcLCwl5I/180GilFCCGEEBX1SSktLXNoahrUnfz9r8WUkyKEEEIal5CQALFYDKFQCA8PD4wfPx6TJk2ChoYGhg4dypXT19dH7969cf36dQB1yYqIiAg4OjoiLCwM6enpzd7n9u3bUCgUGDJkCHdOKpWid+/eDcoOHjxY5fjKlSvYsWMHxGIx93Fzc4NSqUROTg6AupFbhYWFiI2NxbBhw7B371707dsXiYmJrX4WLa1dBdQl556OIykpibvm7OyMtLQ0nDt3Du7u7hg3bhzu37/foI38/Hy4u7vDx8dHZa2kp9sNCgpqVcxJSUkq9WJjYwEASqUSAwcOxIoVKzBgwAB88cUXmDJlCjZv3szVnTBhAry8vGBnZ4cPP/wQCQkJuHjxIk6ePMmVmTVrFt599130798fQUFBiIqKwvr161FVVaUSx549e3D58mXs2rULBw8eVEm2KZVKGBoaYuvWrRg0aBDGjx+Pv/3tb1wszT3TVxWNlCKEEEIIAODqL9NRXHwMSuUTAICGxh+Lbyp/n8FAI6UIIYS8TDyRCL0vX+q0e7eFs7Mzt+i3iYkJNDQ0EB8f32K9wMBAuLm54eDBgzhy5AhWrlyJqKgohISEtDd0jra2tspxWVkZpk6diunTpzco26NHD+5riUQCT09PeHp6IiIiAm5uboiIiICLiwusrKwgl8tx9+7dBqOzqqurkZ2dDTc3txZj8/LyUknWmZqaqsRtaWkJS0tLODg4wMrKCtu2bVNZNP7u3btwdnbG8OHDsXXrVpW2n95dTkdHp8VYgLoE3tP1unXrBgAwNjaGra2tSlkbGxtuamVjLCws0LVrV9y6dYsbzfasoUOHoqamBrm5uSoJRTMzMwCAra0tamtr8cUXX2D27NlQV1eHsbEx+Hw+N/qqPpbCwkJUV1c3+0xfVZSUIoQQQghqa6tw//5B7lhDQxdaWr24Y25dDcpJEUIIeYl4PF67ptB1hvpEytNsbGxQU1ODlJQUbvregwcPkJmZqZLoMDMzQ1BQEIKCgrBgwQJ8++23CAkJ4UYcPb1mkIWFBfh8Pi5evMglkuRyObKysvDOO+80G+PAgQORkZHRIM7m8Hg89OnTB+fOnQMAfPLJJwgNDUVUVBSioqJUym7evBkVFRWYOHFii+1KJBKV3eeao1QqVUYU5efnw9nZGYMGDUJMTAzU1FQngbWlf/VEIlGj9RwdHZGZmalyLisrCzKZrMm2fvvtNzx48KDRKY710tLSoKamBkNDwybLKJVKKBQKKJVKqKurw9HREbt27YJSqeT6nJWVBWNjYwgEAggEglY/01cFJaUIIYQQgprax79/xcPwYScgEHSFuvoffyFm3FVCCCGEtJaVlRW8vb0xZcoUbNmyBRKJBPPnz4epqSm8vb0BADNnzoSHhwesra3x8OFDnDhxAjY2NgAAmUwGHo+HhIQEjBkzBiKRCBKJBAEBAZg7dy709PRgaGiIsLAwqKmpgdfCiObQ0FA4ODggODgYgYGB0NbWRkZGBhITE7FhwwakpaUhLCwM/v7+sLW1hUAgwKlTp7B9+3aEhoYCqBtRtXr1asyZMwdCoRD+/v7g8/n44YcfsHDhQkRERKBfv34q9302qQMAffv2BZ/PVzlXXl6O5cuXw8vLC8bGxiguLsbGjRuRn58PHx8fAHUJqXfffRcymQyRkZEoKiri6hsZGTXb//qRUGVlZSgqKkJaWhoEAkGDkVBP++qrrzB8+HCsWLEC48aNw4ULF7B161ZudFZZWRmWLVuGsWPHwsjICNnZ2Zg3bx4sLS25EWPJyclISUmBs7MzJBIJkpOT8dVXX+HTTz9Fly5dANRNvePz+bCzs4OmpiZ+/vlnLFiwAOPHj+ee05dffokNGzZgxowZCAkJwc2bN7FixYpGR749raSkBHl5ebh79y6AP74fRkZGLT6zF65D9gF8Q9EWx4QQQv4MFIoy9vDhRXb0mAU7ecq+0TL/l3SbyUITWMiuyy83uFcQvR+ooudBCOkozW0v/6oLCAhg3t7ejV4rKSlh/v7+TCqVMpFIxNzc3FhWVhZ3PTg4mPXq1YtpamoyAwMD5u/vz4qLi7nr4eHhzMjIiPF4PBYQEMAYY6y0tJT5+voyLS0tZmRkxNasWcOGDBnC5s+fz9WTyWRs7dq1DeK5cOECc3FxYWKxmGlra7P+/fuz5cuXM8YYKyoqYtOnT2f9+vVjYrGYSSQSZmdnxyIjI1ltba1KO3FxcWzkyJFMW1uboe7vV2z37t0qZXJycrhrz37u3LnTILbKykr20UcfMRMTEyYQCJixsTHz8vJiFy5c4MrExMQ02WZLGqsjk8larPe///2P9evXj2lqarI+ffqwrVu3ctcqKiqYq6srMzAwYHw+n8lkMjZlyhRWWFjIlbl06RIbOnQok0qlTCgUMhsbG7ZixQr25MkTrsx3333HBg4cyH1fbG1t2YoVKxr8PJw7d44NHTqUaWpqMgsLC7Z8+XJWU1PTbPxNPbOwsLAW+96c5n5mW/t+wGPsOfe5fIOVlpZCKpVCLpe3eh4qIYQQ8jopK7+Jixc/5NaREmqawNGx4aKY/5d0GxEHr8P7LROsmzDgZYf5SqH3A1X0PAghHeXJkyfIycmBubk5hEJhZ4fzWikvL4epqSmioqIwefLkl37/kpISjBo1Cjo6Ojh06BC0XpMpl+T5NPcz29r3A9p9jxBCCPkTKy29wiWkeDw+unXzbLQcLSlFCCGEvDpSU1Oxe/duZGdn4/Lly/Dz8wMAbkrgy6anp4ejR49i1KhRSE5O7pQYyOuJ1pQihBBC/sRqaurWkjI0fB92/aKbLMd+X1WKdt8jhBBCXg2RkZHIzMyEQCDAoEGDkJSUhK5du3ZaPPr6+liyZEmn3Z+8nigpRQghhPwJMcZQXp6FiorbAAC+RvPTrrjJ/pSTIoQQQjrdgAEDcOnSpc4Og5DnRkkpQggh5E8o+3YUfv11E3esodH89sHK35NSNFKKEEIIIYR0FEpKEUIIIX9Cjx//AgDQ0NCFpqYBDA09mi1fP32PUlKEEEIIIaSjUFKKEEII+ROqqSkFANjarIKBwegWy3MLnVNWihBCCCGEdBBKShFCCCF/IvfuHUTJw7OoqMgBAGjwpa2qxxgtdE4IIYQQQjoWJaUIIYSQPwmlUoFrGXPAWDV3TqjZrVV1aaQUIYQQQgjpaJSUIoQQQv4kFIpHvyek1GBhMRPaWpYQiXq0qq6SS0pRVooQQgghhHQMSkoRQgghfwJ37+5FSckZAACfrwvzntPaVJ8WOieEEEIIIR1NrbMDIIQQQsiLVVV1H9dvzMe9+wkAAKHQuM1t0PQ9QgghpGmTJk0Cj8cDj8eDQCCApaUlwsPDUVNT81ztnjx5EjweD48ePeqYQFshJycHvr6+MDExgVAoRPfu3eHt7Y0bN26olEtISICTkxMkEgm0tLTw9ttvY8eOHSplcnNzwePxkJaW1ur7L126FH369IG2tja6dOmC0aNHIyUlRaXNyZMnw9zcHCKRCL169UJYWBiqq6ubaRUoKCiAr68vrK2toaamhpkzZ7YqntraWixevFjlfl9//TW33iYA7N+/H66urtDX12+yv9nZ2fjoo49gYGAAHR0djBs3Dvfu3Wtzv9LT0zFy5EgIhUKYmZlh9erVLfbh9OnT8PT0hImJCXg8HuLi4lrV95eBklKEEELIG666uggAoK4uhoX5TNjafNPmNmih81fHxo0b0bNnTwiFQgwdOhQXLlxotvzevXvRp08fCIVC2NnZ4ccff2yybFBQEHg8Hv7xj390cNSEEPLmc3d3R0FBAW7evInZs2dj6dKl+Oabtv/OfVFaStoAgEKhgIuLC+RyOfbv34/MzEzs2bMHdnZ2Komx9evXw9vbG46OjkhJSUF6ejomTJiAoKAgzJkz57nitLa2xoYNG3D16lWcOXMGPXv2hKurK4qK6t5nbty4AaVSiS1btuDatWtYu3YtNm/ejIULFzbbblVVFQwMDLBo0SLY29u3Op5Vq1Zh06ZN2LBhA65fv45Vq1Zh9erVWL9+PVemvLwcI0aMwKpVqxpto7y8HK6uruDxeDh+/DjOnj2L6upqeHp6QqlUtrpfpaWlcHV1hUwmw6VLl/DNN99g6dKl2Lp1a7N9KC8vh729PTZu3Njqfr80jDRJLpczAEwul3d2KIQQQkib1dZWs3v3f2JZN1eyo8csWPJ593a3FXn4BpOFJrAlcVc7MMLXU2e+H3z33XdMIBCw7du3s2vXrrEpU6YwXV1ddu/evUbLnz17lqmrq7PVq1ezjIwMtmjRIsbn89nVqw2/j/v372f29vbMxMSErV27ttUx0fsSIaSjVFZWsoyMDFZZWdnZobRZQEAA8/b2Vjnn4uLCHBwcWElJCfP392e6urpMJBIxd3d3lpWVxZXLzc1lH3zwAdPV1WVaWlrM1taWHTx4kOXk5DAAKp+AgADGGGOlpaXM19eXaWlpMSMjI7ZmzRrm5OTEZsyYwbUrk8lYeHg48/f3ZxKJhKublJTERowYwYRCIevevTsLCQlhZWVljDHGUlNTGQCWm5vbZF/z8vIYn89ns2bNanAtOjqaAWDnz59njDGuD6mpqW1/qL+r/z1z9OjRJsusXr2amZubt7rNZ59Vc95//332+eefq5z7+OOPmZ+fX4OyTfX38OHDTE1NTeV35aNHjxiPx2OJiYlN3vvZfv3zn/9kXbp0YVVVVdy50NBQ1rt371b1hTHGALADBw60unxzmvuZbe37AY2UIoQQQt5Q9+79D1ev/hV5ed8CAAQC/Xa3pfx9pBQtdN651qxZgylTpuCzzz6Dra0tNm/eDC0tLWzfvr3R8uvWrYO7uzvmzp0LGxsbfP311xg4cCA2bNigUi4/Px8hISGIjY0Fn89/GV0hhJBWYYxBUVXbKR/21PSs9hCJRKiursakSZPw888/Iz4+HsnJyWCMYcyYMVAoFACAadOmoaqqCqdPn8bVq1exatUqiMVimJmZ4fvvvwcAZGZmoqCgAOvWrQMAzJo1C2fPnkV8fDwSExORlJSEy5cvN4ghMjIS9vb2SE1NxeLFi5GdnQ13d3eMHTsW6enp2LNnD86cOYPg4GAAgIGBAdTU1LBv3z7U1tY22q99+/ZBoVA0OiJq6tSpEIvF2L1793M9u3rV1dXYunUrpFJps6Ob5HI59PT0OuSezxo+fDiOHTuGrKwsAMCVK1dw5swZeHh4tLqNqqoq8Hg8aGpqcueEQiHU1NRw5syZJus926/k5GS88847EAgE3Dk3NzdkZmbi4cOHbenWK4MWOieEEELeUJWVdwAAQmF3SMQ2MDP7rM1tXMgpwcH0u7iUV/eiQzmpzlNdXY1Lly5hwYIF3Dk1NTWMHj0aycnJjdZJTk7GrFmzVM65ubmprCWhVCrh7++PuXPnom/fvi3GUVVVhaqqKu64tLS0jT0hhJDWq6lWYuuMU51y7y/WOYGvqd7meowxHDt2DIcPH4aHhwfi4uJw9uxZDB8+HAAQGxsLMzMzxMXFwcfHB3l5eRg7dizs7OwAABYWFlxb9QkJQ0ND6OrqAgAeP36MnTt3YteuXRg1ahQAICYmBiYmJg1iee+99zB79mzuODAwEH5+ftx6SlZWVoiOjoaTkxM2bdoEU1NTREdHY968eVi2bBkGDx4MZ2dn+Pn5cXFlZWVBKpXC2LjhGpUCgQAWFhZcAqe9EhISMGHCBFRUVMDY2BiJiYno2rVro2Vv3bqF9evXIzIy8rnu2ZT58+ejtLQUffr0gbq6Ompra7F8+XL4+fm1ug0HBwdoa2sjNDQUK1asAGMM8+fPR21tLQoKChqt01i/CgsLYW5urlKuW7du3LUuXbq0o4edi0ZKEUIIIW+omtrHAIBuhu+jf//N6NJlaJvbWLA/HTuTf8Uv+XWJBx0hjaLpLMXFxaitreVePut169YNhYWFjdYpLCxssfyqVaugoaGB6dOntyqOlStXQiqVch8zM7M29oQQQt5MCQkJEIvFEAqF8PDwwPjx4zFp0iRoaGhg6NA/fgfr6+ujd+/euH79OgBg+vTpiIiIgKOjI8LCwpCent7sfW7fvg2FQoEhQ4Zw56RSKXr37t2g7ODBg1WOr1y5gh07dkAsFnMfNzc3KJVK5OTkAKgbuVVYWIjY2FgMGzYMe/fuRd++fZGYmNjqZ/H0SJ6mxMbGqsSRlJTEXXN2dkZaWhrOnTsHd3d3jBs3Dvfv32/QRn5+Ptzd3eHj44MpU6Zw559uNygoqFUxJyUlqdSLjY0FAPz3v/9FbGwsdu3ahcuXL2Pnzp2IjIzEzp07W9UuUDcCbe/evfjf//4HsVgMqVSKR48eYeDAgVBTa5iWaapf7e3Dq4xGShFCCCFvmPLybJSWpuPx4wwAgIaGpN1t3X9cNyImYJgMJroijBtMCYg3yaVLl7Bu3Tpcvny51VMzFyxYoDL6qrS0lBJThJAXRkOghi/WOXXavdvC2dkZmzZtgkAggImJCTQ0NBAfH99ivcDAQLi5ueHgwYM4cuQIVq5ciaioKISEhLQ3dI62trbKcVlZGaZOndroHyJ69OjBfS2RSODp6QlPT09ERETAzc0NERERcHFxgZWVFeRyOe7evdtgdFZ1dTWys7Ph5ubWYmxeXl4qyTpTU1OVuC0tLWFpaQkHBwdYWVlh27ZtKqOF7969C2dnZwwfPrzBQt9P736no6PTYixAXQLv6Xr1f9SZO3cu5s+fjwkTJgAA7Ozs8Ouvv2LlypUICAhoVdsA4OrqiuzsbBQXF0NDQwO6urowMjJSGRnXUr+MjIxUduwDwB0bGRmhZ8+ejfbhVUZJKUIIIeQNwlgtLl0eD4Xij3UFNPjSNrdTVlWD+6VP8PhJ3VbW00dZQV+s2UIt8iJ17doV6urqjb6MGhkZNVqnqZfX+vJJSUm4f/++yn+I1NbWYvbs2fjHP/6B3NzcBm1qamqqrIlBCCEvEo/Ha9cUus5Qn0h5mo2NDWpqapCSksJN33vw4AEyMzNha2vLlTMzM0NQUBCCgoKwYMECfPvttwgJCeFGHD29vpOFhQX4fD4uXrzI/f+3XC5HVlYW3nnnnWZjHDhwIDIyMhrE2Rwej4c+ffrg3LlzAIBPPvkEoaGhiIqKQlRUlErZzZs3o6KiAhMnTmyxXYlEAomkdX84UyqVKlPH8/Pz4ezsjEGDBiEmJqbBaKO29K+eSCRqtF5FRUWD9tXV1bld89qqfhri8ePHcf/+fXh5eXHXWurXsGHD8Le//Q0KhYJbAzIxMRG9e/fmpu61p++diZJShBBCyBtEoXjEJaT09EZCwNeDoUHLf618Wkl5NZxWn8DjqhrunI6Ipu11NoFAgEGDBuHYsWP48MMPAdS9pB87doxboPZZw4YNw7Fjx7i1Q4C6l9dhw4YBAPz9/TF69GiVOm5ubvD398dnn7V9DTJCCCGqrKys4O3tjSlTpmDLli2QSCSYP38+TE1N4e3tDQCYOXMmPDw8YG1tjYcPH+LEiROwsbEBAMhkMvB4PCQkJGDMmDEQiUSQSCQICAjA3LlzoaenB0NDQ4SFhUFNTa3FUa+hoaFwcHBAcHAwAgMDoa2tjYyMDCQmJmLDhg1IS0tDWFgY/P39YWtrC4FAgFOnTmH79u0IDQ0FUDeiavXq1ZgzZw6EQiH8/f3B5/Pxww8/YOHChYiIiEC/fv1U7puZmdkglr59+zbYXKO8vBzLly+Hl5cXjI2NUVxcjI0bNyI/Px8+Pj4A6hI37777LmQyGSIjI1FUVMTVb+qPNPXqRxGVlZWhqKgIaWlpEAgEKgnCZ3l6emL58uXo0aMH+vbti9TUVKxZswaff/45V6akpAR5eXm4e/euSn+NjIy4mGJiYmBjYwMDAwMkJydjxowZ+Oqrr7hpl63pl6+vL5YtW4bJkycjNDQUv/zyC9atW4e1a9c22++ysjLcunWLO87JyUFaWhr09PRU/jDVKTpkH8A3FG1xTAgh5HVSVfWAFd47yI4es2AnT73V7naSs4uZLDSB9ZyfwPou+YnN2pPWgVG+/jrz/eC7775jmpqabMeOHSwjI4N98cUXTFdXlxUWFjLGGPP392fz58/nyp89e5ZpaGiwyMhIdv36dRYWFsb4fD67evVqk/eQyWRs7dq1rY6J3pcIIR2lue3lX3UBAQHM29u70WslJSXM39+fSaVSJhKJmJubG8vKyuKuBwcHs169ejFNTU1mYGDA/P39WXFxMXc9PDycGRkZMR6PxwICAhhjjJWWljJfX1+mpaXFjIyM2Jo1a9iQIUNUfgc09f/nFy5cYC4uLkwsFjNtbW3Wv39/tnz5csYYY0VFRWz69OmsX79+TCwWM4lEwuzs7FhkZCSrra1VaScuLo6NHDmSaWtrMwAMANu9e7dKmZycHO7as587d+40iK2yspJ99NFHzMTEhAkEAmZsbMy8vLzYhQsXuDIxMTFNttmSxurIZLJm65SWlrIZM2awHj16MKFQyCwsLNjf/vY3VlVV1WJMYWFhXJnQ0FDWrVs3xufzmZWVFYuKimJKpbLN/bpy5QobMWIE09TUZKampuzvf/97i/0+ceJEo+3W/3tqr+Z+Zlv7fsBj7Dn3uXyDlZaWQiqVQi6Xt3oeKiGEENIZamrKcfacI2pq6hY3F4l6YPiwE+1q66dfChH0n0sY0EMXB/7q2JFhvhE6+/1gw4YN+Oabb1BYWIi33noL0dHR3Joc7777Lnr27IkdO3Zw5ffu3YtFixYhNzcXVlZWWL16NcaMGdNk+z179sTMmTNVRlc1p7OfByHkzfHkyRPk5OTA3NwcQqGws8N5rZSXl8PU1BRRUVGYPHnyS79/SUkJRo0aBR0dHRw6dAhaWlovPQby8jX3M9va9wOavkcIIYS8AZ48+e33hJQaRKLuMOve+oU36z1+osDM79Jwo7AusdVFq+Wdc8jLFxwc3OR0vZMnTzY45+Pjw015aI3G1pEihBDyaklNTcWNGzcwZMgQyOVyhIeHAwA3JfBl09PTw9GjR7Fx40YkJydj1KhRnRIHef1QUooQQgh5AyhqSgEAIpEZhg873q42zt56gGM3/thu2cpQ3CGxEUIIIaTjRUZGIjMzk1tzMCkpiVtEuzPo6+tjyZIlnXZ/8nqipBQhhBDyGnv46CJ+/XUTqqrqFsPka7R9p716pZUKAMBbZroIde+DwT27dEiMhBBCCOlYAwYMwKVLlzo7DEKeGyWlCCGEkNdYXt7/4cGDU9yxSKtnm9tQKhnyH1Uir6QCANBTXwvDeul3VIiEEEIIIYQ0ipJShBBCyGtMUf0AANDDbDJ0dOyhpzeyzW18GXsJh6/d4451RPxmShNCCCGEENIxKClFCCGEvIaePLmLqqpCVFXXTdvT7+oMvS7D2tXWpV8fAgBEfHWIhRpw62vUYXESQgghhBDSFEpKEUIIIa+ZiopfkXx+NAAld46voduuthhjKK2sAQAcne0EU11RB0RICCGEEEJIyygpRQghhLxmyspvAFBCTU0TmprdINbuDW1tqza3czG3BLful6G6ti65JaVpe4QQQggh5CWipBQhhBDyGqmsvIPysiwAgF4XR9jbf9uudvIeVMBnczJ3LFBXg7ZAvUNiJIQQQgghpDUoKUUIIYS8Ju7c2YGsm19zx3y+brvb+rWkHAAg0dTA4J5dMNq2G3g83vOGSAghhBBCSKupdXYAhBBCCGkdeekVAIC6uhaEmibo1s2z/W1VKgAANiY6iPlsCPyGyjokRkIIIeTPaNKkSeDxeODxeBAIBLC0tER4eDhqamqeq92TJ0+Cx+Ph0aNHHRNoK+Tk5MDX1xcmJiYQCoXo3r07vL29cePGDZVyCQkJcHJygkQigZaWFt5++23s2LFDpUxubi54PB7S0tJaff+lS5eiT58+0NbWRpcuXTB69GikpKSotDl58mSYm5tDJBKhV69eCAsLQ3V1dbPtFhQUwNfXF9bW1lBTU8PMmTNbFc/jx48xc+ZMyGQyiEQiDB8+HBcvXlQpU1ZWhuDgYHTv3h0ikQi2trbYvHmzSpmpU6eiV69eEIlEMDAwaPSZ5uXl4f3334eWlhYMDQ0xd+7cJv8NnT17FhoaGnjrrbda7MP+/fvh6uoKfX39Nn8/XjRKShFCCCGvCYWibpc8a+swODomQV//nTa3cf/xE4yKOolZ/61LcOnSOlKEEEJIh3B3d0dBQQFu3ryJ2bNnY+nSpfjmm286OyxOS0kbAFAoFHBxcYFcLsf+/fuRmZmJPXv2wM7OTiUxtn79enh7e8PR0REpKSlIT0/HhAkTEBQUhDlz5jxXnNbW1tiwYQOuXr2KM2fOoGfPnnB1dUVRUd2Owzdu3IBSqcSWLVtw7do1rF27Fps3b8bChQubbbeqqgoGBgZYtGgR7O3tWx1PYGAgEhMT8e9//xtXr16Fq6srRo8ejfz8fK7MrFmz8NNPP+E///kPrl+/jpkzZyI4OBjx8fFcmUGDBiEmJgbXr1/H4cOHwRiDq6sramtrAQC1tbV4//33UV1djXPnzmHnzp3YsWMHlixZ0iCmR48eYeLEiRg1alSr+lBeXo4RI0Zg1apVre73S8NIk+RyOQPA5HJ5Z4dCCCHkT+zOb7Hs+AkbdvSYBTt6zILdLzra7rZ+SMtnstAE7rP55K0OjPTPgd4PVNHzIIR0lMrKSpaRkcEqKys7O5Q2CwgIYN7e3irnXFxcmIODAyspKWH+/v5MV1eXiUQi5u7uzrKysrhyubm57IMPPmC6urpMS0uL2drasoMHD7KcnBwGQOUTEBDAGGOstLSU+fr6Mi0tLWZkZMTWrFnDnJyc2IwZM7h2ZTIZCw8PZ/7+/kwikXB1k5KS2IgRI5hQKGTdu3dnISEhrKysjDHGWGpqKgPAcnNzm+xrXl4e4/P5bNasWQ2uRUdHMwDs/PnzjDHG9SE1NbXtD/V39b9njh5t+v1n9erVzNzcvNVtPvusmlJRUcHU1dVZQkKCyvmBAweyv/3tb9xx3759WXh4eLNlnnXlyhUGgN26Vfcu9uOPPzI1NTVWWFjIldm0aRPT0dFhVVVVKnXHjx/PFi1axMLCwpi9vX2L/ajXEd+PpzX3M9va9wMaKUUIIYS84oruH4ZSWQUA0NCQQEfSr91tySvq/kr6jrUBkhe8h6lOvTokRkIIIeRFYIxB8eRJp3wYY88Vu0gkQnV1NSZNmoSff/4Z8fHxSE5OBmMMY8aMgUJRN5V+2rRpqKqqwunTp3H16lWsWrUKYrEYZmZm+P777wEAmZmZKCgowLp16wDUjcw5e/Ys4uPjkZiYiKSkJFy+fLlBDJGRkbC3t0dqaioWL16M7OxsuLu7Y+zYsUhPT8eePXtw5swZBAcHAwAMDAygpqaGffv2cSN4nrVv3z4oFIpGR0RNnToVYrEYu3fvfq5nV6+6uhpbt26FVCptdnSTXC6Hnp5eh9zzaTU1NaitrYVQKFQ5LxKJcObMGe54+PDhiI+PR35+PhhjOHHiBLKysuDq6tpou+Xl5YiJiYG5uTnMzMwAAMnJybCzs0O3bt24cm5ubigtLcW1a9e4czExMbh9+zbCwsI6squdhhY6J4QQQl5xNbWPAQC2Nt/A0HAM1NWFLdRo6MqdR4g+dhPZRWUAAFNdIYylog6NkxBCCOloNVVViA74pFPuPX3nPvCFbf+dyxjDsWPHcPjwYXh4eCAuLg5nz57F8OHDAQCxsbEwMzNDXFwcfHx8kJeXh7Fjx8LOzg4AYGFhwbVVn2gxNDSErq4ugLo1jnbu3Ildu3Zx07diYmJgYmLSIJb33nsPs2fP5o4DAwPh5+fHradkZWWF6OhoODk5YdOmTTA1NUV0dDTmzZuHZcuWYfDgwXB2doafnx8XV1ZWFqRSKYyNjRvcTyAQwMLCAllZWW1+bk9LSEjAhAkTUFFRAWNjYyQmJqJr166Nlr116xbWr1+PyMjI57pnYyQSCYYNG4avv/4aNjY26NatG3bv3o3k5GRYWlpy5davX48vvvgC3bt3h4aGBtTU1PDtt9/inXdUl1r45z//iXnz5qG8vBy9e/dGYmIiBAIBAKCwsFAlIQWAOy4sLAQA3Lx5E/Pnz0dSUhI0NN6MdA6NlCKEEEJeUYzVorb2CWpqSgEAQqFpuxJSAPB/Z3Jw7MZ95D6oAAD01NfusDgJIYQQUpdIEYvFEAqF8PDwwPjx4zFp0iRoaGhg6NChXDl9fX307t0b169fBwBMnz4dERERcHR0RFhYGNLT05u9z+3bt6FQKDBkyBDunFQqRe/evRuUHTx4sMrxlStXsGPHDojFYu7j5uYGpVKJnJwcAHUjtwoLCxEbG4thw4Zh79696Nu3LxITE1v9LOoTLc2JjY1ViSMpKYm75uzsjLS0NJw7dw7u7u4YN24c7t+/36CN/Px8uLu7w8fHB1OmTOHOP91uUFBQq2JOSkpSqRcbGwsA+Pe//w3GGExNTaGpqYno6Gj85S9/gZraH+mU9evX4/z584iPj8elS5cQFRWFadOm4ejRoyr38PPzQ2pqKk6dOgVra2uMGzcOT548aVV8tbW18PX1xbJly2Btbd1omeae6avqzUitEUIIIW+YqqoiXLj4Aaqri7lzGhqSdrdX/Lhu+l/AMBkcLbvCqbfBc8dICCGEvGgampqYvnNfp927LZydnbFp0yYIBAKYmJhAQ0NDZaHrpgQGBsLNzQ0HDx7EkSNHsHLlSkRFRSEkJKS9oXO0tVX/CFVWVoapU6di+vTpDcr26NGD+1oikcDT0xOenp6IiIiAm5sbIiIi4OLiAisrK8jlcty9e7fB6Kzq6mpkZ2fDzc2txdi8vLxUknWmpqYqcVtaWsLS0hIODg6wsrLCtm3bsGDBAq7M3bt34ezsjOHDh2Pr1q0qbT+9u5yOjk6LsQB1Cbyn69WPUurVqxdOnTqF8vJylJaWwtjYGOPHj+dGjlVWVmLhwoU4cOAA3n//fQBA//79kZaWhsjISIwePZprUyqVQiqVwsrKCg4ODujSpQsOHDiAv/zlLzAyMsKFCxdUYrp37x4AwMjICI8fP8bPP/+M1NRUbrqlUqkEYwwaGho4cuRIs8/0VUVJKUIIIeQVJC+9rJKQEol6QEvLvM3tbDqZjcSMQtworJsCONq2G0ZaUUKKEELI64HH47VrCl1nqE+kPM3GxgY1NTVISUnhpu89ePAAmZmZsLW15cqZmZkhKCgIQUFBWLBgAb799luEhIRwI46eXt/JwsICfD4fFy9e5BJJcrkcWVlZDaaLPWvgwIHIyMhoEGdzeDwe+vTpg3PnzgEAPvnkE4SGhiIqKgpRUVEqZTdv3oyKigpMnDixxXYlEgkkktb9wU2pVKKqqoo7zs/Ph7OzM7ej3dOjlgC0qX/1RCJRs/W0tbWhra2Nhw8f4vDhw1i9ejWAuh0LFQpFgxjU1dWhVCqbbI8xBsYY169hw4Zh+fLluH//PgwNDQEAiYmJ0NHRga2tLfh8Pq5evarSxj//+U8cP34c+/btg7m5ObS1tVv9TF8VlJQihBBCXjGlpekoLj4OANDXd0a/vuugri4Ej6fepnaUSobII5moVdYt1KrGAywMxB0eLyGEEEIaZ2VlBW9vb0yZMgVbtmyBRCLB/PnzYWpqCm9vbwDAzJkz4eHhAWtrazx8+BAnTpyAjY0NAEAmk4HH4yEhIQFjxoyBSCSCRCJBQEAA5s6dCz09PRgaGiIsLAxqamrg8XjNxhMaGgoHBwcEBwcjMDAQ2trayMjIQGJiIjZs2IC0tDSEhYXB398ftra2EAgEOHXqFLZv347Q0FAAdSOqVq9ejTlz5kAoFMLf3x98Ph8//PADFi5ciIiICPTrp7opS2ZmZoNY+vbtCz6fr3KuvLwcy5cvh5eXF4yNjVFcXIyNGzciPz8fPj4+AOoSUu+++y5kMhkiIyNRVFTE1TcyMmq2//UjocrKylBUVIS0tDQIBAKVBOGzDh8+DMYYevfujVu3bmHu3Lno06cPPvvsMwB1I7GcnJwwd+5ciEQiyGQynDp1Cv/617+wZs0aAHVTLvfs2QNXV1cYGBjgt99+w9///neIRCKMGTMGAODq6gpbW1v4+/tj9erVKCwsxKJFizBt2jRo/j5q79nnamhoCKFQ2OD8s0pKSpCXl4e7d+8C+OP7YWRk1OIze+E6ZB/ANxRtcUwIIeRlq6p6wI4d782OHrNgR49ZsOvXm95KuCWPyquZLDSByUIT2KGrd9mNgtIOjPTPi94PVNHzIIR0lOa2l3/VBQQEMG9v70avlZSUMH9/fyaVSplIJGJubm4sKyuLux4cHMx69erFNDU1mYGBAfP392fFxcXc9fDwcGZkZMR4PB4LCAhgjDFWWlrKfH19mZaWFjMyMmJr1qxhQ4YMYfPnz+fqyWQytnbt2gbxXLhwgbm4uDCxWMy0tbVZ//792fLlyxljjBUVFbHp06ezfv36MbFYzCQSCbOzs2ORkZGstrZWpZ24uDg2cuRIpq2tzQAwAGz37t0qZXJycrhrz37u3LnTILbKykr20UcfMRMTEyYQCJixsTHz8vJiFy5c4MrExMQ02WZLGqsjk8marbNnzx5mYWHBBAIBMzIyYtOmTWOPHj1SKVNQUMAmTZrETExMmFAoZL1792ZRUVFMqVQyxhjLz89nHh4ezNDQkPH5fNa9e3fm6+vLbty4odJObm4u8/DwYCKRiHXt2pXNnj2bKRSKJmMLCwtj9vb2Lfa7qWcWFhbWYt3mNPcz29r3Ax5jz7nP5RustLQUUqkUcrm81fNQCSGEkOfx+HEGLlz0hJqaAPr678HCfAbE4sYXs2wKYwyX8x4ho6AUi+N+gZZAHRnh7i8o4j8fej9QRc+DENJRnjx5gpycHJibm0P4mkzZe1WUl5fD1NQUUVFRmDx58ku/f0lJCUaNGgUdHR0cOnQIWlpaLz0G8vI19zPb2vcDmr5HCCGEvEJqasoA1O20199uY7vaSL3zCGM3neOOu2i1vAMOIYQQQl4fqampuHHjBoYMGQK5XI7w8HAA4KYEvmx6eno4evQoNm7ciOTkZIwaNapT4iCvH0pKEUIIIa8ApbIKjx5dglx+CQCgod7+RSpzisoBAFIRH727STDubbMOiZEQQgghr47IyEhkZmZCIBBg0KBBSEpKQteuXTstHn19fSxZsqTT7k9eT5SUIoQQQl4BWTcjkJ+/izvW0Gh/Uqr0iQIAMNKqKzb4Dnzu2AghhBDyahkwYAAuXbrU2WEQ8twoKUUIIYS8AsrLbgIAhEIzCAR66G4W0OY2ztwsxsGrBbh2Vw4A0BHxW6hBCCGEEEJI56GkFCGEEPIKUNTUJZJs+iyHnp5ju9pYcCAdd0oquWNjHVoklhBCCCGEvLooKUUIIYR0ouzsKJQ8PIeKilwAgIZG+3cvK3pcBQCYMtIcxlIRxg7q3hEhEkIIIYQQ8kJQUooQQgjpJDU1j5H76z+5YzU1AUSitieSFLVKPKyoxhOFEgAQ/J4VpDR1jxBCCCGEvOIoKUUIIYR0kurqEgCAmpom+vVbD20tC/D5XdrUxsPyarisPYXismoAAI8HSDTp1zshhBBCCHn10VsrIYQQ0gnu/PZvPHx4DgDA5+vBoOuodrVz7W4pl5ACADdbI6ip8TokRkIIIYQQQl4ktc4OgBBCCPmzqazMR1bWUhQVHQEACIWm7W7rUWVdQmpITz3cWu6Bzf6DOiRGQgghhLTepEmTwOPxwOPxIBAIYGlpifDwcNTU1DxXuydPngSPx8OjR486JtBWyMnJga+vL0xMTCAUCtG9e3d4e3vjxo0bKuUSEhLg5OQEiUQCLS0tvP3229ixY4dKmdzcXPB4PKSlpbX6/kuXLkWfPn2gra2NLl26YPTo0UhJSVFpc/LkyTA3N4dIJEKvXr0QFhaG6urqZloFCgoK4OvrC2tra6ipqWHmzJmtiuf06dPw9PSEiYkJeDwe4uLiGpTZv38/XF1doa+v32J/GWPw8PBosq0dO3agf//+EAqFMDQ0xLRp01SuHz58GA4ODpBIJDAwMMDYsWORm5urUiY2Nhb29vbQ0tKCsbExPv/8czx48OC5+/kiUFKKEEIIecmqFcUAAA0NKXpZzIVNn5VtbqOkvBpjN53D4rhfAABdtPnQUKdf64QQQkhncXd3R0FBAW7evInZs2dj6dKl+Oabbzo7LE5LSRsAUCgUcHFxgVwux/79+5GZmYk9e/bAzs5OJTG2fv16eHt7w9HRESkpKUhPT8eECRMQFBSEOXPmPFec1tbW2LBhA65evYozZ86gZ8+ecHV1RVFREQDgxo0bUCqV2LJlC65du4a1a9di8+bNWLhwYbPtVlVVwcDAAIsWLYK9vX2r4ykvL4e9vT02btzYbJkRI0Zg1apVLbb3j3/8Azxe46Pa16xZg7/97W+YP38+rl27hqNHj8LNzY27npOTA29vb7z33ntIS0vD4cOHUVxcjI8//pgrc/bsWUycOBGTJ0/GtWvXsHfvXly4cAFTpkx57n6+EIw0SS6XMwBMLpd3diiEEELeIMXFp9nRYxbsfMr77W7jh7R8JgtN4D7rjmZ1YISkOfR+oIqeByGko1RWVrKMjAxWWVnZ2aG0WUBAAPP29lY55+LiwhwcHFhJSQnz9/dnurq6TCQSMXd3d5aV9cfv7dzcXPbBBx8wXV1dpqWlxWxtbdnBgwdZTk4OA6DyCQgIYIwxVlpaynx9fZmWlhYzMjJia9asYU5OTmzGjBlcuzKZjIWHhzN/f38mkUi4uklJSWzEiBFMKBSy7t27s5CQEFZWVsYYYyw1NZUBYLm5uU32NS8vj/H5fDZr1qwG16KjoxkAdv78ecYY4/qQmpra9of6u/rfM0ePHm2yzOrVq5m5uXmr23z2WbUWAHbgwIEmr7fU39TUVGZqasoKCgoatFVSUsJEIlGz/dy7dy/T0NBgtbW13Ln4+HjG4/FYdXU1Y4yxb775hllYWKjUi46OZqampi138Hct9bNecz+zrX0/oD+pEkIIIS9JYWE8zp5zwi/XZgIANDR02t1WaaUCAOBgoYdDM0Yi5D3LjgiREEIIIR1EJBKhuroakyZNws8//4z4+HgkJyeDMYYxY8ZAoaj7XT5t2jRUVVXh9OnTuHr1KlatWgWxWAwzMzN8//33AIDMzEwUFBRg3bp1AIBZs2bh7NmziI+PR2JiIpKSknD58uUGMURGRsLe3h6pqalYvHgxsrOz4e7ujrFjxyI9PR179uzBmTNnEBwcDAAwMDCAmpoa9u3bh9ra2kb7tW/fPigUikZHRE2dOhVisRi7d+/ukGdYXV2NrVu3QiqVNju6SS6XQ09Pr0Pu+aJUVFTA19cXGzduhJGRUYPriYmJUCqVyM/Ph42NDbp3745x48bhzp07XJlBgwZBTU0NMTExqK2thVwux7///W+MHj0afH7dzsvDhg3DnTt38OOPP4Ixhnv37mHfvn0YM2bMS+trW9BC54QQQshLcrdgL548+Y07lkhs291W6ZO6F9nuXbRgY9z+5BYhhBDyKmOMgSmUnXJvHl+tyWlWzWGM4dixYzh8+DA8PDwQFxeHs2fPYvjw4QDq1vsxMzNDXFwcfHx8kJeXh7Fjx8LOzg4AYGFhwbVVn2gxNDSErq4uAODx48fYuXMndu3ahVGj6jZKiYmJgYmJSYNY3nvvPcyePZs7DgwMhJ+fH7eekpWVFaKjo+Hk5IRNmzbB1NQU0dHRmDdvHpYtW4bBgwfD2dkZfn5+XFxZWVmQSqUwNjZucD+BQAALCwtkZWW1+bk9LSEhARMmTEBFRQWMjY2RmJiIrl27Nlr21q1bWL9+PSIjI5/rni/aV199heHDh8Pb27vR67dv34ZSqcSKFSuwbt06SKVSLFq0CC4uLkhPT4dAIIC5uTmOHDmCcePGYerUqaitrcWwYcPw448/cu04OjoiNjYW48ePx5MnT1BTUwNPT8+XPy2vlSgpRQghhLwkNQo5AMDaeim66A6BtrZVm9uIS81HWPw1lFfVLZwqEdKvckIIIW8uplDi7pJznXJvk/Dh4AnUW10+ISEBYrEYCoUCSqUSvr6++Pjjj5GQkIChQ4dy5fT19dG7d29cv34dADB9+nR8+eWXOHLkCEaPHo2xY8eif//+Td7n9u3bUCgUGDJkCHdOKpWid+/eDcoOHjxY5fjKlStIT09HbGwsd44xBqVSiZycHNjY2GDatGmYOHEiTp48ifPnz2Pv3r1YsWIF4uPj4eLi0qpnIRAIWiwTGxuLqVOncseHDh3CyJEjAQDOzs5IS0tDcXExvv32W4wbNw4pKSkwNDRUaSM/Px/u7u7w8fFRWTNJLBZzX3/66afYvHlzi/EkJSXBw8ODO96yZQv8/PxarNca8fHxOH78OFJTU5sso1QqoVAoEB0dDVdXVwDA7t27YWRkhBMnTsDNzQ2FhYWYMmUKAgIC8Je//AWPHz/GkiVL8MknnyAxMRE8Hg8ZGRmYMWMGlixZAjc3NxQUFGDu3LkICgrCtm3bXmg/24PeZAkhhJAXrLQ0HfLSNDypKgAA6EjsIBY3fHFsjYT0Ash/n7rH4wGDZF06LE5CCCGEtJ+zszM2bdoEgUAAExMTaGhoID4+vsV6gYGBcHNzw8GDB3HkyBGsXLkSUVFRCAkJee6YtLW1VY7LysowdepUTJ8+vUHZHj16cF9LJBJ4enrC09MTERERcHNzQ0REBFxcXGBlZQW5XI67d+82GJ1VXV2N7OxslcW5m+Ll5aWSrDM1/WM3Ym1tbVhaWsLS0hIODg6wsrLCtm3bsGDBAq7M3bt34ezsjOHDh2Pr1q0qbT+9+52OTutGlA8ePFilXrdu3VpVrzWOHz+O7OxsbrRbvbFjx2LkyJE4efIkN/LM1vaPkfQGBgbo2rUr8vLyAAAbN26EVCrF6tWruTL/+c9/YGZmhpSUFDg4OGDlypVwdHTE3LlzAQD9+/eHtrY2Ro4ciYiIiBfaz/agpBQhhBDyAtXWVuFyqh9qayu4cwKBfrvbq19L6mvvvhhjZwx9seZzx0gIIYS8qnh8NZiED++0e7dFfSLlaTY2NqipqUFKSgo3fe/BgwfIzMxUST6YmZkhKCgIQUFBWLBgAb799luEhIRwI46eXt/JwsICfD4fFy9e5BJJcrkcWVlZeOedd5qNceDAgcjIyGgQZ3N4PB769OmDc+fqRqx98sknCA0NRVRUFKKiolTKbt68GRUVFZg4cWKL7UokEkgkklbFoFQqUVVVxR3n5+fD2dkZgwYNQkxMDNTUVL9XbelfPZFI1K56rTF//nwEBgaqnLOzs8PatWvh6ekJoG7aHVC3flj37t0BACUlJSguLoZMJgNQty7Vs31VV68bzadUKrkyGhoajZZhjL3QfrYHJaUIIYSQF0ihKPk9IaUGQ0N3SMR9IRKZtbmdvAcVSPvtEfIfVQIAenbVpoQUIYSQNx6Px2vTFLpXjZWVFby9vTFlyhRs2bIFEokE8+fPh6mpKbe20MyZM+Hh4QFra2s8fPgQJ06cgI2NDQBAJpOBx+MhISEBY8aMgUgkgkQiQUBAAObOnQs9PT0YGhoiLCwMamotr4EVGhoKBwcHBAcHIzAwENra2sjIyEBiYiI2bNiAtLQ0hIWFwd/fH7a2thAIBDh16hS2b9+O0NBQAHUjqlavXo05c+ZAKBTC398ffD4fP/zwAxYuXIiIiAj069dP5b6ZmZkNYunbty+3OHe98vJyLF++HF5eXjA2NkZxcTE2btyI/Px8+Pj4AKhLSL377ruQyWSIjIxEUVERV7+xBcSfVj9CqKysDEVFRUhLS4NAIFBJED6rrKwMt27d4o5zcnKQlpYGPT09LilYUlKCvLw83L17V6W/RkZGKp9n9ejRA+bm5gAAa2treHt7Y8aMGdi6dSt0dHSwYMEC9OnTB87OzgCA999/H2vXrkV4eDg3fW/hwoWQyWQYMGAAAMDT0xNTpkzBpk2buOl7M2fOxJAhQxpdd6wt/XwhWr0n4J8QbXFMCCHkeT1+fIMdPWbBTp0e3O42lEolGxyRyGShCdzn6m+POjBK0hb0fqCKngchpKM0t738qy4gIIB5e3s3eq2kpIT5+/szqVTKRCIRc3NzY1lZWdz14OBg1qtXL6apqckMDAyYv78/Ky4u5q6Hh4czIyMjxuPxWEBAAGOMsdLSUubr68u0tLSYkZERW7NmDRsyZAibP38+V08mk7G1a9c2iOfChQvMxcWFicVipq2tzfr378+WL1/OGGOsqKiITZ8+nfXr14+JxWImkUiYnZ0di4yMZLW1tSrtxMXFsZEjRzJtbW0GgAFgu3fvVimTk5PDXXv2c+fOnQaxVVZWso8++oiZmJgwgUDAjI2NmZeXF7tw4QJXJiYmpsk2W9JYHZlM1mydEydONFqv/nvRXExhYWHNxnLgwAGVc3K5nH3++edMV1eX6enpsY8++ojl5eWplNm9ezcbMGAA09bWZgYGBszLy4tdv35dpUx0dDSztbVlIpGIGRsbMz8/P/bbb789dz+f1dzPbGvfD3iMMfbiUl6vt9LSUkilUsjl8lbPQyWEEEIA4MmTu7j6SwiqnhSgqvoeRKKeGD7sWLvaKq+qQd+wwwCAoeZ6sOomRrhXP6iptX1HIPL86P1AFT0PQkhHefLkCXJycmBubg6hUNjZ4bxWysvLYWpqiqioKEyePPml37+kpASjRo2Cjo4ODh06BC0trZceA3n5mvuZbe37AU3fI4QQQl6A4gcnUVqaxh1LxDbtbqv0Sd06UhpqPHz3hUO7tqcmhBBCyJsjNTUVN27cwJAhQyCXyxEeHg4A3JTAl01PTw9Hjx7Fxo0bkZycjFGjRnVKHOT107aV216S2tpaLF68GObm5hCJROjVqxe+/vprPD2oizGGJUuWwNjYGCKRCKNHj8bNmzdV2ikpKYGfnx90dHSgq6uLyZMno6ys7GV3hxBCyJ9QjeIRAKBr11EYPHg/+vZd2+Y2qmpq8Y+jWVh+sG7LaB0RnxJShBBCCAEAREZGwt7eHqNHj0Z5eTmSkpLQtWvXTotHX18fS5YsoYQUaZNXcqTUqlWrsGnTJuzcuRN9+/bFzz//jM8++wxSqZTbunL16tWIjo7Gzp07YW5ujsWLF8PNzQ0ZGRncsDE/Pz8UFBQgMTERCoUCn332Gb744gvs2rWrM7tHCCHkDVZVdR/3iw6j5GHdDjVaWuaQ6ti3q61TmUX4x9E//uBipENTGQghhBACDBgwAJcuXersMAh5bq9kUurcuXPw9vbG+++/DwDo2bMndu/ejQsXLgCoGyX1j3/8A4sWLeKGJ/7rX/9Ct27dEBcXhwkTJuD69ev46aefcPHiRQwePBgAsH79eowZMwaRkZHNrjpPCCGEtFfWzQjcv3+QOxbw9dvdVnFZNQCgl4E2vN8yhWvfbs8dHyGEEEIIIa+KV3L63vDhw3Hs2DFkZWUBAK5cuYIzZ87Aw8MDQN3WhIWFhRg9ejRXRyqVYujQoUhOTgYAJCcnQ1dXl0tIAcDo0aOhpqaGlJSUl9gbQgghfyZPnuQDAHR1h8LU9FMYG3/c7rYe/76WVP/uupg+ygp9jGgRaUIIIYQQ8uZ4JUdKzZ8/H6WlpejTpw/U1dVRW1uL5cuXw8/PDwBQWFgIAOjWTfUvxt26deOuFRYWwtDQUOW6hoYG9PT0uDLPqqqqQlVVFXdcWlraYX0ihBDy51BTIwcAWJjPRJcuQ9rVxumsIhz6pQBX8+vakghfyV/XhBBCCCGEPJdX8i33v//9L2JjY7Fr1y707dsXaWlpmDlzJkxMTBAQEPDC7rty5UosW7bshbVPCCHkzXXnt3/jzp3tqKz8DQCgwW//qKb536fjrvwJd2wkpbWkCCGEEELIm+eVTErNnTsX8+fPx4QJEwAAdnZ2+PXXX7Fy5UoEBATAyMgIAHDv3j0YGxtz9e7du4e33noLAGBkZIT79++rtFtTU4OSkhKu/rMWLFiAWbNmccelpaUwMzPryK4RQgh5Q/32279RWZkHAFBXF0Mk7N6udhhjuP+4btTul+/2gqFEE58Mal9bhBBCCCGEvMpeyaRURUUF1NRUl7tSV1eHUqkEAJibm8PIyAjHjh3jklClpaVISUnBl19+CQAYNmwYHj16hEuXLmHQoEEAgOPHj0OpVGLo0KGN3ldTUxOampovqFeEEELeZPXT9vraroGe3ghoaIjb3MbZW8XILipDjZIBAGaMsoKQr96hcRJCCCGEEPKqeCWTUp6enli+fDl69OiBvn37IjU1FWvWrMHnn38OAODxeJg5cyYiIiJgZWUFc3NzLF68GCYmJvjwww8BADY2NnB3d8eUKVOwefNmKBQKBAcHY8KECbTzHiGEkA6jUMhRU1OKmpq6dQh1dd+GQND2Hfey7j2G3//9sRGHtkCdElKEEEIIIeSN9kruvrd+/Xp88skn+Otf/wobGxvMmTMHU6dOxddff82VmTdvHkJCQvDFF1/g7bffRllZGX766ScIhX+suxEbG4s+ffpg1KhRGDNmDEaMGIGtW7d2RpcIIYS8geTyVCSdGYJzye9CqawGAGhoSNrVVt6DCgCAVMSHi203hHv367A4CSGEEPJiTZo0CTweDzweDwKBAJaWlggPD0dNTc1ztXvy5EnweDw8evSoYwJthZycHPj6+sLExARCoRDdu3eHt7c3bty4oVIuISEBTk5OkEgk0NLSwttvv40dO3aolMnNzQWPx0NaWlqr77906VL06dMH2tra6NKlC0aPHo2UlD/+cJebm4vJkyfD3NwcIpEIvXr1QlhYGKqrq5ttt6CgAL6+vrC2toaamhpmzpzZqnhOnz4NT09PmJiYgMfjIS4urs0xA8Dy5csxfPhwaGlpQVdXt9F75eXl4f3334eWlhYMDQ0xd+5clX9DT/87e/rTt29frszKlSvx9ttvQyKRwNDQEB9++CEyMzNb7Gdr4nsRXsmklEQiwT/+8Q/8+uuvqKysRHZ2NiIiIiAQCLgyPB4P4eHhKCwsxJMnT3D06FFYW1urtKOnp4ddu3bh8ePHkMvl2L59O8Titk+nIIQQQhojL00DYzXg8dShrq4FAwM3qKu3/fdMTa0SxWV160jZm+ni24mDMZbWkSKEEEJeK+7u7igoKMDNmzcxe/ZsLF26FN98801nh8VpKWkDAAqFAi4uLpDL5di/fz8yMzOxZ88e2NnZqSTG1q9fD29vbzg6OiIlJQXp6emYMGECgoKCMGfOnOeK09raGhs2bMDVq1dx5swZ9OzZE66urigqKgIA3LhxA0qlElu2bMG1a9ewdu1abN68GQsXLmy23aqqKhgYGGDRokWwt7dvdTzl5eWwt7fHxo0b2x0zUPf8fXx8uCWHnlVbW4v3338f1dXVOHfuHHbu3IkdO3ZgyZIlXJl169ahoKCA+9y5cwd6enrw8fHhypw6dQrTpk3D+fPnkZiYCIVCAVdXV5SXlzfbz5bie2EYaZJcLmcAmFwu7+xQCCGEvIKyb69jR49ZsOvX/9buNnKKypj9ssNMFprAZKEJLHjX5Q6MkLwI9H6gip4HIaSjVFZWsoyMDFZZWdnZobRZQEAA8/b2Vjnn4uLCHBwcWElJCfP392e6urpMJBIxd3d3lpWVxZXLzc1lH3zwAdPV1WVaWlrM1taWHTx4kOXk5DAAKp+AgADGGGOlpaXM19eXaWlpMSMjI7ZmzRrm5OTEZsyYwbUrk8lYeHg48/f3ZxKJhKublJTERowYwYRCIevevTsLCQlhZWVljDHGUlNTGQCWm5vbZF/z8vIYn89ns2bNanAtOjqaAWDnz59njDGuD6mpqW1/qL+r/z1z9OjRJsusXr2amZubt7rNZ59VawFgBw4caLFcczHHxMQwqVTa4PyPP/7I1NTUWGFhIXdu06ZNTEdHh1VVVTV6nwMHDjAej9fs9+v+/fsMADt16lSLcTcXX2Oa+5lt7fvBKzlSihBCCHmVlZVl4ebNFSguOgoA0OBL293Wz78+xKMKBQBAXY2Hd6y6dkiMhBBCCOlcIpEI1dXVmDRpEn7++WfEx8cjOTkZjDGMGTMGCkXd7/9p06ahqqoKp0+fxtWrV7Fq1SqIxWKYmZnh+++/BwBkZmaioKAA69atAwDMmjULZ8+eRXx8PBITE5GUlITLly83iCEyMhL29vZITU3F4sWLkZ2dDXd3d4wdOxbp6enYs2cPzpw5g+DgYACAgYEB1NTUsG/fPtTW1jbar3379kGhUDQ6Imrq1KkQi8XYvXt3hzzD6upqbN26FVKptNnRTXK5HHp6eh1yz+fV2piflZycDDs7O3Tr1o075+bmhtLSUly7dq3ROtu2bcPo0aMhk8mabFcur9uM51V5Ps96JRc6J4QQQl5l2dnfoPjBce5YU9Oo3W2VVta9kHr0M8La8W/R4uaEEELIUxhjXPLmZePz+eDxeG2uxxjDsWPHcPjwYXh4eCAuLg5nz57F8OHDAdStfWxmZoa4uDj4+PggLy8PY8eOhZ2dHQDAwsKCa6s+kWBoaMit8/P48WPs3LkTu3btwqhRowAAMTExjW7o9d5772H27NnccWBgIPz8/Lj1lKysrBAdHQ0nJyds2rQJpqamiI6Oxrx587Bs2TIMHjwYzs7O8PPz4+LKysqCVCqFsbFxg/sJBAJYWFggKyurzc/taQkJCZgwYQIqKipgbGyMxMREdO3a+B/ubt26hfXr1yMyMvK57vm82hJzYwoLC1USUgC448LCwgbl7969i0OHDmHXrl1NtqlUKjFz5kw4OjqiX79Xc71SSkoRQgghbVRVfQ8A0K2bF3Qk/WBs9HGb23iiqMX52w9w5bdHAAA9bQElpAghhJBnKBQKrFixolPuvXDhQpV1jVuSkJAAsVgMhUIBpVIJX19ffPzxx0hISMDQoUO5cvr6+ujduzeuX78OAJg+fTq+/PJLHDlyBKNHj8bYsWPRv3//Ju9z+/ZtKBQKDBkyhDsnlUrRu3fvBmUHDx6scnzlyhWkp6cjNjaWO8cYg1KpRE5ODmxsbDBt2jRMnDgRJ0+exPnz57F3716sWLEC8fHxcHFxadWzaM1zi42NxdSpU7njQ4cOYeTIkQAAZ2dnpKWlobi4GN9++y3GjRuHlJQUGBoaqrSRn58Pd3d3+Pj4YMqUKdz5p9eS/vTTT7F58+YW40lKSoKHhwd3vGXLFvj5+bVYr15rY+4oO3fuhK6uLj788MMmy0ybNg2//PILzpw5w50LCgrCf/7zH+64rKzshcTXWpSUIoQQQlpJoXiEiorbqK4qBgCYdZ8IqXRAu9pa+eN17Ez+lTuWivgdEiMhhBBCOoezszM2bdoEgUAAExMTaGhoID4+vsV6gYGBcHNzw8GDB3HkyBGsXLkSUVFRCAkJee6YtLW1VY7LysowdepUTJ8+vUHZHj16cF9LJBJ4enrC09MTERERcHNzQ0REBFxcXGBlZQW5XI67d+82GJ1VXV2N7OxsuLm5tRibl5eXSrLO1NRUJW5LS0tYWlrCwcEBVlZW2LZtGxYsWMCVuXv3LpydnTF8+HBs3bpVpe2nd/vT0dFpMRagLoH3dL1nRy21pDUxN8fIyAgXLlxQOXfv3j3u2tMYY9i+fTv8/f2bTAAGBwcjISEBp0+fRvfuf2ygEx4e/tyL0XckSkoRQgghraBUVuN8ihuqq4u5c3y+brvbyy6q2wHFvKs2uncR4eOBtNseIYQQ8iw+n9/irmov8t5tUZ+UeJqNjQ1qamqQkpLCTd978OABMjMzYWtry5UzMzNDUFAQgoKCsGDBAnz77bcICQnhEg5Pr+9kYWEBPp+PixcvcokkuVyOrKwsvPPOO83GOHDgQGRkZDSIszk8Hg99+vTBuXPnAACffPIJQkNDERUVhaioKJWymzdvRkVFBSZOnNhiuxKJBBKJpFUxKJVKVFVVccf5+flwdnbGoEGDEBMTAzU11eWy29K/eiKRqF31mvJszC0ZNmwYli9fjvv373OjqxITE6Gjo6PybwWo22Hv1q1bmDx5coN2GGMICQnBgQMHcPLkSZibm6tcNzQ0fGGjt9qDklKEEEJIK1RXF3MJKZGoByQSO4hETS8q2ZJHlXXbMi/5wBbOfV6dFwNCCCHkVcLj8do0he5VY2VlBW9vb0yZMgVbtmyBRCLB/PnzYWpqCm9vbwDAzJkz4eHhAWtrazx8+BAnTpyAjY0NAEAmk4HH4yEhIQFjxoyBSCSCRCJBQEAA5s6dCz09PRgaGiIsLAxqamotroEVGhoKBwcHBAcHIzAwENra2sjIyEBiYiI2bNiAtLQ0hIWFwd/fH7a2thAIBDh16hS2b9+O0NBQAHUjqlavXo05c+ZAKBTC398ffD4fP/zwAxYuXIiIiIgG6xdlZmY2iKVv374NEn/l5eVYvnw5vLy8YGxsjOLiYmzcuBH5+fnw8fEBUJeQevfddyGTyRAZGYmioiKu/rMjip5VPxKqrKwMRUVFSEtLg0AgaJD0eVpZWRlu3brFHefk5CAtLQ16enro0aNHq2IGgLy8PJSUlCAvLw+1tbVcLJaWlhCLxXB1dYWtrS38/f2xevVqFBYWYtGiRZg2bRo0NTVVYtq2bRuGDh3a6DpR06ZNw65du/DDDz9AIpFw61FJpVKIRKIm+9lSfC9Mq/b5+5OiLY4JIYTUK318nR09ZsFOnR7c/jYqq9n70adZ/6WHWc/5CUwWmsB+zi3pwCjJy0DvB6roeRBCOkpz28u/6gICApi3t3ej10pKSpi/vz+TSqVMJBIxNzc3lpWVxV0PDg5mvXr1YpqamszAwID5+/uz4uJi7np4eDgzMjJiPB6PBQQEMMYYKy0tZb6+vkxLS4sZGRmxNWvWsCFDhrD58+dz9WQyGVu7dm2DeC5cuMBcXFyYWCxm2trarH///mz58uWMMcaKiorY9OnTWb9+/ZhYLGYSiYTZ2dmxyMhIVltbq9JOXFwcGzlyJNPW1mYAGAC2e/dulTI5OTnctWc/d+7caRBbZWUl++ijj5iJiQkTCATM2NiYeXl5sQsXLnBlYmJimmyzJY3VkclkzdY5ceJEo/XqvxetiZmxun8jjbVz4sQJrkxubi7z8PBgIpGIde3alc2ePZspFAqVdh49esREIhHbunVrq/sIgMXExDTbz9bE96zmfmZb+37A+z1o0ojS0lJIpVLI5fJWz0MlhBDyZqmuLsHNm8tRUfkrSktToaVljmEOR9vV1qmsIgRs/2OtAIlQA2fmvQepFq0n9Tqh9wNV9DwIIR3lyZMnyMnJgbm5OYRCYWeH81opLy+HqakpoqKiGp3S9aKVlJRg1KhR0NHRwaFDh6ClpfXSYyAvX3M/s619P6Dpe4QQQkgziooOo/BeHHf8XFP2Kuqm7A3ooYtIH3t00xFCrEm/igkhhBDSNqmpqbhx4waGDBkCuVyO8PBwAOCmBL5senp6OHr0KDZu3Ijk5GSMGjWqU+Igrx96EyaEEEKaoVA8BADo6g6Bicl46OuNaHMb8goF5u67ghuFjwEAxlIhehm8wLn5hBBCCHnjRUZGIjMzEwKBAIMGDUJSUhK6du3aafHo6+tjyZIlnXZ/8nqipBQhhBDSBMaUUNTIAQA6EjsYG33YrnaOZ97DkYx73LElJaQIIYQQ8hwGDBiAS5cudXYYhDw3SkoRQgghjfg171tkZ38Dxuq2YNbQaN2WxY0pKVcAAIaY6yHY2RIOFvodEiMhhBBCCCGvM0pKEUIIIY0oKjrCJaTU1ATQ1X27zW38+qAcey7eQUpOCQCgj5EE71gbdGichBBCCCGEvK4oKUUIIYQ0QqGom7bX324z9PQcoa7e9l1kIo9k4X9X7nLH3XRoJyFCCCGEEELqUVKKEEIIecqDB0koKNyPJ0/yAQBCYfd2JaQA4H7pEwCAi2032HeX4tOh7d+5jxBCCCGEkDcNJaUIIYSQp9y8tQLl5VkAAB5PA5qa3drdlryybi2pTx1kcKJpe4QQQgghhKigpBQhhBDyFIWibv0nmSwI+nrvQCDQa3MbCw9cxckb93HvcRUAQEdIv24JIYQQQgh5Fr0lE0IIIU+pqSkFAJia+EIkMm1z/YrqGuxKyeOOtQTqMO+q3WHxEUIIIYQQ8qZQ6+wACCGEkM6mVNbgSvpUnDvnDKWyGgDA5+u0q63SyhoAgLoaD/HBjjgT+h50tQQdFishhBBCXj2TJk0Cj8cDj8eDQCCApaUlwsPDUVNT81ztnjx5EjweD48ePeqYQFshJycHvr6+MDExgVAoRPfu3eHt7Y0bN26olEtISICTkxMkEgm0tLTw9ttvY8eOHSplcnNzwePxkJaW1ur7L126FH369IG2tja6dOmC0aNHIyUlRaXNyZMnw9zcHCKRCL169UJYWBiqq6tbbDs2Nhb29vbQ0tKCsbExPv/8czx48KDZOqdPn4anpydMTEzA4/EQFxfXaLnr16/Dy8sLUqkU2traePvtt5GX98cfKqdOnYpevXpBJBLBwMCg0Wd68eJFjBo1Crq6uujSpQvc3Nxw5cqVRu9369YtSCQS6Orqttjv1vahM1BSihBCyJ9eeXkmiouPovJJ3YuDUGgKdfW2j24qq6pB/qMKAHVT9vp314WeNiWkCCGEkD8Dd3d3FBQU4ObNm5g9ezaWLl2Kb775prPD4rQmaaNQKODi4gK5XI79+/cjMzMTe/bsgZ2dnUpibP369fD29oajoyNSUlKQnp6OCRMmICgoCHPmzHmuOK2trbFhwwZcvXoVZ86cQc+ePeHq6oqioiIAwI0bN6BUKrFlyxZcu3YNa9euxebNm7Fw4cJm2z179iwmTpyIyZMn49q1a9i7dy8uXLiAKVOmNFuvvLwc9vb22LhxY5NlsrOzMWLECPTp0wcnT55Eeno6Fi9eDKHwj52XBw0ahJiYGFy/fh2HDx8GYwyurq6ora0FAJSVlcHd3R09evRASkoKzpw5A4lEAjc3NygUCpX7KRQK/OUvf8HIkSObjb0tfeg0jDRJLpczAEwul3d2KIQQQl6gBw/OsKPHLNjZs++yR48uMYWitM1t7Pv5DjOfn8BkoXWfkauOv4BIyauA3g9U0fMghHSUyspKlpGRwSorKzs7lDYLCAhg3t7eKudcXFyYg4MDKykpYf7+/kxXV5eJRCLm7u7OsrKyuHK5ubnsgw8+YLq6ukxLS4vZ2tqygwcPspycHAZA5RMQEMAYY6y0tJT5+voyLS0tZmRkxNasWcOcnJzYjBkzuHZlMhkLDw9n/v7+TCKRcHWTkpLYiBEjmFAoZN27d2chISGsrKyMMcZYamoqA8Byc3Ob7GteXh7j8/ls1qxZDa5FR0czAOz8+fOMMcb1ITU1te0P9Xf1v2eOHj3aZJnVq1czc3PzZtv55ptvmIWFRYN4TU1NWx0LAHbgwIEG58ePH88+/fTTVrfDGGNXrlxhANitW7cYY4xdvHiRAWB5eXlcmfT0dAaA3bx5U6XuvHnz2KeffspiYmKYVCpt032b6kN7NPcz29r3AxopRQgh5E9LqazGI/klyOWpAACBpgGk0oHQ0JC0ua2z2cVQsj+OPfoZdVSYhBBCyJ8WYwy1tRWd8qn77/f2E4lEqK6uxqRJk/Dzzz8jPj4eycnJYIxhzJgx3OiXadOmoaqqCqdPn8bVq1exatUqiMVimJmZ4fvvvwcAZGZmoqCgAOvWrQMAzJo1C2fPnkV8fDwSExORlJSEy5cvN4ghMjIS9vb2SE1NxeLFi5GdnQ13d3eMHTsW6enp2LNnD86cOYPg4GAAgIGBAdTU1LBv3z5uBM+z9u3bB4VC0eiIqKlTp0IsFmP37t3P9ezqVVdXY+vWrZBKpbC3t2+ynFwuh55e85vTDBs2DHfu3MGPP/4Ixhju3buHffv2YcyYMc8Vo1KpxMGDB2FtbQ03NzcYGhpi6NChzU6RKy8vR0xMDMzNzWFmZgYA6N27N/T19bFt2zZUV1ejsrIS27Ztg42NDXr27MnVPX78OPbu3ftqjnpqB1ronBBCyJ/WjczFKCjYxx3z+brtbutRRd2L5cqP7TB+sBnU1HjPGx4hhBDyp6dUVuLkKbtOufe7Tlehrq7V5nqMMRw7dgyHDx+Gh4cH4uLicPbsWQwfPhxA3bpGZmZmiIuLg4+PD/Ly8jB27FjY2dX108LCgmurPtFiaGjIrR30+PFj7Ny5E7t27cKoUaMAADExMTAxMWkQy3vvvYfZs2dzx4GBgfDz88PMmTMBAFZWVoiOjoaTkxM2bdoEU1NTREdHY968eVi2bBkGDx4MZ2dn+Pn5cXFlZWVBKpXC2Ni4wf0EAgEsLCyQlZXV5uf2tISEBEyYMAEVFRUwNjZGYmIiunbt2mjZW7duYf369YiMjGy2TUdHR8TGxmL8+PF48uQJampq4Onp+dzJnfv376OsrAx///vfERERgVWrVuGnn37Cxx9/jBMnTsDJyYkr+89//hPz5s1DeXk5evfujcTERAgEdUs9SCQSnDx5Eh9++CG+/vprAHXfn8OHD0NDoy518+DBA0yaNAn/+c9/oKPTvvVPXzU0UooQQsifVllZ3eKSmprGEIv7wNTkL21uY8Pxm3gv6iTOZRcDALpoCSghRQghhPwJJSQkQCwWQygUwsPDA+PHj8ekSZOgoaGBoUOHcuX09fXRu3dvXL9+HQAwffp0REREwNHREWFhYUhPT2/2Prdv34ZCocCQIUO4c1KpFL17925QdvDgwSrHV65cwY4dOyAWi7mPm5sblEolcnJyANSN3CosLERsbCyGDRuGvXv3om/fvkhMTGz1s6hPtDQnNjZWJY6kpCTumrOzM9LS0nDu3Dm4u7tj3LhxuH//foM28vPz4e7uDh8fH5W1oZ5uNygoCACQkZGBGTNmYMmSJbh06RJ++ukn5ObmcteTkpJU6sXGxraqr0qlEgDg7e2Nr776Cm+99Rbmz5+PDz74AJs3b1Yp6+fnh9TUVJw6dQrW1tYYN24cnjx5AgCorKzE5MmT4ejoiPPnz+Ps2bPo168f3n//fVRWVgIApkyZAl9fX7zzzjuNxtLePnQmGilFCCHkT6e2tgLy0iuoqroHALCz2wipTtNDwpuz+dRtlFXV7azD4wHW3cQdFichhBDyZ6emJsK7Tlc77d5t4ezsjE2bNkEgEMDExAQaGhqIj49vsV5gYCDc3Nxw8OBBHDlyBCtXrkRUVBRCQkLaGzpHW1t145aysjJMnToV06dPb1C2R48e3NcSiQSenp7w9PREREQE3NzcEBERARcXF1hZWUEul+Pu3bsNRmdVV1cjOzsbbm5uLcbm5eWlkqwzNTVVidvS0hKWlpZwcHCAlZUVtm3bhgULFnBl7t69C2dnZwwfPhxbt25Vafvp3f7qRxStXLkSjo6OmDt3LgCgf//+0NbWxsiRIxEREYHBgwer1OvWrVuLfQCArl27QkNDA7a2tirnbWxscObMGZVzUqkUUqkUVlZWcHBwQJcuXXDgwAH85S9/wa5du5Cbm4vk5GSoqdWNH9q1axe6dOmCH374ARMmTMDx48cRHx/PjQpjjEGpVEJDQwNbt27FX/7yl3b1oTNRUooQQsifTvrVv6Kk5I+/xgn4XdrVjqJWySWktk8aDCtDCcz02j7MnxBCCCGN4/F47ZpC1xnqEylPs7GxQU1NDVJSUrjpew8ePEBmZqZKEsPMzAxBQUEICgrCggUL8O233yIkJIQbcfT0+k4WFhbg8/m4ePEil0iSy+XIyspqcgRNvYEDByIjI6NBnM3h8Xjo06cPzp07BwD45JNPEBoaiqioKERFRamU3bx5MyoqKjBx4sQW25VIJJBIWreOp1KpRFVVFXecn58PZ2dnbke7+iROvcb6V1FRwU2Dq6eurg6gLrkjEona9FzqCQQCvP3228jMzFQ5n5WVBZlM1mQ9xhgYY1y/KioqoKamBh7vjxH39cf1o7GSk5NV/i388MMPWLVqFc6dOwdTU9N296EzUVKKEELIn055+U0AgEgkg67uEAiFZm1uI/23Rzh76wF37GRtCHWatkcIIYSQp1hZWcHb2xtTpkzBli1bIJFIMH/+fJiamsLb2xsAMHPmTHh4eMDa2hoPHz7EiRMnYGNjAwCQyWTg8XhISEjAmDFjIBKJIJFIEBAQgLlz50JPTw+GhoYICwtrkNBoTGhoKBwcHBAcHIzAwEBoa2sjIyMDiYmJ2LBhA9LS0hAWFgZ/f3/Y2tpCIBDg1KlT2L59O0JDQwHUjahavXo15syZA6FQCH9/f/D5fPzwww9YuHAhIiIi0K9fP5X7PpuwAYC+ffuCz+ernCsvL8fy5cvh5eUFY2NjFBcXY+PGjcjPz4ePjw+AuoTUu+++C5lMhsjISBQVFXH1jYya3mjG09Pz/9m784Cqyvzx4+/LcuGyC4IsIoriglsu4Z6RKWgh05ja6CBOajHjmmaoU6IOZhno5DKW/Uqb76DTZGZGmqFZkZorqKWCC6SCO3qR/cJ9fn+gV28IgqKYfl7f75k45zzPcz7nXJHjh2dhzJgxLFu2jJCQEM6cOcOkSZMICgq65Xxc1+Xl5XHs2DHTfkZGBqmpqbi6upqSglOnTmXo0KE88cQTBAcH8/XXX/Pll1/y3XffAeVDLj/55BP69euHu7s7p0+f5q233kKn05kmWu/bty9Tp05l7NixjB8/HqPRyFtvvYWVlRXBwcEApj8X1+3ZswcLC4sKz/tO7qHO1Mo6gA8pWeJYCCEeTlu/a6M2b/FX+fmVL3dclZLSMtVm5tfKLzpR+UUnqsdmb6rlCMWDTN4PzMnzEELUlqqWl3/QRUZGqvDw8Fuey8nJUREREcrZ2VnpdDoVEhKi0tPTTefHjRunmjZtqmxsbJS7u7uKiIhQFy9eNJ2fM2eO8vT0VBqNRkVGRiqllMrNzVXDhg1TdnZ2ytPTUy1YsEAFBQWpadOmmer5+fmphQsXVohn165dqm/fvsrBwUHZ29urdu3aqblz5yqllLpw4YKaMGGCatOmjXJwcFCOjo6qbdu2Ki4uTpWVlZm1s27dOtWrVy9lb2+vAAWo1atXm5XJyMgwnfvtdurUqQqxFRYWqueee055e3srrVarvLy81MCBA9WuXbtMZVasWFFpm7ezaNEiFRgYqHQ6nfLy8lLDhw9Xp0+frrLO1q1bb3mt65/FdR9++KFq1qyZsrW1Ve3bt1fr1q0zncvKylL9+/dXHh4eytraWjVs2FANGzZMHTlyxKyNb775RvXo0UM5OzurevXqqaeeekrt2LGj0thWrFihnJ2db3vf1b2Hmqrqe7a67wcape5yncuHWG5uLs7Ozuj1+odmZnshhHhUGY0GLlz4BoPhMmnpMQD06rkbrbbq5YNv5cLVYh6fuxmNBp5p60X/Nl48067iCjTi4STvB+bkeQghaktRUREZGRk0adIEW1vbug7ndyU/Px8fHx/i4+MZNWrUfb9+Tk4Offr0wcnJiY0bN2Jn9/sYcinuTlXfs9V9P5Dhe0IIIR4J5y98zS+/TDLtazRWWFlVbx6Dm5WUGsm+Ur4CipOtNUuGdaytEIUQQgghqiUlJYUjR44QFBSEXq9nzpw5AKYhgfebq6srmzdvZunSpezYsYM+ffrUSRzi90eSUkIIIR4JhYUnAbC19cXRMRA31yewsLC+TS1z6eeu8sd/bTdNbu5iV7P6QgghhBC1JS4ujrS0NLRaLZ06dSI5OZn69evXWTxubm7MnDmzzq4vfp8kKSWEEOKhZjSWcOnS9+j1ewFo4DGAZs1eu6O29mReNiWkAPq2evCX2RVCCCHEw6dDhw7s3bu3rsMQ4q5JUkoIIcRDLStrFelH/2Ha12rd7rgtfaEBgOc6+PD2oHZorSxuU0MIIYQQQghRGUlKCSGEeKgVFGYCoNM1wsmxHQ0ahNW4jewrhazfn813aecBqGenlYSUEEIIIYQQd0mSUkIIIR5qBoMegIY+f6ZRoztbjeatjUdYvz/btF/fUVsrsQkhhBBCCPEok6SUEEKIh45SRlJSR6DX78VoLB9yZ2XlfMftndUXAdAroD6BXk4M7exbK3EKIYQQQgjxKJOklBBCiIdOcfFZLl/eYdq3sLDByandHbeXW1Se2BrTy58nmrvfdXxCCCGEEEIISUoJIYR4CBkMVwCwtnYj6PF1WFk5YWXlUKM2jEbFsu+Pk3WlkKzLhQA46axrO1QhhBBCCCEeWZKUEkII8dAwGK5w/MRCCgqOA6DVumJr631Hbe3OzOGdTWlmxxo42dx1jEIIIYQQQohysnSQEEKIh8a5c1+RlfUf09A9W9uGd9zW+avFAPi66njl6ea89+dOeDnraiVOIYQQQjxcRo4ciUajQaPRoNVqadasGXPmzKG0tPSu2v3uu+/QaDRcuXKldgKthoyMDIYNG4a3tze2trY0bNiQ8PBwjhw5YlYuMTGR3r174+joiJ2dHY8//jgrV640K5OZmYlGoyE1NbXa1581axYtW7bE3t6eevXq8fTTT7Nz506zNkeNGkWTJk3Q6XQ0bdqUmJgYSkpKbtt2QkIC7du3x87ODi8vL1588UUuXbpUZZ1ly5bRrl07nJyccHJyolu3bmzcuNF0Picnh/Hjx9OiRQt0Oh2NGjViwoQJ6PV6U5mVK1ea/nz8djt//rypXHFxMX//+9/x8/PDxsaGxo0b89FHH5nF889//tN0LV9fX1555RWKioqqvIe1a9fSr18/3Nzcavx53GvSU0oIIcRDo6TkAgAuzo/ToMGz1K/f547auVpk4Iy+fMheK08nJj4dUGsxCiGEEOLhFBoayooVKyguLmbDhg2MHTsWa2trpk+fXtehAVBSUoJWW/UKwgaDgb59+9KiRQvWrl2Ll5cXp0+fZuPGjWaJscWLFzNp0iSio6NZtmwZWq2WL774gqioKH7++Wfi4uLuOM7mzZuzZMkS/P39KSwsZOHChfTr149jx47h7u7OkSNHMBqNvP/++zRr1oyff/6ZMWPGkJ+fX+V1t23bxogRI1i4cCFhYWFkZWURFRXFmDFjWLt2baX1GjZsyFtvvUVAQABKKT7++GPCw8NJSUmhdevWZGdnk52dTVxcHIGBgfz6669ERUWRnZ3NmjVrABg6dCihoaFm7Y4cOZKioiI8PDxMx4YMGcK5c+f48MMPadasGWfOnMFoNJrOr1q1imnTpvHRRx/RvXt30tPTTQnRBQsWVHoP+fn59OzZkyFDhjBmzJjbfgb3lRKV0uv1ClB6vb6uQxFCCFGF4uILKjv7M7VvX4TavMVfHTsWd8dt/XfXr6rxtETlF12+vfq/1FqMVDwM5P3AnDwPIURtKSwsVIcOHVKFhYV1HUqNRUZGqvDwcLNjffv2VV27dlU5OTkqIiJCubi4KJ1Op0JDQ1V6erqpXGZmpnr22WeVi4uLsrOzU4GBgeqrr75SGRkZCjDbIiMjlVJK5ebmqmHDhik7Ozvl6empFixYoHr37q0mTpxoatfPz0/NmTNHRUREKEdHR1Pd5ORk1bNnT2Vra6saNmyoxo8fr/Ly8pRSSqWkpChAZWZmVnqvJ0+eVNbW1mry5MkVzi1atEgB6qefflJKKdM9pKSk1PyhXnP958zmzZsrLTN//nzVpEmTKtt55513lL+/f4V4fXx8ahxTvXr11P/7f/+v0vP/+9//lFarVQaD4Zbnz58/r6ytrdW///1v07GNGzcqZ2dndenSpUrbHTt2rHrqqafMjk2ePFn16NGjWnHXxudxs6q+Z6v7fiDD94QQQvzuHUl7g0OHp5JzeRsA1lrXO25r+/FLKFX+ta21BX1aeVRdQQghhBD3jFKK/LKyOtnU9ReCO6TT6SgpKWHkyJHs2bOH9evXs2PHDpRSDBgwAIOhfHXfsWPHUlxczA8//MDBgwd5++23cXBwwNfXl88++wyAtLQ0zpw5w7vvvgvA5MmT2bZtG+vXrycpKYnk5GT27dtXIYa4uDjat29PSkoKb7zxBsePHyc0NJRBgwZx4MABPvnkE3788UfGjRsHgLu7OxYWFqxZs4aysrJb3teaNWswGAy8+uqrFc69/PLLODg4sHr16rt6dteVlJSwfPlynJ2dad++faXl9Ho9rq5Vv/9169aNU6dOsWHDBpRSnDt3jjVr1jBgwIBqx1NWVsZ///tf8vPz6datW5XxODk5YWV168Fp//73v7Gzs+P55583HVu/fj2dO3dm/vz5+Pj40Lx5c1599VUKCwtNZbp3787evXvZtWsXACdOnGDDhg01uocHjQzfE0II8btXUJAJgJNTB+zs/GjQIOyO27pSUP6C+M7z7Rjc2bc2whNCCCHEHSowGmn6w8E6ufbxJ9pib2lZ43pKKbZs2cKmTZvo378/69atY9u2bXTv3h0on9fI19eXdevWMXjwYE6ePMmgQYNo27YtAP7+/qa2ridaPDw8cHFxAeDq1at8/PHHrFq1ij59yqcqWLFiBd7eFRd3eeqpp5gyZYppf/To0QwfPpxJkyYBEBAQwKJFi+jduzfLli3Dx8eHRYsW8dprrzF79mw6d+5McHAww4cPN8WVnp6Os7MzXl5eFa6n1Wrx9/cnPT29xs/tZomJibzwwgsUFBTg5eVFUlIS9evXv2XZY8eOsXjx4tsOGezRowcJCQkMHTqUoqIiSktLCQsLY+nSpbeN5+DBg3Tr1o2ioiIcHBz4/PPPCQwMvGXZixcv8o9//IOXXnqp0vY+/PBDhg0bhk53Y77SEydO8OOPP2Jra8vnn3/OxYsX+dvf/salS5dYsWIFAMOGDePixYv07NkTpRSlpaVERUUxY8aM297Dg0p6SgkhhPjdKi6+wNlzX1JcfA6Ali1m0zowHhvtrV9aqrJ4y1GeXvA9OzPKJ7usZ1f1nAtCCCGEEDdLTEzEwcEBW1tb+vfvz9ChQxk5ciRWVlZ06dLFVM7NzY0WLVpw+PBhACZMmEBsbCw9evQgJiaGAwcOVHmdEydOYDAYCAoKMh1zdnamRYsWFcp27tzZbH///v2sXLkSBwcH0xYSEoLRaCQjIwMo77l19uxZEhIS6NatG59++imtW7cmKSmp2s/idnNXQXly7uY4kpOTTeeCg4NJTU1l+/bthIaGMmTIELMJwa/LysoiNDSUwYMHm82VdHO7UVFRABw6dIiJEycyc+ZM9u7dy9dff01mZqbpfHJyslm9hIQEU3stWrQgNTWVnTt38te//pXIyEgOHTpUIZ7c3FyeeeYZAgMDmTVr1i3ve8eOHRw+fJhRo0aZHTcajWg0GhISEggKCmLAgAEsWLCAjz/+2NRb6rvvvuPNN9/kX//6F/v27WPt2rV89dVX/OMf/7jtM31QSU8pIYQQv1sHf/4bev2NrurWWrc7bmvpd8coMpRPJKnRQEADh7uOTwghhBB3x87CguNPtK2za9dEcHCwadJvb29vrKysWL9+/W3rjR49mpCQEL766iu++eYb5s2bR3x8POPHj7/T0E3s7e3N9vPy8nj55ZeZMGFChbKNGjUyfe3o6EhYWBhhYWHExsYSEhJCbGwsffv2JSAgAL1eT3Z2doXeWSUlJRw/fpyQkJDbxjZw4ECzZJ2Pj49Z3M2aNaNZs2Z07dqVgIAAPvzwQ7NJ47OzswkODqZ79+4sX77crO2bV5dzcnICYN68efTo0YOpU6cC0K5dO+zt7enVqxexsbF07tzZrF6DBg1MX19fURGgU6dO7N69m3fffZf333/fVObq1auEhobi6OjI559/jrW19S3v+//9v//HY489RqdOncyOe3l54ePjg7Ozs+lYq1atUEpx+vRpAgICeOONN4iIiGD06NEAtG3blvz8fF566SX+/ve/V/lMH1SSlBJCCPG7VVDwKwBOTo/hWq87tjaed9ROYUmZKSG14i+P07S+A43c7GotTiGEEELcGY1Gc0dD6OrC9UTKzVq1akVpaSk7d+40Dd+7dOkSaWlpZsO/fH19iYqKIioqiunTp/PBBx8wfvx4U4+jm+d38vf3x9ramt27d5sSSXq9nvT0dJ544okqY+zYsSOHDh2qEGdVNBoNLVu2ZPv27QA8//zzREdHEx8fT3x8vFnZ9957j4KCAkaMGHHbdh0dHXF0dKxWDEajkeLiYtN+VlYWwcHBdOrUiRUrVmDxmwTire6voKCgwhxPltf+bCml0Ol01X4uv40nNzeXkJAQbGxsWL9+Pba2tresl5eXx//+9z/mzZtX4VyPHj349NNPycvLw8Gh/Jej6enpWFhY0LBhQ9M9/PZeb76HmjzTB4UkpYQQQvxulZVdBaBtm8XY2lacR+F2DGVG5n51mIyL+QBYWWh4srk7Go2mVuMUQgghxKMpICCA8PBwxowZw/vvv4+joyPTpk3Dx8eH8PBwACZNmkT//v1p3rw5ly9fZuvWrbRq1QoAPz8/NBoNiYmJDBgwAJ1Oh6OjI5GRkUydOhVXV1c8PDyIiYnBwsLitu8w0dHRdO3alXHjxjF69Gjs7e05dOgQSUlJLFmyhNTUVGJiYoiIiCAwMBCtVsv333/PRx99RHR0NFDeo2r+/Pm8+uqr2NraEhERgbW1NV988QUzZswgNjaWNm3amF03LS2tQiytW7eu0JsoPz+fuXPnMnDgQLy8vLh48SJLly4lKyuLwYMHA+UJqSeffBI/Pz/i4uK4cOGCqb6nZ+W/oAwLC2PMmDEsW7aMkJAQzpw5w6RJkwgKCrrlfFzXTZ8+nf79+9OoUSOuXr3KqlWr+O6779i0aRNQnpDq168fBQUF/Oc//yE3N5fc3FygfOJ4y5uSqp988gmlpaX8+c9/rnCdYcOG8Y9//IO//OUvzJ49m4sXLzJ16lRefPFF09xTYWFhLFiwgA4dOtClSxeOHTvGG2+8QVhYmNl1fisnJ4eTJ0+SnZ0N3Pg8PD09q3xm90WtrAP4kJIljoUQ4sFTWlqkTp36jzp+YpHavMVfbd7irwyG3Dtq6/u088ovOtG0PRW3tXaDFQ8leT8wJ89DCFFbqlpe/kEXGRmpwsPDb3kuJydHRUREKGdnZ6XT6VRISIhKT083nR83bpxq2rSpsrGxUe7u7ioiIkJdvHjRdH7OnDnK09NTaTQaFRkZqZRSKjc3Vw0bNkzZ2dkpT09PtWDBAhUUFKSmTZtmqufn56cWLlxYIZ5du3apvn37KgcHB2Vvb6/atWun5s6dq5RS6sKFC2rChAmqTZs2ysHBQTk6Oqq2bduquLg4VVZWZtbOunXrVK9evZS9vb0CFKBWr15tViYjI8N07rfbqVOnKsRWWFionnvuOeXt7a20Wq3y8vJSAwcOVLt27TKVWbFiRaVt3s6iRYtUYGCg0ul0ysvLSw0fPlydPn26yjovvvii8vPzU1qtVrm7u6s+ffqob775xnR+69atlcaTkZFh1la3bt3UsGHDKr3W4cOH1dNPP610Op1q2LChmjx5siooKDCdNxgMatasWapp06bK1tZW+fr6qr/97W/q8uXLVd5DZc8sJiamynq3U9X3bHXfDzRK3eU6lw+x3NxcnJ2dTcs5CiGEqHvZ2Ws4fCTatG9hYcOTvX9Go6n52h2f7T3NlE/307yBAyO7N6F7Uzca17e/fUXxSJP3A3PyPIQQtaWoqIiMjAyaNGlS6fAncWv5+fn4+PgQHx9fYQLt+yEnJ4c+ffrg5OTExo0bsbOTaRAeBVV9z1b3/UCG7wkhhPhdKSou73Zsbx+As3NH3FyfqHFCSl9gYHbiLxw4rQeglZcTw7o0uk0tIYQQQogHQ0pKCkeOHCEoKAi9Xs+cOXMATEMC7zdXV1c2b97M0qVL2bFjB3369KmTOMTvjySlhBBC/G6Ull6luPgcAPXr96FZ06l31M6mQ2dZuy/LtN9EekcJIYQQ4ncmLi6OtLQ0tFotnTp1Ijk5mfr169dZPG5ubsycObPOri9+nyQpJYQQ4nfh/PlN/PzLeJQqX33G2sr5NjUql5NfAsDjjesxsnsTnmrpUSsxCiGEEELcDx06dGDv3r11HYYQd02SUkIIIX4XLl/56UZCyroerq49atzGWX0RKScvk3ryCgBtfJx5pp1XbYYphBBCCCGEqCZJSgkhhPhdKDWUL63brNk0/BqNuaM2/vTBT2RczDftu9ppayU2IYQQQgghRM1JUkoIIcQD7dKlHzh7bj2Xr+wE7nzYXnFpmSkh1cmvHvXsrPlDB59ai1MIIYQQQghRM5KUEkII8UBLS59NYWGmad/WtuaJpHc3H+WHoxcAsLLQ8OnL3bCw0NRWiEIIIYQQQog7IEkpIYQQDzSD4RIAfn5RONi3oF69bjWqry80sHBzumm/mYeDJKSEEEIIIYR4AEhSSgghxANLKSOlpXkA+DYciY2Ne43buL7Snq21BXGD2/N4Y9dajVEIIYQQQghxZyQpJYQQ4oFTWJjFkSMzMBguAwoAKyunGrWRW2Tg7Y1HTPNI1Xew4dl23rUdqhBCCCGEEOIOWdR1AEIIIcRvnb+wkZzLP3I17xegfB4pS0ubGrWx6eezJOw8yfbj14b/udnVepxCCCGEEAAjR45Eo9Gg0WjQarU0a9aMOXPmUFpaelftfvfdd2g0Gq5cuVI7gVZDRkYGw4YNw9vbG1tbWxo2bEh4eDhHjhwxK5eYmEjv3r1xdHTEzs6Oxx9/nJUrV5qVyczMRKPRkJqaWu3rz5o1i5YtW2Jvb0+9evV4+umn2blzp1mbo0aNokmTJuh0Opo2bUpMTAwlJSW3bTshIYH27dtjZ2eHl5cXL774IpcuXap2bG+99RYajYZJkyaZHT9+/DjPPfcc7u7uODk5MWTIEM6dO2dWZu7cuXTv3h07OztcXFxu2f71P0M3b//9739N59euXUvfvn1N1+nWrRubNm26bdxr166lX79+uLm51fjzuNckKSWEEOKBU95DCtzr96V9+w/p3Hltjdu4dG3YXodGLsT+oQ3vPN++VmMUQgghhLhZaGgoZ86c4ejRo0yZMoVZs2bxzjvv1HVYJtVJ2hgMBvr27Yter2ft2rWkpaXxySef0LZtW7PE2OLFiwkPD6dHjx7s3LmTAwcO8MILLxAVFcWrr756V3E2b96cJUuWcPDgQX788UcaN25Mv379uHChfNGaI0eOYDQaef/99/nll19YuHAh7733HjNmzKiy3W3btjFixAhGjRrFL7/8wqeffsquXbsYM2ZMteLavXs377//Pu3atTM7np+fT79+/dBoNHz77bds27aNkpISwsLCMBqNpnIlJSUMHjyYv/71r1VeZ8WKFZw5c8a0/eEPfzCd++GHH+jbty8bNmxg7969BAcHExYWRkpKSpVt5ufn07NnT95+++1q3et9pUSl9Hq9ApRer6/rUIQQ4pGQl3dcHT/xrtq5K1xt3uKvjp9YVOM2ysqMKutygXpj3UHlF52oZq3/+R5EKh5l8n5gTp6HEKK2FBYWqkOHDqnCwsK6DqXGIiMjVXh4uNmxvn37qq5du6qcnBwVERGhXFxclE6nU6GhoSo9Pd1ULjMzUz377LPKxcVF2dnZqcDAQPXVV1+pjIwMRfk8BqYtMjJSKaVUbm6uGjZsmLKzs1Oenp5qwYIFqnfv3mrixImmdv38/NScOXNURESEcnR0NNVNTk5WPXv2VLa2tqphw4Zq/PjxKi8vTymlVEpKigJUZmZmpfd68uRJZW1trSZPnlzh3KJFixSgfvrpJ6WUMt1DSkpKzR/qNdd/zmzevLnSMvPnz1dNmjSpsp133nlH+fv7V4jXx8fntjFcvXpVBQQEqKSkpArPedOmTcrCwsLs5+CVK1eURqNRSUlJFdpasWKFcnZ2vuV1APX555/fNp6bBQYGqtmzZ1erbG18Hjer6nu2uu8H0lNKCCHEAyM9fRYZGe9y9epBAGxsPGrcxp8++Inub33Lv3f8CoCzzrpWYxRCCCHE/aOUoqCktE42pdRdxa7T6SgpKWHkyJHs2bOH9evXs2PHDpRSDBgwAIPBAMDYsWMpLi7mhx9+4ODBg7z99ts4ODjg6+vLZ599BkBaWhpnzpzh3XffBWDy5Mls27aN9evXk5SURHJyMvv27asQQ1xcHO3btyclJYU33niD48ePExoayqBBgzhw4ACffPIJP/74I+PGjQPA3d0dCwsL1qxZQ1lZ2S3va82aNRgMhlv2iHr55ZdxcHBg9erVd/XsrispKWH58uU4OzvTvn3lvd71ej2urlUvZtOtWzdOnTrFhg0bUEpx7tw51qxZw4ABA24bx9ixY3nmmWd4+umnK5wrLi5Go9FgY3NjqglbW1ssLCz48ccfb9v2ra5Vv359goKC+Oijj6r8c2g0Grl69ept7/1BJhOdCyGEeGAUFmUB4OHeH3v7ABp4PFOj+qVlRnZl5gBgbanBWWfNky1qntgSQgghxIOh0FBG4Mzbz5lzLxyaE4Kdtub/ZFZKsWXLFjZt2kT//v1Zt24d27Zto3v37kD5vEa+vr6sW7eOwYMHc/LkSQYNGkTbtm0B8Pf3N7V1Pdng4eFhmofo6tWrfPzxx6xatYo+ffoA5UO+vL0rLujy1FNPMWXKFNP+6NGjGT58uGlOpICAABYtWkTv3r1ZtmwZPj4+LFq0iNdee43Zs2fTuXNngoODGT58uCmu9PR0nJ2d8fLyqnA9rVaLv78/6enpNX5uN0tMTOSFF16goKAALy8vkpKSqF+//i3LHjt2jMWLFxMXF1dlmz169CAhIYGhQ4dSVFREaWkpYWFhLF26tMp6//3vf9m3bx+7d+++5fmuXbtib29PdHQ0b775Jkoppk2bRllZGWfOnKneDV8zZ84cnnrqKezs7Pjmm2/429/+Rl5eHhMmTLhl+bi4OPLy8hgyZEiNrvMgkZ5SQggh6twV/V7Sj86luPgsAP7+k/D3n4iVlUO12ziXW8Q3h85x/ZdJh+eEsuf1vjzm63IPIhZCCCGEMJeYmIiDgwO2trb079+foUOHMnLkSKysrOjSpYupnJubGy1atODw4cMATJgwgdjYWHr06EFMTAwHDhyo8jonTpzAYDAQFBRkOubs7EyLFi0qlO3cubPZ/v79+1m5ciUODg6mLSQkBKPRSEZGBlDeU+fs2bMkJCTQrVs3Pv30U1q3bk1SUlK1n4VWq71tmYSEBLM4kpOTTeeCg4NJTU1l+/bthIaGMmTIEM6fP1+hjaysLEJDQxk8eLDZ3FA3txsVFQXAoUOHmDhxIjNnzmTv3r18/fXXZGZmms4nJyeb1UtISODUqVNMnDiRhIQEbG1tb3kf7u7ufPrpp3z55Zc4ODjg7OzMlStX6NixIxYWNUu5vPHGG/To0YMOHToQHR3Na6+9Vum8ZKtWrWL27Nn873//w8PD47bP9EElPaWEEELUucOHp1NQcBwAjcYSrda9RvVLSo30fzeZnGuTm9ezs8bKUn7vIoQQQvze6awtOTQnpM6uXRPBwcEsW7YMrVaLt7c3VlZWrF+//rb1Ro8eTUhICF999RXffPMN8+bNIz4+nvHjx99p6Cb29vZm+3l5ebz88su37HnTqFEj09eOjo6EhYURFhZGbGwsISEhxMbG0rdvXwICAtDr9WRnZ1fonVVSUsLx48cJCbn9ZzZw4ECzZJ2Pj49Z3M2aNaNZs2Z07dqVgIAAPvzwQ6ZPn24qk52dTXBwMN27d2f58uVmbd+8upyTkxMA8+bNo0ePHkydOhWAdu3aYW9vT69evYiNjaVz585m9Ro0aMCWLVs4f/48HTt2NB0vKyvjhx9+YMmSJRQXF2NpaUm/fv04fvw4Fy9exMrKChcXFzw9Pc16vd2JLl268I9//IPi4mKz4YH//e9/GT16NJ9++qnZkMKqnumDSpJSQggh6lxJSflqKt7eL1DfrTfW1s41qp+TX0JOfgkaDQR6OTGoY8N7EaYQQggh7jONRnNHQ+jqwvVEys1atWpFaWkpO3fuNA3fu3TpEmlpaQQGBprK+fr6EhUVRVRUFNOnT+eDDz5g/Pjxph5HN8/v5O/vj7W1Nbt37zYlkvR6Penp6TzxxBNVxtixY0cOHTpUIc6qaDQaWrZsyfbt2wF4/vnniY6OJj4+nvj4eLOy7733HgUFBYwYMeK27To6OuLo6FitGIxGI8XFxab9rKwsgoOD6dSpEytWrKjQI+lW91dQUICVlfmfJUvL8sSjUgqdTlehXp8+fTh48KDZsb/85S+0bNmS6OhoU/3rrg8x/Pbbbzl//jwDBw6s1v1VJjU1lXr16pklpFavXs2LL77If//7X555xnyqi5o80wfF7+O7WwghxENLKUVpaR4A/k0mYGPToMZt6AvLJwqtZ6flqwm9ajU+IYQQQog7FRAQQHh4OGPGjOH999/H0dGRadOm4ePjQ3h4OACTJk2if//+NG/enMuXL7N161ZatWoFgJ+fHxqNhsTERAYMGIBOp8PR0ZHIyEimTp2Kq6srHh4exMTEYGFhgUajqTKe6Ohounbtyrhx4xg9ejT29vYcOnSIpKQklixZQmpqKjExMURERBAYGIhWq+X777/no48+Ijo6GijvUTV//nxeffVVbG1tiYiIwNrami+++IIZM2YQGxtLmzZtzK6blpZWIZbWrVtjbW2+IE1+fj5z585l4MCBeHl5cfHiRZYuXUpWVhaDBw8GyhNSTz75JH5+fsTFxXHhwgVTfU9Pz0rvPSwsjDFjxrBs2TJCQkI4c+YMkyZNIigo6JbzcUF5kue392Jvb4+bm5vZ8RUrVtCqVSvc3d3ZsWMHEydO5JVXXjEbUnny5ElycnI4efIkZWVlpl5ZzZo1w8HBgS+//JJz587RtWtXbG1tSUpK4s033zSbUH7VqlVERkby7rvv0qVLF86eLZ/6QqfT4exc+S91r183OzsbuPF5eHp6VvnM7otaWQfwISVLHAshxL1TWlqksrL+pzIy/qU2b/FXm7f4q9LS/Bq1ceRMrpq4ep964f0dyi86UfWe/+09ilaIG+T9wJw8DyFEbalqefkHXWRkpAoPD7/luZycHBUREaGcnZ2VTqdTISEhKj093XR+3LhxqmnTpsrGxka5u7uriIgIdfHiRdP5OXPmKE9PT6XRaFRkZKRSSqnc3Fw1bNgwZWdnpzw9PdWCBQtUUFCQmjZtmqmen5+fWrhwYYV4du3apfr27ascHByUvb29ateunZo7d65SSqkLFy6oCRMmqDZt2igHBwfl6Oio2rZtq+Li4lRZWZlZO+vWrVO9evVS9vb2ClCAWr16tVmZjIwM07nfbqdOnaoQW2FhoXruueeUt7e30mq1ysvLSw0cOFDt2rXLVGbFihWVtnk7ixYtUoGBgUqn0ykvLy81fPhwdfr06dvWu1nv3r3VxIkTzY5FR0erBg0aKGtraxUQEKDi4+OV0Wg0KxMZGXnLmLdu3aqUUmrjxo3qscceM30u7du3V++9957Zc+/du/ct27j+56IylT2zmJiYGt37b1X1PVvd9wONUne5zuVDLDc3F2dnZ/R6vWkcqhBCiNqRnf0ph49MM+1bWNjyZO+fb/sbvpu9+ul+1uw9bdrvFVCf/xvVpYoaQtw9eT8wJ89DCFFbioqKyMjIoEmTJpVOKi1uLT8/Hx8fH+Lj4xk1atR9v35OTg59+vTBycmJjRs3Ymdnd99jEPdfVd+z1X0/kOF7Qggh6kRhUXkyyc6uKU5O7ajvFlyjhBTAhavlcwsM6tiQTn71CG5ZswnShRBCCCF+j1JSUjhy5AhBQUHo9XrmzJkDYBoSeL+5urqyefNmli5dyo4dO+jTp0+dxCF+fyQpJYQQv2NGpShTUKYUZZR/bTAqSpSRMlV+3ggYbyqjFBiUorDsWplr9YxKUWZqs/xYodGIAjTAYE/XWo29tFQPgId7CE2bTqlR3f2nrvDvHb9yMKu8jQFtPenTquZzUQkhhBBC/F7FxcWRlpaGVqulU6dOJCcnmybargtubm7MnDmzzq4vfp8kKSWEEPdJam4Bp4pKWHXmEkVG441E0bXE0PX9EqUwGBWl1xJKpjKq/FgZUGpUGJTifo2/ttTUXlLq11/fJyNzCWVlRQBY1XClPYAFSel8n35jUktfV+kiLh4dS5cu5Z133uHs2bO0b9+exYsXExQUVGn5Tz/9lDfeeIPMzEwCAgJ4++23GTBgAAAGg4HXX3+dDRs2cOLECZydnXn66ad56623Kp30VQghRN3r0KEDe/fureswhLhrkpQSQoh76FJJKZsu6dlyKZevLujv23WtNGCp0WABWGg0WGrAAg0W1/5rpdGgsyz/r8W1cpaa8vOWlJe31GiwtbAw1aktZ88lUlZWAIBGY4Wz02M1biMnvwSAYV0a8VQLD5o3+H0tfSvEnfrkk0+YPHky7733Hl26dOGf//wnISEhpKWl4eHhUaH89u3b+dOf/sS8efN49tlnWbVqFX/4wx/Yt28fbdq0oaCggH379vHGG2/Qvn17Ll++zMSJExk4cCB79uypgzsUQgghxKNEJjqvgkzcKYS4U5sv5bL9ch7/OnW+wrmOTnYEOdvT2cnelPzRUP5fS40GrYUG62tfW96UXLL6zTHtb/avf3293INq27ZeFBVn077dBzg7d8bauuZ/v/Z+Zyu/Xirgs792o5Nf7Q4rFOJ26vL9oEuXLjz++OMsWbIEAKPRiK+vL+PHj2fatGkVyg8dOpT8/HwSExNNx7p27cpjjz3Ge++9d8tr7N69m6CgIH799VcaNWp025jkfUkIUVtkonMhfl9konMhhHgAFRuNjP45gyLjjZx/Y52Wzk72RPt74WurrcPo6s7Jkx+Sm3uA4pLyYXd2dk1rlJBSSvHy/+1lZ0YO+kIDAE621vckViEeRCUlJezdu5fp06ebjllYWPD000+zY8eOW9bZsWMHkydPNjsWEhLCunXrKr2OXq9Ho9Hg4uJyy/PFxcUUFxeb9nNzc6t/E0IIIYQQN5GklBBC1CK9oZRfi0ooMiqsNRpGNaxPcztbhnm71XVodaqo+CxHj71p2rewsEGrrdlEnBfzSvjm0DnTfn0HLQ3ryVxS4tFx8eJFysrKaNDAfFL/Bg0acOTIkVvWOXv27C3Lnz179pbli4qKiI6O5k9/+lOlv9WcN28es2fPvoM7EEIIIYQwJ0kpIYSoJf89c4lXjpwyTT7uobViVjOfOo3pQWEouQSAlZUj/k0m4ejUFisr+xq1kVtU3jvKwcaKL8b1wMvZFp3WstZjFeJRZTAYGDJkCEopli1bVmm56dOnm/W+ys3NxdfX936EKIQQQoiHjCSlhBCilvx4Oc+UkLLUwB8a1KvTeB4UZWWFFBVlA6DVNsDXd2SN6iulOJVTyOEz5UOEnHXWNHV3qO0whXjg1a9fH0tLS86dO2d2/Ny5c3h6et6yjqenZ7XKX09I/frrr3z77bdVzv1gY2ODjY3NHd6FEEIIIcQNFnUdgBBCPCz0pWUAxLXwJevJx3ijqSynfvnyTn5I7siBg1EAdzSp+Xvfn+CJd7YyblUKAE46mUdKPJq0Wi2dOnViy5YtpmNGo5EtW7bQrVu3W9bp1q2bWXmApKQks/LXE1JHjx5l8+bNuLk92sONhRBCCHH/SFJKCCHu0qWSUmKOZrH/agEAzlYypOy6y1d2YTSWAKDRWOJev2+N20g9dRkAe60l9R1sGNK5Ya3GKMTvyeTJk/nggw/4+OOPOXz4MH/961/Jz8/nL3/5CwAjRowwmwh94sSJfP3118THx3PkyBFmzZrFnj17GDduHFCekHr++efZs2cPCQkJlJWVcfbsWc6ePUtJSUmd3KMQQvwejRw5Eo1Gg0ajQavV0qxZM+bMmUNpaeldtfvdd9+h0Wi4cuVK7QRaDRkZGQwbNgxvb29sbW1p2LAh4eHhFeYvTExMpHfv3jg6OmJnZ8fjjz/OypUrzcpkZmai0WhITU2t9vVnzZpFy5Ytsbe3p169ejz99NPs3LnTrM1Ro0bRpEkTdDodTZs2JSYmplo/txISEmjfvj12dnZ4eXnx4osvcunSpdvWy8rK4s9//jNubm7odDratm3Lnj17TOdv/vyvb6GhoWZtNG7cuEKZt956y3Q+LS2N4OBgGjRogK2tLf7+/rz++usYDAazdq5cucLYsWPx8vLCxsaG5s2bs2HDhirjX7t2Lf369cPNza3Gn8e9JsP3hBDiLn12Lof3T18w7Td8RFfXu5VSwxUA/Bq9TNOmU9Boap6wu1xQ/oP47efb8Ww76X0mHm1Dhw7lwoULzJw5k7Nnz/LYY4/x9ddfmyYzP3nyJBYWN37n2L17d1atWsXrr7/OjBkzCAgIYN26dbRp0wYof8lev349AI899pjZtbZu3cqTTz55X+5LCCEeBqGhoaxYsYLi4mI2bNjA2LFjsba2NvtlQV0qKSlBq636PdVgMNC3b19atGjB2rVr8fLy4vTp02zcuNEsMbZ48WImTZpEdHQ0y5YtQ6vV8sUXXxAVFcXPP/9MXFzcHcfZvHlzlixZgr+/P4WFhSxcuJB+/fpx7Ngx3N3dOXLkCEajkffff59mzZrx888/M2bMGPLz86u87rZt2xgxYgQLFy4kLCyMrKwsoqKiGDNmDGvXrq203uXLl+nRowfBwcFs3LgRd3d3jh49Sr165lN1XP/8r7vVUPc5c+YwZswY076jo6Ppa2tra0aMGEHHjh1xcXFh//79jBkzBqPRyJtvli8YVFJSQt++ffHw8GDNmjX4+Pjw66+/Vrpi7nX5+fn07NmTIUOGmF3/gaBEpfR6vQKUXq+v61CEEA+wecezVYNvU1TY3nT1+dkcZTQa6zqkOqfX71e7dj+nvvv+MbV5i7/K/HV5jdv4eHuGaj3za9V4WqLyi05UyekX7kGkQtScvB+Yk+chhKgthYWF6tChQ6qwsLCuQ6mxyMhIFR4ebnasb9++qmvXrionJ0dFREQoFxcXpdPpVGhoqEpPTzeVy8zMVM8++6xycXFRdnZ2KjAwUH311VcqIyNDAWZbZGSkUkqp3NxcNWzYMGVnZ6c8PT3VggULVO/evdXEiRNN7fr5+ak5c+aoiIgI5ejoaKqbnJysevbsqWxtbVXDhg3V+PHjVV5enlJKqZSUFAWozMzMSu/15MmTytraWk2ePLnCuUWLFilA/fTTT0opZbqHlJSUmj/Ua67/nNm8eXOlZebPn6+aNGlSZTvvvPOO8vf3rxCvj49PlfWio6NVz549qyxzq8//t/z8/NTChQurLPNbr7zyitm1ly1bpvz9/VVJSUmN2rmuNj6Pm1X1PVvd9wMZvieEEHfp6rW5pLq7OPCHBvXQaDR1HFHdO3P2c3Jz91NaWj45uYN98xq3sT41m7ziUpQCRxsrWno53r6SEEIIIR4uSkFJft1sSt0+virodDpKSkoYOXIke/bsYf369ezYsQOlFAMGDDANyxo7dizFxcX88MMPHDx4kLfffhsHBwd8fX357LPPgPKhXWfOnOHdd98Fyodzb9u2jfXr15OUlERycjL79u2rEENcXBzt27cnJSWFN954g+PHjxMaGsqgQYM4cOAAn3zyCT/++KNpWLe7uzsWFhasWbOGsrKyW97XmjVrMBgMvPrqqxXOvfzyyzg4OLB69eq7enbXlZSUsHz5cpydnWnfvn2l5fR6Pa6urlW21a1bN06dOsWGDRtQSnHu3DnWrFnDgAEDqqy3fv16OnfuzODBg/Hw8KBDhw588MEHFcp99913eHh40KJFC/7617/ecljgW2+9hZubGx06dOCdd96pcnjnsWPH+Prrr+ndu7dZLN26dWPs2LE0aNCANm3a8Oabb1b6Wf0eyPA9IYS4QxdLSjmSX8iJwmIAHCwlz39dqUEPgI/Pn2noMwwHhxY1bkNfWP6i9u4Lj9E3sAF2WvmRJYQQQjxyDAXwZh0N35+RDVr7GldTSrFlyxY2bdpE//79WbduHdu2baN79+5A+bxGvr6+rFu3jsGDB3Py5EkGDRpE27ZtAfD39ze1dT3R4uHhYRqidfXqVT7++GNWrVpFnz59AFixYgXe3hWf01NPPcWUKVNM+6NHj2b48OFMmjQJgICAABYtWkTv3r1ZtmwZPj4+LFq0iNdee43Zs2fTuXNngoODGT58uCmu9PR0nJ2d8fLyqnA9rVaLv78/6enpNX5uN0tMTOSFF16goKAALy8vkpKSqF+//i3LHjt2jMWLF992yGCPHj1ISEhg6NChFBUVUVpaSlhYGEuXLq2y3okTJ1i2bBmTJ09mxowZ7N69mwkTJqDVaomMjATKh+798Y9/pEmTJhw/fpwZM2bQv39/duzYgaVl+fQVEyZMoGPHjri6urJ9+3amT5/OmTNnWLBggdn1unfvzr59+yguLuall15izpw5ZrF8++23DB8+nA0bNnDs2DH+9re/YTAYiImJue1zfRDJv6CEEOIOlCnF07vTeD71OFtzrgLgKBOck59/gvMXNpFfcAIAJ8c2NU5IJR+9wOItRzmrLwKgqbuDJKSEEEII8cBLTEzEwcEBW1tb+vfvz9ChQxk5ciRWVlZ06dLFVM7NzY0WLVpw+PBhoDxZERsbS48ePYiJieHAgQNVXufEiRMYDAaCgoJMx5ydnWnRouI7V+fOnc329+/fz8qVK3FwcDBtISEhGI1GMjIygPKeW2fPniUhIYFu3brx6aef0rp1a5KSkqr9LG43dxWUJ+dujiM5Odl0Ljg4mNTUVLZv305oaChDhgzh/PnzFdrIysoiNDSUwYMHm82VdHO7UVHlq0AfOnSIiRMnMnPmTPbu3cvXX39NZmam6XxycrJZvYSEBKB8pduOHTvy5ptv0qFDB1566SXGjBnDe++9Z7reCy+8wMCBA2nbti1/+MMfSExMZPfu3Xz33XemMpMnT+bJJ5+kXbt2REVFER8fz+LFiykuLja7p08++YR9+/axatUqvvrqK7Nkm9FoxMPDg+XLl9OpUyeGDh3K3//+d1MsVT3TB5W85QshxB0oKDNytqS8J09zO1vqa63oV9+pjqOqWwZDLrt2P4vReOMHq7W1S43ayCsu5cWVuzGU3egu7+FYcZJIIYQQQjwirO3KeyzV1bVrIDg42DTpt7e3N1ZWVqbFJKoyevRoQkJC+Oqrr/jmm2+YN28e8fHxjB8//k4jN7G3N+/plZeXx8svv8yECRMqlG3UqJHpa0dHR8LCwggLCyM2NpaQkBBiY2Pp27cvAQEB6PV6srOzK/TOKikp4fjx44SEhNw2toEDB5ol63x8fMzibtasGc2aNaNr164EBATw4Ycfmk0an52dTXBwMN27d2f58uVmbd+8upyTU/k7+rx58+jRowdTp04FoF27dtjb29OrVy9iY2Pp3LmzWb3ri4h4eXkRGBho1n6rVq1MQytvxd/fn/r163Ps2DFTb7bf6tKlC6WlpWRmZpolFH19fQEIDAykrKyMl156iSlTpmBpaYmXlxfW1tam3lfXY7m+am5Vz/RBJUkpIYS4A4VlRgA0wPdBLWQeKaC4+AxGYzEajTVOTu2wsWmAq2uPGrVx8WoxhjKF1tKCQZ0a0q6hMx5OtvcoYiGEEEI88DSaOxpCVxeuJ1Ju1qpVK0pLS9m5c6dp+N6lS5dIS0szS3T4+voSFRVFVFQU06dP54MPPmD8+PGmHkc3zxnk7++PtbU1u3fvNiWS9Ho96enpPPHEE1XG2LFjRw4dOlQhzqpoNBpatmzJ9u3bAXj++eeJjo4mPj6e+Ph4s7LvvfceBQUFjBgx4rbtOjo6mq0+VxWj0WjWoygrK4vg4GA6derEihUrzFaeBW55fwUFBVhZmadArid3lFLodLpb1uvRowdpaWlmx9LT0/Hz86s03tOnT3Pp0qVbDnG8LjU1FQsLCzw8PCotYzQaMRgMGI1GLC0t6dGjB6tWrcJoNJruOT09HS8vL7RaLVqtttrP9EEhSSkhhLgDhcbypJSthYUkpK4xXJvU3NbWh86d/lfj+kWGMrKvFAJQ30HLvD+2rdX4hBBCCCHut4CAAMLDwxkzZgzvv/8+jo6OTJs2DR8fH8LDwwGYNGkS/fv3p3nz5ly+fJmtW7fSqlUrAPz8/NBoNCQmJjJgwAB0Oh2Ojo5ERkYydepUXF1d8fDwICYmBotqvJdGR0fTtWtXxo0bx+jRo7G3t+fQoUMkJSWxZMkSUlNTiYmJISIigsDAQLRaLd9//z0fffQR0dHRQHmPqvnz5/Pqq69ia2tLREQE1tbWfPHFF8yYMYPY2FjatGljdt3fJnUAWrdujbW1tdmx/Px85s6dy8CBA/Hy8uLixYssXbqUrKwsBg8eDJQnpJ588kn8/PyIi4vjwoULpvqenp6V3ntYWBhjxoxh2bJlhISEcObMGSZNmkRQUNAt5+O67pVXXqF79+68+eabDBkyhF27drF8+XJT76y8vDxmz57NoEGD8PT05Pjx47z22ms0a9bM1GNsx44d7Ny5k+DgYBwdHdmxYwevvPIKf/7zn6lXrx5QPvTO2tqatm3bYmNjw549e5g+fTpDhw41Pae//vWvLFmyhIkTJzJ+/HiOHj3Km2++ecuebzfLycnh5MmTZGdnm30enp6eVT6z+6JW1gF8SMkSx0KIyhzOK1ANvk1RrZIP1HUoda64+JI6kjZL7d03XG3e4q927X6uxm2knrysWry+QflFJyq/6EQV+s8f7kGkQtQOeT8wJ89DCFFbqlpe/kEXGRmpwsPDb3kuJydHRUREKGdnZ6XT6VRISIhKT083nR83bpxq2rSpsrGxUe7u7ioiIkJdvHjRdH7OnDnK09NTaTQaFRkZqZRSKjc3Vw0bNkzZ2dkpT09PtWDBAhUUFKSmTZtmqufn56cWLlxYIZ5du3apvn37KgcHB2Vvb6/atWun5s6dq5RS6sKFC2rChAmqTZs2ysHBQTk6Oqq2bduquLg4VVZWZtbOunXrVK9evZS9vb0CFKBWr15tViYjI8N07rfbqVOnKsRWWFionnvuOeXt7a20Wq3y8vJSAwcOVLt27TKVWbFiRaVt3s6iRYtUYGCg0ul0ysvLSw0fPlydPn36tvW+/PJL1aZNG2VjY6Natmypli9fbjpXUFCg+vXrp9zd3ZW1tbXy8/NTY8aMUWfPnjWV2bt3r+rSpYtydnZWtra2qlWrVurNN99URUVFpjL//e9/VceOHU2fS2BgoHrzzTcrfD9s375ddenSRdnY2Ch/f381d+5cVVpaWmX8lT2zmJiY2957Var6nq3u+4FGqbtc5/Ihlpubi7OzM3q93jQOVQghAFJzCwjdm46PjTV7u7eu63Dq1MmTH3H02FzTvod7f9q2XVKjNpb/cJw3NxwBynvpT3gqgFf6Nq/VOIWoLfJ+YE6ehxCithQVFZGRkUGTJk2wtZXh+zWRn5+Pj48P8fHxjBo16r5fPycnhz59+uDk5MTGjRuxs6vZfFzi96mq79nqvh/I8D0hhKiBk4XF/Gn/Cc5cm+Tc1kIWMS0xXALAxaULHu4huHvcfmLL64xGRdq5qxw9lwfAyO6Nef2ZVlhZynMVQgghhKhMSkoKR44cISgoCL1ez5w5cwBMQwLvN1dXVzZv3szSpUvZsWNHpZN7C/FbkpQSQoga2H4lj+OFNyZZ7OAkvwUqLb0KQD2XIHx9I2tU940vfiZh50nTvrujjSSkhBBCCCGqIS4ujrS0NLRaLZ06dSI5OZn69evXWTxubm7MnDmzzq4vfp8kKSWEEDVQbCwf8fxkPUfeatEQP1ttHUdUdy5e3MrprATyrh4CwMqq5it9HMzSA+Bqr8XD0YZ+gQ1qNUYhhBBCiIdRhw4d2Lt3b12HIcRdk6SUEELUQNG1VfdctVY01tnUcTR1KyNjEblXD5j2dbpGNW5DX1g+DHJ5RCc6N3attdiEEEIIIYQQDz5JSgkhRA1c7yllY1H1cruPAoPhCgBNGo/Hyfkx3FyfqFY9pRQT/5vKnswczuYWAeBiZ32bWkIIIYQQQoiHjSSlhBCiBq73lLKRCc4pLSufS8rDYwAODtVfKe9cbjHr92eb9uvZWePtoqv1+IQQQgghhBAPNklKCSFEDTzqPaVKS6+SfjSWkpJLGAzl80HVdC6pywUlQHnvqP97sQuNXO2w08qPIyGEEEIIIR418q8AIYSohsN5hfw7+xI7ruQBYPuI9pS6cCGJM2fWmPYtLe2xtq7eXFD6QgMLk9I5fqH8GbrZa2nb0PmexCmEEEIIIYR48ElSSgghqiEu8yxfXdCb9t0f0Z49JSUXAHB27oy312AcndpgaVm9Cd+/OnCGldszTfsN69ndixCFEEIIIYQQvxOP5r+qhBCihi4bygAI93AhyNmeFzwfrZXiysqK2H9gNLm5BwFwdmqPt/fzNWrjUl4xAB0buRDW3pt+rT1rPU4hhBBCCCHE78ejOf5ECCFqKL+sPCk1qEE9RjV0x97Kso4jur/0+n1cvryDsrLyoXeOjm1q3MbV4lIAOvnV4y89muAjk5sLIYQQ4iExcuRINBoNGo0GrVZLs2bNmDNnDqWlpXfV7nfffYdGo+HKlSu1E2g1ZGRkMGzYMLy9vbG1taVhw4aEh4dz5MgRs3KJiYn07t0bR0dH7OzsePzxx1m5cqVZmczMTDQaDampqdW+/qxZs2jZsiX29vbUq1ePp59+mp07d5q1OWrUKJo0aYJOp6Np06bExMRQUlJy27YTEhJo3749dnZ2eHl58eKLL3Lp0qUq65SVlfHGG2+YXe8f//gHSilTmbVr19KvXz/c3Nwqvd/jx4/z3HPP4e7ujpOTE0OGDOHcuXM1vq8DBw7Qq1cvbG1t8fX1Zf78+be97x9++IGwsDC8vb3RaDSsW7futnXuF0lKCSFENRSUla+6Z2f5aP61aSgtH7ro4BBI1y5JeHoOrHbdxVuOMnDJj3y29zQATrbW9yRGIYQQQoi6FBoaypkzZzh69ChTpkxh1qxZvPPOO3Udlkl1kjYGg4G+ffui1+tZu3YtaWlpfPLJJ7Rt29YsMbZ48WLCw8Pp0aMHO3fu5MCBA7zwwgtERUXx6quv3lWczZs3Z8mSJRw8eJAff/yRxo0b069fPy5cKJ9G4siRIxiNRt5//31++eUXFi5cyHvvvceMGTOqbHfbtm2MGDGCUaNG8csvv/Dpp5+ya9cuxowZU2W9t99+m2XLlrFkyRIOHz7M22+/zfz581m8eLGpTH5+Pj179uTtt9++ZRv5+fn069cPjUbDt99+y7Zt2ygpKSEsLAzjtdW9q3Nfubm59OvXDz8/P/bu3cs777zDrFmzWL58eZX3kJ+fT/v27Vm6dGmV5eqEEpXS6/UKUHq9vq5DEULUkWP5her7S7mqzY8HVYNvU9RefV5dh3RfFRWdU8eOx6t9KZFq8xZ/lbr/pRrVN5SWqSbTEpVf9I3tqwPZ9yhaIe4PeT8wJ89DCFFbCgsL1aFDh1RhYWFdh1JjkZGRKjw83OxY3759VdeuXVVOTo6KiIhQLi4uSqfTqdDQUJWenm4ql5mZqZ599lnl4uKi7OzsVGBgoPrqq69URkaGAsy2yMhIpZRSubm5atiwYcrOzk55enqqBQsWqN69e6uJEyea2vXz81Nz5sxRERERytHR0VQ3OTlZ9ezZU9na2qqGDRuq8ePHq7y88nfclJQUBajMzMxK7/XkyZPK2tpaTZ48ucK5RYsWKUD99NNPSilluoeUlJSaP9Rrrv+c2bx5c6Vl5s+fr5o0aVJlO++8847y9/evEK+Pj0+V9Z555hn14osvmh374x//qIYPH16hbGX3u2nTJmVhYWH2s/LKlStKo9GopKSkSq/92/v617/+perVq6eKi4tNx6Kjo1WLFi2qvIebAerzzz+vdvmqVPU9W933g0fzV/5CCFENxwqK6LHzCEP2H+dCSXnXawfLR2vY3qlTK8jMXEpOTjIANjY1mwfqcoEBowKNBj4a2Zm1f+tO/zYyl5QQQgghqkcpRYGhoE42ddPwrDuh0+koKSlh5MiR7Nmzh/Xr17Njxw6UUgwYMACDwQDA2LFjKS4u5ocffuDgwYO8/fbbODg44Ovry2effQZAWloaZ86c4d133wVg8uTJbNu2jfXr15OUlERycjL79u2rEENcXBzt27cnJSWFN954g+PHjxMaGsqgQYM4cOAAn3zyCT/++CPjxo0DwN3dHQsLC9asWUPZtekrfmvNmjUYDIZb9oh6+eWXcXBwYPXq1Xf17K4rKSlh+fLlODs70759+0rL6fV6XF2rnvO1W7dunDp1ig0bNqCU4ty5c6xZs4YBAwZUWa979+5s2bKF9PR0APbv38+PP/5I//79q30fxcXFaDQabGxuLBBka2uLhYUFP/74Y7Xva8eOHTzxxBNotVrTsZCQENLS0rh8+XK143mQyETnQghRieMF5RNz6ywsaKLTEuigo5ld9Vaae1gUF5ePc3et1wNnl8fx9h5crXpGo+LFj3ezOyMHABedNU+1bHDP4hRCCCHEw6mwtJAuq7rUybV3DtuJnXXNVwtWSrFlyxY2bdpE//79WbduHdu2baN79+5A+bxGvr6+rFu3jsGDB3Py5EkGDRpE27ZtAfD39ze1dT0h4eHhgYuLCwBXr17l448/ZtWqVfTp0weAFStW4O3tXSGWp556iilTppj2R48ezfDhw5k0aRIAAQEBLFq0iN69e7Ns2TJ8fHxYtGgRr732GrNnz6Zz584EBwczfPhwU1zp6ek4Ozvj5eVV4XparRZ/f39TAudOJSYm8sILL1BQUICXlxdJSUnUr1//lmWPHTvG4sWLiYuLq7LNHj16kJCQwNChQykqKqK0tJSwsLDbDmmbNm0aubm5tGzZEktLS8rKypg7dy7Dhw+v9v107doVe3t7oqOjefPNN1FKMW3aNMrKyjhz5ky17+vs2bM0adLErFyDBg1M5+rVq1ftmB4U0lNKCCEqkVda/tuhx53t+DaoJUsC/bDQaOo4qvvDYNBz6dL3FBRkANDAcyD+TcZjW82eUmdzi/gu7QL5JeXPsJPfo7VaoRBCCCEePYmJiTg4OGBra0v//v0ZOnQoI0eOxMrKii5dbiTW3NzcaNGiBYcPHwZgwoQJxMbG0qNHD2JiYjhw4ECV1zlx4gQGg4GgoCDTMWdnZ1q0aFGhbOfOnc329+/fz8qVK3FwcDBtISEhGI1GMjLK3/vGjh3L2bNnSUhIoFu3bnz66ae0bt2apKSkaj+Lm3vyVCYhIcEsjuTkZNO54OBgUlNT2b59O6GhoQwZMoTz589XaCMrK4vQ0FAGDx5sNjfUze1GRUUBcOjQISZOnMjMmTPZu3cvX3/9NZmZmabzycnJZvUSEhIA+N///kdCQgKrVq1i3759fPzxx8TFxfHxxx9X+3m4u7vz6aef8uWXX+Lg4ICzszNXrlyhY8eOWFhUTMtUdl+3U9k9PMikp5QQQlQi/9rk5vaP2JA9gNTUkeRevfFCZG1ds9+66AvLu6O72mv5/G/d8a1X898yCiGEEELorHTsHLbz9gXv0bVrIjg4mGXLlqHVavH29sbKyor169fftt7o0aMJCQnhq6++4ptvvmHevHnEx8czfvz4Ow3dxN7e3mw/Ly+Pl19+mQkTJlQo26hRI9PXjo6OhIWFERYWRmxsLCEhIcTGxtK3b18CAgLQ6/VkZ2dX6J1VUlLC8ePHCQkJuW1sAwcONEvW+fj4mMXdrFkzmjVrRteuXQkICODDDz9k+vTppjLZ2dkEBwfTvXv3ChN937z6nZOTEwDz5s2jR48eTJ06FYB27dphb29Pr169iI2NpXPnzmb1rvdAmjp1KtOmTeOFF14AoG3btvz666/MmzePyMjI297ndf369eP48eNcvHgRKysrXFxc8PT0NOsZd7v78vT0NFuxDzDte3p60rhx41vew4NMklJCCPEbJUYj/86+xDcXy1ecs38EV9zLLzgGgL19ADqdH671ulWvXnEpyUcvcPjMVQBc7Kzxc7O/TS0hhBBCiFvTaDR3NISuLlxPpNysVatWlJaWsnPnTtPwvUuXLpGWlkZgYKCpnK+vL1FRUURFRTF9+nQ++OADxo8fb+pxdPP8Tv7+/lhbW7N7925TIkmv15Oens4TTzxRZYwdO3bk0KFDFeKsikajoWXLlmzfvh2A559/nujoaOLj44mPjzcr+95771FQUMCIESNu266joyOOjo7VisFoNFJcXGzaz8rKIjg4mE6dOrFixYoKvY1udX8FBQVYWZmnQCyv/fJZKYVOp6u03m/bt7S0NK2aV1PXhyF+++23nD9/noEDb6xqfbv76tatG3//+98xGAxYW5evaJ2UlESLFi1MQ/dq8tk+CCQpJYQQv/HNxVxeP5pl2nfTPlp/VRqNBsrKCgDo1PG/WFu7VLvuO5vSWLk907TvorOu5eiEEEIIIX4/AgICCA8PZ8yYMbz//vs4Ojoybdo0fHx8CA8PB2DSpEn079+f5s2bc/nyZbZu3UqrVq0A8PPzQ6PRkJiYyIABA9DpdDg6OhIZGcnUqVNxdXXFw8ODmJgYLCws0Nxmqono6Gi6du3KuHHjGD16NPb29hw6dIikpCSWLFlCamoqMTExREREEBgYiFar5fvvv+ejjz4iOjoaKO9RNX/+fF599VVsbW2JiIjA2tqaL774ghkzZhAbG0ubNm3MrpuWllYhltatW5sSK9fl5+czd+5cBg4ciJeXFxcvXmTp0qVkZWUxeHD53KZZWVk8+eST+Pn5ERcXx4ULF0z1PT0rn2oiLCyMMWPGsGzZMkJCQjhz5gyTJk0iKCjolvNx3Vxv7ty5NGrUiNatW5OSksKCBQt48cUXTWVycnI4efIk2dnZZvfr6elpimnFihW0atUKd3d3duzYwcSJE3nllVdMwy6rc1/Dhg1j9uzZjBo1iujoaH7++WfeffddFi5cWGn8UN5D7tixY6b9jIwMUlNTcXV1NeshVydqZR3Ah5QscSzEo+nDU+dVg29TVLcdh1TssSyVXVR8+0oPAaOxVKWl/0OlpP5Fbd7irzZv8VdGY2mN2oj4cKfyi05UfRd8p/78/35S3x45d4+iFaLuyPuBOXkeQojaUtXy8g+6yMhIFR4efstzOTk5KiIiQjk7OyudTqdCQkJUenq66fy4ceNU06ZNlY2NjXJ3d1cRERHq4sWLpvNz5sxRnp6eSqPRqMjISKWUUrm5uWrYsGHKzs5OeXp6qgULFqigoCA1bdo0Uz0/Pz+1cOHCCvHs2rVL9e3bVzk4OCh7e3vVrl07NXfuXKWUUhcuXFATJkxQbdq0UQ4ODsrR0VG1bdtWxcXFqbKyMrN21q1bp3r16qXs7e0VoAC1evVqszIZGRmmc7/dTp06VSG2wsJC9dxzzylvb2+l1WqVl5eXGjhwoNq1a5epzIoVKypt83YWLVqkAgMDlU6nU15eXmr48OHq9OnTVdbJzc1VEydOVI0aNVK2trbK399f/f3vf1fFxTf+jVBZTDExMaYy0dHRqkGDBsra2loFBASo+Ph4ZTQaa3xf+/fvVz179lQ2NjbKx8dHvfXWW7e9761bt96y3et/nu5UVd+z1X0/0Ch1l+tcPsRyc3NxdnZGr9ebxqEKIR5+i389x9wTZxjq6cq7rer4Nwf30ZUre9i7b6hp39bWhx7df6hW3SJDGftOXub1dT9z4kI+H0Z2pk+rB38MuxB3Qt4PzMnzEELUlqKiIjIyMmjSpAm2trZ1Hc7vSn5+Pj4+PsTHxzNq1Kj7fv2cnBz69OmDk5MTGzduxM7u9zHkUtydqr5nq/t+8GiNSRFCiGq4McH5ozWXlMGQA4BO54ef38vUcwm6TY0bpn12gHWp2ab9eva3X3FFCCGEEELcmZSUFI4cOUJQUBB6vZ45c+YAmIYE3m+urq5s3ryZpUuXsmPHDvr06VMncYjfH0lKCSHENZdKSll08hzf5ZRP0v3IJaVKcwGws2uMj/fQ25Q2d/R8HgCNXO1o29CZdj7OtR6fEEIIIYS4IS4ujrS0NLRaLZ06dSI5Odk0iXZdcHNzY+bMmXV2ffH7JEkpIYS45n9nc3j/1E0TCto8GpN0Hz+xkMzMpZQPLQcrq5onlHKLDAAsHPoYnfzq1WZ4QgghhBDiNzp06MDevXvrOgwh7pokpYQQ4prLhlIAgpztGdSgHs97PhrJlfPnN3I9IQUa6rl0qVa90jIj//npV85dLebC1fIlep118mNFCCGEEEIIUT3yrwchhLimwFg+l1Q3Fwcifequ6/P9Vnpt2F6HDv/BybENVlaO1aqXfPQis748ZNq30ICbvc09iVEIIYQQQgjx8JGklBBCXPOoTXCu16eSn38Ug0EPgM62UbUTUgBn9EUA+LnZ0adlA9r7OssE50IIIYQQQohqk6SUEOKRdzivkC8vXGFfbgEAdrWVlCrOg6OboLS48jKOXtA0uHauVwMlJRfZu28oSpVeO6LB2rp6c0kppTiZU8CJC+WTm3f2c2VmWOA9ilQIIYQQQgjxsJKklBDikaKU4lRRCSVK8fPVQnJLy3gt/bRZGTfrWvqr8bt5sGNJ1WUC+tVJUqqoKBulSrGwsMW1Xnfq1euGlZVDteou2nKMhZvTTfsudo/GhPBCCCGEEEKI2iVJKSHEI6HEaORcSSmzjmXx1QX9Lcs86+5MawcdofVrvvqcmUNfwKVjkL6pfN+zLTh43rqsd4e7u9YdMlybR8pO50f79h/UqO7+01cAsNda4uqgpX+bSu5NCCGEEEIIIaogSSkhxEOvTCme2p3GsQLzYXQNtFYE2NniaGVJdxcHxvi6392Frp6FE9/B5y+bHx8QB4263l3btaSsrJCDB/9GXl4aAFZWTjVuI7fQAED8kPaEtvGq1fiEEEIIIYQQj45HYzZfIcQj7VyxwZSQ0llo6OhkR+YT7djfow1rOjRjRdsmd5+QungUFrQyT0h1iICn3gDfLnfXdi26ot/LpZwfKC45B4C9Q4tq1005eZn3vz/OyZzyubecbGXYnhBCCCEEwMiRI9FoNGg0GrRaLc2aNWPOnDmUlpbevnIVvvvuOzQaDVeuXKmdQKshIyODYcOG4e3tja2tLQ0bNiQ8PJwjR46YlUtMTKR37944OjpiZ2fH448/zsqVK83KZGZmotFoSE1Nrfb1Z82aRcuWLbG3t6devXo8/fTT7Ny506zNUaNG0aRJE3Q6HU2bNiUmJoaSkpLbtp2QkED79u2xs7PDy8uLF198kUuXLlVZ5+rVq0yaNAk/Pz90Oh3du3dn9+7dZmXy8vIYN24cDRs2RKfTERgYyHvvvWdW5uWXX6Zp06bodDrc3d1v+UxPnjzJM888g52dHR4eHkydOrXSP0Pbtm3DysqKxx577Lb3vXbtWvr164ebm1uNP497TZJSQoiHVn5pGXOPZ/PGsSwAPLXWZPRuz4ZOzbGt7RX2zv0MygiWWnDxg8EfQ/gSeOJV0Ghq91p3wWC4DICjY2s6d1pD84A3qlXPaFSM+GgX8zYe4fzV8gSfm4PNPYtTCCGEEOL3JjQ0lDNnznD06FGmTJnCrFmzeOedd+o6LJPqJG0MBgN9+/ZFr9ezdu1a0tLS+OSTT2jbtq1ZYmzx4sWEh4fTo0cPdu7cyYEDB3jhhReIiori1Vdfvas4mzdvzpIlSzh48CA//vgjjRs3pl+/fly4cAGAI0eOYDQaef/99/nll19YuHAh7733HjNmzKiy3W3btjFixAhGjRrFL7/8wqeffsquXbsYM2ZMlfVGjx5NUlIS//d//8fBgwfp168fTz/9NFlZWaYykydP5uuvv+Y///kPhw8fZtKkSYwbN47169ebynTq1IkVK1Zw+PBhNm3ahFKKfv36UVZWBkBZWRnPPPMMJSUlbN++nY8//piVK1cyc+bMCjFduXKFESNG0KdPn2o90/z8fHr27Mnbb79drfL3lRKV0uv1ClB6vb6uQxFC3IH/Zl9SDb5NMW3he9Pv3cX2rFQqxkmp/wy+d9e4C4WFWSot/R9qz56havMWf7X/wN9qVP9Kfonyi05UftGJ6pVPUtTSrUeV0Wi8R9EK8WCT9wNz8jyEELWlsLBQHTp0SBUWFtZ1KDUWGRmpwsPDzY717dtXde3aVeXk5KiIiAjl4uKidDqdCg0NVenpN95LMzMz1bPPPqtcXFyUnZ2dCgwMVF999ZXKyMhQgNkWGRmplFIqNzdXDRs2TNnZ2SlPT0+1YMEC1bt3bzVx4kRTu35+fmrOnDkqIiJCOTo6muomJyernj17KltbW9WwYUM1fvx4lZeXp5RSKiUlRQEqMzOz0ns9efKksra2VpMnT65wbtGiRQpQP/30k1JKme4hJSWl5g/1mus/ZzZv3lxpmfnz56smTZpU2c4777yj/P39K8Tr4+NTaZ2CggJlaWmpEhMTzY537NhR/f3vfzftt27dWs2ZM6fKMr+1f/9+Bahjx44ppZTasGGDsrCwUGfPnjWVWbZsmXJyclLFxcVmdYcOHapef/11FRMTo9q3b1/pNX6rNj6Pm1X1PVvd9wPpKSWEeCiVGstX2QPo6GTH3/29WNCy0b25mP40XM4s/9q25nM03Q8nT33EqVMruKIv72psa1v9uaCyrxSyM6O8W7Od1pIFQx7jb082Q/MA9QATQgghxMNJKYWxoKBONqXUXcWu0+koKSlh5MiR7Nmzh/Xr17Njxw6UUgwYMACDoXyezrFjx1JcXMwPP/zAwYMHefvtt3FwcMDX15fPPvsMgLS0NM6cOcO7774LlPfM2bZtG+vXrycpKYnk5GT27dtXIYa4uDjat29PSkoKb7zxBsePHyc0NJRBgwZx4MABPvnkE3788UfGjRsHgLu7OxYWFqxZs8bUg+e31qxZg8FguGWPqJdffhkHBwdWr159V8/uupKSEpYvX46zszPt27evtJxer8fV1bXKtrp168apU6fYsGEDSinOnTvHmjVrGDBgQKV1SktLKSsrw9bW1uy4Tqfjxx9/NO13796d9evXk5WVhVKKrVu3kp6eTr9+/W7Zbn5+PitWrKBJkyb4+voCsGPHDtq2bUuDBg1M5UJCQsjNzeWXX34xHVuxYgUnTpwgJiamyvv9vZCJzoUQD51lJ8/zj+PZGK/tP1HPkfF+Daqsc8e2L4Fv/n5j3+bBTEqVFJd3d3Zze5J69bri5fnHatX7OUvPs4tv/MCtZ6e9J/EJIYQQQtyKKiwkrWOnOrl2i3170djZ1bieUootW7awadMm+vfvz7p169i2bRvdu3cHyuc18vX1Zd26dQwePJiTJ08yaNAg2rZtC4C/v7+preuJFg8PD1xcXIDyOY4+/vhjVq1aZRq+tWLFCry9vSvE8tRTTzFlyhTT/ujRoxk+fDiTJk0CICAggEWLFtG7d2+WLVuGj48PixYt4rXXXmP27Nl07tyZ4OBghg8fboorPT0dZ2dnvLwq/pJTq9Xi7+9Penp6jZ/bzRITE3nhhRcoKCjAy8uLpKQk6tevf8uyx44dY/HixcTFxVXZZo8ePUhISGDo0KEUFRVRWlpKWFgYS5curbSOo6Mj3bp14x//+AetWrWiQYMGrF69mh07dtCsWTNTucWLF/PSSy/RsGFDrKyssLCw4IMPPuCJJ54wa+9f//oXr732Gvn5+bRo0YKkpCS02vL367Nnz5olpADT/tmzZwE4evQo06ZNIzk5GSurhyOdIz2lhBAPnY0X9aaElI2Fhp71HO7dxU5fm+TQyhYcvSFw4L271l0wlOoBaOAxAL9GY9Bq3apV75fs8nq21hb4uOgY0c3vnsUohBBCCPF7lpiYiIODA7a2tvTv35+hQ4cycuRIrKys6NLlxsI3bm5utGjRgsOHDwMwYcIEYmNj6dGjBzExMRw4cKDK65w4cQKDwUBQUJDpmLOzMy1aVFzApnPnzmb7+/fvZ+XKlTg4OJi2kJAQjEYjGRkZQHnPrbNnz5KQkEC3bt349NNPad26NUlJSdV+FtcTLVVJSEgwiyM5Odl0Ljg4mNTUVLZv305oaChDhgzh/PnzFdrIysoiNDSUwYMHm80NdXO7UVFRABw6dIiJEycyc+ZM9u7dy9dff01mZqbpfHJyslm9hIQEAP7v//4PpRQ+Pj7Y2NiwaNEi/vSnP2FhcSOdsnjxYn766SfWr1/P3r17iY+PZ+zYsWzevNks3uHDh5OSksL3339P8+bNGTJkCEVFRdV6pmVlZQwbNozZs2fTvHnzGj/TB9XDkVoTQgjgVFEJh/MKOX1t2F5CO3+6uzigq+1JzW9WnFv+32cXwmPD7t117oDRWMK+lOHk5R2hrKz8h52VVfV7cukLDKaV9ga09WLBkMfuRZhCCCGEEJXS6HS02Le3zq5dE8HBwSxbtgytVou3tzdWVlZmE11XZvTo0YSEhPDVV1/xzTffMG/ePOLj4xk/fvydhm5ib29vtp+Xl8fLL7/MhAkTKpRt1OjGVBeOjo6EhYURFhZGbGwsISEhxMbG0rdvXwICAtDr9WRnZ1fonVVSUsLx48cJCQm5bWwDBw40S9b5+PiYxd2sWTOaNWtG165dCQgI4MMPP2T69OmmMtnZ2QQHB9O9e3eWL19u1vbNq8s5OZW//86bN48ePXowdepUANq1a4e9vT29evUiNjaWzp07m9W73kupadOmfP/99+Tn55Obm4uXlxdDhw419RwrLCxkxowZfP755zzzzDOmtlNTU4mLi+Ppp582tens7IyzszMBAQF07dqVevXq8fnnn/OnP/0JT09Pdu3aZXYf586Vr5jt6enJ1atX2bNnDykpKabhlkajEaUUVlZWfPPNN1U+0wfVA9tTKisriz//+c+4ubmh0+lo27Yte/bsMZ1XSjFz5ky8vLzQ6XQ8/fTTHD161KyNnJwchg8fjpOTEy4uLowaNYq8vLz7fStCiPug2Gik7+40RhzMILu4fHx+Y5323iWkjEa4eg4Kcsr3H8Bhe/n5x9Dr91FWVgAYsbCwxcEhsFp1dxy/RMfYJJZuPQ7IsD0hhBBC1A2NRoOFnV2dbDWdP/N6IqVRo0amoVWtWrWitLSUnTt3mspdunSJtLQ0AgNvvJf5+voSFRXF2rVrmTJlCh988AFwo8fRzfM7+fv7Y21tze7du03H9Hp9tYbMdezYkUOHDpkSPjdvlfVu0mg0tGzZkvz8fACef/55rKysiI+Pr1D2vffeo6CggBEjRtw2FkdHR7Pr66pIAhqNRoqLi037WVlZPPnkk6YV7W7utQSYtevh4QFAQUFBhXKWlpZAeX5Bp9OZ1XN0dDQra29vj5eXF5cvX2bTpk2Eh4cD5SsWGgyGW7ZtNBqpjFIKpZTpvrp168bBgwfNeoQlJSXh5OREYGAgTk5OHDx4kNTUVNMWFRVFixYtSE1NpUuXLjV6pg+KB7Kn1OXLl+nRowfBwcFs3LgRd3d3jh49Sr169Uxl5s+fz6JFi/j4449p0qQJb7zxBiEhIRw6dMg0Cdnw4cM5c+YMSUlJGAwG/vKXv/DSSy+xatWquro1IcQ9crbYwJXSMiw10N7RjrYOOvx1Nvfugv/3B8j4/sb+AzjBucFwGQA7O38ea/8R1tb1sLKq3lDGfScvU2ZUWGjKE1JPt7pHc3IJIYQQQjzEAgICCA8PZ8yYMbz//vs4Ojoybdo0fHx8TEmNSZMm0b9/f5o3b87ly5fZunUrrVq1AsDPzw+NRkNiYiIDBgxAp9Ph6OhIZGQkU6dOxdXVFQ8PD2JiYrCwsLhtIi06OpquXbsybtw4Ro8ejb29PYcOHSIpKYklS5aQmppKTEwMERERBAYGotVq+f777/noo4+Ijo4GyntUzZ8/n1dffRVbW1siIiKwtrbmiy++YMaMGcTGxtKmTRuz66alpVWIpXXr1lhbW5sdy8/PZ+7cuQwcOBAvLy8uXrzI0qVLycrKYvDgwcCNhJSfnx9xcXFcuHDBVN/T07PSew8LC2PMmDEsW7aMkJAQzpw5w6RJkwgKCrrlfFzXbdq0CaUULVq04NixY0ydOpWWLVvyl7/8BSjvidW7d2+mTp2KTqfDz8+P77//nn//+98sWLAAKB9y+cknn9CvXz/c3d05ffo0b731FjqdzjTRer9+/QgMDCQiIoL58+dz9uxZXn/9dcaOHYuNTfm/a377XD08PLC1ta1w/LdycnI4efIk2dnZwI3Pw9PTs8pndl/UyjqAtSw6Olr17Nmz0vNGo1F5enqqd955x3TsypUrysbGRq1evVoppdShQ4cUoHbv3m0qs3HjRqXRaFRWVla14pAljoV48BmNRvV6+inVb/cR1eDbFNV5+y/346JKzaqnVIxT+fZuB6UKr9z761ZTSckVtX3H02rLt83V5i3+as/eP9W4jblfHVJ+0YkqNvE+PE8hfmfk/cCcPA8hRG2pann5B11kZKQKDw+/5bmcnBwVERGhnJ2dlU6nUyEhISo9Pd10fty4capp06bKxsZGubu7q4iICHXx4kXT+Tlz5ihPT0+l0WhUZGSkUkqp3NxcNWzYMGVnZ6c8PT3VggULVFBQkJo2bZqpnp+fn1q4cGGFeHbt2qX69u2rHBwclL29vWrXrp2aO3euUkqpCxcuqAkTJqg2bdooBwcH5ejoqNq2bavi4uJUWVmZWTvr1q1TvXr1Uvb29gpQgOnf49dlZGSYzv12O3XqVIXYCgsL1XPPPae8vb2VVqtVXl5eauDAgWrXrl2mMitWrKi0zdtZtGiRCgwMVDqdTnl5eanhw4er06dPV1nnk08+Uf7+/kqr1SpPT081duxYdeWK+bv/mTNn1MiRI5W3t7eytbVVLVq0UPHx8cpoNCqllMrKylL9+/dXHh4eytraWjVs2FANGzZMHTlyxKydzMxM1b9/f6XT6VT9+vXVlClTlMFgqDS2mJgY1b59+9ved2XPLCYm5rZ1q1LV92x13w80St3lOpf3QGBgICEhIZw+fZrvv/8eHx8f/va3v5kmLjtx4gRNmzYlJSWFxx57zFSvd+/ePPbYY7z77rt89NFHTJkyhcuXL5vOl5aWYmtry6effspzzz1X4brFxcVmXQJzc3Px9fVFr9ebxqEKIR4sR/ILeXLXjd+89HF1IqG9fxU1akFpMcSWdwNm2kmwdb6317uJUgrK/x+u/fWtrv+PAoXi0qVkDhz467UKGvz8omjc+G9m9Ux/81+rw7X9/aeu8Pm+LA6cvsLJnAL++oQ/f37cr3w5ZqNCGUEZy7saKyOm48ZSo9l5401lSg1lKCM06+yBtdbyvj0rIe6V3NxcnJ2d5f3gGnkeQojaUlRUREZGBk2aNDGNfhHVk5+fj4+PD/Hx8YwaNeq+Xz8nJ4c+ffrg5OTExo0bsbuDVQvF709V37PVfT94IIfvnThxgmXLljF58mRmzJjB7t27mTBhAlqtlsjISNNyiLdaLvH6ubNnz5rGjl5nZWWFq6urqcxvzZs3j9mzZ9+DOxJC3CsXS0oB8LaxZlYzn3u70t51Jfk3vrau/R+4V84VUJRvQH+hkCvnCzh1KIcLv17FaKzJ7xBuLG1bPrvAD9Wu2ejaBjpIPENC4pkaXLeKdgNdJSklhBBCCFELUlJSOHLkCEFBQej1eubMmQNgGhJ4v7m6urJ582aWLl3Kjh076NOnT53EIX5/HsiklNFopHPnzrz55psAdOjQgZ9//pn33nuPyMjIe3bd6dOnM3nyZNP+9Z5SQogHz259Ph+cvkD2tZX2fG21DPRwuT8XN5SvSIeFNVhaV122EkXnz1F8/iRnMvK58utZLlyw4tIlS0qMNhiMD8JvBo1oAA0KK4sSNBjLN40RDQoLjGgsNGicvconILWywMJSg4WFBo0GNBbXvrbQYGVtgcZCg6XVA7u2hhBCCCHE705cXBxpaWlotVo6depEcnIy9evXr7N43NzcmDlzZp1dX/w+PZBJKS8vL7OVCKB81YLPPvsMuDF52blz5/Dy8jKVOXfunGk4n6enp9ms9VA+fC8nJ6fSibxsbGxME4gJIR5scRln+f7yVdO+n+4+rA5XZoAf4uDC4fJ9bfV6SV05V8D5X3M5l5HLhYOHKMov43JhvZtKeFSoY4EBB8uLuFiewdnqLLYWelrrvsFCYwQU5VNYXh8OXp48uvHfm77WXC/LtXqqwtfX69RwgRlw9IYph2tYSQghhBBC3K0OHTqwd+/eug5DiLv2QCalevToUWF2/vT0dPz8/ABo0qQJnp6ebNmyxZSEys3NZefOnfz1r+XzqHTr1o0rV66wd+9eOnXqBMC3336L0WikS5cu9+9mhBD3xPkSAwAvNXSnpYMtIW73YV6nzGT4/q0b+w6Vr1RRWlLGts+OcfVSEb/+fOmmM+bjqa00RTho8/BtcBlrGwuatXfByt0PF1cLNJr6oGl5U+ko4DeZo5sySfsPRFFcfGN4cpMm43F37/ubyCrWLzIYifxoJ7lFpaZ0139GBVHfwYaKmaqb9i0eyB8hQgghhBBCiN+JB/JfFK+88grdu3fnzTffZMiQIezatYvly5ezfPlyADQaDZMmTSI2NpaAgACaNGnCG2+8gbe3N3/4wx+A8p5VoaGhjBkzhvfeew+DwcC4ceN44YUXqlzuUQjxYNtyKZfVZy6RWVi+KMFgz3q0dbxPEykW5JT/t15j6DgCAkIqFLlyvoDTRy6TtvMMZ4/nmp1rqN2PpcZAC91W1jhbsLV+Jnk6J+YxhtxLegAu/XIZ1AlTHbNZpH67LsVN+wrFxYuOGI02uLh0wcrKkbPHSlAq8TcRqgrV80tKqZ95kfqArZUFLnZaktdeoELBWzBbK8MsHnN9R4/Fyb1ijzAhhBBCCCHEo+uBTEo9/vjjfP7550yfPp05c+bQpEkT/vnPfzJ8+HBTmddee438/Hxeeuklrly5Qs+ePfn666/NZnxPSEhg3Lhx9OnTBwsLCwYNGsSiRYvq4paEELXkH8ezOZJfBICVBrxt7sOwveuuzyVVvwX0mnLLIhv+dYDLZwtM+1YU08NpBQ21+ynx9+V8oy6cbjSGNvpSPH/Yh377MfYUrK2lAG0BW/TUfEid2XqFuXDi1utB3LGSosLabVAIIYQQQgjxu/dAJqUAnn32WZ599tlKz2s0GubMmWNaZeBWXF1dWbVq1b0ITwhRRy5cW21vcuMGBLs64aa9j3+NlVxLNl2bS8qQnU1RejoFx37l2x0WFFg4UWTpCEATm5/QagoJcvgv39Z3Z5/tC5Q5hHE+dSua/63FUn/FrOlSKzgRaHOth9G1fkaa6zNH3ZgH6vr/Xj+mlJHS0lyzUlbWTjeVu6m9a1+XqVKMlKHRQJmxjDJlpMxoRGOhUJRdu3blj0FV6Ad1Ew0E1GvOiMARaG4a+ufg6lZ5HSGEEEIIIcQj6YFNSgkhxHUlRiNrzl7mkqGUK6XlSakR3vXxtLmzle9qTCnIOw/55YsnlORaUJSUxOnxEznv3oErLgHk+DxhKu5q9StBDisY6xDEB3md8TiaS+OLe4G9Ff7SPeqTxyXnYk74FFBibaylgHNqqZ2KLDQWWGms0Fpqy7+2sMJCY4GFxgJLjSW2VrbYefjTpvvT9ywGIYQQQgghxMNBklJCiAfeVxf0TE47Zdq30kA9a8v7F8DaMXDwUwDKSjSc+OdOlGEHOfVa8UvrUaZiXjZ7sKy/lq9cc1micaDxmUw6HqvHb7sdKRRb2xWTr/Gi0KItKLC6AFZoyktqAGVB/fpu2NrYAhrTfOPlJTSAotSQS1lZHsXF57GytMfRMRCNxgJMV7xeT3Pt/0CDBRYaLZZYUVhiZMeJK7Rs4EJX//r0C/Simbsr1hbWpiTTzf+10FiY9X4SQgghhBBCiLshSSkhxAPvdFEJAP46Gx53tqdXPQdsLCzuXwC/br/2hYaSYmfyreqT1eRJLruVz8RkZZHPry4/84nvFi7b5fP4ofr8MdN8lb2LblZY2TkRWGiFR14ZobtzsdeVgebXa+kihVnySingxG/2byguvkBR0U2JOitn7Oyu7f92dN1v6pYZjRQUl3Ixr4QhRQb15IzXAAEAAElEQVQaONrQwKl8Pr6rtyhfYbjeb3Y9/z4Du86dEUIIIYQQQoiauI//qhNCiJo7ml9E2rWJzfvWd+LdVo143tP1/gZhKCDvrA2/Hn6aU2ntSG33J0559ybPxheAfV5b2dh0NR0OGXn2R0+an3IAQFlaYGVtS7fMC4z4No1hibt5bMsOvHfuwvLIEYpSUijal0Lhvn0Umv57bUtJMd9SU8024+EstBkWps3i6FWK9h8o3w78Zjt40Gwz/PIL1sfS8DqbQfMrp3E+dZyiX365sR06ZLYVHzpsvh0238ry8u7v5yGEEEII8YAZOXIkGo0GjUaDVqulWbNmzJkzh9JrU0/cqe+++w6NRsOVK1dqJ9BqyMjIYNiwYXh7e2Nra0vDhg0JDw/nyJEjZuUSExPp3bs3jo6O2NnZ8fjjj7Ny5UqzMpmZmWg0GlJTU6t9/VmzZtGyZUvs7e2pV68eTz/9NDt37jRrc9SoUTRp0gSdTkfTpk2JiYmhpKTktm0nJCTQvn177Ozs8PLy4sUXX+TSpUtV1vnhhx8ICwvD29sbjUbDunXrKpRZu3Yt/fr1w83N7bb3q5Sif//+lba1cuVK2rVrh62tLR4eHowdO9bs/KZNm+jatSuOjo64u7szaNAgMjMz78t93gvSU0oI8cBaczaHcYdPmvZdreroryxDEbsut2VPw46UWTljl9cQqzI4bX+KU667uWyVSrtjzjQ6b3dTJSt88x/D51wq9fS5Zs2dc3bBqNFwwckFaxcdllbXfj+gKf8hdV3H/gOp5+V9o+JNQ+dOnfqYnCvb8WrwHB4N+mNqgIpf/rbu6+t+JvtKEV4utrg72DCyR2Pq2dtUWv6WDd503jawFUIIIYQQj7rQ0FBWrFhBcXExGzZsYOzYsVhbWzN9+vS6Dg2AkpIStNqqV642GAz07duXFi1asHbtWry8vDh9+jQbN240S4wtXryYSZMmER0dzbJly9BqtXzxxRdERUXx888/ExcXd8dxNm/enCVLluDv709hYSELFy6kX79+HDt2DHd3d44cOYLRaOT999+nWbNm/Pzzz4wZM4b8/Pwqr7tt2zZGjBjBwoULCQsLIysri6ioKMaMGcPatZWvhp2fn0/79u158cUX+eMf/1hpmZ49ezJkyBDGjBlT5f3985//rHRKjAULFhAfH88777xDly5dyM/PN0s4ZWRkEB4ezuTJk0lISECv1/PKK6/wxz/+kX379t3z+7wXJCklhHhgHbxaCICjpQV+Ohv6uzvf/yCUgtJCjtZvj31+V7NTh3w/x+XcJZ464WI6ZmHVGAtliUvuWdod+8R0/LCXG6ddHTFYWvwm4VPM9QXvfqtTpw44BrY1O3b69H84dfpjipuco6xMYdOiA44+T9XolrZvK+WCbTFfTehJa+86eKZCCCGEEA8hGxsbPD09AfjrX//K559/zvr164mKimLixIl8+eWXFBcX07t3bxYtWkRAQAAAv/76K+PGjePHH3+kpKSExo0b88477xAYGEhwcDAA9erVAyAyMpKVK1dy9epVoqKiWLduHU5OTrz22mt88cUXPPbYY/zzn/8EoHHjxowaNYqjR4+ybt06/vjHP7Jy5Up+/PFHpk+fzp49e6hfvz7PPfcc8+bNw97enl9++YXjx4+zZcsW/Pz8APDz86NHjx6m+zx16hRTpkxh0qRJvPnmm6bjU6ZMQavVMmHCBAYPHkyXLl3u6DkOGzbMbH/BggV8+OGHHDhwgD59+hAaGkpoaKjpvL+/P2lpaSxbtqzKpNSOHTto3LgxEyZMAKBJkya8/PLLvP3221XG079/f/r3719lmYiICIAKPZZ+KzU1lfj4ePbs2YOXl5fZucuXL/P666/z5Zdf0qdPH9Pxdu3amb7eu3cvZWVlxMbGYnFtOpNXX32V8PBwDAYD1tbW9/Q+7wVJSgkhHliXr3V3nuDXgPF+DeokBmUoxFhqhcGqAZoysNAYOe1wghy7M5xwOUGfY/XLC2oc0QCPHduFp/6qqX6ejTXnnew45eZEg9ZtsbSyolXPJ3Fy97hW4tqU5Dfnqa7tuPs1qRDPyVMfUlh4o/eYg33zat1HmVHxl5W72X/qCvpCAwAudlX/pkwIIYQQoq4ppSgtqa0VimvGSnt3i7zodDouXbrEyJEjOXr0KOvXr8fJyYno6GgGDBjAoUOHsLa2ZuzYsZSUlPDDDz9gb2/PoUOHcHBwwNfXl88++4xBgwaRlpaGk5MTOp0OgMmTJ7Nt2zbWr19PgwYNmDlzJvv27eOxxx4ziyEuLo6ZM2cSExMDwPHjxwkNDSU2NpaPPvqICxcuMG7cOMaNG8eKFStwd3fHwsKCNWvWMGnSJCwtKy4utGbNGgwGA6+++mqFcy+//DIzZsxg9erVd5yUullJSQnLly/H2dmZ9u3bV1pOr9fj6lr1FB/dunVjxowZbNiwgf79+3P+/HnWrFnDgAED7jrO6igoKGDYsGEsXbrUlLy8WVJSEkajkaysLFq1asXVq1fp3r078fHx+PqWTxvSqVMnLCwsWLFiBSNHjiQvL4//+7//4+mnn8ba2vqBuM+akqSUEOKBopTixZ8z+elKHnll5S8g9azr5q8q9cs6fp0yjzK7lylr5oZVMdhZGlnfejGtM5wY/UN9DIXlLwaBp0/S+GKOeX0rS7ymRdMmbCD9dXZY3OKHenUZjaWUlRVQUlJ+jdat/4mTYxvs7Comrm7lZE4BP6RfMO37uOjwcLSpooYQQgghRN0rLTGyfOL3dXLtl97tjbVNzd/flFJs2bKFTZs20b9/f9atW8e2bdvo3r07UD7fj6+vL+vWrWPw4MGcPHmSQYMG0bZteQ95f39/U1vXEy0eHh64uLgAcPXqVT7++GNWrVpl6lGzYsUKvL1vmvbhmqeeeoopU6aY9kePHs3w4cOZNGkSAAEBASxatIjevXuzbNkyfHx8WLRoEa+99hqzZ8+mc+fOBAcHM3z4cFNc6enpODs7V+jpA6DVavH39yc9Pb3Gz+1miYmJvPDCCxQUFODl5UVSUhL169e/Zdljx46xePHi2w4Z7NGjBwkJCQwdOpSioiJKS0sJCwtj6dKldxVrdb3yyit0796d8PDwW54/ceIERqORN998k3fffRdnZ2def/11+vbty4EDB9BqtTRp0oRvvvmGIUOG8PLLL1NWVka3bt3YsGHDA3OfNSUTnQshHijnSkrZeFHP5dIyDEphqYF2jro6iaX0k3F869maLxo3o6zIBYADTr8A0DHNhdJ8OzRGDSiFe+6NeaMKO7bH8+sNtNq3j4Z/Go7OwfGuElJlZQXs+OkpfkjuQFlZ+aTibq5PVDshBZh6RzVwsmHLlN5smdIba0v5ESCEEEIIUVsSExNxcHDA1taW/v37M3ToUEaOHImVlZVZryE3NzdatGjB4cOHAZgwYQKxsbH06NGDmJgYDhw4UOV1Tpw4gcFgICgoyHTM2dmZFi1aVCjb+TcrJO/fv5+VK1fi4OBg2kJCQjAajWRkZAAwduxYzp49S0JCAt26dePTTz+ldevWJCUlVftZ3G7uKihPzt0cR3JysulccHAwqampbN++ndDQUIYMGcL58+crtJGVlUVoaCiDBw82m8vp5najoqIAOHToEBMnTmTmzJns3buXr7/+mszMTNP55ORks3oJCQnVvt/bWb9+Pd9++61paOWtGI1GDAYDixYtIiQkhK5du7J69WqOHj3K1q1bATh79ixjxowhMjKS3bt38/3336PVann++edNc9PW5X3eCekpJYR4oFy5NmTPxcqSLzsGUM/aivra+/9XlSo1kFPYh7OeHXC+0th0PN/6Mg6FVliq8q7cHTPOYldiwL6klBw3Fzqu/gRbX9+76ur9W/n5xygqyjLt16vXDSsrp2rVLSwp49O9pzhwWg+Am70NTd0dai02IYQQQoh7yUprwUvv9q6za9dEcHCwadJvb29vrKysWL9+/W3rjR49mpCQEL766iu++eYb5s2bR3x8POPHj7/T0E3s7e3N9vPy8nj55ZdN8w3drFGjRqavHR0dCQsLIywsjNjYWEJCQoiNjaVv374EBASg1+vJzs6u0DurpKSE48ePExISctvYBg4caJas8/HxMYu7WbNmNGvWjK5duxIQEMCHH35oNml8dnY2wcHBdO/eneXLl5u1ffPqd05O5e/N8+bNo0ePHkydOhUon6vJ3t6eXr16ERsbS+fOnc3qNWhQe9OHfPvttxw/ftzU2+26QYMG0atXL7777jtTz7PAwEDTeXd3d+rXr8/Jk+XTdyxduhRnZ2fmz59vKvOf//wHX19fdu7cSdeuXev0Pu+EJKWEEA+EojIj/zlziZ+vTW7uam1FgL1tncRSdvUq5+a+S67ln7EwngDAYFXIgfobaJmeQcCR8h+YlsYyPHPzMdjbo23XgnavTEZ30w/z2mIoLe+FZW8fQNDjX6LRWFU76fV5ShYzv/jFtO8uQ/aEEEII8Tui0WjuaAhdXbieSLlZq1atKC0tZefOnabhe5cuXSItLc0s+eDr60tUVBRRUVFMnz6dDz74gPHjx5t6HJWV3VgZx9/fH2tra3bv3m1KJOn1etLT03niiSeqjLFjx44cOnSoQpxV0Wg0tGzZku3btwPw/PPPEx0dTXx8PPHx8WZl33vvPQoKChgxYsRt23V0dMTR0bFaMRiNRoqLi037WVlZBAcH06lTJ1asWGGa9Pu6W91fQUEBVr9Zzfv6nFlKKXQ6XY2eS01MmzaN0aNHmx1r27ataYU8wDSZfFpaGg0bNgQgJyeHixcvmiadLygoqHCv1+/BaDSaytTVfd4JSUoJIR4IX164wutHb/QG8qiD3lHXXU3aTN62FPK6d6LIaI0jcN7pABdt9mBZ5m4q53a1CAD7P/+Jpq9MqaS1O1dams/Zs5+j15cv72pt5YKFhXWN2si+Up7ka+npyOONXXkhyLfW4xRCCCGEELcWEBBAeHg4Y8aM4f3338fR0ZFp06bh4+Njmlto0qRJ9O/fn+bNm3P58mW2bt1Kq1atgPKV7zQaDYmJiQwYMACdToejoyORkZFMnToVV1dXPDw8iImJwcLi9hOzR0dH07VrV8aNG8fo0aNNE6snJSWxZMkSUlNTiYmJISIigsDAQLRaLd9//z0fffQR0dHRQHmPqvnz5/Pqq69ia2tLREQE1tbWfPHFF8yYMYPY2FjatGljdt20tLQKsbRu3do0Ofd1+fn5zJ07l4EDB+Ll5cXFixdZunQpWVlZDB48GChPSD355JP4+fkRFxfHhQs35k291QTi14WFhTFmzBiWLVtGSEgIZ86cYdKkSQQFBd1yPq7r8vLyOHbsmGk/IyOD1NRUXF1dTUnBnJwcTp48SXZ2ttn9enp6mm2/1ahRI5o0KZ+So3nz5oSHhzNx4kSWL1+Ok5MT06dPp2XLlqZVGJ955hkWLlzInDlz+NOf/sTVq1eZMWMGfn5+dOjQ4Z7f570gSSkhxAMhu6h8zqMW9rY8Uc+BIZ5Vr55xr5Tl5nLi8EGSO/TDSm+DO40ByLHMxSm//IemW34Rjx/LMk3K596m3a0bu0vZ2f/l6LEby+xqtbee3LEyhjIjOQUlAPRr7cnkvtVbqU8IIYQQQtSeFStWMHHiRJ599llKSkp44okn2LBhgykhU1ZWxtixYzl9+jROTk6EhoaycOFCoHxI2+zZs5k2bRp/+ctfGDFiBCtXrmTBggVERUXx7LPP4uTkxGuvvcapU6ewta16pEG7du34/vvv+fvf/06vXr1QStG0aVOGDh0KQMOGDWncuDGzZ88mMzMTjUZj2n/llVdM7bzyyiv4+/sTHx/Pu+++S35+PgCrV6/mhRdeqHDdWx07deqUqUfQdZaWlhw5coSPP/6Yixcv4ubmxuOPP05ycjKtW7cGylepO3bsGMeOHatQ//q8SrcycuRIrl69ypIlS5gyZQouLi489dRTvP3221U+sz179piSQlC+8iFAZGQkK1euBMrnjPrLX/5S4X5jYmKYNWtWle3f7N///jevvPIKzzzzDBYWFvTu3Zuvv/7a9GflqaeeYtWqVcyfP5/58+djZ2dHt27d+Prrr00rM97L+7wXNKqqT+0Rl5ubi7OzM3q93jQOVQhR+0qNin+cyOb9UxeI8nVnVjOf21e6B/KSkzk94TX2hAzlfKEPNsVuGDFSrE7AlS/QUP6bp4aXcml3+gLKwx2HZgH4LHoXS4fan6cpLX0Op09/jINDK5ydHqNhwwgcHCpOYHkr8d+ksfjbG7/peOPZQEb1rP7E6EKIysn7gTl5HkKI2lJUVERGRgZNmjS5bXJFmMvPz8fHx4f4+HhGjRp136+fk5NDnz59cHJyYuPGjdjZ2d33GMT9V9X3bHXfD6SnlBCiTi3+9RzzTpzBeG3fxaru5gwoTEnB0rUZxdaWkF8eR4ZvAtklaTx+5VrPLaXwvlK+Al6ztWvRVrI07d0qLb1KSclFADw9w/FrNOY2Ncx988s509d2WkuCGtdNzzMhhBBCCFH7UlJSOHLkCEFBQej1eubMmQNgGhJ4v7m6urJ582aWLl3Kjh076NOnT53EIX5/JCklhKhTX1/UmxJSthYaurnU3cpw5/W57G/uxUWLqxiULf+fvfuOj6pKHz/+mUlmkkkymXRSSYGE3qSDgtQAgrirCIIILrjiF7GggtgQxLWBrqiLZRHY34KyNkTEElEgVKmClIRAQiCkl0kyKdPu74+BkUgIoWRCed6vV17m3jnnnufemDB5cs5ztIqCzVaC4fSyvSYl5bQ6VYiXxbFDoMbfv0HiOJzyAllZf2zNqnH3u+hrlFQ6lu19+vcedGrqh0cjJvuEEEIIIcSVN3/+fFJSUtBqtXTu3Jnk5GSCGugPpvURGBjICy+80Gjji2uTJKWEEI2qxOLYSeS/7eO42c8HT7eL23r3SlCsVso3H2R7lSeZTayAGXe3cqylW2h6wAI4dgUxVFY7E1IeLVqgcmuYRE9hwS/OzzUaf/z8utS777/Wp7H/pJHCckdSKsJPJwkpIYQQQojrTKdOndi1a1djhyHEZZOklBCiUfwnq4AdpSZOVZ9OnnhoGiUhBXBqxkzMuWFUxrrjn98Zd5sOUFNtzQbAqrajs6oIKa3As00bQp9/Do+EhisabrGWANC9+/d4e8WhUtUvqXSqpJLXv/9jZxOdxo0gH4+GCFEIIYQQQgghLpskpYQQLldksTIj9aTz2F0FoR6aOno0rKrDh3Fr0hyLFTQ2bxS7CbutCLtShgq4OeUUARXVAGiaRqHr2LFB4jh67C1yc1djs1UA4KENqXdCCqDI5Ejw+Xq681RiC9pF+qHTyiwpIYQQQgghxNVJklJCCJcrNDuWwOnUap6KDaWdjw5/TeP8OFIUhe9jm1IQlIt7VSAGxUp16RJQzKf32gMPqw0FcPPywnfQoAaLJTPz39jtVQB4ekbg7q6/qP6lVRYAQnw9Gd8z5kqHJ4QQQgghhBBXlCSlhBAuoygKO4wmdpQ6ZgKFaN35v6YhjRpTzv8OkB/cBACzyo5iN4FiRkHB6GOhQ1E1XmYroc89R8C94xosDru92pmQ6thxGQbfDqhU9VvOuDE1n7fXHaGw3DGby9dTfrQLIYQQQgghrn7ym4sQwmV+KChl4u/pzuOARpoddYaiKJTuzQYtuFu8CawOxGIvAcDibqOFMZv2Rf7YADeDocHisNkqqKrKcR4H+Pe8qGV7Szans+t4sfM4LrjxdjAUQgghhBBCiPqSpJQQwmWOVDhmAgVq3Gnm5cGDUcGNFou1oIBND40juPl0dBUReOaXUVH5qfP1wAqFzoes2MgHwL1Jw8zoKij4mX37/w9FcSy9c3PzuaiEFPxRS+rRAfF0ifGna0zAFY9TCCGEEEIIIa40SUoJIVymxGoD4K4m/syJj2jUWMo3bCA0pZjq5jbcrN7YrQecrykohJaUA+B3zxg8mjXHq0uXBomjuHibMyEFEBIypN59k4/ks3xbJkfyHLH2SQiic7QkpIQQQgghhBDXhsbZf10IcUP5ocDI7buPsDK7CACDpvF3hKsqLeV406aku+VhRAWKY7bRxg4FHOuRSfzpWEOmTyfg3nGo1A3z49JiNQLQLO4J+vc7QutWr9W77/wfUvj+QA4VZhtqFUT6ezVIjEIIIYQQom4TJ05EpVKhUqnQarU0b96cuXPnYrVaL+u669evR6VSUVJScmUCrYf09HTGjh1LeHg4np6eREZGMnLkSA4fPlyj3Zo1a+jbty96vR4vLy+6du3K0qVLa7TJyMhApVKxd+/eeo//4osv0rJlS7y9vfH392fgwIFs3769xjUnTZpEbGwsOp2OZs2aMXv2bMxm8wWvvXz5cjp06ICXlxdhYWH87W9/o7CwsM4+GzduZMSIEYSHh6NSqVi1atVFxwzw8ssv06tXL7y8vPDz86t1rMzMTG677Ta8vLwICQnhqaeeqvH/0Nn/n5390aZNG2ebV155ha5du6LX6wkJCeGOO+4gJSXlgs+mPvE1BElKCSEa3L8y8/jVaKLA4viB2tzLs1HjseRXsO14NVu7tGWvWzqKvdhR4BxI3GXlji91joYqFWpv7waJobR0H3v2TqSg4GcANBr/ehc2P6Og3PEP79R+zVj5YE+a+DbucxVCCCGEuJENGTKE7Oxsjhw5whNPPMGLL77IG2+80dhhOdUnaWOxWBg0aBBGo5Evv/ySlJQUVq5cSbt27Wokxt555x1GjhxJ79692b59O/v27WPMmDFMmTKFJ5988rLiTEhI4N1332X//v1s2rSJmJgYBg8eTH6+o6zG4cOHsdvtfPDBBxw4cIC33nqL999/n2eeeabO627evJn77ruPSZMmceDAAT777DN+/fVXHnjggTr7mUwmOnTowHvvvXfJMYPj+Y8aNYqHHnqo1mvYbDZuu+02zGYzW7ZsYdmyZSxdupQXXnjB2ebtt98mOzvb+XHixAkCAgIYNWqUs82GDRuYOnUq27ZtIykpCYvFwuDBgzGZTHXe54XiazCKOC+j0agAitFobOxQhLim3bztoNLk5z3KP9NzlO3FZYrNbm/UeIrXHFX+89y/lFee+pfy1vhnlfl33+b82HRTR+Vgi5bKwRYtlbQhQxsshgMHZyg/rYtzfhQVbat33xxjpbL1aIHS+vnvlOiZa5SjeWUNFqcQ4lzy/qAmeR5CiCulsrJSOXjwoFJZWdnYoVy0CRMmKCNHjqxxbtCgQUqPHj2UoqIiZfz48Yqfn5+i0+mUIUOGKKmpqc52GRkZyvDhwxU/Pz/Fy8tLad26tfLtt98q6enpClDjY8KECYqiKEppaakyduxYxcvLSwkNDVXefPNNpW/fvsqjjz7qvG50dLQyd+5cZfz48Yper3f2TU5OVm6++WbF09NTiYyMVKZNm6aUl5criqIoe/bsUQAlIyPjvPeamZmpaDQaZfr06ee8tnDhQgVQtm1zvLc9cw979uy5+Id62pl/Z3766afztnn99deV2NjYOq/zxhtvKHFxcefEGxERUe9YAOWrr766YLu6Yl6yZIliMBjOOb927VpFrVYrOTk5znOLFi1SfH19lerq6lrH+eqrrxSVSlXn1ysvL08BlA0bNlww7rriq01d37P1fX8gM6WEEA2m2GJlt9FE4ekZUv0D9XTz80GtUrk2kN8+hc8nwX9GUjmrFaWrVmDFhmdVIHbrmV3v3PF0M2OoqMYjIYHI994l+j/LGiwki6UEgIiIsXS+aSV+ft3q1a+sykL/+esZ8+E2TGZHjS4/L21DhSmEEEII0agURcFSVdUoH4qiXFbsOp0Os9nMxIkT2blzJ6tXr2br1q0oisKwYcOwWBx1RadOnUp1dTUbN25k//79vPbaa/j4+BAVFcUXX3wBQEpKCtnZ2bz99tsATJ8+nc2bN7N69WqSkpJITk5m9+7d58Qwf/58OnTowJ49e3j++ec5evQoQ4YM4c4772Tfvn2sXLmSTZs28fDDDwMQHByMWq3m888/x2az1Xpfn3/+ORaLpdYZUQ8++CA+Pj588sknl/XszjCbzXz44YcYDAY6dOhw3nZGo5GAgLprq/bs2ZMTJ06wdu1aFEUhNzeXzz//nGHDhl2RWC825j/bunUr7dq1o0mTJs5ziYmJlJaWcuDAgVr7LF68mIEDBxIdHX3e6xqNjnIhF3o+jUUKnQshGkSVzU7v7Ycosvzxj5nB3YW1pKxmSN8AFYXw1YPO01m/BuIW7oMVO4rd3VlLKiY/ixa55bgpoI2NRT9gQIOEZbdbqKw8TnV1LgD+/j3x86t/EfWskkpMZhtuahWxQd70jAskwFuSUkIIIYS4Plmrq1k44a5GGfuRZZ+j8bz48giKorBu3Tp++OEHhg4dyqpVq9i8eTO9evUCHHWNoqKiWLVqFaNGjSIzM5M777yTdu3aARAXF+e81plEQkhIiLPOT1lZGcuWLWPFihUMOP2edcmSJYSHh58TS//+/XniiSecx5MnT2bcuHE89thjAMTHx7Nw4UL69u3LokWLiIiIYOHChcyYMYM5c+bQpUsX+vXrx7hx45xxpaamYjAYCAsLO2c8rVZLXFwcqampF/3czrZmzRrGjBlDRUUFYWFhJCUlERQUVGvbtLQ03nnnHebPn1/nNXv37s3y5csZPXo0VVVVWK1WRowYUeeyvIaKuTY5OTk1ElKA8zgnJ+ec9qdOneK7775jxYoV572m3W7nscceo3fv3rRt27besbiSzJQSQjSIHLOFIosNFdDUU8tfQvyI8nRh8mT7Ilh+V42EVEWvN6iMGEuBPhpVhQY3CyhKNQARxWbcTufPvG7q1GBh7d59D9u2J1JWth8AjbvhovqXVTlmnUX56/hpel9euuPq/MdFCCGEEOJGs2bNGnx8fPD09GTo0KGMHj2aiRMn4u7uTvfu3Z3tAgMDadGiBYcOHQLgkUceYd68efTu3ZvZs2ezb9++Osc5duwYFouFbt3+mGlvMBho0aLFOW27/GkH6d9++42lS5fi4+Pj/EhMTMRut5Oeng44Zm7l5OSwfPlyevbsyWeffUabNm1ISkqq97PQai/8vn/58uU14khOTna+1q9fP/bu3cuWLVsYMmQId999N3l5eedcIysriyFDhjBq1KgataHOvu6UKVMAOHjwII8++igvvPACu3bt4vvvvycjI8P5enJyco1+y5cvr/f9XkzMV8qyZcvw8/PjjjvuOG+bqVOn8vvvv/Ppp586z02ZMqXGfTY2mSklhGgQRaeX7IV7aPi1Z2vXB1Dg+OtMka4b+02JZFa2pfRLLXg1x24pwVyYBPxR7NHdZsd8Uytaz38XTS1/ZboSFEXBWPqbYzx3A166aHx96zel12ZX+DW9iK1HCwDQe2oaJEYhhBBCiKuJu4cHjyz7vNHGvhj9+vVj0aJFaLVawsPDcXd3Z/Xq1RfsN3nyZBITE/n222/58ccfeeWVV1iwYAHTpk271NCdvP+0aU95eTkPPvggjzzyyDltmzZt6vxcr9czYsQIRowYwbx580hMTGTevHkMGjSI+Ph4jEYjp06dOmd2ltls5ujRoyQmJl4wtttvv71Gsi4iIqJG3M2bN6d58+b06NGD+Ph4Fi9ezKxZs5xtTp06Rb9+/ejVqxcffvhhjWufvdufr68v4NiVrnfv3jz11FMAtG/fHm9vb2655RbmzZtHly5davT786ylC6lPzHUJDQ3l119/rXEuNzfX+drZFEXh448/Zvz48edNAD788MOsWbOGjRs3EhkZ6Tw/d+7cyy5GfyVJUkoIcUUdKq9k3L5jFJgdSSl/jYt/zNisUF2KUlpIla0nW41/I6Oo5rRZxZrJ2Qkpq1s1OrMVXVjTBktIAdhs5YAdgJt7b8HNrf7TwVftyeKJz35zHht0kpQSQgghxPVPpVJd0hK6xnAmKXG2Vq1aYbVa2b59u3P5XmFhISkpKbRu/ccfbqOiopgyZQpTpkxh1qxZfPTRR0ybNs2ZcDi7vlNcXBwajYYdO3Y4E0lGo5HU1FT69OlTZ4w33XQTBw8ePCfOuqhUKlq2bMmWLVsAuOuuu5g5cyYLFixgwYIFNdq+//77VFRUcN99913wunq9Hr1eX68Y7HY71dXVzuOsrCz69etH586dWbJkCWp1zUVgtd1fRUUF7u41fzdxc3OUF1EUBZ1Od1HP5WJjvpCePXvy8ssvk5eXR0hICABJSUn4+vrW+H8FHDvspaWlMWnSpHOuoygK06ZN46uvvmL9+vXExsbWeD0kJMR5/auBJKWEEFfUL0VlnKq2OI+7G7zraH2FWargXz2gOJ0y6yhKrVMxlZ/CbjmJzpqEOyWYLGYsNkdCJzWinK3tCvlgd0/UnETn698gYSmKnaxTn2IypQGgUmlRqy/uL29p+eUANPH1ICbQmwf6xF2ghxBCCCGEaGzx8fGMHDmSBx54gA8++AC9Xs/TTz9NREQEI0eOBOCxxx5j6NChJCQkUFxczC+//EKrVq0AiI6ORqVSsWbNGoYNG4ZOp0Ov1zNhwgSeeuopAgICCAkJYfbs2ajValQX2FBo5syZ9OjRg4cffpjJkyfj7e3NwYMHSUpK4t1332Xv3r3Mnj2b8ePH07p1a7RaLRs2bODjjz9m5syZgGNG1euvv86TTz6Jp6cn48ePR6PR8PXXX/PMM88wb968c+oXpaSknBNLmzZt0Ghq/qHVZDLx8ssvc/vttxMWFkZBQQHvvfceWVlZjBo1CnAkpG699Vaio6OZP38++fn5zv5/nlF0thEjRvDAAw+waNEiEhMTyc7O5rHHHqNbt2611uM6o7y8nLS0NOdxeno6e/fuJSAggKZNm9YrZoDMzEyKiorIzMzEZrM5Z2U1b94cHx8fBg8eTOvWrRk/fjyvv/46OTk5PPfcc0ydOhWPP83aW7x4Md27d6+1TtTUqVNZsWIFX3/9NXq93lmPymAwoNPpznufF4qvoUhSSghxRZWcXrY3JjSAGbGhhHm4cEZP0TEodqyFr7DGcLD0APmmDMxVv581L8oRjwLclG7ini1W/K27UQC1l1eDhFVi3EVKyvPOYw+P4Au+YTijymLjtxMlHMktA+De7tFMGxDfIHEKIYQQQogrb8mSJTz66KMMHz4cs9lMnz59WLt2rTMhY7PZmDp1KidPnsTX15chQ4bw1ltvAY4lbXPmzOHpp5/m/vvv57777mPp0qW8+eabTJkyheHDh+Pr68uMGTM4ceIEnheYVda+fXs2bNjAs88+yy233IKiKDRr1ozRo0cDEBkZSUxMDHPmzCEjIwOVSuU8fvzxx53Xefzxx4mLi2PBggW8/fbbmEwmAD755BPGjBlzzri1nTtx4kSNZWXgmLl0+PBhli1bRkFBAYGBgXTt2pXk5GTatGkDOGYPpaWlkZaWdk7/unZMnDhxImVlZbz77rs88cQT+Pn50b9/f1577bU6n9nOnTvp16+f83j69OkATJgwgaVLl9YrZoAXXniBZcv+2N27UydHHdtffvmFW2+9FTc3N9asWcNDDz1Ez5498fb2ZsKECcydO7dGPEajkS+++MK5E+OfLVq0CIBbb721xvklS5YwceLE897nheJrKCrlcve5vI6VlpZiMBgwGo3OdahCiNoZLVY+zSliVW4Je8oqeCKmCU/FnrsjR4OpKIKUtZi/epNS9f18nRtFSdFiHOknh5AKCxnNE1hlMBBiO8Sbnx2scYmwV1/Br45CgZcqJ/cbDhx4DA+PMIKDBxMSPBh//x716jvl/+3i+wN/7LYx74623Nvj/Fu+CiEanrw/qEmehxDiSqmqqiI9PZ3Y2NgLJldETSaTiYiICBYsWFDrkq6GVlRUxIABA/D19eW7777Dq4H+2CuuLnV9z9b3/YHMlBJCXBFLswp5JT3beRyideEMqdJsWNgRrFWUWp9imxJIhdWGIyGlJsA7DJOhiqOGWCoUFdUxX+F5yjGjq8RHTcd/L0ft44O2WbMGCc9qdcxy8vVtR4uEFy6qb+rpGVKR/joi/HQMbHVxBReFEEIIIcT1Z8+ePRw+fJhu3bphNBqds2nOLAl0tYCAAH766Sfee+89tm7dyoABAxolDnHtkaSUEOKKOFXtWCDXQa+jX4Avf23SMPWZapV3AKxV5B/w5VRoALsNx/FXHLOJNO42TjYNxnb6x12F3YxKZUN3uuagoUkkuo4dGySsrKxPycpagdns2DHP3d1w0dcorXLU5/rovi60CpMZCEIIIYQQwmH+/PmkpKSg1Wrp3LkzycnJBAUFXbhjAwkMDOSFFy7uD7BCSFJKCHFFlFodO4L8tYk/D0a5aDcHRYGCVDi1B1PVTezz6U2V2wFa5BeTXe2YYWRVubGlxItKtZbigFxUnkZ6HbTTOsMNsOHlG9hg4R0//gGVVZnOY2+v+hUnr7LYWLI5g8LyakoqHEkpX9ltTwghhBBCnNapUyd27drV2GEIcdkkKSWEuGQmq41nj2SRa7awr6wSAF93N9cFsOPfsPZJFEXFIdW/2RZ6Al3GCRR7KbAPgGyfSk52+sTZZfAuO5N/tAN2ANwMFz97qb4sViMArVq+gpdXHAZDp3r1SzqYy2vfH3Yea9xU+HtJUkoIIYQQQghxfZGklBDikq0rKuPTnKIa52J0Hudp3QCyf8Nc5sbx7TEU97XgZvZCsTsSQWZdOMXeRexM+KPOlVeVQsdCA1CMNSoU/zYdCZw4oUFCUxQFm60cgIDAPnh6nH972j/LMVYB0KKJnltbBtM1OgAvrfy4FkIIIYQQQlxf5LccIcQlKzA7lpZ10ntxf2QQTbQaehi8XTa+UlnK0bK+rLqlCzEVKQSWqynFUcD8s95bqSrtzILUnsTnZEO5Ccvx40AxABETJxMwbtyVj0mxk5L6IibTERTFsaTR3U1fr76maiuf7TzBusO5APRsFsisoa2ueIxCCCGEEFcz2SBeiGvDlfhelaSUEOKimWw2lmYVklTgmJXUxkfH3aEBrgtgx2L47VNKM+I5HpyIn8lCTsE+7JZUAOwq+OdHVoJLtwNg+VN397AwfHr3bpDQysoPkpW13Hms1Qbj5la/LXE/23mCF7856Dxu4itbIQshhBDixqHROMoVVFRUoNPpGjkaIcSFVFRUAH98714KSUoJIS7aV7klvHT0lPM41MPF9Y5++QdlR8ooMg2kOs6K2uaBYnfMgKr09MCoKyW49I/mbgYDYa+9itrTE6+uXVG5NVzdK4vZEYenZwTNm83E17cDKpWqXn1PnV621yrMlz7xQYzuGtVgcQohhBBCXG3c3Nzw8/MjLy8PAC8vr3q/jxJCuI6iKFRUVJCXl4efnx9ul/H7lSSlhBAXLbvaDEAbH08SgwzcH+HCrWftNmwmC7vd7+RAuDdxVftR23qDUg3Az50yiE+NAMCY0Jau//kItcHQ4G9oFEWhrPwAxtI9gCMp1aTJbfXum1lUQVaxo1j88PZhTO3XvMFiFUIIIYS4WoWGOupwnklMCSGuXn5+fs7v2UslSSkhRL0pikKu2UpWlWNB3MBAAzNiw1wXwFcPoRz6FqN5PIcMTVFK4kk1q7Fb96DYTQB0TbXRLccxjTQyJhw3Pz+XhHbq1KccTnnOeaxxr/+ufk989htf7s5yHvvqZKc9IYQQQtyYVCoVYWFhhISEYLH8uQiDEOJqodFoLmuG1BmSlBJC1NsLaVl8dLLAeWxwb7hlcOewVqPsXcHxn4KgRVMsQRpU9kosprV/tFEUxm6woLU5Ejxuga6rc1VuSgFAownAw6MJERH31Lvv7uOOJX9eWjea+HrSJ96FM8+EEEIIIa5Cbm5uV+QXXiHE1U2SUkKIetta4piN5K6CQI07twbUb1e5K6KiCGuVmopCLUc0EajK3VHsjkLrFjc7B6PL+OsmFVqbHVWX7vhGhRMw/j6XhWexOGKJiZ5C06aTLqqvsdLxV8BVU3uT0MSFz1QIIYQQQgghGpEkpYQQ9VZitQKw+qZ4bvL1ds2glkr4eR4UpmG0P8KBEVHkGtVYyzej2IoAKNdZ2RXrzpPfOmYcxc17EW1MjEvCO5m1gqysT6iszATAvZ7L9vJKq3j8f3spLDdTXOFISvnJsj0hhBBCCCHEDUSSUkKIC3rtWDa7Sk3kVDuSJ/7uLvzRceRH2PouJWWeFGv+Tp56AzZzKbbqPc4mvpUanv2vGo3ZUexc7evrsvCOH3+fqqo/6kF5+8TXq99Ph/LYnFboPA7y0eLvrb3i8QkhhBBCCCHE1UqSUkKIOmVXm3nreK7z2MtNTYiHC390lOdhrVJzaGsPcrsU4aGKxqJkA5DrX0VGiJ1p35QSVOlYWuhmMODmwqSUxVICQOtWr6PXt8XHp0W9+hWZHAm0fi2CmXxLHAlN9Gjc1A0VphBCCCGEEEJcdSQpJYSoU5HFBjiKmr+SEElrH0+8XVF00maFomNQdIzMqgR2dx4F5kAgEJTjAOT5V1HgEUxQpSNJFfbyy+hu6oTKBTO5qqvzKC3di83mSIYFBfVHo/G/YL+0vDJmfrGfY/nlALQI9aV3cylsLoQQQgghhLjxSFJKCHFeKaYqtpU4kichWnf+2uTCSZcrZvmdcGw9JutgUrwfwa3UnaqKDdhtB7Ao1bgDt+72ovvxwwCotFoMf/0LKpXKJeHt2j3aWUcK1Li51a9A+Te/ZbPr9G57AC1DpbC5EEIIIYQQ4sYkSSkhRK1+KDAyYX+689jg7uIteU/soLzIg23V3bDqT6BYW2Cr3gX88YMrpuiPmky+w4a5LCFlt1ucCSlf3w4EBw1Cra7fj9MzO+3d0TGcybfE0SbcdUsNhRBCCCGEEOJqIkkpIUStDpRXAuDrriZUq+VvkcGuGdhugyojWEx8bR9Oqbot9nIPFLtjxpaCwvc9cgnNbsmw346i8vKi5e5drontNKu11Pl555v+V6+EVG5pFRtS89l3sgSA1uG+tI2o3059QgghhBBCCHE9kqSUEKJWxtO1pO4NC+KF5uGuGdRUCIt6QXkO5dbhFPt2hEKwVKzFrMrCHbC4wV/XGYgrzwMchc1dxWar4MDBp5yzpNzcfOo9Q+rxlXvZcvSPmV0B3h4NEqMQQgghhBBCXCskKSWEqOG7/BI+OJFPWoVjdzh/jQuX7WXvQSnLIXVnMB6te5Cg3c1hizd282HnDysPs5p+aaecXbQRES4Lr6hoC/n53zuPvb2b1btvZlEFAN1iAogN8mZwmyZXPD4hhBBCCCGEuJZIUkoIUcM7mXnsLq1wHjfzcuGMnsoSfjcn8FXHkbQqU1NZMQjF7khA5fpXcTi6jGlbHcsIfUeMwKtzZ3z63OKy8KxWIwB6fRtiYx/F4Nup3n3LqqwA/OOv7Wge4tMg8QkhhBBCCCHEtUSSUkKIGkpOL9t7Ji6MbgZvuhm8G37QnN9h3RyUwmOkqnqitQSRU6HHWrUdxVYEgHu1hiGbvQjPLwBAP3AgvomDGz62s1itZQDodNEEBw24YPtKs40PNx6jyFRNaZWjwLmvp/zYFUIIIYQQQgiQpJQQ4jSbolBmtVFidczoGRToSysfnWsG37UE465kNmf3Jzs+FrXZHWvVTuyWo84mXdNNtMzJdx5rIl23bO9U9uecOvUZ1dXZALi76+vV74cDObz1U6rz2MNdja9O0yAxCiGEEEIIIcS1RpJSQgjMdjv9d6Q460gBGNxdWEuqooh11ptJaXozeqMBT5sOq+JYQngoupQCLxWJ+xwJqeDHHkMbF4uuTRuXhZd+7G2qqv+oY+XlFVuvfnllVQC0DNUzuHUTusQE4OnKGl1CCCGEEEIIcRWTpJQQgswqc42E1E2+XjTxcMGMHnMF9szdlO04QZF3f/QlzbBVpWK3ZKDYHMv02mSWE12kwk0B3NwI/PsDqNTqho/tLBZrCQAtWryETtcUf7/u9epnrHQs2esRF8j0wS0aKjwhhBBCCCGEuCZJUkoI4awjFempYVv31ripQKVSNfzA/7md37cWk6rcQlGkGi+7GmtFEmB3Nulz0IKX2bGkUBsd7dKEVHHxr1RUHMNmc8zaahIyHI3G94L9/t/WDF757jBVp5+r1JESQgghhBBCiHPJb0pC3MCOV1bz+OETZFWZAQjQuOOudkEy6jQl+3e+CbsfRQlEZ/JBsZcCduwqhR2tiumc0xwv81E84uMJmDgBr27dXBZbZWUmu/fc4zxWqTS4u9dv17w1+7KpMDsSUm5qFZ1jAhokRiGEEEIIIYS4lklSSogb2Oq8EraUlDuPW3h7umxspaKUovK2WDw9Cc5tRbXxf5jthQBY3G38ZVsJLUzpAHgkJOB3550uiw2gsvIEAG5uPvj7dSMoqD8qVf1maZVWOWZ2vT2mI7e2CMEgxc2FEEIIIYQQ4hySlBLiBlZkcSRPRgT7MSEikC6+3g0/qNmEsvwedqwoIK/TRNT2Auy2KpTTCSmAAHM1HdMVwFFXStssruHjOoui2DGbHfHofVrRocNH9epXVmUho6CCIpOjPlfTAC9JSAkhhBBCCCHEeUhSSogbUFaVmXcy89hYVAZAWx8dN/vrXTP4ie1UHNzOD90fQKEIqv1BqQTA5Gnjy75ZfPhtJAD+Y8fic2tfvHr0cE1sQFXVKX7dcQcWiyMp5a4x1KufxWZn0JsbySmtcp7zlYSUEEIIIYQQQpyXJKWEuAEtySpgaVaB8zhKp3Xd4BVFZDMZtT0A3/wYrBVJWOylAHiarby6xIJP2SkAvHv3wqdPH9fFBhiNu50JKVATGFC/8QvKq50JqXCDJ20iDMQGumDmmRBCCCGEEEJcoyQpJcQNKP/0bnYDAnwZHmJgeHD9ZgNdFnMF1q+fJ2vFFopaPY27JRe75Qh26wlnk8giM9H5ANWgUuHRvHnDx/UnFosRgKCgAbRt80/c3Lwu2MdYaWFPZgkAwXoPtswa0JAhCiGEEEIIIcR1QZJSQtyASq2OneEGB/lyT1igawZN/Z7U75L4os1IbO57UFU1w8PumBGVHWjCpCsjcV8FAFEffYg2KgptdLRrYgPKyg6QkbGIclMqAFpNYL0SUqVVFm5+7WfKThc39/eSJXtCCCGEEEIIUR/120pKCHHNs9gVhu5MJeyXvXxX4JgNZHB3c9n4tsIijgdNxM1uIDgrGkNBKnaLY3e9Pr9X8ci3JtwUBbWPDz633II2JsZlsQFkZi4mL/87KiqOAqDT1S8hlp5voqzKiloFob6ejO3WtCHDFEII3nvvPWJiYvD09KR79+78+uuvdbb/7LPPaNmyJZ6enrRr1461a9fWeF1RFF544QXCwsLQ6XQMHDiQI0eONOQtCCGEEEIAkpQS4oZxvKqaPWUVKKePvd3UdPS98Eygy2a3Yzv+O8Xrc6jSBhBUraW6Yhu26j3OHfd0FitmjQptbCyBDzzQ8DHVwmwpAiA8fDRt2ywkKmpivfoVV5gBaBHqy7ZnBjCxd2xDhSiEEKxcuZLp06cze/Zsdu/eTYcOHUhMTCQvL6/W9lu2bOGee+5h0qRJ7NmzhzvuuIM77riD33//3dnm9ddfZ+HChbz//vts374db29vEhMTqaqqqvWaQgghhBBXikpRFOXCzW5MpaWlGAwGjEYjvr6+jR2OEJdlh9HEiN1HiPTUsPamBHzc3fByc0Fe+v/9hfXfFnEisCeFgQF4l3lTlrMVxV7C0fAKAsorGbPJSE6HcAZ++lPDx/MnFksJZWUHSUl9kYqKo3Ro/xFBQf0v2G//SSOPrdxDflk1pVVWesYF8snfXbdLoBCi8TTm+4Pu3bvTtWtX3n33XQDsdjtRUVFMmzaNp59++pz2o0ePxmQysWbNGue5Hj160LFjR95//30URSE8PJwnnniCJ598EgCj0UiTJk1YunQpY8aMuWBM8n5JCCGEEH9W3/cHUlNKiOvc0Yoqph3KJLvaAkCQRkOIh+vqHlmPHSQ5YQzeFWGEFtsot/ihKI6/vg/dXUhEuQo3RaFVTFeXxXS2HTv/SmXlceexu6Z+Rd/X/p7N0XyT87h9pAuKxQshbmhms5ldu3Yxa9Ys5zm1Ws3AgQPZunVrrX22bt3K9OnTa5xLTExk1apVAKSnp5OTk8PAgQOdrxsMBrp3787WrVtrTUpVV1dTXV3tPC4tLb2c27qgt++ZCPI3VCHENUxRgc1dhfWsvwerAI2q5h+ItYFt8O6yHzd9kWsDFC4R6e+F4SqsPxsZeS8hwYmNNr4kpYS4zn2bb2R3aYXzuLWPp8vGtpcWkV1+D3adG9qyOHJKl6HYjc7XIwtteJ4uuu6ZkOCyuJzx2audCSlv73i8vOLw1bevV9+icseyvft6RjO+RzTNQ3waLE4hhAAoKCjAZrPRpEmTGuebNGnC4cOHa+2Tk5NTa/ucnBzn62fOna/Nn73yyivMmTPnku7hUljtJYDVZeMJIcQVpwDmc3/5tv/p2FbSi0C3U3h5HXVRYMKV7NVQXH3hdq4WHDTwwo0akCSlhLjOFVocb+TvbOLP3yKCaK93QR0pwPbNTL7/929UNRuEym5GsRtrJKT8TJV4WG2oXnqS6FY98GzdyiVxnc1iOfPXfRXdu61Fpbrwcsa3fzrCR8nHqLQ4kmkJTfTEN9E3YJRCCHF1mTVrVo3ZV6WlpURFRTXYeG6+ATJTSogbgqqO15Tzv65Sg6quvpdHrVK4mIoXGpX9nEgtGh1mH08sZ82SUaMmQFtzpr1HoDtKk/FUef45XSWuBzFB3gR6axs7jHP4+rZr1PElKSXEdWpTcRn/PVXonCXV0tuTzgZv1wxuriAt+Xt2dPoL/pyghbmKPCUSAHebhcG/ZzqbJgwbg9rbRXGdZrNVcDjleSorHLOk3N1965WQAvhyz0nKqx2JPo2bio5Rfg0VphBC1BAUFISbmxu5ubk1zufm5hIaGlprn9DQ0Drbn/lvbm4uYWFhNdp07Nix1mt6eHjg4eFxqbdx0R776GOXjSWEEEII15Ld94S4Tr1yLJtVeSVkVjmWmTXVuS4rbzl1giz133Cz6vA81Y6sdBPm8lUAeFc7ZhipvHT4DhuGyss1M7fOVliYTE7OKoylewDw8oqpd9+SCkdtruWTu7PzuUG0jZBaUkII19BqtXTu3Jl169Y5z9ntdtatW0fPnj1r7dOzZ88a7QGSkpKc7WNjYwkNDa3RprS0lO3bt5/3mkIIIYQQV4rMlBLiOnVm2d6UqGA66r24LcjPJeNWpf/OuucWkhPXDk2VP1XVeSj2YufrfiZHkfOErVtRu/Av7WezWBzFI/X6tjRtOhl/v+51ti+vtvLeL2kUm8yUVjmSUi1C9Rh0V1+hQiHE9W369OlMmDCBLl260K1bN/75z39iMpm4//77AbjvvvuIiIjglVdeAeDRRx+lb9++LFiwgNtuu41PP/2UnTt38uGHHwKgUql47LHHmDdvHvHx8cTGxvL8888THh7OHXfc0Vi3KYQQQogbhCSlhLhOlZ4uID4mLICW3jrXDLpjMev/t4wd8f1pwxZ8bQlknS4DorNUElqST8tTFuwemkZJSNntFozGPZSW7Qccxc1Dm4y4YL+1+7JZtP6PgpNeWjdJSAkhGsXo0aPJz8/nhRdeICcnh44dO/L99987C5VnZmaiVv8xEb5Xr16sWLGC5557jmeeeYb4+HhWrVpF27ZtnW1mzJiByWTi73//OyUlJdx88818//33eHq6bmMMIYQQQtyYJCklxHUkp9rC335PJ99speh0IW6Du5vLxleO78CoikdXGUSZMZZKaxWK7XcAogoqaJ7nmGWkaxbvspjOduzYmxzP/NB5rNH41atfXpljdleHSAOD24TSJdofzcVUvBRCiCvo4Ycf5uGHH671tfXr159zbtSoUYwaNeq811OpVMydO5e5c+deqRCFEEIIIepFklJCXEd+Lip1FjYHCNG6E6hxzbd55W+/kZkUAMGx6Ep8KS75EhST83WNzc6vnfX8ddKr6M5TPLehlZuOAODhEYanZxhhoX+ps31BeTXrDuWyPd2x3K9HXCBT+zVv8DiFEEIIIYQQ4kYgSSkhriNFZkcdqYGBvkyPaUIznQdatQtm9KyZzjefH+dITEsS+Bl32zAspxNSPlVWPCxmmhhNHGvTGn3//g0fz3lYrUYAEuKfJyQk8YLtZ399gG/3ZzuPg3wapwaWEEIIIYQQQlyPJCklxHXgeGU1M1NOcshUCUAznQc3+Xq7bHz7nlVkB99NV2saTSpLKajOAkCtKPRJOU6lpxvaZtFM/Ns/XRbT2VJSXyQ/70fMlkIANJr67ZiXUehIrHWJ9ic2yJuRncIbLEYhhBBCCCGEuNFIUkqI68DXeSWsLy5zHid4u644ra0ojyLjvVh1PhzN68b+kv8AmwBQ2x1VzlMm9Oaexz9wWUxnUxQbJ0/+P+exWu2Jl3fdS/DSC0ysO5RLVokjyffCiNa0j/RryDCFEEIIIYQQ4oYjSSkhrgOFp5ftDQ82MDkymK4GF8ySqizBsngkq9f7YY++hUrFitZuBawoqMDNk8i84wB4+AU2fDznYbWWOz/v0uVLdJ5RaLUBdfaZ/r+97MkscR4H62XZnhBCCCGEEEJcaZKUEuIadqLKzDvHc0k+PUuqo96LHn4+Lhp8OymZZfze9lbu4HPaWbQkKQ8A4F1t5tbDac6mPdoOcU1MtbBaHc9GrdZi8O1Qrz5ZxY4ZUgNahnBzfBBhBl2DxSeEEEIIIYQQNypJSglxDfv3yXz+c6rQeRyl07psbLsxn3yGE0IB5tIYfi8Lw2ZOAcDdZqNUB1EjRuERHU1Al1tcFtcZJcZdHD78LFZLKQBubvp69y2tsgDw4u1tiArwapD4hBBCCCGEEOJGJ0kpIa5h+aeX7SUG+TIsyI9hQX4NP2jhUWxJ80mZv52KxOnorNvZnB+NzXzA2URrs5MV4k73uXMbPp7zyM35BpPpiPNY79OqzvZ5pVXM+nI/hSYzVRY7AL46TYPGKIQQQgghhBA3MklKCXENOlheSYqpilRTFQBDggyMDqu7TtIVs+Ud9m7fyM+Dh3GX5lXs1f58bW8NgM7qgU9lOc1yislr7e+aeM7DbCkCoGnUJJo0GY6PT4s6239/IId1h/Ocx8F6D/Qe8iNSCCGEEEIIIRqK/MYlxDWmyGJlyM5UzIriPBeoccG3st0G2b9hzjSS5Xk/Ydr9xCgnSLMFgt1Rg6nd8XRUaivBw4fSacLkho+pFiezVpCd/SUVFY6aVj761vj6tr9gv2KTY8nerS2CGdc9mrYRvqjVqgaNVQghhBBCCCFuZJKUEuIac6LKjFlR8FSr6GrwJsxDwy3+9a+XdMl+eBbLLx9QVPEYVr9ANFYVS473ptisBhyzkjQ2G0WtQ7l57msNH895pKcvxGzOdx57ezevs31plYUtaYXsO1kCQKswXwa1btKQIQohhBBCCCGEQJJSQlxTtpWU82OBo3B3My8PPutYd8LlisrZz/pjrSmLKyHEbQeH8kZTal7pfNld8canygKRca6L6U8URcFiKQGgdavX8fZpga++bZ19nvvqd1b/dsp57O8ldaSEEEIIIYQQwhUkKSXENSKtooo79qQ5j4M0rk2eVBUHk9KsK3/RrSBEKWaP9f7Tr7jThER8zZsw3PVXEh58yKVxnVFYmIypIg1FcSzDCwkZipvbhXfOO1ZQDkDLUD1NA7wY0SG8QeMUQgghhBBCCOEgSSkhrhHHK80A6N3U9PTzYUpUiGsG3rEY26FfKMwdjcXjEJml7fgiR8FiWwaAxlpF5wML2fPIQKL+b55rYvoTk+koe3+b6DxWq3Wo1bp69TVWOpJYL/+lLZ2jXVQsXgghhBBCCCGEJKWEuFaUWW0AtNN78Z/2LloiZzZhX/0kB79pQtiwDtyqfE9y8XAstp+dTUJKKwDQBbgoSVaLyqoTALi7Gwjw70VQ0ABUqrqLlL+y9hA7MorILnHsYGjQybI9IYQQQgghhHAlSUoJcZXbUlzOzlITe08nfwzubq4bvKIQY4WOTb0GMEHzJnE2XzbaqwHwNfvQMqsAHaUUtgzl1sQHXBfXn1gtjjpben1r2rV794Lt88qq+GDjMeexl9aNUEP9ZlYJIYQQQgghhLgyJCklxFWs2m5n3L5jVNrtznNBWhd821YUwb7/YcvLYp92Nnn6LEoq3PjiRDOs9s2OOEpOEFBaRMvf9+Hm3jizjAoLkzl46CmsViMAGne/evUrMjmWQvp6uvPGqA4kNNHj4yE/DoUQQgghhBDCleS3MCGuYsUWG5V2O2pgdFgAnmo1f48MbviBN87Hvvk9Du0fRGWblnha3VmdPx6zff/pBioCyquo0KkaLSEFkJf/PWZzvvPYYLipzvbFJjOvfX+YYwUmAIL1HiS2CW3QGIUQQgghhBBC1E6SUkJcpSpsdjIqHUvl/DRuvNWyqesGN2aSWhbDlpgYbnZ/D4+KDvxmCwLAzaMTUSVqQsrS+K13KF1dF1UNNluFMyEVG/sY4eGj8PSoO8G0Zt8pPt1xwnkcHejdoDEKIYQQQgghhDg/SUoJcRU6UF7J8F2pVNoVAPzdXfStaq2GglSsBRVs9xqJTptJaPUxjpXHYbc5Yok+uYVdrQppv2w1dxpiXBPXn5w4+R9SU+cCjpi8veIumJACyC9zJPl6xgUysmM4/Vs2XnF2IYQQQgghhLjRSVJKiKvQDqPJmZBSAcND/Fwz8JKh2I/votA0jSqfAHzNefwnvRs2pQQoAcC7qgwM3sT7x7smploUFSZzJiGl1QZh8OtcZ/vMwgpe/+Ewe0+UANA1NoAx3Vw480wIIYQQQgghxDkkKSXEVchosQEwJjSAf7ZyUfLEbodTe/htZxB+TZqg6EspN7bHppwEQO3eFN/yfIKNJoqbxrgmpvOwWssAaNP6LZo0GY5Kpa6z/cqdmazZl+08jg3yatD4hBBCCCGEEEJcmCSlhLiKnKwy81VuMb8UlQJg0Li5ZmBFgWojJlsEW9v/hZ66L5ii2sP/s71IKaDCnda5arbHHuOLoT6Muvku18T1JxUVGVRVZVFdnQuARhtwwYQUQGG5Y7e9oW1D+etNkfRr4YJi8UIIIYQQQggh6iRJKSGuInPSTvFNfonzOETrgp3tFAWWjYCMZA7aZ5DnZcHfUs7izJspMf8MgLvNQtOT69BOmswL9zzR8DHVorLyBFu3DQLsznMad986+6TklPHjgRx2ZxYD0KtZIINaN2nIMOvFZrNhsVgaOwwhxHloNBrc3Fz0RwEhhBBCiBuYJKWEuIpkVjkKcfcP0NPKR8eY0ICGH7SiECU9mV17wjmR4A3epXyX9wgV5v9xpm5TUJljppFvYOMldEymNMCOWu2Jl1cMXl7N8PFpXWef6f/by4FTpc7jEF/PBo6yboqikJOTQ0lJSaPGIYS4MD8/P0JDQ1GpVI0dihBCCCHEdUuSUkJcBQ6bKnkjPYdUkyMp9WRMKDcZvBt+YLsdynMxmTz4sc0ddPDYwN3WfNYpUwBQoyPSFIuf6VtS2/gx6JbbGz6mWpjNBZSXpwDgZ+hCp07L6tUv21gFwG3tw4gP8eHWRl62dyYhFRISgpeXl/yyK8RVSFEUKioqyMvLAyAsLKyRIxJCCCGEuH5JUkqIq8CyrEK+zTcC4K6CKJ224QfNOwxLhqBUFHNCNQuzRxUD7cmcqo7CbisEwKeiBMxr8Pt8GYNCuzZ8TLUoKzvErztu58yyPY3Gr179FEWhtNKxRO6521oRZtA1UIT1Y7PZnAmpwMDARo1FCFE3nc7x8yIvL4+QkBBZyieEEEII0UAkKSXEVaDYYgXgrib+PBAVTLArakllJGMvK2H3pmbQsw1a+07WZvfmWKkNSAJAY7NT4gO+2rprNzWksvIDgB2VSoOHNpjQ0JF1tj9eaOKRT/dSbDJjtTuWHxp0LnieF3CmhpSXl+z8J8S14Mz3qsVikaSUEEIIIUQDufC2VUKIBmNTFIwWK4Wnk1K3+OvpoHdR0qKyhH2mFmzs2h+0b9G2XE16xZllKu6o0FKhK+frHmr8PPxcE1MtrNYyAIKDB9O7dzJBQf3rbJ90MJffTpSQWVQBQNMAL3Su2sWwHmTJnhDXBvleFUIIIYRoeDJTSohGUmmzc+uvhzleZXaeM7i7IHlybAMc+RFL2mF2ed9NsPvvdGEX31iHgeKowRRiaUml+0GOPNKHUUFtaeLt+gLnVmsZxtLfKC87CFx4p70zSiocM5JuaxfG326OJaGJj/xyKYQQQgghhBBXIUlKCdFIjlVW10hINdG6c5OvC2ZJff43KguKOFBwF1WRKvRWG9/k9yWj4hSKzbFTXfP079nd2o03+q5u+HjOY8/eCZSW/uY8dr9AUiotr4xVe06xITUfgOYhPnSO9m/QGIUQQgghhBBCXDpZvidEIzlTRyrey4MTfTuwp1cbQjwauPaRzQoVBazPa8UeQwhaVTrlBc1ILbFjNqcCZlAUVIqVrHaNW4zbZDoCgJdXcwyGLhesJTXnm4O8+0sa+7McBeOb+Ho2eIw3iokTJ6JSqVCpVGi1Wpo3b87cuXOxWq2Xdd3169ejUqkoKSm5MoHWQ3p6OmPHjiU8PBxPT08iIyMZOXIkhw8frtFuzZo19O3bF71ej5eXF127dmXp0qU12mRkZKBSqdi7d2+9x3/xxRdp2bIl3t7e+Pv7M3DgQLZv317jmpMmTSI2NhadTkezZs2YPXs2ZrO5jqtCdnY2Y8eOJSEhAbVazWOPPVaveDZu3MiIESMIDw9HpVKxatWqWtsdOnSI22+/HYPBgLe3N127diUzM9P5+oMPPkizZs3Q6XQEBwfX+kx37NjBgAED8PPzw9/fn8TERH777bc/DwVAWloaer0ePz+/K3YPQgghhBDi6iNJKSFczGJXePLwCWanZQHgr3FHo1ahdsUSs+pSqmztSYsYRqxhDw+o/oPqdGJBrfImsLoJp4Lz+fujEJY4ouHjOQ+73YLN5qgJ1aXzSrp0XomPT4s6+5wqqQQcy/aeGJTAyI7hDR7njWTIkCFkZ2dz5MgRnnjiCV588UXeeOONxg7L6UJJG3AUrB40aBBGo5Evv/ySlJQUVq5cSbt27Wokxt555x1GjhxJ79692b59O/v27WPMmDFMmTKFJ5988rLiTEhI4N1332X//v1s2rSJmJgYBg8eTH6+Y4bf4cOHsdvtfPDBBxw4cIC33nqL999/n2eeeabO61ZXVxMcHMxzzz1Hhw4d6h2PyWSiQ4cOvPfee+dtc/ToUW6++WZatmzJ+vXr2bdvH88//zyenn8kfjt37sySJUs4dOgQP/zwA4qiMHjwYGw2GwDl5eUMGTKEpk2bsn37djZt2oRerycxMdG5CcAZFouFe+65h1tuueWK3YMQQgghhLhKKeK8jEajAihGo7GxQxHXkU1FpUqTn/c4Px45eLzhB807rCjLblfKXuuuHHn8XWX+868qu57tqqz6W3flzdGjlfl336Z8fNsw5WCLlso/Fz2oVFurGz6mWthsFuVwyovK7j0TlJ/WxSk/rYtT7HZrnX1+OZyrLPwpVWn9/HdK9Mw1yqHsq/P7tbKyUjl48KBSWVnZ2KFctAkTJigjR46scW7QoEFKjx49lKKiImX8+PGKn5+fotPplCFDhiipqanOdhkZGcrw4cMVPz8/xcvLS2ndurXy7bffKunp6QpQ42PChAmKoihKaWmpMnbsWMXLy0sJDQ1V3nzzTaVv377Ko48+6rxudHS0MnfuXGX8+PGKXq939k1OTlZuvvlmxdPTU4mMjFSmTZumlJeXK4qiKHv27FEAJSMj47z3mpmZqWg0GmX69OnnvLZw4UIFULZt26YoiuK8hz179lz8Qz3tzL8zP/3003nbvP7660psbGy9r/nnZ1VfgPLVV1+dc3706NHKvffee1HX+u233xRASUtLUxRFUXbs2KEASmZmprPNvn37FEA5cuRIjb4zZsxQ7r33XmXJkiWKwWC4IvdwKer6npX3BzXJ8xBCCCHEn9X3/YHMlBLCxQotjpkD8V4efNAmmpfiIxp+0L0r4Nh6dv5QSblZR7ViZ2/uraSVB2FXygHwrTRjB7ziotC6aRs+ploYS/dw8uR/KCpKBsDTMwqV6vzF30sqzExetpMFSamYzI7nGuzj4ZJYrwRFUagwW13+oSjKZceu0+kwm81MnDiRnTt3snr1arZu3YqiKAwbNsw5+2Xq1KlUV1ezceNG9u/fz2uvvYaPjw9RUVF88cUXAKSkpJCdnc3bb78NwPTp09m8eTOrV68mKSmJ5ORkdu/efU4M8+fPp0OHDuzZs4fnn3+eo0ePMmTIEO6880727dvHypUr2bRpEw8//DAAwcHBqNVqPv/8c+cMnj/7/PPPsVgstc6IevDBB/Hx8eGTTz657OcHjtldH374IQaDoc7ZTUajkYCAgCsy5sWy2+18++23JCQkkJiYSEhICN27d69ziZzJZGLJkiXExsYSFRUFQIsWLQgMDGTx4sWYzWYqKytZvHgxrVq1IiYmxtn3559/5rPPPpNZT0IIIYQQNwgpdC6EiyiKwoHySvaXOZalxeo8GBniokLcpgLSbX3ZcHMnfFQHiaj0oMTs+CVX7d4UjaY9P930AcsGu3FvdLxrYqqFxVwEgE4XQ0z0Q/j5damzfW5pNVa7gqdGzV86RdIpyo/AaygpVWmx0fqFH1w+7sG5iXhpL+3Hv6IorFu3jh9++IGhQ4eyatUqNm/eTK9evQBYvnw5UVFRrFq1ilGjRpGZmcmdd95Ju3btAIiLi3Ne60yiJSQkxFk7qKysjGXLlrFixQoGDBgAwJIlSwgPP3c5Zv/+/XniiSecx5MnT2bcuHHOekrx8fEsXLiQvn37smjRIiIiIli4cCEzZsxgzpw5dOnShX79+jFu3DhnXKmpqRgMBsLCws4ZT6vVEhcXR2pq6iU9uzPWrFnDmDFjqKioICwsjKSkJIKCgmptm5aWxjvvvMP8+fMva8xLlZeXR3l5Oa+++irz5s3jtdde4/vvv+evf/0rv/zyC3379nW2/de//sWMGTMwmUy0aNGCpKQktFpHgluv17N+/XruuOMOXnrpJcDx9fnhhx9wd3f8v1hYWMjEiRP573//i69v/XbbFEIIIYQQ1zaZKSWEi7x/Ip+BO1N5JzMPAD/N+WcAXTFlufDfO7Ed+oGj9tEoKhV3VK3Gu/AANoujkHhI0Uk6//4ffEcM5q7hMxgeN7zh4/oTRVGoqEin3JQCgJdXLOHhd+HlFXPePkkHc/nvtuMAhPvpeOWv7bi7a5Qrwr0hrVmzBh8fHzw9PRk6dCijR49m4sSJuLu70717d2e7wMBAWrRowaFDhwB45JFHmDdvHr1792b27Nns27evznGOHTuGxWKhW7duznMGg4EWLc6tKdalS82k5W+//cbSpUvx8fFxfiQmJmK320lPTwccM7dycnJYvnw5PXv25LPPPqNNmzYkJSXV+1mcSbTUZfny5TXiSE5Odr7Wr18/9u7dy5YtWxgyZAh33303eXl551wjKyuLIUOGMGrUKB544AHn+bOvO2XKlHrFnJycXKPf8uXL69XPbrcDMHLkSB5//HE6duzI008/zfDhw3n//fdrtB03bhx79uxhw4YNJCQkcPfdd1NVVQVAZWUlkyZNonfv3mzbto3NmzfTtm1bbrvtNiorHfXgHnjgAcaOHUufPn2u6D0IIYQQQoirl8yUEsJFDpQ7fvEK0LjRRKthdKgLluOkrMX6+898e6wlmngFd5uG5Ox2FFZVA7mOeMryKPM0ck/Le+gY0rHhY6rFyaz/kpr6ovNY426os/2x/HIe+M9O53GI/tqZHXU2ncaNg3MTG2Xci9WvXz8WLVqEVqslPDwcd3d3Vq9efcF+kydPJjExkW+//ZYff/yRV155hQULFjBt2rRLCb0Gb2/vGsfl5eU8+OCDPPLII+e0bdq0qfNzvV7PiBEjGDFiBPPmzSMxMZF58+YxaNAg4uPjMRqNnDp16pzZWWazmaNHj5KYeOGv2e23314jWRcR8ccyXW9vb5o3b07z5s3p0aMH8fHxLF68mFmzZjnbnDp1in79+tGrVy8+/PDDGtc+e7e/+s4o6tKlS41+TZo0qVe/oKAg3N3dad26dY3zrVq1YtOmTTXOGQwGDAYD8fHx9OjRA39/f7766ivuueceVqxYQUZGBlu3bkWtdvw9bMWKFfj7+/P1118zZswYfv75Z1avXu2cFaYoCna7HXd3dz788EPuueeeS7oHIYQQQghx9ZKklBAuYrQ6atg8GxfOuPBA1wxaWcSJEwGolOacUudhKAunyHIMyEWtbYlPRTG7W2SyPcGNt7R618RUi7LS/QC4ufmg1QQQGnp7ne1PFjsSfH5eGga3bsI93ZrW2f5qpVKpLnkZnaudSaScrVWrVlitVrZv3+5cvldYWEhKSkqNJEZUVBRTpkxhypQpzJo1i48++ohp06Y5ZxydXd8pLi4OjUbDjh07nIkko9FIamrqeWfQnHHTTTdx8ODBc+Ksi0qlomXLlmzZsgWAu+66i5kzZ7JgwQIWLFhQo+37779PRUUF99133wWvq9fr0evr9z1lt9uprq52HmdlZdGvXz/njnZnkjhnXMz9naHT6S6pn1arpWvXrqSkpNQ4n5qaSnR09Hn7KYqCoijO+6qoqECtVqM6a5fRM8dnZmNt3bq1xv8LX3/9Na+99hpbtmwhIiLiku9BCCGEEEJcva6N34aEuIZ9eCKPz3OLOVrh+OXMJcv2bBY4tYeiE2lsavog+R65/M32BmsrJpJtdxQ2jyyuotDzdz7to+Cu1hCkq72mjStYrEYA4ps/TUTEPedtl1taxQcbjnE4pxSANuG+vH7X+QtEi4YVHx/PyJEjeeCBB/jggw/Q6/U8/fTTREREMHLkSAAee+wxhg4dSkJCAsXFxfzyyy+0atUKgOjoaFQqFWvWrGHYsGHodDr0ej0TJkzgqaeeIiAggJCQEGbPnn1OQqM2M2fOpEePHjz88MNMnjwZb29vDh48SFJSEu+++y579+5l9uzZjB8/ntatW6PVatmwYQMff/wxM2fOBBwzql5//XWefPJJPD09GT9+PBqNhq+//ppnnnmGefPm0bZt2xrj/jlhA9CmTRs0Gk2NcyaTiZdffpnbb7+dsLAwCgoKeO+998jKymLUqFGAIyF16623Eh0dzfz588nPz3f2Dw0NrfP+z8wiKi8vJz8/n71796LVas+Z5XS28vJy0tLSnMfp6ens3buXgIAAZ1LwqaeeYvTo0fTp04d+/frx/fff880337B+/XrAseRy5cqVDB48mODgYE6ePMmrr76KTqdj2LBhAAwaNIinnnqKqVOnMm3aNOx2O6+++iru7u7069cPwPn/xRk7d+5ErVaf87wv5R6EEEIIIcTVSZJSQjSwtzJyKbb+8df/5l6eDT/o2qdI2/v/+NYyCq1GQ6itnK8yu1NUtd/ZJCZzIyWdvZnRdQYtA1pi8Kh7yVxDOHFiGTk5qzBVHAPAXeNXZ/v/t/U4H29Odx5H+Xs1ZHiiHpYsWcKjjz7K8OHDMZvN9OnTh7Vr1zoTMjabjalTp3Ly5El8fX0ZMmQIb731FuBY0jZnzhyefvpp7r//fu677z6WLl3Km2++yZQpUxg+fDi+vr7MmDGDEydO4OlZ9/dO+/bt2bBhA88++yy33HILiqLQrFkzRo8eDUBkZCQxMTHMmTOHjIwMVCqV8/jxxx93Xufxxx8nLi6OBQsW8Pbbb2MymQD45JNPGDNmzDnj1nbuxIkTREZG1jjn5ubG4cOHWbZsGQUFBQQGBtK1a1eSk5Np06YNAElJSaSlpZGWlnZO/wvtmtipUyfn57t27WLFihVER0eTkZFx3j47d+50JoXAsfMhwIQJE1i6dCkAf/nLX3j//fd55ZVXeOSRR2jRogVffPEFN998MwCenp4kJyfzz3/+k+LiYpo0aUKfPn3YsmULISEhALRs2ZJvvvmGOXPm0LNnT9RqNZ06deL777+vtaj8xajPPQghhBBCiKuTSrkSe4Nfp0pLSzEYDBiNRtkJSFyyyPV7sSrwTqumtPXR0cpH1/CDLh7Mt9sKKHNPJD3Em6DicMry16HYjajcggktzKZ57nG2P9SbaQ/+u+HjOY8NGztjtZY4j7t3W4uPz7kFrc+Y+fk+Vu48QZ+EYPrEB3F7x3BC9C5I8l0BVVVVpKenExsbe8HkiqjJZDIRERHBggULmDRpksvHLyoqYsCAAfj6+vLdd9/h5SXJ0BtBXd+z8v6gJnkeQgghhPiz+r4/kN33hGhAZrsd6+m076BAX9ckpAClspQ0/z6kNNGiowCzTY+iOJYPxhV6sL7jCSY97k5Fp3iXxFNrjIrNmZBq0/otunX79rwJqUqzjfQCE9mljp28BrUKYfItcddMQkpcnD179vDJJ59w9OhRdu/ezbhx4wCcSwJdLSAggJ9++okBAwawdevWRolBCCGEEEKI65Es3xOiAVXY7M7PvdwaOAdss8D6VykoSSercBBWTx/uVD5DX5HP9xWhcDopFZ21CcvNnrTwj2VY7LCGjek8Cos2UVS40XkcEjIUtVpTa9sqi41+89eTczohBeCrq72tuH7Mnz+flJQUtFotnTt3Jjk5maCgxqt7FhgYyAsvvNBo4wshhBBCCHE9kqSUEA2gxGJl8ckCcswWADQqFVp1Ayel0jeibJzP12nNiAvuQpVvIQdzb+ZEcRrwx9bt7nY73dol8tDt/2jYeM7Dbreyb98U7HbHDnoaTeB5E1IAWSWVzoSU3sOdEF8Pesa5aPdC0Sg6derErl27GjsMIYQQQgghRAOTpJQQDeCT7CLeyMhxHgdpXfCtVp5HWbmOU7HDOOmei7+1guyqCCANVN64qQ2YVQf5YKiKDnGxDR/PeVitRmdCKipyIkFB/c/btspiIz3fUWS6aYAXG2f0O29bIYQQQgghhBDXFklKCdEACixWADrpvejt78PAwAYs/KookHsAsnaRpb4Pm7s7Q5VfaKYU81/Fsc18qLGcFqeOcv/0ajRqDyaGdLrARRuO1VoKgJubDwkJz5+3XUmFmX7z11Nc4Zht5u+tdUl8QgghhBBCCCFcQ5JSQjQA0+laUrcG6JkZd3nbnV/Q0Z+p+n+j+LS4E8H6+0E5SlZeU7YW+2NTdgLgU1lMtcbE2/3eo0dYD7w0rt89rKDgFw4emonN5pj5pHGvO1F3OKfMmZDycFczvF0DP0chhBBCCCGEEC4lSSkhGoDJZgPAu6GLmwPkHWSlpT8ZAW3JII1SUzMySk+hKMXOJgZTNb8mqBjmE9EoCSmAvPwfsFgK/4jJcFOd7Y2VjoRUp6Z+fPV/vRs0NiGEEEIIIYQQridJKSGuoOxqM+uLykg1OQpzN+iOezYLnNqDkv07paooAG6xH6DIZueE3TF+SHUMqWFpPDqkGrvajXs8DA0XzwVYLSUAxMU+TmjoSDw9I2ttd6KogrfXHeFIbhkAfrLTnhBCCCGEEEJcl1wwjePyvfrqq6hUKh577DHnuaqqKqZOnUpgYCA+Pj7ceeed5Obm1uiXmZnJbbfdhpeXFyEhITz11FNYrVYXRy9uJA8fzOTxwyf4rcxRyNvg7tZwg337BPlLE/ksLRe7WwQeVBNs3Ed+zgEUu2OWVEJGMqUBBbQMbsOYFmNo4tWk4eI5D5PpKKmpL1Fath8AL69YdLooVCpVre2Xb8/k810n+e2kEYCogMaZ2SWEEEIIIYQQomFd9TOlduzYwQcffED79u1rnH/88cf59ttv+eyzzzAYDDz88MP89a9/ZfPmzQDYbDZuu+02QkND2bJlC9nZ2dx3331oNBr+8Y9/NMatiBtAVrUZgO4Gb5p7eTAoqOFmJim5B1lSfQdVlqbY1eXYy5rzU15XFHsJACpFhVqxEty5D28Pf6fB4riQY+n/JC9vrfPY07Pu2lBFpmoABrVuwsBWIQxpI7WkhBBCCCGEEOJ6dFXPlCovL2fcuHF89NFH+Pv7O88bjUYWL17Mm2++Sf/+/encuTNLlixhy5YtbNu2DYAff/yRgwcP8t///peOHTsydOhQXnrpJd577z3MZnNj3ZK4zlWeLnD+j4RIFrRsim8DzpSqriinwj0au9ox48irKgRFcSzb0+gGonWDhx5W4R4Z0WAx1IfZXABASMgwWrV6DV/f8+/8pyiKs5ZUn4RgRndtisFLlu81tokTJ6JSqVCpVGi1Wpo3b87cuXMve+bp+vXrUalUlJSUXJlA6yE9PZ2xY8cSHh6Op6cnkZGRjBw5ksOHD9dot2bNGvr27Yter8fLy4uuXbuydOnSGm0yMjJQqVTs3bu33uO/+OKLtGzZEm9vb/z9/Rk4cCDbt2+vcc1JkyYRGxuLTqejWbNmzJ49+4L/bmVnZzN27FgSEhJQq9U1ZhbXZdGiRbRv3x5fX198fX3p2bMn3333nfP1oqIipk2bRosWLdDpdDRt2pRHHnkEo9HobLN06VLn/x9//sjLy3O2q66u5tlnnyU6OhoPDw9iYmL4+OOPa8Tzz3/+0zlWVFQUjz/+OFVVVXXew5dffsngwYMJDAy86K+HEEIIIYRoXFd1Umrq1KncdtttDBw4sMb5Xbt2YbFYapxv2bIlTZs2ZevWrQBs3bqVdu3a0aTJH8uVEhMTKS0t5cCBA665AXHDqbQ7klI6dQN9a1nNkPQCxZ9P4CdTLADdbLvpn5eET9nPoDhmGfXc+19KdEdB50mv8F4NE0s9Wa2lAISHjyY87K7zLtt74evfiZ21lh8OOJbh+npe9RM5byhDhgwhOzubI0eO8MQTT/Diiy/yxhtvNHZYTvX5Y4PFYmHQoEEYjUa+/PJLUlJSWLlyJe3atauRGHvnnXcYOXIkvXv3Zvv27ezbt48xY8YwZcoUnnzyycuKMyEhgXfffZf9+/ezadMmYmJiGDx4MPn5+QAcPnwYu93OBx98wIEDB3jrrbd4//33eeaZZ+q8bnV1NcHBwTz33HN06NCh3vFERkby6quvsmvXLnbu3En//v0ZOXKk89/JU6dOcerUKebPn8/vv//O0qVL+f7775k0aZLzGqNHjyY7O7vGR2JiIn379iUkJMTZ7u6772bdunUsXryYlJQUPvnkE1q0aOF8fcWKFTz99NPMnj2bQ4cOsXjxYlauXHnBezeZTNx888289tpr9b5vIYQQQghxdbhqf+v79NNP2b17Nzt27DjntZycHLRaLX5+fjXON2nShJycHGebsxNSZ14/81ptqqurqa6udh6XlpZezi2IG1DF6ZlSOrfaEy+X7dh6zJvf4133Wwmt7oNdXYyvMZfthcHAEQDUdgWvahP9W9/OzLHz0KgbZ6bRgYNPUli4AcvpAucad98626/dn+383MfDnY5Rfg0YnbhYHh4ehIaGAvDQQw/x1VdfsXr1aqZMmcKjjz7KN998Q3V1NX379mXhwoXEx8cDcPz4cR5++GE2bdqE2WwmJiaGN954g9atW9OvXz8A50zYCRMmsHTpUsrKypgyZQqrVq3C19eXGTNm8PXXX9OxY0f++c9/AhATE8OkSZM4cuQIq1at4q9//StLly5l06ZNzJo1i507dxIUFMRf/vIXXnnlFby9vTlw4ABHjx5l3bp1REdHAxAdHU3v3n/s7njixAmeeOIJHnvssRpLvZ944gm0Wi2PPPIIo0aNonv37pf0HMeOHVvj+M0332Tx4sXs27ePAQMGMGTIEIYMGeJ8PS4ujpSUFBYtWsT8+fPPe92YmBjefvttgHNmH9VlxIgRNY5ffvllFi1axLZt22jTpg1t27bliy++cL7erFkzXn75Ze69916sVivu7u7odDp0Op2zTX5+Pj///DOLFy92nvv+++/ZsGEDx44dIyAgwBnz2bZs2ULv3r2dzygmJoZ77rmnxkyy2owfPx5wzDITQgghhBDXlqtyptSJEyd49NFHWb58OZ6eni4b95VXXsFgMDg/oqKiXDa2uLb9L6eIF9OysCqO4wabKVWWTQrNsFnbccqtEHe7iZRyxy/UKrcQ3D17Ep9nJCsQdH1uabSElNVqIifnKyyWIsCOu7senS7mvO0VRaGkwrFs77tHb2HncwOJDvR2TbCNSVHAbHL9h6Jcdug6nQ6z2czEiRPZuXMnq1evZuvWrSiKwrBhw7BYHF/PqVOnUl1dzcaNG9m/fz+vvfYaPj4+REVFOZMdKSkpZGdnO5Mq06dPZ/PmzaxevZqkpCSSk5PZvXv3OTHMnz+fDh06sGfPHp5//nmOHj3KkCFDuPPOO9m3bx8rV65k06ZNPPzwwwAEBwejVqv5/PPPsdlstd7X559/jsViqXVG1IMPPoiPjw+ffPLJZT8/cMzu+vDDDzEYDHXObjIajc5ETkOy2Wx8+umnmEwmevbsWWc8vr6+uLvX/net//znP3h5eXHXXXc5z61evZouXbrw+uuvExERQUJCAk8++SSVlZXONr169WLXrl38+uuvABw7doy1a9cybNiwK3SHQgghhBDianNVzpTatWsXeXl53HTTTc5zNpuNjRs38u677/LDDz9gNpspKSmpMVsqNzfX+Zf80NBQ5xvbs18/81ptZs2axfTp053HpaWlkpgSF3SiyswjhzKdx55qFV5uVzgpVVkMSbNRTuygxN4c1HCHbRMBVWl8ZRnpGNfuS2S+kVn3lxDlG8tnnfpd2RguwpkleyqVO926foOnZxju7vpz2pVWWfho4zGKTGasdkeipGmAF56aBty18GpiqYB/hLt+3GdOgfbSkn6KorBu3Tp++OEHhg4dyqpVq9i8eTO9ejmWiS5fvpyoqChWrVrFqFGjyMzM5M4776Rdu3aAY+bPGWcSLSEhIc6f5WVlZSxbtowVK1YwYMAAAJYsWUJ4+LnPqX///jzxxBPO48mTJzNu3DhnPaX4+HgWLlxI3759WbRoERERESxcuJAZM2YwZ84cunTpQr9+/Rg3bpwzrtTUVAwGA2Fh5xbY12q1xMXFkZqaeknP7ow1a9YwZswYKioqCAsLIykpiaCgoFrbpqWl8c4779Q5S+py7d+/n549e1JVVYWPjw9fffUVrVu3rrVtQUEBL730En//+9/Pe73FixczduzYGrOnjh07xqZNm/D09OSrr76ioKCA//u//6OwsJAlS5YAjllkBQUF3HzzzSiKgtVqZcqUKRdcvieEEEIIIa5dV+VMqQEDBrB//3727t3r/OjSpQvjxo1zfq7RaFi3bp2zT0pKCpmZmc6/7vbs2ZP9+/fXKLKalJSEr6/ved9se3h4OIu9nvkQ4kIKzY5iz3o3NQ9FBfNRmxi0V3qm1IFVsHsZv5RoKbQPBuBYjsL/MttjMacDEJb7G0F537Bz3E6+/cu3eGtcP9PIbq/GaNxLSYlj2a27uy8+Pgm1JqQAvtqdxTs/p7F8uyOp5+vpjpf2BklIXWPWrFmDj48Pnp6eDB06lNGjRzNx4kTc3d1rLGULDAykRYsWHDp0CIBHHnmEefPm0bt3b2bPns2+ffvqHOfYsWNYLBa6devmPGcwGGrUHjqjS5cuNY5/++03li5dio+Pj/MjMTERu91Oerrj+2Tq1Knk5OSwfPlyevbsyWeffUabNm1ISkqq97PQarUXbLN8+fIacSQnJztf69evH3v37mXLli0MGTKEu+++u8a/VWdkZWUxZMgQRo0axQMPPOA8f/Z1p0yZUq+Yk5OTa/Rbvny587UWLVqwd+9etm/fzkMPPcSECRM4ePDgOdcoLS3ltttuo3Xr1rz44ou1jrN161YOHTpUo+YUgN1uR6VSsXz5crp168awYcN48803WbZsmXO21Pr16/nHP/7Bv/71L3bv3s2XX37Jt99+y0svvXTBZyqEEEIIIa5NV+VMKb1eT9u2bWuc8/b2JjAw0Hl+0qRJTJ8+nYCAAHx9fZk2bRo9e/akR48eAAwePJjWrVszfvx4Xn/9dXJycnjuueeYOnUqHh4eLr8ncf0ynV4GFOqhYXbzBtrpzpTP13Rhj/lmcM8gozIWg+kEkAtqX1RqPeHFv7KnvRe9NK5b8vpn+39/hIKCn5zH7heoI5VX5thVq2OUH30SgundLPC8hdCvSxovx6ylxhj3IvXr149Fixah1WoJDw/H3d2d1atXX7Df5MmTSUxM5Ntvv+XHH3/klVdeYcGCBUybNu1SIq/B27tm4rW8vJwHH3yQRx555Jy2TZs2dX6u1+sZMWIEI0aMYN68eSQmJjJv3jwGDRpEfHw8RqORU6dOnTM7y2w2c/ToURITEy8Y2+23314jWRcR8cfPBm9vb5o3b07z5s3p0aMH8fHxLF68mFmzZjnbnDp1in79+tGrVy8+/PDDGtc+e3e5+v7xpEuXLjX6nV1z8cyOigCdO3dmx44dvP3223zwwQfONmVlZQwZMgS9Xs9XX32FRlP70uB///vfdOzYkc6dO9c4HxYWRkREBAaDwXmuVatWKIrCyZMniY+P5/nnn2f8+PFMnjwZgHbt2mEymfj73//Os88+W+czFUIIIYQQ16arMilVH2+99RZqtZo777yT6upqEhMT+de//uV83c3NjTVr1vDQQw/Rs2dPvL29mTBhAnPnzm3EqMX16I/i5g0w8TA/BfYuh2MbOFHVFjxVDGYjJRYjhxVHQkfrPRR3WwlPPrGP0W3HXfkYLkJZmWPHLg+PUNRqD6KiJtTazm5XOFZgIrPIMUOiT0Iw0wcluCzOq4ZKdcnL6FztTCLlbK1atcJqtbJ9+3bn8r3CwkJSUlJqzEiNiopiypQpTJkyhVmzZvHRRx8xbdo054yjs+s7xcXFodFo2LFjhzORZDQaSU1NpU+fPnXGeNNNN3Hw4MFz4qyLSqWiZcuWbNmyBYC77rqLmTNnsmDBAhYsWFCj7fvvv09FRQX33XffBa+r1+vR62ufIfhndru9xiYbWVlZ9OvXj86dO7NkyRLUf5p5eTH3d4ZOp6t3vz/HU1paSmJiIh4eHqxevfq8tR7Ly8v53//+xyuvvHLOa7179+azzz6jvLwcHx8fwLFUUq1WExkZCUBFRcU59+rm5pg5qSjKRT1TIYQQQghxbbhmklLr16+vcezp6cl7773He++9d94+0dHRrF27toEjEzcyo8VKjtlR0NmrIYqb//gcHPmRdFUnFG0cOiUPc14Rh4qOOJt02/kmWT1CSR6/9cqPX09mcxEFBeswmwsB6HzTSnS6yPO2f/rLffxv50nnsUHXOAXZxeWJj49n5MiRPPDAA3zwwQfo9XqefvppIiIiGDnSUevsscceY+jQoSQkJFBcXMwvv/xCq1atAMfPaJVKxZo1axg2bBg6nQ69Xs+ECRN46qmnCAgIICQkhNmzZ6NWqy84i27mzJn06NGDhx9+mMmTJ+Pt7c3BgwdJSkri3XffZe/evcyePZvx48fTunVrtFotGzZs4OOPP2bmzJmAY0bV66+/zpNPPomnpyfjx49Ho9Hw9ddf88wzzzBv3rxzZvKmpKScE0ubNm3OmU1kMpl4+eWXuf322wkLC6OgoID33nuPrKwsRo0aBTgSUrfeeivR0dHMnz+f/Px8Z//z1UM848xMqPLycvLz89m7dy9arfa8S9bBUUtx6NChNG3alLKyMlasWMH69ev54YcfAEdCavDgwVRUVPDf//6X0tJS5860wcHBzqQRwMqVK7Fardx7773njDN27Fheeukl7r//fubMmUNBQQFPPfUUf/vb35y1p0aMGMGbb75Jp06d6N69O2lpaTz//POMGDGixjh/VlRURGZmJqdOOWYdnvl6hIaGXvCZCSGEEEKIxnXNJKWEuNokFRiZ+Hs6ttMbmV3x4uaArTSHT6v7U2hvSalnBUZTM/aWJAAVAGhtGryrq6iOqL1Isqukpb1Kds6ZbePVaLWBdbbfk1kCOGpIhfh60q9FcMMGKBrMkiVLePTRRxk+fDhms5k+ffqwdu1aZ0LGZrMxdepUTp48ia+vL0OGDOGtt94CHMuv5syZw9NPP83999/Pfffdx9KlS3nzzTeZMmUKw4cPx9fXlxkzZnDixIkL7sbavn17NmzYwLPPPsstt9yCoig0a9aM0aNHAxAZGUlMTAxz5swhIyMDlUrlPH788ced13n88ceJi4tjwYIFvP3225hMJgA++eQTxowZc864tZ07ceKEcwbQGW5ubhw+fJhly5ZRUFBAYGAgXbt2JTk5mTZt2gCO2odpaWmkpaWd01+5wK6JnTp1cn6+a9cuVqxYQXR0NBkZGeftk5eXx3333Ud2djYGg4H27dvzww8/MGjQIAB2797N9u3bgXNnaKWnpxMTE+M8Xrx4MX/9619rbEByho+PD0lJSUybNo0uXboQGBjI3Xffzbx585xtnnvuOVQqFc899xxZWVkEBwczYsQIXn755Trve/Xq1dx///3O4zNfj9mzZ5+39pUQQgghhLg6qJQLvcu9gZWWlmIwGJzbXwtxtlePZfPP444dHXVqFS/FR3JveN3JmHqzWcFaxdGFt/P/TH3QYCGedPILRlJV8D9QqtHqx2K2rmJXzAGG3zWLsW3PnZ3gKrt230NJya/4+nYkLPQvREbWHovZaudIXhn3/ns7xRUWvnv0FlqF3RjfW1VVVaSnpxMbG3vB5IqoyWQyERERwYIFC84poO0KRUVFDBgwAF9fX7777ju8vC6+Jpe49tT1PSvvD2qS5yGEEEKIP6vv+wOZKSXEJao8XUvq4aYhPNfs3O3qL1lJJrx/C1SVUGLvB2pItP+Kofwo68qjQXHUeum072P23hnKo/d9TOcmnS9w0YZltRgBiIt9jMDAW87b7m9Ld7AprcB57O914V3MxI1nz549HD58mG7dumE0Gp21AM8sCXS1gIAAfvrpJ9577z22bt3KgAEDGiUOIYQQQgghrjeSlBLiElXaHUkpzytdSypzO/aqEv5TNZxsbQvsikJeWQIbTnkA+wFQ2RX8yrLo2mUi3cO61329BmKzVbB//1Qqq7KorDwOgEZjqLPPvpMlAAT5aOnZLIgmvrITpqjd/PnzSUlJQavV0rlzZ5KTkwkKarxlqoGBgbzwwguNNr4QQgghhBDXI0lKCXGJziSlruiue5XFUHSU/KoAMjzjATup5giCS2OB46DywE0TT9OsjeyLVdGpbYcrN/ZFKinZSWHRRuexWu2JTtf0vO1tdoXSKisA3z3ah2C9JKRE7Tp16sSuXbsaOwwhhBBCCCFEA5OklBCX6MzyPU913TuC1VvmNlgyDBQbZdUx4Anh9jIiLJlUKo7lgToLtDp5mE9ntqJ1RHtahrSt+5oNyGJ1LNnT+7QhPv5ZdF7RaDR+57Srsti47+NfOZZvcp7z85Ld9oQQQgghhBDiRidJKSEu0qrcYpZmFZBiqgJAd6WW7534FRQbxUSS6zkLOEzLwvXsKAgD9gDgXVmMuyWHD0YcvDJjXiJFsWG1OLaF9/QMx9///EsIfztRwq/pRc7jVmG+aBpgp0IhhBBCCCGEENcWSUoJcZHezMgltaLKedxUd4WKdVcWk1zRmZ91t6B4HOZoZTQhxnig3NlEY6vg1/7hnL+UeMPLzV3DwUNPYbebAXB319fZ/sySvZahet68uyNxwd4NHqMQQgghhBBCiKufJKWEuEjlNhsAzzcLp6uvF10Nl5lkObAKkheA8SSHlaEoKsdywPCKYKpsjmVuGp87cbMWYnurCXdF9rm88S5TQeF6Z0JKpXLD37/XedtWmK0UlDt2CwzWe9A6XLYKF0IIIYQQQgjhIEkpIS6S6XQtqcGBvsR7e17+Bbctgpx9VNvbUqmLQ0c+icaNJBcdx2x3LJFrlvEz2U1PMb71ussf7zLZrI6ZW/HNnyEi4h7c3LxqbffKd4f4YMMx57Gvp9SREkIIIYQQQgjxB0lKCXGRTKdnSnlfobpIVlMRnxsHU6KKp1RfQYBJz4bcGKy2fABUCkRl7+bkLQlXZLzLZbWWAaDVBp83IQXwy+E85+fuahV9WwQ3eGxCCCGEEEIIIa4dkpQSop62lZSTVFiKVXEce11uUip5AWRuI73EzmFDGwDsih1zRRts9r0AaDx7Y7N8R/rcexk5eMLljXeZjqS9Qk7OKiyWEuD8taTsdgWzzU6RybHEb9XU3rQO80XrLsXNhRBCCCGEEEL8QX5LFKKe/u/gcd7LdMz+8VSr8HZzu/SLmQpg3Vzsh3+kpNIAQFRVKUOKfkRTthMURyH17vu/oTTUnZF3zSLUN/yy7+FynDz5X8zmAhTFikqlxdv73JlbZqudIW9vpOXz31NQ7khKhfp6SkLqGjdx4kRUKhUqlQqtVkvz5s2ZO3cuVqv1sq67fv16VCoVJSUlVybQekhPT2fs2LGEh4fj6elJZGQkI0eO5PDhwzXarVmzhr59+6LX6/Hy8qJr164sXbq0RpuMjAxUKhV79+6t9/gvvvgiLVu2xNvbG39/fwYOHMj27dtrXHPSpEnExsai0+lo1qwZs2fPxmw213nd7Oxsxo4dS0JCAmq1mscee6zeMZ3x6quvolKpzul79OhR/vKXvxAcHIyvry933303ubm5Ndq8/PLL9OrVCy8vL/z8/Gq9/pn/h87++PTTT52vf/nllwwaNMg5Ts+ePfnhhx8uGPeXX37J4MGDCQwMvOivhxBCCCGEaFzym6IQ9VRocfwCPj48kA/bxKBRqy79YhWF2K0qvj7Yl+3KrQB4l1azNS+Aqur9AKjsCj6VxUT1ufUyI798dns1drsjUda58/+4ufdmdLqIc9odLzSRmvvHboHtIgwE6z1cFqdoOEOGDCE7O5sjR47wxBNP8OKLL/LGG280dlhOF0raAFgsFgYNGoTRaOTLL78kJSWFlStX0q5duxqJsXfeeYeRI0fSu3dvtm/fzr59+xgzZgxTpkzhySefvKw4ExISePfdd9m/fz+bNm0iJiaGwYMHk5/vWK57+PBh7HY7H3zwAQcOHOCtt97i/fff55lnnqnzutXV1QQHB/Pcc8/RoUOHi45rx44dfPDBB7Rv377GeZPJxODBg1GpVPz8889s3rwZs9nMiBEjsNvtznZms5lRo0bx0EMP1TnOkiVLyM7Odn7ccccdztc2btzIoEGDWLt2Lbt27aJfv36MGDGCPXv21HlNk8nEzTffzGuvvXbR9y2EEEIIIRqZIs7LaDQqgGI0Ghs7FNHIrHa70uTnPUqTn/coBdWWS7+Q3a4op35TlG3vK9mPxSizZ89WZs+ercx89jXln/fNU+bffZuyYMx9ylv3Pq28eH8vZcKzrZVtp7ZduRu5SDZbtZKX/5Ny4uRy5ad1ccpP65opdrvtvO23HytUomeuUfq8/rNSXmVR7Ha7C6O9ulVWVioHDx5UKisrGzuUizZhwgRl5MiRNc4NGjRI6dGjh1JUVKSMHz9e8fPzU3Q6nTJkyBAlNTXV2S4jI0MZPny44ufnp3h5eSmtW7dWvv32WyU9PV0BanxMmDBBURRFKS0tVcaOHat4eXkpoaGhyptvvqn07dtXefTRR53XjY6OVubOnauMHz9e0ev1zr7JycnKzTffrHh6eiqRkZHKtGnTlPLyckVRFGXPnj0KoGRkZJz3XjMzMxWNRqNMnz79nNcWLlyoAMq2bY7vyTP3sGfPnot/qKed+Xfmp59+Om+b119/XYmNja33Nf/8rC6krKxMiY+PV5KSks7p+8MPPyhqtbrGv4MlJSWKSqVSkpKSzrnWkiVLFIPBUOs4gPLVV1/VOy5FUZTWrVsrc+bMqVfbK/H1OFtd37Py/qAmeR5CCCGE+LP6vj+QmVJC1EPVWTMCPN0uY4ZU6g/wwS0oa2dQavUBwMNsxy+nBJslDQD/ShWtTqZz+3MLeP2ZX+ge1v2yYr8cp079j337/k5KyvMAaDR+qFTn/tjYd7KE7v/4iXv/7ViGFOCtxdvDHZXqMp7VDUBRFCosFS7/UBTlsmPX6XSYzWYmTpzIzp07Wb16NVu3bkVRFIYNG4bFYgFg6tSpVFdXs3HjRvbv389rr72Gj48PUVFRfPHFFwCkpKSQnZ3N22+/DcD06dPZvHkzq1evJikpieTkZHbv3n1ODPPnz6dDhw7s2bOH559/nqNHjzJkyBDuvPNO9u3bx8qVK9m0aRMPP/wwAMHBwajVaj7//HNspzcs+LPPP/8ci8VS64yoBx98EB8fHz755JPLfn7gmF304YcfYjAY6pzdZDQaCQgIuCJj1mbq1KncdtttDBw48JzXqqurUalUeHj8MePR09MTtVrNpk2bLmmsoKAgunXrxscff1zn/4t2u52ysrIGvXchhBBCCNG4pNC5EPVQZfvjFyed+jJyufmHsFWr2J8cR158Iip/DSF52ZSUZXBmhPC8Q2jtZbRv2hk3d83lBX6ZKirSAfD0jMJL15QmTUbU2u6Xw/nkllY7j7vFyi+R9VFpraT7CtcnHbeP3Y6X5vw7J9ZFURTWrVvHDz/8wNChQ1m1ahWbN2+mV69eACxfvpyoqChWrVrFqFGjyMzM5M4776Rdu3YAxMXFOa91JtkQEhLirENUVlbGsmXLWLFiBQMGDAAcS77Cw8+tqda/f3+eeOIJ5/HkyZMZN26csyZSfHw8CxcupG/fvixatIiIiAgWLlzIjBkzmDNnDl26dKFfv36MGzfOGVdqaioGg4GwsLBzxtNqtcTFxZGamnpJz+6MNWvWMGbMGCoqKggLCyMpKYmgoKBa26alpfHOO+8wf/78yxrzfD799FN2797Njh07an29R48eeHt7M3PmTP7xj3+gKApPP/00NpuN7Ozsixpr7ty59O/fHy8vL3788Uf+7//+j/Lych555JFa28+fP5/y8nLuvvvui74vIYQQQghxbZCZUkJcgMlqI//0rA+tSoX6cmb/VJaQZL6ZVQNvZ0u0B24VTSgzOwqdq9wj0SvxlHqXsXN4s0ZPSFVV51BVlQVAZOQ4OnX6D+Hho2ptW1zhqOczvkc022YNYNbQVi6LU7jGmjVr8PHxwdPTk6FDhzJ69GgmTpyIu7s73bv/kVgLDAykRYsWHDp0CIBHHnmEefPm0bt3b2bPns2+ffvqHOfYsWNYLBa6devmPGcwGGjRosU5bbt06VLj+LfffmPp0qX4+Pg4PxITE7Hb7aSnOxKsU6dOJScnh+XLl9OzZ08+++wz2rRpQ1JSUr2fhVarvWCb5cuX14gjOTnZ+Vq/fv3Yu3cvW7ZsYciQIdx9993k5eWdc42srCyGDBnCqFGjeOCBB5znz77ulClT6hVzcnJyjX7Lly/nxIkTPProoyxfvhxPT89a+wUHB/PZZ5/xzTff4OPjg8FgoKSkhJtuugn1RSbon3/+eXr37k2nTp2YOXMmM2bMOG9dshUrVjBnzhz+97//ERISAtT9TIUQQgghxLVJZkoJUYc3M3J4PT3HeXzJS/eOrYdt70Pu7xzXOGaUqBUVVTYvvBXHDKPQklIqPQ8T8vEiBod0vMzIL8+Jk/8hNXWO81jj7ldru5ScMl77/jD7s4wARAXoCDXU/sutOJfOXcf2sdsv3LABxr1Y/fr1Y9GiRWi1WsLDw3F3d2f16tUX7Dd58mQSExP59ttv+fHHH3nllVdYsGAB06ZNu5TQa/D29q5xXF5ezoMPPljrzJumTZs6P9fr9YwYMYIRI0Ywb948EhMTmTdvHoMGDSI+Ph6j0cipU6fOmZ1lNps5evQoiYmJF4zt9ttvr5Gsi4j4Y2MAb29vmjdvTvPmzenRowfx8fEsXryYWbNmOducOnWKfv360atXLz788MMa1z57dzlfX98LxgKOBN7Z/Zo0acK6devIy8vjpptucp632Wxs3LiRd999l+rqatzc3Bg8eDBHjx6loKAAd3d3/Pz8CA0NrTHr7VJ0796dl156ierq6hrLAz/99FMmT57MZ599VmNJYV3PVAghhBBCXJskKSVEHTYUldU4HhxouMQLvY4tbQvFJ3ypjAgGRSHmRB4FFb9jVxyzsIKK0yhK0NM3qu/lhn3ZjEbHbldqtRZPzwgCAnrX2u6TXzP5+fAfMzzignxcEt/1QqVSXfIyOlc7k0g5W6tWrbBarWzfvt25fK+wsJCUlBRat27tbBcVFcWUKVOYMmUKs2bN4qOPPmLatGnOGUdn13eKi4tDo9GwY8cOZyLJaDSSmppKnz596ozxpptu4uDBg+fEWReVSkXLli3ZsmULAHfddRczZ85kwYIFLFiwoEbb999/n4qKCu67774LXlev16PX6+sVg91up7r6j+WvWVlZ9OvXj86dO7NkyZJzZiRdzP2dodPpzuk3YMAA9u/fX+Pc/fffT8uWLZk5cyZubm41XjuzxPDnn38mLy+P22+//aLjONvevXvx9/evkZD65JNP+Nvf/sann37KbbfdVqP9xTxTIYQQQghxbZCklBB1MNkcBc7/0y6WvgF6PC61npSpgP3HYzmh7kOlVkdQiQ/5pl01mugrzWh633K5IV8RVmspAC0S5p53yR5AkcmxbO/OmyK5s3MEPWIDXRKfuDrEx8czcuRIHnjgAT744AP0ej1PP/00ERERjBw5EoDHHnuMoUOHkpCQQHFxMb/88gutWjmWd0ZHR6NSqVizZg3Dhg1Dp9Oh1+uZMGECTz31FAEBAYSEhDB79mzUavUFC+fPnDmTHj168PDDDzN58mS8vb05ePAgSUlJvPvuu+zdu5fZs2czfvx4WrdujVarZcOGDXz88cfMnDkTcMyoev3113nyySfx9PRk/PjxaDQavv76a5555hnmzZtH27Zta4ybkpJyTixt2rRBo6m5BNdkMvHyyy9z++23ExYWRkFBAe+99x5ZWVmMGuX4PsvKyuLWW28lOjqa+fPnk5+f7+wfGhpa5/2fmQlVXl5Ofn4+e/fuRavV1kgQnk2v159zL97e3gQGBtY4v2TJElq1akVwcDBbt27l0Ucf5fHHH6+xpDIzM5OioiIyMzOx2WzOWJo3b46Pjw/ffPMNubm59OjRA09PT5KSkvjHP/5Ro6D8ihUrmDBhAm+//Tbdu3cnJ8cxS1Wn02EwnP8PAmfGPXXqFPDH1yM0NPSCz0wIIYQQQjQuSUoJUYeK00kpg7vbpSWkitIh7yCW8kK+iR2DzU0DWPGqOr3sSOWJl+cQrKpVhPy/92jWtvYZSa5SUrKTiop0KioyAHB3r31pUF5ZFccLKzhZXAFA97gAejWrvVCzuL4tWbKERx99lOHDh2M2m+nTpw9r1651JmRsNhtTp07l5MmT+Pr6MmTIEN566y3Asfxqzpw5PP3009x///3cd999LF26lDfffJMpU6YwfPhwfH19mTFjBidOnDhv3aMz2rdvz4YNG3j22We55ZZbUBSFZs2aMXr0aAAiIyOJiYlhzpw5ZGRkoFKpnMePP/648zqPP/44cXFxLFiwgLfffhuTyQQ4ZvGMGTPmnHFrO3fixAkiIyNrnHNzc+Pw4cMsW7aMgoICAgMD6dq1K8nJybRp0waApKQk0tLSSEtLO6f/hXZN7NSpk/PzXbt2sWLFCqKjo8nIyKiz34WkpKQwa9YsioqKiImJ4dlnn63xvABeeOEFli1bdk4sv/zyC7feeisajYb33nuPxx9/HEVRaN68OW+++WaNWlkffvghVquVqVOnMnXqVOf5CRMmsHTp0vPGt3r1au6//37n8Zmvx+zZs3nxxRcv59aFEEIIIUQDUylXYm/w61RpaSkGgwGj0Vjvuh3i+tJh8+/kmq381CWBtvqLXGZlroD5CVjLysktCeCjJvehstsJy8mkvNyOYivCw6Iw4OAx/ndXe2bPW9kwN1FPVVXZbN5yC/DHj4SbOq3A37/m7nBlVRZ6vvIz5dVW57kPxncmsY3MSKhLVVUV6enpxMbGXjC5ImoymUxERESwYMECJk2a5PLxi4qKGDBgAL6+vnz33Xd4eV0bSy7F5anre1beH9Qkz0MIIYQQf1bf9wey+54QtVh4PJc2mxwJKQDvP9VWqZfyHBRzGbt3tWBPqaMwcveq3ZQZC1BsRQDoqx21dHrd3P/KBH4ZKitPAApubt4EBfYnMvI+DIbO57TLLKqgvNqKu1pFXJA3vZoF0quZLNsTV86ePXv45JNPOHr0KLt372bcuHEAziWBrhYQEMBPP/3EgAED2Lp1a6PEIIQQQgghxPVIlu8JUYsV2YUUWhwJqSCNO6Eemgv0qEWVkaNEs7bXUMexouZY8TBgLaj1aHS3Emr6HPNdifQfPPnKBX+RFEWhqGgj+QU/A+Dj04IOHT6qtW1+WTV7MksAiAv25sfHG78ou7g+zZ8/n5SUFLRaLZ07dyY5OdlZaLsxBAYG8sILLzTa+EIIIYQQQlyPJCklRC3OFDhf0jaGPv56dG4XMamwOAN2LYOiY+TbA0ANHoo7dqsPVptjxpUaL4LLTHjM+D869PlLA9xB/ZWV7Wfvb39zHmu1tf/in22spM/rv2CxOZb3+XtpXRKfuPF06tSJXbt2XbihEEIIIYQQ4pomSSkhalFudSSlWvvo8Ha/yKV7G15H2b2c8mwPijx7QCD0Kv6JnQXeWGyORE5gyTEiC7bQqsMvVzr0i+ZYtgcaTQD+/j2IbvpAre1Scsqw2BQ0birCDDrGdm/qyjCFEEIIIYQQQlxnJCklxFkURcFks1NpdySlLq2WVC6ZmSHsLG1PbqseuFvNpBT7g80CWADwq6hG26oFQYbGLw5utZYCYDDcRLu275y3nbHSEXu32ACWT+7hktiEEEIIIYQQQly/JCklxFkmH8jg23yj89j7YpbtnVFdxi9+vciIiQVM2EvjKLemAEVovIagNZsZsHAAXq1aXbG4L0VJyU7Sjr5GVdUpADTute+IsO1YIc98uZ+C8moADLpLqK8lhBBCCCGEEEL8iSSlhDjLz4Wlzs97+/ngqVbVv3PhUTi5E4xZlGkSAIi26jlhrUBRqgAIyz9KuVsR3h2mX9G4L0XWqU8xGnc7j728m9fabvVvpzhWYHIet40wNHhsQgghhBBCCCGuf5KUEuI0RVGotDuKeG/v0YqmnlpUqnompRQFlgwlZ5eJtNxIKrp4E2AvxTd7E97lns5mcZk/ETHx/oYI/6JZLCUANI2aRHDwYAyGTrW2KzaZAXjo1mbceVMEzYJ9XBWiEEIIIYQQQojrmCSlhDit+nRCCsBf417/hBSApRLKc1lluIucFlGggHd+LzJMp4ByQIXebCeoSzf872jc3fbKy1MpLtlGRcVRAAyGzvj5dTmn3ceb0vli90mOF1YA0CrMl+YhepfGKoQQQgghhBDi+nUJBXOEuD5VnS5uDlzcsj2Aaseyv1K9v6O/XYfKrgfFUYcpRLkZvzZxRH+8GI+42CsT8CXa+9vfSE2dQ2VlJgBabWCt7d79JY0Dp0opr7YCkNBEZkjdqCZOnIhKpUKlUqHVamnevDlz587FarVe1nXXr1+PSqWipKTkygRaD+np6YwdO5bw8HA8PT2JjIxk5MiRHD58uEa7NWvW0LdvX/R6PV5eXnTt2pWlS5fWaJORkYFKpWLv3r31Hv/FF1+kZcuWeHt74+/vz8CBA9m+fXuNa06aNInY2Fh0Oh3NmjVj9uzZmM3mOq+bnZ3N2LFjSUhIQK1W89hjj9U7pqysLO69914CAwPR6XS0a9eOnTt3Ol8/++t/5mPIkCE1rhETE3NOm1dffdX5ekpKCv369aNJkyZ4enoSFxfHc889h8ViqXGdkpISpk6dSlhYGB4eHiQkJLB27do64//yyy8ZPHgwgYGB/5+9O4+LqtwfOP6ZAYZ1AEGQVQTFNTW3ckkNN3CLezOXNJdSk37ummsL6rW8Gup1uy7dUu+96vVmZVysDDMVFU1N1FxAUEIRVASHnRmY8/tjdHJCEUvB8vt+veb14pzznHO+z2Fx5uvzfJ8H/n4IIYQQQojqJSOlhLil+NZIKSsV2DzIKKmim1zZtpb9P3lg8Nbgodygvf4mB4wNuL3aXtPT/8R3yrpHEPWDMRoNlJRkAODh0QMH+8C7TtszGhVuFpo+BC8b9DSNvJ2pX0tGST3JwsLCWL9+PSUlJXz55ZeMHTsWGxsbZs2aVd2hAaDX69FoNBW2MRgMdO/enQYNGvDZZ5/h7e3N5cuX+eqrrywSYytWrGDSpEnMmDGD1atXo9Fo+OKLL4iIiODHH38kKirqV8dZv359Vq5cSVBQEEVFRSxdupQePXqQnJyMh4cH586dw2g0snbtWurVq8ePP/7I6NGjKSgoqPC+JSUleHh48Pbbb7N06dJKx5OTk0OHDh0ICQnhq6++wsPDg/Pnz1OjRg2Ldre//7fZ2tqWu9a8efMYPXq0eVur/flvho2NDcOGDaNly5a4urpy4sQJRo8ejdFo5P333wdM38Pu3bvj6enJtm3b8PX15aeffsLV1bXCPhQUFPDcc88xYMAAi/sLIYQQQojHnySlxBOvsMxI9LUc0opNSRg7tbryU/cMxRQseJb9Z5tR4h5OiZUt1hme7NbtBv5hbmZXww23p55++ME/AKOxlJKSq+btp5qsQK0u/ycg+Vo+ydfyuT2bMbSJF3Y2VlUVpnhM2dra4uXlBcAbb7zB559/TnR0NBEREUycOJH//e9/lJSU0LlzZ5YvX05wcDAAP/30E+PGjWP//v3o9Xrq1KnDBx98QOPGjQkJCQEwJ0CGDx/Ohg0byMvLIyIigu3bt+Ps7Mz06dP54osvePrpp/nb3/4GmEbmjBw5kvPnz7N9+3ZefPFFNmzYwP79+5k1axZHjx6lZs2a/PnPf2bBggU4Ojpy+vRpUlJS+PbbbwkICAAgICCADh06mPt56dIlpk6dyqRJk8zJEoCpU6ei0WiYMGEC/fv359lnn/1Vz3Hw4MEW20uWLOGjjz7i5MmTdO3albCwMItRSEFBQSQmJrJ69eoKk1J16tRh2bJlAHz88ceVjmfhwoX4+/tbJJwCA8uP5rzz+38vWq32nm2CgoIICgoybwcEBLBnzx7i4uLM+z7++GOys7M5ePAgNjY25n7dz9ChQwHTKDMhhBBCCPH7ItP3xBPvX1eymHTuEktSTQkbZ+sHSMDkZ3K6wIMzTZqQ4qXlWqk7xfpi4NZUQEWFf4PG1N/9LVZOjg8/+EoqLslk/4F2HIzvDICVldNdE1I/3Sig+9K9RPz7GAC21mpJSIm7sre3R6/XM2LECI4ePUp0dDTx8fEoikKvXr3M07LGjh1LSUkJ+/bt49SpUyxcuBAnJyf8/f359NNPAdPUroyMDHNSZcqUKRw4cIDo6GhiY2OJi4vjhx9+KBdDVFQUzZs35/jx47zzzjukpKQQFhZGv379OHnyJFu3bmX//v2MGzcOAA8PD9RqNdu2baOsrOyu/dq2bRsGg4E333yz3LExY8bg5OTEli1bHsoz1Ov1rFu3DhcXF5o3b37PdjqdDjc3t4dyz1+Kjo6mdevW9O/fH09PT1q0aMGHH35Yrt2ePXvw9PSkQYMGvPHGG9y4caNcm7/+9a+4u7vTokULPvjggwqndyYnJ/P111/TuXNni1jatWvH2LFjqVWrFk899RTvv//+Pb9XQgghhBDi909GSokn3pUS04fnYAdbGjvZE+7pWulzy7Iy0ZU4gRZqlDmRaVOCYjTVkaqdlY9/znWe3Rr9YEXTH4FcXQIGQ7Z526Nmt7u2u3C9AEUBexsrgjwc6dPMp6pCfCIpioJSVFTl91XZ2//qn0lFUfj222/ZuXMnPXv2ZPv27Rw4cID27dsDsGnTJvz9/dm+fTv9+/cnLS2Nfv360bRpUwCL0TK3Ey2enp7mKVp5eXls3LiRzZs307VrVwDWr1+Pj0/5n8UuXbowdepU8/aoUaMYMmSIuZ5ScHAwy5cvp3PnzqxevRpfX1+WL1/O9OnTmTt3Lq1btyYkJIQhQ4aY40pKSsLFxQVvb+9y99NoNAQFBZGUlPSrnt1tMTExDBo0iMLCQry9vYmNjaVmzZp3bZucnMyKFSt+05TBily4cIHVq1czZcoUZs+ezZEjR5gwYQIajYbhw4cDpql7L774IoGBgaSkpDB79mx69uxJfHw8VlampPWECRNo2bIlbm5uHDx4kFmzZpGRkcGSJUss7te+fXt++OEHSkpKeP3115k3b55FLLt372bIkCF8+eWXJCcn83//938YDAYiIyMfSf+FEEIIIUT1kqSUeOIVlZlGNYV71uDNwIqnp9zJcOUK518cTfYzXSkrs6FmznUa52ZTajBNA7Qt1eNSy7faE1IAhlIdAO5unWjadDVWVnZ3bacrMiXoWga4smlU2yqL70mlFBWR2LJVld+3wQ/HUDk4PNA5MTExODk5YTAYMBqNDB48mBdffJGYmBiLqWzu7u40aNCAs2fPAqZkxRtvvME333xDt27d6NevH82aNbvnfS5cuIDBYOCZZ54x73NxcaFBgwbl2rZubblq5IkTJzh58iSbNm0y71MUBaPRyMWLF2nUqBFjx45l2LBh7Nmzh0OHDvHJJ5/w/vvvEx0dTffu3Sv1LO5XuwpMybkxY8aYt7/66is6duwIQEhICAkJCWRlZfHhhx8yYMAADh8+jKenp8U10tPTCQsLo3///ha1kpycfl504JVXXmHNmjX3jScuLo6ePXuat9euXcuQIUMwGo20bt3aPFWxRYsW/Pjjj6xZs8aclBo0aJD5vKZNm9KsWTPq1q3Lnj17zInDKVOmmNs0a9YMjUbDmDFjWLBggUX9qa1bt5KXl8eJEyeYNm0aUVFRTJ8+HQCj0Yinpyfr1q3DysqKVq1akZ6ezgcffEBkZGSFz1QIIYQQQvw+SVJKPPEKbyWlHKweYDZrxgl2fRjFj736orezpzDfn2s58RhLM8xNXAIC8Bs28mGH+0AKC3/i0uUN5OaeAsBG43bXhNSB5Cy2HrlE6o0CAJztbKo0TvH4CwkJMRf99vHxwdramujo6PueN2rUKEJDQ9mxYwfffPMNCxYsYPHixYwfP/43x+ToaDklNj8/nzFjxjBhwoRybWvXrm3+WqvV0rdvX/r27cv8+fMJDQ1l/vz5dO/eneDgYHQ6HVeuXCk3Okuv15OSkkJoaOh9Y3vhhRcsknW+vr4WcderV4969erRtm1bgoOD+eijjyyKxl+5coWQkBDat2/PunWWiyTcubqcs7PzfWMBUwLvzvNq1aoFgLe3N40bN7Zo26hRI/PUyrsJCgqiZs2aJCcnm5NSv/Tss89SWlpKamqqRULR398fgMaNG1NWVsbrr7/O1KlTsbKywtvbGxsbG/Poq9uxZGZmotfrK3ymQgghhBDi90mSUuKJV2T8FUmp/X8jsdiRAnsNUIZGyUEx3kro6N2wcSqiwz82Yl2JERWP0k9pa7lyZat52862/JQkgPe/PMvpK7nmbb8a9o88NmGaRtfgh2PVct8HdTuRcqdGjRpRWlrK4cOHzdP3bty4QWJiokWiw9/fn4iICCIiIpg1axYffvgh48ePN484urNmUFBQEDY2Nhw5csScSNLpdCQlJdGpU6cKY2zZsiVnzpwpF2dFVCoVDRs25ODBgwC89NJLzJgxg8WLF7N48WKLtmvWrKGwsJBhw4bd97pardZi9bmKGI1GSkpKzNvp6emEhITQqlUr1q9fj1pt+bfpQfp3m729/V3P69ChA4mJiRb7kpKSzIXg7+by5cvcuHHjrlMcb0tISECtVpcb/XUno9FoHnlnZWVFhw4d2Lx5M0aj0dznpKQkvL290Wg0aDSaSj9TIYQQQgjx+yBJKfHEWp12jX9cvs4Ng6kYb2WTUiWXLpGy/Sxl/l0BhVeK97HnajN0iikp1eziCTxefaXaE1KAebU9D49QXF1a4+394l3bXc8zfSB+4/m6BLg50LPpvT9siodHpVI98DS6x0lwcDDh4eGMHj2atWvXotVqmTlzJr6+voSHhwMwadIkevbsSf369cnJyeG7776jUaNGgGkFNpVKRUxMDL169cLe3h6tVsvw4cOZNm0abm5ueHp6EhkZiboSq2LOmDGDtm3bMm7cOEaNGoWjoyNnzpwhNjaWlStXkpCQQGRkJEOHDqVx48ZoNBr27t3Lxx9/zIwZMwDTiKpFixbx5ptvYmdnx9ChQ7GxseGLL75g9uzZzJ8/n6eeesrivr9M6gA0adLEvILcbQUFBbz33nu88MILeHt7k5WVxapVq0hPT6d///6AKSH1/PPPExAQQFRUFNevXzeff7/V726PhMrPz+f69eskJCSg0WjKjYS60+TJk2nfvj3vv/8+AwYM4Pvvv2fdunXm0Vn5+fnMnTuXfv364eXlRUpKCtOnT6devXrmEWPx8fEcPnyYkJAQtFot8fHxTJ48mVdeecW8suKmTZuwsbGhadOm2NracvToUWbNmsXAgQPNz+mNN95g5cqVTJw4kfHjx3P+/Hnef//9u458u1N2djZpaWlcuXIF+Pn74eXldd9nJoQQQgghqpckpcQTa0N6Fum3ipwDNHC8e52lX9q3eglpbt0o0miwulGfL66dBFLMxz1f7If/K6897HAfSGZmNNezdpGbexIAb68X8fAoX9x848FUzlzJ5UaBqQ7WK20D8HWVUVKi8tavX8/EiRPp06cPer2eTp068eWXX5oTDWVlZYwdO5bLly/j7OxMWFgYS5cuBUzTr+bOncvMmTN59dVXGTZsGBs2bGDJkiVERETQp08fnJ2dmT59OpcuXcLOruLf0WbNmrF3717eeustOnbsiKIo1K1bl4EDBwLg5+dHnTp1mDt3LqmpqahUKvP25MmTzdeZPHkyQUFBLF68mGXLllFQYEo4b9myxaK+0m1323fp0iX8/Pws9llZWXHu3Dk2btxIVlYW7u7utGnThri4OJo0aQJAbGwsycnJJCcnlztfUZQK+9+iRQvz18eOHWPz5s0EBASQmpp6z3PatGnD559/zqxZs5g3bx6BgYH87W9/Y8iQIeaYT548ycaNG7l58yY+Pj706NGDv/zlL+ZaUba2tvznP/9hzpw5lJSUEBgYyOTJky3qTFlbW7Nw4UKSkpJQFIWAgADGjRtn8dz9/f3ZuXMnkydPplmzZvj6+jJx4kRzwvBeoqOjefXVV83bt78fkZGRzJkzp8JzhRBCCCFE9VIp93uX+wTLzc3FxcUFnU5X6bod4vfjqf0/kmUoZU3jANq4OOJrV4mRTWe+IGrjHvLtXSgts6FWZkP0uesBFWorL3BTmLzyH4889vvZs7c5ZWX55u1nn/kSJyfLQtGXsgvpuOg787adjZqEd3tgZ2OFePiKi4u5ePEigYGB902uCEsFBQX4+vqyePFiRo6s+jpt2dnZdO3aFWdnZ7766iscfsej20TlVfQ7K+8PLMnzEEIIIcQvVfb9wQMU0RHij6XwVi2pFs4OlUtIARxcid5KgzN5PF+aCkoxAHaGMrqePMYz/UMeUbSVV1ZWbE5I1as3k+bN/lEuIQVw7daUPVcHG6aFNmD9iGckISUeC8ePH2fLli2kpKTwww8/mEft3J4SWNXc3NzYtWsXXbt2JT4+vlpiEEIIIYQQ4o9Ipu+JJ5JRUSh6gFX3FEUh4a0JWN8cgN49E98sOHMzh9KyLwGwVgyoOzSlXYeBjzTu+ykuziC/wFRPRaWyorb/qLvW4Um+lsfB5CwA/Gs4MDbkwQsnC/EoRUVFkZiYiEajoVWrVsTFxVGzZs1qi8fd3Z1333232u4vhBBCCCHEH5EkpcQTRVEUFqde5WxBEbfnrVYmKZV57Bh7Cq0weGSRoa9Jjfx8Sg3XzMc9mz/FU3OWPqKoK6egIJlDh8PgVs+srZ3vmpBKzSqg25J95m1XB5tybYSoTi1atODYsapflVAIIYQQQghRtSQpJZ4oiYXFRKVmmrddra2wV1eclFIUhfNnTqFzdQVKKEFBUYoAqFGowiM/i57/+uwRRl05+fnnAAW12haNxhMfn/53bXchyzS1z97GigZeWl7rEFiFUQohhBBCCCGEECaSlBJPFJ2hDAB3G2sm16nFsy6OqCtYZr70xg0u/ukFrjZoj9HXET+DEYfcYyilphXq3HNvoPKywVpTyZpUj5ChNBcAd7dONGu25p7tcotKAWgVUIN/j3q2SmITQgghhBBCCCF+SZJS4olSeKuOlJetNaP8PO7bPveHH7igrUmOtz9Zed7UzE7FqugqxtsNerely/g5jyzeyigtzSPlwhJu3jwKmKbt3U3K9Xx2ns7keNpNALR28usvhBBCCCGEEKL6yKdS8US5veKeg7pyq8wdTTlP/DMtgGy8i30wGm+aDqi1OJQa6TrqLRzsq3f562vXdnL58j/N23b2fndtN33bSY79lGPerulk+8hjE0IIIYQQQggh7kWSUuKJcaGwhKSCYuD+xc1Lc3LQbY8mJyUDHK1wNtrjUFhAkVICQP30NGrV9cLJzf2Rx30/BkM2AM7OzfH1GYSnZ6+7trucUwhAaJNaeDnbMfK5oCqLUQghhBBCCCGE+CVJSoknwieZ2Yw/m2bevl9S6sa6D8k/UkBZQz9OlSqUFjkSWnYVpUwHgNWzzWg6bsYjjbmySkvzAHB2boaPz4Byx+NTbrDr7FVu5OsBeLdvE3xd7as0RiGEEEIIIYQQ4pckKSWeCKfzTavlOVqp8dBYM8CrRoXtf8q8RI5PMFdVhXDNiU43t1FEmfl4vX5DsA+o8yhDvq/c3JNkZx8k5+ZhAKytnO7abvLWBDJzTSPENNZq3B2rvyi7EEIIIYQQQghR8XARIf4gim4VOI/w9+BQ28b09HC9Z1u9Xs9OrSvxbtlkkkcfXR5QBqhQWXlipy0loFmLKom7IgknRpFy4QN0umMA2GjKTyUsMypczTMlpEa0r8PaV1phZ1O5elpC3DZixAhUKhUqlQqNRkO9evWYN28epaWlv+m6e/bsQaVScfPmzYcTaCVcvHiRwYMH4+Pjg52dHX5+foSHh3Pu3DmLdjExMXTu3BmtVouDgwNt2rRhw4YNFm1SU1NRqVQkJCRU+v5z5syhYcOGODo6UqNGDbp168bhw4ctrjly5EgCAwOxt7enbt26REZGotfrK7xuRkYGgwcPpn79+qjVaiZNmlSpeMrKynjnnXcs7veXv/wFRVHMbT777DN69OiBu7v7PfubkpLCn//8Zzw8PHB2dmbAgAFcvXr1gft18uRJOnbsiJ2dHf7+/ixatOi+fdi3bx99+/bFx8cHlUrF9u3bK9V3IYQQQghR/SQpJZ4IRbcKnNur7/8jX1RURJnaCpUC3sWOGKztAFBhg9FBTddxL2Pr4PhI472fsrIiDIYbAHh5/Zna/iPx9vqT+biiKHy8/yKR0T9y+7PlW70bEdLQsxqiFX8EYWFhZGRkcP78eaZOncqcOXP44IMPqjsss/slbQAMBgPdu3dHp9Px2WefkZiYyNatW2natKlFYmzFihWEh4fToUMHDh8+zMmTJxk0aBARERG8+eabvynO+vXrs3LlSk6dOsX+/fupU6cOPXr04Pr16wCcO3cOo9HI2rVrOX36NEuXLmXNmjXMnj27wuuWlJTg4eHB22+/TfPmzSsdz8KFC1m9ejUrV67k7NmzLFy4kEWLFrFixQpzm4KCAp577jkWLlx412sUFBTQo0cPVCoVu3fv5sCBA+j1evr27Yvx1t/eyvQrNzeXHj16EBAQwLFjx/jggw+YM2cO69atq7APBQUFNG/enFWrVlW630IIIYQQ4jGhiHvS6XQKoOh0uuoORfxGo05dVGrtPq58dOlahe0Kjh1Tzq3cqkRGRirvvfsXZe+4/yp/H7pKiRrQW1k2tI+iL9VXUcT3lp19WEm79E9l17dByre76ytGo7Fcm6OpN5SAGTHmV5v5sdUQqbhTUVGRcubMGaWoqKi6Q3lgw4cPV8LDwy32de/eXWnbtq2SnZ2tDB06VHF1dVXs7e2VsLAwJSkpydwuNTVV6dOnj+Lq6qo4ODgojRs3Vnbs2KFcvHhRASxew4cPVxRFUXJzc5XBgwcrDg4OipeXl7JkyRKlc+fOysSJE83XDQgIUObNm6cMHTpU0Wq15nPj4uKU5557TrGzs1P8/PyU8ePHK/n5+YqiKMrx48cVQElNTb1nX9PS0hQbGxtlypQp5Y4tX75cAZRDhw4piqKY+3D8+PEHf6i33P53ZteuXfdss2jRIiUwMLDS1/zls6pI7969lddee81i34svvqgMGTKkXNt79Xfnzp2KWq22+Lfy5s2bikqlUmJj7/2355f9+vvf/67UqFFDKSkpMe+bMWOG0qBBg0r1RVEUBVA+//zzSrevSEW/s/L+wJI8DyGEEEL8UmXfH8hIKfGH9lNRCRvSszhfaJrCZl9BgXPD1av89MowCtJsURQ4WOTFjpvfUVz6AwB2tjbYWNlUSdz3kpt7kh+Ov0xS0hwAbGzcUKlU5dpl6Ez99XW15/+er8uqIS2rMkzxBLC3t0ev1zNixAiOHj1KdHQ08fHxKIpCr169MBgMAIwdO5aSkhL27dvHqVOnWLhwIU5OTvj7+/Ppp58CkJiYSEZGBsuWLQNgypQpHDhwgOjoaGJjY4mLi+OHH34oF0NUVBTNmzfn+PHjvPPOO6SkpBAWFka/fv04efIkW7duZf/+/YwbNw4ADw8P1Go127Zto6ysrNz1ALZt24bBYLjriKgxY8bg5OTEli1bHsoz1Ov1rFu3DhcXlwpHN+l0Otzc3B7KPX+pffv2fPvttyQlJQFw4sQJ9u/fT8+ePSt9jZKSElQqFba2tuZ9dnZ2qNVq9u/ff8/zftmv+Ph4OnXqhEbzc9270NBQEhMTycnJeZBuCSGEEEKI3wkpdC7+0CJO/8TxvELztov1vespGTIyuO7hhc5aR3ExhKadRa+kYbx13Elb/QXCCwtTAbC2dsVZ2wQvrz9bHL9ZqOeLhCscumCa2veUrzPTwxpWdZiikhRFoVRvvH/Dh8xao75rMrMyFEXh22+/ZefOnfTs2ZPt27dz4MAB2rdvD8CmTZvw9/dn+/bt9O/fn7S0NPr160fTpk0BCAoKMl/rdkLC09MTV1dXAPLy8ti4cSObN2+ma9euAKxfvx4fH59ysXTp0oWpU6eat0eNGsWQIUPM9ZSCg4NZvnw5nTt3ZvXq1fj6+rJ8+XKmT5/O3Llzad26NSEhIQwZMsQcV1JSEi4uLnh7e5e7n0ajISgoyJzA+bViYmIYNGgQhYWFeHt7ExsbS82aNe/aNjk5mRUrVhAVFfWb7nkvM2fOJDc3l4YNG2JlZUVZWRnvvfceQ4YMqfQ12rZti6OjIzNmzOD9999HURRmzpxJWVkZGRkZdz3nbv3KzMwkMDDQol2tWrXMx2rUqHiBCiGEEEII8fsjSSnxh3alxFRnpnMNLfUcbHnezfmebc+npbE75DngAj6Xcyiz9YBiUFn7YW1dl/bP51VR1PdWWpoLQI0abWnWtHz9lNV7U1i794J521NrV2WxiQdXqjeybuLeKr/v68s6Y2P7YAXvY2JicHJywmAwYDQaGTx4MC+++CIxMTE8++yz5nbu7u40aNCAs2fPAjBhwgTeeOMNvvnmG7p160a/fv1o1qzZPe9z4cIFDAYDzzzzjHmfi4sLDRo0KNe2devWFtsnTpzg5MmTbNq0ybxPURSMRiMXL16kUaNGjB07lmHDhrFnzx4OHTrEJ598wvvvv090dDTdu3ev1LO4cyTPvWzatIkxY8aYt7/66is6duwIQEhICAkJCWRlZfHhhx8yYMAADh8+jKenZc239PR0wsLC6N+/P6NHjzbvd3L6eaXNV155hTVr1tw3nri4OIvRT2vXrmXIkCH897//ZdOmTWzevJkmTZqQkJDApEmT8PHxYfjw4fe9LphGoH3yySe88cYbLF++HLVazcsvv0zLli1R36WO37369Wv7IIQQQgghfr8kKSX+0Apurbr31/p+BDrYVtj2xq3pIXaKDaiKwWiafpRve5Ujzc8xJuThTNn5NfLzk0hL+5C8/DMA2FjfPbmWnlMEQIvarjzl48LojkF3bSfEgwoJCWH16tVoNBp8fHywtrYmOjr6vueNGjWK0NBQduzYwTfffMOCBQtYvHgx48eP/80xOTpaLjiQn5/PmDFjmDBhQrm2tWvXNn+t1Wrp27cvffv2Zf78+YSGhjJ//ny6d+9OcHAwOp2OK1eulBudpdfrSUlJITQ09L6xvfDCCxbJOl9fX4u469WrR7169Wjbti3BwcF89NFHzJo1y9zmypUrhISE0L59+3KFvu9c/c7Z+d6J9ju1bt3a4rzbI5CmTZvGzJkzGTRoEABNmzblp59+YsGCBZVOSgH06NGDlJQUsrKysLa2xtXVFS8vL4uRcffrl5eXl8WKfYB528vLizp16ty1D0IIIYQQ4vdLklLiD0tRFHNSyrGCWlIApTfzKLhsGlUVUOZBQell8lQFANRs5MKcQW9jqy0/naeqpKV9SEbmZ+ZtOzvLD8ulZUbyS0q5kW/qw9C2AbzY0q9KYxQPzlqj5vVlnavlvg/qdiLlTo0aNaK0tJTDhw+bp+/duHGDxMREGjdubG7n7+9PREQEERERzJo1iw8//JDx48ebRxzdWd8pKCgIGxsbjhw5Yk4k6XQ6kpKS6NSpU4UxtmzZkjNnzpSLsyIqlYqGDRty8OBBAF566SVmzJjB4sWLWbx4sUXbNWvWUFhYyLBhw+57Xa1Wi1arrVQMRqORkpIS83Z6ejohISG0atWK9evXlxtt9CD9u83e3v6u5xUWFpa7vpWVlXnVvAd1exri7t27uXbtGi+88IL52P361a5dO9566y0MBgM2Nqb6fbGxsTRo0MA8de/X9F0IIYQQQjy+JCkl/pC+u5HLzhu5KLe2Ha3v/SE877vvyHxvPaVtQyi2subE1fN4GC6Zjz/r2YRWtVo94ogrptdnAeDl9SdquLbD0/PnKSwFJaX0WLqP9JtF5n2uDtVbkF1UjkqleuBpdI+T4OBgwsPDGT16NGvXrkWr1TJz5kx8fX0JDw8HYNKkSfTs2ZP69euTk5PDd999R6NGjQAICAhApVIRExNDr169sLe3R6vVMnz4cKZNm4abmxuenp5ERkaiVt+/DtaMGTNo27Yt48aNY9SoUTg6OnLmzBliY2NZuXIlCQkJREZGMnToUBo3boxGo2Hv3r18/PHHzJgxAzCNqFq0aBFvvvkmdnZ2DB06FBsbG7744gtmz57N/Pnzeeqppyzum5iYWC6WJk2amBMrtxUUFPDee+/xwgsv4O3tTVZWFqtWrSI9PZ3+/fsDpsTN888/T0BAAFFRUVy/ft18vpeXV4X9vz2KKD8/n+vXr5OQkIBGo7FIEP5S3759ee+996hduzZNmjTh+PHjLFmyhNdee83cJjs7m7S0NK5cuWLRXy8vL3NM69evp1GjRnh4eBAfH8/EiROZPHmyedplZfo1ePBg5s6dy8iRI5kxYwY//vgjy5YtY+nSpRX2Oz8/n+TkZPP2xYsXSUhIwM3NzWKEnBBCCCGEePxIUkr8IY09+xPZBtPoC0crNfZ3qWtyW0F8PCW27uQWOeBQ6I9z3jlMZ6pQqTTUblR9hcJLS/PIzjlIYVEaAJ6evfCo2dWiTfK1fIuElLeLHc39XKsyTPEEW79+PRMnTqRPnz7o9Xo6derEl19+aU7IlJWVMXbsWC5fvoyzszNhYWHmJIOvry9z585l5syZvPrqqwwbNowNGzawZMkSIiIi6NOnD87OzkyfPp1Lly5hZ1dxjbRmzZqxd+9e3nrrLTp27IiiKNStW5eBAwcC4OfnR506dZg7dy6pqamoVCrz9uTJk83XmTx5MkFBQSxevJhly5ZRUGAaNbllyxbzNLc73W3fpUuX8POzHK1oZWXFuXPn2LhxI1lZWbi7u9OmTRvi4uJo0qQJYBoZlJycTHJycrnzFUWhIi1atDB/fezYMTZv3kxAQACpqan3PGfFihW88847/N///R/Xrl3Dx8eHMWPG8O6775rbREdH8+qrr5brb2RkJHPmzAFMiapZs2aRnZ1NnTp1eOuttyyeaWX65eLiwjfffMPYsWNp1aoVNWvW5N133+X111+vsN9Hjx4lJCTEvD1lyhQAhg8fzoYNGyo8VwghhBBCVC+Vcr93uU+w3NxcXFxc0Ol0la7bIaqfUVHw2XMCgDF+HnSv6cxzNX6eRqMoCoVZmeSnpnAq/gvU55PIVD9PTolpSfYS3ccoxptotANxVF/gtYUjoEZAdXSF06enkHn1C/N2q1b/xdXl51FbRqPCd4nXGLnxKI28nYkZ/xxqFb96ZTXx6BQXF3Px4kUCAwPvm1wRlgoKCvD19WXx4sWMHDmyyu+fnZ1N165dcXZ25quvvsLBwaHKYxBVr6LfWXl/YEmehxBCCCF+qbLvD2SklPjDKbqjFsr0QC8crS2nR50aNgCbIz+S5+RHcqsplKl+ngrnUJiEoayAMhVct/kCh96B1ZaQAigoNK2k5+hYHxfnp3HWNjcfy8ovoffyOK7mmmrRuDtqsFJLMkr8/h0/fpxz587xzDPPoNPpmDdvHoB5SmBVc3NzY9euXaxatYr4+Hi6du16/5OEEEIIIYQQ9/Xg1W6FeMwVlf08+M/+FwXOlbIylIRzFPg35XKrlylT/bwin4ZrOF/ZDEZTksfYK4DeIVOrJuh7KC3VAdCwwV9o1GgBavXPeeQTl26aE1IAnerXrPL4hHhUoqKiaN68Od26daOgoIC4uDhzEe3q4O7uzrvvvisJKVGtsrOzGTJkCM7Ozri6ujJy5Ejy8/MrPKe4uJixY8fi7u6Ok5MT/fr1s1jl8MSJE7z88sv4+/tjb29Po0aNWLZs2aPuihBCCCEEICOlxB9Q4a2VvOzUKtR3TGPTX7pE7k8/EdP3BQwaG1R5amoWgJPqG67r4ikudSLX/edhhbM7vYODo2tVh4/BkEPCidGUlGRSUmL64GBjUz4OXZEBgLZBbnw0vA2OtvLrLP4YWrRowbFjx6o7DCEeO0OGDCEjI4PY2FgMBgOvvvoqr7/+Ops3b77nOZMnT2bHjh188sknuLi4MG7cOF588UUOHDgAmOqPeXp68u9//xt/f38OHjzI66+/jpWVFePGjauqrgkhhBDiCSWfYsUfRn5pGRFnfiK1yDR66M7i5rroaK7MfIu8Hm9icLVBpS/BJfMUBqvzZJX8iAot3Mpf2ZcY8OrUCQcX12roBWTnHCI397h529raFTs7H/P25ZxC9iRe59CFGwC4O9pKQkoIIf7gzp49y9dff82RI0do3bo1YCpU36tXL6KiovDx8Sl3jk6n46OPPmLz5s106dIF+HmlxEOHDtG2bVuLlRYBgoKCiI+P57PPPpOklBBCCCEeOfkkK/4wDt7MZ9eNXPN2kMPPU/OKT59BZe+GwUFLWYkjHpcuYyjNhNKfz7c16LF1tKFV/z/T8qWIqgzdQqnhJgCurs8SXG8W9va1sbL6ubDypP8kcPSnHPO2m6OmqkMUQghRxeLj43F1dTUnpAC6deuGWq3m8OHD/PnPfy53zrFjxzAYDHTr1s28r2HDhtSuXZv4+Hjatm1713vpdDrc3NzuGUtJSQklJT9PH8/Nzb1nWyGEEEKIikhSSvxhFJaZCpw3cbJjTl1fnnb+OZHzU76O3d07oLc5hfa6G6VlpqlvauvaGGyuYFdcTImNhrYDXqNl3xerJX6j0cC1a1+RdWMPAPZ2fjg7Ny3X7qfsQgA6BtfEw8mWER3qVGGUQgghqkNmZiaenp4W+6ytrXFzcyMzM/Oe52g0GlxdXS3216pV657nHDx4kK1bt7Jjx457xrJgwQLmzp37YB0QQgghhLgLKXQu/jBur7pXS2NDRzct2jtW3Us1lFJsp8GoUvDMyUZR9AA8nXKGNK9U2jzbkK4j/49m3Xve9dpV4dr1rzl9ZjJZWbsA0GjcLY5fzilk+/F0cgpMsS96qRlLBj5NXQ+nKo9VCCHEwzFz5kxUKlWFr3PnzlVJLD/++CPh4eFERkbSo0ePe7abNWsWOp3O/Lp06VKVxCeEEEKIPx4ZKSX+MIqNplX37lxxL3vjRrK3fo4+sD44QEhZCZcVB8CU2Elrnskkp+vU69oemvWqjrDNSoqvAGBn549bjXb4+g6xOD7so++5kFUAgEoFNRxk2p4QQvzeTZ06lREjRlTYJigoCC8vL65du2axv7S0lOzsbLy8vO56npeXF3q9nps3b1qMlrp69Wq5c86cOUPXrl15/fXXefvttyuMx9bWFltb2wrbCCGEEEJUhiSlxB9G8a3pe3cWOM/+579Qe3ZDcXNBXXaJS2nfc1VxBExt+3XuhFO9NtDoheoI2UJpqWlZ75o1Q2hQP9LimNGokHrDlJB6NtCNro08sbOxKncNIYQQvy8eHh54eHjct127du24efMmx44do1WrVgDs3r0bo9HIs88+e9dzWrVqhY2NDd9++y39+vUDIDExkbS0NNq1a2dud/r0abp06cLw4cN57733HkKvhBBCCCEqR5JS4ncvr7SMnVk6vteZkjZ2dySlrlhbc8nfjgxFh+31plwtPsnthJTKygqH9q9BnbsXeq0qBQXJFBVdIr8gCQBrK8vpeIqicLPIwK2BYPxz5DPYWktCSgghniSNGjUiLCyM0aNHs2bNGgwGA+PGjWPQoEHmlffS09Pp2rUr//znP3nmmWdwcXFh5MiRTJkyBTc3N5ydnRk/fjzt2rUzFzn/8ccf6dKlC6GhoUyZMsVca8rKyqpSyTIhhBBCiN9CakqJ373FqZmMO5vGV1k6AJysTT/WiqJwtHEjzjvcJEdRcCgzZXVUKgdcbF/Ez+8yajvHaosboLj4CocO9+TEyVHmWlLWNs7m49fzSmi74Fta/iUWAAeNlSSkRJUbMWKEubaNRqOhXr16zJs3j9LS0vufXIE9e/agUqm4efPmwwm0Ei5evMjgwYPx8fHBzs4OPz8/wsPDy9XsiYmJoXPnzmi1WhwcHGjTpg0bNmywaJOamopKpSIhIaHS958zZw4NGzbE0dGRGjVq0K1bNw4fPmxxzZEjRxIYGIi9vT1169YlMjISvV5f4XUzMjIYPHgw9evXR61WM2nSpErFk5eXx6RJkwgICMDe3p727dtz5MgRizb5+fmMGzcOPz8/7O3tady4MWvWrLFoM2bMGOrWrYu9vT0eHh53faZpaWn07t0bBwcHPD09mTZt2j1/hg4cOIC1tTVPP/30ffvw2Wef0aNHD9zd3R/4+/F7s2nTJho2bEjXrl3p1asXzz33HOvWrTMfNxgMJCYmUlhYaN63dOlS+vTpQ79+/ejUqRNeXl589tln5uPbtm3j+vXr/Pvf/8bb29v8atOmTZX2TQghhBBPJklKid+9KyWmlfQaOdrxYq0aDPOpiS46mvQJ0yixN406qn+tzFzc3LHwJu2OfEAtxytg43DP61aFwsKLgBG12g6ttilubh3x9Pi52PrxtByu5v687HanYPlfa1E9wsLCyMjI4Pz580ydOpU5c+bwwQcfVHdYZvdL2oDpA3v37t3R6XR89tlnJCYmsnXrVpo2bWqRGFuxYgXh4eF06NCBw4cPc/LkSQYNGkRERARvvvnmb4qzfv36rFy5klOnTrF//37q1KlDjx49uH79OgDnzp3DaDSydu1aTp8+zdKlS1mzZg2zZ8+u8LolJSV4eHjw9ttv07x580rHM2rUKGJjY/nXv/7FqVOn6NGjB926dSM9Pd3cZsqUKXz99df8+9//5uzZs0yaNIlx48YRHR1tbtOqVSvWr1/P2bNn2blzJ4qi0KNHD8rKygAoKyujd+/e6PV6Dh48yMaNG9mwYQPvvvtuuZhu3rzJsGHD6Nq1a6X6UFBQwHPPPcfChQsr3e/fKzc3NzZv3kxeXh46nY6PP/4YJ6efR9fWqVMHRVF4/vnnzfvs7OxYtWoV2dnZFBQU8Nlnn1nUk5ozZw6KopR7paamVmHPhBBCCPHEUsQ96XQ6BVB0Ol11hyIqMPREilJr93Hl3+lZ5n3nWrZSkl9dp8x7d64yedq7StTAF5WoAX9Sogb0VlYN6qLsmuCvGCKdFUWXXo2RK0pmZoyy69sg5eixQXc9vvVImhIwI0Z55R+HlJsFesVoNFZxhOJhKSoqUs6cOaMUFRVVdygPbPjw4Up4eLjFvu7duytt27ZVsrOzlaFDhyqurq6Kvb29EhYWpiQlJZnbpaamKn369FFcXV0VBwcHpXHjxsqOHTuUixcvKoDFa/jw4YqiKEpubq4yePBgxcHBQfHy8lKWLFmidO7cWZk4caL5ugEBAcq8efOUoUOHKlqt1nxuXFyc8txzzyl2dnaKn5+fMn78eCU/P19RFEU5fvy4Aiipqan37GtaWppiY2OjTJkypdyx5cuXK4By6NAhRVEUcx+OHz/+4A/1ltv/zuzateuebRYtWqQEBgZW+pq/fFb3UlhYqFhZWSkxMTEW+1u2bKm89dZb5u0mTZoo8+bNq7DNL504cUIBlOTkZEVRFOXLL79U1Gq1kpmZaW6zevVqxdnZWSkpKbE4d+DAgcrbb7+tREZGKs2bN79vP257GN+PO1X0OyvvDyzJ8xBCCCHEL1X2/YGMlBK/e0VGU40oO7UKgLLiYtK1WpI9HCg02lLnRhEoJcCtEVUu2XStocPaxgHsXKsl5uzsg+w/0IEzZ6cDYGPtYnH8xKWbDPnHIVbsPg9ATSdbXBxsUKlUVR6rEHdjb2+PXq9nxIgRHD16lOjoaOLj41EUhV69emEwmH7fxo4dS0lJCfv27ePUqVMsXLgQJycn/P39+fTTTwFT4eWMjAyWLVsGmEbmHDhwgOjoaGJjY4mLi+OHH34oF0NUVBTNmzfn+PHjvPPOO6SkpBAWFka/fv04efIkW7duZf/+/YwbNw4wFZRWq9Vs27bNPILnl7Zt24bBYLjriKgxY8bg5OTEli1bHsoz1Ov1rFu3DhcXlwpHN+l0Otzc3B7KPe9UWlpKWVkZdnZ2Fvvt7e3Zv3+/ebt9+/ZER0eTnp6Ooih89913JCUl0aNHj7tet6CggPXr1xMYGIi/vz8A8fHxNG3alFq1apnbhYaGkpuby+nTp8371q9fz4ULF4iMjCx3XSGEEEII8ccjhc7F717xrVpR9lamHOvpkyfZ93xn4Dx2ObUwGooAsNI0QWPlyvNBH0HXZeD9NGiqZ/retes7KSnJNG+7uLS0OL7p8E8cSL5h3q7rUb21r8SjoSgKpSUl92/4kFnb2v7qBKeiKHz77bfs3LmTnj17sn37dg4cOED79u0BU80bf39/tm/fTv/+/UlLS6Nfv340bdoUMC1tf9vtRIunp6d5ufq8vDw2btzI5s2bzdO31q9fby7kfKcuXbowdepU8/aoUaMYMmSIuZ5ScHAwy5cvp3PnzqxevRpfX1+WL1/O9OnTmTt3Lq1btyYkJIQhQ4aY40pKSsLFxQVvb+9y99NoNAQFBZGUlPSrnt1tMTExDBo0iMLCQry9vYmNjaVmzZp3bZucnMyKFSuIior6Tfe8G61WS7t27fjLX/5Co0aNqFWrFlu2bCE+Pp569eqZ261YsYLXX38dPz8/rK2tUavVfPjhh3Tq1Mnien//+9+ZPn06BQUFNGjQgNjYWDQaDQCZmZkWCSnAvH27sPb58+eZOXMmcXFxWFvL2xMhhBBCiCeBvOsTv3vFt0ZK2apU3Ny2jcs/XgLAQdHglFeA/lYtqVrXk8j1u4CqbhdoNaK6wgXAYMgBoE7A/+Hr+zJ2dpYfuHMKTaNMXmlbm+6NvWgX5F7lMYpHr7SkhOXDX6ry+07YuA2bX4yOuZ+YmBicnJwwGAwYjUYGDx7Miy++SExMjMVy9O7u7jRo0ICzZ8+a7jVhAm+88QbffPMN3bp1o1+/fjRr1uye97lw4QIGg4FnnnnGvM/FxYUGDRqUa9u6dWuL7RMnTnDy5Ek2bdpk3qcoCkajkYsXL9KoUSPGjh3LsGHD2LNnD4cOHeKTTz7h/fffJzo6mu7du1fqWdxOtFRk06ZNjBkzxrz91Vdf0bFjRwBCQkJISEggKyuLDz/8kAEDBnD48GE8PT0trpGenk5YWBj9+/dn9OjR5v131hB65ZVXyhUdv5u4uDh69vy5Xt3atWsZMmQI//rXv3jttdfw9fXFysqKli1b8vLLL3Ps2DFz2xUrVnDo0CGio6MJCAhg3759jB07Fh8fH7p162ZuN2TIELp3705GRgZRUVEMGDCAAwcOlBuJdTdlZWUMHjyYuXPnUr9+/bu2qeiZCiGEEEKI3ydJSonfpYKyMnofO09yYTGlpoFSWCWfJ/MvUZT0HQPWOjyyC7lZmIBRMSV4jE2M9NOmgV23Cq78aBUXX+Hs2Znock8A4OAQZJGQKjaUkVOoJyvfNHrm2UB3OteX4uai+oWEhLB69Wo0Gg0+Pj5YW1tbFLq+l1GjRhEaGsqOHTv45ptvWLBgAYsXL2b8+PG/OSZHR8sRhPn5+YwZM4YJEyaUa1u7dm3z11qtlr59+9K3b1/mz59PaGgo8+fPp3v37gQHB6PT6bhy5Uq50Vl6vZ6UlBRCQ0PvG9sLL7xgkazz9fW1iLtevXrUq1ePtm3bEhwczEcffcSsWbPMba5cuUJISAjt27e3WF0NsFhdztnZmcpo3bq1xXm3RynVrVuXvXv3UlBQQG5uLt7e3gwcONA8cqyoqIjZs2fz+eef07t3bwCaNWtGQkICUVFRFkkpFxcXXFxcCA4Opm3bttSoUYPPP/+cl19+GS8vL77//nuLmK5evQqAl5cXeXl5HD16lOPHj5unWxqNRhRFwdramm+++abCZyqEEEIIIX6fJCklfpfO5RdzrqDYvO1qbUXtrCuke/mhUxWSq6/JjRtHUCk/L4v9nG0SNTGCpvqmwl2//g3ZOQfM245Oweavc4sNhHywhxsFP68i5mxvU6XxiaplbWvLhI3bquW+D+p2IuVOjRo1orS0lMOHD5un7924cYPExEQaN25sbufv709ERAQRERHMmjWLDz/8kPHjx5tHHN1Z3ykoKAgbGxuOHDliTiTpdDqSkpLKTRf7pZYtW3LmzJlycVZEpVLRsGFDDh48CMBLL73EjBkzWLx4MYsXL7Zou2bNGgoLCxk2bNh9r6vVatFqtZWKwWg0UnLHNM709HRCQkLMK9qp1ZblHx+kf7fZ29tXeJ6joyOOjo7k5OSwc+dOFi1aBJhWLDQYDOVisLKywnhrlOrdKLdWcLvdr3bt2vHee+9x7do184iw2NhYnJ2dady4MTY2Npw6dcriGn//+9/ZvXs327ZtIzAwEEdHx0o/UyGEEEII8fsgSSnxu1RYZvowVM/Blm1P18PF2oro5bs42+4p4Dq2OQGobo2QsnbogW3ZfgI0V0wnezSqpqjBYLgJQE33LtSt+yZOTj9PSTp/Nd+ckNJYqfFzs+dpf9dqiFJUFZVK9cDT6B4nwcHBhIeHM3r0aNauXYtWq2XmzJn4+voSHh4OwKRJk+jZsyf169cnJyeH7777jkaNTL+DAQEBqFQqYmJi6NWrF/b29mi1WoYPH860adNwc3PD09OTyMhI1Gr1fetgzZgxg7Zt2zJu3DhGjRqFo6MjZ86cITY2lpUrV5KQkEBkZCRDhw6lcePGaDQa9u7dy8cff8yMGTMA04iqRYsW8eabb2JnZ8fQoUOxsbHhiy++YPbs2cyfP5+nnnrK4r6JiYnlYmnSpAk2NpZJ5YKCAt577z1eeOEFvL29ycrKYtWqVaSnp9O/f3/AlJB6/vnnCQgIICoqiuvXr5vP9/LyqrD/t0dC5efnc/36dRISEtBoNBYJwl/auXMniqLQoEEDkpOTmTZtGg0bNuTVV18FTCOxOnfuzLRp07C3tycgIIC9e/fyz3/+kyVLlgCmKZdbt26lR48eeHh4cPnyZf76179ib29Pr169AOjRoweNGzdm6NChLFq0iMzMTN5++23Gjh2L7a0k6S+fq6enJ3Z2duX2/1J2djZpaWlcuWL6G3/7++Hl5XXfZyaEEEIIIaqXJKXE71Lhrf+h11pZ4WVr+uB3vdA0KsrBqMEnK4U8xTSSquXpz7jYPB1C3oaGvcGz6pNSpaV5ZGcfJDfPNBLAyamBRULqys0ijqeZ6kw193fli7EdqjxGIX6N9evXM3HiRPr06YNer6dTp058+eWX5oRMWVkZY8eO5fLlyzg7OxMWFsbSpUsB0/SruXPnMnPmTF599VWGDRvGhg0bWLJkCREREfTp0wdnZ2emT5/OpUuX7lubqFmzZuzdu5e33nqLjh07oigKdevWZeDAgQD4+flRp04d5s6dS2pqKiqVyrw9efJk83UmT55MUFAQixcvZtmyZRQUFACwZcsWBg0aVO6+d9t36dIl/Pz8LPZZWVlx7tw5Nm7cSFZWFu7u7rRp04a4uDiaNGkCmEYPJScnk5ycXO58RVEq7H+LFi3MXx87dozNmzcTEBBAamrqPc/R6XTMmjWLy5cv4+bmRr9+/XjvvfcsEmr/+c9/mDVrFkOGDCE7O5uAgADee+89IiIiALCzsyMuLo6//e1v5OTkUKtWLTp16sTBgwfNo6KsrKyIiYnhjTfeoF27djg6OjJ8+HDmzZtXYZ8qIzo62pxEg5+/H5GRkcyZM+c3X18IIYQQQjw6KuV+73KfYLm5ubi4uKDT6Spdt0NUjc+v5vDGmZ/o4OrEZmcVWf+I5r82BnTqQgJSr5JddMnc9im7dJ72/4law/4D9e++hPmjdurHCVy7tsO8HVzvLWrXfg2AlOv5dFuyl9u/iV0aevLxiDbVEaZ4hIqLi7l48SKBgYGVKvwsflZQUICvry+LFy9m5MiRVX7/7OxsunbtirOzM1999RUODtWzaqeoWhX9zsr7A0vyPIQQQgjxS5V9f6C+5xEhHkM6QynrLl0j+tpNABys1Nz4+GNyk/MwqMrIVzRkl1y71doGa1s7erSyopZ1GWiq74NkUdFPADg5NcTDIxTPWr3MxxIz81AUsLVWE+ThyKA2/tUVphCPhePHj7NlyxZSUlL44YcfGDJkCIB5SmBVc3NzY9euXXTt2pX4+PhqiUEIIYQQQog/Ipm+J35XNqTfYMHFDPN2DWsrLuTmkFOrEUWKjvzsZmA8BICtywgctZ+hunnR1LgaC5yXluYD0KD+XFxdLZexv1loqn3VMdiDfwxvXe5cIZ5EUVFRJCYmotFoaNWqFXFxcdSsWbPa4nF3d+fdd9+ttvsLIYQQQgjxRyRJKfG7ck1vSuA0c7LnGVdHQlV6drl7AjcoKrOiVV4uuZjqTVmXleFgcw6MpWBlCy61K7jyo1FSch2jsYjS0lwArKydzMd2n7vKO9tPk1NoKm7u6iAr7QkBptpIx44dq+4whBBCCCGEEI+YJKXE70rxrQLnPT1cmBRQi7gVpjpNtmVqnFLPkKc/YWqoKGivvItHcBYM+ALc6oKje5XGmpHxKWfOTrfYZ231c1IqOuEK6TeLzNvNZaU9IYQQQgghhBBPEElKid+VYqOpGridopAS8QaFNTuCDXgUqtDp87hdtV/trMb22Ww6llhB0PPVEuvNm0cBUKk0qNU2uDi3wM7O5+fjRaZRX1O71+dPLXzxd5PiyUIIIYQQQgghnhySlBK/K7dHSllfu4ruVBK6Lq0oLLMm/YYNToDKqiY2jj15rdUWHDMLQOtdLXEajSXoDTcAqB/8Nn5+Q8zHdp+7yq6z1/gx3TSlr4GXVhJSQgghhBBCCCGeOJKUEr8rRWWmpJQuK4v/9egEpONwSaGGyhUDoFI5YqPYY5+xF1SArbbKY9TpEvjh+CsYjaapeTY2rhbHp/z3hLm4OYCPq31VhieEEEIIIYQQQjwWJCklHnuKojDqdCrHdIVkG0oByL9UAIAm9ya2BVcoVaWYtkvSKfRYgFqlgFdTeGZMlcd78+b3dySk3HFxaWk+VlJaZk5IjQupRz1PJ5r4OFd5jEIIIYQQQgghRHWTpJR47KWXGNhxXWfeVhuN1MwpJAtwyrqOQSlEUQoBcAzM4WXtOXD0hoj91RLv7ZX2fH2H0KB+JCqVFQC6QgPJ1/MBUKlgcvf6WKlV1RKjEEIIIYQQQghR3SQpJR57Bbem7LlYW/Fh3mWM/95Let1ALhqscSgpwgqwtn8ONXqG9LTFZl8C2LlUeZxGo4G8vNMUFqYCYGNTw5yQ+ulGAd2X7EN/qy9aW2tJSAkhhBBCCCGEeKKpqzsAIe6noKwMACcrNZlnz7Gnvh3nrTIITnXASmVK7Kht6qHWuGJzxbTiHRrHKo/z3LnZHD3Wj2vXvwLAxvrnaXk/pueiLzNipVahtbNmYBv/Ko9PiF9rxIgRqFQqVCoVGo2GevXqMW/ePEpLS3/Tdffs2YNKpeLmzZsPJ9BKuHjxIoMHD8bHxwc7Ozv8/PwIDw/n3LlzFu1iYmLo3LkzWq0WBwcH2rRpw4YNGyzapKamolKpSEhIqPT958yZQ8OGDXF0dKRGjRp069aNw4cPW1xz5MiRBAYGYm9vT926dYmMjESv11d43YyMDAYPHkz9+vVRq9VMmjSpUvHs27ePvn374uPjg0qlYvv27eXafPbZZ/To0QN3d/f79ldRFHr27HnPa23YsIFmzZphZ2eHp6cnY8eOtTi+c+dO2rZti1arxcPDg379+pGammrRZtOmTTRv3hwHBwe8vb157bXXuHHjxm/upxBCCCGEqHqSlBKPvcJbo4vsSxWu6kxf22akUaDsAaUEALVRT7bn95D8jekkB7cqjzM/P9EUm6YWzs5PU7NmN/MxXZGpjlRIA09OzQnlrd6Nqzw+IX6LsLAwMjIyOH/+PFOnTmXOnDl88MEH1R2W2f2SNgAGg4Hu3buj0+n47LPPSExMZOvWrTRt2tQiMbZixQrCw8Pp0KEDhw8f5uTJkwwaNIiIiAjefPPN3xRn/fr1WblyJadOnWL//v3UqVOHHj16cP36dQDOnTuH0Whk7dq1nD59mqVLl7JmzRpmz55d4XVLSkrw8PDg7bffpnnz5pWOp6CggObNm7Nq1aoK2zz33HMsXLjwvtf729/+hkp191GgS5Ys4a233mLmzJmcPn2aXbt2ERoaaj5+8eJFwsPD6dKlCwkJCezcuZOsrCxefPFFc5sDBw4wbNgwRo4cyenTp/nkk0/4/vvvGT169G/upxBCCCGEqAaKuCedTqcAik6nq+5QnkhGo1GZn5yu9D6aqNTafVx5/r97lKh3FiiRkZHK0kF/VqIG9FaiBvRW/jqkt/Lq3+sp8Qs8FOUfPRRl+1hFSf+hyuPdf6CzsuvbIOXmzZ/vfeynbGXQ2nil/YJvlYAZMcrU/yZUeVzi8VBUVKScOXNGKSoqqu5QHtjw4cOV8PBwi33du3dX2rZtq2RnZytDhw5VXF1dFXt7eyUsLExJSkoyt0tNTVX69OmjuLq6Kg4ODkrjxo2VHTt2KBcvXlQAi9fw4cMVRVGU3NxcZfDgwYqDg4Pi5eWlLFmyROncubMyceJE83UDAgKUefPmKUOHDlW0Wq353Li4OOW5555T7OzsFD8/P2X8+PFKfn6+oiiKcvz4cQVQUlNT79nXtLQ0xcbGRpkyZUq5Y8uXL1cA5dChQ4qiKOY+HD9+/MEf6i23/53ZtWvXPdssWrRICQwMrPQ1f/msKgtQPv/883sev19/jx8/rvj6+ioZGRnlrpWdna3Y29tX2M9PPvlEsba2VsrKysz7oqOjFZVKpej1ekVRFOWDDz5QgoKCLM5bvny54uvre/8O3nK/ft5W0e+svD+wJM9DCCGEEL9U2fcHMlJKPLZ+zC9iRdo1juaaipjbFxVSpDKgzcymrMw0KkKjfZnWHrl8XOpC2+ISeG4ShK8EnxZVFmdmZjRJSX9Br78GgPUd0/b+Hf8T8RdukH7TtBpfkEfVTysUjy9FUTDqy6r8pSjKb47d3t4evV7PiBEjOHr0KNHR0cTHx6MoCr169cJgMI0OHDt2LCUlJezbt49Tp06xcOFCnJyc8Pf359NPPwUgMTGRjIwMli1bBsCUKVM4cOAA0dHRxMbGEhcXxw8//FAuhqioKJo3b87x48d55513SElJISwsjH79+nHy5Em2bt3K/v37GTduHAAeHh6o1Wq2bdtG2a1pwb+0bds2DAbDXUdEjRkzBicnJ7Zs2fKbnx+YRnetW7cOFxeXCkc36XQ63NyqfvTngygsLGTw4MGsWrUKLy+vcsdjY2MxGo2kp6fTqFEj/Pz8GDBgAJcuXTK3adWqFWq1mvXr11NWVoZOp+Nf//oX3bp1w8bGBoB27dpx6dIlvvzySxRF4erVq2zbto1evXpVWV+FEEIIIcTDI4XOxWMrt9T0odHDxoomJ7+nds41Skv1tDx5iR9ulWRSqV1xsi2EMtMH4KquJWUw5HD6zBRMAz1ApbJCo6lpPp5TaEqejWhfh66NPGkb5F6l8YnHm2IwcuXdg1V+X5957VFprH7VuYqi8O2337Jz50569uzJ9u3bOXDgAO3btwdM9X78/f3Zvn07/fv3Jy0tjX79+tG0aVMAgoKCzNe6nWjx9PTE1dUVgLy8PDZu3MjmzZvp2rUrAOvXr8fHx6dcLF26dGHq1Knm7VGjRjFkyBBzPaXg4GCWL19O586dWb16Nb6+vixfvpzp06czd+5cWrduTUhICEOGDDHHlZSUhIuLC97e3uXup9FoCAoKIikp6Vc9u9tiYmIYNGgQhYWFeHt7ExsbS82aNe/aNjk5mRUrVhAVFfWb7vmoTZ48mfbt2xMeHn7X4xcuXMBoNPL++++zbNkyXFxcePvtt+nevTsnT55Eo9EQGBjIN998w4ABAxgzZgxlZWW0a9eOL7/80nydDh06sGnTJgYOHEhxcTGlpaX07dtXpuUJIYQQQvxOyUgp8dgqNpoSPW76Mhpeu4STXk/NfEfONOr3cyOVBhf7m1CYZdqu4qSUXn8DUFCr7agT8AZNn1qJjY0LSVfz2Hk6k7Rs0yivtkHudAz2wMZKfuXE71NMTAxOTk7Y2dnRs2dPBg4cyIgRI7C2tubZZ581t3N3d6dBgwacPXsWgAkTJjB//nw6dOhAZGQkJ0+erPA+Fy5cwGAw8Mwzz5j3ubi40KBBg3JtW7dubbF94sQJNmzYgJOTk/kVGhqK0Wjk4sWLgGnkVmZmJps2baJdu3Z88sknNGnShNjY2Eo/C41Gc982mzZtsogjLi7OfCwkJISEhAQOHjxIWFgYAwYM4Nq1a+WukZ6eTlhYGP3797eomXTndSMiIioVc1xcnMV5mzZtqtR5lREdHc3u3bv529/+ds82RqMRg8HA8uXLCQ0NpW3btmzZsoXz58/z3XffAZCZmcno0aMZPnw4R44cYe/evWg0Gl566SXz6L4zZ84wceJE3n33XY4dO8bXX39Namqq+Tk8yn4KIYQQQoiHT0ZKicdW0a0C51Y38gBwNKjQXz2EophW/FJQcb72fxljuA63axw7VO1IpNLSXAA0Gg/q1jVN98nUFdNzWRxlxp+nSNVwsKnSuMTvg8pGjc+89tVy3wcVEhLC6tWr0Wg0+Pj4YG1tTXR09H3PGzVqFKGhoezYsYNvvvmGBQsWsHjxYsaPH/9rQrfg6GiZhM7Pz2fMmDFMmDChXNvatWubv9ZqtfTt25e+ffsyf/58QkNDmT9/Pt27dyc4OBidTseVK1fKjc7S6/WkpKRYFOe+lxdeeMEiWefr62sRd7169ahXrx5t27YlODiYjz76iFmzZpnbXLlyhZCQENq3b8+6dessrn3n6nfOzs5URuvWrS3Oq1WrVqXOq4zdu3eTkpJiHu12W79+/ejYsSN79uwxjzxr3PjnRR48PDyoWbMmaWlpAKxatQoXFxcWLVpkbvPvf/8bf39/Dh8+TNu2bVmwYAEdOnRg2rRpADRr1gxHR0c6duzI/PnzH2k/hRBCCCHEwydJKfHY0hWZ6jAVq0wZp5yCQmoot5egt6GZaxpTDftQATw9BHxbQo06VRJbdk48Fy78DYPBtAy5zR11pFJvFFBmVLCzUdPEx4Xabg60DKhRJXGJ3xeVSvWrp9FVtduJlDs1atSI0tJSDh8+bJ6+d+PGDRITEy2SD/7+/kRERBAREcGsWbP48MMPGT9+vHnE0Z31nYKCgrCxseHIkSPmRJJOpyMpKYlOnTpVGGPLli05c+ZMuTgrolKpaNiwIQcPmqZRvvTSS8yYMYPFixezePFii7Zr1qyhsLCQYcOG3fe6Wq0WrVZbqRiMRiMlJSXm7fT0dEJCQmjVqhXr169HrbZMIj5I/26zt7f/VedVxsyZMxk1apTFvqZNm7J06VL69u0LmKbdgal+mJ+fHwDZ2dlkZWUREBAAmOpS/bKvVlam3w+j0WhuY21tfdc2iqI80n4KIYQQQoiHT5JS4rFTVGbkmxs6Yi5eBmwwKnrSy5zJK7SlDaCy8sHJtis9AqdBMaCygj/9vUpjvHz53+h0R83bDo6mejRlRoXsAlMSrYmPC5++UfWjYISoKsHBwYSHhzN69GjWrl2LVqtl5syZ+Pr6mmsLTZo0iZ49e1K/fn1ycnL47rvvaNSoEQABAQGoVCpiYmLo1asX9vb2aLVahg8fzrRp03Bzc8PT05PIyEjUajUqlarCeGbMmEHbtm0ZN24co0aNwtHRkTNnzhAbG8vKlStJSEggMjKSoUOH0rhxYzQaDXv37uXjjz9mxowZgGlE1aJFi3jzzTexs7Nj6NCh2NjY8MUXXzB79mzmz5/PU089ZXHfxMTEcrE0adLEXJz7toKCAt577z1eeOEFvL29ycrKYtWqVaSnp9O/f3/AlJB6/vnnCQgIICoqiuvXr5vPv1sB8TvdHiGUn5/P9evXSUhIQKPRWCQIfyk/P5/k5GTz9sWLF0lISMDNzc2cFMzOziYtLY0rV65Y9NfLy8vi9Uu1a9cmMDAQgPr16xMeHs7EiRNZt24dzs7OzJo1i4YNGxISEgJA7969Wbp0KfPmzePll18mLy+P2bNnExAQQIsWpsUr+vbty+jRo1m9ejWhoaFkZGQwadIknnnmmbvWHXuQfgohhBBCiKonSSnx2Pk4PYu/pFwBTB/onA0qGl4pQ1Nqhx5QqWxQK0Xw7Buw969gX/WjkEpLdQAE1H6dGjXa4eramr1J14n41zGKDKZRH672MmVP/PGtX7+eiRMn0qdPH/R6PZ06deLLL780J2TKysoYO3Ysly9fxtnZmbCwMJYuXQqYprTNnTuXmTNn8uqrrzJs2DA2bNjAkiVLiIiIoE+fPjg7OzN9+nQuXbqEnZ1dhbE0a9aMvXv38tZbb9GxY0cURaFu3boMHDgQAD8/P+rUqcPcuXNJTU1FpVKZtydPnmy+zuTJkwkKCmLx4sUsW7aMgoICALZs2cKgQYPK3fdu+y5dumQeEXSblZUV586dY+PGjWRlZeHu7k6bNm2Ii4ujSZMmgGmVuuTkZJKTk8udf79VE28nbgCOHTvG5s2bCQgIIDU19Z7nHD161JwUAtPKhwDDhw9nw4YNgKlm1Kuvvlquv5GRkcyZM6fCmO70z3/+k8mTJ9O7d2/UajWdO3fm66+/Nv+sdOnShc2bN7No0SIWLVqEg4MD7dq14+uvv8be3h6AESNGkJeXx8qVK5k6dSqurq506dKFhQsXVnjvyvRTCCGEEEJUPZXyMNYG/4PKzc3FxcUFnU5X6bod4reblXSZ9elZeJaU4JSbRf9zGajP7qFMZYdSlom1ujZlNYqY0jwFMk6AawBMqrh48sP2/ZE/kZd3iubN/kHNmqYPOnP/d5r1B1IBUKngnd6Nee25wCqNSzy+iouLuXjxIoGBgfdNrghLBQUF+Pr6snjxYkaOHFnl98/OzqZr1644Ozvz1Vdf4eDgUOUxiKpX0e+svD+wJM9DCCGEEL9U2fcHMlJKPHby80yFzVtcziDwcgIuGbnkGG+aj2f5JNDDMwUyik07nO89ZeNhMhpLOX9+PkVFP1FYmAKAlbWT+biu0ADApG7BjOoYhJOt/HoJ8WscP36cc+fO8cwzz6DT6Zg3bx6AeUpgVXNzc2PXrl2sWrWK+Ph4unbtWi1xCCGEEEII8Ucjn5rFY+f8hYtQ04d8JZdzpR5cKc2lAaC2DsTGyoXZ9quxLyqFmg2hxRBo2LtK4srNTeBy+r/u2KPG3s6X7cfT2XrkEolXTck0bxc7SUgJ8RtFRUWRmJiIRqOhVatWxMXFUbNmzWqLx93dnXfffbfa7i+EEEIIIcQfkXxyFo+dfNN6ejiUQmGOiubXkih2ALVNHWxtnLBv1gfObAe/VtCh/NLvj4pen2WKyyGIOgFv4OAQiJ2dD1Hf7OZyTpG5XZCH070uIYSohBYtWnDs2LHqDkMIIYQQQgjxiElSSjw2dly/ybbMHK44mwqXP633gcw9qGxdgZugsgHrElDfKiCuqbrkz09p/+Dq1RjAlJTy9n7RfOxGvmm1vXnhTWjo5UzrgKovvC6EEEIIIYQQQvzeSFJKPDbmJV/hp2I9aEwFZT1y88hxdKK41AbKTKvuGbVXIXmX6QSNY5XEVVJyneTkBeZte3vT8uH/ik/l69OZ5tX2/tzCF62drLgnhBBCCCGEEEJUhiSlxGMjO78ArG1oc/EsdtducvX0TtRKqfl4rvt+hjocgOIc0w73elUSl8GQDYCVlRP1g9/GwyMURVGYv+MsJaVGADy0tlJHSgghhBBCCCGEeADyKVo8FgoKCihSmWpJ1b+axg9ZrrcSUipUVu7Yco3xjt+ioQiemwzBoeD/bJXEZijNBcDW1gMfn/4AFOnLzAmpRS8149lAN1S34hdCCCGEEEIIIcT9SVJKPBbyCwootTL9OD6t9+FG9kUAVCpHbJ2H4a38BY1nEFw7DYGdIKDdI48pL+80CSdGYjCYRmZZWzv/fKzYAIBaBS+19EOtloSUEEIIIYQQQgjxICQpJR4LeUXF5q+fLfRGlXOCq7aASgOAtaYECq6bGtg63+UKD9+NG3Ho9dfN266ubTibkcvc/50mp8CUlHKytZaElBBCCCGEEEII8StIUkpUq1Kjwrj9P3BKZwAnO1SFpaQU5pHt1gAKzoHKBkUpQu11BQpu1ZKqoqRUaakOAB/vAQQFTcbW1pP3dpzh0IVsc5u6nlW3AqAQQgghhBBCCPFHoq7uAMST7fvEZLaXWZHiZIf6RjEeu8+zN+dLSov2AZDvcJXUxu/QsewmeDSEViOgZvAjjUmvv0FG5nZyc08CYGvng62tJwDZt0ZIDWztz4ZX27BhxDOPNBYhHgcjRoxApVKhUqnQaDTUq1ePefPmUVpaev+TK7Bnzx5UKhU3b958OIFWwsWLFxk8eDA+Pj7Y2dnh5+dHeHg4586ds2gXExND586d0Wq1ODg40KZNGzZs2GDRJjU1FZVKRUJCQqXvP2fOHBo2bIijoyM1atSgW7duHD582OKaI0eOJDAwEHt7e+rWrUtkZCR6vb7C62ZkZDB48GDq16+PWq1m0qRJlYpn37599O3bFx8fH1QqFdu3b3/gmAHee+892rdvj4ODA66urne9V1paGr1798bBwQFPT0+mTZtm8TN058/Zna8mTZqY2yxYsIA2bdqg1Wrx9PTkT3/6E4mJifftZ2XiE0IIIYQQVU+SUqJanUpKBkBbVECjpGTqF5zHw5CBYjSNimrkWERU4XVcjAr8eQ30XQaPuKD42XOzOXNmKjk3DwGgsalB+s0iFn+TyLGfTKOkWtR25fkGnrg42DzSWIR4XISFhZGRkcH58+eZOnUqc+bM4YMPPqjusMzul7QBMBgMdO/eHZ1Ox2effUZiYiJbt26ladOmFomxFStWEB4eTocOHTh8+DAnT55k0KBBRERE8Oabb/6mOOvXr8/KlSs5deoU+/fvp06dOvTo0YPr101Thc+dO4fRaGTt2rWcPn2apUuXsmbNGmbPnl3hdUtKSvDw8ODtt9+mefPmlY6noKCA5s2bs2rVql8dM5ief//+/XnjjTfueo2ysjJ69+6NXq/n4MGDbNy4kQ0bNvDuu++a2yxbtoyMjAzz69KlS7i5udG/f39zm7179zJ27FgOHTpEbGwsBoOBHj16UFBQUGE/7xefEEIIIYSoJoq4J51OpwCKTqer7lD+sN7/z2dKrd3HlRaf71aGzvy3MvGV8UrUgN7KkiETlFVDFyk//fdVRXnfX1EinRXlelKVxBR/KEzZ9W2Q8v2RPys//jhFKSnJUmZ+elIJmBFjfu0+d7VKYhF/HEVFRcqZM2eUoqKi6g7lgQ0fPlwJDw+32Ne9e3elbdu2SnZ2tjJ06FDF1dVVsbe3V8LCwpSkpJ9/V1NTU5U+ffoorq6uioODg9K4cWNlx44dysWLFxXA4jV8+HBFURQlNzdXGTx4sOLg4KB4eXkpS5YsUTp37qxMnDjRfN2AgABl3rx5ytChQxWtVms+Ny4uTnnuuecUOzs7xc/PTxk/frySn5+vKIqiHD9+XAGU1NTUe/Y1LS1NsbGxUaZMmVLu2PLlyxVAOXTokKIoirkPx48ff/CHesvtf2d27dp1zzaLFi1SAgMDK33NXz6rygKUzz///L7tKop5/fr1iouLS7n9X375paJWq5XMzEzzvtWrVyvOzs5KSUnJXe/z+eefKyqVqsLv17Vr1xRA2bt3733jrii+u6nod1beH1iS5yGEEEKIX6rs+wMZKSWqVX5ZGejLKPupFI8r1whU7AFQWXlgra6Jtjgb9PmmxhrHKomptDQXgAb159CkyWI0Gneu5poKsT/fwIO3ezeiY72aVRKL+GNTFAW9Xl/lL0VRfnPs9vb26PV6RowYwdGjR4mOjiY+Ph5FUejVqxcGg2mq69ixYykpKWHfvn2cOnWKhQsX4uTkhL+/P59++ikAiYmJZGRksGzZMgCmTJnCgQMHiI6OJjY2lri4OH744YdyMURFRdG8eXOOHz/OO++8Q0pKCmFhYfTr14+TJ0+ydetW9u/fz7hx4wDw8PBArVazbds2ysrK7tqvbdu2YTAY7joiasyYMTg5ObFly5bf/PzANHpn3bp1uLi4VDi6SafT4ebm9lDu+VtVNuZfio+Pp2nTptSqVcu8LzQ0lNzcXE6fPn3Xcz766CO6detGQEDAPa+r05lq/z0uz0cIIYQQQjwYKXQuqoWhpIQN+49y2NoVq8uF6DL02BvSMKpN9UWsjKWkeBzE/sIeuP0B2lb7SGPKzj5IXv4ZDAbT1EFray2KolBqVMgpNE0NGtTGn7CnvB9pHOLJYTAYeP/996v8vrNnz0aj0fyqcxVF4dtvv2Xnzp307NmT7du3c+DAAdq3bw/Apk2b8Pf3Z/v27fTv35+0tDT69etH06ZNAQgKCjJf63YiwdPT01znJy8vj40bN7J582a6du0KwPr16/Hx8SkXS5cuXZg6dap5e9SoUQwZMsRcTyk4OJjly5fTuXNnVq9eja+vL8uXL2f69OnMnTuX1q1bExISwpAhQ8xxJSUl4eLigrd3+d9zjUZDUFAQSUlJv+rZ3RYTE8OgQYMoLCzE29ub2NhYata8e6I7OTmZFStWEBUV9Zvu+Vs9SMx3k5mZaZGQAszbmZmZ5dpfuXKFr776is2bN9/zmkajkUmTJtGhQweeeuqpSscihBBCCCEeHzJSSlSLmE+2847akR89aqLSl9E090dqlJ3HaLgIwJ76OykI/g5b1FCnI4S8/UiTUgbDTRJOvEpy8gKMxhJARUmZE50/2EPwW19xPO0mAM72UkNKPJliYmJwcnLCzs6Onj17MnDgQEaMGIG1tTXPPvusuZ27uzsNGjTg7NmzAEyYMIH58+fToUMHIiMjOXnyZIX3uXDhAgaDgWee+XkRARcXFxo0aFCubevWrS22T5w4wYYNG3BycjK/QkNDMRqNXLxo+tsyduxYMjMz2bRpE+3ateOTTz6hSZMmxMbGVvpZVCaht2nTJos44uLizMdCQkJISEjg4MGDhIWFMWDAAK5du1buGunp6YSFhdG/f39Gjx5t3n/ndSMiIioVc1xcnMV5mzZtqtR5Dxrzw7Jx40ZcXV3505/+dM82Y8eO5ccff+Q///mPeV9ERIRFP4UQQgghxONNRkqJarEnNw98wam4EMdcHR4ltwvm2qBW2/Nx06dxSVgBNQJhRMwjj6ek5CqKUopabYunZ09cXFqRdF1NWnahuU1NJ1saezs/8ljEk8PGxua+Bawf1X0fVEhICKtXr0aj0eDj44O1tTXR0dH3PW/UqFGEhoayY8cOvvnmGxYsWMDixYsZP378rwndgqOj5ZTe/Px8xowZw4QJE8q1rV27tvlrrVZL37596du3L/Pnzyc0NJT58+fTvXt3goOD0el0XLlypdzoLL1eT0pKCqGhofeN7YUXXrBI1vn6+lrEXa9ePerVq0fbtm0JDg7mo48+YtasWeY2V65cISQkhPbt27Nu3TqLa9+52p+zc+X+JrVu3drivF+OWrqfysRcES8vL77//nuLfVevXjUfu5OiKHz88ccMHTr0ngnAcePGERMTw759+/Dz8zPvnzdv3m8uRi+EEEIIIaqOJKVEtchVmQbpeeflU+t6DnVyr4AarO074GDjiEvD2pCw4pFP2buttDQPAFtbL5o0XgzA6dOmKSXN/Vz452vP4mBrhY2VDC4UD49KpfrV0+iq2u2kxJ0aNWpEaWkphw8fNk/fu3HjBomJiTRu3Njczt/fn4iICCIiIpg1axYffvgh48ePN/f9zvpOQUFB2NjYcOTIEXMiSafTkZSURKdOnSqMsWXLlpw5c6ZcnBVRqVQ0bNiQgwcPAvDSSy8xY8YMFi9ezOLFiy3arlmzhsLCQoYNG3bf62q1WrTayv39MhqNlJSUmLfT09MJCQmhVatWrF+/HrXa8u/Og/TvNnt7+1913r38Mub7adeuHe+99x7Xrl3D09MTgNjYWJydnS1+VsC0wl5ycjIjR44sdx1FURg/fjyff/45e/bsITAw0OK4p6en+fpCCCGEEOLxJ0kpUS2K1VYA+JY60v6nn1CpHdGTCyobVOoS2LPQ1PARJ6WKi69wLvEdioouAWBj7UKhvpRZn53ix3RTAV13J1tcHGTanhC/FBwcTHh4OKNHj2bt2rVotVpmzpyJr68v4eHhAEyaNImePXtSv359cnJy+O6772jUqBEAAQEBqFQqYmJi6NWrF/b29mi1WoYPH860adNwc3PD09OTyMhI1Go1KpWqwnhmzJhB27ZtGTduHKNGjcLR0ZEzZ84QGxvLypUrSUhIIDIykqFDh9K4cWM0Gg179+7l448/ZsaMGYBpRNWiRYt48803sbOzY+jQodjY2PDFF18we/Zs5s+fX65+UWJiYrlYmjRpUm5EWkFBAe+99x4vvPAC3t7eZGVlsWrVKtLT0+nfvz9gSkg9//zzBAQEEBUVxfXr183n/3JE0S/dHgmVn5/P9evXSUhIQKPRlEv63Ck/P5/k5GTz9sWLF0lISMDNzY3atWtXKmaAtLQ0srOzSUtLo6yszBxLvXr1cHJyokePHjRu3JihQ4eyaNEiMjMzefvttxk7diy2trYWMX300Uc8++yzd60TNXbsWDZv3swXX3yBVqs116NycXHB3t7+nv28X3xCCCGEEKJ6SFJKVCmlrAz9pUvkKTZo4q9xrLCUZ+3swGgNpaBS2VDmcgEyT5hOcPF/pPFcvbaDGzf2mLcdHIKIO5/FFwlXzPsCa1bNqn9C/B6tX7+eiRMn0qdPH/R6PZ06deLLL780J2TKysoYO3Ysly9fxtnZmbCwMJYuXQqYprTNnTuXmTNn8uqrrzJs2DA2bNjAkiVLiIiIoE+fPjg7OzN9+nQuXbqEnZ1dhbE0a9aMvXv38tZbb9GxY0cURaFu3boMHDgQAD8/P+rUqcPcuXNJTU1FpVKZtydPnmy+zuTJkwkKCmLx4sUsW7aMgoICALZs2cKgQYPK3fdu+y5dumQxrQzAysqKc+fOsXHjRrKysnB3d6dNmzbExcXRpEkTwDR6KDk5meTk5HLn32/VxBYtWpi/PnbsGJs3byYgIIDU1NR7nnP06FFCQkLM21OmTAFg+PDhbNiwoVIxA7z77rts3LixXCzfffcdzz//PFZWVsTExPDGG2/Qrl07HB0dGT58OPPmzbOIR6fT8emnn5pXYvyl1atXA/D8889b7F+/fj0jRoy4Zz/vF58QQgghhKgeKuVhrA3+B5Wbm4uLiws6na7SdTtExTa89wEfNO+ITleK9SkdnW7E0Tz3NGD6MTzaWOF12x8I8XkWmg+C4B7g8OiW+k5JiSL1p9XUrNkVX5+XqVHjWT45lsXMz07RzM+F8V2Cea5eTew1Vo8sBvFkKC4u5uLFiwQGBt43uSIsFRQU4Ovry+LFi+86petRy87OpmvXrjg7O/PVV1/h4OBQ5TGIqlfR76y8P7Akz0MIIYQQv1TZ9wdSIEdUGaPRyD9r1+OGox2K0TQNp1H+eW4npFSoiGxQm5DiQvBpYUpKPcKEFEBpaT4ATk4NcXLpxMn0Es5lmupL1fNwonvjWpKQEqKKHT9+nC1btpCSksIPP/zAkCFDAMxTAquam5sbu3btomvXrsTHx1dLDEIIIYQQQvwRyfQ9UWVu3rxJ/q2aH7WvZlAnIxVNWQmoQKMdRJDVbhrert1k82hHIly/votLlzdSUHAeAGtrLa9tOMLBlBvmNs72UkdKiOoSFRVFYmIiGo2GVq1aERcXR82aNastHnd3d959991qu78QQgghhBB/RJKUElWmpLiYUisr1FcKsdI50k3vzM1bdYtValccHIxgKDLtsLl3wdqHIfWnv5Obe8K87WAfwJmMXAB8XOxwtrch/Gmfe50uhHiEWrRowbFjx6o7DCGEEEIIIcQjJkkpUWUK02+g16vQnMrhMlBq6wK3clC5mhR83eMh0TSdDs2jHSll0OcAEBQ4GReXlri4PIuu6GsAvhj3HB5a24pOF0IIIYQQQgghxG/0WNaUWrBgAW3atEGr1eLp6cmf/vSncktuFxcXM3bsWNzd3XFycqJfv35cvXrVok1aWhq9e/fGwcEBT09Ppk2bRmlpaVV2Rdxyefp0Mv4Zh6HU9CNnZ12Iov55efdPW36Id9lV0N9KSrkHP5I4DIZc8vJOYyg1JaU8PcNYvFdLm/d3c7vkv4tM2xNCCCGEEEIIIR65x3Kk1N69exk7dixt2rShtLSU2bNn06NHD86cOYOjoyNgWrJ7x44dfPLJJ7i4uDBu3DhefPFFDhw4AJiWIe/duzdeXl4cPHiQjIwMhg0bho2NDe+//351du+JcyMvn57tw8hxcsaYU4praRadsvdRVHJ77p7CxsyraGs1hbC/gqMHeNR/6HGUlRVyMD6E0tKb5n2KyolNh39OeDbydkZj/VjmaoUQQgghhBBCiD+UxzIp9fXXX1tsb9iwAU9PT44dO0anTp3Q6XR89NFHbN68mS5dugCwfv16GjVqxKFDh2jbti3ffPMNZ86cYdeuXdSqVYunn36av/zlL8yYMYM5c+ag0Wiqo2tPpLiLaVx3Ma2ipy4z0DLnBMH5qRhvHdfaGHlKrwdnX6jT4ZHFUVScfishpcLWthaurm0oLHUFQKWCryd2ok5NWepdCCGEEEIIIYSoCr+LISE6nQ4wLcsNcOzYMQwGA926dTO3adiwIbVr1zYv1x0fH0/Tpk2pVauWuU1oaCi5ubmcPn26CqMX+UVFYFRwuZTDG9/+QPsCUyEptbU/1vbP80K9a6aGtk6PNI5Sg+nnyN7en7pP7WJ0dF+eef9bAFztbWjgpcXW2uqRxiCEEEIIIYQQQgiTx3Kk1J2MRiOTJk2iQ4cOPPXUUwBkZmai0WhwdXW1aFurVi0yMzPNbe5MSN0+fvvY3ZSUlFBSUmLezs3NfVjdeKLlFRRjdUmh5FwhhXnX0WrsoQRU1j5orD2oZUwGFaBxfCT3z7l5hJ9S/06J/joA1tYuHEnNIUNXbG7ToV71LTUvhBBCCCGEEEI8iR77pNTYsWP58ccf2b9//yO/14IFC5g7d+4jv8+TouzmTbK3fMUNgysqG3sAXClCuVVRPMF3H608klHlWoFTLWgc/kjiSEv7Bzey95m3HRwCycs3APB8Aw+i+jfH3VGmcwohhBBCCCGEEFXpsZ6+N27cOGJiYvjuu+/w8/Mz7/fy8kKv13Pz5k2L9levXsXLy8vc5per8d3evt3ml2bNmoVOpzO/Ll269BB78+TJ/te/uRm9jyIroEyhhj4Hp7KrKKWm78P/2doyXpcNTfvD1LNQt8sjicNgMK20V9t/JE0ar8DZaxaXc0xTCN0dbanpZItKparoEkI80UaMGIFKpUKlUqHRaKhXrx7z5s37zauZ7tmzB5VKVe5v+aN08eJFBg8ejI+PD3Z2dvj5+REeHs65c+cs2sXExNC5c2e0Wi0ODg60adOGDRs2WLRJTU1FpVKRkJBQ6fvPmTOHhg0b4ujoSI0aNejWrRuHDx+2uObIkSMJDAzE3t6eunXrEhkZiV6vv++1N23aRPPmzXFwcMDb25vXXnuNGzduVHjOvn376Nu3Lz4+PqhUKrZv337XdmfPnuWFF17AxcUFR0dH2rRpQ1pamvn4mDFjqFu3Lvb29nh4eNz1mR45coSuXbvi6upKjRo1CA0N5cSJE3e9X3JyMlqtttyI6N/SByGEEEII8fh5LJNSiqIwbtw4Pv/8c3bv3k1gYKDF8VatWmFjY8O3335r3peYmEhaWhrt2rUDoF27dpw6dYpr166Z28TGxuLs7Ezjxo3vel9bW1ucnZ0tXuLX+19hCYNHvch/g1xokp7C0NRPKFZnoRhNH5KcNbcSQY9o2p7RWEJh4UX0etP93N2f551vPOn0wRFW70kBQGv32A8WFOKxEBYWRkZGBufPn2fq1KnMmTOHDz74oLrDMqtM0sZgMNC9e3d0Oh2fffYZiYmJbN26laZNm1okxlasWEF4eDgdOnTg8OHDnDx5kkGDBhEREcGbb775m+KsX78+K1eu5NSpU+zfv586derQo0cPrl83TS8+d+4cRqORtWvXcvr0aZYuXcqaNWuYPXt2hdc9cOAAw4YNY+TIkZw+fZpPPvmE77//ntGjR1d4XkFBAc2bN2fVqlX3bJOSksJzzz1Hw4YN2bNnDydPnuSdd97Bzs7O3KZVq1asX7+es2fPsnPnThRFoUePHpSVlQGQn59PWFgYtWvX5vDhw+zfvx+tVktoaCgGg8HifgaDgZdffpmOHTtWGPuD9EEIIYQQQjymlMfQG2+8obi4uCh79uxRMjIyzK/CwkJzm4iICKV27drK7t27laNHjyrt2rVT2rVrZz5eWlqqPPXUU0qPHj2UhIQE5euvv1Y8PDyUWbNmVToOnU6nAIpOp3uo/XtS9N3wX6XW7uNKrd3HlX91G6gse+lPStSA3sqSIROUJcPGK/oPeypKpLOi7Hz7od/baCxTDsb3UHZ9G2R+6XJPKU9FOO5H1wABAABJREFUfq0EzIhRgt/6Umk57xtl//nrD/3eQtxNUVGRcubMGaWoqKi6Q3lgw4cPV8LDwy32de/eXWnbtq2SnZ2tDB06VHF1dVXs7e2VsLAwJSkpydwuNTVV6dOnj+Lq6qo4ODgojRs3Vnbs2KFcvHhRASxew4cPVxRFUXJzc5XBgwcrDg4OipeXl7JkyRKlc+fOysSJE83XDQgIUObNm6cMHTpU0Wq15nPj4uKU5557TrGzs1P8/PyU8ePHK/n5+YqiKMrx48cVQElNTb1nX9PS0hQbGxtlypQp5Y4tX75cAZRDhw4piqKY+3D8+PEHf6i33P53ZteuXfdss2jRIiUwMLDC63zwwQdKUFBQuXh9fX0rHQugfP755+X2Dxw4UHnllVcqfR1FUZQTJ04ogJKcnKwoiqIcOXJEAZS0tDRzm5MnTyqAcv78eYtzp0+frrzyyivK+vXrFRcXlwe677368GtU9Dsr7w8syfMQQgghxC9V9v3BYzlSavXq1eh0Op5//nm8vb3Nr61bt5rbLF26lD59+tCvXz86deqEl5cXn332mfm4lZUVMTExWFlZ0a5dO1555RWGDRvGvHnzqqNLT6QitRXWZ27itjcDHOpisLIBwNquPUXeNbG5fMDUUPPwV90rLc2nsDDZdD9rLY5OLUnIcCOv2DTd6NCsrhx7p7sUOBfVSlEUysoKq/yl3Krr9lvY29uj1+sZMWIER48eJTo6mvj4eBRFoVevXubRL2PHjqWkpIR9+/Zx6tQpFi5ciJOTE/7+/nz66aeAaaRrRkYGy5YtA2DKlCkcOHCA6OhoYmNjiYuL44cffigXQ1RUFM2bN+f48eO88847pKSkEBYWRr9+/Th58iRbt25l//79jBs3DgAPDw/UajXbtm0zj+D5pW3btmEwGO46ImrMmDE4OTmxZcuW3/z8wDS6a926dbi4uNC8efN7ttPpdObVZ++lXbt2XLp0iS+//BJFUbh69Srbtm2jV69evylGo9HIjh07qF+/PqGhoXh6evLss89WOEWuoKCA9evXExgYiL+/PwANGjTA3d2djz76CL1eT1FRER999BGNGjWiTp065nN3797NJ598IqOehBBCCCGeEI/l3KXKfGCys7Nj1apVFb5xDQgI4Msvv3yYoYlKUBSF/PifKFJssb5UQCGgtrIBxfQh9aTPPjo57oUiwMYR6jz30GMoLTWtnKhW29Kp43E6ffAdl7KPA2ClVuFqb/PQ7ynEgzIai9izt2mV3/f5zqewsnL4VecqisK3337Lzp076dmzJ9u3b+fAgQO0b98eMNU18vf3Z/v27fTv35+0tDT69etH06amfgYFBZmvdTvR4unpaa4dlJeXx8aNG9m8eTNdu3YFYP369fj4+JSLpUuXLkydOtW8PWrUKIYMGcKkSZMACA4OZvny5XTu3JnVq1fj6+vL8uXLmT59OnPnzqV169aEhIQwZMgQc1xJSUm4uLjg7e1d7n4ajYagoCCSkpJ+1bO7LSYmhkGDBlFYWIi3tzexsbHUrHn3BHlycjIrVqwgKiqqwmt26NCBTZs2MXDgQIqLiyktLaVv376/Oblz7do18vPz+etf/8r8+fNZuHAhX3/9NS+++CLfffcdnTt3Nrf9+9//zvTp0ykoKKBBgwbExsai0ZgWkdBqtezZs4c//elP/OUvfwFM35+dO3dibW16K3Ljxg1GjBjBv//9b5k+L4QQQgjxhHgsR0qJ37crU6dybf0e9JhqRtUozUWvzgdMSakF7gkMLboE/TfCzJ+gToeHdu+yskKuXt1BZuZ2AKytnSk2GLmUbSps3qCWlvFd6qFWS2FzIR5ETEwMTk5O2NnZ0bNnTwYOHMiIESOwtrbm2WefNbdzd3enQYMGnD17FoAJEyYwf/58OnToQGRkJCdPnqzwPhcuXMBgMPDMM8+Y97m4uNCgQYNybVu3bm2xfeLECTZs2ICTk5P5FRoaitFo5OLFi4Bp5FZmZiabNm2iXbt2fPLJJzRp0oTY2NhKP4vbiZaKbNq0ySKOuLg487GQkBASEhI4ePAgYWFhDBgwwKL+4W3p6emEhYXRv39/i9pQd143IiICgDNnzjBx4kTeffddjh07xtdff01qaqr5eFxcnMV5mzZtqlRfjUYjAOHh4UyePJmnn36amTNn0qdPH9asWWPRdsiQIRw/fpy9e/dSv359BgwYQHFxMQBFRUWMHDmSDh06cOjQIQ4cOMBTTz1F7969KSoy/X0ePXo0gwcPplOnTneN5df2QQghhBBCPL4ey5FS4vft2JUrZNfxR48Xza+fplPed9yw+vm4i+rWil32NcDq4Y5YSv1pDampP48MsLFx5WaRqQCyjZWKryd1lJX2xGNDrbbn+c6nquW+DyokJITVq1ej0Wjw8fHB2tqa6Ojo+543atQoQkND2bFjB9988w0LFixg8eLFjB8//teEbsHR0XKRhPz8fMaMGcOECRPKta1du7b5a61WS9++fenbty/z588nNDSU+fPn0717d4KDg9HpdFy5cqXc6Cy9Xk9KSgqhoaH3je2FF16wSNb5+vpaxF2vXj3q1atH27ZtCQ4O5qOPPmLWrFnmNleuXCEkJIT27duzbt06i2vfudrf7RFFCxYsoEOHDkybNg2AZs2a4ejoSMeOHZk/fz6tW7e2OK9WrVr37QNAzZo1sba2LrdASKNGjdi/f7/FPhcXF1xcXAgODqZt27bUqFGDzz//nJdffpnNmzeTmppKfHw8arXp/8M2b95MjRo1+OKLLxg0aBC7d+8mOjraPCpMURSMRiPW1tasW7eOl19++Vf1QQghhBBCPL4kKSUeKp1Oxz+79CTRqzY3izVMv3ScjBoAalRWNbF3ycemrMDU+BHUkiosNI2GcHQMprDMk78fbcr3MXsAcLHXSEJKPFZUKtWvnkZX1W4nUu7UqFEjSktLOXz4sHn63o0bN0hMTLRIYvj7+xMREUFERASzZs3iww8/ZPz48eYRR3fWdwoKCsLGxoYjR46YE0k6nY6kpKR7jqC5rWXLlpw5c6ZcnBVRqVQ0bNiQgwcPAvDSSy8xY8YMFi9ezOLFiy3arlmzhsLCQoYNG3bf62q1WrRabaViMBqNlJSUmLfT09MJCQkxr2h3O4lz2936V1hYaJ4Gd5uVlel/AxRFwd7e/oGey20ajYY2bdqQmJhosT8pKYmAgIB7nqcoCoqimPtVWFiIWq22+Bt8e/v2aKz4+HiLn4UvvviChQsXcvDgQXx9fX91H4QQQgghxONLklLioSrMy+OYXzClScXY5uRxw68rFHyKSu2CrfMruNVaCrpLpsYax4ov9gAUxcjNm0coLEwFoE7AG6yID2LfpTTA9IGndUCNh3Y/IYSpJlB4eDijR49m7dq1aLVaZs6cia+vL+Hh4QBMmjSJnj17Ur9+fXJycvjuu+9o1KgRYKr7p1KpiImJoVevXtjb26PVahk+fDjTpk3Dzc0NT09PIiMjyyU07mbGjBm0bduWcePGMWrUKBwdHTlz5gyxsbGsXLmShIQEIiMjGTp0KI0bN0aj0bB3714+/vhjZsyYAZhGVC1atIg333wTOzs7hg4dio2NDV988QWzZ89m/vz5PPXUUxb3/WXCBqBJkybY2FiOBC0oKOC9997jhRdewNvbm6ysLFatWkV6ejr9+/cHTAmp559/noCAAKKiorh+/br5fC8vr3v2vW/fvowePZrVq1cTGhpKRkYGkyZN4plnnrlrPa7b8vPzSU5ONm9fvHiRhIQE3NzczEnBadOmMXDgQDp16kRISAhff/01//vf/9izZw9gmnK5detWevTogYeHB5cvX+avf/0r9vb25kLr3bt3Z9q0aYwdO5bx48djNBr561//irW1NSEhIQDmn4vbjh49ilqtLve8f00fhBBCCCHE40mSUuKhMVy7xrUtRygLqoVVZhFOZSoUlel/vfXWek77xvJ/VsdADzi4g4vfQ7t35tVozpz5ueCxjY0bN4tMNawmdA2mfys/fF0ffMqSEKJi69evZ+LEifTp0we9Xk+nTp348ssvzQmZsrIyxo4dy+XLl3F2diYsLIylS5cCpiltc+fOZebMmbz66qsMGzaMDRs2sGTJEiIiIujTpw/Ozs5Mnz6dS5cuYWdnV2EszZo1Y+/evbz11lt07NgRRVGoW7cuAwcOBMDPz486deowd+5cUlNTUalU5u3JkyebrzN58mSCgoJYvHgxy5Yto6DANLpzy5YtDBo0qNx977bv0qVL+PlZ/o2zsrLi3LlzbNy4kaysLNzd3WnTpg1xcXE0adIEgNjYWJKTk0lOTi53fkWLgIwYMYK8vDxWrlzJ1KlTcXV1pUuXLixcuLDCZ3b06FFzUghMKx8CDB8+nA0bNgDw5z//mTVr1rBgwQImTJhAgwYN+PTTT3nuOdMiFXZ2dsTFxfG3v/2NnJwcatWqRadOnTh48CCenp4ANGzYkP/973/MnTuXdu3aoVaradGiBV9//fVdi8o/iMr0QQghhBBCPJ5UysNYG/wPKjc3FxcXF3Q6nawEdB+KopDcpSvXWoxgQLtgbI7eoGNeCi3zLmPUn0WjLaFz3QSa6o2o/i8enH3A9uFN30u5sITU1FVoNB7kGpvyr7NDOJNRQm5xKX8b+DR/auF7/4sI8QgVFxdz8eJFAgMD75tcEZYKCgrw9fVl8eLFjBw5ssrvn52dTdeuXXF2duarr77CweH3MeVS/DYV/c7K+wNL8jyEEEII8UuVfX8gq++JhyL3xg32Bdbhe6drKIoKD30WT9+Ixag3rcDlYW9PsxI9KjsteNR/qAkpgNLSXAB8vPszN24ghy4WkFtsKqhe1+Ph164SQjw6x48fZ8uWLaSkpPDDDz8wZMgQAPOUwKrm5ubGrl276Nq1K/Hx8dUSgxBCCCGEEH9EMn1PPBQnT5zgUu3a6K2KqXf5J/pl3aAUQGWPHV60bJwFVwGbh1dHCiAv7zSZmV+Qk3MIAGtrZ3IKTavt/fXFpjTydqapn8tDvacQ4tGLiooiMTERjUZDq1atiIuLo2bNmtUWj7u7O++++2613V8IIYQQQog/IklKiYeiMC+f47WCuFLgzoh9uyhzqw96UFm545lfA9/c/5kaPsTi5gCJSXPR6Y6Zty/m2GMoM81I7dvcB0db+REX4vemRYsWHDt27P4NhRBCCCGEEL9r8old/GbGkjLOJBdy1KUONll52OuLyFNMRcaL1RfZ2nYf/YpyTI3d6z7Ue5eUXAPA2S2cfxxS822aaaqejZUKB43VQ72XEEIIIYQQQgghHh5JSonfRFEU8r//kZtqBZXBCICdCvIUUz0nW1cDU9Q3UNfpCM9NAv+2D/X+t2tJFdgMYmfqdWyt1QTWdKBXU+/7Lh8vhBBCCCGEEEKI6iNJKfGbnPzqK76IP0Sqpw+UeROcn0y23VXKSvIAaGxtR/uiYvBoAPW6PZR7FhZe5OixARgM2eZ9eXp7AJ72d2XrmHYP5T5CCCGEEEIIIYR4dCQpJX6TCxcuYLRSU6q2ovH/s3fn8TVe+QPHPzfLTW6Sm0RCJIIQYoliLFWEampJaCPTqmWYiBaVjp1q0KmgUYOEsY2l06K/CTVU1QTV6EIsRYlSqaRIiog13ETWm9zz+yN16zZELBX0+3697uvleZ6zfM9zs9x8nXOec5fpeuUAhTZGMBkAcLHJLS1op39gfWZd3WuRkDIYffj3ztJjF53tA+tHCCGEEEIIIYQQvx9JSon7UlBUCIC3qs6fjx7gtGMJADa6jhQ6nKGN7j+lBe0f3BPwio3XAKhevSefnerNv3dfQXEdgNpuDg+sHyGEEEIIIYQQQvx+JCkl7pkqNmHIh4+tWlHycwntlRX8ssF5ccm3nG2cjE2uK9TtCE+9ct/9Xbq0nVNp/6Sw8DwAdnbVuXBdh8KKkOY1eL5RNbo0rn7f/QghhBBCCCGEEOL3J0kpcc9yD5znsM6bgotW6EvyKbG2Myel1rdPo3dRATTsDi8tfSD9nc34D9ev/2g+PnDGlR8ySpcJPtegGi+1qPlA+hFCCCGEEEIIIcTvz6qyAxCPp8LTp7m85ztyrEu/hPQlueRaXwdKl+/Nt/Zk1NVr4NH4gfVZbCxNQNXzfZM9hjlM3laTU5dL96zycLZ7YP0IISwNGjQIjUaDRqNBq9VSv359pk+fTnFx8X21+80336DRaLh27dqDCbQC0tLS6N+/PzVq1MDe3p6aNWsSGhrK8ePHLcrFx8fTqVMn9Ho9Dg4OPP3006xcudKiTHp6OhqNhsOHD1e4/6lTp9KoUSMcHR2pUqUKXbp0Yd++fRZtDh48mLp166LT6ahXrx5RUVEUFRXdse24uDiaN2+Og4MDXl5evPbaa1y5cqXcOkuWLKFZs2Y4Ozvj7OxMu3bt2Lp1q/l6VlYWI0eOpGHDhuh0OmrXrs2oUaMwGAzmMitXrjR/ffz2dfHiRXO5wsJC3n77bXx8fLCzs6NOnTp8+OGHFvH885//NPdVq1Ytxo4dS0FBQblj2LBhA926dcPd3f2u3w8hhBBCCFG5ZKaUuCerY2P5uUoVrrrVx87kSPDlr7hkc9V8vUX2udIvLq3TffdVUpKPwZBEYVHpHzeurk+TmlUCXKZ9PXfa+rrTztf9vvsRQtxecHAwK1asoLCwkC1btjB8+HBsbW2ZNGlSZYcGQFFREVqtttwyRqORrl270rBhQzZs2ICXlxdnz55l69atFomxhQsXMmbMGCIjI1myZAlarZbPPvuMiIgIfvjhB2JiYu45zgYNGrBo0SJ8fX3Jz89n3rx5dOvWjRMnTlCtWjWOHz+OyWRi2bJl1K9fnx9++IGhQ4eSm5tbbr+7d+9m4MCBzJs3j5CQEDIyMoiIiGDo0KFs2LDhtvVq1qzJP/7xD/z8/FBKsWrVKkJDQ0lKSqJJkyacO3eOc+fOERMTg7+/Pz///DMRERGcO3eO9evXA9C3b1+Cg4Mt2h00aBAFBQV4eHiYz/Xp04cLFy7wwQcfUL9+fTIzMzGZTObrq1evZuLEiXz44Ye0b9+e1NRUc0J07ty5tx1Dbm4uHTp0oE+fPgwdOvSO74EQQgghhHiEKHFbBoNBAcpgMFR2KI+c9yZOVFFRUSp01r/VsgErVUyfUBXT5wUV2y9MrX69h1JRzqWvHzffd1/ffz9Mbf/S1/zKyUlRPRcmKp/IeLU9+fwDGI0Qv7/8/HyVnJys8vPzKzuUuxYeHq5CQ0MtznXt2lW1bdtWZWVlqbCwMOXq6qp0Op0KDg5Wqamp5nLp6enqxRdfVK6ursrBwUH5+/urzZs3q7S0NAVYvMLDw5VSSmVnZ6v+/fsrBwcH5enpqebOnas6deqkRo8ebW7Xx8dHTZ8+XYWFhSm9Xm+um5iYqDp06KDs7e1VzZo11ciRI9X169eVUkolJSUpQKWnp992rKdPn1a2trZq3LhxZa4tWLBAAerbb79VSinzGJKSku7+pv7ixu+Z7du337bM7NmzVd26dcttZ86cOcrX17dMvN7e3ncdU5UqVdS///3v217/73//q7RarTIajbe8fvHiRWVra6s++ugj87mtW7cqFxcXdeXKldu2O3z4cPX8889bnBs3bpwKCAioUNwP4v24WXnfs/L5wJLcDyGEEEL8VkU/H8jyPXHXlFIUWVmTUeKM/4nLYOMElC7jcbBpQsca30Ob1yH0X+DX7b77u56bCoBOV5ssUyC9P8jkx/M5ADjrbO+7fSEqi1KK3JKSh/5SSt137DqdjqKiIgYNGsR3333Hpk2b2Lt3L0opevTogdFYur/c8OHDKSwsZOfOnRw9epRZs2bh5ORErVq1+OSTTwBISUkhMzOT+fPnAzBu3Dh2797Npk2bSEhIIDExkUOHDpWJISYmhubNm5OUlMQ777zDyZMnCQ4OplevXhw5coS1a9eya9cuRowYAUC1atWwsrJi/fr1lJSU3HJc69evx2g08uabb5a5NmzYMJycnFizZs193z8ond21fPlyXFxcaN68+W3LGQwG3Nzcym2rXbt2nDlzhi1btqCU4sKFC6xfv54ePXpUOJ6SkhI+/vhjcnNzadeuXbnxODs7Y2Nz68nWH330EQ4ODrzyyq8PuNi0aROtW7dm9uzZeHt706BBA958803y8/PNZdq3b8/BgwfZv38/AKdOnWLLli13NQYhhBBCCPF4keV74q4opbj07yOctPJgp7Ee3bO/pZajtfn6xT8twzsnB1q9CtX9H0ifRuM1ABo3WUr/904A1wGwsdLg4+7wQPoQojLkmUzU23n0ofd78tmmOFpb37ngLSil+PLLL9m2bRvdu3dn48aN7N69m/bt2wOl+xrVqlWLjRs30rt3b06fPk2vXr1o2rQpAL6+vua2biRaPDw8cHV1BSAnJ4dVq1axevVqOnfuDMCKFSuoUaNGmVief/55xo8fbz4eMmQIAwYMYMyYMQD4+fmxYMECOnXqxJIlS/D29mbBggW89dZbTJs2jdatWxMYGMiAAQPMcaWmpuLi4oKXl1eZ/rRaLb6+vqSmpt7TvbshPj6efv36kZeXh5eXFwkJCVStWvWWZU+cOMHChQvvuGQwICCAuLg4+vbtS0FBAcXFxYSEhLB48eI7xnP06FHatWtHQUEBTk5OfPrpp/j73/rn9+XLl3n33Xd5/fXXb9veBx98QP/+/dHpdOZzp06dYteuXdjb2/Ppp59y+fJl/va3v3HlyhVWrFgBQP/+/bl8+TIdOnRAKUVxcTERERFMnjz5jmMQQgghhBCPJ5kpJe5K8ZXr5J28yiGP+gDYqyJMVhrz9XdyrqEB0N5fsshkMvLdwd58/U0TiotLN9TNMzoCYG2l4aPX2vDV+Ofw0NvfVz9CiIqJj4/HyckJe3t7unfvTt++fRk0aBA2NjY888wz5nLu7u40bNiQH38sfVLmqFGjiI6OJiAggKioKI4cOVJuP6dOncJoNNKmTRvzORcXFxo2bFimbOvWrS2Ov//+e1auXImTk5P5FRQUhMlkIi0tDSiduXX+/Hni4uJo164d69ato0mTJiQkJFT4Xtxp7yooTc7dHEdiYqL5WmBgIIcPH2bPnj0EBwfTp08fiw3Bb8jIyCA4OJjevXtb7JV0c7sREREAJCcnM3r0aKZMmcLBgwf5/PPPSU9PN19PTEy0qBcXF2dur2HDhhw+fJh9+/bxxhtvEB4eTnJycpl4srOzeeGFF/D392fq1Km3HPfevXv58ccfGTx4sMV5k8mERqMhLi6ONm3a0KNHD+bOncuqVavMs6W++eYb3nvvPf71r39x6NAhNmzYwObNm3n33XfveE+FEEIIIcTjSWZKiQpTSnF6aASq4WCu29hTNzuFWiUnKcornblkbWVC88vT97B1vK++8vLTMRh+Xa6TU1yDN1afAsBVZ8uzDardV/tCPAocrKw4+WzTSun3bgUGBpo3/a5RowY2NjZs2rTpjvWGDBlCUFAQmzdv5osvvmDmzJnExsYycuTIewndgqOj5c+Z69evM2zYMEaNGlWmbO3atc3/1uv1hISEEBISQnR0NEFBQURHR9O1a1f8/PwwGAycO3euzOysoqIiTp48SVBQ0B1j69mzp0Wyztvb2yLu+vXrU79+fdq2bYufnx8ffPCBxabx586dIzAwkPbt27N8+XKLtm9+upyzszMAM2fOJCAggAkTJgDQrFkzHB0d6dixI9HR0bRu3dqiXvXq1c3/vvFERYBWrVpx4MAB5s+fz7Jly8xlcnJyCA4ORq/X8+mnn2Jre+ul0//+97/505/+RKtWrSzOe3l54e3tjYuLi/lc48aNUUpx9uxZ/Pz8eOeddwgLC2PIkCEANG3alNzcXF5//XXefvvtcu+pEEIIIYR4PElSSlRY5pkzbPCridFuD+6Gp3jl2hkKrAtQxT8D4GhT+Gvh+5wpVVJcmuiys/Piqm4+49edpUSV7iNVr9r9P9FPiEeBRqO552V0D9uNRMrNGjduTHFxMfv27TMv37ty5QopKSkWy79q1apFREQEERERTJo0iffff5+RI0eaZxzdvL+Tr68vtra2HDhwwJxIMhgMpKam8uyzz5YbY8uWLUlOTi4TZ3k0Gg2NGjViz549ALzyyitERkYSGxtLbGysRdmlS5eSl5fHwIED79iuXq9Hr9dXKAaTyURh4a8/PzMyMggMDKRVq1asWLECq98kEW81vry8vDJ7PFn/8rWllEKn01X4vvw2nuzsbIKCgrCzs2PTpk3Y2996hur169f573//y8yZM8tcCwgIYN26dVy/fh0np9Kf4ampqVhZWVGzZk3zGH471pvHcDf3VAghhBBCPB4kKSUqLPX4cXIddOQqqH/ZgNHGFkrAysaHfEdXenp8CI4eUL8LaO9vplTxL0kpW1tXsgrcKVHnaVnblaEdfWlTt/wNf4UQD4efnx+hoaEMHTqUZcuWodfrmThxIt7e3oSGhgIwZswYunfvToMGDbh69Spff/01jRs3BsDHxweNRkN8fDw9evRAp9Oh1+sJDw9nwoQJuLm54eHhQVRUFFZWVmg0mvLCITIykrZt2zJixAiGDBmCo6MjycnJJCQksGjRIg4fPkxUVBRhYWH4+/uj1WrZsWMHH374IZGRkUDpjKrZs2fz5ptvYm9vT1hYGLa2tnz22WdMnjyZ6OhonnrqKYt+U1JSysTSpEmTMrOJcnNzmTFjBj179sTLy4vLly+zePFiMjIy6N27N1CakHruuefw8fEhJiaGS5cumet7enreduwhISEMHTqUJUuWEBQURGZmJmPGjKFNmza33I/rhkmTJtG9e3dq165NTk4Oq1ev5ptvvmHbtm1AaUKqW7du5OXl8Z///Ifs7Gyys7OB0o3jrW9Kqq5du5bi4mL++te/lumnf//+vPvuu7z66qtMmzaNy5cvM2HCBF577TXz3lMhISHMnTuXFi1a8Mwzz3DixAneeecdQkJCLPr5raysLE6fPs25c+eAX98PT0/Pcu+ZEEIIIYSofJKUEhViyi8m74yBA8ZaHCvxpEveQW48ce9I7R851OASk3JrwogD99VPVtZu0tIXU1R0GYA8ox1HMkr3lGroqad707KbDwshKs+KFSsYPXo0L774IkVFRTz77LNs2bLFnJApKSlh+PDhnD17FmdnZ4KDg5k3bx5Quvxq2rRpTJw4kVdffZWBAweycuVK5s6dS0REBC+++CLOzs689dZbnDlz5rYzdG5o1qwZO3bs4O2336Zjx44opahXrx59+/YFoGbNmtSpU4dp06aRnp6ORqMxH48dO9bcztixY/H19SU2Npb58+eTm5sLwJo1a+jXr1+Zfm917syZM+YZQDdYW1tz/PhxVq1axeXLl3F3d+fpp58mMTGRJk2aAJCQkMCJEyc4ceJEmfrlPTVx0KBB5OTksGjRIsaPH4+rqyvPP/88s2bNKveeXbx4kYEDB5KZmYmLiwvNmjVj27ZtdO3aFYBDhw6xb98+oOwMrbS0NOrUqWM+/uCDD3j55ZfNm9bfzMnJiYSEBEaOHEnr1q1xd3enT58+REdHm8v8/e9/R6PR8Pe//52MjAyqVatGSEgIM2bMKHcMmzZt4tVXXzUf33g/oqKibrv3lRBCCCGEeDRo1IN4NvgTKjs7GxcXF/Pjr//Irv3vJF/s+5qpVlXJK7Llxexd1M8xUVJ0jIx6l2hc7RxDHevB69/cVz+HD7/Klayd5uPEs21ZmdwfgIhO9ZjYvdF9tS9EZSkoKCAtLY26deveMbkiLOXm5uLt7U1sbGyZDbQfhqysLDp37oyzszNbt27FwUGe+vlHUN73rHw+sCT3QwghhBC/VdHPB/L0PVEhxZdz+dnJnuu2pcsstDprlDIC8Nfr2Qw1ZEPDHvfdj9F4DYA6Pm+w/fx41qT0wttVR5u6brzUQja1FeKPICkpiTVr1nDy5EkOHTrEgAEDAMxLAh82Nzc3tm/fTufOndm7d2+lxCCEEEIIIcSTSJbviTsq/Oknsnbt5tpTzjTMSCf41A7sdUYKbEpzmjY21lDveWhf9olXFWUyFWM0ZpmTUu7uz/HDlQIKSwy8++cmPN+oevkNCCGeKDExMaSkpKDVamnVqhWJiYlUrVq10uJxd3dnypQplda/EEIIIYQQTyJJSok72rxtK9/XzOJnKysGpJ3kmt6KApUPvyz81Nd/GsJW3HP7Spk4cKAn13N/3Sw4fGUyyRdL/wB10d360eNCiCdTixYtOHjwYGWHIYQQQgghhPidSVJK3FFqVhabippwNdOB56rYUWL8GQBr+zbYOZ2mTt37m71gNF67KSFlTbqhBj9ccKFEKXS21vhWdbrPEQghhBBCCCGEEOJRI0kpUa7cpIvkFTtxVf2ysa+VLagiABKa7mVycRIaxzfvq4/i4tLHi1tbO9K4xX4Gv/clVhr434gOeFfRUcVRe1/tCyGEEEIIIYQQ4tEjSSlRrtz9mVzXWAOgV/kUmTKB0g3O/3n9EH4UgPO9bUCulOL69R/JuZ4MQLFyZGNSBgDOOlua1nS5/wEIIYQQQgghhBDikSRJKVGukvxijnh443X8Mj0ubybflPfLFUVdF09w84H6Xe6p7Z9/XsLJU7Hm4wyDNTP3HgfAzUFmRwkhhBBCCCGEEE8ySUqJ2/rq7UiultSjyNuVGYc2c9i7AKUBjXV16jknY/OXOPB86p7bz8kpnSFla+vG1XwtX515Ft9qjtSs4kC/p2s9qGEIIYQQQgghhBDiESRJKXFLOTk5fG3jQLpVIbYXcknz/TOqaDUAto4v0tJrK2gd7qsPY/G10vaqjGXFER8On73GnFfq0bu1JKSEEEIIIYQQQognnVVlByAeTRd3p5FmciPR6AuXjRht7c3XDjf4AC+VC7aO99T2mTOr+OrrRly9uheA6K3nOHzmGgBusqm5EEIIIYQQQgjxhyBJKVGGKc/ItR0/k6tKE0R6KyMlVtbm60uvJ5ZOsbvHmVIXL21DqdLN0gtLHDmT442nsz3PNqhGW1/3+w1fCPGADRo0CI1Gg0ajQavVUr9+faZPn05xcfF9tfvNN9+g0Wi4du3agwm0AtLS0ujfvz81atTA3t6emjVrEhoayvHjxy3KxcfH06lTJ/R6PQ4ODjz99NOsXLnSokx6ejoajYbDhw9XuP+pU6fSqFEjHB0dqVKlCl26dGHfvn0WbQ4ePJi6deui0+moV68eUVFRFBUV3bHtuLg4mjdvjoODA15eXrz22mtcuXKlwrH94x//QKPRMGbMGIvzJ0+e5KWXXqJatWo4OzvTp08fLly4YFFmxowZtG/fHgcHB1xdXW/Z/o2voZtfH3/8sfn6hg0b6Nq1q7mfdu3asW3btjvGvWHDBrp164a7u/tdvx9CCCGEEKJySVJKlGEqLMGoKcFgq6NH2h4Czx1E/fKVYoUJWw2g97rnmVIlxdcBaOI/j2Up88gucmbmy0356LU2ONrJilIhHkXBwcFkZmby008/MX78eKZOncqcOXMqOyyziiRtjEYjXbt2xWAwsGHDBlJSUli7di1Nmza1SIwtXLiQ0NBQAgIC2LdvH0eOHKFfv35ERETw5ptv3lecDRo0YNGiRRw9epRdu3ZRp04dunXrxqVLlwA4fvw4JpOJZcuWcezYMebNm8fSpUuZPHlyue3u3r2bgQMHMnjwYI4dO8a6devYv38/Q4cOrVBcBw4cYNmyZTRr1szifG5uLt26dUOj0fDVV1+xe/duioqKCAkJwWQymcsVFRXRu3dv3njjjXL7WbFiBZmZmebXn//8Z/O1nTt30rVrV7Zs2cLBgwcJDAwkJCSEpKSkctvMzc2lQ4cOzJo1q0JjFUIIIYQQjxAlbstgMChAGQyGyg7lobp8IlPFT/5IvT7sXfVBn5kqtm8fFdPnzyqmzwtq/l96KHXiS6VyLt51uyUlhSov72eVuCtAbf/SV4XELlF1JsYrn8h4dfDnrN9hJEI8OvLz81VycrLKz8+v7FDuWnh4uAoNDbU417VrV9W2bVuVlZWlwsLClKurq9LpdCo4OFilpqaay6Wnp6sXX3xRubq6KgcHB+Xv7682b96s0tLSFGDxCg8PV0oplZ2drfr3768cHByUp6enmjt3rurUqZMaPXq0uV0fHx81ffp0FRYWpvR6vbluYmKi6tChg7K3t1c1a9ZUI0eOVNevX1dKKZWUlKQAlZ6eftuxnj59Wtna2qpx48aVubZgwQIFqG+//VYppcxjSEpKuvub+osbv2e2b99+2zKzZ89WdevWLbedOXPmKF9f3zLxent73zGGnJwc5efnpxISEsrc523btikrKyuL34PXrl1TGo1GJSQklGlrxYoVysXF5Zb9AOrTTz+9Yzw38/f3V9OmTatQ2QfxftysvO/ZP+rng9uR+yGEEEKI36ro5wOZKSUsXD55kkUfLWGHzc9UyzeRbV+EUrlA6XI7TzdbqPc8OFW7q3aVKmHf/h7s2RtIYWEmAJdybVAKnO1tqFfV6UEPRYhHnlKKvKLih/5SSt137DqdjqKiIgYNGsR3333Hpk2b2Lt3L0opevTogdFY+jNj+PDhFBYWsnPnTo4ePcqsWbNwcnKiVq1afPLJJwCkpKSQmZnJ/PnzARg3bhy7d+9m06ZNJCQkkJiYyKFDh8rEEBMTQ/PmzUlKSuKdd97h5MmTBAcH06tXL44cOcLatWvZtWsXI0aMAKBatWpYWVmxfv16SkpKbjmu9evXYzQabzkjatiwYTg5ObFmzZr7vn9QOrto+fLluLi40Lx589uWMxgMuLm5ldtWu3btOHPmDFu2bEEpxYULF1i/fj09evS4YxzDhw/nhRdeoEuXLmWuFRYWotFosLOzM5+zt7fHysqKXbt23bHtW/VVtWpV2rRpw4cfflju16LJZCInJ+eOYxdCCCGEEI8vWSslLPy8ZQvfFtfmxxJPhhTuBK0tAGk1SiismcHYes/eU7tFRVnk5aUBoNHoSMmqgcHoyZfjO1Hd2R4nWbYn/oDyjSX4T7nznjkPWvL0IBy09/Y9p5Tiyy+/ZNu2bXTv3p2NGzeye/du2rdvD5Tua1SrVi02btxI7969OX36NL169aJp06YA+Pr6mtu6kWzw8PAw70OUk5PDqlWrWL16NZ07dwZKl3zVqFGjTCzPP/8848ePNx8PGTKEAQMGmPdE8vPzY8GCBXTq1IklS5bg7e3NggULeOutt5g2bRqtW7cmMDCQAQMGmONKTU3FxcUFLy+vMv1ptVp8fX1JTU29p3t3Q3x8PP369SMvLw8vLy8SEhKoWrXqLcueOHGChQsXEhMTU26bAQEBxMXF0bdvXwoKCiguLiYkJITFixeXW+/jjz/m0KFDHDhw4JbX27Zti6OjI5GRkbz33nsopZg4cSIlJSVkZmZWbMC/mD59Os8//zwODg588cUX/O1vf+P69euMGjXqluVjYmK4fv06ffr0uat+hBBCCCHE40NmSgkz46U88i+4c9GkB0CrgF82JH+55CzLcn7GqvGL99R2cbEBgFyjA69tm8WsA6Op4uBAvWpOkpAS4jEQHx+Pk5MT9vb2dO/enb59+zJo0CBsbGx45plnzOXc3d1p2LAhP/74IwCjRo0iOjqagIAAoqKiOHLkSLn9nDp1CqPRSJs2bcznXFxcaNiwYZmyrVu3tjj+/vvvWblyJU5OTuZXUFAQJpOJtLTSpPjw4cM5f/48cXFxtGvXjnXr1tGkSRMSEhIqfC+02js/JTQuLs4ijsTERPO1wMBADh8+zJ49ewgODqZPnz5cvHixTBsZGRkEBwfTu3dvi72hbm43IiICgOTkZEaPHs2UKVM4ePAgn3/+Oenp6ebriYmJFvXi4uI4c+YMo0ePJi4uDnt7+zL9Q+nssnXr1vG///0PJycnXFxcuHbtGi1btsTK6u4+QrzzzjsEBATQokULIiMjeeutt267L9nq1auZNm0a//3vf/Hw8LjjPRVCCCGEEI8nyQYIs8LUqxhNNhgpfdKetb01qiQfgCpaO6wC/w4Ngu663Z9/XsbVq98CkGvUmc93a1L9AUQtxONLZ2tN8vS7/556EP3ercDAQJYsWYJWq6VGjRrY2NiwadOmO9YbMmQIQUFBbN68mS+++IKZM2cSGxvLyJEj7yV0C46Olg9buH79OsOGDbvlzJvatWub/63X6wkJCSEkJITo6GiCgoKIjo6ma9eu+Pn5YTAYOHfuXJnZWUVFRZw8eZKgoDu/Zz179rRI1nl7e1vEXb9+ferXr0/btm3x8/Pjgw8+YNKkSeYy586dIzAwkPbt27N8+XKLtm9+upyzszMAM2fOJCAggAkTJgDQrFkzHB0d6dixI9HR0bRu3dqiXvXq1fnyyy+5ePEiLVu2NJ8vKSlh586dLFq0iMLCQqytrenWrRsnT57k8uXL2NjY4Orqiqenp8Wst3vxzDPP8O6771JYWGixPPDjjz9myJAhrFu3zmJJYXn3VAghhBBCPJ4kKSXMTEUmLtuBdT68eiYBik9w49lK2ipe0GnCXbeZl/czJ07ONh9fyXcnpHkNYns3R2sjE/XEH5tGo7nnZXQP241Eys0aN25McXEx+/btMy/fu3LlCikpKfj7+5vL1apVi4iICCIiIpg0aRLvv/8+I0eONM84unl/J19fX2xtbTlw4IA5kWQwGEhNTeXZZ8tfPtyyZUuSk5PLxFkejUZDo0aN2LNnDwCvvPIKkZGRxMbGEhsba1F26dKl5OXlMXDgwDu2q9fr0ev1FYrBZDJRWFhoPs7IyCAwMJBWrVqxYsWKMjOSbjW+vLw8bGwsv5asrUuTj0opdDpdmXqdO3fm6NGjFudeffVVGjVqRGRkpLn+DTeWGH711VdcvHiRnj17Vmh8t3P48GGqVKlikZBas2YNr732Gh9//DEvvPCCRfm7uadCCCGEEOLx8Hj8NSR+d2fOnGHT/k845qJj2NGr5Nle4tftZ63xrHbrpR13YjRmAaA0Lhw1vMx/jtXmhRa2kpAS4gng5+dHaGgoQ4cOZdmyZej1eiZOnIi3tzehoaEAjBkzhu7du9OgQQOuXr3K119/TePGjQHw8fFBo9EQHx9Pjx490Ol06PV6wsPDmTBhAm5ubnh4eBAVFYWVlRUajabceCIjI2nbti0jRoxgyJAhODo6kpycTEJCAosWLeLw4cNERUURFhaGv78/Wq2WHTt28OGHHxIZGQmUzqiaPXs2b775Jvb29oSFhWFra8tnn33G5MmTiY6O5qmnnrLoNyUlpUwsTZo0wdbW1uJcbm4uM2bMoGfPnnh5eXH58mUWL15MRkYGvXv3BkoTUs899xw+Pj7ExMRw6dIlc31PT8/bjj0kJIShQ4eyZMkSgoKCyMzMZMyYMbRp0+aW+3FBaZLnt2NxdHTE3d3d4vyKFSto3Lgx1apVY+/evYwePZqxY8daLKk8ffo0WVlZnD59mpKSEvOsrPr16+Pk5MT//vc/Lly4QNu2bbG3tychIYH33nvPYkP51atXEx4ezvz583nmmWc4f/48ULqpvouLy23HfqPfc+fOAb++H56enuXeMyGEEEIIUfkkKSUA2PfpBr6/buJEiRNtuUKuKgbA3qYBFxvuxb1q03tqt7g4B4AzBifmf9sCABedbXlVhBCPkRUrVjB69GhefPFFioqKePbZZ9myZYs5IVNSUsLw4cM5e/Yszs7OBAcHM2/ePKB0+dW0adOYOHEir776KgMHDmTlypXMnTuXiIgIXnzxRZydnXnrrbc4c+bMbfc9uqFZs2bs2LGDt99+m44dO6KUol69evTt2xeAmjVrUqdOHaZNm0Z6ejoajcZ8PHbsWHM7Y8eOxdfXl9jYWObPn09ubi5QOounX79+Zfq91bkzZ85Qs2ZNi3PW1tYcP36cVatWcfnyZdzd3Xn66adJTEykSZMmACQkJHDixAlOnDhRpn55T6obNGgQOTk5LFq0iPHjx+Pq6srzzz/PrFmzyr1nFZGSksKkSZPIysqiTp06vP322xb3C2DKlCmsWrXKfNyiRenP+6+//prnnnsOW1tbFi9ezNixY1FKUb9+febOnWuxV9by5cspLi5m+PDhDB8+3Hw+PDyclStX3ja+TZs28eqrr5qPb7wfUVFRTJ069X6GLoQQQgghfmca9SCeDf6Eys7OxsXFBYPBYN6340lUklPEv2ct5B/FDVBYEX3yBy5Y7QOK2PTsWcbmX+TPTV+DoOgKt1lUdIXTp/9NTk4yWVd3kZJVjy2Z71DFQcvUnk2oV83p9xuQEI+ggoIC0tLSqFu37h2TK8JSbm4u3t7exMbGMnjw4Ifef1ZWFp07d8bZ2ZmtW7fi4ODw0GMQD19537N/lM8HFSX3QwghhBC/VdHPBzJTSpB74DzX0aOwwgrQYAOUzpT6X7YR56qNoOPYctv4rXOZ6/n59K+b814tdGV9RHvs72GDZSHEH0tSUhLHjx+nTZs2GAwGpk+fDmBeEviwubm5sX37dhYvXszevXvp3LlzpcQhhBBCCCHEk0aSUgJTXjFXbaypcj2bunmZFGsK4JctzrV/+T+o07L8Bm6hsLB0H5SUrHocvezPkSvP8LYkpIQQFRQTE0NKSgparZZWrVqRmJho3mi7Mri7uzNlypRK618IIYQQQognkSSlBMpYwhFXF6bu+ZKTVc5zWWM0X7NxdL2nNvMLDQAcvezPeVNvhjx36412hRDit1q0aMHBgwcrOwwhhBBCCCHE70ySUn9wKcePk3TgKzQuDmR6NkcVnim9oLHHyeXaXSelzpxZxekzKygsKp0pVawc+fRvAQ84aiGEEEIIIYQQQjzurCo7AFF5DFeu8NHqtcxWVTH8XITJqvRx6/n21mx87ipN6x4FreNdtXn67P9RUHAGZSoo7cPo88DjFkIIIYQQQgghxONPZkr9gWX9kEoWjmQpRzyKL2PSlOYoba0LGFKSSZunBoCN3V21mV9wFQ2w7Eg4J6/VoWa1er9D5EIIIYQQQgghhHjcSVLqD0oVm8j68golqjQR5WhVgklTOlPKU1NC+PDku2rv6tX95OadAJUNgNG6GWEd/On+lNeDDVwIIYQQQgghhBBPBElK/UGV5BopLC4m2as27ZIO0iz3GMVWpbOi7KxMd9VWYeEFDiUNAExoAJPS0MCzBmO6NHjwgQshhBBCCCGEEOKJIEmpPyClFBlnzpDskE/9DAMtc09hJBdlygWgiq7krtorKMgATKDRkZHfjK9O1aauz93tRSWEEEIIIYQQQog/FklK/QEd+f57Pt24kTMO7vhlFVJsbQUlYG3fhhJbewIbbb6r9oxGAwDpBnfe/XYAAM0a2j7wuIUQQgghhBBCCPHkkKfv/QGdT07mZIk7X2b5oi0sAmUE4Pt6Byh8ehPa0LkVaufate9I3NWWI0ffACDX6EgjTz3tfN3p2bzG7xa/EOLhGjRoEBqNBo1Gg1arpX79+kyfPp3i4uL7avebb75Bo9Fw7dq1BxNoBaSlpdG/f39q1KiBvb09NWvWJDQ0lOPHj1uUi4+Pp1OnTuj1ehwcHHj66adZuXKlRZn09HQ0Gg2HDx+ucP9Tp06lUaNGODo6UqVKFbp06cK+ffss2hw8eDB169ZFp9NRr149oqKiKCoqumPbcXFxNG/eHAcHB7y8vHjttde4cuXKHetlZGTw17/+FXd3d3Q6HU2bNuW7774zX7/5/b/xCg4OtmijTp06Zcr84x//MF9PSUkhMDCQ6tWrY29vj6+vL3//+98xGo0W7Vy7do3hw4fj5eWFnZ0dDRo0YMuWLeXGv2HDBrp164a7u/tdvx9CCCGEEKJyyUypPxhTYQm55/K4ZCpdXmerrChRpX/s/KNmdaq/9r8Kt3X5ytcUFV0yH5+46svG4QHY21o/2KCFEJUuODiYFStWUFhYyJYtWxg+fDi2trZMmjSpskMDoKioCK1WW24Zo9FI165dadiwIRs2bMDLy4uzZ8+ydetWi8TYwoULGTNmDJGRkSxZsgStVstnn31GREQEP/zwAzExMfccZ4MGDVi0aBG+vr7k5+czb948unXrxokTJ6hWrRrHjx/HZDKxbNky6tevzw8//MDQoUPJzc0tt9/du3czcOBA5s2bR0hICBkZGURERDB06FA2bNhw23pXr14lICCAwMBAtm7dSrVq1fjpp5+oUqWKRbkb7/8NdnZln8w6ffp0hg4daj7W6/Xmf9va2jJw4EBatmyJq6sr33//PUOHDsVkMvHee+8Bpe9h165d8fDwYP369Xh7e/Pzzz/j6upa7j3Nzc2lQ4cO9OnTx6J/IYQQQgjxGFDitgwGgwKUwWCo7FAemOv7M9Xqt5epljM+UYEjFqjYfmEqpk+Iiunzgsr6eMxdtZWcPFlt/9JXvfXBa6r5lDjV6O9bf6eohXj85efnq+TkZJWfn1/Zody18PBwFRoaanGua9euqm3btiorK0uFhYUpV1dXpdPpVHBwsEpNTTWXS09PVy+++KJydXVVDg4Oyt/fX23evFmlpaUpwOIVHh6ulFIqOztb9e/fXzk4OChPT081d+5c1alTJzV69Ghzuz4+Pmr69OkqLCxM6fV6c93ExETVoUMHZW9vr2rWrKlGjhyprl+/rpRSKikpSQEqPT39tmM9ffq0srW1VePGjStzbcGCBQpQ3377rVJKmceQlJR09zf1Fzd+z2zfvv22ZWbPnq3q1q1bbjtz5sxRvr6+ZeL19vYut15kZKTq0KFDuWVu9f7/lo+Pj5o3b165ZX5r7NixFn0vWbJE+fr6qqKiortq54YH8X7crLzv2cr6fHDlyhXVv39/pdfrlYuLi3rttddUTk5OuXXy8/PV3/72N+Xm5qYcHR3Vyy+/rM6fP3/LspcvX1be3t4KUFevXq1wXE/i5yUhhBBC3J+Kfj6Q5Xt/MCW5RgqtTPheKyTk0rcoUxZQ+rQ9Bxe3CrWRk5PMyVNzybp2AIBL+e7klVThpZbev1fYQjyZlIKi3If/Uuq+Q9fpdBQVFTFo0CC+++47Nm3axN69e1FK0aNHD/OyrOHDh1NYWMjOnTs5evQos2bNwsnJiVq1avHJJ58ApUu7MjMzmT9/PgDjxo1j9+7dbNq0iYSEBBITEzl06FCZGGJiYmjevDlJSUm88847nDx5kuDgYHr16sWRI0dYu3Ytu3btYsSIEQBUq1YNKysr1q9fT0nJrR/osH79eoxGI2+++WaZa8OGDcPJyYk1a9bc9/2D0plBy5cvx8XFhebNm9+2nMFgwM2t/J/P7dq148yZM2zZsgWlFBcuXGD9+vX06NGj3HqbNm2idevW9O7dGw8PD1q0aMH7779fptw333yDh4cHDRs25I033rjlssB//OMfuLu706JFC+bMmVPu8s4TJ07w+eef06lTJ4tY2rVrx/Dhw6levTpPPfUU77333m3fqz+iAQMGcOzYMRISEoiPj2fnzp28/vrr5dYZO3Ys//vf/1i3bh07duzg3LlzvPzyy7csO3jwYJo1a/Z7hC6EEEIIcUuyfO8P5Oeff2ZD4lqybEoIuGCkhNI/GGzs2+Om24Gde8X2gTp+/G2yc46YjwtNbqRGd/9dYhbiiWbMg/cqYf+1yedAe29PyFRK8eWXX7Jt2za6d+/Oxo0b2b17N+3btwdK9zWqVasWGzdupHfv3pw+fZpevXrRtGlTAHx9fc1t3Ui0eHh4mJdo5eTksGrVKlavXk3nzp0BWLFiBTVqlL1Pzz//POPHjzcfDxkyhAEDBjBmzBgA/Pz8WLBgAZ06dWLJkiV4e3uzYMEC3nrrLaZNm0br1q0JDAxkwIAB5rhSU1NxcXHBy8urTH9arRZfX19SU1Pv6d7dEB8fT79+/cjLy8PLy4uEhASqVq16y7InTpxg4cKFd1wyGBAQQFxcHH379qWgoIDi4mJCQkJYvHhxufVOnTrFkiVLGDduHJMnT+bAgQOMGjUKrVZLeHg4ULp07+WXX6Zu3bqcPHmSyZMn0717d/bu3Yu1dely7VGjRtGyZUvc3NzYs2cPkyZNIjMzk7lzLfcobN++PYcOHaKwsJDXX3+d6dOnW8Ty1VdfMWDAALZs2cKJEyf429/+htFoJCoq6o739Un3448/8vnnn3PgwAFat24NlC417dGjBzExMbf8HjEYDHzwwQesXr2a559/Hij9fmrcuDHffvstbdu2NZddsmQJ165dY8qUKWzduvXhDEoIIYQQf3gyU+oPZMeGjzGU5FFgA7aaPPhlL6lv627FpWEK1O10hxZK5RdcAOCHrGdYnxrCmbwWv1vMQohHQ3x8PE5OTtjb29O9e3f69u3LoEGDsLGx4ZlnnjGXc3d3p2HDhvz4449AabIiOjqagIAAoqKiOHLkyO26AEoTE0ajkTZt2pjPubi40LBhwzJlb/xhfsP333/PypUrcXJyMr+CgoIwmUykpaUBpTO3zp8/T1xcHO3atWPdunU0adKEhISECt+LO+1dBaXJuZvjSExMNF8LDAzk8OHD7Nmzh+DgYPr06cPFixfLtJGRkUFwcDC9e/e22Cvp5nYjIiIASE5OZvTo0UyZMoWDBw/y+eefk56ebr6emJhoUS8uLg4Ak8lEy5Ytee+992jRogWvv/46Q4cOZenSpeb++vXrR8+ePWnatCl//vOfiY+P58CBA3zzzTfmMuPGjeO5556jWbNmREREEBsby8KFCyksLLQY09q1azl06BCrV69m8+bNFsk2k8mEh4cHy5cvp1WrVvTt25e3337bHEt59/SPYO/evbi6ulp83Xfp0gUrKyuLzfJvdvDgQYxGI126dDGfa9SoEbVr12bv3r3mc8nJyUyfPp2PPvoIKyv5aCiEEEKIh0dmSv1BqGITxp+z+NzhT1wp0DPW9CNQurwmsPNLdGkzBOycK9RWkTEbDRB3rBsX86vxXMMqd6wjhLgFW4fSWUuV0e9dCgwMNG/6XaNGDWxsbNi0adMd6w0ZMoSgoCA2b97MF198wcyZM4mNjWXkyJH3ErkFR0fL2V7Xr19n2LBhjBo1qkzZ2rVrm/+t1+sJCQkhJCSE6OhogoKCiI6OpmvXrvj5+WEwGDh37lyZmSdFRUWcPHmSoKCgO8bWs2dPi2Sdt/evy5sdHR2pX78+9evXp23btvj5+fHBBx9YbBp/7tw5AgMDad++PcuXL7do++anyzk7l/7cnjlzJgEBAUyYMAGAZs2a4ejoSMeOHYmOjqZ169YW9apXrw6Al5cX/v7+Fu03btzYvLTyVnx9falatSonTpwwz2b7rWeeeYbi4mLS09MtEoq1atUCwN/fn5KSEl5//XXGjx+PtbU1Xl5e2Nrammdf3Yjl/PnzFBUVlXtP/wjOnz+Ph4eHxTkbGxvc3Nw4f/78betotdoym8VXr17dXKewsJC//OUvzJkzh9q1a3Pq1Kk7xlJYWGiRcMzOzr7L0QghhBBClJKk1B/E9X2ZGJx8OW/U09JwGKPxZ/O1QU+/gdZOV279kpJCzmX+F2NRFhryAXiqZg0GdWxBSx9JSglxTzSae15G97DdSKTcrHHjxhQXF7Nv3z7z8r0rV66QkpJikeioVasWERERREREMGnSJN5//31GjhxpnnF0855Bvr6+2NracuDAAXMiyWAwkJqayrPPPltujC1btiQ5OblMnOXRaDQ0atSIPXv2APDKK68QGRlJbGwssbGxFmWXLl1KXl4eAwcOvGO7er3e4ulz5TGZTBZ/4GdkZBAYGEirVq1YsWJFmZkrtxpfXl4eNjaWv9JvJHeUUuh0ulvWCwgIICUlxeJcamoqPj4+t4337NmzXLly5ZZLHG84fPgwVlZWZZIoNzOZTBiNRkwmE9bW1gQEBLB69WpMJpN5zKmpqXh5eaHVatFqtRW+p4+TiRMnMmvWrHLL3Jh5+HuYNGkSjRs35q9//WuF68ycOZNp06b9bjEJIYQQ4o9DklJ/ECVXC8mysaFzRjL+ed9yY/tZa8BWW/bR3r916dLnpKZONR8bTdbUqlqNZxtU+13iFUI8+vz8/AgNDWXo0KEsW7YMvV7PxIkT8fb2JjQ0FIAxY8bQvXt3GjRowNWrV/n6669p3LgxAD4+Pmg0GuLj4+nRowc6nQ69Xk94eDgTJkzAzc0NDw8PoqKisLKyQqPRlBtPZGQkbdu2ZcSIEQwZMgRHR0eSk5NJSEhg0aJFHD58mKioKMLCwvD390er1bJjxw4+/PBDIiMjgdIZVbNnz+bNN9/E3t6esLAwbG1t+eyzz5g8eTLR0dE89dRTFv3+NqkD0KRJE2xtbS3O5ebmMmPGDHr27ImXlxeXL19m8eLFZGRk0Lt3b6A0IfXcc8/h4+NDTEwMly5dMtf39PS87dhDQkIYOnQoS5YsISgoiMzMTMaMGUObNm1uudfQDWPHjqV9+/a899579OnTh/3797N8+XLz7Kzr168zbdo0evXqhaenJydPnuStt96ifv365hlje/fuZd++fQQGBqLX69m7dy9jx47lr3/9K1WqlP6nRVxcHLa2tjRt2hQ7Ozu+++47Jk2aRN++fc336Y033mDRokWMHj2akSNH8tNPP/Hee+/dcubbzbKysjh9+jTnzp2zeD88PT3LvWePivHjxzNo0KByy/j6+uLp6VlmmWdxcTFZWVm3HaenpydFRUVcu3bNYrbUhQsXzHW++uorjh49yvr164HSJCZA1apVefvtt2+ZfJo0aRLjxo0zH2dnZ5tnwQkhhBBC3JXf/0GAj68n5RHHJQUF6ti0T1TQvz5TSwbMVzF9XlAxfV9R/wyfpbYPC65QG+npS9X2L33VR5+1U2+vDFMvz31Xzfn8+O8cuRBPjvIeL/+oCw8PV6Ghobe8lpWVpcLCwpSLi4vS6XQqKChIpaammq+PGDFC1atXT9nZ2alq1aqpsLAwdfnyZfP16dOnK09PT6XRaFR4eLhSSqns7GzVv39/5eDgoDw9PdXcuXNVmzZt1MSJE831fHx81Lx588rEs3//ftW1a1fl5OSkHB0dVbNmzdSMGTOUUkpdunRJjRo1Sj311FPKyclJ6fV61bRpUxUTE6NKSkos2tm4caPq2LGjcnR0VIAC1Jo1ayzKpKWlma/99nXmzJkyseXn56uXXnpJ1ahRQ2m1WuXl5aV69uyp9u/fby6zYsWK27Z5JwsWLFD+/v5Kp9MpLy8vNWDAAHX27Nk71vvf//6nnnrqKWVnZ6caNWqkli9fbr6Wl5enunXrpqpVq6ZsbW2Vj4+PGjp0qDp//ry5zMGDB9UzzzyjXFxclL29vWrcuLF67733VEFBgbnMxx9/rFq2bGl+X/z9/dV7771X5vthz5496plnnlF2dnbK19dXzZgxQxUXF5cb/+3uWVRU1B3HXp7yvmcr4/NBcnKyAtR3331nPrdt2zal0WhURkbGLetcu3ZN2draqvXr15vPHT9+XAFq7969SimlTpw4oY4ePWp+ffjhhwpQe/bsURcuXKhQbE/K5yUhhBBCPDgV/XygUeoBPBv8CZWdnY2LiwsGg8G8b8fj6LMpb5NZ5MSKev4M3JVBQcEWsHLietXaRNTZTPXxx+7YxokTc/j59FK2/9yJNSm9cNBa80H407Sr5/4QRiDE46+goIC0tDTq1q2Lvb19ZYfzWMnNzcXb25vY2FgGDx780PvPysqic+fOODs7s3XrVhwc7n5PLvH4Ke97trI+H3Tv3p0LFy6wdOlSjEYjr776Kq1bt2b16tVA6Uy7zp0789FHH5kfFvDGG2+wZcsWVq5cibOzs3k/txtLVn/rm2++ITAwkKtXr5bZi+p2npTPS0IIIYR4cCr6+UCW7z3hsrKySLKyBftCiriGyap0+cs13TVSW5+gasD8cusXFWVx5syHXLr8NQB5xfYcntIVvb0t1lblL6URQoh7kZSUxPHjx2nTpg0Gg4Hp06cDmJcEPmxubm5s376dxYsXs3fv3ttu7i3E7y0uLo4RI0bQuXNnrKys6NWrFwsWLDBfNxqNpKSkkJeXZz43b948c9nCwkKCgoL417/+VRnhCyGEEEKUIUmpJ1xeXh5ZJh3fFNWn4MwVlMYEQCNbLdMHHrjjHi3nzq0l/ecl5uOcIldcdLZ3rCeEEPcjJiaGlJQUtFotrVq1IjExkapVq1ZaPO7u7kyZMqXS+hcCShOkN2ZF3UqdOnX47QR4e3t7Fi9ezOLFiyvUx3PPPVemDSGEEEKI34skpZ5gyqS49FkKGSYXbIty6XFuB8ai0i3OdXY2FUos5eWXbqqaerUehy4040zBs5KQEkL8rlq0aMHBgwcrOwwhhBBCCCHE70ySUk+wkpwi8jIMOOYX8OqFNApLDOZrblV0FWojr7C0zg+Xm/BM078xQZ62J4QQQgghhBBCiAdAklJPqKKiIj76eBWXbS9R75yi2MYGSsBK2xgH5cqzLzcot/7585u4eOUABsN3pSesnBjS0fchRC6EEEIIIYQQQog/AklKPaFO7trF2cxzoAE7lY1SpW/1j57fYaqbwbCaW29b12jM5ljyeMBkPleMPGVPCCGEEEIIIYQQD44kpZ5Qhl/2Y6licqTElAWqNMGk15v4c8s3wL3ebesajVcAE0Ultnzxc2fyS1xp5hf8MMIWQgghhBBCCCHEH4QkpZ5QRbm2lCgN+Tl5aIvOYKL0STqDa3XEv+3Y29ZTqoTCwtLNzXOKnLB1fZ15rzR/KDELIYQQQgghhBDij0OSUk+g4sv5FBR5srnEi+cufYU3RvM1d0/P29YrKclj195giosyAMg1OuBsb/u7xyuEEEIIIYQQQog/HklKPWGUUlw5ehwDRQw+fhxlb6IQsLZrjaNWQ3W/xretm5t7wpyQAjhyuQn162kfQtRCCCGEEEIIIYT4o7Gq7ADEg/XpihUs2fEZ+7RnsHNpgNGmNKlkZV0Va/cC8H3utnWLjDkAZFz3ZFXaCoodX+fPLbwfRthCiEfYoEGD0Gg0aDQatFot9evXZ/r06RQXF99Xu9988w0ajYZr1649mEArIC0tjf79+1OjRg3s7e2pWbMmoaGhHD9+3KJcfHw8nTp1Qq/X4+DgwNNPP83KlSstyqSnp6PRaDh8+HCF+586dSqNGjXC0dGRKlWq0KVLF/bt22fR5uDBg6lbty46nY569eoRFRVFUVHRHduOi4ujefPmODg44OXlxWuvvcaVK1fKrVNSUsI777xj0d+7776LUspcZsOGDXTr1g13d/fbjvfkyZO89NJLVKtWDWdnZ/r06cOFCxfuelxHjhyhY8eO2NvbU6tWLWbPnn3Hce/cuZOQkBBq1KiBRqNh48aNd6wjhBBCCCEeDZKUesKkZZbOdMrXaFFWdihK/2j8vtY3PD2sG1hZ37JecYmJyzlZAOQZdXwwqAML/9ICb1fdwwlcCPFICw4OJjMzk59++onx48czdepU5syZU9lhmVUkaWM0GunatSsGg4ENGzaQkpLC2rVradq0qUVibOHChYSGhhIQEMC+ffs4cuQI/fr1IyIigjfffPO+4mzQoAGLFi3i6NGj7Nq1izp16tCtWzcuXboEwPHjxzGZTCxbtoxjx44xb948li5dyuTJk8ttd/fu3QwcOJDBgwdz7Ngx1q1bx/79+xk6dGi59WbNmsWSJUtYtGgRP/74I7NmzWL27NksXLjQXCY3N5cOHTowa9asW7aRm5tLt27d0Gg0fPXVV+zevZuioiJCQkIwmUwVHld2djbdunXDx8eHgwcPMmfOHKZOncry5cvLHUNubi7Nmzdn8eLF5ZYTQgghhBCPICVuy2AwKEAZDIbKDqXC/jFtqoqKilLvv/UftThsrort11/F9HlBpXy397Z1UtI2qP/b1FGt29xCbf/SVy1Y9+JDjFiIP4b8/HyVnJys8vPzKzuUuxYeHq5CQ0MtznXt2lW1bdtWZWVlqbCwMOXq6qp0Op0KDg5Wqamp5nLp6enqxRdfVK6ursrBwUH5+/urzZs3q7S0NAVYvMLDw5VSSmVnZ6v+/fsrBwcH5enpqebOnas6deqkRo8ebW7Xx8dHTZ8+XYWFhSm9Xm+um5iYqDp06KDs7e1VzZo11ciRI9X169eVUkolJSUpQKWnp992rKdPn1a2trZq3LhxZa4tWLBAAerbb79VSinzGJKSku7+pv7ixu+Z7du337bM7NmzVd26dcttZ86cOcrX17dMvN7e3uXWe+GFF9Rrr71mce7ll19WAwYMKFP2duPdtm2bsrKysvhdee3aNaXRaFRCQsJt+/7tuP71r3+pKlWqqMLCQvO5yMhI1bBhw3LHcDNAffrppxUuX57yvmcfx88Hvye5H0IIIYT4rYp+PpCZUk8QZSyhxARH8924mv4x+YVfokwGABwc9bet9/OZj/ByzKCKfWlZO/t6DyVeIf7olFLkGfMe+kvdtDTrXul0OoqKihg0aBDfffcdmzZtYu/evSil6NGjB0Zj6QMWhg8fTmFhITt37uTo0aPMmjULJycnatWqxSeffAJASkoKmZmZzJ8/H4Bx48axe/duNm3aREJCAomJiRw6dKhMDDExMTRv3pykpCTeeecdTp48SXBwML169eLIkSOsXbuWXbt2MWLECACqVauGlZUV69evp6Sk5JbjWr9+PUaj8ZYzooYNG4aTkxNr1qy57/sHpbO7li9fjouLC82b3/4ppwaDATc3t3LbateuHWfOnGHLli0opbhw4QLr16+nR48e5dZr3749X375JampqQB8//337Nq1i+7du1d4HIWFhWg0Guzs7Mzn7O3tsbKyYteuXRUe1969e3n22WfRan/dyzAoKIiUlBSuXr1a4XiEEEIIIcTjQzY6f4Lk7D2HwaSlWepxrLQKsEZjXQ1Px5/xqt/wtvVMJTlYAd9lhfFq4IsEVvnTwwpZiD+0/OJ8nln9zEPvd1//fTjYOtxTXaUUX375Jdu2baN79+5s3LiR3bt30759e6B0X6NatWqxceNGevfuzenTp+nVqxdNmzYFwNfX19zWjYSEh4cHrq6uAOTk5LBq1SpWr15N586dAVixYgU1atQoE8vzzz/P+PHjzcdDhgxhwIABjBkzBgA/Pz8WLFhAp06dWLJkCd7e3ixYsIC33nqLadOm0bp1awIDAxkwYIA5rtTUVFxcXPDy8irTn1arxdfX15zAuVfx8fH069ePvLw8vLy8SEhIoGrVqrcse+LECRYuXEhMTEy5bQYEBBAXF0ffvn0pKCiguLiYkJCQOy5pmzhxItnZ2TRq1Ahra2tKSkqYMWMGAwYMqPB42rZti6OjI5GRkbz33nsopZg4cSIlJSVkZmZWeFznz5+nbt26FuWqV69uvlalSpUKxySEEEIIIR4PMlPqCZHx7bd8t+VzTPnFVHUp/eNPY10FO+f+tG9ug7VN2fzj2at5dJ+fSE7eNQAKrZ7Cw701VlaSqxRCWIqPj8fJyQl7e3u6d+9O3759GTRoEDY2NjzzzK+JNXd3dxo2bMiPP/4IwKhRo4iOjiYgIICoqCiOHDlSbj+nTp3CaDTSpk0b8zkXFxcaNiybWG/durXF8ffff8/KlStxcnIyv4KCgjCZTKSlpQGlM7fOnz9PXFwc7dq1Y926dTRp0oSEhIQK34ubZ/LcTlxcnEUciYmJ5muBgYEcPnyYPXv2EBwcTJ8+fbh48WKZNjIyMggODqZ3794We0Pd3G5ERAQAycnJjB49milTpnDw4EE+//xz0tPTzdcTExMt6sXFxQHw3//+l7i4OFavXs2hQ4dYtWoVMTExrFq1qsL3o1q1aqxbt47//e9/ODk54eLiwrVr12jZsiVWVmU/ZtxuXHdyuzEIIYQQQojHl2QfngC5ubn8e+sWlL0V14v0lPzyR4DSaDij30u11j3L1DEar3Lk+1cJq5eJi901AOr/8j/SQoiHQ2ejY1//fXcu+Dv0e7cCAwNZsmQJWq2WGjVqYGNjw6ZNm+5Yb8iQIQQFBbF582a++OILZs6cSWxsLCNHjryX0C04OjpaHF+/fp1hw4YxatSoMmVr165t/rderyckJISQkBCio6MJCgoiOjqarl274ufnh8Fg4Ny5c2VmZxUVFXHy5EmCgoLuGFvPnj0tknXe3r8+ydTR0ZH69etTv3592rZti5+fHx988AGTJk0ylzl37hyBgYG0b9++zEbfNz/9ztnZGYCZM2cSEBDAhAkTAGjWrBmOjo507NiR6OhoWrdubVHvxgykCRMmMHHiRPr16wdA06ZN+fnnn5k5cybh4eF3HOcN3bp14+TJk1y+fBkbGxtcXV3x9PS0mBl3p3F5enpaPLEPMB97enpSp06dW45BCCGEEEI8viQp9QQwGAwojRUaBXbFJShVAECB/gwthoTg2PDlMnWysvZgZzpK9V9W8FhZ6+nbtnWZckKI349Go7nnZXQP241Eys0aN25McXEx+/btMy/fu3LlCikpKfj7+5vL1apVi4iICCIiIpg0aRLvv/8+I0eONM84unl/J19fX2xtbTlw4IA5kWQwGEhNTeXZZ58tN8aWLVuSnJxcJs7yaDQaGjVqxJ49ewB45ZVXiIyMJDY2ltjYWIuyS5cuJS8vj4EDB96xXb1ej15/+738bmYymSgsLDQfZ2RkEBgYSKtWrVixYkWZ2Ua3Gl9eXh42v5kRa21d+rRVpRQ6ne629X7bvrW1tfmpeXfrxjLEr776iosXL9Kz56//KXKncbVr1463334bo9GIra0tAAkJCTRs2NC8dO9u3lshhBBCCPHok6TUE6CosPRR6A6FJhzP7KXYVLrBcBNM/PkWCamL2QUkppyiCpCSVQ+jYwRvdH4Oa+u7nz0hhPjj8vPzIzQ0lKFDh7Js2TL0ej0TJ07E29ub0NBQAMaMGUP37t1p0KABV69e5euvv6Zx48YA+Pj4oNFoiI+Pp0ePHuh0OvR6PeHh4UyYMAE3Nzc8PDyIiorCysoKjUZTbjyRkZG0bduWESNGMGTIEBwdHUlOTiYhIYFFixZx+PBhoqKiCAsLw9/fH61Wy44dO/jwww+JjIwESmdUzZ49mzfffBN7e3vCwsKwtbXls88+Y/LkyURHR/PUU09Z9JuSklImliZNmpgTKzfk5uYyY8YMevbsiZeXF5cvX2bx4sVkZGTQu3dvoDRx89xzz+Hj40NMTAyXLl0y1/f09Lzt2ENCQhg6dChLliwhKCiIzMxMxowZQ5s2bW65H9fN9WbMmEHt2rVp0qQJSUlJzJ07l9dee81cJisri9OnT3Pu3DmL8Xp6eppjWrFiBY0bN6ZatWrs3buX0aNHM3bsWPOyy4qMq3///kybNo3BgwcTGRnJDz/8wPz585k3b95t44fSGXInTpwwH6elpXH48GHc3NwsZsgJIYQQQohH0O/9GMDH2ePyiOPvlm5X70yJUn8fPUXF9HnB/Eqa9Owty49dk6jGvj9Mbf/SV037qJ9a8s2JhxyxEH885T1e/lEXHh6uQkNDb3ktKytLhYWFKRcXF6XT6VRQUJBKTU01Xx8xYoSqV6+esrOzU9WqVVNhYWHq8uXL5uvTp09Xnp6eSqPRqPDwcKWUUtnZ2ap///7KwcFBeXp6qrlz56o2bdqoiRMnmuv5+PioefPmlYln//79qmvXrsrJyUk5OjqqZs2aqRkzZiillLp06ZIaNWqUeuqpp5STk5PS6/WqadOmKiYmRpWUlFi0s3HjRtWxY0fl6OioAAWoNWvWWJRJS0szX/vt68yZM2Viy8/PVy+99JKqUaOG0mq1ysvLS/Xs2VPt37/fXGbFihW3bfNOFixYoPz9/ZVOp1NeXl5qwIAB6uzZs+XWyc7OVqNHj1a1a9dW9vb2ytfXV7399tuqsLDwjjFFRUWZy0RGRqrq1asrW1tb5efnp2JjY5XJZLrrcX3//feqQ4cOys7OTnl7e6t//OMfdxz3119/fct2b3w93avyvmcfl88HD4vcDyGEEEL8VkU/H2iUegDPBn9CZWdn4+LigsFgMO/b8ahRSpEY/Slrsk/hd8mEyt+JlU0tnK2aMrj3cei5wKL81WsHOHBwANaa0uUyZwtfpEeH2VTT292qeSHEA1JQUEBaWhp169bF3t6+ssN5rOTm5uLt7U1sbCyDBw9+6P1nZWXRuXNnnJ2d2bp1Kw4Oj8eSS3F/yvuefRw+HzxMcj+EEEII8VsV/XwgT997jF2/fJkZ097m6+IjPP3TSaw1vzwRSqPFzpgGvp3K1Mk2JGGtKcGkNGDlSsgzfSQhJYR4pCQlJbFmzRpOnjzJoUOHGDBgAIB5SeDD5ubmxvbt2+ncuTN79+6tlBiEEEIIIYR4EsmeUo+x1P/+l2K0oAEbkwJVupeUXWEy+V2egsa//gFXYlIs33kKu/yT+NjBV6c7MqDbP3Fzc6ms8IUQ4rZiYmJISUlBq9XSqlUrEhMTzZtoVwZ3d3emTJlSaf0LIYQQQgjxJJKk1GOs4JoBgKqFWvJtsikxlm70WljHg2f6RYP1r2/v3pPn+DJpNc/VPAJ2kF+iw0NmSAkhHkEtWrTg4MGDlR2GEEIIIYQQ4ncmSanHmLGo9BHiJVdOU2ibDcXZADxd1YVWLo4WZa9dWssbzVeaj3s0a4iHs+xrI4QQQgghhBBCiMohSanHlDKWUFRUi2SThsYFV3EGrGxqY7LX0LJtE3O5omITnyadJevSCRro4XpxDfxqtqVe/QGVF7wQQgghhBBCCCH+8GSj88eQMpn4ae3/yLGyou3ZfFxNJgCstI0wubri4OpmLvtF8nkiPznK5ZwsAK6YuuHvPwc7beXtzSKEEEIIIYQQQgghM6UeQ1/H/R87T6aBDdQvtOOSthgA16sHSW2SBPYdzGWzrh4isFYivq7nAWhTr3alxCyEEEIIIYQQQghxM0lKPYbOnj8HQI69HqUpRqnSpNR/2yUT4tsY6j0PQHFxDl7Fb/LXxkZzXQ+X6g8/YCGEEEIIIYQQQojfkOV7j6Gi4tIklEexO4Waa6ByAWjfeCTDXvoYbOz46vgFXl/5BVYaI8Uma66aOlCzZjju7s9VXuBCCCGEEEIIIYQQv5CZUo+h4uJiNEYj1j9+ggEFpVtK8Wqjp9FoNAB8sCuNjIsXwBcMhc5oa7xHwwbelRi1EEIIIYQQQgghxK9kptRjpuhsDiVFDqTmeKJBAdZorGvgXsUVz3oNSssUZfG06zL6NfwUgGouVenZvEYlRi2EeJwNGjQIjUaDRqNBq9VSv359pk+fTvEvszbv1TfffINGo+HatWsPJtAKSEtLo3///tSoUQN7e3tq1qxJaGgox48ftygXHx9Pp06d0Ov1ODg48PTTT7Ny5UqLMunp6Wg0Gg4fPlzh/qdOnUqjRo1wdHSkSpUqdOnShX379lm0OXjwYOrWrYtOp6NevXpERUVRVFR0x7bj4uJo3rw5Dg4OeHl58dprr3HlypVy6+Tk5DBmzBh8fHzQ6XS0b9+eAwcOWJS5fv06I0aMoGbNmuh0Ovz9/Vm6dKlFmWHDhlGvXj10Oh3VqlW75T09ffo0L7zwAg4ODnh4eDBhwoTbfg3t3r0bGxsb/vSnP91x3Bs2bKBbt264u7vf9fshhBBCCCEqlySlHiMFOddI+yCRq0pH0+zSP1A01m7YOfej5Z9qY2VtzaWcQr7/aT1N3XbiV+UUAG7OPlhZaSozdCHEYy44OJjMzEx++uknxo8fz9SpU5kzZ05lh2VWkaSN0Wika9euGAwGNmzYQEpKCmvXrqVp06YWibGFCxcSGhpKQEAA+/bt48iRI/Tr14+IiAjefPPN+4qzQYMGLFq0iKNHj7Jr1y7q1KlDt27duHTpEgDHjx/HZDKxbNkyjh07xrx581i6dCmTJ08ut93du3czcOBABg8ezLFjx1i3bh379+9n6NCh5dYbMmQICQkJ/N///R9Hjx6lW7dudOnShYyMDHOZcePG8fnnn/Of//yHH3/8kTFjxjBixAg2bdpkLtOqVStWrFjBjz/+yLZt21BK0a1bN0pKSgAoKSnhhRdeoKioiD179rBq1SpWrlzJlClTysR07do1Bg4cSOfOnSt0T3Nzc+nQoQOzZs2qUHkhhBBCCPEIUeK2DAaDApTBYKjsUJRSSn0QOVpFvzNNzR78hvrwlckqps8LauEr/dQ37V9Rlze/o05czFG+kzarkcv/prZ/6asWreumko6vUgUFFys7dCH+8PLz81VycrLKz8+v7FDuWnh4uAoNDbU417VrV9W2bVuVlZWlwsLClKurq9LpdCo4OFilpqaay6Wnp6sXX3xRubq6KgcHB+Xv7682b96s0tLSFGDxCg8PV0oplZ2drfr3768cHByUp6enmjt3rurUqZMaPXq0uV0fHx81ffp0FRYWpvR6vbluYmKi6tChg7K3t1c1a9ZUI0eOVNevX1dKKZWUlKQAlZ6eftuxnj59Wtna2qpx48aVubZgwQIFqG+//VYppcxjSEpKuvub+osbv2e2b99+2zKzZ89WdevWLbedOXPmKF9f3zLxent737ZOXl6esra2VvHx8RbnW7Zsqd5++23zcZMmTdT06dPLLfNb33//vQLUiRMnlFJKbdmyRVlZWanz58+byyxZskQ5OzurwsJCi7p9+/ZVf//731VUVJRq3rz5bfv4rQfxftysvO/ZR+3zQWWT+yGEEEKI36ro5wOZKfUYybDVY7QykWNrouSXmU/FVvkktk6jyrMjOXYumxKTQm9bAECJdROa+oVhZ1etMsMWQtyGUgpTXt5Dfyml7jt2nU5HUVERgwYN4rvvvmPTpk3s3bsXpRQ9evTAaCx96ufw4cMpLCxk586dHD16lFmzZuHk5EStWrX45JNPAEhJSSEzM5P58+cDpTNzdu/ezaZNm0hISCAxMZFDhw6ViSEmJobmzZuTlJTEO++8w8mTJwkODqZXr14cOXKEtWvXsmvXLkaMGAFAtWrVsLKyYv369eYZPL+1fv16jEbjLWdEDRs2DCcnJ9asWXPf9w9KZ3ctX74cFxcXmjdvfttyBoMBNze3cttq164dZ86cYcuWLSiluHDhAuvXr6dHjx63rVNcXExJSQn29vYW53U6Hbt27TIft2/fnk2bNpGRkYFSiq+//prU1FS6det2y3Zzc3NZsWIFdevWpVatWgDs3buXpk2bUr36r0+ADQoKIjs7m2PHjpnPrVixglOnThEVFVXueIUQQgghxJNBNjp/TCilKLGyApMJx+sGcskGoNDdnU5RH2Hl5EyxYTb/6vwhWqvSPTp6tmyItSzbE+KRpfLzSWnZ6qH32/DQQTQODvdUVynFl19+ybZt2+jevTsbN25k9+7dtG/fHijd16hWrVps3LiR3r17c/r0aXr16kXTpk0B8PX1Nbd1I9Hi4eGBq6srULrH0apVq1i9erV5+daKFSuoUaPsvnjPP/8848ePNx8PGTKEAQMGMGbMGAD8/PxYsGABnTp1YsmSJXh7e7NgwQLeeustpk2bRuvWrQkMDGTAgAHmuFJTU3FxccHLy6tMf1qtFl9fX1JTU+/p3t0QHx9Pv379yMvLw8vLi4SEBKpWrXrLsidOnGDhwoXExMSU22ZAQABxcXH07duXgoICiouLCQkJYfHixbeto9fradeuHe+++y6NGzemevXqrFmzhr1791K/fn1zuYULF/L6669Ts2ZNbGxssLKy4v333+fZZ5+1aO9f//oXb731Frm5uTRs2JCEhAS0Wi0A58+ft0hIAebj8+fPA/DTTz8xceJEEhMTsbGRjydCCCGEEH8EMlPqMVFSUgIaDdZ52dgU5VD8S1KqUfXqeBo1PD1jO1lXtmJnbUSjUWg0Nrg4t6jkqIUQT4r4+HicnJywt7ene/fu9O3bl0GDBmFjY8MzzzxjLufu7k7Dhg358ccfARg1ahTR0dEEBAQQFRXFkSNHyu3n1KlTGI1G2rRpYz7n4uJCw4YNy5Rt3bq1xfH333/PypUrcXJyMr+CgoIwmUykpaUBpTO3zp8/T1xcHO3atWPdunU0adKEhISECt+LG4mW8sTFxVnEkZiYaL4WGBjI4cOH2bNnD8HBwfTp04eLFy+WaSMjI4Pg4GB69+5tsTfUze1GREQAkJyczOjRo5kyZQoHDx7k888/Jz093Xw9MTHRol5cXBwA//d//4dSCm9vb+zs7FiwYAF/+ctfsLL69ePBwoUL+fbbb9m0aRMHDx4kNjaW4cOHs337dot4BwwYQFJSEjt27KBBgwb06dOHgoKCCt3TkpIS+vfvz7Rp02jQoMFd31MhhBBCCPF4kv+KfExc23uWQmXNpSIXGgNWGmesde1p1q4BO05c5lJOIY62uQDkO84guNUL2NjoKzdoIUS5NDodDQ8drJR+71ZgYCBLlixBq9VSo0YNbGxsLDa6vp0hQ4YQFBTE5s2b+eKLL5g5cyaxsbGMHDnyXkK34OjoaHF8/fp1hg0bxqhRo8qUrV27tvnfer2ekJAQQkJCiI6OJigoiOjoaLp27Yqfnx8Gg4Fz586VmZ1VVFTEyZMnCQoKumNsPXv2tEjWeXt7W8Rdv3596tevT9u2bfHz8+ODDz5g0qRJ5jLnzp0jMDCQ9u3bs3z5cou2b366nLOzMwAzZ84kICCACRMmANCsWTMcHR3p2LEj0dHRtG7d2qLejVlK9erVY8eOHeTm5pKdnY2Xlxd9+/Y1zxzLz89n8uTJfPrpp7zwwgvmtg8fPkxMTAxdunQxt+ni4oKLiwt+fn60bduWKlWq8Omnn/KXv/wFT09P9u/fbzGOCxcuAODp6UlOTg7fffcdSUlJ5uWWJpMJpRQ2NjZ88cUX5d5TIYQQQgjxeJKk1GPAUGjg/Fc/kV7oytM551EA1lWwtvPHwcURq5zPeLXJftx1pbOnAp96WhJSQjwGNBrNPS+je9huJFJu1rhxY4qLi9m3b595+d6VK1dISUnB39/fXK5WrVpEREQQERHBpEmTeP/99xk5cqR5xtHN+zv5+vpia2vLgQMHzIkkg8FAampqmeViv9WyZUuSk5PLxFkejUZDo0aN2LNnDwCvvPIKkZGRxMbGEhsba1F26dKl5OXlMXDgwDu2q9fr0esr9nPYZDJRWFhoPs7IyCAwMND8RLubZy0BtxxfXl5emSVv1tbWQOmSS51OV+59cXR0xNHRkatXr7Jt2zZmz54NlD6x0Gg0lonB2toak8l02/aUUiilzONq164dM2bM4OLFi3h4eACQkJCAs7Mz/v7+2NracvToUYs2/vWvf/HVV1+xfv166tati6OjY4XvqRBCCCGEeDxIUuoRZywqYtmMt3FUvvhfOI81XhQDaGxBGfmuwIS31UJu/IexRmOLVisbmwshfn9+fn6EhoYydOhQli1bhl6vZ+LEiXh7exMaGgrAmDFj6N69Ow0aNODq1at8/fXXNG7cGAAfHx80Gg3x8fH06NEDnU6HXq8nPDycCRMm4ObmhoeHB1FRUVhZWaHRlL9HXmRkJG3btmXEiBEMGTIER0dHkpOTSUhIYNGiRRw+fJioqCjCwsLw9/dHq9WyY8cOPvzwQyIjI4HSGVWzZ8/mzTffxN7enrCwMGxtbfnss8+YPHky0dHRPPXUUxb9pqSklImlSZMm2NraWpzLzc1lxowZ9OzZEy8vLy5fvszixYvJyMigd+/eQGlC6rnnnsPHx4eYmBguXbpkru/p6XnbsYeEhDB06FCWLFlCUFAQmZmZjBkzhjZt2txyP64btm3bhlKKhg0bcuLECSZMmECjRo149dVXgdKZWJ06dWLChAnodDp8fHzYsWMHH330EXPnzgVKl1yuXbuWbt26Ua1aNc6ePcs//vEPdDqdeaP1bt264e/vT1hYGLNnz+b8+fP8/e9/Z/jw4djZ2QGUua8eHh7Y29uXOf9bWVlZnD59mnPnzgG/vh+enp7l3jMhhBBCCFH5JCn1iPvpq6/Is6pKHtnYKisoTUlhU3yaBJ8LXNx5hncDoKBYy3XbMLo274StrXPlBi2E+MNYsWIFo0eP5sUXX6SoqIhnn32WLVu2mBMyJSUlDB8+nLNnz+Ls7ExwcDDz5s0DSpdfTZs2jYkTJ/Lqq68ycOBAVq5cydy5c4mIiODFF1/E2dmZt956izNnzpR5StxvNWvWjB07dvD222/TsWNHlFLUq1ePvn37AlCzZk3q1KnDtGnTSE9PR6PRmI/Hjh1rbmfs2LH4+voSGxvL/Pnzyc0tXRq9Zs0a+vXrV6bfW507c+YMNWvWtDhnbW3N8ePHWbVqFZcvX8bd3Z2nn36axMREmjRpApTOHjpx4gQnTpwoU7+8pyYOGjSInJwcFi1axPjx43F1deX5559n1qxZ5d4zg8HApEmTOHv2LG5ubvTq1YsZM2ZYJNQ+/vhjJk2axIABA8jKysLHx4cZM2aY96uyt7cnMTGRf/7zn1y9epXq1avz7LPPsmfPHvOsKGtra+Lj43njjTdo164djo6OhIeHM3369HLjq4hNmzaZk2jw6/sRFRXF1KlT77t9IYQQQgjx+9GoB/Fs8CdUdnY2Li4uGAwG874dD9uhjz9m0/HjOJt0FKdfw07jTHHBbvIa+vFBSWcaOJ8k8ukF5BRX5+k2X+Ltevd7xQghfn8FBQWkpaVRt27dOyZXhKXc3Fy8vb2JjY1l8ODBD73/rKwsOnfujLOzM1u3bsXhMVlyKe5Ped+zj8Lng0eJ3A8hhBBC/FZFPx/ITKlHXFGuEQCbi2dQhT9TTOnylT+5WLPgqYk42uYDUKOKhySkhBBPhKSkJI4fP06bNm0wGAzm2TQ3lgQ+bG5ubmzfvp3Fixezd+9eOnfuXClxCCGEEEII8aSRpNQjrCSniNxTtqRrqqDNTsYOBaXbnHOi4BLNfklIAbi7daikKIUQ4sGLiYkhJSUFrVZLq1atSExMpGrVqpUWj7u7O1OmTKm0/oUQQgghhHgSSVLqEZaceoQSTNS+8DN2ptKnU9k6vYKt1SnOV/0ZgB+uPsfw0H/K0/aEEE+MFi1acPDgwcoOQwghhBBCCPE7s7pzEVEZrhZc5bNPV1KMieaZBlClG5xXybmMtf1hsC996zo3aSgJKSGEEEIIIYQQQjx2JCn1iEpauhyNcmO/bRoaZQWUzpRa39EO47MFtPA8DIBe51J5QQohhBBCCCGEEELcI0lKPaJOX7iC0daKDGcXSn7Z3BzgZ786NHI/id42GwCdrk4lRSiEEEIIIYQQQghx72RPqUdUsckEJcU0OLST004F5vODiv8NWjA6DOaZhs/j6tqmEqMUQgghhBBCCCGEuDcyU+oRVPDTVaxsa6MtyMHK+GtCStlVpYH9OQDaN+lJlSpt0WjkLRRCCCGEEEIIIcTjRzIaj6Azu05RhAajMQ8AG+WEfZVx2Hn5YKspXbZnYy2bmwshhBBCCCGEEOLxJUmpR8zpq+mkf/8dV5SGqlm+AJT88nQ9a5frWGmK0Wi0aLVulRmmEEIIIYQQQgghxH2RpNQjJmXNf9AZTVwzGVEaewBsSopxvnYUr0aHqOXzFi3+tBIbG5kpJYR4OAYNGoRGo0Gj0aDVaqlfvz7Tp0+nuLj4vtr95ptv0Gg0XLt27cEEWgFpaWn079+fGjVqYG9vT82aNQkNDeX48eMW5eLj4+nUqRN6vR4HBweefvppVq5caVEmPT0djUbD4cOHK9z/1KlTadSoEY6OjlSpUoUuXbqwb98+izYHDx5M3bp10el01KtXj6ioKIqKiu7YdlxcHM2bN8fBwQEvLy9ee+01rly5Um6dnTt3EhISQo0aNdBoNGzcuLFMmQ0bNtCtWzfc3d3vOF6lFN27d79tWytXrqRZs2bY29vj4eHB8OHDLa5v27aNtm3botfrqVatGr169SI9Pf2hjFMIIYQQQjx8kpR6xGQlpfKzQz7n7K0pUbkAlOgNHBl4kupeVjSoN4wqVZ6p5CiFEH80wcHBZGZm8tNPPzF+/HimTp3KnDlzKjsss4okbYxGI127dsVgMLBhwwZSUlJYu3YtTZs2tUiMLVy4kNDQUAICAti3bx9HjhyhX79+RERE8Oabb95XnA0aNGDRokUcPXqUXbt2UadOHbp168alS5cAOH78OCaTiWXLlnHs2DHmzZvH0qVLmTx5crnt7t69m4EDBzJ48GCOHTvGunXr2L9/P0OHDi23Xm5uLs2bN2fx4sXllunQoQOzZs264/j++c9/otFobnlt7ty5vP3220ycOJFjx46xfft2goKCzNfT0tIIDQ3l+eef5/Dhw2zbto3Lly/z8ssvP5RxCiGEEEKISqDEbRkMBgUog8HwUPq7evWqioqKUlMnRqrZfV5UMX1eUDF9XlDLRnRRX3xZT+3bH/pQ4hBCPHj5+fkqOTlZ5efnV3Yody08PFyFhoZanOvatatq27atysrKUmFhYcrV1VXpdDoVHBysUlNTzeXS09PViy++qFxdXZWDg4Py9/dXmzdvVmlpaQqweIWHhyullMrOzlb9+/dXDg4OytPTU82dO1d16tRJjR492tyuj4+Pmj59ugoLC1N6vd5cNzExUXXo0EHZ29urmjVrqpEjR6rr168rpZRKSkpSgEpPT7/tWE+fPq1sbW3VuHHjylxbsGCBAtS3336rlFLmMSQlJd39Tf3Fjd8z27dvv22Z2bNnq7p165bbzpw5c5Svr2+ZeL29vSscC6A+/fTT216/03iTkpKUt7e3yszMLNNWVlaW0ul05Y5z3bp1ysbGRpWUlJjPbdq0SWk0GlVUVKSUejjjvKG879mH/fngUSf3QwghhBC/VdHPBzJT6hGS+WMmAB4F57FCARrQOFK3RiZWKJwcG1RugEKIB0ophbGw5KG/lFL3HbtOp6OoqIhBgwbx3XffsWnTJvbu3YtSih49emA0GgEYPnw4hYWF7Ny5k6NHjzJr1iycnJyoVasWn3zyCQApKSlkZmYyf/58AMaNG8fu3bvZtGkTCQkJJCYmcujQoTIxxMTE0Lx5c5KSknjnnXc4efIkwcHB9OrViyNHjrB27Vp27drFiBEjAKhWrRpWVlasX7+ekpKSW45r/fr1GI3GW86IGjZsGE5OTqxZs+a+7x+Uzu5avnw5Li4uNG/e/LblDAYDbm7l7yPYrl07zpw5w5YtW1BKceHCBdavX0+PHj0eSKx3kpeXR//+/Vm8eDGenp5lrickJGAymcjIyKBx48bUrFmTPn36cObMGXOZVq1aYWVlxYoVKygpKcFgMPB///d/dOnSBVtb20dinEIIIYQQ4sGyqewAxK8uxqdisgGvojxOAlY2tdE6vUTN+uPwavVfnPVNKztEIcQDVFxkYvnoHQ+939fnd8LWzvqe6iql+PLLL9m2bRvdu3dn48aN7N69m/bt2wOl+/3UqlWLjRs30rt3b06fPk2vXr1o2rT055evr6+5rRuJFg8PD1xdXQHIyclh1apVrF69ms6dOwOwYsUKatSoUSaW559/nvHjx5uPhwwZwoABAxgzZgwAfn5+LFiwgE6dOrFkyRK8vb1ZsGABb731FtOmTaN169YEBgYyYMAAc1ypqam4uLjg5eVVpj+tVouvry+pqan3dO9uiI+Pp1+/fuTl5eHl5UVCQgJVq1a9ZdkTJ06wcOFCYmJiym0zICCAuLg4+vbtS0FBAcXFxYSEhDy05Wpjx46lffv2hIaG3vL6qVOnMJlMvPfee8yfPx8XFxf+/ve/07VrV44cOYJWq6Vu3bp88cUX9OnTh2HDhlFSUkK7du3YsmXLIzNOIYQQQgjxYMlMqUdESspeVEkhZ4zu/JwXUHpSY43GlE+ejx+uLq2wstJWbpBCiD+s+Ph4nJycsLe3p3v37vTt25dBgwZhY2PDM8/8us+du7s7DRs25McffwRg1KhRREdHExAQQFRUFEeOHCm3n1OnTmE0GmnTpo35nIuLCw0bNixTtnXr1hbH33//PStXrsTJycn8CgoKwmQykZaWBpTO3Dp//jxxcXG0a9eOdevW0aRJExISEip8L7TaO/8sjouLs4gjMTHRfC0wMJDDhw+zZ88egoOD6dOnDxcvXizTRkZGBsHBwfTu3dtiz6Sb242IiAAgOTmZ0aNHM2XKFA4ePMjnn39Oenq6+XpiYqJFvbi4uAqP9042bdrEV199xT//+c/bljGZTBiNRhYsWEBQUBBt27ZlzZo1/PTTT3z99dcAnD9/nqFDhxIeHs6BAwfYsWMHWq2WV155xTy7rzLHKYQQQgghHjyZKfUIUEqRsGweTexexjEvB1TpU/fsCww4563F2s6lkiMUQvwebLRWvD6/U6X0e7cCAwNZsmQJWq2WGjVqYGNjw6ZNm+5Yb8iQIQQFBbF582a++OILZs6cSWxsLCNHjryX0C04OjpaHF+/fp1hw4YxatSoMmVr165t/rderyckJISQkBCio6MJCgoiOjqarl274ufnh8Fg4Ny5c2VmZxUVFXHy5EmLzblvp2fPnhbJOm9vb4u469evT/369Wnbti1+fn588MEHTJo0yVzm3LlzBAYG0r59e5YvX27R9s1Pv3N2dgZg5syZBAQEMGHCBACaNWuGo6MjHTt2JDo6mtatW1vUq169+h3HUFFfffUVJ0+eNM92u6FXr1507NiRb775xjzzzN/f33y9WrVqVK1aldOnTwOwePFiXFxcmD17trnMf/7zH2rVqsW+ffto27ZtpY5TCCGEEEI8eJKUegRc+e4gphxHUhzPU+NaDjfeFpecn6n5zAWsrbtWboBCiN+FRqO552V0D9uNRMrNGjduTHFxMfv27TMv37ty5QopKSkWyYdatWoRERFBREQEkyZN4v3332fkyJHmGUc37+/k6+uLra0tBw4cMCeSDAYDqampPPvss+XG2LJlS5KTk8vEWR6NRkOjRo3Ys2cPAK+88gqRkZHExsYSGxtrUXbp0qXk5eUxcODAO7ar1+vR6/UVisFkMlFYWGg+zsjIIDAwkFatWrFixQqsrCyTiLcaX15eHjY2lr/Sra1Lv7aUUuh0uru6L3dj4sSJDBkyxOJc06ZNmTdvHiEhIUDpsjso3T+sZs2aAGRlZXH58mV8fHzMY/jtWG+MwWQymctU1jiFEEIIIcSDJ0mpR8Ch778ny9sHuIZTiQKrX/5Aa2ONfUgDvGv0rdT4hBDiVvz8/AgNDWXo0KEsW7YMvV7PxIkT8fb2Nu8tNGbMGLp3706DBg24evUqX3/9NY0bNwbAx8cHjUZDfHw8PXr0QKfTodfrCQ8PZ8KECbi5ueHh4UFUVBRWVlZoNJpy44mMjKRt27aMGDGCIUOG4OjoSHJyMgkJCSxatIjDhw8TFRVFWFgY/v7+aLVaduzYwYcffkhkZCRQOqNq9uzZvPnmm9jb2xMWFoatrS2fffYZkydPJjo6mqeeesqi35SUlDKxNGnSxLw59w25ubnMmDGDnj174uXlxeXLl1m8eDEZGRn07t0bKE1IPffcc/j4+BATE8OlS5fM9W+1gfgNISEhDB06lCVLlhAUFERmZiZjxoyhTZs2t9yP64br169z4sQJ83FaWhqHDx/Gzc3NnBTMysri9OnTnDt3zmK8np6eFq/fql27NnXr1gWgQYMGhIaGMnr0aJYvX46zszOTJk2iUaNGBAYGAvDCCy8wb948pk+fzl/+8hdycnKYPHkyPj4+tGjR4ncfpxBCCCGEqAS/6zMAH3MP6xHHH767QEVFRal/TXhXze33mprbP0LF9HlBbf3nxN+1XyHEw1Pe4+UfdeHh4So0NPSW17KyslRYWJhycXFROp1OBQUFqdTUVPP1ESNGqHr16ik7OztVrVo1FRYWpi5fvmy+Pn36dOXp6ak0Go0KDw9XSimVnZ2t+vfvrxwcHJSnp6eaO3euatOmjZo48defiT4+PmrevHll4tm/f7/q2rWrcnJyUo6OjqpZs2ZqxowZSimlLl26pEaNGqWeeuop5eTkpPR6vWratKmKiYlRJSUlFu1s3LhRdezYUTk6OipAAWrNmjUWZdLS0szXfvs6c+ZMmdjy8/PVSy+9pGrUqKG0Wq3y8vJSPXv2VPv37zeXWbFixW3bvJMFCxYof39/pdPplJeXlxowYIA6e/ZsuXW+/vrrW/Z1470oL6aoqKjbtguoTz/91OKcwWBQr732mnJ1dVVubm7qpZdeUqdPn7Yos2bNGtWiRQvl6OioqlWrpnr27Kl+/PHHhzLO3yrve/ZhfT54XMj9EEIIIcRvVfTzgUapB/Bs8Efc4sWLmTNnDufPn6d58+YsXLjQYhPd28nOzsbFxQWDwWDet+NBybp8iQNfbOX66UwunL5CibpGUdY5izKtgjrw3GsTH2i/QojKUVBQQFpaGnXr1sXe3r6yw3ms5Obm4u3tTWxsLIMHD37o/WdlZdG5c2ecnZ3ZunUrDg4ODz0G8fCV9z37e34+eBzJ/RBCCCHEb1X088ET//S9tWvXMm7cOKKiojh06BDNmzcnKCjolk86epi2/ncFP3z2X9KTEsm/kmyRkLKybYCNnSfNg0IqMUIhhKgcSUlJrFmzhpMnT3Lo0CEGDBgAYF4S+LC5ubmxfft2OnfuzN69eyslBiGEEEIIIZ5ET3xSau7cuQwdOpRXX30Vf39/li5dioODAx9++GGlxmWlsaL09pe+NBpHrDQu2Fn742jTFJf27lTxblKpMQohRGWJiYmhefPmdOnShdzcXBITE6latWqlxePu7s6UKVPo3LlzpcUghBBCCCHEk+aJ3ui8qKiIgwcPWjxm28rKii5dutzyf7sLCwstnoCUnZ39u8XWc8DrJDV8Clts8KhaHa+GftjbyZIeIYRo0aIFBw8erOwwhBBCCCGEEL+zJzopdfnyZUpKSqhevbrF+erVq3P8+PEy5WfOnMm0adMeSmyOzs50eD74ofQlhBBCCCGEEEII8ah54pfv3Y1JkyZhMBjMrzNnzlR2SEIIIYQQQgghhBBPpCd6plTVqlWxtrbmwoULFucvXLiAp6dnmfJ2dnbY2dk9rPCEEEIIIYQQQggh/rCe6JlSWq2WVq1a8eWXX5rPmUwmvvzyS9q1a1eJkQkhhBBCCCGEEEL8sT3RM6UAxo0bR3h4OK1bt6ZNmzb885//JDc3l1dffbWyQxNCCCGEEEIIIYT4w3rik1J9+/bl0qVLTJkyhfPnz/OnP/2Jzz//vMzm50IIIYQQQgghhBDi4Xnik1IAI0aMYMSIEZUdhhBCCCGEEEIIIYT4xRO9p5QQQoj7N2jQIDQaDRqNBq1WS/369Zk+fTrFxcX31e4333yDRqPh2rVrDybQCkhLS6N///7UqFEDe3t7atasSWhoKMePH7coFx8fT6dOndDr9Tg4OPD000+zcuVKizLp6eloNBoOHz5c4f6nTp1Ko0aNcHR0pEqVKnTp0oV9+/ZZtDl48GDq1q2LTqejXr16REVFUVRUdMe24+LiaN68OQ4ODnh5efHaa69x5cqVcuvs3LmTkJAQatSogUajYePGjXcdM8CMGTNo3749Dg4OuLq63rKv06dP88ILL+Dg4ICHhwcTJkyw+Bq6+evs5leTJk3MZWbOnMnTTz+NXq/Hw8ODP//5z6SkpNzx3lQkPiGEEEII8fBJUkoIIcQdBQcHk5mZyU8//cT48eOZOnUqc+bMqeywzCqStDEajXTt2hWDwcCGDRtISUlh7dq1NG3a1CIxtnDhQkJDQwkICGDfvn0cOXKEfv36ERERwZtvvnlfcTZo0IBFixZx9OhRdu3aRZ06dejWrRuXLl0C4Pjx45hMJpYtW8axY8eYN28eS5cuZfLkyeW2u3v3bgYOHMjgwYM5duwY69atY//+/QwdOrTcerm5uTRv3pzFixffc8xQev979+7NG2+8ccs2SkpKeOGFFygqKmLPnj2sWrWKlStXMmXKFHOZ+fPnk5mZaX6dOXMGNzc3evfubS6zY8cOhg8fzrfffktCQgJGo5Fu3bqRm5tb7jjvFJ8QQgghhKgkStyWwWBQgDIYDJUdihDiMZefn6+Sk5NVfn5+ZYdy18LDw1VoaKjFua5du6q2bduqrKwsFRYWplxdXZVOp1PBwcEqNTXVXC49PV29+OKLytXVVTk4OCh/f3+1efNmlZaWpgCLV3h4uFJKqezsbNW/f3/l4OCgPD091dy5c1WnTp3U6NGjze36+Pio6dOnq7CwMKXX6811ExMTVYcOHZS9vb2qWbOmGjlypLp+/bpSSqmkpCQFqPT09NuO9fTp08rW1laNGzeuzLUFCxYoQH377bdKKWUeQ1JS0t3f1F/c+D2zffv225aZPXu2qlu3brntzJkzR/n6+paJ19vbu8KxAOrTTz+9Y7nyYl6xYoVycXEpc37Lli3KyspKnT9/3nxuyZIlytnZWRUWFt6yn08//VRpNJpy36+LFy8qQO3YseOOcZcX362U9z0rnw8syf0QQgghxG9V9POBzJQSQohKopTCWFDw0F9KqfuOXafTUVRUxKBBg/juu+/YtGkTe/fuRSlFjx49MBqNAAwfPpzCwkJ27tzJ0aNHmTVrFk5OTtSqVYtPPvkEgJSUFDIzM5k/fz5Q+tTU3bt3s2nTJhISEkhMTOTQoUNlYoiJiaF58+YkJSXxzjvvcPLkSYKDg+nVqxdHjhxh7dq17Nq1y7ynYLVq1bCysmL9+vWUlJTcclzr16/HaDTeckbUsGHDcHJyYs2aNfd9/6B09s7y5ctxcXGhefPmty1nMBhwc3Mrt6127dpx5swZtmzZglKKCxcusH79enr06PFAYr3bmH9r7969NG3a1OIhI0FBQWRnZ3Ps2LFb1vnggw/o0qULPj4+t23XYDAA3PH+CCGEEEKIR9MfYqNzIYR4FBUXFrIg/JWH3u+oVeuxtbe/p7pKKb788ku2bdtG9+7d2bhxI7t376Z9+/ZA6b5GtWrVYuPGjfTu3ZvTp0/Tq1cvmjZtCoCvr6+5rRuJBA8PD/M+Pzk5OaxatYrVq1fTuXNnAFasWEGNGjXKxPL8888zfvx48/GQIUMYMGAAY8aMAcDPz48FCxbQqVMnlixZgre3NwsWLOCtt95i2rRptG7dmsDAQAYMGGCOKzU1FRcXF7y8vMr0p9Vq8fX1JTU19Z7u3Q3x8fH069ePvLw8vLy8SEhIoGrVqrcse+LECRYuXEhMTEy5bQYEBBAXF0ffvn0pKCiguLiYkJCQcpfl/V4x38r58+fLPPX2xvH58+fLlD937hxbt25l9erVt23TZDIxZswYAgICeOqppyocixBCCCGEeHTITCkhhBB3FB8fj5OTE/b29nTv3p2+ffsyaNAgbGxseOaZZ8zl3N3dadiwIT/++CMAo0aNIjo6moCAAKKiojhy5Ei5/Zw6dQqj0UibNm3M51xcXGjYsGGZsq1bt7Y4/v7771m5ciVOTk7mV1BQECaTibS0NKB05tb58+eJi4ujXbt2rFu3jiZNmpCQkFDhe6HVau9YJi4uziKOxMRE87XAwEAOHz7Mnj17CA4Opk+fPly8eLFMGxkZGQQHB9O7d2+LvaFubjciIgKA5ORkRo8ezZQpUzh48CCff/456enp5uuJiYkW9eLi4io83ruJ+UFZtWoVrq6u/PnPf75tmeHDh/PDDz/w8ccfm89FRERYjFMIIYQQQjzaZKaUEEJUEhs7O0atWl8p/d6twMBAlixZglarpUaNGtjY2LBp06Y71hsyZAhBQUFs3ryZL774gpkzZxIbG8vIkSPvJXQLjo6OFsfXr19n2LBhjBo1qkzZ2rVrm/+t1+sJCQkhJCSE6OhogoKCiI6OpmvXrvj5+WEwGDh37lyZ2VlFRUWcPHmSoKCgO8bWs2dPi2Sdt7e3Rdz169enfv36tG3bFj8/Pz744AMmTZpkLnPu3DkCAwNp3749y5cvt2j75qf9OTs7A6VPpQsICGDChAkANGvWDEdHRzp27Eh0dDStW7e2qPfbWUt3UpGYy+Pp6cn+/fstzl24cMF87WZKKT788EPCwsJumwAcMWIE8fHx7Ny5k5o1a5rPT58+/b43oxdCCCGEEA+PJKWEEKKSaDSae15G97DdSErcrHHjxhQXF7Nv3z7z8r0rV66QkpKCv7+/uVytWrWIiIggIiKCSZMm8f777zNy5EhzwuHm/Z18fX2xtbXlwIED5kSSwWAgNTWVZ599ttwYW7ZsSXJycpk4y6PRaGjUqBF79uwB4JVXXiEyMpLY2FhiY2Mtyi5dupS8vDwGDhx4x3b1ej16vb5CMZhMJgoLC83HGRkZBAYG0qpVK1asWIGVleWk5luNLy8vDxsby1/p1tbWQGmSR6fT3dV9uduY76Rdu3bMmDGDixcv4uHhAUBCQgLOzs4WXytQ+oS9EydOMHjw4DLtKKUYOXIkn376Kd988w1169a1uO7h4WFuXwghhBBCPPokKSWEEOKe+Pn5ERoaytChQ1m2bBl6vZ6JEyfi7e1NaGgoAGPGjKF79+40aNCAq1ev8vXXX9O4cWMAfHx80Gg0xMfH06NHD3Q6HXq9nvDwcCZMmICbmxseHh5ERUVhZWWFRqMpN57IyEjatm3LiBEjGDJkCI6OjiQnJ5OQkMCiRYs4fPgwUVFRhIWF4e/vj1arZceOHXz44YdERkYCpTOqZs+ezZtvvom9/f+zd9dxclX3/8dfd3x2Z2ddoxt3AoEIkuAheAlWLFhpKfLDCqVQtJTipV8otEXbIi1OkeIJKURISIgQd1l3GZ/7++NuBjaySSDZ2c2+n4/msXvvOXPmc6chc+cz53yOh/PPPx+n08lbb73Fb37zG373u99tU79o2bJl28QydOhQnE5nq3NNTU3cc889nHzyyRQWFlJZWcnjjz/Opk2bOOOMMwArIXX44YfTq1cvHnzwQSoqKhKP33pG0feddNJJ/OxnP+OJJ55g4sSJlJSUcM011zB69Ojt1uPaorGxkZUrVyaO16xZw/z588nKyqJnz567FDPA+vXrqa6uZv369cRiscSsrH79+uHz+Tj22GMZMmQI559/Pvfffz+lpaXceuutXHHFFbi3mrn39NNPM2bMmO3Wibriiit48cUXeeutt0hLS0vUo0pPT8fr9e7wOncWn4iIiIgkyV7eBbBT0xbHIrKntLW9fEc3ZcoU85RTTtluW3V1tXn++eeb6enpptfrNSdOnGguX7480X7llVeaffv2Nd1ut5mbm2uef/75ZmVlZaL9rrvuMgsKCkzDMMwpU6aYpmma9fX15jnnnGOmpKSYBQUF5sMPP2yOHj3a/PWvf514XK9evcxHHnlkm3hmz55tHnPMMabP5zNTU1PNESNGmPfcc49pmqZZUVFhXn311eawYcNMn89npqWlmcOHDzcffPBBMxaLtRrnzTffNA877DAzNTXVBEzAfOmll1r1WbNmTaJt6z8bNmzYJrZAIGD+5Cc/MYuKikyXy2UWFhaaJ598sjl79uxEn2effXaHY+7Mn/70J3PIkCGm1+s1CwsLzXPPPdfcuHFjm4/57LPPtvtcW/6/2JWYTdP6O7K9cT777LNEn7Vr15qTJk0yvV6vmZOTY15//fVmJBJpNU5tba3p9XrNv/71r9uNd0evzbPPPtvmde5KfFtr679Z3R+0ptdDREREtrar9weGae6BvcH3UfX19aSnp1NXV5eo2yEi8kMEg0HWrFlDcXExnk6yZK+jaGpqolu3bjz00EPbXdK1t1VXV3PUUUfh9/t5//33SUlJafcYpP219d+s7g9a0+shIiIiW9vV+wPtviciIh3KvHnzeOmll1i1ahVff/015557LkBiSWB7y8rK4uOPP+aoo45ixowZSYlBRERERGRfpJpSIiLS4Tz44IMsW7YMl8vFqFGjmD59Ojk5OUmLJzs7m9tuuy1pzy8iIiIisi9SUkpERDqU/fffn7lz5yY7DBERERER2cu0fE9ERERERERERNqdklIiIiIiIiIiItLulJQSEWlH8Xg82SGIyC7Qf6siIiIie59qSomItAOXy4XNZmPz5s3k5ubicrkwDCPZYYnIVkzTJBwOU1FRgc1mw+VyJTskERERkX2WklIiIu3AZrNRXFxMSUkJmzdvTnY4IrITKSkp9OzZE5tNk8pFRERE9hYlpURE2onL5aJnz55Eo1FisViywxGRHbDb7TgcDs1mFBEREdnLlJQSEWlHhmHgdDpxOp3JDkVERERERCSpNCddRERERERERETanZJSIiIiIiIiIiLS7pSUEhERERERERGRdqeaUm0wTROA+vr6JEciIiIiHcWW+4It9wldne6XREREZGu7er+kpFQbGhoaAOjRo0eSIxEREZGOpqGhgfT09GSHkXS6XxIREZEd2dn9kmHqa74disfjbN68mbS0tL2yLXR9fT09evRgw4YN+P3+PT5+R9FVrhO6zrV2leuErnOtus59T1e51mRcp2maNDQ0UFRUhM2mSgi6X9ozusp1Qte51q5yndB1rlXXue/pKtfake+XNFOqDTabje7du+/15/H7/fv0fwBbdJXrhK5zrV3lOqHrXKuuc9/TVa61va9TM6S+o/ulPaurXCd0nWvtKtcJXedadZ37nq5yrR3xfklf74mIiIiIiIiISLtTUkpERERERERERNqdklJJ5Ha7uf3223G73ckOZa/qKtcJXedau8p1Qte5Vl3nvqerXGtXuc6urKv8f9xVrhO6zrV2leuErnOtus59T1e51o58nSp0LiIiIiIiIiIi7U4zpUREREREREREpN0pKSUiIiIiIiIiIu1OSSkREREREREREWl3SkqJiIiIiIiIiEi7U1JKRERERERERETanZJSIiIiIiIiIiLS7pSUEhERERERERGRdqeklIiIiIiIiIiItDslpUREREREREREpN0pKSUiIiIiIiIiIu1OSSkREREREREREWl3SkqJiIiIiIiIiEi7U1JKRERERERERETanZJSIvKDrF27FsMweO6555IdSodx4YUX0rt371bnDMPgjjvuaNc47rjjDgzDoLKysl2fV0RERNqf7sl27LnnnsMwDObMmZPsUERkB5SUEumkvvzyS+644w5qa2t/0OP//Oc/6+blB9i8eTN33HEH8+fPT3Yo/P73v+fNN99MdhgiIiJdmu7JLD/2dRCRrklJKZFO6ssvv+TOO+/s8jdA7W3z5s3ceeed201K/e1vf2PZsmXtFouSUiIiIsmnezLLj30dRKRrUlJKRGQPcTqduN3uZIfRbpqbm5MdgoiIiMg2gsEg8Xi80z+HSFegpJRIJ3THHXfwq1/9CoDi4mIMw8AwDNauXUs0GuXuu++mb9++uN1uevfuzW9+8xtCoVDi8b1792bx4sVMmzYt8djDDz8cgOrqam644QaGDx+Oz+fD7/czadIkvvnmmz0SezAY5I477mDAgAF4PB4KCws57bTTWLVqFfBdXYQHH3yQRx55hF69euH1epkwYQKLFi1qNdbhhx+eiPv7tlfbaWd69+7NhRdeuM357z/H1KlTOeiggwC46KKLEq/dlm83f8jzbk9TUxPXX389PXr0wO12M3DgQB588EFM00z0MQyDpqYmnn/++UQcW8dfW1vLhRdeSEZGBunp6Vx00UXbTST985//ZNSoUXi9XrKysjj77LPZsGHDNq/DsGHDmDt3LuPHjyclJYXf/OY3AMyZM4eJEyeSk5OD1+uluLiYiy++eLeuecWKFUyePJmCggI8Hg/du3fn7LPPpq6ubrfGERERaU+d9Z5s6tSpGIbBv//9b+655x66d++Ox+PhqKOOYuXKldv0nzVrFscddxzp6emkpKQwYcIEvvjii116HU477TQOOOCAVuOddNJJGIbB22+/3eo5DMPg/fffT5xbvXo1Z5xxBllZWaSkpDB27Fjefffd7V7Lyy+/zK233kq3bt1ISUmhvr5+u9deU1PD6NGj6d69+y7PcN/Rc7z55pvYbDZuu+22Vv1ffPFFDMPgiSee2KXxRboyR7IDEJHdd9ppp7F8+XJeeuklHnnkEXJycgDIzc3l0ksv5fnnn+f000/n+uuvZ9asWdx7770sWbKEN954A4A//vGPXHXVVfh8Pm655RYA8vPzAevN/8033+SMM86guLiYsrIy/vKXvzBhwgS+/fZbioqKfnDcsViME088kU8++YSzzz6b//f//h8NDQ189NFHLFq0iL59+yb6/v3vf6ehoYErrriCYDDIo48+ypFHHsnChQsTsba3wYMHc9ddd3Hbbbdx2WWXcdhhhwFw8MEH77HnME2Tk08+mc8++4xLLrmEkSNH8sEHH/CrX/2KTZs28cgjjwDwj3/8g0svvZTRo0dz2WWXAbR6/QDOPPNMiouLuffee/n666956qmnyMvL47777kv0ueeee/jtb3/LmWeeyaWXXkpFRQX/93//x/jx45k3bx4ZGRmJvlVVVUyaNImzzz6b8847j/z8fMrLyzn22GPJzc3l17/+NRkZGaxdu5bXX399l685HA4zceJEQqEQV111FQUFBWzatIl33nmH2tpa0tPTf8QrKiIisvd01nuyLf7whz9gs9m44YYbqKur4/777+fcc89l1qxZiT6ffvopkyZNYtSoUdx+++3YbDaeffZZjjzySKZPn87o0aPbfB0OO+ww3nrrLerr6/H7/ZimyRdffIHNZmP69OmcfPLJAEyfPh2bzcYhhxwCQFlZGQcffDDNzc1cffXVZGdn8/zzz3PyySfz6quv8pOf/KTVtdx99924XC5uuOEGQqEQLpdrm+utrKzkmGOOobq6mmnTpm1z77QzWz/Hcccdxy9/+UvuvfdeTj31VA444ABKSkq46qqrOProo/nFL36xW+OLdEmmiHRKDzzwgAmYa9asSZybP3++CZiXXnppq7433HCDCZiffvpp4tzQoUPNCRMmbDNuMBg0Y7FYq3Nr1qwx3W63edddd7U6B5jPPvvsLsf8zDPPmID58MMPb9MWj8dbjev1es2NGzcm2mfNmmUC5rXXXps4N2HChO1ew5QpU8xevXrtclymaZq9evUyp0yZss35rZ/jq6++2uF1b+95AfP222/f5TjefPNNEzB/97vftTp/+umnm4ZhmCtXrkycS01N3W7Mt99+uwmYF198cavzP/nJT8zs7OzE8dq1a0273W7ec889rfotXLjQdDgcrc5PmDDBBMwnn3yyVd833njDBMyvvvpql69xa/PmzTMB85VXXvnBY4iIiCRLZ7wn++yzz0zAHDx4sBkKhRLnH330URMwFy5caJqmdX/Wv39/c+LEiYl7NdM0zebmZrO4uNg85phj2nwdTPO7e6f33nvPNE3TXLBggQmYZ5xxhjlmzJhEv5NPPtncf//9E8fXXHONCZjTp09PnGtoaDCLi4vN3r17J16bLdfSp08fs7m5udVzP/vss4n7lJKSEnPo0KFmnz59zLVr1+7ya7Wz52hqajL79etnDh061AwGg+YJJ5xg+v1+c926dbv1HCJdlZbviexD3nvvPQCuu+66Vuevv/56gG2mO2+P2+3GZrP+aYjFYlRVVeHz+Rg4cCBff/31j4rvtddeIycnh6uuumqbNsMwWh2feuqpdOvWLXE8evRoxowZk7jGfdV7772H3W7n6quvbnX++uuvxzTNVlPad2brb+cOO+wwqqqqEtPZX3/9deLxOGeeeSaVlZWJPwUFBfTv35/PPvus1ePdbjcXXXRRq3NbZlK98847RCKRXY7t+7bMhPrggw9Up0pERPYJHf2ebIuLLrqo1YyiLbPAV69eDcD8+fNZsWIF55xzDlVVVYl7haamJo466ig+//zzndZV2n///fH5fHz++eeANSOqe/fuXHDBBXz99dc0Nzdjmib/+9//Es8P1ms4evRoDj300MQ5n8/HZZddxtq1a/n2229bPc+UKVPwer3bjWHjxo1MmDCBSCTC559/Tq9evXbjVWr7OVJSUnjuuedYsmQJ48eP59133+WRRx6hZ8+eP+g5RLoaJaVE9iHr1q3DZrPRr1+/VucLCgrIyMhg3bp1Ox0jHo/zyCOP0L9/f9xuNzk5OeTm5rJgwYIfXd9n1apVDBw4EIdj5yuH+/fvv825AQMGsHbt2h8VQ0e3bt06ioqKSEtLa3V+8ODBifZdtfXNUGZmJmDVUgCrjpNpmvTv35/c3NxWf5YsWUJ5eXmrx3fr1m2bqfATJkxg8uTJ3HnnneTk5HDKKafw7LPPtqqXsTPFxcVcd911PPXUU+Tk5DBx4kQef/xx1ZMSEZFOq6Pfk22xK/cKYCVjtr5XeOqppwiFQjuNxW63M27cOKZPnw5YSanDDjuMQw89lFgsxsyZM/n222+prq5ulZRat24dAwcO3Ga8Hd0TFRcX7zCG888/n/LycqZNm9bqS8/dtaPnOOSQQ7j88suZPXs2EydO3O3amiJdmWpKieyDtp51tDt+//vf89vf/paLL76Yu+++m6ysLGw2G9dcc02H22HEMIxWxb+3iMViP2is7YnFYtjt9t0eryPYUdxbXrN4PJ4oKLq9vj6fr9Xx9r59NAyDV199lZkzZ/Kf//yHDz74gIsvvpiHHnqImTNnbjPGjjz00ENceOGFvPXWW3z44YdcffXV3HvvvcycOZPu3bvv0hgiIiIdTUe/J9uVewWABx54gJEjR26376681x966KHcc889BINBpk+fzi233EJGRgbDhg1j+vTpiTpa309K7a4dzZICq/bX3//+dx599FHuvffePf4coVCIqVOnAtaXsM3NzaSkpPzg5xHpSpSUEumktneT06tXL+LxOCtWrEh8iwRWocja2tpWU5V3dJP06quvcsQRR/D000+3Ol9bW5soWvlD9e3bl1mzZhGJRHA6nW323fLN3PctX7681e52mZmZienl37c7s4m+P1Ztbe12x+rTp0/i+MfcXO6KXr168fHHH9PQ0NBqttTSpUsT7Xsqlr59+2KaJsXFxQwYMOBHjTV27FjGjh3LPffcw4svvsi5557Lyy+/zKWXXrrLYwwfPpzhw4dz66238uWXX3LIIYfw5JNP8rvf/e5HxSYiIrI3dcZ7sl21pRC43+/n6KOPbrNvW/clhx12GOFwmJdeeolNmzYlkk/jx49PJKUGDBjQajObXr16bXd3vO3dE+3MVVddRb9+/bjttttIT0/n17/+9S4/dlfcfvvtLFmyhAcffJCbbrqJX//61/zpT3/ao88hsq/S8j2RTio1NRWgVSLl+OOPB6ydXL7v4YcfBuCEE05o9fjtJWHsdvs2s49eeeUVNm3a9KNjnjx5MpWVlTz22GPbtG39nG+++War55w9ezazZs1i0qRJiXN9+/Zl6dKlVFRUJM598803rbYo3lV9+/Zl5syZhMPhxLl33nmHDRs2tOq3vdd9Tzr++OOJxWLbvEaPPPIIhmG0uv4d/X+4q0477TTsdjt33nnnNq+/aZpUVVXtdIyampptHrvlm9RdXcJXX19PNBptdW748OHYbLbdWgYoIiKSDJ3xnmxXjRo1ir59+/Lggw/S2Ni4Tfv378HaukcaM2YMTqeT++67j6ysLIYOHQpYyaqZM2cybdq0bWZJHX/88cyePZsZM2YkzjU1NfHXv/6V3r17M2TIkN26lt/+9rfccMMN3HzzzTzxxBO79di2zJo1iwcffJBrrrmG66+/nl/96lc89thjTJs2bY89h8i+TDOlRDqpUaNGAXDLLbdw9tln43Q6Oemkk5gyZQp//etfqa2tZcKECcyePZvnn3+eU089lSOOOKLV45944gl+97vf0a9fP/Ly8jjyyCM58cQTueuuu7jooos4+OCDWbhwIS+88EKr2UI/1AUXXMDf//53rrvuOmbPns1hhx1GU1MTH3/8Mb/85S855ZRTEn379evHoYceyuWXX04oFOKPf/wj2dnZ3HjjjYk+F198MQ8//DATJ07kkksuoby8nCeffJKhQ4cminnvqksvvZRXX32V4447jjPPPJNVq1bxz3/+c5utgvv27UtGRgZPPvkkaWlppKamMmbMmDbrGOyOk046iSOOOIJbbrmFtWvXst9++/Hhhx/y1ltvcc0117SKZ9SoUXz88cc8/PDDFBUVUVxczJgxY3b5ufr27cvvfvc7br75ZtauXcupp55KWloaa9as4Y033uCyyy7jhhtuaHOM559/nj//+c/85Cc/oW/fvjQ0NPC3v/0Nv9+fuCHfmU8//ZQrr7ySM844gwEDBhCNRvnHP/6B3W5n8uTJu3w9IiIiydAZ78l2lc1m46mnnmLSpEkMHTqUiy66iG7durFp0yY+++wz/H4///nPf9p8HVJTU0lJSWHUqFHMnDmTk046KTGravz48TQ1NdHU1LRNUurXv/41L730EpMmTeLqq68mKyuL559/njVr1vDaa68lisDvjgceeIC6ujquuOIK0tLSOO+8837U6xMMBpkyZQr9+/fnnnvuAeDOO+/kP//5DxdddBELFy5MJOtEZAeSsuefiOwRd999t9mtWzfTZrMltuCNRCLmnXfeaRYXF5tOp9Ps0aOHefPNN5vBYLDVY0tLS80TTjjBTEtLM4HEVsTBYNC8/vrrzcLCQtPr9ZqHHHKIOWPGDHPChAmttiv+IdsPm6a1hfAtt9ySiK+goMA8/fTTzVWrVrUa94EHHjAfeughs0ePHqbb7TYPO+ww85tvvtlmvH/+859mnz59TJfLZY4cOdL84IMPzClTppi9evXarbhM0zQfeughs1u3bqbb7TYPOeQQc86cOdtct2ma5ltvvWUOGTLEdDgcrV6D7T0vYN5+++27FUdDQ4N57bXXmkVFRabT6TT79+9vPvDAA622YjZN01y6dKk5fvx40+v1moA5ZcoU0zRN8/bbbzcBs6KiolX/Ldsib71V82uvvWYeeuihZmpqqpmammoOGjTIvOKKK8xly5Yl+kyYMMEcOnToNrF+/fXX5k9/+lOzZ8+eptvtNvPy8swTTzzRnDNnzi5f7+rVq82LL77Y7Nu3r+nxeMysrCzziCOOMD/++ONdHkNERCSZOts92WeffWYC5iuvvNLq/I7GmjdvnnnaaaeZ2dnZptvtNnv16mWeeeaZ5ieffLLT12GLX/3qVyZg3nfffa0e069fPxNI3At+36pVq8zTTz/dzMjIMD0ejzl69GjznXfe2aVrMc3v7n2++uqrxLlYLGb+9Kc/NR0Oh/nmm2+2+Trt7DmuvfZa0263m7NmzWp1fs6cOabD4TAvv/zyXRpfpCszTHM7VYJFRJJk7dq1FBcX88ADD+x0lo6IiIiIiIh0XqopJSIiIiIiIiIi7U41pUTkRwuHw1RXV7fZJz09vc2teveW6urqVsXLt2a328nNzd3rccRisVbFQLfH5/Pt0rbKnUlHef1FRES6go58T9YR6fUSST4lpUTkR/vyyy9bFezcnmeffZYLL7ywfQL6ntNOO63N3U969erF2rVr93ocGzZs2Gkx9Ntvv5077rhjr8fSnjrK6y8iItIVdOR7so5Ir5dI8qmmlIj8aDU1NcydO7fNPkOHDqWwsLCdIvrO3Llzqamp2WG71+vlkEMO2etxBINB/ve//7XZp0+fPu26o0576Civv4iISFfQke/JOiK9XiLJp6SUiIiIiIiIiIi0OxU6FxERERERERGRdqeklIiIiIiIiIiItDsVOm9DPB5n8+bNpKWlYRhGssMRERGRDsA0TRoaGigqKsJm0/d7ul8SERGRre3q/ZKSUm3YvHkzPXr0SHYYIiIi0gFt2LCB7t27JzuMpNP9koiIiOzIzu6XlJRqQ1paGmC9iH6/P8nRiIiISEdQX19Pjx49EvcJXZ3ul0RERGRru3q/lJSk1L333svrr7/O0qVL8Xq9HHzwwdx3330MHDgw0ScYDHL99dfz8ssvEwqFmDhxIn/+85/Jz89P9Fm/fj2XX345n332GT6fjylTpnDvvfficHx3WVOnTuW6665j8eLF9OjRg1tvvZULL7xwl+LcMgXd7/frJktERERa0VI1i+6XREREZEd2dr+UlEII06ZN44orrmDmzJl89NFHRCIRjj32WJqamhJ9rr32Wv7zn//wyiuvMG3aNDZv3sxpp52WaI/FYpxwwgmEw2G+/PJLnn/+eZ577jluu+22RJ81a9ZwwgkncMQRRzB//nyuueYaLr30Uj744IN2vV4REREREREREWnNME3TTHYQFRUV5OXlMW3aNMaPH09dXR25ubm8+OKLnH766QAsXbqUwYMHM2PGDMaOHcv777/PiSeeyObNmxOzp5588kluuukmKioqcLlc3HTTTbz77rssWrQo8Vxnn302tbW1/Pe//91pXPX19aSnp1NXV6dv/kRERATQ/cHW9HqIiIjI1nb1/qBDbBlTV1cHQFZWFgBz584lEolw9NFHJ/oMGjSInj17MmPGDABmzJjB8OHDWy3nmzhxIvX19SxevDjR5/tjbOmzZYythUIh6uvrW/0REREREREREZE9L+lJqXg8zjXXXMMhhxzCsGHDACgtLcXlcpGRkdGqb35+PqWlpYk+309IbWnf0tZWn/r6egKBwDax3HvvvaSnpyf+aCcZEREREREREZG9I+lJqSuuuIJFixbx8ssvJzsUbr75Zurq6hJ/NmzYkOyQRERERERERET2SUlNSl155ZW88847fPbZZ3Tv3j1xvqCggHA4TG1tbav+ZWVlFBQUJPqUlZVt076lra0+fr8fr9e7TTxutzuxc4x2kBEREZG95YknnmDEiBGJ+41x48bx/vvvJ9oPP/xwDMNo9ecXv/hFqzHWr1/PCSecQEpKCnl5efzqV78iGo226jN16lQOOOAA3G43/fr147nnntsmlscff5zevXvj8XgYM2YMs2fP3ivXLCIiIrK1pCSlTNPkyiuv5I033uDTTz+luLi4VfuoUaNwOp188skniXPLli1j/fr1jBs3DoBx48axcOFCysvLE30++ugj/H4/Q4YMSfT5/hhb+mwZQ0RERCQZunfvzh/+8Afmzp3LnDlzOPLIIznllFMSdTEBfvazn1FSUpL4c//99yfa9tQuxP/617+47rrruP322/n666/Zb7/9mDhxYqv7KxEREZG9JSm77/3yl7/kxRdf5K233mLgwIGJ8+np6YkZTJdffjnvvfcezz33HH6/n6uuugqAL7/8ErBuxkaOHElRURH3338/paWlnH/++Vx66aX8/ve/B6ybsWHDhnHFFVdw8cUX8+mnn3L11Vfz7rvvMnHixJ3Gqd1kREREZGt76/4gKyuLBx54gEsuuYTDDz+ckSNH8sc//nG7fffULsRjxozhoIMO4rHHHgOsWp89evTgqquu4te//vUuxa37JREREdlah95974knnqCuro7DDz+cwsLCxJ9//etfiT6PPPIIJ554IpMnT2b8+PEUFBTw+uuvJ9rtdjvvvPMOdrudcePGcd5553HBBRdw1113JfoUFxfz7rvv8tFHH7Hffvvx0EMP8dRTT+1SQkpERESkPcRiMV5++WWamppazeZ+4YUXyMnJYdiwYdx88800Nzcn2vbELsThcJi5c+e26mOz2Tj66KN3uFMxaLdiERER2XMcyXjSXZmc5fF4ePzxx3n88cd32KdXr1689957bY5z+OGHM2/evN2OUURERGRvWrhwIePGjSMYDOLz+XjjjTcSJQjOOeccevXqRVFREQsWLOCmm25i2bJliS/o9sQuxDU1NcRise32Wbp06Q7jvvfee7nzzjt/3MWLiIiIkKSklIiIiEhXN3DgQObPn09dXR2vvvoqU6ZMYdq0aQwZMoTLLrss0W/48OEUFhZy1FFHsWrVKvr27ZvEqK3diq+77rrEcX19PT169EhiRCIiItJZKSklIiIikgQul4t+/foB1iYvX331FY8++ih/+ctftuk7ZswYAFauXEnfvn0pKCjYZpe83d2F2G63Y7fbt9tnyxjb43a7cbvdu3m1IiIiIttKSk0pEREREWktHo8TCoW22zZ//nwACgsLgT2zC7HL5WLUqFGt+sTjcT755BPtVCwiIiLtQjOlRERERNrZzTffzKRJk+jZsycNDQ28+OKLTJ06lQ8++IBVq1bx4osvcvzxx5Odnc2CBQu49tprGT9+PCNGjADg2GOPZciQIZx//vmJXYhvvfVWrrjiisQspl/84hc89thj3HjjjYldiP/973/z7rvvJuK47rrrmDJlCgceeCCjR4/mj3/8I01NTVx00UVJeV1ERESka1FSSkRERKSdlZeXc8EFF1BSUkJ6ejojRozggw8+4JhjjmHDhg18/PHHiQRRjx49mDx5Mrfeemvi8Vt2Ib788ssZN24cqampTJkyZbu7EF977bU8+uijdO/efZtdiM866ywqKiq47bbbKC0tZeTIkfz3v//dpvi5iIiIyN5gmLuyFV4XVV9fT3p6OnV1dfj9/mSHIyIiIh2A7g9a0+shIiIiW9vV+wPVlBIRERERERERkXanpJSIiIiIiIiIiLQ7JaVERERERERERKTdKSklIiIiIiIiIiLtTkkpERERERERERFpd0pKiYiIiIiIiIhIu1NSSkRERERERERE2p2SUiIiIiIiIiIi0u6UlBIRERERERERkXanpJSIiIiIiIiIiLQ7JaVERERERERERKTdKSklIiIiIiIiIiLtTkkpERERERERERFpd45kByAiIiLyfaYZxzRjLX+iLcdRTDNCPB4FtrS19CMO3/s9Hg+DGcfnG4DTmZnsyxER6dLMcJjwpk0Qi2HGYi0/45jRCBUVEVZVNRGtq6LZ56amsY7GGASrVxONBomZJmY8Cp4o2S4vjoZKwNzyPzBNXN4U7EYqLYeAsaURgHhLHIYJZsu5LT8A4taDWtqNrZpNHDYbXqfNamvpa42zdV/rd7/dhq2lLdGekoOZnoaZlpJ4gMNwUOTrlhjBBNLzutFtYBFurz6md2YldQHWVzVjxmqIx6rZ8v9xjywvGSmuxN8ji9nq53d/R82t2tlJ+1aPb9Wn7cd6U3rhcRfs8vXtafrbLiIiIrukpmYmJSWvEzcjWyWNYpjxMPGW32lJDn2XUNqSQApjxqMtbd8llqwk0/fPRfZIvCNG/JXcnKP2yFgiIrLrzGiU8gcfIrxxA40ff0LcsFFXNI5NeflUdh/CAk81M30babLFGFb7DQesb+DUOXUYprWUp96bxrocP3UpHuo91piBpF7Rrivdjb5Ltjp2+k7ljN+cQWHf9D0ZkrSj6qYwhz8wlQxXCXcdfC8OWzzRtnxzEgNrw4D+t9Gjx5SkPb+SUiIiIrJLlq+4m8bGpUmMwIbN5sQw7IANw7C3/LG1HG85Z/Wx21OSGKuISNdjRiLUzJpN8+JFfDVjBvU5hWw+7XSW+pqptMVYmz0dm+ttCqtMxpWYdKuyc9D6QwnbXcwb3pNqxxriZhPxePkOnsGFYfPtoC2+g/M7C3qbX3aZsfMuLeMaxG1gfu8BBgZ2m71Vz7SsNBxOVdjpzNZUNhKKxumTuxmHLU4sbicYs2bypboduBxb/v81Wv00thwbW/+t2qq9VZ8djcF2262HbvtYhzO5SVAlpURERGSXhEIVAPTqeRludwGG4Ugkgmw2d8txS5LIsGNga9XHMBzYbC4wbBjYv3e+dZLJSjw5E4+x+jlakk8iItJRvf7IIyxsbgbA3H8/qpx1LPMvpNS/CoDsBpPhy0zO+V9/Fg8+l6BRweKCFcQjK4CVEGs9nt3Vh1R/dzKKRpGWlYI3PZOUdDepGW6cbjsZeSnY7AbpeV4cTjsiyWKaJgs31TFjVRUAfXKsJGd+3hHsN+IvyQytw1NSSkRERHbKNE2i0ToAune/AI+nMMkRiYhIR7Fk/nwWTp/OioYGsFvJoTm+EtbnzmjV72efnUSjfyhzBtcQDbwKZtM2Y3XrP5j9Jv2E7G4F5PXu0y7xi/xYr8zZyI2vLcBlDzEgcz3dfRsBcDjSkhxZx6eklIiIiLRp+YrfUVLyOqYZBVDxcBERaeU/b7xJswHY7cSMKOPjA5jqtpZ7HzEvnQmrjyLscFCZPZhw/XOtHmsYMGhgEYdf/wCeVB82u2Y8SeezvKwBgOsP/Bv90pcnzjsc/mSF1GkoKSUiIiI7FAhsZMOGZxPHebmTsNs9SYxIREQ6EtM0CbTUTRoc7cYfip/iTcdbGKZJ9wonY9eOY1NOAZGmd6F+VuJxWekmPfoN5ojr7sXucCbvAkT2gPqgtUlL7/QyALzenjidmRQWnJrEqDoHJaVERERkhwLBDQDYbG7GjvkAj6dbkiMSEZGOwoybbP7bPMyW4slOWypRRzOmaXDZZydhuMdSkb6QWHAOYO2s57DFye7mZPjtLzE8TRtSSOe2qqKRT5aUsWBjHWBipxGAA/Z/UaUOdpGSUiIiIrJd8XiIpqaVAPj9I/F6eyQ5IhER6SiCwSBP/+1paiqrwIBY3M5aWzNpwSwy6vvhso8iEJxNLDQ/8Zg+/YMcNuFwsg48H5SQkn3Adf/+hm821DKucDaT+5ditFTr17K9XaeklIiIiGyjqmoaCxb+gng8DEBKSu/kBiQiIh3KhhUrqKiqAANWO8LMzZ+OiygXzPstzmiYEJuJRzcD0Du1hu4ptfx70JkcccTN4FDdKNk3bK4NUJhawqXD/5k4Z7enYrcr6bqrlJQSERGRbVRWfZZISNntPgoLTktyRCIi0lFEq4OUvGEVc86Jp7HIVYrD0UB+fR9ccQ+hhhcx47WJ/r3zG/DmpDJq1Kn4lZCSfUh9IEJfv7U7sdOZRX7+iWRnjcdoWdIqO6eklIiIiGwjELBqSQ0ceDfdin6qmysREUmonVtGNBQFJ3hMF5F4lPPn3oU36sM0Y4mEVFZTM4WF9fzi0Hu55cCDOSdfu7dK52eaJne98y3LyxoIReN4nQEAUlKKGTjg9iRH1/koKSUiIiIJTU2rqaj8iIaGxQCkeHspISUiIgnV1dV8uGga1fYKmk0HXwYjhF3giXiJBKZixmoAMDA5b+g8nN44v3RnkmK3JTlykT1jaWkDz36xlp5pGzhr4Ff0Ti8FwOFIS3JknZOSUiIiIpLw7ZJfUV8/P3GcklKcvGBERKTD+fydD1letxps8Lkthfp+79GvPo94dCOx0NeJfhmuIE5vnHfyj6HZnoLXpqSU7Buqm6zyBhcMfYti//LEebc7P1khdWpKSomIiEhCILAegPy8E8nKOgSPpyjJEYmISEdR9upyGlfUgh16xXII+b/B7ilj+OJCMK0lTKnBMANDlRiHpXJd8a94u/A4ALyaKSX7gFUVjSzcZNWQyvTUA1BYcBrelN4UFk5OZmidlpJSIiIiAoBpxohErGUX/fvfitudm+SIRESkIwmtqSPSsuV9ftSPacboUzWSwuYRxMwQAJn2AGMHrOf8wffxv8xRicfmuvTRUzq31+Zu5PpXvgFMfM4mPPYmAHr2vBSfb2Byg+vE9C+DiIhIF2eaMRZ/ewPV1dMBE8Nw4nSqGK2IiGwlHCdKDNOE2VWfM9Q5gNHrHYRD8zBbklLp+XFcWVFmpw8H4Pre+Qz1eenldSczcpEf7dsSa2bUL/f7B6Py5yTOOxz+ZIW0T1BSSkREpItrbFxKWdnbieOc7MOx2XSLICIi31mxYgVfRRZQbWtkeqQPq7MO4oyGZcRCczHjdYl+uUPH0lC7lrDNBcA1vQpw2rRhhnR+9YEIAPvlr0icS08/ELc7L1kh7RN0xykiItLFhcNVAHi9vRg65EF8vqFJjkhERDqSxlklvPn+KzQRBgM2G3ZsnvV0K48RM4MAjFxXSr+hFfQ84HjKp1oJKQNwKB8lndz6qmY+W1bO4s31gImdRgAOOXi6am/uAUpKiYiIdGGxWDP1DQsB8Hq6k55+QJIjEhGRjqbm4/UEzSgY0D+ah6PvH/EQwr72DGKmtRPZyIM2kp0dBJeXkGElpTw2A8NQVko6t6tfnsf8DbUMzV7C0T1LMVrqqjkc6UmObN+gpJSIiEgX1di4nK/mnEY8bu2Y5PH22KbP81+uZe66GmJxk1jcJBo3icXjLT+t43tOHUb//LT2Dl9ERNpJtDlMzBkHYE35p7h6h5g8tRvhyKxEH//Bx0DVMvjyT4Ralu65bNpxTzq/jTUB8lPKuW7UE4lzNpsbuz0liVHtO5SUEhER6aJKy95OJKTc7gK6FZ3Vqr2iIcTtby/e6Tj1wcheiU9ERDqGWDyW+L3BbOawZePwRDa1nHGQ7wRnuBYqlwEQTu0LgEu1pGQfUB+M0D/dKnXgcPjJyjyEnJwjNQtwD1FSSkREpItqbl4NwID+v6VHjwu3aa9qsnZSSnM7uGHiQGw2A4fNwN7qp43iHF97hi0iIu0sblo77q2M5VDv68fxZf1oZhOGPQe3/wIOc/4BwjE2u3L529g/sN7bHYLgVlJKOql43OSud75leVkD4WicVGczAD7fYIYPfyzJ0e1blJQSERHpYoLBzVRVT6ehvqWWVErvbfpUNYb4el0tALl+N1MO3raPiIjs24LBIM8+/TTV7mpqTS9fRIvpYa8ibpgA+EI1TFh9I92Pd0HUxlPdJ/OE0Q+s2udkO/VxUzqnpaUNPPflWjLctfzh0EfJ8tYA4HSqjtSepn8lREREuphFi66mrn5e4jg1pW+r9oqGEIfe9ymhqFU/JMPrbNf4REQk+SIVzSx65nPKAhVgQDDuoFtgA8eXzSVoWkmpjPQ6Bg5fAUWnQtli6u3WzNlDM3yMy/BxfK4+wEvnVBuwCviPLlpPbkpV4nxG+kHJCmmfpaSUiIhIF9PUsmwvO3sCmZkH492qwPnqikZC0ThOu0Hv7FTNkhIR6YKCy2sI1wXABZnxVOKGQcjzMi7zuyXb3Ypy4LzXoOc4eHwsIZv1JcYR2X6u6JmXrNBFfrTGYBSAvDTrZ1bWYQwZ8iBuV04yw9onKSklIiLShcRiIaLROgCGDnlku9PQ6wJW4fKhRem8ecUh7RqfiIh0DNFAlBjWjNmmUBXzvWsoiFkzpOzuUTg8B3HQ6BnQ7+iWBwQJtySlVEtKOqtvN9fzytwNrCxvxOtoJtNt3TO5XblKSO0lSkqJiIh0ERs3vUhd3dcA2O2pOBz+Vu21zWFemr2BueuqAfBr2Z6ISJcVrAslklKxeJiBm+sYWOqkzguGzYdhS8Hh9UBDGayZBuFGIob1vuHUrmTSSf3+vSX8b2UlR/WcxmNHvpY4b3ekJTGqfZuSUiIiIl1AU9NKli37beI4LW3YNlsZP/flWv748YrEcX6au93iExGRjiUejhM3rKSUEQnRtzxOfUoemPVguDDMKDavD169GNb9DyCxfM+lmVLSSVU0WDsPH1m8PnHObveRk314kiLa9ykpJSIi0gUEAhsAcLsL6N7tPPLyJm3Tp7TO2i7poN6ZjCnO5uzRPbbpIyIiXYMZjRMjTlnch7OhEq/bZSWkgBRbhKGp70DRZJjzrPWAbgcSzuoPgNtmS1bYIj9YMBJLFDjvkREnEoBhQx8lP//EJEe2b1NSSkREZB8Xj0doal4FgM83mN69L2/VbpomlY1hyuqtpNTJ+xVx/rje7R2miIh0EPFQiM3zZhHzupgb6c7+5kYAbI7eOF3ZXHJqCbaj7oCULIhZdQg54SHCpalQ14RLy/ekk7nljYW8MGs9Ge5a9s9dD7EygG1KHciep6SUiIjIPqyq6nMWLLyceNxKOKWm9Nmmz/97eT5vf7M5caxaUiIiXUc8HMMMxcA0MU3ANFnyzn+Y7yonZHcQMgvwGBUA2Fx9cXl92NLrrIQUQCzEbP8w/rjJxreBAKDle9L5fLKkHDC5ZczDZHlqiVgTpnBsZ0MY2bOUlBIREdmHVVf/L5GQstt95OUdt02fL1dVAuCwGRRleBnbJ7tdYxQRkeQIra2j4qmFEDVbnZ/qWk+Vx0ownbf8I/KbQlT4UwE7NiMCzpTvOkfD/LX3GXzaGE+c6uZxtUf4IntMXSCCyxYhy1MLgN8/ktTUfvjThiU3sC5ASSkREZF9WCRSC0CfPtfRu9flGEbrOh+maVIXsJZefH7jERRleNs7RBERSZLwuvrvElI2wDDAMAgb1vvCgHAu6aWVVPitJUyGYSfTHgRnxneDxMIEbNbGGOcXZXN6fiZDfXovkc5h5uoqVpY3EojEyHAHWs7aOHDUq9tsCCN7h5JSIiIi+6BYLEh1zReUV7wPgMuZvU1C6rW5G1le1kAkZn0gSdeyPRGRLiUWiAIQLk4nvF+u9XsgRmDqJwBs3DiV3GiMeGI5nh2PEf5uppRpQixEpGXXvbHpqYzJ8LXrNYj8UBuqmzn7rzOxGzEm9f6UbmmlgFVHSgmp9qOklIiIyD5o+Yq72bz55cSxx9u9VfuKsgauf+WbxHGa20GKy95u8YmISPJVrq7EA6ya/wULp81LnI/2LSBoc1Lu7sZ+7iaaPT6gGQwHdiMCOdYue1uKnIcN62OlS7vuSSeyqdaaGXVgwXJOH/CfxHm3Oy9ZIXVJSkqJiIjsg6qqpgHgdheQn3cCWZkHt2ovbdlpLzvVxeRR3RnfP1ffCoqIdBGRimaa51cQ21QLeIjEqjBj32144aqG1bE8muzZrC4cSoj1YALY8e53HHQbBaWLoGyxNV7LTCkVOJfOpCFozRTsmxMCICWlmLy848nNPTaZYXU5SkqJiIjsY0wzTjhs7ZR04KhX8XgKt+mzpY5U3zwfvzl+cLvGJyIiyVX79ioaVlRSY2ui2tZEfUYKuQVDqFj2LQDuys3sh5Wkav7e44Yf0YcDTxwBDWXwl/FgxgAIG1ZSyqkvN6QTqGuO8PJX65m7rgYAv8v6os6fth99+1yXzNC6JCWlRERE9hGmabJ+/d+orJqKaUYxDDsuV06rPt9urueO/yxmY7X1McPvUR0pEZGupqm0iU+dC9lor8aIRsARI3+DlZAqSqkny9lMLGoQjxisjh9G3OYkPXsRh5873ppVu7nESkjZXdD9IMJp3QDNlJLO4e8z1vLQR8sZlLWcm0e/Q/e0OgAczrQkR9Y1KSklIiKyj2hqWs7KVfcljtPTD8Rma510eu3rjcxeU504HliggrQiIl2JaZqE6qqp8TZhb6rHu345BtDU0h52HkeNM49QsxNMsPu6YTdsFI6s+W6Zd0stKfxFcNF7RGYugUBIM6WkU9hSwuAnA2bRz782cT4lpW+SIuralJQSERHZR4RC5YBVR6pXr5+Tm3P0Nn22LNv76egenD6qByN7ZLRniCIikmSxSAS7aSNEFHugCQMwDBumacewZ9Bg7E9jzA3f+87CNJvodfy13xskDEDY4aUpEiUUjwPg1Ewp6QS21JLqlh4FE3r1+gU52UeQnn5AkiPrmpSUEhER2UdEItYMqJSUPvTofsF2+zQEraTU0KJ0RvXKbLfYREQk+eqnbmDq19NZ5l1H1IgRi9lwA47MYdhN64uMTZFSKh0buGDBLGp80HzjJQwfOJDBeQO+GygWptKZzvgBD1D9v0WJ0y7NlJIO7Pkv1zJ/Q21ixrjTaAITMtIPJCPjwCRH13UpKSUiItLJNTWtZsXKe6iqmgqA29V6K+N43OTKl75m3vpaqhqtb7fTPLoFEBHpSmINYer/u5aF7lVEbDFCpp3NkTQygEhjBHsqDIy8wqxQd4orNpFds4Q6Nxx16BhyvDlbDRZhSWpfqh3f1eDpl+Kmb4qnXa9JZFdVNoa4/e3FuOwhbhj1GHkplTjiAQAcDtWSSibdkYqIiHRymza/lEhIAWRnj2/VvqGmmfcWliaO7TaDIYX+9gpPREQ6gHhzBBOTCDHsTfVkb1hFTjwKhoE/GCOcCsaqIDeX/jPxmEaPQaozddvBYmFCLTULh/u8vD9qAHaD72pOiXQwNU3Wl3KDszfSN2Nd4rzd7iMlpU+ywhKUlBIREen0AoH1AHTrdh4FBSeT7m9dE2FLHancNDfPXzSaPL+bHJ+73eMUEZHkCVTVESUOBjga6zDMGBgGYCOYNgwbUJ4RpM4B2O2EjTj/GWvjTPt2Zj/FwkQMKynlthk4VEtKOrj6ljpSeT4rOeXzDWHo0IfxuAs0UyrJlJQSERHppEzTJBQqobl5LQA5OUeQkT6qVfvS0gZmrbZqJ2SnuhhSpBlSIiJdTbQqQPOqaiJYH8yJxQBwOodjSx2PYbgxifPn48qp9W75iGhnUNag7c9+ikUSM6VcNls7XIHID1PVGOLBD5exqrwJpy1MjtfaZ9LtysGX2j/J0QkoKSUiItJpLV58DWXl7ySOvZ6erdr/u6iUy1/4OnHs9zrbLTYREekYYvUhFjz8KZ/ZFxF2R2g0XdRHvXQDsGVgGG5qe/4f7+XWUO+qAuCioRdxXPFx9EnfallToBbKFkP5t4RtLsCaKSXSUf3nm828NHsDB+bP47Ejn8dhs3aKdDj0JV1HoaSUiIhIJ1VTOwsAuz2VjIwDSUnp1ap9aWkDAJkpTnpkpXDxIcXtHqOIiCRXtDLIOqOCBlsAIxIiXB2lZ8NmsIFp9wLg9iyl3mV9NHTYHBzd62iGZA/ZdrC/HQnVqwAIF5wIgEtJKenAqltqSR3ee20iIWUYTrKzJyQzLPkeJaVEREQ6IdM0iUTqABg75r94PEXb9NlSS+qcMT351cRB7RqfiIh0DIHqusSyvZR1y/BFwtCy4s4wrPqCFx30c8474GwAUp2ppLm2U2MnHk8kpMjqSyjd+iLEZWj5nnRM4Wic6mYrKVWQZv030L/fb+je/QJsNs0e7yiUlBIREelkmppWUln5KaZp3Wg5nRmt2r9eX8NvXl/I+upmADK8rvYOUUREOohZr/6biNNKMhlR64O5zdEdw5aFzdmbuBEh+6CLwbOT5UyxEAAmsODcD1lc0Qwl1ZopJR3SIx8t50+friDV0cB+uWtJsZUA4HRmKSHVwSgpJSIi0onEYs3MmXsW0WgtAG5XPjabt1Wft+dvTizdAxjaTXUTRES6mlhdiIpPVxGLpVPnagTAMK3lS87U4zAMD55sGDCm584TUgDRIACz/cM5ZcHGxGmvCp1LB/TRt2WYJlx7wJP0Tt+QOO90picxKtkeJaVEREQ6kcbGpYmEVH7+yXQrOmubnZHqW5btXXxIMZceVkxRhnfrYUREZB9XM20jb3/9EZtTa8A0WRDI5ZBEqwt3fB2XXDMB8nZxeXfUmp273mstF0+z2xiW5uWcwqw9HrvIj7WlhEHvjCowIS1tKF5vLzIzxyU5MtmaklIiIiKdSDhs7Yzk949k2NBHttunPmjdiPXL8ykhJSLSRVWuqqPeFgAgZd0KDgnM/a7RcGEjAG7frg/YMlMq0lIcfWyGj3+M6NPWI0Ta3SdLynhj3ibKG4LYjBiYVimD/Uc+j9OZmeToZHuUlBIREekEAoFNrFn7J8rL3wfA5Wz9zXQ0Fuecp2Yxf0Mt4ai1PMPv1du8iEhXZJomzVUlhO1RME1sgfpEm8PeC8OwYXiBtG03ydihmDVTKuLwANp1Tzqmu975lnVVTRzZ43N6pJUlztvt2yneLx2C7lZFREQ6gU2bX6Kk5NXEcUbGQa3a11U3M3tNdeI41WVnRLeM9gpPREQ6kLLVKwnVlRDJioIZZ0v6yJ1xRWLHvT5HHA27Wg+qZi188zIAEbuVlHIYSkpJx1PdGKa3fz3nDn4tcc7pzMZmU+qjo9L/MyIiIp1ApGXZXm7useTnn0xe7rGt2qubrG+wu2V4ef2XB+P3OPG67O0ep4iIJFfzvHI+eu9TVmWXYJqwKJTHwWBtm4eLAu9nTLj+RrK77cbSvdcuhY1fARB2pgLgVFJKOph43KQxHKWfvw4At7uAgoKfkJ09IcmRSVuUlBIREekEIi3FzbMyDyU/b1LifDASY8ozsxO77eWmucn3e5IRooiIdACVb69ibbwMDGiK2ui7einYwMCOYRhkpdaQ0303lzI1tCyD6nME0QHHQQM4tXxPOohoLM7Nry9kZUUjed5yitPXAuDzDaJf3xuSG5zslJJSIiIiHdiatY+zceM/CIcrAHC6WhfpnL+hllnfW7a3f8+M9gxPREQ6mEggQswTxwgFKVy9GGwmAIZhffRL9f2Aj4At9aQ49m7CgVxoKNVMKekwFm6q45W5Gyn2r+P3hz6UOO90ZCQvKNllSkqJiIh0YBs3/vO7hJQzm8yMsa3at2x5PKggjT+fewDFOantHqOIiHQMdRVlmKb1vmAPNQMmmAbYXBiuEQD4hk/c/YFjIeun3UXUtJJcSkpJR1Hbci80PN8qdWCzeUlN6UNR0RnJDEt20S5WttuzPv/8c0466SSKioowDIM333yzVbthGNv988ADDyT69O7de5v2P/zhD63GWbBgAYcddhgej4cePXpw//33t8fliYiI7BGmaRKJWLOgDtj/RQ4e9xkuV1aibVlpA4s2WXUT8v0e+uT6MPQhQUSkS4oHo6z/cgEBmzWrKRS1ztsdPfBkXIHhPxAjJ0Sfw4/e/cFjkZbBXITjLUkpLd+TDqIhaP1lz/PFAMjNOYrRo98mM3NsWw+TDiIpM6WamprYb7/9uPjiiznttNO2aS8pKWl1/P7773PJJZcwefLkVufvuusufvaznyWO09K+WxtdX1/Psccey9FHH82TTz7JwoULufjii8nIyOCyyy7bw1ckIiKyZ5lmjKamlZimdaPl94/Ebncn2v85cx2/fWtx4jjd62z3GEVEpGOINYaZff/7fGTMJ+42WR/LINAc50AAm1Vn8JLjFuE78aZdGq8qHOVfpdUE43HrROHpYMahPMLsJitBpZlSkmxPTF3FHz9eTiRm/T31uawZfXbHbhTxl6RLSlJq0qRJTJo0aYftBQUFrY7feustjjjiCPr06dPqfFpa2jZ9t3jhhRcIh8M888wzuFwuhg4dyvz583n44YeVlBIRkQ7NNGN8Nec0GhoWAeB2F7ZKSAF8W1IPQGaKk4J0L2cd1KPd4xQRkY4htLmJzfEq4g4TIxqh+7qlDCpbQklmGhguAFwpu74JxqPryvjrxorvTvS+yPpZ0pw45Xdoh1dJrv98s5lQNM5PB77God1m4HZYM6UcdpUy6Ew6fE2psrIy3n33XZ5//vlt2v7whz9w991307NnT8455xyuvfZaHA7rkmbMmMH48eNxuVyJ/hMnTuS+++6jpqaGzMzMbcYLhUKEQqHEcX19/V64IhERkbY1NCxOJKTsdh89e1y0bZ+WqepXH9Wfiw4pbtf4RESkY9m0aC0RrA/kKWu+xRaNWAkpAMP6UsORnrPTce5cuYl/l9bQELXGmpCZRk+3Hb7+u9Vh5LngcJFmt3N2YdaevxCR3VAftGbtHdV7DobZUowfA3/6/skLSnZbh09KPf/886SlpW2zzO/qq6/mgAMOICsriy+//JKbb76ZkpISHn74YQBKS0spLm59k56fn59o215S6t577+XOO+/cS1ciIiKyawKBDQCkpx/AgaNeadXWHI6yuTZIeb31JYrP3eHfykVEZC/bMH82EcNawmTErC8tDHsBhi0Fu3sYhiOCbfipbQ/SWM4/NpbRaFplh52Y3GcsoneoCVa07Gh25o3g3PUZVyJ7Q1l9kFUVjdQ2R7AbMQyzCYCDDnoLj7sQlys7yRHK7ujwd7LPPPMM5557Lh5P63/8rrvuusTvI0aMwOVy8fOf/5x7770Xt9u99TC75Oabb241bn19PT16aDmEiIi0D9OMUVv7Fes3PA2Ax9O9VXsgHGP8/VOpbPxuVm+aR7WkRES6qkh5Myve+JoVZjPVtmaaTSeppoGBiSv1RGw2Jz2GdafvAbngantJU/zlc2nsa20s9cb8qxjQtI7saN13HQw72F07eLRI+2gKRTnqoWk0hqJM6v0R++UuamkxSPMNxjC0rLSz6dBJqenTp7Ns2TL+9a9/7bTvmDFjiEajrF27loEDB1JQUEBZWVmrPluOd1SHyu12/+CEloiIyI+1YePfWbHid4ljX+qAVu3rqpuobAxhGJCV4qJbppexfbR8QkSkq6r7chPzN3xLicNKHi0JFZJPS3Fyw4nL3MhJV52w4wHicVj/JTRX01yxEvpap0dk5ZCamd6674CJYEvK5u0iCZtrAzSGorjsMSb3fwfDsHaD9Hp7KSHVSXXopNTTTz/NqFGj2G+//Xbad/78+dhsNvLy8gAYN24ct9xyC5FIBKfT+hb5o48+YuDAgdtduiciIpJs9fULAPB6euLzDaSwsPXS9ZqWHY+Kc1L59PrD2zs8ERHpYKrW1BM2ImCa+Es2cdrGL6hOa/mS3XBhM8JtD7DkbXhlCt/4BrA4cywANiDlgtdBu+tJB7SljlSfbBIJqWFD/0R6+gHJDEt+hKQkpRobG1m5cmXieM2aNcyfP5+srCx69uwJWEvnXnnlFR566KFtHj9jxgxmzZrFEUccQVpaGjNmzODaa6/lvPPOSySczjnnHO68804uueQSbrrpJhYtWsSjjz7KI4880j4XKSIispu21JLq1+8m8vKOS5wPRmJc8vxXLClpACDDqyV7IiICgapywkYMWyiAWVeaSEgZuDAMO7b0nbxfVK9iWUovJo76W+KU32HHUEJKOph43OSe95Ywd10NADkpVnLKbk8hP7+N2YDS4SUlKTVnzhyOOOKIxPGWOk5TpkzhueeeA+Dll1/GNE1++tOfbvN4t9vNyy+/zB133EEoFKK4uJhrr722VT2o9PR0PvzwQ6644gpGjRpFTk4Ot912G5dddtnevTgREZHdVFr6NptLXqGx8VsAvN7W9Qznra/li5VVieP9e2rGr4hIV1dSUsKy0HLqvYFEcXO76QDvgdidvQDoM3ZC24OEGljr7QaAz25jiM/LT/L1HiMdz4JNdTz9vzVke6o5Z9CnDM4LAOCwpyU5MvmxkpKUOvzwwzFNs80+l1122Q4TSAcccAAzZ87c6fOMGDGC6dOn/6AYRURE2svKVfcTCpUAYLf78Hp7t2rfMlV9UEEaj597AH1y2i5WKyIi+y7TNKl+bQX/XPQ6TalBANaF0xkGOEwvhvdgMnOWcNi5J1DUP2PHAzWUQd0mGu0pAOzvT+GVkf32/gWI/AA1TdZS1J8MmM64gs8T593u/GSFJHtIh64pJSIisq8zTZNw2JoFNWjg78jMHIvD8V3SKRiJUd5g7baX7/fQN9eXlDhFRKRjiNWEaJ5TSpM7CAb0jGaTv/JDmn1gYC3XK8gN0GNwGxthLHwVXrsEgMbCkwFItauIuXRcW76gy/c1ApCTczTp6QeQm3NUMsOSPUBJKRERkSSKxRoxTevbv4KCU7HbvYm29xaW8P9enkckZs0u9quWlIhIlxcPRokRBwPsTfXUrpsLqXHAAMN6n8hN38mSpo1zWJrSm0d6X8hSX38AfHbtXCYdz9Rl5Vz90jyC4QCDs1aT6SoHIC9vEoUFpyY3ONkjlJQSERFJAtM0WbT4asrL3wPA6cxslZACmL6iIpGQcjlsHD04r93jFBGRjqVqzXoixABwNNRiGiZgFSaPpPTHCaQOPrrtQcINPNPtNN7K/a7Obw+Pay9FLPLDfbKknPpglJ8OfIuje323bM/pzEheULJHKSklIiKSBI2NSxIJKYCC/FO26VMftArX/vbEIVx0cG9sNu2GJCLSVcXDMRq/KmHlzCUE7eGWk1ZyyuUcgZEyDsOWCgZk9ipoe7BQI/WOPgD8JC+DY3PSOTbbvzfDF/lBGlqW7Y3pae1A7PH0IC1tCJkZY5IZluxBSkqJiIgkQVPTSgC83p6MOuBfuFy5ibay+iCrKhrZWN0MQGaKUwkpEZEurnl+OTPfm86XzmXghPK4j5SAi0LAtKdjs6VyxCHL6T5pCv4c7/YHKVsMy96DskU0FVof6g/LTNOOe9LhRGJx1lQ2UVJnFfP32IMQhwH9byU3dyczAaVTUVJKRESkHZmmSVPzSmpqZwGQmTEWt/u7ZXn1wQhHPDiV5nAscc7vUS0pEZGuLlDaTJ1hfVnhjtkI1cQYW7mSCn8qps1KQvXq6SB1RwkpgNd/DmULAWjsbvVLUYFz6YAueX4Ony+vwGMPkOdtxEE9AA6HNnzZ1ygpJSIi0o42bX6JZct+mzj2pvRu1b6xOkBzOIbDZtAvz0f3TC/j+ma3c5QiItLRNFU2EMFa1m1bv4jBwWYq/NZurYZh1YNyDZnY9iCNpTxd9BPe6n0Gi535gHbdk45pwcZaMt013HPoPbjtYYhb5+1KSu1z9C+QiIhIO6qvXwCA05lFevqB5Oed2Kq9NmDVCemdk8p/rxnPU1MOItWt75D2NU888QQjRozA7/fj9/sZN24c77//fqI9GAxyxRVXkJ2djc/nY/LkyZSVlbUaY/369ZxwwgmkpKSQl5fHr371K6LRaKs+U6dO5YADDsDtdtOvXz+ee+65bWJ5/PHH6d27Nx6PhzFjxjB79uy9cs0i8sOZkTib1yyh2QgBYA8F2bKo2zDBsOcBJo6c7m0PFAlwX/ElzHZ2o6llfkJvr3vvBS7yA5imSUMwSo+0zVZCCht2u4/09APwpfZPdniyh+kuV0REpB2Fw9ZWxv363khR0RmJ8xuqm7nj7cWsqWoCIN2rJXv7su7du/OHP/yB/v37Y5omzz//PKeccgrz5s1j6NChXHvttbz77ru88sorpKenc+WVV3LaaafxxRdfABCLxTjhhBMoKCjgyy+/pKSkhAsuuACn08nvf/97ANasWcMJJ5zAL37xC1544QU++eQTLr30UgoLC5k40ZpN8a9//YvrrruOJ598kjFjxvDHP/6RiRMnsmzZMvLytNujSEcQWFTJtH99yEz78sQ5w7SmjbjSzsaw52IYTpweO4bRRv1B0yQWDlDvSAPg0UE9Gezz0D/Vs1fjF9kd5Q1BKhvCxOImKc6W2pqZYzlg/38kOTLZW5SUEhERaQdNTSuprJpKY8NSANzu1jsjvf3NZj5ZWp447per6en7spNOOqnV8T333MMTTzzBzJkz6d69O08//TQvvvgiRx55JADPPvssgwcPZubMmYwdO5YPP/yQb7/9lo8//pj8/HxGjhzJ3XffzU033cQdd9yBy+XiySefpLi4mIceegiAwYMH87///Y9HHnkkkZR6+OGH+dnPfsZFF10EwJNPPsm7777LM888w69//et2fEVEZEcal1RRQR0AdtPGnGAh45kDgGHLwGbGyc0L03/CkLYHigZpsn+XgDolLwOPlu5JB/LZsnIufu4r0l21nNZvOn0z1gLgdKQnNzDZq/SvkIiISDtYuOhKVq68l1DYWoLl8w1q1V7TZC3bmzSsgL9fPJo7Txna7jFKcsRiMV5++WWampoYN24cc+fOJRKJcPTR3+0uNGjQIHr27MmMGTMAmDFjBsOHDyc/Pz/RZ+LEidTX17N48eJEn++PsaXPljHC4TBz585t1cdms3H00Ucn+mxPKBSivr6+1R8R2XuaqoJEWwrqODev4tQ5b3/XaDhJiazjjDMbGXl0z+0PULoIHh7K5385jYd6X2iNYxi4taurdDDfbKjFNGFS8Wec0OcjBmWtAMDtKdjJI6Uz00wpERGRvSwej9DUtAqAgvxTycwch9udm2iPxOLUNEcAGNYtnfEDcrc7juxbFi5cyLhx4wgGg/h8Pt544w2GDBnC/PnzcblcZGRktOqfn59PaWkpAKWlpa0SUlvat7S11ae+vp5AIEBNTQ2xWGy7fZYuXbrDuO+9917uvPPOH3TNIrL7zHCcKDGMaARnfTXVOWZLA4ADmyMI/qIdD7DqE8INpUw55GkCLTOlclyOtpf6iSRBXcC6Fzqgm7UDcVbWYWSkH0hR0VnJDEv2MiWlRERE9rJgcDMQx2ZzM2TIg60+CNz/36X8eeqqxLFftaS6jIEDBzJ//nzq6up49dVXmTJlCtOmTUt2WDt18803c9111yWO6+vr6dGjRxIjEtl3RcIhajetIuaOYwsGaclEgQmx1BwMwyB7wEDoOW7Hg4SbabSnJBJSFxZmMSkvc+8HL7KLyuuDPP3FGqavqATAbbdqSeXnn0hR4enJDE3agZJSIiIie0k8HmLhoqtpaLCWU3m9Pbf5ZvqDxaWJ3/0eB6N7Z7VrjJI8LpeLfv36ATBq1Ci++uorHn30Uc466yzC4TC1tbWtZkuVlZVRUGAtYSgoKNhml7wtu/N9v8/WO/aVlZXh9/vxer3Y7Xbsdvt2+2wZY3vcbjdut3brEtnb4s0RNk1bgBmOEXFHwbRmj3iibsi9ItEvpbAY2pr1FGkiYLf+m3UZBn8YtINlfiJJ8swXa/nLtNVM6P4Fpx04hxSjFExwOvzJDk3agWpKiYiI7CV19QuorPyYUKgEgHT//tv0qQ9GAXjt8oP5+rfHMLAgrV1jlI4jHo8TCoUYNWoUTqeTTz75JNG2bNky1q9fz7hx1myIcePGsXDhQsrLvyuO/9FHH+H3+xkyZEiiz/fH2NJnyxgul4tRo0a16hOPx/nkk08SfUQkeTY/M59XZ37C2+lLqLI1Uhu1EkumzQWA3V1O8X45DD+8W9sDhZtptnkB8KqwuXRAFQ0hAM4a+A4Ds1ZhmNZOxF5vr2SGJe1EM6VERET2kmikBoDU1AEMGfIAab7BibbFm+tYXtZAXUstqXy/G4c+LHQZN998M5MmTaJnz540NDTw4osvMnXqVD744APS09O55JJLuO6668jKysLv93PVVVcxbtw4xo4dC8Cxxx7LkCFDOP/887n//vspLS3l1ltv5YorrkjMYvrFL37BY489xo033sjFF1/Mp59+yr///W/efffdRBzXXXcdU6ZM4cADD2T06NH88Y9/pKmpKbEbn4gkT1l5BY22IABmc4RB335LfSYYWMu80/JmcPzlZ+94gLqNMP1hWPVJYqZUit5npANqCEYwiONqWbY3eNC9pPoG4vMNTHJk0h6UlBIREdkLgsHN1NTMAsDjKcKfNizRVt0U5tTHvyASs2qDGAZkpLiSEqckR3l5ORdccAElJSWkp6czYsQIPvjgA4455hgAHnnkEWw2G5MnTyYUCjFx4kT+/Oc/Jx5vt9t55513uPzyyxk3bhypqalMmTKFu+66K9GnuLiYd999l2uvvZZHH32U7t2789RTTzFx4sREn7POOouKigpuu+02SktLGTlyJP/973+3KX4uIu0vHI2AC+xNjfjWLKfJHwNsYFjvFy6H2fYAc57lrXWr+WePq6hzWLNwvTYlpaRjME2T37+3hIWb6lhS0oDHEcRoqZlWUHAKNpuWiXcVSkqJiIjsYZtLXmXJkpsSx25XXqv2jTXNRGImboeNg/tmc0i/HHxuvSV3JU8//XSb7R6Ph8cff5zHH398h3169erFe++91+Y4hx9+OPPmzWuzz5VXXsmVV17ZZh8RaV+maRIzreXdjkAjcXucLZVXAqn5eAF39o5rvwEQrOXBXheyIrV34lRPj74AkY5hY02Av01fg8/ZyG/HPkiOtxoAm82jhFQXoztgERGRPayuzkoC2O0puN1F9OhxYaLNNE2qmsIAFOek8uxFo5MRooiIdGArZnxB1IhbB7GW5JSRiy3tJGz2DADyRpzU9iDhZhq9KQDc0qeQXl43h2T49lbIIrulptm6FxqRvymRkALIyjw4WSFJkigpJSIisodFI3UA9O37K3p0vyBxvrY5zAl/+h+bagMAZKQ4kxKfiIh0XI2Njbz28aeEXC1JqbiVlDLtfmz2DDzpFaQX9+Cg/Ye2PVCkmUCqB4CJOekMaPldpCOoD1h/rwt8VnIqI2M0w4c9htOpXYi7GiWlRERE9pBIpI7Kyo8pr3gfAKcjo1X7/A21iYSUYcARA/O2HkJERLqw8OZGFj73GaG4lZCqiXmwNfnoTiW0LGk6e8IGUo8/a+eDRQIqcC4dzjcbarnk+TnUBQIcUvQVQ7KWAuByZuNyZSc5OkkGJaVERET2kCVLf0NFxX8TxykpvVu11wWsnfZGF2fx/EWj8brs7RmeiIh0cM3fVhFuDIILcgMOMtcuwxvYSIPXnShw7vTupC7U9IeIf/UMgUA9oSIrKaUC59JRTFteQWVjiP1yF3PxsBcS513unCRGJcmkpJSIiMgeUlMzE4A031DyC07C7x8BwMryRv70yQqWlzUAkONzKSElIiLbaKwIEDFiADSVL8FOnZWQAgzDqgfl9La9DK95zj84ctB9rPV2T5zTTCnpKBqC1hd0EwcZAHg8PcjJPpyePS5JZliSREpKiYiI7AGxWJBotBaA/ff/B05neqLtHzPW8vY3mxPHvbNT2zs8ERHpBIK1dUTZUkvK+vDuMroR9/TF7h5O3AhjdB/V5hgrHNmtElJj01Px2Iy9FrPIrorG4olZ45neEABZmeMYOPCOJEYlyaaklIiIyI+0fv0zbNz0DwBsNi8Oh79Ve3WzdQN2ysgijh1SwBGDcts9RhER6dhM06SkYj31RrN1oqWulOkdjsM9BABPtwjsJCkVMK2fvV02Ph4zlFS7DcNQUkqS68EPlvH41JWMyFnIRUMXkGFUgAkOR1qyQ5MkU1JKRETkR2huXsuKlfckjrOzx29z81/f8q3gof1yOGFEYbvGJyIiHZ8ZN5n2zidMjS8GBwRNO/a4gxQAw4FpbuC8q/fDP3i/tgeKx2k2raV6Pocdn0NLxaVj+O/iUkwTpgx5mXR3A7QkT90e3Rd1dUpKiYiI/AiBwPrE78OH/5mszIMTx3/6ZAWvzN1AWZ01Rd3vdbZ7fCIi0vHVTdvIhq9WgB2cpp3omgYK6quoT3EDDkxbExmFftjZMrxokGa7VXPKa1dCSjqO2uYIBnHS3Y0A9O59JW53PoUFpyY3MEk6JaVERER+hEikFoDMjLHk5U5s1fbU9NXUB6MAOGwGgwo0RV1ERLZVt6qWKFaB80HNGTRvmE/zlrcMw0HE1Qgu344HqC/B/PAWXjGL+DDvKABSHPqoJ8n36tyNvDlvE9VNITyOEFumSPXu9Uvsdndyg5MOQf9SiYiI/ACVVVNZvPhaotF6AJzOzFbtsbiZSEj985IxDCxIIzdNN18iIrKteChmFTg3TVaWTycnpYmQ0/qoZhh2IilxSMne8QCLX+frdUu4+oCrE6cynfqoJ8n3h/eX0hCo59oD/kZ+ahUANptbCSlJ0L9UIiIiP0BFxYeJhBQYZGZ9t2yvLhBhTWVT4nh0cRYuh7bjFhGR7QvV1RI1YthCARzBZmp93/uYZnixZeSBrY3leMF6yl1ZAOQaUU7K8nJh74K9HLVI20zTpLY5zKCsVQzJXp4470sdmMSopKNRUkpEROQHiISrAejX90a6dTsnsXtMSV2AIx6cSjBi7ZrkcdqUkBIRkR2KRaPUlq0lmh7DiFobYxi4sbmHYdgzsdmzSMmsbHuQcGOiltTgjAx+P6Lf3g5bpE3BSIyy+iDRuEmqw/qizp82gv4DbiXNNzjJ0UlHoqSUiIjIbohE6qis/JiKyo8A8Hh7ttrOeElJPcFIHLvNIDPFxWkHdEtWqCIi0sGZkRgvPf8CKzPXApBSUQeAzZaOM2UCpusDuh+/H0eNP7HtgcJNBGxbCpzrixBJroqGEEc/PI26QJji9HUMzFoDgMfTjYz0UUmOTjoaJaVERER2w5KlN1NR8UHiOM03qFV7XcD6lntcn2z+eemYdo1NREQ6l02PzWdV7VowwNvczP7LF7KgZz4YLgByUhdyynH37XiA6jUw9V5Y+wWBNOs9x2tTUkqSa0lJPXWBCIOzlnPDgY8nzjuc6UmMSjoqJaVERER2Q03NLAB8vsEUFk4mJaUYgPL6IP+YuY45a2sASPc6kxajiIh0DuGKJkyXCfE4PTfVsS7H+tBuGlYRaEf3nbyXzH2Otcun82T3M5mXZi2J0kwpSbbGkLXRy5gejQA4HBmk+QbRreisZIYlHZSSUiIiIrsoHo8SjdYCsP/I53C5chJtf/l8NU//b03iuCDd097hiYhIJxOLWx/eHU11bI5ughTrvcOwW8vCPcUHtD1AqJ4nup/F891OTZzKd+lLEUmeSCxObbM1azzNHQIgN/dohgxuY8afdGlKSomIiOyEaZqUlr5OTe1XLWcMnM7MVn3K6oMAjB+Qy7g+2ZxxYPd2jlJERDqTeDRGHGtTDKItySkzBYdrGKbHqrvjHTC+7UEiAeqc1vvNsdl+JmSlMTk/s+3HiOwl9/13KU9MXYXXEWBg5kZyPBsBWtXeFNmaklIiIiI70dCwiG+X3Jg4Tk3tj2G03pp7Sy2pU/YrYvIoJaRERKRti2d8SaPNWt5kxGIAxF3dwHcoBtDgqiHTV9z2IJFmAjZrqd8xOX7OL8ppu7/IXvTh4lIAbjzwT/T0b0qcdzj8yQpJOgElpURERHaiqWklAB5Pd/Lzjqeg4CeJtt+98y2vzN1IQ9BKSvlVS0pERHZi3hdzeOuTT8AFzmCIAUuXsj7bh2G4MKJ1lI/7gJ4jxzIyf2TbA0WCBD1WUkoFziXZ6gJRwKSn30pOpaQU43Rmkp93fHIDkw5NSSkREZGdCAQ3AJCVeTD9+t3Uqu3lrzYkCnp6nXaGFunbQBER2bFodZBV738DDrBHTSipJbTlU5nhIGJv5sqB/ckZdeGOB1n0GmyeD+XfEiw+EQCPklKSJEtK6vl8eQV1gTAuexiwZv6NPuht7PaU5AYnHZ6SUiIiIjtQUzOLJUt/QyhkfePn9fZo1R6NxRMJqbevPIQ+uT58br21iojIjjVvbiTa8qE9r6ySxuAGytJ9VqPhptoXweMv2vEATZXw6iXUOlJZ4BtIRUuNQ+26J8nyyxe+Zk1lIwfmz6d7WgkAhmHHZvMmOTLpDHTnLCIisgOlZW8TCKxtObKRkTE60dYUilJSF0wcDy7049QHAhER2Ym6zY1EDKvAeX2gBBvgC4RxOT00uoYStVXhHnzmjgcI1AAmp4x8nGWpvROnU/QeJElgmiabagIUp6/j8v2eTZx3OrMxDCOJkUlnoaSUiIjIDkQi1QD07n0l3bufj9tlFZCduqycn/19DpGYCVjL9pSQEhGRXfHtp28RdbZ8DDOt9xGH5yCi/gOx2dOJ2ctwOttY8hRpBmC119pUo3+Km34pHg7wa5mUtL9gJE44FifbUwOAy5VDVtah5KmOlOwiJaVERES2Eo9HaG5eTU3NLAB8voGJhBTAzNXVRGImhgEuu43Jo7olK1QREelEGhoaWBOupNllLdcz4taMqSZfL+yOdAAaUyvbHiQSJGLYidisj3JvH9CfTKc+1kn7agxFOe+pWayragIg1RkAwO/fj6FDHkpmaNLJ6F8vERGRrcz/5iJqamYkjlO8rbfkrgtYO+1dc9QA/t/R/ds1NhER6Zzi4RifvvEBpX47EMCztgpXMErEZYDhhOgmXtv/ZUYOHtj2QNEAQZs7cahd9yQZ5q2vYf6GWgpSyrho6McMyLbqbzrsaUmOTDobJaVERES+xzRN6urmAuBy5ZGVOQ6fbxAAy8saeG9hCXPXWcv60r16GxURkV3TOH0TtSvKwQ65TZC1aQmVfidgxzAcuI1a3jrnMXwZvXc8SFMl1KwlYPMAYAPcNtXtkfbXGLQ2ejlryBeMyJqVOO/xtFGkX2Q7dDctIiLyPdFoPfF4GICDx03Fbv/u2+gbX13A/A21ieN8v6e9wxMRkU6qaXMjMeJgmoQ2fMPmrO+9hxgewhkR0tK6wY6KQ6/6lOg/z+B/GSNZkzsesHbcUzFpSYaGlqRUhsdavpefdyJZWYeQlzcpmWFJJ6SklIiISIvqmhmUl78HgNOZ2SohBVDastveKSOLGFzo58jBee0eo4iIdE4lS5cQtVlJKdO0PtBnBdzU5HXHsGVhz3eAw7XjATZ9zd8LT+Q3/a9NnErVJhvSzl6Zs4FnvlhLVWMIAK/DqiWVk3MUBQUnJzM06aSUlBIREQEam1Ywb955iePU1AHb9KkPWrWkrj9mID2ztcuRiIjsmnAwQLi+hlhmDMx44nxT4S9wG3YAnL42ElIA0SDrWpZGdXM76eFxcUZB1l6LWWR7/jZ9NcvLGjlr4OuMKZiL32ntBulw+pMcmXRWSkqJiIgAgeY1gDVDKivrUHp0vxCwakzd+Z9v+XZzPc3hGAB+1ZISEZHdEA2FsBtOYsQTO+5hGhiGnVrPJsrSNjFp9EFtDxIJ0Gz3AnBuUTbX9S7Yy1GLbKumOQKYHNPrCwysL+tsNhe+7XyZJ7IrdFctIiIChMMtxcvTD2DY0D8mzi8va+S5L9cmjnN8LtI8znaOTkREOqtYfZiNX66k1mMSNEO4NtUCYGAtvWvImsGoyWM4atBhbQ8UaabJngFo2Z60v401zcxcXU1tcxiXPZxISB144OukeHvidGYmOULprJSUEhGRLq25eQ1r1jxGadmbALhcOa3aq5usoueF6R7uPHkow7qlY9dORyIisovWPv0VL9V+hJkCRes3MPybuXw5oDsG1rK9vg4bU4ZOaXMM0zSZF/ez1mst30u12/d63CLfd9GzX7GivJED8+cxLGcJAIbhxJ82QsX25UdRUkpERLq09RueSySkALIyDwYgFjeZtbqKaSsqACjK8HLsUC2VEBGR3VNTU4NpA2ddDQ2NZXw5oLvVYLMSS96MjLYH+OJRps7/mJ8OuTtxyqeZUtLO1lc347KF+fmIv2MzrHIGbneBElLyoykpJSIiXVooVAJAYcFk8vKOIzv7cAD+9dUGfvPGwkS/zJSdFKAVERHZSrCpkXAkDG5wNFTD9z6/m57eALj6Hdz2IAtfZa2zDwCZkXrGZvg4IittL0Ussq1wNE4oGifT3YTNiGEYdnr1+gU5OUclOzTZBygpJSIiXZJpmoRCpdTWzgUgL+84cnKOTLSvqmgEoCjdQ988Hz87rDgpcYqISOe1+qvZxAzTOmgpcJ4e60Uw+2QMw6pP6PHt5CNZuIlAihuAowoLeWx4/70Wr8jW1lQ2UVIbAMDrCALgcPjp2+e6ZIYl+xAlpUREpEtasPDnVFZ+kjhOSenbqr222Srged64Xvzy8H7tGpuIiOwbwo1NRLGWOjmi1k/T7sMwnJRnLWVZ+kJ+0f2stgeJNBOwewBIcXn2arwi3/fOgs1c+eI8Mt01nNL3Swp91qYwdrsvyZHJvkRJKRER6ZKqq78EwGbzkJV1CF5vTwC+WlvN7975llUVTQBkeLVsT0REdl/j6iq++XY9tY4A+aWleCvLqUpLwTSsWU9f5/6PtVkL8TovbHugcBMBm/UYr021pKT9LN5cD8Ap/T7hsG6fJ8673bnJCkn2QUpKiYhIlxOLBYjHranohx06E4fju9oc//5qA99srEscDypU3Q4REdk9kYpmFjz1OWtcFRixMLkV5TS7rOV6ZkuCKc/toUe3w9gvd7/tDzLvBQILXmGZs4gNHmujDa8KnEs7qg9Ys8ZHFFk/s7IOI803mPz8k5MZluxjlJQSEZEuJRjcTEXFRwAYhmubKeh1LTdgPx/fh3PG9KRXdmq7xygiIp1bsKyeCFEAUstLCDjC4LCSUtXpKfhNuHvM9RSNGrrjQT67h5P73cHCngMSpzRTStrDirIG3l9Uytx1NRjEcduawISiwtPJzz8x2eHJPkZJKRER6TKi0QZmf3UykUgNAL7U/q22Mo7G4tS2JKWGdUtXQkpERH6QhR98QNSw6j/Fw03YgczGEKn+KOvsPSEKjpwebQ8SamRJqrXrXoHDIMvt5tgc/16OXARuem0BX6+v5Zien3Hd0W9hN60i/Q5HepIjk32RklIiItJl1NXNTySkMjPG0qvXzxNt17w8jzfnb04c+73Odo9PRET2DcHaBmJY7yO2mFXgvCn3FAKeIaRaE6iwO9ue9RSJhojarI9rU8cOJcOpj27SPkrrrF32jipeit1mJaSczizS0oYkMyzZR+lfNhER6TJC4TLAqomw/8jnWrW9t6g08XtumpthRfo2WkREdk88HCP4bRX+SCbl9jjptbW4AgGCDhumzYNJnJA9QDSricz8lB0PFIsSwJ44VC0paU/1QStz2i09RjgIw4c9Tk7Okdhs2vxF9jwlpUREZJ8XidRTVvY2q1Y/AoDb1XrXmGAkRjhqfRM48+ajyPG5cOgDgIiI7KbGzzdS+/FanEYmDcYmhs+ax6pcNzhcYDhodKzhhYP+xHmDz8PW1vtMNEDAbhVEtwGu7y01F9kb4nGT37yxkCWlDfgdGxietYF4tAIAt6dQCSnZa5SUEhGRfd66dU+wbv1fE8dp/hHftVU1saTE2vLYZkBemhubTTf/IiKy+2J1YT50LmCjvQpndTmNWS6a3dZHLsNwEvE08vcjH2d4t4O3P0A8DtPuo7pidaKelNdua1X/UGRvWFnRyMtfbcBhi/DIhEdIcQaJtiw1dToykhqb7NuUlBIRkX1eY9NyADIyxpCefgBFhacDsLK8kaMfnpbo5/c6lZASEZEfrHLtRqptDWCauMvWU+tzJ9oMmw+7q5b9e4zf8QAl81k9+x9MOPB5IrlWTSqPdtyTdrBl9+HirAgpziBgkJV1KGlpw/B6eyY3ONmnKSklIiL7vEBgIwC9e/+S7KxDE+dXlDUA4HXaKc5JZfKo7kmJT0REOr9IOETV2tVEs+IQj7HlK47hG8rZMHoYwWAaRqqv7UGCtSxN6UPE5sRBnHS7jfOKsvd67CINQSsp1c1vFeZ3OjO3qb8psjcoKSUiIvus6uovWLvuSQKBtQB4Pa2TTlu+FTy4bzZPX3hQe4cnIiL7kEgggN1wECWGEbfqFBqmSTDjKCL0A8Dm2Mls3EiAYEstqbEZfl7dv99ejVnk28313PDKN9Q21XJ6//8wNK8aAIcjLcmRSVehpJSIiOyzli2/i+bmlYC1lbHHUwRYM6Qe/2wlS0qsmVLpXmfSYhQRkc7PNE3CzUFsNgfEoxzwv5ksL0jBwM6GnsdAsKVjSqztgSIBgi0FpT3acEPawXsLS/i2pJ6Di75iUvEnifMed2ESo5KuREkpERHZJ5lmjEBgDQADBtxBbs5RiZ1jnvliDW/O35zo2zO7jW25RURE2mBG45T93zyiZc1kuotIq/ocR6wJSMFo+bi1Pn0Jm9NXcNAB/dseLNJMwGbNlPKqlpS0g9pAGIBD+1h/V32+oRQUnERuzjHJDEu6ECWlRERkn2OaMZqb12KaMcBGt6KfWt9et6hqtG7ATtu/G0cMyuPowflJilRERDq7aFWASFkTsxwrqQhuIF61iW+75QIQcTpwAnmFJYyadDDHFR+3/UGqVsFnv4fyJQRdwwHw2LXxhuw9FQ0hvlxVmZg1nueLQhwy0g+gV8+fJTk66UqUlBIRkX1KKFzJ7NknEg5XAOD19miVkAKobynmefigPE7ar6jdYxQRkX1HoLaeKqOBRY71OKKVeAFHLIY/EmJD9/1IicGBwyczYeD+Ox5kzjMsXT2H/+t5Lgt91mwqzZSSvenql+YxY3UVQ7OXcNbAJfiNTQA4HDspxi+yhykpJSIi+5Ta2q8SCSnDcNK9+/kAhKIxzn96NstKGxI7zKiWlIiI/FibFi8mbEQBMKLW+0t2Y4BDGzbwzIBzoAG8Xk/bg4Tq+Wv3M3gt/9jEqQK33qNk71lb1QTAL0f+HY+9CVrKnbnceUmMSroiJaVERGSfEgysByA//ySGDnkEw7CWPywpaWD2mupEv1SXncEF2llGRER+nFhziCjWbnvuYAiAoCeP/+WfT1aTNRvX63G3PUgkSH3LDJVT8jI4KtvPCTnpey9o6fLqAhHsRtRKSAE9e1yCy5VDYcFpSY5MuholpUREZJ8QDldTUvo65RUfAuD19kokpABqmqw6Uv3zfPztggPJSXPjc+ttUEREfpxoMEKUGJ6mZvquXMnq/AyafD0JeYtxWrkqMvN3siQqGiBgtxJXh2elcWZB1l6OWrqqP368nDfmbaI5HMPnDCbO9+174zblDkTag/7WiYjIPmHd+r+yfv3fEsepKX0ACIRj3PDKNyzaXAdAvt9D75zUpMQoIiL7jmhVgNr/rMa/Po1qoxKjJojNtLJQpmElmD7p93cqUzfxs4J32x4sEiTgspb4qZaU7E1PTV9DLFbPMT1n0SPdKnJut6coISVJo795IiKyTwgGrQKdGRljyM46lNxca4ejGasreXdhSaLfgHwt2RMRkR+v+ss1lCxbx0zHChqCm7E1l1OW3vKlh2F9zKrMXcXBfQ7BZXdtf5DGCqheDU3lBNOsPl67klKyd8TiJo2hKCcUT+e0/t8lSp3O7CRGJV2dklIiIrJPiEasmVBFRWdSWHBq4nxts1V0dlg3P7ccP4QDe2cmIzwREdnHrJs7n/X2ICX2GlJLV2CLhWnwWjOkDJuVnJp6/ufYbMb2Bwg1wv8dwIepQ1mVMpBN7nwAPJopJXtJY8gqyJ/lqQHA79+PtLSh5LV8kSeSDEpKiYhIp7Zh498pLX2L+vr5ADidGYm2hmCEkjqrXkKvrFTG9dU3gSIismdEAxEiTmvLMiNmfdgvqoNYmp9a9whituiOE1IA9ZtZZ6RywfA/tDrtd9j3WszSNZXWBXn0kxVUNgbp5ttMfmoVAAUFP6FHyy7FIsmipJSIiHRqq1c/QjRaD4DDkU66fyQAL89ez81vLMQ0rX5+r7bWFhGRPceIQcwVA9PEaKklVdXzMgybDwOIOwNtDxANUOLOBSDNbmNiTjq9vW5Gpnn3cuTS1fzrqw28NHs9JxZ/wF0Hf2/ZnkM7PEryJWVu6Oeff85JJ51EUVERhmHw5ptvtmq/8MILMQyj1Z/jjms9pbC6uppzzz0Xv99PRkYGl1xyCY2Nja36LFiwgMMOOwyPx0OPHj24//779/aliYhIO4rHI4mE1LBh/8eY0e8mZkr9b2VlIiGV5nFwzJC8JEUpIiL7EtM0iVYFcJouosTJLq/4XqsD4gE2pi+jbPiitgeKBGi2WcXNe3vdPDakFzcUF7TaOVZkT6hsDAFwQJH1d9VmT8fv35+srEOSGZYIkKSkVFNTE/vttx+PP/74Dvscd9xxlJSUJP689NJLrdrPPfdcFi9ezEcffcQ777zD559/zmWXXZZor6+v59hjj6VXr17MnTuXBx54gDvuuIO//vWve+26RESkfW1JSAHk5hyLx1OYOK4LWLWkHjpjPxbeMZEjB+W3e3wiIrLvqXllOaUPzCHf2Z0oMQbNX/hdo+EgwgbeGfJnMkbsZKBIgCa7NSsqRcXNZS+Ix02+2VDL2qomAPJ8YQAGD7yDgw58FZdLZQ0k+ZKyfG/SpElMmjSpzT5ut5uCgoLtti1ZsoT//ve/fPXVVxx44IEA/N///R/HH388Dz74IEVFRbzwwguEw2GeeeYZXC4XQ4cOZf78+Tz88MOtklciItL5RKMNfLPg59TVzQHA4fAntjL+76JSPvy2lMWbrYRVRoqW7YmIyJ5Tv2QzjUaI9UYFtZFK8u3x77XaafBHeProv7J/wYFtjlMRDLEqpQegpJTsHU9MW8UDHyyjMLWU8d1W4aIUAIdDOxFLx9Fh//WbOnUqeXl5DBw4kMsvv5yqqqpE24wZM8jIyEgkpACOPvpobDYbs2bNSvQZP348Ltd3269OnDiRZcuWUVNT034XIiIie1xNzQxqa/CRmgIAAQAASURBVGdhmlaB2fy8ExJtN776Da9/vYnqJuvbwO6ZKUmJUURE9j3hYIBQfROfOhfxFd9irpnLsm7Wrq5byo7Y0nyM7jYOp30HX4pULGflc2czsiyXPxT/DFBSSvaOpaUNAPzqwD8zZei/sJtWUsrp1E7E0nF0yELnxx13HKeddhrFxcWsWrWK3/zmN0yaNIkZM2Zgt9spLS0lL691bRCHw0FWVhalpdZ/aKWlpRQXF7fqk5+fn2jLzNz2P8RQKEQoFEoc19fXb9NHRESSLxDYAEBW1mH0738LqSl9AAhH49QHrR2QfjVxIIMK0hhYoG8DRURkz4gEg9htDpqNELZwEAOwxeOkhKLEu+UTN8Fw7qQm1NL/sKyxkZhhxxmPkEeIyfm92yN86WLqAhEcRoR0dy0AOdlHkpLaB79/Z2tLRdpPh0xKnX322Ynfhw8fzogRI+jbty9Tp07lqKOO2mvPe++993LnnXfutfFFROTHa2xcRm3d1wCk+YbgS+2faGsIRhK//3x8Hxz65llERPagaDiE3XAQJYY9ar3n+EImWbbDKXf1hBDYdpaUCjcTaClwfrDPzr8OHAv2DvmxTDqpf8/ZwHsLS5i/voaUxC6QBiNG/AXD0L2RdCyd4l+/Pn36kJOTw8qVKznqqKMoKCigvLy8VZ9oNEp1dXWiDlVBQQFlZWWt+mw53lGtqptvvpnrrrsucVxfX0+PHj325KWIiMiPUFHxEQsW/iJx7PF2ByAUjXHPu0tYUWbtwprqsishJSIie1w0HMZm2DHCQfaf+zXfFmURcWVSmjMWWhZcGKnRtgeJBAjYraSUJyVDCSnZ4373zrfUB6OcO+jfDMleDlh1pJSQko6oU/wLuHHjRqqqqigstHZVGjduHLW1tcydO5dRo0YB8OmnnxKPxxkzZkyizy233EIkEsHptNZzf/TRRwwcOHC7S/fAKq7udrvb4YpEROSHqKj8OPF7dtZ48nInAvDlqir+PmNdoq1Xdmq7xyYiIvu2pjmlhJZWYBoGaY0N2GJWXUPTsD5rrMqax/rMJRy038C2B4o0E7RZdW+9NiUJZM+KxU3qg1HSXA0c2fN/ifOp35tZLtKRJCUp1djYyMqVKxPHa9asYf78+WRlZZGVlcWdd97J5MmTKSgoYNWqVdx4443069ePiROtDx+DBw/muOOO42c/+xlPPvkkkUiEK6+8krPPPpuioiIAzjnnHO68804uueQSbrrpJhYtWsSjjz7KI488koxLFhGRPSActja9GDTo93QrOitxvqalqPmggjQuP7wvY/toi2MREdlzorVBal5dQaVRT6WtDrOxms2ZPgDq0pykA/bMNQwYm8fZw89se7DId8v3PEpKyR7W2FJbM8XRDIDdnsqIEX/BnzY8mWGJ7FBSklJz5szhiCOOSBxvWTI3ZcoUnnjiCRYsWMDzzz9PbW0tRUVFHHvssdx9992tZjG98MILXHnllRx11FHYbDYmT57Mn/70p0R7eno6H374IVdccQWjRo0iJyeH2267jcsuu6z9LlRERPaI+voFVFZNo6rqMwBczqzW7QGrrkffPB+njOzW7vGJiMi+beknU7EbNt50fYWjsQZvcx3VPi8Aps36edKA4xl/2PE7HmTmk3y0cBq3dL+AqrR0ALxaai57SCga47dvLmJNZRPprjr6ZmwCrJ32sjLHJTk6kR1LSlLq8MMPxzTNHbZ/8MEHOx0jKyuLF198sc0+I0aMYPr06bsdn4iIdCwLFl5OKFTacmSQmjoAgPv/u5Rnv1hLOBYHwO/ZwfbbIiIiP0Ll6rWkGEVggBGxZuemhMIUB2uZ2W0SNIMnt7jtQeb9gzcyT2W9pzBxamhLYkvkx5q5upp/z9nIgMwVPDjhMWyG9Xnb4fAnOTKRtnWKmlIiItJ1xWKBREKqW7dzycwcS0pKLwBe/3oTgYhV08MwYExx1g7HERER+aHMcJwY1vuNtzmECbhjKThSBpISscqHeDyutgeJNNNkt5JQ1xamclavnvT2qp6t7BlbShmM7laBzTAxDBdOp5+iwtOTHJlI25SUEhGRDi0UsnZOtdk8DBxwJ4bx3VbbtQHrBuy1yw+mX56PdK9mSomIyJ5jmibBxVWkB7JoJEbhps0ULV/C8sJs6jMGsix1IqnWCnJSdzbrKdxMc8uue/0yspWQkj3CNE2WljawpKQegII06y9kUdGZDBp4ZzJDE9klSkqJiEiHFI02smDBz6mpnQlASkrvREJq5uoqpi6rIBixlu0pISUiIntDpKSJqn8uIY9u1NpKyKyoJL7lyxHDQZwAS/PmUe+p4pI+B+9ksECiwHmKaknJHvLEtFXc/99l+JyNjCv8ljyPtaGY05GW5MhEdo2SUiIi0iHV1s1JJKQAsjIPSfx++T/nUtNsfROY4rKT5tbbmYiI7HnNJdWEibLc2MjK6Go8Zhxnqqel1UGNt4bP+/6LgZkDcdt3MPMpEmBj1Wbmph9IqdvaHTbFbm+fC5B93pKSBgAuGvYaI3PnJs47nZnJCklkt+guXkSkHcVNk5gJMdMkhknchEAsTjAeJ07L+Zb27x/HTZNgPL5NW9yEGN/1iZgm4bjZMv6WPt97ThOipknYNImaJtG49TNiWo8Jxa3foy1jR1vOGxi8sF+fdn2tohFrGrrfvx+DB99Hako/AIKRWCIhdfEhxRwxKBebzdjhOCIiIj/UuvnzWW+vZa5zNe7Nawl5ouBJAcAw3Nic8N5P3qPAV9BqeXlCuBn+NJKfDHmUDYNvS5z2aaaU7CFbdiAeVtAIMfCnjSAlpQ/5+ScnOTKRXaOklIjIXtIUi/HMxko2BMP8p7yWmmgs2SH9YO196xwOVxMIrAfA7S7El9o/0VYftG6+DANuPWGwElIiIrLXNFU20WSEALCHrfef9OYghj+VgHsoOOrp4e+x4wFq1xNvLGeD19px76DwRgb0GsF+aSl7PXbZt329vobPl1ewosyaKWWnCYB+/X9DZsZByQxNZLcoKSUisoe9UlrN/WtK2RAM71J/A3DbDGyGgR2wGwY2w/ppx8BugM0w8NgMHIZhtWOds7f0s7U8zmEYuGzfP/+93w2wY+C0GbhbxnIYBs6WMR0GOG023Daj5bnB8b1Y2sumTS+xdNmtiWNHS02E6qYw5z41i43VzQCkuR1KSImIyF4VD8eIGTFssRjepkbCNvDaBhH27Y9hpIGjtu0BIs0Ebd/tyvfy0ZNI1dI92QN+8Y+5lDcEGZm7kIE96jDMGuC7+yaRzkJJKRGRPSRumtRGY60SUm6bweT8THp6XByYnsqgVC9243vJHqwkkq0dkz4dXXXNDICWrYzTycs7DoBZq6sSO8sAHNQ7KynxiYhI12BG4hgRiBLnkC++YHWqjXCKh6qckdiNYgBiKaG2B4l8t+MegNemZXvy48XjJuUNIfpnrOaq/Z9qOWn9cDozkhaXyA+hpJSIyB4QM02Om7OchY2BxLm/Dy9mTHoq6U79U7s7IpFqAAYPvpfCglMT5/8/e3ceH1dd73/8dc6ZfbLve5rue0tXylIKFCoUBAHZBQVBuaAC/hC5KoIbiopwlcUdFxBEEZQiUMpSCm2h+76lTdI2+zqZfeac8/vjTKcNbVIobadJPs/Hozc5Z86cfCYXM2fe5/v9fLsSPRNmDc3lJ5dOpCz7MEtvCyGEEEcouKaZ9r9vo9KoZIt9DRmdXRjpuYlHbfgczawsf53S8Rl9nygaTK6455KbUOIoCUTjAOS52wBwOPLIzJxGZsZEXM6iVJYmxMcmn5SEEOIoaIjEkoGUAlxWlM25eZmpLaqfCYX20Nn5Ph2JkVIOuzUSKho3WL6rjZW11rD0okwXFbnSi0MIIcSx41vfQJvpY7fWRmu8E79NI5ZoTq4oNjo9rVQXruTyofcc+gTRAKx+incbdrOw9BJARkmJT840TTbW+9jTYbUySHOEAcjKmsGE8b9MZWlCHDEJpYQQ4hOqC0V4rc2aVlbucvDBrLEprqh/Wr3mOkKh2uR2WtoYAB5+fRuPvVWd3J/lsR/32oQQQgwu9Zs2sdi+hy69He/ODayqKjjgUTtup5sPrv0Am9rLx6k1TxN49Ttcfeq/iWQ6Aci0Sy8p8ck8+8Fuvvn8enJd7Vwy/F3G5O4EpI+U6N8klBJCiE/gnfZuPrt2f2AywuNMYTX9l2HEkoFUbu4Z5OacgdOZD0B1ix+AylwPVXlerpxekbI6hRBCDA56RCfkiKBGwiiYKIaJM65jZKWjaLnYncHeAykAfxNdtnQiqhPVNLgiW+OiyrLj9wLEgLSl0Vpp79KRrzGz6L3kfqejoLenCHHCk1BKCCE+gfc6rcAkTVMpdNj5nwq5KDgSsVhH4juVSRN/h6Lsn+Lgj1h9E+6YO5KLTypNQXVCCCEGGw2VOAZFDfX4AE/cgdtzEQFvFmZcRTncoN1okLBmrbrntdn4xUkTj3nNYuDzJfprji+yvubmziEz4yRKS69OZVlCfCISSgkhxBGIGybr/EFW+AIA3FVVxJfKJZA6Ert2/Yrde/4EWI069wVSXaEYDV0hWrqtlY3SXfKWJYQQ4vhQTBV3dxdDdu5kXUUhEWceenoFxBMHZBx+1b1kg3NNekmJT2ZpdRs/fHkTu1qs606HGgQDSkoupyB/XoqrE+KTkSt8IYQ4Avds38Nf6tuS28M9rj6OFr3p7t7Ezl2/SG7n5pwOQJs/wukPvkkwqicfS3PKW5YQQohjq+vVGoKrmshw5OPyh9ETzcnNxKinlUP/yW73bk4fP63vE8WChDTr2kAanItP6rkVu9mw18fcijc5qWA9dnMvADbbYVZ/FKIfkCt8IYQ4Aqt91qonZS4749PcnJqVluKK+qdgcGfy+4kTHic7+xQAtjf7CUZ1NFUhL81BVZ6XSeVZKapSCCHEYOFfWs+eaAutWhfRQDdNmV4AjEQotTVjEz53K5VZlx76BFtfgRW/Z3t7M2vSRwPgklBKfEK+cAwFgytG/RtV0cEEUHC7pM+m6P8klBJCiCNQH4kC8JcJQxmT5k5xNf2TrkfwB7YBUJB/Hvn55yYf6wxavRImlmXyr/85NSX1CSGEGFwCnR20R3z817karbsTT6id1nQPAApWOPW16V9hZPlQJub30iPqrR/xVtjOlRMfSe5ya8oxr10MbL5wHKcWsQIpYNzYh/B4huJ2S69N0f9JKCWEEB9TWDdoj1kXBcXOw3U6FYfS3b2ZlasuR9etEWdOZyEA4ZjOj17ezMpaq/F5llt+v0IIIY6PZf98hnSlBAA1ZvWMckdilMd81GZOB2Bq2RSGFQzp/SRhHzs8UwBIUwyK3W5uKM0/pnWLgSmmG9zy15Vsb/bT0BnGawsDoCh2Cgs/jaJI2CkGBgmlhBDiIzJNk2vW7UyuuOdWVTJtWoqr6p/a2hcnAym7PZeSkisAWLK9lT8vrU0eV5nrTUl9QgghBp9whw83ReS2tlK+cQPVBZnY1Fxai25AUdMBSPN4+j5JLERYtab6zS/M45ExMr1KHJlN9T5e39xMaVo9t03+FxkO6/rTZkuXQEoMKDLBWQghPqLmaJw32rsJGyYAp2WnyUXBEQoFawCoGvIVZp/+PmlpIwFoD1jTIscUZ/DLq07i/80blaoShTimHnjgAaZPn056ejoFBQVcfPHFbN26tccxc+bMQVGUHv++/OUv9zimrq6O+fPn4/F4KCgo4K677iIej/c45q233mLKlCk4nU6GDx/Ok08+eVA9jz76KEOGDMHlcjFz5kzef//9o/6ahTjRxcMx4uiU7tmLTbf+dxT0lBC0WyOdupwtpDkPc7MkFkyGUk5VrhHEkesKWa0Mzh+2gnG5WylPt5qbezxVqSxLiKNOQikhhPiI2mPWBWq2TeODWWP50wS5KPi44vFumptfob7hH0DPC6uW7gh17dboqVGFaVw4qURW3BMD1ttvv82tt97KsmXLWLhwIbFYjHPPPZdAINDjuJtuuomGhobkvwcffDD5mK7rzJ8/n2g0ynvvvcef/vQnnnzySe69997kMbt27WL+/PmceeaZrFmzhttvv50vfvGLvPrqq8ljnn32We68806++93vsmrVKiZNmsS8efNobm4+9r8IIU4QkZ2dZIXyiGMQj4O+76aT6gRgwegneOmkX+K299JH0jTB3wKxIJFEKCUNzsWRavaFqW6xRkZlu61pe8VFlzJxwq+ZNPHXqSxNiKNOrvaFEOIj6kj0kcp12Ch3OVJcTf+0YePttLW9ldxOSxsDwO+X7OL7L21K7s+QXlJigHvllVd6bD/55JMUFBSwcuVKZs+endzv8XgoKio65Dlee+01Nm3axOuvv05hYSGTJ0/m+9//PnfffTf33XcfDoeDJ554gqqqKn7+858DMGbMGJYsWcIvfvEL5s2bB8BDDz3ETTfdxBe+8AUAnnjiCRYsWMAf/vAHvvnNbx6Lly/ECSXWGKDlN+vJU6rYqtYTMQz0ZM9I6+PS9BEFzJlwC6rSS9D07LWw5SWAZCglI6XEkfj32nq++rfVAGiKTprdumGXmTmF/Py5qSxNiGNC4nshhPiImqPWMOpcu+T5R8I0Ddrb3wWsMGrY0LuS0/be39UGgMOmUpTh4lPjD/0hXIiBqqurC4CcnJwe+5966iny8vIYP34899xzD8FgMPnY0qVLmTBhAoWFhcl98+bNw+fzsXHjxuQxc+f2/BAzb948li5dCkA0GmXlypU9jlFVlblz5yaP+bBIJILP5+vxT4j+bNe7K9is7eE551K2ti+hOV2nPtvqIYViveffftYPOLPizN5PUrMk+W04yxoF7JSRUuIIrEos9vKFcc/wm3PuoNS9CgCbPSOVZQlxzMgnKyGEOIy94Si3ba5lR9BaiadURkkdkVisA9O0gr3p055HVff/Hvf1TfjpZRO5aLIsbywGF8MwuP322zn11FMZP358cv/VV19NZWUlJSUlrFu3jrvvvputW7fy/PPPA9DY2NgjkAKS242NjX0e4/P5CIVCdHR0oOv6IY/ZsmXLIet94IEHuP/++z/ZixbiBFK3Zg3titXAXA1Zwa8jpuN2xAnZR6IrcTyOXqbtJYTjca6a9DA786bgMwDDlJFS4oj4EtdEs0rXJ/fZbBlkpE9KVUlCHFMSSgkhxGH8t7WLpZ37+7xMzTjMyjuiB9M02L3nTzQ3LQCs1fb2BVKr6jp4d3srO1us32+mTNsTg9Ctt97Khg0bWLJkSY/9N998c/L7CRMmUFxczNlnn011dTXDhg073mUm3XPPPdx5553JbZ/PR3l5ecrqEeITi5nE7TpTV6yg1QzRnuamJJBNRm4e27R8ImoQh9rHDSnDYL2nkqVZJ0HcTO4ek9Z3kCXEgdbv6eLh17exZncnCgYqVk+pk2cuxO0u63EzT4iBREIpIYQ4jOaIdcfqwvws7hxSyGivK8UV9S8dncvZvv0Hye2srOkAmKbJDU9+QGcwlnwsP9153OsTIpVuu+02XnrpJRYvXkxZWVmfx86cOROAHTt2MGzYMIqKig5aJa+pqQkg2YeqqKgoue/AYzIyMnC73WiahqZphzymt15WTqcTp1P+tyoGDjNuErcbFNU30FSaDcDe0rNo1IYCELNF+l5tNx4moFkB1DCXnV+PryLTLv0nxcfz5Hs1LNrSzNyKNzlpzHoUrIBTAikx0MlEZyGEOIzmqLXq3rg0F2PS3H1fmIqDRML1ALjdlQwf9g1GjvwOAOGYkQykrppRwXcvHMvYYumXIAYH0zS57bbb+Ne//sUbb7xBVdXhV/Ncs2YNAMXFxQDMmjWL9evX91glb+HChWRkZDB27NjkMYsWLepxnoULFzJr1iwAHA4HU6dO7XGMYRgsWrQoeYwQA5XeHcX35m7yKSGOjnngqnuKjbhzL9tzV7Ji+IK+TxQPE1StUCrbYWd8ukcCKfGxdYViKBhcMepFRufsAMDlKpVASgx4MlJKCCEOoyURShU4ZGrZkYjG2gHIyJhEZeWXkvv39ZHSVIUffWa8hH1iULn11lt5+umnefHFF0lPT0/2gMrMzMTtdlNdXc3TTz/N+eefT25uLuvWreOOO+5g9uzZTJw4EYBzzz2XsWPH8rnPfY4HH3yQxsZGvv3tb3PrrbcmRzJ9+ctf5le/+hXf+MY3uOGGG3jjjTf4+9//zoIF+z9k33nnnVx//fVMmzaNGTNm8PDDDxMIBJKr8QkxUHUv3kPnO3Xodi9BJYpDj2EkmpMrio1V+WtYWf4qFekVhz5BqAOWPQ6+eoKaNYraq2nHq3wxwHSHY7hsYVTFAGDc2IfIzJyW4qqEOPYklBJCiF682ebjsd3NrPFZTU/zHPIn8+OIRJrZvPlu2toXA+B0FgDQ5o/whSc/YHd7Yoljt10CKTHoPP744wDMmTOnx/4//vGPfP7zn8fhcPD6668nA6Ly8nIuvfRSvv3tbyeP1TSNl156iVtuuYVZs2bh9Xq5/vrr+d73vpc8pqqqigULFnDHHXfwyCOPUFZWxu9+9zvmzZuXPOaKK66gpaWFe++9l8bGRiZPnswrr7xyUPNzIQaajl1NvOpYQ6PSjrOxjjWVeYTt+0IlG/neTK4fez1nVZx16BOsforI4od4oOqLLCu9FACPJhNRxEdnmia/X7KL6pYA25v9eGxhAFTVQVHRRSmuTojjQz5hCSFELx7b3cw7HVaTSQUYKb2kPpampv8kAymAvFzron7pzjbW7elK7p9cnnW8SxMi5UzT7PPx8vJy3n777cOep7KykpdffrnPY+bMmcPq1av7POa2227jtttuO+zPE2KgaNq5g8atG+jI8aMF/Tg6W2lL37eQiYKiehleMIovTb+895MEW3knewpPlF+Z3FXslFHV4qPb3uznBws249QifG7MsxR4WgDQtPQUVybE8SOhlBBC9KIrrgPwtcpCzs/PZIhbGvt+HN3+TQCUFF9OefnnSUsbBYAvZE2HnDU0l+9fPJ6qPG/KahRCCDE4dTU3oil2dD3GuLXr2JXtwhOJMqKxg9UzL0KJeLE7Yn2fJBrAZ7PCg2FuJ18qz+eCgqxjX7wYMFq6IwCcWradWSUrkvs9nspUlSTEcSehlBBC9MIft+b0n5mTzqTk3VPxUfn9WwDIyzs7GUiFonryAqw408XwgrSU1SeEEGLwikUiqIpGRlc7mb4uyHaBmsnOcf+DK2rdLHEebtRTNEg40YS6yuPkutK8Y122GGD29dcsz7KujTIyJlFRfgNZ2SensiwhjisJpYQQohd+3RoplSb9IT6WzVu+RVPTS+i6NfUxLW0MAH9dVsu9L27ASMxaynDLFAchhBCpEY9GQNFQ43pyxb2wJxeHPQPVBAOdtKJe3qf0GNS8A+3VhFWr95pLld6I4qNbVdfBXc+tpa07yNDMXRR79gDg9Y6ksPCCFFcnxPEloZQQQnzI620+3u3opjmx6l6aTVbS+agMI0J9/bOAlTylpY3F5SoBYPG2lmQg5XFonDEqP0VVCiGEGKzMuEHLr9eh7VVp9iioQR09ESiZihVCvT3q97gqHFw94WeHPsm7j8Ab3wcgXHYFAC5VbmCJj+7ldQ1UtwS4bMSLnFe1KLnfbs9MYVVCpIaEUkIIcYBAXOcL63cRSzQhzrFrlEjT0o8sHK4HTDTNw8wZr+B0FiZX1utMDFH/5VUnccHEYllxTwghxHEXbfIT2e1jgXMVIcLkRkJ0eayekQrWVLzPzPgUV536ud5P0lFjfc0sJ1I4AZBQSnw8+66JZpRbC784HAW4XMUUFX46lWUJkRISSgkhxAE64jox08SmwFcqCjk3LxOHXGh+JO0dS2lrs1YLc7vKcbtLAXh6eR0LNzWyqd4HQI7XIYGUEEKIlNizdj0aBiEliqOlkWi4nb05GQAoWOGUKz2r75PEw7yfMZ6fTPkhu+z5EInh0uR9TRxeRyDKf9bVsz6xCnG6IwIGjBx5L4UF56W4OiFSQ0IpIYQ4wL4+Uhk2jbuHFqe4mv6jy7eW1auvTW67E6vGGIbJd/+9gZhujTxTFKjIkabxQgghUiPY0YkbN3FfjLw9jURc4IrGcWsaAWdi1JPL0fdJYiH+WPIZ3jWyIGKNeKl0yQq94vAeWbSdJ9+rwWMLMjK7HrvSDoAtsYqjEIORhFJCCHGAYGLFPa8mfaQ+jmBgJwB2ey7Z2SdTWXkzAIFoPBlIPXjZREYWplMuoZQQQogU0SNx4ugUVe8hO+yj0ZWG6p5JKOMMVMDEwH24gCkepttlvZd9oTSP8/IyOSVLVpMVh7enIwSY/OC0n5PpaAHrXih2W0ZK6xIilSSUEkKIhIhhUBuOArLi3scVi1l3+nJyTmH8uIeT+31hq1m8Q1P57NQymbYnhBAiZXR/FMVnEld0nLEoRuI9KerMwQZ0u1rZkbOGafbD9PWJhQl63QDMzPQyO0dGuYiPpjscw6FFrUAK8HiG4vUOJy1tbIorEyJ1JJQSQghgtS/IJat3EDKskVK5dvnz+FH4/duorf01jU0vAOBw5AHQFYrxtWdWU9MaACDDbZNASgghRMrE28PU//x99uKn3daIXY+hJ/pAKYlV956b8DOithBfd/TS5HzXO7D1ZWjbTjDHBYBHbmKJj+DNLc28va2F6hY/HlsIAEXROHnma3J9JAY9+dQlhBDAOx3dyUAqw6byxbL8FFfUP9TV/TYZSAHkZJ8CwJLtrby1tSW5f1SR3EUWQgiROrGmAHvMNt537ABgTDyM374vULI+El1SOJGKoWcwOmf0oU/ywi0Eult5L2sSLY5sQEIpcXimafLVv60mEI1wRtl7lKY1AGCzZUggJQQSSgkhBAB7EtP27qgslAbnH0M40ghASckV5OedQ27uHAA6gtbvc8aQHO4+bxTjSjJTVaIQQgjB9veWEVYSU/R3bWZPHoA12gnFhonB/87/bd8hQbCNu0Z+necLz0nukh6U4nBCMZ3uSJyJeVu4dsxzyf0Oh9wAFQIklBJCCADqE6vnlB5uxR3RQyTSDEBhwXxyck5FN0zW7u5gY7211HFFroeplTmpLFEIIYSgpboaXcmneNMuQkY3emKEk6YYqFo+hqb3HUiZJsRC1LpLABjhcTIlw8vEdPfxKF/0UzHdoL4zDECuuxMAt7uC3NwzKSycn8LKhDhxSCglhBg09oSj3L65jtZYnLhpEjdNYoZJV1wnoFtT90qd9hRX2T/s2PETGpv+TSQxUsrtrgTgZ69t5fG3qpPHZbnl9ymEECL1zJhJ3KGjtQXQ86xAKsc+F39GBYrhxbSF+z6BHgVMQqq1Mt8PRpRxhjQ4F33Y0xFk/v8toSsUI8/dxpBM60ZeVtYMRo28N8XVCXHikFBKCDFovNjcyZJOf6+P59g1JqZ7jmNF/ZNp6tTW/Q6wgjyPZyguVykAWxu7ASjOdFGe7eGSKWWpKlMIIYTANEyie7rxGF6C6NgMPflYwDsG1bBunsQye78+sA6wmlOHVGvKn1uVXkCib6vrOukKxRift4k7pjyR3G+3Z6WuKCFOQBJKCSEGvH81dfBYXTPr/dYF5RVFOVxZnINNUbApCpk2DZeqkGO34ZKGpYcVjbZhBVIqM6a/iMczNDnloTPRS+q7F47jU+OLUlekEEIIAXS/vZvVC5ezwxOmS2kj34gd8KiNtrRaak9awQ2zr+n7RHFrJFVYs0ZKueV6QRyGL2z9t3bm0A4ANM2Dy1VKYYFM2xPiQBJKCSEGvB9U17M30TPKpsD1JblMyfSmuKr+KR734+teD4DDkUd6+lgAfvfOThZuamJzgzVSKlOm7QkhhDgBBGrbWG7fTtAM4d69g7Y8E1BAUVAUhfy8XO695tHeT1C7FP52BV0xnU5XMQHN6iHlUiWUEocWjuksrW5jZa0VRqU7IgCUlFzJyBHfSmVpQpyQJJQSQgxYnbE4G/yhZCD1lwlVjE93U+yUZuZHIhisYfn78zEM626x1zsMAN0weeC/W9ANEwBVgcpcmQYphBAiteLRKDWrVhHJjqMHQtiC3ei2xLQ7m/UxSHMcZvW86jfYrmRy9im/J6ruv36QkdWiNw8t3MZvFu/EbQsyPKuBLIfVf9Nmkx5kQhyKhFJCiAEppBucunwLbbE4ALl2G+fkZaa4qv6ts2sFhhFGUTRstixKii8HwBeKJQOpx6+ZwtD8NEqyZDUiIYQQqRX2d6OiEDCgfNMuwhmQFopS1WFj5eRpuGJgdx4mlIoF2Zg2nKjqQMWatjctwysLo4he7WwJACY/OPVnZDlbk/sllBLi0CSUEkIMSNXBMG2xODYFqtxOPleSm+qS+r1waA8AxcWfZczoH2KaJu9Vt7Jxrw+ANKeN8yYUp7JEIYQQIikejYJiw9URYFRnHWszClEVF9vH3U5GorWU2+3s+ySxYHLFvTk56Tw9adgxrlr0d93hGE4tmgyk3O5KHPYc8vPmprgyIU5MEkoJIQaUzlicn9U08lR9OwAnpXv5z9QRKa6qfzNNg9bWRXR0LAPA7bJW1PugpoOrf7s8eVyOV6ZFCiGEODGYpsn6jRupcXegdujoijXdzpfjwQXEND/2Ypgzd3bfJ4qFpLm5+EiW72zj3R2t7GwN4LEFAVAUjVknL0ouCCOEOJiEUkKIAeX5pg5+t2f/UOnTstNSWM3AsGfvX9m27f7ktttdAUBNWwCAvDQHk8uzuGxqeUrqE0IIIQ5k6gabf/suixqXgAts8RhRmxUoRW0mLiAzfT1f+HYfTaeD7VDzDrTtIKxWAeCW5uaiF6ZpcvNfVtIVilKZvpsh+XUAaFq6BFJCHIaEUkKIAWVPYvnd07PT+GxRDhfkZ6W2oAGgrW0xAJrmpbjoEvLyzgasXlIApw7P45ErT0pZfUIIIcSBYk1BfHVt4AB3Zwc2fzXbiq1p/IZmjeq1Fx5mGt4/boCdbwIQrhgNyIp7oneRuEFXKMbwrF3cM+Ph5H67PSN1RQnRT0goJYQYEH67u4Wf1jTgixsAzMnJ4PKinBRXNTCEQjUATJzwODk5p7J+TxePv72RLQ3dAGS6pdmrEEKIE0fE5yeODoDS3Zbcr5oGkfQ86AZ7dmHfJ+moYZerlCdH3MjS9PEAuDQZ8SIOzZe4KVqa1gCAzZaBxz2E0tJrUlmWEP2ChFJCiAHh743tyUDKq6l8Kk/uTH1S9fXP0dLyGqGQNQTd47GmL/zmnZ28vL4xeVxFjicl9QkhhBCHsnHR68Rx0hx2Ud4dQ1NgzN5Wwtkqu50lFHaD43Cr58WCPFz5BZ7NOTu5K88uH51ET7ph8tTyWrY2dqMpOnkeq7VBft45jB37YIqrE6J/kL+sQoh+rSMWpzoYYb0/BMCfJ1RxclYaGbbDLPEs+mSaBlu33YthRAGw23NxOosA6AhY+66eWcEZI/OZMyo/ZXUKIYQQHxbu7Cau2CjeVkdpqJmWDC/tuSfRVfxZhiXaTmZ60/s+STRAh826wXVubgYnZ6VxdbGMwBY9vVfdyr0vbmRY5i7+78xHcdn2XTdlpbYwIfoRCaWEEP1WSDc4dflm2mPWEH0VmJrhlUDqKIjF2pOB1NgxD5KZORUlsXJRdyQOwFmjCpg79jDTH4QQQojjSNd1OmJhIko3GeEAeqIPVFtWATZA0XScGXYmThl66BOYJkT9EAsSSqy6d3FhNpcUZh+nVyD6k4auMAAzSmuSgZSqOsjOOSWVZQnRr0goJYTot+rCUdpjOipQ4XZwZVEOuQ75s/ZJmaZJOFwPgN2eQ3HxpZimyV+W1rCzNUBtYtW9NJf8roUQQpw44p1h3nz6v6ylC4VWstUAwcSUO5/XTY4B82+eQOWkot5P8tznYdMLAIRUFwBuVXpJiUPbt+hLZSKzLC29lpEj/hdVdaawKiH6F/lEIYTolwK6zsbElL3hHheLZ45OcUUDQzjSyIoPLiESbQLA47HuJG/Y6+M7L27scWxhhuu41yeEEEL0JriiiZb6FrCBp6memDdMDKt3lIYbAJv7MGHBjkXJb0Nua8U+tyar7omeXlyzl2//awPBxGh9j90aMeWwZ0sgJcTHJKGUEKLfWd7p57NrqomaJgBD3I4UVzRwdHZ+kAykQKWwcD4ATT7rYqsow8Xl08oYUZhOVZ43RVUKIYQQB2vYvI24YoUE9nAIHcgKhHFm+9hjK4Io2Bx9TPE3TYgFWZY5kXfn/YaGtjjEddyqhFKip1c2NNIdiXPFyOeZmL+JQmcATNBsaakuTYh+R0IpIUS/s6wzkAyk3KrKtSW5Ka5o4IhF2wHIy5vL+HEPo2luYrpBU7cVSo0oTOPOc0elskQhhBDikLrqG4lqOnmra3Aabfg8Tso64iwclUZxxFop1mbvI2DSY5imznXjf4SvKZLcnSWr7okP8YVj2NQY5w55y9phXZaS5h2RspqE6K/kL6wQot9pj1mNtv+nvIB7h5ekuJqBwTRNgsFqWtveBMDpLETT3NS0Bvj0r5bgC1u/8yyPjEoTQghxYtJ1g3YbzKrdwpYKa3W9raM/R1WgKnlMnyOlYkHCqgOfzXru1cU5jPa6GOmR6VjCYpomvlCczmAMjy2U2KswZcrfcNhz8HqHpbQ+IfojCaWEEP3G4vZufrenhdfafADS1Pwo2lXzK3bteji57fVYF1UrazuSgZTDpjJ3TEEqyhNCCCH69I9//IMNnl10Gi48ehhdyQBAwYapRHC67BQNyyMjt5d+iKYJke5kc3OAn44qR1OkybnY75rfLee96jYUDErS/ADYbOlkZ01PcWVC9F/yiU4I0W/8aGcDa7qDACjAyZnS0+ho6excDoDdnovHM4TCwgsA6A5bq8qcP6GIR6+egiIX50IIIU4woQ2tbN+0FYAYGg49hrFvxTzFhqvoVb54173gyTn0CQKt8OvZ4NtL0GndfHGqigRSooeYbvBedRsFnmb+d8YvSHdYqxHbEiPrhBBHRkIpIUS/YJom1UGrr9F9w0qYkellioRSR00otBuAiRMeIytrGqZp0hGI0tRt9dTIcNklkBJCCHFCal9QTUyPAyYTGn1sKMsjYktM01NsOEaf1XsgBVC/Gnx7AQhq1ip90txcfJgvZN2oG5G1MxlIAeTmnpGqkoQYECSUEkKc8Db7Q6z0BenWDRTg86V5uGR55qOis3MFdXW/IxzeA4DbXQHAbU+vZsH6huRx6S55uxBCCHHiiUejBFrbMLwm7d0G6V2rCWRbI1dMQFE8ON32vk8SC9LkyOGKKY+x11MCuolHrjNEgmGY/GddPVsbuwHIdlk37Aryz2PMmAdkpJQQn5B8yhBCnNC64zrnr9xGyLCWNSlx2iWQOop2VP+Erq5VgDV1z+HIB2DxthYAFAUy3XbOHC29pIQQQpx4Qn4fpqKiGAbDNm8lng52w4HpPQVFy0NRvRRmZfZ9kmiQpZmT2OIsBt263piU7jkO1Yv+YNnONr72zBpURWdYZi1VWdZNO7sjRwIpIY4CCaWEECe0vZEoIcPEoSickZPOVcV9DL8XH4tpmvj92wAoL/8CpSVXoSgKumHSHbGam6/41lxy02TVISGEECce0zRZt249Dfa9ZLZ3MrajhnXpBWikgWsKhttHwTAXp8yY1PeJYoFkg/OTM738bHQ5VW557xOWvZ3WKnufH/8SpxYvSu632TJSVZIQA4qEUkKIE1pHTAeg3OXgLxOHpriagSUSaUTX/SiKxvBh30BR7Ly4Zm9yeDpAxuGmPAghhBApUrtsKwvfehvskBOPE080N4+47DiB/Ol+Pnv1xb2fINAKa/8GO98irKUB1sq+wz29rNAnBqXuxCrEI3KaAXA6i3A6iykqvDCVZQkxYEgoJYQ4IW0PhPnypho2+q3m5rkO+XN1tBhGjNVrrk+uuOf1DEdVHWys7+Jrz6xJHpftsWOXqZJCCCFOUE0LtwPg0lXc3UH25FgjV+IOJ07AmV3c9wnefRje+yUA4bLLAWlwLvaraQ3wl2W1rKztAMClWStAjx71A/LyzkxlaUIMKPIpTwhxQlrQ0pkMpADOzztMPwjxkXV0LEsGUqBQXPJZAOo7rd93XpqT8ycUcfaYwhRVKIQQQvTNNE2ikSjYwd7Zhi/eCh5ryp2pWqvzOl2Ovk/it/onUjaDUKW1gppbbsaIhF++sYN/rtrDGWXv8j+TtuDV6gGw2WXanhBHk4RSQogTUkPEWnb32uJcvliexygZSn/URCJNAKSnjWPKlKex2awpC12JpY7HFKfzvYvGp6w+IYQQ4nDq1q4hburETJW9MSgF0kMRFMVHffFnSAuD23mYvlCxII2OXP4x5mssdo+CrgCuxBRAIVr8EWxqjGvHPIeqGIm9Ci5nSUrrEmKgkVBKCHFC2RmM8J/mTv5U3wbA5AwPo73uFFc1cEQiLYRCNQB4vcOx2dJYtrON//3Xelq6rSWOM6WPlBBCiBNcW81udMVgr9/DmMbN4ISYezhkzCMnbN1sGZJT0fdJYiF+OuQGnoqWQTQAQJZNPh4JS3c4Rpo9mAikVEaNvA+vdxgu12GmhQohPhb5qyuEOKF8c9tuFnf4k9sT0iWQOlpq637Hjh0PJLf3DT9/cU09O1sCyf2Ty7OOd2lCCCHERxYOh9nV2Ei3GmPKjo1UdtayoyiHmDMHu5aBCtgcKoUlh1mxNxaiOd06ZlaWl0npHj5XknvsX4A4YZmmyRNv76S2LUBDRzPDMncB1kp7ZWXXpLg6IQYmCaWEECeU2lAUsHpInZzlZWKahFJHS0fHewCoqhO7PYeC/PMA6Er8zv9nzjCumF5OZa43ZTUKIYQQfTFNk7efX8j6xnrQoCQWwUhOubPR7Wjmi9dXkTZ6Ci5vLyN/96yEHQuhfSehTGuK33UleXymMPv4vAhxwtqw18dPXtmCQ4vws9nfxWu3mpvbpY+UEMeMhFJCiBNCQNepD8eoDVsByb3DSxjiPkwvCPGxRCLWUsYTJjxGXu4c2vwR/rK0hi0N3QCMKkqXQEoIIcQJLVrXTdumerBBVsAg6gjS6Ei8dyk2Is4IeVNn9n2S566Hrt0AhDSrZ6WsuicAWv1WK4NReQG89iAmCm5nMWWl16a4MiEGLgmlhBApF9INZi3bTHM0DoBLVShySF+jo6W7eyPtHUvx+zcD4HJavRB+8soW/r5iT/K4/DQJAYUQQpzYjO4oMUUHwNZcS8QZB6xV9hQ1HdNm9PHsBL91k4aJVxLKqARk1T1h8YWtRV+G5Vnbblcpp57ydgorEmLgk1BKCJFyNaEIzdE4CpBl07i+NA+XXBweFaZpsmr1dcTjnYA1dc/jqQJgT0cIgBlVOZw8NJcZVYfpvSGEEEKk2Lb33iOOFTyFYl2oQHmbjx1DynBqYynLMvs+gaGDHqHaXcbKqd+idY8PonHcsureoLZhbxf3/2cjjZ3djMzewZD0VsDqJSWEOLZS8qlv8eLFXHjhhZSUlKAoCi+88ELysVgsxt13382ECRPwer2UlJRw3XXXUV9f3+McQ4YMQVGUHv9+/OMf9zhm3bp1nH766bhcLsrLy3nwwQePx8sTQnxMLYkRUiO9LjafPoFvDpVVTY6WWKwjGUgVF1/GuLEPoarWHeWukHU38JY5w7jznJHYJAgUQghxgmvdVUscnW2xXPxYfSdDWaeRYbsIRbFRll3S9wliIUzgosm/5Ks725OjtNNs2jGuXJzInluxmw9qOji96Bnunv5/TMh4GgCbLT3FlQkx8KVkpFQgEGDSpEnccMMNXHLJJT0eCwaDrFq1iu985ztMmjSJjo4Ovva1r/HpT3+aFStW9Dj2e9/7HjfddFNyOz19/x8Nn8/Hueeey9y5c3niiSdYv349N9xwA1lZWdx8883H9gUKIT6SbYEwX95Yw6ZAGIASp0zZO9oikSYA7PYcxo75CQDfeWEDizY30dRt9U3IdMvvXQghxIlv8+bNbNG66VZNzl2yknCGn4DLgS9zNCr5AGTmH2aBlFiIiOKg1WGNDj4jO53RXhdjvK5jXb44gXUErRt1U0o6AHA6S3A4cigvvz6VZQkxKKQklDrvvPM477zzDvlYZmYmCxcu7LHvV7/6FTNmzKCuro6Kiork/vT0dIqKig55nqeeeopoNMof/vAHHA4H48aNY82aNTz00EMSSglxgni1tSsZSAFcVJCVumIGmHjcz+bN36S55b8AuN3lAIRjOn9ZVps8Ls1pY2ieNDcXQghx4lvw0gL8NmtBlLHtNXyQZQVRKDZizjouuflCSkf2soKeacKmF6FxPSFtfw/Fv04cil2m7g1azb4wL66pZ0N9FwAZjhAYMGb0D8jNPSPF1QkxOPSLuRpdXV0oikJWVlaP/T/+8Y/Jzc3lpJNO4qc//SnxeDz52NKlS5k9ezYOhyO5b968eWzdupWOjo7jVboQog8dMatR6eVF2ayYNZYri3NTXNHA0db+TjKQAsjOslYi2jdlT1MVFnz1NN69+yyyPI5DnkMIIYQ4UfjfqyfkD4JpUli7myWjignvWxRFsaPn26kYl4tm7+XjTf1qa9W9d35GSLVGRdkVRQKpQe6hhdv44cubyVbe5e7pj6AZdQDYbJkprkyIweOEb3QeDoe5++67ueqqq8jI2N9o7qtf/SpTpkwhJyeH9957j3vuuYeGhgYeeughABobG6mqqupxrsLCwuRj2dkH30WJRCJEIpHkts/nOxYvSYhBb284ysI2Hyt8AQCq3E7KXBKMHE2xaDsAmZlTGDr0TrIyp7K7PciKWmt/hsvGuBK54BJCCNE/dG1uQFcM0HWCwSZQrDDJsNlQ1AxU52FuOnc3Wl89uYRGWu1D3JoEUoNdQ5c1Yv+zo98g31UDgKLYcbvLUliVEIPLCR1KxWIxLr/8ckzT5PHHH+/x2J133pn8fuLEiTgcDr70pS/xwAMP4HQe2bLmDzzwAPfff/8nqlkIcXh3btnN2x3dye08xwn9p6jf0fUIwdAuALye4eRkz2LN7k4ufvTd5DEyOkoIIUR/EYuEqVm3BrLB0K3V9RTTZHhXJSvHTcYTtKM5DjMBJG41OH+34gJWnfR12NmAW+0Xk0bEMdQdtkaQ53kiYMDwYXeTm3cmDkdeiisTYvA4YT8J7gukamtreeONN3qMkjqUmTNnEo/HqampYdSoURQVFdHU1NTjmH3bvfWhuueee3qEXT6fj/Ly8k/4SoQQH7bRHwLgzJx0Kt1OLszPSm1BA0hn5wpWr7kOw7BGfdod1pTILQ3WyE+vQ6My18vnTxmSqhKFEEKIjyXo6yKmWGHUW9GhXMRaFFNld9VlFAStY0aXDu/7JLEwyzInclnhDbCzAYA0TVbcG6zW7+lid0eQJp91vaRgjd7PyzsLr/cw/y0JIY6qEzKU2hdIbd++nTfffJPc3MP3mVmzZg2qqlJQUADArFmz+Na3vkUsFsNut+abL1y4kFGjRh1y6h6A0+k84lFWQoiPxh/XaY1Z/d+eGFtJpv2E/DPUbzU1L0gGUg5HAcVF1hSF7rD1Oz9nbCEPX3lSyuoTQgghPg7TNHnmH8/TkNWEEovz1WV/o7bUhZpojZvubmXM3OmMP6O07xPFgtS5igHIsWtMTPNwVUnOsS5fnIB2tQa48FdLUDD46km/oTJjNxjWCH6bre+BEEKIoy8lnwb9fj87duxIbu/atYs1a9aQk5NDcXExl112GatWreKll15C13UaG6054Dk5OTgcDpYuXcry5cs588wzSU9PZ+nSpdxxxx1ce+21ycDp6quv5v777+fGG2/k7rvvZsOGDTzyyCP84he/SMVLFmLQixkmn1m9nTXd1i3NbJsmgdQxEArWADB61A8pLb2SmG6wrambmjbrDmC6y57C6oQQQoiPJxaL0ZCY7ZDV0UVJsJVaylBMK5QqzG5m+vyq3k9gmhBsh2BbssH5yZlp/GFCH88RA1pNa6KnaVYHE/M3Jfe7nCXY7b2s3iiEOGZS8olwxYoVnHnmmcntfVPmrr/+eu677z7+/e9/AzB58uQez3vzzTeZM2cOTqeTZ555hvvuu49IJEJVVRV33HFHj6l3mZmZvPbaa9x6661MnTqVvLw87r33Xm6++eZj/wKFEAfZFgyzwhdMbp+VK3eijibDiOLzraOtfTEATpc1Tflzv1/Osp3tyePSXBIECiGE6D863rFWQ9P8ndjaG/mgyhrtFHCrZADO4tF9n+A/X4VVfwYgWHYFAB5NekkNVpG4Tn2X1UZiYql1TeRwFHDS5Cdxu8tRVbl5J8TxlpJPJ3PmzME0zV4f7+sxgClTprBs2bLD/pyJEyfyzjvvfOz6hBBH3+5QFIBxaS6emjiMQmluflRt3nwPjU0vJLfdLmvVmNV1nQDkeh1kex2cP744BdUJIYQQR6b9zV1gA0dXB2EzBDarD1TY5SUDcBUcZsTTrv2fBUL2NEBCqcFqZ4ufT//qXfwRq6VBttu6NrXbs0hLG5XK0oQY1ORToRDimDJMk2WdARa2dQEw1O2iyCl3oY62js7lye8rKm7C4xlGOKYTiRsAvHnXHDJk6p4QQoh+ZOeq94nruvWJxdABKPbZ8WeNJuQdD2GwOw/TrDweZm3aSB6b81s2xJ0QiuCWUGpQWl3XiT8SZ1zuZi4a9ipDcqwV92y29FSXJsSgJqGUEOKYer6pg9s21yW3K92OFFYzMMXjfiIRayWh2aevxG7P4rG3dvD6JqsHh6YqpDvlz70QQoj+Zc2iN8hRhhExNTBU0oG2gtNR3ZPJDlvHuNMPc10RC/Fo1c38uxvAWgikVG6ODUq+cAyAq8cto8i1E6z7dng8Q1NYlRBCPqUIIY6pTX7rqrHUaWdiuodrSw6/mqb4aEzToKnpPzQ1vwyAw5GH3Z5FOKbz01e3sm8m9NA8L4qipLBSIYQQ4uPZu3cv6wJhcGykrsnLFJ8PbGBqbgCmTfHhHTWNkdML+z5RPEy3zQvAFUU5zMlJ51N5mce6fHECMQyTzY0+tjf7AXDbrK9VQ75KZtZUsjKnpbI8IQY9CaWEEMdUY9S6K3VjWT7/U1GQ4moGlvb2JWzcdOACD9ZFlS8UwzRBVeDxa6cytVJWkhFCCNG/NCVW3NNMlUvXvUF7TowumwuwRjlNP9lAnVjW90lME+Jhgokga25uBhcWZB3DqsWJ6GevbeWxt6rJcbUzOX8Pbs1aACY75xSys6anuDohhIRSQohj4i/1rfyqtpnasNVEsmqwTNsLtMGmFyAWAiOe+KdDLADx6P59pm7tLxwHs249oh8VDNUA4HZXkJd7FmVl12EYJm0B63ee7rIzb1zRUXphQgghxPETSayQltfaSWM+ROyJ6wjFhqHEUEee3fcJVv0ZmjYCEFKdgDQ4H6w21vtQFZ3vzvoZaXZ/cr/dnpW6ooQQSRJKCSGOid/taU0GUmmayvTMtBRXdJwsui+59PRHMvycIw6lopFmAHJzz2DkyO/w8voG7nj2lWRz8wy3/IkXQgjR/3Tv7KTj9V1gh2DbDkg0MzcBRc3EtJvg6mMKXls1/PsryecENQ8AblVCqcHIF47hsQWTgVRmxkmkpY3G6xme4sqEECChlBDiGGmMWNP2/jh+CLOy0siyD/A/N2uehm2vQM0Sa7tqNmSWg6qBagObG+wuULTEPs36PucwS1kfQmfnCnbt+iXtHdbPcrvKAVi0uTkZSAGcPfowfTaEEEKIE9CKp55Hx2ZNvzOt9zW79wIULQ9Vy8RwRvo+QbANE7hu4k9ZmD0juVtGSg0ub21tZml1GzWtATx2a+SdpnmZNu0fKa5MCHGgAf4pUQhxvC3p6GZZZ4CuuLV086nZ6WTYDrNcc39n6PDvr4IR27/vgochd1jfzwu2Q+N62P466FHr+XoM4hFr29TBMPZP9TOt70P1/yQzUE2WYaKYUBh4Hzbt4Lw9DUy0+ZlRmcWIfDc204B/RvZPITSNxFfd2hfuSkwlND70c/Z9NRM1Rfcfk14E1/8H0iXwEkIIcWyEOtqIe/II6daKewCqvQpTi+IqiTD9zDF9nyAaIKrYewRShQ4bwz3OY1e0OKHohsktf11FOBZjcsF6hmTsBsBmSz/MM4UQx5uEUkKIo6Y5EuOKtdXoiVXfKlyOgR9IgRUu7QukLngY8kYcOpCKdEMsDAu/A3tXQevWI/pxxR/esecZAOaC9Vd9b+LfsRDpgt3LYeynj9EPEEIIMZht2bKFamcYXW2haN1ODCfWHDxsOB0bufH/3dj31D2AWJCg5kpurj1lHNl2DYdM3xs0usMxQjGdiXmbuW3y75P77XZZ/EWIE42EUkKIo2ZbMIxuQqZN4+zcDD5bOMDf+MNd8OJt0L7L2nZnw7QvHPrYFX+Al+4kcWXdU9FE0Byg2RNT/ZygOUFR9k/zUzVMRcVAp7nlv+joFJZ8Brs9h9e3trK9JYiOio7KZ6dVUpKdBqoKNpd1TkVNnEvdP4XQlWX9TEXZv+/Ar4oKms2qTdHg+ZugYU1yKoUQQghxtL300kv4nTpqqJkJHTvZWZSJaiooioKmRcDu6fsE9auh5t1kKGVXFAqd9uNQuTiRdIWsm4Ul6dZKe05nERkZkyktuTyVZQkhDkFCKSHEUWGYJrtCVo+HqRkeHhtbmeKKjoMdr8Pmf+/fLhh78DH/uR3WPgPx0P59qg3KT4azvg0Fo60w6yNYteoqOjvfhyxraeuSOY+A6uQ3tUt5P97OuWMLmT0yn+KZFVbQdLQ5vIlvDhGsCSGEEEdBOBRCDQfx1mxhZ5E1IipuU3EANpfTupnSm6aN8Js5AITcVr9F6SM1uDT7wnzhyQ9o6AoDkO2yFt3JzZnNmDEPpLI0IUQvJJQSQnxiH3QFuGptNX7dGkEzxD1IejYErbtvVMyC2f8PyhK9K8Jd8LeroHGDNd1tn9zhcMt71kioj0nXQ1YgBSiKRmHBBaiJJa59ibuBn5tVyekj8o/89RxWIugyJZQSQghx9FUvqiGu69ii1k0um66TEYqyeVgVlVFwD5nW9wk6ajBQ+E/xp1hbeCogodRg8251KxvrfZR4G7hq1LtMLawDwGbPSHFlQojeSCglhPjE3mjzJQMpu6JwVu4Af+OvXw1bX4Had63tvJEwfC746uHdR6wRVA1r9h+fUQZffB28+dZ0uI8h6IvS2RQgHG4l0DgGcDBh/K8xY/DLP61l814frvYQE3SNwKZO1u+NYBgmpmFafdFNE0M3MXQjud/QzUTfchPDMIlHdWufuf95hrFv2zqHHjPQG67CjFwIf08j+4NNnHX9GFT1GIzIEkIIMejo8TiBl1dDOslp4p6oHSXnWsrj1oip4syivk8SDbI4eypfGvnN5K7MwdDbUiT5w3EAvjj5dSq9HyT3O52H+W9HCJEyEkoJIT6x1ph1AXBbRQF3Dika+Hcl//lFaNuxfzujxPr65g9h9V/37x9zIZz5LcgZ+pFGR4UDMeo2tdFS201zbTexiE5LXfcBR9wJwO7F6wFQgXHAOKypDNX/3U31J3hZh5d4nc3Q3NzI5HMqyCtLO6Y/UQghxOAQ6GxHVayPJlFDwQ3EnDlEvcWoiVaGOcXe3k8AEAtS7ywAoMhh59TsND5bNMD7W4oefIlQKsPhA6Cw8EIyMiZRUvzZVJYlhOiDhFJCiCP2QVeAvzW08XSDNY2twuUY+IEUWCOiACZfC5mlkFluBVU7Xrf2T7wC8kfDybeA3X3Q0/WYgR432Ly0gbA/xrYPmgj7Y0RD8V5/pCOjHkXR0ewu0tKGoZsma/Z0YiowpjQTr9uG12lDVRUUzWoIq6qK1d9cVVA0FVWz9ln7FVRNQVHA5tCs7/c9poCSOMY6D6g2Fe2dH6E0bWBR6B4iERXTkGl8Qgghjo5YJIKiWe8t8aZEH8ZESDWqcCkn3fw1ckoOH0oFVavB+fRML48Ohv6WAoBXNjSyYH0DWxqsMMqhBQEoKb6cnJxTUlmaEOIwJJQSQhyx7+7YyypfMLl9ctYgGDWjxyCWeM3nfh88OfCTIRDqsPbZ3DD/5+BMB8DfESESjNFU46OpxsfuTe10t4X7/BFlo7NxeuwMm5KPP7SMlsC30BwhCgsvpLLiZtLTx7K9qZtv/mIx2R47P7lnxjF8wQfYVANdK7DFTCKR4/MjhRBCDHzNzc3884UXCTkDZLS2UN66ld25GaBYI4HLsgLklvZxjdFWDe/9EupXEbKNA6SX1GDznRc30BHwc/3YZ7i4ogO32ghILykh+gMJpYQQR6whYjXYvqU8nzNy0hnpdaW4omNs9V9hy4L92y1bYdt/9wdS53wPKmYRMdzsXdNC7YY2Ni2p7/OUxcMzKajIoKAqnaKhmbjTHdgd+/tf1NQ00L4zRHHRJYwd+1Ne39TEN/65MNkzIcN9PJe5lv5RQgghjr61K9bQ1NKKFvLhaauzAikg4nDgAByZh1nEY+mvYOUfAQgOmQpIKDWYGIZJmz/C2NztnFKyv4+UojhwOUtSWJkQ4qOQUEoI8bGZpknUNGlMhFI3luVT5nKkuKpjzNDhP7eDYb1m0orhyfOTzVjx5OEbfTO7N7Wz9BfvEQn2nIrnTrfjTncwckYhmfkeKsbloGkqmv3QF82xWBe7an7F7t1/AMDhLATg5Q0NtAeiyeNmVuUc3dfZF8UKpSSaEkIIcbTo8RhtS2tBg4KQHT/Wqns2I0a0YDjEwDbtqr5PEurkpbzZ3D/q67TZrJHKEkoNDpvqfbxX3YphQrrdD0Ba2liGDLkFr2cYDsdxvE4SQhwRCaWEEB9LxDCYt2IbWwLWFDSnqpDvGAR/SiLd+wOpCx6GeBhesVb3iZ10E4GST/HUt5b2eEphVQZp2S5OvWw46TkfbxRZTc2jyUAKIDvLmqLnS/Sd+sanRnHZlDLy0w/fQP3o6RlHmab0lBJCCPHJbH1vCSTeTrS4DkBWSMPlLCagjSQUA5v7MO+hsRDPFc5jty0ruWtc2sE9HcXAohsmV/12GV2hGONzNzGzeB0AXs9QCgvOT3F1QoiPahB8khRCHE3bA+FkIAVwWWE2TnUQ3I2MJFbBU21W34p2a5278MgreWrxRYQDseShxcMzGXd6KaNmHvnyw12+NQBkZk6hrOzzBPRJLH5/J3ua2nHqEUpcOmlmmEBnENMwMA2DeCyGoccxdD25z0h+tfYZ8Tj6AccYhoGp6z2OM+I6sUgYFIWhJ00jt6zCKkqRMVJCCCGOLn9bG3FFRzcVNkajlAEdOROwe8+BxOWGw631eQ5iQYIuK7j636HFXFSQRaX7eN60EangD8fpCsXIdHRx+5RfoyhWuulw5KW4MiHExyGhlBDiY2mKWiN1xnhd/HvKCNJth7lQ7O9ME2rfg/rV1raiQXs1XfEitoZn0777QsKBGKqq4MlyMPnsCiadXd7nKWvWraarqZGdqz+gu6WZeDyOaeiYppkMiiKhbkxzBDZNZan+JNHQ4wCckzhH9S/g8WP4svfZ/M6bXPfgLxNbSo8vQgghxCcV8ocIE8Xn1yjtaAAHoNhQjBCVQ0yyR43uu8k5QCxEULNGRo3wOCWQGiR8YeuGYGGaD0Ux0TQPRUWXUF7+hRRXJoT4OCSUEkJ8JIZp8n5XgIVt1lK7ZS7HwA+kwAqknjxgCLhu9XNa7Pwpda1pYLUvYNr8IUyfX9Xnqdr27GbHB0tZ8syfP8IPtn63cQJ9HqUoKoqqoqoqqs1m/UtsK6qWfEzRNGu/pqHZ7aiHeExJPK6qGvFYlF2rVxDydx/wwxIj4mTanhBCiKOgvr6et6qrMTUYWbeMoi4/NflZoNiwGY3Mn++FScN7P8HWV2Dry9C2g1ChFUR5tEFwbTLIhaI6v3h9G9XN1kVYrtsKp1yuUkaPuj+VpQkhjoCEUkKIj+S5xg6+tqUuuT1qoK+0t09HjfVV0cDUWeG/lE3Bc+g2rLu2o08pJqvAzYQ5Zb2eQo/H2LVmFS/+9Ps99o+ceSpZRcVUTZ6GoqqYxFm15iprlpxikpE+jnHjf0YobnL2Y6swFJXV956Lx2VHUVUrkDpGU+qadu5g1+oVPQMomb4nhBDiKGqob8AEtFAQ3dRpSfcAoGDD5glB+rC+T/DCLRihDqrd5XTZrPdltyrvVQPdG1ua+c3inZSn7+G6sUsYmt0JgM2WkdrChBBHREIpIcRHsqY7CEC5y8HEdDefK8lNcUXHSTQxFMrUiRge3vdfhYk1Yii7yMOcq0eh2XrvqfXBf57nnaeexNy3Sh9QPHwUs6/9AmVjxvc4NhxuwFsfRlFszDp5ETZ7IQ+9Xs32Jj9RzYldU0jzuvsMokzThHgc0zBA1zENEwwdU9fBMCDRO8qMRDDjeuIx40NfdcKN9QAYkQjxlhZs+fl8ePqeDJgSQghxpOL+KFtf3AoaZLa0ENOcxPYNclK95BePgCGzez+BaUKog7tG/j+eKr4guVtW3Rv42gIRAK4dt5DhGauT+13O4lSVJIT4BCSUEkJ8JHUha9ra1yoLuXawBFKmCTXvYJqwMnAZm6LnJwOpz94zjdyyNLRDXPyapsk/fvBtmnbuIBLcP/3OoWrMLaoiI6rBb//InmRwZKDH/ETDLeR22VB1O01pd9EdjDC6uZuxpslnTAOXBjvnP2o9JxbDjMetsEvffx4jFIJ4/BO/dJ/LAaPK0Ts72XnRxYxY/PYxG5UlhBBi8Nn17DIyDd2ara5b71uFXRFChRVEHGOw5ZRAXwupxEKAybq0kQBk2FTGp3kYOVhGcg9ivpA1XS/PY11jFRddQlraaAoK56eyLCHEEZJQSgjRp9dau/jj3lY+6LLe+CtcjhRXdJx01sGbP4LN/6ElPpTl/muSD5WPyaag8uAh4v6Odl7+5c/Yu2Ujhq4n96eFo5y6bQ+qaQLb8PXxY52ogE6INdiAkR96PNrxSV4U1hQ8TUOx21FsNhRVBU0DzepBte+rzW59EDABvb0dIxxGSwyRkmhKCCHEJ2EaBntWrSGenUmNnk3UUMkF2kuvRLNXoQA2x2FGPMWsEdxh1eol9eT4oZySfZiG6KJfe3VjIz95ZQst3dZIKadq/TdQXHwZ2dkzU1maEOITkFBKCNGnn+xqYKPfWpPZriiMHix3IN/8EeaaZ2iKjWJ14KLk7jOvHU3FuJ4jxWLhMHu3bmLbsiXs3rguuT/fF2BMfRumEqM+T6G6WGVPLhhK4p8KdpuTG0ecRnPrf1FtLhzeQgrLPo3NM4q3t7fx91V7mVyZy9fOGYWiqaBqKJqK4nCg2GzWXeREs3JUFdXtRnW7reBp32P7gif1o/egaqmrgbtu27/DNA/uKSXT94QQQhyBaCRMVDUJEmG7FqVSaU88YkMhSlZhBqNn9jEVq606uSpuULOuS9wybW/A+/sHu9nZEuCyES8yJmcbLrURkF5SQvR3EkoJIfrUFLGG1H93WAlzctIpcNpTXNFxYBjQVs264HyWdN+Y3H3qZcMZe1rJQYe/9ptfsuXdt5Pbw5o6KOrykxmK4nPDl76ioWuHDoO8NgdXTsmmY69BSdlnKSy7iRfX1vLT1zZb/aEqc8gZm0ftmCwMw0A3dQzTIGoEiRtxDNNAN6x9uqmjh3T0oLUdN+JE9WjyOfuO+fBzgnHrXLqhW+cwdWgJkAXsGxf19TfvJBzbhasgj4ndOvL2IYQQ4kg9/be/UZvbAXRw0wevELRnEnLaURQbOaznym9/Bey93ARr3gKP7R8VE06EUi5pcD7gdYfjuG0hzqtalNynqk5croOvzYQQ/Yd8qhBCHFJYN2iMxmiNWaHUJYXZFA6GQApgyUOw531qIvcldw2fVtAjkDJNk5d/+TN2rnqfaCgEgDsaIyMYYVhzB363yZ8uyWTC7Eu5OtdkWcMyGv2NRIxIMhAyMQnEA1zz/vOAB/Y+B8ufA8AzdH8574XhvZeOxwvfL6vbzsWUJOfqLatfSsCtgNfDcCOKghNThkoJIYQ4Anv3WotpaKbK2L1+lg/NSjxiI8sRBZuz9ye37Ugc6oacoYTs1pQ9aXA+8HVH4nhs1pQ9VXUwYcLjeD1DsdszU1yZEOKTkFBKCHEQX1zntOWbaY5agVS6ppLnGER/LvZ8AEDQyALg01+qovykquTDpmkS6GjvMTqqtL2bSbubAdhapvDrT2nsyQ+woOnP0PTRf7RNtWHodnTDxONw4Lbb0BQNVVH3f1U17Kodu2rvsX/fY5qS+KdqOFQHmvqh53/oq9vuxq7asSm25LG0Bul657Vk7HTP9Ht4bdNjLDZ8mEhfKSGEEEemdUcHcV0HPU5ZbTMfVJUStSWW3VNsOEZMP3i6+IHiYZrtOXxh6iM0Zw4nGLYWYnH31RRd9Fu6YfLQwq3s6QhR1xYg22G1lLDZMsjLnZPa4oQQR8Ug+pQphPio3u3oTgZSmTaNm8vy0QbLymsRP7trDDZ13kl7vBIAV15e8uGW2l38/f57CAf8AKjAnI01uOJWY/P/vU5jR+n+35XH5mFE9ghG54ymPL2cuZVz0RQNxVTZsP4mgoENFOTNJTd7FquaZ/Pga9X4AjF0w+SR66dx9pjC4/faD9C2dzdP8lpye/7Q86nd8kcWG321aRdCCCH6tvefqwCwBbtpj9SDwxqFrSg2FDUNW8GQvk8QC/F29jRWOisgEUjlO2xk2bVjWbZIkRU17Tz6ZjXDMndx68R/k+6wrr9stvQUVyaEOFrkloIQ4iB1iYu8zxRksfX0CXy9qijFFR0ne1fDw+N5p34+O8KnA1Yf8fTs/X0t1r7+SjKQAhi1txVXXOfNCQrfu0plZ4nGKc0Xcv7uG7hx0w/54oqfMvvVm8h/6jSCj1fw4je28c+vb+If/28D0ZYGPCqMrvoSwys/z7/XttDaHU2MktIYW5K6xp37GqInJ+iZB46PMun5oBDi43rggQeYPn066enpFBQUcPHFF7N169Yex4TDYW699VZyc3NJS0vj0ksvpamp59DLuro65s+fj8fjoaCggLvuuot4PN7jmLfeeospU6bgdDoZPnw4Tz755EH1PProowwZMgSXy8XMmTN5//33j/prFiIc8NO5t5q4qbAhWgCApuTgSL8KR8ZNKIodp/sw98xjIUKaNb3vlKw0Xp46giUzRuOQkVIDUlvAuiadP3wZo3KqKUmz/gZ6DuxzIITo12SklBAiaXc4yn079rK225qvX+AYJD2k9nnmKgh1ENCt1fUmla5j+JXX4Uqzs/2DpSz7xzM011QDMKa+lbI2H3bDZMVwhRdPH8Xpuz7LWS3ZpOOi2K6QpSkomomigYKKolixjn/oAsKFK4mltQHgcpUB4AvHAHjgkglcMLGYdFcqf/9Kjy+YJopM2hPiqHn77be59dZbmT59OvF4nP/93//l3HPPZdOmTXi9XgDuuOMOFixYwHPPPUdmZia33XYbl1xyCe+++y4Auq4zf/58ioqKeO+992hoaOC6667Dbrfzox/9CIBdu3Yxf/58vvzlL/PUU0+xaNEivvjFL1JcXMy8efMAePbZZ7nzzjt54oknmDlzJg8//DDz5s1j69atFBQUpOYXJAakdatXs83ro9X0kt1prZyGmo5qKybDtZ6iiXMZc0ofq+4BxEOEVOtmUbHTzpQM7zGuWqSKLxyjvtPq25nrscKpsrLryc2dTVbmtFSWJoQ4iiSUEkIk/aOxnQUtXcntUd5eVr4ZiAwduhuImw6ipnWBO/3rt+L0WMHQ+y88lwykdMWguMNP2GHyg0s1xgQ+x111Eym1eUl39h3cGGqEhpH/BMUaZuR2V2K35+ELx+gMWqHUsPy0FAdSB7bzSHxjmgePnhJCHLFXXnmlx/aTTz5JQUEBK1euZPbs2XR1dfH73/+ep59+mrPOOguAP/7xj4wZM4Zly5Zx8skn89prr7Fp0yZef/11CgsLmTx5Mt///ve5++67ue+++3A4HDzxxBNUVVXx85//HIAxY8awZMkSfvGLXyRDqYceeoibbrqJL3zhCwA88cQTLFiwgD/84Q9885vfPI6/FTGQxeNxXnnjTQynQUT38Jm6JWwvygPVGvU0puB3TLvha4d+smnCP2+EumUQ6SZYeBEgfaQGsn+s3MNd/1iLaZo4tCgemzVKPStruvSSEmKAkVBKCJHUlOgjdWF+FteV5HJKdlqKKzqOwl20xSrYGx0HgN2p4XDbME2TYFcnjTu2ATB+TxOFnUGcusGuYo1Tol/mMiYd9NfUjLZi6mFsGW1kX3O1FfKoCqH4HmgwURUXo0t/Qlb5DC59Yimr6zqTz8043NSF40BRrAv9fQGUaRioH56+J4Q4arq6rBsCOTk5AKxcuZJYLMbcuXOTx4wePZqKigqWLl3KySefzNKlS5kwYQKFhft7z82bN49bbrmFjRs3ctJJJ7F06dIe59h3zO233w5ANBpl5cqV3HPPPcnHVVVl7ty5LF269JC1RiIRIpFIctvnk15z4vCi0SiGYQCQoUZRzX0jcq2bMOXovT/Z3wQb/gmAjkpAcwPg1mQE70D1XnUrpgm3Tf4tJxVsSO6321LX2kAIcWyk/pOPECLlgrrBKl+Afzd3ADAzy8vpOYOogWTzZgLrF/Ns20OYWI1SMwvcYJr87bvfoGHbFgBMdMrb/ChA2OFmYsHVzIhNSp4mWrMYvW0H8b0rwLACPveUKbhH3waAYcTwt7dAAzhdRRSPvIA2f6RHIDW6KJ0huR5M0wp+lFQ1mP/wzzVTWIsQA5xhGNx+++2ceuqpjB8/HoDGxkYcDgdZWVk9ji0sLKSxsTF5zIGB1L7H9z3W1zE+n49QKERHRwe6rh/ymC1bthyy3gceeID777//yF6sGLQ2/GYlALbuLsoad7OjINt6QLE+juS5HL0/ORoA4Mmyz/LtYbexr2uaR5Pm5gOVLxRDwWBywabkPqejkPT0sSmsSghxLEgoJYTgSxtrWNi2/073cI8zhdUcZ00b4fFT6IyOw+QH2JQQJZ4aJnz6CpprdyUDKUMxSYt2ogALTyngvLz7cakacdNETwuRnhUlbdooUMeyTb+c3VEVwwTD7eaNV1ZSW7MW3G9jYBLRzyQYzOaR//4G3YRJmpn4GRrxliYuvm8HJgqVFZVk5eaiG6AbBroJhmES0w10w0Q3Tetr4p9hmsQNM3HMwccZye/BME2um1XJ7XNHHvLXksyfkjnUwaOjTBkwJcRRceutt7JhwwaWLFmS6lI+knvuuYc777wzue3z+SgvL09hReJEt3vjOtyN3ZhOoKsLNR5G16wRuYqWj6roaPPu6/0EiVBqYd4pyUDKoSjMyJR+UgPN+j1d/H7JTlbXdeKyhVGwRtfNPn0VNlsaiiJBpBADjYRSQghW+azG5qO9LqZkeDgtaxCNkqpfA0DIyAQg37aLC8+pRx+TyeZ3VgOQ5nVz+nsbkvnMheH52FXroihtXDZ5182m1R/h1+/sZOWOBt7fG4LERRR0J/4VApd/rNK27grBrj2f5NX1KRCJ9/HowavvSaNzIY6+2267jZdeeonFixdTVlaW3F9UVEQ0GqWzs7PHaKmmpiaKioqSx3x4lbx9q/MdeMyHV+xramoiIyMDt9uNpmlomnbIY/ad48OcTidO5yC6eSE+sYZt23ApXrboBeTprQwFNNdMNMc4VC2Lyol5MG5i7yeIWc2uw5rV6/KhUeVcXJiNR5OeUgPNr97czqsbm5hSsJazx7wNgKq6sdszU1yZEOJYkVBKiEHOH9dpi1nhxL+njCDDNsjuQHXtBsCnWytMeSecQcuYNP52w1XEImEAzPZmFCCmgcOVj5Y/mkabwqTbp9Bph3v+8F+e2x4nbva8OC5SfSiYKIDb7cPr7sKIujHC2SgGdASjmCiYgNumMSzPjUMDm6qiqVA8ZCjejAw0VcGmKqiKYn2v9dxO/jtg26ap2DVrn03bf+yBz8n29D5V4qCpeqaJuq/RuSJDpIT4pEzT5Ctf+Qr/+te/eOutt6iqqurx+NSpU7Hb7SxatIhLL70UgK1bt1JXV8esWbMAmDVrFj/84Q9pbm5OrpK3cOFCMjIyGDt2bPKYl19+uce5Fy5cmDyHw+Fg6tSpLFq0iIsvvhiwphMuWrSI22677Zi9fjG4GOE4OgahCBSH6gFQ1RxULYsbv56Oc/iE3p/csA52LAQglOglleuwSSA1QHUkFn25bvxC0m11AHg8VX09RQjRz0koJcQgZZom36uu54Mua0h8jl0b2IFULAyhDtAjEA1CPAQtW2l87Xle7fw1fsP6QJdfmcHO1e8nAyldMRneaP2ONp1/EROZi7/MSU1+PQseXcQ70Up26PmAdXGcoYQZoTQxytHBuKJsiocNpaS0mb2NPwcMhlbdQVXV5/jdOzv5wYLNDM33cuaoAi6eXMqEshPoLuCH5+8ZxsEjpWT+nhBH7NZbb+Xpp5/mxRdfJD09PdkDKjMzE7fbTWZmJjfeeCN33nknOTk5ZGRk8JWvfIVZs2Zx8sknA3DuuecyduxYPve5z/Hggw/S2NjIt7/9bW699dbkSKYvf/nL/OpXv+Ib3/gGN9xwA2+88QZ///vfWbBgQbKWO++8k+uvv55p06YxY8YMHn74YQKBQHI1PiE+CZ/Px7bGJhRbJ6dtf4u8cBcdXrfVS8o0cKa7e+9Z2LUXfnMGmNbo45BqjZSSVfcGLn/YulGa7giCAcOGfYOiootSXJUQ4liSUEqIQWpLIMzju1uS2xPTPCms5hjrqIHHT4No90EPVYevTwZSdjXM8GkFvPs3685ciRFj4vo6VMBUNYq1yfzdtQQ6YGtLPnXGcJoMa6pjhdlCfrSN/zm9kuEjTqFywmQAaut+y44dP07+vLS0UQD4EhddpwzL5TsXnHhNO5XkqChr2zSR6XtCHEWPP/44AHPmzOmx/49//COf//znAfjFL36BqqpceumlRCIR5s2bx2OPPZY8VtM0XnrpJW655RZmzZqF1+vl+uuv53vf+17ymKqqKhYsWMAdd9zBI488QllZGb/73e+YN29e8pgrrriClpYW7r33XhobG5k8eTKvvPLKQc3Phfi4TN3gjb+8xM6uDlBNCqI+Yvuakyt2NCWCYnf3foKuPVYgZXNBxcmEPPmgg1tGSQ04Czc1sbcjSJMviE2NgWldsxUWzMflPPRUYiHEwCChlBCDVF04CkCV28F3hpVwSlZaiis6hrYvTARSinVh6/BYX905hOMjIAjj3K+S5l3DH2//PfGotdR5UV0b+y57N40exQaX1fQ8Ymosi1cmJuaBSw9xUf2/mfqp+cy55LIeP7q9/V3A6odQWnIFG9vH8+g/32NXqzX6KtNtP/av/0gclD+ZBzU9l3FSQhw58yOMNHS5XDz66KM8+uijvR5TWVl50PS8D5szZw6rV6/u85jbbrtNpuuJoy64tYPuxi7QILNmByH3/o8eCjYcahT6CqViAUzg2kk/Y1HaBNCt3W5VbpIMJBv2dnHTn1dgV6PcN+tBirzNyYsMmy0jtcUJIY45CaWEGIRM06Q2ZAUvY9PcnJ+fldqCjpWuPfDqt2DTC9b27P8HZ317/+Mv30Voi9U8tcC+gzUt9mQgFXLEyO0OEXLAY5+fSZlvCPH0It7qLmJPZH+QdG7z65x+0gg+99PnD1lCNNIMwMQJj5GbO5vv/345H9R0JB8fUXBiNpU/1FQ9VUZKCSGE+Bi2vPk+MXRq45mMD3cl9qooWhaKrQCbPQxpfYyCiYUIqi4rkEooctipckuj/YFkd7u14M6ovA4rkErIzJyCzXZiXicJIY4eCaWEGGSWdvq5bt1OunWrP0OFq/dm1/3e2w/uD6QAqs7ANEz0uIGum0T2NLA3eiYAaeXldLbsBUIMb2lkeH0AFajPz6XUVwlAsHAie1r2B0pzW95gVGA7I8tmHfSjm5r/S3vbYvyBrQA4ndY0mI6gNULt6+eM5IxR+UwoPYH6SB1IOcTqe731/BBCCCEOoaV6M3GvjZXRUsYn9jmz/gdFsa49CsaVQl/9oaJBQtr+AGrdKePIsms4pKfUgNHsC7Ol0ZqqN7HE+v+rxzOU6dP+haZ55dpDiEFAQikhBpn/tnQlAymXqnB27gAeFt2wBoCd5d/m7c3TCP00jmm8ecABNwCgRzezUasiFNwBQFVjEBUwFNg1Yjwuu5PyygqWGNafzIm+9Yzu3spFF84lLXsuY047o8ePNYwIGzfeiWlaAZTdnkNDoIj12/bQ2GU1UD91RB4Ty7KO2Uv/pA66CDyg0fn+oOq4liSEEKK/0U3iio5KxwE7bWjKZq666zwyhvSyqlo0AP/6EjSsTTY3d6kKBc4TdMq7OCJrdnfymcfexTRNKtL3UJ62BwC7LRObbQC3lRBC9CChlBCDzK7EtL3vDS/h+tI8nAPxbuNbP7FGSLVYo5RWbSkj6D84QVGJoZmdhAOvsOntfY/r2A2TVUMVtsyci2bmkD96Fn+qVdnebDWGLw3VUxRvY9ZlV6KqB69YGI22Y5pRFEVj2NCvk55xCmc8sozuRHNzgFzviT1CLRlK7RsxZZoHTOmTNEoIIUTfFixYwKrMbnQF7l71LPW5eSgmKIqKTfWTWZQFvfWGqlkCm/8DQMhjjVaWFfcGno31XZgmzC77gOvH/jW532YfwDdMhRAHkVBKiEHizTYff21oY3mXH4AxXvfADKQMHRY/CEac5d1XsS44n6jpBWB+1g8odGxDI4amxFGJsyecw987xwGgaQEqG627uRsrFXTVjVuHhXVxtjdbo55ceoiRriAnnfnpQwZSALGYdQ67PZvKyi/R2BWmO1yHosCckdaUvYqcE3y1wwNGSpmJ/3PwEHoJp4QQQhwsFtFZ9cFKdBUIh/BGrfcLJbF8SJEtAPY+3gej1mIgtaWzWTXjm9AuK+4NRP7EzbrThljT9+z2HFzOYspKr01lWUKI40xCKSEGiR/srGej35o6ZlcURqe5UlzRMeJvBiOOaSqsC11I1LRW9clwdVP22S9hc2igaqBYX/07fVDzFAUuD9OWVydPk88UOuNuImhsbIkBMK95IVWxBm7/8zOH7HEQi3WxZcu3aG75LwAORwEAXSHr+VluO3/8woxj+vKPHfPg5udCCCHEIdQ+txXdNFAjQby7NrG9ON96wGa9j6RpMbD10aw8HmZl+ljmD/8+tFu7PBJKDRimadLij9Dks0bve2zWojPlZddTVSWrgAox2EgoJcQg0Ry17kbdXVXEmTkZ5DsGWF+GeASevAD2vI9u2miJDSNquFGJcU3+rXiv+iXa2IuSh4cDft7+y+/Z8OZCAJQ2HwDvjlGweScQKh3NqrRZrG8MASaaqTM0uIvMzIxem262tLyaDKQAPOmnctOfV1DTat3xzXT3n9/5Qa9RGp0LIYT4iKJ7WkGBWMS69tAME7vhRM0YgQHYhs7oMSL3ILEQW71DAGvaXpHTxhdK84594eK4+MKTH/DW1hZKvA1cULWOLLvVbkGm7QkxOEkoJcQA1xmLUxOK0pIIpa4szqHYeWL3Mzoiu96BPe8TMjL4W+v/ETKsVe3yCm1k3PwslEzpcfiWdxcnAymAtIA1dPz50xxM7x6N4c5NBFKAaTKlczU2U6dw6PBeSwiG6qyfmXc25WXX8+r2IhZu2pJ8fHhB/1nWWFH235E24UONzq1pGKbM3hNCCPEhDdu30la/FX+2g43RUuayDVUrgdyrMBLHOKsm932SeJhgosH5OXkZ/GbckGNZsjjOlla3AfD5cU8zLKs2ud/hkOBRiMFIQikhBrCuWJzpSzclV9uzKwo59gH6P/vuBgBqwtOSgZSm6ky+cCKUFh50eNse6yLIqamMrd5LgS9EVIOYKwelW6Fbs+7WVZgdfLrmGU7+zBWMmHkteeWVB53LNE3C4d34/VYAlZU1g5ycU+kMWdMBTxuex82zhzJtSPbRf93HitLze1NGSgkhhPgI2vbuBtVGl+FibJv1PmhoLjQgJ3sj5Sd9irGnlRz6yXoMWrZARy0hzZreJw3OB5ZwTCcSt65LRxeEiUWhoOB8vJ7h5OWeleLqhBCpMEA/nQohAKpDEbp1A02BcpeDz5cMwNX2Omphwdcxty+kNV7FlpB1QTOhaDWn3zibnc21rFu0hrY9dTRs24KuxzF1na6WJgBG7WqkuCsIwNrhGUwMncrq9JOpabH6HGT7dqMAJaNGU1g17JAl7Nz5EDW1jyW33a5yALrDVi+p4QVpzB6Zf0xe/rGiHKrRuay+J4QQog/xeJwVm7fi9waImxpz6lexrTgXU7ECphHDFjPt8q/0foJnr4VtrwAQqvwCIA3OB5ItjT62Nloj0xUFjLj1/fBhd+F2V6SyNCFECkkoJcQA1pqYsjcuzc1r00aluJpjZNH9sGMhG0PzeNv35eTurDOuYGtdNQv+76d9Pj07ECaqwZOXDydLP4lWYwxr23X2/Xkclw1TTr6IygmTez1HZ+cHANhsGXg8w1hcV8mDv32dzkSD84x+1Etqvw8NlTpUo3PJpoQQQhygtraWmqYWsEPIjCX3K4r1nprpPMz7YeMG2m0ZvFIyj5W50wBwqzJKdyDY3tTNpx5+BwWDG8Y9TUVGI7ph3RS02aSXlBCDmYRSQgxArdE4v6xr4sm9rQDk2/tjKHIYpgnBNquXFFAfHQeAW+2gpExl1MxC3v7L88nDR50ymyGTpuDNykZRVdatXE7Fwgac0WrWDlGoy7KT2aHiN6x+WxVmOzMb3uSLt9/C0CnT+ywlEm0GYOLE35CdNZ2HfrOM5m5rpJWiwEnlWUf71R9zB83UMwyZvieEEKJP61/ZAUBaSOekPZvZXphjPZAIpYaVT+ntqZZYkO8P/TJ/K56f3JVp045JreL4qm7xAzAsu5lTS99P7nc48rHZ+k/PTSHE0SehlBAD0NMNbfx6d0ty+5TstBRWc4y8fBd88FvaYhXURC5hT3QiAOec3U3Z+Z+ho6OJ6pXWRc+8W25n/Jy5yafG29tpueMOnHutKXzt6eCJewHoaOsErYihbRsoijTjTu/97p3fv5XGxhcIhaz+VC5nMQC+xLS9n1w6gbPHFJKX1sey1yeoAxudA9bqex9udH68ixJCCHHCirYHyNzbid/uYLPPZEY8ipkY5aRqxWg2BXXO/+v7JLEQDU5ruvvkdA+jvS4uL8o51qWL46ArMXp8Srl1o9TpLGL06B+SnjYGRZHgUYjBTEIpIQagxoj1xn9GdjoXFWZxSUE/arD9URg6rPozpqmwoONbdBsFADhdUHLRdbz119+x6r//Th6elt3zgjawZAlpiUAK4P1RdoYUzGVRuIDdmtV802NGyR8ylLzKIb2WsXnzN/F1rwPAbs8BrYjm7jCdQev3P6IwvV8GUkCP2XumNDoXQghxGK0bdqIrJk1GOjGzCwDVPgK752xUzc3waQcvOtKDYUA8REizVt27raKACwqyjnHV4ljrCsX43n82sXZPJwBZLmskucORT17unNQVJoQ4YUgoJcQA0xWLszNoveGflZvO1cW5Ka7oKAt3QcM60CN06UXJQGqU601GXnYxqqaweclbycNLR4+jdNTY5Lbuj9L1+noAdhTBv88ZR2VsHBvaitndbYVJbuJ875Ef9xkoGUaEbv8mAMrKrkdxn8mMHy6iOxJPHpPh6sd/Yj8cQPVodC6EEEL0FA9H0THQTQU7Vq8gRfWgqB6+9PmdaDPP7v3J4S5o3wVASE2suicNzgeE1zc18c9VexiVvY2vnPQmozJDADJlTwiR1I8/MQkhPuwbW3fz5/q25HaBY4D1kmqrhsdmocd13u2+kW2hMwDIdexm7rRNxKf9L03V2wl1+wD46p//gd3pSj49qkf52x8e5tRtuwFYM0wh7PJAVGFXsx9wMrttCeeOyiYv7aI+S/EHtmOacWy2TEaO+A6vbGikO7IKAIemMr40g8pc7zH4JRwfBwZQ1up7hxgpZcoEPiGEEGAYBo3Ll+NXXGT4dzDUtwLIAmwopo7m9PT+5GA7PDwBolbPoZBqvW+7B9pqwYNURzAKwFVj36Dcuym53+0uT1VJQogTjIRSQgwgb7Z3J78f4XEyN3eArWZS+y7oEXaE57A+eEFyd+WZp6JfeA1/uvMWOpsaAEjLzqX1gR8T21uPGYlgRqMEQz4mNLQRCQZRgdYMBZup4TcdtBtOME1G+HdQUXx+ryUYRpSNm75OZ+cKANLTx6EoSrKP1FmjC/jD5/tujN4vKB9afc80UBP7TFO3dm/9L4y+5vjXJoQQ4oTy7J/+wla9GWxw4arlhOw2avMAxYZqRMHu7v3JbdUQ9bPXVciGnJNod1sjoGWk1MDQHbZGkGe5rNFzlRU3k5Y2hry8M1NZlhDiBCKhlBADSHvMeuN/Z8ZohnucA6cHkGlC/Wp4/zcAdNqt6XhutYPTC1+g6oIn6WyqTwZSLm8aE8qq6Pzrsz1OowAHXhZXFyuU5U5iZWcRAAW2KJfdeivDps7otZS2trdpbn45uZ2dfSob9naxqd4andWvp+wd4JCjolRH4nsrlDLXPwcXSSglhBCDWTyqs2tXA6jg8HdTn+klYrfeCxXsOGwxKJ/Z+wliQXRU5k39Ha22/TfTvBJK9Wv/Wr2Hl9c3UtvSwrjczbjUTgAKCs4jI2NiaosTQpxQBsanJyEGMdM0ub+6njW+IAHdatJd4LANnEAKYOvL8MzVNMeG8bbvJ3TFrVXuJnheYcSQTkKRIOvfeA2AgrIK5hSV4//9nwHYm2/n5ZkOoppJwB4jbNeJaQohtwcjLZ9F1VXE4omlqvPcjDltTp+lBBMr7Xk8VUwY/yi/X6bwi9eXJB/PcA+MKZMH/vdjKljT9ypPgfbloCbeOipmpaY4IYQQJwz/lnYURccwFbJbAvg8+6fNK1oG9twCyCjp/QTxMEHNlQykJqd7GJ/mZoSnny4UIgD47osb8YXj3DHlMcbnbUnut9uzUleUEOKEJKGUEP3c5kCYJ3a3JLfHpbnIsA2wpXW3vQrA6siVNMdGJnfnzz6PPaX5/P2L12CaViBX5AvhX/Dn5DFPnqmzdljkgJOpDPUPZXrLSUTDGWyO27AZMea0vcOXL7i01xJM0yQc3k17uxVA5eWeRVraKDY1WNP48tOdlGS5uXRK2dF61al10EApE8WTaJpvS3xQmHHT8a1JCCHECad+zXri6LwWG8lpZh3FgOacimofgmorJ7/iMK0EYkHC6v4A6r9TRwysG2uDUDRu4EtM2xudZ/U6dburyM6eicslvaSEED1JKCVEP7cnbDWQHOJ28O2hJZyclTZwLuaiAdi9HFb9ibhppy1WCcA0798Zecl8sk+9hDf++GtM00DVNNJz8yja1QjAthJYMc5LZu44bmo5nUB1LRlBg4jbwK64aCs0aY9Yv6esWBeTjT2MHD2i11J27vw5NbWPJ7c9nqEEo3Fa/dbv/7sXjuWCiX3cCe5nDlppzwRVUfd9S89vhBBCDEaGrrNx8UL0MifljXup7G4k6lBQ7RUo6WGuvaSLzNP6WHUPIBYmnJge7lKVgXMNM0g1+cK8v6sdsNpTOrUQug6TJ/0Wj6cqxdUJIU5EEkoJ0U8FdYPnmzp4qMYKYcZ43VxQkJXaoo625z4P219jse/GHo3NR7nfxlN5KzVrV1GzbjUAsyfNRFn9PrYdOwF45GI736j9Ic8O/Rv/DP6F7z3XzJ6hJ7G9aiSmaVKrZ7MyZt2tG1WRz5d/8hdsDkevpXR2rQRA09Lweofx760j+ckvX00+nu3p/bn9kvLh1feMlJUihBDixLRk4UI2llrvf5/as5C4yySKA9BA85OVWwxqLyFT0yb47zegozY5UsopK+71azHd4PxH3qEtEGFoZg2FaWF0PQCAZktPcXVCiBOVhFJC9FN/3tvKfdX1ye3J6X0st9wf6XHYvhCA7ZH9K7TkZfnJuOUZFjz3MtuWvpPcr/3laZxxqwF3expkOEpp07pY0W6FSWlh6M6wLogC6eW81VqUfO6k0ow+AymAWKwDgIkTHiMn51QefOK95GMVOR7Gl2Z+kld7wulxp1pRrJ5S+/YpMkRKCCEEbF6yBGzWxwmn0kFUzQJAUTTSlChofby3rnsWaqz38Yh3OGCNlBL9V2cwRlsgyqT8DXz1pN/2eMymSSglhDg0CaWE6Ke2B8OAFUadnp3G9aW5Ka7oKGqrhqaNgEkcF2HdC8Dn82/A88VnoGQiO1d9D7BW2huRkYtzbTURG/x5noustElcXD8ZW/ObfHv3eExg+2iDxmKrQXpdgw/sVig1uWstn518ea+l+P1b6epaTSCwHQC7w/o971vi+E83zGD2iLyBOd0gEUYBVih1iCl9QgghBi89FgObjdOjY2jVX8JIvheqlMfDYOsjlIqFANg78XqWDb0SOmSkVH/XFYoBMCSzFQC7PQe3u5zc3DlomjSuF0IcmoRSQvQzummyKxThrfZuAK4rzeXq4gEUSDWsg1+fjmGqLOn+ItvDpwPgVPx41A6au+I0LPwv8YjVvPyM9zegJUZIvTFJobNqNBmtQ6hROmFIIVB40I/ojKlgh09pO7lsahZDhg89ZCmGEWXlqiuIx63ftaq6sDsq6ArFkhdemW77wAyksPpKmZiYWI3Okz2lJIwSQggBxBNTu1XTjl03MJPvhzZUJd73SKl4mG7Nw2nZ1xPqsBZocWsSSvVHvnCMB17ewq5WPwBZbusarbDwAkaN/G4qSxNC9AMSSgnRz3x5Yy3/aelMbo8+YOnlAaFpAwAtTGB9cH5yd2nmHrrP+hl/+8nP0OPWKCW33ZEMpOry4ZWpKhf5xtNCDLfTyejKSlRVRdU0VFXFnp5OmsvF6//cDMC8yz7D3JN6Xy0vGm1LBFIqBfnzsHnP5OQfL6EzGEsek+4awH9GFfaPhjIPaH6emL5nylApIYQY1OKJryYKdt3YP1JKUdGUOPQ1OiYepsmRSwgNFRib5ubGsrxjXbI4Bl7b2MTf3q+jLG0vV49eyvgcq7+nzXaYlReFEAIJpYTod97vsu5CZdhUTkr3MmGg9ZLyNwMQKJ4LTdau87IeoPSWR6iua0oGUuVllRTttpq8/3GuysYJpcxsHYfZGQGvStTQ+O0mnVZdI6bH0U0FnU7CioOY2wqihuR6+ywlFrNWj3E48pgw4Ve8tK6ezuDq5OPjSzOoyBlgv/8DKIpywEp7BsnZe5JFCSHEoNe4o5OoLRPMKHvbVxLNyCKeHOmkoSkmZA/p/QTxMJHEqnt5DhuvTx91zGsWx0ZHwFqJ+IaJL1OZtj653+Us6u0pQgiRJKGUEP2Ibpo0R61QZvGMMRQ57Smu6CgKtMKr/4u+9p/URmayalslAEOc71PuWMGa999n6UsLABiWkcuoBW8kn9qSCePaJ6LF0mhN5EwftLvZYM+xNg4xGyBfizCu5NDNyXU9yK5dv6K+4TnACqVgf6+EuWMK+M3npqEO8Ias+6YltmR4cO3cTndHgPImN2awFj3aSt36IP42L1mFRZSMHJPiaoUQQhxPbX9aidPmIBZoo7lzO3jTEo8oKIoLbcb1kH7wFPqkeCQZSjkG+PvpQOcLW9dHuW7rxmlR0WfIyJhIUdHFKaxKCNFfSCglRD8Q0g0+vWo76/1WU1C3qpBnH2D/813zFKx7lg/8V7My8Nnk7jxbDe93DmPZP/6R3Je2twGAzWVQV6BQW5HJ8PoMYopB1pCJvFyrs81ujWA6s9TGRaMz8KalY7epZHkcuB12qoaU4rAdundFc/Or1Nb9OrmdnjGDPyzZxcJN1tCtLI9jwAdSAIqqAXHWlxew/sVnATibAuBNYsDy5/cfe+MjvyWrqDgVZQohhEgBZziO7jKpjWYwBtBMF4pnOopWgKK6cGX3sipty1bY9iq0biesWkGWSxqc90v/WVvPz1/bSqvfGillVwMAlJVeS2bm5BRWJoToTwbYp1ohBqaN/lAykAK4sjgX20ALRfauAqDOPBWwGpsPzd3JxPNn868XVaCO7OxcSgIRineuxVDgx5drXN18BXPrdWJYzVafX9NMnascABsG373qNIbk9T1N78PC4b0AZGZOoaT4cpY3TuR7L21KPl6UMcD6ePVi2gUXs+Efz6JEIjgrKgm4TGq768gPlaPqdvLKMuio30k8GiHQ2SGhlBBCDCIKKq0xldmbltOSa8OGF8U1nRz3RsZeMIIxp/TynvD8TdCwFoBo9jQAnAPtmmaQeOaDOmraAnx54h8Zkb0Th2ItDCO9pIQQH4eEUkL0Aw0Ra1j0Seke/jZpKFkDaZRUoBUa1lK7NcCOrtvoiBYAcFHOd2grOYWnn9lIZ5M1Mmrie6vxRq3fxYZyBcXmJhxWiCZ+HQ6bjVa7tRLhecp2vnjZWR87kAKIRK0RUdlZJ1NS8lkat1UDMKownfMnFHPtyRWf6CX3F6de8TmKn/kXkW3VlH/jPpaXh3n8rdv53KabcXflcsZ1k1j023voaKiXpudCCDHIaIpKRkcrRcF2WnILAGsFvfzcrUw6u7z3JyZ6RzLyPCIFZwLgUGSkVH/kC8XJcvqYXrQmuc9uz8HlkptUQoiPbgB9shVi4KkOhvnO9r280W7deRrqcQ6sQArgd2djtNexsPlJImY6ACoxMrRmXt3cSWez9dozM7LwRK1w6MmzVZaPVji1ezIxm45hwo6C2SzdHcTUFBRMHrr/K7gd2scqpaHhn2zf8RNisTYAPJ4qYH8vqVOH5/G1uSOOysvuNxI3r1t++X+kTasi02t+KIBKHGBKKCWEEINBLBbjhaeeos3ZQVwPJ1fcC7g10gC7+zCjnmIh9jgLeH7yd1hveKGlU0ZK9TOmaaIbJr5wDLctCIDNls6UKc/gdpWiae4UVyiE6E8G2KdbIQaWvzd2JAMpgNOy0/o4uh+KBqCjBp9elAykZqb9laJyJ46R19P+tx0ATPFFyd24BgVYPlJhx/gqrqmfi65HaXQEaTHTeG93iH0ByTm5oY8dSAE0NL6QDKQ0zcPSPUP4+Z/eoC0QASDTPYAay39EqtvqzRVeu46Mteu4eJqCXnrAAfuW/5ZMSgghBoUd773Hxpoa0CBu60iGUoZqve/maod5/41H+NHw23i+KQZ0ApBl//jv2SI1TNPkit8s4/1d7djUGKOyOwGw27JJTxud2uKEEP2ShFJCnMCaE1PVLivM5sriHGZlDbBQKtBCV7yIjeH5AGTZm5ji/SevRW7h9dd9xCJhFBQKanajJkKPdVUK2dFs9mqdoEGL4WWvbjVTzY52cFXHK1z1uW8cUTnxWBcAY8b8hIL8T3H179ezt3N/L6+JZb00bR3ACu/6f3S++CKdf3sGAG8EWnWroWlzoGnfOClM00hRhUIIIY6nUJM1xT3T8KDqnmQola5aNzHSbX18vDBNiIdps2cBMDs7jZFeF9cU5x7TmsXR0xGM8f6udqoyarlr+v/h1KxrVZstPcWVCSH6KwmlhDgBRQyDjf4Qr7f5AJiVlcZp2QPozT4ehcU/xbf6DZ5q/RVmog9FprqbukAWG7dsSB6aGYqgmvCfGQr/PFUlhyJOba0kDlA8lgW79veMmjK8mLtu+QuK8vGmARhGhHC4nm6/1czc6xmOzZaGLzFt74FLJnDW6AIKB0mD8wO5J0/GPXkyjrIymn/6MxQTdFMH4NWa1yhLrJgks/eEEGJw0KPWjQmP6UTRFczEW65mqhiAZu+jP5QeBUwiqgOAz5XkcWFB1jGtVxxd+66NxubtSgZSoJCXf07qihJC9GsSSglxArphfQ2L2n3J7WEeZwqrOQaqF8HiB2kJn5wMpErsG5iW+yq7jGlABJfNzsSttWQGralzW8oULur4NNGwwwqkgBW7OgErlKoI1nHN1NM/diBlmjrL359PMLgruc/hyAegO2z9pNFF6YMykOoh0YR2Uv4k/A4vBCCiRw44QFIpIYQYDKIB671RQyGuRzES/aBM3bphodl6meoej0DjegDCiVBKekn1L02+MDua/QBkuaxwsrTkKkaNuh9FkSmYQogjI6GUECcY0zRZ3mW94Zc47ZyU4WFaxsdfQe6E1rnb+uKaAsDItGWM1x7l2e0ziEetoKM4bpLnt6bOLRulsK5KoaLeuoj1OwpYoZdSk/gT9mnfYk4r0jhj6sfvZRAONyQDKbs9h+yceXz1uQb2duyk0RcGIN01+HpJHSQR9lWklbPWno6O9d/qvhDQlKFSQggx4Olxg+46J9gh3LSFSLiJHYU5AJhYN9C08Rce+sm/Pwca1gIkR0q5VFl1r7/447u7uP8/m5Lb6Q7res1mz5RASgjxiaTknWDx4sVceOGFlJSUoCgKL7zwQo/HTdPk3nvvpbi4GLfbzdy5c9m+fXuPY9rb27nmmmvIyMggKyuLG2+8Eb/f3+OYdevWcfrpp+NyuSgvL+fBBx881i9NiE+sNRbHrxsowHszx/D78VXYBsqdRD0Ga5/Bv/Axlvi+wPLGuQBksotd/hziiR5adlUjd6cVXN11g8a/PzWUqd0z8JhWCLXBKKYmYH3vNCJ8/+c/4PJ7f4TWVx+LXoTC1s/xeKqYffoH7DVvY+GmJjY1+NANE69DoyhzkI+SAg5oHvWh/dLoXAghBovGnR2oiT/4EX/jAY+o6Jq1Yq1WNv7gJ5omNKyzvnfnEPXkAeAYKNc3g8DK2g4A/mfSH/ntOV9jesFCAGzaAOt3KoQ47lISSgUCASZNmsSjjz56yMcffPBB/u///o8nnniC5cuX4/V6mTdvHuFwOHnMNddcw8aNG1m4cCEvvfQSixcv5uabb04+7vP5OPfcc6msrGTlypX89Kc/5b777uM3v/nNMX99QhyJmGFy9dpqznx/KwClLjsubYDdQVz3LPzrS7zb+hnWBj+NmUg6SuybaY9aywePbu7knNXbKOgOEnRCS46DiU1TKfZVEDDjxEyV3V3W1IEzWhfzFWXZEa2KZ5o6zc2v0tjwPAAuVxkAnUFrOPpJFVk89cWZvPH/5pDmlEGlyWmRprk/hzLN/VmVpFJCCDHg1ax8Dx0TvT6IFrWuyx3pV+LMvJms7EqGTMglu8hz8BP1GMm7F19dTdhthVJOGSnVb/jCcTRFZ2rhalTF+v+lotjJzJyS4sqEEP1dSj5pnXfeeZx33nmHfMw0TR5++GG+/e1vc9FFFwHw5z//mcLCQl544QWuvPJKNm/ezCuvvMIHH3zAtGnTAPjlL3/J+eefz89+9jNKSkp46qmniEaj/OEPf8DhcDBu3DjWrFnDQw891CO8EuJEscEf4o327uT2qVkDqLH5PntWANBmWtPsKhwrsUUX8dyuDAzTujD1Bqwpe/+apbBmqMrQ6BAUFGwOF2+ok9nZqZNoQ8VlM6qYOueMIyqltXUR6zf8T3Lb7a5gZ4uf7YleCVW5Xk4dnndE5x6QDgil9jEx9+83ZPU9IYQY6PxNjRi4qNxdh39fZwHFg6Y0cd3lcZj5qUM/MW4FWL8v+QxLtrXS+v/Zu+/wqKr0gePfOz2Z9EYqoSSE3jsoIh0EXAsiithlBeyKuiqCWBf0p+KK7iK4LtgVEQtVkCbSQeklBJJA+iSZTJ/z++MmAxEIARJSOJ/nmQfm3jv3npkkM++855z3uNTOJZMcKVXr5Vmd7Eq3kFFgw6y3lm5V6N1rHVqtGZ1OjpSSJOnS1LruiSNHjnDixAn69+/v2xYcHEy3bt3YsGEDABs2bCAkJMSXkALo378/Go2GjRs3+o65+uqrMRgMvmMGDRrEvn37yM/PP+u1HQ4HhYWF5W6SdLlkl05dSzGb+LVrc95qnlDDLapiXi/u9D846Uwm36EWEu8VNI80u9GXkNJ7BSFWOzsbKXx6jZYE0zV0zeoCQKEuTE1IleoYYGP4/eOJbdbioppjtR4GwM/UkNiYUfya3p9rZ65mzlq1vlTQRYy+qt9OjYnyEfiSUnKclCRJUv12fO1a9hzYzSHtSTSiGG/p+7+iaLGbXaCrYFEWtwO7YuD5pEn8lFeMwyvQKhBhkCORa7ubZ69n3Ee/0zboUyZ1UGec6HRBGI0NZEJKkqQqUes+CU6cUOenN2jQoNz2Bg0a+PadOHGCqKiocvt1Oh1hYWHljmncuPEZ5yjbFxoaesa1X331VaZOnVo1T0SSKsnh9bI0p5BZaScBiDcaaGauZzWMfnkFseoNvs19nSx3MgAKHozkU2xTE01X703Dz+lGKwS7GmloXpREoDUCCw5yvGb+tKhdsrH2DK7P/J5+d9xzSU1yOLMAiIoaQlLSU8z8fTNQRLCfnqhAI8PbxV7S+eud0ikWakHzskSUKDetT5IkSaq/Nvz+OwWRwUAxwaIEoSmbpqclzOsAXci5H+y2Y9Ma8ZYWxH69WTwtzCYiDbIDqDZze7wcyrYSZChkWJNlvu1m/yY12CpJkuqbWpeUqknPPPMMjz32mO9+YWEhCQn1bLSKVOvMS89hysEM3/3WgX412Jpq4PXA2v+jyBPhS0gFaTMxOhYy71AbAHQaLWaHCwX45w0aNicrtLKooxxFYhcW7zt1upRIfwYNG0/Lq669qOYUFGwmLe0/ZOeowZXJLx4hBPmltaReu6ENQ9rEXOSTrcfKBkp5T5++d6rWlKwpJUmSVL/ZnOrnZGNPFEbPaVO2FS3hwgFawzkeCbgdvhX3tAqMi5PT4+uCQrs6zdKsLwFAqzXTssUbhIR0ruhhkiRJF6TWJaWio6MBOHnyJDExp74Ynjx5kvbt2/uOycrKKvc4t9tNXl6e7/HR0dGcPHmy3DFl98uO+Suj0YjRWMHQY0mqBvusap2F5mYTnYL8uTe+ngVqxSfB48AuggAIMNm43vwIHx7sBqg9pAFuNefxv74aNqVoiLBFEF/cEIBdqXlAGBrhoUXRXp4Ycx2t2ra86OYcSZ1FXt4a3/0Vhxrw0ns/4S5NtoT4VxBUX8nOUuic00ZNyZyUJElS/eZ0qwmKRE8kuV73aXu06HCC35mzECjJg09vhfxUX1JKFjev/YQQ3PHR76w/lAtAuH/p6sj6UKKizlE3TJIk6SLVuqRU48aNiY6OZsWKFb4kVGFhIRs3buTvf/87AD169KCgoIAtW7bQqVMnAFauXInX66Vbt26+Y/7xj3/gcrnQ69UvvsuWLSMlJeWsU/ckqSa4vYLDJQ4A7o+PZExseA23qAq57LDqFcTOrzlgu4rt9hsBMGqKsLhOTU/scjiDEKv6GpwIhRHpg9A7AygxNWC7MZ7tuWrw2j/7Fzrqc0hOnnhJzbLbMwFolPgg4eF9eG+BA7dXTQzGBJtoGRt0Seevr842Te+0klKl0/okSZKk+iIrI51133+D86SXw8XpiKIDmISBP71ZRBgigLLElBZNbCtofPWZJzm6Do79BoDdPxGQxc3rgjyrkzUHcggz5XFny09JCFbr7Op09XARHkmSalyNJKWKi4s5ePCg7/6RI0fYvn07YWFhNGzYkEceeYTp06eTnJxM48aNef7554mNjeX6668HoEWLFgwePJj77ruP2bNn43K5mDhxIqNHjyY2Vq0DM2bMGKZOnco999zD5MmT+eOPP3j77bd56623auIpS9IZXjiQzofHs333k/zr2Si9Qytg3dukOTqwzHJqWqzZfZQCrzpFMcLpIbJIXW1vc5LCjsYK4Vlu9MBqR0NOqrvQCA8PP/soKQ2j0RkubiSTEAKPp4SSEvW9Jzp6JGZzEkX21QD8547O9G0ehVYGy2ennFbo/PREVNn0PZmUkiRJqjfcbjcfvv8+HiHw5hwn5XAqmaGBgAs7Vo4Hlx2pQVEUdLHNQaM9y4nUTidiO+Do9yakyZFSdUFR6bS9HrG7aBVxqoaCv6wlJUlSNaiRpNTmzZvp27ev735ZHadx48Yxb948nnrqKaxWK/fffz8FBQX07t2bn3/+GZPp1OiK+fPnM3HiRPr164dGo+HGG2/knXfe8e0PDg5m6dKlTJgwgU6dOhEREcELL7zA/ffff/meqCRV4PvsAt//U8wm2gX5n/vguqhIXXTgpLMZADocRIkvOJiVzX6hbjMVqTUK7p+kpSBAweAxYHIFYRM6TqqDl7gqdy3tAp20Shpx0U0RwsuWLaOwFG4DQFF0GIzx5BQ7KLCpQ9Kjg00yIVWhsyWfBAqy0LkkSVJ9U3jCglurw5h5FENBbmlCqpRiRkGtKWX0b0Rkgpnm3c9eGgO3+mF+LLApf/glAscwys/aWq8sKRViUpOKEeHXEp8wjpDgTjXZLEmS6qkaSUpdc801FfaqK4rCtGnTmDZt2jmPCQsLY8GCBRVep23btqxZs6bCYySpJgghyHGqH/hruzWniZ8RjVKPgrTibMjYit0bSJZ/H7BCB/O3ZBQdxCvU7lWNgAaFxXg0YPGHFvktaFwczy5zd7blqu8PYW4LgyLsdBwy/JKa43Tm+hJSAFFRwxn6zkYOZBX7tgWaat1s5tql7EuE91QiSsBpJaVkUkqSJKk+8LjdHJ31O5hAU1pHStE2QKNtgM6vK0mdkxh8f+vKncztYFNQK4ZHT4J9xwAwyZFStdbBrCLG/HsjOcV2Qo0FRPgXAGAOSCE8rHfNNk6SpHpLfguTpMtsW2EJGwuKcZUmZuONhvqVkFr/Lix9jn22Piy3/Ne3OUCbi92rTlFsl3aSmPxiNMCORgpCo9CwuCGBpkZsyzmV3OgTo3D745c+5dblygPUAp29e20gs9DNgayVAOg0Ch0ahhAfWs9GqlW1s9SUUouea87cLkmSJNVZu1f9gk5R1Ld1twcAnbE9WmMrunc4ScrNSZU/mdvBPv/GAPhpFCINeu6oT/Uz65m1B3LIKnJwS8q3DExc5duul7WkJEmqRjIpJUmX0TG7k2Fb9lO2kHJTPyMmbT3rMTys1mhKc6pDvBU8GN3r2JBhocitJqVMTjca4K3r9Wxv7EUjNPi7/ckoVIPfSEc2N2R+x/BBD15yc6zWg5w4+T0Aen0YGo2eghJ12mBkoJFN/+h/yde4Epy10Hm5SueXv02SJElS1fLabJxcupwI7dWIAxaiLCfJC/ADRf3K0LF9MUqo6TxnOY3bjr101b2BEcF80KpRNbRaqioWmzoyrmusOqpNUQwYDGGEhZ2liL0kSVIVkUkpSbqM/iyy4QVCdVq6hwRwZ1xETTep6hWfBKAorDekw4Dgt1id6fWtuKcIMDtcbG2isKGFABQSLWEUNOzPpn2ZoED7+CDGPjCduGYtLqkpeXnr2Lb9Dt99vbExz3yzk4Ol0/ZC/PSXdP4ryulJqdOm7Cly+p4kSVK9UbR8OSXbd+Lu1JsG+cfxastGcmsBF4r+AhZlcRSBowi7Vn2MrCVVex3KLuabrcdZeyAHAJNO7bzr2OETQkI612TTJEm6AsiklCRdJvkuNztKC3v3CQtkdn3rLdy9CH57n4Lj2aQ7B5DvUoNPfyULi0MtgNrpcCbBNgcmt4fsEIUgZyA9T/Yi05nMoowiUAIA6NuuMfHNW11yk4qK9wCg0wVjNjflUMn1fPr7Md/+xHDzJV/jylFWR0qgnG27VyalJEmS6rq0zBPsbdOag/rdmJVCvGU9D4oOReMEbSWTUgsnwPb/AeBIHAfIWlK12as/7mX5npPEB6TTIyYdg2IBQKcLquGWSZJ0JZBJKUm6DL7PKuD+P1N9Y0ka+11AT2NdIAR8/xCekiIW5s3G6lXrRbgdf7D6hJpo0ioKUUUleIwmfmsTwbc9cvB3mzG7zWQUecEIUY6TXO0+wI09X6iSZrmcai2pmJgbaJb8HBtWHAD207VxGLd0TuCalMgquc4Vodz0vVNT9nzT+uRIKUmSpDrvz4ICSgLNgI0QjxuXXguAghYTTtBVMn45tNL3X7tOrdkok1K1V3aRHZPWzvPd30Kncfq26/UhNdcoSZKuGDIpJUmXwdr8IgSgAcINOgZHBtd0k6qWLR9s+Vg88b6EVKJ+Nfvyt5CJmpTyL7GjAB/0d7K6bS6gkJTlx5Hwbhy2q1W2nht9FUM7jkWnv7RpdW53MRkZn3M07QMADHp1mmSRQ62V0C4+mBs7xV/SNa44p6++V/ZfvKfyU7LQuSRJUp3n9qifk4n5UBhgwFOWSFJ0aHGBXyWLlLvtAGTcs4bsoiA4WSCn79ViRXY3wUYLOo0TRdETGtqd4OCOGI1RNd00SZKuADIpJUmXwUmnC4BXmsXXvzpSTisc+x0Am05N9IQYs+ls+g/76ABAi/QcIkunLhaYIcAVQJAziOPWYWTnqgkprfDQu3XiJSekANKOzeXIkf/z3f8jO463ftvGjmMFAASaZC2pC3W2QufqSCm5+p4kSVJ94PV6KSgxgdaBo+Aobp22dI8GRROEzqyDRldV7mRuO683upu3DnqBAgCMcqRUrfPVluNsTs0j02Inxl+N04zGBnRoP69mGyZJ0hVFJqUk6TLIdKhJqRhjPUuGZO+DD/rgcTlZXfgge23XAmBwH+dQsdqbGuKFxjkWBAobWwXyR6MSWhY0JsmSwif2WFCgg2U73SMhzDyiapqVvRRQV9trlDiR/h9qcbozfPvjQvyq5DpXlLOtvleu0LkkSZJUl1l2ZWNETUR5vWqHkc7UG62hOYrGTELHONBoKzqFSghw29kWqC5WYlAUwvQ6rg0LrLa2SxeuyO7iqa92oFWcPN3lbeICMgHQ6+vZaH5Jkmo9mZSSpGq0Kq+Qr07kc6DEAUB0fUtKpW0At40TrrbssQ0AwONKIy3/F9JoCEBQQREA80e3Z1nCQTxaBYczgrWuxghFgw4vzwxtSbMu3aukSV6vk+LSAuddu36PwxOO060mqV64riWRgUYGtYqukmtdUU6vHVUuE3WWEVSSJElSnSKEYOP8T/CYdGQW+WF2FKFRQNFFo9Wncs+LN2CIali5k3ndILzYNQYAZrVMZERUSPU1XrooBSUuvAKSQzJoFHxqEZjgYLnaniRJl5dMSklSNXr+QLovIaVXFBqaDDXcoipWqPaqFcZfD2pNcVL0n/AH6kikQLegyck8PAr80HAnntKlpXfZ2+IsrT3VIlxP1+HDq6Q5+/ZPIy9vLSBQFAOZhQGsO6SOkPI3aLm7d+Mquc6VqXSVvb8mn5RzbJckSZLqjMItWyjJzcUTF0m7ndtQzMWUGA0oihZFa8fgfwEjjEvrSTk1akecrCVVOxXa1VH8kQHqv2ZzMu3bfYTRGFOTzZIk6Qokk1KSVI2ynGrB0IcTG3B1aACh+nryJ1d0EpZPgR2fAlAo1ACmpd9SPC4H4EfSyTyancgHYEdjLR6tQuPCxgQ5E1hrV4/vWLCNJ66/rkqa5HTmcPz4x777AQGtGT5rHcWlxc1D/etZQvByO210VNnXC68QZ681JUmSJNUpJz+YjVaJwYOXCHGUfCWodI8Wj58TdJX8DF0/C3YvBMCpqI8xKDIpVZvsPVHI+6sOccJiR8FLqF9p56k+DJMptoZbJ0nSlaiefEOWpNrHIwQWtweA++IjiTDUoz+3NTNhx6f8UTKQrdYbsJ0MwevJJ7f4CEcLQwDwK03Ibb3mat7uuA6AJrkdOO5QA55kTT6PXZNIj65tq6RJDkcWAHp9KG3bzCbf1Yhix0a0GoVujcMY1TmhSq5zpVJ8q+95T9sqOOcIKkmSJKnO+N3fTGqQFjfFxHqdeJVTq+4leGygNVbuRCumgscJgEPvD4BBjpSqVf796xG+257BsMZL+HDAj2gU9fNbp5M1vyRJqhn16FuyJNUuZQkpgBBdJQqD1iW5BwD4w3UjRR51uWBX8Wcc9VoBUIQgosjGulZ63u6xHlAwuIx8Z++CKE1itExKoPfoPlXSHI/HTlHRnwAYjdGEhHTm2HELAFGBRhbcVzX1qq5o5UZElSaiOG1VPkmSJKnOOhQcjNCAWyjoPV68vkSSlhDhAG0lRkp53L6EFNe/j8OaAE4vJrnqXq2Sa1VHRvVrtNeXkAKFsNCeNdcoSZKuaDIpJUnVpMClJqUCtRp09aWXUAhwlUDuIQDs2kgArg2cyY/56nOMzy2kQaEVP5eb3fEaFKElyBmEktuO3NJkRqgzn9u7NKuSJhUW7mLL1tF4vWoNC6OpMbNWHuDPjEIAgkz1rLh8TTktKVW+5rkcKSVJklSXeb1ehEYDHjcN07I5Fh6JW6smkhRFh1bxQmUSS6W1pABoeT3OTUcArxwpVUsIITiWZyO7SE1KBRlt4IX27T4iOLijHCklSVKNkUkpSaomBS51+lpIfakjBfDJ3+DwL+S740hzDMNW7EYIBeE5DiSg1WhoczwbBdjfLJE1rY4T4Aqgf0Z/VhTGgwH+JnYxuJkfnVsnVUmT8gt+8yWkdLpADhf3ZsbS/b79DYJNVXIdqWx01OnJJ/GXEVSSJElSXZO2QR1prLMWUmRPB33pqCjFCIoJXVQlFwlxOyjW+nFH61c5vuUIWU61gLZBjpSqFab/sIc5a48Q4ZfDNfF7UEQBACZTnExISZJUo+rRt2VJqh1sHi8jth5gt9UGQGh9mbrntMLhXwD4If9ZLJ5YhHDjLJzLTwVqvSY/jzo5b0+PTrzWex92nYK/xcwGU1eO2dWkxU333UuvpIgqa1ZZLamGDe8jOelp3llxANhP67ggBraMZng7WbSzSpxW6LyMkCOlJEmS6jR7cTFHPlsL4ZDhDqQpoCMIJWAgGm04Go2eqMFjKncyt52NwW1ZH9IBSld2M2s1xBrliOXaYFuauvjMhHbzaBiU5vs81+tDaq5RkiRJyKSUJFW5PcU2dhXbfPevCqsnvU/WbADsmnAsHjXR00i3hH3eIgB0bg+NM3MB+G+z7dh0arIix5WEtUCNfIzCRfuEkCppjs2WzsmsxRw79hEAptIljC02NRDu1TSCh/olV8m1JOC0Quen8lOnElEyKSVJklT3WAvyUTRa3EKh4dFUMIEWPxR9QxrF/ca1jz6BX0AlV95z27Fr1GNbmk38MyWBRD8jgfWlc66OK7SrI/gbhljAC2FhVxEedjUGQ9V1FEqSJF0MmZSSpCpm9airkyX5G1nUMZmwuj59z+uBHZ/C7kUA5JECQIAmixTjt+yjJaFehR5/pgKwP8HE4RgXGqGhWUEKm/P6AtA/eyVdk6IwG6+vkmYdODid7OylvvtbMqIY+9kvZJXVSvCTPbNVSTmj0LlQk1KnF5iSJEmS6gwhBBmvvQK6zuD20jb3EHviIij7euAf5q18QirnABzbiEOjrtIXbtDRKdhcTS2XLsSBk0XsziwsrSUloHRRmhbNX8FkkqPJJUmqeXX827Ik1T7FHrXAebBOW/cTUgAHV8B3E7C4G7C68AWOOTsgvDbc9uVstKrT9kxFxQC4Bv6Dt1r9B6Hk0in7GgI8HRAeNSidPOFWElu2qrJm2e0ZAERE9CM0tAcPfx9Iaq7Ft79VbFCVXUuifO0o5fTNZ07rkyRJkmo/d34+a1we8sLT8TrdeEvfz20mHf6AIcBYuRNl7oQPrgLAHj0UAKOsI1Ur2F0ern9vHXaXk7aRfxAUXgyoI6ZkHSlJkmqLevCNWZJql7KRUmZtPQnI8g4DcEAZwTFnBwA8ju0U2E8AakATWGLHpdfzbMuPyTWpU/h+tTbDY1NX5/PXeEnu2LlKm+VyFQDQKPHvBAd3oNC2CoDXbmjDVc0iiQvxq9LrXfGUsxQ6F+ArgC6n70mSJNUpJYWFZMXEAl4s+ly8pdO0PRp1pHGIsZILheSpK/Ki98cR3BAAo1xxr1bIKXZgdXroEbOVe9t84tuuKHq0WjmSTZKk2kEmpSSpihWXJqUCtPWkhkLxCQDsgS0hG5L915PnWEU6JgJsThrnFBBTUMzvKRqO+qnH6t3+eOyxmDx2GjhOMqxNTJU158SJRaSnL8BuP65eSx+CEMJXK6FNfLBMSFWLUyOiTk3YE6dGSsmhUpIkSXWKu6QEAMXjpXm+njyzmoTyV9Qpe6FG/0qeSJ02T8MeOHo9DocyMMmRUrVCoU2NjRJD1CLnJlM8AQEpRIT3RVHkz0iSpNpBJqUkqYoctzt5M/UEmyzqXP3our7azIldsH4WInU9Vk8YWScVhNeKy7aL9BI1cG2Vnk2YU0N612F80OMnADqfuIqMoubkCQPJuiwmNnXT++ZrqqRJQggOHHwZpzMHAD+/RO74+Dibj+72HRNkquOve23lyz2dVlNKnEpKCa9MSkmSJNUVXq+Hw3/uAUBfVIAz+wi5gWoSSicMCEBrqOTnqduOQ9EzP6gHy3MLATDJkVI1yub08NG6I+zJVH8ewUY7AA0aXEdS0ydrsmmSJElnkEkpSaoi8zNyWZCZ57vfIaiSPYy11eo3YM8idlhHsK7oLgBcJQvZ61KTbgoQZHfiCUlgbQuwmRS0Hi2r84fiLc1gdGqXwqDRPausSS5Xni8h1br1LGy0ZvN3O337mzUIIDq4ktMNpAuilPV6e73lakpxlpX4JEmSpNpt79rV/Pr9F9CkBVq3umqtRglE0TfBq++CAujMlaw55HawNLwnzwYNgAK1xmSwTn7FqEmLd2bwzyX7SAxM47luXxAboMZOOp2stylJUu0jPzEkqYoUuNUC5wPDg7gtNpx+YXX8g9+iTo/bp9zg26R41el5YcU2YvOL0Hu8rIpL55vodHW/x+RLSIU7cxndrUOVNsnpUpN+Ol0IDaKG+HoAw80GVj5xDYFGHRrZO1s9Tit0Xj4ndfqqfJIkSVJdUJSezdUxo1kkdpLlMRMLKPpG6M39ADD7OQnq1L9yJ3PbyTGEAtDIz8CwyBDujY+oppZLlVG2EvHQ5F00Dk7zbQ8wN6upJkmSJJ2TTEpJUhWxlq661yXYzKCI4BpuzSXweqAwAzK2AmC1qbUlbgx7lPkF6mp7HY6exGQMJ7NpNN/0OIzWqyPAFYA3uz35wO1xVsZ1TSK5cdUsNWy3Z7J79xPYSutIGUqD36LSOlJBfnqC/eS0vWpVrtD5acXNy7bLnJQkSVKd4Tl4Ar2mKce9IZR4vcQCKFr8rUcZ9XQKppRr0OoqWXPI7cCuUWOFTkFmnm9aNZ/90sUrtKmj3xqGqLFpbOxoEuLHERAgk1KSJNU+MiklSVWkpD6suicE/KcfZGzjqKMjB2y9KXGacNtWsLg4CgToFAWD24O+WS8+65nFibAjRFobEJkxkr32UNBB5969SO4QV2XNysr6kfyC33z3izxN6fLycopLk1KBJvlWVv1OFTovv1kWOpckSapLXJmZlGzdib55Y1oc3k1U7n5yg82AFq3XjjnYCJVJSGXtgfWzIH0Ldj91hV1ZS6pmfbXlOP+3fD95VicAJq1azD4woIVMSEmSVGvJb3KSVEWsvqRUHV51z1kMGdsAWGGZhM0bgvDm43HswIIRgOBCKwrwSaMNrI9UaxQUWOM47E70vaM0CKrauk422zEAoqOvJz7+Dp741kZ2Ua5vf6fE0Cq9nnQWp0/fK/2vV3hPrb4nh0pJkiTVCSePHuVgfDhaXSpdDm4l12wkF0DRIbRO0Bkqd6J178COBQDYG/UCkKvu1bDPfk/jeH4JD7SdR5PgowQpao0vna6S9cEkSZJqgExKSVIVKSytKRVQ2eHutVGJWrPJroRh84YA0ML4BTtKd3c/mE5wiQObv5HlSdmAAgIsxV0ASFFy6doslq6Nw6qkOUJ4sZYcoti6D4CQ4M4EB7WjwLYegBeHt2RAq2hiZXHz6ldu9b2yTcqp1fdkUkqSJKlO2Lh7NyfC/YE8WnjceDXqZ6iCluBQK2iNlTuRQ63rSMvrsccNBieY6vJo8XrAYnMR4ZdH1+htp21VMAek1FibJEmSzkcmpSTpEk0/lMGHx7Jxln4pTzRVsoexNvG4YdsncGAZABZXFEIITOIQVvtRIILYEidhVjt+Vz3J061+wmLeS0RRI4y5fdjraIhR8fLzK2NPjZypAvv3T+N4+ie++yesYSxZe4S0PHU4elJUIHEhflV2Pencyq2+x+n1pVQyKSVJklT7CSGwFqujZxq6w/EoGlxlI7wVLf6KrfIjpdwO9vkn8mj0AxzyBgIeOX2vhpwstHPgZDG5VicBOjVG0uvDaN9uDgZDBCaTrPMlSVLtJZNSknSJvjmZ70tINfUzkmyug6N2DiyFxY/g9Jr4qeBFjjvb4XUdxGJdhAV1BR1zYTFC0ZAbZuakSZ22l25rjtPWAoAmZk+VJqQALBa12LpeH05AQHPu/9xFjnW3b39EYB1MANZVp9WOOr2MlJy+J0mSVHcs/eAdjqcdg4AAHGmb2dwk5rS9WnSKE7SVTUrZ+THiarZ6/AF1tHiyfx2Mgeo4u8vDwLd+xWJzEWvOJDn0MAAGQzhBQW1ruHWSJEnnJ5NSknSJympJfd8xmQ6B/ujqYi9h7kEAUo0jOe5sB4DXnQmA3uMl0OagYW4hJ6IDebjldN/DPPYYTB4bcfYM7uqSXOXNcjhPAtCh/Ty8umRyPl8KwPXtY2kWHUhKA1kj4fI5c5qe4LTV92qkTZIkSdKFKDqQRYR/AhkilxJHWW1GLSh+aPQJBGr3VX76ntuBXacee11kMI83iqZ5XeyYq+OyixxYbC46RO1kYvv/+LbrdEE12CpJkqTKk0kpSboEQgisHrV3MN6kr5sJKUcRZG4HIM+/OwBRugPo/Ddw2KGj6Yk8muRZ8ca2Y3bfPQBovFp0xUkUWZvROdLL811b0rzn1VXWpLy89aRnfIbTqY7IMpniOFGkLm9s0mv4v9EdquxaUiUpZ66+J4TwlZr6feGXHNr8GyMe/wf+QcGXvXmSJEnS+RmdfnjMXva4Iulati1kAl5jGsP9PyQh8BAYZ1XuZB4HdoM6qqqRn5EWAXI6fU0oKl2JODksC1CLmhuN0cTHj63JZkmSJFWaTEpJ0iVweAXu0i/pdXLVvX0/w2e34vZqSXN05UR+McJTiF6sIteuphv8XG40gbH81rM7e+J3gtBg2f8iCD0ArVok0fqallXWJK/Xxa4/JuF2F6jX92vM/f/bx6bUfACC/fRVdi3pApxW6PzUNE2F0Nh4AOzFRaTv3c3xPX/QrFuvGmmiJEmSdG7OtDSE3YkHP5QC22l7tAhDLo1uuRti24Ou8iOlHBo1KWWsi51ydZwQgm3HCvj9iLpITZDRDkBs7C0kJz1Tk02TJEm6IDIpJUmXoLh06h6Af11cBnnLPBBethbfzCbraABcJV9xyF0EqEk2s8PF0RgnC+K+A0BnDwehx99TQrTBzV29GlVpk5zObF9CKqnpU7j0PfnluzTf/s6NqmZlP+nC+FbZs9uhxA5oCc910qZ7Uxo99zLL/vcRWamHEF45kU+SJKk2siz6Hq9QcOPh7i2L2NUoBEWoq6gqOi90uO38J3HZ4JO/Qe4hKMnBEToCAFNdjIHquGW7T3L/J1swah20Cj9MjPkEADqtLG0gSVLdIpNSknSRNhYUszZfXcEmTK+tm1P3cvYBcCLyVrAKwrUHyRRqLakoi5WQEjsBDhfzWmdxwqQGnBprAgBPD2rG7X1bo6niEWIulzoiymCIJDHxAf7MsABphJsNLJzQi/hQOT2gRpR+4XBlZKD8uR/CWjBkZSFpn44l4cMPMPr7AyCEt6KzSJIkSTVko6WA7fEKAisBziIgxDc1W6Ot5Ht35g5I2+C7a9ep7/1ypNTldzjHCsAD7T6lXcRW33adXk6hlySpbpFJKUm6CMfsTkZuO+i739SvjhX2TN8KOz6F/FQA8jKLATNdzR/xbU4ECtDh6AlMTfoxZxCsjV8NAkwZfyO7qD0ACQkxVZqQ8nhK2Lnz7xQVq6vr6fUhFDvcpOerUwxC/PUkhPlX2fWkC2Nq0QJT27a4jh8HvTqFsshfQ8NGjVAMxtNqTsmRUpIkSbWNEILjLrU2Y5HWglI6J9ul1WAEzEolk1JudYrYiahO/NLvbQ5ZtGB1YpQjpS67Qpv680wKzQbA378JfqZ4IiMH1GSzJEmSLphMSknSRThudwIQoNXQPzyIO+MiarhFF+jnp+HYRg7YevGnfQjFdj/ctpV8m68+D7NboBXgCA7jkHkvANrCNmQXdgPApLhpFx9SpU3KylpCXv5a3/2Ttqbc+uISX44j0FR/akl5PB5cpV8O6gyNhpj/fgzAzo+2YDrq4vvhobwffpLonNlc55+Ef1gEHkXBbrfXcGMl6dLo9Xq0dbFOoCSdw4/vziDHZkPRaohPPcr6Zmo9QJ1WrQmVpFRypJNLfX9/KPEBfs3wAOpiL2atTEpdLtuPFbDxcC4bS2tJGTTqiKnWrf6PwMBWNdm0Klcn4yVJuoJUVbwkk1KSdBGK3GoQluxvYnarRjXbmIuRdxiP0LKy+BHcHh1edyoex3bf7sg8CwBTW3zDnlA1UHW41BoFk9qaGHFVG8LMhiptkt2RAUBgYBtatZzBxC9yEEJdrlqvVRjaJrpKr1cThBCcOHGCgoKCmm7KJWncyYynrSBZfwMujZqgDQo3Ed+1Nx6/QI4cOVLDLZSkSxcSEkJ0dPRphf0lqe7S7RcEhUVSWHQU4Tn1Jd8ckIBHgE5byd/z0pFSmbpQALoEmUk2GxkYIaeMXQ5CCO6c+zsFJU5ubvYd/TofRacUAKDT1Z+fQX2JlyTpSlAV8ZJMSknSRShLSgXq6mDPoMsG1mwsnnjcHvUtoKlhMXsBncdLu6MnaeDfmJXdtOxNUJNCGmcojqL2GBTBw7f0RVfFPaJOZy5FhbsACAvtidmcRKFdXdr4/ds6MqRNTJVer6aUBVhRUVH4+/vX2S+7hTk2XA4PphAdWe5M3F43EU4zboeTwPAITOaAmm6iJF00IQQlJSVkZanvQTEx9eP9R7qyhWgi8ZCNUlr3z0gkhNyCR6gdTNrKfiMoTUrZNero5alJsXQMNld5e6Wzszo9FJS4CDflM7jRSt92rTYAg6GOjdqvQH2JlySpPqvKeEkmpSTpIhSVrroXUJemd7jssO5tyD0AgNUbgRACs9hMrj0PCCA2v4ioohLc197F141nIhQFe/rNuAo7AdAi2F3lCamDh2Zw9Oj7p5pJGL/szeKERQ18g/3qx7Q9j8fjC7DCw8NrujmXxK73gseN2WhCp9Hh9XjRe3Uobg9GgwGTqY7VWJOkv/DzUxdUyMrKIioqSk7lk+o8jaLFjRdXoRsT4NYFoVcM6BQ7JqWYxEaeyp2oNCnlVNSvEAZZ4PyyEUKQXeQAINio1tvU6UJo3vwlAgNaoNXWj8/e+hQvSVJ9V1XxkkxKSdJFyHO5AQjV16EvKgeWwKpXcHpN/FgwlXRnWzzOP8grWQOoI1v8nS6EXxA/hK8l208tnOl1h6D3uuhQtIvHRg6t8mbl5al1pBTFgL9/IyZ9G87B3E2+/cH+9SMpVVYTwd+//hRrlyXNpfqs7G/V5XLJpJRUpzlSU9GixV5QTJcDO9gbGwGK+tl6e8SDmO/+BBrecJ6TFMOPT0L6ZvVu6eNlgfPLw+MVXP/eOnalW9AqbmIC1TpSRmMkDaKqPjarSfUxXpKk+qwq4iWZlJKkC5DvcvO/jFyW5RQCEGmoQwmTohMApJpuIN3ZFgCv66hvd3RBMQ3tRr69SuHzBovVjULB64ygRWwwn9z/OMZqCBBcLrVQZ6eOC8DQmoPfLgWgQ8MQmkcH0SI6qMqvWZPq7RD0evq0pCtXvf1bla4oXoeDFY88QlaLayC7AG/Z73VpUkmrOCG+y/nn7x1ZDTsW+O465Eipy+pEoZ1d6RaSQg7xWKf3MWrVeo46XWANt6z6yPdgSaobquJvVXZvSNIF+PBYNi8fzmRbUQkAcXVpRThbPgB5oikA0fq9RGq3A9Ah9QSd8vXkDpjAFx3VJJG3JBFbxs0IdzBXNY+p8oSU3XGCnNxV2O3pAAhNCHsz1WSfv0HLtw/24tUb2qCRAW+tpshslCRdlF9//ZXhw4cTGxuLoigsXLiw3P4777wTRVHK3QYPHlzumLy8PG677TaCgoIICQnhnnvuobi4uNwxO3fu5KqrrsJkMpGQkMAbb7xxRlu+/PJLmjdvjslkok2bNvz4449V/nylmlGSnc3vbduRaizAqc3HUzayqTSppFNcoK3EwiVOdWQOUS1h1H99SSmTHCl1WRTb1RH6HRoc9iWkQCEivG/NNUqSJKmKyJFSknQB9lrVWgpXhQbQPTiAG6JCa7hFlZC6DtbMgEMrcXpNZJ8Et30bxwtW4RbqPGCjy4M2pAFp+iyEIkAoWI8+AGgw4ub69nFV2iSPx8bGjUNwu9UklEbjz/B/HeBYvjpkO9S/alf2ky4jOadPkirFarXSrl077r77bm644exTpwYPHszcuXN9941GY7n9t912G5mZmSxbtgyXy8Vdd93F/fffz4IF6oiWwsJCBg4cSP/+/Zk9eza7du3i7rvvJiQkhPvvvx+A9evXc+utt/Lqq69y3XXXsWDBAq6//nq2bt1K69atq+nZS5eLw2oFjYIuP4fAAguHGpTFLeoUC61GQGUSS247AtgU2YOsiD54T6YCcqTU5VLsUOOjEJMahyYk3E3TJk+g1RorepgkSVKdILs3JOkCnHSqQcE9cZE83jgas64O1BlZ9zYcWsnukv78O2s+ac6OuO2bcAs1e6B3ewi0u1ja3MKc+M8B0LhNgIY72wax/fkBpERX7fDwkpJU3O5CFEVPUFA7QqMf9SWkgkw6RnVOqNLrSZfm9BEbBoOBjt3bMPPt13G73adN21P/Iy4gK7Vq1SoURbmsSz4fOXKEMWPGEBsbi8lkIj4+npEjR7J3795yxy1evJg+ffoQGBiIv78/Xbp0Yd68eeWOSU1NRVEUtm/fXunrv/jiizRv3hyz2UxoaCj9+/dn48aN5c55zz330LhxY/z8/GjatClTpkzB6XRWcFbIzMxkzJgxNGvWDI1GwyOPPFKp9pxvtE6ZPXv2MGLECIKDgzGbzXTp0oW0tDTf/gceeICmTZvi5+dHZGTkWV/TTZs20a9fP0JCQggNDWXQoEHs2LHjrNc7ePAggYGBhISEVNlzqG2GDBnC9OnT+dvf/nbOY4xGI9HR0b5baOipjpA9e/bw888/85///Idu3brRu3dv3n33XT777DMyMjIAmD9/Pk6nk48++ohWrVoxevRoHnroId58803fed5++20GDx7Mk08+SYsWLXjppZfo2LEjs2bNqr4nL10Wx3f/wbfvqklNfXHBqR1CoNHFosWJoqvkiG+3g19CuzIi4g7u/TPVt1nWlKpeP+3KpPsrK5j0yXL+lrSYpODdABj04TIhVQv9NV5KSkpi2rRparx0CWS8JOOl+h4vyU8SSboAxe7SVfd0dehPp0j9cvIHYwANQjhBqNM7eu0/xsDiWH4fNYrZ3VLJMxQA4HSoSaEe7ZLxM1d9HSm7/RgAgYEt6dL5GxSzOkogLsSPnS8O4uH+yVV+TenSDB48mMzMTA4cOMCE8Q/xz/97lbf+783zP/AyOV8QAmoBxgEDBmCxWPjmm2/Yt28fn3/+OW3atCkX6L377ruMHDmSXr16sXHjRnbu3Mno0aMZP348TzzxxCW1s1mzZsyaNYtdu3axdu1aGjVqxMCBA8nOVhcW2Lt3L16vlw8++IA///yTt956i9mzZ/Pss89WeF6Hw0FkZCTPPfcc7dq1q3R7ykbrvPfee+c85tChQ/Tu3ZvmzZuzatUqdu7cyfPPP19ulcVOnToxd+5c9uzZw5IlSxBCMHDgQDwedUWv4uJiBg8eTMOGDdm4cSNr164lMDCQQYMG+YralnG5XNx6661cddVVVfYc6qpVq1YRFRVFSkoKf//738nNzfXt27BhAyEhIXTu3Nm3rX///mg0Gl/gvmHDBq6++moMhlOjTwcNGsS+ffvIz8/3HdO/f/9y1x00aBAbNmw4Z7scDgeFhYXlblLts2nRN7TzU38/NF61wyDcmYgpaBxaQxLayk7dA3A7SDOpy32H6bV0DTbzRKNo/Kt4RV6pvIXb0zlRaKd79Equa7KUCJNa8sBobFDDLZPO5fR46fHHH+fFF1/kn//8Z003y0fGSzJeqpXxkpDOyWKxCEBYLJaabopUS3Rc94dosHKb2GIprummnJ/XK4S9UIhpkUJMCRJz/v6NePf+JWLng13FjFHDxFs3DxN/pjQXh255Wdz7z7tF63mtRZsPe4kmL84SiU9/KxInLxYnLLYqbZLTmSd2735a/LZxqFi+oonYuXOSWH8wR8xcuk8kTl4sBr21ukqvV5vYbDaxe/duYbNV7Wt6OYwbN06MHDnSdz//hFX0uaqv6Nqlm9h8ZLMYPmq4CA4OEiaTSQzo31/s37/fd2xqaqq47rrrREhIiPD39xctW7YUP/zwgzhy5IhAneznu40bN04IIURhYaEYM2aM8Pf3F9HR0eLNN98Uffr0EQ8//LDvvImJiWLatGli7NixIjAw0PfYNWvWiN69ewuTySTi4+PFpEmTRHGx+ve6bds2AYjU1NRzPte0tDSh1+vFY489dsa+d955RwDit99+E0II33PYtm3bxb2w4tTnzPLly895zBtvvCEaN25c6XP+9bWqLEB8++23Z2y/5ZZbxO23335B59qxY4cAxMGDB4UQQmzatEkAIi0tzXfMzp07BSAOHDhQ7rFPPfWUuP3228XcuXNFcHBwlTyHi1HR32xVxwdna/enn34qvvvuO7Fz507x7bffihYtWoguXboIt9sthBDi5ZdfFs2aNTvjXJGRkeJf//qXEEKIAQMGiPvvv7/c/j///FMAYvfu3UIIIfR6vViwYEG5Y9577z0RFRV1zvZOmTLljL9fGS/VPp9P+YfY/vQPYsqUKWLmbTeJGaOGibfvel/MemCFmPXACvHVxFlCvJFUuZOt/qeY/eE9osHKbeLvf577PVSqWqM/2CASJy8W36z8u1i+oonYvGWMOHp0jnC77TXdtGpTn+IlIdT34e7du4u8vDwxduxYERISIvz8/MTgwYNlvHQBZLxUv+Ml2b0hSRegxKOOlDLX9uXBhYD/joBX4/G4PeS4GlHi8cdh+YilOZEA6F0uFGBj9Am2h+4EwFHcAo+tEc2CDEzu14gGQaYKLnLhTmb9REbmFxQXq8NUj1vjufXfv/HOigMAhPjXocLxVUAIQYnTfdlvQlxi4ScFTEY/nC4nkx+czJ/b/+STuXNY/OXnCCEYOnSorzdnwoQJOBwOfv31V3bt2sXrr79OQEAACQkJfP311wDs27ePzMxM3n77bQAee+wx1q1bx6JFi1i2bBlr1qxh69atZzRjxowZtGvXjm3btvH8889z6NAhBg8ezI033sjOnTv5/PPPWbt2LRMnTgQgMjISjUbDV1995euR+quvvvoKl8t11h6+Bx54gICAAD799NNLe/1KOZ1OPvzwQ4KDgyvsrbNYLISFhVXJNS+U1+vlhx9+oFmzZgwaNIioqCi6detW4ZBvq9XK3Llzady4MQkJ6qjLlJQUwsPDmTNnDk6nE5vNxpw5c2jRogWNGjXyPXblypV8+eWXtbMX7zIbPXo0I0aMoE2bNlx//fUsXryYTZs2sWrVqppuGs888wwWi8V3O3bsWE03STobpwcPXkJO5hBoUUfGlRU4v+m6Y4wMm1L5kVIeJ06N+hltlHWkqp3HKzhZaCe/RB3VEmRU/42KGkzDhndfcVP3aipeqoqYyc/PD6fTyZ133snmzZtZtGgRGzZskPHSBZDxUv2Pl2Shc0mqhP9LPcH8zDzy3eobs7m2D1e3F8CRXxFC4evcV8l2JyE8Gb5pexqvlwSXmf0dW/Fq+5WI0qU8vY5otAh+mjwUbTUEnS6nOvUkJKQbCfHj+GxnPJBKgyAjKdFB3HdV4yq/Zm1mc3lo+cKSy37d3dMG4W+4uLd/IQSrVq9k1a8rGDhwEN8vXsQnP3xCj/bdcNvsfPSff5PSshULFy7k5ptvJi0tjRtvvJE2bdoA0KRJE9+5ygKHqKgo31z4oqIiPv74YxYsWEC/fv0AmDt3LrGxsWe05dprr+Xxxx/33b/33nu57bbbfPUBkpOTeeedd+jTpw/vv/8+cXFxvPPOOzz11FNMnTqVzp0707dvX2677TZfu/bv309wcDAxMTFnXM9gMNCkSRP2799/Ua9dmcWLFzN69GhKSkqIiYlh2bJlREREnPXYgwcP8u677zJjxoxLuubFysrKori4mNdee43p06fz+uuv8/PPP3PDDTfwyy+/0KdPH9+x//rXv3jqqaewWq2kpKSwbNky37SxwMBAVq1axfXXX89LL70EqD+fJUuWoNOpv4u5ubnceeed/O9//yMoKOjyP9larkmTJkRERHDw4EH69etHdHQ0WVlZ5Y5xu93k5eURHR0NQHR0NCdPnix3TNn98x1Ttv9sjEbjGUXXpdpFeDw4jmfgjfOSYTHQ1Ff7SYfATYPND6mlAHXn+TmumAab54KrBHvcaEDWkbocbpq9nm1pBbSJ+JOhjdPReA7hBXTagJpuWo2oqXgJLj5mEkKwYsUKlixZwpAhQ1i4cCHr1q2jZ8+egFrzLyEhQcZLFZDx0pUTL8lPFUk6jxKPlzdTT3LMrvZSNTDoiLzIL/SXjVVN/uR7Esh2JwGgdaujkyKKShi86witksYxu5fVl5By5PTFZelMjB/VkpACcLuLAAgOakdU1CAK7ep1rm8fx3/v7spVyZHVcl3p0i1evJiAgABMJhM3j/kbI6+7gdtvG4tOp6Ntp7a+48JDw0hJSWHPnj0APPTQQ0yfPp1evXoxZcoUdu7cWeF1Dh8+jMvlomvXrr5twcHBpKSknHHs6bV0AHbs2MG8efMICAjw3QYNGoTX6+XIkSOA2hN54sQJ5s+fT48ePfjyyy9p1aoVy5Ytq/RrcXp9nnOZP39+uXasWbPGt69v375s376d9evXM3jwYEaNGnVGcgEgPT2dwYMHc/PNN3Pffff5tp9+3vHjx1eqzWvWrCn3uPnz51fqcV6vOjp05MiRPProo7Rv356nn36a6667jtmzZ5c79rbbbmPbtm2sXr2aZs2aMWrUKOx2daUom83GPffcQ69evfjtt99Yt24drVu3ZtiwYdhsNgDuu+8+xowZw9VXX12lz6G+OH78OLm5ub4vAD169KCgoIAtW7b4jlm5ciVer5du3br5jvn111/L1aFYtmwZKSkpvqLpPXr0YMWKFeWutWzZMnr06FHdT0mqRo6DBxElDopd+fhrDuAoXZhFUXSgcUNAA4huC70eqvhE2/4Htjxw23Fo1Pc+oyJHSlUnu8vDtrQCAvRFPNThQ25MXozXpRZKNhjCa7h10vmcHi8NGTKEW265hTvvvBOdTud7bwYIDw+X8RIyXpLxkqqWf7OWpJqX7XThLB26u6xzMxr7GWt3L+GJP+APdZhvsScUITz4edZSYNsOQGRhCej8KDbpsOqtANiOjcVd3JIwnYdJA878MLtU6emfcvjI27hcFgDsHn9W7j3JvpNqkirQdGW+FfnpteyeNqhGrnuh+vbty/vvv4/BYMBfF4LXBat/Oy0w8X1HKT/M/d5772XQoEH88MMPLF26lFdffZWZM2cyadKki38Cpcxmc7n7xcXFPPDAAzz00Jlfsho2bOj7f2BgIMOHD2f48OFMnz6dQYMGMX36dAYMGEBycjIWi4WMjIwzehudTieHDh1i0KDz/8xGjBhRLviMi4sr1+6kpCSSkpLo3r07ycnJzJkzh2eeecZ3TEZGBn379qVnz558+OGH5c59+uo1le0h69y5c7nHNWhQuSK5ERER6HQ6WrZsWW57ixYtWLt2bbltwcHBBAcHk5ycTPfu3QkNDeXbb7/l1ltvZcGCBaSmprJhwwY0pe+fCxYsIDQ0lO+++47Ro0ezcuVKFi1a5OvlFELg9XrR6XR8+OGH3HrrrRf1HGqr4uJiDh486Lt/5MgRtm/fTlhYGGFhYUydOpUbb7yR6OhoDh06xFNPPUVSUpLv969FixYMHjyY++67j9mzZ+NyuZg4cSKjR4/2/e6OGTOGqVOncs899zB58mT++OMP3n77bd566y3fdR9++GH69OnDzJkzGTZsGJ999hmbN28+4/dOqlsOHD5MWrOmnDyxlECXwFW2WrDihwEndBsPVz12/hO51S9KjPkSh7MhZNvl9L1qVmhXk8ihpkI0ikCj8SO6wXCMphhCQ3vWcOtqRk3FS2XXvhCnx0uxsbHodDoWLVp03sfJeEkl46UrM166Mr8JStIFKKsjFabX0iaw6leiq1Kpa2HeMAAO27vyW9FYPI6dFNhO9aQH2J2ktmjEq0mvkq9Xk0RedzBJYUaWPzWgWpqVkfkVTmd26T0NLy+FDembffuD/a6sWlJlFEW56Gl0l1tZYABQkFWC0+WmeUpz3G43O7fsJLaDOiw5Ny+Pffv2lftQTkhIYPz48YwfP55nnnmGf//730yaNMnXg3Z6vYImTZqg1+vZtGmTLzCyWCzs37//nD1CZTp27Mju3bt97awMRVFo3rw569evB+Cmm25i8uTJzJw5k5kzZ5Y7dvbs2ZSUlHDHHXec97yBgYEEBgZWqg1erxeHw+G7n56eTt++fX0rtGj+kgS/kOdXxs/P76IeZzAY6NKlC/v27Su3ff/+/SQmJp7zcUIIhBC+51VSUoJGo0E5bYRF2f2y3sUNGzaU+1347rvveP3111m/fj1xcXEX/Rxqq82bN9O3b1/f/cceUxME48aN4/3332fnzp18/PHHFBQUEBsby8CBA3nppZfKTZubP38+EydOpF+/fmg0Gm688Ubeeecd3/7g4GCWLl3KhAkT6NSpExEREbzwwgvcf//9vmN69uzJggULeO6553j22WdJTk5m4cKFtG7d+jK8ClJ1EELwx8GjuA16DB41wRFZaMUV0QC7NhQDOeeftlfG7WBXQDIf2xP4zaZ2OtTqjrk6zOsVLN19kt2Z6mqW4f7qCH2TKZoWLV6tyabVuLoaL5Vp0aIFbrebjRs3+qbv5ebmyngJGS/JeElVN/66JakG2UqTUnVi2ePMHQBkKF35qUDtRfC6twGg9XhpWuAk9qqpjGv9CoU6tb6UcETgtcfQKN6v2prlchUA0KrlW+j8urNh6SYA2ieEEBFgZFCrc9cukWqvpKRk+g/tz4uPvUjIa6/jp9Pz+tvvEBcXx8iRIwF45JFHGDJkCM2aNSM/P59ffvmFFi1aAJCYmIiiKCxevJihQ4fi5+dHYGAg48aN48knnyQsLIyoqCimTJlyxgf02UyePJnu3bszceJE7r33XsxmM7t372bZsmXMmjWL7du3M2XKFMaOHUvLli0xGAysXr2ajz76iMmTJwNqD+Ebb7zBE088gclkYuzYsej1er777jueffZZpk+ffsaX9b8GIACtWrVCry+fbLVarbz88suMGDGCmJgYcnJyeO+990hPT+fmm28G1ADrmmuuITExkRkzZviWPgYqrPEDp3oEi4uLyc7OZvv27RgMhjN67U5X0WidsiD3ySef5JZbbuHqq6+mb9++/Pzzz3z//fe+gtuHDx/m888/Z+DAgURGRnL8+HFee+01/Pz8GDp0KAADBgzgySefZMKECUyaNAmv18trr72GTqfzJWbKfi/KbN68GY1Gc97kSGWeQ210zTXXVFhAd8mS89dPCQsLY8GCBRUe07Zt23LTIc7m5ptv9v0OSnWf82ghtiw3aMHPq8cJJOYUk9+0G+lu0CquyhU4FwLcdv6ZeBdLc099Eaz1JQzqqN8O5zL+f1sI0BdzS8pSkkLVaUo6Xf2oGXMlS05OZuTIkdx333188MEHBAYG8vTTT8t4CRkvyXipVJWsA1hPVfWSz1LdtCavUDRYuU1c9duemm7K+f30tBBTgsSmx+/xLfn8rzGjxIxRw8TKLh3FvqtuEN8+N0e0ntdatJ7XWjR5cZZIfPprkTh5sXh/+e4qb47TaREFlu1i+YomYvmKJqKoaJ9IzSkWiZMXi+bP/VTl16vN6tMSx/knreJkqkWUFDnE1iNbxfBRw0VQUJAwmUyif79+5ZY4njhxomjatKkwGo0iMjJSjB07VuTk5Pj2T5s2TURHRwtFUSpc4rhr167i6aef9j0uMTFRvPXWW2e09ffffxcDBgwQAQEBwmw2i7Zt24qXX35ZCCFEdna2eOihh0Tr1q1FQECACAwMFG3atBEzZswQHo+n3HkWLlworrrqKmE2m31LMH/66afljjnbMs1lt2PHjp3RNpvNJv72t7+J2NhYYTAYRExMjBgxYoT4/ffffcfMnTv3nOc8n7M9JjExscLH/PLLL2d9XNnPosycOXNEUlKSMJlMol27dmLhwoW+fenp6WLIkCEiKipK6PV6ER8fL8aMGSP27t1b7hxLly4VvXr1EsHBwSI0NFRce+21YsOGDedsW2WXOK7sc7hQVbHE8ZVCvh61y7rXPhEfPve2mDJlini7NAaYded/fHHB/Alzhdg87/wnctqEmBIkRn4zTzRYuU1M+DNV/Dc9W1jdnvM/Vrpgn/1+VCROXiwenTPZFzctX9FE7Nj5YE037bKqT/HS6fLy8sTYsWNFcHCw8PPzE4MGDZLxkoyXZLxUShHiUtcGr78KCwsJDg7GYrHUm8r2UuUJIXg3LYtf84pYW1BM+0B/fu7crKabdXY7PoMlz0KJWuB8hWUif1oSMNlXUORRi+L13H8cU1xbPuynY23YJhS3H4UHphBrcnNzq1Am3dAbXRWOBvN4HKxbfxUuV27pFoXPj33IwWwNh3OsxASb2PBMvyq7Xm1nt9s5cuQIjRs3xmQy1XRzLklBVglOm5vAcBOZ7uPY3DaiXEF4SuwERkRiDg6p0utZrVbi4uKYOXMm99xzT5WeuzLy8vLo168fQUFB/PTTT/j71/JpvFKVqOhvVsYH5cnXo/Zw2m38MHE6J2IjKLJloE/dg1cDhsDRaHSxgKCT+Wu633E1tBtd8clsBfB6IoM6fMCOoOZ80qYxAyKCL8fTuCL9+9fDvPzjHp7ptYIk83eEhHQlMmIAUVGDMZnOXFGtvqpP8dLlJuMlqSZURbwkx99K0jnsttp55XCm736ssRbXPdrxGZTkkuFswbqiu8hyJeO2zaHIqyakjC4PgVHtePLaHRwPU+cgu5xRAMwY24ueTc++vOqlcDgyShNSGvz9E8nz9mXpHptvf7MGlZs/LtVigtMKnJ+27RJt27aNvXv30rVrVywWC9OmTQPwDXG/3MLCwli+fDnvvfceGzZs8C29LEmSVNtY1q5FgxYPXnr+soYdCSHYDTpAR7D/SW5r/T+UtLWg7X/ukwgB69+FrN0A2LVq/Sm/ulDGoA5adzCHfy7ZR0aBlSbBRwg1pgMQFtqLhg3vruHWSbWZjJek+kImpSTpHPJdbgCiDDoebRTNkNrcO1g6Qmq7/SayXMkI4UR41SLmbY5lEdfkBlZ29HI8fCt4DLhKknDmXIuCoFVM9Twvp1Ntk58pnh7dlzNn7RFgNz2bhvNQv2TaJ4RUy3WlmnEqN1U1g29nzJjBvn37MBgMdOrUiTVr1hARUfXJ08oKDw/nhRdeqLHrS5IkVYZ102a8Wg1O3ATYivAqoeoORYPGz4KSV1pPpKJC5yd2wrLnfXcdWrXmpCxwXj0+2XCU7ccK6N/wF25t/q1vu14fUnONkuoMGS9J9YFMSknSOZStuhdnNHBXXM29uVfo+BZIW68GkECuIwYhXDSyf8k+1OLmCXlF+LeNZ4dxFQBuWyPsx++gkd7KmGsTCfav2hFgHo+djIzPOJ7+PwB0hnC+2XqcX/erBQiTogLo3iS8Sq8p1RylNB1VlfPAO3TowJYtW85/oCRJklTOZoeDP2KgUHcCvceL15dH0uJvSwP9CfWuX9i5T2IrUP81R0LX+7ErDcADJk3FxZOli2OxqSsk9k8uAcCgj8BsTiIisoLRbJKEjJek+kMmpSTpHKy1fdU9txP+OwKcxXiEjhx3YyzucByWj9gnrAAY3B48gZG81uJnNoaoK/N5nREoCFZMvRltNQSYJ09+z/4DL/nuZ9ma8tgPO3z3IwIquQy1JEmSJEkX5ITXCxoNblxoAG/pKlwKWkKEEzrdBdFtIKHbuU/icQIwu+FtrA+9idy8IkBgkiOlqkWRQ01KRZpdYIdGjR4kIWFcDbdKkiTp8pFJKUk6h7KRUubampSyZoOzGBQtCx2zOZEfjtd9DIQVhEDn9dI4uD1zeueyNmSj72Hu4hQiDN5qSUgB2OzHAQgIaElkRD8WHewJZNM00sxVyZGM7ppQLdeVJEmSpCudzeMAYSA53cbvjWPwliWSFA1axQW9H4XQxIpP4rZTrPXjxai/QW4hAHpFIcIgvzZUpTeX7mP5nixyCo/RPOwkGnECL6DTyZqbkiRdWeSniySdg8WtFgSvvUmpLADcGDmRr06H03qO4wKiCkvolJZN4PBneNOsjlpyW5vgzOlHaH4wd3XSVluzXK48ACIj+tOkycPk7/oDgCGtY3hiUEq1XVe6fM6azvRtlAu6SpIk1QTr1pPotWHoitNxFp4kJ0hd+UqjNYBiVJNSFdWSKuN2YC2tI6UAM1MSaB5gIlQvvzZUFZfHy7u/HMSosTGzz0uYdE68DnWfTidXsJQk6coiP10k6S/W5hfx4O6j5LvUpFSiXy2bbma3wEdDIOtPAApdYQhvIZ6SZbhdRwEIsjnwmCNYGfw7hXq1l9OZ24cWrjCe6QGdr+tb5c06cWIRR1Lfo6RELaJ6zGLmtf9uZle6WnA9yE++3dRHytlTVJIkSdJlVrIjCw8CvKUjve1ugjyxiI43UJClR0vlk1J2jQEAk0bDmFhZB7KqFdndCAHhfvmYdE5Ai9ncFJMphtDQ7jXdPEmSpMtKfkuUpL9YkmMhy6muvKcBrgoNqNkG/dW+nyHrT1xeI0ssT5Dvjsfj2ONLSAHE6uP4bEAJi+I+9m0T7mBapjSh16ie1dKs48f/60tIaTRG/v17FGuPnPTtbxhmrpbrSrWLkAOlJEmSLjuX3c6xXbtwB3rJcvuTCHgNDcgPvx3UgdUYNVbQViYpZcehUY+Txc2rnsvj5YTFDkCYn1pPys8vju7dfqrJZkmSJNUYmZSSpL8ocqs9jBMaRjGhYRRhtW24elEGAMc0fTjq6AyA8KpT5IJK7LS16PH2vo2fkqYB6rQ9rz0eY0kgt3SJr7ZmudzqiKyUlJeIjBjAlN//AEp46NokOiaGcnVyZLVdW5IkSZKuZAdnv08BQdi9Hjrs30VeqBahUVfXjW8WQFT6PJr7/VLxSKmcA/DLK5C12zdSyiiLm1ep1BwrI2atpcjupFHQMVLC0gBZR0qSpCtbLfu2LUk1r8ijTttLMBlqV0Kq6CT8Mh22/heAQqsR4S0iyLuObOduABJzCzEFNuH98MW4tC4QGmxp99Bff4R7unnolNKwypslhBePx4rLVQBAUFB7hCbMt8TxiPaxJEXJYEuSJEmSqoPb7WZhVjaOIAtup4cGJfnkhUYAav3IVk2zSSqcDxodaCqoKbllHvz5DQCOoFYAmLRypFRV2nw0n0K7m1tTvqV/4mrfdllHSpKkK5ns/pCkvygqLXAeWNsKnG+cDVv/i9UTyqbiUfxWdCvO4m/JLtrtOyTQ5uS/zXezLkJdbc9jjwG0jB83ih433VrlTfJ6Xfy+aTirf22Py5ULwD0f76X58z/7klJBJn2VX1e6vO68804URUFRFAwGAx26tWHm26/jdrsv6byrVq1CURQKCgqqpqGVcOTIEcaMGUNsbCwmk4n4+HhGjhzJ3r17yx23ePFi+vTpQ2BgIP7+/nTp0oV58+aVOyY1NRVFUdi+fXulr//iiy/SvHlzzGYzoaGh9O/fn40bT62OmZqayj333EPjxo3x8/OjadOmTJkyBafTWeF5MzMzGTNmDM2aNUOj0fDII49Uqj3vv/8+bdu2JSgoiKCgIHr06MFPP52aQpKXl8ekSZNISUnBz8+Phg0b8tBDD2GxWHzHzJs3z/f78ddbVlaW7ziHw8E//vEPEhMTMRqNNGrUiI8++qhce/7v//7Pd62EhAQeffRR7HZ7hc/hm2++YeDAgYSHh1/wz0OS6oOSkhIcBnVkk04oeBU1kVTkr37+aje8qR6oM1V8IkcRAEvbPsTn3V8F5EipqlZQor6Xt4vJBsBgiMDfvylxsVUfo0mX31/jpaSkJKZNmybjJRkvATJeqkgtGgYiSbVDQVlSSld9K9RdlMwdAGzx3Muu4p4Irx3hyQEgvKiEECcUtO3Jsg6/IrxGPCWNcOT0I1lk0alpdLU0yWY7RnHxqQ8no19bNh8/lYTq0DCEiIBaViheuiiDBw9m7ty5OBwOvv58IU88/SjmID/GPTb2L0fWTFEpp9OJofRL2bm4XC4GDBhASkoK33zzDTExMRw/fpyffvqpXKD37rvv8sgjjzB58mTef/99DAYD3333HePHj+ePP/5gxowZF93OZs2aMWvWLJo0aYLNZuOtt95i4MCBHDx4kMjISPbu3YvX6+WDDz4gKSmJP/74g/vuuw+r1VrhdR0OB5GRkTz33HO89dZblW5PfHw8r732GsnJyQgh+Pjjjxk5ciTbtm2jVatWZGRkkJGRwYwZM2jZsiVHjx5l/PjxZGRk8NVXXwFwyy23MHjw4HLnvfPOO7Hb7URFRfm2jRo1ipMnTzJnzhySkpLIzMzEW1qQGWDBggU8/fTTfPTRR/Ts2ZP9+/f7Avw333zznM/BarXSu3dvRo0axX333Vfp5y5J9YWndIS3Vij0cjSnWFkOQLA+CC+g1SoQ2Rxa31jxidx2Mg0R3BF6I5SuBBdc22KhOup4fgnPfLOL/SfVxJ+ftgSAli3+SXj41TXZNKmKnR4v/fjjj0yYMAG9Xs8zzzxT000DZLwk46VaGi8J6ZwsFosAhMViqemmSJdBidsjNuYXiVZrdokGK7eJbRZrTTdJ5fUK4bQJ8X9thZgSJBZOelPMemCF+PrBF8WMUcPEWzcPE7tTmovdY18R98y4U7Se11o0n3WDSJy8WEy/7Sax6K3Xqq1puXnrxfIVTcT6Df2F1+sWW4/micTJi0XPV1cIm9MtvF5vtV27rrHZbGL37t3CZrPVdFMu2Lhx48TIkSN99wtOWkWfq/qKrl26iR2pO8TwUcNFcHCQMJlMYkC/fmL//v2+Y1NTU8V1110nQkJChL+/v2jZsqX44YcfxJEjRwRqBst3GzdunBBCiMLCQjFmzBjh7+8voqOjxZtvvin69OkjHn74Yd95ExMTxbRp08TYsWNFYGCg77Fr1qwRvXv3FiaTScTHx4tJkyaJ4uJiIYQQ27ZtE4BITU0953NNS0sTer1ePPbYY2fse+eddwQgfvvtNyGE8D2Hbdu2XdwLK059zixfvvycx7zxxhuicePGlT7nX1+rCxUaGir+85//nHP/F198IQwGg3C5XGfdn5WVJfR6vfjvf//r2/bTTz+J4OBgkZube87zTpgwQVx77bXltj322GOiV69elWp3Vfw8TlfR36yMD8qTr0fNys7OFlOmTBHTX5gmfnhkjljYp4eYMWqY+Nd9/xCzHlghjv9zbOVO9NntYtcbHUWDldtEo1XbxWN7jopNBcXV2/grxIerD4nEyYvFDW++JP711QCxbEWKWL6iibBYdtR002qd+hQvCSHEgAEDRPfu3UVeXp4YO3asCAkJEX5+fmLw4MEyXroAMl46pT7GS3JMriSVGrvzMCO2HSTHpQ6xjTLUgoGEQsDHw+HlBpCfCoDFHYmz+DsycjYBYHCp0+SeS5nPxojNAHidEejwMvrRJxk0/qFqaZrFspWskz8AYDTGsPN4EVuO5gMQ7KfHpNeiKLIWRYWEAKf18t8udYk8BUxGP5wuJ48/+Dh/bv+TT+bNYfGXnyOEYOjQobhKfy8nTJiAw+Hg119/ZdeuXbz++usEBASQkJDA119/DcC+ffvIzMzk7bffBuCxxx5j3bp1LFq0iGXLlrFmzRq2bt16RjNmzJhBu3bt2LZtG88//zyHDh1i8ODB3HjjjezcuZPPP/+ctWvXMnHiRAAiIyPRaDR89dVXvpEFf/XVV1/hcrl44oknztj3wAMPEBAQwKeffnppr18pp9PJhx9+SHBwMO3atTvncRaLhbCwsCq5ZkU8Hg+fffYZVquVHj16VNieoKAgdLqzv0f+97//xd/fn5tuusm3bdGiRXTu3Jk33niDuLg4mjVrxhNPPIHNZvMd07NnT7Zs2cLvv/8OwOHDh/nxxx8ZOnRoFT1DSaqfyqYGaYWCE5dv+l5ZmK/VVzLcdztwlhZHDzfomNm8IZ2D5cq5VaGspMGtLX6hWeghFFwoih6TKa6GW1ZH1FS8VAUxk5+fH06nkzvvvJPNmzezaNEiNmzYIOOlCyDjpfofL9WCb92SVDvssarzcJv4Gbk6LJAYYy2ohWTNgdQ1AKyyPMBhRw+szmK8rkNlI+sJsjk4ERvGgVgLQmgQHj/chW1I8PPStFPXamlWYeFONm8ZRdlUrT+zInn+83W+/cF+teC1qwtcJfBK7OW/7rMZYLi4LxpCCFatXsmqX1cwcOAgvl+8iE9++ITuHbvhsdr5zwezadG2HQsXLuTmm28mLS2NG2+8kTZt2gDQpEkT37nKAoeoqChCQkIAKCoq4uOPP2bBggX069cPgLlz5xIbe+brdO211/L444/77t97773cdtttvvoAycnJvPPOO/Tp04f333+fuLg43nnnHZ566immTp1K586d6du3L7fddpuvXfv37yc4OJiYmJgzrmcwGGjSpAn79++/qNeuzOLFixk9ejQlJSXExMSwbNkyIiIiznrswYMHeffddy9pCPz57Nq1ix49emC32wkICODbb7+lZcuWZz02JyeHl156ifvvv/+c55szZw5jxozBz8/Pt+3w4cOsXbsWk8nEt99+S05ODg8++CC5ubnMnTsXgDFjxpCTk0Pv3r0RQuB2uxk/fjzPPvts1T5hSapHhBDkfK1Oo9eWFJKWvRslrLRotlCn3ml1lU1K2XCUJqWMiuy3rkpFdjXxYNZbAUhKeprw8GswGMJrsll1R03FS3DRMZMQghUrVrBkyRKGDBnCwoULWbduHT179gRg/vz5JCQkyHipAjJeunLiJfmJI0mlikt7Ar5o35TXmsXXjlE+RZkAWDRN+dM2GJs3GK9HLShudLnpuf843VpP5vWbAhAaBceJEZgPPsLAo/t5oX31tT8vfwNlCamY6BtZk3ENAA2CjLSMCWJcz8Rqu7ZUMxYvXkxAQAAmk4mbbv0bI6+7gdtvG4tOp6Ntp7a+48LDwkhJSWHPnj0APPTQQ0yfPp1evXoxZcoUdu7cWeF1Dh8+jMvlomvXUwnV4OBgUlJSzji2c+fO5e7v2LGDefPmERAQ4LsNGjQIr9fLkSNHALUn8sSJE8yfP58ePXrw5Zdf0qpVK5YtW1bp1+J8tRhADTZPb8eaNWt8+/r27cv27dtZv349gwcPZtSoUeUKXJZJT09n8ODB3HzzzeXm/p9+3vHjx1eqzWvWrCn3uPnz5/v2paSksH37djZu3Mjf//53xo0bx+7du884R2FhIcOGDaNly5a8+OKLZ73Ohg0b2LNnD/fcc0+57V6vF0VRmD9/Pl27dmXo0KG8+eabfPzxx77ev1WrVvHKK6/wr3/9i61bt/LNN9/www8/8NJLL533NZWkK5ZHYD9eRInQU5BXgMtViLO0DpRXBAOgOV9dqAPL4F894NjvODXq+5tBUwtioHrgi83H6DtjFd9sPYq/rgSdoialIiMGEGBOruHWSdXh9HhpyJAh3HLLLdx5553odDq6devmOy48PFzGS8h4ScZLKjlSSpIAh9eLw6smWWrFqntCQPoW2DQHgGK7CSEEiuc4wSU/kouBBhYrBgS3tXwBm0YdN+V1RhCjFDK8Q0O69bmq2prndKgfCIkN7ycpaTIZK9YAhbx2Q1v6No+q+MHSKXp/tQeuJq57gfr27esrYmnWh+BxwurfTgtMzvH95d5772XQoEH88MMPLF26lFdffZWZM2cyadKki2z8KWZz+Z7L4uJiHnjgAR566Mwpqw0bNvT9PzAwkOHDhzN8+HCmT5/OoEGDmD59OgMGDCA5ORmLxUJGRsYZvY1Op5NDhw4xaNCg87ZtxIgR5YLPuLhTUzTMZjNJSUkkJSXRvXt3kpOTmTNnTrkiqBkZGfTt25eePXvy4Ycfljv36aulBAVVbhnxzp07l3tcgwYNfP8vWyEIoFOnTmzatIm3336bDz74wHdMUVERgwcPJjAwkG+//Ra9/uyjIf/zn//Qvn17OnXqVG57TEwMcXFxBAcH+7a1aNECIQTHjx8nOTmZ559/nrFjx3LvvfcC0KZNG6xWK/fffz//+Mc/KnxNJelKJTwCr+JllzuGJG86YYDO0AGNsTlo1UVOjEZvxSfZ9glkqV+sHIr6ty2TUlXjf78d5XhePtN6vkqUf65vu05XufduqVRNxUtl174Ap8dLsbGx6HQ6Fi1adN7HyXhJJeOlKzNekkkpSQKK3acCtoDasNLM4V/gk78BUOiJ5JC9B17XXlzWn7Cj9jqYHS7+aKTBplWnHXrd/njscQzvncjQoV2qpVklJUc4cXIxx47PAyC7JJBVaw6TUaC2IchPvqVcEEW56Gl0l1tZYABgyS7B43ST0qw5brebnVt2EtOpDwA5eXns27ev3HDmhIQExo8fz/jx43nmmWf497//zaRJk3w9aKfXK2jSpAl6vZ5Nmzb5AiOLxcL+/fu5+uqKVyjq2LEju3fv9rWzMhRFoXnz5qxfvx6Am266icmTJzNz5kxmzpxZ7tjZs2dTUlLCHXfccd7zBgYGEhgYWKk2eL1eHA6H7356ejp9+/alU6dOzJ07F81flmS/kOdXxs/Pr9KP+2t7CgsLGTRoEEajkUWLFmEynX1Z+eLiYr744gteffXVM/b16tWLL7/8kuLiYgICAgB16L9GoyE+Ph5Ql7X/63PVatX3YyHEBb2mknQlsNls/Pzxx7g0OhxeA1qhvpcq+mg0uhjatcwnMv1jAvxDKz6Rq3QZ8d6P4Ww6BlKtmDS1oIOuHrDYXET555RLSIWEdEWvD6m5RtVFdTReKtOiRQvcbjcbN270Td/Lzc2V8RIyXvqrKzVekt8gJQnIKy1uHqjVoK0N0/ay9wGQryTzafZrCDR43b8AYHC5CXYphMX1YnqfJYCC9chEsEfQsugwQ1tXTx0pgL37XiA/f73v/vSlCn/m7PHdDzcbq+3aUu2TlJTMwGEDefGxFwl+43X8NXpe+7+3iYuLY+TIkQA88sgjDBkyhGbNmpGfn88vv/xCixYtAEhMTERRFBYvXszQoUPx8/MjMDCQcePG8eSTTxIWFkZUVBRTpkxBo9Gcd0rt5MmT6d69OxMnTuTee+/FbDaze/duli1bxqxZs9i+fTtTpkxh7NixtGzZEoPBwOrVq/noo4+YPHkyoPYQvvHGGzzxxBOYTCbGjh2LXq/nu+++49lnn2X69Om0bt263HX37dt3RltatWp1Ru+Y1Wrl5ZdfZsSIEcTExJCTk8N7771Heno6N998M6AGWNdccw2JiYnMmDGD7Oxs3+Ojo6MrfP5lPXvFxcVkZ2ezfft2DAbDOesdADzzzDMMGTKEhg0bUlRUxIIFC1i1ahVLliwB1ABr4MCBlJSU8L///Y/CwkIKCwsBtRBqWRAE8Pnnn+N2u7n99tvPuM6YMWN46aWXuOuuu5g6dSo5OTk8+eST3H333b5aCsOHD+fNN9+kQ4cOdOvWjYMHD/L8888zfPjwctf5q7y8PNLS0sjIUHvRy34e0dHR533NJKkuW/bFF+w4cQJ0EJOjEGc/ihraa0F46WX6F4rfZtDdUvGJ3KVJqaiWOP0jAKscKXWJcosdpOZaybc6ifYrAcDPL5Hu3ZaiKHIhmCtNcnIyI0eO5L777uODDz4gMDCQp59+WsZLyHjpr67UeEkmpaQrmhCCd45m8ZulGIDo2lDcHKAkD4BMa0MEGvRKCYrIwgYknczHPySS1/rso8isgMcPrz2O/rZNtC3eTWTUpQ/zPRer9SAA0dHXozW248+l4SgK3NgxnhYxQTSKqBu9WFLVmfHeDP7x1D+4fezdOJ1OevXswY8//ugLMDweDxMmTOD48eMEBQUxePBg3nrrLUAdTjx16lSefvpp7rrrLu644w7mzZvHm2++yfjx47nuuusICgriqaee4tixY+fscSrTtm1bVq9ezT/+8Q+uuuoqhBA0bdqUW25Rv5DFx8fTqFEjpk6dSmpqKoqi+O4/+uijvvM8+uijNGnShJkzZ/L2229jtao1QD799FNGjx59xnXPtu3YsWO+Hq0yWq2WvXv38vHHH5OTk0N4eDhdunRhzZo1tGrVCoBly5Zx8OBBDh48eMbjxXlWAOrQoYPv/1u2bGHBggUkJiaSmpp6zsdkZWVxxx13kJmZSXBwMG3btmXJkiUMGDAAgK1bt7Jx40bgzB7HI0eO0KhRI9/9OXPmcMMNN/iKsJ4uICCAZcuWMWnSJDp37kx4eDijRo1i+vTpvmOee+45FEXhueeeIz09ncjISIYPH87LL79c4fNetGgRd911l+9+2c9jypQp56zlIEn1gaW0tkqYN4Cx277meKgZi1lNSinCjZKhrsiLObLiE3mcPNbsSb7NbYonLw0Agyx0ftFKnG76zlhFod1N5wbbaBOhTo3U60PQaORXryvV3Llzefjhh7nuuutwOp1cffXVMl5Cxkt/daXGS4o430/tClZYWEhwcLBvOUep/tlZVMLAzadWhhgSEczcNo1rrkFH18Pa/4MDatZ9fdFYNhd0xuxdR0GJWvS866EMVnRw8HVvNWB0FzXHdvxO3uoTSN8OyYREn7kKRlXweOysWq1+ELTssJ71h108/uUOQv31bHthYLVcsz6x2+0cOXKExo0bnzdYqO0s2TYcJS4CwkzkiBMUOYuI8gThKbZjDgklMPzsK6NcLKvVSlxcHDNnzjyjIOTlkJeXR79+/QgKCuKnn37C3//Ca3JJdU9Ff7MyPihPvh41Y95rr5Fqt3OVqwXGn99gT1wYhX5G9AE3YNJHcX/LF6DLPdD2FjBX8L784TXEN52B+7SEyZONonm8sRxpeDEOZRfTb+ZqGgamM6XH677tERH9aNf2wwoeKUH9ipcuNxkvSTWhKuIlma6XrmhZTnXaXpxRz8TEBgyNCD7PI6rZ2rfgwFJyXQ3ZbL2ZA7aeuKwfUiDUod86j5eiBuH83ElNUDmyB+Aq6EKMt4BhA4ZgqOyyzxdACMHevc+SX6Bm/zVaMwP+bxvFDnVee6j5/CtrSPWTvdiFHn+CvAa8pXUOHCUudAYnfoEX/3uxbds29u7dS9euXbFYLEybNg3AN8T9cgsLC2P58uW89957bNiwwbf0siRJUk3yeNV6mBqhoPN68Pqm7GjRaVwQmQI9Jpz3PG63y5eQWta5GREGHTFG+dl+sYrsamzZNEyN3fT6MCIjBxIfd1tNNkuqh2S8JNUXMiklXdEKSmtJJfmbuCuuakd3XJTSaXu/l9zGYXtXEFYoTUi1SM+hODGBaUOOYtUpOPN64M25hnsyPqVxQiwGXfUEO3Z7OhmZX/ju601tKXZ40GkUkqICuLtXDY4sk2pEWW1Ft9ODFgNaDAhvEQAet6A433FJSSmAGTNmsG/fPgwGA506dWLNmjVERNTc32h4eDgvvPBCjV1fkiTpr7xlSSk06DxeX1JKUbRocIH2PCUJXHawF2B3u3ybkvxN+NWGVYjrIIfbw6Yj+ew4XgBAiJ9aADkgIIUWzSueViNJF0vGS1J9UGuTUo0aNeLo0aNnbH/wwQd57733uOaaa1i9enW5fQ888ACzZ8/23U9LS+Pvf/87v/zyCwEBAYwbN45XX30Vna7WPm3pMst3qaM7QvS1YMU9AIdaEC/b0QghXES7l3AUMHi8NM6xMPOqIqylo6G8jhhCXRbiIkLoOGR4tTXJ6cwBwGCIpG2b9/kzuwGwjcRwf35+pOLVPaT6yT/YiFavBSEocBZgd9sJ8GoRdgDBpc4J79ChA1u2bKmClkqSJNVfbq+XA+5wDtosjAox4/Qlk7RoFTdoK+gcsObAu53AXoBNf2p1PpMscH7RXv1xL/PWpxJuyqNvwh80Dz0OgE5Xt1bBkuoOGS9J9UWtzc5s2rSp3LKXf/zxBwMGDPBV3Ae47777fMMUgXLzVj0eD8OGDSM6Opr169eTmZnJHXfcgV6v55VXXrk8T0Kq9fLd6kipEF0NJ6W2/hc2/YfsTDdpjhso9phxWOZwtHSUlMnhQgBHoxQ8tgTcRS1xFXSiS4ydu554v9qaZbdnkJurJn8VbRQTvnSSlqeu1BDsV0uKwkuXnVanwT9I/bKTW+TE5igmwHP6PHFZqlCSJKk6ee1uPB4tm13x3HHiEw7EhJ/aqRjQYq04KZW1G+wFANi06opOfhpFrgp3CQ5mqYvm/L39ZzQO2uvbrj8t6SdJkiSdqdYmpSIjy68U8tprr9G0aVP69Onj2+bv73/O5QuXLl3K7t27Wb58OQ0aNKB9+/a89NJLTJ48mRdffBGDQc6Vl6CgdKRUqL4G/xTcDvjpaXBZ+SH/P1i94Xjdx9Vpe0Kg93gJNkfyjzsyORGm4MrsjCjozE05P3NT92urrVm5uavZvuNu3/0sWwPWHszx3W/WQPb8Secgc1KSJEnVavf7P+P2GvEKMHmdAGj0zdBoI1E0IWiUgoqn77nsAOxJHMInvWZAeg4mjZy2dykKbOrPoXGoBTwQFtobozGKhgmXv+C0JElSXVInPn2cTif/+9//uPvuu8v14MyfP5+IiAhat27NM888Q0lJiW/fhg0baNOmDQ0aNPBtGzRoEIWFhfz5559nvY7D4aCwsLDcTaqf1uYX0X7dn3ycoSZZanSkVP5RcFlxek1YvWpPZ7R2DQCRRSVcuyeVVwbu5GCc+rvvcUTTyJlOdPExYpOSq61ZlsKdAGi1/pjNyRx3DAVgWJsYPru/O9NGtq62a0t1l/CWIIQNt9NZ002RJEmqtwrTT+LGi0Z4fdv05qHoAjsTFmyjrf8PFY+UcqtJqSeib+WjdDUWqtEOujrsf78dpeerK9iTWYRG8YBQvz+kpLxIy5b/xGxuWsMtlCRJqt3qxKfPwoULKSgo4M477/RtGzNmDImJicTGxrJz504mT57Mvn37+OabbwA4ceJEuYQU4Lt/4sSJs17n1VdfZerUqdXzJKRa5adsCyecamFPg6LQOdhcc43JO4wQCgWeWLyefDy2ZaS51NX1zA4XxyLAo1XwukLwWJvitSXQu7WB8c9/TEBoWLU1y+XKBSAhfhxNmz7Bwq93AsdoHh1I9ybhFT9YumIolHYUnNZhIDyFFJx0EJHQsIZaJUmSVH99/OqrHAlw4BQabj26ABRAgKJoUBpaGNNhG6xbAdoW5z5JaVIqVxsAwPDIkNqx4Esd9NmmNDIsdu5qNZ/ecRuhNE+o09Xwis6SJEl1RJ1ISs2ZM4chQ4YQGxvr23b//ff7/t+mTRtiYmLo168fhw4domnTi+uReOaZZ3jsscd89wsLC0lISLj4hku1VlFpvbJJDaOYlNiAoJoYKZV/FD67DWt2Hl9k/4cSbxge5xo8ruO+QyILS1jcXQNeHdaDkwGF9pYd3NNndLUlpJzOXHLz1nD8+CcA7DmpZeLiNRzPU0ciBprqxNuGdJlp/A0YhA67tQSEB6/Xc/4HSZIkSRdECMERh7qqmwcNAw4e5LfkBF8HQVDxcdi9SD24oul7pUkph0Y95qHEKNoE+p/7eOmcCm1qfdJecbt82wIDW6PXh9RQiyRJkuqWWv/t8ujRoyxfvtw3AupcunXrBsDBgwdp2rQp0dHR/P777+WOOXnyJMA561AZjUaMRmMVtFqq7YrdajdWnMlQMwkpgANL4eQu0m29KfGqCSbhUUcnNcouwOQp4bEHnDgMGhRnAKBwrWUdrfJ2EhJ6fwUnvjR79j5DTs4K3/3v/jSzJ/PUVNaU6KCzPUy60mk1BEZE4LAVlP4ey8JSkiRJVe30RYCGOrqgEV+od7RqSB9XlA6aI+q2wJizn6ToJOSpxzgUNSlllPWkLpjb46XI7sZic6FRPCionXc9ui/Hzy8RRZGvqSRJUmXU+qTU3LlziYqKYtiwYRUet337dgBiYtQP4B49evDyyy+TlZVFVFQUAMuWLSMoKIiWLVtWa5ul2q9spFSgtgYDhhI1AVXoicbrziCAX7G7MgBoYLGyt6EDh0FNmDmK1N/ZaKOgVZ9+BIRW3/Q5a/EBAEJCuhIc3JE/fmsMOHnthjZ0axJO44ganOooSZIkSVewsqRUhieI74TgFqGOkFJ0akiv1Skw/G0wBkLKWWLnE7vgg6uhtBaVXVEfZ9TIVfcuhMPtYdBbv5KaW0JK6H46RZwqDWIyxcuElCRJ0gWo1e+YXq+XuXPnMm7cOHS6U/mzQ4cO8dJLL7FlyxZSU1NZtGgRd9xxB1dffTVt27YFYODAgbRs2ZKxY8eyY8cOlixZwnPPPceECRPkaCgJS+mqe4E1MUrK64Uja3Bs+YbdJf3ZWHwbrpKV5BWpCSmtx0uQzUleILgKW1O0dxqOrBGYhJPHp7/I4AcfrbYlm4UQOJzqiMKQmBdJc91BXok6LL1n0wiZkLpC3XnnnSiKulS4wWAgKSmJadOm4Xa7fcfk2fLIKM449aBKDJRatWoViqJQUFBQ9Y0+hyNHjjBmzBhiY2MxmUzEx8czcuRI9u7dW+64xYsX06dPHwIDA/H396dLly7Mmzev3DGpqakoiuLrFKmMF198kebNm2M2mwkNDaV///5s3Lix3DnvueceGjdujJ+fH02bNmXKlCk4z1M4PjMzkzFjxtCsWTM0Gg2PPPJIpdtU5rXXXkNRlDMee+jQIf72t78RGRlJUFAQo0aN8o08LvPyyy/Ts2dP/P39CQkJOev5y36HTr999tlnvv3ffPMNAwYM8F2nR48eLFmy5Lzt/uabbxg4cCDh4eEX/POQpLrG4/HgFgrLXcmst6dzorQmpqKo8YxWp4FOd0LrG0FvOvMEWXvUhJTWACGJOEqTUnLlvQuTnm8jNbeEWHMmT3WZxW0tvgJApwtEo6lg2qRUr1UmXroYMl6S8VJ9j5dq9SfQ8uXLSUtL4+677y633WAwsHz5cgYOHEjz5s15/PHHufHGG/n+++99x2i1WhYvXoxWq6VHjx7cfvvt3HHHHUybNu1yPw2pFsl1uvkhu4DjDvUNq4GxBgKH396Dj69jU3pPfimcgBAC4ckDoHFWAe0zC9iUAks7aPA6I0EYuD37GyYrawkPqL6Eamrqv9ix4268XgeKomPE+/u5e95mHKVTHYP9ZZB1JRs8eDCZmZkcOHCAxx9/nBdffJF//vOf6EuDb5fXRZGzqMbad74gBMDlcjFgwAAsFgvffPMN+/bt4/PPP6dNmzblAr13332XkSNH0qtXLzZu3MjOnTsZPXo048eP54knnrikdjZr1oxZs2axa9cu1q5dS6NGjRg4cCDZ2dkA7N27F6/XywcffMCff/7JW2+9xezZs3n22WcrPK/D4SAyMpLnnnuOdu3aXXC7Nm3axAcffODr2CljtVoZOHAgiqKwcuVK1q1bh9PpZPjw4Xi9p1b9cjqd3Hzzzfz973+v8Dpz584lMzPTd7v++ut9+3799VcGDBjAjz/+yJYtW+jbty/Dhw9n27ZtFZ7TarXSu3dvXn/99Qt+3pJU13g8Htxo0Xld3HDiOw5Gq9P/yxIh2vP1tbnVelQ0vRb3QzvwlNaikiOlLozFpi6W0zxS/dzT6YKICL+WZsnP12SzpFrgXPFSbSHjJRkv1cp4SUjnZLFYBCAsFktNN0WqIkM27xMNVm7z3bIczsvfiHnDhZgSJBZOminevX+5ePfeL8SMUcPEjFHDxB/Nm4tnx7cUree1Fq3ntRZNp78mmj35tZgxaphY9cmcamuSzZYulq9o4rutXjdCJE5eLJKe/UH87b21YsaSvdV27SuFzWYTu3fvFjabraabcsHGjRsnRo4cWW7bgAEDRPfu3UVObo4YfdtoERQcJEx+JtG3Tz+xbvlScfLIISGEEKmpqeK6664TISEhwt/fX7Rs2VL88MMP4siRIwJ1PJXvNm7cOCGEEIWFhWLMmDHC399fREdHizfffFP06dNHPPzww77rJyYmimnTpomxY8eKwMBA32PXrFkjevfuLUwmk4iPjxeTJk0SxcXFQgghtm3bJgCRmpp6zuealpYm9Hq9eOyxx87Y98477whA/Pbbb0II4XsO27Ztu7gXVpz6nFm+fPk5j3njjTdE48aNK33Ov75W51NUVCSSk5PFsmXLznjskiVLhEajKfc5WFBQIBRFEcuWLTvjXHPnzhXBwcFnvQ4gvv3220q3SwghWrZsKaZOnVqpY6vi53G6iv5mZXxQnnw9Lp+8vDzx+AsvizaPzVdjh5uHibdufVC8fdcHYtYDK8TvU56t+AS//1s4XgwT1/28WDRZvcMXD1ndnsvzBOo4t8crftl7Urz+0x6ROHmxeGzeq2L5iiZi69Y7arpp9UZ9jZfy8vLE2LFjRUhIiPDz8xODBw8W+/fv9x0n46WKyXipYnU9XqrVI6Ukqaodtam9Ax2D/HmiUTSRhhoY/VNWS8odhrPwYxyFHwPg5/aiEZAdDF5XMI7sa3EXtSTez8sDs/9Ln9vvruisl8RuV6ddGQwRtGwxA224mkFvGObPNw/24vGBKdV27SuZEIISV8llvwlx6UXI/fz8cDqd3H3X3ezYuoN/f/pv5v+wAITg9nvuw+VSe5EnTJiAw+Hg119/ZdeuXbz++usEBASQkJDA119/DcC+ffvIzMzk7bffBuCxxx5j3bp1LFq0iGXLlrFmzRq2bt16RhtmzJhBu3bt2LZtG88//zyHDh1i8ODB3HjjjezcuZPPP/+ctWvXMnHiRAAiIyPRaDR89dVX5YoFn+6rr77C5XKdtYfvgQceICAggE8//fSSXz9Qe8s+/PBDgoODK+yts1gshIVVz2qboP6Mhg0bRv/+/c/Y53A4UBSl3LR3k8mERqNh7dq1F3WtiIgIunbtykcffVTh76LX66WoqKhan7sk1SVCCP54+yc8QoO2tCaUVmjQB92I1pCEFicxgZkVn8Tt4KB/QzYZ4rB61HM0N5vwkyOlKmXRjnTunLuJz3/bxK0pX9MxYjUAOr1cBKY61VS8VBUxU1m8dOedd7J582YWLVrEhg0bEEIwdOhQGS9VgoyX6n+8VOsLnUtSVSopDcDeb5lIot9lri2WvQ82zWFfahhH7E9icTgQ3jzf7pg8CwAZYQr29FvQ2hrS3rKTO3onExBafW8yQngotu4HwGBM5KvdrdmZrrYlyE9O2atONreNbgu6XfbrbhyzEX/9xS39LYRgxYoVLFmyhCFDhrBw4ULWrVtHbKtYSpw23vu/D+jYsw0/LV3GvckppKWlceONN9KmTRsAmjRp4jtX2YdnVFSUb159UVERH3/8MQsWLKBfv36AOoQ5Njb2jLZce+21PP7447779957L7fddptvjn9ycjLvvPMOffr04f333ycuLo533nmHp556iqlTp9K5c2f69u3Lbbfd5mvX/v37CQ4O9i2acTqDwUCTJk3Yv3//Rb12ZRYvXszo0aMpKSkhJiaGZcuWERERcdZjDx48yLvvvsuMGTMu6Zrn8tlnn7F161Y2bdp01v3du3fHbDYzefJkXnnlFYQQPP3003g8HjIzz/Pl9y+mTZvGtddei7+/P0uXLuXBBx+kuLiYhx566KzHz5gxg+LiYkaNGnXBz0uS6qO8o6n4l/jjMSloRdkXRbV/OS6lgGEFD6AP61LxSdwO7BoDADFGPd92SCLWqK+2WpX1zdFcdYW9kclr6BWz2rfdZDzHSodSlaipeAkuPmY6V7zUs2dPAObPn09CQgILFy7k5ptvlvHSWch46cqJl+RIKemKIYTAVjqn1/9yr7rnssG/r8W98SN+sUzgkKMnHk8hAFEWK4N3HGJPo3zevU7D0QYKXncwkY4srsrbQEp89a2053CcZO263uzbp9ZAyLRGMXPZfpbtVovyxQSfpUiqdEVavHgxAQEBmEwmhgwZwi233MKdd96JTqejW7eyQFEQFhpGUuPGHDh0CICHHnqI6dOn06tXL6ZMmcLOnTsrvM7hw4dxuVx07drVty04OJiUlDNH63Xu3Lnc/R07djBv3jwCAgJ8t0GDBuH1ejlyRF3+fMKECZw4cYL58+fTo0cPvvzyS1q1asWyZcsq/VoYDIbzHjN//vxy7VizZo1vX9++fdm+fTvr169n8ODBjBo1iqysrDPOkZ6ezuDBg7n55pu57777fNtPP+/48eMr1eY1a9aUe9z8+fM5duwYDz/8MPPnz8dkOvvfemRkJF9++SXff/89AQEBBAcHU1BQQMeOHdFcYGHk559/nl69etGhQwcmT57MU089dc46GwsWLGDq1Kl88cUXvhV0K3pNJam+c7lc/PTOO2wxpuJGgynsFwCU0ppQhhMb0CtOtYB5RTxOHKVJKbNWQyM/IwZZ5LzSiuxqwermUeq/EeHXkpz0DxITK/deLNV/lYuXIDw8nJSUFPbs2QPIeEnGS6dcifGSHCklXTFs3lPDHv0vdwCWfxScxeS7G+P2evE4fkO41Ey72eHCqYdPr9GCUHAVdEC4wmgabqHvwAdo1qN3tTUrK+tnnE71zV2r9Sfd1gOADg1DuKZZFDd0jKu2a0vgp/Nj45iN5z+wGq57ofr27cv777+PwWAgNjYWnU7HokWLzvu4e++9l0GDBvHDDz+wdOlSXn31VWbOnMmkSZMupunlmM3lV4MsLi7mgQceOGtPUsOGDX3/DwwMZPjw4QwfPpzp06czaNAgpk+fzoABA0hOTsZisZCRkXFGb6PT6eTQoUMMGjTovG0bMWJEueAzLu7U35LZbCYpKYmkpCS6d+9OcnIyc+bM4ZlnnvEdk5GRQd++fenZsycffvhhuXOfvlpKUFDlpox07ty53OMaNGjAihUryMrKomPHjr7tHo+HX3/9lVmzZuFwONBqtQwcOJBDhw6Rk5ODTqcjJCSE6Ojocr24F6Nbt2689NJLOByOcsPdP/vsM+69916+/PLLckPkK3pNJam+O3z4MHsDQ/nD44/N4aJ/+k4gFqW0fznAU6weGNP27CcQAqw5YMv3JaVkcfPKs7s8pOWVkFFgA8CoVUdMRUYOIjb2ppps2hWhpuKlsmtfCBkvyXhJxksXTialpCuGzXNq5QPT5R4pVZCmtsEbhNu+AY/j1OoIQTYHeYGgePUU7nsJAEV4ua1fezr2aFWtzXKUJqTi4m4jpdlUfvp6F3CMa1OimNQvuVqvLalLvl7sNLrLrSwwOF2LFi1wu91s3LiR2FaxoEBefh4Hjxyh2WnHJiQkMH78eMaPH88zzzzDv//9byZNmuTrQTu9XkGTJk3Q6/Vs2rTJFxhZLBb279/P1VdfXWEbO3bsyO7du89oZ0UURaF58+asX78egJtuuonJkyczc+ZMZs6cWe7Y2bNnU1JSwh133HHe8wYGBhIYGFgNlEkyAAEAAElEQVSpNni9XhwOh+9+eno6ffv2pVOnTsydO/eMHrYLeX5l/Pz8znhcv3792LVrV7ltd911F82bN2fy5Mlo/7KMV9mQ+ZUrV5KVlcWIESMuuB2n2759O6GhoeUCrE8//ZS7776bzz77jGHDhpU7/kJeU0mqb5xOJ2neELa747jl0E/0TxVsTIKySQ9+/iEwcQuENz37Cb64A/aoX4wd4er0IaMcIVUpXq9g6NtrOJxj5eq4dTzZeQv+qNNxdDr5nnQ51Kd4qWz6Xm5uLvv27aNly5a+42S8VDEZL9XfeEkmpaR6TwjBrLQsfs5R6yT5azVoL1ftBFs+fP8ongMrWVd4D7tKrsPr+Vxth8NJYk4hOmwsuFoDHvXDto04Sudjq+iZ8q9qa5bX66bYupfcXLUewvYMHTctWEqJUx2OHuwva0lJ55ecnMzIkSO57777eHHmi2hNWma9+C9iGjRg8AC1x+aRRx5hyJAhNGvWjPz8fH755RdatGgBQGJiIoqisHjxYoYOHYqfnx+BgYGMGzeOJ598krCwMKKiopgyZQoajea8NU8mT55M9+7dmThxIvfeey9ms5ndu3ezbNkyZs2axfbt25kyZQpjx46lZcuWGAwGVq9ezUcffcTkyZMBtYfwjTfe4IknnsBkMjF27Fj0ej3fffcdzz77LNOnT6d169blrrtv374z2tKqVSv0+vJ/R1arlZdffpkRI0YQExNDTk4O7733Hunp6dx8882AGmBdc801JCYmMmPGDN/SxwDR0dEVPv+ynr3i4mKys7PZvn07BoOhXMB7usDAwDOei9lsJjw8vNz2uXPn0qJFCyIjI9mwYQMPP/wwjz76aLkpAmlpaeTl5ZGWlobH4/G1JSkpiYCAAL7//ntOnjxJ9+7dMZlMLFu2jFdeeaVcgdQFCxYwbtw43n77bbp168aJEycANUAMDg4+5/Muu25GhrpgQ9nPIzo6+ryvmSTVFR6PB6dQv/jEOq14S0c5aUq/rGr0Ooio4AtY6qlCu3ZDCCBHSlVWkd3N4RwrADc1W4xZb/Xt8/dvVEOtkuqS0+OlDz74gMDAQJ5++mni4uIYOXIkIOOl08l46QqMl6pkHcB6Si5xXD9sL7T6ljxusHKbGLXt4OW7+OZ5QkwJEvufGipmPbBCzHpghZg5+g4xY9Qw8WunDmJ59+ai9bzWovW81qL5rOtF4uTF4ol7J4lvXp8qvF5vtTXrjz8eE8tXNPHdHv5oukicvFgkTl4skv/xo9h5rKDarn2lqm9LHJcpW+I4MDhQmPxMou/V14p1y5eKk0cOCSGEmDhxomjatKkwGo0iMjJSjB07VuTk5PgeP23aNBEdHS0URalwieOuXbuKp59+2ve4xMRE8dZbb53Rnt9//10MGDBABAQECLPZLNq2bStefvllIYQQ2dnZ4qGHHhKtW7cWAQEBIjAwULRp00bMmDFDeDzll0NfuHChuOqqq4TZbPYtwfzpp5+WO+ZsyzSX3Y4dO3ZG22w2m/jb3/4mYmNjhcFgEDExMWLEiBHi999/9x0zd+7cc57zfM72mMTExPM+7nRnWx558uTJokGDBkKv14vk5GQxc+bMM96fxo0bd9br//LLL0IIIX766SfRvn1738+lXbt2Yvbs2eVe9z59+pz1HGW/F+dyrtdsypQpF/Tc/6oqlji+UsjXo/pt3rxZ3PSPf4nEyYvFf4feLn7p0lHMGDVM/Ouuu8WsB1aIbS8/V/EJpscI69RIseDAXvHgn6miwcptYvT2yxgP1WFHsotF4uTFotXzP4jlK5qK5SuaiOPpn4mCgm013bR6qb7HS8HBwcLPz08MGjRI7N+/37dfxkunyHjpyouXFCGqYG3weqqwsJDg4GAsFkul56FKtc/K3ELG7DxMjFHPffGRDI8KIcF0/sJ7VeLXf8LK6awvuoNNuXF4HFsRXhsg6L3vGGkNXEwbo8WWPgqPNRncZrZNGUSIf/W2b/2GfthsqRiNMQQGtGD8D9eTWQgf392VTomhBBjlIMqqZv9/9s47Psoq+8PP1MwkmVTSgZDQuxTpikgJRUAXQYRFWAFhf4AiimAFWbBgEKWI4iq4K6IrKmJsNKU3IQGkhZIQCAkQkkz61Pv7400GIiEESAgJ9/EzH5n3vfe9576TmfnOueeeU1BAQkICERER10ySWJU5nXWaHGsuNXKCEY5LqDVqAutcYxvJDZKbm0tYWBjz5s1j9OjR5XLNGyE9PZ3u3bvj5eXFzz//jLt71dhCILk1SnvPSn1QHHk/Kp7du3fz1pp9HCvwY/LxL/HMv8Q5XxPuniE4dY9zX8TvtJg269oXeN2Pj0Mf5tV6l3PIDAj0YWnTOhVvfBXF6RSM+3wvsUkZpOVYqOcveLHNZAAe6HoYjeY2V3G+S6jueqkikXpJUhmUh16Sm8kl1Z4su7L/uo5Rz//VDrx9Dqns83D0JwBy7L7YC/YinHmAQGd34G61caYGONPbYc9qTa2cTB5WHa5whxSA1aqEuJrCPuCUcwZpuUqYb90AD+mQkpQPt7DcERsby8qVKzl58iT79u1j+PDhAK4Q99uNn58f69evp3v37uzYsaNSbJBIJHc3drsdJ2o6Zuwiy2DlnK+SL8ThUBwjGk0p23UcdhAOzuuVar713N0YEuzLM+FBFW53VSYpPY91h89TYEln7n0zXQ4ptVovHVKSOwKplyTVBfnrU1LtySlMcO6l1VynZTmSlQJfDGHn8Wbsz3sem0OA2AdA5/gzZLnb2NkIfrpXjc3mB0Cf87/SvEOHCjUrPX0bl9I343Ao+RCGfXKSXNsZAFQqbotDTFKdKb/A2+joaI4dO4Zer6dNmzZs2bLFlTiyMvD39+e1116rtPElEsndizPPhvm3JJxChdGhVH9Ta0JRaWogtC1QAXo357UvYC8AcFXd61vDm5fqhl67vQSAHIuSZ7NlUAr+xgzXcT+/+yrLJInkKqReklQHpFNKUu0xF0ZKmTS30Sm152NIPcCR/GewCyNCKJFJWqHCO9/Kf7qr2V23Ftn5dbBltsVXZeHhSZOp07L1dS5881isacTt/wdCKPdDo6tNrk2Pm1ZNp7r+dK5XQ0ZJScoBZbX+VtxTrVq1Yu/eveVjjkQikVRx0g8kYs+z4kCNpug73NASjb4xzRpm4J68kojAUi5gV6pVFTmlZNW9spFdoDil/NytAHh7t6Fli6VotddOJCyR3E6kXpJUF+QvUEm1xup0kmJRxEQN/W38c085gFOoyXUYsWb/B+FIA8CtsIxpYpCK9PMDcRYoJVzbBVpo3LlrhZqUl3sSIRxotd4EBfblgr0rYKWOvwfL/tGuQseWVH9UyCpOEolEUt4Ip5N9/1mOw68+HnkZ1DcnUuCmAzQIHHTVvgGeJ0A/7OrOTidsfRcuHAGgQGMEZNW963HqYg5f7TnDyYu5aNU2fA15AOh0vuh0PpVrnEQikVRDpFNKUm35+WIm4w6dxlqYyz9Ir7tOj3JCCDYfbMJB8//htB52OaQAArLzOB0AKb4GnJdC8Xbm8MD533ii+yMVblZ+gbJNz83YhA9iB3HyYg5gxdt4m+6LRCKRSCSSGyJx505+cTexx2HgnowDuDkcFFDolFLZ4dIJpaFXCdvxzsXCxn+5nlr0Sh4qg0ZGSpXGvLXx/HgwhccafMtHPX53HddqPSvPKIlEIqnGSKeUpNqyJSPH5ZDy1Kjp7HsbxMT61xE7l3DI/B8AhDMbgCBzLi2SzjNruBqHWwt8z7YnAy113SwMiupAs84Vl5/A4bBw6PBkzGYlp9XZbB/W7D/nOh/uLytjSCQSiURyJ7Ln8GF26WuR7DTRxmnDqSqMclJpcFPZoMnD0OxvUK/n1Z0LCvMgeQZD+6ewuHWAXBkpdT3OZyk5uDrVPOI6plJpZS4piUQiqSCkU0pSbcl3Kkk/n68TzDPhQegqWoTlpcPWd7E5DTiEBuFMx8f5O2no8CywgkpwItiNzOMjKMq70/XeJtw/oG2FmpWRsZ2LF9e6nl+01AegR+Mg/tY6jPvqV14yRIlEIpFIJNfGarPhwAOAYKfV5ZRSoUGHFWreC02uUWmrMJfUvIgn+VD0JDdX0UUyp1TJFNgc7D+TSWqhU8pTnw9OuLftd3h4NECjMVznChKJRCK5GaRTSlJtyS+suuet1VS8Qwog7xIABU4vHNY/seetIw1la5ynxUqGJ2AJAVTohB0vm5mHWtxT4Wbl5BwFlGox3oHPsGqjAzhPm3Bf+jYPqfDxJRKJRCKR3Bx2ux2nUDSMn8OJ44pIKTV20JRSNdemVOr7xtSG7EJNpFOpaOZprFCbqyrPfhXHz3+mUtc7gYfrHgZnDgBubsHSISWRSCQViHRKSaotRZFSxtuROyH7PLn7fubbix+Q5QjBaf3GdconN59zfnkcrh+A/nwfAHqk/04rXSZ1aj5eoWYJ4SQ75zAAO87WYe6Xl7ftyVxSkvJEpZLbQSQSiaS8cTgcOFHhbTNjd9ixuzSNBo3KDppSvsuLqu6plDbLm0XQwccDH52U/yURf15JufB/93yGj1s6ACqVXlbbk0gkkgpGfitJqi1FkVKGio6SyjgNH3TklPk+shzjABBCqdRy76lzmD3zWfBISy6kPIrZoqxOPjpmLPe3jESjrTjH0KlT75GQuAhQ8mrtOats0zPqNIR4G+S2PYlEIpFI7nAcDgdOAYPPfUs+ArQa5YRKh0ZVAFq3a3e2K5FSBWpFa4Qb9dIhVQpZBXZA4ONmBiAkZDA1/B9AoynlHkskEonklpGbyiXVjgKHk33mXHaZc4HbECl1Yh3Ycsmw18RpT8bT8h/UjgsA6OxOkv1VnLX7YBaKQ8pH5NGpVUN0hooNBU89v4Yih5TBUIvDl2oDsGZiZzY+/wC1/GSCc0nZGDVqFCqVCpVKhV6vp169esyaNQu73X5L1/39999RqVRkZmaWj6FlICEhgWHDhhEaGorBYKBmzZoMHDiQo0ePFmsXExND165dMZlMuLu7c++997J8+fJibRITE1GpVMTFxZV5/JkzZ9KoUSM8PDzw9fWlR48e7Nq1q9g1R48eTUREBEajkbp16zJjxgysVmup101JSWHYsGE0aNAAtVrN5MmTy2xTcnIyf//73/H398doNNK8eXP++OMP1/krX/+iR+/evYtdo06dOle1eeutt1znjx07Rrdu3QgKCsJgMBAZGckrr7yCzWYrdp3MzEwmTJhASEgIbm5uNGjQgJ9++qlU+7/99lt69eqFv7//Db8eEsmdjOVSLgU5NtTCidGp5DlSa2uicWuNSu2Lhzqj5O17dgtsmQcHlahtK4ojyyBzSZXI7oR0/rMjEXOeDb3aBjgAaFD/VQIDe5feWSK5AqmXpF6SeunmkMslkmrHsAOn2J6Z43oe5lZKvoVywJZ5ibMFbTmadz/WnM9JE/mACoTAYLNzIEKF3e4DwMOXfuGeEE+M+sEVapMQTgoKlK16ZzT/Ji7Jiws5qQB4u8tte5Ibp3fv3ixbtgyLxcJPP/3EhAkT0Ol0vPjiiyV3KKx8ebuwWq3o9aW/1202Gz179qRhw4Z8++23hISEcPbsWX7++ediQm/hwoVMnjyZadOmsWTJEvR6Pd9//z3jx4/nzz//JDo6+qbtbNCgAYsWLSIyMpL8/Hzmz59Pr169OHHiBAEBARw9ehSn08lHH31EvXr1+PPPPxk7diy5ubmljmuxWAgICOCVV15h/vz5ZbYnIyODzp07061bN37++WcCAgI4fvw4vr6+xdoVvf5FuLldHTkwa9Ysxo4d63puMplc/9bpdDzxxBO0bt0aHx8f9u/fz9ixY3E6nbzxxhuA8hr27NmTwMBAVq1aRVhYGKdPn8bHx6fUOeTm5tKlSxeGDBlSbHyJpKpzYtnvCIcGccXnqc5zEHptJh1rrqNO3tegebeEjhtgwyzXU4tKkfuy6t7VpOdaGfbxToSw0azGEfwNhRULUaHRyMU7yY1zw3rpNiP1ktRLd6ReEpJrYjabBSDMZnNlmyK5ARpsPiCCNsaKe7cfEpOPnBZOp7NiBkqOFeL7SWLrs5PEonEbxIIx34roIf1E9JB+4tsHOomfOrcRk57pKlq8808R/uLXovHUr8WiMcPE/vU/V4w9heTlnRWpqT+I9RsixfoNDUTE9O9F+LQYET4tRjR97RdhsTkqdHxJyeTn54vDhw+L/Pz8yjblhhk5cqQYOHBgsWM9e/YUHTp0EOnp6WLEiBHCy8dLGIwG0a1rd7Ft/VqRevK4EEKIxMRE8dBDDwkfHx/h7u4umjRpIn788UeRkJAgUEL5XI+RI0cKIYTIysoSw4YNE+7u7iI4OFi8++67omvXruKZZ55xjR8eHi5mzZolRowYIUwmk6vvli1bRJcuXYTBYBA1a9YUkyZNEjk5OUIIIWJjYwUgEhMTrznXpKQkodPpxJQpU646t2DBAgGInTt3CiGEaw6xsbE3d2PF5e+Z9evXX7PN3LlzRURERJmv+dd7VRrTpk0TXbp0KbVNSa//XwkPDxfz588vm4GFPPvss8XGXrJkiYiMjBRWq/WGrlNEebweV1Lae1bqg+LI+1H+2PPzxY7n/yPmvfqWGD7yX4q+GNxPLHxqvVj2f4uEeP8eIWZ4CXG0BE2x73Pl3HstheP3d0TQxlgRtDFWXLTYbv9E7nAOJZtF+LQYMfqDFwt1k/L4fVPryjbtrqW66yUfHx9hNBpF7969RXx8vKud1EulI/VS9dZLMo5XUq1wCkG2XQm7/qF1feY3ql1xCZg3zIJ9n3He1gAh7HiIQwAYrHYapaTzc7t8YnyGYk7rB04jnSJ8mfDxClp0r7hQcJstg127e/PnoWcAUGuDcAoNfh56ZvZvwhdj26PXyrf9nYIQAmde3m1/iHKIYjIajVitVkaNGsUff/zBp19+yuc/fQ5C8PfRY11hxhMmTMBisbB582YOHjzI22+/jaenJ7Vq1eKbb5StJceOHSMlJYX3338fgClTprBt2zbWrFnDunXr2LJlC/v27bvKhujoaFq2bElsbCyvvvoqJ0+epHfv3gwaNIgDBw7w1VdfsXXrViZOnAhAQEAAarWaVatW4XA4SpzXqlWrsNlsPP/881edGzduHJ6enqxcufKW7x8oK11Lly7F29ubli1bXrOd2WzGz8+vXMb8K2vWrKFt27YMHjyYwMBAWrVqxccff3xVu99//53AwEAaNmzIP//5Ty5dunRVm7feegt/f39atWrFO++8U+p2hRMnTvDLL7/QtWvXYrZ07NiRCRMmEBQURLNmzXjjjTeu+VpJJNWZz957j188TpKlzqfX2d8AUKFs9RCOS5B+SmmoKyEVgMOCAP4MfYANTS+vhld4js0qSHaB8l0V4aMkNjcYauHndx/1690ZUS0ShcrSS+Whmf6ql9asWcOOHTsQQtC3b1+pl8qA1EvVXy/J7XuSakWuw4mz8N9eRclAK4osZXvcJWcoFvMnWISSw8rTouxlTvVVISwmVEJw/6UtPDd8ZMXaA2Rm/oHDoSRZ9/K6h2xNfwBCfQyM6hxR4eNLbgyRn8+x1m1u+7gN9+1F5X5z2xKEEGzYsIFff/2VPn36sHr1arZt20bt5rUxW8x88P5SWnVsxs/r1jO2YWOSkpIYNGgQzZs3ByAyMtJ1rSLhEBgY6Ao5zs7O5rPPPuOLL76ge/fuACxbtozQ0NCrbHnwwQd57rnnXM/HjBnD8OHDXfkB6tevz4IFC+jatStLliwhLCyMBQsW8MILL/D666/Ttm1bunXrxvDhw112xcfH4+3tTUhIyFXj6fV6IiMjiY+Pv6l7V0RMTAxDhw4lLy+PkJAQ1q1bR40aJRceOHHiBAsXLrylEPjSOHXqFEuWLGHKlCm89NJL7Nmzh6effhq9Xs/IkcpnVu/evfnb3/5GREQEJ0+e5KWXXqJPnz7s2LEDjUb5nH366adp3bo1fn5+bN++nRdffJGUlBTefbf41qJOnTqxb98+LBYLTz31FLNmzSpmy8aNGxk+fDg//fQTJ06c4P/+7/+w2WzMmDGjQuYvkdyJOJ1OkgoKXM91qizAiChcZNOZrBDeBXxqQe2OV1/AbmWjX3uG1xgFBxNch91kTikX5nwbm+IvcuBMJgBebkpS+LDQodSpM74SLZOURGXpJbh5zXQtvdSpUycAVqxYQa1atVi9ejWDBw+WeqkEpF66e/SS/HaSVCuyCqOkdCpVxa0IOh2Qc5FtJ9vx6YVl5OdfgEKHlMbhpHZaFnvrqThiaoawe9O04Dht7QlERNSuGHuuoCiPlNGrB2/unsKLP9cEwMsg80hJbo2YmBg8PT0xGAz06dOHxx57jFGjRqHVamnfvr2rnZ+vH/UiIjh+8gSgfPnOnj2bzp07M2PGDA4cOFDqOKdOncJms9GuXTvXMW9vbxo2bHhV27Zt2xZ7vn//fpYvX46np6frERUVhdPpJCFB+WE2YcIEUlNTWbFiBR07duTrr7+madOmrFu3rsz34nq5GEARm1fasWXLFte5bt26ERcXx/bt2+nduzdDhgzhwoULV10jOTmZ3r17M3jw4GJ7/6+87vjxZfvxtGXLlmL9VqxYASg/flu3bs0bb7xBq1ateOqppxg7diwffvihq+/QoUMZMGAAzZs35+GHHyYmJoY9e/bw+++/u9pMmTKFBx54gBYtWjB+/HjmzZvHwoULsVgsxez46quv2LdvH1988QU//vhjMfHodDoJDAxk6dKltGnThscee4yXX37ZZUtp91QiqU44nU4uOD341tKcNQX3oi5abVMrP2rCNSr4x4/wyIclV99zWDhlLPz+16pp4mHgmfAgdDJSysXsmMM8vTKW5LNLmf/ASzT03gGAVudVyZZJqjpl1Uv+/v40bNiQI0eOAFIvSb10d+slGSklqVak2ZTwR3+dtmK27Tkd8NH9OFKPEpf3FaBGOJUf36EZ2dyTdIF/THYjNXEupCrjD+3fjUc7jsXg4Vn+9hRis2WQmLiE9AxFVJ3JdGNfUqbrfMNg0zV6SioTldFIw317K2XcG6Vbt26uJJahoaFotVrWrFlz3X5jxowhKiqKH3/8kbVr1/Lmm28yb948Jk2adDOmF8PDw6PY85ycHMaNG8fTTz99VdvatS87hU0mE/3796d///7Mnj2bqKgoZs+eTc+ePalfvz5ms5lz585dtdpotVo5efIkUVFR17VtwIABxcRnWFhYMbvr1atHvXr16NChA/Xr1+eTTz4plgT13LlzdOvWjU6dOrF06dJi176yWoqXV9l+QLVt27ZYv6CgIABCQkJo0qRJsbaNGzd2bRUoicjISGrUqMGJEydcq7N/pX379tjtdhITE4sJ5Fq1agHQpEkTHA4HTz31FM899xwajYaQkBB0Op1rNbHIltTUVKxWa6n3VCKpTjgcDpIcvmQJZWueunD7kLrQKXXdgCe7BYta+THYp4YP7zeu+EWxqkbiJWUxsUf4Lrz0SnEclUqDl6lZZZoluQaVpZeKxr4RpF6SeqkIqZfKjnRKSaoFdqdgavwZ9mUpW9cC9RX0p51zAc7/SbYjFCFsCMs+PHM3k6nW4WZzcM4XLBpPQEWgyKRF/ikef7AvmgpenUxJ+ZakM5+4nmdagwF4tE1NnugYTtNQ7wodX3JzqFSqm95Gd7spEgZX0rhxY+x2O7t27aJ2c0XEpGekcyIhgQZXtK1Vqxbjx49n/PjxvPjii3z88cdMmjTJtYJ25R74yMhIdDode/bscQkjs9lMfHw8999/f6k2tm7dmsOHD19lZ2moVCoaNWrE9u3bAXj00UeZNm0a8+bNY968ecXafvjhh+Tl5fHEE09c97omk6lYNZXScDqdxVbIkpOT6datG23atGHZsmWo//IL9EbmV4TRaCyxX+fOnTl27FixY/Hx8YSHh1/zWmfPnuXSpUslhuwXERcXh1qtJjAw8JptnE4nNpsNp9OJRqOhc+fOfPHFFzidTtec4+PjCQkJQa/Xo9fry3xPJZKqjMPhwIGiG/oJjUusq1TKDxCN5jo5bq5wSsmKe8VxOAXx57O5kK185voYLeCEFi2W4u3VEr2+5K1BksqlOumlou17ly5d4tixY8UcHVIvlY7US9VXL0mnlKRaEJedx8qUdNfzxp43HglSJgrMpFgbctrRBUfBfuwFO7Cqla1xBpudPQ1VOCyKR72RJYFe/nkV7pACKLCkAuDl3ZFs1YNs3lsXyKFRsIkWNX0qfHzJ3Un9+vUZOHAgY8eOZfb82Tj1Tj6YuYSQoCB69+gBwOTJk+nTpw8NGjQgIyOD3377jcaNGwMQHh6OSqUiJiaGvn37YjQaMZlMjBw5kqlTp+Ln50dgYCAzZsxArVZfN/px2rRpdOjQgYkTJzJmzBg8PDw4fPgw69atY9GiRcTFxTFjxgxGjBhBkyZN0Ov1bNq0iU8//ZRp06YBygrh3Llzef755zEYDIwYMQKdTsf333/PSy+9xOzZs2nWrPhK+l9FCkDTpk3R6Ypvm83NzWXOnDkMGDCAkJAQ0tLSWLx4McnJyQwePBhQBNYDDzxAeHg40dHRXLx40dU/ODi41PkXrezl5ORw8eJF4uLi0Ov1V63sXcmzzz5Lp06deOONNxgyZAi7d+9m6dKlrtXGnJwcXn/9dQYNGkRwcDAnT57khRdeoF69eq4V0B07drBr1y66deuGyWRix44dPPvss/z97393lUpesWIFOp2O5s2b4+bmxh9//MGLL77IY4895rpP//znP1m0aBHPPPMMkyZN4vjx47zxxhslruReSXp6OklJSZw7p2xfLno9goODr3vPJJI7EYfDgRM1PtYMIlK+41RA4d+xUGS75lopMzNOQ+IWSInDolbySBpkHqliTPlfHN/HncNDm0stUwY4lSgpk6mpdEhJKowr9dJHH32EyWRi+vTphIWFMXDgQEDqpSuReuku1EvlUgewmiJLHFcdfr+UJYI2xoq22w+JjWlmkWd3VMg4qTu2iUXjNohF4zaId//+nIge0k982vdB8Z/eHcVjL98n6s18R4S/+I0InxYjVq1ZL3IzMyrEjr/y55/PivUbIsVbX78qwqfFuB5f/3HmtowvuT7VrcRxEUUljr28vYTBaBDd7n9QbFu/VqSePC6EEGLixImibt26ws3NTQQEBIgRI0aItLQ0V/9Zs2aJ4OBgoVKpSi1x3K5dOzF9+nRXv2uV1N29e7fo2bOn8PT0FB4eHqJFixZizpw5QgghLl68KJ5++mnRrFkz4enpKUwmk2jevLmIjo4WDkfxz4zVq1eL++67T3h4eLhKMK9cubJYm5LKNBc9zpy5+r2Xn58vHnnkEREaGir0er0ICQkRAwYMELt373a1WbZs2TWveT1K6hMeHn7dfj/88INo1qyZcHNzE40aNRJLly51ncvLyxO9evUSAQEBQqfTifDwcDF27FiRmprqarN3717Rvn174e3tLQwGg2jcuLF44403REFBgavNl19+KVq3bu16XZo0aSLeeOONq94P27dvF+3btxdubm4iMjJSzJkzR9jt9lLtv9Y9mzFjxnXnXhrlUeL4bkHej/Ll7C9HRPeXlomo/4sW0UP6uR7zR7wiFo3bIOL+9ULJHRe1F2KGlxAzvMRr/3lRBG2MFf86kXx7jb/D6Rb9m2j88v9EzK9NxPoNka6HzZZT2aZJCqnuesnb21sYjUYRFRUl4uPjXeelXrqM1Et3n15SCVEOtcGrKVlZWXh7e2M2m8u8D1VSOfyaZmbkwQRae7nzU5sGFTOINY/D/4vht601MKrN5Jn/h8WeTevEVI7WzuO9zp2wpD5CsD2NSHUWn781EXUFR0ldurSZw0dewGpVVge+Oj6OtQlNaRRsoo6/B2/+rTm+HtdPMiipeAoKCkhISCAiIgKDoYQS3lWc5JxkMgsyCcgNxWlPQ6VSERR542HTJZGbm0tYWBjz5s1j9OjR5XLNGyE9PZ3u3bvj5eXFzz//jHsV2UIguTVKe89KfVAceT/KD4fdzq5Xv+IVlQNj5nkevLQJHYGofR7D1y+HCOvvtG5wFsO4767u/GYtsGRBnfuYFjSEzwwteK5OEFMjrr115G6j7ez1mNTxvNJhHiqVBr2uBv7+XWnc+M3KNk1SSHXXSxWJ1EuSyqA89JLcviepFuQ7lNI0FRamnrwXlvUjJ2MAdktTCizbsDiU/FXuFhunglU4C0JQ42Rg5noiwkIq3CEFcC5llcshpdcHEHexPgCLh7embkDFJVaXSK7Hrax2xMbGcvToUdq1a4fZbHaVwS0Kcb/d+Pn5sX79ehYvXsyOHTuumaxSIpFIbpVLiaewFBTgMOpRo2gblUqLSqWjVuBROpn/A4auJXe2F7DHqymf3vMOf+QLKLDK7XuFbDhynqOp2ZjzrQR65wPg4VGf9u1+rGTLJJKbR+olSXVBOqUk1YICZ5FTqoIcQUk7wZ5PlsMPe95G7CiJBt0tVtK8HGwObYnN3BoPYUGXl03EPf0rxo6/kJ19SPm/8VUOpN3DxdxkALwMutK6SSR3PNHR0Rw7dgy9Xk+bNm3YsmULNWpUXr4Pf39/XnvttUobXyKR3B2k/Otf4N8NN6uFh09uItNHjQoliZTuzCbwArRuV3d0OsBhJTr8H2zKuJwIOFAv9cCF7ALG/OcPNCobrQMP0MhPqZqs1VStRMASSUlIvSSpDkinlKTKk+dwkm5TnERGTcWsCFrM2ZzM686R3PbAnwDce/Icn3e3Mc9nCHZzGwDur5HDM//6Cp2+BMFYjthsGZjNceTnJwLwyk8GcmyKQ8qgU+NtlCJUcntRFVaKwuUXvvlYqVatWrF3b+WUfpZIJJLKwmw282tIKBn6FMKTzQTlZZDp4w+FTim9uwp8I+CeYVd3tiuOqGytsl1mRKg/HX08eShAVt+9kGVBCOhZZweP1l/lOq7T+1aiVRLJrSP1kqS6IJ1SkirNmguZ/N/hROyFv38rKkx9694QjpifQtiV1TW9XRCQk0+6lwZh9SVQlU1U0hr6dfhbhTukhHDwx94h5OWdAkClCSTHZsLHXccTHevQPsIPvVaG60sqGZmtUCKRSG6IM2fOsFcbzi5rOPdrfsRZWEEr302LOxDY6EH4+7SSO9sLALCqlDyS/QK8ecBP5vcCyMq3AVDHJxMAd/cIPD0bE157bCVaJZFIJJIipFNKUqXZlpHtckgZ1Wp6+leMADtz3h2L+d8gFNHnZrOS6wZJ/mqcZwKoYU3Dx56FybfiV93y8hJcDikPz5ZccDwEQLifO1N6VlCSd4lEIpFIJBWKw+HgolPJB6lz2hCF60vuGiVxrN7tGlHQ6acgZT8AFo3ilNKr5OJUijmfN386SkJaLgCeekXDhYQMpk74uMo0TSKRSCRXIJ1SkipNXmEuqVciQ5gYHlT+AyTthN1LKchvf4VDys5F3xymNe/EpYvNEA4TnUJz6dDuMeq371T+NvwFi+W88g9tBH9fPQa7U/HKecktexKJRCKRVFnsdjuOwj3QrYTTFSmFULbvqbUlyPb0BFjQmqLw1AK14sCqsBybVYhv9yWzZv856vmc4qV2q6ltugCATisjyCQSieROQjqlJFWavMKqex5aTcUM8NscxKnNWO0tAfDNtdLq9Bn+8YyJzBN/IzAnk4a5+3jxjVfQVLAAtNtzSE7+gjNnlgNgtnpjdwrUKvDQa+nfIrRCx5dIJBKJRFJxOBwOHKhBCFR2C3l6xcHkFBrUgEZXklPqFCBA4wZ+kVgMPgC4VVCOzapEZp4VgMFNYqnrmeg67uFRv5IskkgkEklJSKeUpEpT5JRyr6BcUrbMNC7kNkQ48wAwWm1c8AFHYXh9c3sCHdWnK9whBZCS8g0nTr7tep5uVbbqTXqwPs/KbXuSOwSZSkoikUhujrzkLJyo6JCxm4KCTFJ9jAA4hL7QKVVCRHRhgnOCm8PYDVi3HAS7AzcZKUV2gR2AQE/l/zVrjiQs9DE8PRtWplkSiUQi+QvSKSWp0rgipSpgRVAIwcpjI7mUfQKndRsAdo2VlV3cKMhsC0Bw+knC2jQr97FLosCSAoCXV0s8vbvx3a57gCxMBvk2llQ+KuQPIIlEIrlZrOdyyP0jBYfQEmBNKzyqQ6V2x90YRoh+L16+fld3tBcggL+HPsWuzQfIKdRFbhW0WFcV+PqPM3y6LZGzGcqCol6dD07w9mopHVISiURyByJ/zUqqJBankyM5BaRalIoq3hWwfS8/I4f0nFSc1qOuY590DiUxZxSkQyOdmRfefhOvgArIZVUCNlsmAPsuNOPNVZFAFgBeBplLSiKRSCSSqkz2mfM4cOJAjQYlskfn0QN3tIwJfhYQoFt8dUe7hYs6Pza4N4RCh1SIm45A/d0r8f+9JYFTFy/RteY2TPpcDKozAGg0HpVsmUQikUhK4u5dRpFUaR7ff4ree+M5XaDkC4hwdyvfATKTMK//N8J5CYCw9Cyc2hRSPHzR4ODJS98wNSIb78BgVKqKjRBJTf2e3XsGkpLyNQBHC/Ocq1UQ5mOkQ6R/hY4vkYwaNQqVSoVKpUKv11OvXj1mzZqF3W6/3KiEt4E1345wXntD3++//45KpSIzM7P8jb4GCQkJDBs2jNDQUAwGAzVr1mTgwIEcPXq0WLuYmBi6du2KyWTC3d2de++9l+XLlxdrk5iYiEqlIi4urszjz5w5k0aNGuHh4YGvry89evRg165dxa45evRoIiIiMBqN1K1blxkzZmC1Wku9bkpKCsOGDaNBgwao1WomT55cJnscDgevvvpqsfH+9a9/IcTl1+3bb7+lV69e+Pv7X3O+J0+e5JFHHiEgIAAvLy+GDBnC+fPnb3heBw4c4L777sNgMFCrVi3mzp173Tls3ryZ/v37ExoaikqlYvXq1WWau0RypyCEIPaL/+JQCTydpwi2nio8o0GFDVfOqOAWV3e2F1CgViruGdQqdrRvzPb2je/qSKnMfCttg+J4vNF3PBS5FhwXAdDra1SyZZLqTpn00k0g9ZLUS9VdL92931iSKs3hnHwAahp0/D3En7BrlUm+GZwOWP4Qmet+RjiVcYLNuZwJKkA4PDFixZiXgcHTs/zGLIXTSUvJzv4TALXajQMXlPxRa5+9n23TH6S2v/ttsUNyd9O7d29SUlI4fvw4zz33HDNnzuSdd94ptU/mhTyy0wtui33XEyEANpuNnj17Yjab+fbbbzl27BhfffUVzZs3Lyb0Fi5cyMCBA+ncuTO7du3iwIEDDB06lPHjx/P888/fkp0NGjRg0aJFHDx4kK1bt1KnTh169erFxYvKj6ajR4/idDr56KOPOHToEPPnz+fDDz/kpZdeKvW6FouFgIAAXnnlFVq2bFlme95++22WLFnCokWLOHLkCG+//TZz585l4cKFrja5ubl06dKFt99+u8Rr5Obm0qtXL1QqFRs3bmTbtm1YrVb69++Ps7BCalnmlZWVRa9evQgPD2fv3r288847zJw5k6VLl5Y6h9zcXFq2bMnixSVEkUgkVYDYdev4xVPPp8LOQ/HbqJFVdEaDARvc9zxMPQEhJTmlLFhcTik1Ee5uGO/SJOe5FjsnL+Zgzrfhb8gAwMOjATVrjqR+/Vfw8ir7Z6NEcrPcjF66nUi9JPXSHamXhOSamM1mAQiz2VzZpkj+Qs3f4kTQxliRnG8p/4unnRBihpf44/G/iXlD/y6ih/QTHw9oJe79qKmIfP190ffZReKLV54XaWdOl//YJbBlayexfkOk2HnwE7H+YKyImB4jwqfFiPPm/NsyvqR8yM/PF4cPHxb5+VXvdRs5cqQYOHBgsWM9e/YUHTp0EOnp6WLEiBHC28dbGIwG0e3BB8W29WtFyol4cT7RLPbvPiweeugh4ePjI9zd3UWTJk3Ejz/+KBISEgRKXnTXY+TIkUIIIbKyssSwYcOEu7u7CA4OFu+++67o2rWreOaZZ1zjh4eHi1mzZokRI0YIk8nk6rtlyxbRpUsXYTAYRM2aNcWkSZNETk6OEEKI2NhYAYjExMRrzjUpKUnodDoxZcqUq84tWLBAAGLnzp1CCOGaQ2xs7E3f26LvmfXr11+zzdy5c0VERESZr/nXe1Ua/fr1E08++WSxY3/729/E8OHDr2p7rfn++uuvQq1WF/uuzMzMFCqVSqxbt+6aY/91Xh988IHw9fUVFsvlz/Vp06aJhg0blmkuQggBiO+++67M7UujtPes1AfFkffj1ljx4Yeiy4v/FeHTYsSHvXuIpf17iOgh/cT7T34iYibMEWLnh1d3ykgS4v1WQsyqIQ7ObS2CNsaKFlsP3n7j7xByCmyi1ay1InxajOj51nzx7pcPifUbIsXx429VtmmSG6S66yUfHx9hNBpF7969RXx8vKtdYmKi1EulIPVS9dZLd+dSiqRKY3U6sRWGSrqXx2qgEHAuFo79Akd+IPfX91iROoMd2tYIZy4An3aoy6Xzo7k3OY1/De3A4/96B/+atW997FJwOPLIzT2J3a4smU78Rs3oz5Mp2g3lZZS5pKo6QghsFsdtf4grQo1vFqPRiNVqZdSoUfzxxx8s/2o5n//0OULl5O+jx2KzKfnepr40BYvFwubNmzl48CBvv/02np6e1KpVi2+++QaAY8eOkZKSwvvvvw/AlClT2LZtG2vWrGHdunVs2bKFffv2XWVDdHQ0LVu2JDY2lldffZWTJ0/Su3dvBg0axIEDB/jqq6/YunUrEydOBCAgIAC1Ws2qVatwOBwlzmvVqlXYbLYSV/jGjRuHp6cnK1euvOX7B8pq5dKlS/H29i51tc5sNuPnV0KC43KgU6dObNiwgfj4eAD279/P1q1b6dOnT5mvYbFYUKlUuLld3kZtMBhQq9Vs3br1mv3+Oq8dO3Zw//33o9frXceioqI4duwYGRkZNzItiaRK4XA4sAolN6bJacfpSgugRqu1gUZ/dafT2yD9JDisrkipu3nL3ulLeaTnWqntdYZp9y6kRcBhAHR6meKgOlBZeqk8NNNf9dKaNWvYsWMHQgj69u3r0ksTJkyQeukaSL1U/fXS3ZsFUVJlKaq4B+XklNq7DGKedT09kvMo57MOIxyprmM5tobUKvCnbeYGagaOuvUxr4PDkce27Q9gs11yHcuzu+PnoSfc350HGgRi0JV/cnfJ7cVudbL0mU23fdyn3u+Kzu3m/n6EEGzYsIFff/2VPn36sHr1arZt20Zky0gu5V9i8b8X0aZxW35Zt56BA0ZxNvkMQx4bTPPmzQGIjIx0XavoCzYwMBAfHx8AsrOz+eyzz/jiiy/o3r07AMuWLSM0NPQqWx588EGee+451/MxY8YwfPhwV36A+vXrs2DBArp27cqSJUsICwtjwYIFvPDCC7z++uu0bduWbt26MXz4cJdd8fHxeHt7ExISctV4er2eyMhIlyC5WWJiYhg6dCh5eXmEhISwbt06atQoOdfJiRMnWLhwIdHR0bc05rWYPn06WVlZNGrUCI1Gg8PhYM6cOQwfPrzM1+jQoQMeHh5MmzaNN954AyEE06dPx+FwkJKSUmKfkuaVmppKREREsXZBQUGuc76+vjcxQ4nkzsdut+MszKjh5XBiLvRJqVQaJel5SU4pe+HW6MgHKOi+AOIzcFPfvVVQzfnKD/vmQTkAaLXe+Pl1ITiof2WaJSknKksvwc1rpmvppU6dOgGwYsUKatWqxerVqxk8eDBJSUkMGjRI6qUrkHrp7tFLd++SiqTKklvolNKpVOjLYVUwfks8azMn83PGC/yQH82unOEIZyYA/jl2Uv0ukauqgXteBoHhEfiF1brlMa9Hfv6ZQoeUCp3On3TnA+Ta3BnQMpTv/q8zz/SoX+E2SCRXEhMTg6enJwaDgT59+vDYY48xatQotFot7du3d7Xz8/ejXkQEx0+eBOCpJ//J7Nmz6dy5MzNmzODAgQOljnPq1ClsNhvt2rVzHfP29qZhw6vLeLdt27bY8/3797N8+XI8PT1dj6ioKJxOJwkJCYCyEpmamsqKFSvo2LEjX3/9NU2bNmXdunVlvhdXrkxdixUrVhSzY8uWLa5z3bp1Iy4uju3bt9O7d2+GDBnChQsXrrpGcnIyvXv3ZvDgwYwdO9Z1/Mrrjh8/vkw2b9mypVi/FStWAPC///2PFStW8MUXX7Bv3z4+++wzoqOj+eyzz8p0XVBWVL/++mt++OEHPD098fb2JjMzk9atW6Mu4TP6WvO62TlIJFUdh8OBs7BahNrpvCJSSoNGZQdtCcVc7BYKVHqW+3bly8IcVIa7MFIq3+rgf3vOsDo2GQBvg5Ivx9u7Nc2bLcDN7fZUSJZIiiirXvL396dhw4YcOXIEgKefflrqJamXyjSvm53DnYyMlJJUGZxCsOD0efZm5QHcernj5H04kvez4Vg3nBRuhbOAEA4QygrkPYln+KmDCmE30b5jE5547JlbG7OM2Aq37On0tVmRMJf9Z8xAgdyyV83Q6tU89X7XShn3RunWrRtLlixBr9cTGhqKVqtlzZo11+03Yvgo/vbYAH788UfWrl3Lm2++ybx585g0adLNmF4MD4/i5b1zcnIYN24cTz/99FVta9e+vN3WZDLRv39/+vfvz+zZs4mKimL27Nn07NmT+vXrYzabOXfu3FWrjVarlZMnTxIVFXVd2wYMGFBMfIaFhRWzu169etSrV48OHTpQv359PvnkE1588UVXm3PnztGtWzc6dep0VeLKK6u5eHl5XdcWUATplf2KVtSmTp3K9OnTGTp0KADNmzfn9OnTvPnmm4wcObJM1wbo1asXJ0+eJC0tDa1Wi4+PD8HBwcVWeq83r+Dg4GIVaADX8+DgYOrUqVPiHCSSqo690Cl1j3k/p729KdCpUFLHaFCrrhEpZcsnJqAr0z0fhFRlu4aX9u6LoP7fH2eYseYQRm0eLWokEG5SflBrtbenGI3k9lBZeqlo7BvhZvXSmDFjiIqKknpJ6qXrzqs66iXplJJUGeKy83gr4fKWunu8bqHqnCUHlvUlu8AXJ4vRqix0fqwZGr2Gs++9xQEVIARC5eSsnwHnWT+6Ngi49UmUgby802RnHQTAbNHz66HLHzp1Azyu1U1SBVGpVDe9je52UyQMrqRx48bY7XZ27dpFZEvlyzT9UjonEhJocEXbWrVqMX78eMaPH8+LL77Ixx9/zKRJk1wraFfmK4iMjESn07Fnzx6XMDKbzcTHx3P//feXamPr1q05fPjwVXaWhkqlolGjRmzfvh2ARx99lGnTpjFv3jzmzZtXrO2HH35IXl4eTzzxxHWvazKZMJlMZbLB6XRisVhcz5OTk+nWrRtt2rRh2bJlV62e3cj8ijAajSX2y8vLu+r6Go3GVQXmRikKq9+4cSMXLlxgwIABrnPXm1fHjh15+eWXsdls6HSKA37dunU0bNjQFYp+M3OXSO5k8tOyyTbbEcJJ5/Qd5OlBcUipUKndMarM14yUStMr74sIo577fU08HnL35U86l6lUSX7+3s+oYzriOq7Vlu0HqKRqUJ30UtH2vUuXLnHs2DGaNGniaif1UulIvaRQHfWSdEpJqgwZNuWDONRNx6TwIPrW8L75i+VeAHs+6Y57APDx19LsgVrkJSVwNnk31KyBXeNg/BONUafX57Gz39Ohfs9ymEXpnL/wE3/+eXlFpMChON76NQ/h7x3CaR9RMcn7JJKboX79+gwcOJCxY8fy5ntvYtPZWDxnMSFBQUT1UPIbvPTaCzzy6AAaNGhARkYGv/32G40bNwYgPDwclUpFTEwMffv2xWg0YjKZGDlyJFOnTsXPz4/AwEBmzJiBWq1GpSo9X8q0adPo0KEDEydOZMyYMXh4eHD48GHWrVvHokWLiIuLY8aMGYwYMYImTZqg1+vZtGkTn376KdOmTQOUFcK5c+fy/PPPYzAYGDFiBDqdju+//56XXnqJ2bNn06xZs2LjHjt27CpbmjZt6hIKReTm5jJnzhwGDBhASEgIaWlpLF68mOTkZAYPHgwoQuSBBx4gPDyc6OhoV+ljUFa/SqNoVSwnJ4eLFy8SFxeHXq8vJnj/Sv/+/ZkzZw61a9emadOmxMbG8u677/Lkk0+62qSnp5OUlMS5c+eKzTc4ONhl07Jly2jcuDEBAQHs2LGDZ555hmeffda1jaAs8xo2bBivv/46o0ePZtq0afz555+8//77zJ8/v9R55+TkcOLECdfzhIQE4uLi8PPzK7biK5HciZya/xt6jQa104EaJaGy1r0Xel06nbxX0tD4O+hLWIW3F7gSnHfw8eTthhWfWuBOJKvADkCYp7Jo6enREJ3Ol9DQIZVplkRSjCv10kcffYTJZGL69OmEhYUxcOBAACZPnkyfPn2kXkLqpbtSL5VLHcBqiixxfGex5nyGCNoYKwbujb9+4+uQdfgP8dk/V4pF4zaIReM2iF+WHhQFuTni/cEDRPSQfiJ6SD/x6qieInzaD+K5KTPEun9/UA4zuD5Hj70u1m+IFL9vukds39FTvPHNByJ8Woz4ePPJ2zK+pOKobiWOiygqcezl7SUMRoN4oPsDYtv6tSLlRLw4n2gWY/4xTtStW1e4ubmJgIAAMWLECJGWlubqP2vWLBEcHCxUKlWpJY7btWsnpk+f7uoXHh4u5s+ff5U9u3fvFj179hSenp7Cw8NDtGjRQsyZM0cIIcTFixfF008/LZo1ayY8PT2FyWQSzZs3F9HR0cLhcBS7zurVq8V9990nPDw8XCWYV65cWaxNSWWaix5nzpy5yrb8/HzxyCOPiNDQUKHX60VISIgYMGCA2L17t6vNsmXLrnnN61FSn/Dw8FL7ZGVliWeeeUbUrl1bGAwGERkZKV5++eViZYavZdOMGTNcbaZNmyaCgoKETqcT9evXF/PmzRNOp/OG57V//37RpUsX4ebmJsLCwsRbb12/nPtvv/1W4nWL/p5ulvIocXy3IO/HzXN0aoyY9+pbotXzK1z6Y+FT68Wyp58Q4vPBQqx9TQi77XKHtBPKsQ/vE29/+owI2hgrXjiaVHkTqCR2nkwTU7+OE/e9vVGET/tBrNvQUKzfECny85Mr2zTJLVLd9ZK3t7cwGo0iKipKxMdf/k0zceJEqZcKkXrp7tNLKiHKoTZ4NSUrKwtvb2/MZnOZ96FKKo4vUy4x+egZHvQz8UXLurd0rQOrfmPLeoEQNtRqO93/0ZCCrBOs/3gRABqHkz0N8tjmnMqXT3WgQ+TtCYnff2AcaWnrSbD9H7N/a+Q6PndQC4bce3euglYXCgoKSEhIICIiAoPBUNnmlDvnc8+Tlp+Gn5svqgu5AKi1gWj1WvxCbm3baW5uLmFhYcybN4/Ro0eXh7k3RHp6Ot27d8fLy4uff/4Zd/db2DosqTKU9p6V+qA48n7cHL9+8AHxKblkqHJxxu/FJJRtewbfZzEZPuaJ16PBO6x4p2/GwMGvAZgd8RSLag9nXM0AXq8fdvUA1Zj+C7dyMNnMk00/p33IH2jVyhaarvcfQKuVqQ6qMtVdL1UkUi9JKoPy0Ety+56kylBUdc9Dcwt7yu0WOPA/MmNPY8uz4bDsBSDmiq3QQZk5NE49z9JeIXAK/D2uXzniVsnNPcmFi7+4ckltOXU5jNVk0NI6vOqV9pRIbpbY2FiOHj1Ku3btMJvNzJo1C8AV4n678fPzY/369SxevJgdO3a4Si9LJBLJzeJ0OtmRep5zeOOeoeLvh0+zqXFtVCgax1NrKTnBeV668v8GvbGE3g8C9OrSt+pURy7lWABBx9B9qFWKPjSZmqHRyB/BkrsHqZck1QXplJJUGbLsSk4pT+0tlDz+81tYMxFL7mQc1sOuwyohUAmBzuEkIs3MJRMIuxc6HNSpUfErboePTCMrK9b1/HSmkjvqh4ldaBRiQqe5+8o8S6oY1/pNdJOxuNHR0Rw7dgy9Xk+bNm3YsmWLKylkZeDv789rr71WaeNLJJLqhcPh4CKerLU1pEnBKZxFjiWV4pS6R5sN2hKcUg6r8v8WQ7Do7oFzl3AroZR4dSe7wI5WbVeqEwId2q/F3b3OdXPpSCTVDamXJNUB6ZSS3PGsSzMz8UiSyykVbrj5yKW85NOcyO1Lck4kCCVKqufBBFQ4STdBQpCK2HqwuZEH3ueb0tsjocIdQkIIcnOPA+Bw60NyXkMSzUpkVKiPQTqkJFUCVaFXStl8cmu0atWKvXv33rJNEolEcqficDjIE4qe8XJacbp8UsoxrcpacqSUvYCtPq3YkhfIHyhbpd3ukkipPKudxb+dID3XSo7VjqeuwHXO3T0ClUrqJcndhdRLkuqCdEpJ7njWXcrCXOiQ0qtU3O9XtrKhJbErrgaHssYgRDIAWgfE1hPMf1iDQ61C7zCQceZJREEt5gYeosuA3uUyh9Kw2804HDkATPyxO1anIkLdtGq8jLrSukokVQCZtlAikUj+isPhwFHowq8t7GR7hAAghOJY0WADjdvVHe0WRjd5A3OuCVCcMj66W0hrUIX45c9UFv92klqms7zc7ks89XkAaDSe0iElkUgkVRj5CS6548krzCX1bHgQh7o0o7XXzW+ny8hUYc1ajjXnfwBc9LZw8v96M3HvJAYnDKbL6UE4C2rjrnYyeMo0Quo1LJc5lIQQTg4fmc4fe5WyxSqNH1anHm+jjtFdIljy99YySkpS5ZEuKYmkZDZv3kz//v0JDQ1FpVKxevXqYueFELz22muEhIRgNBrp0aMHx48fL9YmPT2d4cOH4+XlhY+PD6NHjyYnJ6dYmwMHDnDfffdhMBioVasWc+fOvcqWr7/+mkaNGmEwGGjevDk//fRTuc9XUhybuQCHUOFlM1MjbxcHQgsXoYTiYDJqc6CEbXk2ux2zTlmceyLUnxcignk48O7IO3kx2wJAv3p/EuGdRIAxDQBPj/qVaZZEIpFIbhH5i1dyx1PklApy02HS3uRq4IkN8N9HyMhMQzgzAFA5BQfqZnEu7jBRpsYUCEhyKsLOS1/xofC5ucdJSfmavLyTAAhdEwBq+7nz6kNNeLBRUIXbIJGUP9INJZGUhdzcXFq2bMnixYtLPD937lwWLFjAhx9+yK5du/Dw8CAqKoqCgstbloYPH86hQ4dYt24dMTExbN68maeeesp1Pisri169ehEeHs7evXt55513mDlzJkuXLnW12b59O48//jijR48mNjaWhx9+mIcffpg///yz4iYvIWNDIk7UhBWkoBFWUCmfnb5+Nejj8yZ+hosl9st3Ol3//lf9MKbUCb55bVTFyCqwAVDTR8kjFRr6GG1af0WrVv+pTLMkEolEcovI7XuSO54ip5T7rUQNbXkXTm8l39oGAP8cO6GZp/myhzu2I//gcUM2KdZ7cBRWval5G6oJWyypAGj1tTmaP4F9J0KBDEwG+baUSCSS6k6fPn3o06dPieeEELz33nu88sorripK//nPfwgKCmL16tUMHTqUI0eO8Msvv7Bnzx7atm0LwMKFC+nbty/R0dGEhoayYsUKrFYrn376KXq9nqZNmxIXF8e7777rcl69//779O7dm6lTpwLwr3/9i3Xr1rFo0SI+/PDD23An7k4unb6AExUaUZiegCBU3gPp6rmASMMe0Plfbuyww7pXIeM0BflmQMndp79Lknqvjk1m3rpjZObm0cTvGF7aswB4ejbGx6dtJVsnkUgkkltFRkpJ7njyClcF3W+husyp8yFsuPRP7EJZZfMoKOBEmIocEcARgydnAQcaDNgIsFxkYJ2KdQzl55/lwoVfADht9ufNDUZ+PaxEcAWaSsghIZHc4ahuOb25RCIpIiEhgdTUVHr06OE65u3tTfv27dmxYwcAO3bswMfHx+WQAujRowdqtZpdu3a52tx///3o9ZcTZkdFRXHs2DEyMjJcba4cp6hN0TglYbFYyMrKKvaQlJ2c9EtkX0rBgQqdU9ElqPSo1J5o9TqIuB96zLzc4cwu2PkBHPuRfKFEVBnUqrum0tyXe5I4k55P95o/8VzbD/BQKdWTdTqfyjVMIpFIJOWCDMmQ3LHkOZwczM7jvEURbF43GZ5utzn45eSDFORtRtiV1bWTITZiWtbEeqkrOux00iXiKwoIyj1DmBYGPFBxpUwvXPiFg39OcD0/l6Ns0+vbPJjIGp48dm+tChtbIqlortq8J3fzSSQ3TGqqEkkbFFR8G3dQUJDrXGpqKoGBgcXOa7Va/Pz8irWJiIi46hpF53x9fUlNTS11nJJ48803ef31129iZhKAjIsXsGgcuOdnMPDYjyQG+qFSKRpH7RcGI/9dvIO1ME+Yd20KOr8EuWC8i3JOmvOV7Xo96ueDEwyGmpg8G+Pv17WSLZNIJBJJeSCdUpI7lsfiTrInK9f1vJ77zUUQZaTkYbUcczmkEIIfmgeQfGksUbqj+LodxMORh/vxA4x8az41Iio2YWZW9kFAqRajd6vFjnPtABh3f11a1vKp0LElEolEIrlVXnzxRaZMmeJ6npWVRa1ackGlLKTEx7NsxUouuXvgdf4kOmX3HkKlRQVotCU4m+xKgu8ZEU/xUW5jAAy3ED1eVciz2olLyiQtR5m/ya0Aez7UjZxCcPDASrZOIpFIJOVF9f9Gk1RZDufmA1DX6MbosBqEuOlu/CIX48mN24BwKquMtdLMaNRnuWTwwYCddvaDNNBl4JaaBICbV8VXsLHblHwQR7P7MWz1P9l/vgYA3sabmJ9EchsYNWoUKpWyVUSv11OvXj1mzZqF3W4voXXZQ6N+//13VCoVmZmZ5Wbr9UhISGDYsGGEhoZiMBioWbMmAwcO5OjRo8XaxcTE0LVrV0wmE+7u7tx7770sX768WJvExERUKhVxcXFlHn/mzJk0atQIDw8PfH196dGjh2urVdE1R48eTUREBEajkbp16zJjxgysVmup101JSWHYsGE0aNAAtVrN5MmTy2RPdnY2kydPJjw8HKPRSKdOndizZ0+xNjk5OUycOJGaNWtiNBpp0qTJVbmGxo0bR926dTEajQQEBJR4T5OSkujXrx/u7u4EBgYyderUa/wNwbZt29Bqtdxzzz3XncO3335Lr1698Pf3v+HX404lODgYgPPnzxc7fv78ede54OBgLly4UOy83W4nPT29WJuSrnHlGNdqU3S+JNzc3PDy8ir2kJSNpJ07OSN8+N7ajBynFqda2YInDEagdKfUzx5NXYc6+XhWvLGVzIQV+xj2710EucUyvNH/ELYTAGi18u9NcmdyY3qp7Ei9JPVSdddL0ikluSNxCEFuYYLz71vXZ06DmjeeO8Gai/joAcy/fI4QSsSVf24BmSY7TrsXRmsWmafSyDh4DE12JiqVGoNHxYk8IRxkZR0g7dLvAMRfVOajVatoF+FHLT/3ChtbIrlVevfuTUpKCsePH+e5555j5syZvPPOO5VtlovriRAAm81Gz549MZvNfPvttxw7doyvvvqK5s2bFxN6CxcuZODAgXTu3Jldu3Zx4MABhg4dyvjx43n++edvyc4GDRqwaNEiDh48yNatW6lTpw69evXi4kWl0tbRo0dxOp189NFHHDp0iPnz5/Phhx/y0ksvlXpdi8VCQEAAr7zyCi1btiyzPWPGjGHdunX897//5eDBg/Tq1YsePXqQnJzsajNlyhR++eUXPv/8c44cOcLkyZOZOHEia9ascbVp06YNy5Yt48iRI/z6668IIejVqxcOhxIG4nA46NevH1arle3bt/PZZ5+xfPlyXnvt6q3SmZmZPPHEE3Tv3r1Mc8jNzaVLly68/fbbZZ73nU5ERATBwcFs2LDBdSwrK4tdu3bRsWNHADp27EhmZiZ79+51tdm4cSNOp5P27du72mzevBmbzeZqs27dOho2bIivr6+rzZXjFLUpGkdSvtitNrKEAQCDsOMs1DZqlIUpta6ETQx2peKiRaW0+eaeuixsXPs2WFu5HL+gLCiOa/FfHqy9FYc9HQA3N1mdWHLnIvWS1EtSL90EQnJNzGazAITZbK5sU+46Mq02EbQxVgRtjBUFDsdNXcN8/Kj49/ivxcKxP4h5Q4eJ6CH9xPr294ie85qKurPfEg89HS2+e7K9+H7a38UP898S+9f/XM6zKM7JU++L9RsiXY/HF7wlwqfFiBMXsit0XMmdQX5+vjh8+LDIz8+vbFNumJEjR4qBAwcWO9azZ0/RoUMHkZ6eLkaMGCG8fbyFwWgQD/R4QGxbv1aknIgX5xMzRezOQ+Khhx4SPj4+wt3dXTRp0kT8+OOPIiEhQaCEVbkeI0eOFEIIkZWVJYYNGybc3d1FcHCwePfdd0XXrl3FM8884xo/PDxczJo1S4wYMUKYTCZX3y1btoguXboIg8EgatasKSZNmiRycnKEEELExsYKQCQmJl5zrklJSUKn04kpU6ZcdW7BggUCEDt37hRCCNccYmNjb/reFn3PrF+//ppt5s6dKyIiIsp8zb/eq2uRl5cnNBqNiImJKXa8devW4uWXX3Y9b9q0qZg1a1apbf7K/v37BSBOnDghhBDip59+Emq1WqSmprraLFmyRHh5eQmLxVKs72OPPSZeeeUVMWPGDNGyZcvrzqOI8ng9rqS092x56IPs7GwRGxvr+rt89913RWxsrDh9+rQQQoi33npL+Pj4iO+//14cOHBADBw4UERERBSzp3fv3qJVq1Zi165dYuvWraJ+/fri8ccfd53PzMwUQUFBYsSIEeLPP/8UX375pXB3dxcfffSRq822bduEVqsV0dHR4siRI2LGjBlCp9OJgwcPlnkuUi+Vnd8/WCIeffkDUeeFNWL2iMfFJ/2iRPSQfmLBqJli0bgNIn3Z01d32rVUiBleotH67SJoY6w4llP1vkduhhYzfxWR07936abjJ+aKc+e+FU6ns7JNk1Qg1V0v+fj4CKPRKHr37i3i4+Nd7RITE6VeKgWpl6q3XpKRUpI7kqzCKCk3tQq3m8ybcO7YJbJz/sBi/hDhVLbMvda/CafNE6l3Ts1kzdc8XOsIAx7vx0OTp9Gie+9ys/+vCCE4d+5/ABiN4QQF9md3SiMATAaZ2u1uRQiBraDgtj+EuPXs40ajEavVyqhRo/jjjz/479f/5fOfPkcIwd9Hj3VFZrzw8hQsFgubN2/m4MGDvP3223h6elKrVi2++eYbAI4dO0ZKSgrvv/8+oKw0bdu2jTVr1rBu3Tq2bNnCvn37rrIhOjqali1bEhsby6uvvsrJkyfp3bs3gwYN4sCBA3z11Vds3bqViRMnAhAQEIBarWbVqlWuFam/smrVKmw2W4krfOPGjcPT05OVK1fe8v0DZbVy6dKleHt7l7paZzab8fPzK5cxr8Rut+NwODAYDMWOG41Gtm7d6nreqVMn1qxZQ3JyMkIIfvvtN+Lj4+nVq1eJ183NzWXZsmVERES48gzt2LGD5s2bF0uoHRUVRVZWFocOHXIdW7ZsGadOnWLGjBnlOdU7kj/++INWrVrRqlUrQPm7b9WqlWs19IUXXmDSpEk89dRT3HvvveTk5PDLL78Ue71WrFhBo0aN6N69O3379qVLly4sXbrUdd7b25u1a9eSkJBAmzZteO6553jttdd46qmnXG06derEF198wdKlS2nZsiWrVq1i9erVNGvW7DbdibsLu92GExUNc+IxWLLI8FA0gNOpVEjU6P9S1CU/A/IuAWBRKW3d1NW36p7N4WTV3rMs3XyS7AIbRm2+61xkxLOEhDxy11QdlFymsvRSeWimv+qlNWvWsGPHDoQQ9O3b16WXJkyYIPXSNZB6qfrrJflrWHJHctGqfED7lxTGXkZyM/Jw2E65nme753NR05IQmwdzte/S7N520Pk9qNnuVs29LlbrRSyWFEDN1N+nkpotcDiVLznTzeTKklQL7BYLC0Y+etvHffqzVej+8sVaVoQQbNiwgV9//ZU+ffqwevVqtm3bRoNWDTife56F/15Iu8bt+GXdegYOGEly8lmGDB1M8+bNAYiMjHRdq0g4BAYG4uPjAyh79j/77DO++OILVzjysmXLCA0NvcqWBx98kOeee871fMyYMQwfPtyVH6B+/fosWLCArl27smTJEsLCwliwYAEvvPACr7/+Om3btqVbt24MHz7cZVd8fDze3t6EhIRcNZ5erycyMpL4+PibundFxMTEMHToUPLy8ggJCWHdunXUqFGjxLYnTpxg4cKFREdH39KYJWEymejYsSP/+te/aNy4MUFBQaxcuZIdO3ZQr149V7uFCxfy1FNPUbNmTbRaLWq1mo8//pj777+/2PU++OADXnjhBXJzc2nYsCHr1q1Dr1d+aF+rwlvROYDjx48zffp0tmzZglZb/eXJAw88UOqPHZVKxaxZs5g1a9Y12/j5+fHFF1+UOk6LFi3YsmVLqW0GDx7M4MGDSzdYUi5cytTgRIXJXlhRT+WBWhNEDXd3Qg1rMXk6LzeO/Ry+n0hRrj4LisPqZhfrqgK/Hkrl+a/34+OWydCG6/BxywZAo3FHra7+nwuSkqksvQQ3r5mupZc6deoEKIsKtWrVYvXq1QwePJikpCQGDRok9dIVSL2kcDfoper7rSapkticgmePJjHl6BkAAvU377Axn7kIIg+A7n8mENfgPE6nOx29M2jhex51SHOo3QEqWNwlJX3C/v1jALDjT7LZ6XJIta7tg0En34aSO5+YmBg8PT0xGAz06dOHxx57jFGjRqHVal35awB8/XyoFxHB8ZMnQcCYJ8cze/ZsOnfuzIwZMzhw4ECp45w6dQqbzUa7dpedxd7e3jRs2PCqtm3bti32fP/+/SxfvhxPT0/XIyoqCqfTSUJCAqCsRKamprJixQo6duzI119/TdOmTVm3bl2Z70WRcCiNFStWFLPjSqdAt27diIuLY/v27fTu3ZshQ4ZclbAaIDk5md69ezN48GDGjh3rOn7ldcePH18mm7ds2VKs34oVKwD473//ixCCsLAw3NzcWLBgAY8//jjqKz4XFy5cyM6dO1mzZg179+5l3rx5TJgwgfXr1xcbY/jw4cTGxrJp0yYaNGjAkCFDKCgoKJN9DoeDYcOG8frrr9OgQYMS25R2TyWSqkBOUhqGAg+cQoVGKNEHGn19vPSNGF5rLt0a70R1z+OXOyTtRHFIqXDovXGolPelvhpHSiVnKJFRA+vvpnvtLbQJigPAze3qH74SyZ1IWfWSv78/DRs25MiRIwA8/fTTUi9JvXRdqqteqh6uNUm14Y+sXFampLueN/G8iZWJgiwyPxpF6kHlg18lAJyk+uhwJEfQNOAY5AN6j/IxuhQsloscP/EmRaucuU5ldWFI25pMjWqEv4dehqHfxWjd3Hj6s1WVMu6N0q1bN5YsWYJeryc0NBStVlssceO1GPH4KB4dOpAff/yRtWvX8uabbzJv3jwmTZp0M6YXw8Oj+Hs4JyeHcePG8fTTT1/Vtnbty0mBTSYT/fv3p3///syePZuoqChmz55Nz549qV+/PmazmXPnzl212mi1Wjl58iRRUVHXtW3AgAHFxGdYWFgxu+vVq0e9evXo0KED9evX55NPPuHFF190tTl37hzdunWjU6dOxbZjAcWqpZS16lnbtm2L9Stadatbty6bNm0iNzeXrKwsQkJCeOyxx1wrofn5+bz00kt899139OvXD1Aib+Li4oiOjqZHjx6ua3p7e+Pt7U39+vXp0KEDvr6+fPfddzz++OMEBweze/fuYjZdWQUuOzubP/74g9jYWNf2AafTiRACrVbL2rVrS72nEklV4NRvO3CoBE6hQk1RRJQGsEHdbvDY58U7FFbdI2oOlnb/hM3Kj1S3aqwbzPlKpHz9ACUZs7/f/fj6dcbf777KNEtSyVSWXioa+0a4Wb00ZswYoqKipF6Seumu1EvSKSW5o8i0KeUu67m78Xq9sJsqebz7P7+za38vnNoz4AChUjH3YR/SczqjsbrT4cKXoAPcKr6ccn7+aYocUufUb/DDsRpAAcFeBgJMN+4YkFQvVCrVTW+ju90UCYMrady4MXa7nV27dtGwlbIyl5GewYmEBBpc0bZWrVqMHz+e8ePH8+KLL/Lxxx8zadIk1wralfkKIiMj0el07NmzxyWMzGYz8fHxV4U//5XWrVtz+PDhq+wsDZVKRaNGjdi+fTsAjz76KNOmTWPevHnMmzevWNsPP/yQvLw8nnjiiete12QyYTKZymSD0+nEYrG4nicnJ9OtWzdXhRb1X6I5b2R+RRiNxlL7eXh44OHhQUZGBr/++itz584FlAo8NpvtKhs0Gg1Op7OkSwHKtgUhhGteHTt2ZM6cOVy4cIHAwEBAqfDm5eVFkyZN0Ol0HDx4sNg1PvjgAzZu3MiqVauIiIjAw8OjzPdUIrnTyL5wgd3xsWRrDNiEHn9xXDmh0qDCDpoSIgrsBZw2hDDB2pK0PZdLhlfH7Xv7z2TyzJexpJgLMGjycddmAeDv/wC1ao2sZOsklU110ktF2/cuXbrEsWPHaNKkiaud1EulI/VS9dVL0ikluaPILkxwXtNNT3f/snm0/8qxP89hy41xPb/gY2G7eJ5uqUdpcu5TIuqfBzevCs8l5XTayMtTclpdKGjIq5s9ASU0M8CranyxSiSlUb9+fQYOHMjYsWOZu2AuBZoCFs1ZREhQEFE9ugOCl2dO42+DB9CgQQMyMjL47bffaNy4MQDh4eGoVCpiYmLo27cvRqMRk8nEyJEjmTp1Kn5+fgQGBjJjxgzUavV1owqnTZtGhw4dmDhxImPGjMHDw4PDhw+zbt06Fi1aRFxcHDNmzGDEiBE0adIEvV7Ppk2b+PTTT5k2bRqgrBDOnTuX559/HoPBwIgRI9DpdHz//fe89NJLzJ49+6oE0MeOHbvKlqZNm6LTFd9+nJuby5w5cxgwYAAhISGkpaWxePFikpOTXfl8kpOTeeCBBwgPDyc6OtpV+hiUFbLSKFrZy8nJ4eLFi8TFxaHX64sJ3r9SVI64YcOGnDhxgqlTp9KoUSP+8Y9/AMrKYteuXZk6dSpGo5Hw8HA2bdrEf/7zH959911A2ULw1Vdf0atXLwICAjh79ixvvfUWRqORvn37AtCrVy+aNGnCiBEjmDt3LqmpqbzyyitMmDABt8JV6L/e18DAQAwGw3UTbqenp5OUlMS5c+eAy69HcHDwde+ZRHK72PvNt5zVOYE8upz6lYbJVpJqeKNCgwbbNZxSFtb5d+IPpyfkK5FD4QY92mq4fW/t4VQSL+XRteY2/t74f6iVMHe0Ou9KtkwiuXWu1EsfffQRJpOJ6dOnExYWxsCBAwGYPHkyffr0kXoJqZfuSr1060UAqy+yxPHt5+MzF0TQxlgx5mDCTV9j0T/miOgh/UT0kH7i0773ia7vthPh034QS58bJhKeqy1EwlYhbJbrX+gWuHRpq9j4WxNXGeP5Xz8hwqfFiCeX7Rbv/HJUmPOtFTq+5M6jupU4LqKoxLGXt5cwGA2ia/euYtv6tSLlRLw4n5AhRo8aJ+rWrSvc3NxEQECAGDFihEhLS3P1nzVrlggODhYqlarUEsft2rUT06dPd/ULDw8X8+fPv8qe3bt3i549ewpPT0/h4eEhWrRoIebMmSOEEOLixYvi6aefFs2aNROenp7CZDKJ5s2bi+joaOFwOIpdZ/Xq1eK+++4THh4erhLMK1euLNampDLNRY8zZ85cZVt+fr545JFHRGhoqNDr9SIkJEQMGDBA7N6929Vm2bJl17zm9SipT3h4eKl9vvrqKxEZGSn0er0IDg4WEyZMEJmZmcXapKSkiFGjRonQ0FBhMBhEw4YNxbx581xl2ZOTk0WfPn1EYGCg0Ol0ombNmmLYsGHi6NGjxa6TmJgo+vTpI4xGo6hRo4Z47rnnhM1mu6ZtZS1xfK17NmPGjOv2LY3yKHF8tyDvx/X5Zd48MWPGDLHo1Xlieb/24sse94noIf3EeyPfFGv++ZoQ30+8utPy/mLBv8eJoI2x4vG4E2JnRrYw2+y33/jbwCvfHRTh02LEil9GuLTT5i3tRV7e2co2TXKbqe56ydvbWxiNRhEVFSXi4+Nd5ydOnCj1UiFSL919ekklRDnUBq+mZGVl4e3tjdlsLvM+VMmt8W5iKnMTUhke4se8RrWv3+Ev2HNyWfR/0Tgse6h1KY9891Tm9g8k9+RUjpomYLBlwNOx4Bd5/YvdAidOvsPp0x8CoFa789HBf7IzOZwfJnaheU256nc3UlBQQEJCAhEREVeVlK0OXMq/RGpuKl56L3QXlYhAtSYAtVZDjZq3FkKcm5tLWFgY8+bNY/To0eVh7g2Rnp5O9+7d8fLy4ueff8bd3f222yC5/ZT2npX6oDjyflyfn955h1+ynZjsoTSOXYTGYeCcrwmtsSstfNPo1sMO/YpvgeGTKKLVDYmu8yRPhPozt2GtyjG+AnE6BWcz8pkVc5j1R86zMOoz3MVemjR+h+DgR2TezbuQ6q6XKhKplySVQXnoJbl9T3JHccmq5JSqcRNV946simH/+tMIh1IuU2e38HsDFU5rDQLVuYpDCkBf8XtsbYVjHc8bwttbOyEKC116G2++mqBEcrcQGxvL0aNHadeuHWazmVmzZgG4QtxvN35+fqxfv57FixezY8cOV+lliUQiKSsXbWrWWBuDgFe1NcjxCQPnOUCDVmUDzRV5Jvf9B/78Bs4fwhqmlId3q4Zb9gCe/V8c38edo4bxEh1CTuGGouG0Om/pkJJIroPUS5LqgnRKSe4ItmfkMC3+DGcLlJwJNXQ39qfpcDhZ/9NprLk/u46tfMBBrPFhWiTANM2bykGtAQwVt4rrcOSRad7HxYtrAThyXoNAjUatok24L2G+xgobWyKpTFQU/Xgon+Db6Ohojh07hl6vp02bNmzZsoUaNWqUy7VvBn9/f1577bVKG18ikVRtLtnUgIpeaRvIdFcVOqQAlZogXTxoWl9uvH4m5F0CwKJWck3pq2Fyc4C9p5VFvBfaLsTfmO76CtHpfCrPKImkCiH1kqQ6IJ1SkjuCb89ncDxPqTqgBlp53Vi4Z36WFYct2fVchYMjno2wp3XkXa+XCXcmQrNB0HIYaCuu6t3BPydy6dIm1/Nz2T4AbHyuK+H+HtfoJZFUAwp9Ule5pG7CR9WqVSv27t17qxZJJBLJHYGwO8m1Kc6lIGta4VE9Gq2Bx1ttJjB9C2g6XO5gzVX+3/ttCnRtIav6RkrlWOxoVA7FIQX4+nTA3aMu3l73VK5hEkkVQOolSXVBOqUkdwTpNmXb3rPhQfwjrAaBbje2zS07NQvhzAag+ZkL7G2Qg0VVF3eNoLYzUWnUNxrc/crT7KvIzVFKPOsN9bFrmrH3fAMAvAxy255EIpFIJHcj6WsTcTo9AdAIpcqw3nMgAfpEAtOVqkzoChfjhAC7BQFkNRxAbooNsjIwVLNIKXO+jewCG9kFdozafNfxe+75DLVa/jyRSCSSuwn5qS+5IyhySjX0MNywQwogZdWPCKE4pQw2O6cDVeA04q0HVVGkhr7iI5Vs9kwApm18nHM5SuisSgWeBvlWk9ydyEoaEonkbkYIwdnd+7GqAJyoUNIUoNKgUdmgbncwhUDLocpxpx0QDG7xLlvjLriuo69G+ZX2ns5g6NIdOJ12Hor8lWCP8wBoNJ7SISWRSCR3IfKTX3JHkGF3AOB3g7mkzBfzWPHSfPKzD4JQwt1/be1kWyMtfgk1+EdoIpwHVBrQ6MvZ6sucv/AzWeZYHI48ADIL3NFr1TQI8qRH4yB0muq1wimRSCQSieT6HDqwn83Wo1xQezE68XO8bWpsWh2gVpxSD38ApuDLHewWHKjZ6tvGdchLq6aDj+ftN76CiDuTic0haF4jngF1f3Edd3MLLqWXRCKRSKor0ikluSPIKIyU8tVpbqjf0c0J5GfHglBK0DvUar4Je4w6iTVYYX8V//OFIeEGbyVkqQLIzz/Ln39OvHxAHUSe3UiLmibWTOxSIWNKJHcalxOdSyQSiaSIzd98yyW9mgKHk4EHzrKpUXjhGQ1+GsvVC2YOKwXqy7kvj3VphqdWg6YaRUplF9gA6NlIiYx3d48kJORRavg/UIlWSSQSiaSyuCPDN2bOnIlKpSr2aNSoket8QUEBEyZMwN/fH09PTwYNGsT58+eLXSMpKYl+/frh7u5OYGAgU6dOxW633+6pSK7D1oxsXjl+1rV9z/dGI6VSLrgcUu1PnmdP4wQstlDahvnh75YPBh9o2A/6vF3eprsoKFAq6Gg03uRoh7Dl0nOASuaRktyVCLlhTyKRSFxYLUoRlxC7HzoniCLnkkqNm856dfEVewF5msvHTNXIISWE4OTFHM6k56NWOTDplQh3T8/G1Akfh6dnw0q2UCKRSCSVwR0bKdW0aVPWr1/veq7VXjb12Wef5ccff+Trr7/G29ubiRMn8re//Y1t27YB4HA46NevH8HBwWzfvp2UlBSeeOIJdDodb7zxxm2fi+TaPHMkiWSLsmLmplbhf4NOqbRYpeKEzqHBPyeHCz5aRIqJcJMDUoDg5vD4F+VtdjFsNqViTGpeMNM3XY6M8vesuO2CEolEIpFI7nysqPjDVhObXclr6XQ5mDRosEORA8qSA/tXQmaSK1LKoFahriYOKYDXfzjM8u2JdArdxZLuX6JVK6kbdDrvSrZMIpFIJJXJHeuU0mq1BAdfvbfcbDbzySef8MUXX/Dggw8CsGzZMho3bszOnTvp0KEDa9eu5fDhw6xfv56goCDuuece/vWvfzFt2jRmzpyJXi+dBXcKaYURUmNq1uBBPy+MZcy9JJxONq1YRkrO7wC4OVR811HFBU1DtA41PUOyIR7QV1wOhvz8JOKPzyEtTXGepuebAOhcz59avu482SWiwsaWSKoMMnBKIpHcxSSpfPjTEYLRWUCuexBOtQYQqFQaNGo7aAqleOx/4ZfpAOS7K1v8qlvFvbgzmQC0DjzickipVFp8fTtVolUSiUQiqWzu2G+748ePExoaSmRkJMOHDycpKQmAvXv3YrPZ6NGjh6tto0aNqF27Njt27ABgx44dNG/enKCgIFebqKgosrKyOHTo0DXHtFgsZGVlFXtIKg6r04nFqfxifb5OMA/6e5W579Fte9gb853r+cEINf+u/SxtLzzAz+2OUyfuHeWEW8U5pc6lfONySAEcTm8CwAtRjXhrUAsaBJkqbGyJ5HYyatQo11ZqvV5PvXr1mDVrVrEt0TeTU+r3339HpVKRmZlZjtaWTkJCAsOGDSM0NBSDwUDNmjUZOHAgR48eLdYuJiaGrl27YjKZcHd3595772X58uXF2iQmJqJSqYiLiyvz+DNnzqRRo0Z4eHjg6+tLjx492LVrV7Frjh49moiICIxGI3Xr1mXGjBlYrdZSr5uSksKwYcNo0KABarWayZMnl8mezZs3079/f0JDQ1GpVKxevfqqNt9++y29evXC39//uvMVQtCnT59rXmv58uW0aNECg8FAYGAgEyZMKHb+119/pUOHDphMJgICAhg0aBCJiYnF2qxYsYKWLVvi7u5OSEgITz75JJcuXbrleUokFUFB4fpvqHBwInIgwlUSWI2bpuBywxwlDcXmOo/wxj2zgOrnlMrKVyLj29ZW0hs0ajibrvfHERTYpzLNkkjKjbLopZtB6iWpl6q7Xrojv+3at2/P8uXL+eWXX1iyZAkJCQncd999ZGdnk5qail6vx8fHp1ifoKAgUlNTAUhNTS3mkCo6X3TuWrz55pt4e3u7HrVq1SrfiUmKkeNwuv7tqbmxBOexaza5/q0z9uZo5EWcllAa6y9S/8/ZYD6jnDT4lIepJWK1KKWa8zU9WHlyGj+fbA2At1HmkpJUP3r37k1KSgrHjx/nueeeY+bMmbzzzjslN66E3SbXEyEANpuNnj17Yjab+fbbbzl27BhfffUVzZs3Lyb0Fi5cyMCBA+ncuTO7du3iwIEDDB06lPHjx/P888/fkp0NGjRg0aJFHDx4kK1bt1KnTh169erFxYsXATh69ChOp5OPPvqIQ4cOMX/+fD788ENeeumlUq9rsVgICAjglVdeoWXLlmW2Jzc3l5YtW7J48eJS23Tp0oW3375+br733nsP1TW2G7377ru8/PLLTJ8+nUOHDrF+/XqioqJc5xMSEhg4cCAPPvggcXFx/Prrr6SlpfG3v/3N1Wbbtm088cQTjB49mkOHDvH111+ze/duxo4de8vzlEjKm9x953Fq3DHZsmibuZt0zQnXuXs9vqaB1x+XG9sUB9XLtUfzi64OAIFud+yGhhviw00nGb18D5m5F2jmfxiVU3HAubkFodEYK9k6iaR8uSG9VAlIvST10q3Os0IQVYCMjAzh5eUl/v3vf4sVK1YIvV5/VZt7771XvPDCC0IIIcaOHSt69epV7Hxubq4AxE8//XTNcQoKCoTZbHY9zpw5IwBhNpvLd0ISIYQQiXkFImhjrKjze9wN9bOmnhcfDJ8uoof0Ex/9bZT4rudD4p7FvUX4tBhxYG6UEDO8hHivhRDfTxIi7UQFWS9EbNyTYv2GSDHp3zNE+LQYET4tRtzz+q8i32qvsDElVZf8/Hxx+PBhkZ+fX9mm3DAjR44UAwcOLHasZ8+eokOHDiI9PV2MGDFCePt4C4PRILr26Cq2rV8rUk7Ei/MJGWLvtj/FQw89JHx8fIS7u7to0qSJ+PHHH0VCQoJA2dzneowcOVIIIURWVpYYNmyYcHd3F8HBweLdd98VXbt2Fc8884xr/PDwcDFr1iwxYsQIYTKZXH23bNkiunTpIgwGg6hZs6aYNGmSyMnJEUIIERsbKwCRmJh4zbkmJSUJnU4npkyZctW5BQsWCEDs3LlTCCFcc4iNjb3pe2s2mwUg1q9ff802c+fOFREREWW+5l/vVVkBxHfffXfN89ebb2xsrAgLCxMpKSlXXSs9PV0YjcZS5/n1118LrVYrHA6H69iaNWuESqUSVqtVCCHEO++8IyIjI4v1W7BggQgLC7v+BAu53jyLKO09W/S6SX2gIO9HyVz49wHxxMuLxYgximYpesx7rK+wveotxKoxlxuveUaIGV6i5cYdImhjrHgt/qw4nlv1vi/+SnqOxaWRVqxpL9ZviHQ9MjL2VLZ5kjuQ6q6XfHx8hNFoFL179xbx8fGudomJiVIvlYLUS5epjnrpjoyU+is+Pj40aNCAEydOEBwcjNVqvSp88fz5864cVMHBwVdV4yt6XlKeqiLc3Nzw8vIq9pBUHJesSiir3w0mN8/ZsgWrSvnT9ck6y76IU+TmNkOHk9rOZKXR0C9gwALwr1uuNgOcTf6CXbv6kpGxHYCkLD8AFg1rxcbnHsCgu7GoL8ndixACp9Vx2x/K98ytYTQasVqtjBo1ij/++IMvVn3B5z99jhCCv48ei82mbNOY/upzWCwWNm/ezMGDB3n77bfx9PSkVq1afPPNNwAcO3aMlJQU3n//fQCmTJnCtm3bWLNmDevWrWPLli3s27fvKhuio6Np2bIlsbGxvPrqq5w8eZLevXszaNAgDhw4wFdffcXWrVuZOHEiAAEBAajValatWoXD4ShxXqtWrcJms5W4wjdu3Dg8PT1ZuXLlLd8/UFYrly5dire3d6mrdWazGT8/v3IZs6LIy8tj2LBhLF68uMTv2XXr1uF0OklOTqZx48bUrFmTIUOGcObMGVebNm3aoFarWbZsGQ6HA7PZzH//+1969OiBTqdEoHbs2JEzZ87w008/IYTg/PnzrFq1ir59+962uUokZcFmKeDCqWTsgJtDqcCnUwWjNXSiaQNvtK+mwKCPL3ewK5FSVhQN8XioH/XcDbfb7HInI0+JyvDQQ5CHEuHg6dmYwMC+eHmVPUpBcndTWXqpPDTTX/XSmjVr2LFjB0II+vbt69JLEyZMkHrpGki9VP31UpWIC87JyeHkyZOMGDGCNm3aoNPp2LBhA4MGDQKUN2hSUhIdO3YElBdhzpw5XLhwgcDAQEB5gb28vGjSpEmlzUOiUOBwMvHIaQ5m5wMQ7Fb27W7nT53gx19WY7flAbCluZWffEcRmRXMhD618d6apjTUe5S73aB8KZ469S42WwYAKrUHxy6FANCpbg18PWQSfUnZETYn517bftvHDZ3VCZX+5pynQgg2bNjAr7/+Sp8+fVi9ejXbtm2jSZsmJGcn897H79G5SSd+Wbeegf2f4Oy5szw2dDDNmzcHIDIy0nWtIuEQGBjo2pKdnZ3NZ599xhdffEH37t0BpZhFaGjoVbY8+OCDPPfcc67nY8aMYfjw4a78APXr12fBggV07dqVJUuWEBYWxoIFC3jhhRd4/fXXadu2Ld26dWP48OEuu+Lj4/H29iYkJOSq8fR6PZGRkcTHx9/UvSsiJiaGoUOHkpeXR0hICOvWraNGjRoltj1x4gQLFy4kOjr6lsasaJ599lk6derEwIEDSzx/6tQpnE4nb7zxBu+//z7e3t688sor9OzZkwMHDqDX64mIiGDt2rUMGTKEcePG4XA46NixIz/99JPrOp07d2bFihU89thjFBQUYLfb6d+/v9yWJ7nj2PbLT6TZU7FrQavOAUCnqYnT2IFA/xOg+8u2NZdTSll0c1NViXXjUimwOUi8lAtAiNflH7b3tv0OtVqmOpCUncrSS3DzmulaeqlTJyWx/4oVK6hVqxarV69m8ODBJCUlMWjQIKmXrkDqpbtHL92R33jPP/88mzZtIjExke3bt/PII4+g0Wh4/PHH8fb2ZvTo0UyZMoXffvuNvXv38o9//IOOHTvSoUMHAHr16kWTJk0YMWIE+/fv59dff+WVV15hwoQJuLm5VfLsJH9k5RJz0czpAmX1rJln2fMJ7PlmNRnZGSCUVccsHw2O3Ma893AkD9fKhEJnFbqKcUpZrWkuh1T0HxOZvPFF8u3uAJgMVcLHK5HcFDExMXh6emIwGOjTpw+PPfYYo0aNQqvV0r59e1eic18/X+pGRnD85EkAxowaz+zZs+ncuTMzZszgwIEDpY5z6tQpbDYb7dq1cx3z9vamYcOGV7Vt27Ztsef79+9n+fLleHp6uh5RUVE4nU4SEhIAZSUyNTWVFStW0LFjR77++muaNm3KunXrynwvylLBdcWKFcXs2LJli+tct27diIuLY/v27fTu3ZshQ4Zw4cKFq66RnJxM7969GTx4cLEcAFded/z48WWyecuWLcX6rVixokz9ysKaNWvYuHEj77333jXbOJ1ObDYbCxYsICoqig4dOrBy5UqOHz/Ob7/9Big5H8eOHcvIkSPZs2cPmzZtQq/X8+ijj7pWqg8fPswzzzzDa6+9xt69e/nll19ITEx03YeKnKdEUlbyc3PZtC+OP40XUIsztDl/HAChUhwxbtor5HfOBdgyD1IPAmAt/CzVqyshOV85kl1go8vbG3ly+R5qmc7SzF+5B2q1QTqkJNWa6+mlIvz9/WnYsCFHjhwB4Omnn5Z6Seqlu1Yv3ZG/os+ePcvjjz/OpUuXCAgIoEuXLuzcuZOAgAAA5s+fj1qtZtCgQVgsFqKiovjggw9c/TUaDTExMfzzn/+kY8eOeHh4MHLkSGbNmlVZU5JcQY5dSXDewN1AdMOatPIqmwPJ4XBy8oCyPU/jdg9OnYkcr98w5Duo+9NQcFxRLbECIqVsNjOZmbsBsOPLkfQGuGnVBJh09G4ajE5zR/p4JXcwKp2a0Fm3vxS2Snfjf6vdunVjyZIl6PV6QkND0Wq1rFmz5rr9/v74EwweNpAff/yRtWvX8uabbzJv3jwmTZp0M6YXw8Oj+Ps8JyeHcePG8fTTT1/Vtnbt2q5/m0wm+vfvT//+/Zk9ezZRUVHMnj2bnj17Ur9+fcxmM+fOnbtqtdFqtXLy5MliySavxYABA4qJz7CwsGJ216tXj3r16tGhQwfq16/PJ598wosvvuhqc+7cObp160anTp1YunRpsWtfWc2lrNvM27ZtW6zfX4uB3AobN27k5MmTVxUgGTRoEPfddx+///67ayX1ymjlgIAAatSo4aquu3jxYry9vZk7d66rzeeff06tWrXYtWsXHTp04M0336Rz585MnToVgBYtWuDh4cF9993H7NmzK3SeEklZyUlKQqjUqAREpp9HZ1ccTEVOqQDtFU6Zbe/DjkXKeS5HSlV1p9SJCzmk5VjpWnMbTzT5n+u4VitTY0hunMrSS0Vj3wg3q5fGjBlDVFSU1EtSLwF3n166I51SX375ZannDQYDixcvLjX8LDw8vFgIm+TOIbdwb3Kwm5Z2Pp5l7peydgdOpxIh5ZuTy/46f5BtC8LPTYXBkQVqLQQ0hvo9QO9erjbbbJls294Vh0MJwbc6vQEY0SGcVx6SW0IlN4dKpbrpbXS3myJhcCWNGzfGbreza9cumrZpCkB6ejonTyXQoF49QICAWrVrMX78eMaPH8+LL77Ixx9/zKRJk1wraFfmK4iMjESn07Fnzx6XMDKbzcTHx3P//feXamPr1q05fPjwVXaWhkqlolGjRmzfrmwLePTRR5k2bRrz5s1j3rx5xdp++OGH5OXl8cQTT1z3uiaTCZPJVCYbnE4nFovF9Tw5OZlu3brRpk0bli1bhvovZeFvZH5FGI3Gm+pXFqZPn86YMWOKHWvevDnz58+nf//+gBJGDsp2+5o1awLK30paWhrh4eGAkmfhr3PVFFZmdTqdrjZarbbENkKICp2nRFJW7IXVrZxCj6dDh7PQwaQyuCMA7ZW5J/MKy3PX6oC1Xk8oLEzspq7aC13ZBUre0BZBSloFrdYHvd6X0NChlWmWpIpSnfRS0fa9S5cucezYsWLOh1q1pF4qDamXqq9euiOdUpLqTa5DebN4aG7sy+X8uq0Ip5KbwC9tE390DOacuSfjmurhGOAXCf/cWt7mApCTe7zQIaWlQASw5Vw3ALyNMgRdcvdSv359Bg4cyNixY5m3cB656lwWzllIcFAQUT2U/AavvD6dQY8NpEGDBmRkZPDbb7/RuHFjQFk8UKlUxMTE0LdvX4xGIyaTiZEjRzJ16lT8/PwIDAxkxowZqNXqa5bOLWLatGl06NCBiRMnMmbMGDw8PDh8+DDr1q1j0aJFxMXFMWPGDEaMGEGTJk3Q6/Vs2rSJTz/9lGnTpgHKCuHcuXN5/vnnMRgMjBgxAp1Ox/fff89LL73E7NmzadasWbFxjx07dpUtTZs2dSWbLCI3N5c5c+YwYMAAQkJCSEtLY/HixSQnJzN48GBAEVgPPPAA4eHhREdHu0ofQ+mFOuDyimBOTg4XL14kLi4OvV5fai7FnJwcTpy4XKY+ISGBuLg4/Pz8XCI3PT2dpKQkzp07V2y+wcHBxR5/pXbt2kRERABKaeeBAwfyzDPPsHTpUry8vHjxxRdp1KgR3bopn6f9+vVj/vz5zJo1i8cff5zs7GxeeuklwsPDadWqFQD9+/dn7NixLFmyhKioKFJSUpg8eTLt2rUrMY/GjcxTIikv7BYLR+0B7LTXoac4hodHMGDG7tCj0YDmyh/XNiW/ZmbTIWS2/DvsVLby6K/zeXenYnM42Xoija3HFWeUp15JqxARMZHatf5RmaZJJJXGlXrpo48+wmQyMX36dMLCwly5hSZPnkyfPn2kXkLqpbtSL5W5JuBdiCxxXDF8cPq8CNoYKyYcunaZ0b+S/GOM+DLqURH92N9E9JB+ovuL08V9L/5XOJ1OIY7+JMQMLyE+eqDCbE5N/UGs3xApPo/p6yptHD4tRny1J6nCxpRUL6pbieMiikoce3l7CYPRIO7vfr/Yvn6dSDkRL84npIsnRz4l6tatK9zc3ERAQIAYMWKESEtLc/WfNWuWCA4OFiqVqtQSx+3atRPTp0939QsPDxfz58+/yp7du3eLnj17Ck9PT+Hh4SFatGgh5syZI4QQ4uLFi+Lpp58WzZo1E56ensJkMonmzZuL6OjoYmV1hRBi9erV4r777hMeHh6uEswrV64s1qakMs1FjzNnzlxlW35+vnjkkUdEaGio0Ov1IiQkRAwYMEDs3r3b1WbZsmXXvOb1KKlPeHh4qX1+++23EvsVvRal2TRjxoxSbflrGWGz2SyefPJJ4ePjI/z8/MQjjzwikpKKf4auXLlStGrVSnh4eIiAgAAxYMAAceTIkWJtFixYIJo0aSKMRqMICQkRw4cPF2fPnr3lef6V8ihxfLcg70dxTm3ZIrq++JkIf+EH8ezIJ8S8oSNE9JB+4v0n/y2W/3OlsH8z4XLjFY+Jj5Y+KYI2xhZ7OJzOypvALfDZ9gQRPi1GdP7XR2L254PFD2tbi/UbIsW5c6sq2zRJFaG66yVvb29hNBpFVFSUiI+Pd52fOHGi1EuFSL109+kllRDlUBu8mpKVlYW3tzdms7nM+1AlpXM638J7p8+zMiWd0WE1mNOgZpn6ffKPJ8jMS3c9/6x+Dxq6B/N1m4OQtAOS90LE/TDyh3K11+HI5/z5GC6mrSctbT1/pndg/h/DePieUJqFeTO8fTjGKhJOLKlcCgoKSEhIICIiAoOh6pf5/itZlizOZJ/BXeeO+yWlhLJaUwNUGgLDb+3zMzc3l7CwMObNm8fo0aPLyeKyk56eTvfu3fHy8uLnn3/G3b18twdL7kxKe89KfVAceT+Kc3DJL0w4k0bti0dolbXfdfyhmqep53kOTdsR0P895eB/BvIPYw9+rnGfq12/AG8+aRZxm60uH17/4RDLtiUyqfUX3FNjp+t461Yr8fVtV0pPiUShuuulikTqJUllUB56SW7fk9w2lienMT3+rOt5hHvZKiFePJtFZl42AGptHbI97GSr/HiwnrcrOSgA3rXK1V6As8mfc+LEW67nZ7KV5HNj7oukWZh3uY8nkVR1BOKKf4MKsNscaLTXDycvIjY2lqNHj9KuXTvMZrOrSMW1yudWNH5+fqxfv57FixezY8cOV+lliUQi+StOi4P8M1acqPC3FuaLUrmhVvsR6bENjc4N6l3xGWIroMBDyRezoHFthgT7VYLV5UdRLql6NZTcNyHBfyMgIAofn3sr0yyJpFoi9ZKkuiCdUpLbxv5sJa+At1ZDfXc3+tYom1Pn4OrfARsA7vr72F3rE0R+L7oEW+Aw4FsH7nsOGvYrd5tzc5QSxunWSP68GMnPJ5VVPplLSiIpO+nncvHwccPDu2yOaIDo6GiOHTuGXq+nTZs2bNmyhRo1alSglaXj7+/Pa6+9VmnjSySSqoGwO1H+U6EuzFquc++BTlsTXe+W0HECqFSQmwZHYyArmQI/xSnlVoUr7u04eYkDZzP5M9kMgF6dB06oUaMHAQE9Ktk6iaT6IvWSpDognVKS20ZRgvOpEcGMqRlQtj67dnFp3XYwgEqoaLt3Jv9t0oZ3Gupo7q0kPcc3Alpfv7rDzZBfoER2rTramV2pyipfqLeBIC8ZTiyRlEhReJQAnOk4hXLQVhAEZXRKtWrVir1791acjRKJRFJB7P/5F5wI7KoCdNqixLsaVMIOWjfFIQWw9hXYvxKAArXy2WisohX3cix2Rn66G5vDzuAGa+gZfAGdSARAqy17lWWJRHJjSL0kqS5Ip5TktpFrL6q6V3bRdXHhIvK0ypY5odYy596R/K1WGwYP6Ql7PlEa6T3K3daMjN2knl9NTs5hAC4V+BNgcuPLpzoQ5mNEr62awlEiuR1odXpsFgtCOK84KtMXSiSS6k1+fj7b9+7ETRuEh+oU3tYcwA1UGlQUOqWKyE5R/h/WhgJTGACGKuqUupRjwepwUt/3DFF1NioHCz/yDYay5Q6VSCQSyd2LdEpJbhu5DiW/gIembInBrQX5rLXlka1RHEMXfdXs827Gy42DYNv7kLhVaagv/1W4o8deJS9PKYfpFGrO5wVQ09+NugFyxU8iKYkr80X5htbEYbMCKiy5NnKzrKjU8utGIpFUb/74+mvS3HRAOlPW7+Scn4kcI4AGN2EDzRVOKbsVm0rDwXufIyuvBlhsVXb7XlEeqRCTBVAcUXXq/B/uxjq4u4dXpmkSiUQiqQLIXwmS20bR9j33MkZKHdq8j2wsylYgIMcXVA6ovfM1SPntckN3/3K1UwgH+fmJAHx/sjfxGfXItpqo5Wss13EkkupIvj2fc7nnqGlSVsdtFhUqlRPXG1kikUiqKXlpaQD4O03UyC3gbA2l0pAKNTqdDbRX6AiHhecaTOV/GWEU5c003kAk+Z1Agc3BF7uSOHQuiyD389TzSQDA3RhOWOhjlWydRCKRSKoK0iklqXA2p2fzU5qZU/nKClqwvmx/dvu+3wSAShOEm0c/LoW+Ta+zCQTknVQaNHoI/CKg/fhys1UIQUFBMkLYAS0/nOxNsLc7cx6pR88mQeU2jkRS3dCr9a5/2532SrREIpFIKge7w0G20418exDtHU4c6sKiKCoNWk3eXyKlLBwvjCIK1GtpaXKnsUfVWvyKOZDCrJjD1Dad4Y0u77iOa3WyOrFEIpFIyo50SkkqnMlHkzhnUVYBDWoVEe7XT3ZsT0/Hnp4PgNFqxSHeo/Z5DV3DLJCXozR68FUIbFRudjoceeze8zB5hU4vpzoYgZrafu4Mby/DzyWS0nDTutHAtwF2px21qmqt9kskEkl54LDb+dnaiDz0RHk3xqIHRC6gQauygfay8x67BUuhM39R43Du9zNVis23QkqmotNahSoV91QqI56edQkLHVqZZkkkEomkiiF/OUgqnAybEjXxf7UCWdmy7nVzShUcPszpJ0ZiVVsBcKrSiQkYQP+m4+k05O9gLay6V84JzrOyDrocUgC/nW4KgJdRV67jSCTVFZ1Gh1FnxE1btip7EolEUl0QdifWAgN56OmUvpMjgVYQeQAE6BK5x+N70F/heLrCKVUVc0kJITDnKwuOLUKVNe4aNe6n3b3f4+fXuTJNk0gkEkkVQ0ZKSSoUpxDkKzXh+b/agdQow9a9i99+x2HzJWymcwAcqO+kwNiULh1MkLgGHMo2wPJ2SuUXnAEg09GcF38bidWpiMWmoV7lOo5Eclfh+q0lq+9JJJLqS/6RS1jtJnROG23MsRQUyR2Viofv3YMhrC3UbAsnfwPzGSgwU+BySlWtNeIlv5/knV+P4hSgVjlw1ykRU1qNLAYjkUgkkhunan0LSqocBc7LP0SNZVwJjDtzgfhQP4QzA4BMk5UHQrWw/CH4earSSK0tt6p7TqeVixfXkpamlDE2W4OxOvX8o3Md1j57P890r18u40gkVZVRo0ahUqlQqVTo9Xrq1avHrFmzsNuvnzuqtHf977//jkqlIjMzs9xsvR4JCQkMGzaM0NBQDAYDNWvWZODAgRw9erRYu5iYGLp27YrJZMLd3Z17772X5cuXF2uTmJiISqUiLi6uzOPPnDmTRo0a4eHhga+vLz169GDXrl3Frjl69GgiIiIwGo3UrVuXGTNmYLVaS71uSkoKw4YNo0GDBqjVaiZPnlwmezZv3kz//v0JDQ1FpVKxevXqG7YZYM6cOXTq1Al3d3d8fHxKHCspKYl+/frh7u5OYGAgU6dOLfY3dOXf2ZWPpk2butq8+eab3HvvvZhMJgIDA3n44Yc5duzYdedZFvskklshM+kSVkAjLv9N6zwfxi2kMYYhSyBqDpw/BP99GNZMAou5ykZK/XooFaeAEY2/5OOezxLIMgA02vJdLJRIqhq3opdKQ+olqZequ16STilJhZJfWHEPwFCGqjL5uQWczHUAoNKGoTG0JkCv4Z/NrIAAnQc0HwwDFhbPzXALJCev5MDBf3Lx4q8AJGT4ANAo2ESDIFOxUvcSyd1K7969SUlJ4fjx4zz33HPMnDmTd9555/odi6jgQKnriRAAm81Gz549MZvNfPvttxw7doyvvvqK5s2bFxN6CxcuZODAgXTu3Jldu3Zx4MABhg4dyvjx43n++edvyc4GDRqwaNEiDh48yNatW6lTpw69evXi4sWLABw9ehSn08lHH33EoUOHmD9/Ph9++CEvvfRSqde1WCwEBATwyiuv0LJlyzLbk5ubS8uWLVm8ePFN2wzK/R88eDD//Oc/S7yGw+GgX79+WK1Wtm/fzmeffcby5ct57bXXXG3ef/99UlJSXI8zZ87g5+fH4MGDXW02bdrEhAkT2LlzJ+vWrcNms9GrVy9yc3NLnef17JNIbpVjWzdiRWAU6coBARpdJFo3NWgK9UqWEgGOwRsa9MGiU7bzGapYpFR2gbJtr2vtQ65jKpUWX58OlWWSRHLHcMt6qYKReknqpdKoNL0kJNfEbDYLQJjN5so2pcpyJt8igjbGitq/x5Wp/e4PvxHzHh8poof0E58MniFe/b9BYtzULiJ3f4wQM7yEWNyh3G08eux1sX5DpFizrouY+Z/HRfNXvxDh02LE+sOp5T6W5O4lPz9fHD58WOTn51e2KTfMyJEjxcCBA4sd69mzp+jQoYNIT08XI0aMED4+PsJoNIrevXuL+Ph4V7ujf8aLnt17C29vH+Hu7i6aNGkifvzxR5GQkCBQXFWux8iRI4UQQmRlZYlhw4YJd3d3ERwcLN59913RtWtX8cwzz7iuGx4eLmbNmiVGjBghTCaTq++WLVtEly5dhMFgEDVr1hSTJk0SOTk5QgghYmNjBSASExOvOdekpCSh0+nElClTrjq3YMECAYidO3cKIYRrDrGxsTd+Uwsp+p5Zv379NdvMnTtXRERElPmaf71XZQUQ33333XXblWbzsmXLhLe391XHf/rpJ6FWq0Vq6uXP1SVLlggvLy9hsVhKHOe7774TKpWq1NfrwoULAhCbNm26rt2l2VcSpb1npT4ojrwfQvz6dLRY+PJSsXBgFxE9pJ+YN/ghsWjcBvHx9ClCWPOURodWCzHDS7z9TbR4LPaECN4YK4I2xork/JLfA3caDodTZOVbRdvZ60SdaWvE+g31xPoNkSIn54Sw2/Mq2zxJNeFu1UuJiYnioYceEj4+Ui+VhNRL1VsvVa2lGUmVweYUPH/0DH33xgPg+f/s3Xd4VMX6wPHv1uymbQrphEBIKKFJ72KkhCKgFwEFKVdAUYoIIupVg4ioGOSKchG8iN7fBVQQkUtRuvQeigYSCImBJJQQSC9b5vfHJitrKhAIhvk8zz6w58yZM+ck2byZmTNvBYubA+QcOMjVjVsR5hsAuF9dx+lAA+MHvI2jpmiaRRU9snczk8maNSYu8xGW/Tac+r51GN+tPl1Ca1X5uSTpZkIICgsL7/lLiDuftqTX6yksLGT06NEcOXKEdevWsX//foQQ9O3bF6PROpI+ZdpLFBYWsHHtz5w6dYoPP/wQZ2dnAgMD+f777wGIjY0lNTWVTz75BICpU6eyd+9e1q1bx5YtW9i9ezfHjh0r0YaoqChatGhBdHQ0b731FvHx8fTu3ZtBgwZx8uRJvv32W/bs2cPEiRMB8PLyQqlUsnr1asxmc6nXtXr1aoxGY6kjfM8//zzOzs6sXLnyju8fWEejlixZgsFgKHe0LiMjAw8Pjyo5552qbJv/bP/+/TRr1gwfHx/btoiICDIzM/ntt99KPWbp0qX06NGDoKCys59mZFg/v++X+yM9mP7vgw/Y75ZFgjINz5z8oq3WEDvEmAuqouQPpgKuatz52L07O69nIQC9UolBU3GMVN1MZgt9F+ym2czNtPFcz+vt5gPW2fA6XW1UKn31NlCq0aorXqqKmKmy8dKECRMoKChg165dMl76Exkv1fx4SS50Lt0VBzOy+W/qNdv7Lu4VdyYlLV9OkqoQsD4zO79Xe156aCgPJS2C4+ethapwcfMrV34mJfVbMjNPAZBZYA2oxnSpx2PN/avsPJJUFqPRyJw5c+75ed944w202tt7/FUIwbZt2/j555/p06cPa9euZe/evXTq1AmA5cuXExgYyNq1axk8eDAXL16gT8/+hIU1xc3bkeDgYFtdxb8Yvb29bc+tZ2Vl8fXXX7NixQq6d+8OwLJly/D3L/kz+eijjzJt2jTb+7FjxzJ8+HDb+gChoaEsWLCAbt26sWjRIgICAliwYAGvvvoq77zzDm3atCE8PJzhw4fb2hUXF4fBYMDPz6/E+bRaLcHBwcTFxd3WvSu2fv16nnrqKXJzc/Hz82PLli3UqlV6J/i5c+f49NNPiYqKuqNz3qlbaXNpLl26ZBdgAbb3ly5dKlE+JSWFTZs2sWLFijLrtFgsTJkyhc6dO9O0adNKt0WSqpLJZCI+Px8UYBYKlEVraSqKlhhwVpig+PE8Uz45RZ03OqWCqIaBNHHWV5iV+H6QmpHPmUtZKLDwRMgGVMqbO6RkxlXp7qqueAluP2a61XgpKSmJQYMG0axZMwAZLyHjpWIPQrwkZ0pJd0WWydqrHqx3YHGTIOY2qF3hMXvS08jRWH/YhFJPo7xcehbugLifIK3oQ80juJwabk38+Y+4du0XjEbr+g+JN9wBcHaQfbWS9Gfr16/H2dkZnU5Hnz59GDp0KKNHj0atVtO+fXtbOU9PTxo2bMjp06cBeGH8BOZ/9hERj3UnMjKSkydPlnue8+fPYzQaadeunW2bwWCgYcOGJcq2adPG7v2JEyf46quvcHZ2tr0iIiKwWCwkJCQA1pHIS5cusXz5cjp27MiqVato0qQJW7ZsqfS9qExwunz5crt27N6927YvPDyc48ePs2/fPnr37s2QIUO4cuVKiTqSk5Pp3bs3gwcPZty4cbbtN9c7fvz4SrV59+7ddsctX768Usfdapurytdff42bmxuPP/54mWUmTJjAr7/+yjfffGPbNn78eLvrlKS7rXgWwUFjHY4UNqPA2brQrMVijSXUqj/W1sRUQIFSA4CjSsmTvh40dv5rzDDKyLPO5ghww9Yh1azpQtq0/q4aWyVJ95/bjZcmT57M7Nmz6dy5s4yXish4qWI1JV6Sf31Ld0Vu0QLnAToNA73dKyx/6ffrZJpyAVBq6pPrqMTv2ikchLe1QKPH4KHhENytytpoNN4A4LvYgSRkBhF3PRAAV72mys4hSeXRaDQVLsh4t857q8LDw1m0aBFarRZ/f3/UajXr1q2r8Li/j36Wjq0fZseerezZv5P333+fefPmMWnSpNtpuh0nJ/uZk9nZ2Tz//PNMnjy5RNk6derY/u/i4kL//v3p378/s2fPJiIigtmzZ9OzZ09CQ0PJyMggJSWlxGhjYWEh8fHxREREVNi2AQMG2AWfAQEBdu0OCQkhJCSEDh06EBoaytKlS3n99ddtZVJSUggPD6dTp04sWbLEru6bs9e4urpW2BawBqQ3H/fnUbiKVKbN5fH19eXQoUN22y5fvmzbdzMhBF9++SUjRowoM6CdOHEi69evZ9euXdSu/cegx6xZs+54cVVJuhVms5l8oea02fozZVEbgGsoFAr8Nb9Sz/mmPyxN+RQWZdzTKv4a48JCCL7cm8j++DQAfJytnVMKhQYvrwiZDEa6J6orXio+96243Xhp7NixREREsGHDBjZv3izjJWS8VOxBiJdkp5R0V+RarJ1STpXIuAewY+UWih/b0zk8wnH/z2l2wQWNxdpRhf9D0KhvlbVPCIHJlAXAoUutUKh9aF5bT30vZ5oHGKrsPJJUnuKUwX8Fxb9kb9a4cWNMJhMHDx60TUe/du0asbGxhIWF2coF+Nfm2VFjmTp9Mq+//jpffPEFkyZNsl37zesVBAcHo9FoOHz4sC0wysjIIC4ujocffrjcNrZq1YqYmJgS7SyPQqGgUaNG7Nu3D4Ann3ySGTNmMG/ePObNm2dX9vPPPyc3N5eRI0dWWK+LiwsuLi6VaoPFYqGgoMD2Pjk5mfDwcFq3bs2yZctQ/ikz161cXzG9Xn9bx5Xlz22uSMeOHXnvvfe4cuUK3t7WwYYtW7bg6upq970C1owx586dY8yYMSXqEUIwadIkfvjhB3bu3Em9evXs9nt7e9vql6R7wWQyYUaBgzmfh9P3kqm0zvjWKPJ5olYkPDQaEnbBphmQlUqh2vqoi1b51+jMOXclm3fXx1BLn8azTX6irod1zSy1WmYnlu6dByVeCgwMZPz48YwfP17GS6WQ8VLNjZdkp5R0V+SYrJ1SjpVYJ6EgIQH2HQE9IBS0OvoPYro05+mn3kZ5qiiFahUtcG6xGDl16kWyc2IRwtoJlmty5O8dAnmtT6MqOYckPShCQ0MZOHAg48aNY/Hixbi4uPDaa68REBDAwIEDAZg+Yxpd24fTqFEjzl/MZ8eOHTRu3BiAoKAgFAoF69evp2/fvuj1elxcXBg1ahTTp0/Hw8MDb29vIiMjUSqVFf4BNGPGDDp06MDEiRMZO3YsTk5OxMTEsGXLFj777DOOHz9OZGQkI0aMICwsDK1Wyy+//MKXX37JjBkzAOsI4dy5c3nllVfQ6XSMGDECjUbDjz/+yBtvvMHs2bNLPI8fGxtboi1NmjQpMbqak5PDe++9x4ABA/Dz8yMtLY2FCxeSnJxsS+ObnJzMI488QlBQEFFRUXZphP88QvZnxSN72dnZXL16lePHj6PVaksEMTfLzs7m3LlztvcJCQkcP34cDw8P6tSpU6k2AyQlJZGenk5SUhJms9nWlpCQEJydnenVqxdhYWGMGDGCuXPncunSJd58800mTJiAg4P9ejRLly6lffv2pa57MGHCBFasWMGPP/6Ii4uLbX0Fg8GAXl/2Y1AVtU+SblduXDoWoaRe7u80yo7DWPQ3kVqphLfTQaGAHyfClRgA8g3WhWgd/iKdUlezrH9M9QveT+eAP0bvdTq59qYkVVZl4qUpU6bQp08fGjRowPXr12W8JOOlByteqlSevweUTHF8+z48nyJ8tkeL6WeSKix77OHuYuWA6SJqSD8RNXSg+Hj4K0LE/iTEymFCRLpaX0e/rpJ23bhxTGzdFmx7fbuhkwia8T+xcMfZKqlfkspS01IcFytOcWwwGIRerxcRERF2KY7HP/+CqBtUTzg4OAgvLy8xYsQIkZaWZts/a9Ys4evrKxQKRbkpjtu1aydee+0123FBQUFi/vz5Jdpz6NAh0bNnT+Hs7CycnJxE8+bNxXvvvSeEEOLq1ati8uTJomnTpsLZ2Vm4uLiIZs2aiaioKGE2m+3qWbt2rejatatwcnKypWBeuXKlXZnS0jQXvy5cuFCibXl5eeKJJ54Q/v7+QqvVCj8/PzFgwABx6NAhW5lly5aVWWdFSjsmKCio3GN27NhR6nHFX4vKtFkI6/dIafXs2LHDViYxMVH06dNH6PV6UatWLTFt2jRhNBrt6rlx44bQ6/ViyZIllb5GQCxbtqzc66xM+/6sKlIcPyge1PthsVjEntdXi5feel889sIHImpIP/HJk0PEJ6M/FesnPPdHwVXPWmOZjTPE9rMnhM/2aPHoodPV1/BbsPFkigiasV4sXDNCbN0WLE6cHC8uXPg/kZNTdupxSboTD2q8NHHiRFG/fn0ZLwkZLz2I8ZKiqNFSKTIzMzEYDGRkZFT6OdQH3Z7rWcyIvUhKgZE8i4V/BPsxKajsZ3HN+XmsGP48V9TWxcbz9Grq65rzdLPNcPX0HwVHrquS9aSuXP2ZU6de5FpBIJ8de4pLOT4UWrTMH9qCJ1pWvBi7JN2u/Px8EhISqFevHjqdrrqbc8/kZReSdS0frU6Nm4/jbdWRk5NDQEAA8+bNK3WK8t2Wnp5O9+7dcXV1ZdOmTTg63t51SH8t5f3MyvjA3oN6P65dvMDJeZv5wSWN36+aeTh9H3pLLYTnSBrqv6XH/MXWgt8MJ+vsdrZ1X8gxr/YsuXiVVq6ObGzdoHovoBz7zqXx4opjZOYV4qW/wktt1uCjO02jRnMI8B9a3c2TarAHNV6qCjJekqpDVcRL8vE9qUqtvnSd+DzrVG8l0Mmt/Gl+x3/aaeuQAijUQb6iAPKuWze0fwEa9YO6XaqkfQUF1oXirubVIikrkMGta9OstoE+TUumM5Uk6c7dzgMq0dHRnDlzhnbt2pGRkcGsWbMAbFPc7zUPDw+2bt3KwoUL2b9/vy31siRJD7Ybu35BoVRhBvRueyFdgQIlAtAo7bPuvVfvOb4qCIaL1kdMHJX390Ln285c4UaukQHBPzEwZJNtu0Yt192UpPuFjJekmkJ2SklVKt1oXafplbq+jPT3xNuh7IwV+UYze9fuKXqnQuvYi/MNVtAkqwUUZls3txsHnvXvvF3pezl56kXMZmu9KdleAIx7OJgGPpVbXE+SpNtxe+umREVFERsbi1arpXXr1uzevZtatWpVcdsqz9PTk7fffrvazi9J0v2lsLCQPTt/IderIX6XE3n07HUSvTxQFIXWzsqbHkQw5ZPsbJ013thJR6BOy3OBXtXR7ErLzLNm2esWfA0AlcoZR8e6uLu3L+8wSZLuMRkvSTWB7JSSqlRxp1SYs67cDimArZ/+B01+PkbAUOiGxfIDnvketO7TGzZ+Yi1URQucX7m62dYhVWDWcjDFupCdQX9raV4lSbr7WrZsydGjR6u7GZIkSWU6d+4cCf4BQDbBl1JQWYo74K0zoHS6mzulCshXWrNnTQry4W8+7ve2sbeg0GQh7nIWyTfyANCrc8ECYY0/xNu7dzW3TpKkm8l4SaopZKeUVKWuG62pSt015X9rmTMzSVv3P0z+dcEMubpreLfozCc+h2FTX6xrqgEOVdMplZ9/AYC154eyMb4DZqGiXT0PvJwdKjhSkqQ78tdIMCVJknRLilN8u5p1uJkcyNFZO5qEm3VGlFoDpJ6A+B2QcZGCWtZOKd19nnXvuf87ws7YqzTxPM2ToXFoxEUA1Go5q1ySJEm6O2SnlFSlimdKuWtU5ZYzpt3AbPDBaLGmp7wSqOQhD0/4fe8fhXyagubOFsgzmXLIzDpJTk48AIk3amEWKva99ij+bmWnw5QkqWrJjBqSJNUkJpOJaxZHDprqYBAnyfZqAYUnKChUodGDRm2Bb4ZDhnVQLF9pHQRzuM/XkvotJRMFFiY89CUOqgLbh7fWwbt6GyZJkiTVWLJTSqoS667cYN2V69wwWWdKeajL/9ba9MW/uaG7YAt2lDqwPe2nUMGko2CoDYo7G1E8efI5rt84YHt/KccDkI/tSdI9JxO9SpJUg5jNZmJMPlwyKslyyMdiSgTAU32BYMe1BHpcgCvWgTeaPEGeSwBw/8+Uysgz4qAqtHZIAYGBf8fJKRRnp9BqbpkkSZJUU8lOKalKvBF3kbSiWVIGtarcx/dOJF4j4fdE23uF2p8b4hTOjkV/tPo1B496d9wmIQQZmScAuJjlR+z1EK7m1UKlVOCoLX8mlyRJkiRJUmmEEGQeScGIiobZcZi1hWApBKCFbyzNm/hB61dg5VCSHbz4qfVMrqVkgdGM7j6dKbXm2EXOXcmm0GTBzSEfAIVCTWjIP1Dc4QChJEmSJJVHdkpJVSKzaIbU2/X9CfdwQVPOSODKJZvwslizuniKTlzWn0Nn8aSO3prhpaoWNy80XsNiyUMIBbMOTEev1VHXU0u/5n4ywJIkSZIk6baYsgsoSM3GggptUWeUUl0bhUMDwvrqofMLUGBNrjIjdCpbf79hO9ZFff8NisVfzWbqdyfQq/PoVvsYvk7pgHUdKRkvSZIkSXeb7JSS7pjJIigsejTnaT+PcmdJ5R45Qu3Tv1GgtU4LD4v9hoCnW9IjfzeKY7uthRxc76g9QggSEhaQkWHNRlEgPDELNSM7BvFq70Z3VLckSZIkSQ+2U1u2YlZYsAg1KqyDcgqVDyptXdS6TGshk3W20RWtJwCd3Jzp6u5MqOP9l2Dlcoa1rQNCfqFXnY227RrN/ZslUJIkSao57s85xNJfSr7FYvu/voJp6ddXrERvzAesI4uHI5rRNsTbmqDL0RP8W0HbMXfUnuzsMyQkLiD9unXR9PM3/ABwc5TrSEnS7Rg9ejQKhQKFQoFWqyUkJIRZs2ZhMpnuqN6dO3eiUCi4ceNG1TS0EhISEhg2bBj+/v7odDpq167NwIEDOXPmjF259evX061bN1xcXHB0dKRt27Z89dVXdmUSExNRKBQcP3680uefOXMmjRo1wsnJCXd3d3r06MHBgwft6hwzZgz16tVDr9dTv359IiMjKSwsrLDu5cuX06JFCxwdHfHz8+PZZ5/l2rVr5R6za9cu+vfvj7+/PwqFgrVr15Za7vTp0wwYMACDwYCTkxNt27YlKSnJtv/555+nfv366PV6vLy8Sr2nhw8fpnv37ri5ueHu7k5ERAQnTpwo9Xznzp3DxcUFNze3Cq+7stcgSVUl/bcYLAhQXCZQFK1bqVAhFCZQFXU6GfOAPxY4n1rXh5fr+t6XM48y862z1+sYrB1qLi5N8PV5nAahb1VnsyTpL0fGSzJekvHS7ZGdUtIdyzVbO6UUgEMFC3juvZbLDaezAAiFGo3SgEZYR+hoOw6e2wEh3e+oPYWFVwDIt3jx5a/D+OLkUADqe1XNY4GS9CDq3bs3qampnD17lmnTpjFz5kw++uijig+8R39/VSYIMRqN9OzZk4yMDNasWUNsbCzffvstzZo1swv0Pv30UwYOHEjnzp05ePAgJ0+e5KmnnmL8+PG88sord9TOBg0a8Nlnn3Hq1Cn27NlD3bp16dWrF1evXgXgzJkzWCwWFi9ezG+//cb8+fP5/PPPeeONN8qtd+/evYwcOZIxY8bw22+/sWrVKg4dOsS4cePKPS4nJ4cWLVqwcOHCMsvEx8fTpUsXGjVqxM6dOzl58iRvvfUWOp3OVqZ169YsW7aM06dP8/PPPyOEoFevXpjN1lkk2dnZ9O7dmzp16nDw4EH27NmDi4sLERERGI1Gu/MZjUaefvppunbtWm7bb+UaJKmqXD9zhtOpF/ldeZUnYrfQ6rz1s0eBCjVGUGvh+3Gw2Pr9W1jUSXU/riV18Xour64+waJfzgPgrMkFIMD/aZo0mYen58PV2TxJ+ku67XjpHpHxkoyX7st4SUhlysjIEIDIyMio7qbc1xJy84XP9mhR75cT5ZY7eeqCiBr6hIga0k9EDeknZo0ZJ/41+UWR/81YISJdhdjzzyppT0rKGrF1W7BYuekJETRjvZj23XFxJPGasFgsVVK/JN2OvLw8ERMTI/Ly8qq7Kbds1KhRYuDAgXbbevbsKTp06CDS09PFiBEjhJubm9Dr9aJ3794iLi7OVi729FnRs3tvYTC4CUdHRxEWFiY2bNggEhISBNb8m7bXqFGjhBBCZGZmimHDhglHR0fh6+srPv74Y9GtWzfx0ksv2eoNCgoSs2bNEiNGjBAuLi62Y3fv3i26dOkidDqdqF27tpg0aZLIzs4WQggRHR0tAJGYmFjmtSYlJQmNRiOmTp1aYt+CBQsEIA4cOCCEELZriI6OvvWbWqT498zWrVvLLDN37lxRr169cuv56KOPRHBwcIn2BgQEVLotgPjhhx9KbB86dKh45plnKl2PEEKcOHFCAOLcuXNCCCEOHz4sAJGUlGQrc/LkSQGIs2fP2h376quvimeeeUYsW7ZMGAyGWzpvWddwO8r7mZXxgb0H6X7s+u47ERkZKSIjI8WXEd3Eyh5dRdSQfuKfo94XK19cKsSJb60xTdHroc07hc/2aHEyM6e6m17C3J9Oi6AZ68WwT94UGzc3FFu3BYut24LFpcsbqrtp0gPsQY2XEhMTxWOPPSbc3GS8VBoZL9XseOn+G7aR/jLSjSY6Hoihw4HTAHiWs5YUwPpPfwJh7Z13MIwntp6GazcS0FisI3None6oPdk5Z4mOHkXMaWvPfEaBAYC2dd1pHeRxX06Zl6S/Kr1eT2FhIaNHj+bIkSOsW7eO/fv3I4Sgb9++ttGcKS+/RGFhARt++IlTp07x4Ycf4uzsTGBgIN9//z0AsbGxpKam8sknnwAwdepU9u7dy7p169iyZQu7d+/m2LFjJdoQFRVFixYtiI6O5q233iI+Pp7evXszaNAgTp48ybfffsuePXuYOHEiAF5eXiiVSlavXm0bkfqz1atXYzQaSx3he/7553F2dmblypVVcg8LCwtZsmQJBoOBFi1alFkuIyMDDw+Pcuvq2LEjFy5cYOPGjQghuHz5MqtXr6Zv37531EaLxcKGDRto0KABEREReHt70759+3KnfOfk5LBs2TLq1atHYGAgAA0bNsTT05OlS5dSWFhIXl4eS5cupXHjxtStW9d27Pbt21m1atX9OYonSfwxy8DbYkCpdOeqZ9OiPWpUSiN2DyG8sI8CnfVnV3sfzpRKz7FeS6/6sWhV1s9slcoZV5fm1dksSapRKhsvTZgwgYKCAnbt2iXjpT+R8VLNj5fuv9+Q0l/G8cxcEvL+mAI6zK/sD4H8CxcJuHbJ+kYoCDo7F6H7lR6eV1Ge/cm6XXNnnVIpKd+Sfn2P7f22hHoAuOrkWlLS/UkIgdmce89foigxwe22eevWrfz888/UqVOHdevW8e9//5uuXbvSokULli9fTnJysu2X8IULSbRr3YHGjZoSHBzMY489xsMPP4xKpbIFDt7e3vj6+mIwGMjKyuLrr78mKiqK7t2707RpU5YtW1ZqUPToo48ybdo06tevT/369Xn//fcZPnw4U6ZMITQ0lE6dOrFgwQL+85//kJ+fT0BAAAsWLODtt9/G3d2dRx99lHfffZfz58/b6oyLi8NgMODn51fifFqtluDgYOLi4m77/oF1/QVnZ2d0Oh3z589ny5Yt1KpVq9Sy586d49NPP+X5558vt87OnTuzfPlyhg4dilartd3POw1Wrly5QnZ2Nh988AG9e/dm8+bNPPHEE/ztb3/jl19+sSv7r3/9C2dnZ5ydndm0aRNbtmxBq9UC4OLiws6dO/nvf/+LXq/H2dmZn376iU2bNqFWWwc0rl27xujRo/nqq69wdb2zhBeSdLcYizqlPC3OWPT1MKmLFy5X4qlO/OORZZUD+DQhv+jzVlfB8gbVITPPus6Nl5P130YNZ9O1y0H0+trV2SxJKqG64qU7iZluNV5KSkqic+fONGvWTMZLRWS89ODESzL7nnTb8ooWOG/p4sh3D9UvM82xEIJfR45B4dERAItKQX6TzixXrQfXJLAASg34Nruz9uRdAGBXSji7klqRlB1EkKcjbeqW32MuSdXFYslj5y939n1/Ox7pdgqVyvGWjikODIxGIxaLhWHDhvG3v/2N9evX0759e1s5T09PGjZsyOnT1hmUL744kckvTeSXPTvo3bcXgwYNonnzskfhz58/j9FopF27drZtBoOBhg0blijbpk0bu/cnTpzg5MmTLF++3LZNCIHFYiEhIYHGjRszYcIERo4cyc6dOzlw4ACrVq1izpw5rFu3jp49e1bqXhQHDuVZvny5XWC0adMm2zP/4eHhHD9+nLS0NL744guGDBnCwYMH8fb2tqsjOTmZ3r17M3jwYLu1Dpyd/1gf75lnnuHzzz8nJiaGl156ibfffpuIiAhSU1OZPn0648ePZ+nSpezevZs+ffrYjlu8eDHDhw+v8DosRZ/zAwcO5OWXXwbgoYceYt++fXz++ed069bNVnb48OH07NmT1NRUoqKiGDJkCHv37kWn05GXl8eYMWPo3LkzK1euxGw2ExUVRb9+/Th8+DB6vZ5x48YxbNgwHn649HVsbvcaJKkqGU1GDhrrcD4tkRaqOCha4qOdyyo6eCSAS38yVU7MaDSDy9HnbOtuOtxHM6XmbY7lP/t/J6fA2hmlVlhnrOt0/qhUuvIOlaRqUV3xEtx6zHS78dLkyZN54YUX2Lx5Mz169JDxEjJeepDiJdkpJd22/KJAy0WtLLNDCsCUlcNp32CuWI4AUOCgAB9fKMiyFhi2Cmq3Acfb7zwymwvIy7NmNoi+1JCEzCAOvtEdH1cZXElSVQgPD2fRokVotVr8/f1Rq9WsW7euwuOeHf0sHVp2ZfuuLew9+Avvv/8+8+bNY9KkSXfcJicn+9mV2dnZPP/880yePLlE2Tp16tj+7+LiQv/+/enfvz+zZ88mIiKC2bNn07NnT0JDQ8nIyCAlJQV/f3+7OgoLC4mPjyciIqLCtg0YMMAu+AwICLBrd0hICCEhIXTo0IHQ0FCWLl3K66+/biuTkpJCeHg4nTp1YsmSJXZ135y9pniE7P3336dz585Mnz4dgObNm+Pk5ETXrl2ZPXs2bdq0sTvOx8enwmsAqFWrFmq1mrCwMLvtjRs3Zs+ePXbbDAYDBoOB0NBQOnTogLu7Oz/88ANPP/00K1asIDExkf3796Ms+uN8xYoVuLu78+OPP/LUU0+xfft21q1bR1RUFPBHgKxWq1myZAlPP/30bV2DJFUVYbJQeN3CabM3LXN23JTIQUn9p6ahaPkoZKWyw6MdP9TqBjeyAXBWKTGUEyfda98duUBeQQ4vt/ocb8drqMzWrHsqtUwII0l36nbjpbFjxxIREcGGDRvYvHmzjJeQ8dKDFC/JTinptuVZrNNZ9aryR/+O/28TVywXbO8L9ArcfN0gtahTyqfJHXVInTnzJskpfzyzfDXPWpd8bE+63ymVeh7pdqpaznurigODmzVu3BiTycTBgwfp1KkTYJ1SHBsba/dLOcC/Nn8fOZZpM17i9ddf54svvmDSpEm2EbSbp5oHBwej0Wg4fPiwLTDKyMggLi6uzBGhYq1atSImJqZEO8ujUCho1KgR+/btA+DJJ59kxowZzJs3j3nz5tmV/fzzz8nNzWXkyJEV1uvi4oKLi0ul2mCxWCgoKLC9T05OJjw83JahRfmnGRalXV9ubq5tWncxlcr6R7AQAr1ef0v3pZhWq6Vt27bExsbabY+LiyMoKKjM44QQCCFs15Wbm4tSqbRb26/4ffHo4v79++2+F3788Uc+/PBD9u3bR0BAwG1fgyRVlbyYaxgz1IACpbB+32qcBuKoO493y0etscz1BHJU1s/Y5s56JgR508RZX2GsdC9l5ZsIdkukkcc52zalUoejvm71NUqSylFd8VLxuW/FncRLgYGBjB8/nvHjx8t4qRQyXqq58ZLslJJuW17RTCl9OVPSjWYL+7b98cOpcRrI2frf8EzGerBYp43jULkPorJcvrLB9v/EjECu5HqhVSvRae6fAFCSSqNQKG75Mbr7SWhoKAMHDmTcuHEsXrwYFxcXXnvtNQICAhg4cCAAr0yfRpf2j9CgYUMSUwvYsWMHjRs3BiAoKAiFQsH69evp27cver0eFxcXRo0axfTp0/Hw8MDb25vIyMgSv6BLM2PGDDp06MDEiRMZO3YsTk5OxMTEsGXLFj777DOOHz9OZGQkI0aMICwsDK1Wyy+//MKXX37JjBkzAOsI4dy5c3nllVfQ6XSMGDECjUbDjz/+yBtvvMHs2bNp2rSp3Xn/HIAANGnSBI3GvmM8JyeH9957jwEDBuDn50daWhoLFy4kOTmZwYMHA9YA65FHHiEoKIioqChb6mMAX1/fMq+9f//+jBs3jkWLFtmmo0+ZMoV27dqVGMG8WXZ2NufO/fGHaUJCAsePH8fDw8MW5E6fPp2hQ4fy8MMPEx4ezk8//cT//vc/du7cCVgfIfj222/p1asXXl5eXLx4kQ8++AC9Xm9bOLRnz55Mnz6dCRMmMGnSJCwWCx988AFqtZrw8HAA2/dFsSNHjqBUKkvc79u5BkmqCic3bcW6opQZlcL6P4XSEZUSUDvA9d/h0q/kK61/QNbRaxno7V5dzS2VyWwht9CMk9r6yJ6zcxiNG81Bp/NHq/Ws5tZJUukehHhpypQp9OnThwYNGnD9+nUZL8l46cGKl6ogC2CN9SClOL5VGUaTeDvuovDZHi2mnP69zHK/vP2hWDDiAxE1pJ9YMGSM+Pypv4vpHzcVlreL0iW/X0cIs/m221FYmGFLYRz2j29F47c2iicX7RVLd5+/7Tol6W6oaSmOixWnODYYDEKv14uIiAi7FMcvjH9R1A2qJxwcHISXl5cYMWKESEtLs+2fNWuW8PX1FQqFotwUx+3atROvvfaa7bigoCAxf/78Eu05dOiQ6Nmzp3B2dhZOTk6iefPm4r333hNCCHH16lUxefJk0bRpU+Hs7CxcXFxEs2bNRFRUlDD/6XNo7dq1omvXrsLJycmWgnnlypV2ZUpL01z8unDhQom25eXliSeeeEL4+/sLrVYr/Pz8xIABA8ShQ4dsZZYtW1ZmnRVZsGCBCAsLE3q9Xvj5+Ynhw4eLixcvlnvMjh07Sj1X8dei2NKlS0VISIjQ6XSiRYsWYu3atbZ9ycnJok+fPsLb21toNBpRu3ZtMWzYMHHmzBm7OjZv3iw6d+4sDAaDcHd3F48++qjYv39/mW2rbIrjyl7DraqKFMcPigflfmycOFf8+40losE/R4tZIyKssc2YleKridOEOL/bGtdEuoqFX4wTPtujxYTfyk6nfq+dvZwlIub/IjrO2Sj6f/Sh+MdXI8TWbcHi+PGx1d00SbLzoMZLEydOFPXr15fxkpDx0oMYLymEuIM0TDVcZmYmBoOBjIyMGrOyfVVYmXqNqWcuUPyNM7GON2/WL9mzbEpL44f+I0lp0AVT/j4cLfn4NOnO3/jAWuDhV6HxY+BXdmrP8uTkxJN+fR9xcTMRCgNjf36X9vU8+Pb5jrd5ZZJ09+Tn55OQkEC9evXQ6R6ctc4K8kxkXMlFrVXh4Xd7GTZzcnIICAhg3rx5jBkzpopbWLH09HS6d++Oq6srmzZtwtHxrztaK1VeeT+zMj6w9yDcD0tuLptf+ZRED3e+cv+Bx4+CxqxC6zqKBtpdRPy9FayfAmo9HwePY67fIEb4e/JRw8DqbjoAn/8SzwebztC33mYGha63bffz/RthYR9VY8skyd6DGi9VBRkvSdWhKuIl+XyTdMv23ci2dUh5aFQM8S19PShzZhaZPmFYTMkApAco0HvdNJ2yy5Tb7pDKz0/h4KE+xMXNBOBqnnXKuateriMlSX910dHRrFy5kvj4eI4dO2bLGFI8xf1e8/DwYOvWrXTv3p39+/dXSxskSapev7/2GjnCiDH/Bou/TERfWLxHiavCDKaidU4a9aWgw4sAOCjLf4TmXrqRa00T2LZ2DgA6XR08PbtRu/aI6myWJEl3QMZLUk0h15SSblmWybqw2kcNazPCv1aZ5Q6u+YkbDmegaOkotQo8vfVwFUAB6ltfbNnWhqwYhDBjFnrOXg/g58RHAQhwu/06JUmqerY/yW5xTm5UVBSxsbFotVpat27N7t27qVWr7M+bu83T05O333672s4vSVL1sVgsfO+oJ1tnQn85DYVCj1lpXRhXgQqtkxlM+cTra/Oi4SkSkq1rm+jKWXPzXskrNLM55hLRSdcBMOjyAQgKGkftgGHV2TRJkqqAjJekmkB2Skm3LNNkXeDcRVV2euPfU9M5En3M9l4oHTFq0nBN3WzdoHWCOwjW8vKt2fyuFLbgoyPDCG/oxTudvOnfouwF6iRJqk6V75Vq2bIlR48evYttkSRJqjyTyUS2zjro5WBWEtvgKYRiNyBAoUTjoARTAZs9O3FC7Q1FcVIDp+p/9OirfYl8+NMZGnvE8kzj4zgrzgKgVt9ZkhlJkqqfjJekmkJ2Skm3LLtoppSzuuxOqZ8//Bos1tE4T0tbjgUdo0mGgjrqddbvOqfb68HPz08hIeFTbmRYP4BvFHoB0CPMh+Hty063KUlS9ZKLF0qS9FdVnHrbKJQ0KqzLFa0eipZkreedSv2BA+D6IfKU1k6o3rVceT3Yn4b3QafUhevWLHvjmq/EoE23bdc5+FVXkyRJkiTJjuyUkm5Zusn6PJ5bGZ1S2bt2YYiJJcvDuuCC+/UNTBz/dxrsfg1ca0OzQdCw722d+2LyclJSv7O9P3nJ2rnlopNrSUmSJEmSVPWMhUYyLA5sza2LJn89bsJi29fzHyPQ6h3hp90UKLUA1NZp74sOKYDsfGvM5qrNAqBO4BicnEIxGFpXZ7MkSZIkyUZ2SkmVlphXwL7r2VwttAY4XtrSv31yzpwFpRaEdaZUUtuH6OtStNq+Txj0nHXbbSgouAzA0cstOJjamuirzQDwN9wfwZ8kSX9y/6zzK0mSdFvOrzpDunAiMC8ZF5GBuWi7RqNEnXwA9n0CV2PJ93oCAIf7YC2pc1eyibucRUJaDmqlEQXWhc7r1ZskH92TJEmS7iuyU0qqtKdPxJOQZ539pFKAl7b02Un7j57louG87b2D0R212TpCh/b2UsIXMxqtC3WeTAvjXFZbXu8Tgr+bntZB7ndUryRJkiRJUmlMqTcwo0AlrN1RaoU3CqdutG2+D+XBRXB+JwAFPtaZUtWddS8r38hjn+7GaCrk701WMKD2laI9ClSqO4vDJEmSJKmqyU4pqVLMQpBY1CHV09OVXrVccVSVHAncuGMv8Rlnbe8L9J64k4Pi5xnWDbfZKZWQuJDk5BUUFFwC4Hq+GwFuesY9HHxb9UmSJEmSJFXk95PHyb6ejMVRgYoCABQKJ1SaQJx0aii0rtlEhxcp8OgLOdWfde9yZj75Rgthnol09D9i2+7oWBeFovpncUmSJEnSzWSnlFQpGSazbaHipU3roi0l4DKaLez4bwy+wvp4n9b5ac76bWWUZfUfhZx9b+v8Fy4ss82SulHgytkbwbStJ9eRkqS/DLnSuSRJf0FpFxJBoSBXnUE95WbADRTW8FmrVoG5gN91fmyoFcEp4QbkVftMqYw8axwW6GYdTHRyCqV+8DRcXR+qxlZJkiRJUulkp5RUKTeMRRn3VMpSO6QAzi1ZRqfUWM67WMu2P/Ixj74USEBSHjh6Qucp0PKZWz63yZRt65B698A0rhf681CgD889XP/2LkaSJEmSJKkCFouFpPh48jUO+GScI/yUhbO+2Dqlaml0kFvAa6EvsyPLDcgDwLWc7MR3U0aukUW/xBN7KYMmnqdp7B4DgF5fBy+vntXSJkmSJEmqiJzDK1XKdaN11M1dU3Y/ZvqOXVhUWtv7mGaNaKItCsx6zYbOk8HR45bOazbnkpFxDAChcCExM4hGfj58N74j3Rp43eJVSJJ0O0aPHo1CoUChUKDVagkJCWHWrFmYijJx3q6dO3eiUCi4ceNG1TS0EhISEhg2bBj+/v7odDpq167NwIEDOXPmjF259evX061bN1xcXHB0dKRt27Z89dVXdmUSExNRKBQcP3680uefOXMmjRo1wsnJCXd3d3r06MHBgwft6hwzZgz16tVDr9dTv359IiMjKSwsrLDu5cuX06JFCxwdHfHz8+PZZ5/l2rVr5R6zaNEimjdvjqurK66urnTs2JFNmzbZ9qenpzNp0iQaNmyIXq+nTp06TJ48mYyMDFuZr776yvb98efXlStXbOUKCgr4xz/+QVBQEA4ODtStW5cvv/zSrj3//Oc/becKDAzk5ZdfJj8/v9xrWLNmDb169cLT0/OWvx6SVJ5zv/7KifQsYnVpGHLzsCiKZkAprTO11Vo1mAu5qrHGNo+4u/BioDePeblVS3vXHk/m81/iSb26j6mtF9HMYxcAGs2txV6SJN0eGS/JeEnGS7dHzpSSKiW9uFOqjNE/YbJw2bkxVxWpAJhUCize/lBw0lrgNtaSKixMZ/+B7phMmQBkGa2dUC46+dieJN1rvXv3ZtmyZRQUFLBx40YmTJiARqPh9ddfr+6mAVBYWIhWqy23jNFopGfPnjRs2JA1a9bg5+fHxYsX2bRpk12g9+mnnzJlyhRmzJjBokWL0Gq1/Pjjj4wfP55ff/2VqKio225ngwYN+OyzzwgODiYvL4/58+fTq1cvzp07h5eXF2fOnMFisbB48WJCQkL49ddfGTduHDk5OeWed+/evYwcOZL58+fTv39/kpOTGT9+POPGjWPNmjVlHle7dm0++OADQkNDEULw9ddfM3DgQKKjo2nSpAkpKSmkpKQQFRVFWFgYv//+O+PHjyclJYXVq62PZg8dOpTevXvb1Tt69Gjy8/Px9va2bRsyZAiXL19m6dKlhISEkJqaisVise1fsWIFr732Gl9++SWdOnUiLi7OFuB//PHHZV5DTk4OXbp0YciQIYwbN67Cr4EkVdaNS9Z1LHUWNcLizIWALmD6DYtCiwpQadRgKqBAaf3seamuDx3dnKutvVeyrH+QtA6wrnOlUnvg4d6GwNojq61NkvSgkfGSjJdkvHQbhFSmjIwMAYiMjIzqbkq1uVZoFJ32x4iAHdHCZ3u0GBJ9rtRyW75YI6KG9LO93h7TV3wzeaQQka7W19ktt3zutGu7xdZtwWLz1vpizabmYtSnM0TQjPVi2nfH7/SyJOmey8vLEzExMSIvL6+6m3LLRo0aJQYOHGi3rWfPnqJDhw4iPT1djBgxQri5uQm9Xi969+4t4uLibOXOxp4TPbv3FgZXg3B0dBRhYWFiw4YNIiEhQWBdacr2GjVqlBBCiMzMTDFs2DDh6OgofH19xccffyy6desmXnrpJVu9QUFBYtasWWLEiBHCxcXFduzu3btFly5dhE6nE7Vr1xaTJk0S2dnZQgghoqOjBSASExPLvNakpCSh0WjE1KlTS+xbsGCBAMSBAweEEMJ2DdHR0bd+U4sU/57ZunVrmWXmzp0r6tWrV249H330kQgODi7R3oCAgFtuk7u7u/j3v/9d5v7vvvtOaLVaYTQaS91/5coVodFoxH/+8x/btk2bNgmDwSCuXbtWZr0TJkwQjz76qN22qVOnis6dO1eq3VXx9bhZeT+zMj6wV1Pvx97/rRevvv2ueOy1FeLtMf8Q80f8Q0QN6Sfmj5wl/jN5lTAlHhJiXmPRZsNG4bM9WhzNyK62tiZczRYvLj8qgmasF//Z8r7Yui1Y/Prry9XWHkm6XQ9qvJSYmCgee+wx4ebmJuOlUsh46Q81MV6Sj+9J5TqWmUt8XgGmokWKO7qVnPFkNFv4dc8f0ylVqkAS66bTVv3LH4VuY4HzwgLrNMaErMa8vHMO6TxGj8Y+jO5U95brkiSpaun1egoLCxk9ejRHjhxh3bp17N+/HyEEffv2xWg0AvDSlMkUFhaw9rtNHI8+wYcffoizszOBgYF8//33AMTGxpKamsonn3wCwNSpU9m7dy/r1q1jy5Yt7N69m2PHjpVoQ1RUFC1atCA6Opq33nqL+Ph4evfuzaBBgzh58iTffvste/bsYeLEiQB4eXmhVCpZvXo1ZrO51OtavXo1RqORV155pcS+559/HmdnZ1auXFkl97CwsJAlS5ZgMBho0aJFmeUyMjLw8Cj/8ZuOHTty4cIFNm7ciBCCy5cvs3r1avr27Vvp9pjNZr755htycnLo2LFjue1xdXVFrS59svV//vMfHB0defLJJ23b1q1bR5s2bZg7dy4BAQE0aNCAV155hby8PFuZTp06cfToUQ4dOgTA+fPn2bhx4y1dgyRVJVNhIb+b3UnNL8AhLwmL8XcAWjXLZNg7XVA5e4AxzzZTqrqy7n1zKIlHonay8WQytfTXcFZbH0NRqatv1pYkSVaVjZcmTJhAQUEBu3bt4tSpUzJeuomMl2p+vCQf35PKlWe2ThVs6eLIf5rXw0tb8tG5E4dP45CXTy7gke+Ge85xmrX4nWCXHGj3HNRuB75NK31OkymbS5fXce7chwBczTUA8PGQhwjxlgGWVHMIIci9aTruveKoVKJQ3F52KCEE27Zt4+eff6ZPnz6sXbuWvXv30qlTJ8D6nH5gYCBr165l8ODBXLh4gQGPPU7rti1xcnMgtEGIra7iwMHb2xs3NzcAsrKy+Prrr1mxYgXdu3cHYNmyZfj7+5doy6OPPsq0adNs78eOHcvw4cOZMmUKAKGhoSxYsIBu3bqxaNEiAgICWLBgAa+++irvvPMObdq0ITw8nOHDhxMcHAxAXFwcBoMBPz+/EufTarUEBwcTFxd3W/eu2Pr163nqqafIzc3Fz8+PLVu2UKtWrVLLnjt3jk8//bTCKfCdO3dm+fLlDB06lPz8fEwmE/3792fhwoUVtufUqVN07NiR/Px8nJ2d+eGHHwgLCyu1bFpaGu+++y7PPfdcmfUtXbqUYcOGodfrbdvOnz/Pnj170Ol0/PDDD6SlpfHiiy9y7do1li1bBsCwYcNIS0ujS5cuCCEwmUyMHz+eN954o8JrkKSqJiyCG+dzMaGk/Y3DOJjSbUlEDYqrqP7Z0Fa2uFOqurLunUy2rlkyrc1iGnuchqJfK2rVrS+dIEn3o+qKl+D2Y6ZbjZeSkpIYNGgQzZo1A7DFJSDjJRkv1fx4SXZKSeXKK/oF4KZRldohlbN/P3GRn2D28AIB+bpsPJr35OE8aw8+Pd8Fje6WznnhwjLOJ/zT9v78DeuHq5ujXEtKqllyLRbq7zp1z88b/3AznFS3lh1q/fr1ODs7YzQasVgsDBs2jL/97W+sX7+e9u3b28p5enrSsGFDTp8+DcDkyZN54YUX2PHLNnr06MGgQYNo3rx5mec5f/48RqORdu3a2bYZDAYaNmxYomybNm3s3p84cYKTJ0+yfPly2zYhBBaLhYSEBBo3bsyECRMYOXIkO3fu5MCBA6xatYo5c+awbt06evasXHaqitZiAGuw+fzzz9veb9q0ia5duwIQHh7O8ePHSUtL44svvmDIkCEcPHjQbj0BgOTkZHr37s3gwYPtnv13dv6jc/6ZZ57h888/JyYmhpdeeom3336biIgIUlNTmT59OuPHj2fp0qXs3r2bPn362I5bvHgxw4cPB6Bhw4YcP36cjIwMVq9ezahRo/jll19KBFqZmZn069ePsLAwZs6cWep179+/n9OnT/N///d/dtstFgsKhYLly5djMBQNNHz8MU8++ST/+te/0Ov17Ny5kzlz5vCvf/2L9u3bc+7cOV566SXeffdd3nrrrXLvqSRVtdyzaXDdhEWhxMFiXThXqW2MTpgJ8/wdsgCVFtQ6ClTWOMehmmZKZeZZZ1o09EiwtlPpgFrtSq1a3aulPZJU1aorXoJbj5nuNF7avHmzjJdkvPTAxUuyU0oqV/FMKX0ZgVbGz79Q6FALsyIPBFyqraJl41CIAxQqUDvc8jlzcxMBSMysS8y1EPYmt6NZgAEPx4o/2CRJujvCw8Nti1j6+/ujVqtZt25dhceNHTuWiIgINmzYwObNm3n//feZN28ekyZNuuM2OTnZzwLIzs7m+eefZ/LkySXK1qlTx/Z/FxcX+vfvT//+/Zk9ezYRERHMnj2bnj17EhoaSkZGBikpKSVGGwsLC4mPjyciIqLCtg0YMMAu+AwICLBrd0hICCEhIXTo0IHQ0FCWLl1qtwhqSkoK4eHhdOrUiSVLltjVfXO2FFdXVwDef/99OnfuzPTp0wFo3rw5Tk5OdO3aldmzZ9OmTRu743x8fGz/L84QBNC6dWsOHz7MJ598wuLFi21lsrKy6N27Ny4uLvzwww9oNKUPEvz73//moYceonXr1nbb/fz8CAgIsAVYAI0bN0YIwcWLFwkNDeWtt95ixIgRjB07FoBmzZqRk5PDc889xz/+8Y9y76kkVbXz+w9hVgjMCgtqpTXhikoTit6SjkaViBklf+v8DdHKWhQK6xyqez1T6uD5a2z69RLRSTdQKcwosS503qXzXjQa93vaFkmSrGS8JOMlGS/dOtkpJZXL1imlKr1T6tSVNNIdExFFM2qVGtDH/J/1O0vrDLcx3bWg8DIAW3/vyv7Utmx5+WHqezmjrKZp8ZJ0tzgqlcQ/3KxaznurigODmzVu3BiTycTBgwdt09GvXbtGbGys3ahRYGAg48ePZ/z48bz++ut88cUXTJo0yTaCdvN6BcHBwWg0Gg4fPmwLjDIyMoiLi+Phhx8ut42tWrUiJiamRDvLo1AoaNSoEfv27QPgySefZMaMGcybN4958+bZlf3888/Jzc1l5MiKM1m5uLjg4uJSqTZYLBYKCgps75OTkwkPD6d169YsW7YM5Z++XqVdX25ubok1C1RFI7tCCPR6faXvy5/bk5mZSUREBA4ODqxbtw6drvTZr9nZ2Xz33Xe8//77JfZ17tyZVatWkZ2dbRu5jIuLQ6lUUrt2bds1/Plab76GW7mnknSnCrKysWAhy+kcavV1QAsKFSqMYDFxUefNQYUnFHVI1dc74F7GuiF3y2trTpGQls2jgbsI97ts265Wu97TdkjS3VZd8VLxuW+FjJdkvCTjpVsnO6WkMuWYzVwqtE4JL22mVMz5i5zOKrStsaBQGriuuIiv8Zz1O8tQ+5bOl5y8kuSUb8nKsk7PvZJrfWY4wF0vO6SkGkmhUNzyY3T3k9DQUAYOHMi4ceNYvHgxLi4uvPbaawQEBDBw4EAApkyZQp8+fWjQoAHXr19nx44dNG7cGICgoCAUCgXr16+nb9++6PV6XFxcGDVqFNOnT8fDwwNvb28iIyNRVmJNhxkzZtChQwcmTpzI2LFjcXJyIiYmhi1btvDZZ59x/PhxIiMjGTFiBGFhYWi1Wn755Re+/PJLZsyYAVhHCOfOncsrr7yCTqdjxIgRaDQafvzxR9544w1mz55N06b2a+TFxsaWaEuTJk1KjI7l5OTw3nvvMWDAAPz8/EhLS2PhwoUkJyczePBgwBpgPfLIIwQFBREVFcXVq1dtx/v6lp0won///owbN45FixbZpqNPmTKFdu3albq+RLHXX3+dPn36UKdOHbKyslixYgU7d+7k559/BqwBVq9evcjNzeW///0vmZmZZGZaZ414eXnZgiCAb7/9FpPJxDPPPFPiPMOGDePdd9/l73//O++88w5paWlMnz6dZ5991raWQv/+/fn4449p2bKlbTr6W2+9Rf/+/e3O82fp6ekkJSWRkpIC/PH18PX1LfeeSVJZ0mJjOXQxhlydHp+Mq7hlF+9RYbAUgrBQoLTOBDeoVWxv2xBvrQb1PY5V0rIKqGf4neGNv7dt02q9UCj+ur9XJKk0Ml6S8ZKMl2p4vFQleQBrqJqa4rgyvkm5Jvy2Rwufotfc8yl2+y0Wi/jo9cVi3tOjRdSQfmLx07PF3DGTxbfv1REi0lWIw0uFuBZ/S+fctbu92LotWGzdFizW/9xUhL7xvQh+fYOwWCxVeWmSVC1qWorjYsUpjg0Gg9Dr9SIiIsIuxfHEiRNF/fr1hYODg/Dy8hIjRowQaWlptv2zZs0Svr6+QqFQlJviuF27duK1116zHRcUFCTmz59foj2HDh0SPXv2FM7OzsLJyUk0b95cvPfee0IIIa5evSomT54smjZtKpydnYWLi4to1qyZiIqKEmaz2a6etWvXiq5duwonJydbCuaVK1falSktTXPx68KFCyXalpeXJ5544gnh7+8vtFqt8PPzEwMGDBCHDh2ylVm2bFmZdVZkwYIFIiwsTOj1euHn5yeGDx8uLl68WO4xzz77rAgKChJarVZ4eXmJ7t27i82bN9v279ixo8z2JCQk2NXVsWNHMWzYsDLPdfr0adGjRw+h1+tF7dq1xdSpU0Vubq5tv9FoFDNnzhT169cXOp1OBAYGihdffFFcv3693Gso655FRkaWe1xFqiLF8YOipt2PzR/PF5GRkSIyMlJs6dBKLHw8QkQN6ScWjPk/8dOIGUIsjRAnP2otfLZHixZ7fq2WNprNFlH3tfXi8ag5Yuu2YLF7Tydx9txckX79UMUHS9J9TMZLMl6S8dKDFy8phBDFE12kP8nMzMRgMNjSOT5IJsb8zurL1wFwU6tY1yqUBk5/TEHM/Hkz3332ExlOySBy6Hj2Ag0n9MfzwqcQ2guGr7ql8wlhZvuORoCFf534O/E36nGjwI2GPi78/HL5U1Al6a8gPz+fhIQE6tWrV+Z0Xql0OTk5BAQEMG/ePMaMGXPPz5+enk737t1xdXVl06ZNODo63vM2SPdeeT+zD3J8UJqadj82zv2IQ7k5+Jvd8TsUS5x7OohstC7DecjxAF0bHeJIvoLHWv6LIJ2Wgx1Lz750N5gtgr3n0riaVcC0VSfo7H+QZ5sux9OzGw+1+PKetUOS7hYZL90+GS9J1aEq4iX5+J5UqkyT9ZnlDxvUZoS/J8o/TQPNPXcRtUIDIg+AmC4t6NQ0EC4Amlv/ACoouAJYEELJscstGPhQbQa3CaRpgKHCYyVJqlmio6M5c+YM7dq1IyMjg1mzZgHYprjfax4eHmzdupWFCxeyf/9+W+plSZJqJpPZBIC7cCLLJRiwPhaiUlqo43QCrsRQYHgIuPcZ9348nszU704Q5JLEK21+xFt/DQC16q+1fogkSXdOxktSTVE9uWul+15W0UJ6bhpViQ4pgNjTGWQ5nAcsCBQotJ5gzLXuvIVOKZMpi/0HerB3XxcA0vK9EChpVtuNziG1MOhLz1ggSVLNFhUVRYsWLejRowc5OTns3r2bWrVqVVt7PD09efvtt2WAJd1TM2fORKFQ2L0aNWpk25+fn8+ECRPw9PTE2dmZQYMGcfnyZbs6kpKS6NevH46Ojnh7ezN9+nRMJpNdmZ07d9KqVSscHBwICQnhq6++uheXd98q7pS6cfU3UlU7bQNwQ9ttJMghGlz8KKhtzWyku8frSCWk5QDQO/gQjT3O4qlPB8DRMfietkOSpPuDjJekmkDOlJJKlWWyptNzKWWxtE2bdxOTtguU1kXQjQ6O+BqPwravrQW0le+Uysw8SW5ugu39/pSHAAjxdr7NlkuS9FfXsmVLjh49Wt3NkKT7QpMmTdi6davt/c1Zg15++WU2bNjAqlWrMBgMTJw4kb/97W/s3bsXsGZq6tevH76+vuzbt4/U1FRGjhyJRqNhzpw5ACQkJNCvXz/Gjx/P8uXL2bZtG2PHjsXPz69S6bxrIqMJ9hjr0iFnK+5F2xQaBQatEQsKDnZ+hwNeXSHpyj2fKZWRZ429Qr2scVqA/9N4effG3a3dPW2HJEnVT8ZLUk0hO6WkUqUbraOEbpqSnVJHv92DXliDIq2uG7/V385rlhPWpdIUKgjqVOnzWB/bg6uFYUTu/jtPtArh+16BtKrjdsfXIEmSJEl/dWq1utSsOBkZGSxdupQVK1bw6KOPArBs2TIaN27MgQMH6NChA5s3byYmJoatW7fi4+PDQw89xLvvvsuMGTOYOXMmWq2Wzz//nHr16tlSejdu3Jg9e/Ywf/78B7JTKu7r/ZiNvpwze9HZYp01rnEehNZ/HWqFkbVe4YzPawhJ1vhFr7o3M6X+e+B3Fu2MJzM3hzouyehVaSDA4NYGT48u96QNkiRJknQ3yMf3JDu70rN48+xFrhRaO518tfaPz+Uei6butVQAVMKBsDPf8RbHUOg94OUYmJEITQdVeB4hBJmZJ7l+4wAA1/NrUWB2oG1dD1oHuVeYylSSJEmSHgRnz57F39+f4OBghg8fTlJSEgBHjx7FaDTSo0cPW9lGjRpRp04d9u/fD8D+/ftp1qwZPj4+tjIRERFkZmby22+/2crcXEdxmeI6SlNQUGBLd31z2uuaIDs2GSPWWUgqYR2gUyh0qFQmMBXyu96aMryWRk0HgxPPBXrfk3YtP5hE8o08JrRYQGTHj9CJMwBo1HLtTUmSJOmvTXZKSXZejPmdf19MwyTAUaXE66ZOKSEE58dPAqyzp0xqBSn1G1HPkg96NzAEgK5yWXcuXvwPh488QWrqagCOX7JOkHeVa0hJkiRJEgDt27fnq6++4qeffmLRokUkJCTQtWtXsrKyuHTpElqtFjc3N7tjfHx8uHTpEgCXLl2y65Aq3l+8r7wymZmZ5OXlldqu999/H4PBYHsFBgZWxeXeFxQWKFSA1nM7alV20UYVKrUFTPnkK7UA9Pd2Y22rUHp43ptsg5lFj+2FuCcDoNV6YTC0ws2tzT05vyRJkiTdLfLxPcnGIgRpRY/tTazjTXdPVzQ3LeBpysjmXFgPruXGAFDgIBCKfOtOh1sLyrKyrCO01/Pd+T0zgAMpbQj00NNSPrYnSZIkSQD06dPH9v/mzZvTvn17goKC+O6779Dr9dXWrtdff52pU6fa3mdmZtaIjqnLly9zWnWZq4p8xh7bi8bkgUUJoKK+OR9yrpDvYe2UulcLnGcXmDh1MYMbuYWoFGYUFADQof1PaDRu96QNkiRJknQ3yU4pySbHbLH9/5W6vuhU9hPp1n6xmKS8I1AUhxU6KqkrihYpr9Xgls5VWGhNr/zDuT7sTenAkTd7UMvZ4fYbL0mSJEk1nJubGw0aNODcuXP07NmTwsJCbty4YTdb6vLly7Y1qHx9fTl06JBdHcXZ+W4u8+eMfZcvX8bV1bXMji8HBwccHGre7+z//ec/XNTkkGtRM+SMA7tCVYBAoVDRsCALbiRRUMt63bp7tMD56C8PceT367g53CDI/ZJtu0olE8JIkiRJNYN8fE+yyTIVLeipUODwpxHA3EITl2KKZkUpnFHp2nG1dhZdvc7C09/AgAWVOkdOzjl+T/o32dmxAFzPdwPARSf7RyVJkiSpPNnZ2cTHx+Pn50fr1q3RaDRs27bNtj82NpakpCQ6duwIQMeOHTl16hRXrlyxldmyZQuurq6EhYXZytxcR3GZ4joeFJbCQrKSrY/GBRjdORsyCKEQRXtVOCizoVZDCrys9+3PcdLdEns5i1r6ND56eCbT2vzL2hqVE0qljJskSZKkmkH+RpNsMs3WTilnldJuoXFhMvFj1JcIi3W9J71Zj9mczhvGQygUQEhPUFXuW+nkqQnk5p4DwCIUXMz2R6tW4qAumeVPkiRJkh5kr7zyCv379ycoKIiUlBQiIyNRqVQ8/fTTGAwGxowZw9SpU/Hw8MDV1ZVJkybRsWNHOnToAECvXr0ICwtjxIgRzJ07l0uXLvHmm28yYcIE20yn8ePH89lnn/Hqq6/y7LPPsn37dr777js2bNhQnZd+z4n8fCxFs5/qFnhwXZ1O0XrndPZYhbs6GXqsoMDSFC5fx+EezJSyWATZBSaCa6WiVFhQKrVotT74+T5+188tSZIkSfeKnCkl2aQVWteTqqW172DK2bePazv3Yilax8CivEBQm1BqW8yg1le6Q8piKSQ39zwA+1La8tVvw8gsdKVbA68qvApJkqra6NGjUSgUKBQKtFotISEhzJo1C5PJdEf17ty5E4VCwY0bN6qmoZWQkJDAsGHD8Pf3R6fTUbt2bQYOHMiZM2fsyq1fv55u3brh4uKCo6Mjbdu25auvvrIrk5iYiEKh4Pjx45U+/8yZM2nUqBFOTk64u7vTo0cPDh48aFfnmDFjqFevHnq9nvr16xMZGUlhYWGFdS9fvpwWLVrg6OiIn58fzz77LNeuXat02z744AMUCgVTpkyx2x4fH88TTzyBl5cXrq6uDBkypMTjXu+99x6dOnXC0dGxxMLbxYq/h25+ffPNN7b9a9asoWfPnrbzdOzYkZ9//rnCdq9Zs4ZevXrh6el5y1+P+93Fixd5+umnadiwIUOGDMHT05MDBw7g5WX9vTl//nwee+wxBg0axMMPP4yvry9r1qyxHa9SqVi/fj0qlYqOHTvyzDPPMHLkSGbNmmUrU69ePTZs2MCWLVto0aIF8+bN49///jcRERH3/HqrkygosHZKWcwkXvqBa5ZNtn1NAxP4V+2hhF7y44cr14G7O1PKaLawJeYyKw8nIQQ4qq0Lzru5tadzp50EB0+5a+eWJOn2yXhJxksyXro9slNK4obRRK8jsYw6ZV0fykdrnwGvIPE6Cs9QhDkdgOsBCgISllp3ap0qfZ78/BTAglloWfrrMzQJeZqTM3uxZETrKrkOSZLunt69e5OamsrZs2eZNm0aM2fO5KOPPqruZtlUJggxGo307NmTjIwM1qxZQ2xsLN9++y3NmjWzC/Q+/fRTBg4cSOfOnTl48CAnT57kqaeeYvz48bzyyit31M4GDRrw2WefcerUKfbs2UPdunXp1asXV69a19k7c+YMFouFxYsX89tvvzF//nw+//xz3njjjXLr3bt3LyNHjmTMmDH89ttvrFq1ikOHDjFu3LhKtevw4cMsXryY5s2b223PycmhV69eKBQKtm/fzt69eyksLKR///5YLH+sQ1hYWMjgwYN54YUXyj3PsmXLSE1Ntb0ef/xx275du3bRs2dPNm7cyNGjRwkPD6d///5ER0eXW2dOTg5dunThww8/rNS1/pV88803pKSkUFBQwMWLF/nmm2+oX7++bb9Op2PhwoWkp6eTk5PDmjVrbGtFFQsKCmLjxo3k5uZy9epVoqKiUKvtB5MeeeQRoqOjKSgoID4+ntGjR9+Ly7uvXIlOo1DvTnK+HpM517bdzd0BtaWAtd7dyRJKzALUCmju4njX2vJDdDLj/nOEuRv2MqD+RjoHHAZArXa5a+eUJKlqyHhJxksyXroNQipTRkaGAERGRkZ1N+Wu+vnqDeGzPdr2ijqfard/2fPPiqgh/Wyv96Y9LGKmhAoR6SrEN89UWL/ZnC+OHx8rftndWWzdFiy+29hVBM1YL77YFX+3LkmS7jt5eXkiJiZG5OXlVXdTbtmoUaPEwIED7bb17NlTdOjQQaSnp4sRI0YINzc3odfrRe/evUVcXJytXGJionjssceEm5ubcHR0FGFhYWLDhg0iISFBAHavUaNGCSGEyMzMFMOGDROOjo7C19dXfPzxx6Jbt27ipZdestUbFBQkZs2aJUaMGCFcXFxsx+7evVt06dJF6HQ6Ubt2bTFp0iSRnZ0thBAiOjpaACIxMbHMa01KShIajUZMnTq1xL4FCxYIQBw4cEAIIWzXEB0dfes3tUjx75mtW7eWWWbu3LmiXr165dbz0UcfieDg4BLtDQgIqLANWVlZIjQ0VGzZsqXEff7555+FUqm0+z1448YNoVAoxJYtW0rUtWzZMmEwGEo9DyB++OGHCttzs7CwMPHOO+9UqmxVfD1uVt7P7IMSH1RWTbgfZ97ZJSa8+U/RZsoyETWkn5g3ZLD47Plt4si/xgvxz+ai6//WCJ/t0WLNpXSRXmi8q2356KczImjGejFr+XNi67Zg2ys2dtZdPa8k3Q9kvCTjpdLIeKl8f/V46b6cKfX+++/Ttm1bXFxc8Pb25vHHHyc2NtauzCOPPFJiWtv48ePtyiQlJdGvXz8cHR3x9vZm+vTpdzx9siYqXuC8rasTxzqGMa3eH6Osl6+nk555U4+60gmVMgv/kFCYFgdD/lNh/TcyjpF2bTvGwlQATl0NAsDNUVuFVyFJfz1CCHILTff8JYSouHEV0Ov1FBYWMnr0aI4cOcK6devYv38/Qgj69u2L0WgEYMKECRQUFLBr1y5OnTrFhx9+iLOzM4GBgXz//feAdXHm1NRUPvnkEwCmTp3K3r17WbduHVu2bGH37t0cO3asRBuioqJo0aIF0dHRvPXWW8THx9O7d28GDRrEyZMn+fbbb9mzZw8TJ04EwMvLC6VSyerVqzEXraH3Z6tXr8ZoNJY6wvf888/j7OzMypUr7/j+gXW0bMmSJRgMBlq0aFFmuYyMDDw8PMqtq2PHjly4cIGNGzcihODy5cusXr2avn37VtiOCRMm0K9fP3r06FFiX0FBAQqFwi7Tmk6nQ6lUsmfPngrrLu1ctWrVol27dnz55Zflfi9aLBaysrIqvHZJulN5WZnkpl8kR6hQiqLPBoU1RNaqVWAqoEBpjVnq6LS4a+7ukqyZ+dbPz8be1n/d3TtSt+5EgoKeu6vnlaT7VXXFS1URM8l46c7JeKnmx0v35ULnv/zyCxMmTKBt27aYTCbeeOMNevXqRUxMDE5OfzwuNm7cOLt1ERwd/5hKbTab6devH76+vuzbt4/U1FRGjhyJRqNhzpw59/R67ndZZuuUQm8HNf46+46idVErEMLakedteohLvr8yyfE8jp6NwcWnUvUXFliz/iRnB/HvU0PwdGvC31q50LNx5Y6XpJoqz2gm7O2KnwGvajGzInDU3t7HvxCCbdu28fPPP9OnTx/Wrl3L3r176dSpE2B9Tj8wMJC1a9cyePBgkpKSGDRoEM2aNQMgODjYVlfxL09vb2/bc/VZWVl8/fXXrFixgu7duwPWKcz+/v4l2vLoo48ybdo02/uxY8cyfPhw2zP+oaGhLFiwgG7durFo0SICAgJYsGABr776Ku+88w5t2rQhPDyc4cOH29oVFxeHwWDAz8+vxPm0Wi3BwcHExcXd1r0rtn79ep566ilyc3Px8/Njy5Yt1KpVq9Sy586d49NPPyUqKqrcOjt37szy5csZOnQo+fn5mEwm+vfvz8KFC8s97ptvvuHYsWMcPny41P0dOnTAycmJGTNmMGfOHIQQvPbaa5jNZlJTUyt3wUVmzZrFo48+iqOjI5s3b+bFF18kOzubyZMnl1o+KiqK7OxshgwZckvnkaRbdeNyKkqUGAFX942QCgqsCVi0BdegIIt8pfUPjbu5ltShhHS+PXyBw4nW5RIcVLkgwNf3cfz9nrxr55Wk+111xUtw+zGTjJdkvCTjpcq7L2dK/fTTT4wePZomTZrQokULvvrqK5KSkjh69KhdOUdHR3x9fW0vV1dX277NmzcTExPDf//7Xx566CH69OnDu+++y8KFCyv1LO2DpHimlLPKPgNe1vYdGE+cBWG9X15XtjJlQGccEZVeSyo/P4W0tO0ApOT4kJQVyMdDW/HxkIcwOGoqOFqSpPvF+vXrcXZ2RqfT0adPH4YOHcro0aNRq9W0b9/eVs7T05OGDRty+vRpACZPnszs2bPp3LkzkZGRnDx5stzznD9/HqPRSLt27WzbDAYDDRs2LFG2TZs2du9PnDjBV199hbOzs+0VERGBxWIhIcG6Zt6ECRO4dOkSy5cvp2PHjqxatYomTZqwZcuWSt8LrbbiWZ7Lly+3a8fu3btt+8LDwzl+/Dj79u2jd+/eDBkyhCtXrpSoIzk5md69ezN48GC7tQ5urrd4hnBMTAwvvfQSb7/9NkePHuWnn34iMTHRtn/37t12xy1fvpwLFy7w0ksvsXz5cnQ6XanX4eXlxapVq/jf//6Hs7MzBoOBGzdu0KpVK5S3mH3srbfeonPnzrRs2ZIZM2bw6quvlrnOxooVK3jnnXf47rvv8Pb2rvCeStKdSP9lF3lKE465qczYZP2sQGGNidwvHYfCbNtMqbuZdW/OxtN8f+wivtrdvNji3+ix/kGnUbtWcKQkSfcLGS/9QcZLMl6qrPtyptSfZWRkAJSYkrZ8+XL++9//4uvrS//+/Xnrrbdss6X2799Ps2bN8PH5YzZOREQEL7zwAr/99hstW7a8dxdwn8ss6pRyUdv/wFyKTkahcQVhnVZ6sWNLNBc2W3dqKl7gMyXlO06fed32PinT+oPippedUZIEoNeoiJl17zNc6TWqigv9SXh4OIsWLUKr1eLv749arWbdunUVHjd27FgiIiLYsGEDmzdv5v3332fevHlMmjTpdppu5+aZswDZ2dk8//zzpY4k1alTx/Z/FxcX+vfvT//+/Zk9ezYRERHMnj2bnj17EhoaSkZGBikpKSVGGwsLC4mPj69UVrIBAwbYBZ8BAQF27Q4JCSEkJIQOHToQGhrK0qVLef31Pz4vU1JSCA8Pp1OnTixZssSu7puzpRQPxrz//vt07tyZ6dOnA9C8eXOcnJzo2rUrs2fPpk2bNnbH+fj4sG3bNq5cuUKrVq1s281mM7t27eKzzz6joKAAlUpFr169iI+PJy0tDbVajZubG76+vnajuLejffv2vPvuuxQUFNhNd//mm28YO3Ysq1atspsiX949laTbZTQa+fHceQpdHfBJSkOorD9TomimlE6pgLpdKVBb4567OVMqLdua5fjZZmvQKLKsq8cAOl3tu3ZOSforqK54qfjct0LGSzJekvHSrbvvO6UsFgtTpkyhc+fONG3a1LZ92LBhBAUF4e/vz8mTJ5kxYwaxsbG2VMiXLl2y65ACbO8vXbpU6rkKCgooKCiwvc/MzKzqy7nvZJnMXMy3zoTyvinrnhCCi+fTMKnPA9bH+1yNWrh4yFrA2bvCum9kWJ9pzjPpSMvz4MilljSvbcAgO6UkCbCmfL3dx+juteLA4GaNGzfGZDJx8OBB23T0a9euERsbS1hYmK1cYGAg48ePZ/z48bz++ut88cUXTJo0yTaCdvN6BcHBwWg0Gg4fPmwLjDIyMoiLi+Phhx8ut42tWrUiJiamRDvLo1AoaNSoEfv27QPgySefZMaMGcybN4958+bZlf3888/Jzc1l5MiRFdbr4uKCi0vlMmVZLBa73z3JycmEh4fTunVrli1bVmKErbTry83NLZFRTVU0+1UIgV6vL3Fc9+7dOXXqlN22v//97zRq1IgZM2bYji9WPGV++/btXLlyhQEDBlTq+spy/Phx3N3d7QKslStX8uyzz/LNN9/Qr18/u/K3ck8lqbIyMzMpLPoe1FoMnG44DHLWgcL68xTvHsqazgvJu5gGgO4uzJQSQnA1u4CMXCMKLNYOKSA05A2cnEJwcQmroAZJqtlkvCTjJZDxUk2Ol+77n+4JEybw66+/llgg7Lnn/ljssVmzZvj5+dG9e3fi4+Pt0iXfivfff5933nnnjtr7V7Ii5RqvxF6gOEllrZs+7Ddu2sKZtJ2gtK4nZVbpCOIQNOwHtVtDq9EV1m80WtdE+C52ILuSO7NtWjfqeTqhvIujjJIk3TuhoaEMHDiQcePGsXjxYlxcXHjttdcICAhg4MCBAEyZMoU+ffrQoEEDrl+/zo4dO2jcuDFgTVWvUChYv349ffv2Ra/X4+LiwqhRo5g+fToeHh54e3sTGRmJUqlEoSj/s2PGjBl06NCBiRMnMnbsWJycnIiJiWHLli189tlnHD9+nMjISEaMGEFYWBharZZffvmFL7/8khkzZgDWEcK5c+fyyiuvoNPpGDFiBBqNhh9//JE33niD2bNn2w2QACUScQA0adIEjca+Az4nJ4f33nuPAQMG4OfnR1paGgsXLiQ5OZnBgwcD1gDrkUceISgoiKioKFvqYwBfX1/K0r9/f8aNG8eiRYuIiIggNTWVKVOm0K5du1LXlwBr0PLna3FycsLT09Nu+7Jly2jcuDFeXl7s37+fl156iZdfftnuEYGkpCTS09NJSkrCbDbbRhlDQkJwdnbmf//7H5cvX6ZDhw7odDq2bNnCnDlz7BZIXbFiBaNGjeKTTz6hffv2tgEkvV6PwWAo89qLz5uSkgL88fUofrRfkspTnADHwaLGHW8Ki6IitdJCiH4nzzSewrWiDimtQoGTuuo7pcb/9yg//3YZJ00OzWol2LbXrj0SpVIO5EnSX52Ml6xkvCTjpTJVSR7Au2TChAmidu3a4vz58xWWzc7OFoD46aefhBBCvPXWW6JFixZ2Zc6fPy8AcezYsVLryM/PFxkZGbbXhQsX/vIpjsvz/K8Jwmd7tPDbHi3a7vtNJOUV2PZFPjdfRA3pJ6KG9BMLRn4o/jG9jxCRrkJcT6qw3qysWJGYuNiWwvjxee+JoBnrhdFkvpuXI0n3tZqW4rhYcYpjg8Eg9Hq9iIiIsEtxPHHiRFG/fn3h4OAgvLy8xIgRI0RaWppt/6xZs4Svr69QKBTlpjhu166deO2112zHBQUFifnz55doz6FDh0TPnj2Fs7OzcHJyEs2bNxfvvfeeEEKIq1evismTJ4umTZsKZ2dn4eLiIpo1ayaioqKE2Wz/+bR27VrRtWtX4eTkZEvBvHLlSrsypaVpLn5duHChRNvy8vLEE088Ifz9/YVWqxV+fn5iwIAB4tChQ7Yyy5YtK7POiixYsECEhYUJvV4v/Pz8xPDhw8XFixcrPO5mf05xLIQQM2bMED4+PkKj0YjQ0FAxb948YbFY7MqMGjWq1Dbv2LFDCCHEpk2bxEMPPWT7urRo0UJ8/vnndve9W7dupdZR/H1RlrLuWWRk5C1d+59VRYrjB8Vf+X4kJyeLyMhI8cFbs8XCkR+KT/7+mYga0k98N/EJEfdBU+GzPVoE7Twu5sSniM1Xb9yVNjSL/EnUnbFOfLehpS122rGz+V05lyTd72S8JOMlGS89ePGSQogqyA1exYQQTJo0iR9++IGdO3cSGhpa4TF79+6lS5cunDhxgubNm7Np0yYee+wxUlNTbYt+LVmyhOnTp3PlyhW76W9lyczMxGAwkJGRYbeIek3x1PF4dl7P4tPGdRjs+8d6XdlHj/Ld+2u4rjqBxqKlY2wiDQem4KrKg1cTwLH8dJP7D/QiNzfe9n76rpkYhTen3qmeZ8El6X6Qn59PQkIC9erVK3ORRKl0OTk5BAQEMG/ePMaMGXPPz5+enk737t1xdXVl06ZNdplepZqrvJ/Zmh4f3Kq/8v24kJTEgqX/5VymEx0uRaNRKBHmK9Tz1dKg9u/0aLMUH62aE52bVlzZbRBCUP+NjejVOSwIt66T4ugYgp/vQOrWffGunFOS7mcyXrp9Ml6SqkNVxEv3Zfa9CRMm8N///pcVK1bg4uLCpUuXuHTpEnl5eQDEx8fz7rvvcvToURITE1m3bh0jR47k4Ycfpnnz5gD06tWLsLAwRowYwYkTJ/j555958803mTBhQqU6pB4E6UVT1t3UfzwHKywWDs35AWXR6pomlSChno+1QwrAofznU4WwkJf3OwD7U9rwf6dHEOQdzLReDe7CFUiSVBNFR0ezcuVK4uPjOXbsGMOHDwewTXG/1zw8PNi6dSvdu3dn//791dIGSZKqnhCCqz+eJcnsRu3rsagtaQizNbOTk05BYdGjc3cr415mvpGEtBwsAhzVuQCoVI507PCz7JCSJKlCMl6Saor7ck2pRYsWAfDII4/YbV+2bBmjR49Gq9WydetW/vnPf5KTk0NgYCCDBg3izTfftJVVqVSsX7+eF154gY4dO+Lk5MSoUaOYNWvWvbyU+9oNo3WxPHfNH98Gpqxssj09yCxapDzLCRR660LouNcFVflrGxiN1xHC2tm17LdhdArx5Ycx7cs9RpIk6c+ioqKIjY1Fq9XSunVrdu/ebVs4sjp4enry9ttvV9v5JUmqetmp1ylMzcKkVKKxWDMNq7TN0JDHw/pVRCuta5TejYx7u+Ku8uxXh9Eqc+hW+xh+Ttb1UNTqv9ZMM0mSqpeMl6Sa4L7slKroicLAwEB++eWXCusJCgpi48aNVdWsGudG8Uypm1KdLvrnAowZB2zvC/WChi75MHId+DYrsy4hLMTHR3Ex5XsA8swemIUaV51coFOSpFvTsmVLjh49Wt3NkCSphju1dQugpUCdjUZ7CQpAqQlGIy6hJ5sCpTXj1d2YKXXk9+uYLIInQrbQu+4223aNpvwlEiRJkorJeEmqKe7LTinp7votO49f0rPINFkzzLgXpcU0mi2I3/Ns5VTaZuTV3ktzL2cI7lZunRkZx/g9afEf57hqTU3q4aSt6uZLkiRJkiTdsZzfk9ATjFFzFkN+PuAAChVqYYSmgyhoNR1+L7grM6Uy86wzs9rVsf7r6tIcR6f6+PkNqvJzSZIkSdL9THZKPYBGnDxPSoE1CHJQKjAUrSn10/bjaHLzMQGGwlqYSeWtwlPg8GiFdRYUWFNRXsnzZd25HrgYHubpdl6M6VLvrl2HJEmSJEnS7bh+5gyxqRdR19Iw4NjvIPTkayyACn9zPi9rO7IlxbrMQVXOlMrINbL//DViL2UV1W1dSyqg9nD8/Z6ssvNIkiRJ0l+F7JR6wFiEsHVIDfJxJ6KWAbVSQc6BA5z5/Dt0DhYwg1GdjqOLM+4WC2idyq1TCEF2bhIAFzL92Z/ajt0jOhLoITMuSJIkSZJ0/zlx/Dhp3u7ADWpru5JJDFgyUChUaN0LWadvQo7RusxBqGPVJch5+bvjbD9zhSDXJPrVO41OcQEEqNXlJ5KRJEmSpJpKdko9YHLMFtv/oxoGoldZR//S/rcdhVqLSaQCkB6kp3XhBdC7Q9jjZdaXm5vIkaODMRrTAUjO9gbAzVGuJSVJkiRJ0v2poCAfAG+LAVQahMk6KyrAJYljDRzJUTvSz8vA5CAfmjrrq+y88VezAZjS6ktctekUJTtGq/GssnNIkiRJ0l+J7JR6wGSbrUGXWgG6ojUShBAcSEtBQSKWoj4rjQM0b+oHo3eXW9+VKz/ZOqTyTQ4kZLdmaJtAXOQC55IkSZIk3acKjdbMwl4WFzIxAtYA6GH/TcQ4dgCgtk5LC5eqnfWdkWdEgQVX7XUAfH0fx8kxBIOhVZWeR5IkSZL+KmSn1AMmq2hxcxeVCoXC2il1IekiKbl/TE1XKN2o67ofnfMjFdaXk3sWgI0JPVh7rh/H3u6DQS87pCRJkiRJuj8JITBmmzEJBfE5mbhYUkFYO6mUNxIp8H0YAF0VriW1ZFc8q45c5EauEb06n+IpUo0bzUGprLrHAyVJkiTpr0Z2Sj1g0gqt6yO4a/740q/7ehtYiqaxFwSR5BtH3/xr4OBcZj1mcy6ZWb9x+fIGAC5kBWAWKpwd5LeUJEmSJEn3r+xTaZjTNBwwBdIz9Ufyhdm2T0seBUWdRFWZdW/RzngKCjOI7PAp3o7XAFAqdbJDSpIkSXrgVd0QkHRfyzGZGXXqPJPP/A6Ar4N1NlPeyZO47j+AENbsL96XDzFafxZnIcDZp8z6oo+P4tixpxDCumj6hSx/nB3UqO5C2mRJkqrX6NGjUSgUKBQKtFotISEhzJo1C5PJdEf17ty5E4VCwY0bN6qmoZWQkJDAsGHD8Pf3R6fTUbt2bQYOHMiZM2fsyq1fv55u3brh4uKCo6Mjbdu25auvvrIrk5iYiEKh4Pjx45U+/8yZM2nUqBFOTk64u7vTo0cPDh48aFfnmDFjqFevHnq9nvr16xMZGUlhYWGFdS9fvpwWLVrg6OiIn58fzz77LNeuXavwuOTkZJ555hk8PT3R6/U0a9aMI0eO2Pbf/PUvfvXu3duujrp165Yo88EHH9j2x8bGEh4ejo+PDzqdjuDgYN58802MRqNdPTdu3GDChAn4+fnh4OBAgwYN2LhxY7ntX7NmDb169cLT0/OWvx7Sg+nCwVOYEeSblaiLOqSU2jBcXBQ495hKfpO/AVWXdU8IQUaekVD3eOq4JqNTWwcCDYaWVVK/JEn3BxkvyXhJxku3R05reUDsuZHNz2mZtvfNXayLdsa98RE6sxPCYu2UOvdQED28rkDnN6HNs2XWl51t/UBKyfbh7I1GKDX1eLZ97bt4BZIkVafevXuzbNkyCgoK2LhxIxMmTECj0fD6669Xd9MAKCwsRKvVllvGaDTSs2dPGjZsyJo1a/Dz8+PixYts2rTJLtD79NNPmTJlCjNmzGDRokVotVp+/PFHxo8fz6+//kpUVNRtt7NBgwZ89tlnBAcHk5eXx/z58+nVqxfnzp3Dy8uLM2fOYLFYWLx4MSEhIfz666+MGzeOnJyccs+7d+9eRo4cyfz58+nfvz/JycmMHz+ecePGsWbNmjKPu379Op07dyY8PJxNmzbh5eXF2bNncXd3tytX/PUv5uBQcnbHrFmzGDdunO29i8sf2cQ0Gg0jR46kVatWuLm5ceLECcaNG4fFYmHOnDmA9WvYs2dPvL29Wb16NQEBAfz++++4ubmVe09zcnLo0qULQ4YMsTu/JJXlenISFixYHC4WbVGideqNs/5XNnl2JtHkAJiqZKaU2SJIzynEIsBRnQeAwdCasMYfotMF3nH9kiTdX2S8JOMlGS/dBiGVKSMjQwAiIyOjuptyx1akpAmf7dGiz5FYceRGtjCaLSI/I1esfPFF8enfHhdRQ/qJqCH9xNJxzwhxclW5dZnN+WLrtmCxdVuwaPyP78SCrXH36Cok6a8rLy9PxMTEiLy8vOpuyi0bNWqUGDhwoN22nj17ig4dOoj09HQxYsQI4ebmJvR6vejdu7eIi/vjMyExMVE89thjws3NTTg6OoqwsDCxYcMGkZCQILAuqmJ7jRo1SgghRGZmphg2bJhwdHQUvr6+4uOPPxbdunUTL730kq3eoKAgMWvWLDFixAjh4uJiO3b37t2iS5cuQqfTidq1a4tJkyaJ7OxsIYQQ0dHRAhCJiYllXmtSUpLQaDRi6tSpJfYtWLBAAOLAgQNCCGG7hujo6Fu/qUWKf89s3bq1zDJz584V9erVK7eejz76SAQHB5dob0BAQLnHzZgxQ3Tp0qXcMqV9/f8sKChIzJ8/v9wyf/byyy/bnXvRokUiODhYFBYW3lI9xari63Gz8n5ma1J8UBX+avdjz5vLxH/eXCSmPfdwUfzzuPjs+W1i1dQI4bM92vZanpx2R+e5ll0g2s7eIoJm/E/0/OCfYuZ/hout24LFyVMTq+hKJKnmkfGSjJdKI+Olmh0vycf3HhDXjdbp6fX0DrQ2OKFWKtj8w48kX7tEgdo6HdCi1NDBcAC0TmXWc/nKJg5ERwIghII8kw6Do1zYXJJuixBQmHPvX0LccdP1ej2FhYWMHj2aI0eOsG7dOvbv348Qgr59+9qmGU+YMIGCggJ27drFqVOn+PDDD3F2diYwMJDvv/8esE5VTk1N5ZNPPgFg6tSp7N27l3Xr1rFlyxZ2797NsWPHSrQhKiqKFi1aEB0dzVtvvUV8fDy9e/dm0KBBnDx5km+//ZY9e/YwceJEALy8vFAqlaxevRqz2VyiPoDVq1djNBp55ZVXSux7/vnncXZ2ZuXKlXd8/8A60rVkyRIMBgMtWrQos1xGRgYeHh7l1tWxY0cuXLjAxo0bEUJw+fJlVq9eTd++fcs9bt26dbRp04bBgwfj7e1Ny5Yt+eKLL0qU27lzJ97e3jRs2JAXXnih1GnuH3zwAZ6enrRs2ZKPPvqo3McVzp07x08//US3bt3s2tKxY0cmTJiAj48PTZs2Zc6cOWV+rSTpdhTEx5OfloZZmPjboRsAKIpWswhVWr9nGzvp6OdloGct1zs616/JGVzJKqCJ5xlmtF1Al4D9AGg0bndUryQ9cKorXqqCmEnGS3dOxks1P16Sj+89IG4Yixc4V9m2nd2XCaIAAI1jBCn+BwjTXCmzUyor6zS//jrR9j4lxweBEl9X3V1suSTVYMZcmON/78/7Rkq5nc/lEUKwbds2fv75Z/r06cPatWvZu3cvnTp1AqzP6QcGBrJ27VoGDx5MUlISgwYNolmzZgAEBwfb6ioOHLy9vW1TjrOysvj6669ZsWIF3bt3B2DZsmX4+5e8T48++ijTpk2zvR87dizDhw9nypQpAISGhrJgwQK6devGokWLCAgIYMGCBbz66qu88847tGnThvDwcIYPH25rV1xcHAaDAT8/vxLn02q1BAcHExcXd1v3rtj69et56qmnyM3Nxc/Pjy1btlCrVq1Sy547d45PP/20winwnTt3Zvny5QwdOpT8/HxMJhP9+/dn4cKF5R53/vx5Fi1axNSpU3njjTc4fPgwkydPRqvVMmrUKMA6Ff1vf/sb9erVIz4+njfeeIM+ffqwf/9+VCrr75TJkyfTqlUrPDw82LdvH6+//jqpqal8/PHHdufr1KkTx44do6CggOeee45Zs2bZtWX79u0MHz6cjRs3cu7cOV588UWMRiORkZEV3ldJqow1/1lKrI8WpTkDS8MRIHYiFNbBta11OgIwt2EgbQ239xl5s+wCa+zVpnYOABqNB64uTQnwf/qO65akB0p1xUtw2zGTjJdkvCTjpcqTM6UeENdN1p5Td7W1HzLv1ClqpadbdwpocWolc9Trre+dvEutIy8/CYDMQle2/v4wF8SrvPt4U8IblV5ekqSaY/369Tg7O6PT6ejTpw9Dhw5l9OjRqNVq2rdvbyvn6elJw4YNOX36NGD95Tt79mw6d+5MZGQkJ0+eLPc858+fx2g00q5dO9s2g8FAw4YNS5Rt06aN3fsTJ07w1Vdf4ezsbHtFRERgsVhISEgArCORly5dYvny5XTs2JFVq1bRpEkTtmzZUul7UdFaDGANNm9ux+7du237wsPDOX78OPv27aN3794MGTKEK1eulKgjOTmZ3r17M3jwYLtn/2+ud/z48QDExMTw0ksv8fbbb3P06FF++uknEhMTbft3795td9zy5csBsFgstGrVijlz5tCyZUuee+45xo0bx+eff24731NPPcWAAQNo1qwZjz/+OOvXr+fw4cPs3LnTVmbq1Kk88sgjNG/enPHjxzNv3jw+/fRTCgoK7K7p22+/5dixY6xYsYINGzbYBY8WiwVvb2+WLFlC69atGTp0KP/4xz9sbSnvnkpSZaVYrP8qzYIcZ18AFAolnpoLrAzuClRd1r2sfOsMCFcH689BrVrdeeihZbi4hFVJ/ZIk3X9kvPQHGS/JeKmy5EypGq7QYuHAjRxic6yZXtw0KoTZzIlX5iMM1p5ui0rJpQYNUHZ8BHzCwLtRqXXl5lmnHyZk1GFl7JPse+1R/N309+Q6JKlG0jhaR+Cq47y3KDw83LaIpb+/P2q1mnXr1lV43NixY4mIiGDDhg1s3ryZ999/n3nz5jFp0qTbabkdJyf7kcvs7Gyef/55Jk+eXKJsnTp1bP93cXGhf//+9O/fn9mzZxMREcHs2bPp2bMnoaGhZGRkkJKSUmK0sbCwkPj4eCIiIips24ABA+yCz4CAALt2h4SEEBISQocOHQgNDWXp0qV2i6CmpKQQHh5Op06dWLJkiV3dN2dLcXW1Pl70/vvv07lzZ6ZPnw5A8+bNcXJyomvXrsyePZs2bdrYHefjY82u6ufnR1iY/R/IjRs3tj0qUJrg4GBq1arFuXPnbKOzf9a+fXtMJhOJiYl2AXJgoHVh57CwMMxmM8899xzTpk1DpVLh5+eHRqOxjSYWt+XSpUsUFhaWe08lqbIsRU/ihOeHcawog7BOfYWnPCczS/Oj9f0dZt1buOMci3bGgyWP+oaLeDqkAqBWu1RwpCRJpaqueKn43LdAxksyXiom46XKk51SNdzHiZf55++Xbe89NWqyEi5xJagx2RnWnvBsZwUqhQp6zAR1yR7tnJxzxJ+fz9WrPwFwPd/6Q+3uWHHvtyRJ5VAobvsxunutODC4WePGjTGZTBw8eNA2Hf3atWvExsba/eIODAxk/PjxjB8/ntdff50vvviCSZMm2UbQbn4GPjg4GI1Gw+HDh22BUUZGBnFxcTz88MPltrFVq1bExMSUaGd5FAoFjRo1Yt++fQA8+eSTzJgxg3nz5jFv3jy7sp9//jm5ubmMHDmywnpdXFzssqmUx2Kx2I2QJScnEx4eTuvWrVm2bBnKP/2BXNr15ebmolbb/0ovDlaEEOj1+lKP69y5M7GxsXbb4uLiCAoKKrO9Fy9e5Nq1a6VO2S92/PhxlEol3t5lz6S1WCwYjUYsFgsqlYrOnTuzYsUKLBaL7Zrj4uLw8/NDq9Wi1WorfU8lqSwWACG4kXMBszEbAJXSAioH8lTWPz7vdKbUD9HJZBeYeLvDfIJcL9q2y04pSbpNMl4CZLwk46WaGy/JTqkaLj7X+oNbT6+lhYsj3T1d+SbqPTIzztjKKPUWujnvKrVDCuDixf/aOqQA0gqbM7ZLPfRaVanlJUl6MISGhjJw4EDGjRvH4sWLcXFx4bXXXiMgIICBAwcCMGXKFPr06UODBg24fv06O3bsoHHjxgAEBQWhUChYv349ffv2Ra/X4+LiwqhRo5g+fToeHh54e3sTGRmJUqlEoSj/D8UZM2bQoUMHJk6cyNixY3FyciImJoYtW7bw2Wefcfz4cSIjIxkxYgRhYWFotVp++eUXvvzyS2bMmAFYRwjnzp3LK6+8gk6nY8SI8c96CAABAABJREFUEWg0Gn788UfeeOMNZs+eTdOmTe3O++cgBaBJkyZoNPZJIHJycnjvvfcYMGAAfn5+pKWlsXDhQpKTkxk8eDBgDbAeeeQRgoKCiIqK4urVq7bjfX19y7z2/v37M27cOBYtWkRERASpqalMmTKFdu3albq+RLGXX36ZTp06MWfOHIYMGcKhQ4dYsmSJbbQxOzubd955h0GDBuHr60t8fDyvvvoqISEhthHQ/fv3c/DgQcLDw3FxcWH//v28/PLLPPPMM7ZUycuXL0ej0dCsWTMcHBw4cuQIr7/+OkOHDrXdpxdeeIHPPvuMl156iUmTJnH27FnmzJlT6kjuzdLT00lKSiIlJcXu6+Hr61vuPZMePMaruQiFFmNmFmduHLVtVykFa56LJT/mdwD0dzhTKiPPCAiCXK0zpHS6ADQaN7y9Kp41IElSzSPjJSsZL8l4qUxVkgewhvqrpTguzVPHzwmf7dHi29RrQggh8gpN4p+jXilKgdxPzB8+RXw6u6kQcwLLrOPEyRfF1m3BIvLrYaL3h/NEdv7tpZ+UpAdZTUtxXKw4xbHBYBB6vV5ERETYpTieOHGiqF+/vnBwcBBeXl5ixIgRIi3tjzTrs2bNEr6+vkKhUJSb4rhdu3bitddesx1XVkrdQ4cOiZ49ewpnZ2fh5OQkmjdvLt577z0hhBBXr14VkydPFk2bNhXOzs7CxcVFNGvWTERFRQmz2WxXz9q1a0XXrl2Fk5OTLQXzypUr7cqUlqa5+HXhwoUSbcvLyxNPPPGE8Pf3F1qtVvj5+YkBAwaIQ4cO2cosW7aszDorsmDBAhEWFib0er3w8/MTw4cPFxcvXqzwuP/973+iadOmwsHBQTRq1EgsWbLEti83N1f06tVLeHl5CY1GI4KCgsS4cePEpUuXbGWOHj0q2rdvLwwGg9DpdKJx48Zizpw5Ij8/31bmm2++Ea1atbJ9XcLCwsScOXNK/Dzs27dPtG/fXjg4OIjg4GDx3nvvCZPJVG77y7pnkZGRFV57eaoixfGD4q9yPxLe3COmvjlP9B//vjUOGjpUzB82WSx7p6fw2R5te2Uay/+eK0vStRzxS+wVEfqPjaLBG9+LrduCxdZtwcJkyqniK5GkmkvGSzJekvHSgxcvKYSogtzgNVRmZiYGg4GMjAzbc6h/NY8djeNIZi7Lmtaldy0DG/5vPYmbdlBgicMz3xPv3BQe6XIYRycfeKVk77XZIti48wkcOcWiE6M5kdaauNl9KuyBlyTJXn5+PgkJCdSrVw+dTmasvBU5OTkEBAQwb948xowZc8/Pn56eTvfu3XF1dWXTpk04Ot76mlzSX095P7M1IT6oSn+F+2E2mUh9cz9vqU+QVXCQjknXUWob46jtgrrNMv7RaCZtXZ3oWcuVyUE+t1x/Rq6RdnO2UmAy07xWDAHOKTzZ4H8oFGrCHzkj4yZJqiQZL90+GS9J1aEq4iWZfa+GyzJb08w4q1TkHDhEwoajmJXWfkihukKToAs4CgH+D5U4NjZuFjt/aYIjpwC4lu+Bv5teBlaSJN1V0dHRrFy5kvj4eI4dO8bw4cMBbFPc7zUPDw+2bt1K9+7d2b9/f7W0QZKkOxO3bw8Aeapc3JRpAChQoRAmUFr/cPosrM5tdUgBXLieS4HJQojbBV5qtZgnG/wPAI3GXcZNkiTdFTJekmoKuaZUDZduNAHWrHsXDyagVRaSbU4C4GI9DbUenwGNOoNn/RLHpqZ+D8K6JtXVPD+GduxBt4ZlL9QmSZJUVaKiooiNjUWr1dK6dWt2795NrVq1qq09np6evP3229V2fkmS7szFi/E0pgGawkKapnbAzGFQqNCY80nXWj9bHO5gLamsfGu81cjbuni6RuOBm1s7fHz63XnjJUmSyiDjJakmkJ1SNdTPaRlsScskrdAaJHlr1OyIXU22Jd9WxqhLw6l+S/BqUOJ4i6UAs9kaWL259w2aBTVlSb+GJcpJkiRVtZYtW3L06NGKC0qSJFWCEIK4YydI0RcQnHINFG4A6PKv0zhnDaMCpgCgvY2seyazhX3x19gXfw0ANwfrYJ7B0IrmzRZWSfslSZJKI+MlqaaQnVI11OTTSWSYrGlDnVVKzhw9QUpWLeAiKPQoVO40czsGWucSx5rNuWw8thNHwCyUXMrxpqPO4d5egCRJkiRJUhVIi43jqrMHV7mCyiJAWOOjEIcDNGmQTIbmLQAcbqNT6vtjF5nx/SlqOyfzQvOfCfGwZoBSq/9a6bglSZIkqbrINaVqIKNF2DqkpgT5sLx5MIdWHwRzLgButMLonEdEXi5oneyOLSi4zO49HXHMmgTA1dxaCJTU9yrZeSVJkiRJknS/K8jKBEAtVLiYHQBrjKQPqIXp1V9t5RwUtx4Wn7+aA8CAkD208T2OmzbZWre+zh22WpIkSZIeDHKmVA2UbTbb/j+tri95R6M5czaeNGfrlPKg33/gsa6puDr5gZP9M8cZGccxm7MxCyU5Rkd0bsNZPrY97et53NNrkCRJkiRJqgqmwkIAtGaB2pSJSWFN+HJJ48ax69aEMCoFqG9jplRGnhGABl7W2MvPdxCent2oVevRqmi6JEmSJNV4slOqBsoqmiWlUyrQKBUc/89RtBZAWNeTSuzwEN2nfAGewaDS2B0bc/EMAEcuPcSSU6M5+mYPPJ3lo3uSJEmSJP01FVzJA8B8KZFC8xXb9gO62vzf+VTAmqX4Vny9L5Evdp/nWnYhaoURrSobLODp2U0ubi5JkiRJt0B2StVA2WbrqJ+TSsXljMvE5e/mkku6bb/erELh38LuGLO5gGvpO4lJ2EpDd0jL88RRq8Kgt++0kiRJkiRJ+qswF5jIOJTDRbUB10IVAYBC5YVSoSctMIAgnZZmLnr61DLcUr3/d+B3Ll7P44XmX9LG9zhYQy/UatcqvwZJkiRJqslkp1QNdLUo414trZpVq9ZSkJlh22fU6oloFFfimN+TFpOQ8AkN3a3vm9RpzJBH26JWyWXHJEmSJEn6azq1aStCATeEHveitaTUuk5olFrynAqIqGVgVmjALdebmWdEgYXWvidt2zQaT1xcwqqs7ZIkSZL0IJCdUjXI1UIjjx09S1K+de0EP62Gwv1Gihf0dHAdQ67PQmr5BJc4Njs7FoALWf7E36jLP54ajc7h1kYNJUmSJEmS7ifpFy+ix5M89SU8LNbMeCiUoDBhVKhvK+MeQFa+CZ26AEXRFKkuXQ6iURtQKuUMc0mSJEm6FXIaTA1yKCOH3/MLEUXvW8b8hveNGwAohJIOhz/kHwNGQd+P7I67mlXAkfNnAfjf+Qh+OP+M7JCSJMlm9OjRKBQKFAoFWq2WkJAQZs2ahclkuqN6d+7ciUKh4EbR59S9kJCQwLBhw/D390en01G7dm0GDhzImTNn7MqtX7+ebt264eLigqOjI23btuWrr76yK5OYmIhCoeD48eOVPv/MmTNp1KgRTk5OuLu706NHDw4ePGhX55gxY6hXrx56vZ769esTGRlJYdFCzeVZvnw5LVq0wNHRET8/P5599lmuXbtW7jFms5m33nrL7nzvvvsuQghbmTVr1tCrVy88PT3LvN74+HieeOIJvLy8cHV1ZciQIVy+fPmWr+vkyZN07doVnU5HYGAgc+fOrfC6d+3aRf/+/fH390ehULB27doKj5EeHMJowYyFdqnZOJiLk7ao0IoCCpRadMrKh8JGs4Uhi/fTfObPPFp7Iy+1XAyAUqnDQVtLdkhJ0gNOxksyXpLx0u2RnVI1SGbRAudd3Z2J69qMBj/FYFZaf1DMKkhv6oay7TOgd7Mdk5KyihPHnyHIJR6AtFxPwht53/O2S5J0f+vduzepqamcPXuWadOmMXPmTD766KOKD7xHKhOEGI1GevbsSUZGBmvWrCE2NpZvv/2WZs2a2QV6n376KQMHDqRz584cPHiQkydP8tRTTzF+/HheeeWVO2pngwYN+Oyzzzh16hR79uyhbt269OrVi6tXrTM4zpw5g8ViYfHixfz222/Mnz+fzz//nDfeeKPcevfu3cvIkSMZM2YMv/32G6tWreLQoUOMGzeu3OM+/PBDFi1axGeffcbp06f58MMPmTt3Lp9++qmtTE5ODl26dOHDDz8stY6cnBx69eqFQqFg+/bt7N27l8LCQvr374/FYqn0dWVmZtKrVy+CgoI4evQoH330ETNnzuT/2bvv+Kiq/P/jr5lMJpkkk4QEQkICofeigkgREBFCEVgLFlgEFVf2ByirIuCqKMKyKuiKuiiuC65fZF1ZRRYbRUWagBRBepWaUAIJ6ZOZ8/tjYCSGhCJkUt7PxyMPmDvnnvmcCyEfPvfcc6ZPn17sGDIzM2nRogVvvvlmse2k4vF4POxLO8xJSyaRLjtnZ45H5u2nffin7AlJuKSZUjtTMli9NxVX/mlur/cZ9SrtASAkpNbVCF9EyiDlS8qXlC9dBiNFSktLM4BJS0vzdygXZfr+o6bq1+vNwz/tNYd37DUfDB5jXr/rQTP5rl5m0uA+ZtPj1xQ6Z8l3Lc2ixbXNosW1zfwFzc2pzNN+iFyk/MvOzjZbtmwx2dnZ/g7lkg0aNMj07du3wLGuXbuaNm3amNTUVDNw4EATGRlpHA6H6d69u9mxY4ev3b59+8ytt95qIiMjTUhIiGncuLH57LPPzN69ew1Q4GvQoEHGGGPS09NN//79TUhIiImNjTWvvPKK6dSpk3n00Ud9/SYmJprx48ebgQMHGqfT6Tt36dKl5sYbbzTBwcEmISHBjBgxwmRkZBhjjFm/fr0BzL59+4oc6/79+01gYKB57LHHCr03depUA5jvv//eGGN8Y1i/fv2lX9Qzzv6cWbRoUZFtXnrpJVOrVq1i+3n55ZdN7dq1C8UbHx9f7Hm9evUyDzzwQIFjt99+uxkwYEChtkWN96uvvjJWq7XAz8pTp04Zi8ViFi5cWORn/3pcf//7302lSpVMbm6u79jo0aNNgwYNih3DuQDzySefXHT74hT3PVvW8oOrrbRej4+nTDHjxo0z48aNM68N/rOZfM+9ZvJdvcyOT181D6/7yVT9er1558DRi+5v+a5jJnH0fNPnb/8xixbXNou/bmCOJM8z2TlHruIoRCoW5UvKl85H+VL5zpc0U6ocOTtTymkLYP47L3M4axO5JANgsRkaVs0p0N7tzsPlOgnAPzb9niWpfyUiJKxkgxapwIwxZLmySvzLnDPV+HI5HA7y8vIYPHgwP/zwA/PmzWPlypUYY+jZsyculwuAYcOGkZuby3fffcemTZt48cUXCQsLo3r16vz3v/8FYPv27Rw5coTXXnsNgMcee4zly5czb948Fi5cyNKlS1m3bl2hGCZPnkyLFi1Yv349zzzzDLt376Z79+7ccccdbNy4kQ8//JBly5YxfPhwAKpUqYLVamXOnDm43e7zjmvOnDm4XK7z3uF7+OGHCQsLY/bs2b/5+oH3buX06dOJiIigRYsWRbZLS0sjKiqqyPcB2rZty4EDB/j8888xxpCSksKcOXPo2bNnsee1a9eOxYsXs2OHdwOMH3/8kWXLltGjR4+LHkdubi4Wi4WgoCDfseDgYKxWK8uWLbvoca1cuZKOHTtit9t9x5KSkti+fTsnT5686HhEzjp25pGIYBNIAAFgvN/3t+c2YO4p779RFzNTyu0xvLJgO1MXe5c6iHN6H8UJDIwgtmpvgoNir0b4InKGv/KlK5EzKV/67ZQvlf98SQudlyMnzzyvHGaxkHk0xHc8IPgG4uP+h636dQXaz1y2kZqAx1j4/kgratVIKMFoRSQ7P5sbPrihxD93Vf9VhASGXLjheRhjWLx4MV999RU9evRg7ty5LF++nHbt2gHe5/SrV6/O3Llz6devH/v37+eOO+6gWbNmANSu/ctGC2d/wMbExBAZGQnA6dOnee+99/jggw/o0qULADNmzKBatWqFYrn55pt5/PHHfa+HDBnCgAEDGDlyJAD16tVj6tSpdOrUiWnTphEfH8/UqVN58sknef7552nVqhWdO3dmwIABvrh27NhBREQEcXFxhT7PbrdTu3ZtX0JyuebPn88999xDVlYWcXFxLFy4kMqVK5+37a5du3j99deZPHlysX22b9+eWbNmcffdd5OTk0N+fj69e/e+4BTtMWPGkJ6eTsOGDQkICMDtdjNx4kQGDBhw0eNp06YNoaGhjB49mr/85S8YYxgzZgxut5sjR45c9LiSk5OpVavgY1BVq1b1vVepUqWLjkkEwH3mP5PtXA3YYrZw9vE9d0AAANGBNm6IuPDNuLU/n2Tq17uIDErjiZbvUyPSu6uxzea8OoGLSAH+ypfg8nMm5UvKl35N+VLRNFOqHDiUk8df9xzh29TTAOSs2YHV5U24IvNiqJO8nXsenQ13vQ9Afv5pVq3uTU333QCk5UVSr2o4t1176Vsii0jFMH/+fMLCwggODqZHjx7cfffdDB48GJvNxg03/JIoRkdH06BBA7Zu3QrAI488woQJE2jfvj3jxo1j48aNRX0EAHv27MHlctG6dWvfsYiICBo0aFCobatWrQq8/vHHH5k5cyZhYWG+r6SkJDweD3v37gW8dyKTk5OZNWsWbdu25aOPPqJJkyYsXLjwoq/FuXemijJr1qwCcSxdutT3XufOndmwYQMrVqyge/fu3HXXXRw9erRQH4cOHaJ79+7069evwFoH5/Y7dOhQALZs2cKjjz7Ks88+y9q1a/nyyy/Zt2+f7/2lS5cWOG/WrFkA/Oc//2HWrFl88MEHrFu3jvfee4/Jkyfz3nvvXfT1qFKlCh999BH/+9//CAsLIyIiglOnTnHddddhPc8i0kWN60KKGoPI+Xiy83HbIsAYTp7eS54rGYx3RoLHGsDca+uy+cam1A8NvmBfJzJyAbgpcTuNoncQGuCdgRUaUvfqDUBEyiTlS79QvlSQ8qWiaaZUOTD15xTeO/zLjgEBC77Dc+bvtcX8TM2G8RBdx/d+Wto6MjK2+F4Hh/dkwZ86lVi8IuLlsDlY1X/VhRtehc+9VJ07d2batGnY7XaqVauGzWZj3rx5FzxvyJAhJCUl8dlnn7FgwQImTZrElClTGDFixOWEXkBoaGiB1xkZGTz88MM88sgjhdrWqFHD93un00nv3r3p3bs3EyZMICkpiQkTJtC1a1fq1atHWloahw8fLnS3MS8vj927d5OUlHTB2Pr06VMg+YyP/6XoHxoaSt26dalbty5t2rShXr16vPvuu4wdO9bX5vDhw3Tu3Jl27doVWrjy3N1cwsPDAZg0aRLt27dn1KhRADRv3pzQ0FA6dOjAhAkTaNWqVYHzzt5RGzVqFGPGjOGee+4BoFmzZvz8889MmjSJQYMGXXCcZ3Xr1o3du3dz/PhxbDYbkZGRxMbGFrjTe6FxxcbGFtiBBvC9jo2NpWbNmucdg8j5HFywD2ML5kRGDruOLinwXl5gEEGXsOve6RzvTPSECO+v0VEdSUx8mPDwa65YvCJSNH/lS2c/+1IoX1K+VBzlS+enolQ5kOryTkfvHOWk9bIficzM4GSg9y/mwTpB3NOy4D9Ex9O97x3IqM+rPwzkpbtvLtmARQQAi8Vy2Y/RlbSzicG5GjVqRH5+PqtWrfJNRz9x4gTbt2+ncePGvnbVq1dn6NChDB06lLFjx/LOO+8wYsQI3x20c9crqF27NoGBgaxZs8aXGKWlpbFjxw46duxYbIzXXXcdW7ZsKRRncSwWCw0bNmTFihUA3HnnnYwePZopU6YwZcqUAm3feustsrKyuO+++y7Yr9PpxOm8uEd7PB4Pubm5vteHDh2ic+fOtGzZkhkzZhS6e3a+8WVlZWGzFfyRHnDmESVjDA6Ho8jzft1/QECAbxeYS3V2Wv3XX3/N0aNH6dOnz0WPq23btvz5z3/G5XIRGBgIwMKFC2nQoIFvKvql/NlKxZZ5LBMPHg7nhVETgEAC7PUJshwjKyTsotaS+mpzMh+s2s/Bk1mE29OJDPKu1RESWodKldpczfBF5BzKl5QvgfKls8pjvqSiVDmQc+aboUdUGGbLhxwPyIQz3x/WgCxCKkX42iafTGH2svl0iIdDp52k5UUQHhzoj7BFpIyrV68effv25aGHHuLtt9/G6XQyZswY4uPj6du3LwAjR46kR48e1K9fn5MnT/LNN9/QqFEjABITE7FYLMyfP5+ePXvicDhwOp0MGjSIUaNGERUVRUxMDOPGjcNqtWKxFP+fyNGjR9OmTRuGDx/OkCFDCA0NZcuWLSxcuJA33niDDRs2MG7cOAYOHEjjxo2x2+0sWbKEf/7zn4wePRrw3iF86aWXeOKJJwgODmbgwIEEBgby6aef8tRTTzFhwgSaNm1a4HO3b99eKJYmTZr4EoWzMjMzmThxIn369CEuLo7jx4/z5ptvcujQIfr16wd4E5GbbrqJxMREJk+e7Nv6GLx3v4rSu3dvHnroIaZNm0ZSUhJHjhxh5MiRtG7d+rzrS5x73sSJE6lRowZNmjRh/fr1vPLKKzzwwAO+Nqmpqezfv5/Dhw8XGG9sbKwvphkzZtCoUSOqVKnCypUrefTRR/nTn/7ke4zgYsbVv39/nn/+eR588EFGjx7NTz/9xGuvvcarr75aZPzgveO7a9cu3+u9e/eyYcMGoqKiCtzxlYojPy+Pn9d/hTvaEBjqnRluDahEYGgSQe7/ARe3wPmUBdvZkZLBbXXnc+u1C3zHbbbwqxO4iJRLype8lC8pXyrSFdkHsJwqrVsc/1q/9TtN1a/Xm5eWrTFTfj/cTL6rl5l8Vy8z5d77zMy/1DBm9TvGGGNSU1eZRYvrmUWLa5tFi2ub8bNGmj/8a43JceX7eQQi5V952+L4rLNbHEdERBiHw2GSkpIKbHE8fPhwU6dOHRMUFGSqVKliBg4caI4fP+57f/z48SY2NtZYLJZitzhu3bq1GTNmjO+8xMRE8+qrrxaKZ/Xq1aZr164mLCzMhIaGmubNm5uJEycaY4w5duyYeeSRR0zTpk1NWFiYcTqdplmzZmby5MnG7XYX6Gfu3LmmQ4cOJjQ01LcF8+zZswu0Od82zWe/Dhw4UCi27Oxsc9ttt5lq1aoZu91u4uLiTJ8+fczq1at9bWbMmFFknxcydepU07hxY+NwOExcXJwZMGCAOXjwYLHnpKenm0cffdTUqFHDBAcHm9q1a5s///nPBbYZLiqmcePG+dqMHj3aVK1a1QQGBpp69eqZKVOmGI/Hc8nj+vHHH82NN95ogoKCTHx8vPnrX/96wXF/88035+337N+ny3UltjiuKErb9TiVkmw+/8ME8/Kzk8xfHnzSTL6rl3llwAjzxsOLzT8ffsJU/Xq92Z+de8F+Wr6w0CSOnm/mLe5tFi2ubRZ/Xd98t/QGcyptQwmMQqRiUr6kfEn5UsXLlyzGXIG9wcup9PR0IiIiSEtL8z2HWhr1WbeT1WmZDP/iB0IOrsS4U4iwtiE3Ooc/PHkrgQmtwWpl69axHD7yHwBSc+Po1WkWISGJfo5epGLIyclh79691KpVi+DgCy+sK7/IzMwkPj6eKVOm8OCDD5b456emptKlSxfCw8P54osvCAkpG48QyG9T3PdsWckPSkppux67v/yUXZ9s48eq+Th3ZpHl+ZEgSzyxObVYeK2DTzt2YlP7JlSxn3+meHqOi58OpTHon6txuQ3/12cquTm7uPaafxEV1b6ERyNSsShfunzKl8QfrkS+pN33yoEct/dZvYSt2zGedADq7J7L7UPvIrBGG7BaOXo6h20HNwHw9sZBfHpoigpSIlIqrV+/ntmzZ7N7927WrVvn22737BT3khYVFcWiRYvo0qULK1eu9EsMInLxFiz6ik3RueR6fll7JMiTzIbEUyy8/noA7MU83nLv9O/p/84qaoXvpHvNReS7vLs96bE9ESlNlC9JeaE1pcqwj1NO8sWxNPZk54Ix2Dw5YLIB+KndtXSuVwuAU6d+4Osf/kOY2QNAcmYMbRMuffctEZGSMnnyZLZv347dbqdly5YsXbrUtyikP0RHR/Pss8/67fNF5OLk5eWREhYDeLC53HjO1J6yomz843feXZNujAwj3BZQZB87UzKwW/N4rOU0Aq0uzq4tbLdHX+XoRUQujfIlKQ9UlCqjjDE8vu0A2WcWOR8wfzopYQcA8FjtdIrYDGd2qfhp86NUsSaDFdwmkCE3daJni9pF9i0i4k/XXnsta9eu9XcYIlIG5efn+35/w+k4trINAGODWHsg69t5d7oqaiHgHJebPLeHqOAMAq0uLJYAYqv2xelsQnBw0YvgioiUNOVLUl6oKFVGZbk9voLU3YcOEndmlX+ATGcVagX/ANYAsnJd5OQexQIs+PkmrqvXnfvaN/JP0CIiIiJXUcapHACsLhebUr7C4F061QRYCQ6wFFmMMsaw62gGB095Z5yH2Ly/2myRNG78cglELiIiUjGpKFVGncz3ziW3WyzUWLIJjPd1UMQf8VT7Amff1wF44+sNtAzyFq/+u7M3HVve4J+ARURERK6yA//1zozC5T5TkLJitVWHKqcJtha9lOrcDYf404c/EhyQw+11F5AYngKAzeYsgahFREQqLhWlyqiTLu/09KonU6l9OJU9Yd7jTddPodO0hXgsHnZuf4461iUAuDx2+rWqTeeGVfwVsoiIiMhVZTmVg9tYWJ5Xne78hMUSht15B7nOD4otSm09chqA9gmb6FV7ke94cFDsVY9ZRESkIlNRqow65fLOjIpJPkGOPfTMUQsZDUOxBASQemI5Bw+9T+SZ3Y4tQdcy6fbm/glWRERE5CrLSk8jNyuVrMBA+pgfyQOweBc0dwcGEmwtese9tCwXALc08KbGTmdTqsb0pEqVpKsdtoiISIVW9C0jKbVyPR4O5ORhdefTZPMyDtu9C9y57FbadPAWqL7dsg6AfemJTPtxMPbKL/gtXhEREZGrbfOyr8nPyybHkoc783rvwTNFqYVV2uAIKJz2HjyZxQvzt/D93hMAOM6sJRUZeT2JiQ8TElKzRGIXERGpqFSUKmMO5OTRbPlPPLb9AEnrvqTqsV1wZhHPzHA3lWOiyc8/zcZ9GwDYkVqLtUevo3aMpp+LiIhI+fXT4R8xVgse9wmsxjsrypafR5Uj/yOr+nUMiIsudM473+3h3WV7qRf6GW/fMhJn/r+959nCSzR2ERGRikqP75UxG09nkZ7vAbehyY5c33G7I4nEJv/hcMP6bP3uWjrGewtVHRu1YFD3DiRGhxbVpYiIiEiZZvLyYMtusNUn/niGbwOYsKwUPBE2lrVpdt7zjmV4c6kuNbdgs3o3hrFY7ERGtCqZwEVERCo4zZQqY7Ld3oTpxk3bCMnyFp5CPDEkpq7iwT9+x0n3z4DB7bFyPDuKTs370Lia7vaJyOUbPHgwFot3K3W73U7dunUZP348+fn5v6nfb7/9FovFwqlTp65MoBdh79699O/fn2rVqhEcHExCQgJ9+/Zl27ZtBdrNnz+fTp064XQ6CQkJ4frrr2fmzJkF2uzbtw+LxcKGDRsu+vOfe+45GjZsSGhoKJUqVeKWW25h1apVBfp88MEHqVWrFg6Hgzp16jBu3Djy8vIu2PesWbNo0aIFISEhxMXF8cADD3DixIlizzl9+jQjR44kMTERh8NBu3btWLNmTYE2GRkZDB8+nISEBBwOB40bN+att94q0Obhhx+mTp06OBwOqlSpct5run//fnr16kVISAgxMTGMGjWqyL9Dy5cvx2azcc0111xw3B9//DHdunUjOjr6kv88pPz4+YsvOBScwNchO7C6Abz50tG4ynw48qkiz0vP9v4djA71/tq0yVQ6dviBqKh2VztkESlnlC8pX1K+dHlUlCpjsj3eJKvBlm3kn7mj58hLIfbmDpzIzGP7kQMAzNxyL+NXvUBYaE1/hSoi5Uj37t05cuQIO3fu5PHHH+e5557j5Zdf9ndYPheThLhcLrp27UpaWhoff/wx27dv58MPP6RZs2YFEr3XX3+dvn370r59e1atWsXGjRu55557GDp0KE888cRvirN+/fq88cYbbNq0iWXLllGzZk26devGsWPHANi2bRsej4e3336bzZs38+qrr/LWW2/x1FNF/6cavEnJfffdx4MPPsjmzZv56KOPWL16NQ899FCx5w0ZMoSFCxfy/vvvs2nTJrp168Ytt9zCoUOHfG0ee+wxvvzyS/7v//6PrVu3MnLkSIYPH868efN8bVq2bMmMGTPYunUrX331FcYYunXrhtvtna3idrvp1asXeXl5rFixgvfee4+ZM2fy7LPPForp1KlT3HfffXTp0uWirmlmZiY33ngjL7744kW1l/LpwOHD5NuDALyP7p2ZKZUbHIwtsPCDAZO+2ErriYtYdWYtqQAyAQgOjsdm0+xyEbk8ypeULylfugxGipSWlmYAk5aW5u9QfN7en2KqLVht/nrv/zOv9B9uJt/Vy0z5f3eb5B0rzcyFr5hFi2ubRYtrm1tfftF0nvyNv8MVkTOys7PNli1bTHZ2tr9DuWSDBg0yffv2LXCsa9eupk2bNiY1NdUMHDjQREZGGofDYbp372527Njha7dv3z5z6623msjISBMSEmIaN25sPvvsM7N3716Dd0E839egQYOMMcakp6eb/v37m5CQEBMbG2teeeUV06lTJ/Poo4/6+k1MTDTjx483AwcONE6n03fu0qVLzY033miCg4NNQkKCGTFihMnIyDDGGLN+/XoDmH379hU51v3795vAwEDz2GOPFXpv6tSpBjDff/+9Mcb4xrB+/fpLv6hnnP05s2jRoiLbvPTSS6ZWrVrF9vPyyy+b2rVrF4o3Pj6+yHOysrJMQECAmT9/foHj1113nfnzn//se92kSRMzfvz4Ytv82o8//mgAs2vXLmOMMZ9//rmxWq0mOTnZ12batGkmPDzc5ObmFjj37rvvNk8//bQZN26cadGiRZGf8WtX4s/jXMV9z5bG/MCfSsP1WPjqVDNu3Dgz7fHnzd/uvcdMufchM/muXuaZR+83A37cXah9w6e/MC2enWU+nN/SLFhUx5c/ZWTs8kP0InKW8iXlS+ejfKl850uaKVXGnMrJ4eG5k7G5f8aTvxeAhNgMdh9/igTrG752Pa/tyBv3XuevMEXkIhhj8GRllfiXMeY3x+5wOMjLy2Pw4MH88MMPzJs3j5UrV2KMoWfPnrhc3u3Vhw0bRm5uLt999x2bNm3ixRdfJCwsjOrVq/Pf//4XgO3bt3PkyBFee+01wHunafny5cybN4+FCxeydOlS1q1bVyiGyZMn06JFC9avX88zzzzD7t276d69O3fccQcbN27kww8/ZNmyZQwfPhyAKlWqYLVamTNnju+O1K/NmTMHl8t13jt8Dz/8MGFhYcyePfs3Xz/w3q2cPn06ERERtGjRosh2aWlpREVFFdtX27ZtOXDgAJ9//jnGGFJSUpgzZw49e/Ys8pz8/HzcbjfBwcEFjjscDpYtW+Z73a5dO+bNm8ehQ4cwxvDNN9+wY8cOunXrdt5+MzMzmTFjBrVq1aJ69eoArFy5kmbNmlG1alVfu6SkJNLT09m8ebPv2IwZM9izZw/jxo0rdrwiv3b8qBOAvBN7yXefxrgPA96ZUkFWS4G2LreHbJebupG7iXacxGrx/psYHJxAcHBCyQYuIhfkr3zpSuRMypd+O+VL5T9f0kLnZYTLY1iVlsHcn49yR+qZWqLFicUawk2Dn2DTzj4ArEtpTs34m/ljxzZ+jFZELobJzmb7dS1L/HMbrFuLJSTkss41xrB48WK++uorevTowdy5c1m+fDnt2nnXX5k1axbVq1dn7ty59OvXj/3793PHHXfQrJl3keHatWv7+jqbOMTExBAZGQl4n9l/7733+OCDD3zTkWfMmEG1atUKxXLzzTfz+OOP+14PGTKEAQMGMHLkSADq1avH1KlT6dSpE9OmTSM+Pp6pU6fy5JNP8vzzz9OqVSs6d+7MgAEDfHHt2LGDiIgI4uLiCn2e3W6ndu3a7Nix47Ku3Vnz58/nnnvuISsri7i4OBYuXEjlypXP23bXrl28/vrrTJ48udg+27dvz6xZs7j77rvJyckhPz+f3r178+abbxZ5jtPppG3btrzwwgs0atSIqlWrMnv2bFauXEndunV97V5//XX+8Ic/kJCQgM1mw2q18s4779CxY8cC/f3973/nySefJDMzkwYNGrBw4ULsdjsAycnJBRIswPc6OTkZgJ07dzJmzBiWLl2Kzab0RC5ezol0nJYAMowd3G6cgNXeGDs29jRPpIq14D3Y0znetTlCA7MBiIrqQONGLxMYGInVGljS4YvIBfgrX4LLz5mULylfUr508TRTqox4ae8R7tywm+bzV4M5syinuZZqlRux4KCHswt6Tt90HzbnbX6MVETKo/nz5xMWFkZwcDA9evTg7rvvZvDgwdhsNm644QZfu+joaBo0aMDWrVsBeOSRR5gwYQLt27dn3LhxbNy4sdjP2bNnDy6Xi9atW/uORURE0KBBg0JtW7UquDvWjz/+yMyZMwkLC/N9JSUl4fF42LvXO7N02LBhJCcnM2vWLNq2bctHH31EkyZNWLhw4UVfi7OJQ3FmzZpVII6lS5f63uvcuTMbNmxgxYoVdO/enbvuuoujR48W6uPQoUN0796dfv36FVjr4Nx+hw4dCsCWLVt49NFHefbZZ1m7di1ffvkl+/bt872/dOnSAufNmjULgPfffx9jDPHx8QQFBTF16lTuvfderOf8J/7111/n+++/Z968eaxdu5YpU6YwbNgwFi1aVCDeAQMGsH79epYsWUL9+vW56667yMnJuahr6na76d+/P88//zz169e/5GsqFdvBnzbjxsNet5MIMgAIsDcgyF6T06HhOM7MlFqzL5XrJy6i44tf0C3xa9rErQcgyF6FoKAqKkiJyG+mfOkXypeUL12s8lFaqwB2ZHn/onbavpXD4d4F6hptn0XggFvYevJZCIY8dyBxkZHcUCvan6GKyEWyOBw0WLfWL597qTp37sy0adOw2+1Uq1YNm81WYOHGogwZMoSkpCQ+++wzFixYwKRJk5gyZQojRoy4nNALCA0tuBhxRkYGDz/8MI888kihtjVq1PD93ul00rt3b3r37s2ECRNISkpiwoQJdO3alXr16pGWlsbhw4cL3W3My8tj9+7dJCUlXTC2Pn36FEg+4+PjC8Rdt25d6tatS5s2bahXrx7vvvsuY8eO9bU5fPgwnTt3pl27dkyfPr1A3+fulhIe7t1dddKkSbRv355Ro0YB0Lx5c0JDQ+nQoQMTJkygVatWBc47e9etTp06LFmyhMzMTNLT04mLi+Puu+/23QnNzs7mqaee4pNPPqFXr16+vjds2MDkyZO55ZZbfH1GREQQERFBvXr1aNOmDZUqVeKTTz7h3nvvJTY2ltWrVxcYR0pKCgCxsbGcPn2aH374gfXr1/seH/B4PBhjsNlsLFiwoNhrKhWbOzcPj8VAYArG5QROAAEYSyahCR0YEOfNixZtTeHY6Vzaxq3j7gZzfefbg6qet18RKR38lS+d/exLoXxJ+ZLypUunolQZccrlfZ43yGMA7++3dK9NjbC5xJ5pExDUiO+e7OyfAEXkklkslst+jK6knU0MztWoUSPy8/NZtWqVbzr6iRMn2L59O40bN/a1q169OkOHDmXo0KGMHTuWd955hxEjRvjuoJ27XkHt2rUJDAxkzZo1vsQoLS2NHTt2FJr+/GvXXXcdW7ZsKRRncSwWCw0bNmTFihUA3HnnnYwePZopU6YwZcqUAm3feustsrKyuO+++y7Yr9PpxOl0XlQMHo+H3Nxc3+tDhw7RuXNn3w4t1l89enS+8WVlZRWawh0QEAB4HyFwOBzFXpfQ0FBCQ0M5efIkX331FS+99BLg3YHH5XIViiEgIADPmd1gz8cYgzHGN662bdsyceJEjh49SkxMDAALFy4kPDycxo0bExgYyKZNmwr08fe//52vv/6aOXPmUKtWLUJDQy/6mkrFYVwuds55H3dMO27adhDXmRwp/vAKqrSpw0MtG/napmd7127p2sD7vRISUpeYmCQSEi78PS0i/qN8SfkSKF8qz/mSilJlxOGs0/Rb8g77Ig4C3q0XGsXvJBM4mlWFbw+2496OD/g1RhGpWOrVq0ffvn156KGHePvtt3E6nYwZM4b4+Hj69u0LwMiRI+nRowf169fn5MmTfPPNNzRq5P1PYmJiIhaLhfnz59OzZ08cDgdOp5NBgwYxatQooqKiiImJYdy4cVitViwWS3HhMHr0aNq0acPw4cMZMmQIoaGhbNmyhYULF/LGG2+wYcMGxo0bx8CBA2ncuDF2u50lS5bwz3/+k9GjRwPeO4QvvfQSTzzxBMHBwQwcOJDAwEA+/fRTnnrqKSZMmEDTpk0LfO727dsLxdKkSRMCAws+CpSZmcnEiRPp06cPcXFxHD9+nDfffJNDhw7Rr18/wJtg3XTTTSQmJjJ58mTf1sfgvUNWlN69e/PQQw8xbdo0kpKSOHLkCCNHjqR169bnXV/irLPbETdo0IBdu3YxatQoGjZsyP333w947yx26tSJUaNG4XA4SExMZMmSJfzrX//ilVdeAbyPEHz44Yd069aNKlWqcPDgQf7617/icDh8C4d269aNxo0bM3DgQF566SWSk5N5+umnGTZsGEFBQQCFrmtMTAzBwcGFjv9aamoq+/fv5/Bh78LWZ/88YmNji71mUj6cXr8W595jZMcYKmW6SAnxJv8uy0Gi+wzztslxsWBzCpsPpwNQyZEHboiKaked2o/5LXYRqRiUL3kpX1K+VKTfugVgeVYatjg+q82Hi8zLd/U2k+/qZSbf1ctMuP/35rFpfzSLFtc2E//vTlNzzHyz/0Smv8MUkSKUty2Ozzq7xXFERIRxOBwmKSmpwBbHw4cPN3Xq1DFBQUGmSpUqZuDAgeb48eO+98ePH29iY2ONxWIpdovj1q1bmzFjxvjOS0xMNK+++mqheFavXm26du1qwsLCTGhoqGnevLmZOHGiMcaYY8eOmUceecQ0bdrUhIWFGafTaZo1a2YmT55s3G53gX7mzp1rOnToYEJDQ31bMM+ePbtAm/Nt03z268CBA4Viy87ONrfddpupVq2asdvtJi4uzvTp08esXr3a12bGjBlF9nkhU6dONY0bNzYOh8PExcWZAQMGmIMHDxZ7zocffmhq165t7Ha7iY2NNcOGDTOnTp0q0ObIkSNm8ODBplq1aiY4ONg0aNDATJkyxXg8HmOMMYcOHTI9evQwMTExJjAw0CQkJJj+/fubbdu2Fehn3759pkePHsbhcJjKlSubxx9/3LhcriJju9gtjou6ZuPGjbvgucW5ElscVxT+vB57vvifeW/ww+aNZ6aYWbcOMJPv7mcm39XLNP3P52ZnpvfPbtLnW03i6Pmmy6TXzIjp/898teRWs2hxbbNr95QSj1dEiqd8SfmS8qWKly9ZjLkCe4OXU+np6URERJCWluZ7DtUfjDH85f+9RnCqd5E0u3MgzmuXUb3R5wC4gu+hZu3RNIz1X4wiUrycnBz27t1LrVq1Cm0pK8XLzMwkPj6eKVOm8OCDD5b456emptKlSxfCw8P54osvCCkjjxDIb1Pc92xpyQ9KC39ej3+9/hp7TpwEoNHaPRwMzQSTyz/uGcnCHh1JCLYz7IN1fLbxMG/c/BQOW6bv3Pr1x1Fdj+6JlCrKly6f8iXxhyuRL2n3vVJu4fE07vtwAXEn0gCweezU2f2+ryAF0LpRHxWkRKTcWL9+PbNnz2b37t2sW7eOAQMGAPimuJe0qKgoFi1aRJcuXVi5cqVfYhCR88vI9m7+En00lUOOk2C863K4AwIIOrPrXnq2C7vV5StIVat2NzUT/0hs1d/5JWYRkStB+ZKUF1pTqhQzxvD/tvxMVngknSz5AOTbPVjuSgZg/p5u/HSyAwtvvqG4bkREypzJkyezfft27HY7LVu2ZOnSpVSuXNlv8URHR/Pss8/67fNFpLDMU7mcTguAQCD9OMbinfxvsQaRGeLkq41H+HbzUTYePIXTnuF9zxJAwwYTL7jmiohIWaB8ScoDFaVKsVyPIcOVz73f/IM0jgCQEQ6uxDzswIGMmnRoeI1fYxQRudKuvfZa1q71z9bPIlJ2nF6XQmiAIR8XASYNsBAY2gd7cAbdY6P565ytZObkMbb136gTuQ8Amy1CBSkRKReUL0l5oaJUKZbh9tBtw5fE7z/yy8HIXEKDvdPPZw75HWFhDfwUnYiIiIj/5J/KwY0HHD+RYXETgA1LQARWWzZvNUqkXs4WIoPSfQUpgOio4rdKFxERkZKlolQplp6fT+Pteb7XgY6baXjdO+R7rKTmX0NoaH0/RiciIiLiH/kuF1u+nU9ehOFQRlVq56cAbiCA3JBYTud4lz0IsWUDYLNF0q7tNwQGag1OERGR0kQLnZdSxu3mmz//DWeGd8HOEE81Yl0/UDk6j2Ffv8we9/Oafi4iIiIV0sljR3Dn5nDYOGiScgcWczYnCiAlL4zery8jLvQIzarsASAwMFwFKRERkVJIM6VKqWNzFxB0+ASZNm+SFZazn8o995DrDqZPi5r8vk2inyMUERER8Y+U1ANYLQG4jBWsgXhnScFp+2E+ttWkdsBa/tT6LV97m00FKRERkdJIM6VKoeN5+dxmAvnZdgJX/hYAklulYxLd2IJq88rd15AYHernKEVERET8Y+V7H7O2Sg45xoMxHsC7896CPq3IssL1CScBCAhwEhpaj+oJg/wYrYiIiBRFM6VKoWUnTtFpzSyC84/5jpmoTHacrE2jeg/7MTIRERER/8rJyeFQqBMweNwBgMf3nrEGABDlcAEQF3cbDeqP80OUIiIicjE0U6oUSj2dTfRh70woS0AsVsf1pFaqwotrRpIQe5N/gxMRERHxI1eey/f76Nx88rOX+V6npGdyS41viXVsBcBmc5Z4fCIiInLxVJQqZTxuD8s++A6L27vrntMkEu5MpU18Xd4d1Iq6MWF+jlBEKprBgwdjsViwWCzY7Xbq1q3L+PHjyc/P/039fvvtt1gsFk6dOnVlAr0Ie/fupX///lSrVo3g4GASEhLo27cv27ZtK9Bu/vz5dOrUCafTSUhICNdffz0zZ84s0Gbfvn1YLBY2bNhw0Z//3HPP0bBhQ0JDQ6lUqRK33HILq1atKtDngw8+SK1atXA4HNSpU4dx48aRl5dXTK9es2bNokWLFoSEhBAXF8cDDzzAiRMnij3nu+++o3fv3lSrVg2LxcLcuXMLtfn444/p1q0b0dHRFxyvMYYePXoU2dfMmTNp3rw5wcHBxMTEMGzYsALvf/XVV7Rp0wan00mVKlW444472LdvX4mMU8qOLd8dACAgN4fYgwtw567zvmExdGUu9zb8mKhAb1HKHhjlrzBFpIJRvqR8SfnS5VFRqpTZ8O5/aLJlExjvFsaNdnxMrWu+pHliQ7o0qurn6ESkourevTtHjhxh586dPP744zz33HO8/PLL/g7L52KSEJfLRdeuXUlLS+Pjjz9m+/btfPjhhzRr1qxAovf666/Tt29f2rdvz6pVq9i4cSP33HMPQ4cO5YknnvhNcdavX5833niDTZs2sWzZMmrWrEm3bt04dsz7uPa2bdvweDy8/fbbbN68mVdffZW33nqLp556qth+ly9fzn333ceDDz7I5s2b+eijj1i9ejUPPfRQsedlZmbSokUL3nzzzWLb3Hjjjbz44osXHN/f/va3IneGfeWVV/jzn//MmDFj2Lx5M4sWLSIpKcn3/t69e+nbty8333wzGzZs4KuvvuL48ePcfvvtJTJOKTusG5MBqOxOPXPEjt3WBEclQ69o71qckZHtSEgYRGxsXz9FKSIVkfIl5UvKly6DkSKlpaUZwKSlpZXI53k8HrP50Y/M9L6jzeS77zCT7+pl/vdkc/Ov+XeZ3NxjJRKDiFwd2dnZZsuWLSY7O9vfoVyyQYMGmb59+xY41rVrV9OmTRuTmppqBg4caCIjI43D4TDdu3c3O3bs8LXbt2+fufXWW01kZKQJCQkxjRs3Np999pnZu3evwbsyse9r0KBBxhhj0tPTTf/+/U1ISIiJjY01r7zyiunUqZN59NFHff0mJiaa8ePHm4EDBxqn0+k7d+nSpebGG280wcHBJiEhwYwYMcJkZGQYY4xZv369Acy+ffuKHOv+/ftNYGCgeeyxxwq9N3XqVAOY77//3hhjfGNYv379pV/UM87+nFm0aFGRbV566SVTq1atYvt5+eWXTe3atQvFGx8ff9GxAOaTTz4p8v0LjXf9+vUmPj7eHDlypFBfqampxuFwFDvOjz76yNhsNuN2u33H5s2bZywWi8nLyzPGlMw4zyrue7ak84PSrqSvx9In3jfjxo0zn/2pl5l8Vy8z5Z7fm3/c96F58U93m++WdTSLFtc2p06tLZFYROTKUr6kfOl8lC/9ojzmS5opVYr8+POPzA9cTJ5tN5gcANbGdSG21lTs9sp+jk5ErjRjDK5cd4l/eX/O/DYOh4O8vDwGDx7MDz/8wLx581i5ciXGGHr27InL5V3zZdiwYeTm5vLdd9+xadMmXnzxRcLCwqhevTr//e9/Adi+fTtHjhzhtddeA+Cxxx5j+fLlzJs3j4ULF7J06VLWrVtXKIbJkyfTokUL1q9fzzPPPMPu3bvp3r07d9xxBxs3buTDDz9k2bJlDB8+HIAqVapgtVqZM2cObrf7vOOaM2cOLpfrvHf4Hn74YcLCwpg9e/Zvvn7gvVs5ffp0IiIiaNGiRZHt0tLSiIoq/hGktm3bcuDAAT7//HOMMaSkpDBnzhx69ux5RWK9kKysLPr378+bb75JbGxsofcXLlyIx+Ph0KFDNGrUiISEBO666y4OHDjga9OyZUusViszZszA7XaTlpbG+++/zy233EJgYGCpGKf4n/F48Hg8HMsPZfvpPmeOWgnwuHDUPY4rLwUAmy3cf0GKyBXlr3zpSuRMypd+O+VL5T9f0u57pcjsr74n6tBBcgK8//gZSwAP9+tGbLwe2xMpj/LzPEx/dEmJf+4fXutEYFDAZZ1rjGHx4sV89dVX9OjRg7lz57J8+XLatWsHeJ9fr169OnPnzqVfv37s37+fO+64g2bNmgFQu3ZtX19nE4eYmBgiIyMBOH36NO+99x4ffPABXbp0AWDGjBlUq1atUCw333wzjz/+uO/1kCFDGDBgACNHjgSgXr16TJ06lU6dOjFt2jTi4+OZOnUqTz75JM8//zytWrWic+fODBgwwBfXjh07iIiIIC4urtDn2e12ateuzY4dOy7r2p01f/587rnnHrKysoiLi2PhwoVUrnz+Gw+7du3i9ddfZ/LkycX22b59e2bNmsXdd99NTk4O+fn59O7du8SmX//pT3+iXbt29O17/kel9uzZg8fj4S9/+QuvvfYaERERPP3003Tt2pWNGzdit9upVasWCxYs4K677uLhhx/G7XbTtm1bPv/881IzTvE/t9sNFgungQCPFQ8Q4HFTY/8CzG17MQasVjt2e4y/QxWRK8Rf+RJcfs6kfEn50vkoXzo/zZQqLVzZpKWFYHN7C1I2RweiYmsQEdXEz4GJiHgTg7CwMIKDg+nRowd33303gwcPxmazccMNN/jaRUdH06BBA7Zu9S4y/MgjjzBhwgTat2/PuHHj2LhxY7Gfs2fPHlwuF61bt/Ydi4iIoEGDBoXatmrVqsDrH3/8kZkzZxIWFub7SkpKwuPxsHfvXsB7JzI5OZlZs2bRtm1bPvroI5o0acLChQsv+lrY7fYLtpk1a1aBOJYuXep7r3PnzmzYsIEVK1bQvXt37rrrLo4ePVqoj0OHDtG9e3f69etXYA2Ac/sdOnQoAFu2bOHRRx/l2WefZe3atXz55Zfs27fP9/7SpUsLnDdr1qyLHu+FzJs3j6+//pq//e1vRbbxeDy4XC6mTp1KUlISbdq0Yfbs2ezcuZNvvvkGgOTkZB566CEGDRrEmjVrWLJkCXa7nTvvvNN3p9qf45TSYfraNzEWiD9+Aoz3Dr4z8whxKauxORw0ajiJltd9SGCgZkqJSMlTvvQL5UsFKV8qmmZKlRKfTXwdZ8YvCVSto6lk9vYQHJzgx6hE5Gqy2a384bVOfvncS9W5c2emTZuG3W6nWrVq2Gw25s2bd8HzhgwZQlJSEp999hkLFixg0qRJTJkyhREjRlxO6AWEhoYWeJ2RkcHDDz/MI488UqhtjRo1fL93Op307t2b3r17M2HCBJKSkpgwYQJdu3alXr16pKWlcfjw4UJ3G/Py8ti9e3eBxSaL0qdPnwLJZ3x8fIG469atS926dWnTpg316tXj3XffZezYsb42hw8fpnPnzrRr147p06cX6Pvc3VzCw70/NyZNmkT79u0ZNWoUAM2bNyc0NJQOHTowYcIEWrVqVeC8qlWv3Azcr7/+mt27d/vu3p51xx130KFDB7799lvfndTGjRv73q9SpQqVK1dm//79ALz55ptERETw0ksv+dr83//9H9WrV2fVqlW0adPGr+MU/3OdPs2pD77l57AuOHNyweotSuUGB7Gyb0MaRKRSrdpdfo5SRK40f+VLZz/7UihfUr5UFOVLRVNRqhQ4/dMO6mU2Z8sp744xVo+V+AMLqHrz8iJX5ReRss9isVz2Y3Ql7WxicK5GjRqRn5/PqlWrfNPRT5w4wfbt2wv8MK1evTpDhw5l6NChjB07lnfeeYcRI0b47qCdu15B7dq1CQwMZM2aNb7EKC0tjR07dtCxY8diY7zuuuvYsmVLoTiLY7FYaNiwIStWrADgzjvvZPTo0UyZMoUpU6YUaPvWW2+RlZXFfffdd8F+nU4nTqfzomLweDzk5ub6Xh86dIjOnTvTsmVLZsyYgdVaMCE+3/iysrKw2Qr+SA8I8P7dMsbgcDgu6bpcijFjxjBkyJACx5o1a8arr75K7969Ae80cvCuh5GQ4L3ZkpqayvHjx0lMTPSN4ddjPTsGj8fja+OvcYr/bfj4Y/KirmEPJwg2+GZKpVSL4VRSFE1sLv8GKCJXhfIl5UugfKk850sVoij15ptv8vLLL5OcnEyLFi14/fXXC0x19LfvF3+OxVad6NOZnARsHohq1oiESiH+Dk1EpEj16tWjb9++PPTQQ7z99ts4nU7GjBlDfHy871n5kSNH0qNHD+rXr8/Jkyf55ptvaNSoEQCJiYlYLBbmz59Pz549cTgcOJ1OBg0axKhRo4iKiiImJoZx48ZhtVovWKQfPXo0bdq0Yfjw4QwZMoTQ0FC2bNnCwoULeeONN9iwYQPjxo1j4MCBNG7cGLvdzpIlS/jnP//J6NGjAe8dwpdeeoknnniC4OBgBg4cSGBgIJ9++ilPPfUUEyZMoGnTpgU+d/v27YViadKkiW+xybMyMzOZOHEiffr0IS4ujuPHj/Pmm29y6NAh+vXrB3gTrJtuuonExEQmT57s2/oYOO+CmGf17t2bhx56iGnTppGUlMSRI0cYOXIkrVu3Pu/6EmdlZGSwa9cu3+u9e/eyYcMGoqKifEluamoq+/fv5/DhwwXGGxsbW+Dr12rUqEGtWrUA79bOffv25dFHH2X69OmEh4czduxYGjZsSOfOnQHo1asXr776KuPHj+fee+/l9OnTPPXUUyQmJnLttdde9XFK6c+X0s5sRR6W48Gam0y+JRUAd0AANtw4wxr5MToRkfNTvuSlfEn5UpEubkPAsuvf//63sdvt5p///KfZvHmzeeihh0xkZKRJSUm54LklscWxx+MxE8eNM6OeGm/eves5M/muXubl/r2N69ixq/aZIlLyytsWx2ed3eI4IiLCOBwOk5SUVGCL4+HDh5s6deqYoKAgU6VKFTNw4EBz/Phx3/vjx483sbGxxmKxFLvFcevWrc2YMWN85yUmJppXX321UDyrV682Xbt2NWFhYSY0NNQ0b97cTJw40RhjzLFjx8wjjzximjZtasLCwozT6TTNmjUzkydPLrCtrjHGzJ0713To0MGEhob6tmCePXt2gTbn26b57NeBAwcKxZadnW1uu+02U61aNWO3201cXJzp06ePWb16ta/NjBkziuzzQqZOnWoaN25sHA6HiYuLMwMGDDAHDx4s9pxvvvnmvJ919s+iuJjGjRtXZL+cZxvhtLQ088ADD5jIyEgTFRVlbrvtNrN///4CbWbPnm2uvfZaExoaaqpUqWL69Oljtm7dWiLj/LUrscVxWVLa8yVjjHlv3Gtm3Lhx5u8PP2Im39XL9/XEU8PNm7t+NB5P/lX9fBG5+pQvKV9SvlTx8iWLMVdgb/BS7IYbbuD666/njTfeALxT2qpXr86IESMYM2ZMseemp6cTERFBWlqa7znUK21P8kn+9dZr5Ka5qZVs47RnDVnhVp5558LPHotI2ZGTk8PevXupVasWwcHB/g6nTMnMzCQ+Pp4pU6bw4IMPlvjnp6am0qVLF8LDw/niiy8ICdEs1oqguO/ZksgPSlppz5fwuJn85HQywlKIPZRMZvpBrIH1sQVE8G2vePq0/x2D4s+/K5OIlB3Kly6f8iXxhyuRL5Xrx/fy8vJYu3ZtgcXQrFYrt9xyCytXrvRjZPCf6a9x5Ov1GPKJwFsXPG3SAPAEles6oYhIsdavX8+2bdto3bo1aWlpjB8/HqDI7XOvtqioKBYtWsSbb77JypUrfVsvi5QXl5ov5ebmFljXIz09/arG99o9gzEYbEAkkGVOe2MMrIHN5iA7yEGg1uAUkQpG+ZKUF+W6KHX8+HHcbneh1eSrVq3Ktm3bCrUvySTL48oj3xw/73v26lftY0VEyoTJkyezfft27HY7LVu2ZOnSpVSu7L9ZENHR0Tz77LN++3yRq+lS86VJkybx/PPPl1R45JtTQH6h41ZrFJaA/STbaxEffOGtx0VEyhvlS1IelOui1KUqySSrWdtOJK/bAlYrFovBYrFgdwRSrVU1etz9RInEICJSGl177bWsXbvW32GISBHGjh3LY4895nudnp5O9epX745aQHgl4OxMKIPVYiHAHkxApW0k3NqJNxu0o01EaHFdiIiUO8qXpLwo10WpypUrExAQQEpKSoHjKSkp5135viSTrCbXtabJu6VnRxsRERGpmC41XwoKCiIoKKikwmPkOzNK7LNERESkZFn9HcDVdHYa4+LFi33HPB4Pixcvpm3btoXaBwUFER4eXuBLREREpDy71HxJRERE5Eop1zOlAB577DEGDRpEq1ataN26NX/729/IzMzk/vvv93doIiIiIqWC8iURERHxh3JflLr77rs5duwYzz77LMnJyVxzzTV8+eWXhRbzFBEREamolC+JiIiIP5T7ohTA8OHDGT58uL/DEBERESm1lC+JiIhISSvXa0qJiIiIiIiIiEjppKKUiIiIiIiIiIiUOBWlRESkWIMHD8ZisWCxWLDb7dStW5fx48eTn5//m/r99ttvsVgsnDp16soEehH27t1L//79qVatGsHBwSQkJNC3b1+2bdtWoN38+fPp1KkTTqeTkJAQrr/+embOnFmgzb59+7BYLGzYsOGiP/+5556jYcOGhIaGUqlSJW655RZWrVpVoM8HH3yQWrVq4XA4qFOnDuPGjSMvL++Cfc+aNYsWLVoQEhJCXFwcDzzwACdOnCj2nO+++47evXtTrVo1LBYLc+fOveSYASZOnEi7du0ICQkhMjLyvJ+1f/9+evXqRUhICDExMYwaNarA36Fz/56d+9WkSRNfm0mTJnH99dfjdDqJiYnhd7/7Hdu3b7/gtbmY+ERERH4L5UvKl5QvXR4VpURE5IK6d+/OkSNH2LlzJ48//jjPPfccL7/8sr/D8rmYJMTlctG1a1fS0tL4+OOP2b59Ox9++CHNmjUrkOi9/vrr9O3bl/bt27Nq1So2btzIPffcw9ChQ3niiSd+U5z169fnjTfeYNOmTSxbtoyaNWvSrVs3jh07BsC2bdvweDy8/fbbbN68mVdffZW33nqLp556qth+ly9fzn333ceDDz7I5s2b+eijj1i9ejUPPfRQsedlZmbSokUL3nzzzcuOGbzXv1+/fvzxj388bx9ut5tevXqRl5fHihUreO+995g5cybPPvusr81rr73GkSNHfF8HDhwgKiqKfv36+dosWbKEYcOG8f3337Nw4UJcLhfdunUjMzOz2HFeKD4REZErQfmS8iXlS5fBSJHS0tIMYNLS0vwdioiUcdnZ2WbLli0mOzvb36FcskGDBpm+ffsWONa1a1fTpk0bk5qaagYOHGgiIyONw+Ew3bt3Nzt27PC127dvn7n11ltNZGSkCQkJMY0bNzafffaZ2bt3rwEKfA0aNMgYY0x6errp37+/CQkJMbGxseaVV14xnTp1Mo8++qiv38TERDN+/HgzcOBA43Q6fecuXbrU3HjjjSY4ONgkJCSYESNGmIyMDGOMMevXrzeA2bdvX5Fj3b9/vwkMDDSPPfZYofemTp1qAPP9998bY4xvDOvXr7/0i3rG2Z8zixYtKrLNSy+9ZGrVqlVsPy+//LKpXbt2oXjj4+MvOhbAfPLJJxdsV1zMM2bMMBEREYWOf/7558ZqtZrk5GTfsWnTppnw8HCTm5t73s/55JNPjMViKfbP6+jRowYwS5YsuWDcxcV3PsV9zyo/KEjXQ0SuFOVLypfOR/lS+c6XNFNKRMRPjDG4cnJK/MsY85tjdzgc5OXlMXjwYH744QfmzZvHypUrMcbQs2dPXC4XAMOGDSM3N5fvvvuOTZs28eKLLxIWFkb16tX573//C8D27ds5cuQIr732GgCPPfYYy5cvZ968eSxcuJClS5eybt26QjFMnjyZFi1asH79ep555hl2795N9+7dueOOO9i4cSMffvghy5Yt8+0mVqVKFaxWK3PmzMHtdp93XHPmzMHlcp33Dt/DDz9MWFgYs2fP/s3XD7x3o6ZPn05ERAQtWrQosl1aWhpRUVHF9tW2bVsOHDjA559/jjGGlJQU5syZQ8+ePa9IrJca86+tXLmSZs2aUbVqVd+xpKQk0tPT2bx583nPeffdd7nllltITEwsst+0tDSAC14fEREpu/yVL12JnEn50m+nfKn850s2fwcgIlJR5efmMnXQnSX+uY+8N4fA4ODLOtcYw+LFi/nqq6/o0aMHc+fOZfny5bRr1w7wPqdfvXp15s6dS79+/di/fz933HEHzZo1A6B27dq+vs7+YIyJifE9t3769Gnee+89PvjgA7p06QLAjBkzqFatWqFYbr75Zh5//HHf6yFDhjBgwABGjhwJQL169Zg6dSqdOnVi2rRpxMfHM3XqVJ588kmef/55WrVqRefOnRkwYIAvrh07dhAREUFcXFyhz7Pb7dSuXZsdO3Zc1rU7a/78+dxzzz1kZWURFxfHwoULqVy58nnb7tq1i9dff53JkycX22f79u2ZNWsWd999Nzk5OeTn59O7d+9ip5lfrZjPJzk5uUCCBfheJycnF2p/+PBhvvjiCz744IMi+/R4PIwcOZL27dvTtGnTi45FRETKFn/lS3D5OZPyJeVLypcunmZKiYjIBc2fP5+wsDCCg4Pp0aMHd999N4MHD8Zms3HDDTf42kVHR9OgQQO2bt0KwCOPPMKECRNo374948aNY+PGjcV+zp49e3C5XLRu3dp3LCIiggYNGhRq26pVqwKvf/zxR2bOnElYWJjvKykpCY/Hw969ewHvncjk5GRmzZpF27Zt+eijj2jSpAkLFy686Gtht9sv2GbWrFkF4li6dKnvvc6dO7NhwwZWrFhB9+7dueuuuzh69GihPg4dOkT37t3p169fgbUOzu136NChAGzZsoVHH32UZ599lrVr1/Lll1+yb98+3/tLly4tcN6sWbMueryXEvOV8t577xEZGcnvfve7ItsMGzaMn376iX//+9++Y0OHDi0wThERkZKkfOkXypeUL10szZQSEfETW1AQj7w3xy+fe6k6d+7MtGnTsNvtVKtWDZvNxrx58y543pAhQ0hKSuKzzz5jwYIFTJo0iSlTpjBixIjLCb2A0NDQAq8zMjJ4+OGHeeSRRwq1rVGjhu/3TqeT3r1707t3byZMmEBSUhITJkyga9eu1KtXj7S0NA4fPlzobmNeXh67d+8mKSnpgrH16dOnQPIZHx9fIO66detSt25d2rRpQ7169Xj33XcZO3asr83hw4fp3Lkz7dq1Y/r06QX6Pnf3mvDwcMC7y0r79u0ZNWoUAM2bNyc0NJQOHTowYcIEWrVqVeC8X9+Fu5CLibk4sbGxrF69usCxlJQU33vnMsbwz3/+k4EDBxaZ0A4fPpz58+fz3XffkZCQ4Ds+fvz437y4qoiIlC7+ypfOfvalUL6kfEn50qVTUUpExE8sFstlP0ZX0s7+kD1Xo0aNyM/PZ9WqVb7p6CdOnGD79u00btzY16569eoMHTqUoUOHMnbsWN555x1GjBjh+wF67noFtWvXJjAwkDVr1vgSo7S0NHbs2EHHjh2LjfG6665jy5YtheIsjsVioWHDhqxYsQKAO++8k9GjRzNlyhSmTJlSoO1bb71FVlYW99133wX7dTqdOJ3Oi4rB4/GQm5vre33o0CE6d+5My5YtmTFjBlZrwUnN5xtfVlYWNlvBH+kBAQGAN2lxOByXdF0uNeYLadu2LRMnTuTo0aPExMQAsHDhQsLDwwv8XQHvjjG7du3iwQcfLNSPMYYRI0bwySef8O2331KrVq0C78fExPj6FxGR8kH5kvIlUL5UnvMlFaVEROSy1KtXj759+/LQQw/x9ttv43Q6GTNmDPHx8fTt2xeAkSNH0qNHD+rXr8/Jkyf55ptvaNSoEQCJiYlYLBbmz59Pz549cTgcOJ1OBg0axKhRo4iKiiImJoZx48ZhtVqxWCzFxjN69GjatGnD8OHDGTJkCKGhoWzZsoWFCxfyxhtvsGHDBsaNG8fAgQNp3LgxdrudJUuW8M9//pPRo0cD3juEL730Ek888QTBwcEMHDiQwMBAPv30U5566ikmTJhQ6Hn87du3F4qlSZMmBAYGFjiWmZnJxIkT6dOnD3FxcRw/fpw333yTQ4cO+bbxPXToEDfddBOJiYlMnjy5wDbCv75Ddq7evXvz0EMPMW3aNJKSkjhy5AgjR46kdevW511f4qyMjAx27drle7137142bNhAVFQUNWrUuKiYAfbv309qair79+/H7Xb77jLWrVuXsLAwunXrRuPGjRk4cCAvvfQSycnJPP300wwbNoygX92Ffvfdd7nhhhvOu+7BsGHD+OCDD/j0009xOp2+9RUiIiJwOBxFjvNC8YmIiFwtype8lC8pXyrSRe3zV0Fpi2MRuVLK2xbHZ53d4jgiIsI4HA6TlJRUYIvj4cOHmzp16pigoCBTpUoVM3DgQHP8+HHf++PHjzexsbHGYrEUu8Vx69atzZgxY3znJSYmmldffbVQPKtXrzZdu3Y1YWFhJjQ01DRv3txMnDjRGGPMsWPHzCOPPGKaNm1qwsLCjNPpNM2aNTOTJ082bre7QD9z5841HTp0MKGhob4tmGfPnl2gzfm2aT77deDAgUKxZWdnm9tuu81Uq1bN2O12ExcXZ/r06WNWr17tazNjxowi+7yQqVOnmsaNGxuHw2Hi4uLMgAEDzMGDB4s955tvvjnvZ539s7iYmI3x/h05Xz/ffPONr82+fftMjx49jMPhMJUrVzaPP/64cblcBfo5deqUcTgcZvr06eeNt6hrM2PGjGLHeTHx/dqV2OK4otD1EJErRfmS8iXlSxUvX7KcCVrOIz09nYiICNLS0nzPoYqIXI6cnBz27t1LrVq1CC4jU9BLi8zMTOLj45kyZcp5pyhfbampqXTp0oXw8HC++OILQkJCSjwGKXnFfc8qPyhI10NErhTlS5dP+ZL4w5XIl7T7noiIlCrr169n9uzZ7N69m3Xr1jFgwAAA3xT3khYVFcWiRYvo0qULK1eu9EsMIiIiIudSviTlhdaUEhGRUmfy5Mls374du91Oy5YtWbp0KZUrV/ZbPNHR0Tz77LN++3wRERGRX1O+JOWBilIiIlKqXHvttaxdu9bfYYiIiIiUWsqXpLzQ43siIiIiIiIiIlLiVJQSEREREREREZESp6KUiEgJ0oanImWDvldFRPxH/waLlA1X4ntVRSkRkRIQGBgIQFZWlp8jEZGLcfZ79ez3roiIXH3Kl0TKliuRL2mhcxGREhAQEEBkZCRHjx4FICQkBIvF4ueoROTXjDFkZWVx9OhRIiMjCQgI8HdIIiIVhvIlkbLhSuZLKkqJiJSQ2NhYAF+iJSKlV2RkpO97VkRESo7yJZGy40rkSypKiYiUEIvFQlxcHDExMbhcLn+HIyJFCAwM1AwpERE/Ub4kUjZcqXxJRSkRkRIWEBCg//CKiIiIFEP5kkjFoIXORURERERERESkxKkoJSIiIiIiIiIiJU5FKRERERERERERKXFaU6oYxhgA0tPT/RyJiIiIlBZn84KzeUJFp3xJREREfu1i8yUVpYpx+vRpAKpXr+7nSERERKS0OX36NBEREf4Ow++UL4mIiEhRLpQvWYxu8xXJ4/Fw+PBhnE4nFovlivefnp5O9erVOXDgAOHh4Ve8/9KioowTKs5YK8o4oeKMVeMsfyrKWP0xTmMMp0+fplq1alitWglB+dKVUVHGCRVnrBVlnFBxxqpxlj8VZaylOV/STKliWK1WEhISrvrnhIeHl+tvgLMqyjih4oy1oowTKs5YNc7yp6KMtaTHqRlSv1C+dGVVlHFCxRlrRRknVJyxapzlT0UZa2nMl3R7T0RERERERERESpyKUiIiIiIiIiIiUuJUlPKjoKAgxo0bR1BQkL9Duaoqyjih4oy1oowTKs5YNc7yp6KMtaKMsyKrKH/GFWWcUHHGWlHGCRVnrBpn+VNRxlqax6mFzkVEREREREREpMRpppSIiIiIiIiIiJQ4FaVERERERERERKTEqSglIiIiIiIiIiIlTkUpEREREREREREpcSpKiYiIiIiIiIhIiVNRSkRERERERERESpyKUiIiIiIiIiIiUuJUlBIRERERERERkRKnopSIiIiIiIiIiJQ4FaVERERERERERKTEqSglIiIiIiIiIiIlTkUpEREREREREREpcSpKiYiIiIiIiIhIiVNRSkRKrX379mGxWJg5c6a/Qyl1Zs6cicVi4YcffvB3KCIiIlKGXW6+lZKSwp133kl0dDQWi4W//e1vVyU+fzibZ+3bt8/foYiUeypKiUiRVqxYwXPPPcepU6cu6/y///3v5aKg9FuvQ2l2+PBhnnvuOTZs2ODvUERERCqksppv/elPf+Krr75i7NixvP/++3Tv3r3EYxCRsk9FKREp0ooVK3j++efLXJJ0pf3W61CaHT58mOeff15FKRERET8pq/nW119/Td++fXniiSf4/e9/T8OGDUs8BhEp+1SUEhEpQ3JycvB4PP4OQ0RERCq4o0ePEhkZWSKfpfxHpPxSUUpEzuu5555j1KhRANSqVQuLxeJ7tj4/P58XXniBOnXqEBQURM2aNXnqqafIzc31nV+zZk02b97MkiVLfOfedNNNAKSmpvLEE0/QrFkzwsLCCA8Pp0ePHvz444+/Oe5vv/0Wi8XCf/7zHyZOnEhCQgLBwcF06dKFXbt2FWq/atUqunfvTkREBCEhIXTq1Inly5df1HW4/fbbue666wr017t3bywWC/PmzSvwGRaLhS+++MJ3bM+ePfTr14+oqChCQkJo06YNn3322XnH8u9//5unn36a+Ph4QkJCSE9PP+/YT548SevWrUlISGD79u0Xda2uv/56AO6//37f2GbOnMnWrVtxOBzcd999Bc5ZtmwZAQEBjB49+oL9i4iISPHKYr51dr0lYwxvvvmm73MBXC4Xzz//PPXq1SM4OJjo6GhuvPFGFi5ceNH9Xyj/uVDuBvDzzz/z//7f/6NBgwY4HA6io6Pp16/fedeI2rx5MzfffDMOh4OEhAQmTJigAphICbL5OwARKZ1uv/12duzYwezZs3n11VepXLkyAFWqVGHIkCG899573HnnnTz++OOsWrWKSZMmsXXrVj755BMA/va3vzFixAjCwsL485//DEDVqlUBb0Fm7ty59OvXj1q1apGSksLbb79Np06d2LJlC9WqVfvN8f/1r3/FarXyxBNPkJaWxksvvcSAAQNYtWqVr83XX39Njx49aNmyJePGjcNqtTJjxgxuvvlmli5dSuvWrYu9Dh06dODTTz8lPT2d8PBwjDEsX74cq9XK0qVL6dOnDwBLly7FarXSvn17wLswaLt27cjKyuKRRx4hOjqa9957jz59+jBnzhxuu+22AmN54YUXsNvtPPHEE+Tm5mK32wuN9/jx43Tt2pXU1FSWLFlCnTp1LniNGjVqxPjx43n22Wf5wx/+QIcOHQBo164dtWvX5oUXXmDUqFHceeed9OnTh8zMTAYPHkzDhg0ZP3785f3BiIiIiE9ZzLc6duzI+++/z8CBA+natWuBG1jPPfcckyZNYsiQIbRu3Zr09HR++OEH1q1bR9euXS/pc86X/1xM7gawZs0aVqxYwT333ENCQgL79u1j2rRp3HTTTWzZsoWQkBAAkpOT6dy5M/n5+YwZM4bQ0FCmT5+Ow+G4rGsjIpfBiIgU4eWXXzaA2bt3r+/Yhg0bDGCGDBlSoO0TTzxhAPP111/7jjVp0sR06tSpUL85OTnG7XYXOLZ3714TFBRkxo8fX+AYYGbMmHHRMX/zzTcGMI0aNTK5ubm+46+99poBzKZNm4wxxng8HlOvXj2TlJRkPB6Pr11WVpapVauW6dq1a7HXwRhj1qxZYwDz+eefG2OM2bhxowFMv379zA033OBr16dPH3Pttdf6Xo8cOdIAZunSpb5jp0+fNrVq1TI1a9b0XZuzY6ldu7bJysoq8NkzZswwgFmzZo05cuSIadKkialdu7bZt2/fRV+rc8dwvmvsdrvNjTfeaKpWrWqOHz9uhg0bZmw2m1mzZs0lfYaIiIgUrSzmW8YYA5hhw4YVONaiRQvTq1evS+rn14rKfy4ld/t13mSMMStXrjSA+de//uU7djYnW7Vqle/Y0aNHTURExHlzPxG58vT4nohcks8//xyAxx57rMDxxx9/HKDQI2jnExQUhNXq/efH7XZz4sQJwsLCaNCgAevWrbsicd5///0FZhSdnQW0Z88eADZs2MDOnTvp378/J06c4Pjx4xw/fpzMzEy6dOnCd999d8Gp29deey1hYWF89913gHdGVEJCAvfddx/r1q0jKysLYwzLli3zfT54r2Hr1q258cYbfcfCwsL4wx/+wL59+9iyZUuBzxk0aFCRd+wOHjxIp06dcLlcfPfddyQmJl7CVSqe1Wpl5syZZGRk0KNHD/7+978zduxYWrVqdcU+Q0RERAorK/nWr0VGRrJ582Z27tz5m/v6df5zKbnbuee5XC5OnDhB3bp1iYyMLDD2zz//nDZt2vhmWIF3ltqAAQN+c/wicnH0+J6IXJKff/4Zq9VK3bp1CxyPjY0lMjKSn3/++YJ9eDweXnvtNf7+97+zd+9e3G63773o6OgrEmeNGjUKvK5UqRLgXXcJ8CVLgwYNKrKPtLQ033nnExAQQNu2bVm6dCngLUp16NCBG2+8Ebfbzffff0/VqlVJTU0tUJT6+eefueGGGwr116hRI9/7TZs29R2vVatWkTEMHDgQm83G1q1biY2NLbLd5apTp45vvYumTZvyzDPPXPHPEBERkYLKSr71a+PHj6dv377Ur1+fpk2b0r17dwYOHEjz5s0vua9f5z+XkrtlZ2czadIkZsyYwaFDhzDGFGhzVlE5WYMGDS45XhG5PCpKichlObug5eX4y1/+wjPPPMMDDzzACy+8QFRUFFarlZEjR16xhSUDAgLOe/xsUnL2c15++WWuueaa87YNCwu74OfceOONTJw4kZycHJYuXcqf//xnIiMjadq0KUuXLvWt63BuUepSFbeuwe23386//vUvXnvtNSZNmnTZn1GcBQsWAHD48GFOnDhxVYpfIiIiUlhpz7d+rWPHjuzevZtPP/2UBQsW8I9//INXX32Vt956iyFDhlxSX7/Ofy4ldxsxYgQzZsxg5MiRtG3bloiICCwWC/fcc48WMRcpZVSUEpEinS8RSkxMxOPxsHPnTt/MHvAu3n3q1KkCj48VlUjNmTOHzp078+677xY4furUKd8Cn1fb2YXAw8PDueWWW4ptW1xC2KFDB/Ly8pg9ezaHDh3yFZ86duzoK0rVr1/fV5wC7zU83+5427Zt871/sUaMGEHdunV59tlniYiIYMyYMRd9Llw42X3rrbdYuHAhEydOZNKkSTz88MN8+umnl/QZIiIiUrTylm9FRUVx//33c//995ORkUHHjh157rnnLrko9WuXkrvNmTOHQYMGMWXKFN+xnJwcTp06VaBdYmLieR81vJhdjEXkytCaUiJSpNDQUIACP8B79uwJeHd7Odcrr7wCQK9evQqc/+sf/uCdxXTuNGqAjz76iEOHDl2BqC9Oy5YtqVOnDpMnTyYjI6PQ+8eOHfP9/nzX4awbbriBwMBAXnzxRaKiomjSpAngLVZ9//33LFmypNAsqZ49e7J69WpWrlzpO5aZmcn06dOpWbMmjRs3vqSxPPPMMzzxxBOMHTuWadOmXdK5xY1t7969jBo1ijvuuIOnnnqKyZMnM2/ePP71r39d0meIiIhI0cpTvnXixIkCr8PCwqhbty65ubm/ue9Lyd3ON/bXX3+9wCOM4L3O33//PatXry7Qz6xZs35zvCJycTRTSkSK1LJlSwD+/Oc/c8899xAYGEjv3r0ZNGgQ06dP59SpU3Tq1InVq1fz3nvv8bvf/Y7OnTsXOH/atGlMmDCBunXrEhMTw80338ytt97K+PHjuf/++2nXrh2bNm1i1qxZ1K5du8TGZrVa+cc//kGPHj1o0qQJ999/P/Hx8Rw6dIhvvvmG8PBw/ve//xV7HUJDQwkJCaFly5Z8//339O7d23e3smPHjmRmZpKZmVmoKDVmzBhmz55Njx49eOSRR4iKiuK9995j7969/Pe///UtSnopXn75ZdLS0hg2bBhOp5Pf//73F3VenTp1iIyM5K233sLpdBIaGsoNN9xAzZo1eeCBB3A4HL5C18MPP8x///tfHn30UW655ZbL3kpaREREflGe8q3GjRtz00030bJlS6Kiovjhhx+YM2cOw4cP/819X0ruduutt/L+++8TERFB48aNWblyJYsWLSq0ltaTTz7J+++/T/fu3Xn00UcJDQ1l+vTpJCYmsnHjxt8cs4hcBH9u/Scipd8LL7xg4uPjjdVq9W2N63K5zPPPP29q1aplAgMDTfXq1c3YsWNNTk5OgXOTk5NNr169jNPpNIBvu+KcnBzz+OOPm7i4OONwOEz79u3NypUrTadOnQpsaXw5WxSf3Ub4o48+KnC8qL7Wr19vbr/9dhMdHW2CgoJMYmKiueuuu8zixYsveB3OGjVqlAHMiy++WOCcunXrGsDs3r27UJy7d+82d955p4mMjDTBwcGmdevWZv78+Rc1FmOMmTFjhgHMmjVrfMfcbre59957jc1mM3Pnzi32Op3r008/NY0bNzY2m813jV577TUDmP/+978F2u7fv9+Eh4ebnj17XnT/IiIiUryylm8ZYwxghg0bVuDYhAkTTOvWrU1kZKRxOBymYcOGZuLEiSYvL++i+y0u/zHm4nK3kydPmvvvv99UrlzZhIWFmaSkJLNt2zaTmJhoBg0aVKC/jRs3mk6dOpng4GATHx9vXnjhBfPuu+8WyvdE5OqwGPOreY0iIiIiIiIiIiJXmdaUEhERERERERGREqc1pUSkTMjLyyM1NbXYNhEREYW2D66odL1ERETkUl3N/EG5iYicj4pSIlImrFixosCinuczY8YMBg8eXDIBlXK6XiIiInKprmb+oNxERM5Ha0qJSJlw8uRJ1q5dW2ybJk2aEBcXV0IRlW66XiIiInKprmb+oNxERM5HRSkRERERERERESlxWuhcRERERERERERKnNaUKobH4+Hw4cM4nU4sFou/wxEREZFSwBjD6dOnqVatGlar7u8pXxIREZFfu9h8SUWpYhw+fJjq1av7OwwREREphQ4cOEBCQoK/w/A75UsiIiJSlAvlSypKFcPpdALeixgeHu7naERERKQ0SE9Pp3r16r48oaJTviQiIiK/drH5kopSxTg7BT08PFxJloiIiBSgR9W8lC+JiIhIUS6UL2khBBERERERERERKXEqSomIiIiIiIiISIlTUUpEREREREREREqcilIiIiIiIiIiIlLiVJQSEREREREREZESp6KUiIiIiIiIiIiUOBWlRERERERERESkxKkoJSIiIiIiIiIiJU5FKRERERERERERKXEqSomIiIiIiIiISIlTUUpEREREREREREqcilIiIiIiIiIiIlLiVJQSEREREREREZESp6KUiIiIiIiIiIiUOBWlRERERERERESkxKkoJSIiIiIiIiIiJU5FKRERERERERERKXEqSomIiIhUEH/961+xWCyMHDnSdywnJ4dhw4YRHR1NWFgYd9xxBykpKf4LUkRERCoMFaVEREREKoA1a9bw9ttv07x58wLH//SnP/G///2Pjz76iCVLlnD48GFuv/12P0UpIiIiFYmKUiIiIiLlXEZGBgMGDOCdd96hUqVKvuNpaWm8++67vPLKK9x88820bNmSGTNmsGLFCr7//ns/RiwiIiIVgYpSIiIiIuXcsGHD6NWrF7fcckuB42vXrsXlchU43rBhQ2rUqMHKlSvP21dubi7p6ekFvkREREQuh83fAYiIiIjI1fPvf/+bdevWsWbNmkLvJScnY7fbiYyMLHC8atWqJCcnn7e/SZMm8fzzz1+NUEVERKSC0UwpERERkXLqwIEDPProo8yaNYvg4OAr0ufYsWNJS0vzfR04cOCK9CsiIiIVj4pSIiIiIuXU2rVrOXr0KNdddx02mw2bzcaSJUuYOnUqNpuNqlWrkpeXx6lTpwqcl5KSQmxs7Hn7DAoKIjw8vMCXiIiIyOXQ43siIiIi5VSXLl3YtGlTgWP3338/DRs2ZPTo0VSvXp3AwEAWL17MHXfcAcD27dvZv38/bdu29UfIIiIiUoGoKCUiIiJSTjmdTpo2bVrgWGhoKNHR0b7jDz74II899hhRUVGEh4czYsQI2rZtS5s2bfwRsoiIiFQgKkqJiIiIVGCvvvoqVquVO+64g9zcXJKSkvj73//u77BERESkArAYY4y/gyit0tPTiYiIIC0tTesliIiICKD84Nd0PUREROTXLjY/0ELnIiIiIiIiIiJS4vT4nohIOXfuhNhfz421Wi0lHI2IiIiUd8YYuJLP41jAYlHOIlIeqSglInIJjDFkLluOO/UEJz/8D+70NMh34/ZYSInvw65gB184Xey3BZIZspMq2Se5c+NPBLnzicjJo/LpLLKD7GTZ7Zx2OPAQQK7dTl6AFSxWDBaweCexGqwYy5Wa0Hr1EjljtRTIOy2A9Vdxh1frz73Pdick3H7V4pCr79jpXI6dzsXjPo3xZHH2fxwJlYJx2G3nFEDP/2vR71Ps++bs60LvU+z7Dkd1bDbnxQ9QREQuW+7P6aR+sA1Pbj6uHDdXapWYHA9Y7qhHwzZxV6Q/ESldVJQSEbkEGd9+y+bRY0gPDyclNpaMmq04EhnNXOdB8kMXYwvbii0fqqXC1Nmh2IyN02EJHIiuzOlgw8+VD4LFU0Tv5sxXUe+XUp7CJa9fjyArLQfj0RKGZdmuoxkk/e07aofv4olWb2Czun3vHfVjXMVp3nw6VSp38XcYIiIVQs62VNxpucCZ/2ReoZlNbosh/4r0JCKlkYpSIiIX4eu/T2PLtq1kOBzk9OwBwM7gY/xYdR4WqwuMwZkLz82IJs/ZgWNRTVh1nYv83B/w5B8C8/OverRgsUYRYG8AliAstnAsgRYsAXlgdWMJzMYaYMUalIvF5sKCwWDx5XeWX7op8PtffQSWAg1+aWSxeL+sViuWQvPrLVgsZ45ZLN4zLBBjtxXsKsAG4dXA6cQSHMiZlgQFBBHliCoQU0RMNYLDAi90maUU23w4DbfHUL/SPmxWNx5jwWMCALAFWLGe/YtC4V9/eeTi179yzvsXey4XeP/McSxYLZqZJyJSUozLe0vK0jCKhatTCImw0+uPzX97xxYLwbGhv70fESmVVJQSESlGamoqB/fsZVnyETxR3kLLxuBUdlZeB4Fp3v/+GsOoTxsT7qrP7oYdyc9ZhTtnFuQW7q9qtbpEJdajYee7qFQ1hMAgG2GVgkp0TCKXwhjDrqMZbDmSDkCTOO+jmTWq30eD+s/6MzQRESlFTL63KGWCA8j0gD3IRmgN7cgpIsVTUUpEpAhut5vpU6eSA2C1YvNYuCm/GV9UmQWBaTTeB5231sSRVZX0uHs4fvrfmFNTC/XT4Xe9iayWSK02NxEYFFzSwxD5Td78ZheTF+zAHpBLDedRIoO8D+sF2vQfDRER+cXZopTnzIxVq00bvYvIhakoJSJShOzsbG9BCoj2hPFJ1eX8L3AJWYEnAbhtbTeOVWlOlnUZ5tQbcM6KB2GOAH4/6VUclatjDdRja1J2bT6cDhieazuZqiEpvuNaQFxERAo4O1PqzNPUASpKichFUFFKROQ8jDEc/3oPAIEmgABbOMfCdgFw18prqH7qWtIiw8nPWY1xH/GdFxJuqPv/nqBLsxux2lSMkrIvPceF3eryFaSC7FUJtFeicuWb/RyZiIiUJr6ZUmeKUrZAFaVE5MJUlBIR+ZXc3FwWfPoFRzbthwAIIpDDARkAmOwYYlz9OGVfjTv3a985bWP2UzXCEHTHBBKu7eyv0EWumJ0pp1m9L5WfT2QREph95qiV9u2Xn7O4uIiIVHSu49m4jmSSf9K7mObZzXYDbPpZISIXpqKUiMivbPnxR9Zu2QABsN9qWOfcicWWyu0bHyc8qzIumwNP9mEAAq2GmKB0/tnuAd6551H9Z13KjYHvriYlPYs2cT+QUMX7991mC9ffcRER8fHkuTn6+npMrtt3bPP3yYAe3xORi6OilIjIOdyZLo4v2QJAZY+TJc4duKNWk3CyAVUyqpOX8R9y8w/52t+TuJ7KwVksi39W/1mXciMv30Nyeg5NorczpNn/+Y7b7dF+jEpERPzFGEPGyVyMx5BxMof8PA8p+9JxHcuiRq4bA5zI95DrgSM53gJVlRpae1BELkxFKRGRc6Qu3k/OKSsEQrTHCeRz886BxJ+sASYDc05BKiIwmzHXjGJgs9a81rid/4IWucLSc1wARDu8i/oHBcURFdWe2Kp9/BmWiIj4ycJ3N7Pzh6OFjkcGWKjhtJHjMSzP8Baj6lwXQ7vb6+CM1o7DInJhKkqJiJyRnZ3Npt3bOGpNw2Ms7M3NpFJWFPWOtcSTfwC3+2cAgk0+d0VsxJHg5umqUxhZoz4BmiUl5UBuvptJn29j9zHvGmoRQXkAREZeT+NGL/ozNBER8YP8Uzl4svI5ve0k1QItBAVYqBRoJdgegNMY7MaAgcCIILreWR9bYAA1mkRhswf4O3QRKSNUlBIROeOLTz9lY9o2CICvTAwnY7fRIs+Kx7UHV+anvnbhwTlUic/kp9D6AIQEaM0EKR+W7TzOzBX7qB2xl9vqbqZF1X2Ady0pERGpWHJ2nOT4P38C4AYbYDvnv45uT4G2EU2iqdQ6tgSjE5HyQkUpERHg+Df7ObI5GQIgyhPG6eiVBEVuoMmaThjPmUeYXPlEkkOr6gc5Yq/MwGaTAHBYVZSS8uFEhndm1LBr/o/IoGO+40H2yv4KSURErjL36Tw8uW48mS48mS7wGHKPZ5O9LRWAfGPIN5AfYCWqVjhWhw17tTCsoTbs1cOxhtoIiAjy8yhEpKxSUUpEBMhachBj8a6F0NJVB2NbidVjJTY9jByLd4vjuMwMutXYwT03TmFtRDPfuQ7NlJIyzhjDwZPZ7DmeCRicdm8htlrcXdiDYoiPH+DfAEVE5LxcKZlkbTgGHuM7lpfrJvVwJp5zjp1ly3Jhy87HYgzWXDfWwk0K2Z5naD26FeHRDgIClfOIyJWlopSICIDLgyvAW5Rac/xrmoQ0pMO6XuRwAI9rHwBV66QTEpPHlrB6AETaAmhfKYxKNq2bIGXbW0v28OKX2wBDaGAWAZZ8AOrVewqbTbsniYiUVqfm7yF356lCx0MvsR+XMRgD2QY8Z2ZG5RhwAaHXxVAp9lJ7FBG5OCpKiUiFl3oilZ9NCrkWF6tc1TkY0YjeJ0+Sn/kZmFxfu9CazdljPGQHBFM50MZPNzb1Y9QiV86GAycBw5PX/50GlbYDYLEEEBAQ5t/ARESkWCbHe0MtuFEUtmgHAD//dJyTyVmERgThcAYWOscVFEBekA3sVoIqhxAQHEBoZe8sqKoRduzBNgICrYTqkTwRKQEqSolIhZa1K5W3P5hGrt2F21jY6o4FG1RLOUHumYJUjePpVK2eRuOWndiyYScAQVbttiflR3p2Pnary1eQAoiO7oxFu0qKiJQJodfH4mgcDcCao9ns2JdB+1vjaXpLDT9HJiJSPBWlRKRCO/z+RnItLgDCPKE4Et/CGpiKNbm/t4GBzpV3EZ2YicVuI9dqByBIi5tLObD7WAZr953kwMksQgKzzxy10qnjBgICQvwam4iIXNj5loQyF7FOlIhIaaGilIhUWMbtIT/XBcFgNXA6cyvB9p/p+GNlcnNWAGCzGCo3NxDfAY5uIc/inQavmVJSHvR/53tS0nNoWnkrzasdBMBmC8dm09ohIiIiInL1qSglIhWWcXnIP7PjnvHkk2xO0PTn2tRIycdDGgDh9gCIuwb2LQUgJ6otAHYVpaSMy3G5SUnPpVHUDv503Vu+43Z7JT9GJSIil+TstKjzpCV6BFtEygI9fyIiFZZxecjHjTFwzB3CSbuT63/uCIAloCqBYbdxc81AOLkPAxysdiMHEzoAEKzH96SMS8/xPrYaE3IcALu9MtHRnalTZ5Q/wxIRERGRCkQzpUSkQsrJyWHRggUcsu3lqAnjC08jWmUdwVg8AITm5lHv2HIS2hk4nsNLNR/g1cRBvvM1U0rKqhyXmxfmb2Hv8UwAohzeBf2jozrSuPHL/gxNREQul2ZFiUgZpaKUiFQ47rRc1n+ylB/2rYMAOO2OJiovlYZpKbjzTwOQGLmNmxrvwBrZD5Jz2eBsCECw1UJIgJXfxegRJymblu48zqxV+4kPO8ykG98hKtj7qKotMMLPkYmIyBWhlc5FpAxRUUpEKpyM749weudxCIRoTxgpuLne9V8q5eZjyAIgMsqBtWlvaDsMfvrYt8D53xrW4HdVVZCSsutUVh4AXWrtIibkhO94RPg1fopIRERERCoqFaVEpMLJz8jDjfcxPZOTya6ozTQ5mQ6EYLU3xGaN5bqeFuj8OLhdYNzkWb1FKT22J2Xd6Zx8AGKd3l/jYm+nTp0nCAqq6s+wRETkCvHNk1LKIiJlgIpSIlLhZJzIwXOmKJWed4zY1AyqH/NmbgGBdXFYY7CHpXob5+cA+GZKBWrNBimj1v58kgWbk1m3/yTBATmEBXofVQ0OTlBBSkSkrNKTeiJSxqkoJSIVjsn3+GZKWTxuevyYxdHIqrjJBEsgAeSB3QlfjIaf/gvgmykVpF33pIwaNedH9hzL5Pa68xjaZZHvuM3m9GNUIiJyxZ0pVOk+moiUBfrflYhUOMblwW3xcNITzOnTeRyJDPMWpACLJYgqwT9DaGX44Z+QeQyAvMAwQI/vSdmVkuad9dcxcZfvmM3mJLJSa3+FJCIiV4rSExEpozRTSkQqFOPxkJlyCLfVwzeuunR1e/+DbrGGYwsM5a5rl1D5mmuhZkdwexeEZvBn5B6OhNx8FaWkTMrNd5OZ5wYgOsRFXi5cd92/iYy4DoslwM/RiYiIiEhFpaKUiFQoe//9b3bmnSTVkU+2qUIALgBsITcTGXqcqu0T4Zp7weWdVZIR4OD7oLpkuL0zpvT4npQ1f/jXDyzYkkJ08AniwlJw558CwB4YrYKUiEg5ce4tM6OVzkWkDFFRSkTKpbzDGaTN34Mn1w0eAwaMMXxy6mdOh+UC0Hv/UmpkpJEbGATYCLDmQaDD24Hb22ZYw6f5aluyr99gzZSSMsTl9rBgSwrBATmMbzeJYFsebu+EKQIDw/0bnIiI/HZGK52LSNmmopSIlEtZa1PI3ZNW6HhGkPeRvKr5lUjauJ0NiXEAWCwBRFlyzilKeWdQ7Q/2vl8vJIg2kWHUdgSVQPQiV8bpnHwAKgWfItiWh8ViIyysIZGR12O3V/ZzdCIicnV4C1Va6FxEygIVpUSkXPLkeKeDBF9ThaCmlbFYwOV2Yz5eDEDOgS0E5bvx+DK2AEIsrl+KUvnemVJ5VjsALzeoTpvIsBIdg8jlMsawdOdxth5JByA6xFuMDQ6qRuvrP/VnaCIicjWoAiUiZZSKUiJSLqUdTicQWLlkJXu+OAKAsRio6X2aL9kTQIAJwh0Q6D3BEkAAeRAc4X3tPluU8r5vV7InZcgPP5/kvn+uJjggm161vqNBtPd7wBbo9HNkIiJyRenpPREp41SUEpFyxbg8uJIzyU4+RiBh5OVtIz9nMwAeawCWnIYsddUhI7omDZrVx+X5DsgDbNhqXQ+xzb0d5XtnlrjOFKUCtZaUlCE/n8gC4Jaa67mtzme+43Z7jL9CEhGRkqJClYiUISpKiUi5cnzGT+TuSSOUENx4CHBGUCk8gZOHD2L1uAnbu5lb8RapTp5zXpXqEdS7PQmyT8IHd8PJfQDkWVSUkrLndI53TbRGVb3FVaezKdFRHYiNvd2fYYmIiIiIFKCilIiUKzkHT7M4cCP7Ao55DwRD+J6jAARYDRaLwY0ViwGP8a4fValyLnc/fTMWqxW2fQYHV/v6cwV415SyW6wlOxCRy5CSnsPH6w6xbJf3739oYA4A0dGdqFP7MX+GJiIiJeTsRCmtPCAiZYGKUiJSbhhj8OS6+Dn4GNbsTIKT9xNgXFhyczFYuKZKNCEBdo7tDsXjCmJ/YncAru88y1uQAt8C58S1gN5Tce20gMdg10wpKQP+tmgHs1cfoGXV9Yxt/Q1x9lQAbDatJSUiUq4pTRGRMsovt/4nTZrE9ddfj9PpJCYmht/97nds3769QJubbroJi8VS4Gvo0KEF2uzfv59evXoREhJCTEwMo0aNIj8/v0Cbb7/9luuuu46goCDq1q3LzJkzr/bwRMRPTh1Jxm0xGAsEpp0gICcTcvPwYAHs/JTbnzXZ/dlXra+vIGVxnyay3bBfOnF7H3vCEQXVriHP473fqIXOpSw4kuadGdWvwRLqRu7DZvHuvhcaUsefYYmIyNVS3PpRyl1EpAzwy0ypJUuWMGzYMK6//nry8/N56qmn6NatG1u2bCE0NNTX7qGHHmL8+PG+1yEhIb7fu91uevXqRWxsLCtWrODIkSPcd999BAYG8pe//AWAvXv30qtXL4YOHcqsWbNYvHgxQ4YMIS4ujqSkpJIbsIhcdbl709iwZA37Aw8C4DlTTHJENiY/vzHWgCjcbhdplj00SzlOWgikt6hF9DVhVI+77peO3HlkBDh4qVJPjm7eh+fMYa0pJWVBera3qFo5JAc8ULfuGCIjWhEefo1/AxMRkZKjhc5FpAzxS1Hqyy+/LPB65syZxMTEsHbtWjp27Og7HhISQmxs7Hn7WLBgAVu2bGHRokVUrVqVa665hhdeeIHRo0fz3HPPYbfbeeutt6hVqxZTpkwBoFGjRixbtoxXX31VRSmRcsR1LItDb6/ju6B1mADIMHayXaHU5hjZrnCC7TWoGTKLJ+nBLYd20HDHV6ypa+WRsZsLd+bOY2FUO6aHtYajpwAICbASEqA1paR0Msbwxte72Hcii11HMwCw4P01OqoTYWH1/RmeiIiIiEiRSsX/stLS0gCIiooqcHzWrFlUrlyZpk2bMnbsWLKysnzvrVy5kmbNmlG1alXfsaSkJNLT09m8ebOvzS233FKgz6SkJFauXHneOHJzc0lPTy/wJSKlX35qDi7yMRYIyM6i0s97qJOxDwCn92kmIlemMufzZxj641cA5DmKqMm7XZy2eWdlNgoN5oW68XzUog5B1lLxz6VIIZsOpTFl4Q6+3ryJx66dwCud/gwe788vrSUlIlLeFZ4WZYymSolI2eH3hc49Hg8jR46kffv2NG3a1He8f//+JCYmUq1aNTZu3Mjo0aPZvn07H3/8MQDJyckFClKA73VycnKxbdLT08nOzsbhcBR4b9KkSTz//PNXfIwicnWlHTqKy+IGIPDEEQKzT2LOrltu9862DHDn+Nq7AmBnw7Dzd+ZxkWf17rhXLzSYh6pXuXqBi1wBJzLyAGiXsIfqzsO+40FBsdjtlf0VloiIVEA7duzgk08+IS8vr8Q+s0+fPrRo0aLEPk9Eriy/F6WGDRvGTz/9xLJlywoc/8Mf/uD7fbNmzYiLi6NLly7s3r2bOnWuzoKtY8eO5bHHftkyOz09nerVq1+VzxKRKyfz2ElceItS1nzvmjoBgQ2w2hviCayFBRh1fyangwIA8FigaUzi+Ttz55Fn8f7TqMXNpSxIz/H+na8W7v0eiI7uRN06owkOTsBqDfRnaCIicpX5JkWdJ2XxRxqzY8cOsrOzS/QzNTNMpGzza1Fq+PDhzJ8/n++++46EhIRi295www0A7Nq1izp16hAbG8vq1asLtElJSQHwrUMVGxvrO3Zum/Dw8EKzpACCgoIICgq67PGISMlyp+Wy4+0VrDu9g0xbDlkmENw2nIDVXo8Aex1OVFvK4agssp1ZuN0WetbqSZ3IOtxc/eYiOnWRd+Y/8kFa3FxKsf0nsnj9651sTzmN3ZpHeJB3Hang4HjCwhr4OToREamIzu6E3r59e66//voS+czz/b9ORMoOvxSljDGMGDGCTz75hG+//ZZatWpd8JwNGzYAEBcXB0Dbtm2ZOHEiR48eJSYmBoCFCxcSHh5O48aNfW0+//zzAv0sXLiQtm3bXsHRiIi/ZO8+xfr0ney0HQFj2Jkdw7VnZkphsYPJIy9qJsudYZyZSMXgJoNpFN2oYEfGwPw/waEf4HQKuVVuBcCudaSkFPvXyn18tPYgXWt8w4guc7FavHeKbbZwP0cmIiIlr3TcSDtblAoLCyMyMtK/wYhImeCXotSwYcP44IMP+PTTT3E6nb41oCIiInA4HOzevZsPPviAnj17Eh0dzcaNG/nTn/5Ex44dad68OQDdunWjcePGDBw4kJdeeonk5GSefvpphg0b5pvtNHToUN544w2efPJJHnjgAb7++mv+85//8Nlnn/lj2CJyheWcyiXX4i1Che7Zwo15a33vWSx2MLn0ang319RoBUC10GqFC1IA6Ydh7Qzfy7wY70wpu2ZKSSmWmuldr+Ommrt9BSmrNZioSu38GZaIiPiZP59mO1uUstn8vkqMiJQRfvnXYtq0aQDcdNNNBY7PmDGDwYMHY7fbWbRoEX/729/IzMykevXq3HHHHTz99NO+tgEBAcyfP58//vGPtG3bltDQUAYNGsT48eN9bWrVqsVnn33Gn/70J1577TUSEhL4xz/+QVJSUomMU0SuHmMMWxd/hcuaDx4P1rxf1i+wWCKwBFTGZUujbetHITyu+M5cZ84NDIW73ycvPQLSIEhrSkkplZfv4VS2tyAbHZIHHmja9A2qVL5F60iJiIjfqCglIpfKb4/vFad69eosWbLkgv0kJiYWejzv12666SbWr19/SfGJSOlm8j1kbE/Bk+YiLyofi8ftey8o8lHAisViIa5h/IULUgDuXAC2RjTij6nx7M/JAzwEaqaUlEJPzvmR//xwkEpBJ2lR5SA2TgBgt1dWQUpEpKI670LnJZ/HqCglIpdK/1qISJmT9uVePl71BfsrHwdgd24lrgEwFiyWAELYSN8xdxNZI/biOszPAWBBpRvYlpnjO9wwVAtnSunz1eYULHh4ps1kIoJOg8d7PFBrSYmIVDylZOO5kydP8vPPP5Oeng6oKCUiF0//WohImXN003EOWL0FKVKOUPdUGgABxrsweZAllagaMXCxM53yvTOl8mze9eh6V4nk6TpxJDq0G6eULm6PIT3HRUhgtrcgBYSHX0tYWH1CQ+v5OToREalo3G43Ho+HmTNnkpaW5jtut9v9GJWIlCUqSolImZOTmYmxgSXfRVjqId9xqzUCAFuQG6wBF9/hmaKUyxoMQGyQTQUpKXU++uEAi7cexRgIsWUBEBAQyvWt5vg5MhER8Z/zTJU6u1TKFX56b8+ePWzbto2MjAxSUlLIy8sjIyOjwNIs1atXJyYmhsTExCv74SJSbqkoJSJlysFtm8nOOgLhwJl1CyzGii2sJ1ZbAgBV217iZgZnZ0oFeO/qBVqsVyxekSvB7TE89ckmjCePnrW+oU6lowDYbE4/RyYiIhXFxx9/TEZGRpHv169fn/79+5dgRCJSHqgoJSJlhis5k9VfruZIaCrGwGGXkwaAxWInwF6f8LDt1Gzfmeu71rn4Tj8aDJs/ASDf6i1K2bXAuZQyGTn5uNyGVlV/4o56833Hg4Kq+jEqEREpLa7mmuanT58mJyfHV5Bq164d4eHhJCQkEBwcjNPpvUGiR/ZE5HKoKCUiZYIxhv1v/cBGfoYAOO4J5dSpPAAseHccuy5hG01u++OldbzlU99v88LjAbD5YbcakeKk57gAqOzwLiAbGlqPKlW6ERPT059hiYiIv53v6b0r2P2WLVv4z3/+43tttVrp2rWrX3b2E5HySUUpESkTPLlu8nJyIRisebnU2reLplnHyAoKBIu3KBXhCL60Tt35YM5sXTZiHfnHAuFIqmZKSamRnuNi9JyN/Hwik+rOg9SKPAxAZOQN1Kn9mJ+jExGR0s7j8XDo0CFcLtclnedyuUhPT2fLli0ABAQEYLPZaN68uQpSInJFqSglImVC+pHj5FvcANjSTmBxn/IWpABjqwKAPa72pXXqzvvl92FVyUs54e1fyZaUEku2H+OLn5K5vuo6Hm8703c8MDDCf0GJiEgpdE7ucnadcwssW7aMr7/++jf33qtXL6677rrf3I+IyK+pKCUiZcLO5SuwcWatArd3gXNrYC0CglpitcVhrG6cN99/aZ26c3/5vS0I15ndYzRTSkqLU9neO9st408BEBAQQWhobarG3OrHqEREpKw4deoUAKGhoYSGhl7SuaGhoTgcDkJDQ2nSpMlViE5EREUpESnl3JkuNr+3nHUpP5MTmM8BdwT57qo05ygWaxQBgTXo2vUAVTvehSPs4hbYPOnKJ98YyMmBwEjAAvmGTLf3UT7NlJLSIv1MUapKqLcQm5BwL3XrjPJnSCIiUmb8ks/ccMMNdOzY0Y+xiIicn4pSIlKqZW9P5ccj20gOSAML2A4H0O7gOk6FB2Kx2LF4cqhfNxiqOC6qv5f2HuGVfSm/HGh3ZqHzFVt8hwJVlBI/e3ruJmavPoDnzOw9R6B3Vp8tIMyfYYmISGlzdlXzc5/eM+f+/kouey4icuWpKCUipdqxXank4Z0t4ty7HWfOaU6Fe9eSwhIIlhywX3g6+tcn0lmTlsmHyanFtqtit9E64tKmt4tcafM2HMbt8TD8mn/QJHobgQHe9dQCbCpKiYiIiEj5oaKUiJRq+9ctx2V3e3fJyzl9zjsBWG3VICgPqncoto9st4f7f9pLrueXu4Xft2lEzdN74O9tICQantxzlUYgcmk8HsPp3HxCbNlcG7PJd9xiCSQ8vLkfIxMRkVKrwCRvb75z7sRv7ZgnIqWVilIiUip5slwcXbefo+SSbsnG7f7lvaCIh8AS9P/Zu+84uc767P+fU6bP9r7q3ZZky72CK9iYZsBAKKEnBGJIgPxCSYAAgcehhBbAkMRgJ2AIJhiwIS644t7UbFnV6tIWrXZ3dqfPOef3x9kd7UrbJO3ubLnez8uPNGdm7rmX7IzOueZ7f28MI8jK85shXjfiWN2//zTZsndgeg7va/0/VqV2sfCp+8DtG9QKTeBPIjJ2L7X3sr2tF8+DeCAJgGlGuOD8u7HtMgKB8hLPUERERERk/CiUEpEpqfvuXdz13D3sCrcDsD5Xz6UAnoFhlhE11/P2r32EcDww8kC5FL0v/gHOewdxJ8VXtnz92Mc0qfpESm9PR4orv/kQnufx9hX/y4rqHQAEA1VEInNKPDsREZl2VBwlItOAQikRmZIOb+0kafjNnSt6C1y19SGyEbA8E4BQIDNyILXrUfjdRyCToNeqASAeLofrnzrqgQbULJmIH0HkuOxo9yuk5pUf5hULHi4ej8b0+ykiIsdBvc1FZBpRKCUiU1K2J03OLGCmk7h7XyTbv7meEQQgGDNHHmDTb9idSvHeVV/jYMhf3hcLBqFuxQTOWuTEdaf9hv5nzbMACASqOfWU/0dl5XmlnJaIiExlo+yup933RGSqUyglIlNOb3cXPakD5MoKmNk0AIZnglWBEVoDQP2Zl448SLaHB6vO48X4kSqT08uiEzZnkRPVmy3whd+9wIZ9XQBUhvxwKhisoa7ulSWcmYiITEf9MZRW74nIdKBQSkSmlOSGNv7j9/9Fd3kvAJ2FCPOBoFGPUfEOysq7aF7VyFmvGGVJU7aHXisOwFU15fzDkiaWR8MTPHuR4/fA5jZ+9ew+5pft5T0r/8QZ1SkAbLusxDMTEZGprlgHNcruejN9972s63L9pt3sTGdLPRV+sWYJdcFRep6KSJFCKRGZMnIHk+y7dQPdYT+Qch2DSHsXAIbh75B39up2Vr37TcMPsv9ZePhfYc/j9Da8AYDmcJBTYpHhnyNSQl2pHAB/vuo+lpQ/VzweCjWVakoiIjITTMMgyvE8Prdt/3GHS4929pKbIksV8+7UmIfIdKFQSkSmDKc7S8FwALDTGRp3HcBLHyQRCeEZIQygsjI28iCPf5/s1nt4umI1W6MLAYhbo/SfEikRz/OKvaRqon4Y29T0FuLxFdTXX1PKqYmIyHQ1RcKZE7G+J8WP9x864ecvjoT4f8tLu2NtdUCX2CLHQ+8YEZkyEgdbydMXSh3aRzddEPErpArBKgJAYO5pIw+S7uIfln2MnzW9tniozLImaMYiJ+7nT+3h8799HttIsqZuBxGrA4DmpjdTWXlOiWcnIiLTwij503RrdJ5yXACaQgE+s/j4KoaDhsGVNeWU2Trvk9LzPId9+/6bTPZgqacyqrraV5b03FOhlIhMCU4yz6EXdlDAPxkxnAIAlr0EIzAfK7QSgNC85SMPlEuyo3oeAPPCQeaFg7y+vnLC5i1you55oYW84/HhM/+bNXUvFI8HApWlm5SIiEx70yyHGiTbt/StLmDz1sbqEs9G5MR1dj3F1m3/XOppjEk41KxQSkRmt+QzrTz164d4JLAZJ+TS4UYod0NU04sZWokVXMYpy1PUrllGRd0wvaE8D/IpyCZIWv5jvrp8LlfUlE/iTyIydj0ZP3hd3dANLsRiy6msPIdodJQm/iIiIkcbpX3UdGl0nnP9LyeD5vSYr8hwnEISgGCwnsbGa0s8m5GVla0q6esrlBKRkktt72SPdQjH8E9EDnUHWZloIRUKgBEEL8+Vr3Jg5bzhB/npm2DH/QAkF/ihVEy9pGQKSmYLvNSepL3Xb+Jq4Z+0rFr1Lcrip5RyajID3Xjjjdx4443s2rULgFWrVvH5z3+ea67xe5ZddtllPPTQQ4Oe81d/9Vf88Ic/nOypisg4myY51CD9lVJBU+dwMjOEw3NYtvTTpZ7GlKZQSkRKLtmeJodfNRLZs4XVqSw52z8ZMYwArpGD2hXDD+AUYMf97AzPYWN8GYeDVYBCKZl6PM/j1d/9E7s7UpQHEzTHkuD5oZRtxUs8O5mJ5s6dy7/8y7+wbNkyPM/jlltu4dprr2Xt2rWsWuV/M/qXf/mXfOlLXyo+JxqNlmq6IjLL9e+gF1KllEx703gd7SRTKCUiJdfTup+cWQDPw0r2YAOF/ubkRgwvYkL9CBUk+SRZI8DVZ/+IhF1WPKxGlzLV9GYL7O5IsbhiJ58579uYhlc8Z7EH/O6KjJfXve51g25/5Stf4cYbb+SJJ54ohlLRaJTGxsZSTE9ETtZ0biA1hFyxUkqhlMhsoVBKREomt6+HtX94gifNF+k20uA6xZYIUXM1hXAzplVBZfko39rn03QGyknYZRjABZUxTo9HmR8OTvSPIHJcerN+ReDiir2YhodhBLHtONXVF2Pb6n8mE8txHG677TaSySQXXnhh8fjPfvYzfvrTn9LY2MjrXvc6Pve5z6laSmQaK+ZUxtTffS/juLyYzOD1fUOzI5UBIGio2l1mBsWro1MoJSIl033/Xtbue4HDpr98aXu+mjPxC0ec8ldi9jVDqJ03yrKmXJIeKwZAhW1x+5nLJnDWIidm16EkW1p7AKiK+P2kmhrfwKmn3lDKackssHHjRi688EIymQzxeJzbb7+dlSv9HU3f8Y53sGDBApqbm9mwYQOf+tSn2LJlC7/+9a+HHS+bzZLNZou3E4nEhP8MIjKy6dLI/GhvW7+DJ7qTxxzX8j2Z/qZ2IDyVKJQSkZLpbUtRwAGgpjNF74EuMMH0TAzDoCK3kWv++myqzhpmR4hkB6z9Lwqde2gJ1QIQt/XNmkw9tzy2i3/63QvMiR/gHac8xqranQDYgYoSz0xmgxUrVrBu3Tq6u7v51a9+xXve8x4eeughVq5cyQc/+MHi40477TSampq48sor2bFjB0uWDL0T5A033MAXv/jFyZq+iIxkhOteY0CNxlQNrV7oTQPQHApg9c0xbBpc11BVymmJyCRSKCUiJePlHAq44DgUWjZzajpFVyyM5fnBUsg8TE1zHIb7tuzJG0k98l0uPecW9q55DwBllvpIydSzYV83AG9e/gdOr91QPB4ONZVqSjKLBINBli5dCsDZZ5/N008/zXe+8x1+9KMfHfPY888/H4Dt27cPG0p95jOf4ROf+ETxdiKRYN68EXZHFZFJNj0qNBzPo8fxd16+55wV1AZ1aSoz0BQNhKcSvfNFpCScQoFCqpeC6WAnu3Fx6YqFASgEgthAdXMMGoapkgLobWVXZA57I0cu7K+uVeWJTD3d6TwAp9QXwIXGhmspL19DU9ObSzwzmY1c1x20/G6gdevWAdDUNHxgGgqFCIVCEzE1EZlBDmZz7M/k2ZXOsiWZwQUOZvOkHL9KvjAgO6vQ5jQyw3jTJByeChRKiUhJvLT2aQqpHgplDkbfyUkkb+OUXYIRWgxA/Jw3gxUYfpBcipQVAWBeOMhj559KQD0IZArZ2trDLY/tYsO+LgBsw++b0dz8Z1RVnV/Cmcls8ZnPfIZrrrmG+fPn09PTw6233sqDDz7I3XffzY4dO7j11lt59atfTU1NDRs2bODjH/84l1xyCaeffnqppy4iJ2oKNDrfn8lx/hObBgVPw5kTCuj8TWQWUyglIpOu9X828fQLG0jFcmQpQN/2v55dhxk5A/ArXRsWjbIbWT5F2vS/rY9Zpk5oZMr5zh+38fuNB3nT0t9x6sqtmM4BAGy7rMQzk9mira2Nd7/73Rw8eJCKigpOP/107r77bl75yleyd+9e/vjHP/Ltb3+bZDLJvHnzuO666/jsZz9b6mmLyDS3N5Oj4IFtwNxwkEWREMtjYUKGQVM4iD3glO2CilE2tBGZ1nR9MhqFUiIyqbyCy/b1m9kaPAhAOmtgt+X8O40gAAuW/pFXfOiLhOPDVEl5HnRsh2Q7actf8hcx1eBcpp5DvVkidprXLP5j8ZhphgiH55RwVjKb3HTTTcPeN2/ePB566KFJnI2IjLsBVVFT0cJIiEfOP7XU0xCZfFq9N2YKpURkUrlZhxwFAALpNLXbdhLJHfb7SfVVPZXF0sMHUgAP/gvtj/2QdWWn8FTFagCilkIpmXoSmQJROwWAaQY5bfUPiEYXEdCueyIiMkGGWrE32bvv6XpcRMZKoZSITKpcMk/e8HtImV2tZAMpsoH+BucxbCASjYw8SMsGrj3je7wUPbLbU0yhlEwR2YLD3/1yPXs70+w81E1zNAGAbVdSW3t5iWcnIiIiIhNvipcxTiEKpURkUrVtf4kCfihlFPoqptwYTmQFZvhcAGJrrh1xDC+fKgZSq+JhoqbFB+bWTeCsRcbumV2d3LnhIHPiB/j6y75NNJABwLZH6ZEmIiJy3IavSZrs6qgh51DqCYjIlKdQSkQmTTqd5g/3/IZ8Xx8ow/XDKTeygmD0Mv9BIYdlp5w94jiZQr7499+euYy4thGWKaQr5f9+vnz+vmIgBVBbe1mJZiQiIrNVqXbfK9HLisg0pFBKRCaFk8jx7G//RCsFMHvp9YIk3TIa6QEjgIfDO97cSvxlbyMYHvmjKVVwin8Pq8G5TCGO69GV9hv3N5T5fzY1XseKFV/C6gtjRURExt0UqIoSkSO8vipGQ/WCo1IoJSKTIvHwXro3t0EAap047O6k+fBuemIBDCMA5KiuD8JIgdTB9bD7cdLpbgCCeNimPuhlavjDxoN87H/WYXpJrl7wGPOimwEIBKsVSImIyMQYoiJpqOqoqbCUT0RkKAqlRGRS9OxPUuhrcF7Y/zxl2UP0xPp32AvimVkIjNDg3PMo/NcbubH2KrY0vAmAqAIpmUIe2NxGruDyyvlP8NYVvy0eDwXrSzgrERGRyedp/z0RnwLhUSmUEpFJke/NFBuc57PdmIDtWjh2BDOwCNfOQKRh+AEKGR4LLeQriz9UPFQbCk3wrEXGrifjN+5/1akWeFBWtoqamstoarquxDMTEZGZaqToR9fCIqWkYHasFEqJyKRId7YXQ6n+7pdG+ZsIBfxd9KxYDuZfOPwA+TSHAxUAzAsFeEtTNVfVVEzonEXGwvM8EpkCnSm/h1QsmIYs1NVdzaKF15d4diIiIqWjfjoiMhqFUiIy4Z5//nnuNZ8nbeT9PMrtC6UMC8doZc459Vx05VUwUtPyfJpUX1+eFfEIn1zUNAkzFxndh376LHe/0MoV8x7mw6dvJ1A4CIBtl5d4ZiIiMmsMlf0YJdx9rySvKjIVKZgdjUIpEZlQqQ3tPHL7fXSbaQAOtgVY4bhgAgQwre1c9+43QmCURtD5NCnL7zkVtbTjnkwdD21tJ2ylefsp/4tpePQXBEbCc0o7MRERmfmGSn+UCImUXokC4elIoZSITKj2B/aSdwpgwjn5xSSf/xUtdQUKpgWGhRvIgj1CbyjXhYNrcVteoLcvlIqMVFElMokyeYdM3qUmnMI0PAwjwPJlnyUYrKWm5tJST09ERAQo3e576mslIqNRKCUiE6qQLhR7SW09eB8r3C5cMw6AYdg4MWfkM5Ynb2TTI//JG9d8l+5FpwOqlJKp4Zv3bOG+zW0AlAUzAAQCVcyd++elnJaIiMxy/QUa6uckItOBQikRmVh5B8dwMTMp3GQHm+cM7LNjY9XOH/n57Zt5vGIN3YGyvme4XFQZn7j5ioxBKlfgu/dvpzZyiC9d9B/UhLsB9ZESEZHJpiVCIlOT3ptjpVBKRCZMLpMm3dVCIe5gZlJ939cZgI1pzwUjQrCiZpRBUqT7Gpy/sb6Sfz1lviqlpOS603kA1tS9yJz4weLx8vLVpZqSiIjIYCVsdD5gCiIiI1IoJSIT5uEH7md3eDdZChgFfwmfFVhKIP46MoGDZKsPc/Xl5408SC5J2mwAoNy2FEhJyXX0Ztl0IAFAdSQLQF3dq1iy+ONEo4tLOTUREZlt+jOnQa0QSl+hoR7PIj4tox2dQikRmRB7//cFHtn4NAQgnEyx/Pnn2dlQAUYQgNXzf8HVf3/H8AO4LrRtgt4W0uEFAEQUSEmJbdjXxRt/8Bh4edbUvciSyp0ARCLziMWWlnh2IiIiQytVo3OR2cqbAuHwdKFQSkTGnZd36XlmP4TAcg1OafHIBPoCpb5QKt4YGXmQB76M96d/ZU+4idaF/hI/VUlJqW3c343jelwx/0neecr/FI8HA1UlnJWIiMx2AzOnqVSlpChMREajUEpExp2bc4o77lmJQ+zI7YRqv1E5RhAXl2hV/ciDtG7iC4v/mh/N+7PioYipUEpKqzdTAOCC+WkAwuG5lJevoaHh9aWcloiIyJQyhXIxkdJSleKoFEqJyLjzCm4xlCKbAsByIWCEcAPLKZg5wme/d+RB8inWVZwK+GFUXdDmihrtbCal4XkeHckcbT1+D6monQGguenNLFr00VJOTUREZEi6FhYpoalUsjjFKZQSkXHXsnkrBcMFwHD7wqnIWRC9DBPI2Z2EotUjD5JPkzb9pX7/sXohr1AgJSX0gVue4f7NbdRGDnFm/X7K7P0A2HZZiWcmIiIyPO2+JyJTnUIpERlXO3fu5Hf3/wHHBqtQoObQIXpswAjguT3sqt9OYVEX88uuHXmgfJq0GQYgbOqURkrrke2HsI08n7/g68QC6eJx264o4axERGTWm6LFGFN0WiIloOuY0SiUEpFx4yRyPPKLP9KZTYMJ0d1dVCQS9FSXYxCgwD6+8fYlsOoNIwxSgHwK8kkyZgiAqHpJSQll8g65gktVqLcvkDKoqDiTYLCW2trLSz09ERGRQYrFUQPW72n3PRGZqhRKici4SW3uIJfKgAXz2zMcTu9hf1V/g/MA7ZU5CESHHyDZAT+4AJJtAGQsf/leWLvuSYk8sKWNh7a0AxAP+n2kAoEqzjn7tlJOS0REpE9fAjVFMydlYSIyGoVSIjJuDu1KkDf8HlJdnVsxDBev7yzJtOspBFpg3rnDD9C6EZJtfGHxh3miYg0dgSpAu+5JaWQLDn/138/iulleOf8Rlte0AOojJSIi00Mp8yBPC/hEADCmamI8hSiUEpFx07btBRz8BueuW8AAFnVGSDedRZc9By/UAZGq4QfIZzhsl/PDeW8rHurfeU9ksnWl8uQKLhc2reNtp9xePB4M1pVwViIiIqMY0Ny81I3ORWYvvffGSld6IjIuMsleWva9SK4u0HfE/yDeP/+NmHajfyRYGHmQQpqkFQEgaBjctHohy2Nh4rY1UdMWGVZ3Og9AY7wXgFhsGTXVl9DYOEqTfhERkckyxa97VSUiIqNRKCUi4+Lee+9lbUMeyJPucYm5BobhgRHA8Q6zrX4bzvLWkQfJp0lb/o57cdvklbXa2Uwm385DSd7274/T3pMFoDLs/1lVdRHLlv1DKacmIiIydiXMg1SgJdJPwexoFEqJyElLPt3C3rW7wADThVc9+EfWLa7ENUwMAgS85zn/7Qu5bN67Rh4onybdt+Oe+khJqTy+o4PWRJZTq7dw9cL7WVbtNzoP2OUlnpmIiMgwRukort33RCaX+qqNnUIpETlpPWvbcDwHcKl96SWeW1p95E7DJlqe4c9X/vnwAxzeCY98Cw6uL1ZKRbTjnpRIT8Zftveu0x6mIfRi8XgkMr9UUxIREZmWFIWJyGgUSonISes+cIgCLkY+RzrfVTzuhKJgRLCaF448wFP/wUM7X+BLiz9Cp+0v2VOllJRKb9bvfRa1/V5SC+b/FZWV51Jd/fJSTktERGRMpsLSuSkwBZGpQVWKo1IoJSInpafjEJnudpxyF8P1d96zXZNAxV/iWGEMwyDYuHTkQTJd/Lzx1bwQX1Y8tDQamshpixzjhv97kd+s3U9Pxg+lgmYKgLq6q6ioOKOEMxMRERnaaAGUdt8TKRG998ZMoZSInJRUdxeWEcDBBc8PpTwzhGfHMAEXh6r5kZEHyafp7dt176Pz67mqtoI1ZaM8R2Sc3fzoLnKFAv/fOd9jedUOTMM/mbDVS0pERKahqdBHqvQzEJGpTqGUiJyUfC6LbdgUcMg6JjGg/6PlkSU/x1ia4QPn/2iUQdIkI34ItSoe4dyK2ITOWeRombxDtuBSGUpwSvX24vFweC7h8JwSzkxERGQMRkl/JjugUo2IiN4FY6VQSkRO2N6fruX2bfeRimepaD3AOevX8vz8WjD8j5Y3R8Jc98b/GH2gfIpUzA+lYmpwLpPsmV2H+dO2QwCUB9MABAJVnH/eHwgEqjDNQCmnJyIiMryRrntVpiQi04BCKRE5IW7W4aVN2zkc7MXMpgm07+dgVRQAA/8iPjZaX6iWjWze9hifrn4Hm6OL/OdY1oTOW2SgbMHh3T9+ilSuwGsX3cPqupcACAQqCYXqSzw7ERGR4zel+kgpGJNZztCbYFQKpUTkhLjZPAXD7yEVbtlLr+3SW+aHUoVADBsILx1lt7JfvofflF/GEwveDYCFx8JIcCKnLTJIdzpPKufQHG/ljct+XzweDs8t4axERESmtykUi4mUiN4FY6VQSkROyJZH/kQex79RyAEQK1STLVuFFVwBQLhu/siD9LSQqgoD8AYO8OnzLqM5rFBKJk9v3057ddEMAIFADYsWfZS62itLOS0REZExGv7C12CKVU2JiAxBoZSInJBES5u/4x5guH1/hldjh8/Bw6U1vouK2ubhB3BdyCdJm34otXzRWSyMRSd83iIAecfl6V2H2dLSA0BVxA9Ww+Fm5s19VymnJiIiMmNo4ZLMelNgF8ypTqGUiBw313U5lOjhsOkS7+khks6QCZh4fQHTr0/7Ju3xvbwvePnwgxT8htJpy39OxFSDc5k837t/O9+5bxsLy3fz3pWPsrCyEwDbLivxzERERI5DfyHUUBe+Aw5N+u57qtCSWc7T8r0xUyglIsel0JXhqR/dy7PpFrBg5aZtHAo5wJFQqmDmiQVi1EeHaRSdOgy7HwUgbfrN0CPadU8m0fb2XgDefur/sbRiU/F4ONRUqimJiIiMC+VBIjKdKJQSkeOS3dZFV6IbAhBtPcDechf6dtvLBSLYwNfO+CuWnXE5sUDs2AFcF374cr5bcSlPrv4X1pWfCqhSSiZXIp0HYFFVFlxobn4bsdhSGupfW+KZiYiIHL+pukBIO4+J6D0wGoVSInJcdjz1HIW+Budm4lDxeNDMglUHwGmnvpZYJDz0AIU0h1MJ/t+ZHxx0eE44MDETFhnggS1t3PdiKy8eTFAR7MYkAcCc5j+jvPz0Es9ORERkHPRVShkYJVtGp2ItmfX0JhgzhVIiclzad2ynEPX77niegwE05FaSaWgii79znh0a4aMln6bX8huaBw2Dr66YS0MwwMWV8Ymeugh/98v1HE7meP/qn3Jx81P09erHtstLOzERERERkVlIoZSIHBfTAQcHPA/LcfCAzpqzMPH7R7nBPIHgCEvx8inSlt9HKm6bvL2pZhJmLQIFx+Vw0t9l75ymnQAYhkV5+RrC4bmlnJqIiMjJGbRCyDvm2GQ3Oi++bkleVWQq0btgNAqlRGRMkk+30PX7nSwJr6GFLVz4wCNsrg9SsCwwAiQCu3h2/mNcdMaZmNbVww+Uz5A2teOeTL5EplD8e9RO4Thwwfn3EI0uLN2kREREToaWCIlMUXpzjpVCKREZk9TGQzyX38ae0CES+U6aU104ZiMAhmGTiB9k1cVzeOtp1w4/SLoTOrYXK6W0455MhkQmz/t/8jR7Dqc4vfZ5Fla24ThJQMv2RERERERKSaGUiIxJPp3jWfslcAvEd27gmSVNA+4NUGUX+ORFXxx+gJaNdP749fzL/PewZeEHAAirUkomwVMvHeaZ3Z3URjr42wv/vXjcMALYdlkJZyYiInKyjq3GKPY2nwKrhkq0alBkytAOlKNTKCUio8oke2nZsRXKwSzkMTwXw/OIZ3KkmuZgGGGs6jkjD3JwA3fWXMwtc95QPNQY0o57MvESmTwA5833l+9ZVhn1da+kuvrlmKZ+B0VEZObS7nsipaJ3wVgplBKRUXW3toDRV9Xk+tuVhfIFztuT4OE1r4J2sKORkQfJp+i2/R32ziqP8tbGaq6u1dIpmXiJtB9KNZX5f8aii1i58uulnJKIiMj4GqIkSfUZIjIdKJQSkVHlc1k8wwTPo37vfpKAa8V59IJPYbX7j7ECoyzFy6fJmEEAVscjvHdO7cROWma9P2w8yKf/dwMRq5UPn/5bVpR3AeojJSIiM8gYizG0+55IiWgN66jU0EVEhuW5Hj0P7cN9NIFlhahpO8Sp27YA4Fr+DnqOUSAZ6CK4ID/yYPk0GdNvcK5eUjIZ7nq+hUSmwIWNT3BO4zrK7F0ARKLzSzsxERGRGa5EqwZFpgxPy/fGTJVSIjKs3J4EXf/3Eh1GD3vcfRS6DrBxXh0AjhXABp455b8pLHX48jlfHnoQz4NDW6F7DxmzCoCwqW8MZOJ19y3bu3RZEFyoq7uKhvrXUFNzaYlnJiIiMnGONDrX+ZaITH0KpURkWIXeHG1GN3eEniXYc5CQmycb8D82cqFKQsBnz/0bll907vCD3PclvEe+yUuRubQu/AsAwpYqpWTibNzXzSPbD7G9rReAeDADGaisOIeGhteWeHYiIiKTp1SNzvspFhPRu2A0CqVEZFi7n11Lwkj7Nxx/57LGrl5OMVq5t+FdkINow+KRB2nZyD8u/Vt+POdNxUNavicT6QO3PE1bT5ZXzH+A183fiZXfjwdYfY32RUREZrS+IKqUl8JauiSzntawjplCKREZVrKzi4LhAGBnswAE3ACZ8lUEnRgA4VBw5EEKGTZULgcgbpk0BANcUVM2cZOWWS3vuLT1ZIkHenn7KbcD4Pm/woTDc0o4MxERkfF3ZKleSachInLCFEqJyLDcjEMBl0AuR82hDroiFi2NF9Eeu5RQ34V+MDLKx0g+TdryG5z/5+qFXFatnc9k4vT3kYoFkgCYZoSlSz9JKFhPddVFpZyaiIjI5BoQVJVu9z2lZSIyMoVSInIMr+CS3dFFKB2kQJL4ng5i6SRdkXI8KwLAgbLtJCraKKu+fOTB8mnSpr9Tn5btyUTxPI/33/w0j27vAKA25odTwUAV8+a+u5RTExERmXhTLPvRwiURvQvGSqGUiBwj8cBeDt23gy7TpdXoxMnlyNlW3702OTPD71b/G6tqVo3+zVshTcb0K6UianAuE+RwMscDW9ppiLZx5fyHOaWuBwDb1lJRERGZyXThKyLTm0IpETnG3ifX87zdymZrH9GXXsAyMrSX+z2kMGw8O8/XXv5VzmkcZtc9Jw93fRq69kDiQHH5XkSVUjJBerN+I/5rl97D+Y1PFY+HQg2lmpKIiEhJ9PeZMowpsPveFKvgEplsWsI6OoVSInKM9OEEyVgGXAcrlwHAdhxMywR7Pm7Q4JrFrx5+gL1P0bbu17x5zTdpPe9v6A741SphUx/KMjF6Mn4oVR32K6Tq619NWXwl9fUj/J6KiIhMd8XMaWqdY6l+S2Y77UA5dgqlROQYpmfi4GL0f7vmQUXwrWTi1ThmGdiJkQfI9vB45Rq2xhYVDzUGAzSEAhM4a5mNntvTyb/es4WeVDdr6jZSE/F7SjU1XUdtzWWlnZyIiEhJHQmqStXovJB1aOvxv+DEG/SH//cBN/ov4gcfG/hYb8Dfj32tocYaeHzYsYYc48jRWMimqSJy7AuKyLhQKCUix7AwKRgORt6vPsEwSZYvKN7vVqdHHiCfItnXEP2iyjhfXzGXplCQkJbvyTj778d38+j2Dv7qtJs5r+m54vFAoKqEsxIRERF7Szebdu3nvN/uKPVUTsprTmvi++88q9TTkOlKa1hHpVBKRIqSa9tIbzxEuV1DgX2c+9gTbGoqw3L9+zO8wB2n/57Xn3PVyAMVMqT6QqnaoM2SaHiCZy6z1eFkDoCV9Z0ARCLLqKw8g/Ky1aWcloiIyOSaYte9ngdmZ7Z4u7+Dw8CKrYFTHnjdXuzBM+jYsY81BlWCHfvY4V5riOEHP/ao+6NBCxGZOAqlRKSo67fbcTMFLCtIwStQ2dMNTWUY+BVO3fEuzl+9hjef8uaRB8qnSJl+EBVVdZRMgO5Unoe3tbPncAqAWDALDqxaeQMVFWeWeHYiIiKlU1yaVuqgqu9LzVvefx6XLq8r7VxESqbUb8SpT6GUiACQ7klQSOe4N7iB/V4r4X07WT+/HgAnZGADseoyvnTJ54YfpJClc/vDfLUjwmMNrwQgZimUkvH3T797nt+sO8AZdRt449I9GK7fS8q2y0o8MxERkck33GVvSXffc/3XDli6KJdZqMQ7X04nCqVEBICulhYwDPZZh7G7urFTCZLhIABGMAaAXV498iCPfJs7tmzk5uX/H4T8Q01qbi4TYGdHiqid4vozfoxpuH39SA0CgVF+R0VERGaSEa57SxkFeVC8KA/qC0oRGYFCKREBwEllKeAAYLj+n1W9aeb2GGy6+GzoBGu0NfVdu+m24wCcld3HuxfM5XVzayd03jI7JdJ5KkIJTMPFNEM0N7+NivI1BIMKpUREZJYbIqgqxe57Rt/yvYBCKZnVVCk4GoVSIgJAIZ2jgIvpOMzZu4+OIBTCc9k27z0E/B7S2IFRTiryKTJmBQCnLVrD21bMm+BZy2zzud88zxMvdbDncIqFZX4/qVCwgRXLP1/imYmIiJTCFOkfNZTi8j2FUjIbafneWCmUEhG8vIPTnaVgODS0tlJ1uIOOxmoKff15MlaSZLCbxsXOyAPl06StBgAiOgGRcXY4meO/n9hNwMzx6XO/y9z4QQDsgPpIiYiI9CteCpdwK3pvwETUU0pERqJQSmSWK3Rlaf3Ws4SyDr2GA9k8WdtfppcOBwkD9y37bw7WbONHy3808mD5FGnLbyYV0a57Ms4S6TwAy6oOsrhiT/F4RcVZpZqSiIjIlDY1Gp3rnFBmL2NKljFOLQqlRGa5tme30JtNcXdwHclkC8FMO721/hK8vO2HUl+acymnXPtj4sH40IN07qLjpcd5kLm8GFsMqFJKxl9PpgBAbSwHQCy2jDWn30Q43FzKaYmIiJTOkbKoY+4qYaGUry8QC9g6J5TZx9PyvTFTKCUyy21++E8YZh2HzV6CmYR/0PMIeg6F4DzwoPGstw0fSAH87C18sv6d/H7+XxUPxRRKyTjZ15nioz9fS0tXiuVV21lRtR2AYLCWSGROiWcnIiIyxQxRHTXRjc57Mnne8sPH2dWRBMDxBjY6L3U6JiJTmUIpkVnOzeTB9s8a7KxfibLwUDdnhPdxe8OHoQDhUHDkQbr2sm9eIwCnOx0sa1rM6+srJ3LaMovcv7mNtXu6uGLew7zz1F8Vj9t2RQlnJSIiMoVMcO7juoODrp5MgSd2dtDRm+PFgwl+v/Egh5O5Y54XjAWoio5yHikyk5W8ZHHqUyglMtvloWA7lCUSVLft43AkyIGmS2kpu5KIn1ERCI3wUeG6UEiTssIA/NPZ53FxlRpPy/jpSvm9pM6d1wNAMNhAJDKPeXPfVcppiYiIzArfuncr371/21AFWMe4aEkNX73udO7t6OYft+3njPpy9ZSSWUrL98ZKoZTILJVvT9H+7xtZETiL9exm+YtbSOUzHI4Ece04/acPPZEO4lWh4QcqpAGKoZR6Scl46U7neWTbIdbt7QKgOpIFYP7897Ng/l+UcGYiIiKzx/89f3DIQKosbLOioYzKaIBVzRVURgO8bk0ztfEQ1fksXsTG1HmhiIxCoZTILJXd2Y3bk8MzIE8BI+vh2H3lpYbNwfhW7jrlJzRXNWDZbxl+oLwfSqVNP5SK6uRDxsnnf/s8v113gPlle7l2yUbKLb+XVMAuL/HMREREpoiRijGMk9t9z/M8EulCcVneLz54ASsajlTDV0YDE96rSkRmPoVSIrPUnvXr2W918pi9hUDHQSI1Bp7R18zcCOAFs7zltDfwyoVXDz2A6+I98i3+MVnHM2f9O50BPyiImgqlZHzsOuQ3S/3rM35OXWRf8XgwWFeqKYlMOzfeeCM33ngju3btAmDVqlV8/vOf55prrgEgk8nwd3/3d/ziF78gm81y9dVX84Mf/ICGhoYSzlpETsZwOdRPHt3JjQ/uwB1jUJXMOqTzTvH2wpoYVbHj6w+lyEpmrZMIhGcbhVIis1Tn3jb2mAk8A+zEYVzzyGmDadURi+f51Pl/O/wA+56i7ZHv8eMLbwe/SIoyy6Q2GJjgmctskcj4Tc3qYj3gQmPDG4jFllJd/bISz0xk+pg7dy7/8i//wrJly/A8j1tuuYVrr72WtWvXsmrVKj7+8Y/z+9//nttuu42Kigo+8pGP8KY3vYlHH3201FMXkXFkGAa/fm4/bT3ZE3r+2QuqqC8boZ2DiMgJUiglMkt5ORcn4H/7Zef96u9V+3s5eNr5pLwmjMCekQdIdZC0IgBEKfCfc0xWzF+p5Xty0m59cg/P7DrMwe404IHbC8CSpX9PONRY2smJTDOve93rBt3+yle+wo033sgTTzzB3Llzuemmm7j11lu54oorAPjJT37CqaeeyhNPPMEFF1xQiimLyAlwXBcnXaDncAa34O+qbBxVp+T1rfX78htWc+7C6jGNO6cqQtg2sUxDS/VETojeN6NRKCUyWzlQCDos27KVjlwvedti2ykfwvTqAbACo3yA5tPFPlJlwTBXLF890TOWWaA7necff7ORkJnhivkPUxHqBfrCU0u7OoqcDMdxuO2220gmk1x44YU8++yz5PN5XvGKVxQfc8oppzB//nwef/zxYUOpbDZLNnuk2iKRSEz43EVksG3PtLLliRbO6Lt9y6cfIzfKaqH+1UTzqqOsaJycf1N1OS6zl5bvjZVKGkRmmXxrkq47dlBj1FLwHNasX4/Xf8ZgBHCNHJ2RFpzFXSMPlEuS1o57Ms66U3k8Dy5qfo7rlt3JK+Y/CIBlxbGsaGknJzJNbdy4kXg8TigU4kMf+hC33347K1eupKWlhWAwSGVl5aDHNzQ00NLSMux4N9xwAxUVFcX/5s2bN8E/gYgc7fHbd7D7+Y5jjttBk0hZgKalFdTMjZ1Uo/OToctxERmrklxJ3nDDDZx77rmUlZVRX1/PG97wBrZs2TLoMZlMhuuvv56amhri8TjXXXcdra2tgx6zZ88eXvOa1xCNRqmvr+fv//7vKRQKgx7z4IMPctZZZxEKhVi6dCk333zzRP94IlNa9z276Xl0P2EzRtYpYLkujuF/FBiGzZa6Z/mfM26gekF45IHyKVJ9lVIRNTeXcdKTzQNQH/eX7JXFV7Fg/gc5/bQfaNmAyAlasWIF69at48knn+TDH/4w73nPe9i0adMJj/eZz3yG7u7u4n979+4dx9mKyFjks86g2+/4wvn8xbcu4YPfuZT3f/3lvOn/Oxs7YA35XP1rKjJ5jl5GK8cqyZXkQw89xPXXX88TTzzBvffeSz6f56qrriKZTBYf8/GPf5w77riD2267jYceeogDBw7wpje9qXi/4zi85jWvIZfL8dhjj3HLLbdw88038/nPf774mJ07d/Ka17yGyy+/nHXr1vGxj32Mv/iLv+Duu++e1J9XZCpp376T3wef45bAfaRbtvDU4ia8YpNzm6ht87kLPsc7T33n0ANsvZvMv67ida3lvG/VlwFVSsnJ68nk+e26/dy54SAA5UF/aVB19ctYuvRTVFdfXMrpiUxrwWCQpUuXcvbZZ3PDDTewZs0avvOd79DY2Egul6Orq2vQ41tbW2lsHL5/WygUory8fNB/IjK5nL6+Uf3CsQChiD3sFziGYZRkMzB9nySzlad6wTErSU+pu+66a9Dtm2++mfr6ep599lkuueQSuru7R228ec8997Bp0yb++Mc/0tDQwBlnnME///M/86lPfYovfOELBINBfvjDH7Jo0SL+9V//FYBTTz2VRx55hG9961tcffUw29yLzHCZRC8tFV3YXV1Ekoc4VNa3JMq0wAhSV93IW1e8dfgBXvwdm4jzdPmq4qHTy7SsSk7ON+/dyk8e3cWp1Vv46zV/Yln1fgBsWxe7IuPNdV2y2Sxnn302gUCA++67j+uuuw6ALVu2sGfPHi688MISz1JERuLkB4dSUy390eW4iIzVlChv6O7uBqC62t8FYrTGmwCPP/44p512Gg0NDcXHXH311SQSCV544YXiYwaO0f+Y/jFEZhvP84pVUWbBXyZVns6zuCtIoOlSDMPCCozysZBLFRucLwiaPHb+qdywbM6Ezltmvt0dKQDefuo9nN2wgfKA3ycjEplbymmJTHuf+cxnePjhh9m1axcbN27kM5/5DA8++CDvfOc7qaio4AMf+ACf+MQneOCBB3j22Wd53/vex4UXXqid90SmMM/1cJ3jj336nzHF8iuRmU1vuFGVfPc913X52Mc+xsUXX8zq1f7uXWNpvNnS0jIokOq/v/++kR6TSCRIp9NEIpFB92k3GZnpnHwez7CI9fay/Pnn2d5QRSZ+KgeaX4/lZwLYoTHsumeFAKgIhlgcDU3wrGU26E77IWlzeRYcmD//L6moOJPamitLPDOR6a2trY13v/vdHDx4kIqKCk4//XTuvvtuXvnKVwLwrW99C9M0ue6668hms1x99dX84Ac/KPGsRWQkRy/dm2oKnZ1ENm5g9a4W5pdFSDndgx9w9DrCo24f05z96Pxt0P0jj3VyYx/1gOMee/Dt0LLlBOfqi1yRo5U8lLr++ut5/vnneeSRR0o9FW644Qa++MUvlnoaIhMit6+H5I5DWFaQ6vbD9P8j69hxTKC3bC/tdhdLl8VHHiifJGP6QZR6ScnJuumRnXz97s1k+pYhGJ7f4Lyx4VrKyk4t5dREZoSbbrppxPvD4TDf//73+f73vz9JMxKRk+EVXPKJLNWWQdnQfcwHP36IRlIT2XjZzWTY8aprWNjdzb/1Hds9Ya82vTR87rNUv3OYnq0is1hJQ6mPfOQj3HnnnTz88MPMnXtkicbAxpsDq6UGNt5sbGzkqaeeGjRe/+58Ax9z9I59ra2tlJeXH1MlBX6J+yc+8Yni7UQioW2OZUbwCi7t/74RL+dgmBaFnEehuGOe/zHw81O/g2PlObP600MP4uShYzukOkmbTQCEteuenKQ/bDxINl/gr9f8hCWVu8HtAtRLSkRE5GiF3hz7bngK2/F4edngyzjDGj1oGiqgGm/O4cO4fa1Z9tY3EjFNmkMB/86hljEdfWzU20ffffSYxzvecb7eSYxv19Qgs5GW742mJKGU53l89KMf5fbbb+fBBx9k0aJFg+4fS+PNCy+8kK985Su0tbVRX18PwL333kt5eTkrV64sPuYPf/jDoLHvvffeYZt3hkIhQiEtRZKZx80USOR7+X3wOdLpdqL5Q/TWVQJgGP6JwgVzz6MmWsPVC4fZBOCW17G7bRdfW/h+Nsf892xkDCdAIiPpyeSpDndydsP64rFgsI5QqLaEsxIREZl62p/vwO7rJeV6HinDoPbUakKLKjDDI1/WDbcr33hyHYfH7vw1B+bX41kW9519IfVBm5dXlU34a08L2573/xvB2a99Iw2LlkzShGRClWK7y2mqJKHU9ddfz6233spvf/tbysrKij2gKioqiEQigxpvVldXU15ezkc/+tFBjTevuuoqVq5cybve9S6+9rWv0dLSwmc/+1muv/76YrD0oQ99iO9973t88pOf5P3vfz/3338/v/zlL/n9739fih9bpGSeveN3JA2XXjNDMJWgf+me6XkY9hzyZpbvXvldglZw+EEOrOPWue/kfxuuKh5qDo3weJEReJ6H50EiXSAaSAMQCFRz5hk3E4nMxzT1BYGIiMhAbl8vqaQH1ltWMHdJBfGq8HGPM1H51P7NL/DMfXdBXwi1cpv/hdOLE/NyM1Jl0xlU1M8nHAuUeioik6YkodSNN94IwGWXXTbo+E9+8hPe+973AqM33rQsizvvvJMPf/jDXHjhhcRiMd7znvfwpS99qfiYRYsW8fvf/56Pf/zjfOc732Hu3Ln853/+J1dfPUwliMgMtW/DRsrMUwhms1S3t5E0oLmrQHXVQrYH5pM3ewmYI/zj57pQSNNrRQG4srqcaxsqubpGS6zk+B3oSvOG7z9KW4+/scTyqv5QqoqyslWlnJqIiMiU5Tl9Dc5NWHpOw8gPLoFcxv/3PJzLs6A3x42veTNLoiHeVlXBM3/YpcKRMXj27gSLzkzRtKSi1FORk+b/wk9kD7eZomTL90YzlsabCxYsOGZ53tEuu+wy1q5de9xzFJlJ3FyBQthl9fPPk0t1kaytoL3+Ag7HLgEgb+dGLusu+CcZWdOvjDqnIspbG6snfN4yMz2zu5O2niznNT7Ln624nYjth1O2rfJ+ERGRYTn911And5E7UZfITqEAQCRfYH5vjmfXXExZVRkLYzWsve85rIBJ7dxRNtQRAqExdLAXmUFKvvueiEw8N+dSCDvYqSzpvvDJM0N4uOyt3MzBOZuBNw8/QC4FQKYvlAqpwbmchEQ6D8Brlm6gMpQoHi8vP71UUxIREZnyPNcPlLzjSJUGFgNMdKVSfyhluuD0nSomC0l2HU4CEK21OP2DJ15lv6RiCZapwEamG1VKjUahlMgMVujM0PFfmzg7cjkbjQNQMHBCfR+MRoCcleUPp/6IP1vxZ8MPsvVu2HoXAFnb37UyZOrDVY5ftuDw1M7DrNvbBVDsJbV82eeoqbmMSGRBCWcnIiIytbmOy1SOZNy+UMrwPLodP4ha17aOf9l8N1fzAbb2buHrv/vrEx7/kbc9QkVIy9pkevDQetWxUiglMoN1PbeXPS37WBfaRVdyD2WVJvm+vlAYNo6ZZ+3bn8AOxoYeoJCD/3kXOP7yqmzAL7mOqFJKTsA379nKjx5+iYCZY078EBHLr5KKxZYRjS4s7eRERESmuv7leyfw3aBhGEcukifou8VipZTn4fZ9gRkwA1RafssHw/aoDg/R/qGQgWzPyIMb1qTsIChysjzP459+9wLBzG4urIOHt7XzxUceB+BvrljGy5Zph+mjKZQSmcE23nsPuwKw3zpM9NBukuEj368ZZjmuVRg+kALI9eI5WR6rOIO21W9nb+QMyKtSSk7M9rZewOPLL/s6teHW4nHbVsN8ERGR0biuhwVTtv5iYKWUZ1nUdhX41OMZjNRFdAMXZrv55917j31iLtXXv9SA4ZbnGSZ8+4yJmvrE+7utYOnSezbY0Z7kvx7fzVULUlxYB4d6czy18zAAHclsiWc3NemdITKDOaks+QqLxoMHyaVS5C2DZS2HsU6JsZMFuNahkQfIp3mi4nSuO+M7fbf9P6KWKqXk+HWl80TsTDGQCgZricWWEY+vKPHMREREpgG3v9LpZBudT8yXi4MrpUwu3JEgkTiyNL+CPZDqGGEED9zC8HeP+FyRqcHpe5+Gbf99dv6ias5ecxYAa+ZVlmpaU5pCKZEZzHANCji87NHHeHj5HLBsDiz8AJ7RhIGBZzkjD1DIsCfcBEB1wGJVPEJjKMAlVdolTcbutmf28p37ttHSnaEy5PeYMM0IL3/ZkyWemYiIyPTh9S3fm6qNzl2nP5QCz7SIZx3AYkX0YZa+6VrmLvoQBD587BMf/ld4/jY46z1wwRD3zwRq0D7r2Jb/Rp1TFWHVyqYSz2ZqUyglMkN5BRcLC8dNEygUcPq+VcsHKzAJA9BT2T7yIPk0Sctvbn5hZZybVi+a0DnLzPSLp/eyvzPJ9WfcxNLKnQAEAmpUKiIicjyKAdMU663kuS6/efynPPLI/9IM5IKVdMfnUZPw5xuP7SJ61hwODzdAIACWBdFKiNdM0qwnWfrYc27TMKmNqL/QTHNsg/Op9X6dihRKicxAPQ/vo/v/drI0fibrnQcBig0nDcPmyXl3sqP2OeY3NwF/O/Qgngf5NKm+UCqmJXtygnoyeWojHZxZv7F4rLzstBLOSEREZBpyTrzUyW903v/3ExvDcz02v7iHTG+O5/+0n1Q6g+PkybY9iduxjua+xx2uWU0geiVV3f7tr1Tl2XXblSMPPn8O7L8dbrv9xCY3Dc0vm8/v3/T7Uk9DpOQUSonMQOnNh3nOfIl9VgfJRBeHY2Hc4o55Nj2hwyQjXVy58M+HHuD5X8NvPkyvZ9C+4H0ARC2VHcuJ6c0UiNgZAAKBGs4687+JRpeUeFYiIiLTi+dO7O55Q9nz/Hr+8OyveHTPI9QdqmPe4fl4hXaggOdlwcsMerxh1RJ164lk97C5IUN3sIP9FS9iGSOcR3qO/2WoYfr/zRLmLPpZRUaiUEpkhulua+HA1m08F9+JlUwQPbiVJ5bOOfIAI8CfrXoLb7vm5uEH2XYPj8eW89bTv0neDAAQNfUPp4xdb7bAp/53A22JDG09WZZUpAEIBKrU2FxEROQE9IdS3gQu38v09uIU/J1tOlsOcNs//yMAZxADUrhsHvJ5FiYrU9XMPbQDo/NJonVZfnNhgK2hID/KlXHRux8b/kX/58/hxTvg1d+A8/5yvH8kkUl1dO+2idpYYCZRKCUyw+x49ik8Nw+eR2VbKznAclzCToGeqlUYRoBwaJSAKZfkubKVxUCqwra4okbNzWXs/rS1nd9vOEhz7CD/dMGPqQwlALBt/R6JiIiciJOtlOrvSXX00+/9j++x5fE/4RQKFLJDb1lvBpZiGCEwY8ypgWVeB153Nzz1DJbrYbkuA88ugxUF0qbfAiJ46uuHntCeJ2D/c3Bou3/bCp7YDyYyBSmKGjuFUiIzTD6TwTJMatsPseilHWxurqUm6TKH+ayPXQZ5CIdDIw+SS5KxqgB4d3MNX1sxb+InLjNKZ8r/lvWaZdtojrcWj5eXrS7VlERERKY35/gbnXujbLnnOg4b7rt72K35TMsmWXkaVe7lYEAw08XCh75HKHlw0OMa/+nz2BVR7MI+jOf+k5B3gNbgXPB6CK549bED55LwX9dCYcDyv5C+uJLpr/hWUio1ZgqlRGaYQi6LaUaxUxmcvrXqh2tWk4i/mqCfExCNhkceJJ8i2/dtVcjUJ6ocn1SuQHuP/01rQzwHQFPjdcxf8JfE1EtKRETkhIy1UspzXRKH2gEPN53EyGVJtBygtmsXbjLJwSeSPLfZ/4Jy39a2vqtog0D9O4AoVn5wOBR0/T/Pmr+bylu+hlVZSfSaVxFaspTAnDmET1lBeMUKuO3d/jK8vjk6fa3VA32V94MkDviBlBWElddCvAGWX31i/8OITGm6lhqNQimRGcLzPNLr2ontj+GYFkbBK+645/WVT++s2khn9CBvXPI3Qw+y82H40zehZSOZeWcBEFYvKTkO//34Lj7/uxeoDHZy6dxN1Ia2ARCNLiQeW1bi2YmIiEx9nufhuR5OwSPRkcYpuCT39ZI+lCYGo17j3vntr7L1yUeLt+PAwz/YyHl9t3f8FnYc/SQjhpVvOGasnuBhmtoPUJ7souzh2wCILm9k7msq4MUfw14XtvfC/7QdeZIdZlvjBeSNVkwPgg/cAAT8IMrJQrIdkh3+Yyvnw3X/Ofb/cUSmiSP7XcpoFEqJzBC53Qk6/mczzwUO0Brupqbg4PRXORn+W33OZS/xvnM+SHNZ89CDPP59eOkBADKm/w2aQik5Hg9tPYTnwXtW/YLTal8sHg8Eqks4KxERkcnX25mhuz1dvO06Hr3tadyCg5l2MFwX43CGQlcWz4Vc1sHJOziJHKbjEbcM4iaYhkEAqO0bxxilir3lJf8LISsQwHFcPM/DDth0mzFSrsWi5irKaqJ4eHRsyuE6sGdeL9tqf8BFy86l0YrRbAcJdfRQnfQIfuMmMAwCzc0Y2UNUhh+FR+4ffgKFDM/kIxjBAgDBzb+HQmHox86/cKz/c4pMC57CqOOmUEpkhmjf/BI9Rpo91iHsnk5SbheZKr/82sDGxeHC097OqppVww+S7aWAxaYLP82ByldCSsv35Pgk0v4a0VX1SXChsvJ8YrEl1NdfU+KZich0t/eZVvY/cVCn+zJ1eJBN5SnkXfI5l0wyjw2EDfAcjxAeJlBmGcRNfw+usrGcV1mG/99RHMA1oPK8pmGf+l8v/BctyRaimNx/cSdLu8/ilB09lB3aQCg5F88NETz8J8pSSSwXepZ/Ezcc4l1/+DyRTAfwwpDjBuY0s/T3v4F/vww6sn6YFK2B094Md/8jJPZD7QqIVPE/ZpI7A73g+Ev4A+d+EOJNEIhAxVwwA1De7N+uWjj6/x4i09kE7pY5UyiUEpkhDr64jSBxcq5JsLUNx3BwbAsAw6oib+UI26P0kiqk+cSKv+eXwasg5R+KWKqUktGt39vFz5/aw5bWHgBMw/8FWr7sHykrGyEIFREZAy/v4PxqK3NLPRGRkQQGXHzaI1+IekDeMvAMg1zYglgAwzQIhGzMgEn5gjLMgEl0YQV2VQgzFsAYwznZnS/dySrPBUwSuR4c1+GsZ58jlkoBm455/O4V/uWg4TmDjpvl5ZjhAAGvFcNwqJy3EW6Yc+QBr/su1C3H8zxaH/hncrbNc+f8GZvNPD978WfgdGMAhmFTdsVnIRAbde4iM4myqLFTKCUyQ7i5Ag4uDRt2UVZoozMWoTZTA5Wr6AmsoGAmRg+l8hlejPmNqGsDNs3hAK+oKZ+E2ct099W7NvPYjg6WVu7grNoDGG4CD7Bt7aQjIifPTReKJ63ZiI1p6wsTmRoMwLQNMAwsy8AwDIyojRG2MYMW4fqIv/StIYpVE8GM2FjxAJjGqMvwToSHR3854Tcu/TqPPfY8pvswAHetvoLdxHnPRQtZtKgRq7oa7+d+GLXs/+4kEvcbkhuWhVnogse+C0/+8JjXKDSs4gNP/zPPd2wi5+agDChrhi03D3pcb8VbWFN3GjEFUjKLjLLhpQxBoZTIDOHlPQqGQ313B71l/sl6d+2lWIGFGEBP6DAhKzTyIIU0KcsPrv5j9UIurIxP8KxlpujozRELJPnUud/DNJy+f5ANbLuyxDMTkZnAc/yzfMfzKH/faurmK/AWGc3c+FxC1rbi7WeWX8SjbiV//qYLqVxYTSHvwM8fAiAQdLB+9efQ2wLJQ5BNHBno0k/Byz5evLmn9wDP/e4Ng14r7LrEw5WsqDuNqlAVVTWv4putFZSV6ctNme1UMjUahVIi05ybytN91y7KU1W00kvAKeD01Ysa2BSMPA8uvZUD5dv5sDVKX59CthhKRbVsT45DTyZPVagL03AwzRC1NVdQWXkugYBORkVkHLh+KOUB5hC9dkTE5w0s0+g/HxymdMMtHDlu7b4f9jw2+AF2GCrm4q68lt2pFtKFNOvb17Ot0w+65pfN56arb6L6pmsIHn4J3n8TzL8AgFsPdEDr3nH8yUSmF/1LNXYKpUSmufSmDrY+s4m7A+twDY/zCylazaB/p2GTt7Jsr32OU6pPoT5af+wAngc/vc7fdc9zSZkRAKLadU/G4Gt3bea5PZ209WRZXOHvMBQON3Paad8r8cxEZCbpr5RyPYVSIieqyjlMs1EgmNwPhzpwDh4Jjaytd/h/WfpKuOTv/UbklfMA+Pwjn+W3O357zHhz4nNojDWO+Jp6t4rIaBRKiUxzHTsP0mZ04xoeVk8Xh8tM8pbf4BzDxrIcnn7j3YTKmjCG6riXTcCO+/hV/Sv5ReM1JGx/3b8qpWQ0rYkMP3hwBxXBbt596h00x9sAsG1VR4nIOFOllMhJ+0b2C4QrC3i/hBfTV3CosAh4LSYFjC13+g9qPA3mnw+A4zq0pFp4quUpAMoCZVSEKjil+hQqw5W8Zflbhn0ttdUR8RmKZkelUEpkmtvxxGMUIlEqW9twOnbTUhkp3mcYYYwghMubhx8g71e3fHXhB9gb8bcYjlkmVQF9PMjIDif9rZ4vnf8cF895qng8Ep5XqimJyAxVrJSCCWkOLTJTeAPiIMMw8DwPExeAjGGQIkiSBdyf+GjxcXk7w/VLVtNmuLg9z3Lofy6lJ9dD3s0PGvtXr/8VzfERzil18S1SZBqKZsdKV50i05yXL1CIuDRs2sWBRhM8j4Zem85F8zCcONg9Iw/QF0ol7SgAX1jSzJU15aqUkhFtb+vhmV2HAaiP+b9D1dUvp6HhtdTWXF7KqYnITDSgUsrSv08iI+qPhv7p0X9iXXgHZ1h5gsA75jSyt86gMTGHN7RC1kqxpe4p9lRtYp/b19g80XvMeBE7wlkNZw2/VG+E7caGKtIXmcm0+97xUyglMs0ZrkHGc4gU8kAIwzDpnv+3mE7f/cFRPhkLGQDSpr8z36vrKpgfGWWXPpnV7nuxlQ/c8gwBM8c5Dc8zL74LgKrK82huenNpJyciM5Lr+JUerqdKKZGx2ty5mWRFrnj76DPCXDDF7tOe4sLmC1ledR1V4SoqghXYpk1jtJGAFaA2UottHv8lo67LRWSsFEqJTFOZbZ20P/ASwWgjnUYbZRSAEF5fg/LeYCftsX2cdtGckQfKp/GAdN+uexF9Ay2j2NziV9+9bslDvGbRHcXjgUB1qaYkIjOcV/BDKfWUEhnZwOV7HlDmlhF2eoACPziQ4fKOb/DNa05j6wu7mVc+n7uuu2v8XlxlUSJFhqLZMVMoJTJNdT+0l1/sv4dkJEM+mabOz5SKoVR4Xhdvf/fLOKPujKEHyHTDpt9B24tk+nfrAyLadU9GkUj7PSbOnedX2UWji6koP4P6+qtLOS0RmcHcvEIpkRNhY2P2LegLAngBAgPO+8bHCMv3xvmVRKY6T2HUcVMoJTINOYUCB3fsIBnKYvV0U7ZvOwdq/V3zvL4S67qahZzdcPbwgzz8DXqe/E/+fe5baF3ykeLhsEIpGcZL7b3csf4gj+3oACBk+b2k5s59N/PmvquUUxORGc4tHFm+p1BK5MRM5qWyLsxF+qiCcFQKpUSmofbdO8lmM+QCJunDHlEgWHAoS2fZu3gp0QKEwqO8vRMH+HX9K/j6wvcXD1XaFrZ6dcgwvnDHJh7e2s7yqu1cPu8AMXMveGDbZaWemojMYOt+uwOrLUUV/oWuqX+nRIblDeqy7PUfnKRX13tTpJ+yqLFTKCUyDeUyGTzTgEMZrtzxFFuaaqhKeRjlbyHm+T2kQqFRSrPzKQ4HagBYHY9wRXUZl1QrXJDhtXSniQd6+PtzvodpuMVz3WCgqrQTE5EZrfKx/dj9Z/eGoUbnIqMZkEEZIwRF43bRPNLuewqqZJY59u2g98BoFEqJTEPpZBrHNCjr7cHpO6PoKW/ArVpBqG/XvYXzm0ceJJ8iY/qPOb8ixj8sGeXxMuv1ZApUhhKYhotphqitvZJwqImqqgtLPTURmckCFq7rLwaKn1GPoa+fRU6I13dxPBnvoEkrzhKRaU+hlMg04nkeB555if+96x5y0QLRgoPT1wPqUJVNNRCvWscrPvAempeMshNaLkUmFAIgrB33ZATfu38ba/d00d6TZXGF30cqHG7mtNX/VuKZichssPDLF5d6CiLT02TntwqMReQEKJQSmUZye3vY/JtnyAUKGNkMpnOYjrIIAJ5hgwfVVTnmLK0ZfpCn/gNe+A20bSK94GUAhLUUQobRlsjwjXu2ErSyXDLnSZZW7QHAtrTUU0REZCoa7axu/M/6tPueSL+j3w1awjo6hVIi04jTlaWAvz6vouUgDr0kIn61k2vFoAChU64YeZA/fhFyPQBk+rYEjmjHPRlGZyoPwBXzn+Ety35VPB4IjhB8ioiIyJRgeEcuiL2+SqaJWlnXfqCFfc/fAcAeMwaBarpaD7J2//MT9Iq++avPoGbuvAl9DZHjZWgHyjFTKCUyjexZv54CLlnPoreQIQI0dPUSjyd5In4FdEE4HBl+ANeFXA/fmv8uvr7oA7h9yb2W78lwejJ+KNVc1g1APH4KFRXnMGfO20s5LRERERnCwN33PCa3Uul///2nJHt6Adiy8ly45Frad+/k/nt+PqGv+6q//rhCKZl6VCA1ZgqlRKaRgy++iGOU07sjy4KeLpLhAFW5crZVXUV1ciEAkXBo+AHyKQD+r/ZlRwIp0+Cs8uhET12mmbaeDF/5/YvsPNTL/LK9NEZbAKivfzWLFl5f4tmJiIjIWAy1dKh4ZLx6QHl+Y/P+QGrJOedzoGExAGXVNSy/4GXj8zrDKK+tm9DxRY6Hd3SXf/VaG5VCKZFpxMt7FEIuZ+1/kUyF/4G3v/lKAvZpBPyCFhpqR1hW1RdKpc0wADevXsQl1WVEVSklR7lz/UF+u+4Ar5j/IH974a+LxwN2ZekmJSIiIlOSOyD8uub6T9DVmYat+2hatoLXvfFVJZyZSGlo+d7YKZQSmQY8z2Pr2k2sD/eQNXuYV8iT7OsDlYjHiABrLqmlbkk9804ZZte9XY/C9nsBSFv+Er/6kK1ASoZ0OJkD4Ow5nQBYdiXx2GJqa0fpWSYiIiJTitF/bTyBBRyOe+R80rR1iSkiY6dPDJFpoPfhfTzyx/vptvIEDrXQ3uDgWP7b1zD8gGn1K5ZSWT/MMrx8Bn56HRTSAKQtv1JKDc7laK7rsbMjyd5Ov6quPuaX4C1Z/LfMm/vuUk5NRERERuHhDWpuPuTOX+NewOHhDHhNS6GUzGLHvr20fG80+sQQmQYSW9rIG/6ue7GuThzL/3AzzQImVQDYAWv4AbI9xUCKM/6cdLAcPFQlJcf4x99s5OdP7cXAJWTlCVkp8MC24qWemoiIiJyUibs4djz/nNIwTUzT0sIlmfXUSmrsFEqJTANt27eTDzuYHSmcbApMOGN3K49e3ktNp1/1ZAdHCJjyKVwM3nPav7C29mWk8gVAlVJyrPV7u7HNPP980Vepj7YVv+6xbYVSIiIi08lwwdBEXCz3V0pZgcD4Dy4yjRzd51xGpytSkemg4HLINbj6wfsIOn6g1N74CrL59xcfEgiOUCmVT7M33Mi91RdwqC+Qag4FqAool5bBEpk8DdF2P5DqEwjUUFZ+eglnJSIiImPhDRlFTfBVsucVK6WOXrqnYhERvQtGoytSkSlu8+bNvBBqp8N1Kc+ncEz/g6297lyaeysBCEYtTHuED7x8ilRfc/Mq2+LXZy5lfiRIwNSHpPgOdKXZ0d5LVypPYyQDQCQ8n/PP/z9MM4BhjBB6ioiIyJQ0sKeUNwEXx04hz96uCB1Jv52EZfuVUp7KRWSW01XW2CmUEpnC8ukst912G07IwUn7y/TcviDJMCzi8UdZc9mbaD5tHsZQtdhOAV78Hex7hpTpPz9uW5waj0zazyBTXzJb4KpvPUxvNk9zrIXFFbsAsAPlWH1N8UVERGSaOfrUsP92X150Msv4PM+jp6OdJ/73F2zc0lg8bgdDJz6oyIygQPZ4KZQSmcL2//A5HMdvcD4nHSMVtPGKZxA21aeXccZrVw0/wNa74FfvAyBdeSag5uZyrIPdGXqzBc5vWssHT7u5eNy2y0s3KRERETlux1QojcP1ses6rL/3/0h2HiabSpLs6mTPxvVkU8lBj5uzaAGrr37DoGND7v4nMovoPTA6hVIiU5RTKJBu7YEwWMkU4dZnefDUBUceYNhEFp8/8iCJ/TiYPDLnKv4055UARNXcXI7Snc4DcEqN30fKtssJhRqYM+cdpZyWiIiIjEFnZydPPvkk6XSalVtWEnI2A/6XmoVCYcAj+0uk+m+P7WJ51/rnuP/HPxz2/qpwjrfOXUv8+n+G5jMHvpLIrGXoXTBmCqVEpqj2HS9RMBwcz2Bfh8GpeP6/8IaJEViIYQSIR6MjD5JL8pv6K7h+6WeKh+K2QinxHU7m+Nd7trC9rReA8lAWgLlz382SxR8v5dRERERkjB5//HGeeuopACJEGBg2GX3/Dwb0lDqOa+WejkMc2LIZgKqmOSw68xzi1TUEQmEq6xtYeMbZ8M2VkMiNy88iMt2pndrxUyglMkXle1IUcIl1dHPt9sfZ2lRD2JgPVW8GwDNcVi5cNsogafaEmwBoCNqsiIX56/n1Ez11mSZ+u24/P3tyD/WRdq5esIH5ZS8BYNtlJZ6ZiIiIjFU263+ptGTJEh5MPciS7TlCjv8l5Lx58wgEunHzhZGGGNKu9c/xv//v88XbC04/k8vf85cjPOPYyquT6VslMiPoPTAqhVIiU9Ch9kPces//kQ5mqUv04PQtuXOtECbQfOYhLnndqymvHqVSKp8iY/oNJ19bV8lXls+d4JnLdHI46X+r+dGzb6M5url4PBioKdWURERE5Di5rgv4odQvW3/JYuNIqYZpHFsh33+N7BbydLUcBMDDo7fjEPlsttg3avfGdYDfvDxWVcWKi14+9ASGKA1RsYjMdgpkx06hlMgU47kez9/8COlcFgwwCnmytgVAOhIiBtSduZCa5vjwg2z4Jdz/ZUgeIjP/vQBE1OBcjpLo6yVVE+kEoLbmCqKxJdTVXVXKaYmIiMhx6A+lzCH6hu7f/AL5bBYLcDz/cX+86QfUhV9Jx/693PS3N4w6/sve9m7Ofs214zpnkZlKgezxUyglMsW4yTzZrhQEoLHbJVk4xL4afxc0A7/qKRodIZACWPtT6NoNQLqvUiqsBufS584NB/iPP+1kT4e/a45t+D2lli79DLHY4lJOTURERI5T/457pmniDbgk9o75S/EJABiGQTASKR627ABlNXWYtkW8qoZAOEw4FmflpVeMbSJDlIaoWERE74LRKJQSmWISB1sp9O2Y0t29A7vvc8zyCmDPAyASDo88SD7t/3nVV8hEL4fOPGFTH4ji+4+HX2Lj/sN85Iz/ZF7Zfiz6wqlAeYlnJiIiIsfrmEqpgSGUB3YwgJfJFZfyvfwd72Xz7QeoW7iIP/vH28ZhBqoNETmadt8bO5VOiEwxmx/+EwXD5SWnmu00ANDcbUCkAdv0Q6nKWMXIg+TT3NL0es4uXMgd3X5jSy3fk37d6TyN0TbW1L1AdbgLgFCoiYBdWdJ5iYiIyPHrD6WMYZvY9O2+13d/KBqbjGmJzErafe/4qVJKZIrJJlIUMFmyZTunHl7H3ppy2houIhA5v/hFVGV8lN3R8il+tvC17Hcs+p90SmyU6iqZNXoyBaoDKQDCoWZOO/1GopGFmKb+SRAREZluBlZKeQOviA2vP44a9PiJa8Cs5Xsix9K7YDS6AhGZQtavX89jiQM4Fixr340T6PsQM2wKRg+LF1XSuGo+kbLgyAPl06RNP4T61xXzuLS6jLnhUZ4jM1pHb5aP/c862nuyNEfWsabueQCCwVrKy1aXeHYiIiJyokZqdD7kCqLxruQYavc9VYvILKfd98ZOoZTIFJFvS/H0b/9EDhfwMLwCOcvfdQ8jQEfVLv72Ex8Ge5hwyfPgNx+GnQ9Dz0FSlt/gfGU8okBKeGhrO3/adog58QN86aIfFo8HgjUlnJWIiIicrIGNzo9mDKjS8AYcFZGJ4SmRPW4KpUSmiOz2LvKFPJgwd38HBxoMIAqAgY0RCQ4fSAGkO2H9z4/ctPzdVCKWTjzE7yMFcPHCHACWVUFt7SXMm/veEs5KRERETtaIlVIwbGXU8D2oTpB23xMZoG+XS70LRqVQSmSKSLS2UcA/qeju3QuA6XrkAwFC9lyi4cTIA/TvuGfa8Bd/JLPNBNcjMtwJiswaecelM+WHUnMq/N+xivLVrF717RLOSkRERMbDoJ5SeGO4BB739XtDHFG1iIiMjUIpkSli26OPUYg6pLwAEfw355l70zx3/kUY2XLOm7di5AHyaTzgn5b+Deta4qTcJIBCqVnulsd28aU7N1EfOchrFq1nTrgdAMsepVm+iIiITAuj777Xz+h73ARPSGQWOyaO1RtuVAqlRKYAx3FI5rPkKNC206PBdcCAjaddTyhbBUA4NFpz8xT7Qg38e9O10O0HUuW2SUXAmujpyxT2xxdbcVyP96z8OcuqdhaPB4O1JZyViIiIjJfhlu95gOFxTNfxiWt5M8TyPV2Qyyyl3/yxUyglUmKu63LjjTdyqKobx4GPPfMr7lu9ADAwjAAYaerm1bP07PqRB8qn6bX8HlTltsm3T5nPqniEkCqlZrVEXy+pJTVJcKGu7lWEw03qJSUiIjJDDFq+53mjrs4b94vloXbfG+/XEJlulEqNmUIpkRLr2X2YQ4cOARBIJDhQHT9S5mkEYN423voPrxl+gO798Ou/hK49pK0YAOW2xavrKid45jKVPbS1nf9+fDfb2noBMD3/z6VL/j+i0UWlnJqIiIiMg1wuRz6fx3EcYIRG5328oy6SVcQkMv6OzWj1RhuNQimREjt870sAWLkc0ZatvDjHX1blt6kMYNXOGXmAbffA7kcBSFecAaiPlMC37t3Kur1dvGflrVwy94niV5aBQGVJ5yUiIiInb+/evdx8883FQAqGXipnTGbJknbfEykyVC84ZrpyFSkh13Fo370HADPvL7OyHJeG7h46GxdjGCZ2cJSeUPmU/+fiy0i/6msARCy9tWe7rlQOgIvnrC8ei8dXYtsVpZqSiIiIjJOdO3cOCqQqKytpbGzs231v5Cho/IOiIZbv6XpcRMZIlVIiJdS6czvZbAYCsL1QwWog4Jr0zv17mrN+f6jqssqRB8mn2Beq5/ON72NHTwWQIapKqVmvN1vAwMUy0gBccP7dRKOLMAz9boiIiEx1juNQKBTo7e1l3759HD7st3vIZrMcPnyY3l5/Wf7LX/5yrrjiCmCYSqkBEZSnuiWRCecdFdKOFhKLQimRktq8dRu7QodJuTbBth4APDOCY/uBlGHBhWecOfIg+Qy/rbuCPwQWQjIDwNzwKDv1yYyULTjc9MhODvXkyGQTzCtrL94XiczHMLQTo4iISCl5nkdPTw+FQqEYNq1du3ZQ1RNAMpn0m5aPYu7cucPucFfsIXX07nsnNPOx0PI9mf6Sye10d6894ecXent4WfNL1Ef2jeOsZjaFUiIl0t3dzUNPPQMBqD/Ywau2P87ahY0Y+MHBmUt2cM5H30cwPMrbtJChty/Eury6jHc11/DyqrKJnr5MQfe92MbX7tpCVaiTr13yZUKWvyTUNMOYpoJKERGRk+V5HrlcbtDt7u7uYlVTJpPBcRwSiQSZTIaDBw+STqdJJpPF+45XRUUFtbW1VFRU0NjYSCgUora2lmg0SlVV1Xj+eCdGu+/JDOF5Ds8+93by+cMnNc77Vh/5u2EGTnJWM59CKZES6e1IAGAXXOoSWTriEQDyAZsAECkPjRxI7X8Odj4Ee58kFTwXgJXxiHbdm8Vauv1KufPndRKy8niY2FaUpqY3lnhmIiIiU5vneezdu5dsNktvby/ZbJZCoUAikaBQKNDd3Y3jOLS2tpJOp0/69QKBAIFAgIaGBsrKyli8eDGNjY3F+y3LorKysvjYEzZUOtR/TNvvyQyVSGxgw8YPUyj0HuczPRwniWEEqKl++Qm99uFkjuf2dhIP2ly8bB7NTW8+oXFmE4VSIiXgFVxa/3sjAJGWvRxy26HWb0DdGwlQBQSWXjzyID9/G/S2ApBe5n9oate92cl1PZ7d08m6vV0ArGz0fw+qK8/jrLN+VsKZiYiIlF5nZyd79+6lt7eX1tZW8n2bywAkEgna2toGVT8dL9M0icfjWJZFeXk5lmURDoeJx+MEg0EaGxuJx+PF+yKRCMHg5FQwG1BcBjjhWZRCLpkCXDdPa9sfyGZbTniMmppLWXP6j07ouY9tP8S//e5JljfE+as3XnrCc5hNFEqJlECqvZt8Ng9BIO9Xt5Sls6RCLpmyJZAFOxodfgDPKwZSidPeQXeF33cqql33ZqU7Nhzgb3+xDgDbyFMR8r/BtW0t4xQRkZkjl8uRTCY5ePAgzzzzzKg9l3p6eshkMsWm4GNRU1NDOBweMlwqKyvDMAwWLFhAOBwuPseyLMwp8sXgWPpQ9Ru/DEnL92RqaGu7mxc2fQzX9UPmhQs+TFPTW45rDMMwCIfnnvAciuGvOqqNmUIpkRJ48Mc3UcliABwnhwUY8VcSKD+Hpqz/GDs4QlPqgh9kfWHxh/lh9duKhxVKzU472vyT7fes/h2XNP+xeNyy46WakoiIyLDS6TQ7duwgn8+TSCRwHIeenp5B1UqO49Dd3Y3rusVg6UT6MQ20ePFiIpEIzc3Ng5bE9fdqmswKpkkzMB0yhjgmMoN0dj5eDKQsK0p9/auJRheUeFYyGoVSIpOsp6eH7cluAvZuNhSaOM3bQjlZMtEm+iOlUMymfsEIVS55vxLmoapzi4cqbYvzK2ITOHOZqhKZAgDnNb1QPGYYNtVVoywBFZEZ74YbbuDXv/41mzdvJhKJcNFFF/HVr36VFStWFB9z2WWX8dBDDw163l/91V/xwx/+cLKnK1OY67okEn4/zJ6eHrLZ7KD7u7u7yefzxXCpvw9Tf1+mgYFST0/PSc3Ftm0Mw+Dyyy+nrGz486WBy+mqq6sJhUIn9brT0cBaDW/CKzeG2H1PxSIyiTz8z5kFCz7E4kV/q41+pgmFUiKTbP369XQGLaCbKx9/GuKdZII2YGO4Cf7i72qxll6ENVLVU1+lVNryS8d/fcZSLqiMYepf/lll7+EU92xqZe2eTgAChl8xde45txOLLceywiM9XURmgYceeojrr7+ec889l0KhwD/8wz9w1VVXsWnTJmKxI19k/OVf/iVf+tKXirejIy0hlxnDcZzif93d3SSTSdauXYvnecUd47LZLD09PSddpTSUOXPmUF5eTjwex7ZtysrKsKwjleKhUIh4PI5hGFRUVAy6LUPzSlEGpd33ZIrwPP9zyirhztP9bwd9TI2dQimRSZbJ+IFSYy7K0u6XeKGi2r/DCOBZWYJ1zTDaMry+SqmU5e/YV26bCqRmoU//egOPbu/g4uYneevyA5j4oVQo1KhASkQAuOuuuwbdvvnmm6mvr+fZZ5/lkksuKR6PRqODdv6SmcHzPDZt2kRvby+9vb1kMhkcxyGRSJDJZI5p+j0Wtm0PqkAaeLy8vJxAIEB5eTmmaRKJRIjFYkOGSWVlZcTjWmY+EYwBidBQfW10yigzVl8iZBgjtEGRKUehlMgkKvTmOPzMPnBd0jufYP2i2uJ9hmHjlFtQvXj4AZKH4JbXQ/deANKmX4YetfTBOxvt70xTG+ng/auP7LBnmkECgYoSzkpEprLu7m4AqqurBx3/2c9+xk9/+lMaGxt53etex+c+9zlVS00D7e3tZLNZ9u3bRzqdHtR7KZFIcPDgwTE3vrZtm2g0imEYLF26lIaGhkEhUyAQOKaSSaaJ4u57E5xGDZF2Kf+SydRfKYVCqWlFoZTIJNr008dwe/MYXqHYhM/2omSj9WCUYfbtmjasPY9D2wusi69gc+VFxUqpiKV/8mejRKZAVdDv72Hb5cxpfjuVledimrOvZ4aIjM51XT72sY9x8cUXs3r16uLxd7zjHSxYsIDm5mY2bNjApz71KbZs2cKvf/3rIcfJZrOD+gn19xmSk5fP54tL5np7e+np6aG1tZVCoVB8TGtrK11dXcf1v7tpmqxevZqysjJs2yYUClFWVkYwGGThwoUYhoFt21NmBzk5cQOX73kGg9fR9f19/JcXDbF87zh2ARQZL/09pUq5811JltBOcwqlRCZRywvP4VRGMfr6MpiugV3zoeIbsa6xcuQBckkO2+W87qwfkDeOvH3j+tZy1vA8j8/99nk27k/QmcrRXO0HmeHwXJYu/WSJZyciU9n111/P888/zyOPPDLo+Ac/+MHi30877TSampq48sor2bFjB0uWLDlmnBtuuIEvfvGLEz7fyeZ53rBL2XK53DHNuZPJ5KDqpIESicSgneSOvi+fzw/5vIHh01jFYjHC4TANDQ3EYjHKy8sJBoPFJXOBQIC5c+eqwkmKZUv6KlNmKs9zAS3fm24USolMEtd1yXoFshRo6w6wCDDxPzAj0ee5/D1vZ86KqpEHySVpC1aTN2yChsHLq8q4qCpOma0P3tlid0eKnz6xh4pgN+885S4WlLcAYNsj7NYoIrPeRz7yEe68804efvhh5s6dO+Jjzz//fAC2b98+ZCj1mc98hk984hPF24lEgnnz5o3vhE9APp8nlUqRz+fp7u4u7hZXKBQGBUjJZHLQ8wbeN1yQNNkG9meKxWI0NzcXQyXDMGhoaKCiooLKykots5QRGXCkQmroe8f71Y46oghMJlFfKIVR+qpPbcgwdgqlRCaB67r86Ec/orU2BV6S1z97HxsX1mB4/gdmLNTKojV1ow+US5Lqa2BdH7L52ZoR+k/JjNSV9r/Fv2rR01w+79Hi8XC4uVRTEpEpzPM8PvrRj3L77bfz4IMPsmjRolGfs27dOgCampqGvD8UChEKTd4y4UQiwQMPPFCsLBpYzeR5Ht3d3RQKhROqMjoe4XCYQCBQvG2aJmVlZcWeS8HgkZ2e+huBD7Ucrj9w6n/MwDENw6C8vFwXMzJ+JmMlkXbfkynCo/SVUlq5evwUSolMgv4dboxCnsiBXexq8HebcS0LCwhY7sgDpA7DH78Ae54gZfnfiEbU92HWaevJsLXVXz5SF/OX7VVXv5y62ldSV391KacmIlPU9ddfz6233spvf/tbysrKaGnxqysrKiqIRCLs2LGDW2+9lVe/+tXU1NSwYcMGPv7xj3PJJZdw+umnl3j2vvXr17N27doxP96yLGKxGJFIZNBOcEc37e7Xf59t21RWVmLbQ58eDwydRKYq9XKS2ay/0bmBrpOmE4VSIpMg1ZsBwE50YiW76Yn43zB3x8PUAuF5a0Ye4MU74LlbAEhXXwBA1NKH7Wxy/+ZWPnDLM8VvX+JB/3equupC5s59ZwlnJiJT2Y033gjAZZddNuj4T37yE9773vcSDAb54x//yLe//W2SySTz5s3juuuu47Of/WwJZju0/sqoBQsWsGbNGsrKygZVEvUHTZZlHXOfyGxnjHRr3Ffvafc9Ka0ju++V/jpJv/tjp1BKZIJ5nsem7zwIAbBcP1Go6s1QnYny1LxzoRdqFpwz8iDZBLvCzfz9aV9kd3whuAqlZpv1e7vxPLhi/mNcOf8h6qNdAFjqJSUiIxitamLevHk89NBDkzSbE+P0bQ7S1NTEWWedVeLZiEwn3lF/+sa/z5Oqs2Sq8H8XS7p8r2SvPH0plBKZYIf27KLSjQBg9oVS+chi9s97G3P6Nt2JRcIjD5JL8bu6y/lTdDl9S6VZHJm8fh5Ser1Zv1fKm5Y/QsQ8WDwejy0v1ZRERCaF6/r/8A3Vn0lEBvPwMAZcFRu6QpZZ5MjyPW0CNZ0olBKZYKmOLhxcPA/2FiIsBBzb7ylVFumhctECFp5eO/Ig+RS9tt9L6lW15bx/Th3nVcQmduIypfRm/FAqYPpJ5qmnfpWK8rOIxdTsXkRmNoVSIuPDO/pv476+aIjle1rDJJOoGEpNgV+8KTCFaUOhlMgEchyHffsP0m12YiRznLt7I+2VYTzTb5Z6+Zr1zHvvtaMPlE+TMv1qquXRMJdUa8nWbOB5Hp/45Xr+tO0QiUwOAxcLfyvz6qqLtOOeiMwK/cv3LEvffIscD88AMCZkPdGedJa2XIG2XJ6emiugkILOPOQPA7C+JzX+LyoyGq9vSUlJd99TeeLxUiglMoEefvhhHnr2KQyylB/YQm/U/4D0jCAGEAwFRh7g8R/AH/8JnBzp5X8PqJfUbJJIF7h97X7mxA/w9Zd9l3jwyAmerV5SIjJLqFJK5DhMwvXw2kSKa57deuTA0o/5f+7LAnsGPTagchGZRF5fnxPtvje9KJQSmUB7nn0JgFhnF56TIx30Q6hsuIIwYC+5eOQBNt9JxoW1FaezN9wEKJSaTbrSOQBOq9s2KJAqL1+DZcVLNS0RkUmlUErkxA3sKeX1B0QnGVy9lPJ3AA6bBnNCQZpbniRQyMDCiyEQLT4uYpm8d84oLSpExpHXVylVykbn/ZTHjp1CKZEJsn/9JpzuNFhQV4hxCKhLpDAi3fSGV+E6YC86d+RB8imuP/Wz/L7u0uKhqJYvzArff2A7j+/oAKA2kgWgqektLF3ySQKByimxVl5EZDL0h1JavidygsZ5OVHfAikuqIjzizOWwA1XQTYBlz8HNUvG9bVEjkd/TymM0n2JocV7x0+hlMgEeenJJyngfzAezrYDkImfBuVn4jp+Tyk7OMoHZj7Ntuh8AOaGA8wPh3hFTfnETVqmhL2HU3z97i1YRoF3nforzm7wS+RDoXqCweoSz05EZHL195RSpZTI6Dw8jFE6mPd/r3WiX3C5/X3S9f2YTDXFRuf692I6USglMkHcXIGC4XLAKeegWclyOkjHmrEDfsgUitqEo6P0lMqnSFl+g/N/X7mQs7Tj3qxwOOkv2zu7aReXzXuseDwaWViiGYmIlI6W74mcuKFyo5Ot5HD7RjDHf/s+kZPi9f1uGpS+sna0cFiOUCglMgGSySTbEp10G3kWbd/KvI7dtFbGAZtgYQdXv30p1WedjxUYvVIq3bfrXkS9pGaNRCYPQHOZH05Fo0tZtvRTVFdfUsppiYiUhEIpkRPjFf+//tvjc5HcvxrQNI46IFIi6fQ+0undFArdQIl7SuntcNwUSolMgHXr1rEvlwIDVnRsIm/2NaU2bMxQO/OXr4Gq0NBP9jz42Zth92OQT5G2/MepwfnMt+lAgr/5xVrae/weUhVh/89odCG1tVeUcmoiIiWzZcsWQD2lRMYi5+SAyIiPOdloyumvlFIhiJSY57kkUzt48slXDTo+FRqdy9gplBKZAPtf3AdA5cEWDlQ2FI8bhs2cWB5qlw3/5N422P5Hnis7lXvmXFSslFIoNfPds6mF7W29XLXgfq6c/zCVfaFUwFYfMRGRWExL2EVGk3Wyg26Xp460ihivAo7+nlLW0fGWmkzJJPI8j2ef+zO6u58rHovHVhAKN1NRcXYJZ+bT22HsFEqJjLP2h/fh7uyBABi9h4vHTcPEsBqJnnEFRKqGHyCfBOD6Uz/HzsgcAAKGQVzfEM94iXQBgNctfYKodeR3J162slRTEhEpude85jVEIhGWLl1a6qmITCuvfLqOyp4AcGjI+0/0orl/970jz9d6JZl8nlcoBlKGYbN0yaeYP//9JZ7Vkb5WMnYKpUTGkVMosPuOh/BCLikvQMxzMYE56WX0Nq0ha1Rhh0dpbp5LAXAo4AdXb22s4pU1FeopNYN5nse+zjQtiTQAQcv/HVi9+t+Ix5YTjWp7ZRGZvc4999xST0Fk2vDwihlRVW+IIQOjk7xmdj01OpfS8zy3+PdLXv4Mtl1WwtnIyVAoJTKOEu2tuNk8hbDDo/kFvMZ7hhDQ3vAyTMMPmWIVw/SS6pf3A4m0FQTg04uaaA4HJ3LaUmKf/NUGbnt2H6bhELMzWPQCUFFxFuFQY4lnJyIiInJEf6Z1bE8phVQymZzi36ZiDym9G8ZOoZTIONq8ZStbo110GFkWZe8l6OYAA8OwKbe2c9bbXsPy84YJGTIJeOSb0PoCecOiYPhvT1VIzXzP7ukkZGX58sX/j+pwZ/G4ekmJiIjIeOnffa+47O5El+8VK6X6B9ZyJZl8nucMuDV1Qim9HY6fQimRcZLL5bjnoYfxwh6G6/J3d2/m/lWL++61mRfaxaqXzxl+gBd/B498C4CMFS0ejmgL7BmvN1OgKdYyKJCqrnoZpjny7jkiIiIiRxsua+q/Vj7Zi+b+RuemOjlLCQ1cvmcYul6azhRKiYyTVDKN53ngepzaHaErdiRYwrCJVMVHHiDtBxLb513JnmXXguOfVIS03+6M15stUBPPABCLLeO8c+/AMGwMneyJiIjIFNMfBRxziqrzFplEAyulptLyvWLoq/fDmCmUEhkn2371IgCh3gR7W55l78KBy/Qs7LPeOvIA+Qy/q72MDy7+fHGJdNg0FUzMUHsPp3j/zU/TkczhOkkqQ90A2HY5pjlKM3wRERGRE2QM8bfj4RzT6FzrlWTyeahSaqZQKCUyDgq5HJntO/HCkMpCEDBdC8MqxwovwTBM7MjoDc43xxYBELdMqgI2b2qomvjJS0k8tLWdbW29vH7JH7h2yV3F49o5RERERCbCeEVHwzc6F5lEfZVSU6lKSk6MQimRcXBw+xYKbp4Wt4zDBYMLACO8ikDsFcXHVNZHhx8AoJAhbfnB1buaa/inpSP0n5JprzudB+DieTuKxwzDprbmilJNSURERGaREy3GP6bR+ZERT2Y6IsflyPK9qRVKFVfvlXQW04tCKZGTlM/n+dX/3U13rJeeXBVX7X2MRFkA+nbPu3j+f9D8zh9RN3+YCpjEQejeC117SJtLAe24N5N1p/M8tLWd53b7PcSidhqAM8/4Lyorz8c09bEsIiIi42PghbE3TpfJR3pK9Y2n7cakBPobnWvp3vSnqx+Rk3T48GG6e3oBsJ2XqMokSZRVghEAL8fiyp2ULygf+sk9LfDt08D1q2bSKz4NaMe9mexLd2zif5/bR320jbPqDxIy/V5SgUCVAikRERGZ8vp331MliJSSN8WX76kt8NjpCkjkJB3a2VfxUrCYn0yTDAcBMLDx7Czldnj4J3fsADdPR7CGPzW/ku0Vp/pjqVJqxtrVkSRo5vjChd8gZGWKxwOBytJNSkRERGYEz/OGbx5lDPrjhLl9L2AefdWtq3CZVFOzUspT5eBxUyglchKShztJ/HYThMBqeYmqnnYOlfX1jjIClHlpqJw//AB5f+nWR07/Mg/EVhYPx62pmfjLyetK5agIdROyMhiGRXn5mVSUryEUair11ERERGQG679UPtlr5v7nHzlb1UW4TD7XK/T9TddN051CKZGTsPGOuzCMCIfcKG7OoQIwzCoMqworuIxQdRRe953hB8gnAdgbqAVgTVmEJdEwV9UOs9xPpq3vP7CdHz60g55MgUUV/v/dg8F6zjn7f0o8MxEREZlVTrKg6UhPqZOeiciJm+I9pfT2GDuFUiInIdeTxCTEhkIzL3M3AmBHr8S2mlh2djWnXLoEIlUjDJACIG36u+59dfk8zigfZZc+mZZ+/dw+ejIFPnjazZzf9BygJXsiIiIy/ka9GO7vCXWCV81Ocfe9owfQZbhMnqnaU0p1g8dPoZTISXCzBTwcTju4lqZUO7mAjWEEsJ0eXvmucyFaPfQT8xn44xdgz2MApM0AoF33ZrLebAHwOK9pQ/FYTfXLSzchERERmfm8gX8dp933jg611ENHSmCqhlJy/BRKiZygp556ij/1tOIFWrl471N0lMf9OwwbkxyM1OD8pQfgyRuLN9OG3xw9rDroGas3UyBo5jHw17+/7OLHCYXqSzwrERERmW2KZ5snWCpVbHSuyigpIa/Y6HxqhlKGGv+PmUIpkROQ29vDc3c+hmN62L2dJMMBCsUqpwDxcO/IoVSmG4Atcy5j2+nvJ5Py34radW9m6Url+NIdm+hI5qgN72RefD8AhmETDNaVeHYiIiIy03h4GKOERSdb19RfGHXMd6m6CJfJ1F8pNcUanatw8PgplBI5AW1P7sPBxS0UiOx7iUTsSB8owwgRsApgjhAw5ZIctst5xZLPk08d+SCNjvQcmXbufqGFX6/dz9z4fr540TeKx227Qt+eiIiIyIQb6mzjZE9B+iulrCPr905uQJGjeJ5HIrGWfCEBnovnFcjnE2SzB4uPyWQO+H+Zoo3OZewUSomcgK2PPUgu5vBAZhFvYB14YIXPxLSbMMwIgYbFIw+QT9ESqhdRnWQAAQAASURBVCVvWAQMg7PLo7ysqoyYPbWSfjk5h3pzALxskd/Q3jDjlJetoKnxjaWcloiIiMxCR/eUGms21Z0v0FlwyLoeB7M5dqf98xtFAbOD6+bwBpT/OE4v2Wzrkfu9PNlMC56XH3YMD49cto2CkzxyzM2RybbgOEkSiY3k810DXjM95vnZVmzMj51M+vp57BRKiZwAN5shHfdIuX6DchOLQPRyTKOT5hWVnHnVwuGfnOmGnhbSpr+8rykU4DdnLZuEWctkSeUK/Pq5/fxpWzsAS2r8f8hrqi9gzek/KuXUREREZLYyAO/I8iIPeLE3TdpxacsV6HEctiYzvJTO0pYt8GIyTdp1cYYphLKOKbnSZXgpeZ5HLtdebAAOkM214RR6i7ddN0c224LrFYrHnEIv2VzbwJHIZttwnBSZzH5SqV3Q179pskWjS7HtGIZhYWARCjdiDQihDMOkseHaksxteKocPF4KpUSOU2trK+2hPEkcLuy6CwDT878rioSe4dqPXTf8k/c8ATe/Ftw8qcqz/Oeoj9SM84un9vKlOzdRFerkDUseoynUAh7YdlmppyYiIiKzRFtVPaloGWx8adDxr710kMuABw738MGnt4xprKBhEDANKm2L2qBNuW1xbX2lf6ea6JyUTLaFfK7zmOOulyObOYg3MEByM2SzrWQy+0kmt+E6WbK5VhwnheNkmKzwyLbLMM3IgNtxgsG6EfuZGWaAUKgRs2/XcQDLihEKNWCZYSoqzhoUOAUCVdj21KyCkvGlUErkOOTzeW666SZy5TlyeYs3b3yRZxfPwexrsFdh50YeYP9z4OYBg3TEb3QdUR+pGaclkQHgnase4sza+4tfmISC2m1PRERExq4rX+Dp7iTtuQIv9KbJuscGQB4eB7J5Uo5Lb+gMwK96+eXrP0DBDvDXf7in73G+7oIz6PlzQgHCpkljKEDQNFgUCbE8FqYpFOD0sggh06Q6MHsuG/P5BI6bIp/rJJ8/TKHQQy53aMzPz+U7yeePhEz+MrWDgyqYCoUEudwh8vluHKd3qGFOmGEcCX1MM0Ao1IRpHPm/n2WXETpqw51QqAFrQABkGv7zDNMmFltKNLJwwPgmlhVFRqb2sWM3ez5dRMbBrif3kMvlMAp5Gg8e4KWGagC8gB9KzQ2O8u1EIU23Fecn53yB5+ZcCR0J7bg3A/Vk/DX1S2r8cKq6+uVUVJzFnDnvKOW0REREZJLlXJe049KRd+jKF0i7Ls8lUvQMCIYSjktbNk/O83s25VyPtlyBXscZdunccMqM4KDb5T1dxzzmL+bW0f7cHl5WFeeGS04nPF7nopN4Fe66OfpjNs+DRM8Gctm2AfdnyWZbikGQB/T2vEBmQKPsgQr5BLn8ITzPwXWzEz39Y5hmCNuuOOa4bZcTDNYMOhYMVBMIVhEIVFNRfgamGSIcburb3bkWy4ocM45MHhUOHj+FUiLHoeeh3QCEEl2QPEBnzP/QtwMBPMCOjvKtQT7DLxqv4V/C50JHAoDqgJqbzxQvHOhm475uNh3sASBoJsGD5qY309Dw2hLPTkRERMaL53nsz+YpDLgC/Y+97bzQmybveRzM5sm5Hh35wkl3mIlbJkujYWoCdl/l0rHhT8g0aQoF+Ny9WwH/fPSDP/sG4fyxVfyLoyHagaBpjlMgdXI/oec5dHevxXWzJBIbyObah3yNbLYFx0mTTu8mnd5zUq85GsOwMAybUKgRywz7vYzMMVYHGSbhUCOmGSoesgMVBIO1Rx6C4VcnWVECgWoikbnj/SOITBslCaUefvhhvv71r/Pss89y8OBBbr/9dt7whjcU73/ve9/LLbfcMug5V199NXfddVfx9uHDh/noRz/KHXfcgWmaXHfddXznO98hHo8XH7Nhwwauv/56nn76aerq6vjoRz/KJz/5yQn/+WRmSnV3ke05TC5k0pqPsxQIOzGM0GqInAqAfc4olTCFNB3BSgBOL4twWVUZb2+qGfk5Mi1k8g5v/eHjJHMOVy+8j9eev5aQ539jp15SIiIik8/1PHqdwVXsLdk8vQOqlLJ9AdLAcOmF3jT7MjlcDw5kc2QGLJlLFBzacvnjrmAygfqgvzyuzDZZGY9QZR+5FGsMBYhZJuW2RX3QJmiaNIcCBAyDuqCNMcYqpC+6nfSHUsFCflCPn/7d9zzX71HkOL309Gzywx43c3w/EJDLHaKQ74Z5IfACOPt+RJYkeK6/NK3QfeyTPI9M9uCgaiRnwI5sJ8owAsSii7EDlcVjgUAlwUD1gAdZxGPLCA8RAPkhUSOWFcGy4gSD1cc8RuR4jNRfSwYrSSiVTCZZs2YN73//+3nTm9405GNe9apX8ZOf/KR4OxQKDbr/ne98JwcPHuTee+8ln8/zvve9jw9+8IPceuutACQSCa666ipe8YpX8MMf/pCNGzfy/ve/n8rKSj74wQ9O3A8nM9amh++nUMiyN1BJ3vH/Mc9HlxKIXlx8TNXCppEHyWdI931rcllVGf+wpHnC5iuTqzOVI5lzMA2PNy39A7bZvy2uQTS6qKRzExERmUk8z+PJ7iQ9BcffNa7g0Ou4tObyuJ7Hhp40Lbk8PQVnUKA0EeIDKo0M/Cqkj8xvKIZLIdNkbjiAiYE9RIXTSPp3U8vl+pap4ZHNHMAZZnlZLttOrXUkcFvwin3YhgsbBj9u27YvA++kq+sZnnr6u8c1pyEt6Fsu1vLTkxomGl2KZYWIxZYRDh17jmyaIULhRgwsyspWEg43D7gvOKgySaRUtHrv+JUklLrmmmu45pprRnxMKBSisbFxyPtefPFF7rrrLp5++mnOOeccAP7t3/6NV7/61XzjG9+gubmZn/3sZ+RyOX784x8TDAZZtWoV69at45vf/KZCKTkhPYlu8paJUzC4ZvfjHKoMAX4jwUvPvZu5r/0nKhuGKevd9SjsfAj2Pkm67CpAu+7NNIm0H1TWxY1iIHXa6u8TjS4mEplfyqmJiIhMWTnXJeN6ZF2X/Rm/Yml/NkfacVnfk6Ytl6c779CeL+B6fkPvpHPiO4xZBjQEA1gDKo8qbIu64JHLIhODJdEQS6IhQqbBnFCw2C7JAJpDQaJ9VU3953Oe5/T9VyCd3nvkBV3o7fKrhjy3QDZ7kEKhd1C/o4E8zyGTbcF1s6RSLx13FdHcwJGeUmXNKWzLAYJDP9gwCAbr/J5EoSYwju/c1DAsf5na2p+D58KatxGINhMIVGMYFqFwI6Zx7Gv7PZCaMQa8XjDYgGUpVBKZjaZsT6kHH3yQ+vp6qqqquOKKK/jyl79MTY2/zOnxxx+nsrKyGEgBvOIVr8A0TZ588kne+MY38vjjj3PJJZcQDB75ILz66qv56le/SmdnJ1VVVZP+M8n0tXfvXh7ethsvAuGEQ7SQAUJg2Hheljn1qeEDKc+DX7wdMn4Jc6ry9YB23ZspktkCP3xoB1taegiaORZW9u+gYlJXd/WYy+1FRGR43d3P8eLmf8RxUqWeiozC9QzaqSLnBThEFa5n0kElWe/IOfkhKtnrNpEgxl6vicIJXJIYuMw1WomSodroIoBDldFNlAwWDovNfVSRoM7owOZI+GPiYeEOLmfI9/030AhZ0IFjjnhks2143tGDjA9jwM5pphkmFGoc8vzCMAIkWl8q3t77SAMBA5o51DdL/zlLl36ap9fupabmEl7+sr85+QnedhN4Drz+76F8lFUDIrOFLgHGbEqGUq961at405vexKJFi9ixYwf/8A//wDXXXMP/z959x0dR5g8c/8zM9mSz6YXQexEsoIIiikizcSe2wwK2k/th9xTLKWI5TwW7B+opcnegnp4FsWJBQZFTBEHpvQfSdpNNts78/phkQySEBBI2Cd/36wVkZ2dmn12yu898n+/zfRYtWoSmaezevZvMzOpLq1ssFlJTU9m9ezcAu3fvpkOH6lNmsrKyYvfVFJQKBoMEg1XpsD6fr6Gfmmim1vy8HgNQdB1neBOlDrNjpSgWQtYQbvv+q2XERMMQ8PJp2inM7P5/LLeYv7uy6l7L8Mkvu3nuy/WkOQp46oy/4bCYnyEWS5IEpIQQooHk7fkIv39tvJtxVCrBzXKORUejkDSC2Alip5A0QtgoJI0wNgpIJ4pGVDn0ywun4SeRUqyESKUAKxFas4109pBKAXaC2AiSRgGJlGIz9i/iXZPob35unNBRFVW1YbEkxW4rVGQNqQ40zYXdnonVmlK93lG14x04HDmAgsdzAlZrLf3M39i06nhOqfjZu9GDuZxOfrV9NM1R0a4G7qdIv0cIWX3vEDTJoNSll14a+7l379706dOHTp06MX/+fIYMGdJoj/voo48yefLkRju/aJ70UJQ9izYTtSho+VE6FhRTmFi51KqNNDWCpffFBz5BpByAJ9pdzS+WNrHNrR0HSKUWzcqeEjMIdVr7/FhASlEsstqeEEI0EN0wmOntwAb+hOLsgt/SLt5NOip4o1AYhr2RQzvepUKyBVIsYFcgx2YW+66UZoU+LvP+volmUoFVSUBREir2qOwz9aM5MKek5aIoCpqWUG1qWpOhYGaIVV41N1gMSa7ChRCHrkkGpX6rY8eOpKens379eoYMGUJ2djZ79uyptk8kEqGwsDBWhyo7O5u8vLxq+1TePlCtqrvvvpvbbrstdtvn89GmTZsa9xVHj7wFq0hEZUM0DS28g+MARU1C0bLRbF1wZmdDTp8DnyBsBqVKLGYn67b2WZzkSWBQiqzI1tzpukFxuTlK2z3L7HympZ3Bcce+Es9mCSFEi/KTr4xXSnqB0gvqv0CYaCAneRJItWrk2G1oCmRYrXisGskWjXSbBXdFYW+AdKsVaz2LeovGodYYeZL/GyEam7zL6q5ZBKW2b99OQUEBOTnmHOUBAwZQXFzMkiVL6Nu3LwBffvkluq5z8sknx/a59957CYfDWK1mMep58+bRrVu3A9aTstvt+63yJ0RpXj4RRcdv2Eg1zOFCzXYMVvsJ9Oij0m1El9pPEDbrXwQqijeek5FMr1imlWiuvtuQz3Uzf8QfiqIpURKtZvDRYpFgoxBCNKSSiDn5Ktko5A+ppXTNOlWmwB8BKgo5ditOTSXHbiXV2iwuG0Q9kpYa/qJZLsOFMCRzsN7i8u1SWlrK+vXrY7c3bdrEsmXLSE1NJTU1lcmTJzN69Giys7PZsGEDd955J507d2b48OEA9OjRgxEjRnDdddcxffp0wuEwN9xwA5deeimtWplLg44ZM4bJkydzzTXXMHHiRH755ReeeeYZnnrqqXg8ZdGM6YEIUaKE1TB2a8VqKooVS7SEwSPToFPyAQ6Mws9vwG5zHd5y1Zy/75CRwxZhwbp8/KEoY7q/zZC238S2W7TEOLZKCCFankjFVKNUChmXWkS7nLQ4t0iIpqtOF8QNfc0sRXSEEIchLkGpH3/8kcGDB8duV06ZGzt2LNOmTWP58uXMnDmT4uJiWrVqxbBhw3jooYeqZTHNmjWLG264gSFDhqCqKqNHj+bZZ5+N3e/xePjss8+YMGECffv2JT09nfvvv58//vGPR+6JimZvzU8/8f3yBRQnuTlnxackBsLkJyWCYkHTQ2A9wIp7AJsXwPv/F7tZrpq/v7LqXstQEjDLpJ7W5pfYNkWxkJIyIF5NEkKIFqkyKKURqbYKmRCiLqoGQytX35OEJiEaT6xkm7zP6iwu3+xnnHEGRi0R9U8//fSg50hNTWX27Nm17tOnTx8WLFhQ7/YJAWAYBm998BGRZAWMEoZv3sPqVukAKFiwq0GwJx34BKVm3bN/dLyKX7NOIayabzenTDloEUoD5lROi1IKwEknzsXlaoem1RKoFEIIUW/hii6jii5BKSEaUkNfNctVuBDiEMg3uxAHkPfLHiIVNaSytu3ku677FL1XLDhz0iCzx4FPEC5jiyObv7QZF9vk0lQSJCjVbOm6wZh/fM/3Gwvpk/4LV/T4FRWz0LnT2VoCUkII0QiiFQOZFiKoijXOrRFC7E+m7wkhDp0EpYQ4gLLVewHYEE3DGVhV8WbRUNQkVEsutsy2tY8IhQP4KopeuzWVG9tlcaInAZtM32u28kuDfL+xEIDrev8LV0Vxc01LRNMSajtUCCHEIQpXBKUkU0qI+pPkJSGOrMoQrSLzZOtMvtmFqEE0EmbN4i+IJih8F2pLT92sH2RLGoNqs9GqlZtjh7Sp/SThMgKqDYBUq4Wb2mU1drNFIysuN38PUl3EAlLt2/0fqWmDUBQJNgohRGOQmlJCNIxYTalGy2ySi3AhRP3JN7sQNdi6fh3bDR8RVG7/6XXCnnIimgZo2NyL+f2Vo6FNLav/+PPBn0+wIihll+yoZm/md5v5dn0+ANnuSGx7x463oChavJolhBAtXkSvDErp8nkrxEFIWEiIpkGyFOtOglJC1OCjd95lrzuKbljoULaG1ck5FfdoWImAVktNi0UvwKf3AFCe2h8AhyafSs3Z5nw/k+b8SrLdyyXdvqBzatW0PblAEkKIxhXeN1NKlZpSQtRLLV1QuWgWouHVtqCbqJkEpYSogd9XAg4HmdEUrHoEveJbW1E02kbKwWI/8MFbF5n/KipBRyoADsmUatb2lAQBGNlxEWe1mR/bbrdnx6lFQghx9Ni64z/AqWhEUWUgQIhD1ui1biTKJYQ4BBKUEqIGlUGoHpH2WKLGPl+yGolGGDTbgQ+OBNFRmDbsdb52doaiUhyqfEk3Z76KWlLZiX4AUlMGkpIygLT0M+LYKiGEODqUlm+lMiglgwFC1KygNMiWwjL0SNVKwPNTT0VXHZzFusZ7YMkKEaJGEqOtOwlKCVGDaMWHiA5o+j53KBqacrCgVICfknryUCAbAqUApFnlrdYcLdpQwHX//JHSoFlDKsEaACA9/UzatBkbz6YJIcRRY5bxBwAy0wbidveOc2uEaHpKAmFOf2I+pcEIrpz2gA+ANe5uWKJ6tX3TE+1YZLBUCNGEyJWyEL9hGAZGxUpqUUNBrTYApKEqkdqn70WCFFsSAciyWbg6N4MLslMar8Gi0Xy9di+lwQjndvyEM9ssIMlu1pKyWJLi3DIhhDj6ZCe0QpGhZyH2s9sboDQYQVVAUYOx7R38m8kKF8Vu92zl4bOrBrFzyd5Gaom8P4UQ9SdBKSF+46cXl2NY7KjlJWzc+g/Wd26/z70qWm4fSMg48AkiAYKqGbRo67Bzc/usRm2vaDy+gDlt75xO32NTSgCzrpjb3TOezRJCiKPKvR1zsCgKF2enxrspQjRJwYiZDZXhthNKXA+0AWBY/pc49qnD5nFZURJs7GzIB5fpe0LUqNFqt7VAEpQSYh96VCd9UxGGw0Dxl6Lrodh9qqUNiqKg9R1T+yThcICQkg6AXdKjm6VwVGdtXgnbiyoyo5QyAI499hXc7mOw29Lj2TwhhDiq3NhOBneEqE1lUMpmUQn9NkZUS59VMg+FaHgSp60/CUoJsQ89FEZVVPJ1OxGfnU6AXWkHSeeAYkezqGS0ddd88IKpsOZjKNpMIL0jADYJSjVL/zfrJ+atzCPZ7qVLcj4qZi0pT9JxWK3J8W2cEEIIIcQ+QhVBKbtFo7TWPRu5XypBLiHEIZCglBD7iAbDGBi4dxdx0pb/sT47FRQbiupgQLd5HPOnh7A5anjbGAZ8+QgYUQCCmllzyqGqR7L5ooGs3OnDY/Py2GmTsaiR2HZNS4xjq4QQQggh9heMmP1Pm6bWb8pQg8SQJC1EiJpIjLbuJCglxD6KC4soUEpJ8vswKj5JopqGBXAnRWsOSAFEgrGAFBe+SkjrBrsjMn2vmfKVh8lJ2INFjaAoVhyOVmRkDENV5SNTCCGEEE1LaJ/pe/upqSsq84uEaDSGBGrrTa6whKiwYcUK/vX222BXsGpF6BVBqZDVigUzJfqAIub0rtnZZ/OPsp7sDZsBKrtkSjUrv+zwsmFvKaWhCK4ks56U292LE/v9N84tE0IIIYTYX1Q3KA2aWd32moJS+5LUDSFEEyRBKSEqbP32W1AUNENFUcrRK7KcVKwAJFhtBz64Iij1UuuLWO2vWoq3o8veeA0WDWqPL8CoF75FJciJWSvombYGAIvlADXEhBBCCCHiqMgfYvjT37CnxOx71pgpta+KmFRlolTDzN6TrBAhxOGRoJQQFSJB8wu9g56JL2JFr/imtitmMEqz1fJ2qQhKlWtOAB7ukstxbhcnJLkar8GiQW0rKieqG5zdaQG/6/R+bLvVmhLHVgkhhBBC1GzVbl8sIKUoMKhLBr+srx4kktwoIY4sidPWnwSlhKgQjZipz5qhoujh2PQ9XVfRALW20aeI2SEIqmYA62RPAr3dEpBqTnyBMAAdkn0AuFydSEzsRru218azWUIIIYQQNdLNUlJ0zUpkzg0DcVg1/r6+tiNk9T0hRNMjQSkhAMMwCJQkACVEgj4iepRSR+V0PbOWlJaUXvPBaz+FNR8DEKoIStmkllSzsb2ojI9X7ObXnV4AEmxm1ltuq0tp2/bqeDZNCCGEEOKAohUpGRZVxWE1+6tKfbI0ZPU9IRqNIkHaOpOglBDAnpWFGBE7aAb5279FVyDkcgBgKGZdKO2EP+x/YHkxvP6H2Mp7AdWsP+WQVfeajckfrGTeyjyyXHmckLmbNMceQGpJCSGEEKJp03UzIKTV0u9UZAKfEEeUTN+rPwlKCQFsX7GWKDrlAXDr5jQu1doJRUlAs3bBYlWxJiTuf2Cg2AxIqRboexVB1Qxgyap7zccubzkOrZzJp0zBqlYVqbdYkuLYKiGEEEKI2kXqEJSqZr/MjYYOWEkATAhRfxKUEgLYvXYpOjY6/byGEo+5zZpwDlZjD/1OVckecCyatYZAU0UtKcPuJjDicaLfLAfAJplSzYavPEKqoxirGkRRrCQlHYvdnklq6sB4N00IIYQQ4oCi9Q5Kmf80aCaHpIUIUSO5Gqw7CUqJo16kqIiy3bsIpeWSXF5EicdacY+GnrCVvgMyoesBVmCLBAgoNob2fp51FQEpALsEpZq8N3/YypItRRSUlNA5OR8AhyOXfn3fjHPLhBBCCCEOTq8ICGm11K6RsjZCHFkSpq0/CUqJo96n/3iFXzM1YDe9lVIgBQOzOJ3FEgaL/cAHR4JscrVmnbN1bFO/JBcumb7XpBWXhbjrnRW4ND+PDHwYt80PgNWaHN+GCSGEEELUUeX0vfp3O83jGjxgJREwIcQhkKCUOOptLfPHftZ0s2A5ivnt3iFadpCgVIBAxYp7OXYrX53YjSSLJqstNHH5pSEMAzqm5MUCUopiJTNzRJxbJoQQQghRN5WFzi11jko1Rv9U8kKEqIlcDtadBKXEUS+k66AojAgdR4HxEQBqxZe2nVoypQo2wO5fCFYEpVyqSrJV3lJN3ZrdJXyxOg+AbHcEgKSkYzmx3zvxbJYQQgghRL1EY5lStV39ypWxEEeSIXXW6k2uoMVRL2QYoCjYDStqVDc3VoS2Nc2A5Hb7H7T2M5h9EQDBlH6A1JFqDvb4Apz97AKiukGy3Utrt1lLyqK549wyIYQQQoj6icZqStXvuNg1c4N3XaUvLISoPwlKiaOKruvMfPoxivJDlEd10td9hke34nS0Z6GyAy23F1AAmNlRWv9rwZW6/4n2rjb/tSYQTGoLgF3qSDV524rKiOoGg1r/wNie/4ptt1gkKCWEEEKI5qVq9b269UGVxuirSlaIEDWSEG3dSVBKHFX27NnDFl8QS1k+tt1bKLWmmXcYheaU+MrvasUMUiSke2o+USRo/tt7NIH+D8GvmyVTqhnwBczpesdlbwdAUWxYLG4ys86JZ7OEEEIIIeqtKii1z8bfBIlqq3MqPVchGp6EaetPglLiqLL53VUAOIryUfb50lYsuVgtqVjUPKwuO92PO530Y3rQuW9mzSeKBimyuHnV0Y8luwrMc0qmVJMVjuos2lDAt+vM6XqJ1gAAnTvdQdu2V8ezaUIIIYQQh0SvnL5X34HRxrpqlsrOQohDIEEpcdTYvGgFyjYf2ECpXK3EORjV2g7NksKQcb3odnJ23U4WCfB69tk8YT0WCksASLFqjdV0cZhmL97KpDm/kpu4k5HtfyXDsQUAizUpzi0TQojG9eijj/LOO++wevVqnE4np5xyCo899hjdunWL7RMIBLj99tt54403CAaDDB8+nL///e9kZWXFseVCiIOJRCsKndc5GCSr7wnR6CreErIae91Jaoc4amxY9B0RoviLDZRAOQCqJROLonLt+PK6B6QAIkEKrebUvmPdTm5tl8VdHXMao9miAWzcWwrAhOP+yYVdPyDJuhMAW+X0TSGEaKG+/vprJkyYwPfff8+8efMIh8MMGzYMv98f2+fWW2/lgw8+4K233uLrr79m586dXHDBBXFstRCiLiozpSyHWkJCLpqFEE2AZEqJo4L/++/xfbcYa9ez6b78FwKeIAGbFdBQlBA2Vz0zZiJBgqpZd+r0FDcTJSDVpHnLwwBkuIoByMwYiSuhI6mpA+PYKiGEaHyffPJJtduvvfYamZmZLFmyhEGDBuH1ennllVeYPXs2Z555JgAzZsygR48efP/99/Tv3z8ezRZC1EFlTSm1lqCUIplMQsSFhHzrToJS4qjgW7gQv9MOainu6B7KlETzDsWCYQuAxVa3E+X9Clu/hz0rCTgHAeDQJOGwqXrx6w3M/G4zBf4QCjoqZQB06/YANlt6nFsnhBBHntfrBSA11VxZdsmSJYTDYc4666zYPt27d6dt27YsWrSoxqBUMBgkGAzGbvt8vkZutRBHn0hUZ+UuH+Gozo7iAKGITqE/SHFZmLJQlN3eABvzzUxwra4ZT42RGVWtsLpchgthSCC43iQoJY4K88vKWN8pC93YzPFGGD02oqSRRBAsjoOfxDBg5nlQZhY2D3QzO/B2KXDeZP3r+y3s8pZxabd3aJWYF9tusbjj2CohhIgPXde55ZZbOPXUUznmmGMA2L17NzabjeTk5Gr7ZmVlsXv37hrP8+ijjzJ58uTGbq4QLc6ekgDloSglgQh7SgKEIga7veXklQR556ftRPWqffNLgwc+0W9kuO2xn/cPC1VuqbpQNgy5aBZCNB0SlBJHhWLd/Ja3R21ENJVoRVBKUSw4CIHFXtvhpmgoFpCi60gCaWaRWMehzuMXjc5XHqaDZwtntfsmts1uz0ZV6/D/LYQQLcyECRP45ZdfWLhw4WGd5+677+a2226L3fb5fLRp0+ZwmydE3BmGQWkwggH8st3LLm+g1v1LgxHyfFX7RHWDXd4AZaEoy7cXU+APVbvvULROceKyaWR7nFhVhWyPA7tFIy3RhsdpxWnVGNbrwIsSSC9ViPiQkm11J0EpcVQI6QaoCqnbNrI1M3Wfeyxoqg6eOnSmI2anY62rHZ8MeJLVe7xQFsQhmVJNkq4blAQjdHCbqe1OZ1s6tL8Rj+eEOLdMCCGOvBtuuIG5c+fyzTff0Lp169j27OxsQqEQxcXF1bKl8vLyyM6ueQEQu92O3S7BfdE85PkCBMJR8kuD+MojBCM6u73lBCI6u70BghGdNbt9bC0spzwUwR+KNmp7EmwaiqKQmWQn0W4h0W4h021HU1XO7J5Jp8yE2L7t0xJwNOjqztWvkhv8olmuwoVAEhHrT4JSosXzbvQSMRKAMkJhs5aGonpQLe1QVCe2zgPAlVr7SQDCZlDqtq538uPmPbHNSZaG7CyIwxUIR7lw+nesyyuhnXsL3VPXAeB0tiMnR1aTEkIcXQzD4MYbb+Tdd99l/vz5dOjQodr9ffv2xWq18sUXXzB69GgA1qxZw9atWxkwYEA8mlyj0mCE9XtK490M0YSVhSL8vM1LaTBMOGpmLP24ufCg2U4HYtNUOmcmVpsaV5PsJAcue1VfsDKryW5R6dcuhUR71eVWgt1Cgr2xL79+ExiqDBQ1WrxIrsCFEIdHglKixdv28RJQDMKGSsQwR7+sib/HYg3RpV8WfYbUccpBRaZUvs0MYA1PT6JngpOz0uq5cp9oVKt2+fhlh48Ons385eQnY9ut1uT4NUoIIeJkwoQJzJ49m/fffx+32x2rE+XxeHA6nXg8Hq655hpuu+02UlNTSUpK4sYbb2TAgAFNZuU9XTcY+cw3bCssj3dTRDPmcVrJ8TiwWVTcDgsZiXacNgs5HgeqAj1ykshNcZLjceK0aqgKWGQxGyHEIZPMwbqSoJRo0UoK8tm2/HvCWQrBlSUoBDFUBQULDvv/OOvqMXU/WcQsOBlSzZX6bm+fTR+3qzGaLQ5DSSACwHHZZlacxZKEO7EnrXMvj2ezhBAiLqZNmwbAGWecUW37jBkzGDduHABPPfUUqqoyevRogsEgw4cP5+9///sRbumBhaJ6LCCVm+yUGULigNwOKz1zkkhyWnA7rGS47aQn2BhxTDaK/OLEsqZi04sa/CWR11gIyR2sPwlKiRZty6OPoCk5lKMzZOtCVrarmKanaCj2etQMiASheCsAgYqglE0KnDc5wUiUAr8ZPExxmsVFU1MH0vuY5+LZLCGEiJu6rLLlcDh44YUXeOGFF45Ai+ovvM+SZF/cfnoD19gRooX57Vu+sYNxUkBHCHGYJCglWrS89Rso6JBFEAMrpaCkVdyjkahF6naSSAie6wdeMygVUq0A2BVJ6W5Knvl8HU99vpZURyEDctbTJnEtABYtMc4tE0IIcTgi0aqLXqtMpxKifmqJGSmS2SREo5HkzLqToJRosUKhEN/2PhZdCxDS7Vj3XYpX0eiAfuCD91WaFwtIYXHGpu9JplTT8sXqPABuPO5l2ibtiG23WlPi1SQhhBANIKyb39eKApp89wpxGCreP42V3CRX4UJI8uAhkOEm0WKVlZWhaxroBmnlKn67Y597LVi0On5iVNSSwuFBv3cXIcWcNiBBqabFWx4GoK2nCIDk5JPJzDybVq0ujmezhBBCHKZoxaCSVZVuqxAH89veaeP3VuUKXAhxeCRTSrRYkYg5Pc9WUox95xJW5WZX3KOiKAqatY6//hWr7m1I6MDu4qrlqO3SOW4Sftnh5bOVeezxBVGVKBhlAPQ+5nlsFSslCiGEaL4qp+9JlpQQtau5hlyt8/eEEI1E3l51J0Ep0SJFwmGWPf0BWEAJmcEpBQuoHlRbFwCsx42q48mCLEg+gYuOeQqWbYhttkvnuEn481s/s3p3CWd3+IwTMpfHtlssSXFslRBCiIZSWejcosn3rhANwWi8+XuNdF4hGt+iDQV8sHznYU+/W7+npGEadBSRoJRokXauWYUloBJKUNlenkAPwKZ2QPGcR0qyj6zu2bQf0qVuJ4sEWOtqB0CCppJpszAkLUkypZqIPF8ABZ0LOn+EopgXLk5nW1RVPt6EEKIliFRO35Mi50LUX2WdJ4XGqfkkBXREE+EtD7O3JHDIx9/x9s9sLypvsPYkOa0Ndq6WTq7aRItUtn4dhqISDsLwzYvYmuGBilXzjjthOz0v/l3dTxYJEFDtAJyd4eG5Hu0aocXiUBiGQUkggtMSiAWkevf+O56k4+PcMiGEEA0lliklGcpC1KqmDKga3zVGLfcJ0QztLQly+hNfURaKHva5bjqzM5bDHASxWVR+d1zuYbflaCFBKdHihPPyWD1tOuV9f4+ztAyl4ptXV6xogNPtqtuJygphwVTYvYKgagaiHJId1STousFDH65k/Z5SIrqBx2aOaqiqncyM4XFunRBCiIZUWVNKMqWEaOJk9T1xhJUGIyzeWMDy7V7KQlE0VcHtOPQQx5ndM7ltWLcGbKGoCwlKiRancNMmlvU/BZQ9+C1F6BWBpLDVhgbYbfa6nejXd2DR8wAE218LSB2ppmLlLh8zvt1MbuJObj5+DilOPwAWizvOLRNCCNHQKqfvSaFzIergN8lSSkWgaN+/q+5shAcU4gia+PZyPlyxK3b7rB6ZvHhFvzi2SBwKCUqJFsfn84GioBkKFqUcveLLWMUGQKKzjplSAZ/5b6vjCXQcDFFZca+pKCoLATCy4w/0yVgZ2+50ytRKIYRoaa54ZTEghc6FOJgaV9/bZ1M4amHT/3aTt9l35BolRCPaXmzOluiYkUCm2841AzvGuUXiUEhQSrQ4kUAQAFdZCOduH7s9CQCohhmU0mx1LDoXMc9Dbl+C2cfBjnzJlGoifOXmiorpLvOLKCd7NOnpZ5KcfGI8myWEEKIRlIfNGiGtPM44t0SI5m3Z9mP438KqwTzV0tCDrdJPFkdWZSD2L+f04MzuWXFujThUEpQSLcreLZuY/+VXkJyEUpIPkQjRihoUipYGgFbX6XuRACsSu3CT4zy27C4EwCmZUnH1w+ZCbn1zGUX+AG3c20m2FwCQnHwSmZkj4tw6IYQQjeHvY05AN2BAp7R4N0WIZs0fNAdqk7NcpLdJpM8ZrQ//pLL6nogjveL3T5F6Zs2aBKVEi/LzvE9JjCaRByi6uQaJZuuN5jgRVUtGQceS3aluJ4sE+Sj9NFapyVCx8k/XBEdjNV3UwccrdrO9qJzfd57LuR0/i223WKWWlBBCtFQje+fEuwlCNAsGRq25SlFdA6DHKTmcMFxKHojmr+ISDU2CUs2aBKVEi+IsstLefQzf6pvZGU2kG6BoHmw6tOmq07p3LpbMOs41jgQoU82pAhdlp3Bbu2w6uOqYZSUahS8QBuDUdmbmmtWagsvViZTkAfFslhBCCCFEkxc1zKCU1uDT9ipIYEAcYZXT91T53WvWJCglWoyo10to9SaUrGMpKrfRrrJQORbc5as5+/qrIKmOo63RMITLCajJALR12CQgFUelwQg/bytmc765yl6CNQA6dO/2sEzbE0IIIYQ4gNi1ugKRikwpzdqQQSmZvifip3L6nlRYad4kKCVajLIlPxEJRTCUMH/8Zja7kh3kJSeCoqEQBksdg0rz/2b+wSDQ7S4AHPJJF1fXvPYDizcVku7Mp1tKIRbMTCmLRabtCSGEEEKAOX2vNpXT9zSLZJWIliGqS6ZUSyBBKdFifLthPd93cgBrGe3zsSO1cpUeDYunHDRb3U609lMqR30CFhcATk2CUvG0bk8paY5CHh34EKpiQMX8cQlKCSGEEELUTbRRMqX2JYEBcWRV1tmXoFTzJkEp0WJsKSoCQNF1LIaBXvHhpCgauS5/3YNS0RAG8OsF/yEv3B585ZIpFUeGYeAtD9MjZTeqYqCqdpzOtrhcnUhM7Bnv5gkhhBBCNEmKmkZEa8OuLCeKalBasfpeg9aUktX3RBxFK37/JH+geZOglGgRtv26HK+/FBSV4wsSWJ2TSqmjcrqehkYYNGvdThYJ8HybP/BIQRZQDoBTlej7kWYYBs9+sZ51e0qI6gYuq/l/kZR0HH1PmB3n1gkhhBBCND3Zvg5ABAC7ZywhYFWPijvNrhRWuxaPpgnR4CprSimSKdWsSVBKtAjzXngBIzUXhSDr8n+EzJSqOxUHmqbXfUWQSJB1LnOZ3BSLRpcEB4NSZZrYkbZyl4+nPl9LmqOQMd2/oGPyDgCsVk+cWyaEEEII0QQZ0K6oF/Bztc2pBb+iKJDQ2UNiz5PI7ZJS8/GHSwID4gjTK0p6aPK716xJUEq0CBnR1hSqVnzBKImAYiiojhNQNCfJdo12Cb/W/WSRAEHVnOp3e4dsrm2d0TiNFrUqKA0BcF7nbzmt1YLYdoe9VbyaJIQQQgjRpCmosZ+C3pmk2EIct2IZiqbTffRJcMmVcW2fEA0ptvqeBKWaNQlKiWbPMAysWIgqOsvD2bQCVEPD6jodS8rHXGl/FI69vO4njIRiQSmpJRU/JQEz9TwzsQyAtLTBpKUOJCvr/Hg2SwghhBCiyVKNqr6roRegkhDH1gjRuKqm78W5IeKwSFBKNHt7//EPNMVClCDnrPmGaCKoFaNEmt0JD3gPfhLDgF0/Q2kehMsIqGY9KrvUkjrithaU8fTna1m7pwQAlyUAQEb6WeTmXhrPpgkhhBBCNFkGBooRzwFV6TeLIytaOX1PrtmaNQlKiWZv2+rVbEtMh1A5/XavZnHnXMAs4GjR6rgiyLbF8Orw2M1ARaaUXTKljrjZ/9vKO0t30DdrKf937E9kOTYDYLFIXS8hhBBCiNooRsXFuQIYVKWQHOo1+961ULQJygqhrAAi5eDbCdGw+W+wpAFaLcShMWT6XosgQSnR7C10OCiyBomGi4lWBJHK7SqJgFbXoFThJvNfuwfSOhFMagOAQ6LuR1yR36wlddUx7+HUimLbHc7W8WqSEEIIIUSzoOwXfdqnL1zfC3fvDpg2APTIwfdNzJI5VOKIq6opFeeGiMMiQSnRrO1YvZJSBdB1Er0+diWb8+Z1zfzVbmex1+1EEXON3Jd73sz7rc9jdWkAdF0ypeLAFwgDBg7NnHbZqdOdJCZ0JcndJ74NE0IIIYRowhps+p4/H76fBntXmwEpWyJkdIekVmB1gjMVXGlgsYOnNSgq5J4gQSlxxEX1iqCURKWaNQlKiWYrGonw+RPPYeRmYfXuxbK3iB2pSQAkW5PQgRSLVreTRYIAPJE4EJ+vLLa5jcPW0M0WNTAMg9v/8zPLthdTVFJE68S9KJiTxNu0vgJNc8W5hQ3HMAwikQjRaDTeTRFCHICmaVgsFhS5wBJCNDP7BaUO5XNs8YuwYErV7W4jYfQ/Dq9h9ST9JVEX2QkabquBEQkRCATi3ZyjTkP1lyQoJZqtSChI78SBbFM2oETCANgjCpqSjM3ej0AUtLoGpcJmplS5Yr4lnurehj5uFx1ddcy0EodlW2E57yzdQbLdy18HPoRdM6fwKYoVVXXGuXUNJxQKsWvXLsrKyg6+sxAirlwuFzk5OdhsMjghhGg+VKPmi0Nln78BKNgAO5aAoYN3O0QCECqDkp3mdoBOQ6DNyXDcmMZudjXSXxJ1NXFgKroB5QW72FQsM1zioSH6SxKUEs1WNBzGpjmIoqMaZlZNxHUsSsKZBCoGVeyOOtaUigTRUQgrZhBrWJqHNJu8PY6U4nIzCNUjfU9FQEpF01xkZ49qMZkKuq6zadMmNE2jVatW2Gy2FvPchGhJDMMgFAqxd+9eNm3aRJcuXVBlKrcQookLrltH6brVtN2jEATQDYas3ISlpq6wYcCrI8C/p/aTDpgAnYc0QmsPTPpLoj7CeSUYhkG79ARsdU1GEA2iIftLctUtmq1IOIyiaATLDdK27yXoBFQrAMclvEtCsov2Q0Yd/ERlheDfQ7DiWAC7zEs+Yuav2cNXq81OUWaimfGWnHwifU+YHc9mNbhQKISu67Rp0waXq+VMRxSiJXI6nVitVrZs2UIoFMLhcMS7SUIIcUDR4mI2XTAaIxwmpfdV7FbNnCh7RI/t40gJ73NAuCog1f40s2aUJ9esDZWYCY5k899OZx7R5wHSXxL1o1iCYBg4HE5sFhlAOtIaqr8kQSnRLBm6zq4npxJV+uPZsZcsfyFbnR4ULCh6iFOyPkS5c+PBT7Txa/jX78GIErQkxjZLgfMjY1O+n3EzfsBpKWdQ7k8ck7YZAKvVE9+GNSLJuBCieZD3qhCiuYjs3YsRDlPqclBsK4IIGKrC4o45qJlZXHrB8Vh/fKSqvlRkn9o7l71lFi9vYuQzWNRJRSagpBPET0O8VyUoJZqlkhUreD8UoSxxGTZ1L9HKzCbFgm4JoWh1nNO6cykYUVBUQgmtzFMAFvlkOyJ2Fpu1vM7v/BXD2n4S2261psarSUIIIYQQzYoRDlNu1fimcyuIrDA3KioFbhdulwNblgf2vW6Mhqp+1qR+qmjOJCrVEkgIWjRLe/bupSwxESUcQouWURpbJU/DoYRAs9Z6fEzFqnucMJbA+IWAOXVP5q4fGSUBM5W8fbIPALf7GFrlXEy7ttfGs1lCCCGEEM2GEQoRsFpAUTBQUbQsErr3Me+sqUtbmSmlWkEykkQzVsfqwaKJk08h0ewYhsGenfkAJO7chiWq4HVVzF9V7NgJQV0zpSIBtjiy+aPzTG5atRWQqXtHgi8QZt7KPL7fWAiAy2KurtI693J69HgUl6tDPJsnfmPcuHEoihmstdlsdO7cmQcffJBIJHJY550/fz6KolBcXNwwDa2DTZs2MWbMGFq1aoXD4aB169aMGjWK1atXV9tv7ty5nH766bjdblwuFyeeeCKvvfZatX02b96MoigsW7aszo//wAMP0L17dxISEkhJSeGss85i8eLF1c55zTXX0KFDB5xOJ506dWLSpEmEQqFazgq7du1izJgxdO3aFVVVueWWW+rUnm+++YbzzjuPVq1aoSgK7733Xo37rVq1ivPPPx+Px0NCQgInnngiW7dujd1//fXX06lTJ5xOJxkZGTW+pj/88ANDhgwhOTmZlJQUhg8fzs8//1zj461fvx63201ycnKDPQchhGip9FAIo2JAVbc4sSddRkLXY2rYs3L6XsWgrEXq5TUk6S81bH+pa7duuBISSE5OYeDpg3n/s/lsLfCzpcDPFz+s4IJLr2DkKcdyUuccunftIv2lBnoO8SBX36LZ+fDZqWz7YYN5o+JL1VMWwWJJR7N2QlNCdU9Fjob4T9YI5mht+d7rB6CVvY5ZVuKQ3fHWz1z3zx9Zu/lNnhs8kVyn+UFrsSbFuWXiQEaMGMGuXbtYt24dt99+Ow888ABPPPFEvJsVc7BOCEA4HGbo0KF4vV7eeecd1qxZw5tvvknv3r2rdfSee+45Ro0axamnnsrixYtZvnw5l156KePHj+fPf/7zYbWza9euPP/886xYsYKFCxfSvn17hg0bxt69ewFYvXo1uq7z4osv8uuvv/LUU08xffp07rnnnlrPGwwGycjI4C9/+QvHHntsndvj9/s59thjeeGFFw64z4YNGxg4cCDdu3dn/vz5LF++nPvuu69aMcu+ffsyY8YMVq1axaeffophGAwbNoxo1FwKtbS0lBEjRtC2bVsWL17MwoULcbvdDB8+nHA4XO3xwuEwf/jDHzjttNMa7DkIIURL5Q162VG4eZ+MEaXaP4C52t6+YkGpQ1/CXdRM+ksN01/q1LkzdzzwGG9/9i2v/vcjMlu14fILz2fj9l14y8OsXb2GqK5z36NPMffrxTz55JPSX2qA5xA3hjggr9drAIbX6413U8Q+/nnjzca3d79jTJo0yZhy2WhjysXnGM9eNcN4/vovjOev/8L4z4TphjF9UN1ONvc2Y9LMiUbWl0uNMcs2GG/uKjC2lQcb9wkI46yp8412E+caL777O+PzLzoan3/R0fjyq15GWdn2eDet0ZSXlxsrV640ysvL492Uehs7dqwxatSoatuGDh1q9O/f3ygsLDSuuOIKIzk52XA6ncaIESOMtWvXxvbbvHmzce655xrJycmGy+UyevbsaXz44YfGpk2bDMys69ifsWPHGoZhGD6fzxgzZozhcrmM7Oxs48knnzROP/104+abb46dt127dsaDDz5oXHHFFYbb7Y4du2DBAmPgwIGGw+EwWrdubdx4441GaWmpYRiGsXTpUgMwNm/efMDnunXrVsNqtRq33Xbbfvc9++yzBmB8//33hmEYseewdOnS+r+oFSq/Zz7//PMD7vP4448bHTp0qPM5f/ta1RVgvPvuu/ttv+SSS4zLL7+8Xuf6+eefDcBYv369YRiG8cMPPxiAsXXr1tg+y5cvNwBj3bp11Y698847jcsvv9yYMWOG4fF4GuQ5HIra3rPSP6hOXg8h4mN36W6j77/6GmPv7Wl80/d4Y8rF5xiPXfYH4/nrvzD+9eYbxpSLzzFemnCVYSyaZhiTkgzjP+MMY+08w/jgVvP21B7xfgr7kf6S9JcMwzAC4Yjx87YiY/m2YmN7UZmxZutuAzD++8FHxt6SgJFfEjDKgmEjGI4aUV03DEP6Sw3xHA5FQ/SXJFNKNDtqRCGKjrOsDEuwvGKjA4iSmRXluIQ59Zq+F1TNffu4nVycnUprh4waNbaSgJnG3D3L/Ajq1u0hThu4GKczN57NOuIMw6AsFDnif4zfjpgeAqfTSSgUYty4cfz444/MmTOHRYsWYRgGZ599dmw0Z8KECQSDQb755htWrFjBY489RmJiIm3atOG///0vAGvWrGHXrl0888wzANx22218++23zJkzh3nz5rFgwQJ++umn/dowZcoUjj32WJYuXcp9993Hhg0bGDFiBKNHj2b58uW8+eabLFy4kBtuuAGAjIwMVFXl7bffjo1I/dbbb79NOByucYTv+uuvJzExkddff/2wXz8wRytfeuklPB5PraN1Xq+X1NT4FP/XdZ0PP/yQrl27Mnz4cDIzMzn55JNrTfn2+/3MmDGDDh060KZNGwC6detGWloar7zyCqFQiPLycl555RV69OhB+/btY8d++eWXvPXWW01zFE8IIeIsHIqyY00Rm1fk88s3O/jhy/V02tGPnLLTyMs4HgDVMNexsmja/ifQI/D6JfDjK+ZtR/NY7The/aWG6DNJf+kQVbzsqgoZLo05b/4Lj8fDoP4nkp5oJy3RjtNmwWZRUSumrkp/qfmS1fdE8xOOoqPj2pCPruiABooFBS8Xtf477FgCloOkMRZtMVfeK9hI0JEDgENqSTW6z37dzS87fRSWmanDimFOmXQ622KxJMSzaXFRHo7S8/5Pj/jjrnxwOC7boX38G4bBF198waeffsrIkSN57733+PbbbznllFMAmDVrFm3atOG9997joosuYuvWrYwePZrevXsD0LFjx9i5KjsOmZmZsbnwJSUlzJw5k9mzZzNkyBAAZsyYQatWrfZry5lnnsntt98eu33ttddy2WWXxeoDdOnShWeffZbTTz+dadOmkZuby7PPPsudd97J5MmT6devH4MHD+ayyy6LtWvt2rV4PB5ycnL2ezybzUbHjh1Zu3btIb12lebOncull15KWVkZOTk5zJs3j/T09Br3Xb9+Pc899xxTpkw5rMc8VHv27KG0tJS//e1vPPzwwzz22GN88sknXHDBBXz11VecfvrpsX3//ve/c+edd+L3++nWrRvz5s3DZjOD/G63m/nz5/O73/2Ohx56CDD/fz799FMsFvN3saCggHHjxvHvf/+bpCSZyiuEaJ4M3UA3DKIhnZLCQLX7gmVhynzhAxxpCgcj+ItDlBSUs2HpXnS9KigSDuwfIBjExQDsbLUJSt9FNcwyFGq1MdaKc+hhMzClqHDCWOh9Yf2fYBzEq78Eh95nkv7S4fWXDODrzz9h4oRrCZRLf6ml95ckKCWalcDatRjlIaKKjtcoI6EikKQoVgxriRmQAkjMOvBJdB3+cRb49wAQ6j4YMFfdE40nvzTI+H8vwaIGueX46aQ7CwkFzFX3LFpinFsnDmbu3LkkJiYSDofRdZ0xY8ZwwQUXMHfuXE4++eTYfmlpaXTr1o1Vq1YBcNNNN/GnP/2Jzz77jLPOOovRo0fTp0+fAz7Oxo0bCYfDnHTSSbFtHo+Hbt267bdvv379qt3++eefWb58ObNmzYptMwwDXdfZtGkTPXr0YMKECVx55ZXMnz+f77//nrfeeou//vWvzJkzh6FDh9bptajsONRm1qxZXH/99bHbH3/8cWzO/+DBg1m2bBn5+fm8/PLLXHzxxSxevJjMzMxq59ixYwcjRozgoosu4rrrrottT0yser9cfvnlTJ8+/aDtWbBgASNHjozdfvHFF7nssssOepyu6wCMGjWKW2+9FYDjjjuO7777junTp1frZF122WUMHTqUXbt2MWXKFC6++GK+/fZbHA4H5eXlXHPNNZx66qm8/vrrRKNRpkyZwjnnnMMPP/yA0+nkuuuuY8yYMQwaNKhBn4MQQhyOaFgnUBYmEoqya72XcDBKaVGAaNggFIjg94bQozqlRUGiEZ0yX4hoWG+8BimQkp2AK8lK2Y51WDZtB6BcySdfg5CjjMUd/sMfMk+vOqBSZdaPZofznm68Nh7FpL9U5XD6S4YBJ55yGv+dt4AUNSj9pRbeX5KglGhWfOvW43e7WFewGIfVhx6r1W/BqoThuMuh7cnQdeSBTxIJxAJStOlPwNMOALsmmVKNaW9JEN2AXmlb6Ja6IbZdVZ24XO3i2LL4cVo1Vj44PC6PW1+DBw9m2rRp2Gw2WrVqhcViYc6cOQc97tprr2X48OF8+OGHfPbZZzz66KNMnTqVG2+88VCaXk1CQvXsutLSUq6//npuuumm/fZt27Zt7Ge32815553Heeedx8MPP8zw4cN5+OGHGTp0KF26dMHr9bJz5879RhtDoRAbNmxg+PCD/5+df/751TqfublVU1MTEhLo3LkznTt3pn///nTp0oVXXnmFu+++O7bPzp07GTx4MKeccgovvfRStXPvu3pNXUfI+vXrV+24rKxaAvf7SE9Px2Kx0LNnz2rbe/TowcKFC6tt83g8eDweunTpQv/+/UlJSeHdd9/lD3/4A7Nnz2bz5s0sWrQItWIwYfbs2aSkpPD+++9z6aWX8uWXXzJnzpzYKGdlB9lisfDSSy/xhz/84ZCegxBCAOi6QXFeGcY+mUf+4iDhYJRgeYQyb4hoVMdfFCQS1iktChAORinYXrpfnfC6slhVrI6q71xFUUhItmO11/49nOCxYXVYUFSFridl4Uqqurj3pDtRKgZSf/jr6yTOncu2dgl0OetCvvwRAk4/K7N/QVFOP9DpQW1el4Dx6i9VPnZ9SH+pofpLBi5XAp4OneiRkyT9pRbeX2pen0jiqDdv3Vp2ZSWRsPZn1IqAlKpZQLGTYgSgy1nQ6/e1nyRSlUoduvIDylduh0IfdkUypRqTr9xMV89JMutJuRN70b37wzgcuVitKfFsWtwoinLI0+iOtMpAyr569OhBJBJh8eLFsXT0goIC1qxZU+1LuU2bNowfP57x48dz99138/LLL3PjjTfGRtD2rVfQsWNHrFYrP/zwQ6xj5PV6Wbt27QFHhCqdcMIJrFy5cr921kZRFLp37853330HwIUXXsjEiROZOnUqU6dOrbbv9OnTKSsr48orrzzoed1uN263u05t0HWdYDAYu71jxw4GDx4cW6FF/c3U4vo8v0pOp/OQjrPZbJx44omsWbOm2va1a9fSrt2Bg8mGYWAYRux5lZWVoaoqyj6fs5W3K0cXFy1aVO134f333+exxx7ju+++Izc395CfgxCi5QqUhmMBpGhEJ1RePXNJj1ZFk5Z/ue2Qg0sAigKORCuZ7ZKwJ1hITHaAAokVQSabw4LLY0OzqLhTHSgq2JyWap97Dc2Imn2qvNYu2p82EH5cSGXFYLVsL8nWchLVEvDnVxxQWain/oNT8ST9paOvv1T5Vt333SP9pZbbX2oe724hgIg3SJHXDGwoFV+qfTftwjf0YrYVqFiI1K3AeUVQ6i+db+YfC1fGNsv0vcaxOd/PHW//zM7iAJoSJdVpFqe3O7JJSjpwWrJo+rp06cKoUaO47rrrePHFF3G73dx1113k5uYyatQoAG655RZGjhxJ165dKSoq4quvvqJHjx4AtGvXDkVRmDt3LmeffTZOpxO3283YsWO54447SE1NJTMzk0mTJu33BV2TiRMn0r9/f2644QauvfZaEhISWLlyJfPmzeP5559n2bJlTJo0iSuuuIKePXtis9n4+uuvefXVV5k4cSJgjhA+/vjj/PnPf8bhcHDFFVdgtVp5//33ueeee3j44Yc55phjqj3ubzsgAL169cJqtVbb5vf7eeSRRzj//PPJyckhPz+fF154gR07dnDRRRcBZgfrjDPOoF27dkyZMoW9e/fGjs/Ozq71+VeOipWWlrJ3716WLVuGzWbbb9RuX6Wlpaxfvz52e9OmTSxbtozU1NRYJ/eOO+7gkksuYdCgQQwePJhPPvmEDz74gPnz5wPmFII333yTYcOGkZGRwfbt2/nb3/6G0+nk7LPPBmDo0KHccccdTJgwgRtvvBFd1/nb3/6GxWJh8GBzCnXl70WlH3/8EVVV93u9D+U5CCGaB103wDAo84XJ2+SNbY+EouzZWkLQH4lt27a6kDLvwZe3/63K4BKAZlFJSLajaooZXHJYsDktuJJsWO0aCcl2LDaV3K4pqE2wn2hEK6YJqmrsgrXyKj5l8SOc17liIHZBZT2m5hmUau6kv2SqT3/pgckPcezAIbTKycG/Myj9pRbeX5KglGg28r/ZQCQKqKAZoAOlnuPxhzsAoCkhc478wVQEpealDYhtSrKoHJfkaoRWi49+2cUPm4vol/UT9w35F1bVjOxbtLplkYimbcaMGdx8882ce+65hEIhBg0axEcffRTrYESjUSZMmMD27dtJSkpixIgRPPXUU4CZoj158mTuuusurrrqKq688kpee+01nnzyScaPH8+5555LUlISd955J9u2bcPhcNTalj59+vD1119z7733VtQjMOjUqROXXHIJAK1bt6Z9+/ZMnjyZzZs3oyhK7Hbl/H+AW2+9lY4dOzJ16lSeeeYZ/H6zIP/rr7/OpZdeut/j1rRt27ZttG7duto2TdNYvXo1M2fOJD8/n7S0NE488UQWLFhAr169AJg3bx7r169n/fr1+x1/sBWAjj/++NjPS5YsYfbs2bRr147Nmzcf8Jgff/wx1skBcyUfgLFjx/Laa68B8Pvf/57p06fz6KOPctNNN9GtWzf++9//MnDgQAAcDgcLFizg6aefpqioiKysLAYNGsR3330Xq/vQvXt3PvjgAyZPnsyAAQNQVZXjjz+eTz75pMYiqfVRl+cghDgyAqXhaoW5f8swDPI2+SgvqQomrf1fHqVFAfSogd8bqja9rq5sDjOAhKKQmGzDardgc2q4kqr3C9NbJ9LlxKY/laWujIgZpDM0FaMiKGVQ9foFohqKomJ3usBih/aDYN1nzW76Xksg/aX69ZfWrF3DzH/+k+KiAtKlv9Ti+0uK0RBrg7dQPp8Pj8eD1+ttMZXtm6vyEh/f3DGdXzJ1StQA7lVLAAO75zoU1QxudHYsZPjNZ0CH2lNW2bMK/t6fYwe8S54tlfeP78zxSS5ssvpeo3j041W8+PVG7h/4Du1c8wFQFI0e3f9GTs4F8W3cERQIBNi0aRMdOnQ4aGdBVOf3+8nNzWXq1Klcc801R/zxCwsLGTJkCElJSXz88ce4XBLAPhrU9p6V/kF18nq0XOUlIcp8IfI2+yjzhQj6w+RvLzWnyRUHCYeqCnpHI3qDFvh2uq0kZ1V93lrtGmmtEnG6q7LikzIcdDo+s6bDjwqL7rme5He+4YchuTiH/I6tb37C7swQn/Tbxd/3FPO/H4/Fk5nFtc+9Yh6wcxm8dDq4W8Htq+La9gOR/tKha0n9pdJAmI35fhxWja5ZMpDdlDVEf0nC5KJZKN60ERWFiKLTc/lytlkrY6kaCa4AHe0/cIz2H9AOUlDPMCBsTh8LqOboWZrNIgGpRhCO6qzc6WPTXnPUJMVpZqh17XIfrVpdiqZJR0PUbOnSpaxevZqTTjoJr9fLgw8+CBBLcT/SUlNT+fzzz3nhhRdYtGhRbOllIcSRVV4awmjERc2OBr78cgp2lBIJ6/iLg1VZTQb4vUHCgWhsRblwIEJ5Sbj+D3KQWW5Wu0Z6bmJsCh1AUoaTzidkxuoyKQrYXdZaziIAjMq6MprKhxvm0hsLYcPMnkqufK/sO5XLqNhfMqVahJbcX6qpppRoueQTSTQLBW+8gapkQrCEnqtWsa1PJ/MORSOjDQwy3gTfDrDUUlOqcCO8Mgz85pzjoGp2duwSkGoUt//nZ+b8vJN2SVu5rvdXJCjmins2e5YEpMRBTZkyhTVr1mCz2ejbty8LFiwgPT09bu1JS0vj/vvvj9vjC3G0W/ifdfz85bZ4N+PopEBiip20Vom4PDZsTguZbd04Eq0kpjiq1VpyJZn3iyOkMiilakQiQcBCm8Qcns5bSc+Ihc9+u79eub/0fVuKltpfkrlcRxf51hDNwp6SUrYkJlOgeDGqFe9Tse6aC64d5s3aakpt+18sIGUAAdUMYDmaYOHKlmDVLh8AF3T5gmPSlsa2Ox2tD3SIEIA513/JkiXxboYQognZub646oZ8bR8yVVFIznbhyXBiT7DicldlI6maWfRbsygkeOzYnBbsLgsp2Qm1nFHEkx6pCjJVVmRp5cpgSFk5UbunhgMkU6olORr6S425eqVoOuQTSTQLS5OSKLEGKIt40at9OGmk6GXmj4lZkFzLygEVBc4DnYez++zn4OddADhltKhRlATM9PHjWyuEy6FVq0vISB9KUlLvOLdMCCFEc6NHzQvu828+jjY9UuPcGiGaiNj0PQ0qCp2rlf1kxezfKvtGcfWK1QsVWX1PNG2VBfslJHV0kKCUaBYCFV+wqSELfnvFqJ6ioigqmhKBm5ebQSlrLdPCIkF8WgIDcm6hoCIgBTJ9r6HllwbZUuDHW27WoVAMs6ZUZsYI0tIOUoReCCGEqIEerbjgluxmIWKMaBSv00ZRnk6PPLOotKoqEAWUGi7zpKaUaGIMwyCq77tmJER1g0DlognykX9UkE8k0eRFS0IYioZW6sW9bTeLupjTv5SKESBNiUBKu4OfKBJko7M1Bar5pW1TFIalJ2GVDm6D8QcjDH5iPv5QkAu7zCHdWUgktBUAi0VWzhBCCHFoKjOlVE2+s4WI0XW2pSYRCYITM/vJneqBPDCUGgZdKzOlZEBWNKJQREc3DMpCUSJ61eoUug6RqI4BhKI6hgHBSJSofuACUvKJf3SQoJRo8grfWouualgCZsaNYhgohkFSVh8CITNjuU4iQYIVdaQ6Ou18179HI7X46LWjuJySYITuqRsZ3v4roDKbXMXuyIlr24QQQjRfVUEpuZgWzY8ejeLL31vv44L+UnatX0skFKS0sIBwIECwzI/fW0Q4EKCwuIxoqjno92vHErZk+rnsrP4wi9j0vWpX9ZUBAsmUElRlKe1LNwzCUYNQVCcQjla7LxKtvr+Budr2vkXJI1Gd6GFWKVdQsGoKqqqQmlDLIlaixZBPJNGkGbpOybY96IoR+x5NCSYRTL+UUNT8EtbUOn7wRauCUnbJjmoUvoope+1TzJE4p7MdbdteS4KrEw57djybJoQQohmLTd+TTCkRB3o0SjgYJFDqo8znRY9EKSnMR49ECPhLKfMWEyovp7SoIHZMNBwmb+N6ykt86NFoLWc/TBVZT+tySyh2h7H8pqZU9SciNaWaMsMwCEb0g+9YQdcNwvsGlQyDUNTAwDDvi1bdF9UNysNR9H0CRrpBrEB+Q1MVBU1VcFi1arNSNM3crioKVk1FAVw2DYsMOBzVJCglmrRti7/H7/MSTlTxexWcgN/VCsXqhigoRElz7jn4iXy7wL+XQMXqfFJHqmGVh6L896ftLNtWDIDHEQLA5epA69wxcWyZEEKIlkDXZfqeODSGYVBaVEA0HKG0qIBweXnsvmgkQknBXqKRCP7iIkLlZbH79GiUkoJ8QuVl7N28iUg4dHgNURRUmxUw0A0dwzCDB5VBAaOytPNvggQBW5R8T4iIxcDviKCrUGaPELYYnL84xLGbdDb87liK3VsA0CoONypTpCIh2LEEvDtg6yJzm2RKNYpwVCe0T1DJMCoyifapmFS5TTeqsoyihkEkahCMNGLwsh6smloRNFJw2qoCmErFffuuiKcq5rbfHm+zyLWWqDv5RBJNlmEYfP2PfxDJPg7dH6H/rl/ZnJEcK9w47PdOchdegiuhhiVv9/X1E/DVwwAE0s8AwCGZUg3qvz9t5y/v/UKP1DVce8xiuqaZI4VSR0oIIURDkJpSAsCXvwd/cRGlRYXVgks7165m59pVGPvUr4mEQ5QWFBx+MGlfioItMQHVakGz2yDRjo6B6nZQroTw2yPkRQoIRYP4Qj4CSoi8lCARzSBgj2LU8dfXqlrJSagse2DBYUkky5VFimohy5WFXbND2E+Xn74gKbCXAZaqKU7q//5h/uDbCXRA8W2Dl8+s/gAW+2G/FC3BgbKEIrpZD2nf/cpC1WsfhaM6wYraSeY+VMtCOhxaPa5TKgNIlfYNElk1tVr5MIuq4LJVv/y3aaosICHiToJSosnKy8tjQ5u2QCFGWTFGxQduxGLFCiSvewmX5gVLZu0n2v4/81/VSsCVAYBDMqUa1I5is2N4Ra85ZDm3xbY77K3i1STRgMaNG8fMmTMBsFqttG3bliuvvJJ77rkHi+XQv0bmz5/P4MGDKSoqIjk5uYFaW7tNmzZx7733Mn/+fAoLC0lPT6dv37489thjdO/ePbbf3LlzeeKJJ/jpp5+IRqP06tWLCRMmMG7cuNg+mzdvpkOHDixdupTjjjuuTo//wAMP8MYbb7Bt2zZsNht9+/blkUce4eSTT46d86GHHuLLL79k9+7dtGrVissvv5x7770Xm+3AdRV27drF7bffzo8//sj69eu56aabePrppw/anmnTpjFt2jQ2b94MQK9evbj//vsZOXIkAIWFhUyaNInPPvuMrVu3kpGRwe9+9zseeughPB5zQOC1117jqquuqvH8eXl5ZGaan9HBYJAHH3yQf//73+zevZucnBzuv/9+rr766tj+Tz/9NNOmTWPr1q2kp6dz4YUX8uijj+JwHHhl1XfeeYfp06ezZMkSCgsL6/X/IZoPCUo1HYZhUFKwt1oA6FCVFOQTDgRit6ORSMW0uCgBfwnlPi/527ZQnLebYJmfSDB4yI9lsduxWKwkpqWj7fPdZXM4URLt+PVyyp06RWEvUUPHHy4lrOkUWvyUUs56dz5R1cA4hC6kVbWSaHHh1JxkJWRh02x0Tu5MTkIOma5MnCg4VStZkQh2RaONrkB5MexcCqW7IVAOO1eY0++8OyBchhEOsz0/lVIcJK79ENqkA6Ct/+w3j65CUmtzheqkVqDZYMCEQ34d4y2q6xXZRkaNQaBYAGmf+8IRg0AkWi0JLaob1YpwN4T7bv0/5rz9OmD2l3JyW/O7i/7AjbfdWa2/pKkKFk2JZSNBVXDJYdX2C0pJf0n6Sy29vyRBKdFkBcvMFGq7YcETTUCvHAWoGN3Rdv/P/A12H6RWUbgcr5bImDP+y3oSIBLFIZ3aBmEYBmvySti4txSAVIf5b7u2f8TpbEdm5tnxbJ5oQCNGjGDGjBkEg0E++ugjJkyYgNVq5e6774530wAIhUK1dkIAwuEwQ4cOpVu3brzzzjvk5OSwfft2Pv74Y4qLi2P7Pffcc9xyyy1MnDiRadOmYbPZeP/99xk/fjy//PILU6ZMOeR2du3aleeff56OHTtSXl7OU089xbBhw1i/fj0ZGRmsXr0aXdd58cUX6dy5M7/88gvXXXcdfr+/1scNBoNkZGTwl7/8haeeeqrO7WndujV/+9vf6NKlC4ZhMHPmTEaNGsXSpUvp1asXO3fuZOfOnUyZMoWePXuyZcsWxo8fz86dO3n77bcBuOSSSxgxYkS1844bN45AIBDrYAFcfPHF5OXl8corr9C5c2d27dqFvs8FwezZs7nrrrt49dVXOeWUU1i7di3jxo1DURSefPLJAz4Hv9/PwIEDufjii7nuuuvq/NxF8yKFzhuPYRgUbNtCsLycXetWE/SXxu6LhMOUFJi1k/I2baC0sAA9Golja8HqcJKYkkJiajpqxWo3oWiIsBIh99STUK0WSsN+SsOl4LBQoPgoxMeakvWUhkvxBldQFCiKna/6YvQHl+Uyg0oAds1OdkI2qqKSYHGRoTlJsjjpbU3FHQmSU7QDNVxGSpkXJVBsnqC8FAwd1iyDSBBCfgh6Y+cPei34Ayphv0bQa0WPKITLNKqaqREqTSFcWnUZZ2R0BQoBUHucByvnYLgrMq1SO8Jtn9frOR6KncXllO9TGDsY1tnlLa+WXeQtD1PgD7E2r4QtBWU1nYY0h8LlvZyoBX40a/XftXBUJxxt2EDSgWiqgt1SNXVNVcBh1bDscw1hVdVq09s8TmuN/aXslETpL9WT9JeOrv6SYjRWdbMWwOfz4fF48Hq9JCUlxbs5R531q1bx7zffJFl3kVIQwL72c3akJmFLGIhqO4nLuj9N8sDfQZdh4Gl94BP94yzmlWlc0fux2KZb22UxsaOsBne4Zn63mUlzfsWihmmVsJv7BzyNQphTBnyD05kb7+Y1KYFAgE2bNtGhQ4daRzGaonHjxlFcXMx7770X2zZs2DBKSkr46KOPuPnmm/nggw8IBoOcfvrpPPvss3Tp0gWALVu2cMMNN7Bw4UJCoRDt27fniSeeoGfPnnTo0KHa44wdO5bXXnuNkpISxo8fz3vvvUdSUhJ33nkn77//Pscdd1xsNKt9+/Zcc801rFu3jvfee48LLriA1157jYULF3L33Xfz448/kp6ezu9//3seffRREhISWLZsGccffzybN2+mXbt2NT7Xbdu20alTJ2688UamTp1a7b7nnnuOm266ie+//56TTz75kEb+fqvye+bzzz9nyJAhNe7zxBNPMG3aNDZu3Finc55xxhnVXqv6Sk1N5YknnuCaa66p8f633nqLyy+/HL/fX2Om3N69e8nNzeWVV17hiiuuAOCTTz7h0ksvZePGjaSmptZ43htuuIFVq1bxxRdfxLbdfvvtLF68mIULFx603Q3x/7Gv2t6z0j+o7ki8Hn//05cYBox77FQSPDL1qK4MXaekIB/DMC9oDAO+/+/r+PL3EgkGKSnMp7Sw4CBnqZnVXvfvMgMwqB5M0A3dvNJ3O4goUULREMFokLDVIOgwQ0UBp05UA59Hp8ylE7IZBFzVL13KI+WUR8o5XJmuTLJd2eQkZNHV0xGXaiPLULCgkqUb2MJBMop2kVS0DSJl5vQ4PQrenRANQqQq48sAAgU2IoGqIKphKETKNPSIQnmhlWhQjf2JvSaR+gdd1YQEMv75D07/0fy8/fHkv2F/YwyhlO48910GKTm5XP30izUeG4xEKQvuM00NWLKliCJ/1ZRHXyDM3pKqDLXycJRfdngpLgvHtuX5AvhDDVMPKdet8cDgTDJbtUaxHDh4olRkGSnsP9BcUwCppqlrZnZSzec/lMLb0l8ySX/JJP2luvcPJFNKNFmVKdoaGhEjjLUiU8owzBEJLa019Lv6gMdXnShAUE0B4JhEJy/0bEdXl3RoG8KqXT4A7jrpBTokVX0BWK1ykVYnhgHhmkcKG5XVBcrhZQs6nU4KCgoYN24c69atY86cOSQlJTFx4kTOPvtsVq5cidVqZcKECYRCIb755hsSEhJYuXIliYmJtGnThv/+97+MHj2aNWvWkJSUhNPpBOC2227j22+/Zc6cOWRlZXH//ffz008/7ffFOWXKFO6//34mTZoEwIYNGxgxYgQPP/wwr776Knv37uWGG27ghhtuYMaMGWRkZKCqKm+//Ta33HILmrb/6kNvv/024XCYP//5z/vdd/3113PPPffw+uuvx9LHD0coFOKll17C4/Fw7LHHHnA/r9d7wI5JQ4pGo7z11lv4/X4GDBhQa3uSkpIOOHXzn//8Jy6XiwsvvDC2bc6cOfTr14/HH3+cf/3rXyQkJHD++efz0EMPxf7fTznlFP7973/zv//9j5NOOomNGzfy0UcfxTpq4uj11b9Xmx+X5Qt5+f+eg3pmthzNopG6ZzUlpKRidyWQ0bY9Lk9ybLs9IYEETwqqppHduSuGw4LhtLAnlI9u6OSX51MaLmWjdyNbfVur1enJL8/HF/Kx2be54Z5UoObNLouLNGcaAJqikelMx46CU7GQGQ7hRuUYZxaJqo3scAhbsJTIpq3o2zeh+MI4IjvRwzuIFJdh6BAuUzF0hUi5hh5W0CMKO4MaO/d/5Sr+NBxLRgZasgdLTg6O7j3QUlKwpKZU28feowfWVq0IRcLs8e6ObV/42RcMAbxeH5BBUVmIO9/+OXZ/KKKzyxugJBBhbV4JEb3h3k8Oq1otuyjZZSUtYZ96V4pClseB06rRMSOBThmJ+51D08OkGl5aJTuxVQY+9+kvOSxVRbSVWvsyBvt/VvwmcFZb0lXlrofZZ5L+kvSXpL90cBKUEk1W+TYzlVnVIRgqRrWav66xoFRda9mEA4Qq0qyTLRrdEppXlkpTVhIwO7vtk8w6UjZbBmlpZ0iB87oKl8Ff41B3656dYDu0DrRhGHzxxRd8+umnjBw5kvfee49vv/2WU045BYBZs2bRpk0b3nvvPS666CK2bt3K6NGj6d27NwAdO3aMnauy45CZmRmrkVBSUsLMmTOZPXt2bCRsxowZtGq1/+t05plncvvtt8duX3vttVx22WXccsstAHTp0oVnn32W008/nWnTppGbm8uzzz7LnXfeyeTJk+nXrx+DBw/msssui7Vr7dq1eDwecnL2z6S02Wx07NiRtWvXHtJrV2nu3LlceumllJWVkZOTw7x580hPT69x3/Xr1/Pcc88dVgr8waxYsYIBAwYQCARITEzk3XffpWfPnjXum5+fz0MPPcQf//jHA57vlVdeYcyYMbHOE8DGjRtZuHAhDoeDd999l/z8fP7v//6PgoICZsyYAcCYMWPIz89n4MCBGIZBJBJh/Pjx3HPPPQ37hEWzs3axecGth9Zg6OGD7C1qYrFXDcapqkpWxy70OWsETncSTncSSemZ7IzuYZtvG/6wn23le/GH/awqWIUv5GOv37wd3BPEH/Yfcjvc1qr+QaItkW6p3XBb3aS70nFb3bRNaksnTydzByMK0TCUFULeL1UnMQwoy4dQGZQXQrAEZ3GEtJBGpDSEXlRgTonz/Y9IUCVYbE6BiwY0omEzuBAE/GUakcBvL7YVGizAZLFgad8BxVO1II/icBBKSSOsWdHbd8LIyMTIyISK/5/isghF2NgcsbAur3SfgJFB3tYg/lBVkNFYtxNv/s9cvHkWUUsQhprbfT9/C20gXFoCwN5ynf/8uL3OzXbZNHrkJJHstMa2ZXkcJOwzTc1p1eiV6yHFVRVwapvqIttz+H1sM+uiFLfDisNR0YaQHx6vOWOn0R1in0n6S9Jfkv5S3UlQSjRJ0ZIQvkV7wAbhXb8SLd1DeWLFG1apCErZDvLrG/LDtsUQKCaY2BkAm6wu0SCK/CGWbStmS6EfixpGwbxIGNB/ngSkWqi5c+eSmJhIOBxG13XGjBnDBRdcwNy5c6uNgqWlpdGtWzdWrVoFwE033cSf/vQnPvvsM8466yxGjx5Nnz59Dvg4GzduJBwOc9JJJ8W2eTweunXrtt++/fr1q3b7559/Zvny5cyaNSu2zTAMdF1n06ZN9OjRgwkTJnDllVcyf/58vv/+e9566y3++te/MmfOHIYOHVqn1+JgtRjA7Gxef/31sdsff/wxp512GgCDBw9m2bJl5Ofn8/LLL3PxxRezePHiavUEAHbs2MGIESO46KKLqs39T0ysGlm+/PLLmT59+kHbs2DBglgxToAXX3yRyy67DIBu3bqxbNkyvF4vb7/9NmPHjuXrr7/er6Pl8/k455xz6NmzJw888ECNj7No0SJWrVrFv/71r2rbdV1HURRmzZoVK/j55JNPcuGFF/L3v/8dp9PJ/Pnz+etf/8rf//53Tj75ZNavX8/NN9/MQw89xH333VfraypatpNHdUSPGnz/tka5D9qPuRlHVi3T9oXJMAhEy9FciagVA3nby9ZTHNrDf3bMwLvuw6pda00ZqZlTc+OyJKIpFjy2dDTFSrq9FdnO9rF9NEUj2ZaJXXPS1tUVZ2Av9vI9JBWuQMEAM25C4qbVOP1VC6WogXJce9dg+EOUF9jMjKWKzKVKwRILIZ+FSEDFF1Xx7dfCumdMRNu1QU9NBUUhmpxCxJOBbncSSc/GsFgpcadSFDbYpiWy2hshFKl6vYKRKHm+IPsmHPkCYQJYCGu19FW3AFsMIK/O7dxXGl4GhpfS0ZmPz1r14DaPy2yXNZG87D4UZB/DH7q1oU2qK7aP22ElI9GO22Hh5A6p1VZvU5SDZSCJ2kh/qYr0l6S/VFcSlBJNkl4eIYrBr5EsOgc3kg6oODG0FDRrewA06/6ppNW8Ox5WzQEglGSOtNhl1b0GMXbG/1i+vZhTWy3md50qO1Mqmtaw6estntVljsDF43HrafDgwbEilq1atcJisTBnzpyDHnfttdcyfPhwPvzwQz777DMeffRRpk6dyo033ngoLa8mIaH671tpaSnXX389N9100377tm3bNvaz2+3mvPPO47zzzuPhhx9m+PDhPPzwwwwdOpQuXbrg9XrZuXPnfqONoVCIDRs2MHz48IO27fzzz6/W+czNraqxlpCQQOfOnencuTP9+/enS5cuvPLKK9WKoO7cuZPBgwdzyimn8NJLL1U797Jly2I/17V+T79+/aodl5WVFfvZZrPRubMZuO/bty8//PADzzzzDC++WFWDpKSkhBEjRuB2u3n33XexWqtG0Pf1j3/8g+OOO46+fftW256Tk0Nubm6sgwXQo0cPDMNg+/btdOnShfvuu48rrriCa6+9FoDevXvj9/v54x//yL333lvraypatuPOass/VvyDomARDuDJNc9SuEMummuiKDqKtRiUKIoaRFHrl1mmhz0YETd6JAmidgzDTlrAiT1qIysSxWlEaKUHSNPD2ImQoxRhIQrsqTjDDuAHbETIVgqw7jNdqouyHZsSpaK8FZGKekphv2ZmM+kK4TKVSEDDv8sBJNer7WGLRthqwe90EFDtRA2VEpyU2BJY78nFb3WS7/QQVqsuf0KahV/SOhJVf9OnNDCnCcYSjCqDUCUHePTfHF/DdKdKVk0hK8mBTdFRMLARJtvIw2GEyKSQFJcFq6bicVro6g5hD3tps/tzEsu2oyqGWUHJ0NEiZeAA3LBH03iGXDTD4JyknwDo0KUzj4/7a11euqYvXv2lyseuB+kvSX9J+kv1J0Ep0SR5d+1CV3S2RpPpVtGhsSSeh2o1R0bTLJvQDvAmjyncZP6b2pFQ6/4A2CVTqkFs2FNKB88Wrj5mdmybzZaOokjQr14U5ZCn0R1plR2DffXo0YNIJMLixYtj6egFBQWsWbOm2qhRmzZtGD9+POPHj+fuu+/m5Zdf5sYbb4yNoEWjVRctHTt2xGq18sMPP8Q6Rl6vl7Vr1zJo0KBa23jCCSewcuXK/dpZG0VR6N69O9999x0AF154IRMnTmTq1Kn7Fe6cPn06ZWVlXHnllQc9r9vtxu2uW9agrusE91nmfMeOHQwePJi+ffsyY8YM1N8E0+vz/Co5nc46H/fb9vh8PoYPH47dbmfOnDkHLNRfWlrKf/7zHx599NH97jv11FN56623KC0tjY1crl27FlVVad3a/FwvKyvb77lW1rEwDKNer6loWcLRMM/+9CyXGLmAhuLagSVBpvEdCsWw4NQzsOqJJEXbkx46nu7hVXSMbMBiqDgNDSthOkXWkaT7SNPzUX9bl0et+PMbegTKC23VyvgEvRbCpRaCPgtbS9LMjKeACkbd+mO6olKYlMbu9DaErHZ8CckY+xS23puSTX5KNt7EFHyJKbWc6QCvB9C7LvspkONx4LRaSE+0cWyb5GrZRWmJtmrT3VRVoU2KC62y3+nfC3tXo+T9ilK8BWXPr7Dpm5of7AA1s2qia3YKyzSKnObnsooCGd1BtcCJNRdfbpakvwRIf0n6Sy23vyRBKdHkLP32Wz796BMUi5NIqCNaxdQwFA0t6mPMsB9J/OUFFOvNtZ8oWvEhcf7zBJXOsHGXTN9rAJGojj8UJTXFXE7ZbssiPeMsMtLrlsorWo4uXbowatQorrvuOl588UXcbjd33XUXubm5jBo1CoBbbrmFkSNH0rVrV4qKivjqq6/o0aMHAO3atUNRFObOncvZZ5+N0+nE7XYzduxY7rjjDlJTU8nMzGTSpEmoqnrQ6QQTJ06kf//+3HDDDVx77bWxQqHz5s3j+eefZ9myZUyaNIkrrriCnj17YrPZ+Prrr3n11VeZOHEiYI4QPv744/z5z3/G4XBwxRVXYLVaef/997nnnnt4+OGHOeaYY6o97po1a/ZrS69evfYbHfP7/TzyyCOcf/755OTkkJ+fzwsvvMCOHTu46KKLALODdcYZZ9CuXTumTJnC3r17Y8dnZ2fX+vwrR/ZKS0vZu3cvy5Ytw2azHbDeAcDdd9/NyJEjadu2LSUlJcyePZv58+fz6aefAmYHa9iwYZSVlfHvf/8bn8+Hz2dOksnIyKhW/PTNN98kEolw+eWX7/c4Y8aM4aGHHuKqq65i8uTJ5Ofnc8cdd3D11VfHaimcd955PPnkkxx//PGxdPT77ruP8847r8Yiq5UKCwvZunUrO3eao+iV/x/Z2dkHfc1E8xDWwxgYqBVTtyYWFmAvCx7kqKOX0zDIikRRgNxIBOs+hcdVQMNcmMTQK8oz7bGjR2r+fC3FDgaEw0kYih1dSSRSBoZiJ+wLm0Gm0hB6ufmnvtSkJBSrFVubNti7dEF1ubBkZqLYbCSdczaWI1C0+JAYBuSvhdI82LkUCkPgL4DyIgj7zZX5wgHw7TDrYh2sDpfFCfZESMgA5z7BNUWFpFyw2CG5DfS6IHZXmRHh11/XM+/l53H37gzMR7M4YMLixnnO4pBJf8kk/SWT9Jf2J0Ep0eR8/9VXBKwaEOKPP88g7FAIWi2AhqIHSPr1OXNoSzvICnqRAD8nduUXv4Mlurlih0zfO3S6bjDlszVs2FsKQILFXH7Z7e5F924PxrNpIo5mzJjBzTffzLnnnksoFGLQoEF89NFHsQ5GNBplwoQJbN++naSkJEaMGMFTTz0FmOnEkydP5q677uKqq67iyiuv5LXXXuPJJ59k/PjxnHvuubEljrdt23bAEadKffr04euvv+bee+/ltNNOwzAMOnXqxCWXXAJA69atad++PZMnT2bz5s0oihK7feutt8bOc+utt9KxY0emTp3KM888g99vXky8/vrrXHrppfs9bk3btm3bFhvRqqRpGqtXr2bmzJnk5+eTlpbGiSeeyIIFC+jVqxcA8+bNY/369axfv36/4/dd0aomxx9/fOznJUuWMHv2bNq1a8fmzZsPeMyePXu48sor2bVrFx6Phz59+vDpp5/G6kX89NNPLF5sXuD8duRw06ZNtG/fPnb7lVde4YILLogVYd1XYmIi8+bN48Ybb6Rfv36kpaVx8cUX8/DDD8f2+ctf/oKiKPzlL39hx44dZGRkcN555/HII4/U+rznzJnDVVddFbtd+f8xadKkA9ZyEM1LWA/Tdo+BpSJJoPdaCx61/jWQjkbBij8A0aCKd6MdwwA9rBAN1rdPFAW8te+iKNg6ddznpoqtQwds7dph79wJW7t2qG43lowMFIsF1VX/6eSHpKwQQqXg3WEWUM9fZ/6JhqoCR3U6T74ZeCraXP82WBMgpT2kd2a9O53tRKDTmaBZCWkWfi1YSVGgCAMDwzAIRoPsKduDmToVAL8X/7eL2Vu+l3A0TEm4YirhUKicZ6hKxnqTJf0l6S9Vkv7S/hTjYP9rRzGfz4fH44kt5yiOjOceeIAC4KRwZ9q+81e+7NmOsEXDljSWBMq5OvdGc0RpzJvQ8fQDnsf/ZG+O6fMy5VrVB/P1bTKY3Lnpz6ttipZsKWL0tO9IsRdx0/EvkekqwGEJkJ39O3r1nHrwExzlzNVkNtGhQ4eDdhZEdX6/n9zcXKZOnco11xz56QiFhYUMGTKEpKQkPv74Y1xH6iJKxFVt71npH1TX2K9HgX8vG08dxIIuHTFUhcErN+MMRw9+oKgTxWrF3r07iv3ARYlVhxNLdhaKomDJzEJNSEBNSDCDS1Yr1pxs89/WrVFqGak/bNGK1ecqg0OleyBQbK7EV7LTvN+3HSIh2LvKLOUQDUGkHnPi6iAMlKkK5a50diemQXpX0CyUOj2sjHgp02xmdpPFYdYkUlWCFjsrC1ayvXR7RbCp4Z3d4WweG/RYo5z7SJH+0qGT/pKIh4boL0mmlGhydANQIF1PQDMMjFgKqkqCPQgnjIWzp4Cl9hUdCrFTrjlQgaHpSbhUlStbpTV281usQr+Zln9a2w20TdoR257krks1BiHqbunSpaxevZqTTjoJr9fLgw+amXiVKe5HWmpqKp9//jkvvPACixYtii29LIQ4MiKBchICYFRMwff37kdGauJBjhI1UVSNxEGnYe/cGUtODqrDgepyoRysTmdDigRh+4/w21pVUBVcKt0Leb9AuKx64Ml/6MGcEkWlMDGNMmcyexWDQncmaxwOfIrByrCXwkjZwU+igKGoFIf9GLH2l4F/mfnj/ksA1qp3elUfymFx0DWlK+nOdBQUFEUhxZ5Coq3673qmK5MESwKRvV42z/+WFV9+SrdTBnH2DbdjUeXS7mgi/SXRUsgnl2hyIoYOiopWsdxu5eq/imJBUyJmocODBKQAAhV9hSRNYWbvjrXvLA6qNGimtuckmaPTaWln0LXLfbhc7ePYKtFSTZkyhTVr1mCz2ejbty8LFiwgPT09bu1JS0vj/vvvj9vjC3E0i4QD1cIXe264h9NO6Rq39ohaBLxmPSXvDtj9c1XmUjQMeb9C0RYIHmQKYB0ZDg8+qxPc2WZWUkI67yp+lul+M0MJhUJNZW3ZLsqjQfTKZf8qJzRGt8NBSj3VRaojFZelKiMkyZ5Ej9QeuGpYtc2hOeiR1oN0Zzq90nph0w7en63JjtUreWPSJMAsbu6wOyUgdZSS/pJoCeTTSzQ5UQzChsqOqE5nQI/VgVLRiIBWy2heJAj/exlK82JBKYcUNz8s81bm8c9Fm9lZbNaQSrSZnTmHI1cCUqJRHH/88SxZsiTezRBCNBGRUHCfrGmwWBtxepgw6VEoK6i6HQnC1kUQ8puZS0GfeX9ZgRlw8u007/Ntr/tjpHUxV1X7rcQscHjAkUw0uzc/Rorx2pz84t9OgRHhV+96ioJeyqMByiPlQKF5XGBX1TkOUAffptqwaTbSnem4bW6SbEl0T+1OiiOFnmk9SbYn16npNs1Gq8RWKChxCQZ59+YBYHU4yWjXgWMGy2IzRyPpL4mWQoJSoskJ6wrvhXtRmv8523q03eceDVUJQ22jSuvmwWf3AlCeZK744GzM2gZHgac/X8uvO32M6vQh13X7kRSnGZyyWJrXUqNCCCGaJzMoVXXbapHua4MIeMG3C7zbYPcKWPk+FG8xl+ULlpj/HipXGqS0Jz+9Mzs1BRLSQVEJp3ZgeagQn6qxN1BAabg0dkhEj5BXlkcgEiCvbB1BXxDd+029HzrTmcn1x14fu53uTKd3em+sqpVkR/KhP6cmRI+aWeutu/fkgrsnx7k1QghxeORbXTQpu79YSbnqxBIJ0Da4jYDNzIpSLImg2Mzpe7WtuleWb/6b0oFAj4sBcEhQ6rBU1pI6t9N81H2GHhMTusWpRUIIIY4mKz//gkhWSuz2oM/PgwXy3X5YIqH6ZTUBOFMg51gziykpl3xVocSZzNu+1fjRCVts5IV8hC128sry8Aa9lPoWmccWVZxjW/2bqqDQNaUrHruHLildyEnIoVdaLzx2DzkJOdgt1fuFVvUI1seKk8qglCKrSgshWgAJSokmZedHPxNOULAY5petqqtYPJegaKkoikqCWgRa1oFPEDGDJnd0uZ237H1AN3DIF/YhyfMF+N+mQgr9ISxqOBaQOv64f2K3Z5GQ0PkgZxBCCCEO34aF3xPNNINSFiVKQumWBqkFJCq40iClA2T2AE8bjF4XUBotJ+zO5p2Nc/CH/ZSESigoL8Af9rOnbA/5xRvx1rE2lE21keHKqHo4q4uuKV3JdGaSlZBVLYjktDjJcmWZ/yZkoaDgsXsOufZSS2XoZhabKgOvQogWQIJSoslY/fXXrNPyCRmQETRXd1PRUC052NuFOTVxER32/hO0ew98krA5tew/jh4EdbOo1AlJshzpobhqxg+s3OWjc/IGeqWtrtiqkpIyAEWRQJ8QQogjI/fYniiffENUM1h7io9bjruY1AQJUtSXYcCa0q3sClbUYEKBWD2kKAR+gcAvlO34b0WtpoOzKBacVie90nrRL6sfSfYk0hxp2DQbWa4sEm2JtHG3aZTnczTT9YrBW1WCUkKI5k+CUqJJKC8v580vv8RwKehhO3/+8S1+bt8KBTP44UwP0MO5FApKD1Lo3FyhJ6iYv9rz+nXlmETnEXgGLc/mAj8WJcyf+03HqppZUjZbmgSkhBBCHFFvhQuYvCMfrwse7mAB7/fQMAu4iTo4IfMEeqb1JDshG6fFSYYzgwRrArnuXHITc+PdvKNSZaaUTN8TQrQEEpQSTUJ5eTmGoqAY0Dbgxm4OAGFUjAC1XzMXEueZGw8SlAoqVaOn7Z12lJpWdhG1Ckd1ykJRPLayioCUQk7278nMHBnvpgkhhDjKlGsLAYiqcG5JGakn3kqSo+XXDWoMmqrRPbU7ma7MWvdrldAKu2ZHVVQ0ycZpciprSsn0PSFESyBBKdEkRCu+XK2GRvdwDnpFIElNSADASQRsiebqLe1P2/8E/gL45gnY8CVBtSooZVclIFUfhmHw5g/bWLfHXA3HZS0DwGLx0LPnE/FsmhBCiKNUV90FlBBV4fzyIANOviHeTRIirqTQuRCiJZFPMtEkRKNRIobCu+HuPGqUEq0IJlVOFdNScuCeHXDzz5DWaf8TrPgPLJ4G+WtiQSkFsEqWVL38ssPHXe+s4O3/LeOOfs9ya9+XAbBakuLcMhFP48aNQ1EUFEXBZrPRuXNnHnzwQSKRyGGdd/78+SiKQnFxccM0tA42bdrEmDFjaNWqFQ6Hg9atWzNq1ChWr15dbb+5c+dy+umn43a7cblcnHjiibz22mvV9tm8eTOKorBs2bI6P/4DDzxA9+7dSUhIICUlhbPOOovFixdXO+c111xDhw4dcDqddOrUiUmTJhEKhWo9765duxgzZgxdu3ZFVVVuueWWOrep0t/+9jcURdnv2A0bNvD73/+ejIwMkpKSuPjii8nLy6u2zyOPPMIpp5yCy+UiOTm5xvNX/g7t++eNN96I3f/OO+8wdOjQ2OMMGDCATz/99KDtfueddxg2bBhpaWn1/v8QzcNDu3cBZqaUTZXxVCGk0HnTJP0l6S9Jf+nQSFBKNAmRSASv4aQwaqN/8QJWtUoHQKlI5tMsBwkuBXzmv61PIjDsEQAcqiJT9+ppty8AwKlt1tI9dT1pjnwAEhK7xrNZogkYMWIEu3btYt26ddx+++088MADPPFE08meO1gnBCAcDjN06FC8Xi/vvPMOa9as4c0336R3797VOnrPPfcco0aN4tRTT2Xx4sUsX76cSy+9lPHjx/PnP//5sNrZtWtXnn/+eVasWMHChQtp3749w4YNY+/evQCsXr0aXdd58cUX+fXXX3nqqaeYPn0699xzT63nDQaDZGRk8Je//IVjjz223u364YcfePHFF+nTp0+17X6/n2HDhqEoCl9++SXffvstoVCI8847D73iogjM1/+iiy7iT3/6U62PM2PGDHbt2hX787vf/S523zfffMPQoUP56KOPWLJkCYMHD+a8885j6dKltZ7T7/czcOBAHnvssXo/b9E8bPk0EYCIBharLF4ihBQ6b7qkvyT9JekvHQIjDr7++mvj3HPPNXJycgzAePfdd6vdr+u6cd999xnZ2dmGw+EwhgwZYqxdu7baPgUFBcaYMWMMt9tteDwe4+qrrzZKSkqq7fPzzz8bAwcONOx2u9G6dWvjscceq1c7vV6vARher/eQnqeou80bNxp/uu9xY8BNLxlTLj4n9uf5qycaz1//hbFyyr21n+DzyYY+Kcn4/JOnjambdhlZXy41un2z/Mg0vgV5+8dtRruJc42/vXWf8fkXHY2flo41CgsXG5FIebyb1uyVl5cbK1euNMrLm99rOXbsWGPUqFHVtg0dOtTo37+/UVhYaFxxxRVGcnKy4XQ6jREjRlT7vN68ebNx7rnnGsnJyYbL5TJ69uxpfPjhh8amTZsMoNqfsWPHGoZhGD6fzxgzZozhcrmM7Oxs48knnzROP/104+abb46dt127dsaDDz5oXHHFFYbb7Y4du2DBAmPgwIGGw+EwWrdubdx4441GaWmpYRiGsXTpUgMwNm/efMDnunXrVsNqtRq33Xbbfvc9++yzBmB8//33hmEYseewdOnS+r+oFSq/Zz7//PMD7vP4448bHTp0qPM5f/taHUxJSYnRpUsXY968efsd++mnnxqqqlb7HiwuLjYURTHmzZu337lmzJhheDyeGh+npu/7g+nZs6cxefLkOu3bEP8f+6rtPdvc+gcH63eNHTt2v/fj8OHD63z+xn49Vh13vLGyW3fjxd/3MH55rk+jPIYQzcm3//m3MeXic4x5L78Q76Y0OOkvSX+pJtJfql1z7y/FJVPK7/dz7LHH8sILL9R4/+OPP86zzz7L9OnTWbx4MQkJCQwfPpxAIBDb57LLLuPXX39l3rx5zJ07l2+++YY//vGPsft9Ph/Dhg2jXbt2LFmyhCeeeIIHHniAl156qdGfn6i/PSu2EjVUNKOitpRuw5Z4MYZlCAA2u1H7CSJBlrq7c5ntdB7ftBuABE0SAetq+fZiLp6+iKmfrcGuBfHYzcwzl6sDKSknoWmOOLewZTIMg7Jw2RH/YxgHeT/VgdPpJBQKMW7cOH788UfmzJnDokWLMAyDs88+m3A4DMCECRMIBoN88803rFixgscee4zExETatGnDf//7XwDWrFnDrl27eOaZZwC47bbb+Pbbb5kzZw7z5s1jwYIF/PTTT/u1YcqUKRx77LEsXbqU++67jw0bNjBixAhGjx7N8uXLefPNN1m4cCE33GDWn8nIyEBVVd5+++1YHbvfevvttwmHwzWO8F1//fUkJiby+uuvH/brB+Zo2UsvvYTH46l1tM7r9ZKamtogj1mTCRMmcM4553DWWWftd18wGERRFOx2e2ybw+FAVVUWLlx4SI+Vnp7OSSedxKuvvlrr76Ku65SUlDTqcz9aHKzfBVWj+5V/Gur3vCF0fPcdJt3o4fnzVSwyfU8I9OjRNX0vXv2lhugzSX/p8El/qeX3l+LyzT5y5EhGjqx5FS/DMHj66af5y1/+wqhRowD45z//SVZWFu+99x6XXnopq1at4pNPPuGHH36gX79+gJk+ePbZZzNlyhRatWrFrFmzCIVCvPrqq9hsNnr16sWyZct48sknqwWvRPwVbNtO4Ls9RKwqGhWFG7GhWluTluanfeBj2mUcZC52JMguewYAKRaN/smJXJCV0thNbzHe+nE7/9tcyMj287jw5A9i2y1SS6pRlUfKOXn2yUf8cRePWYzrEKfAGIbBF198waeffsrIkSN57733+PbbbznllFMAmDVrFm3atOG9997joosuYuvWrYwePZrevXsD0LFjx9i5Kr88MzMzY/PqS0pKmDlzJrNnz2bIEDMoPWPGDFq1arVfW84880xuv/322O1rr72Wyy67LDbHv0uXLjz77LOcfvrpTJs2jdzcXJ599lnuvPNOJk+eTL9+/Rg8eDCXXXZZrF1r167F4/GQk5Oz3+PZbDY6duzI2rVrD+m1qzR37lwuvfRSysrKyMnJYd68eaSnp9e47/r163nuueeYMmXKYT3mgbzxxhv89NNP/PDDDzXe379/fxISEpg4cSJ//etfMQyDu+66i2g0yq5du+r1WA8++CBnnnkmLpeLzz77jP/7v/+jtLSUm266qcb9p0yZQmlpKRdffHG9n5eorrZ+VyW73U52dvYRalH92Nq3Z1cyGBEFiyJBKSEqp+8dLYXO49VfgkPvM0l/SfpL0l+quyb3SbZp0yZ2795dLQLp8Xg4+eSTWbRoEQCLFi0iOTk5FpACOOuss1BVNVYAbdGiRQwaNAibrWoltuHDh7NmzRqKiopqfOxgMIjP56v2RzS+zW+9TVCLEkVF04oBUCp+NTunrqC/exYW+0GWfo4GCapmZPoYt5MZvTtwXmZyI7a6ZfGWm6M0Z3bcHNumaQmkppwSpxaJpmbu3LkkJibicDgYOXIkl1xyCePGjcNisXDyyVUdxbS0NLp168aqVasAuOmmm3j44Yc59dRTmTRpEsuXL6/1cTZu3Eg4HOakk06KbfN4PHTr1m2/fff9DgD4+eefee2110hMTIz9GT58OLqus2nTJsAcedq9ezezZs1iwIABvPXWW/Tq1Yt58+bV+bXY93vlQGbNmlWtHQsWLIjdN3jwYJYtW8Z3333HiBEjuPjii9mzZ89+59ixYwcjRozgoosu4rrrrott3/e848ePr1ObFyxYUO24WbNmsW3bNm6++WZmzZqFw1FzNmRGRgZvvfUWH3zwAYmJiXg8HoqLiznhhBNQ63kxdN9993Hqqady/PHHM3HiRO68884D1tmYPXs2kydP5j//+Q+ZmebS9bW9puLwzZ8/n8zMTLp168af/vQnCgoKDrhvPPpLkYpMaosmQSkhpNB50yX9pSrSX5L+Ul01uW/23bvNqVdZWVnVtmdlZcXu2717d+xFr2SxWEhNTa22T4cOHfY7R+V9KSn7Z9E8+uijTJ48uWGeiKiTjRs3MtdbRMTipQwXrowPYGc6lfFSa94ycAG2hNpPFAkSqFh1z36UjBo1pNKgmYmWZAuCDn16v0h6+mAURTo7jclpcbJ4zOKD79gIj1tfgwcPZtq0adhsNlq1aoXFYmHOnDkHPe7aa69l+PDhfPjhh3z22Wc8+uijTJ06lRtvvPFQml5NQkL1z4XS0lKuv/76GkeS2rZtG/vZ7XZz3nnncd555/Hwww8zfPhwHn74YYYOHUqXLl3wer3s3Llzv9HGUCjEhg0bGD58+EHbdv7551frfObm5lZrd+fOnencuTP9+/enS5cuvPLKK9x9992xfXbu3MngwYM55ZRT9pt2vu9qKUlJdctm7NevX7XjsrKy+OKLL9izZw8nnHBCbHs0GuWbb77h+eefJxgMomkaw4YNY8OGDeTn52OxWEhOTiY7O7vaKO6hOPnkk3nooYcIBoPV0t3feOMNrr32Wt56661qA1S1vabi8IwYMYILLriADh06sGHDBu655x5GjhzJokWL0Gq46D3i/aWls4hEzeK8kiklBOjRykLnR0efN179pcrHrg/pL0l/SfpL9Sff7Pu4++67ue2222K3fT4fbdq0iWOLWr6dO3awXffwZbgLg3Z/xbj1UVblAhXBEKvdCT1HQb+raz7Bmk9gy0LY8RNBey8A7KqsuFdXryzcxMqdPtbu2k2HpG1oFANgtaVIQOoIUBTlkKfRHWmVHYN99ejRg0gkwuLFi2Pp6AUFBaxZs4aePXvG9mvTpg3jx49n/Pjx3H333bz88svceOONsRG0fesVdOzYEavVyg8//BDrGHm9XtauXcugQYNqbeMJJ5zAypUr92tnbRRFoXv37nz33XcAXHjhhUycOJGpU6cyderUavtOnz6dsrIyrrzyyoOe1+1243a769QGXdcJBoOx2zt27GDw4MH07duXGTNm7HfRUZ/nV8npdO533JAhQ1ixYkW1bVdddRXdu3dn4sSJ+wUjKlPmv/zyS/bs2cP5559f73bsa9myZaSkpFTrYL3++utcffXVvPHGG5xzzjnV9q/Payrq59JLL4393Lt3b/r06UOnTp2YP39+bFrIvo54f+mjO4jkpoKioFnrH1QXorkzdJ3y0hJ2rFnJyq+/YM9mM5tFOUpW35P+kvSXQPpLLbm/1OSCUpX1DPLy8qrNUc3Ly+O4446L7fPb1L1IJEJhYWHs+OzsbPLy8qrtU3n7QDUT7HZ7tf9s0fgi4TC7dTdRVE7euR6LXhlQMt/cWkYHuPiBAxwcgv9cCVHzwynY+ngAHEfJqNHh2lZYxkNzV6IqUR47bTKpjmKoWLHUojWvDzIRH126dGHUqFFcd911vPjii7jdbu666y5yc3NjNQFvueUWRo4cSdeuXSkqKuKrr76iR48eALRr1w5FUZg7dy5nn302TqcTt9vN2LFjueOOO0hNTSUzM5NJkyahqiqKUnvAeeLEifTv358bbriBa6+9loSEBFauXMm8efN4/vnnWbZsGZMmTeKKK66gZ8+e2Gw2vv76a1599VUmTpwImCOEjz/+OH/+859xOBxcccUVWK1W3n//fe655x4efvhhjjnmmGqPu2bNmv3a0qtXL6zW6tOO/X4/jzzyCOeffz45OTnk5+fzwgsvsGPHDi666CLA7GCdccYZtGvXjilTpsSWPoYDf3dVqhzZKy0tZe/evSxbtgybzVatw7svt9u933NJSEggLS2t2vYZM2bQo0cPMjIyWLRoETfffDO33nprtSkCW7dupbCwkK1btxKNRmNt6dy5M4mJiXzwwQfk5eXRv39/HA4H8+bN469//Wu1AqmzZ89m7NixPPPMM5x88smxzGen04nH4zng86583J07dwJV/x/Z2dlNtkZSU9exY0fS09NZv359jUGpI91f2t75dCKBXwCwDLjhiD2uEI2psnCxb28ee7ZsIlhaSpnPG7s/VF7Ons0bCJSWsHfrZiL7XIxXSqhh5odoeqS/ZJL+kvSXDqTJBaU6dOhAdnY2X3zxRSwI5fP5WLx4MX/6058AGDBgAMXFxSxZsoS+ffsCZiRS1/VYqtqAAQO49957CYfDsV/0efPm0a1btxqn7on4iIZC6BVT9VpFI+gVH6JaYgI6oFlqCTCFy2IBKQbcQNDZD6KSKVVXe0rM1SxzPWEzIAU4HK1xJ/YgIaFTHFsmmpMZM2Zw8803c+655xIKhRg0aBAfffRR7HM3Go0yYcIEtm/fTlJSEiNGjOCpp54CzHTiyZMnc9ddd3HVVVdx5ZVX8tprr/Hkk08yfvx4zj33XJKSkrjzzjvZtm3bAefxV+rTpw9ff/019957L6eddhqGYdCpUycuueQSAFq3bk379u2ZPHkymzdvRlGU2O1bb701dp5bb72Vjh07MnXqVJ555hn8fj9gjkrtm1FSqaZt27Zto3Xr1tW2aZrG6tWrmTlzJvn5+aSlpXHiiSeyYMECevUyMz3nzZvH+vXrWb9+/X7HH2wFoOOPPz7285IlS5g9ezbt2rVj8+bNtR53MGvWrOHuu++msLCQ9u3bc++991Z7vQDuv/9+Zs6cuV9bvvrqK8444wysVisvvPACt956K4Zh0LlzZ5588slqtR9eeuklIpEIEyZMYMKECbHtY8eO5bXXXjtg++bMmcNVV10Vu135/zFp0iQeeOCBw3nqR63t27dTUFBQYwHbePhdeF3s53VbI+za8VkcWyNElVB5GaVFhfU+btPSHyncsR3D0Ot9rKKqDBozjqSMTDr2jU/xb1F/0l+S/hJIf+lAFKMh1gavp9LSUtavXw+Y/xFPPvkkgwcPJjU1lbZt2/LYY4/xt7/9jZkzZ9KhQwfuu+8+li9fzsqVK2NvspEjR5KXl8f06dMJh8NcddVV9OvXj9mzZwNm+mK3bt0YNmwYEydO5JdffuHqq6/mqaeeqvPqez6fD4/Hg9frrfM8VFE/n33wAU9+v5fV0Symff80RqSEVbnpuNyd0S3nM/L47+h4/V9qPrgkD6Z25fPU/txz4lMUhCP4ozpX5abzaNfWNR8jAFiypYjPft3Ni99sZFDHcsZ2noimJXLG6T/Hu2ktViAQYNOmTXTo0OGgnQVRnd/vJzc3l6lTp3LNNdcc8ccvLCxkyJAhJCUl8fHHH+NyNY8pBOLw1PaebW79g9r6XampqUyePJnRo0eTnZ3Nhg0buPPOOykpKWHFihV1yohq7Nfj9DdPxx8oISPPwpAlGSjI4JNoWRJTUknKyCIxLR3rPu85m8NJRvsOuJI8tOnVB6vd/Cw6WCZMcyb9pUMn/SURDw3RX4pLptSPP/7I4MGDY7cr6xJURvfuvPNO/H4/f/zjHykuLmbgwIF88skn1Z7krFmzuOGGGxgyZAiqqjJ69GieffbZ2P0ej4fPPvuMCRMm0LdvX9LT07n//vvrHJASR0YkHCaKyvHFS1mTYcPAXPIUw8yQ0qy1zJWPmJk+72UNY2sgFNvcM1G+wGqzfk8Jo6d9h6ZEOS13Mf2zzBWWrJamf2Eljg5Lly5l9erVnHTSSXi9Xh588EGAWIr7kZaamsrnn3/OCy+8wKJFi2qcziREU1Zbv2vatGksX76cmTNnUlxcTKtWrRg2bBgPPfRQkylp8PUlX/PFq9NZtmQuKTmtSGklA0+i6XCnpmF11L/WmTs1je6nno5qseBISGyElomWTvpLoqWIS1DqjDPOqDWtTlEUHnzwwdgbqyapqamxrKgD6dOnT7NYAvFoZUQNAnv86IZC99K1/D97dx5XVZ0/fvx1V7jABQRBFpVAEXfHtFzLyBS0lGnMJR3S76ij/VwyW1ymxBxtMcxJLcumtJlRx8kpc7QN13DJFdREQRHDcBdF2eHez++PK1evIOKSV/D9fDzuI+85n/M573O4cN99zmexaDVw+elnsSUYveEGw/dKbUP3Ci6vijG2vj/PBvoS6nZvJNH3qszsfADaB6UwpNm/7duNxtrOCkmIcuLj40lNTcVoNNKmTRsSExPtE0c6g6+vL1OmTHHa+YW4HTfKu77//vu7GM2tsVpsq8Q27vQYHfsOdHI0Qghxb5B8SdQE99ycUuL+UXjwHEW/FmDBFR221SQM7j3Q6uui0ZoxaPKp5V18/Qou95Qq0toaoR5wc5EGqSq4VGhL7JvWKQDAZKpPrVodCAzs48ywhLBr3bo1u3btcnYYQoh7iNVim3tHp5fUVQghQPIlUXPIN7twmp//9z1WjQKrwnS5gUmj9cZqhP9r/yWuaf/B4D6m4oNLCiDXtgJjkc42XE9W3buxolILF/JLAPAw2O55rVodadJ4hjPDEkIIISpV1lNKq6tkWL8QQgghqh1plBJOUZCaypEjaaT7BfPw8XV4FedRZNADOlB5mA//E7SAvoKeT6f2w9+7QYlthYeynlKy6l7lZqxO4ZPEDBp4HSGmwUGC3TIA0OvNTo5MCCGEqJzVYutRLY1SQgghRM0ijVLCKVatWcPc2o341eLNsKJTWMtWEdHoMOoKwcULzAEQ0aP8wVm77A1SoKHQzTZu2kV6SlUqIeUUAKN+9yleLpfs212Mfs4KSQghhKgSa6n0lBJCCCFqImmUEk5xJi+PHBUAgIulFKvGeHmPDl9rEfT6GzT/Q8UHX57g/EDz/2NLu8mcyjwNxaW4Sk+pSl0oKEGnsdgbpIIC+2E0+spcUkIIIe55VmtZTylJXYUQQoiaRL7ZhVNYLBasytaIFGC1ckZn+7dGo0OnKQWd8foHX55/amCtZzhx+Lh9s4c8Pa3Qf3Ye4397jpNTUIK7Pt++PSLir2i18idACCHEvc8+fE8v3/VCCCFETSL/RyqcwmK1YsE23E5jKUUZyno56dBqSiqeS6pMSSEKOKlxB6C7ryeN3V1paTb9tkFXU29/e5DsvCJefHA+TX1TAdDpPKRBSgghRLVhuTx8Tyc9pYQQQogaRb7ZhVNYrFaUgm5n13LO6H5lh0aHjlLQGa5/cGkhJRo96vI8VHOb1MfLIB/lilitigv5xXgY8mhe+6B9e61a7Z0YlRBCCHFzynpKaaRXtBBCCFGjyMzQwilKlcKj9CKNc9Mo1V5OMDVugAGdpgR01+kpVVoMRZco1l5ptJIJzq8vr7gUqwKTvgAArdZE505baNniIydHJqqTIUOGoNFo0Gg0GI1GGjZsyLRp0yi93HPhVm3YsAGNRsOFCxfuTKBVkJGRwcCBAwkKCsLV1ZW6desSExPDwYMHHcqtWrWKLl26YDabcXNz46GHHmLRokUOZY4ePYpGoyE5ObnK5586dSqNGzfG3d2dWrVq8cQTT7Bt2zaHOocOHUpoaCgmk4kGDRoQFxdHcXFxpfWeOHGCgQMH0qhRI7RaLePGjatyTFlZWfzxj3/E19cXk8lEixYt2Llzp33/1T//sld0dLRDHQ888EC5Mm+//bZ9f2pqKpGRkdSpUwdXV1fCwsJ47bXXKCkpcajnwoULjBo1isDAQFxcXGjUqBHffPNNpfF/+eWXdO/eHV9f35v+eYjqo6xRSieNUkKIe5TkS5IvSb50a6R7ibjrji7ZgsWiRausAGjQofd4Gq3OB1ddAQ1ct4CuewUHbobFz0BJPoUGL/tmF5ngvJzcolKGfLadX7Jtc0iZjbY/0Hq9GReXOs4MTVRT0dHRLFy4kKKiIr755htGjRqFwWBg0qRJzg4NgOLiYozGSuaiA0pKSujWrRsRERF8+eWXBAYG8uuvv/Ltt986JHpz585l3LhxTJgwgfnz52M0Gvn6668ZOXIkP//8M/Hx8bccZ6NGjZg3bx5hYWEUFBQwe/ZsunfvzuHDh/Hz8+PgwYNYrVY+/vhjGjZsyM8//8zw4cPJy8ur9LxFRUX4+fnx2muvMXv27CrHc/78eTp16kRkZCTffvstfn5+HDp0iFq1ajmUK/v5l3FxKf/gYNq0aQwfPtz+3mw22/9tMBh47rnnePDBB/H29mbPnj0MHz4cq9XKm2++Cdh+ht26dcPf35/ly5cTHBzML7/8gre3d6XXkJeXR+fOnenXr5/D+UXN8cnoP3HxzGlAJjoXQtzbJF+SfEnypVugxHXl5OQoQOXk5Dg7lBplz6tfqmlT3lAdxnys4vs9qd7r+7SaN2KtWvLap0q920ipOE+lju8pf+CGmbZ9cZ7q15nNVZ11Sare+uS7fwHVwMbU0ypkwirV/e331GdfPaK+/O4htWZtmNqytZuzQ7tvFRQUqJSUFFVQUODsUG7a4MGDVUxMjMO2bt26qfbt26vs7GwVGxurvL29lclkUtHR0SotLc1e7ujRo+qpp55S3t7eys3NTTVt2lStXr1aZWRkKMDhNXjwYKWUUhcvXlQDBw5Ubm5uKiAgQL333nuqS5cu6oUXXrDXGxISoqZNm6ZiY2OV2Wy2H5uYmKg6d+6sXF1dVd26ddWYMWNUbm6uUkqppKQkBaijR49e91ozMzOVwWBQ48ePL7dvzpw5ClA//fSTUkrZryEpKenmb+plZd8za9asuW6ZmTNnqtDQ0CrXee29qsyECRNU586dKy1T0c//WiEhIWr27NlVC/CyF1980eHc8+fPV2FhYaq4uPim6ilzJ34eV6vsd1byA0e/9f14P7aPLV94NkZlH//1NzmHEOLeIPmS5EsVkXypZudLMu5J3FW7li/nZ82vlCgrQ1NWAqC7vAqf9nwa5J2xFaxoonNLke2/bf9E0fNbAekldT0XC21dPHuF76K+ZxaehnMAuLs3dGZY4hpKKaz5+Xf9pZS67dhNJhPFxcUMGTKEnTt3snLlSrZu3YpSip49e9q7GY8aNYqioiJ+/PFH9u3bxzvvvIOHhwf16tXjv//9L2DrqnzixAnef/99AMaPH8/mzZtZuXIlCQkJJCYmsnv37nIxxMfH06pVK5KSknj99ddJT08nOjqaPn36sHfvXpYtW8amTZsYPXo0AH5+fmi1WpYvX47l8lCgay1fvpySkhJefvnlcvtGjBiBh4cHS5cuve37B7YnXQsWLMDLy4tWrVpdt1xOTg4+Pj535JzXWrlyJW3btqVv3774+/vTunVrPvnkk3LlNmzYgL+/PxERETz//POcO3euXJm3334bX19fWrduzbvvvlvpcIXDhw/z3Xff0aVLF4dYOnTowKhRo6hTpw7NmzfnzTffvO7PStw/Br05myGzPmTER59TKzDY2eEIIe4yZ+VLdyJnknzp9km+VPPzJekDLe6avLw8/rdvH7hqsCoNfsWnuEAdlOZy26jrBVAW0JvAo4IhZqVFHDLV56+mbpw+eByQ+aSu51Kh7Y+bl4ttLqmQkOep7fsYnp4tnBmWuIYqKCD1wTZ3/bwRu3ehcXO7pWOVUqxdu5bvv/+eHj16sGLFCjZv3kzHjh0BWLx4MfXq1WPFihX07duXzMxM+vTpQ4sWts9eWFiYva6yxMHf39/e5fjSpUt8/vnnLFmyhK5duwKwcOFCgoKCysXy+OOP89JLL9nfDxs2jEGDBtnnBwgPD2fOnDl06dKF+fPnExwczJw5c3j11Vd54403aNu2LZGRkQwaNMgeV1paGl5eXgQGBpY7n9FoJCwsjLS0tFu6d2VWrVrFgAEDyM/PJzAwkISEBGrXrl1h2cOHDzN37tzb6gJfmSNHjjB//nzGjx/P5MmT2bFjB2PHjsVoNDJ48GDA1hX9D3/4A6GhoaSnpzN58mR69OjB1q1b7fP7jB07lgcffBAfHx+2bNnCpEmTOHHiBO+9957D+Tp27Mju3bspKiriz3/+M9OmTXOIZd26dQwaNIhvvvmGw4cP8//+3/+jpKSEuLi43+T6RfXgW7ees0MQQjiRs/IluPWcSfIlyZckX6o6+T96cdcUFhZSjI4jpb7klYSjufzkodjF1jYa4u4OsV/B6B1g8i5fQWkR/wmI4gdtEMmXbHMl1XWtfEz0/eZfP/1C11kb+PzHjXSpuxkv40kAvDxb4u3dFq32OhPIC3EDq1atwsPDA1dXV3r06EH//v0ZMmQIer2edu3a2cv5+voSERHBgQMHANuX7/Tp0+nUqRNxcXHs3bu30vMcOXKEkpISHn74Yfs2Ly8vIiIiypVt27atw/s9e/awaNEiPDw87K+oqCisVisZGRmA7UnkyZMnWbx4MR06dOCLL76gWbNmJCQkVPle3GguBrAlm1fHkZiYaN8XGRlJcnIyW7ZsITo6mn79+nH69OlydWRlZREdHU3fvn0dxv5fXe/IkSOrFHNiYqLDcYsXLwbAarXy4IMP8uabb9K6dWv+/Oc/M3z4cD766MpiCAMGDKB37960aNGC3//+96xatYodO3awYcMGe5nx48fz2GOP0bJlS0aOHMmsWbOYO3cuRUVFDnEsW7aM3bt3s2TJElavXu2QPFqtVvz9/VmwYAFt2rShf//+/OUvf7HHUtk9FUIIIe4Fki9dIfmS5EtVJT2lxF1jtVpJKq3LAYutF9QTl7e7am1/sEyuJmjw+PUrsBSRr/UE4Ek/L2L8a9Hey/23DLna+WxTBkfO5jHzkffxNZ23bzcYfZ0YlbgejclExO5dTjnvzYqMjLRPYhkUFIRer2flypU3PG7YsGFERUWxevVqfvjhB9566y1mzZrFmDFjbiV0B+7ujr//ubm5jBgxgrFjx5YrW79+ffu/zWYzvXr1olevXkyfPp2oqCimT59Ot27dCA8PJycnh+PHj5d72lhcXEx6ejpRUVE3jK13794OyWdw8JUhR+7u7jRs2JCGDRvSvn17wsPD+fTTTx0mQT1+/DiRkZF07NiRBQsWONR99Wopnp6eN4wFbAnp1cfVqWP7OxwYGEjTpk0dyjZp0sQ+VKAiYWFh1K5dm8OHD9ufzl6rXbt2lJaWcvToUYcEuV49W4+Xpk2bYrFY+POf/8xLL72ETqcjMDAQg8HgsLpakyZNOHnyJMXFxZXeUyGEEDWXs/KlsnPfDMmXJF8qI/lS1UmjlLhrLBYL+coAQAO0aC4P0dZobB9Dne4G80OVFlN0uQGrhYeJ3v7ev1Wo1db5/GK0Gou9QcrXNxJ39wZ4ef7OuYGJCmk0mlseRne3lSUGV2vSpAmlpaVs27bN3h393LlzpKamOnxx16tXj5EjRzJy5EgmTZrEJ598wpgxY+xP0K4eAx8WFobBYGDHjh32xCgnJ4e0tDQeffTRSmN88MEHSUlJKRdnZTQaDY0bN2bLli0APPPMM0yYMIFZs2Yxa9Ysh7IfffQR+fn5PPfcczes12w2O6ymUhmr1erwhCwrK4vIyEjatGnDwoUL0V4zTPlmrq+MyWSq8LhOnTqRmprqsC0tLY2QkJDr1vXrr79y7ty5Crvsl0lOTkar1eLv73/dMlarlZKSEqxWKzqdjk6dOrFkyRKsVqv9mtPS0ggMDMRoNGI0Gqt8T4UQQjhHflISp/46HWtBwU0dp/f1JeRf/6xwn+RLki+B5Es1OV+SRilx11gsFixoMVqLiLmYxhnPy78sl+eU0ulv0ChlKaLwcqOUzCXlaOWe43yz9wQXCkpw0xfat7ds8RFarfyai99GeHg4MTExDB8+nI8//hiz2czEiRMJDg4mJiYGgHHjxtGjRw8aNWrE+fPnWb9+PU2aNAEgJCQEjUbDqlWr6NmzJyaTCbPZzODBg3nllVfw8fHB39+fuLg4tFotGk3lfyMmTJhA+/btGT16NMOGDcPd3Z2UlBQSEhKYN28eycnJxMXFERsbS9OmTTEajWzcuJHPPvuMCRMmALYnhDNnzuTll1/G1dWV2NhYDAYDX3/9NZMnT2b69Ok0b97c4bzXJikAzZo1w2AwOGzLy8tjxowZ9O7dm8DAQM6ePcsHH3xAVlYWffv2BWwJ1mOPPUZISAjx8fGcOXPGfnxAQECl11/2ZC83N5czZ86QnJyM0Wgs92Tvai+++CIdO3bkzTffpF+/fmzfvp0FCxbYnzbm5ubyxhtv0KdPHwICAkhPT+fVV1+lYcOG9iegW7duZdu2bURGRmI2m9m6dSsvvvgif/zjH+1LJS9evBiDwUCLFi1wcXFh586dTJo0if79+9vv0/PPP8+8efN44YUXGDNmDIcOHeLNN9+s8Enu1bKzs8nMzOT4cdtcg2U/j4CAgBveMyGEEHfWxVWrKUxJuenjrPn5v0E09wbJl2wkX5J86bruyDqANZQs+XxnHd5xQHWYtFj1Hvmmiu/3pP313qBxat6Iterg36ZUfOD/xin1t5ZKTQ9Qw/79nqqzLkn9/djpuxv8Pa71tB9U2MQVasJn/6fm/KeXWrM2TK3f0MLZYYmr1LQljsuULXHs5eWlTCaTioqKcljiePTo0apBgwbKxcVF+fn5qdjYWHX27Fn7/mnTpqmAgACl0WgqXeL44YcfVhMnTrQfd70ldbdv3666deumPDw8lLu7u2rZsqWaMWOGUkqpM2fOqLFjx6rmzZsrDw8PZTabVYsWLVR8fLyyWCwO9axYsUI98sgjyt3d3b4E89KlSx3KVLRMc9nr2LFj5WIrKChQTz/9tAoKClJGo1EFBgaq3r17q+3bt9vLLFy48Lp13khFx4SEhNzwuP/973+qefPmysXFRTVu3FgtWLDAvi8/P191795d+fn5KYPBoEJCQtTw4cPVyZMn7WV27dql2rVrp7y8vJSrq6tq0qSJevPNN1VhYaG9zL///W/14IMP2n8uTZs2VW+++Wa534ctW7aodu3aKRcXFxUWFqZmzJihSktLK43/evcsLi7uhtdemTuxxPH9Qu6HEKLM8ddeUykRjdXx115XeTt2VPmVn5yslJJ8SfIlyZfux3xJo9QdWBu8hrp48SJeXl7k5ORUeRyqqJhSiu1vr2TsxXweyD7Iwxd2odPUAmMDdC7NMeg86Nv+B3yHOK48QFEuvHVlHOxzzd7kh9qdmBVRj0FBMk8SgNWqaPCXb2jmm8KLD16ZbM/dvRHt233rxMjE1QoLC8nIyCA0NBRXV1dnh1Ot5OXlERwczKxZsxg6dOhdP392djZdu3bF09OTb7/9FrdqMoRA3J7KfmclP3Ak90MIUeb4hAnkfL0S/1dewXfon276eMmXbp3kS8IZ7kS+JGOgxF1xMj2NvOwcLGjRKSsAOm0gBrdHeazTCf7kPwRf78LyB5batlnQkh6bwIX6tjHSLtobDPW7j1wqKkUpMBtyAXB3Dyci4q+0bDHfyZEJcWuSkpJYunQp6enp7N69m0GDBgHYu7jfbT4+PqxZs4auXbuydetWp8QghBBCVAeqpAQATRVWXhO3R/IlUVPIZDPirjj11VcoTTBKKYJyL4/5vTzXkffJ7zBqC0BnKH/g5UapYc3/yreZRsA2wZ/MKQUX8ov5w/wt/HreNpGkp4vtXrm7h1M3eKAzQxPitsXHx5OamorRaKRNmzYkJiZSu3Ztp8Xj6+vLlClTnHZ+IYQQojqwN0oZKsjrxR0n+ZKoCaRRSvzmiouL2b99ByWN3Hnw11O0P7WfX2p7obB9WblcPAJGwBxU/uASW0NLskdjANx1Wuq6Gmnn5V6+7H0mKfMCR87k0aL2fp5t/F9queYBoNdXr9UWhLhW69at2bXLOUs/CyGEEOLWWYuLAWmUuhskXxI1hTRKid/cvj17+KlJO9IsHrSwbsZ6eUUIdbmnlEvE49D6MWjcs/zBl3tKFV1ede+bNo2IcJfx5QAXC21Pop5suJc6bmft283m5tc7RAghhBBCiN+OffieNEoJIapGGqXEby730iV2ldbluNWL36lirGXTQWltX1b6kLbQsm/FB5cWAVB0uayrzCWFUopDp3M5ePISAGajbQndsNBx1KnzFG5uoc4MTwghhBBC3Keu9JSSOaWEEFUjjVLiN1daVESx0gFQx2q195Qq+/jpKpoIMT8bVo+Hc4eBK41SRmmU4u+JGcz45gBGXREtax/GbLD1kvLwaCINUkIIIYQQ4q4rzswkf8cOSk+dBqSnlBCi6qRRSvzmLCUlWC4v9FjbakHZG6Vs27QVNUqlfQ/7v7Idj5ZSzeWhfjLBOfuP5wDwf83+y8MBP9m3GwzeTopICCGEEELcj0qzsyk5foKjzzzjsF1rMjkpIiFEdSONUuI3V1xcjBUN9QqOcVFBqWctoAQ0tt5TOpcKGqWKc23/DW5LUccXwPbQBRfpKcWlwlIAWgddAiu4uTXA07MFnp6tnByZEEIIIYSoaQrT0ig5ftz2RilKso5z7tNPUQUFWC5ccCjr9vDDGBuE4damzd0PVAhRLUmjlPhNlWYXcunnC1ioRYfsbRShQHt5AkStOy6aS2gNLhUcaJtLKqFOJCnu7YATALho7t+eUqcvFrI78zyZ2bY5pHQa238jGk3Fx6ejM0MTQgghhBA1UFF6Ohm9YyovpNej9/PDs0cP6rz6yt0JTAhRY0ijlPhNFR4+D6VWrEqLUdkmPtS5PIjRYKJz4E8EqR1oDLPLH1haSIZrMLHmpyDD1iBl0mrR38c9pQb+fRuHT+eiwYpWo9CRjwL0eg9nhyaEEEIIIWqQklOnOL9kKUWpqQBozWaMISGg0YBGg0ano9aA/ri2bIlLqMxpKoS4dfdvtxNxV6T9+CMWjRWLLg+dJg8AnTECD00JLfVfUNtwFFy8yh9YWsRpow8AHjotferU4r3G9e5i5PcWpRQZZ/NoXjuF+U+8yifdXkRZTgGg00mjlPhtDRkyBI1Gg0ajwWg00rBhQ6ZNm0Zpaelt1bthwwY0Gg0Xrun6/1vKyMhg4MCBBAUF4erqSt26dYmJieHgwYMO5VatWkWXLl0wm824ubnx0EMPsWjRIocyR48eRaPRkJycXOXzT506lcaNG+Pu7k6tWrV44okn2LZtm0OdQ4cOJTQ0FJPJRIMGDYiLi6P48mpG13PixAkGDhxIo0aN0Gq1jBs3rkrxWCwWXn/9dYfz/fWvf0UpZS/z5Zdf0r17d3x9fa97venp6Tz99NP4+fnh6elJv379OHXq1E1f1969e3nkkUdwdXWlXr16zJw584bX8OOPP9KrVy+CgoLQaDSsWLGiStcuhBDi+s79/VPOffwxuRs2AODVqxehy78g9Iv/EPqfZTywdAleMTHSIHUVyZckX5J86dZIo5T4zZxKTmbPsf2cIp+nM5fjl1d4eY8OPSUQ0hkiX4Og1uUPLi2kSGuba6qeq5EPmobwdJ1ady/4e0xesQWLVdHCNwWD9sofJZPpAUymYCdGJu4X0dHRnDhxgkOHDvHSSy8xdepU3n33XWeHZXejJASgpKSEbt26kZOTw5dffklqairLli2jRYsWDone3LlziYmJoVOnTmzbto29e/cyYMAARo4cycsvv3xbcTZq1Ih58+axb98+Nm3axAMPPED37t05c+YMAAcPHsRqtfLxxx+zf/9+Zs+ezUcffcTkyZMrrbeoqAg/Pz9ee+01WrWq+vxy77zzDvPnz2fevHkcOHCAd955h5kzZzJ37lx7mby8PDp37sw777xTYR15eXl0794djUbDunXr2Lx5M8XFxfTq1Qur1Vrl67p48SLdu3cnJCSEXbt28e677zJ16lQWLFhQ6TXk5eXRqlUrPvjggypftxBCCEfKasVy6RKl589TsH8/RQcOAODe5VFqjxmN78gRTo6wepB8SfIlyZdugRLXlZOTowCVk5Pj7FCqpc/ee091m/yZCpmwSi1/tJ16/w/RKr7fk2rOsP+oH0a+pFTKyvIHFecrtetzpT6NUt+/H6XqrEtSUTtS737w94iSUot685sUNXTRDhUyYZV6a3FftWZtmDpyZK4qLr6grNZSZ4coqqigoEClpKSogoICZ4dy0wYPHqxiYmIctnXr1k21b99eZWdnq9jYWOXt7a1MJpOKjo5WaWlp9nJHjx5VTz31lPL29lZubm6qadOmavXq1SojI0MBDq/BgwcrpZS6ePGiGjhwoHJzc1MBAQHqvffeU126dFEvvPCCvd6QkBA1bdo0FRsbq8xms/3YxMRE1blzZ+Xq6qrq1q2rxowZo3Jzc5VSSiUlJSlAHT169LrXmpmZqQwGgxo/fny5fXPmzFGA+umnn5RSyn4NSUlJN39TLyv7nlmzZs11y8ycOVOFhoZWuc5r71VlnnzySfWnP/3JYdsf/vAHNWjQoHJlr3e933//vdJqtQ7flRcuXFAajUYlJCRc99zXXteHH36oatWqpYqKiuzbJkyYoCIiIqp0LUopBaivvvqqyuUrU9nvrOQHjuR+CHHvsBYVqaLMzApfeTt3qksbNqic1avV2YUL1YnpM1TaI4+q1M6d1YGWrVRKRONyr4tr193V+CVfknypIpIv1ex8SXpKid9MfnExx62eAOitVpSmbD4oLW6mYtBVMMF58mJYOQYyt9p7Srnex/NIbc/I5uONR0jKSOEv7eL5nf8+AFxdAzEYvNBcXsFQVE9KKUqKLHf9pa7qanyrTCYTxcXFDBkyhJ07d7Jy5Uq2bt2KUoqePXtSUmJb0GDUqFEUFRXx448/sm/fPt555x08PDyoV68e//3vfwFITU3lxIkTvP/++wCMHz+ezZs3s3LlShISEkhMTGT37t3lYoiPj6dVq1YkJSXx+uuvk56eTnR0NH369GHv3r0sW7aMTZs2MXr0aAD8/PzQarUsX74ci8VS4XUtX76ckpKSCp/wjRgxAg8PD5YuXXrb9w9sTysXLFiAl5dXpU/rcnJy8PHxuSPnvFbHjh1Zu3YtaWlpAOzZs4dNmzbRo0ePKtdRVFSERqPBxeXK33RXV1e0Wi2bNm267nHXXtfWrVt59NFHMRqvrMgaFRVFamoq58+fv5nLEkKI+5KyWjny9B9I79a9wtcvg/7IsREjyRr/Eqfffofz//wnpadPYzlzFlVUZK9H4+aGITgYt4cewu3hh514RTbOypfuRM4k+dLtk3yp5udLMtG5+M2UWm0TnAN4WqxYL7ctaTQ6dJoS0BvLH5R72vZf33CKwqMBcNHev22nZ/NsXWwjHzhMmFemfbuHRxNnhSTuoNJiKwte2HjXz/vn97tgcLm1Bk2lFGvXruX777+nR48erFixgs2bN9Oxo20FyMWLF1OvXj1WrFhB3759yczMpE+fPrRo0QKAsLAwe11lX7D+/v54e3sDcOnSJT7//HOWLFlC165dAVi4cCFBQUHlYnn88cd56aWX7O+HDRvGoEGD7PMDhIeHM2fOHLp06cL8+fMJDg5mzpw5vPrqq7zxxhu0bduWyMhIBg0aZI8rLS0NLy8vAgMDy53PaDQSFhZmT0hu1apVqxgwYAD5+fkEBgaSkJBA7dq1Kyx7+PBh5s6dS3x8/G2d83omTpzIxYsXady4MTqdDovFwowZMxg0aFCV62jfvj3u7u5MmDCBN998E6UUEydOxGKxcOLEiQqPqei6Tp48Seg1c5PUqVPHvq9Wrft3CLcQQlSFKiykOD0dsDUsXftYV2MwoK9Tx/5frbs7Gq0GzyefRF8nAENwMBqjAY1ej+Yeyr+dlS/BredMki9JvnQtyZeu7975ayNqnFKLBevlr0Ot1YrV/uWmQ6cprbinVOnleacaRVHUoj8ALvdxT6mLBbanJ8FetgkSa9d+go4dfsRsburMsMR9aNWqVXh4eODq6kqPHj3o378/Q4YMQa/X065dO3s5X19fIiIiOHB5LoqxY8cyffp0OnXqRFxcHHv37q30PEeOHKGkpISHr3oy6+XlRURERLmybdu2dXi/Z88eFi1ahIeHh/0VFRWF1WolIyMDsD2JPHnyJIsXL6ZDhw588cUXNGvWjISEhCrfi6ufTF3P4sWLHeJITEy074uMjCQ5OZktW7YQHR1Nv379OH36dLk6srKyiI6Opm/fvgwfPty+/ep6R44cWaWYExMTHY5bvHgxAP/5z39YvHgxS5YsYffu3Xz++efEx8fz+eefV6lesD1R/eKLL/jf//6Hh4cHXl5eXLhwgQcffBBtBf9Tc73rutVrEEIIUV6jzZuI2L3L4dVo20+Erfya0P8up96HHxD87kyC3nkHj0cfxTWiEToPd7RG4z3VIFXdSL50heRLjiRfuj7pKSV+MxarrVHKZMkn33D1R02HltKKe0qVFLK+1kP82fB7LqUeA+7PnlI/7D/JpC/3canQ1hjlYbR1qXYzhcjE5jWI3qjlz+93ccp5b1ZkZCTz58/HaDQSFBSEXq9n5cqVNzxu2LBhREVFsXr1an744QfeeustZs2axZgxY24ldAfu7u4O73NzcxkxYgRjx44tV7Z+/fr2f5vNZnr16kWvXr2YPn06UVFRTJ8+nW7duhEeHk5OTg7Hjx8v97SxuLiY9PR0oqKibhhb7969HZLP4OArv7fu7u40bNiQhg0b0r59e8LDw/n000+ZNGmSvczx48eJjIykY8eO5SauvHo1F09PzxvGAraE9Orjyp6ovfLKK0ycOJEBAwYA0KJFC3755RfeeustBg8eXKW6Abp37056ejpnz55Fr9fj7e1NQECAw5PeG11XQECAwwo0gP19QEAADzzwQIXXIIQQ4rI7MDz/XuSsfKns3DdD8iXJlyoj+VLFpFFK/CaUUpRYNegtxcQeW0xKkP+VnZrKe0pt8HmYSxqDfVM7b/fy5Wq4734+ybm8Yp4K/Z42dZKpa8oFQKc3OzkycSdpNJpbHkZ3t5UlBldr0qQJpaWlbNu2zd4d/dy5c6SmptK06ZXefPXq1WPkyJGMHDmSSZMm8cknnzBmzBj7E7Sr5ysICwvDYDCwY8cOe2KUk5NDWloajz76aKUxPvjgg6SkpJSLszIajYbGjRuzZcsWAJ555hkmTJjArFmzmDVrlkPZjz76iPz8fJ577rkb1ms2mzGbq/b7arVaKbpqLo+srCwiIyNp06YNCxcuLPf07Gaur4zJZKrwuPz8/HL163Q6+yowN6usW/26des4ffo0vXv3tu+70XV16NCBv/zlL5SUlGAw2L4DEhISiIiIsHdFv5VrF0IIUb1JviT5Eki+VKYm5kvSKCV+EymzfwClwc2Sh1HZevtotF5oDSF46C5S17gX9BU1ShVRqLGNmx5Zz49xIXXwNtx/H9OLhSVosPL78O/QcOULyN0trJKjhLi7wsPDiYmJYfjw4Xz88ceYzWYmTpxIcHAwMTExAIwbN44ePXrQqFEjzp8/z/r162nSxDYnWkhICBqNhlWrVtGzZ09MJhNms5nBgwfzyiuv4OPjg7+/P3FxcWi1WjSayofyTpgwgfbt2zN69GiGDRuGu7s7KSkpJCQkMG/ePJKTk4mLiyM2NpamTZtiNBrZuHEjn332GRMmTABsTwhnzpzJyy+/jKurK7GxsRgMBr7++msmT57M9OnTad68ucN5U1NTy8XSrFkze6JQJi8vjxkzZtC7d28CAwM5e/YsH3zwAVlZWfTt2xewJSKPPfYYISEhxMfH25c+BtvTr8qUPRXLzc3lzJkzJCcnYzQaHRLea/Xq1YsZM2ZQv359mjVrRlJSEu+99x5/+tOf7GWys7PJzMzk+PHjDtcbEBBgj2nhwoU0adIEPz8/tm7dygsvvMCLL75oH0ZQlesaOHAgb7zxBkOHDmXChAn8/PPPvP/++8yePbvS687NzeXw4cP29xkZGSQnJ+Pj4+PwxFcIIe4rN/jOFHeP5Es2ki9JvnRdd2QdwBpKlji+dUdfXafeeP0N9dC4z1R8vyfVe/2eUfNGrFX/eaWHUnGeSs1soFRRruNBBReUWvKsGrd4uqqzLkm9f/Skc4J3opJSizp6Nlf1nrdJNf7Lf9SatWFqzdowdebMOnUhJ1lZrVZnhyhuUU1b4rhM2RLHXl5eymQyqaioKIcljkePHq0aNGigXFxclJ+fn4qNjVVnz5617582bZoKCAhQGo2m0iWOH374YTVx4kT7cSEhIWr27Nnl4tm+fbvq1q2b8vDwUO7u7qply5ZqxowZSimlzpw5o8aOHauaN2+uPDw8lNlsVi1atFDx8fHKYrE41LNixQr1yCOPKHd3d/sSzEuXLnUoU9EyzWWvY8eOlYutoKBAPf300yooKEgZjUYVGBioevfurbZv324vs3DhwuvWeSMVHRMSElLpMRcvXlQvvPCCql+/vnJ1dVVhYWHqL3/5i8Myw9eLKS4uzl5mwoQJqk6dOspgMKjw8HA1a9Ysh79XVb2uPXv2qM6dOysXFxcVHBys3n777Rte9/r16yust+zzdKvuxBLH9wu5H0LcG0ov5aqUiMYqJaKxslTDfEMpyZckX5J86X7MlzRK1dDBx3fAxYsX8fLyIicnp8rjUAWc3LeP9KWH+E6/j60XjPQ4tRktHhhr/ZlA77f4w8sfgmcQGK8alvftRNg2H4D/1/g1vqzTjakNghhZ3/86Z6mZ+n+8lW0Z2TTzPUAz34NEPbAerdZE5GM/Ozs0cZsKCwvJyMggNDQUV1dXZ4dTreTl5REcHMysWbMYOnToXT9/dnY2Xbt2xdPTk2+//RY3N7e7HoO4+yr7nZX8wJHcDyHuDZbcPNIuT2odkZyEthrmG5Iv3TrJl4Qz3Il86f6bQVr8pgoLC/nkiy9IMO7F7dJ5Xt/6H9sOjW0cuEFXCrXDHRukAI5ssP+zyGDb56K7vz6eSil2/XIeV10hY1svIOqB9QC4uPg5OTIh7q6kpCSWLl1Keno6u3fvti+3W9bF/W7z8fFhzZo1dO3ala1btzolBiGEEOKmyPC9Gk/yJVFT3H+T9YjfVF5eHtmYWF/UkLbZu+hE2ReirVGqmaG04gNLC23/HbKaopxAyL6Ey332ZVpUaqXUqvA25aHXWtBo9AQF9cffv4ezQxPirouPjyc1NRWj0UibNm1ITEy0TwrpDL6+vkyZMsVp5xdCCCFuTAbA3G8kXxI1gTRKiTvKYrGQZfXignJDWS1YLzcsaS5Pau6lu84KBZZirGgo0rtTaLV9obpo759GqfN5xWRdKADApLc10BkM3jSOmObMsIRwitatW7Nr1y5nhyGEEEIIcc+SfEnUFNIoJe4oi8WC5fKo0AbWUiwa27/V5W06fcVD8kosJUS1+TsphzRALgBG7f0xfO+7n0/w/OLdGLVFtK2TQpj3SQD0+qotjyqEEEIIIYSD+2zEgRCi+pJGKXFHWSwWrGgwWIsxWc6SWr85cAaU7aOm11fcrfi41pMUj4b297X0On7neX9Mjrfz6HmUgqcbfkO3kPX27Xq9t/OCEkIIIYQQ1YusXyWEqIakUUrcUTlbf8WitDS9dACrOk/B5c5OWp0LIS47cXcprPC4wstforV0GnZ2bI6LVov+Phm+d7GwBIAOIfkAuLs3wtU1kLp1n3NmWEIIIYQQQgghxG9KGqXEHZV3KBsrGjwstsYnraYWGuMD9AzZSrjuUzA0dzzg/C+Qd5bCyxOhm3Ra3PW6ux22UxzLzmdj2hlSTlwEwKDNAyuEhb6Av3+0k6MTQgghhBDV1f3xaFcIURNIo5S4Y/Iv5pCbcx6LXoMOCwA6fT10bpH4WL+yLcBXu9GVA37ZAgttK8sVeLUEwPU+mUcKYOy/k0jKvECbOknEtf8Bo/UMAHq9p5MjE0IIIYQQ1Y4M3xNCVEPSKCXumBOHDqJQ6EuKaHb+AGgBje0jpqv/IDz1DwhoceWAMwdt/9WbKDTXBcBVd3/0kgI4lm1bbe8PjbYSYMoCQKPR4eYW6sywhBBCCCGEEEKIu0IapcQdcen8eTYlrCPXaKRZ1i4anj/DMV8v0BgA0JlrQ/CDjgeVFgGwqfmf+VfD/4MzObjq7p+eUmVzSdWvVUpxITRsOAl/v+64ugY6OTIhhBBCCFGtyep7Qohq4v5pARC/qZ3/+Q9J+Rr+ZQlElRRivfxFqLRGAHSGCnpAldrmnRpm7smqMzkA+BhqfjvpxxvT6T1vExZLCbVczqMstmuv5d0Ok6m+k6MTorwhQ4ag0WjQaDQYjUYaNmzItGnTKC0tva16N2zYgEaj4cKFC3cm0CrIyMhg4MCBBAUF4erqSt26dYmJieHgwYMO5VatWkWXLl0wm824ubnx0EMPsWjRIocyR48eRaPRkJycXOXzT506lcaNG+Pu7k6tWrV44okn2LZtm0OdQ4cOJTQ0FJPJRIMGDYiLi6O4uLjSek+cOMHAgQNp1KgRWq2WcePGVSmeS5cuMW7cOEJCQjCZTHTs2JEdO3Y4lMnNzWX06NHUrVsXk8lE06ZN+eijjxzKjBgxggYNGmAymfDz86vwnmZmZvLkk0/i5uaGv78/r7zyynU/Q5s3b0av1/O73/3uhtfw5Zdf0r17d3x9fW/65yGEEDWKDN9zKsmXJF+SfOnWSKOUuCMKLl7kiMWXE1YvtErZG6W4PIG5tqLGptJiLGi5oHUF4E/BtXm9QdBdith5Zq9JY39WNtM6vkl8lzhKSmQuKXHvi46O5sSJExw6dIiXXnqJqVOn8u677zo7LLsbJSEAJSUldOvWjZycHL788ktSU1NZtmwZLVq0cEj05s6dS0xMDJ06dWLbtm3s3buXAQMGMHLkSF5++eXbirNRo0bMmzePffv2sWnTJh544AG6d+/OmTO2vwMHDx7EarXy8ccfs3//fmbPns1HH33E5MmTK623qKgIPz8/XnvtNVq1alXleIYNG0ZCQgL//Oc/2bdvH927d+eJJ54gKyvLXmb8+PF89913/Otf/+LAgQOMGzeO0aNHs3LlSnuZNm3asHDhQg4cOMD333+PUoru3btjsdjmF7RYLDz55JMUFxezZcsWPv/8cxYtWsSUKVPKxXThwgWee+45unbtWqVryMvLo3PnzrzzzjtVvm4hhBDityD5kuRLki/dAiWuKycnRwEqJyfH2aHc875+803VY/LfVciEVWrWs73UP7t3UfH9nlR/G/KemjdirSpe/Xr5gxKmqrw3/FSddUmqzrokdamk9O4HfpcVFJeqkAmr1O+m/FOtWRum1qwNU2vXNVY7d/ZXVmvNv/77WUFBgUpJSVEFBQXODuWmDR48WMXExDhs69atm2rfvr3Kzs5WsbGxytvbW5lMJhUdHa3S0tLs5Y4ePaqeeuop5e3trdzc3FTTpk3V6tWrVUZGhgIcXoMHD1ZKKXXx4kU1cOBA5ebmpgICAtR7772nunTpol544QV7vSEhIWratGkqNjZWmc1m+7GJiYmqc+fOytXVVdWtW1eNGTNG5ebmKqWUSkpKUoA6evToda81MzNTGQwGNX78+HL75syZowD1008/KaWU/RqSkpJu/qZeVvY9s2bNmuuWmTlzpgoNDa1yndfeq+vJz89XOp1OrVq1ymH7gw8+qP7yl7/Y3zdr1kxNmzat0jLX2rNnjwLU4cOHlVJKffPNN0qr1aqTJ0/ay8yfP195enqqoqIih2P79++vXnvtNRUXF6datWp1w+socyd+Hler7HdW8gNHcj+EuDeUXrigUiIaq5SIxspaUuLscG6J5EuSL1VE8qWanS9JTylxR5RaSrGiIbggCyyKU15lvX5sPaV0BkMFBxVRrL2y3eU+WHnvUqGt66W70TbJucHgw+ORB2jT5t9oNPfPJO/CRilFSWHhXX+pO9C932QyUVxczJAhQ9i5cycrV65k69atKKXo2bMnJSW2OdNGjRpFUVERP/74I/v27eOdd97Bw8ODevXq8d///heA1NRUTpw4wfvvvw/YnjRt3ryZlStXkpCQQGJiIrt37y4XQ3x8PK1atSIpKYnXX3+d9PR0oqOj6dOnD3v37mXZsmVs2rSJ0aNHA+Dn54dWq2X58uX2J1LXWr58OSUlJRU+4RsxYgQeHh4sXbr0tu8f2J5WLliwAC8vr0qf1uXk5ODj43NHznm10tJSLBYLrq6uDttNJhObNm2yv+/YsSMrV64kKysLpRTr168nLS2N7t27V1hvXl4eCxcuJDQ0lHr16gGwdetWWrRoQZ06dezloqKiuHjxIvv377dvW7hwIUeOHCEuLu5OXqoQQtwfaujwPWflS3ciZ5J86fZJvlTz86WaP4GPuCuKShRWNDTKO4xCgcb2B1yr88FDexqt0eVK4ePJsOPvkPkTxRrbnFMaQF+D52PccvgsI/+1i9yiEmqbztHA+xQAer3ZyZEJZyotKmLO4Gfu+nnHfr4cwzVfrFWllGLt2rV8//339OjRgxUrVrB582Y6duwIwOLFi6lXrx4rVqygb9++ZGZm0qdPH1q0sK28GRYWZq+rLHHw9/fH29sbsI3Z//zzz1myZIm9O/LChQsJCio/tPfxxx/npZdesr8fNmwYgwYNss8PEB4ezpw5c+jSpQvz588nODiYOXPm8Oqrr/LGG2/Qtm1bIiMjGTRokD2utLQ0vLy8CAwsv+CA0WgkLCyMtLS0W7p3ZVatWsWAAQPIz88nMDCQhIQEateuXWHZw4cPM3fuXOLj42/rnBUxm8106NCBv/71rzRp0oQ6deqwdOlStm7dSsOGDe3l5s6dy5///Gfq1q2LXq9Hq9XyySef8OijjzrU9+GHH/Lqq6+Sl5dHREQECQkJGI22v/EnT550SLAA+/uTJ08CcOjQISZOnEhiYiJ6vaQnQgghbJyVL8Gt50ySL0m+JPlS1dX8riniN2e5VExhiR9WNOiUrSeQzuV3eLo/SozfJ/T1fRVqPXDlgI3vQNI/4dwhii73lHLV2iYFrKnWHTzNxcJSoh9I4J1HpvFck4WANEqJ6mPVqlV4eHjg6upKjx496N+/P0OGDEGv19OuXTt7OV9fXyIiIjhw4AAAY8eOZfr06XTq1Im4uDj27t1b6XmOHDlCSUkJDz/8sH2bl5cXERER5cq2bdvW4f2ePXtYtGgRHh4e9ldUVBRWq5WMjAzA9iTy5MmTLF68mA4dOvDFF1/QrFkzEhISqnwvyhKHyixevNghjsTERPu+yMhIkpOT2bJlC9HR0fTr14/Tp0+XqyMrK4vo6Gj69u3L8OHD7duvrnfkyJFVijkxMdHhuMWLFwPwz3/+E6UUwcHBuLi4MGfOHJ599lm0V/VcnTt3Lj/99BMrV65k165dzJo1i1GjRrFmzRqHcwwaNIikpCQ2btxIo0aN6NevH4WFhVWKz2KxMHDgQN544w0aNWpUYZnK7qkQQohr1OC8+l4m+dIVki9JvlRVNaNpTTjV4S9/xKDTYLVo0CkrABqtNy6aS9RvEQid3oZ6V/4IU2hbbY6WAyiqGwl5YKzhQ/dyCmxdc7s2sP0h1enc0GpNBAb2cWZYwsn0Li6M/Xy5U857syIjI5k/fz5Go5GgoCD0er3DxI3XM2zYMKKioli9ejU//PADb731FrNmzWLMmDG3EroDd3d3h/e5ubmMGDGCsWPHlitbv/6VlS3NZjO9evWiV69eTJ8+naioKKZPn063bt0IDw8nJyeH48ePl3vaWFxcTHp6OlFRUTeMrXfv3g7JZ3BwsEPcDRs2pGHDhrRv357w8HA+/fRTJk2aZC9z/PhxIiMj6dixIwsWLHCo++rVUjw9q7ZAQtu2bR2OK3vq1qBBAzZu3EheXh4XL14kMDCQ/v3725+EFhQUMHnyZL766iuefPJJAFq2bElycjLx8fE88cQT9jq9vLzw8vIiPDyc9u3bU6tWLb766iueffZZAgIC2L59u0NMp07ZeowGBARw6dIldu7cSVJSkn34gNVqRSmFXq/nhx9+qPSeCiGE4I4Mz78XOStfKjv3zZB8SfIlyZdunjRKidv2a2YGBRRjxR2dsjW+oNGhpRRqh0NIB8cDSgsp0Br5IWwAh72aQN5JjNqa+TTnfF4x/9t7nH1ZtoY4N30BWKFJk3eo49/TydEJZ9NoNLc8jO5uK0sMrtakSRNKS0vZtm2bvTv6uXPnSE1NpWnTpvZy9erVY+TIkYwcOZJJkybxySefMGbMGPsTtKvnKwgLC8NgMLBjxw57YpSTk0NaWlq57s/XevDBB0lJSSkXZ2U0Gg2NGzdmy5YtADzzzDNMmDCBWbNmMWvWLIeyH330Efn5+Tz33HM3rNdsNmM2V60npNVqpaioyP4+KyuLyMhI+wot2msa7W/m+sqYTKZKj3N3d8fd3Z3z58/z/fffM3PmTMC2Ak9JSUm5GHQ6HVar9br1KaVQStmvq0OHDsyYMYPTp0/j7+8PQEJCAp6enjRt2hSDwcC+ffsc6vjwww9Zt24dy5cvJzQ0FHd39yrfUyGEEDWH5EuSL4HkSzU5X5JGKXFbfvzsMxItWaCDsEubaJpzhiKDO6BDqykGXQWt0qVF/D24DzPO14LztrGx7rqa2VNqzrpDLNx8lBDPTGKbbMGgfgHAoPdycmRC3L7w8HBiYmIYPnw4H3/8MWazmYkTJxIcHExMTAwA48aNo0ePHjRq1Ijz58+zfv16mjRpAkBISAgajYZVq1bRs2dPTCYTZrOZwYMH88orr+Dj44O/vz9xcXFotdobDvGdMGEC7du3Z/To0QwbNgx3d3dSUlJISEhg3rx5JCcnExcXR2xsLE2bNsVoNLJx40Y+++wzJkyYANieEM6cOZOXX34ZV1dXYmNjMRgMfP3110yePJnp06fTvHlzh/OmpqaWi6VZs2YYrlngIS8vjxkzZtC7d28CAwM5e/YsH3zwAVlZWfTt2xewJViPPfYYISEhxMfH25c+BtsTssqUPdnLzc3lzJkzJCcnYzQaHRLea5UtRxwREcHhw4d55ZVXaNy4Mf/3f/8H2J4sdunShVdeeQWTyURISAgbN27kH//4B++99x5gG0KwbNkyunfvjp+fH7/++itvv/02JpOJnj1tje/du3enadOmxMbGMnPmTE6ePMlrr73GqFGjcLn8FPra++rv74+rq2u57dfKzs4mMzOT48ePA1d+HgEBATe8Z0IIUWPJ8L17huRLNpIvSb50XXdgFcAaS5Y4vrH/xE1VcXFxavqUaeq/j7dSC3tEqvh+T6r3h8xTK/88Rqn1b5c/aM6DatI/X1d11iWpDltTVOyedLXy1Pm7Hvvd8Od/7FAhE1apz1b2UmvWhtlfeXlHnB2auMtq2hLHZcqWOPby8lImk0lFRUU5LHE8evRo1aBBA+Xi4qL8/PxUbGysOnv2rH3/tGnTVEBAgNJoNJUucfzwww+riRMn2o8LCQlRs2fPLhfP9u3bVbdu3ZSHh4dyd3dXLVu2VDNmzFBKKXXmzBk1duxY1bx5c+Xh4aHMZrNq0aKFio+PVxaLxaGeFStWqEceeUS5u7vbl2BeunSpQ5mKlmkuex07dqxcbAUFBerpp59WQUFBymg0qsDAQNW7d2+1fft2e5mFCxdet84bqeiYkJCQSo9ZtmyZCgsLU0ajUQUEBKhRo0apCxcuOJQ5ceKEGjJkiAoKClKurq4qIiJCzZo1S1mtVqWUUllZWapHjx7K399fGQwGVbduXTVw4EB18OBBh3qOHj2qevTooUwmk6pdu7Z66aWXVEklS5ZXdYnj692zuLi4Gx5bmTuxxPH9Qu6HEPeGkuxslRLRWKVENFbWa77XqgvJlyRfknzp/suXNErV0MHHd8DFixfx8vIiJyenyuNQ7zf/nhLHQa2GNiVhaBNncdpcm2wPEwb3p+hQawcP/b4ZPDLe8aDZzXmpzgAWBz7FhNAAXnyg5j7JfnbBT2w9co4FPf6GznKEoMB++NZ+DH+/G4+xFjVLYWEhGRkZhIaGlltSVlQuLy+P4OBgZs2axdChQ+/6+bOzs+natSuenp58++23uLm53fUYxN1X2e+s5AeO5H4IcW8oPX+eQx1sw8Map+xHUw3nbJV86dZJviSc4U7kS9XvL5W4p5wvhW+KGvOGxRuUCwWu3pf36NBpS0F31aoLl05B+jooukiR1rbdpRp+WVbFf3f9yoh/7iTlxEUAdOQBEBz8rDRICXEDSUlJLF26lPT0dHbv3s2gQYMA7F3c7zYfHx/WrFlD165d2bp1q1NiEEIIIW6KDN+r8SRfEjWFzCklbsthq5nTmGl8KZWjdR6gUFdq26HR4qrJvdIoZSmB+R0h/ywARRrb2GGXGjrB+ZSvfyavuJTnWy6kofcRsFwCQK+XJ8hCVEV8fDypqakYjUbatGlDYmIitWvXdlo8vr6+TJkyxWnnF0IIIW5IBsDcdyRfEjWBNEqJ21KCrVHp0ewtFOoK7dtbBB+jIZtB95RtQ9Ele4MUdZpTVMu2fKZrDewpVVRqIa/YQi2XC7QNSLZvNxh8cHGpuUMVhbhTWrduza5du5wdhhBCCCHEPUvyJVFTSKOUuGWXdp6iROsDVtArWw8pvekRgl3TidTNAWW50lOq9HKDlUYHz2+mKDkdzl/CWAN7SuUW2u6Fm6EAAL3emwdb/wuTqS46nYyNF0IIIYQQv60brcAmhBD3CmmUErfs9Jo0LJd7SmmUFQCdsTFexiO2BimtAeo0sxUuLQLgH8G/Z8/BTA7k2RpsatKcUlkXCpiz5hBncovwNF6kofcJAAwGb8zmJk6OTgghhBBC1GgyfE8IUQ1Jo5S4JaePZZJ+NpVCFw1NCxPQYr28R4tBWwpjk8DVG9x8bJstxZwx1OLVBmPhRLa9ntqGmvMRXLotk2U7j9HYJ41ZXT5Aq7ElBgaZR0oIIYQQQgghhCin5rQIiLvqP//8F2c9iiku8GVGwvesa97g8h4dbnor+IQ5HlBaxAW9GQCTVsO4kAACXQ2093a/u4H/hrLziwF4osE5W4OUxoBBbyYg8A9OjkwIIYQQQgghhLj3SKOUuCU5eXlgMOBZZEWvrhqzrtHhZqyg67ClmAKdCwDeBj0vPFDnLkV691y6PJdUmK8VrFCv7h9pFP6ak6MSQgghhBD3BRm+J4SohqRRStwSqwYuWY14ldZCOUykqEV77afKUgrFuRRqbY1SrjVscvNVe4/zxc5fOXt+P/0bbcKdTAD0ei8nRyaEEEIIIYQQQty7pFFK3JJjqhY/FDehvvUkA69plNJd3ei0Zxl8PQqsJRR6twHAtQZNbg4w87tUMrPzGd/mC5r5plI2vZarS83rDSaEEEIIIe5xsvKeEKIaqVmtA+KuUEqRjW0uKDerhdTwvpf3aNFoNI49pdLX2hqkNEbS3EKAmtcodT7PNpdUuK9thcE6dWIIb/gX6tTp5cywhLhjhgwZgkajQaPRYDQaadiwIdOmTaO0tPS26t2wYQMajYYLFy7cmUCrICMjg4EDBxIUFISrqyt169YlJiaGgwcPOpRbtWoVXbp0wWw24+bmxkMPPcSiRYscyhw9ehSNRkNycnKVzz916lQaN26Mu7s7tWrV4oknnmDbtm0OdQ4dOpTQ0FBMJhMNGjQgLi6O4uLiSus9ceIEAwcOpFGjRmi1WsaNG1eleH788Ud69epFUFAQGo2GFStWlCvz5Zdf0r17d3x9fW94vUopevTocd26Fi1aRMuWLXF1dcXf359Ro0Y57P/+++9p3749ZrMZPz8/+vTpw9GjRx3KLF68mFatWuHm5kZgYCB/+tOfOHfu3G1fpxBCVHsyfM+pJF+SfEnypVtTs1oHxF1RePwiVo0WlKJ9aR4XPGpd3qPFQ3uGAI+TVwqXFADQo8sKXgt/AQBXXc14evPr+Xw2Hz7LpSLbF427sRCA+vX+j/r1/4ROZ3JmeELcUdHR0Zw4cYJDhw7x0ksvMXXqVN59911nh2V3oyQEoKSkhG7dupGTk8OXX35Jamoqy5Yto0WLFg6J3ty5c4mJiaFTp05s27aNvXv3MmDAAEaOHMnLL798W3E2atSIefPmsW/fPjZt2sQDDzxA9+7dOXPmDAAHDx7EarXy8ccfs3//fmbPns1HH33E5MmTK623qKgIPz8/XnvtNVq1alXlePLy8mjVqhUffPBBpWU6d+7MO++8c8P6/va3v6G5zhP69957j7/85S9MnDiR/fv3s2bNGqKiouz7MzIyiImJ4fHHHyc5OZnvv/+es2fP8oc/XFksYvPmzTz33HMMHTqU/fv388UXX7B9+3aGDx9+29cphBBC3C7JlyRfknzpFihxXTk5OQpQOTk5zg7lnnJs7nYV85eP1cDhk1V8vyftr/cH9FAqzlOpRb2uFP5XX2WJ81J11iWpOuuSVKtNP6ulx886LfY75VROgWowabUKmfA/NeXzgeofX3dQa9Y2VGvWhqm8vKPODk/cgwoKClRKSooqKChwdig3bfDgwSomJsZhW7du3VT79u1Vdna2io2NVd7e3spkMqno6GiVlpZmL3f06FH11FNPKW9vb+Xm5qaaNm2qVq9erTIyMhTg8Bo8eLBSSqmLFy+qgQMHKjc3NxUQEKDee+891aVLF/XCCy/Y6w0JCVHTpk1TsbGxymw2249NTExUnTt3Vq6urqpu3bpqzJgxKjc3VymlVFJSkgLU0aPX/x3NzMxUBoNBjR8/vty+OXPmKED99NNPSillv4akpKSbv6mXlX3PrFmz5rplZs6cqUJDQ6tc57X3qqoA9dVXX113/42uNykpSQUHB6sTJ06Uqys7O1uZTKZKr/OLL75Qer1eWSwW+7aVK1cqjUajiouLlVJKvfvuuyosLMzhuDlz5qjg4OAbX+BlN7rOMpX9zkp+4EjuhxD3hpLTp1VKRGOV0qSps0O5ZZIvSb5UEcmXrqiJ+ZL0lBI3Lf9sHlalwb/ozOUtetC4EOavha5T4KnZVwqXFlCsMdjfJrZrzIBA37sb8G/gyNk8Sq0Kf7eLPFr3J4I8TgFW9HpPXGQuKVFFSimsxZa7/lJ3oHu/yWSiuLiYIUOGsHPnTlauXMnWrVtRStGzZ09KSkoAGDVqFEVFRfz444/s27ePd955Bw8PD+rVq8d///tfAFJTUzlx4gTvv/8+AOPHj2fz5s2sXLmShIQEEhMT2b17d7kY4uPjadWqFUlJSbz++uukp6cTHR1Nnz592Lt3L8uWLWPTpk2MHj0aAD8/P7RaLcuXL8disVR4XcuXL6ekpKTCJ3wjRozAw8ODpUuX3vb9A9vTygULFuDl5VXp07qcnBx8fHzuyDl/K/n5+QwcOJAPPviAgICAcvsTEhKwWq1kZWXRpEkT6tatS79+/Th27Ji9TJs2bdBqtSxcuBCLxUJOTg7//Oc/eeKJJzAYbN8jHTp04NixY3zzzTcopTh16hTLly+nZ8+ed+1ahRDiXnUnvt/vRc7Kl+5EziT50u2TfKnm50sy0bm4KWk/baIg7wIWoxadsv2RMpq6o3VtTIeHvoZHXnI8oKSQYu2VRiljDVl5L6fA9gXSPEgHgF7vScsWH+Hm3gCdztWZoYlqRJVYOT5ly10/b9C0jmiMuls6VinF2rVr+f777+nRowcrVqxg8+bNdOzYEbCNX69Xrx4rVqygb9++ZGZm0qdPH1q0aAFAWFiYva6yxMHf3x9vb28ALl26xOeff86SJUvo2rUrAAsXLiQoKKhcLI8//jgvvXTlb86wYcMYNGiQfX6A8PBw5syZQ5cuXZg/fz7BwcHMmTOHV199lTfeeIO2bdsSGRnJoEGD7HGlpaXh5eVFYGBgufMZjUbCwsJIS0u7pXtXZtWqVQwYMID8/HwCAwNJSEigdu3aFZY9fPgwc+fOJT4+/rbO+Vt78cUX6dixIzExMRXuP3LkCFarlTfffJP3338fLy8vXnvtNbp168bevXsxGo2Ehobyww8/0K9fP0aMGIHFYqFDhw5888039no6derE4sWL6d+/P4WFhZSWltKrVy8ZlieEEDWYs/IluPWcSfIlyZcqIvlSxaSnlKiygoICvvz2B75yTwbNWfxKsgBQlxudjPpr2jgLL0JxHkVXN0pV89VAikot/HVVCh9uSAfAx2Qbl20weFOrVjtcjBX/oRSiulu1ahUeHh64urrSo0cP+vfvz5AhQ9Dr9bRr185eztfXl4iICA4cOADA2LFjmT59Op06dSIuLo69e/dWep4jR45QUlLCww8/bN/m5eVFREREubJt27Z1eL9nzx4WLVqEh4eH/RUVFYXVaiUjIwOwPYk8efIkixcvpkOHDnzxxRc0a9aMhISEKt8Lo9F4wzKLFy92iCMxMdG+LzIykuTkZLZs2UJ0dDT9+vXj9OnT5erIysoiOjqavn37OswBcHW9I0eOrFLMiYmJDsctXry4SsdVxcqVK1m3bh1/+9vfrlvGarVSUlLCnDlziIqKon379ixdupRDhw6xfv16AE6ePMnw4cMZPHgwO3bsYOPGjRiNRp555hn7k+qUlBReeOEFpkyZwq5du/juu+84evSo/T78ltdZnd1o4lKlFFOmTCEwMBCTycQTTzzBoUOHnBOsEOL2VfN8uzqTfOkKyZccSb50fdJTSlTZse3bKdTY2jGbndqGd76VXFfg8vA8g/Gqj9OP78K66QAUu/gBtgap603oVl1sOXyOTzdl0NgnjYkPfUOwp21yc73e7OTIRHWkMWgJmtbRKee9WZGRkcyfPx+j0UhQUBB6vZ6VK1fe8Lhhw4YRFRXF6tWr+eGHH3jrrbeYNWsWY8aMuZXQHbi7uzu8z83NZcSIEYwdO7Zc2fr169v/bTab6dWrF7169WL69OlERUUxffp0unXrRnh4ODk5ORw/frzc08bi4mLS09MdJpu8nt69ezskn8HBwQ5xN2zYkIYNG9K+fXvCw8P59NNPmTRpkr3M8ePHiYyMpGPHjixYsMCh7qtXc/H09LxhLGBLSK8+rk6dOzfMeN26daSnp9uf3pbp06cPjzzyCBs2bLA/SW3atKl9v5+fH7Vr1yYzMxOADz74AC8vL2bOnGkv869//Yt69eqxbds22rdvz1tvvUWnTp145ZVXAGjZsiXu7u488sgjTJ8+/Te9zuqsbOLSP/3pTw4ToZaZOXMmc+bM4fPPPyc0NJTXX3+dqKgoUlJScHWV3r9CVBs1c/Se0/KlsnPfDMmXJF+6HsmXrk8apUSVlVy6BICX1Q33QrBebmDSaGwfI93VjVJHNtr/WewZAtSMoXvn8mw9o3o33Eq49xH7dje3Bs4KSVRjGo3mlofR3W1licHVmjRpQmlpKdu2bbN3Rz937hypqakOX6b16tVj5MiRjBw5kkmTJvHJJ58wZswY+xO0q+crCAsLw2AwsGPHDntilJOTQ1paGo8++milMT744IOkpKSUi7MyGo2Gxo0bs2WLbVjAM888w4QJE5g1axazZs1yKPvRRx+Rn5/Pc889d8N6zWYzZnPVGqutVitFRUX291lZWURGRtKmTRsWLlyIVuuYEN/M9ZUxmUy3dFxVTJw4kWHDhjlsa9GiBbNnz6ZXr16ArRs52ObDqFu3LgDZ2dmcPXuWkBDbd0R+fn65a9XpbL8fVqvVXkZ/Ta/csjJKqd/0OquzHj160KNHjwr3KaX429/+xmuvvWYfTvCPf/yDOnXqsGLFCgYMGHA3QxVCiHIkX5J8CSRfqsn5kjRKiSorLSnhlNWD7aVBtLOW4qJ3AayA7QOuM1z1cSq9/Aej3z8oqt8ddqTWiEapi5fnkvJxKwAgJGQktbzb4+3dxplhCeEU4eHhxMTEMHz4cD7++GPMZjMTJ04kODjY/j+348aNo0ePHjRq1Ijz58+zfv16mjRpAkBISAgajYZVq1bRs2dPTCYTZrOZwYMH88orr+Dj44O/vz9xcXFotdob9rScMGEC7du3Z/To0QwbNgx3d3dSUlJISEhg3rx5JCcnExcXR2xsLE2bNsVoNLJx40Y+++wzJkyYANieEM6cOZOXX34ZV1dXYmNjMRgMfP3110yePJnp06fTvHlzh/OmpqaWi6VZs2b2ySbL5OXlMWPGDHr37k1gYCBnz57lgw8+ICsri759+wK2BOuxxx4jJCSE+Ph4+9LHQIUTYl6t7IlXbm4uZ86cITk5GaPR6JDwXis3N5fDhw/b32dkZJCcnIyPj489yc3OziYzM5Pjx487XG9AQIDD61r169cnNDQUsC3tHBMTwwsvvMCCBQvw9PRk0qRJNG7cmMjISACefPJJZs+ezbRp03j22We5dOkSkydPJiQkhNatWwPQq1cvhg8fzvz584mKiuLEiROMGzeOhx9+uMJ5NG7mOu9XGRkZnDx5kieeeMK+zcvLi3bt2rF161ZplBKiOqrmIxNqGsmXbCRfknzpuqq4IuB9SZY4drRr2TLVbtISFTJhlXpj0EAV3/8ZFd/vSTVn2DL18cj/KbV2+pXC8zupLe91Vv/vp61qQPJhVWddkvrd5p+dF/xtSth/UnV6e61qMeV/qutbc9TKHzqpNWvD1NmzPzo7NFFN1LQljsuULXHs5eWlTCaTioqKcljiePTo0apBgwbKxcVF+fn5qdjYWHX27Fn7/mnTpqmAgACl0WgqXeL44YcfVhMnTrQfFxISombPnl0unu3bt6tu3bopDw8P5e7urlq2bKlmzJihlFLqzJkzauzYsap58+bKw8NDmc1m1aJFCxUfH++wrK5SSq1YsUI98sgjyt3d3b4E89KlSx3KVLRMc9nr2LFj5WIrKChQTz/9tAoKClJGo1EFBgaq3r17q+3bt9vLLFy48Lp13khFx4SEhFR6zPr16ys8ruxnUVlMcXFxlcZy7TLCOTk56k9/+pPy9vZWPj4+6umnn1aZmZkOZZYuXapat26t3N3dlZ+fn+rdu7c6cOCAQ5k5c+aopk2bKpPJpAIDA9WgQYPUr7/+etvXea07scTxvejan83mzZsVoI4fP+5Qrm/fvqpfv34V1lFYWKhycnLsr2PHjlXb+yFETVJ88qRKiWisUpo1d3Yot0zyJcmXJF+6//IljVI1dO3QO+DixYt4eXmRk5NT5XGoNdlPnyxh1BE9PpdO0OPsBpQqBRSt6jUj3LCNkB5PwqO2cavMe4jedcew3aul/fiWZhM/tC0/+V51MGrJblbvPcGw5v+gQ9BO+/aH2n6Fp2fLSo4UwqawsJCMjAxCQ0NljpablJeXR3BwMLNmzWLo0KF3/fzZ2dl07doVT09Pvv32W9zc3O56DOLuq+x3tjrnBxqNhq+++orf//73AGzZsoVOnTpx/Phxh1WU+vXrh0ajYdmyZeXqmDp1Km+88Ua57dXxfghRk5ScOsXhLo+BXk+Tn/c5O5xbIvnSrZN8STjDnciXZPU9USWWi8UUZOiwouGhCztRqgRbw6mOR0yfEOKSBB5XTZBWUkiO3gOA/wuuzfTwYD5u+oAzQr8jyobttQ46D4CLSwB+tbvh4XH9bp5CiFuTlJTE0qVLSU9PZ/fu3QwaNAjgusvn/tZ8fHxYs2YNXbt2ZevWrU6JQYjfStlQglOnTjlsP3Xq1HWHQEyaNImcnBz769ixY795nEKImyDD9+4Lki+JmkLmlBJVYrlUjFUDFqVBr0oB0Lt2wkXngUubYHigMzS7akWf0kIKtS4A/KFOLR7ycq+o2nue1aootSouFtqu2UVXABZo0XweXl6tnRydEDVXfHw8qampGI1G2rRpQ2JiIrVr13ZaPL6+vkyZMsVp5xfitxIaGkpAQABr167ld7/7HWB7srlt2zaef/75Co9xcXHBxcXlLkYphKgSGQBz35F8SdQE0iglqiQr5TAWrFjRocPWa0hreAC9Jh+a9IKIy6v6rJsOm2aDtZQirW2lCNdqOsH5pcISes5J5Fh2AYHuJ2jicxGNNQcAvb5qq0QIIW5e69at2bVrl7PDEKLGuNHEpePGjWP69OmEh4cTGhrK66+/TlBQkH2InxBCiHuP5EuippBGKVEl2779Ehe3UJTXz+i0eYAONDq0lILOeKVgytdgtfUqKtSZAHDVVs9RogdPXuJYdgFhXhn8pd1s28bLD6D0epkzQwghRPWwc+dO+6o9AOPHjwdg8ODBLFq0iFdffZW8vDz+/Oc/c+HCBTp37sx3330n87kIUU1Vz8fBQoj7lTRKiRvaumIFBz21wC88v3UzpQYTFh2ADpMqAf1VXfhLC23/fXYZhSfNYFW46qpno9SlQluPsIfqXgBAp/PA5BqMl3dbjEY/J0YmhBBCVN1jjz1GZevaaDQapk2bxrRp0+5iVEKIO06G7wkhqiFplBI3dGzPXgD0FuiaeorvWoQCoEGHSV8EuqsbpYpZFBjDv7MDKLTavhir4/C9vKJSTuTYGti8XW3/9fN7gmZNZzkzLCGEEEIIIYQQosaQRilxQxZLKWi1tC6uB4C1bEUPjRaDSwnorxq+V1rI+yF/5MTlDlPeeh1eet1djvj2fLvvBKOXJlHL5QwTHlpMfc8zAOj1Xk6OTAghhBBCiBuQ1feEENWINEqJGyosLSGB5qwu0THH/MBVX3Q6dJQ69pSyFFOgtc1B8W5EXbr6eGKsZnNKbT1yDotV8aD/XhrVSrdv93APd2JUQgghhBBCVEKG7wkhqiFplBI3dMFqIAtvwgvSORxUH8iy7dDoqKU/dk1PqSL7qntdapkJcjWWr/Ael1Ngm0uqe2N3UODn150HQp7HbG7h5MiEEEIIIYQQQoiaQxqlRKUKDmZj0QfhVphHVHYCp12vPIHp7/sKtWsD5iDbBkspSlkovNwoVd1W3fvpyDm+2XeCXb+cB8DVUAjF4O7WAE/Plk6OTgghhBBCiCqQ4XtCiGqkerUaiLvu0oFzlABulnw0KDRKg1YfikftWvhN/AHN2F2QcwxmN4c3gyjR6FEa28fKpZpNcD75y338Y+sv1DFuIbbJMkzWnQDo9GYnRyaEcw0ZMgSNRoNGo8FoNNKwYUOmTZtGaWnpbdW7YcMGNBoNFy5cuDOBVkFGRgYDBw4kKCgIV1dX6tatS0xMDAcPHnQot2rVKrp06YLZbMbNzY2HHnqIRYsWOZQ5evQoGo2G5OTkKp9/6tSpNG7cGHd3d2rVqsUTTzzBtm3bHOocOnQooaGhmEwmGjRoQFxcHMXFxZXWe+LECQYOHEijRo3QarWMGzeuSvH8+OOP9OrVi6CgIDQaDStWrLjpmAFmzJhBx44dcXNzw9vbu8JzZWZm8uSTT+Lm5oa/vz+vvPKKw2fo6s/Z1a9mzZrZy7z11ls89NBDmM1m/P39+f3vf09qauoNr7Mq8QkhRLUnw/ecSvIlyZckX7o10iglKvXLniSKAZ2yAKDDiNH8NB4+7uAZaBu6l/GjrWHKcmXoHoBLNespdeZSETqNhZEt/8lj9TZD6S8AuBj9nRyZEM4XHR3NiRMnOHToEC+99BJTp07l3XffdXZYdjdKQgBKSkro1q0bOTk5fPnll6SmprJs2TJatGjhkOjNnTuXmJgYOnXqxLZt29i7dy8DBgxg5MiRvPzyy7cVZ6NGjZg3bx779u1j06ZNPPDAA3Tv3p0zZ2wLKhw8eBCr1crHH3/M/v37mT17Nh999BGTJ0+utN6ioiL8/Px47bXXaNWqVZXjycvLo1WrVnzwwQe3HDPY7n/fvn15/vnnK6zDYrHw5JNPUlxczJYtW/j8889ZtGgRU6ZMsZd5//33OXHihP117NgxfHx86Nu3r73Mxo0bGTVqFD/99BMJCQmUlJTQvXt38vLyKr3OG8UnhBBC3AmSL0m+JPnSLVDiunJychSgcnJynB2K06x9frZ67S/z1aQ/Pqni+z2p/tb3GTVvxFr179eHXSm05QOl4jxVyn9Gq/+kp6k665JUnXVJymq1Oi/wm2SxWNUDE1epFq8vUWvWhqk1axuo9CNz1LFj/1KlpYXODk/UAAUFBSolJUUVFBQ4O5SbNnjwYBUTE+OwrVu3bqp9+/YqOztbxcbGKm9vb2UymVR0dLRKS0uzlzt69Kh66qmnlLe3t3Jzc1NNmzZVq1evVhkZGQpweA0ePFgppdTFixfVwIEDlZubmwoICFDvvfee6tKli3rhhRfs9YaEhKhp06ap2NhYZTab7ccmJiaqzp07K1dXV1W3bl01ZswYlZubq5RSKikpSQHq6NGj173WzMxMZTAY1Pjx48vtmzNnjgLUTz/9pJRS9mtISkq6+Zt6Wdn3zJo1a65bZubMmSo0NLTKdV57r6oKUF999dUNy1UW88KFC5WXl1e57d98843SarXq5MmT9m3z589Xnp6eqqioqMLzfPXVV0qj0VT68zp9+rQC1MaNG28Yd2XxVaSy31nJDxzJ/RDi3lD8668qJaKxOtDqd84O5ZZJviT5UkUkX6rZ+VL16soi7qptX37JEY9CLmqKaP/LCQA06AAI1FivFCwtJNMlgMd9/8SYX2ytryatrRvhvU4pxZy1h3hhWTLB7ll0CNwBgF7vSVjoGOrWHYTu6tUFhbiDlFIUFxff9Ze6A937TSYTxcXFDBkyhJ07d7Jy5Uq2bt2KUoqePXtSUmJbMGDUqFEUFRXx448/sm/fPt555x08PDyoV68e//3vfwFITU3lxIkTvP/++wCMHz+ezZs3s3LlShISEkhMTGT37t3lYoiPj6dVq1YkJSXx+uuvk56eTnR0NH369GHv3r0sW7aMTZs2MXr0aAD8/PzQarUsX74ci8VS4XUtX76ckpKSCp/wjRgxAg8PD5YuXXrb9w9sT6MWLFiAl5dXpU/rcnJy8PHxuSPnvF1VjflaW7dupUWLFtSpU8e+LSoqiosXL7J///4Kj/n000954oknCAkJuW69OTk5APfM/RFCCGeqqaP3nJUv3YmcSfKl2yf5Us3Pl2Sic1Ghixcv8u3eveAG+RYjWmVrYFJGWwON/9XNmaVFHHMNQGk0uGo1NPUw0cvP++4HfQt+zrrIewlpmPQFvNflPYw62xeDwVDLyZGJ+0FJSQlvvvnmXT/v5MmTMRpvbWVMpRRr167l+++/p0ePHqxYsYLNmzfTsWNHABYvXky9evVYsWIFffv2JTMzkz59+tCihW31yrCwMHtdZV+M/v7+9nHrly5d4vPPP2fJkiV07doVgIULFxIUFFQulscff5yXXnrJ/n7YsGEMGjTIPj9AeHg4c+bMoUuXLsyfP5/g4GDmzJnDq6++yhtvvEHbtm2JjIxk0KBB9rjS0tLw8vIiMDCw3PmMRiNhYWGkpaXd0r0rs2rVKgYMGEB+fj6BgYEkJCRQu3btCssePnyYuXPnEh8ff1vnvF03E3NFTp486ZBgAfb3J0+eLFf++PHjfPvttyxZsuS6dVqtVsaNG0enTp1o3rx5lWMRQghRvTgrX4Jbz5kkX5J8SfKlqpOeUqJChYWFAJy2eFBQWo9CUzAAVmVrlNJd3ZxZWkix1gBAQzdXvmnTiOfrV495mM7mFgHQyLfwcoOUHh+fR2jQ4KXKDxTiPrNq1So8PDxwdXWlR48e9O/fnyFDhqDX62nXrp29nK+vLxERERw4cACAsWPHMn36dDp16kRcXBx79+6t9DxHjhyhpKSEhx9+2L7Ny8uLiIiIcmXbtm3r8H7Pnj0sWrQIDw8P+ysqKgqr1UpGRgZgexJ58uRJFi9eTIcOHfjiiy9o1qwZCQkJVb4XVUlOFy9e7BBHYmKifV9kZCTJycls2bKF6Oho+vXrx+nTp8vVkZWVRXR0NH379mX48OH27VfXO3LkyCrFnJiY6HDc4sWLq3TczcZ8p3z++ed4e3vz+9///rplRo0axc8//8y///1v+7aRI0c6XKcQQtyXqsFohZpK8qUrJF+SfKmqpKeUqJDFYuGS1cg3JU0A6GpuCKTC5eF73qacK4VLi+yNUsZqtOLe6UuFHDh5EYDQ2rauua6udWj9u0VOjErcTwwGww0nZPytznuzIiMjmT9/PkajkaCgIPR6PStXrrzhccOGDSMqKorVq1fzww8/8NZbbzFr1izGjBlzK6E7cHd3d3ifm5vLiBEjGDt2bLmy9evXt//bbDbTq1cvevXqxfTp04mKimL69Ol069aN8PBwcnJyOH78eLmnjcXFxaSnpxMVFXXD2Hr37u2QfAYHBzvE3bBhQxo2bEj79u0JDw/n008/ZdKkSfYyx48fJzIyko4dO7JgwQKHuq9evcbT0/OGsYAtIb36uGufwt1IVWKuTEBAANu3b3fYdurUKfu+qyml+Oyzz4iNjb1uQjt69GhWrVrFjz/+SN26de3bp02bdtuTqwohRPVVM8fvOStfKjv3zZB8SfIlyZdunjRKiQqVlpZSgBGNshJSeJIirW2uKDdtNgNqP49XnZZw8Tgc+B9k7aJI4waAsZo8mUk7dYnov/2IBgsNvX8hxHwWAL3e7OTIxP2kbMng6qDsS/ZqTZo0obS0lG3bttm7o587d47U1FSaNm1qL1evXj1GjhzJyJEjmTRpEp988gljxoyxX/vV8xWEhYVhMBjYsWOHPTHKyckhLS2NRx99tNIYH3zwQVJSUsrFWRmNRkPjxo3ZsmULAM888wwTJkxg1qxZzJo1y6HsRx99RH5+Ps8999wN6zWbzZjNVft7YrVaKSoqsr/PysoiMjKSNm3asHDhQrTXrGR6M9dXxmQy3dJx13NtzDfSoUMHZsyYwenTp/H3t/WkTUhIwNPT0+GzArYVYw4fPszQoUPL1aOUYsyYMXz11Vds2LCB0NBQh/3+/v72+oUQQtQMki9JvgSSL9XkfEkapUSFSi7kY1Eaml46yOPnNpJ3+XfcRVeM19OTIbw7fDcRUlYAUOTf3bZfWz1GhO4/noNVwcDGK+laf719u14njVJCVFV4eDgxMTEMHz6cjz/+GLPZzMSJEwkODiYmJgaAcePG0aNHDxo1asT58+dZv349TZrYemCGhISg0WhYtWoVPXv2xGQyYTabGTx4MK+88go+Pj74+/sTFxeHVqu94eIJEyZMoH379owePZphw4bh7u5OSkoKCQkJzJs3j+TkZOLi4oiNjaVp06YYjUY2btzIZ599xoQJEwDbE8KZM2fy8ssv4+rqSmxsLAaDga+//prJkyczffr0cuPxU1NTy8XSrFmzck9X8/LymDFjBr179yYwMJCzZ8/ywQcfkJWVZV/GNysri8cee4yQkBDi4+MdlhG+9gnZtcqe7OXm5nLmzBmSk5MxGo3lkpir5ebmcvjwYfv7jIwMkpOT8fHxoX79+lWKGSAzM5Ps7GwyMzOxWCz2WBo2bIiHhwfdu3enadOmxMbGMnPmTE6ePMlrr73GqFGjcHFxXEzi008/pV27dhXOezBq1CiWLFnC119/jdlsts+v4OXlhclkuu513ig+IYSoUarJQ+L7heRLNpIvSb50XVVa5+8+dT8vcZz41xVq2Guz1IDhr6n4fk+q9/o+rWYN/LNa8+KgK4U+jVYqzlOpz3qof333kaqzLknF7kl3XtA3YdHmDBUyYZVa/E2MWrM2TCVu6qh+2vakOnlqtbNDEzVUTVviuEzZEsdeXl7KZDKpqKgohyWOR48erRo0aKBcXFyUn5+fio2NVWfPnrXvnzZtmgoICFAajabSJY4ffvhhNXHiRPtxISEhavbs2eXi2b59u+rWrZvy8PBQ7u7uqmXLlmrGjBlKKaXOnDmjxo4dq5o3b648PDyU2WxWLVq0UPHx8cpisTjUs2LFCvXII48od3d3+xLMS5cudShT0TLNZa9jx46Vi62goEA9/fTTKigoSBmNRhUYGKh69+6ttm/fbi+zcOHC69Z5IxUdExISUukx69evr/C4sp9FVWJWyvYZqaie9evX28scPXpU9ejRQ5lMJlW7dm310ksvqZKSEod6Lly4oEwmk1qwYEGVrxFQCxcurPQ6qxLfte7EEsf3C7kfQtwbijIzVUpEY3Wg9YPODuWWSb4k+ZLkS/dfvqS5HLSowMWLF/Hy8iInJ6fK41BrgjO/ZLDvg00sdjlL0ckztL64F3fCsNT6PY8FLKbZ1E9tBRdEwvHd8OwyPnNvw+RDWTzl58Xfm4dWfgInyjyXz+Jtv7Dzl/Ps+uU8sx9/H099Oq1a/p3atSOdHZ6owQoLC8nIyCA0NBRXV1dnh1Ot5OXlERwczKxZsyrsovxby87OpmvXrnh6evLtt9/i5uZ212MQd19lv7P3a35wPXI/hLg3FB87Rnq37mjc3Gi8e5ezw7klki/dOsmXhDPciXypeoy1EnfV2UNpKI0GCxoMLscub7WN9DRe3buytJC59QbS4EQdphzOAu794Xtz1h3i4x+PYC3YwISH3sdDZ7s+vUGSaCHuFUlJSSxdupT09HR2797NoEGDAOxd3O82Hx8f1qxZQ9euXdm6datTYhBCCCGqSgbv3R8kXxI1hcwpJRwopUj/4AOKm/TGVJhJg7O/AJ6gsX1U9IarvuZKC1lR73Hy1JVtrT3v7RbxM5dsE80922QDvi7pAGg0ekyu9Ss7TAhxl8XHx5OamorRaKRNmzYkJiZSu3Ztp8Xj6+vLlClTnHZ+IYQQ4oZkAMx9R/IlURNIo5Rw8POePexs9SDwK48k/Yy2VEOWD6jLjVI6ve5K4dIiirS21SAWNHuADt7u+Blvfqn5u+liYQkAPm4FYIGGDV7Ft/bjuLj4OTkyIUSZ1q1bs2tX9Rx2IIQQQghxN0i+JGoKaZQSDs6cPg2AQelwKy4lX2frBaUx2XpA6XQasFqh+BKUFFCgta0CUM/VeE83SM1bd4iElFMcOXOO2qYLaNQlAGrX7oq7+51b9lMIIYQQQginktX3hBDViDRKCQeWkhJKlBZdyQPolImzvvXBeowi5Y4e0Oq18MljcGIPAIWXG6Vctfful5/FqngvIQ2dppi3Ov+VWq45YLXt0+vNzg1OCCGEEEKIO0GG7wkhqqF7e1ZqcdeVFhezuSSUzyzenHM1U6opubxHh7v2LD5u5+wNUgBFOtsM+6738ATnuYWlWBX4uJ63NUgBOp07vr6PYTT6Ozk6IYQQQgghhBDi/iQ9pYSDojP5XFIutL2wm3PmXLDkAtDVaz5NvU6iDR4Dv3wHOhcKXv2Fwq2poMBVd2/2lMotKuXQadtQvVquxQC4ugTRqVOiM8MSQgghhBDityHD94QQ1Yg0Sgm7kuwCCjPzsFILr1JbjyI07mj0ZsKe+T3a38VAwXnY8j4vRExg2ZZU+7H3Yk+p9DO59Hw/kaJSK3ptCf4e+YAM2RNCCCGEEDWQDN8TQlRD0igl7A6u24ZFo7CiQadsky7pXR9C414Ltzoh4OEHF7MAWOPd1n7c78xueF29Kt89Yu+vFygqtfJE/Q30j/gKrcb2Ra3Tezg5MiGEEEIIIYQQQkijlLDLStmHBT1WXT4GwwnbRo0epS0BvdH2vrQQgGKtbaW9NW0b0dTDhPYe7CZ8qbAUgMdDD9sbpEBDbd/HnBaTEEIIIYQQQgghbO69MVfCKYoyM8k+mk6eppDuWV/y4K+nL+/RoqUUdC6wbzns/MxWXmNrlPIx6O+5BqkSi5XtGdn8nGUbguiqsw3ba958Ho912c8DD/w/Z4YnRLUzZMgQNBoNGo0Go9FIw4YNmTZtGqWlpbdV74YNG9BoNFy4cOHOBFoFGRkZDBw4kKCgIFxdXalbty4xMTEcPHjQodyqVavo0qULZrMZNzc3HnroIRYtWuRQ5ujRo2g0GpKTk6t8/qlTp9K4cWPc3d2pVasWTzzxBNu2bXOoc+jQoYSGhmIymWjQoAFxcXEUFxffsO7FixfTqlUr3NzcCAwM5E9/+hPnzp2r9Jgff/yRXr16ERQUhEajYcWKFRWWO3DgAL1798bLywt3d3ceeughMjMz7ftHjBhBgwYNMJlM+Pn5VXhPd+zYQdeuXfH29qZWrVpERUWxZ8+ea08FwOHDhzGbzXh7e9/wuqt6DUIIUdOpsuF791hufr+QfEnyJcmXbo00SgkANn3/A2n1vTmlzeHR9Cy0yvZlptHoCNQUQEE2/Hco7F2GFY29p5TxHpxLKv77VPp9vJUdaZv5Y5P/4K6z9fpyMfqh07k4OTohqqfo6GhOnDjBoUOHeOmll5g6dSrvvvuus8Oyq0oSUlJSQrdu3cjJyeHLL78kNTWVZcuW0aJFC4dEb+7cucTExNCpUye2bdvG3r17GTBgACNHjuTll1++rTgbNWrEvHnz2LdvH5s2beKBBx6ge/funDlzBoCDBw9itVr5+OOP2b9/P7Nnz+ajjz5i8uTJlda7efNmnnvuOYYOHcr+/fv54osv2L59O8OHD6/0uLy8PFq1asUHH3xw3TLp6el07tyZxo0bs2HDBvbu3cvrr7+Oq6urvUybNm1YuHAhBw4c4Pvvv0cpRffu3bFYLADk5uYSHR1N/fr12bZtG5s2bcJsNhMVFUVJSYnD+UpKSnj22Wd55JFHKo39Zq5BCCGEuBskX5J8SfKlW6DEdeXk5ChA5eTkODuU39x//vY3FRcXp96aMl19/Ugn9eHTf1Dx/Z5U7//ffPXt2L8qtW+5UnGeSs0IUvnf/kXVWZek6qxLUpdKSp0dejn/t3C7CpmwSn26optaszbM/srP/9XZoYn7WEFBgUpJSVEFBQXODuWmDR48WMXExDhs69atm2rfvr3Kzs5WsbGxytvbW5lMJhUdHa3S0tLs5Y4ePaqeeuop5e3trdzc3FTTpk3V6tWrVUZGhgIcXoMHD1ZKKXXx4kU1cOBA5ebmpgICAtR7772nunTpol544QV7vSEhIWratGkqNjZWmc1m+7GJiYmqc+fOytXVVdWtW1eNGTNG5ebmKqWUSkpKUoA6evToda81MzNTGQwGNX78+HL75syZowD1008/KaWU/RqSkpJu/qZeVvY9s2bNmuuWmTlzpgoNDa20nnfffVeFhYWVizc4OLjKsQDqq6++Kre9f//+6o9//GOV61FKqT179ihAHT58WCml1I4dOxSgMjMz7WX27t2rAHXo0CGHY1999VX1xz/+US1cuFB5eXnd1Hmvdw23orLf2fspP6gKuR9C3BsKjxxRKRGN1cG2Dzk7lFsm+ZLkSxWRfKlm50v3XjcX4RSFJba5olqU1ievVkcKXL0v79Fj1OZdKejhT1HXqfa3LvdgT6mLBbZW5PreRQAEBfajRfMPMZmCnRmWEOUopbBY8u/6S92B1XlMJhPFxcUMGTKEnTt3snLlSrZu3YpSip49e9qf5owaNYqioiJ+/PFH9u3bxzvvvIOHhwf16tXjv//9LwCpqamcOHGC999/H4Dx48ezefNmVq5cSUJCAomJiezevbtcDPHx8bRq1YqkpCRef/110tPTiY6Opk+fPuzdu5dly5axadMmRo8eDYCfnx9arZbly5fbn0hda/ny5ZSUlFT4hG/EiBF4eHiwdOnS275/YHtauWDBAry8vGjVqtV1y+Xk5ODj41NpXR06dODYsWN88803KKU4der60EoxAAEAAElEQVQUy5cvp2fPnrcVo9VqZfXq1TRq1IioqCj8/f1p165dpV2+8/LyWLhwIaGhodSrVw+AiIgIfH19+fTTTykuLqagoIBPP/2UJk2a8MADD9iPXbduHV988cW9+RRPCCHudfYpVGvW8D1n5Ut3ImeSfOn2Sb5U8/Ole3Ki86lTp/LGG284bIuIiLCPtywsLOSll17i3//+N0VFRURFRfHhhx9Sp04de/nMzEyef/551q9fj4eHB4MHD+att95Cr78nL9npLFYLxyxe5OaeI8x4GmXNBaCB60+0cU8EbXtK0bHeqw2/nr4A2MZ+6u+h77yNaWfYfPgsGWdtjWgaZZtLqm69wZg9GjszNCEqZLUWsGFji7t+3se67EOnc7ulY5VSrF27lu+//54ePXqwYsUKNm/eTMeOHQHbOP169eqxYsUK+vbtS2ZmJn369KFFC9t1hoWF2esqSxz8/f3tY+EvXbrE559/zpIlS+jatSsACxcuJCgoqFwsjz/+OC+99JL9/bBhwxg0aBDjxo0DIDw8nDlz5tClSxfmz59PcHAwc+bM4dVXX+WNN96gbdu2REZGMmjQIHtcaWlpeHl5ERgYWO58RqORsLAw0tLSbunelVm1ahUDBgwgPz+fwMBAEhISqF27doVlDx8+zNy5c4mPj6+0zk6dOrF48WL69+9PYWEhpaWl9OrV67aTldOnT5Obm8vbb7/N9OnTeeedd/juu+/4wx/+wPr16+nSpYu97Icffsirr75KXl4eERERJCQkYDTaFskwm81s2LCB3//+9/z1r38FbD+f77//3v69fO7cOYYMGcK//vUvPD09bytuIYQQNYez8iW49ZxJ8iXJlyRfqrp7r5vLZc2aNePEiRP216ZNm+z7XnzxRf73v//xxRdfsHHjRo4fP84f/vAH+36LxcKTTz5JcXExW7Zs4fPPP2fRokVMmTLFGZdSLeSWaFhXEo7X6c0UaM+CsvWceqijO159p4HexPI63YitP5pJab8C4KbTorlHnsRYrYrn/7WLTxMP0bzWenqFfQvqIgB6nYeToxOi+lu1ahUeHh64urrSo0cP+vfvz5AhQ9Dr9bRr185eztfXl4iICA4cOADA2LFjmT59Op06dSIuLo69e/dWep4jR45QUlLCww8/bN/m5eVFREREubJt27Z1eL9nzx4WLVqEh4eH/RUVFYXVaiUjIwOwPYk8efIkixcvpkOHDnzxxRc0a9aMhISEKt+LssShMosXL3aIIzEx0b4vMjKS5ORktmzZQnR0NP369eP06dPl6sjKyiI6Opq+ffs6zHVwdb0jR44EICUlhRdeeIEpU6awa9cuvvvuO44ePWrfn5iY6HDc4sWLq3StVqsVgJiYGF588UV+97vfMXHiRJ566ik++ugjh7KDBg0iKSmJjRs30qhRI/r160dhoe27pKCggKFDh9KpUyd++uknNm/eTPPmzXnyyScpKCgAYPjw4QwcOJBHH320wlhu9RqEEEKIu0XypSskX5J8qaru2W5Der2egICActtzcnL49NNPWbJkCY8//jhgaxVu0qQJP/30E+3bt+eHH34gJSWFNWvWUKdOHX73u9/x17/+lQkTJjB16tQq/YLcTwp+PktxQS0UGozKNvmdzqUNZrej+A36m60LcMpKfnW19UQLcjHQ0M2Fp/y8nRf0NfKKS8kvttDabz/PNV1m26gAtBgMXs4MTYjr0mpNPNZln1POe7MiIyOZP38+RqORoKAg9Ho9K1euvOFxw4YNIyoqitWrV/PDDz/w1ltvMWvWLMaMGXMroTtwd3d3eJ+bm8uIESMYO3ZsubL169e3/9tsNtOrVy969erF9OnTiYqKYvr06XTr1o3w8HBycnI4fvx4uaeNxcXFpKenExUVdcPYevfu7ZB8BgdfGT7s7u5Ow4YNadiwIe3btyc8PJxPP/2USZMm2cscP36cyMhIOnbsyIIFCxzqvnr1mrInZG+99RadOnXilVdeAaBly5a4u7vzyCOPMH36dNq2betw3NU9iytTu3Zt9Ho9TZs2ddjepEkTh4dFYEuGvby8CA8Pp3379tSqVYuvvvqKZ599liVLlnD06FG2bt2K9vKw7yVLllCrVi2+/vprBgwYwLp161i5cqX9KadSCqvVil6vZ8GCBTz77LO3dA1CCHH/qJmr7zkrXyo7982QfEnypatJvlQ192yj1KFDh+xLUHbo0IG33nqL+vXrs2vXLkpKSnjiiSfsZRs3bkz9+vXZunUr7du3Z+vWrbRo0cLhBxAVFcXzzz/P/v37ad26tTMu6Z51LPFnytZh0CnbuGG9axvcPU5d6QllKaZQa1u5rpefN2+E31vzM10qtC21WtvtAgAmUwg+Pp3w9mqLXm92YmRCXJ9Go7nlYXR3W1licLUmTZpQWlrKtm3b7N3Rz507R2pqqsOXcr169Rg5ciQjR45k0qRJfPLJJ4wZM8b+gODq+QrCwsIwGAzs2LHDnhjl5OSQlpZ23SdCZR588EFSUlLKxVkZjUZD48aN2bJlCwDPPPMMEyZMYNasWcyaNcuh7EcffUR+fj7PPffcDes1m82YzVX722O1WikqKrK/z8rKIjIy0r5Ci/aaufsqur78/Pxyw9N1Oh1gS1ZMJtNN3ZcyRqORhx56iNTUVIftaWlphISEXPc4pRRKKft15efno9U69q4te1/2dHHr1q0On4Wvv/6ad955hy1bthAcHHzL1yCEEKJ6k3xJ8iWQfKkm50v3ZKNUu3btWLRoEREREZw4cYI33niDRx55hJ9//pmTJ09iNBrt42nL1KlTh5MnTwJw8uTJci2CZe/LylSkqKjI4YN+8eLFO3RF97Zff06mtJYrRu9Ernz8deh1Ck6lwKoXIecYhX62IZKuuntn1Of5vGL+s/MYWRds3Rlrudq6Ptaq1Z7GEX91ZmhC1Hjh4eHExMQwfPhwPv74Y8xmMxMnTiQ4OJiYmBgAxo0bR48ePWjUqBHnz59n/fr1NGnSBICQkBA0Gg2rVq2iZ8+emEwmzGYzgwcP5pVXXsHHxwd/f3/i4uLKfUFXZMKECbRv357Ro0czbNgw3N3dSUlJISEhgXnz5pGcnExcXByxsbE0bdoUo9HIxo0b+eyzz5gwYQJge0I4c+ZMXn75ZVxdXYmNjcVgMPD1118zefJkpk+fTvPmzR3Oe20CArYh6AaDwWFbXl4eM2bMoHfv3gQGBnL27Fk++OADsrKy6Nu3L2BLsB577DFCQkKIj4+3L30MVNh7uEyvXr0YPnw48+fPJyoqihMnTjBu3DgefvjhCueXKJObm8vhw4ft7zMyMkhOTsbHx8ee5L7yyiv079+fRx99lMjISL777jv+97//sWHDBsA2hGDZsmV0794dPz8/fv31V95++21MJpN94tBu3brxyiuvMGrUKMaMGYPVauXtt99Gr9cTGRkJYP9clNm5cydarbbc/b6VaxBCCCGcRfIlG8mXJF+6rjuyDuBv7Pz588rT01P9/e9/V4sXL1ZGo7FcmYceeki9+uqrSimlhg8frrp37+6wPy8vTwHqm2++ue554uLiyi25SQ1f4thqsah1I2erKX/5ULX4qLOK7/ekiu/3pJr752/VmonDlFo3Q6k4T6XiPNXL/3pD1VmXpGZlnHB22HYzvzugQiasUgPff12t+La5+j4hXK1ZG6YOHXrb2aEJ4aCmLXFcpmyJYy8vL2UymVRUVJTDEsejR49WDRo0UC4uLsrPz0/Fxsaqs2fP2vdPmzZNBQQEKI1GU+kSxw8//LCaOHGi/biQkBA1e/bscvFs375ddevWTXl4eCh3d3fVsmVLNWPGDKWUUmfOnFFjx45VzZs3Vx4eHspsNqsWLVqo+Ph4ZbFYHOpZsWKFeuSRR5S7u7v9u2Dp0qUOZSpaprnsdezYsXKxFRQUqKeffloFBQUpo9GoAgMDVe/evdX27dvtZRYuXHjdOm9kzpw5qmnTpspkMqnAwEA1aNAg9euvv1Z6zPr16ys8V9nPosynn36qGjZsqFxdXVWrVq3UihUr7PuysrJUjx49lL+/vzIYDKpu3bpq4MCB6uDBgw51/PDDD6pTp07Ky8tL1apVSz3++ONq69at142tqkscV/UabtadWOL4fiH3Q4h7Q+HhwyolorFKfbids0O5ZZIvSb4k+dL9ly9plLoDa4PfBQ899BBPPPEE3bp1o2vXrpw/f96ht1RISAjjxo3jxRdfZMqUKaxcudJhLGVGRgZhYWHs3r37usP3KuopVa9ePXJycmrMzPbXOjHrPdLSDax3L6HBz4s47WlrJXXxHkuk33KaPeoPW+ZCs6cZ/cBolufqmdIgiP9X39/JkduMX5bMl0lZxHX6hPruZWPNNbRs8SF+ft2dGpsQVyssLCQjI4PQ0FBcXV2dHU61kpeXR3BwMLNmzWLo0KF3/fzZ2dl07doVT09Pvv32W9zcqscQAnF7KvudvXjxIl5eXjU6P7gZcj+EuDcUpadz5Mmn0Hl50WjbT84O55ZIvnTrJF8SznAn8qV7ZxxWJXJzc0lPTycwMJA2bdpgMBhYu3atfX9qaiqZmZl06NABgA4dOrBv3z6H2fkTEhLw9PQsN/nY1VxcXPD09HR41WRKKb5L2c/OWjl4nU6nRablqr069C4aKC3ivN7MAt9u/Kxsq9i5au+NyRMtVsWFghIAAs22/zaOmMEjnX+SBikhqrGkpCSWLl1Keno6u3fvZtCgQQD2Lu53m4+PD2vWrKFr165s3brVKTEIIYQQQlxN8iVRU9yTc0q9/PLL9OrVi5CQEI4fP05cXBw6nY5nn30WLy8vhg4dyvjx4/Hx8cHT05MxY8bQoUMH2rdvD0D37t1p2rQpsbGxzJw5k5MnT/Laa68xatQoXFxcnHx1947s7Gx+qVcPKMXbUsqRB3oCBwDbWGS9UQOlhSyo25fZmmaQZ5uvydvg/I/N0u2ZvL7iZ/SafB7wPI2eCwC4uYVhNNZ2bnBCiNsWHx9PamoqRqORNm3akJiYSO3azvvd9vX1ZcqUKU47vxBCCHFDZQNgatjqe+L6JF8SNYHzWxcq8Ouvv/Lss89y7tw5/Pz86Ny5Mz/99BN+fn4AzJ49G61WS58+fSgqKiIqKooPP/zQfrxOp2PVqlU8//zzdOjQAXd3dwYPHsy0adOcdUn3pJISW+8ivVVDSKkPZ2pHQKGtUUpPEb5NGkHpQc4abPe9ldlEpI8nUbWd34Ns7YFTWKwWZjzyDrVN2WBbjAC9wfmxCSFuT+vWrdm1a5ezwxBCCCGEuGdJviRqinuyUerf//53pftdXV354IMP+OCDD65bJiQkhG+++eZOh1ajlJaWkq8MJBcFobX8hNlyCAC93sr/zXoMo3sP+M9zFGhtvcti/GvdM3NJXSwsxc1QYGuQAlxdg/HwaIy7W/Va/lIIIYQQQgghhLhf3ZONUuLu+HXTMTIsPrhdPIGLNovikiwAjHotRssFSF4B2UcoqmWbGN7lHplLCuBSYSlu+nwAdDo3OnX80ckRCSGEEEII4UQyfE8IUQ1Jo9R9rDTlDKVocbPYGnc0Wh80+jo83DoP/jsMftkEQJHvswC4ap07L/6lwhL6frSVY9m5hHvtoWPQsf/P3p3HVV3ljx9/3Qv3wgUuIAqyiCSKKG6l5u4YKYI6yDSmNjqok5o2rlmG2iTpuEyGOrmMS1PW/L5mjmbmoGVoWbibgpooKGFuuOACsl+45/cHcvPG4i6K7+fjcWe6n8/5nPP+fC5w357P+ZwDgK2NsUrjEkIIIYQQQgghxJ2TTqkn1MWTP2MqzKHYRouNKll1T6urj86hMw38voNTO0oK1mlDgasfUPUjpQ6dyeTY+es0q3WEMc/827Jdp69RhVEJIYQQQgghhBDibkin1BMqKf47lLKj0DYHvcMxyAI0NgDobW2hqBAFZHR/j+uXHCArF7sqHimVlVcyMXsLrxwA9PrauLi0wNurX1WGJYQQQgghRJVT8vieEOIxJJ1STyhTfj5o7HHLP0Bw8mUuuDijufHjYKPXQ3EBw4KmszEVoOTxvqoaKaWU4tj56/x0LhOAmoZ8ANxrPU+jRjOqJCYhhBBCCCGEEELcG+mUegL9fOQIO0+dR9lfIvDny9gU3+hs0pSMhLLR6aCokF2uLSzH1LHX8YyzQ1WEy4odJ5kem0R9lzQWBC/DUVfSSWarc6mSeIQQQgghhBBCCHHvqvZ5LFElThw4gLIpeVTP1qwjy1jnxp6SbVq9DooLyNfqAdjTrjE/tm+Cu15XFeGSlJ4FQCvPFEuHlEZji6vrs1USjxBPmiFDhqDRaNBoNOj1eho0aMD06dMpKiq6p3q3bduGRqPh2rVr9yfQ25CWlsaAAQPw9vbG3t6eOnXqEBERwbFjx6zKxcbG0qVLF4xGIw4ODjz77LN8/PHHVmVOnjyJRqMhMTHxttt/5513aNSoEY6OjtSoUYNu3bqxZ88eqzqHDh1KvXr1MBgM1K9fn+joaAoLC29Z98qVK2nRogUODg54eXnx8ssvc/ny5UqPWbJkCc2bN8fZ2RlnZ2fat2/PV199Zdl/5coVxowZQ2BgIAaDgbp16zJ27FgyMzMtZT7++GPLz8dvXxcvXrSUKygo4K233sLPzw87OzueeuopPvroI6t4/vnPf1ra8vX15bXXXiM/P7/Sc1i3bh3du3enZs2ad/x5CCFEtXLj6T15fK9qSL4k+ZLkS3dHRko9gYpNJoqVBltTPQw2heQ65IApEzQ2GLSZaNwbQnEhBTc6pap61b3MG3NJdarvAEXg4/NnGtSfiK2tU5XGJcSTJCwsjBUrVlBQUMCmTZsYNWoUOp2OyZMnV3VoABQWFqLX6ystYzKZCAkJITAwkHXr1uHl5cWZM2f46quvrBK9hQsXMn78eKKioliyZAl6vZ4vv/ySkSNH8tNPPxETE3PXcTZs2JBFixbh7+9PXl4e8+fPp3v37pw4cQJ3d3eOHTuG2Wxm2bJlNGjQgJ9++onhw4eTk5NTabs7duxg0KBBzJ8/n/DwcM6ePcvIkSMZPnw469atq/C4OnXq8I9//IOAgACUUnzyySdERESQkJBAkyZNOHfuHOfOnSMmJoagoCB++eUXRo4cyblz51i7di0A/fv3JywszKreIUOGkJ+fj4eHh2Vbv379uHDhAh9++CENGjQgPT0ds9ls2f/pp58yadIkPvroIzp06EBKSoolwZ83b16F55CTk0OnTp3o168fw4cPv+VnIIQQQjwoki9JviT50l1QokKZmZkKUJmZmVUdyn21Ydky1eetf6n6E79Qcwa+pub+6WUV06+Xio2eoc4nHFHKlK9M0TVU7W8TVO1vE9TVQlOVxLkt+aIKXxivGr/9lfKLilVfbx+rtmz1Vz//vLBK4hHiXuTl5amkpCSVl5dX1aHcscGDB6uIiAirbSEhIapdu3bqypUrKjIyUrm6uiqDwaDCwsJUSkqKpdzJkyfV73//e+Xq6qocHBxUUFCQ2rhxo0pLS1OU3NO1vAYPHqyUUiorK0sNGDBAOTg4KE9PTzVv3jzVpUsXNW7cOEu9fn5+avr06SoyMlIZjUbLsfHx8apTp07K3t5e1alTR40ZM0ZlZ2crpZRKSEhQgDp58mSF53rq1Cml0+nUhAkTyuxbsGCBAtTu3buVUspyDgkJCXd+UW8o/Z7ZsmVLhWXmzJmj6tWrV2k97733nvL39y8Tr4+Pzx3HVKNGDfXvf/+7wv3//e9/lV6vVyZT+d8NFy9eVDqdTv3nP/+xbPvqq6+Ui4uLunz5coX1jho1Sj3//PNW2yZMmKA6dux4W3Hfj8/jZpX9zlbX/OBuyfUQ4tGQdyxZJQU2Uskdbu/v5qNI8iXJl8oj+dKvqmO+JI/vPYHyc4vIUXb0vLgZrSkFVXwBgPp+udROfBNW9LCMkgKqbNW9/9v9C4fOZNK1TixRz76PvmgHALa2xiqJR4j7TSlFTnHxQ3+p0tV57oHBYKCwsJAhQ4bw448/smHDBnbt2oVSip49e2IylYxwHDVqFAUFBfzwww8cPnyYd999FycnJ3x9ffn8888BSE5OJj09nffffx+ACRMmsGPHDjZs2EBcXBzx8fEcOHCgTAwxMTG0aNGChIQE3n77bVJTUwkLC6NPnz4cOnSI1atXs337dkaPHg2Au7s7Wq2WtWvXUlxcXO55rV27FpPJxBtvvFFm34gRI3BycmLVqlX3fP2g5G7l8uXLcXFxoUWLFhWWy8zMxM3NrdK62rdvz+nTp9m0aRNKKS5cuMDatWvp2bPnbcdTXFzMZ599Rk5ODu3bt680HmdnZ2xtyx9s/Z///AcHBwdefPFFy7YNGzbQunVr5syZg4+PDw0bNuSNN94gLy/PUqZDhw7s37+fvXv3AvDzzz+zadOmOzoHIYR4slXP1feqKl+6HzmT5Ev3TvKl6p8vyeN7T5j8E9coyrDFjAZX0zUANFoXdBRTt+gwnI0vKWf76yTiVbXqXmauCXubfP7QoOR5XfONv4kGB78qiUeI+y3XbKb+D4cferupv2uG44155e6UUoqtW7eyefNmevTowfr169mxYwcdOnQASp7T9/X1Zf369fTt25dTp07Rp08fmjVrBoC/v7+lrtLEwcPDA1dXVwCuX7/OJ598wqeffkrXrl0BWLFiBd7e3mVief7553n99dct74cNG8bAgQMZP348AAEBASxYsIAuXbqwZMkSfHx8WLBgAW+++SbTpk2jdevWBAcHM3DgQEtcKSkpuLi44OXlVaY9vV6Pv78/KSkpd3XtSsXGxvLSSy+Rm5uLl5cXcXFx1KpVq9yyJ06cYOHChbccAt+xY0dWrlxJ//79yc/Pp6ioiPDwcBYvXnzLeA4fPkz79u3Jz8/HycmJL774gqCgoHLLZmRk8Pe//51XXnmlwvo+/PBDBgwYgMFgsGz7+eef2b59O/b29nzxxRdkZGTw17/+lcuXL7NixQoABgwYQEZGBp06dUIpRVFRESNHjmTKlCm3PAchhBDVV1XlS3D3OZPkS5IvSb50+2Sk1BPml/gfKdaYMaPBRpX08ugcw6lp8MXBxoQZDQvaz+dvXT8DQK/RoH3Id1uyC4pIPH2Ni9fzb5rYXEezpotp2fIzarp1eajxCCFKEgMnJyfs7e3p0aMH/fv3Z8iQIdja2tK2bVtLuZo1axIYGMjRo0cBGDt2LDNmzKBjx45ER0dz6NChStv5+eefMZlMtGnTxrLNxcWFwMDAMmVbt25t9f7gwYN8/PHHODk5WV6hoaGYzWbS0tKAkjuR58+fZ+XKlbRv3541a9bQpEkT4uLibvta3GouBihJNm+OIz4+3rIvODiYxMREdu7cSVhYGP369bOa4LLU2bNnCQsLo2/fvlbP/t9c78iRIwFISkpi3LhxTJ06lf379/P1119z8uRJy/74+Hir41auXGmpLzAwkMTERPbs2cOrr77K4MGDSUpKKhNPVlYWvXr1IigoiHfeeafc8961axdHjx5l6NChVtvNZjMajYaVK1fSpk0bevbsybx58/jkk08sd/+2bdvGrFmz+Ne//sWBAwdYt24dGzdu5O9///str6kQQgjxKJB86VeSL0m+dLtkpNQT5uqZcxRjJtcxBVvtdSi2AY0NWo0JzCYSjYHM0reEG5P319I/3B8RpRS9FsTzy+Vcathdpb7rSQB0Ohc8PMIqP1iIx4yDVkvq75pVSbt3Kjg42DKJpbe3N7a2tmzYsOGWxw0bNozQ0FA2btzIN998w+zZs5k7dy5jxoy5m9CtODo6Wr3Pzs5mxIgRjB07tkzZunXrWv7baDQSHh5OeHg4M2bMIDQ0lBkzZhASEkJAQACZmZmcO3euzN3GwsJCUlNTCQ0NvWVsvXv3tko+fXx8rOJu0KABDRo0oF27dgQEBPDhhx9aTYJ67tw5goOD6dChA8uXL7eq++bVUpydnQGYPXs2HTt2ZOLEiQA0b94cR0dHOnfuzIwZM2jdurXVcbVr17b8d+kKQQCtWrVi3759vP/++yxbtsxS5vr164SFhWE0Gvniiy/Q6cpfjfXf//43Tz/9NK1atbLa7uXlhY+PDy4uv47Cbdy4MUopzpw5Q0BAAG+//TaRkZEMGzYMgGbNmpGTk8Mrr7zCW2+9Vek1FUIIAZQ+ala9nt6rsnyptO07IfmS5EuSL9056ZR6guRfvUZ6dgbX7RRFdmexNZd+Y9ngYi6E4iKybqxoV1tvy8s+7nRxe7jzN+UWFvPL5Vzqu/zMlLb/tGy3velxQiGqC41Gc9eP0T1spYnBzRo3bkxRURF79uyxDEe/fPkyycnJVsOZfX19GTlyJCNHjmTy5Ml88MEHjBkzxnIH7eb5Cvz9/dHpdOzbt8+SGGVmZpKSksLvfve7SmNs2bIlSUlJZeKsjEajoVGjRuzcuROAF198kaioKObOncvcuXOtyi5dupTc3FwGDRp0y3qNRiNG4+39/TSbzRQUFFjenz17luDgYFq1asWKFSvQ/iYhLu/8cnNzy8xZYHPjZ0sphcFguO3r8tt4srKyCA0Nxc7Ojg0bNmBvb1/ucdnZ2fz3v/9l9uzZZfZ17NiRNWvWkJ2djZNTyfdMSkoKWq2WOnXqWM7ht+d68zncyTUVQghRfUi+JPkSSL5UnfMl6ZR6gny7fBkHDXmgFNFf/MQxL0+UFjQaG5xVARQXUKB1BcDHXs+4p2pXXuEDkF1QBICf81kAtFo7dDo36vgMeOixCCEqFxAQQEREBMOHD2fZsmUYjUYmTZqEj48PERERAIwfP54ePXrQsGFDrl69ynfffUfjxo0B8PPzQ6PREBsbS8+ePTEYDBiNRgYPHszEiRNxc3PDw8OD6OhotFotmls8ShwVFUW7du0YPXo0w4YNw9HRkaSkJOLi4li0aBGJiYlER0cTGRlJUFAQer2e77//no8++oioqCig5A7hnDlzeOONN7C3tycyMhKdTseXX37JlClTmDFjBk2bNrVqNzk5uUwsTZo0KXN3LCcnh5kzZ9K7d2+8vLzIyMhg8eLFnD17lr59+wIlCdZzzz2Hn58fMTExXLp0yXK8p6dnheceHh7O8OHDWbJkCaGhoaSnpzN+/HjatGlT7vwSpSZPnkyPHj2oW7cu169f59NPP2Xbtm1s3rwZKEmwunfvTm5uLv/3f/9HVlYWWVlZQMlEqDY3/SNh9erVFBUV8ec//7lMOwMGDODvf/87f/nLX5g2bRoZGRlMnDiRl19+2TKXQnh4OPPmzeOZZ56hbdu2nDhxgrfffpvw8HCrdn7rypUrnDp1inPnzgG/fh6enp6VXjMhhBDiYZB8qYTkSyUkXyrHfVkHsJqqbkscr/zbWyo6OlrNnzJD/dDuDyqmXy8V06+XWjj8f+rH0QOVWtBKrV8UoWp/m6D+cCDl1hU+AMcvXFd+UbHqtX+PV1u2+qukpElVEocQ91t1W+K4VOkSxy4uLspgMKjQ0FCrJY5Hjx6t6tevr+zs7JS7u7uKjIxUGRkZlv3Tp09Xnp6eSqPRVLrEcZs2bdSkSb/+PfDz81Pz588vE8/evXtVSEiIcnJyUo6Ojqp58+Zq5syZSimlLl26pMaOHauaNm2qnJyclNFoVM2aNVMxMTGquLjYqp7169erzp07K0dHR8sSzKtWrbIqU94yzaWv06dPl4ktLy9PvfDCC8rb21vp9Xrl5eWlevfurfbu3Wsps2LFigrrvJUFCxaooKAgZTAYlJeXlxo4cKA6c+ZMpce8/PLLys/PT+n1euXu7q66du2qvvnmG8v+7777rsJ40tLSrOpq3769GjBgQIVtHT16VHXr1k0ZDAZVp04dNWHCBJWbm2vZbzKZ1DvvvKPq16+v7O3tla+vr/rrX/+qrl69Wuk5VHTNoqOjKz3uVu7HEsdPCrkeQjwa8pKSVFJgI5XSqXNVh3LXJF+SfEnypScvX9IodR/WBq+msrKycHFxsSzn+Lj7ZMpk0vR2tM2tQ8apIi6qWADsXEfRs9Zi/HXb+W/t7oxtNIVgNyOrWtR/aLFtSbrAa6sTseEaLdwP0sHnMA1ckqjrO5SAgMd3JQEhSuXn55OWlka9evUqHM4rypeTk4OPjw9z584tMyHkw3DlyhW6du2Ks7MzX331FQ4ODg89BvHwVfY7W93yg3sl10OIR0P+0aOkvfBHbN3dCYj/oarDuSuSL909yZdEVbgf+ZKsvvcEKVZmAK5fP801EizbewT8j6dsdwCKQtuSifDstA93hsRvks5zvaCIFwPWMShoNQ1cSlYy0OncHmocQoiql5CQwKpVq0hNTeXAgQMMHDgQwDLE/WFzc3Njy5YtdO3alV27dlVJDEIIIYQQN5N8SVQXMqfUE6RYKY4X1cLh6lZslAkAjY3C35iEJtsMPWPId+8OJ69idxerc92LzLySeFp45wLg4tIKR8cGeHn98aHGIYR4NMTExJCcnIxer6dVq1bEx8dTq1atKounZs2aTJ06tcraF0IIIW7JsvpeNVt+T1RI8iVRHUin1BPi7JZksrQ+7Ciqx9OqZDJxW/uO1PDbhqYon29rtGFsXisyf7kGPLyRUj+evMKWoxf56WzJRHD22hwwg3+98bi5dXgoMQghHi3PPPMM+/fvr+owhBBCCCEeWZIviepCOqWeEJe/OYpJr0NTbEZLyV0UG7tmOBm/g6J8vq7VgwyzFm7se8bZ8aHENe6zRM5ey2NAo7U0DkpGa84AQKdzeSjtCyGEEEIIIYQQompIp9QTQmsGE6B3/OnXjRob9DYKivIp0OoBGFXXg1fquFPbTld+RfeRUooLWfkYbPPoWvfXyRi1WgP29r4PvH0hhBBCCCGqCyWP7wkhHkPSKfUEKC4uJktbQB5mOmd9CZQ+Z2xDTa0GCvLJv9Ep5WWneygdUgB5pmKKzAoXfR4AWq2ep1t8goODHzqdrN4jhBBCCCGEEEJUZ9Ip9QT4ZPlyTjlcID9Xy8ivc/i+ya+dUk0vnwCbq5aRUg9rLqk31x7k22MXAXDS5wNga+tMjRptHkr7QgghhBBCCCGEqFrSKVXNFV29Svrp06DX41BYzLHGkcAPgBaNRoOtpmTVuwJ9yRxOD2PVvbzCYv774xlq2F3lrbYf4eGQCYCtrfGBty2EEEIIIUS1dOPpPXl8TwjxOJFOqWqu6OJFzDc6mp4pfIoMBy3kA9hQ324n9posGPg5+dfrQmbuQxkplZVf0hHW3D0Jf5dfLNudHBs98LaFEEIIIYQQQgjxaJBOqWpOFRaWdEqZzVy6vo+8opJH5fS6YsK8P+Rb+zZszK7N8dxCAOwf8EgpU7GZy9klbbkZCgCoVfN56tUbg5NT4wfathBCCCGEEEIIIR4dD/5ZLVGlrqXnoLRazDk55BSewmwumcfJwUEHxYVMbPgGK68Vk2EqAsBd9+D6KTceSqfJ1M30WvA9Pk7n8Ha6BIDBwQ9n5+ZotQ9ngnUhxJ0ZMmQIGo0GjUaDXq+nQYMGTJ8+naKionuqd9u2bWg0Gq5du3Z/Ar0NaWlpDBgwAG9vb+zt7alTpw4REREcO3bMqlxsbCxdunTBaDTi4ODAs88+y8cff2xV5uTJk2g0GhITE2+7/XfeeYdGjRrh6OhIjRo16NatG3v27LGqc+jQodSrVw+DwUD9+vWJjo6msLDwlnWvXLmSFi1a4ODggJeXFy+//DKXL1++7dj+8Y9/oNFoGD9+vNX21NRUXnjhBdzd3XF2dqZfv35cuHDBqszMmTPp0KEDDg4OuLq6llt/6c/Qza/PPvvMsn/dunWEhIRY2mnfvj2bN2++Zdzr1q2je/fu1KxZ844/DyGEqFZk9b0qJfmS5EuSL90d6ZSq5q7E53Gu2MiOwqcA0Ghd0Tn2pFvnelCUz7Ub8ziN9HVnUeO6POPs8MBi2ZZ8kcJiM/0Dv2B6h3/Q0n0HALa2Lg+sTSHE/REWFkZ6ejrHjx/n9ddf55133uG9996r6rAsbicJMZlMhISEkJmZybp160hOTmb16tU0a9bMKtFbuHAhERERdOzYkT179nDo0CFeeuklRo4cyRtvvHFPcTZs2JBFixZx+PBhtm/fzlNPPUX37t25dKmkk/7YsWOYzWaWLVvGkSNHmD9/PkuXLmXKlCmV1rtjxw4GDRrE0KFDOXLkCGvWrGHv3r0MHz78tuLat28fy5Yto3nz5lbbc3Jy6N69OxqNhm+//ZYdO3ZQWFhIeHg4ZrPZUq6wsJC+ffvy6quvVtrOihUrSE9Pt7z+8Ic/WPb98MMPhISEsGnTJvbv309wcDDh4eEkJCRUWmdOTg6dOnXi3Xffva1zFUIIIR4UyZckX5J86S4oUaHMzEwFqMzMzKoO5a7kXb+uDr+xQb3w1hLVddQ/VUy/XmrugBFq0YitKvOLt5WKdlY+W/ap2t8mqHP5BQ88nlf+s0/5RcWq2G8j1Jat/mrb9y3Vrt2hKuv60QfethBVLS8vTyUlJam8vLyqDuWODR48WEVERFhtCwkJUe3atVNXrlxRkZGRytXVVRkMBhUWFqZSUlIs5U6ePKl+//vfK1dXV+Xg4KCCgoLUxo0bVVpamqJkSlbLa/DgwUoppbKystSAAQOUg4OD8vT0VPPmzVNdunRR48aNs9Tr5+enpk+friIjI5XRaLQcGx8frzp16qTs7e1VnTp11JgxY1R2drZSSqmEhAQFqJMnT1Z4rqdOnVI6nU5NmDChzL4FCxYoQO3evVsppSznkJCQcOcX9YbS75ktW7ZUWGbOnDmqXr16ldbz3nvvKX9//zLx+vj43DKG69evq4CAABUXF1fmOm/evFlptVqr78Fr164pjUaj4uLiytS1YsUK5eLiUm47gPriiy9uGc/NgoKC1LRp026r7P34PG5W2e/s454f3G9yPYR4NOQeOqySAhuplOeCqzqUuyb5kuRL5ZF8qXKPe74kI6WqsdNHDqEwU4wGvUMyABpsANDbQhE2FGlLHtd7kKvuXckp5NtjFzh1Ja+kbW0OAE2bvk+7tl9jdJIJzsWTSSlFbmHRQ3+p0uH998BgMFBYWMiQIUP48ccf2bBhA7t27UIpRc+ePTGZShY0GDVqFAUFBfzwww8cPnyYd999FycnJ3x9ffn8888BSE5OJj09nffffx+ACRMmsGPHDjZs2EBcXBzx8fEcOHCgTAwxMTG0aNGChIQE3n77bVJTUwkLC6NPnz4cOnSI1atXs337dkaPHg2Au7s7Wq2WtWvXUlxcXO55rV27FpPJVO4dvhEjRuDk5MSqVavu+fpByd2y5cuX4+LiQosWLSosl5mZiZubW6V1tW/fntOnT7Np0yaUUly4cIG1a9fSs2fPW8YxatQoevXqRbdu3crsKygoQKPRYGdnZ9lmb2+PVqtl+/btt6y7vLZq1apFmzZt+Oijjyr9WTSbzVy/fv2W5y6EEKJU6eN7VRvF/VZV+dL9yJkkX7p3ki9V/3xJJjqvxvLPnUVp7LAznabHif3k6NxBU9L5ZLtvCQU2v87h9CBX3Rv47z0cTc+itsNFnq19Bq26CoDO1vmBtSnE4yDPVEzQ1Fs/A36/JU0PxUF/d3/+lVJs3bqVzZs306NHD9avX8+OHTvo0KEDUPKcvq+vL+vXr6dv376cOnWKPn360KxZMwD8/f0tdZV+eXp4eFieq79+/TqffPIJn376KV27dgVKhjB7e3uXieX555/n9ddft7wfNmwYAwcOtDzjHxAQwIIFC+jSpQtLlizBx8eHBQsW8OabbzJt2jRat25NcHAwAwcOtMSVkpKCi4sLXl5eZdrT6/X4+/uTkpJyV9euVGxsLC+99BK5ubl4eXkRFxdHrVq1yi174sQJFi5cSExMTKV1duzYkZUrV9K/f3/y8/MpKioiPDycxYsXV3rcZ599xoEDB9i3b1+5+9u1a4ejoyNRUVHMmjULpRSTJk2iuLiY9PT02zvhG6ZPn87zzz+Pg4MD33zzDX/961/Jzs5m7Nix5ZaPiYkhOzubfv363VE7Qgghqpeqypfg7nMmyZckX5J86fbJSKlqylRQwLYt3/Kd/TGan0ml3vnSPdob/1tEgVZvKW+neTA/CkopUi9mY6sxMbX9XEa2+BjMJZ1SMpeUEI+P2NhYnJycsLe3p0ePHvTv358hQ4Zga2tL27ZtLeVq1qxJYGAgR48eBWDs2LHMmDGDjh07Eh0dzaFDhypt5+eff8ZkMtGmTRvLNhcXFwIDA8uUbd26tdX7gwcP8vHHH+Pk5GR5hYaGYjabSUtLA0ruPJ0/f56VK1fSvn171qxZQ5MmTYiLi7vta6HX629ZZuXKlVZxxMfHW/YFBweTmJjIzp07CQsLo1+/fly8eLFMHWfPniUsLIy+fftazXVwc70jR44EICkpiXHjxjF16lT279/P119/zcmTJy374+PjrY5buXIlp0+fZty4caxcuRJ7e/tyz8Pd3Z01a9bwv//9DycnJ1xcXLh27RotW7ZEe4cjbN9++206duzIM888Q1RUFG+++WaF82x8+umnTJs2jf/+9794eHjc8poKIYQQjwLJl34l+ZLkS7dLRkpVU6d+/pnL7rWBXByUkZ/9uoM5AbBBQzFZ3q3Y22sFHL+MrQZsH9BIqXyTmcJiMzXssrG3yQM01HBti9HYBIOh7gNpU4jHhUFnQ9L00Cpp904FBwezZMkS9Ho93t7e2NrasmHDhlseN2zYMEJDQ9m4cSPffPMNs2fPZu7cuYwZM+ZuQrfi6Oho9T47O5sRI0aUeyepbt1f/94YjUbCw8MJDw9nxowZhIaGMmPGDEJCQggICCAzM5Nz586VudtYWFhIamoqoaG3/sx69+5tlXz6+PhYxd2gQQMaNGhAu3btCAgI4MMPP2Ty5MmWMufOnSM4OJgOHTqwfPlyq7pvXi3F2blkxOns2bPp2LEjEydOBKB58+Y4OjrSuXNnZsyYQevWra2Oq127Nlu3buXixYu0bNnSsr24uJgffviBRYsWUVBQgI2NDd27dyc1NZWMjAxsbW1xdXXF09PT6i7u3Wjbti1///vfKSgosBru/tlnnzFs2DDWrFljNUS+smsqhBACy+p7mmr2/F5V5Uulbd8JyZckX5J86c5Jp1Q1ZcrPB8DZbEBv8xSFNjrIAzQ2uNmeoledsaQeL1n60v4BzSe1cOtxvk0u6c026kvi0elq0LLlygfSnhCPG41Gc9eP0T1spYnBzRo3bkxRURF79uyxDEe/fPkyycnJBAUFWcr5+voycuRIRo4cyeTJk/nggw8YM2aM5Q7azfMV+Pv7o9Pp2LdvnyUxyszMJCUlhd/97neVxtiyZUuSkpLKxFkZjUZDo0aN2LlzJwAvvvgiUVFRzJ07l7lz51qVXbp0Kbm5uQwaNOiW9RqNRoxG423FYDabKSgosLw/e/YswcHBtGrVihUrVpS5w1be+eXm5mJra/2zZGNTkkgrpTAYDGWO69q1K4cPH7ba9pe//IVGjRoRFRVlOb5U6ZD5b7/9losXL9K7d+/bOr+KJCYmUqNGDasEa9WqVbz88st89tln9OrVy6r8nVxTIYQQ1YfkS5IvgeRL1Tlfejx+u8UdK76x3Kc9ejQUUkzJHzF/97M4+x4i1eFd9BoNPvY6/li7xn1vP99UzNy4FLSaYia0XIq/6xkAdDrX+96WEKJqBAQEEBERwfDhw1m2bBlGo5FJkybh4+NDREQEAOPHj6dHjx40bNiQq1ev8t1339G4cWMA/Pz80Gg0xMbG0rNnTwwGA0ajkcGDBzNx4kTc3Nzw8PAgOjoarVaLRlP5nd+oqCjatWvH6NGjGTZsGI6OjiQlJREXF8eiRYtITEwkOjqayMhIgoKC0Ov1fP/993z00UdERUUBJXcI58yZwxtvvIG9vT2RkZHodDq+/PJLpkyZwowZM2jatKlVu8nJyWViadKkCTqdzmpbTk4OM2fOpHfv3nh5eZGRkcHixYs5e/Ysffv2BUoSrOeeew4/Pz9iYmIsSx8DeHp6Vnju4eHhDB8+nCVLlhAaGkp6ejrjx4+nTZs25c4vASVJy2/PxdHRkZo1a1ptX7FiBY0bN8bd3Z1du3Yxbtw4XnvtNatHBE6dOsWVK1c4deoUxcXFlruMDRo0wMnJif/9739cuHCBdu3aYW9vT1xcHLNmzbKaIPXTTz9l8ODBvP/++7Rt25bz50ueOzcYDLi4VPy4d2m7586dA379PDw9PSu9ZkIIIcTDIPlSCcmXJF+q0H1ZB7CaepyXOE78/ns1eeo09dc3F6v5f5qg5g0cr2L69VLfRL2gNi8IU7W/TVBh+5IfWPsXMvOUX1Ss6jRjudqy1d/y+umnssuGCvEkqG5LHJcqXeLYxcVFGQwGFRoaarXE8ejRo1X9+vWVnZ2dcnd3V5GRkSojI8Oyf/r06crT01NpNJpKlzhu06aNmjRpkuU4Pz8/NX/+/DLx7N27V4WEhCgnJyfl6OiomjdvrmbOnKmUUurSpUtq7NixqmnTpsrJyUkZjUbVrFkzFRMTo4qLi63qWb9+vercubNydHS0LMG8atUqqzLlLdNc+jp9+nSZ2PLy8tQLL7ygvL29lV6vV15eXqp3795q7969ljIrVqyosM5bWbBggQoKClIGg0F5eXmpgQMHqjNnztzyuJv9doljpZSKiopStWvXVjqdTgUEBKi5c+cqs9lsVWbw4MHlxvzdd98ppZT66quv1NNPP235XFq0aKGWLl1qdd27dOlSbh2lPxcVqeiaRUdH39G5/9b9WOL4cREdHV3m+gUGBt728dXtegjxuMpNTFRJgY3U8ee7VnUod03yJcmXJF968vIljVL3YW3waiorKwsXFxcyMzMtz6E+DpRS7P54I3NSz1Lv1I/4FPw643+r+nqyvIt5pck02rk4sr5lwAOJ4cTFbLrN+56nPU4y5ul52Nv70KLFhzg61EfzgCZVF+JRlp+fT1paGvXq1atwkkRRvpycHHx8fJg7dy5Dhw596O1fuXKFrl274uzszFdffYWDg8NDj0E8fJX9zj6u+UFF3nnnHdauXcuWLVss22xtbStc5ei3qtv1EOJxlXfwICf7v4TOx4cGW7fc+oBHkORLd0/yJVEV7ke+JL0D1VDBuWxyT+SQp3QYi7MB0NjUxtbWiaZOv1hW3XsQc0kdPpPJn/+9h9GfHsBZn0Ud5ysA6PW1cHIMkA4pIcQtJSQksGrVKlJTUzlw4AADBw4EsAxxf9jc3NzYsmULXbt2ZdeuXVUSgxAPmq2trWUIv6en5213SAkhhKgaki+J6kLmlKqG9n+5iWLMmLQmbMgDQOfQHXvNLmoVfkWhtuS5Vjub+78yx6d7T7H9RAYvNIhlYvNvLNttbR6vydaEEFUrJiaG5ORk9Ho9rVq1Ij4+vkr/kVyzZk2mTp1aZe0L8aAdP34cb29v7O3tad++PbNnz7ZahelmBQUFVpPNZmVlPawwhRCVKX0A5hZzConqQ/IlUR1Ip1Q1lHU+HQ3u5LgmYEsBYAMaG7QaE9TvSr7fC1AMdg9gpFRmXskE653qngZAo7FFq7XHw6PHfW9LCFE9PfPMM+zfv7+qwxDiidG2bVs+/vhjAgMDSU9PZ9q0aXTu3Jmffvqp3BV8Zs+ezbRp06ogUiGEEKUkXxLVhXRKVTO5J1LJOHcaraeBPvuS0RUZKLYB0OJXlM/yeoPY7NgUrmWjfwB3UbLyigAw2hVAMbRo8SE13Trd93aEEEIIcX/06PHrjaPmzZvTtm1b/Pz8+O9//1vuvCSTJ09mwoQJlvdZWVn4+vo+lFiFEEIIUb1Ip1Q1E78ljtQ6RiCdhoVtSdclAWY0GhtcHAr4R35tck0l80y56e7fxz9xzUHW7D+DTluIp8NVbFTJUH5bW3lsTwghhHicuLq60rBhQ06cOFHufjs7O+zs7B5yVEKIW1Hy+J4Q4jEknVLVzKWcks4gR2VHjuNTUPgTALaaIuIaB5JrY6CdiyPtXZ0Y5FPzvrX7v0Pn0GqK+XvHWbgbroC5ZLvMJSWEEEI8XrKzs0lNTSUyMrKqQxFCCCFENSdLoVUzRcUlj881KfKFm1a6G+T3FqdrGgDo6e5ClL8XXnb6+9JmQVEx+SYzzvrskg4pwNbWBbcaHXFw8LsvbQghhBDiwXjjjTf4/vvvOXnyJDt37uSFF17AxsaGP/3pT1UdmhBCCCGqORkpVc0UFxcDoDGbMZNj2a43XaFAW9IJdT8nOI8/fokfUi4B4KjLBUCnq8HvOv9439oQQgghxINz5swZ/vSnP3H58mXc3d3p1KkTu3fvxt3dvapDE0LcDXl8TwjxGJFOqWok++hlNLk1SDRp0f+yHjtzoWWfjbmAfEun1P35oiooKmb4f34Ecy59Ar7hKZeLANjaOt+X+oUQQgjx4H322WdVHYIQ4n5QVR2AEELcOemUqkbOfnsMheJyge1NHVI6nByz0QSFU+DRFIrB/j6NlMrMM5FvMtPR+yA9622xbLe3974v9QshhBBCCCGEEKL6kjmlqpHLp45TjEKjKXlsT6Nxwb7GGHw9r2DuMpkCRw/g/o2Uup5fMn+Vh2PJan5GY1Ma1H+TRoEz7kv9QohHw5AhQ9BoNGg0GvR6PQ0aNGD69OkUFRXdU73btm1Do9Fw7dq1+xPobUhLS2PAgAF4e3tjb29PnTp1iIiI4NixY1blYmNj6dKlC0ajEQcHB5599lk+/vhjqzInT55Eo9GQmJh42+2/8847NGrUCEdHR2rUqEG3bt3Ys2ePVZ1Dhw6lXr16GAwG6tevT3R0NIWFhZXUWmLlypW0aNECBwcHvLy8ePnll7l8+fItjzt79ix//vOfqVmzJgaDgWbNmvHjj78+gn3z51/6CgsLs6rjqaeeKlPmH//4h2V/cnIywcHB1K5dG3t7e/z9/fnb3/6GyWSyqufatWuMGjUKLy8v7OzsaNiwIZs2bao0/nXr1tG9e3dq1qx5x5+HEEJUS/L0XpWQfEnyJcmX7o6MlKpOihVmjZm6thsBe9DYAJCnt8f7qAko+WG+1zmlMvNMTNtwhLTLOYDCxS4fAFfXZ/HzG3FPdQshHk1hYWGsWLGCgoICNm3axKhRo9DpdEyePLmqQwOgsLAQvb7yxRtMJhMhISEEBgaybt06vLy8OHPmDF999ZVVordw4ULGjx9PVFQUS5YsQa/X8+WXXzJy5Eh++uknYmJi7jrOhg0bsmjRIvz9/cnLy2P+/Pl0796dEydO4O7uzrFjxzCbzSxbtowGDRrw008/MXz4cHJyciptd8eOHQwaNIj58+cTHh7O2bNnGTlyJMOHD2fdunUVHnf16lU6duxIcHAwX331Fe7u7hw/fpwaNWpYlSv9/EvZ2dmVqWv69OkMHz7c8t5o/HX1VZ1Ox6BBg2jZsiWurq4cPHiQ4cOHYzabmTVrFlDyGYaEhODh4cHatWvx8fHhl19+wdXVtdJrmpOTQ6dOnejXr59V+0II8eSR5/eqmuRLki9JvnQXlKhQZmamAlRmZmZVh3JLRVevqh1jP1BLo2aprW1aqph+vdTcl/6iFo3Yqr6fHqxqf5ugan+boAJ/OKTO5xfeU1trfzyt/KJiVfd/zFOxmxurLVv91Zat/ir15wX36WyEqH7y8vJUUlKSysvLq+pQ7tjgwYNVRESE1baQkBDVrl07deXKFRUZGalcXV2VwWBQYWFhKiUlxVLu5MmT6ve//71ydXVVDg4OKigoSG3cuFGlpaUpSrJny2vw4MFKKaWysrLUgAEDlIODg/L09FTz5s1TXbp0UePGjbPU6+fnp6ZPn64iIyOV0Wi0HBsfH686deqk7O3tVZ06ddSYMWNUdna2UkqphIQEBaiTJ09WeK6nTp1SOp1OTZgwocy+BQsWKEDt3r1bKaUs55CQkHDnF/WG0u+ZLVu2VFhmzpw5ql69epXW89577yl/f/8y8fr4+FR6XFRUlOrUqVOlZcr7/H/Lz89PzZ8/v9Iyv/Xaa69Ztb1kyRLl7++vCgvv7jvqfnweN6vsd/Zxyg8eBrkeQjwacvbvV0mBjdTx7t2rOpS7JvmS5EvlkXypeudL8vheNfH1P/7OfoeL5OVfId2rU8nGGyOlUtwCANj6bCAHOzahtp3untq6llcy4qqr/0nsbQsA0Gr11HB99p7qFeKJoxQU5jz8l7r3O6kGg4HCwkKGDBnCjz/+yIYNG9i1axdKKXr27GkZZjxq1CgKCgr44YcfOHz4MO+++y5OTk74+vry+eefAyVDldPT03n//fcBmDBhAjt27GDDhg3ExcURHx/PgQMHysQQExNDixYtSEhI4O233yY1NZWwsDD69OnDoUOHWL16Ndu3b2f06NEAuLu7o9VqWbt2rWWl0t9au3YtJpOJN954o8y+ESNG4OTkxKpVq+75+kHJna7ly5fj4uJCixYtKiyXmZmJm5tbpXW1b9+e06dPs2nTJpRSXLhwgbVr19KzZ89Kj9uwYQOtW7emb9++eHh48Mwzz/DBBx+UKbdt2zY8PDwIDAzk1VdfLXeY+z/+8Q9q1qzJM888w3vvvVfp4wonTpzg66+/pkuXLlaxtG/fnlGjRlG7dm2aNm3KrFmzKvyshBBClE9T3Z7fq6p86T7kTJIv3TvJl6p/viSP71UTibb2mGwLMebquOzmDzmpoLHBTnOdqQ1LHqmrrdfd86N7ANk35pKq7VTyg1+37jD8643HxsZwz3UL8UQx5cKsKlgYYMo50Dve1aFKKbZu3crmzZvp0aMH69evZ8eOHXTo0AEoeU7f19eX9evX07dvX06dOkWfPn1o1qwZAP7+/pa6ShMHDw8Py5Dj69ev88knn/Dpp5/StWtXAFasWIG3d9nr9Pzzz/P6669b3g8bNoyBAwcyfvx4AAICAliwYAFdunRhyZIl+Pj4sGDBAt58802mTZtG69atCQ4OZuDAgZa4UlJScHFxwcvLq0x7er0ef39/UlJS7uralYqNjeWll14iNzcXLy8v4uLiqFWrVrllT5w4wcKFC285BL5jx46sXLmS/v37k5+fT1FREeHh4SxevLjS437++WeWLFnChAkTmDJlCvv27WPs2LHo9XoGDx4MlAxF/+Mf/0i9evVITU1lypQp9OjRg127dmFjU3LzY+zYsbRs2RI3Nzd27tzJ5MmTSU9PZ968eVbtdejQgQMHDlBQUMArr7zC9OnTrWL59ttvGThwIJs2beLEiRP89a9/xWQyER0dfcvrKoQQT7z7cNPpkVRV+RLcdc4k+ZLkS5Iv3T4ZKVVNFN/obGpQ6A2qpLPI1e4svd0nYbYt2We4xwnOv/4pnddWJxJ76BwA9rZ5AOj17tIhJUQ1Fxsbi5OTE/b29vTo0YP+/fszZMgQbG1tadu2raVczZo1CQwM5OjRo0DJl++MGTPo2LEj0dHRHDp0qNJ2fv75Z0wmE23atLFsc3FxITAwsEzZ1q1bW70/ePAgH3/8MU5OTpZXaGgoZrOZtLQ0oORO5Pnz51m5ciXt27dnzZo1NGnShLi4uNu+FreaiwFKks2b44iPj7fsCw4OJjExkZ07dxIWFka/fv24ePFimTrOnj1LWFgYffv2tXr2/+Z6R44cCUBSUhLjxo1j6tSp7N+/n6+//pqTJ09a9sfHx1sdt3LlSgDMZjMtW7Zk1qxZPPPMM7zyyisMHz6cpUuXWtp76aWX6N27N82aNeMPf/gDsbGx7Nu3j23btlnKTJgwgeeee47mzZszcuRI5s6dy8KFCykoKLA6p9WrV3PgwAE+/fRTNm7caJU8ms1mPDw8WL58Oa1ataJ///689dZbllgqu6ZCCCHEo0DypV9JviT50u2SkVLVhNKUdDw5FelRKrPkvzWX0emvW8rc6yipKV/8xJWcAkY2X8GrjVNxtimZ4NzW1niLI4UQ5dI5lNyBq4p271BwcLBlEktvb29sbW3ZsGHDLY8bNmwYoaGhbNy4kW+++YbZs2czd+5cxowZczeRW3F0tL5zmZ2dzYgRIxg7dmyZsnXr1rX8t9FoJDw8nPDwcGbMmEFoaCgzZswgJCSEgIAAMjMzOXfuXJm7jYWFhaSmphIaGnrL2Hr37m2VfPr4+FjF3aBBAxo0aEC7du0ICAjgww8/tJoE9dy5cwQHB9OhQweWL19uVffNq6U4OzsDMHv2bDp27MjEiRMBaN68OY6OjnTu3JkZM2bQunVrq+Nq164NgJeXF0FBQVb1N27c2PKoQHn8/f2pVasWJ06csNyd/a22bdtSVFTEyZMnrRJkX19fAIKCgiguLuaVV17h9ddfx8bGBi8vL3Q6neVuYmks58+fp7CwsNJrKoQQ4iaaavb4XlXlS6Vt3wHJlyRfKiX50u2TTqlqoLioGKXRYJt1lcSsX5el1NlouPrH/8AFsNWA7T2MlCo2K67kFOKsv86znok37dFidGp898EL8STTaO76MbqHrTQxuFnjxo0pKipiz549luHoly9fJjk52eqL29fXl5EjRzJy5EgmT57MBx98wJgxYyx30G5+Bt7f3x+dTse+ffssiVFmZiYpKSn87ne/qzTGli1bkpSUVCbOymg0Gho1asTOnTsBePHFF4mKimLu3LnMnTvXquzSpUvJzc1l0KBBt6zXaDRaraZSGbPZbHWH7OzZswQHB9OqVStWrFiB9jc3FMo7v9zcXGxtrb/SS5MVpRQGg6Hc4zp27EhycrLVtpSUFPz8/CqM98yZM1y+fLncIfulEhMT0Wq1eHh4VFjGbDZjMpkwm83Y2NjQsWNHPv30U8xms+WcU1JS8PLyQq/Xo9frb/uaCiHEE6m6Pr4n+RIg+ZLkS9U3X5JOqcecKlakzdrNVbOB69l5NLHsseGKtxcdLpQ8g2x/j6OkrueXTMJnuPHIno2NE61b/Redzg07O/d7qlsI8XgKCAggIiKC4cOHs2zZMoxGI5MmTcLHx4eIiAgAxo8fT48ePWjYsCFXr17lu+++o3Hjko5sPz8/NBoNsbGx9OzZE4PBgNFoZPDgwUycOBE3Nzc8PDyIjo5Gq9WiucWd36ioKNq1a8fo0aMZNmwYjo6OJCUlERcXx6JFi0hMTCQ6OprIyEiCgoLQ6/V8//33fPTRR0RFRQEldwjnzJnDG2+8gb29PZGRkeh0Or788kumTJnCjBkzaNq0qVW7v01SAJo0aYJOZ72oRE5ODjNnzqR37954eXmRkZHB4sWLOXv2LH379gVKEqznnnsOPz8/YmJiuHTpkuV4T0/PCs89PDyc4cOHs2TJEkJDQ0lPT2f8+PG0adOm3PklSr322mt06NCBWbNm0a9fP/bu3cvy5cstdxuzs7OZNm0affr0wdPTk9TUVN58800aNGhguQO6a9cu9uzZQ3BwMEajkV27dvHaa6/x5z//2bJU8sqVK9HpdDRr1gw7Ozt+/PFHJk+eTP/+/S3X6dVXX2XRokWMGzeOMWPGcPz4cWbNmlXundybXblyhVOnTnHu3Dmrz8PT07PSayaEEEI8DJIvlZB8SfKlCt2XdQCrqcdhiWPT1XyVGvWteuGtJWrQq8NVTL9eav6g6Wr54BXqHyvGq9rfJqja3yaoV35Ku6v6r2QXqOCY71TAW5tU4JS16sX576ktW/3V9h2d7++JCFHNVbcljkuVLnHs4uKiDAaDCg0NtVriePTo0ap+/frKzs5Oubu7q8jISJWRkWHZP336dOXp6ak0Gk2lSxy3adNGTZo0yXJcRUvq7t27V4WEhCgnJyfl6OiomjdvrmbOnKmUUurSpUtq7NixqmnTpsrJyUkZjUbVrFkzFRMTo4qLi63qWb9+vercubNydHS0LMG8atUqqzLlLdNc+jp9+nSZ2PLy8tQLL7ygvL29lV6vV15eXqp3795q7969ljIrVqyosM5bWbBggQoKClIGg0F5eXmpgQMHqjNnztzyuP/973+qadOmys7OTjVq1EgtX77csi83N1d1795dubu7K51Op/z8/NTw4cPV+fPnLWX279+v2rZtq1xcXJS9vb1q3LixmjVrlsrPz7eU+eyzz1TLli0tn0tQUJCaNWtWmd+HnTt3qrZt2yo7Ozvl7++vZs6cqYqKiiqNv6JrFh0dfctzr8z9WOL4SSHXQ4hHQ86+fSopsJE6EdajqkO5a5IvSb4k+dKTly9plKqu4zzvXVZWFi4uLmRmZlqeQ33UpGyJR7OlkHEO+6iT9TWBp52wtW+PAx6cf/44i+sO4HjnZhhtbW5dWTm2Hr3A0E9+pJ7LSaKefR+dtmTYqJNTI9q22Xg/T0WIai0/P5+0tDTq1auHvb19VYfzWMnJycHHx4e5c+cydOjQh97+lStX6Nq1K87Oznz11Vc4ONz5nFzi8VPZ7+zjkB88THI9hHg05O7bxy+Rg9DXq0f9rzZVdTh3RfKluyf5kqgK9yNfktX3HnOnjv6EGTO2RXk0utCyZKPGBoPZRL6NHVq46w4pgOv5RQA8X++8pUNKq9VT26PXvYYuhBDlSkhIYNWqVaSmpnLgwAEGDhwIYBni/rC5ubmxZcsWunbtyq5du6okBiGEEEKIm0m+JKoLmVPqMZd2+jhFOmdan85GgxYFaJQG79yDzKvZ555W3DMVm7mSUwiAq6Hk/318BtIocPr9CF0IISoUExNDcnIyer2eVq1aER8fT61ataosnpo1azJ16tQqa18IIYS4bdVt9T1RIcmXRHUgnVKPsdO7d3PWwZmzHMfJVETpwLcWmZ/h1dDEOftXcb3LFffWJ5xl4tqD2Ntk0cnnJ2rbpwBgayvD8oUQD9YzzzzD/v37qzoMIYQQ4rEis7I8WSRfEtWFdEo9xq6mpwOgUzbYmrWoG4/XuT1dC1P4KMgCu7vslPou+SKmYsXQJmt41jPRsl2vq3HPcQshhBBCCCGEEELInFKPsWKTCYAayhF9sQZUyfsCF1/O+gUDoL/Lx/cy80rqauGVC4CL8zN4efWltmfVPKMshBBCCCGEuA3y+J4Q4jEiI6UeY6b8ko4j0/ljFHEOSuYkZ6FNQzYfTgPufKTU9ymX2Hr0AknnsgDQaXOgGBo0mISra+v7F7wQQgghhBDi/pGn94QQjyHplHpMFecUkp2s47yNEU1OFk6lOzR6MtxrY6MBvUZDhIfrHdU7YXUil3MK+b3/1zQMSEVjvgjIXFJCCCGEEEIIIYS4v6RT6jF1ZOMOFIpfimvgpcwA6I0DsNWkk2WswdT63ozw9bijOovNiss5hTjprvNCg00lGxVotXrs7Dzv9ykIIYQQQggh7jd5ek8I8RiRTqnH1Lkjh7DBg3z9FXSaknmf0OjQaIsp1Oqwu4u5pLLzS57/M+pzALCxcaRR4N9xdGyITicjpYQQQgghhHhkyep7QojHkEx0/phSRWaKMdPx/CnsinQ3ttqgw3SjU+r2b5EUFZuZ8/Ux3vz8IE1rJvF83Z0A6PU18fSMwGhs/ADOQAjxuBgyZAgajQaNRoNer6dBgwZMnz6doqKie6p327ZtaDQarl27dn8CvQ1paWkMGDAAb29v7O3tqVOnDhERERw7dsyqXGxsLF26dMFoNOLg4MCzzz7Lxx9/bFXm5MmTaDQaEhMTb7v9d955h0aNGuHo6EiNGjXo1q0be/bssapz6NCh1KtXD4PBQP369YmOjqawsPCWda9cuZIWLVrg4OCAl5cXL7/8MpcvX670mOLiYt5++22r9v7+979bLSu+bt06unfvTs2aNSs839TUVF544QXc3d1xdnamX79+XLhw4Y7P69ChQ3Tu3Bl7e3t8fX2ZM2fOLc/7hx9+IDw8HG9vbzQaDevXr7/lMUIIIcT9JvmS5EuSL90d6ZR6TBUWFmBG4ZPrAZQ8vqcBmtslkmXjhP0djJTa/fMV/rUtlR9Tj/Jaq6U877sNAL3e/f4HLoR4LIWFhZGens7x48d5/fXXeeedd3jvvfeqOiyL20lCTCYTISEhZGZmsm7dOpKTk1m9ejXNmjWzSvQWLlxIREQEHTt2ZM+ePRw6dIiXXnqJkSNH8sYbb9xTnA0bNmTRokUcPnyY7du389RTT9G9e3cuXboEwLFjxzCbzSxbtowjR44wf/58li5dypQpUyqtd8eOHQwaNIihQ4dy5MgR1qxZw969exk+fHilx7377rssWbKERYsWcfToUd59913mzJnDwoULLWVycnLo1KkT7777brl15OTk0L17dzQaDd9++y07duygsLCQ8PBwzGbzbZ9XVlYW3bt3x8/Pj/379/Pee+/xzjvvsHz58krPIScnhxYtWrB48eJKywkhxJNCI6vvVRnJlyRfknzpLihRoczMTAWozMzMqg7FyqZ/L1PT//a2mj51mloSOVPF9OulYvr1UtfWvKne+Ga1qv1tgtp08ept17fuwGnlFxWrIpcsV1u2+qut3zVXPx15XV29uu/BnYQQT5i8vDyVlJSk8vLyqjqUOzZ48GAVERFhtS0kJES1a9dOXblyRUVGRipXV1dlMBhUWFiYSklJsZQ7efKk+v3vf69cXV2Vg4ODCgoKUhs3blRpaWmKknWCLK/BgwcrpZTKyspSAwYMUA4ODsrT01PNmzdPdenSRY0bN85Sr5+fn5o+fbqKjIxURqPRcmx8fLzq1KmTsre3V3Xq1FFjxoxR2dnZSimlEhISFKBOnjxZ4bmeOnVK6XQ6NWHChDL7FixYoAC1e/dupZSynENCQsKdX9QbSr9ntmzZUmGZOXPmqHr16lVaz3vvvaf8/f3LxOvj41Ppcb169VIvv/yy1bY//vGPauDAgWXKVnS+mzdvVlqt1uq78tq1a0qj0ai4uLgK2/7tef3rX/9SNWrUUAUFBZZtUVFRKjAwsNJzuBmgvvjii9suX5nKfmcf1fygqsj1EOLRkL1rl0oKbKRSf//7qg7lrkm+JPlSeSRfqt75koyUegwlpaRSbKOlWGNGg41l+8Baf2StvhHAbc0pZTYrdp7IYOeJkuGKATcGRjk5PkWToBhcXVvf/+CFENWCwWCgsLCQIUOG8OOPP7JhwwZ27dqFUoqePXtiMpkAGDVqFAUFBfzwww8cPnyYd999FycnJ3x9ffn8888BSE5OJj09nffffx+ACRMmsGPHDjZs2EBcXBzx8fEcOHCgTAwxMTG0aNGChIQE3n77bVJTUwkLC6NPnz4cOnSI1atXs337dkaPHg2Au7s7Wq2WtWvXUlxcXO55rV27FpPJVO4dvhEjRuDk5MSqVavuyzUsLCxk+fLluLi40KJFiwrLZWZm4ubmVmld7du35/Tp02zatAmlFBcuXGDt2rX07Nmz0uM6dOjA1q1bSUlJAeDgwYNs376dHj163PZ5FBQUoNFosLOzs2yzt7dHq9Wyffv22z6vXbt28bvf/Q69Xm/ZFhoaSnJyMlevXr3teIQQQohHheRL907ypeqfL8lE548h843/Dy5sQrJKs2w/WKjBpCvZW9egL+dIa98fv8RfVuzDwTaXnvW209CpZDikra3xvscshChLKUVeUd5Db9dga7jrof1KKbZu3crmzZvp0aMH69evZ8eOHXTo0AEoeU7f19eX9evX07dvX06dOkWfPn1o1qwZAP7+/pa6Sr9gPTw8cHV1BeD69et88sknfPrpp3Tt2hWAFStW4O3tXSaW559/ntdff93yftiwYQwcOJDx48cDEBAQwIIFC+jSpQtLlizBx8eHBQsW8OabbzJt2jRat25NcHAwAwcOtMSVkpKCi4sLXl5eZdrT6/X4+/tbEpK7FRsby0svvURubi5eXl7ExcVRq1atcsueOHGChQsXEhMTU2mdHTt2ZOXKlfTv35/8/HyKiooIDw+/5RDtSZMmkZWVRaNGjbCxsaG4uJiZM2cycODA2z6fdu3a4ejoSFRUFLNmzUIpxaRJkyguLiY9Pf22z+v8+fPUq1fPqlzt2rUt+2rUqHHbMQkhxJOtej2+V1X5Etx9ziT5kuRLvyX5UsWkU+oxo4rMmG1KJja3MymK1a9/oIu1Nsxv5MvTRgcaONjfsq6TGSWr7PWsv5sefrGW7TKXlBAPR15RHm0/bfvQ290zYA8OOoc7OiY2NhYnJydMJhNms5kBAwbwxz/+kdjYWNq2/fUcatasSWBgIEePHgVg7NixvPrqq3zzzTd069aNPn360Lx58wrb+fnnnzGZTLRp08ayzcXFhcDAwDJlW7e2Hs158OBBDh06xMqVKy3blFKYzWbS0tJo3Lgxo0aNYtCgQWzbto3du3ezZs0aZs2axYYNGwgJCbmta3HznamKrFy5khEjRljef/XVV3Tu3BmA4OBgEhMTycjI4IMPPqBfv37s2bMHDw8PqzrOnj1LWFgYffv2tZrrwMnJyfLff/7zn1m6dClJSUmMGzeOqVOnEhoaSnp6OhMnTmTkyJF8+OGHxMfHW93NW7ZsGQMHDuS///0vK1eu5NNPP6VJkyYkJiYyfvx4vL29GTx48G1dD3d3d9asWcOrr77KggUL0Gq1/OlPf6Jly5Zoyxm1W9F53UpF5yCEEOKGarr6XlXlS3DnOZPkS7+SfMma5EsVk06px8zZDakonYG861nsOPMfq31mrZaubs542OkqONra9fySlSCaepZMeOfs/Aw1XNvg7d3//gYthHjsBQcHs2TJEvR6Pd7e3tja2rJhw4ZbHjds2DBCQ0PZuHEj33zzDbNnz2bu3LmMGTPmnmNydHS0ep+dnc2IESMYO3ZsmbJ169a1/LfRaCQ8PJzw8HBmzJhBaGgoM2bMICQkhICAADIzMzl37lyZu42FhYWkpqYSGhp6y9h69+5tlXz6+PhYxd2gQQMaNGhAu3btCAgI4MMPP2Ty5MmWMufOnSM4OJgOHTqUmbjy5tVcnJ2dAZg9ezYdO3Zk4sSJADRv3hxHR0c6d+7MjBkzaN26tdVxpXfUJk6cyKRJk3jppZcAaNasGb/88guzZ8++7SQLoHv37qSmppKRkYGtrS2urq54enpa3em91Xl5enparUADWN57enry1FNPlXsOQgghxKNC8iXJlyoj+VL5pFPqMZP1SxbFmDmda09JH7EWNPbY2mlBo8FOe+vhpcfOZ7HzxGV2/1wyl5TBNhcAD48w/OoOe3DBCyGsGGwN7Bmw59YFH0C7d6o0MbhZ48aNKSoqYs+ePZbh6JcvXyY5OZmgoCBLOV9fX0aOHMnIkSOZPHkyH3zwAWPGjLHcQbt5vgJ/f390Oh379u2zJEaZmZmkpKTwu9/9rtIYW7ZsSVJSUpk4K6PRaGjUqBE7d+4E4MUXXyQqKoq5c+cyd+5cq7JLly4lNzeXQYMG3bJeo9GI0Xh7j0KbzWYKCgos78+ePUtwcDCtWrVixYoVZe6elXd+ubm52Npaf6Xb2JTMOaiUwmAwVHjcb+u3sbGxrAJzp0qH1X/77bdcvHiR3r173/Z5tW/fnrfeeguTyYROV3JzJS4ujsDAQMtQ9Dv5bIUQ4olVzVbfq6p8qbTtOyH5kuRLt0PyJWvSKfUYMRUWcOX0YcxGhUZ/CgCdjS82zn3Q2K8Dbm+C87+s2Ed6Zj7P1YlnWvvtuNlkltRl6/zgghdClKHRaO74MbpHSUBAABEREQwfPpxly5ZhNBqZNGkSPj4+REREADB+/Hh69OhBw4YNuXr1Kt999x2NGzcGwM/PD41GQ2xsLD179sRgMGA0Ghk8eDATJ07Ezc0NDw8PoqOj0Wq1t5zTISoqinbt2jF69GiGDRuGo6MjSUlJxMXFsWjRIhITE4mOjiYyMpKgoCD0ej3ff/89H330EVFRUUDJHcI5c+bwxhtvYG9vT2RkJDqdji+//JIpU6YwY8YMmjZtatVucnJymViaNGliSRRK5eTkMHPmTHr37o2XlxcZGRksXryYs2fP0rdvX6AkEXnuuefw8/MjJibGsvQxlNz9qkh4eDjDhw9nyZIlluHo48ePp02bNuXOL3HzcTNnzqRu3bo0adKEhIQE5s2bx8svv2wpc+XKFU6dOsW5c+esztfT09MS04oVK2jcuDHu7u7s2rWLcePG8dprr1keI7id8xowYADTpk1j6NChREVF8dNPP/H+++8zf/78CuOHkju+J06csLxPS0sjMTERNzc3qzu+QghR7VXTx/ckX5J8SfKlap4v3Zd1AKupR22J49NJh9V3f12goqdGq2nDR6mYfr3U/MgpatGIrWrRhNdU7W8TVLHZXGkdhUXFyi8qVvlFxaovN7dTW7b6W17Xru1/SGcixJOnui1xXKp0iWMXFxdlMBhUaGio1RLHo0ePVvXr11d2dnbK3d1dRUZGqoyMDMv+6dOnK09PT6XRaCpd4rhNmzZq0qRJluP8/PzU/Pnzy8Szd+9eFRISopycnJSjo6Nq3ry5mjlzplJKqUuXLqmxY8eqpk2bKicnJ2U0GlWzZs1UTEyMKi4utqpn/fr1qnPnzsrR0dGyBPOqVausypS3THPp6/Tp02Viy8vLUy+88ILy9vZWer1eeXl5qd69e6u9e/dayqxYsaLCOm9lwYIFKigoSBkMBuXl5aUGDhyozpw5U+kxWVlZaty4capu3brK3t5e+fv7q7feestqmeGKYoqOjraUiYqKUrVr11Y6nU4FBASouXPnKvNN30e3e14HDx5UnTp1UnZ2dsrHx0f94x//uOV5f/fdd+XWW/rzdLfuxxLHTwq5HkI8GrJ37FBJgY1Uanjvqg7lrkm+JPmS5EtPXr6kUaqadqnfB1lZWbi4uJCZmWl5DrUqHf9mE+e+TCPe9RzOvyhMpkPY2LXCSducnUEX2dKmA6eeq3iZTIDL2QW0mrEFgE96/o2ioiyCGr+Hs3NzHB0fr2F+QjxO8vPzSUtLo169etjb33ohAvGrnJwcfHx8mDt3LkOHDn3o7V+5coWuXbvi7OzMV199hYPD43u3Vty+yn5nH7X8oKrJ9RDi0ZCzcyenXh6KXWAg/l+ur+pw7orkS3dP8iVRFe5HvnTrZ73EIyP+85WcdMzDPi8fRUlfotelXXhl/D++b9IcfSXzSSmlGLJiL+1mb8XBNpeGbucpKroOgJtbZ+mQEkI8MhISEli1ahWpqakcOHDAsmJI6RD3h83NzY0tW7bQtWtXdu3aVSUxCCGEELciYw2eLJIviepC5pR6TFy7do1TXgFANsarZtCUfOmcbVKTOb1Knu1tYqh42c2ruSa2JV/CUZfDnM7vYG/76yRxtjKXlBDiERMTE0NycjJ6vZ5WrVoRHx9vmRSyKtSsWZOpU6dWWftCCCGEEL8l+ZKoDqRT6jGRl5cHgI3S4FvgxlmyADDbaglwsCO6gQ+tnCseInk93wSAn3PGjQ4pLXq9G7VqPo+Njd0Dj18IIW7XM888w/79+6s6DCGEEOLxVM1W3xPlk3xJVBfSKfWYKMgvBMCuoIgL15Iwq5KRTmZbGzz0OrrVrHy0U1ZeEQA1HUvqMTo1pk2bDQ8wYiGEEEIIIcRDI0/vCSEeQ9Ip9Zj4eUPJ8o02BfkUqtJH73QU1XDErpK5pDYfOc9bXxwmr7CQpjWTCHJLBcDW1vigQxZCCCGEEEIIIYSokHRKPSb0GTkUazUcKKpFS0Bj443e2Jfsmt9gsKl4vvrYQ+lkZBfyvO/3DGz8uWW7rc7lIUQthBBCCCGEeKjk8T0hxGNEOqUeA6aCfMzFhWRoHHmagwBoNDo0aCjU6LHXVtwplZVXMpdUr6AiUGBv74ODgz91fV9+KLELIYQQQggh7r/MjRu5HrcFc3Y2+UePUpyZWdUhCSHEHZNOqcfA/tj1FJsVJorR5TSnmO9BYwOqiESXxjQq5/G9nIIidv98mdNXcwFwtsuHfKhTZxB+dYc97FMQQgghhBBC3EcXpv+93I4oQ/PmVRCNEELcHemUegwcTNtLQ00bNObLaJTXja0a7HIS2e8Sxp+cHcscM/XLI3x+4Aytax+gd8vd2BReRAE628onRBdCCCGEEEI8+opzcgBwHz8enZcnhlat0Oj02Hq4V3FkQghx+6RT6jGQk3EBpYWAc5mgPACofTERG88MDnV4HQ87XZlj0jKyAejfaBNudhdR5pLtBkPdhxa3EEIIIYQQ4v5TxcVQVLK6tmv/ftjWqFHFEQkhxN2peDIi8Ug4tXYt5mwXDtueRlcEUAzAWR8vfhz2WrkdUgBZ+SVfUm6GfAAa1I/imaf/g6tr24cRthCiGhkyZAgajQaNRoNer6dBgwZMnz6dohvJ8N3atm0bGo2Ga9eu3Z9Ab0NaWhoDBgzA29sbe3t76tSpQ0REBMeOHbMqFxsbS5cuXTAajTg4OPDss8/y8ccfW5U5efIkGo2GxMTE227/nXfeoVGjRjg6OlKjRg26devGnj17rOocOnQo9erVw2AwUL9+faKjoyksLLxl3StXrqRFixY4ODjg5eXFyy+/zOXLlys95vr164wfPx4/Pz8MBgMdOnRg3759VmWys7MZPXo0derUwWAwEBQUxNKlS63KjBgxgvr162MwGHB3dy/3mp46dYpevXrh4OCAh4cHEydOrPBnaMeOHdja2vL000/f8rzXrVtH9+7dqVmz5h1/HkII8bhSN30vaHT6KoxElJJ8SfIlyZfujnRKPeIOpxwnu5YHV7U5aJWW0iFP57w9Mbl7lCn/2d5TTPhvImev5gEKzCXDemt79sbNrSMaWY1DCHEXwsLCSE9P5/jx47z++uu88847vPfee1UdlsXtJCEmk4mQkBAyMzNZt24dycnJrF69mmbNmlklegsXLiQiIoKOHTuyZ88eDh06xEsvvcTIkSN544037inOhg0bsmjRIg4fPsz27dt56qmn6N69O5cuXQLg2LFjmM1mli1bxpEjR5g/fz5Lly5lypQplda7Y8cOBg0axNChQzly5Ahr1qxh7969DB8+vNLjhg0bRlxcHP/v//0/Dh8+TPfu3enWrRtnz561lJkwYQJff/01//d//8fRo0cZP348o0ePZsOGDZYyrVq1YsWKFRw9epTNmzejlKJ79+4UF5fcSCkuLqZXr14UFhayc+dOPvnkEz7++GOmTp1aJqZr164xaNAgunbtelvXNCcnh06dOvHuu+/eVnkhhKgObu6U0urLv0ktHj7JlyRfknzpLihRoczMTAWozMzMKovhi+nTVXR0tFo26T218E9/UfMGjlMx/XqpUX97Xb157JRV2ay8QlVvUqxq9vanasb/9VUL/ttDbdnqr7Zs9VcmU3YVnYEQQiml8vLyVFJSksrLy6vqUO7Y4MGDVUREhNW2kJAQ1a5dO3XlyhUVGRmpXF1dlcFgUGFhYSolJcVS7uTJk+r3v/+9cnV1VQ4ODiooKEht3LhRpaWlKcDqNXjwYKWUUllZWWrAgAHKwcFBeXp6qnnz5qkuXbqocePGWer18/NT06dPV5GRkcpoNFqOjY+PV506dVL29vaqTp06asyYMSo7u+TvX0JCggLUyZMnKzzXU6dOKZ1OpyZMmFBm34IFCxSgdu/erZRSlnNISEi484t6Q+n3zJYtWyosM2fOHFWvXr1K63nvvfeUv79/mXh9fHwqPCY3N1fZ2Nio2NhYq+0tW7ZUb731luV9kyZN1PTp0yst81sHDx5UgDpx4oRSSqlNmzYprVarzp8/bymzZMkS5ezsrAoKCqyO7d+/v/rb3/6moqOjVYsWLSps47fux+dxs8p+Zx+F/OBRItdDiIfPdPGiSgpspJIaNVZms7mqw7lvJF+SfKk8ki9V73xJRko94jJyawJQeO4QBcUXMZtOlLzX2WGntf74ruWaMCto75VIO6/9BNVMBkCvr4WNjcPDDVwIUa0ZDAYKCwsZMmQIP/74Ixs2bGDXrl0opejZsycmkwmAUaNGUVBQwA8//MDhw4d59913cXJywtfXl88//xyA5ORk0tPTef/994GSO007duxgw4YNxMXFER8fz4EDB8rEEBMTQ4sWLUhISODtt98mNTWVsLAw+vTpw6FDh1i9ejXbt29n9OjRALi7u6PValm7dq3ljtRvrV27FpPJVO4dvhEjRuDk5MSqVavuyzUsLCxk+fLluLi40KJFiwrLZWZm4ubmVmld7du35/Tp02zatAmlFBcuXGDt2rX07NmzwmOKioooLi7G3t7earvBYGD79u2W9x06dGDDhg2cPXsWpRTfffcdKSkpdO/evdx6c3JyWLFiBfXq1cPX1xeAXbt20axZM2rXrm0pFxoaSlZWFkeOHLFsW7FiBT///DPR0dGVnq8QQjzpzAUlI140er08CfEIk3zp3km+VP3zJZno/BGWd/YaRhsdecqWHFMetoDGxgudxsTxgKb4aa2/gLLyS/6o1XTMBcCtRic8vV7Axflp+bIS4hGklELl5T30djUGw13/TVBKsXXrVjZv3kyPHj1Yv349O3bsoEOHDkDJc/q+vr6sX7+evn37curUKfr06UOzZs0A8Pf3t9RVmjh4eHjg6uoKlDyz/8knn/Dpp59ahiOvWLECb2/vMrE8//zzvP7665b3w4YNY+DAgYwfPx6AgIAAFixYQJcuXViyZAk+Pj4sWLCAN998k2nTptG6dWuCg4MZOHCgJa6UlBRcXFzw8vIq055er8ff35+UlJS7unalYmNjeemll8jNzcXLy4u4uDhq1apVbtkTJ06wcOFCYmJiKq2zY8eOrFy5kv79+5Ofn09RURHh4eEsXry4wmOMRiPt27fn73//O40bN6Z27dqsWrWKXbt20aBBA0u5hQsX8sorr1CnTh1sbW3RarV88MEH/O53v7Oq71//+hdvvvkmOTk5BAYGEhcXh15fMs/J+fPnrRIswPL+/PnzABw/fpxJkyYRHx+Pra2kJ0IIUR6lFJlffknB0aNASadUdVdV+RLcfc4k+ZLkS5Iv3b7qcRbVVNrufRSjSDbVoovKwwzoHENwUSe4XMMD/Y1OqaRzWSzedoKLWbnUc/6FOk7pADg7N8fL8w9VdwJCiEqpvDySW7Z66O0GHtiPxuHORk/Gxsbi5OSEyWTCbDYzYMAA/vjHPxIbG0vbtr8uoFCzZk0CAwM5eiNZHjt2LK+++irffPMN3bp1o0+fPjRv3rzCdn7++WdMJhNt2rSxbHNxcSEwMLBM2datW1u9P3jwIIcOHWLlypWWbUopzGYzaWlpNG7cmFGjRjFo0CC2bdvG7t27WbNmDbNmzWLDhg2EhITc1rXQ38Y/AFauXMmIESMs77/66is6d+4MQHBwMImJiWRkZPDBBx/Qr18/9uzZg4eH9TyBZ8+eJSwsjL59+1rNdeDk5GT57z//+c8sXbqUpKQkxo0bx9SpUwkNDSU9PZ2JEycycuRIPvzwQ+Lj4+nRo4fluGXLljFw4ED+3//7f7z88sv4+PhgY2NDy5Yt+dOf/sT+/fstZRcuXMju3bvZsGEDfn5+/PDDD4waNQpvb2+6detmKTdw4EBCQkJIT08nJiaGfv36sWPHjjJ3FstTXFzMgAEDmDZtGg0bNrzjayqEEE+KvMRE0idNtry3MRqrMJqHo6ryJbjznEnypV9JviT50u2STqlHWMH1XMwaM452pzCbdYAJsKFYaybHzpV2LiW/aB9uT2PjoXS61NnO39r913K8TudaJXELIaqf4OBglixZgl6vx9vbG1tbW6uJGysybNgwQkND2bhxI9988w2zZ89m7ty5jBkz5p5jcnR0tHqfnZ3NiBEjGDt2bJmydevWtfy30WgkPDyc8PBwZsyYQWhoKDNmzCAkJISAgAAyMzM5d+5cmbuNhYWFpKamEhoaesvYevfubZV8+vj4WMXdoEEDGjRoQLt27QgICODDDz9k8uRf/5Fx7tw5goOD6dChA8uXL7eq++bVUpydnQGYPXs2HTt2ZOLEiQA0b94cR0dHOnfuzIwZM2jdurXVcaV33erXr8/3339PTk4OWVlZeHl50b9/f8ud0Ly8PKZMmcIXX3xBr169LHUnJiYSExNjlWS5uLjg4uJCQEAA7dq1o0aNGnzxxRf86U9/wtPTk71791qdx4ULFwDw9PTk+vXr/PjjjyQkJFgeHzCbzSilsLW15Ztvvqn0mgohxJOi+MZE0zZubhhDQjB2v70OAvFwSL4k+ZLkS3dOOqUeUcpk4uLRg5j1tWiZlgmUPM9b41oqdTrWJqnLM5Y5pa7kFADQpV42ALa2NXFyaoC7+63/EAghqo7GYCDwwP5bF3wA7d6p0sTgZo0bN6aoqIg9e/ZYhqNfvnyZ5ORkgoKCLOV8fX0ZOXIkI0eOZPLkyXzwwQeMGTPGcgft5vkK/P390el07Nu3z5IYZWZmkpKSUmb482+1bNmSpKSkMnFWRqPR0KhRI3bu3AnAiy++SFRUFHPnzmXu3LlWZZcuXUpubi6DBg26Zb1GoxHjbd69NpvNFBQUWN6fPXuW4OBgywot2t/MH1je+eXm5pYZwm1jYwOU3P00GAyVXhdHR0ccHR25evUqmzdvZs6cOUDJCjwmk6lMDDY2NpjN5grrU0qhlLKcV/v27Zk5cyYXL1603OGMi4vD2dmZoKAgdDodhw8ftqrjX//6F99++y1r166lXr16ODo63vY1FUKIauvG3169ry9e096p2lgekqrKl0rbvhOSL0m+9Nu6JV+6NemUekSdi/sfuuPnKG5Sk7oZBZxyLPlhDkz5lKfe+gQ7rRalFGeu5nEpu+SH2LeGGfLhKb+h+PmNqKx6IcQjQKPR3PFjdI+SgIAAIiIiGD58OMuWLcNoNDJp0iR8fHyIiIgAYPz48fTo0YOGDRty9epVvvvuOxo3bgyAn58fGo2G2NhYevbsicFgwGg0MnjwYCZOnIibmxseHh5ER0ej1WpvOadDVFQU7dq1Y/To0QwbNgxHR0eSkpKIi4tj0aJFJCYmEh0dTWRkJEFBQej1er7//ns++ugjoqKigJI7hHPmzOGNN97A3t6eyMhIdDodX375JVOmTGHGjBk0bdrUqt3k5OQysTRp0gSdznqJ7pycHGbOnEnv3r3x8vIiIyODxYsXc/bsWfr27QuUJFjPPfccfn5+xMTEWJY+hpI7ZBUJDw9n+PDhLFmyxDIcffz48bRp06bc+SVKlS5HHBgYyIkTJ5g4cSKNGjXiL3/5C1ByZ7FLly5MnDgRg8GAn58f33//Pf/5z3+YN28eUPIIwerVq+nevTvu7u6cOXOGf/zjHxgMBsvEod27dycoKIjIyEjmzJnD+fPn+dvf/saoUaOws7MDKHNdPTw8sLe3L7P9t65cucKpU6c4d+4c8Ovn4enpWek1E0KIx5EqutExUU3mkrkdki9JviT5UjXPl+51CcDqrCqXOE76aKH6InK8Wvz2PLW25ysqpl8vFdOvl2q4/luVW1SslFJqRuwR5RcVq5q9/akK+cc/1bfb/6i2bPVXp8+sfOjxCiEqV92WOC5VusSxi4uLMhgMKjQ01GqJ49GjR6v69esrOzs75e7uriIjI1VGRoZl//Tp05Wnp6fSaDSVLnHcpk0bNWnSJMtxfn5+av78+WXi2bt3rwoJCVFOTk7K0dFRNW/eXM2cOVMppdSlS5fU2LFjVdOmTZWTk5MyGo2qWbNmKiYmRhUXF1vVs379etW5c2fl6OhoWYJ51apVVmXKW6a59HX69OkyseXl5akXXnhBeXt7K71er7y8vFTv3r3V3r17LWVWrFhRYZ23smDBAhUUFKQMBoPy8vJSAwcOVGfOnKn0mNWrVyt/f3+l1+uVp6enGjVqlLp27ZpVmfT0dDVkyBDl7e2t7O3tVWBgoJo7d65lCfKzZ8+qHj16KA8PD6XT6VSdOnXUgAED1LFjx6zqOXnypOrRo4cyGAyqVq1a6vXXX1cmk6nC2G53ieOKrll0dPQtj63M/Vji+Ekh10OIhydz0yaVFNhInfxzZFWH8kBIviT5kuRLT16+pFFKqQfV4fW4y8rKwsXFhczMTMtzqA/Lstl/J72g5E5Is73nOWk8A8C8YdGc7tYarUZDnyU7OXz6AnO7vI2D7tcVKZo0+SeetcMfarxCiMrl5+eTlpZGvXr1bmsiQ/GrnJwcfHx8mDt3LkOHDn3o7V+5coWuXbvi7OzMV199hcNjfLdW3L7KfmerMj94FMn1EOLhyfxfLOcmTsShXTv8Pl5R1eHcd5Iv3T3Jl0RVuB/5krbCPaJKZZlKOqQcr17jouGyZbutzhbtjSGZWXkmXO2v3eiQ0uLg4E8N13bUdOtUFSELIcR9kZCQwKpVq0hNTeXAgQMMHDgQwDLE/WFzc3Njy5YtdO3alV27dlVJDEIIIQQA5pJ/I2huzIMjnlySL4nq4sl5GPkxcv1KPvkmPdgUYnvhJLm2RQBotDrsbGz48eQVDp7J5EJWPjXtcgGwt/Okfbu4qgxbCCHum5iYGJKTk9Hr9bRq1Yr4+Hhq1apVZfHUrFmTqVOnVln7QgghBIAqvjFpso2MLRCSL4nqQTqlHkEZ8WfQaRUaZcKsSjqkbA1d0BmvEWCwZ+C/91BYVMSgoM+o7/pLyX6daxVGLIQQ988zzzzD/v1Vs8qOEEII8ShTxTduVtvIP+OedJIviepCutgfRZfyKMaMu+1ByyYbu6YYHBx5/ylvCorM1HM9w+/q7MbHKR0AB4d6VRWtEEIIIYQQ4mGQkVJCiGpGutgfMabCAi4cT8RkB1vsFO0oXdLThiJXfwoKS54j93QqBMDe3peGAX+jRo22VRSxEEIIIYQQ4mGwjJTSypxSQojqQbrYHzGnkn+iIPsap4tr0OX4Kzft0XK+qDZzv0kBwM1QAIC9vTfu7t2wtTVWQbRCCCGEEEKIh+bGSCmNrXRKCSGqBxkp9YhJzUjBXmODKtaBpnSUlAaN6RyfZ9XC59J+Fj3/EQbbkk4p6YwSQgghhBDiyaBurL6HjJQSQlQTMlLqEaKU4mzsTpKMWYAWpUq/dBTrIltyzUYR/NQJS4cUQI0a7aomWCGEEEIIIcTDVVzy7wONjXRKCSGqBxkp9Qi5fPkyvxhrAvmoPC1wo1NKo7Es/+rtXLLtqadGU9f3ZXQ6l6oJVgghhBBCCPFQKctE59IpJYSoHmSk1COkoODGI3lmLXqlwWw6BYDSasjIzMXPeApHmwwA7OxqS4eUEEIIIYQQT5LSic5l9T0hRDUhf80eISl7zwFgl5dHw1/WUpT3bckOrYZONp8ztX0MTtpDAOhsnasqTCHEE2bIkCFoNBo0Gg16vZ4GDRowffp0ioqK7qnebdu2odFouHbt2v0J9DakpaUxYMAAvL29sbe3p06dOkRERHDs2DGrcrGxsXTp0gWj0YiDgwPPPvssH3/8sVWZkydPotFoSExMvO3233nnHRo1aoSjoyM1atSgW7du7Nmzx6rOoUOHUq9ePQwGA/Xr1yc6OprCwsJb1r1y5UpatGiBg4MDXl5evPzyy1y+fLnSY3744QfCw8Px9vZGo9Gwfv36MmXWrVtH9+7dqVmz5i3PVylFjx49Kqzr448/pnnz5tjb2+Ph4cGoUaOs9m/evJl27dphNBpxd3enT58+nDx58qGcpxBCPA5kpNSjS/IlyZckX7o70in1CFGHLwLgWJR9Y4sOW1wpcnIi3Li1ZIvOHWfnZ6hRo0MVRSmEeBKFhYWRnp7O8ePHef3113nnnXd47733qjosi9tJQkwmEyEhIWRmZrJu3TqSk5NZvXo1zZo1s0r0Fi5cSEREBB07dmTPnj0cOnSIl156iZEjR/LGG2/cU5wNGzZk0aJFHD58mO3bt/PUU0/RvXt3Ll26BMCxY8cwm80sW7aMI0eOMH/+fJYuXcqUKVMqrXfHjh0MGjSIoUOHcuTIEdasWcPevXsZPnx4pcfl5OTQokULFi9eXGmZTp068e67797y/P75z3+isSzSYW3evHm89dZbTJo0iSNHjrBlyxZCQ0Mt+9PS0oiIiOD5558nMTGRzZs3k5GRwR//+MeHcp5CCPEgmPPyyE9OIXf/frK+3kzm/2K5/O9/k7F0aYWvi/P/yalhw0nr2+/XV58XSenUmcvLlgGgkYnOH0mSL0m+JPnSXVCiQpmZmQpQmZmZD7yt4uIitS1qlYqOjlbfjeukYvr1UvMGvKr+r/9S9bfJ49XWbwPVlq3+Ki/v7AOPRQhx/+Xl5amkpCSVl5dX1aHcscGDB6uIiAirbSEhIapdu3bqypUrKjIyUrm6uiqDwaDCwsJUSkqKpdzJkyfV73//e+Xq6qocHBxUUFCQ2rhxo0pLS1OA1Wvw4MFKKaWysrLUgAEDlIODg/L09FTz5s1TXbp0UePGjbPU6+fnp6ZPn64iIyOV0Wi0HBsfH686deqk7O3tVZ06ddSYMWNUdna2UkqphIQEBaiTJ09WeK6nTp1SOp1OTZgwocy+BQsWKEDt3r1bKaUs55CQkHDnF/WG0u+ZLVu2VFhmzpw5ql69epXW89577yl/f/8y8fr4+Nx2LID64osvKtx/q/NNSEhQPj4+Kj09vUxdV65cUQaDodLzXLNmjbK1tVXFxcWWbRs2bFAajUYVFhYqpR7OeZaq7Hf2YeYHjwO5HqI6K7p+XRVeuKDyU1JU9u49KmvLFnVl1Wfq8if/UeffnaPOz5qlzr75pvpl+HCV9tKf1PGu3X59Pd9VJQU2eiCvq2s/r+pL80BIviT5UnkkX/pVdcyXZKLzR0T25cuYMZNR5MSB678H4kFjg8ZcBPUKUMoEgK08tidEtaGUoqjQ/NDbtdVrK7w7c7sMBgOXL19myJAhHD9+nA0bNuDs7ExUVBQ9e/YkKSkJnU7HqFGjKCws5IcffsDR0ZGkpCScnJzw9fXl888/p0+fPiQnJ+Ps7IzBYABgwoQJ7Nixgw0bNlC7dm2mTp3KgQMHePrpp61iiImJYerUqURHRwOQmppKWFgYM2bM4KOPPuLSpUuMHj2a0aNHs2LFCtzd3dFqtaxdu5bx48djU86jD2vXrsVkMpV7h2/EiBFMmTKFVatW0bZt23u6flByt3L58uW4uLjQokWLCstlZmbi5uZWaV3t27dnypQpbNq0iR49enDx4kXWrl1Lz5497znO25Gbm8uAAQNYvHgxnp6eZfbHxcVhNps5e/YsjRs35vr163To0IG5c+fi6+sLQKtWrdBqtaxYsYIhQ4aQnZ3N//t//49u3bqh0+keifMUQjz+lFJQVETR5cvkHTyE+XoW+UlHKc6+TtH5C5jz8lD5+ZguXICiIsy5ufelXZtatdB5eKB1cEBrNGJbq1al5TUGe+wbNcbGrYZlm9bODtvanmgdHdHV9rgvcT0OqipfgnvPmSRfknzpZpIvlU86pR4RRXnZgIar2GBjtqHkyWMtNa4e4bn6m0veae2xsXGswiiFEPdTUaGZ5eO+f+jtvvJ+F3R2dzfsXynF1q1b2bx5Mz169GD9+vXs2LGDDh1KHileuXIlvr6+rF+/nr59+3Lq1Cn69OlDs2bNAPD397fUVZo4eHh44OrqCsD169f55JNP+PTTT+natSsAK1aswNvbu0wszz//PK+//rrl/bBhwxg4cCDjx48HICAggAULFtClSxeWLFmCj48PCxYs4M0332TatGm0bt2a4OBgBg4caIkrJSUFFxcXvLy8yrSn1+vx9/cnJSXlrq5dqdjYWF566SVyc3Px8vIiLi6OWhX84+TEiRMsXLiQmJiYSuvs2LEjK1eupH///uTn51NUVER4ePhDG3792muv0aFDByIiIsrd//PPP2M2m5k1axbvv/8+Li4u/O1vfyMkJIRDhw6h1+upV68e33zzDf369WPEiBEUFxfTvn17Nm3a9MicpxDi0aOKiii+evXX90qRd/AgxZevoAryMZ2/gOncOQpOnEAVFlJ89Srm7OxKaqyArS262rXROhiw9Sj5f63RuaRzSatB5+mJxt7e0vFkYWOLfZMgNFqZNeVuVVW+BHefM0m+JPlSeSRfKp90Sj0i4pLXUUvjQ92MK6BKVtXzuHQQnwuXuGrrQq1az1OrZvA9j24QQoi7ERsbi5OTEyaTCbPZzIABA/jjH/9IbGys1V2wmjVrEhgYyNGjRwEYO3Ysr776Kt988w3dunWjT58+NG/evMJ2fv75Z0wmE23atLFsc3FxITAwsEzZ1q1bW70/ePAghw4dYuXKlZZtSinMZjNpaWk0btyYUaNGMWjQILZt28bu3btZs2YNs2bNYsOGDYSEhNzWtdDr9bcss3LlSkaMGGF5/9VXX9G5c2cAgoODSUxMJCMjgw8++IB+/fqxZ88ePDys73qfPXuWsLAw+vbtazUHgJOTk+W///znP7N06VKSkpIYN24cU6dOJTQ0lPT0dCZOnMjIkSP58MMPiY+Pp0ePHpbjli1bxsCBA2/rfG9lw4YNfPvttyQkJFRYxmw2YzKZWLBgAd27dwdg1apVeHp68t133xEaGsr58+cZPnw4gwcP5k9/+hPXr19n6tSpvPjii8TFxaHRaKr0PIUQD48ym8Fspvj6dYozMijOyqIo4zJFF85TcPw4RVevkp+UhDnrOuacHFDqrtqxqVUL/VN+2Dg6Yde4Eba13NF51gYbG2xr1MCmRg20jo63HNUkRCnJl34l+ZI1yZcqJp1Sj4Cc3Ex2xMXynG4Q7tdzQVf6C6Thl7bueDnWpklQ5b2+QojHj61eyyvvd6mSdu9UcHAwS5YsQa/X4+3tja2tLRs2bLjlccOGDSM0NJSNGzfyzTffMHv2bObOncuYMWPuJnQrjo7WI0ezs7MZMWIEY8eOLVO2bt26lv82Go2Eh4cTHh7OjBkzCA0NZcaMGYSEhBAQEEBmZibnzp0rc7exsLCQ1NRUq8kmK9K7d2+r5NPHx8cq7gYNGtCgQQPatWtHQEAAH374IZMnT7aUOXfuHMHBwXTo0IHly5db1X3zai7OziWPdM+ePZuOHTsyceJEAJo3b46joyOdO3dmxowZtG7d2uq42rVr3/Icbte3335Lamqq5e5tqT59+tC5c2e2bdtmuZMaFBRk2e/u7k6tWrU4deoUAIsXL8bFxYU5c+ZYyvzf//0fvr6+7Nmzh3bt2lXpeQohylecnY3Kz6fgRCqFv/xyZwcrhel8Oiovn8LTpylMTUWZTJguXQKT6c7qumkkktbBAbvAQGzdamDjWgMbV1ds3Wth36wZGltbdF5eaOzssDEa76wNUSWqKl8qbftOSL4k+VJFJF+qmHRKPQJ2f/gRbg7PcYhT1FCAKgZgX+unqdU1A19bu6oNUAjxQGg0mrt+jO5hK00Mbta4cWOKiorYs2ePZTj65cuXSU5Otvoy9fX1ZeTIkYwcOZLJkyfzwQcfMGbMGMsdtOLiYktZf39/dDod+/btsyRGmZmZpKSk8Lvf/a7SGFu2bElSUlKZOCuj0Who1KgRO3fuBODFF18kKiqKuXPnMnfuXKuyS5cuJTc3l0GDBt2yXqPRiPE2/7FjNpspKCiwvD979izBwcG0atWKFStWoP3NIx/lnV9ubi62ttZf6aVzQCilMBgMd3Rd7sSkSZMYNmyY1bZmzZoxf/58wsPDgZJh5ADJycnUqVMHgCtXrpCRkYGfn5/lHH57rqXnYDabLWWq6jyFeBIopcjds4firCxMp09TcCK1ZJTSpUugFEXnz2POz//1gOLi+zbnUkW0jo4lj8XVro3GwYCtW03smzbFxtmI4Zln0Nrbo6tTB005896I6kHyJcmXQPKl6pwvPRGdUosXL+a9997j/PnztGjRgoULF1oNdaxqly9fBbTYmcxgvoK5KAcAk40OW4qxt/epvAIhhKgCAQEBREREMHz4cJYtW4bRaGTSpEn4+PhYnpUfP348PXr0oGHDhly9epXvvvuOxo0bA+Dn54dGoyE2NpaePXtiMBgwGo0MHjyYiRMn4ubmhoeHB9HR0Wi1t55oNCoqinbt2jF69GiGDRtmmSg0Li6ORYsWkZiYSHR0NJGRkQQFBaHX6/n+++/56KOPiIqKAkruEM6ZM4c33ngDe3t7IiMj0el0fPnll0yZMoUZM2bQtGlTq3aTk5PLxNKkSRPLZJOlcnJymDlzJr1798bLy4uMjAwWL17M2bNn6du3L1CSYD333HP4+fkRExNjWfoYKHdCzFLh4eEMHz6cJUuWWIZpjx8/njZt2pQ7v0Sp7OxsTpw4YXmflpZGYmIibm5uliT3ypUrnDp1inPnzlmdr6enp9Xrt+rWrUu9evWAkqWdIyIiGDduHMuXL8fZ2ZnJkyfTqFEjgoODAejVqxfz589n+vTpluHoU6ZMwc/Pj2eeeeaBn6cQ1U3hmTMUpadb3qviYkzp50vmVbpymeLMLMx5eSUdTQUFFJ0/T+HJk3fdnkavR9+gPrpKfhfLo9XrsfX0QmOjRedTB7vAhmgdHNB5eoKNDTY3PYIjxONI8qUSki9JvlSh214T8DH12WefKb1erz766CN15MgRNXz4cOXq6qouXLhwy2Mf1hLHyyZPV9HR0Wr5sDEqpl8vy2vo399WK4+uVwUFlx9o+0KIB6+6LXFcqnSJYxcXF2UwGFRoaKjVEsejR49W9evXV3Z2dsrd3V1FRkaqjIwMy/7p06crT09PpdFoKl3iuE2bNmrSpEmW4/z8/NT8+fPLxLN3714VEhKinJyclKOjo2revLmaOXOmUkqpS5cuqbFjx6qmTZsqJycnZTQaVbNmzVRMTIzVsrpKKbV+/XrVuXNn5ejoaFmCedWqVVZlylumufR1+vTpMrHl5eWpF154QXl7eyu9Xq+8vLxU79691d69ey1lVqxYUWGdt7JgwQIVFBSkDAaD8vLyUgMHDlRnzpyp9Jjvvvuu3LZKP4vKYoqOjq6wXspZRjgzM1O9/PLLytXVVbm5uakXXnhBnTp1yqrMqlWr1DPPPKMcHR2Vu7u76t27tzp69OhDOc/fuh9LHD8p5HpUHdOlSyr/+HF1PX67urR8uTr39lSVNmCgOtGjp0oKbHTXr2OtWqu0AQPVmdffUBn//lBd+1+sytr6rbq+fbvKT01VBWlplpfppr/pQtwryZckX5J86cnLlzRK3eXMgI+Jtm3b8uyzz7Jo0SKgZEibr68vY8aMYdKkSZUem5WVhYuLC5mZmZbnUO83c1Exc976F/mGy3iePENO3nm0tr5otWbW/iGEd57rTteaD6ZtIcTDk5+fT1paGvXq1cPe3r6qw3ms5OTk4OPjw9y5cxk6dOhDb//KlSt07doVZ2dnvvrqKxxuXlVJVFuV/c4+jPzgcSLX4/5RSpWsJFeaniuFKT0dlZ9P/tGjmM6lYzp7hoKf0yi+csVq1bmK6G9axUtrb4+tpycaW1tsPWujtbPDpmZNbIzO2NRwLZnY28ERu4YBsriOqBKSL909yZdEVbgf+VK1fnyvsLCQ/fv3W02GptVq6datG7t27arCyOD7jZ9zcNVGABzQ4ADkFl0BwMa+FXrbi2Q5uqKThEAI8YRJSEjg2LFjtGnThszMTKZPnw5Q4fK5D5qbmxtbtmxh8eLF7Nq1y7L0shDi4Tg/axZZsRtRRUVVHcoDZ87Lu/MJvm1ssHF2Rufjg11gQ2w9PDDcmNDboXVrtPIPQyGqJcmXRHVRrTulMjIyKC4uLjObfO3atTl27FiZ8gUFBVaTp2VlZT2w2M79kobJdLHcfRqNEY3Nz+TYGHC2fTwm9RNCiPspJiaG5ORk9Ho9rVq1Ij4+nlpVuCR3zZo1mTp1apW1L8ST7Nqatai8vKoOo8po7OzQeXqi0evQ+9dH71sHW08v7IOCsHWrgf6pp6o6RCFEFZF8SVQH1bpT6k7Nnj2badOmPZS23Ov4kmHjcdOWkmHaWq0dNhzE3LkGbzYKoIXR8FDiEUKIR8UzzzzD/v37qzoMIZ44j+rCMDVeegnMxTh2/h06nzubRPtxpPP2RmsnKy8LISon+ZKoLqp1p1StWrWwsbHhwoULVtsvXLhQ7sz3kydPZsKECZb3WVlZ+Pr6PpDYuvXuT7fe/R9I3UIIIYQQd2L16tVMmDCBpUuX0rZtW/75z38SGhpKcnIyHh4et67gAaod9WaVti+EEEKIB0db1QE8SKXDGLdu3WrZZjab2bp1K+3bty9T3s7ODmdnZ6uXEEIIIUR1N2/ePIYPH85f/vIXgoKCWLp0KQ4ODnz00UdVHZoQQgghqrFq3SkFMGHCBD744AM++eQTjh49yquvvkpOTg5/+ctfqjo0IYQQQogqV7owTLdu3SzbHpWFYYQQQghRvVXrx/cA+vfvz6VLl5g6dSrnz5/n6aef5uuvvy4z+bkQQgghxJPoUV4YRgghhBDVW7UfKQUwevRofvnlFwoKCtizZw9t27at6pCEEEIIIR5Ls2fPxsXFxfJ6UPNvCiGEEKL6eyI6pYQQQgghRPnuZmGYzMxMy+v06dMPK1QhhBBCVDPSKSWEEEII8QSThWGEEEIIUVWkU0oIIUSlhgwZgkajQaPRoNfradCgAdOnT6eoqOie6t22bRsajYZr167dn0BvQ1paGgMGDMDb2xt7e3vq1KlDREREmXlzYmNj6dKlC0ajEQcHB5599lk+/vhjqzInT55Eo9GQmJh42+2/8847NGrUCEdHR2rUqEG3bt3Ys2ePVZ1Dhw6lXr16GAwG6tevT3R0NIWFhbese+XKlbRo0QIHBwe8vLx4+eWXuXz5cqXH/PDDD4SHh+Pt7Y1Go2H9+vV3HDPAzJkz6dChAw4ODri6upbb1qlTp+jVqxcODg54eHgwceJEq5+hm3/Obn41adLEUmb27Nk8++yzGI1GPDw8+MMf/kBycvItr83txPekk4VhhBDi3ki+JPmS5Et3RzqlhBBC3FJYWBjp6ekcP36c119/nXfeeYf33nuvqsOyuJ0kxGQyERISQmZmJuvWrSM5OZnVq1fTrFkzq0Rv4cKFRERE0LFjR/bs2cOhQ4d46aWXGDlyJG+88cY9xdmwYUMWLVrE4cOH2b59O0899RTdu3fn0qVLABw7dgyz2cyyZcs4cuQI8+fPZ+nSpUyZMqXSenfs2MGgQYMYOnQoR44cYc2aNezdu5fhw4dXelxOTg4tWrRg8eLFdx0zlFz/vn378uqrr5ZbR3FxMb169aKwsJCdO3fyySef8PHHHzN16lRLmffff5/09HTL6/Tp07i5udG3b19Lme+//55Ro0axe/du4uLiMJlMdO/enZycnErP81bxiZKFYWJiYpg6dSpPP/00iYmJsjCMEELcIcmXJF+SfOkuKFGhzMxMBajMzMyqDkUI8ZjLy8tTSUlJKi8vr6pDuWODBw9WERERVttCQkJUu3bt1JUrV1RkZKRydXVVBoNBhYWFqZSUFEu5kydPqt///vfK1dVVOTg4qKCgILVx40aVlpamAKvX4MGDlVJKZWVlqQEDBigHBwfl6emp5s2bp7p06aLGjRtnqdfPz09Nnz5dRUZGKqPRaDk2Pj5ederUSdnb26s6deqoMWPGqOzsbKWUUgkJCQpQJ0+erPBcT506pXQ6nZowYUKZfQsWLFCA2r17t1JKWc4hISHhzi/qDaXfM1u2bKmwzJw5c1S9evUqree9995T/v7+ZeL18fG57VgA9cUXX9yyXGUxr1ixQrm4uJTZvmnTJqXVatX58+ct25YsWaKcnZ1VQUFBue188cUXSqPRVPp5Xbx4UQHq+++/v2XclcVXnsp+ZyU/sCbXQwhxv0i+JPlSeSRfqt75koyUEkKIKqKUwpSf/9BfSql7jt1gMFBYWMiQIUP48ccf2bBhA7t27UIpRc+ePTGZTACMGjWKgoICfvjhBw4fPsy7776Lk5MTvr6+fP755wAkJyeTnp7O+++/D5Q8RrRjxw42bNhAXFwc8fHxHDhwoEwMMTExtGjRgoSEBN5++21SU1MJCwujT58+HDp0iNWrV7N9+3ZGjx4NgLu7O1qtlrVr11JcXFzuea1duxaTyVTuHb4RI0bg5OTEqlWr7vn6QcndqOXLl+Pi4kKLFi0qLJeZmYmbm1uldbVv357Tp0+zadMmlFJcuHCBtWvX0rNnz/sS653G/Fu7du2iWbNmVqNuQkNDycrK4siRI+Ue8+GHH9KtWzf8/PwqrDczMxPgltdHCCHE46uq8qX7kTNJvnTvJF+q/vmSbVUHIIQQT6qiggIWDH7xobc79pO16Ozt7+pYpRRbt25l8+bN9OjRg/Xr17Njxw46dOgAlDyn7+vry/r16+nbty+nTp2iT58+NGvWDAB/f39LXaVfjP+fvTuPi7raHz/+moEZ9n2RRUVRXHDLJfeNTEFLrUzzaqhdNenrnrstqLlkopbpdekq+rtXrauVmmVFpblmbqSlgii4b4iCrAMz5/cHMTmyuiQu7+fjwUM+nzmf83mfDwKH95zF29vbPG/95s2brFq1ijVr1tChQwcAoqOj8fPzKxTLM888w5gxY8zHgwYNom/fvowaNQqAoKAgFixYQLt27Vi8eDH+/v4sWLCA8ePHM3XqVJo0aUJISAh9+/Y1xxUfH4+Liwu+vr6F7qfX6wkMDCQ+Pv6unl2BzZs307t3bzIzM/H19SUmJgZPT88iyyYkJPDxxx8TFRVVYp2tWrVi9erVvPLKK2RnZ5OXl0fXrl1LHGb+d8VclEuXLhWaBlZwfOnSpULlL1y4wJYtW1izZk2xdZpMJkaNGkWrVq2oW7dumWMRQgjxaCmv/hLcfZ9J+kvSX5L+UtnJSCkhhBCl2rx5M46Ojtja2tK5c2deeeUVBgwYgLW1Nc2aNTOX8/DwoGbNmhw7dgyAESNGMH36dFq1akVkZCSHDx8u8T6nTp0iNzeXpk2bms+5uLhQs2bNQmWbNGlicfzbb7+xcuVKHB0dzR+hoaGYTCYSExOB/HciL126xOrVq2nRogXr1q2jTp06xMTElPlZ6PX6UsusXr3aIo4dO3aYXwsJCSE2Npbdu3cTFhZGr169uHLlSqE6zp8/T1hYGD179rRY6+DWeiMiIgA4evQoI0eO5N133+XAgQN8++23JCUlmV/fsWOHxXWrV68uc3vvJOb7ZdWqVbi6uvLCCy8UW2bo0KH8/vvvfPrpp+ZzERERFu0UQgghHiTpL/1F+kvSXyorGSklhBDlxNrGhhGr1pfLfe9USEgIixcvRq/X4+fnh7W1NZs2bSr1ukGDBhEaGsrXX3/N999/z6xZs5g7dy7Dhw+/m9AtODg4WBynp6czZMgQRowYUahs5cqVzZ87OTnRtWtXunbtyvTp0wkNDWX69Ol07NiRoKAgUlNTuXDhQqF3Gw0GAydPniQ0NLTU2Lp162bR+fT397eIu3r16lSvXp3mzZsTFBTE8uXLmTRpkrnMhQsXCAkJoWXLlixbtsyi7lt3r3F2dgbyd1lp1aoV48aNA6B+/fo4ODjQpk0bpk+fTpMmTSyuu9PFq8sSc0l8fHz49ddfLc5dvnzZ/NqtlFKsWLGC8PDwYju0w4YNY/PmzWzfvp2KFSuaz0+bNu2eF1cVQgjxcCmv/lLBve+E9JekvyT9pTsnSSkhhCgnGo3mrqfRPWgFv2RvVbt2bfLy8ti7d695OPq1a9eIi4sjODjYXK5SpUpEREQQERHBpEmT+OSTTxg+fLj5F+it6xUEBgai0+nYt2+fuWOUmppKfHw8bdu2LTHGRo0acfTo0UJxlkSj0VCrVi12794NwMsvv8yECROYO3cuc+fOtSi7ZMkSMjMz6devX6n1Ojk54eTkVKYYTCYTOTk55uPz588TEhJC48aNiY6ORqu1HNRcVPsyMzOxtrb8lW5lZQXkd1rs7Ozu6LncacyladGiBTNmzODKlSt4e3sDEBMTg7Ozs8X/FcjfMSYhIYGBAwcWqkcpxfDhw/nyyy/Ztm0bVatWtXjd29vbXL8QQojHg/SXpL8E0l96nPtLkpQSQghxV4KCgujevTuDBw9m6dKlODk5MXHiRPz9/enevTsAo0aNonPnztSoUYPr16+zdetWateuDUBAQAAajYbNmzfTpUsX7OzscHJyon///owbNw53d3e8vb2JjIxEq9Wi0WhKjGfChAk0b96cYcOGMWjQIBwcHDh69CgxMTEsXLiQ2NhYIiMjCQ8PJzg4GL1ez88//8yKFSuYMGECkP8O4QcffMDYsWOxtbUlPDwcnU7Hxo0bmTx5MtOnTy80Hz8uLq5QLHXq1EGn01mcy8jIYMaMGXTr1g1fX1+Sk5NZtGgR58+fN2/je/78edq3b09AQABRUVEW2wjf/g7Zrbp27crgwYNZvHgxoaGhXLx4kVGjRtG0adMi15cokJ6eTkJCgvk4MTGR2NhY3N3dqVy5cpliBjhz5gwpKSmcOXMGo9FofpexevXqODo60qlTJ4KDgwkPD+eDDz7g0qVLvP322wwdOhSb296FXr58Oc2aNSty3YOhQ4eyZs0aNm7ciJOTk3l9BRcXF+zs7IptZ2nxCSGEEH8X6S/lk/6S9JeKVaZ9/p5QssWxEOJ+edy2OC5QsMWxi4uLsrOzU6GhoRZbHA8bNkxVq1ZN2djYKC8vLxUeHq6Sk5PNr0+bNk35+PgojUZT4hbHTZs2VRMnTjRfFxAQoObPn18onl9//VV17NhROTo6KgcHB1W/fn01Y8YMpZRSV69eVSNGjFB169ZVjo6OysnJSdWrV09FRUUpo9FoUc+GDRtUmzZtlIODg3kL5rVr11qUKWqb5oKPs2fPFootKytLvfjii8rPz0/p9Xrl6+urunXrpn799Vdzmejo6GLrLM2CBQtUcHCwsrOzU76+vqpv377q3LlzJV6zdevWIu9V8LUoS8xK5f8fKaqerVu3msskJSWpzp07Kzs7O+Xp6anGjBmjcnNzLeq5ceOGsrOzU8uWLSsy3uKeTXR0dIntLEt8t7sfWxw/KeR5CCHuF+kvSX9J+ktPXn9J82fQoghpaWm4uLiQmppqnocqhBB3Izs7m8TERKpWrYrtIzIE/WGRkZGBv78/c+fOLXKI8t8tJSWFDh064OzszJYtW7C3t3/gMYgHr6TvWekfWJLnIYS4X6S/dPekvyTKw/3oL8nue0IIIR4qhw4dYu3atZw8eZKDBw/St29fAPMQ9wfN3d2dH374gQ4dOrBnz55yiUEIIYQQ4lbSXxKPC1lTSgghxEMnKiqKuLg49Ho9jRs3ZseOHXh6epZbPB4eHrz77rvldn8hhBBCiNtJf0k8DiQpJYQQ4qHSsGFDDhw4UN5hCCGEEEI8tKS/JB4XMn1PCCGEEEIIIYQQQjxwkpQSQgghhBBCCCGEEA+cJKWEEOIBkg1PhXg0yPeqEEKUH/kZLMSj4X58r0pSSgghHgCdTgdAZmZmOUcihCiLgu/Vgu9dIYQQfz/pLwnxaLkf/SVZ6FwIIR4AKysrXF1duXLlCgD29vZoNJpyjkoIcTulFJmZmVy5cgVXV1esrKzKOyQhhHhiSH9JiEfD/ewvSVJKCCEeEB8fHwBzR0sI8fBydXU1f88KIYR4cKS/JMSj4370lyQpJYQQD4hGo8HX1xdvb29yc3PLOxwhRDF0Op2MkBJCiHIi/SUhHg33q78kSSkhhHjArKys5A9eIYQQQogSSH9JiCeDLHQuhBBCCCGEEEIIIR44SUoJIYQQQgghhBBCiAdOklJCCCGEEEIIIYQQ4oGTNaVKoJQCIC0trZwjEUIIIcTDoqBfUNBPeNJJf0kIIYQQtytrf0mSUiW4efMmAJUqVSrnSIQQQgjxsLl58yYuLi7lHUa5k/6SEEIIIYpTWn9Jo+RtvmKZTCYuXLiAk5MTGo3mvteflpZGpUqVOHv2LM7Ozve9/ofFk9JOeHLa+qS0E56ctko7Hz9PSlvLo51KKW7evImfnx9arayEIP2l++NJaSc8OW19UtoJT05bpZ2PnyelrQ9zf0lGSpVAq9VSsWLFv/0+zs7Oj/U3QIEnpZ3w5LT1SWknPDltlXY+fp6Utj7odsoIqb9If+n+elLaCU9OW5+UdsKT01Zp5+PnSWnrw9hfkrf3hBBCCCGEEEIIIcQDJ0kpIYQQQgghhBBCCPHASVKqHNnY2BAZGYmNjU15h/K3elLaCU9OW5+UdsKT01Zp5+PnSWnrk9LOJ9mT8jV+UtoJT05bn5R2wpPTVmnn4+dJaevD3E5Z6FwIIYQQQgghhBBCPHAyUkoIIYQQQgghhBBCPHCSlBJCCCGEEEIIIYQQD5wkpYQQQgghhBBCCCHEAydJKSGEEEIIIYQQQgjxwElSSgghhBBCCCGEEEI8cJKUEkIIIYQQQgghhBAPnCSlhBBCCCGEEEIIIcQDJ0kpIYQQQgghhBBCCPHASVJKCCGEEEIIIYQQQjxwkpQSQgghhBBCCCGEEA+cJKWEEEIIIYQQQgghxAMnSSkhhBBCCCGEEEII8cBJUkoIIYQQQgghhBBCPHCSlBJCPHaSkpLQaDSsXLnyjq67fPkyL7/8Mh4eHmg0Gj788MO/Jb77YcCAAVSpUqW8wxBCCCHEI+pu+0uPu23btqHRaNi2bZv5nPS7hPj7SFJKCHHf7d69mylTpnDjxo27uv5f//pXuXSQRo8ezXfffcekSZP4z3/+Q1hY2AOP4W5lZmYyZcoUiw6UEEIIIR5ej2p/6XEhz0+Ih4MkpYQQ993u3buZOnXqI9fJ+umnn+jevTtjx47l1VdfpVatWg88hrL65JNPiIuLMx9nZmYydepUSUoJIYQQj4hHtb/0uCju+bVt25asrCzatm374IMS4gkkSSkhhPjTlStXcHV1Le8wSpSRkQGATqfDxsamnKMRQgghhHi8aLVabG1t0WrlT2UhHgT5ThNC3FdTpkxh3LhxAFStWhWNRoNGoyEpKYm8vDzee+89qlWrho2NDVWqVGHy5Mnk5OSYr69SpQp//PEHP//8s/na9u3bA5CSksLYsWOpV68ejo6OODs707lzZ3777bd7innlypVoNBqUUixatMh8X4Dc3FymTp1KUFAQtra2eHh40Lp1a2JiYspUt1IKT09P3nzzTfM5k8mEq6srVlZWFu+Ozp49G2tra9LT04H89QscHR05efIkXbp0wcnJib59+5pfK1jbICkpCS8vLwCmTp1qjn/KlCnmuo8fP87LL7+Mu7s7tra2NGnShE2bNt3tIxNCCCHEPXgU+0sFTp8+Tbdu3XBwcMDb29u8/MHt6zC1b9+eunXrcuDAAVq2bImdnR1Vq1ZlyZIlFvUV9MOSkpIszhe1tlNppkyZYu7DlXSPkp7f3dxXCHH3rMs7ACHE4+Wll14iPj6etWvXMn/+fDw9PQHw8vJi0KBBrFq1ipdffpkxY8awd+9eZs2axbFjx/jyyy8B+PDDDxk+fDiOjo689dZbAFSoUAGAU6dOsWHDBnr27EnVqlW5fPkyS5cupV27dhw9ehQ/P7+7irlt27b85z//ITw8nI4dO9KvXz/za1OmTGHWrFkMGjSIpk2bkpaWxv79+zl48CAdO3YstW6NRkOrVq3Yvn27+dzhw4dJTU1Fq9Wya9cunnvuOQB27NhBw4YNcXR0NJfNy8sjNDSU1q1bExUVhb29faF7eHl5sXjxYt544w1efPFFXnrpJQDq168PwB9//EGrVq3w9/dn4sSJODg48L///Y8XXniBzz//nBdffPGunpsQQggh7s6j2F+C/BHbzzzzDBcvXmTkyJH4+PiwZs0atm7dWmT569ev06VLF3r16sU//vEP/ve///HGG2+g1+v55z//eddx3KuSnp8Q4gFTQghxn82ZM0cBKjEx0XwuNjZWAWrQoEEWZceOHasA9dNPP5nP1alTR7Vr165QvdnZ2cpoNFqcS0xMVDY2NmratGkW5wAVHR19R3EDaujQoRbnGjRooJ577rk7qud2c+bMUVZWViotLU0ppdSCBQtUQECAatq0qZowYYJSSimj0ahcXV3V6NGjzdf1799fAWrixImF6uzfv78KCAgwH1+9elUBKjIyslDZDh06qHr16qns7GzzOZPJpFq2bKmCgoLuqW1CCCGEuDuPYn9p7ty5ClAbNmwwn8vKylK1atVSgNq6dav5fLt27RSg5s6daz6Xk5OjnnrqKeXt7a0MBoNSSqno6OhCz0EppbZu3VqoztJERkaqov7ELeoexT2/ou57e79LCHH/yPQ9IcQD8c033wBYTGMDGDNmDABff/11qXXY2NiY5/cbjUauXbuGo6MjNWvW5ODBg/c54nyurq788ccfnDhx4q7raNOmDUajkd27dwP5I6LatGlDmzZt2LFjBwC///47N27coE2bNoWuf+ONN+763ikpKfz000/06tWLmzdvkpycTHJyMteuXSM0NJQTJ05w/vz5u65fCCGEEPfPw95f+vbbb/H396dbt27mc7a2tgwePLjI8tbW1gwZMsR8rNfrGTJkCFeuXOHAgQP3FIsQ4vEgSSkhxANx+vRptFot1atXtzjv4+ODq6srp0+fLrUOk8nE/PnzCQoKwsbGBk9PT7y8vMzT4f4O06ZN48aNG9SoUYN69eoxbtw4Dh8+fEd1NGrUCHt7e3MCqiAp1bZtW/bv3092drb5tdatW1tca21tTcWKFe86/oSEBJRSvPPOO3h5eVl8REZGAvkLvAshhBCi/D3s/aXTp09TrVq1Qus23R5vAT8/PxwcHCzO1ahRA6DQGlJCiCeTrCklhHigilp8sqxmzpzJO++8wz//+U/ee+893N3d0Wq1jBo1CpPJdB+j/Evbtm05efIkGzdu5Pvvv+ff//438+fPZ8mSJQwaNKhMdeh0Opo1a8b27dtJSEjg0qVLtGnThgoVKpCbm8vevXvZsWMHtWrVMi9YXuDWdzvvRsFzGTt2LKGhoUWWKa4jKYQQQojy8aj1l+5FcW01Go3lWpcQ4sGQpJQQ4r4rqkMQEBCAyWTixIkT1K5d23z+8uXL3Lhxg4CAgBKvB1i/fj0hISEsX77c4vyNGzfMC4T+Hdzd3Xnttdd47bXXSE9Pp23btkyZMqXMSSnIn8I3e/ZsfvjhBzw9PalVqxYajYY6deqwY8cOduzYwfPPP3/XMRb3zAIDA4H8xNizzz571/ULIYQQ4v56FPtLAQEBHD16FKWUxf0TEhKKLH/hwgUyMjIsRkvFx8cDmHcRdnNzM8d3q7KMCrvdrXW5urqWWNe9JP6EEPePTN8TQtx3BR2PWzsXXbp0AfJ3O7nVvHnzAMw70BVcf3vHBMDKygqllMW5devW/a1rIl27ds3i2NHRkerVq1tsy1wWbdq0IScnhw8//JDWrVubO0Jt2rThP//5DxcuXChyPamyKtiV7/bn5u3tTfv27Vm6dCkXL14sdN3Vq1fv+p5CCCGEuHuPYn8pNDSU8+fPs2nTJvO57OxsPvnkkyLL5+XlsXTpUvOxwWBg6dKleHl50bhxYwCqVasGYLFTsdFoZNmyZXccX1F1ZWRksGrVqkJli3t+QogHS0ZKCSHuu4JOxltvvUXv3r3R6XR07dqV/v37s2zZMm7cuEG7du349ddfWbVqFS+88AIhISEW1y9evJjp06dTvXp1vL29eeaZZ3j++eeZNm0ar732Gi1btuTIkSOsXr3aPBro7xAcHEz79u1p3Lgx7u7u7N+/n/Xr1zNs2LA7qqdFixZYW1sTFxfH66+/bj7ftm1bFi9eDHBPSSk7OzuCg4P57LPPqFGjBu7u7tStW5e6deuyaNEiWrduTb169Rg8eDCBgYFcvnyZPXv2cO7cOX777be7vq8QQggh7s6j2F8aMmQICxcu5B//+AcjR47E19eX1atXY2trCxQefeTn58fs2bNJSkqiRo0afPbZZ8TGxrJs2TJ0Oh0AderUoXnz5kyaNImUlBTc3d359NNPycvLu+P4OnXqROXKlRk4cCDjxo3DysqKFStW4OXlxZkzZyzKFvf8hBAPWPlu/ieEeFy99957yt/fX2m1WvMWvLm5uWrq1KmqatWqSqfTqUqVKqlJkyap7Oxsi2svXbqknnvuOeXk5KQA83a92dnZasyYMcrX11fZ2dmpVq1aqT179qh27dpZbOl7N1scK6UUoIYOHWpxbvr06app06bK1dVV2dnZqVq1aqkZM2aYtzG+E08//bQC1N69e83nzp07pwBVqVKlQuX79++vHBwciqyrqK2Jd+/erRo3bqz0er0CVGRkpPm1kydPqn79+ikfHx+l0+mUv7+/ev7559X69evvuB1CCCGEuD8exf7SqVOn1HPPPafs7OyUl5eXGjNmjPr8888VoH755RdzuXbt2qk6deqo/fv3qxYtWihbW1sVEBCgFi5cWKjOkydPqmeffVbZ2NioChUqqMmTJ6uYmBgFqK1bt95RfAcOHFDNmjVTer1eVa5cWc2bN09FR0ebn2+B4p7f1q1bC923qH6XEOL+0Ch129hOIYQQQgghhBCijD788ENGjx7NuXPn8Pf3B6B9+/YkJyfz+++/l3N0QoiHmawpJYQQQgghhBCiTLKysiyOs7OzWbp0KUFBQeaElBBClJWsKSWEeKwZDAZSUlJKLOPi4oKdnd1DVbcQQgghxINyJ32al156icqVK/PUU0+RmprKf//7X44fP87q1av/tviysrJITU0tsYy7uzt6vf5vi0EI8feQpJQQ4rG2e/dui0VBixIdHc2AAQMeqrqFEEIIIR6UO+nThIaG8u9//5vVq1djNBoJDg7m008/5ZVXXvnb4vvss8947bXXSiyzdetW2rdv/7fFIIT4e8iaUkKIx9r169c5cOBAiWXq1KmDr6/vQ1W3EEIIIcSD8rD3aS5evMgff/xRYpnGjRvj5ub2gCISQtwvd5yU2r59O3PmzOHAgQNcvHiRL7/8khdeeMH8ulKKyMhIPvnkE27cuEGrVq1YvHgxQUFB5jIpKSkMHz6cr776Cq1WS48ePfjoo49wdHQ0lzl8+DBDhw5l3759eHl5MXz4cMaPH28Ry7p163jnnXdISkoiKCiI2bNn06VLlzuKRQghhBBCCCGEEEI8eHe80HlGRgYNGjRg0aJFRb7+wQcfsGDBApYsWcLevXtxcHAgNDSU7Oxsc5m+ffvyxx9/EBMTw+bNm9m+fTuvv/66+fW0tDQ6depEQEAABw4cYM6cOUyZMoVly5aZy+zevZt//OMfDBw4kEOHDvHCCy/wwgsvWOzuUJZYhBBCCCGEEEIIIcSDd0/T9zQajcVIKaUUfn5+jBkzhrFjxwKQmppKhQoVWLlyJb179+bYsWMEBwezb98+mjRpAsC3335Lly5dOHfuHH5+fixevJi33nqLS5cumRermzhxIhs2bOD48eMAvPLKK2RkZLB582ZzPM2bN+epp55iyZIlZYqlNCaTiQsXLuDk5IRGo7nbxySEEEKIx4hSips3b+Ln54dWKxsZS39JCCGEELcra3/pvi50npiYyKVLl3j22WfN51xcXGjWrBl79uyhd+/e7NmzB1dXV3NCCuDZZ59Fq9Wyd+9eXnzxRfbs2UPbtm0tdk8IDQ1l9uzZXL9+HTc3N/bs2cObb75pcf/Q0FA2bNhQ5lhul5OTQ05Ojvn4/PnzBAcH3/NzEUIIIcTj5+zZs1SsWLG8wyh3Fy5coFKlSuUdhhBCCCEeQqX1l+5rUurSpUsAVKhQweJ8hQoVzK9dunQJb29vyyCsrXF3d7coU7Vq1UJ1FLzm5ubGpUuXSr1PabHcbtasWUydOrXQ+bNnz+Ls7FxMq4UQQgjxJElLS6NSpUo4OTmVdygPhYLnIP0lIYQQQhQoa3/pvialHnWTJk2yGH1V8BCdnZ2lkyWEEEIICzJVLV/Bc5D+khBCCCFuV1p/6b4uhODj4wPA5cuXLc5fvnzZ/JqPjw9XrlyxeD0vL4+UlBSLMkXVces9iitz6+ulxXI7Gxsbc4dKOlZCCCGEEEIIIYQQf5/7mpSqWrUqPj4+/Pjjj+ZzaWlp7N27lxYtWgDQokULbty4wYEDB8xlfvrpJ0wmE82aNTOX2b59O7m5ueYyMTEx1KxZEzc3N3OZW+9TUKbgPmWJRQghhBBCCCGEEEKUjztOSqWnpxMbG0tsbCyQv6B4bGwsZ86cQaPRMGrUKKZPn86mTZs4cuQI/fr1w8/Pz7xDX+3atQkLC2Pw4MH8+uuv7Nq1i2HDhtG7d2/8/PwA6NOnD3q9noEDB/LHH3/w2Wef8dFHH1lMrRs5ciTffvstc+fO5fjx40yZMoX9+/czbNgwgDLFIoQQQgghhBBCCCHKxx2vKbV//35CQkLMxwWJov79+7Ny5UrGjx9PRkYGr7/+Ojdu3KB169Z8++232Nramq9ZvXo1w4YNo0OHDmi1Wnr06MGCBQvMr7u4uPD9998zdOhQGjdujKenJ++++y6vv/66uUzLli1Zs2YNb7/9NpMnTyYoKIgNGzZQt25dc5myxCKEEEIIIYQQ4uFiNBotZs4IIR4uOp0OKyure65Ho5RS9yGex1JaWhouLi6kpqbK+lJCCCGEAKR/cDt5HkKI+0kpxaVLl7hx40Z5hyKEKIWrqys+Pj5FLmZe1v6B7L4nhBBCCCGEEOKhUJCQ8vb2xt7eXnY6FeIhpJQiMzPTvImdr6/vXdclSSkhhBBCCCGEEOXOaDSaE1IeHh7lHY4QogR2dnYAXLlyBW9v77ueyndfd98TQgghhBBCCCHuRsEaUvb29uUciRCiLAq+V+9l/TdJSgkhhBBCCCGEeGjIlD0hHg3343tVklJCCCGEEEIIIYQQ4oGTpJQQQgghhBBCCHEPBgwYgEajQaPRoNfrqV69OtOmTSMvL++e6t22bRsajeaB7kaYmJhInz598PPzw9bWlooVK9K9e3eOHz9uUW7z5s20a9cOJycn7O3tefrpp1m5cqVFmaSkJDQaDbGxsWW+/5QpU6hVqxYODg64ubnx7LPPsnfvXos6Bw4cSNWqVbGzs6NatWpERkZiMBhKrPfixYv06dOHGjVqoNVqGTVqVJni2b59O127dsXPzw+NRsOGDRuKLHfs2DG6deuGi4sLDg4OPP3005w5c8b8+pAhQ6hWrRp2dnZ4eXkV+Uz37dtHhw4dcHV1xc3NjdDQUH777bci75eQkICTkxOurq73rQ3lQZJSQgghhBBCCCHEPQoLC+PixYucOHGCMWPGMGXKFObMmVPeYZmVlrSB/LWBOnbsSGpqKl988QVxcXF89tln1KtXzyIx9vHHH9O9e3datWrF3r17OXz4ML179yYiIoKxY8feU5w1atRg4cKFHDlyhJ07d1KlShU6derE1atXATh+/Dgmk4mlS5fyxx9/MH/+fJYsWcLkyZNLrDcnJwcvLy/efvttGjRoUOZ4MjIyaNCgAYsWLSq2zMmTJ2ndujW1atVi27ZtHD58mHfeeQdbW1tzmcaNGxMdHc2xY8f47rvvUErRqVMnjEYjAOnp6YSFhVG5cmX27t3Lzp07cXJyIjQ0tNCaTbm5ufzjH/+gTZs2960N5UaJYqWmpipApaamlncoQgghhHhISP/AkjwPIcT9kpWVpY4ePaqysrLKO5Q71r9/f9W9e3eLcx07dlTNmzdXKSkpKjw8XLm6uio7OzsVFham4uPjzeWSkpLU888/r1xdXZW9vb0KDg5WX3/9tUpMTFSAxUf//v2VUkqlpaWpPn36KHt7e+Xj46PmzZun2rVrp0aOHGmuNyAgQE2bNk2Fh4crJycn87U7duxQrVu3Vra2tqpixYpq+PDhKj09XSml1KFDhxSgkpKSim3rmTNnlE6nU2+++Wah1xYsWKAA9csvvyillLkNhw4duvOH+qeC3zM//PBDsWU++OADVbVq1TLXefuzKitAffnll4XOv/LKK+rVV1+9o7p+++03BaiEhASllFL79u1TgDpz5oy5zOHDhxWgTpw4YXHt+PHj1auvvqqio6OVi4vLfWnD3Sjpe7as/QMZKSWEEEIIIYQQQtxndnZ2GAwGBgwYwP79+9m0aRN79uxBKUWXLl3Mo1+GDh1KTk4O27dv58iRI8yePRtHR0cqVarE559/DkBcXBwXL17ko48+AuDNN99k165dbNq0iZiYGHbs2MHBgwcLxRAVFUWDBg04dOgQ77zzDidPniQsLIwePXpw+PBhPvvsM3bu3MmwYcMA8PLyQqvVsn79evMIntutX7+e3NzcIkdEDRkyBEdHR9auXXtfnqHBYGDZsmW4uLiUOLopNTUVd3f3+3LPO2Uymfj666+pUaMGoaGheHt706xZsxKnyGVkZBAdHU3VqlWpVKkSADVr1sTDw4Ply5djMBjIyspi+fLl1K5dmypVqpiv/emnn1i3bt3DOerpLliXdwBCCCGEEEIIIURRlFJk5RadHPm72ems7mp3MaUUP/74I9999x2dO3dmw4YN7Nq1i5YtWwKwevVqKlWqxIYNG+jZsydnzpyhR48e1KtXD4DAwEBzXQWJFm9vb/PaQTdv3mTVqlWsWbOGDh06ABAdHY2fn1+hWJ555hnGjBljPh40aBB9+/Y1r6cUFBTEggULaNeuHYsXL8bf358FCxYwfvx4pk6dSpMmTQgJCaFv377muOLj43FxccHX17fQ/fR6PYGBgcTHx9/xc7vV5s2b6d27N5mZmfj6+hITE4Onp2eRZRMSEvj444+Jioq6p3verStXrpCens7777/P9OnTmT17Nt9++y0vvfQSW7dupV27duay//rXvxg/fjwZGRnUrFmTmJgY9Ho9AE5OTmzbto0XXniB9957D8j/+nz33XdYW+enbq5du8aAAQP473//i7Oz84Nv7N9AklJCCCGEEEIIIR5KWblGgt/9rlzufXRaKPb6sv/JvHnzZhwdHcnNzcVkMtGnTx9eeuklNm/eTLNmzczlPDw8qFmzJseOHQNgxIgRvPHGG3z//fc8++yz9OjRg/r16xd7n1OnTpGbm0vTpk3N51xcXKhZs2ahsk2aNLE4/u233zh8+DCrV682n1NKYTKZSExMpHbt2gwdOpR+/fqxbds2fvnlF9atW8fMmTPZtGkTHTt2LNOzKEi0lGT16tUMGTLEfLxlyxbzGkkhISHExsaSnJzMJ598Qq9evdi7dy/e3t4WdZw/f56wsDB69uzJ4MGDzecdHR3Nn7/66qssWbKk1Hh27NhB586dzcdLly6lb9++pV5nMpkA6N69O6NHjwbgqaeeYvfu3SxZssQiKdW3b186duzIxYsXiYqKolevXuzatQtbW1uysrIYOHAgrVq1Yu3atRiNRqKionjuuefYt28fdnZ2DB48mD59+tC2bdv72obyJEkpIYQQQgghhBDiHoWEhLB48WL0ej1+fn5YW1uzadOmUq8bNGgQoaGhfP3113z//ffMmjWLuXPnMnz48HuOycHBweI4PT2dIUOGMGLEiEJlK1eubP7cycmJrl270rVrV6ZPn05oaCjTp0+nY8eOBAUFkZqayoULFwqNzjIYDJw8eZLQ0NBSY+vWrZtFss7f398i7urVq1O9enWaN29OUFAQy5cvZ9KkSeYyFy5cICQkhJYtW7Js2TKLum/d7a+sI4qaNGlicV2FChXKdJ2npyfW1tYEBwdbnK9duzY7d+60OOfi4oKLiwtBQUE0b94cNzc3vvzyS/7xj3+wZs0akpKS2LNnD1pt/kpLa9aswc3NjY0bN9K7d29++uknNm3aZB4VVpBQtLa2ZtmyZfzjH/+4qzaUJ0lKCSGEEEIIIYR4KNnprDg6rfQEx9917ztRkEi5Ve3atcnLy2Pv3r3m6XvXrl0jLi7OIolRqVIlIiIiiIiIYNKkSXzyyScMHz7cPOLo1vWdAgMD0el07Nu3z5xISk1NJT4+vtgRNAUaNWrE0aNHC8VZEo1GQ61atdi9ezcAL7/8MhMmTGDu3LnMnTvXouySJUvIzMykX79+pdbr5OSEk5NTmWIwmUzk5OSYj8+fP09ISIh5R7uCJE6BO2lfATs7u7u6Tq/X8/TTTxMXF2dxPj4+noCAgGKvU0qhlDK3KzMzE61WazFltOC4YDTWnj17LP4vbNy4kdmzZ7N79278/f3vug3lSZJSQgghhBBCCCEeShqN5o6m0D1sgoKC6N69O4MHD2bp0qU4OTkxceJE/P396d69OwCjRo2ic+fO1KhRg+vXr7N161Zq164NQEBAABqNhs2bN9OlSxfs7OxwcnKif//+jBs3Dnd3d7y9vYmMjCyU0CjKhAkTaN68OcOGDWPQoEE4ODhw9OhRYmJiWLhwIbGxsURGRhIeHk5wcDB6vZ6ff/6ZFStWMGHCBCB/RNUHH3zA2LFjsbW1JTw8HJ1Ox8aNG5k8eTLTp0+nbt26Fve9PWEDUKdOHXQ6ncW5jIwMZsyYQbdu3fD19SU5OZlFixZx/vx5evbsCeQnpNq3b09AQABRUVFcvXrVfL2Pj0+J7S8YRZSens7Vq1eJjY1Fr9cXGuV0q/T0dBISEszHiYmJxMbG4u7ubk4Kjhs3jldeeYW2bdsSEhLCt99+y1dffcW2bduA/CmXn332GZ06dcLLy4tz587x/vvvY2dnR5cuXQDo2LEj48aNY+jQoQwfPhyTycT777+PtbU1ISEhAOb/FwX279+PVqst9Lzvpg3l5r7sA/iYki2OhRBCCHE76R9YkuchhLhfStpe/mHXv39/1b179yJfS0lJUeHh4crFxUXZ2dmp0NBQFR8fb3592LBhqlq1asrGxkZ5eXmp8PBwlZycbH592rRpysfHR2k0GtW/f3+llFJpaWmqT58+yt7eXvn4+Kh58+appk2bqokTJ5qvCwgIUPPnzy8Uz6+//qo6duyoHB0dlYODg6pfv76aMWOGUkqpq1evqhEjRqi6desqR0dH5eTkpOrVq6eioqKU0Wi0qGfDhg2qTZs2ysHBQQEKUGvXrrUok5iYaH7t9o+zZ88Wii0rK0u9+OKLys/PT+n1euXr66u6deumfv31V3OZ6OjoYussTVHXBAQElHjN1q1bi7yu4GtRYPny5ap69erK1tZWNWjQQG3YsMH82vnz51Xnzp2Vt7e30ul0qmLFiqpPnz7q+PHjFnV8//33qlWrVsrFxUW5ubmpZ555Ru3Zs6fY2KKjo5WLi0up7S5rG+5USd+zZe0faJRS6m/PfD2i0tLScHFxITU19bFZ2V4IIYQQ90b6B5bkeQgh7pfs7GwSExOpWrUqtra25R3OIyUjIwN/f3/mzp3LwIEDH/j9U1JS6NChA87OzmzZsgV7e/sHHoN48Er6ni1r/0Bb7CtCCCGEEEIIIYR46Bw6dIi1a9dy8uRJDh48aN5hrWBK4IPm7u7ODz/8QIcOHdizZ0+5xCAeTY/u5FwhhBBCCCGEEOIJFRUVRVxcHHq9nsaNG7Njxw48PT3LLR4PDw/efffdcru/eDRJUkoIIYQQQgghhHiENGzYkAMHDpR3GELcM5m+J4QQQgghhBBCCCEeOElKCSGEEEIIIYQQQogHTpJSQgghhBBCCCGEEOKBk6SUEEIIIYQQQgghhHjgJCklhBBCCCGEEEIIIR44SUoJIYQQQgghhBBCiAfOurwDEEII8fg5c/Qa6ddzOPP7NTJSDQB0eaMedk76co5MCCGEEEII8bCQpJQQQjxIyQlw4zSGK6dIPBZPbnYmyRcukp2d+1cZpVC3/gv8eQKl/jo2v3r7a7eVy6/K/GJB8cJl829Z6Nztr4EGUORq7DG51yTHAMZcE4bsXAw5RjCpP2Mz3xydQ2dMxrpleUJCCCGEEI+cAQMGsGrVKgB0Oh2VK1emX79+TJ48GWvru/+ze9u2bYSEhHD9+nVcXV3vU7QlS0xM5K233mLbtm2kpKTg6elJ48aNmT17NrVq1TKX27x5M3PmzOHgwYMYjUbq1KnD0KFDGTBggLlMUlISVatW5dChQzz11FNluv+UKVP49NNPOXv2LHq9nsaNGzNjxgyaNWtmrvO9997jp59+4tKlS/j5+fHqq6/y1ltvodcX/wboxYsXGTNmDPv37ychIYERI0bw4YcflhrP4sWLWbx4MUlJSQDUqVOHd999l86dOwOQkpJCZGQk33//PWfOnMHLy4sXXniB9957DxcXFwBWrlzJa6+9VmT9ly9fxtvbG4CcnBymTZvGf//7Xy5duoSvry/vvvsu//znP83lP/zwQxYvXsyZM2fw9PTk5ZdfZtasWdja2hbbhi+++IIlS5Zw4MABUlJS7ujr8XeTpJQQQvxNlMFATmISV6Jmk3f5BKaUNBJNOk5UcCdLrytDDZpSjsubgrTjZSrZpldVbOzlV44QQgghHl9hYWFER0eTk5PDN998w9ChQ9HpdEyaNKm8QwPAYDCUmLQByM3NpWPHjtSsWZMvvvgCX19fzp07x5YtW7hx44a53Mcff8yoUaOYMGECixcvRq/Xs3HjRiIiIvj999+Jioq66zhr1KjBwoULCQwMJCsri/nz59OpUycSEhLw8vLi+PHjmEwmli5dSvXq1fn9998ZPHgwGRkZJd43JycHLy8v3n77bebPn1/meCpWrMj7779PUFAQSilWrVpF9+7dOXToEHXq1OHChQtcuHCBqKgogoODOX36NBEREVy4cIH169cD8MorrxAWFmZR74ABA8jOzjYnpAB69erF5cuXWb58OdWrV+fixYuYTCbz62vWrGHixImsWLGCli1bEh8fz4ABA9BoNMybN6/YNmRkZNC6dWt69erF4MGDy9z2B0GjVFHvhwuAtLQ0XFxcSE1NxdnZubzDEUI8InINOfzxyxa0w94iW2vNeTdHTnm5gqZwUskpKwc7Qx6OOQZ0eX/9wvmr5K3DmG5/7S+FyquiXrvlnOUQLACMVrbk2LiSo3chy84Lo7WeDHs/i7tobvm8QK72Jhn6bFLsL2G0ysUv0J0uQV2wc9Cj0WhBA5XrPoWNvX0RkQjx6JH+gSV5HkKI+yU7O5vExESqVq1a4qiPh9GAAQO4ceMGGzZsMJ/r1KkTN2/e5JtvvmHkyJF89dVX5OTk0K5dOxYsWEBQUBAAp0+fZtiwYezcuRODwUCVKlWYM2cOwcHBVK1a1eI+/fv3Z+XKldy8eZOIiAg2bNiAs7Mz48ePZ+PGjTz11FPm0T9VqlRh4MCBnDhxgg0bNvDSSy+xcuVKdu7cyaRJk9i/fz+enp68+OKLzJo1CwcHB2JjY2nYsCFJSUkEBAQU2dazZ89SrVo1hg8fzty5cy1e+/jjjxkxYgS//PILzZo1u6uRUrcr+D3zww8/0KFDhyLLzJkzh8WLF3Pq1Kky1dm+fXuLZ3Wn3N3dmTNnDgMHDizy9XXr1vHqq6+SkZFR5Ei5q1ev4u/vz/LlywkPDwfg22+/pXfv3pw6dQp3d/ci6x02bBjHjh3jxx9/NJ8bM2YMe/fuZefOnaXGfT++Hrcq6Xu2rP0DedtaCCHug+uXLnB8+zas/rsW7flE0q1suOztwTmPIn4AK4XOaEKjFAZrKwzWVtywt/nrdZ0/aB2o1rwHWp0TJqMiIy0Xk/H26XwWs/Bum5aHeQqeMr9oeb7gujyTEZMykX3DWCjUW39JGLTZnHb7A5M2j0S33zHqDNSoXRFfZx8aezalmms1/Bz9cNbLH6VCCCGEEHZ2dly7do0BAwZw4sQJNm3ahLOzMxMmTKBLly4cPXoUnU7H0KFDMRgMbN++HQcHB44ePYqjoyOVKlXi888/p0ePHsTFxeHs7IydnR0Ab775Jrt27WLTpk1UqFCBd999l4MHDxZKNERFRfHuu+8SGRkJwMmTJwkLC2P69OmsWLGCq1evMmzYMIYNG0Z0dDReXl5otVrWr1/PqFGjsLKyKtSu9evXk5uby9ixYwu9NmTIECZPnszatWvN0+3uhcFgYNmyZbi4uNCgQYNiy6WmphabyLmfjEYj69atIyMjgxYtWpQYj7Ozc7FTN//f//t/2Nvb8/LLL5vPbdq0iSZNmvDBBx/wn//8BwcHB7p168Z7771n/rq3bNmS//73v/z66680bdqUU6dO8c0335gTW48iSUoJIcQ9UkpxYMJYbP44jmt6FrGVvLng7mRRxkFvh4NbV9DaY7KyxaisycrLAy89eq0OY6rCeBOL5FHiMSNw40E2BYBk+/OYNEYSPX4j2zoDY+VUnBwdqOoRQFvPegR7BFPL/eEYhi6EEEKIx5xSkJtZPvfW2Rc50r00Sil+/PFHvvvuOzp37syGDRvYtWsXLVu2BGD16tVUqlSJDRs20LNnT86cOUOPHj2oV68eAIGBgea6ChIt3t7e5jWlbt68yapVq1izZo155FB0dDR+freOcM/3zDPPMGbMGPPxoEGD6Nu3L6NGjQIgKCiIBQsW0K5dOxYvXoy/vz8LFixg/PjxTJ06lSZNmhASEkLfvn3NccXHx+Pi4oKvr2+h++n1egIDA4mPj7/j53arzZs307t3bzIzM/H19SUmJgZPT88iyyYkJPDxxx/f05TB0hw5coQWLVqQnZ2No6MjX375JcHBwUWWTU5O5r333uP1118vtr7ly5fTp08fc7IJ4NSpU+zcuRNbW1u+/PJLkpOT+b//+z+uXbtGdHQ0AH369CE5OZnWrVujlCIvL4+IiAgmT558fxv8AElSSggh7lJW+k02zplF1pETNDn+B4cCKnDcz4N0m/z1ovRWimwbW7a4vIyLxg3/PC3eBi0OSoOt0gB6OA8GCs+iTtOYSNMq0rWK89YmcoAMrWW529YyN3+uscoE65to9VfR6FLR6FPQ2lwCjQkNJtSfc/fUbVc627ig8zAREtgOB50DrweMxVHniIuNy/16ZEIIIYQQdyY3E2YWTrY8EJMvgN6hzMU3b96Mo6Mjubm5mEwm+vTpw0svvcTmzZstRg15eHhQs2ZNjh07BsCIESN44403+P7773n22Wfp0aMH9evXL/Y+p06dIjc3l6ZNm5rPubi4ULNmzUJlmzRpYnH822+/cfjwYVavXm0+p5TCZDKRmJhI7dq1GTp0KP369WPbtm388ssvrFu3jpkzZ7Jp0yY6duxYpmdR2tpVkJ+cGzJkiPl4y5YttGnTBoCQkBBiY2NJTk7mk08+oVevXuzdu9di/SWA8+fPExYWRs+ePS3WSnJ0dDR//uqrr7JkyZJS49mxY4d58XKApUuX0rdvXwBq1qxJbGwsqamprF+/nv79+/Pzzz8XSkylpaXx3HPPERwczJQpU4q8z549ezh27Bj/+c9/LM6bTCY0Gg2rV682L5A+b948Xn75Zf71r39hZ2fHtm3bmDlzJv/6179o1qwZCQkJjBw5kvfee4933nmnxGf6sJKklBBC3KXELV9T8Yc9aK10JHq5ctX5r06LRgOH3YfghB09sgsPey5w3fYyGfo0LricINs6gyS3oxi1BgzW2bekjIpLP91CUzixVZImXq2x19nwYo3ncdQ70ti7MTqrsiy+LoQQQgghihISEmJe9NvPzw9ra2s2bdpU6nWDBg0iNDSUr7/+mu+//55Zs2Yxd+5chg8ffs8xOThYJtXS09MZMmQII0aMKFS2cuXK5s+dnJzo2rUrXbt2Zfr06YSGhjJ9+nQ6duxIUFAQqampXLhwodDoLIPBwMmTJwkNDS01tm7dulkk6/z9/S3irl69OtWrV6d58+YEBQWxfPlyi0XjL1y4QEhICC1btmTZsmUWdcfGxpo/L+t6h02aNLG4rkKFCubP9Xo91atXB6Bx48bs27ePjz76iKVLl5rL3Lx5k7CwMJycnPjyyy/R6YruW//73//mqaeeonHjxhbnfX198ff3NyekAGrXro1SinPnzhEUFMQ777xDeHg4gwYNAqBevXpkZGTw+uuv89Zbb5X4TB9WkpQSQog7lGvI4Y+ffiBjzadcs84hwccByB9abW+n5aJTXWy1dXgqx9HiupPuseRpDRz3/oVcqxySHc7fcTKprFxsXHDUOeKsd6ZNxTbYWdvRpWoXrLXWeNp5otVo/5b7CiGEEELcVzr7/BFL5XXvO1CQSLlV7dq1ycvLY+/evebpe9euXSMuLs5ilE2lSpWIiIggIiKCSZMm8cknnzB8+HDziCOj8a+1PwMDA9HpdOzbt8+cSEpNTSU+Pp62bduWGGOjRo04evRooThLotFoqFWrFrt37wbg5ZdfZsKECcydO7fQQudLliwhMzOTfv36lVqvk5MTTk5OpZaD/FFEOTk55uPz588TEhJC48aNiY6ORqu17NveSfsK2NnZlfm62+NJS0sjNDQUGxsbNm3aVOxC/enp6fzvf/9j1qxZhV5r1aoV69atIz093TzSKz4+Hq1WS8WKFQHIzMws1NaCdb+UUnf0TB8WkpQSQog7dHzXz+R+k4x3ujun7FIBsCUXF5tsztv1okJubXPZPI2B3VU2cN4lnoY16qDX6nmr2mjsdfZUsK+AVqNF8+daBQV725n/vW0Ng1vPl1TGWmstU+6EEEII8XjQaO5oCt3DJigoiO7duzN48GCWLl2Kk5MTEydOxN/fn+7duwMwatQoOnfuTI0aNbh+/Tpbt26ldu38/mRAQAAajYbNmzfTpUsX7OzscHJyon///owbNw53d3e8vb2JjIxEq9UW6hvebsKECTRv3pxhw4YxaNAg88LqMTExLFy4kNjYWCIjIwkPDyc4OBi9Xs/PP//MihUrmDBhApA/ouqDDz5g7Nix2NraEh4ejk6nY+PGjUyePJnp06dTt25di/vGxcUViqVOnTqFRhNlZGQwY8YMunXrhq+vL8nJySxatIjz58/Ts2dPID8h1b59ewICAoiKiuLq1avm6318fEpsf8FIqPT0dK5evUpsbCx6vb7Y9aEAJk2aROfOnalcuTI3b95kzZo1bNu2je+++w7IT0h16tSJzMxM/vvf/5KWlkZaWhoAXl5eFovFf/bZZ+Tl5fHqq68Wuk+fPn147733eO2115g6dSrJycmMGzeOf/7zn+a1p7p27cq8efNo2LChefreO++8Q9euXYtclL5ASkoKZ86c4cKF/ARvwdfDx8en1Gf2d5OklBBC3KH05Gs4WjmSoEsl/c93r84EX+abACOD9ua/u5Lk9jtosqjhcZH3B02gomNF8/Q4g8FAamoq/PnmirplO7zLly+TmZm/mGft2rVle3UhhBBCiEdcdHQ0I0eO5Pnnn8dgMNC2bVu++eYbc0LGaDQydOhQzp07h7OzM2FhYcyfPx/In341depUJk6cyGuvvUa/fv1YuXIl8+bNIyIigueffx5nZ2fGjx/P2bNnix2hU6B+/fr8/PPPvPXWW7Rp0walFNWqVeOVV14BoGLFilSpUoWpU6eSlJSERqMxH48ePdpcz+jRowkMDGTu3Ll89NFHZGRkALB27Vp69+5d6L5FnTt79qx5BFABKysrjh8/zqpVq0hOTsbDw4Onn36aHTt2UKdOHQBiYmJISEggISGh0PVKlTwLoWHDhubPDxw4wJo1awgICCApKanYa65cuUK/fv24ePEiLi4u1K9fn++++868vtbBgwfZu3cvUHiEVmJiIlWqVDEfL1++nJdeesm8aP2tHB0diYmJYfjw4TRp0gQPDw969erF9OnTzWXefvttNBoNb7/9NufPn8fLy4uuXbsyY8aMEtu9adMmXnvtNfNxwdcjMjKy2LWvHhSNKu2r9gRLS0vDxcXFvJ2jEEKoXBM7p77H4fhYsjW55vPnAoKx1VSlYmr+ApON9o3CNSMX20aNqPT/VnH9+nX27duHwWCwmKtekgEDBlj8EhNCPBykf2BJnocQ4n7Jzs4mMTGRqlWrlppcEZYyMjLw9/dn7ty5DBw48IHfPyUlhQ4dOuDs7MyWLVuwt7+zqY/i0VTS92xZ+wcyUkoIIcroxOc/Y/Orwuun7WQH5g+hrXAjnaNVHKmWGmoeLm1va0Q/bDRns3PYffkS3PLuxq1u3QIW8qfiWVtb4+npiZ2dnfwyF0IIIYQQRTp06BDHjx+nadOmpKamMm3aNADzlMAHzd3dnR9++IFFixaxZ88eOnToUC5xiEePJKWEEKKMUg4k4a8JxGhIBfITSmd9rvJ7DR/8T2gw2Kdj43mTi4YLnD6dUWQdDRs2xM3NjRo1apT7/G0hhBBCCPHoioqKIi4uDr1eT+PGjdmxYweenp7lFo+Hhwfvvvtuud1fPJokKSWEEGWVqwErMKi/dj/Z0NKFzhe88g/yDFwxnLC4pG7dujz11FNUrFgRnU5X4gKEQgghhBBClEXDhg05cOBAeYchxD2TpJQQQpRCGU3kJKVhp/J3fjFhyn9Bo3j10DS05G/LatLm4erqyrPPPouTkxMVK1Z8pJNQ57IN/H4zC8jf+CbUU3b0E0IIIYQQQtw/kpQSQohSpP1whptbz+Jm5cX5rFNcdcmfumfSaNGixaQxYm0DLw54hsCnvMs52juTa1JkmUxcyDHwzdVUkg15xFxLI08pLub8tZC7lQbOt3+q/AIVQgghhBBCPHYkKSWEEKXIu5Y/Wuhi5kl2Xvkc/PLn6udZ5S9srqmcwRuTXiiv8MosPc/I8YxsMowmPr14jRt5Rram3Cz1uibO9lj9uYi7EEIIIYQQQtwvkpQSQohSqDzFKe1ldmsPoQOs84y4ZuVwumZlyIJK7hXLO0QLWUYTeUrx9dUbpOYZ+fpqKjdyjcRnZpd67YverrjrrGnr7oSvjY7q9rbYW2kfQNRCCCGEEEKIJ40kpYQQohQ3Llwg3uoieVqFDnDJyqHpqYv4Pd2c+Cxwtncol7iUUpzIzMFgMrElOZUz2Qb2pWaQlGUo8brKtnqsNRqauTrQ0MmeTp4uuOussNZo0MqIKCGEEEIIIcQDIkkpIYQoQWbqDVIvXiLPxYjGlL/rnklry5HggWTeCADA2ubBLGZ++GYmB9My+f1mFnEZ2fyenkmWSZV4TR1HW2o62FHVTk9LV0dqONjipdc9kHiFEEIIIYQQoiSSlBJCiBLk5mRjpbFG5WRQ77fDnKjgSo6dF1kejSAnv4yTu+19u19GnpFzObncyM3j88vXuWrIY1tKGgalMBaTf9JpNHjorPG10fG8tyt+NjpCPV2w1oBeK1PvhBBCCCGEEA8n+WtFCCFKYMzLQ6uxwj41Gau8vD/P5o80qu51lE6D6lC3nf9d1Z2WZ2TTlRssP3eVV2JP8uKhE1TbcYR2vx6n+6EE/t+Fa2xJTiXL9FdCSgM85+XCSxXcWF63Ct80DuJs+wbEtqrDliY1GFrZmxcruGFvpZWElBBCCCHEAzJgwAA0Gg0ajQa9Xk/16tWZNm0aeeb+493Ztm0bGo2GGzdu3J9AyyAxMZE+ffrg5+eHra0tFStWpHv37hw/ftyi3ObNm2nXrh1OTk7Y29vz9NNPs3LlSosySUlJaDQaYmNjy3z/KVOmUKtWLRwcHHBzc+PZZ59l7969FnUOHDiQqlWrYmdnR7Vq1YiMjMRgKHkJi4sXL9KnTx9q1KiBVqtl1KhRZY6pwPvvv49Goyl07cmTJ3nxxRfx8vLC2dmZXr16cfnyZYsyM2bMoGXLltjb2+Pq6lpk/QX/h279+PTTT82vf/HFF3Ts2NF8nxYtWvDdd9+VGvcXX3xBp06d8PDwuOOvx99NRkoJIUQxjGkGLh89zzl9OlnpuZi0+estpThb4wpUdrtEUJMKxVeQdgEO/j/IzSIbLQu0NUjEkR80PuSiJVtT/LQ/d50VWjQ84+FEdXtbQj1dcLG2wltvLes+CSGEEEI8hMLCwoiOjiYnJ4dvvvmGoUOHotPpmDRpUnmHBoDBYECv15dYJjc3l44dO1KzZk2++OILfH19OXfuHFu2bLFIjH388ceMGjWKCRMmsHjxYvR6PRs3biQiIoLff/+dqKiou46zRo0aLFy4kMDAQLKyspg/fz6dOnUiISEBLy8vjh8/jslkYunSpVSvXp3ff/+dwYMHk5GRUeJ9c3Jy8PLy4u2332b+/Pl3HNe+fftYunQp9evXtzifkZFBp06daNCgAT/99BMA77zzDl27duWXX35B++cbxQaDgZ49e9KiRQuWL19e7H2io6MJCwszH9+awNq+fTsdO3Zk5syZuLq6Eh0dTdeuXdm7dy8NGzYsts6MjAxat25Nr169GDx48B23/e8kSSkhhCiC8aaB87N/4Uvr7Rj02dhnXkXj5vTnq/k/Oq2tS0kO7ZwPvy4D4AfPtsyr073IYk87O2BvpaW5qwNV7Wxo7uqIj42s+ySEEEII8SixsbHBx8cHgDfeeIMvv/ySTZs2ERERwciRI/nqq6/IycmhXbt2LFiwgKCgIABOnz7NsGHD2LlzJwaDgSpVqjBnzhyCg4MJCQkBwM3NDYD+/fuzcuVKbt68SUREBBs2bMDZ2Znx48ezceNGnnrqKT788EMAqlSpwsCBAzlx4gQbNmzgpZdeYuXKlezcuZNJkyaxf/9+PD09efHFF5k1axYODg788ccfnDx5kh9//JGAgPz1UwMCAmjVqpW5nWfPnmXMmDGMGjWKmTNnms+PGTMGvV7PiBEj6NmzJ82aNbur59inTx+L43nz5rF8+XIOHz5Mhw4dCAsLs0jaBAYGEhcXx+LFi0tMSlWpUoWPPvoIgBUrVtxRTOnp6fTt25dPPvmE6dOnW7y2a9cukpKSOHToEM7OzgCsWrUKNzc3fvrpJ5599lkApk6dClBoNNntXF1dzf+PblfwtS0wc+ZMNm7cyFdffVViUio8PBzIH2X2sJG5HUIIUYS8lGzyjEYMmjysb97AKi+DdNv8d5aUlT0AVo6uJVeSmZL/b5U2XK35IgA1TalMyjvCN7k/sN+wmZNOR/iqcRCfPVWN0VV8eKGCmySkhBBCCCEeA3Z2dhgMBgYMGMD+/fvZtGkTe/bsQSlFly5dyM3NBWDo0KHk5OSwfft2jhw5wuzZs3F0dKRSpUp8/vnnAMTFxXHx4kVzUuXNN99k165dbNq0iZiYGHbs2MHBgwcLxRAVFUWDBg04dOgQ77zzDidPniQsLIwePXpw+PBhPvvsM3bu3MmwYcMA8PLyQqvVsn79eoxGY5HtWr9+Pbm5uYwdO7bQa0OGDMHR0ZG1a9fel2doMBhYtmwZLi4uNGjQoNhyqampuLu735d7FmXo0KE899xz5gTTrXJyctBoNNjY2JjP2draotVq2blz513dy9PTk6ZNm7JixQqUKn5jI5PJxM2bN//Wtv/dZKSUEEIUQeWZMGECMO+655yZg43mBrqA/qSkgVWj3iVXYvxzJfQ6L3DT+zk4dZGGflUZWbvd3xm6EEIIIcRjQylFVl5WudzbztoOzV0sm6CU4scff+S7776jc+fObNiwgV27dtGyZUsAVq9eTaVKldiwYQM9e/bkzJkz9OjRg3r16gH5I38KFCQbvL29zdO4bt68yapVq1izZg0dOnQA8qd8+fn5FYrlmWeeYcyYMebjQYMG0bdvX/OaSEFBQSxYsIB27dqxePFi/P39WbBgAePHj2fq1Kk0adKEkJAQ+vbta44rPj4eFxcXfH19C91Pr9cTGBhIfHz8HT+3W23evJnevXuTmZmJr68vMTExeHp6Flk2ISGBjz/++J6mDJbk008/5eDBg+zbt6/I15s3b46DgwMTJkxg5syZKKWYOHEiRqORixcv3tG9pk2bxjPPPIO9vT3ff/89//d//0d6ejojRowosnxUVBTp6en06tXrjtv1sJCklBBCFCXPhBEFSmGbmQmAU7YBne1NDHoPAKxs7Uqpw8Axh0CW51Tl4OXrADhbF7+OlBBCCCGEsJSVl0WzNXc3Dexe7e2zF3udfZnLb968GUdHR3JzczGZTPTp04eXXnqJzZs3W0xl8/DwoGbNmhw7dgyAESNG8MYbb/D999/z7LPP0qNHj0LrFt3q1KlT5Obm0rRpU/M5FxcXatasWahskyZNLI5/++03Dh8+zOrVq83nlFKYTCYSExOpXbs2Q4cOpV+/fmzbto1ffvmFdevWMXPmTDZt2kTHjh3L9CxKW7sK8pNzQ4YMMR9v2bKFNm3aABASEkJsbCzJycl88skn9OrVi7179+Lt7W1Rx/nz5wkLC6Nnz54WayU5OjqaP3/11VdZsmRJqfHs2LGDzp07m4+XLl1K27ZtGTlyJDExMdjaFr3jtpeXF+vWreONN95gwYIFaLVa/vGPf9CoUSPzelJl9c4775g/b9iwIRkZGcyZM6fIpNSaNWuYOnUqGzduND+Xkp7pw0qSUkIIUQSVpzBpTFRPSMDl7CnifT3QKoXJWmE0agCFlXUpv2SMOcyvHM6mXA/IzQbAT6bmCSGEEEI8lkJCQsyLfvv5+WFtbc2mTZtKvW7QoEGEhoby9ddf8/333zNr1izmzp3L8OHD7zkmBwcHi+P09HSGDBlSZJKjcuXK5s+dnJzo2rUrXbt2Zfr06YSGhjJ9+nQ6duxIUFAQqampXLhwodDoLIPBwMmTJwkNDS01tm7dulkk6/z9/9rR2sHBgerVq1O9enWaN29OUFAQy5cvt1g0/sKFC4SEhNCyZUuWLVtmUfetu8sVrPNUmiZNmlhcV6FCBX788UeuXLlCo0aNzOeNRiPbt29n4cKF5OTkYGVlRadOnTh58iTJyclYW1ub14W6ddTb3WjWrBnvvfceOTk5FtMDP/30UwYNGsS6dessphSW9EwfVpKUEkKIIpz89Rc0WOOSmmrede+KVwOU6zNY3cif122lKyUplWfg5p8dgW7errR2daRHBbe/NW4hhBBCiMeJnbUde/vsLbd734mCRMqtateuTV5eHnv37jVP37t27RpxcXEEBweby1WqVImIiAgiIiKYNGkSn3zyCcOHDzePOLp1fafAwEB0Oh379u0zJ5JSU1OJj4+nbdu2JcbYqFEjjh49WijOkmg0GmrVqsXu3bsBePnll5kwYQJz585l7ty5FmWXLFlCZmYm/fr1K7VeJycnnJycSi0H+Wsn5eTkmI/Pnz9PSEgIjRs3Jjo6utCIpDtpXwE7O7tC13Xo0IEjR45YnHvttdeoVasWEyZMwMrKchZEwRTDn376iStXrtCtW7c7juNWsbGxuLm5WSSk1q5dyz//+U8+/fRTnnvuOYvyd/JMHxaSlBJCiCJcP38eFyqhNZrI+3MtgTydOzrlggKsbaxw9iilo2I0kKPN70h08XThBUlICSGEEELcEY1Gc0dT6B42QUFBdO/encGDB7N06VKcnJyYOHEi/v7+dO+evzPzqFGj6Ny5MzVq1OD69ets3bqV2rVrA/k732k0GjZv3kyXLl2ws7PDycmJ/v37M27cONzd3fH29iYyMhKtVlvqGlgTJkygefPmDBs2jEGDBuHg4MDRo0eJiYlh4cKFxMbGEhkZSXh4OMHBwej1en7++WdWrFjBhAkTgPwRVR988AFjx47F1taW8PBwdDodGzduZPLkyUyfPp26deta3DcuLq5QLHXq1EGns5xFkJGRwYwZM+jWrRu+vr4kJyezaNEizp8/T8+ePYH8hFT79u0JCAggKiqKq1evmq8vbte6AgUjodLT07l69SqxsbHo9XqLBOGtnJycCrXFwcEBDw8Pi/PR0dHUrl0bLy8v9uzZw8iRIxk9erTFlMozZ86QkpLCmTNnMBqN5liqV6+Oo6MjX331FZcvX6Z58+bY2toSExPDzJkzLRaUX7NmDf379+ejjz6iWbNmXLp0CchPqLm4uBTb7oL7XrhwAfjr6+Hj41PqM/u7SVJKCCFuo0wK8sCEiVyjBlPBL3eNFQb9Jfr9X1McKgVg61DKVDxjDgZNfhkb7Z0vkimEEEIIIR590dHRjBw5kueffx6DwUDbtm355ptvzAkZo9HI0KFDOXfuHM7OzoSFhTF//nwgf/rV1KlTmThxIq+99hr9+vVj5cqVzJs3j4iICJ5//nmcnZ0ZP348Z8+eLXbdowL169fn559/5q233qJNmzYopahWrRqvvPIKABUrVqRKlSpMnTqVpKQkNBqN+Xj06NHmekaPHk1gYCBz587lo48+IiMjA8gfxdO7d+HNgIo6d/bsWSpWrGhxzsrKiuPHj7Nq1SqSk5Px8PDg6aefZseOHdSpUweAmJgYEhISSEhIKHR9STvVQf46TQUOHDjAmjVrCAgIICkpqcTrShMXF8ekSZNISUmhSpUqvPXWWxbPC+Ddd99l1apVhWLZunUr7du3R6fTsWjRIkaPHo1SiurVqzNv3jyLtbKWLVtGXl4eQ4cOZejQoebz/fv3Z+XKlcXGt2nTJl577TXzccHXIzIykilTptxL0++ZRpX2VXuCpaWl4eLiQmpqapnnoQohHm15qTlc+fgQpvRcrmhSSdq3mDyVxllPF6xtW5Dn7sOYWT3BtpifCcY8+HwgJMfDtQQ6NljEEacarK4fSAcP+TkiHg95eTfJy0v/8+ivbkR+l0Ldck7dcu6vsn91PfJfUwWvW5TNf4U7LvvXOXv7QHS64t81vFvSP7Akz0MIcb9kZ2eTmJhI1apVS02uCEsZGRn4+/szd+5cBg4c+MDvn5KSQocOHXB2dmbLli3Y2z+6o9tE2ZX0PVvW/oGMlBJCiFvknr1JZnomJ60uce7mUW66KpTmz3nZGis0dvbFJ6QArhyFoxvMhwXT92SklHhcXL+xj0OHwlEqt7xDKVX9+svw8uxQ3mEIIYQQ992hQ4c4fvw4TZs2JTU1lWnTpgGYpwQ+aO7u7vzwww8sWrSIPXv20KGD/P4VZSNJKSGEuIXKM/GbdRJHrM9gd/Mk1lZ/LZqosfLE1cmr5Apys/L/dfKFF5diuOgGBhM2d7gdrBAPoxOXb3Lu7M9/JqQ05HcjNGg0/LmGRUHyVXPLmha3ni9cruBzy/NF16EpeF1zWzmL83/VY6WVd9mFEEI8vqKiooiLi0Ov19O4cWN27NhhXmi7PHh4ePDuu++W2/3Fo0mSUkIIcQuVp8jSGADQGPMAqH0+meTgQG5qA/Fy9Ci5AmP+riC/udZjnz6Y66b8xQf1MlJKPOL+OJ9K+Ceb6BoYS9uKsCXxGdafyH839vM3WtA4wL2cIxRCCCGeHA0bNuTAgQPlHYYQ90ySUkIIcQtlNGHEhH1GBjZZWeRpwSEnl+vWejCBlXUpyaU8A0a09AwYTdqJ8+bTjlYyUko82k4nTmdO2y/Mxw62HtTxy5/KaquzKu4yIYQQQgghiiVJKSGEuMXlEycwYaLNjh0c9nYi3c6GXJ0TedoK+UkpXSnJpbxssrU2pFnlL+74vJcLdR3tCLSzeQDRC3H/7T11jc2HL1JXfwAbWzAqPQ62nozrPgBHx5qlVyCEEEIIIUQxJCklhBC3OPf7Hxh1Juwys1Ca/FEgx2r/E21e/naz1talJKWMOeRodebDJcFVsJape+IRNunLI5y6msEHbdIASDDO5v9adSvnqIQQQgghxONAklJCCHELo8GEUWdCYzJhKkgmaazQaHJw83GjRnOfkivIyyFXm/+jVQNYST5KPMJycq7QP+hdnILTcLG5CcBLjYPLOSohhBBCCPG4kKSUEEIAxnQDmbFXcdd6YdScx8powmTe4csKW7uj/OPdN2/b9esWeTnw/TtwZjc5Gj0ANtpbdw8T4tGhlGJeTDyGm9/Q1O2vtdH0ei+83SqVY2RCCCGEEOJxIivvCiEEkPbjGa5ujuemXkumysZK3ZKU0lhhZetQfEIKIGkn/LoULh3B8Of0PdlxTzyq/riQxsc/JXDqcn5C6lhKXZo+/TUtmv+AVivrowkhhBBCiPtDRkoJIQRgSs/lF+sTxFtfwObSGXZV9yfXvGOeFda+tUquwJCR/69bVXJbvwNpoNNI3l88mq5c+ZbZbaJw0uf/v25SrS5OTqV8DwghhBBCCHGH5C8mIYQAVJ6JdE02GPPQX79CqoMtaDSYNBo0Wnu8HD1KrsBoyP/XpSI5QZ2B/Ol7QjxK8owmFm1N4PS59XjapWBjlQNAgE/jco5MCCGEeLgNGDAAjSZ/6Qa9Xk/16tWZNm0aeXl591Tvtm3b0Gg03Lhx4/4EWgaJiYn06dMHPz8/bG1tqVixIt27d+f48eMW5TZv3ky7du1wcnLC3t6ep59+mpUrV1qUSUpKQqPREBsbW+b7T5kyhVq1auHg4ICbmxvPPvsse/futahz4MCBVK1aFTs7O6pVq0ZkZCQGg6HEei9evEifPn2oUaMGWq2WUaNGlTmm8+fP8+qrr+Lh4YGdnR316tVj//795tdv/foXfISFhVnUUaVKlUJl3n//ffPrcXFxhISEUKFCBWxtbQkMDOTtt98mNzfXop4bN24wdOhQfH19sbGxoUaNGnzzzTclxv/FF1/QqVMnPDw87vjr8XeTkVJCCAEoo8KoMaIxmv48oWiceInM1vVJzNKj0+lKrsBoINXKkQ3OLYi/lALI9D3x6Nl98hpzvotj4tM3wAHiMgfwWof+2NlVLu/QhBBCiIdeWFgY0dHR5OTk8M033zB06FB0Oh2TJk0q79AAMBgM6PX6Esvk5ubSsWNHatasyRdffIGvry/nzp1jy5YtFomxjz/+mFGjRjFhwgQWL16MXq9n48aNRERE8PvvvxMVFXXXcdaoUYOFCxcSGBhIVlYW8+fPp1OnTiQkJODl5cXx48cxmUwsXbqU6tWr8/vvvzN48GAyMjJKvG9OTg5eXl68/fbbzJ8/v8zxXL9+nVatWhESEsKWLVvw8vLixIkTuLm5WZQr+PoXsLEpvOTBtGnTGDx4sPnYycnJ/LlOp6Nfv340atQIV1dXfvvtNwYPHozJZGLmzJlA/tewY8eOeHt7s379evz9/Tl9+jSurq4ltiEjI4PWrVvTq1cvi/s/DCQpJYQQAHkmTCjcryVjAKxMCo+MTEzWtgBYWZcysDQvh39V6s1Hbs/B+WQAHK2s/uaghbi/rqfE8Grt7/B3ugxA6FNtJSElhBBClJGNjQ0+Pvk7Nb/xxht8+eWXbNq0iYiICEaOHMlXX31FTk4O7dq1Y8GCBQQFBQFw+vRphg0bxs6dOzEYDFSpUoU5c+YQHBxMSEgIgDkB0r9/f1auXMnNmzeJiIhgw4YNODs7M378eDZu3MhTTz3Fhx9+COSPzBk4cCAnTpxgw4YNvPTSS6xcuZKdO3cyadIk9u/fj6enJy+++CKzZs3CwcGBP/74g5MnT/Ljjz8SEBAAQEBAAK1atTK38+zZs4wZM4ZRo0aZkyUAY8aMQa/XM2LECHr27EmzZs3u6jn26dPH4njevHksX76cw4cP06FDB8LCwixGIQUGBhIXF8fixYtLTEpVqVKFjz76CIAVK1aUOZ7Zs2dTqVIli4RT1apVC5W79etfHCcnp2LLBAYGEhgYaD4OCAhg27Zt7Nixw3xuxYoVpKSksHv3bvOb5lWqVCm1DeHh4UD+KLOHjUzfE0I88UxGI1dOnUKflkLzPb8AoFWKK541ycitCICVdSmjnoy5XNbnT/Gr62jHyxXcmFLd72+NW4j7yWTKwyFzGiGVdmJvnb+WlK+7JKSEEEKUL6UUpszMcvlQSt1T7HZ2dhgMBgYMGMD+/fvZtGkTe/bsQSlFly5dzNOyhg4dSk5ODtu3b+fIkSPMnj0bR0dHKlWqxOeffw7kT+26ePGiOany5ptvsmvXLjZt2kRMTAw7duzg4MGDhWKIioqiQYMGHDp0iHfeeYeTJ08SFhZGjx49OHz4MJ999hk7d+5k2LBhAHh5eaHValm/fj1Go7HIdq1fv57c3FzGjh1b6LUhQ4bg6OjI2rVr7+nZFTAYDCxbtgwXFxcaNGhQbLnU1FTc3d3vyz1vt2nTJpo0aULPnj3x9vamYcOGfPLJJ4XKbdu2DW9vb2rWrMkbb7zBtWvXCpV5//338fDwoGHDhsyZM6fE6Z0JCQl8++23tGvXziKWFi1aMHToUCpUqEDdunWZOXNmsV+rR4GMlBJCPPHSU65hzDFgk5Vu3nEvz9qG48EjIDu/jJWulBy+MYccbf5w6F4+brxeyfvvDFmI++qjH07wxYE/ePfp/M5xYvYrdG3cEnv7wu8CCiGEEA+SysoirlH5rG1Y8+ABNPb2d3ydUooff/yR7777js6dO7NhwwZ27dpFy5YtAVi9ejWVKlViw4YN9OzZkzNnztCjRw/q1asHYDFapiDR4u3tbZ6idfPmTVatWsWaNWvo0KEDANHR0fj5FX5D9JlnnmHMmDHm40GDBtG3b1/zekpBQUEsWLCAdu3asXjxYvz9/VmwYAHjx49n6tSpNGnShJCQEPr27WuOKz4+HhcXF3x9fQvdT6/XExgYSHx8/B0/t1tt3ryZ3r17k5mZia+vLzExMXh6ehZZNiEhgY8//viepgyW5NSpUyxevJg333yTyZMns2/fPkaMGIFer6d///5A/tS9l156iapVq3Ly5EkmT55M586d2bNnD1Z/zp4YMWIEjRo1wt3dnd27dzNp0iQuXrzIvHnzLO7XsmVLDh48SE5ODq+//jrTpk2ziOWnn36ib9++fPPNNyQkJPB///d/5ObmEhkZ+be0/+8mI6WEEE88Y14uWo01mPLMSalc6/ycvaPVVfxrulHj6ZKH4mI0mJNStlr50SoeLV8e+ANHbQIAWXk2OHlFUKHC8+UclRBCCPFo2bx5M46Ojtja2tK5c2deeeUVBgwYgLW1tcVUNg8PD2rWrMmxY8eA/GTF9OnTadWqFZGRkRw+fLjE+5w6dYrc3FyaNm1qPufi4kLNmjULlW3SpInF8W+//cbKlStxdHQ0f4SGhmIymUhMTATyR25dunSJ1atX06JFC9atW0edOnWIiYkp87Mobe0qyE/O3RrHrdPUQkJCiI2NZffu3YSFhdGrVy+uXLlSqI7z588TFhZGz549LdZKurXeiIiIMsW8Y8cOi+tWr14NgMlkolGjRsycOZOGDRvy+uuvM3jwYJYsWWK+tnfv3nTr1o169erxwgsvsHnzZvbt28e2bdvMZd58803at29P/fr1iYiIYO7cuXz88cfk5ORYxPHZZ59x8OBB1qxZw9dff22RbDOZTHh7e7Ns2TIaN27MK6+8wltvvWWOpaRn+rCSkVJCiCda1u/JXN74C9f1RvKMOZjMi5PnJ5aedttI8Og1xVeQcQ1+/xySdpJtFwqAjSSlxCPk5s1jTG48Ditt/iL/TnbuPP+0TNsTQgjxcNDY2VHz4IFyu/edCAkJMS/67efnh7W1NZs2bSr1ukGDBhEaGsrXX3/N999/z6xZs5g7dy7Dhw+/29DNHBwcLI7T09MZMmQII0aMKFS2cuW/fv87OTnRtWtXunbtyvTp0wkNDWX69Ol07NiRoKAgUlNTuXDhQqHRWQaDgZMnTxIaGlpqbN26dbNI1vn7+1vEXb16dapXr07z5s0JCgpi+fLlFovGX7hwgZCQEFq2bMmyZcss6r51dzlnZ+dSY4H8BN6t11WoUAEAX19fgoODLcrWrl3bPLWyKIGBgXh6epKQkGAezXa7Zs2akZeXR1JSkkVCsVKlSgAEBwdjNBp5/fXXGTNmDFZWVvj6+qLT6cyjrwpiuXTpEgaDocRn+rCSpJQQ4omWvO44GzhOtm0uLtpU80gpNPk/6HWlrSW1fQ7sXQxATv2uANjIrnviEfH9H5e4cmUrvloTeSYttnpnKld8pbzDEkIIIcw0Gs1dTaErDwWJlFvVrl2bvLw89u7da56+d+3aNeLi4iwSHZUqVSIiIoKIiAgmTZrEJ598wvDhw80jjm5dMygwMBCdTse+ffvMiaTU1FTi4+Np27ZtiTE2atSIo0ePFoqzJBqNhlq1arF7924AXn75ZSZMmMDcuXOZO3euRdklS5aQmZlJv379Sq3XycnJYve5kphMJosRRefPnyckJITGjRsTHR2N9rY3he+kfQXs7OyKvK5Vq1bExcVZnIuPjzcvBF+Uc+fOce3atSKnOBaIjY1Fq9Xi7V38sh8mk4nc3FxMJhNWVla0atWKNWvWYDKZzG2Oj4/H19cXvV6PXq8v8zN9WEhSSgjxxFImhSHHQLZtLtqsDFRGFsd98+ft61X+D3mrivVLruTmxfy6/BuT7Zz/roZM3xOPgpNX03n9Pwd4tnIi/6gFsVefYnzv/6HRSFJVCCGEuF+CgoLo3r07gwcPZunSpTg5OTFx4kT8/f3p3r07AKNGjaJz587UqFGD69evs3XrVmrXrg3k78Cm0WjYvHkzXbp0wc7ODicnJ/r378+4ceNwd3fH29ubyMhItFptqb/HJ0yYQPPmzRk2bBiDBg3CwcGBo0ePEhMTw8KFC4mNjSUyMpLw8HCCg4PR6/X8/PPPrFixggkTJgD5I6o++OADxo4di62tLeHh4eh0OjZu3MjkyZOZPn06devWtbjv7UkdgDp16ph3kCuQkZHBjBkz6NatG76+viQnJ7No0SLOnz9Pz549gfyEVPv27QkICCAqKoqrV6+ary9t97uCkVDp6elcvXqV2NhY9Hp9oZFQtxo9ejQtW7Zk5syZ9OrVi19//ZVly5aZR2elp6czdepUevTogY+PDydPnmT8+PFUr17dPGJsz5497N27l5CQEJycnNizZw+jR4/m1VdfNe+suHr1anQ6HfXq1cPGxob9+/czadIkXnnlFfNzeuONN1i4cCEjR45k+PDhnDhxgpkzZxY58u1WKSkpnDlzhgsXLgB/fT18fHxKfWZ/N0lKCSGeXEYTRvKnLOlTLqNMijR72/xjvSsAVs0HlVxHXjYHnIL5R/U5pJE/ukpGSolHwcUb+av4u9rmL27+VGV/SUgJIYQQf4Po6GhGjhzJ888/j8FgoG3btnzzzTfmRIPRaGTo0KGcO3cOZ2dnwsLCmD9/PpA//Wrq1KlMnDiR1157jX79+rFy5UrmzZtHREQEzz//PM7OzowfP56zZ89ia2tbYiz169fn559/5q233qJNmzYopahWrRqvvJI/UrpixYpUqVKFqVOnkpSUhEajMR+PHj3aXM/o0aMJDAxk7ty5fPTRR2Rk5O/cu3btWnr37l3ovkWdO3v2LBUrVrQ4Z2VlxfHjx1m1ahXJycl4eHjw9NNPs2PHDurUqQNATEwMCQkJJCQkFLq+tB0TGzZsaP78wIEDrFmzhoCAAJKSkoq95umnn+bLL79k0qRJTJs2japVq/Lhhx/St29fc8yHDx9m1apV3LhxAz8/Pzp16sR7772HjY0NADY2Nnz66adMmTKFnJwcqlatyujRo3nzzTfN97G2tmb27NnEx8ejlCIgIIBhw4ZZPPdKlSrx3XffMXr0aOrXr4+/vz8jR440JwyLs2nTJl577TXzccHXIzIykilTppR47d9No+51n8vHWFpaGi4uLqSmppZ5HqoQ4tFhysojbtpPfKbfhfOpYyhDJv4paWQ7ZmJdbSKp6e50H/UUFWuVsL3sqq4syKvEzMDXAXCztmJb01pUsNEVf40QD4Fv9/0b04256LW5aDSKypUGEhQ0ubzDeiRI/8CSPA8hxP2SnZ1NYmIiVatWLTW5IixlZGTg7+/P3LlzGThw4AO/f0pKCh06dMDZ2ZktW7Zg/4hMuRT3pqTv2bL2D2SOiRDiiaXy8kdKeV5NxjM5f9ivR3o29tqbKE3+opBWOquSqoDcLHK0+Qmo3j7u/NaqjiSkxEMtO9fI5C+PkHTuW2ysDGg0CtDi4lo+220LIYQQ4s4dOnSItWvXcvLkSQ4ePGgetVMwJfBBc3d354cffqBDhw7s2bOnXGIQjyaZvieEeGJlXLuBERMOGRnmBc5PVG1Hrnsw+oz8RSWtilvoPCURzu6Fm5fIcc8fBuxsbYVe1pMSD7mdJ5JZs/cMoxrlT987lTOQAc8ORadzKefIhBBCCHEnoqKiiIuLQ6/X07hxY3bs2IGnp2e5xePh4cG7775bbvcXjyZJSgkhnlgJe38BtOQaNVj/uQ5Unm0Q1nkBmACtVoOjWzFDx/9fN7hxBgCDZ/7IKL2sJSUeAek5eQA42+TP3u9YL1gSUkIIIcQjpmHDhhw4cKC8wxDinklSSgjxxFFGE6n7T3Pu12MouwpcNurx0fw5wkljRa7+Mi8+a4NL8zDsnfVFVKAg9Vz+5wGtyanQAJCklHg0ZOXmbyltr1d//mtXnuEIIYQQQognmCSlhBBPnPTdF9j63c/85pQFKhGN7gy5VgXT7qzRWKcSUK0CeBezQKMpD1T+rn288h8MZ9LhYgo2Gpm6Jx5+WYb8pJS1Nn/ElFZbROJVCCGEEEKIB0CSUkKIJ05eSjbpmiwAHC+eRZNjRZZN/oLmGo0VvsZMcK9WQgU5f31ubYvBdBOQkVLi0ZCd92dSSiNJKSGEEEIIUb4kKSWEeOKYcvLIJf8Pc5WeggbQ5+ZhpbPDZFUBh8Bq4Fu/+Ar+TEpt9Aph16lk9qdmAJKUEg+3c9cz+fTXs+w+mQyAlSYXAI0kpYQQQgghRDmRpJQQ4olzLekseX8mpTQqf10dV1UXg1NdsjVWWDs6l1xBXjYGjTXDa03GcDHFfNpDJz9SxcNr0dYE1v56FmtNLhXsU7DW5idXtRpdOUcmhBBCCCGeVPIXlBDiiZOXZSBXY6RC/BlyDEaM1nDdvS5W1pUBcHS1KbkCYw5ZWlsMf44wGVvFB2+9NZ29ZAcz8fC6npELKN5vNx83/TnzeZm+J4QQQgghyoskpYQQTwxlVKxftIxjpkvYZGXQ7eAettWqTKa1Do3GGpe8AzR69UWqNatSdAUmI+z7N1w6TLZV/h/yWmBMlQpoNDJ1TzzcDEYT1to8c0LK2toZB4caODhUL+fIhBBCCCHEk0q2ihJCPDHSYk5z/NplTBqFPtcAQJ55HShrnDx+I7iVPzZ2xeTrT++GLePh0H/J1uaPprLRaiUhJR4JhjwTuj933ANo3eoXmjT+TEZKCSGEEPfBgAED0Gg0aDQa9Ho91atXZ9q0aeTl5ZV+cQm2bduGRqPhxo0b9yfQMkhMTKRPnz74+flha2tLxYoV6d69O8ePH7cot3nzZtq1a4eTkxP29vY8/fTTrFy50qJMUlISGo2G2NjYMt9/ypQp1KpVCwcHB9zc3Hj22WfZu3evRZ0DBw6katWq2NnZUa1aNSIjIzEYDCXWe/HiRfr06UONGjXQarWMGjWqTPEYjUbeeecdi/u99957qD+XAQH44osv6NSpEx4eHsW29+TJk7z44ot4eXnh7OxMr169uHz58h236/Dhw7Rp0wZbW1sqVarEBx98UGobtm/fTteuXfHz80Oj0bBhw4Yytf1BkKSUEOKJkZuciQkTAE/dcCVPq8FYkJTSWFONdLAqYepeZv4C0Tj7k93oNQDsrCQhJR4NBSOlCkgy6tG1aNEiqlSpgq2tLc2aNePXX38tsfy6deuoVasWtra21KtXj2+++abYshEREWg0Gj788MP7HLUQQjz+wsLCuHjxIidOnGDMmDFMmTKFOXPmlHdYZqUlbQByc3Pp2LEjqampfPHFF8TFxfHZZ59Rr149i8TYxx9/TPfu3WnVqhV79+7l8OHD9O7dm4iICMaOHXtPcdaoUYOFCxdy5MgRdu7cSZUqVejUqRNXr14F4Pjx45hMJpYuXcoff/zB/PnzWbJkCZMnTy6x3pycHLy8vHj77bdp0KBBmeOZPXs2ixcvZuHChRw7dozZs2fzwQcf8PHHH5vLZGRk0Lp1a2bPnl1kHRkZGXTq1AmNRsNPP/3Erl27MBgMdO3aFZPJVOZ2paWl0alTJwICAjhw4ABz5sxhypQpLFu2rMQ2ZGRk0KBBAxYt8bYErQABAABJREFUWlTmdj8wShQrNTVVASo1NbW8QxFC3AeXVh5RkZGRasrkiWpuzy4qqtdz5o8Fg75QJ6b2LbmCQ2uUinRW6v+9oGLTMlSFnw6phrt+fzDBC3GPui/cqZ569z/qhx8D1Y8/1SrvcB5p5dk/+PTTT5Ver1crVqxQf/zxhxo8eLBydXVVly9fLrL8rl27lJWVlfrggw/U0aNH1dtvv610Op06cuRIobJffPGFatCggfLz81Pz588vc0zSXxJC3C9ZWVnq6NGjKisrq7xDuWP9+/dX3bt3tzjXsWNH1bx5c5WSkqLCw8OVq6ursrOzU2FhYSo+Pt5cLikpST3//PPK1dVV2dvbq+DgYPX111+rxMREBVh89O/fXymlVFpamurTp4+yt7dXPj4+at68eapdu3Zq5MiR5noDAgLUtGnTVHh4uHJycjJfu2PHDtW6dWtla2urKlasqIYPH67S09OVUkodOnRIASopKanYtp45c0bpdDr15ptvFnptwYIFClC//PKLUkqZ23Do0KE7f6h/Kvg988MPPxRb5oMPPlBVq1Ytc523P6uSPPfcc+qf//ynxbmXXnpJ9e1b+G+H4tr73XffKa1Wa/G78saNG0qj0aiYmJhi7317u/71r38pNzc3lZOTYz43YcIEVbNmzTK1RSmlAPXll1+WuXxJSvqeLWv/QEZKCSGeGDmZ+buNWWVlom6Zcqex8kSjdcTmuXdLriAvi0ytDTNcQ5mTeAkAG62MlBKPBkOeCZ1VLiCjpB5l8+bNY/Dgwbz22msEBwezZMkS7O3tWbFiRZHlP/roI8LCwhg3bhy1a9fmvffeo1GjRixcuNCi3Pnz5xk+fDirV69Gp5MdGYUQDw+lFLk5xnL5ULdMz7obdnZ2GAwGBgwYwP79+9m0aRN79uxBKUWXLl3Izc3/vTx06FBycnLYvn07R44cYfbs2Tg6OlKpUiU+//xzAOLi4rh48SIfffQRAG+++Sa7du1i06ZNxMTEsGPHDg4ePFgohqioKBo0aMChQ4d45513OHnyJGFhYfTo0YPDhw/z2WefsXPnToYNGwaAl5cXWq2W9evXYzQai2zX+vXryc3NLXJE1JAhQ3B0dGTt2rX39OwKGAwGli1bhouLS4mjm1JTU3F3d78v97xdy5Yt+fHHH4mPjwfgt99+Y+fOnXTu3LnMdeTk5KDRaLCx+WtWhq2tLVqtlp07dxZ73e3t2rNnD23btkWv/6svFxoaSlxcHNevX7+TZj00ZKFzIcQTIS85mfSL10ALOSYNdoBeuaFxexVPu0tUbF0Fv6eqlVJJDjEeLfnYsTlcSwPAWy9/vIlHg8H415pSkpR6NBkMBg4cOMCkSZPM57RaLc8++yx79uwp8po9e/bw5ptvWpwLDQ21WEvCZDIRHh7OuHHjqFOnzt8SuxBC3K08g4llI38ul3u//lE7dDZWd3ydUooff/yR7777js6dO7NhwwZ27dpFy5YtAVi9ejWVKlViw4YN9OzZkzNnztCjRw/q1asHQGBgoLmugoSEt7c3rq6uANy8eZNVq1axZs0aOnToAEB0dDR+fn6FYnnmmWcYM2aM+XjQoEH07dvXvJ5SUFAQCxYsoF27dixevBh/f38WLFjA+PHjmTp1Kk2aNCEkJIS+ffua44qPj8fFxQVfX99C99Pr9QQGBpoTOHdr8+bN9O7dm8zMTHx9fYmJicHT07PIsgkJCXz88cdERUXd0z2LM3HiRNLS0qhVqxZWVlYYjUZmzJhB3759y1xH8+bNcXBwYMKECcycOROlFBMnTsRoNHLx4sUirymqXZcuXaJq1aoW5SpUqGB+zc3N7S5aWL5kpJQQ4olwYfwEcq6ngNHEtZT8zoUGazQaHU/57KP1y0FYWZXyIzE3ixvWTgDUdLDlnWp+zKtV6e8OXYh78u8dp+i1dA9nUzKx1khS6lGWnJyM0Wg0dz4LVKhQgUuXLhV5zaVLl0otP3v2bKytrRkxYkSZ4sjJySEtLc3iQwghRH4ixdHREVtbWzp37swrr7zCgAEDsLa2plmzZuZyHh4e1KxZk2PHjgEwYsQIpk+fTqtWrYiMjOTw4cMl3ufUqVPk5ubStGlT8zkXFxdq1qxZqGyTJk0sjn/77TdWrlyJo6Oj+SM0NBSTyURiYiKQP3Lr0qVLrF69mhYtWrBu3Trq1KlDTExMmZ/FrSN5irN69WqLOHbs2GF+LSQkhNjYWHbv3k1YWBi9evXiypUrheo4f/48YWFh9OzZk8GDB5vP31pvREREmWLesWOHxXWrV68G4H//+x+rV69mzZo1HDx4kFWrVhEVFcWqVavKVC/kj0Bbt24dX331FY6Ojri4uHDjxg0aNWqEVlv4b5Di2nW3bXiYyUgpIcQTIffSJfJqQOXTZ2h+8hh/VPQCTX5yytq6lGTUb5/Bof/A9dNkOTUHoK6jHUMre//dYQtxT5RSvL/lOHkmE4Pr/T9quJ0EJCkl/nLgwAE++ugjDh48WOadRGfNmsXUqVP/5siEECKftV7L6x+1K7d734mQkBAWL16MXq/Hz88Pa2trNm3aVOp1gwYNIjQ0lK+//prvv/+eWbNmMXfuXIYPH363oZs5ODhYHKenpzNkyJAi34ioXLmy+XMnJye6du1K165dmT59OqGhoUyfPp2OHTsSFBREamoqFy5cKDQ6y2AwcPLkSUJDQ0uNrVu3bhbJOn9/f4u4q1evTvXq1WnevDlBQUEsX77cYrTwhQsXCAkJoWXLloUW+r519ztnZ+dSY4H8BN6t1xW8qTNu3DgmTpxI7969AahXrx6nT59m1qxZ9O/fv0x1A3Tq1ImTJ0+SnJyMtbU1rq6u+Pj4WIyMK61dPj4+Fjv2AeZjHx8fqlSpUmQbHmYyUkoI8UQ45ejAH/aXsMtIN68nZbTKz8uXOkJq20xI2gGpZ8jS5s8DtyviHQ0hHjY5eSbyTAovu2Sa+x7A3fYGAPb2gSVfKB5Knp6eWFlZFdkZ9fHxKfKa4jqvBeV37NjBlStXqFy5MtbW1lhbW3P69GnGjBlDlSpViqxz0qRJpKammj/Onj17740TQohiaDQadDZW5fJR1mR9gYJESsHPVIDatWuTl5fH3r17zeWuXbtGXFwcwcHB5nOVKlUiIiKCL774gjFjxvDJJ58Af404unV9p8DAQHQ6Hfv27TOfS01NLdOUuUaNGnH06FFzwufWj+JGN2k0GmrVqkVGRgYAL7/8MtbW1sydO7dQ2SVLlpCZmUm/fv1KjcXJycni/nZ2dsWWNZlM5OTkmI/Pnz9P+/btady4MdHR0YVGG91ar7d32d5ItrOzs7jOySl/hkRmZmah+q2srMy75t0pT09PXF1d+emnn7hy5QrdunUrc7tatGjB9u3bzeuRAcTExFCzZk3c3NyKbcPDTEZKCSEee7m5ueyuVQulvUFNYx6mPzsYmj9/8VnpSkkwZf85NaXTDLJ0DSEd7KxkgXPx8Msy5HdgHXSZAOj1ntSvtxhHR1k36FGk1+tp3LgxP/74Iy+88AKQ30n/8ccfzQvU3q5Fixb8+OOP5rVDIL/z2qJFCwDCw8N59tlnLa4JDQ0lPDyc1157rcg6bWxsLBZqFUIIUbygoCC6d+/O4MGDWbp0KU5OTkycOBF/f3+6d+8OwKhRo+jcuTM1atTg+vXrbN26ldq1awMQEBCARqNh8+bNdOnSBTs7O5ycnOjfvz/jxo3D3d0db29vIiMj0Wq1pSbSJkyYQPPmzRk2bBiDBg3CwcGBo0ePEhMTw8KFC4mNjSUyMpLw8HCCg4PR6/X8/PPPrFixggkTJgD5I6o++OADxo4di62tLeHh4eh0OjZu3MjkyZOZPn06devWtbhvXFxcoVjq1KlTaHONjIwMZsyYQbdu3fD19SU5OZlFixZx/vx5evbsCfyVuAkICCAqKoqrV6+ary/uTZoCBaOI0tPTuXr1KrGxsej1eosE4e26du3KjBkzqFy5MnXq1OHQoUPMmzePf/7zn+YyKSkpnDlzhgsXLli018fHxxxTdHQ0tWvXxsvLiz179jBy5EhGjx5tnnZZlnb16dOHqVOnMnDgQCZMmMDvv//ORx99xPz580tsd3p6OgkJCebjxMREYmNjcXd3txghVy7uyz6AjynZ4liIx8P1s8kqMjJSRUZGqm+e76U2tWmuono9pxb9c5xaOORHde5fhbeztfCet9o3t4X654HfVdPdf6gKPx1SMxLOP5jghbgHZ5OTVcTikWrW6p7qhx8D1S97nyvvkB4L5dk/+PTTT5WNjY1auXKlOnr0qHr99deVq6urunTpklJKqfDwcDVx4kRz+V27dilra2sVFRWljh07piIjI5VOp1NHjhwp9h4BAQFq/vz5ZY5J+ktCiPulpO3lH3b9+/dX3bt3L/K1lJQUFR4erlxcXJSdnZ0KDQ1V8fHx5teHDRumqlWrpmxsbJSXl5cKDw9XycnJ5tenTZumfHx8lEajUf3791dKKZWWlqb69Omj7O3tlY+Pj5o3b55q2rSpxe+A4n6e//rrr6pjx47K0dFROTg4qPr166sZM2YopZS6evWqGjFihKpbt65ydHRUTk5Oql69eioqKkoZjUaLejZs2KDatGmjHBwcFKAAtXbtWosyiYmJ5tdu/zh79myh2LKystSLL76o/Pz8lF6vV76+vqpbt27q119/NZeJjo4uts7SFHVNQEBAidekpaWpkSNHqsqVKytbW1sVGBio3nrrLZWTk1NqTJGRkeYyEyZMUBUqVFA6nU4FBQWpuXPnKpPJdMft+u2331Tr1q2VjY2N8vf3V++//36p7d66dWuR9Rb8f7pbJX3PlrV/oFHqHve5fIylpaXh4uJCampqmeehCiEeLnmpOZyY/TOf6XdjpbS02xfHlZwznPZ0wc42CGXXlR5NvsVn0AdFV2AywjR3BtSZzreebcynZ9eoSH//oncAEaK8KWUiLy+dIydWcv3SR+bzHh7teKrBinKM7PFQ3v2DhQsXMmfOHC5dusRTTz3FggULzGtytG/fnipVqrBy5Upz+XXr1vH222+TlJREUFAQH3zwAV26dCm2/ipVqjBq1CiL0VUlKe/nIYR4fGRnZ5OYmEjVqlWxtbUt73AeKRkZGfj7+zN37lwGDhz4wO+fkpJChw4dcHZ2ZsuWLdjb2z/wGMSDV9L3bFn7BzJ9TwjxWDNeyyZP5U9hss5IZ59jKji5AJCrHLAGrAKaFH3xjTOQtAuAVGtHAPr5edDGzYlOnvKHl3g4KWVi996XyM48Yj6XmBZEu7rt8fXtUY6Riftl2LBhxU7X27ZtW6FzPXv2NE95KIukpKS7jEwIIcSDcujQIY4fP07Tpk1JTU1l2rRpAOYpgQ+au7s7P/zwA4sWLWLPnj106NChXOIQjx5JSgkhHmvZp89hxMQNky2pmbnU1QBoQGOPRlcdrVaDQ7MXir545XP5iSkgwyr/3Z6OHs509HR5ILELcSeUUuw7PIXr177Hmr+2TM7MteNkzkAGVS97UkIIIYQQD7+oqCji4uLMaw7u2LEDT8/yG8nv4eHBu+++W273F48mSUoJIR5buSkpHFz0MVk1W3M2G7qc2c4NBxes9MHoHELp3O407s80w965iJ1GTCZzQorKLchyrgQK7EvbqU+IB8xkyiHl+kHSMs5y89p/zb/YE25U4TRzeKN9DZ53cyixDiGEEEI8Who2bMiBAwfKOwwh7pkkpYQQj62Ew4f5ua4PkECVK/F43jRywwHQ5P/oqxqYh6ZCMfPd87IB2O9ch3Oh0VxLTIZcI/ZWVg8meCHK6PDRaVy78qn5+EJ6Bc7khpNFXf7vmVpUdJM1HYQQQgghxMNJklJCiMdWyvXrANgoa7KNRozaglFOOqzIQaMrYQHN3CyOOQTyfMN/Qfxl82knaxkpJcqfyZTD4T/e5vDpONx0p7DXwZVMDzLz7Dib05Mpr7xR3iEKIYQQQghRKklKCSEeSyrPRPbV/NFOlUyeGPIURq0m/0WNNdaaXLAuKSmVyWlbXwCcrLTUd7KnjqMd1exs/u7QhSiW0ZjNmQs/cSRpDw65X+D/5yCoPJOWs5q5jHy+JTbWMppPCCGEEEI8GiQpJYR4LKX8cIbM07mgg7yMFGwNWVxxzv8LXqOxxkpjAJ1d4QvzciDhB7h2kvQ/Fzdv5OzAZ09Ve5DhC1GIwZBCQsL7XLz0OQUrRB1LCSLD6jlC6jTmzWrNsZY1z4QQQgghxCNEklJCiMfStfiL5GmMXDfZYbwWh6tSZOt1AGg0TljrrKBK68IX/roMvn8bgAzfbgA4yB/6opwlJi3i1Kl5FudOpzfkmvZVBrbvJOtGCSGEEEKIR5IkpYQQjx1TTg7XE+MwOpj4Lc+PZqZjAFjZNERrXRGtLhCHSu5g51r44uunydLqWRz0/9m78/iar/zx46+7ujfJTSIhshEJsRa1r6WpJaFIZ9RShmjxlflZq7W2lVIdrQa1jdZMi5lBDUWNajVaNJaqkqCWRDQZ+xoS2ZN7z++Pyx23iYhaou37+XjcB/fzOefzeX8+2e5933PeJ5rtFZsD4Cp1pEQ5yS+yMv/rE1RTX1HJCDal4WquF4sOT2Dj6J5UdC1h5UghhBBCCCF+JSQpJYT4TbHZbHy6aBHnXPLI00HT1Az88q5g1YPOEIqbukDLjgVU7VS/5AMUZLPFuy2zfHs5NvncHGElxKOUW2Dli8On+ejbI0xpeRWM8O+fXuatPkN4LtyAySC1o4QQQgghxK+bfPwvhPhNuXjxIkcyM7lmKCBXU0DvI5vRqyL7To0Rg/4o9RobsXjdoch5YTbpBg8AarmYeC3Ejz9X9XlE0QthN+7fibSc8W80lyNZ1HECAW7nARjTuTm+HiZJSAkhhBCPmcGDB6PRaNBoNBiNRmrWrMn06dMpKiq6r+Nu374djUbD9evXH0ygZZCamkr//v3x9/fHZDIRGBhIZGQkx48fd2q3adMmOnTogMViwcXFhebNm7Ns2TKnNmlpaWg0GhITE8t8/jfffJM6derg6upKxYoV6dSpE3v37nU65pAhQwgODsZsNlOjRg1iYmIoKCgo9bjnz5+nf//+1KpVC61Wy9ixY8sUz40bNxg7dixBQUGYzWbatGnDvn37nNpkZWUxcuRIAgMDMZvN1KtXjw8++MCpzfDhw6lRowZms5nKlSuXeE9PnTrFs88+i4uLCz4+PowfP/6O30O7du1Cr9fz5JNP3vUa1q1bR5cuXfD29r7nr8fDJkkpIcRvStaFDADMNgMNLhv4yceLAt3NN/AaA64+GSUXOM+9BslfwfVTZOvs+xu7uzAqqAqVjDKoVDxa245fIsj9NO7GLMc2F5dg6lZtWI5RCSGEEKI0ERERnD9/nhMnTvDKK6/w5ptv8t5775V3WA53S9oAFBYW0rlzZzIyMli3bh1JSUmsXr2aBg0aOCXGFixYQGRkJG3btmXv3r0cOnSIfv36ER0dzauvvnpfcdaqVYuFCxdy+PBhdu7cSfXq1enSpQuXL18G4Pjx49hsNj788EOOHDnC3Llz+eCDD5gyZUqpx83Pz6dy5cq8/vrrNGrUqMzxDB06lLi4OP75z39y+PBhunTpQqdOnTh79qyjzbhx4/jyyy/517/+xbFjxxg7diwjR45k48aNjjZNmzZl6dKlHDt2jC1btqCUokuXLlitVgCsVivPPvssBQUF7N69m+XLl7Ns2TKmTp1aLKbr168zaNAgOnbsWKZryM7Opl27drz77rtlvu5HRok7ysjIUIDKyMgo71CEEGUUP/dLFRMTo+ZNmali+zx726OHWjDsc5U68RmlLvxYvOPfuygV465UjLt6Z+lYVeWbBDU56fSjvwAhlFK1Xtus/jD7bbX16xC19/s/qqKiPGWzWcs7LHGTvD5wJvdDCPGg5ObmqqNHj6rc3NzyDuWeRUVFqcjISKdtnTt3Vq1atVLp6elq4MCBytPTU5nNZhUREaGSk5Md7dLS0lT37t2Vp6encnFxUfXq1VOff/65Sk1NVYDTIyoqSimlVGZmpurfv79ycXFRvr6+as6cOapDhw5qzJgxjuMGBQWp6dOnq4EDByqLxeLoGx8fr9q1a6dMJpMKDAxUo0aNUllZWUoppRISEhSg0tLS7nitp06dUgaDQY0bN67Yvvnz5ytAfffdd0op5biGhISEe7+pN936O7N169Y7tpk1a5YKDg4u8zF/fq/uJCcnR+l0OrVp0yan7U2aNFGvvfaa43n9+vXV9OnTS23zcwcPHlSASklJUUoptXnzZqXVatWFCxccbRYvXqzc3d1Vfn6+U9++ffuq119/XcXExKhGjRrd9TpueRBfj9uV9jNb1tcHMlJKCPGbUpCTh1KwJc/bvkFp0JvbY3D7I65mhU+nP4JPveId00+SoXMjtt54vvYPB2TVPVE+bDZFfpENg9b+aaZe74JOVwGNRr4fhRBC/P4opSjMyyuXh1LqvmI3m80UFBQwePBgfvjhBzZu3MiePXtQStGtWzcKCwsBGDFiBPn5+Xz77bccPnyYd999Fzc3N6pWrcqnn34KQFJSEufPn2fevHmAfWTOrl272LhxI3FxccTHx3PgwIFiMcTGxtKoUSMSEhJ44403OHnyJBEREfTq1YtDhw6xevVqdu7cyciRIwGoXLkyWq2WtWvXOkbw/NzatWspLCwscUTU8OHDcXNzY9WqVfd1724pKChgyZIleHh4lDq6KSMjAy8vrwdyztsVFRVhtVoxmZxLf5jNZnbu3Ol43qZNGzZu3MjZs2dRSrFt2zaSk5Pp0qVLicfNzs5m6dKlBAcHU7VqVQD27NlDgwYNqFKliqNdeHg4mZmZHDlyxLFt6dKl/PTTT8TExDzISy03MidFCPGboJQiccwoLplqYTVpaPzfPaADjUaP3tSMDo0PU39YFBqtpuQDFGSz2rcbsZW7OzZVlml7ohzkFtpfABp19heqOu0d6p8JIYQQvwNF+fnMj3q+XM49evlaDKZ7/zuslOLrr79my5YtdO3alQ0bNrBr1y7atGkDwIoVK6hatSobNmygd+/enDp1il69etGgQQMAQkJCHMe6lWjx8fHB09MTsNc4Wr58OStXrnRM31q6dCn+/v7FYnnmmWd45ZVXHM+HDh3KgAEDHPWUQkNDmT9/Ph06dGDx4sUEBAQwf/58JkyYwLRp02jWrBlhYWEMGDDAEVdycjIeHh74+fkVO5/RaCQkJITk5OR7vm+327RpE/369SMnJwc/Pz/i4uKoVKlSiW1TUlJYsGABsbGx93XOklgsFlq3bs1bb71F3bp1qVKlCqtWrWLPnj3UrFnT0W7BggX83//9H4GBgej1erRaLX/7299o37690/H++te/MmHCBLKzs6lduzZxcXEYjfbVlC9cuOCUkAIczy9cuADAiRMnmDRpEvHx8ej1v433KvKxqxDiN+HKf//LRk8vjrukY805So+U/QBosNeTcnHR3zkhZbNBYQ5XDZ4APGlx4fUQP/r5eT+K0IVw2PvTVdbuPwOAQWsvaqnVVijPkIQQQghRRps2bcLNzQ2TyUTXrl3p27cvgwcPRq/X07JlS0c7b29vateuzbFjxwAYPXo0M2bMoG3btsTExHDo0KFSz/PTTz9RWFhIixYtHNs8PDyoXbt2sbbNmjVzen7w4EGWLVuGm5ub4xEeHo7NZiM1NRWwj9y6cOECK1asoHXr1qxZs4b69esTFxdX5ntxK9FSmhUrVjjFER8f79gXFhZGYmIiu3fvJiIigj59+nDp0qVixzh79iwRERH07t2bYcOGObbfftzo6OgyxRwfH+/Ub8WKFQD885//RClFQEAAFSpUYP78+bzwwgtotf9LpyxYsIDvvvuOjRs3sn//fmbPns2IESPYunWr0zkGDBhAQkICO3bsoFatWvTp04e8vLwyxWe1Wunfvz/Tpk2jVq1aJbYp7Z4+rn4bqTUhxO/ehfPnUVotGgVYs7DeTEDZtPaklL7CHf4w5l6DdPsf4Byd/ZOw9hXdGBlUpeT2QjwkKZey6LvkOwBMulz83a4BoNVJUkoIIcTvl75CBUYvX1tu574XYWFhLF68GKPRiL+/P3q93qnQ9Z0MHTqU8PBwPv/8c7766itmzpzJ7NmzGTVq1C8N3cHV1dXpeVZWFsOHD2f06NHF2larVs3xf4vFQo8ePejRowczZswgPDycGTNm0LlzZ0JDQ8nIyODcuXPFRmcVFBRw8uRJwsPD7xpbz549nZJ1AQEBTnHXrFmTmjVr0qpVK0JDQ/noo4+YPHmyo825c+cICwujTZs2LFmyxOnYt68u5+7uftdYwJ7Au73frVFKNWrUYMeOHWRnZ5OZmYmfnx99+/Z1jBzLzc1lypQprF+/nmeffRaAhg0bkpiYSGxsLJ06dXIc08PDAw8PD0JDQ2nVqhUVK1Zk/fr1vPDCC/j6+vL99987xXTx4kUAfH19uXHjBj/88AMJCQmO6ZY2mw2lFHq9nq+++qrUe/q4kqSUEOI3oTAnB4DKVjcKi1yxaexJKZ2mlKRU1mWY1xAK7X1zbq665yK1pEQ5OHs9FwBvcxFvtXmLCjr7yntamb4nhBDid0yj0fyiKXTl4VYi5XZ169alqKiIvXv3OqbvXb16laSkJOrV+1+d06pVqxIdHU10dDSTJ0/mb3/7G6NGjXKMOLq9vlNISAgGg4F9+/Y5EkkZGRkkJycXmy72c02aNOHo0aPF4iyNRqOhTp067N69G4Dnn3+eiRMnMnv2bGbPnu3U9oMPPiAnJ4dBgwbd9bgWiwWLxVKmGGw2G/n5+Y7nZ8+eJSwszLGi3e2jloB7ur5bzGZzqf1cXV1xdXXl2rVrbNmyhVmzZgH2FQsLCwuLxaDT6bDZbHc8nlIKpZTjulq3bs3bb7/NpUuX8PHxASAuLg53d3fq1auHwWDg8OHDTsf461//yjfffMPatWsJDg7G1dW1zPf0cSFJKSHEb8LZ3VcAMFo15ObmkepXG8hCYf9Drq8SXLzTlWQozKFQa+Cwd1POVm4CSFJKlI+cfPt0vSaB+TcTUhpMpkCq+HQr38CEEEII8YuFhoYSGRnJsGHD+PDDD7FYLEyaNImAgAAiIyMBGDt2LF27dqVWrVpcu3aNbdu2UbduXQCCgoLQaDRs2rSJbt26YTabsVgsREVFMX78eLy8vPDx8SEmJgatVotGc4dyFTdNnDiRVq1aMXLkSIYOHYqrqytHjx4lLi6OhQsXkpiYSExMDAMHDqRevXoYjUZ27NjBxx9/zMSJEwH7iKpZs2bx6quvYjKZGDhwIAaDgc8++4wpU6YwY8YMnnjiCafzJiUlFYulfv36GAwGp23Z2dm8/fbb9OzZEz8/P65cucKiRYs4e/YsvXv3BuwJqaeffpqgoCBiY2O5fPmyo7+vr2+p139rJFRWVhaXL18mMTERo9HolCD8uS1btqCUonbt2qSkpDB+/Hjq1KnDiy++CNhHYnXo0IHx48djNpsJCgpix44d/OMf/2DOnDmAfcrl6tWr6dKlC5UrV+bMmTO88847mM1munWzv9br0qUL9erVY+DAgcyaNYsLFy7w+uuvM2LECCrcHLX38/vq4+ODyWQqtv3n0tPTOXXqFOfOnQP+9/Xw9fW96z172CQpJYT41VM2hSGvCAxw4+wByLdxydU+ykRpKqDRgGudlsU7FmQD8P+efI//WBo7NrvqdI8kbiFul1Ng/wTUUsGenDKZ/GnbZns5RiSEEEKIB2Hp0qWMGTOG7t27U1BQQPv27dm8ebMjIWO1WhkxYgRnzpzB3d2diIgI5s6dC9inX02bNo1Jkybx4osvMmjQIJYtW8acOXOIjo6me/fuuLu7M2HCBE6fPl1slbifa9iwITt27OC1117jqaeeQilFjRo16Nu3LwCBgYFUr16dadOmkZaWhkajcTx/+eWXHcd5+eWXCQkJYfbs2cybN4/sbPvr6lWrVtGvX79i5y1p2+nTpwkMDHTaptPpOH78OMuXL+fKlSt4e3vTvHlz4uPjqV+/PmAfPZSSkkJKSkqx/ndbMbFx4/+95t+/fz8rV64kKCiItLS0O/bJyMhg8uTJnDlzBi8vL3r16sXbb7/tlFD75JNPmDx5MgMGDCA9PZ2goCDefvttRz0rk8lEfHw877//PteuXaNKlSq0b9+e3bt3O0ZF6XQ6Nm3axJ///Gdat26Nq6srUVFRTJ8+vdRrKouNGzc6kmjwv69HTEwMb7755n0f/35o1P2uc/kblpmZiYeHBxkZGWWehyqEeLSs+fnsfP99zt6oyGf6dBqeiMdUpEGjq4JGY6RRg+rU6TUc/1DP4p1/XAdrX6RD63+TZKxCFaOeQJORv9Wvjr/p7sUZhXhQUi5lser7U3y0M5VBTa7QodJ0XF1DadXyy/IOTZRAXh84k/shhHhQ8vLySE1NJTg4+K7JFeEsOzubgIAAZs+ezZAhQx75+dPT0+nYsSPu7u588cUXuLi4PPIYxKNX2s9sWV8fyEgpIcSv2pFPP2Vbbi7oc6ly4QSmQgUaDUbXHmi0boSFpaIpKSF19SScPwhAvtb+KcffnwimuYdr8bZCPEQJp67xh7/aazQYdfm4G+2j/HQ6eTEnhBBCiJIlJCRw/PhxWrRoQUZGhmM0za0pgY+al5cXW7duZdGiRezZs4eOHTuWSxzi10eSUkKIX7WrV68CYFR6uh88weFq9uGvaAzoVT4aYwlv7C8chg/aOZ4WaOxJKaO29Dn4QjwMJy7ak1A9anzDczU2OLZLUkoIIYQQpYmNjSUpKQmj0UjTpk2Jj4+nUqVK5RaPt7c3U6dOLbfzi18nSUoJIX7VCgsKAQiyVcJovW11C40BvTYbDCUM/b5ywv6v3gyVapJncAUbVJCklCgHN24WOG8bePK2rVq8vZ8ul3iEEEII8fhr3Lgx+/fvL+8whLhvkpQSQvxq2QqtXM80ggZyr6WReGuUFAA69Jp8MFYs3rEoz/5v9bbwp08p+PYQYKOCRlbdE4/W+Yxczl7LBcCos39fNnjir1SqFIZWK3XNhBBCCCHEb5skpYQQv1rnPjuJweoK+ivk3TiHVWdPKml0/mg0GgxmEwS3L96x0J4EQG8fRZVvs6/3INP3xKO08JsTxH6V7Hhu1Nq/Lw2GipKQEkIIIYQQvwuSlBJC/CoVnDpFxs4DFLlZOWL1po5KwhMwuESgqVCNKlUr0KBjSzCYi3e+OVLqmtGT6zn5FN5chLSCVkZKiUdn/3+vAfCnumupXykJs/YKAHq9pTzDEkIIIYQQ4pGRpJQQ4lfpwJo17HLNpUAHTx/6DJ2tItkmIxqtO1rXozw/+kWwVCm5c2EuCZY69PAcQtHeY47NUlNKPErZBVZMulzCqn7r2KbVmjGZAsoxKiGEEEIIIR4dSUoJIX6VDmVnccNgH+HU6mQW39Xwsu/Q6PFVOSUXOM++CkfWwX93cdCtNkUaLToNmLRanvay4KaTkVLi0cnOL8LFYJ+yp9EYaNz4n7iYgzAY3Ms5MiGEEEIIIR4NSUoJIX6V8ouKQKvjyYJgjEVgvTX1TqOnksoFg0vxTtvehh8+AiA7sB8Af6xSkQV1gx5V2EJw5FwGZ67lciUrHxe9PSml11uo6Nm8nCMTQgghhBDi0ZKklBDiV0fZFHk2QAtFNy5z0seLIscoJz06bSHoDMU73jhv/zewOVlV2wDgptM9kpiFAPjpchbPzt8JKF6sv5Kanj8BUkdKCCGEEEL8PslcFSHEr86Pfz+MTusG1iL+e2kHJ6tURGns9aA0mgoY3L1L7liQRabOlc+efJVDvk8B4CpT9sQjlHY1G4Bgj6u0C9iLr+tlAFxda5ZnWEIIIYS4T4MHD0aj0aDRaDAajdSsWZPp06dTVFR0X8fdvn07Go2G69evP5hAyyA1NZX+/fvj7++PyWQiMDCQyMhIjh8/7tRu06ZNdOjQAYvFgouLC82bN2fZsmVObdLS0tBoNCQmJpb5/G+++SZ16tTB1dWVihUr0qlTJ/bu3et0zCFDhhAcHIzZbKZGjRrExMRQUFBQ6nHPnz9P//79qVWrFlqtlrFjx5Ypnm+//ZYePXrg729f4XvDhg3F2qxbt44uXbrg7e191+tVStG1a9c7HmvZsmU0bNgQk8mEj48PI0aMcNq/ZcsWWrVqhcVioXLlyvTq1Yu0tDSnNitWrKBRo0a4uLjg5+fHSy+9xNWrV+/7Oh+GB/5uzGq18sYbbzh9g7z11luom6tbgf2LMHXqVPz8/DCbzXTq1IkTJ044HSc9PZ0BAwbg7u6Op6cnQ4YMISsry6nNoUOHeOqppzCZTFStWpVZs2YVi2fNmjXUqVMHk8lEgwYN2Lx584O+ZCHEI6Y5m0ERNs4WmgEFSoOuQmMquHbG3duN6n8aUXLHgmxerzmK4Td8+To9EwB3vYyUEo/OjTz7C9MGAfaBygaDN42f/AdP1H+/HKMSQgghxIMQERHB+fPnOXHiBK+88gpvvvkm7733XnmH5XC3pA1AYWEhnTt3JiMjg3Xr1pGUlMTq1atp0KCBU2JswYIFREZG0rZtW/bu3cuhQ4fo168f0dHRvPrqq/cVZ61atVi4cCGHDx9m586dVK9enS5dunD5sv3DvOPHj2Oz2fjwww85cuQIc+fO5YMPPmDKlCmlHjc/P5/KlSvz+uuv06hRozLHk52dTaNGjVi0aFGpbdq1a8e777571+O9//77aDQlL7A0Z84cXnvtNSZNmsSRI0fYunUr4eHhjv2pqalERkbyzDPPkJiYyJYtW7hy5Qp//OMfHW127drFoEGDGDJkCEeOHGHNmjV8//33DBs27L6v86FQD9jbb7+tvL291aZNm1Rqaqpas2aNcnNzU/PmzXO0eeedd5SHh4fasGGDOnjwoOrZs6cKDg5Wubm5jjYRERGqUaNG6rvvvlPx8fGqZs2a6oUXXnDsz8jIUFWqVFEDBgxQP/74o1q1apUym83qww8/dLTZtWuX0ul0atasWero0aPq9ddfVwaDQR0+fLhM15KRkaEAlZGR8QDujBDiftlsNrV35Ei15tX5asxr76ol3Zur2D7Pqtl9/qAWDv9aJc8aXXLH0z8oFT9HqVk1VeS6parKNwkqbO8xNfRwqjqdm/9oL0L8LlmtNhV35IIa+0mCCpq4Sb2xeqna+nWI2vNdeHmHJn4BeX3gTO6HEOJByc3NVUePHnV6X/hrERUVpSIjI522de7cWbVq1Uqlp6ergQMHKk9PT2U2m1VERIRKTk52tEtLS1Pdu3dXnp6eysXFRdWrV099/vnnKjU1VQFOj6ioKKWUUpmZmap///7KxcVF+fr6qjlz5qgOHTqoMWPGOI4bFBSkpk+frgYOHKgsFoujb3x8vGrXrp0ymUwqMDBQjRo1SmVlZSmllEpISFCASktLu+O1njp1ShkMBjVu3Lhi++bPn68A9d133ymllOMaEhIS7v2m3nTr78zWrVvv2GbWrFkqODi4zMf8+b0qK0CtX7/+jvvvdr0JCQkqICBAnT9/vtix0tPTldlsLvU616xZo/R6vbJarY5tGzduVBqNRhUUFCillHrvvfdUSEiIU7/58+ergICAu1/gTXe7zltK+5kt6+uDBz5Savfu3URGRvLss89SvXp1nn/+ebp06cL3339/KwnG+++/z+uvv05kZCQNGzbkH//4B+fOnXMMDzt27Bhffvklf//732nZsiXt2rVjwYIFfPLJJ5w7dw6wD0crKCjg448/pn79+vTr14/Ro0czZ84cRyzz5s0jIiKC8ePHU7duXd566y2aNGnCwoULH/RlCyEegbzLl9ni4cGPrlfJthXyxBn7pz0a7KOd9MY7/Epb8TxsfROyL5Gjs6/KN6WGP397ojqBJuOjCF38zu06eYWh//iBzxJPEez+X/xd0wDQ6dzKNzAhhBDiMaeUwlZgLZeHum22zy9hNpspKChg8ODB/PDDD2zcuJE9e/aglKJbt24UFhYCMGLECPLz8/n22285fPgw7777Lm5ublStWpVPP/0UgKSkJM6fP8+8efMAGDduHLt27WLjxo3ExcURHx/PgQMHisUQGxtLo0aNSEhI4I033uDkyZNERETQq1cvDh06xOrVq9m5cycjR44EoHLlymi1WtauXYvVai3xutauXUthYWGJI6KGDx+Om5sbq1atuq97d0tBQQFLlizBw8Oj1NFNGRkZeHl5PZBzPiw5OTn079+fRYsW4evrW2x/XFwcNpuNs2fPUrduXQIDA+nTpw+nT592tGnatClarZalS5ditVrJyMjgn//8J506dcJgsNfUbd26NadPn2bz5s0opbh48SJr166lW7duj+xa78UDL3Tepk0blixZQnJyMrVq1eLgwYPs3LnTkSxKTU3lwoULdOrUydHHw8ODli1bsmfPHvr168eePXvw9PSkWbNmjjadOnVCq9Wyd+9e/vCHP7Bnzx7at2+P0fi/N5Th4eG8++67XLt2jYoVK7Jnzx7GjRvnFF94ePgjmxsphHiwcjMysOrtv7Y8rRWwaW/WkdLbfw/oDSX8SisqgNx0+/8b9CHXUhUAF63UkhKPzul0+yp7Lzb4jDa+2x3b9XpJSgkhhBClUYU2zk3dXS7n9p/eBo3x3ks9KKX4+uuv2bJlC127dmXDhg3s2rWLNm3sC+2sWLGCqlWrsmHDBnr37s2pU6fo1asXDRo0ACAkJMRxrFuJFh8fHzw9PQG4ceMGy5cvZ+XKlXTs2BGApUuX4u/vXyyWZ555hldeecXxfOjQoQwYMMBRTyk0NJT58+fToUMHFi9eTEBAAPPnz2fChAlMmzaNZs2aERYWxoABAxxxJScn4+HhgZ+fX7HzGY1GQkJCSE5Ovuf7drtNmzbRr18/cnJy8PPzIy4ujkqVKpXYNiUlhQULFhAbG3tf53zYXn75Zdq0aUNkZGSJ+3/66SdsNht/+ctfmDdvHh4eHrz++ut07tyZQ4cOYTQaCQ4O5quvvqJPnz4MHz4cq9VK69atncoUtW3blhUrVtC3b1/y8vIoKiqiR48ej35aXhk98HdlkyZNol+/ftSpUweDwUDjxo0ZO3YsAwYMAODChQsAVKlSxalflSpVHPsuXLiAj4+P0369Xo+Xl5dTm5KOcfs57tTm1v6fy8/PJzMz0+khhHh85N+w15XTKy1Vc3VkmCsAoFH25JS+Qgkr7hXm2PtqDKR1mUum0QMAV70kpcSjk5Vv/yS0tpe9FoLR6IOraygB/v3KMywhhBBCPECbNm3Czc0Nk8lE165d6du3L4MHD0av19OyZUtHO29vb2rXrs2xY8cAGD16NDNmzKBt27bExMRw6NChUs/z008/UVhYSIsWLRzbPDw8qF27drG2tw/0ADh48CDLli3Dzc3N8QgPD8dms5GamgrYR25duHCBFStW0Lp1a9asWUP9+vWJi4sr8724ffDInaxYscIpjvj4eMe+sLAwEhMT2b17NxEREfTp04dLly4VO8bZs2eJiIigd+/eTjWTbj9udHR0mWKOj4936rdixYoy9SuLjRs38s033/D+++/fsY3NZqOwsJD58+cTHh5Oq1atWLVqFSdOnGDbtm2APccxbNgwoqKi2LdvHzt27MBoNPL88887RvYdPXqUMWPGMHXqVPbv38+XX35JWlqa4z48zOv8JR74SKl///vfrFixgpUrV1K/fn0SExMZO3Ys/v7+REVFPejTPVAzZ85k2rRp5R2GEOIOzv/nIgCGrEwKL37PsQD7pyVKY09O6et2Kt6pMAcrWsKaLeOnH1Icm2WklHgUlFKkXc3hVLo9OWrU5QFQt+5MKnk/XY6RCSGEEL8OGoMW/+ltyu3c9yIsLIzFixdjNBrx9/dHr9ezcePGu/YbOnQo4eHhfP7553z11VfMnDmT2bNnM2rUqF8auoOrq6vT86ysLIYPH87o0aOLta1WrZrj/xaLhR49etCjRw9mzJhBeHg4M2bMoHPnzoSGhpKRkcG5c+eKjc4qKCjg5MmTTsW576Rnz55OybqAgACnuGvWrEnNmjVp1aoVoaGhfPTRR0yePNnR5ty5c4SFhTlma93u9tXv3N3d7xoL2BN4t/f7+QCX+/HNN99w8uRJx2i3W3r16sVTTz3F9u3bHSPP6tWr59hfuXJlKlWqxKlTpwBYtGgRHh4eTou8/etf/6Jq1ars3buXVq1aMXPmTNq2bcv48eMBaNiwIa6urjz11FPMmDHjoV7nL/HAk1Ljx493jJYCaNCgAf/973+ZOXMmUVFRjrmTFy9edBrud/HiRZ588kkAfH19i2VBi4qKSE9Pd/T39fXl4sWLTm1uPb9bm5LmbwJMnjzZabpfZmYmVatWvafrF0I8HMqqIK+IIqOWM7k6qgNgQKN1Q2tsDECFWq2LdyzMJUPvxk8ugQC46bQ84WYm+OYoKyEeptlfJbNw2/+SoQatfRqfXmpJCSGEEGWi0Wh+0RS68nArkXK7unXrUlRUxN69ex3T965evUpSUpJT8qFq1apER0cTHR3N5MmT+dvf/saoUaMcI45ur+8UEhKCwWBg3759jkRSRkYGycnJtG/fvtQYmzRpwtGjR4vFWRqNRkOdOnXYvds+jfL5559n4sSJzJ49m9mzZzu1/eCDD8jJyWHQoEF3Pa7FYsFisZQpBpvNRn5+vuP52bNnCQsLo2nTpixduhTtzz5wvpfru8VsNv+ifmUxadIkhg4d6rStQYMGzJ07lx49egD2aXdgrx8WGGh/75Kens6VK1cICgoC7HWpfn6tOp3958Nmszna6PX6EtsopR7qdf4SDzwpdaebdOsGBQcH4+vry9dff+1IQmVmZrJ3717+/Oc/A/bCXNevX2f//v00bdoUsGcWbTabI5PaunVrXnvtNQoLCx0FveLi4qhduzYVK1Z0tPn6668d82VvtWnduoQ3rkCFChWoUEHeqArxuFEFBewb/BL51f9AitaGl/E7wILOWAezsQV1gs7h/XRt3CuZ/9fp6knY8S7cOE+e1v5zbdBoSGnfsHwuQvwuHTqbAcDztb6kvvcJTNrLoEAntaSEEEKI34XQ0FAiIyMZNmwYH374IRaLhUmTJhEQEOCoLTR27Fi6du1KrVq1uHbtGtu2baNu3boABAUFodFo2LRpE926dcNsNmOxWIiKimL8+PF4eXnh4+NDTEwMWq0WjUZTajwTJ06kVatWjBw5kqFDh+Lq6srRo0eJi4tj4cKFJCYmEhMTw8CBA6lXrx5Go5EdO3bw8ccfM3HiRMA+omrWrFm8+uqrmEwmBg4ciMFg4LPPPmPKlCnMmDGDJ554wum8SUlJxWKpX7++4738LdnZ2bz99tv07NkTPz8/rly5wqJFizh79iy9e/cG7Ampp59+mqCgIGJjY7l8+bKj/50GoNxya4RQVlYWly9fJjExEaPR6JQg/LmsrCxSUv73IWNqaiqJiYl4eXk5koLp6emcOnXKsTDbrev19fV1evxctWrVCA4OBqBWrVpERkYyZswYlixZgru7O5MnT6ZOnTqEhYUB8OyzzzJ37lymT5/OCy+8wI0bN5gyZQpBQUE0bmz/oL5Hjx4MGzaMxYsXEx4ezvnz5xk7diwtWrQose7YvVznQ1HmNQHLKCoqSgUEBKhNmzap1NRUtW7dOlWpUiU1YcIER5t33nlHeXp6qs8++0wdOnRIRUZGquDgYKdlBCMiIlTjxo3V3r171c6dO1VoaKh64YUXHPuvX7+uqlSpogYOHKh+/PFH9cknnygXFxf14YcfOtrs2rVL6fV6FRsbq44dO6ZiYmKUwWBQhw8fLtO1yBLHQjweTu7cqd584w0VExOjZv6ph1rfoY2K7fOsmjvwdbW8/1+VWju0eKctrysV465UjLtKeaeeqvJNggr99uCjD178rv1h0U5Ve8oatfXrEMfj62/qqIKCa+UdmrgP8vrAmdwPIcSDUtry8o+7qKgoFRkZWeK+9PR0NXDgQOXh4aHMZrMKDw9XycnJjv0jR45UNWrUUBUqVFCVK1dWAwcOVFeuXHHsnz59uvL19VUajUZFRUUppZTKzMxU/fv3Vy4uLsrX11fNmTNHtWjRQk2aNMnRLygoSM2dO7dYPN9//73q3LmzcnNzU66urqphw4bq7bffVkopdfnyZTV69Gj1xBNPKDc3N2WxWFSDBg1UbGysslqtTsfZsGGDeuqpp5Srq6sCFKBWrVrl1CY1NdWx7+eP06dPF4stNzdX/eEPf1D+/v7KaDQqPz8/1bNnT/X999872ixduvSOx7ybkvoEBQWV2mfbtm0l9rv1tSgtppiYmFJjWb9+vdO2jIwM9dJLLylPT0/l5eWl/vCHP6hTp045tVm1apVq3LixcnV1VZUrV1Y9e/ZUx44dc2ozf/58Va9ePWU2m5Wfn58aMGCAOnPmzH1f58+V9jNb1tcHGqXuc53Ln7lx4wZvvPEG69ev59KlS/j7+/PCCy8wdepUx9BDpRQxMTEsWbKE69ev065dO/76179Sq1Ytx3HS09MZOXIk//nPf9BqtfTq1Yv58+fj5va/T5cPHTrEiBEj2LdvH5UqVWLUqFGO7O0ta9as4fXXXyctLY3Q0FBmzZpV5qUQMzMz8fDwICMjo8zzUIUQD97OTz9l6+HDoCDowA48sgpJ9fFEV6E5QQZX/tAzDSIXOnf6z1jYvxRqd+NIjUg6ZtfBx6jnUNsnSjqFEA9Fl7k7uHz9NLEdYtBoDDxRfx6urjVwdX18hkyLeyevD5zJ/RBCPCh5eXmkpqYSHByMyWQq73B+VbKzswkICGD27NkMGTLkkZ8/PT2djh074u7uzhdffIGLi8sjj0E8eqX9zJb19cEDn75nsVh4//33S60qr9FomD59OtOnT79jGy8vL1auXFnquRo2bOhUob8kvXv3dgzzE0L8OhXcnD8eavOlQqEWq/bmsGSNDhdLDuhLeNFSdHPOebVW5NbuAQdOYJbi5uIReX3DYbYdv8yFzDyqmO3FzfV6Cz4+dy/6KYQQQghxNwkJCRw/fpwWLVqQkZHheG99a0rgo+bl5cXWrVtZtGgRe/bsoWPHjuUSh/j1eeBJKSGEeJCUUvyUak8waa1QpFFc9Q4FLqHR6NFrboC+hFpwRbmcN1biz0WNOX0kDQCTTpJS4uHLK7Tyr+9OodNYae3/PTU8zwBS3FwIIYQQD1ZsbCxJSUkYjUaaNm1KfHw8lSpVKrd4vL29mTp1armdX/w6SVJKCPFYyzh0BbdsRY5ez39PfYvB3QW4tTqnnsr6k+DdpXjHony+8WrJdzZ3yC8EoKaLLGQgHr6s/CIAnvQ5xIv1Vzm2G4xe5RWSEEIIIX5jGjduzP79+8s7DCHumySlhBCPrYIzZ7i8fBtaFxt7tRp6Fmbad2hc0Ggq8IcBwVSrGwYBTYp3LswlR2dPArTzdGN8sC9PusvcdvHw5eTbl2yu4mL/fjWbq1HRsxV+/s+XZ1hCCCGEEEI8diQpJYR4bB3897/ZbcohV6eh/tVtgL12VAWPYRi016nWuVfxTjvnwrkEuHCIPG97/Z5Ak5GWnjJ1Sjx8OQVFXLxhryHlXsE+7dSrYlvq1JlRnmEJIYQQQgjxWJKklBDisZWYlcU1ow2Afnsusa9GNfvCpGhx1VmLd8g4C1vfdDzNrWyfrie1pMSjsD7hDK+uOYRJl0VrvyMEe6QC9gLnQgghhBBCiOIkKSWEeGwV2uwJqSeLqlOhSAGg0WrQaDQYDCUkpfJvTu8zuELnaeRRB7LBdGu1PiEeol0pV7HaFC/U+5TW/j84thsMnuUXlBBCCCGEEI8xSUoJIR5L1kIbOVYd6Kz4FlkA+2inW/klvc5WvFNhDgBFZm8O1u7Pf09fguwMzFoZKSUevqw8e4HzJgF5oMBiaYCrSw2q+JbP0sxCCCGEEEI87iQpJYR4LKWtTkKjqYCm8Dr7T68lv1Y1QGHFggHQu5ZQI6rQXstnSrUh/OPACcdms0zfE4/AjZurPOq1OWCFmjXG4+XVtpyjEkIIIYQQ4vElSSkhxGNJn5SO0trILLiEW9ENuDlCSqevjJungdpdWxXvVJgLwAlzAAC+RgMBJgNdK3k8qrDF71DMZz+ydv8ZcguLqFjhOjqVBYBOL8X1hRBCCCGEKI0MHxBCPHZOzZqFys/nitKSW3QMACOVMLoPoWn9fKLeeYo6rfycOx38BBL/BUCe1l7g/N3agXzetBahrqZHGr/4fVm7/wzZBVai6q0ktkMM2C4BoNe5lnNkQgghhHhUBg8ejEZjr31qNBqpWbMm06dPp6io6L6Ou337djQaDdevX38wgZZBamoq/fv3x9/fH5PJRGBgIJGRkRw/ftyp3aZNm+jQoQMWiwUXFxeaN2/OsmXLnNqkpaWh0WhITEws8/nffPNN6tSpg6urKxUrVqRTp07s3bvX6ZhDhgwhODgYs9lMjRo1iImJoaCgoNTjnj9/nv79+1OrVi20Wi1jx44tUzzffvstPXr0wN/fH41Gw4YNG+45ZoC3336bNm3a4OLigqenZ4nnOnXqFM8++ywuLi74+Pgwfvx4p++h27/Pbn/Ur1/f0WbmzJk0b94ci8WCj48Pzz33HElJSXe9zrLE9zBIUkoI8VjJPHeOuEOJ/GBIxXY9nR777L+ENZoKaHUeVDVXKN7p4hFYPxyOrAcgT2dPQpmklpR4yKw2RXaBveh+++rnAdBojHh4NMVsDirP0IQQQgjxiEVERHD+/HlOnDjBK6+8wptvvsl7771X3mE53C1pA1BYWEjnzp3JyMhg3bp1JCUlsXr1aho0aOCUGFuwYAGRkZG0bduWvXv3cujQIfr160d0dDSvvvrqfcVZq1YtFi5cyOHDh9m5cyfVq1enS5cuXL58GYDjx49js9n48MMPOXLkCHPnzuWDDz5gypQppR43Pz+fypUr8/rrr9OoUaMyx5OdnU2jRo1YtGjRL44Z7Pe/d+/e/PnPfy7xGFarlWeffZaCggJ2797N8uXLWbZsGVOnTnW0mTdvHufPn3c8Tp8+jZeXF71793a02bFjByNGjOC7774jLi6OwsJCunTpQnZ2dqnXebf4Hhol7igjI0MBKiMjo7xDEeJ3Y+vGjSomJkbFxMSoqUP/n/pPu1Yqts+zakH/UWrh8K/V6UXjindK+UapGHel3qmu1BeTVKudCarKNwnqu2s3Hv0FiN+VjNwCFTRxkwqauEnt+LaF2vp1iMrMPFreYYmHTF4fOJP7IYR4UHJzc9XRo0dVbm5ueYdyz6KiolRkZKTTts6dO6tWrVqp9PR0NXDgQOXp6anMZrOKiIhQycnJjnZpaWmqe/fuytPTU7m4uKh69eqpzz//XKWmpirA6REVFaWUUiozM1P1799fubi4KF9fXzVnzhzVoUMHNWbMGMdxg4KC1PTp09XAgQOVxWJx9I2Pj1ft2rVTJpNJBQYGqlGjRqmsrCyllFIJCQkKUGlpaXe81lOnTimDwaDGjSv+unz+/PkKUN99951SSjmuISEh4d5v6k23/s5s3br1jm1mzZqlgoODy3zMn9+rsgLU+vXr79qutJiXLl2qPDw8im3fvHmz0mq16sKFC45tixcvVu7u7io/P7/E86xfv15pNJpSv16XLl1SgNqxY8dd4y4tvpKU9jNb1tcHMoxACPFYyc6y1+PxsXngVWTAdnO5PY3BAIC+Qgm/tm7WksIrBCJmkqextzVJgXPxEP1zTxqjVyUAYNRpsVrtnz7p9TJtTwghhHhQlFIUFBSUy0MpdV+xm81mCgoKGDx4MD/88AMbN25kz549KKXo1q0bhYX2RVJGjBhBfn4+3377LYcPH+bdd9/Fzc2NqlWr8umnnwKQlJTE+fPnmTdvHgDjxo1j165dbNy4kbi4OOLj4zlw4ECxGGJjY2nUqBEJCQm88cYbnDx5koiICHr16sWhQ4dYvXo1O3fuZOTIkQBUrlwZrVbL2rVrsVqtJV7X2rVrKSwsLHFE1PDhw3Fzc2PVqlX3de9uKSgoYMmSJXh4eJQ6uikjIwMvL68Hcs77VdaYf27Pnj00aNCAKlWqOLaFh4eTmZnJkSNHSuzz0Ucf0alTJ4KC7jxCPyMjA+CxuT8/J4XOhRCPlcvn7W/sAwrcOJ+fxZlK1YAsCm0uN1fdK6FoeWEOAGs9W7E36TTXCu1T/mT6nnhY8gqtxGw8gl6bT2SNr/F3z8NmsydHdTopcC6EEEI8KIWFhfzlL38pl3NPmTIFo9F4z/2UUnz99dds2bKFrl27smHDBnbt2kWbNm0AWLFiBVWrVmXDhg307t2bU6dO0atXLxo0aABASEiI41i3Egk+Pj6OOj83btxg+fLlrFy5ko4dOwKwdOlS/P39i8XyzDPP8MorrzieDx06lAEDBjjqKYWGhjJ//nw6dOjA4sWLCQgIYP78+UyYMIFp06bRrFkzwsLCGDBggCOu5ORkPDw88PPzK3Y+o9FISEgIycnJ93zfbrdp0yb69etHTk4Ofn5+xMXFUalSpRLbpqSksGDBAmJjY+/rnPfrXmIuyYULF5wSUoDj+YULF4q1P3fuHF988QUrV6684zFtNhtjx46lbdu2PPHEE2WO5VGSd2xCiMdGYWY+2vQCipSGxCvHyLZeIFdvHzml0ZjQ62y4PTO0hI45ZGvNjPHuxT/PXSXPptACXgbdo70A8buRmVuITUHTKgfpWeNLmlXeDoBWa0Ivq+4JIYQQv0ubNm3Czc0Nk8lE165d6du3L4MHD0av19OyZUtHO29vb2rXrs2xY/YFfUaPHs2MGTNo27YtMTExHDp0qNTz/PTTTxQWFtKiRQvHNg8PD2rXrl2sbbNmzZyeHzx4kGXLluHm5uZ4hIeHY7PZSE1NBewjty5cuMCKFSto3bo1a9asoX79+sTFxZX5XpQlmbdixQqnOOLj4x37wsLCSExMZPfu3URERNCnTx8uXbpU7Bhnz54lIiKC3r17M2zYMMf2248bHR1dppjj4+Od+q1YsaJM/e415gdl+fLleHp68txzz92xzYgRI/jxxx/55JNPHNuio6OdrrO8yUgpIcRj43R8Ikpj44zVgyp5J3EDNDpftDofunauiP+z7TBVvG0lvYtHYWsMXE3hht4Fq0aLFhgf7Et9NzOVjYbyuhTxG3cj3z4ar5LZPkrPza0OlSt1wdOzGVrtvX+iKoQQQoiSGQyGuxawfpjnvhdhYWEsXrwYo9GIv78/er2ejRs33rXf0KFDCQ8P5/PPP+err75i5syZzJ49m1GjRv3S0B1cXZ3LCmRlZTF8+HBGjx5drG21atUc/7dYLPTo0YMePXowY8YMwsPDmTFjBp07dyY0NJSMjAzOnTtXbHRWQUEBJ0+eJDw8/K6x9ezZ0ylZFxAQ4BR3zZo1qVmzJq1atSI0NJSPPvqIyZMnO9qcO3eOsLAw2rRpw5IlS5yOfftqf+7u7neNBewJvNv7/XzU0t2UJebS+Pr68v333zttu3jxomPf7ZRSfPzxxwwcOPCOCcCRI0eyadMmvv32WwIDAx3bp0+fft/F6B8kSUoJIR4L5/fu5ZsvPuWad0XqnoynSno+Vy1m9KYm6Aw1qFXnLNyekAJI+Cec+AqAHLP9j5irTsvL1X1/fnghHojs/CLmxCWTcsk+gs/DZK8F4eHRhJCQMeUZmhBCCPGbpNFoftEUuvJwKylxu7p161JUVMTevXsd0/euXr1KUlIS9erVc7SrWrUq0dHRREdHM3nyZP72t78xatQox7XfXt8pJCQEg8HAvn37HImkjIwMkpOTad++fakxNmnShKNHjxaLszQajYY6deqwe/duAJ5//nkmTpzI7NmzmT17tlPbDz74gJycHAYNGnTX41osFiwWS5lisNls5OfnO56fPXuWsLAwmjZtytKlS9H+rGzHvVzfLWaz+Rf1u5Ofx3w3rVu35u233+bSpUv4+PgAEBcXh7u7u9P3CthX2EtJSWHIkCHFjqOUYtSoUaxfv57t27cTHBzstN/Hx8dx/MeBJKWEEI+FnTt3cqaSC5BP1RvpWLW3hpLq0WgKweBSvFOBPTHAE8+TW+cFuAxmKW4uHqKtxy7y0U770HY3QxY+rvYaaDqdFDcXQgghRHGhoaFERkYybNgwPvzwQywWC5MmTSIgIIDIyEgAxo4dS9euXalVqxbXrl1j27Zt1K1bF4CgoCA0Gg2bNm2iW7dumM1mLBYLUVFRjB8/Hi8vL3x8fIiJiUGr1aLRaEqNZ+LEibRq1YqRI0cydOhQXF1dOXr0KHFxcSxcuJDExERiYmIYOHAg9erVw2g0smPHDj7++GMmTpwI2EdUzZo1i1dffRWTycTAgQMxGAx89tlnTJkyhRkzZhSrX5SUlFQslvr16xcbjZadnc3bb79Nz5498fPz48qVKyxatIizZ8/Su3dvwJ6QevrppwkKCiI2NpbLly87+v98RNHP3RoJlZWVxeXLl0lMTMRoNBZL+twuKyuLlJQUx/PU1FQSExPx8vKiWrVqZYoZ4NSpU6Snp3Pq1CmsVqsjlpo1a+Lm5kaXLl2oV68eAwcOZNasWVy4cIHXX3+dESNGUKFCBaeYPvroI1q2bFlinagRI0awcuVKPvvsMywWi6MelYeHB2az+Y7Xebf4HhZJSgkhHgu5BfYRJ1Wt3lQoUuTobv5B1egxafPBUMIv0KKbnzz4P0lO1dZw+QQukpQSD9H1HPv36dBGX9O6ymeO7XpJSgkhhBDiDpYuXcqYMWPo3r07BQUFtG/fns2bNzsSMlarlREjRnDmzBnc3d2JiIhg7ty5gH1K27Rp05g0aRIvvvgigwYNYtmyZcyZM4fo6Gi6d++Ou7s7EyZM4PTp05hMptJCoWHDhuzYsYPXXnuNp556CqUUNWrUoG/fvgAEBgZSvXp1pk2bRlpaGhqNxvH85Zdfdhzn5ZdfJiQkhNmzZzNv3jyys+0f1K1atYp+/foVO29J206fPu00rQxAp9Nx/Phxli9fzpUrV/D29qZ58+bEx8dTv359wD56KCUlhZSUlGL977ZiYuPGjR3/379/PytXriQoKIi0tLQ79vnhhx8ICwtzPB83bhwAUVFRLFu2rEwxA0ydOpXly5cXi2Xbtm08/fTT6HQ6Nm3axJ///Gdat26Nq6srUVFRTJ8+3SmejIwMPv30U8dKjD+3ePFiAJ5++mmn7UuXLmXw4MF3vM67xfewaNT9rnP5G5aZmYmHhwcZGRllnocqhLh3Sin+Pv1dzqo82hfU48r+90g3VSTbZMTo1gePCkYGveoLIU87d1w9kMLjn9P76Q0c0niSY7VR19XEthZ1yuU6xG/fom0pvLclidiwxVQ02IuT6vWePNnoIzw8nizf4MQjI68PnMn9EEI8KHl5eaSmphIcHHzX5Ipwlp2dTUBAALNnzy5xStfDlp6eTseOHXF3d+eLL77AxaWEWQ7iN6e0n9myvj6QIQVCiHJ36fsLWK32X2JpF3Zw2sOHbNPN2gEaAzpXNwhqV7xjUT4p5mp8Z3Mnx2oD4El3+QMoHjybTfHj2Qx+umz/FNCozQXgySeX06H9fklICSGEEOKRSkhIYNWqVZw8eZIDBw4wYMAAAMeUwEfNy8uLrVu30rFjR/bs2VMuMYhfJ5m+J4QoV9asLM59vhMrNg4WVsKS/QPcmguvMaPReWKp6ge6En5dFeWSq7PPr/Y1GtjQpCZBpl9HIUzx6/L25mOOWlIA+ptJKb2u/JfRFUIIIcTvU2xsLElJSRiNRpo2bUp8fDyVKlUqt3i8vb2ZOnVquZ1f/DpJUkoIUa6ufbKaM6dPUVjVDUvW147tRvchuGkv0i6qFoENqzp32r0AEv4F1/5LnmstANz0WqqbnQsACvGgHL+QiQYbk1v+lRoeyY7ten3ZVowRQgghhHiQGjduzP79+8s7DCHum0zfE0KUq8/OnWV/kIZrmmxe2v2TfaMCrc6DKroLhDbzw+z2s9FPu+bD5eNQlEue1p6IMmnl15l4eLLyrViMWU4JKZMpEJMpsJReQgghhBBCiNLISCkhRLlRSnHaZq8FZVNgLrCvu6DR6gAwVcgHfQlFLgvsdX3o9RF5bg0gLReTtvTlb4W4Hzn5RZj0eQDodK60af0Ner0HWq3hLj2FEEIIIYQQdyJJKSFEuSkqKnL8PzKnCZmmTQDcGvSk1xb978ktSkFhDrlaI3srtuCHPD2QKyOlxAOnlGLN/jOcvZbLxcw8KhrsSSm93oLRWH71GoQQQgghhPitkKSUEKLcJO/4r/0/Nhu7z/6Twuq+AGiwj5QyeJTwxr8oH1BMrvkyn5xId2x20UlSSjxYCaevM2HtIdwMN+hf51OquFwGQCfFzYUQQgghhHggJCklhCg3hdvTUDq4kO+CxWZfzQyNKxgbA6Br3Nu5g7UIrthr+qSZAwAINhupbDQwJLDyI4tb/D5cyrSPjOpQ7Sgt/Q44tpvNVe/URQghhBBCCHEPJCklhCgXZxYv5kZRJa5iJvD4UTABGhMmz+EAGM16Aut6/a+DUvD3jnA+EYAcnRmAt0ID6eTt/oijF78HN/Ls00ure9nrnnl6tiAgoD9eFduWZ1hCCCGEEEL8ZkhSSgjxyBVcvcq/UlPJc7mI9/ksOp06yO5agdz6ldSp2WJqD13j3MlW5EhIoTeT62IfGWWWAufiAVNKkXwxixOXsgBwMeQD4OZWB98qPcozNCGEEEIIIX5TpAiLEOKRu3H1KnkuLgAYiwqw3UwsaTT2pFSwyVy8U2Hu//4/MY1cVx8AzFJLSjxgf4v/ifD3v2XlnkO09vueyhVOAqCXWlJCCCGEuIPBgwej0WjQaDQYjUZq1qzJ9OnTnRb2+SW2b9+ORqPh+vXrDybQMkhNTaV///74+/tjMpkIDAwkMjKS48ePO7XbtGkTHTp0wGKx4OLiQvPmzVm2bJlTm7S0NDQaDYmJiWU+/5tvvkmdOnVwdXWlYsWKdOrUib179zodc8iQIQQHB2M2m6lRowYxMTEUFBTc9dgrVqygUaNGuLi44Ofnx0svvcTVq1dL7fPtt9/So0cP/P390Wg0bNiwocR2x44do2fPnnh4eODq6krz5s05deqUY//w4cOpUaMGZrOZypUrl3hP9+3bR8eOHfH09KRixYqEh4dz8ODBEs+XkpKCxWLB09Pzrtdd1msoD/JuTgjxyBXm2hNMBqUjpLAiVs3N0U43k1L6CsbinYrs9X2saEnKV2QX2adUmWXVPfGAHT2XCUBU/XUMbfAvvA32FwJ6g0d5hiWEEEKIx1xERATnz5/nxIkTvPLKK7z55pu899575R2WQ1mSNoWFhXTu3JmMjAzWrVtHUlISq1evpkGDBk6JsQULFhAZGUnbtm3Zu3cvhw4dol+/fkRHR/Pqq6/eV5y1atVi4cKFHD58mJ07d1K9enW6dOnC5cv2RWeOHz+OzWbjww8/5MiRI8ydO5cPPviAKVOmlHrcXbt2MWjQIIYMGcKRI0dYs2YN33//PcOGDSu1X3Z2No0aNWLRokV3bHPy5EnatWtHnTp12L59O4cOHeKNN97AZDI52jRt2pSlS5dy7NgxtmzZglKKLl26YLVaAcjKyiIiIoJq1aqxd+9edu7cicViITw8nMLCQqfzFRYW8sILL/DUU0+VGvu9XEO5UeKOMjIyFKAyMjLKOxQhflOS/r1dxcTEqJmvT1Mf9BuiVnRur2L7PKtmvzBELR7+hVJfTine6dp/lYpxV0P/PU9V+SbB8UjNyXv0FyB+04Ys+14FTdykvtjWTW39OkR9v+8P6scj41Re3sXyDk08JuT1gTO5H0KIByU3N1cdPXpU5ebmlnco9ywqKkpFRkY6bevcubNq1aqVSk9PVwMHDlSenp7KbDariIgIlZyc7GiXlpamunfvrjw9PZWLi4uqV6+e+vzzz1VqaqoCnB5RUVFKKaUyMzNV//79lYuLi/L19VVz5sxRHTp0UGPGjHEcNygoSE2fPl0NHDhQWSwWR9/4+HjVrl07ZTKZVGBgoBo1apTKyspSSimVkJCgAJWWlnbHaz116pQyGAxq3LhxxfbNnz9fAeq7775TSinHNSQkJNz7Tb3p1t+ZrVu33rHNrFmzVHBwcKnHee+991RISEixeAMCAsocC6DWr19fbHvfvn3Vn/70pzIfRymlDh48qACVkpKilFJq3759ClCnTp1ytDl06JAC1IkTJ5z6TpgwQf3pT39SS5cuVR4eHvd03jtdwy9R2s9sWV8fyBADIcQjZSu0kbn/BgD6zHSybBc4X9ECgEZjQm/UwVOvFO9YaB8p9aNbTQA89To6erlTzVTCqCoh7kNWvn2YvU6TA0DNGhOpX282FSr4lGdYQgghxO+SUgqrNadcHvb377+c2WymoKCAwYMH88MPP7Bx40b27NmDUopu3bo5Rr+MGDGC/Px8vv32Ww4fPsy7776Lm5sbVatW5dNPPwUgKSmJ8+fPM2/ePADGjRvHrl272LhxI3FxccTHx3PgwIFiMcTGxtKoUSMSEhJ44403OHnyJBEREfTq1YtDhw6xevVqdu7cyciRIwGoXLkyWq2WtWvXOkbw/NzatWspLCwscUTU8OHDcXNzY9WqVfd1724pKChgyZIleHh40KhRozu2y8jIwMvL6477AVq3bs3p06fZvHkzSikuXrzI2rVr6dat233FaLPZ+Pzzz6lVqxbh4eH4+PjQsmXLUqfIZWdns3TpUoKDg6la1b6yc+3atfH29uajjz6ioKCA3NxcPvroI+rWrUv16tUdfb/55hvWrFnzeI56+gWk0LkQ4pHKz85DaWxcsblwOr+AeoBG643WUA2d8QmqhFYGl5/9Qbl6Ek7b55HnaSsA8O8na9DQ4vKIoxe/ZdP/c5T1CWcoKsqgceUUtLbrAOj1UktKCCGEKC82Wy7bdzQol3M/3eEwOt29v95USvH111+zZcsWunbtyoYNG9i1axdt2rQB7HWNqlatyoYNG+jduzenTp2iV69eNGhgv86QkBDHsW4lWnx8fBy1g27cuMHy5ctZuXIlHTt2BGDp0qX4+/sXi+WZZ57hlVf+94Hv0KFDGTBgAGPHjgUgNDSU+fPn06FDBxYvXkxAQADz589nwoQJTJs2jWbNmhEWFsaAAQMccSUnJ+Ph4YGfn1+x8xmNRkJCQkhOTr7n+3a7TZs20a9fP3JycvDz8yMuLo5KlSqV2DYlJYUFCxYQGxtb6jHbtm3LihUr6Nu3L3l5eRQVFdGjR4/7Tu5cunSJrKws3nnnHWbMmMG7777Ll19+yR//+Ee2bdtGhw4dHG3/+te/MmHCBLKzs6lduzZxcXEYjfYP2S0WC9u3b+e5557jrbfeAuxfny1btqDX21M3V69eZfDgwfzrX//C3f23sQK5jJQSQjwyuWfPsuG1yaToLsC5bBqcTQJAa6iKwdyBqP55dB/xs09Azh6ABU1go/3Tm9ybSSmT1JISD9jK7//LtZxC/q/Bx4xs/HdQ9tpSer3UkhJCCCHE3W3atAk3NzdMJhNdu3alb9++DB48GL1eT8uWLR3tvL29qV27NseOHQNg9OjRzJgxg7Zt2xITE8OhQ4dKPc9PP/1EYWEhLVq0cGzz8PCgdu3axdo2a9bM6fnBgwdZtmwZbm5ujkd4eDg2m43U1FTAPnLrwoULrFixgtatW7NmzRrq169PXFxcme/FrURLaVasWOEUR3x8vGNfWFgYiYmJ7N69m4iICPr06cOlS5eKHePs2bNERETQu3dvp9pQtx83OjoagKNHjzJmzBimTp3K/v37+fLLL0lLS3Psj4+Pd+q3YsWKMl2rzWavdRsZGcnLL7/Mk08+yaRJk+jevTsffPCBU9sBAwaQkJDAjh07qFWrFn369CEvzz4jJDc3lyFDhtC2bVu+++47du3axRNPPMGzzz5L7s2avMOGDaN///60b9++xFh+6TWUJxkpJYR4ZBI3biSpckXgHJGHvyLTVUeaiydgQFGIu5cBbq7E53DlhP1fgwt4BJKnt39aZfp5OyHuQ5HVRl6h/QVF/SqZqCJwc6tHxYotMZkCyjk6IYQQ4vdLqzXzdIfD5XbuexEWFsbixYsxGo34+/uj1+vZuHHjXfsNHTqU8PBwPv/8c7766itmzpzJ7NmzGTVq1C8N3cHV1dXpeVZWFsOHD2f06NHF2larVs3xf4vFQo8ePejRowczZswgPDycGTNm0LlzZ0JDQ8nIyODcuXPFRmcVFBRw8uRJwsPD7xpbz549nZJ1AQH/e83l6upKzZo1qVmzJq1atSI0NJSPPvqIyZMnO9qcO3eOsLAw2rRpw5IlS5yOfftqf7dGFM2cOZO2bdsyfvx4ABo2bIirqytPPfUUM2bMoFmzZk79qlSpctdrAKhUqRJ6vZ569eo5ba9bty47d+502ubh4YGHhwehoaG0atWKihUrsn79el544QVWrlxJWloae/bsQXvzA/iVK1dSsWJFPvvsM/r168c333zDxo0bHaPClFLYbDb0ej1LlizhhRde+EXXUJ4kKSWEeGSybn4KYLGZcSnK5rrGPgJFo9Fj0xeCvkLxTjdX3SO4A7YXVpG33b4SmlknI6XEg5Od/7+aCTpyKAKeqP8+rq41yi8oIYQQQqDRaH7RFLrycCuRcru6detSVFTE3r17HdP3rl69SlJSklMSo2rVqkRHRxMdHc3kyZP529/+xqhRoxwjjm6v7xQSEoLBYGDfvn2ORFJGRgbJycl3HEFzS5MmTTh69GixOEuj0WioU6cOu3fvBuD5559n4sSJzJ49m9mzZzu1/eCDD8jJyWHQoEF3Pa7FYsFisZQpBpvNRn5+vuP52bNnCQsLc6xop/3ZLIqSri8nJ8cxDe4WnU4H2JM7ZrP5nu7LLUajkebNm5OUlOS0PTk5maCgoDv2U0qhlHJcV05ODlqtFo3mfx++33p+azTWnj17nL4XPvvsM9599112795NQEDAL76G8iRJKSHEI6FsioIc+y99P6snVo2WfIP9ORo9FpUHJdXuKcrnmt7CW57PcvlwqmOzWabviQegyGrj/a0nOHk5CwCTQYPVmg1ILSkhhBBC3L/Q0FAiIyMZNmwYH374IRaLhUmTJhEQEEBkZCQAY8eOpWvXrtSqVYtr166xbds26tatC0BQUBAajYZNmzbRrVs3zGYzFouFqKgoxo8fj5eXFz4+PsTExBRLaJRk4sSJtGrVipEjRzJ06FBcXV05evQocXFxLFy4kMTERGJiYhg4cCD16tXDaDSyY8cOPv74YyZOnAjYR1TNmjWLV199FZPJxMCBAzEYDHz22WdMmTKFGTNm8MQTTzid9+cJG4D69etjMBictmVnZ/P222/Ts2dP/Pz8uHLlCosWLeLs2bP07t0bsCeknn76aYKCgoiNjeXy5cuO/r6+vne89h49ejBs2DAWL15MeHg458+fZ+zYsbRo0aLEely3ZGVlkZKS4niemppKYmIiXl5ejqTg+PHj6du3L+3btycsLIwvv/yS//znP2zfvh2wT7lcvXo1Xbp0oXLlypw5c4Z33nkHs9nsKLTeuXNnxo8fz4gRIxg1ahQ2m4133nkHvV5PWFgYgOP74pYffvgBrVZb7H7/kmsoL5KUEkI8EtnH0ynMdQd9OpmXDrGvRuBte/UYNflQsYRfpkV5fFHpKVaaG8BVe40fT71ORkqJB+L71HQWbktBp7HyStPFVHO/gFL2T590Ote79BZCCCGEuLulS5cyZswYunfvTkFBAe3bt2fz5s2OhIzVamXEiBGcOXMGd3d3IiIimDt3LmCf0jZt2jQmTZrEiy++yKBBg1i2bBlz5swhOjqa7t274+7uzoQJEzh9+jQmk6nUWBo2bMiOHTt47bXXeOqpp1BKUaNGDfr27QtAYGAg1atXZ9q0aaSlpaHRaBzPX375ZcdxXn75ZUJCQpg9ezbz5s0jO9v+od6qVavo169fsfOWtO306dMEBgY6bdPpdBw/fpzly5dz5coVvL29ad68OfHx8dSvXx+AuLg4UlJSSElJKda/tBUTBw8ezI0bN1i4cCGvvPIKnp6ePPPMM7z77rul3rMffvjBkRQC+8qHAFFRUSxbtgyAP/zhD3zwwQfMnDmT0aNHU7t2bT799FPatWsHgMlkIj4+nvfff59r165RpUoV2rdvz+7du/Hxsa/wXKdOHf7zn/8wbdo0WrdujVarpXHjxnz55ZclFpW/F2W5hvKiUfe7zuVvWGZmJh4eHmRkZPxmKtsLUV5S155gf2I8P+pP4ZlyHGthFmBAo3XD4PYcvtUq0/uNEoYb73iPD04k82aNETRxd2GAnzdN3F2o63Zvc/yFKMmmQ+cYuTKBloFX+L960x3bzebqtG4Vh0YjyU9RnLw+cCb3QwjxoOTl5ZGamkpwcPBdkyvCWXZ2NgEBAcyePZshQ4Y88vOnp6fTsWNH3N3d+eKLL3Bx+XVMuRT3p7Sf2bK+PpCRUkKIR+LcsQNYsZJ3oQBrfi5oweD2HBVMJkKbBFOnQ0jJHYvyyNPa59LXcTUxwN/7EUYtfutu5BUBEHJzhWGTKZBGDZdgNgdJQkoIIYQQj62EhASOHz9OixYtyMjIYPp0+4drt6YEPmpeXl5s3bqVRYsWsWfPHjp27FgucYhfH0lKCSEeugMffcTh62fJczXT/butHKpekdwKBjQaPW6mYzwzIAJMHs6dNo+HH5aCrYi86i8BUkdKPDiFVhufJZ7j62MXAXCvUAiAwVARN7fiyykLIYQQQjxuYmNjSUpKwmg00rRpU+Lj46lUqVK5xePt7c3UqVPL7fzi10mSUkKIh0opxeb//pciixalsvEouIFV63Vzrx6DJh/0JUzFO7wWbPZEQa7OPhTUJHWkxAPy9bFLvLrmIC76HJpXOU6gyxUA9FJHSgghhBC/Ao0bN2b//v3lHYYQ902SUkKIh8pqtVJ0c4RT3YJA9DawaW+uCqLRU1nlgc5QvGNhLgAXouK4fMMTruZg0pa+mogQZXUhw/799X+NPqWB9z7Hdr1B6uEIIYQQQgjxqEhSSgjxUF3cedrx/2q5bly0uGDV6gDQaPSYtVb4+dK1SkFRLv+p1IFhaUYgBwCTTN8TD0h2gX2FvWoe6QBY3OpjrOBDtaqPvjCoEEIIIYQQv1eSlBJCPFTp35+1/6fIyt4Ln2ALuX05Uz2Gqk8U71SUB8AhSy0AKmg1+FUw0NFbRrGIByMr317g3Ki1j5gKrfUGFT2bl2dIQgghhBBC/O5IUkoI8VDl52SgFHyXF0AXlQAKNPoqVDD6UL1RIKF9nyne6ebUvTxtBQD+L7Ayr9Xwf5Rhi9+ouXHJ/OfgOWxFZwmrehij5joAer2lfAMTQgghhBDid0iSUkKIh+ZcfDzXss5T4KLFmJkNgE7pMbgP4Em/H2g7opFzB2shbBwNV5IAyL9V4Fym7YkH5IMdJ8kvsjG5xcfU9ExzbDcaKpZfUEIIIYQQQvxOSVJKCPFQXD5zhr9/9RU2Nx3BJ0/R48gB9oQGosGeYNIbSihafmYfHFzpeJpr8gZk1T3xYOQVWskvsgFQ0ysbbFCxYlu8vdpRoUKVco5OCCGEEEKI3x9JSgkhHoqzP/2ETacDBe6Z17HdLGauNPYi5yUmpQrso6nwDIIuM8grqAXX8mTVPXHfCq02Ui5lAfa6+npNHkVAndrTcHEJLt/ghBBCCCGE+J2S4QdCiIfixjV7gsnf6kFQgQfWm1PwlPHmSCl9Cb9+bhU492rCvzzb8lOhfbNZpu+J+2C1KbrNi6f7gp0AWCroKLLenE6qcynP0IQQQgjxGzF48GA0Gg0ajQaj0UjNmjWZPn06RUVF93Xc7du3o9FouH79+oMJtAxSU1Pp378//v7+mEwmAgMDiYyM5Pjx407tNm3aRIcOHbBYLLi4uNC8eXOWLVvm1CYtLQ2NRkNiYmKZz//mm29Sp04dXF1dqVixIp06dWLv3r1OxxwyZAjBwcGYzWZq1KhBTEwMBQUFdz32ihUraNSoES4uLvj5+fHSSy9x9erVUvssXryYhg0b4u7ujru7O61bt+aLL75w7E9PT2fUqFHUrl0bs9lMtWrVGD16NBkZGY42y5Ytc3x//Pxx6dIlR7v8/Hxee+01goKCqFChAtWrV+fjjz92iuf99993nKtq1aq8/PLL5OXllXoN69ato0uXLnh7e9/z1+Nhk5FSQogHzppVwI3vr4EBdAUFJLhepcDNH1BolSsAOv/axTsW5pGjrUBkwP8jN+m0Y7NrSQksIcooI7eQE5eysBhvMKDOOmpWKgTs0/h0OtfyDU4IIYQQvxkREREsXbqU/Px8Nm/ezIgRIzAYDEyePLm8QwOgoKAAo9FYapvCwkI6d+5M7dq1WbduHX5+fpw5c4YvvvjCKTG2YMECxo4dy8SJE1m8eDFGo5HPPvuM6OhofvzxR2JjY39xnLVq1WLhwoWEhISQm5vL3Llz6dKlCykpKVSuXJnjx49js9n48MMPqVmzJj/++CPDhg0jOzu71PPu2rWLQYMGMXfuXHr06MHZs2eJjo5m2LBhrFu37o79AgMDeeeddwgNDUUpxfLly4mMjCQhIYH69etz7tw5zp07R2xsLPXq1eO///0v0dHRnDt3jrVr1wLQt29fIiIinI47ePBg8vLy8PHxcWzr06cPFy9e5KOPPqJmzZqcP38em83m2L9y5UomTZrExx9/TJs2bUhOTnYkROfMmXPHa8jOzqZdu3b06dOHYcOG3fVr8EgpcUcZGRkKUBkZGeUdihC/KrlJ6WrTlH+oiVPfUn+Onqpi+zzreMwdOEUtHP61Sj14uXjH/cvVubdDVJVvEpTvNwkq6tBJNf74KXWjsOjRX4T4zfjvlWwVNHGTGvbXyWrr1yGOx45vmymbzVre4YlfIXl94EzuhxDiQcnNzVVHjx5Vubm55R3KPYuKilKRkZFO2zp37qxatWql0tPT1cCBA5Wnp6cym80qIiJCJScnO9qlpaWp7t27K09PT+Xi4qLq1aunPv/8c5WamqoAp0dUVJRSSqnMzEzVv39/5eLionx9fdWcOXNUhw4d1JgxYxzHDQoKUtOnT1cDBw5UFovF0Tc+Pl61a9dOmUwmFRgYqEaNGqWysrKUUkolJCQoQKWlpd3xWk+dOqUMBoMaN25csX3z589XgPruu++UUspxDQkJCfd+U2+69Xdm69atd2wza9YsFRwcXOpx3nvvPRUSElIs3oCAgHuOqWLFiurvf//7Hff/+9//VkajURUWFpa4/9KlS8pgMKh//OMfjm1ffPGF8vDwUFevXr3jcUeMGKGeeeYZp23jxo1Tbdu2LVPcD+LrcbvSfmbL+vpAhh8IIR4om81G0oljXNHe4FqWgSqX0gDQGkIxug+kY2NXug5vQLUnvIt3LsonT1sBAFedlmUNQphVuypuet0jvALxW5OVbx8272m2D2uuWLE19evNoVnTf6PRyJ9BIYQQ4nGmlCLbai2Xh1LqvmI3m80UFBQwePBgfvjhBzZu3MiePXtQStGtWzcKC+21KkaMGEF+fj7ffvsthw8f5t1338XNzY2qVavy6aefApCUlMT58+eZN28eAOPGjWPXrl1s3LiRuLg44uPjOXDgQLEYYmNjadSoEQkJCbzxxhucPHmSiIgIevXqxaFDh1i9ejU7d+5k5MiRAFSuXBmtVsvatWuxWq0lXtfatWspLCzk1VdfLbZv+PDhuLm5sWrVqvu6d7cUFBSwZMkSPDw8aNSo0R3bZWRk4OXlVeqxWrduzenTp9m8eTNKKS5evMjatWvp1q1bmeOxWq188sknZGdn07p161LjcXd3R68veXLaP/7xD1xcXHj++ecd2zZu3EizZs2YNWsWAQEB1KpVi1dffZXc3FxHmzZt2rB//36+//57AH766Sc2b958T9fwuJHpe0KIB+rYoUOs3/cV6KBV0jE8s87wU5WKaLQW0HnQIPgMNK7s3CltJ2x6GW5cJE9/c8U9qSMl7tONvEJmf5XsKHBuqZBv/9etHr6+keUZmhBCCCHKKMdmo8a3h8vl3CfbN8BVd+8fjiql+Prrr9myZQtdu3Zlw4YN7Nq1izZt2gD2ukZVq1Zlw4YN9O7dm1OnTtGrVy8aNGgAQEhIiONYtxItPj4+eHp6AnDjxg2WL1/OypUr6dixIwBLly7F39+/WCzPPPMMr7zyiuP50KFDGTBgAGPHjgUgNDSU+fPn06FDBxYvXkxAQADz589nwoQJTJs2jWbNmhEWFsaAAQMccSUnJ+Ph4YGfn1+x8xmNRkJCQkhOTr7n+3a7TZs20a9fP3JycvDz8yMuLo5KlSqV2DYlJYUFCxbcdcpg27ZtWbFiBX379iUvL4+ioiJ69OjBokWL7hrP4cOHad26NXl5ebi5ubF+/Xrq1atXYtsrV67w1ltv8X//9393PN5HH31E//79MZvNjm0//fQTO3fuxGQysX79eq5cucL/+3//j6tXr7J06VIA+vfvz5UrV2jXrh1KKYqKioiOjmbKlCl3vYbHlbzrE0I8UFdOngTArIxY8vKw3Vo5T6PHqisEfYXinX5cB1eSIT+D3JsjpUw6WXFP3J+vjlxk2e40Dp36iT61NlC3ov0FrU5vKefIhBBCCPFbtGnTJtzc3DCZTHTt2pW+ffsyePBg9Ho9LVu2dLTz9vamdu3aHDt2DIDRo0czY8YM2rZtS0xMDIcOHSr1PD/99BOFhYW0aNHCsc3Dw4PatYvXbG3WrJnT84MHD7Js2TLc3Nwcj/DwcGw2G6mpqYB95NaFCxdYsWIFrVu3Zs2aNdSvX5+4uLgy34u71a4Ce3Lu9jji4+Md+8LCwkhMTGT37t1ERETQp08fp4Lgt5w9e5aIiAh69+7tVCvp9uNGR0cDcPToUcaMGcPUqVPZv38/X375JWlpaY798fHxTv1WrFjhOF7t2rVJTExk7969/PnPfyYqKoqjR48WiyczM5Nnn32WevXq8eabb5Z43Xv27OHYsWMMGTLEabvNZkOj0bBixQpatGhBt27dmDNnDsuXL3eMltq+fTt/+ctf+Otf/8qBAwdYt24dn3/+OW+99dZd7+njSkZKCSEeqMKbq15Us1ZCRxaFGntySYMOpSkEval4p5ur7tFiOLl1oyCtUFbcE/ftWo79e7FPvf209vnGsd1UoUp5hSSEEEKIe+Si1XKyfYNyO/e9CAsLcxT99vf3R6/Xs3Hjxrv2Gzp0KOHh4Xz++ed89dVXzJw5k9mzZzNq1KhfGrqDq6vzoi5ZWVkMHz6c0aNHF2tbrVo1x/8tFgs9evSgR48ezJgxg/DwcGbMmEHnzp0JDQ0lIyODc+fOFRudVVBQwMmTJwkPD79rbD179nRK1gUEBDjFXbNmTWrWrEmrVq0IDQ3lo48+cioaf+7cOcLCwmjTpg1LlixxOvbtq8u5u7sDMHPmTNq2bcv48eMBaNiwIa6urjz11FPMmDGDZs2aOfWrUuV/rxlvragI0LRpU/bt28e8efP48MMPHW1u3LhBREQEFouF9evXYzAYSrzuv//97zz55JM0bdrUabufnx8BAQF4eHg4ttWtWxelFGfOnCE0NJQ33niDgQMHMnToUAAaNGhAdnY2//d//8drr71W6j19XElSSgjxwNgKrFz9rz3BpEOLxlaITfe/kVKeKq/kkVKFuZwwV2OAyx+5dMpe/0em74n7lVNgr4MQ6GGftufp2ZIqPt2oUqVneYYlhBBCiHug0Wh+0RS68nArkXK7unXrUlRUxN69ex3T965evUpSUpLT9K+qVasSHR1NdHQ0kydP5m9/+xujRo1yjDi6vb5TSEgIBoOBffv2ORJJGRkZJCcn0759+1JjbNKkCUePHi0WZ2k0Gg116tRh9+7dADz//PNMnDiR2bNnM3v2bKe2H3zwATk5OQwaNOiux7VYLFgsZRvBbrPZyM/Pdzw/e/YsYWFhNG3alKVLl6L92XuHkq4vJyenWI0n3c3vLaUUZrO5zPfl5/FkZmYSHh5OhQoV2LhxIyZTCR/EY08K/vvf/2bmzJnF9rVt25Y1a9aQlZWFm5sbYJ8qqdVqCQwMdFzDz6/19mu4l3v6uJCklBDigUnfkoYuS4Eerl9Lw+ruQoGhAmAF9Bg1BeBRtXjHojx2VGzGKWWCmwUlG7u7PNLYxW9P9s0C5yadPVFaybsDgYF/Ks+QhBBCCPE7ExoaSmRkJMOGDePDDz/EYrEwadIkAgICiIy017gcO3YsXbt2pVatWly7do1t27ZRt25dAIKCgtBoNGzatIlu3bphNpuxWCxERUUxfvx4vLy88PHxISYmBq1Wi0ZTegmMiRMn0qpVK0aOHMnQoUNxdXXl6NGjxMXFsXDhQhITE4mJiWHgwIHUq1cPo9HIjh07+Pjjj5k4cSJgH1E1a9YsXn31VUwmEwMHDsRgMPDZZ58xZcoUZsyYwRNPPOF03qSkpGKx1K9fv9hoouzsbN5++2169uyJn58fV65cYdGiRZw9e5bevXsD9oTU008/TVBQELGxsVy+fNnR39fX947X3qNHD4YNG8bixYsJDw/n/PnzjB07lhYtWpRYj+uWyZMn07VrV6pVq8aNGzdYuXIl27dvZ8uWLYA9IdWlSxdycnL417/+RWZmJpmZmYC9cLzutqTq6tWrKSoq4k9/Kv6atH///rz11lu8+OKLTJs2jStXrjB+/HheeuklR+2pHj16MGfOHBo3bkzLli1JSUnhjTfeoEePHk7n+bn09HROnTrFuXPngP99PXx9fUu9Z4+CJKWEEA9MUXoeVqwcKvDB9coXaCvosSekQKN1w+xbFZp0KKFjHnk6+zDVbpU8eLOmP1VNd5+HLkRJ3tp0lI0Hz1FQmEWA22VMumsA6HRu5RyZEEIIIX6Pli5dypgxY+jevTsFBQW0b9+ezZs3OxIyVquVESNGcObMGdzd3YmIiGDu3LmAffrVtGnTmDRpEi+++CKDBg1i2bJlzJkzh+joaLp37467uzsTJkzg9OnTdxyhc0vDhg3ZsWMHr732Gk899RRKKWrUqEHfvn0BCAwMpHr16kybNo20tDQ0Go3j+csvv+w4zssvv0xISAizZ89m3rx5ZGdnA7Bq1Sr69etX7LwlbTt9+rRjBNAtOp2O48ePs3z5cq5cuYK3tzfNmzcnPj6e+vXrAxAXF0dKSgopKSnF+pe2YuLgwYO5ceMGCxcu5JVXXsHT05NnnnmGd999t9R7dunSJQYNGsT58+fx8PCgYcOGbNmyhc6dOwNw4MAB9u7dCxQfoZWamkr16tUdzz/66CP++Mc/OorW387NzY24uDhGjRpFs2bN8Pb2pk+fPsyYMcPR5vXXX0ej0fD6669z9uxZKleuTI8ePXj77bdLvYaNGzfy4osvOp7f+nrExMTcsfbVo6JR97vO5W9YZmYmHh4ejuUchRB3lp+fz673NpCSf5FPswx0Ofc5AHqXTmh1eTQPf5bQtsF4+5eQGPi4K7GaUGKrv8Qgf29m1S5hNJUQZaCUotbrX6BsBbzz1HQqmjIc++rVm42f73PlF5z4zZDXB87kfgghHpS8vDxSU1MJDg6+a3JFOMvOziYgIIDZs2cXK6D9KKSnp9OxY0fc3d354osvcHGRWQ+/B6X9zJb19YEUbRFCPBCfLlzIt0XHuFJ0nje32QsNapQGfYWGGM0FtIqsUTwh9c3bMLsunNlH3q1V96SWlLgPeYU2Cq0Kjwo3HAkpg8EbN7e6eFVsXc7RCSGEEEI8GAkJCaxatYqTJ09y4MABBgwYAOCYEvioeXl5sXXrVjp27MiePXvKJQbx6yTT94QQD0T6pUtgNuObWYRe3ZyydzPvbTXnl7zq3r6/Q246AHk6+36zTpJS4pex2hSnr+UAYNbb60gZDF60f+r78gxLCCGEEOKhiI2NJSkpCaPRSNOmTYmPj6dSpUrlFo+3tzdTp04tt/OLXydJSgkh7lvR9XysOhdAEZzrxgUP+9Kz+QYtRkCvL4CSRkAV5nLB6M2XEcs4ZPWGrEJM2tKLMwpREptN0WPBTo6etxeV9HaxFznXSx0pIYQQQvwGNW7cmP3795d3GELcN0lKCSHuW8aXqdj0ZrBmkph9EJufNwAG7HPJaxtLGCWlFBTl8lq9SXye4Q4UAmDR/zqW/BWPl2s5BRw9n4m7MZMX6nxKnUr2qXs6vSSlhBBCCCGEeFxJUkoIcd/SUzOxamxQWIQNBUqD1lANXYUGAHg/9WLxTkX5AFyoUBmAlh6u1HE18Qefio8sbvHbkZ1vnzLa2v8gLXwTHNvNZimaL4QQQgghxONKklJCiPuibDZy0s9TaLZyINOHDoBWY8Ro6UWIOZ6qz3Wndmu/4h2L7DV/8rRGAMYGVSHMW1ZtEr9MVr59up6nyZ7srFixDQH+/fDyalueYQkhhBBCCCFKIRWFhRD35cLxY+QXZaHLzGTC7n/e3GqfglfbbS9PdAjEYPzZlLysS3DuAMD/Vt2TAufiF7iRV8i6A2fYePAcAG5Ge1LKYqlHlSrPYjB4lmN0QgghhBBCiNLISCkhxC92+cIF/r5yFVYPPZVOX0dzK6+ksf9qMRpKKFp+/TTMbww2ew2pW6vumUoqhC7EXczbeoK/70zFy5RO52oHCXZPAaTAuRBCCCGEEL8GkpQSQvxiZ5OTsertv0Y0RTasN1fOK9Lpb666V0JS6kqyPSGl1YNbFXKNHgCy6p74RU5fywEg+sn11HA/6NhuMHiVV0hCCCGEEEKIMpKklBDiF8vPyQXAv8iDmoUFFN0cKqW5+atFX8FYvNPNWlJL6o5mb91BZF7JACUjpcQvk5lrryVVvWIWWMHL6yncXGtRpUr3co5MCCGEEEIIcTfyLlAI8Ysom+LGD9cAsGWcJ8F6iIRgXwB02OtE6dsMK96xMJdregtTK0Xy+eUMihQYNRq8DLribYW4g5RLWbz75XFSLmcBoMM+YiokeAyhoVMwGDzKMzwhhBBC/M4MHjwYjUaDRqPBaDRSs2ZNpk+fTlFR0X0dd/v27Wg0Gq5fv/5gAi2D1NRU+vfvj7+/PyaTicDAQCIjIzl+/LhTu02bNtGhQwcsFgsuLi40b96cZcuWObVJS0tDo9GQmJhY5vO/+eab1KlTB1dXVypWrEinTp3Yu3ev0zGHDBlCcHAwZrOZGjVqEBMTQ0FBwV2PvWLFCho1aoSLiwt+fn689NJLXL16tcyxvfPOO2g0GsaOHeu0/eTJk/zhD3+gcuXKuLu706dPHy5evOjU5u2336ZNmza4uLjg6elZ4vFvfQ/d/vjkk08c+9etW0fnzp0d52ndujVbtmy5a9zr1q2jS5cueHt73/PX42GTpJQQ4hcpyi2g4OYolcKsy077tPpAfIIsWFqEF+9YmEuWzgUAg0bDzFqBfNq4Jh4GGbgpyu6dL46zePtJdNZThAd9DTZ7glSvt5RzZEIIIYT4vYqIiOD8+fOcOHGCV155hTfffJP33nuvvMNyKEvSprCwkM6dO5ORkcG6detISkpi9erVNGjQwCkxtmDBAiIjI2nbti179+7l0KFD9OvXj+joaF599dX7irNWrVosXLiQw4cPs3PnTqpXr06XLl24fNn+nuP48ePYbDY+/PBDjhw5wty5c/nggw+YMmVKqcfdtWsXgwYNYsiQIRw5coQ1a9bw/fffM2xYCR+kl2Dfvn18+OGHNGzY0Gl7dnY2Xbp0QaPR8M0337Br1y4KCgro0aMHNpvN0a6goIDevXvz5z//udTzLF26lPPnzzsezz33nGPft99+S+fOndm8eTP79+8nLCyMHj16kJCQUOoxs7OzadeuHe+++26ZrvWRUuKOMjIyFKAyMjLKOxQhHjsHNnyuNk5Zrt4YO0XN/UNPFdvnWfX+4PfVgmEblfr+73fuuHeJSn7nCVXlmwRV+9tDjy5g8ZsSuXCnCpq4Sa35oqPa+nWI45Gff6W8QxO/A/L6wJncDyHEg5Kbm6uOHj2qcnNzyzuUexYVFaUiIyOdtnXu3Fm1atVKpaenq4EDBypPT09lNptVRESESk5OdrRLS0tT3bt3V56ensrFxUXVq1dPff755yo1NVUBTo+oqCillFKZmZmqf//+ysXFRfn6+qo5c+aoDh06qDFjxjiOGxQUpKZPn64GDhyoLBaLo298fLxq166dMplMKjAwUI0aNUplZWUppZRKSEhQgEpLS7vjtZ46dUoZDAY1bty4Yvvmz5+vAPXdd98ppZTjGhISEu79pt506+/M1q1b79hm1qxZKjg4uNTjvPfeeyokJKRYvAEBAXeN4caNGyo0NFTFxcUVu89btmxRWq3W6e/g9evXlUajUXFxccWOtXTpUuXh4VHieQC1fv36u8Zzu3r16qlp06aVqe2D+HrcrrSf2bK+PpCRUkKIe6aKikj7cguZmlyqHTuJpSAbAI3GjFajAb2peKfc67BmMOxZSJ7OPr1P6kiJXyor3z5Kr6LpOgCVKnWidu23MBq9yzEqIYQQQjxoSilyCorK5aGUuq/YzWYzBQUFDB48mB9++IGNGzeyZ88elFJ069aNwkL7atQjRowgPz+fb7/9lsOHD/Puu+/i5uZG1apV+fTTTwFISkri/PnzzJs3D4Bx48axa9cuNm7cSFxcHPHx8Rw4cKBYDLGxsTRq1IiEhATeeOMNTp48SUREBL169eLQoUOsXr2anTt3MnLkSAAqV66MVqtl7dq1WK3WEq9r7dq1FBYWljgiavjw4bi5ubFq1ar7une3FBQUsGTJEjw8PGjUqNEd22VkZODlVfpCN61bt+b06dNs3rwZpRQXL15k7dq1dOvW7a5xjBgxgmeffZZOnToV25efn49Go6FChQqObSaTCa1Wy86dO+967JLOValSJVq0aMHHH39c6vehzWbjxo0bd732x5nMlxFC3LMj27ZzsEpF4Dw1C/PJMd5cOU+jx6ovBH2F4p1StsKR9QDkudcHoIKsuCfuUV6hlTPXcrieY38Rh7IX268V+gZmc2A5RiaEEEKIhyG30Eq9qXevmfMwHJ0ejovx3t8yK6X4+uuv2bJlC127dmXDhg3s2rWLNm3aAPa6RlWrVmXDhg307t2bU6dO0atXLxo0aABASEiI41i3kg0+Pj6OOkQ3btxg+fLlrFy5ko4dOwL2KV/+/v7FYnnmmWd45ZVXHM+HDh3KgAEDHDWRQkNDmT9/Ph06dGDx4sUEBAQwf/58JkyYwLRp02jWrBlhYWEMGDDAEVdycjIeHh74+fkVO5/RaCQkJITk5OR7vm+327RpE/369SMnJwc/Pz/i4uKoVKlSiW1TUlJYsGABsbGxpR6zbdu2rFixgr59+5KXl0dRURE9evRg0aJFpfb75JNPOHDgAPv27Stxf6tWrXB1dWXixIn85S9/QSnFpEmTsFqtnD9/vmwXfNP06dN55plncHFx4auvvuL//b//R1ZWFqNHjy6xfWxsLFlZWfTp0+eezvM4kWEKQoh7diXdXgzQoHToyMGmsSeXNOhBW1DySKmbo6mK/JuS2ekvAJh08itIlF2R1UanOTvoNOdbrmdn4arPBmVfzVGvdy3n6IQQQgjxe7dp0ybc3NwwmUx07dqVvn37MnjwYPR6PS1btnS08/b2pnbt2hw7dgyA0aNHM2PGDNq2bUtMTAyHDh0q9Tw//fQThYWFtGjRwrHNw8OD2rVrF2vbrFkzp+cHDx5k2bJluLm5OR7h4eHYbDZSU1MB+0idCxcusGLFClq3bs2aNWuoX78+cXFxZb4XRmMJq3D/zIoVK5ziiI+Pd+wLCwsjMTGR3bt3ExERQZ8+fbh06VKxY5w9e5aIiAh69+7tVBvq9uNGR0cDcPToUcaMGcPUqVPZv38/X375JWlpaY798fHxTv1WrFjB6dOnGTNmDCtWrMBkKuE9DvbRZWvWrOE///kPbm5ueHh4cP36dZo0aYL2HmeGvPHGG7Rt25bGjRszceJEJkyYcMe6ZCtXrmTatGn8+9//xsfH56739HElI6WEEPdEWRV51/MBCC6sBNoCCvT2wuVo9LiQD/oSplAV5XPILZReNWZy4+qt6XsyUkqUXXpOAWeu5RLikcr4Zosw6v5XrFOnk6SUEEII8VtkNug4Or2ExXMe0bnvRVhYGIsXL8ZoNOLv749er2fjxo137Td06FDCw8P5/PPP+eqrr5g5cyazZ89m1KhRvzR0B1dX59dIWVlZDB8+vMSRN9WqVXP832Kx0KNHD3r06MGMGTMIDw9nxowZdO7cmdDQUDIyMjh37lyx0VkFBQWcPHmS8PC7f8169uzplKwLCAhwirtmzZrUrFmTVq1aERoaykcffcTkyZMdbc6dO0dYWBht2rRhyZIlTse+fXU5d3d3AGbOnEnbtm0ZP348AA0bNsTV1ZWnnnqKGTNm0KxZM6d+VapU4euvv+bSpUs0adLEsd1qtfLtt9+ycOFC8vPz0el0dOnShZMnT3LlyhX0ej2enp74+vo6jXr7JVq2bMlbb71Ffn6+0/TATz75hKFDh7JmzRqnKYWl3dPHlSSlhBD3JHP7aXJPW0GnuPzfbRR53faHTqPHg0yoVLN4x6I89no05Ib2f79Mn/FyfwQRi9+KnHx7XYMnKqU5JaS8vdqj1d790zghhBBC/PpoNJpfNIWuPNxKpNyubt26FBUVsXfvXsf0vatXr5KUlES9evUc7apWrUp0dDTR0dFMnjyZv/3tb4waNcox4uj2+k4hISEYDAb27dvnSCRlZGSQnJxM+/btS42xSZMmHD16tFicpdFoNNSpU4fdu3cD8PzzzzNx4kRmz57N7Nmzndp+8MEH5OTkMGjQoLse12KxYLGUbeVkm81Gfn6+4/nZs2cJCwujadOmLF26tNiIpJKuLycnB73e+XtJp7MnHpVSmM3mYv06duzI4cOHnba9+OKL1KlTh4kTJzr633JriuE333zDpUuX6NmzZ5mu704SExOpWLGiU0Jq1apVvPTSS3zyySc8++yzTu3v5Z4+Ln4dP91CiMdGRso1irCBzUZRUY59o8YNrb4SNepV4YmnmkLF6sU7FuWTdzMh1atKRd6rXRUXmb4n7sGt4uaWCvYXJAEBA6gV+hoajSSkhBBCCPF4Cg0NJTIykmHDhvHhhx9isViYNGkSAQEBREZGAjB27Fi6du1KrVq1uHbtGtu2baNu3boABAUFodFo2LRpE926dcNsNmOxWIiKimL8+PF4eXnh4+NDTEwMWq0Wjab0mQgTJ06kVatWjBw5kqFDh+Lq6srRo0eJi4tj4cKFJCYmEhMTw8CBA6lXrx5Go5EdO3bw8ccfM3HiRMA+omrWrFm8+uqrmEwmBg4ciMFg4LPPPmPKlCnMmDGDJ554wum8SUlJxWKpX78+BoPBaVt2djZvv/02PXv2xM/PjytXrrBo0SLOnj1L7969AXtC6umnnyYoKIjY2FguX77s6O/r63vHa+/RowfDhg1j8eLFhIeHc/78ecaOHUuLFi1KrMcF9iTPz6/F1dUVb29vp+1Lly6lbt26VK5cmT179jBmzBhefvllpymVp06dIj09nVOnTmG1Wh2jsmrWrImbmxv/+c9/uHjxIq1atcJkMhEXF8df/vIXp4LyK1euJCoqinnz5tGyZUsuXLgA2Ivqe3h43PHab5333LlzwP++Hr6+vqXes0dBklJCiDKz2axcSD6M1Wwl92w+FgClqOA5DI0unW4vd7hz56I88m6OZnHTaSUhJcqs0GpjX1o6P57NAMDNaE9KGfTuaLUlFNUXQgghhHiMLF26lDFjxtC9e3cKCgpo3749mzdvdiRkrFYrI0aM4MyZM7i7uxMREcHcuXMB+/SradOmMWnSJF588UUGDRrEsmXLmDNnDtHR0XTv3h13d3cmTJjA6dOn71j36JaGDRuyY8cOXnvtNZ566imUUtSoUYO+ffsCEBgYSPXq1Zk2bRppaWloNBrH85dfftlxnJdffpmQkBBmz57NvHnzyM62149dtWoV/fr1K3bekradPn2awEDnhWp0Oh3Hjx9n+fLlXLlyBW9vb5o3b058fDz169sXS4qLiyMlJYWUlJRi/UtbqW7w4MHcuHGDhQsX8sorr+Dp6ckzzzzDu+++W+o9K4ukpCQmT55Meno61atX57XXXnO6XwBTp05l+fLljueNGzcGYNu2bTz99NMYDAYWLVrEyy+/jFKKmjVrMmfOHKdaWUuWLKGoqIgRI0YwYsQIx/aoqCiWLVt2x/g2btzIiy++6Hh+6+sRExPDm2++eT+Xft806n7XufwNy8zMxMPDg4yMDMc8VCF+z44mHGDHmjiyDDZa/Gc9P4T6oLWB0Xsc6C8xYmHxPzac3Q8n4uDkN7ylf5JF1fozPLAy00If//nN4vHw3pbjLNp2kioul+gVupHaXqdwM1ynRsh4qlePLu/wxO+QvD5wJvdDCPGg5OXlkZqaSnBw8F2TK8JZdnY2AQEBzJ49myFDhjzy86enp9OxY0fc3d354osvcHFxeeQxiEevtJ/Zsr4+kKEKQogy2/7pOi4ac7mh8jBb7aueqZvFypXRWnKntS/B9plweq9j+p6suifuRcqlLAC6hvxA0yqHcDNcB8DsUq2UXkIIIYQQv10JCQmsWrWKkydPcuDAAQYMGADgmBL4qHl5ebF161Y6duzInj17yiUG8esk7wyFEGVWUFgIQJ0Cf2w3k1H5N6eBa7V3SEpl2ed4X280iAz/5gBUkFX3xD24kWevJdUq2P7N5uPTjScbLcWncvmsxCNEeVu0aBHVq1fHZDLRsmVLvv/++1Lbr1mzhjp16mAymWjQoAGbN2927CssLGTixIk0aNAAV1dX/P39GTRokKPmhBBCiMdXbGwsjRo1olOnTmRnZxMfH+8otF0evL29mTp1Kh07diy3GMSvjySlhBBlkpd8DaV3haIics4ncqiqDwDWmwmmCvoSfp0oBUW5vFN9CHU8h7BWax/ZYtLKrx5xd5dv5LNy7yn+e9VeUN+gyQXAw6MJ3t7t0WjubZlmIX4LVq9ezbhx44iJieHAgQM0atSI8PBwLl26VGL73bt388ILLzBkyBASEhJ47rnneO655/jxxx8B+0pEBw4c4I033uDAgQOsW7eOpKSk+14tSAghxMPVuHFj9u/fT1ZWFunp6cTFxdGgQYPyDkuIeybvDIUQZXJpxTGUrgL67Awy8k5zw2yfiuehcwOgkk+t4p2shaBs7PRs4tjkqdfRxtPtkcQsft3e3HiEKesP46Y5xMC6q9EW2d9E6/W/rmVuhXiQbhU8ffHFF6lXrx4ffPABLi4ufPzxxyW2nzdvHhEREYwfP566devy1ltv0aRJExYuXAiAh4cHcXFx9OnTh9q1a9OqVSsWLlzI/v37OXXq1KO8NCGEEEL8DklSSghxV0UFBaj8QqwaG4U3Z+npNJUxuEaiMfwJAIO5hGKURfaRLfk3V937V8MQjrV7gifdpfChuLuz1+3fP8MafsrTVXdhK7IveVuhQvkuWytEeSkoKGD//v106tTJsU2r1dKpU6c71u/Ys2ePU3uA8PDwUut9ZGRkoNFo8PT0fCBxCyGEEELcib68AxBCPP5OfL8HC1ryM3Op9NNZClxBGSqhM9agsttFjP6+NAwLLN6x0F4M/VaBc7NWg0Yj9aRE2WTl22tJVTRngw0CA6OwuNXFq2Lrco5MiPJx5coVrFYrVapUcdpepUoVjh8/XmKfCxculNj+woULJbbPy8tj4sSJvPDCC3dcKSc/P5/8/HzH88zMzHu5DCGEEEIIBxkpJYQolbLZOP/3pQAEpJ4k6Ib9jYwGe9Hp557cwnPjmhBYx8u542cjYXEbAPJ0t5JS8itH3F1+kZVTV3PIyLUX1kfZa0oFVRuKv39vqSUlxENSWFhInz59+P/s3Xd8VFX6+PHPnZaZdJIQUkmBUAWkShEwUhIQxF1EWFiKAhKXDiJFpYmyIEFpgvhTYHcBXVCRLyIYUCEUUZogSKgRCIQWSJ9+f38MzBITAioQyvN+veYFc+859z73JpNMnjnnOaqqMn/+/Bu2mzp1Kn5+fu5HZGTkXYxSCCGEEA8SGSklhChVwenT/OLhwQn9TxhsVndhcxRXUkrnUcKPEVsh7Pm3+6lZ5wWAh1aSUqJ0doeTNjM3czLLlYjSKnZQXckprdarLEMToswFBQWh1Wo5d+5cke3nzp0jJKTkaa0hISG31P5aQurXX3/lm2++ueEoKYCxY8cyYsQI9/OcnBxJTAkhhBDiD5G/EIUQpTp67DgXQkPJsJ3kkqmQ9CA/1w5Fh0OxoTF4FO9kd03bsyh6Tj7/HYUerj5GjUzdE6W7lG/lZFYBEd4ZJLccz3utRrv3SVJKPOwMBgP169dn48aN7m1Op5ONGzfSpEnJ01qbNGlSpD1ASkpKkfbXElJHjhxhw4YNBAYGlhqHh4cHvr6+RR5CCCGEEH+EjJQSQtyQanNy4YeLAPjkFuLQwrVctkYbDBoLVHikeEe7FZuipXnDf3HyuAI4AfCQ6XviJnLNrjpS9UIO4+9xxb3d17cOGo38yhJixIgR9O7dmwYNGtCoUSPeffdd8vPzef755wHo1asX4eHhTJ06FYChQ4fSsmVLkpOTeeqpp/j444/ZuXMnCxcuBFwJqWeffZbdu3ezZs0aHA6Hu95UQEAABoOhbC5UCCGEEA8F+QtRCHFDhceu4MxxTZ3ycF5NRumr4eHXH60hjvJB5aDxS8U72s1c0Adw0hQGuGpJPe7vTZiH/q7FLu5P+VeLm/t5uIooh4Z0pmmTzdSv99+yDEuIe0bXrl2ZMWMG48eP59FHH2Xv3r2sW7fOXcz85MmTnD171t2+adOmLFu2jIULF1KnTh1WrlzJqlWreOQR1wcKGRkZrF69mtOnT/Poo48SGhrqfmzbtq1MrlEIIe5Hffr0QVFci/oYDAYqV67M5MmTsdvtf+q43333HYqicOXKldsT6C04ceIE3bt3JywsDKPRSEREBJ06dSq2qMaaNWto2bIlPj4+eHp60rBhQxYvXlykTXp6OoqisHfv3ls+/8SJE6lWrRpeXl6UK1eO1q1bs2PHjiLH7Nu3LzExMZhMJipVqsSECROwWq03PfbSpUupU6cOnp6ehIaG8sILL3Dp0qWb9svIyODvf/87gYGBmEwmatWqxc6dO937r//6X3skJiYWOUZ0dHSxNv/85z/d+9PS0oiPj6dChQoYjUZiY2N57bXXsNlsRY5z5coVBg4cSGhoKB4eHlSpUoW1a9eWGv9nn31G27ZtCQwM/N1fjztNPnYWQtzQheO/YscBqoot7wIAisYbNF40TfQlqlH1kjvaLZi1rk/XfbQajrSofbdCFvepAqudD1NP8EumaxUvb4MrKeXhUQGTKbwsQxPinjNo0CAGDRpU4r7vvvuu2LYuXbrQpUuXEttHR0ejqurtDE8IIR5aiYmJLFq0CIvFwtq1axk4cCB6vZ6xY8eWdWgAWK3Wm46AtdlstGnThqpVq/LZZ58RGhrK6dOn+eqrr4okxubMmcOwYcMYPXo08+fPx2Aw8MUXX5CUlMTPP//MjBkz/nCcVapUYe7cucTGxlJYWMg777xD27ZtOXr0KOXLl+fQoUM4nU7ef/99KleuzM8//0z//v3Jz88v9bxbt26lV69evPPOO3Ts2JGMjAySkpLo378/n3322Q37Xb58mWbNmhEfH89XX31F+fLlOXLkCOXKlSvS7trX/xoPj+JlTiZPnkz//v3dz318fNz/1+v19OrVi3r16uHv789PP/1E//79cTqdvPXWW4Dra9imTRuCg4NZuXIl4eHh/Prrr/j7+5d6T/Pz83n88cd57rnnipz/XiBJKSHEDR35ZgMOjwpU2J9O+exT/BrkB4oWFSt1nwgG/xvU+LGbKdQYATBKcXNxC77cd5bklMPUDjrAiPrfEe3nKsys03mXbWBCCCGEELfIw8PDvZDESy+9xOeff87q1atJSkpi6NCh/N///R8Wi4WWLVsye/Zs4uLiAPj1118ZNGgQW7ZswWq1Eh0dzdtvv02NGjWIj48HcCdAevfuzeLFi8nNzSUpKYlVq1bh6+vLK6+8whdffMGjjz7Ku+++C7g+eOjbty9Hjhxh1apV/PWvf2Xx4sVs2bKFsWPHsnPnToKCgvjLX/7C1KlT8fLy4sCBAxw7doyNGzcSFRUFQFRUFM2aNXNf56lTpxg5ciTDhg1zJ0sARo4cicFgYMiQIXTp0oXHHnvsD93H7t27F3k+c+ZMPvzwQ/bt20erVq1ITEwsMgopNjaWtLQ05s+fX2pSavv27URHRzNkyBAAYmJiGDBgANOmTSs1nmnTphEZGVkk4RQTE1Os3fVf/xvx8fG5YZvY2FhiY2Pdz6Oiovjuu+9ITU11b/voo4/Iyspi27Zt6PWuWSjR0dGlnhOgZ8+egGuU2b1G/loUQpTI/OuvZF25RLamAO+cXByKq0i5gg671gZ6z+Kd7BZIWwdH1mPWuD4ZMEkdKXELLua5hls/W3UjNQPT8NJdAcBkiirDqIQQQghR5lQVrPll8/iTI0lNJhNWq5U+ffqwc+dOVq9ezfbt21FVlfbt27unZQ0cOBCLxcLmzZvZv38/06ZNw9vbm8jISD799FPANbXr7NmzzJo1C3DVGNy6dSurV68mJSWF1NRUdu/eXSyGGTNmUKdOHfbs2cPrr7/OsWPHSExMpHPnzuzbt49PPvmELVu2uEfgli9fHo1Gw8qVK3E4HCVe18qVK7HZbLz88svF9g0YMABvb2+WL1/+p+7dNVarlYULF+Ln50edOnVu2C47O5uAgIBSj9WkSRNOnTrF2rVrUVWVc+fOsXLlStq3b19qv9WrV9OgQQO6dOlCcHAwdevW5YMPPijW7rvvviM4OJiqVavy0ksvlTgt8J///CeBgYHUrVuXt99+u9TpnUePHmXdunW0bNmySCxNmjRh4MCBVKhQgUceeYS33nrrhl+r+4GMlBJClOib1FQORhiBTKo67Dj1V1fOU3Q4NDbQm4p32vIufOf6tKTQvy4ARklKiVuQa3a9KStnKgQgJnoI/v4NKFeu5BXFhBBCCPGQsBXAW2Flc+5xZ8Dw+1f/VVWVjRs3sn79etq1a8eqVavYunUrTZs2BVx1jSIjI1m1ahVdunTh5MmTdO7cmVq1agEUGS1zLdESHBzsnqKVm5vLkiVLWLZsGa1atQJg0aJFhIUVv09PPvkkI0eOdD/v168fPXr0YNiwYQDExcUxe/ZsWrZsyfz58wkPD2f27Nm88sorTJo0iQYNGhAfH0+PHj3ccR0+fBg/Pz9CQ0OLnc9gMBAbG8vhw4d/93273po1a+jWrRsFBQWEhoaSkpJCUFBQiW2PHj3KnDlzbjplsFmzZixdupSuXbtiNpux2+107NiRefPmldrv+PHjzJ8/nxEjRjBu3Dh+/PFHhgwZgsFgoHfv3oBr6t5f//pXYmJiOHbsGOPGjaNdu3Zs374drVYLwJAhQ6hXrx4BAQFs27aNsWPHcvbsWWbOnFnkfE2bNmX37t1YLBZefPFFJk+eXCSWb775hh49erB27VqOHj3KP/7xD2w2GxMmTLjpfb0XyV+LQogSZWVnA+CVmcGFcnbO+14dGaXoULX2kkdKXfmVC/py/KP2VCZXGwWAUavcrZDFfehUVgHzvzvG9uOuT5L0SgEA5cu3JiCgGYoiv6aEEEIIcX9Ys2YN3t7eGI1G2rVrR9euXenTpw86na7IVLbAwECqVq3KL7/8AriSFVOmTKFZs2ZMmDCBffv2lXqe48ePY7PZaNSokXubn58fVatWLda2QYMGRZ7/9NNPLF68GG9vb/cjISEBp9PJiRMnANfIrczMTJYuXUqTJk1YsWIFNWvWJCUl5Zbvxa2s3rp06dIicVw/TS0+Pp69e/eybds2EhMTee655zh//nyxY2RkZJCYmEiXLl2K1Eq6/rhJSUkAHDx4kKFDhzJ+/Hh27drFunXrSE9Pd+9PTU0t0m/p0qUAOJ1O6tWrx1tvvUXdunV58cUX6d+/PwsWLHCfr1u3bjz99NPUqlWLZ555hjVr1vDjjz8WqfU4YsQInnjiCWrXrk1SUhLJycnMmTMHi8VS5Jo++eQTdu/ezbJly/jyyy+LJNucTifBwcEsXLiQ+vXr07VrV1599VV3LKXd03uVjJQSQhSTu/8CBeccgAPN5bPY9P9LDCiacmg8DKCUkGyyFfJlUAs+K9fUvSnSKMuJixubvOYgKQfP0aDCHgbX/QGd4kqG6nS+ZRyZEEIIIe4Jek/XiKWyOvfvEB8f7y76HRYWhk6nY/Xq1Tft169fPxISEvjyyy/5+uuvmTp1KsnJyQwePPiPRu7m5VV0pFdeXh4DBgxw11W6XsWKFd3/9/HxoWPHjnTs2JEpU6aQkJDAlClTaNOmDXFxcWRnZ3PmzJlio7OsVivHjh0jISHhprE9/fTTRZJ14eH/W9zGy8uLypUrU7lyZRo3bkxcXBwffvhhkaLxZ86cIT4+nqZNm7Jw4cIix75+dTlfX9f7yqlTp9KsWTNGjXJ9eF67dm28vLxo3rw5U6ZMoUGDBkX6XVvZNjQ0lBo1ahQ5fvXq1d1TK0sSGxtLUFAQR48edY9m+63HHnsMu91Oenp6kYRiZGQkADVq1MDhcPDiiy8ycuRItFotoaGh6PV69+ira7FkZmZitVpLvaf3KklKCSGKyVh/ECdOFKfTvU3v/SyKxhONNoiIsBskDOxmcnV+ADT286J3eBAtA3xKbisEcC7HDMDfa3yJj9716ZdGY8JgCCzLsIQQQghxr1CUPzSFrixcS6Rcr3r16tjtdnbs2OGevnfp0iXS0tKKJDoiIyNJSkoiKSmJsWPH8sEHHzB48GD3iKPrawbFxsai1+v58ccf3Ymk7OxsDh8+TIsWLUqNsV69ehw8eLBYnKVRFIVq1aqxbds2AJ599llGjx5NcnIyycnJRdouWLCAgoICevXqddPj+vj4FFl9rjROp7PIiKKMjAzi4+OpX78+ixYtQvObkiElXV9BQQE6XdEUyLXkjqqqmEymEvs1a9aMtLS0ItsOHz7sLgRfktOnT3Pp0qUSpzhes3fvXjQaDcHBwTds43Q6sdlsOJ1OtFotzZo1Y9myZTidTvc1Hz58mNDQUAwGAwaD4Zbv6b1CklJCiCJsZjNZvx7GUc6J7VpOSlXQ6itiVI7z2LMNiK53g3n9tkIKNa5PFKp5m/hLhXIltxPiqjyzq7ijj4cZnFAp9mUCA1ui1f6+TyaFEEIIIe5FcXFxdOrUif79+/P+++/j4+PDmDFjCA8Pp1OnTgAMGzaMdu3aUaVKFS5fvsy3335L9erVAdcKbIqisGbNGtq3b4/JZMLHx4fevXszatQoAgICCA4OZsKECWg0GpSSZjNcZ/To0TRu3JhBgwbRr18/vLy8OHjwICkpKcydO5e9e/cyYcIEevbsSY0aNTAYDGzatImPPvqI0aNHA64RVdOnT+fll1/GaDTSs2dP9Ho9X3zxBePGjWPKlCk88sgjRc7726QOQM2aNd0ryF2Tn5/Pm2++ydNPP01oaCgXL15k3rx5ZGRk0KVLF8CVkHriiSeIiopixowZXLhwwd2/tNXvOnbsSP/+/Zk/fz4JCQmcPXuWYcOG0ahRoxLrcV0zfPhwmjZtyltvvcVzzz3HDz/8wMKFC92js/Ly8pg0aRKdO3cmJCSEY8eO8corr1C5cmX3iLHt27ezY8cO4uPj8fHxYfv27QwfPpy///3v7pUVly5dil6vp1atWnh4eLBz507Gjh1L165d3ffppZdeYu7cuQwdOpTBgwdz5MgR3nrrrRJHvl0vKyuLkydPcubMmSJfj5CQkJuuGHinSVJKCFGEOT8PLVpUm4Um36VyqKIvGtX1y82oOcUj8dFwo+LldjNmncfVtlJLStxYdoGNE5fyuVzgWnUPp6uWVEjIMxiNN/5ESQghhBDifrNo0SKGDh1Khw4dsFqttGjRgrVr17oTDQ6Hg4EDB3L69Gl8fX1JTEzknXfeAVzTryZNmsSYMWN4/vnn6dWrF4sXL2bmzJkkJSXRoUMHfH19eeWVVzh16hRGo7HUWGrXrs2mTZt49dVXad68OaqqUqlSJbp27QpAREQE0dHRTJo0ifT0dBRFcT8fPny4+zjDhw8nNjaW5ORkZs2aRX5+PgDLly+nW7duxc5b0rZTp04RERFRZJtWq+XQoUMsWbKEixcvEhgYSMOGDUlNTaVmzZoApKSkcPToUY4ePVqsv1rKiol9+vQhNzeXuXPnMnLkSPz9/XnyySeZNm1aqfesYcOGfP7554wdO5bJkycTExPDu+++S48ePdwx79u3jyVLlnDlyhXCwsJo27Ytb7zxBh4err+NPDw8+Pjjj5k4cSIWi4WYmBiGDx/OiBEj3OfR6XRMmzaNw4cPo6oqUVFRDBo0qMh9j4yMZP369QwfPpzatWsTHh7O0KFD3QnDG1m9ejXPP/+8+/m1r8eECROYOHFiqX3vNEUt7av2kMvJycHPz4/s7Gz3PFQhHnTHZiZz+ddgfrLt5ZFtG9hSNRKdU4cucAiBXhvolvxW8U7b5sK+T+DiEcZFv8hH4X9leFQFRsdKckEUZ7E7aPbPb7iY50pIaRU7C9u4fiG3aL4HvV5+3op7m7w/KEruhxDidjGbzZw4cYKYmJibJldEUfn5+YSHh5OcnEzfvn3v+vmzsrJo1aoVvr6+fPXVV3h6yqj3h0Fpr9lbfX8gI6WEEG52u51vT56iwMeG5lw+OSZXZt/socEb0OkdJXdMnYGjMJsf/R7huMn1aYXxRqOpxEPvUp6Vi3lWAoxZ9K/9KUGeBe59Mm1PCCGEEOLm9uzZw6FDh2jUqBHZ2dlMnjwZwD0l8G4LCAhgw4YNzJs3j+3bt9+wuLcQvyVJKSGE2y/f7ue0vz848vHJyWBfRVfRPcfVBJOPxw1W0rMW8O/Qjoyp8r/hp55aSUqJkuVZXHWkWkTup4r/fvd2ozECjUZ+LQkhhBBC3IoZM2aQlpaGwWCgfv36pKamEhQUVGbxBAYGMn78+DI7v7g/ybt/IYTbuS2HQQEfqwZQQQVFMWLS1wEgsN7findyOsFh4YTJtdxosEFHTW8T7cr73cXIxf3kWlLK18O18l5Q4JOEhXXF17d2WYYlhBBCCHHfqFu3Lrt27SrrMIT40yQpJYQA4ErmWQrzL4M3OG1WNIAGDwzl/uFu41PSanoO19KsVo2rUGOP0ECpJSVKdDHPwpQ1Bzl+0VUI09vg+t7x9q5K+fKtyzI0IYQQQgghRBmQ+TVCCAAKc3NQFQWd2ULFa5+6KFoAKoTuol1SLSo3rFC8o60QAIvGNbXPQ1bdEzfw1c+ZrNp7hguXD/GXymuI9T0MgFbnU8aRCSGEEEIIIcqCjJQSQgBgt1pQNQr+F7IIz7vAacJRrv6IKB94ithHy9+go2u0i0VzdblTKXAubiCn0AZAUt3VRHgecG83GALLKiQhhBBCCCFEGZKklBACVVVZ//kXnDeCv92J8+poJ7tOix7wMGiLd7JbYPUQuOga7WLRupYAlZFS4kbyr9aSCjDmABAc3B5v72pUCG5flmEJIYQQQgghyogkpYQQZKWnc9ruAAUUhxOHcjWxpLh+RJh0JSSlTn4P+z52P7V4uAqby0gp8VuqqmKxO8kxu0ZK6ZQCAKKiBuDr80hZhiaEEEIIIYQoQ5KUEkKQfeQCAHqrHT8bnPV31fhRcBUv9/P0Kt7Jmo8DDZ/Fdiez+rMcswWBxSEjpUQxLyz+kW/TLlDZ/zjxkafRKbkA6LRSS0oIIYQQQoiHmSSlhHjInfr5Z7I2ngETGC6c5iwXoZw3ABpMAJRr+PfiHe1mtvrXZXBkf8gDcADgW9KoKvHQsjmcfJt2AU9dAaMazEGncbj36fV+ZRiZEEIIIYQQoqzJPBshHnLHd+xEo7man7ZZAdDoItAaaqMzNiU42hef6ErFO9rNnLtaoDrEoKdbSADDoirQMkBGv4j/yTW76kj5eWSj0zhQFD3Bwe2pEvc6er1/2QYnhBBCCHGb9OnTB0VRUBQFg8FA5cqVmTx5Mna7/U8d97vvvkNRFK5cuXJ7Ar0FJ06coHv37oSFhWE0GomIiKBTp04cOnSoSLs1a9bQsmVLfHx88PT0pGHDhixevLhIm/T0dBRFYe/evbd8/okTJ1KtWjW8vLwoV64crVu3ZseOHUWO2bdvX2JiYjCZTFSqVIkJEyZgtVpveuylS5dSp04dPD09CQ0N5YUXXuDSpUul9nE4HLz++utFzvfGG2+gqqq7zWeffUbbtm0JDAy84fUeO3aMv/zlL5QvXx5fX1+ee+45zp0797uva9++fTRv3hyj0UhkZCTTp0+/6XVv3ryZjh07EhYWhqIorFq16qZ97hZJSgnxkHOYbdgVJznZCkpeIQBaj3roPVsweFoDuoxpgEZbwo8Kuxmz1rXiXh1fE+9Wr8iY2FCpKSXccs029p66DIC/0VVPysOjArUemUNkZJ8yjEwIIYQQ4vZLTEzk7NmzHDlyhJEjRzJx4kTefvvtsg7L7VaSNjabjTZt2pCdnc1nn31GWloan3zyCbVq1SqSGJszZw6dOnWiWbNm7Nixg3379tGtWzeSkpJ4+eWX/1ScVapUYe7cuezfv58tW7YQHR1N27ZtuXDBVXLk0KFDOJ1O3n//fQ4cOMA777zDggULGDduXKnH3bp1K7169aJv374cOHCAFStW8MMPP9C/f/9S+02bNo358+czd+5cfvnlF6ZNm8b06dOZM2eOu01+fj6PP/4406ZNK/EY+fn5tG3bFkVR+Oabb9i6dStWq5WOHTvidDpv+bpycnJo27YtUVFR7Nq1i7fffpuJEyeycOHCUq8hPz+fOnXqMG/evFLblQlV3FB2drYKqNnZ2WUdihB3hNPpVNcMG6tuG/uZ+kHb59SFHVqrM557Sp31wv9T57y4WlWzM27ceds8deHC59UK3+xRX/z5xF2LWdwfzDa72mBKiho1eo1aacznau/33lY3bIxVv9/RvqxDE+JPk/cHRcn9EELcLoWFherBgwfVwsLCsg7ld+vdu7faqVOnItvatGmjNm7cWM3KylJ79uyp+vv7qyaTSU1MTFQPHz7sbpeenq526NBB9ff3Vz09PdUaNWqoX375pXrixAkVKPLo3bu3qqqqmpOTo3bv3l319PRUQ0JC1JkzZ6otW7ZUhw4d6j5uVFSUOnnyZLVnz56qj4+Pu29qaqr6+OOPq0ajUY2IiFAHDx6s5uXlqaqqqnv27FEBNT09/YbXevLkSVWv16sjRowotm/27NkqoH7//feqqqrua9izZ8/vv6lXXfs9s2HDhhu2mT59uhoTE1Pqcd5++201Nja2WLzh4eGl9nvqqafUF154oci2v/71r2qPHj2Ktb3R9a5fv17VaDRFfldeuXJFVRRFTUlJueG5f3td7733nlquXDnVYrG4t40ePVqtWrVqqddwPUD9/PPPb7l9aUp7zd7q+wMZ0iDEQyxt82YOaB1s1x3G02rG6S5SrsOqt4HeVLzTqR/g/7WBrbMwa1wjpUwyOkr8xoVcCxdyLVT2P8acJ8fQs+p8ALRa7zKOTAghhBD3E1VVKbAVlMlDvW561h9hMpmwWq306dOHnTt3snr1arZv346qqrRv3x6bzTWSfODAgVgsFjZv3sz+/fuZNm0a3t7eREZG8umnnwKQlpbG2bNnmTVrFgAjRoxg69atrF69mpSUFFJTU9m9e3exGGbMmEGdOnXYs2cPr7/+OseOHSMxMZHOnTuzb98+PvnkE7Zs2cKgQYMAKF++PBqNhpUrV+JwOIodD2DlypXYbLYSR0QNGDAAb29vli9f/qfu3TVWq5WFCxfi5+dHnTp1btguOzubgICAUo/VpEkTTp06xdq1a1FVlXPnzrFy5Urat29far+mTZuyceNGDh8+DMBPP/3Eli1baNeu3S1fh8ViQVEUPDw83NuMRiMajYYtW7bc8nVt376dFi1aYDAY3NsSEhJIS0vj8uXLtxzPvUQKnQvxENt18CAF3iagkHDVgkNxJaUURYtTYwddCUmpPf+B0z8AUBBkBMBY0vQ+8VDLt7jexNStcAKD1nZ1q0JQYHzZBSWEEEKI+06hvZDHlj1WJufe0X0HnnrP391PVVU2btzI+vXradeuHatWrWLr1q00bdoUcNU1ioyMZNWqVXTp0oWTJ0/SuXNnatWqBUBsbKz7WNcSEsHBwfj7+wOQm5vLkiVLWLZsGa1atQJg0aJFhIWFFYvlySefZOTIke7n/fr1o0ePHgwbNgyAuLg4Zs+eTcuWLZk/fz7h4eHMnj2bV155hUmTJtGgQQPi4+Pp0aOHO67Dhw/j5+dHaGhosfMZDAZiY2PdCZw/as2aNXTr1o2CggJCQ0NJSUkhKCioxLZHjx5lzpw5zJgxo9RjNmvWjKVLl9K1a1fMZjN2u52OHTvedErbmDFjyMnJoVq1ami1WhwOB2+++SY9evS45etp3LgxXl5ejB49mrfeegtVVRkzZgwOh4OzZ8/e8nVlZmYSExNTpF2FChXc+8qVK3fLMd0r5C9JIR5S2afOkXO2AIAq+X7Y9Rbs7uSSHq3WATqP4h2teaR5RtG4+f/xXnQvAIzuEVZCuORbXUU9fTzMAERE9Cb+iYNERyeVZVhCCCGEEHfMmjVr8Pb2xmg00q5dO7p27UqfPn3Q6XQ89tj/EmuBgYFUrVqVX375BYAhQ4YwZcoUmjVrxoQJE9i3b1+p5zl+/Dg2m41GjRq5t/n5+VG1atVibRs0aFDk+U8//cTixYvx9vZ2PxISEnA6nZw4cQJwjdzKzMxk6dKlNGnShBUrVlCzZk1SUlJu+V5cP5LnRpYuXVokjtTUVPe++Ph49u7dy7Zt20hMTOS5557j/PnzxY6RkZFBYmIiXbp0KVIb6vrjJiW53n8ePHiQoUOHMn78eHbt2sW6detIT093709NTS3Sb+nSpQD897//ZenSpSxbtozdu3ezZMkSZsyYwZIlS275fpQvX54VK1bwf//3f3h7e+Pn58eVK1eoV68emhJmndzoum7mRtdwL5ORUkI8pPb/KwUFLRpLIWdP7oQAr//tVHSEBIaDUkKyyVbId+Uaka7xdc1sB+r4/P5PkMSDKeNKIZ/8eIoTF/MxaC34GfIBMOjLodHc/M2JEEIIIcT1TDoTO7rvuHnDO3Tu3yM+Pp758+djMBgICwtDp9OxevXqm/br168fCQkJfPnll3z99ddMnTqV5ORkBg8e/EdDd/Py8iryPC8vjwEDBjBkyJBibStWrOj+v4+PDx07dqRjx45MmTKFhIQEpkyZQps2bYiLiyM7O5szZ84UG51ltVo5duwYCQkJN43t6aefLpKsCw8PLxJ35cqVqVy5Mo0bNyYuLo4PP/yQsWPHutucOXOG+Ph4mjZtWqzQ9/Wr3/n6+gIwdepUmjVrxqhRowCoXbs2Xl5eNG/enClTptCgQYMi/a6NQBo1ahRjxoyhW7duANSqVYtff/2VqVOn0rt375te5zVt27bl2LFjXLx4EZ1Oh7+/PyEhIUVGxt3sukJCQoqs2Ae4n4eEhBAdHV3iNdzLJCklxEPKnm/GrnOgWC0AKKoGdOXRaMujaPzx8ilhlBSANR+z1jWMuEN5P96ICyfUQ5INwuXdlMOs2HWa+hX2MDd+CVqNazURnc6njCMTQgghxP1IUZQ/NIWuLFxLpFyvevXq2O12duzY4Z6+d+nSJdLS0qhRo4a7XWRkJElJSSQlJTF27Fg++OADBg8e7B5xdH19p9jYWPR6PT/++KM7kZSdnc3hw4dp0aJFqTHWq1ePgwcPFouzNIqiUK1aNbZt2wbAs88+y+jRo0lOTiY5OblI2wULFlBQUECvXr1uelwfHx98fG7tPaLT6cRisbifZ2RkEB8fT/369Vm0aFGx0UYlXV9BQQE6XdEUiFarBVxTLk0m0w37/fb4Wq3WvWre73VtGuI333zD+fPnefrpp2/5upo0acKrr76KzWZDr9cDkJKSQtWqVd1T937P1/ZeIEkpIR5SqgMcOifBab+S5wUG1RfFtweK/icatIkmrlFI8U7mHLDkYr76yzHYoJeElCjiXK7rzcKTMaevS0j541+ucVmGJYQQQghRJuLi4ujUqRP9+/fn/fffx8fHhzFjxhAeHk6nTp0AGDZsGO3ataNKlSpcvnyZb7/9lurVqwMQFRWFoiisWbOG9u3bYzKZ8PHxoXfv3owaNYqAgACCg4OZMGECGo0GpaSZDtcZPXo0jRs3ZtCgQfTr1w8vLy8OHjxISkoKc+fOZe/evUyYMIGePXtSo0YNDAYDmzZt4qOPPmL06NGAa0TV9OnTefnllzEajfTs2RO9Xs8XX3zBuHHjmDJlCo888kiR86alpRWLpWbNmu7EyjX5+fm8+eabPP3004SGhnLx4kXmzZtHRkYGXbp0AVyJmyeeeIKoqChmzJjBhQsX3P1DQkr4G+aqjh070r9/f+bPn09CQgJnz55l2LBhNGrUqMR6XNf3e/PNN6lYsSI1a9Zkz549zJw5kxdeeMHdJisri5MnT3LmzJki1xsSEuKOadGiRVSvXp3y5cuzfft2hg4dyvDhw93TLm/lurp3786kSZPo27cvo0eP5ueff2bWrFm88847N4wfXCPkjh496n5+4sQJ9u7dS0BAQJERcmVBklJCPIQsx4+j5uRhD3QQfSmDn72CQXH9QnD4/Uijp4cX77TlXdgwAYDCWNcwW6Osuid+I9fsKmpeJVgLZqhU6RWiKvZHUeR7RQghhBAPp0WLFjF06FA6dOiA1WqlRYsWrF271p2QcTgcDBw4kNOnT+Pr60tiYqI7yRAeHs6kSZMYM2YMzz//PL169WLx4sXMnDmTpKQkOnTogK+vL6+88gqnTp3CaDSWGkvt2rXZtGkTr776Ks2bN0dVVSpVqkTXrl0BiIiIIDo6mkmTJpGeno6iKO7nw4f/72+E4cOHExsbS3JyMrNmzSI/31WyYfny5e5pbtcradupU6eIiIgosk2r1XLo0CGWLFnCxYsXCQwMpGHDhqSmplKzZk3ANTLo6NGjHD16tFj/0lZM7NOnD7m5ucydO5eRI0fi7+/Pk08+ybRp00q9Z3PmzOH111/nH//4B+fPnycsLIwBAwYwfvx4d5vVq1fz/PPPF7veCRMmMHHiRMCVqBo7dixZWVlER0fz6quvFrmnt3Jdfn5+fP311wwcOJD69esTFBTE+PHjefHFF0u9hp07dxIf/78Fh0aMGAFA7969Wbx4cal97zRF/bPrXD7AcnJy8PPzIzs72z0PVYgHwddvvcUOsxW700mTb9dzIKI8ikcYHp7dIPJ9Br76SfFO/+kMRzcAMKbGaywu34YR0RV4Jab4qhvi4ZOWmcunu0+zYucpLhfYWNTpU5yFm6ha9Q0iwruXdXhC3Fby/qAouR9CiNvFbDZz4sQJYmJibppcEUXl5+cTHh5OcnIyffv2vevnz8rKolWrVvj6+vLVV1/h6Xl/TLkUf05pr9lbfX8gH10L8RA6bLHg0AAOFcfVlfOsGtfASb1BW3InmxkV+PWZJVys8SwgI6XE/0z58iALNx+nvMdBWlXchMbxKwA6rddNegohhBBCiN9rz549LF++nGPHjrF792569OgB4J4SeLcFBASwYcMGWrVqxfbt28skBnF/kul7QjxkLu3KxOr0RHFcptyvx0gLDQRAq7pWFwmr/deSO9rNjKs8lEWXo4FsAIya0uesi4fHxTwrXvp8RjV4D43iwG51bdfr/cs0LiGEEEKIB9WMGTNIS0vDYDBQv359UlNT3UW0y0JgYGCRKW1C3ApJSgnxELGZzZz4z0ZUH9Dl52J3FMLVYogGTRQAj1W/wfKtdjN7fFwFF00ahWCDnpYBMk1DuORb7Ph7ZKNRHGg0HgQFtcboEUK5ck3KOjQhhBBCiAdO3bp12bVrV1mHIcSfJkkpIR4ilzJOoVEVHIoTU34+KmCgAorfX/D2u0y1x6MIivQuubPdjFnjAcCSWrG0CLi15VvFwyHfYqec3gyAh0cFaj0yu4wjEkIIIYQQQtzrJCklxEPEZjGjU3RoLl2mSloaaWGBKIoRReNJZPQGGnfqWUpnM2atAZBpe8LlfI6Zv3+4g3M5Zry1J6nkdwIAnVYSlkIIIYQQQoibk6SUEA+Rc+/OwuTdHkeu2V3g3KnVowU89DcocP7FQDj6DeSedY+UMmqlwLmA7ccvcfhcHvWD9/KPRz9yb9fqbjDaTgghhBBCCCGuI0kpIR4SV65cYWO5AGzGnzFccOC8mpSyGPR4AoaSklLWfNjzH/dTs9a1zKesuicA8ix2AJpUdBW+12p9MBpDiAjvUZZhCSGEEEIIIe4TkpQS4iGRnp5OockTnHY8bPnkeRiu7tEDYPQtYaUOWyEAXwU+zt4Wb5J3GVBl+p5wyTO7klJ+RhsA4eFdias8tixDEkIIIYQQQtxH7shwh4yMDP7+978TGBiIyWSiVq1a7Ny5071fVVXGjx9PaGgoJpOJ1q1bc+TIkSLHyMrKokePHvj6+uLv70/fvn3Jy8sr0mbfvn00b94co9FIZGQk06dPLxbLihUrqFatGkajkVq1arF27do7cclC3NMKc3PJ+Gw/AAGZ59CoFznv5wWABteUPO+6XYt3tBVyRedN35qTmZUFdtX1Q8NPd4OpfuKh8HNGNoOW7ea/O08BYNJbANBqZdqeEEIIIYQQ4tbd9qTU5cuXadasGXq9nq+++oqDBw+SnJxMuXLl3G2mT5/O7NmzWbBgATt27MDLy4uEhATMZrO7TY8ePThw4AApKSmsWbOGzZs38+KLL7r35+Tk0LZtW6Kioti1axdvv/02EydOZOHChe4227Zt429/+xt9+/Zlz549PPPMMzzzzDP8/PPPt/uyhbin7V+3Dq3jaiLJ6nqdafBGo4vAoKsFQJBvcPGOdjPZOh+ciha9otA/Ioh5NaLw08sgy4fZ+5uPs2bfWQyO3bxU+yPK63cDoNN6lXFkQgghhBBCiPvJbU9KTZs2jcjISBYtWkSjRo2IiYmhbdu2VKpUCXCNknr33Xd57bXX6NSpE7Vr1+Zf//oXZ86cYdWqVQD88ssvrFu3jv/3//4fjz32GI8//jhz5szh448/5syZMwAsXboUq9XKRx99RM2aNenWrRtDhgxh5syZ7lhmzZpFYmIio0aNonr16rzxxhvUq1ePuXPn3u7LFuKeZsnJw4ETh9VJYWE+AFqvVhh8nkOj9cfL3wMvP4/iHe1mCq8WN/fRaXgjLoK/VChXvJ14qFwpsALQ79GvaRCyFx0XADAaw8syLCGEEEKIMtOnTx8URUFRFAwGA5UrV2by5MnY7fY/ddzvvvsORVG4cuXK7Qn0Fpw4cYLu3bsTFhaG0WgkIiKCTp06cejQoSLt1qxZQ8uWLfHx8cHT05OGDRuyePHiIm3S09NRFIW9e/fe8vknTpxItWrV8PLyoly5crRu3ZodO3YUOWbfvn2JiYnBZDJRqVIlJkyYgNVqvemxly5dSp06dfD09CQ0NJQXXniBS5culdonNzeXYcOGERUVhclkomnTpvz4449F2uTl5TFo0CAiIiIwmUzUqFGDBQsWFGkzYMAAKlWqhMlkonz58iXe05MnT/LUU0/h6elJcHAwo0aNuuH30NatW9HpdDz66KM3ve7PPvuMtm3bEhgY+Lu/HnfabU9KrV69mgYNGtClSxeCg4OpW7cuH3zwgXv/iRMnyMzMpHXr1u5tfn5+PPbYY2zfvh2A7du34+/vT4MGDdxtWrdujUajcX8zbt++nRYtWmAwGNxtEhISSEtL4/Lly+4215/nWptr5xHiYaHaHDhwELv/MOUKXUWpUXTo7Ef4e88c/j65MVp9CT8ObGb3insmKW4urrpW4NzPwzXqrmLFftR6ZB5BQa3KMiwhhBBCiDKVmJjI2bNnOXLkCCNHjmTixIm8/fbbZR2W260kbWw2G23atCE7O5vPPvuMtLQ0PvnkE2rVqlUkMTZnzhw6depEs2bN2LFjB/v27aNbt24kJSXx8ssv/6k4q1Spwty5c9m/fz9btmwhOjqatm3bcuGC64PQQ4cO4XQ6ef/99zlw4ADvvPMOCxYsYNy4caUed+vWrfTq1Yu+ffty4MABVqxYwQ8//ED//v1L7devXz9SUlL497//zf79+2nbti2tW7cmIyPD3WbEiBGsW7eO//znP/zyyy8MGzaMQYMGsXr1aneb+vXrs2jRIn755RfWr1+Pqqq0bdsWh8MBgMPh4KmnnsJqtbJt2zaWLFnC4sWLGT9+fLGYrly5Qq9evWjV6tbef+fn5/P4448zbdq0W2p/N932vzKPHz/O/PnziYuLY/369bz00ksMGTKEJUuWAJCZmQlAhQoVivSrUKGCe19mZibBwUWnEul0OgICAoq0KekY15/jRm2u7f8ti8VCTk5OkYcQ9zv7xYsU7N2PQ3HiU5CH42qRckXRUeidh1+QBzrDb2pEpX0Fb1eGJR2xaFyJXw9JSj30TmUV8H8/neFctisZpVAAQEiFTgQHJ6LRyLROIYQQQjy8PDw8CAkJISoqipdeeonWrVuzevVqLl++TK9evShXrhyenp60a9euSE3lX3/9lY4dO1KuXDm8vLyoWbMma9euJT09nfj4eADKlSuHoij06dMHcI3e6dGjB15eXoSGhvLOO+/wxBNPMGzYMPdxo6OjeeONN+jVqxe+vr7ucjhbtmyhefPmmEwmIiMjGTJkCPn5rtkUBw4c4NixY7z33ns0btyYqKgomjVrxpQpU2jcuDEAp06dYuTIkQwbNoy33nqLGjVqULlyZUaOHMnbb79NcnJykZFNv1f37t1p3bo1sbGx1KxZk5kzZ5KTk8O+ffsAV/Jv0aJFtG3bltjYWJ5++mlefvllPvvss1KPu337dqKjoxkyZAgxMTE8/vjjDBgwgB9++OGGfQoLC/n000+ZPn06LVq0oHLlykycOJHKlSszf/58d7tt27bRu3dvnnjiCaKjo3nxxRepU6dOkWO/+OKLtGjRgujoaOrVq8eUKVM4deoU6enpAHz99dccPHiQ//znPzz66KO0a9eON954g3nz5hVLKCYlJdG9e3eaNGlyS/e0Z8+ejB8/vtignXvBbf8r0+l0Uq9ePd566y3q1q3Liy++SP/+/YsNXbsXTZ06FT8/P/cjMjKyrEMS4k9L+/RTfjHqOKY5h87hwKlce9nrcBpsoCth2t4v/wf5F8BeiFnr2u8hK+491FRV5a/ztzF4+R7O5eRj0FpQnK6klFZqSQkhhBDiDlFVFWdBQZk8VFX9U7GbTCasVit9+vRh586drF69mu3bt6OqKu3bt8dmc61gPHDgQCwWC5s3b2b//v1MmzYNb29vIiMj+fTTTwFIS0vj7NmzzJo1C3CNzNm6dSurV68mJSWF1NRUdu/eXSyGGTNmUKdOHfbs2cPrr7/OsWPHSExMpHPnzuzbt49PPvmELVu2MGjQIADKly+PRqNh5cqV7hE8v7Vy5UpsNluJI6IGDBiAt7c3y5cv/1P37hqr1crChQvx8/OjTp06N2yXnZ1NQEBAqcdq0qQJp06dYu3ataiqyrlz51i5ciXt27e/YR+73Y7D4cBoNBbZbjKZ2LJli/t506ZNWb16NRkZGaiqyrfffsvhw4dp27ZticfNz89n0aJFxMTEuPMO27dvp1atWkUG1iQkJJCTk8OBAwfc2xYtWsTx48eZMGFCqdd7v7jtH2uHhoZSo0aNItuqV6/ufjGFhIQAcO7cOUJDQ91tzp07554LGRISwvnz54scw263k5WV5e4fEhLCuXPnirS59vxmba7t/62xY8cyYsQI9/OcnBxJTIn73q5Ll8j290F/+RSnAhSsuqtJKUWHRrGCZ1DxTnYzFkXPZ82T+SGwIWRZMcpIqYdaoc3BhVwLoV5neb3xLDy0BVx7n6bTSVJKCCGEEHeGWlhIWr36ZXLuqrt3oXh6/u5+qqqyceNG1q9fT7t27Vi1ahVbt26ladOmgKuuUWRkJKtWraJLly6cPHmSzp07U6uWawGi2NhY97GuJVqCg4Px9/cHXKOklixZwrJly9zTtxYtWkRYWFixWJ588klGjhzpft6vXz969OjhHlEVFxfH7NmzadmyJfPnzyc8PJzZs2fzyiuvMGnSJBo0aEB8fDw9evRwx3X48GH8/PyK/D1/jcFgIDY2lsOHD//u+3a9NWvW0K1bNwoKCggNDSUlJYWgoBL+bgGOHj3KnDlzmDFjRqnHbNasGUuXLqVr166YzWbsdjsdO3Zk3rx5N+zj4+NDkyZNeOONN6hevToVKlRg+fLlbN++ncqVK7vbzZkzhxdffJGIiAh0Oh0ajYYPPviAFi1aFDnee++9xyuvvEJ+fj5Vq1YlJSXFXZLoVmaDHTlyhDFjxpCamopO92DMUrjtf2U2a9aMtLS0ItsOHz5MVFQUADExMYSEhLBx40b3/pycHHbs2OEeetakSROuXLnCrl273G2++eYbnE4njz32mLvN5s2b3dllgJSUFKpWrepe6a9JkyZFznOtzY2GuHl4eODr61vkIcT9zJZjocDsyup7Z13GqteAoqAqCorGm+DylSCkVgkdzawKfpLhSh2WZ7mGivrqtMXbiYdGntlVR6pKueN4aAvc231966DXl/6plBBCCCHEw2DNmjV4e3tjNBpp164dXbt2pU+fPuh0OvffsQCBgYFUrVqVX375BYAhQ4YwZcoUmjVrxoQJE9zT1G7k+PHj2Gw2GjVq5N7m5+dH1apVi7W9vk4zwE8//cTixYvx9vZ2PxISEnA6nZw4cQJwjdzKzMxk6dKlNGnShBUrVlCzZk1SUlJu+V5cX/v5RpYuXVokjtTUVPe++Ph49u7dy7Zt20hMTOS5554rNnAFICMjg8TERLp06VKkNtT1x01KSgLg4MGDDB06lPHjx7Nr1y7WrVtHenq6e39qamqRfkuXLgXg3//+N6qqEh4ejoeHB7Nnz+Zvf/sbmus+tJ8zZw7ff/89q1evZteuXSQnJzNw4EA2bNhQJN4ePXqwZ88eNm3aRJUqVXjuuecwm823dE8dDgfdu3dn0qRJVKlS5Xff03vVbU+tDR8+nKZNm/LWW2/x3HPP8cMPP7Bw4UIWLlwIgKIoDBs2jClTphAXF0dMTAyvv/46YWFhPPPMM4BrZFViYqJ72p/NZmPQoEF069bNnf299sXo27cvo0eP5ueff2bWrFm888477liGDh1Ky5YtSU5O5qmnnuLjjz9m586d7liEeJCpqsqmqf8Pp9417U6rgh0wGFuAR1UUxYOKFRuBUsK0PHsh5w2uEYUxJgOP+XnTKzzwLkYv7iWFVgenLrsSUeWMFsBVR6patSloNCaUkr6HhBBCCCFuA8VkouruXTdveIfO/XvEx8czf/58DAYDYWFh6HS6IoWub6Rfv34kJCTw5Zdf8vXXXzN16lSSk5MZPHjwHw3dzcur6Ij2vLw8BgwYwJAhQ4q1rVixovv/Pj4+dOzYkY4dOzJlyhQSEhKYMmUKbdq0IS4ujuzsbM6cOVNsdJbVauXYsWMkJCTcNLann366SLIuPPx/Kzl7eXlRuXJlKleuTOPGjYmLi+PDDz9k7Nix7jZnzpwhPj6epk2bFvsb//rV5a4NNpk6dSrNmjVj1KhRANSuXRsvLy+aN2/OlClTaNCgQZF+10YpVapUiU2bNpGfn09OTg6hoaF07drVPXKssLCQcePG8fnnn/PUU0+5j713715mzJhRbJE3Pz8/4uLiaNy4MeXKlePzzz/nb3/7GyEhIcXqW10/Gyw3N5edO3eyZ88e93RLp9OJqqrodDq+/vrrUu/pveq2J6UaNmzI559/ztixY5k8eTIxMTG8++679OjRw93m2nC1F198kStXrvD444+zbt26IvM0ly5dyqBBg2jVqhUajYbOnTsze/Zs934/Pz++/vprBg4cSP369QkKCmL8+PHu4m3gmte5bNkyXnvtNcaNG0dcXByrVq3ikUceud2XLcQ9J/9yFgUXz+MI9cH4axY2cy5oAX0kGo0PigIVYm8wGtBuofDqqnstA3z5Z5WIuxe4uKccu5BHh9lbKLTZaRr2A7XL/wyA3hCAVvv7h7MLIYQQQvweiqL8oSl0ZeFaIuV61atXx263s2PHDvf0vUuXLpGWllak7E1kZCRJSUkkJSUxduxYPvjgAwYPHuwecXR9fafY2Fj0ej0//vijO5GUnZ3N4cOHi00X+6169epx8ODBYnGWRlEUqlWrxrZt2wB49tlnGT16NMnJySQnJxdpu2DBAgoKCujVq9dNj+vj44OPj88txeB0OrFYLO7nGRkZxMfHu1e00/ym1EhJ11dQUFBsyptW65oNoqoqJpOp1Pvi5eWFl5cXly9fZv369UyfPh1wrVhos9mKxaDVanE6nTc8nqqqqKrqvq4mTZrw5ptvcv78effCbykpKfj6+lKjRg30ej379+8vcoz33nuPb775hpUrVxITE4OXl9ct39N7xR2ZhNihQwc6dOhww/2KojB58mQmT558wzYBAQEsW7as1PPUrl37psPRunTpQpcuXUoPWIgHkDX7ClpFi83poO0Pm9haNQyrVguKFnw/5oXxczF6/2ZYraqC+QpY8zCbXEkpoxQ4f6jtPXmFQpuDCO8z9H1kqXu7wVC+DKMSQgghhLg/xMXF0alTJ/r378/777+Pj48PY8aMITw8nE6dOgEwbNgw2rVrR5UqVbh8+TLffvst1atXByAqKgpFUVizZg3t27fHZDLh4+ND7969GTVqFAEBAQQHBzNhwgQ0Gs1NR7CPHj2axo0bM2jQIPr164eXlxcHDx4kJSWFuXPnsnfvXiZMmEDPnj2pUaMGBoOBTZs28dFHHzF69GjANaJq+vTpvPzyyxiNRnr27Iler+eLL75g3LhxTJkypdhAkN+W+AGoWbMmer2+yLb8/HzefPNNnn76aUJDQ7l48SLz5s0jIyPD/Xd9RkYGTzzxBFFRUcyYMYMLFy64+9+ofjRAx44d6d+/P/PnzychIYGzZ88ybNgwGjVqVGI9rmvWr1+PqqpUrVqVo0ePMmrUKKpVq8bzzz8PuEZitWzZklGjRmEymYiKimLTpk3861//YubMmYBryuUnn3xC27ZtKV++PKdPn+af//wnJpPJXWi9bdu21KhRg549ezJ9+nQyMzN57bXXGDhwIB4err/Nfntfg4ODMRqNNx14k5WVxcmTJzlz5gzwv69HSEhIqffsbngwKmMJIYr55b//Jd0f8rBgclhxupNLWhw+2cUTUgAfd4e0tQCYKz8BIAXOH3K5ZlfdvrbVXJ8i6fUBhId1IzzsubIMSwghhBDivrFo0SKGDh1Khw4dsFqttGjRgrVr17oTMg6Hg4EDB3L69Gl8fX1JTEx0l6UJDw9n0qRJjBkzhueff55evXqxePFiZs6cSVJSEh06dMDX15dXXnmFU6dOFVsl7rdq167Npk2bePXVV2nevDmqqlKpUiW6du0KQEREBNHR0UyaNIn09HQURXE/Hz58uPs4w4cPJzY2luTkZGbNmkV+fj4Ay5cvp1u3bsXOW9K2U6dOERFRdEaGVqvl0KFDLFmyhIsXLxIYGEjDhg1JTU2lZs2agGv00NGjRzl69Gix/qWtmNinTx9yc3OZO3cuI0eOxN/fnyeffJJp06aVes+ys7MZO3Ysp0+fJiAggM6dO/Pmm28WSah9/PHHjB07lh49epCVlUVUVBRvvvmmu16V0WgkNTWVd999l8uXL1OhQgVatGjBtm3b3KOitFota9as4aWXXqJJkyZ4eXnRu3fvUgfz3KrVq1e7k2jwv6/HhAkTmDhx4p8+/p+hqH92ncsHWE5ODn5+fmRnZ0vRc3HfmTv+dS5qtDisTrp/toKvasWiahQ8/Pqjjf43L41bWbzTlBCwFwIwouZElgXFMyYmhGHRZZs9F2Uju9DGe98e5f3Nxxna7CS1vWbg7/8Y9euVPopViAedvD8oSu6HEOJ2MZvNnDhxgpiYmJsmV0RR+fn5hIeHk5ycTN++fe/6+bOysmjVqhW+vr589dVXeN4nUy7Fn1Paa/ZW3x/ISCkhHlCFThU0EGsJQgXU60ZKGXQljH5SVbCb2eJfl8Ut32NPoQoWm4yUekhtP3aJnh/uwO5U8dBa8DVkA6DTet2kpxBCCCGEuNP27NnDoUOHaNSoEdnZ2e7RNNemBN5tAQEBbNiwgXnz5rF9+3ZatWpVJnGI+48kpYR4AB359BcUjTeK5Qo5Z1L5qnbs/3YqOh6t36d4J4cVUJkR1Yfvr1jdm0ON+uJtxQNvz6nL2J0qj4Xsom+tf6NVXEUatTpJSgkhhBBC3AtmzJhBWloaBoOB+vXrk5qaSlBQUJnFExgYyPjx48vs/OL+JEkpIR4whbk55KTuQvVTUfPzsTsL4WrBQ0VbHtATW7Nx8Y4217S9vKsjYfpFBNHYz5vEIL+7Fbq4h+SZ7QB0rJ7pTkgpioGgwPiyDEsIIYQQQgB169Zl165dZR2GEH+aJKWEeMBcyTyLFi1Wu52ciyo+gIFQFL8OBJY/SYNnHqFcSAmjXexmAMxa18oO7YP8aVrO+y5GLu4leRZXUsqodX1fxFV+lcjIPiiKTOcUQgghhBBC3B6SlBLiAWM5fx6toiPq8CFqnzvO4dBAFMWIovEhLPwIcQ0rFO9kzobTP7r+q3ElpYza0peTFQ+m1T+dYcF3xzh9uQAAg7YQVNDpfCUhJYQQQgghhLitJCklxAPEmZ/P3mnTcNZ4GlNBHs6r0/YcOgM6wKDXltDJAe81gZwMACxaA4AUOH9IfbTlBAfP5pAQtZHHw7/HS70CgE4no+aEEEIIIYQQt5ckpYR4gGT/epK9j9YDzRnqOBw4riaWbHpXUspoKCEpZclxJ6Twr4hF70o+eGhkpNTDKNdsA6Bz1U1oueLe7ukZe4MeQgghhBBCCPHHSFJKiAdI7uUroNGgcThxoiH/6sp5iur61+hhLN7paoHzfT7VOdj1SwrSToEKHjJS6qF0rZaUVskHFR55ZA4+3jXw9Iwu28CEEEIIIYQQDxxJSgnxgLAWFJKxOgNMYDp3mnQ/J+AqaK7FBIBv7b8W72grJEfrRcdHZ2M5dMq92UsrSamHydHzuRzKzCWn0I5OsYHqGjEVUO5x9HrfMo5OCCGEEEII8SCSpJQQD4jT+/Zj0HigOpxocnMBUDT+KBp/tPpqaD0guHKd4h3tZi7p/bFoDGgVeKKcL4/5e1FOLz8eHhZ5Fjsd5mzBbHPSsMJuwr3PuvfpdCWs1CiEEEIIIYQQt4EMhRDiAeEosOBQnNhOFuKXdxkAnekJ9D4d+MuAGvSc3Ax9STWlbGbMWteKe/46HUvrxDIkqoQV+sQD63yOGbPNSbRvBkl1FtOx0noAdDp/FKWE7xkhhBBCCFFEnz59UBQFRVEwGAxUrlyZyZMnY7fb/9Rxv/vuOxRF4cqVK7cn0Ftw4sQJunfvTlhYGEajkYiICDp16sShQ4eKtFuzZg0tW7bEx8cHT09PGjZsyOLFi4u0SU9PR1EU9u7de8vnnzhxItWqVcPLy4ty5crRunVrduzYUeSYffv2JSYmBpPJRKVKlZgwYQJWq/Wmx166dCl16tTB09OT0NBQXnjhBS5dulRqn82bN9OxY0fCwsJQFIVVq1YVa/PZZ5/Rtm1bAgMDb3q9qqrSrl27Gx5r8eLF1K5dG6PRSHBwMAMHDiyyf/369TRu3BgfHx/Kly9P586dSU9PvyvXeSdIUkqIB4DTauXS8v9ix4mxoBDH1VX3UHQ4tRYiqgfh5edRtJM5G1YPga9fpVBzbcU9KW7+MMo1u94sRZdz1RfT6wMIC32OGtWnlWVYQgghhBD3lcTERM6ePcuRI0cYOXIkEydO5O233y7rsNxuJWljs9lo06YN2dnZfPbZZ6SlpfHJJ59Qq1atIomxOXPm0KlTJ5o1a8aOHTvYt28f3bp1IykpiZdffvlPxVmlShXmzp3L/v372bJlC9HR0bRt25YLFy4AcOjQIZxOJ++//z4HDhzgnXfeYcGCBYwbN67U427dupVevXrRt29fDhw4wIoVK/jhhx/o379/qf3y8/OpU6cO8+bNK7XN448/zrRpN3///O6776IoJf/dNXPmTF599VXGjBnDgQMH2LBhAwkJCe79J06coFOnTjz55JPs3buX9evXc/HiRf761/+VabmT13lHqOKGsrOzVUDNzs4u61CEKNWJb75R3x8wUF3w2rvqlL8kqe91aqvOeO4pdXbff6uzBq5QVUt+8U57l6vqBF9VneCrbp3ZXK3wzR612fcH737wokw5HE518+HzatToNeqQj6arGzbGqjt3/a2swxLinibvD4qS+yGEuF0KCwvVgwcPqoWFhWUdyu/Wu3dvtVOnTkW2tWnTRm3cuLGalZWl9uzZU/X391dNJpOamJioHj582N0uPT1d7dChg+rv7696enqqNWrUUL/88kv1xIkTKlDk0bt3b1VVVTUnJ0ft3r276unpqYaEhKgzZ85UW7ZsqQ4dOtR93KioKHXy5Mlqz549VR8fH3ff1NRU9fHHH1eNRqMaERGhDh48WM3Ly1NVVVX37NmjAmp6evoNr/XkyZOqXq9XR4wYUWzf7NmzVUD9/vvvVVVV3dewZ8+e339Tr7r2e2bDhg03bDN9+nQ1Jiam1OO8/fbbamxsbLF4w8PDbzkWQP38889vuP9m17tnzx41PDxcPXv2bLFjZWVlqSaTqdTrXLFiharT6VSHw+Hetnr1alVRFNVqtaqqeneu85rSXrO3+v5ARkoJ8QDYdugQZ0KCOKu9jM7hwOEe8aQDjR10Jay6Z3HVnSK0DuamwwAwyop7D5W9p65QZ/LX9PzwBwC8Da5Pz3RaqSMlhBBCiHuDqqrYLI4yebj+Nv/jTCYTVquVPn36sHPnTlavXs327dtRVZX27dtjs7kWlhk4cCAWi4XNmzezf/9+pk2bhre3N5GRkXz66acApKWlcfbsWWbNmgXAiBEj2Lp1K6tXryYlJYXU1FR2795dLIYZM2ZQp04d9uzZw+uvv86xY8dITEykc+fO7Nu3j08++YQtW7YwaNAgAMqXL49Go2HlypU4HI4Sr2vlypXYbLYSR0QNGDAAb29vli9f/qfu3TVWq5WFCxfi5+dHnTol1Me9Kjs7m4CAgFKP1aRJE06dOsXatWtRVZVz586xcuVK2rdvf1tivZmCggK6d+/OvHnzCAkJKbY/JSUFp9NJRkYG1atXJyIigueee45Tp/63GFX9+vXRaDQsWrQIh8NBdnY2//73v2ndujV6vf6euM7fSyoZC3GfU50qhXkWAEIuFpDvcRYLV+sAKToUDw2UlGyyW7igL8dbUUmk6R4BCmT63kNm27GL5JrttK74Le2iN+Lj4XpjpJXi5kIIIYS4R9itThYO3VQm535xVkv0Hr+/vqaqqmzcuJH169fTrl07Vq1axdatW2natCngqvcTGRnJqlWr6NKlCydPnqRz587UqlULgNjYWPexriVagoOD8ff3ByA3N5clS5awbNkyWrVqBcCiRYsICwsrFsuTTz7JyJEj3c/79etHjx49GDZsGABxcXHMnj2bli1bMn/+fMLDw5k9ezavvPIKkyZNokGDBsTHx9OjRw93XIcPH8bPz4/Q0NBi5zMYDMTGxnL48OHffd+ut2bNGrp160ZBQQGhoaGkpKQQFBRUYtujR48yZ84cZsyYUeoxmzVrxtKlS+natStmsxm73U7Hjh3v2nS14cOH07RpUzp16lTi/uPHj+N0OnnrrbeYNWsWfn5+vPbaa7Rp04Z9+/ZhMBiIiYnh66+/5rnnnmPAgAE4HA6aNGnC2rVr75nr/L1kWIQQ97msHzOx5ro+xXFeOQOKCooC6FA03hhMN0gw2M18Efwkyz1qsDunAIBQD8NdilrcC/Ku1pLqGLcTf2MOWsVVU8rHp2ZZhiWEEEIIcV9as2YN3t7eGI1G2rVrR9euXenTpw86nY7HHnvM3S4wMJCqVavyyy+/ADBkyBCmTJlCs2bNmDBhAvv27Sv1PMePH8dms9GoUSP3Nj8/P6pWrVqsbYMGDYo8/+mnn1i8eDHe3t7uR0JCAk6nkxMnTgCukVuZmZksXbqUJk2asGLFCmrWrElKSsot3wuD4eZ/VyxdurRIHKmpqe598fHx7N27l23btpGYmMhzzz3H+fPnix0jIyODxMREunTpUqRm0vXHTUpKAuDgwYMMHTqU8ePHs2vXLtatW0d6erp7f2pqapF+S5cuveXrvZnVq1fzzTff8O67796wjdPpxGazMXv2bBISEmjcuDHLly/nyJEjfPvttwBkZmbSv39/evfuzY8//simTZswGAw8++yz7pF9ZXmdf4SMlBLiPuZ0Otj935U4vJz8Yg8GNQ0fQO+ZiEYfi6IYCA26wTBWu5mcq9O0Gvt58VxoAG0Cfe9e8KLM5VlcSSmDxpWMqlnzXXx9HsFkii7DqIQQQggh/kdn0PDirJZldu7fIz4+nvnz52MwGAgLC0On07F69eqb9uvXrx8JCQl8+eWXfP3110ydOpXk5GQGDx78R0N38/Iq+gF1Xl4eAwYMYMiQIcXaVqxY0f1/Hx8fOnbsSMeOHZkyZQoJCQlMmTKFNm3aEBcXR3Z2NmfOnCk2OstqtXLs2LEixblv5Omnny6SrAsPDy8Sd+XKlalcuTKNGzcmLi6ODz/8kLFjx7rbnDlzhvj4eJo2bcrChQuLHPv61e98fV1/40ydOpVmzZoxatQoAGrXro2XlxfNmzdnypQpNGjQoEi/ChVu34rk33zzDceOHXOPdrumc+fONG/enO+++8498qxGjRru/eXLlycoKIiTJ08CMG/ePPz8/Jg+fbq7zX/+8x8iIyPZsWMHjRs3LtPr/CMkKSXEfSwvKwtLThYOL08ijv2Kry0XVQuKtjwmLvBIsxiqtIkrubPdjFnrWpHvER8T3UMD72Lkoizt+jWL5T+c4sf0LAC0imuknK/PI3h6xpRlaEIIIYQQRSiK8oem0JWFa4mU61WvXh273c6OHTvc0/cuXbpEWlpakeRDZGQkSUlJJCUlMXbsWD744AMGDx7sHnF0fX2n2NhY9Ho9P/74ozuRlJ2dzeHDh2nRokWpMdarV4+DBw8Wi7M0iqJQrVo1tm3bBsCzzz7L6NGjSU5OJjk5uUjbBQsWUFBQQK9evW56XB8fH3x8fG4pBqfTicVicT/PyMggPj6e+vXrs2jRIjS/KVdS0vUVFBSg0xVNgWi1ru8tVVUxmUy/6778HmPGjKFfv35FttWqVYt33nmHjh07Aq5pd+CqHxYREQFAVlYWFy9eJCoqyn0Nv73Wa9fgdDrdbcrqOv8ISUoJcR+zZF1Co2ixqw56//Ql39aIxI4WFB1eyhEea1UbQn4zfS//EpzZDRePYta45oVLgfOHyz+/OsSP6Vk8HbuODhEZaHElpbRa7zKOTAghhBDiwRIXF0enTp3o378/77//Pj4+PowZM4bw8HB3baFhw4bRrl07qlSpwuXLl/n222+pXr06AFFRUSiKwpo1a2jfvj0mkwkfHx969+7NqFGjCAgIIDg4mAkTJqDRaFCU0mvEjh49msaNGzNo0CD69euHl5cXBw8eJCUlhblz57J3714mTJhAz549qVGjBgaDgU2bNvHRRx8xevRowDWiavr06bz88ssYjUZ69uyJXq/niy++YNy4cUyZMoVHHnmkyHnT0tKKxVKzZk13ce5r8vPzefPNN3n66acJDQ3l4sWLzJs3j4yMDLp06QK4ElJPPPEEUVFRzJgxgwsXLrj7l1RA/JqOHTvSv39/5s+fT0JCAmfPnmXYsGE0atSoxHpc1+Tl5XH06FH38xMnTrB3714CAgLcScGsrCxOnjzJmTNnilxvSEhIkcdvVaxYkZgY14fCVapUoVOnTgwdOpSFCxfi6+vL2LFjqVatGvHx8QA89dRTvPPOO0yePJm//e1v5ObmMm7cOKKioqhbt+4dv847QZJSQtzHds6Zx69+wVicheidDpyKK7mkKFo0vmbQmYp3WtweLhwCwBw3AgCTJKUeKln5VsqbLtKp8lfubVqtN3q9TN8UQgghhLjdFi1axNChQ+nQoQNWq5UWLVqwdu1ad0LG4XAwcOBATp8+ja+vL4mJibzzzjuAa0rbpEmTGDNmDM8//zy9evVi8eLFzJw5k6SkJDp06ICvry+vvPIKp06dwmgsYdXt69SuXZtNmzbx6quv0rx5c1RVpVKlSnTt2hWAiIgIoqOjmTRpEunp6SiK4n4+fPhw93GGDx9ObGwsycnJzJo1i/z8fACWL19Ot27dip23pG2nTp1yjwi6RqvVcujQIZYsWcLFixcJDAykYcOGpKamUrOmq+5pSkoKR48e5ejRo8X6l7ZiYp8+fcjNzWXu3LmMHDkSf39/nnzySaZNm1bqPdu5c6c7KQSulQ8BevfuzeLFiwFXzajnn3++2PVOmDCBiRMnlnr86/3rX/9i+PDhPPXUU2g0Glq2bMm6devc3ytPPvkky5YtY/r06UyfPh1PT0+aNGnCunXrMJlMd/w67wRF/bPrXD7AcnJy8PPzIzs72z0PVYh7hd1u563Jk3FqNBgsFp75fBVf1akEgIdfEmHlvuavr44B399kw98oDw4rmWFNGRvek688a/B6pTAGVgwug6sQZeGxtzZg4jCvN05Gry9HpdiR+PrWwcenxs07CyHk/cFvyP0QQtwuZrOZEydOEBMTc9PkiigqPz+f8PBwkpOT6du3710/f1ZWFq1atcLX15evvvoKT0/Pux6DuPtKe83e6vsDGR4hxH3q/KkLODUaFJsV/9On2Fw18n87FR0ekXWLJ6ScTnBYWRHclkfjpvKVpysJYdSUPsxXPBh+zshm5a7TZBfaMOnMABgM5QkP/5skpIQQQggh7iN79uxh+fLlHDt2jN27d9OjRw8A95TAuy0gIIANGzbQqlUrtm/fXiYxiPuTTN8T4j61MXkOBBnQ5WVTaL0CxqvLrmq8AD0V4p4o3snhKg74k49ruViDohBm1NMy4NYKDIr7V3ahjb/O34bV7qRm4C/UDXYtNazTSR0pIYQQQoj70YwZM0hLS8NgMFC/fn1SU1MJCgoqs3gCAwMZP358mZ1f3J8kKSXEfUhVVR7xbMRR5x48LuQCYKA8eMejaINQFIVy5b2Kd7QVAmDRuBJYw6MrMDz6xsUAxYPjQq4Zq91JtG8mI+rPd2/X6/zLLighhBBCCPGH1K1bl127dpV1GEL8aTJ9T4j7kMNuR6v1QJ+ZS9XTRwBQFC80+ggaBKTwl5frEfto+eId7a6RUoVa13xfDylw/tDINdsBqBSYA4BO50dwcHuio/9RlmEJIYQQQgghHmIyUkqI+9DltetxoKAzW3FcTSzZdQb0QKTPCcIq+5fc0e6qI2TRulZm8JBaUg+FS3kWjl1wrYji62EDwMenBrUemVOWYQkhhBBCCCEecpKUEuI+k52dzdLUTRR6+aOzO3AqrsSS1aBHD+hKelWnb4WVz4M5GwCL1gMAk4yUeuBtPnyBPot+wKmqhHllEuadAYBOK7WkhBBCCCGEEGVLklJC3GeOHz/OFW8vcJrRqpfJM+oB0KiuRJNOX0Ki6ch6yDvnfmr2dE3tk5FSD76fTl3BqULbqM10rfqpe7tOJ8XthRBCCCGEEGVLklJC3GdOHboIQLmz57A787jg6yporsGVlNL6BhbvZCvEiUKvx5eyxyOCbIcKqtSUehjkWV21pOIruUbJ6XS+GAzlCQl5pgyjEkIIIYQQQghJSglxX0nfvgtlfwYYQLG56kPpVE+c+mB0uhqu5+0mFe9oK+CUsQIbtOFgV13tFKjqZbxrsYuykXe1wLlB4ypyHxs7nMiIXmUZkhBCCCGEEEIAkpQS4r5yYdcRUDTocgpR83JACwaPJji96uBh1BBaJQCvsNDiHW2FmDWukVR+Oi2r6lamvEFPkEF+BDyoth+7xNIdv7Ln5BUADFozqKDTepVtYEIIIYQQQghxlczdEeI+otqc2BUnET8fx2grcG27mmz6y8AYnvpHbRSlhDpRtkIsGgMAXloN1b1NkpB6wL29/hBr9p0l2PA9HWO/wqScAkArSSkhhBBCiNuuT58+KIqCoigYDAYqV67M5MmTsdvtf+q43333HYqicOXKldsT6C04ceIE3bt3JywsDKPRSEREBJ06deLQoUNF2q1Zs4aWLVvi4+ODp6cnDRs2ZPHixUXapKenoygKe/fuveXzT5w4kWrVquHl5UW5cuVo3bo1O3bsKHLMvn37EhMTg8lkolKlSkyYMAGr1XrTYy9dupQ6derg6elJaGgoL7zwApcuXSq1z+bNm+nYsSNhYWEoisKqVat+d8wAb775Jk2bNsXT0xN/f/8Sz3Xy5EmeeuopPD09CQ4OZtSoUUW+h67/Prv+UbNmTXebqVOn0rBhQ3x8fAgODuaZZ54hLS3tpvfmVuK7EyQpJcR9QrVaKbhwEQtWjFYLjqvJJ5veNQVP5+lZvNPldHivCRxJcY+UkuLmD4crBTbKeVxm0KMf8kzlr1CcmQDo9QFlHJkQQgghxIMpMTGRs2fPcuTIEUaOHMnEiRN5++23yzost1tJ2thsNtq0aUN2djafffYZaWlpfPLJJ9SqVatIYmzOnDl06tSJZs2asWPHDvbt20e3bt1ISkri5Zdf/lNxVqlShblz57J//362bNlCdHQ0bdu25cKFCwAcOnQIp9PJ+++/z4EDB3jnnXdYsGAB48aNK/W4W7dupVevXvTt25cDBw6wYsUKfvjhB/r3719qv/z8fOrUqcO8efP+cMzguv9dunThpZdeKvEYDoeDp556CqvVyrZt21iyZAmLFy9m/Pjx7jazZs3i7Nmz7sepU6cICAigS5cu7jabNm1i4MCBfP/996SkpGCz2Wjbti35+fmlXufN4rtjVHFD2dnZKqBmZ2eXdShCqOvmzVMnTJigTpgwQV3RvJ065y8J6oznnlLf7btUnTtgo5p7Kb94px8/UtUJvqo6wVfd/O6TaoVv9qgtd/xy94MXd12DKSnqE2/OUzdsjFW//a62+suh19QTJ+arTqejrEMT4r4n7w+KkvshhLhdCgsL1YMHD6qFhYVlHcrv1rt3b7VTp05FtrVp00Zt3LixmpWVpfbs2VP19/dXTSaTmpiYqB4+fNjdLj09Xe3QoYPq7++venp6qjVq1FC//PJL9cSJEypQ5NG7d29VVVU1JydH7d69u+rp6amGhISoM2fOVFu2bKkOHTrUfdyoqCh18uTJas+ePVUfHx9339TUVPXxxx9XjUajGhERoQ4ePFjNy8tTVVVV9+zZowJqenr6Da/15MmTql6vV0eMGFFs3+zZs1VA/f7771VVVd3XsGfPnt9/U6+69ntmw4YNN2wzffp0NSYmptTjvP3222psbGyxeMPDw285FkD9/PPPb9qutJgXLVqk+vn5Fdu+du1aVaPRqJmZme5t8+fPV319fVWLxVLieT7//HNVUZRSv17nz59XAXXTpk03jbu0+EpS2mv2Vt8fyEgpIe4Tp7MuA6C7conMQAdWnRYAjeIaAaXz0BfvZCt0/Vu5DebOiwAwyop7D7RDmTms/ukMOYU2PPWuKZ4mYzjVqr5BdHQSiiJffyGEEELcP1RVxWY2l8lDVdU/FbvJZMJqtdKnTx927tzJ6tWr2b59O6qq0r59e2w2GwADBw7EYrGwefNm9u/fz7Rp0/D29iYyMpJPP/0UgLS0NM6ePcusWbMAGDFiBFu3bmX16tWkpKSQmprK7t27i8UwY8YM6tSpw549e3j99dc5duwYiYmJdO7cmX379vHJJ5+wZcsWBg0aBED58uXRaDSsXLkSh8NR4nWtXLkSm81W4oioAQMG4O3tzfLly//UvbvGarWycOFC/Pz8qFOnzg3bZWdnExBQ+oyAJk2acOrUKdauXYuqqpw7d46VK1fSvn372xLr7435t7Zv306tWrWoUKGCe1tCQgI5OTkcOHCgxD4ffvghrVu3Jioq6obHzc52rcJ9s/tTVqSojBD3AeuZPGxWT9BkE3DxMoUGVwLKqagoGte0Pa2+hGSD3cxhzyj+EZLE2fQcAIwyfe+BlV1o4+m5W7HZ7XSstI4q5Y4BoNP5lnFkQgghhBB/jN1iYXbvZ8vk3EOWrERv/P2rVauqysaNG1m/fj3t2rVj1apVbN26laZNmwKuukaRkZGsWrWKLl26cPLkSTp37kytWrUAiI2NdR/rWiIhODjYXecnNzeXJUuWsGzZMlq1agXAokWLCAsLKxbLk08+yciRI93P+/XrR48ePRg2bBgAcXFxzJ49m5YtWzJ//nzCw8OZPXs2r7zyCpMmTaJBgwbEx8fTo0cPd1yHDx/Gz8+P0NDiCywZDAZiY2M5fPjw775v11uzZg3dunWjoKCA0NBQUlJSCAoKKrHt0aNHmTNnDjNmzCj1mM2aNWPp0qV07doVs9mM3W6nY8eOpU7Lu1MxlyQzM7NIQgpwP8/MzCzW/syZM3z11VcsW7bshsd0Op0MGzaMZs2a8cgjj9xyLHeTfGQuxH1g//INOFDJdXqQp7oK3emMj2P0eQHl2kgpXclJqa8Dm/KzNohLNle/ql6//xeruD+czzFjtTupGpBOp0rrqB5wBAAPYwkrMgohhBBCiNtqzZo1eHt7YzQaadeuHV27dqVPnz7odDoee+wxd7vAwECqVq3KL7/8AsCQIUOYMmUKzZo1Y8KECezbt6/U8xw/fhybzUajRo3c2/z8/KhatWqxtg0aNCjy/KeffmLx4sV4e3u7HwkJCTidTk6cOAG4Rm5lZmaydOlSmjRpwooVK6hZsyYpKSm3fC8MBsNN2yxdurRIHKmpqe598fHx7N27l23btpGYmMhzzz3H+fPnix0jIyODxMREunTpUqQ21PXHTUpKAuDgwYMMHTqU8ePHs2vXLtatW0d6erp7f2pqapF+S5cuveXr/T0x3y5LlizB39+fZ5555oZtBg4cyM8//8zHH3/s3paUlFTkOsuajJQS4j5w4cQR7AEKabn+BNktaAGNPgat1huDCSrVC0UpaQSUrZDCqwXOnyrvx7CoCtTwNt3d4MVdk2dxJR7DfV1DwY3GcCIjn6dC8O0dkiyEEEIIcbfoPDwYsmRlmZ3794iPj2f+/PkYDAbCwsLQ6XSsXr36pv369etHQkICX375JV9//TVTp04lOTmZwYMH/9HQ3by8iq68nJeXx4ABAxgyZEixthUrVnT/38fHh44dO9KxY0emTJlCQkICU6ZMoU2bNsTFxZGdnc2ZM2eKjc6yWq0cO3aMhISEm8b29NNPF0nWhYeHF4m7cuXKVK5cmcaNGxMXF8eHH37I2LFj3W3OnDlDfHw8TZs2ZeHChUWOff1qf76+rlkDU6dOpVmzZowaNQqA2rVr4+XlRfPmzZkyZQoNGjQo0u+3o5Zu5lZiLk1ISAg//PBDkW3nzp1z77ueqqp89NFH9OzZ84YJwEGDBrFmzRo2b95MRESEe/vkyZP/dDH620mSUkLcBxSnikN1MPbbxeysHIBdqwVFRzn9Fv426q8QVr1oB6cTzv0M2aco1Lp+mEYYDdTyKWGFPvHAyLe45v37erhWVvE0RVMx8vmyDEkIIYQQ4k9RFOUPTaErC9eSEterXr06drudHTt2uKfvXbp0ibS0NGrUqOFuFxkZSVJSEklJSYwdO5YPPviAwYMHuxMO19d3io2NRa/X8+OPP7oTSdnZ2Rw+fJgWLVqUGmO9evU4ePBgsThLoygK1apVY9u2bQA8++yzjB49muTkZJKTk4u0XbBgAQUFBfTq1eumx/Xx8cHHx+eWYnA6nVgsFvfzjIwM4uPjqV+/PosWLULzm7q5JV1fQUEBOl3RFIhW66rTq6oqJpPpd92X3xvzzTRp0oQ333yT8+fPExwcDEBKSgq+vr5FvlfAtcLe0aNH6du3b7HjqKrK4MGD+fzzz/nuu++IiYkpsj84ONh9/HuBJKWEuMed/89/sKlOnKqNAHMOTsU1L1lRdGiNZtCVMPJp3Rj44X0AzJWHAmCSAucPrD0nL/NB6nEyrpgB8L6alNLqvErrJoQQQggh7rC4uDg6depE//79ef/99/Hx8WHMmDGEh4fTqVMnAIYNG0a7du2oUqUKly9f5ttvv6V6ddeHzlFRUSiKwpo1a2jfvj0mkwkfHx969+7NqFGjCAgIIDg4mAkTJqDRaFCU0uvHjh49msaNGzNo0CD69euHl5cXBw8eJCUlhblz57J3714mTJhAz549qVGjBgaDgU2bNvHRRx8xevRowDWiavr06bz88ssYjUZ69uyJXq/niy++YNy4cUyZMqVY/aK0tLRisdSsWRO9vuhiTfn5+bz55ps8/fTThIaGcvHiRebNm0dGRgZdunQBXAmpJ554gqioKGbMmMGFCxfc/X87ouh6HTt2pH///syfP5+EhATOnj3LsGHDaNSoUYn1uK7Jy8vj6NGj7ucnTpxg7969BAQEULFixVuKGeDkyZNkZWVx8uRJHA6He1RW5cqV8fb2pm3bttSoUYOePXsyffp0MjMzee211xg4cCAevxm19+GHH/LYY4+VWCdq4MCBLFu2jC+++AIfHx93PSo/Pz9MphvPmrlZfHeKJKWEuIfl5OTwQVoatgpa9FYrKuB0T9PToVesYCgh8XD+oOtfz0DMXq4fzFLg/ME1/7tjfH3wHB1jv+LFJzdi0Lo+SdNqJSklhBBCCFHWFi1axNChQ+nQoQNWq5UWLVqwdu1ad0LG4XAwcOBATp8+ja+vL4mJibzzzjuAa0rbpEmTGDNmDM8//zy9evVi8eLFzJw5k6SkJDp06ICvry+vvPIKp06dwniTUWW1a9dm06ZNvPrqqzRv3hxVValUqRJdu3YFICIigujoaCZNmkR6ejqKorifDx8+3H2c4cOHExsbS3JyMrNmzSI/Px+A5cuX061bt2LnLWnbqVOnikwrA9fIpUOHDrFkyRIuXrxIYGAgDRs2JDU1lZo1awKu0UNHjx7l6NGjxfqXtmJinz59yM3NZe7cuYwcORJ/f3+efPJJpk2bVuo927lzJ/Hx8e7nI0aMAKB3794sXrz4lmIGGD9+PEuWLHE/r1u3LgDffvstTzzxBFqtljVr1vDSSy/RpEkTvLy86N27N5MnTy4ST3Z2Np9++ql7Jcbfmj9/PgBPPPFEke2LFi2iT58+N7zOm8V3pyjqn13n8gGWk5ODn58f2dnZ7nmoQtxNhw8fdq2moKp4nkmnQsYpLl6dgufhP4joKkfpMGIg/PYTkf/XmpyzB9ne8d/Md1bk++x8JlUOY0DkvTNMU9w+XRZs48f0y8xp9U88tWfc26tWfYOI8O5lGJkQDyZ5f1CU3A8hxO1iNps5ceIEMTExN02uiKLy8/MJDw8nOTm5xCldd1pWVhatWrXC19eXr776Ck9PKRvyMCjtNXur7w9kpJQQ97Bfv90NQHmzDnPOJXdCyqnRAzoq1GhfPCEFYDMztNpYvrocCLg+tfC6Ol9aPHhyCl0Fzj31FnBCnTof4uPzCB6GW1+CVgghhBBC3D/27NnDoUOHaNSoEdnZ2e7RNNemBN5tAQEBbNiwgXnz5rF9+3ZatWpVJnGI+48kpYS4h+UfuwyeoHW6Ek8aVYfWqzWKLgRF0eBhvMFSq3YzJ42uaXtVvYzEmjxICJJPrx80y384yfubjnHqcqFrg3o1AekZKwkpIYQQQogH3IwZM0hLS8NgMFC/fn1SU1MJCiq794CBgYGMHz++zM4v7k+SlBLiHuV0OFABa56TitvW80ukH4piROtRA399Jv7VAol9tHzJne1mLBpXwuqfVSJo4n/nCtOJsvPv7b+SfqmAtlHfEO13FlRXoXOtVr7eQgghhBAPsrp167Jr166yDkOIP02SUkLco86ePsNlnQVOF+JtzQf8QHG9ZFuEfkbkwBJqBeWchdyzYM3DfDUp5SEFzh9YuRYbwaYLdK26yr1Nq/VCp7u1pXWFEEIIIYQQoixJUkqIe1BBQQEffvT/cBoUtA6He8U9u1aHHtDrNcU7XTwC8xqB6gRwj5QyakpoKx4I+RYH5Qx5AOj15YiKGoC/X300Gv1NegohhBBC3LtkLS4h7g+347UqSSkh7kGXjxzBqSgoqoLBYcd5rZi54ko26EpazeLCIVdCSmsAr2AsOi9ARko9iL7cd5YDZ7LJKbQRWs41Zc/DI4Soiv3LODIhhBBCiD9Or3e91y0oKMBkMpVxNEKImykoKAD+99r9IyQpJcQ9yHb1xW0qtKBznic9yA8ADVeTUi2HldDJlZygYhPovRrrpp/AqeIhI6UeKOdzzQxavhudYqVhhb1UCzgGIFP2hBBCCHHf02q1+Pv7c/78eQA8PT1RSlppWghRplRVpaCggPPnz+Pv74/2T6z0LkkpIe4xqlPlRGoWANqLp1CVPC57uz4p0iiuxIM2rFrxjvZCcrRevBrUhQt7j2F2uoZSykipB8vFXCuqCq2id9AlboV7u17vX3ZBCSGEEELcJiEhrhWkryWmhBD3Ln9/f/dr9o+SpJQQ95ij/7cNryt2MAAOOwAaQw002mC0hqp4eOoweZcwPNJmZkNgE1Z41oLLuQB4azX4/Imstbj35Ftd3xMRvjkAeHpWwte3FpGRz5dlWEIIIYQQt4WiKISGhhIcHIzNZivrcIQQN6DX6//UCKlrJCklxD3mxPc/4KNEk53ppFxuLnY9aA3V0OpCefqvDgIaP4bOUMKL315IntY1oqq2j4kXI8pTy8cTo1am7z0o8ix2Mi4XAuCltwBQoUIHYmOGlGVYQgghhBC3nVarvS1/8Aoh7m2SlBLiHqPaHNgNTmoePoTN14odAwo6VMVKZIwR/DyKdrBbYPe/4EgKhRrX0MlKJg+eDQkog+jFnbLlyEX6LPoB+9VpmSadFQCd1qsswxJCCCGEEEKIP0ySUkLcQ3Zs3sz3Xnmoyn4qO3OxKFdHOSk6rHor6PyKdzq0Bta+DIC54t8BMMnoqAfOzl+zsDtVGof+yJMVtxDtexEArSSlhBBCCCGEEPcpSUoJcQ85sH07qgKqClolD4fG27VD0aFXrKAzFu+Ud8H1b0AshVHNATDJinsPnDyzq5bU32t+h0lzyr3d0zO6jCISQgghhBBCiD9HklJC3CNUuxOLq1wQFTOucCb4+lFROspTCEFVine0FVCg8WBl5Rf4vlx9yM6XkVIPoGsFzvVKHgBV4sbj6/covj61yzIsIYQQQgghhPjDJCklxD3iyo+ZOJ160BRSUHjOvV2j80TR+KINjQDPEupE2c18WqEtr5iaQ3Y+AH46KQr5oEg5eI5/bYTZUWAAAQAASURBVE/nUKZrRUWN4voaBwW1wmSKKMvQhBBCCCGEEOJPkaSUEPeIX3/Ygx0np20+GJ1W9IDBpwcaXQUADCZ9yR1thZwzuJJVlT09eDLAl26hUuT8QTF74xF+zrhMv1r/Jtz7LBquFjjX+ZRxZEIIIYQQQgjx50hSSoh7QP6Vy5w5sAd7sI5OGzZwIkKPTacFRYdGm07so42o9UQJo2IsuWDOxqxxrcjXKsCXSXHhdzl6cSdlF9oI886kcegu9zYPQwV0Ou8yjEoIIYQQQggh/jxJSglxD7AU5KNRdNhUB5WzMzhaMebqHh1K+fUk9H+heKfNb8M3UwAorDQEAKPUknrg5FvslNO7io15eIRQo/p0vL2roSgyRVMIIYQQQghxf5OklBBlzGKxsPKjxVwJclDocKACTkUBQFF06PX2kjse3+T+r1nvGjVj0ih3Olxxl1jsDsw2J3kWO6EmCwAGfSABAc3KODIhhBBCCCGEuD0kKSVEGTt58iRn7HbQg2q2kO+hh6tJKRQdHjq15I52MwCZnZdyUa0Ol3Jl1b0HxKHMHDq/t418q4MKnueI9M4AQKvzKuPIhBBCCCGEEOL2kaSUEGXMUugaBeOTWwinD7K5WsXr9mppWKVdyR3tFpZXaMfwixGAa2U2o0aSUg+CnemXybc6eCzkR16s/W/3dq1WklJCCCGEEEKIB4ckpYQoQ6qqcvyznQAYLQ7MqKAqoOjRGGJRFB2BDbuV3Nlu4Sf/qgB4aBTCPPQ0Lycrsj0Ics2uKZutKucAoNV6YzAEERbapSzDEkIIIYQQQojbSpJSQpShC7+ewF5QAJ5gtVkBMGqiwP+v+JmyCakTQmDYDVZZs5vdq+69HB3C4KgKdytscQedyzFzMqsAAE+9axRdxYp9iY0ZUpZhCSGEEEIIIcRtJ0kpIcpQYV4udg04L1uIStvNiQr+qIoeBXii5i4i+vzlxp0dViwaAyDT9h4UKQfP0f9fO93PjVpX3TCdTNsTQgghhBBCPIAkKSVEGbHZbPz3v5+Sb9TgeSYXrtY2VzWupJTOcIOX57kDkHMGLHmYta6RUh6y6t4DYf/pKwA0C99Fq4rbCNCdR3WCVneD0XJCCCGEEEIIcR+TpJQQZeT8wYPkXx3hpDhsOK8mlswGA57cICmVuR8WPO5+ar46UspDRko9EPIsDgC619iAUclAdbq2e5qiyjAqIYQQQgghhLgzJCklRBmx5eUBYDLb8XBcINPPNUVLgyvRpItpXLzTpWMAmD3KcSH4UXL8YgAwamWk1IMgz2IDQKe4vjeqxL2Or29tfH3rlmVYQgghhBBCCHFHSFJKiDJizSsEQJdzCYdqxaF3vRz1SgAA2rjHi3eyFVKoMdC0wb84q/N1b5aaUve3rw9k8p8dJ/nlzBXKeVxGiyspVT44EaNHSBlHJ4QQQgghhBB3hiSlhCgDGTt/4eK32WAEnCoAGl0sWmM9NLoIUMBg1BbvaCvgtEeIOyFl0iiEeRio7yuFsO9nszYe4cCZHEbUm0fNoDT3dv11iUchhBBCCCGEeNBIUkqIMnDs653oNd6cd3rxq92XRwBFF4xWF0a1qDOEtmyNh6e+eEdbobu4eQWDjp+aPXJ3Axd3RHaha9pe9cDjACiKjqDAeDQaU1mGJYQQQgghhBB3lCSlhCgDjrxCFDzxP32B+pk/ccVHj6Lo0Kj5tGp4FJr1Kt4p5wxc+dVd3NyklSl7D4o8ix2t4kCjuJJTzR/fgV7vX7ZBCSGEEEIIIcQdJkkpIe6yX3ft4qDlDIpXPvXSf8aqM3MFPaADjRV0xuKd0rfA4qcAMPvXA6SO1IPgyLlcLuZZybfYMWrN7u1arWcZRiWEEEIIIYQQd4ckpYS4yzZv/54LPgDZVCAbp3J1mp6iQzVYQOdRvNO5A65/tR4U+kUBkpS63207dpHuH+xAq9ipFXSQIFMWAIpiQHN1NJwQQgghhBBCPMgkKSXEXWaxWQGIyLJz2cuIRedKSiloKaeawaOE4ta2QhxomNxgBt+XfwxyCzFplbsZtrjNDmfmAtA2+nuejfuve7teL8XNhRBCCCGEEA8HGWohxF3kLLBhyXWCw072ub1ke5owG67mhjWeePgEwiOdi3e0m9nrU433jbX5KbcQgDAPGU1zP8s12wFoGFkAgMlYkYCA5lSuNLoswxJC3AfmzZtHdHQ0RqORxx57jB9++KHU9itWrKBatWoYjUZq1arF2rVri+xXVZXx48cTGhqKyWSidevWHDly5E5eghBCCCEEIEkpIe6q1H9+jMOuojgdrg0q6IxN0Xm2QaOLIrxJXfAMKN7RVkCezlVnKMxDz6xqFXkjLvwuRi5uF6dTZdevWfySmQOASXc1yRjWlbqPLiY09K9lGZ4Q4h73ySefMGLECCZMmMDu3bupU6cOCQkJnD9/vsT227Zt429/+xt9+/Zlz549PPPMMzzzzDP8/PPP7jbTp09n9uzZLFiwgB07duDl5UVCQgJms7nEYwohhBBC3C4yfU+Iuyj/whkc5RVybDq8AQ0adKbG6A2p9H7rcTy8SyhyDmAzY7lae6qCQU/X0BISV+K+8PmeDEau+AkfQy4J0T/gq3WNRtDJtD0hxC2YOXMm/fv35/nnnwdgwYIFfPnll3z00UeMGTOmWPtZs2aRmJjIqFGjAHjjjTdISUlh7ty5LFiwAFVVeffdd3nttdfo1KkTAP/617+oUKECq1atolu3bnfv4m7g592ljwQTQjwYFL32hvs0Gg16DxOKUrx8hUarQavR37m4FND+jlWv9Qoo/CZOjQ60WhRt0WvUa4vGrdFo0Oq0KBop0/Eg0moUtPfg11ZRtCjKjV9/d5okpYS4ixQV7KqD+j/s5GwFLRrV9QtOoykoOSF1Zg/s/Ah+3YZF4xoZ5XEP/iATt+7YhTwAnq2ykcfDvnFvNxgCyyokIcR9wmq1smvXLsaOHeveptFoaN26Ndu3by+xz/bt2xkxYkSRbQkJCaxatQqAEydOkJmZSevWrd37/fz8eOyxx9i+fXuJSSmLxYLFYnE/z8nJ+TOXdVPrp70F2O/oOYQQ4l6g936GmIT/4hl0rKxDEQ+RKnHjiYzsXWbnl+l7Qtwlx5f8i0sedswOK1E5mQAo116Cphu82f72Ldj9L7h0FMvVFdk8ZNW9+1q+xfW1rhniKnjv59eAmJihBAU+UYZRCSHuBxcvXsThcFChQoUi2ytUqEBmZmaJfTIzM0ttf+3f33PMqVOn4ufn535ERkb+oesRQgghhJCRUkLcBXa7nY+PH8NaTkHNzSfr6qiofKMOX8BX6yi5oznb9W/tblhDnwKzjJS63+VeTUoZNK5aLeFhzxEaWkJxeyGEuEeNHTu2yOirnJycO5qYqvJ0hzt2bCHEPcR4oyl4Chq9BqOHLyXM3kPrYUCnvXPT97RaBcPv+FDYqAXNbwJV9V5g0KMY/henBg1GnalIO53BgMH0FzSyyvYDyajTYtDdewMMNJqyXUBLklJC3AUFBYVYFQXFbsPn9CEOh7qmanngmrtbWVFL7mi/WmS2VhfMpjpwJAODJKXuS/O+PcqC745RYHOg11jRawrACVqtd1mHJoS4TwQFBaHVajl37lyR7efOnSMkJKTEPiEhIaW2v/bvuXPnCA0NLdLm0UcfLfGYHh4eeHh4/NHL+N069uh3184lhBBCiLvr3kvTCfEA2r85HQCt1QqooCoo2lB0+pYA6Kq0LLmj3cKIKqOodzaAf544C4BRpu/dlz7bfZpci50Xa/0/FrR+GYPzIAA6nSSlhBC3xmAwUL9+fTZu3Oje5nQ62bhxI02aNCmxT5MmTYq0B0hJSXG3j4mJISQkpEibnJwcduzYccNjCiGEEELcLjJSSog7rDA3B8vG78EPcLoSSlrFC73v31AUB55+HoS3alti3zwnLAvtAA4AJwBVvW6wQp+4p+VbHIBK/QoH3NsMhiC8vauXXVBCiPvOiBEj6N27Nw0aNKBRo0a8++675Ofnu1fj69WrF+Hh4UydOhWAoUOH0rJlS5KTk3nqqaf4+OOP2blzJwsXLgRAURSGDRvGlClTiIuLIyYmhtdff52wsDCeeeaZsrpMIYQQQjwkJCklxB126fRJAozh2J0ZXMx0EAOguF569Wv9H4/9Y/YN+xY6//f/dfWrYNJqqOJ596ZMiNsn32JHp7GjXF1BqlnTLRgM5dFo5MewEOLWde3alQsXLjB+/HgyMzN59NFHWbdunbtQ+cmTJ9FcN6K2adOmLFu2jNdee41x48YRFxfHqlWreOSRR9xtXnnlFfLz83nxxRe5cuUKjz/+OOvWrcNolA9BhBBCCHFnyV9DQtxhl79cj4MqBGReovXhbeyKCeXaS8/DcIOXoCUPzFcodLgKoBsVeNTX8y5FLG4XVVXZc+oKl/Ks5FvteOrM7n0eHsEoirYMoxNC3K8GDRrEoEGDStz33XffFdvWpUsXunTpcsPjKYrC5MmTmTx58u0KUQghhBDilkhSSog7KCsri6/On8dmKqBcYQHOqytxqFdHxxgNJawUcukYzG8G9kLMnlGudlLc/L606fAF+iz6EY3ioFOlrwj1chUb1mo9JSElhBBCCCGEeOhJUkqIO+j48eMUeJoAB1c8MnBcTS45rialTIYSpuJl7gN7IQBmnRcARq0kMO5HJy7mA1A/JJ0OsV+7t3t4lLxKlhBCCCGEEEI8TCQpJcQdZLe76geVv5iHOVfLzxHBAGhwjZAqF1pCkWubGQcavq6ZxK56g+HkeYxaWXHvfpRvcX39m8a4koomUxTh4X8jMKBFWYYlhBBCCCGEEPcESUoJcYeoqsqv3/0KgCP3HKBcW3wPrTbM9e+jfy3e0VbANwGNeD6oK5w8D4CPjJS6L+VZXDXBvPQW179ecURV7F+WIQkhhBBCCCHEPUOSUkLcIb9s3IIp1wx6QHUto6fzbItWH4Wi8UGjUzAYS3gJ2s2c9SgPQAWDjgZ+XvQIDbyLkYs/66v9Z3l3wxGu5F+iTvk0/PWu5KRO513GkQkhhBBCCCHEvUOSUkLcIT+nrEOvr0y+U4fJZkEHKBo/NIoHjRpbqNDoMfQeJYyAshVg1rhqTTXx92ZBzei7Grf48/6z41fSzuUyqsECqgUcdW/X6XzKMCohhBBCCCGEuLdIUkqIO8RZaMWhd1JxzyG02lwKPfQoig6dWkCDpt5QJaBoh6wTsKI3ZJ3AEtwBAKNGakndj3LNrlpSlQKuAODlVRWDIZCw0OfKMCohhBBCCCGEuLf8f/buPD7Ga3/g+OeZLTPZF4lERIjEWtS+lqaWxH5btVyu0otKr53W0i2obhpa27X0p7i3qFtVVdpqqqWxVG1Bi6RIaos1JLLOZOb5/TEyNRKEIpbv+/Wal8yZc57n+zyTkPn6nnMkKSXEXXD06284pdjQaC5QNu8w5z28r7yiQ9GaQW8sOujw95C2F4DcK5VSLld26xMPlqwrC5zrlVxQoXatObi6VirlqIQQQgghhBDi/iJJKSHugp/27CbTxwPUbIKwYiuseFJ0uGqyQGcqOsiSY/8zIor82gPhfIHsuveASTx+iX0nLnH+cj6ggpoLgFbrVrqBCSGEEEIIIcR9SJJSQtwFWRb7n2VOpnHCt6yjXVG06AxaKFuz6CBLHhd1Hnzv24L9ViOQJdP3HiB5Fit/X/AzuRYrjQJ3EeyeBtgXuNdqXUs3OCGEEEIIIYS4D0lSSog7LDMtm+wCF9BZIDcTAEUFg8EdFA90QeXBUEySoiCP2MpD+J+xJVzMAsBdKqUeGBdzzORarAS6nWVw7SWOdo3GiFZbTGWcEEIIIYQQQjziJCklxB12YtlWXDQ2TtpMuKpWtIDesy+Kzh8Ag/E6P3YFeZx0CQGgtruJCDcj3cr63KOoxV9VuLh5eU/7NEydzovAwC74+rRAUYrZZVEIIYQQQgghHnGSlBLiDsq+dJHM1GMU+NpQU7LQFuSBAig63DQpBNZpRO3WIUUH2qxgySFHa18A/aVKgbQr43Vvgxe3Lf7AGTYmnQXAx2QGwNW1IlWrTCzFqIQQQgghhBDi/iZJKSHuoPTDh0nXW7DYzAzauZoNNStgUzQoipYK7t/w1OABRQdtmQHfTwTVRk6DVgCYZC2pB8apS7kM+s9OjNo8IkN2UC/gOAA6rXspRyaEEEIIIYQQ9zdJSglxB6393/844+mGzpyPznbVrnvocHGzFj/o0Neg2hfEzr2y9pCrrCX1wDh7OR+AqEpb6RK22tGuN/iVUkRCCCGEEEII8WCQpJQQd9DlK0kod6sWm6L8+YKiI1ijFj+oIJdk11Debz6HMxZPUFVMkpR6YGTnF64lZV/U3t29Bl6edSgf0q80wxJCCCGEEEKI+54kpYS4Q1RVxapoUCxmPNJO83N4uate1WJwv84aUZY8/hvUma/MHoCKToEAg/5ehCz+ovwCK+ez7JVSrnr7n4GBXQitMKg0wxJCCCGEEEKIB4IkpYS4QzZP+w5V74bu0iku5Z8FV/ui5YrGDdCgi4otfmBBLpe1bgB08vfiXxUCKGOQH837XcLv5xi4ZCcasnnMLwVfF/tC57KWlBBCCCGEEEKUjHzyFeIOuJh2ErcTF7B5qeRbFYyARlserbE+Gl1ZFEXBxT+o+MGWXPI1BgAaeblRz9Pt3gUubtvWIxfIL7DxcoOPqOZ72NGu03mUYlRCCCGEEEII8eCQpJQQd8DlC+fRKXrSrEbc0u1rDCk6P7SGylQLSiagVSe8/E3Og3b/B45vh9xLjqSUi+y698C4nGcBoLLPBQDc3CIwGUPw9X2iNMMSQgghhBBCiAeGJKWE+ItUVeXI999j1vvim3aGeqd/5WiAD6AF1cZTtfejPBnjPCj3EqwZDtgXP8/TugBglKTUA8FitZGRa08+apVcAOrUXoDJVKE0wxJCCCGEEEKIB4okpYT4iw5t386mS5fB9TL6M2lYC3fdU3TYFDOKwVh0UH4moIJGB5GvkKetC/ngolGK9hX3lbfWHeCjhBRAxaTLRUMeINP2hBBCCCGEEOJWSVJKiL8o/fQZAFxUHSp52K5UOyno0GnMoCsmKVVg36ltdWAUB8r9nZQzFwGLVEo9AL47YH+/h9VdwOP+vznatVpZC0wIIYQQQgghboUkpYT4i7Kz7NO3fC9kkZVn5qTPlYoZRYerYobKTxUdZMklzVCGmIixcOyso9lHr70XIYu/IDvfCqg87n/Q0ebr+wSaK+uClYTVasVisdyF6IQQd4Jer0erlb+PhRBCCCHuNklKCfEXpO7Zy/HEVFQ3uHz5FAoqtitT8BRtGXRlKkB4k6IDC/JI13sBYNJo+Ec5X8obDTT0kmqb+112fgEGrRmwAdDyiV3odF4lGquqKqdPn+bSpUt3L0AhxB3h7e1NYGAgiiLTqoUQQggh7hZJSgnxF5zcsBdfYyCbbJmUs6XgD+hcW6PVh+Hm7kaN5uWKH2jJJU9jX9zc36DjzYjy9y5occtUVWX3sYuczzKTa7HiZbCvI6UoWnQ6rxJ/aC1MSAUEBODq6iofdoW4D6mqSk5ODmfP2qtYg4KCSjkiIYQQQoiHlySlhPgL1HwbVmxUOpZKQNZZ8gxaNBo/tNh4fmAO1LhmN7aME/DlULiYSq7WG5Ad9x4EPyad5Z+Ld2LQ5hNTeykBrucB0GrdS5xYslqtjoSUn5/f3QxXCPEXmUwmAM6ePUtAQIBM5RNCCCGEuEvk07AQt8ly9ixZh4+Qj4Xax/dROJ0LRQcaM+hNRQclfQNHf4SLKeRdWYPIqJVqmfvd0XPZADQMSqFhYCKhnicAcDWFlvgYhWtIubq63vkAhRB3XOHPqqz/JoQQQghx90illBC3acPXX/NzqBZIo46ahU3xsb+g6NDq80HnUnSQ2Z7cIOxJ8uq+BOfta0qJ+5t9cXNoXNGeSHR3r0FYpeF4edW75WPJlD0hHgzysyqEEEIIcfdJUkqI23QiPR0AJT+PPL2eAkfFkw5vNQN0xqKDCvK4pHMnKngMf5y379In0/fuf1n5V6qc9GYATKby+Pu3Lc2QhBBCCCGEEOKBJ5+GhbgN+TkWMi9bwWbFM+UQp3y8sF1JLimKHq1iBtdi1g0qyGOfe1X+0Hg6mpp4y45796tvf02j48wEPtt1AlAx6fIB0GofrSl4/fv3R1EUFEXBYDAQHh7O5MmTKSgo+EvH3bhxI4qi3NPdCFNSUujduzflypXDaDRSvnx5unbtyqFDh5z6rV27llatWuHh4YGrqysNGzZk8eLFTn1SU1NRFIXExMQSn3/ixIlUq1YNNzc3fHx8aNOmDdu3b3c65oABA6hUqRImk4nKlSsTGxuL2Wy+4XHT0tLo3bs3VapUQaPRMHLkyBLF89NPP9G5c2fKlSuHoiisXr262H4HDx6kS5cueHl54ebmRsOGDTl27Jjj9cGDB1O5cmVMJhP+/v7F3tMdO3bQunVrvL298fHxISoqir179xZ7vsOHD+Ph4YG3t/cduwYhhBBCCHH/kaSUELfh0P/2oLWCUlCATS0AFRRdMFqXhigaNwxBlcGvctGBljzytPZpfbXcTRxs8RijKgbe4+hFSS3emspvpzJpH/IpC9uNIFBZCNgXOH/UREdHk5aWxu+//86YMWOYOHEi77//fmmH5XCzpA3Y1wZq27YtGRkZrFq1iqSkJFasWEGtWrWcEmOzZs2ia9euNG/enO3bt7Nv3z569epFTEwML7300l+Ks0qVKsyePZv9+/ezefNmKlasSLt27Th37hwAhw4dwmazMX/+fH777Tc++OAD5s2bxyuvvHLD4+bn5+Pv789rr71GnTp1ShxPdnY2derUYc6cOdftc+TIEVq0aEG1atXYuHEj+/bt4/XXX8do/LMatH79+ixatIiDBw+yfv16VFWlXbt2WK32qa9ZWVlER0dToUIFtm/fzubNm/Hw8CAqKqrImk0Wi4W///3vPPHEE3fsGoQQQgghxH1KFdeVkZGhAmpGRkZphyLuM+uHfaDGvf6u2v+lt9W4Hh3V6d07q7MHb1DnxHymrp21Rz1xKL34gWtGqKtnd1XL/rBH7bor+d4GLW5Z9Ic/qaHj1qrfbmiofr8hTP1+Q5i64YcI9fTpr275WLm5ueqBAwfU3NzcuxDp3dWvXz+1a9euTm1t27ZVmzRpoqanp6t9+/ZVvb29VZPJpEZHR6vJyX9+b6empqqdOnVSvb29VVdXV7VGjRrqunXr1JSUFBVwevTr109VVVXNzMxUe/furbq6uqqBgYHq9OnT1VatWqkjRoxwHDc0NFSdPHmy2rdvX9XDw8MxNiEhQW3RooVqNBrV8uXLq8OGDVOzsrJUVVXVPXv2qICampp63Ws9duyYqtfr1dGjRxd5bebMmSqg/vzzz6qqqo5r2LNnz63f1CsK/535/vvvr9tn6tSpaqVKlUp8zGvvVUkB6hdffFGkvWfPnuo//vGPWzrW3r17VUA9fPiwqqqqumPHDhVQjx075uizb98+FVB///13p7Fjx45V//GPf6iLFi1Svby87sg13I4b/czK7wfO5H4IIYQQ4lol/f1AKqWEuEXmY8dQzXmYVStP7twKgHLlR8nFZRcdhz5OcFUf50H7/gezG8L+leRf2XXPpJUfv/vd5Tx7BYdOyQGgYYMvaPnEbsqW7VSaYd0XTCYTZrOZ/v37s3PnTtasWcO2bdtQVZUOHTo4ql+GDBlCfn4+P/30E/v37+e9997D3d2dkJAQPv/8cwCSkpJIS0tjxowZAIwePZotW7awZs0a4uPjSUhIYPfu3UViiIuLo06dOuzZs4fXX3+dI0eOEB0dTbdu3di3bx8rVqxg8+bNDB06FAB/f380Gg0rV650VPBca+XKlVgslmIrogYPHoy7uzvLly+/I/fQbDazYMECvLy8bljdlJGRga+v7x05562y2WysW7eOKlWqEBUVRUBAAI0bN77hFLns7GwWLVpEpUqVCAkJAaBq1ar4+fmxcOFCzGYzubm5LFy4kOrVq1OxYkXH2B9++IHPPvtMqp6EEEIIIR4RstC5ELdo86LF7PVTyS2wEpFxnPMB5dEUzoQ1Fv9Bl50fw/lkAPKuJKVkgfP718pdJ/jvz39wOiMPBRuouQAYjcHodHdu6p6qquRarvM9cxeZ9Nrb3llMVVU2bNjA+vXrad++PatXr2bLli00a9YMgKVLlxISEsLq1avp3r07x44do1u3btSqVQuAsLAwx7EKEy0BAQGOtYMuX77MkiVLWLZsGa1btwZg0aJFlCtXrkgsTz31FGPGjHE8HzhwIH369HGspxQREcHMmTNp1aoVc+fOJTg4mJkzZzJ27FgmTZpEgwYNiIyMpE+fPo64kpOT8fLyIigoqMj5DAYDYWFhJCcn39a9K7R27Vp69epFTk4OQUFBxMfHU6ZMmWL7Hj58mFmzZhEXF/eXznm7zp49S1ZWFu+++y5Tpkzhvffe49tvv+WZZ57hxx9/pFWrVo6+//73vxk7dizZ2dlUrVqV+Ph4DAb733ceHh5s3LiRv/3tb7z55puA/f1Zv349Op39V5ELFy7Qv39/PvnkEzw9PYsGI4QQQgghHjqSlBLiFu2zFpCj11CQZ8F6JbGUbdTgCXjrrrPws8We1EhrO5VTXs3hXAFGjWw3fr/694+H+eNCJoNqLSHY/ayj/U4mpAByLVZqvLH+jh6zJA5MjsLVcGt//a9duxZ3d3csFgs2m43evXvzzDPPsHbtWho3buzo5+fnR9WqVTl48CAAw4cP58UXX+S7776jTZs2dOvWjdq1a1/3PEePHsVisdCoUSNHm5eXF1WrVi3St0GDBk7P9+7dy759+1i6dKmjTVVVbDYbKSkpVK9enSFDhvDcc8+xceNGfv75Zz777DPefvtt1qxZQ9u2JdtRsTDRciNLly5l8ODBjufffPONY42kyMhIEhMTOX/+PB999BE9evRg+/btBAQEOB3j5MmTREdH0717dwYNGuRod3f/8/vwH//4B/PmzbtpPAkJCbRv397xfP78+fTp0+em42w2GwBdu3Zl1KhRADz++ONs3bqVefPmOSWl+vTpQ9u2bUlLSyMuLo4ePXqwZcsWjEYjubm5DBgwgObNm7N8+XKsVitxcXF07NiRHTt2YDKZGDRoEL1796Zly5Z39BqEEEIIIcT9S5JSQtwii6qCqlIpQ8NZT/subG5Xpu9Vut6UvIJ8/hvUmZfNjeGcPXHlIpVS963MvAIqeB6nYWCio81oLI9G41J6QZWyyMhI5s6di8FgoFy5cuh0OtasWXPTcQMHDiQqKop169bx3Xff8c477zBt2jSGDRv2l2Nyc3PeuTIrK4vBgwczfPjwIn0rVKjg+NrDw4POnTvTuXNnpkyZQlRUFFOmTKFt27ZERESQkZHBqVOnilRnmc1mjhw5QlRU1E1j69Kli1OyLjg42Cnu8PBwwsPDadKkCRERESxcuJAJEyY4+pw6dYrIyEiaNWvGggULnI599W5/Ja0oatCggdO4smXLlmhcmTJl0Ol01KhRw6m9evXqbN682anNy8sLLy8vIiIiaNKkCT4+PnzxxRf8/e9/Z9myZaSmprJt2zY0V/7uW7ZsGT4+Pnz55Zf06tWLH374gTVr1jiqwgoTijqdjgULFvD3v//9tq5BCCGEEELcvyQpJcQtuHAyi3x06DLPk5meQqa/NwBa7MkKbY3o4gcW5JLoUw0AF42Ct05LR3+vexGyuA3Z+QUEetrXkTKZQqladTIe7jVuMurWmfRaDky+eYLjbpz3VhUmUq5WvXp1CgoK2L59u2P63oULF0hKSnJKYoSEhBATE0NMTAwTJkzgo48+YtiwYY6Ko6vXdwoLC0Ov17Njxw5HIikjI4Pk5OTrVtAUqlevHgcOHCgS540oikK1atXYutW+Ptyzzz7LuHHjmDZtGtOmTXPqO2/ePHJycnjuueduelwPDw88PDxKFIPNZiM/P9/x/OTJk0RGRjp2tNNck8C+lesrZDKZbmucwWCgYcOGJCUlObUnJycTGhp63XGqqqKqquO6cnJy0Gg0TtNGC58XVmNt27bN6Xvhyy+/5L333mPr1q0EBwff9jUIIYQQQoj7lySlhCghm81K2oxNaExasNi3n1cUNxRdIFaXumgBffB1EhcF+Y61pCZUCiKmQkDx/USpSj5zmQtZZnItVky6PABcXALx821xV86nKMotT6O7n0RERNC1a1cGDRrE/Pnz8fDwYPz48QQHB9O1a1cARo4cSfv27alSpQoXL17kxx9/pHr16gCEhoaiKApr166lQ4cOmEwmPDw86NevHy+//DK+vr4EBAQQGxtbJKFRnHHjxtGkSROGDh3KwIEDcXNz48CBA8THxzN79mwSExOJjY2lb9++1KhRA4PBwKZNm/j4448ZN24cYK+omjp1Ki+99BJGo5G+ffui1+v58ssveeWVV5gyZQqPPfaY03mvTdgA1KxZE71e79SWnZ3NW2+9RZcuXQgKCuL8+fPMmTOHkydP0r17d8CekHryyScJDQ0lLi6Oc+fOOcYHBgbe8PoLq4iysrI4d+4ciYmJGAyGIlVOV8vKyuLw4cOO5ykpKSQmJuLr6+tICr788sv07NmTli1bEhkZybfffstXX33Fxo0bAfuUyxUrVtCuXTv8/f05ceIE7777LiaTiQ4dOgDQtm1bXn75ZYYMGcKwYcOw2Wy8++676HQ6IiMjARzfF4V27tyJRqMpcr9v5xqEEEIIIcT96cH9NCTEPZaWnIy3xpMMVYs5U095QKOvjN6tDQEuf2Cq4kdoLb/iBxfkkXdl6pdRdt27L21KPke/j3/BpMvhpQYLKed2GgCdrmTVLo+qRYsWMWLECDp16oTZbKZly5Z8/fXXjoSM1WplyJAhnDhxAk9PT6Kjo/nggw8A+5S2SZMmMX78eJ5//nmee+45Fi9ezPTp04mJiaFTp054enoyduxYjh8/jtFovGEstWvXZtOmTbz66qs88cQTqKpK5cqV6dmzJwDly5enYsWKTJo0idTUVBRFcTwvXC8JYNSoUYSFhTFt2jRmzJhBdnY2AMuXL6dXr15Fzltc2/HjxylfvrxTm1ar5dChQyxZsoTz58/j5+dHw4YNSUhIoGbNmgDEx8dz+PBhDh8+XGS8qqo3vP66des6vt61axfLli0jNDSU1NTU647ZuXOnIykE9p0PAfr168fixYsBePrpp5k3bx7vvPMOw4cPp2rVqnz++ee0aGFP1hqNRhISEvjwww+5ePEiZcuWpWXLlmzdutWxTla1atX46quvmDRpEk2bNkWj0VC3bl2+/fbbYheVvxUluQYhhBBCCHF/UtSb/Zb7CMvMzMTLy4uMjAzZCUhwdMtW9F8VMMn6C+13riY1wButS330pif4V/WXUEYmFh20aSoc+xmO/kjvmu/wg18TPqwWQq+g6ySvRKn5v4SjTFl3kObB+/lnzY8c7RVDX6Ry5Zf+8vHz8vJISUmhUqVKN02uCGfZ2dkEBwczbdo0BgwYcM/Pn56eTuvWrfH09OSbb77B1dX1nscg7r0b/czK7wfO5H4IIYQQ4lol/f1ASjaEKIGCy5c5MP1DUjXn0JuzUAt3zlN02BQLisFUdFD2BfjxLTiyAVQb+Vr7hxqjLHB+X7qcZ1+AvlmY/X3y9KxLwwZfEBY2ujTDeiTt2bOH5cuXc+TIEXbv3u3YYa1wSuC95uvry/fff0/r1q3Ztm1bqcQghBBCCCHEw0im7wlRAoe2b2dnrRrAfvItx7FeWdtGQYdVawFdMZUv5ssAnHfxZ1ebDzlrLg9mSUrdr7Ly7UkpV719YWajsRyenrVLM6RHWlxcHElJSRgMBurXr09CQgJlypQptXj8/Px44403Su38QgghhBBCPIwkKSVECaRfvAiAMTuHqifOctL3yjpDig4P8sC9mIXLC+zJjZ613ue3rD/XhnGVNaXuKx9vTuH99Ul46E/To8pm/HVpAOh07qUc2aOrbt267Nq1q7TDEEIIIYQQQtxld/3T8bvvvouiKIwcOdLRlpeXx5AhQ/Dz88Pd3Z1u3bpx5swZp3HHjh2jY8eOuLq6EhAQwMsvv0xBQYFTn40bN1KvXj1cXFwIDw8vdkHTOXPmULFiRYxGI40bN+aXX365G5cpHnJH9tqTUt6ZeehsKqqiAAoabQAurh7QfmrRQQX23dtSjfYds2q6G+kS4E0jL7d7FbYoga/3p5FrsdKhYjxRFX/ExCEAXAxlSzkyIYQQQgghhHi43dWk1I4dO5g/fz61aztPgRk1ahRfffUVn332GZs2beLUqVM888wzjtetVisdO3bEbDazdetWlixZwuLFi52mTqSkpNCxY0ciIyNJTExk5MiRDBw4kPXr1zv6rFixgtGjRxMbG8vu3bupU6cOUVFRnD179m5etnjInNx/AB9VT66q44xNC4DWpQ4uXjFo9CG4BZYFn9CiAy32pFS+xr4L2X9rhbGgZkXZfe8+Uzhtr2kl+/tSpkwbwiuPIySkX2mGJYQQQgghhBAPvbv26TgrK4s+ffrw0Ucf4ePj42jPyMhg4cKFTJ8+naeeeor69euzaNEitm7dys8//wzAd999x4EDB/jkk094/PHHad++PW+++SZz5szBbDYDMG/ePCpVqsS0adOoXr06Q4cO5dlnn3VsNQ4wffp0Bg0axPPPP0+NGjWYN28erq6ufPzxx3frssVDKCP1BFZF5dccf/IvZwCgKO5oUWj5ZB6t+1cvfmBBHgVoKVDss2QlGXV/KkxKGbX2JGJg2S6Ehr6AXu9dilEJIYQQQgghxMPvrn1KHjJkCB07dqRNmzZO7bt27cJisTi1V6tWjQoVKjh2Ndq2bRu1atWibNk/p89ERUWRmZnJb7/95uhz7bGjoqIcxzCbzezatcupj0ajoU2bNrJ7kigxy5kzpM37iHwsdNm/gVoXjthfULRobTnUqqfD0++anffSj8L6V+HnueRpDY5mWeD8/rLrj3QWbUnBYr5ATb+DYDsHyFpSQgghhBBCCHGv3JWFzj/99FN2797Njh07irx2+vRpDAYD3t7eTu1ly5bl9OnTjj5XJ6QKXy987UZ9MjMzyc3N5eLFi1it1mL7HDp0qNi48/Pzyc/PdzzPzMwswdWKh9mBzZvZXL8GqiaNGuZTWPSFPzI6bHoz6IvZde+naZD4CQB5ei9Hs1Gj3IOIRUlk5xfw94+2Yy6w8XaLOMq6nqfAXoSJTudRusEJIYQQQgghxCPijieljh8/zogRI4iPj8doLOYD+33snXfeYdKkSaUdhriPnExPR72STNJbC8g32NeHQtHioc0DXTHf47npmBUd3z/2L4751gTAoChoFElK3S8uZJkxF9gwaG2UdT0PgLt7NVxdK+PhUauUoxNCCCGEEEKIR8Mdn0+0a9cuzp49S7169dDpdOh0OjZt2sTMmTPR6XSULVsWs9nMpUuXnMadOXOGwED7LmWBgYFFduMrfH6zPp6enphMJsqUKYNWqy22T+ExrjVhwgQyMjIcj+PHj9/2fRAPh/x8CwA1cv2x6HTkXamUUtBiUMzg4ll0kCWXTwPb80/fbkykGgDuOpm6dz/JzLO/r0GeNkdbwwarqfXYTDRXFqYXQgghhBBCCHF33fFPyq1bt2b//v0kJiY6Hg0aNKBPnz6Or/V6PRs2bHCMSUpK4tixYzRt2hSApk2bsn//fqdd8uLj4/H09KRGjRqOPlcfo7BP4TEMBgP169d36mOz2diwYYOjz7VcXFzw9PR0eohHV86lPI6d0ILNyolj8Rwv402mq4v9RUWPzicI/KsWHViQx0kX+7TREKOB1r6exFYOvoeRi+spsNr49tfTfLX3FAC+JntySqMxSDLqBvr374+iKCiKgsFgIDw8nMmTJ1NQUPCXjrtx40YURSnynxR3U0pKCr1796ZcuXIYjUbKly9P165di0zrXrt2La1atcLDwwNXV1caNmzI4sWLnfqkpqaiKAqJiYklPv/EiROpVq0abm5u+Pj40KZNG7Zv3+50zAEDBlCpUiVMJhOVK1cmNjbWscnH9aSlpdG7d2+qVKmCRqNh5MiRJYpn7ty51K5d2/FvXtOmTfnmm28cr6enpzNs2DCqVq2KyWSiQoUKDB8+nIyMDEefxYsXO74/rn1c/e94fn4+r776KqGhobi4uFCxYsUiG498+OGHjnOFhIQwatQo8vLybngNq1atol27dvj5+d3y+yGEEEIIIUrXHZ++5+HhwWOPPebU5ubmhp+fn6N9wIABjB49Gl9fXzw9PRk2bBhNmzalSZMmALRr144aNWrQt29fpk6dyunTp3nttdcYMmQILi72pEBMTAyzZ89m7Nix/POf/+SHH37gf//7H+vWrXOcd/To0fTr148GDRrQqFEjPvzwQ7Kzs3n++efv9GWLh9Afi7bir4PzFhuqzf7hW9H6o2jc0ehCcAsNheKm5FlyybuSvOoa4M1rlcvdy7DFDXzz62mGLd+DUZvL0Mf/S6jXRQC0Wlnc/Gaio6NZtGgR+fn5fP311wwZMgS9Xs+ECRNKOzTAvrmFwWC4YR+LxULbtm2pWrUqq1atIigoiBMnTvDNN984JcZmzZrFyJEjGTduHHPnzsVgMPDll18SExPDr7/+Slxc3G3HWaVKFWbPnk1YWBi5ubl88MEHtGvXjsOHD+Pv78+hQ4ew2WzMnz+f8PBwfv31VwYNGkR2dvYNz5ufn4+/vz+vvfaa0y60N1O+fHneffddIiIiUFWVJUuW0LVrV/bs2UPNmjU5deoUp06dIi4ujho1avDHH38QExPDqVOnWLlyJQA9e/YkOjra6bj9+/cnLy+PgIAAR1uPHj04c+YMCxcuJDw8nLS0NGy2P6sVly1bxvjx4/n4449p1qwZycnJjoTo9OnTr3sN2dnZtGjRgh49ejBo0KASX7sQQgghhLgPqPdAq1at1BEjRjie5+bmqv/6179UHx8f1dXVVX366afVtLQ0pzGpqalq+/btVZPJpJYpU0YdM2aMarFYnPr8+OOP6uOPP64aDAY1LCxMXbRoUZFzz5o1S61QoYJqMBjURo0aqT///HOJ487IyFABNSMj45auVzz4Ll84r/487GN18av/Vp/v/7oa16OjOq3H39TZgzeoHw2fpO778biadSmv+MGzG6kvfzJRLfvDHvX9o2nF9xGl4t8/HlZDx61VB8x7X/1+Q5jjsWNn97t+7tzcXPXAgQNqbm7uXT/XndavXz+1a9euTm1t27ZVmzRpoqanp6t9+/ZVvb29VZPJpEZHR6vJycmOfqmpqWqnTp1Ub29v1dXVVa1Ro4a6bt06NSUlRQWcHv369VNVVVUzMzPV3r17q66urmpgYKA6ffr0Iv+OhIaGqpMnT1b79u2renh4OMYmJCSoLVq0UI1Go1q+fHl12LBhalZWlqqqqrpnzx4VUFNTU697rceOHVP1er06evToIq/NnDlTBRz/jhRew549e279pl5R+O/M999/f90+U6dOVStVqlTiY157r26Vj4+P+n//93/Xff1///ufajAYivybXOjs2bOqXq9X//Of/zjavvnmG9XLy0u9cOHCdY87ZMgQ9amnnnJqGz16tNq8efMSxX0n3o+r3ehnVn4/cCb3QwghhBDXKunvB/dkoZuNGzfy4YcfOp4bjUbmzJlDeno62dnZrFq1qsg6T6GhoXz99dfk5ORw7tw54uLi0OmcC7uefPJJ9uzZQ35+PkeOHKF///5Fzj106FD++OMP8vPz2b59O40bN74blygeMue+/QatoiPXWkC/ffbqO+VKYaHRLZFaT5bHzcvFedDu/8KKvnDpOHkae8WG7Lh3f7l8ZS2p+iH2qXqennV4vM7H1Kn9f6UTkKqCOfveP1T1L4duMpkwm83079+fnTt3smbNGrZt24aqqnTo0AGLxX6vhwwZQn5+Pj/99BP79+/nvffew93dnZCQED7//HPAPoU7LS2NGTNmAPYq1y1btrBmzRri4+NJSEhg9+7dRWKIi4ujTp067Nmzh9dff50jR44QHR1Nt27d2LdvHytWrGDz5s0MHToUAH9/fzQaDStXrsRqtRZ7XStXrsRisfDSSy8VeW3w4MG4u7uzfPnyv3z/wF7dtWDBAry8vKhTp851+2VkZODr63tHznkjVquVTz/9lOzs7OtOcy+Mx9PTs8i/yYX+85//4OrqyrPPPutoW7NmDQ0aNGDq1KkEBwdTpUoVXnrpJXJzcx19mjVrxq5du/jll18AOHr0KF9//TUdOnS4Q1cohBBCCCHuN3d8+p4QD4ODiYmcdw3hovUyOuzTS1SNFgCtezHr6KgqrBsNVvu6L3kae8LKqJUFzu8Hqqqy90QGh89mAeCqt69RYzKG4OfXqvQCs+TA26UwvfOVU2Bwu62hqqqyYcMG1q9fT/v27Vm9ejVbtmyhWbNmACxdupSQkBBWr15N9+7dOXbsGN26daNWLfuuhmFhYY5jFSZaAgIC8Pb2BuDy5cssWbKEZcuW0bp1awAWLVpEuXJF79NTTz3FmDFjHM8HDhxInz59HOspRUREMHPmTFq1asXcuXMJDg5m5syZjB07lkmTJtGgQQMiIyPp06ePI67k5GS8vLwICgoqcj6DwUBYWBjJycm3de8KrV27ll69epGTk0NQUBDx8fGUKVOm2L6HDx9m1qxZf2nK4M3s37+fpk2bkpeXh7u7O1988YVj/cZrnT9/njfffJMXXnjhusdbuHAhvXv3xmQyOdqOHj3K5s2bMRqNfPHFF5w/f55//etfXLhwgUWLFgHQu3dvzp8/T4sWLVBVlYKCAmJiYnjllVfu7AULIYQQQoj7hnxiFuIaeXl57DC5cdTlIjm2PKxX1o2yXVkI+/HiqkwK8sBqZlVAGzo/+RU/BT4JgEkjP2L3g093HOdvc7aQkJxK06Bf8NH9BoBWd3uJmUfR2rVrcXd3x2g00r59e3r27En//v3R6XROFah+fn5UrVqVgwcPAjB8+HCmTJlC8+bNiY2NZd++fTc8z9GjR7FYLDRq1MjR5uXlRdWqRTcVaNCggdPzvXv3snjxYtzd3R2PqKgobDYbKSkpgL1y6/Tp0yxdupSmTZvy2WefUbNmTeLj40t8L262dhXYk3NXx5GQkOB4LTIyksTERLZu3Up0dDQ9evRwWhC80MmTJ4mOjqZ79+5OayVdfdyYmJgSxZyQkOA0bunSpY7XqlatSmJiItu3b+fFF1+kX79+HDhwoMgxMjMz6dixIzVq1GDixInFnmfbtm0cPHiQAQMGOLXbbDYURWHp0qU0atSIDh06MH36dJYsWeKoltq4cSNvv/02//73v9m9ezerVq1i3bp1vPnmmze9p0IIIYQQ4sEklVJCXCM/Px9VUdBYLPidO0dyoL2aQ4e9UsrPxaXoIIv9Q9WskN4cVD3tK+QAoaabf3gVd19hhVSvat/SotyPjvdHr/MuvaAA9K72qqXSOO8tioyMdCz6Xa5cOXQ6HWvWrLnpuIEDBxIVFcW6dev47rvveOedd5g2bRrDhg27nciduLk5JxWzsrIYPHgww4cPL9K3QoUKjq89PDzo3LkznTt3ZsqUKURFRTFlyhTatm1LREQEGRkZnDp1qkh1ltls5siRI0RFRd00ti5dujgl64KD/9yB083NjfDwcMLDw2nSpAkREREsXLjQadH4U6dOERkZSbNmzViwYIHTsa/eXa6ku8Q2aNDAaVzZsmUdXxfuqAhQv359duzYwYwZM5g/f76jz+XLl4mOjsbDw4MvvvgCvb743Sr/7//+j8cff5z69es7tQcFBREcHIyXl5ejrXr16qiqyokTJ4iIiOD111+nb9++DBw4EIBatWqRnZ3NCy+8wKuvvnrDeyqEEEIIIR5MkpQS4ho7VvwIgOHyJcx5pzC7GQFQFR8AtC2LfuAtTEpla+0f9l+vXI6m3m7U9bj1D//izsvKs0+5rFPO/j65u9fA3S2CcuV6lmZY9t0bb3Ma3b1WmEi5WvXq1SkoKGD79u2O6XsXLlwgKSnJafpXSEgIMTExxMTEMGHCBD766COGDRvmqDi6en2nsLAw9Ho9O3bscCSSMjIySE5OpmXLljeMsV69ehw4cKBInDeiKArVqlVj69atADz77LOMGzeOadOmMW3aNKe+8+bNIycnh+eee+6mx/Xw8MDDw6NEMdhsNvLz8x3PT548SWRkJPXr12fRokVorqm4vJXrK2QymUo87tp4MjMziYqKwsXFhTVr1mA0Gosdl5WVxf/+9z/eeeedIq81b96czz77jKysLNzd7btdJicno9FoKF++PAA5OTlFrlWrtf9ngKqqt3RPhRBCCCHEg0GSUkJcxVZgxeuIDUxwyuJGKKBT/MFUD60+FP8KHnjXq190YIF9jaJ8rf1Ddisfdx6ThNR9IyvfnpTSKzmgQsXQGMqW7VjKUT34IiIi6Nq1K4MGDWL+/Pl4eHgwfvx4goOD6dq1KwAjR46kffv2VKlShYsXL/Ljjz9SvXp1wL6hhaIorF27lg4dOmAymfDw8KBfv368/PLL+Pr6EhAQQGxsLBqNBkW58cYB48aNo0mTJgwdOpSBAwfi5ubGgQMHiI+PZ/bs2SQmJhIbG0vfvn2pUaMGBoOBTZs28fHHHzNu3DjAXlE1depUXnrpJYxGI3379kWv1/Pll1/yyiuvMGXKFB577DGn8yYlJRWJpWbNmkWqibKzs3nrrbfo0qULQUFBnD9/njlz5nDy5Em6d+8O2BNSTz75JKGhocTFxXHu3DnH+Gs3BLlWYSVUVlYW586dIzExEYPBcN31oQAmTJhA+/btqVChApcvX2bZsmVs3LiR9evXA/aEVLt27cjJyeGTTz4hMzOTzMxMwL5wfGHSCGDFihUUFBTwj3/8o8h5evfuzZtvvsnzzz/PpEmTOH/+PC+//DL//Oc/HWtPde7cmenTp1O3bl0aN27M4cOHef311+ncubPTea6Vnp7OsWPHOHXKXnVY+H4EBgbe9J4JIYQQQojSJUkpIa6SlbgPjcaAOddGlePJ5LuBRuOLxqUmT9RfS+1B04sOunQcjvwAyALn95v/bkvlvz//QdqlLPxN59Arl0EFnc69tEN7aCxatIgRI0bQqVMnzGYzLVu25Ouvv3YkZKxWK0OGDOHEiRN4enoSHR3NBx98ANinX02aNInx48fz/PPP89xzz7F48WKmT59OTEwMnTp1wtPTk7Fjx3L8+PHrVugUql27Nps2beLVV1/liSeeQFVVKleuTM+e9oq48uXLU7FiRSZNmkRqaiqKojiejxo1ynGcUaNGERYWxrRp05gxYwbZ2dkALF++nF69ehU5b3Ftx48fd1QAFdJqtRw6dIglS5Zw/vx5/Pz8aNiwIQkJCdSsWROA+Ph4Dh8+zOHDh4uMV2+ya2LdunUdX+/atYtly5YRGhpKamrqdcecPXuW5557jrS0NLy8vKhduzbr16+nbdu2AOzevZvt27cDRSu0UlJSqFixouP5woULeeaZZxyL1l/N3d2d+Ph4hg0bRoMGDfDz86NHjx5MmTLF0ee1115DURRee+01Tp48ib+/P507d+att9664XWvWbOG559/3vG88P2IjY297tpXQgghhBDi/qCoN/st9xGWmZmJl5eXY/tr8XArOHeOnX/rTtaTMSQd30DQ8YOkBHhj0NVC49GWdk2/JaLfVOdB5hyIqwLmywCEPhFPvsbAjqY1CDHKelKlrdX7P/LHhRxeaxxHJa9jjvb69Vbg7d3gBiPvvLy8PFJSUqhUqdJNkyvCWXZ2NsHBwUybNq3IAtr3Qnp6Oq1bt8bT05NvvvkGV1epgnwU3OhnVn4/cCb3QwghhBDXKunvB1LOIcQVh/ft59u2T7JZfwgz6Vg19qlCFp09ueRa3I5bOeevJKQU1HJ1ydfY+xg1N55mJO6N7PwCNIrVkZDSal3x8HgMD4+apRyZuJE9e/awfPlyjhw5wu7du+nTpw+AY0rgvebr68v3339P69at2bZtW6nEIIQQQgghxMNIpu8JccW59AsAaG0Kqi0Pi86+homi2KfkeZiKqW4pyEcFxlcby4GI7pBpn+Zj1Ei+936QnW/FRWt2PH+ixU602mJ2TxT3nbi4OJKSkjAYDNSvX5+EhATKlClTavH4+fnxxhtvlNr5hRBCCCGEeBhJUkqIK8z59uRFmTPnybEopHnb1x3SYK9+0vkWs/24JZfDpgosKdvBkZDy0+twlTWlSp3VppJrseLtYn9fFUWLRiNTKh8EdevWZdeuXaUdhhBCCCGEEOIuk6SUEEBOxmUO7k4FT7DkXrzSqoDiikZfAY0GDI2K7ihFQT7ZWvvOUX56HVOrlqe2hyvam+wSJu6eU5dyGff5Pi5k2ZNRBq19a3uNxnTT3duEEEIIIYQQQtw7kpQSAkj5difBruX4I+cYxvw89IDevRs6XSCP1bYR1LgmOqO+6MCCPHKvTAfz0Wvp6O99T+MWRcUfOEPC7+ep6pPM+y0/wVWfB4BO61bKkQkhhBBCCCGEuJokpYQArBfzsGLj8cS9ZLpmk+OiR1F0KGTR8ikXqF626KCsc5B5ijyNPSkl60jdH3LMVgA6VfkdX+MlR7uHZ61SikgIIYQQQgghRHEkKSUeeVkJm7m8aTMFlSvinn+Ri+6FC2HrsOktoPMqOmjLDIi3L3qc59cCkB337hd5FntSysukAlC+fD9CyvfFZAotzbCEEEIIIYQQQlxDSjvEI++bnzaxsbKO37VpoMnAVrjukKJFozGDrpjd2o5tByDVFMLvHuGAVErdL/ILbADoNQUAGF0CcXWthKLI+yOEEEIIIYQQ9xOplBKPNFVVOWCxoOoUUK2gqlgdFU86fNR80BaTlCrIZbV/JDE1JjqajLLj3n2hsFJKdyUpJTvuCSGEEEIIIcT9SZJS4pFmtVpRr3wddvwSh8sGO15TFB0GLMVXSllyOehWEwBXrYYyeh09An3vQcTiZgorpXRKYVKqmPdPCCGEEEIIIUSpk9IO8Ug780eG4+vLeWfsX6ig0/mD4opWr4BfeNGBlhzyrlTgPB9chl+a1qBLgPc9iFhcz+e7ThAZt5E1iScB0GnMgCSl7oT+/fujKAqKomAwGAgPD2fy5MkUFBT8peNu3LgRRVG4dOnSnQm0BFJSUujduzflypXDaDRSvnx5unbtyqFDh5z6rV27llatWuHh4YGrqysNGzZk8eLFTn1SU1NRFIXExMQSn3/ixIlUq1YNNzc3fHx8aNOmDdu3b3c65oABA6hUqRImk4nKlSsTGxuL2Wy+4XHT0tLo3bs3VapUQaPRMHLkyBLHVOjdd99FUZQiY48cOcLTTz+Nv78/np6e9OjRgzNnzjj1eeutt2jWrBmurq54e3sXe/zC76GrH59++qnj9VWrVtG2bVvHeZo2bcr69etvGveqVato164dfn5+t/x+CCGEEEKI0iVJKfFIS99wwPG1VbVP+zJ49UPn0RdFUXCv1RJc3J0HWfLAnH3VrnuywPn94NMdx0g5n02O2YKvMR1XXR4g0/fulOjoaNLS0vj9998ZM2YMEydO5P333y/tsBxulrQBsFgstG3bloyMDFatWkVSUhIrVqygVq1aTomxWbNm0bVrV5o3b8727dvZt28fvXr1IiYmhpdeeukvxVmlShVmz57N/v372bx5MxUrVqRdu3acO3cOgEOHDmGz2Zg/fz6//fYbH3zwAfPmzeOVV1654XHz8/Px9/fntddeo06dOrcc144dO5g/fz61a9d2as/OzqZdu3YoisIPP/zAli1bMJvNdO7cGZvN5uhnNpvp3r07L7744g3Ps2jRItLS0hyPv/3tb47XfvrpJ9q2bcvXX3/Nrl27iIyMpHPnzuzZs+eGx8zOzqZFixa89957t3zdQgghhBCidMn0PfFIy/kjDfSQ+UcB7tY87Guca3E3/E6TPl0JfczPecCP78CmdwHIK1OYlJLc7v2gcNrejKj/4aZuBYu9XZJSd4aLiwuBgYEAvPjii3zxxResWbOGmJgYRowYwVdffUV+fj6tWrVi5syZREREAPDHH38wdOhQNm/ejNlspmLFirz//vvUqFGDyMhIAHx8fADo168fixcv5vLly8TExLB69Wo8PT0ZO3YsX375JY8//jgffvghABUrVmTAgAH8/vvvrF69mmeeeYbFixezefNmJkyYwM6dOylTpgxPP/0077zzDm5ubvz2228cOXKEDRs2EBpq340xNDSU5s2bO67z+PHjjBkzhpEjR/L222872seMGYPBYGD48OF0796dxo0b39Z97N27t9Pz6dOns3DhQvbt20fr1q2Jjo4mOjra8XpYWBhJSUnMnTuXuLi46x63YsWKzJgxA4CPP/74lmLKysqiT58+fPTRR0yZMsXptS1btpCamsqePXvw9PQEYMmSJfj4+PDDDz/Qpk0bACZNmgRQpJrsWt7e3o7vo2sVvreF3n77bb788ku++uor6tate91j9u3bF7BXmQkhhBBCiAeLfJoWjzSrzYrGaqXf9i/RYE9qKIoWT7ezVG0ciNFN7zzgcLzjy3wXb0CSUvcL85WklJtin4al0RgwmSri5VWvNMO6IVVVybHk3POHqqo3D+4mTCYTZrOZ/v37s3PnTtasWcO2bdtQVZUOHTpgsdizgkOGDCE/P5+ffvqJ/fv389577+Hu7k5ISAiff/45AElJSaSlpTmSKqNHj2bLli2sWbOG+Ph4EhIS2L17d5EY4uLiqFOnDnv27OH111/nyJEjREdH061bN/bt28eKFSvYvHkzQ4cOBcDf3x+NRsPKlSuxWq3FXtfKlSuxWCzFVkQNHjwYd3d3li9f/pfvH9irixYsWICXl9cNq5syMjLw9b17a9YNGTKEjh07OhJMV8vPz0dRFFxc/pwGazQa0Wg0bN68+bbOVaZMGRo1asTHH398w+9Fm83G5cuX7+q1CyGEEEKI0iWVUuKRdfqtt7HmlUNnLEBvK0BV/tx1z+h2nURTQT42FI4+u4ILljC4lI2LTN+7L5ithVOJ7OscNWq4Dje3sNILqARyC3JpvOz2Km7+iu29t+Oqd72tsaqqsmHDBtavX0/79u1ZvXo1W7ZsoVmzZgAsXbqUkJAQVq9eTffu3Tl27BjdunWjVq1agL3yp1BhsiEgIMCxDtHly5dZsmQJy5Yto3Xr1oB9yle5cuWKxPLUU08xZswYx/OBAwfSp08fx5pIERERzJw5k1atWjF37lyCg4OZOXMmY8eOZdKkSTRo0IDIyEj69OnjiCs5ORkvLy+CgoKKnM9gMBAWFkZycvJt3btCa9eupVevXuTk5BAUFER8fDxlypQptu/hw4eZNWvWDauk/opPP/2U3bt3s2PHjmJfb9KkCW5ubowbN463334bVVUZP348VquVtLS0WzrX5MmTeeqpp3B1deW7777jX//6F1lZWQwfPrzY/nFxcWRlZdGjR49bvi4hhBBCCPFgkBIP8UiyXLjA14d/Z7PHcVS1AJtyVWJJ0eKqu06iqSCPF6u/TotzZUm4lA2AUSs/RveDwkop1MIFzvU36C1u1dq1a3F3d8doNNK+fXt69uxJ//790el0TlPZ/Pz8qFq1KgcPHgRg+PDhTJkyhebNmxMbG8u+fftueJ6jR49isVho1KiRo83Ly4uqVasW6dugQQOn53v37mXx4sW4u7s7HlFRUdhsNlJSUgB7pc7p06dZunQpTZs25bPPPqNmzZrEx8cXOf71GAw3nxK6dOlSpzgSEhIcr0VGRpKYmMjWrVuJjo6mR48enD17tsgxTp48SXR0NN27d2fQoEGO9quPGxMTU6KYExISnMYtXbqU48ePM2LECJYuXYrRaCx2nL+/P5999hlfffUV7u7ueHl5cenSJerVq4fmFqtEX3/9dZo3b07dunUZN24cY8eOve66ZMuWLWPSpEn873//IyAgALjxPRVCCCGEEA8mqZQSj6TLF9I5FhoKWNGpZmxO1U5avPTa4gcW5LPP3f7h2EOroZzRQHNv9+L7invKUlgppdqnjT0Ia0mZdCa2995+84534by3KjIykrlz52IwGChXrhw6nY41a9bcdNzAgQOJiopi3bp1fPfdd7zzzjtMmzaNYcOG3U7oTtzc3JyeZ2VlMXjw4GIrbypUqOD42sPDg86dO9O5c2emTJlCVFQUU6ZMoW3btkRERJCRkcGpU6eKVGeZzWaOHDlCVFTUTWPr0qWLU7IuODjYKe7w8HDCw8Np0qQJERERLFy4kAkTJjj6nDp1isjISJo1a8aCBQucjn317nKF6zzdTIMGDZzGlS1blg0bNnD27Fnq1ftziqvVauWnn35i9uzZ5Ofno9VqadeuHUeOHOH8+fPodDrHulBXV73djsaNG/Pmm2+Sn5/vND3w008/ZeDAgXz22WdOUwpvdE+FEEIIIcSDSZJS4pFUkJcLgMaqUubkBTZWq3DVqxq016t+KsgjV2v/8LSqbji1PG5vCpS488wFNhRsgH2toAchKaUoym1Po7vXChMpV6tevToFBQVs377dMX3vwoULJCUlUaNGDUe/kJAQYmJiiImJYcKECXz00UcMGzbMUXF09fpOYWFh6PV6duzY4UgkZWRkkJycTMuWLW8YY7169Thw4ECROG9EURSqVavG1q1bAXj22WcZN24c06ZNY9q0aU59582bR05ODs8999xNj+vh4YGHh0eJYrDZbOTn5zuenzx5ksjISOrXr8+iRYuKVCTdyvUVMplMRca1bt2a/fv3O7U9//zzVKtWjXHjxqHVOifnC6cY/vDDD5w9e5YuXbrcchxXS0xMxMfHxykhtXz5cv75z3/y6aef0rFjR6f+t3JPhRBCCCHEg0GSUuKRdOnsZQB0+blkWy6Bzv7hS9EGoCgKWrfrVD8V5JOnkV337kfmAhs6TYHjuaLI9L27LSIigq5duzJo0CDmz5+Ph4cH48ePJzg4mK5duwIwcuRI2rdvT5UqVbh48SI//vgj1atXB+w73ymKwtq1a+nQoQMmkwkPDw/69evHyy+/jK+vLwEBAcTGxqLRaFCUG6/fNm7cOJo0acLQoUMZOHAgbm5uHDhwgPj4eGbPnk1iYiKxsbH07duXGjVqYDAY2LRpEx9//DHjxo0D7BVVU6dO5aWXXsJoNNK3b1/0ej1ffvklr7zyClOmTOGxxx5zOm9SUlKRWGrWrIle7/w9mJ2dzVtvvUWXLl0ICgri/PnzzJkzh5MnT9K9e3fAnpB68sknCQ0NJS4ujnPnzjnGX2/XukKFlVBZWVmcO3eOxMREDAaDU4Lwah4eHkWuxc3NDT8/P6f2RYsWUb16dfz9/dm2bRsjRoxg1KhRTlMqjx07Rnp6OseOHcNqtTpiCQ8Px93dna+++oozZ87QpEkTjEYj8fHxvP32204Lyi9btox+/foxY8YMGjduzOnTpwF7Qs3Ly+u611143lOnTgF/vh+BgYE3vWdCCCGEEKJ0SVJKPJJ+WfcjeIHuyowvnc0FjXcvjHoDfgEWKnS5amFdczasfxWyzoA5y1EpJWtJlT5VVfnX0t3s+uMi2WYrJt2fFTcPQqXUw2DRokWMGDGCTp06YTabadmyJV9//bUjIWO1WhkyZAgnTpzA09OT6OhoPvjgA8A+/WrSpEmMHz+e559/nueee47Fixczffp0YmJi6NSpE56enowdO5bjx49fd92jQrVr12bTpk28+uqrPPHEE6iqSuXKlenZsycA5cuXp2LFikyaNInU1FQURXE8HzVqlOM4o0aNIiwsjGnTpjFjxgyys+3rxy1fvpxevXoVOW9xbcePH6d8+fJObVqtlkOHDrFkyRLOnz+Pn58fDRs2JCEhgZo1awIQHx/P4cOHOXz4cJHxN9s1sW7duo6vd+3axbJlywgNDSU1NfWG424mKSmJCRMmkJ6eTsWKFXn11Ved7hfAG2+8wZIlS4rE8uOPP/Lkk0+i1+uZM2cOo0aNQlVVwsPDmT59utNaWQsWLKCgoIAhQ4YwZMgQR3u/fv1YvHjxdeNbs2YNzz//vON54fsRGxvLxIkT/8qlCyGEEEKIu0xR78Te4A+pzMxMvLy8yMjIKPG6HeL+V2CxsGncf9jocYJLGRoqpm3HYHND4zeYRpV+oeG48c4DDqyB//UFwIZCuVYbAfi1+WOUMUhetzSdycyj8dsbANAqVsL9shhb73UAnoo8fNPKmnspLy+PlJQUKlWqdNPkinCWnZ1NcHAw06ZNY8CAAff8/Onp6bRu3RpPT0+++eYbXF0fjCmX4q+50c+s/H7gTO6HEEIIIa5V0t8P5BO1eOScW7QYjcaFEzZvUq1aKgKFG1HqilvgPN8+1W9OtRF8HtQerlRXmTT3T8LjUZVrtldG+ZnyiHvyPWzWCwAoiuG+SkiJW7Nnzx4OHTpEo0aNyMjIYPLkyQCOKYH3mq+vL99//z1z5sxh27ZttG7dulTiEEIIIYQQ4mEjSSnxyDmz8P+wtHqRwNNpRB/+hRMBriiKPRml1xUzJa/Avij6DP8OZNrs/1seaNBjkul7pS6/wJ4hDPM+7UhIAZQp81RphSTukLi4OJKSkjAYDNSvX5+EhATHQtulwc/PjzfeeKPUzi+EEEIIIcTDSJJS4pGSl5fHt61akeeaSs19B/HNu8wJXAF7UkpT3HQ8S5597JWFs/9dI5QnfNzRSCVOqcuz2Cul3Az2Bc493GvSoMHnaDSyyPmDrG7duuzatau0wxBCCCGEEELcZVLqIR4pF86cIe/KejA6ax62K4mlPKM9KaUttlIqDxsK5ivVVE/4uONvkKTH/aCwUspVbwFAq3WVhJQQQgghhBBCPCCkUko8UrLS7etDeWSZyTbpyHKxL7jmhoIN0LoUswB1QR5m5c9Eh1Ejudz7RWGllElvr5TSaGUBcSGEEEIIIYR4UEhSSjwyVFVl82c/gwGU839wyaQA9iSGTeMHgDai1Z8DLqbC6iFw7iD5GoOj2SALnJe6AquNkSsS2XcinUpeqQS5HgPslVJCCCGEEEIIIR4MkpQSj4xjexKprLpzHMBqr6zRGmqjaMugGqqiAC5+/n8OOLQO/tgMgFnv42g2yFpSpW7viQzW7kujbYUf6VXtC0e7VmsqxaiEEEIIIYQQQtwKSUqJR4Ll9GnSlnwKbg1wP5SGMe8SuS56tC41UA16atbQ4xEWRmBl7z8H5WfZ/6wSTV6zsZACLhoFRZJSpUZVVZLPZLEjNR2AxwJOA6DX+2M0BlIuqHtphieEEEIIIYQQ4hZIUko8En5f/imb9SoF+mQqnznIGZ/CaV46ctx+JzK6KYRXdB5kyearMq34sGwMuaddgXxcZOpeqVr+y3Fe+WI/YV4pDKv7HeFe9ml7EeFjCQp6ppSjE0IIIYQQQghxKyQpJR4Jv1/OJMvdFbCgt+VjVdzsLyh6KpEF+mKmfVlyWRT8NL9pfCA3H4BKJpd7F7Qo4rdTGQB0qryJOmV+c7S7uYWXVkhCCCGEEEIIIW6TbCMmHgnmAvsaUqFZBrJdXLBq7d/6iqIjxJYNuqt2bbNa4PgOuPgHWVfWKHo1LIiVj1dm5eOS/CgNZzLz2HrkPEfO2adUVvW3v5/ly/ejXt1leHrWLs3wHnr9+/dHUexTVw0GA+Hh4UyePJmCKz9Xt2vjxo0oisKlS5fuTKAlkJKSQu/evSlXrhxGo5Hy5cvTtWtXDh065NRv7dq1tGrVCg8PD1xdXWnYsCGLFy926pOamoqiKCQmJpb4/BMnTqRatWq4ubnh4+NDmzZt2L59u9MxBwwYQKVKlTCZTFSuXJnY2FjMZvMNj5uWlkbv3r2pUqUKGo2GkSNHljimkydP8o9//AM/Pz9MJhO1atVi586djtevfv8LH9HR0U7HqFixYpE+7777ruP1pKQkIiMjKVu2LEajkbCwMF577TUsFovTcS5dusSQIUMICgrCxcWFKlWq8PXXX98w/lWrVtGuXTv8/Pxu+f0QQgghhBClSyqlxEPv0tkznM61gtFG+vHd4ON51at6dJjBveyfTV8OgX0rAMhp2AeABl5uNPV2v4dRi0I55gLaTN/E5TwL7UJ/pE+187jwBwD+ZVrj49O4lCN8NERHR7No0SLy8/P5+uuvGTJkCHq9ngkTJpR2aACYzWYMBsMN+1gsFtq2bUvVqlVZtWoVQUFBnDhxgm+++cYpMTZr1ixGjhzJuHHjmDt3LgaDgS+//JKYmBh+/fVX4uLibjvOKlWqMHv2bMLCwsjNzeWDDz6gXbt2HD58GH9/fw4dOoTNZmP+/PmEh4fz66+/MmjQILKzs2943vz8fPz9/Xnttdf44IMPShzPxYsXad68OZGRkXzzzTf4+/vz+++/4+Pj49Sv8P0v5OJStGp08uTJDBo0yPHcw8PD8bVer+e5556jXr16eHt7s3fvXgYNGoTNZuPtt98G7O9h27ZtCQgIYOXKlQQHB/PHH3/g7e19w2vIzs6mRYsW9OjRw+n8QgghhBDi/idJKfHQ+23md3gby5NkPo8HNlAVNIYINLpgNFoXykb3BK/gPwecu1Ix4RFEjsELAFetFBWWluPpuVzOKyDc+xg9q662N6r2P4zGcqUW16PGxcWFwMBAAF588UW++OIL1qxZQ0xMDCNGjOCrr74iPz+fVq1aMXPmTCIiIgD4448/GDp0KJs3b8ZsNlOxYkXef/99atSoQWRkJIAjAdKvXz8WL17M5cuXiYmJYfXq1Xh6ejJ27Fi+/PJLHn/8cT788EPAXpkzYMAAfv/9d1avXs0zzzzD4sWL2bx5MxMmTGDnzp2UKVOGp59+mnfeeQc3Nzd+++03jhw5woYNGwgNDQUgNDSU5s2bO67z+PHjjBkzhpEjRzqSJQBjxozBYDAwfPhwunfvTuPGt5cM7d27t9Pz6dOns3DhQvbt20fr1q2Jjo52qkIKCwsjKSmJuXPn3jApVbFiRWbMmAHAxx9/XOJ43nvvPUJCQpwSTpUqVSrS7+r3/3o8PDyu2ycsLIywsDDH89DQUDZu3EhCQoKj7eOPPyY9PZ2tW7ei1+sd13Uzffv2BexVZkIIIYQQ4sEin7TFQy1761ZMWTrybFZcj5wBQKtqMbh3wq2MlX/GtSS07VPOgyx5fOfXjOdbfMI5vf3Dspskpe45VVWZ+u0h3vjyV7SKlcfK2teTMhrLU6nicGrW/BBX16Ifnh8kqqpiy8m55w9VVf9y7CaTCbPZTP/+/dm5cydr1qxh27ZtqKpKhw4dHNOyhgwZQn5+Pj/99BP79+/nvffew93dnZCQED7//HPAPrUrLS3NkVQZPXo0W7ZsYc2aNcTHx5OQkMDu3buLxBAXF0edOnXYs2cPr7/+OkeOHCE6Oppu3bqxb98+VqxYwebNmxk6dCgA/v7+aDQaVq5cidVqLfa6Vq5cicVi4aWXXiry2uDBg3F3d2f58uV/+f6BvTJowYIFeHl5UadOnev2y8jIwNfX946c81pr1qyhQYMGdO/enYCAAOrWrctHH31UpN/GjRsJCAigatWqvPjii1y4cKFIn3fffRc/Pz/q1q3L+++/f8PpnYcPH+bbb7+lVatWTrE0bdqUIUOGULZsWR577DHefvvt675XQgghhBDiwSeVUuKh9sPChRwsF4bh3Fm6pmzh5/BgNGgB0LvmY3TTFx1kyeWtiEEk5egAFYOi4K+XH5V7bf/JDP698QgBpnN88GQcbvpcADw9ahEWNqKUo7sz1NxckurVv+fnrbp7F4qr6807FkNVVTZs2MD69etp3749q1evZsuWLTRr1gyApUuXEhISwurVq+nevTvHjh2jW7du1KpVC8CpWqYw0RIQEOCYonX58mWWLFnCsmXLaN26NQCLFi2iXLmiVXFPPfUUY8aMcTwfOHAgffr0caynFBERwcyZM2nVqhVz584lODiYmTNnMnbsWCZNmkSDBg2IjIykT58+jriSk5Px8vIiKCioyPkMBgNhYWEkJyff1r0rtHbtWnr16kVOTg5BQUHEx8dTpkyZYvsePnyYWbNm/aUpgzdy9OhR5s6dy+jRo3nllVfYsWMHw4cPx2Aw0K9fP8A+de+ZZ56hUqVKHDlyhFdeeYX27duzbds2tFr736fDhw+nXr16+Pr6snXrViZMmEBaWhrTp093Ol+zZs3YvXs3+fn5vPDCC0yePNkplh9++IE+ffrw9ddfc/jwYf71r39hsViIjY29K9cvhBBCCCFKl5R/iIdakl8ZcrQWFHM2Vo0CgEVn/xDl4X6dRJMlhwydfS2U0RXLsrpeOF6SlLrnzmTadzxsXP64IyGlKDr8yjxZilE9utauXYu7uztGo5H27dvTs2dP+vfvj06nc5rK5ufnR9WqVTl48CBgT1ZMmTKF5s2bExsby759+254nqNHj2KxWGjUqJGjzcvLi6pVqxbp26BBA6fne/fuZfHixbi7uzseUVFR2Gw2UlJSAHvl1unTp1m6dClNmzbls88+o2bNmsTHx5f4Xtxs7SqwJ+eujuPqaWqRkZEkJiaydetWoqOj6dGjB2fPni1yjJMnTxIdHU337t2d1kq6+rgxMTElijkhIcFp3NKlSwGw2WzUq1ePt99+m7p16/LCCy8waNAg5s2b5xjbq1cvunTpQq1atfjb3/7G2rVr2bFjBxs3bnT0GT16NE8++SS1a9cmJiaGadOmMWvWLPLz853iWLFiBbt372bZsmWsW7fOKdlms9kICAhgwYIF1K9fn549e/Lqq686YrnRPRVCCCGEEA8m+aQtHmoFGgWlwIIpN5fDZe1T8XQ6ey42zOuaygtrAVjNYMklR2vfja9bWR8quxoR986O1HRe/mwvF7LzcdXlUMknG4CyZTtTo/p7aDRFF1h+UCkmE1V37yqV896qyMhIx6Lf5cqVQ6fTsWbNmpuOGzhwIFFRUaxbt47vvvuOd955h2nTpjFs2LDbCd2Jm5ub0/OsrCwGDx7M8OHDi/StUKGC42sPDw86d+5M586dmTJlClFRUUyZMoW2bdsSERFBRkYGp06dKlKdZTabOXLkCFFRUTeNrUuXLk7JuuDgP9etc3NzIzw8nPDwcJo0aUJERAQLFy50WjT+1KlTREZG0qxZMxYsWOB07Kt3l/P09KQkGjRo4DSubFn75g5BQUHUqFHDqW/16tUdUyuLExYWRpkyZTh8+LCjmu1ajRs3pqCggNTUVKeEYkhICAA1atTAarXywgsvMGbMGLRaLUFBQej1ekf1VWEsp0+fxmw23/CeCiGEEEKIB5MkpcRDSbXZ2LVkCxaDK7pLaVy2ZYCb/YO4Bj8AdFWvWkvqwhH46CnIu4QKZGvtfd2u+nAk7o11+9JIvZBDTO2PaRiY6Gg3GMo8VAkpAEVRbnsa3b1WmEi5WvXq1SkoKGD79u2O6XsXLlwgKSnJKdEREhJCTEwMMTExTJgwgY8++ohhw4Y5Ko6uXjMoLCwMvV7Pjh07HImkjIwMkpOTadmy5Q1jrFevHgcOHCgS540oikK1atXYunUrAM8++yzjxo1j2rRpTJs2zanvvHnzyMnJ4bnnnrvpcT08PJx2n7sRm83mVFF08uRJIiMjqV+/PosWLUKjcS5qvpXrK2QymYod17x5c5KSkpzakpOTHQvBF+fEiRNcuHCh2CmOhRITE9FoNAQEBFy3j81mw2KxYLPZ0Gq1NG/enGXLlmGz2RzXnJycTFBQEAaDAYPBUOJ7KoQQQgghHgySlBIPpd9++gHt3nMUeMKlTD0VAEUbjNalOoq+MgCu3ldVQB3fDnmX+M63Kd+UeQKrYv/RkAXO7730bDMA9coecrRpNCb8fG+ckBD3XkREBF27dmXQoEHMnz8fDw8Pxo8fT3BwMF27dgVg5MiRtG/fnipVqnDx4kV+/PFHqlevDth3YFMUhbVr19KhQwdMJhMeHh7069ePl19+GV9fXwICAoiNjUWj0aAoyg3jGTduHE2aNGHo0KEMHDgQNzc3Dhw4QHx8PLNnzyYxMZHY2Fj69u1LjRo1MBgMbNq0iY8//phx48YB9oqqqVOn8tJLL2E0Gunbty96vZ4vv/ySV155hSlTpvDYY485nffapA5AzZo1HTvIFcrOzuatt96iS5cuBAUFcf78eebMmcPJkyfp3r07YE9IPfnkk4SGhhIXF8e5c+cc42+2+11hJVRWVhbnzp0jMTERg8FQpBLqaqNGjaJZs2a8/fbb9OjRg19++YUFCxY4qrOysrKYNGkS3bp1IzAwkCNHjjB27FjCw8MdFWPbtm1j+/btREZG4uHhwbZt2xg1ahT/+Mc/HDsrLl26FL1eT61atXBxcWHnzp1MmDCBnj17Ou7Tiy++yOzZsxkxYgTDhg3j999/5+233y628u1q6enpHDt2jFOnTgF/vh+BgYE3vWdCCCGEEKKUqeK6MjIyVEDNyMgo7VDELfpmyAvq/lGr1PdeGK6uerKZGtejo/pB3zfU2S/Eq7vfGKke+jlNtRZY/xywfYGqxnqqNeM3q2V/2KOW/WGPWnnTXrXAZiu9i3jEvPvNQfWx2G/VxpMXqx2nTlW/3xCmfr8hTDWb01WbzXrzA9zncnNz1QMHDqi5ubmlHcot69evn9q1a9diX0tPT1f79u2renl5qSaTSY2KilKTk5Mdrw8dOlStXLmy6uLiovr7+6t9+/ZVz58/73h98uTJamBgoKooitqvXz9VVVU1MzNT7d27t+rq6qoGBgaq06dPVxs1aqSOHz/eMS40NFT94IMPisTzyy+/qG3btlXd3d1VNzc3tXbt2upbb72lqqqqnjt3Th0+fLj62GOPqe7u7qqHh4daq1YtNS4uTrVanb/HVq9erT7xxBOqm5ubCqiAunz5cqc+KSkpjteufRw/frxIbLm5uerTTz+tlitXTjUYDGpQUJDapUsX9ZdffnH0WbRo0XWPeTPFjQkNDb3puK+++kp97LHHVBcXF7VatWrqggULHK/l5OSo7dq1U/39/VW9Xq+GhoaqgwYNUk+fPu3os2vXLrVx48aql5eXajQa1erVq6tvv/22mpeX5+jz6aefqvXq1XO8LzVq1FDffvvtIj8PW7duVRs3bqy6uLioYWFh6ltvvaUWFBTcMP7r3bPY2NibXvuN3OhnVn4/cCb3QwghhBDXKunvB4qq3oG9wR9SmZmZeHl5kZGRUeJ1O0Tpy8zM5KNXX8HgHYrm6H7Knk7hjzJeaI2N0bjWY3iddyBms/OghOmwYRLlW/5IgaJhWIUA2vh50tjbvXQu4hHUYEo8WE/xTos30Sj2v5YUxUDkkwduWiHzIMjLyyMlJYVKlSphNMo6ZbciOzub4OBgpk2bxoABA+75+dPT02ndujWenp588803uD4gUy7FX3Ojn1n5/cCZ3A8hhBBCXKukvx/I3CTx0Dnw229c9ivDBW02qi3HseueoujRa/JBd80izxeOwIUjWBQtBYr9R2JIhQBJSN1DNpvKxRwLwe5paBQVjcaEu1tVKlUa+lAkpMSt2bNnD8uXL+fIkSPs3r2bPn36ADimBN5rvr6+fP/997Ru3Zpt27aVSgxCCCGEEEI8jGRNKfFQUVWV9GMnAPC/lIfVauG0V+HCuDrcyQWTz58Dkr6B5b0AyNP+Wf1g1Ei+9l749WQGzy/eQX5+Js2DdlHV93cAfHwa83idhaUcnShNcXFxJCUlYTAYqF+/PgkJCZQpU6bU4vHz8+ONN94otfMLIYQQQgjxMJKklHio7Fz9Bbl7M8AABeknKFCsoL1SKaX1Qe/mBq1f/3PAmd/sfxrcyS1T294PcNFIdc698OOhs5y7nM/T4fF0CvvO0e5iuP6OXeLhV7duXXbt2lXaYQghhBBCCCHuMklKiYeGqqqc++U3VG0wF3IMGPJzcQF0ppZotAH4BIVTK6oSBAb/OciSgwrsqzuUo/Vi4MAfGEuwy5f4a2w2lT/Sc0i5kA1Ao5AcADw8auHuXo0KFQaVZnhCCCGEEEIIIe4BSUqJh0be/v3kJh2moEYgjfZuIcPNSr5eh0ZXAa3mCP+Y+HfQuTgPsuSyPLADo43t4cAfAJi0kpC62yas2s+KncdpHLiD4XV346e3T7msEPJPAgO7lHJ0QgghhBBCCCHuBUlKiYfG7sS9HKpeAZs2jVr550n38LW/oOixeOWB1lB0kDmb310rAOCr1+Jv0NMz0PceRv1o2vFHOgC9q32BuyHL0e7qWqm0QhJCCCGEEEIIcY9JUko8NH49cxqLXosu4xynvT0puLJYuaLoqacxw9VT8o78CDv+D07tIbtsTwCeDy7Dy5WCSiP0R8Z3v53my72nOHExF61S4EhIVakyETfXMDw9a5VyhEIIIYQQQggh7hVJSomHwpFdv3AxMwO0OjzPniHbpXCanh4UIy5VWzkP2PguHP8ZgJwgIwCuWu09jPjRNOmrA5y8lMOIuvOp7X8AAEXRUj64D4oiOx4KIYQQQgghxKNEklLiofDz/E8xBAaQreZjtVoA0JlaodFXRFF0eNeq7TwgP9P+Z9Oh5Hq2hDxw1UpS5G5SVZWzl/MwavMcCSkAX5/mkpASQgghhBBCiEeQJKXEA0+1WPBVynAClW9zIuih7kQDaA1VcDEl0XV0FP4VPJwHWXKYFdKbj0zPcilfA6i4aiQxcjfkmq30Xbid1AvZFFit+LpeBkCjMdK82Sb0er9SjlAIIYQQQgghRGmQT+HigXdm9my0io5cm8rUDTPQoF55RY/ecJaAUE8U5Zod9Sx5fBLUibNWBbOqogFquBvvdeiPhMTjl9j5x0Uqum1nbuuXeLvFFAD0eh8MhjJF3xtx3+nfvz+KoqAoCgaDgfDwcCZPnkxBQcFfOu7GjRtRFIVLly7dmUBLICUlhd69e1OuXDmMRiPly5ena9euHDp0yKnf2rVradWqFR4eHri6utKwYUMWL17s1Cc1NRVFUUhMTCzx+SdOnEi1atVwc3PDx8eHNm3asH37dqdjDhgwgEqVKmEymahcuTKxsbGYzeYbHjctLY3evXtTpUoVNBoNI0eOLFE8VquV119/3el8b775JqqqOvqsWrWKdu3a4efnd93rPXLkCE8//TT+/v54enrSo0cPzpw5c8vXtW/fPp544gmMRiMhISFMnTr1ptfw008/0blzZ8qVK4eiKKxevbpE1y6EEEIIIUqfJKXEA81ms/HbqVOkudkoyL+MuzX3zxcVPXo3tfiBBblka00A/F/NiiQ2q0ktD9d7EPGjJyPX/qGzVYUk9No/kxhl/J4spYjE7YiOjiYtLY3ff/+dMWPGMHHiRN5///3SDsvhZkkbAIvFQtu2bcnIyGDVqlUkJSWxYsUKatWq5ZQYmzVrFl27dqV58+Zs376dffv20atXL2JiYnjppZf+UpxVqlRh9uzZ7N+/n82bN1OxYkXatWvHuXPnADh06BA2m4358+fz22+/8cEHHzBv3jxeeeWVGx43Pz8ff39/XnvtNerUqVPieN577z3mzp3L7NmzOXjwIO+99x5Tp05l1qxZjj7Z2dm0aNGC9957r9hjZGdn065dOxRF4YcffmDLli2YzWY6d+6MzWYr8XVlZmbSrl07QkND2bVrF++//z4TJ05kwYIFN7yG7Oxs6tSpw5w5c0p83UIIIYQQ4j6hiuvKyMhQATUjI6O0QxHXsXvbVjU2Nlad+Oor6tRendW4Hh3VuB4d1fd7dFJnD96g/vzxsj87W62q+ttqVd2+QFUn+aqV4reoZX/Yo6bk5JXeBTzEfjh0Rn1+0S/q32Z+pfad+Yq68tuW6vcbwtTjx/+rWiyZpR3ePZebm6seOHBAzc3NLe1Qblm/fv3Url27OrW1bdtWbdKkiZqenq727dtX9fb2Vk0mkxodHa0mJyc7+qWmpqqdOnVSvb29VVdXV7VGjRrqunXr1JSUFBVwevTr109VVVXNzMxUe/furbq6uqqBgYHq9OnT1VatWqkjRoxwHDc0NFSdPHmy2rdvX9XDw8MxNiEhQW3RooVqNBrV8uXLq8OGDVOzsrJUVVXVPXv2qICampp63Ws9duyYqtfr1dGjRxd5bebMmSqg/vzzz6qqqo5r2LNnz63f1CsK/535/vvvr9tn6tSpaqVKlUp8zGvv1Y107NhR/ec//+nU9swzz6h9+vQp0vd617t+/XpVo9E4/Vt56dIlVVEUNT4+/rrnvva6/v3vf6s+Pj5qfn6+o23cuHFq1apVS3QtqqqqgPrFF1+UuP+N3OhnVn4/cCb3QwghhBDXKunvB1IpJR5YF04eZ+t//weAKc+M5sr/yIOC3qUKAB4RV+26d/QH+N9z8PVL2GxWcrT2yig3WeD8rpj+XTI/HDrL497L6FfzU7z1JwAwuVZEp/O4yehHg6qqWPKt9/yhqtepILwFJpMJs9lM//792blzJ2vWrGHbtm2oqkqHDh2wWOwbDgwZMoT8/Hx++ukn9u/fz3vvvYe7uzshISF8/vnnACQlJZGWlsaMGTMAGD16NFu2bGHNmjXEx8eTkJDA7t27i8QQFxdHnTp12LNnD6+//jpHjhwhOjqabt26sW/fPlasWMHmzZsZOnQoAP7+/mg0GlauXInVai32ulauXInFYim2Imrw4MG4u7uzfPnyv3z/wF7dtWDBAry8vG5Y3ZSRkYGvr+8dOee1mjVrxoYNG0hOTgZg7969bN68mfbt25f4GPn5+SiKgotj11MwGo1oNBo2b9583XHXXte2bdto2bIlBoPB0RYVFUVSUhIXL168lcsSQgghhBAPCFnoXDywLp06SWWvepzjCFqrPcmhVXzRe/d39PEue9WUvIyTqMDcyoM4UKaeo1kWOL+z8gusnM8yk5aRB0C94CwAPDzq4eNdFx/vJqUZ3n2lwGxjwYhN9/y8L8xohd5Fe1tjVVVlw4YNrF+/nvbt27N69Wq2bNlCs2bNAFi6dCkhISGsXr2a7t27c+zYMbp160atWrUACAsLcxyrMCEREBCAt7c3AJcvX2bJkiUsW7aM1q1bA7Bo0SLKlStXJJannnqKMWPGOJ4PHDiQPn36ONZTioiIYObMmbRq1Yq5c+cSHBzMzJkzGTt2LJMmTaJBgwZERkbSp08fR1zJycl4eXkRFBRU5HwGg4GwsDBHAud2rV27ll69epGTk0NQUBDx8fGUKVOm2L6HDx9m1qxZxMXF/aVzXs/48ePJzMykWrVqaLVarFYrb731Fn369CnxMZo0aYKbmxvjxo3j7bffRlVVxo8fj9VqJS0trdgxxV3X6dOnqVSpklO/smXLOl7z8fG5jSsUQgghhBD3M/k0Lh5Y+WfTsSkK+RcLqLLjO3ujogegVe1f+fsbjSkX4f3nAEsOh00VmFz+H6w01gDAQ6vBJJVSd0yexUqrqRtp/u4PVPPcyKBaS3DXHgMgIvwlIiJeQaORXPiDaO3atbi7u2M0Gmnfvj09e/akf//+6HQ6Gjdu7Ojn5+dH1apVOXjwIADDhw9nypQpNG/enNjYWPbt23fD8xw9ehSLxUKjRo0cbV5eXlStWrVI3wYNGjg937t3L4sXL8bd3d3xiIqKwmazkZKSAtgrt06fPs3SpUtp2rQpn332GTVr1iQ+Pr7E9+LqSp7rWbp0qVMcCQkJjtciIyNJTExk69atREdH06NHD86ePVvkGCdPniQ6Opru3bszaNAgR/vVx42JiSlRzAkJCU7jli5dCsD//vc/li5dyrJly9i9ezdLliwhLi6OJUuWlOi4YK9A++yzz/jqq69wd3fHy8uLS5cuUa9ePTTFJP2vd123ew1CCCGEEOLBJZ8OxQOpID2dUzPmkN/oWXzOncbFemWRY8X+YTGobC6+5dycB5mzuKS3V1T56rX8KySApt7uaGT3tzsm9UI2pzPz0GksPFdjBVqNDZsVQMFkCint8O47OoOGF2a0unnHu3DeWxUZGcncuXMxGAyUK1cOnU7HmjVrbjpu4MCBREVFsW7dOr777jveeecdpk2bxrBhw24ndCdubs4/41lZWQwePJjhw4cX6VuhQgXH1x4eHnTu3JnOnTszZcoUoqKimDJlCm3btiUiIoKMjAxOnTpVpDrLbDZz5MgRoqKibhpbly5dnJJ1wcHBTnGHh4cTHh5OkyZNiIiIYOHChUyYMMHR59SpU0RGRtKsWbMiC31fvfudp6fnTWMBewLv6nGFFUgvv/wy48ePp1evXgDUqlWLP/74g3feeYd+/fqV6NgA7dq148iRI5w/fx6dToe3tzeBgYFOlXE3u67AwECnHfsAx/PAwEAqVqxY7DUIIYQQQogHlySlxANHVVV2fLOOrY3rgfkArtYLnPKxJ5tsGntSSu95zforl45DZhq5GiMAZQ16hobKB5o7xWpT2XbkArv+sK/7UitIRauxoShawsMn4OYWgdFYdPrVo05RlNueRnevFSZSrla9enUKCgrYvn27Y/rehQsXSEpKokaNGo5+ISEhxMTEEBMTw4QJE/joo48YNmyYo+Lo6vWdwsLC0Ov17Nixw5FIysjIIDk5mZYtW94wxnr16nHgwIEicd6IoihUq1aNrVu3AvDss88ybtw4pk2bxrRp05z6zps3j5ycHJ577rmbHtfDwwMPj5KtnWaz2cjPz3c8P3nyJJGRkdSvX59FixYVqTa6lesrZDKZih2Xk5NT5Phardaxa96tKpyG+MMPP3D27Fm6dOnieO1m19W0aVNeffVVLBYLer296jU+Pp6qVas6pu7dzrULIYQQQoj7lySlxAPnj/2JbNy8EVvZEExnjqNg4YKHCQCNxh0Afb1n/xyw8V3Y+A4AeX72D84yZe/OWr3nJGM+20uQ22k6VNpHVX975ZpO50WFkOdLOTpxt0RERNC1a1cGDRrE/Pnz8fDwYPz48QQHB9O1a1cARo4cSfv27alSpQoXL17kxx9/pHr16gCEhoaiKApr166lQ4cOmEwmPDw86NevHy+//DK+vr4EBAQQGxuLRqNBuUlV47hx42jSpAlDhw5l4MCBuLm5ceDAAeLj45k9ezaJiYnExsbSt29fatSogcFgYNOmTXz88ceMGzcOsFdUTZ06lZdeegmj0Ujfvn3R6/V8+eWXvPLKK0yZMoXHHnvM6bxJSUlFYqlZs6YjsVIoOzubt956iy5duhAUFMT58+eZM2cOJ0+epHv37oA9cfPkk08SGhpKXFwc586dc4wPDAy84fUXVhFlZWVx7tw5EhMTMRgMTgnCa3Xu3Jm33nqLChUqULNmTfbs2cP06dP55z//6eiTnp7OsWPHOHXqlNP1BgYGOmJatGgR1atXx9/fn23btjFixAhGjRrlmHZZkuvq3bs3kyZNYsCAAYwbN45ff/2VGTNm8MEHH9zwurOysjh8+LDjeUpKComJifj6+jpVyAkhhBBCiPuPJKXEA+fy8bNU9HycJC7gUgBWQKerAroyaF3sHxZ17ldNaTmx0/6nzkiOm71axySLm99Rv5+1L2Y+uM5yQtxTHO0uLlKN9rBbtGgRI0aMoFOnTpjNZlq2bMnXX3/tSMhYrVaGDBnCiRMn8PT0JDo62pFkCA4OZtKkSYwfP57nn3+e5557jsWLFzN9+nRiYmLo1KkTnp6ejB07luPHj2M0Gm8YS+3atdm0aROvvvoqTzzxBKqqUrlyZXr27AlA+fLlqVixIpMmTSI1NRVFURzPR40a5TjOqFGjCAsLY9q0acyYMYPs7GwAli9f7pjmdrXi2o4fP0758uWd2rRaLYcOHWLJkiWcP38ePz8/GjZsSEJCAjVr1gTslUGHDx/m8OHDRcbfbNfEunXrOr7etWsXy5YtIzQ0lNTU1OuOmTVrFq+//jr/+te/OHv2LOXKlWPw4MG88cYbjj5r1qzh+ef/TC4XXm9sbCwTJ04E7ImqCRMmkJ6eTsWKFXn11Ved7mlJrsvLy4vvvvuOIUOGUL9+fcqUKcMbb7zBCy+8cMPr3rlzJ5GRkY7no0ePBqBfv34sXrz4hmOFEEIIIUTpUtQ7sTf4QyozMxMvLy8yMjJKvG6HuPt+W/gNSSmn2Zl7FL/j+0CxYvDog0brj5unhgq1g3iqb/U/ByzqwPlTv/JRm/+wx6U8P13MorWvJ0vrhF3/JKJETl3KZcFPR0n4/RznMtKIe/I9tFwmIKAjer0XgWW74u3d4OYHegTk5eWRkpJCpUqVbppcEc6ys7MJDg5m2rRpDBgw4J6fPz09ndatW+Pp6ck333yDq6vrzQeJB96Nfmbl9wNncj+EEEIIca2S/n4glVLigVJw8SLZ23ZQEFiO6nt3k+5lo0CnvbLr3gX6j6oK5ao7D7Lk8N+gLszI8YYce0VPGYN8698Ji7aksHhrKp3CvuWVul872qtVnYReL9u3i9uzZ88eDh06RKNGjcjIyGDy5MkAjimB95qvry/ff/89c+bMYdu2bbRu3bpU4hBCCCGEEOJhI3OYxAMlZ+dOMq0FXC7IQNFexHplbShF0WNxMYNXMTu8mXO4oPcGoLGXG+MqBTK20o3XZhElczrTvjhz0/J/XGnRUsbvKXQ671KLSTwc4uLiqFOnDm3atCE7O5uEhATHItqlwc/PjzfeeEMSUqJUpaen06dPHzw9PfH29mbAgAFkZWXdcExeXh5DhgzBz88Pd3d3unXr5rTL4d69e/n73/9OSEgIJpOJ6tWrM2PGjLt9KUIIIYQQgFRKiQfI0d07+XJDAhmhGlyPbkfrfdUOe4oB/zLlwc3vz7ZjP8OxbZB1hhxf+9SLSF8PRlaUhNRfNefHw/x2KoNfT5wgyO08/q6XwQaPP/4xfr4tSjs88YCrW7cuu3btKu0whLjv9OnTh7S0NOLj47FYLDz//PO88MILLFu27LpjRo0axbp16/jss8/w8vJi6NChPPPMM2zZsgWwrz8WEBDAJ598QkhICFu3buWFF15Aq9UydOjQe3VpQgghhHhESVJKPDB2fbQSnb8/cBmNxV6h45VjRu/vSZbigpu715+drQXwSTcw2/8HOUdr353PVXbd+8uOXcjh/fVJ+Bkv8Fbzt9BrC+DK7vH6KxVpQggh7qyDBw/y7bffsmPHDho0sK/VN2vWLDp06EBcXBzlypUrMiYjI4OFCxeybNkynnrqKeDPnRJ//vlnmjRp4rTTIkBYWBjbtm1j1apVkpQSQgghxF0nn9DFA8ND9aYAKzqzGY3NngXJCxpCluFfAGj12j87my+DOQsVOFd3IBmB9QBw1WqvPay4BVabyrH0HAAeCziNXluAiha93gdv78a4u1Ut5QiFEOLhtG3bNry9vR0JKYA2bdqg0WjYvn17sWN27dqFxWKhTZs2jrZq1apRoUIFtm3bdt1zZWRk4Ovre93X8/PzyczMdHoIIYQQQtwOqZQSD4QCsxktWgpUM22+Xc+WiKArr+gBG1qdlrDHr1pvxmxPnAyv9iqfebZzVPJIpdTtu5htJurDn8jIyaRR4K80DDoKgH+ZSOrUnl/K0QkhxMPt9OnTBAQEOLXpdDp8fX05ffr0dccYDAa8vb2d2suWLXvdMVu3bmXFihWsW7fuurG88847TJo06dYuQAghhBCiGPIJXTwQUkaORNVqseZeRmu1/PmCoqeR3zvEvFODmk8E/9lusSeltnrXdTQFGvQ09HK7VyE/dPadzODs5Xw6VvqOwbWXUN0rAQAXg38pRyaEEA+u8ePHoyjKDR+HDh26J7H8+uuvdO3aldjYWNq1a3fdfhMmTCAjI8PxOH78+D2JTwghhBAPH6mUEve9yxdzWelZBrPuAq5HDvBTtQoAqGhQFC2Bah4Yrko22ayQdRaAHK19gfOfGlWjipvxnsf+MCiw2th97BJbj5wHoHpABgBublVwcwunfPnnSjM8IYR4oI0ZM4b+/fvfsE9YWBiBgYGcPXvWqb2goID09HQCA4vfwCMwMBCz2cylS5ecqqXOnDlTZMyBAwdo3bo1L7zwAq+99toN43FxccHFxeWGfYQQQgghSkKSUuK+lnH2NF+9v5B8Nw3a7CzHWlKoKkZTZQBcWg4BF3d7e0E+zG0OF34HIFtjT0S5ybS92/Z/m1N495tDBLufok2FZAKMJwCoWPFfBJbtXMrRCSHEg83f3x9//5tXnDZt2pRLly6xa9cu6tevD8APP/yAzWajcePGxY6pX78+er2eDRs20K1bNwCSkpI4duwYTZs2dfT77bffeOqpp+jXrx9vvfXWHbgqIYQQQoiSkaSUuK/9tmkD5QuCOMwxDFYFAKPVFaNrB/JdQ1BV0D/e9c8Bl447ElIWRYtZowckKfVXHEqzL2A7qv5H+LhccLS7GAKuN0QIIcQdVr16daKjoxk0aBDz5s3DYrEwdOhQevXq5dh57+TJk7Ru3Zr//Oc/NGrUCC8vLwYMGMDo0aPx9fXF09OTYcOG0bRpU5o0aQLYp+w99dRTREVFMXr0aMdaU1qttkTJMiGEEEKIv0I+qYv7Wk7aKbQ6F/RmMyFHkgEwu5Qhz7UCqqqgM2hw87pqCsGVtaSGPjaZii1/cDTLAue37qfkc0xYtY9fUtLRKlZHQsrfP5rQ0Bi8vRvc5AjiYdG/f3/H2jYGg4Hw8HAmT55MQUHBXzruxo0bURSFS5cu3ZlASyAlJYXevXtTrlw5jEYj5cuXp2vXrkXW7Fm7di2tWrXCw8MDV1dXGjZsyOLFi536pKamoigKiYmJJT7/xIkTqVatGm5ubvj4+NCmTRunndNSU1MZMGAAlSpVwmQyUblyZWJjYzGbzTc8blpaGr1796ZKlSpoNBpGjhxZonguX77MyJEjCQ0NxWQy0axZM3bs2OHUJysri6FDh1K+fHlMJhM1atRg3rx5Tn0GDx5M5cqVMZlM+Pv7F3tPjx07RseOHXF1dSUgIICXX375ut9DW7ZsQafT8fjjj9/0GlatWkW7du3w8/O75ffjQbN06VKqVatG69at6dChAy1atGDBggWO1y0WC0lJSeTk5DjaPvjgAzp16kS3bt1o2bIlgYGBrFq1yvH6ypUrOXfuHJ988glBQUGOR8OGDe/ptQkhhBDi0SSf1MV97WJ8PKpGg8fxE/idO2NvVPSgWuj0tJW/xzbGYLqq4O9KUupLn+ZYrzTV93TFoJFv9Vs17vN9rEv8jScCl/F8zaVXWhVqPTaT8MovoyjaUo1P3FvR0dGkpaXx+++/M2bMGCZOnMj7779f2mE53CxpA/YP7G3btiUjI4NVq1aRlJTEihUrqFWrllNibNasWXTt2pXmzZuzfft29u3bR69evYiJieGll176S3FWqVKF2bNns3//fjZv3kzFihVp164d586dA+DQoUPYbDbmz5/Pb7/9xgcffMC8efN45ZVXbnjc/Px8/P39ee2116hTp06J4xk4cCDx8fH897//Zf/+/bRr1442bdpw8uRJR5/Ro0fz7bff8sknn3Dw4EFGjhzJ0KFDWbNmjaNP/fr1WbRoEQcPHmT9+vWoqkq7du2wWu1/E1utVjp27IjZbGbr1q0sWbKExYsX88YbbxSJ6dKlSzz33HO0bt26RNeQnZ1NixYteO+990p83Q8qX19fli1bxuXLl8nIyODjjz/G3d3d8XrFihVRVZUnn3zS0WY0GpkzZw7p6elkZ2ezatUqp/WkJk6ciKqqRR6pqan38MqEEEII8chSxXVlZGSogJqRkVHaoTySLpw7p747crg6dfRY9f0eHdUPurVX43p0VKf/Y4w648UvVPXC0aKDDm9QzRN91LI/7FHL/rBHTcrKVa022z2P/UFntdrUsAnr1CHzh6rfbwhzPDZvaVnaoT2wcnNz1QMHDqi5ubmlHcot69evn9q1a1entrZt26pNmjRR09PT1b59+6re3t6qyWRSo6Oj1eTkZEe/1NRUtVOnTqq3t7fq6uqq1qhRQ123bp2akpKiAk6Pfv36qaqqqpmZmWrv3r1VV1dXNTAwUJ0+fbraqlUrdcSIEY7jhoaGqpMnT1b79u2renh4OMYmJCSoLVq0UI1Go1q+fHl12LBhalZWlqqqqrpnzx4VUFNTU697rceOHVP1er06evToIq/NnDlTBdSff/5ZVVXVcQ179uy59Zt6ReG/M99///11+0ydOlWtVKlSiY957b26npycHFWr1apr1651aq9Xr5766quvOp7XrFlTnTx58g37XGvv3r0qoB4+fFhVVVX9+uuvVY1Go54+fdrRZ+7cuaqnp6ean5/vNLZnz57qa6+9psbGxqp16tS56XUUuhPvx9Vu9DMrvx84k/shhBBCiGuV9PcDKR8R96WczAyWfTCDXC8fCrLOogDWK1PwNNqyeHl5g2+lPwcU5MPRTXBsOzkak6M51GRAoyj3NvgHmM2mMmvD74z5bC9Wm4qPyyUAfH2foHLYy9Su9e/SDfAho6oqlry8e/5QVfUvx24ymTCbzfTv35+dO3eyZs0atm3bhqqqdOjQAYvFAsCQIUPIz8/np59+Yv/+/bz33nu4u7sTEhLC559/DtgXXk5LS2PGjBmAvTJny5YtrFmzhvj4eBISEti9e3eRGOLi4qhTpw579uzh9ddf58iRI0RHR9OtWzf27dvHihUr2Lx5M0OHDgXsC0prNBpWrlzpqOC51sqVK7FYLMVWRA0ePBh3d3eWL1/+l+8f2Ku7FixYgJeX1w2rmzIyMvD19b0j57xaQUEBVqsVo9F5Z1KTycTmzZsdz5s1a8aaNWs4efIkqqry448/kpycTLt27Yo9bnZ2NosWLaJSpUqEhIQAsG3bNmrVqkXZsmUd/aKiosjMzOS3335ztC1atIijR48SGxt7Jy9VCCGEEELcp2Shc3FfOpiwFS+zN+f1l3G36jADJiUCq3szNDo/XNxcnQesfxV2fARAjqEMAFoFDJKQuiV7jl9kWnwyj/kd4N0Wn+FtzADA378d5YN7l3J0D5+C/Hxm9nv2np93+JKV6K9JRJSUqqps2LCB9evX0759e1avXs2WLVto1qwZYF/zJiQkhNWrV9O9e3eOHTtGt27dqFWrFmDf2r5QYaIlICDAsV395cuXWbJkCcuWLXNM31q0aJFjIeerPfXUU4wZM8bxfODAgfTp08exnlJERAQzZ86kVatWzJ07l+DgYGbOnMnYsWOZNGkSDRo0IDIykj59+jjiSk5OxsvLi6CgoCLnMxgMhIWFkZycfFv3rtDatWvp1asXOTk5BAUFER8fT5kyZYrte/jwYWbNmkVcXNxfOmdxPDw8aNq0KW+++SbVq1enbNmyLF++nG3bthEeHu7oN2vWLF544QXKly+PTqdDo9Hw0Ucf0bJlS6fj/fvf/2bs2LFkZ2dTtWpV4uPjMRgMAJw+fdopIQU4nhcurP37778zfvx4EhIS0Onk1xMhhBBCiEeBVEqJ+5LlXB5uLr4EpqXhe/ywvc1YHo3OD4Cgyl7OAy78jg2FT8KeY1b1UQC4ajQokpS6JWcy8wF4qmIi/q4X0GsKAAVPj8dKNzBR6tauXYu7uztGo5H27dvTs2dP+vfvj06nc9qO3s/Pj6pVq3Lw4EEAhg8fzpQpU2jevDmxsbHs27fvhuc5evQoFouFRo0aOdq8vLyoWrVqkb4NGjgvtr93714WL16Mu7u74xEVFYXNZiMlJQWwV26dPn2apUuX0rRpUz777DNq1qxJfHx8ie9FYaLlRpYuXeoUR0JCguO1yMhIEhMT2bp1K9HR0fTo0YOzZ88WOcbJkyeJjo6me/fuDBo0yNF+9XFjYmJKFHNCQoLTuKVL7evE/fe//0VVVYKDg3FxcWHmzJn8/e9/R3PVOnyzZs3i559/Zs2aNezatYtp06YxZMgQvv/+e6dz9OnThz179rBp0yaqVKlCjx49yMvLK1F8VquV3r17M2nSJKpUqVJsnxvdUyGEEEII8WCS/4oU9x1rVja5yUcp0HhR5uwZcgo/Gyl6FOU8zw2vhFu1az60mHPY7lWLl0IGOJp89fLtXVK7/rjIqt0n+P1sFgABbrkAhFUaRblyPXBxCSjN8B5aOhcXhi9ZWSrnvVWRkZHMnTsXg8FAuXLl0Ol0TgtdX8/AgQOJiopi3bp1fPfdd7zzzjtMmzaNYcOG3U7oTtzc3JyeZ2VlMXjwYIYPH16kb4UKFRxfe3h40LlzZzp37syUKVOIiopiypQptG3bloiICDIyMjh16lSR6iyz2cyRI0eIioq6aWxdunRxStYFBwc7xR0eHk54eDhNmjQhIiKChQsXMmHCBEefU6dOERkZSbNmzZx2VwOcdpfz9PS8aSxgT+BdPa6wSqly5cps2rSJ7OxsMjMzCQoKomfPno7KsdzcXF555RW++OILOnbsCEDt2rVJTEwkLi6ONm3aOI7p5eWFl5cXERERNGnSBB8fH7744gv+/ve/ExgYyC+//OIU05kz9s0rAgMDuXz5Mjt37mTPnj2O6ZY2mw1VVdHpdHz33Xc3vKdCCCGEEOLBJJ/axX0n/b//5UJqCtmVq5OnXMak2LNSiqJD0efg7ucO11ZAWXI4p7dPfwly0dO+jBcd/L2uPbS4jklf/fb/7N15fMx3/sDx18xkJjNJJolcEgmREEcUdd9HXAmVZrfqWNbRYptu3OpsK1it0mBdq9pV7G/RLlU0qEbriLOOKKVCImmQOCKE3Md8f38MUyOEHhLH+/l4zKO+n+/n8/m+v99MmHn3c3AqNZ0JTRYw0C8NW415PSCjMVASUo+RSqX6zdPoytqdRMrdateuTVFREQcPHrRM37t27Rrx8fEEBgZa6lWuXJnw8HDCw8OZNGkSn3zyCcOHD7eMOLp7fSd/f3+0Wi2HDh2yJJIyMzM5c+ZMieli92rYsCGnTp0qEWdpVCoVtWrVYt++fQC8+uqrTJgwgTlz5jBnzhyruh999BE5OTkMGDDgof0ajUaMRuMjxWAymcjPz7ccX7x4kaCgIMuOdup7dg/9Nfd3h8FgKLWdvb099vb2XL9+nW3btjF79mzAvGNhYWFhiRg0Gg0mk+mB/Sm3d3C7c18tWrTgvffe48qVK3h4mP9OiYmJwdHRkcDAQLRaLSdOnLDq41//+hffffcd69atw8/PD3t7+0d+pkIIIYQQ4ukgSSnxxPn28iVOB7hiSNmDjY2eHMtu11qcNIBLtZKNCrLJ1Zn/r3ltez3v1/Apq3CfCak38qhivIC/08+WMo3GDgdjYCmtxPMuICCAsLAwhg4dytKlSzEajUycOBFvb2/CwsIAGDVqFF27dqVGjRpcv36dHTt2ULt2bQB8fX1RqVRER0fTrVs3DAYDRqORgQMHMm7cOFxcXPDw8CAyMhL1I0zHnTBhAs2bN2fYsGEMGTIEe3t7Tp06RUxMDIsWLeLYsWNERkbSv39/AgMD0el07Nq1i08//ZQJEyYA5hFVs2fP5q233kKv19O/f3+0Wi0bN25k8uTJzJgxgxdesJ7OGh8fXyKWOnXqoNVqrcqys7N57733ePnll/Hy8iI9PZ3Fixdz8eJFevbsCZgTUu3bt8fX15eoqCiuXr1qae/p6Vnq/d8ZCZWVlcXVq1c5duwYOp3OKkF4r23btqEoCjVr1iQhIYFx48ZRq1YtXnvtNcA8Eqtdu3aMGzcOg8GAr68vu3bt4j//+Q9z584FzFMuP//8c7p06YK7uzsXLlzggw8+wGAw0K1bNwC6dOlCYGAg/fv3Z/bs2Vy6dIl33nmHiIgIbG+P3Lv3uXp4eKDX60uU3ysjI4OUlBRSU1OBX34enp6eD31mQgghhBCifElSSjxRoufNJ7lAQa3kYZNz664RUSpUGjfsqlQFm7vWc9n2NiR+B5nnyfE0715l0MhSaY+i2KQwbPVRfkrLpJL+KC+4nQLAwSGQenX/hVZbARsbh4f0Ip53y5cvZ+TIkXTv3p2CggLatm3Lli1bLAmZ4uJiIiIiuHDhAo6OjoSEhDBv3jzAPP1q2rRpTJw4kddee40BAwawYsUK5s6dS3h4ON27d8fR0ZHx48dz/vz5ErvE3atevXrs2rWLt99+mzZt2qAoCtWqVaN3794A+Pj4ULVqVaZNm0ZycjIqlcpyPHr0aEs/o0ePxt/fnzlz5jB//nyys7MBWLNmDX369Clx3fuVnT9/Hh8f6+S4RqPh9OnTrFy5kvT0dFxdXWnSpAmxsbHUqVMHMI8eSkhIICEhoUT7h+2a2KBBA8ufjxw5wurVq/H19SU5OfmBbTIzM5k0aRIXLlzAxcWFHj168N5771kl1D777DMmTZpEv379yMjIwNfXl/fee8+ynpVeryc2NpZ//vOfXL9+nYoVK9K2bVv27dtnGRWl0WiIjo7mzTffpEWLFtjb2zNw4ECmT59e6j09ik2bNlmSaPDLzyMyMpKpU6f+7v6FEEIIIcTjo1L+iL3Bn1E3b97EycmJzMzMR163Q/w+G/8WyTlPe5wSj3K9KAu1osXG6a+oVAZUaj1V67nx0t/rmSsX5MD7v+yQ9a8qf2W631B6elZgYW3fcrqDp8fpSzcJ+WcsVR1/5t3mv0xTcnfvQr26S8oxsmdTXl4eSUlJ+Pn5PTS5IqxlZ2fj7e3NnDlzGDx48MMb/MEyMjLo2LEjjo6ObN26FTs7u4c3Ek+90n5n5fOBNXkeQgghhLjXo34+kCEl4omhmEwY1HYohbnUOG2efqFS2aLWVECjKcC5oh21W961TXthDgCHHevw5y7f8u8abwBgUMvb+mGS07PZfcY8LahOxUwAbLRuVPToTlXfv5dnaEIQFxfHmjVrSExM5OjRo/Tr1w/AMiWwrLm4uLB9+3Y6duzI/v37yyUGIYQQQgghnkUyfU88Mc5PmYKNyhV14XVMavO0vWKNDVrAqcoq+k5aa92gwDylZqX3n9mfbwOYF92tavj1O4s9T5LTswmasxMPwxUGBn5LbTfzDliuFZrzwgvzyzk6IcyioqKIj49Hp9PRqFEjYmNjcXNzK7d4XF1dmTJlSrldXwghhBBCiGeRJKXEE8FkMrHlxg2uudmgv3aDDHuDuVxtXj/KX3+f6TKFuQDk3F73aGAlV0I9nGnuJOsglebslSwUBV7y30GrSr+M+jAYKpdjVEL8okGDBhw5cqS8wxBCCCGEEEI8ZpKUEuVOURS2/3stl9zcsLmRDtcukFixAgA23E5KdZ5k3SjvJtww7xSXY2NOWDVysqd1Bdku/EEUReHC9VzOXc0CwNfZPNKsokd3nCs0w7NiaHmGJ4QQQgghhBDiOSNJKVHu0s6exuanW+AE9rduYQI0ig1onFHbNgZA517lrgbH4d8dobgAgFyNeQFaWUuqdGPX/sD6oxfpWjWGKc3j8DSkA1DR82Xc3TqWc3RCCCGEEEIIIZ43kpQS5S47PR2tjQHPtDTckxJJdncGQwO0hjYAaPUa7Jx0vzRIjbudkFKBjZ5ce08ADBpJSpXm4LkMQCGs2la0mqLbpSrs7aqXZ1hCCCGEEEIIIZ5TkpQS5ar4xg3zAueN/obxZiZFt0c7qdBhIp+gpkfx6/EWOv1db9XCHIrQMKr5vzjr1oD47DwwKRhuL44urP3v8Hm++iGVSzfz0GvyLAmp+vU+wWDwxc7Ot5wjFEIIIYQQQgjxPJKklChXmT/9RGIlb0zqCxQpmWjtbu+cp9KSq83Dz7sQe6d7dtMryOZHh+qss60Ft8yLnauAKrLr3n29t/kniouuM6XZQtwM1wHQaOxwc+tQzpEJIYQQQgghhHieSVJKlKsfzyVx0b86uivx2Coa8gwaAFRqA47kYOtRs2Sjwhyybi9u7m2r5YMaPvgabKms15Ws+5zLLyomM7eQhh6J+BjTLOVOTo3KMSohhBBCCCGEEEKSUqIcXUtN49zxG2AAuwKFYkCt9kCl9UWtrY7aTo3Ni53uapAIcf8HiTvI0ZiTUu46LZ3dnMol/idZRnYBLy/aw4XrudjbZONpb17U3KVCK2rWnIbBUOUhPQghhBBCCCGEEI+XrAwtys138/+FUavHMzUN9/PnAFDb1kFraImjqwOtugeC6q51or6dDnvmQdoxctTmHffsZXHz+4pLuc6F67m094llQYdJ9AjYCIBe742dnR8qlaacIxRPk0GDBqFSqVCpVOh0OqpXr8706dMpKip6eONS7Ny5E5VKxY0bN/6YQB9BUlISffv2pVKlSuj1enx8fAgLC+P06dNW9aKjo2nXrh1GoxE7OzuaNGnCihUrrOokJyejUqk4duzYI19/6tSp1KpVC3t7eypUqECnTp04ePCgVZ+DBw/Gz88Pg8FAtWrViIyMpKCgoNR+09LS6Nu3LzVq1ECtVjNq1KhHimf37t2EhoZSqVIlVCoVGzZsKFFn/fr1dOnSBVdX14fer6IodO3a9YF9rVixgnr16qHX6/Hw8CAiIsLq/LZt22jevDlGoxF3d3d69OhBcnKyVZ1Vq1ZRv3597Ozs8PLy4vXXX+fatWu/+z6FEEIIIUTZk2/0olzknT5NXtpliijG48oViu+8E1VaVJrLDHivJXXaeFs3yk7nmo0Tcxq+x+d1zF9k7CQpZUVRFH68mMnRFPPaUa2rJFvOaTQOuLl3ekBLIUoXEhJCWloaZ8+eZezYsUydOpUPP/ywvMOyeFjSBqCwsJDOnTuTmZnJ+vXriY+P5/PPP6du3bpWibGFCxcSFhZGq1atOHjwIMePH6dPnz6Eh4fz1ltv/a44a9SowaJFizhx4gR79uyhatWqdOnShatXrwJw+vRpTCYTS5cu5eTJk8ybN4+PPvqIyZMnl9pvfn4+7u7uvPPOO9SvX/+R48nOzqZ+/fosXry41DqtW7dm1qxZD+3vn//8JyrV/TedmDt3Lm+//TYTJ07k5MmTbN++neDgYMv5pKQkwsLC6NChA8eOHWPbtm2kp6fzyiuvWOrs3buXAQMGMHjwYE6ePMnatWv5/vvvGTp06O++TyGEEEIIUQ4U8UCZmZkKoGRmZpZ3KM+chPdnKgv/PkpZ+E6U8umfgpR/v9RRier1kjL/tX8pi0Z+ev9GH7VVoj4drlT8Ls7yGvXTz2Ub+BNuyc4ExXdCtNIwcqXSc9405ctt7ZTt3/orly5vLu/Qnnu5ubnKqVOnlNzc3PIO5VcbOHCgEhYWZlXWuXNnpXnz5kpGRobSv39/xdnZWTEYDEpISIhy5swZS73k5GSle/fuirOzs2JnZ6cEBgYqmzdvVpKSkhTA6jVw4EBFURTl5s2bSt++fRU7OzvF09NTmTt3rtKuXTtl5MiRln59fX2V6dOnK/3791eMRqOlbWxsrNK6dWtFr9crPj4+yvDhw5WsrCxFURQlLi5OAZTk5OQH3mtKSoqi1WqVMWPGlDi3YMECBVAOHDigKIpiuYe4uLhf/1Bvu/PvzPbt2x9YZ/bs2Yqfn98j93nvs3pUgPLll18+8PzD7jcuLk7x9vZW0tLSSvSVkZGhGAyGUu9z7dq1io2NjVJcXGwp27Rpk6JSqZSCggJFURTlww8/VPz9/a3aLViwQPH29n74Dd72sPu8o7TfWfl8YE2ehxBCCCHu9aifD2SYiShziqLwdXYx6e5OZKXGkaGz44a9/vZZLbZq5f4NC3O4pnUGoJGjHaN8KzKmqmeZxPy0OJV6E4CJTRfxRr2VGG3OA6DTupVnWOIBFEXBVFBc5i9FecDv2K9gMBgoKChg0KBBHD58mE2bNrF//34URaFbt24UFhYCEBERQX5+Prt37+bEiRPMmjULBwcHKleuzBdffAFAfHw8aWlpzJ8/H4AxY8awd+9eNm3aRExMDLGxsRw9erREDFFRUdSvX5+4uDjeffddEhMTCQkJoUePHhw/fpzPP/+cPXv2MGzYMADc3d1Rq9WsW7eO4uLi+97XunXrKCwsvO+IqDfeeAMHBwfWrFnzu58fmEd3ffzxxzg5OZU6uikzMxMXF5c/5JqPS05ODn379mXx4sV4epb8ezkmJgaTycTFixepXbs2Pj4+9OrVi/Pnz1vqNGrUCLVazfLlyykuLiYzM5P/+7//o1OnTmi1WgBatGjB+fPn2bJlC4qicPnyZdatW0e3bt3K7F6FEEIIIcQfRxY6F2XuzIEfyTCZ16LR5mRZytUqW9Q2nnhU8bJukJEE8Vsg6zJ5LuYd9rq4OjGyasUyi/lJl56Vz/mMHFIycrBRF+KiN6+v4uzcDDu7qjg5NSznCMX9KIUmUqfsK/PrVpreEpXut60rpigK3377Ldu2baNr165s2LCBvXv30rJlS8C83k/lypXZsGEDPXv2JCUlhR49elC3bl0A/P39LX3dSbR4eHjg7OwMwK1bt1i5ciWrV6+mY8eOACxfvpxKlSqViKVDhw6MHTvWcjxkyBD69etnWU8pICCABQsW0K5dO5YsWYK3tzcLFixg/PjxTJs2jcaNGxMUFES/fv0scZ05cwYnJye8vLxKXE+n0+Hv78+ZM2d+07O7Izo6mj59+pCTk4OXlxcxMTG4ud0/cZyQkMDChQuJior6Xdd83EaPHk3Lli0JCwu77/lz585hMpl4//33mT9/Pk5OTrzzzjt07tyZ48ePo9Pp8PPz45tvvqFXr1688cYbFBcX06JFC7Zs2WLpp1WrVqxatYrevXuTl5dHUVERoaGhMi1PCCGEEOIpJSOlRJn76b9foLfRUiEjA1WxOTll6zQUnXMEKrUdtg621g2+GgHbJkNeJrm3FzjXa+6/Zsnz6EZOAW1n7+CVf+2hks3/6F/7fwCoVDY0bLCK2rXeR62W/LP4faKjo3FwcECv19O1a1d69+7NoEGDsLGxoVmzZpZ6rq6u1KxZk59++gmAESNGMGPGDFq1akVkZCTHjx8v9Trnzp2jsLCQpk2bWsqcnJyoWbNmibqNGze2Ov7hhx9YsWIFDg4OlldwcDAmk4mkpCTAPHLr0qVLrFq1ihYtWrB27Vrq1KlDTEzMIz8LnU730DqrVq2yiiM2NtZyLigoiGPHjrFv3z5CQkLo1asXV65cKdHHxYsXCQkJoWfPnlZrJt3db3h4+CPFHBsba9Vu1apVj9TuUWzatInvvvuOf/7znw+sYzKZKCwsZMGCBQQHB9O8eXPWrFnD2bNn2bFjBwCXLl1i6NChDBw4kEOHDrFr1y50Oh2vvvqqZXTfqVOnGDlyJFOmTOHIkSN8/fXXJCcnW57D47xPIYQQQgjxx5NvqqJMFVy8iI+NP/GqCzQ+dIgDVVxvn7HBQCpVWzaifsfK1o1uppn/W60jeV4vggkMasmn3pF4NZucgmLqup2hR0C0pVyv937ggsPiyaDSqqk0vWW5XPfXCgoKYsmSJeh0OipVqoSNjQ2bNm16aLshQ4YQHBzM5s2b+eabb5g5cyZz5sxh+PDhvyV0K/b29lbHWVlZvPHGG4wYMaJE3SpVqlj+bDQaCQ0NJTQ0lBkzZhAcHMyMGTPo3LkzAQEBZGZmkpqaWmJ0VkFBAYmJiVaLcz/Iyy+/bJWs8/b+ZeMGe3t7qlevTvXq1WnevDkBAQEsW7aMSZMmWeqkpqYSFBREy5Yt+fjjj636vnv3O0dHx4fGAuYE3t3tKlb840aafvfddyQmJlpGu93Ro0cP2rRpw86dOy0jzwIDAy3n3d3dcXNzIyUlBYDFixfj5OTE7NmzLXX++9//UrlyZQ4ePEjz5s2ZOXMmrVq1Yty4cQDUq1cPe3t72rRpw4wZMx7rfQohhBBCiD+eJKVEmTo/fDg2VXpRRDGagvxfTqhscHeJo8OAv5ZsVJhLsr4S8U3f4cJNe8jKxSC77qEoCqsOprA/8RpqVTH1K5mnQtrZ+VPRoztubkHlHKF4GJVK9Zun0ZW1O4mUu9WuXZuioiIOHjxomb537do14uPjrZIPlStXJjw8nPDwcCZNmsQnn3zC8OHDLSOO7l7fyd/fH61Wy6FDhyyJpMzMTM6cOUPbtm1LjbFhw4acOnWqRJylUalU1KpVi337zNMoX331VSZMmMCcOXOYM2eOVd2PPvqInJwcBgwY8NB+jUYjRqPxkWIwmUzk5//y9+HFixcJCgqiUaNGLF++HPU9Sfhfc393GAyG39TuUUycOJEhQ4ZYldWtW5d58+YRGhoKmKfdgXn9MB8fHwAyMjJIT0/H19cXMK9Lde+9ajTm3w+TyWSpY2Njc986iqI81vsUQgghhBB/PElKiTJjMpn4tmJFrjsmkqPKp0h19xbuNmj0dvdtl11cTIfGn5KTqgZyAbCXpBRHU67zzoYf8XG4yPz287HT5gHg7NQYf/+R5RydeB4EBAQQFhbG0KFDWbp0KUajkYkTJ+Lt7W1ZW2jUqFF07dqVGjVqcP36dXbs2EHt2rUB8PX1RaVSER0dTbdu3TAYDBiNRgYOHMi4ceNwcXHBw8ODyMhI1Gr1Q0f+TZgwgebNmzNs2DCGDBmCvb09p06dIiYmhkWLFnHs2DEiIyPp378/gYGB6HQ6du3axaeffsqECRMA84iq2bNn89Zbb6HX6+nfvz9arZaNGzcyefJkZsyYwQsvvGB13fj4+BKx1KlTx7I49x3Z2dm89957vPzyy3h5eZGens7ixYu5ePEiPXv2BMwJqfbt2+Pr60tUVBRXr161tL/fAuJ3uzNCKCsri6tXr3Ls2DF0Op1VgvBeWVlZJCQkWI6TkpI4duwYLi4ulqRgRkYGKSkppKamWt2vp6en1eteVapUwc/PD4AaNWoQFhbGyJEj+fjjj3F0dGTSpEnUqlWLoCBzAv2ll15i3rx5TJ8+nb/85S/cunWLyZMn4+vrS4MGDQAIDQ1l6NChLFmyhODgYNLS0hg1ahRNmza977pjv+Y+hRBCCCFE2ZOklCgzyfGppFasiDr3Bvap5zhS1fxFQEGDSqUiu9or9213RWUgR2OHBnjR0Q5PWy1tKjzaCIRn2cUb5iRU00rJloSUSqXFxbVNeYYlnjPLly9n5MiRdO/enYKCAtq2bcuWLVssCZni4mIiIiK4cOECjo6OhISEMG/ePMA8pW3atGlMnDiR1157jQEDBrBixQrmzp1LeHg43bt3x9HRkfHjx3P+/Hn0en1poVCvXj127drF22+/TZs2bVAUhWrVqtG7d28AfHx8qFq1KtOmTSM5ORmVSmU5Hj16tKWf0aNH4+/vz5w5c5g/fz7Z2dkArFmzhj59+pS47v3Kzp8/bxkRdIdGo+H06dOsXLmS9PR0XF1dadKkCbGxsdSpUwcw71KXkJBAQkJCifYP2zXxTuIG4MiRI6xevRpfX1+Sk5Mf2Obw4cOWpBCYdz4EGDhwICtWrADMa0a99tprJe43MjKSqVOnlhrT3f7zn/8wevRoXnrpJdRqNe3atePrr7+2vFc6dOjA6tWrmT17NrNnz8bOzo4WLVrw9ddfYzAYABg0aBC3bt1i0aJFjB07FmdnZzp06MCsWbNKvfaj3KcQQgghhCh7KuWP2Bv8GXXz5k2cnJzIzMx85HU7xP0VFxXy3fub2Gs6gd2VS2iuXbCcU2kqYevYh6DXAglsdvv/tisKbJ0Al47z47WrdGq8jIpaNT+0rldOd/Dk+CntJlt/vMTxCzfYfeYSY5rvprbxSypV6kPNGlNQq20f3okoc3l5eSQlJeHn5/fQ5Iqwlp2djbe3N3PmzGHw4MFlfv2MjAw6duyIo6MjW7duxc7u/qM6xbOltN9Z+XxgTZ6HEEIIIe71qJ8PZKSUKBNx6/+H7paCWl+M043rZAFaTXVU9i2pZH8Tl8aVqF7/ri3RM87B90sByHY0byVvbyNvV4Dx645z4mImf6+/jP6df7CU2+rcJSElnglxcXGcPn2apk2bkpmZyfTp0wEsUwLLmouLC9u3b2fx4sXs37+fjh07lkscQgghhBBCPGvkW74oE+f/8x8qBA7A5/wFjJdTyXJzArUjao0b7f3W4fpX60Vyyb8FwAH3VmxtPBFywF7zdCwI/bidv56DWlVMo4q/JKTUah3OFZqV0kqIp0tUVBTx8fHodDoaNWpEbGwsbm5uD2/4mLi6ujJlypRyu74QQgghhBDPIklKiceuKDeXc37VKdb/jGfeTYpv766kaMxrhOgM93kbFubws96TPwW+DznmIkeb5zspNWn9cb44ehFPw8/U9ky7XaqmTeuDaDQGNLefpxBPuwYNGnDkyJHyDkMIIYQQQgjxmElSSjx2F5KTueXqjjr3OpmmfLR2t6eYqcz/tXFwKtmoIIc0Ww8A7DRq2lcwMtin/EZJlDdFUVh35AKV7H5mSosoS7lWWwGdzqUcIxNCCCGEEEIIIX4bSUqJx0pRFL7fegoA+0sXKFBBgV4HgEptXixY23nC3Q3gwmE4f5Dc2+sj+Rl0fFrXr2wDf4Kcz8ghKT2bwmKFSg6XALCxccTOrhpeXvffsVAIIYQQQgghhHjSSVJKPFYHP/2CileLSSAfm/xcigC1rjZqjQdqrT+Obno0br6/NDj+P/jybwDkubYGwHB7ut/zKPFqFp3m7sJRm0lI1UPUcU0EwNW1PS/UmVfO0QkhhBBCCCGEEL+dJKXEY5Nz6BDZe0+i8Qyk0aEjnDGqQWuDjW1j1Bo1PTqdxqX731GpVL80yjAnXbBzJdetNgAGzfOblDqddgtFgT8HfE0b772Wcr2tZzlGJYQQQgghhBBC/H6SlBKPzc1t34BJRZGqGJvcTIqdXM0nVFrybTPx9CyEexc5L8wFIKX+YJJqDIbkS8/lSKlbeYVsO3mZPWevAhDgat6NsEKFlhgdalO58qByjE4IIYQQQgghhPj9JCklHpu4/DwOV9FA0XFe0KooVptHRKlUWuzU+WBzn93iivL4rGIIo3QvQbJ5/ST9czhSatGOBJbuOkd99xNMbLIdd1vzbntVqgzGzbV9+QYnhBBCCCGEEEL8ASQpJR4LU7GJE4qeYnJxOHeCcx537Zyn0lHJlAM299l1rzCXEw41APNaUi5aDX/2cC6boJ8gP6fnAPBKjd342CfdLlVjb1et/IISQgghhBBCCCH+QM/fEBRRJg6t2AwqUBcWoFIUUECldkVj2wiVSouNKh909iUbFuWRrTGPoBpdtSJHWtahq7tz2QZfjlKu5bD7zFVSMsxJqUpG83TGav7jaNZ0MwZD5fIMTzynBg0ahEqlQqVSodPpqF69OtOnT6eoqOh39btz505UKhU3btz4YwJ9BElJSfTt25dKlSqh1+vx8fEhLCyM06dPW9WLjo6mXbt2GI1G7OzsaNKkCStWrLCqk5ycjEql4tixY498/alTp1KrVi3s7e2pUKECnTp14uDBg1Z9Dh48GD8/PwwGA9WqVSMyMpKCgoJS+01LS6Nv377UqFEDtVrNqFGjHime3bt3ExoaSqVKlVCpVGzYsOFXxwzw3nvv0bJlS+zs7HB2dr7vtVJSUnjppZews7PDw8ODcePGWb2H7n6f3f2qU6eOpc7MmTNp0qQJRqMRDw8P/vSnPxEfH//Q+3yU+IQQQgghRNmTpJR4LNTHM0Ctxub2FykbRYet00C0dm3Qqgvwr1YEAV3MlQtzYd1gWBYMCd+So9EDYPecTdu7eiufTnN3MWLVNwyqPpqPO41CbUoBwM2tAw63R5AJUR5CQkJIS0vj7NmzjB07lqlTp/Lhhx+Wd1gWD0vaABQWFtK5c2cyMzNZv3498fHxfP7559StW9cqMbZw4ULCwsJo1aoVBw8e5Pjx4/Tp04fw8HDeeuut3xVnjRo1WLRoESdOnGDPnj1UrVqVLl26cPWqef2406dPYzKZWLp0KSdPnmTevHl89NFHTJ48udR+8/PzcXd355133qF+/fqPHE92djb169dn8eLFvzlmMD//nj178uabb963j+LiYl566SUKCgrYt28fK1euZMWKFUyZMsVSZ/78+aSlpVle58+fx8XFhZ49e1rq7Nq1i4iICA4cOEBMTAyFhYV06dKF7OzsUu/zYfEJIYQQQohyoogHyszMVAAlMzOzvEN5qpyfOEmJG7lGeW/KP5T1ndorUb1eUha8+qqy6I1vlZVjR5RscDZGUSIdLa9+axcrFb+LU1alppd98OVob8JVxXdCtNJ3wXRl+7f+lteevW2VoqK88g5P/E65ubnKqVOnlNzc3PIO5VcbOHCgEhYWZlXWuXNnpXnz5kpGRobSv39/xdnZWTEYDEpISIhy5swZS73k5GSle/fuirOzs2JnZ6cEBgYqmzdvVpKSkhTA6jVw4EBFURTl5s2bSt++fRU7OzvF09NTmTt3rtKuXTtl5MiRln59fX2V6dOnK/3791eMRqOlbWxsrNK6dWtFr9crPj4+yvDhw5WsrCxFURQlLi5OAZTk5OQH3mtKSoqi1WqVMWPGlDi3YMECBVAOHDigKIpiuYe4uLhf/1Bvu/PvzPbt2x9YZ/bs2Yqfn98j93nvs3pUgPLll18+tF5pMS9fvlxxcnIqUb5lyxZFrVYrly5dspQtWbJEcXR0VPLz8+97nS+//FJRqVSl/ryuXLmiAMquXbseGndp8d1Pab+z8vnAmjwPIYQQQtzrUT8fPF9DUUSZSPjxBEn6TAqUYtQF5v97rajMy5fZ2N5nuk++eWe5hbVG0TjoW2LdWgBg95zsupeZW0jY4r28+d8jeDuk0tQ7FQA3t060brWPFs1j0GhsyzlK8TgoikJBQUGZvxRF+d2xGwwGCgoKGDRoEIcPH2bTpk3s378fRVHo1q0bhYWFAERERJCfn8/u3bs5ceIEs2bNwsHBgcqVK/PFF18AEB8fT1paGvPnzwdgzJgx7N27l02bNhETE0NsbCxHjx4tEUNUVBT169cnLi6Od999l8TEREJCQujRowfHjx/n888/Z8+ePQwbNgwAd3d31Go169ato7i4+L73tW7dOgoLC+87IuqNN97AwcGBNWvW/O7nB+bROx9//DFOTk6ljm7KzMzExcXlD7nm7/WoMd9r//791K1bl4oVK1rKgoODuXnzJidPnrxvm2XLltGpUyd8fX0f2G9mZibAE/N8hBBCCCHEryMLnYs/VHZ2NrsaNEDhIroLSaS4mr8o5Oh1GAF/1X2+CN5OXH3q1pE0k/ktqQJq2uvLKOrydfDcNX44f4MX3E4xuuFHlnK93gtb24qltBRPu8LCQt5///0yv+7kyZPR6XS/qa2iKHz77bds27aNrl27smHDBvbu3UvLli0BWLVqFZUrV2bDhg307NmTlJQUevToQd26dQHw9/e39HUnkeDh4WFZ5+fWrVusXLmS1atX07FjRwCWL19OpUqVSsTSoUMHxo4dazkeMmQI/fr1s6ynFBAQwIIFC2jXrh1LlizB29ubBQsWMH78eKZNm0bjxo0JCgqiX79+lrjOnDmDk5MTXl5eJa6n0+nw9/fnzJkzv+nZ3REdHU2fPn3IycnBy8uLmJgY3Nzc7ls3ISGBhQsXEhUV9buu+Xv9mpjv59KlS1YJKcByfOnSpRL1U1NT2bp1K6tXr35gnyaTiVGjRtGqVSteeOGFR45FCCGEEEI8OZ6PoSiizFyJP4+iVmOTk41t9nUKtOYkk1HrDoDj/b4HF5gX9c5RmU/+u05VjrQIpLaDoUxiLk9XbuaRcDULgFZVrgNgY+OIo2N9vDxfKc/QhLASHR2Ng4MDer2erl270rt3bwYNGoSNjQ3NmjWz1HN1daVmzZr89NNPAIwYMYIZM2bQqlUrIiMjOX78eKnXOXfuHIWFhTRt2tRS5uTkRM2aNUvUbdy4sdXxDz/8wIoVK3BwcLC8goODMZlMJCWZd7GMiIjg0qVLrFq1ihYtWrB27Vrq1KlDTEzMIz+LR0norVq1yiqO2NhYy7mgoCCOHTvGvn37CAkJoVevXly5cqVEHxcvXiQkJISePXsydOhQS/nd/YaHhz9SzLGxsVbtVq1a9Ujtfm3Mf5SVK1fi7OzMn/70pwfWiYiI4Mcff+Szzz6zlIWHh1vdpxBCCCGEeLLJSCnxhzEVF5O8+iA4gF7RAKBSO6O1D0bReKICtDrVLw2KC+H453D2GwByVFoAGjjaUUn/20ZxPE1W7E1i6len0KiKsbfJo6KDOTlVyasnAQGlL2osng1arfahC1g/ruv+WkFBQSxZsgSdTkelSpWwsbFh06ZND203ZMgQgoOD2bx5M9988w0zZ85kzpw5DB8+/LeEbsXe3noHz6ysLN544w1GjBhRom6VKlUsfzYajYSGhhIaGsqMGTMIDg5mxowZdO7cmYCAADIzM0lNTS0xOqugoIDExESCg4MfGtvLL79slazz9va2irt69epUr16d5s2bExAQwLJly5g0aZKlTmpqKkFBQbRs2ZKPP/7Yqu+7d/tzdHR8aCxgTuDd3e7eUUsP8ygxl8bT05Pvv//equzy5cuWc3dTFIVPP/2U/v37PzABOGzYMKKjo9m9ezc+Pj6W8unTp//uxeiFEEIIIUTZkaSU+MNknU9BrTa/pUxFBWgA1PaoNV5U0F3A0cFE5ZDQXxrEb4WNEQAUqjQUqsyJrOdl171Dydext8nmH63ex8n2lqXcRutUjlGJsqRSqX7zNLqydicpcbfatWtTVFTEwYMHLdP3rl27Rnx8PIGBgZZ6lStXJjw8nPDwcCZNmsQnn3zC8OHDLfd+9/pO/v7+aLVaDh06ZEkkZWZmcubMGdq2bVtqjA0bNuTUqVMl4iyNSqWiVq1a7Nu3D4BXX32VCRMmMGfOHObMmWNV96OPPiInJ4cBAwY8tF+j0YjRaHykGEwmE/n5+ZbjixcvEhQURKNGjVi+fDnqe9bX+zX3d4fBYPhN7R7k3pgfpkWLFrz33ntcuXIFDw8PAGJiYnB0dLR6r4B5h72EhAQGDx5coh9FURg+fDhffvklO3fuxM/Pz+q8h4eHpX8hhBBCCPHkk6SU+EMUFRWxb/x4blTviCb3JnmZ32OPCyps0Bbl0CNoN7Z9PrVudCsNgJ89GnPa/5dk1bOelMopKOLM5SzOX8+hiuMF64SUjRGXCq3KMTohHl1AQABhYWEMHTqUpUuXYjQamThxIt7e3oSFhQEwatQounbtSo0aNbh+/To7duygdu3aAPj6+qJSqYiOjqZbt24YDAaMRiMDBw5k3LhxuLi44OHhQWRkJGq1GpVKVVo4TJgwgebNmzNs2DCGDBmCvb09p06dIiYmhkWLFnHs2DEiIyPp378/gYGB6HQ6du3axaeffsqECRMA84iq2bNn89Zbb6HX6+nfvz9arZaNGzcyefJkZsyYUWL9ovj4+BKx1KlTp8SItOzsbN577z1efvllvLy8SE9PZ/HixVy8eJGePXsC5oRU+/bt8fX1JSoqiqtXr1ra3zui6F53RkJlZWVx9epVjh07hk6nK5H0uVtWVhYJCQmW46SkJI4dO4aLiwtVqlR5pJgBUlJSyMjIICUlheLiYkss1atXx8HBgS5duhAYGEj//v2ZPXs2ly5d4p133iEiIgJbW+uNHJYtW0azZs3uu05UREQEq1evZuPGjRiNRst6VE5OThgMD57y/bD4hBBCCCFE+ZCklPhDnDh2jAOBdYBL1Dp8EpeMIk5UBlQa1MX56OzuM2KgIJtUnTsta31IscqciLJRge4hXzyfdq8u2c9PaTeo7pzEC25nAXB2bkrDBv8FVKhUz3ZSTjxbli9fzsiRI+nevTsFBQW0bduWLVu2WBIyxcXFREREcOHCBRwdHQkJCWHevHmAeUrbtGnTmDhxIq+99hoDBgxgxYoVzJ07l/DwcLp3746joyPjx4/n/Pnz6PWlb35Qr149du3axdtvv02bNm1QFIVq1arRu3dvAHx8fKhatSrTpk0jOTkZlUplOR49erSln9GjR+Pv78+cOXOYP38+2dnmzRjWrFlDnz59Slz3fmXnz5+3mlYGoNFoOH36NCtXriQ9PR1XV1eaNGlCbGwsderUAcyjhxISEkhISCjR/mG7JjZo0MDy5yNHjrB69Wp8fX1JTk5+YJvDhw8TFBRkOR4zZgwAAwcOZMWKFY8UM8CUKVNYuXJliVh27NhB+/bt0Wg0REdH8+abb9KiRQvs7e0ZOHAg06dPt4onMzOTL774wrIT472WLFkCQPv27a3Kly9fzqBBgx54nw+LTwghhBBClA+V8kfsDf6MunnzJk5OTmRmZj7yuh3Pqx3ffMOuffuwN9lSZ+92VHlZnPJxR60NwN2+AX/9808QMtO60Xcz2PtDDD1enI+tWkU1gy3d3J15y6/00QBPs6JiE9Xf3kqnKjv4S60vLeUeHt2o+8LCcoxMPG55eXkkJSXh5+f30OSKsJadnY23tzdz5sy575Suxy0jI4OOHTvi6OjI1q1bsbOzK/MYRNkr7XdWPh9Yk+chhBBCiHs96ueDP3xIxsyZM2nSpAlGoxEPDw/+9Kc/lZjakJeXR0REBK6urjg4ONCjRw/Lgqd3pKSk8NJLL2FnZ4eHhwfjxo2jqKjIqs7OnTtp2LAhtra2VK9enRUrVpSIZ/HixVStWhW9Xk+zZs1KLLQq/hh56eZFuqsWu6NRbDjv1ch8QmWDrTYXtHdNq1AUuP4z3EwjR2P+oF/TXs93TWs9swkpRVHYeOwiC74zT5PxdbwIgK2tJ05ODfHx/mt5hifEEyUuLo41a9aQmJjI0aNH6devH4BlSmBZc3FxYfv27XTs2JH9+/eXSwxCCCGEEEI8i/7wpNSuXbuIiIjgwIEDxMTEUFhYSJcuXSzTH8A8NeKrr75i7dq17Nq1i9TUVF555RXL+eLiYl566SUKCgrYt28fK1euZMWKFUyZMsVSJykpiZdeesmyTfWoUaMYMmQI27Zts9T5/PPPGTNmDJGRkRw9epT69esTHBz8WLexfh4V3yrg1qkMADIuH+VHdy23NCkAqNDgbHMRbO5KSm2fCvPrwbH/kqMxl9s/4+tIHfn5OiM/O8baA7v5oM1UmnkdBqCa/xgaN1pLhQrNHtKDEM+XqKgo6tevT6dOncjOziY2NhY3N7dyi8fV1ZUpU6bQsWPHcotBCCGEEEKIZ80fvqbU119/bXW8YsUKPDw8OHLkCG3btiUzM5Nly5axevVqOnToAJjXgqhduzYHDhygefPmfPPNN5w6dYrt27dTsWJFXnzxRf7xj38wYcIEpk6dik6n46OPPsLPz8+yO1Lt2rXZs2cP8+bNs2zXPXfuXIYOHcprr70GmHdO2rx5M59++ikTJ078o2/9uXVm516KMFGoqLmRm3H7TWUDKhtaueyloes5qPLZLw0uHgGgQGvkmmNVAOw1mrIOu0ylZOQA0MrnLO4GcwJPpdLh6NigtGZCPJcaNGjAkSNHyjsMIYQQQgghxGP22IenZGZmAubpD2BefLWwsJBOnTpZ6tSqVYsqVapYpkXs37+funXrUrFiRUud4OBgbt68ycmTJy117u7jTp07fRQUFHDkyBGrOmq1mk6dOj1w+kV+fj43b960eonS5WdlcWjHt1xXZxFf7EHe7SXKdMbe2Lh2p0lwczQTE8GvzS+NCnP4We/FC602MdlnEPDs7riXlJ7NOxtO8H8HkvCyv0Sghzkh5eXVkzatD2Jv71/OEQohhBBCCCGEEOXjsWYCTCYTo0aNolWrVpatnS9duoROp8PZ2dmqbsWKFS1bO1+6dMkqIXXn/J1zpdW5efMmubm5pKenU1xcfN86d/q418yZM3FycrK8Kleu/Ntu/Dmye906zjnacFV9k+AfNuBccDuRp7IBVQHonUB7z6LOhbnEGWtxUzG//bQqFR1c7rM73zNg6a5E/nsghTr2nzCj1fv4Gr4DwM7gi1Yri8EKIYQQQgghhHh+PdakVEREBD/++COfffbZwys/ASZNmkRmZqbldf78+fIO6Yl389YtAJyK9LQ++zMmler2GRvU2nywsS3ZqCDbspZUBxcjSW3r0cfLtYwiLluXb+YB8KJnKgAajSN2dtVxc+9UWjMhhBBCCCGEEOKZ94evKXXHsGHDiI6OZvfu3fj4+FjKPT09KSgo4MaNG1ajpS5fvoynp6elzr275N3Zne/uOvfu2Hf58mUcHR0xGAxoNBo0Gs1969zp4162trbY2t4niSIeKK/AnHSpWehBlp07JrU5z6lSaalqygYbh18q/7wfLnwPORnk2JlHT9lrNNioVSX6fZopisLS3edIvJLFiYvm6avO+jwohgYvfoqTk6wjJYQQQgghhBBC/OEjpRRFYdiwYXz55Zd89913+Pn5WZ1v1KgRWq2Wb7/91lIWHx9PSkoKLVq0AKBFixacOHHCape8mJgYHB0dCQwMtNS5u487de70odPpaNSokVUdk8nEt99+a6kjfr+CokIUBVKvfM/ugLumo6lscNRc/WWkVGEe/N+fIWYKFNwiV2NOSj2La0nFX77FB1tP82PSt0xoOIEFQRNQFacBoNU6l29wQgghhBBCCCHEE+IPHykVERHB6tWr2bhxI0aj0bJ+k5OTEwaDAScnJwYPHsyYMWNwcXHB0dGR4cOH06JFC5o3bw5Aly5dCAwMpH///syePZtLly7xzjvvEBERYRnJFB4ezqJFixg/fjyvv/463333Hf/73//YvHmzJZYxY8YwcOBAGjduTNOmTfnnP/9Jdna2ZTc+8fuYcgrJz9GyuaAar+YeQ3u7XKd1pIvTfKrqj4LWvDsi+TehKJcEQ2WW1Z/IYX1VUJ7NpFRapnn0WNvKx3HRZ1rKbXUVsbWtVF5hCSGEEEIIIYQQT5Q/PCm1ZMkSANq3b29Vvnz5cgYNGgTAvHnzUKvV9OjRg/z8fIKDg/nXv/5lqavRaIiOjubNN9+kRYsW2NvbM3DgQKZPn26p4+fnx+bNmxk9ejTz58/Hx8eHf//73wQHB1vq9O7dm6tXrzJlyhQuXbrEiy++yNdff11i8XPx2yT+7xS3iu1IVxzQKMUA6BwHEOAcQw27zWDvAVVuj0orzAFgQdWB/M/2BTBv0kdF3WObQVrmTlzIZOL646TfyqKt9z4CKiQD4Oc3iooeL6HXe6HRyPRQIYQQQgghhBACHtP0vfu97iSkAPR6PYsXLyYjI4Ps7GzWr19fYp0nX19ftmzZQk5ODlevXiUqKgobG+sERvv27YmLiyM/P5/ExESra9wxbNgwfv75Z/Lz8zl48CDNmjX7o2/5uXQ4NpboM19xRZWNTncW9e0sk0plj16jwNRMGHcWXKuZGxSYk1I3bk9f6+bmxIwAb173cS+P8B+LjccucjL1JtWM+xlY5zMq6MwL5TsaX8De3h/N7cXdhXjaDBo0CJVKhUqlQqfTUb16daZPn05RUdHv6nfnzp2oVCpu3LjxxwT6CJKSkujbty+VKlVCr9fj4+NDWFgYp0+ftqoXHR1Nu3btMBqN2NnZ0aRJE1asWGFVJzk5GZVKxbFjxx75+lOnTqVWrVrY29tToUIFOnXqxMGDB636HDx4MH5+fhgMBqpVq0ZkZCQFBQUP7XvVqlXUr18fOzs7vLy8eP3117l27VqpbXbv3k1oaCiVKlVCpVKxYcOG+9b76aefePnll3FycsLe3p4mTZqQkpJiOf/GG29QrVo1DAYD7u7u932mhw4domPHjjg7O1OhQgWCg4P54Ycf7nu9hIQEjEZjiZ16f889CCGEEEKIJ8+zN3dKlInvvv6aTF0RuuxbrPzqk19OqGywU5tKNijMBSDPxpyY6e7hzBAfdxxtNGURbpm4lm3+0tgpwPxF3c6uGlWrRuDi0ro8wxLiDxESEkJaWhpnz55l7NixTJ06lQ8//LC8w7J4lKRNYWEhnTt3JjMzk/Xr1xMfH8/nn39O3bp1rRJjCxcuJCwsjFatWnHw4EGOHz9Onz59CA8P56233vpdcdaoUYNFixZx4sQJ9uzZQ9WqVenSpQtXr14F4PTp05hMJpYuXcrJkyeZN28eH330EZMnTy6137179zJgwAAGDx7MyZMnWbt2Ld9//z1Dhw4ttV12djb169dn8eLFD6yTmJhI69atqVWrFjt37uT48eO8++676PV6S51GjRqxfPlyfvrpJ7Zt24aiKHTp0oXiYvMo2qysLEJCQqhSpQoHDx5kz549GI1GgoODKSwstLpeYWEhf/nLX2jTpk2psf+aexBCCCGEEE8oRTxQZmamAiiZmZnlHcoTZ8bkyUpkZKTyv79OVo4FBipRvV5Sonq9pCz8W4zy4zuv/VIx+5qifPE3Rfk4SFEiHZXu0WuVit/FKVuuXC+32P9o0786qfhP2qy0f3+RErmyr7JtR5Cy/Vt/JSFxbnmHJp4gubm5yqlTp5Tc3NzyDuVXGzhwoBIWFmZV1rlzZ6V58+ZKRkaG0r9/f8XZ2VkxGAxKSEiIcubMGUu95ORkpXv37oqzs7NiZ2enBAYGKps3b1aSkpIUzBN5La+BAwcqiqIoN2/eVPr27avY2dkpnp6eyty5c5V27dopI0eOtPTr6+urTJ8+Xenfv79iNBotbWNjY5XWrVsrer1e8fHxUYYPH65kZWUpiqIocXFxCqAkJyc/8F5TUlIUrVarjBkzpsS5BQsWKIBy4MABRVEUyz3ExcX9+od6251/Z7Zv3/7AOrNnz1b8/PxK7efDDz9U/P39S8Tr7e39yLEAypdfflmivHfv3spf//rXR+5HURTlhx9+UAAlISFBURRFOXTokAIoKSkpljrHjx9XAOXs2bNWbcePH6/89a9/VZYvX644OTn9qus+6B5+i9J+Z+XzgTV5HkIIIYS416N+PpCRUuI3KVab3zrGQi25tk63S9WoVGpstKpfKsZvgeOfwcUjAOTaOABgeIYWON947CLFJoVXAzbRxucAGtPPABgMlcs5MvGkUxSF4uKcMn8pivK7YzcYDBQUFDBo0CAOHz7Mpk2b2L9/P4qi0K1bN8vol4iICPLz89m9ezcnTpxg1qxZODg4ULlyZb744gvAvANrWloa8+fPB8ybVOzdu5dNmzYRExNDbGwsR48eLRFDVFQU9evXJy4ujnfffZfExERCQkLo0aMHx48f5/PPP2fPnj0MGzYMAHd3d9RqNevWrbOM4LnXunXrKCwsvO+IqDfeeAMHBwfWrFnzu58fmEd3ffzxxzg5OVG/fv0H1svMzMTFxaXUvlq0aMH58+fZsmULiqJw+fJl1q1bR7du3X5XjCaTic2bN1OjRg2Cg4Px8PCgWbNmpU6Ry87OZvny5fj5+VG5svnvwZo1a+Lq6sqyZcsoKCggNzeXZcuWUbt2bapWrWpp+91337F27VoZ9SSEEEII8Zx4dlaZFmXGZDKRgR1xt9yxNX2DIaAKkMWdt5NWe9cX3rxMFODjOmM5592W80UVoFjBoH76k1I7Tl9hR/wVy7S9FzzzKSoAH+/+GI2BeFYMLecIxZPOZMpl5666ZX7d9u1OoNHY/aa2iqLw7bffsm3bNrp27cqGDRvYu3cvLVu2BMzrGlWuXJkNGzbQs2dPUlJS6NGjB3Xrmu/T39/f0tedRIuHh4dl7aBbt26xcuVKVq9eTceOHQHzRhmVKpXcubJDhw6MHTvWcjxkyBD69evHqFGjAAgICGDBggW0a9eOJUuW4O3tzYIFCxg/fjzTpk2jcePGBAUF0a9fP0tcZ86cwcnJCS8vrxLX0+l0+Pv7c+bMmd/07O6Ijo6mT58+5OTk4OXlRUxMDG5ubvetm5CQwMKFC4mKiiq1z1atWrFq1Sp69+5NXl4eRUVFhIaG/u7kzpUrV8jKyuKDDz5gxowZzJo1i6+//ppXXnmFHTt20K5dO0vdf/3rX4wfP57s7Gxq1qxJTEwMOp0OAKPRyM6dO/nTn/7EP/7xD8D889m2bZtlvchr164xaNAg/vvf/+Lo6Pi74hZCCCGEEE+Hpz8zIMqcKT+fi4ozFbMuoFPlUEwWAFobPbUN26lcKfuXygU5nLSvTqTby6zMdyaz2JywcnvKd91TFIURn8Xxn/3JhNdbxpx271JUcAEAH58BVKrUC7VadtoTz47o6GgcHBzQ6/V07dqV3r17M2jQIGxsbKw2kHB1daVmzZr89NNPAIwYMYIZM2bQqlUrIiMjOX78eKnXOXfuHIWFhTRt2tRS5uTkRM2aNUvUbdy4sdXxDz/8wIoVK3BwcLC8goODMZlMJCUlAeaRW5cuXWLVqlW0aNGCtWvXUqdOHWJiYh75WdxJtJRm1apVVnHExsZazgUFBXHs2DH27dtHSEgIvXr14sqVKyX6uHjxIiEhIfTs2dNqbai7+w0PDwfg1KlTjBw5kilTpnDkyBG+/vprkpOTLedjY2Ot2q1ateqR7tVkMq8RGBYWxujRo3nxxReZOHEi3bt356OPPrKq269fP+Li4ti1axc1atSgV69e5OXlAZCbm8vgwYNp1aoVBw4cYO/evbzwwgu89NJL5Oaa1xwcOnQoffv2pW3btveN5bfegxBCCCGEeHI93ZkBUebyc7L5/p11FNmpsTeZRwhpNH6oDY0IrfwRfqFdIGDYLw0Ks7muNf8fb3edDQMruVHdzpZqdvr7df/UyC0s5lZeEW6GDBpX/GX3KK3WFb2+5IgOIe5HrTbQvt2JcrnurxUUFMSSJUvQ6XRUqlQJGxsbNm3a9NB2Q4YMITg4mM2bN/PNN98wc+ZM5syZw/Dhw39L6Fbs7e2tjrOysnjjjTcYMWJEibpVqlSx/NloNBIaGkpoaCgzZswgODiYGTNm0LlzZwICAsjMzCQ1NbXE6KyCggISExMJDg5+aGwvv/yyVbLO29vbKu7q1atTvXp1mjdvTkBAAMuWLWPSpEmWOqmpqQQFBdGyZUs+/vhjq77v3u3vzoiimTNn0qpVK8aNGwdAvXr1sLe3p02bNsyYMYPGjRtbtatYseJD7wHAzc0NGxsbAgMDrcpr167Nnj17rMqcnJxwcnIiICCA5s2bU6FCBb788kv+8pe/sHr1apKTk9m/fz/q2yNlV69eTYUKFdi4cSN9+vThu+++Y9OmTZZRYYqiYDKZsLGx4eOPP+Yvf/nLb7oHIYQQQgjx5JKklPhVfj5wCE+dD6qio3T9eS+XKhhRaVzQaKvgZK+HRoPMFYsK4Ow3kHqMHI05AVVZr+MtP8/yC/4PkFdYTMypy6Rlmv/PfgXbHAB0OnderL8Mg6EKGs3TnXATZUelUv3maXRl7U4i5W61a9emqKiIgwcPWqbvXbt2jfj4eKskRuXKlQkPDyc8PJxJkybxySefMHz4cMuIo7vXd/L390er1XLo0CFLIikzM5MzZ848cATNHQ0bNuTUqVMl4iyNSqWiVq1a7Nu3D4BXX32VCRMmMGfOHObMmWNV96OPPiInJ4cBAwY8tF+j0YjRaHykGEwmE/n5+ZbjixcvEhQUZNnRTn3PdOf73V9OTo5lGtwdGo15d1NFUTAYDL/qudyh0+lo0qQJ8fHxVuVnzpzB19f3ge0URUFRFMt95eTkoFarUal+WXPwzvGd0Vj79++3ei9s3LiRWbNmsW/fPry9vX/zPQghhBBCiCeXJKXEI7t8+TIbt32NonfEITse7e0vEqi1ANhq73o7xf0fbB4DQK57B4BnYh2pFfuS+WDraVpWOsjiDuvQasyLOdvqPDAa65RzdEKUrYCAAMLCwhg6dChLly7FaDQyceJEvL29CQsLA2DUqFF07dqVGjVqcP36dXbs2EHt2rUB8PX1RaVSER0dTbdu3TAYDBiNRgYOHMi4ceNwcXHBw8ODyMjIEgmN+5kwYQLNmzdn2LBhDBkyBHt7e06dOkVMTAyLFi3i2LFjREZG0r9/fwIDA9HpdOzatYtPP/2UCRMmAOYRVbNnz+att95Cr9fTv39/tFotGzduZPLkycyYMYMXXnjB6rr3JmwA6tSpg1artSrLzs7mvffe4+WXX8bLy4v09HQWL17MxYsX6dmzJ2BOSLVv3x5fX1+ioqK4evWqpb2n54OT+qGhoQwdOpQlS5YQHBxMWloao0aNomnTpvddj+uOrKwsEhISLMdJSUkcO3YMFxcXS1Jw3Lhx9O7dm7Zt2xIUFMTXX3/NV199xc6dOwHzlMvPP/+cLl264O7uzoULF/jggw8wGAyWhdY7d+7MuHHjiIiIYPjw4ZhMJj744ANsbGwICgoCsLwv7jh8+DBqtbrE8/4t9yCEEEIIIZ5MkpQSj+z0qVNkG/RAAWqlANOdL4gq8xcvG91dXxhvpJj/61yFnCqtgGdjx71zV83rZ7WrfAK9zS8jGypUaF5eIQlRrpYvX87IkSPp3r07BQUFtG3bli1btlgSMsXFxURERHDhwgUcHR0JCQlh3rx5gHlK27Rp05g4cSKvvfYaAwYMYMWKFcydO5fw8HC6d++Oo6Mj48eP5/z58+j1pY9CrFevHrt27eLtt9+mTZs2KIpCtWrV6N27NwA+Pj5UrVqVadOmkZycjEqlshyPHj3a0s/o0aPx9/dnzpw5zJ8/n+xs8zp5a9asoU+fPiWue7+y8+fP4+PjY1Wm0Wg4ffo0K1euJD09HVdXV5o0aUJsbCx16piT2jExMSQkJJCQkFCifWm7Jg4aNIhbt26xaNEixo4di7OzMx06dGDWrFmlPrPDhw9bkkJg3vkQYODAgaxYsQKAP//5z3z00UfMnDmTESNGULNmTb744gtat24NgF6vJzY2ln/+859cv36dihUr0rZtW/bt24eHhwcAtWrV4quvvmLatGm0aNECtVpNgwYN+Prrr++7qPyv8Sj3IIQQQgghnkwq5Y/YG/wZdfPmTZycnMjMzJSdgIDtW7fyf/vOcLaoMlVzv6BzYhYZdsXYGNpjo29IeKPZaIZ+ba68ZRwnTu3g3YazSNF7kppfSKi7M5+8ULVc7+G3OpV6k3/tTOD7pAyu3Mrno5CP0JpOUbvWTFxdg7C1dS/vEMUTLi8vj6SkJPz8/B6aXBHWsrOz8fb2Zs6cOQwePLjMr5+RkUHHjh1xdHRk69at2Nk9HVMuxe9T2u+sfD6wJs9DCCGEEPd61M8HMlJKPLK8rFx+KqrIFcWWwGIDN5zcoDARVDbYkI/67qkqBTmsrdiFAypXyDdPcfO3e3p3o/sk9hzbTybxVuNFuBvS0ZrMO0rZ2flLQkqIP1hcXBynT5+madOmZGZmMn36dADLlMCy5uLiwvbt21m8eDH79++nY8eO5RKHEEIIIYQQzxpJSolHdvb4ZQpxo9n176l14zImzIPsKunO8KLTNlRaB3PFghzIv8ktjXkdkz6eLvTydKGpk/2Dun7iXbmVRzXnJPycUixlGo0D9vbVyjEqIZ5dUVFRxMfHo9PpaNSoEbGxsbi5uZVbPK6urkyZMqXcri+EEEIIIcSzSJJS4pGcWL0Z56I8ilERkJ2AijuzPtW0r/Al7voc8HkHvp4EB/4FQE7tFwF4wWigZQWH8gn8d8grLOb1FYc4dzWbWk476Op3GABnpybUqjUDW9uK2Ng82u5aQohH16BBA44cOVLeYQghhBBCCCEeM0lKiYcqvHSJwj0p2LgasDUlYl+cCYDW4U84FBXi3rsXVO8MxoqwsJGlXbbWPG/U7indde/4hUz2JV7DUXeT/s3XWModHGphby/bkgshhBBCCCGEEL+HJKXEQ53ZsZM4402uqxXC474g29aNQhsNKrUTNqqr4FzFnJACKMxjj3MDott8yMk8AxQUYfcU7rqXmVNI/KWbADT0LgZArXHA3284Xp5/KsfIhBBCCCGEEEKIZ4MkpcRDxaakcMmQC0Ctm/mcragCQIUWoyEHtHetFVWUy1svvEXyTS1QBICHTntvl0+0xKtZdP1nLLaaTF6rs4mabjcAsNN741tlSPkGJ4QQQgghhBBCPCMkKSUeKrsgn32FvtwqrkCtCtcwqZPMJ1Q2GHR5oLtre/TCPK7bOAEw2NuNQAcDzZ2frgXOT1zIpKDYRFDlw7T2PmgpN9hVLb+ghBBCCCGEEEKIZ4wkpcRDXS+GM8UeNLv+PWn6y7+cUNngqTsNemfzsaJAYQ45Gj0AEVU8qKTXlX3Av1GxSSH5WjZnr9wC4MVK5ml7Li5tqOjRHTe39uUYnRBCCCGEEEII8WyRpJQoVcYPlygstgXgxczjmCgEQKeB19t9hZ1fSyjKha0ToDCHQpWaQrV5up7hKVtLasjKQ+yIv0pQ5d3MafcNRl0eABWcm1Op0qvlHJ0QQgghhBBCCPFskaSUKFXyf3ZSYKcCFGwU8xpRWvs/0cx5DXZ9F5srbRoBR1cCkKv5Zaqe4Snbde/wz9cBaF/5AM62Ny3ljo71yiskIYQQQgghhBDimfV0ZQ1EmUo9dozLqlsUAN2vL0KNAoDaxgsHg/JLxZxr5Kl09G6+gqDWX5jrALZqVdkH/Rt8/WMaE9YdJzc/Fxd9Bn4V8gF44YVFtG61DxeXluUcoRDla9CgQahUKlQqFTqdjurVqzN9+nSKiop+V787d+5EpVJx48aNPybQR5CUlETfvn2pVKkSer0eHx8fwsLCOH36tFW96Oho2rVrh9FoxM7OjiZNmrBixQqrOsnJyahUKo4dO/bI1586dSq1atXC3t6eChUq0KlTJw4e/GXtuuTkZAYPHoyfnx8Gg4Fq1aoRGRlJQUHBQ/tetWoV9evXx87ODi8vL15//XWuXbtWapslS5ZQr149HB0dcXR0pEWLFmzdutVyPiMjg+HDh1OzZk0MBgNVqlRhxIgRZGZmWuqsWLHC8v6493XlyhVLvfz8fN5++218fX2xtbWlatWqfPrpp1bx/POf/7Rcq3LlyowePZq8vLxS72H9+vV06dIFV1fXX/3zEEIIIYQQ5UtGSon7ys3N5d/r12NyUKPL0fB6bArf1PU3n1TZ4Gp7V8KpIJtjjrXYZetnKappr0elevKTUiaTwqjPj1FUnM/7rWfgarhOoXmGIk6O9bG1rVi+AQrxhAgJCWH58uXk5+ezZcsWIiIi0Gq1TJo0qbxDA6CgoACdrvQ17AoLC+ncuTM1a9Zk/fr1eHl5ceHCBbZu3WqVGFu4cCGjRo1iwoQJLFmyBJ1Ox8aNGwkPD+fHH38kKirqN8dZo0YNFi1ahL+/P7m5ucybN48uXbqQkJCAu7s7p0+fxmQysXTpUqpXr86PP/7I0KFDyc7OLvW6e/fuZcCAAcybN4/Q0FAuXrxIeHg4Q4cOZf369Q9s5+PjwwcffEBAQACKorBy5UrCwsKIi4ujTp06pKamkpqaSlRUFIGBgfz888+Eh4eTmprKunXrAOjduzchISFW/Q4aNIi8vDw8PDwsZb169eLy5cssW7aM6tWrk5aWhslkspxfvXo1EydO5NNPP6Vly5acOXPGkhCdO3fuA+8hOzub1q1b06tXL4YOHfrQn4EQQgghhHiCKOKBMjMzFUDJzMws71DK3OXLl5XIyEhl6pRIZfqImcqxwEAlqtdLSlSvl5SFf4tRbkR1/qXyJ52U7fM7KxW/i1NaHzilHLmRpWQVFZVf8L9CRla+4jshWmk+/RNl+7f+yvZv/ZXvdtRSjhz9q2IyFZd3eOIZkpubq5w6dUrJzc0t71B+tYEDByphYWFWZZ07d1aaN2+uZGRkKP3791ecnZ0Vg8GghISEKGfOnLHUS05OVrp37644OzsrdnZ2SmBgoLJ582YlKSlJAaxeAwcOVBRFUW7evKn07dtXsbOzUzw9PZW5c+cq7dq1U0aOHGnp19fXV5k+fbrSv39/xWg0WtrGxsYqrVu3VvR6veLj46MMHz5cycrKUhRFUeLi4hRASU5OfuC9pqSkKFqtVhkzZkyJcwsWLFAA5cCBA4qiKJZ7iIuL+/UP9bY7/85s3779gXVmz56t+Pn5ldrPhx9+qPj7+5eI19vb+1fHVKFCBeXf//73A8//73//U3Q6nVJYWHjf81euXFG0Wq3yn//8x1K2detWxcnJSbl27doD+42IiFA6dOhgVTZmzBilVatWjxT3H/HzuFtpv7PP8+eD+5HnIYQQQoh7PernA5m+J+6rsLCQPMWGQ4VVuVjgToL/S7fPqFGp1Gi0GriZBl+NgvR4stUGAFy1NjR0ssdeoym32B/FjZwCei3dT+jC3dSocJbmlU4CYGfnR1D7n2jY4P9QqeTXQzxeiqKQXVxc5i9FUR4e3EMYDAYKCgoYNGgQhw8fZtOmTezfvx9FUejWrRuFt4ccRkREkJ+fz+7duzlx4gSzZs3CwcGBypUr88UX5um+8fHxpKWlMX/+fADGjBnD3r172bRpEzExMcTGxnL06NESMURFRVG/fn3i4uJ49913SUxMJCQkhB49enD8+HE+//xz9uzZw7BhwwBwd3dHrVazbt06iouL73tf69ato7CwkLfeeqvEuTfeeAMHBwfWrFnzu58fmEd3ffzxxzg5OVG/fv0H1svMzMTFxaXUvlq0aMH58+fZsmULiqJw+fJl1q1bR7du3R45nuLiYj777DOys7Np0aJFqfE4OjpiY3P/wdb/+c9/sLOz49VXf9kgYtOmTTRu3JjZs2fj7e1NjRo1eOutt8jNzbXUadmyJUeOHOH7778H4Ny5c2zZsuVX3YMQQgghhHi6yPQ9cV+FhYUkFbtwrsCOalm7uGBUoBjAhgqaC9hV9IRjq+DIcgBynPTA07PjXuzZdL5PyqCp5xHeqLfSUq7TupVjVOJ5k2MyUW33iTK/bmLbur85cawoCt9++y3btm2ja9eubNiwgb1799KypXnttVWrVlG5cmU2bNhAz549SUlJoUePHtStWxcAf39/S193Ei0eHh44OzsDcOvWLVauXMnq1avp2LEjAMuXL6dSpUolYunQoQNjx461HA8ZMoR+/foxatQoAAICAliwYAHt2rVjyZIleHt7s2DBAsaPH8+0adNo3LgxQUFB9OvXzxLXmTNncHJywsvLq8T1dDod/v7+nDlz5jc9uzuio6Pp06cPOTk5eHl5ERMTg5vb/f/uSUhIYOHChQ+dMtiqVStWrVpF7969ycvLo6ioiNDQUBYvXvzQeE6cOEGLFi3Iy8vDwcGBL7/8ksDAwPvWTU9P5x//+Ad/+9vfHtjfsmXL6Nu3LwaDwVJ27tw59uzZg16v58svvyQ9PZ2///3vXLt2jeXLzf+O9O3bl/T0dFq3bo2iKBQVFREeHs7kyZMfeg9CCCGEEOLp9HRkEESZKsjLI/HjvRSgITDrNFUKfqaoOAUAe30xfcb6o35lCeTdoFClYUm9iXxRf4z5/FOSlLqeY140uKnPDQC0Og+cnZrg6/vgL1pCPM+io6NxcHBAr9fTtWtXevfuzaBBg7CxsaFZs2aWeq6urtSsWZOffvoJgBEjRjBjxgxatWpFZGQkx48fL/U6586do7CwkKZNm1rKnJycqFmzZom6jRs3tjr+4YcfWLFiBQ4ODpZXcHAwJpOJpKQkwDxy69KlS6xatYoWLVqwdu1a6tSpQ0xMzCM/i4etXQXm5NzdccTGxlrOBQUFcezYMfbt20dISAi9evWyWhD8josXLxISEkLPnj2t1kq6u9/w8HAATp06xciRI5kyZQpHjhzh66+/Jjk52XI+NjbWqt2qVass/dWsWZNjx45x8OBB3nzzTQYOHMipU6dKxHPz5k1eeuklAgMDmTp16n3ve//+/fz0008MHjzYqtxkMqFSqVi1ahVNmzalW7duzJ07l5UrV1pGS+3cuZP333+ff/3rXxw9epT169ezefNm/vGPfzz0mQohhBBCiKeTjJQSJVw4ehw9BkymLKrlmae1qTXeqHXV6NziPGr/1uaKBTnsrNCEaRW6gnnDOtx02nKK+tGsOvgz645cgIIEXg3YS3WnRAB8vPvi7ze8nKMTzxs7tZrEtnXL5bq/VlBQkGXR70qVKmFjY8OmTZse2m7IkCEEBwezefNmvvnmG2bOnMmcOXMYPvz3/77Z29tbHWdlZfHGG28wYsSIEnWrVKli+bPRaCQ0NJTQ0FBmzJhBcHAwM2bMoHPnzgQEBJCZmUlqamqJ0VkFBQUkJiYSHBz80Nhefvllq2Sdt7e3VdzVq1enevXqNG/enICAAJYtW2a1aHxqaipBQUG0bNmSjz/+2Krvu3eXc3R0BGDmzJm0atWKcePGAVCvXj3s7e1p06YNM2bMoHHjxlbtKlb8ZROHOzsqAjRq1IhDhw4xf/58li5daqlz69YtQkJCMBqNfPnll2i19/+7/t///jcvvvgijRo1sir38vLC29sbJycnS1nt2rVRFIULFy4QEBDAu+++S//+/RkyZAgAdevWJTs7m7/97W+8/fbbpT5TIYQQQgjxdJKklLCiKArxSUlc0Vyj9oXjNDqfSoqbEyptZWz0jfH2vPlL5cIcMrTmLxhV9Dp6elagn5drOUX+aObFnCU9K5/xjVdR0yXRUq7Xl5yqI8TjplKpnvj11+64k0i5W+3atSkqKuLgwYOW6XvXrl0jPj7eavpX5cqVCQ8PJzw8nEmTJvHJJ58wfPhwy4iju9d38vf3R6vVcujQIUsiKTMzkzNnztC2bdtSY2zYsCGnTp0qEWdpVCoVtWrVYt++fQC8+uqrTJgwgTlz5jBnzhyruh999BE5OTkMGDDgof0ajUaMRuMjxWAymcjPz7ccX7x4kaCgIBo1asTy5ctR35NEvN/95eTklFjjSXP7vaUoCgaD4ZGfy73x3Lx5k+DgYGxtbdm0aRN6vf6+7bKysvjf//7HzJkzS5xr1aoVa9euJSsrCwcHB8A8VVKtVuPj42O5h3vv9e57+DXPVAghhBBCPB0kKSWsJO/YwcGzP4EGHPNuUKA1f/lQqcxvFRu9DhQFbqVBzjXy1ObzdRwMjPN7chM76Vn5/Hgxk2vZ5i9aAW7ZYIKKFf+M0aEGFT1eekgPQoh7BQQEEBYWxtChQ1m6dClGo5GJEyfi7e1NWFgYAKNGjaJr167UqFGD69evs2PHDmrXrg2Ar68vKpWK6OhounXrhsFgwGg0MnDgQMaNG4eLiwseHh5ERkaiVqtRqVSlxjNhwgSaN2/OsGHDGDJkCPb29pw6dYqYmBgWLVrEsWPHiIyMpH///gQGBqLT6di1axeffvopEyZMAMwjqmbPns1bb72FXq+nf//+aLVaNm7cyOTJk5kxYwYvvPCC1XXj4+NLxFKnTp0So4mys7N57733ePnll/Hy8iI9PZ3Fixdz8eJFevbsCZgTUu3bt8fX15eoqCiuXr1qae/p6fnAew8NDWXo0KEsWbKE4OBg0tLSGDVqFE2bNr3velx3TJo0ia5du1KlShVu3brF6tWr2blzJ9u2bQPMCakuXbqQk5PDf//7X27evMnNm+b/OeHu7m5JGgF8/vnnFBUV8de//rXEdfr27cs//vEPXnvtNaZNm0Z6ejrjxo3j9ddft6w9FRoayty5c2nQoAHNmjUjISGBd999l9DQUKvr3CsjI4OUlBRSU1OBX34enp6epT4zIYQQQghR/iQpJaxk/PADAHpFi22xHVfdKkHhGcAGFcVodLaw4e/ww2oAcn16AU/2AueKovCnxXu5cD2HvrW+wM8pBbXJ/EXP3284dna+5RyhEE+v5cuXM3LkSLp3705BQQFt27Zly5YtloRMcXExERERXLhwAUdHR0JCQpg3bx5gnn41bdo0Jk6cyGuvvcaAAQNYsWIFc+fOJTw8nO7du+Po6Mj48eM5f/78A0fo3FGvXj127drF22+/TZs2bVAUhWrVqtG7d28AfHx8qFq1KtOmTSM5ORmVSmU5Hj16tKWf0aNH4+/vz5w5c5g/fz7Z2dkArFmzhj59+pS47v3Kzp8/bxkBdIdGo+H06dOsXLmS9PR0XF1dadKkCbGxsdSpUweAmJgYEhISSEhIKNG+tF0TBw0axK1bt1i0aBFjx47F2dmZDh06MGvWrFKf2ZUrVxgwYABpaWk4OTlRr149tm3bRufOnQE4evQoBw8eBEqO0EpKSqJq1aqW42XLlvHKK69YFq2/m4ODAzExMQwfPpzGjRvj6upKr169mDFjhqXOO++8g0ql4p133uHixYu4u7sTGhrKe++9V+o9bNq0iddee81yfOfnERkZ+cC1r4QQQgghxJNBpfwRe4M/o27evImTk5Nl++vnwf4PPuDf2bYkFHryUtIObGxUKEUXcXJoSF3nKzTr8QIcXgYZ50Ct5Z/V3+ADr5709XJhbq0qD79AOcjOL6JO5DbcDOnMajPdUm5jY6R1qwNoNKV/0RXij5CXl0dSUhJ+fn4PTa4Ia9nZ2Xh7ezNnzpwSC2iXhYyMDDp27IijoyNbt27Fzs6uzGMQZa+039nn8fNBaeR5CCGEEOJej/r54Mkd3iLKRUFBHieKvHjh8h40pKIUXQSglcdWmjW+CXX+BIV5ZGkM7Ou7nYQXzbvVGX7DwsmPm6IonEzNJPZsOgCuBvNoB53OjXr1PqZpk2hJSAnxBIqLi2PNmjUkJiZy9OhR+vXrB2CZEljWXFxc2L59Ox07dmT//v3lEoMQQgghhBDPIpm+JyyKswvJzKlKoUqDS8F1c6HKHrXaliot6sPLt6dQFObQp24Uh88DmOs9idP3Vu5LZupXp6jvfoKpLTZj1Jm3Hbe19cLdrWM5RyeEKE1UVBTx8fHodDoaNWpEbGwsbm5u5RaPq6srU6ZMKbfrCyGEEEII8SySpJSwSNqwF4PGliKlEBtVHgA6hz9jo87E3vH6LxWL8jh7ex0mP4MOF60Nf65YoTxCLtWPqebFeLtU3UdlY6ql3OhQu7xCEkI8ggYNGnDkyJHyDkMIIYQQQgjxmElSSgDmNVsOJR4nW63CQzmBXVEuoAGVBjUFYGNrrmgyQVEe2RrzbklfvFidSnpd+QV+H4eSM9j24yUOJV9Dr8mjums+mKB6tQk4OTfC0VivvEMUQgghhBBCCCGee5KUEgDsXruWeFMGaGDwnhNcruCCSQ1gg7OSDzcvw7IuUJhDgcqGIrX5rWP/BE7bG/u/H0jJyGZik/kEVDgHJnN5hQrNcXSUhJQQQgghhBBCCPEkkKSUAOD6uXOgVuNuckStb4BJfR5QUKk0OOuz4cIRSD3CBVsPTldoZGlnp9GUX9D3oSgKaZm5GGxyzQmp2wwGX+ztA8oxMiGEEEIIIYQQQtxNklICgMLiQtIUN24VVcbJNhNIAcBZe5Va9juhuJALth40a/Y5xSrz6Ci9WoVWrSq/oO9SVGwictNJktKzKSxWqHB7pz2Nxo42rQ+hVutQqZ68UV1CCCGEEEIIIcTzSpJSAoBbxRq+KQqg+fVD+KmTLOW9Xd9CqzYBdUky+FCsUqNTqahi0BHm4Vxu8d7raMoNVh1MoYHHDywMWoWtTQEAWm0FNBp9OUcnhBBCCCGEEEKIe0lSSpB9/Cq5Nj4459ykcWYc+bcHFKnUamx6LAVHT/jmXXJvJ3fqOBjY2rhGOUZc0tVb+QC0r3ISO22epbyCc/PyCkkIIYQQQgghhBClkKSU4Md1B8kHdCbz6CK1okVt3x5X5zhUzpXh879CTjo57kEAGJ6gxc13xF9h1GfHMBVn8mpADP6OZwGoUSMSD/cQdDr3co5QCCGEEEIIIYQQ9/PkZBdEubh2IYXsq2fJVxT6pPwXADU6bGzrYrBTQ0IM5KQDkGtbAQCD+sl523xz8hKZuYU09zxIV79vsbO5BoCjsS62th6oVE/GmldCPM0GDRqESqVCpVKh0+moXr0606dPp6io6Hf1u3PnTlQqFTdu3PhjAn0ESUlJ9O3bl0qVKqHX6/Hx8SEsLIzTp09b1YuOjqZdu3YYjUbs7Oxo0qQJK1assKqTnJyMSqXi2LFjj3z9qVOnUqtWLezt7alQoQKdOnXi4MGDVn0OHjwYPz8/DAYD1apVIzIykoKCgof2vWrVKurXr4+dnR1eXl68/vrrXLt27ZFj++CDD1CpVIwaNcqqPDExkT//+c+4u7vj6OhIr169uHz5slWd9957j5YtW2JnZ4ezs/N9+7/zHrr79dlnn1nOr1+/ns6dO1uu06JFC7Zt2/bQuNevX0+XLl1wdXX91T8PIYQQQghRvp6c7IIoc4qicGThQi7aFaLkXSfwivntoKh1APjYAgU5KEB807dIaDsVAIOm/BM9+UXF7EtM58zlLAC61DLH7uzclMDaUTg6vliO0Qnx7AkJCSEtLY2zZ88yduxYpk6dyocffljeYVk8StKmsLCQzp07k5mZyfr164mPj+fzzz+nbt26VomxhQsXEhYWRqtWrTh48CDHjx+nT58+hIeH89Zbb/2uOGvUqMGiRYs4ceIEe/bsoWrVqnTp0oWrV68CcPr0aUwmE0uXLuXkyZPMmzePjz76iMmTJ5fa7969exkwYACDBw/m5MmTrF27lu+//56hQ4c+UlyHDh1i6dKl1KtXz6o8OzubLl26oFKp+O6779i7dy8FBQWEhoZiMpks9QoKCujZsydvvvlmqddZvnw5aWlpltef/vQny7ndu3fTuXNntmzZwpEjRwgKCiI0NJS4uLhS+8zOzqZ169bMmjXrke5VCCGEEEI8QRTxQJmZmQqgZGZmlncoj8W1kyeVyClTlIlTpisRw6crS//ynhLV6yVlzl+GKove+FZJnjVIUTYOV5YtHaBU/C7O8hp2Krm8Q1emf3VS8Z0Qrbwy9x/Kv9Z1VmJ2NFK2f+uvJCcvLe/QhLiv3Nxc5dSpU0pubm55h/KrDRw4UAkLC7Mq69y5s9K8eXMlIyND6d+/v+Ls7KwYDAYlJCREOXPmjKVecnKy0r17d8XZ2Vmxs7NTAgMDlc2bNytJSUkKYPUaOHCgoiiKcvPmTaVv376KnZ2d4unpqcydO1dp166dMnLkSEu/vr6+yvTp05X+/fsrRqPR0jY2NlZp3bq1otfrFR8fH2X48OFKVlaWoiiKEhcXpwBKcvKD/w5LSUlRtFqtMmbMmBLnFixYoADKgQMHFEVRLPcQFxf36x/qbXf+ndm+ffsD68yePVvx8/MrtZ8PP/xQ8ff3LxGvt7f3Q2O4deuWEhAQoMTExJR4ztu2bVPUarXVv4M3btxQVCqVEhMTU6Kv5cuXK05OTve9DqB8+eWXD43nboGBgcq0adMeqe4f8fO4W2m/s8/654NfS56HEEIIIe71qJ8PZKTUc+zWjRvkomVtfn1+KvCgyMY8QspWk00j+3X4+KqgMJdT9tUBcLRRU93OllcrupRn2ADEX7oFwJ8DtlOjQiIq03UA7O0DyjMsIX4VRVHIKSgq85eiKL87doPBQEFBAYMGDeLw4cNs2rSJ/fv3oygK3bp1o7CwEICIiAjy8/PZvXs3J06cYNasWTg4OFC5cmW++OILAOLj40lLS2P+/PkAjBkzhr1797Jp0yZiYmKIjY3l6NGjJWKIioqifv36xMXF8e6775KYmEhISAg9evTg+PHjfP755+zZs4dhw4YB4O7ujlqtZt26dRQXF9/3vtatW0dhYeF9R0S98cYbODg4sGbNmt/9/MA8uujjjz/GycmJ+vXrP7BeZmYmLi6l/73bokULzp8/z5YtW1AUhcuXL7Nu3Tq6dev20DgiIiJ46aWX6NSpU4lz+fn5qFQqbG1tLWV6vR61Ws2ePXse2vf9ruXm5kbTpk359NNPS30vmkwmbt269dB7F0IIIYQQTy9Z6Pw5dvncLW4qerxyU2l28wD5ivlLmrMxm+YRQ6GCP2weQ66NOdEzxteT8Coe5Rkyh5MzOJiUQcIV87Q9L4dcMEFA9ck4OtbHyalRucYnxK+RW1hM4JSHr5nzRzs1PRg73W/7619RFL799lu2bdtG165d2bBhA3v37qVly5aAeV2jypUrs2HDBnr27ElKSgo9evSgbt26APj7+1v6upNs8PDwsKxDdOvWLVauXMnq1avp2LEjYJ7yValSpRKxdOjQgbFjx1qOhwwZQr9+/SxrIgUEBLBgwQLatWvHkiVL8Pb2ZsGCBYwfP55p06bRuHFjgoKC6NevnyWuM2fO4OTkhJeXV4nr6XQ6/P39OXPmzG96dndER0fTp08fcnJy8PLyIiYmBjc3t/vWTUhIYOHChURFRZXaZ6tWrVi1ahW9e/cmLy+PoqIiQkNDWbx4cantPvvsM44ePcqhQ4fue7558+bY29szYcIE3n//fRRFYeLEiRQXF5OWlvZoN3zb9OnT6dChA3Z2dnzzzTf8/e9/JysrixEjRty3flRUFFlZWfTq1etXXUcIIYQQQjw9ZKTUc0opNGE6lUexoqbRjThci9Mx3R5t5OjkAMfXwvy6kBBDjsYAgF0577pXbFIYtPwQS747TK9q83m7WRSYMgDw8OiKs3NjWdhciMckOjoaBwcH9Ho9Xbt2pXfv3gwaNAgbGxuaNWtmqefq6krNmjX56aefABgxYgQzZsygVatWREZGcvz48VKvc+7cOQoLC2natKmlzMnJiZo1a5ao27hxY6vjH374gRUrVuDg4GB5BQcHYzKZSEpKAswjdS5dusSqVato0aIFa9eupU6dOsTExDzys9DpdA+ts2rVKqs4YmNjLeeCgoI4duwY+/btIyQkhF69enHlypUSfVy8eJGQkBB69uxptTbU3f2Gh4cDcOrUKUaOHMmUKVM4cuQIX3/9NcnJyZbzsbGxVu1WrVrF+fPnGTlyJKtWrUKv19/3Ptzd3Vm7di1fffUVDg4OODk5cePGDRo2bIj6V2568e6779KqVSsaNGjAhAkTGD9+/APXJVu9ejXTpk3jf//7Hx4eHg99pkIIIYQQ4ukkI6WeU5dOnUHBhMlUjGu+eXc9jW1j1DaetGiQDMlbzBVVanJ0TgAYyjkpdT2ngKz8Ilp7/0h995OWchsbZ3Q613KMTIjfxqDVcGp6cLlc99cKCgpiyZIl6HQ6KlWqhI2NDZs2bXpouyFDhhAcHMzmzZv55ptvmDlzJnPmzGH48OG/JXQr9vb2VsdZWVm88cYb9x15U6VKFcufjUYjoaGhhIaGMmPGDIKDg5kxYwadO3cmICCAzMxMUlNTS4zOKigoIDExkeDgh//MXn75Zatknbe3t1Xc1atXp3r16jRv3pyAgACWLVvGpEmTLHVSU1MJCgqiZcuWfPzxx1Z93727nKOjIwAzZ86kVatWjBs3DoB69ephb29PmzZtmDFjBo0bN7ZqV7FiRb799luuXLlCw4YNLeXFxcXs3r2bRYsWkZ+fj0ajoUuXLiQmJpKeno6NjQ3Ozs54enpajXr7LZo1a8Y//vEP8vPzraYHfvbZZwwZMoS1a9daTSks7ZkKIYQQQoinkySlnlOJ3x9AwUiVS9/jkXOLLIMOtbYqGm0VHB0uQ2EOG92D2NBsGify1FBYXG4jpTJzChm79hgXrudisMmhstE8osvFpQ2VfQbi4FATtdr2Ib0I8eRRqVS/eRpdWbuTSLlb7dq1KSoq4uDBg5bpe9euXSM+Pp7AwEBLvcqVKxMeHk54eDiTJk3ik08+Yfjw4ZYRR3ev7+Tv749Wq+XQoUOWRFJmZiZnzpyhbdu2pcbYsGFDTp06VSLO0qhUKmrVqsW+ffsAePXVV5kwYQJz5sxhzpw5VnU/+ugjcnJyGDBgwEP7NRqNGI3GR4rBZDKRn59vOb548SJBQUE0atSI5cuXlxiRdL/7y8nJwcbG+r2k0ZiTj4qiYDAYSrTr2LEjJ06csCp77bXXqFWrFhMmTLC0v+POFMPvvvuOK1eu8PLLLz/S/T3IsWPHqFChglVCas2aNbz++ut89tlnvPTSS1b1f80zFUIIIYQQT4en49uQ+EMlnTrFjpREinUa7PMzManNU95UKvPbQaOzhYIcIutGcOmWApi/MHrbPnzKyuOwI/4K23+6Qje/bxjXIdpSbnQIxM0tqFxiEkKY12wKCwtj6NChLF26FKPRyMSJE/H29iYsLAyAUaNG0bVrV2rUqMH169fZsWMHtWvXBsDX1xeVSkV0dDTdunXDYDBgNBoZOHAg48aNw8XFBQ8PDyIjI1Gr1Q+dnjthwgSaN2/OsGHDGDJkCPb29pw6dYqYmBgWLVrEsWPHiIyMpH///gQGBqLT6di1axeffvopEyZMAMwjqmbPns1bb72FXq+nf//+aLVaNm7cyOTJk5kxYwYvvPCC1XXj4+NLxFKnTh20Wq1VWXZ2Nu+99x4vv/wyXl5epKens3jxYi5evEjPnj0Bc0Kqffv2+Pr6EhUVxdWrVy3tPT09H3jvoaGhDB06lCVLlhAcHExaWhqjRo2iadOm912PC8xJnnvvxd7eHldXV6vy5cuXU7t2bdzd3dm/fz8jR45k9OjRVlMqU1JSyMjIICUlheLiYsuorOrVq+Pg4MBXX33F5cuXad68OXq9npiYGN5//32rBeVXr17NwIEDmT9/Ps2aNePSpUuAeVF9JyenB977neumpqYCv/w8PD09S31mQgghhBCi/ElS6jl09vBhijUaTArYKM7k2pqAPEALmFBrtVCYTaaNAwCT/Lx4wWigvtFQ5rEWFZu4fDMPgJY+iZZyjcYBV9d2ZR6PEMLa8uXLGTlyJN27d6egoIC2bduyZcsWS0KmuLiYiIgILly4gKOjIyEhIcybNw8wT7+aNm0aEydO5LXXXmPAgAGsWLGCuXPnEh4eTvfu3XF0dGT8+PGcP3/+gese3VGvXj127drF22+/TZs2bVAUhWrVqtG7d28AfHx8qFq1KtOmTSM5ORmVSmU5Hj16tKWf0aNH4+/vz5w5c5g/fz7Z2dmAeRRPnz59Slz3fmXnz5/Hx8fHqkyj0XD69GlWrlxJeno6rq6uNGnShNjYWOrUqQNATEwMCQkJJCQklGhf2k51gwYN4tatWyxatIixY8fi7OxMhw4dmDVrVqnP7FHEx8czadIkMjIyqFq1Km+//bbV8wKYMmUKK1eutBw3aNAAgB07dtC+fXu0Wi2LFy9m9OjRKIpC9erVmTt3rtVaWR9//DFFRUVEREQQERFhKR84cCArVqx4YHybNm3itddesxzf+XlERkYyderU33PrQgghhBDiMVMpf8Te4M+omzdv4uTkRGZmpmXdjmdB9L//zZc/3+KHbDf+cmk3FF8BitE5voa77Q36BCzEdD2ZSu12AvBjqxdwK4cpRv934GembjqJXpNFbZczvFb3K/TqdBq8+B8qVGgpi5qLp0peXh5JSUn4+fk9NLkirGVnZ+Pt7c2cOXMYPHhwmV8/IyODjh074ujoyNatW7GzsyvzGETZK+139ln9fPBbyfMQQgghxL0e9fOBjJR6zpjyishMNZFqciIofcfthJRZWJMDVLq4Aq4XkKv+ZVRUea0lFXPqMsUmhaEv/oe6bj9ZynW2HpKQEuIZFhcXx+nTp2natCmZmZlMnz4dwDIlsKy5uLiwfft2Fi9ezP79++nYsWO5xCGEEEIIIcSzRpJSz5nkTcdQFSgUo8K+KAcAtdYfe3UuVepXg9QCvvHuxk8vhkMWqACDumwTQFn5RSRcySL1Ri4AdTwywARGY12cnRphb/foixgLIZ5OUVFRxMfHo9PpaNSoEbGxsZaFtsuDq6srU6ZMKbfrCyGEEEII8SySpNRz5tKpUxSrTLhmncWp8CYmtRobQ2sclP2gmPjJzo8B1SdAlrm+k42mTEclKYpCt/mxpGRk07PGRsIqX0BtSgeg7guLMBh8HtKDEOJp16BBA44cOVLeYQghhBBCCCEeM0lKPUfS09M5YbpMprqIhpe/Q6W43D53AtN6AAEAAElEQVRjg41tHigKabbuADjbaGjvYqSr+4N3PHocbuYVkZKRg4fdVUKqfmcpt7ExYns7NiGEEEIIIYQQQjz9JCn1HNmzbh1pavMuUhVMFShSm9eKUqls8LO7BUm7ydGYF3OtYa/nozpVyyw2RVE4fekWyenm+DzszFMLdTp3AqpPxmh8AbXatsziEUIIIYQQQgghxOMlSannyPUTx8HdA99id3K1DSkq/OH2GRtcNZfhzPfkenQBwE5dtoubL9uTxIzNP+Fln0bvmvvxdcoAQK+vhKfny2UaixBCCCGEEEIIIR4/SUo9R4oUFfsLKpOVdpRKhZcs5aENdlHl0iHwCCTHrz1Q9jvunbiYCUCfWlt4wfUHS7mtrVeZxiGEEEIIIYQQQoiyIUmp50TO8atku7zAtWwbvHJ+RrldrlVpqOJTwIG8uoyvPZOrNk5QVIyhjJJSxy/c4OPd5zhwzjwyqrZHLhSDZ8Uw7Oz88fQsny3ghRBCCCGEEEII8XhJUuo5EbcqmjytChulCAAVOrTGP1NLsxtVUR5fenTiLA5QVAxALXt9mcS1eEcC205epnfN9QS6xKMpvgpA5cqDcHSsVyYxCCGEEEIIIYQQouxJUuo5UHzrFvk3b5DvakvIpU0AaBQtahtvDBoFCnPIvb2I+BAfN/p5uZZZUurqrXzsbHLo4rvTUqZW6zEYfMvk+kIIIYQQQgghhCgfZbtwkCgX8bM/JNPWRIbmFo1TL5gLVeZ8pIMhB678RO7tXff8DbbUdjCgUqkea0xLdyXS798HOH3pFkZdFgAajR0NXvw/WjSPQat1eqzXF0I8ukGDBqFSqVCpVOh0OqpXr8706dMpKir6Xf3u3LkTlUrFjRs3/phAH0FSUhJ9+/alUqVK6PV6fHx8CAsL4/Tp01b1oqOjadeuHUajETs7O5o0acKKFSus6iQnJ6NSqTh27NgjX3/q1KnUqlULe3t7KlSoQKdOnTh48KBVn4MHD8bPzw+DwUC1atWIjIykoKDgoX2vWrWK+vXrY2dnh5eXF6+//jrXrl17aLuLFy/y17/+FVdXVwwGA3Xr1uXw4cOW83f//O+8QkJCrPqoWrVqiToffPCB5Xx8fDxBQUFUrFgRvV6Pv78/77zzDoWFhVb93Lhxg4iICLy8vLC1taVGjRps2bKl1PjXr19Ply5dcHV1/dU/DyGEEEIIUb5kpNQzLicnh3UqMDnf4obGxFWPIOA0xRp7bACjzTVIjyfX0zxSqizWksorLOaDr09Tw/ksYxtswF6bA4BW64qLS8vHfn0hxK8XEhLC8uXLyc/PZ8uWLURERKDVapk0aVJ5hwZAQUEBOp2u1DqFhYV07tyZmjVrsn79ery8vLhw4QJbt261SowtXLiQUaNGMWHCBJYsWYJOp2Pjxo2Eh4fz448/EhUV9ZvjrFGjBosWLcLf35/c3FzmzZtHly5dSEhIwN3dndOnT2MymVi6dCnVq1fnxx9/ZOjQoWRnZ5d63b179zJgwADmzZtHaGgoFy9eJDw8nKFDh7J+/foHtrt+/TqtWrUiKCiIrVu34u7uztmzZ6lQoYJVvTs//ztsbW1L9DV9+nSGDh1qOTYajZY/a7VaBgwYQMOGDXF2duaHH35g6NChmEwm3n//fcD8M+zcuTMeHh6sW7cOb29vfv75Z5ydnUt9ptnZ2bRu3ZpevXpZXV8IIYQQQjz5JCn1jLt58yYmtRqVAraKlhw7L8g/jUqlwU6dQUXtGaj/F/IcqwNgUD/+pFR6Vj6KAu18DlDV6byl3MGh5mO/thDit7G1tcXT0xOAN998ky+//JJNmzYRHh7OyJEj+eqrr8jPz6ddu3YsWLCAgIAAAH7++WeGDRvGnj17KCgooGrVqnz44YcEBgYSFBQEYEmADBw4kBUrVnDr1i3Cw8PZsGEDjo6OjB8/no0bN/Liiy/yz3/+EzCPzBk8eDBnz55lw4YNvPLKK6xYsYI9e/YwadIkDh8+jJubG3/+85+ZOXMm9vb2nDx5ksTERL799lt8fc1ThH19fWnVqpXlPs+fP8/YsWMZNWqUJVkCMHbsWHQ6HSNGjKBnz540a9bsNz3Hvn37Wh3PnTuXZcuWcfz4cTp27EhISIjVKCR/f3/i4+NZsmRJqUmp/fv3U7VqVUaMGAGAn58fb7zxBrNmzSo1nlmzZlG5cmWrhJOfn1+Jenf//B/EaDQ+sI6/vz/+/v6WY19fX3bu3ElsbKyl7NNPPyUjI4N9+/ah1WoB88/5Yfr37w+YR5k96zIyMhg+fDhfffUVarWaHj16MH/+fBwcHB7YJi8vj7Fjx/LZZ5+Rn59PcHAw//rXv6hYsWKJuteuXaN+/fpcvHiR69evPzQhKIQQQgjxe8n0vWdcQb55ykdBsQG3XCMm5RYAXtqzDHQfzC6v+rxS9S2Oa80fTh/nSKmUazm0mPktnaJiqFHhLD7GKwBUrRpBwwZreKHO/Md2bSGeSIoCBdll/1KUh8f2EAaDgYKCAgYNGsThw4fZtGkT+/fvR1EUunXrZpmWFRERQX5+Prt37+bEiRPMmjULBwcHKleuzBdffAGYp3alpaUxf77574AxY8awd+9eNm3aRExMDLGxsRw9erREDFFRUdSvX5+4uDjeffddEhMTCQkJoUePHhw/fpzPP/+cPXv2MGzYMADc3d1Rq9WsW7eO4uLi+97XunXrKCws5K233ipx7o033sDBwYE1a9b87ucH5pFBH3/8MU5OTtSvX/+B9TIzM3FxcSm1rxYtWnD+/Hm2bNmCoihcvnyZdevW0a1bt1Lbbdq0icaNG9OzZ088PDxo0KABn3zySYl6O3fuxMPDg5o1a/Lmm2/ed1rgBx98gKurKw0aNODDDz8sdXpnQkICX3/9Ne3atbOKpUWLFkRERFCxYkVeeOEF3n///Qf+rJ5H/fr14+TJk8TExBAdHc3u3bv529/+Vmqb0aNH89VXX7F27Vp27dpFamoqr7zyyn3rDh48mHr1ZJMRIYQQQpQdGSn1jEv46izni524cF2hS/p27qxKonXxJskujcG1p8KNLEv9yvrSp7/8HvsS00nLzGNA4Dra+eyzlFdwbkaFCk0f23WFeGIV5sD7lcr+upNTQWf/m5oqisK3337Ltm3b6Nq1Kxs2bGDv3r20bGmeertq1SoqV67Mhg0b6NmzJykpKfTo0YO6desCWI2WuZNo8fDwsIzIuHXrFitXrmT16tV07NgRgOXLl1OpUsnn1KFDB8aOHWs5HjJkCP369WPUqFEABAQEsGDBAtq1a8eSJUvw9vZmwYIFjB8/nmnTptG4cWOCgoLo16+fJa4zZ87g5OSEl5dXievpdDr8/f05c+bMb3p2d0RHR9OnTx9ycnLw8vIiJiYGNze3+9ZNSEhg4cKFD50y2KpVK1atWkXv3r3Jy8ujqKiI0NBQFi9eXGq7c+fOsWTJEsaMGcPkyZM5dOgQI0aMQKfTMXDgQMA8de+VV17Bz8+PxMREJk+eTNeuXdm/fz8ajQaAESNG0LBhQ1xcXNi3bx+TJk0iLS2NuXPnWl2vZcuWHD16lPz8fP72t78xffp0q1i+++47+vXrx5YtW0hISODvf/87hYWFREZGPvS5Put++uknvv76aw4dOkTjxo0B81TTbt26ERUVdd/fkczMTJYtW8bq1avp0KEDYP59ql27NgcO/D97dx5XZZU/cPxzWS5c4AKiIIuIoIjiVrmkohluoIXMjLmkg1pq2s81l1yaRA1zNNRyyaUxdGbIcbQyRyvDcsElNYU0UXCBXHBHQQHZ7vn9wfiMVxRxA5fv+/W6r1f3POc553seuPH13POc52eaN2+u1V24cCFXrlxh0qRJfPfdd+UzKCGEEEI882Sl1FOsICsX2/RMLis7qhTc+FbbGp2FEwG13MiyKl7u72JtyeJ6Pqx/wZ9AB8Mji+dyTvHKifpuFwCwta1GlSrtcXJq8sj6FEI8HOvWrcPBwQFbW1s6depEjx496NevH1ZWVma3slWuXJmAgAAOHToEFE9WREVFERQURGRkJPv37y+1n+PHj1NQUECzZv+bqHZyciIgoOTtvTf+YX7Dr7/+yrJly3BwcNBeISEhmEwmUlNTgeKVW2fPniU2NpYWLVqwatUq6tWrR1xcXJmvxd32roLiybmb47j5NrXg4GASExPZsWMHoaGhdO/enfPnz5do4/Tp04SGhtKtWzezvZJubnfw4MEAJCUlMWLECCZNmsTevXv5/vvvSUtL047Hx8ebnRcbGwuAyWTihRde4MMPP+T555/nrbfeYuDAgSxatEjrr2fPnnTp0oUGDRrwhz/8gXXr1rFnzx42b96s1Rk1ahQvv/wyDRs2ZPDgwcyaNYt58+aRl5dnNqaVK1eyb98+vvjiC9avX2822WYymXBzc2PJkiU0btyYHj168N5772mxlHZNnwU7d+7E2dnZ7Pe+ffv2WFhYmG2Wf7O9e/dSUFBA+/bttbI6depQvXp1du7cqZUlJSUxdepU/v73v2NRhtv48/LyyMrKMnsJIYQQQtwPWSn1FDv5636KUNjnZNPkbBKFBrC0fQFrQxD+ue+yx7J4UqqKtTXhbpXu0tr9++t3h/lq3ymq2yfyx1rHcLQ+C0C9erNxdmr8yPoV4rFnbVe8aqki+r1HwcHB2qbfnp6eWFlZsXbt2rueN2DAAEJCQli/fj0//PAD06dPZ9asWQwbNux+Ijdjb2++2uvatWsMGjRI21fpZtWrV9f+22g0EhYWRlhYGFFRUYSEhBAVFUWHDh3w9/cnMzOT9PT0EitP8vPzOXbsGCEhIXeNrUuXLmaTdV5eXmZx16pVi1q1atG8eXP8/f1ZunSp2abx6enpBAcH07JlS5YsWWLW9s1Pl3N0dARg+vTpBAUFMXbsWAAaNmyIvb09rVu3JioqiiZNmpidd2M/IQ8PDwIDA83ar1u3rnZr5e34+flRpUoVjh49qq1mu9WLL75IYWEhaWlpZhOK3t7eAAQGBlJUVMRbb73F6NGjsbS0xMPDA2tra2311Y1Yzp49S35+fqnX9Flw9uxZ3NzczMqsrKxwcXHh7NmzdzxHr9eX2BuqatWq2jl5eXm8/vrrfPTRR1SvXp3jx4/fNZbp06czZcqU+xuIEEIIIcRNZKXUU6qwsJDNv+xir9Ux6pzdh9v1KwDoKN481jrrGDmWxaui7B/hPlJKKZbtSCUzJ4uB9Zfwqt8PWOuK97WytSl5e4wQzxSdrvg2uvJ+6XT3HOqNiZTq1atjZVX8fUbdunUpLCw0W6Vx6dIlkpOTzSY6vL29GTx4MF999RWjR4/W9iy6seLo5j2D/Pz8sLa2Zs+ePVpZZmZmmW6Ze+GFF0hKStImfG5+3Wl1k06no06dOmRnZwPw2muvYWVlxaxZs0rUXbRoETk5OfTp0+eusRiNRrP+DYY7r0I1mUxmK4pOnz7Nyy+/TOPGjYmJiSmxcuXmdm9MUuTk5JSod2NyRymFwWAwO+/Gk/GCgoJITk42Oy8lJUXbCP52Tp06xaVLl257i+MNiYmJWFhYlJhEuXXcBQUFmEwmLZajR49q72/E4uHhgV6vv6dr+iQZP348Op2u1Nfhw4cfWf8TJkygbt26/PnPf76nczIzM7XXyZMn736SEEIIIcRtyEqpp1TK2rWcyMwAC7C1uM451+eg8AjorIBCYgLe4lOvbmB6dJNSe3/P4OfjGVwvMOFml4mVRRE6nR4vr9cxOgRia1sBe+kIIR4af39/wsPDGThwIIsXL8ZoNDJ+/Hi8vLwIDw8HYOTIkXTq1InatWtz+fJlNm3aRN26dYHiJ7DpdDrWrVtH586dMRgMGI1G+vbty9ixY3FxccHNzY3IyEgsLCzQ3WUybdy4cTRv3pyhQ4cyYMAA7O3tSUpKIi4ujvnz55OYmEhkZCQREREEBgai1+vZsmULn3/+OePGjQOKV1TNnDmTMWPGYGtrS0REBNbW1nzzzTdMnDiRqKgo6tevb9bvrZM6APXq1dOeIHdDdnY206ZNo0uXLnh4eHDx4kUWLFjA6dOn6datG/C/CSkfHx+io6O5cOGCdn5pT78LCwtj4MCBLFy4kJCQEM6cOcPIkSNp1qzZbfcauuGdd96hZcuWfPjhh3Tv3p3du3ezZMkSbXXWtWvXmDJlCl27dsXd3Z1jx47x7rvvUqtWLW3F2M6dO9m1axfBwcEYjUZ27tzJO++8w5///GftyYqxsbFYW1vToEEDbGxs+OWXX5gwYQI9evTQrtPbb7/N/PnzGTFiBMOGDePIkSN8+OGHt135drOMjAxOnDhBenq62c/D3d39rk8MfByMHj2afv36lVrHz88Pd3f3Erd5FhYWkpGRccdxuru7k5+fz5UrV8xWS507d04756effuLAgQOsXr0aKJ7EBKhSpQrvvffebVdE2djYYGNjU9YhCiGEEELcmRJ3lJmZqQCVmZlZ0aHcs10zZ6rIyEg16/2/qk969Vezew9X0d1fUfPf+FBtfme08vxxj6r6U4Kq+lOCevfwiYfef35hkQp8/zvlN/4b9cm/O6m139dXG3/0U9u3v/zQ+xLiSZCbm6uSkpJUbm5uRYdyz/r27avCw8NveywjI0NFREQoJycnZTAYVEhIiEpJSdGODx06VNWsWVPZ2NgoV1dXFRERoS5evKgdnzp1qnJ3d1c6nU717dtXKaVUVlaW6tWrl7Kzs1Pu7u5q9uzZqlmzZmr8+PHaeT4+PmrOnDkl4tm9e7fq0KGDcnBwUPb29qphw4Zq2rRpSimlLly4oIYPH67q16+vHBwclNFoVA0aNFDR0dGqqKjIrJ01a9ao1q1bK3t7ewUoQK1YscKsTmpqqnbs1tfJkydLxJabm6v++Mc/Kk9PT6XX65WHh4fq0qWL2r17t1YnJibmjm3ezdy5c1VgYKAyGAzKw8ND9e7dW506dequ5/3nP/9R9evXVzY2NqpOnTpqyZIl2rGcnBzVsWNH5erqqqytrZWPj48aOHCgOnv2rFZn79696sUXX1ROTk7K1tZW1a1bV3344Yfq+vXrWp1//etf6oUXXtB+LoGBgerDDz8s8XnYsWOHevHFF5WNjY3y8/NT06ZNU4WFhaXGf6drFhkZedexl6a0z2xF5AdJSUkKUL/88otWtmHDBqXT6dTp06dve86VK1eUtbW1Wr16tVZ2+PBhBaidO3cqpZQ6evSoOnDggPb6/PPPFaB27Nihzp07V6bYnuR8SQghhBCPRlnzA51SD+HZ4E+prKwsnJycyMzM1PbteFKsf/9j9lhewS3fQMHxBIp0lihTJqFB7nhlfUedoPUArH6uJi86OWBtce+385TmXNZ1XvzwR3yMp5jUYqZW7l41nHr1ZpdyphBPp+vXr5Oamoqvry+2trYVHc4TJTs7Gy8vL2bNmkX//v3Lvf+MjAzatWuHo6Mj3333HXZ2974nl3jylPaZraj8oFOnTpw7d45FixZRUFDAG2+8QZMmTfjiiy+A4pV27dq14+9//7v2sIC3336bb7/9lmXLluHo6Kjt57Zjx47b9rF582aCg4O5fPlyib2o7uRJzpeEEEII8WiUNT+Q2/eeQqaCIvLzKrPH2ki1C8nUVteKvzcGDBcSyDUUJ9dWOmhVyfhQ+76WV8j0bw/x+6UcdJjwcrpe3K+hBg0bLsLezu8uLQghnnUJCQkcPnyYZs2akZmZydSpUwG0WwLLm4uLCxs3bmTBggXs3Lnzjpt7C/GoxcbGMnToUNq1a4eFhQVdu3Zl7ty52vGCggKSk5PJycnRyubMmaPVzcvLIyQkhE8//bQiwhdCCCGEKEEmpZ5Cv/xjFbZW1hwscqFa0QEAdFbVsLG0x8diG2mWxU8sMpThsc/3amPSOWJ3nSCg0hHmt12CrVXx5r22Nu442Ps/9P6EEE+n6OhokpOT0ev1NG7cmPj4eKpUqVJh8VSuXJlJkyZVWP9CQPEE6Y1VUbdTo0YNbl0Ab2try4IFC1iwYEGZ+nj55ZdLtCGEEEII8ajIpNRTRinFlWNp5OKD0fALbuoQYI2lvg52VmAZEEJug/5wEewewQbnF68VT0K19T2uTUgBuLi0fuh9CSGeTs8//zx79+6t6DCEEEIIIYQQj5hMSj1lLm/fxoX0U2R7VmHk3q0UWjpzTZ+HDiv0uhye83iHq5ftABOGhzgpdfhsFtuOXGTb0XRqOh3H17n4CUE1fP4PH5+3sLJ6uLcJCiGEEEIIIYQQ4skmk1JPmS93bOO0TxWyTBeob/wT2RyAwlOgs8TCQcdZbKHIBEAj48PbrLf/sl84fSWXYc8tIeLF37RyW0M1mZASQgghhBBCCCFECTIp9ZTJyisAwGAyYLJyhIJCALwrnWNLYPF+LMOru/G6R2V8DPqH0mdeYRGnr+QCULvyGQCs9Z7YG7yoUjn4ofQhhBBCCCGEEEKIp4tMSj1lCpUJpaBOnjfZ6jyo4n2dnnfdxteOfwSgusEGXzubB+5LKcVb/9jL1pQL1HQ6TjXjeeytslAKmjZegcFQ7YH7EEIIIYQQQgghxNNJJqWeIpkJ5ygs1PP99er84eQ/0KtC7ZhVRjI5tW2Bh7fBeWZuAXFJ53C2yWR8s0+w0CmKH9ijQ693eSh9CCGEEEIIIYQQ4ukkk1JPCWUycWz9TjKxwjIv978TUjrQ2eGsv8zHTcdyyLEOAHYWDzYppZRiT9plDp3JAsDH6TIWOoWlpT2VKjXHpVJLLC0f3n5VQgghhBBCCCGEePrIpNRT4uzRFDLTf6fQuYjx+2I44umCzqISNk79qOf6Pu9VeUmrW9XG+oH62nb0IhFLd+Nsc4W+gd/h63wRAAeHABo1XPJAbQshhBBCCCGEEOLZ8HDu4xIV7tTnn6HTWWGZl0FW5ebFhbrijcyVnSUAf6paicX1fHjOaHigvo6evwZAiO9uXqq2E2+HIwAYDD4P1K4Q4vHUr18/dDodOp0OvV5PrVq1mDp1KoWFhXc/uRSbN29Gp9Nx5cqVhxNoGaSmptKrVy88PT2xtbWlWrVqhIeHc/jwYbN669ato02bNhiNRuzs7GjatCnLli0zq5OWloZOpyMxMbHM/U+ePJk6depgb29PpUqVaN++Pbt27TJrs3///vj6+mIwGKhZsyaRkZHk5+ffte3Y2FgaNWqEnZ0dHh4evPnmm1y6dKnUc4qKinj//ffN+vvggw9QxfdiA/DVV1/RsWNHKleufMfxHjt2jD/+8Y+4urri6OhI9+7dOXfu3D2Pa//+/bRu3RpbW1u8vb2ZOXPmXce9detWwsLC8PT0RKfTsWbNmrueI4QQQgghHg8yKfUUKCgoYCOWbHa9gM6kI8PFHwCdzgoLi6t87fMKAGGuToS7VUKn091XP+eyrvPdgTP88vtlAOq7Fz/pr0rlttQJiMK/1oSHMBohxOMoNDSUM2fOcOTIEUaPHs3kyZP56KOPKjosTVkmbQoKCujQoQOZmZl89dVXJCcns3LlSho0aGA2MTZv3jzCw8MJCgpi165d7N+/n549ezJ48GDGjBnzQHHWrl2b+fPnc+DAAbZt20aNGjXo2LEjFy5cAODw4cOYTCYWL17MwYMHmTNnDosWLWLixImltrt9+3b69OlD//79OXjwIKtWrWL37t0MHDiw1PNmzJjBwoULmT9/PocOHWLGjBnMnDmTefPmaXWys7Np1aoVM2bMuG0b2dnZdOzYEZ1Ox08//cT27dvJz88nLCwMk8lU5nFlZWXRsWNHfHx82Lt3Lx999BGTJ09myZLSV+BmZ2fTqFEjFixYUGo9IYQQQgjxGFLijjIzMxWgMjMzKzqUUp05c0ZFRkaqyEmT1KSBg9Ts3u+o6O6vqNh+HdW1v/iol7/7VlX9KUFtvpT1QP0ER29SPuPWqbcXDVdff9dA/bCxttr4o586efKfD2kkQjy9cnNzVVJSksrNza3oUO5Z3759VXh4uFlZhw4dVPPmzVVGRoaKiIhQzs7OymAwqNDQUJWSkqLVS0tLU6+++qpydnZWdnZ2KjAwUK1fv16lpqYqwOzVt29fpZRSWVlZqlevXsrOzk65u7ur2bNnqzZt2qgRI0Zo7fr4+KipU6eqiIgIZTQatXPj4+NVq1atlK2trapWrZoaNmyYunbtmlJKqYSEBAWotLS0O471xIkTytraWo0aNarEsblz5ypA/fzzz0oppY0hISHh3i/qf934O7Nx48Y71pk5c6by9fUttZ2PPvpI+fn5lYjXy8ur1PNeeeUV9eabb5qV/elPf1K9e/cuUfdO492wYYOysLAw+1t55coVpdPpVFxc3B37vnVcn376qapUqZLKy8vTysaNG6cCAgJKHcPNAPX111+XuX5pSvvMPin5QXmR6yGEEEKIW5U1P5CVUk+Bq78V3yJhn52PY+YpTAUpADhZX+G8b2OyDK7Agz11r7DIxPEL2QC099mFUZ+Nha4Qnc4SR8eGDzgCIZ5NSilyCnLK/aVuujXrfhkMBvLz8+nXrx+//PILa9euZefOnSil6Ny5MwUFxSsphwwZQl5eHlu3buXAgQPMmDEDBwcHvL29+fLLLwFITk7mzJkzfPLJJwCMGjWK7du3s3btWuLi4oiPj2ffvn0lYoiOjqZRo0YkJCTw/vvvc+zYMUJDQ+natSv79+9n5cqVbNu2jaFDhwLg6uqKhYUFq1evpqio6LbjWr16NQUFBbddETVo0CAcHBxYsWLFA18/KF7dtWTJEpycnGjUqNEd62VmZuLiUvoTTVu0aMHJkyf59ttvUUpx7tw5Vq9eTefOnUs9r2XLlvz444+kpBT/3fj111/Ztm0bnTp1KvM48vLy0Ol02NjYaGW2trZYWFiwbdu2Mo9r586dvPTSS+j1eq0sJCSE5ORkLl++XOZ4hBBCCCHEk0M2On8KXN51iismWw7kOdASQGeHtaUnZ+s40d93LBTfPXHfk1LfJJ5ma0rxZuY6HbgYcigqgucaxWA01kOvr/xwBiLEMya3MJcXv3ix3Pvd1WsXdtb394RMpRQ//vgjGzZsoFOnTqxZs4bt27fTsmVLoHhfI29vb9asWUO3bt04ceIEXbt2pUGDBgD4+flpbd2YkHBzc8PZ2RmAq1evsnz5cr744gvatWsHQExMDJ6eniViadu2LaNHj9beDxgwgN69ezNy5EgA/P39mTt3Lm3atGHhwoV4eXkxd+5c3n33XaZMmUKTJk0IDg6md+/eWlwpKSk4OTnh4eFRoj+9Xo+fn582gXO/1q1bR8+ePcnJycHDw4O4uDiqVKly27pHjx5l3rx5REdHl9pmUFAQsbGx9OjRg+vXr1NYWEhYWNhdb2kbP348WVlZ1KlTB0tLS4qKipg2bRq9e/cu83iaN2+Ovb0948aN48MPP0Qpxfjx4ykqKuLMmTNlHtfZs2fx9fU1q1e1alXtWKVKlcockxBCCCGEeDLISqkn3Nljx8jOyiQVOwqqbADAwtIVO+vnOVu5+B9V9pYWNHW0x9/OprSmbis3v4jR//6VHcm/MLN1JJ+2HUNRUfGKKUfHRjIhJcQzYt26dTg4OGBra0unTp3o0aMH/fr1w8rKihdf/N/EWuXKlQkICODQoUMADB8+nKioKIKCgoiMjGT//v2l9nP8+HEKCgpo1qyZVubk5ERAQECJuk2aNDF7/+uvv7Js2TIcHBy0V0hICCaTidTUVKB45dbZs2eJjY2lRYsWrFq1inr16hEXF1fma3HzSp47iY2NNYsjPj5eOxYcHExiYiI7duwgNDSU7t27c/78+RJtnD59mtDQULp162a2N9TN7Q4ePBiApKQkRowYwaRJk9i7dy/ff/89aWlp2vH4+Hiz82JjYwH497//TWxsLF988QX79u1j+fLlREdHs3z58jJfD1dXV1atWsV//vMfHBwccHJy4sqVK7zwwgtYWJRMM+40rru50xiEEEIIIcSTS1ZKPeHOHDmO0ukosjhHwIVcwAZ0VliqAnIsDeiAo60b3Pfm5hev5VFoUjzneojKhv/dPuFgH4CVlePDGYQQzyiDlYFdvXbdveIj6PdeBQcHs3DhQvR6PZ6enlhZWbF27dq7njdgwABCQkJYv349P/zwA9OnT2fWrFkMGzbsfkI3Y29vb/b+2rVrDBo0iOHDh5eoW716de2/jUYjYWFhhIWFERUVRUhICFFRUXTo0AF/f38yMzNJT08vsTorPz+fY8eOERISctfYunTpYjZZ5+XlZRZ3rVq1qFWrFs2bN8ff35+lS5cyYcL/HhaRnp5OcHAwLVu2LLHR981Pv3N0LP7/8PTp0wkKCmLs2LEANGzYEHt7e1q3bk1UVBRNmjQxO+/GCqSxY8cyfvx4evbsCUCDBg34/fffmT59On379r3rOG/o2LEjx44d4+LFi1hZWeHs7Iy7u7vZyri7jcvd3d3siX2A9t7d3Z0aNWrcdgxCCCGEEOLJJZNST7Dsc+eIi/+JIht7uiSkkOf0KvlsA6wwmPL5rnJrDJYW9zUhdT7rOiP+lcjZrKs0cj1APdfjAHh6dKdGjSHY2FS974kuIUQxnU5337fRlbcbEyk3q1u3LoWFhezatUu7fe/SpUskJycTGBio1fP29mbw4MEMHjyYCRMm8NlnnzFs2DBtxdHN+zv5+flhbW3Nnj17tImkzMxMUlJSeOmll0qN8YUXXiApKalEnKXR6XTUqVOHHTt2APDaa68xbtw4Zs2axaxZs8zqLlq0iJycHPr06XPXdo1GI0ajsUwxmEwm8vLytPenT58mODiYxo0bExMTU2K10e3Gl5OTg5WV+Z90S0tLoPiWS4PBcMfzbm3f0tJSe2revbpxG+JPP/3E+fPn6dKlS5nH1aJFC9577z0KCgqwtrYGIC4ujoCAAO3WvXv52QohhBBCiMefTEo9wZL//W9yrG2AQhwKDOT+N7+3VApX50TSbVtS5Ta3TpTFj4fPs/P4JYK9t/Lnuqu1cju7GhgM1R5C9EKIJ52/vz/h4eEMHDiQxYsXYzQaGT9+PF5eXoSHhwMwcuRIOnXqRO3atbl8+TKbNm2ibt26APj4+KDT6Vi3bh2dO3fGYDBgNBrp27cvY8eOxcXFBTc3NyIjI7GwuPsE+7hx42jevDlDhw5lwIAB2Nvbk5SURFxcHPPnzycxMZHIyEgiIiIIDAxEr9ezZcsWPv/8c8aNGwcUr6iaOXMmY8aMwdbWloiICKytrfnmm2+YOHEiUVFR1K9f36zf5OTkErHUq1dPm1i5ITs7m2nTptGlSxc8PDy4ePEiCxYs4PTp03Tr1g0onrh5+eWX8fHxITo6mgsXLmjnu7u733HsYWFhDBw4kIULFxISEsKZM2cYOXIkzZo1u+1+XDefN23aNKpXr069evVISEhg9uzZvPnmm1qdjIwMTpw4QXp6utl43d3dtZhiYmKoW7curq6u7Ny5kxEjRvDOO+9ot12WZVy9evViypQp9O/fn3HjxvHbb7/xySefMGfOnDvGD8Ur5I4ePaq9T01NJTExERcXF7MVckIIIYQQ4vEjk1JPsPxr1wBwvlbAJbssCq8XP52qklsKX3T4MwCG+9zcPCM7H4AmXlkA2Np64+jYgKru4Q8athDiKRITE8OIESN49dVXyc/P56WXXuLbb7/VJmSKiooYMmQIp06dwtHRkdDQUG2SwcvLiylTpjB+/HjeeOMN+vTpw7Jly5g9ezaDBw/m1VdfxdHRkXfffZeTJ09ia2tbaiwNGzZky5YtvPfee7Ru3RqlFDVr1qRHjx4AVKtWjRo1ajBlyhTS0tLQ6XTa+3feeUdr55133sHPz49Zs2bxySefkJ1dvI/eihUrtNvcbna7spMnT1KtmvkEvqWlJYcPH2b58uVcvHiRypUr07RpU+Lj46lXrx5QvDLo6NGjHD16tMT5pT01sV+/fly9epX58+czevRonJ2dadu2LTNmzCj1ms2bN4/333+f//u//+P8+fN4enoyaNAgJk2apNVZu3Ytb7zxRonxRkZGMnnyZKB4omrChAlkZGRQo0YN3nvvPbNrWpZxOTk58cMPPzBkyBAaN25MlSpVmDRpEm+99VapY/jll18IDg7W3o8aNQqAvn37smzZslLPFUIIIYQQFUunHsazwZ9SWVlZODk5kZmZqe3b8bhQShEfuYifLM5R6fRpCrP+94Sj64EezHtpCACNHe1Y37h2mdv9at8pvvvtLLnZiehNRwgP+BUHiyP4+/+F6t5v3L0BIcRtXb9+ndTUVHx9fe86uSLMZWdn4+XlxaxZs+jfv3+595+RkUG7du1wdHTku+++w87uybjlUjyY0j6zj3N+UBHkegghhBDiVmXND2Sl1BMqP/0ahYWVOWOZQ26RNW6Apc1zYLDlql8+/nY2/LFqJTq7OpW5TaUUk745SEFhNh+/HI3eskA7ptff/nHlQgjxsCUkJHD48GGaNWtGZmYmU6dOBdBuCSxvLi4ubNy4kQULFrBz507atWtXIXEIIYQQQgjxtJFJqSfUwY3bKdIVsa+wGi+aijch11m6omyKyLPUUd/BwKgad95/5Fb5hSYuXsvjWl4hVe2uoLcsQGGNq2t7bG1cca0i/wgTQpSf6OhokpOT0ev1NG7cmPj4eG0T7YpQuXJls1vahBBCCCGEEA9OJqWeUOeOHkaHK3Xzf8EvPwcF6LBCWeSSZ6HH9h72kkq/kkvox1vJul7AH2utp3alVADsDF40ajD/EY1ACCFu7/nnn2fv3r0VHYYQQgghhBDiEZNJqSdQekIiKdnnwaGAtqccyLAq3vAcnSVGq3SuWgbgfA9P3Us4cYWs64V4OZzhVb8ftHI7O5+HHboQQgghhBBCCCEEIJNST6Qtm+K47KgHsqmsrEEVAuBj+xO6Rm5sdWnCgDKslMrNL2LRlmP8fPwSAO1qF/862Ni44+s7nCqVX35UQxBCCCGEEEIIIcQzTialnkA5ecUbkFfPd6aAy6DyAPiwRXd+r1YLAIcyTEp9f/AMn/x4hNqVjvJ2w63UcckBwM5QAy/PHo8oeiGEEEIIIYQQQgiZlHriXE7P5nKWEZ3lWa4c34TSFYGp+FihpRUtnO1x1VvTtWqlu7aVfuU6AK/XjaO6wyGt3GCo/khiF0IIIYQQQgghhLhBJqWeMOf+uRsnS9iZU5mWqqi4UGeHpY3inKsXP9TzpbK+9B/r5uTzfLrpGL9nZAPgancVgOre/bG3r42ra/tHOgYhhBBCCCGEEEIImZR6giiTifyzl7hob4HJOh0AC4tK6J3ewML9ewqtrLErw217f4tPJfHEWV6v8yXONpnYWpwHwMOjKw4OAY90DEIIIYQQQgghhBAgk1JPlGvJhykCrnCFFhctAVA6GwBMtgodYGuhu2s7l7LzaVAliZeq7dTKLCz02Nh4PIqwhRBCCCGEEEIIIUq4+7Ia8dj4x7KlfOP4G05nj1Alq/hHpy/Iof5vC1lb63nsLS3Q6W4/KVVQZGL6t4cYviKBc1cu4m5/DgBHx0bUrTODxi/8G2trx3IbixDiydGvXz90Oh06nQ69Xk+tWrWYOnUqhYWFD9Tu5s2b0el0XLly5eEEWgapqan06tULT09PbG1tqVatGuHh4Rw+fNis3rp162jTpg1GoxE7OzuaNm3KsmXLzOqkpaWh0+lITEwsc/+TJ0+mTp062NvbU6lSJdq3b8+uXbvM2uzfvz++vr4YDAZq1qxJZGQk+fn5d207NjaWRo0aYWdnh4eHB2+++SaXLl0q9ZyrV68ycuRIfHx8MBgMtGzZkj179pjVuXbtGkOHDqVatWoYDAYCAwNZtGiRWZ1BgwZRs2ZNDAYDrq6ut72mJ06c4JVXXsHOzg43NzfGjh17x9+h7du3Y2VlxXPPPXfXcX/11Vd07NiRypUr3/PPQwghhBBCVCyZlHqCXNTbAWCTdx3Tf1dEmaxNzP9TB36tHEirSg53PHf70Yss3nqcpN+3MT1oHH/yXw+Ao7Ehnp6v4ejY4NEPQAjxxAoNDeXMmTMcOXKE0aNHM3nyZD766KOKDktTlkmbgoICOnToQGZmJl999RXJycmsXLmSBg0amE2MzZs3j/DwcIKCgti1axf79++nZ8+eDB48mDFjxjxQnLVr12b+/PkcOHCAbdu2UaNGDTp27MiFCxcAOHz4MCaTicWLF3Pw4EHmzJnDokWLmDhxYqntbt++nT59+tC/f38OHjzIqlWr2L17NwMHDiz1vAEDBhAXF8c//vEPDhw4QMeOHWnfvj2nT5/W6owaNYrvv/+ef/7znxw6dIiRI0cydOhQ1q5dq9Vp3LgxMTExHDp0iA0bNqCUomPHjhQVFe99WFRUxCuvvEJ+fj47duxg+fLlLFu2jEmTJpWI6cqVK/Tp04d27dqV6ZpmZ2fTqlUrZsyYUab6QgghhBDiMaLEHWVmZipAZWZmVnQoymQyqchJk9Tk9yaqj7t3UdHdX1XR3V9RH7z9lur0S7K6kFegTCbTbc+9er1ALd5yVPmMW6cm/XOs2vijn9r4Y021ectz6uLFreU8EiGeTbm5uSopKUnl5uZWdCj3rG/fvio8PNysrEOHDqp58+YqIyNDRUREKGdnZ2UwGFRoaKhKSUnR6qWlpalXX31VOTs7Kzs7OxUYGKjWr1+vUlNTFWD26tu3r1JKqaysLNWrVy9lZ2en3N3d1ezZs1WbNm3UiBEjtHZ9fHzU1KlTVUREhDIajdq58fHxqlWrVsrW1lZVq1ZNDRs2TF27dk0ppVRCQoICVFpa2h3HeuLECWVtba1GjRpV4tjcuXMVoH7++WellNLGkJCQcO8X9b9u/J3ZuHHjHevMnDlT+fr6ltrORx99pPz8/ErE6+XldcdzcnJylKWlpVq3bp1Z+QsvvKDee+897X29evXU1KlTS61zq19//VUB6ujRo0oppb799ltlYWGhzp49q9VZuHChcnR0VHl5eWbn9ujRQ/3lL39RkZGRqlGjRnfs41YP4+dxs9I+s49TfvA4kOshhBBCiFuVNT+QlVJPiIOrU0CnwzL3GoUUUfxvOMh2roKTlSVV9Fa3vXXv15NXeGFqHJ/E7SXM7zsauf4KgI/PINq8lEDlyq3LcxhCiJsopTDl5JT7Syn1wLEbDAby8/Pp168fv/zyC2vXrmXnzp0opejcuTMFBQUADBkyhLy8PLZu3cqBAweYMWMGDg4OeHt78+WXXwKQnJzMmTNn+OSTT4DilTnbt29n7dq1xMXFER8fz759+0rEEB0dTaNGjUhISOD999/n2LFjhIaG0rVrV/bv38/KlSvZtm0bQ4cOBcDV1RULCwtWr16treC51erVqykoKLjtiqhBgwbh4ODAihUrHvj6QfHqriVLluDk5ESjRo3uWC8zMxMXF5dS22rRogUnT57k22+/RSnFuXPnWL16NZ07d77jOYWFhRQVFWFra2tWbjAY2LZtm/a+ZcuWrF27ltOnT6OUYtOmTaSkpNCxY8fbtpudnU1MTAy+vr54e3sDsHPnTho0aEDVqlW1eiEhIWRlZXHw4EGtLCYmhuPHjxMZGVnqeIUQQgghxNNBNjp/UuxNJ8fGijMFVXiOY1jpKmPp+Brn/K6V+sS9X36/TH6RiY4+8fyh1ndaua2tV3lELYQohcrNJfmFxuXeb8C+vejs7O7rXKUUP/74Ixs2bKBTp06sWbOG7du307JlS6B4XyNvb2/WrFlDt27dOHHiBF27dqVBg+JbhP38/LS2bky0uLm54ezsDBTvcbR8+XK++OIL7fatmJgYPD09S8TStm1bRo8erb0fMGAAvXv3ZuTIkQD4+/szd+5c2rRpw8KFC/Hy8mLu3Lm8++67TJkyhSZNmhAcHEzv3r21uFJSUnBycsLDo+SDH/R6PX5+fqSkpNzXtbth3bp19OzZk5ycHDw8PIiLi6NKlSq3rXv06FHmzZtHdHR0qW0GBQURGxtLjx49uH79OoWFhYSFhbFgwYI7nmM0GmnRogUffPABdevWpWrVqqxYsYKdO3dSq1Ytrd68efN46623qFatGlZWVlhYWPDZZ5/x0ksvmbX36aef8u6775KdnU1AQABxcXHo9XoAzp49azYhBWjvz549C8CRI0cYP3488fHxWFlJeiKEEEII8SyQlVJPgKsZF6Eom+NFlaljOgKAsjCgs7An18oag8Xtf4zns65zMiMHgBerF28m6+zUlJp+Y3GvGl4+wQshngrr1q3DwcEBW1tbOnXqRI8ePejXrx9WVla8+OKLWr3KlSsTEBDAoUOHABg+fDhRUVEEBQURGRnJ/v37S+3n+PHjFBQU0KxZM63MycmJgICAEnWbNGli9v7XX39l2bJlODg4aK+QkBBMJhOpqalA8cqts2fPEhsbS4sWLVi1ahX16tUjLi6uzNfixkRLaWJjY83iiI+P144FBweTmJjIjh07CA0NpXv37pw/f75EG6dPnyY0NJRu3bqZ7Q11c7uDBw8GICkpiREjRjBp0iT27t3L999/T1pamnY8Pj7e7LzY2FgA/vGPf6CUwsvLCxsbG+bOncvrr7+OxU1/V+bNm8fPP//M2rVr2bt3L7NmzWLIkCFs3LjRLN7evXuTkJDAli1bqF27Nt27d+f69etluqZFRUX06tWLKVOmULt27Xu+pkIIIYQQ4skkX0U+AbbuWEt1CzeqXzyFQ94LFLIRZWEDwHEHd/ytS/4YZ3x/mIWbjxFQ6QghPieoZH0UALeqr+BdLaJc4xdC3J7OYCBg394K6fdeBQcHs3DhQvR6PZ6enlhZWZltdH0nAwYMICQkhPXr1/PDDz8wffp0Zs2axbBhw+4ndDP29vZm769du8agQYMYPnx4ibrVq1fX/ttoNBIWFkZYWBhRUVGEhIQQFRVFhw4d8Pf3JzMzk/T09BKrs/Lz8zl27BghISF3ja1Lly5mk3VeXv9bnWpvb0+tWrWoVasWzZs3x9/fn6VLlzJhwgStTnp6OsHBwbRs2ZIlS5aYtX3z0+UcHYufmjp9+nSCgoIYO3YsAA0bNsTe3p7WrVsTFRVFkyZNzM67sUqpZs2abNmyhezsbLKysvDw8KBHjx7ayrHc3FwmTpzI119/zSuvvKK1nZiYSHR0NO3bt9fadHJywsnJCX9/f5o3b06lSpX4+uuvef3113F3d2f37t1m4zh3rvgpsO7u7ly9epVffvmFhIQE7XZLk8mEUgorKyt++OGHUq+pEEIIIYR4Msmk1GMuKz2dX+MP8YvtSbxOZYN1JQCsC3K5VOU8oQ1bMdDbtcR5Px+/hMEql3caL8Ta4n+P3LbRu5Vb7EKI0ul0uvu+ja683ZhIuVndunUpLCxk165d2u17ly5dIjk5mcDAQK2et7c3gwcPZvDgwUyYMIHPPvuMYcOGaSuObt7fyc/PD2tra/bs2aNNJGVmZpKSklLidrFbvfDCCyQlJZWIszQ6nY46deqwY8cOAF577TXGjRvHrFmzmDVrllndRYsWkZOTQ58+fe7artFoxGg0likGk8lEXl6e9v706dMEBwdrT7SzuGU17O3Gl5OTU+KWN0tLS6D4lkuDwVDqdbG3t8fe3p7Lly+zYcMGZs6cCRQ/sbCgoKBEDJaWlphMpju2p5RCKaWNq0WLFkybNo3z58/j5lb8dyguLg5HR0cCAwOxtrbmwIEDZm18+umn/PTTT6xevRpfX1/s7e3LfE2FEEIIIcSTQSalHnNpP/9MvsEeUFgqgOJ/vJ2oYU39t9vTx8t8H5LfTmdyNvM66VdyqWRzBWuLQiwsbHBz64SN3o3KlV8u7yEIIZ5S/v7+hIeHM3DgQBYvXozRaGT8+PF4eXkRHl58i/DIkSPp1KkTtWvX5vLly2zatIm6desC4OPjg06nY926dXTu3BmDwYDRaKRv376MHTsWFxcX3NzciIyMxMLC4rYPc7jZuHHjaN68OUOHDmXAgAHY29uTlJREXFwc8+fPJzExkcjISCIiIggMDESv17NlyxY+//xzxo0bBxSvqJo5cyZjxozB1taWiIgIrK2t+eabb5g4cSJRUVHUr1/frN/k5OQSsdSrVw9ra2uzsuzsbKZNm0aXLl3w8PDg4sWLLFiwgNOnT9OtWzegeELq5ZdfxsfHh+joaC5cuKCd7+7ufsexh4WFMXDgQBYuXEhISAhnzpxh5MiRNGvW7Lb7cd2wYcMGlFIEBARw9OhRxo4dS506dXjjjTeA4pVYbdq0YezYsRgMBnx8fNiyZQt///vfmT17NlB8y+XKlSvp2LEjrq6unDp1ir/+9a8YDAZto/WOHTsSGBhIREQEM2fO5OzZs/zlL39hyJAh2NgUr/y99bq6ublha2tbovxWGRkZnDhxgvT0dOB/Pw93d/dSr5kQQgghhKh4Min1mCu4XvwtcxWTEWtTDtdV8aRUvpV1iQ3OfzudyavztmFvnc2fav0Hd/viPUpsbatRL9D8G38hhHgYYmJiGDFiBK+++ir5+fm89NJLfPvtt9qETFFREUOGDOHUqVM4OjoSGhrKnDlzgOLbr6ZMmcL48eN544036NOnD8uWLWP27NkMHjyYV199FUdHR959911OnjxZ4ilxt2rYsCFbtmzhvffeo3Xr1iilqFmzJj169ACgWrVq1KhRgylTppCWloZOp9Pev/POO1o777zzDn5+fsyaNYtPPvmE7OxsAFasWEHPnj1L9Hu7spMnT1KtWjWzMktLSw4fPszy5cu5ePEilStXpmnTpsTHx1OvXj2gePXQ0aNHOXr0aInzS3tqYr9+/bh69Srz589n9OjRODs707ZtW2bMmFHqNcvMzGTChAmcOnUKFxcXunbtyrRp08wm1P71r38xYcIEevfuTUZGBj4+PkybNk3br8rW1pb4+Hg+/vhjLl++TNWqVXnppZfYsWOHtirK0tKSdevW8fbbb9OiRQvs7e3p27cvU6dOLTW+sli7dq02iQb/+3lERkYyefLkB25fCCGEEEI8Ojr1MJ4N/pTKysrCycmJzMxMbd+O8lSQk8/GqK/ZpT+E6+VcCs6mUqSzBHWV4wGBvDJsIp1dnbX6X+49xehVv9LZbxtda/1bK69SpR2NGi65TQ9CiPJy/fp1UlNT8fX1vevkijCXnZ2Nl5cXs2bNon///uXef0ZGBu3atcPR0ZHvvvsOuyfklkvxYEr7zFZ0fvC4keshhBBCiFuVNT+QlVKPsVPbj6PXwV7lRNOM/diTD/+dQswyOmsrpc5nXWf8VwdIPnsVgEaexXtIVarUAje3zrhWaVch8QshxP1ISEjg8OHDNGvWjMzMTG01zY1bAsubi4sLGzduZMGCBezcuZN27eT/qUIIIYQQQjwMMin1GEv5+SfAGSfTcewLijestTK8jF53lpPPvUg9h+InaG04eJafDp/nRfdfeKtFHB521wCo5Pwi1bx6VVT4Qghx36Kjo0lOTkav19O4cWPi4+OpUqXK3U98RCpXrsykSZMqrH8hhBBCCCGeRjIp9Zi6evEsF04cwcWtMZ1/y+WMvnj1k2OeDfVcTzOg7ctY//fJSpey8wH4U8B2qtic0dpwcKhb/oELIcQDev7559m7d29FhyGEEEIIIYR4xGRS6jG169P5HPdw5KjuKA3ydaAvAOCi7W/Umfwp1paWLN5yjO8PnuXclSyqGC7iqM8EICDgA5ydGuPgEFCRQxBCCCGEEEIIIYS4I5mUekydys3HZFO8ma7uph/TvJ5vMKqSMyaTIvqHZJQpnw9bRVHZcFmrU9mlNQaDd7nHLIQQQgghhBBCCFFWMin1GFJFCpOyAaBWhgWX9VnaMUtrPRbAhWt5FBQp3O0ytAkpSws7nJyex9bWqyLCFkIIIYQQQgghhCgzmZR6DJ1dfxydtTsWeSc4d+4g6P97QGeJjbU1f1q4g4OnzxFSYxu+TsV7SNnZ+dKi+caKC1oIIYQQQgghhBDiHsik1GPo3IE0ijCRXXQZe8BCWaCzbUhRpSJ6VHFm+YkTvOT1C91rf6OdY2vjWXEBCyGEEEIIIYQQQtwjmZR6zFw6dYLM00lkuFhgkV8JSEdZVUFv1xY71xNwMgeA6k7Ft/QZHepRyaUlHu5/rMCohRBCCCGEEEIIIe6NTEo9Zg5u/x5LnRV5RQV4XvYin4OAFTpTEWsuGLm6ZzM9A3bRoMoxAKpUaYef34iKDVoIIYQQQgghhBDiHllUdADCXPb3P3HNyoRl9hXQKQCcrp7C+9QiDtnq6VPvGzr4bKGK7SkAbG3ltj0hxKPVr18/dDodOp0OvV5PrVq1mDp1KoWFhQ/U7ubNm9HpdFy5cuXhBFoGqamp9OrVC09PT2xtbalWrRrh4eEcPnzYrN66deto06YNRqMROzs7mjZtyrJly8zqpKWlodPpSExMLHP/kydPpk6dOtjb21OpUiXat2/Prl27zNrs378/vr6+GAwGatasSWRkJPn5+XdtOzY2lkaNGmFnZ4eHhwdvvvkmly5dKvWcrVu3EhYWhqenJzqdjjVr1pSo89VXX9GxY0cqV6581/EqpejUqdMd21q2bBkNGzbE1tYWNzc3hgwZYnZ8w4YNNG/eHKPRiKurK127diUtLa1cximEEEIIIcqfTEo9RnJzc9lTzZ+fK13gEjkUmTIAuFzNngn9x6F0Fng6FN+25+HeFX//v1C1alhFhiyEeEaEhoZy5swZjhw5wujRo5k8eTIfffRRRYelKcukTUFBAR06dCAzM5OvvvqK5ORkVq5cSYMGDcwmxubNm0d4eDhBQUHs2rWL/fv307NnTwYPHsyYMWMeKM7atWszf/58Dhw4wLZt26hRowYdO3bkwoULABw+fBiTycTixYs5ePAgc+bMYdGiRUycOLHUdrdv306fPn3o378/Bw8eZNWqVezevZuBAweWel52djaNGjViwYIFpdZp1aoVM2bMuOv4Pv74Y3Q63W2PzZ49m/fee4/x48dz8OBBNm7cSEhIiHY8NTWV8PBw2rZtS2JiIhs2bODixYv86U9/KpdxCiGEEEKICqDEHWVmZipAZWZmlkt/yQeOqcjISDXl3bEquvsr2uuvw3uqViuWq8l/f13F/RigNv7op65dO1IuMQkhHo7c3FyVlJSkcnNzKzqUe9a3b18VHh5uVtahQwfVvHlzlZGRoSIiIpSzs7MyGAwqNDRUpaSkaPXS0tLUq6++qpydnZWdnZ0KDAxU69evV6mpqQowe/Xt21cppVRWVpbq1auXsrOzU+7u7mr27NmqTZs2asSIEVq7Pj4+aurUqSoiIkIZjUbt3Pj4eNWqVStla2urqlWrpoYNG6auXbumlFIqISFBASotLe2OYz1x4oSytrZWo0aNKnFs7ty5ClA///yzUkppY0hISLj3i/pfN/7ObNy48Y51Zs6cqXx9fUtt56OPPlJ+fn4l4vXy8ipzLID6+uuv73j8buNNSEhQXl5e6syZMyXaysjIUAaDodRxrlq1SllZWamioiKtbO3atUqn06n8/HylVPmM84bSPrPlnR887uR6CCGEEOJWZc0PZKXUY+T0v5IA8Mk//98Sa3SW7pjsbfmL2zRaee1CRwE6nTU2NlUrLlAhxEOhlKIgr6jcX0qpB47dYDCQn59Pv379+OWXX1i7di07d+5EKUXnzp0pKCgAYMiQIeTl5bF161YOHDjAjBkzcHBwwNvbmy+//BKA5ORkzpw5wyeffALAqFGj2L59O2vXriUuLo74+Hj27dtXIobo6GgaNWpEQkIC77//PseOHSM0NJSuXbuyf/9+Vq5cybZt2xg6dCgArq6uWFhYsHr1aoqKim47rtWrV1NQUHDbFVGDBg3CwcGBFStWPPD1g+LVXUuWLMHJyYlGjRrdsV5mZiYuLi6lttWiRQtOnjzJt99+i1KKc+fOsXr1ajp37vxQYr2bnJwcevXqxYIFC3B3dy9xPC4uDpPJxOnTp6lbty7VqlWje/funDx5UqvTuHFjLCwsiImJoaioiMzMTP7xj3/Qvn17rK2tH4txCiGEEEKIh0s2On9MXM++hmXhdfIsLMjKcwAuYmHlid4hnHzjCqwoxMrKCR+fQTga62NlZazokIUQD6gw38SSEVvKvd+3PmmDtY3lfZ2rlOLHH39kw4YNdOrUiTVr1rB9+3ZatmwJFO/34+3tzZo1a+jWrRsnTpyga9euNGjQAAA/Pz+trRsTLW5ubjg7OwNw9epVli9fzhdffEG7du0AiImJwdOz5P55bdu2ZfTo0dr7AQMG0Lt3b0aOHAmAv78/c+fOpU2bNixcuBAvLy/mzp3Lu+++y5QpU2jSpAnBwcH07t1biyslJQUnJyc8PDxK9KfX6/Hz8yMlJeW+rt0N69ato2fPnuTk5ODh4UFcXBxVqlS5bd2jR48yb948oqOjS20zKCiI2NhYevTowfXr1yksLCQsLKzcbld75513aNmyJeHh4bc9fvz4cUwmEx9++CGffPIJTk5O/OUvf6FDhw7s378fvV6Pr68vP/zwA927d2fQoEEUFRXRokULvv3228dmnEIIIYQQ4uGSlVKPiZ/+/TdMFHK6yBFTrn9xoc4Sy8LLNGta/I9Wg6E6NXwG4eISVIGRCiGeRevWrcPBwQFbW1s6depEjx496NevH1ZWVrz44otavcqVKxMQEMChQ4cAGD58OFFRUQQFBREZGcn+/ftL7ef48eMUFBTQrFkzrczJyYmAgIASdZs0aWL2/tdff2XZsmU4ODhor5CQEEwmE6mpqUDxyq2zZ88SGxtLixYtWLVqFfXq1SMuLq7M10Kv19+1TmxsrFkc8fHx2rHg4GASExPZsWMHoaGhdO/enfPnz5do4/Tp04SGhtKtWzezPZNubnfw4MEAJCUlMWLECCZNmsTevXv5/vvvSUtL047Hx8ebnRcbG1vm8d7N2rVr+emnn/j444/vWMdkMlFQUMDcuXMJCQmhefPmrFixgiNHjrBp0yYAzp49y8CBA+nbty979uxhy5Yt6PV6XnvtNW11X0WOUwghhBBCPHyyUuoxoAoLORX/I/5V/4zXpUugKgHgePU0rtdiUBY6LCz0VK36agVHKoR4mKz0Frz1SZsK6fdeBQcHs3DhQvR6PZ6enlhZWbF27dq7njdgwABCQkJYv349P/zwA9OnT2fWrFkMGzbsfkI3Y29vb/b+2rVrDBo0iOHDh5eoW716de2/jUYjYWFhhIWFERUVRUhICFFRUXTo0AF/f38yMzNJT08vsTorPz+fY8eOmW3OfSddunQxm6zz8vIyi7tWrVrUqlWL5s2b4+/vz9KlS5kwYYJWJz09neDgYFq2bMmSJUvM2r756XeOjo4ATJ8+naCgIMaOHQtAw4YNsbe3p3Xr1kRFRdGkSROz86pWfXi3gP/0008cO3ZMW+12Q9euXWndujWbN2/WVp4FBgZqx11dXalSpQonTpwAYMGCBTg5OTFz5kytzj//+U+8vb3ZtWsXzZs3r9BxCiGEEEKIh08mpR4Dp7dsIdPBh0Tr33HKLQBd8WPWrQozKXwpDyenJjRpvLKCoxRCPGw6ne6+b6MrbzcmUm5Wt25dCgsL2bVrl3b73qVLl0hOTjabfPD29mbw4MEMHjyYCRMm8NlnnzFs2DBtxdHN+zv5+flhbW3Nnj17tImkzMxMUlJSeOmll0qN8YUXXiApKalEnKXR6XTUqVOHHTt2APDaa68xbtw4Zs2axaxZs8zqLlq0iJycHPr06XPXdo1GI0Zj2W6zNplM5OXlae9Pnz5NcHAwjRs3JiYmBgsL80nE240vJycHKyvzP+mWlsW/W0opDAbDPV2XezF+/HgGDBhgVtagQQPmzJlDWFjxE2KDgopX+CYnJ1OtWjUAMjIyuHjxIj4+PtoYbh3rjTGYTCatTkWNUwghhBBCPHzPxKTUggUL+Oijjzh79iyNGjVi3rx5ZreGVLT9x46R7VIFyMFoAiyK/4F27rlKeDZNwNo6sNTzhRCiIvj7+xMeHs7AgQNZvHgxRqOR8ePH4+Xlpe0tNHLkSDp16kTt2rW5fPkymzZtom7dugD4+Pig0+lYt24dnTt3xmAwYDQa6du3L2PHjsXFxQU3NzciIyOxsLBAp9OVGs+4ceNo3rw5Q4cOZcCAAdjb25OUlERcXBzz588nMTGRyMhIIiIiCAwMRK/Xs2XLFj7//HPGjRsHFK+omjlzJmPGjMHW1paIiAisra355ptvmDhxIlFRUdSvX9+s3+Tk5BKx1KtXT9uc+4bs7GymTZtGly5d8PDw4OLFiyxYsIDTp0/TrVs3oHhC6uWXX8bHx4fo6GguXLignX+7DcRvCAsLY+DAgSxcuJCQkBDOnDnDyJEjadas2W3347rh2rVrHD16VHufmppKYmIiLi4u2qRgRkYGJ06cID093Wy87u7uZq9bVa9eHV9fXwBq165NeHg4I0aMYMmSJTg6OjJhwgTq1KlDcHAwAK+88gpz5sxh6tSpvP7661y9epWJEyfi4+PD888//8jHKYQQQgghKsCjfQhgxfvXv/6l9Hq9+vzzz9XBgwfVwIEDlbOzszp37txdzy2vRxwvnTpPRUZGqr+9O0PN6TFAze71fyq6+yvqn+83Vz/+FKBOn/73I+1fCPHolfZ4+cdd3759VXh4+G2PZWRkqIiICOXk5KQMBoMKCQlRKSkp2vGhQ4eqmjVrKhsbG+Xq6qoiIiLUxYsXteNTp05V7u7uSqfTqb59+yqllMrKylK9evVSdnZ2yt3dXc2ePVs1a9ZMjR8/XjvPx8dHzZkzp0Q8u3fvVh06dFAODg7K3t5eNWzYUE2bNk0ppdSFCxfU8OHDVf369ZWDg4MyGo2qQYMGKjo6WhUVFZm1s2bNGtW6dWtlb2+vAAWoFStWmNVJTU3Vjt36OnnyZInYcnNz1R//+Efl6emp9Hq98vDwUF26dFG7d+/W6sTExNyxzbuZO3euCgwMVAaDQXl4eKjevXurU6dOlXrOpk2bbtvXjZ9FaTFFRkbesV1Aff3112ZlmZmZ6s0331TOzs7KxcVF/fGPf1QnTpwwq7NixQr1/PPPK3t7e+Xq6qq6dOmiDh06VC7jvFVpn9nyyg+eFHI9hBBCCHGrsuYHOqUewrPBH2MvvvgiTZs2Zf78+UDxLQDe3t4MGzaM8ePHl3puVlYWTk5OZGZmavt2PCy/7d1N3GeLgeLMWEcRpssXzeo8174ZbQe8h073ZNzeI4S4s+vXr5Oamoqvry+2trYVHc4TJTs7Gy8vL2bNmkX//v3Lvf+MjAzatWuHo6Mj3333HXZ2duUegyh/pX1mH2V+8CSS6yGEEEKIW5U1P3iqn76Xn5/P3r17ad++vVZmYWFB+/bt2blzZ4n6eXl5ZGVlmb0eld92bcF0+Rymy+dQl8+ZTUhZWPtipXelUYcwmZASQjxzEhISWLFiBceOHWPfvn307t0bQLslsLy5uLiwceNG2rVrd9u/HUIIIYQQQoj781TvKXXx4kWKiopKPH2natWqHD58uET96dOnM2XKlHKJzdrWDgudc8lyC0/0VrWpFHSIKjWeL5dYhBDicRMdHU1ycjJ6vZ7GjRsTHx9PlSpVKiyeypUrM2nSpArrXwghhBBCiKfRUz0pda8mTJjAqFGjtPdZWVl4e3s/kr66vjkE3hzySNoWQogn2fPPP8/evXsrOgwhhBBCCCHEI/ZUT0pVqVIFS0tLzp07Z1Z+7ty52z4pyMbGBhsbm/IKTwghhBBCCCGEEOKZ9VTvKXXjto8ff/xRKzOZTPz444+0aNGiAiMTQgghhBBCCCGEeLY91SulAEaNGkXfvn1p0qQJzZo14+OPPyY7O5s33nijokMTQgghhBBCCCGEeGY99ZNSPXr04MKFC0yaNImzZ8/y3HPP8f3335fY/FwIIYQQQgghhBBClJ+nflIKYOjQoQwdOrSiwxBCCCGEEEIIIYQQ//VU7yklhBBCCCGEEEIIIR5PMiklhBBCCCGEEEIIIcqdTEoJIYQoVb9+/dDpdOh0OvR6PbVq1WLq1KkUFhY+ULubN29Gp9Nx5cqVhxNoGaSmptKrVy88PT2xtbWlWrVqhIeHc/jwYbN669ato02bNhiNRuzs7GjatCnLli0zq5OWloZOpyMxMbHM/U+ePJk6depgb29PpUqVaN++Pbt27TJrs3///vj6+mIwGKhZsyaRkZHk5+ffte3Y2FgaNWqEnZ0dHh4evPnmm1y6dKnUc7Zu3UpYWBienp7odDrWrFlzzzEDTJs2jZYtW2JnZ4ezs/Nt+zpx4gSvvPIKdnZ2uLm5MXbsWLPfoZt/z25+1atXT6szffp0mjZtitFoxM3NjT/84Q8kJyff9dqUJT4hhBBCCFH+ZFJKCCHEXYWGhnLmzBmOHDnC6NGjmTx5Mh999FFFh6Upy6RNQUEBHTp0IDMzk6+++ork5GRWrlxJgwYNzCbG5s2bR3h4OEFBQezatYv9+/fTs2dPBg8ezJgxYx4oztq1azN//nwOHDjAtm3bqFGjBh07duTChQsAHD58GJPJxOLFizl48CBz5sxh0aJFTJw4sdR2t2/fTp8+fejfvz8HDx5k1apV7N69m4EDB5Z6XnZ2No0aNWLBggX3HTMUX/9u3brx9ttv37aNoqIiXnnlFfLz89mxYwfLly9n2bJlTJo0SavzySefcObMGe118uRJXFxc6Natm1Zny5YtDBkyhJ9//pm4uDgKCgro2LEj2dnZpY7zbvEJIYQQQogKosQdZWZmKkBlZmZWdChCiCdcbm6uSkpKUrm5uRUdyj3r27evCg8PNyvr0KGDat68ucrIyFARERHK2dlZGQwGFRoaqlJSUrR6aWlp6tVXX1XOzs7Kzs5OBQYGqvXr16vU1FQFmL369u2rlFIqKytL9erVS9nZ2Sl3d3c1e/Zs1aZNGzVixAitXR8fHzV16lQVERGhjEajdm58fLxq1aqVsrW1VdWqVVPDhg1T165dU0oplZCQoACVlpZ2x7GeOHFCWVtbq1GjRpU4NnfuXAWon3/+WSmltDEkJCTc+0X9rxt/ZzZu3HjHOjNnzlS+vr6ltvPRRx8pPz+/EvF6eXmVORZAff3113etV1rMMTExysnJqUT5t99+qywsLNTZs2e1soULFypHR0eVl5d3236+/vprpdPpSv15nT9/XgFqy5Ytd427tPhup7TPrOQH5uR6CCGEEOJWZc0PZKWUEEJUEKUUBdevl/tLKfXAsRsMBvLz8+nXrx+//PILa9euZefOnSil6Ny5MwUFBQAMGTKEvLw8tm7dyoEDB5gxYwYODg54e3vz5ZdfApCcnMyZM2f45JNPABg1ahTbt29n7dq1xMXFER8fz759+0rEEB0dTaNGjUhISOD999/n2LFjhIaG0rVrV/bv38/KlSvZtm2b9vRVV1dXLCwsWL16NUVFRbcd1+rVqykoKLjtiqhBgwbh4ODAihUrHvj6QfHqnSVLluDk5ESjRo3uWC8zMxMXF5dS22rRogUnT57k22+/RSnFuXPnWL16NZ07d34osd5rzLfauXMnDRo0oGrVqlpZSEgIWVlZHDx48LbnLF26lPbt2+Pj43PHdjMzMwHuen2EEEIIIcTjyaqiAxBCiGdVYV4ec/u+Vu79Dl++Gmtb2/s6VynFjz/+yIYNG+jUqRNr1qxh+/bttGzZEije18jb25s1a9bQrVs3Tpw4QdeuXWnQoAEAfn5+Wls3JhLc3Ny0fX6uXr3K8uXL+eKLL2jXrh0AMTExeHp6loilbdu2jB49Wns/YMAAevfuzciRIwHw9/dn7ty5tGnThoULF+Ll5cXcuXN59913mTJlCk2aNCE4OJjevXtrcaWkpODk5ISHh0eJ/vR6PX5+fqSkpNzXtbth3bp19OzZk5ycHDw8PIiLi6NKlSq3rXv06FHmzZtHdHR0qW0GBQURGxtLjx49uH79OoWFhYSFhZV6W96jivl2zp49azYhBWjvz549W6J+eno63333HV988cUd2zSZTIwcOZKgoCDq169f5liEEEIIIcTjQ1ZKCSGEuKt169bh4OCAra0tnTp1okePHvTr1w8rKytefPFFrV7lypUJCAjg0KFDAAwfPpyoqCiCgoKIjIxk//79pfZz/PhxCgoKaNasmVbm5OREQEBAibpNmjQxe//rr7+ybNkyHBwctFdISAgmk4nU1FSgeOXW2bNniY2NpUWLFqxatYp69eoRFxdX5muh1+vvWic2NtYsjvj4eO1YcHAwiYmJ7Nixg9DQULp378758+dLtHH69GlCQ0Pp1q2b2d5QN7c7ePBgAJKSkhgxYgSTJk1i7969fP/996SlpWnH4+Pjzc6LjY0t83jvJeaHZfny5Tg7O/OHP/zhjnWGDBnCb7/9xr/+9S+tbPDgwWbjFEIIIYQQjzdZKSWEEBXEysaG4ctXV0i/9yo4OJiFCxei1+vx9PTEysqKtWvX3vW8AQMGEBISwvr16/nhhx+YPn06s2bNYtiwYfcTuhl7e3uz99euXWPQoEEMHz68RN3q1atr/200GgkLCyMsLIyoqChCQkKIioqiQ4cO+Pv7k5mZSXp6eonVWfn5+Rw7doyQkJC7xtalSxezyTovLy+zuGvVqkWtWrVo3rw5/v7+LF26lAkTJmh10tPTCQ4OpmXLlixZssSs7Zuf9ufo6AgUP5UuKCiIsWPHAtCwYUPs7e1p3bo1UVFRNGnSxOy8W1ct3U1ZYi6Nu7s7u3fvNis7d+6cduxmSik+//xzIiIi7jgBOHToUNatW8fWrVupVq2aVj516tQH3oxeCCGEEEKUH5mUEkKICqLT6e77NrrydmNS4mZ169alsLCQXbt2abfvXbp0ieTkZAIDA7V63t7eDB48mMGDBzNhwgQ+++wzhg0bpk043Ly/k5+fH9bW1uzZs0ebSMrMzCQlJYWXXnqp1BhfeOEFkpKSSsRZGp1OR506ddixYwcAr732GuPGjWPWrFnMmjXLrO6iRYvIycmhT58+d23XaDRiNBrLFIPJZCIvL097f/r0aYKDg2ncuDExMTFYWJgvar7d+HJycrCyMv+TbmlpCRRP8hgMhnu6Lvca8920aNGCadOmcf78edzc3ACIi4vD0dHR7HcFip+wd/ToUfr371+iHaUUw4YN4+uvv2bz5s34+vqaHXdzc9PaF0IIIYQQjz+ZlBJCCHFf/P39CQ8PZ+DAgSxevBij0cj48ePx8vIiPDwcgJEjR9KpUydq167N5cuX2bRpE3Xr1gXAx8cHnU7HunXr6Ny5MwaDAaPRSN++fRk7diwuLi64ubkRGRmJhYUFOp2u1HjGjRtH8+bNGTp0KAMGDMDe3p6kpCTi4uKYP38+iYmJREZGEhERQWBgIHq9ni1btvD5558zbtw4oHhF1cyZMxkzZgy2trZERERgbW3NN998w8SJE4mKiiqxf1FycnKJWOrVq4e1tbVZWXZ2NtOmTaNLly54eHhw8eJFFixYwOnTp+nWrRtQPCH18ssv4+PjQ3R0NBcuXNDOv3VF0c3CwsIYOHAgCxcuJCQkhDNnzjBy5EiaNWt22/24brh27RpHjx7V3qemppKYmIiLiwvVq1cvU8wAJ06cICMjgxMnTlBUVKStyqpVqxYODg507NiRwMBAIiIimDlzJmfPnuUvf/kLQ4YMweaWlXtLly7lxRdfvO0+UUOGDOGLL77gm2++wWg0avtROTk5YTAY7jjOu8UnhBBCCCEqyCN+CuATTR5xLIR4WEp7vPzjrm/fvio8PPy2xzIyMlRERIRycnJSBoNBhYSEqJSUFO340KFDVc2aNZWNjY1ydXVVERER6uLFi9rxqVOnKnd3d6XT6VTfvn2VUkplZWWpXr16KTs7O+Xu7q5mz56tmjVrpsaPH6+d5+Pjo+bMmVMint27d6sOHTooBwcHZW9vrxo2bKimTZumlFLqwoULavjw4ap+/frKwcFBGY1G1aBBAxUdHa2KiorM2lmzZo1q3bq1sre3V4AC1IoVK8zqpKamasdufZ08ebJEbLm5ueqPf/yj8vT0VHq9Xnl4eKguXbqo3bt3a3ViYmLu2ObdzJ07VwUGBiqDwaA8PDxU79691alTp0o9Z9OmTbft68bPoiwxK1X8O3K7djZt2qTVSUtLU506dVIGg0FVqVJFjR49WhUUFJi1c+XKFWUwGNSSJUtuG++drk1MTEyp4yxLfLcq7TMr+YE5uR5CCCGEuFVZ8wOdUg/h2eBPqaysLJycnMjMzNT27RBCiPtx/fp1UlNT8fX1xfYJuWXvcZGdnY2XlxezZs267S1dj1pGRgbt2rXD0dGR7777Djs7u3KPQZS/0j6zkh+Yk+shhBBCiFuVNT+Qp+8JIYR4rCQkJLBixQqOHTvGvn376N27N4B2S2B5c3FxYePGjbRr146dO3dWSAxCCCGEEEI8jWRPKSGEEI+d6OhokpOT0ev1NG7cmPj4eKpUqVJh8VSuXJlJkyZVWP9CCCGEEEI8jWRSSgghxGPl+eefZ+/evRUdhhBCCCGEEOIRk9v3hBBCCCGEEEIIIUS5k0kpIYQoR/JsCSGeDPJZFUIIIYR49GRSSgghyoG1tTUAOTk5FRyJEKIsbnxWb3x2hRBCCCHEwyd7SgkhRDmwtLTE2dmZ8+fPA2BnZ4dOp6vgqIQQt1JKkZOTw/nz53F2dsbS0rKiQxJCCCGEeGrJpJQQQpQTd3d3AG1iSgjx+HJ2dtY+s0IIIYQQ4tGQSSkhhCgnOp0ODw8P3NzcKCgoqOhwhBB3YG1tLSukhBBCCCHKgUxKCSFEObO0tJR/8AohhBBCCCGeebLRuRBCCCGEEEIIIYQodzIpJYQQQgghhBBCCCHKnUxKCSGEEEIIIYQQQohyJ3tKlUIpBUBWVlYFRyKEEEKIx8WNvOBGnvCsk3xJCCGEELcqa74kk1KluHr1KgDe3t4VHIkQQgghHjdXr17FycmposOocJIvCSGEEOJO7pYv6ZR8zXdHJpOJ9PR0jEYjOp3uobeflZWFt7c3J0+exNHR8aG3/7h4VsYJz85Yn5VxwrMzVhnn0+dZGWtFjFMpxdWrV/H09MTCQnZCkHzp4XhWxgnPzliflXHCszNWGefT51kZ6+OcL8lKqVJYWFhQrVq1R96Po6PjU/0BuOFZGSc8O2N9VsYJz85YZZxPn2dlrOU9Tlkh9T+SLz1cz8o44dkZ67MyTnh2xirjfPo8K2N9HPMl+XpPCCGEEEIIIYQQQpQ7mZQSQgghhBBCCCGEEOVOJqUqkI2NDZGRkdjY2FR0KI/UszJOeHbG+qyME56dsco4nz7PyliflXE+y56Vn/GzMk54dsb6rIwTnp2xyjifPs/KWB/nccpG50IIIYQQQgghhBCi3MlKKSGEEEIIIYQQQghR7mRSSgghhBBCCCGEEEKUO5mUEkIIIYQQQgghhBDlTialhBBCCCGEEEIIIUS5k0kpIYQQQgghhBBCCFHuZFJKCCGEEEIIIYQQQpQ7mZQSQgghhBBCCCGEEOVOJqWEEEIIIYQQQgghRLmTSSkhhBBCCCGEEEIIUe5kUkoIIYQQQgghhBBClDuZlBJCCCGEEEIIIYQQ5U4mpYQQQgghhBBCCCFEuZNJKSGEEEIIIYQQQghR7mRSSgjxWEtLS0On07Fs2bKKDkUIIYQQotxJLiSEeJrJpJQQolQ7duxg8uTJXLly5b7O//TTTyWJEkIIIcQTS3IhIYR4dGRSSghRqh07djBlyhRJxIQQQgjxTJJcSAghHh2ZlBJCCHHPlFLk5uZWdBhCCCGEEI+t7Ozsig5BiMeeTEoJIe5o8uTJjB07FgBfX190Oh06nY60tDQKCwv54IMPqFmzJjY2NtSoUYOJEyeSl5ennV+jRg0OHjzIli1btHNffvllADIyMhgzZgwNGjTAwcEBR0dHOnXqxK+//vpQYv/999/p0qUL9vb2uLm58c4777BhwwZ0Oh2bN2/W6r388svUr1+fvXv30rJlSwwGA76+vixatMisvWXLlmljv9nmzZtLtHk3N9raunUrgwYNonLlyjg6OtKnTx8uX75cov6nn35KvXr1sLGxwdPTkyFDhph9Wzt37lwsLS3NymbNmoVOp2PUqFFaWVFREUajkXHjxmllJpOJjz/+mHr16mFra0vVqlUZNGhQiThq1KjBq6++yoYNG2jSpAkGg4HFixeXecxCCCHEk0hyof95FLnQtm3bGD58OK6urjg7OzNo0CDy8/O5cuUKffr0oVKlSlSqVIl3330XpZRZG/eaw2zevFnLYRo0aKDF+9VXX9GgQQNsbW1p3LgxCQkJJeL96aefaN26Nfb29jg7OxMeHs6hQ4fM6kyePBmdTkdSUhK9evWiUqVKtGrVipiYGHQ63W3b/fDDD7G0tOT06dNlvnZCPG2sKjoAIcTj609/+hMpKSmsWLGCOXPmUKVKFQBcXV0ZMGAAy5cv57XXXmP06NHs2rWL6dOnc+jQIb7++msAPv74Y4YNG4aDgwPvvfceAFWrVgXg+PHjrFmzhm7duuHr68u5c+dYvHgxbdq0ISkpCU9Pz/uOOzs7m7Zt23LmzBlGjBiBu7s7X3zxBZs2bbpt/cuXL9O5c2e6d+/O66+/zr///W/efvtt9Ho9b7755n3HcTdDhw7F2dmZyZMnk5yczMKFC/n999+15A6KE5wpU6bQvn173n77ba3enj172L59O9bW1rRu3RqTycS2bdt49dVXAYiPj8fCwoL4+Hitv4SEBK5du8ZLL72klQ0aNIhly5bxxhtvMHz4cFJTU5k/fz4JCQla+zckJyfz+uuvM2jQIAYOHEhAQMAjuzZCCCHE40ByoUebCw0bNgx3d3emTJnCzz//zJIlS3B2dmbHjh1Ur16dDz/8kG+//ZaPPvqI+vXr06dPH+3ce8lhjh49Sq9evRg0aBB//vOfiY6OJiwsjEWLFjFx4kT+7//+D4Dp06fTvXt3kpOTsbAoXr+xceNGOnXqhJ+fH5MnTyY3N5d58+YRFBTEvn37qFGjhtmYunXrhr+/Px9++CFKKV577TWGDBlCbGwszz//vFnd2NhYXn75Zby8vB7RFRbiCaCEEKIUH330kQJUamqqVpaYmKgANWDAALO6Y8aMUYD66aeftLJ69eqpNm3alGj3+vXrqqioyKwsNTVV2djYqKlTp5qVASomJqbMMc+aNUsBas2aNVpZbm6uqlOnjgLUpk2btPI2bdooQM2aNUsry8vLU88995xyc3NT+fn5SimlYmJiSlwHpZTatGlTiTbv5kZbjRs31tpXSqmZM2cqQH3zzTdKKaXOnz+v9Hq96tixo9m1mj9/vgLU559/rpRSqqioSDk6Oqp3331XKaWUyWRSlStXVt26dVOWlpbq6tWrSimlZs+erSwsLNTly5eVUkrFx8crQMXGxprF9/3335co9/HxUYD6/vvvyzxOIYQQ4mkgudCjy4VCQkKUyWTSylu0aKF0Op0aPHiwVlZYWKiqVatmdg3vJ4fZsWOHVrZhwwYFKIPBoH7//XetfPHixSXGcuM6XLp0SSv79ddflYWFherTp49WFhkZqQD1+uuvlxjv66+/rjw9Pc1+3vv27bvnn6sQTyO5fU8Icc++/fZbALNbwwBGjx4NwPr16+/aho2NjfYNVFFREZcuXcLBwYGAgAD27dv3QPF9//33eHl50aVLF63M1taWgQMH3ra+lZUVgwYN0t7r9XoGDRrE+fPn2bt37wPFUpq33nrL7Fu8t99+GysrK+36bty4kfz8fEaOHKldK4CBAwfi6OioXWcLCwtatmzJ1q1bATh06BCXLl1i/PjxKKXYuXMnULx6qn79+jg7OwOwatUqnJyc6NChAxcvXtRejRs3xsHBocS3qb6+voSEhDyy6yGEEEI8KSQXejj69++vrQ4HePHFF1FK0b9/f63M0tKSJk2acPz4ca3sXnOYwMBAWrRoYdYPQNu2balevXqJ8ht9nTlzhsTERPr164eLi4tWr2HDhnTo0EH7PbjZ4MGDS5T16dOH9PR0s7hiY2MxGAx07dr1LldJiKebTEoJIe7Z77//joWFBbVq1TIrd3d3x9nZmd9///2ubZhMJubMmYO/vz82NjZUqVIFV1dX9u/fT2Zm5gPHV7NmTbMkBygR7w2enp7Y29ubldWuXRugxL4JD5O/v7/ZewcHBzw8PLQ+b1zHW2+T0+v1+Pn5mV3n1q1bs3fvXnJzc4mPj8fDw4MXXniBRo0aabfwbdu2jdatW2vnHDlyhMzMTNzc3HB1dTV7Xbt2jfPnz5v16+vr+9DGLoQQQjzJJBd6OG6eEAJwcnICwNvbu0T5zXtF3WsOcy/9AFpfd8rFAOrWrcvFixdLbGZ+u3ypQ4cOeHh4EBsbCxT/7FesWEF4eDhGo7FEfSGeJbKnlBDivt2a6NyLDz/8kPfff58333yTDz74ABcXFywsLBg5ciQmk+khRvlw3GmsRUVF5RzJ7bVq1YqCggJ27txJfHy8NvnUunVr4uPjOXz4MBcuXDCblDKZTLi5uWkJ0q1cXV3N3hsMhkc3ACGEEOIJJLnQg+VClpaWZS5XN210fq85zL30c2tf9+p2+ZKlpSW9evXis88+49NPP2X79u2kp6fz5z//+b77EeJpIZNSQohS3S4B8fHxwWQyceTIEerWrauVnzt3jitXruDj41Pq+QCrV68mODiYpUuXmpVfuXJF20T0fvn4+JCUlIRSyqz/o0eP3rZ+eno62dnZZt8QpqSkAGibV1aqVEmL72Zl+Sb0To4cOUJwcLD2/tq1a5w5c4bOnTtr44DiDcb9/Py0evn5+aSmptK+fXutrFmzZuj1euLj44mPj9eeFPTSSy/x2Wef8eOPP2rvb6hZsyYbN24kKChIJpyEEEKIO5BcqAbwaHKh+1VeOczNuditDh8+TJUqVUqsMLuTPn36MGvWLP7zn//w3Xff4erqKtsiCIHcvieEuIsbf2hvTkBuTJp8/PHHZnVnz54NwCuvvGJ2/q3JCxR/Y3Trt1CrVq16KI/EDQkJ4fTp06xdu1Yru379Op999tlt6xcWFrJ48WLtfX5+PosXL8bV1ZXGjRsDxckPoO3bBMXfDC5ZsuS+41yyZAkFBQXa+4ULF1JYWEinTp0AaN++PXq9nrlz55pdq6VLl5KZmWl2nW1tbWnatCkrVqzgxIkTZiulcnNzmTt3LjVr1sTDw0M7p3v37hQVFfHBBx/c9prc7ucmhBBCPGskF3p0udD9Kq8cxsPDg+eee47ly5ebtfnbb7/xww8/aL8HZdGwYUMaNmzI3/72N7788kt69uyJlZWsERFCPgVCiFLdSETee+89evbsibW1NWFhYfTt25clS5Zw5coV2rRpw+7du1m+fDl/+MMfzFb/NG7cmIULFxIVFUWtWrVwc3Ojbdu2vPrqq0ydOpU33niDli1bcuDAAWJjY81WBN2vQYMGMX/+fF5//XVGjBih3cNva2sLlPzG0tPTkxkzZpCWlkbt2rVZuXIliYmJLFmyRNuIvF69ejRv3pwJEyaQkZGBi4sL//rXvygsLLzvOPPz82nXrp326OFPP/2UVq1aaZuSurq6MmHCBKZMmUJoaChdunTR6jVt2rTEku/WrVvz17/+FScnJxo0aACAm5sbAQEBJCcn069fP7P6bdq0YdCgQUyfPp3ExEQ6duyItbU1R44cYdWqVXzyySe89tpr9z0+IYQQ4mkgudCjy4XuV3nmMB999BGdOnWiRYsW9O/fn9zcXObNm4eTkxOTJ0++p7b69OnDmDFjAOTWPSFuqLDn/gkhnhgffPCB8vLyUhYWFtqjgAsKCtSUKVOUr6+vsra2Vt7e3mrChAnq+vXrZueePXtWvfLKK8poNCpAe5zv9evX1ejRo5WHh4cyGAwqKChI7dy5U7Vp08bskb/38xhkpZQ6fvy4euWVV5TBYFCurq5q9OjR6ssvv1SA+vnnn7V6bdq0UfXq1VO//PKLatGihbK1tVU+Pj5q/vz5Jdo8duyYat++vbKxsVFVq1ZVEydOVHFxcff9GOQtW7aot956S1WqVEk5ODio3r17mz1u+Ib58+erOnXqKGtra1W1alX19ttvq8uXL5eot379egWoTp06mZUPGDBAAWrp0qW3jWfJkiWqcePGymAwKKPRqBo0aKDeffddlZ6ertXx8fFRr7zySpnHKIQQQjxNJBcq9rBzoT179piVR0ZGKkBduHDBrLxv377K3t6+RDsPksMAasiQIWZlN671Rx99ZFa+ceNGFRQUpAwGg3J0dFRhYWEqKSmpTLHf7MyZM8rS0lLVrl37jnWEeNbolHqAXdyEEOIJ8vHHH/POO+9w6tQpvLy8AHj55Ze5ePEiv/32W7nFsWzZMt544w327NlDkyZNyq1fIYQQQjzbHpdc6Fl18eJFPDw8mDRpEu+//35FhyPEY0H2lBJCPJVyc3PN3l+/fp3Fixfj7++vJWFCCCGEEE8ryYUeP8uWLaOoqIiIiIiKDkWIx4bsKSWEeGLk5+eTkZFRah0nJycMBgN/+tOfqF69Os899xyZmZn885//5PDhw3d8dPDDkJubS2ZmZql1XFxcHln/QgghhHi6PS25kF6vf2QxPI5++uknkpKSmDZtGn/4wx+0JxoKIWRSSgjxBNmxY4fZxqG3ExMTQ79+/QgJCeFvf/sbsbGxFBUVERgYyL/+9S969OjxyOJbuXIlb7zxRql1Nm3a9Mj6F0IIIcTT7WnJhV5++eVHFsPjaOrUqezYsYOgoCDmzZtX0eEI8ViRPaWEEE+My5cvs3fv3lLr1KtXDw8Pj3KKyNyZM2c4ePBgqXUaN25MpUqVyikiIYQQQjxNJBcSQjxtZFJKCCGEEEIIIYQQQpQ72ehcCCGEEEIIIYQQQpQ72VOqFCaTifT0dIxGIzqdrqLDEUIIIcRjQCnF1atX8fT0xMJCvt+TfEkIIYQQtyprviSTUqVIT0/H29u7osMQQgghxGPo5MmTVKtWraLDqHCSLwkhhBDiTu6WL8mkVCmMRiNQfBEdHR0rOBohhBBCPA6ysrLw9vbW8oRnneRLQgghhLhVWfMlmZQqxY0l6I6OjpJkCSGEEMKM3KpWTPIlIYQQQtzJ3fIl2QhBCCGEEEIIIYQQQpQ7mZQSQgghhBBCCCGEEOVOJqWEEEIIIYQQQgghRLmTPaWEEKKcFRUVUVBQUNFhCCHuwNraGktLy4oOQwghnmmSLwnxeHtY+ZJMSgkhRDlRSnH27FmuXLlS0aEIIe7C2dkZd3d32cxcCCHKmeRLQjw5Hka+JJNSQghRTm4kWG5ubtjZ2ck/doV4DCmlyMnJ4fz58wB4eHhUcERCCPFskXxJiMffw8yXZFJKCCHKQVFRkZZgVa5cuaLDEUKUwmAwAHD+/Hnc3NzkVj4hhCgnki8J8eR4WPmSbHQuhBDl4MaeCHZ2dhUciRCiLG58VmU/EyGEKD+SLwnxZHkY+ZJMSgkhRDmSJehCPBnksyqEEBVH/h8sxJPhYXxWZVJKCCGEEEIIIYQQQpQ7mZQSQgghhBBCCCGEEOVOJqWEEEKUql+/fuh0OnQ6HXq9nlq1ajF16lQKCwsfqN3Nmzej0+nK9ZHPqamp9OrVC09PT2xtbalWrRrh4eEcPnzYrN66deto06YNRqMROzs7mjZtyrJly8zqpKWlodPpSExMLHP/kydPpk6dOtjb21OpUiXat2/Prl27zNrs378/vr6+GAwGatasSWRkJPn5+aW2e+bMGXr16kXt2rWxsLBg5MiRZYpn69athIWF4enpiU6nY82aNbetd+jQIbp06YKTkxP29vY0bdqUEydOaMcHDRpEzZo1MRgMuLq63vaa7tmzh3bt2uHs7EylSpUICQnh119/vW1/R48exWg04uzs/NDGIIQQQjxKki9JviT50v2RSSkhhBB3FRoaypkzZzhy5AijR49m8uTJfPTRRxUdluZuSQgUb8DYoUMHMjMz+eqrr0hOTmblypU0aNDALNGbN28e4eHhBAUFsWvXLvbv30/Pnj0ZPHgwY8aMeaA4a9euzfz58zlw4ADbtm2jRo0adOzYkQsXLgBw+PBhTCYTixcv5uDBg8yZM4dFixYxceLEUtvNy8vD1dWVv/zlLzRq1KjM8WRnZ9OoUSMWLFhwxzrHjh2jVatW1KlTh82bN7N//37ef/99bG1ttTqNGzcmJiaGQ4cOsWHDBpRSdOzYkaKiIgCuXbtGaGgo1atXZ9euXWzbtg2j0UhISEiJjTELCgp4/fXXad269UMbgxBCCFEeJF+SfEnypfugxB1lZmYqQGVmZlZ0KEKIJ1xubq5KSkpSubm5FR3KPevbt68KDw83K+vQoYNq3ry5ysjIUBEREcrZ2VkZDAYVGhqqUlJStHppaWnq1VdfVc7OzsrOzk4FBgaq9evXq9TUVAWYvfr27auUUiorK0v16tVL2dnZKXd3dzV79mzVpk0bNWLECK1dHx8fNXXqVBUREaGMRqN2bnx8vGrVqpWytbVV1apVU8OGDVPXrl1TSimVkJCgAJWWlnbHsZ44cUJZW1urUaNGlTg2d+5cBaiff/5ZKaW0MSQkJNz7Rf2vG39nNm7ceMc6M2fOVL6+vmVu89ZrVVaA+vrrr0uU9+jRQ/35z3++p7Z+/fVXBaijR48qpZTas2ePAtSJEye0Ovv371eAOnLkiNm57777rvrzn/+sYmJilJOT00MZw/0o7TMr+YE5uR5CiIdF8iXJl25H8qWnO1+SlVJCCFFBlFLk5BeW+6v4b9GDMRgM5Ofn069fP3755RfWrl3Lzp07UUrRuXNn7ducIUOGkJeXx9atWzlw4AAzZszAwcEBb29vvvzySwCSk5M5c+YMn3zyCQCjRo1i+/btrF27lri4OOLj49m3b1+JGKKjo2nUqBEJCQm8//77HDt2jNDQULp27cr+/ftZuXIl27ZtY+jQoQC4urpiYWHB6tWrtW+kbrV69WoKCgpu+w3foEGDcHBwYMWKFQ98/aD428olS5bg5ORU6rd1mZmZuLi4PJQ+75XJZGL9+vXUrl2bkJAQ3NzcePHFF0td8p2dnU1MTAy+vr54e3sDEBAQQOXKlVm6dCn5+fnk5uaydOlS6tatS40aNbRzf/rpJ1atWvV4fosnhBCiQlRUvvQwcibJlx6c5EtPf75kVdEBCCHEsyq3oIjASRvKvd+kqSHY6e/vf/9KKX788Uc2bNhAp06dWLNmDdu3b6dly5YAxMbG4u3tzZo1a+jWrRsnTpyga9euNGjQAAA/Pz+trRuJg5ubm3Yv/NWrV1m+fDlffPEF7dq1AyAmJgZPT88SsbRt25bRo0dr7wcMGEDv3r21/QH8/f2ZO3cubdq0YeHChXh5eTF37lzeffddpkyZQpMmTQgODqZ3795aXCkpKTg5OeHh4VGiP71ej5+fHykpKfd17W5Yt24dPXv2JCcnBw8PD+Li4qhSpcpt6x49epR58+YRHR39QH3er/Pnz3Pt2jX++te/EhUVxYwZM/j+++/505/+xKZNm2jTpo1W99NPP+Xdd98lOzubgIAA4uLi0Ov1ABiNRjZv3swf/vAHPvjgA6D457NhwwasrIp/Fy9dukS/fv345z//iaOjY/kPVgghxGOpovIluP+cSfIlyZckXyo7WSklhBDirtatW4eDgwO2trZ06tSJHj160K9fP6ysrHjxxRe1epUrVyYgIIBDhw4BMHz4cKKioggKCiIyMpL9+/eX2s/x48cpKCigWbNmWpmTkxMBAQEl6jZp0sTs/a+//sqyZctwcHDQXiEhIZhMJlJTU4HibyLPnj1LbGwsLVq0YNWqVdSrV4+4uLgyX4sbiUNpYmNjzeKIj4/XjgUHB5OYmMiOHTsIDQ2le/funD9/vkQbp0+fJjQ0lG7dujFw4ECt/OZ2Bw8eXKaY4+Pjzc6LjY0t03kmkwmA8PBw3nnnHZ577jnGjx/Pq6++yqJFi8zq9u7dm4SEBLZs2ULt2rXp3r07169fByA3N5f+/fsTFBTEzz//zPbt26lfvz6vvPIKubm5AAwcOJBevXrx0ksvPdQxCCGEEOVF8qX/kXxJ8qWykpVSQghRQQzWliRNDamQfu9VcHAwCxcuRK/X4+npiZWVFWvXrr3reQMGDCAkJIT169fzww8/MH36dGbNmsWwYcPuJ3Qz9vb2Zu+vXbvGoEGDGD58eIm61atX1/7baDQSFhZGWFgYUVFRhISEEBUVRYcOHfD39yczM5P09PQS3zbm5+dz7NgxQkLu/jPr0qWLWfLp5eVlFnetWrWoVasWzZs3x9/fn6VLlzJhwgStTnp6OsHBwbRs2ZIlS5aYtX3z02vK+g1ZkyZNzM6rWrVqmc6rUqUKVlZWBAYGmpXXrVuXbdu2mZU5OTnh5OSEv78/zZs3p1KlSnz99de8/vrrfPHFF6SlpbFz504sLIq/D/viiy+oVKkS33zzDT179uSnn35i7dq12recSilMJhNWVlYsWbKE119//b7GIIQQ4slWUfnSjb7vheRLki/dTPKlspFJKSGEqCA6ne6+b6MrbzcSg5vVrVuXwsJCdu3apS1Hv3TpEsnJyWZ/lL29vRk8eDCDBw9mwoQJfPbZZwwbNkz7Bu3m/Qr8/PywtrZmz549WmKUmZlJSkrKHb8RuuGFF14gKSmpRJyl0el01KlThx07dgDw2muvMW7cOGbNmsWsWbPM6i5atIicnBz69Olz13aNRiNGo7FMMZhMJvLy8rT3p0+fJjg4WHtCy42k5IZ7Gd8NBoPhvs7T6/U0bdqU5ORks/KUlBR8fHzueJ5SCqWUNq6cnBwsLCzQ6XRanRvvb3y7uHPnTrPfhW+++YYZM2awY8cOvLy87nsMQgghnmySL0m+BJIvPc350pPx6RZCCPHY8ff3Jzw8nIEDB7J48WKMRiPjx4/Hy8uL8PBwAEaOHEmnTp2oXbs2ly9fZtOmTdStWxcAHx8fdDod69ato3PnzhgMBoxGI3379mXs2LG4uLjg5uZGZGRkiT/QtzNu3DiaN2/O0KFDGTBgAPb29iQlJREXF8f8+fNJTEwkMjKSiIgIAgMD0ev1bNmyhc8//5xx48YBxd8Qzpw5kzFjxmBra0tERATW1tZ88803TJw4kaioKOrXr2/W760JCEC9evWwtrY2K8vOzmbatGl06dIFDw8PLl68yIIFCzh9+jTdunUDihOsl19+GR8fH6Kjo7VHHwO4u7uXOv4b34pdu3aNCxcukJiYiF6vL/Gt3c2uXbvG0aNHtfepqakkJibi4uKiJbljx46lR48evPTSSwQHB/P999/zn//8h82bNwPFtxCsXLmSjh074urqyqlTp/jrX/+KwWCgc+fOAHTo0IGxY8cyZMgQhg0bhslk4q9//StWVlYEBwcDaL8XN/zyyy9YWFiUuN73MwYhhBCioki+VEzyJcmX7uihPAfwKSWPOBZCPCxP2yOOb7jxiGMnJydlMBhUSEiI2SOOhw4dqmrWrKlsbGyUq6urioiIUBcvXtSOT506Vbm7uyudTlfqI46bNWumxo8fr53n4+Oj5syZUyKe3bt3qw4dOigHBwdlb2+vGjZsqKZNm6aUUurChQtq+PDhqn79+srBwUEZjUbVoEEDFR0drYqKiszaWbNmjWrdurWyt7fXHsG8YsUKszq3e0zzjdfJkydLxJabm6v++Mc/Kk9PT6XX65WHh4fq0qWL2r17t1YnJibmjm3eze3O8fHxKfWcTZs23fa8Gz+LG5YuXapq1aqlbG1tVaNGjdSaNWu0Y6dPn1adOnVSbm5uytraWlWrVk316tVLHT582KyNH374QQUFBSknJydVqVIl1bZtW7Vz5847xlbWRxyXdQz36mE84vhZIddDCPGwSL4k+ZLkS89evqRT6iE8G/wplZWVhZOTE5mZmU/NzvZCiIpx/fp1UlNT8fX1xdbWtqLDeaJkZ2fj5eXFrFmz6N+/f7n3n5GRQbt27XB0dOS7777Dzs6u3GMQ5a+0z6zkB+bkegghHhbJl+6f5EuiIjyMfEmevieEEOKxkpCQwIoVKzh27Bj79u2jd+/eANoS9/Lm4uLCxo0badeuHTt37qyQGIQQQgghbib5knhayJ5SQgghHjvR0dEkJyej1+tp3Lgx8fHxVKlSpcLiqVy5MpMmTaqw/oUQQgghbiX5kngayKSUEEKIx8rzzz/P3r17KzoMIYQQQojHluRL4mkht+8JIYQQQgghhBBCiHInk1JCCCGEEEIIIYQQotzJpJQQQgghhBBCCCGEKHcyKSWEEEIIIYQQQgghyp1MSgkhhBBCCCGEEEKIcieTUkIIIYQQQgghhBCi3MmklBBCCCGEEEIIIYQodzIpJYQQolT9+vVDp9Oh0+nQ6/XUqlWLqVOnUlhY+EDtbt68GZ1Ox5UrVx5OoGWQmppKr1698PT0xNbWlmrVqhEeHs7hw4fN6q1bt442bdpgNBqxs7OjadOmLFu2zKxOWloaOp2OxMTEMvc/efJk6tSpg729PZUqVaJ9+/bs2rXLrM3+/fvj6+uLwWCgZs2aREZGkp+fX2q7Z86coVevXtSuXRsLCwtGjhxZpngWLlxIw4YNcXR0xNHRkRYtWvDdd99pxzMyMhg2bBgBAQEYDAaqV6/O8OHDyczM1OosW7ZM+/249XX+/HmtXl5eHu+99x4+Pj7Y2NhQo0YNPv/8c7N4Pv74Y60vb29v3nnnHa5fv17qGL766is6duxI5cqV7/nnIYQQQjwski9JviT50v2xqugAhBBCPP5CQ0OJiYkhLy+Pb7/9liFDhmBtbc2ECRMqOjQA8vPz0ev1pdYpKCigQ4cOBAQE8NVXX+Hh4cGpU6f47rvvzBK9efPmMXLkSMaNG8fChQvR6/V88803DB48mN9++43o6Oj7jrN27drMnz8fPz8/cnNzmTNnDh07duTo0aO4urpy+PBhTCYTixcvplatWvz2228MHDiQ7OzsUvvNy8vD1dWVv/zlL8yZM6fM8VSrVo2//vWv+Pv7o5Ri+fLlhIeHk5CQQL169UhPTyc9PZ3o6GgCAwP5/fffGTx4MOnp6axevRqAHj16EBoaatZuv379uH79Om5ublpZ9+7dOXfuHEuXLqVWrVqcOXMGk8mkHf/iiy8YP348n3/+OS1btiQlJUVL8GfPnn3HMWRnZ9OqVSu6d+/OwIEDyzx2IYQQ4mGTfEnyJcmX7oMSd5SZmakAlZmZWdGhCCGecLm5uSopKUnl5uZWdCj3rG/fvio8PNysrEOHDqp58+YqIyNDRUREKGdnZ2UwGFRoaKhKSUnR6qWlpalXX31VOTs7Kzs7OxUYGKjWr1+vUlNTFWD26tu3r1JKqaysLNWrVy9lZ2en3N3d1ezZs1WbNm3UiBEjtHZ9fHzU1KlTVUREhDIajdq58fHxqlWrVsrW1lZVq1ZNDRs2TF27dk0ppVRCQoICVFpa2h3HeuLECWVtba1GjRpV4tjcuXMVoH7++WellNLGkJCQcO8X9b9u/J3ZuHHjHevMnDlT+fr6lrnNW6/VvapUqZL629/+dsfj//73v5Ver1cFBQW3PX7+/HllbW2t/v73v2tl3333nXJyclKXLl26Y7tDhgxRbdu2NSsbNWqUCgoKKlPcD+PncbPSPrOSH5iT6yGEeFgkX5J86XYkX/qfpzFfktv3hBCioigF+dnl/1LqgUM3GAzk5+fTr18/fvnlF9auXcvOnTtRStG5c2cKCgoAGDJkCHl5eWzdupUDBw4wY8YMHBwc8Pb25ssvvwQgOTmZM2fO8MknnwAwatQotm/fztq1a4mLiyM+Pp59+/aViCE6OppGjRqRkJDA+++/z7FjxwgNDaVr167s37+flStXsm3bNoYOHQqAq6srFhYWrF69mqKiotuOa/Xq1RQUFDBmzJgSxwYNGoSDgwMrVqx44OsHxd9WLlmyBCcnJxo1anTHepmZmbi4uDyUPktTVFTEv/71L7Kzs2nRokWp8Tg6OmJldfvF1n//+9+xs7Pjtdde08rWrl1LkyZNmDlzJl5eXtSuXZsxY8aQm5ur1WnZsiV79+5l9+7dABw/fpxvv/2Wzp07P6QRCiGEeCJVVL70EHImyZcenORLT3++JLfvCSFERSnIgQ89y7/fiemgt7+vU5VS/Pjjj2zYsIFOnTqxZs0atm/fTsuWLQGIjY3F29ubNWvW0K1bN06cOEHXrl1p0KABAH5+flpbNxIHNzc3nJ2dAbh69SrLly/niy++oF27dgDExMTg6VnyOrVt25bRo0dr7wcMGEDv3r21/QH8/f2ZO3cubdq0YeHChXh5eTF37lzeffddpkyZQpMmTQgODqZ3795aXCkpKTg5OeHh4VGiP71ej5+fHykpKfd17W5Yt24dPXv2JCcnBw8PD+Li4qhSpcpt6x49epR58+Y90BL4uzlw4AAtWrTg+vXrODg48PXXXxMYGHjbuhcvXuSDDz7grbfeumN7S5cupVevXhgMBq3s+PHjbNu2DVtbW77++msuXrzI//3f/3Hp0iViYmIA6NWrFxcvXqRVq1YopSgsLGTw4MFMnDjx4Q5YCCHEk6Wi8iW475xJ8iXJlyRfKjtZKSWEEOKu1q1bh4ODA7a2tnTq1IkePXrQr18/rKysePHFF7V6lStXJiAggEOHDgEwfPhwoqKiCAoKIjIykv3795faz/HjxykoKKBZs2ZamZOTEwEBASXqNmnSxOz9r7/+yrJly3BwcNBeISEhmEwmUlNTgeJvIs+ePUtsbCwtWrRg1apV1KtXj7i4uDJfi7vtxQDFyebNccTHx2vHgoODSUxMZMeOHYSGhtK9e3ezDS5vOH36NKGhoXTr1s3s3v+b2x08eHCZYo6Pjzc7LzY2VjsWEBBAYmIiu3bt4u2336Zv374kJSWVaCMrK4tXXnmFwMBAJk+efNt+du7cyaFDh+jfv79ZuclkQqfTERsbS7NmzejcuTOzZ89m+fLl2rd/mzdv5sMPP+TTTz9l3759fPXVV6xfv54PPvjgrtdUCCGEeBxIvvQ/ki9JvlRWslJKCCEqirVd8TdwFdHvPQoODtY2sfT09MTKyoq1a9fe9bwBAwYQEhLC+vXr+eGHH5g+fTqzZs1i2LBh9xO5GXt7828ur127xqBBgxg+fHiJutWrV9f+22g0EhYWRlhYGFFRUYSEhBAVFUWHDh3w9/cnMzOT9PT0Et825ufnc+zYMUJCQu4aW5cuXcySTy8vL7O4a9WqRa1atWjevDn+/v4sXbrUbBPU9PR0goODadmyJUuWLDFr++anpTg6Ot41FihOSG8+r2rVqtp/33hCEEDjxo3Zs2cPn3zyCYsXL9bqXL16ldDQUIxGI19//TXW1ta37edvf/sbzz33HI0bNzYr9/DwwMvLCycnJ62sbt26KKU4deoU/v7+vP/++//P3r3HRVXmfwD/DMI4w8w4iEJcJZCLosh6SVE0IuRmAbWGuhDipiStgK6XUEtRQk0DXW/rpZ+iv10008xY1BRLExHRFNQNhST4YYgpXga5yG2+vz9YzjpyRwKj7/v1mtfLOec5z/k+ZyA+nXPmPAgKCsKMGTMAAA4ODigrK8O7776LDz74oNljyhhjrBvrqrxUv+824LzEeYnzUtvxSSnGGOsqIlG7v0bX2eqDwZMGDhyImpoapKenC7ej37t3D9nZ2Rq3M5ubmyM0NBShoaFYtGgRPv30U4SHhwtX0J58XoGVlRV0dHRw4cIFIRipVCrk5OTg5ZdfbrbGYcOGISsrq0GdzRGJRBgwYADOnj0LAHjrrbcQGRmJuLg4xMXFabTdunUrysvLMXXq1Bb7VSgUUCgUrapBrVajsrJSeF9YWAhXV1cMHz4c8fHx0NLSvKm5LeOrJ5VKW73d0/WUlJTA09MTPXv2RGJiIiQSSaPblZaW4vPPP8eqVasarHN2dsb+/ftRWloKuVwOoO7Wfy0tLZiZmQEAysvLG4y1R48eAOq+BtGWY8oYY6wb4bwEgPMS56Xum5f4pBRjjLF2sbGxgZ+fH0JCQrBt2zYoFAosXLgQpqam8PPzAwDMmTMH3t7esLW1xYMHD3Dy5EkMHDgQAGBhYQGRSISkpCRMmDABUqkUCoUCwcHBWLBgAfT19WFoaIioqChoaWlBJBI1W09kZCScnJwQFhaGGTNmQCaTISsrC8nJydi0aRMyMzMRFRWFoKAg2NvbQywW47vvvsPOnTsRGRkJoO4K4Zo1azB//nxIJBIEBQVBR0cHX331FRYvXoyYmBgMHjxYY7/Z2dkNahk0aFCDq2NlZWVYsWIFfH19YWxsjOLiYmzevBmFhYXw9/cHUBewXnnlFVhYWCA2NhZ3794VtjcyMmp2/PVX9kpLS3H37l1kZmZCLBY3+bwDAFi0aBG8vb3Rr18/PHr0CHv27MGpU6dw7NgxAHUBy8PDA+Xl5fjnP/+JkpISlJSUAKh7EGp9CAKAffv2oaamBm+//XaD/QQEBOCjjz7Cn//8ZyxfvhzFxcVYsGAB3nnnHeFZCj4+Pli7di2GDh2KUaNG4caNG1iyZAl8fHw09vO0+/fvo6CgALdu1V1Fr/88jIyMWjxmjDHG2K+N81Idzkt1OC81okPmAeymeIpjxlhH6W5THNern+JYqVSSVColT09PjSmOw8LCqH///tSzZ08yMDCgoKAgKi4uFtZHR0eTkZERiUSiZqc4HjlyJC1cuFDYzsLCgtatW9egnvPnz5O7uzvJ5XKSyWQ0ZMgQWrFiBRER3b17lyIiImjw4MEkl8tJoVCQg4MDxcbGUm1trUY/hw4donHjxpFMJhOmYN67d69Gm8amaa5/3bx5s0FtFRUV9Oabb5KJiQmJxWIyNjYmX19fOn/+vNAmPj6+yT5b0tg2FhYWzW7zzjvvkIWFBYnFYjIwMCA3Nzc6fvy4sP7kyZNN1pOXl6fR1+jRoykgIKDJfV27do3Gjx9PUqmUzMzMaO7cuVReXi6sr66upmXLllH//v1JIpGQubk5/eUvf6EHDx40O4amjllUVFSz27WkI6Y4/r3g48EY6yiclzgvcV76/eUlEVEHzA3eTZWUlECpVArTOTLGWHs9fvwYeXl5sLS0bPJ2Xta4srIymJqaIi4ursEDITvD/fv34ebmhl69euHo0aPQ1W37M7nYb09zv7OcDzTx8WCMdRTOS+3HeYl1hY7ISzz7HmOMsedKRkYG9u7di9zcXFy6dAmBgYEAINzi3tn09fVx4sQJuLm5IS0trUtqYIwxxhh7Eucl1l3wM6UYY4w9d2JjY5GdnQ2xWIzhw4cjJSUFffv27bJ6+vTpg6VLl3bZ/hljjDHGnsZ5iXUHfFKKMcbYc2Xo0KG4ePFiV5fBGGOMMfbc4rzEugv++h5jjDHGGGOMMcYY63R8UooxxhhjjDHGGGOMdTo+KcUYY4wxxhhjjDHGOh2flGKMMcYYY4wxxhhjnY5PSjHGGGOMMcYYY4yxTscnpRhjjDHGGGOMMcZYp+OTUowxxhhjjDHGGGOs0/FJKcYYY82aNm0aRCIRRCIRxGIxrK2tER0djZqammfq99SpUxCJRHj48GHHFNoKeXl5CAgIgImJCSQSCczMzODn54fr169rtEtKSoKLiwsUCgV0dXXx0ksvYdeuXRpt8vPzIRKJkJmZ2er9L1u2DAMGDIBMJkPv3r0xfvx4pKena/Q5ffp0WFpaQiqVon///oiKikJVVVWz/RYVFSEgIAC2trbQ0tLCnDlzWl1TvY8//hgikajBtrm5uXjzzTdhYGCAXr16YdKkSfjll1802qxYsQJjxoyBrq4u9PT0Gu2//mfoyddnn30mrD948CDc3d2F/YwePRrHjh1rse6DBw/Cw8MDffr0afPnwRhjjHUUzkuclzgvtQ+flGKMMdYiLy8vFBUV4ccff8S8efOwbNkyfPLJJ11dlqClEAIA1dXVcHd3h0qlwsGDB5GdnY19+/bBwcFBI+ht3LgRfn5+cHZ2Rnp6Oq5cuYIpU6YgNDQU8+fPf6Y6bW1tsWnTJly9ehVnzpzBiy++CA8PD9y9excAcP36dajVamzbtg0//PAD1q1bh61bt2Lx4sXN9ltZWQkDAwN8+OGHcHR0bHNdFy5cwLZt2zBkyBCN5WVlZfDw8IBIJMK3336L1NRUVFVVwcfHB2q1WmhXVVUFf39/vPfee83uJz4+HkVFRcLrjTfeENadPn0a7u7uOHLkCC5evAhXV1f4+PggIyOj2T7LysowduxYrF69us3jZowxxjoS5yXOS5yX2oFYk1QqFQEglUrV1aUwxn7jKioqKCsriyoqKrq6lDYLDg4mPz8/jWXu7u7k5ORE9+/fp6CgINLT0yOpVEpeXl6Uk5MjtMvPz6fXX3+d9PT0SFdXl+zt7enw4cOUl5dHADRewcHBRERUUlJCAQEBpKurS0ZGRrR27VpycXGh2bNnC/1aWFhQdHQ0BQUFkUKhELZNSUmhsWPHkkQiITMzMwoPD6fS0lIiIsrIyCAAlJ+f3+RYCwoKSEdHh+bOndtg3YYNGwgAnTt3johIGENGRkbbD+p/1P+dOXHiRJNt1qxZQ5aWlq3u8+lj1ZJHjx6RjY0NJScnN9j22LFjpKWlpfF38OHDhyQSiSg5OblBX/Hx8aRUKhvdDwD68ssvW10XEZG9vT0tX768VW074vN4UnO/s5wPNPHxYIx1FM5LnJcaw3mpeb/1vMR3SjHGWBchIpRXl3f6i4ieuXapVIqqqipMmzYN33//PRITE5GWlgYiwoQJE1BdXQ0AmDVrFiorK3H69GlcvXoVq1evhlwuh7m5Ob744gsAQHZ2NoqKirB+/XoAwNy5c5GamorExEQkJycjJSUFly5dalBDbGwsHB0dkZGRgSVLliA3NxdeXl6YOHEirly5gn379uHMmTMICwsDABgYGEBLSwsHDhxAbW1to+M6cOAAqqurG73CN3PmTMjlcuzdu/eZjx9Qd7Vs+/btUCqVzV6tU6lU0NfX75B9NmbWrFl47bXXMH78+AbrKisrIRKJ0LNnT2GZRCKBlpYWzpw506599e3bFyNHjsTOnTub/VlUq9V49OjRrzp2xhhjz7+uyksdkZk4Lz07zkvdPy9pd3UBjDH2e1VRU4FRe0Z1+n7TA9Khq6Pbrm2JCN988w2OHTsGb29vHDp0CKmpqRgzZgwAICEhAebm5jh06BD8/f1RUFCAiRMnwsHBAQBgZWUl9FX/x9PQ0FD4Xv2jR4+we/du7NmzB25ubgDqbmE2MTFpUMurr76KefPmCe9nzJiBwMBA4Tv+NjY22LBhA1xcXLBlyxaYmppiw4YNeP/997F8+XKMGDECrq6uCAwMFOrKycmBUqmEsbFxg/2JxWJYWVkhJyenXceuXlJSEqZMmYLy8nIYGxsjOTkZffv2bbTtjRs3sHHjRsTGxj7TPpvy2Wef4dKlS7hw4UKj652cnCCTyRAZGYmVK1eCiLBw4ULU1taiqKioTfuKjo7Gq6++Cl1dXRw/fhx/+ctfUFpaioiIiEbbx8bGorS0FJMmTWrzuBhjjHUfXZWXgPZnJs5LnJc4L7Ue3ynFGGOsRUlJSZDL5ZBIJPD29sbkyZMxbdo0aGtrY9So/wbFPn36wM7ODteuXQMAREREICYmBs7OzoiKisKVK1ea3c9PP/2E6upqjBw5UlimVCphZ2fXoO2IESM03l++fBm7du2CXC4XXp6enlCr1cjLywNQd+Xp9u3bSEhIwOjRo7F//34MGjQIycnJrT4WYrG4xTYJCQkadaSkpAjrXF1dkZmZibNnz8LLywuTJk3CnTt3GvRRWFgILy8v+Pv7IyQkRFj+ZL+hoaGtqjklJUVju4SEBNy8eROzZ89GQkICJBJJo9sZGBhg//79+Ne//gW5XA6lUomHDx9i2LBh0NJqW4RYsmQJnJ2dMXToUERGRuL9999v8jkbe/bswfLly/H555/D0NAQQPPHlDHGGHsecF76L85LnJdai++UYoyxLiLVliI9IL3lhr/CftvK1dUVW7ZsgVgshomJCbS1tZGYmNjidjNmzICnpycOHz6M48ePY9WqVYiLi0N4eHh7Stcgk8k03peWlmLmzJmNXknq16+f8G+FQgEfHx/4+PggJiYGnp6eiImJgbu7O2xsbKBSqXDr1q0GVxurqqqQm5sLT0/PFmvz9fXVCJ+mpqYadVtbW8Pa2hpOTk6wsbHBjh07sGjRIqHNrVu34OrqijFjxmD79u0afT85W0qvXr1arAWoC6RPbvfCCy/gm2++wZ07dzBs2DBheW1tLU6fPo1NmzahsrISPXr0gIeHB3Jzc1FcXAxtbW3o6enByMhI4ypue4waNQofffQRKisrNW53/+yzzzBjxgzs379f4xb55o4pY4yx7qur8lL9vtuC8xLnJc5LbccnpRhjrIuIRKJ2f42us9UHgycNHDgQNTU1SE9PF25Hv3fvHrKzs2Fvby+0Mzc3R2hoKEJDQ7Fo0SJ8+umnCA8PF66gPfm8AisrK+jo6ODChQtCMFKpVMjJycHLL7/cbI3Dhg1DVlZWgzqbIxKJMGDAAJw9exYA8NZbbyEyMhJxcXGIi4vTaLt161aUl5dj6tSpLfarUCigUChaVYNarUZlZaXwvrCwEK6urhg+fDji4+MbXGFry/jqSaXSBtu5ubnh6tWrGsv+/Oc/Y8CAAYiMjESPHj001tXfMv/tt9/izp078PX1bXMdT8rMzETv3r01AtbevXvxzjvv4LPPPsNrr72m0b4tx5Qxxlj3wXmJ8xLAeak75yU+KcUYY6xdbGxs4Ofnh5CQEGzbtg0KhQILFy6Eqakp/Pz8AABz5syBt7c3bG1t8eDBA5w8eRIDBw4EAFhYWEAkEiEpKQkTJkyAVCqFQqFAcHAwFixYAH19fRgaGiIqKgpaWloQiUTN1hMZGQknJyeEhYVhxowZkMlkyMrKQnJyMjZt2oTMzExERUUhKCgI9vb2EIvF+O6777Bz505ERkYCqLtCuGbNGsyfPx8SiQRBQUHQ0dHBV199hcWLFyMmJgaDBw/W2G92dnaDWgYNGgQdHR2NZWVlZVixYgV8fX1hbGyM4uJibN68GYWFhfD39wdQF7BeeeUVWFhYIDY2Vpj6GACMjIyaHX/9lb3S0lLcvXsXmZmZEIvFGoH3SQqFosFYZDIZ+vTpo7E8Pj4eAwcOhIGBAdLS0jB79mz89a9/1fiKQEFBAe7fv4+CggLU1tYKtVhbW0Mul+Nf//oXfvnlFzg5OUEikSA5ORkrV67UeEDqnj17EBwcjPXr12PUqFG4ffs2gLqAqFQqmxx3/X5v3boF4L+fh5GRUYvHjDHGGPu1cV6qw3mJ81KTOmQewG6KpzhmjHWU7jbFcb36KY6VSiVJpVLy9PTUmOI4LCyM+vfvTz179iQDAwMKCgqi4uJiYX10dDQZGRmRSCRqdorjkSNH0sKFC4XtLCwsaN26dQ3qOX/+PLm7u5NcLieZTEZDhgyhFStWEBHR3bt3KSIiggYPHkxyuZwUCgU5ODhQbGws1dbWavRz6NAhGjduHMlkMmEK5r1792q0aWya5vrXzZs3G9RWUVFBb775JpmYmJBYLCZjY2Py9fWl8+fPC23i4+Ob7LMljW1jYWHR4nZPamx65MjISHrhhRdIR0eHbGxsKC4ujtRqtUab4ODgRvd/8uRJIiI6evQo/eEPfxA+F0dHR9q6davGcXdxcWm0j/qfi6Y0dcyioqLaNPandcQUx78XfDwYYx2F8xLnJc5Lv7+8JCLqgLnBu6mSkhIolUqoVKpWfw+VMcYa8/jxY+Tl5cHS0rLJhySyxpWVlcHU1BRxcXGYPn16p+///v37cHNzQ69evXD06FHo6v42vkLAnk1zv7OcDzTx8WCMdRTOS+3HeYl1hY7ISzz7HmOMsedKRkYG9u7di9zcXFy6dAmBgYEAINzi3tn09fVx4sQJuLm5IS0trUtqYIwxxhh7Eucl1l3wM6UYY4w9d2JjY5GdnQ2xWIzhw4cjJSVFeHBkV+jTpw+WLl3aZftnjDHGGHsa5yXWHfBJKcYYY8+VoUOH4uLFi11dBmOMMcbYc4vzEusu+Ot7jDHGGGOMMcYYY6zT8UkpxhhjjDHGGGOMMdbp+KQUY4wxxhhjjDHGGOt0fFKKMcYYY4wxxhhjjHU6PinFGGOMMcYYY4wxxjodn5RijDHGGGOMMcYYY52OT0oxxhhjjDHGGGOMsU7HJ6UYY4w1a9q0aRCJRBCJRBCLxbC2tkZ0dDRqamqeqd9Tp05BJBLh4cOHHVNoK+Tl5SEgIAAmJiaQSCQwMzODn58frl+/rtEuKSkJLi4uUCgU0NXVxUsvvYRdu3ZptMnPz4dIJEJmZmar979s2TIMGDAAMpkMvXv3xvjx45Genq7R5/Tp02FpaQmpVIr+/fsjKioKVVVVzfZbVFSEgIAA2NraQktLC3PmzGl1TYWFhXj77bfRp08fSKVSODg44PvvvxfWP/n517+8vLw0+njxxRcbtPn444+F9dnZ2XB1dcULL7wAiUQCKysrfPjhh6iurtbo5+HDh5g1axaMjY3Rs2dP2Nra4siRI83Wf/DgQXh4eKBPnz5t/jwYY4yxjsJ5ifMS56X20e7qAhhjjD3/vLy8EB8fj8rKShw5cgSzZs2Cjo4OFi1a1NWlAQCqqqogFoubbVNdXQ13d3fY2dnh4MGDMDY2xs8//4yjR49qBL2NGzdizpw5iIyMxJYtWyAWi/HVV18hNDQU//73vxEbG9vuOm1tbbFp0yZYWVmhoqIC69atg4eHB27cuAEDAwNcv34darUa27Ztg7W1Nf79738jJCQEZWVlze63srISBgYG+PDDD7Fu3bpW1/PgwQM4OzvD1dUVR48ehYGBAX788Uf07t1bo13951+vZ8+eDfqKjo5GSEiI8F6hUAj/1tHRwdSpUzFs2DDo6enh8uXLCAkJgVqtxsqVKwHUfYbu7u4wNDTEgQMHYGpqiv/7v/+Dnp5es2MoKyvD2LFjMWnSJI39M8YYY52N8xLnJc5L7UCsSSqVigCQSqXq6lIYY79xFRUVlJWVRRUVFV1dSpsFBweTn5+fxjJ3d3dycnKi+/fvU1BQEOnp6ZFUKiUvLy/KyckR2uXn59Prr79Oenp6pKurS/b29nT48GHKy8sjABqv4OBgIiIqKSmhgIAA0tXVJSMjI1q7di25uLjQ7NmzhX4tLCwoOjqagoKCSKFQCNumpKTQ2LFjSSKRkJmZGYWHh1NpaSkREWVkZBAAys/Pb3KsBQUFpKOjQ3Pnzm2wbsOGDQSAzp07R0QkjCEjI6PtB/U/6v/OnDhxosk2a9asIUtLy1b3+fSxak5kZCSNHTu22TaNff5Ps7CwoHXr1rWuwP/461//qrHvLVu2kJWVFVVVVbWpn3od8Xk8qbnfWc4Hmvh4MMY6CuclzkuN4bzUvfMSf32PMca6CBFBXV7e6S8ieubapVIpqqqqMG3aNHz//fdITExEWloaiAgTJkwQbjOeNWsWKisrcfr0aVy9ehWrV6+GXC6Hubk5vvjiCwB1tyoXFRVh/fr1AIC5c+ciNTUViYmJSE5ORkpKCi5dutSghtjYWDg6OiIjIwNLlixBbm4uvLy8MHHiRFy5cgX79u3DmTNnEBYWBgAwMDCAlpYWDhw4gNra2kbHdeDAAVRXV2P+/PkN1s2cORNyuRx79+595uMH1F3p2r59O5RKJRwdHZtsp1KpoK+v3yH7fFpiYiJGjBgBf39/GBoaYujQofj0008btDt16hQMDQ1hZ2eH9957D/fu3WvQ5uOPP0afPn0wdOhQfPLJJ81+XeHGjRv4+uuv4eLiolHL6NGjMWvWLLzwwgsYPHgwVq5c2eRnxRhj7Pehq/JSR2QmzkvPjvNS989L/PU9xhjrIlRRgexhwzt9v3aXLkKkq9uubYkI33zzDY4dOwZvb28cOnQIqampGDNmDAAgISEB5ubmOHToEPz9/VFQUICJEyfCwcEBAGBlZSX0VR8cDA0NhVuOHz16hN27d2PPnj1wc3MDAMTHx8PExKRBLa+++irmzZsnvJ8xYwYCAwOF5wPY2Nhgw4YNcHFxwZYtW2BqaooNGzbg/fffx/LlyzFixAi4uroiMDBQqCsnJwdKpRLGxsYN9icWi2FlZYWcnJx2Hbt6SUlJmDJlCsrLy2FsbIzk5GT07du30bY3btzAxo0bn+kW+Ob89NNP2LJlC+bOnYvFixfjwoULiIiIgFgsRnBwMIC6W9H/+Mc/wtLSErm5uVi8eDG8vb2RlpaGHj16AAAiIiIwbNgw6Ovr4+zZs1i0aBGKioqwdu1ajf2NGTMGly5dQmVlJd59911ER0dr1PLtt98iMDAQR44cwY0bN/CXv/wF1dXViIqK+lXGzxhj7PnXVXkJaH9m4rzEeYnzUuvxnVKMMcZalJSUBLlcDolEAm9vb0yePBnTpk2DtrY2Ro0aJbTr06cP7OzscO3aNQB1f3xjYmLg7OyMqKgoXLlypdn9/PTTT6iursbIkSOFZUqlEnZ2dg3ajhgxQuP95cuXsWvXLsjlcuHl6ekJtVqNvLw8AHVXIm/fvo2EhASMHj0a+/fvx6BBg5CcnNzqY9HSsxiAurD5ZB0pKSnCOldXV2RmZuLs2bPw8vLCpEmTcOfOnQZ9FBYWwsvLC/7+/hrf/X+y39DQ0FbVnJKSorFdQkICAECtVmPYsGFYuXIlhg4dinfffRchISHYunWrsO2UKVPg6+sLBwcHvPHGG0hKSsKFCxdw6tQpoc3cuXPxyiuvYMiQIQgNDUVcXBw2btyIyspKjTr27duHS5cuYc+ePTh8+LBGeFSr1TA0NMT27dsxfPhwTJ48GR988IFQS3PHlDHGGHsecF76L85LnJdai++UYoyxLiKSSmF36WKX7LetXF1dhYdYmpiYQFtbG4mJiS1uN2PGDHh6euLw4cM4fvw4Vq1ahbi4OISHh7endA0ymUzjfWlpKWbOnImIiIgGbfv16yf8W6FQwMfHBz4+PoiJiYGnpydiYmLg7u4OGxsbqFQq3Lp1q8HVxqqqKuTm5sLT07PF2nx9fTXCp6mpqUbd1tbWsLa2hpOTE2xsbLBjxw6Nh6DeunULrq6uGDNmDLZv367R95OzpfTq1avFWoC6QPrkdi+88AIAwNjYGPb29hptBw4cKHxVoDFWVlbo27cvbty4IVydfdqoUaNQU1OD/Px8jYBsbm4OALC3t0dtbS3effddzJs3Dz169ICxsTF0dHSEq4n1tdy+fRtVVVXNHlPGGGPdV1flpfp9twXnJc5L9TgvtR6flGKMsS4iEona/TW6zlYfDJ40cOBA1NTUID09Xbgd/d69e8jOztb4w21ubo7Q0FCEhoZi0aJF+PTTTxEeHi5cQXvyO/BWVlbQ0dHBhQsXhGCkUqmQk5ODl19+udkahw0bhqysrAZ1NkckEmHAgAE4e/YsAOCtt95CZGQk4uLiEBcXp9F269atKC8vx9SpU1vsV6FQaMym0hy1Wq1xhaywsBCurq4YPnw44uPjoaWleVNzW8ZXTyqVNrqds7MzsrOzNZbl5OTAwsKiyb5+/vln3Lt3r9Fb9utlZmZCS0sLhoaGTbZRq9Worq6GWq1Gjx494OzsjD179kCtVgtjzsnJgbGxMcRiMcRicauPKWOMse6D8xLnJYDzUnfOS3xSijHGWLvY2NjAz88PISEh2LZtGxQKBRYuXAhTU1P4+fkBAObMmQNvb2/Y2triwYMHOHnyJAYOHAgAsLCwgEgkQlJSEiZMmACpVAqFQoHg4GAsWLAA+vr6MDQ0RFRUFLS0tCASiZqtJzIyEk5OTggLC8OMGTMgk8mQlZWF5ORkbNq0CZmZmYiKikJQUBDs7e0hFovx3XffYefOnYiMjARQd4VwzZo1mD9/PiQSCYKCgqCjo4OvvvoKixcvRkxMDAYPHqyx36dDCgAMGjQIOjo6GsvKysqwYsUK+Pr6wtjYGMXFxdi8eTMKCwvh7+8PoC5gvfLKK7CwsEBsbCzu3r0rbG9kZNTs+Ouv7JWWluLu3bvIzMyEWCxucGXvSX/9618xZswYrFy5EpMmTcL58+exfft24WpjaWkpli9fjokTJ8LIyAi5ubl4//33YW1tLVwBTUtLQ3p6OlxdXaFQKJCWloa//vWvePvtt4WpkhMSEqCjowMHBwf07NkT33//PRYtWoTJkycLx+m9997Dpk2bMHv2bISHh+PHH3/EypUrG72S+6T79++joKAAt27dAvDfz8PIyKjFY8YYY4z92jgv1eG8xHmpSR0yD2A3xVMcM8Y6Sneb4rhe/RTHSqWSpFIpeXp6akxxHBYWRv3796eePXuSgYEBBQUFUXFxsbA+OjqajIyMSCQSNTvF8ciRI2nhwoXCdk1NqXv+/Hlyd3cnuVxOMpmMhgwZQitWrCAiort371JERAQNHjyY5HI5KRQKcnBwoNjYWKqtrdXo59ChQzRu3DiSyWTCFMx79+7VaNPYNM31r5s3bzaoraKigt58800yMTEhsVhMxsbG5OvrS+fPnxfaxMfHN9lnSxrbxsLCosXt/vWvf9HgwYOpZ8+eNGDAANq+fbuwrry8nDw8PMjAwIB0dHTIwsKCQkJC6Pbt20Kbixcv0qhRo0ipVJJEIqGBAwfSypUr6fHjx0Kbzz77jIYNGyZ8Lvb29rRy5coGvw9nz56lUaNGUc+ePcnKyopWrFhBNTU1zdbf1DGLiopqcezN6Ygpjn8v+HgwxjoK5yXOS5yXfn95SUTUAXODd1MlJSVQKpVQqVSt/h4qY4w15vHjx8jLy4OlpSUkEklXl/ObUlZWBlNTU8TFxWH69Omdvv/79+/Dzc0NvXr1wtGjR6H7G/kKAXs2zf3Ocj7QxMeDMdZROC+1H+cl1hU6Ii/x7HuMMcaeKxkZGdi7dy9yc3Nx6dIlBAYGAoBwi3tn09fXx4kTJ+Dm5oa0tLQuqYExxhhj7Emcl1h3wc+UYowx9tyJjY1FdnY2xGIxhg8fjpSUFPTt27fL6unTpw+WLl3aZftnjDHGGHsa5yXWHfBJKcYYY8+VoUOH4uLFrpn6mTHGGGPst4DzEusu+Ot7jDHGGGOMMcYYY6zT8UkpxhhjjDHGGGOMMdbp+KQUY4wxxhhjjDHGGOt0fFKKMcYYY4wxxhhjjHU6PinFGGOMMcYYY4wxxjodn5RijDHGGGOMMcYYY52OT0oxxhhjjDHGGGOMsU7HJ6UYY4w1a9q0aRCJRBCJRBCLxbC2tkZ0dDRqamqeqd9Tp05BJBLh4cOHHVNoK+Tl5SEgIAAmJiaQSCQwMzODn58frl+/rtEuKSkJLi4uUCgU0NXVxUsvvYRdu3ZptMnPz4dIJEJmZmar979s2TIMGDAAMpkMvXv3xvjx45Genq7R5/Tp02FpaQmpVIr+/fsjKioKVVVVzfZbVFSEgIAA2NraQktLC3PmzGlVPbW1tViyZInG/j766CMQkdDm4MGD8PDwQJ8+fZocb25uLt58800YGBigV69emDRpEn755Zc2j+vKlSsYN24cJBIJzM3NsWbNmhbHcPr0afj4+MDExAQikQiHDh1q1dgZY4yxjsR5ifMS56X2ea5OSm3evBkvvvgiJBIJRo0ahfPnzzfbfv/+/RgwYAAkEgkcHBxw5MiRJtuGhoZCJBLhb3/7WwdXzRhj3Z+XlxeKiorw448/Yt68eVi2bBk++eSTri5L0FIIAYDq6mq4u7tDpVLh4MGDyM7Oxr59++Dg4KAR9DZu3Ag/Pz84OzsjPT0dV65cwZQpUxAaGor58+c/U522trbYtGkTrl69ijNnzuDFF1+Eh4cH7t69CwC4fv061Go1tm3bhh9++AHr1q3D1q1bsXjx4mb7rayshIGBAT788EM4Ojq2up7Vq1djy5Yt2LRpE65du4bVq1djzZo12Lhxo9CmrKwMY8eOxerVqxvto6ysDB4eHhCJRPj222+RmpqKqqoq+Pj4QK1Wt3pcJSUl8PDwgIWFBS5evIhPPvkEy5Ytw/bt25sdQ1lZGRwdHbF58+ZWj/u3jvMSY4w9nzgvcV7ivNQO9Jz47LPPSCwW086dO+mHH36gkJAQ0tPTo19++aXR9qmpqdSjRw9as2YNZWVl0Ycffkg6Ojp09erVBm0PHjxIjo6OZGJiQuvWrWt1TSqVigCQSqVq77AYY4yIiCoqKigrK4sqKiq6upQ2Cw4OJj8/P41l7u7u5OTkRPfv36egoCDS09MjqVRKXl5elJOTI7TLz8+n119/nfT09EhXV5fs7e3p8OHDlJeXRwA0XsHBwUREVFJSQgEBAaSrq0tGRka0du1acnFxodmzZwv9WlhYUHR0NAUFBZFCoRC2TUlJobFjx5JEIiEzMzMKDw+n0tJSIiLKyMggAJSfn9/kWAsKCkhHR4fmzp3bYN2GDRsIAJ07d46ISBhDRkZG2w/qf9T/nTlx4kSTbdasWUOWlpat7vPpY9Wc1157jd555x2NZX/84x8pMDCwQdumxnvs2DHS0tLS+Fv58OFDEolElJyc3OS+nx7X3//+d+rduzdVVlYKyyIjI8nOzq5VYyEiAkBffvllq9s3p7nf2a7MB5yXGGPdGeclzkuN4bzUvfPSc3On1Nq1axESEoI///nPsLe3x9atW6Grq4udO3c22n79+vXw8vLCggULMHDgQHz00UcYNmwYNm3apNGusLAQ4eHhSEhIgI6OTmcMhTHGWoWIUF1Z2+kveuJW4/aSSqWoqqrCtGnT8P333yMxMRFpaWkgIkyYMAHV1dUAgFmzZqGyshKnT5/G1atXsXr1asjlcpibm+OLL74AAGRnZ6OoqAjr168HAMydOxepqalITExEcnIyUlJScOnSpQY1xMbGwtHRERkZGViyZAlyc3Ph5eWFiRMn4sqVK9i3bx/OnDmDsLAwAICBgQG0tLRw4MAB1NbWNjquAwcOoLq6utErfDNnzoRcLsfevXuf+fgBdVcrt2/fDqVS2ezVOpVKBX19/Q7Z59PGjBmDb775Bjk5OQCAy5cv48yZM/D29m51H5WVlRCJROjZs6ewTCKRQEtLC2fOnGlyu6fHlZaWhpdffhlisVhY5unpiezsbDx48KAtw+rWOC8xxn5vuiovdURm4rz07Dgvdf+8pN3VBQB1P2gXL17EokWLhGVaWloYP3480tLSGt0mLS0Nc+fO1Vjm6emp8d1ItVqNoKAgLFiwAIMGDWqxjsrKSlRWVgrvS0pK2jgSxhhrvZoqNbbP/q7T9/vuehfo9OzRrm2JCN988w2OHTsGb29vHDp0CKmpqRgzZgwAICEhAebm5jh06BD8/f1RUFCAiRMnwsHBAQBgZWUl9FX/B9bQ0BB6enoAgEePHmH37t3Ys2cP3NzcAADx8fEwMTFpUMurr76KefPmCe9nzJiBwMBA4fkANjY22LBhA1xcXLBlyxaYmppiw4YNeP/997F8+XKMGDECrq6uCAwMFOrKycmBUqmEsbFxg/2JxWJYWVkJgaS9kpKSMGXKFJSXl8PY2BjJycno27dvo21v3LiBjRs3IjY29pn22ZSFCxeipKQEAwYMQI8ePVBbW4sVK1YgMDCw1X04OTlBJpMhMjISK1euBBFh4cKFqK2tRVFRUaPbNDau27dvw9LSUqPdCy+8IKzr3bt3O0bYvXBeYoz9HnVVXgLan5k4L3FeehrnpaY9F3dKFRcXo7a2VjiY9V544QXcvn270W1u377dYvvVq1dDW1sbERERrapj1apVUCqVwsvc3LyNI2GMse4pKSkJcrkcEokE3t7emDx5MqZNmwZtbW2MGjVKaNenTx/Y2dnh2rVrAICIiAjExMTA2dkZUVFRuHLlSrP7+emnn1BdXY2RI0cKy5RKJezs7Bq0HTFihMb7y5cvY9euXZDL5cLL09MTarUaeXl5AOquRN6+fRsJCQkYPXo09u/fj0GDBiE5ObnVx+LJK1NNSUhI0KgjJSVFWOfq6orMzEycPXsWXl5emDRpEu7cudOgj8LCQnh5ecHf3x8hISHC8if7DQ0NbVXNKSkpGtslJCQAAD7//HMkJCRgz549uHTpEnbv3o3Y2Fjs3r27Vf0CdVdU9+/fj3/961+Qy+VQKpV4+PAhhg0bBi2thjGjqXG1dwy/J5yXGGPs+cZ56b84L2nivNS05+JOqV/DxYsXsX79ely6dAkikahV2yxatEjjamJJSQkHLcbYr0ZbrIV317t0yX7bytXVFVu2bIFYLIaJiQm0tbWRmJjY4nYzZsyAp6cnDh8+jOPHj2PVqlWIi4tDeHh4e0rXIJPJNN6XlpZi5syZjf6Pdb9+/YR/KxQK+Pj4wMfHBzExMfD09ERMTAzc3d1hY2MDlUqFW7duNbjaWFVVhdzcXHh6erZYm6+vr0b4NDU11ajb2toa1tbWcHJygo2NDXbs2KFx98utW7fg6uqKMWPGNHhw5ZOzufTq1avFWoC6QPrkdvUnKRYsWICFCxdiypQpAAAHBwf83//9H1atWoXg4OBW9Q0AHh4eyM3NRXFxMbS1taGnpwcjIyONK70tjcvIyEhjBhoAwnsjIyO8+OKLjY6BPRvOS4yx511X5aX6fbcF5yXOS83hvNS45+KkVN++fdGjR49GD66RkVGj2zT1YdS3T0lJwZ07dzR+sWprazFv3jz87W9/Q35+foM+e/bsqfEdT8YY+zWJRKJ2f42us9UHgycNHDgQNTU1SE9PF25Hv3fvHrKzs2Fvby+0Mzc3R2hoKEJDQ7Fo0SJ8+umnCA8PF66gPfm8AisrK+jo6ODChQvCf79VKhVycnLw8ssvN1vjsGHDkJWV1aDO5ohEIgwYMABnz54FALz11luIjIxEXFwc4uLiNNpu3boV5eXlmDp1aov9KhQKKBSKVtWgVqs1vgpVWFgIV1dXDB8+HPHx8Q2unrVlfPWkUmmj25WXlzfov0ePHsIsMG1Vf1v9t99+izt37sDX11dY19K4Ro8ejQ8++ADV1dXCM42Sk5NhZ2cn3IrenrF3J5yXGGO/R5yXOC8BnJfqdce89FyclBKLxRg+fDi++eYbvPHGGwDqfui++eYb4YFrTxs9ejS++eYb4buwQN2HMXr0aABAUFAQxo8fr7GNp6cngoKC8Oc///lXGQdjjP2e2NjYwM/PDyEhIdi2bRsUCgUWLlwIU1NT+Pn5AQDmzJkDb29v2Nra4sGDBzh58iQGDhwIALCwsIBIJEJSUhImTJgAqVQKhUKB4OBgLFiwAPr6+jA0NERUVBS0tLRavIsjMjISTk5OCAsLw4wZMyCTyZCVlYXk5GRs2rQJmZmZiIqKQlBQEOzt7SEWi/Hdd99h586diIyMBFB3hXDNmjWYP38+JBIJgoKCoKOjg6+++gqLFy9GTEwMBg8erLHf7OzsBrUMGjSowcOiy8rKsGLFCvj6+sLY2BjFxcXYvHkzCgsL4e/vD6AuiLzyyiuwsLBAbGysMPUxgCZPOtSrvypWWlqKu3fvIjMzE2KxWCPwPs3HxwcrVqxAv379MGjQIGRkZGDt2rV45513hDb3799HQUEBbt26pTFeIyMjoab4+HgMHDgQBgYGSEtLw+zZs/HXv/5V+BpBa8YVEBCA5cuXY/r06YiMjMS///1vrF+/HuvWrWt23KWlpbhx44bwPi8vD5mZmdDX19c40dIdcF5ijLHfHs5LdTgvcV5qUofMA9gBPvvsM+rZsyft2rWLsrKy6N133yU9PT26ffs2EREFBQXRwoULhfapqamkra1NsbGxdO3aNYqKimpyiuN6FhYWPMUxY6xLdLcpjuvVT3GsVCpJKpWSp6enxhTHYWFh1L9/f+rZsycZGBhQUFAQFRcXC+ujo6PJyMiIRCJRs1Mcjxw5UuNvQFP/PT9//jy5u7uTXC4nmUxGQ4YMoRUrVhAR0d27dykiIoIGDx5McrmcFAoFOTg4UGxsLNXW1mr0c+jQIRo3bhzJZDJhCua9e/dqtGlsmub6182bNxvUVlFRQW+++SaZmJiQWCwmY2Nj8vX1pfPnzwtt4uPjm+yzJY1tY2Fh0ew2JSUlNHv2bOrXrx9JJBKysrKiDz74QGOa4aZqioqKEtpERkbSCy+8QDo6OmRjY0NxcXGkVqvbPK7Lly/T2LFjqWfPnmRqakoff/xxi+M+efJko/3W/zy1V0dMcfxr4LzEGOvOOC9xXuK89PvLS8/NSSkioo0bN1K/fv1ILBbTyJEj6dy5c8I6FxeXBgfs888/J1tbWxKLxTRo0CA6fPhws/1zyGKMdZXfcsjqaqWlpaRUKul//ud/umT/9+7doz/84Q/08ssvU1lZWZfUwDrf83pSiojzEmOs++K81H6cl1hX6Ii8JCIias8dVr8HJSUlUCqVUKlUrX44GmOMNebx48fIy8uDpaUlJBJJV5fzXMvIyMD169cxcuRIqFQqREdH49SpU7hx40aTUwH/2u7du4fNmzfD2dlZmHqZdW/N/c5yPtDEx4Mx1lE4L7Ue5yX2POiIvPRcPFOKMcYYe1JsbCyys7OFZ+ikpKR0WcAC6qZuXrp0aZftnzHGGGPsaZyXWHfAJ6UYY4w9V4YOHYqLFy92dRmMMcYYY88tzkusu9BquQljjDHGGGOMMcYYYx2LT0oxxhhjjDHGGGOMsU7HJ6UYY4wxxhhjjDHGWKfjk1KMMcYYY4wxxhhjrNPxSSnGGGOMMcYYY4wx1un4pBRjjDHGGGOMMcYY63R8Uooxxlizpk2bBpFIBJFIBLFYDGtra0RHR6OmpuaZ+j116hREIhEePnzYMYW2Ql5eHgICAmBiYgKJRAIzMzP4+fnh+vXrGu2SkpLg4uIChUIBXV1dvPTSS9i1a5dGm/z8fIhEImRmZrZ6/8uWLcOAAQMgk8nQu3dvjB8/Hunp6Rp9Tp8+HZaWlpBKpejfvz+ioqJQVVXVbL9FRUUICAiAra0ttLS0MGfOnFbV8+jRI8yZMwcWFhaQSqUYM2YMLly4oNGmtLQUYWFhMDMzg1Qqhb29PbZu3arRZubMmejfvz+kUikMDAwaPaYFBQV47bXXoKurC0NDQyxYsKDJn6HU1FRoa2vjD3/4Q4tjOHjwIDw8PNCnT582fx6MMcZYR+G8xHmJ81L78EkpxhhjLfLy8kJRURF+/PFHzJs3D8uWLcMnn3zS1WUJWgohAFBdXQ13d3eoVCocPHgQ2dnZ2LdvHxwcHDSC3saNG+Hn5wdnZ2ekp6fjypUrmDJlCkJDQzF//vxnqtPW1habNm3C1atXcebMGbz44ovw8PDA3bt3AQDXr1+HWq3Gtm3b8MMPP2DdunXYunUrFi9e3Gy/lZWVMDAwwIcffghHR8dW1zNjxgwkJyfjH//4B65evQoPDw+MHz8ehYWFQpu5c+fi66+/xj//+U9cu3YNc+bMQVhYGBITE4U2w4cPR3x8PK5du4Zjx46BiODh4YHa2loAQG1tLV577TVUVVXh7Nmz2L17N3bt2oWlS5c2qOnhw4eYOnUq3NzcWjWGsrIyjB07FqtXr271uBljjLFfA+clzkucl9qBWJNUKhUBIJVK1dWlMMZ+4yoqKigrK4sqKiq6upQ2Cw4OJj8/P41l7u7u5OTkRPfv36egoCDS09MjqVRKXl5elJOTI7TLz8+n119/nfT09EhXV5fs7e3p8OHDlJeXRwA0XsHBwUREVFJSQgEBAaSrq0tGRka0du1acnFxodmzZwv9WlhYUHR0NAUFBZFCoRC2TUlJobFjx5JEIiEzMzMKDw+n0tJSIiLKyMggAJSfn9/kWAsKCkhHR4fmzp3bYN2GDRsIAJ07d46ISBhDRkZG2w/qf9T/nTlx4kSTbdasWUOWlpat7vPpY9WU8vJy6tGjByUlJWksHzZsGH3wwQfC+0GDBlF0dHSzbZ52+fJlAkA3btwgIqIjR46QlpYW3b59W2izZcsW6tWrF1VWVmpsO3nyZPrwww8pKiqKHB0dWxxHvY74PJ7U3O8s5wNNfDwYYx2F8xLnpcZwXureeYnvlGKMMdZmUqkUVVVVmDZtGr7//nskJiYiLS0NRIQJEyaguroaADBr1ixUVlbi9OnTuHr1KlavXg25XA5zc3N88cUXAIDs7GwUFRVh/fr1AOquNKWmpiIxMRHJyclISUnBpUuXGtQQGxsLR0dHZGRkYMmSJcjNzYWXlxcmTpyIK1euYN++fThz5gzCwsIAAAYGBtDS0sKBAweEK1JPO3DgAKqrqxu9wjdz5kzI5XLs3bu3Q45hVVUVtm/fDqVS2ezVOpVKBX19/Q7Z55NqampQW1sLiUSisVwqleLMmTPC+zFjxiAxMRGFhYUgIpw8eRI5OTnw8PBotN+ysjLEx8fD0tIS5ubmAIC0tDQ4ODjghRdeENp5enqipKQEP/zwg7AsPj4eP/30E6KiojpyqIwxxliX4Lz07Dgv/Q7yUoecHuum+MofY6yjNHYVQa1WU1VFRae/1Gp1m2p/8sqfWq2m5ORk6tmzJ73xxhsEgFJTU4W2xcXFJJVK6fPPPyciIgcHB1q2bFmj/Z48eZIA0IMHD4RlJSUlpKOjQ/v37xeWPXz4kHR1dRtc+XvjjTc0+ps+fTq9++67GstSUlJIS0tLOO6bNm0iXV1dUigU5OrqStHR0ZSbmyu0Dw0NJaVS2eSxGDJkCHl7exNR+680/etf/yKZTEYikYhMTEzo/PnzTbb98ccfqVevXrR9+/ZW99/aK39ERKNHjyYXFxcqLCykmpoa+sc//kFaWlpka2srtHn8+DFNnTqVAJC2tjaJxWLavXt3g742b95MMpmMAJCdnZ1w1Y+IKCQkhDw8PDTal5WVEQA6cuQIERHl5OSQoaEhZWdnExF1iyt/vxd8PBhjHeV5ykttzUycl/6L8xLnJaLW5wPtzj4JxhhjrE5NZSU2BL/V6fuN2H0AOk9d7WlJUlIS5HI5qquroVarERAQgD/+8Y9ISkrCqFGjhHZ9+vSBnZ0drl27VreviAi89957OH78OMaPH4+JEydiyJAhTe7np59+QnV1NUaOHCksUyqVsLOza9B2xIgRGu8vX76MK1euICEhQVhGRFCr1cjLy8PAgQMxa9YsTJ06FadOncK5c+ewf/9+rFy5EomJiXB3d2/VsRCLxS22SUhIwMyZM4X3R48exbhx4wAArq6uyMzMRHFxMT799FNMmjQJ6enpMDQ01OijsLAQXl5e8Pf3R0hIiLBcLpcL/3777bcbPESzMSkpKfD29hbeb9u2DYGBgfjHP/6Bd955B6ampujRoweGDRuGP/3pT7h48aLQduPGjTh37hwSExNhYWGB06dPY9asWTAxMcH48eOFdoGBgXB3d0dRURFiY2MxadIkpKamNriy2Jja2loEBARg+fLlsLW1bbRNc8eUMcZY99VVeQloe2bivPRfnJc4L7UWn5RijDHWIldXV2zZsgVisRgmJibQ1tbWeHBjU2bMmAFPT08cPnwYx48fx6pVqxAXF4fw8PBnrkkmk2m8Ly0txcyZMxEREdGgbb9+/YR/KxQK+Pj4wMfHBzExMfD09ERMTAzc3d1hY2MDlUqFW7duwcTERKOPqqoq5ObmwtPTs8XafH19NcKnqampRt3W1tawtraGk5MTbGxssGPHDixatEhoc+vWLbi6umLMmDHYvn27Rt9PzpbSq1evFmsB6gLpk9vV3xbev39/fPfddygrK0NJSQmMjY0xefJkWFlZAQAqKiqwePFifPnll3jttdcAAEOGDEFmZiZiY2M1QpZSqYRSqYSNjQ2cnJzQu3dvfPnll/jTn/4EIyMjnD9/XqOmX375BQBgZGSER48e4fvvv0dGRobw9QG1Wg0igra2No4fP97sMWWMMcaeB5yXOC9xXmo7PinFGGNdRLtnT0TsPtAl+22r+mDwpIEDB6Kmpgbp6ekYM2YMAODevXvIzs6Gvb290M7c3ByhoaEIDQ3FokWL8OmnnyI8PFy4gvbk8wqsrKygo6ODCxcuCMFIpVIhJycHL7/8crM1Dhs2DFlZWQ3qbI5IJMKAAQNw9uxZAMBbb72FyMhIxMXFIS4uTqPt1q1bUV5ejqlTp7bYr0KhgEKhaFUNarUalZWVwvvCwkK4uroKM7RoaWk+/rEt46snlUqb3U4mk0Emk+HBgwc4duwY1qxZA6BuBp7q6uoGNfTo0QNqtbrJ/ogIRCSMa/To0VixYgXu3LkjXOFMTk5Gr169YG9vDx0dHVy9elWjj7///e/49ttvceDAAVhaWkImk7X6mDLGGOs+uiov1e+7LTgvcV56Euel1uGTUowx1kVEIlGbv0b3PLGxsYGfnx9CQkKwbds2KBQKLFy4EKampvDz8wMAzJkzB97e3rC1tcWDBw9w8uRJDBw4EABgYWEBkUiEpKQkTJgwAVKpFAqFAsHBwViwYAH09fVhaGiIqKgoaGlpQSQSNVtPZGQknJycEBYWhhkzZkAmkyErKwvJycnYtGkTMjMzERUVhaCgINjb20MsFuO7777Dzp07ERkZCaDuCuGaNWswf/58SCQSBAUFQUdHB1999RUWL16MmJgYDB48WGO/2dnZDWoZNGgQdHR0NJaVlZVhxYoV8PX1hbGxMYqLi7F582YUFhbC398fQF3AeuWVV2BhYYHY2Fhh6mOg7gpZc+qv7JWWluLu3bvIzMyEWCzWCLxPq5+O2M7ODjdu3MCCBQswYMAA/PnPfwZQd2XRxcUFCxYsgFQqhYWFBb777jv87//+L9auXQug7isE+/btg4eHBwwMDPDzzz/j448/hlQqxYQJEwAAHh4esLe3R1BQENasWYPbt2/jww8/xKxZs9DzP4H/6eNqaGgIiUTSYPnT7t+/j4KCAty6dQvAfz8PIyOjFo8ZY4yx5x/nJc5LnJe6eV7qkKdbdVP84E7GWEfpblMc16uf4lipVJJUKiVPT0+NKY7DwsKof//+1LNnTzIwMKCgoCAqLi4W1kdHR5ORkRGJRKJmpzgeOXIkLVy4UNjOwsKC1q1b16Ce8+fPk7u7O8nlcpLJZDRkyBBasWIFERHdvXuXIiIiaPDgwSSXy0mhUJCDgwPFxsZSbW2tRj+HDh2icePGCQ+iBEB79+7VaNPYNM31r5s3bzaoraKigt58800yMTEhsVhMxsbG5Ovrq/Hgzvj4+Cb7bElj21hYWDS7zb59+8jKyorEYjEZGRnRrFmz6OHDhxptioqKaNq0aWRiYkISiYTs7OwoLi5OePhrYWEheXt7k6GhIeno6JCZmRkFBATQ9evXNfrJz88nb29vkkql1LdvX5o3bx5VV1c3WVtrH9zZ1DGLiopqcdvm8IPOW4+PB2Oso3Be4rzEeen3l5dEREQde5qr+ygpKYFSqYRKpWr191AZY6wxjx8/Rl5eHiwtLVv1IEP2X2VlZTA1NUVcXBymT5/e6fu/f/8+3Nzc0KtXLxw9ehS6urqdXgPrfM39znI+0MTHgzHWUTgvtR/nJdYVOiIvaTW5hjHGGOsCGRkZ2Lt3L3Jzc3Hp0iUEBgYCgHCLe2fT19fHiRMn4ObmhrS0tC6pgTHGGGPsSZyXWHfBz5RijDH23ImNjUV2djbEYjGGDx+OlJQU9O3bt8vq6dOnD5YuXdpl+2eMMcYYexrnJdYd8Ekpxhhjz5WhQ4fi4sWLXV0GY4wxxthzi/MS6y7463uMMcYYY4wxxhhjrNPxSSnGGGOMMcYYY4wx1un4pBRjjDHGGGOMMcYY63R8UooxxhhjjDHGGGOMdTo+KcUYY4wxxhhjjDHGOh2flGKMMcYYY4wxxhhjnY5PSjHGGGOMMcYYY4yxTscnpRhjjDVr2rRpEIlEEIlEEIvFsLa2RnR0NGpqap6p31OnTkEkEuHhw4cdU2gr5OXlISAgACYmJpBIJDAzM4Ofnx+uX7+u0S4pKQkuLi5QKBTQ1dXFSy+9hF27dmm0yc/Ph0gkQmZmZqv3v2zZMgwYMAAymQy9e/fG+PHjkZ6ertHn9OnTYWlpCalUiv79+yMqKgpVVVXN9ltUVISAgADY2tpCS0sLc+bMaVU9p0+fho+PD0xMTCASiXDo0KEGbQ4ePAgPDw/06dOnxfESEby9vZvsa9euXRgyZAgkEgkMDQ0xa9YsjfXHjh2Dk5MTFAoFDAwMMHHiROTn52u0SUhIgKOjI3R1dWFsbIx33nkH9+7de+ZxMsYYY8+C8xLnJc5L7cMnpRhjjLXIy8sLRUVF+PHHHzFv3jwsW7YMn3zySVeXJWgphABAdXU13N3doVKpcPDgQWRnZ2Pfvn1wcHDQCHobN26En58fnJ2dkZ6ejitXrmDKlCkIDQ3F/Pnzn6lOW1tbbNq0CVevXsWZM2fw4osvwsPDA3fv3gUAXL9+HWq1Gtu2bcMPP/yAdevWYevWrVi8eHGz/VZWVsLAwAAffvghHB0dW11PWVkZHB0dsXnz5mbbjB07FqtXr26xv7/97W8QiUSNrlu7di0++OADLFy4ED/88ANOnDgBT09PYX1eXh78/Pzw6quvIjMzE8eOHUNxcTH++Mc/Cm1SU1MxdepUTJ8+HT/88AP279+P8+fPIyQk5JnHyRhjjD0rzkuclzgvtQOxJqlUKgJAKpWqq0thjP3GVVRUUFZWFlVUVHR1KW0WHBxMfn5+Gsvc3d3JycmJ7t+/T0FBQaSnp0dSqZS8vLwoJydHaJefn0+vv/466enpka6uLtnb29Phw4cpLy+PAGi8goODiYiopKSEAgICSFdXl4yMjGjt2rXk4uJCs2fPFvq1sLCg6OhoCgoKIoVCIWybkpJCY8eOJYlEQmZmZhQeHk6lpaVERJSRkUEAKD8/v8mxFhQUkI6ODs2dO7fBug0bNhAAOnfuHBGRMIaMjIy2H9T/qP87c+LEiSbbrFmzhiwtLVvd59PHqrUA0Jdfftnk+pbGm5GRQaamplRUVNSgr/v375NUKm12nPv37ydtbW2qra0VliUmJpJIJKKqqioiIvrkk0/IyspKY7sNGzaQqalpywP8j5bGWa+531nOB5r4eDDGOgrnJc5LjeG89F/dMS/xnVKMMcbaTCqVoqqqCtOmTcP333+PxMREpKWlgYgwYcIEVFdXAwBmzZqFyspKnD59GlevXsXq1ashl8thbm6OL774AgCQnZ2NoqIirF+/HgAwd+5cpKamIjExEcnJyUhJScGlS5ca1BAbGwtHR0dkZGRgyZIlyM3NhZeXFyZOnIgrV65g3759OHPmDMLCwgAABgYG0NLSwoEDB1BbW9vouA4cOIDq6upGr/DNnDkTcrkce/fu7ZBjWFVVhe3bt0OpVDZ7tU6lUkFfX79D9vlrKS8vR0BAADZv3gwjI6MG65OTk6FWq1FYWIiBAwfCzMwMkyZNws2bN4U2w4cPh5aWFuLj41FbWwuVSoV//OMfGD9+PHR0dAAAo0ePxs2bN3HkyBEQEX755RccOHAAEyZM6LSxMsYYY63FeenZcV76HeSlVp8q+x3iK3+MsY7S2FUEtVpNtZU1nf5Sq9Vtqv3JK39qtZqSk5OpZ8+e9MYbbxAASk1NFdoWFxeTVCqlzz//nIiIHBwcaNmyZY32e/LkSQJADx48EJaVlJSQjo4O7d+/X1j28OFD0tXVbXDl74033tDob/r06fTuu+9qLEtJSSEtLS3huG/atIl0dXVJoVCQq6srRUdHU25urtA+NDSUlEplk8diyJAh5O3tTUTtv/L3r3/9i2QyGYlEIjIxMaHz58832fbHH3+kXr160fbt21vdf1dc+Xv33Xdp+vTpTfa1atUq0tHRITs7O/r6668pLS2N3NzcyM7OjiorK4V2p06dIkNDQ+rRowcBoNGjR2v8fBARff755ySXy0lbW5sAkI+Pj3BlsCPGWY/vlGo9Ph6MsY7yPOWltmYmzkv/xXmJ8xJR6/OBdmeeAGOMMfZfVK3GraVnO32/JtFjIBL3aNM2SUlJkMvlqK6uhlqtRkBAAP74xz8iKSkJo0aNEtr16dMHdnZ2uHbtGgAgIiIC7733Ho4fP47x48dj4sSJGDJkSJP7+emnn1BdXY2RI0cKy5RKJezs7Bq0HTFihMb7y5cv48qVK0hISBCWERHUajXy8vIwcOBAzJo1C1OnTsWpU6dw7tw57N+/HytXrkRiYiLc3d1bdSzEYnGLbRISEjBz5kzh/dGjRzFu3DgAgKurKzIzM1FcXIxPP/0UkyZNQnp6OgwNDTX6KCwshJeXF/z9/TWeASCXy4V/v/3229i6dWuL9aSkpMDb21t4v23bNgQGBra4XWskJibi22+/RUZGRpNt1Go1qqursWHDBnh4eAAA9u7dCyMjI5w8eRKenp64ffs2QkJCEBwcjD/96U949OgRli5dirfeegvJyckQiUTIysrC7NmzsXTpUnh6eqKoqAgLFixAaGgoduzY8auOkzHGWNfoqrwEtD0zcV76L85LmjgvNY1PSjHGGGuRq6srtmzZArFYDBMTE2hrayMxMbHF7WbMmAFPT08cPnwYx48fx6pVqxAXF4fw8PBnrkkmk2m8Ly0txcyZMxEREdGgbb9+/YR/KxQK+Pj4wMfHBzExMfD09ERMTAzc3d1hY2MDlUqFW7duwcTERKOPqqoq5Obmajxssim+vr4a4dPU1FSjbmtra1hbW8PJyQk2NjbYsWMHFi1aJLS5desWXF1dMWbMGGzfvl2j7ydnc+nVq1eLtQB1gfTJ7V544YVWbdca3377LXJzc6Gnp6exfOLEiRg3bhxOnToFY2NjAIC9vb2w3sDAAH379kVBQQEAYPPmzVAqlVizZo3Q5p///CfMzc2Rnp4OJycnrFq1Cs7OzliwYAEAYMiQIZDJZBg3bhxiYmJ+1XEyxhhjLeG8xHmpKZyXmsYnpRhjrIuIdLRgEj2mS/bbVvXB4EkDBw5ETU0N0tPTMWZM3Tju3buH7OxsjT+m5ubmCA0NRWhoKBYtWoRPP/0U4eHhwhW0J59XYGVlBR0dHVy4cEEIRiqVCjk5OXj55ZebrXHYsGHIyspqUGdzRCIRBgwYgLNn667AvvXWW4iMjERcXBzi4uI02m7duhXl5eWYOnVqi/0qFAooFIpW1aBWq1FZWSm8LywshKurK4YPH474+HhoaWl+Xm0ZXz2pVNqu7Vpj4cKFmDFjhsYyBwcHrFu3Dj4+PgAAZ2dnAHXPwzAzMwMA3L9/H8XFxbCwsABQ95yFp8fao0fd1Wm1Wi200dbWbrQNEf2q42SMMdY1uiov1e+7LTgvcV5qCuelpvFJKcYY6yIikajNX6N7ntjY2MDPzw8hISHYtm0bFAoFFi5cCFNTU/j5+QEA5syZA29vb9ja2uLBgwc4efIkBg4cCACwsLCASCRCUlISJkyYAKlUCoVCgeDgYCxYsAD6+vowNDREVFQUtLS0mpw6t15kZCScnJwQFhaGGTNmQCaTISsrC8nJydi0aRMyMzMRFRWFoKAg2NvbQywW47vvvsPOnTsRGRkJoO4K4Zo1azB//nxIJBIEBQVBR0cHX331FRYvXoyYmBgMHjxYY7/Z2dkNahk0aJDwsMl6ZWVlWLFiBXx9fWFsbIzi4mJs3rwZhYWF8Pf3B1AXsF555RVYWFggNjZWmPoYQKMPxHxS/RWv0tJS3L17F5mZmRCLxRqB92mlpaW4ceOG8D4vLw+ZmZnQ19cXQu79+/dRUFCAW7duaYzXyMhI4/W0fv36wdLSEkDd1M5+fn6YPXs2tm/fjl69emHRokUYMGAAXF1dAQCvvfYa1q1bh+joaOF29MWLF8PCwgJDhw4FAPj4+CAkJARbtmwRbkefM2cORo4c2eBKbVvHyRhj7PnEeYnzEuelbp6XWv2kq98hfnAnY6yjdLcpjuvVT3GsVCpJKpWSp6enxhTHYWFh1L9/f+rZsycZGBhQUFAQFRcXC+ujo6PJyMiIRCJRs1Mcjxw5khYuXChsZ2FhQevWrWtQz/nz58nd3Z3kcjnJZDIaMmQIrVixgoiI7t69SxERETR48GCSy+WkUCjIwcGBYmNjNabVJSI6dOgQjRs3jmQymTAF8969ezXaNDZNc/3r5s2bDWqrqKigN998k0xMTEgsFpOxsTH5+vpqPLgzPj6+yT5b0tg2FhYWzW5T//DUp1/1n0VzNUVFRTVby9MPx1SpVPTOO++Qnp4e6evr05tvvkkFBQUabfbu3UtDhw4lmUxGBgYG5OvrS9euXdNos2HDBrK3tyepVErGxsYUGBhIP//88zOP82n8oPPW4+PBGOsonJc4L3Fe+v3lJRERUXtPaHV3JSUlUCqVUKlUrf4eKmOMNebx48fIy8uDpaUlJBJJV5fzm1JWVgZTU1PExcVh+vTpnb7/+/fvw83NDb169cLRo0ehq6vb6TWwztfc7yznA018PBhjHYXzUvtxXmJdoSPyUtsfLMIYY4z9ijIyMrB3717k5ubi0qVLwmwg9be4dzZ9fX2cOHECbm5uSEtL65IaGGOMMcaexHmJdRf8TCnGGGPPndjYWGRnZ0MsFmP48OFISUlB3759u6yePn36YOnSpV22f8YYY4yxp3FeYt0Bn5RijDH2XBk6dCguXrzY1WUwxhhjjD23OC+x7oK/vscYY4wxxhhjjDHGOh2flGKMMcYYY4wxxhhjnY5PSjHGGGOMMcYYY4yxTscnpRhjjDHGGGOMMcZYp+OTUowxxhhjjDHGGGOs0/FJKcYYY4wxxhhjjDHW6fikFGOMMcYYY4wxxhjrdHxSijHGWLOmTZsGkUgEkUgEsVgMa2trREdHo6am5pn6PXXqFEQiER4+fNgxhbZCXl4eAgICYGJiAolEAjMzM/j5+eH69esa7ZKSkuDi4gKFQgFdXV289NJL2LVrl0ab/Px8iEQiZGZmtnr/y5Ytw4ABAyCTydC7d2+MHz8e6enpGn1Onz4dlpaWkEql6N+/P6KiolBVVdVsv0VFRQgICICtrS20tLQwZ86cVtVz+vRp+Pj4wMTEBCKRCIcOHWpzzQCwYsUKjBkzBrq6utDT02t0XwUFBXjttdegq6sLQ0NDLFiwQONn6MmfsydfgwYNEtqsWrUKL730EhQKBQwNDfHGG28gOzu7xXG2pj7GGGPsWXBe4rzEeal9+KQUY4yxFnl5eaGoqAg//vgj5s2bh2XLluGTTz7p6rIELYUQAKiuroa7uztUKhUOHjyI7Oxs7Nu3Dw4ODhpBb+PGjfDz84OzszPS09Nx5coVTJkyBaGhoZg/f/4z1Wlra4tNmzbh6tWrOHPmDF588UV4eHjg7t27AIDr169DrVZj27Zt+OGHH7Bu3Tps3boVixcvbrbfyspKGBgY4MMPP4Sjo2Or6ykrK4OjoyM2b97c7pqBuuPv7++P9957r9E+amtr8dprr6Gqqgpnz57F7t27sWvXLixdulRos379ehQVFQmvmzdvQl9fH/7+/kKb7777DrNmzcK5c+eQnJyM6upqeHh4oKysrNlxtlQfY4wx1hE4L3Fe4rzUDsSapFKpCACpVKquLoUx9htXUVFBWVlZVFFR0dWltFlwcDD5+flpLHN3dycnJye6f/8+BQUFkZ6eHkmlUvLy8qKcnByhXX5+Pr3++uukp6dHurq6ZG9vT4cPH6a8vDwCoPEKDg4mIqKSkhIKCAggXV1dMjIyorVr15KLiwvNnj1b6NfCwoKio6MpKCiIFAqFsG1KSgqNHTuWJBIJmZmZUXh4OJWWlhIRUUZGBgGg/Pz8JsdaUFBAOjo6NHfu3AbrNmzYQADo3LlzRETCGDIyMtp+UP+j/u/MiRMnmmyzZs0asrS0bHWfTx+r1gJAX375ZYvtmqs5Pj6elEplg+VHjhwhLS0tun37trBsy5Yt1KtXL6qsrGx0P19++SWJRKJmP687d+4QAPruu+9arLu5+hrT3O8s5wNNfDwYYx2F8xLnpcZwXureeYnvlGKMsS5CRKiqqur0FxE9c+1SqRRVVVWYNm0avv/+eyQmJiItLQ1EhAkTJqC6uhoAMGvWLFRWVuL06dO4evUqVq9eDblcDnNzc3zxxRcAgOzsbBQVFWH9+vUAgLlz5yI1NRWJiYlITk5GSkoKLl261KCG2NhYODo6IiMjA0uWLEFubi68vLwwceJEXLlyBfv27cOZM2cQFhYGADAwMICWlhYOHDiA2traRsd14MABVFdXN3qFb+bMmZDL5di7d+8zHz+g7mrU9u3boVQqm71ap1KpoK+v3yH7fFatrflpaWlpcHBwwAsvvCAs8/T0RElJCX744YdGt9mxYwfGjx8PCwuLJvtVqVQA8NwcH8YYYx2vq/JSR2QmzkvPjvNS989L2l1dAGOM/V5VV1dj5cqVnb7fxYsXQywWt2tbIsI333yDY8eOwdvbG4cOHUJqairGjBkDAEhISIC5uTkOHToEf39/FBQUYOLEiXBwcAAAWFlZCX3V/2E0NDQUvrf+6NEj7N69G3v27IGbmxsAID4+HiYmJg1qefXVVzFv3jzh/YwZMxAYGCg8H8DGxgYbNmyAi4sLtmzZAlNTU2zYsAHvv/8+li9fjhEjRsDV1RWBgYFCXTk5OVAqlTA2Nm6wP7FYDCsrK+Tk5LTr2NVLSkrClClTUF5eDmNjYyQnJ6Nv376Ntr1x4wY2btyI2NjYZ9rns2pLzY25ffu2RsACILy/fft2g/a3bt3C0aNHsWfPnib7VKvVmDNnDpydnTF48OBW18IYY+y3pavyEtD+zMR5ifMS56XW4zulGGOMtSgpKQlyuRwSiQTe3t6YPHkypk2bBm1tbYwaNUpo16dPH9jZ2eHatWsAgIiICMTExMDZ2RlRUVG4cuVKs/v56aefUF1djZEjRwrLlEol7OzsGrQdMWKExvvLly9j165dkMvlwsvT0xNqtRp5eXkA6q5E3r59GwkJCRg9ejT279+PQYMGITk5udXHojXhNCEhQaOOlJQUYZ2rqysyMzNx9uxZeHl5YdKkSbhz506DPgoLC+Hl5QV/f3+EhIQIy5/sNzQ0tFU1p6SkaGyXkJDQqu3aWnNH2b17N/T09PDGG2802WbWrFn497//jc8++0xYFhoaqjFOxhhjrDNxXvovzkucl1qL75RijLEuoqOj0+IDGX+t/baVq6srtmzZArFYDBMTE2hrayMxMbHF7WbMmAFPT08cPnwYx48fx6pVqxAXF4fw8PD2lK5BJpNpvC8tLcXMmTMRERHRoG2/fv2EfysUCvj4+MDHxwcxMTHw9PRETEwM3N3dYWNjA5VKhVu3bjW42lhVVYXc3Fx4enq2WJuvr69G+DQ1NdWo29raGtbW1nBycoKNjQ127NiBRYsWCW1u3boFV1dXjBkzBtu3b9fo+8nZa3r16tViLUBdIH1yu6evwrWkNTU3x8jICOfPn9dY9ssvvwjrnkRE2LlzJ4KCgpoMtGFhYUhKSsLp06dhZmYmLI+Ojn7mh6syxhh7vnRVXqrfd1twXuK8xHmp7fikFGOMdZH6KYN/C+r/yD5p4MCBqKmpQXp6unA7+r1795CdnQ17e3uhnbm5OUJDQxEaGopFixbh008/RXh4uDD2J59XYGVlBR0dHVy4cEEIRiqVCjk5OXj55ZebrXHYsGHIyspqUGdzRCIRBgwYgLNnzwIA3nrrLURGRiIuLg5xcXEabbdu3Yry8nJMnTq1xX4VCgUUCkWralCr1aisrBTeFxYWwtXVFcOHD0d8fDy0tDRvam7L+OpJpdJ2bdeUp2tuyejRo7FixQrcuXMHhoaGAIDk5GT06tVL42cFqJsx5saNG5g+fXqDfogI4eHh+PLLL3Hq1ClYWlpqrDc0NBT6Z4wx1j1wXuK8BHBe6s55iU9KMcYYaxcbGxv4+fkhJCQE27Ztg0KhwMKFC2Fqago/Pz8AwJw5c+Dt7Q1bW1s8ePAAJ0+exMCBAwEAFhYWEIlESEpKwoQJEyCVSqFQKBAcHIwFCxZAX18fhoaGiIqKgpaWFkQiUbP1REZGwsnJCWFhYZgxYwZkMhmysrKQnJyMTZs2ITMzE1FRUQgKCoK9vT3EYjG+++477Ny5E5GRkQDqrhCuWbMG8+fPh0QiQVBQEHR0dPDVV19h8eLFiImJafB9/Ozs7Aa1DBo0qMHV1bKyMqxYsQK+vr4wNjZGcXExNm/ejMLCQmEa38LCQrzyyiuwsLBAbGysxjTCT18he1r9lb3S0lLcvXsXmZmZEIvFDULMk0pLS3Hjxg3hfV5eHjIzM6Gvr49+/fq1qmYAKCgowP3791FQUIDa2lqhFmtra8jlcnh4eMDe3h5BQUFYs2YNbt++jQ8//BCzZs1Cz549NWrasWMHRo0a1ehzD2bNmoU9e/bgq6++gkKhEJ6voFQqIZVKmxxnS/UxxhhjvxbOS3U4L3FealKr5vn7neIpjhljHaW7TXFcr36KY6VSSVKplDw9PTWmOA4LC6P+/ftTz549ycDAgIKCgqi4uFhYHx0dTUZGRiQSiZqd4njkyJG0cOFCYTsLCwtat25dg3rOnz9P7u7uJJfLSSaT0ZAhQ2jFihVERHT37l2KiIigwYMHk1wuJ4VCQQ4ODhQbG0u1tbUa/Rw6dIjGjRtHMplMmIJ57969Gm0am6a5/nXz5s0GtVVUVNCbb75JJiYmJBaLydjYmHx9fen8+fNCm/j4+Cb7bElj21hYWDS7zcmTJxvdrv6zaE3NRHU/I431c/LkSaFNfn4+eXt7k1Qqpb59+9K8efOourpao5+HDx+SVCql7du3t3qMACg+Pr7Zcbamvqd1xBTHvxd8PBhjHYXzEuclzku/v7wk+k/RrBElJSVQKpVQqVSt/h4qY4w15vHjx8jLy4OlpSUkEklXl/ObUlZWBlNTU8TFxTV6i/Kv7f79+3Bzc0OvXr1w9OhR6OrqdnoNrPM19zvL+UATHw/GWEfhvNR+nJdYV+iIvMSz7zHGGHuuZGRkYO/evcjNzcWlS5cQGBgIAMIt7p1NX18fJ06cgJubG9LS0rqkBsYYY4yxJ3FeYt0FP1OKMcbYcyc2NhbZ2dkQi8UYPnw4UlJS0Ldv3y6rp0+fPli6dGmX7Z8xxhhj7Gmcl1h3wCelGGOMPVeGDh2KixcvdnUZjDHGGGPPLc5LrLvgr+8xxhhjjDHGGGOMsU7HJ6UYY4wxxhhjjDHGWKfjk1KMMcYYY4wxxhhjrNPxSSnGGGOMMcYYY4wx1un4pBRjjDHGGGOMMcYY63R8UooxxhhjjDHGGGOMdTo+KcUYY4wxxhhjjDHGOh2flGKMMdasadOmQSQSQSQSQSwWw9raGtHR0aipqXmmfk+dOgWRSISHDx92TKGtkJeXh4CAAJiYmEAikcDMzAx+fn64fv26RrukpCS4uLhAoVBAV1cXL730Enbt2qXRJj8/HyKRCJmZma3e/7JlyzBgwADIZDL07t0b48ePR3p6ukaf06dPh6WlJaRSKfr374+oqChUVVW12HdCQgIcHR2hq6sLY2NjvPPOO7h3716z25w+fRo+Pj4wMTGBSCTCoUOHGm137do1+Pr6QqlUQiaT4aWXXkJBQYGwfubMmejfvz+kUikMDAwaPaYXLlyAm5sb9PT00Lt3b3h6euLy5cuN7u/GjRtQKBTQ09NrcdytHQNjjDH2a+K8xHmJ81L78EkpxhhjLfLy8kJRURF+/PFHzJs3D8uWLcMnn3zS1WUJWhNCqqur4e7uDpVKhYMHDyI7Oxv79u2Dg4ODRtDbuHEj/Pz84OzsjPT0dFy5cgVTpkxBaGgo5s+f/0x12traYtOmTbh69SrOnDmDF198ER4eHrh79y4A4Pr161Cr1di2bRt++OEHrFu3Dlu3bsXixYub7Tc1NRVTp07F9OnT8cMPP2D//v04f/48QkJCmt2urKwMjo6O2Lx5c5NtcnNzMXbsWAwYMACnTp3ClStXsGTJEkgkEqHN8OHDER8fj2vXruHYsWMgInh4eKC2thYAUFpaCi8vL/Tr1w/p6ek4c+YMFAoFPD09UV1drbG/6upq/OlPf8K4ceOarb0tY2CMMcY6A+clzkucl9qBWJNUKhUBIJVK1dWlMMZ+4yoqKigrK4sqKiq6upQ2Cw4OJj8/P41l7u7u5OTkRPfv36egoCDS09MjqVRKXl5elJOTI7TLz8+n119/nfT09EhXV5fs7e3p8OHDlJeXRwA0XsHBwUREVFJSQgEBAaSrq0tGRka0du1acnFxodmzZwv9WlhYUHR0NAUFBZFCoRC2TUlJobFjx5JEIiEzMzMKDw+n0tJSIiLKyMggAJSfn9/kWAsKCkhHR4fmzp3bYN2GDRsIAJ07d46ISBhDRkZG2w/qf9T/nTlx4kSTbdasWUOWlpbN9vPJJ5+QlZVVg3pNTU1bXQsA+vLLLxssnzx5Mr399tut7oeI6PLlywSAbty4QUREFy5cIABUUFAgtLly5QoBoB9//FFj2/fff5/efvttio+PJ6VS2ab9NjWG9mjud5bzgSY+HoyxjsJ5ifNSYzgvde+8xHdKMcZYFyEi1NaWd/qr7m/Rs5FKpaiqqsK0adPw/fffIzExEWlpaSAiTJgwQbiaM2vWLFRWVuL06dO4evUqVq9eDblcDnNzc3zxxRcAgOzsbBQVFWH9+vUAgLlz5yI1NRWJiYlITk5GSkoKLl261KCG2NhYODo6IiMjA0uWLEFubi68vLwwceJEXLlyBfv27cOZM2cQFhYGADAwMICWlhYOHDggXJF62oEDB1BdXd3oFb6ZM2dCLpdj7969z3z8gLqrldu3b4dSqYSjo2OT7VQqFfT19Zvta/To0bh58yaOHDkCIsIvv/yCAwcOYMKECc9Uo1qtxuHDh2FrawtPT08YGhpi1KhRzd7yXVZWhvj4eFhaWsLc3BwAYGdnhz59+mDHjh2oqqpCRUUFduzYgYEDB+LFF18Utv3222+xf//+5/MqHmOMsS7RVXmpIzIT56Vnx3mp++cl7a4ugDHGfq/U6gqc+s6h0/f7istV9Oih265tiQjffPMNjh07Bm9vbxw6dAipqakYM2YMgLrv6Zubm+PQoUPw9/dHQUEBJk6cCAeHunFaWVkJfdUHB0NDQ+G78I8ePcLu3buxZ88euLm5AQDi4+NhYmLSoJZXX30V8+bNE97PmDEDgYGBmDNnDgDAxsYGGzZsgIuLC7Zs2QJTU1Ns2LAB77//PpYvX44RI0bA1dUVgYGBQl05OTlQKpUwNjZusD+xWAwrKyvk5OS069jVS0pKwpQpU1BeXg5jY2MkJyejb9++jba9ceMGNm7ciNjY2Gb7dHZ2RkJCAiZPnozHjx+jpqYGPj4+zxxW7ty5g9LSUnz88ceIiYnB6tWr8fXXX+OPf/wjTp48CRcXF6Ht3//+d7z//vsoKyuDnZ0dkpOTIRaLAQAKhQKnTp3CG2+8gY8++ghA3edz7NgxaGvXRZF79+5h2rRp+Oc//4levXo9U92MMca6j67KS0D7MxPnJc5LnJdaj++UYowx1qKkpCTI5XJIJBJ4e3tj8uTJmDZtGrS1tTFq1CihXZ8+fWBnZ4dr164BACIiIhATEwNnZ2dERUXhypUrze7np59+QnV1NUaOHCksUyqVsLOza9B2xIgRGu8vX76MXbt2QS6XCy9PT0+o1Wrk5eUBqLsSefv2bSQkJGD06NHYv38/Bg0ahOTk5FYfi/rg0JyEhASNOlJSUoR1rq6uyMzMxNmzZ+Hl5YVJkybhzp07DfooLCyEl5cX/P39NZ518GS/oaGhAICsrCzMnj0bS5cuxcWLF/H1118jPz9fWJ+SkqKxXUJCQqvGqlarAQB+fn7461//ij/84Q9YuHAhXn/9dWzdulWjbWBgIDIyMvDdd9/B1tYWkyZNwuPHjwEAFRUVmD59OpydnXHu3DmkpqZi8ODBeO2111BRUQEACAkJQUBAAF5++eVGa2nvGBhjjLHOwnnpvzgvcV5qLb5TijHGuoiWlhSvuFztkv22laurK7Zs2QKxWAwTExNoa2sjMTGxxe1mzJgBT09PHD58GMePH8eqVasQFxeH8PDw9pSuQSaTabwvLS3FzJkzERER0aBtv379hH8rFAr4+PjAx8cHMTEx8PT0RExMDNzd3WFjYwOVSoVbt241uNpYVVWF3NxceHp6tlibr6+vRvg0NTXVqNva2hrW1tZwcnKCjY0NduzYgUWLFgltbt26BVdXV4wZMwbbt2/X6PvJ2Wvqr5CtWrUKzs7OWLBgAQBgyJAhkMlkGDduHGJiYjBixAiN7V544YUWxwAAffv2hba2Nuzt7TWWDxw4EGfOnNFYplQqoVQqYWNjAycnJ/Tu3Rtffvkl/vSnP2HPnj3Iz89HWloatLTqroft2bMHvXv3xldffYUpU6bg22+/RWJionCVk4igVquhra2N7du3409/+lO7xsAYY+y3ravyUv2+24LzEuelJ3Feah0+KcUYY11EJBK1+2t0na0+GDxp4MCBqKmpQXp6unA7+r1795Cdna3xR9nc3ByhoaEIDQ3FokWL8OmnnyI8PFy4gvbk8wqsrKygo6ODCxcuCMFIpVIhJyenyStC9YYNG4asrKwGdTZHJBJhwIABOHv2LADgrbfeQmRkJOLi4hAXF6fRduvWrSgvL8fUqVNb7FehUEChULSqBrVajcrKSuF9YWEhXF1dhRla6kNJvcbGV15eLtzWXa9Hjx4A6sKKVCpt03GpJxaL8dJLLyE7O1tjeU5ODiwsLJrcjohARMK4ysvLoaWlBZFIJLSpf19/dTEtLU3jZ+Grr77C6tWrcfbsWZiamrZ7DIwxxn7bOC9xXgI4L3XnvMQnpRhjjLWLjY0N/Pz8EBISgm3btkGhUGDhwoUwNTWFn58fAGDOnDnw9vaGra0tHjx4gJMnT2LgwIEAAAsLC4hEIiQlJWHChAmQSqVQKBQIDg7GggULoK+vD0NDQ0RFRTX4A92YyMhIODk5ISwsDDNmzIBMJkNWVhaSk5OxadMmZGZmIioqCkFBQbC3t4dYLMZ3332HnTt3IjIyEkDdFcI1a9Zg/vz5kEgkCAoKgo6ODr766issXrwYMTExGDx4sMZ+nw4gADBo0CDo6OhoLCsrK8OKFSvg6+sLY2NjFBcXY/PmzSgsLIS/vz+AuoD1yiuvwMLCArGxscLUxwBgZGTU5Nh9fHwQEhKCLVu2wNPTE0VFRZgzZw5GjhzZ6PMl6pWWluLGjRvC+7y8PGRmZkJfX18IuQsWLMDkyZPx8ssvw9XVFV9//TX+9a9/4dSpUwDqvkKwb98+eHh4wMDAAD///DM+/vhjSKVS4cGh7u7uWLBgAWbNmoXw8HCo1Wp8/PHH0NbWhqurKwAIPxf1vv/+e2hpaTU43u0ZA2OMMdZVOC/V4bzEealJHTIPYDfFUxwzxjpKd5viuF79FMdKpZKkUil5enpqTHEcFhZG/fv3p549e5KBgQEFBQVRcXGxsD46OpqMjIxIJBI1O8XxyJEjaeHChcJ2FhYWtG7dugb1nD9/ntzd3Ukul5NMJqMhQ4bQihUriIjo7t27FBERQYMHDya5XE4KhYIcHBwoNjaWamtrNfo5dOgQjRs3jmQymTAF8969ezXaNDZNc/3r5s2bDWqrqKigN998k0xMTEgsFpOxsTH5+vrS+fPnhTbx8fFN9tmSDRs2kL29PUmlUjI2NqbAwED6+eefm93m5MmTje6r/rOot2PHDrK2tiaJREKOjo506NAhYV1hYSF5e3uToaEh6ejokJmZGQUEBND169c1+jh+/Dg5OzuTUqmk3r1706uvvkppaWlN1tbaKY5bO4a26ogpjn8v+HgwxjoK5yXOS5yXfn95SUTUAXODd1MlJSVQKpVQqVTd5sn2jLGu8fjxY+Tl5cHS0hISiaSry/lNKSsrg6mpKeLi4jB9+vRO3//9+/fh5uaGXr164ejRo9DV/W18hYA9m+Z+ZzkfaOLjwRjrKJyX2o/zEusKHZGXePY9xhhjz5WMjAzs3bsXubm5uHTpEgIDAwFAuMW9s+nr6+PEiRNwc3NDWlpal9TAGGOMMfYkzkusu+BnSjHGGHvuxMbGIjs7G2KxGMOHD0dKSgr69u3bZfX06dMHS5cu7bL9M8YYY4w9jfMS6w74pBRjjLHnytChQ3Hx4sWuLoMxxhhj7LnFeYl1F/z1PcYYY4wxxhhjjDHW6fikFGOMMcYYY4wxxhjrdHxSijHGGGOMMcYYY4x1Oj4pxRhjjDHGGGOMMcY6HZ+UYowxxhhjjDHGGGOdjk9KMcYYY4wxxhhjjLFOxyelGGOMMcYYY4wxxlin45NSjDHGmjVt2jSIRCKIRCKIxWJYW1sjOjoaNTU1z9TvqVOnIBKJ8PDhw44ptBXy8vIQEBAAExMTSCQSmJmZwc/PD9evX9dol5SUBBcXFygUCujq6uKll17Crl27NNrk5+dDJBIhMzOz1ftftmwZBgwYAJlMht69e2P8+PFIT0/X6HP69OmwtLSEVCpF//79ERUVhaqqqhb7TkhIgKOjI3R1dWFsbIx33nkH9+7da3abLVu2YMiQIejVqxd69eqF0aNH4+jRo8L6+/fvIzw8HHZ2dpBKpejXrx8iIiKgUqmENrt27RJ+Pp5+3blzR2hXWVmJDz74ABYWFujZsydefPFF7Ny5U6Oev/3tb8K+zM3N8de//hWPHz9udgwHDx6Eh4cH+vTp0+bPgzHGGOsonJc4L3Feah/tri6AMcbY88/Lywvx8fGorKzEkSNHMGvWLOjo6GDRokVdXRoAoKqqCmKxuNk21dXVcHd3h52dHQ4ePAhjY2P8/PPPOHr0qEbQ27hxI+bMmYPIyEhs2bIFYrEYX331FUJDQ/Hvf/8bsbGx7a7T1tYWmzZtgpWVFSoqKrBu3Tp4eHjgxo0bMDAwwPXr16FWq7Ft2zZYW1vj3//+N0JCQlBWVtbsflNTUzF16lSsW7cOPj4+KCwsRGhoKEJCQnDw4MEmtzMzM8PHH38MGxsbEBF2794NPz8/ZGRkYNCgQbh16xZu3bqF2NhY2Nvb4//+7/8QGhqKW7du4cCBAwCAyZMnw8vLS6PfadOm4fHjxzA0NBSWTZo0Cb/88gt27NgBa2trFBUVQa1WC+v37NmDhQsXYufOnRgzZgxycnKEgL927domx1BWVoaxY8di0qRJCAkJafEzYIwxxn4tnJc4L3FeagdiTVKpVASAVCpVV5fCGPuNq6iooKysLKqoqOjqUtosODiY/Pz8NJa5u7uTk5MT3b9/n4KCgkhPT4+kUil5eXlRTk6O0C4/P59ef/110tPTI11dXbK3t6fDhw9TXl4eAdB4BQcHExFRSUkJBQQEkK6uLhkZGdHatWvJxcWFZs+eLfRrYWFB0dHRFBQURAqFQtg2JSWFxo4dSxKJhMzMzCg8PJxKS0uJiCgjI4MAUH5+fpNjLSgoIB0dHZo7d26DdRs2bCAAdO7cOSIiYQwZGRltP6j/Uf935sSJE022WbNmDVlaWjbbzyeffEJWVlYN6jU1NW1zTb1796b/+Z//aXL9559/TmKxmKqrqxtdf+fOHdLR0aH//d//FZYdPXqUlEol3bt3r8l+Z82aRa+++qrGsrlz55Kzs3Or6u6Iz+NJzf3Ocj7QxMeDMdZROC9xXmoM56X/6o55ib++xxhjXYSIUFZb2+kvInrm2qVSKaqqqjBt2jR8//33SExMRFpaGogIEyZMQHV1NQBg1qxZqKysxOnTp3H16lWsXr0acrkc5ubm+OKLLwAA2dnZKCoqwvr16wEAc+fORWpqKhITE5GcnIyUlBRcunSpQQ2xsbFwdHRERkYGlixZgtzcXHh5eWHixIm4cuUK9u3bhzNnziAsLAwAYGBgAC0tLRw4cAC1tbWNjuvAgQOorq7G/PnzG6ybOXMm5HI59u7d+8zHD6i7Wrl9+3YolUo4Ojo22U6lUkFfX7/ZvkaPHo2bN2/iyJEjICL88ssvOHDgACZMmNDqempra/HZZ5+hrKwMo0ePbraeXr16QVu78Zut//d//xe6urp46623hGWJiYkYMWIE1qxZA1NTU9ja2mL+/PmoqKgQ2owZMwYXL17E+fPnAQA//fQTjhw50qYxMMYY6366Ki91RGbivPTsOC91/7zEX99jjLEuUq5Wo//pq52+39yXHSDr0aNd2xIRvvnmGxw7dgze3t44dOgQUlNTMWbMGAB139M3NzfHoUOH4O/vj4KCAkycOBEODg4AACsrK6Gv+uBgaGgIPT09AMCjR4+we/du7NmzB25ubgCA+Ph4mJiYNKjl1Vdfxbx584T3M2bMQGBgIObMmQMAsLGxwYYNG+Di4oItW7bA1NQUGzZswPvvv4/ly5djxIgRcHV1RWBgoFBXTk4OlEoljI2NG+xPLBbDysoKOTk57Tp29ZKSkjBlyhSUl5fD2NgYycnJ6Nu3b6Ntb9y4gY0bN7Z4C7yzszMSEhIwefJkPH78GDU1NfDx8cHmzZtbrOfq1asYPXo0Hj9+DLlcji+//BL29vaNti0uLsZHH32Ed999t8n+duzYgYCAAEilUmHZTz/9hDNnzkAikeDLL79EcXEx/vKXv+DevXuIj48HAAQEBKC4uBhjx44FEaGmpgahoaFYvHhxi2NgjDHWfXVVXgLan5k4L3Fe4rzUenynFGOMsRYlJSVBLpdDIpHA29sbkydPxrRp06CtrY1Ro0YJ7fr06QM7Oztcu3YNABAREYGYmBg4OzsjKioKV65caXY/P/30E6qrqzFy5EhhmVKphJ2dXYO2I0aM0Hh/+fJl7Nq1C3K5XHh5enpCrVYjLy8PQN2VyNu3byMhIQGjR4/G/v37MWjQICQnJ7f6WLT0LAagLmw+WUdKSoqwztXVFZmZmTh79iy8vLwwadIkjQdc1issLISXlxf8/f01vvv/ZL+hoaEAgKysLMyePRtLly7FxYsX8fXXXyM/P19Yn5KSorFdQkKC0J+dnR0yMzORnp6O9957D8HBwcjKympQT0lJCV577TXY29tj2bJljY47LS0N165dw/Tp0zWWq9VqiEQiJCQkYOTIkZgwYQLWrl2L3bt3C1f/Tp06hZUrV+Lvf/87Ll26hIMHD+Lw4cP46KOPWjymjDHG2POA89J/cV7ivNRafKcUY4x1EV0tLeS+7NAl+20rV1dX4SGWJiYm0NbWRmJiYovbzZgxA56enjh8+DCOHz+OVatWIS4uDuHh4e0pXYNMJtN4X1paipkzZyIiIqJB2379+gn/VigU8PHxgY+PD2JiYuDp6YmYmBi4u7vDxsYGKpUKt27danC1saqqCrm5ufD09GyxNl9fX43waWpqqlG3tbU1rK2t4eTkBBsbG+zYsUPjIai3bt2Cq6srxowZg+3bt2v0/eRsKb169QIArFq1Cs7OzliwYAEAYMiQIZDJZBg3bhxiYmIwYsQIje1eeOEF4d/1MwQBwPDhw3HhwgWsX78e27ZtE9o8evQIXl5eUCgU+PLLL6Gjo9PouP/nf/4Hf/jDHzB8+HCN5cbGxjA1NYVSqRSWDRw4EESEn3/+GTY2NliyZAmCgoIwY8YMAICDgwPKysrw7rvv4oMPPmj2mDLGGOu+uiov1e+7LTgvcV7ioippZAAAi+JJREFUvNR2fFKKMca6iEgkavfX6DpbfTB40sCBA1FTU4P09HThdvR79+4hOztb43Zmc3NzhIaGIjQ0FIsWLcKnn36K8PBw4Qrak88rsLKygo6ODi5cuCAEI5VKhZycHLz88svN1jhs2DBkZWU1qLM5IpEIAwYMwNmzZwEAb731FiIjIxEXF4e4uDiNtlu3bkV5eTmmTp3aYr8KhQIKhaJVNajValRWVgrvCwsL4erqiuHDhyM+Ph5aTwXixsZXXl7e4JkFPf7zs0VEkEqlrT4uT9dTUlICT09P9OzZE4mJiZBIJI1uV1pais8//xyrVq1qsM7Z2Rn79+9HaWkp5HI5gLpb/7W0tGBmZiaM4emxPjmGthxTxhhj3QfnJc5LAOel7pyX+KQUY4yxdrGxsYGfnx9CQkKwbds2KBQKLFy4EKampvDz8wMAzJkzB97e3rC1tcWDBw9w8uRJDBw4EABgYWEBkUiEpKQkTJgwAVKpFAqFAsHBwViwYAH09fVhaGiIqKgoaGlpQSQSNVtPZGQknJycEBYWhhkzZkAmkyErKwvJycnYtGkTMjMzERUVhaCgINjb20MsFuO7777Dzp07ERkZCaDuCuGaNWswf/58SCQSBAUFQUdHB1999RUWL16MmJgYDB48WGO/2dnZDWoZNGhQg6tjZWVlWLFiBXx9fWFsbIzi4mJs3rwZhYWF8Pf3B1AXsF555RVYWFggNjYWd+/eFbY3MjJqcuw+Pj4ICQnBli1b4OnpiaKiIsyZMwcjR45s9PkS9RYtWgRvb2/069cPjx49wp49e3Dq1CkcO3YMQF3A8vDwQHl5Of75z3+ipKQEJSUlAOoehNrjif9J2LdvH2pqavD222832E9AQAA++ugj/PnPf8by5ctRXFyMBQsW4J133hGepeDj44O1a9di6NChGDVqFG7cuIElS5bAx8dHYz9Pu3//PgoKCnDr1i0A//08jIyMmj1mjDHGWGfgvFSH81IdzkuN6JB5ALspnuKYMdZRutsUx/XqpzhWKpUklUrJ09NTY4rjsLAw6t+/P/Xs2ZMMDAwoKCiIiouLhfXR0dFkZGREIpGo2SmOR44cSQsXLhS2s7CwoHXr1jWo5/z58+Tu7k5yuZxkMhkNGTKEVqxYQUREd+/epYiICBo8eDDJ5XJSKBTk4OBAsbGxVFtbq9HPoUOHaNy4cSSTyYQpmPfu3avRprFpmutfN2/ebFBbRUUFvfnmm2RiYkJisZiMjY3J19eXzp8/L7SJj49vss+WbNiwgezt7UkqlZKxsTEFBgbSzz//3Ow277zzDllYWJBYLCYDAwNyc3Oj48ePC+tPnjzZZD15eXkafY0ePZoCAgKa3Ne1a9do/PjxJJVKyczMjObOnUvl5eXC+urqalq2bBn179+fJBIJmZub01/+8hd68OBBs2No6phFRUU1u11LOmKK498LPh6MsY7CeYnzEuel319eEhF1wNzg3VRJSQmUSqUwnSNjjLXX48ePkZeXB0tLyyZv52WNKysrg6mpKeLi4ho8ELIz3L9/H25ubujVqxeOHj0KXV3dTq+Bdb7mfmc5H2ji48EY6yicl9qP8xLrCh2Rl3j2PcYYY8+VjIwM7N27F7m5ubh06RICAwMBQLjFvbPp6+vjxIkTcHNzQ1paWpfUwBhjjDH2JM5LrLvgZ0oxxhh77sTGxiI7OxtisRjDhw9HSkoK+vbt22X19OnTB0uXLu2y/TPGGGOMPY3zEusO+KQUY4yx58rQoUNx8eLFri6DMcYYY+y5xXmJdRf89T3GGGOMMcYYY4wx1un4pBRjjDHGGGOMMcYY63R8UooxxhhjjDHGGGOMdTo+KcUYY4wxxhhjjDHGOh2flGKMMcYYY4wxxhhjnY5PSjHGGGOMMcYYY4yxTscnpRhjjDHGGGOMMcZYp+OTUowxxpo1bdo0iEQiiEQiiMViWFtbIzo6GjU1Nc/U76lTpyASifDw4cOOKbQV8vLyEBAQABMTE0gkEpiZmcHPzw/Xr1/XaJeUlAQXFxcoFAro6uripZdewq5duzTa5OfnQyQSITMzs9X7X7ZsGQYMGACZTIbevXtj/PjxSE9P1+hz+vTpsLS0hFQqRf/+/REVFYWqqqoW+05ISICjoyN0dXVhbGyMd955B/fu3Wt1bR9//DFEIhHmzJmjsTw3NxdvvvkmDAwM0KtXL0yaNAm//PKLRpsVK1ZgzJgx0NXVhZ6eXqP91/8MPfn67LPPhPUHDx6Eu7u7sJ/Ro0fj2LFjLdZ98OBBeHh4oE+fPm3+PBhjjLGOwnmJ8xLnpfbhk1KMMcZa5OXlhaKiIvz444+YN28eli1bhk8++aSryxK0JoRUV1fD3d0dKpUKBw8eRHZ2Nvbt2wcHBweNoLdx40b4+fnB2dkZ6enpuHLlCqZMmYLQ0FDMnz//meq0tbXFpk2bcPXqVZw5cwYvvvgiPDw8cPfuXQDA9evXoVarsW3bNvzwww9Yt24dtm7disWLFzfbb2pqKqZOnYrp06fjhx9+wP79+3H+/HmEhIS0qq4LFy5g27ZtGDJkiMbysrIyeHh4QCQS4dtvv0Vqaiqqqqrg4+MDtVottKuqqoK/vz/ee++9ZvcTHx+PoqIi4fXGG28I606fPg13d3ccOXIEFy9ehKurK3x8fJCRkdFsn2VlZRg7dixWr17dqrEyxhhjvxbOS5yXOC+1A7EmqVQqAkAqlaqrS2GM/cZVVFRQVlYWVVRUdHUpbRYcHEx+fn4ay9zd3cnJyYnu379PQUFBpKenR1KplLy8vCgnJ0dol5+fT6+//jrp6emRrq4u2dvb0+HDhykvL48AaLyCg4OJiKikpIQCAgJIV1eXjIyMaO3ateTi4kKzZ88W+rWwsKDo6GgKCgoihUIhbJuSkkJjx44liURCZmZmFB4eTqWlpURElJGRQQAoPz+/ybEWFBSQjo4OzZ07t8G6DRs2EAA6d+4cEZEwhoyMjLYf1P+o/ztz4sSJJtusWbOGLC0tm+3nk08+ISsrqwb1mpqatljDo0ePyMbGhpKTkxsc52PHjpGWlpbG38GHDx+SSCSi5OTkBn3Fx8eTUqlsdD8A6Msvv2yxnifZ29vT8uXLW9W2Iz6PJzX3O8v5QBMfD8ZYR+G8xHmpMZyXmvdbz0t8pxRjjHURIkJ5VU2nv4jomWuXSqWoqqrCtGnT8P333yMxMRFpaWkgIkyYMAHV1dUAgFmzZqGyshKnT5/G1atXsXr1asjlcpibm+OLL74AAGRnZ6OoqAjr168HAMydOxepqalITExEcnIyUlJScOnSpQY1xMbGwtHRERkZGViyZAlyc3Ph5eWFiRMn4sqVK9i3bx/OnDmDsLAwAICBgQG0tLRw4MAB1NbWNjquAwcOoLq6utErfDNnzoRcLsfevXuf+fgBdVfLtm/fDqVSCUdHxybbqVQq6OvrN9vX6NGjcfPmTRw5cgREhF9++QUHDhzAhAkTWqxj1qxZeO211zB+/PgG6yorKyESidCzZ09hmUQigZaWFs6cOdNi343tq2/fvhg5ciR27tzZ7M+iWq3Go0ePWhw7Y4yx7q2r8lJHZCbOS8+O81L3z0vaXV0AY4z9XlVU18J+acvfAe9oWdGe0BW37z//RIRvvvkGx44dg7e3Nw4dOoTU1FSMGTMGQN339M3NzXHo0CH4+/ujoKAAEydOhIODAwDAyspK6Kv+j6ehoaHwvfpHjx5h9+7d2LNnD9zc3ADU3cJsYmLSoJZXX30V8+bNE97PmDEDgYGBwnf8bWxssGHDBri4uGDLli0wNTXFhg0b8P7772P58uUYMWIEXF1dERgYKNSVk5MDpVIJY2PjBvsTi8WwsrJCTk5Ou45dvaSkJEyZMgXl5eUwNjZGcnIy+vbt22jbGzduYOPGjYiNjW22T2dnZyQkJGDy5Ml4/Pgxampq4OPjg82bNze73WeffYZLly7hwoULja53cnKCTCZDZGQkVq5cCSLCwoULUVtbi6KiotYN+D+io6Px6quvQldXF8ePH8df/vIXlJaWIiIiotH2sbGxKC0txaRJk9q0H8YYY91LV+UloP2ZifMS5yXOS63Hd0oxxhhrUVJSEuRyOSQSCby9vTF58mRMmzYN2traGDVqlNCuT58+sLOzw7Vr1wAAERERiImJgbOzM6KionDlypVm9/PTTz+huroaI0eOFJYplUrY2dk1aDtixAiN95cvX8auXbsgl8uFl6enJ9RqNfLy8gDUXXm6ffs2EhISMHr0aOzfvx+DBg1CcnJyq4+FWCxusU1CQoJGHSkpKcI6V1dXZGZm4uzZs/Dy8sKkSZNw586dBn0UFhbCy8sL/v7+Gs86eLLf0NBQAEBWVhZmz56NpUuX4uLFi/j666+Rn58vrE9JSdHYLiEhATdv3sTs2bOR8P/s3XtcVWXe///3RtmcD6EgB5FEScVTqXnMjDyANkiNmRU36qSW8/OYZqiVlDfmpJB3HkazR2lzDzp+dcocswOVmSmpecjSxDQdTcVDJiQqIFy/P7zZ446Dh3Sh+Ho+Hvsx7rWutdZ1rQ3xmfdae10ZGXJ3dy93HIGBgVq6dKn+9a9/ydvbW35+fjp16pRatWolF5crKyFeeOEFderUSXfddZeSk5P17LPPVvicjUWLFumll17S//t//09BQUGXPKcAANwIqJf+g3qJeulycacUAFQRD9ca2jk5tkqOe6ViYmI0d+5c2e12hYaGqmbNmlqxYsUltxs8eLBiY2P1/vvv6+OPP9bUqVOVnp6uESNGXE3XnXh5eTm9P336tJ566qlyryTVq1fP8W8fHx/Fx8crPj5eqampio2NVWpqqrp3766oqCjl5ubq8OHDZa42FhYWau/evYqNvfRn1rt3b6fiMywszKnfDRs2VMOGDdW+fXtFRUXpzTff1IQJExxtDh8+rJiYGHXs2FHz58932vfFs6X4+vpKkqZOnapOnTpp3LhxkqQWLVrIy8tLnTt3Vmpqqtq0aeO0XZ06dfTpp5/q2LFjatWqlWN5cXGxvvjiC82ePVsFBQWqUaOGevToob179+rEiROqWbOm/P39FRwc7HQV92q0a9dO//3f/62CggKn293/8Y9/aPDgwVq6dKnTLfKVnVMAQPVVVfVS6bGvBPUS9RL10pUjlAKAKmKz2a76a3RWKy0MLtakSROdP39eGzZscNyO/vPPPys7O1vR0dGOduHh4Ro6dKiGDh2qCRMm6I033tCIESMcV9Aufl5BZGSkXF1dtWnTJkdhlJubq927d+vee++ttI+tWrXSzp07y/SzMjabTY0bN9b69eslSQ8//LCSk5OVnp6u9PR0p7bz5s3TmTNn1L9//0vu18fHRz4+PpfVh5KSEhUUFDjeHzp0SDExMWrdurUWLFhQ5gpbeeM7c+aMatZ0/lmqUeNCIW2MkYeHR5ntunbtqm+//dZp2Z/+9Cc1btxYycnJju1Lld4y/9lnn+nYsWPq3bv3ZY2vItu2bdNtt93mVGAtXrxYTzzxhP7xj3/ogQcecGp/JecUAFB9UC9RL0nUS9W5Xro5frsBADecqKgoJSQkaMiQIXr99dfl4+Oj8ePHKywsTAkJCZKk0aNHq2fPnrrjjjv0yy+/aPXq1WrSpIkkKSIiQjabTStXrlSvXr3k4eEhHx8fDRgwQOPGjVNAQICCgoKUkpIiFxcX2Wy2SvuTnJys9u3ba/jw4Ro8eLC8vLy0c+dOZWZmavbs2dq2bZtSUlKUlJSk6Oho2e12rVmzRm+99ZaSk5MlXbhCOG3aND3zzDNyd3dXUlKSXF1d9d5772nixIlKTU1Vs2bNnI6bnZ1dpi9NmzaVq6ur07L8/HxNmTJFvXv3VkhIiE6cOKE5c+bo0KFD6tu3r6QLBdZ9992niIgIpaWlOaY+lqTg4OAKxx4fH68hQ4Zo7ty5io2N1ZEjRzR69Gi1bdu23OdLSBeKlt+OxcvLS7Vq1XJavmDBAjVp0kSBgYHKysrSqFGj9PTTTzt9ReDAgQM6efKkDhw4oOLiYsdVxoYNG8rb21v/+te/dPToUbVv317u7u7KzMzUyy+/7PSA1EWLFmnAgAF67bXX1K5dO+Xk5Ei68JBYPz+/CsdeetzDhw9L+s/nERwcXOk5AwDACtRLF1AvUS9V6JrMA1hNMcUxgGuluk1xXKp0imM/Pz/j4eFhYmNjnaY4Hj58uGnQoIFxc3MzgYGBJikpyZw4ccKxfvLkySY4ONjYbLZKpzhu27atGT9+vGO7iIgIM2PGjDL92bhxo+nevbvx9vY2Xl5epkWLFmbKlCnGGGOOHz9uRo4caZo1a2a8vb2Nj4+Pad68uUlLSzPFxcVO+1m+fLnp3Lmz8fLyckzBvHjxYqc25U3TXPo6ePBgmb6dPXvWPPTQQyY0NNTY7XYTEhJievfubTZu3Ohos2DBggr3eSkzZ8400dHRxsPDw4SEhJjExETz008/XXK7i/12imNjjElOTjZ16tQxrq6uJioqyqSnp5uSkhKnNgMGDCi3z6tXrzbGGPPBBx+YO++80/G5tGzZ0sybN8/pvHfp0qXcfZT+XFSkonOWkpJyRWP/rWsxxfGtgvMB4FqhXqJeol669eolmzHXYG7waiovL09+fn7Kzc11fA8VAK7GuXPntG/fPtWvX7/ChySifPn5+QoLC1N6eroGDRpk+fFPnjyprl27ytfXVx988IE8PT0t7wOsV9nvLPWBM84HgGuFeunqUS+hKlyLeonZ9wAAN5StW7dq8eLF2rt3r7Zs2aLExERJctzibrWAgAB98skn6tq1q7KysqqkDwAAABejXkJ1wTOlAAA3nLS0NGVnZ8tut6t169Zau3at48GRVaFWrVqaNGlSlR0fAADgt6iXUB3cUHdKzZkzR7fffrvc3d3Vrl07bdy4sdL2S5cuVePGjeXu7q7mzZtr1apVjnVFRUVKTk5W8+bN5eXlpdDQUPXv39/xYC8AwI3prrvu0ubNm3X69GmdPHlSmZmZat68eVV3C7hhUC8BAKiXUF3cMKHUkiVLNGbMGKWkpGjLli1q2bKlYmNjdezYsXLbr1+/Xo899pgGDRqkrVu36sEHH9SDDz6o7777TtKF6R63bNmiF154QVu2bNE777yj7Ozs3z0lIwAAQFWhXgIAANXJDfOg83bt2unuu+/W7NmzJUklJSUKDw/XiBEjNH78+DLt+/Xrp/z8fK1cudKxrH379rrzzjs1b968co+xadMmtW3bVv/+979Vr169S/aJB3cCuFZ4cCdwc7lRH3ROvQSgOqNeAm4u1eZB54WFhdq8ebO6devmWObi4qJu3bpV+JC0rKwsp/aSFBsbW+lD1XJzc2Wz2eTv71/u+oKCAuXl5Tm9AAAAbgTUSwAAoLq5IUKpEydOqLi4WHXq1HFaXqdOHeXk5JS7TU5OzhW1P3funJKTk/XYY49VmNJNnTpVfn5+jld4ePhVjAYAAODao14CAADVzQ0RSl1vRUVFeuSRR2SM0dy5cytsN2HCBOXm5jpeBw8etLCXAAAAVYd6CQAAWK1mVXdAkmrXrq0aNWro6NGjTsuPHj2q4ODgcrcJDg6+rPalBda///1vffbZZ5V+l9HNzU1ubm5XOQoAAIDrh3oJAABUNzfEnVJ2u12tW7fWp59+6lhWUlKiTz/9VB06dCh3mw4dOji1l6TMzEyn9qUF1g8//KBPPvlEtWrVuj4DAAAAuM6olwAAQHVzQ4RSkjRmzBi98cYbevvtt/X999/rz3/+s/Lz8/WnP/1JktS/f39NmDDB0X7UqFH68MMPlZ6erl27dunFF1/U119/reHDh0u6UGA9/PDD+vrrr5WRkaHi4mLl5OQoJydHhYWFVTJGALgZDRw4UDabTTabTXa7XQ0bNtTkyZN1/vz537Xfzz//XDabTadOnbo2Hb0M+/bt0+OPP67Q0FC5u7urbt26SkhI0K5du5zarVy5Ul26dJGPj488PT119913a+HChU5t9u/fL5vNpm3btl328V988UU1btxYXl5euu2229StWzdt2LDBaZ+DBg1S/fr15eHhoQYNGiglJeWy/m5lZGSoZcuW8vT0VEhIiJ544gn9/PPPl9zu0KFD+q//+i/VqlVLHh4eat68ub7++mvH+os//9JXXFyc0z5uv/32Mm3+8pe/ONZnZ2crJiZGderUkbu7uyIjI/X888+rqKjIaT+nTp3SsGHDFBISIjc3N91xxx1atWpVpf1/55131KNHD9WqVeuKP4+bEfUSANyYqJeol6iXrs4N8fU96cKUxcePH9ekSZOUk5OjO++8Ux9++KHj4ZwHDhyQi8t/MrSOHTtq0aJFev755zVx4kRFRUVp+fLlatasmaQLPzQrVqyQJN15551Ox1q9erXuu+8+S8YFANVBXFycFixYoIKCAq1atUrDhg2Tq6ur0//5rUqFhYWy2+2VtikqKlL37t3VqFEjvfPOOwoJCdFPP/2kDz74wKnQmzVrlkaPHq3k5GTNnTtXdrtd7733noYOHarvvvtOaWlpV93PO+64Q7Nnz1ZkZKTOnj2rGTNmqEePHtqzZ48CAwO1a9culZSU6PXXX1fDhg313XffaciQIcrPz6/0uOvWrVP//v01Y8YMxcfH69ChQxo6dKiGDBmid955p8LtfvnlF3Xq1EkxMTH64IMPFBgYqB9++EG33XabU7vSz79UeV/dmjx5soYMGeJ47+Pj4/i3q6ur+vfvr1atWsnf31/ffPONhgwZopKSEr388suSLnyG3bt3V1BQkJYtW6awsDD9+9//rnAGuFL5+fm655579Mgjjzgdv7qiXgKAGxf1EvUS9dJVMKhQbm6ukWRyc3OruisAbnJnz541O3fuNGfPnq3qrlyxAQMGmISEBKdl3bt3N+3btzcnT540SUlJxt/f33h4eJi4uDize/duR7v9+/ebP/zhD8bf3994enqa6Oho8/7775t9+/YZSU6vAQMGGGOMycvLM48//rjx9PQ0wcHB5tVXXzVdunQxo0aNcuw3IiLCTJ482SQlJRkfHx/HtmvXrjX33HOPcXd3N3Xr1jUjRowwp0+fNsYYs3XrViPJ7N+/v8KxHjhwwLi6upoxY8aUWTdz5kwjyXz11VfGGOMYw9atW6/8pP6f0r8zn3zySYVtpk2bZurXr1/pfqZPn24iIyPL9DcsLKzS7ZKTk80999xTaZvyPv/fioiIMDNmzKi0zW89/fTTTseeO3euiYyMNIWFhVe0n1LX4vO4WGW/s9QHzjgfAK4V6iXqpfJQL1XveumG+foeANxyjJEK861/GfO7u+7h4aHCwkINHDhQX3/9tVasWKGsrCwZY9SrVy/HbcbDhg1TQUGBvvjiC3377bd65ZVX5O3trfDwcP3zn/+UdOFW5SNHjui1116TdOHrSevWrdOKFSuUmZmptWvXasuWLWX6kJaWppYtW2rr1q164YUXtHfvXsXFxalPnz7avn27lixZoi+//NLxNaXAwEC5uLho2bJlKi4uLndcy5YtU1FRkZ555pky65566il5e3tr8eLFv/v8SReudM2fP19+fn5q2bJlhe1yc3MVEBBQ6b46dOiggwcPatWqVTLG6OjRo1q2bJl69epV6XYrVqxQmzZt1LdvXwUFBemuu+7SG2+8Uabd559/rqCgIDVq1Eh//vOfy73N/S9/+Ytq1aqlu+66S9OnT6/06wp79uzRhx9+qC5dujj1pUOHDho2bJjq1KmjZs2a6eWXX67wswIA3CKqql66BjUT9dLvR71U/eulG+brewBwyyk6I70cav1xJx6W7F5XtakxRp9++qk++ugj9ezZU8uXL9e6devUsWNHSRe+px8eHq7ly5erb9++OnDggPr06aPmzZtLkiIjIx37Ki0cgoKCHLcc//rrr3r77be1aNEide3aVZK0YMEChYaWPU/333+/xo4d63g/ePBgJSYmavTo0ZKkqKgozZw5U126dNHcuXMVFhammTNn6tlnn9VLL72kNm3aKCYmRomJiY5+7d69W35+fgoJCSlzPLvdrsjISO3evfuqzl2plStX6tFHH9WZM2cUEhKizMxM1a5du9y2e/bs0axZsy55C3ynTp2UkZGhfv366dy5czp//rzi4+M1Z86cSrf78ccfNXfuXI0ZM0YTJ07Upk2bNHLkSNntdg0YMEDShVvR//jHP6p+/frau3evJk6cqJ49eyorK0s1atSQJI0cOVKtWrVSQECA1q9frwkTJujIkSN69dVXnY7XsWNHbdmyRQUFBXryySc1efJkp7589tlnSkxM1KpVq7Rnzx79f//f/6eioiKlpKRc8rwCAKqpqqqXpKuumaiXqJeoly4fd0oBAC5p5cqV8vb2lru7u3r27Kl+/fpp4MCBqlmzptq1a+doV6tWLTVq1Ejff/+9pAt/fFNTU9WpUyelpKRo+/btlR7nxx9/VFFRkdq2betY5ufnp0aNGpVp26ZNG6f333zzjRYuXChvb2/HKzY2ViUlJdq3b5+kC1cic3JylJGRoQ4dOmjp0qVq2rSpMjMzL/tcXOpZDNKFYvPifqxdu9axLiYmRtu2bdP69esVFxenRx55RMeOHSuzj0OHDikuLk59+/Z1+u7/xfsdOnSoJGnnzp0aNWqUJk2apM2bN+vDDz/U/v37HevXrl3rtF1GRoakCzO3tWrVSi+//LLuuusuPfnkkxoyZIjmzZvnON6jjz6q3r17q3nz5nrwwQe1cuVKbdq0SZ9//rmjzZgxY3TfffepRYsWGjp0qNLT0zVr1iwVFBQ4jWnJkiXasmWLFi1apPfff9+peCwpKVFQUJDmz5+v1q1bq1+/fnruueccfansnAIAcCOgXvoP6iXqpcvFnVIAUFVcPS9cgauK416hmJgYx0MsQ0NDVbNmTcfDkSszePBgxcbG6v3339fHH3+sqVOnKj09XSNGjLianjvx8nK+cnn69Gk99dRTGjlyZJm29erVc/zbx8dH8fHxio+PV2pqqmJjY5Wamqru3bsrKipKubm5Onz4cJmrjYWFhdq7d69iY2Mv2bfevXs7FZ9hYWFO/W7YsKEaNmyo9u3bKyoqSm+++abTQ1APHz6smJgYdezYUfPnz3fa98Wzpfj6+kqSpk6dqk6dOmncuHGSpBYtWsjLy0udO3dWamqq2rRp47Rd6UOxQ0JCFB0d7bT/Jk2aOL4qUJ7IyEjVrl1be/bscVyd/a127drp/Pnz2r9/v1OBHB4eLkmKjo5WcXGxnnzySY0dO1Y1atRQSEiIXF1dHVcTS/tSOgtcZecUAFCNVVW9VHrsK0C9RL1Uinrp8hFKAUBVsdmu+mt0VistDC7WpEkTnT9/Xhs2bHDcjv7zzz8rOzvb6Q93eHi4hg4dqqFDh2rChAl64403NGLECMcVtIu/Ax8ZGSlXV1dt2rTJURjl5uZq9+7duvfeeyvtY6tWrbRz584y/ayMzWZT48aNtX79eknSww8/rOTkZKWnpys9Pd2p7bx583TmzBn179//kvv18fFxmk2lMiUlJU5XyA4dOqSYmBi1bt1aCxYscJpJTVK54ztz5oxq1nT+k15arBhj5OHhUe52nTp1UnZ2ttOy3bt3KyIiosL+/vTTT/r555/LvWW/1LZt2+Ti4qKgoKAK25SUlKioqEglJSWqUaOGOnXqpEWLFqmkpMQx5t27dyskJER2u112u/2yzykAoBqhXpJEvUS9VH3rJUIpAMBViYqKUkJCgoYMGaLXX39dPj4+Gj9+vMLCwpSQkCBJGj16tHr27Kk77rhDv/zyi1avXq0mTZpIkiIiImSz2bRy5Ur16tVLHh4e8vHx0YABAzRu3DgFBAQoKChIKSkpcnFxkc1mq7Q/ycnJat++vYYPH67BgwfLy8tLO3fuVGZmpmbPnq1t27YpJSVFSUlJio6Olt1u15o1a/TWW28pOTlZ0oUrhNOmTdMzzzwjd3d3JSUlydXVVe+9954mTpyo1NRUNWvWzOm4vy1SJKlp06ZydXV1Wpafn68pU6aod+/eCgkJ0YkTJzRnzhwdOnRIffv2lXShwLrvvvsUERGhtLQ0HT9+3LF9cHBwhWOPj4/XkCFDNHfuXMXGxurIkSMaPXq02rZtW+7zJUo9/fTT6tixo15++WU98sgj2rhxo+bPn++42nj69Gm99NJL6tOnj4KDg7V37149++yzatiwoeMKaFZWljZs2KCYmBj5+PgoKytLTz/9tP7rv/7LMVVyRkaGXF1d1bx5c7m5uenrr7/WhAkT1K9fP8d5+vOf/6zZs2dr1KhRGjFihH744Qe9/PLL5V7JvdjJkyd14MABHT582OnzCA4OrvScAQBgBeqlC6iXqJcqdE3mAaymmOIYwLVS3aY4LlU6xbGfn5/x8PAwsbGxTlMcDx8+3DRo0MC4ubmZwMBAk5SUZE6cOOFYP3nyZBMcHGxsNlulUxy3bdvWjB8/3rFdRVPqbty40XTv3t14e3sbLy8v06JFCzNlyhRjjDHHjx83I0eONM2aNTPe3t7Gx8fHNG/e3KSlpZni4mKn/Sxfvtx07tzZeHl5OaZgXrx4sVOb8qZpLn0dPHiwTN/Onj1rHnroIRMaGmrsdrsJCQkxvXv3Nhs3bnS0WbBgQYX7vJSZM2ea6Oho4+HhYUJCQkxiYqL56aefLrndv/71L9OsWTPj5uZmGjdubObPn+9Yd+bMGdOjRw8TGBhoXF1dTUREhBkyZIjJyclxtNm8ebNp166d8fPzM+7u7qZJkybm5ZdfNufOnXO0+cc//mFatWrl+Fyio6PNyy+/XOb3Yf369aZdu3bGzc3NREZGmilTppjz589X2v+KzllKSsolx16ZazHF8a2C8wHgWqFeol6iXrr16iWbMddgbvBqKi8vT35+fsrNzXV8DxUArsa5c+e0b98+1a9fX+7u7lXdnZtKfn6+wsLClJ6erkGDBll+/JMnT6pr167y9fXVBx98IE/PK38mF24+lf3OUh8443wAuFaol64e9RKqwrWol5h9DwBwQ9m6dasWL16svXv3asuWLUpMTJQkxy3uVgsICNAnn3yirl27Kisrq0r6AAAAcDHqJVQXPFMKAHDDSUtLU3Z2tux2u1q3bq21a9eqdu3aVdafWrVqadKkSVV2fAAAgN+iXkJ1QCgFALih3HXXXdq8eXNVdwMAAOCGRb2E6oKv7wEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQCo1MCBA2Wz2WSz2WS329WwYUNNnjxZ58+f/137/fzzz2Wz2XTq1Klr09HLsG/fPj3++OMKDQ2Vu7u76tatq4SEBO3atcup3cqVK9WlSxf5+PjI09NTd999txYuXOjUZv/+/bLZbNq2bdtlH//FF19U48aN5eXlpdtuu03dunXThg0bnPY5aNAg1a9fXx4eHmrQoIFSUlJUWFh4yX1nZGSoZcuW8vT0VEhIiJ544gn9/PPPlW5TXFysF154wel4//3f/y1jjKPNO++8ox49eqhWrVoVjnfv3r166KGHFBgYKF9fXz3yyCM6evToFY9r+/bt6ty5s9zd3RUeHq5p06ZdctxffPGF4uPjFRoaKpvNpuXLl19yGwAArjXqJeol6qWrQygFALikuLg4HTlyRD/88IPGjh2rF198UdOnT6/qbjlcThFSVFSk7t27Kzc3V++8846ys7O1ZMkSNW/e3KnQmzVrlhISEtSpUydt2LBB27dv16OPPqqhQ4fqmWee+V39vOOOOzR79mx9++23+vLLL3X77berR48eOn78uCRp165dKikp0euvv64dO3ZoxowZmjdvniZOnFjpftetW6f+/ftr0KBB2rFjh5YuXaqNGzdqyJAhlW73yiuvaO7cuZo9e7a+//57vfLKK5o2bZpmzZrlaJOfn6977rlHr7zySrn7yM/PV48ePWSz2fTZZ59p3bp1KiwsVHx8vEpKSi57XHl5eerRo4ciIiK0efNmTZ8+XS+++KLmz59f6Rjy8/PVsmVLzZkzp9J2AABcb9RL1EvUS1fBoEK5ublGksnNza3qrgC4yZ09e9bs3LnTnD17tqq7csUGDBhgEhISnJZ1797dtG/f3pw8edIkJSUZf39/4+HhYeLi4szu3bsd7fbv32/+8Ic/GH9/f+Pp6Wmio6PN+++/b/bt22ckOb0GDBhgjDEmLy/PPP7448bT09MEBwebV1991XTp0sWMGjXKsd+IiAgzefJkk5SUZHx8fBzbrl271txzzz3G3d3d1K1b14wYMcKcPn3aGGPM1q1bjSSzf//+Csd64MAB4+rqasaMGVNm3cyZM40k89VXXxljjGMMW7duvfKT+n9K/8588sknFbaZNm2aqV+/fqX7mT59uomMjCzT37CwsEq3e+CBB8wTTzzhtOyPf/yjSUxMLNO2ovF+9NFHxsXFxelv5alTp4zNZjOZmZkVHvu34/rrX/9qbrvtNlNQUOBYlpycbBo1alTpGC4mybz77ruX3b4ylf3OUh8443wAuFaol6iXykO9VL3rJe6UAoAqYozRmaIzlr/MRbcaXy0PDw8VFhZq4MCB+vrrr7VixQplZWXJGKNevXqpqKhIkjRs2DAVFBToiy++0LfffqtXXnlF3t7eCg8P1z//+U9JUnZ2to4cOaLXXntNkjRmzBitW7dOK1asUGZmptauXastW7aU6UNaWppatmyprVu36oUXXtDevXsVFxenPn36aPv27VqyZIm+/PJLDR8+XJIUGBgoFxcXLVu2TMXFxeWOa9myZSoqKir3Ct9TTz0lb29vLV68+HefP+nC1cr58+fLz89PLVu2rLBdbm6uAgICKt1Xhw4ddPDgQa1atUrGGB09elTLli1Tr169Kt2uY8eO+vTTT7V7925J0jfffKMvv/xSPXv2vOxxFBQUyGazyc3NzbHM3d1dLi4u+vLLLy97XFlZWbr33ntlt9sdy2JjY5Wdna1ffvnlsvsDAKheqqpeuhY1E/XS70e9VP3rpZpV3QEAuFWdPX9W7Ra1s/y4Gx7fIE9Xz6va1hijTz/9VB999JF69uyp5cuXa926derYsaOkC9/TDw8P1/Lly9W3b18dOHBAffr0UfPmzSVJkZGRjn2V/oENCgqSv7+/JOnXX3/V22+/rUWLFqlr166SpAULFig0NLRMX+6//36NHTvW8X7w4MFKTEzU6NGjJUlRUVGaOXOmunTporlz5yosLEwzZ87Us88+q5deeklt2rRRTEyMEhMTHf3avXu3/Pz8FBISUuZ4drtdkZGRjoLkaq1cuVKPPvqozpw5o5CQEGVmZqp27drltt2zZ49mzZqltLS0SvfZqVMnZWRkqF+/fjp37pzOnz+v+Pj4S96iPX78eOXl5alx48aqUaOGiouLNWXKFCUmJl72eNq3by8vLy8lJyfr5ZdfljFG48ePV3FxsY4cOXLZ48rJyVH9+vWd2tWpU8ex7rbbbrvsPgEAqo+qqpekq6+ZqJeol36Leqli3CkFALiklStXytvbW+7u7urZs6f69eungQMHqmbNmmrX7j+FYq1atdSoUSN9//33kqSRI0cqNTVVnTp1UkpKirZv317pcX788UcVFRWpbdu2jmV+fn5q1KhRmbZt2rRxev/NN99o4cKF8vb2drxiY2NVUlKiffv2SbpwJTInJ0cZGRnq0KGDli5dqqZNmyozM/Oyz8XFV6YqkpGR4dSPtWvXOtbFxMRo27ZtWr9+veLi4vTII4/o2LFjZfZx6NAhxcXFqW/fvk7POrh4v0OHDpUk7dy5U6NGjdKkSZO0efNmffjhh9q/f79j/dq1a522y8jIkCT9v//3/5SRkaFFixZpy5Ytevvtt5WWlqa33377ss9HYGCgli5dqn/961/y9vaWn5+fTp06pVatWsnFpWyZUdG4LqWiMQAAcKOgXvoP6iVn1EsV404pAKgiHjU9tOHxDZdueB2Oe6ViYmI0d+5c2e12hYaGqmbNmlqxYsUltxs8eLBiY2P1/vvv6+OPP9bUqVOVnp6uESNGXE3XnXh5eTm9P336tJ566imNHDmyTNt69eo5/u3j46P4+HjFx8crNTVVsbGxSk1NVffu3RUVFaXc3FwdPny4zNXGwsJC7d27V7GxsZfsW+/evZ2Kz7CwMKd+N2zYUA0bNlT79u0VFRWlN998UxMmTHC0OXz4sGJiYtSxY8cyD668eDYXX19fSdLUqVPVqVMnjRs3TpLUokULeXl5qXPnzkpNTVWbNm2ctiu9ojZu3DiNHz9ejz76qCSpefPm+ve//62pU6dqwIABlxxnqR49emjv3r06ceKEatasKX9/fwUHBztd6b3UuIKDg51moJHkeB8cHKzbb7+93DEAAKq3qqqXSo99JaiXqJcqQ71UPkIpAKgiNpvtqr9GZ7XSwuBiTZo00fnz57VhwwbH7eg///yzsrOzFR0d7WgXHh6uoUOHaujQoZowYYLeeOMNjRgxwnEF7eLnFURGRsrV1VWbNm1yFEa5ubnavXu37r333kr72KpVK+3cubNMPytjs9nUuHFjrV+/XpL08MMPKzk5Wenp6UpPT3dqO2/ePJ05c0b9+/e/5H59fHzk4+NzWX0oKSlRQUGB4/2hQ4cUExOj1q1ba8GCBWWunpU3vjNnzqhmTec/6TVq1JB04SsEHh4eFW732/3XqFHDMQvMlSq9rf6zzz7TsWPH1Lt378seV4cOHfTcc8+pqKhIrq6ukqTMzEw1atTIcSv6lXy2AIDqgXqJekmiXipVHeslQikAwFWJiopSQkKChgwZotdff10+Pj4aP368wsLClJCQIEkaPXq0evbsqTvuuEO//PKLVq9erSZNmkiSIiIiZLPZtHLlSvXq1UseHh7y8fHRgAEDNG7cOAUEBCgoKEgpKSlycXGRzWartD/Jyclq3769hg8frsGDB8vLy0s7d+5UZmamZs+erW3btiklJUVJSUmKjo6W3W7XmjVr9NZbbyk5OVnShSuE06ZN0zPPPCN3d3clJSXJ1dVV7733niZOnKjU1FQ1a9bM6bjZ2dll+tK0aVNHoVAqPz9fU6ZMUe/evRUSEqITJ05ozpw5OnTokPr27SvpQiFy3333KSIiQmlpaY6pj6ULV78qEh8fryFDhmju3LmKjY3VkSNHNHr0aLVt27bc50tcvN2UKVNUr149NW3aVFu3btWrr76qJ554wtHm5MmTOnDggA4fPuw03uDgYEefFixYoCZNmigwMFBZWVkaNWqUnn76acfXCC5nXI8//rheeuklDRo0SMnJyfruu+/02muvacaMGRX2X7pwxXfPnj2O9/v27dO2bdsUEBDgdMUXAICqQL10AfUS9VKFrsk8gNUUUxwDuFaq2xTHpUqnOPbz8zMeHh4mNjbWaYrj4cOHmwYNGhg3NzcTGBhokpKSzIkTJxzrJ0+ebIKDg43NZqt0iuO2bdua8ePHO7aLiIgwM2bMKNOfjRs3mu7duxtvb2/j5eVlWrRoYaZMmWKMMeb48eNm5MiRplmzZsbb29v4+PiY5s2bm7S0NFNcXOy0n+XLl5vOnTsbLy8vxxTMixcvdmpT3jTNpa+DBw+W6dvZs2fNQw89ZEJDQ43dbjchISGmd+/eZuPGjY42CxYsqHCflzJz5kwTHR1tPDw8TEhIiElMTDQ//fRTpdvk5eWZUaNGmXr16hl3d3cTGRlpnnvuOadphivqU0pKiqNNcnKyqVOnjnF1dTVRUVEmPT3dlJSUXPG4vvnmG3PPPfcYNzc3ExYWZv7yl79cctyrV68ud7+lP09X61pMcXyr4HwAuFaol6iXqJduvXrJZsw1mBu8msrLy5Ofn59yc3Md30MFgKtx7tw57du3T/Xr15e7u3tVd+emkp+fr7CwMKWnp2vQoEGWH//kyZPq2rWrfH199cEHH8jT8+b4CgF+n8p+Z6kPnHE+AFwr1EtXj3oJVeFa1EvMvgcAuKFs3bpVixcv1t69e7VlyxbHdLult7hbLSAgQJ988om6du2qrKysKukDAADAxaiXUF3wTCkAwA0nLS1N2dnZstvtat26tdauXet4KGRVqFWrliZNmlRlxwcAAPgt6iVUB4RSAIAbyl133aXNmzdXdTcAAABuWNRLqC74+h4AAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgCASg0cOFA2m002m012u10NGzbU5MmTdf78+d+1388//1w2m02nTp26Nh29DPv27dPjjz+u0NBQubu7q27dukpISNCuXbuc2q1cuVJdunSRj4+PPD09dffdd2vhwoVObfbv3y+bzaZt27Zd9vFffPFFNW7cWF5eXrrtttvUrVs3bdiwwWmfgwYNUv369eXh4aEGDRooJSVFhYWFl9x3RkaGWrZsKU9PT4WEhOiJJ57Qzz//XOk2v/76q0aPHq2IiAh5eHioY8eO2rRpk1Ob06dPa/jw4apbt648PDwUHR2tefPmObV56qmn1KBBA3l4eCgwMLDcc3rgwAE98MAD8vT0VFBQkMaNG1fhz9C6detUs2ZN3XnnnZcc9zvvvKMePXqoVq1aV/x5AABwrVAvUS9RL10dQikAwCXFxcXpyJEj+uGHHzR27Fi9+OKLmj59elV3y+FyipCioiJ1795dubm5euedd5Sdna0lS5aoefPmToXerFmzlJCQoE6dOmnDhg3avn27Hn30UQ0dOlTPPPPM7+rnHXfcodmzZ+vbb7/Vl19+qdtvv109evTQ8ePHJUm7du1SSUmJXn/9de3YsUMzZszQvHnzNHHixEr3u27dOvXv31+DBg3Sjh07tHTpUm3cuFFDhgypdLvBgwcrMzNT//u//6tvv/1WPXr0ULdu3XTo0CFHmzFjxujDDz/U3//+d33//fcaPXq0hg8frhUrVjjatG7dWgsWLND333+vjz76SMYY9ejRQ8XFxZKk4uJiPfDAAyosLNT69ev19ttva+HChZo0aVKZPp06dUr9+/dX165dL+uc5ufn65577tErr7xyWe0BALheqJeol6iXroJBhXJzc40kk5ubW9VdAXCTO3v2rNm5c6c5e/ZsVXflig0YMMAkJCQ4Levevbtp3769OXnypElKSjL+/v7Gw8PDxMXFmd27dzva7d+/3/zhD38w/v7+xtPT00RHR5v333/f7Nu3z0hyeg0YMMAYY0xeXp55/PHHjaenpwkODjavvvqq6dKlixk1apRjvxEREWby5MkmKSnJ+Pj4OLZdu3atueeee4y7u7upW7euGTFihDl9+rQxxpitW7caSWb//v0VjvXAgQPG1dXVjBkzpsy6mTNnGknmq6++MsYYxxi2bt165Sf1/5T+nfnkk08qbDNt2jRTv379Svczffp0ExkZWaa/YWFhFW5z5swZU6NGDbNy5Uqn5a1atTLPPfec433Tpk3N5MmTK23zW998842RZPbs2WOMMWbVqlXGxcXF5OTkONrMnTvX+Pr6moKCAqdt+/XrZ55//nmTkpJiWrZsWeExfutafB4Xq+x3lvrAGecDwLVCvUS9VB7qpepdL3GnFABUEWOMSs6csfxljPndfffw8FBhYaEGDhyor7/+WitWrFBWVpaMMerVq5eKiookScOGDVNBQYG++OILffvtt3rllVfk7e2t8PBw/fOf/5QkZWdn68iRI3rttdckXbjStG7dOq1YsUKZmZlau3attmzZUqYPaWlpatmypbZu3aoXXnhBe/fuVVxcnPr06aPt27dryZIl+vLLLzV8+HBJUmBgoFxcXLRs2TLHFanfWrZsmYqKisq9wvfUU0/J29tbixcv/t3nT7pwtXL+/Pny8/NTy5YtK2yXm5urgICASvfVoUMHHTx4UKtWrZIxRkePHtWyZcvUq1evCrc5f/68iouL5e7u7rTcw8NDX375peN9x44dtWLFCh06dEjGGK1evVq7d+9Wjx49yt1vfn6+FixYoPr16ys8PFySlJWVpebNm6tOnTqOdrGxscrLy9OOHTscyxYsWKAff/xRKSkplY4XAHDrqKp66VrUTNRLvx/1UvWvl2pWdQcA4FZlzp5VdqvWlh+30ZbNsnl6XtW2xhh9+umn+uijj9SzZ08tX75c69atU8eOHSVd+J5+eHi4li9frr59++rAgQPq06ePmjdvLkmKjIx07Ku0cAgKCpK/v7+kC9/Zf/vtt7Vo0SLH7cgLFixQaGhomb7cf//9Gjt2rOP94MGDlZiYqNGjR0uSoqKiNHPmTHXp0kVz585VWFiYZs6cqWeffVYvvfSS2rRpo5iYGCUmJjr6tXv3bvn5+SkkJKTM8ex2uyIjI7V79+6rOnelVq5cqUcffVRnzpxRSEiIMjMzVbt27XLb7tmzR7NmzVJaWlql++zUqZMyMjLUr18/nTt3TufPn1d8fLzmzJlT4TY+Pj7q0KGD/vu//1tNmjRRnTp1tHjxYmVlZalhw4aOdrNmzdKTTz6punXrqmbNmnJxcdEbb7yhe++912l/f/3rX/Xss88qPz9fjRo1UmZmpux2uyQpJyfHqcCS5Hifk5MjSfrhhx80fvx4rV27VjVrUp4AAC6oqnpJuvqaiXqJeol66fJxpxQA4JJWrlwpb29vubu7q2fPnurXr58GDhyomjVrql27do52tWrVUqNGjfT9999LkkaOHKnU1FR16tRJKSkp2r59e6XH+fHHH1VUVKS2bds6lvn5+alRo0Zl2rZp08bp/TfffKOFCxfK29vb8YqNjVVJSYn27dsn6cKVyJycHGVkZKhDhw5aunSpmjZtqszMzMs+F6WFQ2UyMjKc+rF27VrHupiYGG3btk3r169XXFycHnnkER07dqzMPg4dOqS4uDj17dvX6VkHF+936NChkqSdO3dq1KhRmjRpkjZv3qwPP/xQ+/fvd6xfu3at03YZGRmSpP/93/+VMUZhYWFyc3PTzJkz9dhjj8nF5T/lwaxZs/TVV19pxYoV2rx5s9LT0zVs2DB98sknTv1NTEzU1q1btWbNGt1xxx165JFHdO7cucs6p8XFxXr88cf10ksv6Y477rjicwoAwI2Aeuk/qJeoly5X9YjWAOAmZPPwUKMtm6vkuFcqJiZGc+fOld1uV2hoqGrWrOn04MaKDB48WLGxsXr//ff18ccfa+rUqUpPT9eIESOuputOvLy8nN6fPn1aTz31lEaOHFmmbb169Rz/9vHxUXx8vOLj45WamqrY2Filpqaqe/fuioqKUm5urg4fPlzmamNhYaH27t2r2NjYS/atd+/eTsVnWFiYU78bNmyohg0bqn379oqKitKbb76pCRMmONocPnxYMTEx6tixo+bPn++074tnS/H19ZUkTZ06VZ06ddK4ceMkSS1atJCXl5c6d+6s1NRUtWnTxmm70qtuDRo00Jo1a5Sfn6+8vDyFhISoX79+jiuhZ8+e1cSJE/Xuu+/qgQcecOx727ZtSktLU7du3Rz79PPzk5+fn6KiotS+fXvddtttevfdd/XYY48pODhYGzdudBrH0aNHJUnBwcH69ddf9fXXX2vr1q2Orw+UlJTIGKOaNWvq448/rvScAgCqr6qql0qPfSWol6iXqJeuHKEUAFQRm8121V+js1ppYXCxJk2a6Pz589qwYYPjdvSff/5Z2dnZio6OdrQLDw/X0KFDNXToUE2YMEFvvPGGRowY4biCdvHzCiIjI+Xq6qpNmzY5CqPc3Fzt3r27zO3Pv9WqVSvt3LmzTD8rY7PZ1LhxY61fv16S9PDDDys5OVnp6elKT093ajtv3jydOXNG/fv3v+R+fXx85OPjc1l9KCkpUUFBgeP9oUOHFBMT45ih5eKrcJLKHd+ZM2fK3MJdo0YNSRe+QuDh4VHpefHy8pKXl5d++eUXffTRR5o2bZqkCzPwFBUVlelDjRo1VFJSUuH+jDEyxjjG1aFDB02ZMkXHjh1TUFCQJCkzM1O+vr6Kjo6Wq6urvv32W6d9/PWvf9Vnn32mZcuWqX79+vLy8rrscwoAqD6ol6iXJOql6lwvEUoBAK5KVFSUEhISNGTIEL3++uvy8fHR+PHjFRYWpoSEBEnS6NGj1bNnT91xxx365ZdftHr1ajVp0kSSFBERIZvNppUrV6pXr17y8PCQj4+PBgwYoHHjxikgIEBBQUFKSUmRi4uLbDZbpf1JTk5W+/btNXz4cA0ePFheXl7auXOnMjMzNXv2bG3btk0pKSlKSkpSdHS07Ha71qxZo7feekvJycmSLlwhnDZtmp555hm5u7srKSlJrq6ueu+99zRx4kSlpqaqWbNmTsfNzs4u05emTZvK1dXVaVl+fr6mTJmi3r17KyQkRCdOnNCcOXN06NAh9e3bV9KFAuu+++5TRESE0tLSHFMfSxeukFUkPj5eQ4YM0dy5cxUbG6sjR45o9OjRatu2bbnPlyhVOh1xo0aNtGfPHo0bN06NGzfWn/70J0kXrix26dJF48aNk4eHhyIiIrRmzRr97W9/06uvvirpwlcIlixZoh49eigwMFA//fST/vKXv8jDw8Px4NAePXooOjpaSUlJmjZtmnJycvT8889r2LBhcnNzk6Qy5zUoKEju7u5llv/WyZMndeDAAR0+fFjSfz6P4ODgSs8ZAABWoF66gHqJeqlCv3cKwOqMKY4BXCvVbYrjUqVTHPv5+RkPDw8TGxvrNMXx8OHDTYMGDYybm5sJDAw0SUlJ5sSJE471kydPNsHBwcZms1U6xXHbtm3N+PHjHdtFRESYGTNmlOnPxo0bTffu3Y23t7fx8vIyLVq0MFOmTDHGGHP8+HEzcuRI06xZM+Pt7W18fHxM8+bNTVpamikuLnbaz/Lly03nzp2Nl5eXYwrmxYsXO7Upb5rm0tfBgwfL9O3s2bPmoYceMqGhocZut5uQkBDTu3dvs3HjRkebBQsWVLjPS5k5c6aJjo42Hh4eJiQkxCQmJpqffvqp0m2WLFliIiMjjd1uN8HBwWbYsGHm1KlTTm2OHDliBg4caEJDQ427u7tp1KiRSU9PNyUlJcYYYw4dOmR69uxpgoKCjKurq6lbt655/PHHza5du5z2s3//ftOzZ0/j4eFhateubcaOHWuKiooq7NvlTnFc0TlLSUm55LaVuRZTHN8qOB8ArhXqJeol6qVbr16yGXMN5gavpvLy8uTn56fc3FzH91AB4GqcO3dO+/btU/369ctMKYvK5efnKywsTOnp6Ro0aJDlxz958qS6du0qX19fffDBB/K8Sb5CgN+nst9Z6gNnnA8A1wr10tWjXkJVuBb1ErPvAQBuKFu3btXixYu1d+9ebdmyRYmJiZLkuMXdagEBAfrkk0/UtWtXZWVlVUkfAAAALka9hOqCZ0oBAG44aWlpys7Olt1uV+vWrbV27VrVrl27yvpTq1YtTZo0qcqODwAA8FvUS6gOCKUAADeUu+66S5s3V83UzwAAADcD6iVUF3x9DwAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAEClBg4cKJvNJpvNJrvdroYNG2ry5Mk6f/7879rv559/LpvNplOnTl2bjl6Gffv26fHHH1doaKjc3d1Vt25dJSQkaNeuXU7tVq5cqS5dusjHx0eenp66++67tXDhQqc2+/fvl81m07Zt2y77+C+++KIaN24sLy8v3XbbberWrZs2bNjgtM9Bgwapfv368vDwUIMGDZSSkqLCwsJL7jsjI0MtW7aUp6enQkJC9MQTT+jnn3+udJsvvvhC8fHxCg0Nlc1m0/Lly8u0eeedd9SjRw/VqlXrkuM1xqhnz54V7mvhwoVq0aKF3N3dFRQUpGHDhjmt/+ijj9S+fXv5+PgoMDBQffr00f79+y0ZJwAAvwf1EvUS9dLVIZQCAFxSXFycjhw5oh9++EFjx47Viy++qOnTp1d1txwupwgpKipS9+7dlZubq3feeUfZ2dlasmSJmjdv7lTozZo1SwkJCerUqZM2bNig7du369FHH9XQoUP1zDPP/K5+3nHHHZo9e7a+/fZbffnll7r99tvVo0cPHT9+XJK0a9culZSU6PXXX9eOHTs0Y8YMzZs3TxMnTqx0v+vWrVP//v01aNAg7dixQ0uXLtXGjRs1ZMiQSrfLz89Xy5YtNWfOnErb3HPPPXrllVcuOb7/+Z//kc1mK3fdq6++queee07jx4/Xjh079Mknnyg2Ntaxft++fUpISND999+vbdu26aOPPtKJEyf0xz/+0ZJxAgDwe1EvUS9RL10Fgwrl5uYaSSY3N7equwLgJnf27Fmzc+dOc/bs2aruyhUbMGCASUhIcFrWvXt30759e3Py5EmTlJRk/P39jYeHh4mLizO7d+92tNu/f7/5wx/+YPz9/Y2np6eJjo4277//vtm3b5+R5PQaMGCAMcaYvLw88/jjjxtPT08THBxsXn31VdOlSxczatQox34jIiLM5MmTTVJSkvHx8XFsu3btWnPPPfcYd3d3U7duXTNixAhz+vRpY4wxW7duNZLM/v37KxzrgQMHjKurqxkzZkyZdTNnzjSSzFdffWWMMY4xbN269cpP6v8p/TvzySefVNhm2rRppn79+pXuZ/r06SYyMrJMf8PCwi67L5LMu+++W+H6S41369atJiwszBw5cqTMvk6ePGk8PDwqHefSpUtNzZo1TXFxsWPZihUrjM1mM4WFhcYYa8ZZqrLfWeoDZ5wPANcK9RL1Unmol/6jOtZL3CkFAFXEGKOigmLLXxf+zvw+Hh4eKiws1MCBA/X1119rxYoVysrKkjFGvXr1UlFRkSRp2LBhKigo0BdffKFvv/1Wr7zyiry9vRUeHq5//vOfkqTs7GwdOXJEr732miRpzJgxWrdunVasWKHMzEytXbtWW7ZsKdOHtLQ0tWzZUlu3btULL7ygvXv3Ki4uTn369NH27du1ZMkSffnllxo+fLgkKTAwUC4uLlq2bJmKi4vLHdeyZctUVFRU7hW+p556St7e3lq8ePHvPn/ShauV8+fPl5+fn1q2bFlhu9zcXAUEBFS6rw4dOujgwYNatWqVjDE6evSoli1bpl69el2Tvl7KmTNn9Pjjj2vOnDkKDg4usz4zM1MlJSU6dOiQmjRporp16+qRRx7RwYMHHW1at24tFxcXLViwQMXFxcrNzdX//u//qlu3bnJ1db0hxgkAsF5V1UvXomaiXvr9qJeqf71Us6o7AAC3qvOFJZo/ao3lx33ytS5ydatxVdsaY/Tpp5/qo48+Us+ePbV8+XKtW7dOHTt2lHTh++vh4eFavny5+vbtqwMHDqhPnz5q3ry5JCkyMtKxr9LCISgoSP7+/pKkX3/9VW+//bYWLVqkrl27SpIWLFig0NDQMn25//77NXbsWMf7wYMHKzExUaNHj5YkRUVFaebMmerSpYvmzp2rsLAwzZw5U88++6xeeukltWnTRjExMUpMTHT0a/fu3fLz81NISEiZ49ntdkVGRmr37t1Xde5KrVy5Uo8++qjOnDmjkJAQZWZmqnbt2uW23bNnj2bNmqW0tLRK99mpUydlZGSoX79+OnfunM6fP6/4+HjLbr9++umn1bFjRyUkJJS7/scff1RJSYlefvllvfbaa/Lz89Pzzz+v7t27a/v27bLb7apfv74+/vhjPfLII3rqqadUXFysDh06aNWqVTfMOAEA1quqekm6+pqJeol6qTzUS+XjTikAwCWtXLlS3t7ecnd3V8+ePdWvXz8NHDhQNWvWVLt27RztatWqpUaNGun777+XJI0cOVKpqanq1KmTUlJStH379kqP8+OPP6qoqEht27Z1LPPz81OjRo3KtG3Tpo3T+2+++UYLFy6Ut7e34xUbG6uSkhLt27dP0oUrkTk5OcrIyFCHDh20dOlSNW3aVJmZmZd9Lux2+yXbZGRkOPVj7dq1jnUxMTHatm2b1q9fr7i4OD3yyCM6duxYmX0cOnRIcXFx6tu3r9MzAC7e79ChQyVJO3fu1KhRozRp0iRt3rxZH374ofbv3+9Yv3btWqftMjIyLnu8l7JixQp99tln+p//+Z8K25SUlKioqEgzZ85UbGys2rdvr8WLF+uHH37Q6tWrJUk5OTkaMmSIBgwYoE2bNmnNmjWy2+16+OGHHVeqq3KcAABcCvXSf1AvOaNeqhh3SgFAFalpd9GTr3WpkuNeqZiYGM2dO1d2u12hoaGqWbOmVqxYccntBg8erNjYWL3//vv6+OOPNXXqVKWnp2vEiBFX03UnXl5eTu9Pnz6tp556SiNHjizTtl69eo5/+/j4KD4+XvHx8UpNTVVsbKxSU1PVvXt3RUVFKTc3V4cPHy5ztbGwsFB79+51ethkRXr37u1UfIaFhTn1u2HDhmrYsKHat2+vqKgovfnmm5owYYKjzeHDhxUTE6OOHTtq/vz5Tvu+eDYXX19fSdLUqVPVqVMnjRs3TpLUokULeXl5qXPnzkpNTVWbNm2ctqtTp84lx3C5PvvsM+3du9dx9bZUnz591LlzZ33++eeOK6nR0dGO9YGBgapdu7YOHDggSZozZ478/Pw0bdo0R5u///3vCg8P14YNG9S+ffsqHScAoGpUVb1UeuwrQb1EvVQR6qWKEUoBQBWx2WxX/TU6q5UWBhdr0qSJzp8/rw0bNjhuR//555+VnZ3t9Mc0PDxcQ4cO1dChQzVhwgS98cYbGjFihOMK2sXPK4iMjJSrq6s2bdrkKIxyc3O1e/du3XvvvZX2sVWrVtq5c2eZflbGZrOpcePGWr9+vSTp4YcfVnJystLT05Wenu7Udt68eTpz5oz69+9/yf36+PjIx8fnsvpQUlKigoICx/tDhw4pJiZGrVu31oIFC+Ti4lwQlze+M2fOqGZN5z/pNWpc+NkyxsjDw+OKzsuVGD9+vAYPHuy0rHnz5poxY4bi4+MlXbiNXLrwPIy6detKkk6ePKkTJ04oIiLCMYbfjrV0DCUlJY42VTVOAEDVoF6iXpKol6pzvUQoBQC4KlFRUUpISNCQIUP0+uuvy8fHR+PHj1dYWJjju/KjR49Wz549dccdd+iXX37R6tWr1aRJE0lSRESEbDabVq5cqV69esnDw0M+Pj4aMGCAxo0bp4CAAAUFBSklJUUuLi4VTp1bKjk5We3bt9fw4cM1ePBgeXl5aefOncrMzNTs2bO1bds2paSkKCkpSdHR0bLb7VqzZo3eeustJScnS7pwhXDatGl65pln5O7urqSkJLm6uuq9997TxIkTlZqaqmbNmjkdNzs7u0xfmjZt6njYZKn8/HxNmTJFvXv3VkhIiE6cOKE5c+bo0KFD6tu3r6QLBdZ9992niIgIpaWlOaY+llTuAzFLxcfHa8iQIZo7d65iY2N15MgRjR49Wm3bti33+RKlTp8+rT179jje79u3T9u2bVNAQICjyD158qQOHDigw4cPO403ODjY6fVb9erVU/369SVdmNo5ISFBo0aN0vz58+Xr66sJEyaocePGiomJkSQ98MADmjFjhiZPnqzHHntMv/76qyZOnKiIiAjddddd132cAABcD9RLF1AvUS9V6PImBLw1McUxgGuluk1xXKp0imM/Pz/j4eFhYmNjnaY4Hj58uGnQoIFxc3MzgYGBJikpyZw4ccKxfvLkySY4ONjYbLZKpzhu27atGT9+vGO7iIgIM2PGjDL92bhxo+nevbvx9vY2Xl5epkWLFmbKlCnGGGOOHz9uRo4caZo1a2a8vb2Nj4+Pad68uUlLS3OaVtcYY5YvX246d+5svLy8HFMwL1682KlNedM0l74OHjxYpm9nz541Dz30kAkNDTV2u92EhISY3r17m40bNzraLFiwoMJ9XsrMmTNNdHS08fDwMCEhISYxMdH89NNPlW6zevXqco9V+llU1qeUlJQK96typhHOzc01TzzxhPH39zcBAQHmoYceMgcOHHBqs3jxYnPXXXcZLy8vExgYaHr37m2+//57S8b5W9diiuNbBecDwLVCvUS9RL1069VLNmOuwdzg1VReXp78/PyUm5vr+B4qAFyNc+fOad++fapfv77c3d2rujs3lfz8fIWFhSk9PV2DBg2y/PgnT55U165d5evrqw8++ECenp6W9wHWq+x3lvrAGecDwLVCvXT1qJdQFa5FvcTsewCAG8rWrVu1ePFi7d27V1u2bFFiYqIkVTh97vUWEBCgTz75RF27dlVWVlaV9AEAAOBi1EuoLnimFADghpOWlqbs7GzZ7Xa1bt1aa9euVe3atausP7Vq1dKkSZOq7PgAAAC/Rb2E6oBQCgBwQ7nrrru0efPmqu4GAADADYt6CdUFX98DAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAUKmBAwfKZrPJZrPJbrerYcOGmjx5ss6fP/+79vv555/LZrPp1KlT16ajl2Hfvn16/PHHFRoaKnd3d9WtW1cJCQnatWuXU7uVK1eqS5cu8vHxkaenp+6++24tXLjQqc3+/ftls9m0bdu2yz7+iy++qMaNG8vLy0u33XabunXrpg0bNjjtc9CgQapfv748PDzUoEEDpaSkqLCw8JL7zsjIUMuWLeXp6amQkBA98cQT+vnnnyvd5osvvlB8fLxCQ0Nls9m0fPnyK+6zJE2ZMkUdO3aUp6en/P39yz3WgQMH9MADD8jT01NBQUEaN26c08/QxT9nF7+aNm3qaDN16lTdfffd8vHxUVBQkB588EFlZ2df8txcTv8AAPg9qJeol6iXrg6hFADgkuLi4nTkyBH98MMPGjt2rF588UVNnz69qrvlcDlFSFFRkbp3767c3Fy98847ys7O1pIlS9S8eXOnQm/WrFlKSEhQp06dtGHDBm3fvl2PPvqohg4dqmeeeeZ39fOOO+7Q7Nmz9e233+rLL7/U7bffrh49euj48eOSpF27dqmkpESvv/66duzYoRkzZmjevHmaOHFipftdt26d+vfvr0GDBmnHjh1aunSpNm7cqCFDhlS6XX5+vlq2bKk5c+ZcdZ+lC+e/b9+++vOf/1zuPoqLi/XAAw+osLBQ69ev19tvv62FCxdq0qRJjjavvfaajhw54ngdPHhQAQEB6tu3r6PNmjVrNGzYMH311VfKzMxUUVGRevToofz8/ErHean+AQBwLVAvUS9RL10Fgwrl5uYaSSY3N7equwLgJnf27Fmzc+dOc/bs2aruyhUbMGCASUhIcFrWvXt30759e3Py5EmTlJRk/P39jYeHh4mLizO7d+92tNu/f7/5wx/+YPz9/Y2np6eJjo4277//vtm3b5+R5PQaMGCAMcaYvLw88/jjjxtPT08THBxsXn31VdOlSxczatQox34jIiLM5MmTTVJSkvHx8XFsu3btWnPPPfcYd3d3U7duXTNixAhz+vRpY4wxW7duNZLM/v37KxzrgQMHjKurqxkzZkyZdTNnzjSSzFdffWWMMY4xbN269cpP6v8p/TvzySefVNhm2rRppn79+pXuZ/r06SYyMrJMf8PCwi67L5LMu+++e8l2lfV5wYIFxs/Pr8zyVatWGRcXF5OTk+NYNnfuXOPr62sKCgrKPc67775rbDZbpZ/XsWPHjCSzZs2aS/a7sv6Vp7LfWeoDZ5wPANcK9RL1Unmol6p3vcSdUgBQRYwxKjp3zvKXMeZ3993Dw0OFhYUaOHCgvv76a61YsUJZWVkyxqhXr14qKiqSJA0bNkwFBQX64osv9O233+qVV16Rt7e3wsPD9c9//lOSlJ2drSNHjui1116TJI0ZM0br1q3TihUrlJmZqbVr12rLli1l+pCWlqaWLVtq69ateuGFF7R3717FxcWpT58+2r59u5YsWaIvv/xSw4cPlyQFBgbKxcVFy5YtU3FxcbnjWrZsmYqKisq9wvfUU0/J29tbixcv/t3nT7pwNWr+/Pny8/NTy5YtK2yXm5urgICASvfVoUMHHTx4UKtWrZIxRkePHtWyZcvUq1eva9LXK+3zb2VlZal58+aqU6eOY1lsbKzy8vK0Y8eOcrd588031a1bN0VERFS439zcXEm65PkBANy8qqpeuhY1E/XS70e9VP3rpZpV3QEAuFWdLyjQzAEPW37ckW8vk6u7+1Vta4zRp59+qo8++kg9e/bU8uXLtW7dOnXs2FHShe/ph4eHa/ny5erbt68OHDigPn36qHnz5pKkyMhIx75K/zAGBQU5vrf+66+/6u2339aiRYvUtWtXSdKCBQsUGhpapi/333+/xo4d63g/ePBgJSYmavTo0ZKkqKgozZw5U126dNHcuXMVFhammTNn6tlnn9VLL72kNm3aKCYmRomJiY5+7d69W35+fgoJCSlzPLvdrsjISO3evfuqzl2plStX6tFHH9WZM2cUEhKizMxM1a5du9y2e/bs0axZs5SWllbpPjt16qSMjAz169dP586d0/nz5xUfH1/pbebXq8/lycnJcSqwJDne5+TklGl/+PBhffDBB1q0aFGF+ywpKdHo0aPVqVMnNWvW7LL7AgC4uVRVvSRdfc1EvUS9RL10+bhTCgBwSStXrpS3t7fc3d3Vs2dP9evXTwMHDlTNmjXVrl07R7tatWqpUaNG+v777yVJI0eOVGpqqjp16qSUlBRt37690uP8+OOPKioqUtu2bR3L/Pz81KhRozJt27Rp4/T+m2++0cKFC+Xt7e14xcbGqqSkRPv27ZN04UpkTk6OMjIy1KFDBy1dulRNmzZVZmbmZZ8Lu91+yTYZGRlO/Vi7dq1jXUxMjLZt26b169crLi5OjzzyiI4dO1ZmH4cOHVJcXJz69u3r9KyDi/c7dOhQSdLOnTs1atQoTZo0SZs3b9aHH36o/fv3O9avXbvWabuMjIzLHu+V9Plaefvtt+Xv768HH3ywwjbDhg3Td999p3/84x+OZUOHDnUaJwAAVqJe+g/qJeqly8WdUgBQRWq6uWnk28uq5LhXKiYmRnPnzpXdbldoaKhq1qypFStWXHK7wYMHKzY2Vu+//74+/vhjTZ06Venp6RoxYsTVdN2Jl5eX0/vTp0/rqaee0siRI8u0rVevnuPfPj4+io+PV3x8vFJTUxUbG6vU1FR1795dUVFRys3N1eHDh8tcbSwsLNTevXsVGxt7yb717t3bqfgMCwtz6nfDhg3VsGFDtW/fXlFRUXrzzTc1YcIER5vDhw8rJiZGHTt21Pz58532ffHsNb6+vpIuzLLSqVMnjRs3TpLUokULeXl5qXPnzkpNTVWbNm2ctvvtVbhLuZw+VyY4OFgbN250Wnb06FHHuosZY/TWW28pKSmpwoJ2+PDhWrlypb744gvVrVvXsXzy5Mm/++GqAIAbS1XVS6XHvhLUS9RL1EtXjlAKAKqIzWa76q/RWa30j+zFmjRpovPnz2vDhg2O29F//vlnZWdnKzo62tEuPDxcQ4cO1dChQzVhwgS98cYbGjFihOMP6MXPK4iMjJSrq6s2bdrkKIxyc3O1e/du3XvvvZX2sVWrVtq5c2eZflbGZrOpcePGWr9+vSTp4YcfVnJystLT05Wenu7Udt68eTpz5oz69+9/yf36+PjIx8fnsvpQUlKigoICx/tDhw4pJiZGrVu31oIFC+Ti4nxTc3njO3PmjGrWdP6TXqNGDUkXihYPD48rOi9X2udL6dChg6ZMmaJjx44pKChIkpSZmSlfX1+nnxXpwowxe/bs0aBBg8rsxxijESNG6N1339Xnn3+u+vXrO60PCgpy7B8AUD1QL1EvSdRL1bleIpQCAFyVqKgoJSQkaMiQIXr99dfl4+Oj8ePHKywsTAkJCZKk0aNHq2fPnrrjjjv0yy+/aPXq1WrSpIkkKSIiQjabTStXrlSvXr3k4eEhHx8fDRgwQOPGjVNAQICCgoKUkpIiFxcX2Wy2SvuTnJys9u3ba/jw4Ro8eLC8vLy0c+dOZWZmavbs2dq2bZtSUlKUlJSk6Oho2e12rVmzRm+99ZaSk5MlXbhCOG3aND3zzDNyd3dXUlKSXF1d9d5772nixIlKTU0t83387OzsMn1p2rSpXF1dnZbl5+drypQp6t27t0JCQnTixAnNmTNHhw4dckzje+jQId13332KiIhQWlqa0zTCv71CdrH4+HgNGTJEc+fOVWxsrI4cOaLRo0erbdu25T5fotTp06e1Z88ex/t9+/Zp27ZtCggIUL169S6rz5J04MABnTx5UgcOHFBxcbHjKmPDhg3l7e2tHj16KDo6WklJSZo2bZpycnL0/PPPa9iwYXL7zVXoN998U+3atSv3uQfDhg3TokWL9N5778nHx8fxfAU/Pz95eHhUOM5L9Q8AgOuFeukC6iXqpQpd1jx/tyimOAZwrVS3KY5LlU5x7OfnZzw8PExsbKzTFMfDhw83DRo0MG5ubiYwMNAkJSWZEydOONZPnjzZBAcHG5vNVukUx23btjXjx493bBcREWFmzJhRpj8bN2403bt3N97e3sbLy8u0aNHCTJkyxRhjzPHjx83IkSNNs2bNjLe3t/Hx8THNmzc3aWlppri42Gk/y5cvN507dzZeXl6OKZgXL17s1Ka8aZpLXwcPHizTt7Nnz5qHHnrIhIaGGrvdbkJCQkzv3r3Nxo0bHW0WLFhQ4T4vZebMmSY6Otp4eHiYkJAQk5iYaH766adKt1m9enW5xyr9LC6nz8Zc+Bkpbz+rV692tNm/f7/p2bOn8fDwMLVr1zZjx441RUVFTvs5deqU8fDwMPPnzy+3vxWdmwULFlQ6zsvp329diymObxWcDwDXCvUS9RL10q1XL9n+r9MoR15envz8/JSbm+v4HioAXI1z585p3759ql+/vtxvklvQbxT5+fkKCwtTenp6ubcoX28nT55U165d5evrqw8++ECenp6W9wHWq+x3lvrAGecDwLVCvXT1qJdQFa5FvcTsewCAG8rWrVu1ePFi7d27V1u2bFFiYqIkOW5xt1pAQIA++eQTde3aVVlZWVXSBwAAgItRL6G64JlSAIAbTlpamrKzs2W329W6dWutXbtWtWvXrrL+1KpVS5MmTaqy4wMAAPwW9RKqA0IpAMAN5a677tLmzZuruhsAAAA3LOolVBd8fQ8AAAAAAACWI5QCAAAAAACA5QilAMBCJSUlVd0FAJeB31UAqDr8Nxi4OVyL31WeKQUAFrDb7XJxcdHhw4cVGBgou90um81W1d0C8BvGGBUWFur48eNycXGR3W6v6i4BwC2Degm4OVzLeolQCgAs4OLiovr16+vIkSM6fPhwVXcHwCV4enqqXr16cnHhpnIAsAr1EnBzuRb1EqEUAFjEbrerXr16On/+vIqLi6u6OwAqUKNGDdWsWZOr8wBQBaiXgJvDtaqXCKUAwEI2m02urq5ydXWt6q4AAADckKiXgFsH96QDAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADL3VCh1Jw5c3T77bfL3d1d7dq108aNGyttv3TpUjVu3Fju7u5q3ry5Vq1a5bTeGKNJkyYpJCREHh4e6tatm3744YfrOQQAAIDrinoJAABUFzdMKLVkyRKNGTNGKSkp2rJli1q2bKnY2FgdO3as3Pbr16/XY489pkGDBmnr1q168MEH9eCDD+q7775ztJk2bZpmzpypefPmacOGDfLy8lJsbKzOnTtn1bAAAACuGeolAABQndiMMaaqOyFJ7dq10913363Zs2dLkkpKShQeHq4RI0Zo/PjxZdr369dP+fn5WrlypWNZ+/btdeedd2revHkyxig0NFRjx47VM888I0nKzc1VnTp1tHDhQj366KOX7FNeXp78/PyUm5srX1/fazRSAABwM6vK+oB6CQAA3Awutz6oaWGfKlRYWKjNmzdrwoQJjmUuLi7q1q2bsrKyyt0mKytLY8aMcVoWGxur5cuXS5L27dunnJwcdevWzbHez89P7dq1U1ZWVrlFVkFBgQoKChzv8/Lyfs+wKvXu2/P07w/WXbf9A4BVzteQzEX33dpkUw2bcxu3wI7y6bRKLm5nre0cLBF+m6c87DWquhtlNGw4Qbf5313V3bhmbsV6SZL+59EBkkqu6zEA4HorriGV/OZ7SjVtzgWTPeAu+bTbpBq+xy3sGawS7OsuXw/Xqu5GGfXCB6lOnQeq7Pg3RCh14sQJFRcXq06dOk7L69Spo127dpW7TU5OTrntc3JyHOtLl1XU5remTp2ql1566arGcKUK8vNVbH6x5FgAcD3Zzku/yaDK/N/H4rwABbr9JFePXKu6BQsVnbvwutGcP399wxKr3Yr1kiQVm1xJ5y07HgBcF+fLPjunTL30q49uq3FCnh4/WtUrWKlIyiuq6k6UVVh4okqPf0OEUjeKCRMmOF1NzMvLU3h4+HU5VrP2nXXkmx3XZd8Abh7GZmSzlX+Hic2lhmy238Y9104NF8nlCp4s6GFzLp2MzUXn7Z4q9PPUebf//Dmx21zlb3e+RdcjyEU1gp7nr0411SDIS95uN96VPx/fFlXdhWrJynpJklxuC5BuiIdNAKgqlddLLrLZrt+jkl1cLtRMl8vNVlImfCqye6vQx13nPe2OZTVsLqplv8152wBvuYX/WXLnP3rVUb0AT93mZb90Q4t5eUVV6fFviP97ULt2bdWoUUNHjx51Wn706FEFBweXu01wcHCl7Uv/9+jRowoJCXFqc+edd5a7Tzc3N7m5uV3tMK5Is1Zt1ez1tpYcCwAA3PxuxXpJkp6e95ZlxwIAANa6IWbfs9vtat26tT799FPHspKSEn366afq0KFDudt06NDBqb0kZWZmOtrXr19fwcHBTm3y8vK0YcOGCvcJAABwo6JeAgAA1c0NcaeUJI0ZM0YDBgxQmzZt1LZtW/3P//yP8vPz9ac//UmS1L9/f4WFhWnq1KmSpFGjRqlLly5KT0/XAw88oH/84x/6+uuvNX/+fEmSzWbT6NGjlZqaqqioKNWvX18vvPCCQkND9eCDD1bVMAEAAK4a9RIAAKhObphQql+/fjp+/LgmTZqknJwc3Xnnnfrwww8dD948cOCAXC56+EnHjh21aNEiPf/885o4caKioqK0fPlyNWvWzNHm2WefVX5+vp588kmdOnVK99xzjz788EO5u7tbPj4AAIDfi3oJAABUJzZjDE9Rq0BeXp78/PyUm5srX1/fS28AAACqPeoDZ5wPAADwW5dbH9wQz5QCAAAAAADArYVQCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJa7IUKpkydPKjExUb6+vvL399egQYN0+vTpSrc5d+6chg0bplq1asnb21t9+vTR0aNHHeu/+eYbPfbYYwoPD5eHh4eaNGmi11577XoPBQAA4LqgXgIAANXNDRFKJSYmaseOHcrMzNTKlSv1xRdf6Mknn6x0m6efflr/+te/tHTpUq1Zs0aHDx/WH//4R8f6zZs3KygoSH//+9+1Y8cOPffcc5owYYJmz559vYcDAABwzVEvAQCA6sZmjDFV2YHvv/9e0dHR2rRpk9q0aSNJ+vDDD9WrVy/99NNPCg0NLbNNbm6uAgMDtWjRIj388MOSpF27dqlJkybKyspS+/btyz3WsGHD9P333+uzzz67rL7l5eXJz89Pubm58vX1vcoRAgCA6qQq6gPqJQAAcDO53Pqgyu+UysrKkr+/v6PAkqRu3brJxcVFGzZsKHebzZs3q6ioSN26dXMsa9y4serVq6esrKwKj5Wbm6uAgIAK1xcUFCgvL8/pBQAAUNWolwAAQHVU5aFUTk6OgoKCnJbVrFlTAQEBysnJqXAbu90uf39/p+V16tSpcJv169dryZIlld7mPnXqVPn5+Tle4eHhVzYYAACA64B6CQAAVEfXLZQaP368bDZbpa9du3Zdr8M7+e6775SQkKCUlBT16NGjwnYTJkxQbm6u43Xw4EFL+gcAAG5N1EsAAOBWVvN67Xjs2LEaOHBgpW0iIyMVHBysY8eOOS0/f/68Tp48qeDg4HK3Cw4OVmFhoU6dOuV09e/o0aNlttm5c6e6du2qJ598Us8//3yl/XFzc5Obm1ulbQAAAK4V6iUAAHAru26hVGBgoAIDAy/ZrkOHDjp16pQ2b96s1q1bS5I+++wzlZSUqF27duVu07p1a7m6uurTTz9Vnz59JEnZ2dk6cOCAOnTo4Gi3Y8cO3X///RowYICmTJlyDUYFAABw7VAvAQCAW1mVz74nST179tTRo0c1b948FRUV6U9/+pPatGmjRYsWSZIOHTqkrl276m9/+5vatm0rSfrzn/+sVatWaeHChfL19dWIESMkXXgWgnThFvT7779fsbGxmj59uuNYNWrUuKziT2I2GQAAUFZV1QfUSwAA4GZxufXBdbtT6kpkZGRo+PDh6tq1q1xcXNSnTx/NnDnTsb6oqEjZ2dk6c+aMY9mMGTMcbQsKChQbG6u//vWvjvXLli3T8ePH9fe//11///vfHcsjIiK0f/9+S8YFAABwrVAvAQCA6uaGuFPqRsWVPwAA8FvUB844HwAA4Lcutz64brPvAQAAAAAAABUhlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlbohQ6uTJk0pMTJSvr6/8/f01aNAgnT59utJtzp07p2HDhqlWrVry9vZWnz59dPTo0XLb/vzzz6pbt65sNptOnTp1HUYAAABwfVEvAQCA6uaGCKUSExO1Y8cOZWZmauXKlfriiy/05JNPVrrN008/rX/9619aunSp1qxZo8OHD+uPf/xjuW0HDRqkFi1aXI+uAwAAWIJ6CQAAVDc2Y4ypyg58//33io6O1qZNm9SmTRtJ0ocffqhevXrpp59+UmhoaJltcnNzFRgYqEWLFunhhx+WJO3atUtNmjRRVlaW2rdv72g7d+5cLVmyRJMmTVLXrl31yy+/yN/f/7L6lpeXJz8/P+Xm5srX1/f3DxYAANz0qqI+oF4CAAA3k8utD6r8TqmsrCz5+/s7CixJ6tatm1xcXLRhw4Zyt9m8ebOKiorUrVs3x7LGjRurXr16ysrKcizbuXOnJk+erL/97W9ycbn0UAsKCpSXl+f0AgAAqGrUSwAAoDqq8lAqJydHQUFBTstq1qypgIAA5eTkVLiN3W4vcwWvTp06jm0KCgr02GOPafr06apXr95l9WXq1Kny8/NzvMLDw698QAAAANcY9RIAAKiOrlsoNX78eNlstkpfu3btul6H14QJE9SkSRP913/91xVtk5ub63gdPHjwuvUPAACAegkAANzKal6vHY8dO1YDBw6stE1kZKSCg4N17Ngxp+Xnz5/XyZMnFRwcXO52wcHBKiws1KlTp5yu/h09etSxzWeffaZvv/1Wy5YtkySVPjqrdu3aeu655/TSSy+V2a+bm5vc3Nwud4gAAAC/C/USAAC4lV23UCowMFCBgYGXbNehQwedOnVKmzdvVuvWrSVdKJBKSkrUrl27crdp3bq1XF1d9emnn6pPnz6SpOzsbB04cEAdOnSQJP3zn//U2bNnHdts2rRJTzzxhNauXasGDRr83uEBAAD8btRLAADgVnbdQqnL1aRJE8XFxWnIkCGaN2+eioqKNHz4cD366KOOmWQOHTqkrl276m9/+5vatm0rPz8/DRo0SGPGjFFAQIB8fX01YsQIdejQwTGTzG8LqRMnTjiOd7mzyQAAANwIqJcAAEB1VOWhlCRlZGRo+PDh6tq1q1xcXNSnTx/NnDnTsb6oqEjZ2dk6c+aMY9mMGTMcbQsKChQbG6u//vWvVdF9AACA6456CQAAVDc2U/rwAJSRl5cnPz8/5ebmytfXt6q7AwAAbgDUB844HwAA4Lcutz64brPvAQAAAAAAABUhlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABguZpV3YEbmTFGkpSXl1fFPQEAADeK0rqgtE641VEvAQCA37rceolQqhK//vqrJCk8PLyKewIAAG40v/76q/z8/Kq6G1WOegkAAFTkUvWSzXCZr0IlJSU6fPiwfHx8ZLPZrvn+8/LyFB4eroMHD8rX1/ea7/9GcauMU7p1xnqrjFO6dcbKOKufW2WsVTFOY4x+/fVXhYaGysWFJyFQL10bt8o4pVtnrLfKOKVbZ6yMs/q5VcZ6I9dL3ClVCRcXF9WtW/e6H8fX17da/wKUulXGKd06Y71VxindOmNlnNXPrTJWq8fJHVL/Qb10bd0q45RunbHeKuOUbp2xMs7q51YZ641YL3F5DwAAAAAAAJYjlAIAAAAAAIDlCKWqkJubm1JSUuTm5lbVXbmubpVxSrfOWG+VcUq3zlgZZ/Vzq4z1VhnnrexW+YxvlXFKt85Yb5VxSrfOWBln9XOrjPVGHicPOgcAAAAAAIDluFMKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlCqisyZM0e333673N3d1a5dO23cuLGqu3RFpk6dqrvvvls+Pj4KCgrSgw8+qOzsbKc29913n2w2m9Nr6NChTm0OHDigBx54QJ6engoKCtK4ceN0/vx5K4dySS+++GKZcTRu3Nix/ty5cxo2bJhq1aolb29v9enTR0ePHnXax80wzttvv73MOG02m4YNGybp5v48v/jiC8XHxys0NFQ2m03Lly93Wm+M0aRJkxQSEiIPDw9169ZNP/zwg1ObkydPKjExUb6+vvL399egQYN0+vRppzbbt29X586d5e7urvDwcE2bNu16D81JZeMsKipScnKymjdvLi8vL4WGhqp///46fPiw0z7K+zn4y1/+4tTmRh6nJA0cOLDMGOLi4pza3Ayfp3TpsZb3O2uz2TR9+nRHm5vhM72cvynX6r+1n3/+uVq1aiU3Nzc1bNhQCxcuvN7Dw+90M9dM1EvUSzfT50m9RL1EvXRjf6bVtl4ysNw//vEPY7fbzVtvvWV27NhhhgwZYvz9/c3Ro0erumuXLTY21ixYsMB89913Ztu2baZXr16mXr165vTp0442Xbp0MUOGDDFHjhxxvHJzcx3rz58/b5o1a2a6detmtm7dalatWmVq165tJkyYUBVDqlBKSopp2rSp0ziOHz/uWD906FATHh5uPv30U/P111+b9u3bm44dOzrW3yzjPHbsmNMYMzMzjSSzevVqY8zN/XmuWrXKPPfcc+add94xksy7777rtP4vf/mL8fPzM8uXLzfffPON6d27t6lfv745e/aso01cXJxp2bKl+eqrr8zatWtNw4YNzWOPPeZYn5uba+rUqWMSExPNd999ZxYvXmw8PDzM66+/btUwKx3nqVOnTLdu3cySJUvMrl27TFZWlmnbtq1p3bq10z4iIiLM5MmTnT7ni3+vb/RxGmPMgAEDTFxcnNMYTp486dTmZvg8jbn0WC8e45EjR8xbb71lbDab2bt3r6PNzfCZXs7flGvx39off/zReHp6mjFjxpidO3eaWbNmmRo1apgPP/zQsrHiytzsNRP1EvXSzfR5Ui9RL1Ev3difaXWtlwilqkDbtm3NsGHDHO+Li4tNaGiomTp1ahX26vc5duyYkWTWrFnjWNalSxczatSoCrdZtWqVcXFxMTk5OY5lc+fONb6+vqagoOB6dveKpKSkmJYtW5a77tSpU8bV1dUsXbrUsez77783kkxWVpYx5uYZ52+NGjXKNGjQwJSUlBhjqs/n+ds/VCUlJSY4ONhMnz7dsezUqVPGzc3NLF682BhjzM6dO40ks2nTJkebDz74wNhsNnPo0CFjjDF//etfzW233eY01uTkZNOoUaPrPKLylfcH+bc2btxoJJl///vfjmURERFmxowZFW5zM4xzwIABJiEhocJtbsbP05jL+0wTEhLM/fff77TsZvtMjSn7N+Va/bf22WefNU2bNnU6Vr9+/UxsbOz1HhKuUnWrmaiXqJdulnFSL/0H9dLN83kaQ710M9ZLfH3PYoWFhdq8ebO6devmWObi4qJu3bopKyurCnv2++Tm5kqSAgICnJZnZGSodu3aatasmSZMmKAzZ8441mVlZal58+aqU6eOY1lsbKzy8vK0Y8cOazp+mX744QeFhoYqMjJSiYmJOnDggCRp8+bNKioqcvo8GzdurHr16jk+z5tpnKUKCwv197//XU888YRsNptjeXX5PC+2b98+5eTkOH2Gfn5+ateundNn6O/vrzZt2jjadOvWTS4uLtqwYYOjzb333iu73e5oExsbq+zsbP3yyy8WjebK5Obmymazyd/f32n5X/7yF9WqVUt33XWXpk+f7nQ7780yzs8///z/b+/uQpoK/ziAf/+Zm0r51nTzBUXNpEgrhcaovDGkERR5kVn0RmVYEpGJFHRRF+WVXURIF6ZBF9JFJRQUvkzKNEFxmVSSMpXAFzKmhoqav/+F/w1PvlHp3Nn/+4FgnPPs9Dz7bed897TOg9DQUCQkJCAnJweDg4POfZ5az/7+frx8+RJnzpyZs09tNf39mrJc59qGhgbFMRxt1Hz99WSemJmYl5iX1DhOgHmJeWmGJ9STecn98tLaFTkqLej79+/49euX4k0AAHq9Hl++fFmlXv2b6elpXL58Gbt27cLWrVud248ePYro6GiEh4ejtbUVBQUFaG9vx9OnTwEAfX19874Ojn3uwmg0oqysDAkJCejt7cXNmzexZ88etLW1oa+vDxqNZs5FSq/XO8eglnHO9vz5c9jtdpw6dcq5zVPq+TtH3+br++wahoaGKvavXbsWwcHBijYxMTFzjuHYFxQUtCL9/1vj4+MoKChAVlYW/P39ndsvXbqE5ORkBAcHo76+HteuXUNvby+KiooAqGOc+/btQ0ZGBmJiYtDZ2Ynr16/DbDajoaEBXl5eHllPAHj06BHWr1+PjIwMxXa11XS+a8pynWsXajM8PIyxsTH4+vquxJDoL3laZmJeYl4C1DlOgHmJeWmG2usJMC+5Y17ipBT9s4sXL6KtrQ11dXWK7dnZ2c7HiYmJCAsLQ1paGjo7OxEXF+fqbv41s9nsfJyUlASj0Yjo6Gg8efLEY7/AlJSUwGw2Izw83LnNU+pJMzfxPHz4MEQExcXFin1XrlxxPk5KSoJGo8H58+dx584daLVaV3f1rxw5csT5ODExEUlJSYiLi0NtbS3S0tJWsWcr6+HDhzh27Bh8fHwU29VW04WuKURqx7zkeZiXPBvzkmdiXnI//O97LqbT6eDl5TXnDvj9/f0wGAyr1Ku/l5ubixcvXsBisSAyMnLRtkajEQDQ0dEBADAYDPO+Do597iowMBCbNm1CR0cHDAYDJiYmYLfbFW1m11Nt4+zu7kZVVRXOnj27aDtPqaejb4t9Jg0GAwYGBhT7p6am8OPHD9XV2RGwuru7UVlZqfhXv/kYjUZMTU2hq6sLgHrGOVtsbCx0Op3iveop9XR4+/Yt2tvbl/zcAu5d04WuKct1rl2ojb+/v8d+aVYzT8pMzEvMS2qvJ/MS8xKg3no6MC+5Z17ipJSLaTQapKSkoLq62rltenoa1dXVMJlMq9izPyMiyM3NxbNnz1BTUzPnp4zzsVqtAICwsDAAgMlkwsePHxUnO8dJf8uWLSvS7+Xw8+dPdHZ2IiwsDCkpKfD29lbUs729HT09Pc56qm2cpaWlCA0Nxf79+xdt5yn1jImJgcFgUNRweHgYjY2Nihra7XY0Nzc729TU1GB6etoZNk0mE968eYPJyUlnm8rKSiQkJLjNT5cdAevr16+oqqrChg0blnyO1WrFmjVrnD/fVsM4f/ft2zcMDg4q3queUM/ZSkpKkJKSgm3bti3Z1h1rutQ1ZbnOtSaTSXEMRxs1XX//n3hCZmJeYl7ylHoyLy3OHa+tf4p5Sckda+qxeWlFbp9OiyovLxetVitlZWXy6dMnyc7OlsDAQMUd8N1dTk6OBAQESG1trWLZzNHRURER6ejokFu3bklTU5PYbDapqKiQ2NhYSU1NdR7DsRxlenq6WK1WefXqlYSEhLjFkriz5eXlSW1trdhsNnn37p3s3btXdDqdDAwMiMjMsptRUVFSU1MjTU1NYjKZxGQyOZ+vlnGKzKxqFBUVJQUFBYrtaq/nyMiItLS0SEtLiwCQoqIiaWlpca6iUlhYKIGBgVJRUSGtra1y8ODBeZc43rFjhzQ2NkpdXZ3Ex8crlsS12+2i1+vl+PHj0tbWJuXl5eLn5+fSZWIXG+fExIQcOHBAIiMjxWq1Kj63jpU26uvr5e7du2K1WqWzs1MeP34sISEhcuLECdWMc2RkRK5evSoNDQ1is9mkqqpKkpOTJT4+XsbHx53HUEM9lxqrw9DQkPj5+UlxcfGc56ulpktdU0SW51zrWOI4Pz9fPn/+LPfv31/RJY7p36k9MzEvMS+pqZ7MS8xLzEvuXVNPzUuclFol9+7dk6ioKNFoNLJz5055//79anfpjwCY909paamIiPT09EhqaqoEBweLVquVjRs3Sn5+vgwNDSmO09XVJWazWXx9fUWn00leXp5MTk6uwogWlpmZKWFhYaLRaCQiIkIyMzOlo6PDuX9sbEwuXLggQUFB4ufnJ4cOHZLe3l7FMdQwThGR169fCwBpb29XbFd7PS0Wy7zv15MnT4rIzDLHN27cEL1eL1qtVtLS0ua8BoODg5KVlSXr1q0Tf39/OX36tIyMjCjafPjwQXbv3i1arVYiIiKksLDQVUMUkcXHabPZFvzcWiwWERFpbm4Wo9EoAQEB4uPjI5s3b5bbt28rwom7j3N0dFTS09MlJCREvL29JTo6Ws6dOzfnC6wa6imy9HtXROTBgwfi6+srdrt9zvPVUtOlrikiy3eutVgssn37dtFoNBIbG6v4O8g9qTkzMS8xL6mpnsxLzEvMS+5dU0/NS//53+CIiIiIiIiIiIhchveUIiIiIiIiIiIil+OkFBERERERERERuRwnpYiIiIiIiIiIyOU4KUVERERERERERC7HSSkiIiIiIiIiInI5TkoREREREREREZHLcVKKiIiIiIiIiIhcjpNSRERERERERETkcpyUIiIiIiIiIiIil+OkFBERERERERERuRwnpYiIiIiIiIiIyOU4KUVERERERERERC73X6fFjt1ojFcaAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "list_metrics = evaluation.get_monitoring_metrics()\n",
+ "row=0\n",
+ "col=0\n",
+ "rows = (len(list_metrics)+1)//2\n",
+ "\n",
+ "fig, axes = plt.subplots(nrows=rows, ncols=2, sharex=True, squeeze=False, figsize=(12,8*rows))\n",
+ "for metric in list_metrics:\n",
+ " df = evaluation.get_monitoring_metric(metric)\n",
+ " ax = df.plot(ax=axes[row,col], kind='line', title=metric, layout=(rows,2))\n",
+ " col = col + 1\n",
+ " if col > 1:\n",
+ " row = row + 1\n",
+ " col = 0\n",
+ "plt.legend(loc='best')\n",
+ "plt.tight_layout()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Plot some Aggregations\n",
+ "\n",
+ "#### Compute Time"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAANsAAADsCAYAAAD9/NNVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAugklEQVR4nO3deVwTd/4/8NckkECAEEAgYEGgCorihYrR1rZKRZd1tZdnV9ZWW692XV1r/dZzW4tH19p2rbbdKj2s169qDxW1iLpVQEHwAMSjKFQJoBjCEQIk798fkSmRQ8KRAPk8H488SObzycx7Yl5OMpn5DEdEBIZh2pzA0gUwjLVgYWMYM2FhYxgzYWFjGDNhYWMYM2FhYxgzYWFjGDNhYWMYM2FhYxgzYWFjLMLPzw+bNm2ydBlmxcLWipRKJd544w0EBARALBbDx8cH48aNQ1xcnKVLa5KYmBjIZLIWzePEiRPgOK7R24kTJ3Du3Dm89tprrVN4B2Fj6QI6i5s3b2L48OGQyWTYsGEDQkJCUFVVhSNHjmDevHm4cuWKpUs0i2HDhiEvL49//Pe//x1qtRrbt2/np7m6ukIkElmiPMsiplWMHTuWunbtSqWlpXXa7t+/z9+/desW/eUvfyEHBwdycnKil156iZRKJd++cuVK6tevH3355Zfk4+NDDg4ONGfOHKqurqZ169aRp6cnubu703vvvWe0DAD06aef0pgxY8jOzo78/f1p7969fHt8fDwBMKolNTWVAFB2djbfXvu2cuVKIiKqqKigRYsWkbe3N0kkEhoyZAjFx8c36XWJioqi8ePH15nerVs3+vDDD43q37p1K0VGRpK9vT317NmTzpw5Q9euXaOnnnqKJBIJKRQKun79utF8Dhw4QAMGDCCxWEz+/v60atUqqqqqalJt5sbC1gru3btHHMfR+++/32g/nU5H/fv3pyeeeIKSk5MpMTGRQkND6amnnuL7rFy5khwdHenFF1+k9PR0+vHHH0kkElFERAS98cYbdOXKFdq2bRsBoMTERP55AMjNzY2++OILysrKomXLlpFQKKSMjAwienTYtFotbdq0iaRSKeXl5VFeXh6VlJQQEdHMmTNp2LBhdOrUKbp+/Tpt2LCBxGIxXb169ZGvjSlh69q1K+3evZuysrJowoQJ5OfnRyNHjqTY2FjKyMigoUOH0pgxY/jnnDp1iqRSKcXExNCNGzfo6NGj5OfnR6tWrXpkXZbAwtYKkpKSCADt27ev0X5Hjx4loVBIOTk5/LT09HQCQGfPniUiQ9gkEgmp1Wq+T0REBPn5+ZFOp+OnBQUFUXR0NP8YAM2ePdtoeWFhYTRnzhwienTYiIi2b99Ozs7ORvO4desWCYVCun37ttH0UaNG0dKlSxtdXyLTwrZs2TL+cUJCAgGgL7/8kp+2c+dOsrOzM6rh4f/gvvnmG/Ly8npkXZbAvrO1AmriKYGZmZnw8fGBj48PPy04OBgymQyZmZkYPHgwAMOeOicnJ76Pp6cnhEIhBAKB0bSCggKj+SsUijqP09LSTF0dI5cuXYJOp0NgYKDRdK1WCzc3txbN+2F9+/bl73t6egIAQkJCjKZVVFRArVZDKpXiwoULOH36NNasWcP30el0qKioQHl5OSQSSavW11IsbK2gR48e4Diu1XaC2NraGj3mOK7eaXq9vsnzrAlq7f8YqqqqHvm80tJSCIVCpKSkQCgUGrU5Ojo2eflNUXsdOY5rcFrNepeWlmL16tV4/vnn68zLzs6uVWtrDWzXfytwdXVFREQENm/ejLKysjrtKpUKANCrVy/k5uYiNzeXb8vIyIBKpUJwcHCL60hMTKzzuFevXgAAd3d3ADDaU/jwVk8kEkGn0xlNGzBgAHQ6HQoKCtC9e3ejm1wub3HNLTFw4EBkZWXVqat79+5GnwLai/ZXUQe1efNm6HQ6DBkyBN9//z2uXbuGzMxMfPzxx/zHu/DwcISEhGDatGk4f/48zp49i+nTp+Opp57CoEGDWlzD3r17sW3bNly9ehUrV67E2bNnMX/+fABA9+7d4ePjg1WrVuHatWs4ePAg/v3vfxs938/PD6WlpYiLi8Pdu3dRXl6OwMBATJs2DdOnT8e+ffuQnZ2Ns2fPIjo6GgcPHmxxzS2xYsUKfP3111i9ejXS09ORmZmJXbt2YdmyZRatqyEsbK0kICAA58+fxzPPPINFixahT58+ePbZZxEXF4ctW7YAMHwM+uGHH+Di4oIRI0YgPDwcAQEB2L17d6vUsHr1auzatQt9+/bF119/jZ07d/JbTFtbW+zcuRNXrlxB3759sW7dOrz33ntGzx82bBhmz56NSZMmwd3dHevXrwcAbN++HdOnT8eiRYsQFBSECRMm4Ny5c/D19W2VupsrIiICP//8M44ePYrBgwdj6NCh+PDDD9GtWzeL1tUQjpr67Z5p1ziOw/79+zFhwgRLl8I0gG3ZGMZMWNgYxkzYrv9Ogn0baP/Ylo1hzISFjWHMhIWNYcyk035n0+v1uHPnDpycnPjDfBimLRARSkpK4O3t3eiRK502bHfu3DE64Jdh2lpubi4ee+yxBts7bdhqjprPzc2FVCq1cDVMZ6ZWq+Hj42N0pkZ9Om3Yaj46SqVSFjbGLB71dYXtIGEYM2FhYxgzsc6w6aoAVe6j+zFMK7K+sOUkAh/2Afb81dKVMFbG+sLm1h3QFAF3UoHb5y1dDWNFrC9sDl2A4PGG+8lfWrYWxqpYX9gAYNCrhr+Xvgc09y1bC2M1rDNsvkMBj95AtQa4sMvS1TBWwjrDxnHA4FcM95O3AexcMMYMrDNsANB3EiByBO5eBW7+z9LVMFbAesMmdgL6TjTcP8d2lDBtz2rDptfTHztKrvwMlCgtWxDT6Vld2K4XlGDujhTM++48IO8D+IQB+mrg/DeWLo3p5KwubACHQ5eUOJKuxB2V5o+tW0oMoNc1+kyGaQmrC1t3D0cMDXCFnoBdZ3MMP3DbuwLq34GrRyxdHtOJWV3YAODloYbhqXedy0WVQAQMeNnQwI4oYdqQVYZtdLAcXRxFKCjRIi4zHxg0w9BwPQ4oyrZscUynZZVhE9kIMHGQYXySHUk5gGsA8PgoAASkbG/8yQzTTFYZNgCYMsQXHAf879pdZN8tAwY/2FFy/hugqsKyxTGdkklh27JlC/r27cuP66FQKHD48GG+vaKiAvPmzYObmxscHR3xwgsvID8/32geOTk5iIyMhEQigYeHBxYvXozq6mqjPidOnMDAgQMhFovRvXt3xMTENH8NG+DjKsHTgYYLBO48mwP0iACkXQ2n32T80OrLYxiTwvbYY49h7dq1SElJQXJyMkaOHInx48cjPT0dAPCPf/wDP/30E/bu3YuTJ0/izp07Rpdg1el0iIyMRGVlJc6cOYOvvvoKMTExWLFiBd8nOzsbkZGReOaZZ5CWloYFCxZg5syZOHKk9fcUTgsz7CjZm5yLCj0HhP7N0MB2lDBtoZkXvue5uLjQf//7X1KpVGRra0t79+7l2zIzMwkAJSQkEBHRoUOHSCAQkFKp5Pts2bKFpFIpabVaIiJ66623qHfv3kbLmDRpEkVERJhUV3FxMQGg4uLiBvtU6/SkeP8X6rbkZ9p3PpdInUe02pVopZQo75JJy2OsV1Pea0REzf7OptPpsGvXLpSVlUGhUCAlJQVVVVUIDw/n+/Ts2RO+vr5ISEgAACQkJCAkJASenp58n4iICKjVan7rmJCQYDSPmj4182iIVquFWq02uj2KUMBhyhDD1TN3JOYATnKg558NjWzrxrQyk8N26dIlODo6QiwWY/bs2di/fz+Cg4OhVCohEokgk8mM+nt6ekKpNBx3qFQqjYJW017T1lgftVoNjUbTYF3R0dFwdnbmb00dDXnSYB8IBRySb93HFaX6jx0lF/cA2pImzYNhmsLksAUFBSEtLQ1JSUmYM2cOoqKikJGR0Ra1mWTp0qUoLi7mb7m5TRs9y0Nqh9HBhnDvSMwB/J4EugQClaXAxda51jXDAM0Im0gkQvfu3REaGoro6Gj069cPH330EeRyOSorK6FSqYz65+fnQy6XAwDkcnmdvZM1jx/VRyqVwt7evsG6xGIxv5fU1FGQa44o2Z96G2WVOmDQgxNLz7ETS5nW0+Lf2fR6PbRaLUJDQ2Fra4u4uDi+LSsrCzk5OVAoFAAAhUKBS5cuoaCggO9z7NgxSKVSBAcH831qz6OmT8082oIiwA3+XRxQqq3GjxfuAP2mADb2QEE6kJvUZstlrIwpe13efvttOnnyJGVnZ9PFixfp7bffJo7j6OjRo0RENHv2bPL19aXjx49TcnIyKRQKUigU/POrq6upT58+NHr0aEpLS6PY2Fhyd3enpUuX8n1+++03kkgktHjxYsrMzKTNmzeTUCik2NhYU0pt8h6iGp+fvEHdlvxMf/roFOn1eqIDcw17Jf/fTJOWy1ifpr7XTArbK6+8Qt26dSORSETu7u40atQoPmhERBqNhubOnUsuLi4kkUjoueeeo7y8PKN53Lx5k8aOHUv29vbUpUsXWrRoEVVVVRn1iY+Pp/79+5NIJKKAgADavn27KWUSkelhKyrVUo93DlG3JT9Tas59ot9TDGH7Vxei0kKTl89Yj6a+1ziizvmlRK1Ww9nZGcXFxU3+/rZwdxr2pd7GS6GPYcNL/YDPnzYM5hq+GnhiQZvWy3RcTX2vWe2xkfWZNtTwm9tPF++guLyq1oml2wG93oKVMZ0BC1stA31d0FPuhIoqPb4//zvQ5wXAzhm4fxO4cdzS5TEdHAtbLRzHYdqDnwF2JN0C2doD/aYaGtkRJUwLsbA9ZEJ/b0hEQtwoLENSdtEfv7ldjWWXmWJahIXtIU52thjfvysA4NvEW4B7oOGoEtIbBgVimGZiYavHtDDDjpIj6UoUlmiBwTMNDee/BqorLVgZ05GxsNWjT1dn9PeRoUpH2JuSC/SMBBzlQFmBYUBXhmkGFrYG1GzdvkvKgZ6zAQZONzQkb7NgVUxHxsLWgD/39YbUzga/39fg5LVCIDQK4ASGi3AUZlm6PKYDYmFrgL1IiBdDH4zAlZgDOD8GBI41NLKtG9MMLGyNmPrgo+TxK/mGocprrumWthOoLLNgZUxHxMLWiDpDlQeMBFz8AW0xcPl7S5fHdDAsbI9gNFQ54Y/Rk9k13RgTsbA9Qp2hyvu/DAjFQF4acDvF0uUxHQgL2yPUHqr828QcwMEN6D3B0HiO7Shhmo6FrQlqhir/9fqDocprTr25/D2guW/Z4pgOg4WtCeoMVe4zBPDsA1RrDHsmGaYJWNiayGio8mr9H2cDJH/JRuBimoSFrYme6ekBb2c73C+vwuHLeUDfiYDIEbh3Hcg+aenymA6Aha2J6gxVLnYC+k02NLKfAZgmYGEzQZ2hymt2lFw5CKjzLFsc0+6xsJmgzlDlnsGArwIgneFcN4ZpBAubiYyGKtdW/7F1O/df4E6a5Qpj2j0WNhPVGao8+C+Ai5/hxNIvRgJx7wLVWkuXybRDLGwmEgg4TH2wo+TbxFsgoQh49RcgeILh4+T/PgA+GwH8nmzZQpl2h4WtGV4MfQwiGwHS76hx4fdiwNEdmPgVMPFrwMEdKLwCfPkscHQZUNXwNeUY68LC1gwuDiL8OcQLALAj8dYfDcHjgXlngb6TDKNxnfkE2DIcuNX4VVMZ68DC1kx1hiqvIXEFnv8cmLIbcPICim4A28cCh5ewE06tHAtbM9UZqvxhQWOAuYnAgJcBEJC0FfhUAWSfMnutTPvAwtZMdYYqr+/4SHsZMH4z8PI+wNkHUN0CvhoH/PwPdr1uK8TC1gJ1hipvSPdRwJwztQ5e3mbYyl3/xTyFMu0CC1sL1B6q/LOTN3Dp92IoiytQravn8lJ2UuDPHwLTfwRk3YDiXODbF4Af5gEalXkLZyzCpLBFR0dj8ODBcHJygoeHByZMmICsLOMxFCsqKjBv3jy4ubnB0dERL7zwQp0L0ufk5CAyMhISiQQeHh5YvHgxqqurjfqcOHECAwcOhFgsRvfu3RETE9O8NWxjNYO5xmcVYtx/fsXQ6Dj0WHYYoe8ew5hNp/DXL5OwcE8a1h6+gi9/zcZPJT1wduxBFPd9FQQOSP0W+HQokBVr4TWxIkSG6+3pqgwHIFRpAG0pUKE2/MdXXgSU3QVKCwzHvBbfBlQ5hr8tYGNK55MnT2LevHkYPHgwqqur8X//938YPXo0MjIy4ODgAAD4xz/+gYMHD2Lv3r1wdnbG/Pnz8fzzz+P06dMAAJ1Oh8jISMjlcpw5cwZ5eXmYPn06bG1t8f777wMAsrOzERkZidmzZ2PHjh2Ii4vDzJkz4eXlhYiIiBatcGvr09UZb47sjuNZBSgs0eJuaSV0esK9skrcK6vEFWVD381GYRDXFR+IvoBfSR6wcxKSHMMR778Qji4ecJaIIOQ42Ag4CAQchAJAKBBAyBnuCzgONkIOAo6DUMDBRl8FO20h7DVKiDX5EJcrISrPh6hcCdtyJYQV9yEAgeMIAgAc6MF5eAQQHvylpv/lBIattb0LYCczfD9tyn1bCcBxTX+BiQxh0NwHKlSGvxrVox9XFBvCRPoHN53hr16HBytsui5BwPyzzXsugBZd5rewsBAeHh44efIkRowYgeLiYri7u+O7777Diy++CAC4cuUKevXqhYSEBAwdOhSHDx/Gn//8Z9y5cweenoaDerdu3YolS5agsLAQIpEIS5YswcGDB3H58mV+WZMnT4ZKpUJsbNO2AM25zG9r0OkJ98srUaDWorBUiwJ1BQpLtSgs0aKgxPC35laqrYYYlVhosxczhYcg5AiF5IxlVTNwRD+En6cjyuHJ3YcXVwQ5VwQ5HvzliiDn7sOTK4I7pzbbOrYECUTQiZ2ht3MGiWXQ28lAdjKQ2AlcZSmguQ9OWwxBhQqCChWE2mII9Ja5mAmBAzgBiBMCHIdK2eOwe6Pub6ZNfa+ZtGV7WHFxMQDA1dUVAJCSkoKqqiqEh4fzfXr27AlfX18+bAkJCQgJCeGDBgARERGYM2cO0tPTMWDAACQkJBjNo6bPggULGqxFq9VCq/3jmES12jJvPqGAQxdHMbo4ih/Zt7yy+kHwnkLirbPofXYp3Mt+w2eiTbglDoRIXwFZ9V3YU3mTll0JGxRybijk3FAANxTABUq4IR+uuKtzQlk1Qad/8CaC4a/hVvc+Gphec18IPZxQDhlXBmeUwZkrgzNX+sd9lEH24LGUK4MMZbDldOD0lbDRFAKaQpNe1yoSohgOKCYHFMMBKnLk/6rhABUZ2lRwRDE5QA0HVMIGOghAxEEPgeE+OOjBQQcB9OBAD6brYehT+y9gvAUOsHdAS64/2+yw6fV6LFiwAMOHD0efPn0AAEqlEiKRCDKZzKivp6cnlEol36d20Graa9oa66NWq6HRaGBvb1+nnujoaKxevbq5q2MREpENurnZoJubA+A3Bhj+DHByHfDrJnTTXjXuLHYGpF6A1Btw8jb8lXoB0q6GH8+lXSGSuKIrx6FrA8sjIlTq9Kio1KO8qhrllTpoKnUor9ShvLL6j/tVOmgqjds1VTX3DdMrqnSoIMIdPfA7EfRE0BOg1xvu64ig1+PBdIJOR7AjDRyoFE5UAicqgyOVQkolcEIZHKCBBvYo5RxQKpCiTOCIMoETyoWGW6XAHrZCIYQCDrbCBx+dhQLY1P4r4GAn5OAoEMBXwIGIoHtQk05fU5Phr+5BndW6B/Xpjfvy02r1lzvbtejfu9lhmzdvHi5fvoxff/21RQW0lqVLl2LhwoX8Y7VaDR8fHwtW1Aw2YmDUCsPhXnfSACfPP8Ikdmzx7DmOg9hGCLGNEM6wbXm9jEmaFbb58+fj559/xqlTp/DYY4/x0+VyOSorK6FSqYy2bvn5+ZDL5Xyfs2eNv2TW7K2s3efhPZj5+fmQSqX1btUAQCwWQyx+9Ee3DsE9yHBjOhWTdv0TEebPn4/9+/fj+PHj8Pf3N2oPDQ2Fra0t4uLi+GlZWVnIycmBQqEAACgUCly6dAkFBQV8n2PHjkEqlSI4OJjvU3seNX1q5sEwHRKZYM6cOeTs7EwnTpygvLw8/lZeXs73mT17Nvn6+tLx48cpOTmZFAoFKRQKvr26upr69OlDo0ePprS0NIqNjSV3d3daunQp3+e3334jiURCixcvpszMTNq8eTMJhUKKjY1tcq3FxcUEgIqLi01ZRYYxWVPfayaFDUC9t+3bt/N9NBoNzZ07l1xcXEgikdBzzz1HeXl5RvO5efMmjR07luzt7alLly60aNEiqqqqMuoTHx9P/fv3J5FIRAEBAUbLaAoWNsZcmvpea9HvbO2ZpX5nY6xPU99r7NhIhjETFjaGMRMWNoYxkxYdrtUZ6HQ6VFVVPbojAwCwtbWFUCi0dBkdktWGjYigVCqhUqksXUqHI5PJIJfLwZly9D5jvWGrCZqHhwckEgl74zQBEaG8vJw/IMHLy8vCFXUsVhk2nU7HB83Nzc3S5XQoNYfLFRQUwMPDg32kNIFV7iCp+Y4mkUgsXEnHVPO6se+6prHKsNVgHx2bh71uzWPVYWMYc2Jhs1Icx+HAgQOWLsOqsLAxjJmwsDGMmbCwPeTpp5/Gm2++ibfeeguurq6Qy+VYtWoV337z5k1wHIe0tDR+mkqlAsdxOHHiBADDmJccx+HIkSMYMGAA7O3tMXLkSBQUFODw4cPo1asXpFIppk6divLyhgfziYmJgUwmw4EDB9CjRw/Y2dkhIiICubm5Rv22bNmCxx9/HCKRCEFBQfjmm2+M2q9du4YRI0bAzs4OwcHBOHbsmFF7ZWUl5s+fDy8vL9jZ2aFbt26Ijo5u3gvINIiFrR5fffUVHBwckJSUhPXr1+Nf//pXnTdoU6xatQr/+c9/cObMGeTm5mLixInYtGkTvvvuOxw8eBBHjx7FJ5980ug8ysvLsWbNGnz99dc4ffo0VCoVJk+ezLfv378ff//737Fo0SJcvnwZr7/+OmbMmIH4+HgAhoGZnn/+eYhEIiQlJfHDBtb28ccf48cff8SePXuQlZWFHTt2wM/Pz+T1ZR7BDOfWWURjJ/RpNBrKyMggjUZTp+2pp56iJ554wmja4MGDacmSJURElJ2dTQAoNTWVb79//z4BoPj4eCIynPgKgH755Re+T3R0NAGgGzdu8NNef/11ioiIaHAdtm/fTgAoMTGRn5aZmUkAKCkpiYiIhg0bRrNmzTJ63ksvvUR/+tOfiIjoyJEjZGNjQ7dv3+bbDx8+TABo//79RET0xhtv0MiRI0mv1zdYS22NvX7WqKknj7ItWz369u1r9NjLy8tozJTmzMfT0xMSiQQBAQFG0x41XxsbGwwePJh/3LNnT8hkMmRmZgIAMjMzMXz4cKPnDB8+3Kjdx8cH3t7efPvDY7n87W9/Q1paGoKCgvDmm2/i6NGjJq4p0xQsbPWwtTUe5o3jOOj1hotlCASGl4xqneDe0JEUtefDcVyj87WkgQMHIjs7G++++y40Gg0mTpzIj2jNtB4WNhO5u7sDAPLy8vhptXeWtLbq6mokJyfzj7OysqBSqdCrVy8AQK9evfjrKNQ4ffo0P1JZr169kJuba1RvYmJineVIpVJMmjQJX3zxBXbv3o3vv/8eRUWNXAaLMZlVHojcEvb29hg6dCjWrl0Lf39/FBQUYNmyZW22PFtbW7zxxhv4+OOPYWNjg/nz52Po0KEYMsRwLYDFixdj4sSJGDBgAMLDw/HTTz9h3759+OUXw7XfwsPDERgYiKioKGzYsAFqtRrvvPOO0TI2btwILy8vDBgwAAKBAHv37oVcLq8zsjXTMmzL1gzbtm1DdXU1QkNDsWDBArz33ntttiyJRIIlS5Zg6tSpGD58OBwdHbF7926+fcKECfjoo4/wwQcfoHfv3vjss8+wfft2PP300wAMH3v3798PjUaDIUOGYObMmVizZo3RMpycnLB+/XoMGjQIgwcPxs2bN3Ho0CH+IzPTOqxydK2KigpkZ2fD398fdnYtG7+9LcXExGDBggXt7gTXjvL6mQsbXYth2hkWNoYxExa2duxvf/tbu/sIyTQfCxvDmAkLG8OYCQsbw5gJCxvDmAkLG8OYCQsbw5iJyWE7deoUxo0bB29v73oHjSEirFixAl5eXrC3t0d4eDiuXbtm1KeoqAjTpk2DVCqFTCbDq6++itLSUqM+Fy9exJNPPgk7Ozv4+Phg/fr1pq8dw7QjJoetrKwM/fr1w+bNm+ttX79+PT7++GNs3boVSUlJcHBwQEREBCoqKvg+06ZNQ3p6Oo4dO4aff/4Zp06dwmuvvca3q9VqjB49Gt26dUNKSgo2bNiAVatW4fPPP2/GKlqnR/2nyFhAS85QRa2zfYmI9Ho9yeVy2rBhAz9NpVKRWCymnTt3EhFRRkYGAaBz587xfQ4fPkwcx/FnE3/66afk4uJCWq2W77NkyRIKCgpqcm3NPVO7szh06BC98847tG/fvjr/Ti1lDa+fKZp6pnarnmKTnZ0NpVKJ8PBwfpqzszPCwsKQkJCAyZMnIyEhATKZDIMGDeL7hIeHQyAQICkpCc899xwSEhIwYsQIiEQivk9ERATWrVuH+/fvw8XFpc6ytVottFot/1itVrfmqvGICJoqXZvM+1HsbYVNHo147NixGDt2bBtXxJiiVcOmVCoBGE73r83T05NvUyqV8PDwMC7Cxgaurq5Gffz9/evMo6atvrBFR0dj9erVrbMijdBU6RC84kibL6c+Gf+KgETETkHsqDrN3silS5eiuLiYvz083BvDWFqr/jcpl8sBAPn5+UbX7srPz0f//v35Pg8PclNdXY2ioiL++XK5HPn5+UZ9ah7X9HmYWCyGWCxulfVojL2tEBn/imjz5TS0bKbjatUtm7+/P+RyOeLi4vhparUaSUlJ/IhOCoUCKpUKKSkpfJ/jx49Dr9cjLCyM73Pq1CmjgXSOHTuGoKCgej9CmhPHcZCIbCxyY1eP6dhMDltpaSnS0tL4QW6ys7ORlpaGnJwccBzHDxPw448/4tKlS5g+fTq8vb0xYcIEAIYBaMaMGYNZs2bh7NmzOH36NObPn4/Jkyfzw61NnToVIpEIr776KtLT07F792589NFHWLhwYautOMOYnam7OWsGIH34FhUVRUSG3f/Lly8nT09PEovFNGrUKMrKyjKax71792jKlCnk6OhIUqmUZsyYQSUlJUZ9Lly4QE888QSJxWLq2rUrrV271qQ6rX3Xf0lJCaWmplJqaioBoI0bN1JqairdunWrxfO2htfPFE3d9c/GIOmkY2icOHECzzzzTJ3pUVFRiImJadG8reH1M0VTxyBh+5E7qaeffhqd9P/RDqvT7PpnmPaOhY1hzISFjWHMhIWNYcyEhY1hzISFjWHMhIWNYcyEhY1hzISFjWHMhIWNYcyEha2T0ul0WL58Ofz9/WFvb4/HH38c7777LjuEy4LYsZGd1Lp167BlyxZ89dVX6N27N5KTkzFjxgw4OzvjzTfftHR5VomFzVREQFW5ZZZtKwGaeALpmTNnMH78eERGRgIA/Pz8sHPnTpw9e7YtK2QawcJmqqpy4H1vyyz7/+4AIocmdR02bBg+//xzXL16FYGBgbhw4QJ+/fVXbNy4sY2LZBrCwtZJvf3221Cr1ejZsyeEQiF0Oh3WrFmDadOmWbo0q8XCZipbiWELY6llN9GePXuwY8cOfPfdd+jduzfS0tKwYMECeHt7Iyoqqg2LZBrCwmYqjmvyRzlLWrx4Md5++21MnjwZABASEoJbt24hOjqahc1C2K7/Tqq8vBwCgfE/r1AohF6vt1BFDNuydVLjxo3DmjVr4Ovri969eyM1NRUbN27EK6+8YunSrBYLWyf1ySefYPny5Zg7dy4KCgrg7e2N119/HStWrLB0aVaLha2TcnJywqZNm7Bp0yZLl8I8wL6zMYyZsLAxjJmwsDGMmbCwMYyZWHXY2OkmzcNet+axyrDZ2toCMPzwy5iu5nWreR2ZprHKXf9CoRAymYy/KKNEImHXPmsCIkJ5eTkKCgogk8kgFLKLM5rCKsMG/HEF04evgso8mkwma/AKsEzDrDZsHMfBy8sLHh4eRlc4ZRpna2vLtmjNZLVhqyEUCtmbhzGLdr2DZPPmzfDz84OdnR3CwsLYKf1Mh9Zuw7Z7924sXLgQK1euxPnz59GvXz9ERESw71hMh9Vuw7Zx40bMmjULM2bMQHBwMLZu3QqJRIJt27ZZujSGaZZ2+Z2tsrISKSkpWLp0KT9NIBAgPDwcCQkJ9T5Hq9VCq9Xyj4uLiwEYrnfMMG2p5j32qB/722XY7t69C51OB09PT6Ppnp6euHLlSr3PiY6OxurVq+tM9/HxaZMaGeZhJSUlcHZ2brC9XYatOZYuXYqFCxfyj/V6PYqKiuDm5tYhf7BWq9Xw8fFBbm4upFKppcsxm4643kSEkpISeHs3PsRhuwxbly5dIBQKkZ+fbzQ9Pz+/wR9TxWIxxGKx0TSZTNZWJZqNVCrtMG+61tTR1ruxLVqNdrmDRCQSITQ0FHFxcfw0vV6PuLg4KBQKC1bGMM3XLrdsALBw4UJERUVh0KBBGDJkCDZt2oSysjLMmDHD0qUxTLO027BNmjQJhYWFWLFiBZRKJfr374/Y2Ng6O006K7FYjJUrV9b5aNzZdeb15oidnMQwZtEuv7MxTGfEwsYwZsLCxjBmwsLGMGbCwtZKVq1aBY7jjG49e/bk2ysqKjBv3jy4ubnB0dERL7zwQp0f7XNychAZGQmJRAIPDw8sXrwY1dXVRn1OnDiBgQMHQiwWo3v37oiJialTS1uemnTq1CmMGzcO3t7e4DgOBw4cMGonIqxYsQJeXl6wt7dHeHg4rl27ZtSnqKgI06ZNg1QqhUwmw6uvvorS0lKjPhcvXsSTTz4JOzs7+Pj4YP369XVq2bt3L3r27Ak7OzuEhITg0KFDJtdiVsS0ipUrV1Lv3r0pLy+PvxUWFvLts2fPJh8fH4qLi6Pk5GQaOnQoDRs2jG+vrq6mPn36UHh4OKWmptKhQ4eoS5cutHTpUr7Pb7/9RhKJhBYuXEgZGRn0ySefkFAopNjYWL7Prl27SCQS0bZt2yg9PZ1mzZpFMpmM8vPzW2U9Dx06RO+88w7t27ePAND+/fuN2teuXUvOzs504MABunDhAv3lL38hf39/0mg0fJ8xY8ZQv379KDExkf73v/9R9+7dacqUKXx7cXExeXp60rRp0+jy5cu0c+dOsre3p88++4zvc/r0aRIKhbR+/XrKyMigZcuWka2tLV26dMmkWsyJha2VrFy5kvr161dvm0qlIltbW9q7dy8/LTMzkwBQQkICERnexAKBgJRKJd9ny5YtJJVKSavVEhHRW2+9Rb179zaa96RJkygiIoJ/PGTIEJo3bx7/WKfTkbe3N0VHR7d4HR/2cNj0ej3J5XLasGEDP02lUpFYLKadO3cSEVFGRgYBoHPnzvF9Dh8+TBzH0e3bt4mI6NNPPyUXFxd+vYmIlixZQkFBQfzjiRMnUmRkpFE9YWFh9Prrrze5FnNjHyNb0bVr1+Dt7Y2AgABMmzYNOTk5AICUlBRUVVUhPDyc79uzZ0/4+vrypwwlJCQgJCTE6Ef7iIgIqNVqpKen831qz6OmT808ak5Nqt3nUacmtabs7GwolUqj5Ts7OyMsLMxoPWUyGQYNGsT3CQ8Ph0AgQFJSEt9nxIgREIlEfJ+IiAhkZWXh/v37fJ/GXoum1GJuLGytJCwsDDExMYiNjcWWLVuQnZ2NJ598EiUlJVAqlRCJRHUOjPb09IRSqQQAKJXKek8pqmlrrI9arYZGo2n01KSaebSlmmU0tnylUgkPDw+jdhsbG7i6urbKa1G7/VG1mFu7PVyroxk7dix/v2/fvggLC0O3bt2wZ88e2NvbW7Aypr1gW7Y2IpPJEBgYiOvXr0Mul6OyshIqlcqoT+1ThuRyeb2nFNW0NdZHKpXC3t6+WacmtaaaZTS2fLlcXmccmerqahQVFbXKa1G7/VG1mBsLWxspLS3FjRs34OXlhdDQUNja2hqdMpSVlYWcnBz+lCGFQoFLly4ZvRGPHTsGqVSK4OBgvk/tedT0qZmHpU9N8vf3h1wuN1q+Wq1GUlKS0XqqVCqkpKTwfY4fPw69Xo+wsDC+z6lTp4zG8zx27BiCgoLg4uLC92nstWhKLWZnkd0yndCiRYvoxIkTlJ2dTadPn6bw8HDq0qULFRQUEJFh17+vry8dP36ckpOTSaFQkEKh4J9fs+t/9OjRlJaWRrGxseTu7l7vrv/FixdTZmYmbd68ud5d/2KxmGJiYigjI4Nee+01kslkRns5W6KkpIRSU1MpNTWVANDGjRspNTWVbt26RUSG3e0ymYx++OEHunjxIo0fP77eXf8DBgygpKQk+vXXX6lHjx5Gu/5VKhV5enrSX//6V7p8+TLt2rWLJBJJnV3/NjY29MEHH1BmZiatXLmy3l3/j6rFnFjYWsmkSZPIy8uLRCIRde3alSZNmkTXr1/n2zUaDc2dO5dcXFxIIpHQc889R3l5eUbzuHnzJo0dO5bs7e2pS5cutGjRIqqqqjLqEx8fT/379yeRSEQBAQG0ffv2OrV88skn5OvrSyKRiIYMGUKJiYmttp7x8fEEoM4tKiqKiAy73JcvX06enp4kFotp1KhRlJWVZTSPe/fu0ZQpU8jR0ZGkUinNmDGDSkpKjPpcuHCBnnjiCRKLxdS1a1dau3ZtnVr27NlDgYGBJBKJqHfv3nTw4EGj9qbUYk7sFBuGMRP2nY1hzISFjWHMhIWNYcyEhY1hzISFjWHMhIWNYcyEhY1hzISFjWHMhIWNYcyEha2De/rpp7FgwQJLl8Frb/W0JyxsDCorKy1dgnWw2FGZTItFRUXVOSD4+vXr9Morr5Cfnx/Z2dlRYGAgbdq0qc7zxo8fT++99x55eXmRn58fERmOpO/Xrx+JxWIKDQ2l/fv3EwBKTU3ln3vp0iUaM2YMOTg4kIeHB7388sv8wEb11ZOdnW2ul6PdY2HrwFQqFSkUCpo1axY/oldFRQWtWLGCzp07R7/99ht9++23JJFIaPfu3fzzoqKiyNHRkT+F5fLly1RcXEyurq708ssvU3p6Oh06dIgCAwONwnb//n3+tJ/MzEw6f/48Pfvss/TMM880WE91dbUlXpp2iQ2L0IE5OztDJBJBIpEYnX1c+3LH/v7+SEhIwJ49ezBx4kR+uoODA/773//yg+ps3boVHMfhiy++gJ2dHYKDg3H79m3MmjWLf85//vMfDBgwAO+//z4/bdu2bfDx8cHVq1cRGBhYbz2MAQtbJ7R582Zs27YNOTk50Gg0qKysRP/+/Y36hISEGI1elZWVhb59+8LOzo6fNmTIEKPnXLhwAfHx8XB0dKyzzBs3biAwMLB1V6STYWHrZHbt2oV//vOf+Pe//w2FQgEnJyds2LCBHyauhoODg8nzLi0txbhx47Bu3bo6bV5eXs2u2VqwsHVwIpEIOp2Of3z69GkMGzYMc+fO5afduHHjkfMJCgrCt99+C61Wy1+I8Ny5c0Z9Bg4ciO+//x5+fn6wsan/rfNwPcwf2K7/Ds7Pzw9JSUm4efMm7t69ix49eiA5ORlHjhzB1atXsXz58jqhqc/UqVOh1+vx2muvITMzE0eOHMEHH3wAAOA4DgAwb948FBUVYcqUKTh37hxu3LiBI0eOYMaMGXzAHq5Hr9e33cp3MCxsHdw///lPCIVCBAcHw93dHREREXj++ecxadIkhIWF4d69e0ZbuYZIpVL89NNPSEtLQ//+/fHOO+9gxYoVAMB/j/P29sbp06eh0+kwevRohISEYMGCBZDJZBAIBPXWUzMqNMMu88s0YseOHZgxYwaKi4vZQLOtgH1nY3hff/01AgIC0LVrV1y4cAFLlizBxIkTWdBaCQsbw1MqlVixYgWUSiW8vLzw0ksvYc2aNZYuq9NgHyMZxkzYDhKGMRMWNoYxExY2hjETFjaGMRMWNoYxExY2hjETFjaGMRMWNoYxk/8PMx167wq+y34AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_monitoring_metric('total_cpu_util_s', component='loading').max() - evaluation.get_monitoring_metric('total_cpu_util_s', component='loading').min()\n",
+ "plot_metric(df, \"Compute Time\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Maximum CPU Util"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMEAAADsCAYAAADNcMJ0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAnoElEQVR4nO2deVwUR/r/Pz33DDAMh1wKeHF4oIInksMoKxrjmktN1Cxi1hyixjWHyTeJujEJHok/N8Y1xl0x2WjUbIJJPKPGY8VIPNCoEFREIAqiwjDcM8M8vz9GWkcOGWSYGbrer1e/prvr6a6nm/7QVdVPVXFERGAwBIzI3g4wGPaGiYAheJgIGIKHiYAheJgIGIKHiYAheJgIGIKHiYAheJgIGIKHiYAheJgIrGTq1KngOA4vvfRSvbTExERwHIepU6fa3A+9Xo+lS5eib9++UKlU8Pb2RkxMDJKTk2EwGCx85TgOMpkM3bt3x3vvvQej0QgAWL9+PTQaTYPn5zgOW7dutfl1OAJMBC0gMDAQmzZtQlVVFb+vuroaGzduRFBQkM3z1+v1iIuLw+LFi/HCCy/gyJEj+PXXX5GYmIiVK1fi3LlzvO2oUaNQUFCACxcu4NVXX8XChQuxbNkym/voTDARtICoqCgEBgbiu+++4/d99913CAoKQmRkpIXtrl278MADD0Cj0cDLywuPPfYYsrOz+fQvv/wSrq6uuHDhAr9vxowZCA8PR2VlZYP5r1ixAocOHcK+ffuQmJiIfv36oWvXrpg0aRLS0tIQEhLC28rlcvj5+SE4OBgvv/wyYmNj8cMPP7TWrWgXMBG0kGnTpiE5OZnfXrduHRISEurZVVRUYO7cuTh+/Dj27dsHkUiEJ554AiaTCQDwl7/8BY8++igmT54Mo9GI7du341//+hc2bNgAlUrVYN4bNmxAbGxsPcEBgFQqhYuLS6N+K5VK6PV6ay+3XcNE0EKmTJmCw4cPIzc3F7m5uUhNTcWUKVPq2T311FN48skn0b17d/Tr1w/r1q3DmTNnkJGRwdusWbMGBQUFmD17Np5//nksXLgQ/fv3bzTvCxcuIDw83Cp/iQh79+7F7t27MXz4cKuObe9I7O2As9KhQweMGTMG69evBxFhzJgx8Pb2rmd34cIFzJ8/H2lpabhx4wb/BsjLy0Pv3r0BAB4eHvj3v/+NuLg4DB06FG+++WaTeVvTBWTbtm1wdXWFwWCAyWTCpEmTsHDhwuZfqABgIrgPpk2bhpkzZwIAVq1a1aDN2LFjERwcjLVr1yIgIAAmkwm9e/euVyQ5dOgQxGIxCgoKUFFRATc3t0bzDQ0Nxe+//94sHx955BGsXr0aMpkMAQEBkEhu/8nVajUqKipgMpkgEt0uFGi1WgCAu7t7s/Jwdlhx6D4YNWoU9Ho9DAYD4uLi6qXfvHkTWVlZeOeddzBixAj06NEDJSUl9eyOHDmCJUuW4Mcff4SrqysvrMaYNGkS9u7di/T09HppBoMBFRUV/LaLiwu6d++OoKAgCwEAQFhYGIxGI06dOmWx/+TJkwDMYhMCTAT3gVgsRmZmJjIyMiAWi+ule3h4wMvLC59//jkuXryIn3/+GXPnzrWwKSsrw3PPPYfZs2dj9OjR2LBhAzZv3oz//ve/jeY7Z84cxMTEYMSIEVi1ahVOnz6NS5cuYcuWLRgyZIhFS1NT9OrVCyNHjsS0adOwb98+5OTkYNeuXZgxYwYmTpyIjh07WndDnBViWEV8fDyNGzeu0fRx48ZRfHw8v71nzx7q0aMHyeVy6tOnDx04cIAAUEpKChERJSQkUEREBFVXV/PHfPzxx+Tp6Ul//PFHo/lUV1dTUlISRUREkEKhIE9PT4qJiaH169eTwWBolq9ERCUlJTR79mzq1q0bKZVKCgkJoTfeeIPKysrueS/aCxwR62jPEDasOMQQPEwEDMHDRMAQPEwEDMHDRMAQPEwEDMHT5mETJpMJV69ehZubGziOa+vsGQKCiFBWVoaAgACLsJC7aXMRXL16FYGBgW2dLUPA5Ofno1OnTo2mt7kI6gLD8vPzoVar2zp7hoDQ6XQIDAxsMhgRsIMI6opAarWaiYDRJtyr2M0qxgzBw0TAEDwOJQJDrQmllQZ7u8EQGA7Ts2x9ag6Sdv6O8QM64f3HI+ztTptDRDAajaitrbW3K06DWCyGRCK576Z2hxGBj1qBGqMJJ3O19nalzdHr9SgoKGh0iBVG46hUKvj7+0Mmk7X4HA4jgqggDwDA74U6lNcY4Sp3GNdsislkQk5ODsRiMQICAiCTydhHxGZARNDr9bh+/TpycnIQEhLS5AexpnCYJ83PXYEAdwWullbjt3wthnavP3JDe0Sv18NkMiEwMLDRcYYYDaNUKiGVSpGbmwu9Xg+FQtGi8zhUxTgy2Pw2OJlXvzN6e6el/8WETmvcN4e68/2D6kSgta8jDEHhUCKIuuNNwLo+M9oKhxJBT3815BIRtJUGXLpRce8DGO0Cew8D71AikElEiOhoHvXsZK7w6gUM++BQIgCA/sGsXsBoWxxOBJG3KsfpAmwhupthw4Zh9uzZeOONN+Dp6Qk/Pz+LwXQvX74MjuMshlHUarXgOA4HDhwAABw4cAAcx2H37t2IjIyEUqnE8OHDUVRUhJ07d6JHjx5Qq9WYNGlSkx/r6ma12bp1K0JCQqBQKBAXF4f8/HwLu9WrV6Nbt26QyWQICwvDf/7zH4v0Cxcu4KGHHoJCoUDPnj2xZ88ei3S9Xo+ZM2fC398fCoUCwcHBSEpKatkNbCYOJ4KoYA0AIOtaGXTVLI7oiy++gIuLC9LS0rB06VK899579R6c5rBw4UJ8+umnOHLkCPLz8zFhwgSsWLECGzduxPbt2/HTTz9h5cqVTZ6jsrISH3zwAb788kukpqZCq9XimWee4dNTUlLwyiuv4NVXX8XZs2fx4osvIiEhAfv37wdg/jD45JNPQiaTIS0tDZ999hnmzZtnkccnn3yCH374AVu2bEFWVhY2bNiAzp07W329VtHWQ96VlpYSACotLW3UJmbxPgqet40OnS9qQ8/sQ1VVFWVkZFBVVVW9tIcffpgeeOABi30DBw6kefPmERFRTk4OAaD09HQ+vaSkhADQ/v37iYho//79BID27t3L2yQlJREAys7O5ve9+OKLFBcX16ifycnJBICOHj3K78vMzCQAlJaWRkREQ4cOpenTp1scN378eHr00UeJiGj37t0kkUjoypUrfPrOnTsthqWcNWsWDR8+nEwmU6O+3ElT9685zxoRkdVvgitXrmDKlCnw8vKCUqlEREQEjh8/3oqyvB1CIcQ4orvp06ePxba/vz+Kioru6zy+vr5QqVTo2rWrxb57nVcikWDgwIH8dnh4ODQaDTIzMwEAmZmZiImJsTgmJibGIj0wMBABAQF8enR0tIX91KlTcerUKYSFhWH27Nn46aefrLxS67FKBCUlJYiJiYFUKsXOnTuRkZGBjz/+GB4eHq3qVH8Bfzm+G6lUarHNcRw/0Ufd11K645tK3cyVTZ2H47gmz2tPoqKikJOTg0WLFqGqqgoTJkzA008/bdM8rRLBkiVLEBgYiOTkZAwaNAhdunTByJEj0a1bt1Z1KuqOyrHJxD6aNUaHDh0AAAUFBfy+u+caaE2MRqPFWz8rKwtarRY9evQAAPTo0QOpqakWx6SmpqJnz558en5+voW/R48erZePWq3GxIkTsXbtWmzevBnffvstiouLbXFJAKwMoPvhhx8QFxeH8ePH4+DBg+jYsSNmzJiB6dOnN3pMTU0Nampq+G2dTnfPfML93aCQiqCrNiL7ejlCfJvuKC1UlEolhgwZgsWLF6NLly4oKirCO++8Y7P8pFIpZs2ahU8++QQSiQQzZ87EkCFDMGjQIADA66+/jgkTJiAyMhKxsbH48ccf8d1332Hv3r0AgNjYWISGhiI+Ph7Lli2DTqfD22+/bZHH8uXL4e/vj8jISIhEInzzzTfw8/NrdL7l1sCqN8GlS5ewevVqhISEYPfu3Xj55Zcxe/ZsfPHFF40ek5SUBHd3d35pznArUrEIfTppALAi0b1Yt24djEYj+vfvjzlz5uD999+3WV4qlQrz5s3DpEmTEBMTA1dXV2zevJlPf/zxx/GPf/wDH330EXr16oU1a9YgOTkZw4YNA2AuvqWkpKCqqgqDBg3CX//6V3zwwQcWebi5uWHp0qUYMGAABg4ciMuXL2PHjh22DTBsVhX8FlKplKKjoy32zZo1i4YMGdLoMdXV1VRaWsov+fn5zaqxL96ZScHzttEb35y2xkWno6nWDUciOTmZ3N3d7e1GPdq8dcjf358v39XRo0cP5OXlNXqMXC7nh1exZpgVvoWIvQkYNsYqEcTExCArK8ti3/nz5xEcHNyqTgFAZJAGAHChqJx1vmfYFKtE8Le//Q1Hjx7Fhx9+iIsXL2Ljxo34/PPPkZiY2OqOebvKEexl7mmVns/eBvZm6tSp/NSu7Q2rRDBw4ECkpKTg66+/Ru/evbFo0SKsWLECkydPtolzUayTDaMNsLqP8WOPPYbHHnvMFr7UIyrYAynpV1gwHcOmOFwA3Z1E3aoXnMrTopZ9NGPYCIcWQZivG1QyMcpqjLhQVGZvdxjtFIcWgUQsQt+6j2YsmI5hIxxaBAALpmPYHocXQV0nGyYChq1weBFEBprfBJeuV6CkQm9nbxgt4dChQxg7diwCAgLsPrJEQzi8CDxcZOjq7QKAfTRzVioqKtC3b1+sWrXK3q40iMOMRdoUkUEeuHSjAidztRge7mtvdxwGIkKVwT5DuSul4mYPHDx69GiMHj3axh61HKcQQf9gD3x78g9WL7iLKkMtes7fbZe8M96Lg0rmFI/PPXH44hBwu3J8Ol8LY639uwAy2hdOIeUQHze4yiUorzEi61oZegW429slh0ApFSPjvTi75d1ecAoRiEUc+gVqcPjiDZzM0zIR3ILjuHZTJLEnTlEcAm6PWJ3OxihltDJO82+kLpiOVY6dj/Lycly8eJHfzsnJwalTp+Dp6YmgoCA7embGaURQ99Hs8s1K3CyvgZer3M4eMZrL8ePH8cgjj/Dbc+fOBQDEx8dj/fr1dvLqNk4jAneVFN19XHGxqBwn87T4U0/2vcBZGDZsmENPuuI0dQKAFYkYtsGpRMBHlLLKMaMVcSoR1PU5/u2PUhjYRzNGK+FUIujWwRVqhQRVhlr8XsB6mjFaB6cSgUjEoR8blIvRyjiVCIA75zpmImC0Dk4nAtbTjNHaOJ0I+gVqwHFAfnEVisqq7e0Oox3gdCJwU0gR6mOer4CNQMFoDRxLBDVlQDOmDKorErGR6RitgeOI4OJeYNUQ4Pi/72nKhm13Lmpra/Huu++iS5cuUCqV6NatGxYtWuQwoRSOEztUnAPo/gD2LgRCRwGaxme0qQur/u2PUuiNJsgkjqNlRn2WLFmC1atX44svvkCvXr1w/PhxJCQkwN3dHbNnz7a3ew4kggHPA2f+C+QfBbb9DZj8DdBIR+6u3i7QqKTQVhqQWaBD30BN2/rqKBABhsZnobcpUlWjf5+7OXLkCMaNG4cxY8YAADp37oyvv/4av/76qy09bDaOIwKRCBj3KbA6Bri4B/htC9B3YoOmHMchMlCD/VnXcSK3RLgiMFQCHwbc284W/N9VQObSLNOhQ4fi888/x/nz5xEaGorTp0/j8OHDWL58uY2dbB6OVY7wDgGGzTOv75oHlF9v1JQNz+g8vPnmm3jmmWcQHh4OqVSKyMhIzJkzx2bzWliL47wJ6hg6GziXAhSeAXa+AYxPbtDs9lzH2jZ0zsGQqsz/ke2VdzPZsmULNmzYgI0bN6JXr144deoU5syZg4CAAMTHx9vQyWZyPzMHJiUlEQB65ZVXmn1Ms2YUvJJOtNCDaIGaKHN7gybl1Qbq8uY2Cp63jQq0jj3zY1M4y+yV90OnTp3o008/tdi3aNEiCgsLu+9zt/nslXdy7NgxrFmzBn369Gk1QfIE9AOGzjKvb58LVJfWM3GRSxDmZ54JkxWJHJvKysp68xCLxWKYmvFNqC1okQjKy8sxefJkrF27Fh4eHq3tk5lhbwKe3YCyAmDP/AZN+J5mrJONQzN27Fh88MEH2L59Oy5fvoyUlBQsX74cTzzxhL1dA9BCESQmJmLMmDGIjY29p21NTQ10Op3F0iykSuDPK83rJ9YDOYfqmbDKsXOwcuVKPP3005gxYwZ69OiB1157DS+++CIWLVpkb9cAtEAEmzZtwsmTJ5GUlNQs+6SkJLi7u/NLYGDjH8Hq0TkGGDDNvP7DbEBv2SZeVzk+e0WHGqN9BqZl3Bs3NzesWLECubm5qKqqQnZ2Nt5//33IZDJ7uwbAShHk5+fjlVdewYYNG6BQKJp1zFtvvYXS0lJ+yc/Pt87D2L8D6o5ASQ5w4EOLpGAvFTxdZNDXmnDuajPfMAzGXVglghMnTqCoqAhRUVGQSCSQSCQ4ePAgPvnkE0gkEtTW1v9vLJfLoVarLRarUKiBx/6fef2XVcCVk3wSx3GsXsC4b6wSwYgRI3DmzBmcOnWKXwYMGIDJkyfj1KlTEIttNEhraBwQMR4gE/D9TMB4e8aaKFYvYNwnVn0sc3NzQ+/evS32ubi4wMvLq97+VmfUYiD7Z6DoHJD6D+Dh1wHcEVHK+hYwWohjhU00hYs3MGqJef3QUqDodwBAn07uEIs4FOqqcVVbZUcH7w9ykLBiZ6M17tt9i+DAgQNYsWLFfTvSLCKeBkLigFo98MMswFQLlUyCHv7mnmYnnLBeIJVKAZg/KDGsp+6+1d3HluB4sUNNwXHAY8vNnW/++BX4dS0w5CVEBXng7BUdTuaVYGxfO0VVthCxWAyNRoOioiIAgEqlavZcYEKGiFBZWYmioiJoNJr7qo86lwgAwL0T8Ke/m8Mp9r0HhI1G/2APfPlLLk46aTCdn58fAPBCYDQfjUbD37+W4nwiAID+CcDZb4HcVGDbHEQ9+hUAIONqKaoNtVA42VRCHMfB398fPj4+MBgM9nbHaZBKpa3SIumcIhCJgLGfAJ/FANk/o1PeVni7+uJGeQ3OXinFgM6e9vawRYjFYts1MzMaxXlah+7Gu7s5yA4At/v/MCzAHJHojJVjhn1xXhEAQPQswL8vUK3Fy1VrALCPZgzrcW4RiCXAnz8FODG6Xd+LONExnMzTsjZ3hlU4twgAwL8P8MAcAMAiaTJqym7ijxLn/WjGaHucXwQA8NAbgFcIfDgt/k+ykRWJGFbRPkQgVfAdcJ6RHEDJ2T12dojhTLQPEQBAcDRyuk4CAIy69CGgr7CzQwxnof2IAIB81Hu4Ql7wM12Dca9jdN1jOD7tSgT+HbyxTPoSAED862fAH8ft7BHDGWhXIuA4DjWdR+Db2gfAgep1wGEwGqJdiQAwj0CxyPAcdCINcD0T2DwZOPYvc7dMJghGAzhn7FATRAZ5QAs3fEjTsBjLgQs/mRcAEMsAvz5AxyigY3/z4tnNHIvEECztTgS9O6ohE4uwqWoA5kxOgd/1I8CVE+Y3QbUWuHLcvNQhVwMBkZbCUDtXnwTG/dHuRCCXiNGroxrpeVr8YgzFE8OHmxOIgOJLZjFcPWkWRsFpoEYH5Bw0L3W4+t0SRKT5NyASUNpopD2G3Wl3IgDMne/T87Q4kVuCJyI7mXdyHODVzbz0GW/eV2sAijJvi+LKSaAoAygvBLK2m5c6PLvdEkQ/wC8C8O0NqJwzZJthSbsUQf9gD/z7cM69R6AQS82xR/59gP5Tzfv0FUDBb5bCKMkBirPNy5ktt49XdwL8egN+ESDf3qj26okyZSeU6U0orzaivMaIslu/5dUG83aNkU8rrzaCALjKJXBVSOAml/DrrnIJ3BQSuCmklukKCZRScet2wSQy99s2VAKGKsvFZDSP/aRwNxcd5W5NzlBjMhH0tSbUGE3QG00w1Jp/9bW3twFzSx4H86k4cPwp79y2WDfVQmzQQVxTCnGNFuJqrfm3RguJX0+49xzR4stvlyKoG4bl90IdKmqMcJFbcZkyFyA4GgiORkWNEXnFlSgouIKa3BOQXUuHV3kWAqovwsdYYJ5jTfcHcH4XOABKALWkQB4FIcMUjMxbv1kUiGrIW+36RBzgLufQUV6NAGkF/KXl8BGVoYOoDG6ogNRUDZmpBlKqhtRUY96+tS4zVUNK+lv7zNsyqoEIzRshuhYiVHIqlMEFZXCBDiroSAWtSQUtqVBqUqEMSuioLu22jQ4uqIIMbqiEhquABuVw58rhgXJouHJouAq4162jAhqu/NZ2BdxRARHXcHTwUa/HMYSJwBI/dwUC3BW4WlqN039oMbSbd4N2JhOhqKwGecWVyL1ZgfziSuQWVyKvuBL5xZW4UX5nk6oHgOG3FsANlQjn8tBDlIueXC56iPIQzuXDlavGAO48BojO384HIhRJO+GaqjtuuIZB5x6GSs+eELv5ARyH8hojKqqrYSovBipvgKu6CWnVTcj1xVDoS+BiLIFrrRZqUym8oIMnp4OGKiCqIaCmde+dkUSohBzVkKOKZDCBgytXBXdUQMbVQgwT3Kgcbii3PLCugc3GHeMqoEApXM0LmX/1LmH3dc52KQIAiAz2wNXfCnA0+yY6uMqRe9P8cN+55BdXosbY9H9AD5UUQZ4qBHm5IMhTiQ6ucrjeKqK4KSQWRZVaGUC6HHCFZ4FrZ8yz7RSegajiOvwMefArzQNKfwau3Dq5yttcr6i4AVSVALhHP4i7WnIJHIxyD9TIPFAl9UCFRINKsRuMYiVqxYrbvyIFjGI5am9tm9MUt7aVqJUoUCuSo1asAIllfDEFAEQcB5lYBJmYg0JkgKq2HEpTORS15ZAbyyA3lkFmLIPMWA6JXgeJoQxivbnYwtXowFWXmueXqNaai1x1yNWAUmNucOAXz7u26y8uEhlcALRm+x1HbdwDRafTwd3dHaWlpdaPS2oF6w7n4L1tGfe0E4s4dNQoEeylQqCnCkGeKgR73lr3UkGtaPl4Njxl18yC4IVxFrh5wTyspAWcWRQqb/NgYy7ed6x3AFRed6zfEpDIifokG6rN9Q65m7k+ZmOa+6y12zfBI+E+WLzzd+hrTXCTSxDkpeIf9GBPF/N/d08VAjQKSMQ2/ljm5mteQu6Yz0Ffaf6ira9w3ofaWqQK8+JgtNs3AQCUVhlARHBXStmAVgJE8G8CAHBX2v6Vy3B+WNAMQ/AwETAEDxMBQ/AwETAEDxMBQ/AwETAEj1UiSEpKwsCBA+Hm5gYfHx88/vjjyMrKspVvDEabYJUIDh48iMTERBw9ehR79uyBwWDAyJEjUVHBxvhhOC/39cX4+vXr8PHxwcGDB/HQQw8165i2/GLMEDZt8sW4tLQUAODp2XgPq5qaGtTU3I731enYzPMMx6LFFWOTyYQ5c+YgJiamyTmMk5KS4O7uzi+BgYEtzZLBsAktLg69/PLL2LlzJw4fPoxOnTo1atfQmyAwMJAVhxg2x6bFoZkzZ2Lbtm04dOhQkwIAALlcDrm89boWMhitjVUiICLMmjULKSkpOHDgALp06WIrvxiMNsMqESQmJmLjxo34/vvv4ebmhsLCQgCAu7s7lEqlTRxkMGyNVXWCxjqmJCcnY+rUqc06B2siZbQVNqkTsAnxGO0RFjvEEDxMBAzBw0TAEDxMBAzBw0TAEDxMBAzBw0TAEDxMBAzBw0TAEDxMBAzBw0TAEDxMBAzBw0TAEDxMBAzBw0TAEDxMBAzBw0TAEDxMBAzBw0TAEDxMBAzBw0TAEDxMBAzBw0TAEDxMBAzBw0TAEDxMBAzBw0TAEDxMBAzBw0TAEDxMBAzBw0TAEDxMBAzBw0TAEDwtEsGqVavQuXNnKBQKDB48GL/++mtr+8VgtBlWi2Dz5s2YO3cuFixYgJMnT6Jv376Ii4tDUVGRLfxjMGyO1SJYvnw5pk+fjoSEBPTs2ROfffYZVCoV1q1bZwv/GAybY9XEfXq9HidOnMBbb73F7xOJRIiNjcUvv/zS4DF3z2hfWloKwDyzIINhS+qesXtNOGmVCG7cuIHa2lr4+vpa7Pf19cXvv//e4DFJSUn4+9//Xm9/YGCgNVkzGC2mrKwM7u7ujaZbJYKW8NZbb2Hu3Ln8tslkQnFxMby8vBqdF9mR0el0CAwMRH5+vmDmYXbWayYilJWVISAgoEk7q0Tg7e0NsViMa9euWey/du0a/Pz8GjxGLpdDLpdb7NNoNNZk65Co1WqneiBaA2e85qbeAHVYVTGWyWTo378/9u3bx+8zmUzYt28foqOjrfeQwXAArC4OzZ07F/Hx8RgwYAAGDRqEFStWoKKiAgkJCbbwj8GwOVaLYOLEibh+/Trmz5+PwsJC9OvXD7t27apXWW6vyOVyLFiwoF4Rrz3T3q+Zo3u1HzEY7RwWO8QQPEwEDMHDRMAQPEwEDMHT7kWwcOFCcBxnsYSHh/Pp1dXVSExMhJeXF1xdXfHUU0/V+xiYl5eHMWPGQKVSwcfHB6+//jqMRqOFzYEDBxAVFQW5XI7u3btj/fr19XyxZQj6oUOHMHbsWAQEBIDjOGzdutUinYgwf/58+Pv7Q6lUIjY2FhcuXLCwKS4uxuTJk6FWq6HRaPD888+jvLzcwua3337Dgw8+CIVCgcDAQCxdurSeL9988w3Cw8OhUCgQERGBHTt2WO1Lm0LtnAULFlCvXr2ooKCAX65fv86nv/TSSxQYGEj79u2j48eP05AhQ2jo0KF8utFopN69e1NsbCylp6fTjh07yNvbm9566y3e5tKlS6RSqWju3LmUkZFBK1euJLFYTLt27eJtNm3aRDKZjNatW0fnzp2j6dOnk0ajoWvXrrXKde7YsYPefvtt+u677wgApaSkWKQvXryY3N3daevWrXT69Gn685//TF26dKGqqireZtSoUdS3b186evQo/e9//6Pu3bvTs88+y6eXlpaSr68vTZ48mc6ePUtff/01KZVKWrNmDW+TmppKYrGYli5dShkZGfTOO++QVCqlM2fOWOVLWyIIEfTt27fBNK1WS1KplL755ht+X2ZmJgGgX375hYjMD5dIJKLCwkLeZvXq1aRWq6mmpoaIiN544w3q1auXxbknTpxIcXFx/PagQYMoMTGR366traWAgABKSkq672u8m7tFYDKZyM/Pj5YtW8bv02q1JJfL6euvvyYiooyMDAJAx44d42127txJHMfRlStXiIjon//8J3l4ePDXTUQ0b948CgsL47cnTJhAY8aMsfBn8ODB9OKLLzbbl7am3ReHAODChQsICAhA165dMXnyZOTl5QEATpw4AYPBgNjYWN42PDwcQUFBfGj4L7/8goiICIuPgXFxcdDpdDh37hxvc+c56mzqzlEXgn6nzb1C0FuTnJwcFBYWWuTv7u6OwYMHW1ynRqPBgAEDeJvY2FiIRCKkpaXxNg899BBkMhlvExcXh6ysLJSUlPA2Td2L5vjS1rR7EQwePBjr16/Hrl27sHr1auTk5ODBBx9EWVkZCgsLIZPJ6gX0+fr6orCwEABQWFjYYOh4XVpTNjqdDlVVVU2GoNedw5bU5dFU/oWFhfDx8bFIl0gk8PT0bJV7cWf6vXxpa2weSm1vRo8eza/36dMHgwcPRnBwMLZs2QKlUmlHzxiOQrt/E9yNRqNBaGgoLl68CD8/P+j1emi1WgubO0PD/fz8Ggwdr0trykatVkOpVLYoBL01qcujqfz9/Pzq9RM3Go0oLi5ulXtxZ/q9fGlrBCeC8vJyZGdnw9/fH/3794dUKrUIDc/KykJeXh4fGh4dHY0zZ85YPCB79uyBWq1Gz549eZs7z1FnU3cOe4egd+nSBX5+fhb563Q6pKWlWVynVqvFiRMneJuff/4ZJpMJgwcP5m0OHToEg8HA2+zZswdhYWHw8PDgbZq6F83xpc2xS3W8DXn11VfpwIEDlJOTQ6mpqRQbG0ve3t5UVFREROYm0qCgIPr555/p+PHjFB0dTdHR0fzxdU2kI0eOpFOnTtGuXbuoQ4cODTaRvv7665SZmUmrVq1qsIlULpfT+vXrKSMjg1544QXSaDQWrU73Q1lZGaWnp1N6ejoBoOXLl1N6ejrl5uYSkblZUqPR0Pfff0+//fYbjRs3rsEm0sjISEpLS6PDhw9TSEiIRROpVqslX19feu655+js2bO0adMmUqlU9ZpIJRIJffTRR5SZmUkLFixosIn0Xr60Je1eBBMnTiR/f3+SyWTUsWNHmjhxIl28eJFPr6qqohkzZpCHhwepVCp64oknqKCgwOIcly9fptGjR5NSqSRvb2969dVXyWAwWNjs37+f+vXrRzKZjLp27UrJycn1fFm5ciUFBQWRTCajQYMG0dGjR1vtOvfv308A6i3x8fFEZG6afPfdd8nX15fkcjmNGDGCsrKyLM5x8+ZNevbZZ8nV1ZXUajUlJCRQWVmZhc3p06fpgQceILlcTh07dqTFixfX82XLli0UGhpKMpmMevXqRdu3b7dIb44vbQkLpWYIHsHVCRiMu2EiYAgeJgKG4GEiYAgeJgKG4GEiYAgeJgKG4GEiYAgeJgKG4GEisBHDhg3DnDlz7O0Gj6P540gwETgwer3e3i4IA7tFLbVj4uPj6wWyXbx4kaZNm0adO3cmhUJBoaGhtGLFinrHjRs3jt5//33y9/enzp07E5E5MrNv374kl8upf//+lJKSQgAoPT2dP/bMmTM0atQocnFxIR8fH5oyZQo/oEBD/uTk5LTV7XB4mAhsgFarpejoaJo+fTo/wkV1dTXNnz+fjh07RpcuXaKvvvqKVCoVbd68mT8uPj6eXF1d+VDls2fPUmlpKXl6etKUKVPo3LlztGPHDgoNDbUQQUlJCR/enZmZSSdPnqQ//elP9MgjjzTqj9FotMetcUiYCGzEww8/TK+88kqTNomJifTUU0/x2/Hx8eTr62sxmsPq1avJy8vLItZ+7dq1FiJYtGgRjRw50uLc+fn5BIAPUW6OP0Kl3fcxdiRWrVqFdevWIS8vD1VVVdDr9ejXr5+FTUREhMVoDllZWejTpw8UCgW/b9CgQRbHnD59Gvv374erq2u9PLOzsxEaGtq6F9LOYCJoIzZt2oTXXnsNH3/8MaKjo+Hm5oZly5bxw5nU4eLiYvW5y8vLMXbsWCxZsqRemr+/f4t9FgpMBDZCJpOhtraW305NTcXQoUMxY8YMfl92dvY9zxMWFoavvvoKNTU1/CQZx44ds7CJiorCt99+i86dO0MiafhPerc/jNuwJlIb0blzZ6SlpeHy5cu4ceMGQkJCcPz4cezevRvnz5/Hu+++W+9hbohJkybBZDLhhRdeQGZmJnbv3o2PPvoIAPjZPxMTE1FcXIxnn30Wx44dQ3Z2Nnbv3o2EhAT+wb/bH5PJZLuLdzKYCGzEa6+9BrFYjJ49e6JDhw6Ii4vDk08+iYkTJ2Lw4MG4efOmxVuhMdRqNX788UecOnUK/fr1w9tvv4358+cDAF9PCAgIQGpqKmprazFy5EhERERgzpw50Gg0EIlEDfpTNwofg03X5JRs2LABCQkJKC0tZQOItQKsTuAEfPnll+jatSs6duyI06dPY968eZgwYQITQCvBROAEFBYW8rOF+vv7Y/z48fjggw/s7Va7gRWHGIKHVYwZgoeJgCF4mAgYgoeJgCF4mAgYgoeJgCF4mAgYgoeJgCF4/j80YPFVjWVNKQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_monitoring_metric('total_cpu_util', component='loading').max()\n",
+ "plot_metric(df, \"Max CPU\")\n",
+ "#df.plot.bar()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Maximum Util of a CPU Core"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 66,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMoAAADsCAYAAAA1kDmDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAyP0lEQVR4nO2deVxUZdvHf8MwDOswgDKAsiqLAoIbiJpLkmhmbm+ayxNi2SLm44uZWblU+mBa5pv5WFlKmVsuaO4prrmQyCIooiAoKYiK7Nswc71/HDk6sjgDg8PA/f185qPnXq9zmN+c+77uTUBEBAaD0SAGujaAwdAHmFAYDDVgQmEw1IAJhcFQAyYUBkMNmFAYDDVgQmEw1IAJhcFQAyYUBkMNmFAYz40TJ05AIBBAIBBg9OjRTSpr8eLFfFmrVq3Sin0N0SqFMnXqVAgEArz77ru14sLDwyEQCDB16tRmt6OqqgrLly+Hn58fTE1N0a5dO/Tr1w8bNmyAXC5XsVUgEMDIyAidO3fG559/jurqagBAVFQUpFJpneULBALs3r27QRvS09MRFhaGjh07QiwWw9XVFRMnTkRcXJw2b1Uj0tLSEBUVxV9v2rQJjo6OsLKyQkREhErarKwseHh4oKioSCX8gw8+QE5ODjp27Pg8TG6dQgEAR0dHbN26FeXl5XxYRUUFNm/eDCcnp2avv6qqCiEhIVi2bBnefvttnD17Fn///TfCw8OxevVqXL58mU87bNgw5OTk4Pr165gzZw4WL16MFStWNNmGuLg49OzZE9euXcMPP/yAK1euIDo6Gl5eXpgzZ06T7q0p2Nra8uK/f/8+3nrrLXz11Vf4888/8dtvv2Hfvn182hkzZmDZsmWQSCQqZZibm8POzg5CobBJtqhLqxVKjx494OjoiF27dvFhu3btgpOTE7p3766S9tChQ+jfvz+kUilsbGzwyiuvICMjg4//9ddfYW5ujuvXr/NhM2bMgJeXF8rKyuqsf9WqVTh16hRiYmIQHh4Of39/uLm5YdKkSYiNjYW7uzufViwWw87ODs7OznjvvfcQHByMP/74o0n3T0SYOnUq3N3dcfr0aYwYMQKdOnWCv78/Fi1ahD179vBpk5OT8eKLL8LExAQ2NjZ4++23UVJSwsdPnToVo0ePxtKlS+Hg4ABPT08AQHZ2NsaPHw+pVApra2uMGjUKWVlZGtl548YNWFpaYsKECejduzcGDx6M1NRUAMCWLVsgEokwduzYJj0LbdBqhQIA06ZNw4YNG/jr9evXIywsrFa60tJSREREIC4uDjExMTAwMMCYMWOgVCoBAG+88QZefvllTJ48GdXV1di/fz9++uknbNq0CaampnXWvWnTJgQHB9cSJQCIRCKYmZnVa7eJiUmTf7UTExNx+fJlzJkzBwYGtf/MNb/opaWlCAkJgZWVFS5cuIDt27fj6NGjmDlzpkr6mJgYpKWl4ciRI9i3bx/kcjlCQkJgYWGB06dP48yZMzA3N8ewYcM0st3d3R1lZWVISEhAfn4+Lly4gG7duuHhw4dYsGABvvvuuyY9B61BrZDQ0FAaNWoU5eXlkVgspqysLMrKyiJjY2O6d+8ejRo1ikJDQ+vNf+/ePQJAycnJfFh+fj517NiR3nvvPZLJZLR06dIGbTAxMaFZs2apbSsRkVKppCNHjpBYLKYPPviAiIg2bNhAlpaWdeYFQNHR0XXGbdu2jQBQfHx8g/X/+OOPZGVlRSUlJXzY/v37ycDAgHJzc3kbZTIZVVZW8mk2btxInp6epFQq+bDKykoyMTGhw4cP11nX8ePHCQA9fPhQJXzXrl3k4+NDnTp1okWLFhER0bRp0+ibb76hkydPkr+/P3l7e9P27dtrlens7EzffPNNg/eoDQx1K9PmpX379hgxYgSioqJARBgxYgTatWtXK93169excOFCxMbG4v79+/yb5NatW/Dx8QEAWFlZ4eeff0ZISAj69u2Ljz76qMG6SYNlPvv27YO5uTnkcjmUSiUmTZqExYsXq3+jTag/NTUVfn5+Km+4fv36QalUIi0tDTKZDADg6+sLIyMjPk1SUhLS09NhYWGhUl5FRYVKs1UdxowZgzFjxvDXJ0+exKVLl7B69Wp07twZW7ZsgZ2dHQICAjBgwADY2tpqVL42aNVCAbjmV00zYs2aNXWmGTlyJJydnbFu3To4ODhAqVTCx8enVhPi1KlTEAqFyMnJQWlpaa0vyZN4eHjg6tWratk4ePBgrF27FkZGRnBwcICh4eM/i0QiQWlpKZRKpUoTqqCgAABgaWlZb/0AcPXq1Tqbf5rydFOxpKQEPXv2xKZNm2qlbd++faPrqaysxIwZM7Bx40akp6ejuroaAwcOBMDdU2xsLEaOHNno8htLq+6jAODbzDVt6qd58OAB0tLS8Omnn2LIkCHo0qULHj58WCvd2bNn8eWXX2Lv3r0wNzev1YZ/mkmTJuHo0aNISEioFSeXy1FaWspfm5mZoXPnznByclIRCQB4enqiuroaiYmJKuHx8fEAHgviafz9/dG1a1d8/fXX/BvySWqE1qVLFyQlJanYc+bMGRgYGPCd9rro0aMHrl+/DltbW3Tu3FnlU5941WHJkiUYNmwYevToAYVCwbvJAe65KRSKRpfdJJq9cacDnmz3ExEVFhZSYWEhf/1kH0WhUJCNjQ1NmTKFrl+/TjExMdS7d2+V9n9RURG5ublRREQEERFdunSJxGJxnW3mGioqKuiFF14gKysr+u677ygxMZEyMjJo27Zt1KNHD0pISKjT1roYOnQo+fn50dGjR+nGjRt08OBB8vT0pAkTJjSYLzY2liwsLKhv3760f/9+ysjIoKSkJFqyZAkNGDCAiIhKS0vJ3t6exo0bR8nJyXTs2DFyc3NT6cPVZWNpaSm5u7vToEGD6NSpU3Tjxg06fvw4vf/++5SdnV2nPfX1UWq4fPkyubu78/2lsrIysrGxoZ9++on27dtHYrGY/vnnH5U8z6uP0iaE8jRPd+aPHDlCXbp0IbFYTN26daMTJ06oCCUsLIx8fX2poqKCz/P111+TtbV1rT/ck1RUVFBkZCT5+vqSsbExWVtbU79+/SgqKorkcrlathIRPXz4kGbNmkWdOnUiExMTcnd3pw8//JCKi4uf+SzS0tLojTfeIAcHBzIyMiJnZ2eaOHGiSif/0qVLNHjwYN7G6dOnq5Rdn405OTn0xhtvULt27UgsFpObmxtNnz5d5UfpSRoSilKppH79+tHevXtVwvfu3UtOTk4kk8lo3bp1tfI9L6EIiNjmEoznw4kTJzB48GA8fPiw3tkGmuLi4oLZs2dj9uzZWimvPlp9H4XR8ujYsSMmTpzYpDL+85//wNzcHLdu3dKSVQ3D3iiM50Z5eTlu374N4PEUlMaSn5+P/Px8AJyXrSkOBHVgQmEw1IA1vRgMNWBCYTDUgAmFwVCDFjeFRalU4s6dO7CwsIBAINC1OYxWDBGhuLgYDg4Odc6wfpIWJ5Q7d+7A0dFR12Yw2hDZ2dnPXCnZ4oRSM9EwOzu71qo2BkObFBUVwdHRscHJrTW0OKHUNLckEgkTCuO5oE4Tn3XmGQw1YEJhMNRA74SSU1gOuaL2+goGoznRK6HM3pqAvsuO4WTaPV2bwmhj6JVQbMzFIAJ2xv+ja1MYbQy9Esq4HpyvOyY1DwVlTdvOh8HQBL0SSlcHCbrYS1ClUGJv0h1dm8NoQ+iVUABgXI8OAIAd8bd1bAmjLaF3Qhnl3wFCAwGSsguQnlfy7AwMhhbQO6G0txBjkAe3bxTr1DOeF3onFAAY15Pr1EfH34ZCyRZoMpofvRTKkC62sDQRIbeoAmcz7uvaHEYbQC+FIjYUYqSfPQBg50XW/GI0P3opFODxmMqhy7korpDr2BpGa0dvheLvKIVbezNUyJU4mJyra3MYrRy9FYpAIODfKjuY94vRzOitUABgbI8OEAiAvzPzkZ1f9xFxDIY20Guh2FuaoF8n7mAgNqbCaE70WigAMK4nN6VlV/xtjU65YjA0Qe+FEuJtBzMjIW7ll+FCVu0DgBgMbaD3QjE1MsTLvmxMhdG86L1QgMdTWvYn56C8SkdHlzFaNa1CKAEu1uhoZYKSymr8eYWNqTC0T6sQioGBAGMfjansZOtUGM1AqxAK8HhB11/X7+FuUYWOrWG0NlqNUJxtzNDbxQpKAqIT2FuFoV1ajVCAxxMld178h42pMLRKqxLKy93sITY0wPW8EiTfLtS1OYxWRKsSisRYhBBv7gBNNqbC0CatSijA4zGVP5LuoKqabb3K0A4aCSUyMhK9e/eGhYUFbG1tMXr0aKSlpamkqaioQHh4OGxsbGBubo5x48bh7t27WjW6Ifp3bgeZRIyHZXIcu5r33OpltG40EsrJkycRHh6O8+fP48iRI5DL5Rg6dChKS0v5NP/7v/+LvXv3Yvv27Th58iTu3LmDsWPHat3w+hAaCDC6O+cqZjOKGVqDmkBeXh4BoJMnTxIRUUFBAYlEItq+fTufJjU1lQDQuXPn1CqzsLCQAFBhYWGj7bqWW0TO8/ZRp/n76X5xRaPLYbRuNPmuNamPUljIeZasra0BABcvXoRcLkdwcDCfxsvLC05OTjh37lydZVRWVqKoqEjl01TcZRbo1tES1UrCH2zrVYYWaLRQlEolZs+ejX79+sHHxwcAkJubCyMjI0ilUpW0MpkMubl1z8GKjIyEpaUl/9HWQaf8mAprfjG0QKOFEh4ejpSUFGzdurVJBsyfPx+FhYX8Jzs7u0nl1fCqnwNEQgFSbhchLbdYK2Uy2i6NEsrMmTOxb98+HD9+XOXYYTs7O1RVVaGgoEAl/d27d2FnZ1dnWWKxmD/YVJsHnFqZGeFFL1sA7K3CaDoaCYWIMHPmTERHR+PYsWNwdXVVie/ZsydEIhFiYmL4sLS0NNy6dQtBQUHasVgDappf0Qm3Uc2Os2M0AY2Ozw4PD8fmzZuxZ88eWFhY8P0OS0tLmJiYwNLSEm+++SYiIiJgbW0NiUSC999/H0FBQejTp0+z3EBDDPK0hbWZEe4VV+J0+n0M9rR97jYwWgmauNMA1PnZsGEDn6a8vJxmzJhBVlZWZGpqSmPGjKGcnJxmcdmpw6I9KeQ8bx+Fb7qolfIYrQdNvmsCopY1zbaoqAiWlpYoLCzUSn8l5XYhXln9F4wMDXDhk2BYmoi0YCWjNaDJd63VzfV6Gm8HCTxlFqiqVmL/pRxdm8PQU1q9UAQCAb/3F/N+MRqLfgmlqgy4flTjbKP9O8BAAFy8+RCZ90ufnYHBeAr9EsqhecCmccDBeUB1pdrZbCXGGPDoOLtd7K3CaAT6IxSlEhA/6nDFfg/8PBTIv6F29poxlV3xt6Fkx9kxNER/hGJgAIQsBSZuBUysgJxE4IeBwOVotbK/1FUGC2ND3C4ox/nMB81rK6PVoT9CqcFzOPDuX4BjH6CyCNg+FdgXAcgb3qLIWCTEK90cAAA7L7JdWhiaoX9CAQDLjsDUfUD/CO467mfgp2DgfnqD2f7nkffrYEoOSiurm9tKRgsgt7AC607daPKuPPopFAAQioDgRcCUnYBpO+BuMvDjQODS9nqz9HCygms7M5RVKXAohW292trJL63ClJ9jsfRAKtYcb/hH9Fnor1Bq6BzMNcWc+wNVJcCut4A9MzlX8lMIBAKMbe5lwhVFQMua7NAmKamsRtiGv5GeVwJ7S2N+eXhj0X+hAIDEHnhjDzBwHgABkLARWPcikHe1VtIxj7ZePXfjAW4XlGunfnkF9yaLegVY5gjsCAMUrGmnKyqrFXhnYxyS/imElakIG98MQEcr0yaV2TqEAgBCQ2Dwx8AbuwEzW+BeKrBuMJCwSSVZRytTBLnZgAiIbupb5V4acOhjYKUX9ybLOs2FX44G9oRzLm3Gc6VaocS/tyTiTPoDmBkJERUWgM62Fk0ut/UIpQa3QcB7Z7h/5WXAnhlA9LtAZQmfpGbvr52NOc5OXg4kbgHWDwPWBADn1wDlDwFJB2DQfGDUGkAgBC5tBQ7MYc2w5wgR4ZPoFBy6nAsjoQHWvdELfo5SrZSt0XoUvcHcFpiyC/hrJXD8P0DSFuD2ReC1KEDmjeE+dli4JwWZ90sRf6sAPZ2tnl1mbgoQ/wtwaRtQ8Wi7VoEQ8BgG9JwKdB4CGAi5cENjYOdbQNx6QGQKDF0CCAQa30Z5lQJRZ7NgbSbCS13tYG1mpHEZbYllB69iW1w2DATA6knd0bdzO62V3TqFAnBf2gFzAae+wM43gfvXuH7L8C9h1iMUw3zssCv+NnbG/1O/UCpLgMu7gIu/ALfjHodLnYAebwD+U7j+0dP4/g/35vljJnDuO0BsAQz6SCPzb9wrwYxN8bj6aL3/x9Ep6NvJBsN97BHiLYONuVij8lo7a09k4IdT3EyNZeO68VvraotWvx4FAFB6H4h+B0h/NKHSZxxiuy7AhF+vQGJsiL8/CYaxSPg4/Z1E4GIUkLwDqHq0MYWBIeA1AugRCrgN5mYKPIvz33Pz0wDurdL3fbXMPZicg7k7LqGkshrtzI1ga2GMKzmPt3EyEAB93Gww3Ncew7zt0N6ibYtmy9+3MH9XMgDgk5e7YPoAN7XyafJdaxtCAbiO9dlvgZjPAVKArN0QVhKOE0X2WPBKV0zrZQ1Byk5OIDlJj/NZu3Hi8J/ENek05dRXwLEvuP+PWAn0frPepHKFEssOXsXPf2UC4I7c+25Sd9hKjJF1vxQHUnJwMDlXZad+AwEQ4GqNlx+JxlZirLmNjYSIkFNYAQtjQ1gY62ZB3P5LOZi5JR5EwIxBnfDhMC+18zKhNMStWGDHNKDoHygEInxdNQZOgjyMFp2HMT2aBiM0ArqM5Poezv3Ve3s0xNHPuP4SBMCY7wG/12slyS2sQPjmeFy8yR0B/s4AN8wN8YShsHbdtx6U4WBKDg4k5yDpn8eiEQiA3s7WeNnXDsN87GFnqR3RKJSEW/llSM8rwfW8YqTfLUH6vRKk55WgrEoBY5EBZgd74M3+rhDVYa9GJG0Frh8BjMwAYwkgtnz0r6TWv2dvyzFtaxoqFAaYFOiEpaN9INCgL8iE8izK8jn3bdoBleAMcsB9j4noNWoGhOba6wiCiFsa8PcPgMCAcyp0HcVHn0m/j1lbEvCgtAoWYkN8Nd5P7TZ2dn4ZDqXkYn9yDhKzC1TiejlbYbivPYb72MFBavLMsiqrFci6/4Qg8jgx3LhfWu/JAALBY8eel50F/jPWFz2c1HCOPI1SARz+mJsZriGVAmMYmUkhqEdQMLbkms0yb5V8TCjqQAScXwucW4Miu0CsuNcHG3McAAjg28ESkWN94dPBUnv1KZXAH+8Dib8BBiJg4hYoOwXjvyfSsfLINSgJ6GIvwfdTesDZxqxRVdwuKMfB5BwcTMnl30w1dHeSYqyXCUZV7IGx1B7XnCbg+r1SThSP3hA3H5RBUc8SBLGhATq1N4e7zByda/61tYCTtSn+SLqDpfuv4GGZHAIBMCXQGXOHeUKibnOsqhTYOR1I289dB74HmFpz3sXKIm62wxP/VpcVQl5WABOovyYJ437mnCxPwITSCJRKwra4bEQeSEVRRTUMBEBYP1dEvOQBM7GWnINKBec2vrwLZGiML22W4Pub3Izm8b064vNRPqpOhSaQU1iOQym5OJCcg4Sb9zHRIAYRhjtgJeDGk2IU3REhfw+FMFfJZyE2RCdbc7jbmqOzbY0wLNDBygRCg/qbNfmlVVi6P5WfGmRrIcbiVzlXfIPNoZI8YPME4E48IBRzTVOf+k8/yM4vw7i1Z5FXXIlejub4dXIXmCpL6xBUMVBZ+Dis1zTA3k+lLCaUJpBXXIEv9qVi76PNvR0sjfH5KB8Ed5VppwKFHEW/vA7JraMoIWOEKT7Ba6PGYHxv7ey5XIsbJyHf/yFED7jpPOlKBzgK7kEskCNPKMN2t6UwdenFicLWAjKJWKN2/tOczbiPT6JT+CXXL3rZ4vNR3nVPIbmXBmz6H6DgFrfG6PUtgHP9GyXmFVfgte/P4eaDMnjKLLDtnT6QmjZ+bIkJRQucSMvDgj0pyM7n5oMN97HD4le9IWuCV4mI8FvsLXy5NxHfG3yJ/sLLUBhJIJx2ALDz1ZbpHPmZwJ+fAlf3cdcmVsCLn6KgyyTg7hVI970JPMziHBfDvwR6hjVqULQuKuQK/PdEBtaeSIdcQTARCRHxkgfC+rk8dk5kngK2TeGaV1au3Cxwm071lllYLsfrP55Hak4RHK1NsOPdvk36WwBMKFqjvEqBVTHX8NPpTCiUBAuxIT4c5olJgc4NNkPqoqyqGh/vSsbuRO5NNdJLgm/kn8Pw9t/cMoGwg0B7j6YbXVnCedjOfgcoKrnZA73f4gY8Ta2fuLkCYPeMx/2CbhOAV77hvE1aIj2vGB9Hp+DvzHwAQFd7CSLH+sIv/xA3w1spBzoGABO3AGb1O0/KqxT418+xiLv5EO3MxdjxbhBc2jXdTiYULXPlThHmRycj6ZFXyd9Risixvuhir5596XkleO+3i7ieVwKhgQAfDfPCWy+4QlBRCPz6KjduY+EATDsIWLk0zkilEkjeDhxdBBQ/2r/MdSAwbBkg61p3HiJubOnoZwApgPZdgAkbgXbujbOhTrMIOy7+g6UHUlFYXoVZhtGIMNzBRXYdzfVJRPV75OQKJd7+NQ7H0+7BwtgQv78TpPZzfxZMKM2AQknYFHsTyw+loaSyGoYGArz1ghv+PcQdJkb1d8D3XbqDeTsuobRKAVsLMb6b1AMBrk/8spc+AKJeBu5dBaTOwLRDgMRBM+NuX+Tcz/9c4K6tXIChSzmXqDrNqawz3NKAkruAkTnw6uoGO9SN4X5hMTLWv4XAwkMAgN8MRqPdmEgM863/XpVKwuxtifgj6Q6MRQb47c1A9HKxrje9pjChNCO5hRX4bO9lHHy0QtLR2gRLRvti4KPtkGqoqlbiPwdSEXU2CwAQ5GaD/5voD1uLOtrVxbncbOSHmUA7D2DqAcC8fe10tfLdBWI+AxIfLSUQmQED5gB9wgGRhu334rvcnLiapQKB7wIvfQEYamEiZkUh8PsbwI0TIIEBvhFNx7dFAwFwm3589qp3rXEeIsLCPZex8fxNGBoIsC60l9Y3WWdCeQ4cvXIXC/ek4E4hN5r/qp8DFrzSFe0txLhTUI4Zm+L5AcAZgzoh4iWPOkfZeQpuAeuHA0X/cB370L1cB7wuqiu5MaBTK7hVnQDgNxEYsqjuSZrqoqgGji8B/vqGu+7YmxsctezYYLYGKcgGNr3GrQ8SmQGvRaHCdQi+O5aOH05lQK4gmBoJMWeoJ0KDnPlntPLPNHx7LB0CAbBqgj9G+TdthWJdMKE8J0oqq7Hyz2uIOpsJJQESY0NM7euCjedv4mGZHBJjQ3wzwR9DuqjpWr6fDmwYDpTmcV/Sf0VzM49rIAKuHeJGsGv2NOvQExj2JeDYW3s3lnaQm0RaUQiY2gBj13HLCDTlTiKweTzXpDO3Ayb/rjKWce1uMT7elYy4R4OjPh0kiBzTDRey8vH5visAgC9G++BffZy1cVe1YEJ5ziT/U4j50ZeQcvvxDF+fDhKsndwTjtYaLkG9exmIGsEtBnN5AZi8nevs3ksDDn0EZBzj0pnLgODFQLfXmz4XrS7yM4HtoY8miAo4r9mAD9WvK+0QN6dOXgrYduXuo443U10DvTWTA+a85IH3h2jPsfA0TCg6oFqhRNTZLKw7fQMh3nb4+OUujR9lvx0P/PIqN8W/80uATWfg7x85z5TQCOgzAxjwgerbpjmQVwAHP+QWrAFApyHc28XMpuF8f6/j8pGSW5Iw/hduvlUD3CuuxBf7rvCnOE/r54oFr3Rp0uDns2BCaQ3cPAtsHAtUP7EBhucIYOgXDQ7MNQuJm7lNBqvLAUlH7ovfsVftdEolcHQhcHY1d+0/BRi5ittaSk3O33iAOwXl3MbqGo5VaQoTSmsh4xiw7V9ck2VYJNDpRd3ZcvcyZ0t+BjepM2QpEPD2Y/ezvBzY9TaQ+gd3PfhT7q3XjG+EpsKE0pqQVwCG4pbxhaso4pY3X9nDXXuPBV79lvPCbXmdG8cxEHEbbPhN0K2taqDJd631rplvLWg6HtKcGEuA137hXNNHFnD7CdxNARRybgzI2BJ4fTPg0l/XlmodvRWKQqGAXC7XtRl6g0gkglCohSn8AgEQNINzS2+fym3aAXAbbkzeAbT3bHodLRC9EwoRITc3FwUFBbo2Re+QSqWws3vG+hB1cQoE3jkFHJzL9U9eXd24PQX0BL0TSo1IbG1tYWpq2qzuw9YCEaGsrAx5eXkAAHv7JozeP4l5e27kvg2gV0JRKBS8SGxsnuHLZ6hgYsLNpcrLy4Otra12mmFtCL3aUrWmT2Jq2rQNl9sqNc+N9e00R6+EUgNrbjUO9twaj14KhcF43jCh6CECgQC7d+/WtRltCiYUBkMNmFAYDDVoVUIZNGgQZs2ahQ8//BDW1taws7PD4sWL+fisrCwIBAIkJibyYQUFBRAIBDhx4gQA4MSJExAIBDh8+DC6d+8OExMTvPjii8jLy8PBgwfRpUsXSCQSTJo0CWVltc+JrCEqKgpSqRS7d++Gu7s7jI2NERISguzsbJV0a9euRadOnWBkZARPT09s3LhRJf769esYMGAAjI2N0bVrVxw5ckQlvqqqCjNnzoS9vT2MjY3h7OyMyMjIxj1ARv1QC6OwsJAAUGFhYa248vJyunLlCpWXl9eZd+DAgSSRSGjx4sV07do1+uWXX0ggENCff/5JRESZmZkEgBISEvg8Dx8+JAB0/PhxIiI6fvw4AaA+ffrQX3/9RfHx8dS5c2caOHAgDR06lOLj4+nUqVNkY2NDy5Ytq/c+NmzYQCKRiHr16kVnz56luLg4CggIoL59+/Jpdu3aRSKRiNasWUNpaWn09ddfk1AopGPHjhERkUKhIB8fHxoyZAglJibSyZMnqXv37gSAoqOjiYhoxYoV5OjoSKdOnaKsrCw6ffo0bd68uU6bnvX82hoNfdeeRmOhnDx5kl555RWyt7dX+YPVoFQqacGCBWRnZ0fGxsY0ZMgQunbtmlaMV0co/fv3Vwnr3bs3zZs3j4g0E8rRo0f5NJGRkQSAMjIy+LB33nmHQkJC6r2PDRs2EAA6f/48H5aamkoAKDY2loiI+vbtS9OnT1fJ99prr9HLL79MRESHDx8mQ0NDun37Nh9/8OBBlef+/vvv04svvkhKpbJeW2pgQlFFE6Fo3PQqLS2Fn58f1qxZU2f88uXL8e233+L7779HbGwszMzMEBISgoqKCo3fdo2hW7duKtf29vb81I3GliOTyWBqago3NzeVsGeVa2hoiN69H69l9/LyglQqRWpqKgAgNTUV/fr1U8nTr18/lXhHR0c4ODze0icoSHXL0alTpyIxMRGenp6YNWsW/vzzTw3vlKEOGk9hGT58OIYPH15nHBFh1apV+PTTTzFqFHeswa+//gqZTIbdu3fj9ddrnwuibUQi1dV0AoEAyken8xo8Wu9NTyzBqW+U+slyBAJBg+Xqkh49eiAzMxMHDx7E0aNHMX78eAQHB2PHjh26Nq1VodXOfGZmJnJzcxEcHMyHWVpaIjAwEOfOnaszT2VlJYqKilQ+zUX79txeWTk5OXzYkx17bVNdXY24uMdnP6alpaGgoABdunQBAHTp0gVnzpxRyXPmzBl07dqVj8/Ozlax9/z587XqkUgkmDBhAtatW4dt27Zh586dyM/Pb45barNodVJkbi63KZxMpro9j0wm4+OeJjIyEp999pk2zagXExMT9OnTB8uWLYOrqyvy8vLw6aefNlt9IpEI77//Pr799lsYGhpi5syZ6NOnDwICAgAAc+fOxfjx49G9e3cEBwdj79692LVrF44e5c6aDA4OhoeHB0JDQ7FixQoUFRXhk08+Ualj5cqVsLe3R/fu3WFgYIDt27fDzs4OUqm02e6rLaJz9/D8+fNRWFjIf552n2qb9evXo7q6Gj179sTs2bOxZMmSZqvL1NQU8+bNw6RJk9CvXz+Ym5tj27ZtfPzo0aPxf//3f/jqq6/g7e2NH374ARs2bMCgQYMAcE3F6OholJeXIyAgAG+99RaWLl2qUoeFhQWWL1+OXr16oXfv3sjKysKBAwf4ZiZDSzTFa4CnvF4ZGRm1vEpERAMGDKBZs2apVWZTvF4tiQ0bNpClpaWuzVBBn57f86BZvV4N4erqCjs7O8TExPBhRUVFiI2NreWtYTD0CY37KCUlJUhPT+evMzMzkZiYCGtrazg5OfHNGXd3d7i6umLBggVwcHDA6NGjtWk3g/F80fR1VTMg9/QnNDSUiB4POMpkMhKLxTRkyBBKS0vTyuuQNR2aBnt+qmjS9NKrfb0qKiqQmZkJV1dXGBu3oG189AT2/FTRZF8v5hphMNSACYXBUAMmFAZDDZhQGAw1YEJhMNSACYXBUAMmlBbIqVOnMHLkSDg4OLAdV1oITCgtkGctjmM8f/Rq7+GmQEQolyt0UreJSKjRLo0NLY5j6IY2I5RyuQJdFx7WSd1XPg+BqVGbedStEtb0YjDUoM38zJmIhLjyeYjO6mboN21GKAKBgDV/GI2GNb0YDDVgP7EtkGctjmM8f5hQWiBxcXEYPHgwfx0REQEACA0NRVRUlI6satswobRABg0ahBa2nq7Nw/ooDIYaMKEwGGrAhMJgqAETCoOhBkwoDIYaMKEwGGrAhMJgqAETCoOhBkwoDIYaMKEwGGrAhNLCUCgUWLBgAVxdXWFiYoJOnTrhiy++YFNadAyb69XC+PLLL7F27Vr88ssv8Pb2RlxcHMLCwmBpaYlZs2bp2rw2S9sRChEgL9NN3SJTQM3NJc6ePYtRo0ZhxIgRAAAXFxds2bIFf//9d3NayHgGbUco8jLgPw7PTtccfHwHMDJTK2nfvn3x448/4tq1a/Dw8EBSUhL++usvrFy5spmNZDRE2xGKnvDRRx+hqKgIXl5eEAqFUCgUWLp0KSZPnqxr09o0bUcoIlPul11XdavJ77//jk2bNmHz5s3w9vZGYmIiZs+eDQcHB4SGhjajkYyGaDtCEQjUbv7okrlz5+Kjjz7C66+/DgDw9fXFzZs3ERkZyYSiQ5h7uIVRVlZW64x4oVAIpVKpI4sYQFt6o+gJI0eOxNKlS+Hk5ARvb28kJCRg5cqVmDZtmq5Na9MwobQwVq9ejQULFmDGjBnIy8uDg4MD3nnnHSxcuFDXprVpmFBaGBYWFli1ahVWrVqla1MYT8D6KAyGGjChMBhqwITCYKgBEwqDoQZ6KRQ25bxxsOfWePRKKCKRCAA3KMfQnJrnVvMcGeqjV+5hoVAIqVSKvLw8AICpqalGZyO2VYgIZWVlyMvLg1QqhVDIDjbSFL0SCgDY2dkBAC8WhvpIpVL++TE0Q++EIhAIYG9vD1tbW8jlcl2bozeIRCL2JmkCeieUGoRCIfvDM54bzdaZX7NmDVxcXGBsbIzAwEC2lJWh1zSLULZt24aIiAgsWrQI8fHx8PPzQ0hICOtXMPSWZhHKypUrMX36dISFhaFr1674/vvvYWpqivXr1zdHdQxGs6P1PkpVVRUuXryI+fPn82EGBgYIDg7GuXPnaqWvrKxEZWUlf11YWAgAKCoq0rZpDIYKNd8xdQZitS6U+/fvQ6FQQCaTqYTLZDJcvXq1VvrIyEh89tlntcIdHR21bRqDUSfFxcWwtLRsMI3OvV7z58/nT70FAKVSifz8fNjY2OjtYGJRUREcHR2RnZ0NiUSia3OeC/p4z0SE4uJiODg8exsrrQulXbt2EAqFuHv3rkr43bt36xzsEovFEIvFKmFSqVTbZukEiUSiN18abaFv9/ysN0kNWu/MGxkZoWfPnoiJieHDlEolYmJiEBQUpO3qGIznQrM0vSIiIhAaGopevXohICAAq1atQmlpKcLCwpqjOgaj2WkWoUyYMAH37t3DwoULkZubC39/fxw6dKhWB7+1IhaLsWjRolpNytZMa79nAbFFCgzGM9Gr9SgMhq5gQmEw1IAJhcFQAyYUBkMNmFAALF68GAKBQOXj5eXFx1dUVCA8PBw2NjYwNzfHuHHjag2o3rp1CyNGjICpqSlsbW0xd+5cVFdXq6Q5ceIEevToAbFYjM6dOyMqKqqWLc21POHUqVMYOXIkHBwcIBAIsHv3bpV4IsLChQthb28PExMTBAcH4/r16ypp8vPzMXnyZEgkEkilUrz55psoKSlRSXPp0iW88MILMDY2hqOjI5YvX17Llu3bt8PLywvGxsbw9fXFgQMHNLbluUMMWrRoEXl7e1NOTg7/uXfvHh//7rvvkqOjI8XExFBcXBz16dOH+vbty8dXV1eTj48PBQcHU0JCAh04cIDatWtH8+fP59PcuHGDTE1NKSIigq5cuUKrV68moVBIhw4d4tNs3bqVjIyMaP369XT58mWaPn06SaVSunv3bpPv8cCBA/TJJ5/Qrl27CABFR0erxC9btowsLS1p9+7dlJSURK+++iq5urpSeXk5n2bYsGHk5+dH58+fp9OnT1Pnzp1p4sSJfHxhYSHJZDKaPHkypaSk0JYtW8jExIR++OEHPs2ZM2dIKBTS8uXL6cqVK/Tpp5+SSCSi5ORkjWx53jChECcUPz+/OuMKCgpIJBLR9u3b+bDU1FQCQOfOnSMi7ktoYGBAubm5fJq1a9eSRCKhyspKIiL68MMPydvbW6XsCRMmUEhICH8dEBBA4eHh/LVCoSAHBweKjIxs8j0+ydNCUSqVZGdnRytWrODDCgoKSCwW05YtW4iI6MqVKwSALly4wKc5ePAgCQQCun37NhER/fe//yUrKyv+nomI5s2bR56envz1+PHjacSIESr2BAYG0jvvvKO2LbqANb0ecf36dTg4OMDNzQ2TJ0/GrVu3AAAXL16EXC5HcHAwn9bLywtOTk78soFz587B19dXZUA1JCQERUVFuHz5Mp/myTJq0tSUUbM84ck0DS1P0CaZmZnIzc1VqdvS0hKBgYEq9yiVStGrVy8+TXBwMAwMDBAbG8unGTBgAIyMjFTuMS0tDQ8fPuTTNPQc1LFFFzChAAgMDERUVBQOHTqEtWvXIjMzEy+88AKKi4uRm5sLIyOjWhM1ZTIZcnNzAQC5ubl1LiuoiWsoTVFREcrLyxtcnlBTRnNRU35Ddefm5sLW1lYl3tDQENbW1lp5Dk/GP8sWXaDzafYtgeHDh/P/79atGwIDA+Hs7Izff/8dJiYmOrSM0VJgb5Q6kEql8PDwQHp6Ouzs7FBVVYWCggKVNE8uG7Czs6tzWUFNXENpJBIJTExMNF6eoE1qym+objs7u1p7HlRXVyM/P18rz+HJ+GfZoguYUOqgpKQEGRkZsLe3R8+ePSESiVSWDaSlpeHWrVv8soGgoCAkJyerfJGOHDkCiUSCrl278mmeLKMmTU0Zulye4OrqCjs7O5W6i4qKEBsbq3KPBQUFuHjxIp/m2LFjUCqVCAwM5NOcOnVKZb+1I0eOwNPTE1ZWVnyahp6DOrboBJ25EVoQc+bMoRMnTlBmZiadOXOGgoODqV27dpSXl0dEnHvYycmJjh07RnFxcRQUFERBQUF8/hr38NChQykxMZEOHTpE7du3r9M9PHfuXEpNTaU1a9bU6R4Wi8UUFRVFV65cobfffpukUqmKN62xFBcXU0JCAiUkJBAAWrlyJSUkJNDNmzeJiHPJSqVS2rNnD126dIlGjRpVp3u4e/fuFBsbS3/99Re5u7uruIcLCgpIJpPRv/71L0pJSaGtW7eSqalpLfewoaEhffXVV5SamkqLFi2q0z38LFueN0woxLlp7e3tycjIiDp06EATJkyg9PR0Pr68vJxmzJhBVlZWZGpqSmPGjKGcnByVMrKysmj48OFkYmJC7dq1ozlz5pBcLldJc/z4cfL39ycjIyNyc3OjDRs21LJl9erV5OTkREZGRhQQEEDnz5/Xyj0eP36cANT6hIaGEhHnll2wYAHJZDISi8U0ZMgQSktLUynjwYMHNHHiRDI3NyeJREJhYWFUXFyskiYpKYn69+9PYrGYOnToQMuWLatly++//04eHh5kZGRE3t7etH//fpV4dWx53rBp9gyGGrA+CoOhBkwoDIYaMKEwGGrAhMJgqAETCoOhBkwoDIYaMKEwGGrAhMJgqAETCoOhBkwoOmTQoEGYPXu2rs3gaWn2tCSYUPScqqoqXZvQNtDpTLM2TGhoaK0Jiunp6TRt2jRycXEhY2Nj8vDwoFWrVtXKN2rUKFqyZAnZ29uTi4sLEXGzcv38/EgsFlPPnj0pOjqaAFBCQgKfNzk5mYYNG0ZmZmZka2tLU6ZM4TfRqMuezMzM5/U4WjxMKDqioKCAgoKCaPr06fzOLxUVFbRw4UK6cOEC3bhxg3777TcyNTWlbdu28flCQ0PJ3Nycn8qekpJChYWFZG1tTVOmTKHLly/TgQMHyMPDQ0UoDx8+5Kf+p6amUnx8PL300ks0ePDgeu2prq7WxaNpkTCh6JCBAwfSv//97wbThIeH07hx4/jr0NBQkslkKjudrF27lmxsbFTWa6xbt05FKF988QUNHTpUpezs7GwCwE9hV8eetgpbM9/CWLNmDdavX49bt26hvLwcVVVV8Pf3V0nj6+urstNJWloaunXrBmNjYz4sICBAJU9SUhKOHz8Oc3PzWnVmZGTAw8NDuzfSymBCaUFs3boVH3zwAb7++msEBQXBwsICK1as4LcDqsHMzEzjsktKSjBy5Eh8+eWXteLs7e0bbXNbgQlFhxgZGUGhUPDXZ86cQd++fTFjxgw+LCMj45nleHp64rfffkNlZSV/kM+FCxdU0vTo0QM7d+6Ei4sLDA3r/rM/bQ/jMcw9rENcXFwQGxuLrKws3L9/H+7u7oiLi8Phw4dx7do1LFiwoNYXvi4mTZoEpVKJt99+G6mpqTh8+DC++uorAOBPVg4PD0d+fj4mTpyICxcuICMjA4cPH0ZYWBgvjqftUSqVzXfzegYTig754IMPIBQK0bVrV7Rv3x4hISEYO3YsJkyYgMDAQDx48EDl7VIfEokEe/fuRWJiIvz9/fHJJ59g4cKFAMD3WxwcHHDmzBkoFAoMHToUvr6+mD17NqRSKQwMDOq0p2a3TAY7mq7VsmnTJoSFhaGwsJBt4qcFWB+llfDrr7/Czc0NHTp0QFJSEubNm4fx48czkWgJJpRWQm5uLn8Ks729PV577TUsXbpU12a1GljTi8FQA9aZZzDUgAmFwVADJhQGQw2YUBgMNWBCYTDUgAmFwVADJhQGQw2YUBgMNfh/KhfzCopHzeoAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_monitoring_metric('total_cpu_util_max', component='loading').max()*100\n",
+ "plot_metric(df, \"Max CPU Core [%]\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Maxmimum RAM"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 67,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMoAAADsCAYAAAA1kDmDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAnLElEQVR4nO3dfVhUdf4//ueZWxgGGEG5U1BMBERRxDu0G9dIcsmPmSWlFt6s1SfMjF0zf3lXrWlZftxtXbe1FGs1zE3ssrzJ9Y7EO1BxVVi8CYWfgaQ4M9wNzM3r+wdy1hHEM9w4IK/HdZ1L55z3nPM6x3k655w557wFIiIwxholc3YBjLUHHBTGJOCgMCYBB4UxCTgojEnAQWFMAg4KYxJwUBiTgIPCmAQcFNagJUuWQBAECIKAVatWOfz+AwcOQBAE6PX6e7YRBAFPP/10k2u9Hzgot0ydOhWCIODVV1+tNy0pKQmCIGDq1KmtWkNKSor4wZHJZPD390dCQgIKCgoabB8WFga1Wo3i4uJ600aOHAlBELB8+fJ60+Lj4yEIApYsWdJoPRERESgqKsLLL79sN/7UqVNISEiAv78/1Go1unfvjqeeegrbt2+HI1dEDR8+HEVFRZg4caLk9zgLB+U2gYGBSE1NRVVVlTjOZDJh06ZNCAoKui81eHh4oKioCFevXsW3336LvLw8PPfcc/XaHTp0CFVVVXj22WexYcOGBucVGBiIlJQUu3FXr17F3r174e/vf89aFAoF/Pz8oNFoxHHfffcdhg0bhvLycmzYsAG5ubnYtWsXxo8fjwULFsBgMEheV5VKBT8/P7i6ukp+j7NwUG4zcOBABAYGYuvWreK4rVu3IigoCFFRUXZtd+3ahYcffhg6nQ7e3t546qmncOnSJXH6l19+Ca1WiwsXLojjXnvtNYSFhaGysvKuNQiCAD8/P/j7+2P48OGYMWMGjh8/DqPRaNfuiy++wKRJk/Diiy9i3bp1Dc7rqaeewvXr15GRkSGO27BhA0aPHg0fHx9pG+U2FRUVmDFjBuLj4/HDDz9g9OjR6NmzJ8LDwzFjxgycPn0anp6edu/JyMhAZGQkXFxcMGzYMJw9e9bh5bYFHJQ7TJ8+HevXrxdfr1u3DtOmTavXrqKiAsnJycjKysLevXshk8kwfvx42Gw2AMBLL72E3/72t5g8eTIsFgt++OEHfP7559i4caPd/9CNKSkpQVpaGuRyOeRyuTi+rKwMW7ZswZQpU/DEE0/AYDDgp59+qvd+lUqFyZMn261PSkoKpk+fLnl73O7HH3/EjRs38NZbb921jSAIdq/nzp2LTz75BJmZmejSpQvGjh0Ls9ncpOU7EwflDlOmTMGhQ4dw5coVXLlyBRkZGZgyZUq9dhMmTMAzzzyDXr16YcCAAVi3bh3OnDmDnJwcsc1nn32GoqIizJ49GzNmzMCSJUsQHR3d6PINBgO0Wi3c3Nzg6+uL/fv3IykpCW5ubmKb1NRUhISEICIiAnK5HM8//zy++OKLBuc3ffp0fPPNN6ioqEB6ejoMBgOeeuqpJm2b8+fPAwBCQ0PFcZmZmdBqteLw/fff271n8eLFeOKJJ9CvXz9s2LAB165dQ1paWpOW70wKZxfQ1nTp0gXx8fFISUkBESE+Ph6dO3eu1+7ChQtYtGgRjh07huvXr4vfJAUFBejbty8AoFOnTvjiiy8QFxeH4cOH4+23377n8t3d3XHy5EmYzWbs3LkTGzduxNKlS+3arFu3zi68U6ZMwWOPPYZPP/0U7u7udm379++PkJAQ/POf/8T+/fvx4osvQqFouX/2yMhIZGdnAwBCQkJgsVjspsfExIh/9/LyQmhoKHJzc1ts+fcLB6UB06dPx6xZswAAq1evbrDN2LFj0b17d6xduxYBAQGw2Wzo27cvampq7Nqlp6dDLpejqKgIFRUV9T7Id5LJZOjVqxcAIDw8HJcuXcL//u//4quvvgIA5OTk4OjRozh+/DjmzZsnvs9qtSI1NRUzZ85scH1Wr16NnJwcHD9+XPqGuENISAgAIC8vD8OGDQMAqNVqsd4HGe96NeDJJ59ETU0NzGYz4uLi6k2/ceMG8vLysGDBAjz++OMIDw/HzZs367U7fPgwPvzwQ2zfvh1arVYMnyPefvttbN68GSdPngRQexD/6KOP4vTp08jOzhaH5OTku+5+TZo0CWfOnEHfvn3Rp08fh2uoM3r0aHh5eeHDDz+U/J6jR4+Kf7958ybOnz+P8PDwJtfgLPyN0gC5XC7uHtx+EF2nU6dO8Pb2xt///nf4+/ujoKCg3m5VWVkZXnzxRcyePRtjxoxBt27dMHjwYIwdOxbPPvus5FoCAwMxfvx4LFq0CGlpafjqq6/w3nvvibt3dX73u99h5cqVOHfuHCIiIurVW1RUBKVSKXm5DdFqtfj888+RkJCA+Ph4zJ49GyEhISgvL8euXbsA1N9e7733Hry9veHr64t33nkHnTt3bvM/LjaEv1HuwsPDAx4eHg1Ok8lkSE1NxYkTJ9C3b1+8+eabWLFihV2bN954A25ubvjggw8AAP369cMHH3yAV155BVevXnWoljfffBM//PADVq5ciRs3bmD8+PH12oSHhyM8PPyu3yo6nc7uhEBTjR8/HocPH4ZGo8FLL72E0NBQjBo1Cvv27UNqamq9EwXLly/HG2+8gejoaBQXF2P79u1QqVTNruN+E/jhEqwhS5YswbZt28QD9dY0depU6PV6bNu2rdWX1VT8jcLu6syZM9BqtfjrX//aKvP/6aefoNVqsXHjxlaZf0vibxTWoNLSUpSWlgKoPWV+5y/uLaGqqkrcDdVqtfDz82vxZbQUDgpjEvCuF2MScFAYk4CDwpgEbe4HR5vNhl9++QXu7u71rkRlrCUREcrKyhAQEACZrPHvjDYXlF9++QWBgYHOLoN1IIWFhejWrVujbdpcUOouGiwsLLzrL+OMtQSj0YjAwMB7XqgKtMGg1O1uNXYJCWMtScoufrMO5pcvXw5BEDBnzhxxnMlkQlJSEry9vaHVajFhwgRcu3atOYthzOmaHJTMzEx89tlniIyMtBv/5ptvYvv27diyZQsOHjyIX375Bc8880yzC2XMmZoUlPLyckyePBlr165Fp06dxPEGgwFffPEFVq5ciVGjRiE6Ohrr16/H4cOH7e5LaKpKYyls5pp7N2SshTUpKElJSYiPj0dsbKzd+BMnTsBsNtuNDwsLQ1BQEI4cOdLgvKqrq2E0Gu2Guzm7cT7MSwNw6YOh+Pfal/Hz3s9RXZQL3LoNl7HW4vDBfGpqKk6ePInMzMx604qLi6FSqaDT6ezG+/r6NviQNgBYtmwZ3n33XUnLVusvQA0zHqr5D3D1P8DVzcBPQKWgQYl7Hwhdo9E5NAZuwYMBj64A/w7DWohDQSksLMQbb7yBPXv2wMXFpUUKmD9/PpKTk8XXdafsGhIxdw/y8s6iKPcQrIUn4G04h1D6GRpUoocxCzBmAbmfAQDKFN6o6BwJt+DBcH9oKBAwENB4tUjNrONxKCgnTpxASUkJBg4cKI6zWq1IT0/HX/7yF+zevRs1NTXQ6/V23yrXrl276yXUarUaarVaWrEKOUIj+iM0oj+A2l9WL/9qxPmzx2G8eByuJdkIrslDqFAId8sNuBfvB4r3A7f2+spcuwFdo+EWPBiybtGAf39A1fy7/tiDz6HL7MvKynDlyhW7cdOmTUNYWBjmzZuHwMBAdOnSBV9//TUmTJgAoPaJHWFhYThy5Ij45I7GGI1GeHp6wmAwNOl3lJIyE05d/AX//3+Ow1p4Aj5l5xApXEJPWf1dPxtkqNaFQNb5Iai8u0PQBQG6IEAXCHgGAq6dePftAebIZ82hbxR3d/d6DzVwc3ODt7e3OH7GjBlITk6Gl5cXPDw88PrrryMmJkZSSFqCj7sL4qJ6AlE9ATyP8moLThXcxM6LV6C/eByuv55GBF1EpOxn+AulcNXnAfo84GL9edXI3VClCYDVoxvkXt3h2qUHVF7dAV332jC5dWmxIFlthDKTGcYqCwxVZnEwmswQALgo5VArZLV/KmVQK+RwUcrsxtf9XSm/7RyNpRqoLAWqSv/7JxGg0tZ+m945KN2Ae1z31BYQESw2gtlqg9lCqLZaYbYSzBYbzFYbaqy22tdWG2osNvT2dUcXd2l7Lg1p8V/m/+///g8ymQwTJkxAdXU14uLiWu1WUim0agUeCemCR0K6ABgEs9WGs1cN+P7yTeRdPA/bL6ehrfoFAcJ1dBN+RTfhOroK19FFMEBlrYCq7AJQdgFo4HkQZkEFo9of1W4BsHoEQuHVHS6du6NGrkGFRYZyixxlZgHGW4OhRoC+WoC+GiitBm6agBsmwnUTYKi2gaix0BHcYEInoRw6lKGTUI5OdX8KZdChXBznJdT+XSeUwQ0mh7eZWeYCs1wDi0ID662BlBrYlG4gZV2otBDUbpCptYBMDovZAqulBlarGTbLrcFqhs1qAd36O1nNIJsFsJoBqwWwWQCbGYLNCoHMgM0Kmc0MGwEmqGGCClVQo5JUqCIlKmwqVNiUqCA1KmwKVEENE9W2MUGFKlLBBDWqoLo1vnZaNZT4y6RBiI+894PJ76bN3eHY3F2vpjBbbfi1rBrFRhNKjCYUG0y4rjeg5kYBZIYCKMuvQmsqgq/tGrreCpIfbkImtNyms5EAMxQwQwGLoIBVUMIqU8ImKOBCJrhZjVCiac/stZIAPbS4Se64CS1skMENJmhggptgggbVcIOpRdenrckZ9jH6PGn/cMBW2/V6UCnlMgToXBGgu7P7gQF2r8pMZlwzmpBvrMbRm0ZU/FoAS+kVyAyFUFVchYepCJ0sJdAINXCRWaEWrFALFqgEC5SoHRRkgZzMkNvsfziVCQQ1zFDXhYEAWBsoVq6uPXun8a49htJ4Aa5eIFdvWFx0qFHVDialDialJyrlnqgQ3FBtJZjMNpjMVtRYbKi22FBjsd7604ZqsxU2SxVQXQGYyyHUVEAwV0JmroDMUgWFpQIKayWUlioorZVQ2aqgspmgslVCAStIpgRkcpCgAGQKkEwJQS4HZEoIcgUgV0KQKSDIVZDJFZApFJDJVZApFJArlJArlJApVFAolFDIABXVQEXVUNqqobSZoLCZoLBVQ2E1QW6tgtxqgsxqgsxigsxSBZgrIVhMgLn27zBXAdb/buM+gV2a9RnhoDjA3UUJdxclevm4A+gMoGe9NkQk7T4aotpdD2vNrcH8379b7hindK0NhsYLUGoaPC4SAChvDXwe7xab9VZwqgC1tlmz4qC0MMk3mwkCIFfWDvzRbh0yeW1AmhkSgG8FZkwSDgpjEnBQGJOAg8KYBBwUxiTgoDAmAQeFMQk4KIxJwEFhTAIOCmMScFAYk4CDwpgEHBTGJOCgMCYBB4UxCTgojEnAQWFMAg4KYxJwUBiTgIPCmAQcFMYk4KAwJgEHhTEJHArKmjVrEBkZKfbYGxMTg507d4rTuaNT9qByKCjdunXD8uXLceLECWRlZWHUqFEYN24czp07B4A7OmUPMGqmTp060eeff056vZ6USiVt2bJFnJabm0sA6MiRI3d9v8lkIoPBIA6FhYUEgAwGQ3NLY6xRBoNB8metyccoVqsVqampqKioQExMTJM6OgVq+3D09PQUh7t1S8eYMzkclDNnzkCr1UKtVuPVV19FWloa+vTp06SOToHaPhwNBoM4FBYWOrwSjLU2hx/SHRoaiuzsbBgMBvzzn/9EYmIiDh482OQCHOnDkTFncTgoKpUKvXr1AgBER0cjMzMTf/rTn5CQkOBwR6eMtRfN/h3FZrOhuroa0dHRUCqV2Lt3rzgtLy8PBQUFiImJae5iGHMqh75R5s+fjzFjxiAoKAhlZWXYtGkTDhw4gN27d8PT09PpHZ0y1locCkpJSQleeuklFBUVwdPTE5GRkdi9ezeeeOIJAG2vo1PGWgp3dso6LEc+a3ytF2MScFAYk4CDwpgEHBTGJOCgMCYBB4UxCTgojEnAQWFMAg4KYxJwUBiTgIPCmAQcFMYk4KAwJgEHhTEJOCiMScBBYUwCDgpjEnBQGJOAg8KYBBwUxiTgoDAmAQeFMQk4KIxJwEFhTAIOCmMSOBSUZcuWYfDgwXB3d4ePjw+efvpp5OXl2bXhfhzZg8ihoBw8eBBJSUk4evQo9uzZA7PZjNGjR6OiokJsw/04sgdSc/rAKykpIQB08OBBIqIm9+N4O0f61WOsORz5rDnckdDtDAYDAMDLywsA7tmPY0PdP1RXV6O6ulp8bTQaJS3barXCbDY3p/wORalUQi6XO7uMdqvJQbHZbJgzZw5GjBiBvn37AkCT+nFctmwZ3n33XcnLJSIUFxdDr9c3tfQOS6fTwc/PD4IgOLuUdqfJQUlKSsLZs2dx6NChZhUwf/58JCcni6+NRmOjPQPXhcTHxwcajYb/0SUgIlRWVqKkpAQA4O/v7+SK2p8mBWXWrFn4/vvvkZ6ejm7duonj/fz8HO7H0ZHOTq1WqxgSb2/vppTeYbm6ugKo7QzKx8eHd8Mc5NBZLyLCrFmzkJaWhn379iE4ONhuemv341h3TKLRaJo9r46obrvxsZ3jHPpGSUpKwqZNm/Ddd9/B3d1dPO7w9PSEq6vrfevHkXe3moa3W9M5FJQ1a9YAAEaOHGk3fv369Zg6dSoA7seRPZgcCgpJ6O7RxcUFq1evxurVq5tcFGucIAhIS0vD008/7exSOgy+1osxCTgojEnwQAVl5MiRmD17Nt566y14eXnBz88PS5YsEadfvnwZgiAgOztbHKfX6yEIAg4cOAAAOHDgAARBwO7duxEVFQVXV1eMGjUKJSUl2LlzJ8LDw+Hh4YFJkyahsrLyrrWkpKRAp9Nh27ZtCAkJgYuLC+Li4lBYWGjXbs2aNXjooYegUqkQGhqKr776ym76hQsX8Oijj8LFxQV9+vTBnj177KbX1NRg1qxZ8Pf3h4uLC7p3745ly5Y1bQOyu2vly2kc1tj1N1VVVZSTk0NVVVUNvvexxx4jDw8PWrJkCZ0/f542bNhAgiDQjz/+SERE+fn5BIBOnTolvufmzZsEgPbv309ERPv37ycANGzYMDp06BCdPHmSevXqRY899hiNHj2aTp48Senp6eTt7U3Lly+/63qsX7+elEolDRo0iA4fPkxZWVk0ZMgQGj58uNhm69atpFQqafXq1ZSXl0effPIJyeVy2rdvHxERWa1W6tu3Lz3++OOUnZ1NBw8epKioKAJAaWlpRES0YsUKCgwMpPT0dLp8+TL99NNPtGnTpgZrutf262gcudbrgQvKww8/bDdu8ODBNG/ePCJyLCj/+te/xDbLli0jAHTp0iVx3CuvvEJxcXF3XY/169cTADp69Kg4ru4C0WPHjhER0fDhw2nmzJl273vuuefot7/9LRER7d69mxQKBV29elWcvnPnTrugvP766zRq1Ciy2Wx3raUOB8WeI0F5oHa9ACAyMtLutb+/v3jpRlPn4+vrC41Gg549e9qNu9d8FQoFBg8eLL4OCwuDTqdDbm4uACA3NxcjRoywe8+IESPspgcGBiIgIECcfucPt1OnTkV2djZCQ0Mxe/Zs/Pjjjw6uKZPigQuKUqm0ey0IAmw2GwBAJqtdXbrtNPfdfqW+fT6CIDQ6X2caOHAg8vPz8f7776OqqgoTJ07Es88+6+yyHjgPXFAa06VLFwBAUVGROO72A/uWZrFYkJWVJb7Oy8uDXq9HeHg4ACA8PBwZGRl278nIyECfPn3E6YWFhXb1Hj16tN5yPDw8kJCQgLVr12Lz5s349ttvUVpa2hqr1GE1636U9sbV1RXDhg3D8uXLERwcjJKSEixYsKDVlqdUKvH666/jz3/+MxQKBWbNmoVhw4ZhyJAhAIC5c+di4sSJiIqKQmxsLLZv346tW7fiX//6FwAgNjYWvXv3RmJiIlasWAGj0Yh33nnHbhkrV66Ev78/oqKiIJPJsGXLFvj5+dW71YE1T4f6RgGAdevWwWKxIDo6GnPmzMEf//jHVluWRqPBvHnzMGnSJIwYMQJarRabN28Wpz/99NP405/+hI8//hgRERH47LPPsH79evESIZlMhrS0NFRVVWHIkCH43e9+h6VLl9otw93dHR999BEGDRqEwYMH4/Lly9ixY4e4m8lahkAk4bqU+8hoNMLT0xMGgwEeHh5200wmE/Lz8xEcHAwXFxcnVShNSkoK5syZ06ZuMGtP2+9+aOyzdif+b4cxCTgojEnAQWklU6dObVO7Xax5OCiMScBBYUwCDgpjEnBQGJOAg8KYBBwUxiTgoDAmAQelDUpPT8fYsWMREBAAQRCwbds2Z5fU4XFQ2qCKigr079+fH/nUhnSYy+yJCFVmq1OW7aqUO/SUxjFjxmDMmDGtWBFzVIcJSpXZij6Ldjtl2TnvxUGj6jCb+oHEu16MSeDwf3Pp6elYsWIFTpw4gaKionqP9iQiLF68GGvXroVer8eIESOwZs0ahISEtGTdDnNVypHzXpzTls3aN4e/Ue51oPnRRx/hz3/+M/72t7/h2LFjcHNzQ1xcHEwmU7OLbQ5BEKBRKZwy8FPk2z+Hv1EaO9AkIqxatQoLFizAuHHjAABffvklfH19sW3bNjz//PPNq5YxJ2nRY5T8/HwUFxfbdXbq6emJoUOH4siRIw2+p7q6Gkaj0W7o6MrLy5GdnS0+ISY/Px/Z2dkoKChwbmEdWIsGpa5jIV9fX7vx9+rs1NPTUxwa67+xo8jKykJUVBSioqIAAMnJyYiKisKiRYucXFnH5fRzlo52dtoRjBw5UlJfNOz+adFvlLoOTa9du2Y3/l6dnXp4eNgNjLU1LRqU4OBg+Pn52XV2ajQacezYsRbp7JQxZ3F416u8vBwXL14UX9cdaHp5eSEoKEh8qFxISAiCg4OxcOFCBAQEcDdqrF1zOChZWVn4zW9+I76uO75ITExESkoK3nrrLVRUVODll1+GXq/Hww8/jF27dvED11i7xk+K7EB4+9njJ0Uy1sI4KIxJwEFhTAIOCmMScFAYk4CD0sZYrVYsXLgQwcHBcHV1xUMPPYT333+fL2lxMqdf68Xsffjhh1izZg02bNiAiIgIZGVlYdq0afD09MTs2bOdXV6H1XGCQgSYK52zbKUGkHjz1uHDhzFu3DjEx8cDAHr06IGvv/4ax48fb80K2T10nKCYK4EPAu7drjX8f78AKjdJTYcPH46///3vOH/+PHr37o3Tp0/j0KFDWLlyZSsXyRrTcYLSTrz99tswGo0ICwuDXC6H1WrF0qVLMXnyZGeX1qF1nKAoNbX/sztr2RJ988032LhxIzZt2oSIiAhkZ2djzpw5CAgIQGJiYisWyRrTcYIiCJJ3f5xp7ty5ePvtt8XnC/Tr1w9XrlzBsmXLOChOxKeH25jKysp6fcTL5XLYbDYnVcSAjvSN0k6MHTsWS5cuRVBQECIiInDq1CmsXLkS06dPd3ZpHRoHpY359NNPsXDhQrz22msoKSlBQEAAXnnlFX6whJNxUNoYd3d3rFq1CqtWrXJ2Kew2fIzCmAQcFMYk4KAwJgEHhTEJ2mVQ+JLzpuHt1nTtKihKpRJA7Y9yzHF1261uOzLp2tXpYblcDp1Oh5KSEgCARqPhvkckICJUVlaipKQEOp0Ocjl3bOSodhUU4L/PN64LC5NOp9Pd9RnQrHHtLiiCIMDf3x8+Pj4wm83OLqfdUCqV/E3SDO0uKHXkcjn/w7P7ptUO5levXo0ePXrAxcUFQ4cO5VtZWbvWKkHZvHkzkpOTsXjxYpw8eRL9+/dHXFwcH1ewdqtVgrJy5UrMnDkT06ZNQ58+ffC3v/0NGo0G69ata43FMdbqWvwYpaamBidOnMD8+fPFcTKZDLGxsQ12eFpdXY3q6mrxtcFgAADu9JS1urrPmJQfYls8KNevX4fVam2ww9P//Oc/9dovW7YM7777br3xHb0fR3b/lJWVwdPTs9E2Tj/rdWdnpzabDaWlpfD29m63PybWddhaWFjYYfqkbI/rTEQoKytDQMC9H2PV4kHp3Lkz5HK55A5P1Wo11Gq13TidTtfSZTlFR+y8tb2t872+Seq0+MG8SqVCdHS0XYenNpsNe/fu5Q5PWbvVKrteycnJSExMxKBBgzBkyBCsWrUKFRUVmDZtWmssjrFW1ypBSUhIwK+//opFixahuLgYAwYMwK5du+od4D+o1Go1Fi9eXG+X8kH2oK9zm+vslLG2qF3dj8KYs3BQGJOAg8KYBBwUxiTgoABYsmQJBEGwG8LCwsTpJpMJSUlJ8Pb2hlarxYQJE+r9oFpQUID4+HhoNBr4+Phg7ty5sFgsdm0OHDiAgQMHQq1Wo1evXkhJSalXS2vdnpCeno6xY8ciICAAgiBg27ZtdtOJCIsWLYK/vz9cXV0RGxuLCxcu2LUpLS3F5MmT4eHhAZ1OhxkzZqC8vNyuzb///W888sgjcHFxQWBgID766KN6tWzZsgVhYWFwcXFBv379sGPHDodrue+I0eLFiykiIoKKiorE4ddffxWnv/rqqxQYGEh79+6lrKwsGjZsGA0fPlycbrFYqG/fvhQbG0unTp2iHTt2UOfOnWn+/Plim59//pk0Gg0lJydTTk4OffrppySXy2nXrl1im9TUVFKpVLRu3To6d+4czZw5k3Q6HV27dq3Z67hjxw565513aOvWrQSA0tLS7KYvX76cPD09adu2bXT69Gn6n//5HwoODqaqqiqxzZNPPkn9+/eno0eP0k8//US9evWiF154QZxuMBjI19eXJk+eTGfPnqWvv/6aXF1d6bPPPhPbZGRkkFwup48++ohycnJowYIFpFQq6cyZMw7Vcr9xUKg2KP37929wml6vJ6VSSVu2bBHH5ebmEgA6cuQIEdV+CGUyGRUXF4tt1qxZQx4eHlRdXU1ERG+99RZFRETYzTshIYHi4uLE10OGDKGkpCTxtdVqpYCAAFq2bFmz1/F2dwbFZrORn58frVixQhyn1+tJrVbT119/TUREOTk5BIAyMzPFNjt37iRBEOjq1atERPTXv/6VOnXqJK4zEdG8efMoNDRUfD1x4kSKj4+3q2fo0KH0yiuvSK7FGXjX65YLFy4gICAAPXv2xOTJk1FQUAAAOHHiBMxmM2JjY8W2YWFhCAoKEm8bOHLkCPr162f3g2pcXByMRiPOnTsntrl9HnVt6uZRd3vC7W0auz2hJeXn56O4uNhu2Z6enhg6dKjdOup0OgwaNEhsExsbC5lMhmPHjoltHn30UahUKrt1zMvLw82bN8U2jW0HKbU4AwcFwNChQ5GSkoJdu3ZhzZo1yM/PxyOPPIKysjIUFxdDpVLVu1DT19cXxcXFAIDi4uIGbyuom9ZYG6PRiKqqqkZvT6ibR2upm39jyy4uLoaPj4/ddIVCAS8vrxbZDrdPv1ctzuD0y+zbgjFjxoh/j4yMxNChQ9G9e3d88803cHV1dWJlrK3gb5QG6HQ69O7dGxcvXoSfnx9qamqg1+vt2tx+24Cfn1+DtxXUTWusjYeHB1xdXR2+PaEl1c2/sWX7+fnVe+aBxWJBaWlpi2yH26ffqxZn4KA0oLy8HJcuXYK/vz+io6OhVCrtbhvIy8tDQUGBeNtATEwMzpw5Y/dB2rNnDzw8PNCnTx+xze3zqGtTNw9n3p4QHBwMPz8/u2UbjUYcO3bMbh31ej1OnDghttm3bx9sNhuGDh0qtklPT7d73tqePXsQGhqKTp06iW0a2w5SanEKp51GaEN+//vf04EDByg/P58yMjIoNjaWOnfuTCUlJURUe3o4KCiI9u3bR1lZWRQTE0MxMTHi++tOD48ePZqys7Np165d1KVLlwZPD8+dO5dyc3Np9erVDZ4eVqvVlJKSQjk5OfTyyy+TTqezO5vWVGVlZXTq1Ck6deoUAaCVK1fSqVOn6MqVK0RUe0pWp9PRd999R//+979p3LhxDZ4ejoqKomPHjtGhQ4coJCTE7vSwXq8nX19fevHFF+ns2bOUmppKGo2m3ulhhUJBH3/8MeXm5tLixYsbPD18r1ruNw4K1Z6m9ff3J5VKRV27dqWEhAS6ePGiOL2qqopee+016tSpE2k0Gho/fjwVFRXZzePy5cs0ZswYcnV1pc6dO9Pvf/97MpvNdm32799PAwYMIJVKRT179qT169fXq+XTTz+loKAgUqlUNGTIEDp69GiLrOP+/fsJQL0hMTGRiGpPyy5cuJB8fX1JrVbT448/Tnl5eXbzuHHjBr3wwguk1WrJw8ODpk2bRmVlZXZtTp8+TQ8//DCp1Wrq2rUrLV++vF4t33zzDfXu3ZtUKhVFRETQDz/8YDddSi33G19mz5gEfIzCmAQcFMYk4KAwJgEHhTEJOCiMScBBYUwCDgpjEnBQGJOAg8KYBBwUJxo5ciTmzJnj7DJEba2etoSD0s7V1NQ4u4SOwalXmnVgiYmJ9S5QvHjxIk2fPp169OhBLi4u1Lt3b1q1alW9940bN47++Mc/kr+/P/Xo0YOIaq/K7d+/P6nVaoqOjqa0tDQCQKdOnRLfe+bMGXryySfJzc2NfHx8aMqUKeJDNBqqJz8//35tjjaPg+Iker2eYmJiaObMmeKTX0wmEy1atIgyMzPp559/pn/84x+k0Who8+bN4vsSExNJq9WKl7KfPXuWDAYDeXl50ZQpU+jcuXO0Y8cO6t27t11Qbt68KV76n5ubSydPnqQnnniCfvOb39y1HovF4oxN0yZxUJzoscceozfeeKPRNklJSTRhwgTxdWJiIvn6+to96WTNmjXk7e1td7/G2rVr7YLy/vvv0+jRo+3mXVhYSADES9il1NNR8T3zbczq1auxbt06FBQUoKqqCjU1NRgwYIBdm379+tk96SQvLw+RkZFwcXERxw0ZMsTuPadPn8b+/fuh1WrrLfPSpUvo3bt3y67IA4aD0oakpqbiD3/4Az755BPExMTA3d0dK1asEB8HVMfNzc3heZeXl2Ps2LH48MMP603z9/dvcs0dBQfFiVQqFaxWq/g6IyMDw4cPx2uvvSaOu3Tp0j3nExoain/84x+orq4WO/LJzMy0azNw4EB8++236NGjBxSKhv/Z76yH/RefHnaiHj164NixY7h8+TKuX7+OkJAQZGVlYffu3Th//jwWLlxY7wPfkEmTJsFms+Hll19Gbm4udu/ejY8//hgAxJ6Vk5KSUFpaihdeeAGZmZm4dOkSdu/ejWnTponhuLMem83WeivfznBQnOgPf/gD5HI5+vTpgy5duiAuLg7PPPMMEhISMHToUNy4ccPu2+VuPDw8sH37dmRnZ2PAgAF45513sGjRIgAQj1sCAgKQkZEBq9WK0aNHo1+/fpgzZw50Oh1kMlmD9dQ9LZNx13QPrI0bN2LatGkwGAz8EL8WwMcoD4gvv/wSPXv2RNeuXXH69GnMmzcPEydO5JC0EA7KA6K4uFjshdnf3x/PPfccli5d6uyyHhi868WYBHwwz5gEHBTGJOCgMCYBB4UxCTgojEnAQWFMAg4KYxJwUBiT4P8B5V/9FBsTzqcAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_monitoring_metric('total_cpu_memory', component='loading').max()/1000\n",
+ "plot_metric(df, \"Max RAM [Gb]\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Maxmimum Cache"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 68,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMoAAADsCAYAAAA1kDmDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjc0lEQVR4nO3de1hU5fo38O8Aw8AwDCMIDBgIpIjiCU+A2NaSJDPTolTUNqJbM/GAlJmviVq5Qc1DeRGaO1HL885DlocMFfNEokIqhIqQpgKmwqBykrnfP/yxtksQ1yAwIPfnuqaa53lmrXsN823WWrMOMiIiMMaqZWLsAhhrDDgojEnAQWFMAg4KYxJwUBiTgIPCmAQcFMYk4KAwJgEHhTEJOCjPsDlz5qBz5861Pl03NzfIZDLIZDLk5+cb/PpRo0Zh8ODBTxxTMY/t27fXqM7a1OSCUvEHGD9+fKW+8PBwyGQyjBo1qs7rKC0txYIFC9CpUycolUo0b94cAQEBiI+PR1lZWZ3P/2l98sknuH79OmxsbIQ2IsLKlSvh7+8PtVoNlUoFb29vTJkyBRcvXjRo+l988QWuX79e22XXWJMLCgC4uLhg48aNKCoqEtqKi4uxfv16uLq61vn8S0tLERQUhJiYGIwbNw5Hjx7Fb7/9hvDwcCxbtgznzp2r8xqelrW1NbRaLWQyGYAHIRk+fDgmT56MV199FT///DPS0tLwzTffwMLCAp999plB07exsYFWq62L0mukSQalS5cucHFxwdatW4W2rVu3wtXVFT4+PqKxe/bsQa9evaDRaGBnZ4fXXnsNmZmZQv/atWuhUqlw4cIFoW3ChAnw8vLCvXv3qpz/0qVLcejQISQkJCA8PBydO3eGh4cHhg8fjqSkJLRu3VrSvAHgr7/+QkhICGxtbWFlZYVu3bohKSlJNObbb7+Fm5sbbGxsMGzYMBQWFgp9er0e0dHRcHd3h6WlJTp16oT//ve/Br6jwKZNm7Bx40Zs2rQJs2bNgp+fH1xdXeHn54f58+cjPj6+0mvmzp0Le3t7qNVqjB8/HqWlpQbPt740yaAAwOjRo0V/vFWrViEsLKzSuLt37yIyMhLJyclISEiAiYkJ3njjDej1egDAP//5T7z66qsYMWIE7t+/j59++gn/+c9/sG7dOiiVyirnvW7dOgQGBlYKJQDI5XJYWVlJmvedO3fQu3dvXL16FT/88ANSU1Px4YcfCv0AkJmZie3bt+PHH3/Ejz/+iMTERMTExAj90dHRWLt2LZYvX45z585h6tSpGDlyJBITEw16Pzds2IA2bdrg9ddfr7K/4punQkJCAtLT03Hw4EFs2LABW7duxdy5cw2aZ72iJiY0NJQGDRpEeXl5pFAoKDs7m7Kzs8nCwoJu3LhBgwYNotDQ0Me+/saNGwSAzpw5I7TdunWLnnvuOXrvvffI0dGR5s2bV20NlpaWNHnyZINrf3TeK1asIGtra7p582aV42fPnk1KpZJ0Op3QNm3aNPL19SUiouLiYlIqlXT06FHR68aMGUMhISGPraNly5a0ZMkSUZuXlxe9/vrrorYpU6aQlZUVWVlZUYsWLYT20NBQsrW1pbt37wptcXFxpFKpqLy8XDQNALRt27bH1lJfmuw3ir29PQYMGIDVq1cjPj4eAwYMQPPmzSuNu3DhAkJCQuDh4QG1Wg03NzcAwOXLl4UxzZo1wzfffIO4uDg8//zz+Oijj6qdN0k8BehJ805JSYGPjw9sbW0fOw03NzdYW1sLz52cnJCXlwcAuHjxIu7du4eXX34ZKpVKeKxdu7bSKl5NzJw5EykpKYiKisKdO3dEfRU7MSr4+/vjzp07uHLlylPPty6YGbsAYxo9ejQmTpwIAIiNja1yzMCBA9GyZUusXLkSzs7O0Ov1aN++faX16UOHDsHU1BTXr1/H3bt3RR/OR3l6euKPP/54Yn1PmrelpeUTpyGXy0XPZTKZaNUNAH766Se0aNFCNE6hUDxx2g9r3bo1MjIyRG329vawt7eHg4ODQdNqiJrsNwoAvPLKKygtLUVZWRmCgoIq9d+8eRMZGRn4+OOP0bdvX7Rt2xa3b9+uNO7o0aOYP38+du7cCZVKJYTvcYYPH45ffvkFp0+frtRXVlaGu3fvSpp3x44dkZKSglu3bhm45A+0a9cOCoUCly9fRqtWrUQPFxcXg6YVEhKCjIwM7NixQ9L41NRU0V7H48ePQ6VSGTzf+tKkg2Jqaor09HSkpaXB1NS0Un+zZs1gZ2eHr7/+GhcvXsT+/fsRGRkpGlNYWIh33nkHkydPRv/+/bFu3Tps2rSp2j1HERERCAgIQN++fREbG4vU1FRcunQJmzdvhp+fHy5cuCBp3iEhIdBqtRg8eDCOHDmCS5cu4fvvv8exY8ckLb+1tTU++OADTJ06FWvWrEFmZiZOnTqFZcuWYc2aNZKmUWHYsGF46623MGzYMHzyySdISkpCdnY2EhMTsWnTpkrvb2lpKcaMGYO0tDTs2rULs2fPxsSJE2Fi0kA/ksbeSKpvFRvzj/Poxvy+ffuobdu2pFAoqGPHjnTw4EHRBmZYWBh16NCBiouLhdcsWrSIbG1t6a+//nrsfIqLiyk6Opo6dOhAFhYWZGtrSwEBAbR69WoqKyuTNG8iouzsbAoODia1Wk1KpZK6detGSUlJRPRgY75Tp06i+S5ZsoRatmwpPNfr9bR06VJq06YNyeVysre3p6CgIEpMTHxs7VVtzBMRlZeX0/Lly8nX15esrKzI3NycPDw8aOzYsZSWliaMq/gbREVFkZ2dHalUKho7dqzoPazw6PIai4yILy7BDOPm5oaIiAhERETU+bxkMhm2bdv2xENe6loD/Z5jDd306dOhUqlQUFBQJ9MfP348VCpVnUy7JvgbhRnszz//FI5H8/DwqJPtiry8POh0OgAPdmlX/AhrLBwUxiTgVS/GJOCgMCYBB4UxCRrcISx6vR7Xrl2DtbV1pSNOGatNRITCwkI4Ozs/cYdEgwvKtWvXGuxhDOzZdOXKFTz33HPVjmlwQak4mPDKlStQq9VGroY9y3Q6HVxcXKo9gLVCgwtKxeqWWq3moLB6IWUVnzfmGZOAg8KYBBwUxiRocNso1fltaQja3T7w2P7qjsUhSN/VLKtiSlW9uqpxta2m86iP2p6kqve86qqq/ts8vAwV//2/f1fd/rjxqX6L0aX/aImVV9aogmJSXgKVrOjJAxl7xMNXpqmJRhUUtxFf4Nq9wqo7Hzm2U7wjo5r/uxI9OvgRVfcZ8g31NAiE6teQ/1dHpcUw4AfbqoY+7tVSpkoP/VNooypGVPWnEf1NZKICifD4vkcrFNpl8LKtfOEQQzSqoDTX8g+RzDh4Y54xCTgojEnAQWFMAg4KYxJwUBiTgIPCmAQcFMYk4KAwJoHBQbl69SpGjhwJOzs7WFpaokOHDkhOThb6iQhRUVFwcnKCpaUlAgMDRXejYqwxMigot2/fRkBAAORyOXbv3o20tDQsWrQIzZo1E8YsWLAAX375JZYvX46kpCRYWVkhKCgIxcXFtV48Y/XGkAsVT58+nXr16vXYfr1eT1qtlhYuXCi05efnk0KhoA0bNkiaR0FBAQGggoICQ0pjzGCGfNYM+kb54Ycf0K1bN7z99ttwcHCAj48PVq5cKfRnZWUhJycHgYGBQpuNjQ18fX0feyuCkpIS6HQ60YOxhsagoFy6dAlxcXFo3bo19u7di/feew+TJ08W7qWRk5MDAHB0dBS9ztHRUeh7VHR0NGxsbIQHX4GFNUQGBUWv16NLly7497//DR8fH4wbNw5jx47F8uXLa1zAjBkzUFBQIDwa6j38WNNmUFCcnJzQrl07UVvbtm2Fm29qtVoAQG5urmhMbm6u0PcohUIhXHGFr7zCGiqDghIQEFDphpbnz59Hy5YtAQDu7u7QarVISEgQ+nU6HZKSkuDv718L5TJmJIbsJfjtt9/IzMyM5s2bRxcuXKB169aRUqmk7777ThgTExNDGo2GduzYQb///jsNGjSI3N3dqaioqNb3RDD2NAz5rBl8D8edO3dS+/btSaFQkJeXF3399deifr1eT7NmzSJHR0dSKBTUt29fysjIqJPiGXsahnzWGtyNhHQ6HWxsbFBQUMDbK6xOGfJZ42O9GJOAg8KYBBwUxiTgoDAmAQeFMQk4KIxJwEFhTAIOCmMScFAYk4CDwpgEHBTGJOCgMCYBB4UxCTgojEnAQWFMAg4KYxJwUBiTgIPCmAQcFMYk4KAwJgEHhTEJOCiMScBBYUwCDgpjEnBQGJOAg8KYBBwUxiTgoDAmAQeFMQk4KIxJwEFhTAIOCmMScFAYk+CpghITEwOZTIaIiAihrbi4GOHh4bCzs4NKpUJwcHCluwQz1tjUOCgnTpzAihUr0LFjR1H71KlTsXPnTmzZsgWJiYm4du0a3nzzzaculDFjqlFQ7ty5gxEjRmDlypVo1qyZ0F5QUIBvvvkGixcvxksvvYSuXbsiPj4eR48exfHjx2utaMbqW42CEh4ejgEDBiAwMFDUfvLkSZSVlYnavby84OrqimPHjlU5rZKSEuh0OtGDsYbGzNAXbNy4EadOncKJEycq9eXk5MDc3BwajUbU7ujoiJycnCqnFx0djblz5xpaBmP1yqBvlCtXrmDKlClYt24dLCwsaqWAGTNmoKCgQHhcuXKlVqbLWG0yKCgnT55EXl4eunTpAjMzM5iZmSExMRFffvklzMzM4OjoiNLSUuTn54tel5ubC61WW+U0FQoF1Gq16MFYQ2PQqlffvn1x5swZUVtYWBi8vLwwffp0uLi4QC6XIyEhAcHBwQCAjIwMXL58Gf7+/rVXNWP1zKCgWFtbo3379qI2Kysr2NnZCe1jxoxBZGQkbG1toVarMWnSJPj7+8PPz6/2qmasnhm8Mf8kS5YsgYmJCYKDg1FSUoKgoCB89dVXtT0bxuqVjIjI2EU8TKfTwcbGBgUFBby9wuqUIZ81PtaLMQk4KIxJwEFhTAIOCmMScFAYk4CDwpgEtf47Sn0pLy9HWVmZsctoNORyOUxNTY1dRqPV6IJCRMjJyal0PBl7Mo1GA61WC5lMZuxSGp1GF5SKkDg4OECpVPIfXQIiwr1795CXlwcAcHJyMnJFjU+jCkp5ebkQEjs7O2OX06hYWloCAPLy8uDg4MCrYQZqVBvzFdskSqXSyJU0ThXvG2/bGa5RBaUCr27VDL9vNdcog8JYfeOgNEIymQzbt283dhlNCgeFMQk4KIxJ8EwFpU+fPpg8eTI+/PBD2NraQqvVYs6cOUJ/dnY2ZDIZUlJShLb8/HzIZDIcPHgQAHDw4EHIZDLs3bsXPj4+sLS0xEsvvYS8vDzs3r0bbdu2hVqtxvDhw3Hv3r3H1rJ69WpoNBps374drVu3hoWFBYKCgipdZSYuLg7PP/88zM3N0aZNG3z77bei/gsXLuAf//gHLCws0K5dO+zbt0/UX1paiokTJ8LJyQkWFhZo2bIloqOja/YGssejBqagoIAAUEFBQaW+oqIiSktLo6Kioipf27t3b1Kr1TRnzhw6f/48rVmzhmQyGf38889ERJSVlUUA6PTp08Jrbt++TQDowIEDRER04MABAkB+fn50+PBhOnXqFLVq1Yp69+5N/fr1o1OnTtGhQ4fIzs6OYmJiHrsc8fHxJJfLqVu3bnT06FFKTk6mHj16UM+ePYUxW7duJblcTrGxsZSRkUGLFi0iU1NT2r9/PxERlZeXU/v27alv376UkpJCiYmJ5OPjQwBo27ZtRES0cOFCcnFxoUOHDlF2djb9+uuvtH79+ipretL719RU91l71DMXlF69eonaunfvTtOnTyciw4Lyyy+/CGOio6MJAGVmZgpt7777LgUFBT12OeLj4wkAHT9+XGhLT08nAJSUlERERD179qSxY8eKXvf222/Tq6++SkREe/fuJTMzM7p69arQv3v3blFQJk2aRC+99BLp9frH1lKBgyJmSFCeqVUvAJUuGu7k5CQculHT6Tg6OkKpVMLDw0PU9qTpmpmZoXv37sJzLy8vaDQapKenAwDS09MREBAgek1AQICo38XFBc7OzkL/o5d9GjVqFFJSUtCmTRtMnjwZP//8s4FLyqR45oIil8tFz2UyGfR6PQDAxOTB4tJD19N43K/UD09HJpNVO11j6tKlC7KysvDpp5+iqKgIQ4YMwVtvvWXssp45z1xQqmNvbw8AuH79utD28IZ9bbt//z6Sk5OF5xkZGcjPz0fbtm0BAG3btsWRI0dErzly5AjatWsn9F+5ckVUb1V3BVCr1Rg6dChWrlyJTZs24fvvv8etW7fqYpGarEZ1UOTTsrS0hJ+fH2JiYuDu7o68vDx8/PHHdTY/uVyOSZMmCZecnThxIvz8/NCjRw8AwLRp0zBkyBD4+PggMDAQO3fuxNatW/HLL78AAAIDA+Hp6YnQ0FAsXLgQOp0OM2fOFM1j8eLFcHJygo+PD0xMTLBlyxZotdpKF0pnT6dJfaMAwKpVq3D//n107doVERER+Oyzz+psXkqlEtOnT8fw4cMREBAAlUqFTZs2Cf2DBw/GF198gc8//xze3t5YsWIF4uPj0adPHwAPVhW3bduGoqIi9OjRA//6178wb9480Tysra2xYMECdOvWDd27d0d2djZ27dolrGay2tGoLoBXXFyMrKwsuLu719rV9OvK6tWrERER0aBOMGtM71994AvgMVbLOCiMScBBqSOjRo1qUKtd7OlwUBiTgIPCmAQcFMYk4KAwJgEHhTEJDApKdHQ0unfvDmtrazg4OGDw4MHIyMgQjSkuLkZ4eDjs7OygUqkQHByM3NzcWi2asfpmUFASExMRHh6O48ePY9++fSgrK0O/fv1w9+5dYczUqVOxc+dObNmyBYmJibh27RrefPPNWi+csXr1NCe+5OXlEQBKTEwkIqL8/HySy+W0ZcsWYUzFyUrHjh2TNM2nOXHrWZGYmEivvfYaOTk5iU7SelpN5f2Tqt5O3CooKAAA2NraAgBOnjyJsrIyBAYGCmO8vLzg6uqKY8eOVTmNkpIS6HQ60aOpu3v3Ljp16oTY2Fhjl8L+T40Ps9fr9YiIiEBAQIBwj/mcnByYm5tXOsTb0dEROTk5VU4nOjoac+fOrWkZkhERisrK63w+VbGUmxp0lcb+/fujf//+dVgRM1SNgxIeHo6zZ8/i8OHDT1XAjBkzEBkZKTzX6XRwcXF5qmlWpaisHO2i9tb6dKVI+yQISvMmderPM6dGf72JEyfixx9/xKFDh/Dcc88J7VqtFqWlpcjPzxd9q+Tm5kKr1VY5LYVCAYVCUZMyGKs3BgWFiDBp0iRs27YNBw8ehLu7u6i/a9eukMvlSEhIQHBwMIAHp79evny50kUR6pul3BRpnwQZbd6scTMoKOHh4Vi/fj127NgBa2trYbvDxsYGlpaWsLGxwZgxYxAZGQlbW1uo1WpMmjQJ/v7+8PPzq5MFkEomk/HqD6sxgz45cXFxACCcqlohPj4eo0aNAgAsWbIEJiYmCA4ORklJCYKCgvDVV1/VSrGMGYvBq15PYmFhgdjYWN61+RTu3LmDixcvCs+zsrKQkpICW1tbuLq6GrGypovXRRqg5ORkvPjii8Lzir2CoaGhWL16tZGqato4KA1Qnz59JH17s/rDRw8zJgEHhTEJOCiMScBBYUwCDgpjEnBQGJOAg8KYBBwUxiTgoDAmAQeFMQk4KA1MeXk5Zs2aBXd3d1haWuL555/Hp59+yoe0GBkf69XAzJ8/H3FxcVizZg28vb2RnJyMsLAw2NjYYPLkycYur8lqOkEhAsruGWfeciUg8eISR48exaBBgzBgwAAAgJubGzZs2IDffvutLitkT9B0glJ2D/i385PH1YX/dw0wt5I0tGfPnvj6669x/vx5eHp6IjU1FYcPH8bixYvruEhWnaYTlEbio48+gk6ng5eXF0xNTVFeXo558+ZhxIgRxi6tSWs6QZErH/yf3Vjzlmjz5s1Yt24d1q9fD29vb6SkpCAiIgLOzs4IDQ2twyJZdZpOUGQyyas/xjRt2jR89NFHGDZsGACgQ4cO+PPPPxEdHc1BMSLePdzA3Lt3r9I94k1NTaHX641UEQOa0jdKIzFw4EDMmzcPrq6u8Pb2xunTp7F48WKMHj3a2KU1aRyUBmbZsmWYNWsWJkyYgLy8PDg7O+Pdd99FVFSUsUtr0jgoDYy1tTWWLl2KpUuXGrsU9hDeRmFMAg4KYxJwUBiTgIPCmASNMih8yHnN8PtWc40qKHK5HMCDH+WY4Sret4r3kUnXqHYPm5qaQqPRIC8vDwCgVCoNujdiU0VEuHfvHvLy8qDRaGBqyjc2MlSjCgoA4RZ3FWFh0mk0msfeIpBVr9EFRSaTwcnJCQ4ODigrKzN2OY2GXC7nb5Kn0OiCUsHU1JT/8Kze1NnGfGxsLNzc3GBhYQFfX18+lZU1anUSlE2bNiEyMhKzZ8/GqVOn0KlTJwQFBfF2BWu06iQoixcvxtixYxEWFoZ27dph+fLlUCqVWLVqVV3MjrE6V+vbKKWlpTh58iRmzJghtJmYmCAwMBDHjh2rNL6kpAQlJSXC84KCAgCATqer7dIYE6n4jEn5IbbWg/L333+jvLwcjo6OonZHR0f88ccflcZHR0dj7ty5ldpdXFxquzTGqlRYWAgbG5tqxxh9r9eMGTOEu94CgF6vx61bt2BnZ9dof0zU6XRwcXHBlStXoFarjV1OvWiMy0xEKCwshLPzky9jVetBad68OUxNTZGbmytqz83NrfLHLoVCAYVCIWrTaDS1XZZRqNXqRvOhqS2NbZmf9E1SodY35s3NzdG1a1ckJCQIbXq9HgkJCfD396/t2TFWL+pk1SsyMhKhoaHo1q0bevTogaVLl+Lu3bsICwuri9kxVufqJChDhw7FjRs3EBUVhZycHHTu3Bl79uyptIH/rFIoFJg9e3alVcpn2bO+zDLikxQYe6JGdT4KY8bCQWFMAg4KYxJwUBiTgIMCYM6cOZDJZKKHl5eX0F9cXIzw8HDY2dlBpVIhODi40g+qly9fxoABA6BUKuHg4IBp06bh/v37ojEHDx5Ely5doFAo0KpVK6xevbpSLXV1esKhQ4cwcOBAODs7QyaTYfv27aJ+IkJUVBScnJxgaWmJwMBAXLhwQTTm1q1bGDFiBNRqNTQaDcaMGYM7d+6Ixvz+++944YUXYGFhARcXFyxYsKBSLVu2bIGXlxcsLCzQoUMH7Nq1y+Ba6h0xmj17Nnl7e9P169eFx40bN4T+8ePHk4uLCyUkJFBycjL5+flRz549hf779+9T+/btKTAwkE6fPk27du2i5s2b04wZM4Qxly5dIqVSSZGRkZSWlkbLli0jU1NT2rNnjzBm48aNZG5uTqtWraJz587R2LFjSaPRUG5u7lMv465du2jmzJm0detWAkDbtm0T9cfExJCNjQ1t376dUlNT6fXXXyd3d3cqKioSxrzyyivUqVMnOn78OP3666/UqlUrCgkJEfoLCgrI0dGRRowYQWfPnqUNGzaQpaUlrVixQhhz5MgRMjU1pQULFlBaWhp9/PHHJJfL6cyZMwbVUt84KPQgKJ06daqyLz8/n+RyOW3ZskVoS09PJwB07NgxInrwITQxMaGcnBxhTFxcHKnVaiopKSEiog8//JC8vb1F0x46dCgFBQUJz3v06EHh4eHC8/LycnJ2dqbo6OinXsaHPRoUvV5PWq2WFi5cKLTl5+eTQqGgDRs2EBFRWloaAaATJ04IY3bv3k0ymYyuXr1KRERfffUVNWvWTFhmIqLp06dTmzZthOdDhgyhAQMGiOrx9fWld999V3ItxsCrXv/nwoULcHZ2hoeHB0aMGIHLly8DAE6ePImysjIEBgYKY728vODq6iqcNnDs2DF06NBB9INqUFAQdDodzp07J4x5eBoVYyqmUXF6wsNjqjs9oTZlZWUhJydHNG8bGxv4+vqKllGj0aBbt27CmMDAQJiYmCApKUkY849//APm5uaiZczIyMDt27eFMdW9D1JqMQYOCgBfX1+sXr0ae/bsQVxcHLKysvDCCy+gsLAQOTk5MDc3r3SgpqOjI3JycgAAOTk5VZ5WUNFX3RidToeioqJqT0+omEZdqZh+dfPOycmBg4ODqN/MzAy2tra18j483P+kWozB6IfZNwT9+/cX/rtjx47w9fVFy5YtsXnzZlhaWhqxMtZQ8DdKFTQaDTw9PXHx4kVotVqUlpYiPz9fNObh0wa0Wm2VpxVU9FU3Rq1Ww9LS0uDTE2pTxfSrm7dWq610zYP79+/j1q1btfI+PNz/pFqMgYNShTt37iAzMxNOTk7o2rUr5HK56LSBjIwMXL58WThtwN/fH2fOnBF9kPbt2we1Wo127doJYx6eRsWYimkY8/QEd3d3aLVa0bx1Oh2SkpJEy5ifn4+TJ08KY/bv3w+9Xg9fX19hzKFDh0TXW9u3bx/atGmDZs2aCWOqex+k1GIURtuN0IC8//77dPDgQcrKyqIjR45QYGAgNW/enPLy8ojowe5hV1dX2r9/PyUnJ5O/vz/5+/sLr6/YPdyvXz9KSUmhPXv2kL29fZW7h6dNm0bp6ekUGxtb5e5hhUJBq1evprS0NBo3bhxpNBrR3rSaKiwspNOnT9Pp06cJAC1evJhOnz5Nf/75JxE92CWr0Whox44d9Pvvv9OgQYOq3D3s4+NDSUlJdPjwYWrdurVo93B+fj45OjrSO++8Q2fPnqWNGzeSUqmstHvYzMyMPv/8c0pPT6fZs2dXuXv4SbXUNw4KPdhN6+TkRObm5tSiRQsaOnQoXbx4UegvKiqiCRMmULNmzUipVNIbb7xB169fF00jOzub+vfvT5aWltS8eXN6//33qaysTDTmwIED1LlzZzI3NycPDw+Kj4+vVMuyZcvI1dWVzM3NqUePHnT8+PFaWcYDBw4QgEqP0NBQInqwW3bWrFnk6OhICoWC+vbtSxkZGaJp3Lx5k0JCQkilUpFaraawsDAqLCwUjUlNTaVevXqRQqGgFi1aUExMTKVaNm/eTJ6enmRubk7e3t70008/ifql1FLf+DB7xiTgbRTGJOCgMCYBB4UxCTgojEnAQWFMAg4KYxJwUBiTgIPCmAQcFMYk4KAYUZ8+fRAREWHsMgQNrZ6GhIPSyJWWlhq7hKbBqEeaNWGhoaGVDlC8ePEijR49mtzc3MjCwoI8PT1p6dKllV43aNAg+uyzz8jJyYnc3NyI6MFRuZ06dSKFQkFdu3albdu2EQA6ffq08NozZ87QK6+8QlZWVuTg4EAjR44ULqJRVT1ZWVn19XY0eBwUI8nPzyd/f38aO3ascOWX4uJiioqKohMnTtClS5fou+++I6VSSZs2bRJeFxoaSiqVSjiU/ezZs1RQUEC2trY0cuRIOnfuHO3atYs8PT1FQbl9+7Zw6H96ejqdOnWKXn75ZXrxxRcfW8/9+/eN8dY0SBwUI+rduzdNmTKl2jHh4eEUHBwsPA8NDSVHR0fRlU7i4uLIzs5OdL7GypUrRUH59NNPqV+/fqJpX7lyhQAIh7BLqaep4nPmG5jY2FisWrUKly9fRlFREUpLS9G5c2fRmA4dOoiudJKRkYGOHTvCwsJCaOvRo4foNampqThw4ABUKlWleWZmZsLT07N2F+QZw0FpQDZu3IgPPvgAixYtgr+/P6ytrbFw4ULhckAVrKysDJ72nTt3MHDgQMyfP79Sn5OTU41rbio4KEZkbm6O8vJy4fmRI0fQs2dPTJgwQWjLzMx84nTatGmD7777DiUlJcKNfE6cOCEa06VLF3z//fdwc3ODmVnVf/ZH62H/w7uHjcjNzQ1JSUnIzs7G33//jdatWyM5ORl79+7F+fPnMWvWrEof+KoMHz4cer0e48aNQ3p6Ovbu3YvPP/8cAIQ7K4eHh+PWrVsICQnBiRMnkJmZib179yIsLEwIx6P16PX6ulv4RoaDYkQffPABTE1N0a5dO9jb2yMoKAhvvvkmhg4dCl9fX9y8eVP07fI4arUaO3fuREpKCjp37oyZM2ciKioKAITtFmdnZxw5cgTl5eXo168fOnTogIiICGg0GpiYmFRZT8XVMhnfmu6ZtW7dOoSFhaGgoIAv4lcLeBvlGbF27Vp4eHigRYsWSE1NxfTp0zFkyBAOSS3hoDwjcnJyhLswOzk54e2338a8efOMXdYzg1e9GJOAN+YZk4CDwpgEHBTGJOCgMCYBB4UxCTgojEnAQWFMAg4KYxL8f41FUy67r42dAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_monitoring_metric('total_cpu_memory_cached', component='loading').max()/1000\n",
+ "plot_metric(df, \"Max Cache [Gb]\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Loader Driver\n",
+ "\n",
+ "### Transform Monitoring Results to DataFrame\n",
+ "\n",
+ "This has to be done only once. Transformed Results are stored in result folder.\n",
+ "\n",
+ "We also show a list of available metrics.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 69,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['total_cpu_memory',\n",
+ " 'total_cpu_memory_cached',\n",
+ " 'total_cpu_util',\n",
+ " 'total_cpu_util_max',\n",
+ " 'total_cpu_throttled',\n",
+ " 'total_cpu_util_others',\n",
+ " 'total_cpu_util_s',\n",
+ " 'total_cpu_util_user_s',\n",
+ " 'total_cpu_util_sys_s',\n",
+ " 'total_cpu_throttled_s',\n",
+ " 'total_cpu_util_others_s',\n",
+ " 'total_network_rx',\n",
+ " 'total_network_tx',\n",
+ " 'total_fs_read',\n",
+ " 'total_fs_write',\n",
+ " 'total_gpu_util',\n",
+ " 'total_gpu_power',\n",
+ " 'total_gpu_memory']"
+ ]
+ },
+ "execution_count": 69,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "evaluation.transform_monitoring_results(component='loader')\n",
+ "\n",
+ "evaluation.get_monitoring_metrics()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Plot all Metrics"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 70,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAABwWCAYAAACx0tk5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXwTZf4H8M/katObo6XlsJarnKKIAqIiIhREREWQRRFUEHYBRTwQjwURb5BV2UXZVXB/AosnIqhQLgVBRCmXCAgUQe6zpXea+f7+SDNNmvRImyZT+nn7ik0mz8w8OXjyne888zyKiAiIiIiIiIiIiIgCyBDsChARERERERERUe3DpBQREREREREREQUck1JERERERERERBRwTEoREREREREREVHAMSlFREREREREREQBx6QUEREREREREREFHJNSREREREREREQUcExKERERERERERFRwDEpRUREREREREREAcekFBFVq0OHDkFRFMyfPz/YVSEiIiIqF2MXCob58+dDURT8/PPP1b6vESNG4PLLL6/2/RBVBJNSRJe4jRs3YurUqbhw4UKl1v/Xv/7FoIyIiIgChrELEVHtwaQU0SVu48aNeOGFFxjYERERUY3A2IWIqPZgUoqIiNyICHJzc4NdDSIiIqIKYexCVHMxKUV0CZs6dSqefPJJAEBSUhIURYGiKDh06BAKCwvx4osvolmzZggJCcHll1+OZ555Bvn5+dr6l19+OX799Vd899132ro33XQTAODcuXN44okn0L59e0RERCAqKgp9+/bF9u3b/VL3vLw8TJ06FS1btkRoaCgSEhJw11134cCBAwCKx3uYMWMGZs2ahcTERFitVnTv3h27du1y29ZNN92k1dtVZa6nv+mmm9CuXTvs2LED3bt3R1hYGJo3b45PP/0UAPDdd9+hc+fOsFqtSE5OxqpVqzy2cfToUTz44INo0KABQkJC0LZtW3zwwQduZdatWwdFUfDxxx/jhRdeQKNGjRAZGYm7774bGRkZyM/Px4QJExAXF4eIiAg88MADbp8dgAp9xoDjc77tttuwYsUKdOrUCVarFe+99x66d++ODh06eH0fkpOTkZKS4tN7R0REVB7GLg6MXfQRu2zevBm33nor6tSpg/DwcFxxxRV46623tOd37NiBESNGoGnTpggNDUV8fDwefPBBnD171ut7+NBDD6Fhw4YICQlBUlIS/vrXv6KgoMCtXH5+PiZOnIjY2FiEh4fjzjvvxOnTpz2298033+CGG25AeHg4IiMj0a9fP/z6668e5ZYsWYJ27dohNDQU7dq1wxdffOHTe0BU3UzBrgARVZ+77roL+/btw6JFizBr1izUr18fABAbG4uRI0fiww8/xN13343HH38cmzdvxiuvvILffvtN+7H6xz/+gfHjxyMiIgLPPvssAKBBgwYAgIMHD2LJkiUYNGgQkpKScPLkSS0Y2L17Nxo2bFjpetvtdtx2221YvXo1hgwZgkcffRQXL15Eamoqdu3ahWbNmmll//vf/+LixYsYO3Ys8vLy8NZbb+Hmm2/Gzp07tbr62/nz53HbbbdhyJAhGDRoEObMmYMhQ4ZgwYIFmDBhAsaMGYOhQ4fijTfewN13340jR44gMjISAHDy5El06dIFiqJg3LhxiI2NxTfffIOHHnoImZmZmDBhgtu+XnnlFVitVjz99NPYv38/3nnnHZjNZhgMBpw/fx5Tp07Fjz/+iPnz5yMpKQl///vftXUr8hk77d27F3/5y18wevRojBo1CsnJyYiIiMCoUaOwa9cutGvXTiu7ZcsW7Nu3D88991y1vL9ERFR7MXZh7KKX2CU1NRW33XYbEhIS8OijjyI+Ph6//fYbli1bhkcffVQrc/DgQTzwwAOIj4/Hr7/+irlz5+LXX3/Fjz/+CEVRAADHjh3DtddeiwsXLuDhhx9Gq1atcPToUXz66afIycmBxWLR9jt+/HjUqVMHU6ZMwaFDh/CPf/wD48aNw+LFi7Uy//d//4fhw4cjJSUFr732GnJycjBnzhxcf/31SEtL0xKXK1euxMCBA9GmTRu88sorOHv2LB544AE0bty4wu8DUbUTIrqkvfHGGwJA0tPTtWXbtm0TADJy5Ei3sk888YQAkDVr1mjL2rZtK927d/fYbl5entjtdrdl6enpEhISItOmTXNbBkDmzZtX4Tp/8MEHAkDefPNNj+dUVXXbrtVqlT///FN7fvPmzQJAHnvsMW1Z9+7dvb6G4cOHS2JiYoXr5dwWAFm4cKG2bM+ePQJADAaD/Pjjj9ryFStWeLz2hx56SBISEuTMmTNu2x0yZIhER0dLTk6OiIisXbtWAEi7du2koKBAK/eXv/xFFEWRvn37uq3ftWtXt9fiy2ecmJgoAOTbb791K3vhwgUJDQ2VSZMmuS1/5JFHJDw8XLKyssp6q4iIiCqFsQtjF1fBiF0KCwslKSlJEhMT5fz5827POT9PEdFeu6tFixYJAPn++++1Zffff78YDAbZsmWLR3nn9ubNmycA5JZbbnHbx2OPPSZGo1EuXLggIiIXL16UmJgYGTVqlNt2Tpw4IdHR0W7Lr7zySklISNDWFRFZuXKlAPD5e0RUXXj5HlEt9PXXXwMAJk6c6Lb88ccfBwAsX7683G2EhITAYHA0IXa7HWfPnkVERASSk5OxdevWKtXvs88+Q/369TF+/HiP55xnnJzuuOMONGrUSHt87bXXonPnztprrA4REREYMmSI9jg5ORkxMTFo3bo1OnfurC133j948CAAx3gHn332Gfr37w8RwZkzZ7RbSkoKMjIyPN67+++/H2az2W2bIoIHH3zQrVznzp1x5MgRFBYWAvD9M05KSvLo0h4dHY0BAwZg0aJFEBEAjs968eLFuOOOOxAeHl6Rt4uIiKjKGLtUDWMX32KXtLQ0pKenY8KECYiJiXF7zvXztFqt2v28vDycOXMGXbp0AQDtfVFVFUuWLEH//v3RqVMnj32V/H48/PDDbstuuOEG2O12/PHHHwAcvbMuXLiAv/zlL26fh9FoROfOnbF27VoAwPHjx7Ft2zYMHz4c0dHR2vZ69eqFNm3aVOh9IAoEJqWIaqE//vgDBoMBzZs3d1seHx+PmJgY7UevLKqqYtasWWjRogVCQkJQv359xMbGYseOHcjIyKhS/Q4cOIDk5GSYTOVfYdyiRQuPZS1btsShQ4eqVIeyNG7c2COAiI6ORpMmTTyWAY4u8wBw+vRpXLhwAXPnzkVsbKzb7YEHHgAAnDp1ym0bl112mddtetuXqqrae+/rZ5yUlOT1td5///04fPgw1q9fDwBYtWoVTp48iWHDhnktT0REVB0Yu1QNYxffYhfnOGCulwB6c+7cOTz66KNo0KABrFYrYmNjtXo5X9fp06eRmZlZ7racSr5/derUAVD8mfz+++8AgJtvvtnjM1m5cqX2eTjfL2/ft+Tk5ArVhSgQOKYUUS1WMjjxxcsvv4znn38eDz74IF588UXUrVsXBoMBEyZMgKqqfqxl1SmKop0tc2W32yu1PaPR6NNy576d78t9992H4cOHey17xRVX+GVfThX9jF3P9LlKSUlBgwYN8NFHH+HGG2/ERx99hPj4eNxyyy0V2i4REZE/MXZh7OKkh9hl8ODB2LhxI5588klceeWViIiIgKqq6NOnT6W/UxX9TP7v//4P8fHxHuUqkhgl0hN+Y4kucd5+2BMTE6GqKn7//Xe0bt1aW37y5ElcuHABiYmJZa4PAJ9++il69OiB999/3235hQsXtEFJK6tZs2bYvHkzbDabW/dvb5xni1zt27fPbWaaOnXqaN3QXVXkrKo/xcbGIjIyEna7vdqTOr58xmUxGo0YOnQo5s+fj9deew1LlizBqFGjSg2YiIiIqoqxC2OXYMcuzoHpd+3aVerrPn/+PFavXo0XXnjBbbD2kp9vbGwsoqKiPGZYrCxn3eLi4sr8TJzvl7fv2969e/1SFyJ/4OV7RJc457XzFy5c0JbdeuutABwz1Lh68803AQD9+vVzW991XSej0ehxZuuTTz7B0aNHq1zngQMH4syZM5g9e7bHcyX3uWTJErd9/vTTT9i8eTP69u2rLWvWrBn27NnjNp3u9u3b8cMPP1S5rr4wGo0YOHAgPvvsM6+BibfpfivLl8+4PMOGDcP58+cxevRoZGVl4b777vNbPYmIiEpi7MLYxVUwYpeOHTsiKSkJ//jHPzy+S87P05nkKvn5lqy/wWDAHXfcga+++go///yzx7689YgrS0pKCqKiovDyyy/DZrN5PO/8TBISEnDllVfiww8/dLs8NTU1Fbt37/Zpn0TViT2liC5xV199NQDg2WefxZAhQ2A2m9G/f38MHz4cc+fOxYULF9C9e3f89NNP+PDDD3HHHXegR48ebuvPmTMH06dPR/PmzREXF4ebb74Zt912G6ZNm4YHHngA1113HXbu3IkFCxagadOmVa7z/fffj//+97+YOHEifvrpJ9xwww3Izs7GqlWr8Le//Q0DBgzQyjZv3hzXX389/vrXvyI/Px//+Mc/UK9ePTz11FNamQcffBBvvvkmUlJS8NBDD+HUqVN499130bZtW2RmZla5vr549dVXsXbtWnTu3BmjRo1CmzZtcO7cOWzduhWrVq3CuXPn/LKfDh06VPgzLs9VV12Fdu3a4ZNPPkHr1q3RsWNHv9SRiIjIG8YujF2CHbsYDAbMmTMH/fv3x5VXXokHHngACQkJ2LNnD3799VesWLECUVFRuPHGG/H666/DZrOhUaNGWLlyJdLT0z229/LLL2PlypXo3r07Hn74YbRu3RrHjx/HJ598gg0bNngMpl6WqKgozJkzB8OGDUPHjh0xZMgQxMbG4vDhw1i+fDm6deumJUdfeeUV9OvXD9dffz0efPBBnDt3Du+88w7atm2LrKwsn94TomoTyKn+iCg4XnzxRWnUqJEYDAZtimWbzSYvvPCCJCUlidlsliZNmsjkyZMlLy/Pbd0TJ05Iv379JDIyUgBo0xPn5eXJ448/LgkJCWK1WqVbt26yadMmjymMKzOtsohjit1nn31Wq198fLzcfffdcuDAAbftvvHGGzJz5kxp0qSJhISEyA033CDbt2/32N5HH30kTZs2FYvFIldeeaWsWLGi0tMqt23b1mN5YmKi9OvXz2M5ABk7dqzbspMnT8rYsWOlSZMm2mvr2bOnzJ07VyvjnFb5k08+cVvXOV1wySmFp0yZIgDk9OnT2rKKfsal1d3V66+/LgDk5ZdfLrMcERGRPzB2Yeyih9hlw4YN0qtXL4mMjJTw8HC54oor5J133tGe//PPP+XOO++UmJgYiY6OlkGDBsmxY8cEgEyZMsVtW3/88Yfcf//9EhsbKyEhIdK0aVMZO3as5Ofni0jp75PzfV27dq3H8pSUFImOjpbQ0FBp1qyZjBgxQn7++We3cp999pm0bt1aQkJCpE2bNvL5559X6ntEVF0UER/7CxIR6cChQ4eQlJSEN954A0888USwq3PJe+utt/DYY4/h0KFDHrPCEBERUfkYuwQWYxeimoFjShERUZlEBO+//z66d+/OoI6IiIh0j7ELUc3BMaWIKGAKCgrKHXcgOjq61Cl+q9O5c+dQUFBQ6vNGoxGxsbEBrFHwZWdnY+nSpVi7di127tyJL7/8MthVIiIiCijGLjVLRWIXvm9E+sKkFBEFzMaNG8sdpHLevHkYMWJEYCrk4q677sJ3331X6vOJiYk4dOhQ4CqkA6dPn8bQoUMRExODZ555Brfffnuwq0RERBRQjF1qlorELnzfiPSFY0oRUcCcP38ev/zyS5ll2rZti4SEhADVqNgvv/yC8+fPl/q81WpFt27dAlgjIiIiCjbGLpcevm9E+sKkFBERERERERERBRwHOiciIiIiIiIiooCrlWNKqaqKY8eOITIyEoqiBLs6REREpFMigosXL6Jhw4YwGHgujzEUERERVURFY6hamZQ6duwYmjRpEuxqEBERUQ1x5MgRNG7cONjVCDrGUEREROSL8mKoWpmUioyMBOB4c6KiooJcGyIiItKrzMxMNGnSRIsdajvGUERERFQRFY2hamVSytndPCoqigEVERERlYuXqjkwhiIiIiJflBdDcXAEIiIiIiIiIiIKOCaliIiIiIiIiIgo4JiUIiIiIiIiIiKigGNSioiIiIiIiIiIAo5JKSIiIiIiIiIiCjgmpYiIiIiIiIiIKOCYlCIiIiIiIiIiooBjUoqIiIiIiIiIiAKOSSkiIiIiIiIiIgo4JqWIiIiIiIiIiCjgmJQiIiIiIiIiIqKAY1KKiIiIiIiIiIgCjkkpIiIiIiIiIiIKOCaliIiIiIiIiIgo4JiUIiIiIiIiIiKigGNSioiIiIiIiIiIAo5JKSIiIiIiIiIiCjgmpYiIiIiIiIiIKOCYlCIiIiIiIiIiooBjUoqIiIiIiIiIiAKOSSkiIiIiIiIiIgo4JqWIiIiIiIiIiCjgmJQiIiIiIiIiIqKAY1KKiIiIiIiIiIgCjkkpIiIiIiIiIiIKOCaliIiIiIiIiIgo4JiUIiIiIiIiIiKigGNSioiIiIiIiIiIAo5JKSIiIiIiIiIiCjgmpYiIiIiIiIiIKOBMwa4AEVGwiAiy1q6F7c+jAAThXbsipEWLYFeLiIjIjYhAFRW5hblQFAUKFBgNRhgVI0yGssN5EUF6ZjpybDk4evEYsmw5UAAoijieh2PbAoFI0c1lGQAYFSNuSbwF0SHRRRst3r5BMcBoMHrdd25hLnILc5Fjy8Hv53+HKioiLZHoENcBBsUAs8Fc5feGiIhqNialqEYQEeQW5sJ24RzObf8ZhQUFUEItMFzZDgaj42vsDNKgCiAqFLtAgUBx/qcYAEUBDAoUGKAYHMsUo1FbV/tbdP9iwUX8fGILJC8fp44fwrFTfyK0EIjItMGkGGCwmCEmIwxmM+rVawCjsZR/UiIl7iuOOqsqTJk5UI0GiNHo+Gs2QkwmAAJ7YTZE7IAAiggsZ7NgyLfBHmJCYUQI7CFmAAoUCFTHxh2v322fUhQ8KkBRwOmkiCPcFFUtXuYope3TLgJRBaasXMf7B0AxGBz7VQzFKymOO1K0XRgUoOg9V5SiVQ1Fn0FReYPBAFEcAa22HI7yoigwOKJmqCEm2MNCoBgNEIMCMRigGBz3YTBADIai/SkwG8yIC6sPo2JwBMqKEQbFAIOiwKSY0DiiISxGCwAgb8t2nPzbJO21G+vXReOvP4Jidg2SFUhBAdQLmYAIjJHRMEZGFr2Pzndd3N/vEt9d9+Xuf92fr9i6zoMEb/ss/Tnv66pqPuz2XNe9wl2JOpV8XkqWr8q6pT/2XNfHfZW57zLWFUFe/nHYCs562WbZlKJ/59VK8XUfvtfJ99fhY3mfXoOC+vV7ICb6at/2QZe8bFs2vtz/JbJt2bCLHaqobn9zbDnIt+c7Ei0iUKEW3y9Kvqiilvq8KioKVcf2VAgUAGfzziHHlu2W0DEUOuIPgzh+jw0iyAoFoCjab4W4tMciRX+dvyOiwmwDoDpiGBHHvoryR1Ck+F+YIoARBsSGNECkKRICO+x2FXk2O1TVUXeIiouFpxCea0fSCUHrP0KhqGZAATLDBNmhChSXfSgijt9wxQZFKUC+WUGhEcgMA+Y3mo7CEtdYKAAi8gw4Xr8uxBSi/cyLAHbYkIvTpX9ooiDcEAar0YAYYxjizJEwGlTEhOYVNQvubbHHr5pLO+5IpCnF760AhfYcqGohBAoKVYO2traaMyknom1X0T4Z979aKFW8R7cSzmV28fz9UTweO9tVx3JFMcBsioTBGKo97yyhQHFrUrXPHo6Yx2QMg9lcBwaD2fHXGZcVldQ+LsWxP7OhaKtFn5FSdB8ATIoRJoMRdUNjEGK0FO3fAEUBQkPiYDCYUS+0HupZ68GsmGE0GKEcOgps3w2jKDA3bozwG65HRVXqN9LXn5dq/s1TFMXlPSeiylJEyjyiuCRlZmYiOjoaGRkZiIqKCnZ1NLmFudh7bi8K1UL3YKqwAPb8AmTnXYBaYIPYbBB7IQrDQ1AYaoYKgYgK1W6H2AsBuwpVdb3v+Gs6kwljVi7EXggFCuz2QmTmZaCwsADIswMFKkz5hQjNtkHsKhTV8cOtGg3Iig4pOvwu+hFVi4/pHEFP0X0AIXkqTDbVebzuaNydwYQAqqiOHzlRgKK/BhggAAyKAhHFkVeSop9lUVBoL4Sh0IDQAiDPVAhVkaJYQoHr/50xjOsPiiLuPy/afQEUl1cFUSAKYDcUB39QjCgwqlCRX4FP0Bk+GOF+ZaxnssG70sv49kzFkwQVf666Fb134nwPFW0ZABhhgQEWFH+yzu+Gy/2iLQkUQFGBogBfcXv/VSiiOpKWUoiQggJE5NmhQIVBtUMRFZlhgnORBqiKYy2TCjQ9Yde2oQA4VteAjLASn7EvcU81NrsGRS27LoZCwKBiewsjTjS0Icxgx8AYGxqEFMBorsj3nCi4QkMbo9t13wVsf3qNGYJFr+/HWxvfwKZV82GxAQ3PAaEFgFEVRGcDlkLAZHe050a743GuBbgYBqgKYBDAoDp+UwyqGQaYYBADDOL4XVLEAGs+EJ1jgIjBcUILCiAGiMEEm8EIm9FxssZsdzwnigJRDBAoKDApKDQV/WY4Mx9Fv3cuuQlAUWBQAaMKaA254vrro2iPRVEgMEAUQaHBDkUE1oJcmG35RaXVop8mwdmIUJy3AnaDvQrvsOLy2+X2iwsAMKkGRBSYcTFMQaEBEMWZcImC3WB0lFVCYY+4EjZDAfKN52E3qPgzehcuhJ2EzaSg0FAczTliN8eLvRhyBqqh0PGcy8+nAiAi1/HXbgAKjUBh0V+DAOF5js/aUUsjQmxATLagwATkWhRctLq/mqKXpC3TXoOXn2zXxGDxqo4vUck6AkBoPmC2C1SDS4rK+Vm6FHR8tkX3XZYVf+4u+1Pcn0OJdZ3LCo2O77vNBKgGx3deVZxfwcqfPFFUwb/ftiPK5bzWs8OM+L2x+zbNNsHlJx2fid0ApMcDdmMATtoEgAHAnQlNcGd84+KFJWK8ck+SlXPCrtwTYuWc4PPtJF0F9ufj+qqai+zsAxBRURmV/4pWdsXArqdU4d9gZfZptSbi6o6LYDJFVGG/FVfRmIE9pXTkP08Nh3pUdQRFzjMtRQkWZwDiJCW+g27nabRyUuL/KgQFZdahAEBB0Y+3K+WMDd47ZnsSALZSawcUJ2wEQMUDJBVAlsW1UhVeNUAcoYWzzxL5oui9cw3AXJSaFCzvO1DO81lm4Gy4AY7vpEtz6JLHKgSwL95z3aL4uOZRwhEaMxqdDwM47FiUCSBTUXH59StRv8VvjmIl3zyP97LkAqXEo5Lrl13ec/2ST/u6vq/7L/msS2LbYEZYWBKMxrAy13FTqcSjb+v42nPL58RzNZ+z8rX+Ntt5nDjxBQoLs6qpRlSTxcz+Ader3VGIHIiiAmoBADvsUJBrFIjRmQAqPokgxWfXinI+UhSiuPbJKbofKvgzuiK/70GMAcKB4hjL9cSJe6ylGBOgGCLgqGvRaxTna1Wh2k8BUvJ31/Xki6DkPZtRxXlrvhbaFbegp93iR0PeHzADcLam9Y9aoBguQ3HSzQTFWBeKEuK2d6M9zyUFVj631kUxQErtzVJaO1RW+1TK74moMNlzYVDtXsp4Ww+lHHGXvUwRFabCHBjtRQlIraripbTjeYvdXHQ04TiqcJwELJFMKDqzazeoEMUGBfaik3gqHGej7Y7jCCmEIgVFdbAhxyU2f3YxsLux4kh+Fd2uOuD5arY2LfvV+sbfv1XFaWBvzykA/qwPfHyDAaqi4JfTh3CDaa+f60BOta/7TPXKytqNi1m/oU7MNcGuihsmpXQi8+wJKEfrohB/unYQCSwlAoriDB289i0q477zsbgvV1yWi+L52ysCRTFBUUIBFELUnJIFijajINQYDovBCrNVAaKiAZsKUV0SbwJAcXTfNkohTGKDiKMrt6CoUVMUR+94cfys2MXsth9RBUUnFx2PFQBGE1AvDGqUGeF1xdELJ+8iFHvRWTvVkTx0rCuOS+FUR/CmiONMqmo3aW+H8y1xXFooMKsFMGgJGcUtQLEYTTAZHb1fDGY7BEChKRSOYLP4DJ72NmvvlzPQ9njDtaC8uM+Ry4+vM2AvQVGKgxfF5f1yL6sUbddRXuA4WyjOQFcAQIXBrqLQboRdNRYdBwgcJ08Eqt0RzKuqFFVFhahAYV6Oo/efFH0+4rLtor/afTtQaDdCVRXtc3d8Dxw98Bz9ohQIjLDD7PgUFAUihqLeec7X6npQUvIAWlxee3Eg77vA/UMX2CGFRwHJLqWAAWF4EJ2vbRWwOhH5Ijt7P06c+CLY1SCdKihshHzlD8eD8vIM4mVZlRigGCOhGByX1GudnJy/566XzbsFQoprcWj3DMW9otxS5K7rFl0abxAVJlMo7DagsCDP5bfK/aKxMGsYkjrciJi4umjc6UqtHnabHTmZJU4lZp9BwcEfIGrx2ZfCrEzkZRR3icktDEFGthWqXZCffwF5BRchhY7fYGd0ASiA3Q5zYR4uyDEUGOzu77cCAAUQ1f2EqdhPoqSq9PEKJJ/rWdnvnwlBOoqzFN3CAMTgcN3y11jbppqrFEAKQhAeegfi1QiM3SzINCkwQUF6SAQuvyoPbXrkaCVLrln2Q99OvJU8oCp//ZJP+7h+OSf2ylvfar0MZnNM2XVyU/2ZKN8vFtNX+cpc7Ja27X7k5f3p83qBwKSUDhzbtwc71n2NAuUsIEC05XIYTRGwmU0wKApgVgADoBgBxSBQDUaoBoPjun97UfJDcVx6phgAxVSIAttpiAKYQ+rAbjDDbrTAYDQgJsbquAbcZITBaIRiCoHRZIYhxAyTOQSKyYjQUAuMRnPR9hxdrlUIoAjsjiufYDICYUYDTEXjMZkUgUEBjAYFRoMCs8noGOKn6DV6NFWlBmgO9cJDYHbt2mu0ALGtHGMSEflDQTZgdwbi3pJs8LLMW7nKLnN5zg/LZq3aiy+3HcOI6y7HiK6Xe5TLupCB956dCgDosW4szsVEY/HDRqwzZGLs2RGw/34ViIhqmsO7d2LDx/9FlnIcAGAOjcOPbXoiMiIcoy6Ph8FkgNFogNFshMlihMGgQDE4LsEzGBxxjmJ0jHGoGAwIsZrw656xyMnZj7ZtX0Xdul215JA1IhIGk8kxJmXRSaSqXXqhV3HAjf7PJKj5+VBMJihiBwpzkZWdjWOHDztOHhUWQgptOPvnERTkOg7sncmt3Kyi5JiiuMeVznEui8akdH4UBoHj9FPuecdzBgVms+PzRVgdwBwGt8jULddXfOpNERXIPu32W+44CeryW6wWP5OdraKwoOQJLMff4s5MUrzPsn7n3dZzj01ysgQ2W/H2Xcu4hx2O9QsLclBYkF108s45tmjx35LLRFUdY5I5y4hz1DO16L696KRnednf8pZV5PnKbKv6CPKRb8yD0dIIECC8KIzMtwGHt8fglntvC1rdiMpj0PHEEkxKBZmIYMkbLyI3M6NoiYIDfXpgXsNmePLyeDye5OW6oXLk5KRj04+3wGgMx03dd/i3wkSXCkt4sGvgV2dDcnBIBBeslwH1m3s8r5jOF98HYFeMsBcN+O77ZWBERMGXb8/Hv96fjFiXE78h9etjzbVt0SU6HJ06Vm421X1/nkWopQB1GzZDVGScn2pLhhDnJXlGwGRBRGg0WtZrGNQ6UeWICGx5dtgK7LDbVNgLVRTaVKh2qcowVZqqJHvF2wlB13slnlcUYOsfFzBl6S4k1YvAW3/p4LoxZ43w7b9ewJnDB9DixDeofzIDnw2+Bpsi09AutwHa/D7C+4lNIqoQJqWC7PCpA1pCymhpB4OpMU43bAQAiDZXdBQndwW2cwAAs7kCfWqJqFZwDfAcZ4CDVxciIl9s2/o51uxcgcwz+VDOZiEn6TLYYswwxqkwXswHEIIQY1tIWHuENswEAMRUMoYSES2OsjCOIvJKURRYrCZYrJfGoWRYfiFOmgyoF2ZCg8u9/7s3hzhea2hhBiKyj6EgJAPnwo8hR3gVB1FVXRotSQ1gU23IL8zHqdxTyMjLQEFhPgrsBVj9y5eIBKAqgtDw3jDbzuN0eAyQnYe65sp9PLaComDKwmCKiIp4OevovBCi+Oxh4KpDRFSeZVt24dBvGxH2yf9BrFGILGrHGvz2O0x2BSbViLPhjt43EnYVDKY47KvjOECMD3H0BFVVG2y2czj0xxzYbBkQ1QZVbBC1AHY1H6IWQMTuGHdPVIgUQsRxTY7ZXC8Ir5qIdOmSvFSXSB+YlAqAw5mH8fJLDyD2tAl1cqyOgSOL2rXIojImxXGZXmhhJn7Ncwz4mBBiRkHBWeTlH8f5cz/g1OmVABQUFJyCqhYAEKhqYVEAVegIqqR4sEr2lCKiUpXSvZ2ISA/2nNyHVR9NQMLpUOSHRbs9l20pOcGECYqxHkz2XCyLdVxuV19OYGvaZJw/v7FS+w8LawqjMaT8gkRUKxSfyGNyisjfmJSqRjm2HKw/uh6r3n0HLQ5ZAQCCQnhrywwhjhmvIkIPIst+FYwQGE59iPV/vlnJvSuoV+/GSq5LRJc6x3yEDKyISJ9WbvwOTU6Eao8N5mSYw3pAtaUjxHwBhfYsFKqO+VRDLPUQEnoQOY3/RPPw+rhCctDs6Mc4j0xtfUWxoGHDuxERngzFYIZBMcNgsMBgsEBRTIBigAIjFMUARTEiMrJtMF42EekdQyciv2NSqhrN+epFFHy2C/HOSUNMjWAOvQ4hKECd8H3IgwmFigIYVEh4BhTDt9jd6jwekjlohCPI+nOvtq2QkHhYrZehceNhUBQjQkMSoChmKAYTDIrJcV8xQlFMUBQjDIYQmEyX1kDORFR53gYNLXPyHCKiIMo5mgPHPEFGhIX2R6OQC4i5axOy89fCEnlSK2cwhMJqbQJFMUJVC9BBtQFQYTDUBxCLBg36o0nj4TAarbqeeYiIdK6Uy/c4WQxR1TEpVY3yN+QhpNA59WsIrIYIJA95A2LMdSxSLAgLuxwmUySsoY2hSiGuVo1QxQZFaQxFuRxGgxVNmz4Kq/WyIL4SIqrxvAx07r4EnDmGiHQj4uhp5ANQYMBNm2fiwr2FyLGosFiA5s0moW69Gx29njjOCxEFgNbUFN1RxHk5H2MnoqpiUqoaqfmOxspkbIJG2Q2wL/4ExJgLRTHihus3w2iM4Fk7IgoKxZGaAsBcFNU0/MLWCnbH+JoKjDg3FshrrcJkikFY2OVo1OgvMJkiy9kAEZH/Ff8CuSfEGUsRVR6TUtUoNMcx6HhU1jm03bcOYT2tMBhCER8/AGZznSDXjoguRaUFRR7jR3GgcyLSMSksGvsARuS3AyBA52u/Qmhow2BWi4guYWVHQ0VxVInemYygqMbRYQaVSalqZCmwwwbAIArsMYL6VzXEtTcsC3a1iKg2Urzdd3Y957idVBPwW1qbqKodgOPyPaDovmIMYo2IqDYr7VJh/R3eE9U8TEpVIykKonIjTTg5zobIUL7dRFQ9yptJTylzTKni5UREeqDanYkoA0TsRUsNwasQEV2yKjQ0nZcTekQ1i35P7vHXvTo5u8YZDYCZZ/iISC8U9zGlGFoRkd6ICqB4MGHAkaAiIgoq51V84miPtAiKoRRRpfHXvRo5D/SKJ2vg201EwVLG2RH9njgholpKG/LCpX3iyT0iChbPHunMQhH5C7MkAaSAwRQRBUfJrumKSHF4pcMBD4molnO2Sy7NE5NSRBQ0RYGUaAEVe5sT+QuTUgFQfAky324i0hGe9CMivSpqj9x7JzCOIiK9YfBEVFX8dQ8A0WYQ5dtNREHidRRPDtZJRPokXnpwsqcUEQWLUmKgc8WzMycRVRKzJNWqxJhSvHyPiILEtbeBKI7L94oxpCIinfHSLJU2JTsRUfXz3v6I9pexFFFlMSlVjbSmqSiIYk8pIgoajzGlvA3aSUSkL+7tFE/uEVGQlBhTShhDEfkNsyTVqsTUMex2TkQ6obic0ePZPSLSHV6+R0R65DysEw6BQOQvTEoFgBRddMyeUkRU3UoNjsoYU6rcdYl0hd/UWkEb6NxJ4eV7RFStvI1l5+TZ/vC3iGoq/X13mSWpVu49pRS+3UQUJG5jSgEleiHo78eJyBMTErVKiWaJvaSISBe0wYJL9JRiKEVUacySVCvnQOe8fI+I9MTRKnFMKSLSLa2nlLOdYshKRHpQ1CYxG0U1jn7jfr/9wr/yyiu45pprEBkZibi4ONxxxx3Yu3evW5mbbroJiqK43caMGeNW5vDhw+jXrx/CwsIQFxeHJ598EoWFhW5l1q1bh44dOyIkJATNmzfH/Pnz/fUy/Ms5VagzJ8XL94iompR7VYuXAlIyriIi0hnntOuMoYioulTkJF3x5XuKy/85LieRP/jtF/67777D2LFj8eOPPyI1NRU2mw29e/dGdna2W7lRo0bh+PHj2u3111/XnrPb7ejXrx8KCgqwceNGfPjhh5g/fz7+/ve/a2XS09PRr18/9OjRA9u2bcOECRMwcuRIrFixwl8vxW+cY0kJL98joiArmZNSREpe0Od1YGEiomAo2Rzx8j0iCiql5DicHOicyF9M/trQt99+6/Z4/vz5iIuLwy+//IIbb7xRWx4WFob4+Hiv21i5ciV2796NVatWoUGDBrjyyivx4osvYtKkSZg6dSosFgveffddJCUlYebMmQCA1q1bY8OGDZg1axZSUlL89XKqTM3LcBlSqigpxYCKiPRAccy+p3h0QSci0gvnEAgO7ClFRMGkeNwhIn+ptl/4jIwMAEDdunXdli9YsAD169dHu3btMHnyZOTk5GjPbdq0Ce3bt0eDBg20ZSkpKcjMzMSvv/6qlbnlllvctpmSkoJNmzZV10vx3bpXYX/1MjgDKtEiKgZURBQspc++x67nRKR/PLFHRDpQfN2e6x8iqgK/9ZRypaoqJkyYgG7duqFdu3ba8qFDhyIxMRENGzbEjh07MGnSJOzduxeff/45AODEiRNuCSkA2uMTJ06UWSYzMxO5ubmwWq0e9cnPz0d+fr72ODMz0z8vtDTp66EqgLOZyjWEAWBPKSIKHtepjKXofwykiEh3zvwOfPIAFDXZbTF7ShFRUJWYba9EboqIqqBaklJjx47Frl27sGHDBrflDz/8sHa/ffv2SEhIQM+ePXHgwAE0a9asOqoCwDEI+wsvvFBt2/cksEOBs5myFyWjOKYUEQVNmWNKFWFkRURBdmH3V/j6yFlIYa6jjRLnEAiMoYgoeEoOdM7r+Ij8x++/8OPGjcOyZcuwdu1aNG7cuMyynTt3BgDs378fABAfH4+TJ0+6lXE+do5DVVqZqKgor72kAGDy5MnIyMjQbkeOHPH9hflCBLl2IwAVgMu4eAyoiEgnFAjAQTqJdIOzGDvM2foDjh9oBsXm6NVuLzp/qijmYFaLiMihlC5SnCuGqPL8liUREYwbNw5ffPEF1qxZg6SkpHLX2bZtGwAgISEBANC1a1fs3LkTp06d0sqkpqYiKioKbdq00cqsXr3abTupqano2rVrqfsJCQlBVFSU2606bdyvYP7erhDVMa5W8SCdvHyPiIKjzOmOFUZSRMHGWYwdcnIKAABisMBgaY0Q1TFkg8VSP5jVIiIqorj8nyf2iPzBb5fvjR07FgsXLsSXX36JyMhIbQyo6OhoWK1WHDhwAAsXLsStt96KevXqYceOHXjsscdw44034oorrgAA9O7dG23atMGwYcPw+uuv48SJE3juuecwduxYhISEAADGjBmD2bNn46mnnsKDDz6INWvW4OOPP8by5cv99VKqLP1c8X3FEAXVZAEAmE3VmwwjIipViTGl3PJQjKioRrk0v7Ccxdid2RwDU1hfGLK/BwCEhMQFuUZEVKsp7if3RPt7af4mEQWS33pKzZkzBxkZGbjpppuQkJCg3RYvXgwAsFgsWLVqFXr37o1WrVrh8ccfx8CBA/HVV19p2zAajVi2bBmMRiO6du2K++67D/fffz+mTZumlUlKSsLy5cuRmpqKDh06YObMmfjPf/6jq0DqN8UGADCH3wpL1EOwSy4AwGKJDWa1iKg2qEj/ccUx5p1SSoBFRMGnl1mM8/PzkZmZ6XarTtoBnhT3QwgLa45GDYdU636JiMrijJnEY2wpoppGfxG/33pKSTkHQk2aNMF3331X7nYSExPx9ddfl1nmpptuQlpamk/1C6R87YM2QFEUCBxJqoiI5NJXIiKqRiUTUEVLAfAsH9UM3r/DlyY9zWIc+Mli3CkQdO2ij0sLiYg0whiKahr9xlHVMvseuTOZI9Dp6k8QFXVVsKtCRJcoX39mFJcTCQyniPRFT7MYT548GRMnTtQeZ2ZmokmTJtWyL3ccsYWIAqNi5zzKKcSRzokqjdPBVYcSbZLJEILo6I616iwvEemQSxvkGFOKB31EeqO3WYwDPVmMBx7oEZEOeF6152ibVB7eEVUZk1KBwJmtiEiHGEcR6YeeZzEODibNiUiHnNkpYRRF5C9MSgUCk1JEpAOKNoaUY5wWcXnsfoeIAm3s2LH46KOPsHDhQm0W4xMnTiA31zFZyoEDB/Diiy/il19+waFDh7B06VLcf//9pc5ivH37dqxYscLrLMYHDx7EU089hT179uBf//oXPv74Yzz22GNBe+2uiscodR7wqcGqChGRC/eYiSkpIv9hUqoaRBTUcXvMq/aISBdc2yIRl4fMRhEFG2cxLgUv3yMiHfAchoUzGBP5Cwc6rwaR+XUgcJzZDM09g6zIIFeIiMgbXh1DpBucxdjJ0ZeTPaWISFcU9zvOFpuz7xFVHXtKVQtHYxWZ+RM6bX0D7OBJRHrgepZPcfk/EZH+sH0iIh0qapqco7MwJUVUdUxKVSNzwWlYbFmMq4hIJ4rO7imAQaT4cVFIxbN9RKQX4uUeEVGwKCXH4SzC8c6Jqo5JqWrEMIqI9KTkcAiKxx0iIr1wznDFy/eISAdKBFEeoRMP/IgqjUkpP3MdE4IHfEQUaD7FRAoHlaKap7yxl6hmM+WHF90LLfrLz5uIAqNCPy+Ks8eU955TRHqnxysjmJSqTkWft8KsFBHpgZaEKgqkVOdle0RE+hB27jIAgBTNxaPYc4NZHSIiB06nTjWc5wyS+sGkFBFRLVEyQa49Lp5ChogoqBRxhKYGXEC7X/8DY/6JINeIiMjbhS/sKUXkL0xK+Zm4Dc3JZoqIAqNSZz+0VdhWEZE+OFsjAy4i7nQa+5oTUbWrUDvjjLNKibcYSRFVHpNS1cg5VSgjKiLSBcX9rF7xdMYMpYiIiIjKIx53iKiqmJQKAOakiEgXlBJ/2ToRke7wSI+I9Ke0Hukq2yyiKmNSys9ExHPqBgMP/Igo+EodU6oIJzUjouAr0S7peGBWIqqFnFfxMWYi8hsmpfyMU1UTUY0hbn+IiPSDuSgi0qWioRAUDnRO5C9MSvkZx2YhIt0qOaaU9gTbLSIiIqLSKOUlodgxgajSmJQKgErNikVE5GceTRHjJyIiIqLyabPvFf3hZDFEfsOklL+xXSKiGqLcs35EREHGMaWISA+UkvcYPBH5DZNSfsZsOREFU9m9x0tMvyc82CMinWI4RUQB5stxnIAn9oj8hUkpP/PaMPEsHxHpQGk9o5hMp5qBv6VERBQk5Y2BwFCKagodjn/GpFQ1cl5rzDCaiHRBKfMhEZGOsIUiIv1QSo4pVbScnc6Jqo5JKX9zSTxKUVaKbRUR6YricYeISB+0M7j6O5NLRJcoH8Ih0Qobih4TUVUxKeVvLi2Ts6cUDDzwI6LgU0pEXdpZPmfDpcPuvERUu7EXAhHpQ4nGqChmYuREVHVMSlULZ/PESIqIdITj2xFRDcNWi4h0ocRcMSUxOUVUeUxK+Zn7gMFsnohIx8TjDhFRkLkf8QnTUkSkA9qYUtoMxs5nGEMRVRWTUn7npWFi7wQi0gOP2fc4nTERERFRRWkxUykzGhOR75iU8jO3nlJspYhIR0qmxxVxP9vHJouIgq5kQ8TzekSkCyXHlHL7Q0RVwKRUteLse0SkIyV6bRb3RGdIRURERFSa4pjJccfj+I6hFFGlMSnlZ14nr2JWioj0RCk5ZgsRkT4Jh0AgIl1xn9CKM4QSVR2TUn4mLlkpZ+eDktOwExFVFykjxaSUGP9AYSRFNRLTqLUJWykiChSvnQucSibIefkekd8wKeVv7ClFRDUVIyvSNf6YEhFRcChazyjnb5G4/J+oJtHft5ZJqQBgz3Mi0rOyelcREQWWlPGIiChIPGaL4QEe1TT6/c4yKeVnjoM70R45/q/fLwARXRoqEhspHl3Pi8768aiPiIiIainfhlpxn7m4+HiPwRRRZTEp5Wder95jToqI9KBkY8S2iYj0jkEUEemAx4m9IkxFEVUdk1J+Jm5dDhhIEZF+ePQ81+4xpCIiIiIqneL+h5PFEPkNk1LVqShBxZN8RKQnWhxVIqDiZXxEFHwl2qUg1YKIyBttkJaSV/ERUaUxKeVvXlom5qSISBc8MuTOmWQYUhGRTrA5IiI9KhFDOUOnEkNLEVElMCkVAMKuUkSkByUDqiBVg4iowhhDEZEOlNYU8So+oqpjUqo6FWXM2VYRkR6xbSIivWL7RET6opT4S0T+wqSU37HvJhHpk3PKYyl1zBa2X0RERESlKmVcTiKqPCal/Ey8HNSVNoUoEZG/lTlYucdJPuconUxGEZFeSBmPiIiqT5khlKKUKFOiNBsrokpjUsrPHMd2JVslJqWISD+0ce6kZIBFpF/FJ3j4ja1NGEERkS54NEZsnYj8hUmp6uQcU4ptFhHpgGevTR7cE5G+cbIYItIVdjKnGkrRcSKVSSk/E9cWqmiuUF5yTET6ULJnVImeJwywiCjo2IOTiPSn5AG9wkaKyG+YlKpGzsbKFNxqEFEtUJGzH1qHg6I7ej5jQkS1FY/0iCiwKtQhU/EYmNMNWy6iymNSys/Ey/B3ZgObKSLSk6KkFMeUIiKdYi8EItITz8RVUQzFxoqoypiUqlaOxsrMzghEpAfOmWMUBQLAUGiH0S7IlEKIqChUbVBVO0RVg1tPIqr1tMM8xlBEpEMeo3RykCmiSuOVZf7mpT0yMaAiIh1wXq63uWk8AMC6+gyG4XIAh5CPf2DvOmDvOiA0PAJ3PzcdDZo2D1ZViYgAMCdFRHrh3ho1OH0WV1jsOFTfcfCnigqoKmBgnw8iXzEp5WfiJStlZERFRDrQuE17XDh5vNxyedlZOLr3NyaliCj4GEMRkR4U9TY/lJeJP9skwnjqILqeugzXmhTkGd4DALz78L9hsISh2z33oW33nsGsLVGNwlRuNTLCDqCCg+cREVWzlDGPYOz7/4N5yj/wnyGPoWlUI9yyKx0J9ZIREv1XoNF1aH51p6LS7IZOREFQoulR2BYRkQ7Ub3wZAMAugnyzSbsVKkZAsgHJRvbFbFw8exq7v18T5NoS1SzsKeVnrpcTG+EYl0VhVoqIdCI0IgJKeCTOx9QDQsJgsaswhNeHctEKxWSG0VQ0nhTHRiCioFJc/k9EFFztevRC49btsP98Bh7YlY4uB/Zi5P/mwdasJdLq3A0VKrpevQvr123n+FJEPmJSys/cLt9je0REOlY0+Z520CdgEp2I9MHbcAhERMEUE5+A6Mg6OH0iD7knTyIqrwAFMMJgigWgIio63FGQSSkin/DyPX/z1gbxGI+IAsS3MKj0xonxFOkVz0Bf2kT7W9RTijEUEQWIT78vzsbJZRU2V0SVw6RUNXI2TOx5QEQ1Dw/8SW/4W1obFB8TOu4YFTVodSEiKo2q/SQ52irXXyj29CRdKspJ6PH7yaRUAAgDaSLSIfGSMGcSnYj0wBmgmsGkFBHpmHjpKqW/Y34iXWNSyt+8dPvkIR4RVbeq5JIUt2ar6CwKL5EioiDSAlQmyomomlWulfFyYo9HfUSVwqSUnzkO5HgwR0Q1kLgEU0xKEREREbnRhpIqI2HOE3tEvmFSqjoVNUgK32Ui0iFnQKUUtVWO2feg3SciChZtwHN2PCAiHSoe/s45ppTB27NEVAFMl/gZmyAiqjG0s3w86iMifWGrREQ1grchpXhASOQTJqX8zrMVKqt7JxFR8JTRNjGiIqIgYgtERHrm9fiOh3xElcKkVDViHwQiqlkUbfY9jodARMHE2ImIdK3EEAhuGEMR+YRJKT9zbYOcdxW+zUSkQ8Vjtbj2PeehIBEREVFFeEs/Cft6EvmE2RI/c22EtMw5j/GISI+cZ/m0x0GrCRFRCc4Yig0TEemP84jP4NIjQWF7RVQpTEoFABsoIgqUqvQYd12Vl+8RUTAoXu4REQWCL5FPmWMGM4Yi8gmTUkREtZRo4yE4F7gk0RlQke5o8xoFtRZUvTw+XeamiEiXnPGSl6f4M0W6pN8Yn0kpP3P0LijxQTOgIiJd8tY4scEiouApHupOf0EzEZGT1kJ5aas4phSRb5iU8jcp5T4RUTXyJZWk9Tdh/omIdItzGBNRYFRmqBUthlJcxpRie0VUKUxK+ZnXzDjHlCIiXXMdpLNoCXspEFFQsQ0iIv0pnhymjEuhGEMR+YRJqWrlaJCYNSciXVK89ERgEp2I9IRNEhHpmWv+qajXFHNSRL5hUsrP2AYRUU0hKDHQuevRHyMqIgoGNj1EVAOI10GjmUUnqgwmpQJAMbCBIiL9ExT37OQgnURERETelT0uJ2MoIl8wKVWNmIoiIl1TnH/EYxnjKSIKKuelxLykmIh0ybNt4ricRJXDpJS/sQ0iohpCvIwpVZkZaIiIiIhqJSagiKqMSSk/c8uMF93lIR4R6VPJblHFrRXP8hFRcLENIiL9krJO4rH5IvIJk1J+J/BoiTimFBEFiP/GgmJERURBxCaIiALNh3ZHG1PKy0DnHJeTyDdMSvkZ518gohrD21k+Xr5HusUBz2oltklEpGdehuXkJX2kb/r7fjIpVa2c1+8xoCIi/XGe5VO8/DYxniIiIiLyTrzcY48E0jf9fkGZlPI3jilFRDWM4jKmlMuoUsGpDBGRKwZRRKRDZY8pxRiKyBdMSvmZt8GBFYVvMxFVL186ZDpn2BNvR3vF8xn7oVZERERE+uZTDKWNG1X0WFSPMoygiHzDbImfsREiohqjRBDG9ouIgo0do4ioRuHVe0RVxqSUn3G2BSKqybQzgGzKiEgPeJRHRHrEy/eI/IZJKT/zdvkeBzonIl3SLtVzXea8w4CKiAKPLQ8R1QRSxnAHXo8HiahUTEpVI6XEXyIiPXGOKeXaRilssYgoiDxnA2WbRER65nUePiLyAZNS/uatNeK7TER6VGbPc4ZWRBQ8TEURkZ6Jxx0mpYgqi+mS6sCDOSKqSbQmSyk+EmQ7RkRBwI5SRFQjeBueRbuijzEUkS+YlAoAReHbTEQB4kMcJF4CKkVxn+qYiCiQOKwdEQWLL81OWWNK8cQekW+YLfEz18y4wgaJiHTNOaaUo61ii0V6pmhJVH5Taxd2lSIiHXM93mNzRVQpTEr5mbdQWeHse0SkQ2Ue2jOpTkR6wBCKiHTIa5QkPMlH+lU8mZH+vqFMSvmb/j5jIiLvtK7nnss4HgIRERGRd+ItY+4MnRhDEfmESSk/E29ZKfaUIqJq5kuPTMXjDhGR3vCgjogCo0rhkNfL99h+EfmCSalqxQaJiPTLOUinorVVCnPoRBRkbISISL+0C6DKGuiciHzCpFS1Utz+EBHpkeLlES/fIyJdYKaciHSo+HSeeCxjDEXkGyal/Mzb5Xsc6JyI9MmzbVJ45o+Igsq97WEERUS65CVe4iSxRJXDpFQ1UooaKYUhFRHpkJRomhhDEZHelGyniIh0RbzeJSIfMCnlZ147FzCgIiI989pwMbQiouBRvNwjItILb7PvaZfvMYYi8gmTUn7m7RpihlNEpEteLi12Xr7Hq/eISBcYRBGRDomXmfa0RBWDKCKfMCkVCBxTiogCxLcwiG0TEekMr9cjoiCp1ADlrmNKeS4iogpgUsrP3NogtkhEpGPF0xk7l7gcDLL9IqKgYNtDRPrnGUOBsRNRJTEp5W8icJ0k1PGHZ/2ISL9cWyjt8j0eGJJOMeYnIqLgK31MKSbXSZe0PKr+vp9MSvmbeD5gSoqI9Eh/P0lEREVKnN8jItITVbtWT9WWaZ2nePaEyCdMSvmZa+ZRi6MMfJuJSIfK6sXJeIqIdEBhVoqI9EzYP4qoqpgtqU5smYgoQHw5bCtZ1uvlezzLR0RBobj8n4io+vky0kpxWZ7YI/IXJqUCQOGYUkSkQyWnLhbAJdpiREVEwcfJ+IhIj8RbvKTjMXuI9IxJKT9T2buAiGoKj4Q5j/6ISC8YTxFRDSCud4se8HiQyCdMSlUjhQOdE5GeldXznPEUEekAx5QiIj3SenG6BUxsr4gqg0kpPxOXGRi0homX7xGRjikuAZWiuF/SR0RERETuhGf2iPyGSanqxAaJiHSsOKBi4pyIdIrNExHpkdeTeC5jdBJRhTEpVS3cmyLFwIiKiALDp1nzyhzUnCEVERER1R6ViXw4WzFR1TEp5W9e2yUmpYhIv1xbKOflewyyiIiIiLxzRkmKy8Gfdo8xFJFPmJSqRtqFMcxJEZEOCTtKUY1S1heWLlkMoohIh8RL21Q89jl/p0iP9Pt7yqSUn6le2iD9fvxEVKuVCKgEChssIiIionKIxx1AeNKEagIdJk2ZlPI71csyHuURkZ45fpwUKZ5+nYEVEQVHibaHPaWISI+8DHRe5ox8RFQqJqUCgQEVEVU3H5qZ4ougSvaUcn2SSSkiCjxnYpx5cSIKnIoHUZ4XkovHk7x8j8g3TEr5mZdZQYmI9IkJcyIiIiKfideeUvBYRkTlY1LKz1wz487ZGBQe+BGRHnkZN7p49r3AV4eIyKPpYQhFRHomboNKEVElMCkVAMxJEZGeKW73OMMZEQWPUuIvEZE+eZl9j1cfE1UKk1J+xsGBiaim8D4gp6MN43gIRBQUJdoe9jYnIj0SL2Nw8vI9osphUqpalAyo+DYTkQ6VHA9B0f5HRBQkbIOIqOZwG07YGU8xKUXkE79lS1555RVcc801iIyMRFxcHO644w7s3bvXrUxeXh7Gjh2LevXqISIiAgMHDsTJkyfdyhw+fBj9+vVDWFgY4uLi8OSTT6KwsNCtzLp169CxY0eEhISgefPmmD9/vr9ehh+wESKimsX1EFDh1XtEREREZfI20Dlz6kSV47ek1HfffYexY8fixx9/RGpqKmw2G3r37o3s7GytzGOPPYavvvoKn3zyCb777jscO3YMd911l/a83W5Hv379UFBQgI0bN+LDDz/E/Pnz8fe//10rk56ejn79+qFHjx7Ytm0bJkyYgJEjR2LFihX+eilV4rVdYtdzIgoQX07OSZlNE7NSRBRMbIOIKLB86+DkLYgqmiyG7ReRT0z+2tC3337r9nj+/PmIi4vDL7/8ghtvvBEZGRl4//33sXDhQtx8880AgHnz5qF169b48ccf0aVLF6xcuRK7d+/GqlWr0KBBA1x55ZV48cUXMWnSJEydOhUWiwXvvvsukpKSMHPmTABA69atsWHDBsyaNQspKSn+ejl+4WyOmJMiIn0q0TiJl2VEesEf09pFC6KCWgsiIq+0E3uqWrzM2XAxJ0W6pN8f1Gob7CgjIwMAULduXQDAL7/8ApvNhltuuUUr06pVK1x22WXYtGkTAGDTpk1o3749GjRooJVJSUlBZmYmfv31V62M6zacZZzbCL7iVkhhVoqIdMxb13PnoMIc6Jz0i99NIiLSCdcYKojVIKrJqiUppaoqJkyYgG7duqFdu3YAgBMnTsBisSAmJsatbIMGDXDixAmtjGtCyvm887myymRmZiI3N9drffLz85GZmel2qy7ejuPYQBFRTSBQihssJqWIAopjc5aGURQR6Y9aRtvEE3tEvqmWpNTYsWOxa9cu/O9//6uOzfvslVdeQXR0tHZr0qRJgPbMBomIAkPx4cBN6yBVRi9Otl5EgcWxOUvBnBQRVbNKXdTipbd58VhSjKKIfOG3MaWcxo0bh2XLluH7779H48aNteXx8fEoKCjAhQsX3HpLnTx5EvHx8VqZn376yW17zjOArmVKnhU8efIkoqKiYLVavdZp8uTJmDhxovY4MzOz+hJTXjLjioERFRHpl+I2QQPbK6Jg4NicREQ1j+J27OccAiE4dSGqqfzWU0pEMG7cOHzxxRdYs2YNkpKS3J6/+uqrYTabsXr1am3Z3r17cfjwYXTt2hUA0LVrV+zcuROnTp3SyqSmpiIqKgpt2rTRyrhuw1nGuQ1vQkJCEBUV5XarLsLriomoxvEybSgjKqKgqr1jcxIR6V/ZMxgTkS/81lNq7NixWLhwIb788ktERkZqY0BFR0fDarUiOjoaDz30ECZOnIi6desiKioK48ePR9euXdGlSxcAQO/evdGmTRsMGzYMr7/+Ok6cOIHnnnsOY8eORUhICABgzJgxmD17Np566ik8+OCDWLNmDT7++GMsX77cXy+lSsTl/xoOdE5EelTW5XtMShEFTTDH5izZ6zw/Px/5+fna4+ocl9MbhTEUEemQeOl+IM6u54yhiHzit55Sc+bMQUZGBm666SYkJCRot8WLF2tlZs2ahdtuuw0DBw7EjTfeiPj4eHz++efa80ajEcuWLYPRaETXrl1x33334f7778e0adO0MklJSVi+fDlSU1PRoUMHzJw5E//5z3/02eW8qD1iOEVEeuRtTCm2V0TBp6exOYM3LicRkX6VPS4nk1JEvvBbT6mKnFUPDQ3FP//5T/zzn/8stUxiYiK+/vrrMrdz0003IS0tzec6BlpxU1Ut48kTEflF8ZhSCnt2EgWZ3sbmDOi4nN6wTSIiXRMv94jIF8yWBAAHOiciffMMo3j5HlFg6XVszkCOy0lEVLM5Z+QLbi2Iahq/z75X27kfyDnuG3hBDBEFiC9xkNfL97xMcUxE1Y9jc5bENoiIAsuXy+68X77HMaWIKoM9pQJB4dtMRDqk8Iwe1RzKJX6Ch2NzloIxFBHVEL/lOXqpMqwi8g17Svmbt8w4x0MgIh0znD0PJAARFxWs++o/ACLw597d+Gb2THQddC9iGsQHu4pELi7NcJ9jc7pj5EREeuatp9R/jmxCCmKhij0INSIqW/HJPf3FUUxKlUJEUFhYCLvdt0ZFRIW1bh1ANcOQa4JqtUIMJuTl5VVTTYlqL6PRCJPJxCnDK6kg1DGoseFcBpAAxGYA8YeysC0xAtnnzmL3+rWIqFcfN/xleJBrSkQ1SWVjKAAIi4mEMaQ+QmCBmpAAS0wMYyiiasAYqmqKzyMUH+C/uEDFhpaAFNqx6j//QqvrbkTjNu2CUj+imoRJKS8KCgpw/Phx5OTk+LxuqJjQ8Z57AKgwF6qwiwpExyA9Pd3/FSUihIWFISEhARaLJdhVqXEOdboW9f/2N2QdVYAMQKwq6mRn46pDJ3Dkxk44c/hP2G0Fwa4mEdUgVYmhAKDTnbdAERsUKLDbbGgUGsIYiqiaMIaqvKywcFg7XY3sX4p7nZrsKhQRiKJge+rXOLp3N4a/MTuItSSqGZiUKkFVVaSnp8NoNKJhw4awWCw+nUHIzs1BzpmzgNhhtdlhstuBRvEIDedsNUT+JCIoKCjA6dOnkZ6ejhYtWsBgqL1jj/hyotNZtDAkFLGPjEfGL6eAf+9CeEQh8qwGJGRkIyOuPs4c/rNa6kpEl6aqxlAAcNocCqj5MEJBWF4+8iPCEd2wUTXVmKh2YgzlzpdWSiurKEj8v/+D3VaIdY+sBwAcvbouOu46gf0dEpFxsQC2vFx/V5XoksSkVAkFBQVQVRVNmjRBWFiYz+sXqnbYjEZAAItdYBYBLBaEhoZWQ22Jajer1Qqz2Yw//vgDBQUF/HfmR87O6JxAhogqqqoxFACYjSZAKYQRCkIMBojJxLadqBowhqo6RVGgGI3aY1EUNLiYg9NRFmRcZE9zooqqvSnxcvj3bAGv1SaqLrX5zJ6/ec0/MStFRD5iu0xUM/DfatUppdwHGEIRVRRbIiIi0jCFTkRERFQZHmmpoNSCqKZhUoqIiDw4x4ERBlRERERERFRNmJQKhABNtTpixAjHtc2KAovFgubNm2PatGkoLCys0nbXrVsHRVFw4cIF/1S0AtLT0zF06FA0bNgQoaGhaNy4MQYMGIA9e/a4lVu2bBm6d++OyMhIhIWF4ZprrsH8+fPdyhw6dAiKomDbtm0V3v/UqVPRqlUrhIeHo06dOrjllluwefNmt20+9NBDSEpKgtVqRbNmzTBlyhQUFJR9/fjx48cxdOhQtGzZEgaDARMmTKhQfb7//nv0798fDRs2hKIoWLJkiddyv/32G26//XZER0cjPDwc11xzDQ4fPqw9P3r0aDRr1gxWqxWxsbFe39MtW7agZ8+eiImJQZ06dZCSkoLt27d73d/+/fsRGRmJmJgYv70GCjxvTZQ4+5wzJ0VEtQBjKMZQjKGoqjwv32MQRVQRTEr5WbCbnj59+uD48eP4/fff8fjjj2Pq1Kl44403glyrYuUFHABgs9nQq1cvZGRk4PPPP8fevXuxePFitG/f3i2oe+eddzBgwAB069YNmzdvxo4dOzBkyBCMGTMGTzzxRJXq2bJlS8yePRs7d+7Ehg0bcPnll6N37944ffo0AGDPnj1QVRXvvfcefv31V8yaNQvvvvsunnnmmTK3m5+fj9jYWDz33HPo0KFDheuTnZ2NDh064J///GepZQ4cOIDrr78erVq1wrp167Bjxw48//zzbgNXXn311Zg3bx5+++03rFixAiKC3r17w263AwCysrLQp08fXHbZZdi8eTM2bNiAyMhIpKSkwGazue3PZrPhL3/5C2644Qa/vQaquqrFP4rHXQZURFRbMIZiDMUYqnarVMjj/cxe0d8qVYeo9pBaKCMjQwBIRkaGx3O5ubmye/duyc3NrdS2M7Oz5PiBA3J8/z7J2L1bcnbulNyLnvupDsOHD5cBAwa4LevVq5d06dJFzp07J8OGDZOYmBixWq3Sp08f2bdvn1bu0KFDctttt0lMTIyEhYVJmzZtZPny5ZKeni5wNKnabfjw4Y7XmpkpQ4cOlbCwMImPj5c333xTunfvLo8++qi23cTERJk2bZoMGzZMIiMjtXXXr18v119/vYSGhkrjxo1l/PjxkpWVJSIiaWlpAkAOHTpU6ms9fPiwmM1mmThxosdzb7/9tgCQH3/8UUREew1paWm+v6lFnN+ZVatWlVrm9ddfl6SkpApvs+R7VVEA5IsvvvBYfs8998h9993n07a2b98uAGT//v0iIrJlyxYBIIcPH9bK7NixQwDI77//7rbuU089Jffdd5/MmzdPoqOj/fIaKqOq/2YvFa9+85skTlomLyz9tdyy7x0+KQ3WpMlff3X8G9v/y0mZPXq1fDbuHdl4TRvZndxKPnvjWZkxuJ+sen9OdVedqELy8k7KqtVNZfWaFgHdb1kxQ21UnTGUiMjxg4fl+P59cmr/75Kzc6ec+6P0WMCfGEM5MIaqOMZQl46tf5yTxEnLpNurq8st+0dOnjRYkyaXr9suIiJ2uyqzR6+W2aNXy9IHesvu5Fby8WODZcbgfvLeX0dUd9WJKuynn+6QVaubyunT5X/P/aWiMRR7SpVDRJBTUOjDzY5cm4pcm4ocm4qcQhU5BXYft+G4iR96KFitVhQUFGDEiBH4+eefsXTpUmzatAkigltvvVU7czN27Fjk5+fj+++/x86dO/Haa68hIiICTZo0wWeffQYA2Lt3L44fP4633noLADBx4kT88MMPWLp0KVJTU7F+/Xps3brVow4zZsxAhw4dkJaWhueffx4HDhxAnz59MHDgQOzYsQOLFy/Ghg0bMG7cOABAbGwsDAYDPv30U+3sU0mffvopbDab17N5o0ePRkREBBYtWlTl9w9wnJmcO3cuoqOjyzwzl5GRgbp16/pln75SVRXLly9Hy5YtkZKSgri4OHTu3LnM7t3Z2dmYN28ekpKS0KRJEwBAcnIy6tWrh/fffx8FBQXIzc3F+++/j9atW+Pyyy/X1l2zZg0++eQTnrG7JCkl/vI0H+mLP34bKXB8jaOcMVRuUQyVW6hWKobyRxzFGKrqGEMxhqqdOC4n6VCAhhSqDFOwK6B3uTY72vx9RRW3cqRSa+2eloIwS+U+IhHB6tWrsWLFCvTt2xdLlizBDz/8gOuuuw4AsGDBAjRp0gRLlizBoEGDcPjwYQwcOBDt27cHADRt2lTbljNIiIuL0657v3jxIj788EMsXLgQPXv2BADMmzcPDRs29KjLzTffjMcff1x7PHLkSNx7773aWAAtWrTA22+/je7du2POnDlo1KgR3n77bTz11FN44YUX0KlTJ/To0QP33nuvVq99+/YhOjoaCQkJHvuzWCxo2rQp9u3bV6n3zmnZsmUYMmQIcnJykJCQgNTUVNSvX99r2f379+Odd97BjBkzqrTPyjp16hSysrLw6quvYvr06Xjttdfw7bff4q677sLatWvRvXt3rey//vUvPPXUU8jOzkZycjJSU1NhsVgAAJGRkVi3bh3uuOMOvPjiiwAcn8+KFStgMjm+i2fPnsWIESPw0UcfISoqKvAvlvxGO2Bz+Y2SEvd4/E9EVeGfOGp35daqZBzFGIoxFGMoKp+XAEkpcUKPQRTpkB6TpewpdYlZtmwZIiIiEBoair59++Kee+7BiBEjYDKZ0LlzZ61cvXr1kJycjN9++w0A8Mgjj2D69Ono1q0bpkyZgh07dpS5n4MHD8Jms+Haa6/VlkVHRyM5OdmjbKdOndweb9++HfPnz0dERIR2S0lJgaqqSE9PB+A463jixAksWLAAXbt2xSeffIK2bdsiNTW1wu+FM0goy4IFC9zqsX79eu25Hj16YNu2bdi4cSP69OmDwYMH49SpUx7bOHr0KPr06YNBgwZh1KhR2nLX7Y4ZM6ZCdV6/fr3begsWLKjQeqqqAgAGDBiAxx57DFdeeSWefvpp3HbbbXj33Xfdyt57771IS0vDd999h5YtW2Lw4MHIy8sDAOTm5uKhhx5Ct27d8OOPP+KHH35Au3bt0K9fP+Tm5gIARo0ahaFDh+LGG2/062sgPVBKuU9EdOljDFWMMRRjKKoYr9GS85ifSSmiCmFPqXJYzUbsnpZS4fIXs3OQc+oUIHZYCwphVu1QLrsMoRERldq3r3r06IE5c+bAYrGgYcOGMJlMWLp0abnrjRw5EikpKVi+fDlWrlyJV155BTNnzsT48eN9rkNJ4eHhbo+zsrIwevRoPPLIIx5lL7vsMu1+ZGQk+vfvj/79+2P69OlISUnB9OnT0atXL7Ro0QIZGRk4duyYx5nFgoICHDhwACkp5X9ut99+u1ug2ahRI7d6N2/eHM2bN0eXLl3QokULvP/++5g8ebJW5tixY+jRoweuu+46zJ07123brjPVVPRsWKdOndzWa9CgQYXWq1+/PkwmE9q0aeO2vHXr1tiwYYPbsujoaERHR6NFixbo0qUL6tSpgy+++AJ/+ctfsHDhQhw6dAibNm2CweDIWS9cuBB16tTBl19+iSFDhmDNmjVYunSpdkZTRKCqKkwmE+bOnYu//OUvlXoNVDW+pJCUMkp7PMOAioiqwNc46uSho4CaByMUhOflIT8qCjGNG1d6375gDMUYyhVjqNpD8eGyprLKcuADosphUqociqL41PXbbjNCzAZABGFigNkuUCxGhFbyMjxfOYMAV61bt0ZhYSE2b96sdT0/e/Ys9u7d6/YD3KRJE4wZMwZjxozB5MmT8e9//xvjx4/Xzpa5jk3QtGlTmM1mbNmyRQuCMjIysG/fvlLP/jh17NgRu3fv9qhnWRRFQatWrbBx40YAwN13341JkyZh5syZmDlzplvZd999Fzk5Obj//vvL3W5kZCQiIyMrVAdVVZGfn689Pnr0KHr06KHNxuIMQJx8eX1OVqu1UutZLBZcc8012Lt3r9vyffv2ITExsdT1RAQior2unJwcGAwGtx9c52PnmcRNmza5fRe+/PJLvPbaa9i4cSMaNWpU6ddAeiMl/hIR+c7XOMpqNgCqAUYoCCs0wGA2VHooA18xhmIM5YoxFFUWk1NEvmFSqjo5W6IgDyrWokULDBgwAKNGjcJ7772HyMhIPP3002jUqBEGDBgAAJgwYQL69u2Lli1b4vz581i7di1at24NAEhMTISiKFi2bBluvfVWWK1WREZGYvjw4XjyySdRt25dxMXFYcqUKR4/xt5MmjQJXbp0wbhx4zBy5EiEh4dj9+7dSE1NxezZs7Ft2zZMmTIFw4YNQ5s2bWCxWPDdd9/hgw8+wKRJkwA4zga+/vrreOKJJxAaGophw4bBbDbjyy+/xDPPPIPp06ejXbt2bvstGWwAQNu2bWE2m92WZWdn46WXXsLtt9+OhIQEnDlzBv/85z9x9OhRDBo0CIAjmLrpppuQmJiIGTNmaNMcA0B8fHyZr995BiwrKwunT5/Gtm3bYLFYPM7QucrKysL+/fu1x+np6di2bRvq1q2rBbRPPvkk7rnnHtx4443o0aMHvv32W3z11VdYt24dAMflAosXL0bv3r0RGxuLP//8E6+++iqsVituvfVWAECvXr3w5JNPYuzYsRg/fjxUVcWrr74Kk8mEHj16AID2vXD6+eefYTAYPN7vyrwGCg6vPad49R4REWOoIoyhGEORLzimFJFPqmn2P12rzumMM7MuyvEDB+T4/n2S8etuydm5U/KyLla1yhXibTpjJ+d0xtHR0WK1WiUlJcVtOuNx48ZJs2bNJCQkRGJjY2XYsGFy5swZ7flp06ZJfHy8KIpS5nTG1157rTz99NPaeomJiTJr1iyP+vz000/Sq1cviYiIkPDwcLniiivkpZdeEhGR06dPyyOPPCLt2rWTiIgIiYyMlPbt28uMGTPEbre7bWfJkiVyww03SHh4uDbd8qJFi9zKeJuS2Xk7cuSIR91yc3PlzjvvlIYNG4rFYpGEhAS5/fbb5aefftLKzJs3r9RtlsfbOomJiWWus3btWq/rOT8Lp/fff1+aN28uoaGh0qFDB1myZIn23NGjR6Vv374SFxcnZrNZGjduLEOHDpU9e/a4bWPlypXSrVs3iY6Oljp16sjNN98smzZtKrVuFZ3OuKKvwVecztjhtW9+k8RJy+SFpb+WW3bu4VPSYE2ajNmVLiIiB7aektmjV8un42bLxmvayu7kVvLZjOdkxuB+snLuO9Vcc6KKycs7KatWN5VVq5sHdL8Vnc64tqjOGEpE5PjBw3J8/z45tf93ydm5U84f/qMq1a0wxlCMoRhD1V5ph89L4qRl0u3V1eWWPZybLw3WpMnl67aJiIiqqjJ79GqZPXq1fPVgiuxObiWLJwySGYP7yZyH76vuqhNV2E9b7pRVq5vKqdOrArbPisZQikjtS+FmZmYiOjoaGRkZHtep5+XlIT09HUlJSQgNDfV52xezs5B90jGmVFi+Y0wpQ9LlCAn3fUypmiY7OxuNGjXCzJkz8dBDDwV8/+fOnUPPnj0RFRWFb775BmFhYQGvAwVeVf/NXipe/3YP/rXuAB7sloS/9y/9jDEA/PvIaTy//yjujIvBnLaX42DaaXzz3k7Em39Dw5/mICbDjt9G3Y30n9JwRc8+6PXwuAC9CqLS5eefwoYfugIwoOfNvwdsv2XFDLVRdcZQAHAi/Yg2plREbh7yo6MQ0+TS7wnCGIqCgTGUw7YjF3DHP39A4zpWbJh0c5llj+QV4JpNu2E1KEjv3gEign/9dS0AINE2A81+SMfOW9vjyNEchEXH4K9zPwrESyAq15af70Jm5nZcccVcxNbvGZB9VjSG4ux7VGlpaWlYtGgRDhw4gK1bt+Lee+8FAK07e6DVrVsXq1atQs+ePbFp06ag1IHo0iFF/6915y2ISEcu1RaIMRTRpUe7+Lb29fkgqhKOKVWttEGlglqL6jRjxgzs3bsXFosFV199NdavX4/69esHrT716tXD3//+96DtnyjYqppE4vDmRKQnZc0WWtMxhiLSF3/lkpiTIvINk1KBcInGU1dddRV++eWXYFeDiKpK8bzLs31ERNWHMRTRpcFtcoISx3y1cJQcokrh5XvVge0PEdVInhl0xlOkH5foGR4qGz92IqoxFJf/g0EU6Yx+f1CZlPIzNj1EVFOU1V6xLSP94reTiIj0j79WpEs6TJYyKVWNii+D0W9WkojIm+Le6Pr74SIiIiIKprKjI8ZORL5gUoqI6BKg+JD7Lrus40lx/tXh2RQiIiIif/F79wHnBhlDEVUIk1JERASgOBHlfEREFGhKyTFZiIh0pCJtkxZBMSlFVCFMSlWLEg2QL10YiIj0hPEUEQUD2x4iqnGKjvmYjCLyCZNSfmZU+JYS0aWEgRURERFRebSr9opiJ2EMRVQhzKD4mclgCtq+R4wYAUVRoCgKLBYLmjdvjmnTpqGwsLBK2123bh0URcGFCxf8U9EKSE9Px9ChQ9GwYUOEhoaicePGGDBgAPbs2eNWbtmyZejevTsiIyMRFhaGa665BvPnz3crc+jQISiKgm3btlV4/1OnTkWrVq0QHh6OOnXq4JZbbsHmzZvdtvnQQw8hKSkJVqsVzZo1w5QpU1BQUFDmdo8fP46hQ4eiZcuWMBgMmDBhQoXqM2fOHFxxxRWIiopCVFQUunbtim+++UZ7/ty5cxg/fjySk5NhtVpx2WWX4ZFHHkFGRoZWZv78+dr3o+Tt1KlTWrn8/Hw8++yzSExMREhICC6//HJ88MEHbvX5xz/+oe2rSZMmeOyxx5CXl1fma/j888/Ru3dv1KtXz+fPg6qXa2dOKdGxk2NKEVFwBaa3OWMoxlCMochfOFcMkW+Cl0GpRQJ58V6fPn0wb9485Ofn4+uvv8bYsWNhNpsxefLkANaidAUFBbBYLGWWsdls6NWrF5KTk/H5558jISEBf/75J7755hu3oO6dd97BhAkTMGnSJMyZMwcWiwVffvklxowZg127dmHGjBmVrmfLli0xe/ZsNG3aFLm5uZg1axZ69+6N/fv3IzY2Fnv27IGqqnjvvffQvHlz7Nq1C6NGjUJ2dnaZ+83Pz0dsbCyee+45zJo1q8L1ady4MV599VW0aNECIoIPP/wQAwYMQFpaGtq2bYtjx47h2LFjmDFjBtq0aYM//vgDY8aMwbFjx/Dpp58CAO655x706dPHbbsjRoxAXl4e4uLitGWDBw/GyZMn8f7776N58+Y4fvw4VFXVnl+4cCGefvppfPDBB7juuuuwb98+LZh/8803S30N2dnZuP766zF48GCMGjWqwq+dAosXGxNRbcUYijEUYyiqHIG3CIon9ogqSGqhjIwMASAZGRkez+Xm5sru3bslNze3UtvOy8mX4/v3y/H9+yTz118lZ+dOKcip3LZ8NXz4cBkwYIDbsl69ekmXLl3k3LlzMmzYMImJiRGr1Sp9+vSRffv2aeUOHTokt912m8TExEhYWJi0adNGli9fLunp6QJHS6vdhg8fLiIimZmZMnToUAkLC5P4+Hh58803pXv37vLoo49q201MTJRp06bJsGHDJDIyUlt3/fr1cv3110toaKg0btxYxo8fL1lZWSIikpaWJgDk0KFDpb7Ww4cPi9lslokTJ3o89/bbbwsA+fHHH0VEtNeQlpbm+5taxPmdWbVqVallXn/9dUlKSqrwNku+V76qU6eO/Oc//yn1+Y8//lgsFovYbDavz586dUrMZrP897//1ZZ98803Eh0dLWfPni11u2PHjpWbb77ZbdnEiROlW7duFaq3Pz4PV1X9N3upeP3b3yRx0jKZ8uWucsv++8gpabAmTUbvShcRkYPbTsns0avlk3H/ko2d28nu5Fby6ZvPyYzB/eTrd2ZUc82JKiYv75SsWt1UVq1uFtD9lhUz1EbVGUOJiJw4eESO798np3//XXJ27pTzR45UpboVxhjKgTGUA2Oo2mXb4fOSOGmZXPfK6nLLHsnNlwZr0iRx3TZt2ezRq2T26NWy/KHbZHdyK/nfI3fKjMH95O3hg6qz2kQ++WnLXbJqdVM5dSo1YPusaAzFy/fKIwIUZPt0U2y5UGy5QGHRzcf1tZsfsutWqxUFBQUYMWIEfv75ZyxduhSbNm2CiODWW2+FzWYDAIwdOxb5+fn4/vvvsXPnTrz22muIiIhAkyZN8NlnnwEA9u7di+PHj+Ott94CAEycOBE//PADli5ditTUVKxfvx5bt271qMOMGTPQoUMHpKWl4fnnn8eBAwfQp08fDBw4EDt27MDixYuxYcMGjBs3DgAQGxsLg8GATz/9FHa73evr+vTTT2Gz2fDEE094PDd69GhERERg0aJFVX7/AMeZyblz5yI6OhodOnQotVxGRgbq1q3rl32WxW6343//+x+ys7PRtWvXMusTFRUFk8l7h8j//ve/CAsLw913360tW7p0KTp16oTXX38djRo1QsuWLfHEE08gNzdXK3Pdddfhl19+wU8//QQAOHjwIL7++mvceuutfnqFpA/i8n8iokryNY6y5bjHUIU5QYujGENVHWMoxlC1iefcVoyiiCqCl++Vx5YDvNywwsVDADTw176fOQZYwiu1qohg9erVWLFiBfr27YslS5bghx9+wHXXXQcAWLBgAZo0aYIlS5Zg0KBBOHz4MAYOHIj27dsDAJo2baptyxkkxMXFISYmBgBw8eJFfPjhh1i4cCF69uwJAJg3bx4aNvR8r26++WY8/vjj2uORI0fi3nvv1cYCaNGiBd5++210794dc+bMQaNGjfD222/jqaeewgsvvIBOnTqhR48euPfee7V67du3D9HR0UhISPDYn8ViQdOmTbFv375KvXdOy5Ytw5AhQ5CTk4OEhASkpqaifv36Xsvu378f77zzTpW6u5dn586d6Nq1K/Ly8hAREYEvvvgCbdq08Vr2zJkzePHFF/Hwww+Xur33338fQ4cOhdVq1ZYdPHgQGzZsQGhoKL744gucOXMGf/vb33D27FnMmzcPADB06FCcOXMG119/PUQEhYWFGDNmDJ555hn/vmAKHC8zhDKMIt3hTLY1k49xVMkYyuq1VAVVMo5iDMUYijEUVYVwEj7SJf3GUewpdYlZtmwZIiIiEBoair59++Kee+7BiBEjYDKZ0LlzZ61cvXr1kJycjN9++w0A8Mgjj2D69Ono1q0bpkyZgh07dpS5n4MHD8Jms+Haa6/VlkVHRyM5OdmjbKdOndweb9++HfPnz0dERIR2S0lJgaqqSE9PB+A463jixAksWLAAXbt2xSeffIK2bdsiNTW1wu9FeeMuAI7A0rUe69ev157r0aMHtm3bho0bN6JPnz4YPHiw22CWTkePHkWfPn0waNAgt+v8Xbc7ZsyYCtV5/fr1bustWLBAey45ORnbtm3D5s2b8de//hXDhw/H7t27PbaRmZmJfv36oU2bNpg6darX/WzatAm//fYbHnroIbflqqpCURQsWLAA1157LW699Va8+eab+PDDD7UzfevWrcPLL7+Mf/3rX9i6dSs+//xzLF++HC+++GK57ynpm7j8WGnH/4yoSHf4naTqwRiqGGMoxlBUcQp/l6hG0d/3lT2lymMOc5xpq6D83AJcOH4UgIqwAhtMqgpT02Ywh4ZUbt8+6tGjhzZgZcOGDWEymbB06dJy1xs5ciRSUlKwfPlyrFy5Eq+88gpmzpyJ8ePH+17vEsLD3c9SZmVlYfTo0XjkkUc8yl522WXa/cjISPTv3x/9+/fH9OnTkZKSgunTp6NXr15o0aIFMjIycOzYMY8ziwUFBThw4ABSUlLKrdvtt9/uFmg2atTIrd7NmzdH8+bN0aVLF7Ro0QLvv/++24Cnx44dQ48ePXDddddh7ty5btt2nRklKiqq3LoAjuDTdb0GDYrPGTtnAwKAq6++Glu2bMFbb72F9957Tytz8eJF9OnTB5GRkfjiiy9gNpu97uc///kPrrzySlx99dVuyxMSEtCoUSNER0dry1q3bg0RwZ9//okWLVrg+eefx7BhwzBy5EgAQPv27ZGdnY2HH34Yzz77bJnvKelLmT9JRU8Kk1JEVBU+xlEnDx0F1DwYoSA8Lw8FMXUQ3dCzR0+F9+0DxlCMoRhDUUV5j448pjAOQE2Iaj4mpcqjKL51/VYtgMUKERVQTYCqOta3VCIpVQnOIMBV69atUVhYiM2bN2tdz8+ePYu9e/e6dV1u0qQJxowZgzFjxmDy5Mn497//jfHjx2tny1zHJmjatCnMZjO2bNmiBUEZGRnYt28fbrzxxjLr2LFjR+zevdujnmVRFAWtWrXCxo0bAQB33303Jk2ahJkzZ2LmzJluZd99913k5OTg/vvvL3e7kZGRiIyMrFAdVFVFfn6+9vjo0aPo0aMHrr76asybNw8Gg3vHQ19en5PVaq3weiXrk5mZiZSUFISEhGDp0qUIDQ31ul5WVhY+/vhjvPLKKx7PdevWDZ988gmysrIQEREBwNHN32AwoHHjxgCAnJwcj9dqNBoBOBIYvrynpF+iw7MoRFQD+RpHmcMgquK4/sWkQLFEVnooA18xhmIMxRiKqkJLSYlzXE7GUkQVwaSUn5nMBhhgh931Mpgg1gdwjDcwYMAAjBo1Cu+99x4iIyPx9NNPo1GjRhgwYAAAYMKECejbty9atmyJ8+fPY+3atWjdujUAIDExEYqiYNmyZbj11lthtVoRGRmJ4cOH48knn0TdunURFxeHKVOmwGAwQCln3I9JkyahS5cuGDduHEaOHInw8HDs3r0bqampmD17NrZt24YpU6Zg2LBhaNOmDSwWC7777jt88MEHmDRpEgDH2cDXX38dTzzxBEJDQzFs2DCYzWZ8+eWXeOaZZzB9+nS0a9fObb979+71qEvbtm09zoRlZ2fjpZdewu23346EhAScOXMG//znP3H06FEMGjQIgCOYuummm5CYmIgZM2bg9OnT2vrx8fFlvn7nWbysrCycPn0a27Ztg8ViKXVsAwCYPHky+vbti8suuwwXL17EwoULsW7dOqxYsQKAI5jq3bs3cnJy8NFHHyEzMxOZmZkAHIOeOgMeAFi8eDEKCwtx3333eexn6NChePHFF/HAAw/ghRdewJkzZ/Dkk0/iwQcf1MZN6N+/P958801cddVV6Ny5M/bv34/nn38e/fv3d9tPSefOncPhw4dx7JjjjLnz84iPjy/3PaPyKVVoadzWLPr3W5XtERFdKhhDOTCGcmAMdWnyZchCRkdE1aA6pwDUq+qczriwsFBOHdgrx/fvk8xff5WcnTvFlptX1SpXiLfpjJ2c0xlHR0eL1WqVlJQUt+mMx40bJ82aNZOQkBCJjY2VYcOGyZkzZ7Tnp02bJvHx8aIoSpnTGV977bXy9NNPa+slJibKrFmzPOrz008/Sa9evSQiIkLCw8PliiuukJdeeklERE6fPi2PPPKItGvXTiIiIiQyMlLat28vM2bMELvd7radJUuWyA033CDh4eHadMuLFi1yK+NtSmbn7YiXqaZzc3PlzjvvlIYNG4rFYpGEhAS5/fbb5aefftLKzJs3r9RtlsfbOomJiWWu8+CDD0piYqJYLBaJjY2Vnj17ysqVK7Xn165dW2p90tPT3bbVtWtXGTp0aKn7+u233+SWW24Rq9UqjRs3lokTJ0pOTo72vM1mk6lTp0qzZs0kNDRUmjRpIn/729/k/PnzZb6G0t6zKVOmlLleeTidscMb3+6RxEnLZMqXu8ot++8jp6TBmjR5eFe6iIikbz8ts0evlo/HzZGNXdrL7uRW8umsZ2XG4H7y1T9eq+aaE1VMXv5pWbW6qaxa3TSg+63odMa1RXXGUCIiJw4ekeP798np33+XnJ07JePoiapUt8IYQzGGYgxVe20/cl4SJy2T615ZXW7ZP3PzpcGaNLls3TZt2T/HpMrs0avlm5G3y+7kVrLokTtkxuB+8o/77qrOahP55KctA2XV6qZy6tTK8gv7SUVjKEWk9l3smpmZiejoaG26V1d5eXlIT09HUlJSqV13y2K323HujwOwi4LwfMeYUuYWLWAKCczle8GUnZ2NRo0aYebMmR6DPwbCuXPn0LNnT0RFReGbb75BWJjvY3JRzVPVf7OXihkr9mL22v0Ycd3lmHp72zLL/ufP03ju96MYEBeD99pejkM7zmD5v3Ygzvw7Gv/8T8Sct+HXMQPxx6ZtSO56A26bMClAr4KodPkFZ7Bhg2OslZ43HwjYfsuKGWqj6oyhAOBk+p8QNRcmcYwpZasXi6gEv81rrFuMoSgYGEM57PjzAm6f/QMaxVjxw9M3l1n2aF4Brt60GyEGBX907wAA+NdfV0HEgGb2t5C4fh+2p7TC0RM2mMwWPPrR54F4CUTl2vLz3cjMTMMV7d9FbGyvgOyzojEUZ9+jSktLS8OiRYtw4MABbN26Fffeey8AaN3ZA61u3bpYtWoVevbsiU2bNgWlDkSXjlp3voKIdMCgFBbdu7TbIMZQRJcyjilF5AuOKeV33pqfS/fq4xkzZmDv3r2wWCy4+uqrsX79etSvXz9o9alXrx7+/ve/B23/RJcOR7vFcIqIAslgyIfdbqgVU6wzhiK6NF36rReRfzEpRZV21VVX4Zdffgl2NYioqrzmzYtCqtp3hTcRBdGlexrPHWMookuHglISUYyhiCqEl+9Vo9oSWBHRJYKxExHpDqMpIgoM/w21XHT5HuMqogphUoqIiDxocRQjKtIJpiaIiEjfnL9UjJ1If/QcRzEpRUREHorDKgZWREREROXxPOhnDEVUEUxKERHVUgyViIiIiHzn3pG86IFSsgwjLdIj/X0vmZQKAEXPfeWIiIqISzQlHneIiIiIqFyMnYh8wqRUtWKLRESB4Uvyu0JFiwrxLB8RERFdyhS/jbZTsquUnzZLdIljUoqIiFywaycRERGRN2VFSSWf47icRBXDpNQlZMSIEVAUBYqiwGKxoHnz5pg2bRoKCwurtN1169ZBURRcuHDBPxWtgPT0dAwdOhQNGzZEaGgoGjdujAEDBmDPnj1u5ZYtW4bu3bsjMjISYWFhuOaaazB//ny3MocOHYKiKNi2bVuF9z916lS0atUK4eHhqFOnDm655RZs3rzZbZsPPfQQkpKSYLVa0axZM0yZMgUFBQVlbvf48eMYOnQoWrZsCYPBgAkTJlS4Tk6vvvoqFEXxWPfAgQO48847ERsbi6ioKAwePBgnT550K/PSSy/huuuuQ1hYGGJiYrxu3/kdcr3973//057//PPP0atXL20/Xbt2xYoVK8qt9+eff47evXujXr16Pn8eVL2UMrtZMaAiosAp2eIEKk3OGIoxFGMo8hctGcXe5kQVwqRUQASu50GfPn1w/Phx/P7773j88ccxdepUvPHGGwHbf3nKCzgAwGazoVevXsjIyMDnn3+OvXv3YvHixWjfvr1bUPfOO+9gwIAB6NatGzZv3owdO3ZgyJAhGDNmDJ544okq1bNly5aYPXs2du7ciQ0bNuDyyy9H7969cfr0aQDAnj17oKoq3nvvPfz666+YNWsW3n33XTzzzDNlbjc/Px+xsbF47rnn0KFDB5/rtWXLFrz33nu44oor3JZnZ2ejd+/eUBQFa9aswQ8//ICCggL0798fqqpq5QoKCjBo0CD89a9/LXM/8+bNw/Hjx7XbHXfcoT33/fffo1evXvj666/xyy+/oEePHujfvz/S0tLK3GZ2djauv/56vPbaaz6/bgoU17bKEUgxniKioApg503GUIyhGEMREQWB1EIZGRkCQDIyMjyey83Nld27d0tubm6ltl1YaJOTB/bK8f375OKuXZKzc6cU5hdUtcoVMnz4cBkwYIDbsl69ekmXLl3k3LlzMmzYMImJiRGr1Sp9+vSRffv2aeUOHTokt912m8TExEhYWJi0adNGli9fLunp6QLH0al2Gz58uIiIZGZmytChQyUsLEzi4+PlzTfflO7du8ujjz6qbTcxMVGmTZsmw4YNk8jISG3d9evXy/XXXy+hoaHSuHFjGT9+vGRlZYmISFpamgCQQ4cOlfpaDx8+LGazWSZOnOjx3Ntvvy0A5McffxQR0V5DWlqa729qEed3ZtWqVaWWef311yUpKanC2yz5XpXn4sWL0qJFC0lNTfVYd8WKFWIwGNy+0xcuXBBFUSQ1NdVjW/PmzZPo6Giv+wEgX3zxRYXrJSLSpk0beeGFFypU1h+fh6uq/pu9VMxYsUcSJy2TKV/uKrfsf46ckgZr0mTUrnQRETm084zMHr1aFo+dKxu7XCG7k1vJx/+YLDMG95MvXp9WzTUnqpj8/NOyanVTWbW6aUD3W1bMUBtVZwwlInLmjz1yfP8+OfP7XsnZuVMyj5+sSnUrjDGUA2MoB8ZQtcuOIxckcdIy6fpy6d9Rp6O5+dJgTZo0WbtNW/avMStl9ujVsmLUHbI7uZV8NL6fzBjsuBHpxZYtA2XV6qZy6tSKgO2zojEUe0qVQ0SQY8up8C23MBe59jz3W2GuT9tw3sQPXRSsVisKCgowYsQI/Pzzz1i6dCk2bdoEEcGtt94Km80GABg7dizy8/Px/fffY+fOnXjttdcQERGBJk2a4LPPPgMA7N27F8ePH8dbb70FAJg4cSJ++OEHLF26FKmpqVi/fj22bt3qUYcZM2agQ4cOSEtLw/PPP48DBw6gT58+GDhwIHbs2IHFixdjw4YNGDduHAAgNjYWBoMBn376Kex2u9fX9emnn8Jms3k9mzd69GhERERg0aJFVX7/AMeZsblz5yI6OrrMM3MZGRmoW7euX/bpzdixY9GvXz/ccsstHs/l5+dDURSEhIRoy0JDQ2EwGLBhw4ZK7at+/fq49tpr8cEHH5T5XVRVFRcvXqzW106Bxw5SROQPPsdRWuxUtRjKH3EUY6iqYwzFGKo2cXbsVFw+cn8czxFd6kzBroDe5RbmovPCzlXbyLbKrbZ56GaEmcMqta6IYPXq1VixYgX69u2LJUuW4IcffsB1110HAFiwYAGaNGmCJUuWYNCgQTh8+DAGDhyI9u3bAwCaNm2qbcv5QxkXF6ddQ3/x4kV8+OGHWLhwIXr27AnA0V25YcOGHnW5+eab8fjjj2uPR44ciXvvvVe7nr9FixZ4++230b17d8yZMweNGjXC22+/jaeeegovvPACOnXqhB49euDee+/V6rVv3z5ER0cjISHBY38WiwVNmzbFvn37KvXeOS1btgxDhgxBTk4OEhISkJqaivr163stu3//frzzzjuYMWNGlfZZmv/973/YunUrtmzZ4vX5Ll26IDw8HJMmTcLLL78MEcHTTz8Nu92O48eP+7SvadOm4eabb0ZYWBhWrlyJv/3tb8jKysIjjzzitfyMGTOQlZWFwYMH+/y6yP8qFfwopdyv7PaIiIr4JY6qpMrGUYyhGEMxhqqdGPEQBQd7Sl1ili1bhoiICISGhqJv37645557MGLECJhMJnTuXBwU1qtXD8nJyfjtt98AAI888gimT5+Obt26YcqUKdixY0eZ+zl48CBsNhuuvfZabVl0dDSSk5M9ynbq1Mnt8fbt2zF//nxERERot5SUFKiqivT0dACOs0wnTpzAggUL0LVrV3zyySdo27YtUlNTK/xeWCyWcsssWLDArR7r16/XnuvRowe2bduGjRs3ok+fPhg8eDBOnTrlsY2jR4+iT58+GDRoEEaNGqUtd93umDFjKlTn9evXu623YMECHDlyBI8++igWLFiA0NBQr+vFxsbik08+wVdffYWIiAhER0fjwoUL6NixIwwG3/6ZP//88+jWrRuuuuoqTJo0CU899VSpY2osXLgQL7zwAj7++GPExcUBKPs9pZpDmx6ZSSnSDc4MSdWLMVQxxlCMoajitPlinKGT2xCdjKOIysOeUuWwmqzYPHRz+QWLqKodZw+nQxUFEXkFMIrA0rIlDCbf32qryerzOj169MCcOXNgsVjQsGFDmEwmLF26tNz1Ro4ciZSUFCxfvhwrV67EK6+8gpkzZ2L8+PE+16Gk8PBwt8dZWVkYPXq017NGl112mXY/MjIS/fv3R//+/TF9+nSkpKRg+vTp6NWrF1q0aIGMjAwcO3bM48xiQUEBDhw4gJSUlHLrdvvtt7sFmo0aNXKrd/PmzdG8eXN06dIFLVq0wPvvv4/JkydrZY4dO4YePXrguuuuw9y5c9227TozSlRUVLl1ARzBp+t6DRo0wOrVq3Hq1Cl07NhRW2632/H9999j9uzZyM/Ph9FoRO/evXHgwAGcOXMGJpMJMTExiI+PdztjWxmdO3fGiy++iPz8fLeu7f/73/8wcuRIfPLJJ27d4ct6T0nfXMMmURhEEVHV+RpHnfvzd9hsBphVQVh+AQrrxSGigfceNhXZty8YQzGGYgxFVSFe+nsIhKdUSB/KnG07uJiUKoeiKD51/bbbC2E1hkIVBWFGAwwiCDFZYTCbq7GWxZxBgKvWrVujsLAQmzdv1rqenz17Fnv37kWbNm20ck2aNMGYMWMwZswYTJ48Gf/+978xfvx47WyZ69gETZs2hdlsxpYtW7QgKCMjA/v27cONN95YZh07duyI3bt3e9SzLIqioFWrVti4cSMA4O6778akSZMwc+ZMzJw5063su+++i5ycHNx///3lbjcyMhKRkZEVqoOqqsjPz9ceHz16FD169MDVV1+NefPmeZxN8+X1OVmtVo/1evbsiZ07d7ote+CBB9CqVStMmjQJRqPR7Tln9/g1a9bg1KlTuP32232uh6tt27ahTp06bsHUokWL8OCDD+J///sf+vXr51bel/eUdIw5KdIxEYGi4+CKivkaR+UaQ2FSDTArAqvRgEKTtdJDGfiKMRRjKMZQ5A/8dSI9Ex0G+UxK1QItWrTAgAEDMGrUKLz33nuIjIzE008/jUaNGmHAgAEAgAkTJqBv375o2bIlzp8/j7Vr16J169YAgMTERCiKgmXLluHWW2+F1WpFZGQkhg8fjieffBJ169ZFXFwcpkyZAoPBUO6BwqRJk9ClSxeMGzcOI0eORHh4OHbv3o3U1FTMnj0b27Ztw5QpUzBs2DC0adMGFosF3333HT744ANMmjQJgONs4Ouvv44nnngCoaGhGDZsGMxmM7788ks888wzmD59Otq1a+e2371793rUpW3btjCXSBhmZ2fjpZdewu23346EhAScOXMG//znP3H06FEMGjQIgCOYuummm5CYmIgZM2Zo0xwDQHx8fJmv33kWLysrC6dPn8a2bdtgsVjcgltXkZGRHq8lPDwc9erVc1s+b948tG7dGrGxsdi0aRMeffRRPPbYY26XAxw+fBjnzp3D4cOHYbfbtbo0b94cERER+Oqrr3Dy5El06dIFoaGhSE1Nxcsvv+w2GOrChQsxfPhwvPXWW+jcuTNOnDgBwBEMRkdHl/q6nfs9duwYgOLPIz4+vtz3jKqHs0e593+xUlRGfz9cRESBwhjKgTEUYyhyV1Z05IidlPILEpFDtcz9p3PVOZ1xYaFNTh7YK8f375OsXbskZ+dOsRcUVLXKFeJtOmMn53TG0dHRYrVaJSUlxW0643HjxkmzZs0kJCREYmNjZdiwYXLmzBnt+WnTpkl8fLwoilLmdMbXXnutPP3009p6iYmJMmvWLI/6/PTTT9KrVy+JiIiQ8PBwueKKK+Sll14SEZHTp0/LI488Iu3atZOIiAiJjIyU9u3by4wZM8Rut7ttZ8mSJXLDDTdIeHi4Nt3yokWL3Mp4m5LZeTty5IhH3XJzc+XOO++Uhg0bisVikYSEBLn99tvlp59+0srMmzev1G2Wx9s6iYmJ5a7nyttUyJMmTZIGDRqI2WyWFi1ayMyZM0VVVbcyw4cP97r/tWvXiojIN998I1deeaX2uXTo0EHeffddt/e9e/fuXrfh/F6UprT3bMqUKT699pI4nbHDjBV7JHHSMvn7kp3llv3PkVPSYE2ajNyZLiIif+w6I7NHr5b/jZ0rG7teIbuTW8nitybLjMH95LNXplRvxYkqKD//jKxa3VRWrW7q0bZVp4pOZ1xbVGcMJSJy5o89cnz/Pjmzb6/k7NwpmcdPVaW6FcYYijEUY6jaa8eRC5I4aZl0eXlVuWWP5uZLgzVp0njtNm3ZnL+ukNmjV8vKh++S3cmt5KNxt8qMwf1kxuB+UmizVWfViSpsy893y6rVTeXkqW8Dts+KxlCKSO07DZ6ZmYno6GhkZGR4XKeel5eH9PR0JCUllTogYlns9kKc/eMgVFEQmVfguHwvuRUM5ku/U1p2djYaNWqEmTNn4qGHHgr4/s+dO4eePXsiKioK33zzDcLCAtPdn4Krqv9mLxVvrtyLt9fsx/CuiXhhQLsyy37w52k88/tR9I+Nwb/bXY7Dv57FV+9sR33TQVy29R3EnCvAjr/diT9/2IGkK6/GXZNfCNCrICpdQcFZrN/gGBj65h77A3b5XlkxQ21UnTEUAJw9vNd9TKn6DRAZH+uPqusaYygKBsZQDruOZuC2dzYgIToUmyb3LLPs8fwCXLVxN8yKgiM3dQAAvPu3lbCrJrSUf6Lxd7uxtVdTnDjl+I2asOALGE2BGcaFqCw//zIIGRlb0b79vxAXW/64gf5Q0RiKs+9RpaWlpWHRokU4cOAAtm7dinvvvRcAtO7sgVa3bl2sWrUKPXv2xKZNm4JSB6JLh7j8n4iI/IkxFBERkcOl330nwGrbAdyMGTOwd+9eWCwWXH311Vi/fr02SGQw1KtXD3//+9+Dtn+iGklxvVui90nt60xLRHpyCY8YzBiK6NKixVAuY0oxjCIqH5NSgXCJBlRXXXUVfvnll2BXg4j8SC7R9oqISE8YQxFdOhSPOy6YlSIqFy/fIyIiAIB4iaZq4bCDRERERJXGyInIN0xKBQA7HhBRoPgtEGLDRURERLVI1c/DOYOn4g0JU1RE5WJSioiIPDGGIt1hppSIiGoY9jgnKheTUkREtZzH4OYozknx8j0iIiKi8mn9pHgOhXRJv19MJqX8jgdwRFRzFf9cFbVlTEqRLvF7WXvoN4gmIvJOvN4lIu+YlCIiqqU4zgERERGR77zHUI4kuiLllSMKIh1+JZmUIiIiT4rnYJ1ERERE5AP2OCcqF5NSl5ARI0ZAURQoigKLxYLmzZtj2rRpKCwsrNJ2161bB0VRcOHCBf9UtALS09MxdOhQNGzYEKGhoWjcuDEGDBiAPXv2uJVbtmwZunfvjsjISISFheGaa67B/Pnz3cocOnQIiqJg27ZtFd7/1KlT0apVK4SHh6NOnTq45ZZbsHnzZrdtPvTQQ0hKSoLVakWzZs0wZcoUFBQUlLnd48ePY+jQoWjZsiUMBgMmTJhQ4TodPXoU9913H+rVqwer1Yr27dvj559/1p53/fydtz59+rht4/LLL/co8+qrr2rP7927Fz169ECDBg0QGhqKpk2b4rnnnoPNZnPbzoULFzB27FgkJCQgJCQELVu2xNdff11m/T///HP07t0b9erV8/nzoApQKn6Ji1KyrMvD4nEQHEEUYykiCqZAXbzHGIoxFGMoqghv43C6dY0iIp+Zgl0B8q8+ffpg3rx5yM/Px9dff42xY8fCbDZj8uTJwa4aAKCgoAAWi6XMMjabDb169UJycjI+//xzJCQk4M8//8Q333zjFtS98847mDBhAiZNmoQ5c+bAYrHgyy+/xJgxY7Br1y7MmDGj0vVs2bIlZs+ejaZNmyI3NxezZs1C7969sX//fsTGxmLPnj1QVRXvvfcemjdvjl27dmHUqFHIzs4uc7/5+fmIjY3Fc889h1mzZlW4PufPn0e3bt3Qo0cPfPPNN4iNjcXvv/+OOnXquJVzfv5OISEhHtuaNm0aRo0apT2OjIzU7pvNZtx///3o2LEjYmJisH37dowaNQqqquLll18G4PgMe/Xqhbi4OHz66ado1KgR/vjjD8TExJT5GrKzs3H99ddj8ODBbvsnffEItZiVIqJagjEUYyjGUOQPrpfsMYwiqgCphTIyMgSAZGRkeDyXm5sru3fvltzc3Ept21ZYICcP7JXj+/dJ1q5dkrNzp6iFhVWtcoUMHz5cBgwY4LasV69e0qVLFzl37pwMGzZMYmJixGq1Sp8+fWTfvn1auUOHDsltt90mMTExEhYWJm3atJHly5dLenq6wNFlQrsNHz5cREQyMzNl6NChEhYWJvHx8fLmm29K9+7d5dFHH9W2m5iYKNOmTZNhw4ZJZGSktu769evl+uuvl9DQUGncuLGMHz9esrKyREQkLS1NAMihQ4dKfa2HDx8Ws9ksEydO9Hju7bffFgDy448/iohoryEtLc33N7WI8zuzatWqUsu8/vrrkpSUVOFtlnyvyjJp0iS5/vrryyzj7fMvKTExUWbNmlWxChZ57LHH3PY9Z84cadq0qRQUFPi0HSd/fB6uqvpv9lIxc+VeSZy0TJ5fsrPcsh/8eVoarEmTh3YeFBGRw7vPyuzRq2XR2PdlU7crZXdyK1n09iSZMbifLJ76dHVXnahC8vPPyqrVTWXV6qaiqvaA7besmKE2qs4YSkTkzB975Pj+fXJm317J2blTLp48XZXqVhhjKAfGUKVjDHXp2vnnBUmctEw6v1T6d9TpeF6BNFiTJo3WpmnL3v3btzJ79GpZNXqQ7E5uJf8d21tmDO4nMwb3k7zsrGqsOVHFbfl5kKxa3VROnvw2YPusaAzFy/fKISJQc3J8ukleHiQvD6rz5uP62nb8kFq3Wq0oKCjAiBEj8PPPP2Pp0qXYtGkTRAS33nqr1qV47NixyM/Px/fff4+dO3fitddeQ0REBJo0aYLPPvsMgKNb8vHjx/HWW28BACZOnIgffvgBS5cuRWpqKtavX4+tW7d61GHGjBno0KED0tLS8Pzzz+PAgQPo06cPBg4ciB07dmDx4sXYsGEDxo0bBwCIjY2FwWDAp59+Crvd7vV1ffrpp7DZbHjiiSc8nhs9ejQiIiKwaNGiKr9/gOOs1ty5cxEdHY0OHTqUWi4jIwN169b1yz5LWrp0KTp16oRBgwYhLi4OV111Ff797397lFu3bh3i4uKQnJyMv/71rzh79qxHmVdffRX16tXDVVddhTfeeKPMSxP279+Pb7/9Ft27d3erS9euXTF27Fg0aNAA7dq1w8svv1zqZ0U1k/MsHwfoJKKq8DWOktw89zgqNzdocRRjqKpjDMUYqlZi6ETkE16+Vw7JzcXejldXat0LVdx38tZfoISFVWpdEcHq1auxYsUK9O3bF0uWLMEPP/yA6667DgCwYMECNGnSBEuWLMGgQYNw+PBhDBw4EO3btwcANG3aVNuWM0iIi4vTuhdfvHgRH374IRYuXIiePXsCAObNm4eGDRt61OXmm2/G448/rj0eOXIk7r33Xm0sgBYtWuDtt99G9+7dMWfOHDRq1Ahvv/02nnrqKbzwwgvo1KkTevTogXvvvVer1759+xAdHY2EhASP/VksFjRt2hT79u2r1HvntGzZMgwZMgQ5OTlISEhAamoq6tev77Xs/v378c4771Spu3tZDh48iDlz5mDixIl45plnsGXLFjzyyCOwWCwYPnw4AEe387vuugtJSUk4cOAAnnnmGfTt2xebNm2C0WgEADzyyCPo2LEj6tati40bN2Ly5Mk4fvw43nzzTbf9XXfdddi6dSvy8/Px8MMPY9q0aW51WbNmDe699158/fXX2L9/P/72t7/BZrNhypQp1fL6qZqVNWgLAysiqoKqxFFVVdk4ijEUYyjGUFQV7pfvMZAiKg97Sl1ili1bhoiICISGhqJv37645557MGLECJhMJnTu3FkrV69ePSQnJ+O3334D4PihnT59Orp164YpU6Zgx44dZe7n4MGDsNlsuPbaa7Vl0dHRSE5O9ijbqVMnt8fbt2/H/PnzERERod1SUlKgqirS09MBOM46njhxAgsWLEDXrl3xySefoG3btkhNTa3we1HeuAuAI7B0rcf69eu153r06IFt27Zh48aN6NOnDwYPHoxTp055bOPo0aPo06cPBg0a5Hadv+t2x4wZU6E6r1+/3m29BQsWAABUVUXHjh3x8ssv46qrrsLDDz+MUaNG4d1339XWHTJkCG6//Xa0b98ed9xxB5YtW4YtW7Zg3bp1WpmJEyfipptuwhVXXIExY8Zg5syZeOedd5Cfn+9Wj8WLF2Pr1q1YuHAhli9f7hYoqqqKuLg4zJ07F1dffTXuuecePPvss1pdynpPqfr5LfYJ1OjCREQ6wRiqGGMoxlC1UWV7hysl/pbYKBGVgz2lyqFYrUje+kuFyxcW2nD+zz+gioKIvAIYRBCanAyl6CyLr/v2VY8ePbQBKxs2bIj/Z+/O45q60v+BfxIhEiCAKMgiUlAEEXWs1r21qGxaZDrWpTIoU7UyP9e6obYVtVirgo7buPRrwZmi42jVUmxrwRWXuoKgKAjCYBFUREH2QJ7fH8iVGJawIzzv1yutuTn33HMDhA/n3HuOhoYGQkNDa9xvxowZcHFxwfHjx/Hbb79h3bp1CAwMxNy5c2vdhtfp6OgoPc/NzcWsWbMwb948lbJdu3YV/i2TyeDu7g53d3f4+/vDxcUF/v7+cHJygo2NDbKzs/Hw4UOVkcXi4mIkJSXBxcWlxraNGzdOKWiam5srtbt79+7o3r07Bg8eDBsbG+zdu1dpwtOHDx/C0dERQ4cOxZ49e5Tqrrgyip6eXo1tAcrCZ8X9OnfuDAAwNTWFvb29UtmePXsKtwVUxtraGp06dUJiYqIwEvu6QYMGoaSkBCkpKUph2MLCAgBgb2+P0tJSfPrpp1i0aBHatWsHU1NTaGpqCiOH5W3JyMhAcXFxte8pa9lIaRm+l//jET7GWD3UNkdlPbgHeYkYEgVBq6gYmmZm0KhhEujqjl0bnKE4Q5XjDMXqhkf0GKsL7pSqgUgkqtWl3+ISOURaWhCRCGKIISaCWFu7Tp1SdVEeAirq2bMnSkpKcPnyZeHS86dPnyI+Pl7pl7SFhQV8fHzg4+OD5cuX49tvv8XcuXOF0bKK97tbW1tDU1MTV69eFUJQdnY2EhIS8N5771XbxrfffhtxcXEq7ayOSCSCnZ0dLl68CAD46KOP4Ovri8DAQAQGBiqV3bVrF/Lz8zF16tQa65XJZEorp1RHoVAojYalpaXB0dER/fv3R1BQEMRi5QsPa3N+5aRSaaX7DRs2DPHx8UrbEhISYGlpWWVdf/zxB54+fVrp5fnloqOjIRaLYWxsXGUZhUIBuVwOhUKBdu3aYdiwYdi/fz8UCoVwzgkJCTA1NYVEIoFEIlH7PWVvAu6UYi2DSMRh/01U2xwl0tKCqEQMkYIgFokhlkohruNUBrXFGYozVDnOUKwuROWdUhUG9HhuTtZytNwcxZ1SbYCNjQ08PDwwc+ZM7N69GzKZDMuWLYO5uTk8PDwAAAsWLICbmxt69OiBZ8+e4fTp0+jZsycAwNLSEiKRCGFhYRgzZgykUilkMhmmTZuGJUuWwNDQEMbGxvDz84NYLK7xDwdfX18MHjwYc+bMwYwZM6Cjo4O4uDiEh4dj+/btiI6Ohp+fH7y8vGBvbw+JRIKzZ8/iu+++g6+vL4Cy0cANGzZg8eLF0NLSgpeXFzQ1NfHjjz9ixYoV8Pf3h4ODg9JxXw8kANCrVy9oamoqbcvLy8PatWsxbtw4mJqaIjMzEzt27EBaWhomTJgAoCxMvf/++7C0tERAQACePHki7G9iYlLt+ZeP4uXm5uLJkyeIjo6GRCJRGcWr6LPPPsPQoUPx9ddfY+LEibhy5Qr27NkjjCzm5uZi9erVGD9+PExMTJCUlISlS5eie/fuwmjnpUuXcPnyZTg6OkImk+HSpUv47LPP8Ne//lVYFjkkJASampro3bs32rdvj2vXrmH58uWYNGmS8D79/e9/x/bt2zF//nzMnTsX9+7dw9dff13pqG1FWVlZSE1NxcOHDwG8+nqYmJjU+J6xxtVyf0Uxxljz4gxVhjMUZyhWR3zFOWM1a9Q1AFuoxlzOWC4vpkdJ8ZSemEC5t25RfmwsKUpK6ttktVS3nG35csb6+voklUrJxcVFaTnjOXPmULdu3ah9+/ZkZGREXl5elJmZKby+Zs0aMjExIZFIVO1yxgMHDqRly14tIV/V8rlXrlwhJycn0tXVJR0dHerTpw+tXbuWiIiePHlC8+bNIwcHB9LV1SWZTEa9e/emgIAAKi1VXgb82LFj9O6775KOjo6w3PKBAweUylS2JHP548GDByptKygooA8//JDMzMxIIpGQqakpjRs3jq5cuSKUCQoKqrLOmlS2j6WlZY37/fTTT+Tg4EDt27cnOzs72rNnj/Bafn4+OTs7k5GREWlqapKlpSXNnDmTMjIyhDLXr1+nQYMGkb6+PmlpaVHPnj3p66+/psLCQqHMf/7zH3r77beFr4u9vT19/fXXKj8PFy9epEGDBlH79u3J2tqa1q5dSyU1fJ9X9Z75+fnVeO7V4eWMywT+Fk+WvmH0xdHYGst+98cT6nwqij6JvU9ERA/uPKXts07S/tnf0aXhf6I4WzsK2bqUAiaOpf1fLmnspjOmluLiLIo4aU0RJ61JoWia36tE6i9n3FY0ZoYiIspMuUvpiQn0NCGe8mNjSf7sWT1aqz7OUJyhOEO1XbF/PCdL3zAauDa8xrLphcXU+VQUmZ+OErbt/n+/0vZZJ+mUzySKs7WjfX8fTQETx1LAxLGUl/28EVvOmPquXptIESet6dGjX5rsmOpmKBFR2+u+zcnJgb6+PrKzs1XuUy8sLERycjKsrKygpaVV67pLSuTISk2GgkSQlc8p1bNnk92+15zy8vJgbm6OwMBATJ8+vcmPn5WVhVGjRkFPTw+//PILtJvocn/WvOr7M9tabApPwNaT9+A12BJf/dmh2rJBaZlYnvAHxhrpY6+DFf64m4Uf/xENQ41UWN3cAv0nhYiaPQ7p52/DrEdPfPzVxiY6C8aqJpc/w7nIskmfRzomQCRqmt+r1WWGtqgxMxQAPP1fvDCnlLSoGJpdutR5Tqk3CWco1hw4Q5W5lZaND7adR2e99ri8YnS1ZTOK5PjTxdtoJwLS3v8TAGDP7BOQl2rCXrQHJqdv4urILnjytD0A4O/fhkBbT7+xT4GxGl27PgnZ2dfQ22EHjI1dm+SY6mYoXn2vwbWdPr6oqCgcOHAASUlJuHHjBjw9PQFAuJy9qRkaGiIiIgKjRo3CpUuXmqUNjDWX2tyCp05ZEpV9lvFcCIwx1vA4QzHWcjTYlIXli8RwdmKsVnhOKVYvAQEBiI+Ph0QiQf/+/REZGYlOnTo1W3s6duyIlStXNtvxGXsj8QTSjDHW5DhDMfbmUScxKcWqtndTEmO1xp1SrM769euH69fVX+aZMfYmEFX4LzhMMcZYI+AMxVjrIRJxVmKsPvj2PcYYYwAAIhEUonZQiNrhWUE2AKAoPx8P4m4h7/mzZm4dY4wxxlgL9vISqWeFz4Qb+Nrg9M2M1RpfKcUYYwwA8KzUAs/s1wMASu/eB5CGrLQH+O/qZdCQtIfP7n+jPU9+yxhjjDGmIg89kNFZE3ISAXgKALh4OBxv9bFCtwFvQyxu/QtfMVYXfKVUU+D5WhhjTaQuk2t2NNOBVJyjtE2sYQ6xRleIxB0AACXFRcjP5qulGGOMMdY61fWiJvHL2/f+RyMQ19MbUsk0iFDWARUT/i+EBq5G/IVzDdVMxlodvlKKMcbaOKlMgmnm81BSJEfy5X4oTsvAfz61wQmdZMx/sQ5Pfv8nQEXN3UzGGGOMsRZniM1NJCZqorjECPLMHBQZ6SOzgw10C7KBomyA8pH7LKu5m8lYi8VXSjHGGEM7USnai/OhqSiCZkkBqF0xijUKlH5L8LQIrHnxVceMMcZaHvsu9zHOcA3elfyKP8XsQFedCBwecgJ5Tr0g1nyruZvHGABA1IJzFHdKMcYYUyH84mq5v78YY60a94Izxt50rz7HeMJzxqrGnVKMMcaqwSGKtTwc7hljjLV4PLDHWqC6zD/b2LhTqhXx9vaGSCSCSCSCRCJB9+7dsWbNGpSUlNSr3jNnzkAkEuH58+cN01A1JCcnY8qUKTAzM4OWlha6dOkCDw8P3L17V6lcWFgYRowYAZlMBm1tbbzzzjsIDg5WKpOSkgKRSITo6Gi1j79q1SrY2dlBR0cHHTp0wOjRo3H58mWlOqdPnw4rKytIpVJ069YNfn5+KC4urrbe9PR0TJkyBT169IBYLMaCBQvUak9paSm+/PJLpeN99dVXSn+YHTlyBM7OzujYsWOV55uUlIQPP/wQRkZG0NPTw8SJE/Ho0aNan1dMTAzeffddaGlpwcLCAhs2bKjxHM6dOwd3d3eYmZlBJBLh2LFjap07a0la3i8xxhhrCJyhOENxhmK1UfnYSPlG0ctn1KJvmWKspeBOqUbQnH+2ubq6Ij09Hffu3cOiRYuwatUqbNy4sRlbpKymwAEAcrkcTk5OyM7OxpEjRxAfH4+DBw+id+/eSqFu27Zt8PDwwLBhw3D58mXExMRg8uTJ8PHxweLFi+vVzh49emD79u2IjY3F+fPn8dZbb8HZ2RlPnjwBANy9excKhQK7d+/G7du3sXnzZuzatQsrVqyott6ioiIYGRnhiy++QN++fdVuz/r167Fz505s374dd+7cwfr167FhwwZs27ZNKJOXl4fhw4dj/fr1ldaRl5cHZ2dniEQinDp1ChcuXEBxcTHc3d2hUCjUPq+cnBw4OzvD0tIS169fx8aNG7Fq1Srs2bOn2nPIy8tD3759sWPHDrXPmzUfEa8ayhhrYzhDcYbiDMUaUku8IoWxFonaoOzsbAJA2dnZKq8VFBRQXFwcFRQU1KluubyIMpLiKT0xgXJv3aL82FhSlJbWt8lqmTZtGnl4eChtc3JyosGDB1NWVhZ5eXmRgYEBSaVScnV1pYSEBKFcSkoKffDBB2RgYEDa2tpkb29Px48fp+TkZEJZP5vwmDZtGhER5eTk0JQpU0hbW5tMTExo06ZNNGLECJo/f75Qr6WlJa1Zs4a8vLxIJpMJ+0ZGRtLw4cNJS0uLunTpQnPnzqXc3FwiIoqKiiIAlJKSUuW5pqamkqamJi1cuFDlta1btxIA+v3334mIhHOIioqq/Zv6Uvn3TERERJVlNmzYQFZWVmrX+fp7VZ2xY8fSJ598orTtL3/5C3l6eqqUrep8T5w4QWKxWOn7/vnz5yQSiSg8PLzKY79+Xv/85z+pQ4cOVFRUJGzz9fUlW1tbtc6FiAgAHT16VO3y1anvz2xrsTk8nix9w+jzozE1lg3+4wl1PhVFn8Tef7VxrRmRnx4ljh5JcbZ29PmO8eQQ7ED7toVTwKS/UMDEsfQ07UEjngFj1SsufkYRJ60p4qQ1lZbKm+y41WWGtqgxMxQRUWbKXUpPTKCnCXcpPzaW5M+e1aO16uMMVYYzFGeotuh2WjZZ+obRO/5Vfy3LPSosps6nosj0VNSrjT/MJPLTo4z5kynO1o5OLZ1GDsEOtPL7ANr816UUMHEsXT52qPFOgDE1XLs2iSJOWlPGo5+b7JjqZii+UqoGRAR5Uanaj+KiUpQUK1BSrIBcTmWPWuxf8UENMGeGVCpFcXExvL29ce3aNYSGhuLSpUsgIowZMwZyuRwAMHv2bBQVFeHcuXOIjY3F+vXroaurCwsLC/zwww8AgPj4eKSnp2PLli0AgIULF+LChQsIDQ1FeHg4IiMjcePGDZU2BAQEoG/fvoiKisKXX36JpKQkuLq6Yvz48YiJicHBgwdx/vx5zJkzBwBgZGQEsViMw4cPo7S0tNLzOnz4MORyeaWjebNmzYKuri4OHDhQ7/cPKBuZ3LNnD/T19asdmcvOzoahoWGDHPN1Q4cOxcmTJ5GQkAAAuHnzJs6fPw83Nze16ygqKoJIJEL79u2FbVpaWhCLxTh//nyV+71+XpcuXcJ7770HiUQibHNxcUF8fDyePXtWm9NiLVj5dVLEk3QyxuqhtjmqPEOVyMtyVIlc0Ww5ijNU/XGG4gzVJpHKPxhj1dBo7ga0dCXFCuyZf7aetTyp016fbhkBzfbt6rQvEeHkyZM4ceIE3NzccOzYMVy4cAFDhw4FAISEhMDCwgLHjh3DhAkTkJqaivHjx6N3794AAGtra6Gu8l+mxsbGMDAwAAC8ePEC+/btw/79+zFq1CgAQFBQEMzMzFTaMnLkSCxatEh4PmPGDHh6egpzAdjY2GDr1q0YMWIEdu7cCXNzc2zduhVLly7F6tWrMWDAADg6OsLT01NoV0JCAvT19WFqaqpyPIlEAmtrayF81FVYWBgmT56M/Px8mJqaIjw8HJ06daq0bGJiIrZt24aAgIB6HbMqy5YtQ05ODuzs7NCuXTuUlpZi7dq18PT0VLuOwYMHQ0dHB76+vvj6669BRFi2bBlKS0uRnp5e6T6VnVdGRgasrKyUynXu3Fl4rUOHDnU4Q9ZS8U18jLH6qH+OqluGAuqeozhDcYZ6HWcoVhuVTYHAA3uMVY2vlGplwsLCoKurCy0tLbi5uWHSpEnw9vaGhoYGBg0aJJTr2LEjbG1tcefOHQDAvHnz4O/vj2HDhsHPzw8xMTHVHuf+/fuQy+UYOHCgsE1fXx+2trYqZQcMGKD0/ObNmwgODoaurq7wcHFxgUKhQHJyMoCyUceMjAyEhIRgyJAhOHToEHr16oXw8HC134uKo1BVCQkJUWpHZGSk8JqjoyOio6Nx8eJFuLq6YuLEiXj8+LFKHWlpaXB1dcWECRMwc+ZMYXvFen18fNRqc2RkpNJ+ISEhAID//ve/CAkJwf79+3Hjxg3s27cPAQEB2Ldvn1r1AmWjp4cOHcJPP/0EXV1d6Ovr4/nz53j77bchFqt+FFR1XnU9B9bSvQxQL4OU8sSc3DXFGGv9OEO9whlKGWcoVr2X2UmlM4o7ohhTB18pVQMNiRifbhmhdnl5STGePfgfiETQLZJDTAQtOzuIKvmFpc6xa8vR0RE7d+6ERCKBmZkZNDQ0EBoaWuN+M2bMgIuLC44fP47ffvsN69atQ2BgIObOnVvrNrxOR0dH6Xlubi5mzZqFefPmqZTt2rWr8G+ZTAZ3d3e4u7vD398fLi4u8Pf3h5OTE2xsbJCdnY2HDx+qjCwWFxcjKSkJLi4uNbZt3LhxSkHT3Nxcqd3du3dH9+7dMXjwYNjY2GDv3r1Yvny5UObhw4dwdHTE0KFDVSaprLhyi56eXo1tAcrCZ8X9ykfPlixZgmXLlmHy5MkAgN69e+N///sf1q1bh2nTpqlVNwA4OzsjKSkJmZmZ0NDQgIGBAUxMTJRGdWs6LxMTE6XVZgAIz01MTPDWW29Veg7szVLeKUUV8xVnK8ZYLdU2R2WlJkBeIoaEFNAqKoGkizna6enX+di1wRmKM1R1OEOx2lKKTXylFGNV4k6pGohEotpd+t1ODA2JGEQiaCpEEBOg2b5dnTql6qI8BFTUs2dPlJSU4PLly8Kl50+fPkV8fDzs7e2FchYWFvDx8YGPjw+WL1+Ob7/9FnPnzhVGyyrOTWBtbQ1NTU1cvXpVCEHZ2dlISEjAe++9V20b3377bcTFxam0szoikQh2dna4ePEiAOCjjz6Cr68vAgMDERgYqFR2165dyM/Px9SpU2usVyaTQSaTqdUGhUKBoqIi4XlaWhocHR3Rv39/BAUFqYyU1eb8ykml0kr3y8/PV6m/Xbt2woovtVV+Cf2pU6fw+PFjjBs3TnitpvMaMmQIPv/8c8jlcmhqagIAwsPDYWtrK1x2XpdzZw2j4TMPhyjGWN3VNkdpSMQgsRgaCkBTIYKmpB3a1XEqg9riDMUZSh2coVqvhk88nKEYUwd3SrUBNjY28PDwwMyZM7F7927IZDIsW7YM5ubm8PDwAAAsWLAAbm5u6NGjB549e4bTp0+jZ8+eAABLS0uIRCKEhYVhzJgxkEqlkMlkmDZtGpYsWQJDQ0MYGxvDz88PYrG4xqXkfX19MXjwYMyZMwczZsyAjo4O4uLiEB4eju3btyM6Ohp+fn7w8vKCvb09JBIJzp49i++++w6+vr4AykYDN2zYgMWLF0NLSwteXl7Q1NTEjz/+iBUrVsDf3x8ODg5Kx42Pj1dpS69evYRQUC4vLw9r167FuHHjYGpqiszMTOzYsQNpaWmYMGECgLLQ8f7778PS0hIBAQHCMsdA2UhXdcpHwHJzc/HkyRNER0dDIpEohdvXubu7Y+3atejatSt69eqFqKgobNq0CZ988olQJisrC6mpqXj48KHS+ZqYmAhtCgoKQs+ePWFkZIRLly5h/vz5+Oyzz4RbBtQ5rylTpmD16tWYPn06fH19cevWLWzZsgWbN2+u9rxzc3ORmJgoPE9OTkZ0dDQMDQ2VRndZC1HpjzGHK9ac+DZS1vQ4Q5XhDMUZitUecW5iLUkNv1+aVSOuANhiNeZyxsXyQspIiqf0xATKvXWL8mNjSVFaWt8mq6Wy5YzLlS9nrK+vT1KplFxcXJSWM54zZw5169aN2rdvT0ZGRuTl5UWZmZnC62vWrCETExMSiUTVLmc8cOBAWrZsmbCfpaUlbd68WaU9V65cIScnJ9LV1SUdHR3q06cPrV27loiInjx5QvPmzSMHBwfS1dUlmUxGvXv3poCAACp97b08duwYvfvuu6SjoyMst3zgwAGlMpUtyVz+ePBAdYn7goIC+vDDD8nMzIwkEgmZmprSuHHj6MqVK0KZoKCgKuusSWX7WFpaVrtPTk4OzZ8/n7p27UpaWlpkbW1Nn3/+udKSwlW1yc/PTyjj6+tLnTt3Jk1NTbKxsaHAwEBSKBS1Pq+bN2/S8OHDqX379mRubk7ffPNNjed9+vTpSust/36qK17OuMzm8Hiy9A2jFUdiaiwb/McT6nwqij6Jvf9q41pzIj89SnQaRXG2drTynxPIIdiBgrefoIBJ4ylg4ljKfPC/RjwDxqpXXPycIk5aU8RJayotlTfZcdVdzritaMwMRUSUmXKX0hMT6GnCXcqPjaWS58/r01y1cYbiDMUZqu26nZZNlr5hNMA/vMayjwqLqfOpKDI9FfVq4w+fEvnp0aMFH1OcrR2dWepNDsEO9Pn362jzX30pYOJY+v3IwcY7AcbUcO36ZIo4aU0Zj35usmOqm6FERG3vBtecnBzo6+sjOztb5T71wsJCJCcnw8rKClpaWrWuW15ShKzUsjmlZIXFZXNK9epV48hXa5CXlwdzc3MEBgZi+vTpTX78rKwsjBo1Cnp6evjll1+gra3d5G1gTa++P7OtxT8iEvCPiHvwHNQVaz/sXW3ZfWmZ8E34A2ON9LHX4eUqQF93AYpfIOnCOyh+kIb/zO+NI9p3sDg3EJmR3wJUAO/Af6JjFx6RZc1DLs/Guci3AQCO79+FWKxZwx4No7rM0BY1ZoYCgKf/iy+bU0qhgLRIDomFBdrp121OqTcJZyjWHDhDlYl7mIMxWyNhJGuPq5+Prrbs4yI5+ly8DTGAh45/Ktt4ZBYQ8x88fj4GT3+NxmOPIZhjfxUeGp7o9OtzlBbfwvDJUzHow4mNfi6MVeX6jY/x/PkVODhsR2djtyY5proZilffY3UWFRWFAwcOICkpCTdu3BCW1i2/nL2pGRoaIiIiAqNGjcKlS5eapQ2MvUmqG5IQCxOdvyrUBscwGGOsUXCGYuzNplYiav3XJLA3UsvL8zynFKuXgIAAxMfHQyKRoH///oiMjBQmgGwOHTt2xMqVK5vt+Iy1HpykGGOsMXGGYqx1Kh/PqziYxwN7jFWNO6VYnfXr1w/Xr19v7mYwxgCIatGJVG3Jl7cal5fhrinGGGt4nKEYazlqM8uKWmU5PDFWK3z7HmOMsSopjevxKB9jjDHGWOVe67EqmwKBe6gYqwl3SjUG/ruNMfameX3oT7hUij/QGGOMMcaqVMXlU0q37PHAHmNV4k4pxhhjKpRvB+RRPsYYY4wxddRmSgXGGHdKNTzuBGeMtVL88cYYY4wxph7iq80ZUwt3SjHGWCvSUPGnfJSPuCuKMdacajMDMWOM1UND32FXMUNxnmKsatwpxRhjTBX/IchaHP6eZIwx1vIJt+9xPxRjauFOqSYg4j/uGGNvmEqvOOdJOhljjDHGqvBaTuLV91iL0nK/F7lTqhXx9vaGSCSCSCSCRCJB9+7dsWbNGpSUlNSr3jNnzkAkEuH58+cN01A1JCcnY8qUKTAzM4OWlha6dOkCDw8P3L17V6lcWFgYRowYAZlMBm1tbbzzzjsIDg5WKpOSkgKRSITo6Gi1j79q1SrY2dlBR0cHHTp0wOjRo3H58mWlOqdPnw4rKytIpVJ069YNfn5+KC4urrbe9PR0TJkyBT169IBYLMaCBQvUas+LFy+wYMECWFpaQiqVYujQobh69apSmdzcXMyZMwddunSBVCqFvb09du3apVRm1qxZ6NatG6RSKYyMjCp9T1NTUzF27Fhoa2vD2NgYS5YsqfJ76MKFC9DQ0MCf/vSnGs/hyJEjcHZ2RseOHWv99WDNqOX+/mKMsQbDGYozFGco1lDKo5PSLXs8rsdYlbhTqpVxdXVFeno67t27h0WLFmHVqlXYuHFjczdLUFPgAAC5XA4nJydkZ2fjyJEjiI+Px8GDB9G7d2+lULdt2zZ4eHhg2LBhuHz5MmJiYjB58mT4+Phg8eLF9Wpnjx49sH37dsTGxuL8+fN466234OzsjCdPngAA7t69C4VCgd27d+P27dvYvHkzdu3ahRUrVlRbb1FREYyMjPDFF1+gb9++ardnxowZCA8Px7///W/ExsbC2dkZo0ePRlpamlBm4cKF+PXXX/H999/jzp07WLBgAebMmYPQ0FChTP/+/REUFIQ7d+7gxIkTICI4OzujtLQUAFBaWoqxY8eiuLgYFy9exL59+xAcHIyVK1eqtOn58+eYOnUqRo0apdY55OXlYfjw4Vi/fr3a580aV6X5SFT+P159j7VknO5Zw+MMxRmKMxSrF747hr0JWuKdD9QGZWdnEwDKzs5Wea2goIDi4uKooKCgTnUXFxdSRmI8pScmUO6tW5QfG1vf5qpt2rRp5OHhobTNycmJBg8eTFlZWeTl5UUGBgYklUrJ1dWVEhIShHIpKSn0wQcfkIGBAWlra5O9vT0dP36ckpOTCWXpX3hMmzaNiIhycnJoypQppK2tTSYmJrRp0yYaMWIEzZ8/X6jX0tKS1qxZQ15eXiSTyYR9IyMjafjw4aSlpUVdunShuXPnUm5uLhERRUVFEQBKSUmp8lxTU1NJU1OTFi5cqPLa1q1bCQD9/vvvRETCOURFRdX+TX2p/HsmIiKiyjIbNmwgKysrtet8/b2qSn5+PrVr147CwsKUtr/99tv0+eefC8979epFa9asqbbM627evEkAKDExkYiIfv75ZxKLxZSRkSGU2blzJ+np6VFRUZHSvpMmTaIvvviC/Pz8qG/fvjWeR7mG+HpUVN+f2dbiH+EJZOkbRsuPxNRYdt8fT6jzqSjyjrn/auPXXYj89CjReTTF2drR2l2e5BDsQN/tPE4BkyZSwMSx9Cg5qRHPgLHqFRdnU8RJa4o4aU2lpUU179BAqssMbVFjZigiosyUu5SemEBPE+5SfmwslTTR+84ZqgxnqKrLvI4zVOsR9zCbLH3DqP9X4TWWfVxUTJ1PRVHnU1GvNh6ZReSnR48++5jibO3o/NLp5BDsQEtC/GjzX5dTwMSxdOG/IY13Aoyp4dr1jynipDVlZITVXLiBqJuh+EqpGhAR5IWFtXqUFBehpLgI8uLiskct9y9/UAP0YkqlUhQXF8Pb2xvXrl1DaGgoLl26BCLCmDFjIJfLAQCzZ89GUVERzp07h9jYWKxfvx66urqwsLDADz/8AACIj49Heno6tmzZAqBsVOnChQsIDQ1FeHg4IiMjcePGDZU2BAQEoG/fvoiKisKXX36JpKQkuLq6Yvz48YiJicHBgwdx/vx5zJkzBwBgZGQEsViMw4cPC6NPrzt8+DDkcnmlo3mzZs2Crq4uDhw4UO/3DygbmdyzZw/09fWrHZnLzs6GoaFhgxyzopKSEpSWlkJLS0tpu1Qqxfnz54XnQ4cORWhoKNLS0kBEOH36NBISEuDs7FxpvXl5eQgKCoKVlRUsLCwAAJcuXULv3r3RuXNnoZyLiwtycnJw+/ZtYVtQUBDu378PPz+/hjxVVg+1GZyrTdkWOJbCGHuD1DpHCRnqZY4qqluGaogcxRmq/jhDcYZ6EzTWBU684h5j6tFoyMrOnTuHjRs34vr160hPT8fRo0fx5z//WXjd29sb+/btU9rHxcUFv/76q/A8KysLc+fOxU8//QSxWIzx48djy5Yt0NXVFcrExMRg9uzZuHr1KoyMjDB37lwsXbq0IU9FUFJUhK3TPmqUumsyb99haL72S1RdRISTJ0/ixIkTcHNzw7Fjx3DhwgUMHToUABASEgILCwscO3YMEyZMQGpqKsaPH4/evXsDAKytrYW6ykOCsbExDAwMAJTdn79v3z7s379fuPQ4KCgIZmZmKm0ZOXIkFi1aJDyfMWMGPD09hbkAbGxssHXrVowYMQI7d+6Eubk5tm7diqVLl2L16tUYMGAAHB0d4enpKbQrISEB+vr6MDU1VTmeRCKBtbU1EhIS6vTelQsLC8PkyZORn58PU1NThIeHo1OnTpWWTUxMxLZt2xAQEFCvY1ZGJpNhyJAh+Oqrr9CzZ0907twZBw4cwKVLl9C9e3eh3LZt2/Dpp5+iS5cu0NDQgFgsxrfffov33ntPqb5//vOfWLp0KfLy8mBra4vw8HBIJBIAQEZGhlKYAiA8z8jIAADcu3cPy5YtQ2RkJDQ0GvQjhDUr0WvPyu/j40DFGKu7NzFHcYbiDMUZitVO5b1aBOJb+hhTQ4NeKZWXl4e+fftix44dVZYpv1+//PH6SIynpydu376N8PBwhIWF4dy5c/j000+F13NycuDs7AxLS0tcv34dGzduxKpVq7Bnz56GPJU3VlhYGHR1daGlpQU3NzdMmjQJ3t7e0NDQwKBBg4RyHTt2hK2tLe7cuQMAmDdvHvz9/TFs2DD4+fkhJiam2uPcv38fcrkcAwcOFLbp6+vD1tZWpeyAAQOUnt+8eRPBwcHQ1dUVHi4uLlAoFEhOTgZQNuqYkZGBkJAQDBkyBIcOHUKvXr0QHh6u9ntRHhKqExISotSOyMhI4TVHR0dER0fj4sWLcHV1xcSJE/H48WOVOtLS0uDq6ooJEyZg5syZwvaK9fr4+KjV5sjISKX9QkJCAAD//ve/QUQwNzdH+/btsXXrVnz88ccQi1/9CG/btg2///47QkNDcf36dQQGBmL27NmIiIhQOoanpyeioqJw9uxZ9OjRAxMnTkRhYaFa7SstLcWUKVOwevVq9OjRo9Iy1b2n7M3BEYox1tZwhnqFMxRnKFZ35QN7yldK8SAfY1Vp0C56Nzc3uLm5VVumffv2MDExqfS1O3fu4Ndff8XVq1eFX8Lbtm3DmDFjEBAQADMzM4SEhKC4uBjfffcdJBIJevXqhejoaGzatEmp86qhaLRvj3n7DqtdXi4vwrM/UkEQQbdQDjERpPb2dT52bTk6OmLnzp2QSCQwMzODhoaG0iSNVZkxYwZcXFxw/Phx/Pbbb1i3bh0CAwMxd+7cujRdiY6OjtLz3NxczJo1C/PmzVMp27VrV+HfMpkM7u7ucHd3h7+/P1xcXODv7w8nJyfY2NggOzsbDx8+VBlZLC4uRlJSElxcXGps27hx45SCprm5uVK7u3fvju7du2Pw4MGwsbHB3r17sXz5cqHMw4cP4ejoiKFDh6p0jFZcGUVPT6/GtgBl4bPifuUjbN26dcPZs2eRl5eHnJwcmJqaYtKkScKoZ0FBAVasWIGjR49i7NixAIA+ffogOjoaAQEBGD16tFCnvr4+9PX1YWNjg8GDB6NDhw44evQoPv74Y5iYmODKlStKbXr06BEAwMTEBC9evMC1a9cQFRUl3CqgUChARNDQ0MBvv/1W7XvK3hwiHtljjDWA2uaopw8SUFIihmapAtLiEkgsuqCdTL3foZUduzY4Q3GG4gzFGgRHKMZqpcnnlDpz5gyMjY1ha2uLv//973j69Knw2qVLl2BgYKA0KjR69GiIxWJhKdlLly7hvffeUxrBcXFxQXx8PJ49e9bg7RWJRNDU0qrVQ0PSHhqS9tCUSMoetdy//FGXPwrLQ0DXrl2Fy4J79uyJkpISpeV4nz59ivj4eNhX6DCzsLCAj48Pjhw5gkWLFuHbb78F8Gq0rOLcBNbW1tDU1FRaUjc7O1uty73ffvttxMXFCWGl4qOqkTmRSAQ7Ozvk5eUBAD766CNoaGggMDBQpeyuXbuQn5+PqVOn1tgWmUymdHypVFplWYVCgaKiIuF5Wloa3n//fWE1loojbgCU6jU2Nq6xLUDZHAcV95PJZEqv6+jowNTUFM+ePcOJEyfg4eEBoGy1HblcrtKGdu3aQaFQVHk8IgIRCec1ZMgQxMbGKo1mhoeHQ09PD/b29tDT00NsbCyio6OFh4+PD2xtbREdHY1BgwbV6j1lLVglA3oNMc8dY6xy586dg7u7O8zMzCASiXDs2DGl1729vSESiZQerq6uSmWysrLg6ekJPT09GBgYYPr06cjNzVUqExMTg3fffRdaWlqwsLDAhg0bGvW8ap2jhAz1Mke1r1uGqkuO4gzFGaoizlCMMdY0mvRmZldXV/zlL3+BlZUVkpKSsGLFCri5ueHSpUto164dMjIyVH7xaGhowNDQULgXOyMjA1ZWVkplKt6v3aFDB5XjFhUVKf0izMnJaehTq0bzd5Xb2NjAw8MDM2fOxO7duyGTybBs2TKYm5sLv5AXLFgANzc39OjRA8+ePcPp06fRs2dPAIClpSVEIhHCwsIwZswYSKVSyGQyTJs2DUuWLIGhoSGMjY3h5+cHsVhcYwj09fXF4MGDMWfOHMyYMQM6OjqIi4tDeHg4tm/fjujoaPj5+cHLywv29vaQSCQ4e/YsvvvuO/j6+gIoGw3csGEDFi9eDC0tLXh5eUFTUxM//vgjVqxYAX9/fzg4OCgdNz4+XqUtvXr1gqamptK2vLw8rF27FuPGjYOpqSkyMzOxY8cOpKWlYcKECQBehSlLS0sEBAQIyxwDqPJKwHLlo3i5ubl48uQJoqOjIZFIlMLt68qXHra1tUViYiKWLFkCOzs7/O1vfwNQNoo4YsQILFmyBFKpFJaWljh79iz+9a9/YdOmTQDKbhc4ePAgnJ2dYWRkhD/++APffPMNpFIpxowZAwBwdnaGvb09vLy8sGHDBmRkZOCLL77A7Nmz0f7liPPr76uxsTG0tLRUtr8uKysLqampePjwIYBXXw8TE5Ma3zOmvobqN3o1p1TD1McYq175FAiffPIJ/vKXv1RaxtXVFUFBQcLz9q9dCeTp6Yn09HSEh4dDLpfjb3/7Gz799FPs378fwKspEEaPHo1du3YhNjYWn3zyCQwMDBrlavPWgDNUGc5QnKHahoYJUeXTcVa8fY/H9RirRsMv/FcGAB09erTaMklJSUpLxK5du5Z69OihUs7IyIj++c9/ElHZ8ryffvqp0uu3b98mABQXF1fpcfz8/FSW5EUjLWdcXFxIGYnxlJ6YQLm3blF+7K061VMXlS1nXK58OWN9fX2SSqXk4uKitJzxnDlzqFu3btS+fXsyMjIiLy8vyszMFF5fs2YNmZiYkEgkqnY544EDB9KyZcuE/SwtLWnz5s0q7bly5Qo5OTmRrq4u6ejoUJ8+fWjt2rVERPTkyROaN28eOTg4kK6uLslkMurduzcFBARQaWmpUj3Hjh2jd999l3R0dISv64EDB5TKVLYkc/njwYMHKm0rKCigDz/8kMzMzEgikZCpqSmNGzeOrly5IpQJCgqqss6aVLaPpaVltfscPHiQrK2tSSKRkImJCc2ePZueP3+uVCY9PZ28vb3JzMyMtLS0yNbWlgIDA0mhUBARUVpaGrm5uZGxsTFpampSly5daMqUKXT37l2lelJSUsjNzY2kUil16tSJFi1aRHK5vMq2qbuccVXvmZ+fX437VoeXMy6zJSKBLH3DaNkPMTWW/VfaE+p8Koq8Y+6/2vi1BZGfHiW6OFGcrR2t3z2VHIId6P92/0QBkyZRwMSxlHE/sRHPgLHqyeU5FHHSmiJOWlNpaVHNOzQQdZczbkiVZajqfscTEcXFxREAunr1qrDtl19+IZFIRGlpaURE9M9//pM6dOigtDy9r68v2draqt226t6Phvg8zky5S+mJCZQVf5fyY2OppIned85QnKE4Q7Vdd9KzydI3jPp/9VuNZR8XFVPnU1HU+VTUq41HfIj89OjRgskUZ2tHF5fOIIdgB/os5HPa7LWCAiaOpfMHv2+8E2BMDdeuf0wRJ60pIyOsyY6pboYSETVOv61IJFJZfa8yRkZG8Pf3x6xZs/Ddd99h0aJFSrfhlZSUQEtLC4cOHcKHH36IqVOnIicnR+my9tOnT2PkyJHIyspS+0opCwsLZGdnq9ynXlhYiOTkZFhZWaksH6sOubwQWallc0rJCoshJkDq0KvW9byJ8vLyYG5ujsDAQEyfPr3Jj5+VlYVRo0ZBT08Pv/zyC7S1tZu8Dazp1fdntrXYevIeNoUn4OOBXbHuL72rLfvvh5lYEv8H3DrpI6j3yytP13UFirKR9PsgFKc8wE8LB+Lf7W9gQdE6PD/1PUC5+Ou6f6Czdfdq62assZSUvMDZc38CADi+fwdicc0TMTeEnJwc6OvrV5oZGktlGcrb2xvHjh2DRCJBhw4dMHLkSPj7+6Njx44A0GgZ6nXVvR8N8Xn89H/xkJeI0b5UAa1iOSRdu6JdE73vzYkzFGsOnKHK3M3Iges/ItFJV4JrXzhVW/ZJsRy9L9wGAGQ4/qls49G/Azf343HOGDz9ORrP//wuPu15CaM1x8HyV6C06CYGj/8YwyZ6NvKZMFa16zem4Pnzy3DotRWdO49tkmOqm6GafE6piv744w88ffpUWJJ2yJAheP78Oa5fvy6UOXXqFBQKhTDp35AhQ3Du3DnI5XKhTHh4OGxtbasMU+3bt4eenp7So8m04ltfoqKicODAASQlJeHGjRvw9Cz7oC2/nL2pGRoaIiIiAqNGjcKlS5eapQ2MtT58vTljLYGrqyv+9a9/4eTJk1i/fj3Onj0LNzc3Ya4idadAqGnJ+tcVFRUhJydH6cHqjzMUY60fQaH0jDFWuQadUyo3NxeJiYnC8+TkZERHR8PQ0BCGhoZYvXo1xo8fDxMTEyQlJWHp0qXo3r27sMJHz5494erqipkzZ2LXrl2Qy+WYM2cOJk+eLKwOUr6U6vTp0+Hr64tbt25hy5Yt2Lx5c0OeClNTQEAA4uPjIZFI0L9/f0RGRqJTp07N1p6OHTti5cqVzXZ8xloLnlOKtWxtL9xPnjxZ+Hfv3r3Rp08fdOvWDWfOnMGoUaMa7bjr1q3D6tWrG63+GrXilUA5QzHWOpV/arW931SM1U2Ddkpdu3YNjo6OwvOFCxcCAKZNm4adO3ciJiYG+/btw/Pnz2FmZgZnZ2d89dVXShN1hoSEYM6cORg1ahTEYjHGjx+PrVu3Cq/r6+vjt99+w+zZs9G/f3906tQJK1eubGETdLbeAFVRv379lK5qY4y9WUiNuMQTczLWMllbW6NTp05ITEzEqFGjYGJiorTqF1B2+15WVpYwEbKJiYmwRH25ikvWV2b58uVCngNeTYHA6oczFGOtWfnAHqGt/F3I3iQtL9w3aKfU+++/X+2S4SdOnKixDkNDQ2GVmKr06dMHkZGRtW4fY4yxKryWmYQVoEQt7xcXY6z6KRD69+8PoPIpED7//HPI5XJh1TR1pkB4fZU/xhhjFVR1RWfFCMWjfIxVqVnnlGKMMdYwajMOJ1KjtHIZHuVjrLHl5uYiOjpaWPK+fAqE1NRU5ObmYsmSJfj999+RkpKCkydPwsPDo8opEK5cuYILFy5UOgWCRCLB9OnTcfv2bRw8eBBbtmxRuhKKMcbaGnVyUV3KqnNFOmOMO6UYY4xVorILpBppsVbGGMqmQOjXrx/69esHoGwKhH79+mHlypVo164dYmJiMG7cOPTo0QPTp08X5iB6fQoEOzs7jBo1CmPGjMHw4cOxZ88e4fXyKRCSk5PRv39/LFq0qAVOgcAYY282vsicsdpp0Nv3GGOMtTacrBhrCjwFwkv8kcMYe9O9vJiKKvRO8bgeY1XjK6UYY4yp4rv3GGOMMcbqjK8wZ0w93CnFGGOtSsMEoPI5E6hihxSHK8YYY4y1Uo0Tc8qDFGcoxqrCnVKMMcaqxh1RjDHGGGNqezWwp2jmljD2ZuBOqQbWnH++eXt7QyQSQSQSQSKRoHv37lizZg1KSkrqVe+ZM2cgEonw/PnzhmmoGpKTkzFlyhSYmZlBS0sLXbp0gYeHB+7evatULiwsDCNGjIBMJoO2tjbeeecdBAcHK5VJSUmBSCQSVjRSx6pVq2BnZwcdHR106NABo0ePxuXLl5XqnD59OqysrCCVStGtWzf4+fmhuLi42nrT09MxZcoU9OjRA2KxGAsWLFCrPefOnYO7uzvMzMwgEolw7NgxlTJHjhyBs7MzOnbsWOP5EhHc3NyqrCs4OBh9+vSBlpYWjI2NMXv2bKXXT5w4gcGDB0Mmk8HIyAjjx49HSkqKUpmQkBD07dsX2traMDU1xSeffIKnT5/W+zxZExFVvFLq5b95lI8x1kpxhuIMxRmKNTS+fY+1JLVZObKpcadUK+Pq6or09HTcu3cPixYtwqpVq7Bx48bmbpagpsABAHK5HE5OTsjOzsaRI0cQHx+PgwcPonfv3kqhbtu2bfDw8MCwYcNw+fJlxMTEYPLkyfDx8cHixYvr1c4ePXpg+/btiI2Nxfnz5/HWW2/B2dkZT548AQDcvXsXCoUCu3fvxu3bt7F582bs2rULK1asqLbeoqIiGBkZ4YsvvkDfvn3Vbk9eXh769u2LHTt2VFtm+PDhWL9+fY31/eMf/4BIVPkH06ZNm/D5559j2bJluH37NiIiIoQlx4GysOvh4YGRI0ciOjoaJ06cQGZmJv7yl78IZS5cuICpU6cKy44fOnQIV65cwcyZM+t9nqxpvPru4EDFGGsbOENxhuIMxRoLd1AxVg1qg7KzswkAZWdnq7xWUFBAcXFxVFBQUKe6i4oLKCMxgdITEyj31i3Kv3W7vs1V27Rp08jDw0Npm5OTEw0ePJiysrLIy8uLDAwMSCqVkqurKyUkJAjlUlJS6IMPPiADAwPS1tYme3t7On78OCUnJxPK/ioVHtOmTSMiopycHJoyZQppa2uTiYkJbdq0iUaMGEHz588X6rW0tKQ1a9aQl5cXyWQyYd/IyEgaPnw4aWlpUZcuXWju3LmUm5tLRERRUVEEgFJSUqo819TUVNLU1KSFCxeqvLZ161YCQL///jsRkXAOUVFRtX9TXyr/nomIiKiyzIYNG8jKykrtOl9/r9QFgI4ePVrl6zWdb1RUFJmbm1N6erpKXVlZWSSVSqs9z0OHDpGGhgaVlpYK20JDQ0kkElFxcTEREW3cuJGsra2V9tu6dSuZm5vXfIIv1XSe5er7M9tabI1IIEvfMFr2w80ay/47LZM6n4qiaTFJrzausyDy06NEFyeKs7Wjf3w7gxyCHWj3/x2hwMkfU8DEsfTw3t1GPAPGqieX51DESWuKOGlNpaWFTXbc6jJDW9SYGYqIKDP5LqUnJlBW/F3Kj42lkpyc+jRXbZyhynCG4gzVFt1NzyFL3zB6e81vNZZ9UiSnzqeiqPOpqFcbj/6dyE+PHn02meJs7eiKrw85BDvQ30M+o81eX1DAxLF0bn9w450AY2q4fn0KRZy0poyMn5rsmOpmKL5SqgZEBEVxqdoPKi4FyRUguQKQE0heu/2V6mqAHnWpVIri4mJ4e3vj2rVrCA0NxaVLl0BEGDNmDORyOQBg9uzZKCoqwrlz5xAbG4v169dDV1cXFhYW+OGHHwAA8fHxSE9Px5YtWwAACxcuxIULFxAaGorw8HBERkbixo0bKm0ICAhA3759ERUVhS+//BJJSUlwdXXF+PHjERMTg4MHD+L8+fOYM2cOAMDIyAhisRiHDx9GaWlpped1+PBhyOXySkfzZs2aBV1dXRw4cKDe7x9QNjK5Z88e6OvrVzsyl52dDUNDwwY5ZmPJz8/HlClTsGPHDpiYmKi8Hh4eDoVCgbS0NPTs2RNdunTBxIkT8eDBA6FM//79IRaLERQUhNLSUmRnZ+Pf//43Ro8eDU1NTQDAkCFD8ODBA/z8888gIjx69AiHDx/GmDFjmuxcWc2UP2FElb9IlWxjrJnxgPObo9Y5Sk4vcxSBSgiKYkWz5SjOUPXHGYozVGv26jOm8ivnFCKq8jXGmktLnI5Do7kb0NKRXIGHKy/Wad9nwr/qtr/ZmqEQSdrVaV8iwsmTJ3HixAm4ubnh2LFjuHDhAoYOHQqg7F51CwsLHDt2DBMmTEBqairGjx+P3r17AwCsra2FuspDgrGxMQwMDAAAL168wL59+7B//36MGjUKABAUFAQzMzOVtowcORKLFi0Sns+YMQOenp7CXAA2NjbYunUrRowYgZ07d8Lc3Bxbt27F0qVLsXr1agwYMACOjo7w9PQU2pWQkAB9fX2YmpqqHE8ikcDa2hoJCQl1eu/KhYWFYfLkycjPz4epqSnCw8PRqVOnSssmJiZi27ZtCAgIqNcxG9tnn32GoUOHwsPDo9LX79+/D4VCga+//hpbtmyBvr4+vvjiCzg5OSEmJgYSiQRWVlb47bffMHHiRMyaNQulpaUYMmQIfv75Z6GeYcOGISQkBJMmTUJhYSFKSkrg7u7Ol5S/QYRbEzhLMcbqoa45Kv/lA3he52PXNUdxhuIMVRnOUKzWKnaM82gKY1XiK6VambCwMOjq6kJLSwtubm6YNGkSvL29oaGhgUGDBgnlOnbsCFtbW9y5cwcAMG/ePPj7+2PYsGHw8/NDTExMtce5f/8+5HI5Bg4cKGzT19eHra2tStkBAwYoPb958yaCg4Ohq6srPFxcXKBQKJCcnAygbNQxIyMDISEhGDJkCA4dOoRevXohPDxc7fdCIpHUWCYkJESpHZGRkcJrjo6OiI6OxsWLF+Hq6oqJEyfi8ePHKnWkpaXB1dUVEyZMULrfv2K9Pj4+arU5MjJSab+QkBC19lNHaGgoTp06hX/84x9VllEoFJDL5di6dStcXFwwePBgHDhwAPfu3cPp06cBABkZGZg5cyamTZuGq1ev4uzZs5BIJPjoo4+EEaO4uDjMnz8fK1euxPXr1/Hrr78iJSVFeB8a8zzbqiqmt6i8bLX1KL9aNprCPVOMsdaPM9QrnKGUcYZq3RoqQ72Ou6EYUw9fKVUDkaYYZmuGql1eLi/Eswd/gADoFcohEomg1dOuzseuLUdHR+zcuRMSiQRmZmbQ0NBAaGhojfvNmDEDLi4uOH78OH777TesW7cOgYGBmDt3bl2arkRHR0fpeW5uLmbNmoV58+aplO3atavwb5lMBnd3d7i7u8Pf3x8uLi7w9/eHk5MTbGxskJ2djYcPH6qMLBYXFyMpKUlpYsmqjBs3TilompubK7W7e/fu6N69OwYPHgwbGxvs3bsXy5cvF8o8fPgQjo6OGDp0KPbs2aNUd8WVW/T09GpsC1AWPivu17lzZ7X2U8epU6eQlJQkjNSWGz9+PN59912cOXNGGDW1t7cXXjcyMkKnTp2QmpoKANixYwf09fWxYcMGocz3338PCwsLXL58GYMHD8a6deswbNgwLFmyBADQp08f6Ojo4N1334W/v3+jnidrPA1xSzFjrG2pbY7K+t89yEtFaF9K0JLLodm1K9rp6tb52LXBGYozVFU4QzG1vOzdKu+4IpGi+drC2BuEO6VqIBKJanXpt0jUTghBotKypYXFdbwFry7KQ0BFPXv2RElJCS5fvixcev706VPEx8cr/eK0sLCAj48PfHx8sHz5cnz77beYO3euMFpWcW4Ca2traGpq4urVq0IIys7ORkJCAt57771q2/j2228jLi5OpZ3VEYlEsLOzw8WLZbcAfPTRR/D19UVgYCACAwOVyu7atQv5+fmYOnVqjfXKZDLIZDK12qBQKFBUVCQ8T0tLg6OjI/r374+goCCIxcrhtzbnV04qldZpP3UsW7YMM2bMUNrWu3dvbN68Ge7u7gDKLhkHyua+6NKlCwAgKysLmZmZsLS0BFA2p8Lr59quXdn3uEKhEMpoaGhUWoaIGvU8WcMQAhWP8zHG6qHWOUpTBJFYDJFYARGVZaimylGcoThDVYUzFFPLa4N3FTMUpynGqsadUg2u5X3k2NjYwMPDAzNnzsTu3bshk8mwbNkymJubC/fFL1iwAG5ubujRoweePXuG06dPo2fPngAAS0tLiEQihIWFYcyYMZBKpZDJZJg2bRqWLFkCQ0NDGBsbw8/PD2KxuMplcsv5+vpi8ODBmDNnDmbMmAEdHR3ExcUhPDwc27dvR3R0NPz8/ODl5QV7e3tIJBKcPXsW3333HXx9fQGUjQZu2LABixcvhpaWFry8vKCpqYkff/wRK1asgL+/PxwcHJSOGx8fr9KWXr16CRNLlsvLy8PatWsxbtw4mJqaIjMzEzt27EBaWhomTJgAoCxMvf/++7C0tERAQICwzDGASie/rKh8dCs3NxdPnjxBdHQ0JBKJUrh9XW5uLhITE4XnycnJiI6OhqGhoRBos7KykJqaiocPHyqdr4mJidLjdV27doWVlRWAsmWcPTw8MH/+fOzZswd6enpYvnw57Ozs4OjoCAAYO3YsNm/ejDVr1uDjjz/GixcvsGLFClhaWqJfv34AAHd3d8ycORM7d+6Ei4sL0tPTsWDBAgwcOLDSOTNqc56sibw22scYY20RZ6gynKE4Q7E6aHl/FjLWMjXS6n8tWmMuZ1xUnE8ZiQmUnphAebduUcHt2/VtrtoqW864XPlyxvr6+iSVSsnFxUVpOeM5c+ZQt27dqH379mRkZEReXl6UmZkpvL5mzRoyMTEhkUhU7XLGAwcOpGXLlgn7WVpa0ubNm1Xac+XKFXJyciJdXV3S0dGhPn360Nq1a4mI6MmTJzRv3jxycHAgXV1dkslk1Lt3bwoICFBaQpeI6NixY/Tuu++Sjo6OsNzygQMHlMpUtiRz+ePBgwcqbSsoKKAPP/yQzMzMSCKRkKmpKY0bN46uXLkilAkKCqqyzppUto+lpWW1+5w+fbrS/cq/FtW1yc/Pr9q2vL5kcHZ2Nn3yySdkYGBAhoaG9OGHH1JqaqpSmQMHDlC/fv1IR0eHjIyMaNy4cXTnzh2lMlu3biV7e3uSSqVkampKnp6e9Mcff9T7PF/HyxmX2XYygSx9w8j38M0ay36flkmdT0XR1JikVxvXdSXy06MkV2eKs7Wjrf/3KTkEO9DO/ztEgZOnUMDEsZQWH9eIZ8BY9eTyHIo4aU0RJ62ppKSwyY6r7nLGbUVjZigioszku5SemEBZ8XcpPzaWSl68qE9z1cYZijMUZ6i2Kz4jhyx9w6jfmt9qLJtZJKfOp6Ko86koUigUZRuP/j8iPz169NlkirO1o2u+fyeHYAeaETKHNnutpICJY+lsSFDjngRjNbh+fQpFnLSm9IzQJjumuhlKRNT2JgnJycmBvr4+srOzVe5TLywsRHJyMqysrKClpVXruovlBXiWWj6nVDHEIhG0qhm9aU3y8vJgbm6OwMBATJ8+vcmPn5WVhVGjRkFPTw+//PILtLW1m7wNrOnV92e2tdh+6h4CfkvA5Hcs8M34PtWWDXn4FIviH8Clkx729X65StQ3lkDhc9y/PBhFyak4uWQEdmtcwOxSP+SHHwUpsvHxVxth1qNnE5wNY6pKSl7g7Lk/AQDeHxGHdu3aN8lxq8sMbVFjZigAeJoSD3mpGO1LFdAqlkPy1lt1nlPqTcIZijUHzlBlEh69gPPmczDUkeDGl07Vln1aXIJeF24BANLf71t2deOx2UD093icMwZPf45G/p8d4d0zEoMkI+DwS0eUFl3HO+PG4z3PvzXF6TBWqRs3PPHs+e/o1esfMOns3iTHVDdD8ep7jaCt9PJFRUXhwIEDSEpKwo0bN+Dp6QkAVS6V29gMDQ0RERGBUaNG4dKlS83SBsZaCxHfuMdaHP6eZK0HZyjGWr82eO0Ha8lqs8xkE+M5pVi9BAQEID4+HhKJBP3790dkZCQ6derUbO3p2LEjVq5c2WzHZ6y1ePVrq8IknZytGGOswXCGYqy1q5ihOEQxVhXulGJ11q9fP1y/fr25m8EYawhVjJ5whGKMsYbHGYqxVqSKC1B4BWPG1MO37zHGGHtFpXOKwLdNsZaHgz5jjLEW5rUMRSL+XcVaoBZ41R53SjHGWBtV3e+kSueUaoG/xBhjjDHGmkNVqYjn5WSsdrhTijHGWJW4G4oxxhhjrBZe9knxPFKMqYc7pRod95QzxhqfqBYralRf8rUAVeHSc54bgTHGGGOtTW3+Wqs+br2ek3gKBMbUwZ1SjDHGVPCl54yxloE/ixhjb5byTy3i1fcYUwt3SjU2zlKMsTeQ8pVX/EHGGGta/KnDGHtziZT+xxirHndKNTTuBGeMtSJKt+zxKB9jrKnxH3WMsSbS0FczKTg3MaYW7pRqRby9vSESiSASiSCRSNC9e3esWbMGJSUl9ar3zJkzEIlEeP78ecM0VA3JycmYMmUKzMzMoKWlhS5dusDDwwN3795VKhcWFoYRI0ZAJpNBW1sb77zzDoKDg5XKpKSkQCQSITo6Wu3jr1q1CnZ2dtDR0UGHDh0wevRoXL58WanO6dOnw8rKClKpFN26dYOfnx+Ki4urrTc9PR1TpkxBjx49IBaLsWDBArXac+7cObi7u8PMzAwikQjHjh2rdZsBYO3atRg6dCi0tbVhYGBQ6bFSU1MxduxYaGtrw9jYGEuWLFH6Hqr4fVbx0atXL6HMunXr8M4770Amk8HY2Bh//vOfER8fX+N5qtM+Vj3OP4wxVnucoThDcYZiDeZlGCMoVLYxxlRxp1Qr4+rqivT0dNy7dw+LFi3CqlWrsHHjxuZulqCmwAEAcrkcTk5OyM7OxpEjRxAfH4+DBw+id+/eSqFu27Zt8PDwwLBhw3D58mXExMRg8uTJ8PHxweLFi+vVzh49emD79u2IjY3F+fPn8dZbb8HZ2RlPnjwBANy9excKhQK7d+/G7du3sXnzZuzatQsrVqyott6ioiIYGRnhiy++QN++fdVuT15eHvr27YsdO3bUuc1A2fs/YcIE/P3vf6+0jtLSUowdOxbFxcW4ePEi9u3bh+DgYKxcuVIos2XLFqSnpwuPBw8ewNDQEBMmTBDKnD17FrNnz8bvv/+O8PBwyOVyODs7Iy8vr9rzrKl9rOkIFyeIOESxloIvmWlbmv6zhzMUZyjOUKwh8LycrGVqwd+X1AZlZ2cTAMrOzlZ5raCggOLi4qigoKBOdRcV5VN6YgKlJyZQ3q1bVBAXV9/mqm3atGnk4eGhtM3JyYkGDx5MWVlZ5OXlRQYGBiSVSsnV1ZUSEhKEcikpKfTBBx+QgYEBaWtrk729PR0/fpySk5MJZclQeEybNo2IiHJycmjKlCmkra1NJiYmtGnTJhoxYgTNnz9fqNfS0pLWrFlDXl5eJJPJhH0jIyNp+PDhpKWlRV26dKG5c+dSbm4uERFFRUURAEpJSanyXFNTU0lTU5MWLlyo8trWrVsJAP3+++9ERMI5REVF1f5Nfan8eyYiIqLKMhs2bCArKyu163z9vVIXADp69GiN5aprc1BQEOnr66ts//nnn0ksFlNGRoawbefOnaSnp0dFRUWVHufo0aMkEomq/Xo9fvyYANDZs2drbHd17atMfX9mW4vtp+6RpW8YLT10s8ayIWmZ1PlUFHndTHq18Zu3iPz0KMnNheJs7Wj33tnkEOxA277bT4GT/0oBE8fSg9uxjXgGjFVPLs+liJPWFHHSmkpKmu7nvbrM0BY1ZoYiIspMvkvpiQn0LP4O5cfGUsnLbNDYOEOV4QxVhjNU25KQkUOWvmH0p9Unaiz7tFhOnU9FUedTUVSqUJRtPDabyE+PHi/6mOJs7ShqWVmGmrLfmzZ7raKAiWPp9L5vG/ksGKve9Rt/pYiT1pSe/mOTHVPdDMVXStWAiFBcXFyrh1xeArm8BMUlLx+13L/8QQ1wmadUKkVxcTG8vb1x7do1hIaG4tKlSyAijBkzBnK5HAAwe/ZsFBUV4dy5c4iNjcX69euhq6sLCwsL/PDDDwCA+Ph4pKenY8uWLQCAhQsX4sKFCwgNDUV4eDgiIyNx48YNlTYEBASgb9++iIqKwpdffomkpCS4urpi/PjxiImJwcGDB3H+/HnMmTMHAGBkZASxWIzDhw+jtLS00vM6fPgw5HJ5paN5s2bNgq6uLg4cOFDv9w8oG3nas2cP9PX1qx2Zy87OhqGhYYMcs77UbfPrLl26hN69e6Nz587CNhcXF+Tk5OD27duV7rN3716MHj0alpaWVdabnZ0NAC3m/WE1Kx/lI75SijFWD7XNUeUZSl5SWq8M1RA5ijNU/XGG4gzVlil/BnGeYqwqGs3dgJZOLpfj66+/bpZjr1ixAhKJpE77EhFOnjyJEydOwM3NDceOHcOFCxcwdOhQAEBISAgsLCxw7NgxTJgwAampqRg/fjx69+4NALC2thbqKv8laGxsLNyj/uLFC+zbtw/79+/HqFGjAABBQUEwMzNTacvIkSOxaNEi4fmMGTPg6ekpzAVgY2ODrVu3YsSIEdi5cyfMzc2xdetWLF26FKtXr8aAAQPg6OgIT09PoV0JCQnQ19eHqampyvEkEgmsra2RkJBQp/euXFhYGCZPnoz8/HyYmpoiPDwcnTp1qrRsYmIitm3bhoCAgHods75q0+bKZGRkKIUpAMLzjIwMlfIPHz7EL7/8gv3791dZp0KhwIIFCzBs2DA4ODio3RbW3Hj1PdaScbh/U7yJOYozFGcozlCsPjg1MVY7fKVUKxMWFgZdXV1oaWnBzc0NkyZNgre3NzQ0NDBo0CChXMeOHWFra4s7d+4AAObNmwd/f38MGzYMfn5+iImJqfY49+/fh1wux8CBA4Vt+vr6sLW1VSk7YMAApec3b95EcHAwdHV1hYeLiwsUCgWSk5MBlI06ZmRkICQkBEOGDMGhQ4fQq1cvhIeHq/1eqBNEQ0JClNoRGRkpvObo6Ijo6GhcvHgRrq6umDhxIh4/fqxSR1paGlxdXTFhwgTMnDlT2F6xXh8fH7XaHBkZqbRfSEiIWvvVts0NZd++fTAwMMCf//znKsvMnj0bt27dwn/+8x9hm4+Pj9J5suah3p/1VOFf3BHAGGu9OEO9whmKMxSrWdWpSPSqBPdQMVYjvlKqBpqamjVOvFhRcXE+nv2RDgCQFRVDLBZDq5KQoe6xa8vR0RE7d+6ERCKBmZkZNDQ0EBoaWuN+M2bMgIuLC44fP47ffvsN69atQ2BgIObOnVuXpivR0dFRep6bm4tZs2Zh3rx5KmW7du0q/Fsmk8Hd3R3u7u7w9/eHi4sL/P394eTkBBsbG2RnZ+Phw4cqI4vFxcVISkqCi4tLjW0bN26cUtA0NzdXanf37t3RvXt3DB48GDY2Nti7dy+WL18ulHn48CEcHR0xdOhQ7NmzR6nuiivV6Onp1dgWoCx8Vtzv9RG3mqjT5uqYmJjgypUrStsePXokvFYREeG7776Dl5dXleF1zpw5CAsLw7lz59ClSxdh+5o1a+o9kSprXCIRpyjGWP3VNkdl/e8e5KViaJWWQiIvgcTSEu1eyxG1OXZtcIbiDMUZitXLa7cMVxzM48X3GKsad0rVoHxpYPWVQFOz7G2VlCogFovrfAteXZT/Qq2oZ8+eKCkpweXLl4VLz58+fYr4+HjY29sL5SwsLODj4wMfHx8sX74c3377LebOnSu0v+LcBNbW1tDU1MTVq1eFEJSdnY2EhAS899571bbx7bffRlxcnEo7qyMSiWBnZ4eLFy8CAD766CP4+voiMDAQgYGBSmV37dqF/Px8TJ06tcZ6ZTIZZDKZWm1QKBQoKioSnqelpcHR0RH9+/dHUFAQxGLlCw9rc37lpFJpnfaryuttrsmQIUOwdu1aPH78GMbGxgCA8PBw6OnpKX2vAGWrwyQmJmL69Okq9RAR5s6di6NHj+LMmTOwsrJSet3Y2FionzUDNfqbuEuKMdYQapujNDU1ALEYmiIRJFR2xU67JspRnKE4Q1XEGartqM04XG3yEV9hzph6uFOqDbCxsYGHhwdmzpyJ3bt3QyaTYdmyZTA3N4eHhwcAYMGCBXBzc0OPHj3w7NkznD59Gj179gQAWFpaQiQSISwsDGPGjIFUKoVMJsO0adOwZMkSGBoawtjYGH5+fhCLxTVeYeHr64vBgwdjzpw5mDFjBnR0dBAXF4fw8HBs374d0dHR8PPzg5eXF+zt7SGRSHD27Fl899138PX1BVA2GrhhwwYsXrwYWlpa8PLygqamJn788UesWLEC/v7+Kvfex8fHq7SlV69eKiOpeXl5WLt2LcaNGwdTU1NkZmZix44dSEtLE5bsTUtLw/vvvw9LS0sEBAQoLRn8+mjY68pH8XJzc/HkyRNER0dDIpGoBJaKcnNzkZiYKDxPTk5GdHQ0DA0N0bVrV7XaDACpqanIyspCamoqSktLhbZ0794durq6cHZ2hr29Pby8vLBhwwZkZGTgiy++wOzZs9G+fXulNu3duxeDBg2qdI6D2bNnY//+/fjxxx8hk8mEuRT09fUhlUqrPM+a2sea0MscpTTROQ/zMcbaGM5QZThDcYZitaAUl17+THOGYqxqjbcAYMvVmMsZFxXlUXpiAqUnJlDerVtUEBdX3+aqrbLljMuVL2esr69PUqmUXFxclJYznjNnDnXr1o3at29PRkZG5OXlRZmZmcLra9asIRMTExKJRNUuZzxw4EBatmyZsJ+lpSVt3rxZpT1XrlwhJycn0tXVJR0dHerTpw+tXbuWiIiePHlC8+bNIwcHB9LV1SWZTEa9e/emgIAAKi0tVarn2LFj9O6775KOjo6w3PKBAweUylS2JHP548GDByptKygooA8//JDMzMxIIpGQqakpjRs3jq5cuSKUCQoKqrLOmlS2j6WlZbX7nD59utL9yr8W6rSZqOx7pLJ6Tp8+LZRJSUkhNzc3kkql1KlTJ1q0aBHJ5XKlep4/f05SqZT27Nmj9jkCoKCgoGrPU532vY6XMy6z/dQ9svQNo6WHbtZYNuRhJnU+FUV/vZn0auM3bxH56VGSmwvF2drR/+2dRw7BDrQl6N8UONmLAiaOpdRbNdfNWGORy3Mp4qQ1RZy0ppKS/CY7rrrLGbcVjZmhiIgyk+9SemICPbt7h/JjY6kkN7c+zVUbZyjOUJyh2q57j3LI0jeM/rT6RI1ls4rl1PlUFHU+FUUlCkXZxmOzifz06PHCyRRna0c3feeQQ7ADTQjxpM1TV1PAxLF0Kmh3I58FY9W7fuOvFHHSmtLTf2yyY6qboUREba/bNicnB/r6+sjOzla5T72wsBDJycmwsrKClpZWresuLs5H1oM0AIBeQRHE7TSg1dOuQdrd0uXl5cHc3ByBgYGVXo7c2LKysjBq1Cjo6enhl19+gba2dpO3gTW9+v7MthY7Tidi44l4TBpggfUf9am27P70p1h49wGcOurh331erhK13gooyML9q0NRlJSCS74u2Cw+iRlYitJfI0CKp5i48mtY9Kq+bsYaS0lJHs6eK/v+e3/ELbRrV/UVAw2puszQFjVmhgKApynxZXNKlZSivbwEEiurOs8p9SbhDMWaA2eoMomPX2D0pnPooK2JqJXO1ZZ9Ji9Bz/O3AABp7/dFO5EI+HEOEPVvPMkdi8ywKMj/PBqePc/ATrM3hp2wQ2nhFbztNg6O3p82xekwVqkbUV549uwietlvhonJuCY5proZilffY3UWFRWFAwcOICkpCTdu3ICnpycACJezNzVDQ0NERERg1KhRuHTpUrO0gbHm1lDzF1R2A0nbG8JgjDW/1jnDHWcoxlqeBos5ldyGy/NLMVY1nlOK1UtAQADi4+MhkUjQv39/REZGolOnTs3Wno4dO2LlypXNdnzG3lhVzGPCIYq1FLwiJGttOEMx1kq89vuJf1sxVjvcKdXYWvGnUr9+/XD9+vXmbgZjrFFUeq1Uk7eCMcZaI85QjLV+BAVa9R+D7I0iasHfi3z7HmOMMRV8VQpjrEXgjyLG2BuKqnzCGKuIO6UYY4xVUJaahNEUEacoxhhjjLGavZahuCeKMbVwpxRjjLVR6kSligu03o9+gpTYTLTBRVtZi8Pfg20FXyjFGHtTKfh3FWuRWt73JXdKMcYYq0TZLyzSUAhbYk7/geM7YpD5ILe5GsUYY4wx1iJUOUb38gWiVxkq6cZjhG2/icw/OEMx9jrulGpgvFIVY6w51GYKKHWKll96Xmr5HFq6EgCAZvt2AIDCXHltm8cYY4wx1kI18DWZL0NZiWYxxO3K/p2XXYT/3XqKOxceNuyxGGsFuFOKMcbYK6/1blH7EugYtAcASPU0y7Zx5ztjjDHG2qDadF+VtCtGr+HmAAB9IykAQFHKGYqx13GnFGOMMRXlV0pVOn8U5ynGGGOMsRpp6ZYN6LXX1mjmljDWcnGnVCvi7e0NkUgEkUgEiUSC7t27Y82aNSgpKalXvWfOnIFIJMLz588bpqFqSE5OxpQpU2BmZgYtLS106dIFHh4euHv3rlK5sLAwjBgxAjKZDNra2njnnXcQHBysVCYlJQUikQjR0dFqH3/VqlWws7ODjo4OOnTogNGjR+Py5ctKdU6fPh1WVlaQSqXo1q0b/Pz8UFxcXGPdISEh6Nu3L7S1tWFqaopPPvkET58+rXafc+fOwd3dHWZmZhCJRDh27Fil5e7cuYNx48ZBX18fOjo6eOedd5Camiq8PmvWLHTr1g1SqRRGRkaVvqdXr17FqFGjYGBggA4dOsDFxQU3b96s9HiJiYmQyWQwMDCo8bzVPQfWQohU/8lryTDGWivOUJyhOEOxhiLkpYoDey83coZiTBV3SjW0Zv6kcXV1RXp6Ou7du4dFixZh1apV2LhxY/M2qgJ1AodcLoeTkxOys7Nx5MgRxMfH4+DBg+jdu7dSqNu2bRs8PDwwbNgwXL58GTExMZg8eTJ8fHywePHierWzR48e2L59O2JjY3H+/Hm89dZbcHZ2xpMnTwAAd+/ehUKhwO7du3H79m1s3rwZu3btwooVK6qt98KFC5g6dSqmT5+O27dv49ChQ7hy5QpmzpxZ7X55eXno27cvduzYUWWZpKQkDB8+HHZ2djhz5gxiYmLw5ZdfQktLSyjTv39/BAUF4c6dOzhx4gSICM7OzigtLQUA5ObmwtXVFV27dsXly5dx/vx5yGQyuLi4QC5XnkdILpfj448/xrvvvltt22tzDqz+6r4wnjoXpHOUYoy1XpyhOENxhmrbGi5Diap+jVcwZkwVtUHZ2dkEgLKzs1VeKygooLi4OCooKKhT3YWFuZSemEDpiQmUFxtLBXfu1Le5aps2bRp5eHgobXNycqLBgwdTVlYWeXl5kYGBAUmlUnJ1daWEhAShXEpKCn3wwQdkYGBA2traZG9vT8ePH6fk5GRC2V+iwmPatGlERJSTk0NTpkwhbW1tMjExoU2bNtGIESNo/vz5Qr2Wlpa0Zs0a8vLyIplMJuwbGRlJw4cPJy0tLerSpQvNnTuXcnNziYgoKiqKAFBKSkqV55qamkqampq0cOFClde2bt1KAOj3338nIhLOISoqqvZv6kvl3zMRERFVltmwYQNZWVlVW8/GjRvJ2tpapb3m5uZqtwUAHT16VGX7pEmT6K9//ava9RAR3bx5kwBQYmIiERFdvXqVAFBqaqpQJiYmhgDQvXv3lPZdunQp/fWvf6WgoCDS19ev1XGrOoe6qO/PbGux4/Q9svQNo8X/ja6x7P6HmdT5VBR53kx6tXG9NZGfHiWNdaU4Wzv6d/Bicgh2oHWX19G+xbMpYOJY2rfsAG2fdZJSYjMb8UwYq1xJST5FnLSmiJPWVFKS12THrS4ztEWNmaGIiDKT71J6YgI9u3uH8mNjqTSvab7WnKHKcIZSH2eo1uPeoxdk6RtGfVadqLHss2I5dT4VRZ1PRZG8VFG28ce5RH569HjRZIqztaNby+aTQ7ADOR1yovMHv6eAiWMp5MtvaPusk3Tq+6b725Cxim7c8KKIk9aUnn6syY6pbobiK6VqQEQoLc2v1UOhKIRCUYhSKkSporDW+5c/qAF60qVSKYqLi+Ht7Y1r164hNDQUly5dAhFhzJgxwsjN7NmzUVRUhHPnziE2Nhbr16+Hrq4uLCws8MMPPwAA4uPjkZ6eji1btgAAFi5ciAsXLiA0NBTh4eGIjIzEjRs3VNoQEBCAvn37IioqCl9++SWSkpLg6uqK8ePHIyYmBgcPHsT58+cxZ84cAICRkRHEYjEOHz4sjD697vDhw5DL5ZWO5s2aNQu6uro4cOBAvd8/oGxkcs+ePdDX10ffvn2rLJednQ1DQ8Nq6xoyZAgePHiAn3/+GUSER48e4fDhwxgzZky92qhQKHD8+HH06NEDLi4uMDY2xqBBg6q9vDsvLw9BQUGwsrKChYUFAMDW1hYdO3bE3r17UVxcjIKCAuzduxc9e/bEW2+9Jex76tQpHDp0iEfs2orXJz/nUT7GmJpqnaPKM1R5jqpjhmqIHMUZqv44Q3GGaoteTXfAeYm1JA28ymQD4hnXaqBQFODM2d71qySjbru9PyIW7dpp12lfIsLJkydx4sQJuLm54dixY7hw4QKGDh0KoOyefAsLCxw7dgwTJkxAamoqxo8fj969y87V2tpaqKs8JBgbGwv3vb948QL79u3D/v37MWrUKABAUFAQzMzMVNoycuRILFq0SHg+Y8YMeHp6YsGCBQAAGxsbbN26FSNGjMDOnTthbm6OrVu3YunSpVi9ejUGDBgAR0dHeHp6Cu1KSEiAvr4+TE1NVY4nkUhgbW2NhISEOr135cLCwjB58mTk5+fD1NQU4eHh6NSpU6VlExMTsW3bNgQEBFRb57BhwxASEoJJkyahsLAQJSUlcHd3r3cwefz4MXJzc/HNN9/A398f69evx6+//oq//OUvOH36NEaMGCGU/ec//4mlS5ciLy8Ptra2CA8Ph0QiAQDIZDKcOXMGf/7zn/HVV18BKPv6nDhxAhoaZR8XT58+hbe3N77//nvo6enVq92s5ap0PgTGGKuleueoJ3Xfta45ijMUZyjOUKyhlI/rico7qDhWMaaCr5RqZcLCwqCrqwstLS24ublh0qRJ8Pb2hoaGBgYNGiSU69ixI2xtbXHnzh0AwLx58+Dv749hw4bBz88PMTEx1R7n/v37kMvlGDhwoLBNX18ftra2KmUHDBig9PzmzZsIDg6Grq6u8HBxcYFCoUBycjKAslHHjIwMhISEYMiQITh06BB69eqF8PBwtd+L8pBQnZCQEKV2REZGCq85OjoiOjoaFy9ehKurKyZOnIjHjx+r1JGWlgZXV1dMmDBBaV6DivX6+PgAAOLi4jB//nysXLkS169fx6+//oqUlBTh9cjISKX9QkJC1DpXhUIBAPDw8MBnn32GP/3pT1i2bBk++OAD7Nq1S6msp6cnoqKicPbsWfTo0QMTJ05EYWEhAKCgoADTp0/HsGHD8Pvvv+PChQtwcHDA2LFjUVBQAACYOXMmpkyZgvfee6/SttT1HFjLxKN8jLG2gjPUK5yhOEOx+qt0YI8H+xhTwVdK1UAsluL9EbFqly8qysPztLJLo2SFRRBraEKrh02dj11bjo6O2LlzJyQSCczMzKChoYHQ0NAa95sxYwZcXFxw/Phx/Pbbb1i3bh0CAwMxd+7cujRdiY6OjtLz3NxczJo1C/PmzVMp27VrV+HfMpkM7u7ucHd3h7+/P1xcXODv7w8nJyfY2NggOzsbDx8+VBlZLC4uRlJSElxcXGps27hx45SCprm5uVK7u3fvju7du2Pw4MGwsbHB3r17sXz5cqHMw4cP4ejoiKFDh2LPnj1KdVdcqaZ8NGzdunUYNmwYlixZAgDo06cPdHR08O6778Lf3x8DBgxQ2q9z5841ngMAdOrUCRoaGrC3t1fa3rNnT5w/f15pm76+PvT19WFjY4PBgwejQ4cOOHr0KD7++GPs378fKSkpuHTpEsTisj7r/fv3o0OHDvjxxx8xefJknDp1CqGhocKIJhFBoVBAQ0MDe/bswccff1ync2Athejlf8v+T0Qqt+9xPxVrbnwF35ujtjnq6f/uoaRUjPYlpWhfUoL2b1lBrF37PFR+7NrgDMUZqiLOUKz2XpvuAATVNYwZa14tccCZO6VqIBKJanXpd7t2BLG4bKWOdiIRxGLNOt+CVxflIaCinj17oqSkBJcvXxYuPX/69Cni4+OVfgFbWFjAx8cHPj4+WL58Ob799lvMnTtXGC2rODeBtbU1NDU1cfXqVSEEZWdnIyEhocrRn3Jvv/024uLiVNpZHZFIBDs7O1y8eBEA8NFHH8HX1xeBgYEIDAxUKrtr1y7k5+dj6tSpNdYrk8kgk8nUaoNCoUBRUZHwPC0tDY6OjsJqLOUBpFxl55efny9cwl2uXbt2AMqCiVQqrdX7Uk4ikeCdd95BfHy80vaEhARYWlpWuR8RgYiE88rPz4dYLIaoQidE+fPykcRLly4pfS/8+OOPWL9+PS5evAhzc/M6nwNretX9XS+qNDy1vF9ijLGWrdY5SqwFBYnRTlyKdqIStGunDXG7unVK1RZnKM5QFXGGYjWpKhWJKhYQlf+Tqt2HsbaMO6XaABsbG3h4eGDmzJnYvXs3ZDIZli1bBnNzc3h4eAAAFixYADc3N/To0QPPnj3D6dOn0bNnTwCApaUlRCIRwsLCMGbMGEilUshkMkybNg1LliyBoaEhjI2N4efnp/LLuDK+vr4YPHgw5syZgxkzZkBHRwdxcXEIDw/H9u3bER0dDT8/P3h5ecHe3h4SiQRnz57Fd999B19fXwBlo4EbNmzA4sWLoaWlBS8vL2hqauLHH3/EihUr4O/vDwcHB6Xjvh42AKBXr17Q1NRU2paXl4e1a9di3LhxMDU1RWZmJnbs2IG0tDRMmDABQFmYev/992FpaYmAgABhmWMAMDExqfLc3d3dMXPmTOzcuRMuLi5IT0/HggULMHDgwErnkiiXm5uLxMRE4XlycjKio6NhaGgoBNolS5Zg0qRJeO+99+Do6Ihff/0VP/30E86cOQOg7HaBgwcPwtnZGUZGRvjjjz/wzTffQCqVCpOEOjk5YcmSJZg9ezbmzp0LhUKBb775BhoaGnB0dAQA4fui3LVr1yAWi1Xe77qcA2t5lEZTXv5sc6BijDWZZr64gDNUGc5QnKFYbVTzc8whijEV3CnV4FrmJ01QUBDmz5+PDz74AMXFxXjvvffw888/C2GitLQUs2fPxh9//AE9PT24urpi8+bNAMoux169ejWWLVuGv/3tb5g6dSqCg4OxadMm+Pj44IMPPoCenh6WLl2KBw8eQEtLq9q29OnTB2fPnsXnn3+Od999F0SEbt26YdKkSQCALl264K233sLq1auRkpICkUgkPP/ss8+Eej777DNYW1sjMDAQW7ZsQV5eHgDgwIEDmDx5sspxK9v24MEDdOnSRWlbu3btcPfuXezbtw+ZmZno2LEj3nnnHURGRqJXr14AgPDwcCQmJiIxMVFl/+puK/H29saLFy+wfft2LFq0CAYGBhg5ciTWr19f7Xt27do1IdAAZav2AMC0adMQHBwMAPjwww+xa9curFu3DvPmzYOtrS1++OEHDB8+HACgpaWFyMhI/OMf/8CzZ8/QuXNnvPfee7h48SKMjY0BAHZ2dvjpp5+wevVqDBkyBGKxGP369cOvv/5a6YSotaHOObC6q/zKpqrK1q6USLilr3ySzpb5OccYY42BMxRnKM5QrVsNfcHKZWtRL4GEjma+eY+xqomoDU7MkJOTA319fWRnZ6usfFFYWIjk5GRYWVnVGAwqU1SUi2d/pAMA9AqKINbUhFYlE1e2Rnl5eTA3N0dgYCCmT5/e5MfPysrCqFGjoKenh19++QXa2k132yRrPvX9mW0tdp5Jwvpf72JC/y7YOKHqZbcB4D/pT7Hg7gOMMtRDSN+Xq0Rt7A7kPcH9a8NQlJiMm8s9sBbHMcl2EiyPPsHjlCQYd/NETlZnuPn0hvWfjJrgrBh7pbS0AGfOll1NMOK9GGho6NSwR8OoLjO0RY2ZoQDgaUo85KViaJWUor28BO27dYNY2jS37zUnzlCsOXCGKpP0JBejAs9CX6qJm37O1ZbNlpfA9vwtAMCDEX2hKRYBofOAG/vwJHcsMsOigA9dMdEuAp2knfC1+FNcPBQCU9thePZ4EOyGmmLU1J7VHoOxxhAVNQ1Zz87D3j4QpiZ/bpJjqpuhePU9VmdRUVE4cOAAkpKScOPGDXh6egKAcDl7UzM0NERERARGjRqFS5cuNUsbGGs1yudAIOLhPcYYa2CcoRhrRdS41Er0Klg1cmMYe/Pw7XusXgICAhAfHw+JRIL+/fsjMjISnTp1arb2dOzYEStXrmy24zPW3Bo66ijPKdXAlTPGWBvGGYqxlqWhbyCqdGCP+6QYU8GdUqzO+vXrh+vXrzd3MxhjjUBE5ZOaV5KeOFAxxli9cIZirPUq74dSzlAcnhirCt++xxhjrIKy0FRxYO/ValB8qRRrTvz9xxhjrCWrueOJu6ZYs6nNjP5NjDulGGOMvfLaL6yKl7KXr75X6dVTjDHWAMo/XVpudGaMsSoIK+2prmAs4AjFmArulGKMMaaqstGUV9ejM8YYY4yxarTBRe4ZqxPulGKMMaZCeWSPr1lgjDHGGKuNyq4s56vNGVPFnVKMMdZGqROMKg1UnKdYs+NvQsYYY82r6hxVYTDv9SvP+dcXa24tMMhzp1Sj4ysMGGNvnvLJzZXmlOKPM8YYY4wxtfBVUYyphzulGGOsFahNh5HKpJsvt1aGQKqDfC1whIUx1kpxbzhjrJHV5lNGpM5n0ssileUljlCMqeJOqQam8jnThFnK29sbIpEIIpEIEokE3bt3x5o1a1BSUlKves+cOQORSITnz583TEPVkJycjClTpsDMzAxaWlro0qULPDw8cPfuXaVyYWFhGDFiBGQyGbS1tfHOO+8gODhYqUxKSgpEIhGio6PVPv6qVatgZ2cHHR0ddOjQAaNHj8bly5eV6pw+fTqsrKwglUrRrVs3+Pn5obi4uMa6Q0JC0LdvX2hra8PU1BSffPIJnj59Wu0+O3fuRJ8+faCnpwc9PT0MGTIEv/zyi/B6VlYW5s6dC1tbW0ilUnTt2hXz5s1Ddna2UCY4OFj4/nj98fjxY6FcUVERPv/8c1haWqJ9+/Z466238N133ym15x//+IdwLAsLC3z22WcoLCys9hyOHDkCZ2dndOzYsdZfD9b0RJWEJg5SjLHWijMUZyjOUKzulP/gEyldZc6rxDBWE43mbgBrWK6urggKCkJRURF+/vlnzJ49G5qamli+fHlzNw0AUFxcDIlEUm0ZuVwOJycn2Nra4siRIzA1NcUff/yBX375RSnUbdu2DQsWLICvry927twJiUSCH3/8ET4+Prh16xYCAgLq3M4ePXpg+/btsLa2RkFBATZv3gxnZ2ckJibCyMgId+/ehUKhwO7du9G9e3fcunULM2fORF5eXrXHvXDhAqZOnYrNmzfD3d0daWlp8PHxwcyZM3HkyJEq9+vSpQu++eYb2NjYgIiwb98+eHh4ICoqCr169cLDhw/x8OFDBAQEwN7eHv/73//g4+ODhw8f4vDhwwCASZMmwdXVValeb29vFBYWwtjYWNg2ceJEPHr0CHv37kX37t2Rnp4OhUIhvL5//34sW7YM3333HYYOHYqEhAQhzG/atKnKc8jLy8Pw4cMxceJEzJw5s8avAWsZ+PY9xlhbwRmKMxRnKNaQKr19j0f4GFNFbVB2djYBoOzsbJXXCgoKKC4ujgoKCupUd0HhC0pPTKD0xATKi42lgvj4+jZXbdOmTSMPDw+lbU5OTjR48GDKysoiLy8vMjAwIKlUSq6urpSQkCCUS0lJoQ8++IAMDAxIW1ub7O3t6fjx45ScnEwo69oXHtOmTSMiopycHJoyZQppa2uTiYkJbdq0iUaMGEHz588X6rW0tKQ1a9aQl5cXyWQyYd/IyEgaPnw4aWlpUZcuXWju3LmUm5tLRERRUVEEgFJSUqo819TUVNLU1KSFCxeqvLZ161YCQL///jsRkXAOUVFRtX9TXyr/nomIiKiyzIYNG8jKyqraejZu3EjW1tYq7TU3N691mzp06ED/93//V+Xr//3vf0kikZBcLq/09cePH5Ompib961//Erb98ssvpK+vT0+fPq2y3tmzZ9PIkSOVti1cuJCGDRumVrsb4utRUX1/ZluLnWcSydI3jBYejK6x7H8ePqXOp6Lo4+jEVxs3dCfy06P77mMoztaOfvjXF+QQ7EArIlfQ9ys+o4CJY+n7L0No+6yTlHAloxHPhLHKlZQUUMRJa4o4aU1y+YsmO251maEtaswMRUT0JPkupScm0PM7dyg/NpZKm+iznTNUGc5QZThDtS1Jj1+QpW8YOfj9WmPZbHkJdT4VRZ1PRVFRaWnZxtD5RH569HjJxxRna0fxyxaSQ7ADDQkZQr8fOUgBE8fS/i/X0vZZJ+nEt7GNezKMVeFG1DSKOGlNDx8eabJjqpuh+Pa9GhAR8kpL1X7klypQoCAUKAj5RMhX1G7/ig9qgJ50qVSK4uJieHt749q1awgNDcWlS5dARBgzZgzkcjkAYPbs2SgqKsK5c+cQGxuL9evXQ1dXFxYWFvjhhx8AAPHx8UhPT8eWLVsAAAsXLsSFCxcQGhqK8PBwREZG4saNGyptCAgIQN++fREVFYUvv/wSSUlJcHV1xfjx4xETE4ODBw/i/PnzmDNnDgDAyMgIYrEYhw8fRmlpaaXndfjwYcjlcixevFjltVmzZkFXVxcHDhyo9/sHlI1M7tmzB/r6+ujbt2+V5bKzs2FoaFhtXUOGDMGDBw/w888/g4jw6NEjHD58GGPGjFG7PaWlpfjPf/6DvLw8DBkypNr26OnpQUOj8gsi//Wvf0FbWxsfffSRsC00NBQDBgzAhg0bYG5ujh49emDx4sUoKCgQygwdOhTXr1/HlStXAAD379/Hzz//XKtzYC0Zj+AxxhpOrXNUeYYqz1GlimbLUZyh6o8zFGeoNuXlR86rG/YqmVOq6VrD2BuDb9+rQb5CgW7nYutRQwGQXrf9k97rDZ127eq0LxHh5MmTOHHiBNzc3HDs2DFcuHABQ4cOBVB2T76FhQWOHTuGCRMmIDU1FePHj0fv3r0BANbW1kJd5SHB2NgYBgYGAIAXL15g37592L9/P0aNGgUACAoKgpmZmUpbRo4ciUWLFgnPZ8yYAU9PTyxYsAAAq4wVuQABAABJREFUYGNjg61bt2LEiBHYuXMnzM3NsXXrVixduhSrV6/GgAED4OjoCE9PT6FdCQkJ0NfXh6mpqcrxJBIJrK2tkZCQUKf3rlxYWBgmT56M/Px8mJqaIjw8HJ06daq0bGJiIrZt21bj5e7Dhg1DSEgIJk2ahMLCQpSUlMDd3R07duyosT2xsbEYMmQICgsLoauri6NHj8Le3r7SspmZmfjqq6/w6aefVlnf3r17MWXKFEilUmHb/fv3cf78eWhpaeHo0aPIzMzE//t//w9Pnz5FUFAQAGDKlCnIzMzE8OHDQUQoKSmBj48PVqxYUeM5sDfdyxX5OFKxZsH3j76J6p2jMuv+u7yuOYozFGcozlCswfHUUoxVia+UamXCwsKgq6sLLS0tuLm5YdKkSfD29oaGhgYGDRoklOvYsSNsbW1x584dAMC8efPg7++PYcOGwc/PDzExMdUe5/79+5DL5Rg4cKCwTV9fH7a2tiplBwwYoPT85s2bCA4Ohq6urvBwcXGBQqFAcnIygLJRx4yMDISEhGDIkCE4dOgQevXqhfDwcLXfi5rmXQDKgmXFdkRGRgqvOTo6Ijo6GhcvXoSrqysmTpyoNJllubS0NLi6umLChAlK9/lXrNfHxwcAEBcXh/nz52PlypW4fv06fv31V6SkpAivR0ZGKu0XEhIi1Gdra4vo6GhcvnwZf//73zFt2jTExcWptCcnJwdjx46Fvb09Vq1aVel5X7p0CXfu3MH06dOVtisUCohEIoSEhGDgwIEYM2YMNm3ahH379gkjfWfOnMHXX3+Nf/7zn7hx4waOHDmC48eP46uvvqrxPWVvjvIV+ohI+LeoPElxoGKMtUKcoV7hDMUZitUfgXhCTsbUwFdK1UBbLEbSe73VLl9UmIfshxkAAFlhEcSaErS36V7nY9eWo6OjMGGlmZkZNDQ0EBoaWuN+M2bMgIuLC44fP47ffvsN69atQ2BgIObOnVuXpivR0dFRep6bm4tZs2Zh3rx5KmW7du0q/Fsmk8Hd3R3u7u7w9/eHi4sL/P394eTkBBsbG2RnZ+Phw4cqI4vFxcVISkqCi4tLjW0bN26cUtA0NzdXanf37t3RvXt3DB48GDY2Nti7d6/ShKcPHz6Eo6Mjhg4dij179ijVXXFlFD09PQDAunXrMGzYMCxZsgQA0KdPH+jo6ODdd9+Fv78/BgwYoLRf586dhX+XrwYEAP3798fVq1exZcsW7N69Wyjz4sULuLq6QiaT4ejRo9DU1Kz0vP/v//4Pf/rTn9C/f3+l7aampjA3N4e+vr6wrWfPniAi/PHHH7CxscGXX34JLy8vzJgxAwDQu3dv5OXl4dNPP8Xnn39e7XvK3hxqLXnMGGM1qG2Oevq/eygtFUNLXgJJaSnaW3eDSKt9nY9dG5yhOENxhmIN49XAnqB8XI8H9hhTwZ1SNRCJRLW69LtdOxGKxWUfRNoiEcRiEbTqeAteXZSHgIp69uyJkpISXL58Wbj0/OnTp4iPj1e6dNnCwgI+Pj7w8fHB8uXL8e2332Lu3LnCaFnFuQmsra2hqamJq1evCiEoOzsbCQkJeO+996pt49tvv424uDiVdlZHJBLBzs4OFy9eBAB89NFH8PX1RWBgIAIDA5XK7tq1C/n5+Zg6dWqN9cpkMshkMrXaoFAoUFRUJDxPS0uDo6Mj+vfvj6CgIIhfC7+VnV9+fr7K/ATtXn5/EBGkUqna78vr7cnJyYGLiwvat2+P0NBQaGlpVbpfbm4u/vvf/2LdunUqrw0bNgyHDh1Cbm4udHV1AZRd5i8Wi9GlSxfhHF4/14rnUJv3lLV8ZaN8r23jQMUYU1Ntc1SBWIQSEkEqFkGiEKF9OzHETZSjOENxhuIMxRpEZeN6wjYOUYy9jjul2gAbGxt4eHhg5syZ2L17N2QyGZYtWwZzc3N4eHgAABYsWAA3Nzf06NEDz549w+nTp9GzZ08AgKWlJUQiEcLCwjBmzBhIpVLIZDJMmzYNS5YsgaGhIYyNjeHn5wexWFzjFRa+vr4YPHgw5syZgxkzZkBHRwdxcXEIDw/H9u3bER0dDT8/P3h5ecHe3h4SiQRnz57Fd999B19fXwBlo4EbNmzA4sWLoaWlBS8vL2hqauLHH3/EihUr4O/vDwcHB6XjxsfHq7SlV69eKiNheXl5WLt2LcaNGwdTU1NkZmZix44dSEtLw4QJEwCUhan3338flpaWCAgIwJMnT4T9TUxMqjx3d3d3zJw5Ezt37oSLiwvS09OxYMECDBw4sNK5JMotX74cbm5u6Nq1K168eIH9+/fjzJkzOHHiBICyMOXs7Iz8/Hx8//33yMnJQU5ODoCySU/bVQj0Bw8eRElJCf7617+qHGfKlCn46quv8Le//Q2rV69GZmYmlixZgk8++USYN8Hd3R2bNm1Cv379MGjQICQmJuLLL7+Eu7u70nFel5WVhdTUVDx8+BDAq6+HiYlJte8ZazzqxCKl+aP44inWYnCoZ02DM1QZzlBlOEOx2iAQX3nOWqCWl6G4U6qNCAoKwvz58/HBBx+guLgY7733Hn7++WchTJSWlmL27Nn4448/oKenB1dXV2zevBlA2aXDq1evxrJly/C3v/0NU6dORXBwMDZt2gQfHx988MEH0NPTw9KlS/HgwYMqR5fK9enTB2fPnsXnn3+Od999F0SEbt26YdKkSQCALl264K233sLq1auRkpICkUgkPP/ss8+Eej777DNYW1sjMDAQW7ZsQV5eHgDgwIEDmDx5sspxK9v24MEDYfSqXLt27XD37l3s27cPmZmZ6NixI9555x1ERkaiV69eAIDw8HAkJiYiMTFRZf/qVvvx9vbGixcvsH37dixatAgGBgYYOXIk1q9fX+179vjxY0ydOhXp6enQ19dHnz59cOLECTg5OQEAbty4gcuXLwNQHV1MTk7GW2+9JTzfu3cv/vKXvwgTrlakq6uL8PBwzJ07FwMGDEDHjh0xceJE+Pv7C2W++OILiEQifPHFF0hLS4ORkRHc3d2xdu3aas8hNDQUf/vb34Tn5V8PPz+/KudtYE3otdAkEi4zr/j9LCrf2DRtYoyxFoAzFGeocpyhWEXCd2sVGUq5MM/LyVhVRFTf9XLfQDk5OdDX1xeWe62osLAQycnJsLKyqjEYVKaw8AWep5XNKaVXUASxRAKtHj0apN0tXV5eHszNzREYGKgy+WNTyMrKwqhRo6Cnp4dffvkF2traTd4G1vTq+zPbWuw+m4R1v9zF+Le7IHBi1ctuA8B/M7Iw704qHA1lONC3W9nGgB5A7iMk3xiGwoRkJHwxCV+U/oAxVmPQN7wU6Ql3YWrniWePOmO0d0/YDlZdtYmxxlRaWoQzZ8tulxrxXjQ0NJrmFpfqMkNb1JgZCgAyU+JRUiqGVF4CSUkp2nfvDnEb+GznDMWaA2eoMsmZeXAMOAOZlgZiV1U/n1pOSSl6RJatKPq/EX3QXiwGwj4Drn2HJ3ljkflTFDQ/HIsP7U5AqiHFdt2liNwfDDO7Ich6NATW/YzgNkv9efYYayhR0d7IyoqEfc+NMDX9S5McU90MxavvsTqLiorCgQMHkJSUhBs3bsDT0xMAhMvZm5qhoSEiIiIwatQoXLp0qVnawNibT3m0r+Lte+Wr77W5kQzGGGtgnKEYezNVdzNe+QVT5WUqvfaDQxRjKvj2vUbXuu8jDggIQHx8PCQSCfr374/IyEh06tSp2drTsWNHrFy5stmOz1hrUel8nKJKtjHGGKsTzlCMtTb02jMOTIypgzulWJ3169cP169fb+5mMMYqaKgAJKrQoS5q5Z3rjDHW1DhDMdYCNVgfUlluquxKqTY4cw5jNeLb9xhjjFWpYieXMEcn5ynGWFPhlasYY2+aCh9bwup7HJ4YqxJ3SjU2zlKMsTeY0pxSld7Tx1jT4L4JxhhjbxK+fY+1JC35zgfulGKMMaZCVPHS89dn7mSMMcYYY9UikMqICl8wxZgq7pRijDFWKxyoGGOMMcYqJ+KcxFitcKdUg+NPIcZY66F0+14ztoMxxhhj7I1S2QrGjDEV3CnViPizhzH25ii/RU/08lmF1ffK5+gs38B974wxxhhjL4le+38ZAqn+PciXmzOmgjulGGOMqeBOdcYYY4yxqlXdv/RyXs6Ko3gvC3OXFGt+Le+7kDulWhFvb2+IRCKIRCJIJBJ0794da9asQUlJSb3qPXPmDEQiEZ4/f94wDVVDcnIypkyZAjMzM2hpaaFLly7w8PDA3bt3lcqFhYVhxIgRkMlk0NbWxjvvvIPg4GClMikpKRCJRIiOjlb7+KtWrYKdnR10dHTQoUMHjB49GpcvX1aqc/r06bCysoJUKkW3bt3g5+eH4uLiGusOCQlB3759oa2tDVNTU3zyySd4+vSp2m375ptvIBKJsGDBAqXtSUlJ+PDDD2FkZAQ9PT1MnDgRjx49Uiqzdu1aDB06FNra2jAwMKi0/vLvoYqP//znP8LrR44cgZOTk3CcIUOG4MSJEzW2+8iRI3B2dkbHjh1r/fVgzYeIoDLyx6N8jLFWhjMUZyjOUKyhVLpabPk2jlCMqeBOqUbW1FcbuLq6Ij09Hffu3cOiRYuwatUqbNy4sYlbUTV1AodcLoeTkxOys7Nx5MgRxMfH4+DBg+jdu7dSqNu2bRs8PDwwbNgwXL58GTExMZg8eTJ8fHywePHierWzR48e2L59O2JjY3H+/Hm89dZbcHZ2xpMnTwAAd+/ehUKhwO7du3H79m1s3rwZu3btwooVK6qt98KFC5g6dSqmT5+O27dv49ChQ7hy5QpmzpypVruuXr2K3bt3o0+fPkrb8/Ly4OzsDJFIhFOnTuHChQsoLi6Gu7s7FAqFUK64uBgTJkzA3//+92qPExQUhPT0dOHx5z//WXjt3LlzcHJyws8//4zr16/D0dER7u7uiIqKqrbOvLw8DB8+HOvXr1frXFntVBqAqipb7av0sj7VUT4RJynGWCvGGYozFGeotqk2f6+pk6GEZ6S6+h5jrBLUBmVnZxMAys7OVnmtoKCA4uLiqKCgoE51F+RnU3piAqUnJlB+bCwVJiTUt7lqmzZtGnl4eChtc3JyosGDB1NWVhZ5eXmRgYEBSaVScnV1pYQKbUtJSaEPPviADAwMSFtbm+zt7en48eOUnJxMKPuEFR7Tpk0jIqKcnByaMmUKaWtrk4mJCW3atIlGjBhB8+fPF+q1tLSkNWvWkJeXF8lkMmHfyMhIGj58OGlpaVGXLl1o7ty5lJubS0REUVFRBIBSUlKqPNfU1FTS1NSkhQsXqry2detWAkC///47EZFwDlFRUbV/U18q/56JiIiossyGDRvIysqq2no2btxI1tbWKu01NzevsQ0vXrwgGxsbCg8PV3mfT5w4QWKxWOl7+vnz5yQSiSg8PFylrqCgINLX16/0OADo6NGjNbanInt7e1q9erVaZRvi61FRfX9mW4vdZxPJ0jeMPjsYVWPZ/6Y/pc6nomhydOKrjRt7EPnp0f1xYyjO1o5+/v4rcgh2oHkn59GBlUspYOJYOrDqe9o+6yTdOvdH450IY1UoLS2kiJPWFHHSmuTynCY7bnWZoS1qzAxFRPQk+S6lJybQ8ztxlB8bS6WFhfVprto4Q5XhDFWGM1Tbkvwklyx9w8hh5a81ln0hL6HOp6Ko86koKigpLdv402dEfnr0ZMlkirO1o/vLl5BDsAM5BDvQ1Z+OUMDEsbT/yzW0fdZJCt0a3chnw1jloqK8KeKkNT18eLjJjqluhuIrpWpARMgvLqnFoxQFcgUK5ArklyiQL1fUcv9XD2qAW2SkUimKi4vh7e2Na9euITQ0FJcuXQIRYcyYMZDL5QCA2bNno6ioCOfOnUNsbCzWr18PXV1dWFhY4IcffgAAxMfHIz09HVu2bAEALFy4EBcuXEBoaCjCw8MRGRmJGzduqLQhICAAffv2RVRUFL788kskJSXB1dUV48ePR0xMDA4ePIjz589jzpw5AAAjIyOIxWIcPnwYpaWllZ7X4cOHIZfLKx3NmzVrFnR1dXHgwIF6v39A2cjYnj17oK+vj759+1ZZLjs7G4aGhtXWNWTIEDx48AA///wziAiPHj3C4cOHMWbMmBrbMXv2bIwdOxajR49Wea2oqAgikQjt27cXtmlpaUEsFuP8+fM11l3ZsTp16oSBAwfiu+++q/Z7UaFQ4MWLFzWeO3vDiCpOdP767XtN3RjG2JuqtjlKyFDlOaq4tNlyFGeo+uMMxRmKvSREKQ5RjL1Oo7kb0NIVyEthv7Lme72rl1inveLWuEBbUrcvERHh5MmTOHHiBNzc3HDs2DFcuHABQ4cOBVB2T76FhQWOHTuGCRMmIDU1FePHj0fv3r0BANbW1kJd5b8ojY2NhXvoX7x4gX379mH//v0YNWoUgLLLlc3MzFTaMnLkSCxatEh4PmPGDHh6egr389vY2GDr1q0YMWIEdu7cCXNzc2zduhVLly7F6tWrMWDAADg6OsLT01NoV0JCAvT19WFqaqpyPIlEAmtrayQkJNTpvSsXFhaGyZMnIz8/H6ampggPD0enTp0qLZuYmIht27YhICCg2jqHDRuGkJAQTJo0CYWFhSgpKYG7uzt27NhR7X7/+c9/cOPGDVy9erXS1wcPHgwdHR34+vri66+/BhFh2bJlKC0tRXp6unon/NKaNWswcuRIaGtr47fffsP/+3//D7m5uZg3b16l5QMCApCbm4uJEyfW6jiskTRw1lG6fY8vQWeM1VL9c9SDOu9Z1xzFGYozFGeotqkxuos4OzFWM75SqpUJCwuDrq4utLS04ObmhkmTJsHb2xsaGhoYNGiQUK5jx46wtbXFnTt3AADz5s2Dv78/hg0bBj8/P8TExFR7nPv370Mul2PgwIHCNn19fdja2qqUHTBggNLzmzdvIjg4GLq6usLDxcUFCoUCycnJAMpGmTIyMhASEoIhQ4bg0KFD6NWrF8LDw9V+LyQSSY1lQkJClNoRGRkpvObo6Ijo6GhcvHgRrq6umDhxIh4/fqxSR1paGlxdXTFhwgSleQ0q1uvj4wMAiIuLw/z587Fy5Upcv34dv/76K1JSUoTXIyMjlfYLCQnBgwcPMH/+fISEhEBLS6vS8zAyMsKhQ4fw008/QVdXF/r6+nj+/DnefvttiMW1+zH/8ssvMWzYMPTr1w++vr5YunRplXNq7N+/H6tXr8Z///tfGBsb1/iesjeH6GUyU1o5hnMVa1b8DcgaF2eoVzhDcYZidSeqEJ1eXSlHSv9jjL3CV0rVQKrZDnFrXNQuX1DwAjnpZb909QqLIJZooX136xr2qvrYteXo6IidO3dCIpHAzMwMGhoaCA0NrXG/GTNmwMXFBcePH8dvv/2GdevWITAwEHPnzq1L05Xo6OgoPc/NzcWsWbMqHTXq2rWr8G+ZTAZ3d3e4u7vD39///7N333FRXYnbwJ87A0MvwUZRERQLosYSewmxYImSxFiii7pRo3mt0RjUbMQYy2pAE8tasom6vzXG1U2Mi5oESxRLNFFQIxEEMSqCDQWlTjnvH8NcZugdhOf7+aDMnXPvPXeAO8+cc+658PPzw/LlyzFw4EB4eXkhJSUFd+/ezdezmJ2djbi4OPj5Ff9zGzFihEnQdHNzM6l3ixYt0KJFC3Tv3h1eXl748ssvsWjRIrnM3bt34evri549e2Lbtm0m2za+M4q9vT0AYNWqVejVqxcWLFgAAGjfvj1sbGzQp08fLF++HF26dDFZr1GjRjh69Cju37+PTp06ycu1Wi1OnjyJjRs3IisrC0qlEoMGDUJcXBwePnwIMzMzODo6wtnZ2aTHtiy6deuGTz75BFlZWSZD27/55htMmTIFe/fuNRkOX9RrSs8PybgBIG9bAK/fI6ISKm2OevTndWi0CliqNVBptbBo3gIKi+IbSArbd2kwQzFDMUNRZWOCompTg0ftsVGqGJIklWrot0KrhNpc36tirVFAYa6ARRkvwSsLQwgw1qZNG2g0Gpw7d04eev7o0SNER0fD29tbLtekSRNMnz4d06dPx6JFi/DFF19g1qxZcm+Z8dwEnp6eMDc3x6+//iqHoJSUFMTExKBv375F1rFTp06IiorKV8+iSJKE1q1b48yZMwCAN998E4GBgQgJCUFISIhJ2S1btiA9PR0TJkwodrt2dnaws7MrUR10Oh2ysrLkxwkJCfD19UXnzp2xffv2fL1pBR1feno6zMxMfx+USn1oFkLAysoq33r9+/fHlStXTJb99a9/RevWrREYGCivb2AYHn/s2DHcv38fI0aMKNHxFSYyMhIvvPCCSZjavXs33n77bXzzzTcYNmyYSfnSvKZUA+V9wzJOTzmNUWyTIqKSKm2OSjdXQKNQwAoKqCQBC5USiirKUcxQzFDMUFQ+Up7/jb+tuQ0CRNWNjVKVrQacf7y8vODv74+pU6di69atsLOzw8KFC+Hm5gZ/f38AwNy5czFkyBC0bNkSjx8/xvHjx9GmTRsAgLu7OyRJQmhoKIYOHQorKyvY2dlh4sSJWLBgAZycnNCwYUMEBQVBoVAUe+10YGAgunfvjpkzZ2LKlCmwsbFBVFQUwsLCsHHjRkRGRiIoKAgBAQHw9vaGSqXCiRMn8NVXXyEwMBCAvjdwzZo1eP/992FpaYmAgACYm5vj+++/x+LFi7F8+XL4+PiY7Dc6OjpfXdq2bQtzc3OTZWlpaVixYgVGjBgBFxcXPHz4EJs2bUJCQgJGjRoFQB+mXn75Zbi7uyM4OFi+zTEAODs7F3rsw4cPx9SpU7F582b4+fkhMTERc+fORdeuXQucSwLQB5S8x2JjY4N69eqZLN++fTvatGmDBg0a4OzZs5gzZw7ee+89k8sBbt26heTkZNy6dQtarVbuUWzRogVsbW3xv//9D/fu3UP37t1haWmJsLAwrFy50mQy1K+//hoTJ07E559/jm7duiEpKQmAfkJYBweHQo/dsN+7d+8CyP15ODs7F/maURXJ83dreMjL94ioWlVzzy4zlB4zFDMUFaGIv9vcq/dEngVEZMBGqTpi+/btmDNnDl599VVkZ2ejb9++OHTokBwmtFotZsyYgTt37sDe3h6DBw/GunXrAOiHDn/88cdYuHAh/vrXv2LChAnYsWMH1q5di+nTp+PVV1+Fvb09PvjgA9y+fbvQa/YN2rdvjxMnTuDDDz9Enz59IIRA8+bNMWbMGABA48aN0axZM3z88ce4efMmJEmSH7/33nvydt577z14enoiJCQEn3/+OdLS0gDoe6DGjh2bb78FLbt9+zYaN25sskypVOLatWvYuXMnHj58iHr16uGll15CeHg42rZtCwAICwtDbGwsYmNj861f1F1WJk2ahKdPn2Ljxo2YP38+HB0d8corr2D16tVFvmYlER0djUWLFiE5ORnNmjXDhx9+aPJ6AcCSJUuwc+dO+XHHjh0BAMePH8fLL78Mc3NzbNq0Ce+99x6EEGjRogXWrl1rMs/Dtm3boNFoMGPGDMyYMUNePnHiROzYsaPQ+h04cAB//etf5ceGn0dQUBCWLl1ankOnSmF09z22RhFRHcYMxQwFMENRyZm2UZn+TrNNiig/SZT3frnPodTUVDg4OCAlJUW+Tt0gMzMT8fHx8PDwKDYYFCQjIxUpd+8BABwysqCwtIRFKYZYP8/S0tLg5uaGkJAQTJ48ucr3n5ycjP79+8Pe3h6HDx+GtbV1ldeBql55/2Zri20n47Dy0DW80dENa8e8WGTZvUnJmPXHLbz8gh2+ebG5fmFIa+BpIuIj+yDzWhxuL5mA+eqv0bdxX/Q7ZY/bUVfQ2OctPExwQZ8xLdHet3GR+yCqaDpdNo7/rB990rdPBMzN7YtZo2IUlRnqosrMUADw8GY0NFoFrNQaqDRaWLRsCUUJJt1+3jFDUXVghtK7+TANLwf/DFsLM/z+cdHzqT3TaNEiXH9JaHzf9rBSKoCD84Ff/4mH6cPw4EAErN8YgVdbHQIAfFV/GU7+60u4tuqK5Pu90bj1C/Cf27HSj4kor8hLb+PRoxNo02Y1XF3erJJ9ljRD8e57VGYRERHYvXs34uLicPHiRYwfPx4A5OHsVc3JyQlHjhxB//79cfbs2WqpA1FtY9xvkdvxV+f6MoiIKhQzFFFtVFA+ylnGQedEheLle1QuwcHBiI6OhkqlQufOnREeHi5PElkd6tWrhyVLllTb/omqS2kusStJScO8JgIidxw6AxURUYVhhiKqGUozdV3JikqFfM/L94gKwkYpKrOOHTviwoUL1V0NIqoEUgGhKe9cnURElaW2t4EzQxHVYgUFpdwZz6u0KkTPA16+V+F4oiGi2sP47ntS7kIiIiIiKqna3tJOVA5slCIiqkUqqr1Ivi25qPY7shNRXcTGbyKqYhV1/y/jKRVE3gzFcxtRPmyUIiIioucAW0eJiKgGk/L8D+RetidMHxJRLjZKERFRofSX7+WdpJOJioiIiKgg7EKhmqnm/mayUYqIiFDYG5VpAxQbo4iIiIhMFfFhv+a2AxDVGGyUIiKifAzzIRhPdM5gRURERFRyuX17IucxO/iI8mKjFBER5WM8SWfemc6Zp4iIiIgKw148otJgo1Slq7qT0qRJkyBJEiRJgkqlQosWLbBs2TJoNJpybffnn3+GJEl48uRJxVS0BOLj4zFu3Di4urrC0tISjRs3hr+/P65du2ZSLjQ0FP369YOdnR2sra3x0ksvYceOHSZlbt68CUmSEBkZWeL9L126FK1bt4aNjQ1eeOEFDBgwAOfOnTPZ5uTJk+Hh4QErKys0b94cQUFByM7OLnbbu3btQocOHWBtbQ0XFxe8/fbbePToUbHrJSQk4C9/+Qvq1asHKysrtGvXDr/99pv8vPHP3/A1ePBgk200a9YsX5m///3v8vPR0dHw9fVFo0aNYGlpCU9PT/ztb3+DWq022c6TJ08wY8YMuLi4wMLCAi1btsShQ4eKrP+3336LQYMGoV69eqX+eVD1MR4pJeUuJKpm/CWstarpR8sMxQzFDEXlVsD5Sypo8nOi6lQDI5RZdVeAKtbgwYOxfft2ZGVl4dChQ5gxYwbMzc2xaNGi6q4aACA7OxsqlarIMmq1GgMHDkSrVq3w7bffwsXFBXfu3MHhw4dNQt2GDRswd+5cBAYGYvPmzVCpVPj+++8xffp0/P777wgODi5zPVu2bImNGzfC09MTGRkZWLduHQYNGoTY2Fg0aNAA165dg06nw9atW9GiRQv8/vvvmDp1KtLS0orc7+nTpzFhwgSsW7cOw4cPR0JCAqZPn46pU6fi22+/LXS9x48fo1evXvD19cXhw4fRoEEDXL9+HS+88IJJOcPP38DCwiLftpYtW4apU6fKj+3s7OTvzc3NMWHCBHTq1AmOjo64dOkSpk6dCp1Oh5UrVwLQ/wwHDhyIhg0bYt++fXBzc8Off/4JR0fHIl/TtLQ09O7dG6NHjzbZP1WfEr0n1cA3LiKqQ6Sq+yTHDMUMxQxFpVFoRDIaUi7yfsNcRZQPG6UqWxW3iltYWMDZ2RkA8O677+K7777DgQMHMH36dMyZMwf/+9//kJWVhX79+mH9+vXw8vICAPz555+YOXMmTp06hezsbDRr1gyffvopvL294evrCwDym/fEiROxY8cOPH36FNOnT8f+/fthb2+PDz74AN9//z1efPFFfPbZZwD0vUqTJ0/G9evXsX//frzxxhvYsWMHTp06hUWLFuG3335D/fr18frrr2PVqlWwsbHB1atXERcXh6NHj8Ld3R0A4O7ujl69esnHefv2bcyfPx9z586V3+gBYP78+VCpVJg9ezZGjRqFbt26lel1HDdunMnjtWvX4ssvv8Tly5fRv39/DB482KQHzdPTE9HR0di8eXORgers2bNo1qwZZs+eDQDw8PDAtGnTsHr16iLrs3r1ajRp0sQkLHl4eOQrZ/zzL4ydnV2hZTw9PeHp6Sk/dnd3x88//4zw8HB52VdffYXk5GScOXMG5ubmAPQ/5+IEBAQA0PeQUs1nfPmelPfyPSYqIqp0VX+eYYZihmKGoopgnJvyziHFKRCI8uPle8URAshOK8VXOiR1BiR1BqDJANQZpVzf6KsCzlpWVlbIzs7GpEmT8Ntvv+HAgQM4e/YshBAYOnSoPKR4xowZyMrKwsmTJ3HlyhWsXr0atra2aNKkCf773/8C0A9LTkxMxOeffw4AmDdvHk6fPo0DBw4gLCwM4eHhuHjxYr46BAcHo0OHDoiIiMBHH32EuLg4DB48GCNHjsTly5exZ88enDp1CjNnzgQANGjQAAqFAvv27YNWqy3wuPbt2we1Wo33338/33PTpk2Dra0tdu/eXe7XD9D3am3btg0ODg7o0KFDoeVSUlLg5ORU5LZ69OiB27dv49ChQxBC4N69e9i3bx+GDh1a5HoHDhxAly5dMGrUKDRs2BAdO3bEF198ka/czz//jIYNG6JVq1Z49913CxzS/ve//x316tVDx44d8emnnxZ5aUJsbCx++OEH9OvXz6QuPXr0wIwZM9CoUSP4+Phg5cqVhf6sqGqUZjBBkUVL0gDFQEVEJVXaHGWcoTTlyFAVkKOYocqPGYoZ6nkglWYUQVFFC3gub8ceEeXHkVLFUacDK11LXNwq56tCLL4LqGzKtKoQAkePHsWPP/6IIUOGYP/+/Th9+jR69uwJQH9NfpMmTbB//36MGjUKt27dwsiRI9GuXTsAMOnpMYSEhg0bysOLnz59ip07d+Lrr79G//79AQDbt2+Hq2v+1+qVV17B/Pnz5cdTpkzB+PHjMXfuXACAl5cX1q9fj379+mHz5s1wc3PD+vXr8cEHH+Djjz9Gly5d4Ovri/Hjx8v1iomJgYODA1xcXPLtT6VSwdPTEzExMWV67QxCQ0MxduxYpKenw8XFBWFhYahfv36BZWNjY7Fhw4Zih7v36tULu3btwpgxY5CZmQmNRoPhw4dj06ZNRa5348YNbN68GfPmzcPixYvx66+/Yvbs2VCpVJg4cSIA/bDzN954Ax4eHoiLi8PixYsxZMgQnD17FkqlEgAwe/ZsdOrUCU5OTjhz5gwWLVqExMRErF271mR/PXv2xMWLF5GVlYV33nkHy5YtM6nLsWPHMH78eBw6dAixsbH4f//v/0GtViMoKKjY15WeD4YIxbvvEVG5lDJHFfwuW0ZlzFHMUMxQzFBUUfJ37rFnjygvjpSqZUJDQ2FrawtLS0sMGTIEY8aMwaRJk2BmZmYyDLtevXpo1aoV/vjjDwD6N9rly5ejV69eCAoKwuXLl4vcz40bN6BWq9G1a1d5mYODA1q1apWvbJcuXUweX7p0CTt27ICtra385efnB51Oh/j4eAD6XsekpCTs2rULPXr0wN69e9G2bVuEhYWV+LUobt4FQB8sjethPMTa19cXkZGROHPmDAYPHozRo0fj/v37+baRkJCAwYMHY9SoUSbX+Rtvd/r06QCAqKgozJkzB0uWLMGFCxfwww8/4ObNm/Lz4eHhJuvt2rULAKDT6dCpUyesXLkSHTt2xDvvvIOpU6diy5Yt8v7Gjh2LESNGoF27dnjttdcQGhqKX3/9FT///LNcZt68eXj55ZfRvn17TJ8+HSEhIdiwYQOysrJMjmnPnj24ePEivv76axw8eNAkKOp0OjRs2BDbtm1D586dMWbMGHz44YdyXYp6TanyVdithtkARUR1DDNULmYoZqi6qOKaiwoPUbx8jyg/jpQqjrm1vqethDLSU5Ga9AAAYJ+ZBYWlFSw881+3XuJ9l5Kvr688YaWrqyvMzMxw4MCBYtebMmUK/Pz8cPDgQfz0009YtWoVQkJCMGvWrLLU3ISNjWkv5bNnzzBt2jR5TgBjTZs2lb+3s7PD8OHDMXz4cCxfvhx+fn5Yvnw5Bg4cCC8vL6SkpODu3bv5ehazs7MRFxcHPz+/Yus2YsQIk6Dp5uZmUu8WLVqgRYsW6N69O7y8vPDll1+aTHh69+5d+Pr6omfPnti2bZvJto3vjGJvbw8AWLVqFXr16oUFCxYAANq3bw8bGxv06dMHy5cvR5cuXUzWa9SoEQDAxcUF3t7eJttv06aNfFlAQTw9PVG/fn3ExsbKPbF5devWDRqNBjdv3jQJw02aNAEAeHt7Q6vV4p133sH8+fOhVCrh4uICc3NzuefQUJekpCRkZ2cX+ZrS88MwlL2gRq4Ka/giotqvlDnq4c3r0OoUsFKrYa7VwcLLC4qcuXfKtO9SYIZihjJghqKKx+xEVBg2ShVHkko39FujgTDPuYBPowDMrcp8CV5ZGEKAsTZt2kCj0eDcuXPy0PNHjx4hOjra5E26SZMmmD59OqZPn45Fixbhiy++wKxZs+TeMuPr3T09PWFubo5ff/1VDkEpKSmIiYlB3759i6xjp06dEBUVla+eRZEkCa1bt8aZM2cAAG+++SYCAwMREhKCkJAQk7JbtmxBeno6JkyYUOx27ezsTO6cUhSdTmfSG5aQkABfX1907twZ27dvh0JhOvCwoONLT0+HmZnpn50hmAghYGVlVeB6vXr1QnR0tMmymJgYeRLTgty5cwePHj0qcHi+QWRkJBQKBRo2bFhoGZ1OB7VaDZ1OB6VSiV69euHrr7+GTqeTjzkmJgYuLi5QqVRQqVQlfk2pBilkzgPjYeccPEXVi7+Bz6XS5ihzKwidAhBmgKTTr1vWRqlSYoZihjJghqJSKWLeKDZFUc1Rc3MUG6XqAC8vL/j7+2Pq1KnYunUr7OzssHDhQri5ucHf3x8AMHfuXAwZMgQtW7bE48ePcfz4cbRp0waA/u4hkiQhNDQUQ4cOhZWVFezs7DBx4kQsWLAATk5OaNiwIYKCgqBQKIqd0C8wMBDdu3fHzJkzMWXKFNjY2CAqKgphYWHYuHEjIiMjERQUhICAAHh7e0OlUuHEiRP46quvEBgYCEDfG7hmzRq8//77sLS0REBAAMzNzfH9999j8eLFWL58OXx8fEz2mzeQAEDbtm3lu58YpKWlYcWKFRgxYgRcXFzw8OFDbNq0CQkJCRg1ahQAfZh6+eWX4e7ujuDgYDx48EBev6g7twwfPhxTp07F5s2b4efnh8TERMydOxddu3YtcC4Jg/feew89e/bEypUrMXr0aJw/fx7btm2TexafPXuGjz/+GCNHjoSzszPi4uLwwQcfoEWLFnJv59mzZ3Hu3Dn4+vrCzs4OZ8+exXvvvYe//OUv8l2Bdu3aBXNzc7Rr1w4WFhb47bffsGjRIowZM0Z+nd59911s3LgRc+bMwaxZs3D9+nWsXLmywF5bY8nJybh16xbu3r1r8vNwdnYu9m43VB1yR0rJf9M1972MiKhSMEPpMUMxQ1HJGf8V5/2T5mBzogKICnTixAnx6quvChcXFwFAfPfddybP63Q68dFHHwlnZ2dhaWkp+vfvL2JiYkzKPHr0SIwbN07Y2dkJBwcH8fbbb4unT5+alLl06ZLo3bu3sLCwEI0bNxarV68uVT1TUlIEAJGSkpLvuYyMDBEVFSUyMjJKtU2D9LTHIjE2RiTGxoj0K1dEZmxsmbZTFhMnThT+/v4FPpecnCwCAgKEg4ODsLKyEn5+fiav/cyZM0Xz5s2FhYWFaNCggQgICBAPHz6Un1+2bJlwdnYWkiSJiRMnCiGESE1NFePGjRPW1tbC2dlZrF27VnTt2lUsXLhQXs/d3V2sW7cuX33Onz8vBg4cKGxtbYWNjY1o3769WLFihRBCiAcPHojZs2cLHx8fYWtrK+zs7ES7du1EcHCw0Gq1JtvZv3+/6NOnj7CxsRHQd0aI3bt3m5SJj4+Xn8v7dfv27Xx1y8jIEK+//rpwdXUVKpVKuLi4iBEjRojz58/LZbZv317oNouzfv164e3tLaysrISLi4sYP368uHPnTrHr/e9//xM+Pj7CwsJCtG7dWmzbtk1+Lj09XQwaNEg0aNBAmJubC3d3dzF16lSRlJQkl7lw4YLo1q2bcHBwEJaWlqJNmzZi5cqVIjMzUy7zzTffiE6dOsk/F29vb7Fy5cp8fw9nzpwR3bp1ExYWFsLT01OsWLFCaDSaIutf2GsWFBRU7LEXpbx/s7XFFyfjhHtgqJiz+2KxZfclPhKNjkWI0RFG56eQNkIE2Ysbr70qolq1Fid3hwifHT5iwqEJYt+Kj0Tw6GHiPyv/JTZOOyp+PRRfeQdCVAitVi2OHPUUR456iuzsJ1W236IyQ11UmRlKCCEe3LgmEmNjRErUVZF+5YrQZmeXp7olxgzFDMUMVXf9+TBNuAeGijYfHS627DONRjQ6FiEaHYsQaZqcv6mD7wsRZC8efDBWRLVqLe4sXCh8dvgInx0+4uyhfSJ49DDx9UdLxMZpR8V/Vp4vegdElSQicrI4ctRTJCTsrbJ9ljRDSUJUXHvt4cOHcfr0aXTu3BlvvPEGvvvuO7z22mvy86tXr8aqVauwc+dOeHh44KOPPsKVK1cQFRUFS0tLAMCQIUOQmJiIrVu3Qq1W469//SteeuklfP311wCA1NRUtGzZEgMGDMCiRYtw5coVvP322/jss8/wzjvvlKieqampcHBwQEpKinydukFmZibi4+Ph4eEh16k0MtKfICVR3+PjkJEFhZUVLJo3L/V2nkdpaWlwc3NDSEgIJk+eXOX7T05ORv/+/WFvb4/Dhw/D2rr0c3LR86e8f7O1xT/Db2D5wT/w2ouu+GxsxyLL/jcpGTP+uIV+L9hhz4s556e13kBqAuIv9UXmH7F4uHQq/l/WdnRq2AkjItxx89JFuL84Bvf+dEO3EZ7oMrRZ5R8UkRGdToPjP+vnbenb5yLMzR2qZL9FZYa6qDIzFAA8jI+GRqeAdXbOnFKtWpV9TqnnCDMUVQdmKL1bj9LR99PjsFYpEbVscJFl07RaND95BQBwo297WCsVwKEFwPlteJgxFA++j4T9669hcOtQAMC2BktxZud2uLbqjOT7/dDQ3Q6jFr1U6cdElFfkpSl49Og42rReDVfXN6tknyXNUBV6970hQ4Zg+fLleP311/M9J4TAZ599hr/97W/w9/dH+/bt8a9//Qt3797F/v37AQB//PEHfvjhB/zzn/9Et27d0Lt3b2zYsAHffPONPFx1165dyM7OxldffYW2bdti7NixmD17dr7bsVLli4iIwO7duxEXF4eLFy9i/PjxACAPZ69qTk5OOHLkCPr374+zZ89WSx2Inne5V+rlXL4HUeRcCURUMU6ePInhw4fD1dUVkiTJ2chACIElS5bAxcUFVlZWGDBgAK5fv25SJjk5GePHj4e9vT0cHR0xefJkPHv2zKTM5cuX0adPH1haWqJJkyZYs2ZNZR9audTWsw8zFFEtZpybautJjKgCVWijVFHi4+ORlJSEAQMGyMscHBzQrVs3+c3v7NmzcHR0NLn97YABA6BQKHDu3Dm5TN++fU1uVevn54fo6Gg8fvy4wH1nZWUhNTXV5IsqRnBwMDp06IABAwYgLS0N4eHhqF+/frXVp169eliyZEmhd0oholzGk5iXdk2i6lX7fgfT0tLQoUMHbNq0qcDn16xZg/Xr12PLli04d+4cbGxs4Ofnh8zMTLnM+PHjcfXqVYSFhSE0NBQnT540GUWempqKQYMGwd3dHRcuXMCnn36KpUuX5rvzGVUNZiii51u+HFXAFJy5ZfT/c04pqn4175ewyiY6T0pKApB7e1aDRo0ayc8lJSXlu4OFmZkZnJycTMp4eHjk24bhOcNkg8ZWrVqFjz/+uGIOhGQdO3bEhQsXqrsaRFSJhBD5OvkYqIgq3pAhQzBkyJACn8s72hwA/vWvf6FRo0bYv38/xo4dK482//XXX+XOvQ0bNmDo0KEIDg6Gq6uryWhzlUqFtm3bIjIyEmvXri3xFAhUMZihiGozDo8iKo0qGylVnRYtWoSUlBT56/bt21W4d56UiKhmKe7uTvpC+v/KPpqKiCpKdY42JyKq7UozS4HEz3ZEFa7KRkoZbld67949uLi4yMvv3buHF198US5z//59k/U0Gg2Sk5Pl9Z2dnXHv3j2TMobHhd0S1cLCAhYWFhVyHEREdYHJnFK5C4moGlTnaPOsrCxkZWXJjzkFAhFR2VXgPcaIao0qGynl4eEBZ2dnHD16VF6WmpqKc+fOoUePHgCAHj164MmTJybDmY8dOwadTodu3brJZU6ePAm1Wi2XCQsLQ6tWrQoMU0REdUlFRR2TnsA8XYjMU0R1x6pVq+Dg4CB/NWnSpGorwBstEFEVqch8wxFVRCVXoY1Sz549Q2RkJCIjIwHoh5tHRkbi1q1bkCQJc+fOxfLly3HgwAFcuXIFEyZMgKurK1577TUAQJs2bTB48GBMnToV58+fx+nTpzFz5kyMHTsWrq6uAIBx48ZBpVJh8uTJuHr1Kvbs2YPPP/8c8+bNq8hDqTg8HxHRc6Hgk9XlB5eh1WkBAE/vR0OTeREJUWeQkZZZYHkiqnjGo82N3bt3z2QkeWWMNq/eKRCIiJ4HhX/gi0u5UYX1IHo+VWij1G+//YaOHTuiY8eOAIB58+ahY8eOWLJkCQDggw8+wKxZs/DOO+/gpZdewrNnz/DDDz/A0tJS3sauXbvQunVr9O/fH0OHDkXv3r1N7grj4OCAn376CfHx8ejcuTPmz5+PJUuWcIJOIqIKpDR6e4h9pg9UyQmR0GT8jBsXdmPH+18hO1NTXdWjOqhEc6HVUtU52tzCwgL29vYmX0REVAQhYKHUTx3z3fXvAABJsVeQ+WQbEq5+hn2r/oX01OzqrCHVQTV59F6Fzin18ssvF3mdrCRJWLZsGZYtW1ZoGScnJ3z99ddF7qd9+/YIDw8vcz2JiKgQOafw5o7NAf00NEjwMcerjfsj9VEaEv74AzptCrIzniHtSRZUzlU2NSFRrfbs2TPExsbKjw2jzZ2cnNC0aVN5tLmXlxc8PDzw0UcfFTrafMuWLVCr1QWONv/4448xefJkBAYG4vfff8fnn3+OdevWVcchExHVLkYfgz/p/QkWnFiAFFt9J4BOqwaghtACt34/jZjzL+PFAU2rp55ENQw/TVQwTrVCRM+1nNEoFmYWWNVnFRaFL0JWfXMMHvceAODwxhBEhR8HwLmliCrSb7/9Bl9fX/mxYVqCiRMnYseOHfjggw+QlpaGd955B0+ePEHv3r0LHG0+c+ZM9O/fHwqFAiNHjsT69evl5w2jzWfMmIHOnTujfv36HG1ORFRBjAf09nXrCwC475SFgM//AZGejcgjZ/H70T0AAK1GVx1VJKqRqmyic6p8kyZNgiRJkCQJKpUKLVq0wLJly6DRlO8Sm59//hmSJOHJkycVU9ESiI+Px7hx4+Dq6gpLS0s0btwY/v7+uHbtmkm50NBQ9OvXD3Z2drC2tsZLL72EHTt2mJS5efMmJEmS5zoriaVLl6J169awsbHBCy+8gAEDBsi31DZsc/LkyfDw8ICVlRWaN2+OoKAgZGcXPxR3165d6NChA6ytreHi4oK3334bjx49KnIdrVaLjz76yGR/n3zyicnIxG+//RaDBg1CvXr1Cj3euLg4vP7662jQoAHs7e0xevRok/lFSnpcly9fRp8+fWBpaYkmTZpgzZo1xR73yZMnMXz4cLi6ukKSJOzfv7/YdaiGY6MUUYUxjDbP+2V4TzOMNk9KSkJmZiaOHDmCli1bmmzDMNr86dOnSElJwVdffQVbW1uTMobR5pmZmbhz5w4CAwOr6hBrNGYoZihmKKostvXqo5FnC3h2aF7dVSGqkdgoVcsMHjwYiYmJuH79OubPn4+lS5fi008/re5qyUoSONRqNQYOHIiUlBR8++23iI6Oxp49e9CuXTuTULdhwwb4+/ujV69eOHfuHC5fvoyxY8di+vTpeP/998tVz5YtW2Ljxo24cuUKTp06hWbNmmHQoEF48OABAODatWvQ6XTYunUrrl69inXr1mHLli1YvHhxkds9ffo0JkyYIE/Uv3fvXpw/fx5Tp04tcr3Vq1dj8+bN2LhxI/744w+sXr0aa9aswYYNG+QyaWlp6N27N1avXl3gNtLS0jBo0CBIkoRjx47h9OnTyM7OxvDhw6HT6Up8XKmpqRg0aBDc3d1x4cIFfPrpp1i6dKnJ3G+F7b9Dhw7YtGlTkeWo5hFsfSKiOoAZihmKGYqqCkebExkRdVBKSooAIFJSUvI9l5GRIaKiokRGRkaZtp2W9lgkxsaIxNgYkX7lisiMiytvdUts4sSJwt/f32TZwIEDRffu3UVycrIICAgQjo6OwsrKSgwePFjExMTI5W7evCleffVV4ejoKKytrYW3t7c4ePCgiI+PF9CPh5C/Jk6cKIQQIjU1VYwbN05YW1sLZ2dnsXbtWtGvXz8xZ84cebvu7u5i2bJlIiAgQNjZ2cnrhoeHi969ewtLS0vRuHFjMWvWLPHs2TMhhBARERECgLh582ahx3rr1i1hbm4u5s2bl++59evXCwDil19+EUII+RgiIiJK/6LmMPzOHDlypNAya9asER4eHkVu59NPPxWenp756uvm5lbkesOGDRNvv/22ybI33nhDjB8/Pl/Zwo73xx9/FAqFwuT3/smTJ0KSJBEWFlbovvMe1z/+8Q/xwgsviKysLHlZYGCgaNWqVZHHYAyA+O6770pcvijl/ZutLb44GSfcA0PF7N0Xiy3736Rk0ehYhHgz4nruwhBvIYLsRfzrw0VUq9Yi9cgRERoXKnx2+IjJP06Wix3aECyCRw8Tn01cLR4mPK2MQyEqkE6nEUeOeoojRz1FdnZyle23qMxQF1VmhhJCiAc3ronE2BiREnVVpF+5InRqdXmqW2LMUHrMUMxQddGtR2nCPTBUtP7b4WLLpmm0otGxCNHoWIR4ptboFx5cIESQvXgYOFZEtWotEhYuEunqdOGzw0f47PARadlpQgghYn45LYJHDxMhb00Vvx6Mr8QjIsovMnKKOHLUUyQk7KmyfZY0Q3GkVDGEEEhXp5f4K0OTgQxtpslXadY3/hIV0IRuZWWF7OxsTJo0Cb/99hsOHDiAs2fPQgiBoUOHynfgmTFjBrKysnDy5ElcuXIFq1evhq2tLZo0aYL//ve/AIDo6GgkJibi888/B6Cf7+L06dM4cOAAwsLCEB4ejosXL+arQ3BwMDp06ICIiAh89NFHiIuLw+DBgzFy5EhcvnwZe/bswalTpzBz5kwAQIMGDaBQKLBv3z5otdoCj2vfvn1Qq9UF9uZNmzYNtra22L17d7lfP0DfM7lt2zY4ODigQ4cOhZZLSUmBk5NTkdvq0aMHbt++jUOHDkEIgXv37mHfvn0YOnRokev17NkTR48eRUxMDADg0qVLOHXqFIYMGVLi48jKyoIkSbCwsJCXWVpaQqFQ4NSpUyU+rrNnz6Jv375QqVTyMj8/P0RHR+Px48clrg89p4wnTGAvHxEVo9Q5Km+G0mRUW45ihio/ZihmKCKi4nCi82JkaDLQ7etu5dvImbKtdm7cOVibW5dpXSEEjh49ih9//BFDhgzB/v37cfr0afTs2ROA/pr8Jk2aYP/+/Rg1ahRu3bqFkSNHol27dgAAT09PeVuGN9OGDRvC0dERAPD06VPs3LkTX3/9Nfr37w8A2L59u3yHH2OvvPIK5s+fLz+eMmUKxo8fj7lz5wIAvLy8sH79evTr1w+bN2+Gm5sb1q9fjw8++AAff/wxunTpAl9fX4wfP16uV0xMDBwcHODi4pJvfyqVCp6ennL4KKvQ0FCMHTsW6enpcHFxQVhYGOrXr19g2djYWGzYsAHBwcFFbrNXr17YtWsXxowZg8zMTGg0GgwfPrzY4dgLFy5EamoqWrduDaVSCa1WixUrVmD8+PElPp7u3bvDxsYGgYGBWLlyJYQQWLhwIbRaLRITE0t8XElJSfDw8DAp16hRI/m5wm4rTpVLkkp+m9eae0NYIqptyp2jIsu+allzFDMUM1RezFBUIUwCGHv2iAw4UqqWCQ0Nha2tLSwtLTFkyBCMGTMGkyZNgpmZGbp1yw2F9erVQ6tWrfDHH38AAGbPno3ly5ejV69eCAoKwuXLl4vcz40bN6BWq9G1a1d5mYODA1q1apWvbJcuXUweX7p0CTt27ICtra385efnB51Oh/j4eAD6XsekpCTs2rULPXr0wN69e9G2bVuEhYWV+LUw7oUqzK5du0zqER4eLj/n6+uLyMhInDlzBoMHD8bo0aNx//79fNtISEjA4MGDMWrUKJN5DYy3O336dABAVFQU5syZgyVLluDChQv44YcfcPPmTfn58PBwk/V27doFAPjPf/6DXbt24euvv8bFixexc+dOBAcHY+fOnSV+PRo0aIC9e/fif//7H2xtbeHg4IAnT56gU6dOUCjynwoKO67iFHYM9JzhZAdEVMcwQ+VihjLFDEUGFdWxx5hFlIsjpYphZWaFc+POFV8wR0bGE6Qm6e8C4pCRBYW1NVTNmpV536Xl6+uLzZs3Q6VSwdXVFWZmZjhw4ECx602ZMgV+fn44ePAgfvrpJ6xatQohISGYNWtWWapuwsbGxuTxs2fPMG3aNMyePTtf2aZNm8rf29nZYfjw4Rg+fDiWL18OPz8/LF++HAMHDoSXlxdSUlJw9+7dfD2L2dnZiIuLg5+fX7F1GzFihEnQdHNzM6l3ixYt0KJFC3Tv3h1eXl748ssvsWjRIrnM3bt34evri549e+abpNL4zi329vYAgFWrVqFXr15YsGABAP1dkGxsbNCnTx8sX74cXbp0MVnP0Hu2YMECLFy4EGPHjgUAtGvXDn/++SdWrVqFiRMnFnucBoMGDUJcXBwePnwIMzMzODo6wtnZ2aRXt7jjcnZ2NrnbDAD5sbOzM5o1a1bgMVDVKHPIKWqkVYHbFAxURFSs0uaoR39eh0angHW2GuZaHSxatYKkVJZ536XBDMUMVRRmqNqvzDd2yZuhhIBk1HzFG8YQFY2NUsWQJKl0Q7+zs6BWWgIArJQSFEpLWJTxEryyMIQAY23atIFGo8G5c+fkoeePHj1CdHQ0vL295XJNmjTB9OnTMX36dCxatAhffPEFZs2aJfeWGc9N4OnpCXNzc/z6669yCEpJSUFMTAz69u1bZB07deqEqKiofPUsiiRJaN26Nc6c0V8L+eabbyIwMBAhISEICQkxKbtlyxakp6djwoQJxW7Xzs4OdnZ2JaqDTqdDVlaW/DghIQG+vr7o3Lkztm/fnq+nrKDjS09Ph5mZ6Z+dMidsCyFgZWVV6Hp5t69UKuU7vpSWYQj9sWPHcP/+fYwYMaLEx9WjRw98+OGHUKvVMDc3BwCEhYWhVatW8rDz0vxsqYaRjL8trj+QIYuIilbaHJWutIRGUsBKqYQ5dLA0s4JkVjVxlRmKGaokmKGIiCoWG6UqXfXP3uLl5QV/f39MnToVW7duhZ2dHRYuXAg3Nzf4+/sDAObOnYshQ4agZcuWePz4MY4fP442bdoAANzd3SFJEkJDQzF06FBYWVnBzs4OEydOxIIFC+Dk5ISGDRsiKCgICoWi2LltAgMD0b17d8ycORNTpkyBjY0NoqKiEBYWho0bNyIyMhJBQUEICAiAt7c3VCoVTpw4ga+++gqBgYEA9L2Ba9aswfvvvw9LS0sEBATA3Nwc33//PRYvXozly5fDx8fHZL/R0dH56tK2bVs5FBikpaVhxYoVGDFiBFxcXPDw4UNs2rQJCQkJGDVqFAB96Hj55Zfh7u6O4OBg+TbHgL6nqzDDhw/H1KlTsXnzZvj5+SExMRFz585F165dC5xLwni9FStWoGnTpmjbti0iIiKwdu1avP3223KZ5ORk3Lp1C3fv3jU5XmdnZ7lO27dvR5s2bdCgQQOcPXsWc+bMwXvvvSdfMlCS4xo3bhw+/vhjTJ48GYGBgfj999/x+eefY926dYXWH9D37sbGxsqP4+PjERkZCScnJ5PeXarZSjN3FVHF4u9eXVJTftrMUHrMUMxQVAGM/r452pyqXE3O8JV2/78arDJvZ5z2LFkkxsaIxNgYkX7lisi8caO81S2xgm5nbGC4nbGDg4OwsrISfn5+JrcznjlzpmjevLmwsLAQDRo0EAEBAeLhw4fy88uWLRPOzs5CkqQib2fctWtXsXDhQnk9d3d3sW7dunz1OX/+vBg4cKCwtbUVNjY2on379mLFihVCCCEePHggZs+eLXx8fIStra2ws7MT7dq1E8HBwUKr1ZpsZ//+/aJPnz7CxsZGvt3y7t27TcoUdEtmw9ft27fz1S0jI0O8/vrrwtXVVahUKuHi4iJGjBghzp8/L5fZvn17odsszvr164W3t7ewsrISLi4uYvz48eLOnTtFrpOamirmzJkjmjZtKiwtLYWnp6f48MMPTW4pXFidgoKC5DKBgYGiUaNGwtzcXHh5eYmQkBCh0+lKfVyXLl0SvXv3FhYWFsLNzU38/e9/L/a4jx8/XuB2Db9PZcXbGev9M/yGcA8MFbO+vlhs2W+TkkWjYxHizYjruQvXthUiyF7EvzFcRLVqLVLDwsTBuIPCZ4ePmPzDZLnY4U1rRfDoYeKziX8X92+lVsahEBVIp9OKI0c9xZGjniI7O7nK9lvS2xnXFZWZoYQQ4sGNayIxNkakRl0V6VeuCJ1aXZ7qlhgzFDMUM1TddetRmnAPDBWt/nao2LLpGq1odCxCNDoWIZ6pNfqFhz4QIshePAwcK6JatRYJgQtFhjpD+OzwET47fMSz7GdCCCFizp8RwaOHiZC3popzB+Iq85CI8om8NFUcOeopEhL2VNk+S5qhJCHqXjttamoqHBwckJKSIl+nbpCZmYn4+Hh4eHjA0tKy1NtOT3uM1KSHAAAHtRbmjRrBrI7cSSMtLQ1ubm4ICQnB5MmTq3z/ycnJ6N+/P+zt7XH48GFYW1fdZZNUfcr7N1tbfHkqHp+ERmFEB1esf6tjkWW/u/cY70b9iT4v2GLvizmXCazzAVJu4+aVfsi4eh2NN25AuGc2AsMD0dW5K770+xIA8MM/1uHqiaMws+qDccv+Hxo0LdmlG0TlJYQOx457AQD69vkN5uZV895aVGaoiyozQwHAw/hoaHQK2GSrYabVwbJNmzLPKfU8YYai6sAMpXc7OR191hyHpbkC1z4ZUmTZDK0OHif1NzOI69MONmZK4HAgcG4LHmUOxf39kXB47TU4LQ/CS7teAgCcfessbFW2uP7rWRwIXgFJ6YLeby1C1+GeRe2KqEJduvwOHj48ijatV8HVdXSV7LOkGYp336tEkrtHrW6QioiIwO7duxEXF4eLFy/Kt9Y1DGevak5OTjhy5Aj69++Ps2fPVksdiGoTXqpHRFWubNP8PHeYoYhqt+IyVJ0bFUJUBM4pReUSHByM6OhoqFQqdO7cGeHh4fIEkNWhXr16WLJkSbXtn6j2Y0MVEVUiAUAChCRB6ehYq0dJMUMR1S0mN5BhqxSRjI1SVGYdO3bEhQsXqrsaRFRN6uDV31RD8Hev9su2soR948bVXY1KwwxFRESkx8v3iIjqqKI+1xt/6BcFduexUYCIKg/HZBJRTVdoEsoTsArOUUTVoyb+PrJRioiICiTxYyERERFRqRWXoTjilygXG6UqEz/PEVEVKc3ppuCyOUuLm9zceDoE5ikiqmAiz/9ERJWtNPd1KTpDlWKnPMkRydgoVeF4hiGiOoKnOyIiIqKS4V2NiQrERqlKxRMPEVWtcrcTsaGJiGoEZigiqlrlHgFeyPoFzeHDuEWUi41SRERUsJzPhIXNe1ATJ0qk2oyNFERE9Hwoek4pwVYpqgY1N0exUYqIiEpMMh56zkBFRERERETlwEapilaNH9ImTZoESZIgSRJUKhVatGiBZcuWQaPRlGu7P//8MyRJwpMnTyqmoiUQHx+PcePGwdXVFZaWlmjcuDH8/f1x7do1k3KhoaHo168f7OzsYG1tjZdeegk7duwwKXPz5k1IkoTIyMgS73/p0qVo3bo1bGxs8MILL2DAgAE4d+6cyTYnT54MDw8PWFlZoXnz5ggKCkJ2dnax2961axc6dOgAa2truLi44O2338ajR4+KXOfp06eYO3cu3N3dYWVlhZ49e+LXX381KfPs2TPMnDkTjRs3hpWVFby9vbFlyxaTMtOmTUPz5s1hZWWFBg0aFPia3rp1C8OGDYO1tTUaNmyIBQsWFPo7dPr0aZiZmeHFF18s9ri//fZbDBo0CPXq1Sv1z4OIiKgyMUMxQzFDUWUznVKKPXtEBmyUqmUGDx6MxMREXL9+HfPnz8fSpUvx6aefVne1ZCUJHGq1GgMHDkRKSgq+/fZbREdHY8+ePWjXrp1JqNuwYQP8/f3Rq1cvnDt3DpcvX8bYsWMxffp0vP/+++WqZ8uWLbFx40ZcuXIFp06dQrNmzTBo0CA8ePAAAHDt2jXodDps3boVV69exbp167BlyxYsXry4yO2ePn0aEyZMwOTJk3H16lXs3bsX58+fx9SpU4tcb8qUKQgLC8P//d//4cqVKxg0aBAGDBiAhIQEucy8efPwww8/4N///jf++OMPzJ07FzNnzsSBAwfkMp07d8b27dvxxx9/4Mcff4QQAoMGDYJWqwUAaLVaDBs2DNnZ2Thz5gx27tyJHTt2YMmSJfnq9OTJE0yYMAH9+/cv0WualpaG3r17Y/Xq1SUqT9WMt9YjojqGGYoZihmKqgpjFpERUQelpKQIACIlJSXfcxkZGSIqKkpkZGSUadtpTx+JxNgYkRgbIzIysspb1VKZOHGi8Pf3N1k2cOBA0b17d5GcnCwCAgKEo6OjsLKyEoMHDxYxMTFyuZs3b4pXX31VODo6Cmtra+Ht7S0OHjwo4uPjBfRN+fLXxIkThRBCpKaminHjxglra2vh7Ows1q5dK/r16yfmzJkjb9fd3V0sW7ZMBAQECDs7O3nd8PBw0bt3b2FpaSkaN24sZs2aJZ49eyaEECIiIkIAEDdv3iz0WG/duiXMzc3FvHnz8j23fv16AUD88ssvQgghH0NERETpX9Qcht+ZI0eOFFpmzZo1wsPDo8jtfPrpp8LT0zNffd3c3ApdJz09XSiVShEaGmqyvFOnTuLDDz+UH7dt21YsW7asyDJ5Xbp0SQAQsbGxQgghDh06JBQKhUhKSpLLbN68Wdjb24usLNPf5zFjxoi//e1vIigoSHTo0KHQfeRVET8PY+X9m60tvgy/IdwDQ8XMry8WW/a7pGTR6FiEGHnxeu7CtT5CBNmL+DdGiKhWrUXKjz+KH+J/ED47fMTEwxPlYj9s/kwEjx4mPpuwStyNfVIJR0JUMJ1OJ44c9RRHjnqKrKxHVbbfojJDXVSZGUoIIe5fvyYSY2PEg5vx5ahl6TFD6TFDFV4mL2ao2uN2cppwDwwVLT88VGzZDI1WNDoWIRodixBP1Rr9wkOBQgTZi4eBY0VUq9Yi4YMPRLY2W/js8BE+O3zEk0x9Xor97RcRPHqYCHlrsji973oReyGqeJGX3hFHjnqKOwnfVNk+S5qhOFKqGEII6NLTS/6VkQGRmQmRmQldRinWK+BLVEATupWVFbKzszFp0iT89ttvOHDgAM6ePQshBIYOHQq1Wg0AmDFjBrKysnDy5ElcuXIFq1evhq2tLZo0aYL//ve/AIDo6GgkJibi888/B6DvVTp9+jQOHDiAsLAwhIeH4+LFi/nqEBwcjA4dOiAiIgIfffQR4uLiMHjwYIwcORKXL1/Gnj17cOrUKcycORMA0KBBAygUCuzbt0/ufcpr3759UKvVBfbmTZs2Dba2tti9e3e5Xz9A3zO5bds2ODg4oEOHDoWWS0lJgZOTU5Hb6tGjB27fvo1Dhw5BCIF79+5h3759GDp0aKHraDQaaLVaWFpamiy3srLCqVOn5Mc9e/bEgQMHkJCQACEEjh8/jpiYGAwaNKjA7aalpWH79u3w8PBAkyZNAABnz55Fu3bt0KhRI7mcn58fUlNTcfXqVXnZ9u3bcePGDQQFBRV5vPQcKs0ciOzmI6JilDZHGTKUyMwsV4aqiBzFDFV+zFDMUERExTGr7grUdCIjA9GdOpdp3Sfl3HerixcgWVuXaV0hBI4ePYoff/wRQ4YMwf79+3H69Gn07NkTgP6a/CZNmmD//v0YNWoUbt26hZEjR6Jdu3YAAE9PT3lbhpDQsGFDODo6AtBfn79z5058/fXX8tDj7du3w9XVNV9dXnnlFcyfP19+PGXKFIwfPx5z584FAHh5eWH9+vXo168fNm/eDDc3N6xfvx4ffPABPv74Y3Tp0gW+vr4YP368XK+YmBg4ODjAxcUl3/5UKhU8PT0RExNTptfOIDQ0FGPHjkV6ejpcXFwQFhaG+vXrF1g2NjYWGzZsQHBwcJHb7NWrF3bt2oUxY8YgMzMTGo0Gw4cPx6ZNmwpdx87ODj169MAnn3yCNm3aoFGjRti9ezfOnj2LFi1ayOU2bNiAd955B40bN4aZmRkUCgW++OIL9O3b12R7//jHP/DBBx8gLS0NrVq1QlhYGFQqFQAgKSnJJEwBkB8nJSUBAK5fv46FCxciPDwcZmY8hTzPyvZxrebeuYPqEjaIPi/Kk6MelnPfZc1RzFDMUMxQVBL53omKjUi5BfguRtWmBnYqc6RULRMaGgpbW1tYWlpiyJAhGDNmDCZNmgQzMzN069ZNLlevXj20atUKf/zxBwBg9uzZWL58OXr16oWgoCBcvny5yP3cuHEDarUaXbt2lZc5ODigVatW+cp26dLF5PGlS5ewY8cO2Nrayl9+fn7Q6XSIj48HoO91TEpKwq5du9CjRw/s3bsXbdu2RVhYWIlfC0NIKMquXbtM6hEeHi4/5+vri8jISJw5cwaDBw/G6NGjcf/+/XzbSEhIwODBgzFq1CiTeQ2Mtzt9+nQAQFRUFObMmYMlS5bgwoUL+OGHH3Dz5k35+fDwcJP1du3aBQD4v//7Pwgh4ObmBgsLC6xfvx5vvfUWFIrcP+ENGzbgl19+wYEDB3DhwgWEhIRgxowZOHLkiEl9x48fj4iICJw4cQItW7bE6NGjkZmZWaLXVKvVYty4cfj444/RsmXLUr+mVIOVoa2p5r2lERGVHTNULmYoZigqBaksIYopisiATfTFkKys0OrihRKXT09LxtP7jwEADq5NYGlR/Jt6UfsuLV9fX2zevBkqlQqurq4wMzMzmaSxMFOmTIGfnx8OHjyIn376CatWrUJISAhmzZpVlqqbsLGxMXn87NkzTJs2DbNnz85XtmnTpvL3dnZ2GD58OIYPH47ly5fDz88Py5cvx8CBA+Hl5YWUlBTcvXs3X89idnY24uLi4OfnV2zdRowYYRI03dzcTOrdokULtGjRAt27d4eXlxe+/PJLLFq0SC5z9+5d+Pr6omfPnti2bZvJto3vjGJvbw8AWLVqFXr16oUFCxYAANq3bw8bGxv06dMHy5cvR5cuXUzWM/SwNW/eHCdOnEBaWhpSU1Ph4uKCMWPGyL2eGRkZWLx4Mb777jsMGzZM3nZkZCSCg4MxYMAAeZsODg5wcHCAl5cXunfvjhdeeAHfffcd3nrrLTg7O+P8+fMmx3Hv3j0AgLOzM54+fYrffvsNERER8qUCOp0OQgiYmZnhp59+KvI1pcpTljxUUgVfAiPYKkVExSptjnp44zq0kgJmZuao16Rp8SsUs+/SYIZihmKGqpukUoSokhaViuztY4AiMsZGqWJIklSqod8KXQYkywz999bWUJSjUaosDCHAWJs2baDRaHDu3Dl56PmjR48QHR0Nb29vuVyTJk0wffp0TJ8+HYsWLcIXX3yBWbNmyb1lxnMTeHp6wtzcHL/++qscglJSUhATE5NvqHNenTp1QlRUVL56FkWSJLRu3RpnzpwBALz55psIDAxESEgIQkJCTMpu2bIF6enpmDBhQrHbtbOzg52dXYnqoNPpkJWVJT9OSEiAr6+vfDcW4x43AAUeX3p6er7h2kqlEoD+g7+VlVWRr4uNjQ1sbGzw+PFj/Pjjj1izZg0A/d121Gp1vjoolUrodLpCtyeEgBBCPq4ePXpgxYoVuH//Pho2bAgACAsLg729Pby9vWFubo4rV66YbOMf//gHjh07hn379sHDwwM2NjYlfk2pZis6UBERFa+0OUqytIQkKSCZm0NRxikMyooZihkq77aZoah0St7YxGYpolxslKoDvLy84O/vj6lTp2Lr1q2ws7PDwoUL4ebmBn9/fwDA3LlzMWTIELRs2RKPHz/G8ePH0aZNGwCAu7s7JElCaGgohg4dCisrK9jZ2WHixIlYsGABnJyc0LBhQwQFBUGhUBTb2xAYGIju3btj5syZmDJlCmxsbBAVFYWwsDBs3LgRkZGRCAoKQkBAALy9vaFSqXDixAl89dVXCAwMBKDvDVyzZg3ef/99WFpaIiAgAObm5vj++++xePFiLF++HD4+Pib7jY6OzleXtm3bwtzc3GRZWloaVqxYgREjRsDFxQUPHz7Epk2bkJCQgFGjRgHQh6mXX34Z7u7uCA4Olm9zDOh7wwozfPhwTJ06FZs3b4afnx8SExMxd+5cdO3atcC5JAwMtx5u1aoVYmNjsWDBArRu3Rp//etfAeh7Efv164cFCxbAysoK7u7uOHHiBP71r39h7dq1APSXC+zZsweDBg1CgwYNcOfOHfz973+HlZWVPEnooEGD4O3tjYCAAKxZswZJSUn429/+hhkzZsDCwgIA8r2uDRs2hKWlZb7leSUnJ+PWrVu4e/cugNyfh7Ozc5GvGZVORdwgoSimf96MVERUuzFD6TFDMUPVBZWdakz+vhmhiGRslKojtm/fjjlz5uDVV19FdnY2+vbti0OHDslhQqvVYsaMGbhz5w7s7e0xePBgrFu3DoB+6PDHH3+MhQsX4q9//SsmTJiAHTt2YO3atZg+fTpeffVV2Nvb44MPPsDt27fz3eEkr/bt2+PEiRP48MMP0adPHwgh0Lx5c4wZMwYA0LhxYzRr1gwff/wxbt68CUmS5MfvvfeevJ333nsPnp6eCAkJweeff460tDQAwO7duzF27Nh8+y1o2e3bt9G4cWOTZUqlEteuXcPOnTvx8OFD1KtXDy+99BLCw8PRtm1bAPqer9jYWMTGxuZbv6hGgUmTJuHp06fYuHEj5s+fD0dHR7zyyitYvXp1ka9ZSkoKFi1ahDt37sDJyQkjR47EihUrTMLgN998g0WLFmH8+PFITk6Gu7s7VqxYIc+1YGlpifDwcHz22Wd4/PgxGjVqhL59++LMmTNyj55SqURoaCjeffdd9OjRAzY2Npg4cSKWLVtWZP1K4sCBA3IABHJ/HkFBQVi6dGm5t09Vj9MhUFUqzeUVRBWJGYoZihmKiKjySKKyu9VroNTUVDg4OCAlJUW+Tt0gMzMT8fHx8PDwKDYYFCT96SOk3k8GALzQuBksLMyLWaP2SEtLg5ubG0JCQjB58uQq339ycjL69+8Pe3t7HD58GNZVPOyfqkd5/2Zri+2n4/Hx/6LwansXbBzXqciy++89xvSoP9HL0Rb/7ZhzqcNn7YAnt3Dz95eR8XsM3D7/HL+0AuafmI9ODTth55CdAICftq7HlWM/wcyyF978cDrcWr5Q2YdGJDt6rDkAoE/v81Cp6lXJPovKDHVRZWYoAHgQG62fU8rcHPWbNquAGj8fmKGoOjBD6SU8yUCvvx+DykyBmOVDiiybpdPB/YT+ZgbX+7SDnZkS+GER8Ms/8ChrCO5/dwn2I4aj0d9XouP/dQQAhI8Jh6OlI25c/BXfrf4YkrIRur62EL1He1X6sREZXLo8DQ8fHkHrVivg5pa/o6EylDRD8e57VGYRERHYvXs34uLicPHiRYwfPx4A5OHsVc3JyQlHjhxB//79cfbs2WqpA1FtUuzIlDrXpUFEVDGYoYhqt+Lm5RQMUUQyXr5H5RIcHIzo6GioVCp07twZ4eHhqF+/frXVp169eliyZEm17Z/ouVdcQ5TR84xTRERlxwxFVNuU4jJzhigiGRulqMw6duyICxdKfptnIqpl6t7V30REFYIZiqgO4tSIRAXi5XsVjB/RiKhu4NmOiIiIqDgFXarHFEWUi41SlYQN4URU05kGovxnLcN8CIXNe8BARdWHv31ERFRTFJChOC8n1Vg175ePjVJERFRiJhN31rz3NCIiIqIqwfFPRBWDjVJERLVAaUZnFtd5R0RERFRXVFUsMu3YYwMWkQEbpYiIKL+ShCXmKSKqNGw9J6Kap6LOTIxQRLnYKFXhjE4xzFNEVMUqMuTIc0oV0kBV2FxTRERERM+dioo1wnRUVP68xPxEZIyNUrXIpEmTIEkSJEmCSqVCixYtsGzZMmg0mnJt9+eff4YkSXjy5EnFVLQE4uPjMW7cOLi6usLS0hKNGzeGv78/rl27ZlIuNDQU/fr1g52dHaytrfHSSy9hx44dJmVu3rwJSZIQGRlZ4v0vXboUrVu3ho2NDV544QUMGDAA586dM9nm5MmT4eHhASsrKzRv3hxBQUHIzs4udtu7du1Chw4dYG1tDRcXF7z99tt49OhRkeucPHkSw4cPh6urKyRJwv79+/OV+fbbbzFo0CDUq1ev2OMVQmDIkCGFbmvHjh1o3749LC0t0bBhQ8yYMcPk+R9//BHdu3eHnZ0dGjRogJEjR+LmzZtVcpxUudiWTkR1ETMUMxQzFFUptksRydgoVcsMHjwYiYmJuH79OubPn4+lS5fi008/re5qyUoSONRqNQYOHIiUlBR8++23iI6Oxp49e9CuXTuTULdhwwb4+/ujV69eOHfuHC5fvoyxY8di+vTpeP/998tVz5YtW2Ljxo24cuUKTp06hWbNmmHQoEF48OABAODatWvQ6XTYunUrrl69inXr1mHLli1YvHhxkds9ffo0JkyYgMmTJ+Pq1avYu3cvzp8/j6lTpxa5XlpaGjp06IBNmzYVWaZ3795YvXp1scf32WefFXpXkLVr1+LDDz/EwoULcfXqVRw5cgR+fn7y8/Hx8fD398crr7yCyMhI/Pjjj3j48CHeeOONKjlOqmbGvzYMVERUizBDMUMxQ1GlkoxHTxFVLakmdz2LOiglJUUAECkpKfmey8jIEFFRUSIjI6NM236W+kAkxsaIpNgYkZmVXd6qlsrEiROFv7+/ybKBAweK7t27i+TkZBEQECAcHR2FlZWVGDx4sIiJiZHL3bx5U7z66qvC0dFRWFtbC29vb3Hw4EERHx8voD9vyl8TJ04UQgiRmpoqxo0bJ6ytrYWzs7NYu3at6Nevn5gzZ468XXd3d7Fs2TIREBAg7Ozs5HXDw8NF7969haWlpWjcuLGYNWuWePbsmRBCiIiICAFA3Lx5s9BjvXXrljA3Nxfz5s3L99z69esFAPHLL78IIYR8DBEREaV/UXMYfmeOHDlSaJk1a9YIDw+PIrfz6aefCk9Pz3z1dXNzK3FdAIjvvvuu0OeLO96IiAjh5uYmEhMT820rOTlZWFlZFXmce/fuFWZmZkKr1crLDhw4ICRJEtnZ+t/5qjhOg/L+zdYW20/dEO6BoeL/7bpQbNn995JFo2MR4vWL13MXrmsnRJC9uPmmv4hq1VqkHP5BHLl5RPjs8BF/OfgXudhP2zaI4NHDxGcTVoibvz+sjEMhKtSRo57iyFFPkZX1oMr2WVRmqIsqM0MJIcT969dEYmyMePBn4RmgMjBD6TFDMUPVRQmP04V7YKjwWnyo2LJZWq1odCxCNDoWIVLUGv3Cw4uECLIXDxeOEVGtWos77y8QOp1O+OzwET47fMSjjEdCCCFuRPwmgkcPEyFv/VUc//cflXlIRPlcujRNHDnqKe7c+brK9lnSDMWRUpWq+lsjrayskJ2djUmTJuG3337DgQMHcPbsWQghMHToUKjVagDAjBkzkJWVhZMnT+LKlStYvXo1bG1t0aRJE/z3v/8FAERHRyMxMRGff/45AGDevHk4ffo0Dhw4gLCwMISHh+PixYv56hAcHIwOHTogIiICH330EeLi4jB48GCMHDkSly9fxp49e3Dq1CnMnDkTANCgQQMoFArs27cPWq22wOPat28f1Gp1gb1506ZNg62tLXbv3l0hr2F2dja2bdsGBwcHdOjQodByKSkpcHJyKnJbPXr0wO3bt3Ho0CEIIXDv3j3s27cPQ4cOrZC6Fic9PR3jxo3Dpk2b4OzsnO/5sLAw6HQ6JCQkoE2bNmjcuDFGjx6N27dvy2U6d+4MhUKB7du3Q6vVIiUlBf/3f/+HAQMGwNzcvEYcJ1WQnFNYwXNHCXbzEVGtxgxVfsxQzFB1lfFoOsE77REViY1SxRBCQJ2lLcWXDpps/Vfp1sv/VZ4TmBACR44cwY8//oimTZviwIED+Oc//4k+ffqgQ4cO2LVrFxISEuTrzW/duoVevXqhXbt28PT0xKuvvoq+fftCqVTKIaFhw4ZwdnaGg4MDnj59ip07dyI4OBj9+/eHj4+P/Aab1yuvvIL58+ejefPmaN68OVatWoXx48dj7ty58PLyQs+ePbF+/Xr861//QmZmJtzc3LB+/XosWbIEL7zwAl555RV88sknuHHjhrzNmJgYODg4wMXFJd/+VCoVPD09ERMTU+bXD9DPtWBrawtLS0usW7cOYWFhqF+/foFlY2NjsWHDBkybNq3Ibfbq1Qu7du3CmDFjoFKp5NezqoZav/fee+jZsyf8/f0LfP7GjRvQ6XRYuXIlPvvsM+zbtw/JyckYOHCgfNmAh4cHfvrpJyxevBgWFhZwdHTEnTt38J///KfGHCcREdUMpc1RhgxVnTmKGYoZqiDMUFSR2ExFlMusuitQ02myddg250QZ104o177f+bwfzC2UpVrHEALUajV0Oh3GjRuHN954A6GhoejWrZtcrl69emjVqhX++OMPAMDs2bPx7rvv4qeffsKAAQMwcuRItG/fvtD93LhxA2q1Gl27dpWXOTg4oFWrVvnKdunSxeTxpUuXcPnyZezatUteJoSATqdDfHw82rRpgxkzZmDChAn4+eef8csvv2Dv3r1YuXIlDhw4gIEDB5botVCpVMWW2bVrl0kIOnz4MPr06QMA8PX1RWRkJB4+fIgvvvgCo0ePxrlz59CwYUOTbSQkJGDw4MEYNWqUyfX+tra28vd/+ctfsGXLFkRFRWHOnDlYsmQJ/Pz8kJiYiAULFmD69On48ssvER4ejiFDhsjrbd26FePHjy/R8RbnwIEDOHbsGCIiIgoto9PpoFarsX79egwaNAgAsHv3bjg7O+P48ePw8/NDUlISpk6diokTJ+Ktt97C06dPsWTJErz55psICwuDJEnVepxURoXMj5G/GHv+iKjkypej4su179LmKGaoXMxQppihqEglzVDGDxihiGRslKplfH19sXnzZqhUKri6usLMzAwHDhwodr0pU6bAz88PBw8exE8//YRVq1YhJCQEs2bNKnedbGxsTB4/e/YM06ZNw+zZs/OVbdq0qfy9nZ0dhg8fjuHDh2P58uXw8/PD8uXLMXDgQHh5eSElJQV3796Fq6uryTays7MRFxdnMrFkYUaMGGESNN3c3Ezq3aJFC7Ro0QLdu3eHl5cXvvzySyxatEguc/fuXfj6+qJnz57Ytm2bybaN79xib28PAFi1ahV69eqFBQsWAADat28PGxsb9OnTB8uXL0eXLl1M1mvUqFGxx1BSx44dQ1xcHBwdHU2Wjxw5En369MHPP/8s95p6e3vLzzdo0AD169fHrVu3AACbNm2Cg4MD1qxZI5f597//jSZNmuDcuXPo3r17tR4nEdV+zPJUGZihmKEKwwxFRFR52ChVDDOVAu983q/E5dOePsKzB48hAXBo3AwWqrK/xGaq0l9daQgBxtq0aQONRoNz586hZ8+eAIBHjx4hOjra5I2zSZMmmD59OqZPn45Fixbhiy++wKxZs+TeMuNh5Z6enjA3N8evv/4qh6CUlBTExMSgb9++RdaxU6dOiIqKylfPokiShNatW+PMmTMAgDfffBOBgYEICQlBSEiISdktW7YgPT0dEyZMKHa7dnZ2sLOzK1EddDodsrKy5McJCQnw9fVF586dsX37digUpj+vgo4vPT0dZmamvxNKpb4XVwgBKyurUr0upbFw4UJMmTLFZFm7du2wbt06DB8+HIB+yDign/uicePGAIDk5GQ8fPgQ7u7u8jHkPVbDMeh0OrlMdR0nlVzBc0XlPluyckREhSttjnoYFwOtpICZSoV6jZsWv0Ix+y4NZihmqMIwQ1FBCh0xnmd5gTmKo82pmtTEXM9GqWJIklSqod/mWRLMVApIAMwtlDBXle7yu8rg5eUFf39/TJ06FVu3boWdnR0WLlwINzc3+br4uXPnYsiQIWjZsiUeP36M48ePo02bNgAAd3d3SJKE0NBQDB06FFZWVrCzs8PEiROxYMECODk5oWHDhggKCoJCoSj0NrkGgYGB6N69O2bOnIkpU6bAxsYGUVFRCAsLw8aNGxEZGYmgoCAEBATA29sbKpUKJ06cwFdffYXAwEAA+t7ANWvW4P3334elpSUCAgJgbm6O77//HosXL8by5cvh4+Njst/o6Oh8dWnbtq08saRBWloaVqxYgREjRsDFxQUPHz7Epk2bkJCQgFGjRgHQh6mXX34Z7u7uCA4Olm9zDKDAyS8Nhg8fjqlTp2Lz5s3ykOy5c+eia9eu+XorjT179gyxsbHy4/j4eERGRsLJyUkOtMnJybh16xbu3r1rcrzOzs4mX3k1bdoUHh4eAPS3cfb398ecOXOwbds22NvbY9GiRWjdujV8fX0BAMOGDcO6deuwbNkyeej54sWL4e7ujo4dO1b6cVLVKfbWsTXvPY2IapjS5igzlQKSpICZSlHqKQwqAzOUHjMUMxRVpJrYLEBUjSr+xn81X2XezvhZyn2RGBsjkmJjRGaWurxVLZWCbmdsYLidsYODg7CyshJ+fn4mtzOeOXOmaN68ubCwsBANGjQQAQEB4uHD3Nu9L1u2TDg7OwtJkoq8nXHXrl3FwoUL5fXc3d3FunXr8tXn/PnzYuDAgcLW1lbY2NiI9u3bixUrVgghhHjw4IGYPXu28PHxEba2tsLOzk60a9dOBAcHm9xCVwgh9u/fL/r06SNsbGzk2y3v3r3bpExBt2Q2fN2+fTtf3TIyMsTrr78uXF1dhUqlEi4uLmLEiBHi/Pnzcpnt27cXus3irF+/Xnh7ewsrKyvh4uIixo8fL+7cuVPkOsePHy9wX4afRVF1CgoKKnS7KOCWwSkpKeLtt98Wjo6OwsnJSbz++uvi1q1bJmV2794tOnbsKGxsbESDBg3EiBEjxB9/mN7atrKOMy/ezlhvx+l44R4YKv7frgvFlv3+3mPR6FiEeO1i7jlAfNZeiCB7cXPUayKqVWuRcviwOPrnUeGzw0eMOzhOLhb2xSYRPHqY+GzCcnHj0oPKOBSiQh056imOHPUUmVlV97tX0tsZ1xWVmaGEEOL+9WsiMTZGPLh1szzVLDVmKGYoZqi66+6TdOEeGCq8Fh8qtmy2VicaHYsQjY5FiCfZOZ/1flgsRJC9eLRojIhq1Vrcmf++EEIInx0+wmeHj3iQrn/Pio/4TQSPHiZC3pokju6MqrTjISrIpUvTxJGjnuL2nV1Vts+SZihJiLo3djA1NRUODg5ISUmRr1M3yMzMRHx8PDw8PGBpaVnqbaelPsDTB08gAXBs6gEL87ozGC0tLQ1ubm4ICQnB5MmTq3z/ycnJ6N+/P+zt7XH48GFYW1tXeR2o6pX3b7a22HnmJoIOXMWwdi7YNL5TkWUP3H+Cd67eRA9HG3zX0Uu/8PMOwOOb+DPqFaRfvga3z9bhN28V5hyfg/YN2mPXUP2kukf++Q9cCjsEM8seGDHvHXh0aFDZh0YkO3qsOQCgd+9zsFAVfCevilZUZqiLKjNDAcCD2Gj58r36TdwrosrPBWYoqg7MUHqJKRnoseoYzJUSrq8YWmRZtU6gyYlLAIDo3j5wMDcDfvwQOLsRydlDcO/bS7B/9VW4BX+KdjvbAQCOjz6O+lb1cfPSRfx35RJIygZ4cfAHeGVCm0o/NiKDy5en48HDMLRq9Qkau42rkn2WNEOVftIiohwRERHYvXs34uLicPHiRfnOH4XdKreyOTk54ciRI+jfvz/Onj1bLXUgqis48JyIqOyYoYjqNqYoolx1ZxgPVYrg4GBER0dDpVKhc+fOCA8PR/36VdN7XZB69ephyZIl1bZ/otpEnlOqZPN4ElUBCYzyVFswQxHVbhKkwjvxGKKoqhUzZ2F1YqNURatD55eOHTviwoUL1V0NIqpKNfgNjYjoecEMRUREpMfL94iIiIiIiIgqk3HHXh0ayEBUHDZKERERgDwjoEoyrJyBiogqHEdjElHtxwhFlIuNUkREZCQ3Jkk5PXqFzYfAyc6JiIiIchhiUU7Hnpyj8nX0MT8RGWOjVCWS2NtHRERERERExtguRSRjoxQRUR1V4BV6xUxkbvI0AxVVF961iIiIqlm+d6JixiMYD1jgaHOiXGyUqnA8wRBR3cB2ASKqPBxtTkS1GDMUkYyNUkREtUAxA5xMy5a4XGFzIQBMU0RERFQblGbKldI0l8s5ipmJqEhslKpMVdzJN2nSJEiSBEmSoFKp0KJFCyxbtgwajaZc2/35558hSRKePHlSMRUtgfj4eIwbNw6urq6wtLRE48aN4e/vj2vXrpmUCw0NRb9+/WBnZwdra2u89NJL2LFjh0mZmzdvQpIkREZGlnj/S5cuRevWrWFjY4MXXngBAwYMwLlz50y2OXnyZHh4eMDKygrNmzdHUFAQsrOzi932rl270KFDB1hbW8PFxQVvv/02Hj16VOQ6J0+exPDhw+Hq6gpJkrB///5S1xkAVqxYgZ49e8La2hqOjo4F7uvWrVsYNmwYrK2t0bBhQyxYsMDkd8j498z4q23btnKZVatW4aWXXoKdnR0aNmyI1157DdHR0cW+NiWpHxWNwYeIqPSYoZihmKGoKkeAc7Q5US42StUygwcPRmJiIq5fv4758+dj6dKl+PTTT6u7WrKSBA61Wo2BAwciJSUF3377LaKjo7Fnzx60a9fOJNRt2LAB/v7+6NWrF86dO4fLly9j7NixmD59Ot5///1y1bNly5bYuHEjrly5glOnTqFZs2YYNGgQHjx4AAC4du0adDodtm7diqtXr2LdunXYsmULFi9eXOR2T58+jQkTJmDy5Mm4evUq9u7di/Pnz2Pq1KlFrpeWloYOHTpg06ZNZa4zoH/9R40ahXfffbfAbWi1WgwbNgzZ2dk4c+YMdu7ciR07dmDJkiVymc8//xyJiYny1+3bt+Hk5IRRo0bJZU6cOIEZM2bgl19+QVhYGNRqNQYNGoS0tLQij7O4+lFNYDQfAhMVEdUizFDMUMxQVKl4VTJRwUQdlJKSIgCIlJSUfM9lZGSIqKgokZGRUaZtP3tyTyTGxoik2BiRpdaUt6qlMnHiROHv72+ybODAgaJ79+4iOTlZBAQECEdHR2FlZSUGDx4sYmJi5HI3b94Ur776qnB0dBTW1tbC29tbHDx4UMTHxwvor9ORvyZOnCiEECI1NVWMGzdOWFtbC2dnZ7F27VrRr18/MWfOHHm77u7uYtmyZSIgIEDY2dnJ64aHh4vevXsLS0tL0bhxYzFr1izx7NkzIYQQERERAoC4efNmocd669YtYW5uLubNm5fvufXr1wsA4pdffhFCCPkYIiIiSv+i5jD8zhw5cqTQMmvWrBEeHh5FbufTTz8Vnp6e+err5uZW4roAEN99912x5Yqq8/bt24WDg0O+5YcOHRIKhUIkJSXJyzZv3izs7e1FVlZWgfv57rvvhCRJRf687t+/LwCIEydOFFvvoupXkPL+zdYWO8/EC/fAUPHuv38rtuyBe49Fo2MRwv9C7jlAfNZBiCB7cXP0ayKqVWuRcuiQ+PnWz8Jnh48Y+7+xcrEjX24WwaOHiXUTlomYX5Pyb5yoEh052kIcOeopMjPvV9k+i8oMdVFlZighhLh/PVokxsaIB7f+LE81S40ZSo8ZSo8Zqm5JfJIh3ANDRfNFB4stq9bqRKNjEaLRsQjxOFutX/jDYiGC7MWjRWNEVKvW4s68+UIIITrs7CB8dviIe2n3hBBC3LwcIYJHDxMhb00UP/7z90o7HqKCXLr8rjhy1FPcvrOryvZZ0gzFkVK1nJWVFbKzszFp0iT89ttvOHDgAM6ePQshBIYOHQq1Wg0AmDFjBrKysnDy5ElcuXIFq1evhq2tLZo0aYL//ve/AIDo6GgkJibi888/BwDMmzcPp0+fxoEDBxAWFobw8HBcvHgxXx2Cg4PRoUMHRERE4KOPPkJcXBwGDx6MkSNH4vLly9izZw9OnTqFmTNnAgAaNGgAhUKBffv2QavVFnhc+/btg1qtLrA3b9q0abC1tcXu3bsr5DXMzs7Gtm3b4ODggA4dOhRaLiUlBU5OTkVuq0ePHrh9+zYOHToEIQTu3buHffv2YejQoRVS19LWOa+zZ8+iXbt2aNSokbzMz88PqampuHr1aoHrfPnllxgwYADc3d0L3W5KSgoAFPv6UA0iBCSJcyEQUd3FDFV+zFDMUHVSzkjyIufm5GhzIplZdVegphNCQJOVVeLy6swsaLKzIAFQZ2ZCMlOWed9mFhbyh8LSEkLg6NGj+PHHHzFkyBDs378fp0+fRs+ePQHor8lv0qQJ9u/fj1GjRuHWrVsYOXIk2rVrBwDw9PSUt2V4E2zYsKF8jfrTp0+xc+dOfP311+jfvz8AYPv27XB1dc1Xl1deeQXz58+XH0+ZMgXjx4/H3LlzAQBeXl5Yv349+vXrh82bN8PNzQ3r16/HBx98gI8//hhdunSBr68vxo8fL9crJiYGDg4OcHFxybc/lUoFT09PxMTElOm1MwgNDcXYsWORnp4OFxcXhIWFoX79+gWWjY2NxYYNGxAcHFzkNnv16oVdu3ZhzJgxyMzMhEajwfDhw4scUl5ZdS5IUlKSSZgCID9OSkrKV/7u3bs4fPgwvv7660K3qdPpMHfuXPTq1Qs+Pj4lrgtVsbKca5iniKgYpc5R2VnQSRKE0Oeo8ihrjmKGYoZihqJSKe15RrC7j8gYG6WKocnKwvqJb1bLvmfv3AdzS8tSrRMaGgpbW1uo1WrodDqMGzcOb7zxBkJDQ9GtWze5XL169dCqVSv88ccf+n3Nno13330XP/30EwYMGICRI0eiffv2he7nxo0bUKvV6Nq1q7zMwcEBrVq1yle2S5cuJo8vXbqEy5cvY9euXfIyIQR0Oh3i4+PRpk0bzJgxAxMmTMDPP/+MX375BXv37sXKlStx4MABDBw4sESvhUqlKrbMrl27MG3aNPnx4cOH0adPHwCAr68vIiMj8fDhQ3zxxRcYPXo0zp07h4YNG5psIyEhAYMHD8aoUaNM5jWwtbWVv//LX/6CLVu2ICoqCnPmzMGSJUvg5+eHxMRELFiwANOnT8eXX36J8PBwDBkyRF5v69atGD9+fImOtzR1rig7d+6Eo6MjXnvttULLzJgxA7///jtOnTolL5s+fTr+/e9/y4+fPXtWKfWjimf8AY+RioiK8zzlKGaoXMxQzFBUBpwziqhM2ChVy/j6+mLz5s1QqVRwdXWFmZkZDhw4UOx6U6ZMgZ+fHw4ePIiffvoJq1atQkhICGbNmlXuOtnY2Jg8fvbsGaZNm4bZs2fnK9u0aVP5ezs7OwwfPhzDhw/H8uXL4efnh+XLl2PgwIHw8vJCSkoK7t69m69nMTs7G3FxcfDz8yu2biNGjDAJmm5ubib1btGiBVq0aIHu3bvDy8sLX375JRYtWiSXuXv3Lnx9fdGzZ09s27bNZNvGd6qxt7cHoL+jSq9evbBgwQIAQPv27WFjY4M+ffpg+fLl6NKli8l6eXvcilOSOhfF2dkZ58+fN1l27949+TljQgh89dVXCAgIKDS8zpw5E6GhoTh58iQaN24sL1+2bFm5J1IlIiKqSMxQzFDMUFSZTEZusl+PSMZGqWKYWVhg9s59JS7/LOUB0pJTIAFwbOIJlVnZp+0ys7Ao9TqGN1Rjbdq0gUajwblz5+Sh548ePUJ0dDS8vb3lck2aNMH06dMxffp0LFq0CF988QVmzZolv1kaz03g6ekJc3Nz/Prrr3IISklJQUxMDPr27VtkHTt16oSoqKh89SyKJElo3bo1zpw5AwB48803ERgYiJCQEISEhJiU3bJlC9LT0zFhwoRit2tnZwc7O7sS1UGn0yHL6BKEhIQE+Pr6onPnzti+fTsUCtOfdUHHl56eDjMz0z87pVJ/iacQAlZWVqV6XUpb5+L06NEDK1aswP379+WewbCwMNjb25v8rgD6u8PExsZi8uTJ+bYjhMCsWbPw3Xff4eeff4aHh4fJ8w0bNqy0nkeqQgxURFSM0uaoBzeuQydJUKosUN+tSbn3XRrMUMxQRdW5OMxQVJiCRpZzSimiXGyUKoYkSaUa+m2eaQEzlQUkAOaWljAvR6NURfHy8oK/vz+mTp2KrVu3ws7ODgsXLoSbmxv8/f0BAHPnzsWQIUPQsmVLPH78GMePH0ebNm0AAO7u7pAkCaGhoRg6dCisrKxgZ2eHiRMnYsGCBXByckLDhg0RFBQEhUJR7PwNgYGB6N69O2bOnIkpU6bAxsYGUVFRCAsLw8aNGxEZGYmgoCAEBATA29sbKpUKJ06cwFdffYXAwEAA+t7ANWvW4P3334elpSUCAgJgbm6O77//HosXL8by5cvzXXsfHR2dry5t27aFubm5ybK0tDSsWLECI0aMgIuLCx4+fIhNmzYhISFBvmVvQkICXn75Zbi7uyM4ONjklsF5e8OMDR8+HFOnTsXmzZvloedz585F165dC5xLwuDZs2eIjY2VH8fHxyMyMhJOTk5o2rRpieoMALdu3UJycjJu3boFrVYr9yi2aNECtra2GDRoELy9vREQEIA1a9YgKSkJf/vb3zBjxgxY5An3X375Jbp161bgHAczZszA119/je+//x52dnbyXAoODg6wsrIq9DiLqx9Vj8Iu02OgourDX77nRalzlMoCWkmCmYVFqacwqAzMUHrMUMxQVAYSini74vsYVZOaGOAr5+Z/NVtl3s746eN7IjE2RiTFxogstba8VS2Vgm5nbGC4nbGDg4OwsrISfn5+JrcznjlzpmjevLmwsLAQDRo0EAEBAeLhw4fy88uWLRPOzs5CkqQib2fctWtXsXDhQnk9d3d3sW7dunz1OX/+vBg4cKCwtbUVNjY2on379mLFihVCCCEePHggZs+eLXx8fIStra2ws7MT7dq1E8HBwUKrNX1N9+/fL/r06SNsbGzk2y3v3r3bpExBt2Q2fN2+fTtf3TIyMsTrr78uXF1dhUqlEi4uLmLEiBHi/Pnzcpnt27cXus3irF+/Xnh7ewsrKyvh4uIixo8fL+7cuVPkOsePHy9wX4afRUnqLIT+d6Sg7Rw/flwuc/PmTTFkyBBhZWUl6tevL+bPny/UarXJdp48eSKsrKzEtm3bCqxvYa/N9u3bizzOktQvL97OWG/nmXjhHhgq3v33b8WWPXDvsWh0LEL4X8g9B4jPXxQiyF7cHP2aiGrVWqQcPChO3D4hfHb4iNH/Gy0XO/rVFhE8ephYN2GZuPZLYmUcClGhjhxtIY4c9RSZmfeqbJ8lvZ1xXVGZGUoIIe5fjxaJsTHiwe0/y1PNUmOGYoZihqq7Ep9kCPfAUNF80cFiy6q1OtHoWIRodCxCJGfn/Gx//FCIIHvxaPEYEdWqtbjz3jwhhBAv/utF4bPDRyQ+0+elP69EiuDRw0TI2Ani8NbLlXY8RAW5dPldceSop7h9+99Vts+SZihJiJrYVFa5UlNT4eDggJSUFPk6dYPMzEzEx8fDw8MDlmXooXv25D6ePdJfvveCe/NyXb73vElLS4ObmxtCQkIKHI5c2ZKTk9G/f3/Y29vj8OHDsLa2rvI6UNUr799sbfGvszex5PurGNrOGf8Y37nIsv+7/wRTr95Edwcb7O/kpV+4viOQfAN//vEK0i9dg9vaEES2t8WMozPgXc8be17dAwA4tmMrIg7/D0rLbhjy/6aiVbfCe7WJKtrRY14AdOjd6ywsLKrm8pWiMkNdVJkZCgAexMbII6XqN25a/Aq1BDMUVQdmKL2klEx0X3UUZgoJsSuHFllWoxNofOISAOCP3j54wdwM+OlvwJkNSFYPwb3/XoL90KFwWxuCjv/XERqdBmFvhsHZxhm3fr+MvZ8shqSoB++X38fgae2q4vCIAACXr/w/PHjwI1q1XIbGjUt+E4jyKGmGqjstJlWm7rTxRUREYPfu3YiLi8PFixflO5wYhrNXNScnJxw5cgT9+/fH2bNnq6UORNWlNDd8qbCbw9S9Pg0iogrBDEVUcxRz1WyZyxaFCYooF+eUqjR141QTHByM6OhoqFQqdO7cGeHh4ahfv3611adevXpYsmRJte2fqLpVVDuREAJSTvNVwQNqC5tpioiISoIZiqhmqbhco9+SVHHdgES1GhulqMw6duyICxcuVHc1iIiojpAkiQP0qFZghiKq4/heRlWu5jaS8vK9SlRzf+xERHnlnLGKGZdu0uvHQEVElYYpioieFyU7XxlHrDo4rTNRodgoRUREZcI8RURERERE5cFGqUKUufWaH9KIqhR7miqPVFGzeRJRncLzMtHzgX+rlavwuTn5uhMZY6NUHubm5gCA9PT0aq4JEZWE4W/V8LdLVYmhiohyMUMRPV+YoaoP2wOJcnGi8zyUSiUcHR1x//59AIC1tXWpRgtkZauh1mohQSAzKxNaDdv9iCqDEALp6em4f/8+HB0doVQqq7tKdYPR+ZCBioiMlTdDAYBaq4VWkiA0GmRmZlZGNYnqPGaoasIR6EQFYqNUAZydnQFADlWlkZWeiqw0fYh6ohZQKnjyIapMjo6O8t8sERFVr/JkKAB4+uAeBCQozMzwJIONUkSViRmKiGoCNkoVQJIkuLi4oGHDhlCr1aVaN/KnHYg4/AuUWi2GrtyI+rYWlVRLIjI3N2fvXjkUOdBJGM2FUGBJgQe3ngK9KqNmRMXhML2aqjwZCgD2rP0E6WYqODZphtfnLayEGhIRwAxVEQp7JzLMIWUYKVpQjkp5kFFZ1SIqRs3LUGyUKoJSqSz9yVqTgfTkhzDTamGusoClpWXlVI6IqJplppX+AycR1Q1lylAAMh89QLq5BaxfcGKGIqJa63FiWnVXgajG4IRHFa7mtTwSUR1QinkKyjOlgfG6SjO+hRBR5eDdP4moqpTmbFNRZyaVJUepERnwE0UFM574l3GKiKoaJx8nIiIiKj1RySFK4qdDogKxUYqIiAocPlVseGIDGBEREdV1hYzsLGpuTkYoolxslKpMbAwnolqgwJ5DpimqFnxjJSKi5x1DFFW9mjxSj41SFSzjhWb6b3iuIaJaruC78hERVQDOKUVERFQnsFGqovEzGhHVavygSESVR5NzY+gMpW0114SIqIIZRyh+ZiSSsVGqwuWeYWryEDkiIiKimkaXk520SlU114SIiIiqAhulKhybvYmoFhBC7tEr+DI9wdMdERERUV45+UjKuQy5su/qR/S8Y6NUBTM+53A6BCIiIqKyYIgiotqLzVREudgoRURURxUUiKTiWtPZ2k41ACfZrwN4qiGiGi7fAKjizlvMUFQD1MQMxUapisbhmURUR/B0R0RERFQGDFFEMjZKVSK2hRNRVSnN+abgsvmXGm7WUBN7VIiolmOIIqKqUorzTVlOTflzFHMVkTE2SlUwTmRHRNWp/A1IPIcRUfVjmxQRVbWyJyD5zjBEVAZslKpw+rORhBLMzUJE9JzheY2IqoJgsxQR1TKS8XmNDVhEMjZKVRKeZ4iIiCoaGyrqCjaAExERVaAa/L7KRqmKpsttjqq5P3YiouII+UNhwZcls+mdiCoRQxQRPa+E4coZXtZHVBJslKpgPOcQUZ3BOfSIiIiISo0JiigXG6UqGCc6J6LnWg0e2ktEdQfTFBE9dxihiMqEjVKVRD/ReXXXgoiIiOh5xBBFRLUMPxwSFYiNUkREVCCpmA+FHMlARJVFwc9uRPScK/KGDQxRRDI2SlUwocv9vrgPdERERFQGvFS+9uOIAiKqJUS+Fii+hxEZY6MUEVEdZfK5viwfAJmpiIiIqI5iDKLnU837zWWjVEUzHipFRFTLFDkUnYiogtS8yExEVAg5GxV95jKOUPlHTxHVXWyUqkz87EZEVcQQdEpyVRNPTURERER6hilXSpShStE5x6lciEqGjVJERJSfEEYhreCUxml9iKiycFQmET238gQkjooiKhobpSqY8Yc35ikiIqKKxDdWIiKqBdhORSRjo1RF4wmGiGoztrYTURXgmYaInjfFX67HMxtRQdgoVeHYKkVEdQXPd0RUOQQ/uxFRbcYIRSRjo1QlYp4ioueZYU6XgudCYJoiosrEFEVEz7fi5uYkIj02SlU0nnOIiIiIyoUTnRMREdUNbJSqcMYTnTNQEVHtYnJWYyM8ERERUYkYfzZkhCLKxUapCsbhmUT0fGIjOhEREVHpMUMRlQcbpSqYcaMUT09EVJMVPFeU4UlRsnJE1YK/k7UeR5sTUQ2XPx/lPDZkKKmwckTVqAYOomGjFBERlUnNe0sjIiIiqulEjWwYIKoubJSqaDy/EFE1kO/wUoqyBT9ZzOgEjl4goirAMw0RVRVGG6LqVaWNUkuXLoUkSSZfrVu3lp/PzMzEjBkzUK9ePdja2mLkyJG4d++eyTZu3bqFYcOGwdraGg0bNsSCBQug0Wiq8jBKjCc4IiIiotJg7x4R1VL8bEhUoCofKdW2bVskJibKX6dOnZKfe++99/C///0Pe/fuxYkTJ3D37l288cYb8vNarRbDhg1DdnY2zpw5g507d2LHjh1YsmRJVR9GoTjRORHVFkWOqAL42ZGqXF3u7Kk7HXuSyX9ERM+ronIUIxRVvZr7xmpW5Ts0M4Ozs3O+5SkpKfjyyy/x9ddf45VXXgEAbN++HW3atMEvv/yC7t2746effkJUVBSOHDmCRo0a4cUXX8Qnn3yCwMBALF26FCqVqqoPp0jFfqAjInoOFNzYzjhFVNXatm2LI0eOyI/NzHJj3HvvvYeDBw9i7969cHBwwMyZM/HGG2/g9OnTAHI79pydnXHmzBkkJiZiwoQJMDc3x8qVK6v8WIrHDEVEtUPeic6ZoIhMVflIqevXr8PV1RWenp4YP348bt26BQC4cOEC1Go1BgwYIJdt3bo1mjZtirNnzwIAzp49i3bt2qFRo0ZyGT8/P6SmpuLq1auF7jMrKwupqakmX5WGI6WIqI7gyFCiqmXo2DN81a9fH0Bux97atWvxyiuvoHPnzti+fTvOnDmDX375BQDkjr1///vfePHFFzFkyBB88skn2LRpE7Kzs6vzsAok1eVhcURERHVIlTZKdevWDTt27MAPP/yAzZs3Iz4+Hn369MHTp0+RlJQElUoFR0dHk3UaNWqEpKQkAEBSUpJJg5ThecNzhVm1ahUcHBzkryZNmlTsgRER1RH8oEhUfWp9xx4AjiEgotrK5CoanuqIZFXaKDVkyBCMGjUK7du3h5+fHw4dOoQnT57gP//5T6Xud9GiRUhJSZG/bt++XWn7cjO6gpCf3YjoecYGKKKagx17RETPF+YoopKp8jmljDk6OqJly5aIjY3FwIEDkZ2djSdPnpiEqnv37slzUDk7O+P8+fMm2zBM4lnQPFUGFhYWsLCwqPgDKIDS8A1bv4noeSIHJ/3Ji5fmEdUsQ4YMkb9v3749unXrBnd3d/znP/+BlZVVpe130aJFmDdvnvw4NTW1ShqmbKs1oRIRlUK+xidR5EN+UCQyVeVzShl79uwZ4uLi4OLigs6dO8Pc3BxHjx6Vn4+OjsatW7fQo0cPAECPHj1w5coV3L9/Xy4TFhYGe3t7eHt7V3n9iYiIiKqDccees7Oz3LFnLG/HXt678ZW0Y8/e3t7kqzIZPtopOcKAiIioTqjSRqn3338fJ06cwM2bN3HmzBm8/vrrUCqVeOutt+Dg4IDJkydj3rx5OH78OC5cuIC//vWv6NGjB7p37w4AGDRoELy9vREQEIBLly7hxx9/xN/+9jfMmDGjykZCFSfv3RWIiGqqAs9WxX4Q5AdFopqg1nfssVGKiJ43xUYonteoJqh57RVVOjj6zp07eOutt/Do0SM0aNAAvXv3xi+//IIGDRoAANatWweFQoGRI0ciKysLfn5++Mc//iGvr1QqERoainfffRc9evSAjY0NJk6ciGXLllXlYRRJvuKF5xwiquV4hR9R1Xn//fcxfPhwuLu74+7duwgKCiqwY8/JyQn29vaYNWtWoR17a9asQVJSUo3r2CMiqk2kYj4QCiE47xQRqrhR6ptvvinyeUtLS2zatAmbNm0qtIy7uzsOHTpU0VWrOEaf0niOIaKqYjjflKShqKTnJkOYKngEKFukiKpSXejYM8EQRURVxPhsUxkNRflyFCMUkQlOI1lZeLIhIiKiClInOvaQG5/YJEVENZUEftQjqkjVOtF5bWR8gipuyCYR0fOGgxeoevEXkIiInk/5RmCxZYuqUE1um2CjVEXjyYWIiIiofNgCTkREVCewUaqicU4pIqoNRG6PnuCM5kREREQlYshN8tyczFFERWKjVEXjSYeI6gqe74iosrBjj4hqLWH0LxGxUYqIiFDiT4AcAkpEVaAmz31BRGSK5yui8mCjVAUzHjjA0xMRERFRGbABnIiIqE5goxQRERWouJEKHHZORJWGbVJE9JzLd7e9vDgNAhEANkpVOGEy0TkTFRE9/0SBzU8MUkRERETFKThHEZEBG6UqHE86RPR8KPfZiqc7qia8k1HtxzmliKim41sRPY9qYiMpG6WIiKgU+EGRiKoATzVEVNvkuYqm5jUNEFUPNkpVNOPL96qxGkRUt+Seb4qPODw3EVHNxzMVEVUN4ylXSjL6iWcnoorFRikiIsrPKJUVdqkUh60TUaXhpz4iel6JvA/zBiZRYDmiuoqNUhXM+NzCec6JiIgqEt9Y6w7+rImIiCpMDW6cYKNURePQASJ6nhXzhlWD38+IqBbhqYaIahvemZ2oYGyUIiKiAlubig9PbIQnokrCz25E9LyQ85JpLir2LqKMUUQA2ChV4VTmDeTv2RpORLVBTbx1LBEREdHzoLC5OYlIj41SFUyhtMj5jg1SRERERGVhbu5Y3VUgIiKiKsBGqQqm07ElnIhqM6MGd57uiKiSSJKyuqtARFSpOBKdSI+NUkRERERUo3C8ORE97ziVC1HJsFGKiKiOKnKKAyGKnqCT8yNQteLvX63HD3NEVMMV+k7EjERUKmyUqmDKZu4AgCeWttVcEyKiysXIRUQVztAYpWBEJaJajkGKCAAbpSqcZGYGANBKfGmJqOoYPseVt3OuuLEJHIpORJXpqbUDAEDr7FrNNSGiusI42ZQkRhUahZiRiMqELScVTOj0//OURERERFRaHDpARLUTO/aICsZGqUoi2CxFRM+5IueUAjhnAlUDvrfWFfzwRkTPu+JyFFMUVa2a+77KRqkKxpMLET2fCn+jEmx8IiIiIipE0XMoiHyfEJmriIyxUYqIiMqEbVVERERERFQebJSqcPyURkS1WM0d+UtERERUc+W9LJkfG4kAsFGqwnHkABHVFpzThYiqC08/RPS8K3ZuTiICwEYpIiIqkDD6rqDWdrbAE1ElYqsUET2v8oxSKGxuTs7ZSaTHRqkKVvCHNyIiIiIiIiIiMmZW3RUgosolhIBO6JClyUK2LhupT1OhVquh1Wmh1Wig0WqQlZYGjUaN9KxnyM7OgiY7C5osNXRaDXQaNXRaLXQaLbRqNTQaNbKyM6DT6iAyJQitDjqNgFYnAJ2AVqsDhIAQOdMP6SQotVJOXSQAEoSUM85GAEICJCHlFJZymnVzesjlnvLc53VS7tOF3ePE8K9CCCi1OkhC5GxZQCc0ENBAEgIKMwmABkqzdMBMgs7WHFApIaksICklSGZmUFhaQVIoobCygsLcHAqlElYq6yJ78RWSEm2c2sBGZWOyXGlmBksrazg7O9fcS+OKqVZNGYoucn7HBACd/L2QOycNj3Uip2zOMhiVM6yrEwI6Xe5yw/aK3I68zGh7OesarydvD4BWJ5Ct0SFbo0OWRgu1Vsj7Mvnf6Ph0efefpyyMtltYWZ1xXXTC9DXLeV4rRKE9tjYqM7zT1xMN7S0r6adZFuwAqu1qxpmGSC9LkwWNToPMzExkZmVCo9Xoz586HTQ6DbRaLbLUmUjLegatRoNsdTZ02Wpo1YYspYEmKwtajQbPMp9CaLXQqbXQZWlzcpQOQqtDtiYbQieg0wI6jYAEQNLoAB0gwQw5UQY65LwXSYCAUVZC7tlRMlouSQr9uV8yOneKvGsYluc+NmQnSDr990IDocsGJAGlygwKpQIqlRqSlRKwUUFYqwBzKyjMLSCZKaEwM4NCqYQkKSApJCgkJazNrSBJOeMiJH2+kzORpK91Y/umaGjTSH/8chn9Oo0aNYJKpSrnT7RyFBftast5zTiDaXUiXw4z5BhdAbnLkKV0OQsMuaq4DKbVCai1OmRpdMhSa6HRidx9A6a5ybDvnHXz5iadUVmd0G9XpxMm6xqXNeQ9XU5WMl7XsG+truBcIknAEB8X+Lg5VOJPpJRq4Ag9NkpVsGxNlvx97ONYNLZrDEuzmhTk6y6d0EErtDknQwGtTou0Z2nQCn3jjFarQWZ2hj5QCC10Gh10Wg00GjU0GZnIUmfhaVoqhFYHrUaj/3CXnQ1dWgY0ag20WRrotAIajYDQCQitgNDqAJ3+Ay+E0De+IKdFRgfoT5YSRM67mP5/KU88yH2j1knQN8pA35hjIIyKCQBqhTB5vnIYdpBnwGWljL8Uef4vjbwVMi+gzAv6/54VtL425yu7VHu9huuFPmfRtAPM3bzzvEkbN3rkb3AxvPEa3mSNG0EEgBsP0gAAV++mYu43ETnrFrBNASRaAqivRNyDZxj3xS8QAvh7chrcAcTcewZXAP/4ORZnHmYBlsCDp1l4bdNpCABN//wTzXKOI/L2E2xbH24SNADTcKHJCRG5AUPkCyB5j9m4jEarQ6ZGl6dBiKqajYUZ3hvYsrqrQUQ1gCFHZWRk5DaiCH3jTGpWKnRCB51OB6ET0Oo0UGdlQ6PNxqOUZGgNHV1affbSpaZBp1EjMzsTOo0G6mwNtGodhFZAp9EAWqHvBNMhNzsJQOj0DTVCSMjtdsppoMl5n5AgQYIC+ncbfdbS5UQCuSEnTyeXyMlZWqMOsKpVQGNLhX5aK+igynmg2TlfKXkXlN1lXC30OZV9fTR8aWiejhzjDiLTbGVoSDA0Ihg6amDUWJGh1srb//h/+n2bdkoBQG4Hls4JgAQs/PYyLLXAq48SMQzAtaSncABw6fYTfLzzVzwWakAClh74HVZ4ClXqfbQyOpbJO3+FViHly0SGhhx9Q4wwarApOGvlzU7GDT8Z2TqTx8bPw2hdXSF1yJtHqfROxjzE/2b1ru5q1GhslKpgNxLjAej/eFd9vgwalcDADn1ha+2AoT2GQ2VplW8dYWh11elyT5L6VgxkajKRpcnKfXMXGv1JQaeDTqeFOisLWp0WQqeDFjpAp2/pVWv1PTFarb6cTquVt6Ef9aKB0Bi2JaDTaiA02foGEiHpT045I2B0Qgeh0cr7FToBjU6tDwnyMkDotIA2Zx+GM3hOGehyTmTymS5ndIwAdIZhMxKgEEr9e6PI23cjyc/pDHlDyi0jSbmBRL9MyCNrtAoJQhImzwkJ0KEyG24MaUahbxOpkIaainknkIQEJRQ5NZSM/jf93kwojJZLJuUN/W9KoYACElQwg0qYAZBytpyzr5xq64QuZ9/65UooIIncGGQoZzhG08fC8A4LAFDIPRHG+8npRRO5iwUkaJSAkBTQSTmjQBQSlJKZvoEPAumKLCRLz6DRtxCW/rUsZHmmNg1qkT+QCYUZYGaGKzcScCamcnr5klIzsT/ybpFltA0sgfr18DRLgzNxjwAA6SotoACeZWkAADcfpiMq8SlsPIBsrRaRt58AAMxTsuRGqbQsDa7eTa+U46hKCglQSJK+wzanl1bfMatfpshZZhiwJ0mmy6WcJ/XLcteTe3gBKBUSFBJgYaaEhbkCKqUCSoWUs9x034qc7xU52zWunyJnwwqjsgpJgoW5Ql4nt16S0Xqm6xrqqcg5AKWUW2djJ2Ie4Lc/H5sEdqLKpNPoz0FH/v0fRO7fA2FuC51CB5VKCVfbBlBYmUFlp4EwM4fWzgaAgJmj/hzuauMKC4UFtFqtfoSwOgsZmkzodDp9Q4lWP5o3S62BTqeDNisLQq3Rj4S1sjT58JqZlQmNLqcjS2f0QU4nICy1+rcopYDSRgVJAhzMnKBSqPSNLcaZS+j0eQmGfGT8vxYiSw2h0RjlJf3z+kYXff4SQt/JJXQCkkYLfegyyo85+UoSue+zhrc1Ked/pU7/Di70JxsAkDvEJCjyNc5oFfqGHElSQEiAVhLQSrljcgRQBZ1fyvyLjOJVdVHK+aigHGWcjwouh5z/FZDkHGV4bLzcIqcTzbBVIXRyFjJsT5GzvoAwyVX6MoYoJSCEDhIAMyiNnjH8HujL56ZMIf9umCyXAI1SQKtP0tBAi4eKp8gsZwNUXhqhRqa2gGwhSRDmKqSmPMa2g39U6D6N/evsn8WWEQNdAUnCsWv3IWXp0NrsGWAGPErLhgOAB8+ycOSP+7BpoYXCHPj1z8fQZVrDKTs5p1FK/6r+ciMZ6toyfKqUjHOSnLsKyGD6rKP/XmWmhIWZAiozfY5SKEwzUkEZLTf75PzdKYy2nVPGwkwBM6VkmvtMtivly4qKnFOpvB9F7qckg3upmTh4JVHO1lQ4NkpVsMd/PpC/bwJPIBuI/TUBQAIiT0Tlntlr7QmokJRQqaNn8n5fWJnCixg3tBQUHAyPLYW5SejI/S63nKVQyQ06+uXGjSyAPN46h1JI+uAi9JebydsUuc1sUk6gUAgJ5jnpQRKGPkFD2NA33EjQwUwACgEAOkhCAwlaQBKQJP1z+i1oIaCGDjpAISCU+iUaSYJG0gGKdGgUAjoAGgDZUCAbCv24IUk/dkgNNbIlLdRQIhtKaKBv7NHlDLHWQYFsmOEJbKGFAjpJAS30XzoooIECmVBBAyW0kgJaKKGBAjqhQLZkhiyooIYSWiihhn74t72VeYGNAcZvWsaNAVKeNw3DG5DKTAEHSzNYQIKFAJQQUGm1UApAKQAzAah0WpjptLASWXBSP4NCAK3Ph8M69SniXuqOZw0aAEDO0QDt7jfACwol/mX7M2Lqf4OPnrpjp0cwJAmw/WUPkJaE7IaN4dXQFi2bNcutH3Lf3Az1g9EbslJ+8zNtZDAco0KScPnOExz+PQktGthibNcm8nL5tVEYtivhD60aX2U/g7uTNRaNfRGSJMHtqBWQCnjUtwGSgIDu7nipe3OsvwY42ajw2YQukADcO5mIpOP63902LvbY8aZHoSECEmCmMLzRFxw2DK+B8Rt/7s9Qv76luTKn8SR/g48hZMDw+hntx7BNFFA3uYyi1p6MK8TTLA1++/NxdVeD6iCtvSXU9vpRLoCETOhwI+MekAEgueB1ohBbhTU09QQJVbSnPD1dcsioaIaNmnba5EtVwjgvFZ6hAMBCmOd0iuXNUZDXMBdmsIR5Tm4quIxcQ4GcBhz9VhVCgtJQIqdjSyu0OXXUN6ipdAoYGmWE0XPy/xByBlBAB53QAhBQQAdJ0kEpBMxzRopJUk6HmSQgKXSABGhFGnSSDkKhBiSN3JGqk4Q8AisbgAY6CEkDociETghoAeiggwZaaKBDlqTEE5ghWyiRDQkaSanPS5KZPidBAa1QQCvpv8+ACmrJLCdjKfXP5ZTLksyRDcNzOugMz0kKCIU5JDPLnPdXmL7KkuGVkpCt0F/1YS4ACwlQQkIDKxXMJcBRq28+tNBooBI6WOiyYSE0UOm0MIeApciGgy4D5joJL9y7D8d795Bavz4eNWsMQP86SwDqZ9RHE9jjOh5hfoslCL19F6ub/gc6hQo2SX+gXtQPSGveDiqlAq+96GqUKUxzQ+57f25e0ne85GmskHMRkK3RYfvpmwCAGS83hzInlBl3NBnnrhV4Bh2A9/1awVFSoEPsCSAOaN7ABgL6fPT3N9ph/XVzPNUAc/p7wdWqBdQP7yJxe+7v8JqR7aFQKQrNUZIkwcJMIf8s8pYrLBsZf2+tUhbYaFOWXJZ3XwpJKqBhyNBwU3DuMmTduuC3m8k4eCWx0OkRKBcbpSqYXYYST/Msa6CzxwNFqv5BFf4Nmgtlzi5zw4LxG3qxy4XpcuNHhnE2ChjCQm7AUAiFPBLHsEbewAJ5PUAlzGAm9DHCEB5y6yXkUKITGkAgp8EHRgEC+kaZnPUURvtUAJC0mdAiE0rooMjpSVLkBA9rCVAqAK2khJAkKKADFDpIkhaQdPoXQamDMJMAhQ6QNIBSP4pNUuqgVqqgU5nr50gyV0ModIBCCSgkCEkJSEoISQGNwhKQlNApzABJASHpr7OXJCW0SisIhVJfXqHUj6aBAlCaQae0lNeBZAadQoEshf57rZkloDADJONr9fVvurmNGIYP7oY3YEBj9IHd8AZirVJCZabI94aUt4EAxs+j8Dczef08z5spJZgZehKM3uDzvREX8KZXU97E4t/Yg8y7URg07G3Y9u1r8lxU0BkgSwtDemjtbIdVb3YAABxM+AmXrt0HAHRs6ojXRrSt0Hr959fbOPx7Ev4/e/cd31S9/w/8dZImbdqmLaPQQS0tlI2IbFCxIrSggIqMCyKoINzLFFCGo4AoggUUUYZfGfcnIFdUQFCxoiBLRDYyKlAEadnQPZPP7480p02Tpmlps/p6Ph5VcubnJCfnvPM+n3FfLW+MeDjS6rIJN1Ox8kQGArzV6PtAqGHiPjWQBtTwViEDQMt6/qjZoDYWnwG8VEp0b1YXAPDbGS2uFm6nhrcKjzauU6nHQc7F+I1zloDKGa4BVMUKP2OdhwcAPVoW3IdLipvIkfLNQijTOKboX5biFgBmD6EsbctIDY9i9VwAqViCBAB0kh53pUxDLXWzspjGVGbxULFyeBSrT1MyPpIgFdZ+KWVe4foaoS7aZ8layIXTDM119FAKqbCmT9E8Y+JFKhZ/qYQSSiggRAEK9BmGZIweMHRuZEjGeAJQSYZaNUKSIAk9FJIh2SIJvSGOgh4KD0MsJUmGRI2kEJCgMzyMUqshFAJ6RT6gLDDcPpUwJHwUEvSSHnqlJ/QKQ+ykVwBCoYS+MGbSKTyhk1SG+ElSFsVeCgV0Ck8IhRqSUgkBw/LZCgUElNApPSEUKkN8pfAwBEiF6+sVKuiVakBSAcb+kKSixIDaQyHXci3+wMhSjVRj/KKEBI2HwhADWUgAFCU+LMddpcVcSoUElVIh76t4rZDicZ5U/LVxGw64nt745BPcXLwKDVsPwMNxQ03mJf73FHDqFgQk5KsE1B46fPh8Z0DlhbP7gS2nfgBgiFlnD2pdqeW6m5UnJ6Ve6d4IHkrrT9Pn7jwKvQD6twlDkKcKyAkAzgNBfl5IARAaoEHH9vfh07+VSC8Aujeri2a1wnDzsh5rim3niZbBUGv4c9zdOUcEZenO5zz4LahkoTVqIhmGm0f3vPsRpA/A3swzyJS0qOulQ5ifEoDOJNNsuOEYf6EX3nQK7yBKhQIqhcpwQwSgUCigUCig8vAwJB+8VFAoPQClBIWkABQSJKUCkkIBhdKQGYdCgkJhmAaFEhLyoYAOksoDkofKcDNWe0HhqYEEYUjc6POh1OdAqTIkO4x/MG6ncF+QJMONWlH4V3QnNByD0hAoGJZXFq4vFb6G8c7KHxrkOoznqpUf6UVnc7EGqJLkPHclW/FrSUQOVFuvRWhGGjZ5tYJWo8KMno0h6fMg6fOhuJ4IZGRCDwk6nSEGkQxPMaBQFL2WlIa4yDDNME+l8jDkINQeUKg9kJudDZ3QG5pBGeOXwkSEpJQAKCCyJMPgHjl3kXPrluF6rgqF5OFl2K8AoCyspWysqWHcpyQBSkPMZCwbFJIhFPL0gOSpMsRuSkXRw53CuEthLI8ChlisWPyFwnJC6WGI+7yUkNSFzbOM84z/Nv7fUwt4eDrg0yQqFu9biqEkSyljUXyWy3HmJABVPVc9bx2BSalK5hMeIv+7ftYv8FccxP7Q4cip2wpPxDRG8xB/B5aOiCqLtZojEiS5HwfT6caafS6QnSpWRsvldYFjoHtXdg6WqFIpCqP49hov9Nd/jy9rhKJ+q8cR2yII9RrWLrZk5XW8b97bJxFVrbIf7JnFUYX/dLUYCijs65aqIcPZ7AqnrKMxKVXJlDV9Df+QJHgF/gjf/Kvo1TIEvZ9o79iCEVHlsPGxh1kHsO74uIQ32WqDHzXZTeG1Uul7C96ZB+HvE4G3n2rh4EIRUaWwFguVmCWKT3DHGAq8t1YXTEqWzYFjV1QDxtHC2JEukfuwUvVcDqCEyXM+w2pVXKzKY72kbGpbvbDpATmKsTYErzlE7sRYc8RS8z2zf6BoVGZeB8j18PZlOyalKpswf8GAisgNWXnooSil+Z68KuvxkouwoQs1oirFH6NEbsiGfjlLi6NcKYYq+RuQvwmrF/lcdp1T1mHYfK+SKdVq3FLVQLbKV/7RqpCY+yNyGzZWPTe7/7hgIFLWj0HeZKsPVj0ne9PzwR6R+ynH99nkruOulwEGUtUCP+ayMVtSyQLq1ce6eoPwQ72+MF5OlWy+R+Q+io+jXeZCJUbfc1FMSFRfrnvWkqu6FNIOvwe0gcJDCcC1r51EVIJc/dbSLOPoe8WJYuu5cCxiVnQXPhayGe9ftmNSyg7YpxSRGyqj6rmA5PTN95hsorI4b/M9pysQVZKLIe1xoEZ7KNWGyvwM6onckNWbSvFq587dfI9xFFnjvHcv5ztvmZSqUuzonMjdVLx/E/tcB+49WHO+GxURVUNyBQnGUERuw9rX2Wz0veKz7HcduLcoqKy1S9QDY8hVLThTItVZMSlVyYSFWqYKBd9mIrdhreqIZPyfheBJKmWdylKOeM3yjzzzaexgmHgOkOMUD6iIyB1INlS/Lb35XtUp773OfHnL6/MeWr3x9mU7ZkuqkGSsKcULEpHbsfrUQ5Q+akyZ6zoJkzJaLK5wieOge1P0+8FZPmveT6sL4zmnYFRP5H6sJqUM33lRysM857kfWVGijGzmVz3J57KDy1HEee+nTEpVkeLd8bH5HpEbsfEHUskbEJugkCtznoCKqgvjD09eO4nciI0jGAMlmu+5eD/nVL25Qh7V0ZiUqmTFM+FyTSk23yNyHzZUPS+qHWnaI4JLKOsHIH8gViv8tMneSl5amZQicieW4qOS84oTVuY5o7JiKPuUgpwDb1+2Y7akKhVGVkq+y0Tux+pTD8nlm+8B/DFIkCMqFzllyZ0IPQBAkhhEEbkba3GQSZMnV22+V6jMPqVc51DoHrD5Ztl4p69kRR2dS3JNKQZURG7E1uZ7JRZz5fwOb6bEc4DsTm6+5+ByEFHlsfKFLjnLtPmea7ffM0+kue6xUPm5UB7VYZgtqUJFfUrxbSZyG3LNc0uj70mFi1ionu7iARVVT8wHkL0ZE6DFH/IRkZuQu0CwNM/aelVRGKKqxduX7ZgtqSISivqUUrKjcyI3ZL3quTs037PE5Aei6x4G2ciGLtSIqgg7OidyW1ab7xX7l4s33yup5PWMtZDdm/ONvue8mJSqZJZOOg5nTOQ+yuwfoJLXcyRXLDNVDQZUZC9FvzeZlCJyO7YPvldiqBjXvA7w+kVkGyalKtmp5FQAQHpuAXR6jr5H5HbKVXWkePO9KinNPbF6BMWOj0/yqi9n/SHgyk/Kybq0nHwAQHrh/531HCSi8pOsxFBCTuAU/87L7XirtFwVZX4Yhc2PS8RNjKOqJ2etbe6M5yOzJZXMNKtveBVW08cxhSGiqmPlDqMQjmu+V+EtVyDec7abLFU+Zw2oyH3dzMgDANwp/L+HB0NVIrdjQ/M9R42+V6HNVzRpxnurWys6LfhBl4V3+krWsI4vAMDX0wM1NCoAgH/h/4nIDVgLPEy6WzJdTpKkKr0nlSccsrqscz6MJKJqwketBADU8fMEALQI9XdkcYioMtkYQwElH/RXsXLuoNTFGUMRVQiTUpVMpTS8pQrJ8GfAKxSR2ygMqGx7UmfXkMoB+OTH3RWdtc7yWbvj94iKq+PnBQBoGeIHAAjQqB1ZHCKqVBZGJzbOkUyXMFlOstzpuevhPaw6kTs6d5ZT14lPPyalqpRzt4Mmontg5QbjzqPvUfXC5ntkb0XXR8ZQRO7KehxU+ENegtuNvleSGx0KWSDHUI4thktgUqqKSG6T0SciEzb+QDL79kuSpakuwVIA6IydJBIREZETs9p8z2IdqbLXcwGMmYisY1KqklnOQ7n2hZSIipFrnlv4sptVPS9axsXjKYuYd3d/kuRkVc/J7RlPNanYv4jITVipOmJp7D1XfZhHBBT/ycDzuCxMSlUpVj0nqp6st3ly5ZuTxOtZtcSnvOQwvOYQVV+F8ZLkJslpXs6qFzbfsx2TUpWu8OLpui11iMiKoqSM9S+4MAs8XC8SYQKKiBxFcuHkPRGVwmptc2vN90wXdZWHe+6STCOqakxK2QUvSETuw1otKKnwv7YlrpyaKP5PFz4Ouifs6JzsTpT8B2MoIrdhw03FNJHjojefEsdnnkQTpUwn98IuEGzFpFQVKTwFC18woCKqTiRhPvpe8VpHTh2EOHHRyP4k07sZkf0xhiKqXoTxf0WDRpWsue20cZSTFoscoygHyxOjLExKVTKTc44nIJH7sfaUr1jMJIr9V57n1JcEYy/tZfwA5A9EIqpC5h2dE5G7kKzGUNa6OJec/JpgNtJNKYsxhiKyhEmpKiKxUyki9ySPRmZr1fPi053smlBGccrqC4F5d/fnvM33nK5AVOnYfI/I7Vjrl9NiXkdY/KezKKtI7JuzenPezjycr0RMSlUyix8xL0hE1Yqcki7efA/2ab5nv+SB893QqPIVBVT8vMm+5CsmYyiiaqZYs3G5+Z7pElUaR9njfsdbarUgcfg9mzEpVZWc79EyEd0razcYk+Z7JWpLVvEPq/I8jeNPPCJyVvKPTcGaUkTup/Ta5maJJ2szK1l5N89cOVHlYlKqiph2DcsrF5HbsDacsdlC7sfkyJh4d3vWWloQVSWna+5MRPfOhgd71nqWcnVSyYN0r8OjEpzvY3be3ydMSlUyy6PEO+8JQESVT/7Gl1JRylVG4SirTylyfxx9j+zN7FxjDEVUPUkoar5XMlXFOIpcAEffsx2TUlVEKnYhdeasJBGVk9Wen4v1G1XsvyXnuYRix8ebKRHZH2MoIrdjtba5lTpSrnYZECVfMo4isoZJqUpmetHhBYjI3Ug2VMaVhKtFT0SW8SkfOQ7POSK3Y+3BntyyrXgM5abXgcLj563VvbG2ue2YlLIHVj0nqlYkAMKktiRMrgPO/AOflyuyxHnPWHI3ZpdHXpSIqiWTUYwl08FjnDmOIjKy2riCTDApVWUkNt8jckc2POUDzJvvSZLkcncliyP6mSTX7FgYIqpWJMZQRG5HKsevdNMOEFzzOmAWR0lydTAiKoZJqUpmeo3lLzYityOVPpxxUZDhgtEGayOQBZJ8vju4IFRtFHWDwJOOyO1YSUpZzte4yHWgwjGUixwf3RP2KVY2JqWqiMm1iT/2iKoVyTiYeSm/5F2t2rnlm6lrHQNVjPMNZ0zVDmMoomqmWD88xZvvFbsRuVwcVbK8rlV8qiDevmzHpFQlM7nmsOo5kfuxseq5xeZ7ToYxEbkunr3uTuLoe0RuyJhwslTbvOR3XSp9lpO41zuRi+XWqIKc7nN2ugIxKVXFnO8DJ6J7JCelrCxin5JYVJlXHUt9ODhjco2qDkffI3srOtV4zhG5nXI337O/yrzdlYyjGEJVL3IXCA4uhytgUqqKmFxzeAUiql6EhaCrikffK89VhlckshXPFXKUoi76eBYSVUem3SCU6GmqkuOo8l5leFUiW/A8sR2TUpVMmDZ4LvwHT0kityF3slPO5ntVVZ4qU2zo5VKe8bD2TPXhLJ80a+q5P/mywusLkfuxVtu8xOW9eBxluPa70DWhxPXLPI5yoWOhe+ckH7czj2LJpFQVMVxzneQMJKJKU/SjuPT+EHhhJXch2dBclagqSDzpiNyP1Qd7kskiRK6uKITi/aws/O1UySx2dM4nu0TVjAQByULzvcLnfk5dA6Cs6xWvZ9UJb1/kOIyhiKqnwn54JBT7LWW6hLPGUWVfrng9q06cuWaSs2FSqoqYnoQ8IYnch5XR94p91S2OvuecMVQJxRNpjisFORc+5SPH4YWIyF1I1kYwttZ8z1WuA+VMljlrco0qFz/msjEpVaV4BhK5HeNIGlbuMC4TPNnI4rHyDlst2NiFGlGlY0fnRG7IalLKfZvvMflUPbEHBNsxKWUPDKiIqhUJJaqdy1MNnDM44XWKLOD9i+xMvj465XWSiOzFZPS9ErXNnS+O4r2SzPGssB2TUlXENI7nKUnkNqw95TP7rhdvvldlJbKr4sfhdDEhVRl+1mRvkoV/EZGLszJYjOU4qfjoe67P7Dh4b60WnC+J6nyYlKpkln+nuseFlIhg43DG7vGdd7dmiFR+RT8fGFCRfYiS/2IMReRGrHSBIJn8zy24SzKNKojN92zGpFQV4SWIqPqShGRa7Rww+WHlLE9MrJbCScpIjsV4mhyG1yCias0sjiqesnaS60OppShRPj7YqZ6c9+Gu852PTErZhbOekERUbjb2/Fxy9L3CnqaqpEgm+62CQK3UYMr57mlURZwk/qdqhM33iNyQldrmJX/ACzvFTURVjTFU2ZiUqmQWf7zxUTOR27ClKrYjvvHluczwkkS2Mv5IYDxF9lIUvLP5HpHbsfZ1ttYFQhVfB8rbzI5XJbIFb1+2Y1KqivAkJHJzVh97mDffM+0g3Il/4kvF6yeUFRg68XFQpXC+e5nTFYiqDK8vRG7LShxk0hW6sNzRudPGUSXKaRZH8RZWrTjfx+18JTJiUqqSOes1kogqS+kjxxS/1ps33yNyXby3kb2Y1zh33iCaiMpHsjaCccmB6STA3eMo3lurD6dNpDoJJqXswfkeNRNRRVn7PlsdOcaFrwO8j1Zbxbrnd2ApqDqS2HyPyP1Y+T67x1fd1nsl76nVgWQyyJEDC+ICmJSqZDzfiKoJq1XPJUMHnSaD7xW9dpenJW5yGGSFe/xIIJfECwyR+6pA8z2TzgPc5vrgLsdBljCEsh2TUnbBU5LIbRT+SrctIHKhYMNC9sFyx5+8nlVHbhP/k9MzP9d4zSFyG1ab71n6rrvIzaeUy5R535y8nlVXLnImOwyTUlXE5JLDR81E7sPq91kq/K+lDsKrpjhEVYmj75GjsPkekTuq4PeZ1wFyQS4zyJETYFKqkvGEI6omyviqCwmmo+8VNuoDXOM6UbyM5h0PG6ZSNcDfAWRnwsK/iMi9WI4rDEwehhib78krukgcVaJ8pZXX2Q+D7o3Fh9RkEZNSVcQ0oc8TkshtyJ0dcPQ9qj6c/gcAuR25phRjKCL3ITffszIPxRfhvYfcA89k65iUqmQWTzhWOSVyG5b7WSqxjLDUfM/1rgOWnvC44GHQPeDHTQ7Hiw6R+7A2gLHV3hFc8zpQMma0JYYkN8KP22ZMSlURnoNEbq6MkWNEiWVMh4V1jucl1qrP27S+cxwGVSHjeetsH7WzfIeo8skfLT9jIvdlw/e75Oh7pqtX3fWhPJu+53LwMufWTPuUclw5SnKiosiYlLILpqiI3IfJYMWWZ8G9qp3fa/KKXJ8zBVNUPUjQy/8iIjdRjtH33DuOco/jItsxlrbOw9EFcDfhNb0R378VfBQFwObCiayqSeQ+bPo+2/87X57LDDteJFs535nifCWiyjW4fRgycnWocT3XMIExFJHbsNp8TTL5n+WZVaT8W5frxBOVyunuXk58P2VSqpLV8vXEs23qAbkZRUkp5zslieheldF8z2wZSZLjF5dueuSsdZGpSljrk5aoKkzq0djwjzWZhVMYQxG5HZua7xXFTSUvAy4bR/FyVq2Ydt3hwIK4ADbfqzI884jckrGPnTKqnrtDtXPWqCIjl/0BQC6M5xyR27HSfM8s4pAAXgeIqgcmpezBiavKEVE5Wfk+S/L/LY1a5+xVvXmdInO8fZHD8SQkch/Wvs8KwzxLSxTVOHHWOIrXKTLHs8J2TEpVFZMnADwlidxOGXFRydH3TOa5Qq2TYmW0XF4XOAa6Z6wtRw7jCtdJIqoQ650+Fxv1VVhuv+f8cZQo8cqF40GqMPZ4YTsmpaoMzzwityQ/rCtr9D1nrxlFZDsGU0REdO9K76jQciUq3nzIPXD0PeuYlLIHVj0nch82fJ9Lb77nAqRS/i1PYqeN1YmrnLbkxngSErkPG77OlhrqOX3rvVKUjP1Y+7h64edtOyalqgqb7xG5N2uj7wlASCWWMRmBw8WiKqr2+ISP7K6UZjtE5AZsGn2v2HKSqzXfIzLFU9Y6JqWqDM88IndkvbPNkj+e3OM6wIQEMZgi++NJR+R2rIy+Z7lWpHtcB8yTaO5xXGSdSZ9SjiuGS2BSyh5Y9ZzIjVj5PktF/yh587HXVaA8yQMmGqgsztvslCdvteG05yARlZfVe0rJ2lDFZ9mxxmR5HsTd652IcRg5hBOeeExKVRU23yNyb9aa71laRpLk165S7dxiEMgfiNWSi5yy5E7YfI/IfdkSQxVfrkQtdZeNoxhDVVuucs46CpNSRETlURhQ2HZzsd8NqDxPERkSka2KfgY4SzDFs7f6cJZzjogqjdXme5ZWsM91oLy5otKX53WLijhf8z3njaGYlLIHZsWJ3IfVqufG/1lovudq14Ey756CT32qAVc7bckN8SQkch9Wvs8lZ1kcfc9FlIyPSn2wwzDKrXH0PdsxKVVV2HyPyL2VkZARZss4+eh7rhbxkV054ylLbo7N94jclvXat4U10iGVeh1wujiKMRSVwdlOWWfDpFSV4ZlH5JasDr7nDqPvFR2DpdpdjLuqF0n+cUBkbzzriNyPsfle6bNMudh1oGQXUiUmuFytebonJh+3i53K9sakVFUp2cExEbkHG77PlpvvVU1xHIo3WLfnluctuQazDo6JyOVZbb5nmCc/+5PM57lb3OE8/TVSVeDdy3ZMStkDAyoi92Nt5BgBCEkqtUMEp6t2XgZXKy9VAZ4C5DCMoYjcjg1xhXk3CMVXd7GbkllxXaz8dM+YgLSOSakqwxOPyB1ZrXptNovXAXJtzjf6HlUfrClF5HbK/XU2XgcquyBEVU8yeSDtwIK4AJdNSn388ceoX78+vLy80KFDB/z++++OLpIpnnlEbqr04YwlC/8yneta1wXLo4YUu8HaryjkIMwHuC/GUURkb0XN8Cx8vyWT/5WIMYxN+1zrulBmH1KudThUTgyhbOeSSakNGzZg0qRJiIuLw+HDh9GqVSvExMTg+vXrji6aBTwdidyTleZ7xs6h3aXaOVV7PGXdC+MoInIoW28qJZYT8mTelMi18Iy1ziWTUgsXLsTIkSPxwgsvoFmzZli2bBm8vb2xcuVKRxcNuHEW+Lwf8NVLhtd8zEzkXqx8p4WV0fck16soRQQmBNyTU8dRX40A1vYHbv5leM04ish9WOvoXGFpnihczbQTdCJXwNuX7TwcXYDyysvLw6FDhzB9+nR5mkKhwOOPP479+/dbXCc3Nxe5ubny67S0tKorYE4acO6notc+dapuX0Rkf4V3mFuf/h9u//f/AQAit22Fqm5dOVhqrQvB5lMf4yKA9a9/iAcGBSBYqiVv4tbNm5j11pvQqpSY9ObMSi3e/gu30DJuu/x6+dA26NywtsVlT2fmIOrX4wCAjelZaAUA//wOQI3r774NMe9trFZIADIw8Fo7XAr2QMRFT7SBL/T553H9r/exYFDR9nxqPYfn5jwB3xqelXpM5DjGgOrwpTtoGbcd03o1wZAO4Y4tFICDfzyF4s/VvLyC0bHDDw4rjyspbxxl1xgKAC7sAjKL1dhiHEXkPgpvKrl//YWzbdsBAOq8+ipqDBwAY8pJIymw+dTHkAB891E2fn3kWbzedRmAoopTH3/0ESQITJo0CdqAGpVaxPbv7JDjuQHtwvDmk81KXfaxg2ehADDq4lVMAYC/9wPwR9Zv+3G2ZRPMkCToJeD7ff/G5K7e8MyR0Bs1AQA5d5Zg9eSibXn6dkL0sMFo/nBopR4POU7x5psPz/sZnRrUwv8Na+fAEhlcSPoQF/9eajKtzYNfQKtt6qASuWBS6ubNm9DpdKhbt67J9Lp16+LMmTMW15k7dy5mzZplj+IBNSOAp4p9yGEd7LNfIrILr6aGC7bIz4fIzzdMLIySvO7TQvydCoUkQW1cQahQoC9A4H31oSzIA/Q6QKGEkJTQ6fSVVq5GdbVQKSXk6wTScwvk6QV68+pZDbw9oVFIyNYLpBeW4ahPFFqlnYZXQA7S/1ZD6CVAD3gXrpOTn42MfAlXvfOhl3ygEABEnsl28/MKwOpg7iWqji/USgXydHqk5xYgv6DyztmK8NM2x+07e6HTZZlM1xVkOqhErqe8cZRdYygA6PkekJ9j+Ld/KBD6oP32TURVSh0RAcnLCyInB/qMDACQYyltuBYpQkAtSVAX/phXCRVydLnw9vOHb63ayMrJgs7XD1AoKjXa8PJQokGgD87fyERGsRgqt0Bncfn7fTX4LTUTmYUx1BHvBtBDgqdfLqAQgF6CPh/wMq6Qn4+M/AxkSkCGlx98czwA5JmETLr8AugKGEO5m2bBfjiVkobMPB2y8iyfT/ai1TZDSgogRB50urwScx0b30nCxRrlJicnIzQ0FPv27UOnTp3k6a+99hp27dqFAwcOmK1j6SlfWFgYUlNT4efnZ5dyE5H7yL92DSI7W36tCg2FpFIBANKvpCMrNQu3M64COalQBAChUS3hq6mBrLRUpN25jazCdb003ggJr19p5bqblYc7Wfkm0+r6ecJbbf78Ia1Ah5t5RYEXhIBX+iWEqJTIv3pdDhJzhMAtlQpS3UBInoZUW256BvTp+dDka0226VujNgKCtVAqXbJlOJUiNSsft7MMwUtNHzX8NSqHlUUIHbKzL5lNlyQPaDRhVbLPtLQ0+Pv7u03MUN44ijEUEVUmXXo6dLduya+VNWtCWXgtyUnNRWZKBm5m3YQ+8zqgEqjVKBh1akYhPy8XaTeuIzU9XV63flRjKJTKSilXboEOyXdzTKZpvTxQ29e89neBXuBSjumPemXmdQQjB8qMTOhSDTVKhQCuKpUQAVpIAf6G48/LQ+atO/DLq2WyvpePFgFBNeDp7bh7LFW+fJ0e/9wpjPtVCgT7axxanpycFOj1OWbTPT1DoFRWfksHW2Mol6spVbt2bSiVSly7ds1k+rVr1xAUFGRxHU9PT3h6sjkJEVUOVYkaBsVpQ7XQhmpRF+bLePv5w9vPv8rKFeCtRoC3uuwFAfh5KOHnUSKQ82kEAFDVaiBPUgMwu4Xwd2i14u+tgr+TBMmSpIS3d4Sji+HSyhtHMYYiosqk1Gqh1GotzvPy94SXvydqoRaAxibzVGpP1AoNQy2La947Tw8lImr72LSsh0JCpHeJ66J34YORQKB4dGWxwbvlXhXIDamUCpvPK3vw8gp2dBEscrnH2Wq1Gm3atMGOHTvkaXq9Hjt27DB54kdEREREphhHERERkTNxuZpSADBp0iQMGzYMbdu2Rfv27fHBBx8gMzMTL7zwgqOLRkREROTUGEcRERGRs3DJpNTAgQNx48YNvPXWW7h69SoeeOAB/PDDD2addhIRERGRKcZRRERE5CxcrqPzyuBunZYSERFR1WDMYIrvBxEREdnC1pjB5fqUIiIiIiIiIiIi18ekFBERERERERER2R2TUkREREREREREZHdMShERERERERERkd0xKUVERERERERERHbHpBQREREREREREdkdk1JERERERERERGR3TEoREREREREREZHdMSlFRERERERERER2x6QUERERERERERHZHZNSRERERERERERkd0xKERERERERERGR3TEpRUREREREREREdsekFBERERERERER2R2TUkREREREREREZHdMShERERERERERkd0xKUVERERERERERHbHpBQREREREREREdkdk1JERERERERERGR3TEoREREREREREZHdMSlFRERERERERER2x6QUERERERERERHZHZNSRERERERERERkd0xKERERERERERGR3TEpRUREREREREREdsekFBERERERERER2Z2HowvgCEIIAEBaWpqDS0JERETOzBgrGGOH6o4xFBEREdnC1hiqWial0tPTAQBhYWEOLgkRERG5gvT0dPj7+zu6GA7HGIqIiIjKo6wYShLV8NGfXq9HcnIytFotJEmq9O2npaUhLCwMly9fhp+fX6Vv35nwWN0Tj9U98VjdE4+1agkhkJ6ejpCQECgU7PWAMVTl4bG6Jx6re+Kxuicea9WyNYaqljWlFAoF6tWrV+X78fPzc/uT24jH6p54rO6Jx+qeeKxVhzWkijCGqnw8VvfEY3VPPFb3xGOtOrbEUHzkR0REREREREREdsekFBERERERERER2R2TUlXA09MTcXFx8PT0dHRRqhyP1T3xWN0Tj9U98VjJnVSnz5jH6p54rO6Jx+qeeKzOoVp2dE5ERERERERERI7FmlJERERERERERGR3TEoREREREREREZHdMSlFRERERERERER2x6QUERERERERERHZHZNSRERERERERERkd0xKERERERERERGR3TEpRUREREREREREdsekFBERERERERER2R2TUkREREREREREZHdMShERERERERERkd0xKUVERERERERERHbHpBQREREREREREdkdk1JERERERERERGR3TEoREREREREREZHdMSlFRC7n4sWLkCQJq1evdnRRnMbw4cNRv359k2mSJGHmzJkOKQ8RERFVHGMdc4x1iNwTk1JEVG779u3DzJkzcffu3Qqt/8knnzDIqoDk5GTMnDkTR48edXRRiIiI3BpjHcdgrENU/TApRUTltm/fPsyaNYuBmp0lJydj1qxZFgO1Tz/9FGfPnrV/oYiIiNwQYx3HYKxDVP14OLoARER071QqlaOLQERERFRlGOsQuSfWlCKicpk5cyZeffVVAEBERAQkSYIkSbh48SIKCgrw9ttvo0GDBvD09ET9+vUxY8YM5ObmyuvXr18ff/75J3bt2iWv++ijjwIAbt++jSlTpqBly5bw9fWFn58fevbsiWPHjlVK2XNycjBz5kw0atQIXl5eCA4OxjPPPIPz588DKOq/IT4+HosWLUJ4eDg0Gg26du2KkydPmmzr0UcflctdnKX+DspSv359DB8+3Gx68X3s3LkT7dq1AwC88MIL8ntnfApbkf0SERGROcY6Bu4Y6xQ//o8//hiRkZHw9vZGjx49cPnyZQgh8Pbbb6NevXrQaDTo27cvbt++bbKNzZs344knnkBISAg8PT3RoEEDvP3229DpdPIyp0+fhkajwfPPP2+y7p49e6BUKjF16tR7Og4id8KaUkRULs888wwSExOxfv16LFq0CLVr1wYABAYGYsSIEVizZg2effZZTJ48GQcOHMDcuXNx+vRpfPPNNwCADz74AOPGjYOvry9ef/11AEDdunUBABcuXMCmTZvQv39/RERE4Nq1a1i+fDm6du2KU6dOISQkpMLl1ul0ePLJJ7Fjxw4MGjQIEyZMQHp6OhISEnDy5Ek0aNBAXva///0v0tPTMWbMGOTk5ODDDz/EY489hhMnTshltbemTZti9uzZeOutt/Dyyy/j4YcfBgB07tzZIeUhIiJyV4x13D/WWbt2LfLy8jBu3Djcvn0b8+fPx4ABA/DYY49h586dmDp1Ks6dO4ePPvoIU6ZMwcqVK+V1V69eDV9fX0yaNAm+vr74+eef8dZbbyEtLQ3vv/++fCxvv/02Xn31VTz77LPo06cPMjMzMXz4cDRp0gSzZ8+u9GMiclmCiKic3n//fQFAJCUlydOOHj0qAIgRI0aYLDtlyhQBQPz888/ytObNm4uuXbuabTcnJ0fodDqTaUlJScLT01PMnj3bZBoAsWrVKpvLvHLlSgFALFy40GyeXq832a5GoxH//POPPP/AgQMCgHjllVfkaV27drV4DMOGDRPh4eE2l0sIIcLDw8WwYcPMppfcx8GDB0s9bkv7BSDi4uLKVRYiIiJirCOEe8Y6xuMPDAwUd+/eladPnz5dABCtWrUS+fn58vR//etfQq1Wi5ycHHlaVlaW2XZHjRolvL29TZbT6XTioYceEnXr1hU3b94UY8aMER4eHuLgwYM2l5eoOmDzPSKqFN999x0AYNKkSSbTJ0+eDADYtm1bmdvw9PSEQmG4LOl0Oty6dQu+vr5o3LgxDh8+fE/l++qrr1C7dm2MGzfObJ4kSSavn3rqKYSGhsqv27dvjw4dOsjHSERERNUPYx330b9/f/j7+8uvO3ToAAB47rnn4OHhYTI9Ly8PV65ckadpNBr53+np6bh58yYefvhhZGVl4cyZM/I8hUKB1atXIyMjAz179sQnn3yC6dOno23btlV5aEQuh0kpIqoUf//9NxQKBRo2bGgyPSgoCAEBAfj777/L3IZer8eiRYsQFRUFT09P1K5dG4GBgTh+/DhSU1PvqXznz59H48aNTQKN0kRFRZlNa9SoES5evHhPZSAiIiLXxVjHfdx3330mr40JqrCwMIvT79y5I0/7888/8fTTT8Pf3x9+fn4IDAzEc889BwBmn2GDBg0wc+ZMHDx4EM2bN8ebb75Z6cdC5OqYlCKiSlXySVx5vPvuu5g0aRIeeeQRfP7559i+fTsSEhLQvHlz6PX6SizlvSvtOIt3cumIbREREVHVYqzj+rGOUqks13QhBADg7t276Nq1K44dO4bZs2fj22+/RUJCAubNmwcAFj/DH3/8EQCQnJyMW7duVUbxidwKOzononKzFFiEh4dDr9fjr7/+QtOmTeXp165dw927dxEeHm51fQDYuHEjoqOj8dlnn5lMv3v3rtzJaEU1aNAABw4cQH5+fplDCv/1119m0xITE01GfKlRowYuXLhgtpwtT0lLqlGjBu7evWtxW5GRkfLrewmCiYiIyHaMdRjrWLJz507cunULX3/9NR555BF5elJSksXlly1bhoSEBLzzzjuYO3cuRo0ahc2bN9uruEQugTWliKjcfHx8AMAkuOjVqxcAw4gzxS1cuBAA8MQTT5isbykwUSqV8pMooy+//NKkHX9F9evXDzdv3sSSJUvM5pXc56ZNm0z2+fvvv+PAgQPo2bOnPK1BgwY4c+YMbty4IU87duwY9u7dW+6yNWjQAL/99hvy8vLkaVu3bsXly5dNlrP0vhMREVHlY6zDWMcSY02q4u9nXl4ePvnkE7Nlk5KS8Oqrr6Jfv36YMWMG4uPjsWXLFvz3v/+1W3mJXAFrShFRubVp0wYA8Prrr2PQoEFQqVTo3bs3hg0bhhUrVshVm3///XesWbMGTz31FKKjo03WX7p0KebMmYOGDRuiTp06eOyxx/Dkk09i9uzZeOGFF9C5c2ecOHECa9euNXmCVlHPP/88/vvf/2LSpEn4/fff8fDDDyMzMxM//fQT/vOf/6Bv377ysg0bNsRDDz2Ef//738jNzcUHH3yAWrVq4bXXXpOXefHFF7Fw4ULExMTgpZdewvXr17Fs2TI0b94caWlp5SrbiBEjsHHjRsTGxmLAgAE4f/48Pv/8c5OhmwFDQBcQEIBly5ZBq9XCx8cHHTp0QERExL29OURERGSCsQ5jHUs6d+6MGjVqYNiwYRg/fjwkScL/+3//zyzpJ4TAiy++CI1Gg6VLlwIARo0aha+++goTJkzA448/jpCQEEccApHzcdzAf0Tkyt5++20RGhoqFAqFPGRyfn6+mDVrloiIiBAqlUqEhYWJ6dOnmwyPK4QQV69eFU888YTQarUCgDwUcE5Ojpg8ebIIDg4WGo1GdOnSRezfv99suOCKDJMshGEI39dff10uX1BQkHj22WfF+fPnTbb7/vvviwULFoiwsDDh6ekpHn74YXHs2DGz7X3++eciMjJSqNVq8cADD4jt27dXaJhkIYRYsGCBCA0NFZ6enqJLly7ijz/+sDgU8+bNm0WzZs2Eh4eHyXtQGcMkExERURHGOu4X6xQ//uJ++eUXAUB8+eWXJtNXrVolAIiDBw/K0/bu3Ss6duwoNBqNCAkJEa+99prYvn27ACB++eUXIYQQH374oQAgvvrqK5PtXbp0Sfj5+YlevXrZXGYidycJUSKtS0RUTV28eBERERF4//33MWXKFEcXh4iIiKhSMdYhImfDPqWIiIiIiIiIiMju2KcUEbm0vLw83L592+oy/v7+0Gg0dipRkdu3b5t06FmSUqlEYGCgHUtEREREroaxTtl0Op1Jh+yW+Pr6wtfXt8rLQkTlw6QUEbm0ffv2mXQsasmqVaswfPhw+xSomGeeeQa7du0qdX54eDguXrxovwIRERGRy2GsU7bLly+X2Rl6XFwcZs6cWeVlIaLyYZ9SROTS7ty5g0OHDlldpnnz5ggODrZTiYocOnQId+7cKXW+RqNBly5d7FgiIiIicjWMdcqWk5ODPXv2WF0mMjKyUkY5JKLKxaQUERERERERERHZHTs6JyIiIiIiIiIiu6uWfUrp9XokJydDq9VCkiRHF4eIiIiclBAC6enpCAkJgULBZ3mMoYiIiMgWtsZQ1TIplZycjLCwMEcXg4iIiFzE5cuXUa9ePUcXw+EYQxEREVF5lBVDVcuklFarBWB4c/z8/BxcGiIiInJWaWlpCAsLk2OH6o4xFBEREdnC1hiqWialjNXN/fz8GFARERFRmdhUzYAxFBEREZVHWTEUO0cgIiIiIiIiIiK7Y1KKiIiIiIiIiIjsjkkpIiIiIiIiIiKyu2rZpxQRkT0IIVBQUACdTufoohBRKZRKJTw8PNhnFBGRE2EMReT8KiuGYlKKiKgK5OXlISUlBVlZWY4uChGVwdvbG8HBwVCr1Y4uChFRtccYish1VEYMxaQUEVEl0+v1SEpKglKpREhICNRqNWthEDkhIQTy8vJw48YNJCUlISoqCgoFezYgInIUxlBErqEyYygmpYiIKlleXh70ej3CwsLg7e3t6OIQkRUajQYqlQp///038vLy4OXl5egiERFVW4yhiFxHZcVQfBxIRFRFWOOCyDXwu0pE5Fx4XSZyDZXxXeW3nYiIiIiIiIiI7I5JKSIiIiIiIiIisjsmpYiISDZ8+HBIkgRJkqBWq9GwYUPMnj0bBQUF97TdnTt3QpIk3L17t3IKaoOkpCQMHjwYISEh8PLyQr169dC3b1+cOXPGZLmtW7eia9eu0Gq18Pb2Rrt27bB69WqTZS5evAhJknD06FGb9z9z5kw0adIEPj4+qFGjBh5//HEcOHDAZJsvvfQSIiIioNFo0KBBA8TFxSEvL8/qdlNSUjB48GA0atQICoUCEydOtKk8v/76K3r37o2QkBBIkoRNmzZZXO706dPo06cP/P394ePjg3bt2uHSpUvy/FGjRqFBgwbQaDQIDAy0+J4ePHgQ3bp1Q0BAAGrUqIGYmBgcO3bM4v7OnTsHrVaLgICASjsGIiIie2MMxRiKMVTFMClFREQmYmNjkZKSgr/++guTJ0/GzJkz8f777zu6WLKyAg4AyM/PR/fu3ZGamoqvv/4aZ8+exYYNG9CyZUuToO6jjz5C37590aVLFxw4cADHjx/HoEGDMHr0aEyZMuWeytmoUSMsWbIEJ06cwJ49e1C/fn306NEDN27cAACcOXMGer0ey5cvx59//olFixZh2bJlmDFjhtXt5ubmIjAwEG+88QZatWplc3kyMzPRqlUrfPzxx6Uuc/78eTz00ENo0qQJdu7ciePHj+PNN9806biyTZs2WLVqFU6fPo3t27dDCIEePXpAp9MBADIyMhAbG4v77rsPBw4cwJ49e6DVahETE4P8/HyT/eXn5+Nf//oXHn744Uo7BiIiIkdhDMUYijFUBYhqKDU1VQAQqampji4KEbmh7OxscerUKZGdne3oopTbsGHDRN++fU2mde/eXXTs2FHcvn1bDB06VAQEBAiNRiNiY2NFYmKivNzFixfFk08+KQICAoS3t7do1qyZ2LZtm0hKShIATP6GDRsmhBAiLS1NDB48WHh7e4ugoCCxcOFC0bVrVzFhwgR5u+Hh4WL27Nli6NChQqvVyuvu3r1bPPTQQ8LLy0vUq1dPjBs3TmRkZAghhDhy5IgAIC5evFjqsV66dEmoVCoxadIks3mLFy8WAMRvv/0mhBDyMRw5cqT8b2oh473np59+KnWZ+fPni4iICJu3WfK9shUA8c0335hNHzhwoHjuuefKta1jx44JAOLcuXNCCCEOHjwoAIhLly7Jyxw/flwAEH/99ZfJuq+99pp47rnnxKpVq4S/v3+lHENFWPvOOjpmWLJkiQgPDxeenp6iffv24sCBA6Uue/LkSfHMM8+I8PBwAUAsWrTIbJl3331XtG3bVvj6+orAwEDRt29fcebMGZvL4+j3g4jcG2MoxlCWMIZy7xiKNaWIiKqYEAJZeQUO+TPcd+6NRqNBXl4ehg8fjj/++ANbtmzB/v37IYRAr1695Cc3Y8aMQW5uLn799VecOHEC8+bNg6+vL8LCwvDVV18BAM6ePYuUlBR8+OGHAIBJkyZh79692LJlCxISErB7924cPnzYrAzx8fFo1aoVjhw5gjfffBPnz59HbGws+vXrh+PHj2PDhg3Ys2cPxo4dCwAIDAyEQqHAxo0b5adPJW3cuBH5+fkWn+aNGjUKvr6+WL9+/T2/f4DhyeSKFSvg7+9v9clcamoqatasWSn7LC+9Xo9t27ahUaNGiImJQZ06ddChQwer1bszMzOxatUqREREICwsDADQuHFj1KpVC5999hny8vKQnZ2Nzz77DE2bNkX9+vXldX/++Wd8+eWXzvnEzkls2LABkyZNQlxcHA4fPoxWrVohJiYG169ft7h8VlYWIiMj8d577yEoKMjiMrt27cKYMWPw22+/ISEhAfn5+ejRowcyMzOr8lCIiCrMleMoxlD3jjGU+8dQHo4uABGRu8vO16HZW9sdsu9Ts2Pgra7YpV4IgR07dmD79u3o2bMnNm3ahL1796Jz584AgLVr1yIsLAybNm1C//79cenSJfTr1w8tW7YEAERGRsrbMgYJderUkdu9p6enY82aNVi3bh26desGAFi1ahVCQkLMyvLYY49h8uTJ8usRI0ZgyJAhcl8AUVFRWLx4Mbp27YqlS5ciNDQUixcvxmuvvYZZs2ahbdu2iI6OxpAhQ+RyJSYmwt/fH8HBwWb7U6vViIyMRGJiYoXeO6OtW7di0KBByMrKQnBwMBISElC7dm2Ly547dw4fffQR4uPj72mfFXX9+nVkZGTgvffew5w5czBv3jz88MMPeOaZZ/DLL7+ga9eu8rKffPIJXnvtNWRmZqJx48ZISEiAWq0GAGi1WuzcuRNPPfUU3n77bQCGz2f79u3w8DCci7du3cLw4cPx+eefw8/Pz/4H6yIWLlyIkSNH4oUXXgAALFu2DNu2bcPKlSsxbdo0s+XbtWuHdu3aAYDF+QDwww8/mLxevXo16tSpg0OHDuGRRx6p5CMgIrp3rhhHMYZiDMUYynasKUVERCa2bt0KX19feHl5oWfPnhg4cCCGDx8ODw8PdOjQQV6uVq1aaNy4MU6fPg0AGD9+PObMmYMuXbogLi4Ox48ft7qfCxcuID8/H+3bt5en+fv7o3HjxmbLtm3b1uT1sWPHsHr1avj6+sp/MTEx0Ov1SEpKAmB46nj16lWsXbsWnTp1wpdffonmzZsjISHB5vfCGCRYs3btWpNy7N69W54XHR2No0ePYt++fYiNjcWAAQMs1nK5cuUKYmNj0b9/f4wcOVKeXny7o0ePtqnMu3fvNllv7dq1Nq2n1+sBAH379sUrr7yCBx54ANOmTcOTTz6JZcuWmSw7ZMgQHDlyBLt27UKjRo0wYMAA5OTkAACys7Px0ksvoUuXLvjtt9+wd+9etGjRAk888QSys7MBACNHjsTgwYNLTYJU9BjcSV5eHg4dOoTHH39cnqZQKPD4449j//79lbaf1NRUACj16XJubi7S0tJM/oiIyDLGUEUYQzGGshVrShERVTGNSolTs2Mctu/yio6OxtKlS6FWqxESEgIPDw9s2bKlzPVGjBiBmJgYbNu2DT/++CPmzp2LBQsWYNy4cRUpugkfHx+T1xkZGRg1ahTGjx9vtux9990n/1ur1aJ3797o3bs35syZg5iYGMyZMwfdu3dHVFQUUlNTkZycbPZkMS8vD+fPn0dMTNmfW58+fUwCzdDQUJNyN2zYEA0bNkTHjh0RFRWFzz77DNOnT5eXSU5ORnR0NDp37owVK1aYbLv4SDW2Pg1r27atyXp169a1ab3atWvDw8MDzZo1M5netGlT7Nmzx2Sav78//P39ERUVhY4dO6JGjRr45ptv8K9//Qvr1q3DxYsXsX//figUhmdf69atQ40aNbB582YMGjQIP//8M7Zs2SI/0RRCQK/Xw8PDAytWrMC//vWvCh2DO7l58yZ0Op3ZsdetW9dspJ6K0uv1mDhxIrp06YIWLVpYXGbu3LmYNWtWpeyPiKgiXCmOYgzFGKo4xlC2YVKKiKiKSZJU4SZ0jmAMAopr2rQpCgoKcODAAbnq+a1bt3D27FmTG3BYWBhGjx6N0aNHY/r06fj0008xbtw4+WlZ8b4JIiMjoVKpcPDgQTkISk1NRWJiYpnNiB588EGcOnXKrJzWSJKEJk2aYN++fQCAZ599FlOnTsWCBQuwYMECk2WXLVuGrKwsPP/882VuV6vVQqvV2lQGvV6P3Nxc+fWVK1cQHR0tj8ZiDECMynN8RhqNpkLrqdVqtGvXDmfPnjWZnpiYiPDw8FLXE0JACCEfV1ZWFhQKBSRJkpcxvjY+Sdy/f7/JubB582bMmzcP+/btQ2hoaIWPgcpnzJgxOHnypFnAXNz06dMxadIk+XVaWprc9wURkT24UhzFGIoxVHGMoWzjGt9uIiJyqKioKPTt2xcjR47E8uXLodVqMW3aNISGhqJv374AgIkTJ6Jnz55o1KgR7ty5g19++QVNmzYFAISHh0OSJGzduhW9evWCRqOBVqvFsGHD8Oqrr6JmzZqoU6cO4uLizG7GlkydOhUdO3bE2LFjMWLECPj4+ODUqVNISEjAkiVLcPToUcTFxWHo0KFo1qwZ1Go1du3ahZUrV2Lq1KkADE8D58+fjylTpsDLywtDhw6FSqXC5s2bMWPGDMyZM8es9kjJYAMAmjdvDpVKZTItMzMT77zzDvr06YPg4GDcvHkTH3/8Ma5cuYL+/fsDMARTjz76KMLDwxEfHy8Pcwyg1E6qjYxPwDIyMnDjxg0cPXoUarXa7AldcRkZGTh37pz8OikpCUePHkXNmjXlgPbVV1/FwIED8cgjjyA6Oho//PADvv32W+zcuROAobnAhg0b0KNHDwQGBuKff/7Be++9B41Gg169egEAunfvjldffRVjxozBuHHjoNfr8d5778HDwwPR0dEAIJ8XRn/88QcUCkWptXXKcwzuonbt2lAqlbh27ZrJ9GvXrpV5fthi7Nix2Lp1K3799VfUq1ev1OU8PT3h6el5z/sjIqquGEMZMIZiDFWqShkH0MVwOGMiqkruNpyxkXE4Y39/f6HRaERMTIzJcMZjx44VDRo0EJ6eniIwMFAMHTpU3Lx5U54/e/ZsERQUJCRJsjqccfv27cW0adPk9cLDwy0Obf/777+L7t27C19fX+Hj4yPuv/9+8c477wghhLhx44YYP368aNGihfD19RVarVa0bNlSxMfHC51OZ7KdTZs2iYcfflj4+PjIwy2vX7/eZBlLQzIb/y5fvmxWtuzsbPH000+LkJAQoVarRXBwsOjTp4/4/fff5WVWrVpV6jbLYmmd8PBwq+v88ssvFtczfhZGn332mWjYsKHw8vISrVq1Eps2bZLnXblyRfTs2VPUqVNHqFQqUa9ePTF48GBx5swZk238+OOPokuXLsLf31/UqFFDPPbYY2L//v2lls3W4YxtPYbyqozhjKtC+/btxdixY+XXOp1OhIaGirlz55a5bmnfG71eL8aMGSNCQkJMvr+2YgxFRFWJMRRjKMZQ1S+GkoSohPHCXUxaWhr8/f2RmprqNj3WE5HzyMnJQVJSEiIiIuDl5eXo4riUzMxMhIaGYsGCBXjppZfsvv/bt2+jW7du8PPzw/fffw9vb2+7l4Hsz9p31pExw4YNGzBs2DAsX74c7du3xwcffID//e9/OHPmDOrWrYvnn38eoaGhmDt3LgBDPx6nTp0CAPTq1QtDhgzBkCFD4OvrK1fl/89//oN169Zh8+bNJh3i+vv7Q6PRlFkmxlBEVJUYQ1UcYyhyhMqIoTj6HhEROcyRI0ewfv16nD9/HocPH8aQIUMAQK7Obm81a9bETz/9hG7dulXqCGdEFTFw4EDEx8fjrbfewgMPPICjR4/ihx9+kDstvXTpElJSUuTlk5OT0bp1a7Ru3RopKSmIj49H69atMWLECHmZpUuXIjU1FY8++iiCg4Plvw0bNtj9+IiIqOIYQ5G7YJ9SRETkUPHx8Th79izUajXatGmD3bt3o3bt2g4rT61atfDWW285bP9ExY0dOxZjx461OM/YT4VR/fr1UVYF+GpYQZ6IyG0xhiJ3UKU1pebOnYt27dpBq9WiTp06eOqppyx2cFbSl19+iSZNmsDLywstW7bEd999ZzJfCIG33noLwcHB0Gg0ePzxx/HXX39V1WEQEVEVad26NQ4dOoSMjAzcvn0bCQkJaNmypaOLRUREROTUGEORu6jSpNSuXbswZswY/Pbbb0hISEB+fj569OiBzMzMUtfZt28f/vWvf+Gll17CkSNH8NRTT+Gpp57CyZMn5WXmz5+PxYsXY9myZThw4AB8fHwQExODnJycqjwcIiIiIiIiIiKqJHbt6PzGjRuoU6cOdu3ahUceecTiMgMHDkRmZia2bt0qT+vYsSMeeOABLFu2DEIIhISEYPLkyZgyZQoAIDU1FXXr1sXq1asxaNCgMsvBTjqJqCqxk04i1+KsHZ07I74fRFSVGEMRuRaX6+g8NTUVgKETtNLs378fjz/+uMm0mJgYubO0pKQkXL161WQZf39/dOjQodQO1XJzc5GWlmbyR0REREREREREjmO3pJRer8fEiRPRpUsXtGjRotTlrl69Ko8qY1S3bl1cvXpVnm+cVtoyJc2dOxf+/v7yX1hY2L0cChERERERERER3SO7JaXGjBmDkydP4osvvrDXLmXTp09Hamqq/Hf58mW7l4GIiIiIiIiIiIp42GMnY8eOxdatW/Hrr7+iXr16VpcNCgrCtWvXTKZdu3YNQUFB8nzjtODgYJNlHnjgAYvb9PT0hKen5z0cQflk6fQ4l2XodL2htxe8lXZtJUlERERERORUrmRcQWpuqtVl9Hl66HV65BTkwEPvAQ+FXX6uEpEDVem3XAiBcePG4ZtvvsHOnTsRERFR5jqdOnXCjh07MHHiRHlaQkICOnXqBACIiIhAUFAQduzYISeh0tLScODAAfz73/+uisMot16HEnEm05CUauTthV87NHFwiYiIiIiIiBxjz5U9+PdPZf9WC1YHY2rDqZDSJShzlWhUoxETU0Rurkqr8IwZMwaff/451q1bB61Wi6tXr+Lq1avIzs6Wl3n++ecxffp0+fWECRPwww8/YMGCBThz5gxmzpyJP/74A2PHjgUASJKEiRMnYs6cOdiyZQtOnDiB559/HiEhIXjqqaeq8nBslliYkAKAxKwcK0sSETmX4cOHQ5IkSJIEtVqNhg0bYvbs2SgoKLin7e7cuROSJOHu3buVU1AbJCUlYfDgwQgJCYGXlxfq1auHvn374syZMybLbd26FV27doVWq4W3tzfatWuH1atXmyxz8eJFSJKEo0eP2rz/mTNnokmTJvDx8UGNGjXw+OOP48CBAybbfOmllxAREQGNRoMGDRogLi4OeXl5VrebkpKCwYMHo1GjRlAoFCYPcaxZunQp7r//fvj5+cHPzw+dOnXC999/L8+/ffs2xo0bh8aNG0Oj0eC+++7D+PHj5UFKAGD16tXy+VHy7/r16/Jyubm5eP311xEeHg5PT0/Ur18fK1euNCnPBx98IO8rLCwMr7zyCnJyrN8zv/76a/To0QO1atUq9+dBRESOk5SaBADwUnqhrnfdUv9qaWpBKSkBGCo45OvyHVnscmEMxRiKMVTFVGnaeenSpQCARx991GT6qlWrMHz4cADApUuXoFAU5cY6d+6MdevW4Y033sCMGTMQFRWFTZs2mXSO/tprryEzMxMvv/wy7t69i4ceegg//PCD0w4bqhcCCklydDGIiGwSGxuLVatWITc3F9999x3GjBkDlUpl8gDBkfLy8qBWq60uk5+fj+7du6Nx48b4+uuvERwcjH/++Qfff/+9SVD30UcfYeLEiZg6dSqWLl0KtVqNzZs3Y/To0Th58iTi4+MrXM5GjRphyZIliIyMRHZ2NhYtWoQePXrg3LlzCAwMxJkzZ6DX67F8+XI0bNgQJ0+exMiRI5GZmWl1v7m5uQgMDMQbb7yBRYsW2VyeevXq4b333kNUVBSEEFizZg369u2LI0eOoHnz5khOTkZycjLi4+PRrFkz/P333xg9ejSSk5OxceNGAMDAgQMRGxtrst3hw4cjJycHderUkacNGDAA165dw2effYaGDRsiJSUFer1enr9u3TpMmzYNK1euROfOnZGYmCgH8wsXLiz1GDIzM/HQQw9hwIABGDlypM3HTkREzuGx+x7DvEfmlTrfOLw8JEAPfanLOSvGUIyhGENVgKiGUlNTBQCRmppaJdsP/vmIqFvsL0+nr5L9EJFzys7OFqdOnRLZ2dmOLkq5DRs2TPTt29dkWvfu3UXHjh3F7du3xdChQ0VAQIDQaDQiNjZWJCYmystdvHhRPPnkkyIgIEB4e3uLZs2aiW3btomkpCQBwORv2LBhQggh0tLSxODBg4W3t7cICgoSCxcuFF27dhUTJkyQtxseHi5mz54thg4dKrRarbzu7t27xUMPPSS8vLxEvXr1xLhx40RGRoYQQogjR44IAOLixYulHuulS5eESqUSkyZNMpu3ePFiAUD89ttvQgghH8ORI0fK/6YWMt57fvrpp1KXmT9/voiIiLB5myXfq/KqUaOG+L//+79S5//vf/8TarVa5OfnW5x//fp1oVKpxH//+1952vfffy/8/f3FrVu3St3umDFjxGOPPWYybdKkSaJLly42lbsyPo/irH1nqzpmcDV8P4ioItacXCNarG4hXtv1mtXljNfjUymnxMkbJ0VWXpadSnjvGEMZMIYyYAxle8zAHrjtQCeEo4tARI4kBJCX6Zi/Srj+aDQa5OXlYfjw4fjjjz+wZcsW7N+/H0II9OrVC/n5hqr1Y8aMQW5uLn799VecOHEC8+bNg6+vL8LCwvDVV18BAM6ePYuUlBR8+OGHAIBJkyZh79692LJlCxISErB7924cPnzYrAzx8fFo1aoVjhw5gjfffBPnz59HbGws+vXrh+PHj2PDhg3Ys2eP3NQ7MDAQCoUCGzduhE6ns3hcGzduRH5+PqZMmWI2b9SoUfD19cX69evv+f0DDE8mV6xYAX9/f7Rq1arU5VJTU1GzZs1K2ac1Op0OX3zxBTIzM+U+G0srj5+fHzw8LFes/u9//wtvb288++yz8rQtW7agbdu2mD9/PkJDQ9GoUSNMmTLFpOl+586dcejQIfz+++8AgAsXLuC7775Dr169KukIiYjIbbhwHMUY6t4xhnL/GIq9xtmBDkxKEVVr+VnAuyGO2feMZEDtU6FVhRDYsWMHtm/fjp49e2LTpk3Yu3cvOnfuDABYu3YtwsLCsGnTJvTv3x+XLl1Cv3790LJlSwBAZGSkvC1jkFCnTh0EBAQAANLT07FmzRqsW7cO3bp1A2Bo3h0SYv5ePfbYY5g8ebL8esSIERgyZIjcF0BUVBQWL16Mrl27YunSpQgNDcXixYvx2muvYdasWWjbti2io6MxZMgQuVyJiYnw9/c3GcnVSK1WIzIyEomJiRV674y2bt2KQYMGISsrC8HBwUhISEDt2rUtLnvu3Dl89NFH91TdvSwnTpxAp06dkJOTA19fX3zzzTdo1qyZxWVv3ryJt99+Gy+//HKp2/vss88wePBgaDQaedqFCxewZ88eeHl54ZtvvsHNmzfxn//8B7du3cKqVasAAIMHD8bNmzfx0EMPQQiBgoICjB49GjNmzKjcAyYiIqciVaRLExeMoxhDMYZiDGU71pSyAz1zUkTkQrZu3QpfX194eXmhZ8+eGDhwIIYPHw4PDw906NBBXq5WrVpo3LgxTp8+DQAYP3485syZgy5duiAuLg7Hjx+3up8LFy4gPz8f7du3l6f5+/ujcePGZsu2bdvW5PWxY8ewevVq+Pr6yn8xMTHQ6/WGvihgeOp49epVrF27Fp06dcKXX36J5s2bIyEhweb3oqx+FwBDYFm8HLt375bnRUdH4+jRo9i3bx9iY2MxYMAAk84sja5cuYLY2Fj079/fpJ1/8e2OHj3apjLv3r3bZL21a9fK8xo3boyjR4/KI9YOGzYMp06dMttGWloannjiCTRr1gwzZ860uJ/9+/fj9OnTeOmll0ym6/V6SJKEtWvXon379ujVqxcWLlyINWvWyE/6du7ciXfffReffPIJDh8+jK+//hrbtm3D22+/XeZ7SkRErkdUk4f0jKGKMIZiDGUr1pSqAiUvuWy+R1TNqbwNT9octe9yio6OljusDAkJgYeHB7Zs2VLmeiNGjEBMTAy2bduGH3/8EXPnzsWCBQswbty4ipTchI+P6VPKjIwMjBo1CuPHjzdb9r777pP/rdVq0bt3b/Tu3Rtz5sxBTEwM5syZg+7duyMqKgqpqalITk42e7KYl5eH8+fPIyYmpsyy9enTxyTQDA0NNSl3w4YN0bBhQ3Ts2BFRUVH47LPPTDo8TU5ORnR0NDp37owVK1aYbLv4yCh+fn5llgUwBJ/F16tbt678b+NoQADQpk0bHDx4EB9++CGWL18uL5Oeno7Y2FhotVp88803UKlUFvfzf//3f3jggQfQpk0bk+nBwcEIDQ2Fv7+/PK1p06YQQuCff/5BVFQU3nzzTQwdOhQjRowAALRs2VIewOT111+3+p4SEVE140JxFGMoxlCMocqPSSk7KGBOiqh6k6QKN6FzBGMQUFzTpk1RUFCAAwcOyFXPb926hbNnz5pUXQ4LC8Po0aMxevRoTJ8+HZ9++inGjRsnPy0r3jdBZGQkVCoVDh48KAdBqampSExMxCOPPGK1jA8++CBOnTplVk5rJElCkyZNsG/fPgDAs88+i6lTp2LBggVYsGCBybLLli1DVlYWnn/++TK3q9VqodVqbSqDXq9Hbm6u/PrKlSuIjo5GmzZtsGrVKpPRaAGU6/iMNBqNzeuVLE9aWhpiYmLg6emJLVu2lDqqbUZGBv73v/9h7ty5ZvO6dOmCL7/8EhkZGfD19QVgqOavUChQr149AEBWVpbZsSqVRUOAl+c9JSIi1yGhAs33XCiOYgzFGIoxVPkxKWUHetaUIiIXFxUVhb59+2LkyJFYvnw5tFotpk2bhtDQUPTt2xcAMHHiRPTs2RONGjXCnTt38Msvv6Bp06YAgPDwcEiShK1bt6JXr17QaDTQarUYNmwYXn31VdSsWRN16tRBXFwcFApFmX1OTJ06FR07dsTYsWMxYsQI+Pj44NSpU0hISMCSJUtw9OhRxMXFYejQoWjWrBnUajV27dqFlStXYurUqQAMTwPnz5+PKVOmwMvLC0OHDoVKpcLmzZsxY8YMzJkzBy1atDDZ79mzZ83K0rx5c7MnYZmZmXjnnXfQp08fBAcH4+bNm/j4449x5coV9O/fH4AhmHr00UcRHh6O+Ph43LhxQ14/KCjI6vEbn+JlZGTgxo0bOHr0KNRqdal9GwDA9OnT0bNnT9x3331IT0/HunXrsHPnTmzfvh2AIZjq0aMHsrKy8PnnnyMtLQ1paWkADJ2eGgMeANiwYQMKCgrw3HPPme1n8ODBePvtt/HCCy9g1qxZuHnzJl599VW8+OKLcr8JvXv3xsKFC9G6dWt06NAB586dw5tvvonevXub7Kek27dv49KlS0hONjwxN34eQUFBZb5nREREjsAYyoAxlAFjKAsqZRxAF1PVwxnHLv1cfNp/iFjZb5AYMXO+SM7JrZL9EJFzsjY0qrOzNJyxkXE4Y39/f6HRaERMTIzJcMZjx44VDRo0EJ6eniIwMFAMHTpU3Lx5U54/e/ZsERQUJCRJsjqccfv27cW0adPk9cLDw8WiRYvMyvP777+L7t27C19fX+Hj4yPuv/9+8c477wghhLhx44YYP368aNGihfD19RVarVa0bNlSxMfHC51OZ7KdTZs2iYcfflj4+PjIwy2vX7/eZBlLQzIb/y5fvmxWtuzsbPH000+LkJAQoVarRXBwsOjTp4/4/fff5WVWrVpV6jbLYmmd8PBwq+u8+OKLIjw8XKjVahEYGCi6desmfvzxR3n+L7/8Ump5kpKSTLbVqVMnMXjw4FL3dfr0afH4448LjUYj6tWrJyZNmiSysoqG9c7PzxczZ84UDRo0EF5eXiIsLEz85z//EXfu3LF6DKW9Z3FxcVbXK0tlDGdcXfD9IKKKWH1ytWixuoWY9us0q8sZr8enUk6JkzdOiqy8LKvLOxPGUIyhGEOZsjVmkISoftV40tLS4O/vLw/TWNn+39MD0Pb0CQBAnocKtf74A/W8yu7ojYjcQ05ODpKSkhAREVFq1V2yLDMzE6GhoViwYIFZ54/2cPv2bXTr1g1+fn74/vvv4e1d/j65yPVY+85Wdczgavh+EFFFrPlzDeL/iEfvyN549+F3S13OeD1GDUDvoUekfyQ0Kk2py1MRxlDkCJURQ7H5XhXwKCiQ/60uyGdH50REpThy5AjOnDmD9u3bIzU1FbNnzwYAuTq7vdWsWRM//fQTPv74Y+zfv18eZpmIiIgsu/b++7jz/z4HrPzmuTu4IRBS6uxSVZdR+yqCMRS5Cyal7ECn58WUiKg08fHxOHv2LNRqNdq0aYPdu3ejdu3aDitPrVq18NZbbzls/0RERK4k/fsfIPLyrC6Tc/oMEFJ6fzdUMYyhyB0wKVUFpBIZfZ3QO6gkRETOrXXr1jh06JCji0FEREQVZKzNVG/pJ/Aq7JzbSHfnDpKefkZ+XVYn3EULVlrx3BZjKHIXTErZgU7HpBQREREREbkvj9q1oSoxipdkHFmNSSYiKgWTUnYgWFOKiIiIiIjckdxIxDTzlJaWhszbt5HlrQGQY+9SEZGLYFKqKpToQoo1pYiIiIiIyC1Z6OD83Llz+Pzzzw0v+vRBzt0EAGn2LRcRuQSFowtQHej0TEoREREREZEbK9Zf1PXr101mZZcYKp6IyIhJKTvQWRkelYiIiIiIyGUZf+uw3ygiqgAmpexAz+Z7RERERERUTYhSHspLzFwRUQlMSlUBqcRFuIDN94iIiIiIyB0V/vaRpNITToK5KCIqBZNSdqBnUoqIXMTw4cMhSRIkSYJarUbDhg0xe/ZsFBQU3NN2d+7cCUmScPfu3copqA2SkpIwePBghISEwMvLC/Xq1UPfvn1x5swZk+W2bt2Krl27QqvVwtvbG+3atcPq1atNlrl48SIkScLRo0dt3v/MmTPRpEkT+Pj4oEaNGnj88cdx4MABk22+9NJLiIiIgEajQYMGDRAXF4e8vDyr201JScHgwYPRqFEjKBQKTJw40eYyGb333nuQJMls3fPnz+Ppp59GYGAg/Pz8MGDAAFy7ds1kmXfeeQedO3eGt7c3AgICLG7feA4V//viiy/k+V9//TW6d+8u76dTp07Yvn17meX++uuv0aNHD9SqVavcnwcREVURdlUCgDEUYyjGUBXFpJQdsPkeEbmS2NhYpKSk4K+//sLkyZMxc+ZMvP/++44ulqysgAMA8vPz0b17d6SmpuLrr7/G2bNnsWHDBrRs2dIkqPvoo4/Qt29fdOnSBQcOHMDx48cxaNAgjB49GlOmTLmncjZq1AhLlizBiRMnsGfPHtSvXx89evTAjRs3AABnzpyBXq/H8uXL8eeff2LRokVYtmwZZsyYYXW7ubm5CAwMxBtvvIFWrVqVu1wHDx7E8uXLcf/995tMz8zMRI8ePSBJEn7++Wfs3bsXeXl56N27t8nDlby8PPTv3x///ve/re5n1apVSElJkf+eeuoped6vv/6K7t2747vvvsOhQ4cQHR2N3r1748iRI1a3mZmZiYceegjz5s0r93ETEVEVs1JTqmgR964yxRiKMRRjqAoQ1VBqaqoAIFJTU6tk+xt69RWnGjeR/3YmXaqS/RCRc8rOzhanTp0S2dnZji5KuQ0bNkz07dvXZFr37t1Fx44dxe3bt8XQoUNFQECA0Gg0IjY2ViQmJsrLXbx4UTz55JMiICBAeHt7i2bNmolt27aJpKQkAcDkb9iwYUIIIdLS0sTgwYOFt7e3CAoKEgsXLhRdu3YVEyZMkLcbHh4uZs+eLYYOHSq0Wq287u7du8VDDz0kvLy8RL169cS4ceNERkaGEEKII0eOCADi4sWLpR7rpUuXhEqlEpMmTTKbt3jxYgFA/Pbbb0IIIR/DkSNHyv+mFjLee3766adSl5k/f76IiIiweZsl36uypKeni6ioKJGQkGC27vbt24VCoTC5N969e1dIkiQSEhLMtrVq1Srh7+9vcT8AxDfffGNzuYQQolmzZmLWrFk2LVsZn0dx1r6zVR0zuBq+H0RU0tmHHhKnGjcR2adPy9P27Nkj4uLi5L9x0x4TLVa3EG/secPqtozX41NXT4mTN06KzLzMqi5+pWEMZcAYyoAxlO0xA2tK2YFexyqtRNWZEAJZ+VkO+ROVUKVeo9EgLy8Pw4cPxx9//IEtW7Zg//79EEKgV69eyM/PBwCMGTMGubm5+PXXX3HixAnMmzcPvr6+CAsLw1dffQUAOHv2LFJSUvDhhx8CACZNmoS9e/diy5YtSEhIwO7du3H48GGzMsTHx6NVq1Y4cuQI3nzzTZw/fx6xsbHo168fjh8/jg0bNmDPnj0YO3YsACAwMBAKhQIbN26ETqezeFwbN25Efn6+xad5o0aNgq+vL9avX3/P7x9geDK2YsUK+Pv7W30yl5qaipo1a1bKPi0ZM2YMnnjiCTz++ONm83JzcyFJEjw9PeVpXl5eUCgU2LNnT4X2Vbt2bbRv3x4rV660ei7q9Xqkp6dX6bETEZH9lLzm30s04spxFGOoe8cYyv1jKA9HF6A60Oktf5mJqHrILshGh3UdHLLvA4MPwFvlXaF1hRDYsWMHtm/fjp49e2LTpk3Yu3cvOnfuDABYu3YtwsLCsGnTJvTv3x+XLl1Cv3790LJlSwBAZGSkvC3jjbJOnTpyG/r09HSsWbMG69atQ7du3QAYqiuHhISYleWxxx7D5MmT5dcjRozAkCFD5Pb8UVFRWLx4Mbp27YqlS5ciNDQUixcvxmuvvYZZs2ahbdu2iI6OxpAhQ+RyJSYmwt/fH8HBwWb7U6vViIyMRGJiYoXeO6OtW7di0KBByMrKQnBwMBISElC7dm2Ly547dw4fffQR4uPj72mfpfniiy9w+PBhHDx40OL8jh07wsfHB1OnTsW7774LIQSmTZsGnU6HlJSUcu1r9uzZeOyxx+Dt7Y0ff/wR//nPf5CRkYHx48dbXD4+Ph4ZGRkYMGBAuY+LiIgczPh72ZbmexUYfc8V4yjGUIyhGEPZjjWlqkDJ0ff0etaUIiLXsXXrVvj6+sLLyws9e/bEwIEDMXz4cHh4eKBDh6KgsFatWmjcuDFOnz4NABg/fjzmzJmDLl26IC4uDsePH7e6nwsXLiA/Px/t27eXp/n7+6Nx48Zmy7Zt29bk9bFjx7B69Wr4+vrKfzExMdDr9UhKSgJgeMp09epVrF27Fp06dcKXX36J5s2bIyEhweb3Qq1Wl7nM2rVrTcqxe/dueV50dDSOHj2Kffv2ITY2FgMGDMD169fNtnHlyhXExsaif//+GDlypDy9+HZHjx5tU5l3795tst7atWtx+fJlTJgwAWvXroWXl5fF9QIDA/Hll1/i22+/ha+vL/z9/XH37l08+OCDUCjKFy68+eab6NKlC1q3bo2pU6fitddeK7VPjXXr1mHWrFn43//+hzp16gCw/p4SEZGTsaU2kXt3JSVjDFWEMRRjKFuxplQls1S1jqPvEVVvGg8NDgw+UPaCVbTv8oqOjsbSpUuhVqsREhICDw8PbNmypcz1RowYgZiYGGzbtg0//vgj5s6diwULFmDcuHEVKboJHx8fk9cZGRkYNWqUxadG9913n/xvrVaL3r17o3fv3pgzZw5iYmIwZ84cdO/eHVFRUUhNTUVycrLZk8W8vDycP38eMTExZZatT58+JoFmaGioSbkbNmyIhg0bomPHjoiKisJnn32G6dOny8skJycjOjoanTt3xooVK0y2XXxkFD8/vzLLAhiCz+Lr1a1bFzt27MD169fx4IMPytN1Oh1+/fVXLFmyBLm5uVAqlejRowfOnz+PmzdvwsPDAwEBAQgKCjJ5YlsRHTp0wNtvv43c3FyTqu1ffPEFRowYgS+//NKkOry195SIiJxV1WSeXCmOYgzFGIoxVPkxKWUHOialiKo1SZIq3ITOEYxBQHFNmzZFQUEBDhw4IFc9v3XrFs6ePYtmzZrJy4WFhWH06NEYPXo0pk+fjk8//RTjxo2Tn5YV75sgMjISKpUKBw8elIOg1NRUJCYm4pFHHrFaxgcffBCnTp0yK6c1kiShSZMm2LdvHwDg2WefxdSpU7FgwQIsWLDAZNlly5YhKysLzz//fJnb1Wq10Gq1NpVBr9cjNzdXfn3lyhVER0ejTZs2WLVqldnTtPIcn5FGozFbr1u3bjhx4oTJtBdeeAFNmjTB1KlToVQqTeYZq8f//PPPuH79Ovr06VPuchR39OhR1KhRwySYWr9+PV588UV88cUXeOKJJ0yWL897SkREDmZ8KG8lJyUKZ1Zk9D1XiqMYQzGGYgxVfkxK2YFg8z0icnFRUVHo27cvRo4cieXLl0Or1WLatGkIDQ1F3759AQATJ05Ez5490ahRI9y5cwe//PILmjZtCgAIDw+HJCxBMl4AAQAASURBVEnYunUrevXqBY1GA61Wi2HDhuHVV19FzZo1UadOHcTFxUGhUJQZtE6dOhUdO3bE2LFjMWLECPj4+ODUqVNISEjAkiVLcPToUcTFxWHo0KFo1qwZ1Go1du3ahZUrV2Lq1KkADE8D58+fjylTpsDLywtDhw6FSqXC5s2bMWPGDMyZMwctWrQw2e/Zs2fNytK8eXOoVCqTaZmZmXjnnXfQp08fBAcH4+bNm/j4449x5coV9O/fH4AhmHr00UcRHh6O+Ph4eZhjAAgKCrJ6/ManeBkZGbhx4waOHj0KtVptEtwWp9VqzY7Fx8cHtWrVMpm+atUqNG3aFIGBgdi/fz8mTJiAV155xaQ5wKVLl3D79m1cunQJOp1OLkvDhg3h6+uLb7/9FteuXUPHjh3h5eWFhIQEvPvuuyadoa5btw7Dhg3Dhx9+iA4dOuDq1asADMGgv79/qcdt3G9ycjKAos8jKCiozPeMiIiqiIWWIuatR6rv7yHGUAaMoRhDlapSxgF0MVU5nLFerxf/69lbnGrcRP7bdPTPSt8PETkva0OjOjtLwxkbGYcz9vf3FxqNRsTExJgMZzx27FjRoEED4enpKQIDA8XQoUPFzZs35fmzZ88WQUFBQpIkq8MZt2/fXkybNk1eLzw8XCxatMisPL///rvo3r278PX1FT4+PuL+++8X77zzjhBCiBs3bojx48eLFi1aCF9fX6HVakXLli1FfHy80Ol0JtvZtGmTePjhh4WPj4883PL69etNlrE0JLPx7/Lly2Zly87OFk8//bQICQkRarVaBAcHiz59+ojff/9dXmbVqlWlbrMsltYJDw8vc73iLA2FPHXqVFG3bl2hUqlEVFSUWLBggdDr9SbLDBs2zOL+f/nlFyGEEN9//7144IEH5M+lVatWYtmyZSbve9euXS1uw3helKa09ywuLq5cx15SZQxnXF3w/SCiks527CRONW4icorFBL/++quIi4uT/8ZMf0y0WN1CvLX3LavbMl6PT109JU7eOCky8zKruviVhjEUYyjGUKZsjRkkISphvHAXk5aWBn9/f6SmptrcvtRWQghsfKIvWlz4S552Zv1GPN26eaXuh4icV05ODpKSkhAREVFqh4hkWWZmJkJDQ7FgwQK89NJLdt//7du30a1bN/j5+eH777+Ht7drNBege2PtO1uVMYMr4vtBRCUlduwE3d27iNz6LTwLmz7t3r0bO3bskJe5mbcbuxpfR7+ofpjx4FQkJ56BrqAAe/fuRUZGhrycl7cPWnToBP9QP0gqQCu0UMIDPlotfHx97X5sroQxFDlCZcRQbL5nB3rBPqWIiCw5cuQIzpw5g/bt2yM1NRWzZ88GALk6u73VrFkTP/30Ez7++GPs379fHmaZiIiIKk4Ua1G2ZcG7+Pv4EYvLSTVrQ7R+EN7ZCqjylAByoAeQnp0Jb58GFeqTyl0xhiJ3waRUFZBK1D3T66pdZTQiIpvFx8fj7NmzUKvVaNOmDXbv3i13EukItWrVwltvveWw/RMREbkUuaNz2xJGaTcN/f/41ApEWkYmlEoF/Ar7wvH084ekVEKvBAqUAirJA6JABwgBIQSTUiUwhiJ3wKRUJbOUftLpdRam2seZzGwsvHgN2To9AtUeiGsQAn8VP3Yicg6tW7fGoUOHHF0MIiIiqiBLv3/Me4gxTyY92G8wvtu9F4GBgRg5ZgyAoqZAWb4CemU+Qr0CkXPtZuUX2g0whiJ3weyEHegd2G3X6iu3sOX6Xfl15wBfPBtU02HlISIiIiIiN2SlFhPbjRBRaRSOLoA7kkokoYTecX1K5ehM952lY/9WRERERERUSeTfPhVrWscmeUTVG5NSdnA3Lx9pBY5pwqcr8Vwiv/oNtkhERERERFWlHL8vJEmSly//IPD8HUPkjpiUsoP/d+Ummu05gWPpWXbfd8k+1vP15b+Yp+TmYeftNOy6ne6w5BoRERERETkxaxWeSo4EVRHMSRG5JfYpZQceECgQwLwLKehR2x+9avujjqfKLvvWiXurKZWj0+PR388itTAZ1dbPG1vbNKq08tkqT6/HtbwC/L8rN5Gt12N2w1Cbqvp+cPEq1qbcBgB0CvDBh03uYxVhIiIiIqLKUvj7oniMbUstKOPiVmNzhu1Ebo9JqSoglUjjvx4RhBdygZ9vp+Pn2+nYfScd8xuFYW3KLWTq9FBLEgYF10Sol7rSy1JQ4oaQV86aUncLdHJCCgBOZ+ZUSrnKQycEHjt4FueycuVpQ0Nqo5GPl8ly13Lz8UXKbeToDSMNDg2pjZVXbuJ6XgEA4PLVPMQ1CEUtNU97IiIiIiJ7EYXZJQnFE1e2rMmsFJG746/zSmbp2vqwvy/+7emPb2/cxT85+TiUmoXPrtzAwovX5GX+yc3Doib3VXp5jDWlPBUScvWi3DWl8kp00p6p0yNLp4e30n4tP+/k60wSUgCQq9djQ8ptXM/Lh1oh4Zm6NbD472v47ErRkLH1vNRmSbhcB3Y6T0RERETkdoy/L2yu8cR2eERUhH1K2YESAnENQ/HVAw0BAKkFBbiea6i94++hBADcLKzNcy8ydTq8cuYSBh87jxdOJOFIWpbcp5SXwvBRF0/S/JGaiQ77T6H5npNot/8UfryZarbNgsLFtUoF1IU3mut5+Vh15SbmJ6Vg8LHzmJH4Dz64eBUHUzNtLmtyTh6+SLmF9Sm3cCTNel9bOYWJJLUkIbSw2eOOW2mYcOYS3rmQgrhzyXg/6apcI8roZl4B8krWFKtAR++5ej1S8ws4ciFVC8OHD4ckSZAkCWq1Gg0bNsTs2bNRUHBv16idO3dCkiTcvXu3cgpqg6SkJAwePBghISHw8vJCvXr10LdvX5w5c8Zkua1bt6Jr167QarXw9vZGu3btsHr1apNlLl68CEmScPToUZv3P3PmTDRp0gQ+Pj6oUaMGHn/8cRw4cMBkmy+99BIiIiKg0WjQoEEDxMXFIS8vz+p2U1JSMHjwYDRq1AgKhQITJ060uUxXrlzBc889h1q1akGj0aBly5b4448/5PnFP3/jX2xsrMk26tevb7bMe++9J88/e/YsoqOjUbduXXh5eSEyMhJvvPEG8vPzTbZz9+5djBkzBsHBwfD09ESjRo3w3XffWS3/119/jR49eqBWrVrl/jyIiKiK3ONASu7StQZjKMZQjKEqhjWlqkLJ67LeWFupMDEkBDJ0hiZxkRpPHEnPQo5ejzv5BThwNxN6CDT09jJrnlYanRA4lp6FjVfvYH1h/0kA4KWQ5OZ7GoUCqdAhXxQlVr67kYq/cwxf3Fv5wOfJt9Cjtr/JtvMKl1cpJCgkCXkFOmy9fhdzLqQUWyodAOB76TpOdmkBLxtqUY388yIOFSajVJKEw52bIVBtuZ8tY1LKSynBo/CmdTnH9IKTmJkDH6XSZFqWXo8Cs5pS5btpnkzPQt8j55Cp00MpAUuahuPpujXKtQ0iVxMbG4tVq1YhNzcX3333HcaMGQOVSoXp06c7umgAgLy8PKjV1ps75+fno3v37mjcuDG+/vprBAcH459//sH3339vEtR99NFHmDhxIqZOnYqlS5dCrVZj8+bNGD16NE6ePIn4+PgKl7NRo0ZYsmQJIiMjkZ2djUWLFqFHjx44d+4cAgMDcebMGej1eixfvhwNGzbEyZMnMXLkSGRmZlrdb25uLgIDA/HGG29g0aJFNpfnzp076NKlC6Kjo/H9998jMDAQf/31F2rUML2mGT9/I09PT7NtzZ49GyNHjpRfa7Va+d8qlQrPP/88HnzwQQQEBODYsWMYOXIk9Ho93n33XQCGz7B79+6oU6cONm7ciNDQUPz9998ICAiwegyZmZl46KGHMGDAAJP9ExGRE7AhuWTSfM8Na0wxhmIMxRiq/JiUsgvDBVdVeKHWCcj9NNUu7N8oW6fHy39exO47GQAMtYKOdG5u1v+REAK/pWbidn4BNAoFHqrhi7kXUrD08g2zvWbo9MZ8GLyUhn0XryllTIzVVClxO1+HDAs1gYyj9aklBXSFo2b8k5tvtpxxf6czc9Daz7usNwRnC/umUkkS8oXAxqt38FgtPzTy9jR7WpJTWC4vhQJqhWHe3cL3L9RThSu5+UjOzUdI4Xdeo1AgW69Htk4v14xSSob3vWRzxLIcTstCZuH+dQL47W4Gk1Lk9jw9PREUFAQA+Pe//41vvvkGW7ZswejRozFhwgR8++23yM3NRdeuXbF48WJERUUBAP7++2+MHTsWe/bsQV5eHurXr4/3338fzZo1Q3R0NADIN+9hw4Zh9erVSE9Px+jRo7Fp0yb4+fnhtddew+bNm/HAAw/ggw8+AGB4qvTSSy/hr7/+wqZNm/DMM89g9erV2LNnD6ZPn44//vgDtWvXxtNPP425c+fCx8cHf/75J86fP48dO3YgPDwcABAeHo4uXbrIx3n58mVMnjwZEydOlG/0ADB58mSo1WqMHz8e/fv3R4cOHSr0Pg4ePNjk9cKFC/HZZ5/h+PHj6NatG2JjY02eoEVGRuLs2bNYunSp1YCqfv36+PDDDwEAK1eutLk88+bNQ1hYmEmwFBERYbZc8c+/NFqtttRlIiMjERkZKb8ODw/Hzp07sXv3bnnaypUrcfv2bezbtw8qlUo+rrIMHToUgOEJKREROQf514WVjs7dL/1kGWMoxlCMocqPzffsoTAR4qkoulDfyTckVQKNSSm9HonFOhHPEwLns3LQ+9BfCNt5DPftPIbZ55Lx4600PH3kHF46eRGDj1/A0ks3cKZE5+MPFiaFcvR6k5pSQFHH59k6Pa7nGZJLzX01AGCxeZoxKaVSSHL5U/MNVVCja2rRQOOJf4cF4v7CbdzKL716qhAC710wNPkzJsAeruELAJh1Phldfz+D4J3H0Hb/n1h26TrOZeXg4QOn8fgfiQCA63kFck2p1ML3r25hc74MnQ5Zhe9zLbWhxlRmsePxLaxFVd6O3kt2FF9dbqhUuYQQ0GdlOeTPltFvyqLRaJCXl4fhw4fjjz/+wJYtW7B//34IIdCrVy+5SvGYMWOQm5uLX3/9FSdOnMC8efPg6+uLsLAwfPXVVwAM1ZJTUlLkgGDSpEnYu3cvtmzZgoSEBOzevRuHDx82K0N8fDxatWqFI0eO4M0338T58+cRGxuLfv364fjx49iwYQP27NmDsWPHAgACAwOhUCiwceNG6HQ6s+0BwMaNG5Gfn48pU6aYzRs1ahR8fX2xfv36e37/AMNTrRUrVsDf3x+tWrUqdbnU1FTUrFmzUvZZ0pYtW9C2bVv0798fderUQevWrfHpp5+aLbdz507UqVMHjRs3xr///W/cunXLbJn33nsPtWrVQuvWrfH+++9bbZpw7tw5/PDDD+jatatJWTp16oQxY8agbt26aNGiBd59991SPysiInIfcmwid0VlvYaVEAIiJ8cl4yjGUPeOMZT7x1CsKVUFSo6+J4x9IhVLSt0uTN4Ym6xdzS1AauEJWVftgWt5BfgtNRMH04r6afrk8nVczgkw2fbfObly8uX/mtdHPS81/s7Jxag//0aOTqCwglRRn1JCYNKZS1hXrJmfVmlM4uiw4vJ1LLt8A3oBNPHxwtjwOgAMNZqM1W2NtZRCPFVY36oBAOBfx84DAOZdSMEPN1IxOyoUXgoJyYW1quqqVTiTmY0P/i7q3L25rxcm1w/C39l5SNPpcKOwT6h/cgx9Vikk4K8SHZyrStSUqlOY1MvSGWpGAUBNlQf+yclHWrFRA32VCqQW6MrdfK9kUoqoIkR2Ns4+2MYh+258+BAk77JrL1oihMCOHTuwfft29OzZE5s2bcLevXvRuXNnAMDatWsRFhaGTZs2oX///rh06RL69euHli1bAoDJkx5jkFCnTh25enF6ejrWrFmDdevWoVu3bgCAVatWISQkxKwsjz32GCZPniy/HjFiBIYMGSL3BRAVFYXFixeja9euWLp0KUJDQ7F48WK89tprmDVrFtq2bYvo6GgMGTJELldiYiL8/f0RHBxstj+1Wo3IyEgkJiZW6L0z2rp1KwYNGoSsrCwEBwcjISEBtWvXtrjsuXPn8NFHH91TdXdrLly4gKVLl2LSpEmYMWMGDh48iPHjx0OtVmPYsGEADNXOn3nmGUREROD8+fOYMWMGevbsif3790NZeK8YP348HnzwQdSsWRP79u3D9OnTkZKSgoULF5rsr3Pnzjh8+DByc3Px8ssvY/bs2SZl+fnnnzFkyBB89913OHfuHP7zn/8gPz8fcXFxVXL8RERURWzp6BzGRSrQf1RuLu72G4C75V/znlU0jmIMxRiKMZTtWFPKjlSSeVIquLCmz638AhQIwzJNfAy1jowdgPsW66Pp2xt3ARia3AGGGk/phckXrYcSD/h5y7WCcvT6oo7OC7NT+XqBn26lmZSrcWHfVcm5+XjrXDKSc/NxNS8fO++k41h6tqHsCklOqhlreWmKlStSY2g7dyIjG5+n3MKOW2n417ELaLv/FNruP4VuB8/KSaJAtQfea1QP/20ZiTb+PtjbsSlOdGmBsw+1wGct6hv2UVBgUtPJyNjZ+t0C06Rejl7ISa2Qwve0eFLKOFpgeUffy2dOiqqhrVu3wtfXF15eXujZsycGDhyI4cOHw8PDw6Qadq1atdC4cWOcPn0agOFGO2fOHHTp0gVxcXE4fvy41f1cuHAB+fn5aN++vTzN398fjRs3Nlu2bdu2Jq+PHTuG1atXw9fXV/6LiYmBXq9HUlISAMNTx6tXr2Lt2rXo1KkTvvzySzRv3hwJCQk2vxdl9bsAGALL4uUoXsU6OjoaR48exb59+xAbG4sBAwbg+vXrZtu4cuUKYmNj0b9/f5N2/sW3O3r0aJvKvHv3bpP11q5dCwDQ6/V48MEH8e6776J169Z4+eWXMXLkSCxbtkxed9CgQejTpw9atmyJp556Clu3bsXBgwexc+dOeZlJkybh0Ucfxf3334/Ro0djwYIF+Oijj5Cba/oQYcOGDTh8+DDWrVuHbdu2mQSKer0ederUwYoVK9CmTRsMHDgQr7/+ulwWa+8pERE5GRse4gpLuajCaZYSVRIqkLxyAoyhijCGYgxlK9aUqmQWr8nFqqaqJamwo3NDcqStnzf+E1YHf+fkwlupQHRNP+y+Y+g4/Gi6ISnVzFeD3wtHtrvfV4N6Xmo09vHCor+vIVuvl7elLUy8eBUmj3L0erlmkbGmVL4QcsfhK5rXx638AnSrqcWiv6+ZJIFCPFVIzs2Xm/ipJQlKY9O5woSQsUkgAEyNDEZrP298+s8NHEvPxo28fPyemiHPT8zKkZNGddQeGB5qnuX2V3mgg7+hOV9agV7ud2tEvdqoq1ahSw1fzD6XDAC4VSIBBRTVnrrPy5AgSy9WhVFbOMphVrGk1F+ZOfjhZir0Amjq62XWyTsAs47SiSpC0mjQ+PAhh+27vKKjo+UOK0NCQuDh4YEtW7aUud6IESMQExODbdu24ccff8TcuXOxYMECjBs3riJFN+Hj42PyOiMjA6NGjcL48ePNlr3vvvvkf2u1WvTu3Ru9e/fGnDlzEBMTgzlz5qB79+6IiopCamoqkpOTzZ4s5uXl4fz584iJiSmzbH369DEJNENDQ03K3bBhQzRs2BAdO3ZEVFQUPvvsM5MOT5OTkxEdHY3OnTtjxYoVJtsuPjKKn59fmWUBDMFn8fXq1q0LAAgODkazZs1Mlm3atKncLMCSyMhI1K5dG+fOnZOfxJbUoUMHFBQU4OLFiybBcFhYGACgWbNm0Ol0ePnllzF58mQolUoEBwdDpVLJTw6NZbl69Sry8vKsvqdEROSsSu9TyhKbm8Z5eiLgq/+h9n3hUCrt+/O1vHEUYyjGUEaMoWzHpJRdFF1w1QoJebqi11oPJd5qaPpFPpNhqJ2UUtj0ramPl5yUWtAkDC213th41dD8LlsnkFGYjPEpTLwYk0XZej00wvBvY02hPL1ATuH+2/h5I9TLkMH+tHl9nMnMhgISYmr7yTWmjIkkD6moplRStmHku+I1pfw8lHg2qCZ+T80sTEoVILtEQsfY35RaKr2CXoCHUu6UfFlh5+1apRLjwuvK75/h2AzbrqNWwd9DKSewfJUKs5pSHhJwn5cah9Oy8J9Tf6OOOhn/bRmBV89exh+FtdEkAIc7N0Owp2lGP599SlElkCSpwk3oHMEYBBTXtGlTFBQU4MCBA3LV81u3buHs2bMmN+mwsDCMHj0ao0ePxvTp0/Hpp59i3Lhx8tOy4u3dIyMjoVKpcPDgQTkISk1NRWJiIh555BGrZXzwwQdx6tQps3JaI0kSmjRpgn379gEAnn32WUydOhULFizAggULTJZdtmwZsrKy8Pzzz5e5Xa1WazJyijV6vd7kadiVK1cQHR2NNm3aYNWqVVAoTK+P5Tk+I41GY3G9Ll264OzZsybTEhMT5U5MLfnnn39w69Yti9XzjY4ePQqFQoE6deqUuoxer0d+fj70ej2USiW6dOmCdevWQa/Xy8ecmJiI4OBgqNVqqNVqm99TIiJysMJ4uSIt82whSRLg5QWFxhsKD+f++coYijGUEWMo2zn3t9pFSVay/p4Khckod77FMpxGD9fQYtnlG8gTAipJwuO1/KCQJNzIy5c7JTcmhLJ0RTWljM38vAr/n6MT0Bd+wsZEVY6+aEQ6r2Jf3N51AtAbAfLruoV9NX197Y5h2x4Kk+aHgKHPqZJqqgzrXc7Jk6dplQqk6/Ryk8XiHb6X5KGQ0MjbC6eLdd5+t1gzPI8SZaihUmJ1ywi5dlmXAF9cyDZcrNILDO+LSpIQXdMPm67fRa5e4HJOHnbdTjcpo4AhCVgyKaVjn1JEAAz9DfTt2xcjR47E8uXLodVqMW3aNISGhqJv374AgIkTJ6Jnz55o1KgR7ty5g19++QVNmzYFYBg9RJIkbN26Fb169YJGo4FWq8WwYcPw6quvombNmqhTpw7i4uKgUCjK7HNi6tSp6NixI8aOHYsRI0bAx8cHp06dQkJCApYsWYKjR48iLi4OQ4cORbNmzaBWq7Fr1y6sXLkSU6dOBWB4Gjh//nxMmTIFXl5eGDp0KFQqFTZv3owZM2Zgzpw5aNGihcl+SwYkANC8eXN59BOjzMxMvPPOO+jTpw+Cg4Nx8+ZNfPzxx7hy5Qr69+8PwBBMPfroowgPD0d8fDxu3CgaRbWskVuMT/EyMjJw48YNHD16FGq12uwpXnGvvPIKOnfujHfffRcDBgzA77//jhUrVshPFjMyMjBr1iz069cPQUFBOH/+PF577TU0bNhQftq5f/9+HDhwANHR0dBqtdi/fz9eeeUVPPfcc/KoQGvXroVKpULLli3h6emJP/74A9OnT8fAgQPl9+nf//43lixZggkTJmDcuHH466+/8O6771p8alvc7du3cenSJSQnG2rNGj+PoKCgMt8zIiKqIuWNl0ssXqF+plwIYygDxlCMoUrDpJQ9FLtQj6xXG+tTbkMA6BzgK/cNVdzDNbU483BL5Or18FQo4K1UoHuJpmXGJNPdggK5No+xiZpXsQRUQYkEVPF+loz9TFkSXcsP31y/W/S6ph9a+3lDpZCQrxeo56VG91rmzd2Mx/N3YW0qlSShhsoD6bo83C7si8pTYb0rs9kNQ/Hf5Fv49U46Ugt0eDKwaD8P19Dil9vpEIX7au3njWBPNToF+MrLGDtXN9bM0igVGBhcE4/W1OKNv67g2xuG5JSxPAEeStwt0Mkj+hVnVlOKOSqqxlatWoUJEybgySefRF5eHh555BF899138k1Sp9NhzJgx+Oeff+Dn54fY2FgsWrQIgKHq8KxZszBt2jS88MILeP7557F69WosXLgQo0ePxpNPPikPZ3z58mV4eZknvYu7//77sWvXLrz++ut4+OGHIYRAgwYNMHDgQABAvXr1UL9+fcyaNQsXL16EJEny61deeUXeziuvvILIyEgsWLAAH374ITIzDbVS169fj0GDBpnt19K0y5cvo169eibTlEolzpw5gzVr1uDmzZuoVasW2rVrh927d6N58+YAgISEBJw7dw7nzp0zW7+sJg2tW7eW/33o0CGsW7cO4eHhVof5bdeuHb755htMnz4ds2fPRkREBD744AMMGTJELvPx48exZs0a3L17FyEhIejRowfefvtteHoamkV7enriiy++wMyZM5Gbm4uIiAi88sormDRpkrwfDw8PzJs3D4mJiRBCIDw8HGPHjjV538PCwrB9+3a88soruP/++xEaGooJEybIwW5ptmzZghdeeEF+bfw84uLiMHPmTKvrEhFRFStncqk6xdWMoRhDMYYqnSQqY7xwF5OWlgZ/f3+kpqba3L7UVgV6ga2xT6DxpSR5Wvjaz+HdpnJH3jqRnoXufyRCJUly4uTKo62glCQk5+Thwf2n4CEB4V6eOJ+di5frBWLFPzcQqfGUaxIlP9oKilJuHnohcDA1E2kFOngrFejg7wsPKzWcjL66ehtjTl+SX9fwUCLES4U/M4pqPnWr6Ye1rSItrW5CCIEsnV5ulmiUqdNBJwyJOZWFMm29fhcj/rwov27o7Yk9HQxPGqYn/oNVV27K7wcAPKD1xtH0LCxrFo6fbqXhcFoWJADDQmvhSm4+ll8uyrwPCa6JBU3uA5E1OTk5SEpKQkRERJmBAZnKzMxEaGgoFixYgJdeesnu+799+za6desGPz8/fP/99/B2oWaXVHHWvrNVGTO4Ir4fRFTSmZb3Q+Tno+EvP0NV2FTpl19+wa5du+RlkvV7sL/BNQxqPAhB6y7i7rUUdB4xFtv3/obQ0FC5g2rj9ViqKUGn1CFUE4qcq4ZYPDA8Akonb77nSIyhyBEqI4bi6HtVQCqZ5quCvJ+xLyhjQspbqZA7Ijc23ysQRU3fAgprMBlHrfNUSKUmpABAIUnoEOCL7rX90aWG1qaEFAA0LNGk75GaWjT1Me0gcMdt09H/SiNJkllCCgB8lEr4eSgtJqSAouM3MjYpBIqaDibnGmpyeSkkeQTEkxnZ2HjtDi5k5+J8di6WX77Bjs6JqtiRI0ewfv16nD9/HocPH5afOBmrs9tbzZo18dNPP6Fbt27Yv3+/Q8pARETk6szqPVj5KeHuzfeqCmMochdMNdtDFSSlaqo8MKJebey6behL6Zm6NeR5xfuKMjZhq1GYmDE2WautqpqPvpXWG98+GIXk3DyoJAkP19AiJTcf+UJgc2FzwAALiabK1EDjCQlFzdWbFkuUGZs9/nTLkBirofKAf2F5krJNh+LM1OnlpJ+xRhpTVESVLz4+HmfPnoVarUabNm2we/du1K5tPkKnvdSqVQtvvfWWw/ZPRETkSuT42MbkkjGiroYNdiodYyhyB0xKVTJ7XlrnRNWzON3LQg2ikn1X1fVUmS1TWdr5+wAoGnpU66HE8ub18UaDPMT9dQWjwwKrbN8AEOHtid86NkVybj5UkoRW2qKqo8aaYzmFNaBqqpRyUmrvnQwAhiaHdwp0yNTp5Y7OPYo1kySiytO6dWscOnTI0cUgIiKiiipHjGypVhRrSlUMYyhyF0xKVYmSnWPbN5mhkCR4KSQ58QIAXQK0aOmrwcXsXHhIEgYG1bRrmQAgzEuNlS0j7LKvcI0nwjWeZtNPZWTL/27s44WR9QJxtbBjdGPCKsLbE3fSspBf2KcVAKgUQLbevklHIiIiIiKXUd6OzquoGETkWpiUclMv1wuUm8t1q+WH2moPJLRr7NhCOYFRYYE4kJqJp+sEYGnz+gCAC1m52HnbMNKfv4cS0yOD0ffIOQBFiSqVpACgd1CpiYiIiIiclPwAvqprPDGNReSOmJSyBwdcP2c0CMGMBiH237GT6xUYgL0dmuA+r6JaVJHentj0YJTJcsY+pNLlpJThJssWfERERERExVgIkEu2FClKW0lmy7P5HlH1xtH37IGZDKfSwNur1JH7jIzzs/V6k9f8JImIiIiILLAWXluaV97fSAzEidwSa0pVAYlJKJdnrBkl9ynFJzhERERVb8dsINcw8Aj8Q4GOYwAlw1Uip1bh3z6Mr4mISSk7YZLK1RiTUNm6otH3gKIhbImIiKgKHP5/QOb1otfBDwCRXR1WHCKynS3N8Dj6HhGVxKRUJWPSwj2UbL6nLqO5HxEREVWCTv8B8jKBI58D6SlAfpajS0REZTHWlLKSXLL0C4m/m4gIYJ9SVcLscszmfC6nqKaUISlVVFOKyL0NHz4ckiRBkiSo1Wo0bNgQs2fPRkFBwT1td+fOnZAkCXfv3q2cgtogKSkJgwcPRkhICLy8vFCvXj307dsXZ86cMVlu69at6Nq1K7RaLby9vdGuXTusXr3aZJmLFy9CkiQcPXrU5v3PnDkTTZo0gY+PD2rUqIHHH38cBw4cMNnmSy+9hIiICGg0GjRo0ABxcXHIy8uzut2UlBQMHjwYjRo1gkKhwMSJE20qj06nw5tvvmmyv7ffftukM9qvv/4aPXr0QK1atUo93vPnz+Ppp59GYGAg/Pz8MGDAAFy7dq3cx3X8+HE8/PDD8PLyQlhYGObPn1/mMfz666/o3bs3QkJCIEkSNm3aZNOxkwt56BXgsTcAv1BHl4SI7kHJjs5N55m+dpeaUoyhGEMxhqoYJqWILDAmpfIKLzSsKUXVSWxsLFJSUvDXX39h8uTJmDlzJt5//31HF0tWVsABAPn5+ejevTtSU1Px9ddf4+zZs9iwYQNatmxpEtR99NFH6Nu3L7p06YIDBw7g+PHjGDRoEEaPHo0pU6bcUzkbNWqEJUuW4MSJE9izZw/q16+PHj164MaNGwCAM2fOQK/XY/ny5fjzzz+xaNEiLFu2DDNmzLC63dzcXAQGBuKNN95Aq1atbC7PvHnzsHTpUixZsgSnT5/GvHnzMH/+fHz00UfyMpmZmXjooYcwb948i9vIzMxEjx49IEkSfv75Z+zduxd5eXno3bs39IU1S205rrS0NPTo0QPh4eE4dOgQ3n//fcycORMrVqywegyZmZlo1aoVPv74Y5uPm4iI7MSW5nvFHt9bS1xZ4goPhxlDMYZiDFUBohpKTU0VAERqamqlbztXpxNbusWIU42byH8Ze/dW+n6oaj1y4LSo+/MR+e/pw3+Juj8fEWP+vOjoopELyM7OFqdOnRLZ2dmOLkq5DRs2TPTt29dkWvfu3UXHjh3F7du3xdChQ0VAQIDQaDQiNjZWJCYmystdvHhRPPnkkyIgIEB4e3uLZs2aiW3btomkpCQBQywp/w0bNkwIIURaWpoYPHiw8Pb2FkFBQWLhwoWia9euYsKECfJ2w8PDxezZs8XQoUOFVquV1929e7d46KGHhJeXl6hXr54YN26cyMjIEEIIceTIEQFAXLxY+nf20qVLQqVSiUmTJpnNW7x4sQAgfvvtNyGEkI/hyJEj5X9TCxnvPT/99FOpy8yfP19ERETYvM2S75U1TzzxhHjxxRdNpj3zzDNiyJAhZsuWdrzbt28XCoXC5P559+5dIUmSSEhIKHXfJY/rk08+ETVq1BC5ubnytKlTp4rGjRvbdCxCCAFAfPPNNzYvb42172xVxgyuyG7vx4rHhIjzE+L0tqrdDxHdE71eL//myb91S56ekJAg4uLi5L8XZ3YTLVa3EO8deE+sGPOiiB/whNj9/TYRFxcnVq1aJa9nvB6fvnpanLxxUtzJuCNSziWKlHOJIj8vzwFHaDvGUAaMoRhDGdkaM7CmVBUoOfqeYPM9l6Mu8aSHo+/RvRBCID9X55C/yrj+aDQa5OXlYfjw4fjjjz+wZcsW7N+/H0II9OrVC/n5+QCAMWPGIDc3F7/++itOnDiBefPmwdfXF2FhYfjqq68AAGfPnkVKSgo+/PBDAMCkSZOwd+9ebNmyBQkJCdi9ezcOHz5sVob4+Hi0atUKR44cwZtvvonz588jNjYW/fr1w/Hjx7Fhwwbs2bMHY8eOBQAEBgZCoVBg48aN0Ol0Fo9r48aNyM/Pt/g0b9SoUfD19cX69evv+f0DDE8mV6xYAX9/f6tP5lJTU1GzZs1K2WdJnTt3xo4dO5CYmAgAOHbsGPbs2YOePXvavI3c3FxIkgRPT095mpeXFxQKBfbs2VPqeiWPa//+/XjkkUegVqvlaTExMTh79izu3LlTnsMiIiIXZ7X5nmSIowry9C4ZRzGGuneModw/hmJH50QWeJS4OZZ8TVQeBXl6rJiwyyH7fvnDrlB5Kiu0rhACO3bswPbt29GzZ09s2rQJe/fuRefOnQEAa9euRVhYGDZt2oT+/fvj0qVL6NevH1q2bAkAiIyMlLdlvJnWqVMHAQEBAID09HSsWbMG69atQ7du3QAAq1atQkhIiFlZHnvsMUyePFl+PWLECAwZMkTuCyAqKgqLFy9G165dsXTpUoSGhmLx4sV47bXXMGvWLLRt2xbR0dEYMmSIXK7ExET4+/sjODjYbH9qtRqRkZFy8FFRW7duxaBBg5CVlYXg4GAkJCSgdu3aFpc9d+4cPvroI8THx9/TPkszbdo0pKWloUmTJlAqldDpdHjnnXcwZMgQm7fRsWNH+Pj4YOrUqXj33XchhMC0adOg0+mQkpJicR1Lx3X16lVERESYLFe3bl15Xo0aNSpwhORWeN8lcg3FkzY2f29F4aq2JXx0+QKbP7wC4Er5ylYJKhpHMYZiDFUSY6jSsaaUPbCilMsp2YeU8TU/SqoOtm7dCl9fX3h5eaFnz54YOHAghg8fDg8PD3To0EFerlatWmjcuDFOnz4NABg/fjzmzJmDLl26IC4uDsePH7e6nwsXLiA/Px/t27eXp/n7+6Nx48Zmy7Zt29bk9bFjx7B69Wr4+vrKfzExMdDr9UhKSgJgeOp49epVrF27Fp06dcKXX36J5s2bIyEhweb3ovhTqNKsXbvWpBy7d++W50VHR+Po0aPYt28fYmNjMWDAAFy/ft1sG1euXEFsbCz69++PkSNHytOLb3f06NE2lXn37t0m661duxYA8L///Q9r167FunXrcPjwYaxZswbx8fFYs2aNTdsFDE9Pv/zyS3z77bfw9fWFv78/7t69iwcffBAKhXlIUdpxVfQYiIjIyZSSWKquLUUYQxVhDGWKMVTpWFOqklXPy6/7ae3njQOpmQAAX6UCDb09y1iDqHQeagVe/rCrw/ZdXtHR0Vi6dCnUajVCQkLg4eGBLVu2lLneiBEjEBMTg23btuHHH3/E3LlzsWDBAowbN64iRTfh4+Nj8jojIwOjRo3C+PHjzZa977775H9rtVr07t0bvXv3xpw5cxATE4M5c+age/fuiIqKQmpqKpKTk82eLObl5eH8+fOIiYkps2x9+vQxCTRDQ4tGDfPx8UHDhg3RsGFDdOzYEVFRUfjss88wffp0eZnk5GRER0ejc+fOZp1UFh+5xc/Pr8yyAIbgs/h6xqdnr776KqZNm4ZBgwYBAFq2bIm///4bc+fOxbBhw2zaNgD06NED58+fx82bN+Hh4YGAgAAEBQWZPNUt67iCgoJMRpsBIL8OCgpC/fr1LR4DERG5kcKaVWWNvqdUS+g7IRS1wu6Dh6rsREdlKm8cxRiKMZQ1jKEsY1KqSpRITVXTJwWuLK5BCEbWC0SBEKit8sDnKbcAMOlIFSNJUoWb0DmCMQgormnTpigoKMCBAwfkque3bt3C2bNn0axZM3m5sLAwjB49GqNHj8b06dPx6aefYty4cfLTsuJ9E0RGRkKlUuHgwYNyEJSamorExEQ88sgjVsv44IMP4tSpU2bltEaSJDRp0gT79u0DADz77LOYOnUqFixYgAULFpgsu2zZMmRlZeH5558vc7tarRZardamMuj1euTm5sqvr1y5gujoaLRp0warVq0ye1JWnuMz0mg0FtfLysoy275SqZRHfCkvYxX6n3/+GdevX0efPn3keWUdV6dOnfD6668jPz8fKpUKAJCQkIDGjRvL1c4rcuzkjnjnJXJqxX7nlJVcKrmMrbWpJEmCh9oQS3monDueYgzFGMoWjKFMMSllFwyoXI0kSQj1su+TGCJnFhUVhb59+2LkyJFYvnw5tFotpk2bhtDQUPTt2xcAMHHiRPTs2RONGjXCnTt38Msvv6Bp06YAgPDwcEiShK1bt6JXr17QaDTQarUYNmwYXn31VdSsWRN16tRBXFwcFApFmYHt1KlT0bFjR4wdOxYjRoyAj48PTp06hYSEBCxZsgRHjx5FXFwchg4dimbNmkGtVmPXrl1YuXIlpk6dCsDwNHD+/PmYMmUKvLy8MHToUKhUKmzevBkzZszAnDlz0KJFC5P9nj171qwszZs3l4MCo8zMTLzzzjvo06cPgoODcfPmTXz88ce4cuUK+vfvD8AQdDz66KMIDw9HfHy8PMwxYHjSZY3xCVhGRgZu3LiBo0ePQq1WmwS3JfXu3RvvvPMO7rvvPjRv3hxHjhzBwoUL8eKLL8rL3L59G5cuXUJycrLJ8QYFBcllWrVqFZo2bYrAwEDs378fEyZMwCuvvCI3GbDluAYPHoxZs2bhpZdewtSpU3Hy5El8+OGHWLRokdXjzsjIwLlz5+TXSUlJOHr0KGrWrGnydJeIiOzExsSSKHZbL5mMKjuZJQEQLvuTijGUAWMoxlClqpRxAF1MVQ5nnKPTiW8f6y4PjXqqcROR/uuvlb4fsq/ll66Juj8fEaNPJjm6KOQCrA2N6uwsDWdsZBzO2N/fX2g0GhETE2MynPHYsWNFgwYNhKenpwgMDBRDhw4VN2/elOfPnj1bBAUFCUmSrA5n3L59ezFt2rT/z96dx0VV7g8c/5wBBoZdUJRFURT3JXPXysgFtNTKXNLrUuqVfq5pbi2iXr2WoZbLdemaeu81rzczM1vMLBWXXCHNBQQhFXFBkB1mmHl+fwwcGXYXRPF5v16jzJnnPOc5Z5gzX55V3c/X11csXbq0SHmOHj0qevToIRwdHYWDg4No2bKlWLBggRBCiJs3b4qJEyeK5s2bC0dHR+Hk5CRatGghQkNDhdFotMhn+/bt4tlnnxUODg7qcsubN2+2SFPcksz5j8uXLxcpW1ZWlnjllVeEl5eX0Gq1wtPTU/Tt21ccPXpUTbN+/foS8yxLcfv4+vqWuk9qaqqYNGmSqFOnjrCzsxN+fn7ivffes1hSuKQyhYSEqGlmzJghatasKWxsbIS/v79YvHixMJlMd31ev//+u3jmmWeEra2t8Pb2Fh9++GGZ5/3rr78Wm2/+79O9ehDLGT8pHtr1+Ky7ECHOQpzbWbHHkSTpvpj0evVvntzbt9XtP/30kwgJCVEfb8ztJppvaC4+OvqRWPN/I0XowBfFvu93ipCQEPGvf/1L3S//fnzu2jnxx80/RHJGskiIuSASoqOEocD31aNIxlAyhpIxlKXyxgyKEE/e2LLU1FRcXFxISUkp9/jS8soxmfi5exB+Vy+r22qvXYNjGd0opUfb2ss3mB19lVc8XFnVrG5lF0d6xGVnZxMbG0u9evWws7Or7OI8VjIyMvD29mbx4sWMGjXqoR8/KSmJbt264ezszA8//IC9vf1DL4P08JX2ma3ImOFx9NCuxz97wJWjMPgLaPxixR1HkqT7IvR6zrdsBUDDo0ewyrsv/PTTT+pQL4BLmgMc873O8KbDcdlwlrTEm7Qb+Ra/HDlG/fr1GTZsGHDnfqy4KRitjHjbe5N9LRGEoHptX6zLMXn2k0rGUFJleBAxlFx9T5LKQUGuvidJFSE8PJzNmzcTExPDyZMn1aV187uzP2xubm78/PPPdOvWjcOHD1dKGSRJKuDJazuVpCqptE9yeeaikoqSMZRUVcg5pR4GGVBVGfKdlKQHLzQ0lMjISLRaLW3atCEsLEydALIyuLu7M3v27Eo7viRJkiQ9Lixi42IqlxRFKXFC8ydwwM4DJ2MoqSqQlVIPmBCgFLrByhvu40824EhSxWjdujUnTpyo7GJIkvSokV+8kvTIO3XqFPv37SO7d2+0ej3uycl4lLGSmoIiW3kfEBlDSVWFHL4nSXdBfodKkiRJkiRJEpw4cYLEW7dId3Yiqbo7Fy5eLJImf2ieKKWeWQ7fk6QnW4VWSu3fv58+ffrg5eWFoihs37691PQjR45EUZQij2bNmqlp5syZU+T1xo0bV+Rp3D/ZU0qSJEmSJEmSpCokfzSIVW6uxfPCP9/fQUp8IklSFVGhlVIZGRm0atWKlStXliv9p59+SkJCgvq4fPkybm5uDBgwwCJds2bNLNIdOHCgIoovSar89htZvyhJkiRJD5P84pWkR1V+xVP+1CUmo4mk/0Vyc+0psk4lml8r1AuquF5R5e0pJe8GklQ1VeicUr169aJXr17lTu/i4oKLi4v6fPv27SQnJ/PGG29YpLO2tqZWrVoPrJwPmlL4linvoJIkSZIkSZIkVUH5lVLG23oyT94w/2ydU+JfmkL+cSRJUgGP9JxS69ato3v37vj6+lpsv3DhAl5eXvj5+TF06FAuXbpUaj45OTmkpqZaPB4ueeN93Kk9peR7KUmSJEkPgZxjRpIeN8KUFydba+5EzHkVVnprK/P/2dl30t/tEAQZhktSlfTIVkpdvXqVH374gdGjR1ts79ChAxs2bODHH39k1apVxMbG8uyzz5KWllZiXgsXLlR7Ybm4uFC7du2KLr4kSZIkSZIkSVKVp648nj+cz/pOpbLJZATuVEolRJ0vur+c6FySnmiPbKXUxo0bcXV15eWXX7bY3qtXLwYMGEDLli0JDAzk+++/5/bt2/zvf/8rMa9Zs2aRkpKiPi5fvlxh5RbqPwU3ymr9x526ckgll0OSJEmSnigyhpKkR1bhnk75TxWNgho152/LH+KXa3hIpZMk6XHxSFZKCSH4/PPPGTZsGFqtttS0rq6uNGzYkOjo6BLT2Nra4uzsbPGQJEmSiiq4CqpWq6VBgwbMmzeP3LyVde7V3r17URSF27dvP5iClkNsbCxDhgzBy8sLOzs7fHx86NevH+fPW7bS7ty5k65du+Lk5IS9vT3t2rVjw4YNFmni4uJQFIWIiIhyH3/OnDk0btwYBwcHqlWrRvfu3Tly5IhFnqNGjaJevXrodDrq169PSEgIer2+1HwTEhIYMmQIDRs2RKPRMHny5HKVJy0tjcmTJ+Pr64tOp6Nz584cO3bMIk16ejrjx4/Hx8cHnU5H06ZNWb16tUWasWPHUr9+fXQ6HTVq1Cj2ml66dIkXX3wRe3t7PDw8mDZtWom/QwcPHsTa2pqnnnqqzHPYtm0bPXv2xN3d/a7fD0mSJKli5Fc4CWHK21C055OmYAVWfvoq1twrYygZQ8kY6t48kpVS+/btIzo6mlGjRpWZNj09nZiYGDw9PR9Cye6RbOV77MlOxdKTJCgoiISEBC5cuMDUqVOZM2cOH3/8cWUXS1VWwAFgMBjo0aMHKSkpbNu2jcjISLZs2UKLFi0sgrrly5fTr18/unTpwpEjRzh16hSDBw8mODiYd955577K2bBhQ1asWMHp06c5cOAAdevWpWfPnty8eROA8+fPYzKZWLNmDWfOnGHp0qWsXr2ad999t9R8c3JyqFGjBu+//z6tWrUqd3lGjx7N7t27+fe//83p06fp2bMn3bt3Jz4+Xk0zZcoUfvzxR/7zn/9w7tw5Jk+ezPjx49mxY4eapk2bNqxfv55z586xa9cuhBD07NkTo9E8RMNoNPLiiy+i1+s5dOgQGzduZMOGDcyePbtImW7fvs3w4cPp1q1buc4hIyODZ555ho8++qjc5y09puRwHkl6bNyplMrboCnl81vMn0VVafiejKFkDCVjqHsgKlBaWpoIDw8X4eHhAhBLliwR4eHh4s8//xRCCDFz5kwxbNiwIvv95S9/ER06dCg2z6lTp4q9e/eK2NhYcfDgQdG9e3dRvXp1cePGjXKXKyUlRQAiJSXl3k6sFJm5RvFD1xfE2UaN1UfKTz898ONID9eGKzdFzV/CxRunLlZ2UaTHQFZWljh79qzIysqq7KLctREjRoh+/fpZbOvRo4fo2LGjSEpKEsOGDROurq5Cp9OJoKAgERUVpaaLi4sTL730knB1dRX29vaiadOm4rvvvhOxsbECcxiqPkaMGCGEECI1NVUMGTJE2Nvbi1q1aoklS5aIrl27ikmTJqn5+vr6innz5olhw4YJJycndd+wsDDxzDPPCDs7O+Hj4yMmTJgg0tPThRBC/d6Ji4sr8VwvXbokbGxsxJQpU4q8tmzZMgGI3377TQgh1HMIDw+/+4uaJ/+75+effy4xzaJFi0S9evXKnWfha1WSzMxMYWVlJXbu3Gmx/emnnxbvvfee+rxZs2Zi3rx5paYp7PfffxeAiI6OFkII8f333wuNRiOuXbumplm1apVwdnYWOTk5FvsOGjRIvP/++yIkJES0atWqzPPI9yDej4JK+8xWZMzwOHpo12NdoBAhzkKc+aZijyNJ0j377LPPREhIiFg4fboICQkRuzbtEJdn7BdX//6b+PK9f4qQkBAxZ/ZsERISIgZ+GCiab2gu/m/1ILE6eLgIHfii+OXbb0RISIjYvHmzmmf+/fjctXPij5t/iOT0ZJEQc0EkREcJfXZ2JZ5t2WQMZSZjqJLTFCZjKLMK7Sl1/PhxWrduTevWrQFz7WHr1q3Vmr6EhIQiK+elpKTw1VdfldhL6sqVK7z++us0atSIgQMH4u7uzm+//UaNGjUq8lQkSZLumRACQ3Z2pTzEA+ipqdPp0Ov1jBw5kuPHj7Njxw4OHz6MEILevXtjMJjnhxg3bhw5OTns37+f06dP89FHH+Ho6Ejt2rX56quvAIiMjCQhIYFPP/0UMH8vHDx4kB07drB7927CwsI4efJkkTKEhobSqlUrwsPD+eCDD4iJiSEoKIj+/ftz6tQptmzZwoEDBxg/fjwANWrUQKPRsHXrVrX1qbCtW7diMBiKbc0bO3Ysjo6ObN68+b6vH5hbJteuXYuLi0upLXMpKSm4ubk9kGMWlJubi9FoxM7OzmK7TqfjwIED6vPOnTuzY8cO4uPjEULw66+/EhUVRc+ePYvNNyMjg/Xr11OvXj11EZHDhw/TokULatasqaYLDAwkNTWVM2fOqNvWr1/PxYsXCQkJeZCnKlU5sre5JD2q8mOMwhOdW/Z0LPszXGpPKcV8nFx9Doacxy+OkjHU/ZMxVNWPoawrMvPnn3++1A9y4fGmAC4uLmRmZpa4z3//+98HUbSHSw7fe+zlf1XKd1K6F7k5OSwb8VqlHHvixq3YFPoSLS8hBHv27GHXrl306tWL7du3c/DgQTp37gzApk2bqF27Ntu3b2fAgAFcunSJ/v3706JFCwD8/PzUvPKDBA8PD1xdXQHz+PyNGzfyxRdfqF2P169fj5eXV5GyvPDCC0ydOlV9Pnr0aIYOHarOBeDv78+yZcvo2rUrq1atwtvbm2XLljF9+nTmzp1L27ZtCQgIYOjQoWq5oqKicHFxKXb4t1arxc/Pj6ioqHu6dvl27tzJ4MGDyczMxNPTk927d1O9evVi00ZHR7N8+XJCQ0Pv65jFcXJyolOnTvztb3+jSZMm1KxZk82bN3P48GEaNGigplu+fDl//etf8fHxwdraGo1Gw2effcZzzz1nkd8//vEPpk+fTkZGBo0aNWL37t3qHJDXrl2zCKYA9fm1a9cAuHDhAjNnziQsLAxr6woNRSRJkqSHpODwvfwf86c8L/j8bhkNerbMmXm/xbsn9xpHyRhKxlAyhiq/R3JOKUmSJKny7Ny5E0dHR+zs7OjVqxeDBg1i5MiRWFtb06FDBzWdu7s7jRo14ty5cwBMnDiR+fPn06VLF0JCQjh16lSpx7l48SIGg4H27dur21xcXGjUqFGRtG3btrV4/vvvv7NhwwYcHR3VR2BgICaTidjYWMDc6njt2jU2bdpEp06d+PLLL2nWrBm7d+8u97Uoa7ENMAeWBcsRFhamvhYQEEBERASHDh0iKCiIgQMHcuPGjSJ5xMfHExQUxIABAxgzZoy6vWC+wcHB5SpzWFiYxX6bNm0C4N///jdCCLy9vbG1tWXZsmW8/vrraDR3QoHly5fz22+/sWPHDk6cOMHixYsZN24cP//8s8Uxhg4dSnh4OPv27aNhw4YMHDiQ7OzscpXPaDQyZMgQ5s6dS8OGDYtNU9o1lZ4UVWeOGUmq6tQ5pUx5PadKm1MK7kx0XgUb7mUMdYeMoWQMVV5Vo2rtESIApfD9terdb584+b2Kq9oqIdLDYW1ry8SNWyvt2HcrICCAVatWodVq8fLywtra2mKSxpKMHj2awMBAvvvuO3766ScWLlzI4sWLmTBhwr0U3YKDg4PF8/T0dMaOHcvEiROLpK1Tp476s5OTE3369KFPnz7Mnz+fwMBA5s+fT48ePfD39yclJYWrV68WaVnU6/XExMQQGBhYZtn69u1rEWh6e3tblLtBgwY0aNCAjh074u/vz7p165g1a5aa5urVqwQEBNC5c2fWrl1rkXfBlVHKu3Js27ZtLfbLb2GrX78++/btIyMjg9TUVDw9PRk0aJDa6pmVlcW7777L119/zYsvvghAy5YtiYiIIDQ0lO7du6t5uri44OLigr+/Px07dqRatWp8/fXXvP7669SqVYujR49alOn69esA1KpVi7S0NI4fP054eLg6VMBkMiGEwNramp9++qnUaypJkiQ9WtThe/lxsqbAz4Xdw0TnVjZaBs35EDdvH2y099b7+17dbRwlYygZQ8kY6u7JSqmHoQq2Ajyp5Dsp3QtFUe55CF1lyA8CCmrSpAm5ubkcOXJE7Xp+69YtIiMjadq0qZqudu3aBAcHExwczKxZs/jss8+YMGGC2lpWcG4CPz8/bGxsOHbsmBoEpaSkEBUVVaSrc2FPP/00Z8+eLVLO0iiKQuPGjTl06BAAr732GjNmzGDx4sUsXrzYIu3q1avJzMxk+PDhZebr5OSEk5NTucpgMpnIyclRn8fHxxMQEKCuxlKwxQ24q/PLp9PpSt3PwcEBBwcHkpOT2bVrF4sWLQLMq+0YDIYiZbCyssJkMpWYnxACIYR6Xp06dWLBggXcuHEDDw8PAHbv3o2zszNNmzbFxsaG06dPW+Txj3/8g19++YWtW7dSr149HBwcyn1NJUmSpMpRpKeTOkavmEqm4uqdyrnqnqIoWGttsbG1w8b20Y6nZAwlY6iCZAxVPrJSSpLKQZHDCKQnnL+/P/369WPMmDGsWbMGJycnZs6cibe3N/369QNg8uTJ9OrVi4YNG5KcnMyvv/5KkyZNAPD19UVRFHbu3Env3r3R6XQ4OTkxYsQIpk2bhpubGx4eHoSEhKDRaMpsNZ0xYwYdO3Zk/PjxjB49GgcHB86ePcvu3btZsWIFERERhISEMGzYMJo2bYpWq2Xfvn18/vnnzJgxAzC3Bi5atIh33nkHOzs7hg0bho2NDd988w3vvvsu8+fPp3nz5hbHjYyMLFKWZs2aYWNjY7EtIyODBQsW0LdvXzw9PUlMTGTlypXEx8czYMAAwBxMPf/88/j6+hIaGqoucwzm1rDS5Lfipaenc/PmTSIiItBqtRbBbWH5Sw83atSI6Ohopk2bRuPGjXnjjTcAcyti165dmTZtGjqdDl9fX/bt28e//vUvlixZApiHC2zZsoWePXtSo0YNrly5wocffohOp6N3794A9OzZk6ZNmzJs2DAWLVrEtWvXeP/99xk3bhy2eS3Oha+rh4cHdnZ2RbYXlpSUxKVLl7h69Spw5/2oVatWmddMekzJhj1JeuQphYbjlTl8L89dD997TG8HMoYykzGUjKFKIiulKkLBlSdEwan9pMeVOtG5fCulJ9j69euZNGkSL730Enq9nueee47vv/9eDSaMRiPjxo3jypUrODs7ExQUxNKlSwFz1+G5c+cyc+ZM3njjDYYPH86GDRtYsmQJwcHBvPTSSzg7OzN9+nQuX75cZIWTwlq2bMm+fft47733ePbZZxFCUL9+fQYNGgSAj48PdevWZe7cucTFxaEoivr87bffVvN5++238fPzY/HixXz66adkZGQAsHnzZgYPHlzkuMVtu3z5Mj4+PhbbrKysOH/+PBs3biQxMRF3d3fatWtHWFgYzZo1A8wtX9HR0URHRxfZv6xAPX9VW4ATJ07wxRdf4OvrS1xcXIn7pKSkMGvWLK5cuYKbmxv9+/dnwYIFFsHgf//7X2bNmsXQoUNJSkrC19eXBQsWqHMx2NnZERYWxieffEJycjI1a9bkueee49ChQ2qLnpWVFTt37uStt96iU6dOODg4MGLECObNm1fqOZXHjh071AAQ7rwfISEhzJkz577zlyRJku5dcROdq6+V8DOUPXyvKpAxlIyhZAxVMkVUxRnmypCamoqLiwspKSnlHl9aXplGE2EB3alzIwE0GjCZ8P5kKc5BQQ/0ONLDtenqLaZGXqanuzP/aulX9g7SEy07O5vY2Fjq1atXZmAgWcrIyMDb25vFixczatSoh378pKQkunXrhrOzMz/88AP29vYPvQzSw1faZ7YiY4bH0UO7Hut7w58HYcBGaPZyxR1HkqR7tmbNGhISEnBKTSXN2Zl2dVrQKsoDGx9H9l07wVnrK2iECZOi4az9b5yrGU/XrGY0j9CSkZxEq6GjOXAygmbNmqk9YPLvx4qbgtHKiLe9N9nXEkEI3L1rP1bTITxsMoaSKsODiKHk6nsVSZ0d+4mr96ty1J5SlVoKSap6wsPD2bx5MzExMZw8eZKhQ4cCqN3ZHzY3Nzd+/vlnunXrxuHDhyulDJIkSZL0WMkLkNXBIuUcvpffQ6q8PaVkHG5JxlBSVSGH71UAtcOqrJSSJEkqU2hoKJGRkWi1Wtq0aUNYWBjVq1evtPK4u7sze/bsSju+JEkFyRhKkh516t8+BYbvqa8JLCY5r/oD9R4uGUNJVYGslHrAhAyeqqb8+sXKLYUkVTmtW7fmxIkTlV0MSZIkSZLulVonVahhvmiSvCeWE6NL90bGUFJVIYfvVaS8G7K84VYd8q2UJEmSHqaVK1dSt25d7Ozs6NChA0ePHi0x7ZkzZ+jfvz9169ZFURQ++eST+86z8sj+FJL0qFNX2ys0fk+5y78wyz/RuQzEJakqkpVSklQOMjSWJEmSHrYtW7YwZcoUQkJCOHnyJK1atSIwMJAbN24Umz4zMxM/Pz8+/PDDEpd3vts8JUmSyqLk93wy5lUaWcwpVagiSdYrSZJUiKyUqgCKOslf3uWVN98qQw7PlCRJkh6WJUuWMGbMGN544w2aNm3K6tWrsbe35/PPPy82fbt27fj4448ZPHgwtra2DyRPSZKksig2DgDor6SZn2uUIjGzKKaFV45AkCQJZKVUxZITnVcZsqeUJEmS9DDp9XpOnDhB9+7d1W0ajYbu3bvf86pG95JnTk4OqampFo+HSsZQkvTI01ibl4EXANYKtvVdi6QpLZYu//A9SZKqIlkpJUnloOR9lcrQWJIkSXoYEhMTMRqN1KxZ02J7zZo1uXbt2kPLc+HChbi4uKiP2rVr39OxJUmqegrPm6ut64z33C7omrnf1X7lP+C97SZJ0qNNVkpVAKXIyhPyDipJkiRJ0uNn1qxZpKSkqI/Lly8/nAPLnhOS9NjIb7xFA4pV8Z/d4qbAyNWbQCiyp5QkPeGsK7sAVY6sf6qS5HelJEmS9DBVr14dKysrrl+/brH9+vXrJU5iXhF52traljg/lSRJklneiIJyxsv6bCMA0T8ZcLfuhCEtq6IKJknSY0D2lKpIck4pSZIeMyNHjkRRzK2WWq2WBg0aMG/ePHJzc+8r371796IoCrdv334wBS2H2NhYhgwZgpeXF3Z2dvj4+NCvXz/Onz9vkW7nzp107doVJycn7O3tadeuHRs2bLBIExcXh6IoRERElPv4c+bMoXHjxjg4OFCtWjW6d+/OkSNHLPIcNWoU9erVQ6fTUb9+fUJCQtDr9aXmm5CQwJAhQ2jYsCEajYbJkyeXqzz79++nT58+eHl5oSgK27dvL5Jm27Zt9OzZE3d39zLPVwhBr169Ssxrw4YNtGzZEjs7Ozw8PBg3bpzF67t27aJjx444OTlRo0YN+vfvT1xcnEWaTZs20apVK+zt7fH09OTNN9/k1q1b932ejwOtVkubNm3Ys2ePus1kMrFnzx46der0yORZ8WQMJUmPuuLqokr65CqAKdekPtcIawypVhVRrIdOxlAyhpIx1L2RlVIVQRQavicrpR576kBM+VZKT4CgoCASEhK4cOECU6dOZc6cOXz88ceVXSxVWQEHgMFgoEePHqSkpLBt2zYiIyPZsmULLVq0sAjqli9fTr9+/ejSpQtHjhzh1KlTDB48mODgYN555537KmfDhg1ZsWIFp0+f5sCBA9StW5eePXty8+ZNAM6fP4/JZGLNmjWcOXOGpUuXsnr1at59991S883JyaFGjRq8//77tGrVqtzlycjIoFWrVqxcubLUNM888wwfffRRmfl98sknJQ65WLJkCe+99x4zZ87kzJkz/PzzzwQGBqqvx8bG0q9fP1544QUiIiLYtWsXiYmJvPrqq2qagwcPMnz4cEaNGsWZM2f48ssvOXr0KGPGjLnv83xcTJkyhc8++4yNGzdy7tw53nrrLTIyMnjjjTcAGD58OLNmzVLT6/V6IiIiiIiIQK/XEx8fT0REBNHR0eXOU5Ikqbzy54ZSSpnGvLTOU/kLlVel4XsyhpIxlIyh7oF4AqWkpAhApKSkPPC80w254udOz4qzjRqL8JatxdlGjcXt7dsf+HGkh+t/CbdEzV/CxcDw6MouivQYyMrKEmfPnhVZWVmVXZS7NmLECNGvXz+LbT169BAdO3YUSUlJYtiwYcLV1VXodDoRFBQkoqKi1HRxcXHipZdeEq6ursLe3l40bdpUfPfddyI2NlZgbjRVHyNGjBBCCJGamiqGDBki7O3tRa1atcSSJUtE165dxaRJk9R8fX19xbx588SwYcOEk5OTum9YWJh45plnhJ2dnfDx8RETJkwQ6enpQgghwsPDBSDi4uJKPNdLly4JGxsbMWXKlCKvLVu2TADit99+E0II9RzCw8Pv/qLmyf/u+fnnn0tMs2jRIlGvXr1y51n4WpUXIL7++usSXy/rfMPDw4W3t7dISEgokldSUpLQ6XSlnueXX34prK2thdFoVLft2LFDKIoi9Hq9EEKIjz/+WPj5+Vnst2zZMuHt7V32CeYp6zzzlfaZrciYoTyWL18u6tSpI7RarWjfvr36OymE+f3P/zwIIYr9rAGia9eu5c6zLA/teqx/UYgQZyFOb63Y40iSdM9WrlwpQkJCxD9mLBAhISHi6/X/E0IIYUjMFJvfWytCQkLE3z54X4SEhIj+i3qK5huaiwn/GCSWvD5QhA58UawY+1+xYuwesWnFTjXP/PvxuWvnxB83/xDJGckiISZaJERHiZzMzMo61XKRMZSZjKFkDJWvvDGD7ClVEQzmVgOD0fy/MMnuNY+7qtN+I1UGIQQmvbFSHuIBdO/T6XTo9XpGjhzJ8ePH2bFjB4cPH0YIQe/evTEYDACMGzeOnJwc9u/fz+nTp/noo49wdHSkdu3afPXVVwBERkaSkJDAp59+Cph7bRw8eJAdO3awe/duwsLCOHnyZJEyhIaG0qpVK8LDw/nggw+IiYkhKCiI/v37c+rUKbZs2cKBAwcYP348ADVq1ECj0bB161aMRmOx57V161YMBkOxrXljx47F0dGRzZs33/f1A3PL5Nq1a3FxcSm1ZS4lJQU3N7cHcsyKkpmZyZAhQ1i5cmWx8xDt3r0bk8lEfHw8TZo0wcfHh4EDB1pMkN2mTRs0Gg3r16/HaDSSkpLCv//9b7p3746NjQ0AnTp14vLly3z//fcIIbh+/Tpbt26ld+/eD+1cHwXjx4/nzz//JCcnhyNHjtChQwf1tb1791oMk6hbty5CiCKPvXv3ljtPSZKkeyUQmISpjFRKkZ/LilSEEAiDCaHPfeziKBlD3T8ZQ1X9GEpOdF4hLG9eJjnm67F3Zx1F+V5Kd08YTFydfahSju01rzOK9t7mahBCsGfPHnbt2kWvXr3Yvn07Bw8epHPnzoB5rHrt2rXZvn07AwYM4NKlS/Tv358WLVoA4Ofnp+aVHyR4eHjg6uoKQFpaGhs3buSLL76gW7duAKxfvx4vL68iZXnhhReYOnWq+nz06NEMHTpUnQvA39+fZcuW0bVrV1atWoW3tzfLli1j+vTpzJ07l7Zt2xIQEMDQoUPVckVFReHi4oKnp2eR42m1Wvz8/IiKirqna5dv586dDB48mMzMTDw9Pdm9ezfVq1cvNm10dDTLly8nNDT0vo5Z0d5++206d+5Mv379in394sWLmEwm/v73v/Ppp5/i4uLC+++/T48ePTh16hRarZZ69erx008/MXDgQMaOHYvRaKRTp058//33aj5dunRh06ZNDBo0iOzsbHJzc+nTp0+VGJYn3QUZQ0nSI8mUk4MhPh5sbNThe4cTfmPBpkUsaVV0+JIoZS6MMht/cwXGDTe4yY37K/Q9uNc4SsZQMoYqjoyhiid7SlUAJe9eK/LGieYay2oxkCRJenTs3LkTR0dH7Ozs6NWrF4MGDWLkyJFYW1tb9Khwd3enUaNGnDt3DoCJEycyf/58unTpQkhICKdOnSr1OBcvXsRgMNC+fXt1m4uLC40aNSqStm3bthbPf//9dzZs2ICjo6P6CAwMxGQyERsbC5hbHa9du8amTZvo1KkTX375Jc2aNWP37t3lvhZarbbMNJs2bbIoR1hYmPpaQEAAERERHDp0iKCgIAYOHMiNG0WD6vj4eIKCghgwYIDFeP+C+QYHB5erzGFhYRb7bdq0qVz7lceOHTv45Zdf+OSTT0pMYzKZMBgMLFu2jMDAQDp27MjmzZu5cOECv/76KwDXrl1jzJgxjBgxgmPHjrFv3z60Wi2vvfaa2ip99uxZJk2axOzZszlx4gQ//vgjcXFx6nWoyPOUJEmSSpd95izGjEzgzpxSAkGOMYfj109Qev+nqlvZLGOoO2QMZUnGUCWTPaUeMGHxs6yUqiryJ6Krul+hUkVSbDR4zetcace+WwEBAaxatQqtVouXlxfW1tbs2LGjzP1Gjx5NYGAg3333HT/99BMLFy5k8eLFTJgw4V6KbsHBwcHieXp6OmPHjmXixIlF0tapU0f92cnJiT59+tCnTx/mz59PYGAg8+fPp0ePHvj7+5OSksLVq1eLtCzq9XpiYmIsJpYsSd++fS0CTW9vb4tyN2jQgAYNGtCxY0f8/f1Zt26dxeTUV69eJSAggM6dO7N27VqLvAuu3OLs7FxmWcAcfBbcr2bNmuXarzx++eUXYmJi1JbafP379+fZZ59l7969aqtp06ZN1ddr1KhB9erVuXTpEgArV67ExcWFRYsWqWn+85//ULt2bY4cOULHjh1ZuHAhXbp0Ydq0aQC0bNkSBwcHnn32WebPn1+h5yk9AqrQxMeSVCWZ7gzryrUz/0lpY2UeOpRlzAJc814tGj0X3lLmROfWClYjPajm6YVWZ39v5b1HdxtHyRhKxlAlkTFUyWSl1EOQK+eUkqQnmqIo9zyErjLkBwEFNWnShNzcXI4cOaJ2Pb916xaRkZEWX5y1a9cmODiY4OBgZs2axWeffcaECRPU1rKCcxP4+flhY2PDsWPH1CAoJSWFqKgonnvuuVLL+PTTT3P27Nki5SyNoig0btyYQ4fMQylfe+01ZsyYweLFi1m8eLFF2tWrV5OZmcnw4cPLzNfJyQknJ6dylcFkMpGTk6M+j4+PJyAggDZt2rB+/Xo0Gsvg927OL59Op7un/cpj5syZjB492mJbixYtWLp0KX369AHMXcbBPPeFj48PAElJSSQmJuLr6wuY51QofK5WVubPiMlkUtNYW1sXm0YIUaHnKUmSJJVBiDvj7hQNCNBozPfobENWObMQ5ap/VhQFbDQoWis0j3g8JWMoGUOVRMZQJZOVUhVAyav/zx87bZQ9pR57pQyDl6Qngr+/P/369WPMmDGsWbMGJycnZs6cibe3tzoufvLkyfTq1YuGDRuSnJzMr7/+SpMmTQDw9fVFURR27txJ79690el0ODk5MWLECKZNm4abmxseHh6EhISg0WjKbDWdMWMGHTt2ZPz48YwePRoHBwfOnj3L7t27WbFiBREREYSEhDBs2DCaNm2KVqtl3759fP7558yYMQMwtwYuWrSId955Bzs7O4YNG4aNjQ3ffPMN7777LvPnz6d58+YWx42MjCxSlmbNmqkTS+bLyMhgwYIF9O3bF09PTxITE1m5ciXx8fEMGDAAMAdTzz//PL6+voSGhqrLHAPFTn5ZUH7rVnp6Ojdv3iQiIgKtVmsR3BaWnp5OdHS0+jw2NpaIiAjc3NzUgDYpKYlLly5x9epVi/OtVauWxaOwOnXqUK9ePcC8jHO/fv2YNGkSa9euxdnZmVmzZtG4cWMCAgIAePHFF1m6dCnz5s3j9ddfJy0tjXfffRdfX19at24NQJ8+fRgzZgyrVq0iMDCQhIQEJk+eTPv27YudM+NuzlOSJEm6PwUnAM//xrZSzH8oZ+Rmlj66IG9fo8mEtRUomjJ6Iyk81sMVZAxlJmMoGUOVqByrAVY5FbmccZohV/zSprM426ixONyijTjbqLGIWr/pgR9Heri2XUsSNX8JF6+evFDZRZEeA6UtjfqoK24543z5yxm7uLgInU4nAgMDLZYzHj9+vKhfv76wtbUVNWrUEMOGDROJiYnq6/PmzRO1atUSiqKUupxx+/btxcyZM9X9fH19xdKlS4uU5+jRo6JHjx7C0dFRODg4iJYtW4oFCxYIIYS4efOmmDhxomjevLlwdHQUTk5OokWLFiI0NNRiCV0hhNi+fbt49tlnhYODg7rc8ubNmy3SFLckc/7j8uXLRcqWlZUlXnnlFeHl5SW0Wq3w9PQUffv2FUePHlXTrF+/vsQ8y1LcPr6+vqXu8+uvvxa7X/57UVqZQkJCSi1L4SWDU1JSxJtvvilcXV2Fm5ubeOWVV8SlS5cs0mzevFm0bt1aODg4iBo1aoi+ffuKc+fOWaRZtmyZaNq0qdDpdMLT01MMHTpUXLly5b7Ps7AHsZzxk+KhXY8NLwkR4izEqS8r9jiSJN2T9N+OiMWTJ4uQkBDxjzlLREhIiJiz5APRfENz8cLa58QX760RISEh4m/vvydCQkLEqx/3FM03NBcTVw4Siwe/JkIHvig+HbNZrBi7R/z2w3k13/z78blr58QfN/8QyRnJIuFitEiIjhLZGRmVeMZlkzGUjKFkDGWpvDGDIsST1/cjNTUVFxcXUlJSyj2+tLzSc40c6/gctdKTuK11wFWfAdPfo8mbf3mgx5Eeru3Xkwk++yddXB35qvWj09VRejRlZ2cTGxtLvXr1sLOzq+ziPFYyMjLw9vZm8eLFjBo16qEfPykpiW7duuHs7MwPP/yAvf3DnbtCqhylfWYrMmZ4HD2067GxD8Tuh/7roMVrFXccSZLuScZvR1iz5b+kurhQC1eucRvH6jq+rfE91qkw+s+hRFpfxdpoINfKhtOOh4mqcZWA9Gb4HjCCKQs7t+EgqvPC8MY06WzuvZF/P9a4aci1ysXb3pvs67fAZKKapze28nu5RDKGkirDg4ih5Op7FaHQ6ntG4xNX71dlyXdSkh6s8PBwNm/eTExMDCdPnmTo0KEAJS6VW9Hc3Nz4+eef6datG4cPH66UMkiSBOVYJF6SpEolwMZc6WBtMv9JqbXSsmfAHrb3216uHOR6BvdHxlBSVSHnlKpA6up7cqJzSZKkEoWGhhIZGYlWq6VNmzaEhYVRvXr1SiuPu7s7s2fPrrTjS5IkSdIjTwgUO2cgC40wV0oZrQTWGmt01roSd1MsKpxlrdT9kjGUVBXISqkHrNjqJ5Oc6Pxxl9+SI2RfKUl6oFq3bs2JEycquxiSJD2qnrxZJiTpsWAyGsmvVEpyTIMsMNnc+bwW/uSW9kku78c8JzMdRQGtTg4LAxlDSVWHHL5XAZRCt10ZTkmSJEmSJEmSVGUU+AMnTZdlua1gB6j8Gid1m+Be/zrKTEkh6Wo8xtzce9pfkqRHk6yUqkCmvO41JtnK99jL72os30pJkiRJegjkZDOS9GgrEBSLYkcUlCNoLufH3GStRbG2Qcm7LwiTsZyFlCTpcSArpSpU3p1WziklSZIkSZIkSVJVIYp5UlF/8lhZoejsUTTyT1dJqorkJ/shkFVSjz/ZXitJkiRJkiRJeYRQe0bd6986Mr6WJAlkpVSFUPK6s6pdWWVPqSpDvpOSJEmS9DDJb15JeiQVnNPibmuX5MdakqQCZKVUBRL58xDJO+9jT7bkSJIkSZIkSZKZKG2i1WIC5+L/HpIRtiRJslLqgStuej/ZU+rxp6gTOEqSJEmSVPHkH6uS9Eiz6ClVdE4pUeSnYj7TSqEkkiQ9kWSlVAUofMsttSVBkiTpETJy5EgURUFRFLRaLQ0aNGDevHnk3ufyy3v37kVRFG7fvv1gCloOsbGxDBkyBC8vL+zs7PDx8aFfv36cP3/eIt3OnTvp2rUrTk5O2Nvb065dOzZs2GCRJi4uDkVRiIiIKPfx58yZQ+PGjXFwcKBatWp0796dI0eOWOQ5atQo6tWrh06no379+oSEhKDX60vNNyEhgSFDhtCwYUM0Gg2TJ08uV3n2799Pnz598PLyQlEUtm/fftdlBliwYAGdO3fG3t4eV1fXYo916dIlXnzxRezt7fHw8GDatGkWv0MFf88KPpo1a6amWbhwIe3atcPJyQkPDw9efvllIiMjyzzP8pRPkiRJuk+mopv0aXoOHz7MlYT4EndTqvCfRTKGkjGUjKHujayUqkAif9nSSi6HdP/Uhhz5ZkpPgKCgIBISErhw4QJTp05lzpw5fPzxx5VdLFVZAQeAwWCgR48epKSksG3bNiIjI9myZQstWrSwCOqWL19Ov3796NKlC0eOHOHUqVMMHjyY4OBg3nnnnfsqZ8OGDVmxYgWnT5/mwIED1K1bl549e3Lz5k0Azp8/j8lkYs2aNZw5c4alS5eyevVq3n333VLzzcnJoUaNGrz//vu0atWq3OXJyMigVatWrFy58p7LDObrP2DAAN56661i8zAajbz44ovo9XoOHTrExo0b2bBhA7Nnz1bTfPrppyQkJKiPy5cv4+bmxoABA9Q0+/btY9y4cfz222/s3r0bg8FAz549ycjIKPU8yyqf9JiRX7yS9Igq0BfKyvyzPkXPrl27+GLbFkxK4VqrJ+OzLGMoGUPJGOoeiCdQSkqKAERKSsqDz9uQK/a17ijONmos9rTuLM42aiwOhq5+4MeRHq7vbiSLmr+Ei5eOR1V2UaTHQFZWljh79qzIysqq7KLctREjRoh+/fpZbOvRo4fo2LGjSEpKEsOGDROurq5Cp9OJoKAgERV15zMRFxcnXnrpJeHq6irs7e1F06ZNxXfffSdiY2MF5mhUfYwYMUIIIURqaqoYMmSIsLe3F7Vq1RJLliwRXbt2FZMmTVLz9fX1FfPmzRPDhg0TTk5O6r5hYWHimWeeEXZ2dsLHx0dMmDBBpKenCyGECA8PF4CIi4sr8VwvXbokbGxsxJQpU4q8tmzZMgGI3377TQgh1HMIDw+/+4uaJ/+75+effy4xzaJFi0S9evXKnWfha1VegPj666/LTFdamdevXy9cXFyKbP/++++FRqMR165dU7etWrVKODs7i5ycnGKP8/XXXwtFUUp9v27cuCEAsW/fvjLLXVr5ilPaZ7YiY4bH0UO7Hhv7CRHiLETEfyv2OJIk3ZOUXT+L0A8+FCEhIWLm/2aIIYuHiNB1oSIkJESEhISI9e+vECEhIeJv780UISEh4uXQHqL5huZi0vJBInTQqyJ04IviH+O+FCvG7hF/7L+i5pt/Pz5/7bz44+YfIjkjWcTHx4vr16+L67ExIiE6ShhysivxzEsmYygzGUOZyRiq/DGD7ClVIUShZ09Gy0BVdmfIu3wvpbsnhECv11fKQzyAXgY6nQ69Xs/IkSM5fvw4O3bs4PDhwwgh6N27NwaDAYBx48aRk5PD/v37OX36NB999BGOjo7Url2br776CoDIyEgSEhL49NNPAZgyZQoHDx5kx44d7N69m7CwME6ePFmkDKGhobRq1Yrw8HA++OADYmJiCAoKon///pw6dYotW7Zw4MABxo8fD0CNGjXQaDRs3boVo9FY7Hlt3boVg8FQbGve2LFjcXR0ZPPmzfd9/cDc8rR27VpcXFxKbZlLSUnBzc3tgRzzfpW3zIUdPnyYFi1aULNmTXVbYGAgqampnDlzpth91q1bR/fu3fH19S0x35SUFIBH5vpIFUyRc0pJ0iOtQHwhNCZOuZ/Cq4PXnW2F09/HR1oIgcFgyHvkkvMYxVEyhrp/Moaq+jGUdWUXoGrLG74nJzqvMuQ7Kd0Lg8HA3//+90o59rvvvotWq72nfYUQ7Nmzh127dtGrVy+2b9/OwYMH6dy5MwCbNm2idu3abN++nQEDBnDp0iX69+9PixYtAPDz81Pzyv8S9PDwUMeop6WlsXHjRr744gu6desGwPr16/Hy8qKwF154galTp6rPR48ezdChQ9W5APz9/Vm2bBldu3Zl1apVeHt7s2zZMqZPn87cuXNp27YtAQEBDB06VC1XVFQULi4ueHp6FjmeVqvFz8+PqKioe7p2+Xbu3MngwYPJzMzE09OT3bt3U7169WLTRkdHs3z5ckJDQ+/rmPfrbspcnGvXrlkEU4D6/Nq1a0XSX716lR9++IEvvviixDxNJhOTJ0+mS5cuNG/evNxlkSRJkiqGubLGHBmLYiucyo6alXJWPufm5rJ+/fryF+4Butc4SsZQMoaSMVT5yZ5SFUjIiYiqDEWuAiQ9QXbu3ImjoyN2dnb06tWLQYMGMXLkSKytrenQoYOazt3dnUaNGnHu3DkAJk6cyPz58+nSpQshISGcOnWq1ONcvHgRg8FA+/bt1W0uLi40atSoSNq2bdtaPP/999/ZsGEDjo6O6iMwMBCTyURsbCxgbnW8du0amzZtolOnTnz55Zc0a9aM3bt3l/talCcQ3bRpk0U5wsLC1NcCAgKIiIjg0KFDBAUFMXDgQG7cuFEkj/j4eIKCghgwYABjxoxRtxfMNzg4uFxlDgsLs9hv06ZN5drvbsv8oGzcuBFXV1defvnlEtOMGzeOP/74g//+97/qtuDgYIvzlKoqGUNJ0iOpQKN7/kgCjUZTYJulJ+WTLGOoO2QMJWOo8pI9pR4wIYR61xXIic6rivyGHPleSvfCxsamzIkXK/LYdysgIIBVq1ah1Wrx8vLC2tqaHTt2lLnf6NGjCQwM5LvvvuOnn35i4cKFLF68mAkTJtxL0S04ODhYPE9PT2fs2LFMnDixSNo6deqoPzs5OdGnTx/69OnD/PnzCQwMZP78+fTo0QN/f39SUlK4evVqkZZFvV5PTEwMgYGBZZatb9++FoGmt7e3RbkbNGhAgwYN6NixI/7+/qxbt45Zs2apaa5evUpAQACdO3dm7dq1FnkXXKnG2dm5zLKAOfgsuF/hFreylKfMpalVqxZHjx612Hb9+nX1tYKEEHz++ecMGzasxOB1/Pjx7Ny5k/379+Pj46Nunzdv3n1PpCpJkiSVn/p3jgKIAnFxMW236pQXhRvn7yGYtra2Nlc2ZKZjMppw8/HBRmt79xndg7uNo2QMJWMoGUPdPVkpVQHuzD+U978cvidJT7T8pYEfF/lfqAU1adKE3Nxcjhw5onY9v3XrFpGRkTRt2lRNV7t2bYKDgwkODmbWrFl89tlnTJgwQT3/gnMT+Pn5YWNjw7Fjx9QgKCUlhaioKJ577rlSy/j0009z9uzZIuUsjaIoNG7cmEOHDgHw2muvMWPGDBYvXszixYst0q5evZrMzEyGDx9eZr5OTk44OTmVqwwmk4mcnBz1eXx8PAEBAbRp04b169dbtDIDd3V++XQ63T3tV5LCZS5Lp06dWLBgATdu3MDDwwOA3bt34+zsbPG7AubVYaKjoxk1alSRfIQQTJgwga+//pq9e/dSr149i9c9PDzU/CVJkqSKlROXQuL6M4gcI4qtFXb+d2qi1HmXClROleuvn3IORFAUBWtra7CxwaQxotVqsXlE4yoZQ8kYqiAZQ5WPrJSqADdcbImrWYtsKy26a3ZycuwqQI7ElJ50/v7+9OvXjzFjxrBmzRqcnJyYOXMm3t7e9OvXD4DJkyfTq1cvGjZsSHJyMr/++itNmjQBwNfXF0VR2LlzJ71790an0+Hk5MSIESOYNm0abm5ueHh4EBISgkajKXOeiRkzZtCxY0fGjx/P6NGjcXBw4OzZs+zevZsVK1YQERFBSEgIw4YNo2nTpmi1Wvbt28fnn3/OjBkzAHNr4KJFi3jnnXews7Nj2LBh2NjY8M033/Duu+8yf/78ImPvIyMji5SlWbNmRVpSMzIyWLBgAX379sXT05PExERWrlxJfHy8umRvfHw8zz//PL6+voSGhlosGVy4Nayw/Fa89PR0bt68SUREBFqttkjAUlB6ejrR0dHq89jYWCIiInBzc6NOnTrlKjPApUuXSEpK4tKlSxiNRrUsDRo0wNHRkZ49e9K0aVOGDRvGokWLuHbtGu+//z7jxo3D1tayZXvdunV06NCh2DkOxo0bxxdffME333yDk5OTOpeCi4sLOp2uxPMsq3zS40IOm5ekR0nOxRREjrlSROQYMd62Uj+makN8bsFJsfPmmyr0d9CfqX9SG/M8RBmGdOyoxvzf5hNz6QRT2kzh5bovV+BZVA4ZQ5nJGErGUCUq1zp/VUxFLmd8W28Qi1/rLUIHvihCB74o1vV+Qfz69+UP/DjSw7Xr5m1R85dwEXQssrKLIj0GSlsa9VFX3HLG+fKXM3ZxcRE6nU4EBgZaLGc8fvx4Ub9+fWFraytq1Kghhg0bJhITE9XX582bJ2rVqiUURSl1OeP27duLmTNnqvv5+vqKpUuXFinP0aNHRY8ePYSjo6NwcHAQLVu2FAsWLBBCCHHz5k0xceJE0bx5c+Ho6CicnJxEixYtRGhoqDAajRb5bN++XTz77LPCwcFBXW558+bNFmmKW5I5/3H58uUiZcvKyhKvvPKK8PLyElqtVnh6eoq+ffuKo0ePqmnWr19fYp5lKW4fX1/fUvf59ddfi90v/70oT5mFMP+OFJfPr7/+qqaJi4sTvXr1EjqdTlSvXl1MnTpVGAwGi3xu374tdDqdWLt2bbnPERDr168v9TzLU77CHsRyxk+Kh3Y9/vWKECHOQkRsLjutJEkVLmXPn+LyjP3q4/qyn8XHsxeKkJAQMXXbFNF8Q3OxccdiERISIkJCQsTa9z8VISEhYu6sd0RISIh4aVlv0XxDc/Hqh91F6KBXROjAF8XHYzeIFWP3iAEf/VU039BcjNk1Rr0fn792Xvxx8w+RnJEs4uPjxfXr18X12BiREB0l9DnZlX05iiVjKBlDyRjKUnljBiWv0E+U1NRUXFxcSElJKff40vJKMeTyz6H91EmIdDkGmrR7kYD3io7ZlR4fPyWmMPx0LE852fNj24aVXRzpEZednU1sbCz16tXDzs6usovzWMnIyMDb25vFixcX2x25oiUlJdGtWzecnZ354YcfsLe3f+hlkB6+0j6zFRkzPI4e2vX496sQswdeXg1PvV5xx5EkqVxS91widfef6nOtl55/3TpGupJNdp1Eck6eo66oSXJ1f1AUvIzVuGqVjFXWbYw6V45XP86fTn/SMqkZTx/Rg9DjUPMNjPpq6F5IYWnWbDp5dmLZc8uIjY1F46Yh1yoXb3tvMm9nmofvZaZjMhpxr13noc0p9TiRMZRUGR5EDCVX36tgOTZWcvBeFSKHYkrSgxUeHs7mzZuJiYnh5MmTDB06FEDtzv6wubm58fPPP9OtWzcOHz5cKWWQJEmSpEddwW4Ndhcz8LmpIzcx9c7ref9r9JnYx/yBLi2lSB75w8x01iUPJ5JKJmMoqaqQc0pVMJNGg8lkquxiSPdJzmwhSRUnNDSUyMhItFotbdq0ISwsjOrVq1daedzd3Zk9e3alHV+SJO4seytJ0iMrv7FWyauhcmhVnwyDBpMQCOVOrZWVPhtrvb6YHEpZ3rq0W4BsI1bJGEqqCmSl1ANW7D3yyRshWWXJd1KSHqzWrVtz4sSJyi6GJEmSJEl3o5i/b7RebiiXNWAsOuF5sc9k3fN9kTGUVFXI4XsPgckkqzIed2WtYiFJkiRJUkWQMZQkPZIKfDTvTFGsqDHzg57y4gmcBlmSnhiyUuohEEIO33vcqVVS8vtQkiRJkiRJetIViInzR+opCgUqpQqlK1BxRZGfJEl6kslKqYpQqFeNnFNKkiRJkiTpbsg/VyXpkVK4p5IoUN9UsFZKfVnkJyuZHIkgSRKyUuqhkD2lHn/5X5myo5QkSZIkSZL0pCt+eJ5SypQXMoqWJKl4slLqIRByTilJkiRJkiRJkqoKUaDySe0oVXROqcKVV6X9VfSg56GSJOnxICulHgKT7Cn12JM9pSRJkiSpEsjJjSXp0VTCZ7PInFLF7/zAiyNJ0uNLVko9YMXdYkVuLkLOK1UlyBYcSZIkSZIk6Ykn1H/uVFBZdJ4SBRNS3F9JckopSZJAVko9FF67vuJC5y7o4+IquyjSPZJfmtKTYuTIkWr3e61WS4MGDZg3bx65ubn3le/evXtRFIXbt28/mIKWQ2xsLEOGDMHLyws7Ozt8fHzo168f58+ft0i3c+dOunbtipOTE/b29rRr144NGzZYpImLi0NRFCIiIsp9/Dlz5tC4cWMcHByoVq0a3bt358iRIxZ5jho1inr16qHT6ahfvz4hISHo9foy8960aROtWrXC3t4eT09P3nzzTW7dulXqPvv376dPnz54eXmhKArbt28vNt25c+fo27cvLi4uODg40K5dOy5duqS+PnbsWOrXr49Op6NGjRrFXtNjx47RrVs3XF1dqVatGoGBgfz+++/FHi86OhonJydcXV3LPO/ynoNUBcgvXkl67CgoJfeUyq+3ElX3sy1jKBlDyRjq3shKqYfAqLHGePs2mcePV3ZRpHuk5DX9yFEE0pMgKCiIhIQELly4wNSpU5kzZw4ff/xxZRdLVZ6Aw2Aw0KNHD1JSUti2bRuRkZFs2bKFFi1aWAR1y5cvp1+/fnTp0oUjR45w6tQpBg8eTHBwMO+88859lbNhw4asWLGC06dPc+DAAerWrUvPnj25efMmAOfPn8dkMrFmzRrOnDnD0qVLWb16Ne+++26p+R48eJDhw4czatQozpw5w5dffsnRo0cZM2ZMqftlZGTQqlUrVq5cWWKamJgYnnnmGRo3bszevXs5deoUH3zwAXZ2dmqaNm3asH79es6dO8euXbsQQtCzZ0+MRiMA6enpBAUFUadOHY4cOcKBAwdwcnIiMDAQg8FgcTyDwcDrr7/Os88+W2rZ7+YcJEmSpAevSAxcYPW9Oz2lCk50btlDqtiqqPy0VSi+ljGUjKFkDHUPxBMoJSVFACIlJeWB530rRy9CB75o8dg59K/ibKPG4ubatQ/8eNLDsfdWqqj5S7gIOHKusosiPQaysrLE2bNnRVZWVmUX5a6NGDFC9OvXz2Jbjx49RMeOHUVSUpIYNmyYcHV1FTqdTgQFBYmoqCg1XVxcnHjppZeEq6ursLe3F02bNhXfffediI2NFZhDTvUxYsQIIYQQqampYsiQIcLe3l7UqlVLLFmyRHTt2lVMmjRJzdfX11fMmzdPDBs2TDg5Oan7hoWFiWeeeUbY2dkJHx8fMWHCBJGeni6EECI8PFwAIi4ursRzvXTpkrCxsRFTpkwp8tqyZcsEIH777TchhFDPITw8/O4vap78756ff/65xDSLFi0S9erVKzWfjz/+WPj5+RUpr7e3d7nLAoivv/66yPZBgwaJv/zlL+XORwghfv/9dwGI6OhoIYQQx44dE4C4dOmSmubUqVMCEBcuXLDYd/r06eIvf/mLWL9+vXBxcbmr45Z0DveitM9sRcYMj6OHdj3+85oQIc5CnPx3xR5HkqRyuf1TnLg8Y7/6uLrwJ/Hh7AUiJCREhEwfKkIHvig2bPq7WLRokQgJCRFLPzD/P3fiGyJ04Ivi9dlPi+YbmovXF78uQge9LEIHvig+m7JdrBi7R3zx5Q+i+YbmYvSu0er9+Pz18+KPm3+I5IxkER8fL65duyaux8aIhOgooc/OruzLUSwZQ5nJGKr8ZAxlJntKPQTZOmcAjEnJlVwS6V7Jic6l+yGEwGjMrJSHeADd+3Q6HXq9npEjR3L8+HF27NjB4cOHEULQu3dvteVm3Lhx5OTksH//fk6fPs1HH32Eo6MjtWvX5quvvgIgMjKShIQEPv30UwCmTJnCwYMH2bFjB7t37yYsLIyTJ08WKUNoaCitWrUiPDycDz74gJiYGIKCgujfvz+nTp1iy5YtHDhwgPHjxwNQo0YNNBoNW7duVVufCtu6dSsGg6HY1ryxY8fi6OjI5s2b7/v6gbllcu3atbi4uNCqVasS06WkpODm5lZqXp06deLy5ct8//33CCG4fv06W7dupXfv3vdVRpPJxHfffUfDhg0JDAzEw8ODDh06lNq9OyMjg/Xr11OvXj1q164NQKNGjXB3d2fdunXo9XqysrJYt24dTZo0oW7duuq+v/zyC19++eWj2WInSZIklU4UfWI5fK8c8Uc5R/IJITCZsvIe2Y9VHCVjqPsnY6iqH0NZV3YBqjYrwEiOjbnLnikzs3KLI0lSpTCZsti7r0WlHPv5rqexsrK/p32FEOzZs4ddu3bRq1cvtm/fzsGDB+ncuTNgHpNfu3Zttm/fzoABA7h06RL9+/enRQvzufr5+al55QcJHh4e6rj3tLQ0Nm7cyBdffEG3bt0AWL9+PV5eXkXK8sILLzB16lT1+ejRoxk6dCiTJ08GwN/fn2XLltG1a1dWrVqFt7c3y5YtY/r06cydO5e2bdsSEBDA0KFD1XJFRUXh4uKCp6dnkeNptVr8/PyIioq6p2uXb+fOnQwePJjMzEw8PT3ZvXs31atXLzZtdHQ0y5cvJzQ0tNQ8u3TpwqZNmxg0aBDZ2dnk5ubSp0+f+w5Mbty4QXp6Oh9++CHz58/no48+4scff+TVV1/l119/pWvXrmraf/zjH0yfPp2MjAwaNWrE7t270Wq1ADg5ObF3715efvll/va3vwHm92fXrl1YW5vDjlu3bjFy5Ej+85//4OzsfF/llqqqqjvvjCRVOfn1NqXMBVfCWn3ly15kc/ZczzsbLpe3YPfvXuMoGUPJGErGUOUne0o9aBa16eYbba5ivsyi0DhQ6fEhe0pJT5KdO3fi6OiInZ0dvXr1YtCgQYwcORJra2s6dOigpnN3d6dRo0acO3cOgIkTJzJ//ny6dOlCSEgIp06dKvU4Fy9exGAw0L59e3Wbi4sLjRo1KpK2bdu2Fs9///13NmzYgKOjo/oIDAzEZDIRGxsLmFsdr127xqZNm+jUqRNffvklzZo1Y/fu3eW+FvlBQmk2bdpkUY6wsDD1tYCAACIiIjh06BBBQUEMHDiQGzduFMkjPj6eoKAgBgwYYDGvQcF8g4ODATh79iyTJk1i9uzZnDhxgh9//JG4uDj19bCwMIv9Nm3aVK5zNeWtEtuvXz/efvttnnrqKWbOnMlLL73E6tWrLdIOHTqU8PBw9u3bR8OGDRk4cCDZ2dkAZGVlMWrUKLp06cJvv/3GwYMHad68OS+++CJZWVkAjBkzhiFDhvDcc88VW5Z7PQdJkiTpIRFFe0MpBeaUuqVN4nj14xzxjSHKJw3lCQmiZQx1h4yhZAxVXrKn1ANmeb81V0blIiulqoon5PtUesA0Gh3Pdz1dace+WwEBAaxatQqtVouXlxfW1tbs2LGjzP1Gjx5NYGAg3333HT/99BMLFy5k8eLFTJgw4V6KbsHBwcHieXp6OmPHjmXixIlF0tapU0f92cnJiT59+tCnTx/mz59PYGAg8+fPp0ePHvj7+5OSksLVq1eLtCzq9XpiYmIIDAwss2x9+/a1CDS9vb0tyt2gQQMaNGhAx44d8ff3Z926dcyaNUtNc/XqVQICAujcuTNr1661yLvgSjX5rWELFy6kS5cuTJs2DYCWLVvi4ODAs88+y/z582nbtq3FfjVr1izzHACqV6+OtbU1TZs2tdjepEkTDhw4YLHNxcUFFxcX/P396dixI9WqVePrr7/m9ddf54svviAuLo7Dhw+j0Zi//7744guqVavGN998w+DBg/nll1/YsWOH2qJpHpphwtramrVr1/L666/f0zlIkiRJD59S4If8SqlTrn/wp9OfAFx2A/8rReMRk9EcWZvy5t4uacifotjRtMkelKwMTEYTbt4+2NjaPtBzKMndxlEyhpIxVEEyhiofWSlVkRQNCDDkV0qVY7UD6dEkV6aW7oeiKPc8hK4y5AcBBTVp0oTc3FyOHDmidj2/desWkZGRFl/AtWvXJjg4mODgYGbNmsVnn33GhAkT1NaygnMT+Pn5YWNjw7Fjx9QgKCUlhaioqBJbf/I9/fTTnD17tkg5S6MoCo0bN+bQoUMAvPbaa8yYMYPFixezePFii7SrV68mMzOT4cOHl5mvk5MTTk5O5SqDyWQiJydHfR4fH09AQIC6Gkt+AJKvuPPLzMxUu3Dns7KyAsyBiU6nu6vrkk+r1dKuXTsiIyMttkdFReHr61vifkIIhBDqeWVmZqLRaAqswIT6PL8l8fDhwxa/C9988w0fffQRhw4dwtvb+57PQaqC5LK3kvRoKPxZLOGzmX/vz9XcuccLBbJ0zkBW3gbzfznpejRWYHs0jr71M6ln9Sec/w4UXzA5gAYUfTr2Sg4axYocxQ40JqysdFhZ2fEokjGUjKEKkjFU+chKqQdMCJP6s4KCAHLz2g9kT6nHn4yNpSeVv78//fr1Y8yYMaxZswYnJydmzpyJt7c3/fr1A2Dy5Mn06tWLhg0bkpyczK+//kqTJk0A8PX1RVEUdu7cSe/evdHpdDg5OTFixAimTZuGm5sbHh4ehISEFPkyLs6MGTPo2LEj48ePZ/To0Tg4OHD27Fl2797NihUriIiIICQkhGHDhtG0aVO0Wi379u3j888/Z8aMGYC5NXDRokW888472NnZMWzYMGxsbPjmm2949913mT9/Ps2bN7c4buFgA6BZs2bY2NhYbMvIyGDBggX07dsXT09PEhMTWblyJfHx8QwYMAAwB1PPP/88vr6+hIaGqsscA9SqVavEc+/Tpw9jxoxh1apVBAYGkpCQwOTJk2nfvn2xc0nkS09PJzo6Wn0eGxtLREQEbm5uakA7bdo0Bg0axHPPPUdAQAA//vgj3377LXv37gXMwwW2bNlCz549qVGjBleuXOHDDz9Ep9Opk4T26NGDadOmMW7cOCZMmIDJZOLDDz/E2tqagIAAAPX3It/x48fRaDRFrve9nIMkSZJU8Sxi4rwnBYfvFd0ht8gmrVUOuUBDm328disRbiWSfS0BuiwGkxawwiorERcEmOCGcAAU0GeA7aNZKVUcGUOZyRhKxlAlkZVSFcp8QzCYzDdqWSklSdLjbP369UyaNImXXnoJvV7Pc889x/fff68GE0ajkXHjxnHlyhWcnZ0JCgpi6dKlgLk79ty5c5k5cyZvvPEGw4cPZ8OGDSxZsoTg4GBeeuklnJ2dmT59OpcvX8bOrvRgs2XLluzbt4/33nuPZ599FiEE9evXZ9CgQQD4+PhQt25d5s6dS1xcHIqiqM/ffvttNZ+3334bPz8/Fi9ezKeffkpGRgYAmzdvZvDgwUWOW9y2y5cv4+PjY7HNysqK8+fPs3HjRhITE3F3d6ddu3aEhYXRrFkzAHbv3k10dDTR0dFF9i9ttZ+RI0eSlpbGihUrmDp1Kq6urrzwwgt89NFHpV6z48ePqwENmFftARgxYgQbNmwA4JVXXmH16tUsXLiQiRMn0qhRI7766iueeeYZAOzs7AgLC+OTTz4hOTmZmjVr8txzz3Ho0CE8PDwAaNy4Md9++y1z586lU6dOaDQaWrduzY8//ljshKh3ozznIFURsouyJD2G7nxuCw/F0xpS8lIo5HeVsrVVyM2BHOHAIVsHnHWONPDsBNY684gTQFjryDbkWla0mIpWcD3qZAwlYygZQ5VMEQ9ivfDHTGpqKi4uLqSkpDzwGesTs7PYOMJcg6toHBCmDG7ZtGLY8W0ordvQePN/HujxpIfjYHIa/SNi8Le3JaxDk7J3kJ5o2dnZxMbGUq9evTIDA8lSRkYG3t7eLF68mFGjRj304yclJdGtWzecnZ354YcfsLd/fIZdSveutM9sRcYMj6OHdj2+GARRP0LfFfD0sIo7jiRJ5ZLyUxxpv9xZ9k7jkM2/co+SrRhQ0qNwvJxKzdee59ZVG5KTkzni8RtXHOLV9PUSrIn1zOXpWy1oeSQLMFDDayhpWTVpYBfGe82/56k6LVjx3ApiY2PRuGvI1eTibe9N5u1MrKysUDJTMZnAvbozNi6P/jw5D5uMoaTK8CBiKLn6XgVS8i5vfsV+RmZ2JZZGkiTp0RMeHs7mzZuJiYnh5MmTDB06FEDtzv6wubm58fPPP9OtWzcOHz5cKWWQJKmgJ67tVJIeD6LotOQKd4bvFX41/3l1jalgh6q8F2XPyHshYyipqpDD9x60Avff/Ntrdae85TANj19XU8lMKfLtKUnSgxIaGkpkZCRarZY2bdoQFhZG9erVK6087u7uzJ49u9KOL0mSJEmPnNLqh/MH3igFK6UKJSk2lBZlZi2VTsZQUlUgK6UeMGEqWCtl7iml0eRty5VzSkmSJBXUunVrTpw4UdnFkCTpkSMbgyTpkSbUf+4o+LFVLF8zFfORllPH3R8ZQ0lVhRy+V4Hy77OavJ8UOdH5Yyv/S1O25EiSJEmSJElSUZbD9yyVPkJP1k5J0pNMVko9aMJU4EleZZQmb5vsKfXYe/KWBZAkSZKkSiS/eCXpkSQK1jLlf0wVCqySV2hOKYvNJXyu5cddkp5IcvheBcq/Keffg5Xcx2tOqYILMypPeP/aJ/vsJUmSJEmSJKl0iqIp8W+G4obvWewro21JemJVaE+p/fv306dPH7y8vFAUhe3bt5eafu/evSh5E+QVfFy7ds0i3cqVK6lbty52dnZ06NCBo0ePVuBZ3B1hutNTKv/mqskbU615DIbv5eQaORaXxO69R1n+xiCWDO7DshGvcTH8WGUXrVIV3+YjSZIkSVKFeMIbwyTpkScKxMV35jkvZfheMVG0Oj2G/LxL0pOsQntKZWRk0KpVK958801effXVcu8XGRmJs7Oz+tzDw0P9ecuWLUyZMoXVq1fToUMHPvnkEwIDA4mMjLRI9yjIvylr8m7LivHee0qlHzxIZt7Smja+vri+9lqF9F6a/N8IfvjjGh2Sj9I+KxOA3Jwcog4fxK91uxL3S7gQSUJ0JH5Pt8ehWjVstLYPvGySJEmSJEmSJFWCUltmC9RK5TFhskyR91Lxf73ISilJepJVaKVUr1696NWr113v5+Hhgaura7GvLVmyhDFjxvDGG28AsHr1ar777js+//xzZs6ceT/FfSBEgTu2Uqh/jXIfc0rFT5qMKT1dfW7/1FPY+vubczeZEHq9+Ri2tvdVWRV9w3wMZ0MaAI7edUmPj+N6bDTXL0bjXtsXaxsb83GF4JvQ+cSGH8dkNALw64a1OFRzY2ToP7BzdLzncjxq7ryTsq+UJEmSJEmS9IQTFKhLyvtbB4U67u6kR8dQ3S6XFGtBjtacyFTMsIN7/4tFxuOSVJU8knNKPfXUU+Tk5NC8eXPmzJlDly5dANDr9Zw4cYJZs2apaTUaDd27d+dwXi+i4uTk5JCTk6M+T01NrbCyW9wiC/WUsirnnFJpSdkc3BqNPjsXrZ0VnfrVUyukFFtbRE4OxjRzpZEpJ4fYl19BHxsLgF2rltTdvBlFU/6RmVl/nCFx5UpETg7p7oFg5YC9KRsAbZ1GEB9H4qU4/jNrMrWbtqB1rz78tHoZ2RnpxeaXkZzEn6cjSE/x4cKx66AotAzwoWkXr3KXSZIkSZIkSf7xKUmPhqw0vcVzYTCANv+J+T+b22nUX/o5ftnZvASk6mD8W1Zk2yolrL4nP9+SJD1iq+95enqyevVqvvrqK7766itq167N888/z8mTJwFITEzEaDRSs2ZNi/1q1qxZZN6pghYuXIiLi4v6qF27dsWdRMHa/7xKqYzbgvDmIxFA7JChpB84WGoW5w4lEHPyBpfPJhFz8ibnDyeor1lVq2Y+TF4Flz4uTq2QAsj+/RS5iYlF8jTcuEHCB7O58vbbxL8zjczwcABSsw0k//vfpP/6KxmHDpFtMPd4ctCY8zdU86Fhp2dxrOYGQEJ0FFG/HbSokHKuUZO/rtrA25u/oWGHLnnnnMzx7+K4FZ/BrSvpHP8ursxL9ygraXy8JFU1I0eOVOfz02q1NGjQgHnz5pF7nws15M8ZePv27QdT0HKIjY1lyJAheHl5YWdnh4+PD/369eP8+fMW6Xbu3EnXrl1xcnLC3t6edu3asWHDBos0cXFxKIpCREREuY8/Z84cGjdujIODA9WqVaN79+4cOXLEIs9Ro0ZRr149dDod9evXJyQkBL1eX0quZps2baJVq1bY29vj6enJm2++ya1bt0rdZ9WqVbRs2RJnZ2ecnZ3p1KkTP/zwg/p6UlISEyZMoFGjRuh0OurUqcPEiRNJSUlR02zYsKHYuR8VReHGjRtqupycHN577z18fX2xtbWlbt26fP755xbl+eSTT9Rj1a5dm7fffpvs7OxSz2Hbtm307NkTd3f3u34/JEmSpHt3Nfo2cGchJENaVpERBHY3khHZ2WrDvHMW1MjrC1B8pVTea1Vk+J6MoWQMJWOoe/NI9ZRq1KgRjRo1Up937tyZmJgYli5dyr///e97znfWrFlMmTJFfZ6amlpxFVMFJjq3tTKQBRizT5FgbUtdJx80J09yc9mnOD7ThZyMHExCQWtnjcZK4eqMGWQePUa8Z19waWXu0yrAkHnnw6WxszP/kDdczpTXY8rKwwORno4pMxNTSgq/52jZfPQS56+lEXH5Nl3sMrGP1vDXP/biaMjGePs2J8aF8PaW35me40oA4NL/VV4+tZ8+Fw/xawvz0MAskxV9Js/AoM9h2bD+5OpzuH4xGoBOr71OVloa9du0x8mtOgA6F1cA0hKTMOitAS3ClExS/Dl+WhtO+q0btH95AD5NmlfM9a9gcmVq6UkQFBTE+vXrycnJ4fvvv2fcuHHY2NhY9FKtTHq9Hq1WW2oag8FAjx49aNSoEdu2bcPT05MrV67www8/WAR1y5cvZ/LkycyYMYNVq1ah1Wr55ptvCA4O5o8//iA0NPSey9mwYUNWrFiBn58fWVlZLF26lJ49exIdHU2NGjU4f/48JpOJNWvW0KBBA/744w/GjBlDRkZGqcc9ePAgw4cPZ+nSpfTp04f4+HiCg4MZM2YM27ZtK3E/Hx8fPvzwQ/z9/RFCsHHjRvr160d4eDjNmjXj6tWrXL16ldDQUJo2bcqff/5JcHAwV69eZevWrQAMGjSIoKAgi3xHjhxJdna2xbyOAwcO5Pr166xbt44GDRqQkJCAqcD34xdffMHMmTP5/PPP6dy5M1FRUWowv2TJkhLPISMjg2eeeYaBAwcyZsyYMt8D6XFWNf5IlaSqwmQ0B8H5o/aEUqBvgxofmz+31vUbkBJ/EYcso/qaUIokrpIr7skYSsZQMoa6e49UpVRx2rdvz4EDBwCoXr06VlZWXL9+3SLN9evXqVWrVol52NraYmv7cCbeTrmRpP7c0OE60bmCJL0diBxuO7pTLfUS+tg4Tq//mbDfBEKxwiY3g5eHVOfKr7+jCGsyhQ4A1xo6bt/IIvfkJvxfvsb1ky7k5FVKiVwjJr0ewzXztTDeuEGuRuGPOh4cnTmZP5zqcqJaADlWDlhbwc2ERKZF7eGiTxNaxoZjTE3l7S2/A7DIrgVdAavWT/HK9jnYGE3ostPIsrXB7o9wrn+RyfWvd2CnKGQrguSEeAC8GjYhvXp9NkXEY7x0lq6NauBcvQYAx3d+CYCNrhGGrEgATu8xX5fYiBN4+jeiXZ/++HfoXLFvyANS9b4yJalktra26j31rbfe4uuvv2bHjh0EBwczadIkvv32W3JycujatSvLli3DP29+uz///JPx48dz4MAB9Ho9devW5eOPP6Zp06YEBAQAUC2vt+eIESPYsGEDaWlpBAcHs337dpydnZk+fTrffPMNTz31FJ988gkAdevWZdSoUVy4cIHt27fz6quvsmHDBg4cOMCsWbM4fvw41atX55VXXmHhwoU4ODhw5swZYmJi2LNnD76+vgD4+vqqw8EBLl++zNSpU5k8eTJ///vf1e1Tp05Fq9UyceJEBgwYQIcOHe7pOg4ZMsTi+ZIlS1i3bh2nTp2iW7duBAUFWQQnfn5+REZGsmrVqlIDqsOHD1O3bl0mTpwIQL169Rg7diwfffRRqeXp06ePxfMFCxawatUqfvvtN5o1a0bz5s356quv1Nfr16/PggUL+Mtf/kJubi7W1tbodDp0Op2a5ubNm/zyyy+sW7dO3fbjjz+yb98+Ll68iJubuZdt3bp1LY596NAhunTpol6junXr8vrrr1u0ghZn2LBhgLmFVJIkSapEGqsCT4q22uZvyY+hTcWuvpdf0VV1Im0ZQ8kYCmQMdbceqeF7xYmIiMDT0xMArVZLmzZt2LNnj/q6yWRiz549dOrUqbKKaOHW6Uj1Z61VFm/UP4qttfmXL7aGDwAiJ4c/T91AKOabucHagcNfnuR4mxkcazuL264NAbC/bR6WZ8ixwtrORPX2btg0+Cv2L4SQc/EGF559jqvvvKMeL8HVkavVnEi0VqiV9Sf9kqMZkm7La6mC0P0r8clIpGVsOHtqP03Punc+6HbGbPY0rct/vtzI7ub1OOjvTZateTLzalHJHPjfRXIvXML/ynXs9LkkW7uSXN0f53oNeefL3/ksLJbPD8Yy+b/h+LZsbXE98iukANx8Wtwp64VIwv6zmcvnk8hMLbub5d3S55qITczgclKm2s34fhQzN6MklZsQggyjsVIeD+L3X6fTodfrGTlyJMePH2fHjh0cPnwYIQS9e/fGYDAv4jBu3DhycnLYv38/p0+f5qOPPsLR0ZHatWurX9SRkZEkJCTw6aefAjBlyhQOHjzIjh072L17N2FhYeqQ7YJCQ0Np1aoV4eHhfPDBB8TExBAUFET//v05deoUW7Zs4cCBA4wfPx6AGjVqoNFo2Lp1K8a8nqWFbd26FYPBwDsF7qP5xo4di6OjI5s3b77v6wfmlsm1a9fi4uJCq1atSkyXkpKiBiEl6dSpE5cvX+b7779HCMH169fZunUrvXv3Lnd5jEYj//3vf8nIyCj1+zMlJQVnZ2esrYtvw/rXv/6Fvb09r732mrptx44dtG3blkWLFuHt7U3Dhg155513yMrKUtN07tyZEydOcPToUQAuXrzI999/f1fnID0hZBdlSXokFezllF/flL/WkqIoavCsFOkppZT4uS5pQSEhBJkmE5kmQZZJkGk0PTZxlIyh7p+Moap+DFWhPaXS09OJjo5Wn8fGxhIREYGbmxt16tRh1qxZxMfH869//Qswj42sV68ezZo1Izs7m3/+85/88ssv/PTTT2oeU6ZMYcSIEbRt25b27dvzySefkJGRoa7GV9mMyp1fmBhTI2pyCxuNhhwg3dm8Gp0wGEjOUEADGqMek5WWq7c14HInH2tDOnYXj4BfP9KTHTFW05CQC7/nZHLF6IbtoXS0/m/wdO5tbP7cjyn5Ipke1S3KYjKax8bWMdmSY1+Ta64N8Uo4wGk3PwyKFa+m/oBfagxujnoSbO7U2qbY5w0RxIYbXi+hKBqMwkSLyE3UTkpjQvfhdDV5sOn9Y3Q1GDHYa4ixMZGZlUPNevUZsWAJJ388yemw/wCgYI2VXXsyMzqidW6NUR+JMfsIt29ls+OTCGzsrBj5YRe0dg/m11EIQd9PfiE+4SYaTAx62pORnepSs04drEq4KUhSRco0mai//3SlHDvmuRY4WFmVnbAYQgj27NnDrl276NWrF9u3b+fgwYN07mzu4bhp0yZq167N9u3bGTBgAJcuXaJ///60aGGugPbz81Pzyg8SCq6umpaWxsaNG/niiy/o1q0bAOvXr8fLq+iiCC+88AJTp05Vn48ePZqhQ4cyefJkAPz9/Vm2bBldu3Zl1apVeHt7s2zZMqZPn87cuXNp27YtAQEBDB06VC1XVFQULi4uasNHQVqtFj8/P6Kiou7p2uXbuXMngwcPJjMzE09PT3bv3k316tWLTRsdHc3y5cvL7O7epUsXNm3axKBBg8jOziY3N5c+ffqwcuXKMstz+vRpOnXqRHZ2No6Ojnz99dc0bdq02LSJiYn87W9/469//WuJ+a1bt44hQ4ZYtPxdvHiRAwcOYGdnx9dff01iYiL/93//x61bt1i/fj1gbgFNTEzkmWeeQQhBbm4uwcHBvPvuu2WegyRJklQJxJ3he8CdGigLd7YVrsoRxbTwlrd/VLaALucLjJS5kgncKDH9g3SvcZSMoWQMJWOo8qvQnlLHjx+ndevWtG5t7j0zZcoUWrduzezZswFISEjg0qVLanq9Xs/UqVNp0aIFXbt25ffff+fnn39WP2hgHosZGhrK7Nmzeeqpp4iIiODHH38sMvl5ZTE2clV/TseTv+ueIcfKfJmthC2/t/g/Lns/T26u+TaszTJPYq6xcVL363B0Hp1/m41Wb54Z8KpjO5bHjeerWC+ib6wnJ+1/5CiupDn680euQmTtHpxsNQljdXcAHAzmvI3GG2hyszCJLA63fIXTNZL4peP/0cGQyMTYf+F9K44cgxUJyeYPQsOrtzjg9Bwx1ZpjY1sfG4feKHnjxSO8nkKxM59bYFoObiYNGr3AWWjogC2vxhziq2/eJ2bUW4S/9QmpJzOwdZ2AX+bT+OZ0wFrX0XyeVtXRWJm7tCqYUBQwZBvJTCnQW+r89/BHyWN6y5J08ybPHf8HI69sYviVzdjuWMLmWRP51//1Q3wxGHbPvuuWV9lT6vEmhMCY95DKtnPnThwdHbGzs6NXr14MGjSIkSNHYm1tbdEN293dnUaNGnHu3DkAJk6cyPz58+nSpQshISGcOnWq1ONcvHgRg8FA+/bt1W0uLi4Wcwvma9u2rcXz33//nQ0bNuDo6Kg+AgMDMZlMxOYt/jBu3DiuXbvGpk2b6NSpE19++SXNmjVj9+7d5b4WZc27AObAsmA5wsLC1NcCAgKIiIjg0KFDBAUFMXDgQIvJLPPFx8cTFBTEgAEDLMb5F8w3ODgYgLNnzzJp0iRmz57NiRMn+PHHH4mLi1NfDwsLs9hv06ZNan6NGjUiIiKCI0eO8NZbbzFixAjOnj1bpDypqam8+OKLNG3alDlz5hR73ocPH+bcuXOMGjXKYrvJZEJRFDZt2kT79u3p3bs3S5YsYePGjWpL3969e/n73//OP/7xD06ePMm2bdv47rvv+Nvf/lbmNZWeEMX+wStJUmUrOCNUqfI+w/k9pUylrr5XdT7vMoa6Q8ZQMoYqrwrtNvL888+X2uWx8Mz806dPZ/r06WXmO378eLV74aPG2eXOJGXnXaI5XOsPasa0wDULbHKtSHRrSqJbY3MCIfAynOcivuTam2u17TOv4VXrIn/WcScq1wZT7lUUK09MhotqvsJ4DdvMa+TY1+JW9bbkrxVgk7YPAIccazJsDCjG22Sn/QsTGeq+hoyfSLYxFCm3Ta4RlywDHvZPUdvNHl3SLfR6JxKsTHgaNXgLe/a1fR+HjKvY68xji6/ZGKllsMI3JYtc926EdXkGk5Ut1DfnqQDRtVJ56kIM1z3aIDTmX7caNyO4ag/OhhtonLVkpugx6I2QdBESo+G/r5szuLgXnhoKde5uLPLNS3HYCj0CsM1bRVBvskZkZaFEHYCoH6DFAKjVovSMpCoh02gi6HgUUZnmFSnG1/Hg/fpFW5Eqkr1GQ8xzlfP7Zq+5+7aHgIAAdcJKLy8vrK2t2bFjR5n7jR49msDAQL777jt++uknFi5cyOLFi5kwYcK9FN2Cg4ODxfP09HTGjh2rzglQUJ06ddSfnZyc6NOnD3369GH+/PkEBgYyf/58evTogb+/PykpKVy9erVIy6JerycmJobAwMAyy9a3b1+LQNPb29ui3A0aNKBBgwZ07NgRf39/1q1bZzHh6dWrVwkICKBz586sXbvWIu+CK6M4OzsD5hVlu3TpwrRp0wBo2bIlDg4OPPvss8yfP5+2bdta7Few0SZ/NSCANm3acOzYMT799FPWrFmjpklLSyMoKAgnJye+/vprbGxsij3vf/7znzz11FO0adPGYrunpyfe3t64uNzp/tukSROEEFy5cgV/f38++OADhg0bxujRowFo0aIFGRkZ/PWvf+W9994r9ZpKkiRJjwBFuVNBlT98r5jX1IZdpVCau2CnwOHGNVEy0xAmcHNzxNr14XRIuNs4SsZQMoaSMdTdk2OZHrBaDncmXM+wygQgyeEmrim2JNnF4pJyGmEyVyNpNB74amK4oG+AMKWAYo11jhUJPg4cSvYGrgL/xTnXgxyrFIu7eL3YLznfzPImlYEbkEZatXZg+A0wWlRImd2pkLK274Gi2OCgtyPHuRana9jRUg9c06PH3HPrpnUmnkbzsMNcax0pLvXV/V9xT+bwterk5s2ZZbKynEze48ZJ/KN/w1afgueNU9x2bUhCrQ64p/zBVXsnhCEbm6wEwJ3cy6fgp0LjYE9uhPM7YfpF7sbNm4kApGmdeaf+d1zJdGbLn61IMdmT61AT64zrkHX7rvLMv/YljXWXHl0RqZlqhRTAj4kpD71SSlGUex5CVxnyg4CCmjRpQm5uLkeOHFG7nt+6dYvIyEiLrsu1a9cmODiY4OBgZs2axWeffcaECRPU1rKCcxP4+flhY2PDsWPH1CAoJSWFqKgonnvuuVLL+PTTT3P27Nki5SyNoig0btyYQ4cOAfDaa68xY8YMFi9ezOLFiy3Srl69mszMTIYPH15mvk5OTjg5OZWZDswtYDk5Oerz+Ph4AgICaNOmDevXr0dTKPgt7vwyMzOLzE9glff7JYRAp9OV+7oULk9qaiqBgYHY2tqyY8cO7PJXfC0kPT2d//3vfyxcuLDIa126dOHLL78kPT0dR0fz90dUVBQajQYfHx/1HAqfa8FzuJtrKkmSJFWGgtVLRXs8mQq9lGltC2SzN9eHwVwAIDXL3Hh8TSNIvjyKONOdBaMsjqQo2Gs0KBoFE2BvpcHmEY2rZAwlYygZQ909WSn1gFn0DMvrr6q3yQFsuW1zDmeTvfqyyXSDJF0yhoxv1G26W3ridNUs8ky1NndTtDYasTIJcmys0WpzaHrmnyi5KVz0fYFMl6cQwvyhyNXWwNomAIP+OK7p6eS4BmDS+qBP3WCRr06pi0HrRHYJPSt1mmSWuYwnOrstB4wBKImOOGdmY7BJJtdZi27v73g6NyPJvSmZWmdylBwapB5Bk2Kifuy3WJnMFWCHmiicaGBihtNebl89wW3XtpCRjRACa1Mq4E7uzbxhnDb2YMgEZx9IvQKZt0CfAVqH4gtZDFOh3nnGvAnlU4U9Bvta5kopfeHKOqmqis0yfy5qaK25qc8lw2gqYw+pOP7+/vTr148xY8awZs0anJycmDlzJt7e3vTr1w+AyZMn06tXLxo2bEhycjK//vorTZo0AcyrtiiKws6dO+nduzc6nQ4nJydGjBjBtGnTcHNzw8PDg5CQEDQajXmS1FLMmDGDjh07Mn78eEaPHo2DgwNnz55l9+7drFixgoiICEJCQhg2bBhNmzZFq9Wyb98+Pv/8c2bMmAGYWwMXLVrEO++8g52dHcOGDcPGxoZvvvmGd999l/nz59O8eXOL40ZGRhYpS7NmzYq0hGVkZLBgwQL69u2Lp6cniYmJrFy5kvj4eAYMGACYg6nnn38eX19fQkNDuXnzprp/aSvK9unThzFjxrBq1SoCAwNJSEhg8uTJtG/fvti5JPLNmjWLXr16UadOHdLS0vjiiy/Yu3cvu3btAszBVM+ePcnMzOQ///kPqamppKaah5HXqFFDDXgAtmzZQm5uLn/5y1+KHGfIkCH87W9/44033mDu3LkkJiYybdo03nzzTXXehD59+rBkyRJat25Nhw4diI6O5oMPPqBPnz4WxyksKSmJS5cucfXqVeDO+1GrVq1Sr5n0OJONQZL0KMgPry3nlLLcqH51K3eG66mr72nMP9/GDpG3PddkQgH0CuTmeBH3Z40KPYfKImMoMxlDmckYqihZKfWgFYyd8u4HzfRWGAH/dPOE5xk6Aw7WjpCWw5GsOha76zU5ZGP+YB5tkkSjS07ocsy/XJn2WfikKeRgzRdP3+bpSAOpOlsQv6K9tR9hba6NVTT2nKwbyXmPSwTvvEWHY1G4904m3qEV3+bUwT0zFrvqN2lktYjsnFZYa4xss7flarXb6K31VNdc4R83r2CnSSPDysg7DS9wxSaOgfuNPHv6zgmeaexDs/NfABD2Sism2v4AtSDjmpazDrXZUc3IsYYKyW6QqVHwSnFli689LaPjeDqqFiYUrBXzXFK5yXmTFzYMhAEbzN98CzwhNwvSb0BuDqRfAyst+LQHq1J+dQtUSt2+qOPGH07gD076TPQaHToAffrdvKvqCiNySqLHT5LB3ApXx06bVylV/CoiUtnWr1/PpEmTeOmll9Dr9Tz33HN8//33ajBhNBoZN24cV65cwdnZmaCgIJYuXQqYuw7PnTuXmTNn8sYbbzB8+HA2bNjAkiVLCA4O5qWXXlKXM758+XKJrUv5WrZsyb59+3jvvfd49tlnEUJQv359Bg0aBICPjw9169Zl7ty5xMXFoSiK+vztt99W83n77bfx8/Nj8eLFfPrpp2RkmCusN2/ezODBg4sct7htly9fVluv8llZWXH+/Hk2btxIYmIi7u7utGvXjrCwMJo1awbA7t27iY6OJjo6usj+pQ19HzlyJGlpaaxYsYKpU6fi6urKCy+8UOZyxjdu3GD48OEkJCTg4uJCy5Yt2bVrFz169ADg5MmT6nLChVsJY2NjLZYkXrduHa+++qo64WpBjo6O7N69mwkTJtC2bVvc3d0ZOHAg8+fPV9O8//77KIrC+++/T3x8PDVq1KBPnz4sWLCg1HPYsWOHxcIm+e9HSEhIifM2SJIkSfevcDWHUtpAPFGgUirv60xr0mOwgk6aq+qeznbWpGWBmyk/zq46c0sVJmMoGUPlkzFUUYp4EOuFP2ZSU1NxcXFRl2l8kOJvXue/480Tlp1rDkfq/Mm4UzXJuGKHtcZIrsmKRJccbnooNLlwp4uSV3IaV6s5ocs2klrNhE2WDbvaXyeh+p1hR1qjlsGnbNEklL7U5fnGDfjNbw81c3NJxhobg+DpHD8OO94g19qyh5CdycQH6e6855yMvclEpkaDtRAcjbuMNbDCpjlrfcy1vC4ZglcPmuh1wvJXJsvOjrr9buCmmCt64q2tCLe1ZZZHdbQmqG40ctXGCr8cExdtNTSJs6XD2Vo4ZOfgUacvCYZmdGtxjEY3FqI8NRheWW3OeFlr8zxThXUcB0F/L/H892z+mojt60jVOtMlqxpxuqdJ03+NIqwY2kVQM3kf9PkU2ows9ToWFJ6aSa8TUXjb2nCic7Ny7ydVrus5BkKjYvl3YiZ9SOBbPLECrjzfqsxWpPuRnZ1NbGws9erVKzMwkCxlZGTg7e3N4sWLi0z++DAkJSXRrVs3nJ2d+eGHH7C3ty97J+mxV9pntiJjhsfRQ7se/x1qHsL/0lJo+2bFHUeSpHI5Pu83amUa0JsEWo1CriGLfzv+hlExoUk8g8PNLFq0b07tz77BplFjEq5GUz0tl3eHWxHtfSfmCkxshufRLMCIV53BJKV54W17nMm6Zmg0uZydHUhsbCwadw25mly87b3JvJ2JlZUVSmYqJhO4uzth4yp7xxYmYyipMjyIGKpCV997Et28fOXOE5N5mJC9rfnNyTWZezzl2Jg45Xebb7sk8EPHa1yqdYXsaubueFl2VgiDuReQMa/3XauklgAYNAauuxVYpQ7wSkrDqsBwJBtdDRpX+5Ox1/34IPavOOe6k6FTOOF4vUiFFEC2RsM+57oANMzWYG/UkKso9PJszKserdhvbx421z0jk19vXGaKfzwrR7QizgNyNebHeX8H3JR0TEJhn1U7evl4McvDvFynu1HgltczJSmvO2E1kd9TRcHRyjy/1p7T7fjsxn+4mlpgWdF6JYyHTo4rfnseU17PGICLrt3Q68xlEQqk5eZNGmfIKjWPwqpuu03V9e2N27Q6dIZ/J5rndvO6vB8AI6A/sx1Sr1Ze4SRVeHg4mzdvJiYmhpMnTzJ06FAAtTv7w+bm5qau+nr48OFKKYMkSZIkPfoKRMei6Lb8Tk/WxjujGxQBHnrHIjk9cT0kHhAZQ0lVhRy+94ClXLut/mzEXDni4twMncNvpBusiLa14rxvGllWWWS5QO2M2vzy9GWMqb7UOXkdq8xctLnmu3jr9NZYp7lhK2z43e0UQhHEeORw3CWBN29A99zruNXP4rbBjiThiIujwJswDoi/UudWHzSKgotxD4ncItM6Uy1X68TW1MyqyZ46ezAIA8eyroAO0ox++GfZ8LtjJNftMrlOJuRN5ZSQ2wQbzMtJttG0YcVfrnLDJo1sTS7dUrwZlHSaQ7auvF8jB5HXA6We3sDoZIUDDgb+QMtta/NXjlFz56vHy+YPYrI7YcIGg7DnanIt1NG8Pf5mrphKuw63/wRbJ9j/MYjS5wQyXDMPBRSKEYSGO3WvRvS5eb3T7rKDYH6nGvml+fg4m26ueLQRRmpl3+CVG3v43PtVDBobPvj9FAev6Pj8WTcaOcieTJUtNDSUyMhItFotbdq0ISwsjOrVq1daedzd3Zk9e3alHV+SpAKevA79kvRIKn5OKfVV86YCr+Wnq5PQiKYXb+NzK4UbLtWo4+dGPDfy0svP9/2SMZRUFchKqQfMubqH+rNRY+4RpNE3oJPHS1zyv81yJQSD1Z0V8JzMMxzhWs2JF3u9yrkj+ziWE0G8ayrd7XoQl56MnbUtWpMWvUZPtA7Q6fHLvoFXVja/i+Y0sYmilnJNva1nmqqhyfui0GRXA4c/1eN5Znjil+aHndBS01CHK9YxJOvME8PZ5NrRJrk1junVybDO4Kr9VXSKDUYh8Erzx8hBrDDRK2Urb2Sd539OjvytuhtGq4ssq+bC565OwG0Ankrx5t9J5hpyrWLPbgd7cvPKZIW5K6dQoKZNFKNr/oX9+hmcT34aoSnwK2nnDM3733l+8t/m/0XpcwJdSzSvvod1ct449jsTvmXr8/Ivo2JLevzlfx6GZ5xkwYl3oHcoPqkZxOLKv7zMLUhrL99gceM6JWciVbjWrVtz4sSJyi6GJEmSJEn3KH/eKIuKqgJzSjln2lAj1YpUXUmTMMsxCfdCxlBSVSErpR6wmnXd1Z9zMA+10zrosHay52a9qzQ+0hmDLovz1Y7iklUDTd6CqYasLDKiMrnpYU9Y9STSrDMYGOdAHMlk5+ZQI6sG8Q7xgPnmbpXtyx8IfhNP46KYqMtZFMCEQmq2K2D+o1xnY7lq3V9uvoinwQNbgwsx8Rlc8Y1RX3M02JNFLrWyalHHUBOvJGd0mbVIMSrU7ulL6rE9VFP+pJb2PAC6vOGJOVbJnLS27G3S8HYbso1ZWCkxPJOeyz8z7NlpbEa2mz1+KbakEgUo5Jq02Ch6rLLNLSZCsVx9wYIm74usjAqlRNKwAnwSBVRXQLnzBXjoyqvctnfjeaPprsau5n9Vyvacx5ApbzinrhpDajbh07gE0vN+hWrblbD0pCRJklS5KnDeP0mS7l7hXk2KUjSSVtSejXdSF04lOz9KklSYrJR6wAreaHPzKqViHe1wquFEqpWGznGvALk8o7xKgnMcN7z2ggNk3k5hgfdaLtrdmZMqO9sFG+0NDIqeNjfbUDelPhqjDlvFyC5hnhupenU3Enzac/3UP7HCyGW8ULLNPZGMwKT+b7LwyA0SE5NpnFWb5zJboaAhShG0vPo8PqIeacZksnV/4p7jjl4x/wEf4PYUNjdzSemgw9vfg3pP+ZDrPA7jgYVY6ZMBuO70GrCXdMWaq9bmip+OVwLxNjjiZnIm0TCfq5nR/Gh3BpO9I37ZWbxw/SXCNL+QirmCJ9dkCxT46rJ1Kvni5n/5mcpYPa1IpVWBr0Nh5FxWD5reuoCcHrFqU8MiU17PRBt7JvjWZIKrgf/7YTPbavZAZyWn1ZMkSZIkSSpLflxV/AJ5ea8WnGYqv6dUKU266muyokqSnmiyUqoCGfNuxn8eX0NGmjNax4EYMjYgTOZKHa0Q1PFrwDHOs9fjdwAUodDapiPWF924meyOi+KKUWNegc/TZEfNDgbOxB1Vj+FTpw5Nnn+e77I03Ii+iWOuho65NQHIslJo79Wer1/ZxrfLI7h0NonvMAEmGrT1QHP8Bl63G6LPTiXVzoBjLRts023xMlVDk5wDWHH8+89Iyr3OyMUrqfbcWHhuLMQdhPgTiD89wbCXmzZ+JCoJKOSiy3ahJk60MNbBJIxcyYpBsTN/02SZ0ojOOInezjzhulDgXFZ3nOxSUOycIAtE9cYlX1ClfD2ljCYjVpi/FzW2JjDdqXjQWd0iW3iTmVlS9+ESDp33v2zdeXyIzCTzDzlp5v9tzENlUTRo8n6HTPL9lCRJesTJG7UkPYoUxQpRqFIpN1OtibqT7q6CZ6XAT7K3pCQ9KWSlVAVS8nphaIQCIgej/oxaIQXgclshI8tE3rRSAPhn1WbDiDWk3MwiIzmHw9tjMBkFVtYaOr7sh3fDagSmPkNubi6KouDi4sKh//0H+yux6K6lYqv34GbDapy7nIW2thNN8vJt92I9bGytMRlNaHXWNH/Om+jjNzBk52LI+A1tUgTGBGuCfN9GU6A7bo4pC5Mxl8Qrl6jm6W3eWLcL1O2C6/WfwQBJ4iaKlbmHlf2lM2Rmp3PK2ZUjqbdJdxJohLmiKSMzmxNJu6F6/qobChezOnBF14MGbTzg1ysIq1KGU6mzjZdeKZWTm8GdXCy/0Gw1yWQbvcnMurtKqXxCBsePj9j94NgJxZA3yb+9m/l/xUodNmuUtYySJEmSJEllywuZ8qNwjebO3wvWBlsgh+Tj4AvkGkyY8uL28lQuCVkBJUlPNFkp9YAJ050KExudDkinbovWpB46g5unkZtx4OzhiYKJlBvX8YvS8VzTp6mW60wtfXWapvigKAquHva4etjz2oy2RY7h7Oys/px0NZ4jX/9PfZ5BJDnxgqys6vhYt1S31/JzIeivLurz7AzzkCYhQJjSAXD0qMHxxF34VGuEtdaWa4nRpBnMvU2Men2RcjTyrQ9/gN46Oy8vBY3RXNmTlXobgHZPvcDJy9cA0BsM2ABWinlooblbb6HVOkqrIyjnnFIi/3Vh/pJTCsxLoVHM552be3fDtuRX5eNHGM2/s4prHegdCrXyPg+KBiu1p5SslJIkSXo0yW9eSXoU5bpYcy3hNjY2dgjzLBwoRsvGXqPhTjNukeF7xcZe5fu8y7uCJFVNslLqQStwozXlrRJn7+hCKpCdfhUAB2dnatb3J2LXTlJTLjMyOpDqNeuSciOBWP0Zdq9dwbkDewFQNBpadg/Cyb0GjTo9g87ZGUXRqBUtmSnmnlcOrtVQrNxJvxVN6vUDACRfuQG0L1JEY66BnIzb5sooRQfCXFHj374Tx7/dxjUlDif3GtxIiTH3ThKCXIOhSD4t29TjpdS+HLp2kFsZORjSWtF36iSc0xLI1evRWFtTv20H4jdtIj7hGg19G+D27Q7O1mxEFub6J0WYQAj1fEqtIyjn8L1iCWE+l7zxWuIuKyPU8t39kaVKor5XNRpD+653XtBYocl7VVZKSZIkSZIklZ+dizXKv6Zy2f9FxNPmuWALVxaJAhuVUsJ2WckkSRLISqkHruDfuMa8Dq4OjuaeTWmJNwHQOTvT7c1gOvUfjMlkQmtnR2ZqKtsmhmKttcX46ymLHlfHv90GwK8b1gDgXKMmg0IWcuHoIa5fjDZvq+6Bq/eLRB78CkjDlJuEITtRzSMrPY248ONkZ6Tzy/o16nZF4wKKeeU8JzfzyoE5mZnY2Jnn4dE5OZOVmoLRULSnFMDCgAUANJ32JTlW9ljr7Gna+gWLNLY688Trtap7UC01k3P530CKcmecuSb/+pVSSVDeic5L+YYTeWvWmu6hXkt6PBX5dVAUrPIqjI33UsEpSZIkSZL0pCkUoisFYyhRaORDgeSKOipCFPOqJElS0VU6pftWsKeU+WbdpFNXmj3fHf8OnWnU+Tk69h8MgL2LK47V3NDq7LHWmmdBytXnmCukFIVXZobQrGs36rW2HMKXevM6n41/k73/+qfao8qhmhvOHrXROvXHyvYZ8/GNWeizs4iPPMd/Zk7m+xWLLSqkAIQpBURiXh7uefvlknrzBmCulDKX605PqctnTrFr9TJ+XPUJP69bxa34y3e+mKxsilyRwr2M8seW51UP5W0rcvmKKu/wPYufLaskRF5lhLjLGa7Vic7vai+pMpX4XilWamWoSdZOFjFy5EgUxTzsVavV0qBBA+bNm0dubu595bt3714UReH27dsPpqDlEBsby5AhQ/Dy8sLOzg4fHx/69evH+fPnLdLt3LmTrl274uTkhL29Pe3atWPDhg0WaeLi4lAUhYiIiHIff86cOTRu3BgHBweqVatG9+7dOXLkiEWeo0aNol69euh0OurXr09ISAj6YoZLF7Zp0yZatWqFvb09np6evPnmm9y6davcZfvwww9RFIXJkydbbI+JieGVV16hRo0aODs7M3DgQK5fv26RZsGCBXTu3Bl7e3tcXV2LzT//d6jg47///a/6+rZt2+jRo4d6nE6dOrFr164yy71t2zZ69uyJu7v7Xb8f0mNK9miVpEeE5WfRHEsV/nzeibvV1ffUZfvy/hMFG5cLx2GP9+ddxlAyhpIx1L2RlVIP3J2bqTHvpuviXoOgtybTd8q7vDRpOp4NGhXZy9bBAWutrfq8Wi1P/Fq3I+j/3ubVmXOYvOlr/u+fX+DfobPFfta2tjwV+BJdBv2Fxh098WlcDTcv84TO2WlXWT5iAP+dPY3Um+YPhM7JGb827en/3t/wqFffXOK8nkeObu4069oNh2puOFRzo06Lp6jp1wCA3AI9pX5Zv4Y/fv2JM3t/5vefvuPwl1+oX0Ea65IrpdTnBRbqUITIG1mXP3yvHD2lRBk9pSy+0JQC/0L+l5+si6j6Spw0U9FghZxTqjRBQUEkJCRw4cIFpk6dypw5c/j4448ru1iq8gQcBoOBHj16kJKSwrZt24iMjGTLli20aNHCIqhbvnw5/fr1o0uXLhw5coRTp04xePBggoODeeedd+6rnA0bNmTFihWcPn2aAwcOULduXXr27MnNm+Zes+fPn8dkMrFmzRrOnDnD0qVLWb16Ne+++26p+R48eJDhw4czatQozpw5w5dffsnRo0cZM2ZMucp17Ngx1qxZQ8uWLS22Z2Rk0LNnTxRF4ZdffuHgwYPo9Xr69OljUYGr1+sZMGAAb731VqnHWb9+PQkJCerj5ZdfVl/bv38/PXr04Pvvv+fEiRMEBATQp08fwsPDS80zIyODZ555ho8++qhc5ypJkiQ9WPlhfZG5oriz0p5FJG4sNAXIleN3fs5IzEtfYDGj01stkj9uiwzJGErGUDKGunty+N6DVuCP3Pzhe1ZK2Su92Whtee39+VyLjgKgbqvWFq9bWdugc7Kh02tDsLK2wWgwYO/iQte/jMLGzk5N129yazJT6vHZuC8sKpJca3pSo249Xpo0A41V/mTkKRzd/iUmk4lqnl7Uqt8A70ZvWxz353/+A4Aze3dzNfIsjbt0JT3ZPPm5b8vW/HkqnD//+B3F1RcAjVXRXym1winvf406fC9/TqkC9U0PZE6p0kao588pVUYWJeQo6zAeI/ldyQv/Omis0KgTncvayeLY2tpSq1YtAN566y2+/vprduzYQXBwMJMmTeLbb78lJyeHrl27smzZMvz9/QH4888/GT9+PAcOHECv11O3bl0+/vhjmjZtSkBAAADVqlUDYMSIEWzYsIG0tDSCg4PZvn07zs7OTJ8+nW+++YannnqKTz75BIC6desyatQoLly4wPbt23n11VfZsGEDBw4cYNasWRw/fpzq1avzyiuvsHDhQhwcHDhz5gwxMTHs2bMHX1/z/cnX15cuXbqo53n58mWmTp3K5MmT+fvf/65unzp1KlqtlokTJzJgwAA6dOhwT9dxyJAhFs+XLFnCunXrOHXqFN26dSMoKIigoCD1dT8/PyIjI1m1ahWhoaEl5nv48GHq1q3LxIkTAahXrx5jx44tV5CRnp7O0KFD+eyzz5g/f77FawcPHiQuLo7w8HB1QY2NGzdSrVo1fvnlF7p37w7A3LlzAYq0hBbm6uqq/h4Vlv/e5vv73//ON998w7fffkvr1q2L3Qdg2LBhgLmFVKriity8JUl6lCh5f+ekmbRkWrliYwPeOUV7SmnKmnYjLzfVlWPQuM0DLOnDJWMoGUPJGOruyZ5SFciUXymlKbtSCsC7URPavNiPNi/2w92nTrFpatSpy4sTp9F36rt0Hz3OokIqn72LK2NWfs7QBUsYumAJ/7duM6OWfUbfKe+qFVIATZ55nhGhK3ljySpenvYBVsX0cnJyrw5AcsJVLp48xvfLQ8lON8831ebFlwHITktVKwCKXU+jUC+o/DjT3CpyZ1BfiRncycj8fxndnEQxP+Uz3WdPKVkn9fgQRXrJ5SnQU+phzSklhCBTn1spj7ud1L84Op0OvV7PyJH/z955x0dRrY/7mW3pCSS0JGBCIFQBlQ4CBpCmwFVEFC5FAYkXpIhUrxQvwlcFlHZB/Clw70UsqIiIBVGQJkoTFAlFkBA6gRDSts3vj9mZ3c1uNhtMICHn+XyS3Zk558yZmZ0577znLUPYs2cP69evZ9euXciyTI8ePbA4EiGMHDmSvLw8fvjhBw4dOsSrr75KaGgoNWrU4OOPPwYgJSWFc+fOsWDBAgCef/55duzYwfr169m0aRPbtm1j3759Hn2YO3cuTZo0Yf/+/bz00kucOHGCbt260adPHw4ePMgHH3zA9u3bGTVqFACVK1dGp9Oxdu1abDbvAvHatWuxWCxeZ/NGjBhBaGgoa9as+cvnD5SZseXLlxMREUGTJk0KLJeRkUFkZKTPtlq3bk1qaiobN25ElmUuXLjA2rVr6dGjR6H9GDlyJA899JAmHLmSl5eHJEkEBDitdgMDA9HpdGzfvr3Qtr3tq1KlSrRo0YJ3333X52/RbreTmZlZ6LELBAKB4DYjO7+csEXxsbkJH1buzurqT5JiUt8lXOyo8j/7Y5wKJykkKl+T3pXRsiyTY7GRY7GTY7GTbbaVGTlKyFB/HSFD3fkylLCUKm68/F78sZQqboIjKhAcUeEvt3PfQ72pUC2GvOwbbFq+WFtvDAwirtE99Hx+ChkXL/D+HhOZeYUopVRLKYceQHZYSsnITkWVrwe/nzGl3NVSLsouyblNWDyVB/IpPFUkPTqHC+itct/LsdhoMK1wX++S4PDLXQk23dyjXpZlNm/ezNdff0337t1Zt24dO3bsoE0bxY149erV1KhRg3Xr1tG3b19Onz5Nnz59aNSoEaDMWqmoA2WVKlU0H/rMzExWrVrFe++9R6dOnQDFXDkmJsajLx07dmT8+PHa8rBhwxgwYIDmz5+YmMjChQvp0KEDS5cuJTY2loULFzJx4kRmzpxJs2bNSEpKYsCAAVq/jh49SkREBNHR0R77M5lMJCQkcPTo0Zs6dyobNmzgiSeeIDs7m+joaDZt2kSlSpW8lj1+/DiLFi3yOcMH0LZtW1avXk2/fv3Izc3FarXSs2dPlixZ4rPe+++/z759+/j555+9bm/VqhUhISFMmjSJ2bNnI8sykydPxmazce7cOf8O2MHLL79Mx44dCQ4O5ptvvuEf//gHN27c0GYm8zN37lxu3LjB448/XqT9CAQCgeDWoElMWqwomatykFuZ6zqnvYNHTCkVlzL+WkTmWu10WnrQ/84WIzcrRwkZSshQQobyH2EpVex42uncDqVUcWE0BVC39f007tSN/q/M4/4nB3P/k4PpM2UmOr2eOi3b0rznowSGKBn2vL3jOy2lHMsuSgIJ2UVhVJj7nn8xpdxUVrK7tYxqanyzBjJlza+9POPLUkrn+KHZhHbSKxs2bCA0NJTAwEC6d+9Ov379GDJkCAaDwc0MOyoqirp16/L7778DMHr0aGbNmkXbtm2ZPn06Bw/6FiD/+OMPLBYLLVq00NZFRERQt65n3L1mzdwTPvzyyy+sXLmS0NBQ7a9r167Y7XZOnjwJKLNM58+fZ/Xq1bRu3ZqPPvqIhg0bsmnTJr/PhcmRhMIXq1evduvHtm3btG1JSUkcOHCAnTt30q1bNx5//HEuXrzo0UZaWhrdunWjb9++bnENXNtNTk4G4PDhw4wZM4Zp06axd+9evvrqK06dOqVt37Ztm1u91atXk5qaypgxY1i9ejWBXixsQZkZ/eijj/j8888JDQ0lIiKCa9eucd9996HTFU1ceOmll2jbti333nsvkyZNYuLEiQXG1HjvvfeYOXMmH374IVWqVCn0nAoEAoHg1iO5WEiBIsOrqwLseY5CzhKaUkorf5P7vematwchQzkRMpSQofxFWEoVM97ecf113yvtRNeu6zVIO7gOGJ4nQL0R1aFLs4qSJMwZ/yNPjkdirGOlr0Dn/llKSS7KCI+S8s2574nQFmUPzU7KI6bUrQ90HmTUc/jlrrdkX972XVSSkpJYunQpJpOJmJgYDAYD69evL7TesGHD6Nq1K1988QXffPMNc+bMYd68eTz33HM303U3QkJC3JZv3LjBiBEjvM4a3XWX0/05LCyMnj170rNnT2bNmkXXrl2ZNWsWDz74IImJiWRkZHD27FmPmUWz2cyJEyfo2rXw69arVy83QTM2Ntat37Vr16Z27dq0atWKxMRE3nnnHaZMmaKVOXv2LElJSbRp04bly5e7te2aGUWNUTBnzhzatm3LhAkTAGjcuDEhISG0a9eOWbNm0axZM7d6VatWZfPmzVy8eJH77rtPW2+z2fjhhx9YvHgxeXl56PV6unTpwokTJ7h8+TIGg0GLaeA6Y3sztGzZkn/961/k5eW5mba///77DBs2jI8++sjNHN7XORWUF8TAKxCUSmSw6XRYDc5ZZTVWp7ckM75fx6V8n94JNOjYMupedNmZ2OwQGRmKsULVInf9ZiiqHCVkKCFDCRmq6AilVHHj5SW3LFtK+Yvkw9LJmX1P+TTIqpIKkPOw5p3EnJtdYH1nQ45hrZCAie7WTPkGOTX2VZEDnQvh+E5CFZDstygNoyRJN+1CdztQhQBX6tevj9VqZffu3Zrp+ZUrV0hJSaFBgwZauRo1apCcnExycjJTpkzh7bff5rnnntNmy1xjEyQkJGA0Gvn55581ISgjI4OjR4/Svn17n3287777OHz4sEc/fSFJEvXq1WPnzp0APPbYY0yaNIl58+Yxb948t7LLli0jOzubQYMGFdpuWFgYYWFhfvXBbreTl5enLaelpZGUlETTpk1ZsWKFx2yat+PLzs7GYHD/Pekd8QJlWSYoKMijXqdOnTh06JDbuqeeeop69eoxadIkrb6Kah7/3XffcfHiRXr16uXX8RXEgQMHqFixopswtWbNGp5++mnef/99HnroIbfyRTmnAoFAILh1XLPd4ItH/obVaER2JNbTaRPGztAJ2rf8caJcZHBvGfy8IUkSQQY9OqMOmx2CTXqMpVSuEjKUkKGEDFV0SufdXIaxu9rmOOxcy4VSyvHpM6aUY6tOLSVJ5J8/KZ6YUt5QZnPkvxjoXFD28KZOVIUn4b7nP4mJifTu3Zvhw4fz1ltvERYWxuTJk4mNjaV3794AjB07lu7du1OnTh2uXr3K999/T/369QEla4skSWzYsIEePXoQFBREWFgYgwcPZsKECURGRlKlShWmT5+OTqdzUWZ7Z9KkSbRq1YpRo0YxbNgwQkJCOHz4MJs2bWLx4sUcOHCA6dOnM3DgQBo0aIDJZGLr1q28++67TJo0CVBmA1977TVeeOEFAgMDGThwIEajkc8++4ypU6cya9Ys7r77brf9pqSkePSlYcOGGI3uiSKysrJ45ZVX6NWrF9HR0Vy+fJklS5aQlpZG3759AUWYeuCBB4iLi2Pu3LlammOgwIwrAD179mT48OEsXbqUrl27cu7cOcaOHUuLFi28xpIARUDJfywhISFERUW5rV+xYgX169encuXK7Nq1izFjxjBu3Dg3d4DTp0+Tnp7O6dOnsdls2oxi7dq1CQ0N5fPPP+fChQu0atWKwMBANm3axOzZs92Cob733nsMHjyYBQsW0LJlS86fPw8oAWEjIiIKPHZ1v2fPngWc16NatWo+z5lAIBAI/hqqxJRuzcDqGPNkzVJKVZY4/fecMaXsQP53ITnf552NkKEUhAwlZKiCEEqp4sbLs1Un3fmhu/LHjfK6zfHp+pyUnA7nShmfO/EvplS+SvmW7QX2059WhA6j7ODrUunURI7lRBgqLlasWMGYMWN4+OGHMZvNtG/fno0bN2rChM1mY+TIkZw5c4bw8HC6devGG2+8ASimwzNnzmTy5Mk89dRTDBo0iJUrVzJ//nySk5N5+OGHtXTGqampBfrsqzRu3JitW7fy4osv0q5dO2RZplatWvTr1w+A6tWrEx8fz8yZMzl16hSSJGnL48aN09oZN24cCQkJzJs3jwULFpCVlQUoM1BPPPGEx369rUtNTaV69epu6/R6PUeOHGHVqlVcvnyZqKgomjdvzrZt22jYsCEAmzZt4vjx4xw/ftyjvi8F/ZAhQ8jMzGTx4sWMHz+eChUq0LFjR7/SGRdGSkoKU6ZMIT09nfj4eF588UW38wUwbdo0Vq1apS2r6Ye///57HnjgAYxGI0uWLGHcuHHIskzt2rWZP3++W5yH5cuXY7VaGTlyJCNHjtTWq2muC2L9+vU89dRT2rJ6PaZPn86MGTP+yqELSiti4BUIShXqHRl+PRtD7kUIr4pO53ildEzEy7jaTCnoJTtNI89QSXedc4S7t1lA1r07CSFDCRkKhAxVEJJcHPnCyxjXr18nIiKCjIwMzb+0uDh16jgfTxoLwFctzxGcUJ3P/vZZse6jNNJx3hb+uJTFB8+0omVClNu2Tz75hIMHD9KualViFizkYNcWnDl/BYDQHCs3ggy0fGwOv2y+RIO20SQNrO99J2n74O0kiKgB434tsC8vjhlC5PnLRGTnYo0dj40AzFfmYtfpqFThbm5IXahX/TSd/jnE7+M7mpVL+5+OUNGg5/d2jfyuJ7h9TPt0IcsrtOe5kExebNHObdsbq8bx6l2D+XuUibmNGxTQws2Tm5vLyZMnqVmzZqGCgcCdrKwsYmNjmTdvHkOHDr3l+09PT6dTp06Eh4fz5ZdfEhwcfMv7ILj1+LpnS1JmKIvcsvPx4WA4vA66vw4tnym5/QgEAr/4adpOYsw2jlS5xPbrBwnPyOa7vEr8Gt6QirKdq5KOR1N/Yfje/2K+qz6nzcepfd7CZ03jMFoNdOQE99ZXLDTm/a7IZXEx3biQ04Aqxl+ZEFILCQu/t/iOk/WfRR+lx6KzEBscS/a1bPR6Pbrs69jsEBUVhrGCsI7Nj5ChBLeD4pCh7nwTnluNi45v3D2TWPPQmtvYmVuHf+57jmVXX/J8MyN+WUoVGlPK9Yt7BjZZ/ouWUkWrJriN5J+hc8UZU0pc0dvN/v37WbNmDSdOnGDfvn0MGDAAQDNnv9VERkby7bff0qlTJ3bt2nVb+iAQCBAZRgSC0oYafcNF0Fa/6vJJyN4spYwGRX7PkJ3uRZJDphfS2M0hZCjBnYJw3yt2nI/VGuHxBBvLh4a4KO57+aJIKWXUJZ8+V0WPKeWZBUTZwc3GlBKDZtnBWwYYFVV4sokrWiqYO3cuKSkpmEwmmjZtyrZt27QgkbeDqKgopk2bdtv2LxAIBAJBaUVTRckysmPCWIcq62uFXGJKOT4dm67Ild1ac8dTdpOFrOYTIUMJ7gSEUqqYcVOqlINYUipOpZLnwOFUWKmB3yUkWdaUVI5CyqcvyxV/Y0r50mxp2feKNgMrJmzLIg6Fp5eLp1lKlT/v5VLHvffey969e293NwQCQalFPKcFgtKBci9mW3MAJbmTZiml5BPSsunJkuSilMoX1Nztlhb3919ByFCCO4XyozW5RbgqZcpDgHMV9b3fl/uehuwcoBqeucA9f17Qavp23yuapZR3PZLqvldEpZTjU8zWlB1kzXXT85rpHesuZ1zk2NGdIpCuQCAQCAQCgR9Y7Rbliyw7s+85trmG0HCG7VAnCdVNThncKaOJ2V+BoDxTfrQmtwrXl9ty9HyV8MN9T1USyCA7bHlNdhsx124g38h01PfDUqrQmFJu5mr5tipKKRFKqDzheSPqHa6g38tRtEsLZvXv+291pwQCgUDgk3IkRAkEZQHV0Mnl1lS9HvR2D7WUdgv7vJPFpKBAIEAopUoUSfcXBCq7XfkrIw9r5+yHD/c9l/hR2QHKNoteVTQ5LJh8GUFpMaUKOyfO867Nxqhue6pFlr2ollIFK90EpRNfc2+dGrShsfksodZsAI7dyLpl/RIIBAKBQCAo+9g1OdsgK/K8m8LK8amu8mYp5VtaEwgE5QWhlCqNfPIMvFxR+XujIWRdvt098o45C97tBvPqweUUwLelVOqNG/xerx5mScKmUwpeDwrALlGo9ZOjIeWzsJhSvqdkAGEpVR7QLrGX30NC08f4pmsPhmYqmUFs4vcgEAgEpRMxGyQQlC4c96TObtEUTHnB1wGX8K+4KqjcY0p55ukTCATlHaGUKmbsLsqVm44pdeQL5/fraZDmZwA7mxX+2KLUP/YtWHJvbv/+cuZnOL0LMs8h2cyA96HFZDIBkJaVxcF7mvBnaBB2h1Lqt+qV2VMzWlNK+Xbf8y+mlM+4T466cuYleL02nPjeZ1varrW2BXcSahY+623uh0AgEAgEAkFZQHb7rkjI2WFX3Le5xJTSObRTzhCzLjGlvArWQtoWCMobIvteacTueEWOqAEZqZCX6V+93cvgmxedy61HQddXbq4Pudfh+LeKEkdnAL0R9Cao3hyCKjjLOFBf7uXc62CPdLraAS1atECWZU7+8gvnsrKwSRIpd92g0R8RBJp13AgwOZRSet/6Jj9jSrki5zOTyZEClSbQQdYlOPYN1EoqQnuCsoLTILxg0zmD4wcnLKUEAoGglCHS3goEpRSn0KTGlJIku9s2WUnFp2yz20FX0ASvS3mBQFBuEZZSxYwdp1bF18uw70YcSqmgisqn2c94N1eOK596xTKJa3/6Vy87HT4bBWuehM/HKvv7djqsfQo+HgofDYb3+8Pqx5Q/lTyHUiriLudA89FT8O9WYLNoxSIiIujSpQt1KlQAlEHpt4TrbGt6TakjATb3wUzpfyrsXw37/we/feps08/sewo6bZ8A2QQpTYTFOtryTxshZOOyhz8CjsFxv/qv5rzzGTJkCJIkIUkSJpOJ2rVr8/LLL2O1/jV7si1btiBJEteuXSuejvrByZMn6d+/PzExMQQGBlK9enV69+7NkSNH3Mpt2LCBDh06EBYWRnBwMM2bN2flypVuZU6dOoUkSRw4cMDv/c+YMYN69eoREhJCxYoV6dy5M7t373Zrc+jQodSsWZOgoCBq1arF9OnTMZvNhba9evVqmjRpQnBwMNHR0Tz99NNcuXKl0HppaWn8/e9/JyoqiqCgIBo1asSePXu07a7XX/3r1q2bWxvx8fEeZf7v//5P256SkkJSUhJVq1YlMDCQhIQE/vnPf2KxWNzauXbtGiNHjiQ6OpqAgADq1KnDxo0bffb/k08+oUuXLkRFRRX5eggEAoGgeNGSGEn5ZXPZZXLQex11yXupsomQoYQMJWSom0NYSpUgN/141ZRSFZTPkz8olko1O0BEbMH1VCVRpTpw4VewFn5TAoq73/7/OpcTHoCMNGdbwZXAnAnnD8Hlo3ApBX6YCxd/V8rENEG6GghmAEkpc+00RNUqYIfKmbE5BjAZCSk7HajqriN6vz+cP+hcvv955VO2wZb/gx0LFAVVcCUY+ClUruPWvlcs2aAHGR+ugHY7fD8LrpxQlhO7INV7zNFXQVnD132oue+JC+tGt27dWLFiBXl5eWzcuJGRI0diNBqZMmXK7e4aAGazWXMLLgiLxcKDDz5I3bp1+eSTT4iOjubMmTN8+eWXbkLdokWLGDt2LJMmTWLp0qWYTCY+++wzkpOT+fXXX5k7d+5N97NOnTosXryYhIQEcnJyeOONN+jSpQvHjx+ncuXKHDlyBLvdzltvvUXt2rX59ddfGT58OFlZWT73u2PHDgYNGsQbb7xBz549SUtLIzk5meHDh/PJJ58UWO/q1au0bduWpKQkvvzySypXrsyxY8eoWLGiWzn1+qsEBAR4tPXyyy8zfPhwbTksLEz7bjQaGTRoEPfddx8VKlTgl19+Yfjw4djtdmbPng0o1/DBBx+kSpUqrF27ltjYWP78808qOCYvCiIrK4v777+fxx9/3G3/AoFAIChhvMhK+ZVSzjAcEmpOIWegc4dVlFs7d54AJmQoIUMJGaroCKVUMWOzu1hK5Y8pdfk4/PcRyL6iuKK1GQUPTHYv41Kf4ErK569rlb/qLWDYJi87tSqKrNwMR70ox/q8AjppBUcMKIxBnu6B5htgzVG+d5gEjR6DzPMwr65SduciOPShs3xkAlLlepCWgRxaFXKAn5ZDtUZw92NgDFRPiPKhppRVgyFKQMpGMDyFnHEWaKRsyEhVPkOrwY3zirsdKIqkn99RFEwA18/Aya0uSik536cT2WEZY7dawQj8+hGc3glV74be/wadDs7/AtvmOSsd+QISH/F+LgWlFk0s8qGVMjhK2eQ7Y4auuAgICKBatWoAPPvss3z66aesX7+e5ORkxowZw+eff05eXh4dOnRg4cKFJCYmAvDnn38yatQotm/fjtlsJj4+ntdff50GDRqQlKS4yaqD9+DBg1m5ciWZmZkkJyezbt06wsPDmThxIp999hn33HMPb775JqDMKg0dOpRjx46xbt06Hn30UVauXMn27duZMmUKe/bsoVKlSjzyyCPMmTOHkJAQfvvtN06cOMHmzZuJi4sDIC4ujrZt22rHmZqayvjx4xk7dqw20AOMHz8ek8nE6NGj6du3Ly1btryp89i/f3+35fnz5/POO+9w8OBBOnXqRLdu3dxm0BISEkhJSWHp0qU+Bapdu3YRHx/P6NGjAahZsyYjRozg1Vdf9dmfV199lRo1argJSzVr1vQo53r9CyIsLKzAMgkJCSQkJGjLcXFxbNmyhW3btmnr3n33XdLT09m5cydGoxFQrnNhDBw4EFBmSAXlhTvvpVUgKMvILnJ2fvc9dYvFbANV/Pdw2PO0lLqT7nIhQwkZSshQRUe47xU3LmndNJ2UOVuJz7RrEWScBkuWYnn0yxq4egpW9IB/t4b/PqoorFRaJkOD3lCjlbJ8/azn/s7/Cq/VhFeqKvsACHEos7xZSl0+Bq/XgtnRyt+ydp7ugZYcsDoUWgbHiBIQrnzKdjh3QPl+zwD421Jo94L24m9XFWm7l8FnIxVlmgdKYbs6YyIBquVSToazmNqvuo4Hjs3leLIuKp81Ozj77MB7sPR8A6JqApmdrliA/bIGjnyuLOfdULaFVlX6ardA3jVH216aFpRZ9KpS6jb3o7QTFBSE2WxmyJAh7Nmzh/Xr17Nr1y5kWaZHjx6aSfHIkSPJy8vjhx9+4NChQ7z66quEhoZSo0YNPv74Y0AxSz537hwLFiwA4Pnnn2fHjh2sX7+eTZs2sW3bNvbt2+fRh7lz59KkSRP279/PSy+9xIkTJ+jWrRt9+vTh4MGDfPDBB2zfvp1Ro0YBULlyZXQ6HWvXrsVm836F165di8Vi4YUXXvDYNmLECEJDQ1mzZk2xnEOz2czy5cuJiIigSZMmBZbLyMggMjLSZ1utW7cmNTWVjRs3IssyFy5cYO3atfTo0cNnvfXr19OsWTP69u1LlSpVuPfee3n77bc9ym3ZsoUqVapQt25dnn32Wa8m7f/3f/9HVFQU9957L6+//rpP14Tjx4/z1Vdf0aFDB7e+tG7dmpEjR1K1alXuvvtuZs+eXeC1EggEAkHJYLfLjFy9j6S5W0iau4UXPz3kZ03JqWByKKVUdZPNImvZ99TJaI9kfHgqrO5EhAz11xEy1J0vQwlLqVvBF+Phl/ecy3V7KJZBWZfhlw/gzx3K+ouHlex5KlUbwuP/gQu/wdI27pZP188qbfyxxem2B0ocqhqt4NeP3ZU4Kqm7Ifeac/nCIYhu7F7Gmqv8gVMpZQwCnVFR0Jx3DFYNH4XEzsp3h1ZKbtIf0iXlmK6edFo3gRYYXXLEhtKUUkgQlQgZIOdmwh9blYDqav/V2FquN1r0vVCnK9y4oFhJqf11w5v1i7JPTXcYFAnhMYq744eDlHhc3eYo28KqKRZo2VcUxWHTlYrroKDUYLVbSc9NB8CkM1EhsIJHGV82UHqH5VyJZ9+TZadl363GGHzTQdFkWWbz5s18/fXXdO/enXXr1rFjxw7atGkDKD75NWrUYN26dfTt25fTp0/Tp08fGjVSrB1dZ3pUIaFKlSqaeXFmZiarVq3ivffeo1OnTgCsWLGCmJgYj7507NiR8ePHa8vDhg1jwIABjB07FoDExEQWLlxIhw4dWLp0KbGxsSxcuJCJEycyc+ZMmjVrRlJSEgMGDND6dfToUSIiIoiOjvbYn8lkIiEhgaNHj97UuVPZsGEDTzzxBNnZ2URHR7Np0yYqVarktezx48dZtGhRoebubdu2ZfXq1fTr14/c3FysVis9e/ZkyZIlPuv98ccfLF26lOeff56pU6fy888/M3r0aEwmE4MHDwYUs/NHH32UmjVrcuLECaZOnUr37t3ZtWsXer0yeTB69Gjuu+8+IiMj2blzJ1OmTOHcuXPMnz/fbX9t2rRh37595OXl8cwzz/Dyyy+79eW7775jwIABbNy4kePHj/OPf/wDi8XC9OnTCz2vgvKAsGAVCG4Ff6Zn88Whc9ryyctZTO5ej7BAo9fyrlmuPWJKOd4s0wIkD6WUs463pULud1WOsuQo+i+L3v+Yu3+Vm5SjhAwlZCghQ/mPUEoVM5JLoHPtAXb1pPJZsSZUuAvav6AolMw3YMts9wYsLg9YnePy6B2+qFYznNoOm6ZD2h73eu0nQJvRivLo5FZlnTf3PdUKqH5P+HOnonC5cTFfH3JdLKUCnMdy/1gl4DgoxxHXxuW4FeSo2tB+Cax/Tjlum/N1X7pwEPTxSI7seW6WUnpF+SVnX4H/PA9xTvNQTSlld1GyPf5fqFgDvnL4Z3t54fc+fOTzZzcGKlkKv52hKNBsZjh7QNmmD1D68ft6JNUSqwiZ/wQli1220/fzvhy/dlxb98+W/6RfvX6Af2LOLcu+Z8mG2Z5Cwi1h6lkwhRSpyoYNGwgNDcVisWC32+nfvz+PPvooGzZscDPDjoqKom7duvz+uxJfbvTo0Tz77LN88803dO7cmT59+tC4ceOCdsMff/yBxWKhRYsW2rqIiAjq1q3rUbZZs2Zuy7/88gsHDx5k9erV2jpZlrHb7Zw8eZL69eszcuRIBg0axJYtW/jxxx/56KOPmD17NuvXr+fBBx/061wUFncBFMFyxIgR2vKXX35Ju3btAEhKSuLAgQNcvnyZt99+m8cff5zdu3dTpUoVtzbS0tLo1q0bffv2dfPzDw0N1b7//e9/Z9myZRw+fJgxY8Ywbdo0unbtyrlz55gwYQLJycm88847bNu2je7du2v13nrrLQYMGIDdbqdZs2aamf29997Lr7/+yrJlyzSB6oknntDqNWrUiMaNG1OrVi22bNmiCb3PP/+8VqZx48aYTCZGjBjBnDlz3GInfPDBB2RmZvLLL78wYcIE5s6dy8SJEwGw2+1UqVKF5cuXo9fradq0KWlpabz++utMnz7d5zktbyxZsoTXX3+d8+fP06RJExYtWuR2z+Tno48+4qWXXuLUqVMkJiby6quvus0A37hxg8mTJ7Nu3TquXLlCzZo1GT16NMnJybficAQCQSnD7hCKTQYdZqu7G54bHis93ffMjiCduXZZe8k0yRZyCNJiSt2Mwlmy5lB1RdMi1ysWiihHCRnKiZChhAzlL0IpVcy4zh5o2fdUhUb316BOF0UjEt8OTjl8Q02hoNMrMaFc3NA0pZTBcUPb8mDff9wVUjU7QMU4aD4cAh0udq5KrPyYHfGjAisoLnnZV5yucCrWHE9LKYCO/1T+vKDq37Sj1zlmV+xWJSj5H1sgE6gQr9Vxs5QKrQLpLg2q1mM6o3J+wF3xpHe0b1Sy6XH1T/h/nRUFm9zYvS+uOJQQdm36Rg/3PKn8rXxYuSY5Vx3HHgB9Vykul7v/4/W4BbePLEuWppCSkJCROXj5IP3o53cbwn3PO0lJSVrAypiYGAwGA+vXry+03rBhw+jatStffPEF33zzDXPmzGHevHk899xzf7lPISHuAuGNGzcYMWKEFhPAlbvuukv7HhYWRs+ePenZsyezZs2ia9euzJo1iwcffJDExEQyMjI4e/asx8yi2WzmxIkTdO3atdC+9erVy03QjI11JqQICQmhdu3a1K5dm1atWpGYmMg777zjFvD07NmzJCUl0aZNG5YvX+7WtmtmlPBw5Rk/Z84c2rZty4QJEwBFqAkJCaFdu3bMmjWLZs2audWrWrUqANHR0TRo0MCt/fr162tuAd5ISEigUqVKHD9+XBOo8tOyZUusViunTp1yE4Zr1KgBQIMGDbDZbDzzzDOMHz8evV5PdHQ0RqNRmzlU+3L+/HnMZrPPc1qe+OCDD3j++edZtmwZLVu25M0336Rr166kpKR4COUAO3fu5Mknn2TOnDk8/PDDvPfee/ztb39j37593H333YAiEH/33Xf873//Iz4+nm+++YZ//OMfxMTE0KtXr1t9iIUj/OYFghJFvcUMOglzvnUF1HD8d7rvqZPyFodSSic5XzKNdmu+2n5YRZVhhAwlZCgVIUP5j1BKFTNuz1E1qJRqdeQa8Hvw507Fj84IH/wdjn7prnjROX5oqmLImqu5wNFqJLQcoSik8qNaN2VdUjLU3dUaomrDsW8g9SdlW0AYBDiUPZePu9fftcTTUqoQdKr7nnr8qtIo7zr8+G/lu92hpXdYRblbSimKN7lmRwj7VsneB4qLoGObZuXl2r6qlPrNmS1BpuBZBVVpKKspQXTOmxljsPKZ7dCOGQKUwOcV45ECIhz1BaWRUfeOYtH+RW7rnIJSwcKPqpSylnSgc2OwMtN2O1B/10VAFQJcqV+/Plarld27d2um51euXCElJcVtkK5RowbJyckkJyczZcoU3n77bZ577jlttszV3z0hIQGj0cjPP/+sCUEZGRkcPXqU9u3b++zjfffdx+HDhz366QtJkqhXrx47d+4E4LHHHmPSpEnMmzePefPmuZVdtmwZ2dnZDBo0qNB2w8LC3DKn+MJut5OX57RiTUtLIykpiaZNm7JixQp0OvdQj96OLzs7G4PBffhWBRNZlgkKCvJar23btqSkpLitO3r0qBbE1BtnzpzhypUrXs3zVQ4cOIBOp/OqJFGx2+3arLFer6dt27a899572O127ZiPHj1KdHQ0JpMJk8nk9zm9k5k/fz7Dhw/nqaeeApTf5RdffMG7777L5MmTPcovWLCAbt26acL2v/71LzZt2sTixYtZtmwZoCiuBg8ezAMPPADAM888w1tvvcVPP/1UOpVSAoHgluCvJCTLMrIM2Xojdkd4Yknn8BRxUXBpHm+OyXJtAttFmNa5KLh87tMQxIVhB9BlZ2K3Q2RUKMaIqn72+C9SRDlKyFBChlIRMpT/CKVUMSO7Zt9TH7DerI4kyalQAaeSRbWUknTOp7fexfRRjQcVe593hRQoCieAnHTYNE2xiKrbAw6+7ywTWAEiaijxoVSXwVqd4MRmZ38DIwreRz6cQ4ljpFGtvFwy+0k120OGjKQqsJw5YrWsg7LOAEO/cW/84IcebaF3tB+Z4F624aOwzZqvT66oMaVUSymXh5fJMehollL5rpcslFKllaPpis+6a5B7/7LvOdz3SqpjKpJUZBe60kZiYiK9e/dm+PDhvPXWW4SFhTF58mRiY2Pp3bs3AGPHjqV79+7UqVOHq1ev8v3331O/fn1AyR4iSRIbNmygR48eBAUFERYWxuDBg5kwYQKRkZFUqVKF6dOno9PptOdEQUyaNIlWrVoxatQohg0bRkhICIcPH9ZewA8cOMD06dMZOHAgDRo0wGQysXXrVt59910mTZoEKLOBr732Gi+88AKBgYEMHDgQo9HIZ599xtSpU5k1a5ZmXaKSXyABaNiwoZb9RCUrK4tXXnmFXr16ER0dzeXLl1myZAlpaWn07dsXUISpBx54gLi4OObOnculS84YfL4yt/Ts2ZPhw4ezdOlSzfR87NixtGjRwmssCZVx48bRpk0bZs+ezeOPP85PP/3E8uXLtZnFGzduMHPmTPr06UO1atU4ceIEEydOpHbt2tps565du9i9ezdJSUmEhYWxa9cuxo0bx9///nctK9Dq1asxGo00atSIgIAA9uzZw5QpU+jXr592np599lkWL17MmDFjeO655zh27BizZ8/2OmvrSnp6OqdPn+bs2bNu16NatWqFZrspa5jNZvbu3es2I6zT6ejcuTO7du3yWmfXrl1urgEAXbt2Zd26ddpymzZtWL9+PU8//TQxMTFs2bKFo0eP8sYbb5TIcdw0NxkLTyAQFBVFYnIbd33475nz8vjM3JBrga7KGrtbSYPOGdDEmY3cm/te/h0VcN9LEhiCwWhVnB6MQWVKrhIylIKQoYQMVRBCKVWSSPmVUj6sjtRtqlJKZ/DcBs7sfCanj6wHletBp+lK4PRDHynWSldPKduqNVK239Mf7hsEtTspcZKCKiqZ/rIuK7GuAMKinS6Bfh6qphNQ+69afkl6pAp3QcafWh275DqA2fI14IJmdeWilHK44dHgEXi6uqJIMoUoVmHbh3j2zyV9rbIbL0opo2NwU2OAuZx3X9Y2gtvP139+DUCetzhqPlDt5KxC2+gXK1asYMyYMTz88MOYzWbat2/Pxo0btUHSZrMxcuRIzpw5Q3h4ON26ddNedGNjY5k5cyaTJ0/mqaeeYtCgQaxcuZL58+eTnJzMww8/rKUzTk1NJTAw0FdXaNy4MVu3buXFF1+kXbt2yLJMrVq16NdPcd+sXr068fHxzJw5k1OnTiFJkrY8btw4rZ1x48aRkJDAvHnzWLBgAVlZipJ+zZo1brEBVLytS01NpXr16m7r9Ho9R44cYdWqVVy+fJmoqCiaN2/Otm3baNiwIQCbNm3i+PHjHD9+3KO+9yyiCkOGDCEzM5PFixczfvx4KlSoQMeOHQtNZ9y8eXM+/fRTpkyZwssvv0zNmjV58803GTBggNbngwcPsmrVKq5du0ZMTAxdunThX//6lxbnICAggPfff58ZM2aQl5dHzZo1GTdunJsixGAw8Oqrr3L06FFkWSYuLo5Ro0a5nfcaNWrw9ddfM27cOBo3bkxsbCxjxozRhN2CWL9+vWY1BM7rMX36dGbMmOGzblnj8uXL2Gw2zXVApWrVqhw5csRrnfPnz3stf/78eW150aJFPPPMM1SvXh2DwYBOp+Ptt98ucGY9Ly/PbWb6+vXrXssJBILyQYZN4prsVEjpdNlUqHSCixfjNHk7MkjHZYeoLtll0LvEn/XSplzSFuulACFDCRlKyFAFI5RSxYzrTaDTATcuORUzhiDvlcBpDeVNKaV3UUpdPqZ8+podkCRo97zignfoI2WdmqGi3Xho+IizbPNh7nUjbs7nVFXaOGNKOfpvdhy7i7WXJCuKILtLOg71vHl9hqh1M07jUsGxHx3c1TJfhfwBrlyqOeZtcuyhbLv+NPVCT1FZ3VjB4UOtKhHDndpySZIdllJ3/qBZlsm1ObMw+hNOU69ZSonrqrJy5coCt1WsWJH//Kfg+GqLFi0qcBvASy+9xEsvveS2LiwszC3QZlZWFjNnzuSZZ57R1p06dcpre82bN+ebb77xuq1SpUpayuTC6N27tzZTmZ6eTqdOnVi6dCm9evUiOFgRvOPj430KOfkJDAzkk08+8VlmyJAhDBkyxO82XXnuueduKs7Eww8/zMMPP+x1W1BQEF9//bXP+vfddx8//vijzzL9+vXTBFtftG7dutC28vNXzplAYdGiRfz444+sX7+euLg4fvjhB0aOHElMTAydO3f2KD9nzhxmzpx5G3oqEAhuBerQ5q8kpGawNshWAuvNJMhoJCCoKiG15vHMXYNgPyRUMHDxar6KBYvnBXRMwmQLxJ4nIdn1oCu8yu1GyFBChvKFkKEKRiilSpIfXoczHzqXfVlKae57DiWOq1JKp4Oqd8OFXwFZUW5VqlP4/nUuppCq9ZOrK2Bxkt9SSjueLOd+Jfc5Ervr6OewfPL6vKraUDlmq0sQeB9Z8LRg815GV1lSYwgFcTC7J1cuneVv6sY2z0HlOooizRAAdbp5HqCg1CB7EWvc3fcKjyllcJQv8ex7ggLZv38/R44coUWLFmRkZGgpb1UB51YTGRnJt99+y5IlS9i1a1eBgSkFgpKmUqVK6PV6Lly44Lb+woULBZrZV6tWzWf5nJwcpk6dyqeffspDDz0EKDPmBw4cYO7cuV6VUlOmTHGbxb1+/boWgPXWIB7QAkFJot1hbt57BctYaqgSCRlJZ0FW40pJMgYtVKukhemQNLHcH/c9JyZzIMH2CGy5oCcIWRZpafIjZCjBnYJQShUzdteYUhcOOTfENoOI6l5qONCCeTtc1FwDcAMM/w6unFC+h1WD4MjCO6PTKcotu9Wp7CohpZRT3ZQvppRqKWUwacoBdXCyubjvyao7njetVMV4mHBMcdFb0ERRYMl2z3JaY77W5dFlaENObt7FsVPhWGQXRaEp2N2KzPX4pHyWYIJSid3X78ILaoBNIebcXubOnUtKSgomk4mmTZuybds2KlWqdNv6ExUVxbRp027b/gUCQLsfNm/ezN/+9jdAkTE2b97MqFGjvNZp3bo1mzdvZuzYsdq6TZs20bp1awAsFgsWi8UjGKxer3eTX1wJCAhwS1MtEAjuTAqbfjVnHYfg2ljz8sDkIvvLsqawkrw46VVOz8JgsiIH5t/iuk/PvUuy3rlJBqkcuPjdDEKGEtwJCKXUrWDot1Cjue8yqrLoyAblU8qnlDIEQFX3NJR+oTcpSinVfU9v9F3+JlGNoFSTXo+YUq7KMEdhu85lWHJYPhVo2RkQpvxJOodSyoellDendW0ck0lsXhXjn9c5diq8CFlnxUBYFihqoHNdUU3JBcXOvffey969e293NwSCUsnzzz/P4MGDadasGS1atODNN98kKytLiwkxaNAgYmNjmTNnDgBjxoyhQ4cOzJs3j4ceeoj333+fPXv2aIFYw8PD6dChAxMmTCAoKIi4uDi2bt3Kf/7zH+bPn3/bjtM7YtwVCG4Fmvuei8DkTT622xSZXlVfqxN7dtcg587GMDteBe66cJ27AJveADU99l5o/ySjjGwWzwNvCBlKcKcglFLFjOxiqSEV5VW3Znv4+f854xkldimeDumNYMFFKVVSllIOSyJ1MFKVX67KMMldAyC7mQnb3esXuCM9YIW0ffDpCCUGV3Al6LkAwnylhpVd/lNoVgqP3QpLqTKBHW8z/QVfa3VL0eyrBAKB4NbQr18/Ll26xLRp0zh//jz33HMPX331lRbM/PTp025WT23atOG9997jn//8J1OnTiUxMZF169a5ZUB6//33mTJlCgMGDCA9PZ24uDheeeUVkpOTb/nxCQSC0oPOT9HYGBEBOSCpMrvbJLCzka9bBJKrt3LvSSNh2WYwK+vtPu2jBAJBeUQopYqdm1Rb1OkKU844YyUZfWdN8BstrpSqLCohpVT+UUXdb44jyqE+QCujxTeXUGZUJAlUt4HCTp+aLe/HpfDnduf6Yz2UbIKF4pzBAR+WWR77VZVSYvgszXizlPLnnhTKRoFAUFoZNWpUge56W7Zs8VjXt29fLWW2N6pVq8aKFSuKq3slTxGC4woEgqKjht7wd8I2f2SogiylTlfVs7iXnpnvh1P/5GUhbAkEggIRSqlixm2yoKiClN5Y/O51+ZVQJeS+p8uv5DE6Mg3mOVJHm5ypYzXFkgsWu9lRv5BzpsbaunjY2ZZsV1wU8+NtcJWLNvBqTQllVKnD22/FNaaUFujcx7XWaWUFAoFAIBAIBOBbLlIlLdUjxFs8zwPXj5Kptyjb83tKuMWGkvJ9CgSC8ohQShUzdnspe73Nr4QqYUspLdB5vYfgz52QfVlRHDUbCruVjEAGF6WUI3YhNpsycBWqx1Pr5qQrn1G14fJR94o+A5277tl/8o2nglKKu/ueH3EKvMUfEwgEAsHtp4iTRwKB4ObQjJuKXN7VJt2ROMameHxct2Vjl/QYZD16NWC53VsoDPfwGn6LY0JuEwjuKIRSqthxPiU13+zbKVjlV0LpSsZSSkXTDQVHwiNL3bZJP/3PUcgtmBRIaGleC1VKRdWCs/uV76FVIbKWopRyG50KbkR2MSv2a3/O3vtbUHAbcXffc1hK+SjvND0X11cgEAhKA9c3bsSeZ4Z9FzBeMREsC8d5geBW4Pq64t1zIV98VpctqrWU7DI5+M8zw4nPjeWivNTRJh41ixJ/V0ZI4wLBnYpQShU3BaRUvm00fhx2LlJc3KKbQMX4EtmNVAQlj5QvwKEMLjGlnA1kWbLYlrYNs81MsCGYdtXbcTzxXU5nnaZ+Yz0RCQlU/GmyRz0NucCFvxDoXAyHpRmv2fd8lNcC9JdclwQCgUBQBM7PnoPt8mXHUiXi214gqO1t7ZJAcEfjTVnkDVVmcnXfU6tqSikXOaxFZiOMGDintuszfKyQrwWC8oxQShU3svNVuEjZ90qKDhOVvxLGLy8or75SyryHOqy56pYW/7yEb/b9AEC26TpDWw8i74MEAP5IsQMpPNmyApH5duNLcaR5V3qJa+UbMViWBYIOBTHjpxlERUVhj3VYBfqMKeU+6ycQCASC20tIq1bYrmeQ89NO7Lk2rNdzbneXBIJygZTPkaEg7LKnXKUqo1yVUjpH5E5ZzRCqJesTMrVAIHCnqG/mgkKwuTyMy9MjV4u55MNUyhnK0NuZ8RzM9F/V5NFfn+fRX5/n7/tmcOVMlketzNwwdccebXlDm9MpovueZiklYlyUamRHascrV66QIytKKZ+WUpKwlMrPkCFDkCQJSZIwmUzUrl2bl19+GavVSzKBIrBlyxYkSeLatWvF01E/OHnyJP379ycmJobAwECqV69O7969OXLkiFu5DRs20KFDB8LCwggODqZ58+asXLnSrcypU6eQJIkDBw74vf8ZM2ZQr149QkJCqFixIp07d2b37t1ubQ4dOpSaNWsSFBRErVq1mD59OmazudC2V69eTZMmTQgODiY6Opqnn36aK1eu+Kxjs9l46aWX3Pb3r3/9y+25+8knn9ClSxeioqIKPN4TJ07wyCOPULlyZcLDw3n88ce5cOFCkY/r4MGDtGvXjsDAQGrUqMFrr71W6HH/8MMP9OzZk5iYGCRJYt26dYXWEZQtYue+zl3Ll2OqHFx4YYFA8JfRsu/5W8Eha+lcxg4tpqeqnJJAp1pWqbKzVcKcqUe64ZQnvOUp0nbjb39KEUKGEjKUkKFuDqGUKm5c3m4lL9/uVPyLF11wtHBZM/t1rjNmhrjXPucUUMMrK9n97LJn/jTJHxdCXRGviVBGlQksJgsRERGAvzGlHJljSrpjZYxu3bpx7tw5jh07xvjx45kxYwavv/767e6Whj8Ch8Vi4cEHHyQjI4NPPvmElJQUPvjgAxo1auQm1C1atIjevXvTtm1bdu/ezcGDB3niiSdITk7mhRde+Ev9rFOnDosXL+bQoUNs376d+Ph4unTpwqVLlwA4cuQIdrudt956i99++4033niDZcuWMXXqVJ/t7tixg0GDBjF06FB+++03PvroI3766SeGDx/us96rr77K0qVLWbx4Mb///juvvvoqr732GosWLdLKZGVlcf/99/Pqq696bSMrK4suXbogSRLfffcdO3bswGw207NnT+wON2x/juv69et06dKFuLg49u7dy+uvv86MGTNYvny5z2PIysqiSZMmLFmyxGc5gUAgEJQMrnmOtXVaTCnXyXl3pZTtup4TX1QlaJPz5T/7QgAAurw85w7K+EyhkKGEDCVkqKIj3PeKGz8tdu40nDGlfByzF+2ApkCSNZteJ47vduzo0BF4qIa2yRSoZPKwqxk9ZK/aQE9EoPM7mr0V9nJPxj1+lxfJ97wTEBBAtWrVAHj22Wf59NNPWb9+PcnJyYwZM4bPP/+cvLw8OnTowMKFC0lMTATgzz//ZNSoUWzfvh2z2Ux8fDyvv/46DRo0ICkpCYCKFSsCMHjwYFauXElmZibJycmsW7eO8PBwJk6cyGeffcY999zDm2++CUB8fDxDhw7l2LFjrFu3jkcffZSVK1eyfft2pkyZwp49e6hUqRKPPPIIc+bMISQkhN9++40TJ06wefNm4uLiAIiLi6NtW2dwmtTUVMaPH8/YsWOZPXu2tn78+PGYTCZGjx5N3759admy5U2dx/79+7stz58/n3feeYeDBw/SqVMnunXrRrdu3bTtCQkJpKSksHTpUubOnVtgu7t27SI+Pp7Ro0cDULNmTUaMGFGgEKSyc+dOevfuzUMPPQQo53XNmjX89NNPWpmBAwcCykydN3bs2MGpU6fYv38/4eHhAKxatYqKFSvy3Xff0blzZ7+Oa/Xq1ZjNZt59911MJhMNGzbkwIEDzJ8/n2eeeabAY+jevTvdu3f3eZyCOwz/B2qBQHAT5BON3dZ5Le/49BroXPac5ssIC+VGgJFQqxmdTsaG3qOM3lUp5U+fi1T61iJkKCFDCRmq6AhLqWJH9vr1Tkc1PPKpk5JUyxVvvuieARLV1LGqT7o+x5lJ0BigKqU8LaW8B7jOlzFEiynlp7LJZaT2qXgT3FZkSUaXURFTbqTL76Dga6wppcQl9UlQUBBms5khQ4awZ88e1q9fz65du5BlmR49emCxWAAYOXIkeXl5/PDDDxw6dIhXX32V0NBQatSowccffwxASkoK586dY8GCBQA8//zz7Nixg/Xr17Np0ya2bdvGvn37PPowd+5cmjRpwv79+3nppZc4ceIE3bp1o0+fPhw8eJAPPviA7du3M2rUKAAqV66MTqdj7dq1Worq/KxduxaLxeJ1Nm/EiBGEhoayZs2aYjmHZrOZ5cuXExERQZMmTQosl5GRQWRk/kh57rRu3ZrU1FQ2btyILMtcuHCBtWvX0qNHD5/12rRpw+bNmzl69CgAv/zyC9u3by+SgJKXl4ckSQQEBGjrAgMD0el0bN++3e/j2rVrF+3bt8dkcj7Xu3btSkpKClevXvW7P4LygHhACwSlCad85Wkp5VzllL3yTAZ+qHcX4fdnUbfPebIeqqpt0wfYPMp7UMbnhYUM9dcRMtSdL0MJSylBMVGU2Dze/Pc83fd0Ns+ZFFBc7wymfEop14peNAzqeGZH5mJmbgFB1wumjI+H5Ybw3Ch0Z6sTQXXgFODb87KoWRhvFlmWybHenmC9QYagmz5OWZbZvHkzX3/9Nd27d2fdunXs2LGDNm3aAMpMTY0aNVi3bh19+/bl9OnT9OnTh0aNGgHK7I6KOphWqVKFChUqAJCZmcmqVat477336NSpEwArVqwgJibGoy8dO3Zk/Pjx2vKwYcMYMGAAY8eOBSAxMZGFCxfSoUMHli5dSmxsLAsXLmTixInMnDmTZs2akZSUxIABA7R+HT16lIiICKKjoz32ZzKZSEhI0ISPm2XDhg088cQTZGdnEx0dzaZNm6hUqZLXssePH2fRokU+Z/gA2rZty+rVq+nXrx+5ublYrVZ69uxZqDn25MmTuX79OvXq1UOv12Oz2XjllVcYMGCA38fTqlUrQkJCmDRpErNnz0aWZSZPnozNZuPcuXN+H9f58+epWbOmW7mqVatq29TZYEH5RYy7AsGtRUJCkhQxWvYhH7tm31PRAp1LXuJTyfnX+Qpw4v3Ol2WZHHsOOlsuNjvkWPVYLdm+DqfYuFk5SshQQobKj5ChCkYopYoZ96wTqj3sberMLcQZ6Nyv0h5rNHNfN+WSwwddZ0FvN2qr9UYdOodplua+52XwdE0Oom7NtetoOXszaxrnAOF+T8C6Dkay1yMQ3Gq8WayF5UY5t/txlZzKypIlx5pDy/duznz5r7K7/26CjUULGLxhwwZCQ0OxWCzY7Xb69+/Po48+yoYNG9zMsKOioqhbty6///47AKNHj+bZZ5/lm2++oXPnzvTp04fGjRsXuJ8//vgDi8VCixYttHURERHUrVvXo2yzZs3cln/55RcOHjzI6tWrtXWyLGO32zl58iT169dn5MiRDBo0iC1btvDjjz/y0UcfMXv2bNavX8+DDz7o17lwnYUqiNWrVzNixAht+csvv6Rdu3YAJCUlceDAAS5fvszbb7/N448/zu7du6lSpYpbG2lpaXTr1o2+ffu6xTUIDQ3Vvv/9739n2bJlHD58mDFjxjBt2jS6du3KuXPnmDBhAsnJybzzzjts27bNbeburbfeYsCAAXz44YesXr2a9957TzP1Hjt2LDExMQwePNiv81G5cmU++ugjnn32WRYuXIhOp+PJJ5/kvvvuQ6fzNL4u6LgKo6BjEAgEAsGtx1Xm8hazUw10Ljvi4nibEZQk1WvBZZtOkeOz7WE+959rz6Xnti5F7XaxUFQ5SshQToQM5Y6QoQpGKKWKHe/OY3c6TrsjH9n3NM2VZz1vblSSQ6tk19nclFJGkw6dXlVKebGU0up7248dWYbLWWZHV8rXdbrTMdkCte/+3IkippR3kpKSWLp0KSaTiZiYGAwGA+vXry+03rBhw+jatStffPEF33zzDXPmzGHevHk899xzf7lPISHuiQ9u3LjBiBEjtJgArtx1113a97CwMHr27EnPnj2ZNWsWXbt2ZdasWTz44IMkJiaSkZHB2bNnPWYWzWYzJ06coGvXroX2rVevXm6CZmxsrFu/a9euTe3atWnVqhWJiYm88847TJkyRStz9uxZkpKSaNOmjUeQStfMLWr8gTlz5tC2bVsmTJgAQOPGjQkJCaFdu3bMmjWLZs2audVTZ88mTJjA5MmTeeKJJwBo1KgRf/75J3PmzPFboALo0qULJ06c4PLlyxgMBipUqEC1atXcZnULO65q1aq5ZZsBtOVq1aoRHx/v9RgE5RDxgBYIShTXmFISBdxysqdVlFf3PQe+w7u67CFEsXqxUbjyoqwgZCghQ/lCyFDeEUqpYsY1wF95Stjml6WUGlNK9jwxasYBb9Yvdp3iy2wOu0F8terUaVGV1N/TlW1eYkp537eyPUyyO+r5Lu7ZdXdLKUHpJCLPxY/cS1yD/Pj56/nLBBmC2N1/d+EFS2jfRUUVAlypX78+VquV3bt3a6bnV65cISUlhQYNGmjlatSoQXJyMsnJyUyZMoW3336b5557Tpstc41NkJCQgNFo5Oeff9aEoIyMDI4ePUr79u199vG+++7j8OHDHv30hSRJ1KtXj507dwLw2GOPMWnSJObNm8e8efPcyi5btozs7GwGDRpUaLthYWGEhfme5VWx2+3kuQR0TUtLIykpiaZNm7JixQqPmTJvx5ednY3B4D586/XKbLMsywQFBRVYL3/7er1ee/4WFdWE/rvvvuPixYv06tXL7+Nq3bo1L774IhaLBaNRmXTYtGkTdevW1czOi3JtBXcyYtQVCG45cv5FWYvRqYrxrtKV5r6nufG5bsvflstGybnWVx8CdYF83n4TOtslbHaIrBiCsUI1/47lL1JUOUrIUEKG8gchQ7kjlFLFjPuDt/wIUtpA5bNM/i8u21yy7507kcHhbWnaiCbrlG3pdY8xbphyw6YdvQZ4t5SS/DnvjkDnIvvenUFFa2WuGi4RbHGa6dplT/Py/DiN90r2+kqSVGQXutJGYmIivXv3Zvjw4bz11luEhYUxefJkYmNj6d27NwBjx46le/fu1KlTh6tXr/L9999Tv359QMnaIkkSGzZsoEePHgQFBREWFsbgwYOZMGECkZGRVKlShenTp6PT6QqN3zBp0iRatWrFqFGjGDZsGCEhIRw+fJhNmzaxePFiDhw4wPTp0xk4cCANGjTAZDKxdetW3n33XSZNmgQos4GvvfYaL7zwAoGBgQwcOBCj0chnn33G1KlTmTVrFnfffbfbflNSUjz60rBhQ00oUMnKyuKVV16hV69eREdHc/nyZZYsWUJaWhp9+/YFFKHjgQceIC4ujrlz52ppjgEtc483evbsyfDhw1m6dKlmej527FhatGjhNZaEa71XXnmFu+66i4YNG7J//37mz5/P008/rZVJT0/n9OnTnD171u14q1WrpvVpxYoV1K9fn8qVK7Nr1y7GjBnDuHHjNJcBf46rf//+zJw5k6FDhzJp0iR+/fVXFixYwBtvvFFg/0GZ3T1+/Li2fPLkSQ4cOEBkZKTb7K7gDqA8zewJBLcR1cvB5x3nFrpVla88LaUkq6IwkOw2ogP+DsDTcdnIyATprB7N+nOXSyhyVJAuCB2B2CRFUWQqQ3KVkKEUhAwlZKiCEEqp4kZ2arDLU2pDZ9xwn+n31EIem2THeTOnpfHdjBSuhdzlVHTplW2upsH+xJRyC6SohfdSvnjPI+Gr686rKYugUqUOneN34Ormqf3cfCZ0cfyOSqpjdxgrVqxgzJgxPPzww5jNZtq3b8/GjRs1YcJmszFy5EjOnDlDeHg43bp10wbI2NhYZs6cyeTJk3nqqacYNGgQK1euZP78+SQnJ/Pwww9r6YxTU1MJDAz01RUaN27M1q1befHFF2nXrh2yLFOrVi369esHQPXq1YmPj2fmzJmcOnUKSZK05XHjxmntjBs3joSEBObNm8eCBQvIysoCYM2aNZqJtive1qWmplK9enW3dXq9niNHjrBq1SouX75MVFQUzZs3Z9u2bTRs2BBQZrWOHz/O8ePHPer7yvI5ZMhglgr8AAEAAElEQVQQMjMzWbx4MePHj6dChQp07Nix0HTGixYt4qWXXuIf//gHFy9eJCYmhhEjRjBt2jStzPr163nqqac8jnf69OnMmDEDUISsKVOmkJ6eTnx8PC+++KLbOfXnuCIiIvjmm28YOXIkTZs2pVKlSkybNs1nKmOAPXv2aKmxQck8BM702II7kPIzvycQ3HYkR6Tz/Lede0wphxLLZV22VQk6brhx0dEO6KVrAAS7vG3KMlyzRwBmH73wftOXddFbyFBChgIhQxWEJJfD/PbXr18nIiKCjIwMzb+0uPhx20Z2LP43oGNI41SiLH/A8O8h9r5i3U9p4x+r97Lx0Hle7t2QQa3jvZbZ/eFHfHn4N2Ju5LGo0QYAhq2vjtWgp27F2vxJLwJzLgMyuUGVsUs2dLKe7PB0gq9HknbvHmaPmAjAd//5nd93nqNV4iGaZk6DzjPh/rEAjB/9JDEXMom8YSa7xmQA5MuvkKcPwmIIYlmNIcyvnc65PbGEB6QzcMFjhR7f1T2rqZ+pPARTOzTBqCvrQ2PZ51ruNdp9oARCrGyO4ZLpLEkn+lH3omIWvbPjaTZXvodZlSwMa9Tcaxt7173IQxF9qSHl8vMDrYqtb7m5uZw8eZKaNWsWKhgI3MnKyiI2NpZ58+YxdOjQW77/9PR0OnXqRHh4OF9++SXBwWVnJlZw8/i6Z0tSZiiL3KrzcapLS3JOX6f6yK6EPfdmie1HICjv/JJ6jd5LdhBbIYjz13Ox2WV2T+1E1XDns9BmtbBzzNvUDGvEvwMO815edaKtV4l/4At+vfIrAGGmMJadaoJx1Rb21oXODaYC8P3F98mzZFP7/FV+rVyZgKq1SU9LBaBmxd6coxZBN07zcvXKgJ0jzb7iZMNRhARXIJAQdAEy9jwJJBnJdlFx34sMxVTRM+tbeUfIUILbQXHIUMJSqpgpdxo+B5pVk09DKdXFT0aSJWTJ6TQl2+2KaZkkYTEowfiyQ04r7eqUZbtrZsP8gc59nnnZ47us2rF5iW/lve9+FRPcQmRkQrJlsoIlArP0PH54MpE5TgFFclxjycfcmj8GfoKSZf/+/Rw5coQWLVqQkZHByy+/DKCZs99qIiMj+fbbb1myZAm7du3S0iwLBIJbjBh3BYJbTkFykVtybK2szH97/JeL2Yp1VMXAivw5d6LmDPjvhDp8Hmsk2zoRGTsmqw2zQY9Rlnn6vfkAXMqzQACciTJqrQr8R8hQgjsFoZQqZmSbm9P17evILUZV2tj9POb82T0kh2ueLOmwOQIK5gafR9ZZMFligMpupph6g6JwOH6+OneZEqliLzgqkOSSE1C2K457WZZsv/rpbMM10Lnw3ystVLsmcyJYIiK7iptCCvzMvqcpSgW3k7lz55KSkoLJZKJp06Zs27ZNCwB5O4iKinIzxxYIBLcT8YQWCEoSv+4wN/c9Z0wpg85ATGiMyzYc2+DDu4xcM+mACLem9Ban654aZcqqzhUL+brICBlKcCcglFLFjOzXq/Cdh/Zy71ekc1XJ45le1q5zCXRnMxNw8TR6axqWvBPobjjNAStWU8xB029EsJbXeOjsCeKdrRXYBdkRXOpq3jUMPkv66Lyg1KFzXJ9s43WCLQ7TUC1QlB+WUuL63jbuvfde9u7de7u7IRAISinlaH5PILjtFOQZILvJ7I6yXsrZZbtipy45ZatHN39K8LXz1LpwlRNVKxIeWVkrX8lk4DJQJcMKVYrlEMoVQoYS3CkIpVRx4xaMW31q3/kvvAWHMHcp43IePFyqHOk07ZLzJ2m4cRnTVSXjgI1zVNoD814cwn09/0brZg/x569XOHfkHHkWE9czTX71U1VeFFXIlXSullKC0oIWy9zhxmmXrB5bfd1+zux7AoFAIBAIBOUPdWLYVV7yCHXuainlKOct27XWlsu6KlcvEXY5jYS0i2TrsqlgkLjm2GbS6UAGk1VIYgJBeaY8JYi7Jbi6mN35qignBkeMJ6vNzzxm+WM5Odzq3C2lvOTIO36Zrz5YTmCIkYdGNiG+ynmlqI/dug+asst/Zat/lKerWXZQr6OmbJRcrrWWsrhg/IlIJhAIBILbgRh3BYJSg+yZsVgCjqQf4f9++j9m/TiLLalbkNVwHLiI+h4zwV6kLj89LcrDRL9AUB4RllLFjctD1dsMwp1KgCPGk9lasHbINX6PLp+wqc7IyDq9tiypw17FeIzmhuRFHkGXeoLYqxW48t7v6AIN6FAUVzabzrWxfDt2/epwEyyixZQkOdsXrgSlA9dZPJ3DUsomuSoypXyfnmgB+ou7cwKBQCAoJsQTWiAoSbTAI5IzvIZHoHOv7nsyb+59kx1ndwCw8eRGltHYsc2PHeKPpCYQCMoDQilVzHiYu5YTTHqHUsqnyZKr+16+Tw9Njx3sjnU6PXpTXe6+O4HDqYswZGdz9X9L0AVVRKqnBLe22XwPZ57Od0WN/SXc90ozweYg7bsdOzoXI1Cfgc61OgKBQCAolYhBVyC4/bgFOlfQIZNjzdHW51hy3DxGgrIzSfzzV0w5193queNNShM3vUBQ3hBKqWJGdo0ppX278/X/Jj8spZx4Zq+T7e71ZEnW4kylB1zGEvQLd1vuAcBqy8Pyx2ble6UhIIHVi1LKc/j0L/aVN4S1cOkm2KIEvjfY9cpvR8YvvaMzppS4wAKBQCAQCMofTssnSZOZPBzuXER32UWYdrOgQnaLKdV8z7fUP7ZP255j8vLamT8dt0AgKJeImFLFjLvBT/l5yqpKqTxf7nsurlK6fDGlXJV5ADq7lcDMCwCcDv6TL+u+y5VTvwBgd9EQmc9cAeBGXq7XPTr/a3tS2pBdl/xBWEqVbpTro7jxuWuj/LGUEtdUIBAIShlirkAgKEXIHl/z36KuSikkCM654bbdptPlb6lIt7mQ1QSCO5cSVUr98MMP9OzZk5iYGCRJYt26dT7Lf/LJJzz44INUrlyZ8PBwWrduzddff+1WZsaMGUiS5PZXr169EjyKm8cjw9wdjEmvxILyz31PIv8wZM9nKWUy5xJ7QTH3DTIrw9D5gHRAmaHJClJmWySrBYDU6+ddaufP/OEtO4jWqYL7663rglKJ671mlxy/JT8CnYvsewKBQFDaEU9ogaBk8cy+51HCi/uex3pZxu4IiCABOruXhEWF9EEgEJRPSlQplZWVRZMmTViyZIlf5X/44QcefPBBNm7cyN69e0lKSqJnz57s37/frVzDhg05d+6c9rd9+/aS6P7N4WoqVY4iYhsNykjm031PG+xk16+OT/dzpZNt2HVKqZAcpc1j+j8BxVLqu0aOAOd6q/Jp03vsxzVwoxNHQHW1jL+XSHJVcZWf61qakQu8eP6bwYlA554MGTJEU/ibTCZq167Nyy+/jNVq/UvtbtmyBUmSuHbtWvF01A9OnjxJ//79iYmJITAwkOrVq9O7d2+OHDniVm7Dhg106NCBsLAwgoODad68OStXrnQrc+rUKSRJ4sCBA37vf8aMGdSrV4+QkBAqVqxI586d2b17t1ubQ4cOpWbNmgQFBVGrVi2mT5+O2WwutO3Vq1fTpEkTgoODiY6O5umnn+bKlSs+62RmZjJ27Fji4uIICgqiTZs2/Pzzz25lbty4wahRo6hevTpBQUE0aNCAZcuWuZUZMWIEtWrVIigoiMqVK3s9p6dPn+ahhx4iODiYKlWqMGHChAJ/Qzt27MBgMHDPPfcUetyffPIJXbp0ISoqqsjXQ1BGEQ9ogeCW4UyY5xHpXNvqXT2lyMcncy5qW/xSSmk7LHwisSwgZCghQwkZ6uYoUaVU9+7dmTVrFo888ohf5d98800mTpxI8+bNSUxMZPbs2SQmJvL555+7lTMYDFSrVk37q1SpUkl0/6bI74ZWXlADne87fZWlW05g8WIx5TrQeGbfcy8v2W3YHIqgELPy+WeQ42EhSVwMV9aZzEo921XPPnmb8ZE8FBZFD3QuKI24KA2lfO57Pqb+nO574vq60q1bN86dO8exY8cYP348M2bM4PXXX7/d3dLwR+CwWCw8+OCDZGRk8Mknn5CSksIHH3xAo0aN3IS6RYsW0bt3b9q2bcvu3bs5ePAgTzzxBMnJybzwwgt/qZ916tRh8eLFHDp0iO3btxMfH0+XLl24dOkSAEeOHMFut/PWW2/x22+/8cYbb7Bs2TKmTp3qs90dO3YwaNAghg4dym+//cZHH33ETz/9xPDhw33WGzZsGJs2beK///0vhw4dokuXLnTu3Jm0tDStzPPPP89XX33F//73P37//XfGjh3LqFGjWL9+vVamadOmrFixgt9//52vv/4aWZbp0qULNpuaDdXGQw89hNlsZufOnaxatYqVK1cybdo0jz5du3aNQYMG0alTJ7/OaVZWFvfffz+vvvqqX+UFAoFA4BsXjzsv22Q2rzzM+7N2e9nqOVGrd7xaWiTQ2/xRxNxsIIXSq60WMpSQoYQMVXRKdUwpu91OZmYmkZGRbuuPHTtGTEwMCQkJDBgwgNOnT9+mHnpBU0pJTgVIOfD9igwxAfDHpSxe/eoIO45f9iijKgfyO9cB6G252CXn4BWccwGLI05VZJbiqpdjzNO2N7Q25I+4CGw6pTVjnq9z7Dlw2eWiXRM3xUbpHQfLHd4uhabg9CFkqagPQHFJ3QkICKBatWrExcXx7LPP0rlzZ9avX8/Vq1cZNGgQFStWJDg4mO7du3Ps2DGt3p9//knPnj2pWLEiISEhNGzYkI0bN3Lq1CmSkpIAqFixIpIkMWTIEECZeRowYAAhISFER0fzxhtv8MADDzB27Fit3fj4eP71r38xaNAgwsPDeeaZZwDYvn077dq1IygoiBo1ajB69GiysrIA+O233zhx4gT//ve/adWqFXFxcbRt25ZZs2bRqlUrAFJTUxk/fjxjx45l9uzZNGjQgNq1azN+/Hhef/115s2b5zYrV1T69+9P586dSUhIoGHDhsyfP5/r169z8OBBQBFcV6xYQZcuXUhISKBXr1688MILfPLJJz7b3bVrF/Hx8YwePZqaNWty//33M2LECH766acC6+Tk5PDxxx/z2muv0b59e2rXrs2MGTOoXbs2S5cu1crt3LmTwYMH88ADDxAfH88zzzxDkyZN3Np+5plnaN++PfHx8dx3333MmjWL1NRUTp06BcA333zD4cOH+d///sc999xD9+7d+de//sWSJUs8hOHk5GT69+9P69at/TqnAwcOZNq0aXTu3Nmv8oIyzJ0vOgkEpQK3GE/5PAnysq0c+fE8N9JdYrdKThc9j7YcFaPtEvp8llLafuwue5TcPnxSVh4JQoYSMpSQoYpOqVZKzZ07lxs3bvD4449r61q2bMnKlSv56quvWLp0KSdPnqRdu3ZkZmYW2E5eXh7Xr193+7sVSKX67BYvPRpF89LDDYitEATA9VzfsyOS7D4KSXYr6ZV+JidiL/emr6HRr/+PrABlY1QmhGfJ1D3lvG5h2UE0ufd1rtUw4tYQeNUwaDGHHIOlOrPjtzKiPF3MsohUsKWULzHGXVFacsiyjD07+7b8Fezm6D9BQUGYzWaGDBnCnj17WL9+Pbt27UKWZXr06IHFosR2GzlyJHl5efzwww8cOnSIV199ldDQUGrUqMHHH38MQEpKCufOnWPBggWAMqu0Y8cO1q9fz6ZNm9i2bRv79u3z6MPcuXNp0qQJ+/fv56WXXuLEiRN069aNPn36cPDgQT744AO2b9/OqFGjAKhcuTI6nY61a9dqs0/5Wbt2LRaLxets3ogRIwgNDWXNmjV/+fyBMjO5fPlyIiIiaNKkSYHlMjIyPCZi8tO6dWtSU1PZuHEjsixz4cIF1q5dS48ePQqsY7VasdlsBAYGuq0PCgpyc4Fv06YN69evJy0tDVmW+f777zl69ChdunTx2m5WVhYrVqygZs2a1KhRA1AEvkaNGlG1alWtXNeuXbl+/Tq//fabtm7FihX88ccfTJ8+3efxCso7YtpAILgVeLMsl10USOrWbGu2c3u++7OoMaW0CfxC7nNZlpFzcpBzc5Fzc7Hn5JQZOUrIUH8dIUPd+TKUl9ycpYP33nuPmTNn8tlnn1GlShVtfffu3bXvjRs3pmXLlsTFxfHhhx8ydOhQr23NmTOHmTNnlnifIf/DufwIUoFGPUPvr8nWo5dIu5aDxVtsKZfBzqkkUj9kZL0FjDnkpe9HJ1uxOOJUheTCtDU2ql+6zldNKgNgrhyNtbD8HZqljBdLKT8UFm5dF9n3ygiS8x70J9C547PElVI5OaTc17SE9+Kduvv2IgUH31RdWZbZvHkzX3/9Nd27d2fdunXs2LGDNm3aAIpPfo0aNVi3bh19+/bl9OnT9OnTh0aNGgGQkJCgtaUKCVWqVKFChQqAMsO3atUq3nvvPc30eMWKFcTExHj0pWPHjowfP15bHjZsGAMGDNBmAxMTE1m4cCEdOnRg6dKlxMbGsnDhQiZOnMjMmTNp1qwZSUlJDBgwQOvX0aNHiYiIIDo62mN/JpOJhIQEjh49elPnTmXDhg088cQTZGdnEx0dzaZNmwp0OT9+/DiLFi1i7ty5Ptts27Ytq1evpl+/fuTm5mK1WunZs6fP+I1hYWG0bt2af/3rX9SvX5+qVauyZs0adu3aRe3atbVyixYt4plnnqF69eoYDAZ0Oh1vv/027du3d2vv3//+NxMnTiQrK4u6deuyadMmTCbFYvb8+fNuwhSgLZ8/rySlOHbsGJMnT2bbtm0YDKVWFBEIBII7HtnNcCl/dmztm3Odj8Dortn38rvveU8A5dXeynNVXi7pvZO0xWteapUUNytHCRlKyFBChvKfUmn+8f777zNs2DA+/PDDQs3LKlSoQJ06dTh+/HiBZaZMmUJGRob2l5qaWtxdFjgwOoKTW+1eYkq5WKVoQ5BqKZV+XVuUNY28YgVV6WoWd11yH7ZmGevyEBnYyW8V4xtVQaX17iYCnR/NzsXs5fgEtxYZOV9GR8d6h6WUh8GUF9TfpN3P3095YcOGDYSGhhIYGEj37t3p168fQ4YMwWAw0LJlS61cVFQUdevW5ffffwdg9OjRzJo1i7Zt2zJ9+nTNxLog/vjjDywWCy1atNDWRUREULduXY+yzZo1c1v+5ZdfWLlyJaGhodpf165dsdvtnDx5ElBmHc+fP8/q1atp3bo1H330EQ0bNmTTpk1+nwtVSPDF6tWr3fqxbds2bVtSUhIHDhxg586ddOvWjccff5yLFy96tJGWlka3bt3o27evW1wD13aTk5MBOHz4MGPGjGHatGns3buXr776ilOnTmnbt23b5lZv9erVAPz3v/9FlmViY2MJCAhg4cKFPPnkk+h0TlFg0aJF/Pjjj6xfv569e/cyb948Ro4cybfffuvW3wEDBrB//362bt1KnTp1ePzxx8nNzcUfbDYb/fv3Z+bMmdSpU6fI51RQPihPGYwFgtKAv3dcmDEMAJ2k85Cj7bKnpZSnLdSdPb0rZCgnQoYSMpS/lDrV2po1a3j66ad5//33eeihhwotf+PGDU6cOMHAgQMLLBMQEEBAQEBxdrNAvAc6Lz+ClUHvyMJn8zXgyB7udJLNzq/Waly3B9PY8pmyDgMgY3AogA4kSNglGZ0sIdlMZOl1WHDG8PKLfKYx/ga4dtXe9th7jObhIXzeNNG/fQpKHLPjOprRY3T8Jvy5tlpMqRKWj6SgIOru21uyO/Gx76KSlJTE0qVLMZlMxMTEYDAY3II0FsSwYcPo2rUrX3zxBd988w1z5sxh3rx5PPfcczfTdTdCQkLclm/cuMGIESMYPXq0R9m77rpL+x4WFkbPnj3p2bMns2bNomvXrsyaNYsHH3yQxMREMjIyOHv2rMfMotls5sSJE3Tt2rXQvvXq1ctN0IyNjXXrd+3atalduzatWrUiMTGRd955hylTpmhlzp49S1JSEm3atGH58uVubbtmRgkPDwcU69+2bdsyYcIEQLEaDgkJoV27dsyaNYtmzZq51VNn2GrVqsXWrVvJysri+vXrREdH069fP23WMycnh6lTp/Lpp59q42/jxo05cOAAc+fOdZskioiIICIigsTERFq1akXFihX59NNPefLJJ6lWrZpHbIYLFy4AUK1aNTIzM9mzZw/79+/XXAXsdjuyLGMwGPjmm298nlOBQCAQFB+yj0jnzm3OKWW9zvH66EV2sssyv9SowgVjEGE31LAbkvfCOOcWfUpsEhAQSORn3yPJl7HZZCpWDMZUwdNCpyQoqhwlZCghQwkZquiUqFLqxo0bbhZMJ0+e5MCBA0RGRnLXXXcxZcoU0tLS+M9//gMoLnuDBw9mwYIFtGzZUjNRCwoKIiIiAoAXXniBnj17EhcXx9mzZ5k+fTp6vZ4nn3yyJA9F4CdGRxY+q5fse65WLapSSv3MCwlmj1Xxpb0cHMrvDStgc5i66GQZswE23yNR56SilNLbJdC7Ne7y3XPgU7fapFyMkduwUKFIxxWgk+h7/iu+rdyOq/oQDmflFKm+oGRJ1ytWdXYkZ0wpTcbyZSrlVrTEkCTppl3obgeqEOBK/fr1sVqt7N69WzM9v3LlCikpKTRo0EArV6NGDZKTk0lOTmbKlCm8/fbbPPfcc9psmWtsgoSEBIxGIz///LMmBGVkZHD06FEPU+f83HfffRw+fNijn76QJIl69eqxc+dOAB577DEmTZrEvHnzmDdvnlvZZcuWkZ2dzaBBgwptNywsjLCwML/6YLfbyctzJm1IS0sjKSlJy8biOuMGeD2+7OxsD3NtvV55IMqyTFBQkM/zEhISQkhICFevXuXrr7/mtddeA5RsOxaLxaMPer0euw/rUFmWkWVZO67WrVvzyiuvcPHiRc39ftOmTYSHh9OgQQOMRiOHDh1ya+Pf//433333HWvXrqVmzZqEhIT4fU4FdzglPWsgEAg08gc6d+Zs8pSlvLnvWW0yFyOVZ7eETJ4pAKPVhmS3+mfCXmC/JAgKQrIHItlkdEFB6EqpXCVkKCFD5W9byFCFU6JKqT179mjZAkAJxgYwePBgVq5cyblz59wy5y1fvhyr1crIkSMZOXKktl4tD3DmzBmefPJJrly5QuXKlbn//vv58ccfqVy5ckkeit+4BgQsj4KUqpSyeFFKSS5mSlqgc8doZ9U7f4pXg0OxGBwPB52Onb36sDJuLZLOTu0/ATtUxcx1XGN4eRngJM8Fm85MYNUvuJDeiWj8t5QCiUUpcziVu49W8VPvcMPjsod7zC/l6gTk6dDZZJ9KKee28mPNeLMkJibSu3dvhg8fzltvvUVYWBiTJ08mNjaW3r17AzB27Fi6d+9OnTp1uHr1Kt9//z3169cHIC4uDkmS2LBhAz169CAoKIiwsDAGDx7MhAkTiIyMpEqVKkyfPh2dTudVAHZl0qRJtGrVilGjRjFs2DBCQkI4fPgwmzZtYvHixRw4cIDp06czcOBAGjRogMlkYuvWrbz77rtMmjQJUGYDX3vtNV544QUCAwMZOHAgRqORzz77jKlTpzJr1izuvvtut/2mpKR49KVhw4YYjUa3dVlZWbzyyiv06tWL6OhoLl++zJIlS0hLS6Nv376AIkw98MADxMXFMXfuXC3NMSizYQXRs2dPhg8fztKlS+natSvnzp1j7NixtGjRwmssCRU19XDdunU5fvw4EyZMoF69ejz11FOAMovYoUMHJkyYQFBQEHFxcWzdupX//Oc/zJ8/H1DcBT744AO6dOlC5cqVOXPmDP/3f/9HUFCQFiS0S5cuNGjQgIEDB/Laa69x/vx5/vnPfzJy5EjNajn/ea1SpQqBgYEe6/OTnp7O6dOnOXv2LOC8HtWqVfN5zgRlGDHgCgQlii9VkdOIynsc1/yBzl09Rt7/2wguVqzEyP+8nq+MaxCr8iF/CRlKQchQQoYqiBJVSj3wwAM+MxaoiiaVLVu2FNrm+++//xd7dauQyuV7rtHhvmfx5r4nuX51PzlqTJ9gnQ27Q8NsDKlBemwlgm1h5KT9HUPwKey6M4CNSFlJiemZE8TLbiUItJrI1oPervzkLfjODui1EUByDLblUN9YKvFqE+dIVdx0f0USjmYgP12hwPrqr0ZECPOPFStWMGbMGB5++GHMZjPt27dn48aNmjBhs9kYOXIkZ86cITw8nG7duvHGG28AiunwzJkzmTx5Mk899RSDBg1i5cqVzJ8/n+TkZB5++GHCw8OZOHEiqampHhlO8tO4cWO2bt3Kiy++SLt27ZBlmVq1atGvXz8AqlevTnx8PDNnzuTUqVNIkqQtjxs3Tmtn3LhxJCQkMG/ePBYsWKClQ16zZg1PPPGEx369rUtNTaV69epu6/R6PUeOHGHVqlVcvnyZqKgomjdvzrZt22jYsCGgzHwdP36c48ePe9T3NXYOGTKEzMxMFi9ezPjx46lQoQIdO3bk1Vdf9XnOMjIymDJlCmfOnCEyMpI+ffrwyiuvuAmD77//PlOmTGHAgAGkp6cTFxfHK6+8osVaCAwMZNu2bbz55ptcvXqVqlWr0r59e3bu3KnN6On1ejZs2MCzzz5L69atCQkJYfDgwbz88ss+++cP69ev1wRAcF6P6dOnM2PGjL/cvqAUUQ5lKIHgduOcMnY3lfJX7LW7lLxSsSp5Ac6YQt4ngsuPQC1kKCFDCRmqYCS5OPKFlzGuX79OREQEGRkZmn9pcfHthv/xy3/fB4w8e08KwXlpkLwdqjUq1v2UVqZ+eoj3dp9mbOdExnZ2D772y8aNTNxxgVRrBfSJ88CYwYjPYskzGgjNCWROg6eobLTw99/fwqrXYwyvT3psCHo5gnfy6qBDZmrWp2RcvMAv0T34ITCOf176gjzjY5hyDzF85RgAxj/3ODEXs4m8YSG7xiRM+jxMaf/mcoCMrMtjVbfzNL3ageZHHiVAl8Owfxceu4yUr2BNP/68qxMta04jSCdxskPBKUkFJc/lnMsMXfAAf0RL3Hv8CVpeas0VYxaplX6k8fkH0MmKtV3FoRXo3/w+r22kffkyTQN7YZJtnO5YfNnxcnNzOXnyJDVr1ixUMBC4k5WVRWxsLPPmzSswo2pJkp6eTqdOnQgPD+fLL78kuJS6BwiKF1/3bEnKDGWRW3U+/uzRmuw/rhH7TEfCny84K5JAIPhr7DpxhSff/pHaVUI5dy2HLLONrRMeIC4qhMz0XP4zdSeSlEUT/VniQhvwZvBx1mZXoZ7tEhU7fM2vV37V2np+fxXSzykxmBY/PZ0ck5Hn334Zvc3MXZczOF0pgvDK0Vy/dA6AOlUf5bQ5nsDMk/yrhmKpcaTZBk42HE1IcAUCCUEXJGPPkUCSkeyXsNlkIiNDMFUs2KqlvCJkKMHtoDhkqFKZfa9MY3e13Sl3+j5n9j0vllJZVkixVSFbMmmWKXZJ+QleRfkBXzLrsDkspWSdMqhZHLGj9JKMwaSYLQbIiqWTd/e9ws97fnPjQnH0U5KLNmMkKFm8Wcr9GL+eDY3mYtU7fmV231Z0SjtiSv52sX//ftasWcOJEyfYt28fAwYMANDM2W81kZGRfPvtt3Tq1Ildu3bdlj4IBAJXxIgrKP3sOnGF9q99T7NZ39L2/77j28MXbneXbor8bl++gqB7uzdd5Wu/7txy4r5XUggZSnCnUOqy75V1yrvo5Cum1Jkcl+wbjphSqtueTs3Chw1ZUreZACtmRxVXpZRRzu9+5y2mlJegjI5PVQnh9/VS3fe0zG6C0oAWESrfBZGRkf3wzZOK+jsQlAhz584lJSUFk8lE06ZN2bZtG5UqVbpt/YmKimLatGm3bf8CgUAgKFt8/dt5Tqdna8sbDp6lc4Oqt7FH/qMqktymd/MHOnfJnC37iClld4kpZde5x4+VcVv02KfnzgX+IGQowZ2AUEoVO+X7QWrQlFKe5yGvQhRwiXA5B1s+ZUAgVhJ0V2hVzQynlHU2nQGwYnEUMkgyRodSKtCahU62OTOt+bR0cRk+ZQONToQjRajZK/wPdA4ullLl+zKXGgqKKXY14KqmlMqvsHJFlZfsABd+g6oNi7eDgkK599572bt37+3uhkAgKHW4v9AKBKUZ1aIo0Kgj12K/Y361sg8x25sEbXcTkP1JJiMVWkJQMEKGEtwpCPe9Ysa7W1j5edSqgc5tXlJfZtuVn1uYUUY9J6pVlAEb7U1/EB9q0cpnSkbyZD1mh0ukQZIxOLIOxF7ZzZNpHzmzfBRi/qtTNRSynqYpFalwRQnE57+llPohLKVKJdrlV65PriHX6bXny1JKclGOLm0DKV+WUAcFAoFAIBDc6RjUEBRlSVBUraEkb6pgWdumIrl888y+51y2S/nLe6H8vCIJBAIfCKVUcWMvyHajfKBXY0q5nIfruRZe++oIy366DCgZ9tSzY9M5LJZUcxaXwWyTPpz38+7ltC0UAIMEdVq2xRSkBM2LtFzFLjvqyy5DpGZy7GwryqIj8Vw6oJTXae6FRbWUcjQt1FKlA/XyqSZPOqdbp2ZFZy/4Wkn1HnaUdTwKr54q5g4KBAKB4C8hhltBGcAfu/2yiDflmuxjo6ulVEGhMmQ3O/c77YwJBIKbQSilihnvgbfLDwYvgc5X7jjFv7ec4GqOohCqpDcjOTKj2Q15gPNs6SWX1LGyHhmJdKkiABFhITTq2IXnVn6IVa8opjSllMsUjpzv1EuAAYnEi1eRJHdLpyLHlEo/7uibkJJvN7Isu1xAL3N7/nh+VHO668kAsg+zKoFAIBDcOsqnGCUoo+R3cytLUqKz65LnfecSU8oDyVMedlv2J4i55CmR549nJRAI7nyEUqokKYeKCzWmlKul1LmMHAAqhxhoYzhJ65B0DJc6Y82O1wY/nSwTdq0uQdmxWr2mdiUjn02nWEpVrhDKjg/+y/KRT2HTGQGc7nuFSq/5tmsDnp9Sb8V4QEKymR37LX/Xtiwg20K073ade1B9b+hcfhebIltz1S4eiQKBQFCqEMOtoAyhU8MClHE5UdZiqDrc93QS+WVpbzE7teN2OX6p4C/ad+HiJxCUb8QbWDFT1gehv4pqKeUaUyrHrFgzPdKgAnUMlzHqZMIy7yHnzEDNsswg2wjMrUpeltP9SmdSvl8wK21VCDKx/+sNZF6+5Jb3Q/lw/Sl7S1Gb75uv6NfeiEyAMb+ga/GMoxUxQpYmnN6fztwN/mTfM7hcxkGN/o/+FhHoXCAQCEoT5VuqEpQVtAx2ZVA8VF9dfPXda9gKL+V9vwepZmQuCqsyeL4EAkHxI5RSxY23B205euJ6iymVa1G0AoFG9ecm0QED2II0xYEOxQLpevZVrV526A1AjQIFFYKN2B2xoFQLF9/ukl6jMir1tNhQRbg2FeOQImsq9crRNS3V5J91c5GF7A5NleQjplSE0cCzNSpT15YOQJocUAKdFAgEAoFAcCejKXbU5dvWk79G/v57y77nS3a2u5wHf50R3HZYUuUFAkGpRiilihlXAxyv/td3ON5iSuVaFbWSSe8MePgMAayyB2ll9ChWUdYb1wCQZJngIPfRrF61MGSHBZbe0bxNHfHclESe513SDKRUM+GbvTYuNlrl3CquNKBegnRJ77nNc0LOK9Nrx7Is53vAp1GVQCAQCG4lYvJHUAZR3ffK0iuAr+Q9mvsezltSm3P3UveK9YZLu/7sx9t9XoZOnkAgKBaEUqqYcX8BLn8PVW8xpXItilIqwOD4uUkSOiQScCoSdJJE7eNrab95hbauXnAWIwhgclwIG0e3Y3CbeGS7o618ocp9WjxJXq6E/eaEXd+qL8GtREYmx6AoNjNlb0op1VKq8LZUIdIu3DIZMmQIkiQhSRImk4natWvz8ssvY7VaC6/sgy1btiBJEteuXSuejvrByZMn6d+/PzExMQQGBlK9enV69+7NkSNH3Mpt2LCBDh06EBYWRnBwMM2bN2flypVuZU6dOoUkSRw4cMDv/c+YMYN69eoREhJCxYoV6dy5M7t373Zrc+jQodSsWZOgoCBq1arF9OnTMZvNhba9evVqmjRpQnBwMNHR0Tz99NNcuXLFZ50ffviBnj17EhMTgyRJrFu3zqPMJ598QpcuXYiKiir0eGVZpnv37gW2tXLlSho3bkxgYCBVqlRh5MiRbtu//vprWrVqRVhYGJUrV6ZPnz6cOnXqlhynQCAQFCeaQZGmkyqbUqKkxcRyrPDi2ufPkfktTbkUjLPoaJ5r4PD5elgtZXOaUMhQQoYSMtTNIZRSxU7ZHISKC723mFKOgcWplHKp4DJ4x5zbhc5m1ZYDdTCQAJIqBdAgJhxJkrA72lUjB+n8zHZolvPclrUYREVUQkguo3L5vtKlA6tkzLfGeX1U9z1/Euo53UEFAN26dePcuXMcO3aM8ePHM2PGDF5//fXb3S0NfwQOi8XCgw8+SEZGBp988gkpKSl88MEHNGrUyE2oW7RoEb1796Zt27bs3r2bgwcP8sQTT5CcnMwLL7zwl/pZp04dFi9ezKFDh9i+fTvx8fF06dKFS5cuAXDkyBHsdjtvvfUWv/32G2+88QbLli1j6tSpPtvdsWMHgwYNYujQofz222989NFH/PTTTwwfPtxnvaysLJo0acKSJUt8lrn//vt59dVXCz2+N9980+2Z6Mr8+fN58cUXmTx5Mr/99hvffvstXbt21bafPHmS3r1707FjRw4cOMDXX3/N5cuXefTRR2/JcQrKEMIqWVAGcMZlKnuTW/713YsXArKH10C4LtC5rYD2vN3Sdr2Rx7JMPJBr5EDaveRkmimrEc6FDCVkKCFDFR1D4UUERcG7S1fZfKjeDAYvMaWu51gACDE5Y0qpqKV0djsGWy55euUnaTFImqudW3mHUkpyrDNgV0NLOjvh5RLYZHu+UnKBZX3hZiklU54ubZlBliUkSdaUUv5cY8fPVlhKOQgICKBatWoAPPvss3z66aesX7+e5ORkxowZw+eff05eXh4dOnRg4cKFJCYmAvDnn38yatQotm/fjtlsJj4+ntdff50GDRqQlJQEQMWKFQEYPHgwK1euJDMzk+TkZNatW0d4eDgTJ07ks88+45577uHNN98EID4+nqFDh3Ls2DHWrVvHo48+ysqVK9m+fTtTpkxhz549VKpUiUceeYQ5c+YQEhLCb7/9xokTJ9i8eTNxcXEAxMXF0bZtW+04U1NTGT9+PGPHjmX27Nna+vHjx2MymRg9ejR9+/alZcuWN3Ue+/fv77Y8f/583nnnHQ4ePEinTp3o1q0b3bp107YnJCSQkpLC0qVLmTt3boHt7tq1i/j4eEaPHg1AzZo1GTFiRKFCUPfu3enevbvPMgMHDgTwmG3Lz4EDB5g3bx579uwhOjrabdvVq1f55z//yeeff06nTp209Y0bN9a+7927F5vNxqxZs9DplLHhhRdeoHfv3lgsFoxGY4kep0BQ6rHbIDdD+R4YATpPi2BB6UOLyVRWdam6PPQhx9l70UiOFE01ezyAp6xdAMF6E9mO70F5dircsCMRAHhXhGjnSzKgQ9KkemRHyI0yKJYJGUrIUEKGKjrCUqoEKYPP0b+M01JK5stD5+g4bwunrmQBUDXUYdUieSqbTFZFaWTTKUopWZKd8Z8cv1LZxfpK8ji7vmd3nLM1+RUVRbSUcmtVUDpRfjBaoHNb4VdKfaD7iIn+l5BlGUue7bb8FUfss6CgIMxmM0OGDGHPnj2sX7+eXbt2IcsyPXr0wGJRFM8jR44kLy+PH374gUOHDvHqq68SGhpKjRo1+PjjjwFISUnh3LlzLFiwAIDnn3+eHTt2sH79ejZt2sS2bdvYt2+fRx/mzp1LkyZN2L9/Py+99BInTpygW7du9OnTh4MHD/LBBx+wfft2Ro0aBUDlypXR6XSsXbsWm83m0R7A2rVrsVgsXmfzRowYQWhoKGvWrPnL5w+Umcnly5cTERFBkyZNCiyXkZFBZGSkz7Zat25NamoqGzduRJZlLly4wNq1a+nRo0ex9LUwsrOz6d+/P0uWLNEEb1c2bdqE3W4nLS2N+vXrU716dR5//HFSU1O1Mk2bNkWn07FixQpsNhsZGRn897//pXPnzhiNxlJxnALBbcNmhaVt4bWayt/i5mAt3LpBcDtxz75XlpRSrj4H9qg1BN/1LrP2jqf/xv58efJLAK7lXfWo5y2mlOQiXz+34RrDvr2OXqeME1ZDmOfO8yWssbj1yKWPsow1z4bVbMdqtmMx28uMHCVkqL+OkKHufBlKWEoVM66KkzI1IhUTRjWmlE1m9e7T/HHJoZAKD6CyqpTSO3WhqtmiZtTisJRyjHRqIQDNdc8d/9z3ZNf9SC5BsP05KBfc3feEqVTpwdVSTplZy85R1p29VLggX9IxpaxmO8vHbC2RtgvjmQUdMAbc3Ay7LMts3ryZr7/+mu7du7Nu3Tp27NhBmzZtAMVXvUaNGqxbt46+ffty+vRp+vTpQ6NGjQBl1kpFFRKqVKlChQoVAMjMzGTVqlW899572mzQihUriImJ8ehLx44dGT9+vLY8bNgwBgwYwNixYwFITExk4cKFdOjQgaVLlxIbG8vChQuZOHEiM2fOpFmzZiQlJTFgwACtX0ePHiUiIsJjlgrAZDKRkJDA0aNHb+rcqWzYsIEnnniC7OxsoqOj2bRpE5UqVfJa9vjx4yxatMjnDB9A27ZtWb16Nf369SM3Nxer1UrPnj1vman1uHHjaNOmDb179/a6/Y8//sButzN79mwWLFhAREQE//znP3nwwQc5ePAgJpOJmjVr8s033/D4448zYsQIbDYbrVu3ZuPGjaXmOAWlAxt2Nv25iWt519BLetrFtqNycGVte3Z2NqmpqciyTJUqVQp9ISkTZF+BS787l9NPQOY5qBh3+/ok8Ikq8uvKoPueGwZF+aRDhx07P579kYY8jGsqGL2X5DIeSBBgdZezrYYQIAev0rcaywrXZETOc2mz2Pl03oF8lf7a+OwvNytHCRlKyFDeEDKUd4SlVIlRNk1O/yp6zX3PzsXMXABm9mrIN+M6aK59KpJB77RgcrjXyQ6LFTd1jxdLKc18Slv2PNmSyzc5n/LLWyl/cLXQKn8qx9KFLHuGEdVLMuoPxuL4vZy7lEdhqNe1bIbVLH42bNhAaGgogYGBdO/enX79+jFkyBAMBoObGXZUVBR169bl99+Vl6fRo0cza9Ys2rZty/Tp0zl48KDP/fzxxx9YLBZatGihrYuIiKBu3boeZZs1a+a2/Msvv7By5UpCQ0O1v65du2K32zl58iSgzDqeP3+e1atX07p1az766CMaNmzIpk2b/D4XJpOp0DKrV69268e2bdu0bUlJSRw4cICdO3fSrVs3Hn/8cS5evOjRRlpaGt26daNv375u/v6u7SYnJwNw+PBhxowZw7Rp09i7dy9fffUVp06d0rZv27bNrd7q1av9Pt7CWL9+Pd99953mFuANu92OxWJh4cKFdO3alVatWrFmzRqOHTvG998rmS7Pnz/P8OHDGTx4MD///DNbt27FZDLx2GOPabPSt/M4BaWHX3Mv8/yW53l518tM3zmdmbtmum1fs2YNa9as4f3332fZsmV+xUsp/bi8lBtDHKu8WysISgf5lVJlKdC5lmHPRSQOMSpWTRabYsVj0DntGFyPzMNSKt9njklCLsB1DxTll1tfJLwI62XnXIKQoVwRMpQ7QoYqGGEpVex4ea0t67MmRcDg4r535YYyCLWoGUlEkJHL+QvL4Ix07ghKrSqlJNDJynctE4ib+55bI7iroNDaUJZl7JpSSjXJkt1q+4ubpVTZGiPvaCo47rtgyQKO343FIdSEmwqf3XIKkSVzrxpMOp5Z0KFE2vZn30UlKSmJpUuXYjKZiImJwWAwsH79+kLrDRs2jK5du/LFF1/wzTffMGfOHObNm8dzzz13M113IyQkxG35xo0bjBgxQvOVd+Wuu+7SvoeFhdGzZ0969uzJrFmz6Nq1K7NmzeLBBx8kMTGRjIwMzp496zGzaDabOXHihFtgyYLo1auXm6AZGxvr1u/atWtTu3ZtWrVqRWJiIu+88w5TpkzRypw9e5akpCTatGnD8uXL3dp2zdwSHh4OwJw5c2jbti0TJkwAlDgDISEhtGvXjlmzZtGsWTO3elWrVi30GPzlu+++48SJE9pMrUqfPn1o164dW7Zs0WZNGzRooG2vXLkylSpV4vTp0wAsWbKEiIgIXnvtNa3M//73P2rUqMHu3btp1arVbT1OQekhw6ZMLBh0Bqx2K+m56W7br151uhWZzWZyc3P9ehEq1agZOnR6ZywpIXSUKcru5VI6btAp3g15NodCyU/xKL8cJbsuegnf4Ux45CnHuwrpeqOOR8bfgyRfxmaTqVgxBFNFTwudkqCocpSQoYQMVRBChioYoZQqZsrsGFRM6F0Cnec54kQFGRWByiPNrLIS15V2b5ZSXt333GNEFaZM0CylPLYUbaCRXK5web/WpQLJy6JDKWWTlN9LiL7wa+x03ysZJEm6aRe624EqBLhSv359rFYru3fv1kzPr1y5QkpKitvAWaNGDZKTk0lOTmbKlCm8/fbbPPfcc9pLomtsgoSEBIxGIz///LMmBGVkZHD06FHat2/vs4/33Xcfhw8f9uinLyRJol69euzcuROAxx57jEmTJjFv3jzmzZvnVnbZsmVkZ2czaNCgQtsNCwsjLMxLrAwv2O128vKc1ntpaWkkJSXRtGlTVqxYocU3U/F2fNnZ2RgM7sO3Xq/8vmRZJigoqEjnpShMnjyZYcOGua1r1KgRb7zxBj179gTQAqGmpKRQvXp1ANLT07l8+bIWMDU7O9vjWNVjUJ/1t/M4BbcfVWawOEbbyIBILuZc9IjvosZjUSmOOHoaNy7BrsWQlwlBFaHNcxBUofjaLwjZZcItn0W5oHSiWgxpl+s29qWouEXLcEzoGSTl2WtWY5l5uhoodfPdb2qxfL4RAOhNYUQFVCRAiuAG55X6ZkUmUEeDgs6bJEkYTHokWYdkkzGadKVWrhIylJChCkLIUAUjlFLFjKsZq1SmhqTiwTWmlNVxUxj0+VVBrufI3YLJqnMomSSc2feKGOhc9vgCsq4g972iIQKdl060uTdZUVBKgNWhlLJbCnd50DncQUX2vYJJTEykd+/eDB8+nLfeeouwsDAmT55MbGys5hc/duxYunfvTp06dbh69Srff/899evXB5SsLZIksWHDBnr06EFQUBBhYWEMHjyYCRMmEBkZSZUqVZg+fTo6na7QtNqTJk2iVatWjBo1imHDhhESEsLhw4fZtGkTixcv5sCBA0yfPp2BAwfSoEEDTCYTW7du5d1332XSpEmAMhv42muv8cILLxAYGMjAgQMxGo189tlnTJ06lVmzZnH33Xe77TclJcWjLw0bNtQCS6pkZWXxyiuv0KtXL6Kjo7l8+TJLliwhLS2Nvn37Aoow9cADDxAXF8fcuXO1NMeA1+CXKj179mT48OEsXbqUrl27cu7cOcaOHUuLFi28xpJQuXHjBsePH9eWT548yYEDB4iMjNQE2vT0dE6fPs3Zs2fdjrdatWpuf/m56667qFmzJqCkce7duzdjxoxh+fLlhIeHM2XKFOrVq6dlEHrooYd44403ePnll3nyySfJzMxk6tSpxMXFce+995b4cQrKDla78gwPMAQAnu5CVqvVbblYlVL7VsKON53L4THQfGjxtV8QqgJK0oEav8cu3PdKM3dMTKl8llIWu6L0lcg/HezdeMrbOh06bEBwZH1aRLUk25rD2SuHAbBeyoFwMOkkch1tS2qiGl+NljGEDKUgZCghQxWEUEoVN25P6vKntnCNKWW1qQObp6XKIf1pDutTsefblGHMBiKRJMizKjGpJM1SylMgk30Nja6xr/Mpv27W11/SuSq/yt/1La3o1esLqFpMVSll+sPCh7N/pvNTDYiMDvFav6Qtpe4UVqxYwZgxY3j44Ycxm820b9+ejRs3asKEzWZj5MiRnDlzhvDwcLp168Ybb7wBKObYM2fOZPLkyTz11FMMGjSIlStXMn/+fJKTk3n44Ye1dMapqakEBgb67Evjxo3ZunUrL774Iu3atUOWZWrVqkW/fv0AqF69OvHx8cycOZNTp04hSZK2PG7cOK2dcePGkZCQwLx581iwYAFZWUpyhjVr1vDEE0947NfbutTUVG02S0Wv13PkyBFWrVrF5cuXiYqKonnz5mzbto2GDRsCSoaV48ePc/z4cY/6vl6shwwZQmZmJosXL2b8+PFUqFCBjh07Fprmd8+ePZpAA0rWHnCmlgYl3sFTTz3lcbzTp09nxowZPtt35T//+Q/jxo3joYceQqfT0aFDB7766ivtt9KxY0fee+89XnvtNV577TWCg4Np3bo1X331FUFBQSV+nIKyg9XxZA40KM8Eu4vFkCzLHpmhilUpZc7yvVyM2O12re862TFFIkmuKYhLbN+C4qMsZt9TxVnXCV81hpTZZka2ZyKbz4PJe4Bpb225LWqeEnYyLVfJw6lIlgw6z/J3KEKGEjKUv5RHGUqSi3X0Lhtcv36diIgIMjIyNP/S4uLzNUs4uu5LkAIY0+QAhrzL8I8foUr9Yt1PaWXPqXQeW7aLuKhg/rySraz7Z2cqhQZw8uRJVq1aRaWoSpgvZXFdl4Ph9E6CskzEX7pGg7NXOBITyB+VY8FkomKDVnTJaI2hUxWqPViXrGtXWTZiIAARpipkmC8qD92gf2AwX2DEu08CMH5UH2Iu5RGZZSW7+kQCDTmEnPl/NDlyhC0NYsk2BnI6NoQ62SMA+MfSpEJnFFSyD31CwmUl68SJdo0IMZRO0+HywPms8/R761HSozKpd2IoD1xsjMWQy/9r8gqSMYP4o6Poll5HK9/6kVrc19V75qJLm1+lkU7xez+fdM9f7ltubi4nT56kZs2ahQoGAneysrKIjY1l3rx5DB16CywS8pGenk6nTp0IDw/nyy+/JDg4+Jb3QXDr8XXPlqTMUBa5VefjdK/7yTp6hZ/6xjC39kUaV2rMwcsHqR9Znw97fggornuvvPKKW73Ro0dzPtdAntWGTpJoEBOuWXEXmU3TYMcC5/KDL0PbMTd7SAVy9epV3n77bbKzFbkpukoUwy6+hN4YBAFhcOMCJG+Hao2Kfd+C4uGFj35h7d4zxEcFc+pKNp3rV+H/DW5+u7vlF98fuchTK3+mUWwEfwbORDadp2ZYHU5mHqX69dp03qEDOY+2Vf5G9ZC6vBHyJx9nVaSJ7QK6+z/n+DWnVcXoHRW4nhGBCRldxfHcCJQIvPIZVvNxqgfdx5mcfRAaBTeuANAo/kmOZUQTnneZ6wGVyJRkoivI1H8oipiYWEz6QHQhduxZOkBGki9hs8lEVgzBFFmwtUdB2GWZ6zkWrHbl9TfYpCfYdOfYaAgZSnA7KA4ZSmTfK2bMYTW8rL0D7E79RLWUMludM3r5s+4hgd2hywlC8ZHOMRq4HmhCb1eWQ+0hdIhV/KFDAhTrFtV9T9LpUM+pplN1USpJXvSsdl/ue0VQy7rOIok5y9uPx6WTZV7/TwaTP7Rzqu4S1tw9n4wIs2NTwRdacsnmWA719LeV/fv3s2bNGk6cOMG+ffsYMGAAQIGpckuayMhIvv32Wzp16sSuXbtuSx8EAoETs+zdfU+WZbd4UmqsjP/sPEWPhdt45N876b1kB2Pe33/zO89vnVRC40NaWpqmkAI4d/EKNwhBiSklLKXKAh7Z98qQKOEeD0v5rndYSkkWC8hKDJ+A4FCgaPKvV7H7xnXt+8VTfzjKObMWWmxqUiIfjdwk13MsnE7P5uy1HM5ey+HkpSzsZeli5UPIUII7hTtHNVxauJMcoG8C1VUv1yWOj8HLDKUuzAjXcwiICCUv6wYXKoRyoUIoUTcUs09JkgjPDSaPDO1UqoHbFAWCmlpPPc++9ataoHMvA49bUPVCcMu+52cdwa3DYLMSf8lGvMOtPCPsT8wGM2DyKSC6xoCwA8L+7dYyd+5cUlJSMJlMNG3alG3btlGpkh9uAiVEVFQU06ZNu237FwgEcMVuJhDYn3cJ0BGgdyilZJmcnBzeeustrl27BjiCIBsM2Gw2UtMV5U6AQUee1c7Jy9ned+AP+QeOm1AMWSwWTp8+rQWWjYmJ8bDOVuWbuLg40tLSsFqt2NEpM2kiplSRyLPaOO2w1K8SHkhEkLGQGsVMWRf/Hf1XA50r8V2V+6BGw8bkHr7iUlj2MpHnI9KULGOV9Bhc6thtVi/l3duUZTvFZUehWkgZ9DqsNjs2WVZu8zJ83YQMJbgTEEqpEsSbAuRORw1qnmvxtJRyFcJUASygWhhBxy6TFWDEYtCTbVQspXSSnrw/MpR6jvqqpZRrtgE1mLxb9j1VX+Ua6FzKZynlemmKMBq5Zd8rh9e31KFda8/sirLdgKRzEXZ8XC+dpNN+E3YZPGLzC0qMe++9l717997ubggEglJGpmxFdQIINYbStGpTtqdtR0bm4sWLmkIKoGbNmlpgWfVh3iohiq1HL/21sdqjbtHb+uyzz/j111+15ccff9wt25ayG8eLssHgzFSM5IgurVpKCZmjMGRZpteiHaRcyAQU16xtE5OICg0o+X2r1kbactlBczpQlgAw6hR53KmU0mG7ehUA27VrYKzoJemQp0eC7CaYyXxc5VHa1wwj+sd3AahUI57MHKecLgNGbWaw5ISxYKOe6zb1XaXsaqWEDCW4UxDue8WMq/BzuipcDy1fNheqAirXavNYpyLLsqaUqh1djzbH04i7oiigLI4YTSZTMMboEAJqVyCwQZRSz8V9z9tA6NyB+6IkOQc7HW4jr7fiPnHdb1kSOO5YfF4Epyk4+JbndW4WcOLKCgQCwe1GfRK3C4xh2xPbaBilBLe1y86A4JGRkUycOJGBAwc6lTmyalVdHJ346+57rsozb8vgagkuaRNvilJKAnUiThaWUoUhy2gKKYBss43Uqzm3aOfKh9N9r2zLEmqgc52LVil73z4AZIsy4ScZ9AXKTFIB3826ACxhlbVlY6C7wlCWiuneLQAvUT+EvlcgKAUIS6nixuXBdvwuHanVI2hHWdW/Fx01ppTrA16fP6YUTgGsblQ9MgCDY7bC6nD1C68XTdUx93mtI+l0YHMqHDxtZDyx57OUchMWihJTSrjvlWokt0gHqmBfNKWUXVxYgUAgKDXoJQmDzqBYtDrQstTpdFogXcnF0gKKKbaPh7te0RtT+xoYGEhubq5XZYXr8WgZhzVTYJeYUtdOQ9ZlZV3VhqC/xa5p3sjLhK2vKv0yBimB4CvG3+5eERZoIDPXesvjBZWkQqWk0E6R5HTV0zvc95w/eae2SB8RARYwVKqMOV9bzslbF4s/dT84PA68XBLZ1U7LawDY4sXfBEcCgeDWIJRSxY77g9Ri1CHL1nKjlDLodPmWJe3B7819T3IEJjXY3AW/K2dOc+qXfURUrUZ4pSqk/voL6WfPAA6hzVdYB9V13WWV5r5ndzev9ihYCG5WyP5XE5QU+W4snexto6aJLLiZfDGlBAKBQFA6UN9PJSSir9eiXmoS+8//qaxzTXIiuQ/+Om3xr7jv5beUuokmXBROrsuuuFpKOZVr+WJKnd4F385wVqr7EDz5XtE7VNykfAk7FzmXjcHQ9ZWCy5cgrmf2VlsseShDb8leiwfZy1KAXkkr77SUkgi+7z4sZ23oKkTAJZD0usLvL0n755wk9FrHed58vTP99fcpz/eAsnStBII7FaGUKm5cBj81/pBdNpcbP0lDvmA8+ZfB3X1P7wjEVzkzm/DsPLJNBqwGPdfOn+Xj2dPQ6fXc16M3ez7/RKuvNxrBmr9dH4EVkZEdM40R2RauhkBYlkVzXi2KwOrmvidGsduOegnuSU2DwEYEZt1wbpOVq+WfpZTIvicQCASlCY/wyZJE61N/o0rWXfx58QpEgt3FtFXKp4SQisNSyqMXN9+YqpRS5R+3Vl0UV073PRTLFHV8unjEUdphzXL56E33pVix5Askb866Pf3AffxWrfRvlfVzftmhLIoSLvojWlftSMXgAOx5NuCwX+ErAswyBrPd2ZZHWU95LJ8uuZA9/HVcW5YQCimBoLQglFLFjJuZsONBa7PnlZsTnT9+VH7LKRUt0HliIne9+w7m1DNEZWVirl+XX777muyMa1w9m4bVYubEnt0AhFeuSnilytRv9wB7Vn2qNOQendGB5xBzNTycnMBAbcY1PNsMoUU/PuG+VzppceIUKQ3dA9GrApTejyvlqpQSllICgUBQCvAy12Swm9xXuL3cuiuldF5fdotIMcSUullLKSX7HqBzWEpZc5XPkEqQdcmLa+FtIn8/7N6yqd0avFlK2W6xT35+N9KygPtvUvkeYYpkTrs5/MYhvto8BVf3PRXJpW6tszIz/2cj25TJ5ToRHuWU/bh/KujcSsmUsAuk62uDJIGafU9wW7FY7WTkWpBlMBl0tz5rpuC2U150JbcVu5zf4/rOJX/8KFdLKTeFjouQFtKmDSFARce2xNb3A/D+9EmkHfmNa+fPAdDs4b9xb7eeAOxdtU5pR1KHMS8ZQFy+5wYGsr53L6oc2qFs8xx//cLd3FeMYqUOF8ki0G4hT+9iKeVDMHVTSgnpRCAQCEoN6rirk3RaplWv5TQZQ3XPKYY3Ww+lVNEVQf4opbzFlNJi8ajjk80hSxocOQlLS+DzYjhHxYV7PFPl81aN6U73vVuyu2JHQibQlkWoJRALgWhWTTYt4BQ22c5W429cyjQA0W71a16QMdkgW/3Z6r2I1z5camU3JbLsXqEYcQuR5bE/we3ibEYOGTkWbblO1TACjeUrWVh5RyilihnJy+Bns+fdhp7cHvJbRlX2koZXlmUPIc0bQWHhjvKKgBPoWFZwD1zudeCS8n2RJGSdWs95nYoyFInAiKUUL5clwp7DRQwYHEphX9fZLdD59gUQ3xxqti/mTgoEAoHAX5yvpZL2md9W2WtMKVT5wrH0V5QSXgKdZ2ZmsmfPHsxmMyEhIbRo0QKTyeS1uiu+3Pd8Zt9TlVKqpZQhoIC+3Sbyn1/77VOWuSo7DJoS8BbtW4tldmtjWRUHMvCg8Sgx6depRysArsaehwZg166nxAVrBsf05zFbqwJgNBrBpigSVHn8TE0l8YDOIGHDoWxyOSdGu4WAa2nOnWv3raeFmZC4yw/5LRqtNhmEsVS5oryEOrpluHnvOW6w8qSUCgnQUy08UFtul1jZo4yrQOZLKdWoYxciY6oTUaUqMXXqE9foHm2bb7uo/DgvipqFT3eT2feQJCSHIFiG5I07EtlNseh5/fXap0WtoG1LTc+m77KddJ6/ld5LdvBbltPU3L5jAbz3xG0VrG8nQ4YM0VxITCYTtWvX5uWXX8Zq/WsuGVu2bEGSJK/p0EuKkydP0r9/f2JiYggMDKR69er07t2bI0eOuJXbsGEDHTp0ICwsjODgYJo3b87KlSvdypw6dQpJkjhw4IDf+58xYwb16tUjJCSEihUr0rlzZ3bv3u3W5tChQ6lZsyZBQUHUqlWL6dOnYzYXbl27evVqmjRpQnBwMNHR0Tz99NNcuXLFZ50ffviBnj17EhMTgyRJrFu3rsh9BnjllVdo06YNwcHBVKhQweu+Tp8+zUMPPURwcDBVqlRhwoQJbr8h19+Z61/Dhg21MnPmzKF58+aEhYVRpUoV/va3v5GSklLoufGnf4Kyh6J0KjieZP5A55KXl1zybsDaobCiB3zwd8g8T8qubXz0r6l8OHMKn8yZzoU/jjvL5x/oZZndu3ezdetWdu3axbfffsvvv//us9/+WEpdOZMKQMqOrWReuQQ4su9JOhellEOW1KtKqVIihHicIxt89wrMrav8vdUebly65V3R3WJLKZWyOncZqVNig9kdQQxyrykxOmWXBEE2FLko0Kj8BitWrAgZZ/K15FtZ2vXKV8Tucwbod54v/wKd/1Vcld353QqLAyFDFZcMJQsZqpzJUEIpVcw4H8USqueaLN8+//pbjUGvY9Pz7flsZFs2jm7Hi/+fvfOOj6O6t/h3yhbtqnfZlrtxL2BTTDe9Q0KAVMqDBAgJj0AKpJCQkOSFQBrkQSqQPEjohNAJHWxsbNx7kyWr97J9yvtj6hatJSPZkOz5fPTRzsydO3fanXvPPb9zz55pb7N9EoZISk0+7HCu+OV9XHX3n/jMj35OoNAVo54lZt9WT2XYaMmDBRcjP7zRLMH2LfqINAdzGATWTHyq1dBxtZNe3dzK+3Xd7GgbYG1DD8+FZ9nbNEGAROg/lpQCOOOMM2hubmb79u3cdNNN/OAHP+DnP//5wS6WjaE0OBKJBKeeeiq9vb08+eSTbN26lUceeYS5c+cmNeruvvtuzj//fI455hiWL1/OunXr+PSnP80111zD17/+9Q9VzkMOOYR77rmH9evX88477zBx4kROO+002tuNDtqWLVvQNI3f/e53bNy4kV/+8pfcd999fPvb386a77vvvsull17KlVdeycaNG3nsscdYsWIFX/ziF7PuFwqFmD9/Pr/97W/3u8xgXP+LLrqIa6+9NmMeqqpy9tlnE4/HWbp0KQ8++CAPPPAAt956q53m17/+Nc3NzfZfQ0MDpaWlXHTRRXaaN998k+uuu4733nuPV155hUQiwWmnnUYolN1IeV/ly+HjgdQAHiFFK+Xe5oavYzdl8U6ns+v+WO96AzY8Dnvehc3/hC3P8d6Tj1C/YR0Nm9aze80q1r36oqsQ6UbnsVjyQGPqctp5DIWUajRIKU3T0M02kjH7npDuKSWbqqyPzDcqg1Jq1QMw0GL8Na+FO6fCvcfAe/cesFJJVpvzQCmlzP8fR07K/Ui2+buMdeayZjeeBFQzoUc2JCyCIKT1ceyJBqxl128NlWKlz9guFiH5FqZ5cGWJ0B0ZuG/USPjOZUCuDTX8NlR6TZtrQ/2ntaFypNQowiJH9P8w6+QCv4f5tcXMGlOY5jEFxstmIRsplRV68o9MShk37I+jMJgD1dCRI6U+OrAaL7JNdDp3RbTXpN8vJaWVmhA8rvTOr/9U+Hw+qqurmTBhAtdeey2nnHIKzzzzDN3d3Vx66aWUlJQQCAQ488wz2b59u73fnj17OPfccykpKSEYDDJ79myef/556urqWLJkCWCMrAqCwOWXXw5Af38/n/vc5wgGg9TU1PDLX/6SE088kRtuuMHOd+LEifzoRz/i0ksvpbCwkC996UsAvPPOOxx33HHk5eVRW1vL9ddfb39sN27cyM6dO/nf//1fjjrqKCZMmMAxxxzD7bffzlFHGeEJDQ0N3HTTTdxwww385Cc/YdasWUydOpWbbrqJn//859x1111pI1zDwWc/+1lOOeUUJk+ezOzZs/nFL35BX18f69atA4yG6/33389pp53G5MmTOe+88/j617/Ok08+mTXfZcuWMXHiRK6//nomTZrEsccey9VXX82KFSuy7nfmmWdy++2384lPfGK/ywxw22238bWvfY25c+dmzOPll19m06ZN/N///R8LFizgzDPP5Ec/+hG//e1v7cZwUVER1dXV9t/KlSvp7u7miiuusPN58cUXufzyy5k9ezbz58/ngQceoL6+nlWrVmU9z32VL4ePF5I9IFMGpFyylEhfLwBlm//FZxofxRPpTU4LDrFjQVNQE8YzWTlxirHK1UbJZHSeGn431IEtd/heY0+Eba397O4IGTMSm8eRJMeIR7eVUhYpZZJftqfUfrQtYwOw/nH44K+w/RXIEEo4bKRdI9Xxvxp/tLO+dQO8+5sPf7xsRUlSSlmk1AHylBrRWR8PHlKa1+iqE76nCsa9tnw4kyaXGcxAyjWlX0wz1VcIeAv/C0/gBIcYMi+YX4lleC5H8mImk2ajgVwb6sO3oXSyt0d0XeekU07jd3/4EyefcuoBaUOdevrpfP+2H3Le+ecPmibXhtp/5EipkUaGRkLOEDsZQ1VKZcNwvJ3cSW2l1IcK3zN+5gyxPzqQ1fQRY8l8zPSUBo/xOzmtqmm2OakV4jmSLUpd10lEowflbyR8LfLy8ojH41x++eWsXLmSZ555hmXLlqHrOmeddRaJhBEied111xGLxXjrrbdYv349P/vZz8jPz6e2tpYnnngCgK1bt9Lc3Myvf/1rAG688UbeffddnnnmGV555RXefvttPvjgg7Qy3HnnncyfP5/Vq1fzve99j507d3LGGWdw4YUXsm7dOh555BHeeecdvvKVrwBQUVGBKIo8/vjjSUS4G48//jiJRCLjaN7VV19Nfn4+f/vb3z709QNj5On3v/89RUVFzJ8/f9B0vb29lJaWZs1r8eLFNDQ08Pzzz6PrOq2trTz++OOcddZZI1LW4ZY5FcuWLWPu3LlUVVXZ604//XT6+vrYuHFjxn3+9Kc/ccoppzBhwoRB8+3tNUiGfV2fHP69kGR0niWd7nrPBUCOmqSUuw5UUxQCmmq3SQrKDbuBpEkxMnhKpdap+6pjU5VS21v7OeZ/XuO0X77Fkjvf4BevbEPTnDRWR1+zpBwj6Sn11s/hiSvhma/AQ5/idw8+wC1PrmdTU19SspaWFpYtW8ayZcvYvHlz9nPM5CllqbjOuxuu/Bec8ysz7eiqu9ztbVspdcBn30svy0cfbu8RPWmVrjlKKS2FeEvZMwnJ0bTGQq9SD4DqybPzsPMyZ20cN9CGFkl+TqRI3GhHxaMk4jGUeIxELLZ/7aJYFDUWRYlFUWMx1Njot6Nybaj9QMolT22P7O4IsaWljy0tfWxu7iOuGM/paLWhOgdibGoyjpVaXw6GXBtqeMgZnY80MtTrH5kZUg4yrA+PW+r+YY3DM42WZoMmCKCD4GrLDe9Tkwvf+ygi092X7EaExU4521Ibi4qmI5rzsGijoJRSYjF+c9mnRiy/4eD6Bx/H4/fvO2EG6LrOq6++yksvvcSZZ57J008/zbvvvsvRRxuj3w899BC1tbU8/fTTXHTRRdTX13PhhRfaoyuTJ0+287I+gpWVlXaMen9/Pw8++CAPP/wwJ598MgD3338/Y8aMSSvLSSedxE033WQvX3XVVXzuc5+zRwOnTZvGb37zG0444QTuvfdexo4dy29+8xu++c1vctttt7Fo0SKWLFnC5z73Obtc27Zto6ioiJqamrTjeb1eJk+ezLZt2/br2ll49tln+fSnP004HKampoZXXnmF8vLyjGl37NjB3XffzZ133pk1z2OOOYaHHnqISy65hGg0iqIonHvuuVkl5aNV5kxoaWlJakwB9nJLS0ta+qamJl544QUefvjhtG0WNE3jhhtu4JhjjmHOnDlDLksOH1/YYTy24MIVbyNkUjvoSenFTHV4KimlO+FykmQ5ESZJs9LSD1cplUpKdYVigFMnb27uZ6GpgkroCdC95pGFlPC9EZh9rz/5/du8fTtPa1V0h+Lc94WF9vq//e1vdgcGjA5mpnrSKEcKOaapoJlejrIPag8Hz/59gz4MJFspdWCOlxq+N9Ljlltb+lmx2/C8KczzcMacanzySM5OZrVtLeLJXGuZ8COgkqyUcr9jqXMLueH1jCOW2IukxQgJAqFxh5HfY2zzTZoErX32cx4XJPwpsitR01CUGH//7pUf8hwz47V9bN/fdlSuDTV6bajWRqd+0nSdmKJSX7dr1NpQ4bhT3+7r1c61ofYPOaXUCMPd2f1PDd8bDAUFBYDTQCssLNx/pVQWs9NssMP3kpRSw6WlcqTURwFJxFIGUjItfM91n1MbqYqqpyul/oPx7LPPkp+fj9/v58wzz+SSSy7h8ssvR5ZljjzySDtdWVkZ06dPt41+r7/+em6//XaOOeYYvv/97yfJlTNh165dJBIJjjjiCHtdUVER06dPT0u7aNGipOW1a9fywAMPkJ+fb/+dfvrpaJrG7t27AWPUsaWlhYceeojFixfz2GOPMXv2bF555ZUhX4uhzKr10EMPJZXj7bfftrctWbKENWvWsHTpUs444wwuvvhi2tra0vJobGzkjDPO4KKLLkryNXDne8011wCwadMm/vu//5tbb72VVatW8eKLL1JXV2dvf/vtt5P2e+ihh4Z8vsMp80jhwQcfpLi4mAsuuGDQNNdddx0bNmzg73//u73ummuuSTrPHP49YXNTgoCQZjjjlkInr7MnJXEnVxMkwUUyCSYplUQyZQjfG65SyoLoTAcIQFGe4cuj6Trd0W4AElrCLrE22Ox7kjdz2YYCLdn/RzTbp5FEMsEViUQAZ+AwHA4Pnmem8D3rOKI19j3yCuSMRXGH79meUgeWlRJHqQ3x+T8t53v/2Mj3/rGR//77Gp5e3bjvnYaI5OABs82k6tRv7KSzqd/eplozW7oM21LD/dIggMdTjb/oi8wuuJjHqz9F+9ST7M2SSbZoviIAdheNQQqmaCY+ZpEJuTaUg6G2oeZNrOao6eM4avo4Pli+1H6c9tUesRSRTaPchrIewUy2NKnItaH2Dzml1EgjkwI2p5QCjIryy1/+Ml1dholiJiZ/6BiuO6HjPSWQPPve8HzOc0qpjw10p9Hk/gfpjVRFs54Ml1JqBBtBss/H9Q8+PmL5DffYw8WSJUu499578Xq9jBkzBlmWeeaZZ/a531VXXcXpp5/Oc889x8svv8xPf/pT7rrrLr761a/uT9GTEAwGk5YHBga4+uqruf7669PSjh8/3v5dUFDAueeey7nnnsvtt9/O6aefzu23386pp57KtGnT6O3tpampKa0+isfj7Ny5k9NPP32fZTvvvPOSGppjx45NKvfUqVOZOnUqRx11FNOmTeNPf/oTt9xyi52mqamJJUuWcPTRR/P73/8+KW/3TDWFhYWAMaPKMcccwze+8Q0A5s2bRzAY5LjjjuP2229n0aJFSfuljrjtC0MpczZUV1eneTO0trba29zQdZ0///nPfOELXxi08fqVr3yFZ599lrfeeotx48bZ63/4wx9+aDP6HD7KMBUbtgAqffY9AeCPp8DelaBcBV6nYW1955Oq8jSllGqH/fUrRudbdyuhLMJFkExl0vA9pQYzOpfNzo2q6UaImWidkNNeSZp9L2Qa5X6Y8L0UUkoSMhB3LnhkD/FEnPVv7aV3h8y8JeOQvanqHLdGSDeVUuZxpAM7p7v7PKzO40iEsA8Ho+AAgK7rtPcbarrKAh9t/TE6BvZtVj0cpNJMsSaVf76zFjXRYqewZuYTLE+pLARcJqNzC0n3JGWjcfz0iyd7fHz69j8h6h2oqk5JcQBvyfD7Ec29EToHYlQU+OgOJ1BUjckV+QS8g3eJh9uOyrWhht+Gqp46h4ipRqqsrrFfoMHaI+de+mVjZwHampu55jPnjWobqituqXPNei4Lcm2o/UOOlBphuCtaIcO6/3RUVlZSWVk5gjmmCqZdcK2SzAaSJghIGEqp/bsrgotszN3Xgw1B1zl8m3vOSwfW7Hu6kN4xyewpZY6SZ5yy6UOWUxD2O4TuYMD6oLoxc+ZMFEVh+fLltvS8s7OTrVu3MmuWM3thbW0t11xzDddccw233HILf/jDH/jqV79qfyzd3gSTJ0/G4/Hw/vvv242g3t5etm3bxvHHH5+1jIcddhibNm1KK2c2CILAjBkzWLp0KQCf+tSn+Na3vsVdd93FXXfdlZT2vvvuIxwOc+mll+4z34KCAlsJui9ompYUwtzY2MiSJUtYuHAh999/f5p6NNP5hcNhZDn58y25VB55eXnDui7DLfO+sHjxYn784x/T1tZm1/evvPIKhYWFSc8KGLPD7NixgyuvTA/L0HWdr371qzz11FO88cYbTJo0KWn7yH9PcvhowjFMTnOy0RTY+37SKmxFtMahwnbmKX2woQvKpmYM3+uL9SEBbza9zTTy2dmzy7Xdkr9IoKr7pZRKJaWsPCW3EbdFoKG7xlFMlqpsKux+0znBiunJZUtFtBeaVhu/C8dBuasuSCGl7EG2QfJSE8b6XavbaVyuUlDmZ9qiFJLbIsdE2Qjbc19jK/RwFL6rmeA+D/GAh++5O63pNgEfBqrrJBZOKOGFDS0j2gbVMyzJUZ2ACGqhh06tgERBOVsjhjrL9oNynaV1h62iJjJceN3s0Lu3pBFWmVaax/R4/Yi6D0HV8fh8+9WukqM6UkJA9vnxqBK6quHx+fH4Rq5LfKDbUCtWrKC2thaAvr6+j2UbauKkKYTiTv002NOd2h5pbW7iyovP5fBFo9uG6uo0DOD3RwiZa0MNDTlSatQg5ML3RhHDDd8TLLXaCKiqc0qpjw5m7FW48TmNTtOzT/c5N9j5LNksor0m1fjU8JQyt+WimjNi2rRpnH/++Xzxi1/kd7/7HQUFBdx8882MHTuW882ZSG644QbOPPNMDjnkELq7u3n99deZOXMmABMmTEAQBJ599lnOOuss8vLyKCgo4LLLLuMb3/gGpaWlVFZW8v3vf98w+93Hl/9b3/oWRx11FF/5yle46qqrCAaDbNq0iVdeeYV77rmHNWvW8P3vf58vfOELzJo1C6/Xy5tvvsmf//xnvvWtbwHGaOAdd9zB17/+dfx+P1/4whfweDz84x//4Nvf/ja33357Wuz91q1b08oye/ZsPJ5kRUAoFOLHP/4x5513HjU1NXR0dPDb3/6WxsZGe8rexsZGTjzxRCZMmMCdd96ZNGVw6miYG+eeey5f/OIXuffeezn99NNpbm7mhhtu4IgjjsiqQB0YGGDHjh328u7du1mzZg2lpaWMHz9+SGUGqK+vp6uri/r6elRVtUcUp06dSn5+PqeddhqzZs3iC1/4AnfccQctLS1897vf5brrrsOXMuL8pz/9iSOPPDKjx8F1113Hww8/zD/+8Q8KCgpsL4WioiLy8vIGPc99lS+HjwdSZ9UVETOE7+mD/IbSeDNP+b4PceBxDLXTwstSdtfQVNUYrDI7MwOJ/qTtgKNW2g+llF1+SylldfpdSik9qWfvDt8T4ayfw6GfA1UBfxF4/Lz4ZJS66OHwlTcorg7wqW8udBRM958NreudA1+3wiGytBQD6X21T02ZiyjrEIdELIPy345r8RiklHuGQ/EgKqWskPwDNvue8X80ovfcMwZ7ZXMWx1E6repEGQCVcZ1jCj00TqzkpbpaNH+AqGL4+Hhk4766T1VIbWrZA4NOu9lWAWYoeyZibDSQlPNwgy4+BEarDfWFSy/lazd9nR7NR2lZOX/89R0fyzZU6j0IhULccfsPBm2P6BiE1FUXn0vNuFpu/8nPRrUNpesQDg3QXF9nE665NtTIIkdKjTicitepoHOk1Igj6xQ86eFamSgse/Mww/dydNRHB/lR417EvWaHIc8JKxBtf/MMSqmUfFRNd/wnRkN7/2+C+++/n//+7//mnHPOIR6Pc/zxx/P888/bhIyqqlx33XXs3buXwsJCzjjjDH75y18CRkjbbbfdxs0338wVV1zBpZdeygMPPMAvfvELrrnmGs455xwKCwv55je/SUNDA/59jIDOmzePN998k+985zscd9xx6LrOlClTuOSSSwAYN24cEydO5LbbbqOurg5BEOzlr33ta3Y+X/va15g8eTJ33XUXv/71r+3pkP/2t7/x6U9/Ou24mdY1NDQkSaLBGHXbsmULDz74IB0dHZSVlXH44Yfz9ttvM3v2bMAY+dqxYwc7duxI2z9bR/fyyy+nv7+fe+65h5tuuoni4mJOOukkfvazn2W9ZitXrrSnlQZj1h6Ayy67jAceeGBIZQa49dZbefDBB+3lQw89FIDXX3+dE088EUmSePbZZ7n22mtZvHgxwWCQyy67jB/+8IdJ5ent7eWJJ56wZxFKxb333gvAiSeemLT+/vvvt6fDzoR9lS+HjxfcnlLDGVkKKj0AhPET8EiQCEHb5uREtkpJoKZgDNAzePiemX6klFKiKHCssJFj25ppxTQ3dzUxkozOxzom5FrXHnZGjzEWFI3OvQN0t4SpGG+qNbtMpZdokkTtW12kVKqnVOay67ZyyzyMkMADxNQMo/22UsokoJJIqYPnKSW5SL8DidFoQiRU55n0SsZzNJLn5S5rUPMTQ7PvvTcmoJsk1PzAZIK9MpvKxkFrsuHyGLOMJbpME2R0PtetBzxL0TOF+40o7BkEMw1wjy5Gow31o5/eQUvn1Xz18k+TX1DAf117PZ2tTR+7NhTe4qR14j7aIxsae3nv7Teor9tFfd0uZk5LVgGNRhtq47o1XHXxufZyrg01ssiRUqMIZ/KInKfUyCP5Q5I6opohCQCaoCOl7TssViqnlPqIwH3fBvLNOGp3yGaKUtF9v6yRU1kUUDSdhJpJKfWfeYcfeOCBQbeVlJTwl7/8ZdDtd999d9a8v/e97/G9730vaV1BQUGSEXcoFOK2227jS1/6kr2urq4uY36HH344L7/8csZt5eXlg36oU3H++efbI5VdXV2cfPLJ3HvvvZx33nkEAgEAJk6cOKxwCb/fz5NPPpk1zeWXX561YZANX/3qV4ftM3HiiSdmPYehlBmMZyTbcwLGqO7zzz+fNU1RUVFWA+X9DU8ZSvly+OjDCYfC/J/+UU+apMtN5gCSqZDeLYxn9phK2PMONKZMla6pdh6SGc6R0ehcdAY89tdTSlMNQkjo3MucvlZCpQs507ue7YkpdmtcR3G1MVwm50mn6ayTfRJKTE0ugzXzXfkh0LYRYq7pywcxOtd1DCXWgEU0uML6BIgTIw/Y2rGJQ0nu/DlKKfMkFHf4Xmo3Y5S/q67srYGmA+ZzrqccdwTzVtR0pdRIW0gIKf+tM2jZugK93Hj+5wUn4euCbZLsSmXscXJMBST8umTn4wgAzefJVia5R42Tr5cuuJcGK+X+I1POI3kpD3QbKj+/gJ/e/QckUUDVdKKRML/71R0fuzbUjraBpGW/b9/tkfMv/iwXfubzKKrGxLIghXlDV2YOtw2lA4cvPpYtzX3EFJWSgJfa0kBymXNtqA+FHCk1wnCronLhe6MP+3XLZrYogGA2IrU0fTHDbjlkyiKHgwMh5eYJGX+7GtcmrAFGjySiaCqqptmPUG72vQOL1atXs2XLFo444gh6e3vtkSCrgXOgUVpayr/+9S9++9vfsmzZMnua5RxyyOHgILleH9ybyFbFmgSSYBIwCiJUzTZIqVSlj67ZWUlmR3sgluDBpXUcObmUGWayvoSP5+rmEWncTFulCh4/oiiiaRq6rqMoim1EK8sygUAASZLsDhlAd9NeAMTuZpZ01rGyrBTVPKYY7UTujxKTO8BbAsAWpkIsSrKDCLiD08XUmaB03ZlhMGiEYbHzdeP/pBMgZeId0f4+avDHk6B5rbnlOsDrsAhmO1aJ9qSVxr6AFgGVpJRK9ZQaXbjJDllylFJPr26ksceYUfCEQyqYM7Zo1I49GvZZ7vA9jzTy4Xvu6+ZPSEQlQym1UWpgY1EcTJWfNxEFHAWOkMQKZ77H+ypm6vXSGeXHxTyO4DrOQFwBAYJeaZ9hbx81rFmzmmWr1jF/4SJ6e3r53a/vAD7+bah9PTcO4XlgoOsp73cOI44cKTVqcDWdcuF7I47hSm6DXW3EJDHjfsObfc81sjisEuQwuki/G6lG5+4k1sfFIwlEEpanlBm+Nwqz7+WQHXfeeSdbt27F6/WycOFC3n77bcrLyw9aecrKyrj11lsP2vFzyCGH9FpdEIQ0T6nUgQkAWTCIFwmLlJLRT/0hTeXHEolE8eblM67tNcSVfwBdsweaFF3EA/RF4nz/mY1UF/p5b5Lxva/rL6QpUgSROImiGHj8SJJkk1KPPvoo27ZtSyuLW52oKZa3pXEOi7W/0OGZARqI4RZ8HRH6a3SbOFrHTNb1gfLcd/EWe7li3hXUFtQmKaXShFSa6ly5fNNTZcPjxt/YhSAbhIImehC1hO0pJeqKQ0gJonvEzyyypajK8F1MDd+zjM5F2dWDO/Dhe5ZiaVV9Nw8vr7fXP7qygTe/sSR11xHDaISEKebAqkcS7PNSR+la+uMi5BmPwEp5JwnzdHyRCN7IehLC4a7JjZ0ypEfrCfY/a1WHGOTIhE7F3vSZA62e0mi3vNyPtlWutr4obTBstc1HAjo8+Pt72LNzB7LHw6x5C/5N2lDDexIO1HOT46RGDzlSaoSRxD+ZPgU5pdSBQPZqQlIS+NobUbwSH67qcofv5UiLjw4GD+vQTWNXd2Pa+mnJ4A1PKXPbAZolKAcDhx56KKtWrTrYxcghhxw+orBqZNGajQ6XgMcNs8qWUdGA0uhekEBFZPP2XTz6vBO6d9ZEH0eATUrpgoiq+9C8PgSTzOoKxe1GnWKGJI2vCbLFKo/ohFFZBrvBYBBFUeyZlhpWvogekwGZeDgBHhFdlNA8XpbL+ZTJfkrjuELgwNfeRMSjEgv48Kr5yO/LJIQEf+34K98+/9vououUSg1Rs0L3AI66xljub4X6pdDbCCUTjGQmKSVYpJTbAP3UH6G/3Jxy9c3vqJahPZsavhc1wwUPsMk5JH+1LU+ptj7jXnglkbiq0RNOZNhzBI5tKXAyhah9SFjhe7Io2m2VkTRwTyLzXGpE1Xw+jtjRwfj8+SjFyd6HSQScE5uXnDcOQdwrBpirAu3Gsscn4fXLSbvFD1CvXwAqC3x0hOJEEyqqpid5d31cMG/BAv7+/Bv4ZJGYoiEIAnNHQQl4oCCYczoO9fE+YCSR/X7naKnRQo6UGmG4CaicUmo0MRziwB27nmHrMD/sGYQ3ORwkCCm/khqk9sis2dh2W27YSimjcZ9RKZVDDjnkkMPBh26pddwfcKMOb+41QrKiwXEQM5q0iUAhmiYjqDGQDKVUT09PUpa9cZNQ0hQEJEJT56LHPISmlFEQ68bwYtZtUiqhGzMe9UfKodAohxU6p0d60MyQuc985jP05vWy9Y1nWLc+hjbQBpQABeiqBh4RtaCYUEExY9RuFJNgEjQr9FBAioaRwvX0+yVK9bkIgoCkS0TbIublyKKUUl2ES9UcuOgB6NgB9ywEJWJ7SumiFwjbSinJ5X3ai0ZUEJB1EHRzGM5Un2UcZLXauB4zVDERMpddRssHYbBHMo8ZMxVqRQEP7f1Dn5Z9uLDObF9eVr9/ayePvN+ADhw5qZSffnLePvO2yBJZEmyybeSFUmZ4kqs9ZR1iUvGRFORPdNQiPss3ykW9Wfc4Qzu7iHaq/LXE+lt5yh+gvKKI8+aPZdz0EionFbL3mZ0ogs6jepyNXpVjhJF/ThKKRttAjFDc8lUTKAp4KQp4qesI0RcdHbJytOEoeDKTgh8fuOIqh9m1OxDIKaVGHzlSaqThjlW2yYuc0flIQxBSK99UeiJtj6TkFv1ANgJCiRuNuMZVxu/8SgAmtqgcsamXd95YzaZSP6d/aS6+vNyrdDCgp/1yScnNdnK/ZvovuAwY3J5SkKyUys2+l0MOOeRw8NBy50rUgTjj+6egs5FAtBBN0+hs7aTAG2GK10evLLIeUOMayNATc7yhwiVjoAT2KoZ6SUFETFH4dL6+gy1rayhsWo3mzbNnFwPwyEFImJ8A8zvQERsDhOkL50Oh0am11EX6+39EYyZQwLtN73L75tsZNzCOIzmSqCija8Y3xZvQiIgxdFkGUcInBJATRl5SxOzki2aPTIeKugECkdXEy6uJl49BMzvT7oldxNS2kJuUspRKFjmUcEgpzdwm2kSE005t1lyeUCnhe5mNjMx1tUfC+KOgxwyVm3VBhrSjC/cgo0UaRuLGuflGySA8FfsSUvzpnd20muqtXe0hvnXGDIoD3qz7WJ5SHkm0278jOvteppWCblNOomA8LwU8iL9wD1KZMatXpnNNDanVBUMpNd0vEetuZaWngpljK1j8iSl2mlqfiC7Bu7r5jKcV6MOfa1c4TueAQ0pKLj+2j7P4JVWh93Flpdz9Mzchuk8c4PNO637mMGLI9aRHGm5Rjt1PzimlRht61i9K5gj/pBGeVLx1J7x2O2nVzmk/ZnbdLKp7IESEUGuEpu09TJp38GK3/1MxWMNSEwRE3XHd6Pe3AVDX2Z+2r8c0QlVUzX5GRnL2vdFu/OaQQw4jg9y7+tGBFlXQoyqibuh3CkJlvPjii6xYsQIKoUWHhYrRoS0yO8sqIr6udrTCEnSPD83nI2oaMqtIkEJKaTrEJC9r20AZV2qsNBwXEESJw2Ii8+Ie/vbBJdToU0hoDQBIIrY8SdQNAkhDNELqBOjp6sSjyXbrIiZ67CagnFDJ37sR1esnPGUOoiAjKwLIIFp2U1I+0A+ajqgJCLpml11TLT/L9M603ZqxwvcEyTanRs4z/qtxe2Y8TTRIEMsjU3CH70kOQWJ7eFmkVDallOyDMwebUv0AeUq5flucQ1RJIaVG69iuQelsx0moyVv2RS4pqsZAzCBrZFEYlfA9cIfJOsO2zpR8ptG5sAGf1JqkWrQfEd2gEzKVyt0KF/TMoVlucVRCVU1iwlg5Evybdb2CPpmSgJfij5t31KAwieVRmPXxgCLl/dn3iViE+lDTfziktRE+thd6dDASbahcnMoIIyl8z1JK6Tml1Egjg4OQ/UtP+5F9z4zptr2UecNAK3LK7VQTOdLxowSLoPSbtyXhM/wtWkNNdpqM4XvmfiMx+57HYzR2sk3VmkMOOXx0YL2r1rubw8FD5bXzqfr6Ivq9veYagY6ODnu7LkAnxv1yOtASQl8fgYZt+DqNOj+ueYmqMgqGIbkbCVlg9WGHsnzBIuLlNQBIZkifIEgc6d9AXmA3neFSNkZOJ6YZBJdH1m1SyPYhlIMoFAJw9JuT+NPO25DMsDxNcPlgmeSNoJpKK0EC2SCA1MLxeAs+S3XLCcZxIvlpxlmaTRy5w/dSvleWUkpyPcfuMLq4EVqXqpQSsVkx48+CbihL9L5NxPofRQmHSIM98Jrl23mAwvcyGZ1bSim/R8q0y0gePem4g3XSlBTfomxXpK4jxMLb/8Un/3cpYLRZLIWPNpJKqSTDcovccKnO7NA8DXTNvs6iu/Spt9+lKEltoe/LbysRVtAUjYSSHm5ptd86Q3G2NPcN3QfKPGTAK1Ea9KbPXPkxRSoZaqz7GDMmQ1QiuZ/YA4HU8NwckjESbaicUmoUYZFSMaWLeLwLr7f04Bbo3wpZKoWUkD5hkI+mpZTKWHfHTKPOo66DgirY+z5s/icoMaSU75/2MTRG/HdBpmau1WH4bI9OYd4AjapRQSY0Z7YX654nhe/Z+3/42fckSaK4uJi2NkOlFQgEcuaIOeTwEYSu64TDYdra2iguLkaSRrvjmsO+IJcZyh5VcPwAU0mluG6EmFm1qqKLNjkiYxAzcVXhtzsXU1XtpTw0kLS/KkIszziOGA0jJmL4wzWEyvrRZQ8RXwh8IXyRSjxKAapJMsmS7iilrGOreWh2e0OgQilhbJ/hrxQKedAkGSTsb4qgKsi9ncQKipA1DTEawaPPRpSrSSg9ZhopTQFgdTSTjc5daZQ49Owxlt0m45ZSCqBvr5Hc3G57Stkz6MkO2wboWhjwgRZDVzpIdGRQhdu94oM/zm2RHYLghO9FzYFDa2KT0VY47Cu8J5VLytbUWLWnm96IE5J5/CHldltiBDmpJAg20et+5yzCVksrsDMQPIgZkOD2O9Ld/waFpmi0bI3i8XVAKeQJCVSMNpyuqeg66IpATI3S2y+Q7993RzgRj6ErcRJxiEaT22NKPIauKMRjIlH5wBA63aE4sYRJmHqlfYZwDoZ4LI6uxNFEFd1UBUaj0Y9dm1NNxNEVFV0U0TWNRFwgGh38XuiW6lOX0FWVWEwkKo5ef8wqn5rQ0BUFJa4RjR78Ou9gYyTbUDlSaqThIkQEs9bd0/YI9e2Ps2jRkxQWzDloRfv3wiBDMvtYlUzBp/sQ2YiZoV7zLoIxh8KTVxvLahwpRSmlqQfmA5bD4LAV5uj2woQ4/Liji/8mCCSPHFmNOauRqmTylPqQqK42puO2iKkccsjho4vi4mL7nc3howFdsFQ8QtrIv2aSUqJJpmjIWN/yoN9HP9jha109VTS//hrkF9r7h/ICJDxGE9jb2YynrxtPYS3anq3EiyrRS8aiSgkqvBoeBGJxEU32EM6X0c3vRl+/F7xx4hEZ3WeSIYk4yEHGt/tQikBVRXQxeaBDAPKadtNaW8j4hl5EBMTSI4xyBbfj7wdB1xC15IE1i5jTMzVuNBXuXQydO4xlydW8F0WomAHtWwziTvQQyh9Pft92ROsam14+iIZSStRTOhaC5ceUJXxvHzYKZuFHFy7ViKVosAysD1T43r6UG0oKwZpN1WKV/YzZ1fzikvkEvDK/+tc2YOTD9yzYnlVupZRFSqEaSimb/MtWBiecLPWKZA7xS07RtNpQSSWmq3jEKJrYC+joer+RgSzRRx9an3dIKriecIKBmELELxNKCd3rCsUJx1XiAQ89vtHvGquaTnOv490mADXF/v1S4QzEFHrCCfwe0SZgPWH/x46UauuLEld1JFFA1XR6ZRGfRyTolZP8v+z03cbEDx5JIKHqqL1e8ryjN6jU2hcloeoMeCXCcZUBr0SsZ/+IxH9HjEQbKkdKjSIquzQGAhD3+9B1hd6elTlSaqRgEQiajprYgyiNS9s2VGRWSpmklM9sxFrydzVuK6UEUUDXdFRFgzd+BhufMjZMWQJn/HR4hcjhQ8Ed5aDbDaHkBn2v0sDVr1zNxYdcjKYbFaflKaWOwux7giBQU1NDZWUlicTHc1aXHHL4T4DH48kppD7SENKUUu6Asb3hQnbEg2CGoFUUD9BCGYJkKIQS0SYS0eokUirs8RH3GzPqGZ8IQyEkxaPIAyE8JV76STDJDz7fABvDVYQrKwi5DNEtH6ad0SCaz45nAkDSBBS7hOZhUs5B0AT7uyNpeSCAJhodcUHVqFLKqCo6hBa/TgM6BW0RLnvhMq6YcIWZswrxfsALsQGHkPIEYN4lyZfwi69B2xbjd9FYok//yCyuGVJo2UyIMqE+v0FKuVQx2RXEFhN08DvBVukEQcBjdmT7o8adCHiNLs9ohTY5xzaXBzlMqofUYKVRVI3usNF2KAl67PJLtlJqlEgpPT18T7BUcIKeVuK0UmQ0cU1ZOcSiN62O0bIhRnX8dbqKT0YXVLTwX1ETII8t4wHhVG47bzbHTqrYZ173vL6dpz5o4zNHjOeq4yYlbfvrsxt5c2s7X1kylU/MGDdIDiOHPZ0hfvD0+3gk0Q4/fPrLx1CwHz5Xj61s4L43G1k8uZxlu4ww5+evPw7fMMJVtzT3sW6vES5d4Jc5aUblsPYfCfzkLyvZ1T7A+NIA9V2O9cWnDhvHtUumJqXVNJ2rnnwTgEllQXZ3hvju2bNYMqlyxMt1+7ObeGt7u/3enjSjkte2tHH8IRV8/9zpI368jyNGqg2VI6VGGG5PqfJujTGNvWy/8Grq258gGm3KsmcOw4E1aqOpOtrAE3iC59vbhjKT7CAiYwdxU+pvTXFs/VfjSJox7iP5RJSIiqYo8NbPwGrUtW+GhuUw7TQ48ebhnNa+0bHDkefXzIfgf67Bum7OUJS8zvGUskIcNNH4uAkILG1aSle0i1n69wEnfC+hanabaaRn35MkKdfhzSGHHHIYJuxOfobwPXsb8NieueZggrFWlhJGyJ+kMTB5DnK4L83oXHWsniisnI2iVyKI3YBBeEmmUmiDVE+T1A0+CSMGDyRVQeo2ZvbDX4OaNG2KFQ7n1Pn2QInuLrWOV/Xgl4LUBmfg9QVREAnJBlHmi8GisedS6h+DJNXTwHbKqOSxtqcoTJQyg3MR0BHCHcAYdGvGO8kL32lOv5jeIIxb6JTJDkE0y2t5SokSqhk6qAN+0WO4d9mfxQzfxaGE7x1gTykBuOTwWuq7wsQUjTyvxKcWjuO1LaOvXLa9xgbZrqSSUhkSrtrTxaV/WkHI9MMqcIWniban1IcuasYy2OGBSdYX5uyQpHhKucueErdoDQjqwvA9pdxXT0tAoruPqKChCxrqQAdKHHzFEo26iiJ48Pv9WfIyMJAQaexXiWhiWvq+uEBjv0pUl4aU14eFLsVp7FcpDoj0hI177PH58PuHr7wJqcZ5hTXjHAC8Pj/+IaqGdF3nsr+sSQoTveNCmYsPrx12WT4M2sMajf0q/336JOo7wyzb1cmqPd20hrW0e6Jqun2uhfnQ2K+SEORRuXcPr2q2oyuK8jxUFBfQ2N9Md5QD8qz8JyFHSo009PQFWcoHQFEH0tPnsF8IeIqZmD+HPaENRmy5nm6+KaT9cBQ1Bq1kxbanfBw1zZaj66KHxk0bCDeE8QyUMD4etY3OJZ9kkFL9XQYhJeeBYshJaVxl/M27GEonj8xJd+9h689vpDk+E0HQmFV1FxXffO4jMTr5UUAi/Aa9ejNra8uZ3NZNvjlOnS/0JaWLKlEsSw63p5RVGY7k7Hs55JBDDjnsLywzpXSllG06q+toRoAfgmc6ojyGUO86pICCKsvg85Pw+fGEAoAz+q4LDllUUnMYXV0yiD2AoRSRzEGmdtH4fsiqjpYI41Fl2to6GRdtImYapAsIdgdesMtlGUMLGQgdEVDJi+cxr+QIJhXMdcqlTGIb29HR8VpKL81QT3klowMUM71UjLzN71Vvo/FfHlonyTZrt8y5XUopBNEsIRR4SgnTi18K2nRCemZusm10sat9gJ5IgnyfzLTK/LQQJben1JGTy3j82qPtbfWdYTPN6EC3wzMHH9jStPSZ5zIpnt6v67YJKa8ssnhymb3NHkAb9dn3nHdOspVSKskzijv0khA3/Mck3Xg+PSg4bhfJhFXG2feSllITuJ4x3SqT8Xuo18G6P5lC5OyZ6w5Qs89S3ciiQ+Tu77GtvKz2LGS+JvWdYV7b0oqmQ3mBj7PmVCNLIjFFswmpcSV57O2O0D6QbjB/oFBT5OfiRbX89vUdrNrTnfFc3P02Ma1+HVlYhNTz1x/H5Iogj68yfflyfYQRR46UGmlkeEZFc8pizWW0nMOHgyTIHFZxNnvjm1DiJoGk68nT1LrSCym/jFFAPT0hgKbYP3dv2MBTv7zTXJrDMcGQHb4n+YxRCDVmElHBCrjiedj5Grx6G4Q7IdwNI+Rv37Wznn/13mAvd+ydyIXRXsgrHpkDfIwRFVXU2AeoQHthAF2A8bohY7YbqWYnIaEl0ATrI26sUzQdr9UoGWGlVA455JBDDkPHo7fdQmSgn1lhpyPbXl8HHp+dxqF3zI6mCJ78cwDoq3+Is3esp6V6OiuOmmEklPxA2DG4sf6cf8ii8U3366Jt/J0wzdar+jT6WjbjL5zCI2XHMzW8iyN9GnGgwCthFdX6bshaBoLGrSjSVWQNfKYKOy4oeHWZPHMQUxedkKmw0gc+Z1kxZ+8TZI9BIilAtNc8iSGSUqbyxVJKJZNSrhaT+d30SH7DZjqjUsr2NBjCgff/u/rq5laufHClvfw/n5zLp48YnzF7IQtBNlqf9tTwvUxIVUm593PD6ohfsGAM/3PhvCTPJCt8Tx3BE0kK1dPTlVKK6EHCMjp3kVKRTlehE4DPVt1l9D6zjzfsAqbB9gEdKill/s8YXbi/5dpPOKRU5j7LUPNY09DN7o6QmVd2Uuqmx9bwfl23vRy8bBEnz6yyZ6cEOP6QCh5eXm8bsB8MWO+uQ76mp3GvOlCz4VUW+vB7pH2G5+aw/8jZxo840vW0omg0pD6KpJSuH7yK58MgY10wlApCyPgzGS5Sqrs1WerdO6BgTe4gec3wsLh5Xz15UFwLCy+DfNPsLdY7hEINDT0dStJye2Iy9DWOWP7/TlAFwQmZEKzRSytUL+EyOjeJRdfsexoiqwtm8HJPhLe7+omPpEY+hxxyyCGHrOhsbKCjvg5r8j0SoKnJbRXNrtdNuL7/HlUnLxqlY1yNLY92+i3GD7/mwWd3vEzVkGX6rQl4tOTQlzwhH9EzjbxgBfH8clYWL8TnG2Pu7grVM78X3oQZ8u/uMCUppYzjWB2wHivM3DyuwZ2lzhbnDKw4WZvm3VFTEewZKillhe+Z54yblHKfe0pXfn9JqREI39vWmhxtYHXGMx8vSxFGGVYnOdOZpvpJQWaFh263UcQ0E29x1FQ9lsosAyklG2FlAnoSKSVqLi1USnlUnHILKbTPvlUtgymlHFjm15muaSZYRE0mA3CHaDgwTINNSkkuUmqYx/71q9u58N5ltnLHnl2SzEROV8joq1hEWKe5HDHrQa8kEjRD/mIHYVZxm1A2L0m259y9ThxFksh9T2wl4SjPfvmfjJxSaoThfkitB1gwlVL6R4yUam9/hQ0bb2DmzP+huurcg12cYSL1o6IbSikEOywvc9vHzUrpgwxROeRPLJosYVVUzf7wCh4z9Cthpve4pl32m4aqVkNxBBAOqYBIdbCeltB4VHxo/e2IVSN2iI8f7IF0PW29Y3iejISWsD80tlJK1ewP2zslh/Gb8Z+H7V1AF1+bUMW3JteM0gnkkEMOOeTgxrlfuxklkaD9mq8bK1Q1jVGw6nXN7PiKCacTFTSnEe8t8ZmGNjqyaKiaZEQUVIo8JYQSnUTIZIkkMDlaTKFchIpGAB/F3hp68z145BUEfTLhuOrqpTidb2syXnu2MsklyXKTNzpImqN+iokJUEGyw/5AtAuU/BWLq0ZbUhAEBOvD1Te88D0rTF2yjc5dZXORS6nhiGIoCpFuyCtx5ZbSmxwlRIeg3hhKIOFwwm7+tqKe9Y3G4OLC8SVcuHBwE+zUTnWmTrJb3SQKRp8hW2c6k+JrNML3dN2lGLSiO1xtacneapjfO511438gqkMk8/OqZ/i9z5ILqYvpeww35C71/mQ53IijOxRnRV0Xum4objSzsyh9CKVUfadBylYU+BhbnMenFo7lbysMbzktiyIv4JXoiyp2mrCplPJ7RJvYiiUOAimVGgKdhShMNuEX0taNFNyX0SKj9v+O5bAv5EipEUZSxWbHL5sVvP7RIqXWrb8GgI0bb/j4kVIZK6nk/xl3y7CUlpWLlIpHjdA8v99LNBonoTiG2KJZeWuKaQ7oJqW8+WYGH95HTFM1trzXwtuvGQcu9PXQEjIk6+pA9+ByR011TNE3Pg1tmwAB5nwSpp/5oct10JHlRusI6CkzyFiS9FAixt/WNADgER1PKctHYX3+tKS86qMfrfd2JKCqYXp6VqHrCv68ceQHp+17pxxyyCGHA4BxM+eg6zrtFj+jJuxBBkEX0AX3lDLWemf/kn5ja1xUEBDR0fCKGmEcUsrjLUJXuowdUkgpXRfI1zxMVyajYXwbdpq+TgIaBT6Z9v4YcUUFL6iCe8YsU73h6QfKED0iZrQdBWKQ2ZWfQBJ9KFqE1dEdNukQk+KQABlLKaU7SinzbK1TTFjhe4Kr0PXLwMswwvesDpbOEnE1J0Y3GeXQRJr74g65Y/6I+kSU/CKkrk64YzJc8n8w42wzs6GE7314OUNMyewrlrRuCPkPtQht/VFueXK9vfz3FfWcPqeafF/mrpMTvjc4xaGqzsFlSSSuaIMoQSxVT/q24SqEhgIpruJFQEXHJxkqP7dPmsPXJofvCejM2wZXPaOCbuynK85W9z8Dg7S707Dvc7NIgqFeB4ewzET0jZb6zMDVf13Firoue/nrpx0CpJBSwzy2ddrXnDCFK4+dlPTsZyQszVWy5aWq6/xlWR1vbTMmbcjzSvjM6IHUd+1AINWazrpPmd9z5/cBU0oJyf9z4XsjjxwpNeJIf0pF0SSl1INnHPcfgdRLv4+hj0HZbpuUEohFDFIqkB8gGo2jKBqC+daIplJKs0bv3KSUaCbSPnx4ZN36Tl7/6xa7xDX5TWzrmgeA8vTX8ax7ED7/pGGq4cbDF8OOf6VnWP/evwcpBfZXIU3oLYAVkKcL7snDXSaxQGt/FICEptsfmkafMaVsnggRDWL/huF7W7Z+j5aWp80lgcVH/YtAYOJBLFEOOeSQgwPBNDEGEFTB/mCLZsfZGVVP/9AHYyYpJSUQdCNATbXC08ypwHRBcPwDWzcDcxBE63si2flqGB1yHyIFohHiN7E8yK6OELrZOY+QD4TMchvfflFQzMM5ZZ+QN5VxeYfY5exHt5VSEcHYX9QdtYl9bilxUbanlCiAr8Dwbw9UQDAECy/PdlltWJ5SV8gvcQUvgfEpZHuPzt/e38ssq51jfkf7gx4ITqOvp9MgJfa+7yKlhqJP+vBIVUplC3vLqIYZZvEsrx2PJJBQdTQdYgl1UFLKPo5Vlgz9AcXVnvCIAvFB0mn2eaQXejTC9+Soc22jygDIkLBUdDiklIBGqvZp6t7kWfi0sA757hTJsM7ohfXN/O39BnRd50Yd3EGKHmnAeiRB15DU9FBNy9d7+Ebn6duy3bORQFOv0ZeQRAFV09ljmu5LgoAgGPdyuMfWUs7H/axk82Gynp+2vhi/fnW7vb2q0O8opZQDb+2SShoOVRE4euGsyc+uUy4rfC/HSo00cp5SI45MpJQRi/1RUkqpqjMLjVW+jzJ6elYSj7sMFYWU/5B26YVBF6y0pnQ13ICiuBRNqqF80gSdxoYnAPCZ07Qq8Th+y89BNismxQrfCzh5WHL+EfDs6u80Ps2FRRqHBZ9kevlGRNPYSlF1tm+MsfrZ9Wx6pwnF3WhrWm0VJjnDaM+HLtNHHbpL7G196O3GvuBcoz5zxhG3UqpPNlpTFdaI0b9h4Hhf3wbXkk4otH3QtDnkkEMOBwNW3e0JSdi+T7ZXoJHGaQo4H/lgxNgvIoTshJqgJadzkVJ6tB8Ar98yaHagmkvjZA8nFXqYJ87lV59ewB8vXWQfMeR1dZiFIgDypE8ay6KjohJNIihuqq5kJPt8IqLRafVp5mAKmk1YpToS9MWM8iqaguAze/+X/AW+th4Ov5KhoKd4DqruXLOIkMe//Kdyu/J5vLJDukxNVFCrluExw3lUrzn4log4mR0gT6k0pdSww94GV15kgvXp98suz7As6VNJj4zhe66wrWzeNNnIteEafA8F7qx29q0x8rdV5u5WpPmOaNY2jUCUjMjUoXcPJP7qX9t5a1s7b2/vSCMYK0pf5h+BGF36X1m06g5kNd0Kw54lcMiklFmWTOTkKKtfrHxLAkZ9EDWfZUl0PanDVkqlhwBavzMTtsY6y1NqIGb0XbySyLfPmsEvLl6AzySlVuzu4huPrWXF7q60fEYLqepAYQjvB2T3cMuGN7e1c8av3uKku97g3LvfYW1DT9bjpAr//v16BgcfOaXUCMMjWMSEU0lY4XsDA1tYueoSJoy/kpKSxTS3PIWmRpHlAmpqLjxg5NCmTd+kueUJe1nT4rS2PU9F+SkfSYKqq+tdVq+5FK+3kuOOXQZkGFHQnZHTVFPQjOSUa+WaNZcT2BPj6MWv4/EU2UopXXDaWuZMzCQUHUnXUHDC91SLCHLL5m2KX4WHL4G9K411h38RTvxW2jlGEyordncRVzSCPpkjJpXaH5doyCBOJoxPsLj9r+A5FtnrIR5VadCP4fXeK+D5TqATVdGYe6LpeWAVfvqZsPU552DxkFHTHijXzw+JLS19vLm1HR1jqthz541BzDTU5YIugKIaLSVNNO6PRUoJgo41/m3NhKNqOp0DRvqY+Q4UmH5T/45KqVisGYBAYArh8E5i8faDXKLRQyzWTmfn6+i6Sl7eeEpLjznYRcohhxyGBFcvUrBIKRFMrZQb7i+CTzG2tWp1jJOM0GTVmmXOVtA6k2EI5rdB9hjfigLvXlud1OVXKAx58AjgFQXyhSCFfg+nzKpiSyKPiBIAMYFHgPFKGQLGDGQWAaVrgl060dSCJLQYXtGHqEUQzNn2qvvyQYIysYTjqy6iLrTFLqtbXVOiFjJ/YDJVskCnFgHMkKlh9pBaqk/ksNjvCBJFQaJ67AQEQWBtTy83TmqjZ7cxcFmk+jk9sYB/Rl6ktcRFOiXCrtyy9fYt7H97IxRTeL+uiz2mh46lNskW1pPVN2iI10pL6SS788+GwULBNjT2sm5vL2CSBzYRkoFASPHXcUMchfA93d2GtkLszCVDKZXaFddZ3LSB2S27KWtOySvNEEogjZTUdeKmmbbfI4KSfK6iGGObV+Pw0BoKB6K06jOSD0920iITshqdZw0V09nVESKaUMnzSEwqD2YN0cwE6x57TXmXpfr7MJ5SVrXgLosoGLRhNqWUdcyEef19ssiXjp8CGO1tgL3dER5btZftbQM8fd3+tZne3dHBNf+3ilBMwSOJ/PD82Vxy+PhB06cWeeieUoOny4bHV+1lS0u/vfzsuibm1xYnpXETnqmKtJxQauSRI6VGGPGEo5YJJ1SKAL/XmIlNVcP09q5ky9Y6ystPpqnpETutooaYMP6qA1LG9o70kK4NG77KjOk/ZuzYTx+QMgwHHR2vARCPt6FpCTscMg1ZR81MiNYopGDPOgMCitJLT+9KKspPdpFSArrZWJUKzWmb5ULbq0iwPKVUJ3wvVt9HZE07geYIXkBr3Y247UWnICv/nJGU+tmLW7j/3Tp7+QfnzuLyYyYBEB0wSCmfz/wCiRKSV4KoSrt6SFI+bXtco0kWKeUOKwRDvaXGQfYlrY70x3n38R1EBhIECj0cd8khtNb10d1sNATzS/xMml8+7I/xh8V1D33AznZnJLq60M+Rk8sA14hFSpF0YLkylzhBdMEipVzVnaCCLtLW5wzx7e0MQ6mfqElK5ZukVFzT6e5ezsDAZsaNu+yAn/9IQ9d1VFMKH1KrEdjJYys2sDu6mutPnsrUyoKDXMKRxZat36XDVecddeRLBINTD2gZNC2OrmtI0tD8XnLIIQcHmhcnfM8KvzO3ZSIa7O+C5AHzGx4VLE8oV/1tTkgy2T+TiYJEvU0EKHYuyyuXEaooYUl7HmPqpyGg8+LfH2HShhLO9E0mEZvKtqjKYUGZhBohJHYAY/HGzc6Oa9ZAj6lAStgEmWB/TzzhKBSA7MmjxjOZAk+pvc0ipTQdHuy7A0+7BvkQ1/NZbvWM9qOD1Es+vWacVZXruiiS047VU660HfLoUkqpqmE3v7MjTP2WNhZNLKHAP1g7bfgF/doja3h5U6u9HPBI9MeUzF5MWcic1DRgGELf8dJWdrUbavkTp1fy2SPHm0U1lU+iK8RqCOXPdOyd7QOcc/c79rJPSqd5ksqYVSllrFzf2Mt3n17Pl46bwviyQHrCYUDpS1fEZA6RNZ5FeaCX76x4ECnrgyek/3I9rlaHP88jQWSwezb4nRQEZ1BxKBhKaGem2/uHt3fxk+e32Mu3njOL/zp20pCOaR/b/G+Fx1mklCyadcB+vBeWab7kOiGjztAzqsesVamklOSaAfC0WdX8/FPzWN3Qw8PL6wnHlbR8MqEvmuCvy/bQF0kgSwIXHjaOt7d30B819o8pGq9sastKStnctrk49Nn39k8pZRm9+z0i0YTGviYctOrj0VAq5mAgR0qNMFSXAaD11gT9Ezji8GcIhXaycdPXiMc7kggpgN7eVcDwSKmB0HZ83kpD3TMINC2BovTj9Zaay3EUxRipWXzUa9Q3/JmenuWEQtvp61t7wEmpRKKHhoYHUdQBZLmA2nGXpZ2P6OrIvf7GDKqrLwAq0/Lq6lpGcenMfTRGUhpWgNdbA7QSj7UZK1xKqYRuHPuF7nXMopCQKuOxpnOWzIaiJSn3BOh5ZieJvQN4PXG8EsT3dGCVPq752dZ+GImX9+ALejjk8Cpkc/rVejO+XBYFFE1nb3dygw9AlqwpmyU8PokI0Bk3VFFen048JhDqdYWIWhWmRUqJsuOXFQ+hS15U1WiISVI+u9d2sHV5i717SU2QZU/tTKrpL7plEZUTCrNc4ZFHa5/RmcjzSEQSKh0Dxjlmjb8XBFq0Mp5gBmFhJwCSlkpKeRiIucIdzewspVS+pVTTdD5Y/VmjDHkTKC9fMhKnddCg6wn794Zmnbml0NDZxTM7migOePjh+XMOWtn6+zfS27cWgOKiheTnT//QeYbDdQAIgoSuqwwMbD3gpNTKlZ+if2AjlZVnE4nUMWvmneTnH7LvHXPI4T8YrrFwHLWRNbCU3GEWrPSuNtjx1ddSv7ce1ROyezpBPY8BwkZajx+IIiNR5RVpcB3Pogx2h3fzcvgRppeczZj6aYBA3maVoJIHAvgkqDT9JRNqnD5vhGJAMsshqDqYnT5JMsP3JONbJHkm2ur0eLSF8Nrn2TT3TBYVzUIWPbbaymquKGjQGsVwNAevICR1SIeD1P6Ujm6vi3lLrKs5uHdXbACUGMg+NjZ2Mw944oMm/vf991kyvYL7rzgiOf2HCN9r7DHaQ5PKg0woC1Aa9PLkB40Z2wAO8ZBBDZPhUm1p6ee+N3fay69vbePTh9ciioKtNhEFI9RO1bO7/qQe2522pdcYAMvzSMwZW8jZc2v4lennky3USsxQ6JKAcf+be6P833v1eCWJW8+dlaVk+4bgUuMlglOAGDqmd5nb7NkkpaRoBAkdTRB4c4FOS6HIZ97M3KvPRBPqujv8LD3sU0+Nz81UZqs9Pwg5oKgakYSKJAoEvLLj05UptNMua3pe21qTJyza3jb8CYysIqaSUqIrfG+4HEcmj6xshIl1brJNSqWTWl5Z5KJFtUwoC/Lw8noUdWiFenzlXn7+0lZ7eUfbAONLDaK0KM9DbySxTxLHpr+tSRgsojDTe+76bT8+w7x+Vnk8kkFKZatPwBVo8/Eel/5II0dKjTDK8rz0pqxLqFBQOpuCgtk0Nv2dnp7lAPh81UyZ8g02bbqJRLx7yMfQtAR9/etYtepiACZO/ArlZSdQVHSYnUZVI4RC21m3/svE4x0sPupf+HyVJBLWcUTy8mqZMf02GpseYcuWbx+UEJ7Gxr+zu+439rIkBVjWchpvb+/AK/ZyVMXjTCjYlbRPS8vTyDMX0S2H0JucGmPtui8SCJYDBgFnbxHAPy7E7FOaWPNaFfQXoYPtOuTxFJEANNPnwSJuNAH6Y4b5YshnfEAS0ThK7H5E3yxE4RwAVMUif/xoEZP08QuQgG7pOWoAVfawuvsTrAxdDE+aDSAdZh07BsCWMVcX+dnbHbHDygB01fqkW6SUjDfPIGaaQxMAKC+L0dTkp7drD7DA3NFsIFiKKNesgkS62LjrNlrbngWgqvIctMTXk67zlmXNoIMvKIMOsbBCpD9BJsRi7cRiLQiih/zgIY4XxhARidSjqlHy8sbR1b2MstITEEUZXdftkZra0jy2tQ7YozvZoGNHX7jC96SUFFDkqWcgNsZMaKzTzI5Afobwvf7+DWmkVDzeSUvL0yhqGI+nmDE1FyNJySq0D4POzrfo7HobgNKSxZSXn/Sh8tM0h7jsixmE5ViTBw65SboDjHi8g5WrLkHTjA6Ix1PKcccuH/azlIpEwvCiCwYPYWBgM9FY04cu63Cg6zr9AxsBaGszwmjr9tzLnNm/HLFjNDQ8QH//JhBEqqvPp7Rk8YjlnUMOBw+OSscaSJLsgSVrC3YaASgWQSyZjJYIkyguo3BDAEXuZU5AokrysVnspFXqNDylkvZ0fHN0QcCa+a40UA5AhISdVjbVVxFdIU+QbYNmHY2egMb4MMR9FnnmlNIi1GJSAjSQxHzDrByoCYrEOrbSrB9lnKfgHkRxSA5NUUDypm4aNtWT2gHLpDxwb0jryG97AW6vhHFHoIUMVZTPayhemnoGMRnaT1jNodvOm83xh1Rwx4tb0spsF9f8n6nf6JAYzrqISQ5YaomEqqPqhsekTTK58svWr7YJvAzhRFYHeGJ5kMeuORrANpke7nmcPLOSuy6az9NrGnl7eweRxNDULNmQ9DyIFcBeSPVhAyyllNW+1CSZR09R6JQzkFIZO+8O2Wk1reR92DFASjiaHUZl/M+klOociHH6r96yBzG/ecZ0+xwzGp1nUUpZ6wp8sqnQy/wQxBWNXR0GYVVZ4Kc06Lyn1rEtUiqSpJRKTjNUWOfttrMYirrIUkrFzQH1THYYstn+TQzRvsLtTxVXNfqjiq088ntEeiMk9WsyYVBPqQxFcN8DRyk1vOtnZZHtmmkZjpOpHslhZJAjpUYYspT+ciuajlU1HbrgL0QiewDw+8fQZ6oC+vrX8f77n6C29gqqq88bNP/+/k2s+uAztsIFoK7uHpqbHuPYY5fa61auupiBgU328rbtP6Sz8y1qai4EwOsttTt7kmhoeXQt2Yhd02JoWhxB8A7aye7sfJOubsPnqaz0uCH7tYTDdXR1L6Wz6y1zjTHO2d7+Og27nueTNWvttCEzcqum+lM0tzxulH/uStpYCSsPwaCNdNAFo8MplNg5WghM6cMTUMFUN+mCPa6KLBeR0NJJKV0Q0FQBCYj4VAbyFPIjMro+gBpdja6ebCRXHaVUh76D0ILHkbreI9AGgmmKnhBVmhPJI1m7G/uJ71qNP/Esh5c04BtfREPMILrcHhKWxFS0ZpETZTSpHhjrnJ9vNbCYyEAYXddNObCZvnpu0jUG0Puak8I4W9uepTjx5aTydTcb6q2x00oY6I7StqcfXdfRdI3OiNHRL/WXEo81s+y9k9HNeYDHjfsC0w/5AcPBivfPQ1Gc2O5Jk7/DuHGXo+k6h1Wu5pLpTxL0xInOkNGj3wc+YZyR5ScvWmSKcY5uJdzisIcIEFDcz3DKNXVW2bCUUm5SatfuX9Hd/R7Tpn2bgoLZAGzZ8h3aO16x08hSkJqaTw7pvEOhXSQSXUhSgPz8mWmju7qus2Hj9fa1aWx8iBOOXzt4COsQ4CalBuIGKVVheuXGByH8YvEO2ttfRtcVigoXUFg4z1VGFUGQMu43FChKP1u23kpr6zOutSKJRBfxeAc+X7oq0kJLyz/IC0ykre0FJCnA5EnXJ21X1ZhNxIe1McBm7n9nE9tC73HPZw9LajQOB6HQTrbv+CmqGkYSffjzxiPL+VRVnkNBwcyktJqWPsGFVeeOBKLRJrZt/5G93Nz8GAvmP0Be3jgCgeGFGOSQw0cBD9+2nOhAnFnmV3yXNwSi8V0fTCkFMD9PYoLPAyfcDECZXkCYGB6lhApNokQUgU5zf5zObWrvWXfWFfuLAUgoZvifJjKuQ4BCiAtx8pDtTq6IyqLqRcR39THZV8R2wG3+rWkKSBCWYxCH7spWJsiTUTsieDSFGFBQZIRPy4KrQyvnAREj3C9l4hInLGr/OmSZllO+QskrBRF8RRAzh1/3rrCGwZhWVQh1g3UOs/T691nWZNVQNqWCrqeU112CDASe1enM98lEE0ZdrWo6HinZg2goxEGWQ7tUOu7yDB52lE3x5ZFELlw4jpa+KG9v78jYad8f2ESYJqPjfsfcMA/mOqFU+4Q0Si3DBXErpax+kzuZnjIYFc8yG1wmrmNLS79NSAEs29lJRb7RBszsNzb4Q2WTWeaLPpji5zN/eI9Ve4z2hkcSeO2mE6k11UJWGX2maX7UnDhAFATz2PqwXw23ks+C9TsTUTdo+F6mZ8yUHw1VKWW/R36ZrlAcRXNCCC0iTh3ig2qVJrvqy5V+Pz2erPua1Rw+6TjJ/3PheyOPHCk14kh/SN0EgyjKBINT7OVAYBKCIKNpMfr611G3539tUiqmqNz/bh1tfTG8Qjcnzyilyrc8iZCSpACqGiYWb0XTFFtdMjDgxD8DdHS8CkBT098B8HrKXGUyKmrVImUwzMXXrL0KXTdIqblz7iaqiNS3N+EpOIvpVQUU5omsW3+drWxoanqEoxe/TsPevzJu7GfwessHvUrrN3yFgYHN9rLHU0Ii0UVv73sc5uqDxlUPvsLzmVF7OGHxWDBJKRuChjWRrG1aKqTfA2+BE5Ln/g+gNUtQBUrcOA9NiSCaaXRzJhxN1Hn6uCaOrpvF5G0DgELZ9r/SzMWo/R1QAFHBS1/1y0Qr16CbgjQ5Xgi0o4ugYhAJgjeBHvfw0LJdHCv9kumlO5ldDLOL4ck9M6ipG0fp0m6e2P4+s5ZE6e/vBArRzPuuAv3Fr4H4GdBkyuTdbMiP4QdiiUJaW/9JYeFcApr5EfeZMpiyqdBpjMwlEt1oWhQQEAQZXU+QiLuNS0HyiExdVMmhp4zntb+Y90qHK1+6kpWtKwGYUzaLuw670CakAPr61tu/l+7s4I4XtxJTNIJeie+fO5u544qSjqOq0SRCCmD3rh+zdfsdvNf1JRaPWUGp32gA+yQIJd5hb2OEsB5Mb+yYsflupdSUuMQGIN9NSpkbddeDIGjJb69ijj4OhBtwo7vnPZqaH2O6SUr1p7xrkWgjQ0Fn51usWXuFvTxt2ncZX+ssNzU9Slf30qRro2kxtm69lfyCmYwd81lEcfhVuDULqCBIDCSMaxKUuzl38gsUiEcDh6bts23bbbS1PQ+AJAU57tj32bjpBjo6XkXXVcrKlrBg/h8BaOgKc+WD79M5EGdq8RY+O3sVkyry8MjFTJnyDTuU2EJHx+tJhFRt7X/R1vY8sVgL0VjzoKRUX986Nm66MWldUeF8gvnT8XmrWL/hK/T1rrbLvK0jyJQAhKIDLN3ZyTs7Ojhv/phhXz+ApuZH6ex8PW39nj33kZc3nmDwEObOuRtR9Nr1I8DUKd9kx8476O5ZwdZtP2R87RXk5dXa27u63iUWb0cUPJSVHY8sF9jTzjc03E9n19sIgkjtuCsoKzsOIO3dAViz9nIEQWbxUa+Rlzc2bXsOOXyUEQ0liPQn7Pq4R44bZIiu49ON76hmhREhMTl/Hm2hRvJNblzDULoEw05H1uni6vZ/LaXT7Y4CsToekhlq19phehoJAoI5u25U6qNIDaCJ9cBEQEEuySNOH/nmwIEx+GeWVRVAgoTlcyi4FDgJo/2lygKoyWSELlqTdGQmKfYHjkrA6dzaVIL72PY1cvw4+cYOUKI0PXwt+U3LiCkaXVqQxorjoG7oxtP7U1ajLIN3Ii0M9SpZnXfLgBqczqZmk2EMizjIFHLn+FO50yUfz42hdHhtpdAIdI51102zrq/zfrj1iObArj2L3r6vtO7Ow9rPRUp5JHGQPTMj4JXoi6tZr1+qol7Tddf9TC+zTTRkcQi3yIvBxPpbXabZCVWnrjNkk1J2+J55rpG4y+h8P9WOTvhjhvPI8kxY52+TUtmUUkMmpcz9XCb8Vt/XOud9eX859Y/533rPM6V1C/v28/qlKaUypklfmzM6Hz3kSKkRRpKk0HzE48rg7LDPV8VRR75Ib+8HbNr8TSKRBlvp8ta2Dv7nhS2Azm+W3EJffZiicZcDMKbmYqZPvw1BkHjt9emAjqL04PWWm4of45hVVeelKBAM+P1OR8UipTQtxt69/8ee+t+TSPSgm51XXY/T1f0Oe/f+FYCelh+zdOV8rj3vt0kdLkXp4623FwKwe/evmDz5RmqqP0F//wY2bvo6qhrB4ylh/rzf2YRUQcFc8vLG09SrI/O8k5cm83j9z3h9O9x4+hwmeqoZiDrER3z3VLyTdjjMA+DzVqPodUnrzBMgUBhHBXTT7FpHsMP36BKhCuLtPehTVWKRRjS1mO0DhyNERCCMJugosk681A8MADqFMcNUXE8Yaqh4oAa8hlotEa0B6vCGxgPtaIKAZhIgsthPglImFjVR4E2OTR/raaUoNgliCi19/cjt75mU21FEQgb5Edc1Cie+TfmUtxG25nNS225+JX3JyCDhZ8PGLyHL+Rwrasgq6JqCAIRie/FKAh5Vt8NFZbkAj1xMJFrPwMAOwCEr1YTG1mUtRPriCJ4IY476HY09Ch+0brPTbOjcxPrNK5Fd37R4vAO698DmZ2j7oIHypnz+pRnPxVOrG5k7roj+/s3EYs2Ioi9JzbE3eiLj/G8A4JUSHFHyB1rCBinRFZ9GqXc7PmUpW7c+bexgTr9tE5KIRldDgPzKTigQEHrMjokrfE8WVTxChMtn/42frPgami6lfWFau0Mg+ewPlaqJ1I69mKbmv6MqIZqbn6St7QV7JrvKyrNpa3uORCL7FLqRSCPt7S+xu+7upPUDA1uIx7vYXfcbQgPb6e55L2m7QXDEaWp+FJpBFLy2B5yqRkkkuvD7x9AbSdAXidPe8F38Hg+zZt2RlI+liBQEL6G48T4USyu5YCpE1XeBz9ppVTWGJPnoNckdY12I7u6ltLe/bK/r7HzdTvvW9nbbg+HaOU+STz3tZmRwfsEsasd9Iak8imK8R4WFC5g44WpKS4+lq+ttYrEWVDWZKE26jhnIvzVr/wtJCrDwsL/T3u5MMFBUdBixHkN54JOM8w/H9j/kIR4zTqiy8izy8iYQj7XS3PKkUa5IPZFIPb29aygpOQJVNepIQfCQlzfBTFPH3r11qMqAfX/a2l9i/XpHrTim5mJKS49l0+avp6mtFKXfJqUshafPWwWCQCxm+MLpukJP7/s5UiqHjx0+ceOhaJrO1ouMZUEXWZw4BK+mUCcbHT9NsDpUModXnElDYJdNKvVIcUpVX5KmyPpE2YQDGrquguB0ftxdbzukT5JBhW1R470SBBHdVIYqgvFe2p1cXaf4vCnkzS5j14OOqbXVy5LNJrdgDgCJumiTAWqfMfCiyhKkiEJ01/9URcf+h+9Z+zsDOZl8jGxSSreU1gLIXpC9nLbnUgZizvfitprZwEZ0XWf5rk5e2mgQefk+icvneFKNFYYMu4OdolTI2Il0n1cKbALQHVZnXn+P7DwtVuc5qdM6hOucaqTtblKkdoDdJcoWvpeJQLFgKVxGRLGR5BtlEgvmJRHcoaSWUophyrNSVeA4REYmUiT1SrtPURaNGTjtEmU4/1QCZLDZGlOLl+2ZcsK8MudklaPQL9MXVVLI2WTVUExxSKlMz+VQkIlkE+1nYvD9UgmnTNffY6ZRhirDSyEYVU23yTuvqQ7bJyllbzbrXvs9yqT6cvW191spZe1v/N+3IstduuyqyRz2DzlSaqSR4RlN7ONFDAQm4fePZdPmm9G0KM3NT1BYOJeeUB5Lat9mSnEDQY/RiLG8ZTzeUtsgU5aLUJQe3l/5KQKBiSTiTqd40sSvIIl+VDVMR+dr1NRchEcuorr6fDuNQ0pFaWx8mKjZ2RPFPMaM+RR79/7VJqQA/HKcuWXv096RHHqXil27fkFoYBs6mj3bVyLRSUvrP+zjHnH40wCsfOs9Yt1b2NR7MjWVJ3Ha7Cqk5g4UvYU7XtzKHS9u5fwFY3h7yw+YXqHz+fhzacfzeitRYnWInhjgJhNCqMUGcaRrptGox0O8649IvvmImEoxNcR7y0/H27SNpt6vUh9fiDf6MDphNGtEylV366bHRMSfT9uSLxAffzh6/YPGtVTLgToEszOpiaCZTWRBNPabVBTFLxsdyvZIDRV5zfhTPg56NIBMBDW+mZbGZjbFKyjuep2KakPiP+AvRRB2U6R3EQFETUBXvajCAL35Ip7OfPY2tBHUaijW2/GY3/L2HoMUlKQAHm8JkWg9nR3vAOcjeVTUhEPgNO3opnr2BvLHrySSAI3kWV7iOkmkVCzWhvb8jYjb/8X5wInlMpeFfs7aUBUxRaWvbz3vr/wkqY0aj6eEVa1f4cfvns1/n1jMDOmL+OU4tQUG6dOvTqKU7ci0pd17R/pmNSwFyqY2MHXcSqR3TK81XSY/VsKAr5sLp73MKWPfRpenIApaRlJK1BSQfGiIfH/pt2gOVfHSlwwyL6H0smXr90y1maHEkb3G1OPLd+zkd2vW8Lkjx7NwQrIqCGDrtu9nVNkoiV4a9j6Q9K65MW3qd2lp/Yc5KQL09q2hpuaT9PdvZMPGG4hGG8kf91c+90A3BZ4u7jzBIKOnTfsOHk8R/dEE/1zbTCK2k3GAjodNnYfQGqqgKmiQLH6pj0ikAZ+vkvb2V9i46UamTr3FJt78/lqi0Qa6TV88j6cERelD11UzDLGGsOlLNak8SKnfuF6BwCTC4d1JdZN93mbdEAxMpqLiNOPaW3WS6niT1Dfcj66rjK+9Mjk81QVB8KKqYfr6N5j3JZ/DDnuI/OAhvLbLCHEr9PZR7OslHFdpbX2WcLiOiROvS+vEKMoAO3b+jFBoB6HQTmZM/yGVlWcA2P575eUnU1N9AbFYm01KWQiFtlFYOJ9QaIdZFj/l5SczY/rtNDU/Tl/fGvrNcobDe2ht+WfS/k3NjxoEZAbEYo7/n2peI0kOcNihD6PrCrvr7qGp6RFCA9tQ1QiSlJeWx4bGXq7+6yp6I5l94gA+edjYg2p8n8N/JkqqgwDETMJVRmC2WkuMKPW6QXgnhDgCXuIm6euXgnbnJCZqoIKYVKdbPRyj3ohoIUN97PeneUoZTTZrEMkDKkRUR0mOqZRSzTaAhBVOrSP6JPJmlRExTaJV1yCZ5RNV29AK46aRH1JQ1R7AT7yuzkjvEcB1KCNXN1324Tz2UmFNIa/rehqpAoMTHrqu2z4y1544hRnVBdQU5Znb4BuPr6O+yxlUKEoUceV+ljG18+104jOVK0tGGYgHy+fGrdax+uFuhZZNamZpzzueUkLSsvsc3N+ZbKqWTPciFRaZkK1M+4Ku62xt7aelz5nhWFQKEVUvmhhHACZqxsBgWIZM4XvDPKJ9XItYkEUBPUVzlXpJBLu96Eplh6qlHyVV4aPpmcPdnKyyEISuchp5ZSelZPNZcqezjm2RUlZooeT2lBrmbbQ9pVznYz0T33lqPafMrOKLx09OO48hKaWGHb5n7ic5SinrubTOeZ+eUimebEPx+QKHVIopKk+t3ktv2KiXD59UyuwxRYMfL4UUzXgc17NlXbehEH857B9ypNQBQJZQaBui6MXvH0s02sDmLd8CoAQvn5+ZPEIeDhsm2R5Pib2utGQxbe0vEI02EI0mhxoFg1OYOfOn2Y8tOUopq9KaOfNnlJWewN69D6al39tfw7iCZiJRwzBYkgIUFy2ks+st8vNnMjCwmZLio+jueY++/vXopq9SfnA6A6Gt9mxYkhS08+yOlfKb92/g80eN55ZzDA+kroifTc19dIXiDMQUPqjvpitaSo9SCKpJmtgNPp2dHR5qCkAUM1xwRcC7AzQ9+ZFXY2vZuK6QYLQMDn2SaFstUtMxNMWtjpjlQWUs9SvO/Xis4kjGDUB73yE8/ugEfIc+j+Yvoio/D80kukQrVKpPMIgPQDHn4ysQd1Pq7wGgLxakIg98YvLXNa4FiSaaSYTepS4EdcygNt5F2axW6uIyihmGOSFWz0YBJB06Vn8db9lbtAjv8q+Ou5H/6QP+l4j3L3yRl9kTmc+b70SpmjwFqhUOGX819Q1/pEs0iK6C6iaaOkGRwxT2TScRU9AlY3RaEscC3UllTNgjqCCIRehaLzvzdtE3rwhFFhjIl7meH9M4UE03F9LVlUcqIQWQnz8TRdOIqz4K8ifjUUpIJLqRzFCHsDYpbZ/UBpEgiOi6c78EQcfjNRtbeh6f/+AHvDXpUY489BVEARKeeUiCZnQfUj4wsvnc6gi0Rceh6jox1biv/f0bbUJqxoyfUFgwj5fWvEMJ0BPq4MkPGmnqifD3Ly1GUfqJxzuQpCA+X6Uzy6OJqqpzaW39JwmlzzCrdmF87ZUEg4cQDE6hqOhQxo37HA17/8q2bT9AVQbYtv1HNDY+bKcf2Pt5fnmCH8n1DihKLx5PEX96Zxdte3/KsWPfAwm6I9AeqeDb736PX188hfyeswFYuuxEgsFphEJGqOf27bcDBiEVCEwkGm0gEjHqmby8CUSje4nHO0ylVg0DsTjnT3mew2qaKfIZz01x0eGEw7uJxppp2PsXIpF6AMrLTrIJa0l26gNJNDo3qnmNw+Hddjl27EiuzwKBKcyf93vy8ibwwerP0tOzgnB4t3EPpSCFBca7HDXv3cKqdSysWgdx2GD4j1NcvIiSkqOS8m1peTrp2jbs/YtNSsVNUsrnrQDA6y2nuPhIdF0lGJxCU9Mj9PWtY3fd3YZyEIPkF0UPY8d+hqKihSxfcSbRWCtNzY+zefO3ku55fcOf7GVBkFmw4AE6Ol6ltOQY1q67yjZvB0cpJYp+O9TR5zXCEvfU/4499X9k9uxfUF1l+NVFIo2sWftf7AqfRmPPDLLhqQ8ac6RUDgcNuvl918zwcDGJnDG+p73xdpBBEiSbrokJll+Lk5fdb0skwGdqfvymt5vVG9Gcjq9FVMmyBxIgqa52hRmaZ5FSsouUWlnXxZ/e2c15qgCub5GoCxSY7TZBNdtEIQVdVhFEEPOD+KceTn91Ffp2PTmEzkWmpJLnLdv+l5iq0dv6LWpnpA+CuMNoLD8b45R1+0xtosDyznHtLyQRLc5H0t3BvOaEKRTleXi/rssuZ8gkrMaXBqjvChOyppYfpOe9qamPf21uRddhXm0RS6Y7YdtpKqOsIYz6PpO4i2CFvrnD96x1mTylhoJMaR1CxFnnKEEylDGjn1PqcUwC4EN0jp/8oJGbHlvLoYlOFuSb91/1UdZ+FCXhv7GorodEdSs/mjye2qnFfLfOPJjuvCuph3drrtJ/OUhWSmUPBMx0ig6JnL41VeGjaQ4JltlTyjrO4GoZmwQc5HqnKr/cah7r9xETS3lja5tNmh0xqZTlu7Kr6wdDJpKtIt9HVyjO8t1dLN/dxWeOHE++z4oQMeDMvpdeT1pw1FRDU0qlhmKqmm6/R76hhu+l8Jy20fk+FEzW+f9jTRNrGnrs9aVBLx9879RsR0zaP3PkZvrT/CEmEs1hH8iRUiMMdyVkPbhPfrCXvz+yF0XT8YgC3zpzBucvSA+pmDL5xqTZ+QQMQqM7VommJSjL6zbz9VBe5szANWPG7ZSXn4yOioBIW/tLdLhMrPcFS5UQj3fZflWFBXPx+SqorDyTuj33AvDI1gvY0DGTT077J+MKmomaYSKSlMe8eX9AVcN4PIUA9PdvZsX759im7gClZcczENpKJLzH3C/At59az3Prmu2ZKIryHAPnU2dVceqsKv749i5uf24znebIgt8joketR9e53muai6gpSD8/HQH1u2Mp72tDO09iaksX7YV+egOG4qevp4++FZUUTohR//rN6KrXvP4q6FZD1KhUPXkDGB5WKjuVIsaICqImo6s+1q+dydPBKZT6u/h7vqkG001z1A4B3WxEK6rX8KzSnUZQr2I8LEWe7qTZG2N6ENTkMKOGjlKWPeOjuVrlsEnGKMDJPStoElvoU6vp2j0J6sYTnt+GpHowpvUViPQt4j1lPDvCJ0Iv1NedR9nJf6Bl8pHMm38qHRueoA0Q/FtoO+ZpdnRVccqqWwERwWcRkJNIJaUe2HQhX571NH/dfDGHVa1lQUUv9cV9QLIZ99j8FgqUZ4gnTgFgwvirGT/+v+wwrIL8GSTWG35Usigiy4Wu2SKhUzuRf+zcw5HjVao9ryTl7VhDOb4XA82llNa2UFaxmrHN62iMzwJkysJjiaoFtPVXMHHSWYiCQRosKFjLBxxt51miRYBidEQK/V46BmLc+s+dfHk+dohUfv4Mxo65BICBxBpKgPEFjXxuxqN0acfy7PvtiD0345OM52Da9N+gasbo8WGHPoTPV0Uk0kBr6z8NxZGprJs9+1d45EJKSo5J842SJcOVXFH6bcWSGwFP8sxHz75zM5WFZdRqu5k73vFx64wYHZhCv0zQV8zKlgXMr9yER4zbhJQbhYXzEM2Rfis0LpHoweerIR7vYMfOn5MXOAQ5UcV5U5zQucaBGgLxasAw4W5udvLc2/goNdXnAoaqaf3eXhq6w3gihh4gEt7N5i3fSZuEwY1x475AIDARAI9svA8OEeT4iNUPzGZSXjlVgY60PHbt+hUFhXOYMP6L+HxVAPQPJBOEHrmQjo7XaG191iblLN88QRBZeNjDZl6/Ns615Ql7X1kuYow5yQRgk0eK0pNESBUWLmDChKvx+arRtBhFxYvID07D4ymmtGQximL6yqlhw2RdCrC7w3hHdnXEuedPy/nsEePZ1TyB8brffBZU3t/yLOeapNTu3b8iHN5BNTu48bDpjCtKUFmUn3SucUVjR9sAkijw/so/ONfAU8yMGbfj91VnuhU5jBJ++9vf8vOf/5yWlhbmz5/P3XffzRFHHDFo+scee4zvfe971NXVMW3aNH72s59x1llnJaXZvHkz3/rWt3jzzTdRFIVZs2bxxBNPMH78+NE+nX3izjvvZGBggKMD+dDVg2h3VkSbmBIEDzoaTsdCdpFSxn/R1Wmwv7aWp40A+P0QjTphHNYMrLrTIZpSMo18JR/RpZQSTJ8pi5TyCE49879v7OS1LW2cr/g5NTGPHbE6fLKXCdI4JF2gO95CXX4/hwJeMYDV1Sm97FLKPn8uPPQCexM6NR4dVVRYWrAWvd/JP00ppcXQtRCtOzcw54S5SZvqO8Nc8L/v0hUy6s/PHzWe2y8w0ljn7FYjZDLXTjeUN5bdHUyrk+somBz/nmmV+dR3hV0dvsw9uZseW8vm5j47vw9uPZVCv+kf5vJ2SjpOJgIhi4Ank5m1Hb7nmqTIIjQ0F4kxlBCh1GO709p57aM8aXllU0plUVoNFbs7jEGhgGvOD2usV9BV1LYNRH1FvMQ5fNIv0x4N8FzTDEK77uet6bXMbu4GBv8+g9U+cx40wfTmsp6hTLPvWfdWT37skmDRYZmUYqkEiKY7T0vGZ2MIqhzLDyybehDcvkqubeb/JTMq+OyR44kpGpIoUJTn4Z7Xdgx67GywztvtKfXHyxaxbGcn33xiHQCxhOqQUimkWTxr+N7Q1E0WUgkvI3wvRSm1D/Y0tf7JShZlCN/rDBl1dFWhj9a+GF2hOKqmDxIemn5fMz1k7ntilStb/ZPDh0OOlBpp2M+o8xI88cFemjXH9Pup1Y0ZSanq6vOorj6P9vaX2bPn9+zsX8jDHwh4A0fz/p4+ppW08/g1C/D5qvD7HYNeRS+gKX4CYExDOmvmKby3/HRKigdvtLrhkYsBUgzUDdVCQcFsFh/1LwSpgitffhOAcMIgc2JRo3cpiQEeWNrA39+vR9eNCu7CQ8cyOXgJxZ4GBAFKSo4iz28Y+kai9eYxAvx9RX1ShTN/XHFa+awKNWwaA/plCd1SSrmURS/VnUyHPpGahEHIWXdA1STbz0lXvBzS2k0w7mXDgssRIh1E468iqwJSZBa66kUQVGo9aygI7OCDXqNwV76sE4gr7DpmD3GmACp9gpffFCS478gJbHm5Ea95Hl3RUpQC4/oJWozNjxr3KnaEFwIgqJas33kGIn5D2REQk0mphO7L2CoZ1xxkXDNsnVzDlsAkpkTqOav4pzxR/BUSO6ehq1G62/0ken6N8VCKeITDGfBVJOXT2VbJefe8yykzK/mcdwwQQxU0XhyQ8QmmFw4C3irDP8gKtQLQBS+CHueMRWdz13un0hOFur7x+LwVzCx6w05X2RbjHfU8Dql5iULZIGAAPN4SvN7yJEN8xfyKy5KAz1Ntk5oeTymilM8zO8/imZ1w4TSBM6aswYpzsAzLrRkldQES/cZzKooaF5R+n9/33UwifCSiLvD3uttZt0fg99PKkQRDufQp4VFO0V9l3E6FQGE7e0vHAt9BR+C4aeU8tbqRUMJR8wD4fc57GFIrQYIC7wAnjX8HeAf6AWdwmp2N7+Axw00kKUggMImE6amkJHrRJMcfqKTkCOKKxovrm+gNG42+wyaUUOkxQzdDW2z/qmOPWUpz85Os2rWODY29NEUP45SxD1Pq76VUWo4SgmJXbZ9ffQeiOIFbzizhiEmlDMQU7l33XwB8feE9zCxzfMMCgSmMqbmQqurzaW19FszwWzC8kcbUXEx//3q6ut6GrreZZYoPVN3Pw5vPZUPnLPzroty4sJAiX1/S9dO1EF1dhvdKf8zPJ/5g/P7KggiHVkLdnt8l1UtgkFCxWCvVVeeTF5hIQb6j9pEk454nEj3GvXfNGtoZreLb79zKlxb8kyMrDVLz9YZjWFL7Lj2979PT+z7t7S8zderNFBctsomtoqJF9PauRNWibNl6qx3KKAheOiLFfO6Bd+gMxREFgS8dP5mzZxzNnvrfo2lRBEFmzuxf2worC7JcZKtKLcyZczdVlQZxIBV+hr2dIZo6YbqcR5nHOr8gouhD02I07P0rJcVH8s62RuYGoSss8Pb2Dtr6YkwqH8OdG/+Ho2pWcdXcv5KIN9HZ9Q51df9rD3oAzC7fCkAsg3XXlGLjf1/yLaOj/V+MG/f59B1yGBU88sgj3Hjjjdx3330ceeSR/OpXv+L0009n69atVFamTwKwdOlSPvOZz/DTn/6Uc845h4cffpgLLriADz74gDlzDNXbzp07OfbYY7nyyiu57bbbKCwsZOPGjfgt5dBBRqqHiEd1iBGbMBEl0DU02SBUZTHfJi0UM8TcTUrZX1HboNmlFtIFEBxSStcdwmBKyXSWnbqMbXd8HSxBg2gpDwxSKigUmgfRbQ9RTZeYoFUghMME/R7KfGW81fo4zZGdTCsx2mtGOJ8Z1m/NQCYIfBBWaQ028NS8OwG4fqvhNacL6UopSS4ANUSmDtXavT02IQXw+hYn7NdK7p5O3U3COJcrc1feraCwOn2CqxOZrhpJK14SrG8cGB3hSFx1kVIk5Z+VQCA5rRuZCB47BEoUkETBDDsi6bjGDGlW/oOfiE1uZjBOzuQplT18T09Lnwp7NrgPE76HjldNcOQYma4eu2RG/rp7tmpDkbVroIzOWBAIMeD30p7vRyeUkquQ8j+dgHM/b0a4m5qy3bzX2U4tC2mRKXzPMZvP8GxkMdW2yymmh+WlHgPcZIqTzrpHgiAQ9MkE3fPumP+HS3JkCgmtLQ1QWxrg5ifXoenJ5FzqbHMJxQrfSw8JdpNL9ozeQyiLrZTSHVLKJ2e/bqlIfXoy7eVeZxv+m/d84YQSnl9vDBwnVA1JzDw7dOr7msk+S0siv6zjZVfM5bD/yJFSowirMrVezMuPnsgDS+v2yRZXVJxGRcVpvPfadta2b+O4aT5AoL6/mqKiQ9PSf/aP77G6vsdefu76Yznm6LeHPE17Xt44Zs74H3p6V9LcbMxu5/YgCQQm2TNFAIQsUipmKFwkOZ8/vLqL5l5HofHjF7YAx3DHp+Zx8SKDjOruTjZuRsizX+oXbziO0oCXysL0RnHQl/yY+jwiesTyNXKupaJ5iIhHoyXewv2B83p8zsc/4XwJNKkAn38cCfVVZBUqtKvYBXh8GucW384meRZgxGNX9kpU9kFwmciqKg/ocQ7b/Q4J/zwkphrHcc3kpokSrasL6drqGnE074cUj6AKPiLx6axaWUaxJlDr12BeF3I8ObRL0z024VKRBzJ9tJRXoewNI+kC055aw0PBOUyZO5PLu59HHrOLyKY4SvglktgtNKSBnageQwkkShE0NY9QyLg321oH8EwcBzQQ7z8eyp5HEx2FVkdcZkyeSlTbzuTO+YzpnYYmetha8RZHTC3ky8cs4K1t7Vz65xjP1V/OtZ71tOu7qeiMI2nw/JgFwEuAo2IJBqaQCsU1ajn9kNtoa30eHZWy0uOROip5enUj3eE4T2w/h9Laz0D8BsAtIHcaFuHWEla+fx4F6nImsZGaQoH6MAi6aL6TApKnAlmSIQGirjKfNZQHE3RUePCZIZgaAr+4eD63njOLmx4t5fndW1gyVWNyRTHjai+zy96njOF3Gy9jblUPR1c5xA3AGw3HcGLtuyiJFkTTvNsiUDyy0aFJKL2oMUOR5vEUAfDM2ia+/thaO5+iPA9v3VCTdB09nhK83komTryWJ7dt5f6NO/j8UeOJFx7Ozr5XWdPQiyTKnDbxXQKS0Sk5ctaFHDnLKV97f4ySgIfucILV7XOZXrodUdCR5QIWzP8jeXmGemJ87ZWUlixm06ZvMBDaSmnpcUye/DXyAhPZtuMuO9QSwF/yJcaMPYntA+0090W58c3bmTeuiFD/agKBiZxY/QcWVGwkGt1rPGNhh/CLmWpFNyFVVraECROupqT48LTnxoJo1ls2KSU6w79xsxNVXnokYJBSj2z9BP68aZxU+waRSB3RaCMbNnyVgoI5trlrXl4tvb0rUZQBYjHDuHfypK9RXHwEz26JsHav86I9tLyezx91HCcc/wGaZsxcquPhxkfX2CPSJ02v5KsnT+PwRU8Tj7ehaXHi8Q6KiozJADoGYiy58w27c1tR4GPZzSchSyKCIODzVhGJ1rNz5x0IggdJN4yG/V7jeQonFOKqMf+YxyR8JfppqP9TEiHlxry5v0tabuuL8u2nN5Dnkbj7M8Y3Z0/9H+jtXZk002YOo49f/OIXfPGLX+SKK64A4L777uO5557jz3/+MzfffHNa+l//+tecccYZfOMb3wDgRz/6Ea+88gr33HMP9913HwDf+c53OOuss7jjDmcShClT0uvjg4Uvf/nL6LrOihdfAKDAmj4dKb0DJwdAATEpfM/qVGfI3OxkhEQFNZ6cQDDrCLemxRI0J81OZpJSktqEIsxG1o1vhUy3o/CwFFxiHqJovJvjJkxm2qITaHrBGJjzSyXOwc2OoZihg5hNUSPKAYilE3ngdKgK/DL9USVjB9UdQmZ30nB+62aovVWCuKpx0X1L+fpp0+28rI6oYxbthEqlhTwN0jFNnUEu2Y8nuaxDmZUrs1LKnc7oaNszmAkCkiCgorvK4hx3ODNuZRJmZCKZsqmvBuECU46TTn4MF71ty3j4pTsRiibwz5OOSDqkYIXoWcRihlC9TAXMlCoTUpU7GWE/U+mwdss0+6BqMgymj7+hlMr2bGSSt1mrUo43mPe3Q7JZ99X9vmU79tCfreTjWeVKz1WWROKKluRpnHq9HU+p9Lxl18ofPruJmTWFdl8uE6y83Z5SdmjsUD2lUkhxqyrMbHTu/E6dhdLvClNOqBp+T+a+sPvdh0GUl67f6aR4jpUaaeRIqRGH85BKkgAqHH9IJeMmHcL40gAPLK0bcoyu1SmxlEKD7WdJni2c/Zt3KMrz8KML5gx5yvMxYy6iuvoTdHcvRxAk3t+j8PImw4Q36JOTKqOQYimljIaVx1Nsl/VLx09mS0s/DV1hdneE+Obj67j5iXUcPaWc+y+bb3jLROrQdIku3TA19soiM6oLBy3buJJkk96aojzU1hqq13+J9crr9vpPLRzHRcdM4OHVyfuLgmAraHCNvtg+Deb/rmgvUExY7wYgIfaim+F3ktkyFRMiolyFlthFWV8zZ/S1sHTLTIoQbaUUgKZA11YnJEb0abbWWlcGiIUfJ7YqikQlcTFAxaJeoAvBHHlFUECXUXWP/QEs8Ch8YuxavjP1anYG3+XwLSWImk5xfw+xPuNYoppAV1tcpxpA9h+OEnkTQY2gmI3noDdGfySPvqLjSVQn6O1N2CM5ip5egccUDxAjFh7DKdsuRzSb/6WhUkIJQ/mT7zee075IAkFQqO5yRj69kp/frbuMo8aH+dyxx+P1lLKmdSK3/P5VIgkVnyzyw/Pn2M+4LIrkB6eRP/m/7TyOKYZV3zuVnzy/md+/tYv+qGPQbF966z4LAqIOkUgRA0o+yFCc56Ueg5Qy5PkisiSR5yumJxolLzALaKKj2hidtWbP1JAQBIGSoJeiQB5PrD6PGdNmcs4sx0ASIJbQWNGyEN1fwvLGGk6duBqfLLC2pYLmUBUn1r6LEHsXxSRMLeJXNkPOVFuFJtokkGUUa/ly9EYSSL4ZzJp5JxGTzCkrPcb+WMbM6+eXJT537Am09h3JT37yKpIo4M0/i1l5P6So9FNp97eiwMfyb59Ca1+U4+6AdxqPYtV3lxDwBZOIHUEQKCiYzaJFT9LW9hxlZSfi9ZYxccLV3PzCeGq9T3LyjBqmVlczcfwXOP4wQ9V12i/fZFvrAJ0DcRp7J3PTEYewY1ctCyo22nn/5o1eoBKPJLC6bR4LKrYQ8Kp4veUcduj/kZc3eIPIgkX0KUqPcSVFh+S26qgZE8/mkKJy1rZUk9DaWNl+Ejd/8mts2fIdotFGevtW09+/AdlUkFqzQ/b1GRWLros8tf0k5teWEY4bpJklF7dm1BFFH6Loo7Enwvu7m3nyA2emwDUNPVx74hRkSbYVr1b4IcD21gHiioZXNhqV7f0xQjGVooDxbE+bdgtNzU/Q1fU2mhYjXzJDCU3FSFzRHK8I0VgnEbaJuokTvkx5+cn8/o33OKzg58b9rzgl6TqGhBBr2wUKfLK9rSXDLK45jC7i8TirVq3illtusdeJosgpp5zCsmXLMu6zbNkybrzxxqR1p59+Ok8//TQAmqbx3HPP8c1vfpPTTz+d1atXM2nSJG655RYuuOCCjHnGYjFiMSd8rS9VPjfCCAZNpXGqtw+COQscSYonMDqMtuGt1alx5Wl127wmp6qIGuiGasKry4ZSyspTdxRZgtkz6iuYQbAnuZyatpcJ/k+zK3o+8edWUXDqEnTdmFjDnqNM9CEIxvnMO/wois85kgef+xFapBsxzyCl1N5GpGBhUjndRJRunomWweRczDCJQSq8LvWCnafVQU+SRVnrXOeYOuCjw/t13Ty9pskpg3W9XYqD1A7wvlq9qc1bd/81VWWUXSmV3LHdF6yOsiQKWJO6WW0ht0Irm2rDdXA7vVE+N7FmbRt0t4zrshGSkq1myVao7Oire5JgXCNsHAwA0Wx0lraZAy5Jyq+U8gjp5U+7L0m76HYaR12Tfo7p99ZFCtvkpIFXN7fSF0lw2dETmVRuvGuWUsoni0QTGpquZ1QWpRYx4/1NfZYHUbbZxEwm76lM79tQjp0FNqmSgVTyiIYBjOJ6OKz800ipDGXye0S7DXL/u3UALJ5cRm1pIC0tOM+6xzJI1zRbuWSRUvv0lEpZFlx1Tnpa5z23Z4u0Z/tzLkg2EYgTvje48inTsa2rlVNKjTxypNQownrRf/rJuVBcy4sbjLCPVLZ4Z/sAPeEEkigwe0yhPepkdTADXuM2WVJM96hCNKESNUcRbz1nFj981vBB6Y0keGF9M6fNqqLFVDAV5XkoCTodzN0dIT7YYxAwhXkexpXkUTbpSSaXBzjxzndpcimfLM8ngLhqVPq6bmz3eIrtyu3iRbVMrcxn1Z5uPv37ZSRUHU2Hd3Z08OvX6plf+2uOnlPGUT99lf6oYpcrGxbUFvPAFYfT0hvFI4mcMrOK11/8J0XNR4P6LlZz55YzZxIo9PJwhjycETZzRE/XsapAzay/2vrbgGJU0SACYvSDeY6SOf2epEjIeSeiSuWo0RWI6ES2raTIf0QSKeVpN/YTPRq1J3QSDcxD7zRDy5QuO18AnxRgSmAq7exA14x77YlHSXjyUXQPCd24PjE5j2VF83i78Bi6J79A2ySR49ZMorC5C82SW2sJMNMr+ePJlz9FQuuEyJsIWpiEYtx/qbkdiospXr0W9ZLD6SxV0PqME1BtU1kRDQ0Rkc6G86mpfhu/dJ1NSAEEEgUMKAYpJUsxglPuoEdM8HJLiJMA62kLeEVWtCzEm1/OBcJs/vxeA69v2UpLn3Mdnl3XZH9AMjVSLFjPy3PrmrGCovSU+6vjmnnJ/ECF+nvs81J1i/wS7PfJ66sFlwhkW8fnoAJUHHIxz2sQdrZpqwsxxXlf3++YRb++iOKAl7UNPUwq2muWzyItvHg8hqeTx1NCScnRdHcvBaC66lwkKY/OgRhNPca1PW/+GH77xg50HcIJlZqaT2S8NhbxYn2Ufa7GQHeskB+t/aZRH2WAVxYZU2x0cGKqj5gaIN9FSLkhSX5qXB5JAD3RIO/VXcC5xx7B1MnJYaJ5Zh1mhZIU+GXqIqfzWv0AeXKUzmgpGzoMpcbx0yp4dcuh9HM8j1x9FH9Ztoc3Xx9AFLZw9twaplQGyfNIGRt3FtFnGZ1Lop/6zjCbmvvoMWdk8coS1VXnsrO/A2gjFFN4aVM/Dy79NBJhrjrkS4BBbAmCRGXF6ezefTe6buy/qnUe967bjSTWceniCQCU5xuklHX9AR59v8H2dQCYVVPIpuY+dB2iikZ+SkvygXd38+tXt9v1+WHji1mxuwtNh6iiUmR6tNlK2uVnEAptJyAZJLRmdnzjimY/i7JpHi8JUTtMVAocxf99kM8ru6bTEDyTo2Ycl+EOG0gaJbTVCbmW2IFCR0cHqqpSVVWVtL6qqootW7Zk3KelpSVj+pYW4zlpa2tjYGCA//mf/+H222/nZz/7GS+++CKf/OQnef311znhhBPS8vzpT3/KbbfdNkJnNRyYz5ymp62zns6S9r1Qcjiy4GyxSClJhwQ6HgS7DVAQ9VDYPYuKQDMN0yfRG4nh7TfeLbmjx8hZdz/vAgNvvYW0cRMUpkwMoGsIQgKIgxJDEATHM90sX1zKdzrRZocthkLopW/RedxpjIt0Elm5ipLzf2WU2fr2uU5ZSuSDF3QhvfcpWMR7lg5VplnabNLDdbiMnXYXIeiGNfOeR3IReO5jW2VP6/Blrj9SO/pJZc0QVjhYXk42GTr/bq8s3chPdZFSRniWZq9zQq6c7LKpklLrRvdSptDIbB5FmdKnIttU9m68u6ODbz+1nkhcxe+RuO382baRvG76poZd7XCvaTFR1GUMumg+qw+iD4ntSyVZMl0V9/OWKXwsnZNKP0evqYjZ2NTHxqY+QjGFn180H3Duq1cySCnVRZRmNDrPplqzFXNDIy8yhfmlqv2SD27lMbxvazaSzSGe0oloOWVbpnBGnyzxu88vZPnuLh5cWkckoWZs9zplMfOWHGI6dRKBVPP5VDhKtmTyOePzbafFvn6WOk6WjPpe07MbtVu5DmnCAfd76yJpf/r8ZjalCEPcGFcS4Ifnz06a3TOHwTGqpNRbb73Fz3/+c1atWkVzczNPPfXUoCNxFt544w1uvPFGNm7cSG1tLd/97ne5/PLLk9IM1/TzQCLpoU55wu0pNl012utb2rjigfft5fMXjOHMOdW8vLGVdY3GKEXQ5yhXfv/WLp74YC+KqqHqut2Jl0SBK46ZyLnzx/DYqgbueHEr4bjKqb98k4YukzQQBZ649mjm1xaj6zoX3beMjoGUuYcxOsBdZnz/jOoCtrT02ybjggDtkWQ/rGDwkKSwKzBielffehrhmMLn/7Scba0D3PO6YeZ3zNQy+qMKHklgSkU+lxyeXQEhCAInTk/2znCmBnY+f1aF7nwIhbT0dp7udOamaNy8FkKM5R21vNs+wU4vmcZAoiogSsWIeccSDdTh6WrjmJ2vsHP2EQTN2Xl8SpxETxgP4MlXCJQniMX9doNS0CJJZdHR8HRPRFC96JoZ4qcYpBSCaFfsS0sWc8OC0yiLRRGBdqGH/kQjheTZs68IumqH12hmuKBqS1d1YmoCXdTxJExD+3DUTCOgm5V3wppRSJfQRBVRE2mN+PG8/nU2l+oscJXdpwQIKxEaBxp5r+MFRK9huvGNcV5OCFdwT6sRLpbnMS5yXNX4yfNb+NfmVjuPU2dV8cqmViJx1ZYayxkaKRZmmm72A3El+cMEtlJKFyAvEsXT3YFQqIME4VjUvEYiinmvjIaosffS1jM5d+aRTHz9MoriMZ4oN55zzfUcBU1S6v5363h+fTMTyoIU+j2MKfbb75KlbFRU3R6lCmvj6IoWU+zrQxVKGVv9aSTJ6EwIgsBhh/4VgIauMO/t6uRHv1/Ge64ZWYoDHoJemYGYQjimQgZDf8hESjl1x0DU6kQMfm0lUSDPIxFJqDy+ai8zawo5blr5Pv0EwAmP88np+ed5jHUWuZ3nlXjwqjNY37gYMNSYN37Sh88jUtcR5tUtbcRVjYdX1POLVxx/q/veNGYfnV9bzFPXHp3WmMrzj0tafnhNGY898npKWYxrYt2n1r4o1z38gblV56pDjF/5wemMH38l79Tlc9NrP6DY14eOQEuoCp8sElM0u261iFI3KWU1VHyySHHAw5eXTOErpowz6jIftfDYqr10hx313xETS1m3t5dwXCWaSPbbAGxSs9xrDEQIQrpSymP6j3mEEJGI8c7/Y20/v3yjB4BtnMmSw+en5Z3Dvy80s+F+/vnn87WvfQ2ABQsWsHTpUu67776MpNQtt9ySpL7q6+ujtnbfysWRgqI577nzy1QDmp1q2VVHRVxKiteDCRZoMh5dATwImoYvVk6ZMMD3tkiUoPAlq9PZ3G/UrapmH0ltqKPhG1eTB+jnnY/g8icRzW+tbofuC3YnplePAvn41BCy5AfJi2BNFW+1XzTNGd63Q+AMja67ZhN05xueCj0LWWyts75xShLRY56DS9Vjd9Iy0EuppFTYJKXcg6TucDKHcBi8I+9GasfTvZgapiRkSJO6X7YZ1sC5ku5ypoaDZfSUGgJvILqZvpTjJHlKZVOC2Mfe93H2RUq9sKGZPZ2OceBz65qd2Q3NXXXZGYASDVaW/pI8Jk7qY+/cwyBipU0v0NTW46jsncPauRpyIkJJ/z+Tzg/SiRPDDN/4ncnoPBXOG+akPaQqn+8eOZPlu7t4ZVNr0vfT+gZabSH38bIazGchOjOF5Vlw34NMz7xNAmc99vBgVx0ZHnZPxhnvkt/JuOoMzmbCkhmVLJlRyRMf7CWSUAcNW4R0TylF02xS17oH++CkbNjhe0OYfc+tYrQJZkHAIxlttESWiic1pDbbvc/kBVfXEWKta7a/wfDJw8Zy+MT0mVFzSMeoklKhUIj58+fzX//1X3zyk5/cZ/rdu3dz9tlnc8011/DQQw/x6quvctVVV1FTU8Ppp58ODN/088Bj8BfAqtDccsoNJvEkiwKKprOzfYBvP7UhyZyyusgJQbn7te224bcbc8YUIggCFQU+asz0rX1Ru9Mkmflvau5jfm0xMUWzO9GLJpTQ3BslFFfoCSdY39hrj9YfMamULS39hE2GXBYF6gamc+vSm7nvMxOpLSuhqOhQFO1l8xydDmm+TybfJ3P7BXN5YtVeHllphJm8u8OYzvzQ2hIevWbxvi9pBgyl8nZXs9boY3L1bDY8zIQJxZreWWBtd7Xd2BPksYDRGZZU0d5HjcXwAIJm7CcKEhN7Gvjl27/BY0757A2q5rE8tqeUrJr3VhBB19B0jZ5Wiamv38M29XXzOA5ZKClRVECXjI5vkiTcNC4bMCU+WjSGNeudKBnH1uQYohAAPUx/36MIYhme+ETzGhll0mWR93d3EQRa+o3Oq6zL6IIKeFhR8CqvLXqcQ7b9NxAgLkXxqn68ah5bOjdw+9Jvo+nJX5zdHqd6qSkwwgZX7HaIlgsPG8eC2iKKAl5e2dRKKK4kGZ0PhpNmVPHSDcezuWMn7/4W8/qal9RSSgkC+ZEwA41dBAqM62D5IzieUsbzbIUdPraqhQ/qg/yjTyNfUFCKlaS8AaZVGZ383kiC3kiCba3JJtwAAZO4UjTNJo1LggXc8vb3UHUJHZHLj57I3Blpu3L5/SvY2Z5sGlpd6Oe4aRX84e1dDMQU/vzubk44pIKTZzpqiG2t/TyzpolVpvLRagS4Zcx9ZrhjNhUaGARYpFflpy8YSownrl3Mwgn7/qBahIwvQ/y+pfa0kOeVKQ54OW5aRVra5p6onV97v/EeTK3MZ0ebc63XNvTQHY5Tlu9L2re6+hN4vGW8t6OOPy9tZV37bHvbogklTCwPMnuMESZTaqpG+6LO6N+0ygJ+sepaPn9EMScfeRUAf9+wjYFEAQm9iOKAhx9/4hB++8YOGroitPRF7GsGTiMPnFHBa0+cwg2nGEzXjY+uTVIygfE+t/fH7Pr43s8dxpyxRYwryeP/ltebpFR6a66wYE6yR5RUbJchbiuligkn8gh4jHL6fNU0dJQBbRw+sYTjp1VwxuyatLwzYqjxMDmMGMrLy5EkidbW1qT1ra2tVFdnngGxuro6a/ry8nJkWWbWrFlJaWbOnMk777yTMU+fz4fP58u4bTRQ31ePqjvtHHefpERPnilSTOjUxTRKZOP57JcEeswqKG8gwW89yZNT6Jo50YgucHLYQwUVaH4zPF/WzW2iQxh0Gt8stbAIjaR5KyDlm4dLKRUxv8kVA1vwFk4CT4VNPGnWAJWu2T01S0UlixIJ91CILmLbDmQIgrMIaz1D58tWStnqBRcpleop5UqfHNGXWY0RstuEzjfGHVbnmEOndNAHIVBSQ3vcHcRU1dCQwvcyHCPdwF2wO/aiILjC4awBTucaOeefrZObfpxUZOrcZsszq5+YkFzewWCdozXglKmTr0rp3cHuyiAVhwygFeRBxJrBLrk8miCysP5TiLpEZ5l1OpuBzhSlVDJRZzxvyc+IG3py8oz32iuJXHXcZCoKfLyyqdXup+i6bhOw1sCc5oqOyMTBZH2mrPfINnzPREo5v+VM79sQyNLhWhRlM8O3yuBWCg3mKZXNTB+c886qEjQ3eWxPKdI8pWKKxqMrG3h7ewe6rlMa9HLTadPtQb1UUmgo90TAeTfd4bY2KaXsmwkbirebkCG91aYuDnj4wbmzScX/vLCFlr7okC17chhlUurMM8/kzDPPHHL6++67j0mTJnHXXXcBTiPpl7/8pU1KDdf088DDeapTX3ObQVZ12vqivLG1neVmJ33uuCJW1/cQS2j0RYwH/fqTplJTnMfZ82q440VjliSLkPrz5UZokGiaM06rchpqXsmohK1wlYBXYsmMSp5b12x3VkIxpyP2yNWLkUSBjU29nP2bd+jodwiRYnOeWEuqLYsikijSODAGOXAkxcWF5jmZI/MZavsjJpVyxKRSrjpuEg8trzdnQxCymubtD7Ysa2bi3PKMJouVBX5wzQQv6qR5SsUTMWQgT5HpUwxiTyr6JLIwgZj35xSEwOR50AXwyubrYxn/CiLzunbjNwkpQdIpqDU62LrukFKSbqrOpAC6MoCuq0aYnOZFNw2eJc0hJS3SKxiJUtj+S6TIB/Y23TRjDlshd7pil0cUddBAk/uQvVPQYuuNfbRO5Jh5HHN/RIG93RGmI9oG56Iu2R8FSZNRxQQT8nZCdy1ROYwUbUYLv4r0217O8VaxbHGI8sqxXDL9En6w7AckXB+6BeOLKPBp9JvPUXWhn9vOn02+T+a1LUYHKhxXXeF72aWu06sL8OUV827KesucWhcE5m7dwBwEuqo8UAFBnwADIOoiim4ZPArcdt5sHli6h3+ubUoiKKxn2uVfz0ULxzFnTBH90QR7usJ0h+K8sKGFhq4wmq5TEvSyZEYlj63ai6rpJFzExObmSj7Y082Kuq4k0tm+l7puk8hHTyljfGmA75872w4ZLAl4ae2L8Zdle/i/9/aw4jun8P7uLjY29dkqRAvFeV77/DySQELV7Xc4k5LJjVvOmsnTqxv5oL6bnnAiaQKDbLCIFm+Ge1eVMoFBVcHgHVx3AyYcM164CxaM4csnTiWqqCz80b+IJFTCcZWylH1F0UNF+cn076xnddt6Fk8u4/vnzWJiWTDN7LK2NMCPLphje/ItmlDCe7s6eXTlTLo0x8Q3avpEfeGoCfw/e+8dJ8lRn/+/q8PM7GyOl3NW1ikHFJCQRBRYyGBMBhuwMdhgkn98nTDG9tcBsLExXxswNskYTBRJIkgo53jSSbqc9/Y2707o7vr90VWdpnd2dm8v9/N63c1OT3d1dayqp57P8/noy/yB/H/du52dTPLEbn/bNKVUWrrrvPJoiCqf3vVfD/GjJ/cF389Y1B74NmhVV3T9r923g0d2DpE3LuXqRYM8v/8Azw8Iliy9Duin6srgWjTni3zs3vfzojUjvOeaNbS3ncOXnve9YG48ZxGvv3hZ6jVI76PW6SFmOCLI5XKcd9553HbbbYHK3PM8brvtNt797nenbnPJJZdw22238fu///vBsp/+9KdccsklQZkXXHABzzzzTGy7zZs3s2xZ+v1wtPHGH76RgdIAn1ZZ9KKDoTPcJSzxutm09Zssfe5h9i69iEfz4fPR0pmnIpQf52D4npXVQZwDWyi7VcjDiNvGRkeFJeX9e/tg6zxw9uPJyECn5CtMKmtPp2IYRB2chNSEkF4Q9j4CWkkKAlIpSUp5HlLLBxS509O0iL3sBC+PM7GMNu/sQIk1ZEzy5fwdrHbnc76zEhMzIBw27x/Feno/F67orkkBr31e0gbTUVVPMCiMeU+lP++6L5o2gRQ1ldahWWEx6eUlM8hFv9YopeooGzQa5dB1yI9ppJBSkf3WC/HRCCfH4t9hivC9uuFgtesn0WhmQ10T2xRMVpPrq2ONkou6zvraxgbtSVLKxFBKvs5Dmxjs2oCrst4GdY8dRMhKBW1kmqdUA0s0dDs5UXH5ziO7+cD/PFajGvezyKVUR1exnnm+JrPqqP7SlVJTE6uxfTdAeKYhzBxZ+1taZI7+Sz+TeoxY12ie+uFtQdkBwajPdxgGq6/BwbEyH/yfx2LbnbagjddeuDRWflIpNb2nlA89EWgIEZBjdcP3EiRdqqF6SvhesivUVczxynPjEUQA//yL59h3ZO0XTzocV55Sd999N9deGzdcvf7664PO1WxMP486gns6cgeruzlgpz2PD33zMX7+TJied0lnkYd3DPkDc/Ugv+WyFXQ255BSUsyZQSegYBtcubZvyheJHnQOK3KryTaDZdqIV5fVZJtBObojMxohrPRga1wNDi0jfNg1geB5ERluHTJhzbxW/vQVtWzyrJBy6Pd8ewuP3rYzdfW8ZVAmVNKoeRpVlF/Yovs3sX/5JdjlSEfWKCAQlJXqR2/vCcijE0I7fq9UGKxsPovtS0aYV3yac8+9LywHK+iIai8uYRSRjOHh4SmvIakN1b1QhqzVUM2lcfIRQsqsWkihBsOKiDJx8LRqShE0VcNl35JuVh38PcrD/w9kCcP1yY9oul3dKTRN1dBhBoZb7RMLONS8h7xa3zUcvMpmpDdCvizIl3O8uukSfuflf8Yzh/zBThUBwgTp0ttsc/9HXxAQI20FO2iotIrm6b2jQQMwXSOpkWzKhQh9EVzDwHY9jAEHekGo8yIQTEZmec9c3E4xZ/G9R/cgI2Rl1alVJAohOE0pbS5a6VMi77gynrVKK3qqbhheu7izyI3nLPLJpG2HKFVdpJTsHS4h8T2WcqYRKG0++4bzgnTYGn9+4xl855HdfPOhXZSqHk/vHeV3vvJQrMF+8Rnz2bCgjVecEyY4yFsmVddht/Knmo7we8XZC3nF2Qt54+fv4/bN/YxMOoFROcAVa3v5j7dcEA7aPMlk1aWsiJO8XVv+H163ltMWtlFxPOa3FbhwxdTKK31fVBzXD9HED+8zDEExZ9GcN6f1N9Dvue6WXN0kCm9IkDIP7RhU+w47MmWlUoqSWleu7Q0IqbxlcMmqHr56387Ydk6KX0PBNhktOTGS6Z6tvnLUEHD+8q7A1wvCc/k3P36ai1d08xsXLeXD33o8+P2O3peyvLuZnz19gI+u6gH8NkVPOrTkLQ5M9PGDZxexr9zJS870gvOWDB9sHBkpdTTxvve9jze96U2cf/75XHjhhXzyk59kfHw8mJh74xvfyKJFi/jEJz4BwHvf+16uvPJK/u7v/o6XvvSlfO1rX+OBBx7gc5/7XFDmBz7wAV7zmtdwxRVXcPXVV/OjH/2I733ve/ziF784FodYg9ZcK1WvSmjyF28P2mWR0x+7B7wqu3IJ3zsBj+Uk9+ByZmeRHYOT/C8VPtT/TUr33wfnvAmAIafD/7ShYguaPXCFfn5lsE9vwJ/N8orFGp2SIRNthCGCx0P/IqLBeGrC0BORUY0KJRfqNz2ok5VuJre/i4W9zeTdMQwp8IRkkgpPm7vZ6C7HlCamYeAAD+8c5G+/+ADXnTaPz73x/OAogBqyRe8aImoEIuE1I4eCrXX2vflNS9nKZorKt288mKgMr03UayXpX+NN896ol31vKkVIPWVDGuLm8Wq/QfSkqFEeResgIsc2HYyUQa4+t1HFWT2FTBhqNv1+plNKeZFjTNYrqlwK6qX6QZ5SH4b9LFnDgEhD9zPLtI9sZbBrA46hMxeHbWbyOCThMaZ5SiVPdL0j1H3IgfEyX7l3R9AOG8IPg996cDym3ks1G5+BUmq6bHBpRudhH3Vm+66HtJDQoA4pkTm63uvnt/K9R8N1186bwg8iqN/0Sqmkp5TjyeC+XN3bwukL23hm3yjg2zes7G3h0Z1DDEQmaENSN+W+SyDqPxV4TwWqx7CfW61ndJ5QzqWTjWo/Kc+tRjFfGx2QYXY4rkipqQw6R0ZGmJycZHBwcMamn3D0M8dMBTuSKnOPClE5b1knK3uaefnZC/nuo3tiGcX0gEQIwadfey63P+sPOK5Y01t30K4Hddq/pRAlpaoet2/u55eb/bKaIwOT5CAlbxlBKJIeyJhmOJukWelqJFC4XtjVnCLx8iiU9uEUYHKsWrOqb1KpZ3zUhwyL0Nl4pFrHLoXhU1L4+6pYglK+k0NdpwW7F+ptVbVyNJUGmGzqxc738vzKG+kc2p6ohY3UoXJeCQw/U5gHeNILQwlVLKGQEpMKLjm0d0ahHHpRXf5IF6v2tLBbRz+5gAm2dBCy6jf4hg0uuKbg1jX/wZ3LW3ntz9qR0gxJL8/CcF0806RZnxBjRNXBwFOd9KIiyyZdX/HiGE7QWdU4q9s30LZVmGFVAGYOnEmQflrWtNSsy7ubsQwREDKmIVg6RYaPKNIaKiEMXMPE9FwOzF/Got1bsVx/n9pkXEiD4ZI2vVYkYKyzoZ5T1bGZ6RDcinQUAwWhei708Zcdj9/58kP88IlQIfMapRwUAlpyta9mrTi849mD7Dg0wdaDY0jp+1zdfP4SzlnSkTpbs2FBK/dvG0RKv26reltq1kmDfmc8uWc4FqZ4++Z+tg1M8K+/fJ6B8Qo/fSoeKpSmlOpuydcQQFNBbz9advjlM7XvKb8DWmFL/zj/8NPNjJYcijmLD794Pav7/GPTSqGop1Yj0B2ZaBieJriiCrMPXL+ed165Cs/z39N6gOZ4kh88tpfzl3emKqUK6p3+2n+9h+a8xcdfdUbg9XXnh1/IgvZ4Jq15rQW29I9z53MD3PncAAs64r+PRdK8a0UdEKjblnb7z9HQRJXbnj7AbU8fCF6FzTMkpeqFkWQ4cnjNa15Df38/f/zHf8y+ffs455xz+NGPfhT0g3bs2IERGdRdeumlfOUrX+GjH/0of/RHf8SaNWv49re/zRlnnBGs86pXvYrPfvazfOITn+A973kP69at45vf/CaXX375UT++NHz6q0XcwTK75LC/QEo86WKI8B6fLBQZ92D3+nMxwtcoQgiGTfhDJvjU9Wt579ceAeDDStncMrEPOkC/53c1g2MJqEjOmXcV55TP5qnBO7HUc1X5vp910isUSU5TCO0pFRjzhp5SoQ1WVCmlBnepSinlW2nGB2SGENhegd8oX84+7wC3FZ+JTKlBIWdSHoc2FYYeVbbqQWgqKRU5XzWIkG3mwHZYvD5Yr8lsAi+c2Iz2RaOD6+QEkyfrvz+SA8LowD/omsSFO3Xb5tT3VWSRLl6TYaYQETJBk1J6v415SgXqppTfUo2ug/NVT6Ex9Xlr1Oi89lqkrRUh7NQ+x1V7I6LbLX8B7AuV2Z6hE/FMYjm+qnCgdT1MbKVc7SAXiKTjzEu0zmkRFvXpuPDIIPTd3XloMlCb/+NvnMtV63rZvH+Urz+wE1fKCOkx9d7Svdl81Mu+F12WZnSuC6m/75khJPVSSKk0o3P1ef3p87jxnIWMTPrevrrfNBXqGfKHZfu/6f7bZMXlWTVB25Qz+cF74glV/uL7T/HoziEOjpWZqPh9uCRRngzLi+9PQYTnz42873Rf7uO3PMWavlY+cP26mj5PoITUZG3acaU800kSsGgfV1TKCY1T4kwe1cwxwgSjFUGR5C0eyCldybjyNfjoSzdw7tJOnt3vM8jR8KHogOra0+Zx7WlxMm4qJMNzCrYRlLVnuMQnb7s/6Jx0FkM1RnuTTVdzLggtWtZdDMrSIYVWxBj6z7//FCt7WvjD69cGZdh1DKqPBHTj2XnoAfo7XqoWTr2+pV96EVLKULbnevayyZmIbKEGqbbF/ed9iGrOn1FwDUHBgQrg5Zo595FPMdS+mqdOezMIg2ouHq4kscNYfHcSDH8ZgCfdgOAxS2rQKT1sMYkrc0HWr5wbEm5rd+bxTBGoevTL2MJF4PqklGlD1e+4eEaBydwoZaOVnGeCCiE0pIHlulRMkx7TZ7YcS5Ff0gxmN3NKnq2PwTWqJP00jNsf4ODWg3CNP0tbFQJMOyClpsL89gK/+MBV7Br097u4symmFmkIkTaiaucwy5OMtLbRmbOwlA9YkPlOGpy5qI3Te5eyRjXGaZ1cbYY+Y1IqIhtOGrdrUqJUdXlc+clpaM+19iY7NRuKhm5YdXbMBR1NdRWIX377xYF6q68tT09LY94wmrAbUs/+0q4iOwcnkBK+et8OvnZ/rSpx/fzWmAfebNDTkqe1YDFacgJlXZRI00T573z5odh2K3qK/H8v9UljrW5KU23Vgz7m6jRKKYDWiJIt2ln73a88xNp5LWxY4Cu0orPAZy3qYOehSUbLDqNlh6/dvzNQxqYpl/7vzWdx26YDfOHOrWwbmODDKpufDsl0vNBQuJgzuXhlV2CQv6ijiV/buJjl3c3sHZ7kQ99U4buKnFw7b3pyMj5Y0h23mT4RGQ4X7373u6cM10tTN918883cfPPNdct861vfylvf+ta5qN6co7pnD+7Bg9DmP0NeCin1uff+Iz/adIDXr1nEgn2hV6EQURVQ5D2q+kALD95P244HKN/wSn7HPY22rgJDFUFvRdJsN4PdzAUtrwm3EwZmdzcTF17Gj56o8CrTpmPsENX9mxDz/clOGRkhBWRHilo+VEqleUr56yQHPKYhkFLQRI5OV7eLMngObbX+OYs7+N9DCYVRcOiq3Y4NkuODLT+lfe0ArPjsHYw99mMOXPPr0B4u1+RX1FMqOrmTHDDXESwA04XvxQmaRgzCGwnfq7peoPA1DVGjPAoUWka0j1BvYK6Q0p+IhgJqNJLNrW74XoNG58l9xxRg6m8Z2VHVzGN74BT0tY2c7yUXwT0RUkrdy45Rpm1kux/SqqMC1HYHOk3EwfiBRAnSNFJlamqoFmcsaue60+ax5aA/obyks4kXnTaPQiRLrxe5J9OURfUi6JJhXmmG3TFSKsUQvZHwvUaUUq4n+ctbNrF9YDzIrJ7WXUwzOo++pxZ3FqFz+v355dcjM4n91l60Aw9j7QnaVazN4qyjcL5w5za+cOc23nvNGvTJD8P3dNkpd0PkXaXPnz5W7a+8e2gymNC7aEUXLz4z7p8ZJDmo8xylPYfJaIPWwilBpRwVHFdnciqDzra2NpqamjBNc8amn3B0M8cUuuZTaP8trOoY8J3Yb9HBqn54tOw0OaNvRxRJM0XSaLgpFyqltg+M43p+OODLzlrAjeeEygrLNPj+713OU3t8pcw5KiU5wEGVfc8yDOa1Fdg2MMHDO4Z4eMdQkA0teoxHHlPPSNVrvAzdGUQGsWuGZwBu0Ch7bjhLqB0iXLMQEFJNE7uwvZ2B11PFLlAo72D+gft5asMbQRgM2d28fX4fuywLC8ny/VXWD0zgTNyNY/oEpOnmcAjl8UDgHSGQFIxRSm47KFLKiJBSliswc63YTR4wjlAmlYZ08NT6OnwPASM976Hj0E8A9eyountmDst1qJAjZ+npCYumsoF1MI+s7kKKlVie8t5QGVocw6k5z2M//xn9h0YpbbkKTleklKF9t6a8JIAf3ra4c3p1VC1qCy7nChTKk2zNj3Fo2Tw2VgeQXhhqITD4h9eczaqOMOxO30deRClVqc5WKRV2BmqUUlboETSkMlx+7bcv5j/u2hbMPL/srPrG0zoD4P88uAsIZ8inQs4ygpDDmSAIA1a+Ay15i6JtMl5x2T0Yel+99KwFXLqqhwXtBfKW0VCmvnpoypnc9r4rY0Ta6r7wHXPu0k6eVjJwgO7mHAPjlVjmHe0DVZihUiqfUEpVXS9QnNYjuIo5i/e/aC23Pn2AR3cOsXtwMjDFjyql/vE3zuX9163l9s39/On3nuLnTx8A/A5Pc4o6bnFnkTddupzBiQqfvPXZgMC6fHUPP3+mP9aWGELw1d+6OBLm7YdmX7HWl1PeeM4inu9X57S1QG8dX69UBIeRkVIZjiyWfPaz4FTZ/7u/C4D0JJtHHmR529m0dnVSWN+FOzLkr1wwmBSSJtV2ds5vRlb932KiFKWUcoeHaXJdTLvEIJJ2Ifj+yiaee+wAZ1DlXb6MCoBxt0LzN7/C4gVtPP/4Xj7/xENsXeTy/33+g1THLFpflCB2I55SwVOS6imlvnsu0lP9Da2UMkKlVLcrWDQikWpyTGf+iz2BIuwzQGLgqP62Ir5OUkql6FK7jYSlBYP2xCMuK2OB8bwgNMwGYqHY0cmdpIl1bLwnZc3oPBm+F/3qBe+4+H7S0KjR+Y+f3Mf7v/FoGOoV8ZT65K3Psn5BK2ct6lD7Da9hIxnE0rxwkqFC0TrWU+fUU6gmB+NTIZnlLkXAE39WAlVPnAys9+73hEfHyBYuv/Mj7FnQzpNdTdjFA3zq5e2sn5DwbGRlGSchU20/Eruq16uwTSMIWU0iIFS8CJFRjxhKKaNGcZiqlAr/rpd9L5UQS615Op7cM8y//2prbFnaRKOuw1u/eD8F2+BjrzyjIZ+yNMQjCfz77aPffiLoT1y9ri/4rauY4wtvvoAn1Thyfnuei1cm3T/h0tXdfPaXfn8S4M7nDsZC8vx6NkY+Jw/HEH5f6xfPHOCLd23j+f7xoE+YVkYwCVznMYo+h+ct6+Q15y9h19AElmHwW1esnHrDacrNEMdxRUpdcskl3HLLLbFlSYPOmZp+wtHPHOND1PytOwbliNGtnvVPDnhmGnYSxYruZtqb7MBT6pwlHcEAU8f0Lu0q8jevPrtm24UdcZXKxSu7OWdJB/tHSgjgdRct5dfPX8KvnjvI1+7fyX1bDwVsvX+MR4uUmgISUMqnGNTLbULq0LRwDVspaNygwdEG10bQWXBNpf6QHhff9wkE8NjiXka625gw/VlRE4npVnCtAk81zePeJn+bdQcupOvgNTjlx3ErT2rxFbbopEw8fA9PgOHPoBaMUXBBSp8AyCkiSSJY2XMFZ3dfwafK/+xv5kkwfaWUlt6PmCZd+GGG3sGVTDb9OlJ8GgBDKDcsK49V3gSFs6k4JSxsCk15XnHHQpoqHvA9nPw5mJqUUm/xNFJKzwKbw8pTSQikmfPv/jpKqbnGPRddzfpNj7Bs9xbKlokxDs99vw+WTMAC6BsSeE7cjyja+OnZvXK1NvteIwjDW2VAlOhOl1bbbN4/FnRYzlnSwcWvP6/h8pf3NPPA9sFgFmp5T/M0W8wO+UAp5ZNnxZxJU85ivOJyYNR/5s9f1slvXrRszvfd11agry1dcfWXrzqD373aD51rKVjc8vhePvrtJxiaqLBp7wg/emIfdz/v+zTNVCkVhO85Hn/ynSf4j7u3B79NR3D93jVruOm8xVz6Vz+j6kpcN96RBb/zs7K3hZxl8Je3PB2QX2csbK+rjvv9a9fyGxcupep6WIZB1fV4wd/8HMcNfRtMQyCEmDIsr2CbnL6wPfW3JOqG6s3U+CJDhhmi6Qxf+WlaOqQNHh+8nYO9o7zuwx8DQP7H/Wodg39rLbG8kOdLb7uQ7kUtfOrTd/jbRUZf1nxF9qtJJ6+7F/b561g5i0dxeRSDbzDCb569iB89uY+DuPwsr9s+f3NH5BBq1L7S3ebXRTfqQoQDN7VfoZb7lQ2zw4IfvqdNjTRhpd8DeSl4/Wie3KiLUBNGhhn2Y2ufwlp1hu5XRPtlriexTBFRz6h1ZTRkrKbwsI8i4KH/8yLGyg5C+JMCGlFlg5cY8NXP3CVjahQ3ogDVdfPrFRJ2uk47D03w3Uf3UHU9Wgs2G+a3xtaNIrrkrucHYt5Dl67qZtfgBNsHJvilsrj4tY2LgrIaUkqFp6hm3ZCgCGtRX50zPYFQPxwvUpYmxIIwpXCDoPgUzxyhPdaEDkdLqmdBGlr9pybgnHFyjgE0geHw2fuHWVWy2R2pDcSJndTse8n6zbLZSVPBpBudq91Iye6hSTbvH0UAG5d11oTvpXtK1R5Pmi9aPbK0ERWyzsTb05LnA9evZVl3M8u6a/uAG5d28uSeET8br+vxk6f21w1frIfAs0kVsGnvCF+9b0fw+wPbDnHTxsWAf49dsbY3mAybCuct6+KRP7mOnz61n9/58kPx8MqEUmqqZAv+sdSyUqYhWNJV5A2XLOfWTQd4vn+cNL/zkCjU39PIxloyOWcZ/PWrz6p7fBlmhyNKSo2NjfHcc6HMc+vWrTzyyCN0dXWxdOlSPvKRj7B7926+9KUvAfDOd76Tf/qnf+KDH/wgb33rW/nZz37Gf//3f/ODH/wgKGM608/jGVotockiCEmpZGhImvdOo2gv2tz9kRcyMFbBMAQL2wsBs65N5RoNselqzvHt372sZvmvbVzM0/tGuW/rIb71sN/cWGpQdDzDNPR5lehXkiU9HAyqpsRz9oHn+MSRIdB+Tp7OJiKrYYOtXlYjVo49LT0sGevH8Kq4FDjYFj5aG3ddT3u5h6rnh94000yl5XrsqpL+4yE1EeahSCtBk3s35ZH7QfrhhLmASLHoqdqM3fJ+zu8rsKu7jY7+CZgPpnTR5rAGfmfRKpvYTw1R6TKCY3aF32Wu2O28+ZcODy5/AInfaW+yIFcJ7z/P7cfyijSXO8hV/fvGNdzg3AQo+OfI3Lc5WOSYth+keNRIKcH2ZWvY27GAN//PZ5BCYO8r41QsjIEqLIDeYQP3v78Lv/OBcKtI4ycUpzlRDkkpPbvcCDqKNvPbCuwbKQXf57X552Zhh3/+9CzzgvbCjJ/1P3vF6Vx/+nwc18MyDS5ZVTsLNRfQxPj+Ef8+bcqZwftKe0y1JszYjwaEEDFVXZuSgd+66QC3bjoQW1dLxBuFDt/7yVP7YxkSm3MmZy/pmHb7qCeV9txL63Av7ixyzx9dE5B7KxogFqMZDPcO+0R11fVqJOhHDsf3uz3DyQdDPU9d84tsmSjR3F5g/0iJ2zf3B+HehiEoGXAwB33L4orQ6CPR8/7303L55chKBaO5mSfmrYHPPwACXnrWAu7acpDJikdTzuCq8xbxtaf2EXWo1AOWilGAYheMjrJf9NLvtWC1LqeJe2JKKTfYeVQppQbwWvnkeRGlVJyUalHKLw/Y22Ky1/OwlYTJ7y9oBiSi/iaZ8cv/jBLjjiexzCjpERIVsqFRq6ApZ8Y87KK/QUIFk0acJJRS0d+sFFIqOTCMkjl/9aOn+cFje4N1b4wk+aipXWSf+vjfccVKfv/atTTlTC5a0cVtmw7w9Qd28tyBMUZLOjlKlLSYsvi6api0wW0j4Xv15nm1wKjR8L3U8DMZ+wAipFRCdZZKxqiQWilSCgUWTriYhh2WEqhtoseRdpDqXj/MZickVGTkGkzNSk1WXa7/h9sD64ALlncGofVmneuVqpRK8XBLf7amVgTV7sdfqaNo85oLlk653p/feDq/c/Uq/vv+XfzDrZujQ54Zj9OSYZ9aVKFtFjwZz/LXKGzTCDIn+tkR4/dbkgyLIhoOmZxEix5fXd+14BlLeS70KrM8ZzDN5F6GVBxRUuqBBx7g6quvDr7rELo3velNfPGLX2Tv3r3s2BGyrStWrOAHP/gBf/AHf8CnPvUpFi9ezL/9279x/fXXB+tMZ/p5XCHxECzrbuYFa3qC8LiLV3bTpWaZ2pts3nXVKu7ZMoDAJ30OB8WcRbErvLyvPm8xgxMVRiYdTEPw2gsPP3xR+/Howdvizhn6AB0GpmmCp/zFVCbcRkQpZUmJAwzkB2D0K+wJGlkjICg8w79OZdvlM2/9MFf+4ptU8QeUT7Qv4d+W38T5E89zppHDAra1+Io0y7WwPH+fprELF2gmj2svx5gMU3IHIXza6BzJ8MR2pOsrG/IVhyZLkVLCJD+4E1kZReCTHV2DVZjvG51L6SCAVs8fxGqVkxgOG3ghJzCdSVyrifZSL+duz2EJv6yCZcXpJm+MDbtv4oxdLw8XGZFOceK8W8P9gD/IruZbjhgpNdWskhTg6TAHIRCObugiCrhPf579o5Ked70Ts60tJrfP2SZUYXF7AX2FJI0PyW3T4Lb3X8mOQz6ZuKizKQjTXdnbwjffdSk71W8bl3bO8Kh9T6kXNegvdzjQZJlWZDXnLHpacuw4NBEQ631tR1uBWouNSzvoKNpBemPw33cL2guBeXyj0GSXfqflLYM7P/xCWgtWQ+rVXMTPT89oThWG3dWcC97/M0U03bPuDNZTWs0FIla/R3Q/GTIECAYUSk0kBL//tUe4e8tAsEr4XNYOAGOhUoUCrS8M+6PyeZ310p/Zv+ODL4zvOj6Gjptety+A/aP8p/d6fji4iE/1HQx2GKwfPQhNHKn3gxeVJ+nReYKU0ijlYO+5bXzy4d1sNIc4C4gakSef+ljIkPo76oGiB2fBOTLCdWerpNBIy2IVDNBja8bfIW6CxCoT7z4nvYACTylCv9O8ZVB2PAaU1cR0Y0h9HvKWERBsK3tbWNnbwoPbB3nuwFhMSZVKZEwBvereoRLX/8PtLO0uBiFMaeXUzS5WZ7+NZEXzy4pPXMTXr6fIShKX4f9hJXRIam14VLTVSB5H3Bj8yLVdocl/fdJH13RoohoQUgB7hkqsUf6L9VR/0WWp4XuJezi278S7ph5SDfNTIIRgQXsTXc3au7a+0Xs9BM+1Tv6g3lltBTsgbquuflZmVnoQWeDWKqWihHkS0fOZ3GUa8VsvmUCggEOyb7jE9x7dQ9XzaM1bnKv66Bm9dHRwREmpq666qq7s7otf/GLqNg8//HDdcuuZfh4/qD1u0xD859sumnKLD92w/ojVpqOY4wPXz235N21czPKe5qBTcNbijjktvzGkvOBTV/OXNqMMvr2IUsqLh/gEjasmpQiVUq7hsHn1GfzPBWfzGz/8Fou3P8RIvomB5X080tHKyvtN2l2CmHxTmhjaJFwpngqGh09LRga5ijhypc64CEMVn+STbSt4wV0/Y8sa/+UoMdlHP8sI9xPsz3UCQ+82V9VZv+DdyIyXcLnk3j9l2+Iz2bXs9Viux1BuN/NYgVPaQ/SMSG8CU4avipH8AM/1PMXSrYlMFqYAIbHMUPVRzem/j+xANixddQZ09hMgUKBrYkx1og594QvkVq6g8+abY8PtvOWTUp953bmsf9onZFw5fScgiua8FRhdJ3Hesk7OWzZzMupo48ZzFvLwjkHGKw62afD6i5fR1Zzj+4/twZN+2Mb1p0/t5Xe0sLizyAP/37VBxj3tpTQbvPiM+Xztty8O/L5OX9jesDE8xDMPajXckfDZsyNl6oHT0QqdziipDEcP/j09PjQIeV+J3T/mv5PPXdrBmr4WrtnQx2d/+XzcJyehAkqDnGZwF7YJMra+EASm6Tf//D+5GfCaisH+dDW8yL6Dobn2lIoopQKjcx3+nqhQ1RQRck4NnoRIHaj560TJufigC6Im3qjjDydkgnNCGsU3PdJIErPOoDCtzmkZzpJhhVFls16vs5hj30gpUHHUC9Hyyw8qXbOerbNVKx+a6MC3LnGgflzY0RSYPT+zf5Rn9o8GipBoLqC6njkNnHd9bsfLLo/vGmZlb3Nq+HZSMZfmO5a2Nz2Rh0jZLr55QikVqeMUhxEjIlM8pbzkdZll2HjcfH9qpZRe5CQc+b1ojtUo8QABAABJREFUaGldpVR4jyaVRdF7P+11k3zX1EOQrLNR8ifl+Z6tp5Q+bt3niKol9XmbaTckLTNozX7rhN4Jas9pVDVupN3zuowE8etJ+KsfbuLbj+wJ1vnNi5aqdaY5kAxzguPKU+rkQMqdf5LezYYhuGB51/QrHkEIMb1nTPTsayGDJWXwQ8GTjCVea16xnXJnN3bZv56eoQmeaiBprlq+EikvK1TP7sIY2Iens+h5/vqGNDAU0eSqDs783BAHABHJJCRVhjjpGPjiJ8mk689wDLX3knM9zOq4OiCLquOHT2kfrICU8sLZKlP6dXAix6bvzqoJueoYzWPb1bpWcKYmRh6nBRjPCZorEqgy2LyF/qZDPD3/Mfa0Poo0+oA4ydmzdj/rzt/H/meWYgAekur+J/0fR/ZwNKFJqWhGGd0CRZd54/45jXZyNYyoH8SMtFInBzYsaOPr77ikZvlsTNOPNCzTSDdLnSEMQ6SacjaKKFk0GaRMn/uMpNFjLUeMeuca8dbs1Lr/Mxx7mIqoKY2OQL6dXLGIN+7flR958QYuXNEVZC5OyzoXHbgle2bhoCb9vk4SBlESp+OVr+Rgfz8TQ6Pkq2WMSZ2xV4ThSXqJG2YjE1Y8+x7SQwajTP+3niUtPGu5dHk+JTA0vwlT1dGNUkXCP4gan6UUdUbSUyp2nNSub46Nx0+GZdUllZJlxTKr6cx/Xm1bnFYnreqqp5QKiomspzPb6vdh2nWNbl5PcaLf41rtagjREHGgf+lrzfOLP7yKnYcm+OA3H2PX4GSELIsMmAOyMU15U1vnJPSAfuvBcV7+T78C4IM3rKMlb/HKcxfRpsLrZWL92mk8KOXT1NehQhGmIBa1Uipp55AoP4Aqw4tdc1G77hzNfkTPsaxzTvWiZBhaVGGUFpanEX0/JMm/6GlL9TprhPCM1EfvpxHEjl/vb4ZteZJsrioCqiliPaGVUjMd7oYerF4sO2D4f/qtENyLonaf0b6Q/nOy4vJvd2wJknZtXNoRXtfI+T+kFPc506DieoFq/nCsabKJvMaRkVIZTkiMOIM4XnX6FZNQHb/opE6bY7B2yy6ePP1KJnLrWb5/C0+sa2PMHqd5r/KUMvzG3TXCRM9l21cytTpjtI0O4gqhyAswVAfMkAJDmkjp4br+tkVDDyINLGHjyCqODM3ifbhow+29rf5+RMXvfEthYlf9Y6/a+njUDEgkw4RBHg+flJI5A1Hx0K95R72pbZXRr9UxqKpOnaPC3SaLHs0Vf70nFv2QJ7s30zepM9apHnEEj49fzz4xn7O6v4ctRygLqHrKl2fPIxwJCGoH/BKBTCGlhAp5kMJELlmI2LkHqc5jbCZI/R0teRbh8hlOQVimgSH8+0UrpY6E11N0kKln84+4p9RMes4ZMswBepevpLJjN0tOO5O+Sy7krGtuQP7n00Ctv1DsrgzHK+GixG1bL0V7dNtACRJR63S98Y10vfGN/PVv/zmvuP2rkY1CpdSorTzghBHsxGzzCf1o9j1tvC7UAZ22qJ3Vv7acLQfHsQzBmy5cypfv3aHqnF7XaE1jKeDVZ1StGSilgirXEndmuRwsK1x8MfMvPR/uDv1hp4JuR5PheNPVPRbKZaYopRID8ShhqNfT4eb6fTjd6zAc09auqBWvmuDyB77TH4eGELCkq8iSriLtTTa7BieDkCeRWA+mGnT7n/XIh3OWdHDh8i62HxoPvB//5ke+6cBoyeF3r16tytL3bh2ljxHabwwWBM94VV5k1A7Ik8+R7qd6kU51uuoqjrFKGCJnp04ozU17ZkSUOPVIGX2IbkKWE1UYpan4NKIkZzJkLLp+Ggk6E5LITdRlOkSza9Yj5eoh6V2mCagYKeXFn9FGEX0/JJVc9UPvfAhqz1+0CrqMnz61Pxb2bZuCVb0tNfvRhGNbk83BsfKsybYMs0NGSs0x4g9P1nk/UhhzRvjOjn/EK8Q7WNNCdw5l2Mm0HOiYLCPzfZj2OuzqJm5b+HMONPXzpr2qUTf0jJMbqJLKqtO5bGIn7/jy3/HoGRcj0VnUNCllQvUATvk5BOBicFD0+GUJg7xZxHGGeW7kfsar/dhiEdIbZ1L4HhWG8LA8v/EuTOqOokVBcU9OhGSrAqKqG9QcQvp1dhBgGxAhpSqKtLG0ebq0MKUmpfxF1bxLRTSRk1UqqqGumGV1dEbggyWEgZQew+4CxssXIA2BLf+TshBUrTy4E1AegU+eCcMqB8v8M+Btt4I1O08dDUnc5ycItwwywoS/mW2aYLSg4O9Xk1JheaEiSkTuKi97ljM0CNv0vU1CpdTc92ainfjyNN5Vs0H9Dlj2LGQ4Oii0tFAB1lx4KV2vez0AntwERAfKcUUTRJRSRnRZ/L6d1rMn4GC1sqN2fS+pghShp1RVtUETGy+mfcABRyIslckvIKUiSimlChNC8O4XrokV+xVFSunIIhmbFIqrCmID5giZI4T/9W9/8gzXnTa/ZgDoZ8CTsbIAOt73ATqX9cJdf1l7jhIIBvaxQXgaEZJQo0R4AO2XF10/VErF9ycjv2lSqlRNV+xAfPBaj5QMs7Dq8L3IPuuQ8mlElxXJ6OqXFZkoC26ylLKovRZJNOct/vudvpr5tk37+dET+3hs1zDP7B8NQtCj9UrLChcoyCOVeGCZxWP7Jrku4SmV6l2lDyE605t6isIjMY2wTvPbCrzkzAUM/zCups9ZghvPWYi4vc4ZaKApSg1PrUMM1Sqlwr/rEayhsi0M9Uz6t0X3E9v3DOZ7pgs7rik7sl0j4YFpiJ5DCO/lvB1OwjluXFXXcNlRpVSizsnzGIVMOd8aaeF7Q8pmZmlXkR2HJqi6Mpg4DLNSEiSo0dmntSpsNr2rjMiaOTJSaq4hE58ZjhgcWcVQpET82U+cfEHwdhDaTNQL1zPcIs+veBnj9lpsIF8eYcA+QFSKb6hHRRIqpQ50LmHA7qTNGcWWDmc/cQ+OtR03f15AXBmegTv6A3QGvRG7FR21JxG053oZd4YpuaNsHXuc5Z5BufILyspEPWe6nL7TZ/cLFW3UbSLGhwHwbJ2u2uNlHSv5tW2K5DHyoEkpISL2VX7tq2o20lSztC42pifwnL3YSrnv5V0cYZGTVa58ZISlvR73n6Y7OmGvQgT0jf//0FgvtvQAk6qVg/IEDO3w/2nsfRQOPQ99G5g1ZHg8yQwtQXiEmrkWQHv+kH8+zALklU+QYuDCxi8sw4yGSmTPc4YGkVOk1EHlfXMkvJ5MIxxkaoP3mc5QzhxZDyvDsYEmTIQQU2Zii5IFaZ5Stzy+l7/98WYqrsfC9gJvvXxFrJwkkkopL4WwkTWkVDi4D7qClg1SzfQYggOjJcpqtsQcHkRO+lkERZ0w37B90gedpKTCHaaRc0L4yXSGJqp89b6dfPeRPfzBi9aqKoUDsiDcKLLvtAmZu3bfxcZ5GylY8SzOaYPrRpRSURIrMB2OLPMS1zM60NbVC8P33Ng6afWL1ic9fC+ulIp5Sk19GKmDflvtoBwxTddoJDNYo6/1azbM45oN8/jEDzfxzP7RuMm27uvWuxZpYWXBT7XEb1i2VqXXT2YTDYD88tsvYofVCsAZC9vpayvwqBF3Mjt9YTuveO25/NEd4Z5mA01QjJYdHt01rI4npX6aUE2cHBkJ+9Pnb2Syys+fPsDynuYgc64XKIWiikFdRnRHKfvW+2rgGMO8CI3dGFFSeLZKqSQpqVV/tmlgGgLPlbP2lNLvB9eVkXtexOq5bWCCl376Dl561gJ+56rVasuQVK4J34uFyCrSS9V5/fzWIAmR68Xr7EkZEOR5W5NSszNwzzA7zL3ZRYYUZDfz0UWdLFmKETI8yKl+4mjhUrYvezE2vpdMU+lg8Ns8S6uaFCkVaXgn8818ZfFr+crq3whmPi1nL07pfvQ1L5bsgJDaXVzOrT0v9FP/+ZXh4t6XcX7PDVhChQeO7wUVytedH+f03gE6Kn5D2jk2wp/+l8MVT5QwXEWmFPwGUUh4wYPzGdvry1GFKAakVFUIhI7Z12mmFR1tOVopZECpn8roV2kfVjMe+Qq22s8FTw3wjh96nP/0mKq5IMino/0yVChg2WjF1jJfrYTSXlcLz4UWZY7thCECs4VIfPr6JoFrRPy6Tl9L1znjdC/yyT3HKiITSikj2uPU4XvRDuxh1zTDqYKFHX4YhJ5xnd9eqLf6rNHd7BOruoM420x+jSLLvpfhaEOHJP3Z957knD//KU/sHq4x+q13V0Z7Xt96aDe7hybpHy3z6K5h7t/mT1JMKZRKekqh9xuuI0VCqWsYwfrRXGSeGrBd/8lfcuHHb2PzoH9c9v69eBN+/0Dkpn5+9bMXeDCL0Og8OYCLh72F2//zb27krZf5RNx4xa0h92JKEn+jWBkEZJvkHbe+g4/d87HaeqaczDD7Xq06R2O6cL/kYDraXOvj0KFEjXrAJImuKGwrSSQ1aHSuESlSE1ypg9s6ZE9Igs5QeZJSZiDGSyFw01B7TqJlJkgbfd+lZd+LkLTB+kiWdTfzwvXzeOH6efS1pbeP01FcjaK7JUerMn/XCp+lXc016+kS0z2l/GX6Wu4emuQtX7yfa//+lxwY9fvr0XDLJNk4XfieRvSyjJUdntwzzJN7hoNsx9GyGjc612VHs9vN9J7yP11Pct/WQzy0fRDwQ+D0813VCRtmVHLUU6o2O+DiDj+BRMXxeHLPCP94WxhCHLGUqtlrPHyPoHy9v2Q2wZAIDwlyndVVk20ZJ3V0kCml5hqZpOLooN4Los4l0L4NBtA6IXFzUC74Zu0T+a2c++idtA8/T84xmYzsRpNSnvACTslTHdLRfDtfvfG3OHPzw5z11P0gS5RtRQhVi2rHBTbNv4B9sgevpF6AQmAbeXqblmBJAwdwA8NHkzevfIi9uR6eHrXwhMD0JKfthI7xIQzFKsl8ESbLeGaRporyVCguo9W4CE+ZrTvCxDZNqlSVQgwqqtNlemFcv1GZQAIVC/Z3TrCkYw8tMseYyAek28q9FX52lj6DutOkQwHHkUDVbsFW+6kGhq6qw2IX2VdcyMcWv42hnS4tg9v4o5ULWNbUeIazONIvdnQGu3TWlXxOnsWVww/AJHhmDjef84+g4jf2YSdX66rASJmpzZBhOvzHWy/k3q0+Abqoo4kzFrUfkf184c0XcNfzfpjvsu4i6+a3HpH9JDHbEIAMGWaKg2Nllqi/hyerPLDtUI2/UNogPCSQwo7CeCTNO0RnydM7E+FiRcakDAZrlFKIGhKLQJUtGFTp05/uW8Wv1l3O1Z0eOcugsH4d9tKlqfWAMAzRTW2H4rRcmhcTAi5d1cPpC9v5/J1bgTAsJVRKRZ7stJOZGP7tG99XW8+UU2kG4XjRH8Nz+uiuYbYPjKt1o+RP/LxH6xq9NPrXRZ1NsePqba3fp6hHzGhPKU0GCBG97inKsecO8umfPcvzB8bj9SP0yKpE/Kk09J9v/9IDdBZt/vNtFwXtRVTlNhOkqW6SWRijhy5kcstoWXHiLr0fpK7vNEqpSGWOKprzFr/4wFVsU/dYX2uBJV3F2hUTihoNT4ak3salHYxMVtk5OMGmvSNUXcmBkTJ9rYUYWVTPCynd6Fw/gz6qrse1f/dL9o34hFdbweKuj1xDS94KiZQGb4xY+GyMyGkcuowHtw/yr7dvCZY32WZQj0ApNUOplA7Xdb1I+LAqYml3kVvfdyVP7B7m97/+CFXXY2CszH/ctY1dg0phmhK+l6aUqkQSwhhKcevK5DswJK9yOnwviC3OWKmjgYyUmmPIKb9kmEuIxF/Tnupghi3sRFqexAXGir0A3Nc2zLUDdyOAfFVvpjpGItrw+sscGc5Q7pm/FEt6nPXU/UhZCfwkpFMAyoDlt/4SpGmBCxKTovkTWq37KSApYePYOVWm/2iWjRw75s3jRzfcQG7wWa695zlaJ9wgPM3JFWASqurFXilUmew5k/bRxZEZWwNL+J5TpuOfi6qa4LUdB4mHwMBwJ3GBrQtd7j6jnw8NTPpeUgYMtDfRPV6ia1QptKJJo1VdTK/sE2uGTcHuAMYI5nc0+WWYfKvrcr457zqYACaGWNGU58MrF0x3BWcENzJYMKXExcQlHJSMeyYdhEopPRsZnSSLZ9/LkKExzG8vcOM5i474fs5c3M6Zi48M4aWRcbEZjiWSYUZuZCa7RjUjJfdvO8R/3r2d/tFy7DeAiUpcyRHOgE9BSqHLhe0D4xwYqS1TmglVtgidCHWb0b53Imhf/u/NZ3Ha6m4WtDcBN6buNx1abRTZd7KmerIshU/SVY6GEqcdf5rPVi0JbUyxPF3VE4TnpLxMvvvoHt77tUdi6yY9qGJtcnDNQyJNkwGXr+7lutPm0z9axjDgslU9tfWLVC/0CKtZjY6i3w/TA9m2gh27H5L44l3buGfLoeC7f319pIUCaly0ootHdg4BMDhR5d6th0JSKuVaNIJUpZT6O9WoO5T4RErR5J+6R3TimLQd6v1FSam0KscenKPbsHS35OluqU9S6tqlhu+pI8/bJp/5zY0AXPqJ29gzXKpRQwlRGyYZIwHr1EGTMsOT1YCQEgJGSg57hyZZM6+1oayMUcSz781O9aPL2DXkE0FtBYvzlnXypkuX87OnDwDR7HszK9yMEO7h+yosY3VfCx1FZUXiSb587w4+/bNQMdVasGrOadRfUz8Pun5mQBrKMBQyQiJq0i9fo3Cc0WHFkPWjGkdGSh0xyOxOPGao8/aIyO2DNtTwG6tBe5yyDYUqXPSM5JFVtUopKUKj86QnwURezb7IMqYy27QdCygjhBXJ/qYbcYNO658QwsPmXMDGNTRz778QS0YeT8BoexsjrUW4B1pLHhM5v6xqoQmGoao6x67l4ZnxsLgXPXEXb/n5/fxywenIAmBByWhiS087Kw4Okxv6JXmjmx1NAxTLMNQ8DMB3Ky/kJd4u/9ia/Tq3TniAgVf2MwqGujMwXZ+UQhiUxnLQChP6fOvwPcNixGqJ1e9gJT6DPRskn7SoAW3eM3jt615L+XtPw/P+Mld5cYXhe6ocKYMWW0Se3/PuepJX9HXyqQ1Tz2ZnyHBSY0bxKxkyzD2klJF2Vw+cw4mpv//J5liGpWhI63glXSk1VW9BD67+5LtPctfzAzXLIVRLR34MBpZbcKkgyak97Mbj/PV9tM8izDbwu4mojWRiqiSYQIspfON1jg7WnES4TTR8T6Q94wmGK10FUrtZoJyIrq623am8XTqKNgvbm3jxGfP53mN7YuVHCZRkqGL0GC1DcMXa3toKROuXYnSeppS7+fzFOK7HSKmKZRj82sZFvPkL98f2F4UeuL7pkmXcfP6SmGrVTiilooPbj7xkA++8chV/9L+P88Mn9sV90YI6zwzpHmv+Z73scallJb77Hl4J0iYgTNOm7pLTx/4WjUAm9p52HuayJdLnLRm+Fz3kGG03BXkaDd/76n07uPv5gSALov59qn1HlVLg3zu9LXn2DJcCU+6Zhu+lcYEzDQnVx6qTqpyztJMvvOVCILynqinZJRuBVlK6rowQsfF1omS6Ds89d2kHl6zs5poN8/jfh3fF1k/zbYuG74X+YfEkMVKG6wWeUs7siLwMs0NGSmU4eZGUegOdXd3hz9HOG5L+wiCTOWifgDf83OPX74BNV/gdWS9QSoVNpZ53NVU55XwhKM3UGRykNty2EKrR9jyfCJHCQChmzPC5HjCVv4QmpcwcwpOAQObCbCpF1cEu2/HZH9dycUUltqx94hDFiWFe/Pxd3LpuGRULIM/Ti/K0T5b5q6UXcNG+J1ne5FIcg6ol8Cod3D92PS/z/s0vN+cylrfJKWNwp4JSWIH28DK8kAzLl21ohVEvQUoJkwnLJ++ahce4NBh0Dp+UikIilHrLnw2R0mPD+vXsfKhrSlIqPtmsO76Cc1qbeGR0gklP8s39hzJSKsMpjGD4ekxrkeHUQTIbXDTEQ887RLnSQZVx7M2XLufq9X2BCTEQqKcKtkGp6gWDj+mMzh9T5sjFnEkxZ/Gys0JVb63ReVjY84bkFd4of37dev7vT57hIJKHrdnZuOpS08iEpDIh7sUUP3/RwV0Qvqcj7KmJ1AuWJ//yvzVGSoVKqdrf9DV46ZkL+PirzgTgB4/vVetL/uL7T/HknpFg/UAppesgCUbajQwa08istM3aCjbvuHJVfNtgn7UHoss6c3FHTbi2VUcpBdDZnAv8sLwYoTi7wXCSLInWOU1FlV6I/ph+O0f156YzOp+u/ZiqSjMls2aLwLct8l7wpFYYqXUi12KqMFNDhEq5vcMl9g6X6Gy2a7aL7Tsx36OJENs0KOT8e0Nn89X3RaPZdkPlYZTcbWjTSBn+p04iYEf2rUml8H06s8L1+8H3lEq/xlYk23BJkXOXr+7h/detA+DbD++OrR99JwZKKSckoEIj+vgz5kWVUonwvZkSeRlmh8zofI5RT96aYS4x9TkVKYaL+oWyZv0ZwbJ5Bx7GcCu4SB7PuXiGw9evMHhsSTOegLwDIiBMokbn/lUOSClVlYoVcryWap8tV8+kmhiKlHIUQSMROCWDsf4cOGo90+9UG0qONWnkEepv14I7NwiGmi0mbYuB5gLPdy2PHWe5qYpjVmPLLGcy+LtjWLB+z0FsVfuRpjym9HimexV5R/kodL2d8ec/jHQ6cJR31X6rh9vXL8WT6hhlGL6nVWRCOghFuBUq/mzwl1rgrkKBwFPKsJgw/QZ7oeebpg9VUwwyG0B6AxaZmVPP3Wh5kpH+AwjbAulfA9eOG50Hs+2SyPMq+f7GNfzwPD9LUb3sQRkyZMiQYW5Ro4CV1CilwnVloIZ6xTkLuXJtL7ZpBAP+kprln6eMlcMBSXpfQi/Wg6B/ef15PPDRa2OhuanZ9yIK6jFgvGixF+mHz8+yLxioOCLLklnxksSV67p41TI2TrB9dCCrVQJRwiFUUtSqrZJIVUql9MvS1TmqjqrwKFmmr8eW/nH+7VdbA+VbW8GioK5l1CB8qvthOiT9a6ZFiuBLIyQKan/TA/ixcty/MlZ0CpHELI8r7L3U0olpnlJpMqAaIkjV4fHdw3z5nu2x/Y0X/MQ1bqTfXZf0qvNbfTXUESal1M614kcTIVEvpjSvov7RMn//k2f4l188Hyz/7StW8l9vu4jXXuA74k1W6vdxk0lEotnt9PsrqZRq9LaIJmyY7RnUx6qJVTtyo+s/Z5t9LzQ69xpSSunzEK9DfAOtToSQdNfkkilE5J1EsAzIjM6PA2RKqTlHhI0+hrU4dVCrhgqQon82InL7ldtvYeX2W3jziz7C/mI3nRLuPN3grmWL+cLnnqFYBm9yHJpBp731CMP39MyfNrJ0zHA2pLvUwek7VrB0t08ISWFiKlJqXOT86E5hsuvOTib787DchRw4QWifX055wtA8ClK4fOqVJuWmjbzlO6PknAr7WhfwG8/vYaRY4HM3eBhtkyw9ECelbGfCVw5Jj67SOCuHhtk5fxFVo0zFMjGlx6SVx3Jq1VdtIx4eJUaKOSQGnrCBCmDg4fnOUirLn8DF9Ko4hs2Z+28E42GemH8n71jQxw8HHRYDGCbjipTqHNkG7WfhVMbTrt4MUdtwCAwkHk/u3cqv3v1WXn51B0JKpAiVUp5Kxx3LqCTVLSMlliFYXPCPz4MgLXmGDKcaomFSGTIcDSS1F56UkfAVf1kYiiEZnvDbvhaVbcs2Df79zefzwLZBANb0tfCV+3awfWCiAa+QcAYfQvPrKJKklBDJrHgSN2KcPNumI/Q8DPen+whJAsHzJBMTE3zmM59hfHyc3yxAqX8COBehBmSuJwOlVHR7L1B91Nahkec+3ehcK6VqfwxDasLj0mVogrGtYPGxV57BGYvag4FolHjxUkiVqRBdZcZhUHqfKSeinml+S8G/FzUpGhBrESSztQHM3v9naqWUGfxW/2q2F3NA2C+br5Q/Zcfj0HiFqIZMSJcDLVt5pu/ecFlKmaJeXz0FR7ud0fXS19I2BBUSXkyR9fU1+897tnPHsweD5a0FC9s0uHxNj2+ufv/OgMzxt6s9AzVKqRRSamCswkTFCXyQGlVKRcnqpHKyUdSQUhHFpzYqrwSeUjMrOwz/C9m/ZB87Rkopgs+KEE83bVzMpr0jTFZduppzXL2ur6buUSP2aJsRXceTMlgWGJ2nZc3McMSQkVJzDTnllwxHEikzTGkwDANPEGTQA6gaqgOLmokUbmAETqXik1I6+54RNi66YbeERLgjmOUwK8WawXaW7fDwTc4BqxNDsUuTZh4ccM0Cz9nX0Gc9GBJdKmwvp5RM1ZLJhMiRxyFMk2Iy1tzGsyvWc7C9QM/YJB2VKlsWgVuah9m8l7VqTas6gV06BFYTVMfpLKn0tUYPsBvHEJiex4Sdw3T9Dn01Qq71jE5y+v5BfrpxMVU3j6UnfGRkSliF7yFd7MoIjlWks7SGF2xdza6uBxnJlTiIp0gpi4nO1VCCVs+vi1stTX3BGkaka63/FAZIMBShWB2fROAhMXFVdsQgHXfM2NWIdz4S3f6sacpwSiKiIMyQ4aggcat5XhhekfRJqrqSqusTGZqUAj/r3KUR0+uv3r8TiHpKpb/Rk2M+7TESq16N0bkR+vfowVCEHZjtwCbpOZP2LVgqob+/n/HxkFSwJsNBsykELjL0lJpOSSETn3XrKRLfa0N/gp0RUUpFBpihQk2ZjDfZNYkjooP4UJk2/bmN+YHN8DUWNVdPoh7B9bbLV+J6UK66FHImb7l0Rc06qRkkG+faEvWMb+/XT+2nnqeUIlEB/vTlp/HzZwfZ+FQH7IGVvS38/A+vYt9wic998oHYZrnqCN8//R+oTEGSOGoi2LZ8ny0hk1RzfdTnXuauLTJi5IhWSrlxBWFsgtv/MqIyap6zpINLV3Vz7WnzgnWSfmLJMoJl6lMfjSZC8pYRkJjv/8ajfPhbj3HdafNj+5/2uCIkZXC2ZnhT6V2Vq7Xhe0aglJqd0Xl3c47VfS08d8CPnFjWXaQ3YUpvpimlIkT2mYvb+fo7Lkkt30i8h00jXBaQUlpBGFkWhO+lxR1nOGLISKm5xgxfuBnmCNO9ByOmqDWklOk/BgVcJgEpqkE0nfaBkoqo8YQXmXnwP22gY//Hsap7gGUAVPAl555hYpmrcYtns6+nAAfhUCFP8xi4Zp5n1v4Gk129VK2dIAdxtHW4lgbLtiCVslSVlsLi55e+kC3L1tM17M8AG44LmAjh8nTfvezqfILOrW/ib777GUqWiTAKyOo4rZUJdcw5cMExDUzpIYXA0KSUrY1YJTm1TBoCXMg5gvd+2+UXK8eQdKhTq/PUuax99j+YKK7k2TU3IxDMc0xGclDRz4VhMV7ohtIYbcoYXoczzg2inVv/InY3tzFQ2Ys0RfB8Vtp8r5GAlIqU4AkjyC8EYXgm+Oq4w8nCkSHDiYTUENnM6DzDUUIgdtYkhpQ1JMT8tgIvPmN+kMVs49JOFrQXmAr6fe4E5Fb6esnl+TQ/qBRPKV3nNPXLbNuOcNAaLSA+Uo4qIjwv0Q+NPLKmasuj3jnBKrrIKKERFCFjRaW9G5LHJwgHqY/vHgF1WR7afohVi+1AvZCWLUuTWLmU8x5VbSaVc40iDIOameIk7ZWoT3caUbCip5lP/NqZdcsOyKIIU+alMSEzqWda+J4QiV9QnqXxZYs6i7z18g4YaIE9fqkreppZ0dPMFwv7Y/uTSFJEcAEqatK3J6dM6BtsPzy0Ks4vvLclz8F6G8wRkiGlcaejWvJUh8FesqqbD96wPlaWVvZVomrJlH2KBCkZNTq/dkMf92wZwFHqxvu2+VkeGyel1B9Rcm2GrJR+PqNhhRpaKTVWdmZUr2B70+BH730Bw5P+WKO9yY55SIF/fixD4HgyCKeOhujVQ/K94Gff8/92AqNz/7tMUUpV1HvocIRSU3llZahF5il1VJCNYo8q9Nsj5bQvtfrwEi+zNgOWGYfoFErVFFFKCW2IrQgOKbzgzR52hiSmsxeEb4QOMFzYB0A110Ku5aV4VjPb+/wZlLG8y0VNX8JUKqqR+SspqZldR/r7GRUtfNx9Hf/gvDqop9Q9RWGyc+FKAF44eI9fB0/y8S86vOSRURAe4/lhWuUEllumauURlj/zYCkCaEz4xJNjGOS8Mksmd2Eqwmo83xycvnxAVIWy+cs2SX77VzuwhR/6ZuF/5qqHyFcGWLL7F0GdLfWKKROSUhOqIWhVJJtXHoVN3wN3NobnYZc5CaEUXMEvpolj+d+qLf4xVvfu4dCXv4w8EHa0gvVTZj/T0lpnyHBqIGvHMhxdJN+2npcWvif4l9efx90fuYa7P3INn/nNjXWJhppZ8qk8pRL3u/YYidXHmDr7Xrif8OdGQ25q6pJCJtQOc3W/hFpSKrKllVCERI8/DN/zIlvGr0KwtwY8pQwhOHdpByt7m2Ojut/893t5yafuCAaFaZ5SOtNXWthkmhqokYF2jNILyM1pN1Pr1V4DjXqeUo2VrcuZff2CsgKCK1qWqp8ZqmYaQwrxmMjuPJ1a6StU2Gp47LahOvAczu77G9x1vFyrQRJitgh823T4XsRTKs1/LPl8p10nXYa+l/0yaldMPlOViNH5my9bwea/eDG/9QJfYVdS4WuN3hdRE+/kskZhJJ5J2woL6Cj6E/b6fdLeZDNTWKZBd0ue7pZ8DSGlod+dWik11Xo1dU+cKCNidJ70o5OyVimllXBZ9N7RQaaUynBKoWDkKPYuwNmzJ1j2EdvgQXsLj6oXlBROoJQyghe5zr7nBSagmqCwRDVY5gmJIQVS6pA0lVVFuJjasByT89v/l3mFzXx38C8oeW0M5T3sErjSJ4GGaOVL8gZVxg4AHFOptkSOqp3Dqlb4q12fY0/Oxq2YrNkL8wcn+NGF/j7byn4dJg0DrLgctmTkyAOuaXDJ0D0sL21X9RSMNbeRox8hQ6WUaxpYwAOrDV7xADQ7Ls1inHHytIi9HCIHeLg6nEFKEAJbnb4DRpF7285kldnChGrF27SRYGkUvv42eM1/wYaXT3sNNaSUkQyK0flBNXOciHmQgGt4GC5Um5TZbf9B9n/sL8i/4ArofoV/DhJcfXTYkekgM5wKSO+AJYMMMmQ4skjyHvWMzhuFHqSE4Wvp681OKVUb6uN69QekjSBsylK2j5R5Tv+z3LDjfvpLi6C5GCy3J11u//pmzrp6cUBMOAkPGBnNMhYpPrwGtYqamqokTochBH2tBX72/qugMgF/GZa/e2iS8bIbrBdu439qRUS6Uiqs00yUUtHTHyilpt8stm1a6JsbkBazvCdTvJ7CazG7MmNG5+rP0NA5TfuTWohaKVyrtZAcNk6tAxECvkaFW4uwuLPIn37z78l7s8u2LI5wsxNm39NG5+E1ScvUGJBYdTyH0pRSqfdphJS8d8tAYO6vtzcMEZDimpRp2Ast5d6a6R0VhuBqEjl8Jv/mprP4yVP78TxJb2ueq9b1zrD0xmCbBmXHC8J6G1dKxdczhaglqiKEs36Wz1vWxf88uItB5VN41do+ZorMf3bmyEipuUb0xZmpKo486mmqY+uFL4cl//LPTNx3Pwf+/u+Rk5P0WPN4Q7mbUvNPeRbACEkpdKY8ocklD1c1qkHnODJzJHUDILTZeKiwavNKjAEj0u8stpp+6F1FNod6H6nKFlbYUAnBuDXOQIu/Vu/AEOt23cnync+Ra82BkAwXoX0Cmioy2M6d8BVMJctCmPFwBtcqQQVcIWhz/JTLlt1Bft5ZvPOZA3weQd6tYKkZU30rP71Y8IoHwHBBKs22Dt6TQuAGsxcSEEj8WZOftZ3GN5d/xK9/1T/G1kXnwP4KrqkIs7G4LLwRiDpiTyGSM9sCTStN9nbS87u/y/g99zD54IPIoUHoVjUX0WNI+lBkz3SGUxuZFD3D0UIQdhSYZUtmmn0qCT0wn04plVQ1pXlKeYk2RkTC98KsUrMLL4uVq8PVYmUknkMJb3nyB6wd2sUedy9ccUXwk1nxePznu3AdL1RKJby5JBGyogGn87T3QM0hpo3iI5hUfYGoUippqjydUipQ/TREStW25TMdOKadmmQWr5kiCKGUkq/fv4PP/2obuwa13+VMy6pVQ4VKrlARohFcR+F7KKUjrMTiziaqU6w1FQ4n81tQRiwcUT3DrkG1TmY70xQYDSpqAt+kRIa5aN2j90pScZl2H+WUoijuKTW1UurHT+7ji3dtC5YXIu8cTYqH3kgzI2Wi1kgzvef1+oMTfnbwKFG8Zl4ra+a1zqi82UCThNro3G5UKZU4VNMQNcvSjM5X9jbzwEdfRNX1ECJdKZth7pGRUnOM2nmODEcWKZLqOqdeSklh3ToK69bR/4//iJycRAA5LJoUgUJEKSUCvyNNLrkcKu0G1uFqQ0Tbb6JtV2feESDVbIbUCiuX9mbJ0KIiEwP+TELe8I39PNnEtrZtrBtuBaWU8oSJNAQCycRSg9uLPwqOYd2W5zlzqz+TUlpg4ZY9Cqq+lgemK3FNgale3k6uQIVcTPEzYVp0Aa4haHJ8RdXCpnM586dfo9y1kAdXXc2e1nDGQ7pFoESvOh85F7S7lialPCFwDX2e/CtTMfysLV5EY9Svsuq0tvXC/t14tprRrQk5aABxMVSsB6cJq+isoA6B3DKxFfetb6f7zDPY9eCD6Xr2oKMZLsqUUhlOVcx2xj5DhtkizBrmf/dSPKVmisCYdxpPqXdcsZKv3rcTCZy3rIO+1hSfquTASAhkMqPTNORXIwg3jZAqqjUSkV90uL2XlCwJyURxF7c/+yteikc5bzE2nlP18leJDr4bmVtNJaUSxzjVuFlTdxOqj2JGjc7VZ6OeUslwyUYRqF8a3CwthDIoa4ZEwVRlexK+cOc2ntk/Gvy2tKs41WZTlOV/ppmmpymy6tUnNBmLatOmH9vIxP0qkxWaAdL8qgbHWoEy3//lGsy7fjnltvmixU0fPI/O+c3T7kcTihOVWs+itKx1+hzVI53TlFJp0GXtGvQnkrX599suXxGsk3wOGr5v1WfD6rgUaI8+Tdgs6miaYQmHD01ca++phsP3ku+kSPiehi7qyd0jVAOfKaH+ZWTU0URGSs05Ul68mYTvCCB+TutKe6c6/ZoEEQKQ2Jq2iSqllM+RVB5MrnDQZtme4wd65SxfKdUsosItNQOoTcqFSx4P54xOFj6zlMnd52F6Yba+zskFwFhASklhYggDicuY6RNQFhYdQwaL+sPOsRA2UKZ1QSuVXX5HJleF9kGLxQP9ADiGyYFqiQWRQx8QbSwGPMOguzzCRN5m0YP/iayUye3bzF/t28xPlp4frk8nC9jLukMLgWeRrhkopWy0mkwwWmyhd2AAqbqNpiKGuiee4INb/51/Xf56PKuJ01uaWNfsH4fOzqKJvJlAJDo6sUutOubu0JDPEw4Mo2mlOw7dwSM/uZevdn/A33XEbD0ZvhfNvpd5SmU4ZdGoKjVDhjmCnvjQg/24p9RsVSlqMOnWV8q84ZLlvOGS5XXLOtS9gMF8C53lMTBNms4+G/kwsXJ1m5EMGZkJ9JZeSmcmIIuFDMgemTgmKaBSGECqEgrCYXysH2iP+KnICG8Qbr9p3yi9i7pqK5XyGqg1Oo8N44O/cpZg3AkJgDSl1O2bD6p1px58ysMgKeUMlVJpg3uNw1XvRckiTXL8n5edxhVremasQomqrjQ0kaQH39E5ON13Tn2rp9gj1K7YgKouec6m6EfVO32GrFK1h7Gr7fX3HUF5wuHAtpGGSKmr1/fxnUd3MzRRxTIEr71gKX/+/aeAaJa2SH1UZfVvaSo5TUqNlqqxbZLQi3VI8VXr+vi7Xz87tk7yOWhYKWXE6wkzv0//6CUbuGpdLxXHozlvccnK7pkVMAdoyvnjBG2oXrQbI4uS710rhZRa3tOMECF52Jwz6WuNW55kODrISKm5RjZoPSqYyUtVTLVBIuduk/RJEmGWqFg+USW0+bbwH5WSNUF50sB+4CBi2JeyFgw1syLB9PzCmqq6aP/F6Qo3MBkviRwD1T/D2f8klaYyOS9P18Ri4OmgahXTDGaIPEXWnFFYzzl3jeLZft2QEqlIKWkKXCEwpeTSh9byjl9uAvwZpKrrMpgbDkipoVwz+3JtnI0fvuepl7aRuHev3un3rkumjaNatoesdVzKsxheqH2ycdQxCgZa2vEt2H3FWIvjnyPhlXjfji/xvqXdcMWfAvDgsJ+y2g3iFOcqC59fnlCklPSkL3TrP0QRV9VWsG98H/QoA/dYBy4+SxhTSmWPd4ZTCKnNWdbGZTjKCEgpOftsaxrJFOGHE1ZXKTTzxus/yl9ft4JXXrwSs6UF+dDPY+XOSfieJhpiihX9Y7hAt2Ne0usKaDKgCuSkTUVU2TMwBrRH/Koi+4s843/xg6cwf7WDtzVARtcanaccBJA3DXBC3ygzUt8lXUXu23YoGHwu704hFCJ1DkOrpq1esF407K/Ry5J2njTcw1RKRY3OterqzEXtswqLiqrINILwQqNWPZ5mU5D8rf6y6bVTY2WHrQfHp1krWWriXgKGuh6lqdDMvK0jDAzDS654lqWveUPq9j/87OPsenqw4f2t7mvh+7/3guD78GS1hpSK3t/he0R5SqVc+xaVwEj7IDVNQaSE/lQq+iKlrGT42Ew9pWKk1Ay1UgXb5IXr581om7nGR196Gt99ZA8Syby2Apev6Wlou7RQveTrcU1fK7/60AvZN+xHjSzrLtJamLlh+1TIukyNIyOl5hrZzXfMEbo61H/xJmdv5tnhbGApp0qQcdlt2R5jbDCHORb6SLXaqlGSYCgmqWNS59YLjc5zilyqqJA+o7WZEpPkKnnybjEWzV+NSEYnSmNQgJzhV8pUYYICkCpbn+eVKZs5ik6ZFzw9GWy7tW0+j8xfQa/YyejSy3jYNflJ33m0e8OAH75XVebkpmq0Bi5/K+L+b9BV9pVXY3YTrlIzCSOUMWulVIGKKsvAyamQAM8Dw6BJz8LaBbjwt+H8twV1C2LddajBDJVSqV0hEf3TL9fq7YFD/X7oJi5j+GGVjudEeoPRbEP6j1rJtpc94BlOWWSK3wxHFzJBQLlexHR4lrKUwJ/Ki4e/zQZCCBzDwmnvwGxp8etMnKBwU7LczWY/ftkh9H48JJWueeypjnHwzHV4e5pC8sqfGwIkBSEZAXKYVKjSAxRzJleu7eXO5wZI4SmCP/cOlxrzlEoZAKYhr2Z60pRSf/lrZ3Dz+YtxPYltGpy7tKN2P5G/Z0tSzlTdlIxoi+LwQ0pDtZpW1s02k1+qIXtASqmvjXZjkq79M66Mf12qrqQ6q+zKqpDon4YXVMc2Jbka43Ufh6NMhPj95CUmsKO/u3XCgE9f2MYHb1jHNkXIXbWuvlm2VuqYKSbeSaVUw6SU+oxd8xOwKb/+9Plcf/r8GW9XG6pXq5QyhB+SeCzCEjPEkZFSRxTZAPbIQzXmjb5k0wPtAUmfGcqCJxUplauMxTYfzR9EjqsZksVF3EVFesd3gBvP0iYDPU5IStkqI1/V8Fvqrtddw+Q3bqWt0gHJkDFhBr5MngoFbGtuBwaQqjOddyXSKgLDOLJMyWyl6JTpnPSNyz9/2kv4xtoXcvGhe+kd3sm4nWM4V2DSLpCv+nWp2OEr4MCK6+ntXku1yeIfzv9Nrt9xH91imG8tvJIelQGw7IWEl6dOepP0SSnHMBhp9c+hIX0lVaEkoAVkrhle8n9jx6izyrr62BtUSkkp6f/7f8Dd9Gj4Bguuf3gjaKWUDsWUHgiVwVBIA0c6QU9CRmaRkuF7Qvj0lkemlMpwaiB9wF9nVJYhwxFAMmtYdLZ/tmPOQJUwF15P6rOef08QvjcH+4n+pXdZNTzK85ZQdiuwbBEHF8/n3IdUDKFuuUTYR7LUBNONZ83nX3/9BrYdHOcvb3k6UCZBbVh8dH/B95R1CrbJ6y5ayi+ePgDAK89dlHoUthpga9PiqMIob5lcPE14UEDSySj50vggXTLzLI71/JgO9xrrzVxPTmvAP31Z4bnRCIzO0zKx1bU7qj23NZF49eoCfO23Lwk8snK3GKg5zFmgEdXW3CF6/kOlVIhaT6na6yWE4HeuWj3tvrRySWfyS1NKrZ3XEqj8ANbMa5n+IKh9D/n1amjTkwJJ9WIaKXWkzscpdJrnDBkpNceYWfOY4chAdzumQaCE8a9WmxdKpUtKubl8+w9pHt/Ds2cu4furnmdv22ZQPJXXkUN25LHGVaMU65m6quzQID0n/WwqxhKDRW+/DGEI7rnnB5x28DzaDx6gLRRfIQwTKfyaLVrQw54SdHb28Jo/+W0OPvEo/f/wKXpMG178avje53A6llE+5FespeTPykzYfjiipUgtp+pg236PYMRq5aDdRU/1ULDPkSUXYzX34Y1u5rHe1ezoXMA5uWe5zzuN6/r3AOBG8q5oebUVGJ0bfOHlr2akrZVFo/6yfFmvWwvdQXKIKKWe+g48/F/+tWmZBzf8JRTaY9tVtmxh4P/9P//LVbXSfl2vcnUIgG39mwA4WC2EpJTO3hIk2osopRLZ93RdvcgsZoYMpxrSwkIyZDiS0ERKMpMdzH7QniS4DmdAEjWo1kiKS7w5Cd9T+0mprD5HwcSJaVLN+R0YEbpMBcomS5ggwXH9Psr89gLz2vLsH/Eb65U9zYEXZmJPiW/pb4K/fNWZ0x5PXs1IHVSK87RBeD1E6fHY3GIj26qRfZp5dUP7TDnsuQopjYbvzdo0XX2mCd+0eijd6Dw6oZfYtxBQGoZDWyAxUSumvBP8Xy9c0cWFK/wohKeFmHrdxC6PdZbX6PslfKaj58j/DJWQs99Xkii3UsJvz1rcwd0fvoaDY2UKtsmq3ul9svx6qWseC987dXDthnn88PF9jJaqtDXZXLOhj28+tCux1ql0Ro5vZKTUUUF2wx9zpPU8A6Nz/6O8o8BFI9dwqLCJSUrAASy3xIL997L5wgm2dW0i71qImEE6FFydaS9CbAShaP4jVjWq2IoBmRQmVSQ5BHvbN7O38ynOc7s4czAkxXa05IN6maoDlzfzLD7tDHoLRfKDf4HR3o5s8Z2inIVnUNrxIACtFb+jN275pFTR9dVNnltFZ5j1hMlXF/06Z9sHWbXrXvAcFpv+zEs4K+RhKcVXVXlq5U3/UxKSP9HO2qKRAYYX9LJIJY/JqVmxtA6Gmexoey787C/g4OZwpVVXw5mvjm0nq4oYa66flaatZRWDw48H30dlOwahUgoiWQHTPKVkdADkH/RcuV5lyJAhQ4b6CNQsmpSKZLE60kbnjUBv+uMn9zE0WeF1Fy6t3U9gknz4+4kTDSrhivpuCYOq4yBNg6qtZtW03DqyrWmY4IKr+i0F2+SXH7iagXG/se5tyXPLP4Tt5lT6yBmTBpHz3FnMwSGHsuPXvqOYm1VRszE612vN2Jz8CGbfCz2l5GEr+KJlBfVLKKVmHL7nefBPF8LYPuTwOiAMQzveJylmW7/o6XdTCMxab7rDH+dV1PNgpYTvgU8gz29PyQJaB2nhnIfzzjvRcMaidn78B1fElh0tpVSGmSMjpeYcMvJ/hmOK6dS+6iXd3G7DhAsIzt37CuzK1fyisIUbzC9QcKtYCxcw3NOsNpe0jg4zafdxbsWg45EJlrcbYPqeUmHRPnGilVIlewxTzT7+IN/D2jse58tnrgShaI5ECudSzg7elNqa2za18V5ImsiqIo3MHGUz3rFbbh3kyoO3s8Hdiwe0dtmIsYjZpBCMl3Zz27yXMywk55f9OoyjVV6S15q/YJe9goKqXq81jmsYvmeUwr3l0xDmCIbncvnzujOrGvGy7gRJpCcZPVRCSkmxPR8YiMeMzqsqPDDfDuVhqNQxx2wqINDystqLfe4LXkPu4QvZPHw/W8Yeo2C2ManrJfW5jXS6gpJqWyhDqe+mS6WcIcNJi3qmKhkyHAmoWy0I9Y7O9s/Sc0eTQ2khOTOFNjL+5eZ+frm5HynDsDYzsZ+5D9/zyx2uDAMGnvSwPZeKaVCxc/H1RaiUslX4nialwCempvJTMU3hz8ao42rYKqEO/vwVp/PD5/2+QHdLnheur++1k0T0VMqZkksK4ZzkzMis/SMl3v4fDzAyWUUIeMtlyw/b5yyaAVH3MaYiJqatZwqDGYTBqnty68A45/75T/jD69dFrmsddZxTgrF96TuUU7cIhzPYT+uHHU3ESKkUVWXSU2ouPOOcwyQ308v2P2Phe3NW+omJZKbEU/18HE/ISKm5RtZfPw6QuAhTvHF0Z2bRymbG9pbo7CvA9nE8w+Kp7nXc9LKP8/Wb13P+xlU4n35nsJ3hemDDC8smhWcmkNcugHEw20L/BO0ppZ2mJu0x1g33c9uCC3FMi5In+enBQ+h8vI6MP4qeadFTLXEI0/c+IjQ6FxFzbun4v1WsHCUzni1ijbGP1tFxip1djJWge2GBec88T1t1hBG7jZxXpoOnGeBcfwO3H1jCqPJg8hBcaz7EtSvb+eLYQgaGodkoU8nlyJdLkRPp16dsGRT2bKXSGXYw3Um/sHI1x08//yTPPuB7TTS12rzgj87zjz0avudqFVS3T0o5kZjGGtSqmwQi6DR3v3QN3act4NHP3BGsJ4QO3/P3mU5K1YbvRbPjZMhwqiB+u9cqCDNkOJLQRIoe8FXnInxPvd6DrFmHMZh87zVr6GvLc+dzB3li9wgjk9WabHDunITv+Z/R8L2cmQc3fEal9LBcl4ptM96sQ3tC5i4wYE8hpWoQecQtw4hJhENl9EzfA2HdV/YU+d2li2e4fbSkUPEzU2+opHJkpkbnH/32E7HlExX3sLPvRcNAg7LmUCml/1rZ20wxZzJRcRmcqPK9R/dQ9yqkGHzXVr72PtBLWmfLHE+Dhk7NYTIN6Z5S0fA9TSTp98js96U31UpQey5JKVV6pIt7yiuDaqNTj+wJyXpMjePIvDEy+JH82Z14BDG1lFrU/EF6A5Uwf2gfrvCKdouVLc2Y+B5JVWEhIvHdUsigY2irBnds2Ff3GLnWcEfK/BthIPHY17qVdaPbeMudP+B1k/6M07bJMDbfIU4oia4ieRUC6CpSyjbUOro+nod0fBJn1CwwacVlvZPKxNxu8sPcxocG6fTgTbu+zKcWPs47tn+eNyw/I2hM82ZZnZagm6v2Z2KosD3hQqlQiM1iGZ6aETYE9vAAuYN7g99MVzWIrsHWxw6GdRutUhn29+dFlVKeIqVyysTRiZBfKaj3iBlFm+bz5lFRPlgSEOhQS01K1YbveSmD74rqlPzvgUHuGRqbRYc8Q4YMGTI0ggs/fisrP/IDDo777+5Q3RQN35td2bVhdbOv5/KeZj7y4g1ctrpH1a82nGxujM51fycsoy3XBkAuopC2FNG0b6Ef1q9naOyIp5Tr+f2Jnf27+cY3vsFzzz1Xs79oaJ7OBJboFcziIOZe/SEj6uWGyaUIoeVv19iG81rj/aulXapfVXHmwFPK//RkxOj8MJ384+b7/pfe1jz3/tE1/PmNpwPqfg03jBSRUMXWuegSOYXKKuWeP4HYkDRSKnpJkhOVcxGeW3U1uTl3Q/M0krJRdeDJiprwvWNUjwy1yJRSRwMn0Iv4xMPU51akrDH8v9/CHTxEx003Ba22vbDJjw9wJEII+iwRZNKLdoLBb5t1djbb8h2Kdj17CDZAtRT1lFJeCcZWPnferYzmxnH2rsaUklaVZW60EhIuHiYxY+2mPGJQqt90Q6VqpRosKSW4Lttb53G70cOzKy6hq3KQ3vIhhpuKVFRrlC/6naf9W8LOZ3PR96/KG7mAmRbNLeCAUJ1QQ6dlMSxMRXAZE1V29rSzbmw0KGvB0BDzx/eyZWEfQ3kT4blBLKMpTV70zJtZMrYEp+Jh5U1MU1CecFRIHJQw+Y0z/4ZXAzfptMF55a/lpiiloo1rnc5SMuTBQyAUCbVi8Cw84eFoUio1fC8svKr2+TdbfULxO+eu5qKOxrKfZMhwoiHtrSpSnosMGY4EPBlXpc5v8wkBPWiDw/eUqjrxpBeHAzNCQIXqLv+3uQnv8T9jT56I/4aUrN69m6cXLUIKgem4OPZCSk17sETYbErVxo5NjvPkk09y6NAhVq9OZggL92RrQ0U1rRNaVBz794CMzP02fB2TSqkG9/XXN53Fy85egOtJ2ppsOppsXvXPdzFZcSOk1OHdk9H7fk6VUoHgSdBasFnQ7odqOt40QXINZGHUS1pTZOQ5a/bkSiN315GcG4xyTF6KYix5refi+a669T2lZoNkuHJ0f6cqkpzfEcu+d4qf59kgI6UynHxIaahMJWcf/emtjP70Vpo2bgyIiPzSFhb+8SU89V+b6Ng8iCB8MBw8RkpVBt3moGhPyd+Xru+mNOCxa1yRRA7oTluQ6cZw8KxRwMBTIX2yXIZmGFcqICktHNsgqpGX+SJG0PnT8mB/P0HK30qFgV/ewfuueDcTXhPMW8Ajqzxes/2ndI/kyFX8WeblZ59HrqnI2KEBAOavXE3HPH8m1XPdgJQKQgNURyLIk9LUhWmpbD6jZXY1W+zfuAHKvkLMdlzmj0zQ3ysZyquzpDa1vT5WHTo3OK4l6zvZt2UYgFbDoMkQTHrw866LeFSW+DWv6rf7gVKqXvheOpLdrGiKZFv4CrbT913O6fsuZ+w0XxclpRek25UNSM73lqvTrpMhw8mI42EwmuHkxo9+/wV4UjL6Jz+nshM6mixwYOehiWCd2Xb4dYjVeMU9rHKiMCJtTFIp5cxF+J76TFOkRJ/G9dt3sOahh4PvP37pRZTYg0RSURNl3TSzrrKEHavHeG7HNiqVSu0OI4Wawu+b+GobgcDgN/pfzI6mQ7XbNXQUhw8RO9+zU7x5M9yuvWjzsrMWBt+fO+BPzE1W3SBb2uGak8uIUmr22fdqowiSajIdwup6EhHcsPVLnQqGNPjsvgOsstsZVNO5eu20LHKzxmybnVluF1XQBZ5hMTVZfP25UEIeEU8p9ZlZT4SoVUpl7NHxgix8b44hsyf/6GCG75C+D32Y7re/DaPFJzu8kZHwR8PAyJmQCxtUU+1gsORw+V/9jG8Onu9vR6iU6l3Ywk0fPI+eZb4SSWd0i8IQgrxq9LflJigZJXbv8tU2u/v3ACANm81rW3hk9RDbVy/g9gtfxPi60IAy6Dyp/Ypi0W8RXZdtz+5iwm7CxiPfuplc9y+DQWNl3DcJL7a3c/NH/4K3/P2/8Ja//xde/O73YyiSyXXdiJzd/xS2kqmbNlz3F3DNH9PS6af0pTnvly1CUsbyEt4UMvgP4akwOXOCV71/I9e97fSgsS8YBrect5a/8x4B4JAocNBQXhh5RUqVR6E6VQhf9CaQKcvUEqEz7cGFLV9lfuEhKqZf5vi4VkpF9VHa4yp7ljNkyJDhaKOnJU9fa4EmHYKuRtFP7/OJANMQs1aSXHfaPBZ3NtHVnGN+W4GXnbXgsOsbVSPoViOZiv2wfEtSMr8F4XTRUCtPZ+RTamcvXLesFTimxUpvHov65qn6xdXg/voRRZqpVWAq9F0I3njw5bxi22WzP57DbFvDI5YxFdCMtp3hdkkUbOUXWnFJmtvPFKGnlAzDPWddlv8ZD9+L70eHhzlu1GYkbX+1QZu12irBZZMl5nsp209xz89d1+rI9tGSvnBxo/OkUurw91Oq+s+YNadG5+G9ldzfqYos+97xi0wpdaSQjWePCkIxef2lhXVrKaz7Q0Z/eiuVsTFkdHZQvZGEUggZhOF7tzz3KCOlVoRK/yOF7zUFocRWqjA3I2YqqosOSamvdB8g1/Fjzh16AwBV6flOUsKmaps8snaYic4NjLdeydm2hYMO34srpazOThb9w99TevJJnq0UYRhW9DQztvAbjFZH2Tmvna7RHIYUNLW1s3jDGTVnyDD9I5RRpZSutGmAB8Kw4NLf89e31ODgjEVU792CKCmfK8eNkFLqPEa6tIY0QIAnqixc0xE93Ugp2dDSxAaxm//jrmXCLDIubHohVErd+1m491/hRX8Ol72n5jjqQbcz4ayqZHH+cSr5IZ4c+xDdY4sYnBinBcDz/PWkjHW/pkL2eGc45ZBl38twjLB+fiuv7lnM4Ljfbl+xthfLnN2c6kUru/nVh144l9WLh+8FHjP+5+EqX4DaCRNACBVOJyLraFLKMDA8N8gyK5Hx9SBgBlINzyOPuCYEx6vjQAdV5fvY5ORneBBzOdD2P32j85kp0WZrdJ5EkyKlyo5H1a3MqA5JxML35sjoPOp7mQxV1KRHPJtwlLRIMlsNvPMj9a3LczUITZXOPtvj4d9vhhC4UobEcrT0OQzf0++GCaXePJywxySSYcSQKYNuPGch2wfGcT3J6r4W1sw7slYcmQdt48hIqSMIkfJXhrlFvYj41NeAmnmV1VDpoxsX7aUkRPhgbDq4F4gYmCMDUsrW3k7K2MhXSiUbKoM3DI/yjfZ2tpmCiunwGy+7gO/vhrG8TScghc0CIRggNN5eXMjxbMK7IfCUAtpuuIG2G27AfnwvfPkh2poLjKldP7pmmEfXDHPHa+6go9CRem4M1dF0nSraMiLwnDAM1SOonWqz2pr54XkHaBu3ePndHazq30t/vheAsqbyIi9gQ6pOc8T8KcgeGDBXFgWnwoRZpKzN3FddDY/9NziT/opbfpFKStVc/bTbIWH8KQDD9r8cGB1iCX74niFU5usGBKRZE5PhlEDsRk+Zgs+Q4SigmLP425vPPtbVmBKaH/MHr3F/obnIvnfRii4KtkGpGvWt1H/VkgGeYYDnBtlmYyG3ur8TZOWqVUpF0ZQzY9/LcuYh9dH9xms6y6IixxyEVs2QFJjtdhptTTa9rXn6R8t40iep+toK02+YgpjR+SzDETWi4Xs/eGwvP35yH7uHVDKeQCkVDxfTWwbofwb2PARD22t/q9lfGqZWrp9I0H3C8Yo/CRu9V5LP8+Fwrm++dDnl6hY8Keks5njh+r7pN2oQmVKqFm+5bAVvuWzFsa5GhhRkpNQcI+uuHx3M9p0qVNial6KUMgIvJQKl1LCKHCsKNZsoJI7ylAqVUpqUEjU1E0LwhpFR3lAxeUFfC0OmoM10MQUI6RNjeTPPAsMnpfrcMqu7WvnD5fN5j9rnRNVvEI0UryM9s9KUM8PsfArRrDxJ6Gx6Wx66H5afDyJC2hgq017MKNP/e2HLQg7kXXZ5k7zptm46JssMW/5xDMsiMBEbtApP1AYJJ2fyDIO851+PsqHqvPpa+PAOePSr8L33kEaQRRGf70teAyOxXCItldmwGvQGVWdOpmbfq9lfNjDPkCFDhqOE4/t9Gwvf082a6lc8tXck9n02uHR1D4/9yfU4nsfffPw+v8+im6mgWYuE7wkTqKp/8bMXVsNfWnbK3Lv3Xpa2LmVBy4KwLIV3X7WaRc8OYt2aaFcPh3CYo/ZTErbFM82+N1Oj8yRs0+Cnf3AFzx3wsygv7S7S3mRPs1U6ogSmPjWzVUpFlWAf/fbjDE6EE7CdzX79rBTz69iZ+MKLoTQYqWCcmIwiqr+p99dMoftrx5I/6WstsHtoMiAwe1tDdWDyeT4cJeSN5yzixnMWzXr7etDVcty0K5XhSOJUJ/9mg4yUmmtkg9XjAInORuTNIGy/UY4qpfSUVJB1jpCUarG6GAM6bYNhtaxk+rNhCzv8DCZSeCB1+F6tUgoAz6Wg7o2i4fKdc9fww+17+e8DsKSpmaLr7/Hy0gAj+z7BGx5/hMpyib3/ZWw9NIndBhPl2hnNCRWDXsyZvOfc9/CDrT8A4KL5F1G0i1OeofkrV2PnC1TLpYAzCu5cNe3rOVVu/bd/ZvWFlwTbLWldyh3X3cHByYM8+h9vASDn+ufSS5kJNaLhAwpBOJ0+HGHWklJmDqwcWGrmccrnavrnLfCUCjqhEkx/546OXPC8SIajkLzSuHl+J7cNjLC4kOOx0cnjfIiUIcPhIa0zdapL/jMcA5wgvfp49j0fHUW/r7FXzWy1zZKw0MhZBrmYRUAtqeJ5HhO2xWTexnbKGF7Y/iaFVUOlIQDGK+O8/SdvxzIsbrv5NroKXbH9blzWyeXnLuUzv0gQE8ewEYxGEidJwEa3DX2WZl+PjmKO85d3Tb9ig3WKEgezNQmPmsBrM//3XLOGMxa2cdqCNiCqlPJik48BNCG18mponQ+rXgg/+9gUe0y7ERShNIfeSMcCX/2ti3lwh2/ov7SryIqe5uC35KEdDul8JKHrNVkNw3QPy98uQ4YjiIyUmmtko9XjCLUvXqG8kdI8paJKKUttu7RtNfuGh2i3ZUBKgaTDGQlmxTQplWp0HoSqhaRUyauyPDdJl7cFgAXNvchR/7fnDz7PlsoWtTHkuu7ArfQAsHe4VjY/qWTFxZzFTWtv4qa1N01zTnz0LF3Ou/7tyzz4/W/z3Xv9Zbo/ZNo2TPp+U4/+9Ba2PHQ/C9dtCE5V0S7SQw8HW/eyGphn+wRPVb1OZKRjHp6TWulwqJRKIaW06quej01qwypqf9Yzh8CDAwsRxTzjxhhdgMqOjYySUimKtE+vX4or4fWPbZmqNhkynOSoJZgzZMgQNzXX7do7r1zF5at7mKy4GIbgutPmzcm+hPTVUbu9Q9yd30RJqaGQkl8u7WE857fDuWoXljInl3pDQmWVJqUMaWAKE8dz6J/op6vQFY22D/c7zfeZ4XDD93Qpkb7GDLcNJ6mO/QBd3z9VN5x4nG34XjQU0FHlvf6ipbHQQk14uRESLObd5MHkkA0v/SDkW8gLOzZ5mXrGhKD2us7huVXXS2eBnOFms8LS7iJLu9Mnd5PEzvHK86yZ18J5yzp5vt9X9F2zft6cZvfLkGEukZFSRwy1MfwZjhwabXdCUqrWU8puUmFrIlRKlR2/UW+xwmv44gM/ZBljwOv8sqLhe8IEGZZtK0NxqpMUPH+W6kD5EO/61kuYdPw4/75iHyVKMAplM0485exBCuY8xoBytfYoJyt+/ZK+D43AzuUptLT6yiH/CADIt7XDyBhFlamwWi6FBJI2WzcsqmqXxrjf2JXNHHmgJC20baBWSsV6uQmPJ3rXkx/wZ+ZKRg6610R6ZNOH0iWRDN/TarWdE8PsnFjlr7PK76yXFalHeYz/K/6R7xgXh9vf8kHoWQ0v+ySiuQdLZI9yhlMYmdF5hmOF41yBHoTvyfDp6G7O8fYXrDwCe/MH5Tu9fkqRLLimUw4IKYCKbWHLktoiHMiHiuAwQUtXoYv+yf5wDw2d7tk0hmnExSxKUbt+Zt8oExVtbzCz+szUIP1IQtfhWRUKCIeTyc//9KQMws6SSQF092oqT6m993Ywsr0IP3kbAMWNZ7Fs7VR7lDVlzTZQrFZrf/wieWTHq1Iqb5l8812XHutqZMjQEObO4j+DwvH+Kj050fAsmT21Umr+6nYAcnkTzUFpUqqjpzdY/dz2Cle8+Prgu+7cCWlgmPH00j3t3WDmARkopZ4b38ukM4kpTNZ0ruHGVTfS3urvu2NhBwB5149dd4SDaSqFVaX23tJ+UzoTzExh2lZt9j11PoptPokmpRf0UnW7awoTR+/S8evgKgLOk2HHMz18D1WuWrb2egrzTgfgr8//a/7t5d+hduX6Zqzh+rWLXM+pXU17sjuqDk6Vlxt38ifWl6g2q2vYvwk2fQ+e/UnN9tlTniFDhgwZAMwIETAXYWGNwFOtUGvZovnZR8mVx4PfmlTYlin9ts9vf/31TdXm5R/1SSiRkt4s1r5NdSCH0wgeJsnY2+qrfkZKDp6EnGnQXmwsPDI0ftbfD6sqc4LmvN8v3XrQv4Y50wiyHs4UWvlVdcJzrP1Pg+9GxNIg5TxURvz6GK2t/vcdu6bcn76UY+XaftZcnNzZ3ilH+romSajjlZTKcOyRjRcaR6aUynCCI5j2awxWbfY93XqZSm2Uy5lYjgAJJWU61NLSDhP+6m/4v/9Ik+X7SVW9KhVRVjUxEEZc6lsstsJbb4X9T5B//iswtp0hxy9oSesSvvWKbwFw645bARjz/JmyJqfJV00JQJT8uqQqpUJPqdnAsmyMiBnqQzjcPa5mUAPvp4hxgw51FAbjiUQzC3NjDOEbpOt5WVHrWJWSbhgWtrTCxBCPlwVPbevnLcsW+j4d0zT0WoCVJuHXnbOSM1q7oaEMYV2dnchHQVQYueZjULoJ7vhb2PMwuNWazY/zifsMGeYE8VC9masWM2Q4LJwgAz2taomG7x0pO2E95aNJKVMa4FRjz6WlGBertAWUblk/y9a432ewRxxosf12MmhH9R8NeDXOqvJiTt4fG5d28JXfuoh9yq9r7bzWhk3GA73nEb5OM8GLz1zAzsFJBsf9ydJLV3XPnpRSh1OJhALaiVjAePY9FRaXUlbPW9/EgU/9EzKSoTEZPKcFXW5aAcnn9wR5nhtBMrxylpcrQ4YMEWSk1Bwj668fLUzfuKUSFbbvWZRmdK5bV+lKlDiJklJKWWZI+rz6u6/m9zb+Hmf2nMmvf+/XGXH87Dr+jGO8ZSrk8rDgLFhwFtbB22FsO4NlP1St2Q5NE00l3Zl0/ZC+jkIHI3IEDw9XjIMEJ0UsFM2+NxuYth2cn4cw+S4T4Ps6klMeW75HVNx/QQjBaIsJhLNjnmWAA4KIL4IUhPaKqG39z6j46a/WLuaa7jZ+b9MOXAmTrkeLZQKCwUqBRzdJ3M9/loXrNrC8o6fmOEJfCEFy4reQb2d4NJzps3ADIo5SExNNvTRX9qtfJSWjCBteBo98GXiYNDF65quT4VRDdu9nyJCOWPY9teyIjb+1t07S6DzS+SxWPEYLYCillIeMPsA1FaxVS0XD7af6Zbbhe4nyZ1OKEFy6qrYfMJMqaKXU8RC+15K3eN+LpoyPmxH0pF8l0mGsVUqp+9WVqf5hwaJdd/ufXrTzGS9LkzFpYx+R4s/ZKGQjgTzHcMCVNKI3Z2sCluGkxfHgV3eiISOlMpzQSG2S6rRT2lOq/9OfjixUREvoEFnjKZU3bBY2L2TP+B52jO7gv5/5b5AwUlHpnj2DVeUz/PIrj/vbVB3amluD3eSUifdweRiIk1KW4ddrsuqTUssWLWNg/wCj1VFcfCWW6wp2D03ys037OTBaxjKMwE+hOOvwPVt5Sgkei3QCbjh9Pq9Y18qmu/Ab/pSO7IHuOClVyRfAGcGQXqiU0uF7IuzU6PMsIx2KDtvi1fM6ec+mHUhgQpNSQnBX/zKeHhGw7fs8+tNbePsH/7T2QNJ6Vgq9PRvodtrpKRzi9n1P42Cy2H0WyUXYg4u556I/5cIH/xLYh4EMfLq0f1aUPdONTDYsz3AyI+tMZTieII/z2T4zCAmLhEMd4X0myWEpPX+fUrJ02GHl/gM8e8HFgBP4XgLYVRdsyEXCuy587kIG7cFAOZxW++Q7oU6T20Dlj/31DIzOTyL1DoQkW9Q03TKSRJIK8fOmsEVQ/Tax5WdAe5gRJhXxcMi5w1wVeGTutdddtJS9w5NUHI/57QUuXnn4WRgzZDjVkZFSGU5spPQnahZFFhQ2rGf0xz9GTvrkT27FCoStZN+aLKm4wYNRDpRSFt98yTe5ZestfOyej9E/0c9Y1Q+1O8M8j0vu+U0WrehiX36YZredS8rfR256AvuGUFJuq4xyWilVtMNQP62UmlChfTkzh23aUAVXKlLKE7zti/fz9L4wHC2v1EzF3OweZdOyMRSDtEudqPcubOUP3nAewwf2swmllEp4SgE8tj7Pp15R5YL8Osp7mxjo6aF56wGMaEacFL+KlOg9tVzQZBpMuB4TXkgMjVbzwTrS83CUhxWi/ryr/s2ycqzrfAEV7+fBb7niI2xvvZTe8YWYXoGhtpXA/T4pVU1ouyIVDU1iM2Q41TA3KocMGRrGCUIY6FD3uFLqyIXvQRi+JxLSHwFYzX3MX3ApRtM6PHc/e8UQVSlotjopVgAbTCkQlTIylyfv5JnvzGf40DD0HkESUIhj/voIzl/kfJ1M0PeDDt8zDVFzL2rlVKnqUakqT1T9Y/T6GEqV57p8s6WZr7a10jaZ4/SU/ZZdSbkzR36wQqFLebZO+Qyc+G3IxSu7+cY7MwPxDBnmEhkpNceYabrSDLOEOsVCiimbtzQxbfc73kHbS14SGJ3bS5YEDbbZYiOaLOSkgxn4ESn/BVPQkmvhgvkXADAwOcB41TelLIpmTGkGnRyDPEVPUErcCrbpk1LDpVqllCasXJXCOW/myZm+ssqRfl3LVRkjpCAkzYr52Smlck1NwXly1HlY3uzvN1Q0eaQFQwrT4s7TDVjUx7077+W3rLOY3EqglPLXViGAKdko0zq+RcMnpUYcTQwJJty4V0R0u9oSRE32Pf3VjEjJm42DfPuMT3H15lexbuAqSvnOYOuAlEpVSk254wwZTm5k2fcyZEhFLPuePMJkxxThe1JKpU6GzmVXkes5ncXA4up8dlb38NB4L92LW0A+qCtN85bHaAe2nX4mtmtH2ta0lpXYb4enpjx27xAR9D/87ydb1FWglNITqinxiX2tBc5Z0sEjO4eCZWmhdsEr35P8V3srz+VyXDDF/pCw44aFXLX9IUrNHXCAOqTU9DjsOyQbhmXIcMIhI6XmGll//Shh6jAqEw+/y5RCpAhBbunS9BJtk/l/eD7OwUmaf/YMPHMgkCRrubM2OC+7ZSaqvqqpYPjLZDDzJsF1g/1p6PC9ofIQAM1WxFPKiJNKeTMfrO+pELmxckiO/OIPr+IPv/EoI6Uqfa0FLpulv8L81Wu5zt7BPtfFRbIEk4sX9qm6G8FxhT7n4fHokMOJ6gSO4dDc1cIkYFAb7hY3OldLUi6etj64bWCEs1qLIARlN/Gamuksrg7PFBKBRCK4anySncOCYU28qYBNA0mp4sa2iymlao4mQ4YMGTKcytC+Ot7R8JRSkMn+TYRQsnO+CntXaT9Dk8+xxR4BroWoP6QAIT2aJifwRDyMS8bUwfEDOUw3qMPaei6hJxxPtlDl0Ojcv1JphummIfj2714GwN9++O/97aKrBf099VVKnKnOk1rc21ZgaXsbbbKEMZj4sQFkfaoMJy2ym7thZKTUnCNTSh1NCGqfd0O4xG7tpvaGyzObbcxmm3xbPrbcUg27JmIqXiUItSsIPw2d54adQikTrTqhGqri+cqnNE+p6LpaKaUxVlIqKstgeU8z//Ouw5cOG4bJazu7efXBSez5Rar7JmjW/lQxWVCtUYYOOdRhjLmcf84s6YZ+DdKo2S6YqaxjQmAKweihg4ztOoAj452q6HZJXwuR9rfanyVGMYTElYJmT/DBQ0N8Rl07hN+nF8jQZyHopWXhexlOTcT53+zmz3CMcJzfc7HwvaCpPFrhewpBmwu27fcndpX3sX3oV4h5K8nrVdR6fU0rkMKi7D5eu5OUsPtkH2BWnlL1ZqSOEloLFsOTVaqqv9ZSONmGQf451n6jSZPzqbdK88JQ18lLUYsH3/11CpZBU15ltw4S4sxMhhYtO1C8nyAhvBkyZDh8nGxv4+MIteFKGY4SpP7QcVu5qdedAmZC8qwl0FGiSIfv2UIpmjRZImWkEY+QUmY8DC3qKWWJ+KMYDd/TGFWkVEt+jh9b3U9MeF7GlFLqeKKdDK3u0oqxXL4psnV8FlJG1VN15EbXdLfxlb2HmBwb5f99+H1qv/Hjnanfhd6fJUYwhIcrDQbooo29mEIGNfX/l4HsvV74XpaBLMOphvBZzu79DEcJJ0jXSfcXDoyWcLVi+qgrpcJ2qoRFMyAcv402lSpISqiokPoFxdUsKK5msLCGB3gsUebJi0++5hxu3XQAgEUdBc5b2nmMazS3yFmalPKvecGaztqhTshm0AVq4L5I8ws7DsY+x4GnfoZTFMfB7X/CISOlMpyQEDV/1Fl3Fm+GZBy+nm3SIXUQklKW8MmmWPheoLapDd/T6G7qDv6+bNFlfGPzNxguD1O0i1yz7Boe7X80tv7AWBWYvX/UlEjOXgbhblFPKb1u+Kcm0g5OHgTipFROZQxMm31Ly76nYehZvtEx2qbIDBNXodX0gmo9pdT+Jrz1mGIrVcAJwvW8kJSSYAgZzKDWhkVEBuZZRyfDSYz0V2bWw8qQIQ15NfB/vn88WJYWNjUn0J5SgXeVei4j/Y+K3UMz4Ko+R3PJoZzzt31m9FlcWaHF7mVB0xLMiI1AuIt6qUP0t9m8D459APz5y7s4f/nJmynt4pXd/Nq5i9g7XEIIeOW5i+quLxKTuIJI/yailEoVz8VLSlknazMyZMjQODJSas4hU//McAxwGO2hlehQ6tmmqHpJK4RsFXoXpFOWMiRyIqO7llxLrMw1HWuCv1d1rOJ7r/pe7PekUkqqMLYlnUXmFMFEa0KeH3EArekAA11NXewa20XZ9QmorpZu5eQlMTXZI2s7ofUU/OFvU6QqTpTVEFSZJW8dXuVHYIKn6mVKSVVXU4IhvCBrTX2lVIYMpyqyuz9DhiguXdXNTRsXs3+kBMBZi9uZ3144ovsMwvdCp3P1CUKF1ucZAsAaH6KcA69SZcwZ5aGBn9LXtI4FTUuODW2QzeocMRRzFn//mnPmpKyYg4G6ZE3lqdcPJgTnwFit9g6ZoUJ+1nvOkCHDsUJGSs01srb2qEI3gvHTfvjNUVIp1aUy0hnCwBIWjnQYd+JKKS+mlKr1YLppzU2MV8cZr46zpHUJZ/eeXbcOqztWc9+++/wv0sCrdmEIeMXZCw/38GKIZlhJ1llDpii/PnH5J7h91+140qOnqYeLll3GA+ancNwKQmr9kQoBFFFSamqlVFCVSmnK+tYN34t5VyX/ADzABEeqsAbCMEvtBld1k8eaeUplyJBl38twzHCckxjNeYu/+/X67flcIfSUUiH1aonhhIHomksozndhCNyJMeiE6oGDwdOrs9GmK56i9hPx/Qa/TC+dSal8RhUct4hem9ocQcGydbsklahYX28nBG7SKkMchqo/+cinvgKO7/dChgwZZoaMlDoqyBriEw1JT6mOYugHZZs2juNEwveUuWNU3BN4MIXldDd18wfn/UHDdfjQhR/iVWteheM59BT6aLY6sQyDptwRCt/z4t+jSikv5XiWti3l9ae9PlaUVSzgjFaYmPw5hruasHtc28lNE0Pp0ou3+qqxotnKhDsa1Ed6XkiQRRDtmsiEuabudAtCU05Xqc6ipBRSIPCo1PGUSttfhgynBrJ2LMNRRkZiTImgDVLNU9NwiUnbj7jSYfBiyXx4GkaLJt7IlyF/cbClFbTvszvHh3dlshb0eIGeL4wb12sLh9qkMrZDjJSyOsIIgAc2vJmnh0dokg7sdxAtvUeo1hkynDg4Fbz65gpHKOj9VEZ28x1dJKbxmJuh04qe0GfBNARr5rUG33VYnQ7fs4y4UgrppYbvzRSGMFjftZ4zes5gfksfrQV77gkpiFgnJfRmkbqnEUFpaOv2OyGe149TuhvPUwarMbVRHU8p9Vt+s58RSBNSAJaliMEov9XI4xZKphAyTkpZUcJJgoEMlVIp7FkYKZE95xlOfqRPTmf3foYMxxq6TbVUq1TJ+X2Uqm2Hkzt9vneSi4d091OpPk3AYhm1facwTD8NSU+p2SAjGY836Pso6pwZ/BXtV3vJX30YE3uC7Q52ruXdGz7KfatuUj8mdA8z6A/PRoiXIUOGExuZUmqOIWsFIRlOQLz6vMWcsaidsbLDoo4mFnaEJt55Mw/ASGUEAFsrpdxIhy7IVnIC3AWBUiruURHNtKdJtulM41/1oT9m050PcPt//aPeMvzc9wR0LI37FCSrMlUVMQLlVvqsw/QhfVGl1PbhFtyJRTS1K9JMCP69rZWXlCcYK7uUqi6FQCmVYnQ+9d4yZDgpEYbvZHd/hqOMjAgNoCdWdPheXk3WeIYJLnhGPuCbOpcv5c1/9888dst3eei2H1GY3INre5QJn+fU8D0paxpjUfPcH0b4XnY9jxukBWUHlyciWwgVVYlrp7+ve3HQNpwAvd4MGY44sudg5siUUnONrK095piLSyCEYMOCNi5Y3hUjpADacm0AHCodAsDWSqmI0Xla9r3jFjWeUiL6AaR7SqWhpaubFedeFhQq1SvGEg589jL49xfVV0pVK1zywM9qlwszJMRkcmYv7WBiGwfHUDF9AvH5wVZ+eWAlufJEsN2/t7fzr11tfPW+HZz1Zz/h9uFeffBh6ZmnVIZTAPWVEtndnyHDsYZ+Cltb/TY254zRV1jKRd3XkVOPakuxhe7FS1m4Zj0A+fIBcsoLs9G+STg5lXj+s9fAyYGEKXn0roiG72npkkhKmPIt8MeDcP3Ha2+Jqe6xjJTMkCFDCjJSao4hU/7KcARQpz+VnNGba16oPd8e+66NzislVy1Jz753vCIgibzk8hRPqYbKg9pXi7om/U/XnSzNbXqUyxOkVMFsZk3bxmDvUTJLJkiitNNt5zWpKHHNePhjznX0lggJI4YBSCqOx0NjHfG6k818ZMiQIcPRwnTK3FMRodG53y7pltbGZWP3i1jRsh5TCKSULOhbBEC+owOAkUKecSNFBpOAbCB26rDC9z5/A/zgD2dVQoa5Rdifqs0cHn389G1jpA1ttIp96lw5DSHuq36Yz3727siQ4YRDRkodDWQvxzlHesYYH0d6EqYz3xn73je/A8sOH6XOoWfrZrI77qCJnaoi1fT9GjF7l676zZj+leEPJPS2tbF6Yv8T/pI0pdTEWM2yVy+1uWbebRGFVZQ9i5dhR+qs75HOhWtU1a3Ieup4PJ+UksKvsQu87oIlquS08L2aRRkynBrIQm8yZDhuEIRKScFLFv82L135B7TnegDYNOlyb8nDavOtBjoXLQEpcU0DTwiQEtv2J2uifakwNHfqZ/ywpmh6Vvufo3vg/v8HbnXmZWSYU9QN44wwUIbudjXw+p/Tbm9KYdmQKkOGkxOZp9QRQ/bWPDqojac60mf+Dae9gUlnkopXYV5xHi86+0pyf5fHqXpsfdWrYMfz0NenKnP83wdCm6drT6ycShUd85SagVeACNeUUlIe+SpyqJ9/3X8hNyzcDOV9wKLU7HtyZLJm2byCn4lPeNfW3yWhUXoUhlJHmXYzC4b6aapY7FnYStUDw5sMSjAkVIXAUr2vMPV1CimVKSEznAKQKX5qGTIcfWTv2yQ89Wzajk2rHU6UHSzvY3O5GzsfqoLb++Zx46XXcODuuwHoXLSQbYWu2tMacFIpHSr16Rhwl/UMxdkMH97yI9h1H3zpxtr9ZDg2qGfHGZcuASlKBlGzyhQFHGa1snslwwmK7NZtHBkpNefI7r5jAjHllznHxnkb+eyLPluz3MqZ2LJClcaNwY8HtF+/nPHOfUhPYjRbFM/0Z1ujVfdm4JHlC6UMkFCV40h3LwIYc/I8P9qFyCtPqLQ3dak8bfnBdrHUMHXqpXtRnsS2VrJq92YOLCzi5y3S/lR++J5rRCcHtVIq6imVGZ1nyJAhw9HB8d9+Hm1omx/Pc8AIyeJJZ4Rbdv07rmgi3/42DCt+7lb//vtY/fvh9+1/9C+qIWvsHJuqGfQMeMrYhSVNXjbTyueKsPDcyIKsJT1eIKf6IiTIyJREnUs2t1czvbSYfUMjO8xusQwZThhkpNQcoyYzRYZjiGPQoU1ksjsRlFK5Ja3klrTWLI8ppbzGSTYhBELRPR5xeb7XPB/D8UPnvHIpUr7EOTCBmCwxFQxnFMiFpuuEHfTUdMbq0zT94/BcyYElv4XT/BQVbolvJ/yyHERg7hkqpSL704uyxzzDyYzUx1wTstnNnyHDsYKwfAWU9pRChd270sWRFYQoAtC3rK1uOTKhgILw2U57wnOOR2HPVprbVzLQLHFxU9Zq6AgiO8zeJccetdcg7BcZqGhP1m6HMUfWeErFxFSBon7usvDVvUOy+yfD8YwTYPx3vCEjpY4UYi/L7MY8YkhNCHUMG6rAhdRLLDjxECWg5EyOJxq+hxP7yVv7YoxNI/7fpYlg+dD3nmf87r1I1w+n6y2M019qThTrX9fJ4f0pO53aw2vBmg6Gf7ETQ/lNlfOdlN0cAofd1kao+BsaEsYMAyPomKf4YdUsyZDhVEF292fIcKxhtrfD2BiOoT2l/OVS+iRRW2+Rm//PxbR2N01VRAypYbkpg30B2MMD9JqrGWh2acALfYodpsSEZThmEHVIJgzTl457gjfcAm/A5YlFQKteMz5FMZdX87CNzjNkyHDCITM6z3CC4/hquIIO3gzC3Y5bpJBSjRxOPPteJfab57roBHhuRClV3ecTVKbnh++tbjnIKxc/ydtW3Q9AyQ0l/0MHD8zgIKDQ4mdHtPN+nQ60G8ga02Y/fO/pfA5X+sRYuE6t+VXWlc5wyuFEfpdlOLGRKSICnHPOOTQ1NZHzDDq9Fnpc38zcU+2UaZm09xaDSZiGMJNHOxY+NZvrkimljktE3++acTQMek4bI7+4nUoDEoZIb2rOq5chQ4aTHxkpNcfwskb22CDaBiYHT0dzMBVkiDuBsu9NgZhSSs7EUyrMvie8uMTfdRxM0z83biUS2qfOV5fpE045w2VV6yG25DZwm/tGfuq9MfR/8lIc0sO9p1VI7VyyNCdotXLhblUIgiScMRx0t8S3j5o91/rqZ8hwaiFr4zIcLWREaA2uvfZaPvShD/GbB1dzU+UiCp4O5zt8H8v6JJOI/O/Dq9sWT1VMppQ6niBd2Dyvk7IzHFvuCkFVmnRuGGfl+69i57zEduoz7WqKNN/PDBlOUWRdpsaRhe/NNbKb7ygjTXp+9GsRIPCUOgmUUvi+UlJ6QeezoRmwiNG5m6C9vRgp5cCm78HexyiOHsLhBVgVXzE1WujkFm81Dxhn45kmmDtYpIv30gTjIvbh1119WiqboCM5t2hxhuzhf/TWkc6T9kqwhK1KrlVKndhXM0OGmSE9CD1r5DJkONYQhp74AYwwfM8wGpxrDprM+uF79UiuTCl1EmDc5rn5rcx3x4EiINjU3c2z3d2wB3L7HH599TgVO31zmXY5p7hl/IC/xvC3HS+i+8ltWIVmYDShuW8cs7tHM2TIcCyQkVJHAyc4MXFcIilZSclgfEyQCAs7EbLv1YMwBNKNqJMaCt8TwXmomBD1Q32y/wkuN9YB4B7aCV9/FwAtANYuhOPvZ39xMU+LDQB0So8hmcdTwk5jwtQ7iux1amNNszNP6zVLGXl2ALFjHFsYYUc8Eb4HYKnXYuhpkGIEmnV0MpxyOLHfZRlOXGTv2xQECmDACJVSNEpKzXA3YZfrMMP3MqXUcQWpWCXT8D3IhBDsbw79PCuexZ4D45STpJRimOJXMzA4C8qaLe4sroYDQ7xEKdtHZ21iliHDsUF2x84cWfhehpMCx03XRjXC3vh47PuJCt2pCJRSYvpXhogYnaM7yupVs290L4allFKjA7HtTDEAjh/SV8kVguUd4030HLiEca8XgMlyWIekSedUx9D+omWI65cGywIuU2pT8zqkVEwpJWLbZ8hwMqKeIjLLvpchw3GAxMSc9pQ6rPA9HSJfj2zKPKVOKuirYZvFYJmr+nlNhkpUI70UpVTtfTaNUCqy4vTX/aMDP+DjaxZRcCqxshvcw4ne9c6Q4ZREppSac2SN7NHF9M3g0Wycihs3Unn+eX+/+TyFDRuO3s6PBLRH1ozCEQUh3+2qJSYSD0OKYCJ3ctzjydJilrUN86u9C9g6lmPC9TtBjpWDqp9xz6n2RsqFibIZ7skzeXJRD2Ui/lSxtUOYphGKtgKbKTf4rsP3DBw6KEdIqdrsexkynHIInv2sjctwlJCNLKeGPjflCuTCtqzh8L1kOfGFDW16KnlKSSk5ePAg5XIZ0zSZN2/ezM/1CQGJp0JDLUOC5x/7gc5GttQ4/Of29SP30rH4//C460y/coYMGU4KZKRUhhMcaY1fw/M1c475f/5n9L73PUjPw2xuxojIoE9EaGXUjLLvGZEVA5WRCVQxPIGh3jqb9hk8PrECcy+4ib6pg088+QrxRMcvolzKVVvY3tOKJr8MI8dUyNk5JqSMzSQPj42Qz/t70kqpG7f+GR8r7ORfnQ+r/WVG5xkyZJRshgzHD4RKY5ubKEMrGAK6Fi7m7Be9ZGblzPC5jqqTTyWl1MMPP8x3v/vd4Pvll1/OtddeewxrNLeIRse5IkJKAUiPH18EDy8xWLOrnbbRyH0Ty9qnFmU9pAwZMswCGSk1x8i1e1z9i99lb3M3Yvmxrs3Ji5pu1HEyXhJCYPX0HOtqzBmS4XuNyaYFQnVLZEwp5auRFvUd5KndBxmq+oqyJCEF4Fi+VlxIieNqZZQOnYuQRKonVSRPpXglrXVIQMP06xSbp42G5qli2yv7ADit/JBaqdbo/ATqS2fIMLfI7v0MRxvZC7cG9oIFOAMuhXlnA7Bkw2mc9843NV5Avdj32E86615t6Pqp5Cl18ODB2Pf+/v5jVJM5RsRXs41R5jNEvyal9D0iwTEFj68wOHfreuDpgMUyxCzUcnOGE+f+yXDqIrtLG8fJqD09pqgsXMhfXvAGPrvxlZGlxwljchIiVNFkj/2RgM7wgzdTvwp1XaQvvRZK+WR4gtyLf5M3v/JxOnJxTylhNHPh6hJX9G3BaW/xl1WqUNbceS0ppdFEHit/RszzKllTIUSNhs6y/HpJIbA87S/lwxV6v7Wi9MxXJ8OpgOiYU0Tu/gwZjgqyrtOUKKyfF/vedNqCGW0vA7Ipskw/8A2STbMK3ztBlVIaTU2+Ifjsjv34hS1KvFt+gZu9b+GqsEQr6F6Hx2pK3Wfyr117cSz4Ldm/OtET/WTIkOHoIlNKzTHctjZ+tehsRP5Y1+Tkhqk5D5EmPs8awrlDQinVaPieoR4AWVKbqcx5Esrti+G6j1H9yruAwciGLbTaY5zTvZufu/76QnpI4kopMcuOrDBCUkorpsK7R9Du+rm1tYzd1fvNjM4zZKAeKZwhQ4aji46Xr6L1yiVIKRGmwGyZOnS9PqY2rE5bTeCLrKSYC6XUiQN9rKYKmzzZSKm8GOXLW87hUKUYXGsr6Gh7JJPfScNFuGCa4XnQbcOJeYUzZJhbnKCvumOKTCmV4YREa1F5COnsbtk46YhAK6UqpUn/eyPhewiESi+sYUSUUtqQ1bLG4tsZRT7bCucvW8wuobIXSp8oiiK9I9xAvWLF6B52OLfXOQoLBsIht6OVUpmnVIZTDFlnKkOG4x9mWw6rPT8rQupwcvQFBPUp5Cl1spJS+mpU3apPSCm0j5coWA1kY4xczxPnambIkOF4RKaUmmPMrpHOMFNogsFAcnJ0DY5PtPfO58D480Hnsa23b/qNBJi5hbilZ/G7KSY2bVQYwJCC4f37+J9//DeGx4dimxnmfE577uU0dT3GPWu+zaLO+SytWHSYL1blHk5HGIyIUipMJBaG7L3rfwFcvJsFmODq12PmKZUhQ5Z9L8OxQ3bLzT3q5YiJhqwboZoYwJ8mErjIGbfFt912G0888QTwFvKUeeWBfrbu28zmzZsB6O7u5iUveckxy2o3NjbGI488QrVaxbZtzjnnHFpaWmLr6LqdLKSUvtT6SuYNh6uf3IaoCJ5bvET9mHKsKfePvh2Cn2Y4u5G6djZBkiHDKYOMlJpjpMues7fqsUR2+mePm//44+x7zu8wtvb00r1oybTbCAFWYTnCOB2PUQzayB+6g3EDDA+23XUP2x97OFj/ucXjGPlz2TBwMUIKVg9s5Ger/4tnOp5h2FjJqkNByer/xjqDNZ5ShvA7TakZsCOzfaMmdESVUrX7y8ZIGU5ZZIxshqOFrPE+YggnaGZ/jhshZjxP8vTdexkfKnP3Q/fguFWgA4CnnnmOO+59MCC3tm7dysaNG1m4cOGs63Q4uPPOO7n77ruD7xMTE1x33XXAyauUCqF9QyWWlHi+5t3/SXp1+jyZUipDhgxzg4yUynBio24rmHVoDxeF5haWn71xRtsIIUBKhMgjkAhymJ4EAwwpGD1wAIBcu8F3Nuyhs3ke7x38Ml357/Hzvf/q/+YWcGSVromoeWvC02aGnemoUipEyg2k3oqBp1RmdJ4hw4xTx2fIcCrDdTyeuH03kyMVrJzJhssW0Nx+HJmN1ms/U5o3vbqQUimlGlMt7312iJ//59MAOH0uGLCcHWxjKZOlUlBGoVCgVCrhuu5Mj2TOMDnp2xSYponrusF3CI91OqVUf38/+/fvB6Cvr4++PqUur5bg6e9DaRgK7bDh5WAdR/dDCoQIw/ca6fEk16nNkt14G1I3YHAGTVE2h5LhWCOLoGocGSmV4YREzQDpxMwyfHJCEDFFVV5SSm1keIJHtz/APGz2so/9XWVaR6tcPlkCSvxCVJAyR94p8mub3klbuSdR8Oxf8CJGSsUzD8nIDeSpyAE3RSmlZ5WzWyzDqYqMkM2QYXpsf2KAX/33s8H30kSVy1+95hjWKA7dGoqY0kXGPtMgkWHCjwba4tJENbpTANrw/SQnJkvBT01NTZQiJNWRwtjYGD//+c+ZnJwkn89z5ZVX0tHRAYTHk8/nmZiYSCXI6imlKpUKn/vc56hW/WO2LIsPfOAD5PN5eOS/4AfvD1d+2Sfh/LfM7cHNAp6ZZ3LhCg6YZRhQlyi4BFopFb0m8T6QTFNKZYPwDBkyzAIZKTXHsNWg1cicjjKcovCJG93h9TtwpurACQk4LmAzXlAd4IrH7smPkzMdyoZFzoWlpffRVi76nRv1TFmiTBUa7vAkwxJEPaVUNHxP/elppdToftj1ACw4J/OUynAKI/OUynCMcAK+cCuTTt3vxxrJbGrxH6f+yZNGpB2c/rrEo9/99W18sieqTDpaXk1PPvkkDz74YPC9vb2dq666yq+dOh7Lsmrq4nj+9RuqDE1Zz8nJyYCQAnAcJyC/GD8YX3m8/7CPZS5QaenDae+mVNoN+G/5JCfleW7klqhDWKrzN62SaTbPc9omdYo5nLDUDBnmAtkdOHNkpNQcY1XRBqCVkcjS7NY8YmhonJSd/6OJeF/A72iaasLRkALb8ZdtWuovsxyTilyP9PJ45hi4ebpHfUKoeXwPX7jorxlusXjbraf7G9Tr0NS51Kl9FL3MtoNFB5uWA5uCmWSe/bH/b+ObEOs/OPUOMmQ4SZBuOJu9RzMcXRzvA8vxoUHu+MoXmRwbxTBMzr3hZSw942ygtpk6/ni1eud26t/Kbi74tRECKY24yvnTS0yUygDYth2qkI/wiYqSRsnv9Xyjnh30VW87xnfQSy/larmmbL2+Pp5KpRKWkfSmTDMPPybwz3tT1aCMes0nLoHnhdo5IdXPgf99mlKq9rcjgePukcqQIcNhISOl5hp6puAYV+NURnbujzHi+m8ATM9npQwPLFdl8TE8ukYkSwb7EIq8qhQkhQq0TPrr5CojFKowTBhmIEf3+oU6ZQSNezJEPaWksBGUgnp669exc/8ZHJh3HeWDOe7N3w0Le6DlPBjeBWP74dCWTCuSIUOGDBkA2HzPr3jyl7cF38sT4wEpVTuyPz5bDYGIRGlNHb7XalcivzVOIMmU47bxVUcjo34Yn23bgVIqqIOUfPzej7N50E+0Mr84nz+77M9ospoaPbQYym6ZvWN7OTR5KLY8egxJUioavldy/FBDT0VBOG6t8k0TUIZhBCTblKSUd+y8s+Lw62k7ZuSb/iWgH2vWn/r7LPvgU2x0fD41GTJkOBI44nlXP/OZz7B8+XIKhQIXXXQR991335TrXnXVVQghav699KUvDdZ585vfXPP7DTfccKQPI8PxBpH8I6OijheIlKk2U3tKSUGLUwDgstFz+NKuf+L98rcRo/sZ/+UnmL/Pl7QvPpQDwK6OY+m+m77Ejt85pjpR3wwz8d20DYSZfp9ICfvnXclw+ypKzhIeGP91PNECv/UzuOETkWNT69fZb4YMGTJkmEMcfzIjAJyK3xZZtt9euTHVTXzd4+4IRCP51MIvBcs/tqI1gXGYpFReKKWU8pTK5XI1JM6O0R18/Zmv8/CBh3n4wMP8cNsPeWDfA9PuLw2u53LTd2/i5d9+OV966kux36JqqHrhe/o3T/jLvBSlU5SU0iTbyMAErusdt0opU2VCbLNb1JJIiuKIpZSsmZKbOm1M1hvPkCHDbHBElVJf//rXed/73sdnP/tZLrroIj75yU9y/fXX88wzz4QZKSL41re+RUU18gADAwOcffbZ3HzzzbH1brjhBr7whS8E3/P54zuDRYYjgazZO14hBNieLwUPlkVIKcepYvz/7L13nB1Xff7/PjNzy95t0u5Ku6pWsSzLvRtjY5odA6HYlNjkS4lD4JvvLyQBUgglpIeEBGJCAk6hJvRmwIANGNu4F9lyU7F63V1tL7fPzPn9MedMuXf27q60kqXVPK+XtPfOnDlzZubcOec85/k8B4Oc1Y4pvNk5++BjuCO7KeRWRPLKFQ+T0hOSqsdjpxdENzCzMA8hBC0dWZyhEkFvS2clcczoe8Qtp6jFbLw0EiRIkCDB/IVPYqTT2NUKsgHRcMK2GTFtZwO+SqcAZkhKRZJ4X84Qe+mXC5lceS0ileWiiy7ivvvui+RZcbyxQEuqhcW5xewa20XJKXEkKNpF9o7vjd0XRzw1MjOXekW6GLJNpxfCoDRZBQN+9JlN9Czp4zcuk9Feq3xhlVLFp55i/M6f0UwzBa9AABihOUVfKRVe7KWm7x0xOq+J35tt+G0jh4XgHCfo7yhBgimQ1NiZ45gqpT71qU/x7ne/m5tvvpmzzjqLW2+9lVwuxxe+8IXY9B0dHfT09Pj/fv7zn5PL5epIqUwmE0m3cOHCY3kZs0Ls+/IE90WYH4hbw1j9SW7/cYUQgpxrRraZoc6dpZa32+zu4ReH/pdv7v9XHqv8CoC1O7/vJXKH2bDly6zaeydn7ZN0j8gQjxTkPX3nuaZsRnTVPV1vpATXqCGlqjUqPBladWh2p02Q4KRFMAhIXqQJjjdO7DonNQmhSIxIw1DbSJxwjcbU91ZOM+GjlVKPPPIIjzzySOwqdRpuDHmTpcIbuZN3vPFVvP3tb+fss8+u85TSSqSMmWFRbhEQEFWzhRMigESNw3uj8L1GSqniZJG//uu/5mtf+1qwzw/Vw3eSl0gG909SqdbcxxdYKdX75x9j+AtfwHS8sjtSzf6Fn7c/C+c2NsbXyfwFbk4AnBCFSJAgwWxwzEipSqXCxo0bueaaa4KTGQbXXHMNDz300Izy+PznP89NN91Ec3NzZPs999zD4sWLWb9+Pf/v//0/hoaG5rTsc4MTrgcyLxG3npqP5BG8IBCGwKwJkzNjOqanHxigOrKL8Uw/hvTm6lYc+CUvfugjNE3+iCX9j2JIm7ff7fLP/12Z9fNsaNbs7wyTUlFllHQlY4f7Q53WegF7ggQJEiQ4NaFJKUORGGEyp1bRccIJPPymMDxFI/WHuoQ+aYRLSnrXu2nTJn7605+ya9euqc8TO1FbvzO8+t7evXs5sPsAPYUemqvNpA0vPHIqUqqUn6QwPka1FK+kCj+LWqVPo/C9MNmm901ak5SMkn/s888/75ulB+F7pk9KpbLedd1+/7n8eORDDFZPUxlOQ0pNHoYf/SF8653wg/d63pZzCDefB8C2AvIMQIh6RzH//kn/v9gOVv2jPgpmqOYH07CvnyDBCYgTfaGOExHHLHxvcHAQx3Ho7u6ObO/u7mbr1q3THv/oo4/y7LPP8vnPfz6y/VWvehVvfOMbWb16NTt37uTDH/4wr371q3nooYf82Y1alMtlyuUgmGh8fDw23dwgeXG+EAjP4sxWPZNg7mGYQMgH1JAupitxjEB19KZ7B70uy/YgXWVBO9mRETLhZZUNsGKWlT4i1HmRBXlqpZSUEtfez8jmh/jv3/8JV73iEi6vOSypYgnmM5LOVIITCyfmG9cP11KESiPm6UQLOzqaQf5V1Q1sN3vp7ZxkbGyMYrE4ZdqIUqqWCAuTReqd8/jjj7Njxw4AruRK3MMuE4snAKi60ZXzAB7+7jd44Fv/C4BhWtzwp3/OqgsujqRxGoTKua6LK10MYcxIKWUbNj9d8VP+9cp/5e6v3R1J55NSQvjX2NqZYWIS+obbgctoNQe5OvVfMN3Khc9+FzZ+Kfi+4DR46Z80PuYIUE1F3/XhdWr8dkDWa6Bk9IjItpgF/GaNuvxPrJ9PggQJjgFO2NX3Pv/5z3Puuedy2WWXRbbfdNNN/udzzz2X8847j7Vr13LPPffwyle+Mjavj3/84/zVX/3VMS1vguOLQLESN3iqab2S8dVxRy41SrayAFuCVRykY2QrmZYUhYynRrJct+6xGGespW/FWlbd9TOsqjcjOpHKUs6W6JoI0sX2TWbYYdHhe7UHSgk2ZVx7ABijOvlDP8X9v3ycyzegwvfw0ydIcEoiqfwJjhdOcHJUExW1K8d5n2sTH69SzQxxQbnFAZfv/OPjjI23QEvN5K0IQt+7ZTsL7GYeWnSQsbGxWO+l4EQSKd2IimxfyuRLHZ0UH/0bstmFvPu8d/sEyMjICACZpgzFYhFDGqTtqZVSB7Y+5392HZveHc/XkVJuA0+k27bfhvy7Ps4V6ym5owCYIlBt1V0OEtdwSTeng/xVOq2s8khK7zyXvm4VVrGdnT/9JTsPdeNINeyaTilVrSH6qoXG6Y8aMaF34fC92n21aThWTcMJ9sNJkCDBMcMxC9/r6urCNE36+/sj2/v7++np6Wl4bD6f5xvf+Abvete7pj3PmjVr6Orq8mdW4vChD32IsbEx/9/+/ftndhFHgOT1eXwRdDBmYpGY4HhhPLOZbPH7nJZ5houf+Fta8r0smgg6VQvzJfIrlrFt0SJ+8Jrf5NHP/wTjv75Oub0dAFn1OneuMEIquJrnKWK2TYeYkAXvhJJi/qtUJv4H6fRGdq1ZF5ivB2Ro8ktPcGqh7jeTIMEpDhkO16KxGupEU0oFhF/wux7bWaV/9ziOEx91ANG2T5NxjTyl+nc9TXn0M5RHP+1vuy2X4actzdzT9wh37LmDr2/9up+XbXsS6xXrV1Ax1eqGhkfklJ0ytdD3Nd2UU99jVsULk1I15khtdjOXTJ5FZsLErXjXUR7xznu4d4j/+Idv8uQDW+uen0uQZ71SyvDl+0ZKMlDdyUD6APmW3Uz4qrppjM6P9Wp9U9XHuLA8OfXOiNF5bara5A1I5ql+HY1/NTP4TZ1ov7sECRJMiWOmlEqn01x88cXcddddXH/99YD3wr7rrrt473vf2/DYb3/725TLZd72trdNe54DBw4wNDTEkiVLpkyTyWRe4BX6ks78nKPhDGpyv19oCMugr7ib3uJuRs/awMo9+2iaSFHMLiF3epp9Sw2GOjr5ysSZjBit8KPNLGq2+HulkMoqbwjHECFSStb8DZ9Q/4kTlQcwst4rzxDgAobQg4kgjbSjHnXZpgxUvfMmRucJEiRIcPLi0PNb+fl/foaKamN61pzOa9/3wSAEbxbQBEis0Xld4llnf0zh2yuG+lK6HWxuKjLoJ4z8IV/q9787qMmjBkqpgT1PA1ECpqxudbPVRN4uUrJLfjkCtZHwCbCU8BTWW4e38ljfY1zcfbFH/IBP1hjKByqO/HOLw1OWryPTCcBEpoiwBDhQGvHytGWZ3tIWfnLXbuiuP9YwDC/8r4aUEqHwvS1btrBp0ybvgJY82+0ZKqXqSKnZr9YnpcQeKoHjIrIWVnuDcZCuyxBil4LV9yTTW2Mkk3UJEtQj4UVnjmMavveBD3yAd77znVxyySVcdtll3HLLLeTzeW6++WYA3vGOd7Bs2TI+/vGPR477/Oc/z/XXX09nZ2dk++TkJH/1V3/Fm970Jnp6eti5cyd/+qd/yumnn8511113LC9l1jjBVecJEhxTXPiq12NXKozs28fW089ky5kb+HL5UgBuzDxJk7AZtA2PkFIYyNs8vmeM5UDTmKeqsg0Tt2barSim7pzFh3MGWPD6tYw92gvfUzlKj8aKdKprel6Bz7kM+mgNz5IgwfyBlNH2LBl4JDjemEuV0fMP38fg/r3+9/GBfsYHB2hfHMM6TFcuXymlwvfCv40T3ei8AQzLrtvWnMkC4ChfJyHhnoP3sIIVHM4frkvfv2sHj/3oewzue8ZLb3b5+xztt2Q1k7eL2K7tk1JaKYUI7mfW9M59x547uGPPHXz65Z/mFStfAXgLkkDoGcQQZO7T3/I/BxNL3iSTpSamKlYVaXikVCvtjE2chtVeYdztxXYrfnopgtUBNSmlibQ4pdTY2BgAFgIbiR0ieuKwa9cufvjDH1LNF7D4bX6duzmD3UdUgcbv2MPEvYFBesf/2UDu3K7YtPq+ODII1GuggVL9JBGbSpd1Sm/CmGuZ3ZBp+tTJECxBgpMPx5SUuvHGGxkYGOBjH/sYfX19XHDBBdxxxx2++fm+ffv8hkRj27Zt3H///fzsZz+ry880TZ5++mm+/OUvMzo6ytKlS/m1X/s1/uZv/uYFVkKFcRL1POYRwjxC8gReeKy/4irWX3EVP/qj9zIkpbciHw4OJtIF4VZIGZ7cPoVN1oQJx6JXLAAgq7wjZCh8Tz/X0hHMaGukepppeeVp8L2aZaFD4Qe1BrDRlXv0xiMuQoIEJymSbn6C44xjMLvn2N67/uyXXcO2B+/DrpRjiYyZoNZTiogxdnzaExvaV6i+rKs6unHv+Bm7LlwfSu2lOzR+qC7947d/n20P/sr/bqYW+Z8d9VgzpufLFCal/FDAUDP/0uUvZR/7eG7oOYZLw/TmgxB7/xnoFRDjSKnSWP2VComQAkOdyBHhED9ozp/GihUuT4z2egTSeC+wNHLt4RUDw3+FCDylCgVvgi1nGow7TnBnXQcpJX19fVQqXn+no6ODLVu2MDo6qhK18xzrPFLKnb1SqtKbj3yv9uVhClJKP8uIL5r/YWZ1VydLFspIkCDpMR0JjrnR+Xvf+94pw/Xuueeeum3r16+fsvFuamrizjvvnMviJThpEbj7AP7sVXhPIld74WGZFka1jJtpwsLFwaSnNEl1/xYmVnnKqaywSUsXsKgo74jFxVEAXLOelNq5oIN//ofP8d6ffhUmtJdczLOe4vFHq4Wa9XTsum3134JP2wsl9hbLrMymkw5YgnmHpEYnmK+QanDfvqg7IDIahFKV8lVu+9STTI544X5nvngJV715XSQvHb7XMHrvBOOk5Cx/5MIwWFAok023AGAgWNK6BPJQskt16W1FtHSvuYTh/uUYVh7wTMw1vZI2vLC8qlut85RCBP26FS0r+Ow1n+XD932YH+36EXYlD999N0z0MtHnAgYjlVFSwGRlsq4srhu079pTSgoJMvju4vrn09usCU9RJwFpl9SqclGllC7zD37wAw4c8FRJ4dX3tFIqLfR5A6XUxo0buf322/2ypVIpzjzzTO+zAVVX3QiVftbQhF3Owi3Y4IZ7M/EVMmp0XhO+N83qe0eLxjmdYD+gBAkSzDmOmdH5qYrYjkcyaE1wisI0TJr2bmNR715SSv20x+zic6vew/9yIQAZbNKeaROHmxZGjndD4Xv6V2QgGWlfwN3nXl7fiZnBT00IUfebdCNGrdEZyTBJvq/kXcMvhye4/OEtfGJ33/QnTJAgQYIEJwS0UsowTX811kYqpv7d4wwdnKRcsCkXbLY+FFLp6NAx31Oq0ep7J9ageqYLF9ROuhih41KmRyqVqqW6eyhcwbq2i1nffAlntJ5O2gzmwHWbno1RSvn5hML39DZ9vurgdnjmW7DnPvodjxArut7fHSP1ix7pkMPwdbtKGRVWSgXKIO+PSXBcXZ7SwVTP/cCBAzz55JMMDAwAkGtqQbjevpLyLmvSqir/HC6Dg55zVzbrhSdWq1UmJz1STS8UHJRp9kop/2BTK/ka1MFp6qcEkCGfL2pIttDphJ/XCz/2OcF+dgkSJGiAY66UOlURJ39OMHcI2sFGq+/ptC98w3iqwrIsDMcmPTmG1VwFE37IBn+/kC6rrBEGXS+U79muNWxduIJV431IBI+vOYeL9t3tpVXHLCp4nbaqZVE/ezaD313YFkF1sarl8ExvjZ9GyFNq03h0WeZnJ2uWbU6QYN4jadsSHGfM4cjSVzcZhgqzCsilODyx11P3lJFkEJQrATngxqy+J6Xk8J5dDB/cjWsPIsxFCHEC9ghjXKsDAqRRf8q7VoEg52YpUOKx3se48utX8rlrP8f5i84HYGG5i9WdG2ASljSBEF0cwiNtUvlVvKT/MhZlOmitnoPROlbXT0sPQJPr2XL4pJRWVikiilQzrm7QDR3+V++HVS6Wee0DPeRKJm5nC7I9ILy0KsrBCUzd1Y2wDNuboxKBX2WYKNNKKU08tbe386pXvQoj38YdmzbS0tzK6gu6yGazGE89xf5KJXSPA4P0yy67jEceeYRyuexfq6DGs+lIlFKqXgtzevLVD92MW33PDZmgKzQjyAOIQNvgyqnzmA5T9uSS/nuCkx4n3Nv/hEVCSiVIkOCYQc8kVlyHFmeSURb4+15VeIy1Q0+z/MqXcW9qPXt2FqiYKd7/0j/007xoVYkLv+qRUvq9nlKqpqqZot6QM/wpvjOjZ8fDyauVECkla5VS/if6K9GZ06SpSXDKIBkcJDjeOAZ1TqtiDdMMqXOmHvDvGpgki/JBkuA4YTWUGoSHfA633H8PP/23T/rfU7lXY2Y2HBGnEEZ+dIRKqYhpWrR2LZqDybbZxu956fWqd4YwWL2/i+esA3RU29lS3cJjfY/5pJThmJHD00bwvaP3BpYXVgOwmLPoz25FrIyWp32bQYfZzphRoHfH8zz1na+SGdrOFeUOKu2qvc60BG2wLy0Knk8pP8nOxx9h86ZxusY8gqvkGFQJQgNF0SOxPKWUOlaTUiGlVO0iKuHwPU1Ktba2smHDBnZtGsCyW+jJLON1r7sYgAee2eTlo7NxHd8/yzCMOqVY3aIqR+Ap5edlaaVUXKoG9UCoSq9s3qP9K0WahUipqg4X1P2yF7LJSJqrBAlOOiSk1BwjWZnoxEHyJF54mEqyX3IdLh3dSIUMMtdM+2Qv64aeAqfK8gVtnL90JXfs3Bo5trstw7VrRLD6Xk0no2oGndzZPGuvo+RllhImZcA0DV8fVTtAkcURaPI+/9265fzxtv0szaQ4VK76M4MJEsxXJDU8wXxChJTSK7Y1eI/7Qlk1Po8squIGeXnfXUb7eqPHu8pk+yjaiu2PPcQPP/n3fh6X3/AbXHXTO444PyB20F4eO0x57C4cE1i4LjadI2wOFXbQmVkGqgnekFrHQ/JRKoUK+Xye5ubm+tOFGArD8cLVyi1jZCbbEVWjbtEjUvgkyjO//Blj2zdjAOtpxd6jDLzNdMDyaFLHqUK1CKkmHvr213jipz/0sxxcUKZFfTZtpXgaL3ncStlGqnZee55XDoyBXpTRP4/3xyUgpcrlslfklKfkCsjK4HIMX2ml8wtW7TPDfRlfKaW+H5VSSp9cF3p6pVT8Ltev/9H0UVJK87XGMW41kvmRBCcDkno6eySk1HFBUjMTnJpYuriHpieqVFImq/L7uWbXrRi/8WY233+PnybXvpD/86KVWIZgomzT3pTipktX0JyxeGrz3Ryo+fkYqtNWtVJ155tJkIQIaah0o2GmwiepUUoNbocVgJS8bWknr+xs5d7hCd63dX8yYE9wCiKp9QmOM6aocvs3DzM2WMQwBKvO6yLXlp42K9cnkqxAndJo9T11bp1Ck1Ku4+AoU24jZHReT3DJRpcwIxzevTNCavXvqvdNmjXiSKmR/Uh3DGm0TJm+vWkR9x96GCtVpHnRWZCC8ojNDaM3cHjPYf7pp//ExRdfTEetx1RohCakd7/s9nEyk+24UtYpvyoLwRjyttlVpVhS7t/6vmOGnrd6MLL3afjEWnjXzxjuVeGC6TZGMhn2rtzP2f0hgsYg6AS4Lv5TUmRRac8IdGufS0VgxoTv6dXzfFLKrb9mQzFd+q44joOjpsLMiGqvNgTu6I3O/fC9MCklY5NC2MlAK6Vkff0NiheQUrZWSh2v0XgyKZggwbxCQkolOMmREH4nMhat38DLb/mM/93s7GTZ236bZRvOwbGrpJtynPGiK0llUrz76jV1xwtEIHfXs3A+KdX49TVlzYhMyHp52WqmE+JCOaIFWJJJH79OV4IELwCS6p3ghECDejjSl+eH/7rJ/376JYu57nfOmTZL11E+UGZ9yFQc9K7wghv3f/0rPPKDb/s7XU2SSC/UKXK8JjEaqlSmK7NHkmRbWilNTkzjDXQ08PJtbl2u1smrR9rMkGm9kbUXdrL/+e8CBgVRiaTZs2cPHVp2pBAhnaQKATQ0wRPj/WmBrgDae0lkUshq2VcYYWVCB7iAiZQCqnk4uJGRPs9/UlqX0mWdz2jhpyDyofSQz5p8Xt7FMrcNSSp8G7BCq/bVhu850vFJqZ07d3rpVZ8kTCwVnxti5HvbWVA4HzIPAfCz3tN5ZssgxWW/grYOKsXAq3IulVJ+NdHhew3qjT+hp4riCCMIIZTaUyosl9Jkawwp5Wc6dw1JjAVaggQJ5hkSUirByQlRw1TEJTk+JUnQAC0vexmrvvkN7BGvi5vdcBaphR2cd82rZpiDqPNc1Z2nqpkKbZs5vM6v9jyoUi3chVPZGUoRmHpGhhhO0PHWna6jGGckSJAgQYIjRHGiUvO9yuTIMI/94DuUiwWyzS1cfsNv0NTaFknnKiNswzDBmH6wHqd02vnEo5FjRvv7/LS15JMgIF6OFJqUMmtIj6PD1K2mYU6tOPPJC2Fw7W+9kSfve4yxXQMszaym3FRmo72HfDlPyY7mH57IOTfVSkUYbFO3P1/O8/N9T7KUpX4aaYWIGa1kU4q0vFNhV8pilZkK7qt+lDoDuxyEaiqVkiXTaNal6k5ikQXDRAo4bORZqDwvOxAsaTKoWuH7UG903tLSwsDAABMTEwC0tbX5+7xbJChuHsLNVzHUcEsK2DHRGclzcmigjiA1hA6PM72LOgJPqVqlVLynFJHrAnimczU/XXUFNxob1UFRry0IrbAXeq6BUmqKkxwFSRVX4xOhVIIE8wsJKZUgQYJjBiEETeeff1R5+J5SmkiaoVJq6jKFM5/EKW+P7A/PckqJN/MKMLo/yEOnTUKZEiRIkGBOse/Zp3HtKsPjI5RymbpQMIgbkEqe/eXPIh5C7d09XHjdayOp4o3Op3+Pu6F2w6lGF7zQRJd0Zb3SdgYTaNOeW5dZt3lH65pOtO2aalEQCCmYAtmM/2fVuRew6twL+O4H/pKznOVsYx8AY4UxJsYMaA1nFHw8I53DTBvkzTa1Hh8MWUM+KSWkoDnX5JerYqTIrzoTYVrIhQ6HSlt4w9qlvMktIcggDRNhmbgpM1AW2aXA88tQ6jgZeDfZTp6WHQfp6TiPHYstXCRjtuf/lRMGKzMmg4vOAPrVdUc9r1zpcv3117N9+3aklFiWxYYN3srCQfgewcyVCFRXrmLQrGwWG3BD9alOKSUMNTt2BKRU7ep7DWbRNNkokNy14hLuXnERN7kbvW3Sqy1GpJ4E5KRGrVKqUb2KL0N9+iP/1STT0glODCTk6cyRkFJzjaT2HVfMttFLcHLBEHFKKQ+VMCk1i2oghAjZNHgdPSudximVkIaB63jyfr//llamrSEpv571TZRSCU45JG1cgmOMH//rJyiMjXpf1i3H6dvv+037iLFuqlbKkU3VUola6He+ME2E0Ebn03tKhdsh39NIf1ekkUTWEVxCex0dBY+kSa9AKXXkeWlEVqGtuZmNmlOfmwo1flKRHpZi7ixpkXYzkeNSmfrhRnpiCKcyyOWLL+EXC77MweaDfMW8BbEtz1Cr45cjn8rgpoP8lpWW8Rh72SoczjTSTK47DwyTfCekim3Ac2CXg+cqtILH8C9OIDCkJO0GCqh+MUQ77YwpZZZphMscVUq50qW9vZ1LLrmk7rqCiS3h3ycjFH9mW1mk62IoX0zXtn3yzw9V9E97NJ5S6q+pV98Le0rVmkoFf2WNoilIGg7B1Pc2zuh8mmLNpAIn7UyCBKccElJqjhH7Hk0MOuYcDTtNNc8guf0nN+pIKe3joWcQp0Djx65JJa9jlW7K0TTcz1DLwrqUsnnRlHkn3aYE8x3eACJ5iSY4fuhauYrSxATjB/ZRsqtMVmLIpZjjZqR4Up5Snrm0Oq7B7ILeE6YE6pRSdlUX4JgMpoPwPb2629ErpcLIOplGkV1AoJiKDUdUpIfpqr/SZCBbZp8xyHK3EwNBU0va9yvSb5PC/meoFndRPPBSWAD5VJ4FRgsVqjjGpJ+9VMSHcGykadEh1ep9AkyjHccIFFCu0c2WwstZMeHiOlUqCxfj5MoIsQ9DmnRlV9JLkZcb13DOqhWMMcFmNiKBjFJSjTsSzCi5ki2sxkkVgwmtqVr/w1uR/b3qnhGolUId09E1F4B0yapNzdvSOKkKiLBSqsaz6QjC92StUqqRd1qofEbLFsxcB3JSX6wdY3SutoRCPas+AXf07UWth1eCBCcbEtHE7DEdoZ0gwUmM5IVw0kNEwybCqJ3NOxI4qqOXymbpzI/yyuf21J/H743FhJAcdQkSJDg5kHSwEhwvvOWjf8vb//HTrOlYDEzB89RslJK6VfTC3wvjY2y688eMD3oBY1Gl1PRv8qhSKkpKaeWUx0nVzooFHkRHilpSai4aHonEVSFhLdWmaVIHCEipUCEU6ZGyA7Jmd3uBn6WfYq+h7ndcXkKtwlce87cVSp5S+ZHDjwXpFOkkalRERSSWE1VkSZHhl+N/wG1fXUjBdSj3rKTQ5pBv3YNpQs5sVXkITGGSFd61u0KSm/TqQ7W4WaUJFHFCRlf7deOIwQMb4bOXIx/wFncRwzuQSj5kCskqZxGGrkjCoKQ8zbI0+aFxUnlX+t0brUQ6CqVU4Ck1vQerAMz252ha8SUcTUS6DhIvrNJH0wLvb3aBv8mpMzqffZETJEhw6iIhpY4RRLJUxHFB0ubNd9SH7wU98qN5+loq73XK05kmpBBk7PrZyDhOKgjfS37nCeYfEgIqwYmARt59M3nzhomT+7/+Ze76wucYH/A8glKZrB/C1jh8L8jDVWetDd9zVbshpVtHjAVm3TMo8BSoNzo/eqWUMAQbh35Of+GAv202rVm4CCLlDSVSEw7Z/gNUqsOkHO/KC6Icc7QK8zMzKi8HA4MWJ0f/mGcav7ew13/uhuGpcfTKu/rkZepVnK4F+ea9jLWbSDM6xBGh8L1H7Af4+cGvsHfxrnACL3vpkY5O5HitXArC9+owvFOlUcfZhZCnlMs11fO4oXoVmd494LogJc0yQ4eT9a9jYsjLo8/11IHlowrf02qmmPC9KZIK6RGwwrApdp7plaHtNMK/RgCRq1eV162+dwIg6aIlSHDyIAnfSzCP4BLbHCbjq5ManiIqbMoah/qtjYRUsurNxhZL4wC0dnXFkF86cd2HpEolOGWRmPsnOF5oaEQet6mGEMqPjlAYGyXb2kph3FPj9Kxdx4qzz2PFWecEKpQZDNYRQQ+jVinVsWw5Qwf2eX48UyilQOI6Drs3PU5xfJyWhR2cdv5FgZF4A9QanTcKN5wNdk08xWipAAt6dBHV31hdk/pfE0OSvl1jPPergwh7pbfPNEkP92NUKrQtehlDZsUn8upzCjybpGvzp70389LRi/00p3eswykBBXD0irg6K9tTE5XDebs2GBYYBoXWvRRaBNmB2th/4V+bLSsMV/pZuSoLT3u7nUzOuz6RA8AQplcBhKjzhXAHtsJ67/P3tn+Pf3z0H6k6ZVpWLuODO1PqOt3gWYlA5ZUeHSQ9Osg7z3sZpYnLqcpxP98R0yRrQwmHNDBoHLlSqlIoYCA4sO05OlkczaLuNxXUU/82N3UBMLbmdUjxmZrJivo6Up1u9b2jgE+JJSxTggTzFgkpNeeINZU67qWY96g1YnyBipHg2MIwzJjwPTVjGdou6j40hlvJR74vPWMDvXfGp42rW7rTNbfOHgkSnMhI2rEExxf+IHgGpJSU9Sbjm+68nU133s6i01bTvLADgPOvfQ3nvPxaL3+f9JrJm1zgKiNzVymlrv/Tj7HnqY2sveRFfPfv/twbztcanfvlgx2PPcSP/uUf/H03/uU/sHzDOdOeuU4pdax7POG2taavFQ7fe/B7O+jdMUaPtQxaQDa1AGBI4XM42qsoTGhIKRFCYCpS0M0PcsHEy/39w+YYi9etYLxQYrQwiYtePS+qkp7E9T8Lt0K6/wD2wjacbAcISXO2k7AbmUmglGopeL5UZsiPynANpOH4SidDeB6WUgj/nvtKqfFe/7i79t1FwfYMs0ZMk52pNCZg4IYIT6f21iKWXwZblDIpdIfD6Vz96Qg8pYrj4zSb7YwO9NLZuhjpzCwP3beaiRJcInGkpL9cpaw9pTQPNwcWC41zaBCOmDRXCU4QJOPTmSMhpeYYSeU7gZA0SvMCtcF6gQHo3Dzgm//lP7AyaQ7921/Hn7+BUiqZtEuQIEGCYwOfNIrZF0vMTPFCHti7GyulQsDMgIRoqMSqzVJK3PxPqdgD/r5l689i7cWX0b9rh59mak8pfD8rjcnhoSnPG0bt6ntzsuxr7KhdEUiFEhD1UKLG6PzQjjHfL0k0eaSR9mgUMiChNOEXVnc50sEQRnAGt0qL46mTPrHwJ5y2/8Vkv9TD6IKnIROQJGFz7ayZpeSU/MvQCiQzPUkx04kUkqW50xhin3/eHFm/3pgyRKAJ4ZGahiL/xLi6ZNMjpUL3RuNLI5v4yU/exts2vA1brcy70Mwy4pRwpYmpj/GVUg512bR0A4eRqcAs3PeB0l+PJv5T5aW9w6TTKA9NHoZ9PGtJ4RB1Fqo/r3tiO0+MF/zvc6mUmlLBniBBgnmHEyn0N0GC2SNpsOY96jolcortNWi0O925DoAlmWXY3/w2wnGwHO91WFqwHsNaQan7yvDpItCmpHGhCQkSzCckNfyFx7//+7+zatUqstksl19+OY8++mjD9N/+9rc588wzyWaznHvuufzkJz+ZMu3v/u7vIoTglltumeNSzx1mHL7XgFyyq8pA2gi6vfrzTMLhDHcEKluRriKSRA6hvI78fKScWnUlJXalEtnkzlC54iulUsdm9T0fZa98Rr4wZZJmswiAU3VxXUkmZ5FZFCX3TGkESh9F2MiS0ixJj5QCMDE5d+HVXLzwWjSNs2zbBObEk0jXoVaLbIRa9S+9+kv8xUV/7CuyjFBYoU5ly6j3l+n6tBZSEzVlm3PPPRfTNEEKTDtHToVnaiN874t35PJSD6997ve4fNO7OO3uq7n95/f6pFROeKShS0DgyRpSKqKUUp0YKWRISaaO1WSmHqbJ2SuldJ6alKrsGqf37x+huLkBGSqDvlXgnyUj5VUF9NJI6RNSKSE4szlLZ0rrHeayg560RAlOMiTj01kjUUolOElRKylXHYAZpE1w8iA6a1e/N2q9OXNkOtYw1NXCuh0jDP3Hf9B5zlm05S2giptqJt3660xkvNnvYKY8dGZRtylBggQJ5hzf/OY3+cAHPsCtt97K5Zdfzi233MJ1113Htm3bWLx4cV36Bx98kLe+9a18/OMf57WvfS1f+9rXuP7663niiSc455xoqNj3v/99Hn74YZYuXXq8LmdW8NU2oTdtX76Pb2z9BtW9GXLa1MdLFE/WCOERQlWPaIhXSk1P8gg1sHfMLNmm12KYXRGCS2VUR3D5bYWkjpSqNUyvxeC+PTz8/W/Rt3O7V3a1+p5t5xkdfZzm5rWkUvWG0zNBIHQJ+zIpIiR0j2qxMD3J2//2Cgrj3rW0L27iqf/ZDMMT5KxmL02q3SeLtCG4QeCp5CiyaGFmCUtzG/y8S04eK78Hhz2c2fwUj9srIdPu79dhYRLou11Q2r4WuC9aQKlD+iQTzjikPDJFCkmTCOqS9MPpBG984xt54xvfyKf/8CdY5SwGt3v7rFTISsr7cMHoOZxdPZO0uoH7d/Zw+4rvAtDi5Lj2+TdjjS9X99ilb6KPDnJsZILLCFaoQwgG90+QA6QRPAPLzfr3yTur+tT7NHz9rXDejXD29VM8nVp4x45VBnClg+GaOOMVis/Vk1KaUBTIECkV7GubtOgZTuNWtk15tidffDZdaYsH926cYfkaYa56V0kvLUGCkwWJUuoYITKOToKb5xzBLRW1G8KpjlNpEhwrCBFefa/GR+yoflcCDJNKxuPlJyeG/PzrhFlJ+F6CUw2xr9PkffpC4FOf+hTvfve7ufnmmznrrLO49dZbyeVyfOELX4hN/+lPf5pXvepV/Mmf/AkbNmzgb/7mb7jooov4t3/7t0i6gwcP8vu///t89atfJZVKxeb1QiMuvO5/Nv8Pn3/289y97+5IWllv5wTgKWAAu+KtAmcYYVJKq1Aahe9FZyUc08JMrUQYuWDFskg54w2kpZTYlVJkjw7LmwpP3nk72x78FYWxUQBy7V7IWT6/k41P3MhDD/8arltpkEMjhF2Man7bqZj56hC71tbVRM+adtrz+zl04xspPPwwABnXu5+e6kkTiq5/nH82x1PWZE2PxMrb4zwx+DPu6f0mhuGtyGdj1z0WrZSS0mTrQ32MDVbobvJM1heKHm5Y+Yestc7xr2fCHvWO808dylBnvusBePAzUCkgpPK4UmGIRiqD2ZRV1+Gh3W1mTcZkedpgedrgchYg+7YC0DO8lrVDF2JWFwHQ5IwyVvLKUMZ71q5aZAVpMLR/0rtW2/FPkLZbItcslRk8xWHY9hO48yPMFLpejlT6+MG+fyd9SUdw7aGba5SKFMvBKoluDSnlVCu89sElvPjZFn9rpRD15YSkx50gQYKjQ0JKJUiQ4ASGqAvTCzylwtvijpy+i1SwvA7zo32PhLwbIn+mKJWHJHwvQYIExwqVSoWNGzdyzTXX+NsMw+Caa67hoYceij3moYceiqQHuO666yLpXdfl7W9/O3/yJ3/C2WefPW05yuUy4+PjkX/HA3GK1Lwa1Me+32MUT0KRUo5SSomwUsqY3lMqlLn6P3TekOolKEKN/85RKKV0+nWXv5jr//TPWXrmqkje1eowjlNPDswIM1T7NjKrnrjrF1R27gQdmlfx7rHrOP7gQpNSUU8pL11KeITPRHWY7RNPMlYdIGW1eXmI+uGJfuZV4ZGoTa0Wi7PdABjCIG1mWWmdETJjV2oolVe/GGOfMagKppRb+x+Hn30UtvwI4WoizXsu2fRiZEXVKRGEJgJMuhPqvALKXkjj0v3es2iePMh5T3+Wnge+jVA+TgvL3j0yXB1GmsVKeXk5rltXm/3uSKoJ/s934Lq/9zZM9MKz34Wdv5zW/Dzw9ZJU3CJk65+lrBZp3v0cg6Oj/mUGSinvg1Mpkbajz6M4MaHyDp2vzoKqtvM2c9pqysUBZ4qEIUuQ4KRDQkrNMRLlxHHGDAiEBCczBO5Ub6mjUG7oQw2rCcewKNslvw75s7Gx9qb6+KkNeBMkmN9Iav3xwuDgII7j0N3dHdne3d1NX19f7DF9fX3Tpv/Hf/xHLMviD/7gD2ZUjo9//OO0t7f7/1asWDHLKzkyNFx9rw71oXMQKKM0wWOYIU+pGRidB9VdkSshsqROKeW6fiig3iZCnZTZklK6XEvP2MDaiy/HMPX9MOrSzBbxkzb1htahA+qhPbF0ubSHUcgrS/sRmXYQlqZ9prKmpwqyXU+ls6qjilCEk0TUPXcHL4+q+tvSLDBV+opUPlhuvUl4s9GMoUL4XCFBgqmVc3oYVBzxJUIT5f0U7AlV3uhslSalCnLCL5c0PJP2XMVLm66O0TX8HEyWMFSeliLiFmZ6uHH1B3nNiv9LNmOqexSsIqjPY7hu8G3dtXDZ/wVhet5S3/lt+J8b4Jlv0wi14a+xYaq2IsmEoKlS5LTBsYCUUvffbWiQHj7fDJE0IQlOISS8wMyRkFLHDEktPC6YQSuYRJ2c3Kg3NI+ZsZ71tJiXfrL5PO5/8T9gV7KhiqLzD8Iu1Af/aH8WOPmZJ0iQ4CTCxo0b+fSnP82XvvSlGS/Z/qEPfYixsTH/3/79+49xKT3o8oWXppdTECdSRr2nNAy1Yp2jjM7jwvdmZhxer4qqLack5M1jRH2ZZMjXSsOdjpRSxIRR510FwtUhWHPfCDVcRCQcAafJClU+ESKlfDWxo8gfGYSIlh1PaZcyPTInnV3CH6x/gDeePYpPbMW06VJ6z1JIm/WVXi4a7CejiC1XqZsMV/iG3FZuGQAtbYtYPvgizhy9hNN7i3Tt2oFV9NRNmmTCqfjH9bt5frT/szx96HMhqkiRUgVlkF4JPbsFq73raV6GlDaOqOAuWI617i0stBcAUGjPUnaK/iEtRoqcHaxaWKeUkjUkqGnBr/0NnHaVWrUPGDtQd49qcvHujcprz56nOFTYge1U61Jm02lOGz3EoslifQBq7O+jpn9EfS9sbvreSQc+QYJTBYnReYKTFInT9KmCWqNzbQsR33GeWYXQM84CsK0mjGJbsG8G9unTp0iQYH7AV4Mkg4Pjjq6uLkzTpL+/P7K9v7+fnp6e2GN6enoapr/vvvs4fPgwK1eu9Pc7jsMf/dEfccstt7Bnz566PDOZDJlM5iivZvaIUzL5pE/MyzdeKaVCpBQBFDY612vXN1p9L2wADUS8DINyBfmUq7YuvPojFVkVkEwa0yqldHpNTEz0AtCcr/KK+4cYa7XgqiNciW+an7NRKmDmx3nsh99l6fqzSMclcrUqrLbcThBqVx6l+MStjF2lVrOVLvtG7qdqZGkzM0yayxkQBS4yXJB2EDKGQNR4bmkCKS2LrMtamC3dCOHVdSEV6SjD7yovfSqbIu+kKDopSqObAYkh2lV5FDFpVxDSqxtVASYwJktBXqrC+T5kFQc3KzGE4M3f7ueMNgfRISiN3sphKkxe9pu0504npR6PmzP44aZ/J5VawrVLfpNmU4Qmt4JnqMkvw8yAA67VFNyAK37P+/ej98HGL8aGqwKM/nAn5d1jpJQ/lzaWv//+rwMwtmWUVTVeaYL6vpWfuwwm6hq1A6FfxpRp5gIzJdMhmThM8MIh6THNHgkpdcxwNCqOBAkSgNfZnWrW1pP3Nzi2Qb6ptAkVSDmT2HiDi5ANa5A/8Z0aI2YGP0GCBAnmEul0mosvvpi77rqL66+/HvD8oO666y7e+973xh5zxRVXcNddd/G+973P3/bzn/+cK664AoC3v/3tsZ5Tb3/727n55puPyXUcKeI8n6ZSSnnp6gfpWikV5BkO31PG1pUKg7f+B/bgoNfoCG9f80teAmgyTg/MQ6qlmqKMFSv8cNMhvPXkjMi+0f4CQ3sGvD2mies4kTC3ONQqpczhPeo6vf3tEzaV4ghkFjXMJw7TkcxN+3dg2BV+9dUvkso2ceOlLyVycjzyCTziLZyn6ziRVevsQ0+QZznQhMQlX+3n/sPfY81QikOn/z4LqkVoAVwbTdU4VciMHiRbyHN628W0ZRbhpGweYDvpXAui4tFk+/PPQFr4qyO2Vqp+Hloh1LIgy1XvPofJXVv55Xd0DVJKJJ+UCtRDzVYapwwVGSbFlFIqm1bXaOPiPeX1OyucUZDcd/Uk4JFjaUUI3du6kUdan+FNrVezE4eKW0E/deF6YXtumOzRf6wMVOLVf2gVnltPajr5KpMPHvKSCQPbrWKLqDKqUAx5woU9odTn2onARiGiEaXU8Q5LSPpfCRLMKySk1ByjLWtwwaJnaM/kYfCFLs08RsLznTKQdR8U5mDFxcGmEdzUNnIybqij5en1BUiUUgnmMxqOLZKBwHHFBz7wAd75zndyySWXcNlll3HLLbeQz+d9Aukd73gHy5Yt4+Mf/zgAf/iHf8hLX/pSPvnJT/Lrv/7rfOMb3+Dxxx/nP//zPwHo7Oyks7Mzco5UKkVPTw/r168/vhc3DYSof9NqomGmQlmjJowuGr7n5VJ87lkGbvlM3bGjt90Gv/Vv6nxxSimdj+GnCRbi8NKlMiZVW+A6Eruq1VopXMdh96bHqZQKtHUuoqmtnXRTE6svvBRLrYYYhAJG/anskNprZqGHMWjwGxcQUSlVS0UqcSsF6vA9fU9C96bW1ylfGodcE0KC0SSgHFyPW5GURi2GHq/itht+1oZdpfXwQV50+v/BHs6ww/B80Qw3RzWVIgOMVweAxQh1ryrpQOvsEvh7nX7xYli0m3u/62BLk0AHpHydQqq1nG0wAVRlJfCYFB6VlBFe+lE5QJc8DUSaSsYiVQDTUSon0hgq37vbH+WR1me40Xi5f2e0ME8/xaobJo10Hg38zvSKfDFG57LkXYdIGdy9/+tMVIaQloTI44t/h9cqpXxPKe1vJUJpYsrlP31Z35s63kiGCAkSnHxISKk5xuquLL9/4X9hiAzc+0KXZv5DRIiC6JxSMnQ6+WFg1M3aBTPWR46s4c12FtIlSJdwpBGEW/hKqamRkFIJTj0k3fwXAjfeeCMDAwN87GMfo6+vjwsuuIA77rjDNzPft29fxHPoxS9+MV/72tf46Ec/yoc//GHWrVvHbbfdxjnnnPNCXcIRIwjfi90b+eatcl9P0JhWDSkVs/qeq1aPS61YQdtrXoMsFRn+8ldwx8b8EDViSKmgnKEkPlOlQscyBr/5N1cyOVLiG3/xQ9wqZFvamBwucXj3Tg7v3hnJ6+W/9R4uevXrAahUxgA4cPB/MZ79KSm1up12khJT35x6VAowuM373LY8tGNmx1djSCmtlKoR+UQ+6/Z78+FnYJVaKS9rQBk61jscdLxLGNrSwvheibzQu2920fbz6f6jV1A5OMm2L28ER12/6Q1f9Aq40VV51XN1XTCD50zEpN57rq7qC7ghv6+u/eNMLG7HwaVJZiiIin9BXaINJBRkHlfaQJpS2iRFOKTUwFDnsrXXlQiGW656erqv4UTqbVR1FgsxtVLKLSn1WpNFf3EPAOl0LpKmXIhfsbGWlOobL3s6wTjiU0b+qDLPBXTNTnpXCRKcakhIqQQnN+JWQUs8UOYVpgzfE42fcCO1x6XNZ9E+kWF7tZ/B3JgyyVXH1SijYpVS2nMh6TclSJDgGOO9733vlOF699xzT922t7zlLbzlLW+Zcf5xPlInAkSMWiRYeKIuxihevVGrlDLjjM6949KrVrH4/e/DzecZ/vJXvDQqxC6sgBJCk2C+VMpP40+UaQJESnJtaXJtaYTh7Vv3omtpWZCiUixSHB9jfGiA0d5DjPb3Mtrf65evWPQM5fOFrRw+PEb75DKgzb98IYlVy8Tiv18Jhzd7n800mdaP1CXx756IfANg7+FerJYm2sO+WEopJWpW39P3AvBWuwOs0OySvm2GYSuSSWAX1XNR980PcQOEaZBZ2Ub7AgeGwDINX4mkQ+iN0LPwwwjVtlTKDPYJ3dh7ZT/kXsB3ht6Ie1/Io009usMdFm+onsmIKOIiaZVZrIrDrtLTHJzcxlkLvJBYqVZ0NPxVEQ2EIo4cHK4qFBHtep+gluJxZb2tuyG8dLZrc3DyIN25biytkNIktAyevZSSyr4Jyrs9ItNIB/V82ZlnsfvJx/3vTtWuCwsUwvPjgoBIdLSXlP4byxXVK8iDPOeuDx6XU9L9SnAyIDYEN0EsElLqeCBZ/u24Irnb8wu1Yw9/Ni+6NbpzGjQbGc52VjBQKTKYG/N9REI5+fnLmClBUbsvQYJ5ito6ntT5BMcNmjQK17l8hTUHm1k0UcGpPI+RWo0QamW3GFLKNKOkVNRTSpFetucDxMQh2P5zxKqX+WkMW6uTQquh+ayUyidCxviZ15ddfc40tXDZG14XKddjP/wuv/rqFxl58EH69vXT+qpXhTylVFddqrKEG8WZhu8NbAs+OxVyzlCDxEH+6aYclWKBJ3Zvg7VLyRXGWVpzbj96D8Gaiy5l15OP+02xJqcWWK1MeAf5oY2mLKktgsKAtlLXflDq+PCqt8I7n2mGlUheXmlNLBop3+Mq22pRLEO2ReUtRMgRzMurz16PaawBj8shUx5heEM3DJSoViArLdbKbv+oB/IPcWDkV6Rc0w8PzGXagQO+AhthYKgzffbwKOnCMFsunPTvbe1klkeeRXsehiKvhopDvOq7r+K8rvP46q9/Vd0IHb4XPPvS5iGG/meL/11kg3q/+oJLIqQUMXUy/FFXr6oiHWsN+r2k9f2i3RsfYdf99zB4YF9d+tlCxpDOCRIkmN9ISKljhYQZOabQncCZ3OaEEzx5IUwzJnxP7zyKB1vLYYU8pWrH3I2MzpNuUoIECRLMLaSUFAq7cV0vzCi8Ol7rz/Zz9cEuoEiV2zEzl5DKXe0fV4umtrbI92xLq/9ZE1Q7tzxGW2cbG/qfg6++GfnWb/HI6csYzaYxH/sXyjRjtF/inUP1PiQg+zfDf9+EGMsDF2Di+CSMEEZM+zC1105KlaVvoJ97d+/mjEcfRZ7frMqpSDdNjBFSrczYU0qdO90KlYkZ91GvvPFt7HriMfq2PEe5WqGgCTxAOoFnk8YNH/wL8mNlvvvxbwC7/fbbChVTZhfC+CSGluYIA6RAmNInIoOwvBBEoJ/SSimtFrLUvWkyM5iGCRIyrZbnXeWzZkZI8eYRfJ3WQdrSo6xpf47iU8NYe/rYdM1aoET7qAGtdmSkVHaCVf50CGAu20YFEIpISRtpDKWUGnnCJL+jm5FffRZW99DRarN0Qwf2jlE/TyeklDKEpxJrsVoYJe+Tb88OPRu6D/Xhe/ZI2Ts+Z2F1NZF78RK4j1lhfMFlbF+wnNXjArN3lKpTo5QKJw6tyKfx8Ne/zFjvQf977W/viHC0/fekk5bgBUIy9pw9ElJqzpG8AY8rIlNOyb2fj6idMGuRY3xm69/xdyvf3fC4GRGWMd9Ezc44Usqf00yqXIJTBkkPK8Hxwe7dn2b3ns9QGFsALMF2Ag8cc8IjBUoZg2zZxbX341Sep1pag2yqJ2iu+Z3f4/lHHkS6Lp0rVtLWFaxUl25qAmD/RAWWL2LJyDinAZO9exhqzgIg3CqSUcyyF0onQ6pa9j0Ck33geCutmbihRkGHWNX7BcX9llpavAF8KW1xoKMNo2j7ZJzvGebnFVZKzTB8r8brSs/IRLtQIfWL+rju8hdz0atfz7d+713sH+yPtnl69UCVpSEMJh84iL0g6yuSdPieGZpdcluWwOHtGNd+DH4MbtcS7Gs3sKr1adgXVUoZ0oU7PwIrX+QrpSSBYf2VC/fxU5Z6iiqBIp5CnlKE7h+C1S3DbBn3lE+Zqs2vrXiURc79AOyf7GCykuX8My/mvxf8kuywzTMj97Gm40Jwexh2JGWpyB9X4Op7b6ai5xOmT0oVBtQElgrxE4VJ0q3piO/4qD2BLaMr5OWsJkbJc/6i87mXe6OEq6+cCz17tT97xkI6bjoTuxrNL4y4bouUBn0r3gnAiknv35703ZHrimsCwnnZZe/eXHb9W+hcvpJ1l14xZRkSJEiQoBYJKZXg5ITqZEhn6sYywfyAvxKMesgWVW7o/xlPtpxJHZE0U9RMYYT64HWE08jIJLtaFtLdVKL54Eb48R/R/uKPAIv82dwECeYTktdpghcSk/nngZBZdtjQueq1+f1LmjltzwTS6aeav53erdBLPRYuWcbl18f7a1110ztZ2LOUp3/0HUouVBWRIBXZYrguOTvNZNomWxrHBiSGUt4EHlbh5iTwlGrkglO/b+W6M7lgbx+97S30L2jBDvn3iBoPIU8ppRLMViklZtBmhjylNMFj+CbhIX8vTVaoXaZhMvqjXZAKwtc0F9UyXII1qsiqzGbKAmyKRXio5S30dmfoaNlJtTRKec8CT+UkXXjo3+CR/0B0KF+10EyVDqv0SamQgbgmU8JKqdcse55fWzfBrtvS2MNVmm/8bbj4/VAcRT73JTi0kzU96/j39/wRvTu28bWP/BGHnF047hmY6TM942+UUkqd21zzm6SWvZb0+EP+vdL3S6q6u+A1vwbPbkKWy1gdIzSd08Zzz+2nWmxhcOQg+VYXzJyvPApU3PpPmJQKKaX2PQyj+6C3FWgJ6l2cD1sYdZvUc3arFK0CGbedyaJX33YdnmBR3CG1War7fcaLrqJ79dr6BMdTOpLIVBIkOOmQkFLHA8nLcc5hLV4M2zdDzco6sUju/0kLQch0U72uSniz2yl36pnAmSNsFKU662qTYwUr1nx//zm0psq8+4uvQ9h5NnznzfDSexNKKsEpiKTWJzjWUANzNfgO1zihSKnxhU2Yh1biuqNI+2BtBjNCx9JlvOQ3f4udP/0OpUrQ1sjJfu9cgCl1u6D8nEJKKSklUoJTjfGUop7EaURKCWDpaJ6qadK/oMXL29WklyaSlFIokuUMlVL+iYwpShAtS/AlmtINn1yRd46w2Vx06JYTdOYWQNXVwXUcajb54etfx+LeQ0GRFXmxsKeZ81/RRu+uUZpO/1vMjr0sUWkGNrrkH+9A+P5JVYRbArI1d1Q/DD1BGTh8ubKelAKwhIOpwuSkNOD0a7wsMj/wkqU9b6jWzkUgBJViAdiEax8i3eQ5ahmuy0jlMO3pRViGgdW0gAWlRVBQSil03XVpWlihsthT6Ml8noO/fzMilWL7i36bknleNLSxhpQKk1FSSu9aNCnV9yxsvM7bZ78JuNmL/6s5rv6dXe8jpWE4FUrZETKVdpqUWXq5OnUdixBeslaZNuVR0+xPkGD+IImomDkSUirBSQmR8qqukWuCSYjtYiVc1EkPIYy68L2q8DqM07k6TT8THDKolcHkq9+hTbdw+Q2/wZ6Hfk5/3wgT1QzFUoVc6K2ZNDYJEiRIMMfwQ83018DbRtgqpC2VIdWsBuSyQiX1DHLg3rqs3FKJ4tNPg+tiLuwgu/6MujRBqJlqVRRpYlouIiugQoj8CdmaS8n+X3UwONgMZ4Fw61ffizYRin2wK/D562DsgBf6de1fI9su9sqirtUN3wZFQgTrtomgXZzJ6nvhhipG8RQHnb1PiOl7E+YgNAlhGmwvu0xM7qUjtwABlDML+MH5V1G2UqQcm6uff5LOgmf2PXTAC4U0DJOrfmMdB58f4Zltng16tZAllSshMlWVd8oLV3NthCwDWWQ4FFCTbD4pZfjeTvVKqcBMXH8sHxjAeOopMuvX41a90FCR8sLxWhZ28Pr3f4gdjz/K5l/9AmTJDys0peSRgdvZNvIQF/b8NotTBkhY3XIuS3JnYCkfsGVX99PWPMjWVad515NtAstCVqtkCxVKreBkMkDRK1nU7zzymFzpYgoz8JQa2RN6YjosE7Zs2cJjjz1GYcU6zFKBxoj+1sI4rTOHPRj6/U3Tp/bv97Sk1Fwh6YAlSDCfkJBSxwwJI/JCQybPYF4g6AhFZ5nFHHRI4maEw+F7V930Dq46Q3DrJ79C3s4wUc2QswKF1kwDJxIkOFkhoz+7BAmOOXy1SIgIufPWT7PnqSf8arhh8TmwHZUujWO1ETcUPvSnH2TiZz/zv6/4r/+k5SUviaQxhMRrUfT5NJkhfQpK4pE/LiLyW8j3ZwKeB/Dtzf0wqhhPqYk+6H042PzUN+CqC73DwrZOOjzQ8BmoYJ+f5QzawVhSKrQJyKczGE0Ckc1F9wkdvhejwNFG56YBVbBFBldKTCHY1dVF74ImP+n27pV07t4MSFzHRgiD9u4eANJZy7/w4lAXqdwB/zyGBMwMuDYm40C7XwK3NI7ccDX0lhGW5wGGYfmPx4kJ3/NOMoJwDcCk/79/AP/9A5ouuRipfJi0Ugo8T63cgi42/+oXSOkE5VLs1ER1kKoqkGWkuXThq/3zudLFyk56p017gX+5C84jnXeo7NmDaatwTNOilmARMS9c/95rpVRlMrRXkXOG4J577qG/vx9a2nFa2ikWi7UZ1SEcEOlfo4j+HmIREUrp+z0XpFRCOCU4uRH3G07QGAkpNedIXqTHA6JGUp7c9fkJgQhW3wvMpdQ+byAB9fVhBhnrTGN2ychfhMBSBqsOtfUuqXkJEiRIcCygX+sjVRi5++f+9vFclVUtPYQ1IHKKgXBln1qe3jDAdYPv4WOlIqXU+YYnS975CRFjipSSQgTbXFkTCWXQY+s2IqY8vpF4TbvhVv1tIqyU8o3OlVJKkwNSqJsjZxi+V09KhZvMh1eu4p61SkEmX8dbf3Ufy7c8TySh+mtbZUqlQ2QyS5BKpSWUiXfFbPLPZMhxICClpDo+09zCTX/1CVq7umjrWgxAusn0yyiEZ/ieNS06JwqsMbJgpaGax2QEWIGZK1PZ8h0qu55EvvT90PsUNC+CPEQ9pVT59DU0L/JVVwvWTjBcbUE2L6HaN0DxiSd9MkorpTQsn6SyfaJQLxwYJghNYSGEwJUuz43ez0i5n7bUEroybbT55L6ByChjfE1KCZN0uki6zTP0L5dzCNlFT892Ojq28TqjwraSGSKl1NDNLoVKGUi9bTtsow7Vmu+Nei2CkGpc/TXM/JTpI0GCc6CUClmpqfxr+lyJPD1BgnmLhJRKcFJjJlREwlWfvBDhMAV/KWc1cxubfuY5h/+40g06YorrCggnY8rV9pL+UYL5iMYkb1LpExxreHWsNVMlXbWpqHD9xavX8uzFVX42fj/vqyOh4gfC0vbUL2ZHB87gYLBiXAiO4wKGp4ICdvSPA0o75ZNStvob9ZRCCmyt0hGQc70gO+krpWK8fWp/Qk4V9IBet3MiHL6nry1kdO5neaRKqWBbb2t7ZP/Bzg6W1+ZheOcePG0LDzz4Elau/B2yYaUUULLavPA2AXYuVZsDAKZlsezMsyLbWjqyGKZ+53iEzfJsjvW7ekmvXesppQDhqPC6tIM7ugWZH6Cy1yMZRUjS6evKalffa+6C99wDA9tYCCxsX4FccRk7XvlK7EO9yJJH8qSWLo2Uz0qrawkppUx1OlcIXOcw0ENFh+DhsmfiXgpOmt7iIraxiIv27PFKJ0SIlPLqlJk1ufgld2KYgWdY7wOXcNr5jwPwSuCKloAQ88P3NNItyKoO3xN1xI3rxCidGtYbb9+kPUwKMNP91Hp5xR6lCbvjFr6XYD7gwIGvcvDgV5FITLOJM9Z9lPb2i17oYiV4AZCQUglOciSU03xHYB9R+6zru0jhLY0G1iLKSeFIF0f7JjgOwgrNyAmBEFFCbOoSJEgwP5FI0RMcb2Qth1du3ou8di3rP/V9rFSK99/9fuxCoJINMEX9rHoDfyOd9oytYwboARHk5eH4Cpug3rtUVJrQJIUiPVyhu9ISKbV6RXtKhVuJwBMqAtcOVFEylNJf3c9EuiIqtAoKUXc93+gd4q92HKIiJZYQfHhVF+/0L7be6FyXMFOpUE6nI+2cJsRcsxJJPNr7MN2uF35naqWU1eJfYZPVHClTIzsF0zRoarWoVKDH6PcET3pVPUN4SilAOIEySKuaJu7+JVx4IWg1kAiUUmXtERXuC/Sc6/3T+QCrvv51Ss88A0Bq+XLSK1dGymeltFLK8fsFrd1F+gueEsy1B4GeYMU94IYVz7Gv0sPj/Z0UnTSVcskvi6HKbqq6mGprwzBdpBRIKTAMl8xCjxiVroEwXLLhiTKjhpTKLmBkpBnLhOd+9UvGWwYiaWSdmi6u5xKQqPo8VbdEilBdiXmEYQLMV84dASklhYgQZRXTYcfOf0akyrPOK8HJhX37P0+xuNf/3tv3g4SUOkWRkFLHCEkH/lhj+vubPIN5AFHvKRWEBxy9o5OpZhxThoWrRgOubWNYQQcrzoPDVTO3bsJKJUiQIMHcIjwhgEcaWSqkyvebqm3fp5iEkEoZpdUpccbgvrJG56E9s5GkzYBwAiilWoJz6QYg1EZIpzeyLep96H3eP1zj8eNU/X1a8eN5Snm7R/edzvC978O1R4Av47jpwAc75npuHxhjxA623354pI6UCoew6zY2rk3V99lsbgaG/DLZw0PgdgOwpG2SRc9voppbiGg5DYxUbLsJjSaLFCnnfw3dW9XeYpdVSkHnu97FyDe+4SvhZLmsrkmQwasrWimVzWanOKeHVHc3qe7uKff7SimkUtVBU8bBLLo40vDrZCq9zisygp6mSXqadrB5qI2ik/bVSkKIIEzQv99eP6RSyVKtZmlpGcHI6muwMI0KhghWE6wjpZoWMFhupicHlWIeJ2tDOkjj2I1CPNV9L5VxdLRlLQsl40z7Y3JyQ0TiUaK3rcj43s9hWh1qy/F38LTtPH19t2HbEwjDonvxr5PNLpn+wASzgut6v+v29osZG9uIlPY0R5xcSIYJM0dCSiWYN/A7f8kbYF7Brevf6PC90AzdbDOtUUo1WTl6u8qcfhi/MyxDneIgfE+Fcphpdd6ksiU4xZDErCY4xggUIfUhcP57OYjWUp+nCt/zBjialJIxA3TDn/BQHoXa6BzoyOYYENfQnN/F/y7qwVx+Buf1e8e5jnec5QjM9Nm49gEvH6MZo201zsTe6Gp1isTafGgcFoUK4IbC90JKKZ2+MLjEJwYAXGkGxFhYBePYUBiipThAyjW4rGMhD4xO+vl4J1DXGNUVq3NHFWOhXaQWL4Kt+/wGWTq2HwrZlBWc+9x/gmmSesVfg7Wo/jWh8unq6iIOvrm8JkB8AsYAS4XvlUfVPljwxhtY8MYbePqdv+Wlq1Yh7Z3oCnkmi+1DNF+5hObONs4555zYc84UViYwPtdKuKxR5Prlezh41h+QftJThaVV2Q0hYcFKGN3n163wynQ+QaqJFqmHYqFZOL/qB89C50H3ub431l25Jv633eRNZpoevJUQa/laZ2T/1Ben6oZZKFNdqDbpSig0UdqAZAo96Llcfa9i1JJQR9buHI0H1aHeb7F9+9/63ycmnuOcs//liPNLEA/X9YjlTKZHbUn6GKcqElJqzpH8mE44JIKpkxYGRt0yxMFY5Ch+azWztQIYbVFLUPsrzoRn66MqLWmmIt8TJEiQIMFcIXj3hr96H/U+gr8S5LSklCIWYpRFPnGgj/HD5iTCMDBTq8iKPLubV3OakQpJq3Q6Qar5Oj+/ChJSO/wS3z8ywRcODLLBdTAIuDYfru0P7g2fGApft3dtC1u30j/u3QNXwng1Q3FoBHNpiVQ6Df9xNRx+jluBg5lF/PWrfqhuUZynVFAITUIZMtrOedcWVVbpZtEtTFLZ64XcWN2LEek0slLx728tpXDOOefy7ldcQXcDRVL4Wv0TGQLW/Rr0PxuUOBUYqPvP1SeloF3muNBZTc/ll2B1BmmPFEH4HrjVXQDkrno7q177Rla1LWX/+78IQNfwZlh2CcKQ8AdPgVtFfOSPYc9u3JDZuNnmmblnymPqIkLPwr8wTb6G96m6u/xi+OPtUBrlC/f/GU+PbOF16jl5qhOt5HPAMJE77gJCvmEQqm8u4V9EKS2pqJGh8MnKmlm8cDYEuwJPKbM+4Szh1JJSL0Bnq1odBUCIFFJWqVZHjiq/UrkP1yljmk1kMovnoITzA1J6YbamkdEbXsDSzB1mu/5SgoSUOg5IauUxhSYQYmPdj3NZEhwTTDVJZ4QesD8+meXPLS6UQNTWG2GExkZaKZWE7yU41ZC0ZQmOF8JDXUBK/vWu7ew4PMkzaqCoFTtCqNRTLUNva08p751dqhQoVAvkUjk/SZ1CSJNShNVT0t/l+0ypkKzalf/Cx4Hkk3v6eGg0zxnS9SgXWVNWJ/CUCq++F3RivPSWEfg63XtgDZuHeuCfv0qm+TZ+5xOfInv4OT/LZeUBFhf7gYVRtUhNWQMHoWib6ifXfIR/b9S1l0tUDx4EILVkCWt+fDuV3bsZ/xW4k/VWV80tzSxbtqwuf78cvjpNtbHaU0oYcM1fwMv+DLFrN3ztG0grFI6nFXDFIjR7OYTDP+cCpmWx7vIXs/PxRwDItrSy4opXQ5tniJ5Zu5rKATCaWwEwMhlP4WVkEGqlPMcJ/JY6f/f/YrS2sn3/I4w5/4W7fhGrUaoonwBSdStEtrphQjXXAbkOqip5rmJAGkRVBkpw10UaJls5HRiY0bWWU8LvBFlmlJRq1N0RUga/mzm47/l0lfR0iRp08ufk0as6aVmtVKvDRxVWtm//FyOqqzPP/HuWLb3xqIs4H6CVUsLQEQjHP1QzwYmBhJRKcFIiYaBPEQjhh+/VWEvFhh/MPN/ao2LOE5qt95VSevLSD99LkGD+IXm9JnhBoQe3SlI0WTH51M+fB6BpeQmrFYbzFSLru00xe6GVUr3VIdqBLz31eb779f/lky/7JK9Y+QogCPwLBSJ5f0R9gLYkGPT7jgE1RI8BvvpktG8bV//DB3hn/zB7Fi/BEWCq66tgkcb2wvdkNHyvlDJh3AnlCEITFdL2CCmFcj7P2EA/mqrJW80023lS/oXVk1IiTPz5nlKKEAvfSh3uZ2gFsbfZ7Opg4W++FmvxYpqvvBIjnSa9YgX5TU/gTuZx7ejAcvq2Ut9MVWg3FL4HXgifMjyXUvLUU0/x+OOPM9LheQ4J32TbrOXy5gSv/8CHp9yXWrGcyoFemi9/EaVtI4h0UDP1SnS+CbgQZFavpuejH+HJh/6K7zz/HV6xeI2fXhe94ipj/dDDiGqaPDgqfDPnhL3PlPKtUsKxUhTJEHbVGpWFBlcqaylhUnq1v1illPYCC573VOF7M2tXvPIXMg5pwI37XTfIyHUrHDr0bSYns8BCypUBYOXUBzQsibo2oZTxdYbxM8f42KbI94mJZ4GElAKQUkUpzDOlVILZI1m385gh6dYff0z1IkuexckKIUTMWEOHGrhTPlkxXaMWw2r6E5R1IQz1r0mpPC4ST6kEpxqSOp/g+MF7KSuRCe1NKTKW9z72raF8mWzwnr7o1a+ntXMR177nvT4pNexOAN7qdra0eaL/idBZ9Cp6gipQUIoIEfpfQ8pQVKEiGmpDB00EZBYBAuk6uEh2di/EEZ4fUa5iMlBdTUkqqsCp+gOxjCqvYxg4FTUoNr0QtFRKgAjohWazQq5FrQDnBANmV5EIJlptEyKINCkVkgTXqcHC0zWalKoJpUwt6aHnYx+j63d/119NDiB3wWJE1kJa9fetMQIjcO809WonEQqtv++++9i/fz+TatviK16sCpaec6XUdPAJO0czdqEyK4LG8cP3gn2Gqje2Uop4/lH6fruhbajP9QoSbX5uKUWWDD3XTN8+mvZu5QKeixxTpBr6FqgCa7fpnHIpr7+TsaMrKoZhhpXr03lKNVI4qbMuzKc5beV7wJ1dKODg0N1se/5jTE5uA+Bw/49ndXwUmhzXpNSRK6UcV3mRZZaqvI6c4JpPkNLx74VpeO+2RCl16iJRSiU4qZGssDf/4ffJZORPfNpZ5h2uPYFtguoO+54WZmhiXHU+VejHuO3w1qd2sjST4u/WLSdrJjx/ggQJEhwNagkJ/SpemEtRTAkKhH2f6ofVC5cs4z2f9Xx+tjh/CoCtZEPNRhNQ8ZUo4SNtBK9cuYzU2A5eQw+HLYNlWqUUCt/zy+VEyylcB6n9dHJLyLS/hw0vamXz7f9AJaWNeprJmBfyraEXcVr2QV674J/Atf2Vy5qrDpfuOkQ+m8H5rTVUzWeY2LMAAMuUZNrfRUt6Oy/v/Cd6nDxfGfC8rPTxAK4ingK9TpxSKmjVgvA9rRAL7uUXH9jDfz+wj/MPlTgTOFzoYikDUw4cW69e7v3b3Qd7+mLTxEHWyptiQsHCn6tVj1i59tpr6enpYVnzYgZv2eRd6vHlpIL6YLvhr95nRdC4fvheiJRSz6IaqouahNJhfxFSKsYPzZFRdlYaMhKGauUnWNwyxNYpPKUCo0z9J3QDFUxt4C7rCSL/dxg6xJgDo/NVI62sOf2DwG2zOi7wgVJkoNNIFTYN1O/BMI5eKeU6HillWs1QjicYT0Xo0D0Aw9Dk9vya+Doas/1TDQkpNceoq3xJnNkLAO+eF3JrpkmX4GSAt0y31EYdPowYMftMf23+zzJ0gFbJd41WOZyDlmLZT6Rnlf1uc64DS4At4e5hbwb+9YsX8tKO1hmWIEGCkw1JW5bgOMNXJGmPm2BlMZ+D8QU8wUA40+wpOqSUngE2YCvlThoLqFBxwqSUl3/JMBgxTbrVi74oRF21lzLkFqXKJQ2t3rVxUAN3VyKMZprbenjl5r1UTYM9yy5hqPvXKKj2ZMxeqtLaQeNimiyaKLJosoQ4o8qh8iQTe1T+wkaIDKbVQVeuSKbghBbhCymltAeVVry49aRUcMJQ+J6+ntA133v3k3zmtn/mUGeWXd0LcfYrlfA0A3S3ZmA502FZsNJbTfheOC8pfY+mtWvX0tPTQ3WwqHced6UUtUqpMPFUS0qFFH2mIjAdRw/Mw0opPzbUT+/GEIE+KaR9zkK3S0g5g7d2/b2qe1bav63B8jJmiGQRU/m7zQJHOo6XrlI5GkevZg98zeZOKWWa+t105HnNB0jpMjL6COVSQFwn4XsJElIqwcmJBp0NgyagTDmzGAvI5JJqfrJCMKVVCIaUMQ4LR3MyzwmkpeRwGDj7wKC33bWDQcglvwNb/4k0Lj+++Ay25Uv88+4+9pUqVNxk5ivB/EPSP0xw3FGjkpESbtr2C37t3qdxzGE2rnWQL9GDd+8QAbz6vX/E4T27OP2yK6j2H6ayZ4+f5UClygbAUqRRmJTyV99TmbU5OhQK3JCiSP+v26Q9+RLt4HtKCbcKahEMn7ByvRzSjkuusI8zHvtbfvGyGxBc45NHXvieGgCbBtL2LvrMu+5kWbPJARmQUl4ZzEDZ69+jsFLK25byCbupSSnP6DwIiQ/ff4Blh/fSVi3Qq1yJ2iaLkeOnQr0X13TQRufKg0nWk1Lh8D1bhcOZpqn2qfNUnAjfdjzg31LtoxUipQKllCIhwsovVUCtlIpYf+mJsDAp5dYTGbVKKe/ctaGTtTci5mmEw+9EUDfqCjYFIgvPHI1SKjQHGd1cX4a4YmmyRxNjceqyGUOvJqhJqZj7P1O4rve7MU21wMIprpTqP/xjnnvuff53IUyflJov4XuJJmX2SEbrc41K3vubxAsfZwRidKGkxqZT5Iob1rLu0umWIE5wokIYRl34XuD0Mb0vwdQJ6t1CvBnN4HdrSpeb77iZP+x6UZBfSnkquA7nt+Y4vzXHFw4Msq9UmWeC4wQJEiR4oeC9TW3VRd1Zaect2+8mZ3vq1eWD8IMXh0PNvPRnveTlnPWSl+OMjbH9uuuQpZKf47iaNFCeupHwPf3y1gRURvUhpACnxllKSig4Xsonx/O8zC8DGOFBq++VHvhV2aZ3PZaQuDJQd9muE0i/wooVCa15Bx3SpkkpNxRGFfgZBZ5FtUqpqMRYe0qFLl8TXLWrEAJV42B0n1+2xn3cWsJguvbRjzKoIc2mCt/TSinL8u6p0ZwCy/CJIZExMTLHaYhTE84ZKXOdUirYZyrvr8nKhE4dhO/5pFRA8OjBenWgwMB/PYM7WeWz8k95Ovc8aJ8owwh1bCRCTnPv63aGvMb0I2mQge9yMFek1FFC10uh7u3REByalNOeUu4RjOv27LmVgcFfkM/vBMDylVKn9hixXPYUUqlUJ825NXR1vSLELCe96VMVCSk11xjyXjxU9WxSQpUeUzS4vYZb4qLrTjt+ZUlwDCCiKwERCqELzzSJ6L4ZI+QTsqHrbGCTn4sj4PH+x7nNzHGGzj+m0azjzBIkOMkRO8OXTPslOE7Qg8FDLGY9w0w4KcxaxUONf48EXFfyjcf2M75lGy8tlZCGweG2xTyycA3FrLd6n6Him6JKKUUc1ZBS4LUDwRm8sjl4nWcd7uaTUuGBpt6nyCbbNHG135QmqtR5Ju0qhYpaFt00g7ZEEpEL+0opafhtUWC6rkmtYJ/vNR6z+l7QcgXKGk0sOAQ+PJXcL4nDdJ44dUqpaQeaevVBrZTSbEe8UkqTUlopZWQtut93EXa/V/ZUTw6ROk7kiE8MaqVUaJcmpWyt4Aneo0tbvPDNuLC8WKWUql/l3WO44179tTC5KL+BfnOHl15AtEMkowXS8MP+iPz1jpiCUYxtApSaKFQf5sJT6kihV3LTpNTRCQRqlFJHEHK3a/enkVK/awRNudNUzvNDDXTEUPWlq/NlnHXWJwDYv//L3q5T/d6cwkhIqbmGWrIWYcDC1bDhdS9seeY5EkJg/kPWDAp8C4TQZ2pms6eFH/IRHHHVipcwyCZ/VlAPIKrS9ZVSfr861NHRSv1kcidBggQJ5g62GlgKGYTYafgEQKgT8MS+ET78/WdYPXaIlwJjmVY+8da/ZnPvODcf/gcgMG2O85TSEyAp9UEKiVOz6pzURBGQUX9drT4KKaV0+F6pWqAdcEwTR6UzFA2hlVKG6zJeVaRFzGIZMoaU8tswVT5Xk3ZC+OF4qbjwqzpPqZDRuSbQxGSQvFYt4/+dHSk1PeKVUnGeUq7r4qqyalIKINXVRKqraeZnlA6uayOECJkszx4+z2TXe0r5Sik3urogwE1n3sT6jvVMjD2Oc+AT3nOuU0qFlXPqnqu6lV2/kPHnB0hLC0vosQcRpVRtHvWIMk6xSRs8zMrkJCsP7oRsLtg4BxMYR5pDnVLqKMLk9LHiKIzONUl21oZP0Np6DqOjjx9xXvMJ9cpIkomvBAkpNedYtB52AukW+MNNL3Rp5i2ET0IkL7H5DIGo6yT5/hcNZlNmWivC6YSl1yrSSinT/x6Me1QDGpq1D/YlrFSCUwAJ+5rgmEOTRHrlO9cPH/NT2OFBvrdvrOgNADPC2+cIgauO0wbQhiKcnjz8JL/xo9/ghnU30KwnItSgyNRcjgi2+WUKhUMNS8+uoaB9jaR2aBLYI2VA8J1t3+b3AEc4/vUYwoVQ+J7pOoEZeYiEkb63TpSUcqXpt0oB/+AyUU2zu7CIUbOFcdfGUO2UjCGlRJiU0qor38srZFrt//X2VUzBwQcXs+Q8GsKtfV6Nk9cZdvseW2GCR5VT+0lBEL43WxSL+3ns8TdSrQ4jhMWZ6/+WpUvfckR51SqlImVWk1vaUypMShnC4OLuixlOlXnygLfNp4gaKKXQYYIZk7JRIe1YWEaIlAr1bFwjxbOFa4FtQXnDDyP2wURDNf3cYjpWI3t2cuOencH1CiNyjUeMhkSan6hui+t7SmlS6mjIn9rV947EU8orY2fnS0mnuxgbe3IOyjUfUPN7h3o/uQSnHBJSKsFJDZ8uiMpm9M4EJzmEqA/f8/fFhNDNIuOaDZK2V7+KwsbHYZe3ZazJ6+Q93lumRfaQphgKqwiTUqpDOtsyJEiQIEGCemgiSZmSN2HXkVLFikM70Ve5o4idZkstBx+ahdc2TJ3jgnN3u2xdnmeLvYWRJ3t5P4rsUe9yM/ROr7GRJvymn5SeZ5U0AqJHmiAcaKkqBZPwfLAcw8WRmvRS/laapJISx/WuNkxoBKpgr6tu+qSURcFZQJMcwZzoBZpwRw9yx6H17CssUAcvpmP3HuhZEmt0ru+ba/h6Kj98z40MFD2kFOFiG4KBZzqpTlRxX1tmbOwppLRJpdppaTkrCLFjttCDVDUwrVNOBYROsVj0t4WVUrPB+PhTVKvD3rmkzfDw/UdPSpUDtZq/S9UNx1YKntjQthALGhh8qX0CV+pTKLLI1V5HgrJRodXJYYZJqYjNgEHe7ZzFxcjgPL7ZWhDqp0u1eO1KsrkORoeHGD+43z/aSnvlGB3bSKno+ZE1N6+ltfXsWZQhTJrG7Zu6xydrSSlcb8XMIyHK/OjcIyOloiGrWgE3F2TZyQ8/RC/8XPzfekJKnapISKkEJzUaNTPTml0nOCngh1Q4NlWTUAdpDp5vqAKlV6xg5X/8Bz+/8SNAQHjuHbM5zEKWU2Qwb7MeYLwXHvhXWPtyhMiq9AkSzD/4Zq+JKjXBcYKuc1pZZOFi1rxhi0oVFQ7f0+qctNBqV8MX9jmKu1i7s58/3wkjLzmH/3vVVtzCIGk3B0agirL0InQCHsxVObMUDDClDHgDU4fVhdQ9Ky+b4Pl9ecYrVQ6kNzNqParKAtWy8qjRVJcIwvkK1TytQEFWCQLJPBrAEN6qVC3Nnh9N1W7iu7tuxRJFmpx/8U598AnyTkodpVbUK3j+So4TeETtHy2xAnAMgZk+BydzDi97SvLE6jKFTG2MXsCNLBuZwBGCPd2dlCyBU4WtW/+c3r7v+mnPOeczdC9+TU0OtTnGw1dH+F5A9cqxlpYWIAiFa25uPmJSqlaNcTQ+NkKRoLKqlFIhL6sgfK+esArOrUmgIPTSiFFKDQ8O8dwjd1LaP4ZtTXJBNUvZ8MJQM4YXPieN+jttaHf/GUBCYElVWx1CZW9qaebNH/5bdhXK3Pi9H3PJlsd4dWcray++nInJrWzc+BvBPRAmV1754IzLcDTQK+T5nlJ4ZJImlmaVl1ZKqWNdt4ptTyBEGlOtsjldDgE0KaXqxjwkpVzX9lcZNIwmDKMBxaCVkA38zk52JH2m2SMhpRIkSHBCY9LjfDy/CxNEwWvMY8P3xAwJqxpPKRmzL7zsn6nOVZHqlTlxCH7+5/D4KsRLvuOlmh/taIIECRKcENCryLml+nf9yFiZ1UCx6vjKpvJElQvKJsudNvoWX4pdOuAP+J88I8d5uwRLRtpYNDZGa6/nmySB3eks2DBiaiVTyFNKq2BCIU2Bssj76yulpEshey9nX/FD9hTauW2kytpDiiAzwFUEipUByjAq4He7F7GuYlPZ8u9cD4y6BRar/HWbos/X1d7E4tTzDNjrkFJgyybsVDuUy0jH8QkMy3SpOibS9lZ1KxUP+fft0FiZFQbsqKawci8FYbK6DxaPFLjtRUrBpe6ni/RJKcuVrBwp0deZoWRVQEKhuFvfCcClWAwUM3Xhe9O2j1GllK+WCCnH2tvbefe7383wsKdwWrZs2RGHitWqXo5GuZI7bxHVg5O4RRsMQcuVS/19ooHReXDyqfsyEDz/Jx/eyO4do94XC0qDsK6yBICU6XWU3NAKwkIppQKvs5DWqY5xoua4OITLFKip9i9bw+jK0/nc1V5M5+DQPQCYZjOuW0HKKpXywKw8g/woiKmLGX+crCelbHuMVKpz9nWlxlPKtke591cXIISJaebI5U7n4ou+imFMRVCFyF197jnwupoJKpUhNj3125TL/YBg2dKbWLPmD4/h+YZ55NFXU6kMApDJ9PCiy+/Aslpj08cqIWtVkglOOSSkVIKTEw3bloSdni8whODhDYKMbXD6QfW60t4TR8ECNfJI8NXzfhnAFF5Hr9i2Cq7+Ezi8BbbeDpMDfrpEcJxgvqDxDF/SYUxwrOHVsfGiN9B2CsHbtWoKUo70TcYdCXr4OfSrPq4tpoHFbD7rt1i85wf+2Ht4YYq/favJqsev5hM//xFjQxPqTIIhI4XWGBlSsqzqaZU2VCscrgTeguCFCNZGWPneV7j8z76f01du4g2tgpc863LRDi+RbYLV1QT9UEyVoAxV4IFcEw/k4BWH9nmZmR7BE70diiwTDm/p/CC87MN88a5OCgNrQHkWjU+mcKS+CnWYU+CV99/Omr7n+erkBZy7oA/R7u0r2yIycLccGawmGMQN+nkNL1jPU+f9f9j2LsjfTmVyAa7rhS+m051UKgMR5qleKTWtVkqdMuwrYwTKEoVly5axbNmyafKaHnVKqaMgpcy2NB03ro/d56++52gD7gZO4lL4xKL2lEIGU2zVqqeKWpBtY7Q0Ttmpsnsii0y7SHsPZXucw80HgO4gayEQddcm6z5GwlNFzbOK6Wv5ysHgNHXpc7k1VCoDlMt9vuH3VPnVorYIM0WtpxTAffdfTlfXNZx/3n/MKi9dZ5uaVtLcvI58fru3XTrY9gTj40+Sz++YMjQxNnzPr9/1oYBSSvbuvZV8wVtJsWPhVSxZcsOsyqwxOvY4ExPP+t8P9X7rmJJS+fzzPiEFUC73USjspq1tCvO5OKVUjX9fglMPCSk150h+TC8Eos1jgvmEqiX4xYWC5X0pPHNYD7WrMc0Kqu1bYHnhACJsqqk+6lnwlCn9jRIBr/gojB/ySKnQCk7J7E6CBAkSzB3KtkeymCGSpmp5pFQ2Z0FRv3cFSLBVSJ/ERWBQTTX7b+W2JpN8ERYt9liZVLms0gZodywe2nuAu6ur2YokKyXpGsNl1w2OMPXA3AiMwg0JVSkYG5P8/o+CcuezgVJKulV1XQY516VgGOjFBC0jRErpU7kuYCIGt3rfheGTFlU7AxS4f/NZ2M4IMBJYCuVLXPTsZgD6aKUwlOLc9jzbxzsplEdwKlsxrJUII4cADO11FbpeTQ6Mt52GNCx0W+hUsrjuOEBIKRJc72zmjOKM2HEcwJiVumY2qCMFjpFyRSulqmWPwKsl2byyhO+7d70pXVckWFUgDa5Kt6h5IaOlcVwkg7Zk0HYojd4BcgKjcAE0+zmrHANCTNY9mKkflFnySGFRUgRPhHjSZde76ncKxBH7Mfk5NXj+rlvh0ceup1I+DEBr69mkM57O0Cel1O93ePi+Izi5NjpPc/llP0VKr79XrY5y/wMv9pI07PeF65R6R6iQtrhw0XxhBzt3/bP/vb//x3R3v65xGNxURZd6dcpmHCd/zD2s9H3I5dbiOAXK5d5p0td7SiVG5wkSUirBPEZCEpzsCHfgpOr26JCOxkaYjWG2e53olGrsDRluGKP5ps1AlWXedSf92zbTds1VNAG4Vd/rJAnfSzC/kShQExwn1Bhup8wQKZUyoOyydu9BaFmH7Uo0JTJeHaaJZhxRxpJNSLPsh5Fpj56rzl8JX4W0Up3IkIG0EIKxQjPjef1d+oNt3QY4MlBKWeVWnj7nPUy2qIA76bIu18Ne+jHLXpmrJtx+meChM1K89Wk1UFaeSIYUZKWkEFwyjqgSmPp4f0S5ALTDyC5IA5kWny2qup6qS+CGDvD+GE50IOpIwb7BHA8MnQXsAfZgWKeRbn2TEsjUhNwRVqyo++Dk1SMSuK53DzUpFR5Mzpz6iO7NrFoN5YfAMjHa2mi99tqGRx4pagfpkmMzaE83NQHgVD0iMpVt5EUk/HpgaaITA6En41S9MUMhYNXCXbjVPSA95Z/v6A9og6h6pVTojLWvdREEqGYmWyK7DLMSUCm1SqlQusAfzPAJFXeGpMhsWplqdZSJiWf87+Wh/lA+Xj/xtNN+l0l+dkRER+Cn6K0oKJS3WybTTSbTQ7ncN03HLxy+p/utUxudO7YXUhwQSVWlMDuSobp+h2lS8Bh7WPkrdwbqxoaEnYypOX5lnF+kVDI2mDkSUipBggQnLISoJ4tkzSDhSND+qtVkzljI81/4Wd0+Uy2Hbane+FmLUiwsToAAc+OjDP/iLopPPckqpda33CObAUyQ4GREoghMcKyh65ijBpZmaEBZbrFg0mZd3yDbT4eUXQHUwN+tEJKJeKbPMpqnzHpps9WKP4DXrUxJmHxtz4X+8YaQdUa8jhv8AlL5DQx2nenvy5ZHsHRIn2KuyhZ8/WUmUkrks0pxa3tmwEIavtoKkQJKkTGaVB5A/mprC1fBpa+H829C3PEtlco7oKt1mN6iJuC8PU3SZiRUdlcalFVzZVgWrm0j3Uk/F6O2TQ2F72nFilCG3VIKPyTLNLJ+iYOy1xNcUyFMGKRXnAY7oPnql7D+9/+7wVFHh1oS6lipMy557Q0YpoVdKZPKZLjoNW+IKYtSSikSCcDFxsQz33eEgYHrK6VM7bUmJU75KT8fw5U0LRSMhXIGz+vMQ0B2ymgSf1+EavJl6Q44kMqNYhf1wi5Tk1KaVPCUUkoZ5M7cbF0fG4d6pZenkBKYjE887W+zUp6XkaFWJTwypZb+bcatmFiTJm5PzC6fsImpb666R6lUB45P/h5h/1KHx4lo+PGxQzj8Vpu5T/2b8gm/iKdUrcN+glMNCSl1jHCk5osJZgZ9fxvd5mT1vfkFEZq3Am10fmS/M5EyaFrfQdUnlMLhA8q/A6+DkE6VaaqWqaZD0RT5YDWjtJotTmpbgvmIpH+Y4PhDD3jV6nShwc2db1lF26PbOGPMW21MuC7av9mpmSBwReidrUNxzGAVrsDBxEtVUSoGw5CsbBrh3MWH6KvWDLdlQLcItdpdc2ErZxz8Ja19O9n48i4vneI8fP8p4WKriY61m0fZdgaYbkB5CbXmnpFqAkrh2+CXVPScDS/7M7VJ3xPDz1/D0mM7J/rjdUKeRenWFkojo/gEggyRUiGhVqCU0mbu6h67Bv3PXkqqrZn2tnTkPnr3KTjKZbr3SFhRcuSD6MnJ533fn5aWDTQ3r5n6jLVKqWOkJGlf3MPL3/nuxonUzbGsFNINVlAE7965homBy9jICNCKqQbyTkhRcnFZcCjbwsHWmvBPIZSKzv+Z1J48UoYoavpXYaMnXymlyYVwjroeHX34XmMoBbvZwoUXfIV8/nmktLGsNh7cVwD6QmMxiZRubPjk1NkH5Fo9ZtL3jATCev/7KjebanWMiYnnvGuwmnHdsrqeJv8od5ZkXnBmTVArUvA4he959W0G3lCxq+/NL6PzhAaYPRJSKsG8gVAtbvIemE+of5pSy6BjTCTn5pRqxlA1ms+N7+YCt5MqAnvDOfDgQ5G2Ni2rQGqeNKMJEiRI8EJDKaWEJqWCt+uhFTl+1GLyvnsWAKodUORT0ZmknUVBLobDYOcfk82u9VclM6wgvMkPi1LwaR6jnWzr1RTEYwFppMP3XOkRYUA2LyhlwLL7WTz6FFXHIlORmI70FR1uaGQytqANgAWj3kDTssHUnIAbeKy4Qnka1vIF4WYuZITt/XXqCYKagagrha/gCgbnIUJIlcENhWYFp9FKqapfpt4nfh2M6+he/fWagga5mkJEiLx4BOSKmIHKIg62PcFjj7/BDyk0zWZectWjmGY2Nn2wSlsaKSvHPrypIbxrXdKzhEymh8MDu3xbgJybCW6mthFQ98h2bdpWTtB1zggV08KWPeR3OoBQnlySaPheo35SmEioqVuzVAMFG40ICTMbiJrHP4VuSu0TGIZFa+tZoX2b/TIExbIRIj3jMsT5HgXl0cqymYXv1ZJS5XI/v7rvokjqzs6XAVp5qFSSR6yU0u+C47PaX/B7Ner60LHJ4+6tb4aX9KZPVSSkVIKTHDGkRezWBCcj4swzdfheI6PzmT7/ODVd1sqSByxp8tGvOzy3toAlFwAWMqO8M1wXjBS4VSxXkVJJQ5pgniCZ4UtwIsCNUUq5qm66ltd91aSJQGAopZOQasZdCDDKpFo3M1n1/HFSdqBy9UkpGW1bHNnEnvKlHKicg2j5pUqtSCYJzRNjSFpJlQ1KGXDNqt/o3PRfB3ldBn7yBl2G4Hpue/UFPLx8NTc8+Qt1XcJvxzQpIkKk1OGnW8kusJFqMbXebzxF+fa30vX/ftc3Ope+x6IbGoiqQWGNUsqVIsQXREmpcPieaweKqVpPKcPxQg/N9CTggmsh7WaVU+g56dOoycJGg/eIz7keRE9DYw0O3k1v73eRSNpaz2Hx4lfhuhWEMJHSwXHyOM5kA1IqMLF2nBeWlAqrTPyXr7rxrTJLsSbWrm/oEACj5VFOu3CIlh7vmSxjjKFD6ynuncQsTPr9IJ+UipdKBfv8z7UsaIwaqqa/E+6r6XoghOErdVw5U8XPDPpRdT5YUzdYIkJKzfIZ+z+DGHXVjAiUsAJQKfBN77dSqRz291lWK7Y9weSkt5CBMFIIkVJk6ZEqzPQz08P8Y+3TFBCEM+qBxyilfKPzeeYplWDmSEipBCc1Yl99MhlRzR9ENOHqjzYAnTsSyJWCR2/fzapzO/0lnFsKLufskZy3p8rjq8pMNlnIrOrgui6YaXCrrJzYRdZYlzSjCU4RJORrgmMM3+i83lPKVQNmx7I8ZbTat7R5KWOuNnv2QvoceyFSmgjhUKxOgoDz7nsv0AkoUirEAwQrfSlfHxmsNhdGqlymkm7FsbzQpMEem5axEiPPe8RXcxmWHqhXSg0MfprRHsFY90KoeKSU9qCSTqAcKGSgrQhju5sZA9yXe/sq/RMUd+xh+MtfQay5IFJWIbQyJnQ9SvkkhUBIiYvhhzGKGlIKGVp9L9SYBZ5S0YF5qnnQI3ZcA8tqhXIoLwLSwmjIhGiET6iVUo2P2bnzn5jMbwNgYOAOXyVjWe1Uq8PhK4uFHux7pBR1qrLjipCyyL/jQhOEIDGBqk9ELil30psaR+KFmoaRNQ3coWDlMyGaQg80RDL555Th00UndXVf2qlGDyd4vnEivrC0TxgqfG+W3ptThhnGYiYKsNmTUoGaJy7kbyYqsnCv0Mujvf1C1qx+H6WSRyx2db2cfH4XO3f9E9XqqJfSSGMYFo5TOfLwPf93PrWx+lwiMLcXDX2z/PRxNSd4cR2DEjbG/v1fZt/+zyOlS2vrWZx37udCocRHh/kSjng8kJBSCU5S+EYN0e+RT8mL4GRHtKsR7rh5s7q6u3ukNKQ/2yzhsdt3s/2xfrUkd43wWoduLPQGM7guWGmo5vnIg7/H27JLePSsI1hyOEGCBAkSRKDfvXFKKX+fZUI1UPdIJNJ1CIdSu1hIN4MwCxFvJw1NSk1FgEgMDO3II6HljL+kOnoJov+lABTasmBDtcmm56Jxnj7ndNxnJzjt+TxCqZSkEFRGLsdq3YJljlEVsHdxmZ4DXv7pKpAOPK+EEHzyjSYX7nZ50xM2TslEusJTLalBsjMx4Td6vlJKBqSUUUNKOaaJZXukgKOlZv7AsV4p5ecdJiFq1CipVCfVqqfzsqx2fcLQvSNaltg7XJsaZuop5bjFyPdKxSOiPGNrLc+anjDwjbDnaFqpWh2lUNyLQNDSst5fmbARArfMYEAvTL2tnhBxFcGTSzXVdX6sdJZU82sZT+2htdyFSK1AjP9S5RV7cqI7g/A9YeSmfAoFB/YVy3XP2csh5MV0pOF7U5UzNm2DHqA4GqVUozoxA9+kKcL3Vq/+/UiqUvkrALiu5yVniFRgED9HSqnjp+QPK6VmcG9ijM5fCBLn4KGvUyodBKBc7qVQ2NvQky7BscEsHN8SzA6JWuf4oD68K35fgvkC39uiYfjezBq1FsNb4USTU8WJCmXl+1Fq81RRFRO2L1rhnTunwhRcFy56BzR1AHBaqRejWiBBgnmLJKYvwXGDmgRQbXhYKeUTJb7SJ9hnVtRgvVJSaQW4UVJgovsK/7O3OF8kRs07zulTpRDkXBUmiESYJVLtT/jlQ3oqEMtQg3BT4JqqfVLjX1dAue8GJnd/hLVVL922BQv98ll6sBhSGmxZKfjW1QapZu2Wrgum1DMTEyFyTd+QsC+TGtwpt3HXDGb8feuqmPunJ18mdZi6ukfh8+hww0y62w/NijMojk4hNRY+hRUVYoZmx7UEg+14KjnDSIf8shooNXxPKW3EffRKEscp89DD1/D442/kscdv4Kmn3jOzA/1nb/jXbygJnWkYvjm9vqtj5X4AbKdKbb+3OZ3FTJ+B1X4hVvYipLUgXpXSqDiaSLSWIAxFOApJ22kTfppNecFlD2/hB/0j9TnLgHAwZkGuzJaMaHRdwXR11FPqSPKPIwZnS6A0aj5NMxdNa6TnkJTSv/1jbXQehGz6SqmGv78YE/kYn7vjBe1FpyFnHG6aYC6RkFIJTnLo2cj6PSLx+JmX8MP34mIMZglTdewt1fO2Ky6oDvzwyk5+40MWN38wSyGtlkH2+/8uXPvX8EdbQwVLAvgSzD8kb9EExx9awaqIEN2WG0Yw418b5uXYpAvexIChlr4bTzcjZZSUElYWx0gzmVtCW7FLbSyz+vBoTDkMMq5akc/PwAn6FoqUwghWcZVGLSkVNE45ddxAWq8AKDD1QmmuDrfRg10wTK0CE5FLrh48SGqbNhzX9yEmfE+FBIZJKa2Uql0hWkhoLXr3rxoyg/f5N9/oXBGGrgy1u/X+Ov4jmxGZHVZKzczovJZEcuxJdbxWSjUmDPTxvlJqDtrvSmWAanXE/54v7JzhkfWKmihRqp+ZVjCp65Oyru9jKa+1lc2rvDTCpREjKGqJHQHSP0+WdNtv41zwCi78v7vpuWio7rhNEwX1vX6CWGD44Xtbtn6Igx8ZoLyu0X0OlXMmNhz+u6CRUgp80nTWxGO9mieaLw3vbVSdNHUZLbM18t0wMhiKLJ25F1f8uY+f0XkMQdhwDBYXGjkTn65jA1kTJllLUiU4PkjC9+YYidnx8UVyt+c3DCM0y1XTeTLiOnKzzb/mu2O7Qd/MMXnDs39Ie6kLo3qvVwapO4P1DXxSFxOcEkjauATHGn5InkVv92WMtXZhpkZYNPIsubEOLt/7OmTpbAAMDG94M9FPk1OkYkAl5XVtn1y8nurEQYwFv6RJlFhXqbAkvZCfXfYxytmFvGkzPLX8dhD3sqF3iN2LF9QVpeyobrLf/LjBhIirlm43bHBVm2ToZDUTZoagWW0rywm1L4aU0mbrQvghXLrdsdoyiFIaWalgjjvQRBC+J1y/kL7RuVtPSlXsaPgefqgVLB0e5C0/+iK9Xe1+2WuVUvrZ7BmcZKkaS/vG8hGjcxVKSPT2TYsZGp3XKkhsO1BKzWhw65NSqcj3o4EOvwrOMTMiwFeNiGDlsmD5ubBSSu2SASlV2/PRXSan6l2PK1z0M5Y+WUdwbxqFxUnDq0uGR4hJCaVclmyhxMi6MwEYqWqD/vrrQQja2y5kcPAupHSQzVA+qwFJJmbXtgQ9wsb9PyGsIzINj1XzBLnOooSN03d0vJiuzldQLvcjjDTLlr2V8fFNXg4qVNN1bTY+cRPj408B0N5+ERdf9PWQKjD+3IHRubciaC0ZPXcIlJtiBr/6IGz4xDA6d2vqRqKUemGQkFIJTk74DXcSUnLqoGbWONLgRRu/o6sVKmRkvI0lVW8mvSK9gY+eQcStnxVKzAwTJEiQYO6QK69ky4aXA3AYmOy9j9OfOYO20W4/jeUWqbBADbS997Hrq40EldGXUz38Up5ueReGXWTP6nbK2YX+8QvzKxqOhSU1HkfCoXPwcQa7rqDYmmIgM05L2xYY9tokrZTS4ik31EZ0Op7nlSPKaotBSxHeuslhrfamDpnzaKWUhtmUZvV3v0N5506e+49Nfh7eicKklCqxT4wJms0KeSeNq+6RmUpHrwuv/KsO7sS1Ai8VrQrzlVLqZtm2E3A/MR4yfvjeDPpoceF70x/jkSGmmcNxChFSSgi9yuBMlFKeks4NkVK2PcHGjTdSLO0HoLv79Ww48++mLZPjRH2uage60yM8oFeEiBR+vfaVUo4iLh23rrNjqtBLu6qJKJecM8J4eLTXSN0T9pTSKjwhfRLh/re8hvH+HAs3rIUiDFdVGGQkl4DMWbXq/7FkyZvZtetTHOr91jTXf4R9qEZ1THpkn5RHohZqoJSaUfheqF5PSR55q++df/5/RXNXZNLhwz/BdStkMt2Mjz/p7x8be5xKZYBMpps4BOF0ASEtpRMiqeYWfqhjaAXJGd2bsKfUC2h0XktCJUqpFwZJ+F6CkxqNJ1YSkuBkR9wMlWtk2VZ8KdipmCPm4JnrDpsK2yhZeb+RHdq7jR2LF+A6eonliLtnggTzFtPNRidIMFfwBzhSESeKMKikW7Gq3rZU82EWHX6ChcVNAFRFuo4cERBShGjVUFPkXKabptHLW5ut676GEC6LBx7mxY/8Je7af+N7530SMl7I1ivMTWTKKoxMh+/pXraAd48X+L2RUZpzl3pFEoILNwtueEhy3h7vBG5Ok0VAjVJKIMmsW0fbq14V8pRS3jMhzxhfKeXo1fcM3nzaM1zZvZf1K8q8acUzGBl9H0KklB4nhlZW85VSKs+MFVIU+f6OBi6Ciiuo6BX//PC92rPE4UjC9zwyRPvx5Au71PlS+IRBA/JFE0aG0Pc7uK7x8aeZzG/DcQo4ToG+vu83LIuGU6uUmqHiIzAGD5RSUoRVOvHG0a4A14r2g6ysR0qV87afj+V43plGzFOI21KnQJIBUVVuyrFz1Zm0p7x947ZSSoVzqAmxzWQWYVot1CWc8sy1k47TYXqllFeuWZKEDZRSAYFy9OF7cTBNz7903/7P8+Smt1Es7gEgne5SIaoBsTrFyVU5wyTUMSR7IorKGfyGQwssBAgp+Y4z9CqHhtEU+T4XSMTlM0dCSh0zJB3444FwY1EXG5/g5EdUEw6Abeb4xdj7GO+7Iu6AWebvZ45heV/GBtRsp+O9HitmCSG8jt5E/wGeX9LJ4XT9UrFJ6G6CUwGJIjDBsYdXx7qcUQAsRxmXE6hGsh0HOHfz52mu9vpH6FA2GZ6t0h81KWVFSSnLTWGKNTxyyYfjSyLrQ1FMR4dGed8Npxzap2bY9ep7fjy4oMe2+d3RcXItV6ttBhl16K4e+NpLDfa/+ezg5DVKqaj9iq9FUuWM8ZTSSilD0JUpcNbCQZZ1OaxqGSVwsw4RAT6Bp0mF0H2o9aAKUYAVTD7ILbzy4KtYee/T/M3OQ/XhezNYCc/LeKbhe1op5ZEdo6OPeOczs0xF4kQz0B5e9UbnmrywrAX15QvBticYHLybgcG7GB3biF0d9cpgZOvynOZivL8ipJQSQX9W3+kLLryD886/k1TAkIIVVb6kM979c2yvzGWrSN7ONzp5/Sadv64jRqDCc5VysEkVs+zG3eO40CxNtjUoStwsc6P0cT5GMccFvkqzC9FsbBA/gzp2FBYTp6/9ExYvfg2mmUNKh8n88wBYVhuGoUm2qa8nXil17EipMLEqZnBvZJynVMwCBeXKIEND9zI0dC/j408fs362VkppkjsJ33thkITvJTi5kfBP8xqRfrBbABMsZWjq2tkgXex8y+zQubSFgX0TuI7ESAV52kYFK3s5QrRgWM9SmRzDjumsvBBx8AkSJEgw/+C9X5udEqMQWdRC+ANlFSanySYp6lYpC3/UeUgraDcATDeFaV5IvmkZjBjUqglkzNytodVAvn9UMDhMqXKZeuE8vRKVCMrqEAwUU8rjaWeP4LYXGyxozUFRHxuEIaozBYXwiQlNSgVePV7IXBByFeQTyiI0IVOL8F0MlFJaMSaDvSphX7WJQ2K5f/xdQ+Oc2+qRf2b43FMiRik1TXuqiaOVK26mt+97SNdGGBbLl7+d0dHHp7w2jdHeJvqeeCuj6eWUq8vpOWeLv0+rqCwzh22PTjn4f/a59zM0dHfddtNsxnVLsyBBQoocv9OjK5DB5OgSsk3jCCFpbz/MeLZE9uAuZG5JnRpl5dolLL3pDCZHy2wd3sKPy9/mTTumtruIjzaoCd8jIBW1cjCrKkbFV+SEjw48pWYHWVctZ0JBTO8p5f3evGfiNgylqy2Pd/zU4XszJaVm6+XU2Xk1nZ1X8+hjr2di4jkGBn4OaAWVVx7HLdHbdxvVyhAIg0Vd19DUtCJayuOllPJftKHwvRkppeqJS99TUEoee+wNlMt9fppzz/0sixddN4fl1qfUv/lmqtWhOVFKHTv/rvmLhJSacySzyMcDtb/1+LuePIuTH2HSx/uWqx6gULNvLnDDH19E/64xvvsPT0a220YFYbRgNV1OKnuQyuQY4eW7IwVMkGCeIVEAJjju8IU6enAchKH5A2W9yp3r1h6GMNwwZ6Ly8Ab5TrYjcirTTdNoKfIgfC/YZ+5gbA8AAQAASURBVGillC9qCcqwFIMKsAwDcLCdNn0xPilVDS3gYTkegaTzOlAOKXb8C1AEnAgPcvU5FcHl2gSDaB2+F5BSlUmTiX1ZTHOMQbcFa6UedIUJP302WbfN95Tyn0lwf20ZVQ67sl5s1XjoHg4Ymz4sytvt3adFi65l+fK3RfaJMFE3Bbb/6nTGDi1U385AyIWgxrraXNow9cqNbqxJdLl0CIBMpodKZRgpPZVcV9cr6O399oxJKRka0NcqpVzbYfumtexcdA6XXvZ9DMPFzE+SGh/GKLRhVKIhg93di+jY4BGEV7CWm3ktX/7py+pP6kbLFq8FChOEIYJTBqRUkDbcFwpMr4MEom5TzAlrwsCmSlZTq6YZ/GtS6tHHXk8q1cmll3yfpqZlDY+BcP05Mk+puWg5M5keJiaeY2xsIwDp1EKKwvM6Gzh8J7t2/4ufdnDgF1x00VfVybVSKhjmz371wVkg8syn75vHKqX8e6pDgG2fkDLNFhxnkpL6zR0N8vldDAzc4XlsGWl6ul8fKC8tTynlysRT6oVAQkolOKmRDJfmNxrNgMXumS1PFfK7SKVNFp3WVpfENkONkz8DVH/CJKwpwfxGMuuX4PjA95RS30VkEkBt1TyImtGWIS8Ty7KxNecS8sMBKHZfCgQz76abxlSZWcLCrgnbqF/fDCyflIqSZgCGaQCSbilUSKEKtcmYGCWllDICEme46y/ZfdojOMZPAdhVCHs2RZVOkcG3T1Dp0KTgOnUy1w0G7Yc3tTFxIEuKAgO00VE+yEAGor0oGfmrJ4LCmUaVUt62iowO2mWoNdRG5z84PMql7QOc3dLEFQtaiB4QVh5Pr6ySUvqDyHB4UoDpqTCn4h2XbZ+kNNaCW834+7RqQpuge9vqTaL14Pmss/6ZBe2XqOMMqtUhRUpFSbFCYTfj488AkMutpq3tXJ25ShHylDJK6krUPa7kVCipi6UM1VvkSAwfU3/NIYox2FiZ9M5Xo/qOGp2rZy6CbX74Xo3EKlyMwPS6nnBojCNV8jTOu2PhlfT13wZAtTrE2NjGGZFSgRl3zBlnooKJI+dmiTWr308mvRhX2ghhsmzZW9m06bcBKFf6VVnSSFmhUh0OTu0/g3D43rHrowbvbBGQwo2eZ4xfV+Anp8sZHL9w4eUMDt5VpwycDcrlfkZGHuG5ze+PbJ+YeNb/bCpPqc2b/4gtWz7E2jXvZ+XKdx3xORPMDgkplSBBgpMLMe3qXDW1cV0H2wgNUnxSKqbjlyhKEswTJKrzBCcCakkpifAHyo5UetmQ4iOYK3CD4yWYocGNNEJG4oDpWv5s/eLMSmw20dNp83xB51mz+h6BUmqyqlZwCw+UDCX3UMXqap4kfWEn4+0pzIe9dCXLIlUZpZpegGN1cWD5S3GqHim11JTsquqy1tyJMCellSq+KijG6Dy0+p5T9tK5OYFRkJi2DTWklCacjBBPoT/HeUppVN3oUMKVQa7lkJLto9sPYgp45spz6EjVhxV5K3dNH74XvdZGw5hGKhYVItrhkVIyZHY0FSlVO2QKlrUXGEYK8PypbNuM5KOPf3zjb1D1iQODq668X62eFuTT1noeB/maf1yLfRZWfg92W4dfxoxaYc8a76+/rthB+9The3W3SOATnlopFZ5w0yRtvVIqUoi6rSKmDk9XlPBxokH/arrwvbPP/iTr1/8lz23+YwYHf4FtjzdMHxSoPsRsqjRT7PSOn3G4YD1aWzdw5pl/G9nmhyMqr71UagGVyuHos49RSoXN/OccEXP76dWOjZVSQfiev8f3mjtyUmrTU7/D5ORm/3tL83om89sYGLjT37Zg4YsYG38SKR2kLLJ3339SKh1icfdrWNB+8RGfO8HMkJBSxwxJr/6FR0ISnOyY+eC4dmZ0Zs++rjMTc76qUalLEKwuE50fTJAgQYIERws9GNSMiDcQsQ3hq398aynfnFsEG2tey+FVx4aqNWFL0vCPc0jx9tWbeNJZGyKlAjmt4UqkAFPl5/vphF79Prehxk4tmTLWsmZEJZjcqBoGZz33L7ipZTxzzntwheWH752Vy3B/KZqXLoMRGb/pexQ2ca4J3wt5Svnag04To2BT32aGB/7hwa2/N0ijb7MqT6U2fA+Jq/IqhUgpU3j+7+O245NSvX23hQaFIZPkhsboYVKqXikVhO81aJOjnB5hB25X6pW4wv5jcQP6kMIpcn5fxueH/TlOySekhLCQ0qZSGSST6Q7IBGGwdOlb6Op6OYVdA4x+bSdWcye5iX9mUXmI1BUmkioptUKjCzF9Fpfe3u8xOub5ai1e9OrgZxGrKqu5lFhmKHiGtZ5SwTWHswqtJhikmPrcMeeZ1QgqrqNYs82yWkmnvNDd4ZEHMc1murpeSSpVr47XkHWVJHICP9W0x8/xeFA/R8f1VkkIyNNwHa0nxGZt9C5dCoU9gEsm041ltTZK7Z0vEr7XSClFKL1CDSEdSz4fpVIKoK3tAjo7XsLy5W/nwYdejqNWp8zlVrN2zQdYseK3KJf7eOyx66lUBtl/4EuMjDzE5Zf/5IjOm8xXzxwJKZXgJIXqpM1g9iXBSYxIuMJMks22IkzfWthGffhenKdU7CI0CRLMFyTyqQTHCTudJUxgox1/tB+UG1JKZdNZtU+rqEIEkvabUv+M0ODomYkSgf4FDEIz+6o9CKcvkvXTr+mXnLU3ONbR4Xvhwqtzh3yqcSWYocGUIwyErNI64WXmGqZe7JVU6HdW6yk1ajv85lM72V0s87uiWe3yDqxOxJBSIaWUbupKRpoW7BplkEeciBABF9wfgjxCO4UMAhurKlUKhyomTkgpFR50NhkGk47rD9KklGzd+iFc12tjU6mF/rU29OoJKZDilVLTEwb+9fkRQ6H7oT2lQqq6+AG9VqNMRUrpNKbvNwWQSnXUKFui5Uynu5Bpi8nKICIDv778PWTMHNv5lWc1sKQbtj9Lau0a4GDkWNueZPOWD/plGx66D6kUXCL8DP1T+uyA+ht354MtmpTKiCg5IOLSR/pvs+yry8if+CQ1hOl0SKU9Umpg4E4GBu5k2bLf5Mz1f1OXbnLyeQYHf0GxuFflXk9KTafOihZwrkkpr867NaRUZAXJSPiep96crZp/y5YP0tv3PcAj9V58xT2kUgsAOHDgq+zY+Y9IWcWy2li86NWqcEbw/mlI2NUrpfQ9nZzcxv0PXMlZGz4RuuZwmHIAz8vNxjSbpiHNvLMCbDjz72lpWQ/AlS++3/etamo6DSEMMukuMukuzj3n3xkcupve3m9j2xPT5J1gLpCQUnOOZGR6POGGXsLVyj7KhQfAbbT8bYKTCfFx+36PtnYLs/791QqlYs4X8ZSiwQxsMh2SIEGCBEeNvy69g1HRyr/Kn6oQsmAAk3O94fY5Bx72Nvlj42CGXprRFfYiJJNLhJTyjNOVmblSH5lC4p3FYIdcxtl4qq33f89lkYr8kUKiorSiQ1bdhDjBYF/WlMEWJo4wMBT5IY0UrjqulTSGlLhC8GTTUszTr8FVS8CPOy6/HPYGR88vX83ScdCeUlU38AfS7ZgbMjrXDJdUpJnjhkstAUGuWIxcj4R6o3OllBIEuoyvjy6HVsgKh6o0sZ0SpfIkkI40sfVUkesTUmtWv5+urpdTrgwAUC73smPnP9HV+XIWLLjEP2Jw8G4mJ4OV8o7UUyqINtKqsrCixHsuZkgpFUdKybgFT7wjI8cJYfrXKYSJ4RNp6vnEhXnpck3YZNQy9f4zXKwG6Om0X2c1HKdAWKFSqY4gWawvtu4aAjRSfYd7WF4enZb0lW8AC8PhmLKBUqohPyNjP06ffmakz7KlN1IqHSI/uY3J/DYq5YHYdJu3/EnUZ6jmfeKdcnriZbblmyl0PdHhe6ZPSoXvX4gWFoYXjjbL8L2J0O/MtifYvv3vyTatoKf7tRw+/BNfYVSpDDI0fF+4hKoMDTKP8ZTKNa/FNHM4ToFyuY+h4V8FOYbUhxp79nyWnbs+6e8/99zPsajrlTO4suCcqVTblGq5xYuvo6lp+awWLYg/S4KZIiGlEpzUKEwM+Z/tyk6kO65F5lh6JjHBSQsR16VVDV3H5BgjUx43OzRqO6OeUip97AEJKZVg/qHRrHmCBMcC9z78ThZWxrjX/F0G3EANVU2ZmNKjdzqHn2ccSMnA6Fxrd8ZkihaCdiAcvleqif4wpOEPnoUa8BgqN099FRAMHWqy/OH1gqfWCgbSZXVcaNCuyATX9s7fPJHn9offxpNqZh7AxsQ1DERI8XN5qcrl/cO09nTQ4rqMmyZ7m19Puu1FKmMXS1R432ndrM1l+M7+XnoeAk2AuFL4F1xWeearNhYGjuEE0VlWiu1r38jggqVg/1Rt9Qi4lnLZuwPhlQb9sa13Hh3iJ5CUXY+iGHQ8RdEKa5zN1S4OVQ0Ko5MgOiIeMNr03PU9Y4J9y5e/nVSqHWfUCzurVAbZu/dW+vt+yJVXegPeYnEfTz39O/4xQqRjlVIzUWr4abVSyg16DTp8TxhpxvZcQWn4NB7o28uydWXWXdodHDyF51DUXFqp/MKqFnXS4eH7eXLTb4U8joIyWJ1NYAmwvXNkzl+I2ZLFrU5iNHnHO3ZQf2rL7n93i6Go1lnKlPwLqg/fW2i5fOO8tTw7WUQA13a1hY6uV0pFKK8pJvBkeHXJWZRzptfV1LSSc87+Fw4e/AZbt31kSn+iatXrWXZ1XUNLy5l0dFwdk2r6MFM/5RyzE7rOO64ikbWiL6KUCpM+JuAwOHAXTbnT6Fh4ReNQTp2Hej9ZVhu2PU5v33cBGB9/0q9nqVQH1epwaOGB4H3ayP8pTimVzfRw1ZUPsXXbn9Pf/0Nfsejlm1JlCvLUIaredofxsU0NSSnp+2zN3OPLV6XJ+t9agrlHQkodI8xoZYYER4zVF17MlvvuxolrjLKLyGRuwCrsPv4FS3DsUNf2x83BHiVisgmH78mgB+tvcxEYRyCNTpAgQYIE9Vgox0lLGzMjoQjj7RkMB3q70ywqNIEN0jKBKpYauJi2g36Bixq/m7DR+Ygt6QntM6SJrw3ySQYXgYvEjDQJpsr2v18tGG8y6HSU+iWUZoQmmplAVjyKzHQd1uT3sC6/x0+jSSkjZNJ+XsWhp1DkMSH5h4Ehvt3eQ9r0CKnuw4/S3b8Ro7PMn61ZAsB/rpzgk93d/ONPd3KgCE3FfiZynqLjsFADKHXZVTnpt59juQ3sX/hKL5xsVJ+9xh8o4jOlUmilVDituvBLsmNcJD9NT8vl/P7IrwMwKrxQqQ4TxuxI8lD4XshDSLWt7e0XsW7dR5mc2EJv33exnUk/TUWRBYbRxOJFv0ZHx0umGGDWhNnHQJfBMMAuPsT4gb385N8+yfnXvBqZ856LXWym99HrARjZMcTm+4c57dxO0lm1oqJfr6Idh3hSSiul0v6gfWjoV9j2mJ+2vf1C/7PZmmbJhy7HGSsjDIG1OIfxoCIGfeIzSkB5l1y/DVOzUtP3kyQSRCNSKqgHL+lo5SUdMSFTsWRdoJSS0g3dDyv0DNW5Z9qV8gnTqa8rrl8WhILF1w+9ffWq36Ot7bwpcp6JGk/nf+RG57Fn1kbnteF7ERIoIAYNI43jVNj2/McA2HDmP7J06ZunPY8mpU4//c/I53dQLOxhcOiXVCvBdLBp5hQppeudCD2PBg9yCkLXslqwLI/gdCNhutroPDQBoN796XQXlcpgQxIsWp6ZjxeCuhKvlDp06Dv09X0/dt+13eNc2lalebKFJ57IqPwsVp72bjo7rppxGU4lHHNS6t///d/5p3/6J/r6+jj//PP5zGc+w2WXXRab9ktf+hI333xzZFsmk6FUKvnfpZT8xV/8Bf/1X//F6OgoV155JZ/73OdYt27dMb2OBCcW1lx4Ke/94jf54p98kOGJYSLLNhtphNHScLWOBCcHIh3OhopgLX+fbf4132PSRJRSsbNjKl4/UZAkmCeIn3lOJloSHB88c+V5FAu72PTg+WSKUMimacmDNAw1KJbYmRxQwlRG2oYj/X5Ad6bK5ERQY8NEykNjBTaAR1gIwwvfUw2BobgEIYJjgvF5kMcat8omMugh06jbAnhql7KwaAaE8nPKW02UjTQZN5jcqIp6pZRret1xw3V5SbFExexgq9p3+s7vkSlPMNAeqHRMXEppg+b2CegFaQcDsjHh0gKYSv1jCNsvvqNC0ppK/b6iSjoDYC4OPYEg9DAYXnqfcnYRTMhS8e9It1nhLJ5jgoBU+XVxJ2e4TzK58MP8V58egHroe/oJfvHFz1Itl5CsY8VLe+FqHUJpsHLFzRQKu+nt+27simLpdBdnn/0ppsbU76qdGx/hgW/8D2O9IyAXUM6fiV16CEqw5b5DDBx8krPf7D0r11aBnoYNroV0JXbFJa2juaZQXkTNpb00moQxjHSoG+E9/2XL/g9rVr+PtPI80jCbU5jNqVDGRvgPjuMEXI8w1Yph2g+rCSltpKwi19iwDwxL1cFQV2VEZmimIX0Q2auVUkYjMsZXwdR7SrkZeKLvXZQOej4+mUwPl1/2Y+86RG2/aqY4wo7fVCFZ/nOdWk0kZkBKHbvwvRpSyqz3lAqH761d+0ccPvxTCoXdVCoDlMu9MzqPVKR5S/M6li29keHhBxgc+qV3Xv3OVO+T4NxBGHVDUngKQte7Pm2TUU9KRSaEa1bJlNOqmY6GlIrPe9euT1Gu1K+CCbCkyfuHAyOjkUwTUmoKHFNS6pvf/CYf+MAHuPXWW7n88su55ZZbuO6669i2bRuLFy+OPaatrY1t27b532sVR5/4xCf413/9V7785S+zevVq/vzP/5zrrruOzZs3k83GxP0mmNdIaID5jfjBsaz566WMHneENSPmdI5RxUVihHKV4JvD+iayCQma4FRAUs8THGNUs2nKjklVpMkAUik1DGn4YxJped1X4YYGwCnvBW6a0Rd5WCllqkGG4dq4ZhoDw/fJ0aSUkTMRwvWEG76XkiqbaWKY3gDFURufkmv5hzPeyk/azuPvd/yzyt9FIqiaFkUjEyGltKeUCA2wpPKNMtTgTkpvoGU4FdIVL27QCa2mYajyyY4cMIwb4i6GpENLaCU7K2SyrS8yWwr8dCoT30CYPdgd7Xi2yPXhe65yBNfqriaf0gq83cMk20XiGc7kMWXNrfardH1PPkZhbFRttRjb3RpDAISdrfSnmYXfNArfe/oXdzCwb4/6NkZptD2yvzDZy9iYt98yPRWQYdi40vLud8TLMn6QGw4plNKmWDxAQSn3vQF0NLzJslrrCKn464qSUq5tB/7hipRylVJKCJP29gsYGXnIN3E3MiWYjOZZwaQ5fA115BCEfXw0KWU26mPJOMLB+2z3SKpOn7+1XO5jclKP+aZvW2Ro9cdG4XuNaAd/xcoppzg1wTK9wmkmnlJzHTnjr76nPKXqiaGgXAKDFcvfwYrl72Drto9x8OBXZzyBqokYXZ81+eO4Zb8M2m8rGr439e9vaPh+tmz5IJXKoL6Y+uujlpSKDwmU/iqZMaRc7PXo98dsSCmrYd6uereefvqHyGZ6Ivs+e/dONveO87YXncaL1nQwOvYEBw58OV7NmAA4xqTUpz71Kd797nf76qdbb72VH//4x3zhC1/gz/7sz2KPEULQ09MTu09KyS233MJHP/pR3vCGNwDwla98he7ubm677TZuuummY3Mhs0CiljjOiLxcajsIybOYn9ANXrxfwexzCn+vz8n5/9l78zhLrrr++32q6i59e9979jUzyWQh+2SBQDCQAAaCBCIKaEBQNA/6iygPPmwCigoCKgiIouCPTQQEAwRCIAmQfV9nJslMZt97eu++S9V5/qi9bvXtZbpnum++77wyfW8tp04tt845n/NdjErwJBWDgYUC2wYr2vmU500QBOF4uW/fakbHmxgrubGhtArdYIKMct6714q4wOmMAscTbAjf51Grjqs6W4DRIKMfQOuoyVArQdBopZxAmNGJNmG40IihXUHGbxm0NvnfVa/j2VIZxw9Q7Y2ntFJMGDkgzN4UxJQClFNBGxa24apKRhAA2BVELHsidKGL1CUInO4FmJ7ocsDL8dKSbY0dzzTsQJjQpucChmbbimFWHCzQUDLRdj/D+RxtkXPVhPpExRv4FS1XBPMK8eri7xBeUzMiDFmVMk0jg7RmLIayBRzbvTj5piYmRkbQWqVYG1X346YfE6bazd6nXCzGvifbbe1AW9tmOtovoTFzDbAN0Cjl6fGxzf3nZXJLqZ07P8+u3f8W1szIBvsFg/5p9mB8McW/NE6lEqmQb9ERilLnnP0VisUDPPP1NwFgl5uAQaIEFoHB37QDR4QA/zdVJVxFqXbNUomHJZdbgmk2MDa2fRpuV1MwQ9EntMRJFxqm9ZwlfVFTy5kvSyk/+54vSvmiTNSqMC2u1+S/izScKlEq6x23GFnmi1JR9724O3SUI4d/GmS7U8qkqXFDyvl5z7LjHz+0Zo3WPcySOT1RKnKEaW4XtZSa7Flxl3d1Xk5j47rYuufG7uW+g4e5LvsCenuXA8oVpWRsOinzJkqVSiUeeOAB3vve9wbLDMPgiiuu4K677pp0v5GREVatWoXjOJx77rn89V//NaeffjoAO3bs4MCBA1xxxRXB9q2trWzevJm77rprUlGqWCxSjDREQ0NDqdsJi5DU37aIUvVCdEZDE8pR4UI1J+190HlQ1Y1PYyHjNSIRSykFOPHZQGloBEEQjp9/ffilDBYbeeVohl4IlBEjkiGtVHBFG3vMt3ogGLhkIzGlrh7NsLbcw7+or3Jqw22BWGI4lcAeQnsDrFKLKwwprVGJQLxH2ps5ePaF3HbeRTThuo5VIm3PH63q5asH+8lYXqneSsdUTJhhvj/Hi7kSWh5VsA0L23brYAbtj5txzbAjVk6R9tC3/qpYbtlOJFD3OUsu5LldtwbfM0ZowaR9iyTH5s4z++lb5XDVL1sBTSbnhcqIDCbDmFJecO2I0OBvZQR6Q3gcP6i5rlR46zf+gdaRAQBGG5qonH4mAFYuByMj3jgzKQD4wkG1+95UFiy1XKsqpbgoxdB4/LtWdHW+hFWr3sHAwTGvQE+UImEpVaM+vuVSVJDKZNpZsuR17N//bW9/715PN/Cyb7XnbT4xOhJZ5Qe8rwTflTLI55diV1wHvdJ4DzCIYYfPY+ROR5ZMbSlVKzxG2J+aPPueWz9vCOpdR11T6KrFTN33aoszodVPrWDg0znm/LrvlUpuoidflCGWXS8lA2IgFE9PlNKRZyl6HMcpYnjvWNNs8Lb1rpn3n1dCVZl+gPTly3+HNav/iGy2M+UEveyCgYVn1FIq4koauO9VW4pNckb+AabYLlKVwFIq3X2vloBZpZVOJ9bW85x5E6WOHDmCbdv09vbGlvf29rJly5bUfTZu3MiXvvQlzjrrLAYHB/nEJz7BJZdcwhNPPMHy5cs5cOBAUEayTH9dGh/72Mf4y7/8y+M8o5ki8TdOBPEZJvmh1xvR+zutX5Q/0z3tAyS2VKDtw5THfkHDhg3cqe5jpG8X+kntmu5HSh768Y9RmQz27hyNrSJJCfVJqNdKmyacGDZ07GdoQtPunAJliyZPLFERUWrnha9j5df/OnTnUwaW0pQBqzQKdJHVmlPLrtBU1gW2jL8Ey/Dd8cIBTH9LlgwwtrwJBlwrpKTlyK/WncePLnspAK/xvI3CEhRvXNbJby3v4tAZIxR3jlOuZLCwOXDOEgpGf7Cl7Q1efnn2Baw+sDeox/iQO7DyLaC0dq0SzIirh5MiSu3rPRPYipNphnE/e2B8gOREgkcblifKeReuErmmZiYRkRxQxjruOf8NjBV6vOuGV79wG8NP7xYZuPninxocDAQpgMbxEQb2Pepu49VFO6pKAIgFvw4+ORSH+tAjK9j3zACdSxvJFTJUUcN9r5K0lDpwDLKR75p0kUhF1gekxE7yaG4+k6GhhwE3GPRFm39MPr8UIAiMHA7kDX72lafYerc7jll5RievfOeZVW5G/jVq7e1DGQbacSIijzdoj7jvBbV0TKBCKJ6pGQ7Po/dgOpZScUtFr0Lu/sGi0DouvE8z7UVN7r5Xi6myw81MlDrx7nsN+RUMDj6Af50LDavco0WtiFLqNVNLqfA6xN33nIgrsukJQo6fKU+FllJpgeT9MnPZ7nRBiqh1ki+KRd4P0XMM3PeysbJrnFFQ3nQJnwEHrZ0U8Wn6wexVmtAuxFhQ2fcuvvhiLr744uD7JZdcwmmnncYXvvAFPvKRj8y63Pe+973ceOONwfehoSFWrFhxXHUVFgg13y0iEyx+opZSk3c9dKSzNcviIzjYxfvIbizw4Ngt9DidoCqgzSADkQb2/dmfe9u3YmSbUW8WP3Gh/hH5VZhvbtz8v4yN7eDYIx/l4FADmUwJGzCccJBYWrOSP/k/7+cFO3azagDGrBxtyhWvMsOHgFWco7ZjszHYx9EWlh9fJ5Ju3DYtMmHyPk94mXyCwxdh/AG2QgUDHatN0fOiYxQzeXLlCR7pO4OJ0dHwWJ6b1b9f/Xr63/Z2zvnUYwDk+jTDdiejA3luGfgT9g66yXuillI6RZQqZd2IQE4mDLaeHHQ5ygnFFC+mlElkEIn/0R8s6eBf0zqf0eyyYJtMZTAQcfzzD2NKRVwp+yvsfrCPhsoPARhoaSdfHCdfnKA8MYwrv7mWSK4old52Ry2T9j5ZZsfN7lhg6w8fpKUrz5s+cvHkg8yUwd/42JH4JomxpHZUZPAYfddVACtwH3XXp4gvHued+00mJvYCkM12YFnRLHXe8xOxlNp230Ecr+znHj2CXXawskmhzv3euWwZf/CF/2RiZITHn3kd5crhiKVUtShFquWSt4p4fLTov+GBUyylarQDQRsRuy8JSylU4I6IdqN2xmNZTS2bVVt5TY+psu9NR2ioFTcpqN88ue+deupf0bfktWhdIWO1kc128uz2TyQCncctPaOfpyuKTCZK2fZo6DoYxJQK4z9FSkgp03s+jcnlh/D3FxEHU6y8/GMm41pNfj4zz4YYjw9nV4lSoaVULQEzKM3fa9rHf74xb6JUV1cXpmly8GA8Kv3BgwcnjRmVJJPJcM455/DMM88ABPsdPHiQJUuWxMo8++yzJy0nl8uRy+UmXS8sZqocuoJlsw52LSxI4o587hLlfYuHID/OY/gzvF77dWjiKI73RXu97+zKlRTW5NFaM/7AAzglA5V0CxCERcocT+wKwiyJqUQx9z2lNI9s2MRIYw+rfulaSmmrAGUC17u16gBPR0QpjYEfA92IZnbyusKmV7xrKTW54JBJDH6SbuYAphfrqqIsvt/za6wf20lG23ynJww/oYChTAONGra3XMbNh18Oh4mRLx6LlB0Rpbw2yfFEJl0O6zQwGp8gsSPujNrwA737AdXDgVKVZqHAHya0D97Pxqf+l8FuEwpNsc3MoPjwmk7cP05xaztZXLOygZYOeo96Wb+cDGBjWIFvIFUElQkHoUNHPEswq4xTyTB0ZAKt0wye0wedWmtGjngub8oCXUHlrJjXk3ZUygtQe+KNxcDgg5gNSygU1hDc7RSxxzAsCoVVqfUIBI0w8Bh2OS4UpPdkFA4GJcehpa2FQksrxvb4hJxOEaV00Ceurqdtxd0X80oxXCvQuS/qRmpo20UGhx5Ea5uM1RIR66IxpRIfFMF1dnSZ8VO+zYHGPfDwW1PPvCZp7VWNNiwQFqaMKVVDaAhiHE1tKTXXopRp5mPZ2yYm9nlViVpK+UeOehvM1n3PfQdkMq0YRh7HmUDrCkplyWa7vK3D92VoATe5pVRU7KkiYfUXdd+Lx5RyyzoR2ffc8m0gbpk5/Th3kcOKpdSkzJsolc1mOe+887j11lu55pprAHAch1tvvZUbbrhhWmXYts1jjz3GK1/5SgDWrFlDX18ft956ayBCDQ0Ncc899/DOd75zPk5j5kiwY0GYFzTJkLNRZtfoT+7znSwy3nluf8ubWfWKV6MrFbaccaa3ThoaoZ4RpUo4MQQWBoFFkvtuzU2EYojyhJYhCsCEZ9aTBcqodS+BJ8cp64hfFuBg4esg0cx3SntCTSB+aTfouU7LAVfdcS7F4ra4f3zRp6Qs/mXFG/jn5W/g1Y07+f7oqtimyjSgAkfLbpBcpWzyaoRc0yGeGbmbF257PLwukfbJd/OzDdfexLHDAfbd2wc5JXreho6YdXlZC73BYazV8mdiAmsWjR9AO1s5RmHiCAOE4TOSQ7xo9j3K7triqadxZ/sqnl6zid/+3r/4FQJsDNN330uJx5J65d3PzX17GNyzpmqfcOd0K5aBA/uCz4bRiGMPVltZ6ailhrvINBuw7RIaeOLxPyW78zCrV98QPKeTiWCT1y9usWJXqsWPqEWWz6POKfwVH6D4aANN5mN87ay1wTkGllIR972Hf/wDtt79C8qlhBWL1uiMZuI0B8OMBKgGVpBJ6qLEY0q520Wz723Z8hccOPg/wffGxlNi5xktP6pO+ddtaPAhSqt+TInJJ5NTvQVne/1T4hPFi52O0DB99735bjtD4WR6llLTd9/zRCnfutIscP5532J4+EkAmpo2cPToHcnKEJxvyqUJg5dPLvhVx0eLuATGYkr57nv5aZ7XbNz34pk0q0m5zsmjJp5TUQkmZ17d92688UZ+53d+h/PPP58LL7yQT3/604yOjgbZ+N7ylrewbNkyPvaxjwHw4Q9/mIsuuoj169czMDDAxz/+cXbu3Mnv/d7vAe6D9Cd/8id89KMf5ZRTTmHNmjW8//3vZ+nSpYHwJTy/qJp9iX6RX/7iJ+2+eqTdXpX4OzVxY3UV+deOuiJETNsVhL1VIzITKKKUIAjCHJAYzHliSdR9b3nOxtB2LPB2YLiSbwLG2a6XVw1XrUhwIOXYaMPE8MQrf1xhRS2lUsaVZmLy8Rm9PKxCYInlxWxSVhgQPGnTrRRdzTnGjhVxPJ+4ls4neJP1Qe7tuZSHn9pJNmpBk+K+ZxumK0qNTgTrjjWu5WkGOTX7FM9myzy1dJhDhkkb4CgDNJh+5qqIlXFg/BFMwoCpLfdIKn49opfAtz6LiVJetYunbOD+ZRe4i4Lg5574F8S5ntzUJWb9EUlIElmI4zhB42wYZrhB4j5FA4MbZjOOPVhlzVHWGR6baGR4ZJxeb3/DzKK1e0qG0QQcZnRka3CS07KSiJ1ZPOW9U57eUOxxex1F5QaWHrEd7h4c5ZyEKBUNTv3Lb36FYsR1VBmhC+HQVQ4jL9OY3xmL183t4CQq7PBDruYnvIIx8t45hNuMT+zy9s2idYnR0aeDM00UDEbkB+UHz7dday1rog2t/YH7TISc2brvTebuNTcxpfQsRJBZkXo+1S+utGDhExP72Lf/v3GcEq0tZ9Hd/XKvLF1lKQXQ3LyJ5uZNwff+/l8lKxMRCdMsparLrDqdxO/DtZTyf9Mp7nt+XKspLKVmYzNSbSmVLNOPCyfue3PBvIpS1113HYcPH+YDH/gABw4c4Oyzz+bmm28OApXv2rULIzKoO3bsGG9/+9s5cOAA7e3tnHfeedx5551s2hT+AP78z/+c0dFR3vGOdzAwMMALX/hCbr75ZvL5/HyeirBASbP6jqw9UdUQ5gsFSuvYDHGUpNPezO94ld1/wLgTuuP5HVdflAo7xxG3jcp009EKwmJG3qvCfONNAui4KOV+htVndrEkv59P806Guq+kyOVkTFU1CDRSHtWcUq5FhnZQ2kZjYml3oO/3RnuzZjDobkrpZCSHH44yeXb7pxgYuI8l5f7YurIyI8kCqgMNZLMmY0AlCNTkDqy0UlXZyByqRalKRwe2WaDBdsUFZfZwVmuBiV0OLygcob+lyIilmPCuSclw3dX8mFpNThHwLNASx+sdrNBhGhzpjrjiRLPPBWKUN50TdYn0LX0ifXztfda2L/YkCopem5RMVW67q2IGzQ/88Hv84mv/jnYclGHw4je9FdWePiguT7jCXb5jgspIsnw3GMCw08Jb96yHPVt5f0uHt0ZhmlkqVFi16g/Ye+Q9aC/w8azwDu3YmpH9p7N/wBWLlKECC6m0AbSdePJsratczcJA5xZ2xb0fHR1NjJRfjXaGw33b0+uU+AjAc3o531EvD7436FG6MuG99gfmzc2nMzT0UFhONF6ZLzL6z4wKhQZ/f7PcHIhSaZUxjAqxqPThgaqXBXVLWRior7UDnVPLmsfftlZ7GJQ/z5ZS0YyYXjBuHQimkXuQYim1fcc/sn//t7z1Ji964X1kMq1EfztGTTfG+P1SypjUUtGtn+dyV0uUqnqWjYillMOzz/49x47dRbnsujaH7ntT9cGntmqarC4AR478lHx+OW1tF7jXWGtqWV9VO2LMzFLt+ci8Bzq/4YYbJnXXu+2222LfP/WpT/GpT32qZnlKKT784Q/z4Q9/eK6qKCxi0rPviRr9fGWmccSqG43Q9PgMYz2XLb+MDYUllO6PW1QF5rgq7fkThDpCHmvhRBM8c/6gNVz1e3//InKFDIcO7aOToyzNHOARoCFjhpZSwWvZ8P4t43ixQDIQuAkt3X8nB3vPZzQHAw39dDQfg0PuRIhvKdVnu2V0jYWVSFpKKeXw3HOfAaA3kpkKoByxlEr+mBSuEAFg64x3rp4oharSaqLfffepiWyeb61+Mw0Nv+JdW9cx3riGtY/9L6ds+xmGdngjcN6YGQh0ow1tMALKceg5psnYEeuCwCI4UmPPnOnw0k54NP11YAZdrkhZgQdmWGnHF6Uqfmwob5tUS6noQFu7ba0nSkXFs2cfuMfNQgdox2HHww+w1E2SSKl8jD17/q+bwt5sYGJ0iXfcwOY58nC5LoXKccgph6I22DVRZCXuptoexy49w57HRhkqNdHeXg5PcpbuY0e2bmb/A1ezx1uabTApjvpxpqqvdLUoRVAH31IjFujcE7jWNtg8rvuwS8Pe0e3Qk8+faosYoa0yKrH7vCd7fvD5rxu/QcfIzWQqf0K5PEgm0xo8s83Np8VEqVxuSaSUavc9Xxzw61wVdT6CxuHSF36dPXtORx1tDJYmCp0W/rVKj3kUceutdV9Ds8JpHXE+SVrzKGVEnp+o2lgd68kPxu/vWy4PsGvXvzIysiVSfi0BKS0Q3eSiX/h8Th1TKrR8Cq2vKpUh9uz5SuT4WXI5z6V4utn3ZhRTykCpDFqXefIpN7nR6Zs+RV/fq4kKdzMJdC7JYiZnQWXfE4QZIxF56xrld5ZSb3P1LJy/bNrilDs5mkoGk8/+2mc5eugJ/o1t7sIB10ydn7wPHvACcqpe0Ap935fg1muhqReu/xF01Ih5IQiLDXnVCieIqPsYgFMJHz8rZ8a2iY0N/YG1J/QUslnGymCpEiVP9DH9cYvWbHjmW2x45lu8521ZdvQ4vC9zWVCD9flf8cjYq9CemLVmIByAJDvOa1p2Bp87Oi+D/T8Jvtdy3wMwAlHKcyH0XbpSRKmoIZMfU+rfDlnktIHOWhgqj1IGe5e8hgPdL+fcRz9N89AeTh2xeXDFb7HlzHOojLhWBWbZ4TOft9nTOcGjnvehUvFrCrBjqUlLEY51tcTqENoIhBZpiqj7nrvQMSMDZt9qyrOUUl6ArzRRKj7h4wBmZDIoXONbP224+EVsu+sXXvBjd4PD93+YJU89jrLh8cN97DbPcuubcYLyQ2s0E7DJVmxe2DjCrSMtlJ3weOMDP6Y8vo1Hvg+wgobsBPll7j3YU9R88OlnGSjbWErxRyt7uKq7teqcwnNzr0Np1L2m+eYKHX1dnHJBL7d/zQ0Mn2bh4yREEju6USI4tMIMBJZMojADjQ6s1Pz9w/VLDJt9ke0tM8ubCg9zaWcPLbtcq5ptT3+EbU9/hDWr3xVYqHR3vZzenqspl49hmg20t18cKcV33wu/V7lppVjMaTs+2G9v38d4LGJaushQq7kKAnHXcMdyt1sc7ntRYahcPkYm0xERPqrd98bHd/PIo79PpTLM8PDj0aIYHnmC53b+c/DdNJvCmE1px04Ipcr7D2pbSk1H6Apd/UJLKdsO3ZTPOvNzFArrGRy8P1b2ZMw2G+K6tTdy+MgtjI09R7ncHwksHz3eTIRpsZSajJnK+8KUiAJ6Mqief6xeKixyUtqR5KLa7pxpZXqNp22z5awXMPCd70ZMyr0ORWN3EGg3ZimlndhMkNK434f3w577ZlgRQVg41P4ZyXtVOFF4M+YR12jTT5GXDOSrCUby/iAwb3lZ9VRovWT4gkhkYFA24jPoSjtc2vJlzun+EPfn3IHRXSvDQVTSUuqc7ie841oUGtfG1o2rMPNzdUwpgmDfFU+U0kEAcsVEwlNp2Y7QqqHTGPLOW3tCkUPrwFPBettqYKDdDZ6edcr0d15ExSoAJmiHwoRrn9M5FNapKoudBtszZ8pa8SC9jlZw7OfYpS0YaZZSvrefERbqJA7gu+/p1IY77pLk/q0WpUrjrttiocUVgRzHwX+DdT23g/bBCiOHCtzz3Br2PetaClkNlSBmkeFb6XgCRKbikPXOMpLQEMd291WesFYcLgcn+eNjZX7eP8xDw2PcNzTKF/dUhwqP4/UxvGu0/MwRXvun57LphUvDTabpvudvOOHdz8NHbnGPoCIiXmLSzj3xyQ9kWfE4U9lCA5/Y/Lu8dv0rq7YdGLg3dMkyMrS3X0hPz5V0dl6GYUQylfk3LXDfCy2lAvEhZUjqu/P54odhpMVNmiGBiJMmmkStX6YT6LwGsxRBZkpUPPvlry7mzrtejG2PeOuqA50fPfpzjhz5KQMD92Dbo4AKyihOHAAgk+ng1FP/mvPO+2b8PlYdO+luGd7XNGU1GvNs0jJ9S7bguTDDfrlniapUhu7ul9PYuDZiATZN970Z3o9Vq97B+ed9i+4uP3Nq/H3k1qeWlV9iG+lCTYqIUsKiJu3VEja/8suvR3RqkIDZkenrC8stlRi5I8wkEjQkZiaY8ckWXeun4gV/Cn+61f3fn6k//XWw6tI5q5sgCMLzE/d9m7HcmD6GH/MoZZvYkoT7nj+gNbGD8DAZndgYqPiiVCLNuwZuy5f5v00T9J/exBX6Zq7X/1Id0jbqLpgYnJRVxl9DVlWqdlNVllJl79iKh9crvv7isLzh1mY+87On+YP/fIBnHmjmpc99j79a7sU+VA6rdn2XF9/xx3T0P+Ie23LLzOlyUMmWC+5k/WvezZ7fe5axbNT6SkPHCEs2H0KZYT0Nz6RmdaPnXlhxvL6VguH7KY/+EOVZKyld4pxnJ3jdnSOUBz3LqnLYS9NG/NoYnqVUedTknu/+F/u2RV2Gott69yMS6Fw749ilbUyMuGJRvtF16XJspyp2y4R2hbWGnEPvOUdYcsHhYJBreNZdmYofQ9Ih512Ucsz9yHsm8378mlAQKnnVavDOz56ijxJOfHkiqOGfc+RoKWU4iYF82SkH2yUzgzU0rAwz+KV0lHXV+Di0Ml+y/Kd0nfE/tF5Y5JYXNLB79eSWMo6uTDN4dfJD5Do4vqVUNGlB+jU0VIrwMENLJF/8Gh19mnvueSWPPPL2INh63Ipl8iFyLWugkBMjShlGA+3tlwTfi8UDjI4+W3XspEVZR/sLOeP0f+SC879LY+MGAEqlIwBks50sW3odzU2n1j54lbgUcd9LfUf7Gf2mtpTyM0lGhS4nEKWsyPbu5+LEAQ4e/AFF7xwmL3+W96PKwm66VnXBVu7+MjadFBGl5g3xdTgxpMwABSrBia6LMOeomXh/h0LkdPfJbVjvbm8FU7bhysgs46Em1z3DD+g6NGxAcx8094UTgFbOS0nOpB0qQRAEYSr8wbT7Xm5d0xusOXDgewwOPRIJ8KyCPYIhoOEP+j0rC2WjPGvXzIHvA2B4A56SCUOFxOAxmuFJwX5LYxgG1/NFruDHrCmVY7XtsSJ1SYhSK829vGVpJ/9w2koKKr6fQgXuez6ON0CfGCxRySi+e4mBft0o7aeMcsclF/CJn2zj5icOcP/+ddy59Xwua/DFCI2j3Kx6VsW1dKlYroCitBPUK9s0gpUfxlFOlSWWU7DpPfsoZmsYEFt5olR71h34WVpz9bKnOK3jCNobQijveuhymVc+MMam3SWcoiti5Q6GbaGTEKWsnLuuMm7wy298he994qOkEQg0gaWUpjx6E+XRm0JRqskNFh513/O39zM0NhVsllx4mFxLKNIFznu2b02nyXn7FW33vh4pV6h4cauU547o2E5QL1/7afCs3qZ0zglc7TxhLBClIgJeqvtefCB/9Ng9wRmsWvkOTLPA+vXv5dxzv8GmTX8XsfpJ6RFNbixEJjtM16Yf0H5ZibtPbUBbtdLdl71rPj3LotAoLiI0+ELFNEzdlVEtStWM/ZRWRkRAGBndypGjP2Ng8AG3ftN130sJxJ8kCDY+75ZSinPO/govvXwbhYLbp7UrI9XHTtyfQuMaentfRUvLmZhmAYBSybXyM42GaR476b4XCWAf+SU4TpHh4Sep+PWaRkypMLOdEdxjx0tAZERELT/Q+cjoVh5/4l089ugfVBUZF3lndz8Ct8JAJK8tYFaJX8H1F/e9yZCYUkIdkWgclAgDix2VJjZ66JR1M77jQSPjF6qDzkY0mPktG/6Du0rf49p7L4LSJLOYtjxvQv0RxMWQiRbhRBGIEO4fq8Pgmy/4GMsaBzn1yaMArFn9/3gbxwUICMeLjvatYWy0KgF5Rvu9YM+rbT65xmB3t2Is71mJ+DuO93uHD595VzwyAIc3Do9w/kSRwXUX82z7U3QH5lcGSauNC61HeePGFQA8ticR2yfivhfU3bPcKY9Wwim3gk3feSMcowkmoJA1GSu5A7axki+IOfihmayKa7lUsfLepQkHTJ0ZP5C6ZiwHhSBEi2ZiuAmWAJGBv28plbP8/S1OaTlKY7PmyYEV4Ixjeu6VTsUO40uZJbRd21KqeYnBkgsPURps5ejWHOPDnkvi0D4YO8RDxxQ7sXjggU+ypGk5y3Snd66gnUEAulauYeUZZ9HW5wbV1hH3PX/w52ctjFvPx/sMRvD8OOS83XeOlzjfK0V5pVS8wfTgniU45lJaV/8C23vOMt69d6aclIq776moMKncSqX1MfKFDVACiwoVLIqVseAMlix5PevXvyfYNrZ/IPaEQoofUyp5FI0dbOZfN6PGq18707OUqnLfS40pNbW4FHXfC73jalWwRl1w3dTK5f7ALWzG7nu17nVKlub5wn13mViWazFY8dxNo8dOinfReFDZrPvbGh3bDoBhTlOUSooxSoXHjFybBx96E4ODDwbfa2bfC9z3fEup0ALVF6WUCl0KOzteSF/vaxgb28HQ8KNBzKc4cyBKBfWyvb/TfVb8/afxzDzPEVFKqEPEUqqeSW1OVI11sz1Cog0byR1DK6/P6OiqzRXOCel8CMJJRTpUwjwTzkR7C5TmWOEAyxqbMIwGHGecieJ+d1WadYk3ii6VfNc5G6VsNDC43Q1mrpaWubst4U6WyBb1iF4XrlN4cXrcofqGcpmi1cRQJiqGGSTdWWIxvJNZ+0gIEsCq7hyMuc2PL/BYuIMz2yusKWcxUS7jaCMS98gJtAfTc0UbalzPcytfzjrjrrAKXhtmoznWpOgaDI89MdIc1Cuso2cN5VvzaPfu2MoBb2CpvPZQ26ElmDLdz0YlIuxVWQhU6D3nKKad5+jWHNpx0I9+C/Wd3+OIafLllcvczZ76GgB/4fy/wBJXlPIGhi97+x+zdMN6tj/kxnF0nDCIua/6BBZdKk2UcpcZQZuuyXmfByquWGIoFQhazoR7f4f2L2Hs2CVUihb2qgpoB8sXpahN6F6ocOwBxvoPseepx+ldsx6llBezsno/K9cHHCNnGFScILKNV2ai7xEVaVMtpeLCr7+J7YwRXhsVXRWjuflMhocfw9HlSPDqaQQGD/SxUMCNxpSaqgeVHlNqZv2uqJiQzXZSLveHGQBn7JJ18t33olim6+o84cWGiolGCeEken5+BruhoYcBAsupqUizlPLPd9vTH+GZZ/+GNav/H0ZG3GRBmUwnDQ0raW09t0aZ1bHG/Gc4sJSKiFKW1czpp3+S0dFnufuel2M7EySZqYA0ScW8wvyyZhfoPC3ro+AiopRQh0xtVissHmZj8DbdLkDYkauewUi6h8QKjg5egknZ6vgTgrAYme9sQYIwE3zLk7bWsykUdjMy8lRoXRFNv+e9dp2yF0uo5Lp1GMom3/s4Y7s3u7uYJZqWbYfR+HEyOhRVXrn8Uzz5TOg2aKA8USrigmcmAwBXu+85EdFJqWpRKmkp1dKgPFEqzGJleoOfIcc9n4xpYCiNo6FY8a0xQkupXMl1kRkrrGD72hUcGd8UlB9YyCiHf73S4LoHHTzNK7As0zH9wFvmWTkpR/P6pX1szWV5yzZPtrB90SzaBrqfc0c0v3/vI7S1PcLq4SfYTmd4roP9jHaCMsNrpvc+hAJGvONlHLBpwTGGKHtuYu5B3ftvZj3hMXCJi1hK+e51/pmoaP0ms5QicN/zdSr3Fvr7ekKcsikNf5N9d+0jf9e7+b2WTn7+5j8B1DR0e/fY5bEipaEvse122Hb7TSzZcCqKV0Vj9scoewuzSjMKVLSaNKNYzFIq7X1uuCZZ2o4/r1qHEW8cPyZbZP+LNv+YI0dupalpEw8/8rtoXQ7d72pav3hlRLPvBfesOvteMtZVUG3DoVw+hnsfaog+Ndow3yoKQhGnUhlm956vBIG+E5WtLn4G8YFOpJVxNtcNgOO4MbIsq2XSekTvV3fXyzhw4H+x7VEMI0NP95XTOp5lNce+m1YjTU0bOXToB4DGcUocOnxzIFxecP63aWhYUbNMX+hKjSmlvZhSKcHX/SyBToooNSeWUsrP/OoHOneq1tUuQCImTYWIUsKiRsVMgkUIqDdU1Ny/qh05/oY+7LdoVLbZ/estfOL2H7N36yOcf91vVh0ztdPpyOyHIAjC8VNtKQVgKnPSdO6uJuVuN9wfHZQ4rM7dx+Hzf0H+wv9g5cp3sHv3F8g2rYOt8aNaThgs+mCuK77OVFWD7urv1YHOnZglVFKUqo4pZVIJ1o7TAIxzc8PL6B/r4Hb7LAAypsJUDhVMin42QaWDMf2SA/dQzjSzv/s0SoWVjJjtkathYOIOrPZ3WjxyhmbVQ27dtK9Y+YHMibSyXj0du8zWnBeMyhuIlYtuDCvT8YNFg/KEtOygQc/oMjY33UFfp5shzsag1Zpgaa7M08TbeWdiyHWSbHHd8XKOYrDcitkwRCU4V/Az/VkZL0C8l8pPOw6/3LWRb2+5lr+2/4MeHsX2zivdfc+zlIo06llf/Aq8r1TEjdl0r44aQduhm1D70FF+47PvZ6C5ja1Xvxl9zjrGH3oIe2QEs6WVhrNfEJynLw7YRT9IvQKtObZvL0YD4KS77/kB1DMqKppNJkrVjncT3OrAX9AX7nSo6SV1JKCxcT2NjesZHHzIrYNTmZWllHsNfKHBEx+mcN+zbRPTtLGdcaA5sIiZqejjREQp3yJo//5vMzBwb2R5Y+3JmRQXtSQ6fIBmVL/jYd3aP6VQWIt2yphWI0uXvCFcWWUpFX7v6LiUF1/2wIyP19l5OevX/TnF0hFMI8+y5b9NPtdHX99rONr/S5544k+8Z3E6zwixbSqVwaCeYUyp6kDnPqaZ87YporVO3L+5cN+LJ1CIxmyr+azoYCtvPxmrToaIUvOEzDSfTMRSqp4J7upczDoEj4qi6ZV/j67sRpm7ABgfGmB8aICnfnkbNITHVvhpp70ilLv8rmPD3NZ5HX98cC9nH3/NBGGBEbcsEIR5x7d8ilmtxkWpWCuQMi/wh73XopTme6zEMCvk800oww4CikeJilJNfQ4HB5ppsW2GMhZ9y5oxjuWCVOuQNlufJkpFbD6S7nsKGttysWWNmZHg1G2vi/7tltfx7KHQnca3lAIoVUBljmJkBnG8Q2cqY6zb8X2ONihKhZVEr5K/je0Lf9GEZ4GvoQNBvBnvd+9bM9nude+oOGh/gHlwP4OqiUoxS2XiXrSeAG/wmG0YplJewkGzjyMrT+dzL7yefx76T9Y/8wv2sNy9alFLqQnv/LNNQHitIZnVzq2HaXlZAb1VR/cNk731d1ifq1BsyYEJZccTpZQvapkk32dRUWqtVWZpLoPjCYR5QzEeDED96xIKG8ULLiV3368AaBseoOfpx3nuSzvZ9u//CkChVOGsD/4l5RecyeDhQxzZXkEXzCD7XiaXpzwxjl0uYxYUk71lK14dc8E9DLdNjjliIQYCfKHRqXbfS8F33zNSxjO+KKB1ORJTaurA4NHwVkmBuba4pHj8sStoaT1ChkPufv7vdYbDrago5WeB8y2kCoX1tLWdT1fni6copfZBy+VBihP7p7XtXJLPL2XN6j9KXVcVU6pWDLBpYpo5Vq36/arlmUw72awr7Gs9XeHSpaFhVfIowfMTBjqf3FLK3840o1kjo27Ws7wfVRMifrs03bGIBDqfChGlhEWODJSeN4STtx6q+vMMff0yvY1B0QAYXWQa+lDGMtaceZitd/7McwdI1qU6ptSRYolfNryApmW/wT/JTIggCMLsCNLc+wNZz5oFI3Sh8N33POsTu+wkdwdCIcJ2TMAgn1/ubVSdxSsqSuWzZSpntNOWc+gvGuQyJuvX/zkHD94EfNfdqPcMGP1p5Fi1LaVUoqeigEtft57lp7bj3PwBmsceoaVptVu9iCVJ0u3PFaXc831y4Ema1n/OPVZirGUrf/+I6GPGLYSiCc98d61YZjb/0L5w5AU1b3bCmFLlh+9nB75Lzi9jdWhsHWDwCGzPr+DLp21mj1qJHopbHEQHy872291VuSbO3zbEZU9qis5hnlrr4Kx3KI18n30P7w+2L00oHr9jL3u2HPTK1JgoNpRNTOXeTycqxrgnQ9JSKioYtuBw/8WbOPDcEN+95QGaLJNxf1/tu/CErkWjv/4GvrL+Qq586h5WPnwnRrnI9269A3tFT1Dm4O2/Yuv//ULwPde2imyzJ/pY7nWslEv4EmWaqFTxqpD17plNLfe9yMRZ3B8TlK42SopYjfsl2kGigGp8QdZxojGlpjGkVNEPvuXI1IHOldYMDfUwMtLHanVbUNdEoSlUX8ec5+Lm1tk9j4onNnd0XMrGDR+oeQruESef/B4efor77r8mPK8TKErVJCHGTC9m1vEczhcuZyZKtbScRXvbRQyPPIVSBkv6rgneEZXKkFdObVHqiSf/D91dL2PJkt/w6jB3llJhzEO/DUk/p2rnDjGYmAoRpYRFTS3FO9kBFBY3OtJpCkm//9O990aj27Apy4YigIEyDAxrGa09maojOLgdtPHyOPtGXNN9d8CguKBg8kugnDKDIwiLFdFXhRNNVZwW7yE0lFEVh8bKlbGyBhUvC10mZ5JtqO7ann/m+2htXkvom1QtSkVjSmU8K5kxb2xvAEuXXMvSJddCz5/Azjuxz3oN3PXpYB+lDLDilk+2GR1oV/+Ysg0Wp5zfC/c+CpWnKKtV3pYKx/OkCkQpVSbbeQeDhRJG9xjWyDr2T3hWH04GQ8Wtv0rBZE1YBz+EkKPKQDauA/i6S1DNcCZowB6hGyiVJwCDgqMpN52KNWhhdlTIqp04tkVxcDWG1cKSM55FNT6Hc8Q1M9aREAtaxUWpXLkCuG54emIITNCtK3jbT/bQOQwwwgu3wS/e0o9TfgYnEtbrnu/vZNcTAziVQ965+gImWJ5w54tthtIcqygeGDfpDeJGVbvvUXGtg8xU9x8/KJdbCaUUNoqB1k5KrR0ALN3xNLb3fJm2g20aHBno97Y30NqhPJIh2+SJPqY3eHecQICNsr9Y4hfHRthbdO91zhdaddSqqkZMKZ3ST5qGcUcQ6Dw1JJVvoTY9wSEQcSKiVFVAa137t1Jdv2pRczq0tp7LhlM+QKGwln37vgkQWECaRq7WrhEmjyk1NPQwWldQysQwGujre82M6jdfVFtKza8oZSRjQ03zmIaR5dxzvxpbtn//d7yy3N9AJtOasp9FJtNJuXyUw4d/wtGjtwei1Jy47yUspVLjztbaPxBhxVJqMkSUmmOmE/ROmG8WyKyEcNwo1KTGT/F+lkr8nWb5ycZEpRiQRzp3E/YETcC9++/lr779JQD+2/vNP7nvx9B7LscMA5kJEeoPea8KJwr3/TnmCSC37b0Nmvxg1vGBrJV1+M33X8jRvW7U8s5lTdz13WerSly5/FoAhoYeje0fxYpkj8t4Ak+/lz0uJlAsPRuWno0qHkqUYMBZ18GRbVRG97Jv/F6GWsJBbpqlVPjFPS/r6NPBFdDabY+G/XNt2kKu+xaGALKQb3mAscpV7u7jp9OWuS9WagnlxY8KB6PZhuWYuglH+SnjI3VIMezwPz40uIVTAMN2p2ZWVCpUGpaR0+fTeU2RbuMGSsM9bP/RdRiZCdb/2l4GBgY5/EvfTSxsW50gHo8Xd6oSCoTOaz4Hvatx9txJrhxmDTQ1OJ7roGFlcSoaZfUyPuxWun1JEweHIVfwXPV0aBll++evHH44mOG+McX13r2wfWEj5hmYGDQqIv0AX5TyXccMbH9VzrXU6N63m4HGPEpr8mWbUdMI3EXzTU2MDw+hdWgJ6FtKuYeyASMmKr398ee4f2gs+O6dYiz7XpUoFcsQXP3u1lXaQLiN37fynxuzhvtepTJM6MY0jZhS/q2IWAKGllIpbUxqs5OI55QmCkzRXK1Y8TsA7D/wbSAUO4zpilIpMaUqlVGOHbuTY15sqiV9r+O00z42vfJOBDWy783L4bxnxHe5iy6bKT09r6BU7qdcPobCoLf36tTtzjn7yxw9+nOe3f73idhSc+e+Bw7j47sYHHzYK2+a11EspaZERCmhjpAfet1xwmOzqdATMJrVKboeMJVBPvBXL3rL3G9Dxsxm7QRhoVH7VyfvWeHE0D8xiEU7/RNHoQn6GvtQynXdigaZbe0u0NodSWFew7wvcCmh2lLKjLjvtXuiTckbKHdmUrrLaYGDW5fBaz9PcfQZnr7nSizlWq2Mj++KDc7c7SO/tJybJUv1P+vVLxy0V/QYqAIYbmDnrNNDyTiEUg7jFT/Ys1H1w51wFI3RemqH2w4+wgvO+DOaDv0cyvdi2xH3QtsdXJnKDwwe/lv03NUsrfj7g4e5cLzIP3liRMaPF6RDd8PQZdAOzscXiXxLKeU4dPSX6ZzoR9GERqHXvwza2mHf3VWX2ym7dTAzWTJNb/drDcAp5/dxcBsYpiuRKAjiboXue3Zg+RYKIn4Ac+0tc8KQL7EAxd5CPwizb1WnjKB8sq6gMVDwAi5rk7FMBqigveDpZiYTlu2Vb8ZEKddqLGpMcbDkPpfntRQ4pZBnCXu4fzQTs5SqiikVdd9Le6NHY9rH9wy0If+80no02WwnhtEQZHkzzSYsq9p6JaxEMqZUaPUYxnebuu8UFeui74DZkhRJpi1KhbUIPj39zF8FllfgXqOFRFI8mYuYUtM5XlyUmp0QZpoNrFr5e1Nu19x8Gvl8H89u/3tviRsfL26dNFv3PbfuY6PbufOuy8Pl0zyn4HcoXahJEVFq3pBZ5RNDjesst6CuCL334vFGUred9UvfCDtPsS65S1u+ncoIXNR3MR9/k2te/PQnT8UBlhWWuvtJkgNBEITjwH/Hu3/P7DmLGy9/O5uXbOaJR98GRDJ2pe1d4/0fDCBSLKWOtJ0Ce26Hxm6us26ht/wYvcveSnfzWl7d01ZdVlUnQ6V81mzd9kH27v0qo7wK1AtTt+aF/we+9QjYJUYdi5/Z52Bkvg9AMfOPNG00sMdc176CWkZJHwalKTlhkOhkk5gvuC5xhicHKTR3H7ibH4zdw2vzp7u1iwRit7whQbwJ80Up3x0NLhutkFdOIDI1msod+/milOEErkIqYs3S3HQqjBaDAOk9+46xbJcDDKFY4bosOr6IFcbi9ilNHArKUoEQ5oky3mTQUKlMUw5Mc5SPLR3h++VOfn0wzL6nE/cs5qnoiVKOZ/oUZk8Lt/QHphWnggWUMSjb7rNU7FuO0jroA+zutllxtIgiQ8X2Jq8yvtubCkQ8wzQCtz5UtWuP72L4V6cs5+yWAp/btheAZ52l/Jt+Kxt4nEsT+6Rn+ArP3W6JLotvq4Nr635PC3RuWU1ctPlmRkddy76mpo2JwNKTHFtFv/vHibrvTafzFnedm2n2vShGIjaRUfMcojWotnqZmHBDOhQKayk0rGbJktfNul7zQdV1motkQbWOF1hKlSJL59c6yyUSQ0873jtfp66fEd71Ghvb4ZZiZGloWDWp1VZQhzCdgvdd3PcmQ0QpYZGjUz8K9YGKudPFG1QnMtNd1SWZdR+lOoZE7LHyOk/PPXQz3/roATZf84bQKj06EyOBeARBEGaFDiYe3O99jX1ctvwygDDYbBDHJiXd/TQspdJiSj288bd4xZJVsPbFtOz8c67gJ5zb87u0t6dbPCSPHf8eDlqHhx8HwEhYJsSaqQ0vh//PHdS+7GO3sm9igobRLViN27yyHaxGdzC0urOZh48agE3FszIxlOGpOGGpL7tgLT/bAk4klXmusQUYZgQ/JlKkPrZfYz96YlhaGV840PyW/iiXVO4P3BEzQZyvSJY7f5nfgmrf/TK0lMp4kbtLuSyGYeA4oG3fKS3Fdd+3LDJDaxa/2R3x3NXKvkinNHtyDntyjWw23Ho1FlbS0dEB+36FwvCMlXxhA7fOGpQd1jm4RjpuKWX4cWWUwcDYszQd/V+eySp+57l9FIo2f/e6DFtXlnjzj3tQToaSM+bV3QrL1n7MJgMzk6FSKjJ84J/BaGZ8+DTael3rP79n4cfMb7PcD4d0OwNPv4ijBzZz8xN76Fk2xsWvXYdSKpGgJdkh0pDBNWILvSu9LUNLKVtNbikF0NCwnIaG5ZOsjRP05AL3vfD3ku6+V2PSMTiNqQf3U3XFkhk0DZWdskx3x7gw5lbH/U2tWfMu+qYQKk4KVe+rxWMpNbPjxkWp6vXHV67tnU9T0yYuOP/bMynAr9XsKvA8QEQpYXETNAwpiDBQV+gqkSilAzN7Eyl3d+XPKYdlRou0R/cEn3c99jBWJsMZ3vcww7JYSgl1iFgACieItWvehW2P8ejP/QDVUeXEF1h8USklXs40LKV0iihVyTXBpe9yv+ycTluSHK6H31VkAOIPupcuvRb2ReoyWame+jC+580oc5iuM55hYuI7wfq+lgIccV3NQxFGUV6lyXiJ6cyODhovfzFs2YY23YG3YVnkO7phcBjHa0mNSHZAv+2KxUb1hIKiCq/Xdr2CEQde7H23rDaamjdzeMh1eTSt6jhaOmKnMTC4hG8e+QQVnUMBq5fficoehYlxHE9McahuzjNWB2W2Y1oNwZSUL0D6AopvmaW0Qd6BCcPNUuef6yQ6l2cv5NXRTrv3fr/AHTYZntskymDnvv+iYfQ+jo1CvlyhqQjDjY5nceQ/b26ZgfseCruU94pQrDj9THY8dL93qGGO7N7BkvVL3K/+vt45Xt6quV5/gVFzHac8dC6Ghr37Rtj7xAgbLuyla3lz7EcQDtJDBSq7VZF/1Eh9BkNLKV80S9loxiQspZSKCMxTZ9+LF5UY3B9HBbu6XsqhQz/CtsfJZjtob794mntWu2I52heIF2aymxMd6DwsX6csm0+qszfMTfa9uMg21X2uClkbWAaKpdRkiCg114gQckKJv2ITAR9lDLX4ibzVqx0lqq2aZl589bOSXBRrzJy4y8j40FBYRScuZglCPVD9y5I2Tphfli9/EwCK7wJgGFGxxxsY1Ei3Pn1LqXgPwkxtU2pYbFRZHqTXxc8UWB3TJb3cQIRzMminA510MYoEfC/7llIYDLzZZvzVLVx43rexurs5dLDsnYln9ZSxAmslX9TJqkhmrEp8cidavRKhu2MGTRkLIoLTeed+jQPtgzx78wNkss2RaxNaPvkFHjy4niOVdUF55YMvxjD/x93aC2Zuq2r3Pcfx4ycZob7i/XW84/kWy0orcp4oFca6AiewePLjdYUpB33nsfGjmv59o/HuvG+9Z/fH62RkqNhuXCXDyGJ4z6UTaBZ+VPKkKAWVCS+OmKFov+adHDn3ACNf/gd05RATxdDlafP9w5z11Di3ffMu7m3NcsU7LK7gJ2SNjTyqzwUg12xSHLYZHSzRtTzi1qiMqlAEWht0/5OFdhSh319EnPQfP+85NOeiT+M/08FPRgXL/OxsM3bD05P/RqdbUlfnS7jsRffN7LixI0RjXPm/8wU6tE68cJKWm3N/uGT5xuyDjM/ouGmWUlEhaHbueyp4Xt3fpjJmev3EUmoqFugvRxCmSfCCm57Zr7AImYYF0vFaJ6V7m/sduUhnLRGHZODQAZ5pa6PZKWLGe7DHVR9BEITnKyPHimy79wDGqGtxExOlpuO+Fx1/dG2EM18f7u8NJHSKKNWeTZn5rjmISq5Lc98Dx6urkbRUmKRUI7HCTliQmMp0Y0gBlSCmlBfovCdLdpUbe8owhuLHU6ELXTlTgIlEHYLrFrVH9iylIqKUhRMTpXzrJm378Z0UoftfKBz4djmOJ9T0ZbZwoHwqY7qBYQeyELidHSnb9Caa0aJtYAHKMImYSnnFx2NYKYxggFO2XTe43UeWsOruc3i2Yx9OaUesbNPRwTXd/bMKX7/jHtad002l+BjH9mwJLKjN7Eaciruvlb+YI50GmofddUYB03PTs6PiC771mcK0wmcsUzhMZQxUTnH9f7hWUjd4EtDf/vBJrmpcyZsuWsXq3cXgPo0Nljiyy7O+ckLrtcaOLMXhcX75X0/zaNduzr6iI3Iv/Jqk9EuSi1TovhdkB5yXLrUKLE9qWUql96TiFidJC6ATS1SU8l1iT4Q10MxJikQnyn3vRB0vPE61pVTcWmu2/nv+8+plapypRZxYm0+JiFLzhjx8Jx3RBeqMRDDOtNmxOZnQ82eL/Y5P1FIq7vIxPjTIE51dmG1OkEZaHjthsSN9J+Fkcu//buepO/dj4ro3xcK+JOPQpBF9Z99wb2xVkH1Pl3ED64S8rrc9WsiU9ZxOTCnbHmFs7BkAWq349i1W+uDVSKgAdtKiyzCDAXwlcBny2600F8KwXD+zXsXbbr+9DD8qkOHEY3lFL8EEoUXVtY/+iDuWbwwyBvrWR35baRgquBZtxgSHgSbGYpY6AA3GoLe/SRlFFoJA57ZWVZZSRC2lgrK8v965WpUSxeFvQv40lu9v5OVb2jlcds95eKKJtn0reMHE5RjWbpyye19WDQ2w8vAQh7rbKGkwsm4Gvv4DY1TG7wQ96h0ti5HdQC6zgsKFivH7m3AyTzFa8YLAGxlMbwzsi1LJoOHRTHstK+9k/EgByuOsU3vZYy7HF/Ns2+ajP3iKnpZ84MaYKViUxyquhZOK36Cmvhz9O8cZODjGwMExmjs8iy00j+dzMBa9kLUn0AJRynd7nIPxTNIKSqGCZ9W23euroqJUIC6mlBXUz44vOIGomNjo1ccXyo2F6b7X0fFC2tsvplQ6QjbTSUfHi+b1eNUi2IkS66otpebGfS/xvp/hfQ4nVMR9bzJElBIWNWnuV0J9kXTgS53tm0OSs4Iq2phFBkKXvemtHNrxLFt+dTu2aYQdehnRC3VImM5YZFdhfhkfcQWQie5+Hs3fyctWnBesS8aESrOSqOW+l7Gasaw2yuWBqnUNZjhoCtyfanYuJo8plc/3kc+vYGJid7DsynaTSm45/aUKjabBdUs60ktNtCG2jttYucKSu00lYTEWHQgaZlVQk4j7nh+7KSx56fBl7PzZRlTLTfGdgGF7hPEsNJTglVtvo2dwH7vPfTUAxaEKN33mEQYPj0eO6+6X88SsJcbRiJjgix128N13FXtu/wGcrl5sdEqgc98Sy8QLAkX/eD8GeVRDE2XTImNX0JW9MDZC36ECuXJ4T7PZLjRg6gxm4UUYpSWcmd3Gqh1bKBUzZBmnRI7eM+HgI97xPKuIe9svo9FcRceKh9hhbeWawwbj/BYGBkWnQgZXlDK88aaTFKX8exdx3+s8WuYg0Hb4CW5d8d98yXw9w1aOSgXa8269j40WMT3rMVOVKaPQjuGGqooEM9/0qj7WndLI1rt3smfrAMPjniiqbe4oFLigH5zIBZ38F6KDe+H4fa456dIkn0VFJtPmHtEXVsuNU+8XXeZbIE43OPlcoqrbQydIOrAwh9a5bBfnnvN/T9jxqi2lTowoFT9OtaXUrEWpqkmI6YlS4SMi7ntTsTB/OYIwTZK2My7xuAhC/RNxsHO/H8fAuWZ0gkhw3Auu/g3sSoUtv7rd3cqJPH8ycBcEQZgV2nuXDq3ZxYPmLVxlXhCsqwqOnDJidmpMRBtGjosu+jH9R38Bez4QWzfTmDZJS6Tod8PIcfFFt3Bs4B4efvh3AMhbFtcv65qy3Cr3PapFKT973MB4BXKhNYuapqWUE4m9FO7QyPiRDWQz7cAxd5+gDg6ffK3Bu3eeQe7uR2kol4Km8djWEoNPHw2Kae7IR65lkDsucnX9APZ+uj+F47lo3vHJjzLQ3EbumtNYk7wwvqWUYbip3jEYLo7QSp5xVeEr1/4RF+54hDPvvQ10CcuLkdXYvpqKcxWtTRUGxsDQBobRhMpfQKm0NVIrt/wDD91CacTiyDjgiWqPNa1hzCpwad//sE2NYG1f710/g+6swUAJ2jL5FFHKgCCsPDH3vfJ4k3fd3Xqu07t4kI0ADHkmV784eIhLi/2M0UF24iAT9MGx/dAVBkAHOPzMU/zqnz4VfN/94Gr3+ECLM/3+iCISUyq4LnMYUypypNWrfp98rg/bnmDvj/bRue9ioJy2dwzLagYmyGa7aOu7mCVLrj3++s2Y6msSuu/J0BpOpqVUNOSGL3zPhfteXJQyZmoRF1hNiqXUZMgvZ86RweiJRaxS6hmV/KLTf2HhbOTxDSqqjll1oHhjEhuE1BoJCYIgCNPCD2hte5Y0ZnQwE7jvTZ59b6pJgVy2i/b2zSnHLfHII29nfGI34+PPTaOmtbNZGUaGXLY7sn56Xe6kpVRFGzFHQ0MZOJ6rk51w34seoyrcllJBm1VJyT6o7CNg9UUEJU2LrRkH/vD06+m7ZglrHh9h393/x7NYdq/zrkNjtFIgt6SBl71uA0vWt7Ll6bhrlhtRK26BYxAGq9+67kzOefxuMnaFtuEBtg+MRjLawkgug5oY8E7DRCt33tGv64QzQX97N4fttXDvbaDLWLZ3TcwmFAWyliucRYW4Zw+PsMH72miUGHLyFAcPAVCOXKKyF4vM0bZrcdbcAwfdsvqyFgNATlmhiKdAaxNtxPsmxyKPZtE7/cO6FQBLOVVWZBMjh4PtTU/E0yODrigVCScwuG9vcC1BUxw64F92Vpb866wj/yaJDOQDIyDDO27qDjMizX0vk2lnxYrfBeDInl9i2hpfDK2FG8tngubmM9i46ePHX7njIiXQ+QJ13zvRGEYew8gF2ep8y7j5xn3HeWJw4N87deKKKctlpjGyUlxW3crMug71johSQh0jglU9MLnBW5qgNPuXvXZslGFGYuer6uOvuQZ2/A8rznsDR0aKdBbCzofS0ZhS0ugI9YGeg86cIMwExwuY7XiDcCuS5Sh03/MGgKnue1MfwzDyKHRsImN4+FGOHP1ZfMMas+rVQdar62IYufDzbEWpRLmWYdFg2Yzjume5Q7AUS6mEyZVSocDnBPF4Iht4lh6U88Eqf/WLl15K97KlDD15i7dt8A8TYxVagccHR/m9MzoByOV6YmUqIxteSh23lNJacfvFV3H7xVfxri99lFxpgrId3sSHV/awv70Z89h2AIYObsNsvcIt11NQKo4NhoGd8a9xBaviHsdx3NhXGcvP8mZEziw8zssan+ZoYyOPrvwzDjwGVuYg4wNuTLJ3Z/6Lh/UpHPPsh1TOdTUzMAKrs1xEOrQN9zwdwySMyg63D41zhv/F61yEIp0TPG8b7T1gllGV9WH2xFwOKmFAeR2ZCHO8mJb5pg4mRo7i2L7FUXgXdUq/JMXeJ5jkCyyl5sl9r9ZW1fHXZ9inmucwCqkxpRa4+96JxjRznP2CLzE4+BAAnZ2XnbBjK+VaU+owI4K/5ngKjX2dcaBzEaWmRH4588SMU5sKx0X6T1x++HWPm9Cmiln9+rQNmJxjKoYKphtMFGIjnCcn+jin7V18b6/mzz/6U/70ZaeEx/RTRstvX6hj0gY2gjCX+O57tvIHeWnZ93z3vZT9pzGANc181TLbdqNBZ7M9lEqHplHTyd33fAwjG1k/vS63WRXYMGGBpaJWR24uO5ViKZUMmG4YKriWvutXzH3PlyEqucgy5R/Uq4pbF0OHllLNmQyUYSIiJK1b+27a2i7k2XvcrHINDSsjDn1xa6DoK8WxLCiBLoduXAON8Xtl2yVMbyfDq3/7d3/Ae8b2s2vT+mC75hH32lfKKzAsyJrlyDl759Owl0OWSSvQYNic2nqYPSs3cXhrmVyulXFcUer3Mz+kog3e5KwCgyCLY67cGGRXzEaGVI4nSo1aJo2Og2MYaBR7+1ZxxraHo5cUrRTlUYNC/zCZSoUS8LKJe/hI8yP808jvo/XFAJieb6BT8f464TVybE/gs3L+AvevioxHojNsNX4iofuef5/mo09z/GVO53c+b0R+67Y9TqUyguPFHxP3vZD29otob7/oJBzZ95/1J4s9Mfk4xErTiL+HDLNhRvurwMpX+lCTIb8cYVFTe65FqE/m/oWuAT3Wj2ruo82AtqzBgdGMt85PFa1RSqGUhekNlh7ePcgmr4yqTEGCsEg5no6bIBwvvqVUmvuemob73nRCdriWUvHWxK64olQu1x2IUr71QzrJY9e2lJpuTJVqy5Tq7HumUt6kjFu/Sumwd4zJLaWIWEpVUrMXpmRiC87RFzY8oSJykfOGW+aZB59iz5/+mMYLL6T9ujfQ2/NKdlvbvL2toKSJUiKmlANquIy5f4yKF4zJnrB5eGUPw/ks4571k9nQjT1+mHxDR2D/kC+7pbY88gRXHX2cgSce565TTkXbB7365jCsAj2ZbazoGGDH4RWxLG8aTb9l0Bo5fdfSpYxldWAVXkbBKlHWd5JRNjgVQGF44lz7RG/wvGUjlhOO4brvTWSzXPHEE+xra+Dgi67iH1cv5wd3VF/jXbd1kR0eQZ/j1m2k6D43S0r7GPBjcJm+hZQnSNquW5Sj4K6jI7QDh7QrsAWkvcpTBsWBNqk0lYwR1AvmyuhoMlem2ugF2xS5FRsf38kvfnlhIGgD0w6ALcwfrqUUKe571e/o6dLV9VKWLHk95dJRDLOB5ct+a6a18v7KYGEyRJQSFjXx9krXWCcsSmK9Ia+DFHSOIwOVObjbY7/6ewoXv4Jiy0tpUJFJRe0O0rXWXHfhcrbdfpTLN3Zzx8597myz1m49JdC5IAjCcZOMKRV13+M4s+8FxVS53oHjuNnjMlZ7uExPHnjZFW9DaSutzKil1HQD3CZFYZ2IZWIq03Xx04DyM5C5+7S2nh9sl2/MkMmZlIvuNs0d+aBs26tLeWIcyPsVdI8fBBWK1ClhKaUillJ2qYRBlpVD+xh++AcM/+iHtL6gC2PNBcE5by31M3j0JpQ6F9tJxpQysJ4Zwjw0QcV2r2F+3xD72puD42crNqWm9WTMF9Pe/CxHipG6KhjraIejkCsVyTa/EfQoh5u30j3yApp7b+b16ks8m/1jd5+o+56qtv00zAwwjtZg5c5Em4cZJU8bo547kEVD+3B4fzyFLBu5T7YBOCZj2SyWo1nZP8bK730H54f/C5tWRq4haAzKY56LnlevI06bu25gKKhrkBzSybJ06XX0H9gV3Kb+iTLtgG1Frdxw+yZ6+oPh4MnTGjPTARTnKND5lAtmUNb0952/rphbh6GhRyOClEFz8yYaGlbM10GFaRK+i+fOfS+TaWPTaX8z4/0iIda9vxJ/djJElJpzZDB6IhE3yecTCdHRyHC8tnLRzr+eGITiTspAg7syUp7fgfX+eFVxdDgk2XzTo/zHT/6UnD3O9pxJ5x930Hr11dOsiSAIggBhfJx09z0vhlDFEwVSBqi9a1o4uGNoGkeK77tnz5cBsDItwTLt1M4G5s7I+wOf2qLUdAcj03HfMwN3PffYGauRF73wHrLZMLtfJmfym++/kP59o6BgybpWfvIrryw/enVEKFO+c26sqU1aSnlWO1oHLnRUEtZrjkZ/5Tdg5Rns068E4PHxwxzZ93Uam55Ds9kr0Tu2BlVyP1e8c81MuNe9oVhmw6FDdA2VuWVJFjOzkvaGnRwuxi0fBlvd62xWyu6AVDW7Ac5VhnLguhMRsgLXf11lwGB6IqiOuOSPk3NFKe96mbnIPao4vP4XNmePPB0schSgDR5ct5yvvsSga6yHK+89gIq4Jfpn4BAKR36fpORoBkp5GswJBgJRyotBZTucdupfM9wzwcPfuNPd1XZ/Kw35AjFU8E/stppZB7tY/bvKmC2c/9AAOdXMjo1dwN45iSlV1Vdf5Na4/vmUywMAdHe9jLPO+vxJrJEQx38nJZMTnYy6+Mf2focyaT0pIkrNF4v8hbu4kWtfj/ixM3StGY/jvPWxxsIJl00mfjpaB6JUYXiCzrKbaagIHPva10WUEuoQ6VAJ88twcQSAofIgZMCKxGgpFFZ7n9znsKFhZdX+m1+9loamDGvP6al5nORbfXx8BxkFhYZVwTI/TszkGPiz8anZXFWWpsaNVOwR8vnpWVAkRQCdDHSuLPKWd1hPuOtp0jFByqelq4GWrjD2SSDwme7fntUb4LGjwZHcP77VTsSFK7CU8kQpNEsqNsNAxnGFEF9EDIrq38GEaQdlARjFIbQnwBjKD1YfWhrbniDUc9gVFfPlCm3FcXIVhTIzUIFCzDvKLWuCCfe0IoPQ7n4DLNAVGzKhCKZQoRuoCqVC/802NO59DzUzxnUWItsqKxQbe/cXef0vNeC6fA41uHGYGodXscray/cuNrh8dA/cZ3rik9dr0GGg87Dr4Yls4xP827MXcMbGUnD/fUupY4NZdj5+lJaufHAO2ospRSYRK02pqphSBg4bXnuQ0QNZKJ0S29wwLFqHK9AAx8ru/Wmxpud2WpvZue/NzdHm4wDeczexBwDrBGWWE6aHbbttyDPPfpzm5k10dLzQWzN7972ZUt0ciPveVIgoJSxyRICqd3yrpNoBxOfoOdCR5kJFGhBfeYobTLmee4a77udv2syP26/gpU/cymt+/Ct0JF2zICxWpPsknGgOjxymhW72j+2DVsiYoQqxcuXbaW+/GNsexzDztDSfWbV/Nm9x/ivXTHkcFXreAdDSfBbrV/8BnZ2X8dzOzwFTxZSCxsb1jIw85X4urK9ar5Tiwgv/F60dDGN6Xe4qcSsRODljZshZQBGas4OMajh7SXFaZfsxpWzPqqmxtQ3wRamIClNdK/eP4VtKOWzM3cEOu4HDZivth/ppGng82FqjqNg2w+VybH+jfxzHF6VCiQe8THKjmSaYOEi+5F73QqmM48csDqy0bLTSXtPsWawoT3CKiFKtoyaDrdB4uAxLQ5fFaEypNEupr961i0tpoljxgyQrJnDd4mxv20pk+JQpuTtWmnIsPeUQq7tLPPJcmf+qrOGJrv08Cfy8Mc/bjApZ278WkaxtEUupnLmSku4H3Y/WmkrRCfo+Vsbd57n9XTz3mUdYsaHRuy4EllK6oQlUDrT7PNhNFpnAUir+XBV6SrDbtwYLeaRpA//fhj9l+94jAPRl5yJG0vFZSi20nn7GciN3+a57+fzSk1kdYRIOH76Zw4dvZnjYfzedvCcpdCmUXtVkiCglLGr8dm3hBkMU5pzpxAuZ4Us/2DpSdiCGRTq+fpsyvn2Y0xwTVXa8YymOrOjg0SWnseHoI+5GjjQ8giAIMyVvuJY9p3Su55yVG7mg74JgnVIGLS1nzctxmxrX09NzZWxZrZhSAOef99+Mjj2DUhZNjRtSt1HKnHaQc4CcFZ/N72o8lWz2hay0BujItXLlqiv54bavAHjijEq4CU6ObylVSRXb0jLI+mJUXJRSWtOVf4TNhZv5VM+rOO/HD3GgOR8ryq5UGCiVaCA6FNTYjtuiju61oA3P1Mdd+4tll7P9yEpWND/JG25/lJ6hMcab3HVmEM8qOuHjljzqxadSkTZ8sHWdW+Wyu/1DQ671hBENdB4emmOGwU+aGtGl3TB+GqrsgAFmqcKAdgUgPyPdw/tLYUBx38qrKUfnxtGg7Jwqs7pskXccJgzDFdcCUSq0+o5e76zZTa7xd8iMf57hiTEMuxxYlq3dUKZ04EEG7CUM2UsY2t8P5LzQYp4oZZlkm3+bQ/mHeHD5j3nxBa9E/dStk1lxcICKdod+yojel1CZ+07PFdzffCp41+2M5pllGUulSoSaXqd9oXbt16z9EwqFtThOCdMqsKTvtSe7SkINxsddi7aTm8RF3PemQkQpoQ4RE8m6QalYZ7bGhtPYZnqk5x9yy882eLPMIxV+nSz795Qik546URV5/oQ6Qsl7VTgxdOW7GBqZ4H2XvI++Na1T7zBLVMJixTQbq7aZKqaUaeZpaT5jTuv1By9eh2kobEezsqPAX151Opa5OX7cIIue+92aoSjlW0opo9qdRTmhgBa47/l/PWHI0A5lbwjR4L0bCoUMjIyDVt5kjhNxRVSsOaB5+d27aWoeYrTQTbHfgDavyfSEnWK2wJbmUzG797D8mCsijSl34sfy3MgMbJKBiytGGNDYLh7GzHWHJ+S3xZ41laGj56eDSc0vt7bwX905zig/Dv2nuYZjBuTGy/zbsat4rq2PAXYCZXZUejnbr4GXLVIbin2l0xi129344mae1eUxbt+1l091LMUOLrU/m+r+cWLSkF9Xz2XPrgTue80vfDVXb/wZD/3oV9y5/WoOlcfJkUNjozz3PWWaGGYb5cISPnD1uzm3fy//NjKODeTKDmXAcGycisKw0t/ltvdsvbanjT9a2cPpTccvSlW7681MHJh1qzNP/bBctouVK986L2ULc0c220OpdIiRkSe9JSdelAofQf/YEuh8MkSUmmOq83gI88kJcekSFhEzNAlPzppELaUisxr+dis3t6KHM2x97Ajl/iLZciRhth8U1TencqThEQRBmCmON8g35iLCcg2SpWesQtU2+Ybl81qHNC5d38Wl66vjQ0XJZdqBI3iXisbC1O6KEBGlnHjWPhc/cLnrqqaiPVr/Xnj7r+5oYN1SBQd2Y3mCkmEasaJMHCwr/H7tLx0uePoYD59VZLQAht9GKiMQdvx7riKWxr5hU9/2fg53gj1Yqs5oFYldZe/7IRcf2c29F7zPXeZnFYzElIru7otSA4YrxphVg0jYXe7hLyq/RyMfx+AoxWjz7tV1uLCaO/vfESzOWXvobvwPClqT1Ra2EXdlDAKpRyy3bM9Ee9ReCTzJoJ0PtjetPMXGc3l24i4AKjaeU2EJKp6FVuBeabD5Rx+E4X2Y5Xd6Uc/Cq+aUXVEqTSpy/HvckOOM5urfxOyYWUwpGUkJc0Fb63kcOfpzHMeNOdc8xxMIM0Hc96ZGRCmhjkhYqgj1RSL+R/prfZYve1+M0jriCqqCZUFmmgaDF79xIwdNh8M/2x87XDAH4gdQFUspQRCEGeMEIsf8NuZntfZw/8BBANblbJoKa4N15537TUZHn6a97aJ5rcNsyWc7ALC9lqcwzZg2oYWVH2Q8EV+J9C5UaCnlue85DoYX7Nsa6QfAMZRrIaTdokylsZTv4K4oFOPuajE3PE/kCUSpyLGHWzXt/WCV3O3LB4qobl8VcutTVmFMLcuxyRUHwrPys+r5gb6jllLaCZpx36Gx0faDoId9AEsNkmn/Fcpwo6CXbAMHGwMT30irmGn16m6jMak4LZiOw6Ojr8SqrGbvsjHyO+8ieYWjPQWrsgtyy1HKjeN0qNIeXPvxW3/KkQ++h+7uczh4OjSWLFdUw8YcewwooFXZu7YmDO9zL61tgkHEUqt2T8m33JpXT6c5KbzGWcg4QAAaCqt50Wl3Uyq576iGEzjJMNkjKGODyRFRSljUhLN8KTEQRI2uD3TsD7Xva3WHdlpEOp/hYSJzsYlUrioyg+/vanhBVANRSyylhDpivrMlCYKPdqrfs/PBF191E/uP/gqtK7Tku2ltPSdY19Z2Pm1t58/r8Y+HIIueh2lML2aVYcRjSkWthVUg0CSCcEOY+s2IpFr3LMvMg1uBPI4uesEYFUFbrHQgdWV81Uf5calCUcpw3O1MT/SKtp53XFnh2aEMl+7vwNCgbaomjyqRy5FxKhjRmFmOu43h1yQaU4qwrIrvpl9lKaVpaL+DfN/uYL/9/ZUg2PqFj7qCmC9i5Y1hxp02wGBkfD0PDP8W2WHYvxws3QRqC5HkezGL//ahr3D6Yz/i52ed7VZdg4EXNmDXTq/+oRui41l6qUBZc7MWLh1ex2eHv8vpjT+lVDGZzLvTlwyj6Nn2o2oxZUypxKzjJMiAXpgJhspgWc1YVvPJrkoYlFbGppMiopQgCAuXaIe5emXwKZjRnGUvKq2jkzYID7rX/mBJR7uT7icnTeAShEVK1WMsj7Uwz/zu31yK4+hAoJgvLCvPit5fm9djzBdGIhaUOc1A6oZnWTRWcbOGxds5350sGvPIF5cM/8DuX9uBi/4QKkXMLXu8/SpRA2MXFVpfWbZfrG8pFUpPyhOlWjImw4AVqZeTgSdWGZwymKdvFMaMtkCE8S29VPECYAsAGceOCV7++RhBTKlooPPQOrrsHTPnJyH0xTPAUq6FVGV0DfbYOih2YzgaFJy+3T2WdXQCesCkHBxX2zmilDONwTX1L1FwvZWmYkLDRD/au0qjY4qCtRPD7AniTTmWXz/3g2M2g+OqTlnrECVzgqztBp1/pvhCFPf4B2JSVGgd5fenjDmUpZL9qSknOaT/JMwBhjEXmSPnhvCZl2d7MkSUEhY3Ndo1JY1aXTG9u3l891xHY2gEHn2h+56/LLDQ06Fu5sfACGJKabGUEgRBmCmGaTBNw5/nLZaKd98tY3rd+ZZcCxBaSjVmmiJrU9rPQFzyRAvfUsqx4dRXwqmvxPyrVwHbsZVTnfcjSGOryFYSZUUtpbRr0JT1Mg9uLGTY37uZkaaltO2zWd25BzNrwShkBodpaNNULPA7gauXdYbXwqnEBC8/KJUvSqlE9r3kqeaDKoeDSNOzfNZDl3N2+0XY5R2ofh3bzm/7Tc+FLoNDgw7dCt1tTJLKXdRdruxVTTnufpmJccp8G2W0YmgvC6XyI0SZOJX9qNEDrBxy77/OFvnyee+jd7yHVz/255R1Q8pgWHtxrJzULrSDf71SVs6aRGEzdN9T0p0XZkGhcd3JrkIE3+NCxgaTIaLUXCNCyAkm6iQfz8ai59UhXjhRJB00deJvrX2mLLsq0Hm03Ig1lN/pxA/GGt3Cnwn2Opj+to68C4TFSxAbRhCEBUfSfW+6otTbzngbHfkOJioTFDIFXpTdzE3c662tbl0DW2C/qfTVwkj7ZirXSkcrXWUplTHBl55qWUp1jQ/y0l330LvH5OhQiYJp8dRpbwGg6Si8rL/CyLIhOObVL+FiZ1gmDgoD7VpKRU/at5TyKtVYbo2u9NpsHQgfueCczeBy+O75Spl89e0XsX13Oz/9qx3e4dNFKQeTZmc8WpOYKOVbSJW051tnaEqWd2x7OL6fM4hT8S6g0t7Atkxp+L8DyyxvR2yzzEjumFsHWxMO9aIv9KgrkYqIPjrow8ylpdTU7nszKGoG20oT9vzk3HO/wfDQY3R3vfxkVyWc6hb3vSkRUWreEEHkhBA3YElbJdQNk9/R+bnXoeQUZOKrct+LHDs5uyoxpYS6Qt6ogrBQSLrrTdd9r7vQzTvOCjPEHX5uT2StP8ESjSkUWvFApO2zQysn0xM4bCPaIIYxpfwyM/4uvugRsZR63TO38/LdDwIKwylzZHApT54Ghl3CMbOY2qLZcF3hHnn5ZbRt0fGyDANHKQytsaLxpCAIUKVH41ZLyqmglR1MKP3mHQ5XPeKw+ww7vj8ay2vPiw689Ns/4S/3P4GhN+IQilGBKBW475nsM3rjVVFGcG32DrsudqO4f0sqS3/WAiawCqdSGXmQo52ddB496l5fxy133LQpDn4e9ATVuHW3zci5Gn1VW/kZ/4LJvsjs3wmxlJpmeyKTy8JsaG+7gPa2C052NWLEHKUjk91CiIhSQh0janQ9oave32qSz8dzkIidVBjwIeikO/5saVSUCiaS46b8YmYi1CNa3quCcNJJBjafbqDzWqS1olWWw17A82gcRtMTOBwVdddz/zie8NQ6BvmSv6raUqrQdSm/XHmdt4HD8r0/c8u2x3HMrHcct5U9v7OVZ4gLMqZlum2vdgOdp56ZHR6vZN/N2Vuf5IGVFc6xxinRwJJjsOQYlDvKHGmJl2AEUckNPviPH2PJ4YM8fenHccyoNZlvKeUe38HgpsLL2TQYlqMNC2W2oSujwbKeIfdz0cwzmHFFqWxuGaZ5HnuXHaTz6A8AG7viilKjGQd0aB2VySyjXN7rffPOUWkyOZNy0QZrbex6u+6Vk8e38fswczlkNhKi6XwnzpDhvnCyqdackplO5SlNIqKUsKip/ZOWH/yiR6mZxRJICEQzRuuqJDBah7O/gfteyqNl+J1wQ/zGBUEQhPmjyn1PzbI7Hxs5xQUlb4P4Zv4H22b8scfZ/xfvZc3enQA4RrhjmFnObQdP3wmNnvGO9gQK5UQskgqRVO3KYKh5jftRa7SqoLQFth/XqrqFN0wDWxlksMk4cUsnPw6W4+SDZeOVr9F3yIZVijXnDjC0bIKBZxsZ35fFqsRLVxBYSmUNi64BN728bTje34T7nhG672nidXGUSbbpN9D2YS499imcp0s0llwRS2ey2Ib7OYdm3GjG4CioLOhxHjuwg9a2JvADtltryDS9kpxxiHL/t7wjeFkVUVx0zVqeeeAQ+596kM6hMcaMZxjzttJeRr9q+yUdiXE1d31o02xMHCi97FAqk/67UF+otHetEGN+U5sIwklBMhzUI7Xv5txZSiUDnUNkAOAHOjf9lNZ6ckspiSkl1AFiGSUIC4/Zuu8lSR8oRX/z8bZVmX5MKYehm39E8elnsMZcEeZYh67qfvmilAYOtMFtpzZRstyMWErbmJUw5pJZGccquRn0/MxySjvgWR753n5KmVWRr7PZrOcaB1ZClGo7MsKW+9rZrg6F5+FNGjU6FoalaVs2jtXq7pcpJyeUNKY/yaQhV3bPt5h161Dx+gMa31LKP76B0r7rv7v/sWYTpTIY1lJa+ydoLFUYz2S5p/c07vq136RiuPuanqp3eqEJpQoAPHfsEI+s7AmCoaNMlMphR6zktPZEKQc+s/sguZcvJTP8T7zgsc9jVCImW5MO/1Qgrs3lANG0mmqun6yVqdmzk6ZJWFSET7NMWqcjotScI2/JE0s0CGc80LlQX1Td1Tn4qaXNBOqUdVUxpSK7hTGl/EDnRuy7INQHIvYLwkKhSpSaA/c9rZOxlKriiQeBzrXjYB8bAODQi9fyp28zufdSp8oAJnDzU4qPvcHkn67qDkQPheasx7/Ayp03kz18L2c9/gUcX+AJzsdB+0KYHVrwFBOGYdZppwcWPr4o1Xn06/QduIflex5AP9vAxO4d/HjDl/jOGX/PGr0BgKtGB8JCvMNYSVFKayxvkikTuUSOJ4wF1tHeyfvue0AgSjme2LS/I6y4413dgY5u/vc33835v/dGHM/6yg+sbmmTTOOVmPkLvZjqCjsQ5HwxLLzojh34SPKTJw/yVz94sjpuFGFMqZDw/e5fx7mMKWUlLKXUjIefKW6Gs9tNEE4SSfc9IYm4780T8+0vLbjIVX4e4nVy5yL7XlBkrGzPf8+f4YzElPI72EYkplR4TL9eEuhcWPwkvFgFQVhAJEWo2brvxSdfPHwdSYdL/e38eIq6WGTk9tsBKC5vZ3fPLjaOOoRCiecyFxG6xnPumqCN1A7tA0/TOvAMQ93raR94GseyQIPjn4/W6MA33p+EVJQtjRUJHWU0NwcTQn5MqUNL7+KJ/J0UihlW7yjSUIIVL2hlfdsFtN/9SwAK0dhYrgEXuUr1m8/w2nMzYgHtWz/Zhh/o3L0nUVHK70c4ysYkgxERg/Yp6AHW9DTx7XdeAsD3PfHK0A4oN16XYfVhWH2Ui/djaye4DP69GbEbwuGud+6+GDZRcVA6btHlnVFwFlEU4cTaXGbfq7KUSrifTj49mIIEiBYWEaEuH7WUkt5VGmIpJSxyfAsWoS45wZ2PVFelSJaMIKaUEQYCDaoY9JvjApYgCIIgzCXJmFKztpRSKmLVG8++FxOQ/OO2tKJyOdAa28sKV1nSBsAvG3Icstx6FAezPHNTD2vu8AUaRdnMsmZwHY6Z95Z47Sk6iAPlZFwxyjHMcBtflAq84lRV4hPDUEHb61tKaQvu3GQwvMa10smW4YL8u/nMt0/h2OCEX62AfM4TlcbjE0oKzW//YpxPfLHCGQfCbIVaxSeifEspxwmDkBuegmR7Ln2mE4qHx7zzf3BgK+f85zl8+K4PB3GqfBFM6WrrijKBHyMAY+TCTbxj+/fQdjTjWdf9b8xzm3TLiWffixJai6esnCW5bC+FRwuYR6DBXE5f76untd+se1EiXAkLDokpNRUiSgl1iDRG9cTMgtkf/4u+OqZUdGa02lIqiP/qW3AFMaXEUkoQhOPns5/9LKtXryafz7N582buvffemtt/61vf4tRTTyWfz3PmmWfywx/+MFhXLpd5z3vew5lnnkljYyNLly7lLW95C/v27Zvv0xDmkDmLKZU6UKpuR/1mzWxqZPW3/oulH/84Sz/+cVb+x7/Tc+7ZAEwYBhVvVDGyL0d5xAqCho/nFOfvfR2v3PEb2NlWt8xI7CffuqmUcd3PdGAp5QSilA4spYyqOhqmEVj4NFSKXhneNll3v1wFbtt2GNvRmFS3zxk/415KPMjmCc3KI/CSZ58EwDbNwGKpnIkHOlcqFKUCcQjfAiq8T6YfpkpBxanw3We+i236opS3vRNu72f/tQN1Ln5cALPkxY3yJ8kcTcWwguNE90tFuVkDYW4HiEopur7TQe8Hspzb/Tm6ui6fw9IFYeFR7TElotRUiCglLHLER/f5ijMfM2HRLK1+oFYdiSml/ZhSnqWUTrGUMiSmlFCHJB904YTwzW9+kxtvvJEPfvCDPPjgg7zgBS/gyiuv5NChQ6nb33nnnbzxjW/kbW97Gw899BDXXHMN11xzDY8//jgAY2NjPPjgg7z//e/nwQcf5Dvf+Q5bt27l1a+enuWCsDBIilCWMRfRONzfdlFFY0upxF/Ib9hA69W/TuvVv07jRRdxfucmfrR7L+8/0h8INdqL/zTc7X7fvjpHc6nDrXuxn74Dd9M6tCMoM2O7otSINQBAxXTPZzhnhu57dui+V5V9TylK3j4NXlwlX88pWaEoNVZyz21jT6NXVFhS4zLNql87Quf58fhHO3rhp2d5glfZLbuSyQay1ldfYtLfBJXVfkypUPDyLdp8S6nAfU87mH4fQykyRoaKU6Hi1TmwlBr3BCU0/v3JenVWjs2ooXkiG56DUfbz63nH1RFbt+g7PNAffd+i8Hz9vtVcZt8ThOc7cfc9mbROQ0QpYVEjuvPzh+T93ZKLWDCFKfCif6akqtMVyb4XDWCe3M5IeXNW2WxJoyPUA/JiPal88pOf5O1vfzvXX389mzZt4vOf/zyFQoEvfelLqdv/wz/8A1dddRV/9md/xmmnncZHPvIRzj33XD7zmc8A0Nrayi233MIb3vAGNm7cyEUXXcRnPvMZHnjgAXbt2nUiT004Dqrc92ZpKRWf1/OTdUStg32BolYZFssrNutL5UCUcmy34ErGE1AMI3BFyx+6m01b/hNDV1tK+QLUeN51STuW6QgspWwvAPmoM1FVBdNQ/MemV3Jfz0bu79nIbesuYv8qtzJ+UPRsBSbKXoY9Vf1iU4ZBobtEoS9+bYsZONzmfj794C7vvKzAEmtvt8kf3GBCiytYlc0cyrNmWn/YrXOu4FbCt5RSaDxPPRwF7zrnXZzReQalbA8AzXt2uuv2Z92/QfhxUIbrhtc8tJX/Wupwfz4St6t5KQBD2o3hZDs6iA2lqb6v4YLIgHkeLKUEQRAjiqmQd858ITMMJxg1yWdhsaOqVKKUbVI+zYR4oPO0UpMxpYygboEe5olQgaVUiguAIAjCdCmVSjzwwANcccUVwTLDMLjiiiu46667Uve56667YtsDXHnllZNuDzA4OIhSira2tjmptzD/5K187HvOyk2y5RSo6EdPQEprumqKUl4sJnSgbfiWUo4RxqnyrYTGe3uqish6sZBs5Wef87L8KYVherGiyu45PjD4GMlB3dqfvJX3rP0vvnbplXzh0mvYuXk1tumKNb6lVLYMuaEj/O6eH5LxRJ/Uk0xMKGl0YMGU8yy6GoeHw2y8WoFSHGq/AIC92dWsyD4cFmApCqvj54XWQagsgN8943f5+q9/nQfPejdjuTxdRx+naXgXudIxhnNHebQrPGd/Ek4BWdOICUzjrasBqGgvNpfWYXKYaXSPFDqwlJrL7HtTkXzkpPck1B9iRjEVkn1PWNycyFZTOOHELZRS3Id0xlsz965FfsfcDfUad98LYkpFuoMqmGX2RSmxlBIWLyoWADnyGxO31BPGkSNHsG2b3t7e2PLe3l62bNmSus+BAwdStz9w4EDq9hMTE7znPe/hjW98Iy0tLanbFItFisVi8H1oaGgmpyHMA7+x/jfYO7KXsfIYa1rXcErbKbMqJ97G+gISwd8qi5o0PNdBK0xay5BWZIB9FmRx3x++pZT9ulfx9aYjDF50KX/w4f8XgKx2ny8niKnkiVrAaeeuYMuth1FaMW6NcKxtL31qVawKmfEDbMrs5ErjPn7bupUeZ4A/rXQCFhNeTKl8WfOhX7wfY0cFP+pTzODMjwmlbZJUEoZoD1z20lCUwqB1vJtRlpDBzVD46+0fpazz8Bd7MU2Df7356/BIa8xSyoxYSvns7lvGNR//Ah8qDXLJu99FpbWR3/pD99qc/vRyb3tPNEKTtYzYJLit4/GmbCeSSbjqrNIm9FQkptTC6V+nCqU1d5iXagjCjAkTB0Td96QflYaIUkLdIG1QvTP5S7x6zSxf+Dpq4B4GMw8/+qJUbIvY58CVUBodQRAWMOVymTe84Q1orfnc5z436XYf+9jH+Mu//MsTWDNhKla0rODvLvu74y4n3m/SkX99/ODdNXpYnjuZgQ4ElhHHoB0oGa4o1WjkGPIskHQ+x7+89rc4JzscFNFUcmMhBdnnvONq4EXXnM4V15p8fcvX+et7/porOi+pqqWdbwd7BwU1QY8acOtc6ALGGehsBg7RNQDWSAkHg3xHiWxThdY1Y2EhQdudEKWUrhKlSlYmcN/bvPNq+kbWhJfD0CgFWTUBeStWdMxSKhLoPEo5k2W8sR0AsxStS/z+KI0rSkVwnLgo5URjYqpp9JOVDi2xFnynWvpYwmIi+oOSSes0xH1PWOSkmUP6ps3SYNUzajq26DNFh/54I/1u3ArbdoJO3X88/h+c85/n8P77ft+rxGhV/OfAfUFEKUEQjoOuri5M0+TgwYOx5QcPHqSvry91n76+vmlt7wtSO3fu5JZbbpnUSgrgve99L4ODg8H/u3fvnuUZCQubGu57tci6gcHNiKWU6Xq5sdJ2bZL6cu0of8jhWRoXywcZ87wOs56WMpFN1khjKj+AuCvo2DhVvTsn72b0ayKMN2WsfiEA+1o0toJ8GZxxtw5LLzrGsksGyDZFRJ/AUqqSqEO1pVQpkw0mqXxByrE0A4ZDvvUYSRzPLTFbaQhKbfBc/JuyjVXbV3Kue6YqlcMJLj+ZStR9LyFKtR8cZuMejVUO+0dlM8X+INl/igY6x7fEWgAseGFMENKpFnXFfW8qFsQ7p57Q8qCdWKTBeh5R62bPbmYvbfZXeR3mwUPjgCtO+dvd/NzNVJwK2s+uoyoRo3dx3xMEYe7IZrOcd9553HrrrcEyx3G49dZbufjii1P3ufjii2PbA9xyyy2x7X1B6umnn+anP/0pnZ2dNeuRy+VoaWmJ/S/UC66THlBt3Tvd7mz7Krjyr7E2virQOhrG3Q8NniCiss2BlZDv/m7rMn/3OoP/flEj/32p4h+vNhhsiQsoDm5mPYhkstNOVeV01g3sXVChKKU8t8K7nV38w2sMfnm2QdvGcfrOHyDXUu2iF/QjEqIUaOzEaKmUyQaWUj4DF9t8saVIvnmkuuhGV5zzLcDyxWO0V9w+wukprpd21lPrbBvTzzroWVf41mgGkDHjFbv4x8/xkf+0ueGWo1XnNb2YUmEfpjql/QlkOpN6MtwSFhEq4issk9bpiPvevCFqyYnA/4nHG1uV+CssZiaftZ08vPlM77zfQGg0PWtaYNsxmgt5mqx2nIillC86X7P2TfCYa60VWkp55vIiSgl1RHUAWulMnUhuvPFGfud3fofzzz+fCy+8kE9/+tOMjo5y/fXXA/CWt7yFZcuW8bGPfQyAP/7jP+bFL34xf//3f8+rXvUqvvGNb3D//ffzL//yL4ArSF177bU8+OCD3HTTTdi2HcSb6ujoIJvNpldEqHtUDZeSKSd8Lv4jjMFXsfp9rwAgU/Zc3ZefDQcAwwpiSilDgQOOU+HJVQZPrO9ClfcCcM5QKVasF0MciFpK6eqOgSdK+ZZSNgaXLn8ht+z6KWWnzCMb4bTOPH1jB1JEJ/8k/bY7Llht6tzErVuvAH4SLCtmMhzJHaBr3I3fNmGOsl8DGFgpsU51e5FvnfV3NE908qG7RjG37g8Ol7Wqf3N2Llx23R2wuzu8NzoS7St5LMcrc9nRcPvQqjzs50z+GtdBHLGFEbL1+Cohg39h4SDue1MhopSwqKndXEljVJ/Uii11nPdcQ1N7jlFgpdHKyhXv4MnxhzHVs7HNegt9HMGdSSxWHMCk5LkFSEwpQRDmiuuuu47Dhw/zgQ98gAMHDnD22Wdz8803B8HMd+3aFWQDBbjkkkv42te+xvve9z7+4i/+glNOOYX/+Z//4YwzzgBg7969fP/73wfg7LPPjh3r5z//OS95yUtOyHkJC4QU5SG1XzUNbcA0TO46VXHxFrftO9wC9uqlrigVyb5nmEAFbO0JUEaYSdAJQpC7aEKLZt9SquLYVS29VXCt9wqeKFVRGV697tX8+tpf59j936L9B+/gPudUlDGJIBU5R0VclGrKNlOsLIktK2Uy3Lrqf3loxf+iUIxmBxnb/kdAD2aaD4qGo417Odq4l2XFAY6VmsBPmGhU71AxLVShgB4b45p73DrfugmKmXA4q7TGSuxrt7dB/wjZYlN1Faap7/gTa+JKIwhzRyzQ+Umsx0JGRClhcVPzR74gpnmEOWJ6gtNx3nOtaTizi4mnBygdG8fUiiajhevPuJ7/3vbfAJzVfRbrmpZxhL3eDKRbr7Fh93UqMaWEekDenguHG264gRtuuCF13W233Va17PWvfz2vf/3rU7dfvXq1vJuESZgk8jbTc+WylMU/v8rgO5dnaV1/Go8eeZQPd3V4ZRKIUsoTUhyn4n3PBWXYJCylIp8D9z2lSPb4Mu0rYAec2W1CP2Q99zdDGViGiQGYU1knTBJTSinozzfHlvW3tqPzJoNWmNWyVHHrZKaYlaWkUEFrP+xAtfyjlWLZ33+C0V/+it3//XWaig6mF4NKB9n3wDLjx8o0tQF7yNnlaGFeHUKGnW7y+kiVwZlS4XbGXEc698qbzftHzXAfab+EBUPs2fXeXVospdIQUUqoQxKRp4VFzeROetVbzYXjZn59O0v+/AIe+Lsf09tfQKF4w8Y38IaNbwi2eeqZ7QBYOoNDAaiwtHyEJcVD4r4nCIIgLAqUIqqSuMv8dbENpy7LUAbFrGJvTlNwXFHEdbmzUSiUF1NKmX5mOE+AUqGlVJmxWJnR4waiVEqgc3KuZVCLUXR3s0Khy7cktIiITdlmKIXZ/2IHc6rjTW1pX8WHNl/PCj3C3jP62HnhJbDrf1L3bytkqvaPTaolu6gRa6e8oZhwNJd3tNC87nKaL7+ch3/wU5qKBzET4pJCV7nvqYIbND1fCcU9x4mHH9DK4L9LH6WnfxvwXW9dWI7jZ1ysOouTgfTjhXrCF9TluU5DRKm5RmYgTyjx2Tu59nWNb4FUY92Mi0zOBEZ/vzVmCS3L7Vxn7TxjlQ7gEIXnDvDu3X/F07ll3Ll+GSjFg+9/d7CPaVpc+JprWXPO+bOrrCCcVETsF4R6Yy6DWZuG2y5WdIWyJ0q5gpBNxsgEllJ37vg3mswB7KzrcqeMbPBWGbcPx8qMvm38mFIVp0LyPaT8DHMlL8i4GY3T5J5jJuqWd/0P4aH/hL6z4PueFaJvKWVPEEUpuHhdF3ep03HO6eMXPSZLUzLafejVZ7CubQ0XHN0HT8bXNVqRDHuekBQYS0REqfsvPp2d40XOaw23tw33XAyvfxK47wF5p8JZh59hmc4xOjZI30rXzTBqKWUXPTHP6SdDmJTlcHld1TlAmN1vzi2lpkHYyiwMSUwQZkvaz0cpA60dic05CSJKzRvyQhWE+SCcxa1tIj8rpikqN3VleazvdrrHVtAx0oy2D3GsVACgeXyIgUZ35ndg25bYflYuJ6KUIAiCsADxLaWqrXyno09YKhxS+KKUZVhAmYzKYHpDju1H76KhsD901FOhgDSWGYqVOWaGn8OYUpWqLrYyPeukITdgekyU8ipvRUWprg3wyo+7bb5TgZ7T4KYb3XV2MVG44p9+6xzu29HPgzmHX+w9zL5imfbERblq0yp6Cl3QTxXXnXodd++/m5eseAl87/91F/pukpFyurIWXdn40Mz2Mxh67nu21qDcS/CKm77AKU/dG2586VUAZO0ySjtoZQSub1qXgQwZz0IsKvzEp3cXkqXUcSJjf2FB4c+uiydFGiJKCXVBYs7sJNVCmBem06mYq46HTjGxT8FQBr9a8x0yKstbBz+KU97L5vbP0Uk//9z5Gl79P78Aw2D5P/0TAHueeowHfvA9HDstDbUgLFzE+FcQ6pgUtclMa1CnoUpFA+4XPWHH9JZpoMlqolLWrOo8l2PjPwiLzq9FD98BwHkbXsJ/bS/SZ1kMl20ONIbHDSyl0rLn9Z3uZuDzLaXWvChY1Zx3BauOvCJQwgwrPK/z3UyW/Nr74aH/i+rvg2ORUwe6mnK84swlfPeJ54ivCWnKVAcX92mwGvj8yz4PwCH1F+418S6zSgl0HsX2LNB8CyfHE6VMrWkdcC3LJrp66Vi3mtGXvAz15X8D4Ortd/LbW35CoTLu7l/1MjdSIl1FLaVqVuuEkt4MSeMkLC6UUtKnqoGIUsLiZgE1msKJIc0ayg/86febZ/pYpLsExuNURfFnbB3toFQOM7uWJc0TrKSfkZ42eofGQCnWX3ARAOWi5w4grZGwWDkJrhyCIMwzsZ+1ZymV0k5N59cftZQaKroWT76QBBqlXVe+Kzb9P/z0wKvotUocKhssaeyhdPg/ADAMk50Zh6M5hxFl0xxxkwtiSjl2dT+gcx382bNQdtteGtqrat9dMCKilEkVG18BG19B12iZ5r+6j+H+CQxDsfKMzmCTUiRW5IbGBrYPhOfeYDW4X3o21b5QvtrjW0pNIUppy7MCC4JJuR9ypoHpWVw8/aYbeMMfXMvju4/hn9mVO++hpezG6HKA/W0NrDlUe2JMKR1YUJ3c7Hth5KxZIc2VsEBIM5rQYimViohSc44MOk8kKrXZnFxMEOqAGj+x449DML3frx+LSkfcHHyT92TQWG+HGZUvCCcb0aAEof6JxlWsmbB8Gu+DjJHBVCa2thmruGJI1soGRTq2W65hGGizGSdj4ehK7F2T9SyYRoquNVTGDPt4fswqW9tVdVQKyOTd/6tP0v3rBzBXZs0XXL4xw5v/6uLgECpiMlR0wuO2ZcOMfF2FrvBarr4Urv0SdJ6SfoBktr0pRKmVvS2wN4wp5d8LAzC8c6oQClwTZoa8Xaat6FqN/fPlp/PQmVvIjLSy5lD/FBHsVZCs5YTGlJriUPEq1wowKggLGf+3Lg9vGiJKCfWDWKHUJarqg/c1lrZ6dqJPMtB5NFVxrax/fjwrx8sCpABHm26ch0iZWmuUUqk6lSAIgiAsHOLZ92ZKxszwvovex9377wZgXds6eko9wBG0BrvsTuKojHsEO9BYwiMuaWnEUOBrP6cvbQnWRWNKjeQGaJvoDWte0/DAF6W84N9pVlLJPZRKvRCliCj1F5v/gh/t+BEODi9Z/pL4hme8bvLCEyJUVcKVBL0dTYwAK/qHKGYsVEsL5rEB+soGE16nooJvva0peqJUR9GNHbW3p4XBRkXnSM3DeGgcmdgVhOMmLe6tkgnqmogoNU/MZUYToQapisUsfbiEukHN9IWfohbpGh3FWCfSy/Dqzy76pvUAOA6YkVlZUaUEQRCEhULNBMaRqZlpWs1cu+Fart1wbfD9mQcOAWBXQtVIWaGAAnE3seZ8jk9ddzb3PdePZRj89uaVwbrAfU/b/GTDv7N0aB1XbX07hZYsTe25ySvl193PSGfMfugTFaU2dmxkY8fGGZeh2lYAe8MFadZd0e0zrvve0oFRlg6M0v7mN3PsP/+TzLJllD1LqaIDZdvB0VA0s8BYsP9oznf/8wKeR8v2/upIX9qpo0Dn0uMSFhbivlcLEaWERU16BjahnlAzuKGz70RVm4PXik9lpLiNOoH7XmQPT5SabodeEBYaOrCe8DtT8oYVhHrBbZv833SN3/ZxNmGVcjgIMz1RyvbfLZGy81ae15y+jNecvayqDD8+le3YlKxxnut4nHd85jKUo7CytayfvAOU3YDfxyNKFediMHnGNXDbZ8PvU1huGQ2F+Pec7xKpUV6Mq/9+eD+f/suf8OdXnUqvFRfoCmXXYipruy6R8VvpW0X5f3UkKaD0WwRhbhFLqVqIKCUsalREObD933qwSBpUYXoEQVPTBtypiYhSLKW0ASoRiD1RXlqQdkEQBEFYaKQ5yM+4jMBIKRRzDMtdOOJZTyng7We+nbv23cXV666etKyo+56PaRoY1hQhuf24Vl4WOqwaVlVT8LLOFh4dHmeJb300G5IxpKZIc9fxpt/GGR7CmShi9XTT+MIXcfRf/w2tNXlPz7INk9GSzb3P9TO88WW8du+9nLu8lfym0zCLvwLC7khaLyRt2cnsQdeKDzqdekn/X1iIBPFoZXIvFRGl5hyFYWRRxnE0WMKsUNptWK14LEhhkaOqOlJTd59mfe/TgpOnFFYlShFaSkWTLGutg/lHd8FsKyYIJxblq62CINQtcWsYP/te2oazPYD7p1Jy3cxMy2BZ3hWJfJlqaS7Lu855F+869101i/ItpYZKbma/BqshEKpqsvJiOO93YXCP+71WvKcpeNeqXtY25HhRe/PUG0+CqoopVfsc8ps2sfyf/in4Pv74E+4HrckrTQV4yWm9PLMfxks2dyw/m10vuITb/uxyAIwP/ToAo6SNS5LBOlOWzRUSoFx4HhLXnyTQeS1ElJpjWlvP5vKXPHWyq/H8IdLGGY7bybG0yFH1SDJO1Fy4btY0T58swjpJ9z138O54iZhV0n2PaEgpaYgEQRCEhUEi1Ufs73DTish2s+tX+ftVSm5baFqKS9qauOncUzhYKmMAF7U1TausaEwpgObsNIUhKwdX/8PMKj4JOcPgdX0dx1lKUgia2bUNsgE6DtrrYxTyWUAzVnKtyKKZ85ps10LMTjlOwsGgVi0FQThuxH2vFiJKCYsbT4CyDVKi/Aj1wHRiSgUdq5kEoEojJhqpSY8fm51NWErFNFGvw4hk3BAWPfIMC0L9UZ1n1rIbASjm2sgC2byJMmcpUXi7TYy6QcbNjIFSivNbG2dclG8p5dOSbZlkywXODN33qogmTqm4IlQmmwFKjHsWaVFFqaPiWpatYnDSIqPucrVc504YiQk8lTqhJ22RsICp4WUhgc7TEVFKqAvGs9Box5ctgGZVmAPC7DC1XPTm3n1v2pOXCVEqaimlA1dSFfsuCIIgCAsB31HXokKR0BJYaZtLX7uGJRs7MWYqnHj0rm6huSPPyEARBaw/t2fW9exr7MNUZmAptb5t/azLOpmoxLVMuvNNibe91hptu9fCF6XGPFHKSOnANFIm7B05uFO5sQAD3rMQX7aokT6XsKCQyb1aiCglLHLE6LjeCS2Vpn6Jz9ZzM7Xk0PyqalWqpZQX6DwaUwp/NiRoh6QhEhYX8sgKQh1jhI7xDUwwiitOaVzrlBdcvgyVzc66+Ma2HG/560vmoqZ0F7q56bU3sXt4N6YyOav7rDkp94STjCE1nbhY8R3cP1oH7nvZrDucC0Wpqq0TJUySdkXNYmJuPlkIdRCEOcOboBZRKhURpYRFTbTRDFOXiwZdT1Q7F3jfIgqUnmSbmZLWUKSVmBZcVWMGnwIS7nvSEAmLF5nhE4R6xo5YyAS/8gWhTIQsb17O8ublJ7sax0fyms70GkcnuTz3vZyXDXC8bHubRFUpP2mLJozO6WeQUdFv0UULnpot0SI5B+H5RZDUQGb7UhFRSqhDpDWqK4K+09Qv8WQw9Cm3T3YGo7vXcFeId/jcP7bf2ESFUj/QuTyTwmJDHllBqHvcNtD9sRd1lsrEw2j7wMmtVL2T7FvM0DUycPdznMB9L5tzrdn8QOcpSRVj3RuFM2UeY+m3CMLxo1Ni1Ya5R4UoIkoJi5zJW17RoeuD6eXY82f7/JneGd59v9GY5uxFTMwKLOld972akdlldkQQBEFYIETb15IepTL+s8i6zIKzlKoHkjGk1Ezd94JgyRo8USrnue9NlN3BblpMqaBbpKJfiC70Njv591x6SkI9EsSXlSc8FRGlhEVOmnPXyW9QhTlkknf3fN/lwOI95Ujp7nvuMiO6fTL7nrRDgiAIwgJE42WLMXKYmbPIs+rkVqheMczE95mKUl6g87GxYJHvvhdskhJTKmpt7k/cqZSAFycz0Pm0JhRnVDHpdAknh9THNJo5U6hCRClhcaP8xlOEqHpFVX2oxexe9GEs9cj+ge93Wp2qe3x+9j3QYVAO330v0KSkIRIWKcEoR55hQagfoqKEJ1SYjWQKL8KY6BdLqXmg6YWXMnDaadjHjmE0NtL88pfNaH+jsREAXS67CzIZsk2F+Dax+1Z9D6vEH78vHROuBEGYW6QfVYuZpnyYMZ/97GdZvXo1+XyezZs3c++990667Re/+EVe9KIX0d7eTnt7O1dccUXV9r/7u7+LUir2/1VXXTXfpyEsUNIbzVm6cAkLksm84VTsDieCoM/2YGmzFymFpbnvOd4HAx2a1zs6vpHMjgiLDHliBaGOicZA1Lp6oTDnZFevZu13v8Mpt/2cdT+4icI558xo/0xvD0s//nd0vO2tdLztrSz/9KfIe0KVz9RhqiaPabMQ3PdCZlmXhXQKguAh7nu1mVdLqW9+85vceOONfP7zn2fz5s18+tOf5sorr2Tr1q309PRUbX/bbbfxxje+kUsuuYR8Ps/f/u3f8vKXv5wnnniCZcuWBdtdddVV/Pu//3vwPZfLzedpCAsZaXjqnup5hbl7mVcFOk878KSr3aTKKhClXJN8pX1RShPMPAcxII6zwoIgCIIwRyjltlJzNK0jnCBar76a1quvDr7ndx2LbxDp26TZSSmlve5JivueH7pgrh+DabkuzeCg0p8SFhvivleTebWU+uQnP8nb3/52rr/+ejZt2sTnP/95CoUCX/rSl1K3/+pXv8of/uEfcvbZZ3Pqqafyr//6rziOw6233hrbLpfL0dfXF/zf3t4+n6chLGCiJsqh8lyd4lZYvISWUok7GstbPEe9p0hD4QtJk1lqJeNKOdoIahI8lkFMqeAAc1NPQZhnZFgqCM834u2Tilj9CgubDb3NrOhoCL6/eEN31TZ+H9kVIRdxX2QRV114/pF8qwqTM2+WUqVSiQceeID3vve9wTLDMLjiiiu46667plXG2NgY5XKZjo6O2PLbbruNnp4e2tvbeelLX8pHP/pROjs7Jy2nWCxSLBaD70NDQzM8G0EQTj4pc7kqsUqlbTl9dIo9lkaz46H7Wb7pDDK5fHj8xBRzGOg80pH3Y0r5QqnMjgiLFHmGBaEOSRWdZDZ/sdGYs7j93ZdTst0+Rz5jVm8Uu9WT39uF5b43vZAKk+4tj7CwIJEHM415s5Q6cuQItm3T29sbW97b28uBAwemVcZ73vMeli5dyhVXXBEsu+qqq/jKV77Crbfeyt/+7d9y++2384pXvALbS4uaxsc+9jFaW1uD/1esWDG7kxIWHLViSgn1wWSWSvNC5FiGnxFH23znbz7ET//1n+P1ChQw968f6FzhxFM2T1K+IAiCIJxM4i7saQKA9KcWC4ahyGfMdEEqwWSWUmlZ+04utWohHSph4ZIeHkQCnddiwWbf+5u/+Ru+8Y1vcNttt5HPh9YJv/mbvxl8PvPMMznrrLNYt24dt912G7/2a7+WWtZ73/tebrzxxuD70NCQCFN1Q20XK6GOUKHpecrKOT9coa0LOIxhZAEYPnI4tj5w30tk3zO02xhpCKfppGMvCIIgLAqkvaon0ofGcSvu6FYLy1LKZaZ9/IV3BoIgmeKnYt4spbq6ujBNk4MHD8aWHzx4kL6+vpr7fuITn+Bv/uZv+MlPfsJZZ51Vc9u1a9fS1dXFM888M+k2uVyOlpaW2P9CnZA6yyc/+noi2RmZy7tbNZMRsWwyTHe2MZN33YeT2TJCUcoXy6KWUt5GgfseqWUIwkKn2l1PnmFBqBdUTIxI9qHkt15P6Brf4sv9DNYnoy+tY38EoR6RsUA68yZKZbNZzjvvvFiQcj9o+cUXXzzpfn/3d3/HRz7yEW6++WbOP//8KY+zZ88ejh49ypIlS+ak3sLiQlTn+meyGbJa9342T0XMsilaiE78nYQg0LkmdN8LAp1LjA5BEARhERB14RIr3zrCm0BT4ed4whhYaJO6VdUThMVMMK6QsUAa85p978Ybb+SLX/wiX/7yl3nqqad45zvfyejoKNdffz0Ab3nLW2KB0P/2b/+W97///XzpS19i9erVHDhwgAMHDjAyMgLAyMgIf/Znf8bdd9/Nc889x6233sprXvMa1q9fz5VXXjmfpyIsKlTkX2GxU30f5/FlHmsoVGKVE/s+qfteJKZUOPEsopSwuJCxqCA8D0j9nUsfqh6JuuVNdm8VOhCCTm4bUKuvJE+msHiId/vl2a3FvMaUuu666zh8+DAf+MAHOHDgAGeffTY333xzEPx8165dYTBh4HOf+xylUolrr702Vs4HP/hBPvShD2GaJo8++ihf/vKXGRgYYOnSpbz85S/nIx/5CLlcbj5PRVig1Ax0Lr/9uiCYWEjoPFH8ztaczqoFj5EftDy+2iAuSoXue+DrVehE9r05rJ4gCIIgzB0J9z2ZRKkLwj5U9H5GraaiW1Xvt6iRR1gQFg3zHuj8hhtu4IYbbkhdd9ttt8W+P/fcczXLamho4Mc//vEc1UyoXyQeQl3hxwqfZHnqulnee3twkH3veQ8Ao5VTyWbWo8slAEo7dzKxdSv5jRvjB/X+jhTXsNt+AYYOYzIQuO/51ZJnUlikKHmvCkLdkRKXsy7ECCFCLcEpMYmrFmagc2l3hMVGLaMJiSmVzry67wnCvKOi2ffkR16PJIOEh32naIDW+LbTLjthn66LRQa/930Gv/d9il7yBG27wlLl6FGOfuFfgm19972BipvM4fDwi/j+sQ/Rff9L2briaorZFrSjY8epDhotCIIgCAuAoHkSAbreMWr0RXxR6oRKU5McbNZ1EP9zYQEiMfpqM++WUoIwn0ig8/pneqmAj78TfdOb30S3afLr3T0YSnFwfzsMg7IywTZOsRh87m7oZrA4yN1Lvs8ZzstYPrIKALOcZ1fvSzDHRjn10f+C3EuA5lnXSxBOJqKjCkL9kp59T6gnak3fqSo3vrT95roi8pwJz3OkY5WKWEoJi5tU1VmEqrrEtzaqsclMZ/hyuRwtLS0AjJXL7JyYQL3m1XS+9XoazjrLLcuyUo/7z7/2z7ztjLfxXMdjfO+Ur7Jm2Sd4UfMXWZJ5CgDbzMIvPwVffjUUh6dZI0FY4EhfShDqHOlD1SWx25p8kYd9p4XkvifNjbDYiT/DYoVaCxGlhMVNjcwxQn3gW0oFs7hz+C43TZMbbriBd77znTQ2NgJQKpW8A8f+eL218OBLmpZwydJLgkr+Z/ZlbFlrM9oy5FZTKTQmaBtVHnWXyeyIsEhIWqGKVaogPF+QgVM9kUy04ka9nKQ/paLZ907eO386wth0nk55goWFhfSjaiGilLDI8Wd33Pmd6DJpjOqDqld4jXe6mp6vX4xsNktvby/5fB6Acrmcup0btiwx5xEJ/vy0uYp3nfoX/Kzj/LCiVkNk5+r9BUEQBOGkkRLoXAZOz0cWxj1fGLUQhOOntqYrY4E0RJQS6pCTEKRRmDfUZBN6sTtsxLaZzb3PZNzYUb6lVHWDoqpEJT/YuUIHB4+nWI4/i9IMCYIgCAubaAIZYdGjEx8ifZtkNyfqvndy+9DH9/BJ/19YmEj2vVpIoHNhUaNUDV1VshzUKdUv87m409lsFoD77ruPHTt20DvRTWey9KSlVGTdRNHAODAWbKKVokqOEkspYZEjnSlBqB+CZkqn/bblt14XpHaQpp7CW6g96IVaL0GYCsm+VxsRpYTFTcpUnlZil1JPqGmYP81FYM6mpiYAtm3bxrZt21jRtoIr2RCPKZXAt5RCaUZGMmQfOYadyQQ76CobKXkmhcWKdKYEoZ5RKZ+ExU8QU6qGhVSUhRTo3CfVak8m+YTFijy7qYgoJSxqAksV+X0/f6h1r4+jL3XFFVfQ3d3NwYMH2bJlCyW7VHXY5EyyP+vRlDMxmsoMj2TA9rZPsZSSQOeCIAjCwiFsNMUK8vmBjvwbUp19b+FJU7NA+lzCSSa93y/PZRoSU0pY5EiQznonnCFLCEJ6bs3OOzo6uPzyyzn77LMBcLRTvdEk7nvtjRnWrh1N1FLhv2InzXQjCAsUsTIXhOcZQfsk1uZ1xWLufqS1Q9I2CYsWeXhrIaKUsKhRqTM6kn2vngi6xyfoXW6aJlAtSungnxDffc/RTlBPJxjNp1hKyVMpLFpkoCoI9Y0fCFsGTvVEzduZYjClo12YxcpirrtQF6TrqfJg1kJEKaFuSDdGFhY7Kmn6Os8zZ6EoZSeOUX0Q331PozG8J9BR7v5aKRwtWYwEQRCEhYlSKkVm9if7pOGqL/Qkn9M5mQNov9sn/XihHpEJ6nRElBIWNWmZDBZikEbh+EmRhCZdezydaV+Usj1LqVjHbBL3PUc7NCk3BpXljEe28F+xkn1PEARBWAxIrM66Ium+p2rJTXr++9DSDxKer4gVak1ElBIWNfHft8SUqkd8K6PApDylQ6NTPs2WwFLKSXPfi5fvu+9prYNnsaV82KuvCh5QpfxA58ddPUE4oVQ/s/IQC0LdEJ1zIdnYCnVB2u1MvNi1qp7km+unYHaWVylWe9IECYsWX/CXhzgNEaWE+iDy+5buVH0RRrJJWimlfTv+uz9ZTCm3EumWUppQlAr3irxeg/2kIRIWKTLDJwjPD4KfurRX9YCK9KIm38b7e5Je8/P1pMkTLCxM5MlMQ0QpYVGTPvMig6e6IogtUOu+pktUsyEpSsUttRKilArd95IH1VSnVk5PDSsICw95iwpC/eO2q8lJE/n11yNRAzi/L5ImVwX9lgXwGKT2mBZAvQRhdsjDWwvrZFdAEI4PV1eN/sy1kp99PRFaI1WvcZdG7rbS4apZ4otSxUqRn2eeoM1pmnRbg2r3vcCiSym09nR/X4wSTUoQBEFY0EgPqq5I9cpMt/qObrfwn4Iall8Lv/JCnZMW83g6VovPZ0SUEuoQ+dHXE6GlUq37OXe9qIaGBjcjkdY8ax4AE5oME1BVlk5BTKnUZy0mldbYThAWEWLtJwh1jvSh6oqUftFkXSXRcgRh/pGxQDrivicsalSgRURN0FV8pbCo8e+inYzxVOOdfjx3vlAo8OY3v5nN6y4MBTHD8AKdpx/I0U5V7Cs3cKhvySfZ94TFzclMDy4IwjyhqidPUoNLC4uW6YQIS3Xfm68KpTBV+1IroqggLBrk0a2JiFKCICxoAmGoZgd5bjvRa9eu5cyVZ1V3lJKWUqnue2HQdenSC4sdmdEThOcHyV+6/PLrjJrue9XbnMzxs56ro8tDLCwoJPteLcR9T1jcpLRbukYUImHx4brIaYwawczDMK1z141SKrTAs4wcqCIVLEoTlWAbu+R4x43PMwZ1CYI4eFZe0hAJgiAICwSVailVHatTWMyEWYJDJjH7dnMJn4hKpR9+ksU1ozcIwgJGuv3TR0QpYVGjxNiv7gln8JK9lkhEey+205z2pQyFgcIGrlx+PZmy5qejWSp/ckewyWDuCJwLxYkyxr4WINLVUypiBq/j6wRhgZMWpBPEckoQ6o5o9IMoMpqqC9IFncnvbZh978SLU5Fw61NuW/vxFElVWIjIc1kLGdELi5vURlMl/gqLmbBDNXUnxRd/5sJxrmNTB0Rs7hqsRpqNpLVWOANpDORSapN4xUonXxAEQVjQSN+pLpnGbV1ooVj1QquQIEyT9NGpJJGohVhKCXVEItC5UBcEr/BUV03/b9Jh8/ifgYaOBswGi/JEhZHKAK1mgYvHf8SKL3ws2Gbf6D6+9r34kYM6KRX54rn5iSglCIIgLEikD1WPpOk6KuUTADrsa83bUyD9IOF5jlicpyOilLCoORnmxcIJZibv7jl+HAzDtXRyPFHJQGNlzGB9xnJfoVppiFhN+ZU5GVlsBGF+kc6UINQ30mLVI2kxparutJrH7Htz1F+fUSnSXAkLCRmz1kTc94RFTfT37Te4JyVIozBvBAHOE3mN45nx4rGb5irvnS962n6g8kSD4q/X6GgwqaCWOmGqK5ZSwmJDJ55rQRDqk3A6RVxM6god+0P6t8U4gSbPp7DYkOx7tRBRShCEhU1qhyq5yfzkW/QtpbT2s+fFu2yGH2A9Ij85/kplBBUKRDJpiARBEIQFRLXz+eKSJoQpmIZ1RjwH48K7/2qmfaeFdwrC85R0Vz0ZC6QhopSwyElzlg+FAmHxE4Str5ETeL76H74llKPSO+tBoPNJ6+Y9i9MQ1gRhISF9ekF4viK//npisjyqsW8n+ZZPJ42NICx+5DmuhYhSwqJGxR7hSXzkhUXN9BwJVNqf4yYZU6pKlFKhhVYyILtW0ZhSIkcJgiAIiwFpt+qd6j5S2NMK+i0nsTOtT7ZKJgjHS80EA/JuTUNEKUEQFjbeu/tY4+ETfuhYzCh3SWx94L6nwi3CpsaIfPHd/6QhEhYpEqBTEOqaMOahP7Ny0qoizCWewFPW5ejC2B8fpYhM7p3Md748fILwfENEKWFRo1Kf4PnOZyucSLpHvA6VVXIXeK5y6gTMpFUFOp/EfQ+ICE46+LcqNoOIUoIgCMKCRjpP9YTpWXxXtB0se74kXUmP5yMIJ4mqiW4hinWyKyAIc4f8yOuR37rT4gVbSvzszLy7ICUbmJ4nITJw35tElDIiqmgY6NyvS+i+h+f+Jw2RsNiQJ1YQnq/Ir78e6G7oBo6SNTM1tqruTy14aVIeT2ERENd/xQq1FmIpJSxu0k2lhDoi4yjOek5jOGZizeRREeaK0H3PF5XSY0q566pTLPuNkQoXCsKiJLAKfJ7MsAvC84XqdlOSxdQTGcMVozJmNrJ0knu74JWo6VEnpyEIzytkRC/UMdIs1RPJLlTSkS5tm+MlDHTuq0uTu+/5KYtDQ65IcAbfpU8G9MJiQV6fgvC8QCVnTSR+XH1RM+ByAr2wLKUkMLSwWEmPyTa91E3PV0SUEhY1pjzC9U9VB9kP0BntrszPzG5gKaX8QOU13PdUXJTSkdxFKsjeJw2RIAiCIAgnBpXa7UiLcO7+mffsezOanJuJoiYICxsVTKDLWCANGdELi5q4Ep2Y5UtviYVFSvWsw+Sdlbnqs1RZStUIdO43MjqyNhCxxPNJqBOkMyUI9Uq8nVPyW38eMMmk37wcauY9s+POZyOPsCAsGiTQuVDHyHRKXaGSX09c9j0/plTymNGYUkeaH8dyLOwJBawGpdhKCcswsESNEhYpVWnipZcvCIKwaAj6KbHui65e5C3Rczy5Nx1OoDQmCCcPJf2oWoillFC3yCxfvVGrizQ/rzK/M7czP8Id1lP8ohNuuukmjh07BoClrECo2rL0v2hY/jVK7Y8Drgn8TWqUG/q6CV0O5ZkUFilKgh8LQj0SyM5OQoCWn3odoxN/XWLueydhYnfOjihz0sICIfEL8xbKyzUNsZQSFjXKqJX9TKhP0mJKxZkrQbKhoQGAo9kiR9nnvjHvvx89VOGKcy8D4C3Nb+bne3/FkOlwBKDU6lVCoTQcMk30Lz4BrEOXx+Afz4GVF8NrPisBZYVFQxALIYiPJghCPVDMKhrGw++BGCEhEOoC/346Kd0NTVK/Ocn3XCWrIM+gIDxfEFFKWNwYaRYyMtCvKyYRbhQqsm5+7M2vuuoqujvaOfCzJ+jI9nHYGGSneYT+p/Zx9NEncHC4wFjNWGaM7U4bu8vryZSLADjKRHmZbIyxI8A6bEfx3UfynLnzR6x/2VFo7JrbCgvCHJHm1iEIQv1Ryhg0jEM5AyqiOYsmVV9E3+D9pmsP5Sg/TUx0km/hZN/zkWdRWGzUnnOWBzoNEaWEOiLVSFIQZk1nZycXX3gh3/n691jasQyyWXYWYJ/Rz1dyt1FSdtU+o4bbqx9pWkaf/R4u2jbM18vjwB1oHLaPdLJvYhk7v7YLMocmPfbSDe2cdsmS+To1QZgZEgtBEOqa0GpGek/1RPjmDt/dE4amwQnXWVpRPuE1C5m8VZn8WZxOSyStlbCQkOx7tRFRSljcpCTfI/jRC/WETnZOdNRKLu5uMJdd6sb2dsx2uG3fV6k0NMKaTRRVJbaNqQ0uLK/nNmC4NAi6EW3kyLKc5YNgA9nmpdjlp7En7qPo5NjywEDN42699yCnnN+DlTXn8GwEYXaI+54g1Ce66oOIUvVIyQgn0Wyvr5S1s9iUiVqbB5ZS8hgIwtwiP6qaiCgl1BHJLFFCPVGV+e4EHdcwTK659s3sfvvbyZx2KvsuPI+h4REAWpsaYQBWPtbKL7CBccqFCcyBH3Dmtr3c8YI17Otu54LCZg4etunrXsehh+8jZwxz8Su7Id9SdTztaO7+n+1oR+PYIq0KJ5fwCZRA54JQj0wenVF+6/WA8t7duxuOAk3e0vQJPAUnJfveXKNk8C8sZCTQeSoiSgmLGpVqKiWNUV2R6FxoQOtiJBtYZJv5uvVe+YaGy155dWzV3sePoh97EoU7C6kzNqYxTsexLYyyjdvWN7G55wJG73mWttWncOhhyKoxzn1xB7QuqzqUXXG4+3+2u2VJwyUsEJS47wlCXaKr2k3pQ9UTZ4x1sPyw5mB7jSHfonq9S3ZIYfEQ78bLu7UW85NHXRBOEOmzIb5AIT/+emQ0b1Ec+Cz2xMPBsurse3NM0GGr7gWplLdoi+fe94r7Hd77zVF2jJbc3aMbTeIGFX1sRZMSThbV71bffU8eSkGoa6TrVFf0VBr45L/aXHn0jMjSSd7jEfe9k4k0M0I9kvT4EOKIpZSwyEkNKgWAIdModcVYg0OuXKGYcV9bTnlfuLJ6qnd+SOspqXhoWI3i8vYRjgIdI9AxYjO29Sn2VBUzWacwqkodf5UFYW5YVFPpgiBMm3QBWn7r9YURc9Sc96m8SZnexEaNbWRcLywCaj+m8m5NQyylhMVN6q/eXZjLntCaCPNMOaN46ZM7WXvIjeekiOaunt9XWa34BP6hgy00dF+xkfLH3sszfvI8x/FWae+vmqallDRcwsLA/w1IoHNBqE9UIgSCkuanPvDe3aau1U/yY0zNYw7G2XgvRDtWs0GeYWFBIdn3aiGilLC4USmWUn78H5lNqTsUYPhCTUSwmfekQf5zVsNSKqyLQpkGxpmnMdjod+79Dt/UvnlRAUw0KWHhIIHOBaGuOXnGM8IJwIjc3+SgOOibKBXJvicPgCDMKfKbqomIUsKiRn7e9Y9KfFKBUhOx2Ajc99Izyhx/JWq4M1TFWFegNUpVO5Dq6N9aFieBBiYCgHBy0VWKrzyTglBPTB7oXH7r9YRZY8iXMsUnCMJ8IX37VESUEhY5k2ffk598feHfaSNNlJp3dXLyIM+TzSYahhHRyuL76SliYAVlykMsLBBC9z15KAWhvvHdt+S3Xhf4cS91Wn85sSmhSCmTvoJw/KS76sm7NQ0RpYQ6xDc9PsnVEOaYeJyLaGwbHTE9P+FM0oEzlImTEKViA/oallI1kv0Jwgmh+qck1hOCUM9Il6m+iVpKpUyvRdYtlidB2iJhcSHZ92ojopSwqIkPnOKWUtLFqk9S3fcSA+Z5c99L894zqrPvubuocMYxeDRVuE0txen/Z+/O46Kq+j+Af+7ADDPACC4gi4isKm6l5l5IiqClVKYZRlBq+TyuuYSahppLGmgu5dKv0OdJzUczM8wMTQ2VXEEtFRQhCzV3EFBA5vz+QK6MDAMqMICf9+vFS+fec8/93jszZ84999xz7pXM7JVC1YaxR1iJiKhaU+hd8hXWn8zu3RxTi7wS6U1Rg67wfbIORSZi/B45P5eGsFGKajF+6WuFB7qe3398r+T7W2nveDm6Lj049pVZscf3pAcf3wPK6CnFBlWqXqR71QXOvkdU27EBula593YaGlNKhbsAAFF0Ba3W3r+xViXBGSffYhYllxHVOPKNaZathpibOgCix6Iw1K7Kn6xaqUQDj4HH9ypr10Zm35MemOZRFKWT7jdKyRMG6icysr97yXT84aLqgheqRE8G1qFqI4W4P/mK6tp+5CtvQHnv9V2YFf7HtrEpQjM4i7GRxOXI7/HCIaoc/GAaw55SVMMZ+oLz8b3aqain1L3GKAM9NorqNZX2zpdroPN7PaUks2IPlOrHWubse4qiQaUfLUyiinPvQ8jH94hqpxI/YZxoozYygwSL/FwAgCTyUZB3XF6Xf6+PgoTiQxBUeYjF3BuHk9V4qo1YthrERimqxfitr43ud+Mu3qhz79GiynrPjdXOpMKxn4oeuSuKQKGQig10rr9JWWNKFR9ylKg6KP5IKcc6I3oS8HteK9yrvyiggMv1v9El+W95lSh260xexoYgogqjX13izT1j2ChFtU7JnitUGxRdFN/vdWTo8b1Keu+NPb5nsHeWgCSZFfv90d1bWjyJkTGlpDKTEFWqkt+ksqcTJ6La4N533Zx1qdrEXEhQSID2Tq68TG6UMlCFqrSxLR/756P8GfCXiqoTjhdrHBulqEaTjIwpJdRKA+uoxnmgkVFR9PResUYpqcR/KicGwz2xJAi9Xd+7KykV7ykliv8DIQo7yZe1P6LqQpKKTSfO1lKiWqO0X6JcJw47W5sUzb6nEPff8wdrUXqP71V0AI9Sr2GrEtVQxhug+ME2hI1SVGvltWli6hCoEsg9pQxcGBcoisZFqKQC30C2pY1jpVCY3e8G/7Cz78kds/jDRdUFe0oRPRnu3YRR8OZIbaIQxW+gFc2mWjPK8of9JPKTS9USZ98zio1SVKMZvvFy70tvwZ5Stcq9Fh6F3JZzv1FHd68xKk9pVUk7N17FEXr/LxwvSpKkUhulSl1WtLeiHy52SKFqg41SREQ1TVF9wqz4Jd+9nq8F98r1HGWje8srsadUBeOvENU81f1bZVpslKJaqLKnYCNTKOoKK8++V6xR6i4quQHSWOPSg5+zosYzxf3Z9x4cU6qsgc6L8uTdFDK1oo9p8bH6asrddSJ6FKxD1UYK3L9RJh5olIJkBgCwrXd/XbUYRcBYEPwdopqKn12D2ChFNZrhZ3arwy8pVZgHno+T7g/MJCcRD6ap8BCMDHT+wJhS90aPgkK6//ie9ECXp8JsjPWU0suMqBpgTymiWqnEDybrULWRmSjZU6roxpe57hbe+Kgz3L2qx2WhEMYqQfx8Uk3HOpQh1aP0IXpURh7fqx63eajiFPWUKjlEZ5VVUoz0lCox0Lni/kDnRT1LhNxkJRl/Nq/o8T3+bpGJPDiLafGBzlmhIqo9JKF/KSCBd0VqFwOP7xUNc3HvPZZEPmzsNFUdmBEV9NnjR5hMxNAlKGffM46NUkRUI8gzFutKNkqJyi7ojTRwShIemH2vkH5PqaKYi6UyOqZUURLWqKi6KP74Hgc7I6ot6ubXMXUIVAUUetWJosu/B3px60xb5+AlOz0JODSHYWyUolqIP2u1Uzl6Skmi+KsK3HXpj+89SNxLJykU9392dA9U/MroKXX/ccGHjpSokvDxPaLaSCk4KcyTQAHF/clXHqgkSShZH6nRvTr4pARVR/xcGsVGKarR9B8pkRcW/adKY6HKVVRBenB8puIqrWORkWlcJUmCEAYe3ys2+578+F6xzY31NmFPKapu9B/n4+eSqNZ6YIxGquGkoht69+vL4sHLP3mIgWKbVXZcD4N1IaoVqtW3qtphoxTVbGx1rv3kClXRvyWTlKhgVZaHGHNToSg50Lleo5bO2JhS93bHehiZ2P2PIGffI3oycEyp2sj83qQsAAzUnfleE1UGg/Ul1qEMYqMU1UK8y1cr3esVZ2asMK+099zI7HsPjClVOL5V4ex7OnmhuJ9YXmSkp5S8v8cKmqgCcaBzoicDK0+1kd7seyXeYwM9pSrtY/AQvx+PGQR/qah6YYO/MWyUohrN8O8VK1S1kbmkBlDau2u6gc6L9m1o9r37vz/3GqCKNWoJXUHpOSqKkvOHi0zjwU88H98jqq0M/77xW15LFPU2h6LYW/3Ae/7ADMFE9Hg4+97DY6MU1Xj8CX0ymKusARSfya4KPdjjqfgqyfBnsHhPKcnAeA1Gu+8WjWHFDzdVG5x9j+jJcO9GC6+fahUbi2KzLJbj8b2KnzCmojMsewZjouqIjb+GsVGKaqGilgD+KtUK995HM2EGwPCYUg/OvldpjLQS6XXKFQIKRbGZbnQGBjo31lOqHPsjqlrsKUVEVFNZmFkUe1WOx/cqOyCiJ42kd6VAD2CjFNVsBhueimY/48e7NpHuFVeSgcJcPFB9qujKlHR/OjxDgT2wz6LH9+4PdC7/ABULzNijeZKCPaWoein++B7v8hHVHlbC4oElhd/1uuq6VR8MVRpzoZBLblGiklQ9y3SDc2mztYyoVuJVO9VChb9YbjbuJo6DKpLcKGWo7qQr7EVVsqJVUTsvPWNJeqCZrLCrlP7yotn3iic0NvuefmZEJqPfMKowtJCIajCNUBlebq6p4kioUtyrvpjhIQc6r8yYqgp/q8jE9D+CnFrbGHNTB0BUWSzMDFe0qGZSCGNt6BIsLM1hpr5bOTsvGuPJ2BgG9/4t3mtLSIUz8RU9vle8ymf08b2i3y0O3UPViCRJ9+pSrFAR1V61ojmCHpB77IR8484yV0Ke3lqB3/65iD9vVlId6hHxl4ZqJ36yDWFPKarhJAOzGXBMqdrITCrsDVU0j4zeunqXETK7CxRKXbE0lcDQ03slBjq/v/f7A52X7ClVvsf3+MNFpmFsZlMBtpYS1RZKxQM38KR7r63tqj4YqnBmWi0A4O6ZM8iwLKw7Webm66VRiJt46eQ/GJPZQF5mzjo00WMo+f3h7HvGVXqj1GeffYYmTZpArVajY8eOOHjwoNH0GzZsQLNmzaBWq9GqVSv8+OOPeuuFEPjwww/h6OgIjUaDnj174syZM5V5CFTNPfglLxr7hL+ntcS991FhpOv5Tc1dfHszA7EK50qKwViXW0kvIlEs3f3H9wxMtyxK7yklJ3nYOIkqFR/fMwXWo6gy1VPZw8e2CzzrdICVZXcozR2htlbCo5OHqUOjClDvrbdgN34c3F4PxJG27fDfHg7ItTiHBnkFaJinQ6O8u/j5uXawz72GpzJPwffGEUxBEqzMzUwdOlHtUo6nLp5klfr43vr16zFu3DgsX74cHTt2xKeffoqAgAAkJSXB3t6+RPr9+/fj9ddfx9y5c/Hiiy9i7dq1eOmll3D06FG0bNkSADB//nwsXrwYq1evhpubG6ZNm4aAgACcPHkSarW6Mg+HqiFJAswVSuTrcu8tuX/Hz0xjbZqgqFKYKZTFXwG436jzh4U5Fp3+CzAvHEfMAmU3+Dyc0hulJKlwscE7IHJLlXhgASCMjCklDyrNDilUjRR91tlcWnVYj6LKlpS5D3cKCn8zBQT8Gt9E2xmzTBwVVRTzevXQYNgwAID9jBkQdu64fK8TXGhoKNxcnPCaEIDCHFCY8Y4uEZlEpfaUWrBgAYYNG4a33noLPj4+WL58OSwtLfHVV18ZTL9o0SIEBgZi4sSJaN68OT766CO0bdsWS5cuBVB4d+/TTz/F1KlTERQUhNatW+M///kPLly4gM2bN1fmoVA11tmuH9ysW6ORVQu42HaDu901tOmsQeOnGpk6NKpAjrpG2NzRCqedFbDNU0KJulChHrQ6J9xu6QI/W0u8nJ+CAZd+wkRU8F1/Y3W0UmbfA4rGlCr2+J7emFJGWpyK2sB48U/VSmGVgY+VVh3Wo6iydXzhJdRTa1BPpYZLnbpo+tYQU4dElcTX1xcODg5wcHCAj48PXFxcAHMLQKkGzMzZIEVUqfj9MqbSekrl5eXhyJEjmDx5srxMoVCgZ8+eiI+PN7hNfHw8xo0bp7csICBAriilpqbi0qVL6Nmzp7zexsYGHTt2RHx8PAYNGmQw39zcXOTm5sqvMzMzH/WwqJpRmCvgaOkOR8v7M+1pn1XDptczJoyKKkPd4xdx3ftFHHMrue7/9s9AXeWR+wsavl8pMRTcuoW/3h2ut+wO1BB1XpFf59+ti5fjngf2bkWbez9ArscOAem/QxwAUKewd8Oq2Z8D+NzgfnItPCDM1Nj00VpIqNqBRw33+JKQb2EGneL+OnOFeYnZmRp69kXgu12gseYkA7XFtM2/w1pdWFV4rZGAuQI4dep9KMyq18xcKmU9+PjMN3UYFaq61KNYh6rd2g0OQ7vBYaYOg6pA9+7d0b17d5PGcHn+JzCzsdFbpqs3CIAZVDpzQALG3xgHy0lbAYvC3xmrnDvwOFD4GPJFjTWgtMSe3/7BvleeN7iPu0o73FXaI3FrPo7F3KnU43mQ4XGDJBQoFbir1O8LolVp9V7XsX8KXfr3RpPWDUC1w3cJ6Uj46yYAoEv963CzAtLTv8H16/tMG5gB3l7TYGnparL9V1qj1NWrV1FQUICGDRvqLW/YsCFOnz5tcJtLly4ZTH/p0iV5fdGy0tIYMnfuXMyYMeOhj4GqP9dnm+Hcrp2wMi/8gbuTn4GG7fxMHBVVJG3Pnri57hs4XjyLVI/W0JnpD9DpUFAHVoqz9xeYawDXzhUag3m9eoBCAeTnI2vPHr11BQolCl54BXXvVUTyJQkJ99Y11mgA3ILdrbuwu3ULALDDpx7ylObIUVqWvkPdxer36F6OftdaHYDsB5L8fbojCvKrW+D0KBpYW+BqVh4Opl2Xl/k3sIa9ZS5u3PzNhJEZprZwMnUIFa661KNYhyKix2VevwHy/zyP24mJJdaJl/sDMEN9SYFr0CHpXo+thkob6CRAqQPapxbWoU40ssBf9YE8MwvklTrsVTaQn1opx/HIcgFFrv6iB+tQuTkNkHmtahvRqHLY3bs5e+5qNs5dLXynG3gr4WYF5OScRU7OWWObm0SB+3sm3X+ljilVXUyePFnvzmFmZmZhl1Wq8dQ21vCJCjJ1GFSJHCMi4BgRgWY6Hbrn5SM/Px9CV4CC3MIeRJbWFjAzv9d7SZIKx0UwUxrJ8eGZN2iAJmvXIDclxeD6XA9PZJzKwNQrefg7KwO492hepuUb+L/AA7CSFIBQQAgBVf4d1MnNBCCgkCSYmZeMVQgVhK4+KqKrr5mZoRkqDVNIgIXigbQKM0BphXw7Gwjl/VgtlRo00OjPzuTg8TQsLCv23JNpfPFme8Sfu6Y3fJRCtwj1bM6iYZ3qN+6QWTXruVWbsA5FRI/LeeECZO/bD4iSN64c3Fxw9ZwZxt64jEPXLkPcLbz5mAdfLOtnjrp3bkGhUEGnE5AK7qLunZtQ3JssRqlU4sG6khAShK4BgMevjygUEhQP8VijhZlUcmwclRYFdaxQoNW/Gdm4TmO91zb2rmjUtO4jRkrVyfDuHvBsqMWdvGJj3ApPSEpfNGtY/epQAKBWm/bmXqU1SjVo0ABmZmb4559/9Jb/888/cHBwMLiNg4OD0fRF//7zzz9wdHTUS/PUU0+VGouFhQUsLCwe5TCIqJqQFAqYqy1grjbNd1nz1FPQGClnGj7lBG80r7qAiCqRSz1LuNR7sDefC4CK7YVIpasu9SjWoYjocSkbNoTtKy+Xur5uW8ALXuhTYk1oZYZFVCksVebo18ZQI0/TKo+lpqi0gc5VKhXatWuHnTt3yst0Oh127tyJzp0NV2o7d+6slx4AYmNj5fRubm5wcHDQS5OZmYkDBw6UmicRERFRTcN6FBERET0JKvXxvXHjxiE0NBTt27dHhw4d8OmnnyI7OxtvvfUWAODNN9+Es7Mz5s6dCwAYM2YMfH19ERUVhRdeeAHffPMNDh8+jJUrVwIonCZ97NixmDVrFry8vOSpjJ2cnPDSSy9V5qEQERERVSnWo4iIiKi2q9RGqddeew1XrlzBhx9+iEuXLuGpp57CTz/9JA+wef78eSgU9ztrdenSBWvXrsXUqVMxZcoUeHl5YfPmzWjZsqWc5v3330d2djbeeecd3Lx5E926dcNPP/0Etbp6Pp9JRERE9ChYjyIiIqLaThJCiLKT1S6ZmZmwsbFBRkYG6tSpY+pwiIiIqJpinUEfzwcRERGVR3nrDJU2phQREREREREREVFp2ChFRERERERERERVjo1SRERERERERERU5dgoRUREREREREREVY6NUkREREREREREVOXYKEVERERERERERFWOjVJERERERERERFTl2ChFRERERERERERVjo1SRERERERERERU5dgoRUREREREREREVY6NUkREREREREREVOXYKEVERERERERERFWOjVJERERERERERFTl2ChFRERERERERERVjo1SRERERERERERU5dgoRUREREREREREVY6NUkREREREREREVOXYKEVERERERERERFWOjVJERERERERERFTl2ChFRERERERERERVjo1SRERERERERERU5dgoRUREREREREREVY6NUkREREREREREVOXYKEVERERERERERFWOjVJERERERERERFTl2ChFRERERERERERVjo1SRERERERERERU5cxNHYApCCEAAJmZmSaOhIiIiKqzorpCUd3hScc6FBEREZVHeetQT2Sj1K1btwAALi4uJo6EiIiIaoJbt27BxsbG1GGYHOtQRERE9DDKqkNJ4gm89afT6XDhwgVotVpIklTh+WdmZsLFxQV//fUX6tSpU+H5Vyc81tqJx1o78VhrJx5r5RJC4NatW3BycoJCwVEPWIeqODzW2onHWjvxWGsnHmvlKm8d6onsKaVQKNCoUaNK30+dOnVq/Ye7CI+1duKx1k481tqJx1p52EPqPtahKh6PtXbisdZOPNbaicdaecpTh+ItPyIiIiIiIiIiqnJslCIiIiIiIiIioirHRqlKYGFhgYiICFhYWJg6lErHY62deKy1E4+1duKxUm3yJL3HPNbaicdaO/FYaycea/XwRA50TkREREREREREpsWeUkREREREREREVOXYKEVERERERERERFWOjVJERERERERERFTl2ChFRERERERERERVjo1SRERERERERERU5dgoRUREREREREREVY6NUkREREREREREVOXYKEVERERERERERFWOjVJERERERERERFTl2ChFRERERERERERVjo1SRERERERERERU5dgoRUREREREREREVY6NUkREREREREREVOXYKEVElSItLQ2SJGHVqlWmDqVS7d69G5IkYePGjaYOpVSSJGH69OkVll/RMe/evbvC8iQiInqSPCn1pIcRFhaGJk2a6C2r6DpMeUyfPh2SJOHq1atVul+iJxUbpYhqqf3792P69Om4efPmI23/+eefs6JUzNq1a/Hpp5+aNIacnBxMnz7dYGPQjz/+WOWVNiIiopqK9STTuHDhAqZPn47ExERTh4I5c+Zg8+bNpg6D6InHRimiWmr//v2YMWMGK1sVpLo0Ss2YMaPURqkZM2ZUfVBEREQ1EOtJpnHhwgXMmDHDYKPUF198gaSkpCqLhY1SRNUDG6WIiEwoJyfH1CEQERERmZxSqYSFhYWpw6gyrAMSFWKjFFEtNH36dEycOBEA4ObmBkmSIEkS0tLScPfuXXz00Ufw8PCAhYUFmjRpgilTpiA3N1fevkmTJvjjjz+wZ88eedvu3bsDAK5fv44JEyagVatWsLa2Rp06ddC7d28cO3asQmK/c+cOpk+fDm9vb6jVajg6OuKVV15BSkoKgPtjMERGRmLhwoVwdXWFRqOBr68vfv/9d728unfvLsddnKExC4zp3r07tm7dij///FM+Hw9ur9PpMHv2bDRq1AhqtRo9evTA2bNnS+TTsmVLHDlyBM899xwsLS0xZcoUAMDly5cxZMgQNGzYEGq1Gm3atMHq1avlbdPS0mBnZwcAmDFjhhzH9OnTERYWhs8++wwA5OWSJBk9pvT0dLz99tto2LAhLCws0KJFC3z11Vcl0v3999946aWXYGVlBXt7e7z33nt6nxUiIqKahvWkQhVVTwIKz0lYWFiJ5cX3sXv3bjzzzDMAgLfeeks+d0U9zh5lv4ZkZ2dj/PjxcHFxgYWFBZo2bYrIyEgIIeQ0kiQhOzsbq1evluN4MP6bN28iLCwMtra2sLGxwVtvvWWwIenrr79Gu3btoNFoUK9ePQwaNAh//fVXifNQWh3w8OHDCAgIQIMGDaDRaODm5oa33377sc8DUU1hbuoAiKjivfLKK0hOTsa6deuwcOFCNGjQAABgZ2eHoUOHYvXq1Xj11Vcxfvx4HDhwAHPnzsWpU6fw3XffAQA+/fRTjBo1CtbW1vjggw8AAA0bNgQAnDt3Dps3b8aAAQPg5uaGf/75BytWrICvry9OnjwJJyenR467oKAAL774Inbu3IlBgwZhzJgxuHXrFmJjY/H777/Dw8NDTvuf//wHt27dwogRI3Dnzh0sWrQIzz//PE6cOCHHWlE++OADZGRk4O+//8bChQsBANbW1nppPv74YygUCkyYMAEZGRmYP38+Bg8ejAMHDuilu3btGnr37o1BgwbhjTfeQMOGDXH79m10794dZ8+exciRI+Hm5oYNGzYgLCwMN2/exJgxY2BnZ4dly5bhX//6F15++WW88sorAIDWrVsjOzsbFy5cQGxsLP773/+WeTz//PMPOnXqBEmSMHLkSNjZ2WHbtm0YMmQIMjMzMXbsWADA7du30aNHD5w/fx6jR4+Gk5MT/vvf/+KXX36pgLNKRERkGqwnVWw9qbyaN2+OmTNn4sMPP8Q777yDZ599FgDQpUuXCtuHEAL9+vXDrl27MGTIEDz11FPYvn07Jk6ciPT0dLke99///hdDhw5Fhw4d8M477wCA3vkDgIEDB8LNzQ1z587F0aNH8X//93+wt7fHvHnz5DSzZ8/GtGnTMHDgQAwdOhRXrlzBkiVL8NxzzyEhIQG2trZyWkN1wMuXL6NXr16ws7PDpEmTYGtri7S0NGzatKnCzglRtSeIqFb65JNPBACRmpoqL0tMTBQAxNChQ/XSTpgwQQAQv/zyi7ysRYsWwtfXt0S+d+7cEQUFBXrLUlNThYWFhZg5c6beMgAiOjq63DF/9dVXAoBYsGBBiXU6nU4vX41GI/7++295/YEDBwQA8d5778nLfH19DR5DaGiocHV1LXdcQgjxwgsvGNxm165dAoBo3ry5yM3NlZcvWrRIABAnTpzQiweAWL58uV4en376qQAgvv76a3lZXl6e6Ny5s7C2thaZmZlCCCGuXLkiAIiIiIgScYwYMUKUVqQ/uM2QIUOEo6OjuHr1ql66QYMGCRsbG5GTk6MX1//+9z85TXZ2tvD09BQAxK5duwzuj4iIqLpjPali60murq4iNDS0xPIH93Ho0KFSj9vQfkur95Rm8+bNAoCYNWuW3vJXX31VSJIkzp49Ky+zsrIyGHNERIQAIN5++2295S+//LKoX7++/DotLU2YmZmJ2bNn66U7ceKEMDc311teWh3wu+++EwDEoUOHyn2MRLUNH98jeoL8+OOPAIBx48bpLR8/fjwAYOvWrWXmYWFhAYWisOgoKCjAtWvXYG1tjaZNm+Lo0aOPFd+3336LBg0aYNSoUSXWPfg42ksvvQRnZ2f5dYcOHdCxY0f5GKvaW2+9BZVKJb8uuvt37tw5vXQWFhZ466239Jb9+OOPcHBwwOuvvy4vUyqVGD16NLKysrBnz54Ki1MIgW+//RZ9+/aFEAJXr16V/wICApCRkSG/jz/++CMcHR3x6quvyttbWlrKdxSJiIhqE9aTar4ff/wRZmZmGD16tN7y8ePHQwiBbdu2lTuv4cOH671+9tlnce3aNWRmZgIANm3aBJ1Oh4EDB+rVpxwcHODl5YVdu3bpbW+oDljUkyomJgb5+fnljo2oNmGjFNET5M8//4RCoYCnp6fecgcHB9ja2uLPP/8sMw+dToeFCxfCy8sLFhYWaNCgAezs7HD8+HFkZGQ8VnwpKSlo2rQpzM3LfrLYy8urxDJvb2+kpaU9VgyPqnHjxnqv69atCwC4ceOG3nJnZ2e9xiug8H3x8vKSK7FFmjdvLq+vKFeuXMHNmzexcuVK2NnZ6f0VVZQuX74s79fT07NERbdp06YVFg8REVF1wXpSzffnn3/CyckJWq1Wb/mj1KnKqtudOXMGQgh4eXmVqFOdOnVKrk8VMVQH9PX1Rf/+/TFjxgw0aNAAQUFBiI6O5vid9EThmFJET6CyBsE2Zs6cOZg2bRrefvttfPTRR6hXrx4UCgXGjh0LnU5XgVE+PkmS9Aa1LFJQUFDh+zIzMzO4/MH9azSaCt/3wyh6j9544w2EhoYaTNO6deuqDImIiKhaYT3p4etJpZ2zgoKCUutI1V1ZdTudTgdJkrBt2zaDaR8cf9RQHVCSJGzcuBG//fYbfvjhB2zfvh1vv/02oqKi8Ntvv5XIg6g2YqMUUS1lqHLg6uoKnU6HM2fOyHeMgMKBr2/evAlXV1ej2wPAxo0b4efnhy+//FJv+c2bN+WBQh+Vh4cHDhw4gPz8fCiVSqNpz5w5U2JZcnKy3qwtdevWLfH4HPBoPY8ep4JaFldXVxw/fhw6nU6vt9Tp06fl9WXFUN747OzsoNVqUVBQgJ49e5YZ1++//w4hhF7+SUlJ5doXERFRdcV6UsXWk+rWrYubN28azMvd3V1+XZn1KaDwPdyxYwdu3bql11vqwTpVRcTi4eEBIQTc3Nzg7e39WHl16tQJnTp1wuzZs7F27VoMHjwY33zzDYYOHfpY+RLVBHx8j6iWsrKyAgC9CkKfPn0AFM4aU9yCBQsAAC+88ILe9oYqF2ZmZiXuqm3YsAHp6emPHXP//v1x9epVLF26tMS6B/e5efNmvX0ePHgQBw4cQO/eveVlHh4eOH36NK5cuSIvO3bsGPbt2/fQsVlZWT12t/vS9OnTB5cuXcL69evlZXfv3sWSJUtgbW0NX19fAIXjOQEw+L4Yer8NMTMzQ//+/fHtt9+WmBoagN656tOnDy5cuICNGzfKy3JycrBy5cpyHxsREVF1xHpSxdaTPDw88NtvvyEvL09eFhMTg7/++ksvXXnrK4+qT58+KCgoKHGOFi5cCEmS9I6/tPewvF555RWYmZlhxowZJc6/EALXrl0rM48bN26U2Papp54CAD7CR08M9pQiqqXatWsHAPjggw8waNAgKJVK9O3bF6GhoVi5ciVu3rwJX19fHDx4EKtXr8ZLL70EPz8/ve2XLVuGWbNmwdPTE/b29nj++efx4osvYubMmXjrrbfQpUsXnDhxAmvWrNG7C/ao3nzzTfznP//BuHHjcPDgQTz77LPIzs7Gjh078O9//xtBQUFyWk9PT3Tr1g3/+te/kJubi08//RT169fH+++/L6d5++23sWDBAgQEBGDIkCG4fPkyli9fjhYtWsiDVJZXu3btsH79eowbNw7PPPMMrK2t0bdv38c+ZgB45513sGLFCoSFheHIkSNo0qQJNm7ciH379uHTTz+V7/RpNBr4+Phg/fr18Pb2Rr169dCyZUu0bNlSfr9Hjx6NgIAAmJmZYdCgQQb39/HHH2PXrl3o2LEjhg0bBh8fH1y/fh1Hjx7Fjh07cP36dQDAsGHDsHTpUrz55ps4cuQIHB0d8d///lduHCMiIqqpWE+q2HrS0KFDsXHjRgQGBmLgwIFISUnB119/DQ8PD710Hh4esLW1xfLly6HVamFlZYWOHTvCzc3t8U7OPX379oWfnx8++OADpKWloU2bNvj555/x/fffY+zYsXrxtGvXDjt27MCCBQvg5OQENzc3dOzYsdz78vDwwKxZszB58mSkpaXhpZdeglarRWpqKr777ju88847mDBhgtE8Vq9ejc8//xwvv/wyPDw8cOvWLXzxxReoU6eO3EhKVOtV+Xx/RFRlPvroI+Hs7CwUCoU87XF+fr6YMWOGcHNzE0qlUri4uIjJkyeLO3fu6G176dIl8cILLwitVisAyNP53rlzR4wfP144OjoKjUYjunbtKuLj40tM+fsoUx0LIUROTo744IMP5PgcHBzEq6++KlJSUvTy/eSTT0RUVJRwcXERFhYW4tlnnxXHjh0rkd/XX38t3N3dhUqlEk899ZTYvn37I011nJWVJYKDg4Wtra0AIG+/a9cuAUBs2LBBL72h4/f19RUtWrQwmP8///wj3nrrLdGgQQOhUqlEq1atDJ67/fv3i3bt2gmVSqU3TfLdu3fFqFGjhJ2dnZAkSRQv3mFgOuV//vlHjBgxQri4uMjnuUePHmLlypV66f7880/Rr18/YWlpKRo0aCDGjBkjfvrpJwFA7Nq1q1znjoiIqDpiPani6klCCBEVFSWcnZ2FhYWF6Nq1qzh8+HCJ4xZCiO+//174+PgIc3NzvXNgaL+G6jBluXXrlnjvvfeEk5OTUCqVwsvLS3zyySdCp9PppTt9+rR47rnnhEajEQBEaGioEEKIiIgIAUBcuXJFL310dLT8OSnu22+/Fd26dRNWVlbCyspKNGvWTIwYMUIkJSXJaUqrAx49elS8/vrronHjxsLCwkLY29uLF198URw+fPihjpmoJpOEMDC6HRFRNZWWlgY3Nzd88sknZd59IiIiInqSsJ5ERDUNx5QiIiIiIiIiIqIqxzGliKjS5eXlyeMUlcbGxsbgVLmV7fr163qDcj7IzMwMdnZ2VRgRERERPUlYTypbQUGB3oDshlhbW8Pa2rrSYyGiisVGKSKqdPv379cbHNSQ6OhohIWFVU1AxbzyyivYs2dPqetdXV2RlpZWdQERERHRE4X1pLL99ddfZQ6GHhERgenTp1d6LERUsTimFBFVuhs3buDIkSNG07Ro0QKOjo5VFNF9R44cwY0bN0pdr9Fo0LVr1yqMiIiIiJ4krCeV7c6dO9i7d6/RNO7u7hUyyyERVS02ShERERERERERUZXjQOdERERERERERFTlnsgxpXQ6HS5cuACtVgtJkkwdDhEREVVTQgjcunULTk5OUCh4L491KCIiIiqP8tahnshGqQsXLsDFxcXUYRAREVEN8ddff6FRo0amDsPkWIciIiKih1FWHeqJbJTSarUACk9OnTp1TBwNERERVVeZmZlwcXGR6w5POtahiIiIqDzKW4d6Ihulirqb16lThxUqIiIiKlNteVStSZMm+PPPP0ss//e//43PPvuszO1ZhyIiIqKHUVYd6olslCIiIiJ6Eh06dAgFBQXy699//x3+/v4YMGCACaMiIiKiJxUbpYiIiIieEHZ2dnqvP/74Y3h4eMDX19dEEREREdGTjI1SRERERE+gvLw8fP311xg3blypXetzc3ORm5srv87MzKyq8IiIiOgJwEYpIqJKVFBQgPz8fFOHQUSlUCqVMDMzM3UYJrF582bcvHkTYWFhpaaZO3cuZsyY8dB5s+wjqt6e5LKPiKoXSQghTB1EVcvMzISNjQ0yMjI4SCcRVQohBC5duoSbN2+aOhQiKoOtrS0cHBwM9haqzXWGgIAAqFQq/PDDD6WmMdRTysXFpdTzwbKPqOYwVvYRET2u8tah2FOKiKgSFF2U2dvbw9LSkhU+ompICIGcnBxcvnwZAODo6GjiiKrOn3/+iR07dmDTpk1G01lYWMDCwqLc+bLsI6r+nuSyj4iqHzZKERFVsIKCAvmirH79+qYOh4iM0Gg0AIDLly/D3t7+iXmcJTo6Gvb29njhhRcqLE+WfUQ1x5Na9hFR9aMwdQBERLVN0TgqlpaWJo6EiMqj6Lv6pIyBpNPpEB0djdDQUJibV9z9SZZ9RDXLk1b2EVH1xEYpIqJKwsdWiGqGJ+27umPHDpw/fx5vv/12peT/pJ1PopqK31Uiqg74+B4RERHRE6RXr154Aue5ISIiomqIPaWIiEgWFhYGSZIgSRJUKhU8PT0xc+ZM3L1797Hy3b17NyRJqtIZuVJTUxEcHAwnJyeo1Wo0atQIQUFBOH36tF66mJgY+Pr6QqvVwtLSEs888wxWrVqllyYtLQ2SJCExMbHc+58+fTqaNWsGKysr1K1bFz179sSBAwf08hwyZAjc3Nyg0Wjg4eGBiIgI5OXlGc334sWLCA4Ohre3NxQKBcaOHVuueH799Vf07dsXTk5OkCQJmzdvNpju1KlT6NevH2xsbGBlZYVnnnkG58+fl9e/++678PDwgEajgZ2dncFzeujQIfTo0QO2traoW7cuAgICcOzYMYP7O3v2LLRaLWxtbSvsGIgeFss+ln0s+4iITIONUkREpCcwMBAXL17EmTNnMH78eEyfPh2ffPKJqcOSlXXhAhSOj+Hv74+MjAxs2rQJSUlJWL9+PVq1aqV3cbhkyRIEBQWha9euOHDgAI4fP45BgwZh+PDhmDBhwmPF6e3tjaVLl+LEiRPYu3cvmjRpgl69euHKlSsAgNOnT0On02HFihX4448/sHDhQixfvhxTpkwxmm9ubi7s7OwwdepUtGnTptzxZGdno02bNvjss89KTZOSkoJu3bqhWbNm2L17N44fP45p06ZBrVbLadq1a4fo6GicOnUK27dvhxACvXr1QkFBAQAgKysLgYGBaNy4MQ4cOIC9e/dCq9UiICCgxLgl+fn5eP311/Hss89W2DEQPSqWfSz7WPYREZmAeAJlZGQIACIjI8PUoRBRLXT79m1x8uRJcfv2bVOH8tBCQ0NFUFCQ3jJ/f3/RqVMncf36dRESEiJsbW2FRqMRgYGBIjk5WU6XlpYmXnzxRWFrayssLS2Fj4+P2Lp1q0hNTRUA9P5CQ0OFEEJkZmaK4OBgYWlpKRwcHMSCBQuEr6+vGDNmjJyvq6urmDlzpggJCRFarVbeNi4uTnTr1k2o1WrRqFEjMWrUKJGVlSWEECIhIUEAEGlpaaUe6/nz54VSqRTjxo0rsW7x4sUCgPjtt9+EEEI+hoSEhIc/qfcU/fbs2LGj1DTz588Xbm5u5c7zwXNVXgDEd999V2L5a6+9Jt54442HyuvYsWMCgDh79qwQQohDhw4JAOL8+fNymuPHjwsA4syZM3rbvv/+++KNN94Q0dHRwsbGpkKO4VEY+86yzqDP2Plg2ceyzxCWfTWz7CMielzlrUOxpxQRUSUTQiAn765J/kQFjBuj0WiQl5eHsLAwHD58GFu2bEF8fDyEEOjTp498B3jEiBHIzc3Fr7/+ihMnTmDevHmwtraGi4sLvv32WwBAUlISLl68iEWLFgEAxo0bh3379mHLli2IjY1FXFwcjh49WiKGyMhItGnTBgkJCZg2bRpSUlIQGBiI/v374/jx41i/fj327t2LkSNHAgDs7OygUCiwceNG+S72gzZu3Ij8/HyDvQLeffddWFtbY926dY99/oDCHg4rV66EjY2N0Tv8GRkZqFevXoXs82HpdDps3boV3t7eCAgIgL29PTp27Gj0MZHs7GxER0fDzc0NLi4uAICmTZuifv36+PLLL5GXl4fbt2/jyy+/RPPmzdGkSRN5219++QUbNmzgnf9ariaXfyz7Hh/LPpZ9RERl4UDnRESV7HZ+AXw+3G6SfZ+cGQBL1aMV9UII7Ny5E9u3b0fv3r2xefNm7Nu3D126dAEArFmzBi4uLti8eTMGDBiA8+fPo3///mjVqhUAwN3dXc6r6GLD3t5eHj/j1q1bWL16NdauXYsePXoAAKKjo+Hk5FQilueffx7jx4+XXw8dOhSDBw+WxxTx8vLC4sWL4evri2XLlsHZ2RmLFy/G+++/jxkzZqB9+/bw8/PD4MGD5biSk5NhY2MDR0fHEvtTqVRwd3dHcnLyI527IjExMRg0aBBycnLg6OiI2NhYNGjQwGDas2fPYsmSJYiMjHysfT6qy5cvIysrCx9//DFmzZqFefPm4aeffsIrr7yCXbt2wdfXV077+eef4/3330d2djaaNm2K2NhYqFQqAIBWq8Xu3bvx0ksv4aOPPgJQ+P5s374d5uaFn8Vr164hLCwMX3/9NerUqVP1B0tVpiaWfyz7WPax7CMiqjrsKUVERHpiYmJgbW0NtVqN3r1747XXXkNYWBjMzc3RsWNHOV39+vXRtGlTnDp1CgAwevRozJo1C127dkVERASOHz9udD/nzp1Dfn4+OnToIC+zsbFB06ZNS6Rt37693utjx45h1apVsLa2lv8CAgKg0+mQmpoKoLD3wqVLl7BmzRp07twZGzZsQIsWLRAbG1vuc1F0sWHMmjVr9OKIi4uT1/n5+SExMRH79+9HYGAgBg4ciMuXL5fIIz09HYGBgRgwYACGDRsmLy+e7/Dhw8sVc1xcnN52a9asKdd2Op0OABAUFIT33nsPTz31FCZNmoQXX3wRy5cv10s7ePBgJCQkYM+ePfD29sbAgQNx584dAMDt27cxZMgQdO3aFb/99hv27duHli1b4oUXXsDt27cBAMOGDUNwcDCee+65Cj0GosfBsu8+ln0s+4iIqgp7ShERVTKN0gwnZwaYbN8Py8/PD8uWLYNKpYKTkxPMzc2xZcuWMrcbOnQoAgICsHXrVvz888+YO3cuoqKiMGrUqEcJXY+VlZXe66ysLLz77rsYPXp0ibSNGzeW/6/VatG3b1/07dsXs2bNQkBAAGbNmgV/f394eXkhIyMDFy5cKNFDIS8vDykpKQgIKPt969evn94Fq7Ozs17cnp6e8PT0RKdOneDl5YUvv/wSkydPltNcuHABfn5+6NKlC1auXKmXd/EZr8p7V719+/Z62zVs2LBc2zVo0ADm5ubw8fHRW968eXPs3btXb5mNjQ1sbGzg5eWFTp06oW7duvjuu+/w+uuvY+3atUhLS0N8fDwUisJ7X2vXrkXdunXx/fffY9CgQfjll1+wZcsWuWeEEAI6nQ7m5uZYuXIlXn/99Uc6Bqp+alL5x7KPZV9xLPuIiKoGG6WIiCqZJEmP/AidKRRdTBTXvHlz3L17FwcOHJAfYbl27RqSkpL0KvIuLi4YPnw4hg8fjsmTJ+OLL77AqFGj5Lvuxcc4cXd3h1KpxKFDh+SLqYyMDCQnJ5d6F7lI27ZtcfLkyRJxGiNJEpo1a4b9+/cDAF599VWEh4cjKioKUVFRemmXL1+OnJwcvPnmm2Xmq9VqodVqyxWDTqdDbm6u/Do9PR1+fn7yrE5FFzJFHub4img0mkfaTqVS4ZlnnkFSUpLe8uTkZLi6upa6nRACQgj5uHJycqBQKCBJkpym6HVRj4T4+Hi9z8L333+PefPmYf/+/XB2dn7kY6DqpyaVfyz7WPYVx7KPiKhq1IxaAhERmZSXlxeCgoIwbNgwrFixAlqtFpMmTYKzszOCgoIAAGPHjkXv3r3h7e2NGzduYNeuXWjevDkAwNXVFZIkISYmBn369IFGo4FWq0VoaCgmTpyIevXqwd7eHhERESUq9YaEh4ejU6dOGDlyJIYOHQorKyucPHkSsbGxWLp0KRITExEREYGQkBD4+PhApVJhz549+OqrrxAeHg6gsFfB/PnzMWHCBKjVaoSEhECpVOL777/HlClTMGvWLLRs2VJvvw9etABAixYtoFQq9ZZlZ2dj9uzZ6NevHxwdHXH16lV89tlnSE9Px4ABAwAUXpR1794drq6uiIyMlKdLBwAHBwejx190Jz0rKwtXrlxBYmIiVCpViTv9xWVlZeHs2bPy69TUVCQmJqJevXryhfHEiRPx2muv4bnnnoOfnx9++ukn/PDDD9i9ezeAwseO1q9fj169esHOzg5///03Pv74Y2g0GvTp0wcA4O/vj4kTJ2LEiBEYNWoUdDodPv74Y5ibm8PPzw8A5M9FkcOHD0OhUJQ4349yDEQViWVfIZZ9LPuIiCpNpc3/V41xemciqkw1eYplQ9OiFymaFt3GxkZoNBoREBCgNy36yJEjhYeHh7CwsBB2dnYiJCREXL16VV4/c+ZM4eDgICRJMjoteocOHcSkSZPk7VxdXcXChQtLxHPw4EHh7+8vrK2thZWVlWjdurWYPXu2EEKIK1euiNGjR4uWLVsKa2trodVqRatWrURkZKQoKCjQy2fz5s3i2WefFVZWVvK07evWrdNLY2hq96K/v/76q0Rst2/fFi+//LJwcnISKpVKODo6in79+omDBw/KaaKjo0vNsyyGtnF1dTW6za5duwxuV/ReFPnyyy+Fp6enUKvVok2bNmLz5s3yuvT0dNG7d29hb28vlEqlaNSokQgODhanT5/Wy+Pnn38WXbt2FTY2NqJu3bri+eefF/Hx8aXGVt5p0ct7DA/L2HeWdQZ9xs4Hyz6WfSz7ak/ZR0T0uMpbh5KEqID5wmuYzMxM2NjYICMjgzNfEFGFu3PnDlJTU+Hm5ga1Wm3qcGqU7OxsODs7IyoqCkOGDKny/V+/fh09evRAnTp1sG3bNlhaWlZ5DFT1jH1nWWfQZ+x8sOx7dCz7yBT4nSWiylTeOhRn3yMiIpNJSEjAunXrkJKSgqNHj2Lw4MEAID8WU9Xq1auHHTt2oEePHoiPjzdJDERU+7HsIyIiKsQxpYiIyKQiIyORlJQElUqFdu3aIS4uDg0aNDBZPPXr18eHH35osv0T0ZOBZR8REREbpYiIyISefvppHDlyxNRhEBFVKZZ9REREhfj4HhERERERERERVTk2ShERERERERERUZVjoxQREREREREREVU5NkoREREREREREVGVY6MUERERERERERFVOTZKERERERERERFRlTM3dQBERERERERERDXd4p1nsGJPCmw0SoR1bYI3OzeBWmlm6rCqNfaUIiIiWVhYGCRJgiRJUKlU8PT0xMyZM3H37t3Hynf37t2QJAk3b96smEDLITU1FcHBwXBycoJarUajRo0QFBSE06dP66WLiYmBr68vtFotLC0t8cwzz2DVqlV6adLS0iBJEhITE8u9/+nTp6NZs2awsrJC3bp10bNnTxw4cEAvzyFDhsDNzQ0ajQYeHh6IiIhAXl6e0XwvXryI4OBgeHt7Q6FQYOzYseWKZ9myZWjdujXq1KmDOnXqoHPnzti2bZu8/vr16xg1ahSaNm0KjUaDxo0bY/To0cjIyJDTrFq1Sv58PPh3+fJlOV1ubi4++OADuLq6wsLCAk2aNMFXX32lF8+nn34q78vFxQXvvfce7ty5Y/QYNm3ahF69eqF+/foP/X4QGcOyj2Ufyz4iqgg/HLuA7LwCXMi4gzk/nsYvpy+XvdETjj2liIhIT2BgIKKjo5Gbm4sff/wRI0aMgFKpxOTJk00dGgAgLy8PKpXKaJr8/Hz4+/ujadOm2LRpExwdHfH3339j27ZteheHS5YswdixYxEeHo5ly5ZBpVLh+++/x/Dhw/H7778jMjLykeP09vbG0qVL4e7ujtu3b2PhwoXo1asXzp49Czs7O5w+fRo6nQ4rVqyAp6cnfv/9dwwbNgzZ2dlG95ubmws7OztMnToVCxcuLHc8jRo1wscffwwvLy8IIbB69WoEBQUhISEBLVq0wIULF3DhwgVERkbCx8cHf/75J4YPH44LFy5g48aNAIDXXnsNgYGBevmGhYXhzp07sLe3l5cNHDgQ//zzD7788kt4enri4sWL0Ol08vq1a9di0qRJ+Oqrr9ClSxckJyfLjQILFiwo9Riys7PRrVs3DBw4EMOGDSv3sROVB8s+ln0s+4ioomXlPt7NjSeCeAJlZGQIACIjI8PUoRBRLXT79m1x8uRJcfv2bVOH8tBCQ0NFUFCQ3jJ/f3/RqVMncf36dRESEiJsbW2FRqMRgYGBIjk5WU6XlpYmXnzxRWFrayssLS2Fj4+P2Lp1q0hNTRUA9P5CQ0OFEEJkZmaK4OBgYWlpKRwcHMSCBQuEr6+vGDNmjJyvq6urmDlzpggJCRFarVbeNi4uTnTr1k2o1WrRqFEjMWrUKJGVlSWEECIhIUEAEGlpaaUe6/nz54VSqRTjxo0rsW7x4sUCgPjtt9+EEEI+hoSEhIc/qfcU/fbs2LGj1DTz588Xbm5u5c7zwXP1sOrWrSv+7//+r9T1//vf/4RKpRL5+fkG11++fFkolUrxn//8R162bds2YWNjI65du1ZqviNGjBDPP/+83rJx48aJrl27livuing/ijP2nWWdQZ+x88Gyj2WfISz77qtJZR8RPZqeUbuFa3iMaDZ1m3ANjxHrD503dUgmU946FB/fIyKqbEIAedmm+RPiscPXaDTIy8tDWFgYDh8+jC1btiA+Ph5CCPTp0wf5+fkAgBEjRiA3Nxe//vorTpw4gXnz5sHa2houLi749ttvAQBJSUm4ePEiFi1aBAAYN24c9u3bhy1btiA2NhZxcXE4evRoiRgiIyPRpk0bJCQkYNq0aUhJSUFgYCD69++P48ePY/369di7dy9GjhwJALCzs4NCocDGjRtRUFBg8Lg2btyI/Px8TJgwocS6d999F9bW1li3bt1jnz+gsIfDypUrYWNjgzZt2pSaLiMjA/Xq1auQfRpTUFCAb775BtnZ2ejcubPReOrUqQNzc8Mdq//zn//A0tISr776qrxsy5YtaN++PebPnw9nZ2d4e3tjwoQJuH37tpymS5cuOHLkCA4ePAgAOHfuHH788Uf06dOngo6Qqo0aXP6x7Ht8LPtY9hERlYWP7xERVbb8HGCOk2n2PeUCoLJ6pE2FENi5cye2b9+O3r17Y/Pmzdi3bx+6dOkCAFizZg1cXFywefNmDBgwAOfPn0f//v3RqlUrAIC7u7ucV9HFhr29PWxtbQEAt27dwurVq7F27Vr06NEDABAdHQ0np5Ln6vnnn8f48ePl10OHDsXgwYPlMUW8vLywePFi+Pr6YtmyZXB2dsbixYvx/vvvY8aMGWjfvj38/PwwePBgOa7k5GTY2NjA0dGxxP5UKhXc3d2RnJz8SOeuSExMDAYNGoScnBw4OjoiNjYWDRo0MJj27NmzWLJkyWM9NlOWEydOoHPnzrhz5w6sra3x3XffwcfHx2Daq1ev4qOPPsI777xTan5ffvklgoODodFo5GXnzp3D3r17oVar8d133+Hq1av497//jWvXriE6OhoAEBwcjKtXr6Jbt24QQuDu3bsYPnw4pkyZUrEHTKZXA8s/ln0s+1j2ERFVHfaUIiIiPTExMbC2toZarUbv3r3x2muvISwsDObm5ujYsaOcrn79+mjatClOnToFABg9ejRmzZqFrl27IiIiAsePHze6n3PnziE/Px8dOnSQl9nY2KBp06Yl0rZv317v9bFjx7Bq1SpYW1vLfwEBAdDpdEhNTQVQ2Hvh0qVLWLNmDTp37owNGzagRYsWiI2NLfe5KGv8FqDwArV4HHFxcfI6Pz8/JCYmYv/+/QgMDMTAgQP1BsUtkp6ejsDAQAwYMEBvvJDi+Q4fPrxcMcfFxeltt2bNGnld06ZNkZiYiAMHDuBf//oXQkNDcfLkyRJ5ZGZm4oUXXoCPjw+mT59ucD/x8fE4deoUhgwZordcp9NBkiSsWbMGHTp0QJ8+fbBgwQKsXr1a7jGwe/duzJkzB59//jmOHj2KTZs2YevWrfjoo4/KPKdElYVl330s+1j2EVEFefyHFmo99pQiIqpsSsvCO/am2vdD8vPzkwe+dXJygrm5ObZs2VLmdkOHDkVAQAC2bt2Kn3/+GXPnzkVUVBRGjRr1KJHrsbLS7+2QlZWFd999F6NHjy6RtnHjxvL/tVot+vbti759+2LWrFkICAjArFmz4O/vDy8vL2RkZODChQsleijk5eUhJSUFAQEBZcbWr18/vQtWZ2dnvbg9PT3h6emJTp06wcvLC19++aXewMkXLlyAn58funTpgpUrV+rlXXyGpTp16pQZC1B4EVt8u4YNG8r/L5pVDADatWuHQ4cOYdGiRVixYoWc5tatWwgMDIRWq8V3330HpVJpcD//93//h6eeegrt2rXTW+7o6AhnZ2fY2NjIy5o3bw4hBP7++294eXlh2rRpCAkJwdChQwEArVq1QnZ2Nt555x188MEHRs8p1TA1qPxj2ceyj2UfEVUUSTJ1BDUHG6WIiCqbJD3yI3SmUHQxUVzz5s1x9+5dHDhwQH6E5dq1a0hKStJ7BMLFxQXDhw/H8OHDMXnyZHzxxRcYNWqUfNe9+Bgn7u7uUCqVOHTokHwxlZGRgeTkZDz33HNGY2zbti1OnjxZIk5jJElCs2bNsH//fgDAq6++ivDwcERFRSEqKkov7fLly5GTk4M333yzzHy1Wi20Wm25YtDpdMjNzZVfp6enw8/PD+3atUN0dDQUCv0OzA9zfEU0Gk25t3swnszMTAQEBMDCwgJbtmyBWq02uF1WVhb+97//Ye7cuSXWde3aFRs2bEBWVhasra0BFD4upFAo0KhRIwBATk5OiWM1MzMDUPjo1MOcU6rmalD5x7KPZR/LPiKiqsdGKSIiKpOXlxeCgoIwbNgwrFixAlqtFpMmTYKzszOCgoIAAGPHjkXv3r3h7e2NGzduYNeuXWjevDkAwNXVFZIkISYmBn369IFGo4FWq0VoaCgmTpyIevXqwd7eHhEREVAoFJDKuL0UHh6OTp06YeTIkRg6dCisrKxw8uRJxMbGYunSpUhMTERERARCQkLg4+MDlUqFPXv24KuvvkJ4eDiAwl4F8+fPx4QJE6BWqxESEgKlUonvv/8eU6ZMwaxZs9CyZUu9/SYlJZWIpUWLFiXuqGdnZ2P27Nno168fHB0dcfXqVXz22WdIT0/HgAEDABRelHXv3h2urq6IjIzElStX5O0dHByMHn9Rb4CsrCxcuXIFiYmJUKlUpY6RAgCTJ09G79690bhxY9y6dQtr167F7t27sX37dgCFF2W9evVCTk4Ovv76a2RmZiIzMxNA4eDJRRdOALB+/XrcvXsXb7zxRon9BAcH46OPPsJbb72FGTNm4OrVq5g4cSLefvttefyVvn37YsGCBXj66afRsWNHnD17FtOmTUPfvn319vOg69ev4/z587hwobDnTdH74eDgUOY5I3oULPsKsewrxLKPiMrCp/UeQaXOAVhNcXpnIqpMNXmKZUPTohcpmhbdxsZGaDQaERAQoDct+siRI4WHh4ewsLAQdnZ2IiQkRFy9elVeP3PmTOHg4CAkSTI6LXqHDh3EpEmT5O1cXV3FwoULS8Rz8OBB4e/vL6ytrYWVlZVo3bq1mD17thBCiCtXrojRo0eLli1bCmtra6HVakWrVq1EZGSkKCgo0Mtn8+bN4tlnnxVWVlbytO3r1q3TS2Noaveiv7/++qtEbLdv3xYvv/yycHJyEiqVSjg6Oop+/fqJgwcPymmio6NLzbMshrZxdXU1us3bb78tXF1dhUqlEnZ2dqJHjx7i559/ltfv2rWr1HhSU1P18urcubMIDg4udV+nTp0SPXv2FBqNRjRq1EiMGzdO5OTkyOvz8/PF9OnThYeHh1Cr1cLFxUX8+9//Fjdu3DB6DKWds4iICKPblcXYd5Z1Bn3GzgfLPpZ9LPtqT9lHRI+mR9Ru4RoeI3ymbROu4TFi/cHzpg7JZMpbh5KEqID5wmuYzMxM2NjYyNO9EhFVpDt37iA1NRVubm6lPgJAhmVnZ8PZ2RlRUVElBpGtCtevX0ePHj1Qp04dbNu2DZaWDz8mF9U8xr6zrDPoM3Y+WPY9OpZ9ZAr8zhJVvJ4L9uDs5SxYqcyQnVeA+f1bY+AzLqYOyyTKW4fi7HtERGQyCQkJWLduHVJSUnD06FEMHjwYAOTHYqpavXr1sGPHDvTo0QPx8fEmiYGIaj+WfURETwbBB/rKxDGliIjIpCIjI5GUlASVSoV27dohLi4ODRo0MFk89evXx4cffmiy/RPRk4FlHxFR7VXWGIF0HxuliIjIZJ5++mkcOXLE1GEQEVUpln1ERESF+PgeERERERERERFVOTZKERERERERERFRlWOjFBERERERERHRYxKicGBzSX5tulhqCjZKERERERERERFVFI5zXm5slCIiIiIiIiIioirHRikiIiIiIiIiIqpybJQiIiIiIiIiIqIqx0YpIiKShYWFQZIkSJIElUoFT09PzJw5E3fv3n2sfHfv3g1JknDz5s2KCbQcUlNTERwcDCcnJ6jVajRq1AhBQUE4ffq0XrqYmBj4+vpCq9XC0tISzzzzDFatWqWXJi0tDZIkITExsdz7nz59Opo1awYrKyvUrVsXPXv2xIEDB/TyHDJkCNzc3KDRaODh4YGIiAjk5eUZzffixYsIDg6Gt7c3FAoFxo4dW+6Yinz88ceQJKnEtikpKXj55ZdhZ2eHOnXqYODAgfjnn3/00syePRtdunSBpaUlbG1tDeZf9Bkq/vfNN9/I6zdt2gR/f395P507d8b27dvLjHvTpk3o1asX6tev/9DvB5ExLPtY9rHsI6LKwHHOy8ZGKSIi0hMYGIiLFy/izJkzGD9+PKZPn45PPvnE1GHJyrpwAYD8/Hz4+/sjIyMDmzZtQlJSEtavX49WrVrpXRwuWbIEQUFB6Nq1Kw4cOIDjx49j0KBBGD58OCZMmPBYcXp7e2Pp0qU4ceIE9u7diyZNmqBXr164cuUKAOD06dPQ6XRYsWIF/vjjDyxcuBDLly/HlClTjOabm5sLOzs7TJ06FW3atHnouA4dOoQVK1agdevWesvhkOfvAAEAAElEQVSzs7PRq1cvSJKEX375Bfv27UNeXh769u0LnU4np8vLy8OAAQPwr3/9y+h+oqOjcfHiRfnvpZdektf9+uuv8Pf3x48//ogjR47Az88Pffv2RUJCgtE8s7Oz0a1bN8ybN++hj5uoLCz7WPax7COiisJxzh+CeAJlZGQIACIjI8PUoRBRLXT79m1x8uRJcfv2bVOH8tBCQ0NFUFCQ3jJ/f3/RqVMncf36dRESEiJsbW2FRqMRgYGBIjk5WU6XlpYmXnzxRWFrayssLS2Fj4+P2Lp1q0hNTRUovFEk/4WGhgohhMjMzBTBwcHC0tJSODg4iAULFghfX18xZswYOV9XV1cxc+ZMERISIrRarbxtXFyc6Natm1Cr1aJRo0Zi1KhRIisrSwghREJCggAg0tLSSj3W8+fPC6VSKcaNG1di3eLFiwUA8dtvvwkhhHwMCQkJD39S7yn67dmxY0epaebPny/c3NzKneeD56ost27dEl5eXiI2NrbEttu3bxcKhULvt/HmzZtCkiQRGxtbIq/o6GhhY2NjcD8AxHfffVfuuIQQwsfHR8yYMaNcaSvi/SjO2HeWdQZ9xs4Hyz6WfYaw7DOuupZ9RPRono/cJVzDY0SriJ+Ea3iMWHvgT1OHZDLlrUOxpxQRUSUTQiAnP8ckf0I8fqdhjUaDvLw8hIWF4fDhw9iyZQvi4+MhhECfPn2Qn58PABgxYgRyc3Px66+/4sSJE5g3bx6sra3h4uKCb7/9FgCQlJSEixcvYtGiRQCAcePGYd++fdiyZQtiY2MRFxeHo0ePloghMjISbdq0QUJCAqZNm4aUlBQEBgaif//+OH78ONavX4+9e/di5MiRAAA7OzsoFAps3LgRBQUFBo9r48aNyM/PN9gr4N1334W1tTXWrVv32OcPKLzDvnLlStjY2Bi9w5+RkYF69epVyD4NGTFiBF544QX07NmzxLrc3FxIkgQLCwt5mVqthkKhwN69ex9pXw0aNECHDh3w1VdfGf0s6nQ63Lp1q1KPnUyjJpd/LPseH8s+ln1ERGUxN3UARES13e27t9FxbUeT7PtA8AFYKi0faVshBHbu3Int27ejd+/e2Lx5M/bt24cuXboAANasWQMXFxds3rwZAwYMwPnz59G/f3+0atUKAODu7i7nVVThtre3l8fiuHXrFlavXo21a9eiR48eAAofe3BycioRy/PPP4/x48fLr4cOHYrBgwfL44J4eXlh8eLF8PX1xbJly+Ds7IzFixfj/fffx4wZM9C+fXv4+flh8ODBclzJycmwsbGBo6Njif2pVCq4u7sjOTn5kc5dkZiYGAwaNAg5OTlwdHREbGwsGjRoYDDt2bNnsWTJEkRGRj7WPkvzzTff4OjRozh06JDB9Z06dYKVlRXCw8MxZ84cCCEwadIkFBQU4OLFiw+1r5kzZ+L555+HpaUlfv75Z/z73/9GVlYWRo8ebTB9ZGQksrKyMHDgwIc+LqreamL5x7KPZR/LPiJ6VBxD6uGxpxQREemJiYmBtbU11Go1evfujddeew1hYWEwNzdHx473Ly7r16+Ppk2b4tSpUwCA0aNHY9asWejatSsiIiJw/Phxo/s5d+4c8vPz0aFDB3mZjY0NmjZtWiJt+/bt9V4fO3YMq1atgrW1tfwXEBAAnU6H1NRUAIV3qy9duoQ1a9agc+fO2LBhA1q0aIHY2NhynwuVSlVmmjVr1ujFERcXJ6/z8/NDYmIi9u/fj8DAQAwcOBCXL18ukUd6ejoCAwMxYMAADBs2TF5ePN/hw4eXK+a4uDi97dasWYO//voLY8aMwZo1a6BWqw1uZ2dnhw0bNuCHH36AtbU1bGxscPPmTbRt2xYKxcNVF6ZNm4auXbvi6aefRnh4ON5///1Sx+ZZu3YtZsyYgf/973+wt7cHYPycElUWln33sexj2UdEj0eSOKpUebGnFBFRJdOYa3Ag+EDZCStp3w/Lz88Py5Ytg0qlgpOTE8zNzbFly5Yytxs6dCgCAgKwdetW/Pzzz5g7dy6ioqIwatSoRwldj5WVld7rrKwsvPvuuwbvPjdu3Fj+v1arRd++fdG3b1/MmjULAQEBmDVrFvz9/eHl5YWMjAxcuHChRA+FvLw8pKSkICAgoMzY+vXrp3fB6uzsrBe3p6cnPD090alTJ3h5eeHLL7/E5MmT5TQXLlyAn58funTpgpUrV+rlXXyGpTp16pQZC1B4EVt8u4YNG2Lnzp24fPky2rZtKy8vKCjAr7/+iqVLlyI3NxdmZmbo1asXUlJScPXqVZibm8PW1hYODg56PT8eRceOHfHRRx8hNzdX7xGZb775BkOHDsWGDRv0Hqsxdk6pZqlJ5R/LPpZ9LPuIqKIUtUlVwEgatR4bpYiIKpkkSY/8CJ0pFF1MFNe8eXPcvXsXBw4ckB9huXbtGpKSkuDj4yOnc3FxwfDhwzF8+HBMnjwZX3zxBUaNGiXfdS8+xom7uzuUSiUOHTokX0xlZGQgOTkZzz33nNEY27Zti5MnT5aI0xhJktCsWTPs378fAPDqq68iPDwcUVFRiIqK0ku7fPly5OTk4M033ywzX61WC61WW64YdDodcnNz5dfp6enw8/NDu3btEB0dXeKu/MMcXxGNRlNiux49euDEiRN6y9566y00a9YM4eHhMDMz01tX9JjNL7/8gsuXL6Nfv34PHUdxiYmJqFu3rt5F2bp16/D222/jm2++wQsvvKCX/mHOKVVvNan8Y9nHso9lHxFR1WOjFBERlcnLywtBQUEYNmwYVqxYAa1Wi0mTJsHZ2RlBQUEAgLFjx6J3797w9vbGjRs3sGvXLjRv3hwA4OrqCkmSEBMTgz59+kCj0UCr1SI0NBQTJ05EvXr1YG9vj4iICCgUijK7PIeHh6NTp04YOXIkhg4dCisrK5w8eRKxsbFYunQpEhMTERERgZCQEPj4+EClUmHPnj346quvEB4eDqCwV8H8+fMxYcIEqNVqhISEQKlU4vvvv8eUKVMwa9YstGzZUm+/SUlJJWJp0aIFlEql3rLs7GzMnj0b/fr1g6OjI65evYrPPvsM6enpGDBgAIDCi7Lu3bvD1dUVkZGR8nTpAODg4GD0+It6A2RlZeHKlStITEyESqXSu0guTqvVljgWKysr1K9fX295dHQ0mjdvDjs7O8THx2PMmDF477339B4rOn/+PK5fv47z58+joKBAjsXT0xPW1tb44Ycf8M8//6BTp05Qq9WIjY3FnDlz9AZVXrt2LUJDQ7Fo0SJ07NgRly5dAlB4UWljY1PqcRft98KFCwDuvx8ODg5lnjOiR8GyrxDLPpZ9RESVphJnAKy2OL0zEVWmmjzFsqFp0YsUTYtuY2MjNBqNCAgI0JsWfeTIkcLDw0NYWFgIOzs7ERISIq5evSqvnzlzpnBwcBCSJBmdFr1Dhw5i0qRJ8naurq5i4cKFJeI5ePCg8Pf3F9bW1sLKykq0bt1azJ49WwghxJUrV8To0aNFy5YthbW1tdBqtaJVq1YiMjJSFBQU6OWzefNm8eyzzworKyt52vZ169bppTE0tXvR319//VUittu3b4uXX35ZODk5CZVKJRwdHUW/fv3EwYMH5TTR0dGl5lkWQ9u4urqWuV1xhqZUDw8PFw0bNhRKpVJ4eXmJqKgoodPp9NKEhoYa3P+uXbuEEEJs27ZNPPXUU/L70qZNG7F8+XK98+7r62swj6LPRWlKO2cREREPdewPMvadZZ1Bn7HzwbKPZR/LvtpT9hHRo/GL3CVcw2NEmxnbhWt4jFjz25+mDslkyluHkoR48p5yzMzMhI2NDTIyMsr9nDoRUXnduXMHqampcHNzK3VgVTIsOzsbzs7OiIqKwpAhQ6p8/9evX0ePHj1Qp04dbNu2DZaWNeOxI3o8xr6zrDPoM3Y+WPY9OpZ9ZAr8zhJVvOejduPclWzYWipxMycfc15uheCOjcvesBYqbx2Ks+8REZHJJCQkYN26dUhJScHRo0cxePBgAJAfi6lq9erVw44dO9CjRw/Ex8ebJAYiqv1Y9hERPRkEnrg+QA+NY0oREZFJRUZGIikpCSqVCu3atUNcXJw82Kwp1K9fHx9++KHJ9k9ETwaWfUREtdC9NijjIwRScWyUIiIik3n66adx5MgRU4dBRFSlWPYREdVuZU1cQffx8T0iIiIiIiIiIqpybJQiIiIiIiIiIqIqx0YpIiIiIiIiIqIKJjjOeZnYKEVEREREREREVEE4olT5sVGKiIiIiIiIiIiqHBuliIiIiIiIiIioyrFRioiIiIiIiIjoMXEIqYfHRikiIpKFhYVBkiRIkgSVSgVPT0/MnDkTd+/efax8d+/eDUmScPPmzYoJtBxSU1MRHBwMJycnqNVqNGrUCEFBQTh9+rReupiYGPj6+kKr1cLS0hLPPPMMVq1apZcmLS0NkiQhMTGx3PufPn06mjVrBisrK9StWxc9e/bEgQMH9PIcMmQI3NzcoNFo4OHhgYiICOTl5RnN9+LFiwgODoa3tzcUCgXGjh1b7pjS09PxxhtvoH79+tBoNGjVqhUOHz4sry/+/hf9BQYG6uXRpEmTEmk+/vhjeX1SUhL8/PzQsGFDqNVquLu7Y+rUqcjPz9fL5+bNmxgxYgQcHR1hYWEBb29v/Pjjj0bj37RpE3r16oX69es/9PtBZAzLPpZ9LPuIqCJJHFSq3MxNHQAREVUvgYGBiI6ORm5uLn788UeMGDECSqUSkydPNnVoAIC8vDyoVCqjafLz8+Hv74+mTZti06ZNcHR0xN9//41t27bpXRwuWbIEY8eORXh4OJYtWwaVSoXvv/8ew4cPx++//47IyMhHjtPb2xtLly6Fu7s7bt++jYULF6JXr144e/Ys7OzscPr0aeh0OqxYsQKenp74/fffMWzYMGRnZxvdb25uLuzs7DB16lQsXLiw3PHcuHEDXbt2hZ+fH7Zt2wY7OzucOXMGdevW1UtX9P4XsbCwKJHXzJkzMWzYMPm1VquV/69UKvHmm2+ibdu2sLW1xbFjxzBs2DDodDrMmTMHQOF76O/vD3t7e2zcuBHOzs74888/YWtra/QYsrOz0a1bNwwcOFBv/0QVgWUfyz6WfURUcQpbpdhzqhzEEygjI0MAEBkZGaYOhYhqodu3b4uTJ0+K27dvmzqUhxYaGiqCgoL0lvn7+4tOnTqJ69evi5CQEGFrays0Go0IDAwUycnJcrq0tDTx4osvCltbW2FpaSl8fHzE1q1bRWpqqkDhb7L8FxoaKoQQIjMzUwQHBwtLS0vh4OAgFixYIHx9fcWYMWPkfF1dXcXMmTNFSEiI0Gq18rZxcXGiW7duQq1Wi0aNGolRo0aJrKwsIYQQCQkJAoBIS0sr9VjPnz8vlEqlGDduXIl1ixcvFgDEb7/9JoQQ8jEkJCQ8/Em9p+i3Z8eOHaWmmT9/vnBzcyt3ng+eK2PCw8NFt27djKYx9P4/yNXVVSxcuLB8Ad7z3nvv6e172bJlwt3dXeTl5T1UPkUq4v0ozth3lnUGfcbOB8s+ln2GsOyrmWUfET2a7p/sEq7hMaLdR7HCNTxG/Ce+9PK4titvHYqP7xERVTIhBHQ5OSb5E+Lx789oNBrk5eUhLCwMhw8fxpYtWxAfHw8hBPr06SM/mjBixAjk5ubi119/xYkTJzBv3jxYW1vDxcUF3377LYDCxxsuXryIRYsWAQDGjRuHffv2YcuWLYiNjUVcXByOHj1aIobIyEi0adMGCQkJmDZtGlJSUhAYGIj+/fvj+PHjWL9+Pfbu3YuRI0cCAOzs7KBQKLBx40YUFBQYPK6NGzciPz8fEyZMKLHu3XffhbW1NdatW/fY5w8ovDu+cuVK2NjYoE2bNqWmy8jIQL169Spknw/asmUL2rdvjwEDBsDe3h5PP/00vvjiixLpdu/eDXt7ezRt2hT/+te/cO3atRJpPv74Y9SvXx9PP/00PvnkE6OPOJ09exY//fQTfH199WLp3LkzRowYgYYNG6Jly5aYM2dOqe8V1Vw1ufxj2ff4WPax7CMiKgsf3yMiqmTi9m0ktW1nkn03PXoEkqXlI20rhMDOnTuxfft29O7dG5s3b8a+ffvQpUsXAMCaNWvg4uKCzZs3Y8CAATh//jz69++PVq1aAQDc3d3lvIouNuzt7eXHFG7duoXVq1dj7dq16NGjBwAgOjoaTk5OJWJ5/vnnMX78ePn10KFDMXjwYHlMES8vLyxevBi+vr5YtmwZnJ2dsXjxYrz//vuYMWMG2rdvDz8/PwwePFiOKzk5GTY2NnB0dCyxP5VKBXd3dyQnJz/SuSsSExODQYMGIScnB46OjoiNjUWDBg0Mpj179iyWLFnyWI/NGHPu3DksW7YM48aNw5QpU3Do0CGMHj0aKpUKoaGhAAofX3nllVfg5uaGlJQUTJkyBb1790Z8fDzMzMwAAKNHj0bbtm1Rr1497N+/H5MnT8bFixexYMECvf116dIFR48eRW5uLt555x3MnDlTL5ZffvkFgwcPxo8//oizZ8/i3//+N/Lz8xEREVEpx0+mURPLP5Z9LPtY9hERVR32lCIiIj0xMTGwtraGWq1G79698dprryEsLAzm5ubo2LGjnK5+/fpo2rQpTp06BaCwwj5r1ix07doVEREROH78uNH9nDt3Dvn5+ejQoYO8zMbGBk2bNi2Rtn379nqvjx07hlWrVsHa2lr+CwgIgE6nQ2pqKoDC3guXLl3CmjVr0LlzZ2zYsAEtWrRAbGxsuc9FWeO3AIUXqMXjiIuLk9f5+fkhMTER+/fvR2BgIAYOHIjLly+XyCM9PR2BgYEYMGCA3nghxfMdPnx4uWKOi4vT227NmjUAAJ1Oh7Zt22LOnDl4+umn8c4772DYsGFYvny5vO2gQYPQr18/tGrVCi+99BJiYmJw6NAh7N69W04zbtw4dO/eHa1bt8bw4cMRFRWFJUuWIDc3Vy+O9evX4+jRo1i7di22bt2qd8Gp0+lgb2+PlStXol27dnjttdfwwQcfyLEYO6dElYVl330s+1j2ERFVFfaUIiKqZJJGg6ZHj5hs3w/Lz89PHvjWyckJ5ubm2LJlS5nbDR06FAEBAdi6dSt+/vlnzJ07F1FRURg1atSjhK7HyspK73VWVhbeffddjB49ukTaxo0by//XarXo27cv+vbti1mzZiEgIACzZs2Cv78/vLy8kJGRgQsXLpTooZCXl4eUlBQEBASUGVu/fv30LlidnZ314vb09ISnpyc6deoELy8vfPnll3oDJ1+4cAF+fn7o0qULVq5cqZd38RmW6tSpU2YsQOFFbPHtGjZsCABwdHSEj4+PXtrmzZvLjxcZ4u7ujgYNGuDs2bNyj44HdezYEXfv3kVaWpreRbWLiwsAwMfHBwUFBXjnnXcwfvx4mJmZwdHREUqlUu6BUBTLpUuXkJeXZ/ScUs1Sk8o/ln0s+4qw7COixyXPvlcBQ2nUdmyUIiKqZJIkPfIjdKZQdDFRXPPmzXH37l0cOHBAfoTl2rVrSEpK0qvsu7i4YPjw4Rg+fDgmT56ML774AqNGjZLvuhcfN8Pd3R1KpRKHDh2SL6YyMjKQnJyM5557zmiMbdu2xcmTJ0vEaYwkSWjWrBn2798PAHj11VcRHh6OqKgoREVF6aVdvnw5cnJy8Oabb5aZr1ar1ZuByRidTqd3Vz09PR1+fn5o164doqOjoVDod2B+mOMrotFoDG7XtWtXJCUl6S1LTk6Gq6trqXn9/fffuHbtmsHHfIokJiZCoVDA3t6+1DQ6nQ75+fnQ6XQwMzND165dsXbtWuh0OvmYk5OT4ejoCJVKBZVKVe5zStVbTSr/WPax7CvCso+IqOqwUYqIiMrk5eWFoKAgDBs2DCtWrIBWq8WkSZPg7OyMoKAgAMDYsWPRu3dveHt748aNG9i1axeaN28OAHB1dYUkSYiJiUGfPn2g0Wig1WoRGhqKiRMnol69erC3t0dERAQUCgUk+faSYeHh4ejUqRNGjhyJoUOHwsrKCidPnkRsbCyWLl2KxMREREREICQkBD4+PlCpVNizZw+++uorhIeHAyjsVTB//nxMmDABarUaISEhUCqV+P777zFlyhTMmjULLVu21Nvvgxc2ANCiRQsolUq9ZdnZ2Zg9ezb69esHR0dHXL16FZ999hnS09MxYMAAAIUXZd27d4erqysiIyNx5coVeXsHBwejx1/UGyArKwtXrlxBYmIiVCpVid4Axb333nvo0qUL5syZg4EDB+LgwYNYuXKl3EMhKysLM2bMQP/+/eHg4ICUlBS8//778PT0lHtNxMfH48CBA/Dz84NWq0V8fDzee+89vPHGG/L06mvWrIFSqUSrVq1gYWGBw4cPY/LkyXjttdfk8/Svf/0LS5cuxZgxYzBq1CicOXMGc+bMMdj7o7jr16/j/PnzuHDhAoD774eDg0OZ54zoUbDsK8Syj2UfEZVPRUwy9MSp3EkAqydO70xElakmT7FsbFrsomnRbWxshEajEQEBAXrToo8cOVJ4eHgICwsLYWdnJ0JCQsTVq1fl9TNnzhQODg5CkiSj06J36NBBTJo0Sd6utGm4Dx48KPz9/YW1tbWwsrISrVu3FrNnzxZCCHHlyhUxevRo0bJlS2FtbS20Wq1o1aqViIyMFAUFBXr5bN68WTz77LPCyspKnrZ93bp1emkMTe1e9PfXX3+ViO327dvi5ZdfFk5OTkKlUglHR0fRr18/cfDgQTlNdHR0qXmWxdA2rq6uZW73ww8/iJYtWwoLCwvRrFkzsXLlSnldTk6O6NWrl7CzsxNKpVK4urqKYcOGiUuXLslpjhw5Ijp27ChsbGyEWq0WzZs3F3PmzBF37tyR03zzzTeibdu28vvi4+Mj5syZU+L7sH//ftGxY0dhYWEh3N3dxezZs8Xdu3eNxl/aOYuIiCjz2I0x9p1lnUGfsfPBso9lH8u+2lP2EdGj8Z3/i3ANjxHPzIoVruEx4j/7U00dksmUtw4lCfHkNeVlZmbCxsYGGRkZ5X5OnYiovO7cuYPU1FS4ublBrVabOpwaJTs7G87OzoiKisKQIUOqfP/Xr19Hjx49UKdOHWzbtg2WNeSxI3o8xr6zrDPoM3Y+WPY9OpZ9ZAr8zhJVvO6f7ELatRzYay1w+VYuPgpqgZDOTUwdlkmUtw7F2feIiMhkEhISsG7dOqSkpODo0aMYPHgwAMiPxVS1evXqYceOHejRowfi4+NNEgMR1X4s+4iIngxPXA+gR8AxpYiIyKQiIyORlJQElUqFdu3aIS4uDg0aNDBZPPXr18eHH35osv0T0ZOBZR8RUe1VxhCBVAwbpYiIyGSefvppHDlimuniiYhMhWUfERFRIT6+R0REREREREREVY6NUkREREREREREVOXYKEVERERERERE9JiKBjaXwEGlyouNUkREREREREREFaRooHPB6ffKxEYpIiIiIiIiIiKqcmyUIiIiIiIiIiKiKsdGKSIiIiIiIiIiqnJslCIiIllYWBgkSYIkSVCpVPD09MTMmTNx9+7dx8p39+7dkCQJN2/erJhAyyE1NRXBwcFwcnKCWq1Go0aNEBQUhNOnT+uli4mJga+vL7RaLSwtLfHMM89g1apVemnS0tIgSRISExPLvf/p06ejWbNmsLKyQt26ddGzZ08cOHBAL88hQ4bAzc0NGo0GHh4eiIiIQF5entF8L168iODgYHh7e0OhUGDs2LHliqegoADTpk3T299HH30EUWywg02bNqFXr16oX79+qcebkpKCl19+GXZ2dqhTpw4GDhyIf/7556GP6/jx43j22WehVqvh4uKC+fPnl3kMv/76K/r27QsnJydIkoTNmzeX69iJysKyj2Ufyz4iItOo9Eapzz77DE2aNIFarUbHjh1x8OBBo+k3bNiAZs2aQa1Wo1WrVvjxxx9LTTt8+HBIkoRPP/20gqMmInpyBQYG4uLFizhz5gzGjx+P6dOn45NPPjF1WLKyLlwAID8/H/7+/sjIyMCmTZuQlJSE9evXo1WrVnoXh0uWLEFQUBC6du2KAwcO4Pjx4xg0aBCGDx+OCRMmPFac3t7eWLp0KU6cOIG9e/eiSZMm6NWrF65cuQIAOH36NHQ6HVasWIE//vgDCxcuxPLlyzFlyhSj+ebm5sLOzg5Tp05FmzZtyh3PvHnzsGzZMixduhSnTp3CvHnzMH/+fCxZskROk52djW7dumHevHkG88jOzkavXr0gSRJ++eUX7Nu3D3l5eejbty90Ol25jyszMxO9evWCq6srjhw5gk8++QTTp0/HypUrjR5DdnY22rRpg88++6zcx01UXiz7WPax7COiilI0957gSOdlE5Xom2++ESqVSnz11Vfijz/+EMOGDRO2trbin3/+MZh+3759wszMTMyfP1+cPHlSTJ06VSiVSnHixIkSaTdt2iTatGkjnJycxMKFCx8qroyMDAFAZGRkPMphEREZdfv2bXHy5Elx+/ZtU4fy0EJDQ0VQUJDeMn9/f9GpUydx/fp1ERISImxtbYVGoxGBgYEiOTlZTpeWliZefPFFYWtrKywtLYWPj4/YunWrSE1NFSicIVf+Cw0NFUIIkZmZKYKDg4WlpaVwcHAQCxYsEL6+vmLMmDFyvq6urmLmzJkiJCREaLVaedu4uDjRrVs3oVarRaNGjcSoUaNEVlaWEEKIhIQEAUCkpaWVeqznz58XSqVSjBs3rsS6xYsXCwDit99+E0II+RgSEhIe/qTeU/Tbs2PHjlLTzJ8/X7i5uZU7zwfPlTEvvPCCePvtt/WWvfLKK2Lw4MEl0pZ2vNu3bxcKhULv9/PmzZtCkiQRGxtb6r4fPK7PP/9c1K1bV+Tm5srLwsPDRdOmTct1LEIIAUB899135U5vjLHvLOsM+oydD5Z9LPsMYdlXM8s+Ino0z83/RbiGx4jOc3YI1/AYEb33nKlDMpny1qEqtafUggULMGzYMLz11lvw8fHB8uXLYWlpia+++spg+kWLFiEwMBATJ05E8+bN8dFHH6Ft27ZYunSpXrr09HSMGjUKa9asgVKprMxDICJ6bEII5OcWmORPVMDdGY1Gg7y8PISFheHw4cPYsmUL4uPjIYRAnz59kJ+fDwAYMWIEcnNz8euvv+LEiROYN28erK2t4eLigm+//RYAkJSUhIsXL2LRokUAgHHjxmHfvn3YsmULYmNjERcXh6NHj5aIITIyEm3atEFCQgKmTZuGlJQUBAYGon///jh+/DjWr1+PvXv3YuTIkQAAOzs7KBQKbNy4EQUFBQaPa+PGjcjPzzfYK+Ddd9+FtbU11q1b99jnDyjs4bBy5UrY2NgYvcOfkZGBevXqVcg+H9SlSxfs3LkTycnJAIBjx45h79696N27d7nzyM3NhSRJsLCwkJep1WooFArs3bu31O0ePK74+Hg899xzUKlU8rKAgAAkJSXhxo0bD3NYVM3V5PKPZd/jY9nHso+IqCzmlZVxXl4ejhw5gsmTJ8vLFAoFevbsifj4eIPbxMfHY9y4cXrLAgIC9J6b1ul0CAkJwcSJE9GiRYtKiZ2IqCLdzdNh5Zg9Jtn3O4t8obQwe6RthRDYuXMntm/fjt69e2Pz5s3Yt28funTpAgBYs2YNXFxcsHnzZgwYMADnz59H//790apVKwCAu7u7nFdRpdze3h62trYAgFu3bmH16tVYu3YtevToAQCIjo6Gk5NTiVief/55jB8/Xn49dOhQDB48WB5TxMvLC4sXL4avry+WLVsGZ2dnLF68GO+//z5mzJiB9u3bw8/PD4MHD5bjSk5Oho2NDRwdHUvsT6VSwd3dXb6IeVQxMTEYNGgQcnJy4OjoiNjYWDRo0MBg2rNnz2LJkiWIjIx8rH2WZtKkScjMzESzZs1gZmaGgoICzJ49G4MHDy53Hp06dYKVlRXCw8MxZ84cCCEwadIkFBQU4OLFiwa3MXRcly5dgpubm166hg0byuvq1q37CEdI1VFNLP9Y9rHsexDLPiIqLz6t9/AqrafU1atXUVBQIBe0RRo2bIhLly4Z3ObSpUtlpp83bx7Mzc0xevTocseSm5uLzMxMvT8iIjIsJiYG1tbWUKvV6N27N1577TWEhYXB3NwcHTt2lNPVr18fTZs2xalTpwAAo0ePxqxZs9C1a1dERETg+PHjRvdz7tw55Ofno0OHDvIyGxsbNG3atETa9u3b670+duwYVq1aBWtra/kvICAAOp0OqampAAp7L1y6dAlr1qxB586dsWHDBrRo0QKxsbHlPhfF72aXZs2aNXpxxMXFyev8/PyQmJiI/fv3IzAwEAMHDsTly5dL5JGeno7AwEAMGDAAw4YNk5cXz3f48OHlijkuLk5vuzVr1gAA/ve//2HNmjVYu3Ytjh49itWrVyMyMhKrV68uV75AYS+MDRs24IcffoC1tTVsbGxw8+ZNtG3bFgpFySpFacf1qMdAVJlY9t3Hsk8fyz4ieliSJJWdiABUYk+pynDkyBEsWrQIR48efag3ee7cuZgxY0YlRkZEVDpzlQLvLPI12b4flp+fH5YtWwaVSgUnJyeYm5tjy5YtZW43dOhQBAQEYOvWrfj5558xd+5cREVFYdSoUY8Suh4rKyu911lZWXj33XcN3qBo3Lix/H+tVou+ffuib9++mDVrFgICAjBr1iz4+/vDy8sLGRkZuHDhQokeCnl5eUhJSUFAQECZsfXr10/vgtXZ2Vkvbk9PT3h6eqJTp07w8vLCl19+qdeL+MKFC/Dz80OXLl1KDHZbfAaoOnXqlBkLUHgRW3y7ops9EydOxKRJkzBo0CAAQKtWrfDnn39i7ty5CA0NLVfeANCrVy+kpKTg6tWrMDc3h62tLRwcHPR6h5R1XA4ODnqzVgGQXzs4OKBJkyYGj4FqnppU/rHsY9lnDMs+InoU7DhVtkrrKdWgQQOYmZkZLHgdHBwMblNaQV2UPi4uDpcvX0bjxo1hbm4Oc3Nz/Pnnnxg/fjyaNGlSaiyTJ09GRkaG/PfXX3893sERET0ESZKgtDAzyd+j3KUpupgoKmsBoHnz5rh7967etN7Xrl1DUlISfHx85GUuLi4YPnw4Nm3ahPHjx+OLL74AcP+ue/ExTtzd3aFUKnHo0CF5WUZGRrkeG2nbti1OnjwpX/QU/yvtDr8kSWjWrBmys7MBAK+++irMzc0RFRVVIu3y5cuRk5ODN998s8xYtFqt3v41Gk2paXU6HXJzc+XX6enp6N69O9q1a4fo6OgSd9yL52tvb19mLEDhODjFt9NqtQCAnJycEvmbmZnJM0c9rAYNGsDW1ha//PILLl++jH79+pX7uDp37oxff/1VHpMHAGJjY9G0aVPUrVu31GOgipGeno433ngD9evXh0ajQatWrXD48OFK2VdNKv9Y9rHsKw+WfUREFavSekqpVCq0a9cOO3fuxEsvvQSg8Adp586d8mCMD+rcuTN27twpPycPFBbUnTt3BgCEhISgZ8+eetsEBAQgJCQEb731VqmxWFhY6A1MSERED8fLywtBQUEYNmwYVqxYAa1Wi0mTJsHZ2RlBQUEAgLFjx6J3797w9vbGjRs3sGvXLjRv3hwA4OrqCkmSEBMTgz59+kCj0UCr1SI0NBQTJ05EvXr1YG9vj4iICCgUijIvJsPDw9GpUyeMHDkSQ4cOhZWVFU6ePInY2FgsXboUiYmJiIiIQEhICHx8fKBSqbBnzx589dVXCA8PB1DYq2D+/PmYMGEC1Go1QkJCoFQq8f3332PKlCmYNWsWWrZsqbffpKSkErG0aNGixKQb2dnZmD17Nvr16wdHR0dcvXoVn332GdLT0zFgwAAA9y9eXF1dERkZKU+XDqDUmzdFiu6kZ2Vl4cqVK0hMTIRKpdK7SH5Q3759MXv2bDRu3BgtWrRAQkICFixYgLfffltOc/36dZw/fx4XLlzQO14HBwc5pujoaDRv3hx2dnaIj4/HmDFj8N5778mPHpXnuIKDgzFjxgwMGTIE4eHh+P3337Fo0SIsXLjQ6HFnZWXh7Nmz8uvU1FQkJiaiXr16er1EqHQ3btxA165d4efnh23btsHOzg5nzpzhWDalYNlXiGUfyz4iokpTmVMAfvPNN8LCwkKsWrVKnDx5UrzzzjvC1tZWXLp0SQghREhIiJg0aZKcft++fcLc3FxERkaKU6dOiYiICKFUKsWJEydK3Yerq6tYuHDhQ8XF6Z2JqDLV5CmWDU2LXqRoWnQbGxuh0WhEQECA3rToI0eOFB4eHsLCwkLY2dmJkJAQcfXqVXn9zJkzhYODg5Akyei06B06dND7bSitnD948KDw9/cX1tbWwsrKSrRu3VrMnj1bCCHElStXxOjRo0XLli2FtbW10Gq1olWrViIyMlIUFBTo5bN582bx7LPPCisrK3na9nXr1umlMTS1e9HfX3/9VSK227dvi5dfflk4OTkJlUolHB0dRb9+/cTBgwflNNHR0aXmWRZD27i6uhrdJjMzU4wZM0Y0btxYqNVq4e7uLj744AO9qclLiykiIkJOEx4eLho2bCiUSqXw8vISUVFRQqfTPfRxHTt2THTr1k1YWFgIZ2dn8fHHH5d53Lt27TKYb9Hn6VEZ+87WtjpDeHi46Nat2yNvb+x8sOxj2ceyr/aUfUT0aJ6d94twDY8RXebuFK7hMeKrvedMHZLJlLcOJQlRuePDL126FJ988gkuXbqEp556CosXL5afP+/evTuaNGmCVatWyek3bNiAqVOnIi0tDV5eXpg/fz769OlTav5NmjTB2LFj9XpXlSUzMxM2NjbIyMgo93PqRETldefOHaSmpsLNzQ1qtdrU4dQo2dnZcHZ2RlRUFIYMGVLl+79+/Tp69OiBOnXqYNu2bbC0tKzyGKjqGfvO1rY6g4+PDwICAvD3339jz549cHZ2xr///e9SB2POzc3Ve+wqMzMTLi4uBs8Hy75Hx7KPTIHfWaKK99z8XTh/PQfOthqk37yNiL4+eKurW9kb1kLlrUNV+kDnI0eOLPVxvd27d5dYNmDAALl7b3mkpaU9YmRERGRqCQkJOH36NDp06ICMjAzMnDkTAOTHYqpavXr1sGPHDnz22WeIj4+Xp2snqi3OnTuHZcuWYdy4cZgyZQoOHTqE0aNHQ6VSGRz0mZPFVA6WfURERIVq1Ox7RERU+0RGRiIpKUkeizAuLg4NGjQwWTz169fHhx9+aLL9E1UmnU6H9u3bY86cOQCAp59+Gr///juWL19usFFq8uTJGDdunPy6qKcUPT6WfUREtY+4N99e0RCBlftcWu3ARikiIjKZp59+GkeOHDF1GERPDEdHxxKDQjdv3hzffvutwfScLKZysOwjIqrdHmEC7CeWouwkRERERFQbdO3atcRMasnJyXB1dTVRRERERPQkY6MUERER0RPivffew2+//YY5c+bg7NmzWLt2LVauXIkRI0aYOjQiIiJ6ArFRioiIiOgJ8cwzz+C7777DunXr0LJlS3z00Uf49NNPMXjwYFOHRkRERE8gjilFRERE9AR58cUX8eKLL5o6DCIiolpLQuGgUhznvGzsKUVERERERERERFWOjVJERERERERERFTl2ChFRERERERERPSYBJ/Xe2hslCIiIllYWBgkSYIkSVCpVPD09MTMmTNx9+7dx8p39+7dkCQJN2/erJhAyyE1NRXBwcFwcnKCWq1Go0aNEBQUhNOnT+uli4mJga+vL7RaLSwtLfHMM89g1apVemnS0tIgSRISExPLvf/p06ejWbNmsLKyQt26ddGzZ08cOHBAL88hQ4bAzc0NGo0GHh4eiIiIQF5entF8L168iODgYHh7e0OhUGDs2LHliufWrVsYO3YsXF1dodFo0KVLFxw6dEgvTVZWFkaOHIlGjRpBo9HAx8cHy5cv10vz7rvvwsPDAxqNBnZ2dgbP6fnz5/HCCy/A0tIS9vb2mDhxYqmfoX379sHc3BxPPfVUmcewadMm9OrVC/Xr13/o94PIGJZ9LPtY9hFRRZIkU0dQc7BRioiI9AQGBuLixYs4c+YMxo8fj+nTp+OTTz4xdViysi5cACA/Px/+/v7IyMjApk2bkJSUhPXr16NVq1Z6F4dLlixBUFAQunbtigMHDuD48eMYNGgQhg8fjgkTJjxWnN7e3li6dClOnDiBvXv3okmTJujVqxeuXLkCADh9+jR0Oh1WrFiBP/74AwsXLsTy5csxZcoUo/nm5ubCzs4OU6dORZs2bcodz9ChQxEbG4v//ve/OHHiBHr16oWePXsiPT1dTjNu3Dj89NNP+Prrr3Hq1CmMHTsWI0eOxJYtW+Q07dq1Q3R0NE6dOoXt27dDCIFevXqhoKAAAFBQUIAXXngBeXl52L9/P1avXo1Vq1bhww8/LBHTzZs38eabb6JHjx7lOobs7Gx069YN8+bNK/dxE5UXyz6WfSz7iKiiFLVJCXadKpt4AmVkZAgAIiMjw9ShEFEtdPv2bXHy5Elx+/ZtU4fy0EJDQ0VQUJDeMn9/f9GpUydx/fp1ERISImxtbYVGoxGBgYEiOTlZTpeWliZefPFFYWtrKywtLYWPj4/YunWrSE1NFSicfET+Cw0NFUIIkZmZKYKDg4WlpaVwcHAQCxYsEL6+vmLMmDFyvq6urmLmzJkiJCREaLVaedu4uDjRrVs3oVarRaNGjcSoUaNEVlaWEEKIhIQEAUCkpaWVeqznz58XSqVSjBs3rsS6xYsXCwDit99+E0II+RgSEhIe/qTeU/Tbs2PHjlLTzJ8/X7i5uZU7zwfPVWlycnKEmZmZiImJ0Vvetm1b8cEHH8ivW7RoIWbOnGk0zYOOHTsmAIizZ88KIYT48ccfhUKhEJcuXZLTLFu2TNSpU0fk5ubqbfvaa6+JqVOnioiICNGmTZsyj6NIRbwfxRn7zrLOoM/Y+WDZx7LPEJZ9NbPsI6JH0/XjncI1PEb4zv9FuIbHiC9+TTF1SCZT3joUe0oREVUyIQTy79wxyZ+ogLszGo0GeXl5CAsLw+HDh7FlyxbEx8dDCIE+ffogPz8fADBixAjk5ubi119/xYkTJzBv3jxYW1vDxcUF3377LQAgKSkJFy9exKJFiwAU3p3et28ftmzZgtjYWMTFxeHo0aMlYoiMjESbNm2QkJCAadOmISUlBYGBgejfvz+OHz+O9evXY+/evRg5ciQAwM7ODgqFAhs3bpTvYj9o48aNyM/PN9gr4N1334W1tTXWrVv32OcPKOzhsHLlStjY2Bi9w5+RkYF69epVyD6Lu3v3LgoKCqBWq/WWazQa7N27V37dpUsXbNmyBenp6RBCYNeuXUhOTkavXr0M5pudnY3o6Gi4ubnBxcUFABAfH49WrVqhYcOGcrqAgABkZmbijz/+kJdFR0fj3LlziIiIqMhDpWqmJpd/LPseH8s+ln1ERGUxN3UARES13d3cXCwOfdUk+x69eiOUD1TGy0sIgZ07d2L79u3o3bs3Nm/ejH379qFLly4AgDVr1sDFxQWbN2/GgAEDcP78efTv3x+tWrUCALi7u8t5FV1s2Nvbw9bWFkDhOB+rV6/G2rVr5UcYoqOj4eTkVCKW559/HuPHj5dfDx06FIMHD5bHFPHy8sLixYvh6+uLZcuWwdnZGYsXL8b777+PGTNmoH379vDz88PgwYPluJKTk2FjYwNHR8cS+1OpVHB3d0dycvIjnbsiMTExGDRoEHJycuDo6IjY2Fg0aNDAYNqzZ89iyZIliIyMfKx9GqLVatG5c2d89NFHaN68ORo2bIh169YhPj4enp6ecrolS5bgnXfeQaNGjWBubg6FQoEvvvgCzz33nF5+n3/+Od5//31kZ2ejadOmiI2NhUqlAgBcunRJ76IMgPz60qVLAIAzZ85g0qRJiIuLg7k5qyK1WU0s/1j2sexj2UdEVHXYU4qIiPTExMTA2toaarUavXv3xmuvvYawsDCYm5ujY8eOcrr69eujadOmOHXqFABg9OjRmDVrFrp27YqIiAgcP37c6H7OnTuH/Px8dOjQQV5mY2ODpk2blkjbvn17vdfHjh3DqlWrYG1tLf8FBARAp9MhNTUVQGHvhUuXLmHNmjXo3LkzNmzYgBYtWiA2Nrbc56LoYsOYNWvW6MURFxcnr/Pz80NiYiL279+PwMBADBw4EJcvXy6RR3p6OgIDAzFgwAAMGzZMXl483+HDh5cr5ri4OL3t1qxZAwD473//CyEEnJ2dYWFhgcWLF+P111+HQnG/KrBkyRL89ttv2LJlC44cOYKoqCiMGDECO3bs0NvH4MGDkZCQgD179sDb2xsDBw7EnTt3yhVfQUEBgoODMWPGDHh7extMY+ycElUWln33sexj2UdEVFXYRE9EVMnMLSwwevVGk+37Yfn5+WHZsmVQqVRwcnKCubm53mCvpRk6dCgCAgKwdetW/Pzzz5g7dy6ioqIwatSoRwldj5WVld7rrKwsvPvuuxg9enSJtI0bN5b/r9Vq0bdvX/Tt2xezZs1CQEAAZs2aBX9/f3h5eSEjIwMXLlwo0UMhLy8PKSkpCAgIKDO2fv366V2wOjs768Xt6ekJT09PdOrUCV5eXvjyyy8xefJkOc2FCxfg5+eHLl26YOXKlXp5F59hqU6dOmXGAhRexBbfruhOvYeHB/bs2YPs7GxkZmbC0dERr732mtx74vbt25gyZQq+++47vPDCCwCA1q1bIzExEZGRkejZs6ecp42NDWxsbODl5YVOnTqhbt26+O677/D666/DwcEBBw8e1Ivpn3/+AQA4ODjg1q1bOHz4MBISEuRHjnQ6HYQQMDc3x88//2z0nFLNUpPKP5Z9LPtY9hERVT02ShERVTJJkh75ETpTKLqYKK558+a4e/cuDhw4ID/Ccu3aNSQlJcHHx0dO5+LiguHDh2P48OGYPHkyvvjiC4waNUq+6158jBN3d3colUocOnRIvpjKyMhAcnJyiUcmHtS2bVucPHmyRJzGSJKEZs2aYf/+/QCAV199FeHh4YiKikJUVJRe2uXLlyMnJwdvvvlmmflqtVpotdpyxaDT6ZCbmyu/Tk9Ph5+fnzyrU/E79wAe6viKaDQao9tZWVnBysoKN27cwPbt2zF//nwAhbN25efnl4jBzMwMOp2u1PyEEBBCyMfVuXNnzJ49G5cvX4a9vT0AIDY2FnXq1IGPjw+USiVOnDihl8fnn3+OX375BRs3boSbmxusrKzKfU6peqtJ5R/LPpZ9xbHsI6LHIUlS2YkIABuliIioHLy8vBAUFIRhw4ZhxYoV0Gq1mDRpEpydnREUFAQAGDt2LHr37g1vb2/cuHEDu3btQvPmzQEArq6ukCQJMTEx6NOnDzQaDbRaLUJDQzFx4kTUq1cP9vb2iIiIgEKhKPOHPDw8HJ06dcLIkSMxdOhQWFlZ4eTJk4iNjcXSpUuRmJiIiIgIhISEwMfHByqVCnv27MFXX32F8PBwAIW9CubPn48JEyZArVYjJCQESqUS33//PaZMmYJZs2ahZcuWevtNSkoqEUuLFi2gVCr1lmVnZ2P27Nno168fHB0dcfXqVXz22WdIT0/HgAEDABRelHXv3h2urq6IjIyUp0sHCu+qG1PUGyArKwtXrlxBYmIiVCqV3kXyg4qmMG/atCnOnj2LiRMnolmzZnjrrbcAFPZG8PX1xcSJE6HRaODq6oo9e/bgP//5DxYsWACg8LGj9evXo1evXrCzs8Pff/+Njz/+GBqNBn369AEA9OrVCz4+PggJCcH8+fNx6dIlTJ06FSNGjIDFvZ4rD55Xe3t7qNXqEssfdP36dZw/fx4XLlwAcP/9cHBwKPOcET0Kln2FWPax7COi8qmAOYaePJUw81+1x+mdiagy1eQplg1Ni16kaFp0GxsbodFoREBAgN606CNHjhQeHh7CwsJC2NnZiZCQEHH16lV5/cyZM4WDg4OQJMnotOgdOnQQkyZNkrdzdXUVCxcuLBHPwYMHhb+/v7C2thZWVlaidevWYvbs2UIIIa5cuSJGjx4tWrZsKaytrYVWqxWtWrUSkZGRoqCgQC+fzZs3i2effVZYWVnJ07avW7dOL42hqd2L/v76668Ssd2+fVu8/PLLwsnJSahUKuHo6Cj69esnDh48KKeJjo4uNc+yGNrG1dXV6Dbr168X7u7uQqVSCQcHBzFixAhx8+ZNvTQXL14UYWFhwsnJSajVatG0aVMRFRUldDqdEEKI9PR00bt3b2Fvby+USqVo1KiRCA4OFqdPn9bLJy0tTfTu3VtoNBrRoEEDMX78eJGfn19qbOWdFr20cxYREVHmtsYY+86yzqDP2Plg2ceyj2Vf7Sn7iOjRdJm7U7iGxwi/T3YJ1/AY8cWvKaYOyWTKW4eShHjy2vIyMzNhY2ODjIyMcj+nTkRUXnfu3EFqairc3NxKTENNxmVnZ8PZ2RlRUVEYMmRIle//+vXr6NGjB+rUqYNt27bB0tKyymOgqmfsO8s6gz5j54Nl36Nj2UemwO8sUcXr+vEvSL95G+4NrHDuajamvtAcQ591L3vDWqi8dSjOvkdERCaTkJCAdevWISUlBUePHsXgwYMBQH4spqrVq1cPO3bsQI8ePRAfH2+SGIio9mPZR0REVIhjShERkUlFRkYiKSkJKpUK7dq1Q1xcHBo0aGCyeOrXr48PP/zQZPsnoicDyz4iolrs3hCBT95zaQ+PjVJERGQyTz/9NI4cOWLqMIiIqhTLPiIiokJ8fI+IiIiIiIiIiKocG6WIiIiIiIiIiKjKsVGKiIiIiIiIiKiCSKYOoAZhoxQRERERERERUQWRpMJmKQGOdF4WNkoREREREREREVGVY6MUERERERERERFVOTZKERERERERERFRlWOjFBERycLCwiBJEiRJgkqlgqenJ2bOnIm7d+8+Vr67d++GJEm4efNmxQRaDqmpqQgODoaTkxPUajUaNWqEoKAgnD59Wi9dTEwMfH19odVqYWlpiWeeeQarVq3SS5OWlgZJkpCYmFju/U+fPh3NmjWDlZUV6tati549e+LAgQN6eQ4ZMgRubm7QaDTw8PBAREQE8vLyjOZ78eJFBAcHw9vbGwqFAmPHji1XPL/++iv69u0LJycnSJKEzZs3l0izadMm9OrVC/Xr1y/zeIUQ6N27d6l5rVq1Cq1bt4ZarYa9vT1GjBiht3779u3o1KkTtFot7Ozs0L9/f6SlpemlWbNmDdq0aQNLS0s4Ojri7bffxrVr1x77OIkexLKPZR/LPiIi02CjFBER6QkMDMTFixdx5swZjB8/HtOnT8cnn3xi6rBkZV24AEB+fj78/f2RkZGBTZs2ISkpCevXr0erVq30Lg6XLFmCoKAgdO3aFQcOHMDx48cxaNAgDB8+HBMmTHisOL29vbF06VKcOHECe/fuRZMmTdCrVy9cuXIFAHD69GnodDqsWLECf/zxBxYuXIjly5djypQpRvPNzc2FnZ0dpk6dijZt2pQ7nuzsbLRp0wafffaZ0TTdunXDvHnzyszv008/lQfxfNCCBQvwwQcfYNKkSfjjjz+wY8cOBAQEyOtTU1MRFBSE559/HomJidi+fTuuXr2KV155RU6zb98+vPnmmxjy/+zdeVhU1/kH8O8gjDMw4yAKMiBOQBBFkbpEWTSEIAyYAE0NaqAIjVBpBTVuqI2iBDUqaEUtamrQX4vESgyhuKJxQURxATGioAhFAVd0kEXW8/uDcusIDLjgRH0/zzOPzr3nnPueC/Ny7517z5k6FZcvX8bu3buRmZmJoKCgl+4nIW2h3Ee5j3IfIeRVodn3ngN7BykUCgaAKRQKdYdCCHkL1dTUsNzcXFZTU6PuUJ6bv78/8/LyUlrm4uLCbG1tWXl5OfPz82O6urpMKBQyNzc3lp+fz5UrKipin3zyCdPV1WXa2trMysqK7d27lxUWFjIASi9/f3/GGGMVFRXMx8eHaWtrM0NDQ7Z27Vrm6OjIZs6cybUrk8lYREQE8/PzY2KxmKublpbGxowZwwQCAevbty8LDQ1llZWVjDHGsrKyGABWVFTUbl+Li4uZlpYWmz17dqt1MTExDAA7ffo0Y4xxfcjKynr+nfpfLX97Dh8+3G6Z1atXM1NT0063+ey+6iwA7Mcff2x3fUf9zcrKYsbGxqysrKxVW+Xl5UwoFKrs5+7du5mmpiZrbGzkliUnJzMej8fq6uoYY4ytWbOGmZmZKdWLiYlhxsbGHXfwvzrqZwtVn1k6ZlCman9Q7qPc1xbKff/zJuU+QsiLsV95hMnCUti46GNMFpbCNh+7ru6Q1Kazx1B0pxQhhHQxxhia6hrV8mLs5aehFQqFqKurQ0BAAM6dO4fk5GRkZGSAMYbx48ejvr4eADB9+nTU1tbixIkTuHTpElatWgWRSAQTExP88MMPAIC8vDyUlZVh/fr1AIDZs2cjPT0dycnJSE1NRVpaGi5cuNAqhqioKNjY2CArKwuLFy9GQUEB3NzcMGHCBOTk5GDXrl04efIkQkJCAAD6+vrQ0NBAYmIiGhsb2+xXYmIi6uvr27wrYNq0aRCJREhISHjp/Qc03+GwdetWSCQSld/wKxQK6OnpvZJtdpXq6mr4+Phg06ZNMDQ0bLU+NTUVTU1NKCkpwaBBg9C3b19MnDgRN2/e5MqMGDECGhoaiIuLQ2NjIxQKBf7xj39g3Lhx0NLSAgDY2dnh5s2b2LdvHxhjuHPnDhITEzF+/PjX1lfy8t7k/Ee57+VR7qPcR8i75lUce79rNNUdACGEvO1YfRNKl5xSy7aNIuzB43d7obqMMRw5cgQHDx6Eu7s7kpKSkJ6eDnt7ewDNY16YmJggKSkJ3t7eKC4uxoQJE2BtbQ0AMDMz49pqOdkwMDCArq4uAODx48fYsWMHdu7cCWdnZwBAXFwcjIyMWsXy0UcfYc6cOdz7wMBA+Pr6cmOKWFhYICYmBo6OjoiNjYWxsTFiYmIwf/58LFu2DCNHjoSTkxN8fX25uPLz8yGRSCCVSlttj8/nw8zMDPn5+S+071qkpKRg8uTJqK6uhlQqRWpqKnr37t1m2evXr2PDhg2Iiop6qW12tS+//BL29vbw8vJqc/2NGzfQ1NSEFStWYP369ZBIJPjqq6/g4uKCnJwc8Pl8mJqa4tChQ5g4cSKmTZuGxsZG2NnZYd++fVw7Dg4OiI+Px6RJk/DkyRM0NDTAw8ODHk15w7yJ+Y9yH+W+tlDuI4SQrkF3ShFCCFGSkpICkUgEgUAAd3d3TJo0CQEBAdDU1MTo0aO5cr169YKlpSWuXLkCAJgxYwYiIyPh4OCA8PBw5OTkqNzOjRs3UF9fj1GjRnHLJBIJLC0tW5UdOXKk0vuLFy9i+/btEIlE3Esul6OpqQmFhYUAmu9euH37NuLj42FnZ4fdu3dj8ODBSE1N7fS+4PP5HZaJj49XiiMtLY1b5+TkhOzsbJw6dQpubm6YOHEi7t6926qNkpISuLm5wdvbW2nckKfbDQ4O7lTMaWlpSvXi4+M7Va8zkpOT8fPPP+Ovf/1ru2WamppQX1+PmJgYyOVy2NraIiEhAdeuXcPRo0cBALdv30ZQUBD8/f1x9uxZHD9+HHw+H5999hn3DWNubi5mzpyJJUuW4Pz58zhw4ACKioq4/dCV/STvJsp9/0O5TxnlPkLI82pn6DnSBrpTihBCuhhPSwNGEfZq2/bzcnJyQmxsLPh8PoyMjKCpqYnk5OQO6wUGBkIul2Pv3r04dOgQVq5ciejoaISGhr5I6Ep0dHSU3ldWVmLatGmYMWNGq7L9+vXj/i8Wi+Hh4QEPDw9ERkZCLpcjMjISLi4usLCwgEKhQGlpaas7FOrq6lBQUKA0QG17PD09lU5YjY2NleI2NzeHubk5bG1tYWFhgW3btmHhwoVcmdLSUjg5OcHe3h5bt25VavvpGaB69OjRYSxA80ns0/X69OnTqXqd8fPPP6OgoIC746PFhAkTMHbsWBw7doy7+8LKyopbr6+vj969e6O4uBgAsGnTJkgkEqxevZor889//hMmJiY4c+YMbG1tsXLlSjg4OGDevHkAgKFDh0JHRwdjx45FZGRkl/aTvDpvUv6j3Ee5rz2U+wghpOvQRSlCCOliPB7vhR+hU4eWk4mnDRo0CA0NDThz5gz3CMuDBw+Ql5endABuYmKC4OBgBAcHY+HChfj2228RGhrKfev+9BgnZmZm0NLSwtmzZ7mTKYVCgfz8fHzwwQcqYxw+fDhyc3NbxakKj8fDwIEDcepU86NEn332GcLCwhAdHY3o6Gilsps3b0Z1dTWmTJnSYbtisRhisbhTMTQ1NaG2tpZ7X1JSAicnJ4wYMQJxcXHQ0FA+iX6e/rUQCoUvVK8zFixYgMDAQKVl1tbWWLduHTw8PAA0P3oCNI+h07dvXwBAeXk57t+/D5lMBqB5bJZn+9qtW/NnpKmpiSujqanZZhnGWJf2k7w6b1L+o9xHua89lPsIIc+L99/592iEqY7RRSlCCCEdsrCwgJeXF4KCgrBlyxaIxWIsWLAAxsbG3Pgas2bNgru7OwYMGICHDx/i6NGjGDRoEABAJpOBx+MhJSUF48ePh1AohFgshr+/P+bNmwc9PT0YGBggPDwcGhoa7U633SIsLAy2trYICQlBYGAgdHR0kJubi9TUVGzcuBHZ2dkIDw+Hn58frKyswOfzcfz4cXz33XcICwsD0HxXwerVqzF37lwIBAL4+flBS0sLP/30ExYtWoTIyEgMGTJEabt5eXmtYhk8eDA3QG2LqqoqLF++HJ6enpBKpbh//z42bdqEkpISeHt7A2g+Kfvwww8hk8kQFRXFTZcOoM1BdJ/W8i15ZWUl7t27h+zsbPD5fKWT5GdVVlbi+vXr3PvCwkJkZ2dDT0+POzEuLy9HcXExSktLlfpraGio9HpWv379YGpqCqB5OngvLy/MnDkTW7duRY8ePbBw4UIMHDgQTk5OAICPP/4Y69atQ0REBD7//HM8fvwYixYtgkwmw7BhwwAAHh4eCAoKQmxsLORyOcrKyjBr1iyMGjWqzbF3nqefhHQW5b5mlPso9xFCSJfpqun/fs1oemdCSFd6k6dYbmta9BYt06JLJBImFAqZXC5XmhY9JCSE9e/fn3Xv3p3p6+szPz8/dv/+fW59REQEMzQ0ZDweT+W06KNGjWILFizg6slkMrZu3bpW8WRmZjIXFxcmEomYjo4OGzp0KFu+fDljjLF79+6xGTNmsCFDhjCRSMTEYjGztrZmUVFRSlNxM8ZYUlISGzt2LNPR0eGmbU9ISFAq09bU7i2vmzdvtoqtpqaGffrpp8zIyIjx+XwmlUqZp6cny8zM5MrExcW122ZH2qojk8lU1jl69Gib9Vp+FqpiCg8PVxnLs1OPKxQK9sUXXzBdXV2mp6fHPv30U1ZcXKxUJiEhgQ0bNozp6OgwfX195unpya5cuaJUJiYmhllZWTGhUMikUinz9fVlt27deul+PkvVZ5aOGZSp2h+U+yj3Ue57e3IfIeTF2K04zGRhKcx17XEmC0thsceuqzsktensMRSPsXdvzsKKigpIJBIoFIpOP6dOCCGd9eTJExQWFsLU1BQCgUDd4bxRqqqqYGxsjOjoaEydOvW1b7+8vBzOzs7o0aMH9u/fD21t7dceA3n9VH1m6ZhBmar9QbnvxVHuI+pAn1lCXj37lUdQqngCyz5i5N15jAXuAxHs2F/dYalFZ4+haPY9QgghapOVlYWEhAQUFBTgwoUL8PX1BYB2p9zuanp6ejh8+DCcnZ2RkZGhlhgIIW8/yn2EEEJIMxpTihBCiFpFRUUhLy8PfD4fI0aMQFpaGnr37q22eHr16oUlS5aobfuEkHcD5T5CCHn7tDyG1jJE4Lv3XNrzo4tShBBC1GbYsGE4f/68usMghJDXinIfIYQQ0owe3yOEEEIIIYQQQgghrx1dlCKEEEIIIYQQQgghrx1dlCKEEEIIIYQQQgghrx1dlCKEEEIIIYQQQgh5RXgtI52TDtFFKUIIIYQQQgghhJBXjIGm3+sIXZQihBBCCCGEEEIIIa8dXZQihBBCCCGEEEIIeUmMbox6bnRRihBCCCcgIAA8Hg88Hg98Ph/m5uaIiIhAQ0PDS7V77Ngx8Hg8PHr06NUE2gmFhYXw8fGBkZERBAIB+vbtCy8vL1y9elWpXEpKChwdHSEWi6GtrY33338f27dvVypTVFQEHo+H7OzsTm9/6dKlGDhwIHR0dNCzZ0+MGzcOZ86cUWpz6tSpMDU1hVAoRP/+/REeHo66ujqV7ZaVlcHHxwcDBgyAhoYGZs2a1al4Tpw4AQ8PDxgZGYHH4yEpKem5YwaA5cuXw97eHtra2tDV1W1zW8XFxfj444+hra0NAwMDzJs3T+l36Onfs6dfgwcP5sqsXLkS77//PsRiMQwMDPDb3/4WeXl5HfazM/ER8izKfZT7KPcRQl4lGlGq8+iiFCGEECVubm4oKyvDtWvXMGfOHCxduhRr1qxRd1icjk5cAKC+vh4uLi5QKBTYs2cP8vLysGvXLlhbWyudHG7YsAFeXl5wcHDAmTNnkJOTg8mTJyM4OBhz5859qTgHDBiAjRs34tKlSzh58iTee+89uLq64t69ewCAq1evoqmpCVu2bMHly5exbt06bN68GYsWLVLZbm1tLfT19fHVV1/Bxsam0/FUVVXBxsYGmzZteuGYgeb97+3tjT/96U9tttHY2IiPP/4YdXV1OHXqFHbs2IHt27djyZIlXJn169ejrKyMe928eRN6enrw9vbmyhw/fhzTp0/H6dOnkZqaivr6eri6uqKqqkplPzuKj5D2UO6j3Ee5jxDyqtA458+BvYMUCgUDwBQKhbpDIYS8hWpqalhubi6rqalRdyjPzd/fn3l5eSktc3FxYba2tqy8vJz5+fkxXV1dJhQKmZubG8vPz+fKFRUVsU8++YTp6uoybW1tZmVlxfbu3csKCwsZAKWXv78/Y4yxiooK5uPjw7S1tZmhoSFbu3Ytc3R0ZDNnzuTalclkLCIigvn5+TGxWMzVTUtLY2PGjGECgYD17duXhYaGssrKSsYYY1lZWQwAKyoqarevxcXFTEtLi82ePbvVupiYGAaAnT59mjHGuD5kZWU9/079r5a/PYcPH263zOrVq5mpqWmn23x2X3UWAPbjjz92WE5VzHFxcUwikbRavm/fPqahocFu377NLYuNjWU9evRgtbW1bW7nxx9/ZDweT+XP6+7duwwAO378eIdxq4qvLao+s3TMoEzV/qDcR7mvLZT73szcRwh5MaOXH2aysBQ2fv0JJgtLYRt/vqbukNSms8dQdKcUIYR0McYY6urq1PJir+DBdqFQiLq6OgQEBODcuXNITk5GRkYGGGMYP3486uvrAQDTp09HbW0tTpw4gUuXLmHVqlUQiUQwMTHBDz/8AADIy8tDWVkZ1q9fDwCYPXs20tPTkZycjNTUVKSlpeHChQutYoiKioKNjQ2ysrKwePFiFBQUwM3NDRMmTEBOTg527dqFkydPIiQkBACgr68PDQ0NJCYmorGxsc1+JSYmor6+vs27AqZNmwaRSISEhISX3n9A8zfYW7duhUQiUfkNv0KhgJ6e3ivZ5svqbMzPysjIgLW1Nfr06cMtk8vlqKiowOXLl9uss23bNowbNw4ymazddhUKBQD8avYP6Zw3Of9R7nt5lPso9xFCSEc01R0AIYS87err67FixQq1bHvRokXg8/kvVJcxhiNHjuDgwYNwd3dHUlIS0tPTYW9vDwCIj4+HiYkJkpKS4O3tjeLiYkyYMAHW1tYAADMzM66tloNpAwMDbqyLx48fY8eOHdi5cyecnZ0BAHFxcTAyMmoVy0cffYQ5c+Zw7wMDA+Hr68uNKWJhYYGYmBg4OjoiNjYWxsbGiImJwfz587Fs2TKMHDkSTk5O8PX15eLKz8+HRCKBVCpttT0+nw8zMzPk5+e/0L5rkZKSgsmTJ6O6uhpSqRSpqano3bt3m2WvX7+ODRs2ICoq6qW2+bKeJ+a23L59W+mkDAD3/vbt263Kl5aWYv/+/di5c2e7bTY1NWHWrFlwcHDAkCFDOh0LUb83Mf9R7qPcR7mPEEJeH7pTihBCiJKUlBSIRCIIBAK4u7tj0qRJCAgIgKamJkaPHs2V69WrFywtLXHlyhUAwIwZMxAZGQkHBweEh4cjJydH5XZu3LiB+vp6jBo1ilsmkUhgaWnZquzIkSOV3l+8eBHbt2+HSCTiXnK5HE1NTSgsLATQfPfC7du3ER8fDzs7O+zevRuDBw9Gampqp/dFZ05o4+PjleJIS0vj1jk5OSE7OxunTp2Cm5sbJk6ciLt377Zqo6SkBG5ubvD29kZQUBC3/Ol2g4ODOxVzWlqaUr34+PhO1XvemF+VHTt2QFdXF7/97W/bLTN9+nT88ssv+P7777llwcHBSv0k5GVR7vsfyn2U+wgh5HWhO6UIIaSLaWlpdTiAa1du+3k5OTkhNjYWfD4fRkZG0NTURHJycof1AgMDIZfLsXfvXhw6dAgrV65EdHQ0QkNDXyR0JTo6OkrvKysrMW3aNMyYMaNV2X79+nH/F4vF8PDwgIeHByIjIyGXyxEZGQkXFxdYWFhAoVCgtLS01R0KdXV1KCgogFwu7zA2T09PpRNWY2NjpbjNzc1hbm4OW1tbWFhYYNu2bVi4cCFXprS0FE5OTrC3t8fWrVuV2n56xqsePXp0GAvQfBL7dL1nv7nvSGdiVsXQ0BCZmZlKy+7cucOtexpjDN999x38/PzaPQkOCQlBSkoKTpw4gb59+3LLIyIiXnpAZtL13qT8R7mPch/lPkIIef3oohQhhHSxlinG3xQtB+ZPGzRoEBoaGnDmzBnuEZYHDx4gLy8PVlZWXDkTExMEBwcjODgYCxcuxLfffovQ0FCu/0+PcWJmZgYtLS2cPXuWO5lSKBTIz8/HBx98oDLG4cOHIzc3t1WcqvB4PAwcOBCnTp0CAHz22WcICwtDdHQ0oqOjlcpu3rwZ1dXVmDJlSoftisViiMXiTsXQ1NSE2tpa7n1JSQmcnJwwYsQIxMXFQUND+Qbm5+lfC6FQ+EL12vNszB2xs7PD8uXLcffuXRgYGAAAUlNT0aNHD6XfFaB5lqnr169j6tSprdphjCE0NBQ//vgjjh07BlNTU6X1BgYGXPvk1+tNyn+U+yj3PY1yHyHkRTA0j2dIs+91Hl2UIoQQ0iELCwt4eXkhKCgIW7ZsgVgsxoIFC2BsbAwvLy8AwKxZs+Du7o4BAwbg4cOHOHr0KAYNGgQAkMlk4PF4SElJwfjx4yEUCiEWi+Hv74958+ZBT08PBgYGCA8Ph4aGBngd/CUPCwuDra0tQkJCEBgYCB0dHeTm5iI1NRUbN25EdnY2wsPD4efnBysrK/D5fBw/fhzfffcdwsLCADTfVbB69WrMnTsXAoEAfn5+0NLSwk8//YRFixYhMjKy1RgeeXl5rWIZPHhwqzsyqqqqsHz5cnh6ekIqleL+/fvYtGkTSkpKuKm/S0pK8OGHH0ImkyEqKkpp6vFnv1V/VsvdAJWVlbh37x6ys7PB5/Nbnfg8rbKyEtevX+feFxYWIjs7G3p6eujXr1+nYgaA4uJilJeXo7i4GI2NjVws5ubmEIlEcHV1hZWVFfz8/LB69Wrcvn0bX331FaZPn47u3bsrxbRt2zaMHj26zbFSpk+fjp07d+Knn36CWCzmxmSRSCQQCoXt9rOj+Ah5HpT7mlHuo9xHCCFdpgtnAPzVoumdCSFd6U2eYrmtadFbtEyLLpFImFAoZHK5XGla9JCQENa/f3/WvXt3pq+vz/z8/Nj9+/e59REREczQ0JDxeDyV06KPGjWKLViwgKsnk8nYunXrWsWTmZnJXFxcmEgkYjo6Omzo0KFs+fLljDHG7t27x2bMmMGGDBnCRCIRE4vFzNramkVFRbHGxkaldpKSktjYsWOZjo4ON217QkKCUpm2pnZved28ebNVbDU1NezTTz9lRkZGjM/nM6lUyjw9PVlmZiZXJi4urt02O9JWHZlMprLO0aNH26zX8rPoTMyMNf+OtNXO0aNHuTJFRUXM3d2dCYVC1rt3bzZnzhxWX1+v1M6jR4+YUChkW7du7XQfAbC4uDiV/exMfM9S9ZmlYwZlqvYH5T7KfZT73p7cRwh5MaOWpzJZWAr7JCaNycJS2Mafr6k7JLXp7DEUj7FXMF/4G6aiogISiQQKhaLTz6kTQkhnPXnyBIWFhTA1NYVAIFB3OG+UqqoqGBsbIzo6us3HGrpaeXk5nJ2d0aNHD+zfvx/a2tqvPQby+qn6zNIxgzJV+4Ny34uj3EfUgT6zhLx6o1ccxp2KWlgbS3CpRIF5cktMd3p1jxa/STp7DEWz7xFCCFGbrKwsJCQkoKCgABcuXICvry8AcI/FvG56eno4fPgwnJ2dkZGRoZYYCCFvP8p9hBBCSDMaU4oQQohaRUVFIS8vD3w+HyNGjEBaWhp69+6ttnh69eqFJUuWqG37hJB3A+U+Qgh5e9FA551HF6UIIYSozbBhw3D+/Hl1h0EIIa8V5T5CCHk3vIOjJT03enyPEEIIIYQQQgghhLx2dFGKEEIIIYQQQgghhLx2dFGKEEIIIYQQQggh5CW1PK1HQ0p1Hl2UIoQQQgghhBBCCHlVaKTzTqOLUoQQQgghhBBCCCGvGI1z3jG6KEUIIYQQQgghhBBCXju6KEUIIYQQQgghhBBCXju6KEUIIYQTEBAAHo8HHo8HPp8Pc3NzREREoKGh4aXaPXbsGHg8Hh49evRqAu2EwsJC+Pj4wMjICAKBAH379oWXlxeuXr2qVC4lJQWOjo4Qi8XQ1tbG+++/j+3btyuVKSoqAo/HQ3Z2dqe3v3TpUgwcOBA6Ojro2bMnxo0bhzNnzii1OXXqVJiamkIoFKJ///4IDw9HXV1dh23Hx8fDxsYG2trakEql+OKLL/DgwQOVdU6cOAEPDw8YGRmBx+MhKSmpzXJXrlyBp6cnJBIJdHR08P7776O4uJhbP23aNPTv3x9CoRD6+vpt7tOzZ8/C2dkZurq66NmzJ+RyOS5evNjm9q5fvw6xWAxdXd0O+93ZPhDyvCj3Ue6j3EcIIepBF6UIIYQocXNzQ1lZGa5du4Y5c+Zg6dKlWLNmjbrD4nTmxKW+vh4uLi5QKBTYs2cP8vLysGvXLlhbWyudHG7YsAFeXl5wcHDAmTNnkJOTg8mTJyM4OBhz5859qTgHDBiAjRs34tKlSzh58iTee+89uLq64t69ewCAq1evoqmpCVu2bMHly5exbt06bN68GYsWLVLZbnp6OqZMmYKpU6fi8uXL2L17NzIzMxEUFKSyXlVVFWxsbLBp06Z2yxQUFGDMmDEYOHAgjh07hpycHCxevBgCgYArM2LECMTFxeHKlSs4ePAgGGNwdXVFY2MjAKCyshJubm7o168fzpw5g5MnT0IsFkMul6O+vl5pe/X19fj8888xduxYlbE/Tx8IeVGU+yj3Ue4jhLwqNMz5c2DvIIVCwQAwhUKh7lAIIW+hmpoalpuby2pqatQdynPz9/dnXl5eSstcXFyYra0tKy8vZ35+fkxXV5cJhULm5ubG8vPzuXJFRUXsk08+Ybq6ukxbW5tZWVmxvXv3ssLCQgZA6eXv788YY6yiooL5+PgwbW1tZmhoyNauXcscHR3ZzJkzuXZlMhmLiIhgfn5+TCwWc3XT0tLYmDFjmEAgYH379mWhoaGssrKSMcZYVlYWA8CKiora7WtxcTHT0tJis2fPbrUuJiaGAWCnT59mjDGuD1lZWc+/U/+r5W/P4cOH2y2zevVqZmpqqrKdNWvWMDMzs1bxGhsbdzoWAOzHH39stXzSpEns97//fafbYYyxixcvMgDs+vXrjDHGzp49ywCw4uJirkxOTg4DwK5du6ZUd/78+ez3v/89i4uLYxKJ5Lm2214fXoSqzywdMyhTtT8o91Huawvlvjcz9xFCXsz7kalMFpbCvDaeZLKwFLb+cH7Hld5SnT2GojulCCGkizHG0NhYrZYXewVTfgiFQtTV1SEgIADnzp1DcnIyMjIywBjD+PHjuW+Ap0+fjtraWpw4cQKXLl3CqlWrIBKJYGJigh9++AEAkJeXh7KyMqxfvx4AMHv2bKSnpyM5ORmpqalIS0vDhQsXWsUQFRUFGxsbZGVlYfHixSgoKICbmxsmTJiAnJwc7Nq1CydPnkRISAgAQF9fHxoaGkhMTOS+xX5WYmIi6uvr27wrYNq0aRCJREhISHjp/Qc03+GwdetWSCQS2NjYtFtOoVBAT09PZVt2dna4efMm9u3bB8YY7ty5g8TERIwfP/6lYmxqasLevXsxYMAAyOVyGBgYYPTo0SofE6mqqkJcXBxMTU1hYmICALC0tESvXr2wbds21NXVoaamBtu2bcOgQYPw3nvvcXV//vln7N69m775f8u9yfmPct/Lo9xHuY+Qdw1Ntvf8NNUdACGEvO2ammpw7Li1Wrb9oeMldOum/UJ1GWM4cuQIDh48CHd3dyQlJSE9PR329vYAmsf2MDExQVJSEry9vVFcXIwJEybA2rq5r2ZmZlxbLScbBgYG3PgZjx8/xo4dO7Bz5044OzsDAOLi4mBkZNQqlo8++ghz5szh3gcGBsLX1xezZs0CAFhYWCAmJgaOjo6IjY2FsbExYmJiMH/+fCxbtgwjR46Ek5MTfH19ubjy8/MhkUgglUpbbY/P58PMzAz5+fkvtO9apKSkYPLkyaiuroZUKkVqaip69+7dZtnr169jw4YNiIqKUtmmg4MD4uPjMWnSJDx58gQNDQ3w8PB46ROcu3fvorKyEt988w0iIyOxatUqHDhwAL/73e9w9OhRODo6cmX/9re/Yf78+aiqqoKlpSVSU1PB5/MBAGKxGMeOHcNvf/tbfP311wCafz4HDx6EpmbzYceDBw8QEBCAf/7zn+jRo8dLxU1+3d7E/Ee5j3If5T5CyMvi0fN7nUZ3ShFCCFGSkpICkUgEgUAAd3d3TJo0CQEBAdDU1MTo0aO5cr169YKlpSWuXLkCAJgxYwYiIyPh4OCA8PBw5OTkqNzOjRs3UF9fj1GjRnHLJBIJLC0tW5UdOXKk0vuLFy9i+/btEIlE3Esul6OpqQmFhYUAmu9euH37NuLj42FnZ4fdu3dj8ODBSE1N7fS+aDnZUCU+Pl4pjrS0NG6dk5MTsrOzcerUKbi5uWHixIm4e/duqzZKSkrg5uYGb29vpfFRnm43ODgYAJCbm4uZM2diyZIlOH/+PA4cOICioiJufVpamlK9+Pj4TvW1qakJAODl5YUvv/wSv/nNb7BgwQJ88skn2Lx5s1JZX19fZGVl4fjx4xgwYAAmTpyIJ0+eAABqamowdepUODg44PTp00hPT8eQIUPw8ccfo6amBgAQFBQEHx8ffPDBB23G8qJ9IORlUO77H8p9lPsIIeR1oTulCCGki2loCPGh4yW1bft5OTk5ITY2Fnw+H0ZGRtDU1ERycnKH9QIDAyGXy7F3714cOnQIK1euRHR0NEJDQ18kdCU6OjpK7ysrKzFt2jTMmDGjVdl+/fpx/xeLxfDw8ICHhwciIyMhl8sRGRkJFxcXWFhYQKFQoLS0tNUdCnV1dSgoKIBcLu8wNk9PT6UTVmNjY6W4zc3NYW5uDltbW1hYWGDbtm1YuHAhV6a0tBROTk6wt7fH1q1bldp+esarlm/VV65cCQcHB8ybNw8AMHToUOjo6GDs2LGIjIzEyJEjler16dOnwz4AQO/evaGpqQkrKyul5YMGDcLJkyeVlkkkEkgkElhYWMDW1hY9e/bEjz/+iM8//xw7d+5EUVERMjIyoKHR/N3Xzp070bNnT/z000+YPHkyfv75ZyQnJ3N3RjDG0NTUBE1NTWzduhWff/75C/WB/Pq8SfmPch/lvqdR7iOEkNeDLkoRQkgX4/F4L/wInTq0nEw8bdCgQWhoaMCZM2e4R1gePHiAvLw8pQN5ExMTBAcHIzg4GAsXLsS3336L0NBQ7lv3p8c4MTMzg5aWFs6ePcudTCkUCuTn57f7LXKL4cOHIzc3t1WcqvB4PAwcOBCnTp0CAHz22WcICwtDdHQ0oqOjlcpu3rwZ1dXVmDJlSoftisViiMXiTsXQ1NSE2tpa7n1JSQmcnJy4WZ1aTmRatNW/6upq7lGQFt26dQPQfIIjFAqfa7+04PP5eP/995GXl6e0PD8/HzKZrN16jDEwxrh+VVdXQ0NDA7yn7ltved9yR0JGRobS78JPP/2EVatW4dSpUzA2Nn7hPpBfnzcp/1Huo9z3NMp9hJCXQU/vdR5dlCKEENIhCwsLeHl5ISgoCFu2bIFYLMaCBQtgbGwMLy8vAMCsWbPg7u6OAQMG4OHDhzh69CgGDRoEAJDJZODxeEhJScH48eMhFAohFovh7++PefPmQU9PDwYGBggPD291UN+WsLAw2NraIiQkBIGBgdDR0UFubi5SU1OxceNGZGdnIzw8HH5+frCysgKfz8fx48fx3XffISwsDEDzXQWrV6/G3LlzIRAI4OfnBy0tLfz0009YtGgRIiMjMWTIEKXtPnvSAgCDBw+GlpaW0rKqqiosX74cnp6ekEqluH//PjZt2oSSkhJ4e3sDaD4p+/DDDyGTyRAVFcVNlw4AhoaG7fbdw8MDQUFBiI2NhVwuR1lZGWbNmoVRo0a1OSZNi8rKSly/fp17X1hYiOzsbOjp6XEnxvPmzcOkSZPwwQcfwMnJCQcOHMC///1vHDt2DEDzY0e7du2Cq6sr9PX1cevWLXzzzTcQCoXcYMMuLi6YN28epk+fjtDQUDQ1NeGbb76BpqYmnJycAID7vWhx7tw5aGhotNrfL9IHQl4lyn3NKPdR7iOEvJhXMOfQ269L5v77laPpnQkhXelNnmK5rWnRW7RMiy6RSJhQKGRyuVxpWvSQkBDWv39/1r17d6avr8/8/PzY/fv3ufURERHM0NCQ8Xg8ldOijxo1ii1YsICrJ5PJ2Lp161rFk5mZyVxcXJhIJGI6Ojps6NChbPny5Ywxxu7du8dmzJjBhgwZwkQiEROLxcza2ppFRUWxxsZGpXaSkpLY2LFjmY6ODjdte0JCglKZtqZ2b3ndvHmzVWw1NTXs008/ZUZGRozP5zOpVMo8PT1ZZmYmVyYuLq7dNjsSExPDrKysmFAoZFKplPn6+rJbt26prHP06NE2t9Xys2ixbds2Zm5uzgQCAbOxsWFJSUncupKSEubu7s4MDAyYlpYW69u3L/Px8WFXr15VauPQoUPMwcGBSSQS1rNnT/bRRx+xjIyMdmPr7LTone3D81L1maVjBmWq9gflPsp9lPventxHCHkxIyNTmSwshX266SSThaWwv6bmd1zpLdXZYygeY+/etbuKigpIJBIoFAqa+YIQ8so9efIEhYWFMDU1hUAgUHc4b5SqqioYGxsjOjoaU6dOfe3bLy8vh7OzM3r06IH9+/dDW/vNeOyIvBxVn1k6ZlCman9Q7ntxlPuIOtBnlpBX7/3lh3HvcS2G99PFheJH+HLcAMwcZ6HusNSis8dQNPseIYQQtcnKykJCQgIKCgpw4cIF+Pr6AgD3WMzrpqenh8OHD8PZ2RkZGRlqiYEQ8vaj3EcIIYQ0ozGlCCGEqFVUVBTy8vLA5/MxYsQIpKWloXfv3mqLp1evXliyZInatk8IeTdQ7iOEkLdPy3NoHY0RSP6HLkoRQghRm2HDhuH8+fPqDoMQQl4ryn2EEPJ2a7kkxfDOjZb03OjxPUIIIYQQQgghhBDy2tFFKUIIIYQQQgghhBDy2tFFKUIIIYQQQgghhBDy2tFFKUIIIYQQQgghhJBXhMY57zy6KEUIIYQQQgghhBDyijEa57xDdFGKEEIIIYQQQgghhLx2dFGKEEIIIYQQQggh5KXRrVHPiy5KEUII4QQEBIDH44HH44HP58Pc3BwRERFoaGh4qXaPHTsGHo+HR48evZpAO6GwsBA+Pj4wMjKCQCBA37594eXlhatXryqVS0lJgaOjI8RiMbS1tfH+++9j+/btSmWKiorA4/GQnZ3d6e0vXboUAwcOhI6ODnr27Ilx48bhzJkzSm1OnToVpqamEAqF6N+/P8LDw1FXV9dh2/Hx8bCxsYG2tjakUim++OILPHjwQGWd2NhYDB06FD169ECPHj1gZ2eH/fv3c+vLy8sRGhoKS0tLCIVC9OvXDzNmzIBCoeDKbN++nfv9ePZ19+5drlxtbS3+8pe/QCaToXv37njvvffw3XffKcXz17/+lduWiYkJvvzySzx58kRlH/bs2QNXV1f06tXruX8ehKhCuY9yH+U+QsirxAMNKtVZmuoOgBBCyK+Lm5sb4uLiUFtbi3379mH69OnQ0tLCwoUL1R0aAKCurg58Pl9lmfr6eri4uMDS0hJ79uyBVCrFrVu3sH//fqWTww0bNmDWrFkICwtDbGws+Hw+fvrpJwQHB+OXX35BVFTUC8c5YMAAbNy4EWZmZqipqcG6devg6uqK69evQ19fH1evXkVTUxO2bNkCc3Nz/PLLLwgKCkJVVZXK7aanp2PKlClYt24dPDw8UFJSguDgYAQFBWHPnj3t1uvbty+++eYbWFhYgDGGHTt2wMvLC1lZWRg8eDBKS0tRWlqKqKgoWFlZ4T//+Q+Cg4NRWlqKxMREAMCkSZPg5uam1G5AQACePHkCAwMDbtnEiRNx584dbNu2Debm5igrK0NTUxO3fufOnViwYAG+++472NvbIz8/n7sosHbt2nb7UFVVhTFjxmDixIkICgrq8GdAyPOg3Ee5j3IfIeSVoWtSncfeQQqFggFgCoVC3aEQQt5CNTU1LDc3l9XU1Kg7lOfm7+/PvLy8lJa5uLgwW1tbVl5ezvz8/Jiuri4TCoXMzc2N5efnc+WKiorYJ598wnR1dZm2tjazsrJie/fuZYWFhQzN9zJzL39/f8YYYxUVFczHx4dpa2szQ0NDtnbtWubo6MhmzpzJtSuTyVhERATz8/NjYrGYq5uWlsbGjBnDBAIB69u3LwsNDWWVlZWMMcaysrIYAFZUVNRuX4uLi5mWlhabPXt2q3UxMTEMADt9+jRjjHF9yMrKev6d+l8tf3sOHz7cbpnVq1czU1NTle2sWbOGmZmZtYrX2Nj4uWPq2bMn+/vf/97u+n/961+Mz+ez+vr6NtffvXuXaWlpsf/7v//jlu3fv59JJBL24MGDdtudPn06++ijj5SWzZ49mzk4OHQq7lfx83iaqs8sHTMoU7U/KPdR7msL5b7/eZNyHyHkxYz4+hCThaUw782nmCwsha09lKfukNSms8dQ9PgeIYR0McYYqhob1fJir2DKD6FQiLq6OgQEBODcuXNITk5GRkYGGGMYP3486uvrAQDTp09HbW0tTpw4gUuXLmHVqlUQiUQwMTHBDz/8AADIy8tDWVkZ1q9fDwCYPXs20tPTkZycjNTUVKSlpeHChQutYoiKioKNjQ2ysrKwePFiFBQUwM3NDRMmTEBOTg527dqFkydPIiQkBACgr68PDQ0NJCYmorGxsc1+JSYmor6+HnPnzm21btq0aRCJREhISHjp/Qc03+GwdetWSCQS2NjYtFtOoVBAT09PZVt2dna4efMm9u3bB8YY7ty5g8TERIwfP77T8TQ2NuL7779HVVUV7OzsVMbTo0cPaGq2fWP1//3f/0FbWxufffYZtyw5ORkjR47E6tWrYWxsjAEDBmDu3Lmoqanhytjb2+P8+fPIzMwEANy4cQP79u17rj6QN8ObnP8o9708yn2U+wh519EIUx2jx/cIIaSLVTc1of+JS2rZdsEH1tDp1u2F6jLGcOTIERw8eBDu7u5ISkpCeno67O3tATSP7WFiYoKkpCR4e3ujuLgYEyZMgLW1NQDAzMyMa6vlZMPAwAC6uroAgMePH2PHjh3YuXMnnJ2dAQBxcXEwMjJqFctHH32EOXPmcO8DAwPh6+uLWbNmAQAsLCwQExMDR0dHxMbGwtjYGDExMZg/fz6WLVuGkSNHwsnJCb6+vlxc+fn5kEgkkEqlrbbH5/NhZmaG/Pz8F9p3LVJSUjB58mRUV1dDKpUiNTUVvXv3brPs9evXsWHDhg4fm3FwcEB8fDwmTZqEJ0+eoKGhAR4eHti0aVOH8Vy6dAl2dnZ48uQJRCIRfvzxR1hZWbVZ9v79+/j666/xxz/+sd32tm3bBh8fHwiFQm7ZjRs3cPLkSQgEAvz444+4f/8+/vznP+PBgweIi4sDAPj4+OD+/fsYM2YMGGNoaGhAcHAwFi1a1GEfyMtZunQpli1bprTM0tKy1XhDr8qbmP8o91Huo9xHCCGvD90pRQghRElKSgpEIhEEAgHc3d0xadIkBAQEQFNTE6NHj+bK9erVC5aWlrhy5QoAYMaMGYiMjISDgwPCw8ORk5Ojcjs3btxAfX09Ro0axS2TSCSwtLRsVXbkyJFK7y9evIjt27dDJBJxL7lcjqamJhQWFgJovnvh9u3biI+Ph52dHXbv3o3BgwcjNTW10/uio/FbgOYT1KfjSEtL49Y5OTkhOzsbp06dgpubGyZOnKg0KG6LkpISuLm5wdvbW2m8kKfbDQ4OBgDk5uZi5syZWLJkCc6fP48DBw6gqKiIW5+WlqZULz4+nmvP0tIS2dnZOHPmDP70pz/B398fubm5reKpqKjAxx9/DCsrKyxdurTNfmdkZODKlSuYOnWq0vKmpibweDzEx8dj1KhRGD9+PNauXYsdO3ZwdwwcO3YMK1aswN/+9jdcuHABe/bswd69e/H11193uE/Jyxs8eDDKysq418mTJ9Ud0q8C5b7/odxHuY8QQl4XulOKEEK6mLaGBgo+sFbbtp+Xk5MTN/CtkZERNDU1kZyc3GG9wMBAyOVy7N27F4cOHcLKlSsRHR2N0NDQFwldiY6OjtL7yspKTJs2DTNmzGhVtl+/ftz/xWIxPDw84OHhgcjISMjlckRGRsLFxQUWFhZQKBQoLS1tdYdCXV0dCgoKIJfLO4zN09NT6YTV2NhYKW5zc3OYm5vD1tYWFhYW2LZtm9LAyaWlpXBycoK9vT22bt2q1PbTMyz16NEDALBy5Uo4ODhg3rx5AIChQ4dCR0cHY8eORWRkJEaOHKlUr0+fPtz/W2YVA4ARI0bg7NmzWL9+PbZs2cKVefz4Mdzc3CAWi/Hjjz9CS0urzX7//e9/x29+8xuMGDFCablUKoWxsTEkEgm3bNCgQWCM4datW7CwsMDixYvh5+eHwMBAAIC1tTWqqqrwxz/+EX/5y19U7lPy8jQ1NWFoaPhatvUm5T/KfZT7KPcRQsjrRxelCCGki/F4vBd+hE4dWk4mnjZo0CA0NDTgzJkz3CMsDx48QF5entIjECYmJggODkZwcDAWLlyIb7/9FqGhody37k+PcWJmZgYtLS2cPXuWO5lSKBTIz8/HBx98oDLG4cOHIzc3t1WcqvB4PAwcOBCnTp0CAHz22WcICwtDdHQ0oqOjlcpu3rwZ1dXVmDJlSoftisViiMXiTsXQ1NSE2tpa7n1JSQmcnJwwYsQIxMXFQeOZk+i2+lddXd1qnJNu//39YoxBKBR2er88G09FRQXkcjm6d++O5ORkCASCNutVVlbiX//6F1auXNlqnYODA3bv3o3KykqIRCIAzY8LaWhooG/fvlwfnu3r0314nn1Knt+1a9dgZGQEgUAAOzs7rFy5UumCxtNqa2tb/Y48jzcp/1Huo9xHuY8Q8rJahjOkyfc6jy5KEUII6ZCFhQW8vLwQFBSELVu2QCwWY8GCBTA2NoaXlxcAYNasWXB3d8eAAQPw8OFDHD16FIMGDQIAyGQy8Hg8pKSkYPz48RAKhRCLxfD398e8efOgp6cHAwMDhIeHQ0NDAzye6j/lYWFhsLW1RUhICAIDA6Gjo4Pc3FykpqZi48aNyM7ORnh4OPz8/GBlZQU+n4/jx4/ju+++Q1hYGIDmuwpWr16NuXPnQiAQwM/PD1paWvjpp5+waNEiREZGYsiQIUrbzcvLaxXL4MGDW32jXlVVheXLl8PT0xNSqRT379/Hpk2bUFJSAm9vbwDNJ2UffvghZDIZoqKicO/ePa6+qrtYPDw8EBQUhNjYWMjlcpSVlWHWrFkYNWpUm2PStFi4cCHc3d3Rr18/PH78GDt37sSxY8dw8OBBAM0nZa6urqiursY///lPVFRUcBcg9PX1uRMnANi1axcaGhrw+9//vtV2fHx88PXXX+MPf/gDli1bhvv372PevHn44osvuPFXPDw8sHbtWgwbNgyjR4/G9evXsXjxYnh4eCht51nl5eUoLi5GaWkpgP/9PAwNDV/bnT9vutGjR2P79u2wtLREWVkZli1bhrFjx+KXX35p82R45cqVrcagepdQ7mtGua8Z5T5CyHN7BZMOvfW6ZO6/Xzma3pkQ0pXe5CmW25oWvUXLtOgSiYQJhUIml8uVpkUPCQlh/fv3Z927d2f6+vrMz8+P3b9/n1sfERHBDA0NGY/HUzkt+qhRo9iCBQu4ejKZjK1bt65VPJmZmczFxYWJRCKmo6PDhg4dypYvX84YY+zevXtsxowZbMiQIUwkEjGxWMysra1ZVFQUa2xsVGonKSmJjR07luno6HDTtickJCiVaWtq95bXzZs3W8VWU1PDPv30U2ZkZMT4fD6TSqXM09OTZWZmcmXi4uLabbMjMTExzMrKigmFQiaVSpmvry+7deuWyjpffPEFk8lkjM/nM319febs7MwOHTrErT969Gi78RQWFiq1ZWdnx3x8fNrd1pUrV9i4ceOYUChkffv2ZbNnz2bV1dXc+vr6erZ06VLWv39/JhAImImJCfvzn//MHj58qLIP7e2z8PBwlfU6ouoz+7YfMzx8+JD16NGD/f3vf29z/ZMnT5hCoeBeN2/ebHd/UO6j3Ee57+3JfYSQFzM84hCThaWwSVtOMVlYCos+eFXdIalNZ4+heIy9e5fuKioqIJFIuOleCSHkVXry5AkKCwthamra7iMApG1VVVUwNjZGdHR0q0FkX4fy8nI4OzujR48e2L9/P7S1tV97DOT1U/WZfReOGd5//32MGzeuzUeSnqVqf1Due3GU+4g60GeWkFdvxNepeFBVB1szPZy+UY4ZH5ljtmvriSzeBZ09hqLZ9wghhKhNVlYWEhISUFBQgAsXLsDX1xcAuMdiXjc9PT0cPnwYzs7OyMjIUEsMhLxOlZWVKCgogFQqVXco7xTKfYQQQkgzGlOKEEKIWkVFRSEvLw98Ph8jRoxAWloaevfurbZ4evXqhSVLlqht+4R0pblz58LDwwMymQylpaUIDw9Ht27d8Pnnn6s7tHcO5T5CCHl78Wio806ji1KEEELUZtiwYTh//ry6wyDknXHr1i18/vnnePDgAfT19TFmzBicPn0a+vr66g7tnUK5jxBC3g3v3FhJL4AuShFCCCGEvCO+//57dYdACCGEEMKhMaUIIYQQQgghhBBCyGtHF6UIIYQQQgghhBBCXlLL43o8GlKq0+iiFCGEEEIIIYQQQsgrQhelOo8uShFCCCGEEEIIIYSQ144uShFCCCGEEEIIIYS8Yoym3+sQXZQihBBCCCGEEEIIIa8dXZQihBDCCQgIAI/HA4/HA5/Ph7m5OSIiItDQ0PBS7R47dgw8Hg+PHj16NYF2QmFhIXx8fGBkZASBQIC+ffvCy8sLV69eVSqXkpICR0dHiMViaGtr4/3338f27duVyhQVFYHH4yE7O7vT21+6dCkGDhwIHR0d9OzZE+PGjcOZM2eU2pw6dSpMTU0hFArRv39/hIeHo66ursO24+PjYWNjA21tbUilUnzxxRd48OBBp2P75ptvwOPxMGvWLKXlBQUF+PTTT6Gvr48ePXpg4sSJuHPnjlKZ5cuXw97eHtra2tDV1W2z/Zbfoadf33//Pbd+z549cHFx4bZjZ2eHgwcPdhj3nj174Orqil69ej33z4MQVSj3Ue6j3EcIIepBF6UIIYQocXNzQ1lZGa5du4Y5c+Zg6dKlWLNmjbrD4nTmxKW+vh4uLi5QKBTYs2cP8vLysGvXLlhbWyudHG7YsAFeXl5wcHDAmTNnkJOTg8mTJyM4OBhz5859qTgHDBiAjRs34tKlSzh58iTee+89uLq64t69ewCAq1evoqmpCVu2bMHly5exbt06bN68GYsWLVLZbnp6OqZMmYKpU6fi8uXL2L17NzIzMxEUFNSpuM6ePYstW7Zg6NChSsurqqrg6uoKHo+Hn3/+Genp6airq4OHhweampq4cnV1dfD29saf/vQnlduJi4tDWVkZ9/rtb3/LrTtx4gRcXFywb98+nD9/Hk5OTvDw8EBWVpbKNquqqjBmzBisWrWqU30l5HlQ7qPcR7mPEELUgL2DFAoFA8AUCoW6QyGEvIVqampYbm4uq6mpUXcoz83f3595eXkpLXNxcWG2trasvLyc+fn5MV1dXSYUCpmbmxvLz8/nyhUVFbFPPvmE6erqMm1tbWZlZcX27t3LCgsLGZpnyOVe/v7+jDHGKioqmI+PD9PW1maGhoZs7dq1zNHRkc2cOZNrVyaTsYiICObn58fEYjFXNy0tjY0ZM4YJBALWt29fFhoayiorKxljjGVlZTEArKioqN2+FhcXMy0tLTZ79uxW62JiYhgAdvr0acYY4/qQlZX1/Dv1v1r+9hw+fLjdMqtXr2ampqYq21mzZg0zMzNrFa+xsXGHMTx+/JhZWFiw1NTUVvv54MGDTENDQ+lv46NHjxiPx2Opqamt2oqLi2MSiaTN7QBgP/74Y4fxPM3KyootW7asU2Vfxc/jaao+s3TMoEzV/qDcR7mvLZT7VPu15j5CyIsZFnGIycJSmO+3p5ksLIWtOXBV3SGpTWePoehOKUII6WKMMVTXNajlxV7B6IpCoRB1dXUICAjAuXPnkJycjIyMDDDGMH78eNTX1wMApk+fjtraWpw4cQKXLl3CqlWrIBKJYGJigh9++AEAkJeXh7KyMqxfvx4AMHv2bKSnpyM5ORmpqalIS0vDhQsXWsUQFRUFGxsbZGVlYfHixSgoKICbmxsmTJiAnJwc7Nq1CydPnkRISAgAQF9fHxoaGkhMTERjY2Ob/UpMTER9fX2bdwVMmzYNIpEICQkJL73/gOZv2Ldu3QqJRAIbG5t2yykUCujp6alsy87ODjdv3sS+ffvAGMOdO3eQmJiI8ePHdxjH9OnT8fHHH2PcuHGt1tXW1oLH46F79+7cMoFAAA0NDZw8ebLDttvaVu/evTFq1Ch89913Kn8Xm5qa8Pjx4w77Tt48b3L+o9z38ij3Ue4j5F3z7GeegUY674imugMghJC3XU19I6yWdDxmRFfIjZBDm/9iqZ4xhiNHjuDgwYNwd3dHUlIS0tPTYW9vD6B5bA8TExMkJSXB29sbxcXFmDBhAqytrQEAZmZmXFstB9wGBgbcWByPHz/Gjh07sHPnTjg7OwNofuzByMioVSwfffQR5syZw70PDAyEr68vNy6IhYUFYmJi4OjoiNjYWBgbGyMmJgbz58/HsmXLMHLkSDg5OcHX15eLKz8/HxKJBFKptNX2+Hw+zMzMkJ+f/0L7rkVKSgomT56M6upqSKVSpKamonfv3m2WvX79OjZs2ICoqCiVbTo4OCA+Ph6TJk3CkydP0NDQAA8PD2zatEllve+//x4XLlzA2bNn21xva2sLHR0dhIWFYcWKFWCMYcGCBWhsbERZWVnnOvxfERER+Oijj6CtrY1Dhw7hz3/+MyorKzFjxow2y0dFRaGyshITJ058ru2QX783Mf9R7qPcR7mPEPKyeDx1R/DmoDulCCGEKElJSYFIJIJAIIC7uzsmTZqEgIAAaGpqYvTo0Vy5Xr16wdLSEleuXAEAzJgxA5GRkXBwcEB4eDhycnJUbufGjRuor6/HqFGjuGUSiQSWlpatyo4cOVLp/cWLF7F9+3aIRCLuJZfL0dTUhMLCQgDN31bfvn0b8fHxsLOzw+7duzF48GCkpqZ2el/w+fwOy8THxyvFkZaWxq1zcnJCdnY2Tp06BTc3N0ycOBF3795t1UZJSQnc3Nzg7e2tND7K0+0GBwcDAHJzczFz5kwsWbIE58+fx4EDB1BUVMStT0tLU6oXHx+PmzdvYubMmYiPj4dAIGizH/r6+ti9ezf+/e9/QyQSQSKR4NGjRxg+fDg0NJ7vcGHx4sVwcHDAsGHDEBYWhvnz57c7Ns/OnTuxbNky/Otf/4KBgUGH+5SQrkK5738o91HuI4SQ14XulCKEkC4m1OqG3Ai52rb9vJycnBAbGws+nw8jIyNoamoiOTm5w3qBgYGQy+XYu3cvDh06hJUrVyI6OhqhoaEvEroSHR0dpfeVlZWYNm1am98+9+vXj/u/WCyGh4cHPDw8EBkZCblcjsjISLi4uMDCwgIKhQKlpaWt7lCoq6tDQUEB5PKOf26enp5KJ6zGxsZKcZubm8Pc3By2trawsLDAtm3bsHDhQq5MaWkpnJycYG9vj61btyq1/fQMSz169AAArFy5Eg4ODpg3bx4AYOjQodDR0cHYsWMRGRmJkSNHKtXr06cPjhw5grt372L48OHc8sbGRpw4cQIbN25EbW0tunXrBldXVxQUFOD+/fvQ1NSErq4uDA0Nle78eBGjR4/G119/jdraWqVHZL7//nsEBgZi9+7dSo/VqNqn5M3yJuU/yn2U+yj3EULI60cXpQghpIvxeLwXfoROHVpOJp42aNAgNDQ04MyZM9wjLA8ePEBeXh6srKy4ciYmJggODkZwcDAWLlyIb7/9FqGhody37k+PcWJmZgYtLS2cPXuWO5lSKBTIz8/HBx98oDLG4cOHIzc3t1WcqvB4PAwcOBCnTp0CAHz22WcICwtDdHQ0oqOjlcpu3rwZ1dXVmDJlSoftisViiMXiTsXQ1NSE2tpa7n1JSQmcnJwwYsQIxMXFtfpWvq3+VVdXQ1NT+fepW7fmk2/GGIRCYat6zs7OuHTpktKyP/zhDxg4cCDCwsK4+i1aHrP5+eefcffuXXh6enaqf+3Jzs5Gz549lU7KEhIS8MUXX+D777/Hxx9/rFT+efYp+XV7k/If5T7KfZT7CCHk9XszjhIIIYSolYWFBby8vBAUFIQtW7ZALBZjwYIFMDY2hpeXFwBg1qxZcHd3x4ABA/Dw4UMcPXoUgwYNAgDIZDLweDykpKRg/PjxEAqFEIvF8Pf3x7x586CnpwcDAwOEh4dDQ0MDvA4exA8LC4OtrS1CQkIQGBgIHR0d5ObmIjU1FRs3bkR2djbCw8Ph5+cHKysr8Pl8HD9+HN999x3CwsIANN9VsHr1asydOxcCgQB+fn7Q0tLCTz/9hEWLFiEyMhJDhgxR2m5eXl6rWAYPHgwtLS2lZVVVVVi+fDk8PT0hlUpx//59bNq0CSUlJfD29gbQfFL24YcfQiaTISoqipsuHQAMDQ3b7buHhweCgoIQGxsLuVyOsrIyzJo1C6NGjWpzTBqg+UTn2b7o6OigV69eSsvj4uIwaNAg6OvrIyMjAzNnzsSXX36p9FhRcXExysvLUVxcjMbGRu7OBHNzc4hEIvz73//GnTt3YGtrC4FAgNTUVKxYsUJpUOWdO3fC398f69evx+jRo3H79m0AzQNLSySSdvvest3S0lIA//t5GBoaqtxnhLwoyn3NKPdR7iOEvJhXMOfQ269rJv/7daPpnQkhXelNnmK5rWnRW7RMiy6RSJhQKGRyuVxpWvSQkBDWv39/1r17d6avr8/8/PzY/fv3ufURERHM0NCQ8Xg8ldOijxo1ii1YsICrJ5PJ2Lp161rFk5mZyVxcXJhIJGI6Ojps6NChbPny5Ywxxu7du8dmzJjBhgwZwkQiEROLxcza2ppFRUWxxsZGpXaSkpLY2LFjmY6ODjdte0JCglKZtqZ2b3ndvHmzVWw1NTXs008/ZUZGRozP5zOpVMo8PT1ZZmYmVyYuLq7dNjsSExPDrKysmFAoZFKplPn6+rJbt251WO9pz06LzhhjYWFhrE+fPkxLS4tZWFiw6Oho1tTUpFTG39+/zZiPHj3KGGNs//797De/+Q33c7GxsWGbN29W2u+Ojo5tttHye9Ge9vZZeHj4c/X9Wao+s3TMoEzV/qDcR7mPct/bk/sIIS/mN8sOMllYCvv9308zWVgKW7X/irpDUpvOHkPxGHv3rt1VVFRAIpFAoVBwz6kTQsir8uTJExQWFsLU1LTdgVVJ26qqqmBsbIzo6GhMnTr1tW+/vLwczs7O6NGjB/bv3w9tbe3XHgN5/VR9ZumYQZmq/UG578VR7iPqQJ9ZQl69YRGH8LC6HmMteiPt2n38+cP+mO82UN1hqUVnj6Fo9j1CCCFqk5WVhYSEBBQUFODChQvw9fUFAO6xmNdNT08Phw8fhrOzMzIyMtQSAyHk7Ue5jxBC3k7v3B0/r0CXX5TatGkT3nvvPQgEAowePRqZmZkqy+/evRsDBw6EQCCAtbU19u3bx62rr69HWFgYrK2toaOjAyMjI0yZMoV7vpoQQsibJyoqCjY2Nhg3bhyqqqqQlpbGDTarDr169cKSJUvg7OysthgIIW8/yn2EEPL26miMQPI/XTrQ+a5duzB79mxs3rwZo0ePxl//+lfI5XLk5eXBwMCgVflTp07h888/x8qVK/HJJ59g586d+O1vf4sLFy5gyJAhqK6uxoULF7B48WLY2Njg4cOHmDlzJjw9PXHu3Lmu7AohhJAuMGzYMJw/f17dYRBCyGtFuY8QQt5udEmq87r0Tqm1a9ciKCgIf/jDH2BlZYXNmzdDW1sb3333XZvl169fDzc3N8ybNw+DBg3C119/jeHDh2Pjxo0AAIlEgtTUVEycOBGWlpawtbXFxo0bcf78eRQXF3dlVwghhBBCCCGEEEI6jR7n61iXXZSqq6vD+fPnMW7cuP9tTEMD48aNa/dZ9YyMDKXyACCXy1U+265QKMDj8aCrq/tK4iaEEEIIIYQQQgghXa/LHt+7f/8+Ghsb0adPH6Xlffr0wdWrV9usc/v27TbL3759u83yT548QVhYGD7//HOVo7nX1taitraWe19RUdHZbhBCCCGEEEIIIYSQLvDGzr5XX1+PiRMngjGG2NhYlWVXrlwJiUTCvUxMTF5TlIQQQgghhBBCCHmX0DjnnddlF6V69+6Nbt264c6dO0rL79y5A0NDwzbrGBoadqp8ywWp//znP0hNTVV5lxQALFy4EAqFgnvdvHnzBXpECCGEEEIIIYQQQl6VLrsoxefzMWLECBw5coRb1tTUhCNHjsDOzq7NOnZ2dkrlASA1NVWpfMsFqWvXruHw4cPo1atXh7F0794dPXr0UHoRQgghhBBCCCGEdBVGI513qMvGlAKA2bNnw9/fHyNHjsSoUaPw17/+FVVVVfjDH/4AAJgyZQqMjY2xcuVKAMDMmTPh6OiI6OhofPzxx/j+++9x7tw5bN26FUDzBanPPvsMFy5cQEpKChobG7nxpvT09MDn87uyO4QQQgghhBBCCCFtootQz69Lx5SaNGkSoqKisGTJEvzmN79BdnY2Dhw4wA1mXlxcjLKyMq68vb09du7cia1bt8LGxgaJiYlISkrCkCFDAAAlJSVITk7GrVu38Jvf/AZSqZR7nTp1qiu7Qggh74SAgADweDzweDzw+XyYm5sjIiICDQ0NL9XusWPHwOPx8OjRo1cTaCcUFhbCx8cHRkZGEAgE6Nu3L7y8vFpNtpGSkgJHR0eIxWJoa2vj/fffx/bt25XKFBUVgcfjITs7u9PbX7p0KQYOHAgdHR307NkT48aNw5kzZ5TanDp1KkxNTSEUCtG/f3+Eh4ejrq6uw7bj4+NhY2MDbW1tSKVSfPHFF3jw4EGH9UpKSvD73/8evXr1glAohLW1Nc6dO8etf/rn3/Jyc3NTauO9995rVeabb77h1ufl5cHJyQl9+vSBQCCAmZkZvvrqK9TX1yu18+jRI0yfPh1SqRTdu3fHgAEDsG/fPpXx79mzB66urujVq9dz/zwIUYVyH+U+yn2EkFeJhpTqvC69UwoAQkJCEBIS0ua6Y8eOtVrm7e0Nb2/vNsu/9957YHTpkRBCupSbmxvi4uJQW1uLffv2Yfr06dDS0sLChQvVHRoAoK6ursM7Y+vr6+Hi4gJLS0vs2bMHUqkUt27dwv79+5VODjds2IBZs2YhLCwMsbGx4PP5+OmnnxAcHIxffvkFUVFRLxzngAEDsHHjRpiZmaGmpgbr1q2Dq6srrl+/Dn19fVy9ehVNTU3YsmULzM3N8csvvyAoKAhVVVUqt5ueno4pU6Zg3bp18PDwQElJCYKDgxEUFIQ9e/a0W+/hw4dwcHCAk5MT9u/fD319fVy7dg09e/ZUKtfy82/RvXv3Vm1FREQgKCiIey8Wi7n/a2lpYcqUKRg+fDh0dXVx8eJFBAUFoampCStWrADQ/DN0cXGBgYEBEhMTYWxsjP/85z/Q1dVVuU+rqqowZswYTJw4UWn7hLwKlPso91HuI4QQNWDvIIVCwQAwhUKh7lAIIW+hmpoalpuby2pqatQdynPz9/dnXl5eSstcXFyYra0tKy8vZ35+fkxXV5cJhULm5ubG8vPzuXJFRUXsk08+Ybq6ukxbW5tZWVmxvXv3ssLCQgZA6eXv788YY6yiooL5+PgwbW1tZmhoyNauXcscHR3ZzJkzuXZlMhmLiIhgfn5+TCwWc3XT0tLYmDFjmEAgYH379mWhoaGssrKSMcZYVlYWA8CKiora7WtxcTHT0tJis2fPbrUuJiaGAWCnT59mjDGuD1lZWc+/U/+r5W/P4cOH2y2zevVqZmpqqrKdNWvWMDMzs1bxGhsbq6wXFhbGxowZo7JMWz//Z8lkMrZu3TqVZZ715ZdfKm07NjaWmZmZsbq6uudqp8Wr+Hk8TdVnlo4ZlKnaH5T7KPe1hXLfm5n7CCEvZujSg0wWlsL+EJfJZGEpbOW+K+oOSW06ewzVpY/vEUIIQfPD5XVV6nm9grtLhUIh6urqEBAQgHPnziE5ORkZGRlgjGH8+PHcownTp09HbW0tTpw4gUuXLmHVqlUQiUQwMTHBDz/8AKD58YaysjKsX78eQPPYg+np6UhOTkZqairS0tJw4cKFVjFERUXBxsYGWVlZWLx4MQoKCuDm5oYJEyYgJycHu3btwsmTJ7k7c/X19aGhoYHExEQ0Nja22a/ExETU19dj7ty5rdZNmzYNIpEICQkJL73/gOZvx7du3QqJRAIbG5t2yykUCujp6alsy87ODjdv3sS+ffvAGMOdO3eQmJiI8ePHq6yXnJyMkSNHwtvbGwYGBhg2bBi+/fbbVuWOHTsGAwMDWFpa4k9/+lObj8Z888036NWrF4YNG4Y1a9aofMTp+vXrOHDgABwdHZVisbOzw/Tp09GnTx8MGTIEK1asaPdnRd5gb3D+o9z38ij3Ue4j5F3HQE96daTLH98jhJB3Xn01sMJIPdteVArwdV6oKmMMR44cwcGDB+Hu7o6kpCSkp6fD3t4eQPPYHiYmJkhKSoK3tzeKi4sxYcIEWFtbAwDMzMy4tlpONgwMDLjHFB4/fowdO3Zg586dcHZ2BgDExcXByKj1vvroo48wZ84c7n1gYCB8fX0xa9YsAICFhQViYmLg6OiI2NhYGBsbIyYmBvPnz8eyZcswcuRIODk5wdfXl4srPz8fEokEUqm01fb4fD7MzMyQn5//QvuuRUpKCiZPnozq6mpIpVKkpqaid+/ebZa9fv06NmzY0OFjMw4ODoiPj8ekSZPw5MkTNDQ0wMPDA5s2bVJZ78aNG4iNjcXs2bOxaNEinD17FjNmzACfz4e/vz+A5sdXfve738HU1BQFBQVYtGgR3N3dkZGRgW7dugEAZsyYgeHDh0NPTw+nTp3CwoULUVZWhrVr1yptz97eHhcuXEBtbS3++Mc/IiIiQimWn3/+Gb6+vti3bx+uX7+OP//5z6ivr0d4eHiH+5W8Qd7A/Ee5j3If5T5CCHl96E4pQgghSlJSUiASiSAQCODu7o5JkyYhICAAmpqaGD16NFeuV69esLS0xJUrVwA0H7BHRkbCwcEB4eHhyMnJUbmdGzduoL6+HqNGjeKWSSQSWFpatio7cuRIpfcXL17E9u3bIRKJuJdcLkdTUxMKCwsBNN+9cPv2bcTHx8POzg67d+/G4MGDkZqa2ul90ZlZXePj45XiSEtL49Y5OTkhOzsbp06dgpubGyZOnIi7d++2aqOkpARubm7w9vZWGi/k6XaDg4MBALm5uZg5cyaWLFmC8+fP48CBAygqKuLWp6WlKdWLj48HADQ1NWH48OFYsWIFhg0bhj/+8Y8ICgrC5s2bue1NnjwZnp6esLa2xm9/+1ukpKTg7NmzSmNAzp49Gx9++CGGDh2K4OBgREdHY8OGDaitrVXq065du3DhwgXs3LkTe/fuVTrhbGpqgoGBAbZu3YoRI0Zg0qRJ+Mtf/sLFomqfEtJVKPf9D+U+yn2EEPK60J1ShBDS1bS0m7+xV9e2n5OTkxM38K2RkRE0NTWRnJzcYb3AwEDI5XLs3bsXhw4dwsqVKxEdHY3Q0NAXiVyJjo7y3Q6VlZWYNm0aZsyY0apsv379uP+LxWJ4eHjAw8MDkZGRkMvliIyMhIuLCywsLKBQKFBaWtrqDoW6ujoUFBRALpd3GJunp6fSCauxsbFS3Obm5jA3N4etrS0sLCywbds2pYGTS0tL4eTkBHt7e2zdulWp7adnWOrRowcAYOXKlXBwcMC8efMAAEOHDoWOjg7Gjh2LyMhIjBw5Uqley4y3UqkUVlZWSu0PGjSIe7yoLWZmZujduzeuX7/O3dHxrNGjR6OhoQFFRUVKJ9UmJiYAACsrKzQ2NuKPf/wj5syZg27dukEqlUJLS4u7A6Elltu3b6Ourk7lPiVvmDco/1Huo9zXgnIfIYS8PnRRihBCuhqP98KP0KlDy8nE0wYNGoSGhgacOXOGe4TlwYMHyMvLUzrYNzExQXBwMIKDg7Fw4UJ8++23CA0N5b51f3rcDDMzM2hpaeHs2bPcyZRCoUB+fj4++OADlTEOHz4cubm5reJUhcfjYeDAgTh16hQA4LPPPkNYWBiio6MRHR2tVHbz5s2orq7GlClTOmxXLBYrzcCkSlNTk9K36iUlJXBycsKIESMQFxcHDQ3lG5jb6l91dTU0NZX/fLec4DDGIBQK26zn4OCAvLw8pWX5+fmQyWTtxnvr1i08ePCgzcd8WmRnZ0NDQwMGBgbtlmlqakJ9fT2amprQrVs3ODg4YOfOnWhqauL6nJ+fD6lUCj6fDz6f3+l9Sn7l3qD8R7mPcl8Lyn2EkBfF/jueIU/NcbxJ6KIUIYSQDllYWMDLywtBQUHYsmULxGIxFixYAGNjY3h5eQEAZs2aBXd3dwwYMAAPHz7E0aNHMWjQIACATCYDj8dDSkoKxo8fD6FQCLFYDH9/f8ybNw96enowMDBAeHg4NDQ0wOOp/lMeFhYGW1tbhISEIDAwEDo6OsjNzUVqaio2btyI7OxshIeHw8/PD1ZWVuDz+Th+/Di+++47hIWFAWi+q2D16tWYO3cuBAIB/Pz8oKWlhZ9++gmLFi1CZGQkhgwZorTdZ09sAGDw4MHQ0tJSWlZVVYXly5fD09MTUqkU9+/fx6ZNm1BSUgJvb28AzSdlH374IWQyGaKionDv3j2uvqGhYbt99/DwQFBQEGJjYyGXy1FWVoZZs2Zh1KhRbY5J0+LLL7+Evb09VqxYgYkTJyIzMxNbt27l7lCorKzEsmXLMGHCBBgaGqKgoADz58+Hubk5d9dERkYGzpw5AycnJ4jFYmRkZODLL7/E73//e2569fj4eGhpacHa2hrdu3fHuXPnsHDhQkyaNInbT3/605+wceNGzJw5E6Ghobh27RpWrFjR5t0fTysvL0dxcTFKS0uVfh6GhoYq9xkhL4pyXzPKfZT7CCGky3TtJIC/TjS9MyGkK73JUyyrmha7ZVp0iUTChEIhk8vlStOih4SEsP79+7Pu3bszfX195ufnx+7fv8+tj4iIYIaGhozH46mcFn3UqFFswYIFXL32puHOzMxkLi4uTCQSMR0dHTZ06FC2fPlyxhhj9+7dYzNmzGBDhgxhIpGIicViZm1tzaKiolhjY6NSO0lJSWzs2LFMR0eHm7Y9ISFBqUxbU7u3vG7evNkqtpqaGvbpp58yIyMjxufzmVQqZZ6eniwzM5MrExcX126bHYmJiWFWVlZMKBQyqVTKfH192a1btzqs9+9//5sNGTKEde/enQ0cOJBt3bqVW1ddXc1cXV2Zvr4+09LSYjKZjAUFBbHbt29zZc6fP89Gjx7NJBIJEwgEbNCgQWzFihXsyZMnXJnvv/+eDR8+nPu5WFlZsRUrVrT6PJw6dYqNHj2ade/enZmZmbHly5ezhoYGlfG3t8/Cw8M77Lsqqj6zdMygTNX+oNxHuY9y39uT+wghL8Y6/ACThaWwqdszmSwsha3Ym6vukNSms8dQPMZewXzhb5iKigpIJBIoFAruOXVCCHlVnjx5gsLCQpiamkIgEKg7nDdKVVUVjI2NER0djalTp7727ZeXl8PZ2Rk9evTA/v37oa39/GNykTePqs8sHTMoU7U/KPe9OMp9RB3oM0vIqzd06UFUPGnAuEEGOHzlLqZ9YIaF4wepOyy16OwxFM2+RwghRG2ysrKQkJCAgoICXLhwAb6+vgDAPRbzuunp6eHw4cNwdnZGRkaGWmIghLz9KPcRQgghzWhMKUIIIWoVFRWFvLw88Pl8jBgxAmlpaejdu7fa4unVqxeWLFmitu0TQt4NlPsIIeRtRkOddxZdlCKEEKI2w4YNw/nz59UdBiGEvFaU+wghhJBm9PgeIYQQQgghhBBCyCv2zg3g/QLoohQhhBBCCCGEEELIS6KLUM+PLkoRQgghhBBCCCGEvCI8GlKq0+iiFCGEEEIIIYQQQsgrQtekOo8uShFCCCGEEEIIIYSQ144uShFCCCGEEEIIIYS8YozRKFMdoYtShBBCCCGEEEIIIeS1o4tShBBCOAEBAeDxeODxeODz+TA3N0dERAQaGhpeqt1jx46Bx+Ph0aNHrybQTigsLISPjw+MjIwgEAjQt29feHl54erVq0rlUlJS4OjoCLFYDG1tbbz//vvYvn27UpmioiLweDxkZ2d3evtLly7FwIEDoaOjg549e2LcuHE4c+aMUptTp06FqakphEIh+vfvj/DwcNTV1XXYdnx8PGxsbKCtrQ2pVIovvvgCDx48UFmnsbERixcvVtre119/rfQN3p49e+Dq6opevXq129+CggJ8+umn0NfXR48ePTBx4kTcuXPnufuVk5ODsWPHQiAQwMTEBKtXr+6w3ydOnICHhweMjIzA4/GQlJTUYR1COoNyH+U+yn2EEKIedFGKEEKIEjc3N5SVleHatWuYM2cOli5dijVr1qg7LE5nTlzq6+vh4uIChUKBPXv2IC8vD7t27YK1tbXSyeGGDRvg5eUFBwcHnDlzBjk5OZg8eTKCg4Mxd+7cl4pzwIAB2LhxIy5duoSTJ0/ivffeg6urK+7duwcAuHr1KpqamrBlyxZcvnwZ69atw+bNm7Fo0SKV7aanp2PKlCmYOnUqLl++jN27dyMzMxNBQUEq661atQqxsbHYuHEjrly5glWrVmH16tXYsGEDV6aqqgpjxozBqlWr2myjqqoKrq6u4PF4+Pnnn5Geno66ujp4eHigqamp0/2qqKiAq6srZDIZzp8/jzVr1mDp0qXYunWryj5UVVXBxsYGmzZtUlmOkBdBuY9yH+U+QghRA/YOUigUDABTKBTqDoUQ8haqqalhubm5rKamRt2hPDd/f3/m5eWltMzFxYXZ2tqy8vJy5ufnx3R1dZlQKGRubm4sPz+fK1dUVMQ++eQTpqury7S1tZmVlRXbu3cvKywsZACUXv7+/owxxioqKpiPjw/T1tZmhoaGbO3atczR0ZHNnDmTa1cmk7GIiAjm5+fHxGIxVzctLY2NGTOGCQQC1rdvXxYaGsoqKysZY4xlZWUxAKyoqKjdvhYXFzMtLS02e/bsVutiYmIYAHb69GnGGOP6kJWV9fw79b9a/vYcPny43TKrV69mpqamKttZs2YNMzMzaxWvsbGxynoff/wx++KLL5SW/e53v2O+vr6tyrbX34MHDzINDQ2lv5+PHj1iPB6PpaamtrvtZ/v1t7/9jfXs2ZPV1tZyy8LCwpilpaXKPjwNAPvxxx87XV4VVZ9ZOmZQpmp/UO6j3NcWyn1vZu4jhLyYIeEHmCwshf3x/84yWVgKW5mSye7dO8Lu3k1lVVU31B3ea9XZYyi6U4oQQroYYwzV9dVqebFXMLiiUChEXV0dAgICcO7cOSQnJyMjIwOMMYwfPx719fUAgOnTp6O2thYnTpzApUuXsGrVKohEIpiYmOCHH34AAOTl5aGsrAzr168HAMyePRvp6elITk5Gamoq0tLScOHChVYxREVFwcbGBllZWVi8eDEKCgrg5uaGCRMmICcnB7t27cLJkycREhICANDX14eGhgYSExPR2NjYZr8SExNRX1/f5l0B06ZNg0gkQkJCwkvvP6D5DoetW7dCIpHAxsam3XIKhQJ6enoq27Kzs8PNmzexb98+MMZw584dJCYmYvz48Srr2dvb48iRI8jPzwcAXLx4ESdPnoS7u3un+1FbWwsej4fu3btzywQCATQ0NHDy5MlO9ysjIwMffPAB+Hw+t0wulyMvLw8PHz7sdDzk1+9Nzn+U+14e5T7KfYS8c57502POj8LFnCDkXJqG02fGo77+kVrC+jXTVHcAhBDytqtpqMHonaPVsu0zPmegraX9QnUZYzhy5AgOHjwId3d3JCUlIT09Hfb29gCax/YwMTFBUlISvL29UVxcjAkTJsDa2hoAYGZmxrXVclBuYGAAXV1dAMDjx4+xY8cO7Ny5E87OzgCAuLg4GBkZtYrlo48+wpw5c7j3gYGB8PX1xaxZswAAFhYWiImJgaOjI2JjY2FsbIyYmBjMnz8fy5Ytw8iRI+Hk5ARfX18urvz8fEgkEkil0lbb4/P5MDMz405iXlRKSgomT56M6upqSKVSpKamonfv3m2WvX79OjZs2ICoqCiVbTo4OCA+Ph6TJk3CkydP0NDQAA8Pjw4f61iwYAEqKiowcOBAdOvWDY2NjVi+fDl8fX073R9bW1vo6OggLCwMK1asAGMMCxYsQGNjI8rKyjrdr9u3b8PU1FSpXJ8+fbh1PXv27HRM5NftTcx/lPso9z2Lch8h5HnxwAMA8Hn3uWWM1aGurhxaWrpqiurXie6UIoQQoiQlJQUikQgCgQDu7u6YNGkSAgICoKmpidGj/3dy2atXL1haWuLKlSsAgBkzZiAyMhIODg4IDw9HTk6Oyu3cuHED9fX1GDVqFLdMIpHA0tKyVdmRI0cqvb948SK2b98OkUjEveRyOZqamlBYWAig+e6F27dvIz4+HnZ2dti9ezcGDx6M1NTUTu+Lp7/Nbk98fLxSHGlpadw6JycnZGdn49SpU3Bzc8PEiRNx9+7dVm2UlJTAzc0N3t7eSuOjPN1ucHAwACA3NxczZ87EkiVLcP78eRw4cABFRUXc+rS0NKV68fHxAIB//etfiI+Px86dO3HhwgXs2LEDUVFR2LFjR6f3h76+Pnbv3o1///vfEIlEkEgkePToEYYPHw4NjdaHFO31qyPt9YGQrkS5738o9ymj3EcIIV2H7pQihJAuJtQU4ozPmY4LdtG2n5eTkxNiY2PB5/NhZGQETU1NJCcnd1gvMDAQcrkce/fuxaFDh7By5UpER0cjNDT0RUJXoqOjo/S+srIS06ZNw4wZM1qV7devH/d/sVgMDw8PeHh4IDIyEnK5HJGRkXBxcYGFhQUUCgVKS0tb3aFQV1eHgoICyOXyDmPz9PRUOmE1NjZWitvc3Bzm5uawtbWFhYUFtm3bhoULF3JlSktL4eTkBHt7+1aD3T49A1SPHj0AACtXroSDgwPmzZsHABg6dCh0dHQwduxYREZGYuTIkUr1Wr6FnzdvHhYsWIDJkycDAKytrfGf//wHK1euhL+/f4f9bOHq6oqCggLcv38fmpqa0NXVhaGhodLdIR31y9DQUGnWKgDce0NDQ7z33ntt9oG8ed6k/Ee5j3KfKpT7CCGka9BFKUII6WI8Hu+FH6FTh5aTiacNGjQIDQ0NOHPmDPcIy4MHD5CXlwcrKyuunImJCYKDgxEcHIyFCxfi22+/RWhoKPet+9NjnJiZmUFLSwtnz57lTqYUCgXy8/PxwQcfqIxx+PDhyM3NbRWnKjweDwMHDsSpU6cAAJ999hnCwsIQHR2N6OhopbKbN29GdXU1pkyZ0mG7YrEYYrG4UzE0NTWhtraWe19SUgInJyeMGDECcXFxrb5xb6t/1dXV0NRU/vPdrVs3AM2PHQmFwnbrPdt+t27duJmjnlfLozg///wz7t69C09Pz073y87ODn/5y19QX18PLS0tAEBqaiosLS25x1ee52dLfr3epPxHuY9yX2dQ7iOEdAaP999/nx1kirRCF6UIIYR0yMLCAl5eXggKCsKWLVsgFouxYMECGBsbw8vLCwAwa9YsuLu7Y8CAAXj48CGOHj2KQYMGAQBkMhl4PB5SUlIwfvx4CIVCiMVi+Pv7Y968edDT04OBgQHCw8OhoaEBXstf8naEhYXB1tYWISEhCAwMhI6ODnJzc5GamoqNGzciOzsb4eHh8PPzg5WVFfh8Po4fP47vvvsOYWFhAJrvKli9ejXmzp0LgUAAPz8/aGlp4aeffsKiRYsQGRmJIUOGKG03Ly+vVSyDBw/mTi5aVFVVYfny5fD09IRUKsX9+/exadMmlJSUwNvbG0DzycuHH34ImUyGqKgobrp0oPkb8/Z4eHggKCgIsbGxkMvlKCsrw6xZszBq1Kg2x6R5ut7y5cvRr18/DB48GFlZWVi7di2++OILrkx5eTmKi4tRWlqq1F9DQ0Mupri4OAwaNAj6+vrIyMjAzJkz8eWXX3KPHnWmXz4+Pli2bBmmTp2KsLAw/PLLL1i/fj3WrVvXbvxA810i169f594XFhYiOzsbenp6SneJEPKqUO5rRrmPch8hhHSZLpv/71eMpncmhHSlN3mK5bamRW/RMi26RCJhQqGQyeVypWnRQ0JCWP/+/Vn37t2Zvr4+8/PzY/fv3+fWR0REMENDQ8bj8VROiz5q1Ci2YMECrp5MJmPr1q1rFU9mZiZzcXFhIpGI6ejosKFDh7Lly5czxhi7d+8emzFjBhsyZAgTiURMLBYza2trFhUVxRobG5XaSUpKYmPHjmU6OjrctO0JCQlKZdqa2r3ldfPmzVax1dTUsE8//ZQZGRkxPp/PpFIp8/T0ZJmZmVyZuLi4dtvsSExMDLOysmJCoZBJpVLm6+vLbt26pbJORUUFmzlzJuvXrx8TCATMzMyM/eUvf1Gamry9mMLDw7kyYWFhrE+fPkxLS4tZWFiw6Oho1tTU9Nz9unjxIhszZgzr3r07MzY2Zt98802H/T569Gib7bb8Pr0oVZ9ZOmZQpmp/UO6j3Ee57+3JfYSQFzNkyQEmC0thwf84x2RhKeynVCd2+IgZ96qsLFB3iK9NZ4+heIy9gvnC3zAVFRWQSCRQKBTcc+qEEPKqPHnyBIWFhTA1NYVAIFB3OG+UqqoqGBsbIzo6GlOnTn3t2y8vL4ezszN69OiB/fv3Q1v7zXjsiLwcVZ9ZOmZQpmp/UO57cZT7iDrQZ5aQV886/CAe1zbAfYgh9v9yGxvGRUFbo5hbbzs6FTo6ZipaeHt09hiKZt8jhBCiNllZWUhISEBBQQEuXLjATdHd8ljM66anp4fDhw/D2dkZGRkZaomBEPL2o9xHCCFvp47v+Hnn7gnqEI0pRQghRK2ioqKQl5cHPp+PESNGIC0tjRtIVh169eqFJUuWqG37hJB3A+U+Qgh5e3UwRCB5Cl2UIoQQojbDhg3D+fPn1R0GIYS8VpT7CCHk7cZDy1UpujOqI/T4HiGEEEIIIYQQQgh57eiiFCGEEEIIIYQQQgh57eiiFCGEEEIIIYQQQgh57eiiFCGEEEIIIYQQQsirQgOddxpdlCKEEEIIIYQQQgjpcjTw+bPoohQhhBBCCCGEEEIIee3oohQhhBBCCCGEEELIS2Ls2Tuh6M6ojtBFKUIIIZyAgADweDzweDzw+XyYm5sjIiICDQ0NL9XusWPHwOPx8OjRo1cTaCcUFhbCx8cHRkZGEAgE6Nu3L7y8vHD16lWlcikpKXB0dIRYLIa2tjbef/99bN++XalMUVEReDwesrOzO739pUuXYuDAgdDR0UHPnj0xbtw4nDlzRqnNqVOnwtTUFEKhEP3790d4eDjq6uo6bDs+Ph42NjbQ1taGVCrFF198gQcPHqis8/jxY8yaNQsymQxCoRD29vY4e/asUpnKykqEhISgb9++EAqFsLKywubNm5XKTJs2Df3794dQKIS+vn6b+7S4uBgff/wxtLW1YWBggHnz5rX7O5Seng5NTU385je/6bDfe/bsgaurK3r16vXcPw9CVKHcR7mPch8h5FWiIaU6jy5KEUIIUeLm5oaysjJcu3YNc+bMwdKlS7FmzRp1h8XpzIlLfX09XFxcoFAosGfPHuTl5WHXrl2wtrZWOjncsGEDvLy84ODggDNnziAnJweTJ09GcHAw5s6d+1JxDhgwABs3bsSlS5dw8uRJvPfee3B1dcW9e/cAAFevXkVTUxO2bNmCy5cvY926ddi8eTMWLVqkst309HRMmTIFU6dOxeXLl7F7925kZmYiKChIZb3AwECkpqbiH//4By5dugRXV1eMGzcOJSUlXJnZs2fjwIED+Oc//4krV65g1qxZCAkJQXJyMldmxIgRiIuLw5UrV3Dw4EEwxuDq6orGxkYAQGNjIz7++GPU1dXh1KlT2LFjB7Zv344lS5a0iunRo0eYMmUKnJ2dO7VPq6qqMGbMGKxatapT5Ql5HpT7KPdR7iOEEDVg7yCFQsEAMIVCoe5QCCFvoZqaGpabm8tqamrUHcpz8/f3Z15eXkrLXFxcmK2tLSsvL2d+fn5MV1eXCYVC5ubmxvLz87lyRUVF7JNPPmG6urpMW1ubWVlZsb1797LCwkKG5nuXuZe/vz9jjLGKigrm4+PDtLW1maGhIVu7di1zdHRkM2fO5NqVyWQsIiKC+fn5MbFYzNVNS0tjY8aMYQKBgPXt25eFhoayyspKxhhjWVlZDAArKipqt6/FxcVMS0uLzZ49u9W6mJgYBoCdPn2aMca4PmRlZT3/Tv2vlr89hw8fbrfM6tWrmampqcp21qxZw8zMzFrFa2xs3G6d6upq1q1bN5aSkqK0fPjw4ewvf/kL937w4MEsIiJCZZlnXbx4kQFg169fZ4wxtm/fPqahocFu377NlYmNjWU9evRgtbW1SnUnTZrEvvrqKxYeHs5sbGza3cazXsXP42mqPrN0zKBM1f6g3Ee5ry2U+97M3EcIeTFWi/czWVgKC9l5gcnCUlhy6lh2+IgZ96qsvKbuEF+bzh5D0Z1ShBDSxRhjaKquVsuLtXqu/fkJhULU1dUhICAA586dQ3JyMjIyMsAYw/jx41FfXw8AmD59Ompra3HixAlcunQJq1atgkgkgomJCX744QcAQF5eHsrKyrB+/XoAzd9Op6enIzk5GampqUhLS8OFCxdaxRAVFQUbGxtkZWVh8eLFKCgogJubGyZMmICcnBzs2rULJ0+eREhICABAX18fGhoaSExM5L7FflZiYiLq6+vbvCtg2rRpEIlESEhIeOn9BzTf4bB161ZIJBLY2Ni0W06hUEBPT09lW3Z2drh58yb27dsHxhju3LmDxMREjB8/vt06DQ0NaGxshEAgUFouFApx8uRJ7r29vT2Sk5NRUlICxhiOHj2K/Px8uLq6ttluVVUV4uLiYGpqChMTEwBARkYGrK2t0adPH66cXC5HRUUFLl++zC2Li4vDjRs3EB4errK/5M32Juc/yn0vj3If5T5CCOmIproDIISQtx2rqUHe8BFq2bblhfPgaWu/UF3GGI4cOYKDBw/C3d0dSUlJSE9Ph729PYDmsT1MTEyQlJQEb29vFBcXY8KECbC2tgYAmJmZcW21nGwYGBhAV1cXQPM4Hzt27MDOnTu5Rxji4uJgZGTUKpaPPvoIc+bM4d4HBgbC19cXs2bNAgBYWFggJiYGjo6OiI2NhbGxMWJiYjB//nwsW7YMI0eOhJOTE3x9fbm48vPzIZFIIJVKW22Pz+fDzMwM+fn5L7TvWqSkpGDy5Mmorq6GVCpFamoqevfu3WbZ69evY8OGDYiKilLZpoODA+Lj4zFp0iQ8efIEDQ0N8PDwwKZNm9qtIxaLYWdnh6+//hqDBg1Cnz59kJCQgIyMDJibm3PlNmzYgD/+8Y/o27cvNDU1oaGhgW+//RYffPCBUnt/+9vfMH/+fFRVVcHS0hKpqang8/kAgNu3byudlAHg3t++fRsAcO3aNSxYsABpaWnQ1KRDkbfZm5j/KPdR7qPcRwghrw/dKUUIIURJSkoKRCIRBAIB3N3dMWnSJAQEBEBTUxOjR4/myvXq1QuWlpa4cuUKAGDGjBmIjIyEg4MDwsPDkZOTo3I7N27cQH19PUaNGsUtk0gksLS0bFV25MiRSu8vXryI7du3QyQScS+5XI6mpiYUFhYCaL574fbt24iPj4ednR12796NwYMHIzU1tdP7ouVkQ5X4+HilONLS0rh1Tk5OyM7OxqlTp+Dm5oaJEyfi7t27rdooKSmBm5sbvL29lcZHebrd4OBgAEBubi5mzpyJJUuW4Pz58zhw4ACKioq49WlpaUr14uPjAQD/+Mc/wBiDsbExunfvjpiYGHz++efQ0PjfocCGDRtw+vRpJCcn4/z584iOjsb06dNx+PBhpXh9fX2RlZWF48ePY8CAAZg4cSKePHnSqX3a2NgIHx8fLFu2DAMGDHjufUpIV6Hc9z+U+yj3EUK6BqPZ+FqhS/SEENLFeEIhLC+cV9u2n5eTkxNiY2PB5/NhZGQETU1NpcFe2xMYGAi5XI69e/fi0KFDWLlyJaKjoxEaGvoioSvR0dFRel9ZWYlp06ZhxowZrcr269eP+79YLIaHhwc8PDwQGRkJuVyOyMhIuLi4wMLCAgqFAqWlpa3uUKirq0NBQQHkcnmHsXl6eiqdsBobGyvFbW5uDnNzc9ja2sLCwgLbtm3DwoULuTKlpaVwcnKCvb09tm7dqtT20zMs9ejRAwCwcuVKODg4YN68eQCAoUOHQkdHB2PHjkVkZCRGjhypVK/lm/r+/fvj+PHjqKqqQkVFBaRSKSZNmsTdPVFTU4NFixbhxx9/xMcff8y1nZ2djaioKIwbN45rUyKRQCKRwMLCAra2tujZsyd+/PFHfP755zA0NERmZqZSP+7cuQMAMDQ0xOPHj3Hu3DlkZWVxjxw1NTWBMQZNTU0cOnRI5T4lb5Y3Kf9R7qPcR7mPEEJeP7ooRQghXYzH473wI3Tq0HIy8bRBgwahoaEBZ86c4R5hefDgAfLy8mBlZcWVMzExQXBwMIKDg7Fw4UJ8++23CA0N5b51f3qMEzMzM2hpaeHs2bPcyZRCoUB+fn6rRyaeNXz4cOTm5raKUxUej4eBAwfi1KlTAIDPPvsMYWFhiI6ORnR0tFLZzZs3o7q6GlOmTOmwXbFYDLFY3KkYmpqaUFtby70vKSmBk5MTN6vT09/cA2izf9XV1a0e++jWrRuA5seOhEKhyv2io6MDHR0dPHz4EAcPHsTq1asBNM/aVV9f3yqGbt26oampqd32GGNgjHH9srOzw/Lly3H37l0YGBgAAFJTU9GjRw9YWVlBS0sLly5dUmrjb3/7G37++WckJibC1NQUOjo6nd6n5NftTcp/lPso9z3bNuU+QsjzarkPiqfWKN4sdFGKEEJIhywsLODl5YWgoCBs2bIFYrEYCxYsgLGxMby8vAAAs2bNgru7OwYMGICHDx/i6NGjGDRoEABAJpOBx+MhJSUF48ePh1AohFgshr+/P+bNmwc9PT0YGBggPDwcGhoa4PFU/ykPCwuDra0tQkJCEBgYCB0dHeTm5iI1NRUbN25EdnY2wsPD4efnBysrK/D5fBw/fhzfffcdwsLCADTfVbB69WrMnTsXAoEAfn5+0NLSwk8//YRFixYhMjISQ4YMUdpuXl5eq1gGDx4MLS0tpWVVVVVYvnw5PD09IZVKcf/+fWzatAklJSXw9vYG0HxS9uGHH0ImkyEqKoqbLh1o/la9PR4eHggKCkJsbCzkcjnKysowa9YsjBo1qs0xaVq0TGFuaWmJ69evY968eRg4cCD+8Ic/AGi+G8HR0RHz5s2DUCiETCbD8ePH8X//939Yu3YtgObHjnbt2gVXV1fo6+vj1q1b+OabbyAUCrnBhl1dXWFlZQU/Pz+sXr0at2/fxldffYXp06eje/fuANBqvxoYGEAgELRa/qzy8nIUFxejtLQUwP9+HoaGhir3GSEvinJfM8p9lPsIIc+ng3ROnvaKZ/17I9D0zoSQrvQmT7Hc1rToLVqmRZdIJEwoFDK5XK40LXpISAjr378/6969O9PX12d+fn7s/v373PqIiAhmaGjIeDyeymnRR40axRYsWMDVk8lkbN26da3iyczMZC4uLkwkEjEdHR02dOhQtnz5csYYY/fu3WMzZsxgQ4YMYSKRiInFYmZtbc2ioqJYY2OjUjtJSUls7NixTEdHh5u2PSEhQalMW1O7t7xu3rzZKraamhr26aefMiMjI8bn85lUKmWenp4sMzOTKxMXF9dumx2JiYlhVlZWTCgUMqlUynx9fdmtW7dU1tm1axczMzNjfD6fGRoasunTp7NHjx4plSkrK2MBAQHMyMiICQQCZmlpyaKjo1lTUxNjjLGSkhLm7u7ODAwMmJaWFuvbty/z8fFhV69eVWqnqKiIubu7M6FQyHr37s3mzJnD6uvr242ts9Oit7fPwsPDO6yriqrPLB0zKFO1Pyj3Ue6j3Pf25D5CyIsZtHg/k4WlsBkJF5gsLIUlp45hh4+Yca/HlfkdN/KW6OwxFI+xVzBf+BumoqICEokECoWCe06dEEJelSdPnqCwsBCmpqatpqEmqlVVVcHY2BjR0dGYOnXqa99+eXk5nJ2d0aNHD+zfvx/ab8hjR+TlqPrM0jGDMlX7g3Lfi6PcR9SBPrOEvHpWSw6guq4RXr8xwk/Zpdgw7htoa5Ry60ePPgCRjoUaI3x9OnsMRbPvEUIIUZusrCwkJCSgoKAAFy5cgK+vLwBwj8W8bnp6ejh8+DCcnZ2RkZGhlhgIIW8/yn2EEEJIMxpTihBCiFpFRUUhLy8PfD4fI0aMQFpaGnr37q22eHr16oUlS5aobfuEkHcD5T5CCHl78bh/n3kw7d17UK1DdFGKEEKI2gwbNgznz6tnunhCCFEXyn2EEEJIM3p8jxBCCCGEEEIIIYS8dnRRihBCCCGEEEIIIeQltX46jx7X6whdlCKEEEIIIYQQQgghrx1dlCKEEEIIIYQQQgh5RXg8XseFCAC6KEUIIYQQQgghhBDyytAlqc6ji1KEEEIIIYQQQggh5LWji1KEEEIIIYQQQgghXY4GPn8WXZQihBDCCQgIAI/HA4/HA5/Ph7m5OSIiItDQ0PBS7R47dgw8Hg+PHj16NYF2QmFhIXx8fGBkZASBQIC+ffvCy8sLV69eVSqXkpICR0dHiMViaGtr4/3338f27duVyhQVFYHH4yE7O7vT21+6dCkGDhwIHR0d9OzZE+PGjcOZM2eU2pw6dSpMTU0hFArRv39/hIeHo66ursO24+PjYWNjA21tbUilUnzxxRd48OCByjonTpyAh4cHjIyMwOPxkJSU1KrMnj174Orqil69enXYX8YY3N3d221r+/btGDp0KAQCAQwMDDB9+nSl9QcPHoStrS3EYjH09fUxYcIEFBUVvZZ+EvIsyn2U+yj3EUKIetBFKUIIIUrc3NxQVlaGa9euYc6cOVi6dCnWrFmj7rA4nTlxqa+vh4uLCxQKBfbs2YO8vDzs2rUL1tbWSieHGzZsgJeXFxwcHHDmzBnk5ORg8uTJCA4Oxty5c18qzgEDBmDjxo24dOkSTp48iffeew+urq64d+8eAODq1atoamrCli1bcPnyZaxbtw6bN2/GokWLVLabnp6OKVOmYOrUqbh8+TJ2796NzMxMBAUFqaxXVVUFGxsbbNq0SWWZMWPGYNWqVR32769//Wu7g3iuXbsWf/nLX7BgwQJcvnwZhw8fhlwu59YXFhbCy8sLH330EbKzs3Hw4EHcv38fv/vd715LP8n/fPPNN+DxeJg1a5a6Q1E7yn2U+yj3EUJePbozqkPsHaRQKBgAplAo1B0KIeQtVFNTw3Jzc1lNTY26Q3lu/v7+zMvLS2mZi4sLs7W1ZeXl5czPz4/p6uoyoVDI3NzcWH5+PleuqKiIffLJJ0xXV5dpa2szKysrtnfvXlZYWMjQ/BeZe/n7+zPGGKuoqGA+Pj5MW1ubGRoasrVr1zJHR0c2c+ZMrl2ZTMYiIiKYn58fE4vFXN20tDQ2ZswYJhAIWN++fVloaCirrKxkjDGWlZXFALCioqJ2+1pcXMy0tLTY7NmzW62LiYlhANjp06cZY4zrQ1ZW1vPv1P9q+dtz+PDhdsusXr2amZqaqmxnzZo1zMzMrFW8xsbGnY4FAPvxxx/bXd9Rf7OyspixsTErKytr1VZ5eTkTCoUq+7l7926mqanJGhsbuWXJycmMx+Oxuro6xtjr6WcLVZ/Zt/mYITMzk7333nts6NChSp85VVTtD8p9lPvaQrnvf96k3EcIeTEDv9rPZGEp7MtdWUwWlsL+nWrHDh8x416PH19Vd4ivTWePoehOKUII6WKMMdTXNqrlxdjLfzsjFApRV1eHgIAAnDt3DsnJycjIyABjDOPHj0d9fT0AYPr06aitrcWJEydw6dIlrFq1CiKRCCYmJvjhhx8AAHl5eSgrK8P69esBALNnz0Z6ejqSk5ORmpqKtLQ0XLhwoVUMUVFRsLGxQVZWFhYvXoyCggK4ublhwoQJyMnJwa5du3Dy5EmEhIQAAPT19aGhoYHExEQ0Nja22a/ExETU19e3eVfAtGnTIBKJkJCQ8NL7D2i+w2Hr1q2QSCSwsbFpt5xCoYCenp7Ktuzs7HDz5k3s27cPjDHcuXMHiYmJGD9+/CuJtSPV1dXw8fHBpk2bYGho2Gp9amoqmpqaUFJSgkGDBqFv376YOHEibt68yZUZMWIENDQ0EBcXh8bGRigUCvzjH//AuHHjoKWl9avo59uusrISvr6++Pbbb9GzZ88u286bnP8o9708yn2U+wh51zC6M+q5aao7AEIIeds11DVh68zjatn2H9c7Qqt7txeqyxjDkSNHcPDgQbi7uyMpKQnp6emwt7cH0DzmhYmJCZKSkuDt7Y3i4mJMmDAB1tbWAAAzMzOurZaTDQMDA+jq6gIAHj9+jB07dmDnzp1wdnYGAMTFxcHIyKhVLB999BHmzJnDvQ8MDISvry/3yJGFhQViYmLg6OiI2NhYGBsbIyYmBvPnz8eyZcswcuRIODk5wdfXl4srPz8fEokEUqm01fb4fD7MzMyQn5//QvuuRUpKCiZPnozq6mpIpVKkpqaid+/ebZa9fv06NmzYgKioKJVtOjg4ID4+HpMmTcKTJ0/Q0NAADw+P1/bIxpdffgl7e3t4eXm1uf7GjRtoamrCihUrsH79ekgkEnz11VdwcXFBTk4O+Hw+TE1NcejQIUycOBHTpk1DY2Mj7OzssG/fvl9NP99206dPx8cff4xx48YhMjKy3XK1tbWora3l3ldUVDzXdt7E/Ee5j3JfWyj3EUKeBw8tj/nSRaqO0J1ShBBClKSkpEAkEkEgEMDd3R2TJk1CQEAANDU1MXr0aK5cr169YGlpiStXrgAAZsyYgcjISDg4OCA8PBw5OTkqt3Pjxg3U19dj1KhR3DKJRAJLS8tWZUeOHKn0/uLFi9i+fTtEIhH3ksvlaGpqQmFhIYDmk+7bt28jPj4ednZ22L17NwYPHozU1NRO7ws+n99hmfj4eKU40tLSuHVOTk7Izs7GqVOn4ObmhokTJ+Lu3but2igpKYGbmxu8vb2Vxg15ut3g4GAAQG5uLmbOnIklS5bg/PnzOHDgAIqKirj1aWlpSvXi4+M73d+OJCcn4+eff8Zf//rXdss0NTWhvr4eMTExkMvlsLW1RUJCAq5du4ajR48CAG7fvo2goCD4+/vj7NmzOH78OPh8Pj777DPu7hZ19vNt9/333+PChQtYuXJlh2VXrlwJiUTCvUxMTF5DhOpBue9/KPcpo9xHCCFdh+6UIoSQLqbJ18Af1zuqbdvPy8nJCbGxseDz+TAyMoKmpiaSk5M7rBcYGAi5XI69e/f+P3v3HSdXXe9//HWmby9JNrvpnXRKQgm9V2mCFQERULyAcEFEFEG5cLkXQRRFmoj6o4giIpdeBEIJCYSEkIT0nuxutveddr6/P87MmZkt2U1I2WTfz8djszOnfs+cmZM5n/18P19ee+017rzzTu655x6uvvrqHWl6hpycnIznzc3NfO973+MHP/hBp2VHjBjhPs7Ly+PMM8/kzDPP5Pbbb+eUU07h9ttv56STTmL8+PE0NDSwZcuWThkKkUiE1atXZxSo7c5ZZ52VccM6dOjQjHaPGzeOcePGcdhhhzF+/HgeffRRbrrpJneZLVu2cNxxx3H44Yfz8MMPZ2w7fQSo/Px8wAkSHHHEEdxwww0ATJ8+nZycHI466ihuv/12Zs6cmbHe4MGDezyG3vr3v//N6tWr3YyPpPPOO4+jjjqKt99+282+mDx5sjt/0KBBDBw4kA0bNgBw//33U1BQwF133eUu8/jjjzN8+HDmzp3LYYcdtkePc1+2ceNGrrnmGl5//XVCoVCPy990001cd9117vPGxsbtCkztTdc/Xft07euOrn0iIruOglIiIruYZVk73IVuT0jeTKSbNGkSsViMuXPnul1YampqWL58ecYX8OHDh3PFFVdwxRVXcNNNN/HII49w9dVXu391T69xMmbMGPx+Px999JF7M9XQ0MCKFSs4+uijt9nGgw46iKVLl3Zq57ZYlsXEiRP54IMPADj//PO58cYbueeee7jnnnsyln3wwQdpbW3loosu6nG7eXl55OXl9aoNtm1ndIXavHkzxx13HDNmzOCxxx7D48m8ie7q+FpbW/H5Mv/79nqd95cxhqysrO16XbbHj3/8Yy677LKMadOmTePee+/lzDPPBJyuJ+DU0Bk2bBgAtbW1VFdXM3LkSPcYOh5r8hhs23aX2VPHuS+bP38+W7du5aCDDnKnxeNxZs+eze9+9zvC4bD7OgMEg0GCweAO729vuv7p2qdrX3d07ROR7ZUcpLPrsTolnYJSIiLSo/Hjx3P22Wdz+eWX89BDD5GXl8ePf/xjhg4d6tbXuPbaaznttNOYMGECdXV1vPXWW0yaNAmAkSNHYlkWL7zwAqeffjpZWVnk5eVx8cUXc8MNN1BcXExJSQm33norHo+n2+G2k2688UYOO+wwrrrqKi677DJycnJYunQpr7/+Or/73e9YuHAht956KxdeeCGTJ08mEAjwzjvv8Mc//pEbb7wRcLIK7rrrLn74wx8SCoW48MIL8fv9/Otf/+InP/kJt99+O1OnTs3Y7/Llyzu1ZcqUKW6B2qSWlhbuuOMOzjrrLMrKyqiurub+++9n8+bNfOUrXwGcm7Jjjz2WkSNHcvfdd7vDpQNdFtFNOvPMM7n88st54IEHOOWUUygvL+faa6/lkEMO6bImTVJzczOrVq1yn69du5aFCxdSXFzs3hjX1tayYcMGtmzZknG8paWlGT8djRgxgtGjRwPOcPBnn30211xzDQ8//DD5+fncdNNNTJw4keOOOw6AM844g3vvvZfbbruNb3zjGzQ1NfGTn/yEkSNHcuCBB+7y4+zPTjjhBD777LOMaZdccgkTJ07kxhtvzAhIia59Sbr26donIrLL7JKx//q4fXl4ZxHZ8/bmIZa7GhY9KTksekFBgcnKyjKnnHJKxrDoV111lRk7dqwJBoNm0KBB5sILLzTV1dXu/Ntuu82UlpYay7K2OSz6IYccYn784x+7640cOdLce++9ndozb948c9JJJ5nc3FyTk5Njpk+fbu644w5jjDFVVVXmBz/4gZk6darJzc01eXl5Ztq0aebuu+/OGIrbGGOee+45c9RRR5mcnBx32PannnoqY5muhnZP/mzcuLFT29ra2sy5555rhgwZYgKBgCkrKzNnnXWWmTdvnrvMY4891u02e3LfffeZyZMnm6ysLFNWVmYuuOACs2nTpm2u89Zbb3W5r+S52Fabbr311m63SxdDjzc0NJjvfOc7prCw0BQXF5tzzz3XbNiwIWOZp556yhx44IEmJyfHDBo0yJx11lnm888/3y3H2dG2PrP94TvDMcccY6655ppeLbut10PXPl37dO3bd659IrJj9rv5JTPyxhfM9X9baEbe+IJ54fXDzBtvjnF/mpqW7ekm7ja9/Q5lGbMTxgvfyzQ2NlJQUEBDQ4PbT11EZGdpb29n7dq1jB49ulc1WySlpaWFoUOHcs8993DppZfu9v3X1tZywgknkJ+fz8svv0x2dvZub4Psftv6zPaH7wzHHnssBxxwwDaLOCdt6/XQtW/H6done4I+syI738SfvUx71Ob8GcN4Zv4mfnfif5HlSWWEHnrIS+Tmdh7YYl/U2+9QGn1PRET2mAULFvDUU0+xevVqPvnkEy644AKAbofc3tWKi4t54403OOGEE5gzZ84eaYPI7vb222/3KiAlO4+ufSIi+6aOKT+qKdUz1ZQSEZE96u6772b58uUEAgFmzJjBu+++y8CBA/dYewYMGMAtt9yyx/YvIv2Drn0iIvsuBaN6T0EpERHZYw488EDmz5+/p5shIrJb6donIrJv62HcCkmj7nsiIiIiIiIiIjud6fCs35X07pGCUiIiIiIiIiIistspKCUiIiIiIiIiIrudglIiIiIiIiIiIjuduuv1REEpEREREREREZGdxNL4e72moJSIiIiIiIiIyBekvKjtp6CUiIi4vv3tb2NZFpZlEQgEGDduHLfddhuxWOwLbfftt9/Gsizq6+t3TkN7Ye3atXzzm99kyJAhhEIhhg0bxtlnn82yZcsylnvhhRc45phjyMvLIzs7m4MPPpg//elPGcusW7cOy7JYuHBhr/f/85//nIkTJ5KTk0NRUREnnngic+fOzdjmpZdeyujRo8nKymLs2LHceuutRCKRHrf9xBNPsP/++5OdnU1ZWRnf+c53qKmp2eY6s2fP5swzz2TIkCFYlsVzzz233W0GuOOOOzj88MPJzs6msLCwy31t2LCBM844g+zsbEpKSrjhhhsy3kPp77P0nylTprjL3HnnnRx88MHk5eVRUlLCOeecw/Lly3t8bXrTPpGOdO3TtU/XPhGRPUNBKRERyXDqqadSXl7OypUruf766/n5z3/OL3/5yz3dLFdvblyi0SgnnXQSDQ0NPPvssyxfvpynn36aadOmZdwc/va3v+Xss8/miCOOYO7cuSxatIivf/3rXHHFFfzwhz/8Qu2cMGECv/vd7/jss8947733GDVqFCeffDJVVVUALFu2DNu2eeihh1iyZAn33nsvDz74ID/5yU+2ud3333+fiy66iEsvvZQlS5bw97//nXnz5nH55Zdvc72Wlhb2339/7r///h1uMziv/1e+8hW+//3vd7mNeDzOGWecQSQS4YMPPuDPf/4zf/rTn7jlllvcZX7zm99QXl7u/mzcuJHi4mK+8pWvuMu88847XHnllXz44Ye8/vrrRKNRTj75ZFpaWrZ5nD21T6Q7uvbp2qdrn4jsLFZ3vfeMcqk6Mf1QQ0ODAUxDQ8OeboqI7IPa2trM0qVLTVtb255uyna7+OKLzdlnn50x7aSTTjKHHXaYqa2tNRdeeKEpLCw0WVlZ5tRTTzUrVqxwl1u3bp350pe+ZAoLC012draZPHmyefHFF83atWsNTjaz+3PxxRcbY4xpbGw03/zmN012drYpLS01v/rVr8wxxxxjrrnmGne7I0eONLfddpu58MILTV5enrvuu+++a4488kgTCoXMsGHDzNVXX22am5uNMcYsWLDAAGbdunXdHuuGDRuM3+831113Xad59913nwHMhx9+aIwx7jEsWLBg+1/UhOT/PW+88Ua3y9x1111m9OjR29zOL3/5SzNmzJhO7R06dGiv2wKYf/7znz0ut602P/bYY6agoKDT9Jdeesl4PB5TUVHhTnvggQdMfn6+CYfDXe7nn//8p7Esa5vna+vWrQYw77zzTo/t3lb7urKtz6y+M2Ta1uuha5+ufV3RtW/vvPaJyI4Z/9OXzMgbXzA3PvOpGXnjC+aF1w82b7w5xv1pbFy6p5u42/T2O5QypUREZJuysrKIRCJ8+9vf5uOPP+b5559nzpw5GGM4/fTTiUajAFx55ZWEw2Fmz57NZ599xv/+7/+Sm5vL8OHD+cc//gHA8uXLKS8v5ze/+Q0A1113He+//z7PP/88r7/+Ou+++y6ffPJJpzbcfffd7L///ixYsICf/exnrF69mlNPPZXzzjuPRYsW8fTTT/Pee+9x1VVXATBo0CA8Hg/PPPMM8Xi8y+N65plniEajXWYFfO973yM3N5ennnpqp7yGkUiEhx9+mIKCAvbff/9ul2toaKC4uHib25o1axYbN27kpZdewhhDZWUlzzzzDKeffvpOaev2trmjOXPmMG3aNAYPHuxOO+WUU2hsbGTJkiVdrvPoo49y4oknMnLkyG6329DQANDj6yOys+ja98Xp2qdrn0h/1W2mlHTi29MNEBHZ1xljiIXDe2TfvmAQawf/VzTG8Oabb/Lqq69y2mmn8dxzz/H+++9z+OGHA05tj+HDh/Pcc8/xla98hQ0bNnDeeecxbdo0AMaMGeNuK/lluqSkxK110dTUxJ///GeefPJJTjjhBAAee+wxhgwZ0qktxx9/PNdff737/LLLLuOCCy7g2muvBWD8+PHcd999HHPMMTzwwAMMHTqU++67jx/96Ef84he/YObMmRx33HFccMEFbrtWrFhBQUEBZWVlnfYXCAQYM2YMK1as2KHXLumFF17g61//Oq2trZSVlfH6668zcODALpddtWoVv/3tb7n77ru3uc0jjjiCJ554gq997Wu0t7cTi8U488wzt9k1ZVe1uSsVFRUZN2WA+7yioqLT8lu2bOHll1/mySef7Habtm1z7bXXcsQRRzB16tRet0X2vL3x+qdrn659uvaJyM6j7no9UVBKRGQXi4XD3Hfx+Xtk3z/48zP4Q6HtWueFF14gNzeXaDSKbdt885vf5Mtf/jIvvPAChx56qLvcgAED2G+//fj888+dff3gB3z/+9/ntdde48QTT+S8885j+vTp3e5nzZo1RKNRDjnkEHdaQUEB++23X6dlZ86cmfH8008/ZdGiRTzxxBPuNGMMtm2zdu1aJk2axJVXXslFF13E22+/zYcffsjf//53/vu//5vnn3+ek046qVevRSAQ6HGZJ554gu9973vu85dffpmjjjoKgOOOO46FCxdSXV3NI488wle/+lXmzp1LSUlJxjY2b97Mqaeeyle+8pWM+ii5ubnu429961s8+OCDLF26lGuuuYZbbrmFU045hfLycm644QauuOIKHn30Ud59911OO+00d72HHnqICy64oFfHuz1t3ln+/Oc/U1hYyDnnnNPtMldeeSWLFy/mvffec6ddccUVPP744+7z5ubmXdI++WL2puufrn0puvbp2icisrsoKCUiIhmOO+44HnjgAQKBAEOGDMHn8/H888/3uN5ll13GKaecwosvvshrr73GnXfeyT333MPVV1/9hduUk5OT8by5uZnvfe97/OAHP+i07IgRI9zHeXl5nHnmmZx55pncfvvtnHLKKdx+++2cdNJJjB8/noaGBrZs2dIpQyESibB69WpOOeWUHtt21llnZdywDh06NKPd48aNY9y4cRx22GGMHz+eRx99lJtuusldZsuWLRx33HEcfvjhPPzwwxnbTh/xKj8/H3BGZjriiCO44YYbAJg+fTo5OTkcddRR3H777cycOTNjvY5/ue9Jb9q8LaWlpcybNy9jWmVlpTsvnTGGP/7xj1x44YXd3gRfddVVvPDCC8yePZthw4a502+77bYvXJBZJJ2ufbr26donIrL7KSglIrKL+YJBfvDnZ/bYvrdX8ot5ukmTJhGLxZg7d67bhaWmpobly5czefJkd7nhw4dzxRVXcMUVV3DTTTfxyCOPcPXVV7tfutNrnIwZMwa/389HH33k3kw1NDSwYsUKjj766G228aCDDmLp0qWd2rktlmUxceJEPvjgAwDOP/98brzxRu655x7uueeejGUffPBBWltbueiii3rcbl5eHnl5eb1qg23bhNO6Mm3evJnjjjuOGTNm8Nhjj+HxZJZ67Or4Wltb8fky//v2er2Ac6OTlZW1Xa/L9ra5J7NmzeKOO+5g69atbobB66+/Tn5+fsZ7BZxRplatWsWll17aaTvGGK6++mr++c9/8vbbbzN69OiM+SUlJbssg0F2nr3p+qdrn65922pzT3TtE5GuWOq+1yMFpUREdjHLsra7C11fM378eM4++2wuv/xyHnroIfLy8vjxj3/M0KFDOfvsswG49tprOe2005gwYQJ1dXW89dZbTJo0CYCRI0diWRYvvPACp59+OllZWeTl5XHxxRdzww03UFxcTElJCbfeeisej6fHOjA33ngjhx12GFdddRWXXXYZOTk5LF26lNdff53f/e53LFy4kFtvvZULL7yQyZMnEwgEeOedd/jjH//IjTfeCDhZBXfddRc//OEPCYVCXHjhhfj9fv71r3/xk5/8hNtvv71TDY/ly5d3asuUKVPw+/0Z01paWrjjjjs466yzKCsro7q6mvvvv5/Nmze7Q39v3ryZY489lpEjR3L33XdnDD3e8a/q6c4880wuv/xyHnjgAbcLy7XXXsshhxzSZU2apObmZlatWuU+X7t2LQsXLqS4uJgRI0b0qs0AGzZsoLa2lg0bNhCPx93MhHHjxpGbm8vJJ5/M5MmTufDCC7nrrruoqKjg5ptv5sorryTYIUjw6KOPcuihh3ZZK+XKK6/kySef5F//+hd5eXluTZaCggKysrK6Pc6e2ie7195+/dO1z6Frn659ItJLbgxKlc57bReN/tenaXhnEdmV9uYhlrsaFj0pOSx6QUGBycrKMqecckrGsOhXXXWVGTt2rAkGg2bQoEHmwgsvNNXV1e782267zZSWlhrLsrY5LPohhxxifvzjH7vrjRw50tx7772d2jNv3jxz0kknmdzcXJOTk2OmT59u7rjjDmOMMVVVVeYHP/iBmTp1qsnNzTV5eXlm2rRp5u677zbxeDxjO88995w56qijTE5Ojjts+1NPPZWxTFdDuyd/Nm7c2KltbW1t5txzzzVDhgwxgUDAlJWVmbPOOsvMmzfPXeaxxx7rdps9ue+++8zkyZNNVlaWKSsrMxdccIHZtGnTNtd56623utxX8lz0ps3GOO+Rrrbz1ltvucusW7fOnHbaaSYrK8sMHDjQXH/99SYajWZsp76+3mRlZZmHH364y/Z299o89thj2zzO3rSvo219ZvWdIdO2Xg9d+3Tt07Vv37n2iciOGf+Tl8zIG18wNz27yIy88QXz4uszzBtvjnF/GhuX7Okm7ja9/Q5lGWP6XT5ZY2MjBQUFNDQ0uP3URUR2lvb2dtauXcvo0aMJ7cUZAntCS0sLQ4cO5Z577umyW8OuVltbywknnEB+fj4vv/wy2dnZu70Nsvtt6zOr7wyZtvV66Nq343Ttkz1Bn1mRnW/CT18mErf55qEjeHLuBn5/4q0EPXXu/EMO/j/y8iZvYwv7jt5+h/J0O0dERGQXW7BgAU899RSrV6/mk08+cUdKSnaL2d2Ki4t54403OOGEE5gzZ84eaYOI7Pt07RMREXGoppSIiOxRd999N8uXLycQCDBjxgzeffddBg4cuMfaM2DAAG655ZY9tn8R6R907RMREVFQSkRE9qADDzyQ+fPn7+lmiIjsVrr2iYjs21TmvPfUfU9EREREREREZKfrdyW8t5uCUiIiIiIiIiIistspKCUisov0w8FNRfZK+qzuXHo9RfYO+qyK7Hymx8wofe46UlBKRGQn8/v9ALS2tu7hlohIbyQ/q8nPruwYXftE9i669onsDgpC9USFzkVEdjKv10thYSFbt24FIDs7G8tSuUORvsYYQ2trK1u3bqWwsBCv17unm7RX07VPZO+ga5/Irqf//npPQSkRkV2gtLQUwL05E5G+q7Cw0P3Myheja5/I3kPXPpFdx9L4e72moJSIyC5gWRZlZWWUlJQQjUb3dHNEpBt+v19ZAjuRrn0iewdd+0R2D0vd93qkoJSIyC7k9Xr1pU9E+h1d+0RERKQ3VOhcRERERERERER2OwWlRERERERERERkt1NQSkRERERERERkJ+lu9D2jGlOdKCglIiIiIiIiIvIFGcWctpuCUiIiIiIiIiIiO0k3iVLSBQWlRERERERERER2MtvYe7oJfZ6CUiIiIiIiIiIiO4nP64RaonH15+uJb083QERERERERERkX/Gl6WVUNrbjUT++HilTSkRERERERERkJxlSmMXvvnkQAa9CLj3RKyQiIiIiIiIisqtpeL5OFJQSEREREREREZHdTkEpEREREREREZEvSHlQ209BKRERERERERGRnc1SmKonCkqJiIiIiIiIiOwkGnSv9xSUEhERERERERGR3U5BKRERERERERGRnU7d93qioJSIiIiIiIiIiOx2CkqJiIiIiIiIiOxyypzqSEEpEREREREREZGdTAXPe6aglIiIiIiIiIjIF2SMMqG2l4JSIiIiIiIiIiKy2ykoJSIiIiIiIiKys6jfXq8pKCUiIiIiIiIistOpO19PdnlQ6v7772fUqFGEQiEOPfRQ5s2bt83l//73vzNx4kRCoRDTpk3jpZdeyphvjOGWW26hrKyMrKwsTjzxRFauXLkrD0FERERERERERHayXRqUevrpp7nuuuu49dZb+eSTT9h///055ZRT2Lp1a5fLf/DBB3zjG9/g0ksvZcGCBZxzzjmcc845LF682F3mrrvu4r777uPBBx9k7ty55OTkcMopp9De3r4rD0VERERERERERHaiXRqU+tWvfsXll1/OJZdcwuTJk3nwwQfJzs7mj3/8Y5fL/+Y3v+HUU0/lhhtuYNKkSfzXf/0XBx10EL/73e8AJ0vq17/+NTfffDNnn30206dP5y9/+Qtbtmzhueee25WHIiIiIiIiIiKyHdR9rye+XbXhSCTC/Pnzuemmm9xpHo+HE088kTlz5nS5zpw5c7juuusypp1yyiluwGnt2rVUVFRw4oknuvMLCgo49NBDmTNnDl//+td3/oFspzeef5rFb76xp5shIruR8XQf37ctg9frA4+30zzL8uAN+Hdl0wh6PWyjeRk8QLYn8z9O2+MlHsglWpQH/tR/GUFPgPxAfsayWcUDyR0awONVZcd9VUlukMKcwJ5uRicey09e3uQ93QwRERER2U67LChVXV1NPB5n8ODBGdMHDx7MsmXLulynoqKiy+UrKirc+clp3S3TlXA4TDgcdp83Njb2/kC202dvvIFdWb7Lti8ie5/4NubFdvG+wz0vkqF2O5bteKUL5F/E+LPvwp9dt517lb3Frvvf84sJBYdwxBHv7ulmiIiIiMh22mVBqb7kzjvv5Be/+MVu2Zfl9WBZubtlXyIiu4uxnJ8ki84j3XpCTTREC/CGNbDrvio/5Ccn2Pe+OgSDg3teSERERGQXU2e97bfLvlkOHDgQr9dLZWVlxvTKykpKS0u7XKe0tHSbyyd/V1ZWUlZWlrHMAQcc0G1bbrrppoxugY2NjQwfPny7jqe3rr33oV2yXRGRvcOle7oBIiIiIiJ7lNXpz7fSnV325+xAIMCMGTN488033Wm2bfPmm28ya9asLteZNWtWxvIAr7/+urv86NGjKS0tzVimsbGRuXPndrtNgGAwSH5+fsaPiIiIiIiIiIjsObs0B/+6667j4osvZubMmRxyyCH8+te/pqWlhUsuuQSAiy66iKFDh3LnnXcCcM0113DMMcdwzz33cMYZZ/DXv/6Vjz/+mIcffhgAy7K49tpruf322xk/fjyjR4/mZz/7GUOGDOGcc87ZlYciIiIiIiIiItJrljr09WiXBqW+9rWvUVVVxS233EJFRQUHHHAAr7zyiluofMOGDXjShoU6/PDDefLJJ7n55pv5yU9+wvjx43nuueeYOnWqu8yPfvQjWlpa+O53v0t9fT1HHnkkr7zyCqFQaFceioiIiIiIiIjIDjMKUnViGWP63avS2NhIQUEBDQ0N6sonIiIi3dJ3hkx6PURERLo3+qYXMQY++umJDMoL8tqbU/Ba7e78mTOfpSB//z3Ywt2nt98ZNESSiIiIiIiIiIjsdgpKiYiIiIiIiIjsdP2uY9p2U1BKREREREREROQL6n/Fkb44BaVERERERERERGS3U1BKRERERERERGQnsazkI6VO9URBKRERERERERGRXU39+zpRUEpEREREREREZBcxxup5oX5KQSkRERERERERkV1GQanuKCglIiIiIiIiIiK7nYJSIiIiIiIiIiKy2ykoJSIiIiIiIiIiu52CUiIiIiIiIiIiO5mFRtvriYJSIiIiIiIiIiI7icqa956CUiIiIiIiIiIiu5wypzpSUEpEREREREREZKcziX+VO9UdBaVERERERERERHYZBaW6o6CUiIiIiIiIiIjsdgpKiYiIiIiIiIjIbqeglIiIiIiIiIiI7HYKSomIiIiIiIiIfAHGaGS9HaGglIiIiIiIiIjITmJZ3RU2V+CqIwWlRERERERERER2umQQSqPvdUdBKRERERERERGRXUZBqe4oKCUiIiIiIiIiIrudglIiIiIiIiIiIjuZlei+Z5Qp1S0FpUREREREREREZLdTUEpERERERERERHY7BaVERERE+okHHniA6dOnk5+fT35+PrNmzeLll1/e080SERHZ6xnT8zLSmYJSIiIiIv3EsGHD+J//+R/mz5/Pxx9/zPHHH8/ZZ5/NkiVL9nTTRERE9nkGRa468u3pBoiIiIjI7nHmmWdmPL/jjjt44IEH+PDDD5kyZcoeapXsq54sr+FPm6sZEvQzKSeLq0cOJturv4mLyL5PZc17T0EpERERkX4oHo/z97//nZaWFmbNmtXlMuFwmHA47D5vbGzcXc2TfcDvN2xlVWuYRU1tvFLdyH45Ic4ZXLSnmyUishslM6MUpuqOglIiIiIi/chnn33GrFmzaG9vJzc3l3/+859Mnjy5y2XvvPNOfvGLX+zmFsrepCEa442aRvJ8XqbnZVMa9LvzWuN25rKx+O5unohIH6GgVHeUPysiIiLSj+y3334sXLiQuXPn8v3vf5+LL76YpUuXdrnsTTfdRENDg/uzcePG3dxa6evuWFPOlZ9v4KLP1nLQB0tY1druzmtLBKWm5WYB0G7bXW5DRET6L2VKiYiIiPQjgUCAcePGATBjxgw++ugjfvOb3/DQQw91WjYYDBIMBnd3E2UvsjUSdR/bwOrWMOOyQ0AqCFXk9wKpIJWIiEiSMqVERERE+jHbtjPqRolsD7vDQFKRxATbGNoSj4v8zt/B2zsuLCKyj7MsXfd6okwpERERkX7ipptu4rTTTmPEiBE0NTXx5JNP8vbbb/Pqq6/u6abJXqrj7VbMGOLG8HJVgzstGZT69fpKLOD80iLGJrKpRET2Fb0KPxkFqTpSUEpERESkn9i6dSsXXXQR5eXlFBQUMH36dF599VVOOumkPd002Ut1TH6qi8Y4eM5StoSdbn0By6LI53Xn37u+ks+a23h8+pjd2UwREemjFJQSERER6SceffTRPd0E2ceYDrkBS5vb3YBUsd/Lf48fRmnQzyObqmhO1JR6o6aRTe0RhoUCu729IiK7g9VhsD2j0fe6paCUiIiIiIjskI4dUVricQCGhfx8PGuKO33FUdNY1xbh8LmfAzBzzlLOLSnkl/sNJzctk0pEZN+koFR3VOhcRERERER2SMfyKMlsqEJf5t++PZbF6KwAVwwf5E7759Z63qlr2uVtFBGRvkuZUiIiIiIiaYwxrGgN0xq3mZqbhd+z8/7C/e+aRp4sryHo8TAk6OfakYPJ2UsyhZ6trOO6ZRsI24ZDC3L4y/Qx2B1ypZoTmVKBLl4zy7L4+bihfGfoQA750MmYakkEsURE9jVGRc17RUEpEREREZGEqkiU73y2jo8aWwA4u6SQh6aM2mnb/5+15SxqanOfj8sO8bWy4p22/V3pjZpG2hOVzT9saOHduiY3JBX0WIRtQ0vMdp93Z0RWkFMH5vNKdSNhW0EpEZH+TEEpEREREdnntMXtRBDFxm9ZHF6YS0nQn7GMMQYb8KZVpL1nXaUbkAJY2dK+w21ojMX5W0UttjF8s2wAuT4v4URQp8DnpSEWpzoa2+Htd2VlSzvr2yMMDvgYFgpQ5N95X/ejHYbai9rG7b7ntyzCGDfzKeTZdpWQ5Pz2uDIJRET6MwWlRERERGSf88imKv57Tbn7/KD8bF6aMQGA9rjNFUvX8U5tMxFjc+vYIXx3eAkAdR2CRNEv0P3isU3V3LnWacMtq7bwm4kjsBPbKwv6aYjFaYrFd3j7HW1sj3D0vGVu9lKWx2LerMkMCvi3uV5vxTq8FnbiBxLd9eKwui0MbDtTypmfCEopU0pEpF9ToXMRERER2edUhKMAFPu9Gc8BPmls5ZXqRtpsm7iBN2tSxbbjicDLuSWFwBcLStV2CHC9VtNAMtmoMFFH6tfrKzl+3jLuWlvecfUM7XGbt2sbebOmkfkNLW5wK92W9khGhac227C+LbLD7e+o42thG4NJ7DHXm1kXK9hjppQTtFJQSkT2FZ1rSKU/1+h73VGmlIiIiIjsc5Khjpn5ObxW00h6z7N4p4yf1PPkciGvE1Tp2GVteySDOCGPRbttiBvj7mtoKAANTjfBpS3tLG9t50ejy7rd1p1rynloU5X7/PbxQ7ls2KCMZZKZTOOzg8QNrGkLdxm82lExu3OmVHLzFw8dmOg6GGZrOMb5g4u2ua1k972/lteyqKmNa0cOZkZBzk5rq4hIX2IUlOqWglIiIiIiss9JBmN8iXpRGYGnTsumPU4sl8z0+SKZUskgUbHfx5ZwFNtAsoTS10qLmZ6XRUU4ygMbq4gbJ+jj66bb2/r2cOJ4IGZgXaKbXFfH4bUsN4NpZ+YhdZ0p5RiVFeDKESW93tbIrAAAm8NRNoejhDweHlFQSkT2EZaCUL2m7nsiIiIiss9JBkuSQZ6MwFOH4Ep65lQyaJSsifRFMqWSQanktuImFfTK9Xn43vASfjiq1F0+so0AWLJA+rBQION5ujipQFzydugLNL+TjjWlTNr2t/f269tDB/KPA8Zy0ZABXW5bRGTvp+tabyhTSkRERET2OfHtyJRKv21IrpeVyJTaVqCoJ8lASyCxLZvUaHWeRBjHn5YZFbVt8Hb9N+NkECovUbsp3EUtplhy2xZ4EscdMTa3rtzMlnCUgMfijEEFnD6o8AsdT5IxuBlZnu0MS3ksiyOK8liTyPgyunkTEemXFJQSERERkb3eb99cye/fXo1tDMU5ASYfOxwAbyJWYraRKZWeTZR8GNopmVLO76CVytZKZmIl2+W3UsGcbQXAIokgVF6iQHqki3Ylj8uLhSdxJHPrWzJqUb1d29RjUCpqG7xpgS13emL7fssiakzG6HuWeqqIiMgOUFBKRERERPZ6zy3cTFs0DkB5QzsDtjRBsdcN+qTnFXUM58TTpsTd4uSpmlLGGKwOUZcVLe28W9fEmtYwpUE/V40o6bRMKlMq2X0vVeg8GfCxLIuAZRExZpsBsGSmVL4vkcHVVfe9tOywZAJWazwRzPJ6aIrbNMRindZL9/sNW7l99RZs4KySQv5r3FAGB/3O8dip44nGjVNTage77yUlOxoqT0pE9jWdR+NTVmhXFJQSERERkb1CLG4TjtnkBDt/hW1oc4It+w8v5NON9YTDccDrdN8Lx4lubuXP3nWMGJCNXRzEU96Kb2MLGNhcFCJ+4Hi8HitVUyrRjc4A79Q1cWxxPlWRKBcuWsum9gjV0czgzhFFuRyUn1moOxXESXbfS2VlpXfS83ssInHjZiLVRGLctHITddEYAcvDt4YUp7rv+ZLd9zrf2MTSsrCS3emS2xwU8NPUFiZmnKyrZJsyXsNojF+vr3ADeM9vrWdabhZXjxycsa2gx6IlnjiexA2WEqVERLZFV8nuKCglIiIiIn2aiUTA7+fyv3zM2yuq+OO3D+bBt1fTFo3jsSymDs2noS0CwPiSXD7dWM/az2sIrLRYP9ODf2UDdkUbty6uA+Dmiw/Av7QeKxHFaaiP8Hl5I1OHFrhBlry02k5f/3QNxxbl8bWyYhY2tXbZxppI5wykjoXO7S4ypQAClkULqeyn12saeH5rvTv/7bpGN1i2rZpSyUwpT1qmVLINuWnH0xbvHJT62cpNPLKputM2W+M2b9Q08oeNVWxqjyba6wHiGaPvdezq11vJtVTnXET2dtu+jCko1R2NviciIiIifVbLnDksnzGTZZMm89byKsY2r+ap/72TtoVvs2hTAws31vP4hxuIxg2WBUeNHwhALGrjaYuzdkUtVjiesc3K2nY3IGUSxZ3aE13/kglIIY+H5w4c567zdl0TK1raASjwefnLtNEsOnwKhxfmOu2Mdw4SRTt039tWphTAbau38IdNVTTEnLbslxMCUnWoAAr9TlDqvfpmzvpkJfPqm915yRb4usiUCno8bh2r1g4BrfpoLCMgdURhLpcMTbyOxnD/hkrermuiLbFeScDn7u+Ldt8TEZH+TUEpEREREemz2hYuxESj7vPjqt9mv5aVHFP7Pt9ufJmBJU2UBavwDPBwzBHDOfuAobz9w2OZMMPpcmbbptOfr5vaU9szoUTh8JgTcEllG8FhhbksP3Kqu2x7IihzUH42Jw8soCTodzOQmrsISsXTAkLJ56lMqdRy3kSW0es1jdy8cjMvVzUAMC03i2OK8gAoDfj5emkxXx5cRCCx/LyGFh7dnAomJbOivF1kSnktyE6045xPVnHTik3ueuldAVcdNY1/HDjOLfQeM8adf/GQATw5fQxjsoPOa5f20np2MCrlZkrt2OoiIn2TBelXNqPQfbfUfU9ERERE+iy3UKzHQ3a0lZAdcefl1azjGzXrAGjOKeLAtUV8NDeX9SbGQa2GaqZjh4N0DHm0tDlBKePBHQYvnAgqJUNLXsvi/VXV3PTsZ+QQp70kROOAQqcpaTcXuYkaTzeu2Mj/LN/A7Q1bOCbaSmTUaD5qDQC4QaR4xuh7qW1MyA5RHk4Fyja2O8cY8nh4+oCxnQqtLzpiCj9ZuZlnK+vcQJmzfeO2L9nGZF0ry4LJuVnMbWhhfXuExzZXc8PoUor9voxaUcnj8aWNGJjcxkkDCzh+QD7PVNYlXivjjvhn6YZLRER2gDKlRERERKTPaz/jLPZrW+k+zw5HMuYXNlbTsupTZq9YxPqVSxm0+XOmNi3Fbo+5MSl/IgDVkiiKjsdyU3w6ZUoBzy3YzIbaVuK1YfzLGvh0QQUAvrRv0EcW5WLhBJuqsfi/z5Yz73cPsn+zz+3uFnILnRu3+156COdP00bzfweN5+QB+QBuEfVkLaqOo/oV+n1uBlX6KHzJhz5PKnMpGXDyYvG3A8by8owJbhZUU6KbYCxt1L6k5OOYMe785EiGycNPT0Lb4ZuKxC6VKSUi0j8pKCUiIiIifZcxWDklrA4XcGTNBwAEozGOXraRUTW1zFxTDkDM62VLIlCTdEDVcq5/9w9ctOBFylqqyQv5AWhuTwSlvBYmERRp+nw5saoqN7DjtSw61u5uTQSzPLbBJAJO3ywbwIqjpnFltImclkaC0RaePvkMd50Dc4IcXuTUnXKCOJ0LnWd5PRxckMPQkJNZlewuF+xihLwkf1r3uqRYWgAqufX0zKygx8OB+dnkJoqlJ+tgRe3MoFNy+eQ2o2ldAAH3dbFJZZbtYJ1zFToXkX2YLmy9oaCUiIiIiPRpVuFw1le+5z6fvLkaD7BiWD2DuhgNb0J5DQClrTXMLF/CBYtf4/f/vocBHieoNG/JVme7aZlS5Q89wuovnUk8EWzyWBBNRHS8OU4wKxpxuti1vv46yyZPYe1Xv0Z4zRq2nHIK/qf/zH/8v7sYu3wuExe/gy8aYdKWdRzzxnPk285+bWNSQaIujjPflzk15O0+0pMMIEXTMqXS62Elg17RtGlJeYlUrwsXreFHyzdSlRg50JuRKZXcZiqwlcqUSo0mqELnIiLbQRH4TlRTSkRERET6rEWtbSyZPhS21ANw6KrN5LW387NvecltN1gY9ivfyvKyEgBsbzuBRLc0Oy3TqD3o4djKFxlrNmC8MZaMbGJr6AjaWk8CIOL1sJkYxauXYg0ehReLSCKTyOO3iAOxRJdBbyJw1b5oEc899RTLDp1J7urF7r68dpz/fPQ22rLziA4so+Kuv8JZRxELh9MKnXcO45xdUshv1le6z3O8XYWuHP4OQSdIH33Pcv/ynKwHlV4HKy8R/NocjvKXLTWdtgldZ0q5Qam0piczv3a0plSq0Llu1ERE+iNlSomIiIhIn2Rsw5yWFmpz/e60opZ2br7Iy+HeM4n7hwAwuqqJUz9dzSGr1/PJ+BrsRPAk7Lf43lVemkPw+ZABhCrXMX6rzYRyD9M3ePHnfQRei7L2ciioZcGoUmb96zGmLf6YyrpW/PV1fHPZa3xn/r+4cOkr5NbV4W9fyrKSF/jBfxTzo4tDvEgDLeFUm+sKS9zHWa1N+Bpq8ZVMoqCxFv+Gtfjb24Cuv4RPzs1i9iETOXNQIecPLuLLgwu7fW2S3ffSM6WSj9NH3+sqU+r7w0s4IC/bfV6TqGGVXisrvaZUMgPL69lGTSmlSomIdJAebNdFsjvKlBIRERGRPqnxtfUZNZMAaosmMn3TRA61prJwWCnwIB4DrVklLD7wRxxZmcWKicug+SU+L82jqu48Yp7f0+5zvvZuLWynpD5EIOrBMlHig0LMWLggYx8DV83nlpff4dI59Zy+bK07vdC08OCBAaLWRioKgHywV24iu24Qg4FNpSN555ivEfbGOXj+v5m2fAFWPEb5kj/w3YXNAMQ9Xv5y3vfxWFO7POYJOSEemTqqx9cmPVNqdWs7P1u5mX/XNgGJ7nukgkqQqgcFcO7gIs4dXMSPV2ziT5uraUxklmVmSjm/411mSiW673VTuH17JDOslCclInu7bfbMM5biUt1QUEpERERE+qRYTRtePG5NI4BPp1/JkKiHhcCI2hx3en3BGGxvFgCWcQqGlzXGOXn1YlYPGkBb0Mm22jTICUr54x4wEXyFSwllrYa21NfiYPYKvHk1BBPBmja/j6xojNxIG1YyyBPJZ3BDhONXNQKNAIT9cZriT2JMkJp8p6ufJ9qOHW0HwLYsvHac09/6B+9t+YwTL7yU3KLiHXptfGlBqUc2VbsBKYDDCnJ5sareeQ1N5+57SVmJ9KZkUMrXZfe9VK2q5LTkUt0VbhcR6e90Sew9BaVEREREZK9UVp/Pe7P+m9LKufijLYATJLG8RRgsLAwj2jZSWZjvrmP8TnDKF7fARAi1vIcvHgd81ORHGNAYwGuc6kz+xCB9tbkBhtbF8MVj+MIRDlmaRWlVPsF4PKM9NXlrCbVuAcAbzgEGYiUCPs3ZeawcN50DF73P4OpyVleXM3zseGaccc4OHXsgrfteVaIA+7TcLJ4+YCzFfh8vVzc487vovpeU5XU64jXFEsebUeg8lQ3VcXQ+Nyi1MzKldOO2T/l7RS2PbKwCC44vzudHo0sVsBSRbVJQSkRERET6pIaqti6nB8atx15VSowgkWABG0ac7M4z3nY8FMGAy9gU20jY3sqB5XOxPHFai0dwbv0UNvAWgaiHgmZDTaARr50I8Pic4IzXtrDbSvG0xoAK2gIe2kIDiJWcyJXvjSVc/yCGdpJj6K0rbWXu5FragnEK2gZhGR8+28mUwo4AFlGPnyVDcmmjgFFbWhhSHaO9paXbY2+KNJHrz8Xq5oY+GTSqisaY3+CMQHjliBKK/c7X+46Fzr1dbCcrUQh+TZtTFMvn6RyUihlDLDliYGK2230vvaZUt0ci+6q2uM38Ruc9PCM/hyyvh4c2VrG42fncLmpq46D8bE4eWLAnmymyx6R351MX5e4pKCUiIiIifVJbU6TL6d6AB1/wU/5+0KGcOh+yIs7XfduCoQGL8jbIsvMY55lM1DOJIVXvMqaxAo78ChGK2ADkt/r58uyhrBhegy8ecvYXzAcihFoG8bXZFo35bbw8bQw+O0bF6G8TCw3GGIMh2S4vlreYCS0nsSL8DKMaBnLMmq8DEI+sJsq/8BgngOONtXHJvP3wmimE297G8AnR9lTQbXVVM5vq2ijK9vP0ul/y/OrnOXrY0dy6cCyr57zHQm+UnKwcvv77PxJduBDv0uUw9kBa4zatiVECh4UC7vaS8aVkQKmroNG47GDG8+y00QqTAahXq52uid54jK2fzsdfXISHPMC5yUqOJrijqVLu6Hu6Y9vrXL98I89W1gFw3uAi7p88kra4nbFMeTi6J5om0ofpYteRglIiIiIi0qdZHb7EW5bFfqOHclr7ywyYtJVQbTG/nPxlhrb5+P0iPxuJ8VRZgP3WhPFjES4eyNZgGXFyWB7JIpo1GhPdQCAWZ/SWHCKJDKnm/ClQvoCh9TG8ttN3z3icLKdo2xNY4QH4so8FnOWDhVdgWU5g56QVV9DaVg5+wNhgeTPa7POA1zhfvb2EiAG1L7/Eyj/8P5YXDOSHR4+E4Fa8OWvw+Jz6ULM3zWbrH/7NuuEltBbl0drWzG8v+Sq+uM2gxhZuKXie6smHkHPYQeSWb6Ct/FM2zziEoftN6qLQeeeo0akDC3h15gSe3FJDfSzOxUMGptrbYfmZn77H7HlvAFAEzJiWy9yWI7CLjgO6rlkl+7ZVLe3u439U1nHSgHzCia6vQ4N+Noejuv0WkR4pKCUiIiIifVqA9IwpC//G9zg8+2kOr09NfTdcypr8E4EIo0OVrBg7iv3WOPNqBp9OedZI50kc8kLnYvsbiDQ+ij/ucYqeA6d9MJtNA/LcgFR2JMqApjY2DnBqUhm7BlreTWuL331UanvwRuPU+qGwfiW1+QNJZ3ty0w7ByWjaGG2jsjhIZV6YMeY9WohT54lk3Mhf/T0fX34/M6Mp5vVQXpQHRBm66B3ql71PMzAPWD5nNpf99lG3VlOyplRXvQAty2L/vGz23y+707yDC3IYGvTTEreZmBPiaG/cbZcFHLW0kXk8Se6ELBg0c4drQ7mZUju2uuxBzR2yop6prCOc6C4aSmTd6bxK/5b+CVDgvjsKSomIiIhIn2UwHMgSlqR1QLPiTg2kGB58iayl0W2buariaoaFFgNw48ZDWOi7iUAMosHB7rqlFR8SLSiiOjQByzcME9vkbNNAXnsYEl3TAEIxLyPrg1SV5hPzTiHWPoeo2ZqY68OyPPgjjUQD+TTYHsgeBUBWWzWeov3w557PwMp/EAoF2Ow5A4A4Npa3yGm/10vM6yUvAifML3H3uyZvKIvHbaQ4XsvBS4uIeJysq9xwLTErl7jHIupzAmL1gcyv862NTne7ZOaSO3Ledt4QjcwKMv/wKe7zNxZk8ynQGoyRHfbhj3s44rMBtK58mRXfnqmaUv1QU6LQ/yVDB/LY5mpa4zZh2/k8hhL9P436ZYokKCjVHQWlRERERKRPC9EOpLJ5LGxeGv441w8q5Y5Nd/LlrW9yXO08JjUtdZeZ1rKCeT6LQMxgPE7NqJnz/5f8pg0ArB59FutHfhU7VoWx64hZdQxsegqvbYgnCjI1DjiOj4fOYGT4HdZ6R0L7HHf7vuBkALLaa4gGUqP7AQyqWUT5kCPw+kdQN+w/gVRNpyhtBH2jWD96Mp+X/JvxG/PIbvcSingoanYyqMY0bWbMAg+QyrZqDcZ46sQWwgGna19JbZD9VxXgi1vYHlgyqpET55cQizgBO0+HTCnvTrof2loUZlRF6hYiuz2MFW/e8dH3Er+Ncmr2GvXRGP+1egtVESejcGyiNpkTlMrMlLK73oTIPknXsR2jP2qIiIiIyF5lcdF0vjNmOHV5fqKWkzGUF2/OWCZgRwn7Mm8Qioqr3Mdj1z7PMbOvoTk7hjcwgTUjppMXjnLs2npCuRcTLLgcX2gGAOuDx2B5ywiGTmBguIxA/nfwZZ8IgNfXzrBNb5PfuJqC+hUc/PH/MGTAEKbXvtip3UW1nzNp7VtYlsXkLblEfe28e0A1L07P4u/ThrN47EziJcM6rffaUY28ekQz4UDqFn9rcZia4go+mbyV2Uc0srXICUYZ2yYei3Uafc+zo/3rgFhdHdGKcgDqc6O8dmADc0ekuiMO2vh9Xl/zjx3evuxdLli0hifKawFnBMcRLRsBqG9t6hSUEunfFKTqDWVKiYiIiMheZVN6faa407VtcMwZye7z/PFMalxJdryFgroXGJVzFm8MjvDt+j8x9rBNtB9fRnx5Bb8b/A2WDjuVA5Y52Umjq52bB184Av4BWMBQv83mqHNzbVkWocBIZuXM5eP2WmJ5TdjhhUSbPmfCqvUZ7QuW1TNh2hgOrzqfiMkmGg+y7P1h5FZsZcPwkwAoafDywO/jLJ4QomRaEwMrN9BsLWN5/iwiQ4ZTU76FFTnjyC4dwKxqp6aWjU3UE8VrvJx/9PEE77wS8nN576fncX/4cXf/zQsW4MlxugMm6/7saIjg/X+sYunLS/FUr4FEaatNg6Ksbz+IQ5ntvDYGFlcuBC7c7u1biWCZbt32DsYYljY7n7VJWX4eiL5H2wt/hIMeYl08VdzfrSmlEyv9VMc/A+ij0D0FpURERESkbzLdfJFPfNtfNWsKWS1DoBoKLCdTaGhhETQ6X3JbrOVMCkb55fRW7p3/Ii2ePNoDWQwY0c6iaZOpqy8iK9oCQCiazerRX8IbTwxhb2xGl2RDzUI2t08EIDvYyITvnkjB8w8z2LscgKbiABuXDcRKNDRrYISyiRbeUUOgOk7QaiHL04TvmMEsCf+AjW02wTDYiTpR+29oocBTTe2yXPKp5WBepHXUcK459kY21bdze9BmSLSJem8Tr0Ue4fRVE/A21WMvrsM/6Vze4BOWvfEKwSmpLKq1l1/OwD//HUh13yvy79jX/oWvbwBfLsHCkdBW756AaGwiJIJSHmNR29Te3SZkb7XxI1jwF7BtyC6i6rD/spT1FQABAABJREFU5PwlW2hLZEO9+NpxZNthygMDsYyNsZxA1OG5fvJ8yULnuhUXyaTPREcKSomIiIjIXsVYFiGPRW7ID/5E+k7YqbWUnz8CZxw6uGombKh5kJFtJwDQ4AtRYcMAwG9HsTD4gx6iYSegs37kae4+/NFmIgeN5ZxPv8ri+lnUhQ5iXOyfELuYAf6NbrGcvJwI5ngfQ1uqqBtaxCh/Ndh+iLYC4MkrhaYt+K0YDf4YkXiQYBjiZdPgc4hHPITrna/kvlCcWLsXX3kVsbATZCtuzWUChdj1W5n0eguwINHCtfiOvIHhnhCN3lU8/Nty3pxiMJbFm/sN48A3nuGWr1xKu22T7fHw1bLiHXqtvUEPjf41xO1acBJk8NiG3DJgpfPcMuD/oqPv6T6t73nzF7DOGW3SAEf4z6Excfs4pnUj2bbzHi0bNIq/jc5izev/w2lVsxl01XtctTnmrifSf+kT0BsKSomIiIjIXsOyLGzLItub6JDm9SfmJL78B3IgeyC0VpNf8R5TgT8vfQOAuDdAxHK+/gZMDMtAae4W9s9+hKUtJ7AmcjjgBKQmbnqOmUcfDp9EmJr9GoyJwJrlEG3FZ7dltGnKrAmwagMFU06DJc9CUzl8+pQzM2cgNG1hGstZ7plHg3UIANneNc5826KlwinEPnBqExUfFxIIt/PLf93OqvwywodcztpQBcO3NnZ6LUykmf2HHIcv4iMQ/4hQNEZbwHk9Vs97nx9c9Z/4g6Ev9HrHfc205m4g3tROADhqSRYnrvsmUW8rDYllPEajSu2TEoFVAnmYSLMbkPpKxSv8ovltGHMsnPMA5A/hKOCoihfBdjINk+8IW/fkIgm6TnZHQSkRERER2btYaYWUvYHMeb4gfOsZWPM2LP4HVHzmzsrOKSIac4I2PhNjaE2M3FALI+OfMDL4CXVrc2ioKSAQayVvRDvWuyUQd7JBCCZG2Gurxw2AZRVBWx00bHaeF4+BQC5E0oquDzkQKhYBcL71PJ/SzntMod34aRw8lmBdFcFII56ARe7Qdjyf2thRDwNb6xjYWsfSlc+T39JI29bVrBh3Ho0Fwwn78ympWkxZ80oKttgUbZlHdfEUhtZvxLK9rCxNZEXthICATTzjeTR7JtG8kRhjIPHSWGbHu2mlRt+TPitvMNSk3tO/2PIkxdcv6ryclaxcljqbOq8iSQpKdUdBKRERERHp07oqGHt0UZ7zxM2USvAGnEDQkAPhiGvh7f+B6hXgz2bAgRdw2Nu/hHo4+6MG1rVGGX5kAFYAQw6iaNbhFM35XWpb9WkFzJNBqWVpo+rlljpBqarPnefZA+CyN2Hlq9BaAzklcPCl2APGE53zEMHmjWRbTvbJ1tgEtk66Dq9po6BxDl8aPQeffzObjj6HzdHp0BJh0rL/x/iVc/ls6uXUj/lOxmFuHD6YQR/fweKhJZSP+4HTxOZPOHTBn9yg1M6s5xMwTg0s2xvAQ7JAuQUYLGM5QSrZNyXf++7zvK6XS47waOzUw13XKhHZRygoJSIiIiJ9WOfQymmDCvnWxOHOk/yhmTMDOanHlgXH3ZQx25+oQXXq9M+wjjkVa225E5QK5sFR1zvbW/RXKP8UmremVgwVOL/r1iY2lA1TzoF3Vjj7yR0MY4+DkonOTxrPEVcTPOJquHs/htmfMiK4gJZ4ETWxEcStLGoLjuftpjJm5EZZFj/FGSovD+YdfDOTlz5GfeEEd1s+6olRCEA0NJDysiPceeHcg/jgkFHQ+icAXnnoM2aeMYEh4wq7fXV3VLC9jnY8QBzPTog8KHjRB5lURqBJDw1nFXWzQjISZdJqhenMSv/R8e2u93/vKCglIiIiInuVoNeTyNQBpn0VatfC5o+dgNT+X9/2yv4sADxr/g1r/p220TzILoZZ/wEDJ8AT58GWT1Lz9/8abJoHdeucLKipX4ZjfwzH3JjKEOlJqICs5grOLLoNgD9U/oWwcbJONkQnsaHu551W2fzla2FZA6EsL2d9ZTwvL3qVpgW5YPkIBzsHB6KBfEiUAtqwtAZ/aGNmUOrdX8Hnz4PH7wTsxh7fu7a7nGP12FFIBKUs42RMyT5qyrlOVmCCdeR1XS9npTpjekiOvicism0KSomIiIhIn9XlTW16DMjrg+N/2vsNHvZ9p+ZT3XqItTnd/fzZMPOS1DIDxnTeYel0uOyNLtqyHXVCOmSYhHI8WPhpb45mTJ+c9SorwkcSs3NoWOaUEx8zczCDDh+Cb10Q22PwGAgHnIBWbiDCrw/4CUXNxVzzykGsSvauMgY7Zme24e07IR5xHv/tYrhxHXi8vT+GBCco5Rz7IRtOp6BiPK83LOHgL42msCS719tJdfNS+KKvWD63gtlPLSfa/lNyPNWcbwoJnXM/vP2ps8CYo7tZMy1TSt33pJ+ztuf/hn5OQSkRERER6eMyb22/0Jf94YfABX/f9jLFY+DoH8Hsu5zno4/avuBTd47+Icy5Hzw++NKv+FbhCMDJaPq/+5wb/kDA5oi8P5PnrWJu87fcVQsHOYEey7IwVhyMn/UjTwPAC8S8UeqztzJq3YusmjbaXc+Ufwav/NU57vEnpwJSAOFGaK11MsS6CUx53EeZx++xo05hawPjqg/A4x3AispKNi6r4zt3Hbnjr5HscWsXVhFpjwMemu0SKiujjOhNdCmt0Hmq+96uaaPI3qHzB0AB+M4UlBIRERGRvsuCRjurw7Td8Bfo438KR1wDsbATtNkZxp/k/HQwYvIAvvnzQ2lrjlIQrCPwaBszc//BuNAHzB17F+OmH8LIcT5orsJnItjeCF475K7vS7wcUb8h5k3PjDKYxgr48PfOz3FpGWW+EMTa4e5xzvPDr4aTb89olx2OcWAAXktsK53HxEiFrGxsTzseO0RbYwRjTK8Dh1YifKHgRd9l7J6XAdLS3tKCUroBFwHIrMsmGTw9LyIiIiIisgckIhXlduZoX7utV0QwF3IG7JYdFpXmMGRcITnDR8MNqwEo9JVzQOQxxs49F9+9Y+HucZy78nqC+R+Slai7bhnDIJ+Flbj332ZLq1ekHg+ckDkvfVTBhHhdGH+nLabXlEoFIeoGvp5aZDviELpN6/s6Bgy7P2fpQalEsHFXNUpkr6OrXXeUKSUiIiIifVaDHaKswzTL2sf/rpozkMfyvsslTQ9TWLsIwtXuLJ+JMsK/nJkjVpOz+D08uYV4fIO5pTLMllA7xsrJ2JTBA/udActfdAq0A3iD8OWHYdkLULEYlj4HkdZtNilqh/GnPR9U/SkVg5ygw9bs1bQXzGfA1jN3zvHLHtUxkGRML2+m3cVUU0rEoU9AbygoJSIiIiJ9VqvxY3X8Yt8P/uC83u90qwsmA1IDxsPIw+GTPzOCzQwuXw4DwBlqbwvntwFt8DHpQSmD8efCsJmZQSlfCEomOT/Vq5ygVHTbQamOBjR8Tigvm7agn8LKObS3+7HtKjy+QRh6f4r6wancq6yuX83ahrVArjvNmF7eWieDxUY1pUSk9/bxPzOJiIiIyN7KdHNHa3n2/VDGhsA4NpmBqQmjj4bsAQBMYzkA4UYvLS0TiZt8Wk0WG1vyOwV5zNCZkJPYTnli9DR/qh4VgcRIed0EpZJJMh23a2MxpL7ZfR5qyCIeWZzYz+LeHGLmfrZ7DdkVfvb+z1hdvzpj2vZ337PdZWydWemnGhs+YtXqX+7pZuwVFJQSERERkb3Lvh+TIuLL5ajwr3nxtDlw3TI44x4YezwxT9BdpmlTFlvLv0Z5+EkejV/I3zbsT2ZPK+MEFAK5mRsvnZZ67E8UkbdjsO69jMUygxGdgwv7VdTy+ajx1OUmR/RzKmKbVa/1+jg1anrf0hBu6DTN7m1cyT2ZqUL3CklJf7VqxfVs3vzEnm7GXkFBKRERERHZq/R2ZLe9mWU59aDC/nzIL3MmjD6KF6b+nv/h+8w97DGqFuWTvO2Pe9Nu/9OiScYYGHscjDsRBk+FAy+Eb/4ttWwgFzyJalF/OgPmPtxlezoFF5JBB4+XdWWtmfvt7Wht29q+9BnG3s7OmOq+J0I81uQ+3tRUhm0SlZP0oehEQSkRERER6dM63RL3g+573sQxdspS8fhoJ0TYX+g8N04EqC4viuUd3ClTCgNkFcG3/gHffx/O/h14vGk78sNZ96WeL3+pww5Nh1+Z/fk8Xd5f9f6mS8GLvsUkzl3U30BLznpactextnYrtulFpDE9U2rXNVFkr7Is9iA/n3MjCr10T4XORURERGQv4dzq9odMKU/iGO0OUSkr7cbf+WWSMwjmX4CxPsBKze22LleGA74JHh88ezmYeC9b6GzXyiiCbTKaJHsfYwwWNvXFn7oRw482w7TKSneZbj9/bqFz240b660g/VfiekgAQ6SHZfs3hetEREREZK9i9YM8jGRQqqo5THs0FSjqXKvHJJb3YFvxDkEA0/sAUTJ7Kn2Fba3sZkqZzqls2xGVSoXYFL7oCwwGy7LdE2PZTg5De3t7L9bu3H3PVoRS+q1kUCr5adj3/9/aUQpKiYiIiMjepR98t19W0QjAL19dzsG3v8HGWqduU6eglElmLFkYK7OrXdrsniWzXOzeZkolVjMddrg9+5Q+yUr0AfXEQnjiAaCXwaWM7nsqdC79mwLtvaeglIiIiIj0Sckv9VaHL/f9ofveiZMGu4+bwjGWVThFczsGpUyi1o8HC2PZGKtDzK63ESIrmSmVWTuou7WTtas8GUuYDr97sVsFL/q4xPlJex91/+nrotD5rmqWSF/nfmZ0jeuJglIiIiIisnfpB4XObzhlP/7x/cM5cEQhkAoKuEEpOxE8Sk7HIuoPJ7qKpIJD250p1cuaUm6HFNP5Zst0qs4ue4vk+6zF18IHZbN5a9irLBiwoHe1yZLvIVJdOvVOkP4rWe9PIZee6BUSERERkb2K1VoHdesg0po5o6UaNn4E6+c4vwHiMVj+Cjz1TXj/vk7b6qtygj5mjCzqlHHSuaZUIlPKeFg47cXMNBbTy0LnkFZTqhejrDkNcX5lbH4HMqUUvOhTktmJG3M2sjl3I1XZlazJX8Nja/7Q88ruybTdm0x15ZT+RO/3HaPR90RERESkb+vwRd/69HH4/D8gkAf/MQcKh0N7A/x2BrTXpxY85U54678h4nR9Y/mLMONiCBXstqYDzp2KHQdvD1+9o21gx5xl7Tj4Q27B806ZUunbxum+V1u0KSMoZTA9x5jaG+CPp0Htaud57Vpn38kgVXeShbANnftz6cZsr2ZhsK3MN87G1o0Q6HlNIJEolRg9Um8G6bc6FjrPnC4pCkqJiIiISJ/lxDw61JQCpwZSpAneugM+farrlV+9qfO09sZdE5Ra8SrUrIK5DzoZW/4sOOgiOPYn8PAxsHUpePwQzIMDvwUlk+GAb6TWf+Y7sPgfmdv0BrHyHwdSf4HvHJRyggeWsbCNEwJIz14ydesgflD3AbFNH8PWJannbbWwZQEMm9nNgWbeYHlMV+V8d2D0Pd2n9Qkdz2YoFqLd107UTg1p323nWXeGUQac9HvG/YvAvt/d/ItSUEpERERE9i45A2DKN2Dh45kBKY8fTv+lE6h58brU9NN+6QSv2ush0tJ5e/Megc+fdx4XjIAv/Qp8wd63p3oVPPnVzGnRVnjvXgg3OQEpADvqBH0+SHQjHDwZCoZDUzks/Vfn7cbDWOFGIAu7Q1Dq/fffZ9Dxx3Fgi2EE4MHjZFNlVjnHRFqh6nMondZ126OJLpD+7NTj8k/h9Vug1ofhO90cdCJDKz0AlswMUIRpr9Xx3Hlt53YxkhaU6l7nQueKSkn/lVnoXLqnoJSIiIiI9End3c9aPj8c+j1ornSCPE2VcOS1MP1rEMp3up8NngLhZuf50JnwwW+doFRrDax9F+IRZ/3GzfDv2zN3MOFkmHAa+ALOsm/c6tSvqvoc8oc5tXOmfxWO+6mzvcrFznqhAigcAb4s2DTPmfZRWi2ebzwNa952uhHWb4A/nATxcGq+xw8/Xu/8fu1mmPcQlh1LvBbOqzFmzBjmzJkDQFVJCSvqk0Epy+mu1+lF9DiBsWUvwbr3YPWbThsP+74TEEvW5Ro43glGQSqgZ4/p/uQkR98zxh2JL7XP7Y9EKHbRNxgy+2N6jdONM2qiPa/sFsu3NfqeiIJSvaaglIiIiIj0aZ1ubL1+KJsO33qm6xU8XhhxWOa0YK7z+0+nd71OINcJZG2cC3+7yJl25n2w7l3YPD+1XOMm5/cHv3W67CUDUgDDDnHaZNtwW1Hnfex3qvOTOwjevC0VkPL4IasQpn0VAjnOtOwBAFiNG4Ap2G/8F0z4H8aPH891113H7Nmz+fjjj7ETffXGtY/gqK0RsDal3QIlglS1a+H5q1Mj61Utg5WvARYcfhVvZmcxLxAht7CAixqbKLBt8PhgytdgQdcvV0ZNqbT9gbri7fWsVBDUa5zbxajdm6BUKhTl1kJTWEr6PQWleqKglIiIiIj0TZEW8KZ/oU+M+JYMMG2PwVNT3eiSSqdB4UgnijL2OMgqgs2fON3swAk8DRjrPD70+zD0IMgZBP/vHCfTKj0ghQXjT3Ieejyw3xlQsxIufA5e/hEceGFq0aOuh2lfcQqb+7OczKWOSiY6m0oGeurWwis3wdjjyZ92PqWlpc70xOIHtUzioJZJrOMF0sN4Bo/TjdDEIVgA4QbwBp3AXqSZ6Ae/5YZRw4laLVBUQH6oiIu/Mwf8WbR+vhkWfNyhYVbGb6feV8fAww7UlFLwom8w7j8AeG0nU6qlvRVPbCu2t3Abt9idu+/ZOq3SL+mNvz0UlBIRERGRvinWDl0MAmeNPWb7t3XOA3D41TD/MYhH4Uv3OoGZjiaf7QSm/niy0zUvd7AzffjBMPU857E/B6KJ2lQFw+Gqj51R89KDZV9/ItFYK/U4XVeBqHSTzoLL/431TAWUA1iw8Annp3krlncGACbaBh3LX6WqoDsjP9WsTB3DtxLF1J/9Hiz6KzVeL1ErFWZosAwEsgEIt7W60312omhvZkwKj+ni9kuRiL1Wx+Bgsvtei9XEgC3XE/cOJGa/TNcfzFSIUd33pD/LHJxDmVI98ezpBoiIiIiIbJdQ3vav4/U5Xf6+dC+c/buuA1LgTC8Y5jwONzoj/IHTvS/pwG85galAnpMB5Q9lBqTAuUG3vsDNiGXB0Bl4cgcCYI85PjXv1ZuwXvpPZ3q4nhbrMpZmrQGSoxWmmKxBVNtfo7LuDCrXTqZlbqLW1awrYeKXuGLE6IzdRroJI1gdJycmFDU1E3J7dpm0f3t7mB1GE5Q9qrA+5hSvT7yJsmyL7HA+g5pHUNxSRjDSQFPyM9GRW1MqPVNPpP/oOuNTQameKFNKRERERPYqlrWL/64aynd+27FU8e/0oNTpdzk/u5HZ/xtwzCHwl7OA1F/iDRbWsPFsaqxgclvHwuSGeMRQ9cK7iecLaHx9NuNnv+ME6L7+BBv+30Fgp9Zo720YIXGfddaHHzBlUAHLh6TvVqGIvVH70qXc8asq3jrKsHKwcw5DcS/fWnALHuMEcZsCdcTP73YIAueXsd14rN4J0h9ZljKltoeCUiIiIiLSJyX/6mx1uLW1PLv4S34gF0KFzmh9AL4QDJywa/fZjWTBaNsAo46Eo38E9Ruw4uNgSQtYYB13E/a/3qXWasbukJ1l4nbG81hdHU1vvoknJ4esGTOIJUb3u2D4yTyx8TUiMQ/P3PlXWhpaCAWHE2gLgD89COhsPz4iQHtTHr72ViezBtxglGmp6fXxua1V9GKPa3ztNQD88dS0QDzHDUgB5EWKiLREIb+LDXTVfU8BSumHuv4fSsGp7igoJSIiIiJ7lS/SK67XO7jwn7D+fef58MOcEfP2ADfjxBhnVMHjf+pMWLgQljyHsSxiX76Mww/+FmtH1JBjpd/6GKK24f6zL6LSKuCMBW9x6PrFbLryKgAG/fQmN/CX488GA1lLR7K++nEAPP7RBHLPJegfBHye0a7YyCCfj7qY/Ln/R6i1PrPRdeucIvGzf+mMRDhwHHz7RSe4F21zCskH8sDr021aHxKa4ARe0wObwZZk90ob2zJ4jZd4PN7l+umFzj3qlin9Wto7f5f/h7X3U1BKRERERPYq1u4oizr0IOdnD0tlnHSY3uFGJxQxqXomacvGsHjZmkIcL6eHnawp2/JgGZslny7mVM+3WDNoOS/yIoctHUKgOq0ekO0UOveYrm8ZnHH3rE6BJROLwMKnoL3BmbBlAfz3EPBnQzRRPL1wJFw5L2Nbsod5nM9Vuz91NjLqk2EDXux4N2crPVNK3fekH1Oh8+2joJSIiIiI7CWcL/e7vPteH5LKOOnQhTF515+VBcEAGCcoZSxnadLWiidGSgvZUaK+LOpyh7Fy5HQaNi6kFBhSOZNPxjQyectQbFa7+wgE04J/naILVtq/JnOhpkqIJLaTPxQaNzuPo6nR/KhfDw2bsKyS3r4UsqslI59W6v1m0j5qticOcT/xDl1CXW6hc7vbYKpIv9B//ovaKRSUEhEREZE+q+NoctDVhH1Xqvtex+nOjKwDD8RXkAWfm06Bq45PraxS3jv8aozHS6TpGXDKSWG3f8yU1QVgnAntOWWEWsp71T6Tth83O6CtlkQcDC56HqpXQDwCgRwYcRj8agqEGzIaqNhFH2C6CkSlnthWItOuu0yptO57qZwpnVnpf5QptX0UlBIRERGRvcouH32vD7HSC513Md0Yg+XxgLExVucgnmWCfLMpzhtZUeJZpdiWTbT5ZezYhozt+WIxDFEANhStYEJLXnctSntsMuqluE0sGAHNdTDkICge7dSUSudJy6jpP6eyz3OLkqef0/QAleXUkrLtbmpKpVWttzrk0In0J9Y2nklnCkqJiIiISN9kOj0A+lf3ve4yTizLImK8vFOdxZLYKPxFkGv7OTS91pRxggdD416+2ezB9oaItf4bO7rCXcSffSrR1lec4uMeJygV83bojpdoR0YLrFSLrA6/zZhj4Zy3nO5cXRb57Zz+pYyaPiDt89ZsAgAss0ZwCBAnLVMq1lOmFHhSD0X6Hyv92taxk7M+FR0pKCUiIiIifVK3t779aDQjzzYypVbEB/FxdS6QC8WADTPT/iofiL1LQ9YMcmJj8GMRDRVh7FSGVE68jph/uLM9E8HEqwA44dM45YVgmVRGTAyP2yOvQ0vSHicLrSdGCuxORu2h/nMu+7xk9z2gNRGUSp5fG8sNSvWmplRSx/etyL4srSybS9e4nilhVkRERET6pGTwqeNXeo+3/3yFTQ1olrq7/2hdLT//dyVLY4MB2N/XzAGtDRQRByz3j/TZB0+lbUQbDYlgQlvefphEwOCgdRVAO1gBOipsSQSjEsu2Gx8rvYO7a2Gnhz3GIdxCWanghQpi9wVphc4TbyJPWqDKJDOl7O6CUmmj77mPdGKl/1FNqe3Tf/5HFxEREZG9hrFtYvFIl/P6U02prjKlbvu/pczb1EorTkDp4rxG7tm0hJt91Rk1gIzlIe7xUOVNv0FyAgqWMfhjMSAAVpY7d1B4BDnhaEYbwsafsV13++5of6kpnRrbFff8Gd2u9SE1ra28e+SRtOS3u6fSkxao2q5C54n37Zs1TTyxpYblLe27sOUifY2CUtuj//yPLiIiIiJ7jXWLFhCONnWY2g+/3Lv3+ambnOawM0reRG8l3xpSzZFZYTJvgpzHL27xUR/18XLxOv6vZCEjVz1EbssmZ7MGRldEsSyLQN43GBQZRyD/EkKmpNN20pqRNidVScoyHef1dEydu3kpn2bPW1JTw5ZhQ4kFbJJnJP28Jwudm26773XOlKqJxrh++UbOW7BqVzRZpE+yLAWltodqSomIiIhIn9PaUN/td/l+lCiV1g0qJZboPjXGW8OIUAFWLDH6XofMpbWtPmp9PkqL72VIVZhBNTZbsocBPixjyG0NYpk4Hm8hTYPPwgM0BYO4HfV60afOpP2bUVOqN0dllCnVl9iJ8xZs9ePJTWTPmWSRZuNmStWsamNx+2bGHjSIrNz07p+p8zolNyujOH51NLbrD0Ckj8istKerXE8UlBIRERGRPs3Ec4Fa93l/KhzbVfe9WKL7VLJrleXxgjEYDB4rPYfJELGj3PXnNvLbnGkmsT2PMWRHI/iiLUQD+e6204ubJ3UXYjKYbkbX62X3PWVK9S2JkzDEKmJAfBPD1tqY1lS3u2RQauPsZjaynKqNTRx3wcTU+mnn9ZjiPBYdMYVN7VFOm++M9mjSuvWJ7MtUU2r79KO/M4mIiIjI3sVgDLQ2npoxtT/d2FpddN+L2amglDEGvB4ySkqnJS6ZaMwNSK0fUEKTP+RsF/Aam6lLHs3YnzfWnNp33AlI5NNMV5IdvKwOU0xXBai6PqiuY1qyRyTfQfn+LM6Zs5yf/dXmujeWABCIR4n4whnLtzV2qPlmZeb1DQr4GR7qXEhfZJ+XPv5Dp77PCsF3pKCUiIiIiPQ56UEYY0KJR863e1+w/3yFTWZKmYxMKSdjJRmUcjKlOnffs3wNRNMyn2qP+CmNwRxn3cQGixpWkbfiEd7LbuS57DDBhiWd2jCJtalAl5XZMaVLPd10WZ07Jeo2rQ9IOwmFTYkMqcSpCsQifDDqdT4rfQdvMJG916ngeSrY2GFKx82L7NOUKbV9+s//6CIiIiKyV7NMnLGr/kb2wP5TgSIVvukhU8qYTplL2cMeJxZa5643ywoxONfvLJUWOIiaGCuDYVYGbDzYHW6owGt1Vdg6OSpb57DDjhQ6l77AjTy676GVJQWJKVCdW8n7o59lzJfyALA7FjzvItiY/vZQUEr2dV2H2a0Ov6UjBaVEREREpI/K/BLvsWMM3fIOAV//6RJkbaOmlOVmSiW77xlC8VD62vjz5wEQtwDLwpMIBKUPDlUdyieGN7mKy3jTt9U14/6TPrH3hc57vYrsEasGFSQeGdzz5nFOlm13OGnJYGPVcti6zJmUNlvnWPqLzC57Ckb1pP/8mUlERERE9h6JzJ9O8Q7LYnzh+D3Roj3C6hy/IZ7MlLISmVJuoXPwGR9utScDOT6noJTtcabacac7X+mPf0xOJMZPXl7FB2VTSf6turdF5I2bT5VavmNtqe4PKpUp1VUmmOwh6W+yxGPjSX8/dAhKdey+lzyvb93h/Hz1/2GNPz21yZ3dXpE+qmO2qWybglIiIiIi0mf54tGM55bH178KnSd+pwdtonYi2ymZKeX1YIydWKpDdhlObaDWgJfa5qW0NzcBkH/M0RSWDuH1pS9hAH+i9lT3Y+kl/+082HmnYFSPiVKdu3lJ35SsUWYZ4wadkrGnTkGpmZdAaw00bIJwI9Su7vBuScu2EukX1H+1N9R9T0RERET6rNK66swJ/SggBZ0Lndu2cR+7NaU8Xkgrcp7eNc+2YwB8NqyU+VX/l9qu14tlWWR5nYWjie57vc2UcsNKXZwP02Oh8/RMqf51Pvu0ZJkwtn1+k2+wTkGpqefBf8yByWeTWKBfBZBFklKZUrrC9YaCUiIiIiLSJ1lWZkFugPa8/D3Umj0j1X0vETyyU8WlPYnpllvo3GQORW7Am1i8JZiqw5WVX0B2YREAl4yJMap9I8M9dRzoqSZnO4IInYv6JjOletiGCp33Uabz47SsNpM4r8bbTVAqyZOoT9bhs6tEEekvkh8bBWV7R933RERERKTPMV3cINteD2/87L84eM80aY9IL3Qetw0ba9vceRmZUsZOlDpP/WXeAjxu3Md5Dc/8zx8zcvpBbPjsU97688PkRSKcFo7SVrgf+fEQHTvjOVkz27qx6jy35/pQqUJZbtCthzVk18sYLyyZmZeWw+BJBKUst6ZUN0FFN+gYV6Fz6adSmVLdz5OkXZYpVVtbywUXXEB+fj6FhYVceumlNDc3b3Od9vZ2rrzySgYMGEBubi7nnXcelZWV7vxPP/2Ub3zjGwwfPpysrCwmTZrEb37zm111CCIiIiLSh9heD3Wjx+7pZuxW6YXOv/nIh5z4q3dS85I3Nx6L7kJByUwp2+N87ff6/ZSvXMbHLzxLQ2UFLXW1mfuDLu+ZUoGu9KBVxxpSyee9774nfVxapoflBqWc551G33MXTGRK2R2CUrugeSJ9kbXNoJR0tMsypS644ALKy8t5/fXXiUajXHLJJXz3u9/lySef7Had//zP/+TFF1/k73//OwUFBVx11VV8+ctf5v333wdg/vz5lJSU8PjjjzN8+HA++OADvvvd7+L1ernqqqt21aGIiIiIyB6gm9hEvAmwjeGTDXUABH0eDh+Vh3dTotC535/ZfS/xwgVjfrx2O7aVqg303F3/lbH9CbOOomDMBP79yaduplXvdOze1WlO99K6hLmPdLL3vK5OQuJcWWk5eKa7mlJJbvc9BaWkf+lcTy89iK8AVXd2SVDq888/55VXXuGjjz5i5syZAPz2t7/l9NNP5+6772bIkCGd1mloaODRRx/lySef5PjjjwfgscceY9KkSXz44YccdthhfOc738lYZ8yYMcyZM4dnn31WQSkRERGRfU7ngbX729f6ZCDANoZoIggw56YTaKuv4pFHnJugnMMPp/HVZWlBJWe5b648nGh7Le9N2Nxpu4NGjiZ/0GBO/Y9r2bRhI3zy6Xa9uCYtd6qTnhKg3PQvZUr1JRmftcTNtdfyuTM9NtgWkOi+11TTzucfbGHiYWVYnrT3QVqmVObgYwpLSf9gJQK3KinVO7uk+96cOXMoLCx0A1IAJ554Ih6Ph7lz53a5zvz584lGo5x44onutIkTJzJixAjmzJnT7b4aGhooLi7eeY0XERER2UfdeeedHHzwweTl5VFSUsI555zD8uXL93SzutbV/avV/wrHJg+3PRp3pwV9Hvd1MMbgKyqi9GffxwokR9BzxMItVEeqaA45Rc6zvLmUjBrLZb99lIvu+i3n3HAz/kAwNcJfxtqpKZ0fp6Yk6051nrOtg0p230vLlNr2GrI7dJEplT76nrfJGcmxJhJ2p/37L8v44NlVmSulBR2tzKiUSL+Q1ulVgale2CVBqYqKCkpKSjKm+Xw+iouLqaio6HadQCBAYWFhxvTBgwd3u84HH3zA008/zXe/+91tticcDtPY2JjxIyIiItLfvPPOO1x55ZV8+OGHbomFk08+mZaWlj3dtG7oLjYZMGrbRlCqvr6ezzYuo20QRNJG2Wtv3gRAXluYwzeHOXTo17nwf39DQcng7nfY4w1Uh6CV1TmI1XNXvLRC5z0tKrudReosB9K7WiZqSm2xmzni/HHu8gvf2JhZ9NztvqdMOOmvVFNqe2xX970f//jH/O///u82l/n888+/UIN6a/HixZx99tnceuutnHzyydtc9s477+QXv/jFbmmXiIiISF/1yiuvZDz/05/+RElJCfPnz+foo4/eQ63qibWNZ/1He9S5wfd6LHze1N+Vm5qa+PWvf516fuCBFC1b6Dz2O9OyI1FywlBVlvlH4yTLk9xeN3lPcRjaUt1x6jZau/2FztW1qw/o8hSkvR8S75OYbTjgxBGMnDqAJ3/u9IKx48aNRanQufR3qVh9f/0fa/tsV1Dq+uuv59vf/vY2lxkzZgylpaVs3bo1Y3osFqO2tpbS0tIu1ystLSUSiVBfX5+RLVVZWdlpnaVLl3LCCSfw3e9+l5tvvrnHdt90001cd9117vPGxkaGDx/e43oiIiIi+7KGhgaAbkshhMNhwuFUV53dmW2eKhibeSvb377id8yUCvmcwEBxcTH5+fkZ52TcuHHk5eXRWl9EQ+MH7p1RwBQT+O63OeIbB3e9k4zue51fY09tnPF1Gykvyutq5bQ1e5kplZ59o74tfUjqxFmJk2gsj5MQh0mWkiIad96LucWh1Jrp51yFzqXfS9aU6qpjmj4JHW1XUGrQoEEMGjSox+VmzZpFfX098+fPZ8aMGQD8+9//xrZtDj300C7XmTFjBn6/nzfffJPzzjsPgOXLl7NhwwZmzZrlLrdkyRKOP/54Lr74Yu64445etTsYDBIMBnu1rIiIiEh/YNs21157LUcccQRTp07tcpk+kW3e4ft7fwthJGM2769yMpWCfueGPxgMcs011xAOh4nH42RnZ+P1OvOeXlxGcMOhYFoADxMu35+JJ47Yxj7SX9XOr7AVSz22LUgmxCRrUFmd7rF2JFNK+hI3zGhZqYEWE5VforYTlEp/22SMOpY8v3Y8c5ld1FaRvsaj7nvbZZfUlJo0aRKnnnoql19+OfPmzeP999/nqquu4utf/7o78t7mzZuZOHEi8+bNA6CgoIBLL72U6667jrfeeov58+dzySWXMGvWLA477DDA6bJ33HHHcfLJJ3PddddRUVFBRUUFVVVVu+IwRERERPZZV155JYsXL+avf/1rt8vcdNNNNDQ0uD8bN27cjS3UTSxAWYGTjVLfGgVgWFGWO8/r9ZKdnU1eXp4bkAI44IThDByWRyi3iPxBAxg5dcC2d9JTtlJ6YCFj0a5rSvWYKpUWlNItWx9iUjfSnc6LSWVKxRKZUulLZZxyK1VTKuPd0XOxMZF9Q+dIvWzDdmVKbY8nnniCq666ihNOOAGPx8N5553Hfffd586PRqMsX76c1tZWd9q9997rLhsOhznllFP4/e9/785/5plnqKqq4vHHH+fxxx93p48cOZJ169btqkMRERER2adcddVVvPDCC8yePZthw4Z1u1xfzDbvb729Lj58FOMH59ESjmEBM0f1POr0foeVsd9hZb3eh5Xefa+rIFP6sqa7OdtcreNWEsulFlS8Ys8zXT1L636UbcK0AC+U/y8fPfMYvzk2dW9n7LS1kzXKTDwzcLXTWyzStXg8TDzuDOARCPR8zdzZku96y7LURbkXdllQqri4mCeffLLb+aNGjeoULQ+FQtx///3cf//9Xa7z85//nJ///Oc7s5kiIiIi/YYxhquvvpp//vOfvP3224wePXpPN2kbTJe3s/3t673f6+GYCT2Xz/hC0mo89XqVxNKmi6pBPWbE7KZMqba2TWzd+hLGxCkqOpSCgoN24d72AWnnratEj3Nb1/JwYR5xYmxp2cKH5R8CXdTpdQudZ46+p6CU7A71DfNZsOAibLsdgBEjLmP8uJt2y75Np0f97X+sHbPLglIiIiIi0rdceeWVPPnkk/zrX/8iLy+PiooKwCmjkJWV1cPae4bVza1sOFJNXe0HgCE7ezT5+dN3b8P2IRmZUnSuL2W6mJb+bLtvu7oIgu3MgIVtR/F4/KxYeRvV1W8mdunl8FlvEwoN2Yl76g9S5+qKuga+EW3gtsEjeCtkE7Ej7lJd1pTqUOhc+idjbBoaPqGlZSVbyv/B4MFnMGL4Jbtsf/V1H7kBKYD6+o92+j6i0Xqi0Xraw+UUFszA4wlkzLe6eCTdU1BKREREpJ944IEHADj22GMzpj/22GM9jrDcVyS7Ay1Zci11dXPc6Qcc8GcGFB+50/dXUfE8ny/7CcbEKC4+kmlTf4fXG+p5xb3IjnUvsTDJmlIdIko9j7638zOl6uo+ZP36h2huWUk0Wsf06Q8RjdSmtSlOa+taBaW2m+X+W2UVMsSuJRSOQshLdUsLBYmlTHpSlMeLbYFth2lomE/yllOZUv3T5i1/Zfnyn7nPGxsX7NKgVDzeDEB29jhaW1dhx9t7WGP7bNr8ZMbxjBl9LaNHX52xjGUpU2p7KCglIiIi0k/sVYWG3e/0JuNuNvkVv6Vldcbira1rthmUsu0o4bCTGRYIDMTrTWWGLVlyPRWVzwEehgz5KpMmpkZ4rq55C9tuA6Cm5i1qa2czaNDJO3pUfVL3o+/1poCU1cUCPXXf66Km1LbX6NH6DX+gpna2+7y+fh7GxDOWicWavuBe9m3p14dkhmJb4gYfoM049eWyTBzwMmdtJacmTn/6uk2mhvmzion7ZmMveBesZxLb3/XHkGRMnIbGhcSijUQi1QwadCJ+f9Hua0BCLNZEe/sWGps+Y9DAk/D7C3peaR/T3uYMkGFZfoxxBmyw7TAez66pVxiLOzWrA4FiWlshbu/coFRD/fyM561t67tYKpF3qnpSvaKglIiIiIj0ORubNlKAv1O0or5hAcuWPUAkshWA4uKjqK19l3ispdttGWMz76MzaWlZCYDfX8Ssw950bxC3Vr2UWNJmy5a/UlHxLMHgEPabcCvGjmZsK3nDkxSPt2JMnGi0nlBo2F59E2IwkFHJK+p0z7PsLirMd44wxEwcH70JPqQFpXbSy5Usapxk7Bi2iTl7S9wMl1f8k9a29QwpO59AoIcRCb9QW8JU17zJwAHHZQQ/+zqTfk4NRLwe8horCPMX/J6DafMlglI4wb5wLIJlWU5AKm3VBlNB3Odkw1m96KIZizVTVfUa4XAl0Vg9w4ZeSFZW9wMw9Mb69Q+xes097vOWlksZP/4nX2ibPTHGZHz+KyqeZ8nS6wEnjaxx6CIm7nfbLtl3LNZELNZMIFC8y4I96drby2lpWQWWRUH+/vh8ed0uaycCUSOGX8KGjY9iTJxFi65gyJCvUVJy6k5vWzRSA0DA73zGbTu8U7cfT/yRIidnPC0tK7vc/ra67xnlDHaioJSIiIiI9Dk1bTUUUNppemPjJ2xufAoAv7+YrKyRwLvE4t0HpaLROjcglf68sHAmth3DTtTGycmZQEvLCmw7QlvbOioqn3dvqJKMHXMfr1r1v6zf8LD7vKtuHOna2jZQWfkCsVgTluUjO3sU2dljyM8/wL2ZbWpextbKFzEYcrLHUFb25W28Sl9ce3s5tXXPEgo1QWtRxj2USdxMezzpfbPSg1YGkza+mp1Yfondxs9fvwKfx8eEogl8db+vUpI1gLq6D8nPn4o/rfte+rYA1q17kIbGBQAU5B/AqFHf79VxJLvoZGePpbV1NcbEMImgVDBYSnv7Rqqr36C6+g1i0QbGjftRr7a7Perq5rFu3f3U1r0HwOjR1zBm9A92+n6MidPcvIz2cAVtbRsoGXQqoVDvR1vsfsPOr2TPo7qcEIF4FEM1TfGXWV5fxNSSdeRaifNm2tzem+mZUjapDLXMvLuub8bXr3+QdesfcJ/Hoo1MmnRnt82Mx9toa9uAxxMiGBzcZXfaltY1Gc/bw+Xdbu+LaGlZw6LPvkc4XIFtRxg16kr3nNfXzyMZkAIoL/87TY2fMXDQiYwedeVO2b9th6lv+IQFC77lThs75oe9/tzsiHi8nbnzTicWawQgP/8ADp75j26XT14zLU+ArKyRtLauoaZ2NvUNnzBw4Al4PP6d0q6a2vdYuvSHRCJVAPgTgef4Tu6+Z8edoFQy8y6e9oeKeLyZK/f/A1MGLtup+9zXKSglIiIiIn2YJ+NZMvNi7JjrGTToFCoqngOgtnY2K+0IwWApHm+IosLDyM4eRW3tezQ1LQbA5yskO3s0jY0LqG+Yj99fSDA42N32zBl/o61tAxWV/8eGDY9g22FMWjFnwO1+AlBT+27GvMbGRds8kuUrfkFNzdudpk+YcCvxWCvlFc/S2prZLdFgM6Ts/G1ud0c0NCxk1eq7qK+f67Rhv0FUb55MJHcTudXJbnvdpzElwwt+O7vTvBfjdby/5XMA3tn0Dp9ueJpv5le48z1DLPZrCTIEQ7jdmR6PNVNb+wGr1/zSXa66+g3Kys4nGOx59MFkFx2fLxcAOy0oNXrUVTQ3f05j0yIaGj4hHKnscXvdMcbQ2rqGeLyFQLCEUDAVON2w8VE3IAVQtfWVXgWlWlvXYoxhTWsLz69+nrc2vkVhsJAHT3qQgVkDOy2/fMUv2Lz5Cff5li1PM3bsDRTk708g0NXyP6e8/J8AFBYcxPTpD3aTTZM5yqXpkOXRGHHWCcWdz8Ahza8CXwY8GdlxcWJsizG2m2Ho9xd0ChhtrXqF1rZ1DBt2IYNLTu+07ty5p9PWvgFwAtOHz/p3p0ydZPZKVtYo2trWYXW4jrS1bSASqcWyvOTmTtzhwEhNzVu0pgXAqqpec895MqNm6NBvsWXLU9h2hMamRTQ2fcbIEd/D4/lit+KfLvoe1dVvdJq+ecvTuzQoFQ6XuwEpcN6/22Ib5xrqsfzsP/0P1NV9wLLlNxOPNxOLNREIFO+UdlVXv+kGpAKBgQwuOZ3Nmx8nHm+lvOI5cnMnkpc78QvvJ554b/n9TrvjiSAVQH3dOxw0OPX/QPq8jp8nSVFQSkRERET6nMysitRjrzeLIYO/zqhR/wHg3oQ3NS2hqWmJu5zfX8SECbeyZMm17rRQcLDbbWv16rtYvfouSkrOSMz14PXmkpc3hYbGTwGw7UinTKlklzBI3XAMHfotNm9+nGi0LrWcHaOu7n1i8Ra8nhCFhYcSDjvBkIEDjsdguwGqlpZVbN36Usb6SbU175KXN5WqqteIx5ybuJEjv0t29uieXsJt2rzlr25ACiA3t5b4oHUYK5XZYVneTut1vK3ymfSbeec8RTrUcmpor4P81HPbY6gaECCnbQWLFv2RCesuYmD7Vj7Y8jhZg8DjyQLizutvt9EbydG2fF4nOJGeKZWdM5ohQ85n8+anaGj4hFisudvt9GT5ip+zefPjVEUtHqgK0WQC7D9ofx495VG321BSXt5U93F7+xaqa9522mRsBgw4lra29SxbdjPt4S0A/KZ+AmubNgFQ2VrJRxUfcdro0zq1oblpacbzlpaVLFr0XYqKZnHQgY93Wr68/J9u8eea2tnU18+nuPjwTstldLs0mV05AaJ4afWE8CcW/FdeNpebGF4CNDQsIq/4EABsr7OeJ27cx8lNVle/xWeLr3bP67hxN7mZLMOGXcSmTX8hFmukvn4eLS0rOwWl4vEWNyAFFtFoLc0tKygsmNFhOWf7yWCVbaKsWPFfbNr8/zrVGgPIyhpJPN6K15tFKDiEsWN/SEHBgZ2WS7LtCE1Ni9la9SqQnmWZ6splx8OJeeM47NDXaWtbx8JPvwMYYrHG7QrGRKMNbNj4KLFoIz5fLsOHX+KOLAng8QSYMP4Wli2/mXC4khUr/osBA45mwIBjer2PnsTjYSoqnmXT5icT+wxi2+GMwEtXkl2gPR4/2dkjyc4eyfIVv8CYaMYoedvS2LSYxoaFeL055OSOJy93Cp999n1q6+bg8fgZP+6n7n5KS89l8qS7iEbrnf2bCEuXXg9Abu5ECgsPoaz03O0esdW2Y4TDW2hpWQGA318IOAHODRsfY3DJl6jY/FjGOqFQGfTuEtavKSglIiIiIn2UoWOV82FDL2DSuKHupNLSc4nGGtyATTRWT1XVa0SjddRUvwVAKDSU/Pz9GVL2VYyJ0ta23u3Ot3XriwB4vdluF7rk8N7GjmAnbnQsK4AxETfQAaluHNnZowBobFrEe+8fyaBBJ5KbO4lly1I1bEpLz3GDIaNGfZ+CgoNYt+4BVq+5G9uOuDfmU6f8hsLCQ6mqeo3lK24hGq3j86U/oqk5FXCL222MG/sjgsHBXQaOkpqbl7N4yTVEow2EgqUccMCf3Dpa8URbCgpm0tDwMXbch8cbzYhDWKS23V0VFNNFnXNPJIAv7mdSbhuftfkIZY1i+rRrCQQG0ti0hBUrfo7ttWj4+Pe0fDqDsxv/CsAKbylTL2oimJtP3A4nglKpoGAs1kx9w8dgbAKBgeTnT8e2o0Qi1W4XGm8iU8rYUbfbkMfyZ8xra1vP+g1/oLDwYAry9+/6wOIxaNgIWYWQlSqQ3ZwIfP65Jkht3AKifFz5MXOX3EwkkTFSUnIGW7e+mNGldPGSa2lomE/UwJqwhzrvX8gNFDIhvoVAIomnIVyf0YRwPEwkUs3q1fcQjmzF2FGGDb+YaKJg+wH7P8badffT0PBx4rg2dn2OTGa2X7xDXbRudYhAxo2HL+//a05tewvCzsiXNgYvUF/3McNGO0GpeOEwaAM/fsLEsIyNSXTZrKmdnRForK+bi0l098vLm8LBB/+L5qbP+XzZj4lG64jH2zO659lpmYv5+fvT2LiQdevux+vJZsSIS8nNnYzXG0wFKRNBKWNHqdz6UpcBKXDeE6nHG9i06XE3KGWMob19M8bE8PlyCQQGsvTzG6msfN5dJytrhBOUSusqlsyU8npCbjDG680lHm+mrn4uhQUzu80CjMWaiNthvJ4gPl8e5RXPsm7d/e58J9PN+eAdPms2weAgjLETwZ4IGzf9iYrK5zn6qI86bbu8/B9s3PQXMAZ/oJjJk37Zq2zEisrnWLb8Zvd5ft506hs+whjnc9pdtplb2y1xXU22Px6P9qrekzE2CxZcRCzWkJhiMXPG36iqfh2AeBy2Vr3s1pDKyR6DZXkIBIoZPfpaGuo/djMYm5uX0dy8jMrKFzjqyHnbVQNw/idfpzHRtRicbsHgZI6tXHk7K1fejt/vvI5ztszkW0d/iZKBR/LJ3K7fc5KioJSIiIiI7DWsDnfKfn9+py5SH849jZaWFe5Ny+CSL2XUEBo48HjC4a289/4sd1owWOI+TnZtsu2I213P680iFotkFD5P3nTm5093bzbD4XI2bfp/DBnytcR6zvTm5hVuMW6vN8c5lsRNnLGjbuCgsPBggsFBhEJDAGhr3+TeMHs8IWy7ncrK/6Oy8v8oLDiYESMuZcOGR4nbbcTjbUyd8hvy8iYBsHXrK27wLRLZSm3dBwwuOS3RdicwUVx0OA0NH+PxxvB4Otw8uakznW/cCgq2UpS3iNiyeEaVKYD9VlzOMH8Diw+/FTD4g4OdEQsjrfjeupdJ5U205PjYWFuEaUxbO+4hFvbiKchy61mlZ6otXfpD95wCjB59LZWVz2d0n/IlXlsnU8o5nmTgzu8rBJzMolWr7iQYLOXIw9+DysWY+vVUbHiKqmIPobpaJryf6Ibn8cNlr2PKnLpfyfY0dnipNm35G8U+5/hzsscCUF//EYs++w/Gjf2RmyX3+5oi1raFgSqgii8X+jg6z7lpjyXeW6PyR7GucR3hWJjy8mfZUv43dz9tbRuJJm7OA4EBzJzxNA2Nn/Lxx1+mu9ChnQjOZWWNpK1tfafsvxTT4XfH2YaFeRP59rADmfnBRXyW2+JmNNp2hE2bnmD1ml8Ri9UDYAUKIF7jjs9oSNX+ysudQlPzEqKxeizLuSX1erPJz5tKXu4Uli3/KcbEWbPmV/j9hQwadLL7uQGneH0oNITGxoXU1LwDOIEJy/IyatRVbpA3PVMqGaiaPu0BPJ4gRUWznM9I62osLLKzR1NTO5uKiucyCuevWnUnGzY+mtwz+034BU2JbDWfrxDLshg08CSqq99wu3aRdqyetKCa319APN7M4sVXARaTJv4PQ4Y43XNjsWYaGuZTVzeX9RsectcZMeIyPJ7MulmRaE3aNgvdQPqUKfdSW/suW7Y8TTRaizE2lpXZdXH9hj+42T4AVdWvM2zoN+lOU9MSGhoWup+93NyJDBp4MkOHfsO9hkaiNdjxMNnZIzutb9zAfir04PWGiMebe1XvKRZrdgNSPl8hsVg9y5bdnLFMelZr+n7GJGr8xeNtlJc/SzhSybp19xON1rJ69S8pKDiIQYNOpLV1Lc3NK4jFm8jLm9qpm58xhsbGhe5zywowpOw8MHaiy/dzAESjTvfBv684mx99/esEfB5gVY/H2N8pKCUiIiIifVKHPKley82dSEvLCjcjJC9vSqdlgsESxo65nvqGj/F6cxkx4lJ3XvIGzzapTB0nKNWQkSmVrKsSCpZx5BHv0x4u5+OPzyceb2bLlqcBGDjwOCor/4/m5s/do0neKCf3E7fb3ABKclqyiG56Bsehh7zIgoUX0d6+GYCGxk9Yv8GmoSE1RHlNzVtUV7/J+g0PdxqRbvXqX7Jhwx8oKz2XeCw5bPrAxPHFCYaaiZLb4+sLkJ3dQNn4D9j6/lh3WtSTuiHPiRaQFc0DGrGNDS018Msx5AA5QKPfw8rAOPc1ifp8+GMxTMzC6812a3ml1/Rqbl6ObSyW144j299GbN2HtG/Jwo7OxI7mUzaxhZwcpz22iXW6SS0qOoQhZV+lsWkRzc3LCIcriHzwvwRevxMLKANiQ0IUNKYFbewor93+XZa3jubcH93inv9Yh0CdwcvIkZeRkzOeULCMtevuIxqtoarqVaqqXsXrdV7XTeHMaFazbZGdPYbW1jVE4u2Ahc92ztuG8mcZleM8zs2dTHPz0rSua84NOqQywWy7c7DJeV85Ab5kUKdjnbS0gwAgOO3vMDuGITPzJauinQf/56f473qYc7YO4Hst6/ggURU9bseoqHzeDUgB5AaH095a4244bsfcQG4wVEZT85JEsNbJ2vN6nJEKLcvC5ysgGq11g0HJkfRKS891jtkTZMzoawkEBtHSsoK6ujnu8a5d+xs3EOkGpeyIG5TKy5vqBn1LS8/q9HpVVDxH3G5nydLraaj/JOM1B8PGTX+htdUJNMw46Clycye4dZVisSY+/vh8mltWph1XKqA0fPglbNr0F9raNgCG+oaP3KDU0s9voKrqtU6npbbmXYqLj8yYlt4F1ZOWgTS45DQGDjjWvf7E463EYo1EItV4PEFycia4r0MoNJz29o2dup2mvxbRaAPzP/mmeywAQ4Z8neHDLgScz5YxMd5//wgACgsPpaDgIEYM/47bPTH5OUy+T502O69JJFLN6jW/IhqpTdTP+yoFBQd0ONbGxDpBBg44lorK52huWd6hranuulYXGVtebxbDhl0AOJli4XAF6zc8hGX5OOzQ1/hw7qnu+j5fPgfPfI7KrS9g22HseDvDhl1E8n189FFOZqLfX8SYMdcAMHDQiWzd+jLRuOH+97NoiBR0HrBUuqWglIiIiIj0PcYZ1y1z9C6rV1/0J+53G6WDz8LjCRAIDCI3d0KXyyXrUnXksRJBqYxMKaegt21irFl7H1u2pLJXvN4sfL5ccn3jyc4eTVPTZ+68osLDqK19z60XFQoNdwNByZu0eCwVPLIS0/LyplI6+BxaWlfT3Pw5+fnTycoayeGz3iEWa2T2uwdhTDyj4DBANNbg1J9KC0jl5x9IY+MC2trW09a2nsbGhQQDToH39MLYwVALUatzUMq207sIOiegtS2XlvosvNFcwLmpbQrWsnjSj5j12X9ieUsoboxDHk5QamOqftW65kKe3TjVzbIJjMjCW9FGHLDjFl5vltt+20RZveZeKsqfpT1cwdKa/Xj9tVMY3VjOJwVTmOQd4m63OHsInlHOfjIzpZxbHo8nyKRJd2LbEd5628kmW/rRamob/oOYCTEq+BGF0flswIsJeBkVjZJnDNkDWojUtLJhyadYwxNBqQ5F4D2+QsaNvSGxb8P+0/9Abe17bNz0J+ccx5sxBmK206YDs2MsaPURNzB0yDfYuOnP2InX0ROrBqCmYSHNiRvl4cMuJhqtpb5hPrYdJi93MllZQzOOz5gYsVgLGzb+kWi0Fq83h6FDvu620X0PpwWlqqpe4/NlN2NMlKIDohwYzsKXV0ucVFaS+z6wYL8Na5m7+jHy8CQ6dzrn0NhRbMsJdowb92OCgRK8Neupbl3oDk6waPFVlAWdtubmjKe6+s2MYEey3hvAgAFHu4MYOG3PIR5vcYNPHk+AnJyx7DfhlsSx2xgTY/a7M4nHWxLn3iInZ7x7zMnj7rrIu8PjdQJjra1rqe0wkMHkSb9k6ec3uAEpy/K6AyUkgyzGRNzRI5NCoVR34xHDL2HE8EvYuOkvrFjxC+KxFiKRWpqaPusUkCorPY/yin8Qize7wTxn4Ac74/OdnhmUaouzXH3Dx3z66WUkz9Ookf/hvg7Z2aNob9/IuvUPsmnzE4wedRXDhjmj+MXjbXw491Ta2zcltpnFwIHHEfAPoHRwKpBXUHBQYpRBR339XOrr5xKPt7DfhFud18R93TsHpRZ++u2Mtre2rmPGQU+6z+vqP2LTpv8HOMGi0aOvxh8oIhZrJtxejs9fwNatL2KnddfdVpdmgEkT/5utVa+yZcvfMSZGS8tyjInh8QSw7QixWCMrVvycmtrZXa7v8WTj9Wa+hwaXnMbgktNoaIvy5lOZ57HT/1lmR/7Usm9TUEpERERE9hq9+eOzz5fHwIHH7fA+kpkHyVH7wAk8gXPzvWnz/yOWqOuTnzfdzVgBmDL5HudmO5GNUFp6DoMHn0F7ezkeT5BQqNTdfvJ3eu2h1DwfU6Y42SG2HcOyvGk1r1KZF5FILQADio+mpnY2NTWzCYedEe2mTv0toeAQcnMnUls7m3i8jSVLrwNwR6ALhcrIzzuKxibnBjzjdinxYhvj6TSxvr6MtQuOYVTLZizWARCIedh/bgmR+FMAFH6eA4e0OEGpxA2j8QWpaM9zR6LyWXHONPN4w4yjgSz83lKGDvka6zc84r7ewTd+xaGVTcS9FgNiQU54/yG8xmblWIuNw1NBqfamaKLCETS01bgBxY43qR5PAI8ni3g0wpzl52MnirWvb9+f2NYWNmzx0ZIVZ/YBVdxeU82wrAgDvHXE7XY8USc4EOtwX+n15UPtWigYhuX1M3DgccSyJtFW/hJZ8a3OucLrBuLWxg4AFpOVPZ7hwy9mxIjvYK86EIgRtOKAh6ixKCs7n+ys0Qwe/CW83hCdO0elbvZtO8LWrS+xdu2v3XnpwQufL8ddLmnr1leJJrqCeQKQG0gGPzp/0kzi/ddU9yHZxovHgElmSsWj2JaTKZeXN5XiollEW18nuzUG2c4yjU2fMdDjFOjPzhnHjIP+6mSIRWrw+4vIy5vm7mvK5HuYMP5WLMuLz5dDVdUbLPrse+77PT07CMCyPFhWgCOPeJ/m5uUYYxMKldHSsirRvvTMosyucOmSWU3JYExSdvZoSkpOp65uDk3NS/F4gpSVne/WaOsY6MrLm8rE/W7HNhHy8iZ32k+ym2k4XMEHc47LaN+MGX+jqWkphQUznKBUrNnN+vT7C4lGa91AtmUFOtVFcjLNcojFmliy5D9J/1Q3t6xwz39h4cHU1r6LbbcTibSzctV/U1x8BD5fPuHw1ozXoHTwmUyadGen4zjowMdpb99CJFJDbe17bN7yFOFwBdFoHevWP8TmzU/R3r4x0a5UUCoYLHGDe8njMCaSVjcKotE6Fiz4lpvBFAoNIzt7FBPGp7ruVVW/ydatL2JMNJUpZW07xDFgwDEMGHAMlZUvEo83uwXRQ6GhtLVtxpgIrW3rMtZJdr/l/7N333Fy3PX9x1/fma3Xq+7Ue3ORi2TLvWCD6RBaCCUYCCW0BAIEEgKk/IDfjxRCC4QWIIQWercxxjZucrdlWb2X0+l63Tbz/f0xs7O7V1Rs63Q6vZ+Ph63d2dmZ2Z3d081bn+/ny/jPnjx1CqVEREREZHoy8OQG8D01Y6eXB6iuXs7g4OP4NhcFUhec/00aGy+tuCisrl4aDSErSVFTM36bxYu08gvS8gu3orFTxwcXRUGnnuJFXLpqEfTcHvWKCYa6PCNqEt3a+qziHujpuQPHTVNdtYTa2nNZvPif+exnP83KFfdQk7dE00Ud463PG4+sKQ1nrBmN4ZRVEMW60iRyDp71IKxa8tvOxTsY9F1Z0XaY5zVuxTHghuHG2as+xezZa/jNQ79m+5E2ejsP8sLDQ8Q8S8yzrOo9xC5b7P8VhGVuchgvW43v+Xzr/q9zcT10bnycmnkZXHfi97Sx4SI6O+6LAimAocGb8HuraQFaBqC1L8m/NzXwmcQA81Z3MPrw90g4B/CbigPiiPolnXXHQ/C782Hh5dx63fv46sav8vCRhwF4W6vDipTPBruOmux+lnZdQDa1nBaboH7FWRjjMlrwKIQX1UfMXOAQj464fOtIjhuWnEWbtbzzpj9jR98OGpINfOraT7GwLoioiq/P2vy4GRxz2SPR7eLwPb+s8Xnx9oL5b2Tbw79jmBx1Xh2Of2Dce1Y8tXHbSoG+MGIrVkoVov5AbhjQxGN1XHp/H86VBi98brEpu+ukaWhYR0PDunH7KYrHS1M2xooN7MPjLVYzjhWL1VZscyQc/prLdZW9D5OHUuPCpZqzWbfu+xgTwxiXs8765CT7rSOZbI8C4Yb6ddTVnTvhusExBOdiYHAj1uYxJkYqNZelS99LQ/1aGurXks0GYWah0E9n52+i/eTzPRTCnxmTNRevqV5FX/99USVl0BT+EXw/G4W1bbOey+z2PyKX7+G++16E72e5+57ricXqOefsfwOCBu4XrftxFL6NZYxLOj2fdHo+9fXnE080sWXL3+F7Gfbv/0b0fkAwZLNo9aqP0dV1C8bESSRaiMcbefChP6mYyS+b64qCpjlz/pgF80tDrIucYpWgX4gaqjsTfN8nElRkDvHThzazPA19ow5VYe/A4uelvv5C+vsfjPq4Oc74EFCeOoVSIiIiIjL9TBKITMXlQG3tOSxa+DZGRvfgmBgLF/05HYd+CEB3d2lIR0PDuqd0gVK8AC6GXMd7wWOMCZuej0YXbbPbX0Iy0UqhMITjJGhouGjCi+/29heO66MT7NNhx5YruGh0K9A17nkTGXKydJkh2ouvJwqkgqFDAK4Nhu/191ru738Hmzuuw8veBGzkZ6k0VdVpYomziJlg/UI+uGD+57ufzVA+xX8DL0iVtucXSlVbxcodx3h4QN4r0HfkCNRD7dxhHDf4EBVyQLry2M877yv0ztnHth/vCLZlLX6hcva69v6FzOu8glv6zqOqdTPLZ91KLp5m3x/qOMuHTUsGSWfjVI0ahvMJIE+2YyN/ddtfkS/r73QwH4RSvdRz6e61LO25IHzkLIabd2Avsdx8sAtjHazx2RFbTzU/pqPg8NNdv+Wnu35bcVxdo13cdfCuKJQqBhPWFioabUPpswUmqgIq7ylVbEKdrlrEwLZnsDmXY21+CSn7Kcbyw/f74IbnUd32nTASDBude4WoUiqqRArXLw7fi6rjYnXU1p4zbvtHU5w5sSiTPXh8zwuPpRjWOU7yqMO7ikMci6qqlxx1uF+R48S4ZP2vGR4OPk/Hen3RrIBhQFRfv7Zi2BoEPYsSiRZyua5oxsK62nMYHd1NIaqUmjiAOf/8r4fD0nwcN8XIyE42bnwnnjcaVUoZkyCVmkMqNYfZ7S/hUEfwM65Q6Ke//6HwOOsnDaQmUny/PT8T9b06a/X/I5WaS0N9KSxMp+czf/6N0f3BcFbL8lCqOLtpMjmb1as+NuH+iq/fL5sZ9et37+OR7rtprU3xTy8+h/r0xO9R8bxuPXSA5UtgX6/HytYU0B9VphWHNxc/P55N8P379xF3HdYubGR+U9WE25YTo1BKRERERKYvG/0PmJpQyhiHpUv/qmJZ8aK4NGuV85SHcRTDhGI1gZmk+mMirpuKLlQB4vGmSXtknZDjfIOrhoeprkmUSoXKxRqh0Ad4GN/gW5/bb69i7+h1APheGBQ4ljuq0iyOzyXuBBUtd373uwz0zuLCgRq2x306YgWSBBebnq3DzwfBx0CzoeAE4YKJhpD59I0Ey5xwJrz8SBW2UKq4iV6mcfCyVRRG7wFyOPFV0Qvpq87TMBzn/APXkIoFTfJHjqwiufhRDh+ppXdTExcDF25tIOYH0cyttLNoyQNkU35FIAWQC8uqChbqc0ED+5zrkfBcGInx039/mP2be3mj+b8cqtvBjy4/F9tUzR/5X+PHfRN/Jjy/1DC9VCnlRcP1yvvjBPfjmPDzumfvV9i//79ZseLDUaVU8Fku/56NT4WjEND3KeDilg3f8/1C1EC7FEo5Fdu67NLfMydhMSZ2wt+dqvRikom2aNhpU9Plx/W8urrzaG9/MZnRAxjj0jrr2Uddv7b2bNpmPZ+RkV0kkrNYtfIfj/sYY7HacU26J1Nfv5aWluvIZA7iOEkWLvizces4TjwKuoyJkUi00Nt7N4c7f152Xid+H103SV3dmuh+NnMIAN/PlPXWKoU1Z531SVau/Hs23PdiRkZ2sGv3Z8LXdHwTH0THHAbhvpeJgp2mpisrZjed+HiL/c5KP9OKzx8bFJYzZYFsMWB9aN8QGzqCYZ7Xr57Fi86fO+FzLUEoVR0P9pPzEoxpFUci0QqUfu4PZAzv+82jwWMxh++95VIWNlXRWK0hfU+FQikRERERkWOYM/sV5HLdZLOHGRraTGvLdU95mzU1q4nFaqNqllmtNxz3c1OpOWVDtZyKoU4nalxPmvBPy+QZ1azDh7kgPo+tbBn/oIkTVEt5ONbgWY/RkfIVwqonAz+orWF9bh0X+xbo4/DOTXR97UtcnL6K9dk4t6fzjMTrqXL7ydnlHNoQ9LnZV20p9l+Px5LkAN/36RpJsOl/luKmPKxn8AvP5LJLS5c81tooe/ne9/6bQuau4JDzpVkOPTfYcNyvrKjp8At8pbOa4pkvBlLFd603l2bYBqGZ79SSqb6MqsHfMJSpZsSvwQwsoG1oEQC9VaO0DdZgPcv+zcF5jNkE8/tXs/Kgw7blF/PHjft5U6qeRx79KnHj0pbP8v32xfzMGaXgl4ZNlocLxc9SPN5ENttBwQvuGxMnnZoPQD7fTR44HDaIhomHw429QC/ed7AUcHHKhu8NDG4kXluaJS3cafjOFN8iF9d9chfvsVg1l132e/L5PkZH90YNzI/FceKcfda/HPd+HCfOOef8+5M6xnIDmTyjOY+469A0QWDhuinOW/Ofx9xOPN5YMRyxvz/YVi7XGR3v8SiekyC0tOGyyuNy3Sra2p7Prl2l11+VXnRc24+2Ec6gmC/0MXbWx6MfXxBmFQqD3PGH9aRT85k9+2Xh89OTP69s5snixAZeWQ+8wUxhwucBYIL35Jr5wc+AnB/HTa7Ey+0OHjYJaqpXhtsPgrzRQorW2iRHBrPkCj4v/tydwTZWtlKdjPHu64/vcymVFEqJiIiIyLRTvNw1Y2KRU9XPI5lsjWb6erqkUrO58op78f0cjpMe1zvqaNas+U96e+8hn+shmWybsA/WibJHjaEqGcC1xfDGr3jMOimMccCC4wfD97xceeVNGEo5wbK6XR659Gsg+1kAvOyDuIkVmNgcrhqt4Wuj/8WfxN/E4Vu7oRDs81CToTVvwu0Ey3zP4viG3GACwlFrsXSMQ9v72PHgEXwvS9WGndSOVLG5fwOZnltLx+wdCd8DQ+vIEnx2g/Xw8XHCgWoPe3lcdxBIkY15bJkLSXxW7gkujD/V0MDv5xTCY6rG2CTP2PYalnSfx16bYHXZOzCaCBu/F0rvd87NkPBSxDwHO+zivv0WRuIu111ZoGpFKwzt4Uc2HOZoSxfb5UO4Dh78TnBO4g1ksx2MjOyK1lmw4I3U1Z3Lvv1fD2e+GymrmkkcZVYwF/Ci4Xuu7+MRNDovBhxeYYQ4QRhWmtFxzPC9pzjrmOMkSCZnHbPq5lS7c3sXr/vqBgp+8Hrffu1S3nfDqqdl2/X1FxKPN5HP9+G6VbS3/9FxPa84lHdkZHe0bKIqqyWL38XCBW+mUBhgcGgTjQ3rT+j4iuHX8PC2sn1PHioVJRJN0VDF4n/FWQyPNnzShD8zfb9UmeX7LufOreexA/2M5Erfk86BDI8fHKDgWxY2VxFLLCI7uil6vDfTgNPwt1x+7vvxvBEcJ0UsVkdPzx1kc0fY2+Px7S2X84p18zjYl+FHD5X6rv1+S/Dz4xePHhp/jFNS33t6UyglIiIiItNY2YWsmZrhe1PJcZLH1bNmrFSyndntL35ajqEy6DPjbk0WJcRwsED9SJbqTIp7Vx8mYRMsG1yL6fklEPSZ8q1P2WgzCIOV+lwD0E/cT2BMgiUt57CzK5jxMDf4HWJOHJKXEUut5UDnEmKFoErqcAN87ZkOf/Wr4AiDCok4vu/jVOZjWH+U331jM74XvIq4ibOo8QBbMpsnfi+IQ9hzyOLRU32A1uGgwmi46ghOd7DPw4nZ3FHzYmqXfIqGAWjrjZPquYLGliforTpMnbcaM9TIiq4Lo237xsexDll3lN7qLIu6wfZ1Qjin3u7GjazoWodjDYWwWsvmPUa6E1Qlg9DRDYOdsZVSrlsVXZQDpJJzGBoqvcZUag6OE6ep6XJy+Z4glCoMl2YoHFNxE4zKK+8R5jGaiPP4nGZi+SfIW4NLafheIfWnFGod4rVX4BMP5kAMh+8Vw66pmLLAWsuX7tjJof4M6bjLtatmcdGippO2P8+35D2fVLxUVffwvr4okAK4d2fPU9rH5o4B9veM0jOS44plLVx5xb2AOaGAPpEoBnnhcTnN/PihLtYtbmZhc2Ulk+umcN3Ukwr/qquX4zjpaBheU9OVQUB9DI6T5NJLfsvo6F727v0qHYd/SjG8LlbF7TwyxN6eEayF9UuaqErEokqpYpAF4FmXFW21PHagn6FsOMGCb3n+Z/5A52BQyeg6hi+++q/5xM3LmVPnMbs2y8+3LeHqi3xu2WroGHDx/CxXrzCsWfMFAH7wg0fZ2LWPZ8dd/u2Pz+eTL1vDg3v7+P79+7h3Vw97e0rfvxVtNcScmfa31cmjUEpEREREpif9Tj8lihe3Y0MDG7WmLnuseCFsgybmmKAOYKgQ4/7VfSQL1Sx9pI7izHiOD9193Yxks0AxfAsuFBcOtPEPv66mM2kopGBuzV6c0S62DweVNgU/j5t7EFJr2ZGdzUr28+ic8/j4azbiuQYbXvTlBzqBBfTuyzArPgsoBTZedgNe+qKomihv4dDe3RRsOENc1Q3k849CPqhwcK2lariTwQRsar2DB1cc4HX3/x8MhoIXi0Ivz6bBc1l65CxmD4LPbub1LYe9y6h2R9i1dBnbnO7oOL588fsouDnqRlsYjac4q+e1wWvMlVI0zwmrlqyl4MSoveEGBn/zm+DaPBH09omFAY9ny3tKuaw59wv09PyBzs5f47gpli57Pw2NF5PJHAqa9S98c7R+LBxO5Xkj+LY0fG/SSibjQrjentYGYvmH8LINOFWl4Xsfv7WdjpgFtvD+Z8PbrllWCqXG+PBPNnL3jm6yBZ9V7bV8/tUXEnOPHVyU6xnO8fjBYEa0NfMaombWD+/r42O/LIVx37t/H/d/6JkAZAser/3yBrZ1DuIYQ3NNgvc+ayVzG9OcPWfiZt59IzmGcx7puEtjVTz6rvQM53j1l+9l55Eh8p7PR15wNq+7bFG4n+CczmtMs793lJznc3ggw9//7HF2dA5Tl47xiZeuYWnrsfs13be7h5d/4e7o/vnzG/jWn63ntq1H8K2lLhXnkiXNJGJHf//S6Xmct+bL9A5s5YcPdfLdxxbRk3kMgD+6YC7/+orzxoVce7tH+PZ9exnOFmitSfK2a5fhThC0bOkYpGsoS8G3nDOnjiuvuJtcriucUXDeMV9jUSxWS23t2Sxd8f/49wdeyROH+nG97XjuEv6BTl7/X/dF6/7ppQv5hxedQ1XVIkx8Jbnsdnzr0jXaRHXNGlpqgyqwT9+yjbdctYS850eBVCrukMn7bOoYZXvfUgpuFRk3xXChh2/es4fbtpZmrPzYLzdzwYIGrl/dxmjeC58fBJAx1+HixU1cvDgIPQ8PZBjKFjDAvMYqzdJ3AhRKiYiIiMi0M9kFsn7NP7lOZKjJwf6N1IczroUFM+TwsHhhkAHprMvZu9MM9/8OE1uKG1+GDSsgVm/axNIjfYycdy19KbjnyGpWbNkOc20UfvlhRVDr4aBf0aMti/HcYKYu6wQX4jV9WfobwBndxuyhNNHYvWALYDM4viWd6Wa4ejZDNRfDYNhDyrjE3SbSA7soOA7zu7sZSiUYbKplducwmbOGgxdnDXsPrMSxwQWrbxxs3tLePxdMcdp7j0W95wEQ9zJsPm82kKM3dZiCm8MvVNGVWUzhyBps2At82K+nWMczUhU0VXf9oK+Vkw6GPVkLJIuhVDh8z6/sldPUdDlNTZezbNlfR8tqJum7VGwcPTj0RFQpdbTeRMZtJulYYoO7GUoGF/ueR0WjcwO01CTpGsqy88hw+MTKnlIW6BrK8o27S/279vaMsPrDv+bcufW87ZplXH9W27j9FzyfnuEcrmOoS8f59cYO3vnth6LHL1zQwA/fFjQ+7xsJXk9tMsZgtkD3cA5rLcYYHj84wIbdpaql7uEcb/7mAwB8/Q0Xc/WK1uix/pE8248M8Yov3o1XVvW0bmEjS1truHplK08cGoiW37HtSBRK5cJQqiYZi+5///59/PKxjmj9X2/s4O3XLpv0PS/adnio4v7u7mH+9eatfOUPu6JlxsBrL1nImnkNrGyrpa0uyay68TNv7ho6j5f/5whQGRT96KEDvO+GlcxpqBxm9y83b+EnD5dmObxwYSOXLwsC4+/et5dv3rOH3V0jDGVLn8XFLdXc+t5rouHEjx/s5wu37WQ0V6BzMEsy5vAvLz+fBc2TNy+/f3cvN23qDO/NB/IVgVTwPoywYVcPP3poP/t7P8Id27pYu7CRz73qQl5dm+R795dm0rzhU7fzjy8OZkNMx13WzKvn3l093LQpOB+puEtVIgiaioFUW12SwwPBz7aH9vbx0N4+rlwevPZkvLLXXFFbXYrxn145HgqlRERERETOYOX/om8nDKUmWmbZ0/8IS/qCC/M2giDCGh+LjwmH9i07UMPiQ2k8dkJuJ158O4Yg2HCKw7rCiprqngEWdg8yp3eYTNzljlULsHY03Fuwzs76xugI+tJxHMDxC/heL5nhnzHRQEhrfQxQP7CT4erZ4cIgvDhr09fZOn+Q9bsd4jmPeHWBR2PBpWXtaIzX/WoBfn03rtPK/sYW5h4J3osYDs8cHWbeyGIgHDZELrq4qhmIY0gCOWozLQzvfBfp4Voa/GGOxFtx3KDKp2EoqI7y8ckl2/AL+1i4/TEYTPOzzVu41HGCDuPh8L3JQqkTUVW1GGPiUSAFwfAuW1YrZ2zpnsGhpX4tqx6/mw3z2hlIJ8nbGG5Zo/O5pouL1l3Mf/x+BwOj4XbHzL5nLQyFjafTcZfW2iR7e0bIe5YH9/bxlT/sGhdKeb7luZ++g61l4czcMeHJg3v7GMjkqYq7ZMJqlnlNVTxxaABr4cG9vfzk4YPs7g6GV509p45nn93O3Tu72dIxSPdwjm2HB7l6RSuDmTzv/f4j/ObxwxO+d/fv6eX+Pb2kE5XBxEiuVLmWLQS3a1Ox8L4fhWVFw9njO3+DmeB5V61o5fatR+gbyVdU8kDwvgZBXxD2OQZuevfV9I7k2HxogNG8xzPPaueWJzqj5zxj1Sw++JxVPPPfbgeCyq+xoVR3+Nks6h0p3f/CbTvZ1TUc3Z9dn+JQf4ZdXcMUPJ+Y69A5kOF5n/7DuNd01Sdv5cG/e+aEDeDH7ud1ly7k62GI6TqGZ5/dzi8eO8RwtsA//nwTjx3oj9ZdPquG9vogjHvFuvl86949bDwwwP7eUV7/tSDUqk/Ho9e58UDws6uxKsErL5of9YUCeNOVS1jYXM1dO7r42p27AbhjW/A9T08SSh3LxD9bBRRKiYiIiMg0FlzQTlw19f3797HxQD+u43Dhwgaev2YOo+HF4diLxifDWktveDE52QXUTBKOxjsuru9TO5rFeMH7HfOz0VZ8A0FzbKgerbzcsF4Pxg161RhrObR4cRRKLT8SXHw2zBqh70ipkiI/cisPzF3Bz867gcONwSyD6YxLV3w/jcPd9MazWH/yygsIQqllu3/G/H234Ph5HpqXpq86RcwvEPPAhKPoBpPVLDnSx/62BvI2qByz+b2QbCXnxll25HxgL4sLCRKjQWVNLuxB9cicm2lLHGThoRdhXR/HL1YROcRGm3nN/m+SCIOgQno1pOay8EiMnqbgGH0Dhcw9tA5uo7UThpKwt7mOdr8fqlvD9318T6kTlUy2cflltzGa2c/o6D4SiRaqq5eM+5qVRVTBPWOi/lD32xVc67dGa11uHqe5/ioAnugY4P/8YhOx7q38NcF5LhoOG0/XpmL8/F1XcM+ObjZ3DPKvN2+tCCM837K5Y4DOwWxFIAVwoC8IKr/0p+t4yzfvx7ew5qM30VKT5K1XLwGgsapU+fW3P9rI5o5S9dzKtlreed1y3nndcj78k4184+499I/m6RnOccnHb4kqnYrefNUSrlzewoN7+vi3324F4GB4DDHHUPBtRSg1UaVUcehXUfn6E9neOcj37t/Pf96+E4AFTWniriHvWbZ3Bu/H9996KY/t72d/7yg3P9GB51m6hnLkPJ9bN3fyf375RLS9j/1yM7PDwOYvr1/OX16/AoBV7bVs7hjkPd97mPp0nLULm5jbmOaFa+ZUNAkHGMmWjrk/DB7/8cXn8LxzZ1ObirH8b38VvjcZbtl8mK2HS+/5n166EGvhm/cE3/GdR4Zoqm6Kbv/k4YPUpmJkCz4P7glmo7zh7Db+/kXn8LfPO4u85+MYw/17eqJQqmc4+Ly8av0CZtUmecW6+dH+XMfwtRsv5uO/eoIfPlhqSD6/Kc27rltOc3UCz1qSMZc/umAuK9tr2fA31/H7rUdIx12eeVYbqfDPTN7n2xv2AsFXYEXbsYddyolRKCUiIiIi044zkglvjZ19L/jzyGCW9/3vo9Hy/7orGAr0z7/Zgm+hoSrO269ZxpuuWjJu2xsP9POH7V10DmS5dGkzz5xgyNB//H4Hn/zNZnwbVB58/Q0Xc+Xy1nHrTUcH+kb56h92kSv4VCVdXrN+IfObJg9tSpVSJzb73hVb9xN/+UspfP8HOOEMfNZYjPWjKplZfUHtkhtfjpffBv5QVPXkWMtIXQNe2NTbhFVAyboCsQ6fmOdTcB287EOMpJrY3nAlVVWbqc46vOzWubh2Jx5Bhyq3EFzgVhufYd+UAhRjCEIpi3GTVI8EFTC+mRcdQ8wHxwv2vbt2Lqt6dpJPLWBP3RMsPFxNYeQ2/Pwh1u06RPvgeRTYi6HUw6c4hG3hQYfBpZuw9oUYzw96bgH9VQ61haEokAKIjeyGFHjhDGgOPr5DVMFVlIu52Lr5sOr5sOE/w0opJwqlrLV8Zm8n20cyXNVYy/NbG0iF/Zm+efduvhpWebTWJvn0Ky+IKkmSyTaSyTYa6teW7a0Yok08iNMaEw3T7LL1vDL3Ef4sXOAan0Vhw+x9PaN86Y5dLDOd/HWytN3d3cNs2xUEDjXJGHWpOM86u505DWn+9eat7Oke4S++8xCuMcH3czAb7XteY5ovvGYt37p3D8YY5jWmecaqWbz16qV86Y6d5D1L11CWDbuC4XnVyRgJ1yHn+ezuDip6/uTiBSxtreaF582JtlvsRfWZ323nM7/bPsGrhrULG7lyeStXLm/lzu1dbNjdw6H+TPS+HurPRGE4lIVSqWDb2YIfPV6XijGQKVSsX25LxyAbD/TzV99/pGJ5U1WCf3zROfxucyeuY1jcUs3aBY1RE/cPv+AsAG782gZ+v+UIWw4Pjtt28ZjPnVvqn7WiLQilisHffbuD83OwbzQKzhqq4vSN5BnJFRjJFegeykWB0PWrZ0WBfVXCZSTncdUnS7NaAjzrrDb+4UXB8LknDg1w/55e3vv9R0gnYqTiDg/t7ZvwvWipCX52JGJO1DOrKhHEFwf6RqP38O3XLhtXPQfBufnXV5zPq9cvZHtn8H5cubyVOQ1pPvT8s8atP6suVRFsFX38Jefy4eefxa6uYRqq4uMqyo5FraWOTaGUiIiIiEwrNpej5bu/h/PH91wp/n5fvCiqSrgYYDjn8Z0N+yi2f+kbyfOd+/ZOGEq94b/uiy54v3XvHjb+/Q3EXYeBTJ6B0Tyz69PcvKkj2pZvg6EeY0Op7qEsb/nmA8EFUt7j7Dl1fOMN6ydsBvxkPLi3l/++ew+OY6hJxnjV+gWsaKs95vO+9oddFT1nBkYLfPwl5066/n27Jp4dbLK+10UGaGibTReQjIWXFcZSP+yTobLxshNbjJffDnhYP7jwPTxnHoPnriF7wCFpYSCZprXZ0rRyiKFDKa7evJffnb0CS45koZ+aVR/EGEt1XwLXjnmP/SB4SAxmuaawkF0cYUd1gWw8BtbHGPBdl2L9nB9eKTq+JVEoDSXMJoMLTsfz6a3LszAcxeXnt7J8F/ixoGKiJrmbP2l9Pf+9YzbtHXF2t9ZTP5Kg/jHwa3aDMztqij6cdEiOlAKWQBAq+eGU9h5OeEzBk3rrmmkc6MaPQc2yGvjGCwGI5UeB6qjR+ebhDB/bGTRp/15HLx/Ysp//mDuby+Y38vW790RDrHZ1DfO7zZ28av2CyU/oUc63Cf9XfNfnuoPssc3R8L2Ua7h8WQt//exVHOoPqoiWOwl4oDR873Vfuw9nJHjdVclSJePs+hSuYxjNexU9jMqtX9zMOXPr+fhL1lQsf/+zV/HuZ67gxq9t4M7t3dHrTcddUvEglMrkg/f0DZcvYvmY78+S1sqZ5wA+9LzVvP7yxezqGqI6GWN2fSmEqAtDrOKwsZaaIJQ62D/Kx3/5BOuXNJHzxlZKeVGlVHNNkoFMgbt2djGULfCLRw9y0+OHcR3DC8+fwzv+56HyQ6E2FWPNvHpeeP5cls2q4ZUXH+X8EYRxEDTdhqAx+j+9+Bw2dwxigOaaBFeV/Rz7fy9bw8vXzWNfzyi/feIwHf0ZNh0aYMOunuhnbHN1gr6RPDc/cZiP/mxTxf7qUqWKtJaaZMUMdPXpOM89tz3qtQWwvK2W+/f0RkMpy82qTbK0tYbZDSmSMZc/u3L8z+5ZtUFQNRgOA427hqaqo1exrl3YyNqFjUdd51jSCZez5tQ9pW3I5BRKiYiIiMi04g0P42TzR12n2GultTZJ3HXY3jkUXRD9ycXz+faGfQxmCty7s5tbNndSnQgu7tYvaaqowMgWfIYyBf7tt1ujBsxrFzZGF7KNVXF6R/IVQ3oGM3n+687dfPXOXdHwPoA7t3ezp3uYJUeZVSvv+dz0+GGyBY/rVrVRXzV5g+l/u3lr1McEgkqwr9540VHfFwgaOEOpwqF/NHfU9b94+07OgnCgZCnsKfg+xxoEWWxy3JBM0NpnOX9nnuqsTz6xEn/kMJ4DTtUVuIlzwLjY/DasU4OxB+iYv5BUqoahlEtyFD51+SuZ66/k5XV3kXl9mt86l9G2uYXaQ98HPEyxTCcfvL/5eDVJ24hf2I+1wUW4Yy2mdx/tMdhZVQzGPIzjYmOlV+OHDxkLybKPWiYRVhJ5lt4Wn+0jQyztPh+TCapo/EIQSlUVeqhy+jhnXwup/mGycZdDDcFxWa+LeKENxy9grcXJHuSqnjsBGElVUZUZicYL+mGDcesHlVLFJvC5RHChPdqSIrd1IyMjtaRbcsQagve70LUF7v8aXYV61uyaS8GFJ+YlGMLnDT96hHXV6ah/06LmKnZ3jzCQOfp3qiKTsnZM0ZwNKqXCtVanhnjmC85h33eDasW1CxpwHcOfX7O09JSuFDww8b7WLWyKbjfXJPnmGy7miY5B/rDtCLu7R6hLxbjhnHb+9NJF9AzlmN80eXVK3HVoDatqtoVD21Jxh9pUnIHwPXBM8LNirBeeN5eWmiQjOY+5DWmWt9WQDD8ny2aND4CfsWoWt27pxPMtxgRDzB470M9gpsAXb9/JF2/fGTXNrgt7Sg1lC9y9M5iJsbk6wa6uYfb1jHLOR35Tse2bNpX6WF2/ehZnzann3dcvP6FZ3KrDfRcbpNemYpwzt55zyqqjyqXibhS2v2r9Am7edJg3feN+HgiH0AHMrk+z48gwd27vrnju8lk10WuFoKLo1xs7iLmG9roUb7xi8bhZFT/0vNVctyoYvvvtDXvJeT7zm6q4ZElzRQXbZOY3VfG5V13IpkP9jOQ81i1selqGasuppVBKRERERKavMdUbvm/55WOHuD8cZlKbitFYlYj6rABcs3IW396wj87BLH/8n/dUPP8tV5f+9T0Rc8gVfG7fdqRiRrAH9vSypCWooJhdnw5CKa803OZ/H9jPv9y8Nbr/srXzuG3rEY4MZhnOTt4r5kDfKFf9v1uj2bz+eN183njlYv75N1vIFnxec8lCrl89K7oI7QobDV+5vIU7tnXxu82dXP6J33Hx4iY+8JxVfOjHG9nVNcxozuOt1yzltZcsBEqB3eKWah7a2xcFbBAMLTImuJAv6o0aU4c5xLiKmfEXxcXw6je/uJurgUNdI7zrpx4rD8CGtT6x1DoWNd3HzpE344TRVjy2CMe6FFIrcEZ/yexMDd3W4IRVVcPJJL8fvoB7Wi+nb0kjF+98nCa3LzoCaw0ju/+c2t4Y8JNwaTHUCapzXN9i/TxVphpjiz1xfIwTIzN7BXnvMH2JNJlwGJBjLalc6QVnkkFw0Vao5rqu5by4+ef8MvMecoUMfmE/ADHqWPToJvq9KhzrUJUrkM02s+jIYXa3NmC9fkzcpWnfjymMpmnuKyUzfXVNQSiFh7U2CqXApz3jQziEMRcPjsPpKdCxpyF4DxyLuzSoBPpRz6NceGeaA32v4kVhk/lvX1Bg+4pqcAybDw0SCyv2FjRXs7t7JAqpJlfZRYqyewaLdUqrGHyee+4cvvjdYJhZ3nUp5D1i5U2gi7Pv2ehJ/MV1y6MeQOUuW9bCZctaeOMVi8cdVbHi6Ghevm4+Gw8O0D+axwA3nN3ONStn8ZOHD9Bck2T94iYaJqiocR1zQsNyX7V+AS9bOy/qt9RQlWB+UxWbOwb5j9/vAEr9opbOqiEZcyoand94+SJG8x6PHxyo2O6i5io6BjJk8j5vvXopH3jOquM+pnLF19gRVkpN9JqP5srlLTx/zWwO9o3i26B/0o2XLeYTv97MaK5AIubwzmcsp70uxeyGVEVgdvmylmh2vslUJ2NRM/uJZlo8Hs9bM5vnrZn9pJ47PRyjBPUMpFBKRERERKaXaNyYGTdj0Wd+t53YjlK/lMaqBB963ln88KH9xBzD0tYaLl7UxGSKMynVpmKk4i5HBrP8v19vGbdeselycQatXMHnW/fu4Uu376wYevKq9Qt4x7XLeGRfH0cGswxOUOH12P5+Pv/77fxqY0fF8l1dw3ztzt1RhcRtW4/wl9cv541XLOaRff0cCSu6/vTSRdy1oxvPtxzoG+VHDx1gQVMVN5dVVnz73r288Lw53Lq5k53hEKZiT5ZM3uPWzZ185nfbeHBvH7WpGD962+U0VSd4aG8v+3pGIZpBfpKqDDPx41cfDEKJRMFl1rALeFEI4cZqokBqzsE7aOn4MU+sej0AS/d1k65agJs19NpgneJwyXxYqRL3PfxwDJxjYeiJj4ExOOwPD8WhGEoRVkqNVM+hM5tjfvZBHBtW7YSz7w0vXMGm5C6yfukSyLG2olJqNAylkgUH38ZYnC9QzSi25iW4mXvwUhfT3LudxpGHyA25FGvJfrH2Gv5q9Ivs7m7Ayz3KSG4LqzvSWK9UNfd43WoevOJqXvvDLwCQG/wfCjZGzH8OxsZ53raDPBFWSlVlg3PvGxN1+rK+YX6mFHo+nrmOhrJzUZ0N30DXVDTWnl0XnNwfPXSATYcGaKtLEnMcGqsTvP3apcRdw6ce/BQMH4Z0WVAw9qNgSr2m3NE+Hjh8XzR874EHLuKux37FWz9xPVVVqWj9sZs5f34DbXUpnm6XL2vht++5etzy55779IcXQY+jUtjzovPn8iLgdZcu4vdbOhnOedQkXV58/lzOml3H1sODVCVizG9Kc/acep6/Zg67u4bpGMiwqLk66vPl+Za855N6krO7Abxm/UK6hrIMjBaIOYY3XTk+5DuaVNzls6+6cNzyb7zh4id9TBJSFjUphVIiIiIiMv2EV7LZWKzYfidY3BeERa5juOHsNl5/+WJWttfyweesjtbxfcuSluoonHntJQt5+bp5vPCzd0bD8M6f30BHf4Yjg9loNq8XnjeHnz96EN8SDcsr9pDJFXy+efeeikDq86++MLrorQnDq3+5aSv/27Sf9z17ZdSL5j9uqwykls+qYVvnEBt297Bhd2U/pycODfCWbz7AXTu6K9b/nz9bz66uYT7ww8cA6Bqq7FE0mM3zTz/fxPcf2B8tK862lcl7/MPPN0X9dgYzBR7Y08N/37OXxw70U1GzMuFQoWNfTTVXxWnsDYKQ7tYmElmossF7l3H7WLX1OwynLLUe9ACudch6I7i2AWODSikbhlleGEql+rvxy3pTGSwWg2P9aAkmeN+tH7yPI1VzeLzpOtoefTRqym3xscaStyMVgZSLTypfIBuObvSB0XhwzEs3/YJFmx361qVxawsYE6PFxOk0CZywyfhg9mpqMkF1zJX9CRY19/JAzzyyNgZkae/wySWCBvO/mPVsDlXPJW1dRtJJqkazWO8wHmBy2yC2ikwhE73XC44MMOxCZ301v1qzhEVd/Zx1sJt1mVFe3D/CT+vS0fsWvT/F2f5ilcuLvXAO9I1Gn/WiT9+yjQXtvVyw5ytc2L2WgWIhoR1z1k2x0XmwNJ7J877b38uLUq+B0WDYVTJXxfb9u1mzIqzyCZvdF4f8ffl167h2QTMzVXt9alzPp8mGzi1qqWZRS2U/K9cxuM5TG4q2oLmKf33F+U9pG3KyqOP5ZBRKiYiIiMi0NZCqYnY4Ms8xlg9dvJjqZIxXXjR/XL+SIscx/Oovr+Rwf5b5TeloiMmt772G/tE86bjL0tZqbtncyXc27KVjIIshmJ3r1i2dURNdKKuU8vxo+ZuuXMxVK1q5fGlpqMqc+jQP0ccDe3p5YE8v8xrTZAo+TxwaiPpCLWiq4hmrZvGC82bzsi/cHRWEOQbe8YzlfPqWbQxmCtH09YtbqrlgQQMLm6tY1FLN+iXN/N9fb6Z3JB8NB1q/uIl7d/UwlClEIdyFCxpYt6iJ9Yub+Mbde8jk/ajxcVH/aL5iyvbo/TYj1ERxRKlibawD1c2Y2Cg1hWC7CxrTZMKZ1+c2NHPkcI64H84sF26mxrOYsEH3aF2aXQP3kO2fhWNvCPY2lAcXcmGlyCUPP8q+OaXG1o718YyDUzZLnOPOwqfUfNmYKnw3QY9JRuuBz7CT4UAtEPQE58WLnyDfl8V6tbSGI6k816WzsXROXd/nln1r6DurGgfImaACz/GD994vpEkUgs+g68RpSY3ymtZNfH3ovRRGbsJzUgRzA8K7Hvo+K7s64cfwy6uWUz80j8FUHD+/K+iH5efozXRG62dr1mFH78DggzF01Fdz1sFuht0mvnzW14OqpYeCN3w4aajOWhwveL0r59SybX/wWbhyeQuvXr+Ahc1V9I3k6RrK0juS49cbO9hxJFjH7t3HW3/ls6GsGGaiAZu2rNG5xdCQqme2+zhvmPVZvnzkqzjWjYLFYCPhLIvheVjYPL6puMhMpyjq2BRKiYiIiMj0El7Yjq3PSRmft1y9dPz6E0jGXBY0V1UsWzymMuGGs9u54ez2imXN1YmKUKqubFr3Yq+mP75oActmVTYz/7vnn8VFixq5c0c3N286zKfHTC/vOoZvv/mSaOryb7zhYrYdHqK1Nsm6RY1sPhQERHt7RqKhg997y6XjmjMHQ3vy0TrFx3tH8lFz4r9+9irWL2nmnrC58o4jQ2TDCrGXXDiXHz54gC/dsStadsdfX8d/fOohrDEMmbGzxE3MveRyDr32T6l56yuCBWVhhBOGhXkbHNssG4ZfPhg/2Oee5Zcw0rWBIyOP0+YGIZQFrAFbFVyiNDh97DGlflgOFg8qKqViqQt5dMF+hpwNJPKw/sh6AJKjblTVUxi9g7w/h3vPauTCrRB3Pd6y7uN8ZcM7KJ8DrBBP8sNrbmBf+2xe9+PfsrzjEbyCIWdcUkBfcnnw2m1YWuXlMH4eC7gU8HGIOTmME1QmeW4Cwr5WzZlSAPjc27cxmuzm7rOvIAPE8r30D97PHFvLUNqSB4zbSqr+rcw68BP21RzAhsFq3CtwxcBmXrv/e2yybwagyesnSx1z69I8CGxsdGl7wUK+t2Ypy2uCvj/XrJxVcf7ed8Mq9nQPc3ggyy//z68rHjMUq5vGXE4bU6o+M/CK5S/H2/ggaWeAnDtKqlCD5/tjtlQ8s0RD/UREyk38z0siIiIiIqdYMA391P4788deci5hf2haahLRELhNBweimeaK1VPl2utT3Hj54nEzSDkGvvjatdz07quiQArgyuWtvOGKxbzgvDnMrk9Hs/Dt7x3FWog5hsYJZuZLh1VExenaZ9enSI4ZrlXs2TOvMY0xROHTnPoUC5uCYK7YryrmGFobarjo8ceZm6tj8n/Xr1x+9pw6nnP+/Oi+zZVm+DNhyFQIQynXBGGetQbHC0OvoTnUpF7MPP+tJAvBMcXmpche1Y6tjlHd+23+9drtlI9QM2EYZcK+S8VKnP462LR4kM2L+jFO8NpdP14KULwjxEYe4cINfwgecyyzRiwvTX2ID73WZfN8w2NLV/KlF76cXDLBneetY/PstQAkvByLF3UyK76VmtwBqocPMqf3XgDyoz1YL3jd1cNP4OMQd/K0H34oPOICUOyJZXFipcAmne1h4f7bAYgPbyRmd7FjWYZRZzR8jQ7GSXF4zjMByMXSeE6cxvwgn9v0Ya7r3UCxw1Oc4Bgub6sLek8BHbkCd/QPHXXmtoXN1Vy8uImXnRcMQe2vmWzoWNjo3BS3DtXDw7Q+vJfUUAZrwYZv9kSVUsVw0CqTEpEJqFJKRERERKah0gXwVLpsaQtb/+k5bOscYm5jmpseD5qJF4fUxV0TVU9N5Iaz2/m7559F50AG1zG85pKFzGmYfDr7ovPmNfDKi+ZzoG+UdNzlutWzJhyeWGyCXDyehqoEX3/DxfxhWxcdAxlWtddGvWrmNVbxq7+4kv09o7iu4dy59eQKPls7B9mwq4f+0TwvPn8OxhgWHTpE7cJWdkx4dBMHGyZeeh+y27aVlscqK6WKoRS+oeXwHaSH+tmzMBiyF6cZLHimQKEuCang9aUHf0PBKYUdAE4U8PjREgAbNh1rNR4+BRxi3HyloSdfoLl8krPRQrhPj4v6u7iHWrLzDB97dZx9Cz9aWs9avLBXVcwWWNl4iJaHPkfHg/VgDYnGPDnimJ7SuzU48gQJDJ5jWXDg9+xbMZ+E14f1HHIxcHxL44phHkifw+o928iOxDjS2Ar4DKUSxBiis3M/SRujHuiIQYOfIVV8jQbuvPSfWOa9gVmFYUaMwdhiI/FgyN/aumq2XLGMj2w/wLcP9fC32w5QF3O5oaWeutixexXlE2XneYKvnjVEQd+y7duYv+FBADqW1sOSCYIno/oHETk2hVIiIiIiMr2MK6kIewhNUdFUzHVYPTsYgvWss9t4w8HFDGXzpOIuly5pJp2Y/AI/EXMmnNb+WFzH8ImXrjnmerPrU2w6VEpaGqsSXLKkmUuWTNxAelV7Hava6yqWfW6C2bVKjvNNNqYilCqKzZoVDd/bnrkyWGZKVVRVmW7aO3/K5uf2UXiohmy8wP2rjtAVG6E58S72AVgbBS0LDsfwwoCyGEZVURxiGByrH4Zetb6P53g4foz7zoqxNd3D1buaWHLwBvLDP6f4OdpZBb9Kf5fnrPlLbh+GpO9xee+DDLtp2gs5LkpW07Z6AB6Epb1dFD75LTrK5rlLt+foyNWSzBcoxHyGE1XsbM9hcTBOEEAFL8MLe2jFSCwp0Lm0kSufcTU199zNqJPg35ZdxbN//nNynT77mutoHenGC9+7WM1ddPZU87KH7+APK2YBPoV4DV1OK3M4yMF0MyYMrBzjhfuz1MVcVlaVZrd75xN7WV6V5I71pYkAxppoWN3YSLhYKWWioXilz8lodwKWBsv98uF70ex7Ew/HFTmT6PM/OYVSIiIiIiKTqEvF+fALzjrVhxH52EvO5VePHWJ/7yjVyRgvOO9pmvI+HJplyzKp8nhqwguqslCq9pnPZPDmm6l+xrU0zqriwPb+0nPLNuQUggBld3c9R1I+8/xt7G7ah59r4A3+AJf/3KF2NM9XgtZQJPIwigN4vCZ7iFj1MLnMwfAAi5VSwTZrfYsfBjR5YhRilkJ9HLdrOV7ySjbW/hzXN+yYO4wfz2KTB2AY3HQ9P7h0HcSS0LwcHIcfDdYC35nwrYrVGu5ZNje4s6IFtnbRXzsQvFDH4hRnEcTBCUuL/mzhB7AFw23JIFBM+zk+vvNTYDy2ds1iX3MdSS+L8SAbj/H2+E/BuBzMF2du87DW8vrh97Mj1sK8pr28MHxjnbBSzO64HeJHeHXDUvJLLuZ7HT1sG8mye7QUCh7N5BfN4Qk0JlrJGhhc3ErtriMEvevDUMqWh1KVs+/polxEvdUmolBKRERERKapUmWGBNrqgt5VT7sJytBc5+hVU8aYIJjK53FqawFw3BiXv2gJjY8eYsjrpDsDscSi0jbDGeK2H1zI5qZFDOc9YB8YS8J1aR615MuCDePnIQylajMLKAwPkrfhNH/R0LYgiKrx/SiU6nGCmf+aw9kBSbaw4eygEbwp1ABZRgtB/ybXTcLsoErt8ECGL9+xk43dSV5bN5v5gx30tiW46Jz9dD1RgzFQvQAIRysuSMxlL138ySVvoO/Bb9PgbCiFUo6DF4ZSnnFwrYfnloZyNhYG8Rcb2m0fePPJxUuXZgO70ji7TbStgE/a9fFxyPsximGRIezZteXXsP+n1ALvTDfyyra1nLvw7yj4Pjz6PVjziolP5GTNnipOv8V3TbTIAsMmSS1gfRNdaE/cU4rxj4mcIaa4LeJpSaGUiIiIiEwvNrjEtaDyiil3vFdQYSASi2HzeWwmDH9cB+MammJxmmJzKWR6qXNLMxWms0EQ5IeBxYBbHFrok4w5jDoGWzYELD54H4Sj0fz8VvyDD5G0xWbgxWGUQSjT7HkQhlLgUuX7NIchmF82i5/rJSjEIBc2XS9vBv7Nu/fwpTt2AXD3M/6KeMMGWub+gm/vsSxqCUItf/4luLvjePk8meEhAFpqZ9GX/DCZvm4ShQ8QL3jkY25wRWoSDLvVNBT68U0SLnoThSd+SU9XH48l1tC9tAG2DlW8uwObqkjnCxinMpRaNdvn0UGwvoMTdoF3wkox35Rd2o324uy/DxaCNQb/pg/jTBpKhX+WvQ+mIlwKzvb+C+Yysi1473OJBIdb59C+cz/WKzWb8ieYfU/BsogcjUIpEREREZEz3JP9x3wTj2NHRxm4+ebgvuNWhhuOi+u4/GzxZVx2aCP1Nse+ZCOHWurAg+EwsHLig3wn91VSi1o5+8CV0fMT2Q5sKphVrjB6R8WxJmw7UAqcEtbS4ucYBt5zGJpTzdznV+MChVgi2mZ9VRPdXg9ZLwjSXFPqEdY7Egx1u2xpM9uyP2Uk9XuG/Cwvmjebnzzzyywa6sWZdxHxO9+Bl8/TuStodu7GExCPY51qXGu5ass+hpNxYp7Pby55B54Tw1gbhHHP+2cOL30D3/nI+xldupp0wnJ+863s2dNAOl+gNp8nnQ+G5Bm/LNCxHtVucZicKb0TNc3QCzzjI/DML0HHI5DpJzYyCF3BKoVCjuI74BXyDPf1MdTTRevCiaruxn4agvsdq9t4NNHIqh2P0jF3EZnZQR+zoFIqPMSKMEs9pUTk2BRKiYiIiMj0ZSa9I08jU943aIJHx94uBg3GDQOdfFCtZGJuxSaM4+Ji+Px5L+Hz572E69e4/PZRj1h6Kww1MGDnkfRjGKfADm8rtG7FKZQuUYZrFoPpheKQPqeeWPI8nNgcjBuEUv2pIHmJWYiF/ZUGel/G5oRDZ7qDxYBNBP2vHOOQjKXBg5yfjZYVjeaDqqOrV7TyT+f9GQ92XkhVrIpF9YtY1FzqLRZLJGC49DrjySQ4BuMmcBZcSvLw4/SS4O725Ryonw94QbPwsLqpWA1W23+Ib124le0XXMS7PnQX5PP44Ru48LouttfNgZ3BPnJD36OqowlSc8GWZt9zwsP3LeDGYO7a4BgLHtzxGABe0PiJgSOd/Nd7304+E1Q8pWvrOG/JAhrLznDOlobclVgsBhseW33/CLnlwXnyy3pKHW32PYVSIjIRhVIiIiIiMq1UVFvoSnZqhI3OsScW/S342lfZ9eI/iu7H5syBsl5UNpaifK7CbV37gdmYRAewhDx1FHa8Hze9h9r536VgC2RjI9H6udq1+N4f8OtXUJO9GOMElVWF2CD3LPomu+t2MZQMhtXFzn05zuF26IH+3BKqc7B4aBFQCmXiTpyYEwRUQ7kgmOnoz/GKL97NNStbyYShVDrhsqRhEUsalkz8us85j0133Irjxlh03gUsPPcCdj+wHXoyVF/4egD+zu/lfselONehwSdTPY98NoMNQzbXMYzGRsmmcjipFH4+H/WRchM+c+L9NCaa6c1VYb0uzKEuWPQMrDU4YU8tUxyaOKZnk1uWDj7R20D3f36WR2/5dcU6o4MD3PPIRi6orwZgu9fE/9Ru46tOYcwrDofUhkFTd41LfiQI9axfmqtPs++JyIlSKCUiIiIipwX1pjnZTMVMeUdfNVgxtWoVS372U3IHDuDW1JC+8EJsvqx/kzEVoVQmH4QaVyw4lxfecBbbDgUh0Mr2q9jjV/Glx75E3gkrmHyHWPIcGofSHHG7wCk1CU8m9zGS7IsCKQC3cRErrlzGQ7/ZQy7jUa6/9jAACSdBPGyC3jEwiFsH+YJlw64eNuzqYV5jsI9U3OVonv3293DN695EsqoaJ6wWG1nWwH1P9FDjPcFFDWtoJgZYHgx7PjnW8r//9/9gHIfVV1wTvI1hmVPBLzDs5EmX7cNN+qSdLK9a9Ahf3fMhRrO3EAzas0FVVHiyjBNsf2wf8fJQ6leHlpPaUwqkrr3xLfQe2s/Dv/lFcOxhJdmOhidItvwBY8tDpGA71pQqpTAG3w9vW0PtsI8fm2T2vajR+VHfUhE5QymUEhEREZFpLurEfEqPYkYzZtJSlmNlCcnly0kuX15av2zsV7oqhlsoBUS9/fUALG5u4o/OWw7nlbbzH48EwUjBDfo6GVxauh5lzcYvBttt+y2z33wR7ub/5QfOVdHwtSLXcVn3nEWse84iAAa6R/nVEzfxmY3/TrrZhRGIu3ESbhBKOTUbw2c6JGIOuYLP/t6geqoqcfRQyhhDurauYllVQ5IBD0ZzQZXRi500f2CEYcDBsnhkd/A6fJ+9jz8abicIbjzfY2erz9n94faXjhJL+cQYARfiThujxffby2GtiYZcFiulfH9spVTptu+UhtJd+7o3ceFzXgBAPpPl8dt+Gz3mxfsmfr3hn8VQyvML2MEBhtJJakazpHKWkRjYrt6yJ4WhlCql5Axmxv69pXR2HOfYq4iIiIiITKFiZYUuY6dOVFUzeThVuf7RNlV6cO78GlwgZoKgJpcLptJb1Jwc97xEWMGUd4JQyrEOMadUedNwxSU0vvoT1H1wA+7c88c9P2Yq/729rjlN1WyH/vQROkY6gGD43uLGluA4naAPVl11lpevnVfx3LkNaU7U8nVtPOvPzuay172E/lk+q+tdftVSz8PPOpudn3g+3/jM33Llq24EoJANZ/4Lhzrm/Tz//PI473uDi/nfL7L8fW8ds/XSSfnvX/8DizsPYWwx9PGjVfxcnuFHOun84iN0f2UjDpZZXQdJZUej58fTZa9t7PVycR1v7PkJekoVYkFwmLdZnN5Ofr92Je1r+0oX2tlc2XOiKCv4//ffAPnMJO+eiJypVCklIiIiItOSwUzQcFlOigkanB89FDxKKlX2z965XQM4GK5ueJDHq4NAo8/fyvL2Px/3tGIFUyEMpYx1aHvZ81n5X0FA41RVBStWNZFunI05NL5SaqyqeFXF/baqNt659k20VNfwjU3fAGBd+wV88IrVXLa0hbzn016f4vz5DZO/vkm4MYfl69qCO1fPH/d4PJkingpCuUIufI3hMWe9LMNkGW4zzF5+Hu45V8Ha13P4xz/nwa1byMUTFEul/EQty44cxKkq9pQKKtEG77yLHZ/6NemL3xLt01lSw+K926I+VQCJVOV7Emyk+D87dmG4jyCUeuysi3nh7n4Ojewgb3N4FhqXj+DvCntKeWXD9+JpmH1+adht3y7o3g7t5xztbRSZoVTpOxmFUiIiIiIyzUwShuh3+pMmemvLwqk83pO6WDCuQ81lcxjd3APWMhrPsa/2DoYTR4g5MeJ+gXRsfCVSsVIq3gAUIBGPc8ENC3GqxldVPfOZz+Su2+5ie9/2aJlrxodSl8+5nDec8waOjAT7fucF76S1qpX3XfQ+3nnBO3mi5wlWN60mFYvxvDWzn8SrPTFuWGlUyIV9s8JhdfsG90XrREFabRuZpmvpIkc+7PkEsGHdB2nMbYvum7CaLLdnLybdwAhZbo0/zpAZBf+ZuH5lf60j73s/9c99Pu1/8zdRVZuFiu/XZF+13oZWLp31QrYNPMiD3TeXfVXDaqiyoZoYA2/6Hdy9CXIe40MvERGFUiIiIiIynSmImhrFntVliwqUql5K7ZuO74Q0vHApDS9cCsDmns0c+tmRYJt+Ade4zK4eHwAVK6X8RB4KkEolqK4fH0gBNDQ0sHTBUn7bV+qHNKdmzrj1UrEU71777gm3kYqluGDWBcf1ep4usXi84n4iFg5Z9IOhhHOq5xB3SusY1yFoQF9+ZixJp7m0TthI3fctvuOy3e3gkBv0djLWx/FKQdHcngGSIzHuvy9H9TefoOPRINRrWDTCc1L38jOWkgGwdtw5t2WBZRQAju2PU14pBeC4YTWYh8WAHfO4iJzxFEqJiIiIyLSjeoqpZcIqlnFNecNHj71kcisbV/KxKz5GT6aHZQ3LmF0zm7bqtnHrxd0gjDk8EsyUN1HlU7mXrXgZA7kBRgujXDDrAq5fcP0JHNWp4Y4JpVLxNN9+3rfZP7QfB4c1rWsqHjdOcEZGaveQOlKsNPJxKkbZhbPveT77WxopUAqhHGuJ+UE/ryWdvaw81MOm1TdyuO0iuPMQ+eFqABJ1Hmcn9rHA1NAz4ZEHw/d84KauJ1iRCi8jo1AqCJsKhcK4Z1Y0SVeTZxEZQ6GUiIiIiEwvtrIqRKahCXpQTb6q4QVLX3DM9ZbUL6m4n4qljrp+e3U7f7P+b477OKaD4vC9IuM4nNNyDue0TNxnqRhK5ZN9JINaI8AHf5DswLcAy3DdPGAl1vMpuDH8sKqq1k9hrI0qpYyFzqYGCrFgeOCoKUQXgx0DS8g1HYn6P010douR5ZBfwAuHBMaiyqfgeUPD2fGvoXwNVUrJGeYEflSesRRKiYiIiMg0p2DqpCv2Fpo4jZgSZzWfxW9e+hu+t+V77BnYw/OXPn9qdjyFxlZKFXtKTca4lJ2UoFLKy22jkLktWqe/x4MYWN9ijEsm24ubHcBNVeFYG/WUcqxlbs1ZHDTBPgdjWRrDbew2l7JhaDG03hMsGHPOTUXbe4MJt5Ekz1A+Tt47gPVbsaOD419DePg5Ex+/YRE54ymUEhEREZFpacKARE6Oo/1z/hT+U/+cmjn85dq/nLL9TbV4srJHlplgxsDKxx0qWjtZ8AuHKtbxwuF51loY6uTAwDaqAI+tPMPvo+AGl3yOtXjxJDYcFplNDdAU28eRHIBl1G8o7XfcLHy2rKeUwQmnWMxlfL64/RLgLui/i8MPx/G9t+O4bsWzAV56/r/ziV6PG+ce9SWLzHAKZsc6ejQvIiIiIjLVrB0z5iegjOokMuXVOMf1hJN1JDPa7OWrOOfaZzFnxWraliznvGc996jru3FnfJ8vmwPAOA0A+JngflfLGtxdD1asunr7o1RlhoP1fcsPjMWGQVjaG2V2YnNps2P2Pf6+iWbrK1ZKjZXL5Rnu761Ydm1TXXT7i326/BSRSqqUEhEREZFpxVrL7lVnM1K1HwbKHlAOMo3oX/ufDDcW44a3vuu416+flS772IcVS+TDu0HVlZMP+jRlk41sPOs1MPwT8i7Ew37niw8fCNazltrYUFQp1WTGNyWfTLENvhtzWP+ipVT9vp+qqnYGC3346WrqR89hJBcMKbR+Zd+oj62Yx/PveC8vWfIBRtRSSs5Q+ok5OUXVIiIiIjKt7D10iCNz5zPs5lESNTWMKY8+jnb5pPMxlYzjEL3nUfVgWCkVhlKuP0pVz+/JDf6QQuZuADobRik4QQLkZIaCP63leanf44dVTgv93ZPvt+IjUAzDgpvNc2pxjMsz2v6YwWVnk5/bTsxpBoJ+Wb43PnlqLATVWt64R0TkTKdQSkRERESmldFMJrpda5NHWVOeNhON3jtqNqVwako4jKmUghGCGe7ihbBiyubxR+7CL+zGep0ApP05xPyySz0LDSNZvtJUF1VKnevcTcUKZXuyOBxpPb9sz2Vtzh2DtT7VpMB1SMZ6gsgqDLusPz56csJN+yoXEZExFEqJiIiIyLTUVEgTt0dvBC1PLztBJZRyhFPImKinVLGPU9oLxrS29mwBwMdQcMPZ8NyziFU9k9n+K/HcKgAaEyO8sP9x6jI5PAN+2FPK8b1J696GahfQ27Aiup92+rEmOBJjHCxBNZRrnTCQKoVaI1u2BE3Xy8TCT5EqpURkLIVSIiIiIjItqRZn6oxrpl1m2NGZOFVMrDT7XixRU/FYohBEPBZDwQku61bteZSk24hx0lD3DDYtGmDDeZ0UB9T5TimUOnR3HUe6asv3FgWQQTVVcK+9rpMr6r4SBZbGGPxiKIVTNktmcAz7//Ld9P/gBxXH6obbKijhFJExFEqJiIiIyPRSVmURXO/qSvakm3A4XvC+583Y8yFTJT67mvicIIwambeUfF0T+ZoGRqtbaOsP+jQVjEMhDA7rhw6ypufTAKTMEh5dnuPepiSPxtsA8BzIu0EoZTyPWF8x2ArOcSmWKp3p2tQQKWc4WmaMiSqhHOviY8m7lc/J7tpV8TqKF53qcy6iv8/G0ux7IiIiIjJ9Wf0CPyVM0Mx68tRp7AOKp6aCcQypJQ3QCZ7rUJi7hNqRAo5XQ7zwIACFWGmIa8zzmZUd5CHAtTFuvP9jAPTV/pSh6sdwbJ7BKpfqPBhbGRFN/k2z0f8NgFM5fM830FXvUDMcRE++MdhMtmILxSP09HUWkTEUSomIiIiICDBxT6my8VlyChRnRiyEQVC928hgPMUjzctI5kbIJoJLOt86xD2PmJclWegjG2uItpGrfyEbLnohi3Ol7fbW1gOlSQWg/FRP0FvMlA3fCwMtB4eCsfjGBr2mwuTKz1ZuNxYee+FJvH6RGUE/RyelUEpEREREphV/kuoooxnfThpjzAkNKtGpmDrR5z78I4ZLnYFPX/IqBvwkDfk+qvxR/ujgBly7jVE/wUVbP0mfXYzj5di16HnkErX4ToxcohaDYSQ+SCzTi6kq7qVy9r3xQ2gp6ynlRMP9YtYJ5gI0pTV9xldKOeEQUJ9g6J++y3Km0Gf92BRKiYiIiMg0dWJBiTwFR7twMuVDu4oBiS60psrYi9oYMWLG5UWJjeSHM3i1tcTxaDsS9Ie6pXABi0cOMX/oIQBaeh6Pnvu5a67j/gsfZjBdxzkPjN9XIWyCPlEvt2Io5TgONqyUuiy3jO0mz1Ysxc5R1oAdUynlloVcPqXhfCIianQuIiIiInKGSy5fHtwoyz9S+VNzLFJpXChlXFzr4BhIJaDK5EmN9LOgvRUA1/qkC8E4vYFkbcVzrbEMJ/uxTpZsPF75GCYaojeRUk8pQ8YLmqzP8xuZn11SPNJwH4ahvbsYuu02vKGh8JhL2/HUJ05EyiiUEhEREZHpRRetU27uP38SYy2HmmbhmbBaRqdhWhgbSqWdNLGw1sgmUgDMX7GaNZdcBMCaoYPUe6MA9KabK56bKDY3t2F3p3HftfEnvVivWOop5fBIz63c1/17uk0QTrleHIwTbcFu2cG+t7yVfW99a/B42XYL+lyJSBmFUiIiIiIyLZWGEOkq9mQzsaCrx962ebzvij8H9K5PF2NDKcc6LPFmkaIKp5DCzVez/vIrMWHlU+1gD/F8UCm14F3vZs+lz+fQeVfQc+1zse3BOrFCD45zqHJH1oC11I5YYv74s1/qKWXI+qPsGtrMbxNbAEOqUEXx0vKRJYb+xUHVVv7gweCYy17DZD3jRGYyfeonp55SIiIiIjKt6Jf3UyvnJsYsMRNMxqaeUlNl8eLF3HPPPeRyOeJOjFmtcziyK8aiqmvo7giGx61Yvhy/uYHU2WeTeTzoIRWfM4elL7+Ws171LAB83+cX//QhHN/Bd3wMubKzGAzOe8v/DNLe5dPTWFxG2RoGY8A4xbjYgg0+CcGawfJfrnOpWnIll33oh+AFlVnlPaU0fE/OZFZ/w42jUEpEREREphddtJ4ipXhBpo/FixfzwQ9+EN8PAp49j/Vw/+bHqMt50TqOa3Db2lj8g//Feh75AweItbVF1VMQNChP+Alu2H8Dg/3b8NlRsR/rQ3tXsI+8W2pFXixystH9cLCNteDbsk9NsPzSx5sYGTlE3nWIhcdc3lNKw/fkTKL4/tg0fE9ERERETgua8G2qRTHEKT0KCYbMua6L67o4bnA+8tkglHIcE1UvARjXJbFgAU4yOX47QJVXxZyuJGMvBW3Zef7BtReVHhjqHHcsxWfUDvYTdZ0Kl1dnYuSe6ORAQw02MwD9Byg7PHwFn3JG0s/RySiUEhEREZHpRZVSp8xxXzYpITxliqHU6ECu4v6JSISz85WM+c4Zp7TMBuHXtqqF4UPFSqkcqdERDHAk1UFNchZQqswquA7kRuCez4NxcMPm6v+44yCf2t1Bf75wwsctIjOPQikRERERmZYUe0wTE2SERtUup0zLvFrSdUHfL2Ng+UVtx/3cYpboWIsTDq0rexQAnzHfvdbV7H7L/dzedBEGgxsrBk85YrkMYBiID/DmBZ8mcVY1bmINEFZeWQMj3YAhFoZb3+vo5RO7Ovj+4d4TedkiMkOpp5SIiIiITCuKO06V4J23qoKa1qrqEtz4icuxvsVxzbjZ+Y7GRB2gxjSvP8oklyZRTaF+PrAZgKa585h31nUc3LaL0XQNBthj2xiwaYw7HCVf4WR+kBsC4/DcI3fwo7bro+0OFrzxOxORM44qpURERERkerHqZXSq6B0/PTiOwY05JxRIQdn5neBpdtxjdsJ1jTEsWfdiEjUvpr9lHgD91HJJ9nNsZSnFS0xrTLCJXBBU/cfmf6SjdQevndNcuT8ROaMplBIRERGRacuov9S0UDoLZsyfcjoxZamUxWCiEzvme3aMr12xsfqy/DkYDAbLCCmyNk4plAo3s+N3kB0It1tqp+7rqy1ngHG5sT734yiUEhERERGRo5gggFImdVqqrJQae3UcDrujOMyvtNyOKZqqaQhm9ssMFSpHAVobNkkH34Q9pQAOPVJcIVrf6upcRFBPKRERERGZbsqqoyouWxWEnBKKDmaSoKeUxUR50ZOxYn076boEQ493MfBwX+mrOZoFqoFibzIX3CR42eBx60dDDvW5kjOJPu+TU6WUiIiIiExz+nV+6hxr3NaYP+W0UhxKZNzmMY8EQRWUipuillITnGvHMSw8u5l5q5rKmqeD9QqY4vA9wBoH3nFfxX6izetrLSIolBIRERGRaU1XrlPGVvxRogBqxiieykTN8znapWB50IQx0Wdi7EfBuKa4ClCMnMoanXseOG7pCdaP9qpvtoiAQikRERERmWb8SUsolI6cbMf7DutMnJ5Ks/UF3zHzFKMh45iw0XnAc5yynlKAtdjyS05rywIsERGFUiIiIiIyTQUzg5XiDwUhJ9uJxAQ6G6ej8ibjx3u2zUTj94qPOZUhV/D/skqpir0S9JQKb04ePovMHPpJeWwKpURERERkmnqqdRxyYiZuGDV2JjY5fRVzIi8+POk6J9IA3bgOhvGfGCiLOG3ZJadfwBn7uIic0RRKiYiIiMj0UlZBYXTlKvK0ccJUarB+K9Yp/3LZshbkY2Olsp5SYwKrYKReaWGtb8AEPaT6q1Jhs/Py3fjR6vpqy5lJn/yxFEqJiIiIiIicAda0NFIzODTxdXFFRnV8w2aNYzC2FFt1JWopXmKOJOPcdM5iOnbsKj3BL2j4nohUUCglIiIiItNK+bWqxZYWaOTYqTHReK6j9BmS6WtFUz3P+s3vqO89FzBjwqkTH1Y3dvjeqEngxhdiTRIAz3X4/fe/XXrCXZ/B2fKrE96PyOlPPzMno1BKRERERKaZcGYwo65SU82MzSlkxjHlw2OjW0cpnTJm0rboQTZp8MIt9btVGKeOTOsfM7dnEIBcJlN6Qv8+TNfWSfcoImcehVIiIiIiIhKyk9zWv/LPBOUz6Y0PhUzFH2MXT7g9J2iDX2+C4KlYVOcA83oGgmV+2Z4aF0dBs0bvyZngaLNXSiB2qg9ARERERESmh+O/fNKF1unrxNIgc9RUKhi8d1FsH/Pi+1nSvwc4H6esbbrv+6X1U/U4xVBKtVIigkIpEREREZluyksolH1MqSYzQrMZqVhWGR0Uq2kUKJyWjMFYf8KHbNmfFV+7Y2RSBnCNpckdodrmoicVhwna8v0Zp7T8SRy+iMw8Gr4nIiIiItOKnfSOnEwGiBufq+I7xz02Ua9zOV2FoZAZv6ykso9Uaa4BM3a1spuG4fxwtLhYK2V9C8at2DKAr++2nIFUITieQikRERERmaaUhEylyS+WdB5mDGPGNDof3zfMmrFn/OilUsWgyljIeblxzyn0dHP4oTqKBVNRT6kn9wpETk/6wE9KoZSIiIiITC+TdEBWNDKNqHnvaexpvDouC7Bq4jXUxKuiBwbD2342R8/mNJneePCIhu/JGaT4o1Kf98kplBIRERGRaanUtqh4Q0HIVDraRZTOxOnJRJVSY6+UbVlr8uJyGz0nev4E2ytKuqmyUAo+t359sCk3uOS0XlhRFQ3f02W6iCiUEhEREZHppuJiVReuIk+vY1cqHXfoaMrXtrgEvaOsgb7lvw9vh8MCbbCuo++0iJRRKCUiIiIiIpObMENQrdTpqNQBanLjmtofbaimKW3PWlg2nAbA8Z1oOxUfn8EDLB/eDVbtnkUkoFBKRERERKaxsktX5SAnWbGCZuwMa3rjZ4yowY1/3Of1qDFW2UP5XIGcXQBAwnOwNhbsqlRIBYMdvLDrNtYNPD5Z6zgROcMolBIRERGRacWWzw5mNYBvelFAdTor9oAyfv7o6405z1FXtwmqqIrr5r0su+raoieMrbiyjUui2035fnx9s0UEhVIiIiIiMs2UtzXXZevUmbQiZqKToOqp01pt7y8pa3ceDqcLez9Fa4W3jnKqnaoYbiwW3T+S7Ixu+2O399x/gWRd8DxFUnKGGP/10Sd/LIVSIiIiImeI22+/nRe84AXMmTMHYww//vGPT/UhHdtRZv6Sk0Rv9IwXz+457nWPNnzPSbiseM8VXLbwQlYUZpeWG3eCCf5KQwZd62v4nogACqVEREREzhjDw8Ocd955fO5znzvVh3J0FW2kLPqXZZGniSlLisZmTcXxdmNLFI8RUsYb01xzwzO4rLAyemLCSWDDS81SKFXaqYOvWik5wyjtn0zs2KuIiIiIyEzwnOc8h+c85zmn+jBOgH6Jn0pHiwjGPqbRe6ersKfUuDM60dkfN5Bv0m+kccc1m8Ib25fKL1VKOZp9T0RCCqVEREREZELZbJZsNhvdHxgYmKI9l10M68p16o1LHiaKIpRKnZbK0kQb/a9SsKj8/B7HuXbM+GF+xaKsqDqrVCll0PA9EQlo+J6IiIiITOjjH/849fX10X/z588/tQekHGRqGaUGM83YCjczQTXU2AXHUxVnnOLQv/LtjQnAfD+6r0opESlSKCUiIiIiE/rgBz9If39/9N++ffum/BjGDzOSKaO3fuYpr5SapCLOmjHNzY3B2vH1UxWcMY9Ygz+mKqti+J46SsmZQmOdj0nD90RERERkQslkkmQyOeX7PeYFsEyxCc6ELrROS8WwaXwR3NF7Sh2TM9EcfWMCMFta5liLp/F7cibS534cVUqJiIiIyLSlX9+nkt7tM0ZZf6djOo4AMhq+V/YZ8ssez7suB57YWFEpVf64iJy5VCklIiIicoYYGhpi+/bt0f1du3bx8MMP09TUxIIFC07hkY1R9i/JlRUdqs45mY6rv7mc1qJKqUkeHX/rOD8GjqF8sG3Bd7CmVP/wu7MXEbvn9yw93yEBGPWUkjOM1Q/USalSSkREROQMcf/993PBBRdwwQUXAPCe97yHCy64gA9/+MOn+MiOk36nnwZ0EmYKO8m98bdM2a1J4qwJhu95jqG7rjR7Z8H69OcSQNhTSqmUiKBKKREREZEzxjXXXBP1axI5ISqjmhmcoCZhookVyys5EsNdeNkHgzvHc6rHNjoPn/jzyzv4/A9m83DcIRuPRftwrFWrcxEBVCklIiIiItNMqdG5qZghTDHI9KE+5zOAmfg7ta2tlYaOB6P7NTVVx96UY8IqqvI6q+D7G3MMJvxO2/Dy01FHKTlD6EflsSmUEhEREZFpK6joUEXFVJj8XdZl1UxxPGFid1kI1VZ/LudffFZp+N5kzy9WSlU8HtyxZeGXtaVKKRVtigho+J6IiIiITDd2ov42MnXGJA8TnQSVSp3mwkbjR/mCJWpfQ03qMK57HHUMY1YxQLHM0S/bjx8N3/M0fE9EAIVSIiIiIiIiZ4iJw0SLLespVax6cgjSpGMHkMYYnNo4jJZaor90y+vIJvrYXzuCHb4j3E8YSqHZ9+RMpU/+WBq+JyIiIiLTSvmv7Ea9Z0SePmGFWzAs9umtdmt90xpwSt/e9pG5LOw7m67qi8gmG4GyUMpq9j0RCSiUEhERERGRSSMKc1xryWnBHO1shj2gxj3JKfWUOsqm47OqsG6B4ZrdNMUsB6v38cDc34zZdqlSSnGznEmUwU5OoZSIiIiIiEzKYsqGdhUpnDodlQ/QsxWn0DI+eTKYE7yUNsYwUrOXC2p8frT8O9y34JfEM52MC6Wsj6dSKTkDqP3esSmUEhEREZFpxYYXq8EU82W/0eu3+ymlyOBMcByTCjyJ7115o3Pwo21kbfFxy609gzzn/q38tLPvhLcvIjOHQikREREROS0okpouNPDqdGVMePl33FVK9sRWrxDsK+gLF3x77/EGgkesB8BDgyP86+6OJ7NxEZkhFEqJiIiIyPQy7gJYNTvTjqrWZpiJvmPFWfjM2CWTMmZ8X6pC2Qx+xeF7NX0/ombg58HjGsYnckZTKCUiIiIi04wuUk+JSd52xU8zhymbfc8axpzz8Wf6qZx7Nyyo8/GiLS1zqoPH8IiPPhI8rq+7nEGs/n4bR6GUiIiIiExj+gVeZCqN/8YdfzRVqpSyLMtlgmXOaLSNOq823KKN5t/TRbqcEfQxn5RCKRERERGZVmzUDFmmUnTNNO6NNxPc1tk5HUU9pQiG0lWexclnWDzh62kDz9o/j1qbhrKeUrl8AggvQsMvuq7VZSYz+pl5TAqlRERERGSa0WXqqXC8l0xG5+e0N+5cT9rXyYI5/ktGU9Z/6ob9y/lf721Y32VsTynHhts+2q5F5IygUEpERERERORMEIVGdlwy9bRnQ45DzPpg/Wi/xVDqzf0D/M+e+3nNwZ9qLkeRM5xCKRERERE5PWj0g8jTwlgmT6EqZtuzFDtAnQhLMFTQNRbflAYK9v+hh9ygC8CFmQHevfcb6iklcoZTKCUiIiIi01zxolWp1LRhdC5OR8Yp6xN11N5hE90/9mk3FZVYDljLwfpkaVueZeRIgluqqgBI+AUN3xM5wymUEhEREZFpxVqFUNODneCWzATmKJMJjDvXzol/Dy2AcbG+ZSTpUrzszMWq8D3Dl5qaAXCtp8+WyBlOoZSIiIiITF8qozgFjl0xI6ersefSRn/ap+E8lzc6L1ZK+abUNWrb8pezzb0uKrlyrU/ez5cF0SIzy7jqQn3Wx1EoJSIiIiLTS/hL+7hoRNnISTbJxdKEi3UyTk/BeTPHdWFsiE5+VFl1/Oc9Pnctmb3L2Fl7gIJTCDdj6TJLmdVn8PKGmPXoHu3hu1u+ewKvQURmEoVSIiIiIiJynBRGnc7Kg11bljkd41knsP3iLHvhhr04B6oOc6BhW7iGz+hAFX/+pTzbf9oGGR8w7Bvcd9z7EDkdqT5qcgqlRERERESErJ+Z/MHyUVm6vDp9VZQblt8+2jk98SDScR8hu+WXwW2ciu5knpsAwM87+ENgzYnP7iciM8dJC6V6enp49atfTV1dHQ0NDbzxjW9kaGjoqM/JZDK8/e1vp7m5mZqaGl760pdy+PDhCdft7u5m3rx5GGPo6+s7Ca9ARERERE4F9Zc5NTYP33eqD0FOshMZfmcwGGN5UjGkO0rh8KMAVOFEM/0VRn7LoNtPIWye7hbC7es7L3LGOmmh1Ktf/Woef/xxbr75Zn7+859z++238+Y3v/moz3n3u9/Nz372M77//e9z2223cfDgQV7ykpdMuO4b3/hG1qxZczIOXURERETkjGOPJ68orqMGX6enMeetslaqOPTuKE8/5uZNaUU/aHB+VSxBJuFF6/RzP48tmwOA7xuMtaqUEjmDnZRQ6oknnuDXv/41X/7yl1m/fj1XXHEFn/nMZ/jOd77DwYMHJ3xOf38/X/nKV/jXf/1XnvGMZ7B27Vq+9rWvcdddd3HPPfdUrPsf//Ef9PX18d73vvdkHL6IiIiITAOlqg5dsE6Fxec/b5JHFEDNFCZqdD72kQm+Y2bMnye0IwM2CKJqTYwHVvZxuKEhevhwzQLuvehD5L0EMeupUkpmLP30PLaTEkrdfffdNDQ0sG7dumjZ9ddfj+M43HvvvRM+54EHHiCfz3P99ddHy1atWsWCBQu4++67o2WbNm3iH/7hH/jGN76B4xzf4WezWQYGBir+ExEREZHpqfzyVL/QT52W+ecc55oKEE5b0RdqotqkYpWTmeT+cWy+/Lk2qJRyrCGX8Nm8sI14zUvDvfsMV8+m359LzPr44boicuY5KaFUR0cHs2bNqlgWi8Voamqio6Nj0uckEgkayhJ0gLa2tug52WyWP/mTP+GTn/wkCxYsOO7j+fjHP059fX303/z580/sBYmIiIjIKXci/XDkxE2ePeh9n2mO94wG3aSeRE8pxwE/qJQyfrC3wcQAN6ULweNhCOV5Do6G74mc0U4olPrABz6AMeao/23evPlkHSsf/OAHWb16Na95zWtO+Hn9/f3Rf/v2acpRERERkWlrsqE8ykamlGKCGag8eXwS36fj7SllDdhw+J7jl/pMdcWCy09jcwCMdqeIoSopORPoL7DJxE5k5b/6q7/ixhtvPOo6S5Ysob29nc7OzorlhUKBnp4e2tvbJ3xee3s7uVyOvr6+imqpw4cPR8/53e9+x2OPPcb//u//AqWZWVpaWvjbv/1b/v7v/37CbSeTSZLJ5PG8RBERERGZVhSNTBk1L5/xomrD4+kpFT3pSX4uipVSUQd9H8+44d6CIGrocJq/+fKX2f2ec5/cPkTktHdCoVRrayutra3HXO/SSy+lr6+PBx54gLVr1wJBoOT7PuvXr5/wOWvXriUej3PLLbfw0pcGY423bNnC3r17ufTSSwH4wQ9+wOjoaPSc++67jze84Q3ccccdLF269EReioiIiIhMUxWFUsqkptDk4cO406AA6/RUPG82GDBX3vDcjjv/BsLhe8e/+bCRunGiRuelfVg8Uxyo40X7vGjj4xwaWHYCL0JEZpITCqWO1+rVq3n2s5/Nm970Jr7whS+Qz+d5xzvewStf+UrmzAmm/zxw4ADXXXcd3/jGN7j44oupr6/njW98I+95z3toamqirq6Od77znVx66aVccsklAOOCp66urmh/Y3tRiYiIiMjpSknUqaCeXTNfNPte9P/x37WJGqAXlx1vFmmNAT9sdO4XgyobVUoV92LDkModzR/fhkVOM8rvj+2khFIA3/rWt3jHO97Bddddh+M4vPSlL+XTn/509Hg+n2fLli2MjIxEy/7t3/4tWjebzXLDDTfw+c9//mQdooiIiIhMY2UThcm0oSusmWL8CL6n8dwaU+opFbUxtviEw/dsDusPY1IW+mH5gR1P375F5LRy0kKppqYm/ud//mfSxxctWhT1hCpKpVJ87nOf43Of+9xx7eOaa64Ztw0RERERmSkUgEypo86+p3MxExgnrFoaewlls3h+ZkxQdeLnvLzReWn4XrAs5fhllVKQ7f8iD7TCNZ2GC378CD3136Tuuc8l1tx8wvsVkdPXCc2+JyIiIiJysmUzpdm4Ki6LlYucVCc2zEQn47RXdgr9wn46+n/NxrktY1axYdXTiRUCGGPAKwAFnHBHaQcybpKMk4jWy7owGo8xvD/F4f/zMY78+6cn2aLITKGimrEUSomIiIjItLJnt/rLTCdDdRcwUjUrum90UXXaMuHlX/Ecjq2Y6q1OjU8ny+4fK4osVUoZsB5u9eNUnd0SLrP4xuW3LdfSMOc1YKqD51SXDsLr6zvBVyQipzuFUiIiIiIyrRQKpdu27P9yckWNzicomfLc5BQfjUyFWYMjWKe6bImZ5PYJCj9DTmyQqmXF4XjB9zjnJIklGjEm6CRTe02W9nV94So+IjORug5NTqGUiIiIiEwv4W/vBjD6TX7qjMsgLMu3/+8k62r43mlpzHlLFjxIziNe87Lw8bFPsBMtPMrmi+uGFVO+jZYVq7N842CMBRMHYIhUaW/9B8JhfyIzg2Y1PTaFUiIiIiIyrUwWQ+mX+5Nt/Ps7f/+tNB/51Sk4FjkZipmRseEQO4rft6N9t0oDNo/3OxhN5GctjgkuOfNODuMOUaqFCiqlOnO1eMXtHngQtv3muPYhIjODQikRERERmb5sDmtHTvVRnNkqqtUMGk55GiumUmWn0FgbRU1jZ98z5c85kd044WVmWSi1q2YzNSv+iez8W8CACSulNu1v5IfeOcG+rYGBgye8PxE5fSmUEhEREZFppXhhPNK7i6rBjRRGbj6lx3PGmCR8UH3azDM+Wnx6zrKpqL4CrM/5redT59VE6/g1B4OhubH2aNmgn8Avfv5yQ0/LsYjI6UGhlIiIiIhML+EVbSHTHy5wAJcFS+pO1RGdGcbmEqa8fmZsdZSiqtOSmagmqnTbjjutT3aqgTCcspYlDUv45qF/48bd7ypt01hiqSu49Zp3Rs/wHBMU5eWGT3hvIqcLq0rTcRRKiYiIiMg0U/lLeyx9Dem613He2tZTdDxniMmGaekaauYZlzFWNiif+LFjR5FRo3OnOEzQRstj4aWn5zg8NhDDGEMm1UDejUXLAbjz32HX7ZquTOQMoVBKRERERKY3zfQ2JSZ7l81JGegl04ed4NZT3GLxO+sHW4ynYsy1sfBRP2p2boBCLOgt5TkmOAAvB19/ATz6vafpaEROoaiNm35yTkahlIiIiIhMKwV/oktjq3DqJJv87Z3gfOhcnJ7Kz1vFKQyH241ZFgSSx3+ui5VS0TPCaqdEdZwmXACq/OHSbH4W8mEo1Z9Ocrh+AQ/0zOHR3nZ6dm487v2KyOkrduxVRERERESmTt4r1lGUJqKXU8doGNWMU/GNGje74ngn/AkwxdqHcPiea3BscVmpUsqxkI8nAHhkYVuw8HAtADU/e5y3/NGJ7lhETjeqlBIRERGR6UUZyCminlIzX+kcVw4nOkrwa0qXjMdbIFesuLJ+GD85Bje89LSm1OrZ+JZHVl8EcTOuh9TQcA6rQFRkxlMoJSIiIiLTih13ozgkSBVTJ5OZNHEYU0ljgNnnn/wDkpPGmSTsqRi+F34eftOX4esHuo5ru2Zsw/RwN8YpVUo5jhPtx7HwwHmX46yp4tmP7eTFyWbe9uqzS8dTDLVEZMbS8D0RERERmaYqL5yt+hhNuWzMZcjtx/qZ0sJ4Guacf8qOSZ6Csq/QRO3rx0VVxvKR/YPsTvcB4BxvMDxm9r3ySinHiUX7ee6DI8zrLmBtHY6FmLW4bqluwivkcVz3+PYpIqclVUqJiIiIyDSnMOpU2Ty7mZ54F9ihcIkuH2YEO9m3avIhfevrq/mLhbOOutlx1XZhpVN8VhonLI/yseyNedEqa/bkcAZWBYdlfdyyEMorFI66P5Hpbtz3TENSx9HfKiIiIiIiMmFKkY0FAYFxW0gk5uPE5kzxQcnTqTw0Kg3VK82wZyf4DFgM1zXV8ZMLl/PS9qbj2k+xX1X/T37CE+euYfCmz9D6unMB8IzHw0mPL9VmGE4WK6ri0aGUV0b5CqVEZjyFUiIiIiIyTYUzd2FQt+2pMD6RKIYUseRFVFedizEaSjUTHG/toSl+B4/zCcXQK9bSUlqYzzP4y1+Rnl0HBJVSAH2uZcPSJAB2ZDBY1/cxjosTzs+nSimRmU+hlIiIiIhMM2MDKA3fmwrFQKF8Vraoj5dxiC4d1Nvr9FVeKVVcNGmlVOnzcKIXjemL1rHoe99lwde+Wra1cPieKTUvL0T7C8NOa8G4uCY4OoVSIjOfGp2LiIiIyPQ0vuvyqTiKM8ZEs++VQgq99zOJKetrU6xHnNiJVUqVS69Zg9fXF913bSmUcqzFNwavmHaFw/es9cE4uMYnb128Qv7EdywipxVVSomIiIjItGKK08irIueUK1VNOVhdOsws4ferMqCa6DtnjnvWvXHfWaf0mXHKQmZD0Oi8VCkVKx4AGAcn/CGw7d672P3wA1g1h5bTnD7Bk9PfLCIiIiIybVhrWRwvXqBG6dSpO6AzSFV9IrhR9nb70W1dNswIk32XjrH4RL+BUYhUHkqZ0m232DMqHLWXjYU9qPygUiruBKHVnd/9Jj/4+Ec48MTjJ3gEItOD/nHl2PS3i4iIiIhMH54lGfU2KnW9Cf7QL/cn0+LzW8ctK/WUMhQvHXQWTn+momzjGLPvmRNvdD7Rfbds48VKqGLFVG1mNjsXPZ8jphWM4fLWPSxsT5GqqQVgsLf7+A5AZNpTzdRYCqVEREREZPqwpTAq4w2f4oM5sziuU6pOC5UP31MaNQOcULBrJrh1dKOjowDceeed3HvvvQxnMtFjTnkolToIzgjrhvZGy3Yveg6P1V8Pjsvq+iO87No22pcuB8BXw3ORGUuNzkVERERk2pi4d4xB/7p8apQ3Op+435Ccjoy1Y75R42deJFxiMTjHGWYNDAwAsHPnTnbu3MmvgMQfvZhzHtvI4rJ6CHfxF6nxEnR3v45CbYYFg4sByJsEv+oa5DkA1sNxg/F9vued8GsUmV7083MyqpQSERERkenJjr1s1i/1U604fM/goIuqmeAY5/DEWk6Nc/XVV5NIJJg7d260LJdMsmfRQuLG5Xmj19OeawbrYNwcNw3H+a7bzkOzbgfA4nDvQFBthfUVSomcAVQpJSIiIiLTx6SVUnKyGWPGVdBElVKmLJTS6TjtGcr6heFTqpQat1ZQKXWc27322mu59tprgWAo3+ZNm/jJz35GIRYD3+fNo68hcfgl/PHijzCQOkLczZAFaoe2A1dhjcEvHpf1cdzgctX3NHxPTnMq9p2UKqVEREREZPo42i/uanQ+5UrDuQxKo2aAY32HJnn8ycwglk6naW4JZtXzXBfr+9H2G/ygAqopORCunQ3/dPCLl6iqlJIZQD81j02hlIiIiIhMH3aiGcDUU+pU8aNz4ain1ExS9nUKJsKbJIwK/3yyF43xRAIgqJSyNtpg0k+EO8gD4IcHZI2Db8K9+R5uLKiU8tToXGTG0vA9EREREZk+Jhy+J6dKaYiXekrNCBOewsm+c5M1Pz9+iTCUysfj7Ni1C2s9EkDSC5YPtf6E6qZb6NnaGu7Sxbflw/dUKSUy06lSSkRERESmjcpMqnhHYcjUKr3f+ZgbLtI5mElMWdVSuOTo6z/J018MpbxYjG//7GfcMnQPAKuGFwZfbwNObIhcfCR6TlQppVBKZiT9w8tYCqVEREREZPo4WqNzo19dp4Tr4rtjB1Q4FC8dFE+dSSzWgPMkz3ptbS3Lt22ntj/oHTXkDwNwVc86Xn3TfGoHLgWgxpaG5/m2GErZskbnCqVEZir9zS4iIiIi05P+QfmUGZ2/LAoIHd9gnJpTfETydCg2LB/fpW2i0Mkc9dHjtfbRR7niD38AwLN+tMW45+D6KQBSlEIpS1idZ72ySin1lJLTm3ryTU49pURERERk+rDR/8rol/mp5qdrWL9zD4mCy8H2CzjQnEDnYeYwEw6TnWA9LBaD81ROvePg+EEYVQylTPhZMjYInTzjR6uXQikfJ2x0ft9Pf8Do4ADLL76MJRde9BQORmRqaeTzsalSSkRERESmj6OM3pOTrzysiHsetZkcMfvUG17LNFFxhVxsKF4KiSZ92lPZp+PghsPvfLxwe8VQKrgc9ctCqdLwPZ/G2XOi5RtvvZmbv/TZp3IkIjINKZQSERERkeljqKsslypvdB52RZapF52Q8NJB//Q/w4xteh4oDvULKqWe/Dk3xkSVUhbw8Yn6k4UBVGWlVLCsa/92WhoNL3v/B1n3gpcAkM9mnvRxiMj0pFBKRERERKYN27X1VB/Cma0se7DF/vJq7jVzFMOlcRMKTE2lFICHjSqlnPBy1HPA+F54aMHwvZbMbmb/+GUsvOVPWXP1tcFjvj6LIjONQikRERERmT6sP8FCM+ZPOWkmmv3QllesyUxgKIWOx5pRwB5zcN8xlPWUAvDwaXbqcJK14BcrpRyMDUKpTVXLGTRVpeePdGFGu4Nj8Sf6+SBy+rAK+cdRo3MRERERmT680kVnwuQpn3PLJqun/njOaMGwyWIgoZ5SM4Ap9ZEqmjUwTF/1xOe2WCVnnurwPWsxxmCt5ceJDQyZDCxZyWg+C0DGVEX7+qNb0vxj098ze7ie+bab86t+Su+DvQB4BY9NfzhILlNgqC+LMQY3Zjj/+gWkquNP+hhFTj6FUZNRKCUiIiIi00dYlVPFCA3OMF1UU6zQyc9ZdQoP7ExWWSmlllKnv/JTuKyjl/tnT76uNU9xeI0TPLuxpoaewUGGnKAvlLEGJxyql43309y9kc5ZawFY2LMMgMO08pvcKuzvBgDwPZ9b/3vzuF1svO0Ab/jkFTiuBgLJ9FLKgfWDczIKpURERERk+vA9LJAmW7YwrKEw7qk5pjNUFEXpH/hnkNKF8eGGZLjkKJMIhCf/qQ7fA3jNM5/JvrzDHd/fypzMIBelFrPJ3cgmoKshy4otX2Xh3pvoq1/KaHoWjy9fQv3oAgBiJhP+RLC0LqgllnCon1VFfrTAjoeOkB0pkBkuUFWXeCpHKiKngEIpEREREZk+wp5SDr4GO0wTBj+6JTODsZbbzmliw8pOLtzaxhzfG7tGdMtinlp1nBM8uSqR4Lw1q1hzwdl07uul/7MPUT+yhMyhl3BOfJAvv/AxcmYpf/nD2wD4zaWXcKO7kfbR7QwXXP6z7xKM8XnF31xUsfn//IvbyGc98tkCoFBK5HSj+kYRERERmTaCRsY2qN5QKjXlJswebPEPhVIzijHsbzXsbE1y0QP/96irOk/h3BsTXnKGTcqNY0hVpbhr2DDgGfJ9F3P+kedyfu9K9s86t/Q86/FQ0wtwLnx1MdeasA9/PBlUUOazY4M1ETkdKJQSERERkenDL6+UGjPrnjKRKTV+djadgNNeqWt9NKeeZwyJ3MBRn/R0DN+zfilRclyHYR+Gw2U+YJwxg3isT2d8Przos5gLX1taPCaZKoZSj99+kH1P9DyVIxWRU0ChlIiIiIhMH2XD94oUhZxapZ5SOhMzRfmZ9JzJz2xp9r2nsLOozKn0nXbcsGl++NnyAeO6GCyFcH1rC1EAZdzSzHrWL20HIJ4KQqmNtx/gp//+MIM9madwsCIy1RRKiYiIiMj0EV6EOtiy0XsKQ6bMROOjrCqlZgoTpku1iZpomW8muiQc01PqKe2zcvgegBsLlploaCg4TgxjLV4YWO1omc3DVQ3Bem6pisraylBq+bq2qFoKIDOUfwpHK/L0Gvft0bD0cRRKiYiIiMj04RdDqbILT2N46pfGIlJk+oei255z7O+V81RKpcLhe97AINYL+j5FlVLhKj7QllrAXL8uOp7BZIpfNc8L1quolKq8qr/whoW8+d+vprYpFWzL01W/yOlEoZSIiIiITBvW98MJ6i3WKoQ6lWzUykuVUjONKauI88zR4t5w+NxT2VkYMu1705vY+bznY3M5XNep2K6P5Ryzhnf3LMGGAVjNwC14+X3BerFk6YjGVEoVGbc47E+hlExH+vk5GYVSIiIiIjJ9+ON7SumX+VOrGGBYNZw//bmlYW7F1NF3mGBIkalY7alcNNZec010O7d7N/nOznGVUlnnIADVHjhhiBUvjFB95KPs7NuJiZUN3/MnDqWKz1OllMjpRaGUiIiIiEwftnz2vUo1Naum/nhElVIzSGLxYlr/4l3M+b+fiJYFw+UmDnKi+S+fwvC9tg9+kFWPPYpTE/axKhQwjgn+C3c7FLuPP9Q+BEDcBFVRbpg9Pdj5IMZJRNubrBLKFEMpX6GUyOlEoZSIiIiITB9RKGVLlTnhn+n0glN0UGeOCaMHzb43YxhjaPnzP6f2+uujs+mZo59Zi3nKF40mHo+qnWyhAIDrmqhP3N6h59DnBX2jXCdYz48FIXTBL2Bik/eUKipWSk32uMgppY/lpBRKiYiIiMj0MeHwPTkVxveUkpnId442+97TeO6LoVTY7HzVpbOJxYL9PJKAT4ws4OtkwQmGGDo2OK68n69sdL7t5gk3XxwSqEopmU6eyhwBZwqFUiIiIiIyffg2rJHysarQmR6inlLF5tQ6HzPJsWbfsxiOY4K+Y4oqpfJBpdTVr1rJX75tLXXWxw2/65vxolDq7T/ZwTWP+hSyWUxtW+l4fvAmOPz4+O2Hx2jVU0qmNX0+x1IoJSIiIiLThrUWEx8mnRw81Ydyxos6SekaasYp7xHVYewxz/HTEUSaYpN1rxAtu2RJMx8xIzxrNKiEygPUNgKw4MgIb/uFT819WzCrnhs9xwL87C/GbV+VUiKnJ4VSIiIiIjJtdPqPk175P8xt3Tuup5ScGnGvWCmVOsVHIk+nFEE4ZJw8hXFjjErD9+zTVBs3tqdUkWtKlVJ5LOaGP2XzvFJllNs7CG4cEw4ztNbAaN/47aunlExj+lROLnbsVUREREREpsYt36ylP/0nPJF5AOt3h0sVSk2VVDbLUBgebJ/dSstgJ1WjRyrWMa7Ox0yQMEFvp0TzHzjYMraHW3COjfHIOgniT8f4vSiU8ioWO47FCfeXB5xUDVvmtXOo2eXaRw5is7nwWBwsftBtzsuO27yj2fdETkuqlBIRERGRacH3fWLMwsvcXxZIASY++ZPkafWKiy5ibV8v7Ue6GWo/nweedyHun83lijXfZ95CmLuygUteuORUH6Y8RbFYjHm5Nhw/uBz80J+6dNeVfeeqmsi27eUrF57D5a2tvGhWw1PeZ7FSqnz4HgShVKy8UsoYjPXJxYPhfjaXD9crXroaKIwPpYqVUr56SomcVlQpJSIiIiLTwmD/AJ6bxHphZYTTTFWhGs9tBO/wKT66M8OCV7yCBa94xYSPnTfFxyInj+M4/NtffJadTzzOcFcn7QsX0/qnC/AKPvnO7VTNXUGnb3h7PEZywtn5Tlyxp9S44XuOT9htihxgwrqpfLEHVRhKFbutWwsUMuNfk1t8XKGUyOlEoZSIiIjIGeZzn/scn/zkJ+no6OC8887jM5/5DBdffPGpPiy6ug7juUnwgqFE8ZrnUt23g4FTfFwiM1E8HmflmvMrlyUgtehcAGY/3TucdPheqadUgSCUwlryiXD9XI6+fCFqzt7tuPh+jsYxm3eOo1Iq39GBzeXAcYjPnVvR8L2oc88AA10Ztg9n2JvJYeamWT2njisaa/GtTzYcOphyUxM+X0ROjEIpERERkTPId7/7Xd7znvfwhS98gfXr1/OpT32KG264gS1btjBr1qxTemy/+3+fZsSZDzaogjAkGWi+5JQek4g8PYrD9wZvuoli2+fkihW4jsUNe0plsHRnC/huFblYUFG1q2+Is391K+8ojJLA8JfVCzjcmGXOTR9mbeurqf7mp8n1duPmIJ5Yz6821vGzNkvKcZljCyQcS8xxqf7+92j78hfJOwZrDDsuOZdf3HgZrhPD93Mc7n+MeF+KZ/zhJRWt3fsTh/nM2q8yq1BDQ3cTszszpDIeBqhrXE5h0dlgLa3xGEknRkOiEc/3GBrson+kj2EnS6Ehj0uMlemzSLhxljYuxRiD72VxYx5uPMHsZbNomFU1pedETg3Py2JtHmNiuO6Tn0AikznI4c5fYH2PZHIW7e1/dFoGpcaegfWNAwMD1NfX09/fT11d3ak+HBEREZmmZuLvDOvXr+eiiy7is5/9LBD0cZo/fz7vfOc7+cAHPnDU557M9yOby/H5G9+G73VEy5INb8eYJADD7uO8/3PvfFr3KSJTZ8u6i/CHhiqWtX3oQzy8J8fvD87nG7WlPlEGeNWB/+Q1921lMAXddbClbRGe40brVOUyjMYTWDPR8MIYxiSwdqRsWRKMiULvYD9JMGNCAeMAPsYv4BuvYv3JGKeO4hyVWMCOAuXDFBNgYhinFjBYfwBsgWDAIsRSl3Ptja9lzbXzjrkvOb385OED/MV3HuYjl3+NBdUP4brVeN4IxWA2Hm/GcRKAxVov/M8HPHw/izFxHCcR/ek4pQq94eFt4/bnOAmSyTnEY3XhZ9mQyeynUBgEIJFoIeZWY0wM48QwJsbqVR+nunrp0/7aj/d3BlVKiYiIiJwhcrkcDzzwAB/84AejZY7jcP3113P33XePWz+bzZLNli4UBwZO3kC6/PAQ+MMAuLEWYm46CqSwWR69cs9J27eInHyps89m5N57g9vnrQEg1tLM7LoqmvZlafUMR9wo2uFAqg3YSm0GajOwv77AQFUplBpJlMKkxuFR+qrS2KhIpIC1lb2rIFvMASKWLNjs2IWlPyYp3zDWweDgm2Af1p/kZ6MlnMgwBzaH9UYmXK22JUVNQ3LibciMMFBoA8DzhiuW5/PdE61eJjfuOWMZE8faoPea7+cYHd3N6CTrZjL7xy3z/fETB0wlhVIiIiIiZ4iuri48z6Otra1ieVtbG5s3bx63/sc//nH+/u//fkqOraaxiSs+8E78oSGWnHsp8VyOe35wC9bzabjsbN52/ien5DhE5ORo++v30/ejH9P02teQWLAgWl4HLHlmgVceGiS/+0HymWF+391Nt3cNt1+2jNp8jKpMPSvIkC0M4VXVcnj7veTcAsmYS02yiuXzF+Abhx1HBsiO5BkdzFOVcKmvq2bErabgG3L5ArMXtDJ70Wwyh4cY3HmE0UwGNwaxuIMxDq7rUleVoLbOYGrbyY+OYr00yWSSzHA3cXpIpV1aWprBt3R19+EVvLACC3CcoIrFONTX15GcvYpMMoWXTjE60M9QXy8A6do66ltnEU+lqWlsOjUnRKbENStm8Yt3XUFV/EqaEm/Ct3mSiRaSyTnkcp3kcl0Y44JxMLgY4wT3cXCcJNYWsDaP7+fx/SyePxp2+w8S01RqHlVVC8nluvD9HIXCIJnsIbBB5RX4GBOnqmoRxsTIZA4F27N5rB+Et+n0/FP5Fmn43kwpxRcREZGn30z7neHgwYPMnTuXu+66i0svvTRa/v73v5/bbruNe8MqhqKJKqXmz58/Y94PEREROTk0fE9EREREKrS0tOC6LocPH65YfvjwYdrb28etn0wmSSY1pEREREROjom6womIiIjIDJRIJFi7di233HJLtMz3fW655ZaKyikRERGRqaBKKREREZEzyHve8x5e97rXsW7dOi6++GI+9alPMTw8zOtf//pTfWgiIiJyhlEoJSIiInIG+eM//mOOHDnChz/8YTo6Ojj//PP59a9/Pa75uYiIiMjJplBKRERE5Azzjne8g3e84x2n+jBERETkDKeeUiIiIiIiIiIiMuUUSomIiIiIiIiIyJRTKCUiIiIiIiIiIlNOoZSIiIiIiIiIiEw5hVIiIiIiIiIiIjLlFEqJiIiIiIiIiMiUUyglIiIiIiIiIiJTTqGUiIiIiIiIiIhMOYVSIiIiIiIiIiIy5RRKiYiIiIiIiIjIlFMoJSIiIiIiIiIiU06hlIiIiIiIiIiITDmFUiIiIiIiIiIiMuUUSomIiIiIiIiIyJRTKCUiIiIiIiIiIlNOoZSIiIiIiIiIiEw5hVIiIiIiIiIiIjLlFEqJiIiIiIiIiMiUUyglIiIiIiIiIiJTTqGUiIiIiIiIiIhMOYVSIiIiIiIiIiIy5RRKiYiIiIiIiIjIlFMoJSIiIiIiIiIiU06hlIiIiIiIiIiITDmFUiIiIiIiIiIiMuUUSomIiIiIiIiIyJSLneoDOBWstQAMDAyc4iMRERGR6az4u0Lxd4cznX6HEhERkeNxvL9DnZGh1ODgIADz588/xUciIiIip4PBwUHq6+tP9WGccvodSkRERE7EsX6HMvYM/Kc/3/c5ePAgtbW1GGOe9u0PDAwwf/589u3bR11d3dO+/elEr3Vm0mudmfRaZya91pPLWsvg4CBz5szBcdT1QL9DPX30WmcmvdaZSa91ZtJrPbmO93eoM7JSynEc5s2bd9L3U1dXN+M/3EV6rTOTXuvMpNc6M+m1njyqkCrR71BPP73WmUmvdWbSa52Z9FpPnuP5HUr/5CciIiIiIiIiIlNOoZSIiIiIiIiIiEw5hVInQTKZ5CMf+QjJZPJUH8pJp9c6M+m1zkx6rTOTXqvMJGfSOdZrnZn0WmcmvdaZSa91ejgjG52LiIiIiIiIiMippUopERERERERERGZcgqlRERERERERERkyimUEhERERERERGRKadQSkREREREREREppxCKRERERERERERmXIKpUREREREREREZMoplBIRERERERERkSmnUEpERERERERERKacQikREREREREREZlyCqVERERERERERGTKKZQSEREREREREZEpp1BKRERERERERESmnEIpERERERERERGZcgqlRGTa2b17N8YY/uu//utUH8q0ceONN7Jo0aKKZcYYPvrRj56S4xEREZEnT7/rjKffdUTOTAqlRGScu+66i49+9KP09fU9qed//vOf1y9ZT8LBgwf56Ec/ysMPP3yqD0VE/j979x3eZnX2cfwr2ZYs25L3jB3HcfYmCYRAGGGFMAoFSoG0DTO8BQqFtlBKoayWAi2zLXRBoUBpoWWUVcJeSSB77514L3lpP+8fcp5gZGdhy7L9+1wXV3303JJvJW50fD/n3EdE+jTNdXqG5joi8lUqSolIhM8++4w77rhDE7Uo2717N3fccUeHE7U///nPrFu3LvpJiYiI9EGa6/QMzXVE5KviezoBERHZv4SEhJ5OQURERKTb9LW5TnNzM8nJyT2dhkjM00opEWnn9ttv5yc/+QkAJSUlWCwWLBYLW7duJRAIcNddd1FaWordbmfQoEH87Gc/w+v1ms8fNGgQq1at4sMPPzSfe/zxxwNQW1vLj3/8Y8aOHUtKSgoul4uZM2eybNmyLsnd4/Fw++23M2zYMBITE8nPz+ecc85h06ZNwN7+Db/5zW948MEHKS4uxuFwcNxxx7Fy5cp2r3X88cebeX9ZR/0O9mfQoEFcfPHFEY9/+Xt88MEHHH744QBccskl5p/dnruwh/J9O/L8888zadIknE4nLpeLsWPH8vDDD3/t1xUREektNNcJ64tznQ8++ACLxcIHH3zQ7vGOeniVl5dzySWXUFhYiN1uJz8/n7POOoutW7e2e+6bb77JMcccQ3JyMk6nk9NPP51Vq1a1i7n44otJSUlh06ZNnHbaaTidTmbNmnVAOfv9fu644w6GDh1KYmIimZmZTJs2jblz5x7KH4FIr6OVUiLSzjnnnMP69ev5xz/+wYMPPkhWVhYA2dnZXH755Tz11FOcd955/OhHP2LBggXcc889rFmzhpdeegmAhx56iB/84AekpKRwyy23AJCbmwvA5s2befnll/nWt75FSUkJFRUV/PGPf+S4445j9erVFBQUHHLewWCQM844g3fffZcLLriA6667jsbGRubOncvKlSspLS01Y59++mkaGxu5+uqr8Xg8PPzww5xwwgmsWLHCzDXaRo4cyZ133sltt93GnDlzOOaYYwA46qijuux7zJ07lwsvvJATTzyRe++9F4A1a9bw6aefct1113XZ9xEREYllmuv03bnOwTj33HNZtWoVP/jBDxg0aBCVlZXMnTuX7du3m8Wxv//978yePZsZM2Zw77330tLSwmOPPca0adNYsmRJuyJaIBBgxowZTJs2jd/85jckJSUdUB63334799xzD5dffjlHHHEEbrebhQsXsnjxYk4++eRueOciMcYQEfmK+++/3wCMLVu2mI8tXbrUAIzLL7+8XeyPf/xjAzDee+8987HRo0cbxx13XMTrejweIxgMtntsy5Ytht1uN+688852jwHGk08+ecA5P/HEEwZgPPDAAxHXQqFQu9d1OBzGzp07zesLFiwwAOP66683HzvuuOM6fA+zZ882iouLDzgvwzCM4uJiY/bs2RGPf/V7fPHFF52+746+L2D84he/OOA8rrvuOsPlchmBQOCAnyMiItIXaa7TN+c677//vgEY77//frvHv/rnXVdXZwDG/fff3+lrNTY2GmlpacYVV1zR7vHy8nIjNTW13eOzZ882AOOnP/3pAee6x/jx443TTz/9oJ8n0ldo+56IHJA33ngDgBtuuKHd4z/60Y8AeP311/f7Gna7Has1/M9OMBikpqaGlJQUhg8fzuLFi79Wfv/+97/JysriBz/4QcQ1i8XSbnz22WczYMAAc3zEEUcwZcoU8z32VWlpaTQ3N2s5uIiISAc01+k/HA4HNpuNDz74gLq6ug5j5s6dS319PRdeeCHV1dXmf3FxcUyZMoX3338/4jnf//73DzqXtLQ0Vq1axYYNGw76uSJ9gYpSInJAtm3bhtVqZciQIe0ez8vLIy0tjW3btu33NUKhEA8++CBDhw7FbreTlZVFdnY2y5cvp6Gh4Wvlt2nTJoYPH058/P53JQ8dOjTisWHDhkX0EOhrrrrqKoYNG8bMmTMpLCzk0ksv5a233urptERERGKC5jr9h91u59577+XNN98kNzeXY489lvvuu4/y8nIzZk+R6IQTTiA7O7vdf2+//TaVlZXtXjM+Pp7CwsKDzuXOO++kvr6eYcOGMXbsWH7yk5+wfPnyr/cGRXoRFaVE5KB89U7cwfjVr37FDTfcwLHHHsszzzzD//73P+bOncvo0aMJhUJdmOXX19n7DAaDPfpaX0dOTg5Lly7l1Vdf5Rvf+Abvv/8+M2fOZPbs2VHNQ0REJJZprtN75zoHk8cPf/hD1q9fzz333ENiYiK33norI0eOZMmSJQDm39ff//535s6dG/HfK6+80u71vrxK7mAce+yxbNq0iSeeeIIxY8bwl7/8hYkTJ/KXv/zloF9LpDdSo3MRidDRB3pxcTGhUIgNGzYwcuRI8/GKigrq6+spLi7e5/MBXnzxRaZPn85f//rXdo/X19ebTUYPVWlpKQsWLMDv9+/3SOGOlkevX7++XbPK9PR0Nm/eHBF3IHdJvyo9PZ36+voOX2vw4MHm+OtMgg+UzWbjzDPP5MwzzyQUCnHVVVfxxz/+kVtvvTXizrCIiEhfpblO35zrpKenA0Tk0tl7Ki0t5Uc/+hE/+tGP2LBhAxMmTOC3v/0tzzzzjNk4Picnh5NOOqlb887IyOCSSy7hkksuoampiWOPPZbbb7+dyy+/vFu/r0gs0EopEYmQnJwMtP9AP+2004DwiTNf9sADDwBw+umnt3t+RxOTuLg4DMNo99gLL7zArl27vnbO5557LtXV1fzud7+LuPbV7/nyyy+3+56ff/45CxYsYObMmeZjpaWlrF27lqqqKvOxZcuW8emnnx50bqWlpcyfPx+fz2c+9tprr7Fjx452cR39uXelmpqadmOr1cq4ceMA2h11LSIi0tdprtM35zrFxcXExcXx0UcftXv8D3/4Q7txS0sLHo+n3WOlpaU4nU5zTjRjxgxcLhe/+tWv8Pv9Ed/ry39uX8dX52cpKSkMGTJEczPpN7RSSkQiTJo0CYBbbrmFCy64gISEBM4880xmz57Nn/70J+rr6znuuOP4/PPPeeqppzj77LOZPn16u+c/9thj3H333QwZMoScnBxOOOEEzjjjDO68804uueQSjjrqKFasWMGzzz7b7g7aofre977H008/zQ033MDnn3/OMcccQ3NzM++88w5XXXUVZ511lhk7ZMgQpk2bxve//328Xi8PPfQQmZmZ3HjjjWbMpZdeygMPPMCMGTO47LLLqKys5PHHH2f06NG43e6Dyu3yyy/nxRdf5NRTT+X8889n06ZN7e7A7VFaWkpaWhqPP/44TqeT5ORkpkyZQklJydf7w/lSHrW1tZxwwgkUFhaybds2Hn30USZMmNDujrCIiEhfp7lO35zrpKam8q1vfYtHH30Ui8VCaWkpr732WkT/p/Xr13PiiSdy/vnnM2rUKOLj43nppZeoqKjgggsuAMDlcvHYY4/x3e9+l4kTJ3LBBReQnZ3N9u3bef311zn66KM7LBAerFGjRnH88cczadIkMjIyWLhwIS+++CLXXHPN135tkV6hZw//E5FYdddddxkDBgwwrFareWSy3+837rjjDqOkpMRISEgwioqKjJtvvtnweDztnlteXm6cfvrphtPpNADzKGCPx2P86Ec/MvLz8w2Hw2EcffTRxrx58yKOCz6UY5INwzBaWlqMW265xcwvLy/POO+884xNmza1e93777/f+O1vf2sUFRUZdrvdOOaYY4xly5ZFvN4zzzxjDB482LDZbMaECROM//3vf4d0TLJhGMZvf/tbY8CAAYbdbjeOPvpoY+HChR0exfzKK68Yo0aNMuLj49v9GXTFMckvvviiccoppxg5OTmGzWYzBg4caFx55ZVGWVnZQb8fERGR3k5znb431zEMw6iqqjLOPfdcIykpyUhPTzeuvPJKY+XKle2+V3V1tXH11VcbI0aMMJKTk43U1FRjypQpxr/+9a+I13v//feNGTNmGKmpqUZiYqJRWlpqXHzxxcbChQvNmNmzZxvJyckHleced999t3HEEUcYaWlphsPhMEaMGGH88pe/NHw+3yG9nkhvYzGMr6z1FBHpo7Zu3UpJSQn3338/P/7xj3s6HREREZEupbmOiPQ26iklIiIiIiIiIiJRp55SIhLTfD4ftbW1+4xJTU3F4XBEKaO9amtr2zX0/Kq4uDiys7O7PY9gMLjfZpspKSmkpKR0ey4iIiJycDTX2b/eONdpbW2loaFhnzEZGRnYbLYoZSQSm1SUEpGY9tlnn7VrLNqRJ598kosvvjg6CX3JOeecw4cfftjp9eLiYrZu3drteezYsWO/DUJ/8YtfcPvtt3d7LiIiInJwNNfZv9441/nnP//JJZdcss+Y999/n+OPPz46CYnEKPWUEpGYVldXx6JFi/YZM3r0aPLz86OU0V6LFi2irq6u0+sOh4Ojjz662/PweDx88skn+4wZPHhwl5z8IyIiIl1Lc539641znbKyMlatWrXPmEmTJpGenh6ljERik4pSIiIiIiIiIiISdWp0LiIiIiIiIiIiUdcve0qFQiF2796N0+nEYrH0dDoiIiISowzDoLGxkYKCAqxW3cvTHEpEREQOxIHOofplUWr37t0UFRX1dBoiIiLSS+zYsYPCwsKeTqPHaQ4lIiIiB2N/c6h+WZRyOp1A+A/H5XL1cDYiIiISq9xuN0VFRebcob/THEpEREQOxIHOofplUWrPcnOXy6UJlYiIiOyXtqqFaQ4lIiIiB2N/cyg1RxARERERERERkahTUUpERERERERERKJORSkREREREREREYk6FaVERERERERERCTqVJQSEREREREREZGoU1FKRERERERERESiTkUpERERERERERGJOhWlREREREREREQk6lSUEhERERERERGRqFNRSkREREREREREok5FKRERERERERERiToVpUREREREREREJOpUlBIRERERERERkahTUUpERERERERERKJORSkREREREREREYk6FaVERERERERERCTqVJQSEREREREREZGoU1FKRERERERERESiTkUpERERERERERGJOhWlREREREREREQk6lSUEhERERERERGRqFNRSkREREREREREok5FKRERERERERERiToVpUREREREREREJOpUlBIRERERERERkahTUUpERERERERERKJORSkREREREREREYk6FaVERERERERERCTqVJQSEREREREREZGoU1FKRERERERERESiLr6nExAREZGe425cyZYtjxIKeXs6lQOSl3sm+fnn9nQaIiIi0s8Fg62sW387Xm9FT6dyQByOYoYNvRWrNbbKQLGVjYiIiETVjh1/o7r6nZ5O44A1Na1RUUpERER6XE3tR5SVvdjTaRyEj8nPO5vU1MN6OpF2VJQSERHpx/y+GgAKCi4gLXVyD2fTOa+3gk2b7ycUCvR0KiIiIiL42uZQTucYigov7tlk9mPjpl/j81UTMmJvHqWilIiISD9lGEF8/loAsjKnk519Ug9n1Lnm5o1s2nx/T6chIiIiQjDopbV1OwApKSPIz/9mD2e0b1u3/R6fr7qn0+iQilIiIiL90MZNv2HbtscBAwCbLaNnExIRERHpBWpqP2HZsssxDD8AtoTMHs6od9PpeyIiIv2MYYTYseMJ9hSknCmjcTrH9mxSIiIiIr3A7t3/NAtS8fFp5MX4KqlYp5VSIiIi/YzfX2uetnfMtAUkJGRgseg+lYiIiMj+eL3lAIwe9SC5uWdoDvU1qSglIiLSj3i9ldTWfgJAQkImNltWD2ckIiIiEvuCwVZaW3fQ0LAYgMTEAhWkuoCKUiIiIv2E272CLxZ+kz3b9pKTS3s2IREREZFewDCCLFhwGq2e7eZjjqRBPZdQH6KilIiISD9R37AQMLBa7dgSMikqurinUxIRERGJeR7PbrMglZCQQU7OTOxabd4lVJQSERHpJ1pbdwBQVDibIUNu6uFsRERERHqHltZtACQlDWHqkf/r4Wz6FhWlRERE+rimpvXs2v0Paqo/ACDRUdSzCYmIiIj0Ah5PGatW30Bry56i1KCeTagPUlFKRESkj9u8+QGqquea4+TkoT2Yzddl9HQCIiIi0k9UVb9Dff3n5jjVdVgPZtMFjNibR6koJSIi0sd52o4uzss9m/SMqaSlTu7hjERERERin89XBUB21skUF/8fLtfYHs6o71FRSkREpI/z+2oAKCz8DqmpvfUOn6WnExAREZF+orl5E+XlL7F122MApDhHkZo6oWeT+lpidx6lopSIiEgfZBgGy1f8H7W1nxAKeQCw2/N6OCsRERGR2Ld+w13U1n5sjlNd43swm75NRSkREZE+yOerorr6HXOcmjqZxMT8HsxIREREpHfweHYBkJtzBqlpk8jIOLaHM+q7VJQSERHpg3z+WgASEtKZPOkFEhM7P3EvGOq86aUFsFpjd8m3iIiISFcJBr20tm6lpWUzACUlPyA5eUgPZ9W3qSglIiLSx3g8ZVRXhVdJ2WxZJCWVdBp7+6ur+NtnWzu97kiI47HvTOT44TldnaaIiIhIzDAMg8VLLsLtXgqAxZKA3d75KvPVu93c/fpqmn3BDq9bgO8cWcx5kwq7Idu+Q0UpERGRPqSlZQsLPj+NUMgHQJJj0D7j31xZts/rrf4g8zbVqCglIiIifVpr61azIJWQkMmAgm8TH5/cafwLi3bw2aaafb5mo8evotR+qCglIiLSh1RVzTULUsnJwygqunSf8fUtfgBe+8E0BqQ52l17YO56/j5/W/ckKiIiIhJDmps3AeBMGc0RR7y63/ja5vB864LDizh5VG67a+srmrj3rbXso0OCtFFRSkREpA9padkCQMmgaxk8+LpO495ZXcGH66vwBkIAFGcm4UxMaBeTmGDtvkRFREREYoDPV8OWrb/H7V4GsM+2BwCbqpp4Zv42Fm6tA2DyoAxOHNm+KOVyJHT0VOmAilIiIiJ9QHPzZiorX6eufj4ASUmDOo01DINrn19CS1sPBKc9nhS7pgQiIiLS/5SVvcjOnU+Z45SUkfuMf/idDby6bLc5LkhL7Lbc+gPNQEVERPqAdetuNQtSwD5Pimn2Bc2C1NXTSzlmaDYWi07YExERkf7H4w3318xIP5rsnFPJyz1rn/GVjR4ATh+bzzFDsziyJLPbc+zLVJQSERHpA1pbtwOQk3MaaamTSEkZ1WlsQ2u4j5QtzsqPTxneywpSas4gIiIiXcfrrQIgK+tECgdc1GmcLxCirKGV6qZwL6lvH17EscOyo5Jj14m9eZSKUiIiIr2cYRh4fdUADCn9KQ7HgA7jKhs9XPH0IsrqW4Fwv4PeU5DqLXmKiIhIb1BV/S67d/+L+vovAEh0dH5KXihkMPPhj9hU1Ww+ltqr+kbF7jxKRSkREZFeLNyYczmG4cNiicduz+k09uP11SzbUW+ORxW4opChiIiISOzZuPE+Wlo2AmCxxOF0ju40tq7FZxakUuzxDMlJYXieMyp59nUqSomIiPRSLS1b2Lz5AXPsdI7Gau38rl1927a9Y4dl8+NThjEiT0UpERER6Z+83nIASgf/hPT0I0i053Uau2cO5UyMZ8XtM6KSX3+hopSIiEgv5fGET36x2/MYNOhqMjOO7TCu0u3hjRVlfLg+3DOhOCOJcYVp0UpTREREJKYEg60Eg00ADBhwEQkJHd+o21zVxMVPfkFVoxeAtKTetGWvd1BRSkREpBfy+WrMHgjJSaX7bMz5yzfW8MrSvUcXZ6XYuz0/ERERkVgTCvlZvuJKamo+BCAhIZ34+M634X28oZrttS3m+PDijG7Psb9RUUpERKSXqaz6HytWXM2eE1SSkkv3Gb+rLtzYfEpJBsNynVxwRNFBfb/YO6dFRERE5OA1Na0xC1IA6elT93noS31LeNvemeMLuHHGcArTHQf1/QxDs6j9UVFKRESkl2loWAwYWCzx2BIyycs9c9/xbX0QrjtxKEcNyYpChiIiIiKxx+9vAMDhGMSY0Q+RkjKiw7hVuxt4YeFOFmypBaAw3UFRRlLU8uxPVJQSERHpZfZMqAaXXMegQVd1GGMYBjf9eznzN9eyqz68Usp1kEcX7+vOoYiIiEhvEwiE51B2ey4u19hO43795lo+3lBtjgtSEw/q+2gGdeBUlBIREekl/P4GKqveoqzsBQDiE9I6ja1t9vGvhTvNcbItTnf4REREpF/y++tYtfon1NS8D7DPPlKA2dj83ImFjBng4txJhd2eY3+lopSIiEgvsW7dbVRUvmaOkxzFncbu2bKXZIvj75dNYWBGEqkHuVJKREREpC/Yues5syAFkJExbZ/xe+ZRs48q1onF3UxFKRERkV6irn4BAElJQ8jNPZ309KM6jmv2saEyfMxxepKNScXpUcux+6lhqIiIiByc1pZtAKSlHs7gwTeQlnZ4REwwZHDxk5+zdHs9jd4AAK7EvnZDL/bmUdaeTkBERET2LxQK4POFextMPOwZBpdc22HPp/mba5h091yu/PsiAJyJuv/UFwSDQW699VZKSkpwOByUlpZy1113tTvVxzAMbrvtNvLz83E4HJx00kls2LCh3evU1tYya9YsXC4XaWlpXHbZZTQ1NUX77YiIiESV11cJQH7BeaSnH9HhHGpnXQsfb6g2C1L5qYnkpx1cLyk5eJqpioiIxDDDCLJh4z3U1HxM+MS9BGy2jE7jl+6oJ2RAvNWCwxbHORMHRC/ZbtTfm67fe++9PPbYYzz11FOMHj2ahQsXcskll5Camsq1114LwH333ccjjzzCU089RUlJCbfeeiszZsxg9erVJCaGJ9WzZs2irKyMuXPn4vf7ueSSS5gzZw7PPfdcT749ERGRbrFt258oK/8Pzc3hmzSJiZ3Pixo94WJUVoqdF/9vKnmpidjj46KSZ/eL3XmUilIiIiIxzO1exo4dT5rj9PQjsVg6nyA1esI9EL5zZDG3f2N0t+cn0fHZZ59x1llncfrppwMwaNAg/vGPf/D5558D4VVSDz30ED//+c8566yzAHj66afJzc3l5Zdf5oILLmDNmjW89dZbfPHFF0yePBmARx99lNNOO43f/OY3FBQU9MybExER6SZbtz1unrgXH5+Gyzmu09g9Ram0pAQGZSVHJT/R9j0REZGYtmfLnsNRzKiR9zNq1G86jGv2Bli5q4FtNS2Atu31NUcddRTvvvsu69evB2DZsmV88sknzJw5E4AtW7ZQXl7OSSedZD4nNTWVKVOmMG/ePADmzZtHWlqaWZACOOmkk7BarSxYsCCK70ZERKT7hUI+syA1btyfOHLKm8THRxab/r1oJ5PvfofLn/oC0Bwq2vSnLSIiEsN8vloAkpNKyc8/p8OYUMjgtEc+NgtS0Bcbc/ZvP/3pT3G73YwYMYK4uDiCwSC//OUvmTVrFgDl5eUA5Obmtntebm6uea28vJycnJx21+Pj48nIyDBjvsrr9eL1es2x2+3usvckIiLSXfx+N41NqwCwWOLIypyOxdLxmpyXluyiumnvZ914nbYXVSpKiYiIxKD6hkWsX38njY0rAbDbczuNbfQGzIJUniuR9GQbJ4zM6TT+YH25mbb0jH/96188++yzPPfcc4wePZqlS5fywx/+kIKCAmbPnt1t3/eee+7hjjvu6LbXFxER6WqtrTuZv+BkQiEfAA7HwE4LUgDuttYHd589hmlDsijOTOqyXDSD2j8VpURERGLQ7l3PmwUpgMys6Z3GulvDkyl7vJX5Pzuxy3KI3ZaY/c9PfvITfvrTn3LBBRcAMHbsWLZt28Y999zD7NmzycvLA6CiooL8/HzzeRUVFUyYMAGAvLw8Kisr271uIBCgtrbWfP5X3Xzzzdxwww3m2O12U1RU1JVvTUREpEs1NCwiFPJhscQTH++iqOjSDuM8/iBlDR5qmsLFq+F5TvWS6gEqSomIiMSgVs9OAEoGXUt2zgxSkodHxHj8QZ78dCsbKhsBSHVoy15f1dLSgtXa/i5vXFwcoVAIgJKSEvLy8nj33XfNIpTb7WbBggV8//vfB2Dq1KnU19ezaNEiJk2aBMB7771HKBRiypQpHX5fu92O3W7vpnclIiLS9VpatwGQn3cOI0fe02FMIBji5Ac/ZEdtq/lYV/aS6ueHBh8UFaVERERiSDDopbllA60t4QlVZuYxOFNGdBj79uoK7n1rrTnOdSVGJUeJvjPPPJNf/vKXDBw4kNGjR7NkyRIeeOABLr00fPfXYrHwwx/+kLvvvpuhQ4dSUlLCrbfeSkFBAWeffTYAI0eO5NRTT+WKK67g8ccfx+/3c80113DBBRfo5D0REen13I0r2bLlUXOlucMxsNPYmmafWZByJsYzMt9FaXZKVPKU9lSUEhERiSGLl1yI273MHCcmdr5VqqLBA8Cw3BROHJnL6WPzO42V3u3RRx/l1ltv5aqrrqKyspKCggKuvPJKbrvtNjPmxhtvpLm5mTlz5lBfX8+0adN46623SEzcW6x89tlnueaaazjxxBOxWq2ce+65PPLIIz3xlkRERLrUjh1/o7r6HXPsdI7uNLaxrY9UqiOBZb84pdtzk86pKCUiIhIjDMMw7+7ZbDlkZkzDZsvqMLa8wcOWmmYAjirN4qZTO15N1df016brTqeThx56iIceeqjTGIvFwp133smdd97ZaUxGRgbPPfdcN2QoIiLSs/y+GgAGFFxIds6pZKQf3WFcQ6ufVbvDp8l25Za93sCIwdbr/etvQEREJIYFg00YRhCAo6a+T1xcx9vxXl9extXPLTbHLvWSEhERkX7KMAz8/hqaWzYBkJl5PJkZ0zqMrWv2Me3e92j2hedbzkTNoXqailIiIiIxoKb2EyoqXgPAak3stCAFsHxnPRA+bS8vNZFTRuVGI0URERGRmLNu/e3s2vWMObbZszuN3VzdRLMviNUCmSl2vj25MBop9jhLDHdeV1FKRESkh7W27mTp0kuA8Elqycml+4x3t/VBuOr4IVx30tDuTk9EREQkJhlGiLKyf5njjPRpuJxjOo1v9AQAGJHn4o3rjun2/GT/rPsPOXAfffQRZ555JgUFBVgsFl5++eV21y0WS4f/3X///WbMoEGDIq7/+te/bvc6y5cv55hjjiExMZGioiLuu+++rnwbIiIiUeVuXM6egtSAARcxcsS9HcZVN3n5fEst22tbAHA5dG9JRERE+i+/v5ZQyAdYmH78Wg477CkslrgOYz3+IDVNPgBS+lkvqVjWpX8Tzc3NjB8/nksvvZRzzjkn4npZWVm78Ztvvslll13Gueee2+7xO++8kyuuuMIcO51O82u3280pp5zCSSedxOOPP86KFSu49NJLSUtLY86cOV35dkRERKLC19aYMzt7BiOG39VhTKsvyIm//ZCGVr/5mEt9EERERKQfCgQaWbf+dhoalgCQkJCO1dr5vOj+/63l9+9vMscuFaViRpf+TcycOZOZM2d2ej0vL6/d+JVXXmH69OkMHjy43eNOpzMido9nn30Wn8/HE088gc1mY/To0SxdupQHHnhARSkREelV6hsWsWXzI9TWfQKAzZbZaezuhlYaWv1YLTAoM5ksp51jh3XeM6Er9dMD70RERCRGVVe/T3n5y+Y4PW3KPuPfXVNpfh1ntXCc5lAxo8fKgxUVFbz++us89dRTEdd+/etfc9dddzFw4EAuuugirr/+euLjw6nOmzePY489FpvNZsbPmDGDe++9l7q6OtLT0yNez+v14vV6zbHb7e6GdyQiInJwduz4m1mQAvZ5dPHKXQ0AFKYn8d6Pj49GehC7PTFFRESkH/P5w6vMU12HUVR0CZmZx+0zvr4lvNL8hf+byrjCVOzxHW/xk+jrsaLUU089hdPpjNjmd+211zJx4kQyMjL47LPPuPnmmykrK+OBBx4AoLy8nJKSknbPyc3NNa91VJS65557uOOOO7rpnYiIiBwav68WgKKiS8jOOpn09Mi7fFWNXo69731a/eGji9OTtGVPRERE+i+vt5KmxjUApDhHkZt7eqexLy3ZyctLdlPVFF6kkudKjFJBSnf2DlSPFaWeeOIJZs2aRWJi+yOvb7jhBvPrcePGYbPZuPLKK7nnnnuw2+2H9L1uvvnmdq/rdrspKio6tMRFRES6iD8QXrmbmXFshwUpgA0VjbT6g8RZLWQk2/jWZH1+iYiISP+0efPDbNn6iDm22bL2Gf+rN9ZS1RguSCXb4shKObSagnSfHilKffzxx6xbt45//vOf+42dMmUKgUCArVu3Mnz4cPLy8qioqGgXs2fcWR8qu91+yAUtERGRrmQYBstX/B81NR9gGOFjiRMS0jqN39PY/LCiNF78/lHRSFFEREQkJtXVzQPAYknAbs8jPy/ygLU9DMOgviV82t4vzhzF1NJMHDZt24s1PVKU+utf/8qkSZMYP378fmOXLl2K1WolJycHgKlTp3LLLbfg9/tJSAhvYZg7dy7Dhw/vcOueiIhILAkGm6iufsccp6SMIiVlZERcfYuPl5bs4vMt4S1+Loe27YmIiEj/5vNXA3DYhKdJTz9in7Gt/iD+YLjT+PmTi0i268S9WNSlfytNTU1s3LjRHG/ZsoWlS5eSkZHBwIEDgfDWuRdeeIHf/va3Ec+fN28eCxYsYPr06TidTubNm8f111/Pd77zHbPgdNFFF3HHHXdw2WWXcdNNN7Fy5UoefvhhHnzwwa58KyIiIt3C19ZHympN5Kip72GzZWGxRN61+/PHm9sdXZyZbIuIEREREekP3O7llJe/QkvLFgDs9s5Pz2to8fPtP81jR20LED5tL0krpMJi8DjALi1KLVy4kOnTp5vjPX2cZs+ezd/+9jcAnn/+eQzD4MILL4x4vt1u5/nnn+f222/H6/VSUlLC9ddf364fVGpqKm+//TZXX301kyZNIisri9tuu405c+Z05VsRERHpcn5/A3X18wGw2TKx23M7jS2r9wAwviiN8YWpXHJ0Saex/YMahoqIiPRXq9fcSHPzBgASEjJwOIo7jV28vY615Y3meOLANCwWzSNiVZcWpY4//niM/VTe5syZ02kBaeLEicyfP3+/32fcuHF8/PHHh5SjiIhIT/B6q5i/4BQCbc3Nk5IG7zO+0RvuN3X+5EJmTel84iUiIiLSlwUCzTQ3h3dkDRx4OdlZJ2OxWDuNd3vC/TgnDkzjgfMnUJjuiEqecmi0qVJERCQKamreNwtSdns+hYXf7TBu4dZaNlY2sbmqCQBnonpJiYiISP/V1LQGMLDb8xg65OZ9xnr8QWqaws3Ns512BmUlRyFD+TpUlBIREYmCVs9OAAYMuIgRw+/qMKa8wcP5f5xH6EuLjtOTVJQSERGR/qelZQsrVl6Dx1MOgDNl1D7jf/bSCp5bsN0c68Ze76CilIiISDfy++upqf2YrVsfAyAxsbDT2B11LYQMSLbFMbU0k4I0B1NKMqOVaqdiryWmiIiI9HWVlW/R1LTWHGdkHrPP+HdWV5hfJ8RZOGZoVrfldqAMzaL2S0UpERGRbrR23W1UVr5ujlOSh3UY1+jxs6kyvGVvSK6Tv8w+PCr57YtFzcVFRESkh7S2hlc9DRgwi6LC2fvsx2kYBvUt4V5S79xwHEUZDuzxOnGvN1BRSkREpBs1Na0GwOWaQErKCDIypkXEbKtp5pQHP8IbCAHasiciIiL9l9/fQF3dfNyNKwBIdR1GcnJpp/G3v7qKN1eW4QuG51EFaYk9XpDSYX8HTkUpERGRbmIYIVpbdwEwZvQjOBwDOoxbucuNNxDCYgGnPZ4zxhVEM00RERGRmLFmzU1UVc81xw5HUaexwZDB3z7bao4HZyfjSNAKqd5ERSkREZEuZhgG6zfcRX39FxiGD4slnsTEvE7j9xxdfOKInJjYticiIiLSU5pbNgOQkjIKl2scqamHdRrb2DaHAnjl6qMZluvEomVKvYqKUiIiIl3M66tg586nzLHTORqLJfKunTcQZOHWOpbtqAfApVNiREREpJ/z++sAGDXqfpwpIzqNK2toZdUuNwBJtjjGF6VFIz3pYipKiYiIdDGfrxqAhIR0Ro28v9M7fL99ez1/+mizOXY5VJTaP51iIyIi0hcFg600N2/A768FICEhrdPYFTsbOPN3n5hj3dg7ULE3j1JRSkREpIv5feHJlN2eS1bW9E7j9py2V5juoDDdwbcmF0Ylv95JS/FFRET6KsMwWLT42zQ2rgIgLi4Fuy270/jVZQ0A2OOtZCbbmHVkcVTy7L1idx6lopSIiEgX8fqqWbjwPDyeHQAkJnbc2HyPPb2kbjltJDPH5nd7fiIiIiKxqKVls1mQstvzKCz8XoetD/aobwnPoU4bm8+D354QjRSlm6goJSIi0kUqKv5rFqTASl7uNyJiDMPgv8vL2FHbwtaaFgCcWnIuIiIi/Vhr63YAUlJGMuWI1zqNe3HRTt5cUcbm6mYAUtX6oNdTUUpERKSLNDdvBGBAwYUMGXIT8fHOiJhVu91c+48l7R7Lctqikp+IiIhIrPH7G8xVUg7HwH3G3vHfVTR6AuZ4YEZSt+Ym3U9FKRERka8pGGzF7V5GY+NKAFLTJndYkALYVd8KQFaKnRNH5FCak8zw3I5jY4URez0xRUREpA+oqnqH5Su+D4QAcDiKOo31BoJmQerOs0aTlWLnhBE50UjzkGkOtX8qSomIiHxNK1f9kOrqd8xxkmNQp7ENbT0Qxg5wce9547o7ta/FErs9MUVERKQPqKtfQLggZSUhIY3srJMjYoIhgyc/3cKWti17cVYL35lSjNUauxOV2M0s9qgoJSIi8jXtXXJejNM5BqdzTETMGyvK+MkLy2jxBwH1QBARERHx+aoAGDrkpwwceFmHMfM313D362vMcZ4rMaYLUnJwVJQSERH5GgzDwOerBmDiYc+QmFjQYdzc1RU0+4Lm+MjBmVHJT0RERCTWhOdPVXhadwJgs2V3Glvh9gDh/lGnj8vnpJGxvWVPDo6KUiIiIoeosvJ/uBtXYBh+LJb4fU6o3K3hbXs/P30k500qJC1Jzc1FRESkf1q1+noqKv5rjpOSSjqNbWibQ40tTOWmU0d0e24SXSpKiYiIHIKWlq2sWHmVOU5OHoLVGrklr9HjZ115I7sbwnf5BqQ5VJASERGRfq2m5qO2r6y4XGNJSRkeEfPK0l384tVVNHvDzc3V+qBvUlFKRETkEDS3bALAZssiO/sU8vO+2WHcOX/4jA2VTebYpQmViIiI9GOBQCOBQAMAxx27lPj45A7j3lhRRn3bATEAkwamRyU/iS4VpURERA6Bp3UHAKmpkxkx/K4OYwLBkFmQKs5MYmBGEpOKNaE6FBbzKECdrSwiItJbNTVvoL7ucwASEjI6LUgBuFvDK6RuP3MUp48rINtpj0qOfZElhs8DVFFKRETkIDS4l7FmzU14PGUAOByFnca6PQHz63dvOI74OGu35yciIiISizye3SxYcBoQAiAxcUCHcd5AkB21rVQ3eQEYlJWsglQfpqKUiIjIQaiseJ3m5g3mOC11UkRMIBjiyU+3srFtlVSyLU4FKREREenXmls2AyGsVgcpKSMoHnhFRIxhGJz+yCfmHArAmajWB32ZilIiIiIHwe+vA6Cw8LsUFV5MUtKgiJiPNlTxyzfWmONcV2K00hMRERGJSQF/PQAu1zgmTXyuw5hmX9AsSKU6EhiSk8LoAle0UpQeoKKUiIjIAQiFfDQ3b6K+fiEAKckjOixIAZQ3hJebD85KZsaYPE4ZlRutNLuFoT5OIiIicoh8vlrKyl5k1+5/AJCQkNpprLs13Ng8Ic7C0ttO/lJPyd7J0BRqv1SUEhEROQDLll1Obd2n5thuz+kwbkdtC+srGgGYWJzOTaeOiEp+3aF3TwNFREQkFmzf8Ve2bXvcHCcnlXYYV9bQyicbq4Hwlr3eXJDqzblHm4pSIiIiB8DduAKAhIRMXK5xZGRMi4h5Z3UFlz+90BynOdQDQURERPo3j2c3AKmpk0hLO5zi4v+LiGlo9XPCbz6k1R8EwJWoUkV/ob9pERGR/TCMIIGAG4Ajp7yBzZbVYdyKXQ0AJNniKEhzcMb4gqjlKCIiIhKL9vSSKig4n4L88zqM2VnXQqs/SLzVwpCcFL47tTiKGUpPUlFKRERkH9zu5VRXv2eO4+PTOo1taOuDcMnRg/jJjN67bU9ERETk66qvX8iOnU9RU/sRAAkHMIcalJXMWz88NhrpSYxQUUpERKQTPl81ixZfSCjkASAxsRCrNfKj85n52/jTR5upaQo3OE9z2KKap4iIiEisWbP2FlpaNgJgtdpwucZGxOyobeHet9aytaYZCJ+4J/2LilIiIiKdcLtXmAWpnJzTKRxwUYdxT8/byvbaFnM8Ml9HF4uIiEj/FQoFaGnZBMCgQVeTlXUidnvkacT/WbyL15aXmePizKSo5SixQUUpERGRTnh9lQBkZh7P2DGPdBq3Z8n5b781nsmD0inOTI5Kfv2RobOVRUREYp7fXwMYgJXBJddhscR1GFfX4gPgpJG5nDk+n+OHdXy6sXQNg9ibR6koJSIi8hVeXzXr1t1GVdX/ALDb8zqMC4eUiOIAAQAASURBVIUMfMEQjZ4AAIcPymCg7vB1Ex2tLCIiEutCoQArVl5NdfU7ACQm5ndakALMOdSk4nTOmjAgKjn2S5bYnUepKCUiIvIVO3Y8aRakADIzIxtutvqCnPbIx2ypbjYfc+r4YhEREenH6usXmAUpgJzsUzuM+2BdJf9ZvIuFW2sBzaH6M/3Ni4iIfEVr63YAUlMnM7jkWtLTj4qI2VjZ1K4gNaEoTc05RUREpF/zesOtD+z2fA6b8DeSkgZ3GHfna6vZXLV3HjUgzRGV/CT2qCglIiLyJYYRxO+vB2DAgAvJyDi6wzi3J9xHakhOCi9ffTTJtjgsMbw0+utQGycRERHZl2CwldraT6mrnw9AWuokkpOHdBpf1xzuJXX19FJG5rs4dlh2VPKU2KOilIiISJsVK66hsupNc5yQkBYREwiG+HxrLZ9urAYgPSmBFHvf/DjtozU2ERER6WKbNv+WHTueNMcJtsxOYw3DMHtJfefIYvJT+94qKU2hDlzfnEWLiIgcpFAo8JWCVDpO55iIuGcXbOcXr64yx6kOW1TyExEREYlVzc0bAUhKGoLDUciAgm9HxIRCBg/MXc/m6iYCofAybFeiWh/0dypKiYiIAP5AfdtXFo6ZNp/4eBdWa2TBaWNlEwD5qYkUZSRx6dGDopajiIiISCzy+8INy4cOvZmszOM7jFmxq4Hfvb/RHKclJZBk6/xkPukfVJQSEZF+r75+IWVl/wbCW/ZstqxOY/f0krpsWgmXH9Nx804RERGR/mDnzmfZvuOvtLZuA8Bu67w3VG1bH6kBaQ7mHDuYyYPS+2w/TjlwKkqJiEi/1tq6ncVLLsIwggCkpIzsMO715WW8tGQXS3fUA+DSSXsiIiLSj4VCftZvuBvDCBebHI5iUlJGdBgbDBlmUao4M4nZRw2KVpoS41SUEhGRfq2hYYlZkMrLPYuBAy/rMO6Xr69md4PHHA/MSIpKfiIiIiKxyO+vMwtSkye9QHLyUCyWyO14b60s57rnl+ANhABI1Y09+RIVpUREpF/z+cM9EHJyTmf06Ac6jatpu7v305kjGJ7rZEpJRlTyk68yejoBERGRfs0wDOrq51Nb+wkANlsWqakTO43/YF2lWZCyWODoIZ23SZBuZsTePEpFKRER6ZdaW3dQVvYftu94AgCbreMikz8YoqHVb06mLjxioO7w9Qj1nBAREYkFNbUfsmzZ3pXljsSifcY3tIb7cd48cwTfObKYZLvKENEXu/Mo/TSIiEi/tHHT/VRWvm6OU5KHR8TUNHk55cGPzFVSFgs4NZESERGRfqzRvQIAuz2P5OShDC65tsO4HbUtzN9cw6aq8MnFua5EFaQkgn4iRESkX2pp2QRAdvapuFzjyM8/LyJm5W63WZACOHlkLlZr7N5pEhEREelura07ABhQcCElJdd0Gjf7ic/ZXN1sjtOTbd2em/Q+KkqJiEi/YxiGOaEqHXwDycmlHcY1esLLzY8YlMEzl0/BFm+NWo4iIiIisaS84r9s2fIoHs9uAByOgZ3GGobBttoWAI4eksmgzGSOHKx+nBJJRSkREek3DMNg9eofUVP7McFg+M5dYmJhRJwvEGJtuZs1ZW4AUpMS+mVByhLD/QdEREQkunbtes5caW6xxOFyje80ttUfJBgKN9X+8/cmk2TrX6UHS9sUyojBxuKxpn/9ZIiISL8WCNRTXvGKOXa5JhAXZ4+I+/4zi3h3beXeuEQ1NhcREZH+zeerAWDYsNvJzjqRxMSCiJi6Zh/Pfb6dqkYvAPFWC46EuKjmKb2LilIiItJv+Hy1AMTFpTB50r9IShrUYdzqthVSuS47zsQEzpk4IFopioiIiMQUn6+a5pYt5iqp9LQpHRakAJ6et40H31lvjnOcdiwWrbyWzqkoJSIi/YLHU0Zt3WcA2GyZpKREnra3x56ji/915VSKM5Ojkp+IiIhIrAkGPcybP4NAoB4AiyWBxMTOb9aVuz0ATCpOZ0JRGiePyo1GmtKLqSglIiJ9Xl3dfBYvmWWOkxzFETGGYfDYh5vYVNlMiy8IaNueiIiI9G8ez04CgXosljgcjmLy8s4mPr7jG3ZN3gC1zeFte2eOy+fio0uimar0UipKiYhIn9fgXgaA1ZqIzZZNUdElETFryhq576115thpj8flUFFKRERE+i+vtwIAh6OEqUf+r9O4G/65lP8s2WWOU5M0h5IDo6KUiIj0eT5vuGl5UeFshgy5scOYmrY7ezlOO5dOK+HwQRnEWdUDQURERPqfQKCR7TueZPv2vwKQmJi/z/j31u09ICYj2cbk4oxuzU/6DhWlRESkz/L5qqmu/oCGhsUA2O2d9zVo9AQAGJSZzP8dVxqV/ORg7CkQ6mhlERGR7lZW/hJbtjxsjp3OMZ3GhkKG2Y/zk5umk5/q0I29mBO78ygVpUREpM9as/YWqqvfMcfJKcMiYhZtq+OWl1aYRxe7HPpoFBERkf7N6ykDwOWaQHbWiQwYcFFEjD8Y4paXVrC1pgWjrdaR40xUQUoOimbeIiLSZ7W0bAUgNXUiLtcE0tOOiIh5ecku1pY3muMRea5opSciIiISk3y+GgCys05k0KCrOoz5Ymst/1q40xwXpjuwxVujkp/0HSpKiYhIn+X31wIwfPhdOFNGdBhT37bc/JKjB3HuxEJG5asoJSIiIv1TWdm/2b7jSZqa1gD7bn1Q0+QDYGhOCteeOJTDBqZFI0XpY1SUEhGRPmfr1sepq5tnFqXstqyImE1VTXy2sZp15W4ARhekMmZAalTzjHWWttX3hhF7/QdERESk623b/meamzcAYLXaSE8/KjKmppk/fbSZNWXhOVRpdgpnji+Iap6xztLWw0kzqP1TUUpERPqU1tadbNp8vzlOTh6KrYOi1BVPLWRzdbM5zkyxRSU/ERERkVjl9VYBMHLkvaSnHdHhqXt/+mgzzy7Ybo4L0x1Ry0/6HhWlRESkT/F4w405bbYsSkquIzNjWkSMYRjsqGsB4MQRORRnJnN0aWThSkRERKS/CAa9BAL1QLiXVEJCeodxew6HmTkmjyMHZ/INrZKSr0FFKRER6TMCgUbc7mUAJCUNprCDk2IAWnxB/MHwgupHLzqMJJs+DkVERKR/CoX8LF9xJY2NqwGIj3cRH58WEdfkDTBvUw1ba8IrzU8fl88Z41SQkq9Hs3AREekTamo+ZNnyKzCMIBAuSn2VYRhc+/xSPt4QXpqeEGfBkRAX1TxFREREYklz83pqaj40x+npU7HsaSz5Jbe9spL/LN5ljjOS1PpAvj4VpUREpE+oq//cLEjFx7vIzT0jIsbtCfDfZbvN8YSitA4nXSIiIiL9hd9fD4DDUczYMY+SnDysw7gtbb04h+akMHZAKpMHZUQrRenDVJQSEZE+we8Ln7Q3uOSHlJT8oMMYd6sfAHu8ldd+MI1BWclRy09EREQkFvn9dQDY7Xk4naM7jdszj7rzrDFMLc2MSm7S96koJSIivVoo5KOhYTEVlW8AkJDQ8V27Fl+AHbXh5uYuRwJDc51Ry1G+vr0r2nS4soiISFfw+xtYveZGqqvfAejwtGKAd9dUsGxHPRXucINzl0NlhN7GQuzOo/TTJCIivdrGTfexY8eT5jg5eUhEzLId9Xzrj/PwBUIAuBL18SciIiL92+6yF8yCFEBm5rERMQ2tfq78+yICob3FjKwUe1Tyk/5Bs3IREenVqqvfBcBqtZObczppaZMjYhZtqzMLUlYLnD42P6o5ioiIiMSalpYtALhcExg65GZSUydGxNQ0eQmEDGzxVi44vIgxA1LJdSVGO1Xpw1SUEhGRXsswDLzeSgCmHPEmSUnFHca5PeEeCLOmDOSX3xwbtfxEREREYpXPFz6NOD//3A5v6gE0egIAZKfYufOsMVHLTfoPFaVERKRXqqn5kIaGJYRCHgDs9pyImCZvgPmbali5yw2Ee0nJgYvd7gMiIiJyqLZs/T27d7+Ax7MDAEfigIiYumYfj7y3gY2VTQA41frgoOxphWloErVf+skSEZFep6VlC0uXXWqOk5JKiYtzRMT99N/LeW15mTlOVVFKRERE+jHDMNi+/c8EAo0AxMenkZo6KSLu5aW7ePLTrea4IC1yniXSFVSUEhGRXqepeT0QPmkvM+MYCgrO7zBuU1UzAENzUihMd3DGOPWSEhERkf7L768zC1KTJv6TpKTBxMenRMTVNPkAOHxQOqeOyWfG6Nyo5in9h4pSIiLS63hadwGQnj6V0aMf6DTO3RruJXXfeeM4bGB6VHITERERiUW1dfOoqvwfAHZ7Xqd9pAAa2/pxTinJ5LJpJVHJT/onFaVERKTXCAQaWbfuduobFgLgSCzsMO6+t9ayfGcDFe5wvylt2xMREZH+zOutYOnSSzCMcLEpKWlwh3Fvryrn7/O3sa48vJrK5VDJQLqXfsJERKTX2LnrOcorXjbHKc6RkTF1Lfzhg03m2JEQR46OLhYREZF+zN240ixIDRhwEQMKLugw7uF3N7Bqt9scD8xIjkp+0n+pKCUiIr1Gc/MGAFJSRlI6+EdkZh4bEVPfEp5wpSUlcMc3RjMiz0WKXR93IiIi0j/5/fW43csAyMo6iRHD7+o0ds886senDGN8URpHl2ZFJUfpvzRLFxGRXiEU8uJp3QnAwKJLycqa3mHcnj5S2Sl2zpoQecSxiIiISH+xc9dzrFt3qzlOStp3fyh3Wy+pmWPzKc2ObIAu0tVUlBIRkZi3ctX1VFS8ao4dScURMc8t2M49b6zBGwgB4FIfqT7JMHo6AxERkd6jpuaDtq+s2GwZ5OefGxFT1ejl1pdXUtvio9ETAMCZqFJBn2IJ/49B7E2k9JMmIiIxzTCCVFa+YY5TUkbgco6LiHt12S4avQFzPHmQTtsTERGR/q2lZQsAh034GxkZR3cY89aqct5aVW6OUx0JpDlsUclPxNqVL/bRRx9x5plnUlBQgMVi4eWXX253/eKLL8ZisbT779RTT20XU1tby6xZs3C5XKSlpXHZZZfR1NTULmb58uUcc8wxJCYmUlRUxH333deVb0NERGKIx1OOYQSwWBI49pglHHH4f7FaI1dB1TWHl5s/9O0JzL/5RG6eGdkEXURERKQ/WLvuNj78aBItLZuBfW/bq23yAXDM0Cx+f9FEXrn6aGzxXVoqEOlUl66Uam5uZvz48Vx66aWcc845HcaceuqpPPnkk+bYbre3uz5r1izKysqYO3cufr+fSy65hDlz5vDcc88B4Ha7OeWUUzjppJN4/PHHWbFiBZdeeilpaWnMmTOnK9+OiIj0IMMwKK94hYb6hQA4HIUkJLgi4p7/fDtPz9vG5urwDYwhOSnkpeq0vS5hCa/11pY5ERGR3sMwQuze/TyGEQTCBSm7PS8irqbJyxOfbuGDdVUAjB2Qyunj8qOaa18Xi9vlYk2XFqVmzpzJzJkz9xljt9vJy4v8PwTAmjVreOutt/jiiy+YPHkyAI8++iinnXYav/nNbygoKODZZ5/F5/PxxBNPYLPZGD16NEuXLuWBBx5QUUpEpA9xu5ewevWPzHGSo+M7fH/8aDNbqpsBSEywUpSRFJX8RERE5NDU+AIEeukdDwuQbYvH0nbjJhYFAo1mQWrKEW/gcAzCYolc+fT3+dv4/fubzHF+miNqOYrsEfWeUh988AE5OTmkp6dzwgkncPfdd5OZmQnAvHnzSEtLMwtSACeddBJWq5UFCxbwzW9+k3nz5nHsscdis+3d4zpjxgzuvfde6urqSE9XDxERkb6g1bMLALstl6zskygcMKvDuIa20/buPXcs04Zmk6oG5yIiIjGjxheg1h/ghfJaFjQ0s6nFS7U/sP8nxrDTs1P565h9n2LXEwzDoKrqberq5wEQF5dMSsrwTuOrGr0AHFGSwckjczl3ok4tluiLalHq1FNP5ZxzzqGkpIRNmzbxs5/9jJkzZzJv3jzi4uIoLy8nJyenfYLx8WRkZFBeHm68Vl5eTklJ+38AcnNzzWsdFaW8Xi9er9ccu93urn5rIiLSxfz+egBcqRMYMfzOiOsef5D6Fj/utqLUccNytG1PREQkhqxqauWUhesIdrIoKi52Fxt1yDAgBCxsaO7pVDpUX7+AFSuvMscOx8B9xrvbTtqbMTqPy6bFXpFN+oeoFqUuuOAC8+uxY8cybtw4SktL+eCDDzjxxBO77fvec8893HHHHd32+iIi0nUaGpawefOD1NZ9CkBCQlpkTIuf6b/9gNpmn/mYy6EDZUVERGKBNxTii4ZmHt1WaRak8mwJnJadylFpKeTbE5iUmtyzSR6CVU2tnPjFup5Oo1OtrduB8CrztPQpFBVd3GHcS0t28p/Fu1i1O7xYw5WoOZT0nB796Rs8eDBZWVls3LiRE088kby8PCorK9vFBAIBamtrzT5UeXl5VFRUtIvZM+6sV9XNN9/MDTfcYI7dbjdFRUVd+VZERKSL7Nz5d7MgBZCRHnl88bqKRrMgFWe1cMKIHBwJcVHLUURERDp3x8bdPLGr2hzfVlrAVQNz9vEM6Qp+fx0A6RlTGT3qt53G3fvmOsrdHnNcnNn7CoTSd/RoUWrnzp3U1NSQnx/u8D916lTq6+tZtGgRkyZNAuC9994jFAoxZcoUM+aWW27B7/eTkBDuGzJ37lyGDx/eaT8pu90eccqfiIjEJp+/FoDCwtnkZJ9KevoRETF7+kiNL0zllWumRTU/ERER2beVTa0AFCfaGJKUyEX5GT2cUd9W37CIbdv+SHX1uwAkJHTeZ9kwDGpbwjf2bj9zFMPzXBw+SH2Zped0aVGqqamJjRs3muMtW7awdOlSMjIyyMjI4I477uDcc88lLy+PTZs2ceONNzJkyBBmzJgBwMiRIzn11FO54oorePzxx/H7/VxzzTVccMEFFBQUAHDRRRdxxx13cNlll3HTTTexcuVKHn74YR588MGufCsiItJDAv4GADIyjo4oSO2sa+GxDzaxrrwRgNQkW8TzRUREpGdU+fysa/bweVvPpd+NKubwXrhNr7fZuvUP1NR8YI7T06Z0GPfR+iq21jTjC4QAOG9yESl2bd2TntWlP4ELFy5k+vTp5njPlrnZs2fz2GOPsXz5cp566inq6+spKCjglFNO4a677mq3iunZZ5/lmmuu4cQTT8RqtXLuuefyyCOPmNdTU1N5++23ufrqq5k0aRJZWVncdtttzJkzpyvfioiIRNmGjfdQXf0uLS1bAEiIT42I+fu8bTy7YLs5HqCji/uRPd1we+cR4iIifZ0vFGL65+vMk/WswGCHdqtEw55eUoOKryItfQqZGZGryNdXNPK9Jz43x4kJVpJtan3Qf7TNo4zYm0d1aVHq+OOPx9jHm/zf//6339fIyMjgueee22fMuHHj+Pjjjw86PxERiU3BYAvbt//FHNvteTidYyLiqpvCy81PGJHDccOyOWNcftRyFBERkc5tbvVS7Q8Qb4EhSYmckZ1Gpk2rcLqTYYTweMrweHYCUFBwPg5Hx72Td9S2AJDqSODIwRmcPCoPi6WXHX8ofZL+lRARkR7X2roDgPh4J+PH/YWkpMHExSVGxDV6wr2kThiRw3eOLI5qjiIiItKx9c0e3q4On+Q2NiWJNycP6+GM+oeVq66jsvINACyWOOz2zm/WudvmUOMKU/njdydHJT+RA6GilIiI9Civt5La2vBpew7HQNLSIidKLy3ZyatLd7NsZ7jflFNHF0fF3g1zsbfUW0REYsP7NW4uXL7ZHJcm9f0te7HwqRgMtlJZ+aY5zs8/D6s1cn60pbqZxz/YxJrycNHQlZgQtRz7M0vs7paLOZrVi4hIj/F6K5g3/xSCwSYAEhM7XnJ+92trqGn2meOBGUlRyU9ERET2bWljeFuYK97KwEQ73y3I7OGM+gefrxYwsFptHH/c6k634v3l4838c+EOc1yQFrkSXaQnqSglIiI9prb2M7MglZw8lAEFF0TEGIZBXdvRxbedMYqhuSlMKEqLZpoiIiLSid3e8LawKwqz+UmJej1GQyDQRFPTGgASEjL22RuqqtELwOnj8jmqNJMzxhZEJUeRA6WilIiI9BifvxqAvNyzGD36gQ5jmn1BQm1Lny+aMpDEBJ0UIyIiEit2t/UqKrDbejiT7hcLbcEbGpawaPGFGEb4z91uz+0wbtmOerbWNLOluhmAmWPyOGOcClISe1SUEhGRqPN6K6iofINt2/4EQIItcqn/51tqufq5xWZzc1ucFXu8Nap5ioiISMce217JfVvKaG27c5RvV6+iaKirm99WkLIQF5fEwKJLI2J21rVw9h8+bdfPKCO57xcNpXdSUUpERKJu/YZfUln5ujlOTiqNiHl3TYW55BxgUnG6ji4WERGJES9X1pkFqdT4OMY51e8xGjyeXQAMGnQ1pYOv7zBmW00LhgHJtjgOG5hOYbqDwwdlRDNNkQOmopSIiERdS8sWADLSp+F0jSU//5yImPqW8AqpOccO5rtHFlOQ5ohqjiIiItK5en8QgCfGDOL4DBdJcVrN3J0MI0hT01qamjcA4Egc0GFchdvDyl3h04pHF6TyzOVTopajyKFQUUpERKLO6y0HYMiQm3A6R7W7VuH28MLCHSzaXgdAUbqDIp22JyIiElMaAuGi1JCkRBWkomDt2p+zu+xf5jixg6LU2nI3Mx/+2Ny2l5akLZUS+1SUEhGRqFm77hdUV83F768FwOEoioh55N0NPLtguznOduroYgG0dVNEJGYEQoZZlErXASRR0di0GoCEhExSUoaTmjopImbVLjeGAbZ4K3muRM6bVBjtNCVmxe48SkUpEZFDUOb1sczd2tNpHDJHnJWj0lJIsEbvA8rnq2HXrmfMsdM5mvh4Z0RceYMHgKOHZHJUaRYnjMiJWo7SGxj7DxERkW6z2+NjobsFA4izQEaCfqWMhkCgEYCxY39PetrhHcbUtfgAOHV0Ho9ceFjUchP5OvQviIjIfvhCIRY2tLCl1cvvt1dS5w9Q13Z3sDe7uSSf6wZ1fIxwdwgE3ADExSUzbtwfcTnHdBjX0BruJTVrSjGnjc2PWn4iIiKyb42BIMd8vpbmYAiAXFsCcf1wJWs0b48Eg158vkpzHtXRDb1Xlu7irtfWmCcWa9ue9CYqSomI7MevN5fzhx2VHV6b5EqK4cWwHdvt9bf954va9wwGvXg8uwFISEgjI31qRMwtL63g7dUV1DWH80p1aELV0/b8nmFocZKIiAA7PD6agyHiLTA0KZHZA7J6OqU+LRj0MG/+iWYvToD4uMii1MtLdlHdtPfE4sMGpkUjPdkHS9tvCJpC7Z+KUiIinVjY0My8+qZ2BampaclcV5xLgd1GUaINRy9s7PmbLeX8Zmv5/gO7SEPDYhYv+S6hUHhbXny8KyLGHwy16yNlj7cyNCclajmKiIjI/tX4AgAMdiTy/hEjejib6Iv2jchWzw6zIBUXl0Sq6zASEyNXkde3rTK/86zRnDwql/xUnVgsvYeKUiIiHQgaBhcu20Rj2/L0OAssmjqaPLtW7xysurr5ZkEKLGRnnRQR426bTAG8fu00ClIdpCfbopShiIiIHIgaf7golWlTc/No8PvCJxE7HIM4auq7Edc/3VjNF1tr2V7TAsCwXKcKUtLrqCglItKBSp+fxmCIOAucn5fBselOFaQOka/tpL2BRZdRWnojVmv7j5515Y2s3NUAQIo9ntEFqVHPUURERPbPLEqpuXm38/mqcbuXAGBLSI+47g0EueypL/D4Q+ZjOU571PIT6Sr610RE5EtagyF+u7Wc/1WHiyR5tgQeHDGwh7PqnQKBRurqP6es7N8A2OzZEQWphVtrOe/xeeZYfaRERERijycY4vWqet6vDZ8ApxP3uld19XssWz6HPR2JHEnFETHu1gAefwiLBS46YiDD85wMzlbrA+l99K+JiMiX/Leqnt9t/3IPKX24H6pVq39MdfU75jg5eWhEzIbKJgCc9ngKM5KYNUUFQBERkVjzz/Jablq/0xzn2nQTqTvVNywCDCyWBGwJGRTkfzsiZs9Jeym2eH75zbFRzlCk66goJSLyJWubwr2PjkxN5rTsVM7JzejhjHqv5uYNAKSkjMCZMpqM9KMjYpo84W0AJ47M4aELDotqfiIiInJgdnvDBZDBDjtT05K5qEDzo+7k94VbH5QMuoaSkmvaXQsEQyzdUc/a8vCqtZRE/UovvZt+gkVEgGWNLTyxs5pP68Mf8GflpnOJjjn+Wny+GgDGjH6U5OTB7a6FQgblbg9lDeEioDNRd1xFRERiVUswCMDp2ancUlrQw9n0XT5fDWXlL7G77F8AJNgii38Pv7uBR9/baI5dmkNJL6eilIgI8OvNZWafBIBxKX3/5BKjm163vPxVysr+TTAY3ppns0UW92b9ZQHzNteYY93lk/2xRP0gbhER2aOl7TTipDhrD2cSG4xumkStW387lZVvmGOXc0xkTNsKqTxXIunJNi49elD3JCN9SizPo/RbgIgIsMPjA+CyAVlMTUthUmpyD2fUO/n9DaxecxOGEf7zTEkZRUKCq12MYRh8vjW8LN0WZ8XliOeEETlRz1V6q+4qp4qISGdUlIoOd8NSAJzOMeTnfROXa1xETH1reCvlLaeP5MzxWrUmByv25lEqSolIv2cYhtkr4bLCbAYn9e3jdLvzPklr6zazIDV82J1kZh4TEdPkDRAMhT8Ql99+CokJcd2YkYiIiByqkGGwpdXLiqZWQEWp7mQYBj5/NQBjx/weh6Ow3fW3Vpbx+IebWVvuBiAtSdv2pG9QUUpE+rXVTa0scjebdwDz7PqAP1SGYeDzhSdTTudoCgtnRcQ8//l2Pt4QjrHFW1WQinF7lnrH3j01ERGJhv9bvY1XK+vNcb7d1nPJ9GHr1t3O7rIXCYXCN/Y6an3wl4+3sHRHPQBWC5RkaVV/LLO03QXurq2efYmKUiLSb7UEQ5yxeINZkMpIiNMdwEPk9VXzxRdn4fWWA2CzRW7Ha2j1c/NLK8wP58K0vt+3S0REpDdb6m4BwBlnZawziWlpKT2cUd8TDHrYuesZ9twCys4+hbi4xIi4hrZtezedOoKTR+VQmJ4UzTRFuo2KUiLSb1X6/LQEQ8Rb4Jh0J+fmpvd0Sr1WXe1nZkEKrBQUfCsyptmHYYA93soNJw/juOHZ0U1SREREDkprKHzj7uWJQxndDw6B6QmtrdsAg/h4J5MnvYjDMajDOLcnXJQ6ZmgWQ3Kc0UtQpJupKCUi/VatPwBAri2Bf4wv7eFserfwhApyc7/BiOF3Ex/ffkm5PxiistELQGayjSuP05+3iIhIrGvd0+DcqpXk3cHduJJdO58FIClpMMnJQ9pdD4UMrnh6Ict21lPdFN7a59SJxdLH6CdaRPqtOn8QgPQE/VN4qEIhLw0NSykr/w8AKclDIwpSS3fUc9Gf59PiC/95uxzq2yUiIhLrDMMwWxw41N6gy1VXv8+y5Zeb45SUERExO+paeHdtpTnOdtrJdUVu7RPpzfSbmIj0S5tbvHzR0AyEV0rJoVm/4W527XrOHCcnD4uImb+5xixIAZw4MrLflIiIiMQWn2EQavvaYe3Os3v7p+qa982v09KmUDzwyoiYRk94VX9Wio1nLz+SwnSHDomRPkdFKRHpd+ZWN/DdFVvM8YBEFaUOVXX1ewDExSWTnX0ymZnHR8S42xpzfvfIYm45faQmUyIiIjHMMAz+uquaz+qazMe0Uqq9rjhQbU8vzhHD72bAgAs7jNnTRyotycbwPPWRkr5JRSkR6XeWNoZPkkmJs1KYaOP8vIwezqh3MowgPl8VAEce+TaJ9rx21ysbPXywrool2+sByEi2qSAlIiIS41Y3e/j5hl3meGyKA5t6SnWZ7TuepLz8ZRobVwKQmFgQEbOhopEfv7ic8oZWQH2kpG/TT7eI9DtVvvBS6DlF2dxYkt/D2USfpQtW4JeVvURd/XwMIwhYsSVkRcTc+OJyPlhXZY4zkm1f/xtLP6atIyIi0bCjNdxQe4A9gVkFmZyZndazCcWQrphDbdnyCIGAG4D4eBepqZMiYt5YUc6yHfXmeHiuVknJ19QVP7zdREUpEel39hSlctRL6pA0Nq1l9Zofm2OXcwxWa+THyfba8Iq0wwelMygzmTPG9b8CoHQ9w+iKTRMiItKZcl94y9g4ZxI3DMrbT7QcjGDQYxakxo75A07nGOLjUyLi9mzbO3tCAd+dOohxhalRzVP6LqNLNp92LRWlRKTfMAyDCl+AXd7wHcAcm/4JPBSe1p0A2GzZ5OTMpCD/vA7j9vSSuvOsMYzMd0UtPxERETl0Fd7w53euXTfvulJFxWvs3v0vAKxWO9nZp2DpZPVKY1tRamiuk0nF6VHLUaQn6DcyEek3frp+J0/trjHHWil1aPz+WgCcztEMH/aLdtcMw+Cn/17B6jI3Nc3h4p/LoT/n3mrPXFmLk0RE+pY6f4BvL9vETk/4s9owws27DaA1GD5zL08377qM39/AqtU3tLU9gNTUSR0WpP780Wae+HQLtW1zKPWS6r32/vVqErU/+ikXkX5jQUMzAAkWCyOSExmd4ujhjHqXQKCRtWt/TkXla0B4pdRXbapq5p8Ld5jjVEcCWSnqJSUiIhJLPqlrYnlja6fXrcDk1OToJdTHNTauxDCCJCRkUlT4PfLyzuow7rnPt1PW4DHHo7TSXPoBFaVEpN9oCobvTr1y2BAmaqJ10CoqXjcLUgAZGUdHxDS0bdnLcdq597xxDM91Yo/XiXsiIiKxYGFDM7/dWs7HdY0AnJzp4uelBVjYe5yExQKp8XFka0V5lwiF/LjdywFITzuCkpJrOo3d0/rgD7MmctjANPJTdQNV+j4VpUSk32gOhJejJ6tIAhz8YuLGpjUAZGfPYEDBhWRkTIuI2dOYM9tpZ/rwnK+booiIiHShe7eU8XFdkzk+NSuV4cmJPZhR37Z79wusXfdzDCN8yI7TOWaf8Y2ecNz4IhWkpP9QUUpE+o2mth4JKXHWHs6kd2pqK0rlZM8gM/OYdtcWbavjB88tpralrY9Uou6uioiIxJpVTeEte9cMzOGUTBeHa+X4ITnQE8wqq940C1JxcclkZZ8YEeMPhrj62cVsrGrC1zZXVS8p6U/00y4ifVrQMLh4xRYWuZvxt3VrdvXzlVIdn/PSuY2b7qei4r94veUApKSMiIh5e3U5u7/UA+GwgWlfI0MRERHpSvduLuOdGje1/nArg2sG5pCWoF8Fu1tLyxYAxo//KxnpR2G1RvbZXLXbzdurK8xxQWoiKWoyL/2IftpFpE/b0OJhbo3bHB+X7sTZz4tSByMUCrB9+1/Mu3x2ex5JSYMj4hpawtv2Lj26hEuOHkRhupaci4iIxILWYIgHt+0tehQl2kjVXOiQWA7w1t6GjfdQVfUOra3hw1+cKaM6LEgB1LetMi/JSubX54xleJ4Tq/VgbyGK9F4qSolIn7anj1SeLYGnx5UwLEl9Ew6G11uOYQSwWGxMmvQ8yUmDsVr3bs37Ymstry3bzfzNNQCUZCVRlJHUU+mKiIjIV+zwhIseKXFW/jx6EGOcDiwWFT26SyjkY/v2v5hjR+LADk8sDoYMlmyv4/MttQDkuuxMGZwZtTxFYoWKUiLSpzW37c1PS4hjnFPFkoPhdq+gtvYTAByOQlJd4yNibv7PCjZW7m2YmqemnCIiIjFhp8fHhcs2saHFC8CQpESmZ7p6OKu+z+cPF5ksljgmHvYcKSnDOywC/u2zrdz12mpznOboeCWVSF+nopSI9GnNwXDvBDU3Pzhu9wq+WHi2OXY4ijqMq2oMT3S/e2Qxw3JTmD488k6gSNfQXX0RkYPxYW2jWZACOD07tQez6fsMw6C29iOqa94HICEhg7S0yZ3G77mpl+O0MyDdwfemFkclT+mvYncepaKUiPRJLcEQr1bW8dSu8Lay5Dj1TjgYzc0bAIiPd5GSMoKBRZdHxBiGQaMn3EvqBycMIcelrZF9TWxOXw7sxCMRkf6uyhf+jD4jO5VfDBlAoV0n43an2rpPWbrsUnOckjx8n/F75lBXHlfKZdNKujU3EZMRe/MoFaVEpE/6265q7ty02xwPTrL3YDa9z56l55mZxzNm9IPtrgVDBve8sYbN1c2E2j7XnIma6PZtsTeBERGRjr1YXss9m8vY5Q0XPUqTEilK1Naw7tbSvBEAuy0Xl2scgwZd1WFcszfAqt1udtW3AuBK1K/kfdGepvgxWAOKOfp/gIj0SeubPQCMTklkvDOJHxbn9nBGsaejD8nm5s3s3PV3du58GgCbLbLh5rKd9fzlky3mOCvFRmKCtkeKiIjEgufKas2CVILFwows9ZGKBq+vCoDsnFMZPuy2TuNm/WUBS3fUm2Pd2JP+Tr9FiEiftMsbPmnmyqIcHhgxkFwtWT8gW7Y+ahakANJSI3sh1DSF/2yLMhzcc85Y/nHFkTrFRyQKdu3axXe+8x0yMzNxOByMHTuWhQsXmtcNw+C2224jPz8fh8PBSSedxIYNG9q9Rm1tLbNmzcLlcpGWlsZll11GU1PTV7+ViPRin9WH/z/9wIgivpg6iomu5B7OqG9rbt7Ehg2/orr6XQASE/P3Gb+23A3AwIwkjirN5KghOnFP+jetlBKRXitoGCxxt9AcDBEyDEJAyDAwgM1tjT0HqBgVYV/lI48nvOUxN/cbpKcfSXb2Ke2u1zb72F7bAsCgzGQuPGJgd6UpIl9SV1fH0UcfzfTp03nzzTfJzs5mw4YNpKenmzH33XcfjzzyCE899RQlJSXceuutzJgxg9WrV5OYGO75NmvWLMrKypg7dy5+v59LLrmEOXPm8Nxzz/XUWxORLhAyDM5ZspH5Dc3mY0ekJpOneVC327jpPqqr3zHHTueYTmO9gSAef/hk6P/+YBqpDv39iKgoJSK91u+3V/KrzWX7jClUD4WD4vNVAlA4YFbEiTH/+mIHN/57uTnWREokeu69916Kiop48sknzcdKSvY2xjUMg4ceeoif//znnHXWWQA8/fTT5Obm8vLLL3PBBRewZs0a3nrrLb744gsmTw7///vRRx/ltNNO4ze/+Q0FBQXRfVMi0mXKvP52Banj052UOnpBP82GnVCxGjZ/APXbejqb/RoQCPJEXSM2qwV2pcPhl+Hx7AQgL/csUtMmk552ZMTzvIEgt768kq014Rt7Fgs47fpVXARUlBKRXqjK52dVUyt/21UNhFdDpSfEYwWsFgtWS3hv8kRXMgNVlDogmzb9lqrqubS2bgcgMXFARMyCLeHm51YLJNvimTE6L6o5ivRnr776KjNmzOBb3/oWH374IQMGDOCqq67iiiuuAGDLli2Ul5dz0kknmc9JTU1lypQpzJs3jwsuuIB58+aRlpZmFqQATjrpJKxWKwsWLOCb3/xmxPf1er14vXuPlHe73d34LkXkUFX7AwDk2uL58IgRpCXE8K95lWth3qPgaYA1/+3pbA5KCnDankEV0FyFZ0i4l9TA4jk4U0Z0+LwFm2v518Kd5nhQZjJWq1ofiICKUiLSywQNgzMWbWCbx2c+9vDIgUxLd/ZgVr1bINDE1m1/MMcOx0Ds9siCU0NruGnqXWePYdaU4qjlJyKwefNmHnvsMW644QZ+9rOf8cUXX3Dttddis9mYPXs25eXlAOTmtj/UITc317xWXl5OTk5Ou+vx8fFkZGSYMV91zz33cMcdd3TDOxKRrhAIGbxT4+af5eEbR9m2hNgtSK38N6x/G5Y/H3ktfwIkZ8GIM6Ke1sGo8Pm5f0s5h7VuYdbO/+CuX0IgkAJYSHJ03tKgtjk8bx2R5+T7x5cyeVBGlDIWiX0x+i+WiEjH1jZ7zILUyOREjk5PYWpaSg9n1bv52k6LiYtLYsyYR3E6x7RrXP7e2grmrq5kxa56ANIcWn0mEm2hUIjJkyfzq1/9CoDDDjuMlStX8vjjjzN79uxu+74333wzN9xwgzl2u90UFRV12/cTkYPzalU9V63eu+1tVEpiD2bTgWAgvCqqbhsserL9taOuBWc+DD0Zsob2TH4HqaHZwzPetTTVz2fWzv9AKLxCLTV1EnFxSRHxrb4gH2+o4rNN4dX9pdkpnDUhcjW6SH+mopSI9AqeYIg7N+1mZVMrABNdSbwxaVgPZ9X7hUIBWlt3AGCz5ZCVeXxEzI/+tYy6Fr85zk+LsQmvSD+Qn5/PqFGj2j02cuRI/v3vfwOQlxde3VhRUUF+/t6TnyoqKpgwYYIZU1lZ2e41AoEAtbW15vO/ym63Y7f3gr40Iv3UlraDXQoTEzjMmcy1xbn7eUYUtdbB8hfgndvbP37ynVA0BQZG9l7al1AwRG1ZC0bI6LocD5K71UteXQC720aVv4QWr50hA/5CQUnHRbWH3l3PHz/cbI7Tk9WPU+SrVJQSkV5hbo2bJ9p6SAGMSFZh5OvyB+r56OMzCAbDR0cnJw2OjAmGzILU1dNLGZyVwmFFadFMUyTM0r97bxx99NGsW7eu3WPr16+nuDi8lbakpIS8vDzeffddswjldrtZsGAB3//+9wGYOnUq9fX1LFq0iEmTJgHw3nvvEQqFmDJlSvTejIh0mfpAeKXON3PSuaU0hg4r+Oh+eO/u9o9NuwGGnwZFh3f6tIAvSPWuJnytAXauqcPvC1KzqwlvS4Da3c2dPi+awp38BvEvHoAa4MEqCob6+eaPJkbEbqoM51yanUxxZrLaH0gPit15lIpSIhLzKr1+Pq5rBMLHG1+Qn8HMrNQezqr383jKzYKUxRJHTs6p7a6XN3jYWNlkjm84eThxasrZr8RmHajn7pD3pOuvv56jjjqKX/3qV5x//vl8/vnn/OlPf+JPf/oTABaLhR/+8IfcfffdDB06lJKSEm699VYKCgo4++yzgfDKqlNPPZUrrriCxx9/HL/fzzXXXMMFF1ygk/dEepkvGpp5vqyGZ8vCvaRiro/Uihf3fp2SC7Nfg+zwCncjZFBX3oK3xU/ltkY8zX42Lqok4AvSVOft5AX3SkxJIC7e2l2Z71MgFKTKHyQx5CXd7yZoseEJuqgrb18wq2v2sbrMzY7a8Gl7P5kxnFPH5Hf0kiJRFnvzqBj710tEpL1Ht1Xwy81l5vjUrFQuys/swYz6jkAwPIEaWHQZgwf/iLi4vVt0NlQ0MuOhj9izQt6VGK+CVD9mxN78pd85/PDDeemll7j55pu58847KSkp4aGHHmLWrFlmzI033khzczNz5syhvr6eadOm8dZbb5GYuHdl6bPPPss111zDiSeeiNVq5dxzz+WRRx7pibckIl/DrRt2sbSxxRyPS3H0YDZtDAOePQ82f2D2WuLHG/HFp+NrDfLh75fR3OCjZmcTof1swXNmJhIXbyVvsAtnpoPMAcnYkxJwZthJzY7s3RQtH29+kZ9vG8LMmg94cuUvqEiewoubftouxjAMvvH7T9hR22o+lp6kfpz9TWze2ItNKkqJSEz7pC68UifBYiHPnsBZOWk9m1CfEJ4I+v11ADiSBrUrSAGsKW8kZIAt3kpWso1vTVZjY5GedsYZZ3DGGZ2fTGWxWLjzzju58847O43JyMjgueee6470RCSKtrSGVxRdVZTDYa4kjsmIgVOIm6tg4zvm0Fd4Iis/a2Hef1Z0GB5vj8OZkUjWgGRsjnhyBrnIKkzBmZGIwxmbRRyPZxcwBKzh3lDxcZGH7Xj8IbMgNSw3hZKsZA4bmB7NNCWG6L7e/qkoJSIxaXFDM1+4m/mwbdves+MGc2wsTLj6gPr6z4FifL5wjy5HYmFETENruI/U8cOy+dP3JkczPREREdmHBn+AhkAQgB+V5JIcF9ezCRkGLH0OtnwUHidlsWj4y8x/swoWbjLDLBYYfFg2I48uIDnVTlZh7zs92estD39h2fNnHlly2DOHirNa+N8Pj213orGIRFJRSkRiji8U4vxlm2gKhszHBifp9Keu0ty8ESjGYrGSk30a6el7Gxzvqm/lhYU7WLA53KMi1aFTYkRERGJBIGQwa/lmVjSFt+1lJsT3fEEKYN2b8MpVAFT5B1PmnxEuSLXJHujknJ9MJC7OiqWXtgKoqprLjp1P09BQBXwbo4OilNvj55aXVrK9rY9UqiNBBSmRA6CilIjEnEpfgKZgiDgLnJ2TzjHpKRQmxuYy7t7GMAxz21521imMHTO23fWH5q7nhUU7zXGOS8VAERGRWLChxWOuIAc4Mi25B7P5kspVAPisqfyn4T4CNXsLZd/71VGkpNt7fXFmy9ZHaWxcRYgB4UPMvlKUMgx4f20l/12223xOSVaM/P2IxDgVpUQkZtT5A9y2cRdvVDUAkGdL4PejdHRuV9m9+wXqGxYRCgXBAvHxkcvmKxrDPSqOGZrF+MI0Zh81KMpZioiISEfq27bsFSYm8My4wQxNStzPM7rZhrnw5k246/ysbryInfYZBALhYk3pYdmUTszBmdHDOXYRr7cSgIFFl8NOgLbT/750EsiebXuHDUzj8mmDmTI4I8pZivROKkqJSMx4vaqBF8rrzPHUtN7XayBWeX3VrFm753SYcwCwWCKX/Dd5whOqWVOKOXVMXrTSExERkf1o8IeLUtkJCYxIjoHT9j66H2o38Xn9tazzTIfwob4MPzKPky4edUAv0drUSEt9PRWbN1Cza0c3Jvs1GAbbtltISE5n1PjjYWctBuGVX5Yvbd9r9IRPHByak8Lp4/J7IlORXklFKRGJGbu9PgCOSU/h6oE5HJeuxuZdxesJLyePj3eR7poGde2vL9hcw866VsoaPAC4EvXxICIiEgtWN7Xy43U7WOwO9ypKS4iBPlLA8i2DWF73PRqCBQAMmZxDWk4SY44bsN/nGoZBQ2UFf7vh/wgGAt2dahfIBKBoagWQgLFnN2LbSqlmb4A32rbuORPVj1PkYOi3DhHpcauaWnludw1/3RU+De7I1BSOz3D1cFZ9y55l5w7HQDLSjoS6MvPe3rryRr79p/nt4lOTNKESERGJBf+uqDMLUgAzslJ7LhnDgHd+QXDzp8yr/jEBwr0nk1NtTJ81Aptj/79eVm/fyj/vuBlP097+WIlOFw6ni5LxE8PH9MUAv7+O8vKXAKjblEqgJZ6ApxVIAMyqFADeQIi15eG/o/zUvrFlUSRaVJQSkR5396bdvF+7d2JyRKoaQ3aVpqZ1rFh5LS0tGwFwOCJ7dG2tCa+3dyXGM2FgOkOyUxiZp6KgxJbY+BVFRCT6Kn3hrfXfK8hkVkEm41J6butecNsXvPbfdCr9PzQLUuf8ZBLpeUn7LUhtXbaYJW/9ly1LFmEYbScsWyycfPnVjDvp1O5O/aDV1S1g8ZI/kpg4gM3NJVRu3mEethdq+1QyvrR974aTh5GVYufswwp6Il2RfYrleZSKUiLS48q84cnWt/MyOCothWnp6iXVVaqq3jYLUgCZmcdi8bWP2dOYc2JxOn+75IhopicxrrefliQi0hdUecPb2ya6khjvTOrRXMpXbGCnb7w5LhmdQn7pvldurf3sIyo2b2TtJx/QVFdrPn7qVdcz5PCp2JN69j11Zs9pxXZ7HnHxbTdM27br7ekp5W/r82UBrp4+hDirPjclTD8JB05FKRHpMfX+ANs8PtY2h/sYzSnKZnQP3v3ri3z+8OSvIP98Bg36Pg7HQNhWAUCrL8i5j33GlurwSqlUh7bsiYiIxIpXK+v5V3ktC93hz+mBifYey8VTVcGyZ19j1cYcAAbllHP01Wfjyu543hYMBNjw+WdsWfwFqz9+33w8MTmF4753Oc7MLIrHTohG6gfN7V7O6jU30ty8AQC7PRfLV7br7ekpVdkYnsNaQAUp6SWM/YdEmYpSItIjmoNBjlqwhtq2O0wAOTb9k9SVfL5ac0KVnDw0XJD6kt0NHpZt29vxfIS27EknjNibv4iI9Hl3bdrNDk94ebPdamFESs/1Klryj/dYvLbEHA8Z6ictt+MVTp7mJpbNfZNP/vFUu8cnn3kOpZOOoHDkmG7N9esqr/ivOX8CyM46GSyftIsJtX0uWglvQ7TFW6OWn/QuhiZR+6XfAEWkR2xo9lLrDxJngTxbAt/MTSfbppU6XWXN2lvYvft5c/zVghSAPxCeSB03LJufzBjO6AIVpURERGKBYRhmL6k7hhRwZFoKGQk996tbRUW46OK0NzBhgodh532zw7i3HnuIVR+8Y47zhw7HmZXDcd+5BFdWjvl40O3G8Pk6eoke11q2EasbigovJjf3DBzxRRD4AADD7SbenkKobXu7ta0W5YiRExFFeiMVpUSkR2xt9QJwuCuZlycO7eFs+p6a6r1L5ZOTh5KePjUixh8MF6UGZSYxZkAPnuQjIiIiJn/IoNznx9u2HOe7BVkkxfXQSpxQCGo342kKF8iOP76Fgd+c9ZWQIHP/9Dsqtmyiautm8/G0vHzOufkOEpPDvUKrHnmEpk8+JVBVRaCsLHrv4SDZgDxs+HmOnTwHQGtpAaQ4CN51J/804vnDj/8PAO3YE/n6VJQSkaja0Ozh2jXb2d62HL3Y0XP9EfqqYNCD1xfuG3XsMYtISEhrd/2DdZWQABsqmwBwJmqFmoiISCyo9Qc4dsFaqv3h5ubZtvieK0gBax+9i1Ubs6nzlwLgyC+KiKnYvJGV7881x0MOn8qZ1/8Ui9WKxWLBs3o1zQs+p/oPj0U814i5os6Xt1p1nFyGuwFj5/s87XIyxB2drET6MhWlRCSqXquqZ0ljizk+PDW5B7Ppe2prP6W84r8AxMWlEB/ffgVUKGTwxdZaGJqKPxgiARiR7+yBTEVEROSrlje2mAUpCzC7IKtH81m4YRgNgVwA4iwBnCOnmNfqK8r57IVn2bzocwCyBw3muO9cSuHI0VR5qvl418cwbzGj73nJfE5TIvz+DCu7MyyUZcZcRapTp863kFcLjQ7Ib4Am3yLuz0/n2Lh4RpX3dHYivZuKUiISVbVtE63zctP5/sAcRiX3XNPOvsYwQqxYeQ2BQPi2XXLyECyW9hO+Rm/AbFo9fUQOt88Yz5CclGinKiIiIh2o9oXnSUenpfDP8aXE9+T+MH8rLcHwjavjzx/IgNEFJKbubW7+2QvPsuZLJ+sNm3IUzzS/zuI37mLyf9ZwzCqDzMa9L7e+AP55rJUVJVZSElI4s2h61N7K/hgYVJS/ikGI7OwZxMe1b+LuWrYJaGbPr8+JcXlABa1xvaewJhKrVJQSkajY5fHxQW0jz5bVAjA6xcHolI6PEZZD4/GUEQi4sVjiKR54Bbm5Z7a7vrGykVW7964zz3baVZASERGJAS3BEHNrGnh0eyUQPpG4RwtSvhYC2xfhN8LFmSFTBmJPtgFQs2sH25YvNQtSJUdMYU1GFU8kvUv5h/MYvtPg7Pl7t8G1pthY99CVFA+ewCPpw4izxJFmT4u4cdZTNmz4FWXlL+PP9GCxxHP8sfdjtbZvbfDP937Gzl3LgUSgAadtLFCBYdHJaiJfl4pSIhIVV6/exvyGZnNc7LD1YDZ9U3NL+PjipKQSSkt/3O7a0h31nP37T8ODEhWiREREYsnvt1fw260V5nhUT964a6ml+YHplDflATcRb/FhS9pbpHnl/ruoK9sNgDUuntpjsnh+zb9I3Wzw+78HsQX2vtSgf7+IbcAAJqalRfc9HKCm5g1s3/FXc5yVdUJEQcowDJbvaiADCJo1qHBBzTBjuj1VkT5LRSkRiYr1LR4Ajk1PYZwziRlZOu2tq3i9VSxfcSVu9zIAUpKHR8SsLw+vn0+xx5PgtBO7Z96IdCY27qiLiHSHba3hA2CGJtkZ50xiVkFmj+XSvGUtT++8j3DnSXC5Quaqpub6unBBymLBGJ7NO0krafji9/zkrRCHb9hbmXHOmEHG7Nk4Ro/ukfdwoDytO82vDzvsGVJd4yNimrwBmrxBMthbhLK0faValPQaMbIysSMqSolItzIMg5ZQiFp/EIDHRw8iI0H/9HSlsrIXzIIUQHbOqRExDa3ho5xPHJnDkKkF/HKzylIiIiKxoiEQnid9vyiHi3qwIAVQV9ZIiASslgCuHBfjTxmBEQrx+SsvsurDdwFILxjAI6XzCRpBzpxvtCtIDXjkYVynnNJT6R8Qv7+esvKXaGhYDEBGxjFkpE/tMNbt2bv0KzUpvNLfYum5ExGld4jhGlDM0W+GItJtmoNBZixcz8YWLwAZCXGkx8f1cFZ9j8cbLjBlZk5n2NBbSEoqMa+t3NXAk59uZeWuBgBSHQkdvoZIb2IYRsz0IhER+Tper6rnf9UNLG07mdgVA/Mkj7sFSCXXWcE5d4SLS1uWLOST5582Y5YkbyMYClDQbOeKuCl4eJ/Us75B2nnnkXT44R2+7u+W/I53t7+73+9/WM5h3Db1ti55L53Ztu2PbNv+J3Nst+d2GLepqokl2+sx9nzm7PnoMdq27+3Zt6f9e9JLGDG4vq9Li1IfffQR999/P4sWLaKsrIyXXnqJs88+GwC/38/Pf/5z3njjDTZv3kxqaionnXQSv/71rykoKDBfY9CgQWzbtq3d695zzz389Kc/NcfLly/n6quv5osvviA7O5sf/OAH3HjjjV35VkSkC6xu8pgFKYCzctL1i2QXCwY9+Hzh5vGZGce0K0gBPPreBv63am+PisJ0B15EDk4sTmBERHo7wzC4bs12moIh87GCxB68eVSzCT68l9b5DcCVJH6pOVTZxnXm15+PqGX9wCa+/0aI6ctb8BBueO6ccWpEQcrjD3DTKx9R4W5hUUU1ELk97qtWrg5Rs/0L7HHd13+0ttaFx3shtoQsEhLScFYN5QJHLZMHZZgx8zbVcOGf5wPwjbbHzOLUnu17mtbKfmgGtX9dWpRqbm5m/PjxXHrppZxzzjntrrW0tLB48WJuvfVWxo8fT11dHddddx3f+MY3WLhwYbvYO++8kyuuuMIcO51O82u3280pp5zCSSedxOOPP86KFSu49NJLSUtLY86cOV35dkTka6ryhbeMjXc6+Of4UtK0ba9LrV79E8rK/2OOExLSImKqm8I9Kr49uYhJg9I5Y1w+fy2riVaKIiIi0olKX4CmYAgr8LPB+RQ5bBzmTOqxfAKf/Zntn29hcVP497DUvFRa3A2s+fh9ti4Nb3NLP3Eiq+0vYQ0ZHL/aCoS3HdqHDSPpiL0FqY/WV/Hoexv4Ymtd2yMWoOMVVB15ZUllV7ylfRjY9t8e9WyuWcN/rjrafGRdefjE4hR7PA5bHLTCnqVSlq+ulBKRQ9alvyHOnDmTmTNndngtNTWVuXPntnvsd7/7HUcccQTbt29n4MC9/yg4nU7y8vI6fJ1nn30Wn8/HE088gc1mY/To0SxdupQHHnhARSmRGLGt1ctvtpbzQnl4IlJgt6kg1Q0qq942v46PTyU19TBzHAiGWF/RRFVjeF3UWYcVcFRpVrvnax4lIiLSMwIhgw1th8AUJCZwTXHH28eiadkqF/PrbzbHeVOPYv6/n2fJW//dG+NbjwOD2QnHYgm8D3FxjFi+DEtceNvhom11vLJ0F0/Pa7/zJSG+idLU1ZRip9Sa2OH3t1gMHjO2ADAn+0iSBh7Z1W+R8vKXaW7eYI4HFl3OzgYbLyzaiccfahfb2NZL6szx+RyemMmWpVu/tOqlrSjVtlJKUyqRQ9ejvyU2NDRgsVhI+8oRob/+9a+56667GDhwIBdddBHXX3898fHhVOfNm8exxx6LzbZ3OeeMGTO49957qaurIz09PZpvQUQ68NSuGrMgBTAtPaUHs+mbAoFmgsEmAKYdPY+EhPR2Rxhf98+lvL58bzPzNEf3LYEXERGRA7fD42PGwnXmITDFifYeziisviE8j0hNNygaV8igCTl88epmAOJKslls3cj6uG08+lgQV2t4y158ZiZYrfi2bydQVcX1z6xluz3NfM2T6mvJiM+jKJCFtfq4/eZwZNEulhTO5ZLt/yRz1m6I67rtjIYR5P0P/oRhhP/cU12HMWnSJD7eUMMLi/aewtfiC/DK0t18tim8styVmLC3a7Xlq6/ZZemJ9Fs9VpTyeDzcdNNNXHjhhbhcLvPxa6+9lokTJ5KRkcFnn33GzTffTFlZGQ888AAA5eXllJS075mSm5trXuuoKOX1evF693ZRcbvd3fGWRKRNmTe8ZezM7DRmZqdyZnZazybUxzQ0LKa6OjwZjItLwW7PiYjZ09g8M9nGmAGpDMtVYVBERCQWfFbXZBakrMDM7NToffPazfD5n8HfCkYQjBD4PVCzEU/raQBMOCadESeVULtzG7vWrgJg98RElrTWM3FHAq7WAMTFEZeaSvqFF1D92OM8/sZytrly2T7wcCyGwZHeBLKDVoYzANpaU8UFWgGwxFuxfmUFfTBkIRi0ktU8IPxAKBDOrQv5fLVtBSkLxx27lLi45A57nT63YDt3v77GHGck2/bGWb6yNEo9pUS+th4pSvn9fs4//3wMw+Cxxx5rd+2GG24wvx43bhw2m40rr7ySe+65B7v90O4i3HPPPdxxxx1fK2cR2b+trV4+rmvkpcp6AE7NcnFOrlYvdqWmpvUsXPQtc5ySPLTDuIbWcD+vf8w5kmG5zg5jREREJPp2eMI3787PS+feYUU44qzR++bv/wpWvNDhJW/wfAASs3J47tYfU7U1vErKYrGy21ZPdpnBteVjgc9xnnACmXOuoOznt7Kw2s9fj7nKfJ2coJVpnvAKpxL7Rzh8lYznLVp3GzTuysZ11tnk/uTH7b73ms/K+OzlTd3whsN9nyoqX6Oy8i0A7LYc4uM7v1m3sy5cPBuR52RKSQbnTirk4/l7rravQu09fa+rsxbpP6JelNpTkNq2bRvvvfdeu1VSHZkyZQqBQICtW7cyfPhw8vLyqKioaBezZ9xZH6qbb765XbHL7XZTVFT0Nd+JiHzVxSu2sLbZY45HOx09mE3ftKcPQnx8Ki7XOIoH7j0UwjAM/vzxZtZXNOFuK0qlOnrwFB8RERExGYbB5lYva5rDRY8Shz26BSmAsmUYhoXQhO9CWjGGxYqBFcM1kJqnwiu27ClxZkHKluqkfmQyaQuXcMuLQeBzABLHjOGl/3zE07kns3bkIACKEwyK3QmU+i00JO0mK6+RY1p24fGNJ5B7AUaqhZRxEPJB2S8XAOAnSJAQDdZ6ijM8+LBT2lDKMiOT5C8WgrX9r6uDBw8mOzv7oN5yfcNCVq36oTlOcY7aZ/yeOdQ3DxvAlceVhh+MWFEVHoe0Ukrka4tqUWpPQWrDhg28//77ZGZm7vc5S5cuxWq1kpMT3p4ydepUbrnlFvx+PwkJ4V+25s6dy/DhwzvtJ2W32w95lZWIHLhtreE7f9MznByVlsKIZBWluprXFz6NJiPjaMaOebTdtU1VzfzqjbXm2JEQR1qSilIiIiKx4P6t5Tywde/N9cLEKPZ7fOd2+PQRVjSdwqeNdxL8X8e/G1msFqzx4Z6VDqeL/53WzOaGlcxeHN5uaElykJCXj2/HDp5yl7Auo61BuwFH1doZZcQR52rmWIqhFhoYE75eBlUWN02WViqtDTRaPLgtrdRamyJymFA7gY8A/jc34lpmZiY/+MEPDuqte1rD/aLstlwyM4+jsGh2h3EVbg/Dfv4m/mB42+CXb+x9dfueefpe2xIpLZQSOXRdWpRqampi48aN5njLli0sXbqUjIwM8vPzOe+881i8eDGvvfYawWCQ8vJyADIyMrDZbMybN48FCxYwffp0nE4n8+bN4/rrr+c73/mOWXC66KKLuOOOO7jsssu46aabWLlyJQ8//DAPPvhgV74VETlI3lCI1lD4Q/zxUcWk6rS9LtXUvIFtWx+jvOIVAByJhREx1U3h3nlZKTYuP2Ywk4rTscfHRTVPke6j29Ei0rt90dAMgCveSnGineMzorS93tcCnzwEGCxuPocgHRekDCNIZs4Gvnjlk3CeObnsbgp/fTglwGZyfng9tc88Q8OLL1J++i8BOKHVSpE/AUfqRqYbo4E06ixNrI3bhdfazE5rIz5LkNB+uoK7Qg7shp3FrhWc0NyCbdTZYAmvJPN6vWzcuJGWlpaDfvuBQLjPZmraJEaOvKfTuIZWP4FQOEdbvJUJA9O+dHXPaXv6LJLeKnZ/drv0t8aFCxcyffp0c7xny9zs2bO5/fbbefXVVwGYMGFCu+e9//77HH/88djtdp5//nluv/12vF4vJSUlXH/99e223qWmpvL2229z9dVXM2nSJLKysrjtttuYM2dOV74VETlA9f4A31yy0eyPYAGcKoR0uR3bnzALUgCu1AkRMXuWmxemJ/F/e5abi3wNmnuLiHSdcm/4c/qJMSVMS49iv8eajWz1HsZO3wSajSwALvzFFJLT7Fgs4VVAFgtsWjiP1x5+w3yaKy+Pkz9tYeaiEFnN2wCwjx7F46kTeP30ObQmhItb04w4ilPraY5L4om49zAAw/KVAlTbMC4QICcuntSRIygtLSUxMZFRo0ax4Zk1pKypYz21PJ7zV+7dtpOsc/4G8eHvUVVV1W7xw4EIBlvYvv0Jtu/4CwAJ8ftuKL+naPbC/01lZL6LFPveX5XNz8Ovnr53UBlJ/6JJ1IHq0qLU8ccfv7fZWwf2dQ1g4sSJzJ8/f58xEG6A/vHHHx90fiLS9T6tb2LNl/pITXYlY9Vvsl3O5w8fS5yXezbZ2SeTnXWyee2TDdVc9ewiGr3h423UR0r6PgNN9kSkt3i7uoFP65vY3nYDL2rb9rxNMPdWgrtX81bdjeYKqQR7HOm5SVis7f8drdkVLjzlDh5K1tgRuIclcdrfQ2Q2AgSJLyig9u13eblkGgFreAXTIDxsz/iC7Z2kMHnyZJxOJ4MHD8b70kv4/vAY6d/+NvkXXNAuzmrpoLfWfn533J/du19g85a9u2mSOzkcJtC20r9tkRSl2SntClJhX6lK7dm+t+fhr5mrSNTE4I+q9teIyNeyta2P1IwsF7eXDqAomv0R+hG/vx6ArOyTyMk5td2199ZW4vYEzPGRg/ffrw9i8jNJYpTm2iIih8YbCnHFqq142yoerngrA6M1V1r3Bix8goZAIUHsxMcFGHfSYApHZkQUpAAaa8I3wHLHjeJG/x8wlvt5tjF8Lfe2Wym78y4W/m8RgSNHYzMMTrevwGnxms93WEIUhHYzxfIFeVThmDyLhDPOMK9XxcVRDVH7UHE3LgfAYomjtPRGBgy4KCKmvsXHD59f1u4xZ2Lkr8h7ekoZWiklB0lzqP1TUUpEDkmVz88/y2p5szq8T39UsoOSJB0o0NW273iSzZsfIhgMNwK1JUQe6NDoCW8HuOr4Ui4/ZjAZySoMioiIxIJKXwBvyCDBYmFOUTbTM5zRW1Hu3oVhWKhJPRGqIWOAi6nfHBIR5vd52bV6JTW7wuud6qzNhIJ+htbZsdJCyBZPdXIGs079BfWJ4W2HAyw+Uq1ekg07I7JLycjIYGr1LVhr1sKMe2DAJBgwMTrvsxM+bxUAI0feR37e2R3GrC5z426bRwGcOCKHhI5ORPzqX9lXGp2LyKFTUUpEDslvt1bwt/9n76zj7KjOP/zMdV93T7JxdyEQEtytQIu0hZYWSt3dW1oKban3By1SKBR3CBaIu+smq1n36zrz+2PuzmazG9lk7+5mc57PJ+w9M2dmziTLnXe+5z3ft7ZFa48RglRCOHz4cU2QslqLcbmm9+rjiWdJ5SRZTkqQEoueBAKBQCAYHJriPlJZZgM/HJ07OBeVZahaTdva5bzQ9DihRgcAKbmuPrt/+PjDbH/nTa3tjnbw17/ESPWqpuJGh4snP6iiI15kRUKh2KgKWBmmZK78wo3qgQ/Eq+IVLYTc6b0vNEhinCxH8fnK6OjcDIDJmHrMvp4jMs3HZzt55FNz+uwndUVPWvU9talJUkKbEghOGSFKCQSCU2K/LwDAkhQnM5NsXJ6RPLQDGoHIcphAQA365sx+EYdjPDqdKjrFZIU7H9vIrtpOOuMG506L8JISCAQCgWA40B6J8sOyWvbHfTcH1d5g7Z/gnR9R5vk4IUUVpPQGHZPO6VsUq961Q/s8es586t1VpHq798fa2tgdMIEFLowpZNk2YwTy0/M4/8Jl8O5PYePDEHKrB1j6Fr9OhoGQrfbu/TYNjS9pbbM5q1cfWVaoafdT2eLrvvbxRLOu5XsDMD6BQNATIUoJBIJToqva3tdLspmTZB/i0Yw8ZDlEp7vLC8GA0zkZ6QgT0MpWHyv2N2ttvU5iQs6pB4ECgUAgEAgGjlebOniusV1rz3YNYqx08D0A2qNqZtOcS/OYedkYDMbe1ZEVWaazqRGA8d/9ND/a+SvO3xhkCeCbN5GOpPE83OliT5JatW+2XqFeUrDpLNx572fVk7z6VLcg5cpT/5wux9CHTlQ4C6C9Qy2cZTKlk562FLt9bK8+33h2Oy9sre3HeHpmSqFlSgmZSiA4XYQoJRAI+sX9FfW82dxJbXz9vTA2H3hisRDr1l1AMFQHgNmc3UOQAujwq3//OUkWHv30XNIcJtIdYgmlQCAQCATDgar45N35qU4+kZPGsrTBmziqbXaxrf27VIbmApBemEok6KNs/Ra8ba0c2ryBgMcNioKiyMgxdQnba03vEJbDZLWrQkvm2Gl8t3UiZTlWAPQoyCZVwHIkO7svGI6nVd3+ChTMBcPQxSOxWIBQqAGA+fPewtiHFyfA5mpVMLSZ9Bh0OtzByHEFr95ZVD0zp4Q0JRCcOkKUEggEJ01EVvh9ZSNyvJ1nNpJpEl8jA43Pd0ATpPR6B0VFn9P2KYrCS9tqWXlA9fNKd5gZl+3s8zwCgUAgEAiGhsNxUeq8FCdXZiYP0kU3w56X2Fgzn9rQRAAMRh1Zo1y89df7KN+y8ZiHZhSVcGjrNv74UpSceIKX56W3aDh/FgCzJDc5xhoadarPlCMlLrLJcrcolTkBjNaTGmosGkGWZa0ty93eTvqYRFTWEQmHNENxORY7qfP6A1UAGAzJxxSkAM364JV7F1HfGeS2RzYc97yaKKVpU2I5n0AwUIi3SYFAcNI0hSPIgEGCp6aOZqLDOngVZM4ifL6DACQnz2PWzKd67NtZ28lXn+kuXZzpFNlRAoFAIBAMF15obOfBygZNlMofrIxyOQbP3IrirqM98ggAcy9MY9T80dhcJqp3q5YAKTm5FE2dyaiZczCYTKqBtwRJBfnobl6oCVIAgaiJYDzMm2VoJqzzk5+STWpBJnPnzoWyd6B5X/cB5t6TZIqicGjTerztbdSU7cJdlIW/YjfuW67t0W+0czqz0y/G4mvmtrcLeZJCuOOW7tszW2DU5GPevs93iM1bPk4k0gqAw17aZ7//bqjm9R31miiVZDXR0Bk65nl73Y+mSilH/FcgEJwOQpQSCAQnRFEU3m/z8EpTBwA5ZhPnporsnIEmGvXS1raaioqHALDbR/fqU9+pGqamO8xcPiWbm+cWnvL1hA+CQCAQCAQDy6O1LRz0qyKHXoKpzpPLHDptqtexr2kctbGb8cup6PUK0y6fhMliIOj1Eg2pY7r9t3/GYOoplL188GVeXv0gH48v20v/6ld44oW1vDHmfCJdFko6tcDNsgsvoGTiGGjaBw/f0H0Sg0X9E6f1cDXblr9BxbZNdDY2dPdLdkA42P/7O4GXVFv7ak2QAsjKvqrPfr96fS+ekJqVlWQ1kmw7uSIxR2dKiep7AsHAIUQpgUBwQlZ3eLllR7nWnuiwHKf3CKZ+O2z9DxyRYn5MdEaY9SnImnjSpy87+Cvq6p7R2i7ntF593PGZvUm5Ln569bFnDAWCgUAakDpIA8NxqyIJBALBMKElrMYI943N58I0F3mDkSnVtBf3pnd5r/NL2qaCSRmYLAbK1q+hZs9OAExWay9BCuD+TffTGerkLlV3Qjd2In+Znkcs/r2bJvmISOpOe3p82Z77sPrTkgSjl8LYS0CSUGSZUMDPR0/+u9dywaKMHIw7d5M8dRrZn7iFkukzNePw8qcPwD43QXs6/7momjdqakn7ehkYrZStX8MbD//1uH8F4ZBa/CUn52OUjvkeRmNvD69ITNYEqV9fN4W5JakY9bpe/fpEewYdZXguEByD4fcrMuwGpCFEKYFAcEL2xcsZZ5uMzEqy8cXC3qV1zwre/j5Urjz5/p46uOk/J93d5z0AgMMxHod9PFlZl2v7XttRx9MbaqjrUINCl/XkZvb6QrzcCwQCgUAwsARjMo3hCOUBNSNpYbJjcASpxj3w93Oo9y8CFgMw/5pRjJ2bTWdTA688+CutqzMto9fh4VgYd7CDNA8kqXZRbHzsdWLZi9EDFxqqSNa3IUkSubm5pKamxg/0qT8zJ8LHHgXUSn5Pfv/rNJaXaeefuuwSUvPymbTkAryPP0Hzu6tITs4gZ8E5Pcah03f9XemIGhSMehmTxQrGvoW0owmFmwCwWvL7FKSa3EHqOrsztG6cXYBed/LxUPeiva7UsS5PKZEiJRCcLkKUEggEJ6QuXmnviswkflGaP8SjGWQUBV66B2o3QVuFum3OZ8CeeexjGnbAvtcgEujXpUJhdZZv/Lifk5Q0s8e+B5YfoKLFp7WL02z9OrdAcDoMv5B7+I1IIBCcvYRkmUXr91IbUuMloySRZzn1yaP+EN3/Lnu8F7PB+3EAJsywMOuSYgD2rtyr9ZtxyZWMW7C41/FtwTa++4zM9Iru79VtIVXUKVB05OtbiEoy99zzBTIyjhC1ukQpk13b5Ovs6CFIpeTkcd7td6riEuDtx32d7Ld8Xd2zlFf8kXBYXbpntfa2NXhpay1feWab1naaDf0SpIDutJej1u11V98TzyVB3xyvquPQMNzGI0QpgUBwHP5b38rPDtbRHlUrnoyynoWm2u2VsP0Is3FzElzwUzA7jn3Mtv+qotRJUlf3P1rbVhIMqqnwFkterz5tPtUw9QeXT6Ag1cZ5Y3vPdgoEAoFAIBh8aoMRTZBy6HXckpOGXa8flGtv3mhmk+ezWjt7crH22d2qVuqdeO5Sln76c0cfCkCrp4GplfGXVIOBaksKqzLVc0wGYjoFFDCb4zFgsBN2vwSH3lfbJjvt9bVsefNVfB1tANiTU/jsX/6NTq9PeHZ2be1ThEL1AEiSiaSkWb36bKlW3dtNeh1mg44b5xT0+zrdnlI972f4vd4LBGceQpQSCATH5Jn6Nk2QMkkSS1J7p0OPeHxqQIcjG254BNLGHFuQqloLHdVQs15te+ph+zN9940TjQVo3/8DdChkAwZDEqZ9H9CVKB6IRKntCLI0fBBFBx8ztZMUNcKeU7+lsa1urm9qZ3bQDrrRMGYZ6AdnRlcgEAgEgpFGe0T1Kcq3GNm0YNLgXHT1H2HlAzTVqT5SNluMiUtGM25eNu7mJlY8/jBlG9YA4ExL7/MUmxs3s2XrG5yjQNgoUX339/lidXchm2ZjBenxLA+LJe4nuuoPsOrB7pNYkln3wjPs+eh9bVNydg56w+C8ZgbiE3pTJv+F5OQ5mExpvfq0+1XB8NuXjufOc0pO8UpHi1Lx5XsnaUklEAiOjRClBALBMakMqNk5/55czMJkB0nGs+gro3YLPHMr+OOVXFw5UHyE/0GgA5r2QkcVvPY1iPh6n6NxN7x413EvYwB6hq9e2N09m2kFxgC/79KM3uzvjfTmwvgfANYDV/8FZtx6+icWCAQCgeAspGsCL3WQhBiA0KbnaOgchTum+nyef3MJxXNHAbDzg+WaIAVQPHVmr+NX167m8+9+ntJahXOAgMvMh5VW0EEWCqn6Jkbp1RiosLAQozEeiLjr1J/ZU4hmTKUh8zJaVqvByfhF55FeWEzp3IUDc5PHWfYUDrfg9e4nElGzs1JTF2Ew9KwM/dauen726h5avGo8m3wafpy9PKKPHppImRIITpmz6A1TIBCcLO+0dLKh00dDWJ1Zmn+2CVIAB94Gd213uzAeYAXawdsM/74U/C29j7MkgSsPmvaANRVypx/3MqFwC17vXgwGF0muntX2ZAVWlak+U1aTnjS7mVEZ9r5O0y+qg2EO+UPMCFaRHGgCT8OJDxIIBAKBQNCDykCIr++rYXWH6paUbR6krGNF4e2K66kJTtU22bK6vS6bq1QPzInnLsU1exxljmZ+9dZduKvLQVGQFGjyN5KnQFGTqqZY9RbcmIEYiyUZh7Eal9HBPV+/F7PZ3L18LRJ3Q5/5SZZvcLP3f3/Wrjv1gksomDjlZG7gtG4/Fguydt1FRKOdABgMyb0EKYAXttRq5uZ6ncTkvKQ+z3cyKwylozKkulpyv0YuEAj64ix7yxQIBCfCF4txx65KIvHZqXSjgZSzTZACVXwC1dR80VdUI8/K1fDoZT37pZSA3gRLvq0KV85s2P40vPR5yJsJtz7f5+l9voNs234noVALipJEVuYVJE3+Y48+Hb4wt//8HQAO/uRSDCdbtvgEvFrdxM8P1fFCzR9ZWP4CYnpPIBAIBIL+83JjhyZIAZyb2lsYGXB2PU909d+pCX4bAEeKmbyxKaQXOKnetYPdK97h0CbVRkA3LZ/P7/sO0h6F3z0So6CPubQu5FYf6yQ148uMOlmVlJ3SvWyviy5RymijpWo7AM70DDKLR5E7dvwA3uixCYXq44KUDputhNzcj/XZryOgTq7+4PIJXDMjj3TH6XijxpfraWX4RPU9gWCgOAvfNAUCwfFoDEWJKApmncQnc9O5KP0s85Fa/0+oWgW1W9V2SgnsfQXe/l7PftZUWPp9VbQ6FsdJOz/S2BwgJbU71V2WFV7aVsuBRjXQtZv0AyZI9RieVtZ4wE8tEAgEAsGIpymeUX5NZjKfzktndtLpZzMfl1iU1ud+S52/GNBhkCLc/qvzkSQJRVF48y8P4G1Tl9w5UtPYbFAr4Y2uRxOkFLsVJB1IIOn06HV63P4wf5l8Ne54WGDLVoi0g8lk6j2GrsrCRisBnxqnXPW175E9uvTE4z9l0/Oex0UiaoaUxZLDgvnLe/Vec7CF9RVtWtXi8dmu0xSkjj10pdcHgUDQX4QoJRAINDoiUba61Qd4jtnIz0p7V4Eb0QQ64M1v0SOy2PIYtBzobhvtcO3fYeJVp3QJOSYT9EXxdniIBp1kZl5KcdEXMZvT8btVz4N15S384Gl19tEG5FpM2r4BwRvFHpQJh634Y0kQ0KP3RzDbhNm5QCAQCAQnS0vc4Hymy8a85ONU5R0g/BW7+V/Dz5BRn9eONJu2rKyjoU4TpOZf/3Gck0q4b9uv+eZzMab6U4FWbAvmU/Tvf/c67+Kv/5caozoJWaRrI9xWjyQdJUrFKwu3Vx/gmQPz8P3iX1q4ZHEMXIbY8WUrhdS0gxw89FsAjIbkXj2iMZnPPL4Jfzimbct0DUD16GNW3+ua4IuqdgjO7NO/lkBwliFEKYFAAMD6Di/XbTtILB5gFFsG4AF+phFoBxTQm2HJd+C9n3YLUuYk+NJWsPeu6tKLeMASjhlp2NNKe72fxko3ckzm0JbmeKfJwIMcBNawr9cpvoC1u+GGf39r1encWS++BuzhevZwPbwEvLySpbdNYMLCnAG9jkAgEAgEI42tbj8vNbazoVOdyMs195FRNJAoCux9hY51G5FZikEXIas0g0mL1cnDiq2bOLhxHQA5Y8axblQDj266j4s3ycwpUwBVrLJO7u331OBtoN6gClJ3GA8i69vRG/TYbXamTu32rOLNb0Ook+r2bHyx7vtNyck9ZnW/07rlPuSp5OR6Ro/+gI4OtW2z9a6k1xmIaILUrfMLGZPhoDTz9AVDqWv5Xrwdlrr+DuJbFAUOvQ/TP3Ha1xIIzjaEKCUQCADY0OkjpoAOcBn0fDp/4AOMYU9QTQdHkWH939XPqaPhgp9AztRjClKRcIxoOMa+NQ2Eg1HKVqcS9TyMryEN1m0/xsW6rDGl3jnhSpdHgXTqme7HQyF+dkVtoAMFGio6hSgl6EFCfv9OmWE1GIFAcBbz7f017PAGtPZEh/U4vQeAPS/Ds5/EFzgHWEpGqp9rvqpW1GssP8gL9/1E65o5agwv1X8AwOgWPSBjGltK1je/hW3e3F6nXl6xiqikjt9IkBCw9NqlLJq0qLuTohANuCnzZFBuXQg0M2Hx+Zx36x1YnS50ev3p3+NJfMW7XM3a5/z8T1JU1LvCcWfcR8phNvCLa07GdL2b47guHDG+Lm8p1VZBMap/dwqSGj8KBHGGW9QiDbsRdSNEKYFAAHSnoH+uIIMfjznLlu3FovD8HVAX95GSI+BtVD9PuUFbqqfICs01HqLhGNW723C3BDh8oINAr6V1BqBbwErNtWM06ymekk5D87/RJ7+DydlIWtr5TJ70BwwGdQbv7d0NvLmznn0NHvY1eLh9QRE/u3rygN/uX+NG5/+r/SvnHnyGTekPsX5XwYBfRyAQCASCkUhlMATAJ3PTmJ/sYJQtsdnlDdv38U7zX3HH1Imj5JIibV/17h3a50lLLmDG5VfR+cqjLNsrs8RTCFSSetttGOYvYHu9m5jsRQFi/gCND/2JSncYCpfhABRzGKIwJn1MzwFEg+zqzOa9hjGAKgwlZ+VgT05J6H33QAGTWTVZLyn5MqNKvtRj98qyZn788m7cQTWeTbIOrCVB1zJJzdi864duAAQ5geAsR4hSAsFZzn5fkBcb2/lHjRpkpJvOQl+hxp3qLOSRTLwazv0mZE6i5bCXmj1t7F1TR3uD/7inyhuXQoqhloyaf5FRko7j1j9jdXanua9a/S6hUCOzZ79Akmtaj2O//+JOWrzdAlducoJnXrUZk54BlkBwNMedPR4CFEUZZllcAoHgbMEbjeGOqhkxPxydi8OQQFGivQrKV3Bov6wJUgBFM/PxdbSz/Z03qNy2BYDZV17Ph6Nr+Ou6u/n8M27G1wJUAmDMyeXu/2zmg/3NPc+fvBiS1Y8l6LUlc0bjUbFgJEBnWBXeUnLzyBs3iSnLLhrgm+3iyC939eETipUx9rIyHNnqckmLuXdW9wtbaimPG5sDTMw9+UI9J/c46ekp1R1BDbMHpGDYMdx+Q4bj76wQpQSCs5zvHTjco5zxLJdtCEczRATdvbcVL6a6NZeqDw+y44PDvXanZNuwOk2MmpFBao6d7NFJ6PQSer0Otu+HF98DxzKIC1Juzy5amt8jFFLLLJtNGT3OJ8sKrT5VkPrqBWPJcpm5clruAN9oT/ryaxAIBAKBQNA3B3xB1sVjJqdel1hBCuB/t0P9NgKdalbQ9OkBpt64DGeqhdf+8Bv2r12pdQ064dkDz2KMKoytVbfZ5s3DMn4cupmz+eC1dwFIQ8IWX8ijA2QUglKAQn0jkaiaZdSr6l7ET0hWXxsnnnM+86+/+bRuS+nnTIc7+pwmSMmyjtTURb36dPjVGOpLy0q5aGIW47IHznwd6LWeXdLm84bfC75AcKYhRCmB4CynKp6Cfn1WCrOT7MxLdDnj4UYsAnXbutvTPk5D8tW0+Cby4b96+kGNm5eN1WVi3pUlGEwnE4iqgUosFmLbtk8TibQBYDJlYj5ilk+WFdr9YS0b5XPnjcJiTHw6uCIdlSklEAgEAoGgTxpDEZZu3Ec0/sjMtSTY3BxwN7ZTFzif/cHzAUidMBFnqgWA+oP7AcifOJmiKTNoKNVz/e9lztuloAN0DgeFj/6bh947yPL/2wCATYEXcaCTJDqiCgoKh4yH2WYu067pcDiwWrsztT/49T0cLq+m06t6jZodp2Ma3v/JMEVRCMtVAFSUz8DjGc2FF3RP2q0sa+ajA83srfcAMCnXxeS8pNMYY99oIVNXptRwSyEWCM5ghCglEJzFyIpCU0idFfvOqBwKBiHAGlYEOuBvC8Fdq22qTL+L15/sAA5p22ZcWMjYedmk559aIObzHdAEqdycG8nKulLzJmhyB7n8T6to9qjioNmgGxRBqidHVI4RCAQCgUDQi8pAiKgCFp3EFIeNOxNcEEYJ+Xi18Zt0xLp9PtOK09i/dhX7136Eu7kJgHM/fzdPVD/D2uX/41cru422Hecu5lBNC79/94C2baqkI0QEWYlQU/Y49lYPB2bmgDkXc7aFWy77BOnp6ejjxuX+xkq2bKuOH60u6UvLS4wHZV9yVYd7K+5AGQoBFBlqaydgMnVn9CuKwhee3KL5SAFkuyyJGV+XsXlXWwudhLm5QHC6CFFKIDgLkRWFr+2rYZvHT1hRMOskcs5GL6kVv9EEqd3+CymPnkfH20EAHKlmUrPtzL6smJwxycc8hSzHaDhYRjjg58C6VUQjEWivhNqx4I5C5wMEAjV0duZiNKYSSkungrXAWgDqOgJML2/TzpebbOGNP+9J1B1TMmM2FExQx44aYAkxSiAQCASC49MeiQFqpb1XZ5Um9mIvfh7P5nfpiP0TgPxxKWSPTsLmivLkd+9HjqljSc3N58mq//HE3ic4p7ZbHMn93e9wnLuY//5XXd6XGoNFpnpchjqelOL9ZoztcckxBaMpLCzssS3YrnpQGXUxrrx+CbbShWROmpqQWz6aiEli545P01WtONhpRlF6TtoFI7ImSN2xqIRRGXam5g98lhTQh2qmxP/b9VMS8ZRAcIoIUUogOAvZ7wvydEO3EDLbZcegO4v8hSJB2PoE7HoWWdER1GWwwn2Pus+vilIX3TmZnNHHDmwURcHb1sr6F//H9nfe6KNHFrgVqP0g3k4CYjTxQa+e449s+GBvba8uA0bZ+jUYf/k3tXGUP4IIpQQCgUAg6E1dMMxGt+pplJxgHynF08S2NX4aw58CwGXzcvVXlwJwcNN6TZA699Y7GDVzDr9e8yO++VyMUa0GQMZ11VVIF1zEP9ZV8UilDOgYLetIM/b2x+zCbDYzf+r8XttDXtVz06qPUXLDtwf0Po9GOSoMDVn0gIxe78DEWA5u7IAjkqBkWaHFq2aZ63USP7xigpaFfspjOE4kJGlG5z1+CB1KIBgAhCglEJyFVAdVM8hSm5lfluYz42wzN1//N3j3J4RlC8+0/lmraGO06Dn35rE4UizHFaQAVj/zBOtf/F+PbRmFxaQVFJFl8cLOZ2nNy6bN4tH2Z2ZcSlLSDACiMYWqNj/76t1srelgcq6La2bkkSjCgQBrn3uKaDhE1yJN5ejqewKBQCAQCHrwVH0rX9tXo7VH2cwJvV7Nuu2s8XxKaycXFxIOBnj9j7+lqbIcgEnnLWP2FdfSGmyl5KNDzClTgAgAlnHj+MXTm/jfvjaIZ0TPN0p4UJecRS6IaorK5PTJ3Dy+t2l5W91hXvv9fXhb1Uwps2Gw4wSFqFEdpMMxFlfky7gP/x7GqHtr2vxc/ZfVtMULxCRZjactSJ2Q+Pm7Yqeu5XsyYvmeQHC6CFFKIDiLUBSFvb4gq9vVyjHj7VbOTR3g6iRnAlVrAKiJzNIEKZ1BYvalxYyf37vMcBeyHOPl+39B7f49hHzdZYdTcnK58cf34UhJVTdsfwbqatk/0YHB0UZW1pXk591KUtIMJEmdYf31G3v5x/5yIAWSipg6tYjZV0xOzP0Cvo521j73FNC76o0kRCmBQCAQCPrkreZO7XOBxcTN2amJuVAkAGXv0Lj1EDANgLlXllA6O4uq7Vsp37KxexyTpvLTtT/l+bLn+U65mjkVu/oCiq+4Cfu8uWz83htgMJKpyJQYGvHr6wGwmq38ePGJM54Obd5Ac3Wl1s50RAbuPk+AkraX3+QFqNGpPp4mU3qX3qaxqapNE6QAloztWdE4EXRpXr3Fr64YSpfwMQgEIxUhSgkEZxHPN7Zz795qrV1oPcuMzXc+B+v+RntNC++0/Q6PnAlAaWmIC796CdIxljB2NNTz6u/vo7m6AkXunhFLMpq5OHcUekmH+77f4I5vV9oqkWuTCR/0kqzTY3bV4Lc/i59ntWNLD7Xy9c4gDrMem8nAFF8SdWsS5+sVjHWbgI7/7a+YM2EGStpR9yu0KYFAIBAIelAVzy5/ZtpozkvkRN6qP+B//280dH4JgDnTmplzubpsb/9adV1/0dQZLLrpVjJLRiN/9Rv8YWOU3Hb18Pybb6cpfwIrNtTSpFMnwC6U6jEa64jFL1E4quikhtI18TZu6njmep4iPX+Azc2Ps+ZNydqBWdN3dOTmfIy2gz37dPpVlerCiVk8eOM0nJbTjJ9OKslK7dQZi1CT6sTV1sQYyY4lZiQa2gXAzh3t6DzvUTJjNjZXgrytBIIRiBClBIKziJ3eAAApBj2FVhM3ZKUM8YgGmZUPQtNu9vs+QXN0tLY5t8TepyBVtnEtW994hZo9O3tsz233MKaxHWs4infTsUzJbRjKFQzoibKHTnr2mxT/o7EHOkkcYb0OJpcAkP3ecu7duRPl7inqTmGIIDgGw8tpbniNRiAQjGwO+oOsaPNQFxelMkyJfW3avV1hRfOjWts5fiadTQ3seO9tKrdtASB37ARyxoyjubOOj70bxBCfJzMVFeGaMoOrfvsh1e4g6FRVJ9Ug4wFGp+Zx6SeuJTX15LK8QnVqzJLcvJrMZB8YE1PRri8UawsAOYf8jLtlO3pbJm2HVmv7Y7LC7jp1GjDdYTp9Qeok0RvV6zRHgzQXZJJZV05mnVqBMcpyAJa/CbCRcQvP5Yovf2tQxiUYviR8SWl/GW7jOQIhSgkEZxEtYTVb5otFWdxTmDnEoxl82lrhkPdGNvs+BsD44kamL7CSuviqHv08bS10NjXywaP/xNPSrG0fW99KuidAUiBEVSZ02iR2jOqdrn2JK4xJUl+hTeYs8vNuQadTPSg2VrZxsNlLbXuAcFTm43MLKUm3J+6m4wTDIVjxOqAmRJkjYSIIo3OBQCAQCPrijp2VHIgXPwHITHCV4urGNAB0OoXUPCej5pfw8v0/omb3Dq1Pcn4e33nry3h3bucLcUGq6Mn/YB4zhu07m1VBCpipQLbeTUyvplFNnDCZ9PT0E46hdv9e3vnnn3A3qFn15lh8uixj/HGO6gfHeSkOGQ/gH/0BOOsAsPii6PW9PU/94RjPblZN213WwascPfn8C+lsaqR94waU1lYqc/Nos9ahVwzkd44DID21nabGDvydHYM2LoFgJCBEKYHgLODDNg8vNrbzfKManCR6tm/YseNZqF7DW4130R5Vyx3riDL31sU48/N7dPW2tfLvr95NJKhmlen1eiZXNZDi8WOLi3rPfnEKS66+FzuQe9SldjZtJNLxVyLAebUTMdz2qrYvEpO55wdvIicDyeq2L3/mfNLSEm80H/B6NFEKVB8pReoS1IQcJTg+x6tIJBAIBCMNRVGoDKiV3S5Od7E4xUl6omKnjY/Anpfo8FwPwOXX6ylcNheA5rix+ahZc8mfMBm3K8T1dy/HEdfK3GkWbLNm8czGav721n4A0qMKl5rLqTW24Y9fImvCyS2/27f6Q1oPd9s8ZMy9CpZ+DLKnDcCNHp+25PuJpqveV7IC5uCxDMQV8pKt5CRZuGZ64grEHE1Kdi5XfPlbHLjnC8Q27WbDvKV8WLIda8TJJzddC8CceWt4/ZV1IgNd0BPx63BCzrI3U4Hg7ENRFL60t4rGuKAiAXOTEp+ZM2xoq4AXPkNYttIevRKAsZYPGW1ZgzPjRa1bw6EyXvvjb+hsbNC22YNhCtrc5LWqaeJ/u9ZKR4aFGfMX8PyB55GVngFTONJOZ6CWlWETsgIvyU3w3he1/aFoDHOempY+MdeFzaTn/m1vJezWj0QXilHY1ZBAH/XwSGQrH6anclF08AxMBYKBQUR4AoEgcXhjMuG4sPC3icXY9AkysVYUal95kir/JNrik2bJE6aw64N3qNi2maBPLUxzyT1fxepw8sb/fY+SuCCluBwU3fIpth5q5dvPd9sMzJJjBPXqksNJo8dTOmU8eXknJ96E/aqX1Iz8MDPN20me90XImzVQd3tMZDlKVN8IgFSzgCdtm7kvcuzv+V9cO5nzxw1Vxv/RWeZyr31iIkcwvBl+v59ClBIIRjgN4YgmSH2rJJtpThtF1sSWMx5WtB4CIGBR/ZQM+hgXJv9B3WfszlDat/pDTZDSITGnrpW05nbaHLCxVOLd6RJbx0SACFt3/esEF1W/Wvfih8Mreu6Je6Qe8JzOTfUfY0TilrgspQCSEmGP3MIep4PirspCYmZPIBAIBGcx7miMG7cdYptHzTFyGXSJE6SAcGcHr7V8nahiBcDm0GFJc/LO//0ZOabak1ucLjxSgH+/9Gvsaz6kBKg+ZzQXP/waAP954B0AkmWJK3V6LjMZWIMa982ePZuSCWP6vniwE7Y8DiGvtilUsxeAdF0LyaYgmBNfoVmWQ3i9B0CSQdaj2/sxNk/Y3qPPxsq2Hu3kBC3bO6kwKL4Esa+FiNo2EU4JBP1CiFICwQimNhjmw3ZV/cgxG/lacfYQj2jwkduqeKv9OzTJqq24RWlVdxjtoNPx7iN/Y8c7b6LEs54m5BeS/9aHGGNq+5V5Ot6Y2zMgzYzkoVP0jApNIjWWBYDeWo0l+00U2UxdJEa7X+Zj5MKCL+AORvjVG3u143OSrHx5WWmib70HcjBM9TtPxlsSSFZKJBsVSgcxIUYJBAKBQMDaDq8mSAFck5nAgjCth2j/aDlRRfUjmra0gDFzMvG0NCLHYhjMZs695dPkjZvI23/9Nuc/sk471JiTQ7MnxH/WVfF2vRsMFsYFPZhS9vO21J25YztetcAN/wfv/xyAvZ0Z7HNnUB9wAUZM0Xg9YXvGgN/2kYRCzaxbfzHRqDo5ZvJnI3NkzKXGJ2/vaiBemgUJKEhNvO3BMelSnvoKneL7FBFXCQT9QohSAsEIpSEUYf66vUTiD8azzkeq+QC89R3aDnupCH1H25xhroKcaTD5egJeD9vfeUObGjNFY+S+/RHGmMymMRKvzZWozE5mWt0sLDEzY9umM4EUnHLvYEgu8KOMiSE3juYftclYnGu43uqCsdezu66TSIcTu0nPpxeVcMnkbCbnDW6p4HDAz594snuDZCRD56Ai1oEiieBJIBAIBIKaeKW981Od/Lw0j1GJyiwP++CfSwh0lgI/IMNWzzk3LqW5upJDmzYBkJKTx4yLr1D77z4AgN+mh+wMZn7iS3ztya28X9kKBrUyXrrZR0ySkQC9wUBOTk5vc3NFgdot4G2EylXqtoJ5rKiw4g/GtG5J0y6CiTMgPbETaG73Nk2QQtGRVLeI9j76BSLdY7OZDKQ7BvbfRepPddd4ptSFa1czaXeMj6YcGUMdT7ESCATH4ix7SxUIzh72+4JEFAWzTqLQYuKz+Ymd7Rp27HgaDr2HPzQdgGS7lwstPyFtdD7R297jtT/cR9U/PgWKgtFqZWzNIfLrAugVqEuFLVNv5dxANp/bU0Kp2aDGIKbel4mYW2kvfov2IjV9PiWcxqRQHoeca+gKStwBNY0+K8nCNy4el/h774sjKt4oEqAoWhCmhU4ihhIIBALBWUpHJMoBn2rYNM5uYYzNkrBrKU172ds+hx0BtfqvNSuHmt07+N/Pvqf1Sc7KZmPZCnaseI7569Xla7av3M2E278AwLZHXwcJRsV0zNNHGW+KUQGUGHO4/fuf6/vCVWvg0ct6jmXmpwi88zQA5916B2kFRWRPm5nY8vHxeCMUagIgI/1CLDu/jK2yhXY6enUPhLtFqaGuai8lJwNQWl1FKZDmidFUEt+nZUoNydAEgjMWIUoJBCOUlrBqXj03yc6z04/hJzCS8asBnD/nQmgHZ7KezNghsJRSvmsbhzat17rWmxo4r0EVpH5/XSYT5Zu5ITCRIrMOjo5JFRnJ6MW+YDySXkeN/jXa9e9ouy3uEsyKanEZisp8/9ntlDerfg0uy+CVLj6ao2cBdUdGTCJ6EggEAsFZzOO1LXzrwGGtXWDpYxZqAClbW80H7nu1dsqoAsq3rtTaWaPGMPmCi9l1z6dYWBPVtudMX8CLWw/zypbDtMUf67f5KqjKbKKi61zFxzEAb9yt/rSmQtpocGQRKVqCojwFwLSLLsNoTpwY16XaRMx+Dh16gMqqvwJgthxdy1jl1e117GlTCESPVYlv8DHefQ+/0zsYX3OIS1Z/hDHaRycRVwkE/UKIUgLBCGOXx8/PD9VrXlIZpqETQoaSoCfAds/N1MrTAXBafOCDAFYOblgLgG1UDpPe3UC6J4wEhIw6bvb9mLFWIxyRGR4ue5to835iTbu0bclXPoZ93lyqdnqgGdLTLyC8Jh9X3UKwrwagyR3iuSOC3PwUa8Lv+5joeopSkqIcMd2oHPFfgUAgEAjOLj5o664+kmEysOR4XkynQ6ADVv6OxrU+QK0IPO2CAmZfWsy7//cCAEtu/wyzLr+GivZyiupUxcNTmIZt+nT8BeP56m8+0E7nkiUirg4AjHoD+YUFzL1gYa/Lxup38/Z9X6fdHUaOzUC2piE3ZqLIMrFVPwBApzdgMA1OIZzW4r20V73SfR/OKXjpbSD+nRd24sPK6GEUoOhSUnj5vIto37WVS1Z/hEHSd+9Uun4MowELBGcAQpQSCEYYj9a2aoIUwLJEBVbDlaq1sOdldm2Jssl3C6jVjUlpeoVdkSzefrkFWA5AeedOlnhU/4hwUjHmgvmMsqhfixHFh8UFxoxObBPHAeOAq2h95BGijY2EvR68FYfwdlYBoASnU1Vro15XA+EYma3TWBVxsoAycpMtFKXaKbTFWL06wLRp03A4HIP613JkppSifT5q+Z5AIBAIBGchtXEvqcenlHBRegI9H1f/Adb8ibD8RQAWLAqRP1vPR0/+ndp9ahaTLSmZmByjoWIXyTGI6WDOGyuQDAZefPuQdqovRk2ca1A4aEgH6ihOz+WWT36y7/t7/z/sbTCgvfqFQtBR06NPZnEJ0iCtjQtb1QzytLTzSUmZR1bW5Xgp77NvktXIssJMWDMoQztpFEk1ZC90FlIV39Y91yciK4GgPwhRSiAYYVQGQgB8Lj+DC9NdLEoeXPFjyHn5HmgrxxO7G4C8jE4KAy8x0foOL7eN1br5zWHy2tSgqDGrlFHzv4HuiGAs/+vnYsxUDc09bjfLP1hPS2MTlWNnII+OYtv1BMmNLRiMUSRpDPvXNhKSnKAHcEJwPh8CSaYYPr+PPX4few43AWVsqfEwZ+6cAb91p8XAxBxX30Gl1DtTqttTSumPxafgLGKovTt6MqwGIxAIRgCyotASjnI4pIpS+QletqfU76Q9mo9HXwSAuWgKq595hPItG7U+EUOU1YumkdGu+ii1ZNvoDMt848lNvL+vEYDicAyTYzuv67zacfkFRb2uJ8sxytavoWJ3NQCZKUbOuelWdGmj0On1SDodOr0enU5PWmHv4xNF1KR6d+Xn3UJ6+vnqxmN8xRel2fjYLAcvDYIo1S8pqU8BqstUamDGIzizGX5Ry/AbURdClBIIRgi+aIzd3gCH4qLU5RlJzD3bBKlYBNorAfAnzYAAjBntY1LFS/hKr6etJQbeVvyjItzwYvcMYb69AJ0kEUMh+66p6JPMGNKs/Ou55Xx0oJFVnS6ikgFIhrQL1IPq439Ogbe2xWDbuhN3PAUevHEa183M77W9h7gggVpw7yhRSgRRAoFAIDiLuG7rQdZ1+rR2njmxlgerD0xne8sXtLbJZqSzSRWapl14KfkTJrP3wLuMbz/C2PuGy3hsVQXv7m3Utp2jxGiNC1I6nQ6r1cq42ZN6Xa/yvz/htVe2au2M7ExKzr9+wO/rZGlz7qTpR2GiLlUEtFh7xytHo/pxxhhuQUrXdJ7UlyalDB8PLIHgTECIUgLBCOHabQfZ4Qlo7cJElTEezrjrUGSFTgqoc2cDMRwmLy/UTKJyX5PWzVFRB0DY6sBqz0NfsABselzzcmg0uHnkvyuo8sCKzjQgtcfEQpIUQFJkrHZ1iaQkZWIwmDEaTYSbA+iATslPyNBJSkRPky6D3GQrIXc7oVAYxWDAYrEM+PK9Jk8ITzBKdZv/GD2OXL4HkiIP4/kSwbBjeL0LCAQCwWnjjcY0QUoHXJjuwmXQH/+gU2Xzo3DwXQ62XqVtyih0kj8uBU9rMwAzL7ua1Nx8tq18DIDGyTnMe/hZJiSn8eefvQVAaUTHF40WSsx6ngeMkp7v/+iHx7xs564PgGSchiAF9k7mXHZXYu7vJKlPW0E0/vZpNmdjt43qo5d0xCeFURl2wD0Yw+sXijbM7gekWL0n6Avx63BihCglEIwAQrKsCVJFFhOLU5xkmUbw/97126HiI1Dk7j+eRmjYyZsd36YiNA+IgQSp1iaqfCmAmhHU6Qhy9UbVONQx8WNECmZQ46lhf85u6ta9g3eNkedCU3ssaJtpbiXDCj+6bRnN3/siUcMuOi+KYTA4Oe/cbVq/PT9agysc43H7ZnZnPM7DhrFY73wNgNcfup/t+/YTzsxnxvQZXH31kgH9K/nBSzv5z7rqY+6XjjY6P+K/3Ubn4rEpOFMQv6sCgeD0qI77SKUY9OxdPCVxF4qG4LWvocgxAvLtANz+i3m01ZVRtuF9wgE1frOnpLKzeSd15TuZBkgFuex16/j98+vZ4YuApGNRqIUKewP7UCssWx32Pi8px2I0lh+kuVP9riyZNoMLP/81cOUk7j5PQDTqI2pQRcD8rYsZ9aXfI0nHFwH/estM5owr5vDW9cftd7qcylJ1peugHllRPeMqgWBYMgxV0xH81ioQnD3UBuPBiU7HuvkTBs2ockiQZfjP9eBr7nN3fVidBTSadUwY78d3eBsKEiazHntnGZdv7/4irki2sMqyGizgO2xic6QEt2JGQcImB8gON7EkM8aPvqcakkajHg58bDeyTU2rt9vG9Lh2VO6Zrq0fRv8MUq9Mqe7qe8Pv0SQQCAQCQWJQFIX32jx8FK+4V2BNrI8UgQ5kWaE9WoQcf/XqaK7iuV/+QOticbp4478/J++hl7hIdWHAkV/Mn1/cxMr6MEg6jAo4nE2067qXG2bnZPd5yfcf/C7bN+0B1Ek5S2bxkApSAOGwGrdJIXC05GA0ppzwmHNLM8CkH6ZWOH34R2nL90RkJRD0ByFKCQRnMIqi8N/6NjbE088LraaRLUhFw3B4oypI6c0w+XqQdKq4ojchp08g+KgLgGszvstzK51siKnBZrM9xPS98SDBlo4hdwYVLlXMMxgM7AnlUS6naZe6MMnNzz57Pa70DG1bR8cmZJuaZWUhl4LCO7V91a1+PMEoqUek/ht0usT8PZwKR/5eSBISPY3OBQKBQCA4G1jd4eXWHd2V3ooTbHeg+Dv4X+vvaI2WAGC2G/C2qP5QVqeL7NGljD9nCYcf+glO1f8bWScx+tyr2PK/RtDruDlq4jxDjHKjhBeYlTSO6TecQ05OH0JTWznNu9cCSTgMIeyGCOMXL0voPR6PULiF7dvvwONRqwvqW6UeE2VdlDd76e2KNXzpa/me9lmEVQJBvxCilEBwBrO6w8vX9ncbdo8ayT5S3ib45xJw16rtnGlw7d96dAl5wsAqAJpaWvHHVJEpplOoTm4nNV6kxn/e3bzhOkgUD2sjRfhNuRyOqGLTzI6tZIRbuGH2ApIys3qeP9QAgHmnxLQZv8SRea62r6a9t5eTbhjpg73Eyh4xlAiiBAKBQHB2UBlQl+1lmgzMSbJzb2FmYi4ky3DofQLbl9MavQQAg0nHzIuLCPl3AZA/YTJXff17AHR892sANH/94yy68cvUdkCHXs0umm1oZ71lj3bqsQumUFBQ0Pd13fUEY6ph+6XnFVO44GIYPT4Rd3hStLet1gQpAMsOKV6puCd7691M4sRG88MlC0np9aE71hKTfQJB/xCilEBwBrPPp06pjbKaWZrm5Pbc9CEeUQI58LYmSIWNWbTmfQalrB05pqDIIMsKNfvaAHAkG3B7VIEubepYxr7wJld2FZ9x5XDY4SYmyfgVIwdimeBWBankSAd3TnPhcOYy66JLtEtHIu00Nr1JefmDAOg7eqtNnYEISSd5K8MhoNIpMsM0H14gEAgEgoTRHp+EWpLq5KEJRYm7UNly+O9N+CLFwCVYjT5u/93F7HjvLQ5u2QiA2W4nEotQ7anG5lbX7VlnzODuf65kVasC6EiTIWJqB0Bv0JOXm0fJzLG9LqcoCq888CsO795KMGwFwHLRd6G4LzPxwSMS6QAgNXUxGdvG4X7lMbi2Zx9FUQhF5R5vpkMfKfWNNsmneUr1Njofjp49AsFwRohSAsEZiKIoVATCbHOr2TmXZSTxg9G5QzyqBKEo0HIAqtYAEJ55L0+tvhTfy2Fga6/ucqyVWMu77A2py+5CQQ8pvriPksmBZdxVxFKBThg1cQZsVbDG/FzatJxsfFz+wFO9zlle/kcO1z6htY3V3WLOhwea+crTW/EEozyGbUBv/VQ4XhwkSToURUYBdEq3z5TcZXQuYiiBQCAQjFA2d/r4S3UTb7R0ApBiTPBrUOtBAHzmUgAc6S52vPc2Hzz6T62LLSmZl289j0lb2+nKdW9pMLC8tXviaLouhltSJyHPX7SEc85f3OflvPtWcnDj2nhLwmKE5Ky+PacGky5RymotwBJJx3Okx6Wi8NiaSipb/ZiHQQzSn0lDpQ9R6ghTqYEblEBwFiBEKYHgDOSPVY3cV9GgtUtG8rK9D34JH90PQHs0j+r2Wfg64xVzTI1IcgiJGDpi6KQYrf6NtIeaIC4Q1bbsA6A+PxXmfYlaqY2msJfl4bHUbVWDBmfUQ16wnomLz+9zCIGgWtUuKWkmyoc12DZ0wCfVfct3N9Duj/ToP2zzjyR65puPZP8xgUAgEAiO4E/VjbzV4tba85L6rlw3UES97Wzz3kC99SIA7OnJ1B3oriI3+8rrGD9zDuk/vU/bdmhOHvWH9YCMXYbLzLux6fzUxx/XzlTXMa8XfOc+QIdFH+Hmou04Z16DyTp0k2UtLR9QXvEHPB51qaLJ2Dubf1tNBz95VV2W+Dn6imWHr7jTNTLpyEypPrzPBQLBiRGilEBwBrIlniHl1OsotJpYlnbsIOWMp3odAE3SdJ5t+TG0qJsLbXu40vUDQIHLHwSrGuz8668hCIE+04j1cC3Tt6nVdWRbKmuMe1GAw14XdXL3YruJsTq+9MTzGE19i3vhsLossLjobjyr/kIw0qnt6wyogtSXlpWStLIFwmplvsEOSPoyDe3VR5JQUM05JVkBYXQuEAgEgrOE5rC6bO/OvHSWprkSFzvJMtRtYeeqNtZ7b4G4n6Urw0r9vg4ALvvSN5mw6DwqV70FQMAEk95ZQfm2Gh5bcRgwMlGJYdf7kRSJnOxsHC4npaWlvS7XXl/L6w/dj7dGfZbb7TbSLvk6TP94Yu7vJKk5/JgmSAGkp59PmPU9+jS61Qyw3CQL4wwOaA0P6hhPB0VSi9lIfYVQIlNKIOgXQpQSCM5A2iOq8PGHCYVcnpE8tINJFL4WqFoNlSsBODzuZ1Afw2wI4qSWqebnAQWSCmHWp0CnumZ6ff8FIDXoY85ej3Y6F8UoQEwyQPoYqIexNDPr8PuUZtr7FKQam96krW0lHs9OAIzGVG1fszvIW5sPc7BJjTYLU219GJsPt6Cke4CSwhGZUsNtnILhwsmInQKBQHAm0BU7XZGZzIJkR+IutO4vsPwHNLu/AoDZLFM6104stI62WrU4jdXpwl1XRe2WVaQCzZlmnvjPB/yi2Qlxs+88g+ox5cDCZz931zGrKx9893kayw/S5R6eOW4KnPfNxN3fSRIMqj6gpWO+T2rqOTgcY2npEqUUhWZPiKpWdZJ1fI6LKWYntDb3fbIEZ3afytm16ns9MqXik31ClBIgFiT0ByFKCQRnEI/XtvBBm4eNbh8AqYn2QxgqFAWeuBYadhCSbVSFZ7N1gwzAjJT3mKV/GC7+NRQ9CGljQKdnw8vPUb5lA5FgAADLYTWwaR8zGXPGLA44YpTHnKyMjEIJqE+JrNYDpEfaSM3pbRgqy2F27/4aiqLO2un1NhyO8bTF9//+3QO8YuletpdqP3HFmKGm++EoISFr20WmlOBM4FgvZAKBQHA8VrV7WN/hozygijwJj532vQFASHYCsOiGMex8/x/U7Nmpdems3If3pp+RGn/8RpPsvFev197MRutasBpV6wBXdvJxv/+CW58HnIxzNTE7rZ7Mzz864LfUXxRFIRisAyA9fRk2m2oo33Ufh5q93PbLd7X+SVYjXWHJmfJNr3lKHRFPiQwpgeDUGKFvtALByCMsy3y37DCx+PPOptcxzm4Z2kElimAnNOwAYGXsO+zvmEJXNk9WdL06GVg4H3JnABAOBlj51KPa4TqnlcIDakp4MHsKy/OCIEFFOBUlHu64Im5uOmcspWMvo3DKtN5DCNaiKGF0OjPFRfeQkjIfvd6iKTvN7hBYYMGoNIrTbSwcnU45hxL0FzIwSPFUc1A9ECR0x+ktEHQjwmyBQHAmEojJ3LqjnKCsfos59DpGJ9qH09sIQCh9FtQpWFx2OpubABi7YDEFEybj/fAVTZBqc0lYrriYtt3q5NaNUgc2UwVGnYHMnDzOOeecPi9Tf3A/u1e8x+EW9XUurXAM2Vd/AxxDW4n5QNkvaGtbhSyrcZjF0ttsvcUbhgww6CQcFgOXTM6GHR2DPNLTpS8DKZEpJeiN+H04MUKUEgjOENoiMWIK6CW4b2w+s1z2kZkp5W2Cw2qpZExOqn0zgQh2QyfjzcvJK02Cgq9oghRA22E1Hd7idGFzVzNtfSXWiDp3FTM5QerEYDDSElLT9a+ve5GcUAOz7n6AnDHj+hxGIHAYAKu1kJKSe3vtj8YD3H/ePgunZfhkSR33sdeVVg7ojnhAaplS4qEpOGMQv6sCgeDEtEWiBGUFvQSfyEnjojQXht5r7QeGoBvaK9leM5713p8TiT9TLQ4TfncHAIs//kmSs7JZ8cK/ANh6/WTGfvrPPPnuXvYb1Cz4ZClKGMjJSueOz372mJdb8djD1B3YC1gBcM67GaZelZh7O0kikQ5qav6ttR2O8eh0vUXASEzNLvrVdVO4cXYBAGVnmCgl97F8j762CQTDjuH3+zkC32gFgpGHNxpjp0ddd59mNHBb7tDOgiWMljL4x3kQ8VEZmklV8HwCHnWJ3Ccyvsxhj4410lfxlCnUvf555FgURVGIhNSU/KTsLGat2qqdrmPUeCI2C9ujNg7HMgkoRnRKjLHJenJHLSarZEyvIfj9lWze8nHCYXVW02op0PYpikKbP0xXLRtJArupr6/RYwS8Q/0MkI76qc3oDcVgBAKBQCBILB1R1UcqxWDg/nEFJ+h9GkQC8KeZ4GvmQPC3RBRVKLI56tm78hmioRCSTocpHKH14YexHlAnvsyp6Xz/L++z36yarhuJETBUowdyRhce95Le+goApiXXk272Mf7cixJ3fydJKKTGTgaDkymT/4LTObnH/kPNXpxAh1+1RkiyHntSTxmCdXz9CYeUPjKlhFOnQHBqCFFKIBjm7PYGuGzzAULxzJxCi2mIR5RAtjwOER8R2cybHd9BVtRgJUlfRzjs56WaeSg17xzzcLNTDQJ9Fgnzxfez23SQOtxsjXQHRXnBOq7/xndJLyzu8xxt7Ws0QQogLe087fPmqnZq2wN0OVCl2c3o+phx7SuOGg5+OBLdmVI9PsRLx4ggSiAQCAQjgais8GZLJ680dQCQbNQn9oId1eBrBiS8cgYAS28v5M2H/kBbjZoVlD9+EhUP/BLdWx/SVffPmpVLZaPamit5yTRWodepQtqEMRP7vNTOD5bTXF6Gz+sHdMxKO0xKdi5YhtbSQfWRUs3NzeZsUlMX9erzyrY6bgGCEfXvJCfpzLOh6J7X60uC6hKqREQlEPQHIUoJBMOcTZ0+TZCy6XV8Om8EZkmFPLD1SShbDkDbgj8gv2zEZIbJhueZkLqZ+uIvoRzcAMCsy68hs2Q0yVk5SDoJSdKh1+tZ9/zDAPjsJvYp1dTp22mW7dplrq5/hexQExbHx445lHB8li8n+zpKS3+A0Zik7avvDGqfzx+fwb3X9fai6mKwZ/hOSvM6qlMvkUogEAgEghHA6y0dfG53ldYelXAfKTV2iKWOxd+YDIDZGkBRZExWK2PnL2b2ldey644byAS2jJYoy5U4b/pCQrvU2GKZvpV6nZ+Zs2Zw7uLzSE5O7nWZzqZGlv/9oXhLhw4Z+/UPwZjeAtBgEo162bDxKgIB9e/cZhvVq08wEiMYVcWocdlOfnP9FKbkJfXq12NqbxiLO31V39NsEhS59wECgeCYCFFKIBjmtEWiANySk8oD44+fyn3G8u5PYeP/4Yul8IH7+7R/qJpi5mV0MD/yH2r1M6kKqGJc6dyFLLn9Mz0O72is4cDllzLGq84uBuwODPkBaAO7MwVaISPURGGwluTsHGxJyb2GIMsR2tpWUlWtCltWa1EPQQrAE4zSJXHdNr8I59iM49/XMAumurO11J+SImb0BAKBQDDyqA6oy8PyLUbmuOx8tbi32fZAEutoYLv3WjrlaaCATiehxFTbhZScfC7+/JcAsDervlGeO66mOTia7/3XAxgxoxDSqf0LCgr7FKQAPG0tAFjsdqZZ9pLrimKadVNC7+1k6OzcrAlSkqQnM+OSXn3cwe6KxZNzXeTNGT4x7alksyt9ZEVJ3TsFAkE/EKKUQDBMOeAL8lR9K/+oaQYGoYTxUFK9DoBdfIKq0GxQLaKY4P0re0OZvLnPDqgllh2pab0O37/yVVxxQSqsh0DxTHySmddCE2gJqubm6S4rn/nuwzhS09Dpe6fx19U9w/4DP9baDsdY7fP7+xp5aWsdB5u8fG5AbnhokKSemVG9Es9FECUQCASCEUBn3EvqsvRkflaal7gLeZvg4Quobshgrff74FU3O1KhobwMAKvLRWDXbvzr1mL3q+NKsi/h9Y1R7TSZug7adOrBToez9/00NbLyv4/R0VAHQEqSmXOSqsCZk7h76wcezx4AMjMuZeLE+9Hrrdq+XbWd/PTV3XT4I0yNb+uvBCT1+4hBQOpjYk+zmRIBlUDQH0bwW65AcGbzi0N1LG91a+1JDutxep+h7HsdDm+Cxp3Iio4G5+XQHKIwq4XZkQfISWnl1epuM/LCKdOZsuziXqep2raRKcD+EgfZ07+FJRJmu9tDi+LQ+sxPV0jKPPZMaXuHujTQZhtNUtLMHl5SP311D1Wt/gG4YZUhKw3by+hcRQRPAoFAIBgJtIajrGhz83R9GwBJhgR7Se1+CTqq8MvqRFZysowrp5UDa56gSdWkyMzOo/wTN6MLqyJUUxKU7TcAUSRFYYnpEMX4KSgsJCkpiaKiol6X2fn+cvav+Uhrp/r2QhJgdvXqO5jEYkGam5fT3PIeAK6kaT0EKYBnN9WwsbIdQBOl+kTq8WPYo/TxqXuTiKsEgv4gRCmBYJhSH1LTnK/NTGZesoOrMpOHdkADjbcJnrkVFJk1ntvY6ruOrhSp2cW7SKs4QFXu3RzYvBNQuOZbP2T0rHl9nspfVQ1A0OFguWkvslmmOpALQGG4jvMaV3DluTcefzhedZZvbOkPSEs7t8e+Nq+6DOBLS8eQv90GHad4z4PBcQKho2caJXRdH050qEAgEAgEw56v76/mrZbuCb38RBeH8aiZS6HM+eCGrHG5tB/+QNudlJlFocOFPy5IrRsnsWlRBvoONa6YoQtQpG8nX5/GHXfc0ev0iqIQ9HlxNzcCMDbPxBhlByXZZkiaCvOGNn+7ovJPVFX9XWs7HZN69ekIqPHsx+cWcl1yIew+vWsO2cTeUShSlxVCH/uGxxAFgjMGIUoJBMOMjkiU8kCInd4AAHcVZDLDZRviUSWAljJQZBRLKjuartY2Z9rqyGp4nFdrx3Fw/w5tu8to4dCllxFtakKRZYjJ6k9FZl5MTYcPWWzIkowkSTTE1PT3GSkKly26gklLLuhzGM3N79DQ+Ap+fyUATmfPajeyrOCNB5O3LyzG808TwaNPcjJIEtJQZyQdvXxP6TLkFNGToG+GQdFIgUAgOGnKfOrk1kyXjckOK9dkJSf0eoEODxvdd1IXHA+AyWrA16FmBd3wg19QNGU65X99EIA1k/SE7v0GvjU6VgRUI+ywrhOAiDPW5/nf+uvv2fPR+1q7ODXKhGgzXPJPmDb0XlJtbasBMBic5OR8jJSU7snDYCRGWaOXug41np1RmMyodjtNfZ5pmNCPcEjpY/necbOnBGcdw3LZ6TBFiFICwTAiGJNZtH4frZFun4Fs8wj731SOwfu/gFUPEpYttDovJSar6fV3ZN6ORfIghaAuoKbCp+YVMHbeQli5mnBFxTFPG9ZDR1oWbbKVvVIBrbINJLhy2TwWLOy7Sp4sh9i95xvEYqqPg9VaiMmkGqqHozLfem47FS0+Ld5wWgx4TuYeB7v0HieX7n60kacmkimxnj8FAoFAIDgDaY6oWTl/HF9Iqd2SuAtteRzW/Z3d5ePZ6b8V/KDIAQKefbQeVrO3DZ1uDixcRKxNXUrYnm1n/RtJbNR3Z29l6rxIeolzLu974qxy+xbts9VqJF9fAVHA0lfVusEnFGoAYMb0J3C5pvTYd8vD69lc1a61XRZjv87dS9YZZjpPtx+n0murmOwTDEeGs0g2wt52BYIzm+pgmNZIFB2QZzFxRUYSOeYEp54PNuUfxAUpK/9p+RuBJjWwstokrDoPbl0W+/M+hX/vGnR6PZdcciVNf/oDdbVNmICPptl4f46NmAQtpnZkSdWAbKRwzb5CdkRzqJSTQAKdEmN09rEDt2CwXhOkxo79Makp52j7tlS389K2Oq2dl2zF3A9vimEZjnSJUkdV4VNC8aUOB9+F2CTQi0eDoCciwBYIBMOZcn+Ivb4A7qiagZRl7p8A0m/W/Bla9tMaVavMlUywUl/+MrvePQSAJOmIbt6sCVJhPTTMKKBzrwR6KMVDhqGFq6xJXPGtezEYej53I+EQQa+HgEd9Pn928n6c0SakeCEY7Ceo/ptAFEXh0KHf0t6+jnBYLcZjseT06rOzVs0Cy3KZyUu2smBUGtH1/b7aAIw4MSh9pBJ3V+Qb5MEIBGc44s1DIBhG1IVUj4FSu4UP544f4tEkiKo1ABxO+li3IGUMMMnyAb6okX8fKiW6W+1TPH0We//+G3LKupO935we4lBGON6ScAbs3P3BzaCPYtOX0Rn3M5jWuYOJ0cPk5150zKGEQup5rdZiCvJv77GvzRf/t8h08K1LxjMt/yhxq4+XdGUYz0BA7+p7bfZ86NyKoos/CsIBCHvAmjI0AxQIBAKBoJ90RqIs27iPgKw+3bJMBlyJNjj3twLQZp0HQZi4dAwHNqoZUtmjS5mweCmNz/wbJ/DqXIn/LdZxzeTpeA7EACNFhkbyDe0kpRX1EqT87k7+/ZXPEfR5tW32aLM6nzTt45A2GvJmJvb+jkMweJiq6n9qbYdjopZlrvWJyITjAuF7X1+CI5713zp4w0wY3ZWL+zLkjGdKCVVKcATit+HECFFKIBgG7PL4+eTOCmrj5uajrOYhHlECqN8BH92PXLWB6uBsyp1qFb0xE/Rc3P4JAPZ0ZhKVJYwWK6m5+cy54jqqn30GgMcvtCCljeEqFrMz/SBug4+i/63lsk2d7J20hkNjJ6IoOXhC6t/dvVfNZcG8uzBaeqfvezx72b79TkJh1TjUasnX9gUjMf664hDry9XQqSjNzoUTs7oPHkEmOwFjvGpPzjSoHdqxCAT9QSRuCQSCLioCYQKyglknMdlh5dbctIReT5FlXqu9m+pQtzBkdUSIRSJIOh3XfuIO3C+8SOP2gwBsGKtjhuUGatbOol2npjrpJdWmIS+1d1Xg5soKTZCSdDpKZ8xA718Jkh6u+duQxyFd2VFGYxrjxv6I5OQ5Pfb/6OVdrNiv9jHoJOymvgTCfn6JJ/ieT+n0mjrVW5QSDynBcGY4iqZClBIIhgFvt7g1QQrg0ozh4RUwoLz9PahcyT7/Mj5w36tVsHPagoRb9OyKTWW/aQJQw7QLLiH5jdfouOlmUiLqTNsnLT/BEUxlfaycd1vUyjZL68EeAt+0mbT6dFQq6UTRIykycxfOxpHU999ja+uHmiAFkJV9pfb5vb1NPPRemdbOT+lZ2vhMRtLpem5QemZOCQQCgUBwptEUVuOncXYLr88am7gLKQq891OC+zdQHfpGfFMMk+Ejlv/9ZQBcGZk0/+Z+/Bs3YgKCRrhw+t3cv7KYqCQD6rLCc82FzC0qomTZlF6X6RKk8sZP4uYFeqh8D/yoPlLDYGIsHFF9oiyWXLKyruixzx2M8PjaKq09Psd5lJ/l0I9/oDiu0bkQpQSCfiFEKYFgGFAfF6Tuys/g3sJMMhPthTAUtKo+C21pl4EbXGlm0q31TIq9yIbWfNa3OoAaAFIlHYat+7RDD+UZma5PpUFqx1a1mft2FgOgl8NUFyh0RGTeCk8gEv9KSw+34nQ4jjmUSET1eMjL/TijRn0Vk6l7VrU1XrlnXJaT62flcd3M/D7PcTyGMuQ6XhikTep1WUt1R0+JG5BAIBAIBAkgJMu82dzJu62q71JuomOnxt2w6veEorkAGHUhzvlECm/+aSueFrVLZvEoAmteAOC1ORIbx+pY3BwlKoGkKIwzNJEsBbj41itILy7qefryg+xb8xEt1ZUAWMwGWPfn7g7ppYm9vxPQ2bmNHTvvJhxWrQ+O9pEC8AbVDDCjXuKpz85nYo6rH1c4swSrvpbvKZKY7BMITgUhSgkEQ8hHbR6eqGvl1eYOACY7rSNLkFIUeO9n0LwfxdNIUHbRpEwCAkyd5GHagTuhAWr8UwGwOJxMLCpF9+gTAJTl6th97nksiZ5H2cHX+XC8BUalAqk9LtMaNmiC1IRwFVeOtqDT904Xl+UoPl8ZrW0rAbBaC3oIUgCeeEA1rSCJu84dfUq33Vd1i2ERah01w6qLt2XNA2FYjFIgEAgEghPyVH0b3z1wWGuPsyc4s9lTD0DQpsYGZpcdX5u69j1/wmSmLTyP1A4PrV4fQSP8Z6kOWScxU13JhlmKMt9YjaRIpOT1nvB69+G/0HCoO1Pb4bSpJkwmJ1z3Tyicn9j7OwEtLe9qghRAVuYVvfp4Q2oM5bQYmVOc2mv/iEILmZQjNonlewLBqSBEKYFgCPnFoTp2eAOA+myb7bIP7YAGmsbdsOpBAFZ0fp49gYsB9X5TbG0c9rs4FCulVXYBURbPnIvxT93mmYdLMrkt+HEAtk0/DEEPVpOJ9KTuFHad0UhnGxCGAsnNmw/ec8zh7Nn7TRobX9HaVlux9vmD/U28v7eJrTVqWnp/SxcPNdLJpPQf3acrZhLBk0AgEAjOMMr9QQDG2MzMcNm4PcFeUuG2Jl5r/QX1kUkoSphY9BCrnn4dgMLxk5C+9yNaverSuwN5EjmOfKS6cfyzeTRIYJXUrPgcktEbe0+ceVrVdKtJ512AMz2dqZNy4VnAmgzjL0vovZ0M4bDqtVlYcCdFRZ/rmWXuDfHajnoqWnwAmrH56TAUkUl/rtlnplRXVWMRVwkE/UKIUgLBENLlI/XVoiwWpTgYZRthBueeBvVnUgE13mXa5tRcO+n2Bh6pmURYNgBRkCQat3xI19zha3Mkcgsvoamzlmq5lmaLDoJgI0aqrxV/Z4d2Pr8/Dcy5pBjl4w7H7d4BqOacDsc40lLP0/Z99ZltdPi7fb2yXL0N0k/EkZrPcAxHujK4uoImbfmedMRoRSAlEAgEgjOA1kgMgE/kpHFPYWYCL3QI3v8F5ftM1EduAiAa3EB7xwatS4bdRcTrBYOBQ+lRXp4vcVXZF/mtGy2jZrQU5LppyyiY1nMZXmPFIap2bCXgUZchLrzxFlzpGVDxkdrBNLQTlqFQE+3ta6mr/x8ANltJryzzP75X1sNLKsVuGtQxDgXdnlJDOw6BYCQgRCmBYAh4s7mDbZ4ArRE1zfmO/HQyTGdWZs4J8bdB9VoAlLRS/OUmQOa2j1XhqnqGxnWNhOU8AKbNXYT9UCWGDWr/f1+Swez0jzHbPYUX9K/jddmJtUusjpTQ6LeDHENBQpEkFCSCZjVlPz/p+KJel5fUrJlPYbeP0baHo7ImSH3+vNGkO0zcNKfg+PfXRxDSa9MwE3gkXd/ZVEcmngsEAoFAMJx5sbGdJ+paWdOhZiVlmBL8OrPpX7D7BdweVZDKzgoT00ep2Q1Zo8ZQPG0WGXojdYB+4ji+e/l+jDojBbsVup6rS4wHmWlUmHrtbb1O/9L9P8cbz5LS6fVYPeXw0fehQ/XZxGhL7P2dgJ27vkhn5yat7XBM6NWnrkPNgp9VlEJJup0bZ58ghjpZhlkcdSTHMzUXmVICQf8QopRAMMhUB0J8elel1s4zG0k3jrD/FZv2wd/PIRaTWeW+i/pdi4jFq+gZ1/yS92ud7OpQyyDn5KSQsuI9bGW12uFLdBcx1TudQNSHP9kJskwnSZTL6aBD/XMUEnDbVYv7HE5r2yrcnduIRtVZyCNn+BRFockT1NrfvHgc+mOIN+qFzmThRurxQ6dZH4jgSSAQCARnBveV11MVDANgkiQWJh+7sMlAEGxtYY/vGjb7PwZAwawx7P3oVQDmX3wV1tfepGXvXgA+UvYD4DQ56YwFQW9lvK6dYn07NktGr3PHolFNkBq/6DyKp83EuO6PsP/17k5JeYm8vRPi86n3lJw0B1fSdFyuab36uAPxSdZFJVw+tbcB+tH0N+5IdOh1KqfXss6Rj9gmPKUE3ZzRrwyDzAh7ExYIhj8VATWQSjXquSIjmeuyUk7OD+hM4uC7IEeoCi9gV+DSLhspcse42F9jYGt7d4BVOGsJpuW/A+DJJTraUm18SZnDDiqoNlbQGTWxKlJCo+IEoDRJx+9vX4hOktDpVLNunSSRbDOS7uidKRUM1rNt26fomtOymHMxGJIBiMkK1/51NTsOdwLgtBiOL0gNEIkUgY536qMzzY82ZBchlGB4M8K+JwUCQb9RFIXGsJrZfN/YfOYm2cmzJHap2I6D+Wz0LAIgFtpD2YYPaK9XJ9KkzZtxv/aa1vdQhgzooCGHfXHbKJ2kVvVNG5XV47wdjQ201cazoSSJS+/9GjqdHh75jbpt5ichZyqMuzxxN3ccYjE/fn8V0agHgGnTHsZg6CkAri9v5fF1VextUCf9XNYTvFqeRLzbV7GY4cTRlYx7BF6azZSIqATDkGH8vilEKYFgkJAVhU2dPh6vU2fEpjps/HbcAKU3DzfqtgDQVnArtIPFbuDceQ1k6j/go31JAGQUFlPS1E7yrx5Ar0CrE0rSvswnKCDcUMaGgmaQJA5G0jRBCuCepWOZnJd00kMJBKoBBYPBSXr6MrKzr9VEwCZPUBOkAJaNT6AnxXAgft+78jMwxmRK391GbjQLq7yJkHcfVV43z9z3K6xJqSz99OdwpCbWNFYgEAgEgpMlGJOpDIYIyuoL/03ZqVj1faRODxSvfx02/YvO9i8BkF2gp2bPBzSUqSKTyWrD1NhMGPAvns7f0nfgmzuB8WsvY6Mug6607lz03PSJmygd1e0l1VxdyePfvFdrW2x2VZACCHSoP6fcACXnJu7+jkMk0s6atUu1DHOzObuXIAXwwDsH2FDRprXzU059qeEwfl/uk26j8yO3dX0QopRA0B+EKCUQDBJP1LXy7SNKF09w9N9Ie9iz6wXY9TyVezp5p/k/hBvU4GTyNJnwmu/zSP1YFNT09enjJmN89Y/aoesmmrk5pvoUtGYZQJKISQbaZfUc142xcO/V8xiV0b80/VC8fLHDMYFJEx/osa8zoM62ptiMrPr2UuwDUC1GpY/IahhEW46UNDobG/BY1YwyZ1MnTixABwod+AH/fjUALZwynekXDX21H8HwQITXAoFgKGmPRFm0fi9tcXPzAospsYIUwK7nQZHxyakAjJmbRuWOEJJOx9LbPkNKVCbyr8cA2DzeyPp0HVdnjOc9OQN0OpyEydZ3sjTLyISxPX2YWmpUU3CD2YwzNZ1JSy6AFffBqj9ANJ5ebjn5CbiBxus9EBekJPR6O/n5t/fZr82nZv/feU4JS8ZlUJKeeFP2YZOFJB270p4inpqCIxguv7LDGSFKCQSDxB6vGmRkmQyMsVm4PTd9iEeUAN76Lngb2N35XcKKGpjodBJ56a1s9qZps0opSU4ie7ZgBCoz4Y9X65mon01nnZtdugqCDj9r/EUciHVnLi0rTemXIOX3V1J28Ne0tLwLgNWSr+2LxGTe3dPItsMdACTbTAMoSA1frvr69zi8Zyc1X/kakiLzwi1LqfR/yNzoEpLLS8g0lqGky9QdLEOORYd6uALBcRARnkBwNrHHG9AEKaMkcUtOamIvKMvE/F7ao8XUhqcAIOl8ALjSM0h7+Q28H36odX8jvAWQGJVUyjN6Nda5yliFUd9BWnJvD6aQTz1XybRZXPX176kb/zSrW5CyZ0Lq6ATd3ImJRNoBSEqawexZzx6znzs+uXftjLx+ZbEPV/ojePW5fE/bOTDjEQgSwjBUyQZ0iuGjjz7iyiuvJDc3F0mSeOmll3rsVxSFH/3oR+Tk5GC1WrngggsoKyvr0aetrY1bbrkFl8tFcnIyd955J16vt0efHTt2sHjxYiwWCwUFBfz2t78dyNsQCBJCS7zS3peKsnh+xhhKbMevFHfGIcfAp2YldZjVAOyCT0/k099KJzu2lraQmvF04aJlzP9oG7Y3VgJQkZPGb5of5GsNn2Sjspa9lhYOhIM9BKlR4VrOm1lKf6ivf14TpACSkmdrn1/bUcfdT27hHx+WA5B6SqWLj/+FrgxDTwSbK4mx888h2+Mnp9OH2WjEa/cRzspEbxqLy5KOMy2+ZG8YPrAEAoFAcHbSHhek5ibZqVkyja8UZyfuYi1lsOdFXmn7Mc+0/h5FiRLxv8+Kx+8HICkrh8Ce3QD4cpJZOVGiOseAFMrk50+biUgSOmR0OtUeIG1irnZqX0c7m19/mfLN6wEw2Y5Y7hZUM5W59Xn4yk4wJ9bAvS98voPs2Hk3u3Z/FQCjsbf4F43J3PSPtUz44Vs0edSljEnWga8g3Vf+0XCie/let9G58JQSCE6NAU0N8Pl8TJs2jTvuuIPrrruu1/7f/va3PPTQQzz22GOUlJTwwx/+kIsvvpg9e/ZgsahLmW655Rbq6+t55513iEQifPrTn+auu+7iqaeeAsDtdnPRRRdxwQUX8Pe//52dO3dyxx13kJyczF133TWQtyMQDAjPN7TxbEM7K9pVo8gs08A/uIccOQbuWioDMykLLqIjqApuGfI2XvnpL6jxJwNq4NWxYQVd9Wf2FECwdBwpUTPNkht/cQ4NjQGirgIIgV6JseEbC0lKTsJg7N/fWziiehxkZl5Gbs4NpKQs0vYdblNnIvNTrEzJS+K2+UWndfvHZpgGJTodxGJ85o8v8Bng7Rvd2i7pOOnoAoFAIBAMNq3hKLvi2eYpRn1iL9ZSBn+eQ1g2Uxd5EgBJqSAW2kYs3qVw4mRiT74AwPvfXcYT9S9zke1ant/XPflVrGsnM8lJZnEeM2Z0b1/9zBPsfH+51rYlJXdfOxR/FqeVgnFoLB5qDj9Gc3P3+JKPmNDrorrNz/oePlJWslwj0JLiBCha9ZjueKn7o4ihBIL+MKCi1KWXXsqll17a5z5FUfjDH/7AD37wA66++moAHn/8cbKysnjppZe4+eab2bt3L2+99RYbN25k9mz1S/BPf/oTl112Gb/73e/Izc3lySefJBwO869//QuTycSkSZPYtm0bDz74oBClBMOSnxyqozmsZkmZdRLzkhO/3n5Q8TbB3xaBr4n33f8iIKcAYHWZCNWviQtSKmkmM7a9anbkL27SIWWN5+6Gi1lt2M9+Qx0djRbeDk9GaYkv81N8pGWc2jLHaESdoUxOnkNa2nk99nlC6r/HpZOz+f7lE/t34uGXANVvGi6/Csv77+IMeDFGYtg7Q4RRZ/26qt4IUUogEAgEQ80z9W18eV+11i6yJDjLvGEHoODRFQM6zGaZSYtdrHkW8idMZtLcheT6wjQqCiQnsTl0QD3Op06cpStwsWUzRmQ+d8s3MWX1jPk8rWqxm7zxk8goKmHGzFK4vxT8raDEZa8h9JLy+9QM8ry8W0lLPYf09GW9+njjMVSWy8xzn19IpsuMyZBgf69hGHz1JUqB3HuTQCA4IYn+BtGoqKigoaGBCy64QNuWlJTEvHnzWLt2LQBr164lOTlZE6QALrjgAnQ6HevXr9f6nHvuuZhM3cttLr74Yvbv3097e3uf1w6FQrjd7h5/BILBwBONaYLUH8YX8PrMUjJGWqbU4Y3gayIo2zVBauF1Y1h8QzKVB9VSxykuExf5YszduAe7V/UfuM5/O/dVfwVzu5kWfR0AjVKKlg492lfO7SWxPi54fA4e/A0rPpxKU/ObABgNydq+RneQD/Y3UdaoZq05LSPs34KTM9esuPfLXP+bv7N1XtxYPqjOeLbrdUfUOhYRlUAgEAiGlg/jWeZ6CTJNBm7MTknsBd31RBUTHRkXA2BLceBtbwUgb1Qphu/9mMYf/hCAdVlu9rTtBWDrYXVcRimMUZIxoseQ0jt7qMtLavYV17Lsjs/jbN+mWh90CVLZU8DsSuQd9kmnezvl5X/E490HQE72NWRkXIgk9X5V9ATVuDbZaqIg1YbZcArZa8MsxDiVWjRy10HyEZlS9CVUCQSCEzFozr4NDQ0AZGVl9dielZWl7WtoaCAzs2dJdoPBQGpqao8+JSUlvc7RtS8lpffD6te//jU//elPB+ZGBIKTZFW7h/UdavCRbjRwc07aEI8oQXjU/zc7c6+FJrAlmcgp8vDkj76jdUlOsiKv3YcBeHWuxP58ic/oR7FXPow7uYFDhmTe9+fjVqwAXJPWwYO/vAedvv+BTm3dM8Ri6t+70ZhGaqq6bC8mK1z+0CpavCGtr8sy8s3Nj4dB7wRAUWSQoEmvJ01SA2MRTgkEAoFgqKkOqM/sv08s5srM5MRdKOiG93+Od/9W/tv0L8KNdhQlTCx8mObKCgCMPh9KMIhkNFKTHOPN2RJGrPg6JlHuLQTArFNFtKhDRmfqjmF2f/ge1Tu30VanVmE22+3d1wWY9nG44CdgVyv3DTa7dt5LMFQXb+mw2Up69Xlx62Huf2u/linlOJUYahhUIh5wjly+12WBIKIogaBfnBVvZN/97nf52te+prXdbjcFBQVDOCLBSGe/L8gN2w5p7VEjzdQcoPMw/O92vNUVvNT2FzobVCPPpAwrdY99AXBg0UWwhyJkrKzHFFUIG6B8ykLmxUYTqmlkdYaaxr4vWKgJUjolxnl5plMSpKJRD9Goumxv3tw3sVrz0etVL6vOQEQTpCbnuUixmbh4cmKMUvsKuaQEB2KncnqjKRmAfEcebj/0GLmY5RMIBALBELHfF2Rlu4eDfvW5XWA5lYIk/WDd32DDP6kPnKNVD44FP6Lp0A6tiykUBkCaPY2vLdmGRW9h4YEf8FpYT74CdkMT0/X1LD53MRPGT9COi4bDLP/HQ8ix7uxvZ1rcXTOkilg4ssCZQPP24yDLIU2Qys25kZSUBRiNyb36/W/jYeo6g1p7ykBX2ztD9Cpt1Z4mQB2JQh8bBQLBCRg0USo7W/2ibWxsJCcnR9ve2NjI9OnTtT5NTU09jotGo7S1tWnHZ2dn09jY2KNPV7urz9GYzWbM5hEoCgiGLeV+9aGdYtCzMMXBnXkZJzjiDGTXC1C7mf2B6+iMqYKUoigUjA5Qt98POBhn6SBva/dy2T1FZr7WfBs2nY5NxveIKRJ6VybtzaogdbG+nKXZcOGlt/R7OKFQE+0d6jJfozEFh2Nsj/2d8bLFDrOB1764+FTu+IScIfGURldAZdZ1B/vC6FxwJIkWUwUCgaAvPrmznMpAXAQCiqwJFqVqNwPQYZ0OnTB+fhZV21pprwed3sDoUaUkH6wkCOw0qBniY1PHEgpJIMEiScFqrMKKgWVLe/owBTxu5FgMSafj3E98itS8ApK3/QnKloMn/k5jdib2/o5DKKS+e0mSifHjf3XM7313UI2jfn71JOaPSmN0xuBXBxxOdC3Vk46svieW7wkEp8SgiVIlJSVkZ2fz3nvvaSKU2+1m/fr13H333QAsWLCAjo4ONm/ezKxZswB4//33kWWZefPmaX2+//3vE4lEMMarcb3zzjuMGzeuz6V7AsFQ0BJRU5vnJNl5ZHLvFOgRQdMeALxp54AXxs3LRlLW8NHTLwHqMlxvzkxgBbuKJP57no7R5tmMbu1kp66FBrvEW+HxNDd3BzW3Xn0+i+dO7vdQgsE61qxdiqKoAZPFkqft8wQjPLD8AOUt6pK+AVuy10fAcaaFIF2iVF/hpxClBMMPIZAJBGcDMUWhOi5IXZ6RxOIUJynGBL+ytKnZ7Z1pF0CDgivTSmeTKhhdt3AZ/j//la4coa2GOkBHR3MGq+OeS25asQKRI+ygopEI295+jdbDqr+m1eli9pXXQSQAv+z22AUgcwKDTTTqYdv2zxAIVAJgsxX1KUgFwjFqO/y0+dR/k4m5SZRmDYaINvjf+f2JfJQ+PDi7lu2J5XuC4cnwjaMG9Bve6/Vy8OBBrV1RUcG2bdtITU2lsLCQr3zlK/ziF7+gtLSUkpISfvjDH5Kbm8s111wDwIQJE7jkkkv47Gc/y9///ncikQj33nsvN998M7m5aibGJz7xCX76059y55138u1vf5tdu3bxxz/+kd///vcDeSsCwSnxUZuHbx+ooSIeTOUmOt18KHDXw4G3cG9+j12B29nVoIpuWUV21j/+Il1feMnBIMWvrATgQJ6Ra/kkc5qn8qLuQ0IGPW7ZTHNMFaTMsRBZoUamjllwSkPyePeiKBF0OhNmcw4F+bdr+97c1cCjayq1dn6K7ZSu0YXUny/0YS7sKEcFnwp0m5oO87ELBAKBYGTSHonRlXvy94nFGHUJfJHa8zJ89DsaGgys8/yM2gYFRZHR6zuQY1EkSYe+WhWVAnlpbHG18dFkidTGC9nTOVc7jWRqBiAzqdsb9+DGtXz4xCNa25Ea9xb1t8UP0sMnXwFrKmT1sxLwANDevo7Ozk1aOyWldwwWjsose2BFj2V7Sdazwv3lxPRZfU8lFonwxHe+zLQLL2XqsksGeWACwZnHgH6rbNq0ifPPP19rd/k4ffKTn+TRRx/lW9/6Fj6fj7vuuouOjg7OOecc3nrrLSyW7uoUTz75JPfeey/Lli1Dp9Nx/fXX89BDD2n7k5KSWL58OV/4wheYNWsW6enp/OhHP+Kuu+4ayFsRCE6J/zW0aYIUwOXpQ1fWN2E8cyvUbuJD9w+pDs/UNqc62vAEFEDiKu9eoodUQa7TBvbc+ZzrnsXhaCNBu57yWCpttiIIQ0q0kwcme8geNY6k1NRTGlI4nnqemnIO06b9X499zR7Vj2JGYTLXTM9j6fjMXscPNonMQjqZU0tHf9IOkobzJIpgCBEapUAgSDRhWebHB+t4t1Vd9p9i0CdWkAJY+xdo2MFW77eoDU9BUWKEPU/ywb9Uz8vk7Bxi9epyvYPXTOePrg+5oeRG3nl9FoqkUCz5GWWoZbQpRkbhKBYs6BZ2vG1q1b60/EJKZsxm3ILFsOlfUPGR2sGWCsXnJPb+jkPXsr2U5PmUlv6gl+0BqFWLuwSpFJuRyXlJFKfZB2+Qw/jh01elPaPFiNFiJRIM0FRxiE2vviBEKYHInDsJBlSUWrJkyXFftiRJ4mc/+xk/+9nPjtknNTWVp5566rjXmTp1KitXrjzlcQoEiaIupC4f+/6oHK7JSkm8MedgEwlCrTqr1qqowUvBhBTaa//L0w/sAdQsmwZ9Aek08u8LdLw7XeKulkLe9+2iytJMVSyFlZHRoPqRk6MPsPRTnzul4YTDrdTXP8fBQ78FwGzp9pXzBCM8v/kwH+5XZy9nF6XwyYXFp3Sd/nNmKDtKH8MUnlICgUAgGAo+avfy79oWrX1OyiAsEXOrBt9tllkQgpIpMfatVMcg6XSMHz+ZwH+fA2BVdD8APrfMYUl9Ri7VVyHrvcxYsoil51zY49Qhv2obUDBpCufdeodaIOaJr3Z3SMpP6K0dD0WRCYXqAbDZR+N09l4+GI7KVLX6Ach2WVj3vWW9+gwWifc37P/5+1q+ZzDo+dQDf+XghjV88Nj/9TC3FwgEx0bkXwoEA8DaDi8r2jys6fACMDfJPvIEqWgYmvcCoBhsBBUXIDPvYif/+fEerVs2QWzVqhB0MFdifmAW8xpLeD+9AiLQjhpk6pQY0zp38vHJp55NVlX1D6prulPjnY7u9Pen1lfz6zf3ae0sl4XBou/QZhgKVcfxlBrOs5MCwZnn4CYQCE5EXVDNNJ/isHJnfjoXpiU421yOgUcVZvwhCyCTM9rAvpWQN24ic3YcIPyHv2rfNrt09YDECzvVLXYFglIdJlzk5xRpp9235iPWPf803nY1U8psi3tneuPFnCxJsOCLMP7yxN7fMaivf4G9+76Poqh/3zZbb+/TzkCEZQ98qFUtTrEPUEzbh5BzrC7Dn94jVQBXegY5pePVtnhUCQQnhRClBIIB4DO7KmmNm5sbJJjosA7xiAaY1kPwzyUQcvOR+06qowuIRVXHh9CK+wCwG0Is2lODPqC6LkV18CX3V/D5LBww1rM/bGdjOI92RfV0uj61jW987iYyik7dCN4fqALU1POk5NlkZ1+j7auPp5tPynVxTmk6N8wauhnJwaBfXldHHNX9XzUVXcuUEi/9AoFAIBgkGkMR1neqmUUzXDZuzklL3MXkGGx/GtoraAiWUBWeQzgooygy4UAHAGaDkfA+NTOqI9XE9twISbljqD44nah7BiZkxhrqMelVZ3OnrTura/vyN2g9XK210wvjglUwniLuyofzvpm4+zsBzS3vaYKUXm8jNbX3EsIDjR5NkNJJcNnkviucDyRnjhilImsD7m10Th/7BALBsRGilEBwmvhiMU2Q+nReOotTHDgN+iEe1QBTvQ5Cbtqi+ez0XwGoqd82RzuHq2oAIy6zDkNAfQq/sFBif57E9VGFrcaDYISNoUmaIKWXoywcnUbWqDGnNaxQSK2MU1DwaTIyelay6SpdfOW0XD5/3ujTus5IReny6jgyZupWqAQCgUAgSDh/r27iJ4fqtPZYe4Izm8tXwMv3EFP0vNr+GGHFjhxtJux9htXPqGKNJV7h21hYyE8/J1HrreWzDVeztTMTK3CjeaPmc+1wOEg9whOza9nekts/Q9GU6aTpWuGP08EXX5poGVq/0UikHYDx435Jdva16PXmXn06/WoMNS0/iZfvHTrfq74YLvYCfVkgKErXZJ+wQhAI+oMQpQSC06Q1rApSFp3Er0rzBmHd+xDgV1PQ3fnXQQvodBKjp9ew873nWYsauNlTCoFqDqfB0+fpmegfTfvucmSTBZ0rk/aAFSS40r2KCfYQS8/91ikPp6LiTzQ0vobfr1b7tFoLtH2bq9p5a1c9W6rUoMtpSdDXXF+BxhH/9GdCGNLLpFORtOp7iiIf4yiBQCAQCAaOtZ2q9YFRksgxG7k40UVi3LUAtFtmE1ZU0+6UzFoaPaogZdAbyNyyE4ByXSu18Yyh91rUeGe0oq5+N+j1fOnLX8Zms2EwdMca4YDqw5RTOp70wmJ473For+i+fl53kZihIBrpAMBiyeslSLX5wjy9sZpt1Wofl9U4yKMbWk6uWExXRnlfy/e6MqWEKCUQ9AchSgkEp0hbJModOytYF083zzEbR54g1VYB255CWft3DgTOY3uFGkgVTEwh2PgKAHZ9BIM3RvqKuAG6U+Lu2o+jhEw0Z/p5IzCOlmYHSGCPevnlz76GKz3jlIekKAqVVX9FltXg0WTKwGYbpe3/9vM7ONjk1dqZzgGecR1J/8bH8ZQScZRAIBAIBoO2sGoG/beJRVyRmZz4C8aX0flS50MVpBc4sNsjNB6CuecuI/VP/4yXbYF9yX5ATyyUwfaQKpblyepEnd3hwOVSl+9Fw2HWPv9ffO3t+NrVSTGzzd7jesy+A+Z/AdKGJnu77OB9NDcvJxC3PjCbe1cj/teqCv78wUGtPeAxVD8Y9mFIHzFU6MVNNO/9M/K5i9QNIpgSCE4KIUoJBKfIu61uTZACuCjRhpxDwXs/hd0vUhWaybudX9E2O01N1B/aBCQxW67BfkB96EZ18N5MA9MCRlr0XvwxIy2KavBpiQWZGdiPPfm60xpSLObVBKnp0/6N0zkRna57Jq8x7iX1iXmFjM5wsGTcqQtgp8/gByP9uWJX3yN1tm5hVQRSAoFAIEgcEVmhLhRmh1fNLEozDdJrSbCTsGylyZ+LoigYTUE8barQZA1F0QFSTiav5jfz0gIdc5pu44OOIvKADEMt6eYGta+12z+0YusmNrz0rNbW6fXYXC5oOQidamYWqaMh/fRsC04VWQ5TXf1/WttiycduL+3Vr64jAMCc4hRmFKZwy7zCQRtj3wzfWCRsNCIZjSiRiLYt8tF+Wt7bjD6qZtcJUUogODmEKCUQnCLlfvWBc3lGEl8qymKSfYSZmwN0qEadbSkXQzskZVjQsZ5N770HqCJcSMrCTgNvzpJ47AIdBaFcxpQ3gs2BI6MEDkNGrJNHLkkjZ8xt6A2nngquKDGCITUY1OmspKWdq+3zBCM0e0J4Qupyym9cNI7UgaoWM1LpmuXrWr135D4RSAk484xnBQLBmYGiKFyyeT+7vUFt22hrb2+jAWXL4/D292n2pvFc62PITUaigRVUbNqidTF61cnGyOzJPD75I/Id+chrxqIYjUyTAmQa6jDIMvklo5g7d652nLejDYCMwmLGn7OEzJLRWN/8Aux9tfv6Fldi7+84dPlIgY6ZM5/CYR+rLdcHtdre9poOKlrV+79hVj43zRkqQaqPJ88wfBiFTGbyHvojgS1boUzdVpUJpbXQ1FYDDGdJTTAYjKTFFYlGiFICQT/Z6w3wr9oWVrV7AJjtsjPNaRviUQ0wsYhaca92MwCelEVAhDGzstj6+katmzUWw1rWAUBDioSskxjjLqDTkcb7wWLc1UbQQYk5yNRlF5/WkILBOjZsvJpIRA38LJY8bV+TJ8iS+1fgjy8BAHAlykvqZOgrCpEYNkKPlgslHeUpRXem1DAZqkCgMeKWRwsEZzEtkagmSFl1Oi5Jd5FpTrB/0a4XIOSmLHg1ctwPU46WabtdRjOGlasAeDOoxj/+gIUVcdNzsxL3qhybyqdu/RQAkWCQnR8s59CmdYDqIzX36hvUEy7foP40u8CZDaPOT+jtHY9wXJQyGpNJSZ7Ta/8tD69jV61ba6fYEjOpJ/URdwwHTvXx4jz/fJznnw+ffx+AQ9kSpbXQ6FcL8Qy3+xSc3Zxape7BQYhSAkE/ebCykVebO7T2JMcIzJB66kY49D7Voels8V1Lq0c1vbaFDuB3q0HL5TUHkNv02tebyzmO28tn45PCbI2k0SC76DJlmJt3+qJdR8cmTZACidzcj2n7DjR48Ydj6CSwmwxcMjkbg17X94lGKKcSUClHH9SjKQIpgUAgECSGyoC6DD/fYmTTgkmDc1G/Wv3Om3MpHIQF15XwwSPqBOO1RRMJvdKd1bQnyQPoaGhRq+pJKKTbgkRkmJI7Veu3+6P3+eDRf2ptR2qa+kFRIBDPTrp7DSR3F2QZTBRFZt/+H1JX9zQAZnN2n/3KGlUvztJMBwWpNhaOSR+0MY4kikzJgEdrC6NzgeDkEKKUQNBPaoJqIHVzdirnpDhYnOIY4hENMP42OKTO+Hzk+Ryd0WyUUJSofznrlqvVY4y6GLLXiITMK0sy+aC0lVnBHJRgAPR6gpIqQk13BPnm5VNYMO30PRTCEdXvISPjEiZN/B16fbcY6Amq6/lnFKbw/N0LT/taZw1Hi1KKpG1SZFF9T9CNCKsFAsFA4I7G+H7ZYfbGs6SKLQlesnckfnViKxBzAlEMhm4vIKletQaoOq+U51IPEZk3jfCWBYQChUyUvGQb6onIHQDYbN0TbZ7WZgAyikoonjaTaRdeCi9/AXa/DDE1XsSWmvh7OwYe7x5NkAJITV3Uq08wEiMUVZ/5z9+zEJdliCrujYBsWIOkH+ohCIYhQps8MUKUEgj6SUNIDWI+lZfOdNcIW7YH4KkHQLGm446pM2qzLklhzdO7iVdLJlmWkMJqAPPytFY8NollB8zs16WyI5RDk+IE4NIxdhbNGHtaw1EUBbd7Ow31LwJgNmf0EKTafGHq4+bmzkFcsnei2a8z4fnTVc74SE8pbfneEI1JIBAIBCOXN5s7ebahXWtPcQ5CtnnjbqjdQnObhV2+z3O4IUoksJotb6gildlmJ1arLrdaO83MeruOm+zzWR1QK/suNdTg1XtJd6WTV5LH5MmTtVOHfGqG0Zg581n4sVtAlmHrk2hP0awpYBy6WLGlRZ1klCQT06c9QnLyLG1fsyfEPz48RKsvHO8DjsEymx8BKL1avUU1kSklEJwc4ptHIDhJwrJMTTBMU1gVpXIS7X0w2IT9sPH/YMf/kBUd7YapmrKfl6nOIDrMMpP31OHyqwGMxwIZ5JPf6SCks7AhWohbUcsHG+UwC0ryT3tYjU2vsXv3V7S23d4tcn3vxZ08tb5aazsHY3ZvAGbyEhmk9OvUUo8f6ifNcEoEUoLhjPj9FAjOROpDavywMNnBp/LSWZbqTOwFoyH41yUQcrOi87c0RUqRY53EgutpVb2ocegMhOpq0QErI3sBiUfXqVYFaUgEdar597U3XUtenupnufGV59n4yvOEA2rlQLMtnjUf9qB9P31hA6SOGtIMIJ9P9cwaM/qbpKb2zCR/an01D6+q0NrZLgs63dCNdTh8qyunPYqjM9CHw10JBEcz/H4vhSglEJwEsqKwbON+yuIV9/QSpI+02aRdz8M7P0JWdDzd+nvaGwtRlBgGQxUbn3wRkEhSPKR6Q8gGI0+fb2VjsY9ZTePQKymEdRIeRU3D/2ROJ3PybEyePfO0h9XU9Kb2OS1tCVmZV2jtVWUt2meTQccFEzJP+3oDyjAPRrqNzvvYN8zHLhAIBIIzj4awWiF3bpKdqzKTE39BfyuE3CjoaImqmU8F4+HQBnCmpTNmbzkpuyvRRWOE9dDmhFgwm6h3AhIK4/VNxOLpxEcu29u14l0CHlW4kiQd2aNL1R3BuFm43gQZ4xJ/f8fgcO1THDz4G2IxVVAzW3J69Wn0qFnm54xJZ/6oVM4dmzGoYzwRCgzLOOrkZDvliP8KBIITMcLeqgWCxNARjWmClEOv47qsFPQjYO17D9rKAfCmnUt7o1oGWInuw9fxNr74IzjL7gRaaEgy8vKcIDFJYsFBA3uUDKrIRkFCr8T48Rc/PmCzbe3takWb2bOeIylpRo99HfGMrXe/dh5jMoePt9dwrm5xJF2ilHRE8CQqnAkEAoEgUTTFLRCyBivbPG42HjbnIiuq348zpQmA3JIx5Ly/HvR6Vs21sy4/wN2l9/Hr1yVSFbjCshGdpD4bLRYLDkd3nNGVIXXV175H3viJ2PRh+OcS6DysdjC7Buf+jkFjwyvEYurSQr3eRpJrmrbPG4ry3t5GdtepAtoFEzL51KKSIRnnyTLc4yoJRbNEgCPEqGEoqgkEwxEhSgkEJ0FHJAaogtTBc6eeoPcZSMgD9dsB8OReDnsgKdNKwVg7m16FJEMIV3OQ9J2q2XhFZoCYpMccM+GTklgbKdZOVWpwD4gg1dD4Ku3ta4lGOwGw27vN0h9bU8nrO+txB9UZ1xTb8FpK2dfdJ1rsOaWzHzUm6YgTiUwpgUAgEAwUDx9u5icHa4nGHy3Zg5VtHuigJVLEgcjVKEoE5N3U7D4IQGaKWinPmJPD3y5sJSLryNnlAVzkSAo6CayKkRtuv5mMjAyMxu5Yo0uUSi8qxpaUDDuehbqt3dfNGdpYMRRWDdgnT/4TaannYTDYtX2/f+cAjxyxbC/NMYhm8yfB8JafTkTPyT4hSgkEJ4cQpQSCk6AjooofycYRWFVj21Pw0j0oCrRER1HrKQLAmWrGt/kFAMZEWsiqVtO8AyZ4f4aRuS0zsIdctCjdfhDXmcu59bLTr34XiwXZs+ebagAJGI1p6PXdM5S/eWsf/rAqFKbaTSRZh5coNdw52sy82+hc6p6NFIGUQCAQCAaI15s7NEEqyaBnhst+/ANOl/ZKePZThA/v5fm2fxFVrMRCm4gGPiIUX2Env/0uAPss7URkNd74T7VqvO5AzY53pacwevRoACLhENuXv0HA4yYcCABgtsaX9IU96s/ixXDxLyFjQmLv7xjEYn4CgRoCgUoAnI4JPQQpgOo2VVAbn+1kWn4yS8cPovWBNDxjjIESwrS5Pi2uGl73KRAMV4QoJRCcBO1RVQBJMYzA/2U2PwYobPB+nE2+G6EVYuF9NO7fi0ctTIPerd73ujkT+f2y/RSEsphUXUiVLpkKRa3QN9HYwYM//eKADCkcbkJRIkiSiZLiL5Caeo4mpISiMU2QeuBj05hbkopBrxuQ6/aLEVB9r1f0BEjxLDeRKSWAEVGhWyAQDAM64xnn/5xUzMXpLsy6BD+3970OdVtpjEwhqqhCk8XeglfVkhhb34qrqQOA3Wl+QE/UXwyKEQmFZGMlAFZnt4/UgbWr+PCJR7S23mDAZIsLPiF1qRzOHMjpXio3mMhymLXrLiQUUovTSJIJi6WgVz9PUBXgvnD+GK6cljuoYxyxSPQI/JTe4ZVAIDgOI/ANWyAYeEZ0ppSnHoCWnJvhoIzFoaOz9h08PjVoMcsxHPWqd9ObY/ejSBLWsI3dUiZrIt0eBLkWecCGFAqpfg9mcyYlJff2HG58yR7ANTPy0A92pZgR9Jau9Hkvw3MWUyAQCARnLp3xyb0CiynxghRosY07+3Joh6LJaXTWRfC2wNIZC7FsfwIlL4s3cpp4cYEOx+GbaPCXshAvheYynIpCSmYmc+fO7T5lq1pcJb2giMLJ08ifNAWDXg+RAAQ71E7mofO3DAbrNUHKaEwlJ+d6dLruV7315a2sLW+lvFk1P3dazszXwDNi0kxbvXcGjFWQMIRP68lzZn4bCQSDRFRWeKOlk+Wtaq538kjKlNr/FjTsgI4qAEIRIxBizlIT7zymClJzOmqx1UexhKP4TdCUYSM9aCfLl8duOUk71bhoLXcvnX7aQwoG69m1+8t0dm4GwGot1PY1uYNc+9c1NLjVZYROs2HwBakzgFNJFZeUI43OT/08AoFAIBD0hZZxnujJPTkGzfsI7f2QDe472dEwDznaSEf9FhoPlQFg9KhL7byLpvDo6BWMT5nM9ooZKBJM1LUQlaKMUTK46Z57epw66FOzoYqmzWTJbXdC2A9/nqUVigHAlOBlicchHPeRsloLWbjggx77ZFnhM49twhPqnthLH2ZeUsOBgdKQumMoEUsJBCfDCHrDFggGnuWtndy1u1Jrpw+WMWei8TTC0x8HReZgcCHb/dfQokSQo41UblQNz12GINn1fmJhHZtnjeGpGRVM9I0l0zMGcyTKVlQfp+/OMPG5m+4akGE1t7yrCVIAqSkLtM8bKtuo7Qho7Xmj0gbkmolleAcjSny2ustTqkd1m+E9dMFZiRChBYIzkYis4I+p2dRJhgSLUq9+GbY+wR7fVezwX6Fe3/cWjQfVQi0GnR799p0APN/5IQA7q2XC8a8Xi96NF8iZNlY7ZfWuHbz+0G8JelUxy2KPZ0O1HOgpSOnNUHxuAm+ub2Q5RGPja1q1YrM5p1cfXziqCVIfn1vI6Aw7k3KHtkJgL476ih/uYciRAlbX6j0JndY+uo9AMPQM3zhqhLxhCwSJoTa+7j7PbGRhioPP5KcP8YgGiM7DoMhgcrLR+znawi4UuZOw5ynK9qhPUJtiIBbWIUsSDy6tIGKQKK1RWBMpoiqWSij+9VGQajvelfpFONQIQGbGpRQV3YXTObl7yAH13+LcsRncf8NUMp3DeYbvOMvihhHKUWNSM6WEp5SgN+L3QSAQnCod0e7sHFeiRam6bQA0y+MBsDoUgu2qIFWEkayyKrqMpWqTY4COmG+Uul/XhkfXigS4/p+9846Pour+8LO9JJveQ0gjIfSuFAWRDiIqYkEFfUFBsTfE8lMUxQJ2XyuC7/uCXQFRpKh0RDpICwQIgfS+vc7vj0k2xAQIsKnM8/lo9u7cmXtn2Z35zjnnnpMc7j3kkW2bsZSVAiCTyYlu01bcYBOrAxOWCnf/Dgo1KBtem+TlLWP/gSe9bX//tjX6VFYrVivkvHJ9x2a0rKjSa9Zc5ivivWdK904Jmr6BtSkgGaUkJM6C2S2Gm18VYmBuWutz9G5GmMUQb3dwCqUnAwGBzn3sbP1VQK0QCCy1kJwjZjk/Ei3gVIpiwKYMIN0dTqWBJchRSo/UDhc9HY/HQXn5HnJyFwNgMHQkIEAsp+xwedieWcKeLFH8hftriAzQXvSYLY0L0mu17iNl55SQkJCQuHg8gsC4XRn8WSYuewtQylHUt3GhIreTOfQKMLvpPiyC3z4DpUZDh52HwemkqFsCKw0ncHTshDW9My5jJ+5W78EptxMikxPRNpXU1KpIKbtZzMHUa8yN9LzmevQBgWAugqy/xA66ENAY/jmTBsNqOwWAXp9IUNDltI6b7N1mtDl5adl+jheJFfcCdMpmZJBqmpzt0/vnNsmhIyFRNySjlITEWTBVhJv7KVpIgvOcPfDjFMjfj8UdSLazDx6PgFqrwC//JwBiFcW0O1qKTKPkzzQlSy8TSDbGYbCHEmqLofKW+04vD2mJaUTGJ1z0tA4eeo6cnO+8bT+/Nt7Xr/96kM82HPO2A3Wqix5PQqTWROeVOaU8kpCSaLpIQl9CoulT4HCxsdTkbfcLqkfDjcMCplwO5LRhh3k6JS4nLutadv0q5gTV+xvAKUZc/za1Bz8eP0m7omBcxi5oAY9M3HZNQgJJt9wCgLm0hOxDByjOPglAUGSUaJByO+HfvcEsFmVBG0hj4nSWABAePpw2yY9X2/b7wXy+2XbS2/ZldPuFcW7HV2OYzC7eUPfP85EipSSaLk0xb6xklJKQOAtmr1GqASrFNAT7foT8/eQ52/B90asIBQo8rmyspb+zuUAUNX7KAKAUY3Qac68/CMiYsj2FDQGpnDREgA1UHgdjxl7vs2mZTAcBMQ+Cv38aISFXeLcdKRAFbWyQjtggHWN7xPps3IviHNdzoVk4IsVJyryiSXaaMGt6NywJCQkJieaD5TQNtenydkTUV15OhwXe7QqmPHZb3qLUHYvHdQK3fSdFFfYY9bETYtdAPd8dXwLAjhIx95IBF26ZONfI68Z4D/vjazPJO3rE29b6VxjVLMVVBqnIjtDzX/VzXufAYjnGsWPvkZsnno9KVdM4VmoRjW1dWgVye+94rkhpIWkomir/0FBN8eFfQqIpIhmlJCTOQInTRb5DvJkb6jsHQkNhEnM2FcTciVCkQK6U4bHvwmnN93bR7BNLHq+OFg1Fao+KAyHJ/GlLANFuhb9g9+m0nE5xaV6nju8SGNi92rbyilxSz13TnuEdo3w67gXRAsLevZKpsnrh6ck6pZxSEhISEhI+wOKpMkpFauoxyrnkGJjyEAQoc4uGptRecvb9AXK5gs7Hsgk1isvXfmtjBURN57HFosdBmioLAKVSic5QFc1VnC0ui4tKTiEwIoqELhX6xC5GX6EJhHs31t95nYPjxz/0GqQAggJ71OhjrMiNmhYVwLiecQ02twuh+aurWpC0lIREnZCMUhIStfDq0RzezszzthN16kacjY+wFEOp6Cm0acX8WGndAzm26QgOoBv5GA7Y8Hc4sWhgTSexjki0OYYCl3ipCHIbaasoYXRP3+TXKi/fQ0HBSmy2SkEY5N12MLecXSdKyS61ARCgbTmXq3o1+JzHoSsTndcaGyXpKAkJCQmJi6AyUkpf39HmliIOW/uRp+yN06MGoYjCzB0AdGrfmZid6SjCwnjuJjcHAsrxd8RSWNibduUGegXuRiuo6HL55SQmJiKvqErrdrlw2sSE6DfMmInOUFGpzmkDU4UjrxHzSAEYTQcACA29iri4u6o59Q7mlrPwzxNszxS9if4tSEM1bSocexUtySYlIVE3pCuUhEQtbCgxel/Ha9X0CfJvxNn4gCXTYOf/cHo0HLCOZOceA25nJid2/ECJUazI0qqsGLdDxb6rUnnp8gwCPAEMzOqJ1R7HDrdYhaZbkJv5z9zrs2nt/fsBbDYxtl6h8EerFT2cLreHmz7a7K0WAxDs1wwNg01djdSyVM8bKSVZpSQkJCQkLoLKYjF6eT0apfIPUL7lJ1aWibmU3I49uCyryasojGewiI4t3WW92B+4CpCRd/xOPG4DUUoxeioIP0aMGAGAy+lkxYdvU5qX4x1C4+cnvtg2H35+DAR3xYbGMUq53TYcjkLsFRWLk5MexWCoXnRm7sp0Vu2vcq5GBzaDAjFNIFTK97JN0lISEnWhhSTKkZDwLZXeva+7JLOlT3uCVM3cfpu+EoC/TLew3ng3Djs4zSsoLDgOgJ/HhStPFFeHVeCRy2hvakOhLZVVzvYUCWJizKRg34Xf2x2FXoNUTMzNdO78EQqFDgCjzeU1SA1uF8HUAcmkRTWuR/J8kNWirJriqr/KvFcyr2Y6bZJN3aAm0SA0wa+tRAWvvvoqMpmMhx9+2PuezWZj2rRphIaG4u/vz9ixY8nLy6u234kTJxg1ahR6vZ6IiAieeOIJXC4XEhK+pswlGm/qLQXCiT/h330o2iVGRek1NoIjxTyUGq2OUJMV/ZKfAdjmOQqAIMjwuEVN49KIEU86TZXB5tSBfRzcuJbcI+kABEVFI5dXzD/jtyqDFEDq0Po5r7PgchnZuKk/mzYPwOksAkClDq3Rr9jsAOC6rjG8MLo9t1zWnCpIVzjHZFTXIk1Yl1RqPKn6noTEhdHMn7QlJOqHFpXg3O0EcwEAueG3QqYVv0CwlYjCrV1pAaF5NmQ2Bx7gt+QMQIYRG9meqqSZPfzM3H39AJ9Ny2EX56RShdIu7ZVq24wVBimdSsFnE3v5bMyWzIVVjqnNeFaZU+oiJyQhIVFvbN26lY8//pjOnTtXe/+RRx7h559/5ttvvyUwMJD777+fG264gY0bxbw3brebUaNGERUVxaZNm8jJyWHChAmoVCpeeeWV2oaSkDhvDpisTNx7zJuXM05bP5HOQvoqSlyxHLIOBCA2NQizyU3BMejWKomQLX8DUOIHH7U+AsgQXAHECdBKdZwEhahDEi5L8x7TZhYj5UNbtabfLXcQ3aZt1YAOs/h39DvQ+WZQ6erlvM6G0XigwhglQy7XEBx0GRp1RI1+pgodNa5nHP3aNP/k5k3RQXJ2mSTUpZNEC6cpfm+bKpJRSkKiFswNlQehvtm5ENJ/BQRQarFYBATBQ/dOR1l1HLRyJ8mnSvG45Kztk8SvqZk4/YOItGiJNMVyRBAjo17sH8KEkaN8MiWns4zME59gNosVbdTqEO82h8vDX8eKOZwvikJDc8uB0BTDoc6CIKvMKVUt07m4TfA0xpQkJCTOgclk4rbbbuPTTz9l1qxZ3vfLysqYN28eixYt4uqrrwZg/vz5tGvXjj///JPevXuzcuVK9u/fz+rVq4mMjKRr16689NJLTJ8+nRdeeAG1uhkuk5ZocvxRbOSEzeFtXxlcP5HOhw+rWFX4HgAeVzZlpSWc2LMVAE25qCNkU29nSvBXqGQ67Pl9cJnSuNmRT6GugAibh1unP0JwcDCCIGAqKaIsX4wsDIqKJqVXn+oDVhqldCGNYpACsFiPARAScgXdui6osf1YoZm8chtFFZFS/ppmpqOaPf/IKSVZpSQk6oR0pZKQqIXTK8Y0W/IPwJL7ANhsvJ3dlmtxuYuwl/+HVT+JyTv9ZQIelxwBGb93VZIRJGPs0Y7kCm044AigzKMBOUT6UFBm53xDZuZH3rZWG+t9/d7vh3nv96ryywG6eqzWc6F40zDVyUfWpKk0SiHmtAdkVRFXzeEEJC4xmpfRt76YNm0ao0aNYvDgwdWMUtu3b8fpdDJ48GDve2lpabRu3ZrNmzfTu3dvNm/eTKdOnYiMjPT2GTZsGPfeey/79u2jW7duDXouEi2TyhQI10cE8X9tYojW+NjY+ff3sOwRcvNvBECtcmAqX8KJPaK2QSZDvVuMkioIUYIANksojsKhqAWI1hRQCBjCIwgODgZg+ftzObBhjXcIrd9puUTNRWDMAYu4XA5Nw+cZLSvbxb79j+JwiNFden1ijT77s8sZ+e76au81uQTnTbTC7/ncXWr3PwrVDiSrPL8mdp4SlzhN2HnexK5UEhKNywGTld1Gi1dQBTfnXFJlYilj/MLZXzwat6DC4zoKQoVoEwRCs0RPYlEAHAgS8y0oFAH8YUnBjtKbda5dm3ifTctiFscJDu5LcHBvIiOu8W47ki8uKYwL0RHur2FCnwSfjXupcF7y5x+RUtX3lYSURBXSt6Fp8NVXX7Fjxw62bt1aY1tubi5qtZqgoKBq70dGRpKbm+vtc7pBqnJ75bbasNvt2O12b7u8vPxiTkHiEqAywXmURuV7gxTA1nlgK8NUUYSl0xUaNv4gapsUQwj6vw+gKhX1xKt5/4UIGW57FP3cCkYp1KgU4r0vIDbGe8isfXsAkCsUqLRaknteLm4oOwnvdgN3VeQX6oY3SuXl/4zVmultBwf1rtGnMspcr1YQE6SjQ0wAiaF+DTZHidpzikpISCLq3DTjJ24JCd9idLkZsT0dm0e8coSrlQTUV3LOhsBaDIA9pCu2DFEUdoreyI4jkKopIGlrOQqVkoPxWn7uJoqtAEcAha5g0SAFPDgohfbRBlqH+y5SylqR3Dw66nqio2+otq3UIuafeHxoW8Z0ja2xr4SPqREpdXpOKekOKiHRlMjKyuKhhx5i1apVaLUNV0lr9uzZzJw5s8HGk2j+WOo5BYKr4DglzkRK/XqBHVQB4lK6wIhI2v65F49RNEit7SjjRDgIghx5cU96aPeSrjB7j6MNrjLY2EziPv96+xMCI04z3OYfEA1SciXoQyE0BaKq53JrCGy2bAAS4u8lNnY8Wm1MjT7lVlFDDUgN58PbezTo/BqS5qBPTp+hIAgXmPdTQuLSQTJKSUhUUOBwYfMIKGXQL8jATVHBjT2lCyPjD1hyP5SfxOwO5lhZdwSPFbk8nd0ZxYAcg8uOXABV23jeHlZGkaqUa/d25KCuL+tcUQBEekp5dEiqz6Z17PgHnDjxGS6X6MnT6uK82z744wgr9uVyOE8UhU1y2d4F0TSFk3cFIv98cRrNQPRJSFxKbN++nfz8fLp37+59z+12s27dOt5//31WrFiBw+GgtLS0WrRUXl4eUVHidT0qKoq//vqr2nErq/NV9vknM2bM4NFHH/W2y8vLiYuLq7WvhAScXizGx469jN8h/wA/ZU0l29kRALfzKLlHxCgpjVaHxyhqjHnvjGFF7s8IZVdiyruKIIeOcr/t3kPJ5XLi4+NZt3A+6Vs24nKKzjmt/z+ccLYy8W/rPnDnMt+eTx0oKfmTY8ffp6RkMwCBgT1qGKQKjHaW7clmbbq4tK/Z5eNsAcj+8bdaLilBaNLLpiQkmgLSVUtCogJTRbh5uFrF112TG3k2F8Hf30H5SYzuMBYWfIC7QI3L9jtu+y4q1+Op8oKBXE66IyhSieHgufpObHckeQ+ToDD5dFrZ2d/iconLPlSqYAz+YrUbj0fgzVXpuCsi1GQySA5r+NB4X1Jr+LZMRpMzUsn+YZ4SqnJKNbGZSkj8g0vvGzpo0CD27t1b7b277rqLtLQ0pk+fTlxcHCqVit9++42xY8cCcOjQIU6cOEGfPmLC5j59+vDyyy+Tn59PRIRYsWvVqlUEBATQvn37WsfVaDRoNJp6PDOJloTN7aHYKVZ+Myh9GClVlAH/vR6LO5Bs5wIAVOoCbCWLObhB7CIvFHM+OQN0/FW0W5yPKRrcfnSQixovwKNjxA3DSGrXDrVazS8zn0SoyCMaGBmFWndaAvOMP+DAUvG1tqoacUOSfvhlTKb9AMjlWgIDu9boM2fFIb7eluVth/o309/rPww3zfEqL1Tqv9Mce0LVuxISTYMm6HiWjFISEhVUefaacXJzgHIxxDsr6TncBeKyPYWiFDcQ6TESnGMnuFD0/L3V6y9Aht6lo8QdBEC4zEyPIBf3DbvCZ1MSBAGHQ/TGd++2iICATigUegCMNpfXIPXZhJ7Eh+ppHar32diXChcieIR/JjU/7SCVIl1CQqJpYDAY6NixY7X3/Pz8CA0N9b4/adIkHn30UUJCQggICOCBBx6gT58+9O4t5p8ZOnQo7du354477uD1118nNzeXZ599lmnTpkmGJ4mL5pWMbN49ke9tJ2h9+J0qygDAqm4FgFYr0HWIhjX/ETdHlxhJOCymB0gPslLiFF8nuUN4Dj0ueRFrATVKUlPao9CocVgt3nvdTf/3ChGJbaqWWZkK4H83QGUlWr9w353LeWCziflBExMfJiJiOCpVzSj+7DIxUuyyxBDSogzc0dt3eUAbn8oE4s3DrOOdpez0SKnGmImERPNCMkpJSFRgcoletGZrlCrNEqOkMn4HwCiPBwQ6dpdzZOMRHChpbypAVyiQlZLIZ5edIDNKid6hI7ywLwfc0QBcFqvlg/uv9dm0LJbjFBSuxuNxADICA7sil4tC9WSJhc0ZomdTp1IwuH3kWY4k4WsEb6LzKmTyZvr9l5CQ4K233kIulzN27FjsdjvDhg3j3//+t3e7QqFg2bJl3HvvvfTp0wc/Pz8mTpzIiy++2IizlmgprCqqSoIfq1HRNcCHDiZTHi5BTZHfAAC0gX4Yi8TCKZ1S2hP33U8A/NlZy7e9nDiN7fDYWpFYlMDGwE3YZGK+pcCkcBR+osPOZhbzS8kVSlq171Q9748xRzRIKXXQ5Wbo+4DvzqUO2Oy5mIwHcLlEJ2Kr2PGo1aG19q3MJXXPlUmSjmpsZNX+AM0jB5aERGMjGaUkJCowVkRK+fs6B0JD8cM9cGITJa5YtphuJf+gErd9N5m79lBuEw0NihJxCdnBxCAOtM6id35bDpaM5m9PleetZ7ukMwxw/rjdNrZtvwmnUzQ86fWJXoOU2e5i2FvrMDtEY2CQvnnkkZLVzMjUfJH9I8xcOO3sJBElIdHkWbNmTbW2Vqvlgw8+4IMPPjjjPvHx8fzyyy/1PDOJS5HKiPPvuibTJ8gfhS+iW2xl8PcPWP/+nYX5n2HPMyAIHhSKfI5s/RMAjasisfqN1/Nmyk+ADNuhceDRkyoUYKwwSMlkMtq0TcFYXMi3Lz6DsbhQ3F+vr5mI2l5hYAuMhdHvXPx5nAdut5WtW8fgcBRWvCNHqay5fPC3A3ks2HSc9OaUj/OfEdq1dWmYmVQf8wIGPZtKqi6hJD0lIXEuJKOUxCVPts3BzIxs9pnE8OdYbTO4qf8Tlx2ytgCwS3kfGbb2CFYzTstKCiweQI7S7UZZKgq3tbGHAYgrD+EvQazilGZw0yUhnPED2vlsWmZzutcgFRrSn9hWt3u35ZXbMDvcKOQyOsQEcHOvSydxbn0afM7n2JVZDqppsYpGwfGjbP7+S7oMGYk+oHFyaUg0PlLFIAkJibpSmZszVKX0jUEKYPMHsPY18u3dsQsVSchdWzm1b6O3i+f3PwD4IncxpCgQXHoSXQpuk2tJ8texDohRhPKvGfeiVCrZv/4PSnJOefePTk2rGs9hhj3fwMltYrsRckmVl+/1GqQMhg6Ehw1BLq/5yPbub4fZfVKMpJLLIC5EV6OPRMNS27de8vFdukgSqu5IRimJS57v80pYkl/qbXfyb4b5jIqPgeAGtYFiZW+gnMT2Dg5uEo1Q7XMKCDLayYvwY0drC+mRVhBklKvU2J3iZeCFa9Lo3cV31fYAnM5SAPz90+jadX61beU2MRFqVICWpff7Ln+VRN0RvDdLwft/tVYUtcXZJ9n0zUIEj4e+425rlPlJSEhISDQfLJUR50ofRpyXngDA6NcNSiChYyB2o41ju0ArVxBUXEaE0QJARpR4U3MaOzLeEcAgrZy92AAIiAxGqRT1js0kVuhL6t6LgRPvITDitCVvO/4Lv06vauvDfHcudcThFA1SQYG96NHjqzP2K7GIEWCPDkllYNsIogObt1GqWT+/y6pbnmpU35OQkDgrklFK4pKnrCKX1NUhBibEhHF1qOEcezQhPB4xEeextQAIYakUHxDFWZh8BwBx2lIS8stBJuPNSa04aMik+8kYsl0DWWpth6PiMhAb5Tvh5XbbOXrsLcrLxeo3KmWQd1ux2cGq/bkczBVFYYsuXXyaEKm1Il+jUxEpZXOACtROaB0cQr/rbyZjzw5yMw7jsFoaeY4SEhISEk0dp0fAVlG0xKe5Oa2lAJSH9IeTEBBh4HCGWDilp1tFQGYe5i5tWO6fwY6YJIwH7wJBg1OdzxeadK+lwy86kKJTWexZ/SvZ6QcAMISGExQVXX288ooIqoj20Kon9Jzku3M5BxZLJpknPiY/fzkAqjPkkKqk3CYapUZ0jCIlshlp1ybMxUey11J9T5AKx0hInIsW/DQoIVE3jBVGqW4BeoaHN7NlSsYcOCqGra8ufZBDuQPxuPNxmr5lwwYxgaeqSPRYunQBFGnFHAmJzkTW2zrgQRSOncNVtIqoWdHlQsnO+ZoTJz71trW6qqV5L/98gO93nPS2QyoSjkpcJOdh8/LmjZKLrxSZ2dARogtknLpzGkF6Pa0euIfcjMOSg0+iCdEUDbsSEhIrC8vYViZqDo1cRpAvIqUO/gIHlpK19xRryj+kPDcAwWPFZcukJFvUENpyUdO82y2PndEKHCWRIGhIdctRKbK9lwylUkmbNm3Y9O0i0jev9w5hCK3FGVeZS6r9dXDV9Jrb65Gsk/PJzv7a2w4I6FyjT165jQe/3Emx2UFpRaSUoTmmnWih1OqAlHSUhMQ5kYxSEpc8popwc0NzTHBeJgozm18qh3IHAuC270XwiOJQJghE5IgCa3tcOQUq8Rzz5EF4kKPGxfLHBtE6pJYknxeB2SzmrFKrw0lIuI+IiJHebSdLxMibrnFBxAbrmNgnwWfjNkXcbjdOpxO5Ros+MAiVvz8qlQqbzebTcfQKD7EGBX4KzzmPrXY5aSUXKO3cBWXfvsgcAWgD5SiUGjwxMaKHz+1BHxKGXK32+Vwlmg9qmZtYg4JAldDo3wO324FcHgOAzWb3LsW5WFQqFYrmeP2XkGgC5NgdTNx7zPvcnajTIPeFnlj2MJjy+NvyJOXuKATBjcO4kB0/i5pGKZejPJ4FQL7KAsgIVbThWbuaDhoNv6rE68PIDlfRc2x/5HI5e775AoDU3lcQndKWjgOHVI1nN0FpJpRVREppGj7yyG7PByAiYiShIQOIirquRp/VB/LYcqzY2w7xU7do557b7cZps+EG9CGhyPz9AXx+PxJcDmINCiL08nMe2+kQNdTp89AGKnC55ciFEDzR0agCw9CLNkOsdnH+EpceToedWIMCpVzW6BoKQBCCkctjcDqVPpuPrzSUZJSSuOSpXL5n8GUOhIaiTBRkpdpOACiUcmIjMsjIgvbuPGL3m1GF+fP6cBf74gWUbgVKSyLLLf0AiJSZSQ739/m0HA5RMCUk3EdcqwnVtlXmknp0SCr9U8N9PnaDcc4QIhk5UVdTmp4OQHC7zlye3BZBoUSlUnHs2DGfTufyMDftB0Zg0HrOeexkl5tXAuTo5X64nngcf5udTmYBtzwNl+0ZZIJAgMGf7qntUet0Pp+rRPOhjc7FCwMj0KsVjf49EASBoMDnAThxIheZzHdLhIKCgoiKipISu0tInCc5dicC4pK96yKCuDEq5OIPKghgEYuklGi6gB06DdCwbYlokArwQOusXOSARQNFfgZsef0Jy+uEn9rCHkUOZUorCBCUFoVcLl4rHBaxoE3HgUNI7NqjajyXHd7rAabcqvcawSjlrNBOEeHDiYwcVWufMqto6biqbThT+ieTEumPWunD5ZJNBBkyrEnjST9VDPJyXCjocfMEBKVogPP5/cjl4YWBESjlsnMe2y0IvBIgrzaPdqNCQJCh5Hbcw5wkaJXEVViiTp465dP7lUTzwe0ReGFgBDJZPXxnLwCF/AaCAkdRXh6M2ey7+fhCQ0lGKYlLnkKHaCQJVTWjn8Pur+Cnh8Blw+wOJtPaFY+7BLX6CBlZpQCoTwqoPAKFMd3ZlroRvVtH7wPXs1zRxXuYXkFOn04rM/NjsnO+x2LJEOegqhKn32zL4q9jxWQVi5FSzaJ0cW3U8YLbL2oMpdH9iYiIQK/XYy4pxmK1gkqNWq0mKCjIp9PKN9ooMTsI1quJCNCetW+Jw4nK4cKgUBCrU2M2W7CVenDJHfibC1F4wBEShN1iQWcw4B989rwWEi2XErMDtdGGv0ZJbHDjFoEQBA9ms3i99vNLQCa7eEeCIAhYLBby88UIhejo6HPsISEhcTrlFY69eK2auWmtfXNQlx08LjyCHJsnAHARWLHSLiIxmZ7L14DdwfIeMja1k1OcdztuawKRbgXr/Xfgkrm9S6YCwoMoOHGc3Ix0TCWioUut+8e1zJhTZZDyiwD/CEge6JtzqQMnTy2iIP9XSsu2AqDRRNbaL6/cRnapaFhLDvenT3IzvDfX8Zn1mvBr8IQNJioiAr1/AE6bjbJCLYJGTOYeERHh02lZHS4otqCUy0mMOLuz1unx4LLYAUj0rygOozYiIENNMSqzDau/Gpd4uyI0Ng65FI17SeJweXAXmpDJZCQ2gbxvVqsKt9uCWh2JWn3xKWt8qaGa0VO4hIRvWZRdxPxThRwyi+GL4epm9HM4uAxcNoqccXxd9BZCgQKX5QfKy497uwRYHQD81ko0EIW6gihTB4Ab4nUuJvWK5MaBg306rcwTn+J0lgCgUPgTFHQZAEabk6e+30NFDlRkMrHqXktFoVTQKfwqIkKDCQ0VRaPTpMLpdCAolajVarRa356/yi4gs4NSrTnnsVVyBTKcKJQKtFoNeBS4TVZUcgGNXI4CEJQKPAoFapXK53OVaD6oXDJkVg9KdeN/DwTBg9MpPtFotVqfGKUAdDrxoSI/P5+IiAhpKZ+ExHlQ7hJTIAT4Ktrc5YDCdDFPpm0g4EIQBNxuMS2BVqsDu6hv/nu1HKdCjudwGENdKm6QufhTVpEntEMXwmMjCQ0J4aN7bq9WtEPr/w+jg61M/OsfBY8f8s151BFB8HD48Cw8HtHIoVQaMBg61Oj3yi8H+GTdUW+72ReJOVu0uVJG/9D+hIcGERoSDAo1ckFApVDgqVi27ev7kUfuQqZ0IVfIz3lshceDrMLgVNlXpbRXGKUUqOVy3EqFtyCfVquVjFKXKHKXB5nSgUwma3QNBeDxKHC5ZGi1atRq38zHVxqqmV/RJCQunDczczlZUblEK5eRqNc08ozOg4pqNJnJMxEqEpkLnhwAIu0mYnJM2MIj+TYtm+UdcwAZDoeGU4JoFb8sPoAJI3v7dEoej8trkOrc6WMMAR3RaERPVpHJgUcAtVLOI4NTaRvlT1Rg41+c6wu1Ro1SrkKvbh7h2pWOS5Ug1PRiSgk6JS4B9HoxcsLpdEpGKQmJ86DUKT6d+8Qo5bLDv3sjFB3liO0rADzuMlyWr1izQDRKKQrFaKdSPzBoUsk5lcYolYLH3Cry1KLhSSUoGH3ttcg1CkzFRaJBSiYjqVtPwlonEBLTqmrM3V97C8agbfhiN3Z7Lh6PHZlMSft2r2MwdESh0NXotzlDPG+lXEaQXs1VbX0bKdSk0MpRymXoVM1vOXXzm7GExMXjCw0lGaUkLknsHg+nKgxSn3VIoLNBR0hzWL7ncoh5pHL3AFBuD0YQnLTvUMLOjaKXrXtWLjKzjJ/7d2F5RzEcPaikKxmFIxE8AQAM6Rzv02kJgoDTWZV4MzT0KuRy8fP8/WAe6w8XAhDur+Heq5J9OnZTRC6IsqS55aeR7E8SlyrN7bcqIdEUyLTa2WcSl5NFqH2wJP/En1B8FKegw43oKLx8tJL1C6uKt4T/uR2A/EA4sf928GjQOZR8bdiETSbqOr3BD7lGfDCyW0RDldbPn+unP199vPyD8OM9VW1D7cvm6guz+QhFxWI1QK02lqioMTX6mOwudmeVklsuRvV/M7UP3Vv7rlpyk0JW9VdWex07CQmJJogvNFQzeAqXkPA95S43AuL9b2R4oG8qxdQ3ggCfXAX5+7B79By3D2DfHjf28i/YuVFM/in3eMAsnos7UBR0g3K7s6VsGIInAD+Fh06Req7qnOCzaTkchfy19TrsdjFSS6OJ9hqksoot/GvBNm/fcEMzika7BJCMUBISEhISF8LXOcU8dPCEtx2h8cEjRYmYeNcSdw3kg0qjwGYUnVopKWkkff8LJp3A5jQZv3b2A4eoKRLlLvJlThBA76ene68eOB129qxaTkHmcQA0+lpy4pWLFYzRh0GncdB1/MWfQx0xGg/w19ZrvG2drvZ8XJO/2MqfR6ucfmF+ko5qfGp5ZpAhiSoJiYugeawtkZDwMWa3mANBr5A3D4MUgK0U8vcBsNY0jdVlD+Nx5oNHNEipXG5aF5VTHhHFyssNfB/zFwBWt5USjyjG5t3Rja8eHOTTSi0lpVu9BimA6OgbvK9zykTPnkGjZFyPVjwzqp3PxpWoH6Y8/Sz6Tp0IiW5F63Yd6HrZ5bz44ou4KjN2XiBr1qxBJpNRWlrqm4nWgWPHjjF+/HhiYmLQarW0atWKMWPGcPDgwWr9li1bxoABAzAYDOj1enr16sWCBQuq9Tl+/DgymYxdu3bVefwXXniBtLQ0/Pz8CA4OZvDgwWzZsqXaMSdNmkRiYiI6nY7k5GSef/55HA7HWY+bk5PD+PHjSU1NRS6X8/DDD9dpPuvWrWP06NHExMQgk8lYvHhxrf0OHDjAtddeS2BgIPGRIYwfdTWnTmZ5t0+ZMoXk5GR0Oh3h4eG1fqZbt25l0KBBBAUFERwczLBhw9i9e3et4x05cgSDwVCn5P8bN27j5pvvJzY27qznICEhUb+sKzECYFDISdFrGB0edNHHdBZls7xkOj8fvBYAv0AnWfv3itusxSgEgd2JMt66XsHukE6ECy5moOVylWgN0KrUPPnkkwwYMIDDf25kzX8+Y9/a1QDog06LLhIEKMqAgor8URHtYMSrEN35os+hrpjNhwFQKPwwGDrSOu6uWvul55kASArz45ZeccSF1Fza13JoJnr8LNzzmKihwuJTad2uA32uHswzT/0f5nLrRR1X0lDNU0MFBxoYP+pqck41DQ21YcNf3Hzz/SQktG9yGkoySklcklQapfwUzegnYMwT/2oDOakYIL7UiDmcolXlDNl3nI6lRmbfquezq61YFeJyvgNCe2yIYfXtW4f7fFo2q3ihjQgfwYD+u0hOerRqyhVLJJPC/XhjXBd6JfigVHRjU2nErC1JZzPRU+ea5pB+/TiwZwcbV6/k/nun8sILL/DGG280yNzqwrkEB4jr2ocMGUJZWRk//PADhw4d4uuvv6ZTp07VRN17773HmDFj6NevH1u2bGHPnj3ccsstTJ06lccff/yi5pmamsr777/P3r172bBhAwkJCQwdOpSCggIADh48iMfj4eOPP2bfvn289dZbfPTRRzz99NNnPa7dbic8PJxnn32WLl26nLXv6ZjNZrp06cIHH3xwxj4ZGRlcccUVpKWlsWbNGtZs3so9Dz2ORlPlne/Rowfz58/nwIEDrFixAkEQGDp0KG63mGDYZDIxfPhwWrduzZYtW9iwYQMGg4Fhw4bhdFav+Ol0Orn11lu58sor63QOFouVjh3b8v7779X5vCUkJHxPlk28Ds9Na836y9vRzv8ijCXmIvjrU7J2Z3HU3ptSsz8u62ZyD71N7pF0AORlot6Rx8WiPPUM9twbuM/lYChyTIhL9PwNVdWtTCVidFFoq9b0GDWGQXdNrRpvyTR4rzusqLjW6oIufO4XiMslGvVCQvpxWa8lhIYOqNHH4xEotYif81f39ObVsZ0vkaXG4jk2p8AjucxT+YqrBwxm71/pbFy9kqmT/sVrc2fz2muvN+r8TkfSUA2nobbv2MU9Dz2OWlOVR7cxNZTZbKFjx7a8807T+T5WIi3fk7jksLg9HLeKBptmYZTyuOHAUti1SGwa4rAcd+BxZhETuIXyQqBEvIGX+QdTohKryPQ70YNVjqswOkVDVKIBAnyYzN3pLKegYAWFRWsA0PsloVSKgvBUqZX3fz/C4TxRdAXofJBrotnRfIWjRq0mMiKCIL0/k+66k19X/8bSpUuZOnUqDz30ED/99BN2u50BAwbw7rvvkpKSAkBmZib3338/GzZswOFwkJCQwBtvvEH79u0ZOFAsrx0cLHqrJ06cyIIFCzAajUydOpXFixcTEBDAk08+yZIlS+jatStvv/02AAkJCUyaNInDhw+zePFibrjhBhYsWMCGDRuYMWMG27ZtIywsjOuvv57Zs2fj5+fHvn37yMjI4LfffiM+XsyhFh8fT79+/bznmZWVxWOPPcbDDz/MK6+84n3/scceQ61W8+CDDzJu3Dguv/zyC/ocx4+vvhTkzTffZN68eezZs4dBgwYxfPhwhg8f7t2elJTEoUOH+PDDD5kzZ84Zj5uQkMA777wDwOeff17n+YwYMYIRI0actc8zzzzDyJEjef11UbAUmuxoQmIIPO03fM89VTlYEhISmDVrFl26dOH48eMkJydz8OBBiouLefHFF4mLiwPg+eefp3PnzmRmZtKmTRvv/s8++yxpaWkMGjSITZs2nfMchgy5kiFDrsRgaF/n85aQkPA9Jpf4ABXgi8jrNbNh66cYzaMAiI5xUl6WT9FJkCsUBNocpG4UKwnnB7airNwfkGGXlfGFdp/3MH4BVVX17BYxD1XrTl24asLd1cc7uVX8q/IDtR90vPHiz6GOuFwmiorWUlIqRnwoFTXLxFsdbm6ft4XjhWZv1eJLU0c1H4L0RlxWK3Ls6JQQFaHG5Ypl4m3jWb5qLctX/MIjjz8oaajzoCVoKKfLw1V+4dWMyY2poYYNu4pBg3qi1bY6Z9+Gphk8kUtI+I58u5Pum/Yx6e/jgLh8r8lzeBV8eyccXkm2oz1riyficRzGafqOg8dFz6HKJnpo8sI0XqOUypKMu8IgNfmKRN6/6wqfTuv48fc5cPApSiuElV5XlTx94Z+ZfPnXCbZlivOLCWzJ4eYtHEEs9+pwOLjzzjvZtm0bS5cuZfPmzQiCwMiRI72em2nTpmG321m3bh179+7ltddew9/fn7i4OL7//nsADh06RE5OjlcQPProo2zcuJGlS5eyatUq1q9fz44dO2pMY86cOXTp0oWdO3fy3HPPkZGRwfDhwxk7dix79uzh66+/ZsOGDdx///0AhIeHI5fL+e6777zep3/y3Xff4XQ6a/XmTZkyBX9/f7788kuffIwOh4NPPvmEwMDAs3rmysrKCAlpnIhCj8fDzz//TGpqKsOGDSMiIoJhA6/k919/PuM+ZrOZ+fPnk5iY6BVPbdu2JTQ0lHnz5uFwOLBarcybN4927dqRkJDg3ff333/n22+/PavXUUJComliqogfXXk1AAEAAElEQVQ49/dFtcrSTPGYfp0AiEhtjaW8IpeU0k2f/ceRC2BXwhKC8SBDKYBNa/QeQiaTkZqait1i4cjWPynIFPNTaXS15JKyiTqJf/0KTxyGDtdd/DnUkYyjc/h734Pk54vXVZUqqEafXVmlbM8socgsRrSkRRnQqlpIVdCzRZtXdmmgqfhyTIXcg0ZuQYYHmceNTGb3btNqtTglDXVRNFcN1a9vH0lD1REpUkrikmJ1cTmlFd49nVzOdRHNoIJJ8VEAzH7tWZL3Ip5iBR7XGgD8cKIvdxCj8+eNm6zsjD8FyFC6NWwjEYA2yjKevcb3UQVW2ykADIaOBAZ0Izy8yltRXCGkBrYN5+q0CEZ0ivb5+M0JQRCwON1YnR4E3AhyNxbHxeVo+idWhxub043VUf3YOpXigsP9BUFgzdp1rFixghEjRrB48WI2btxI3759AVi4cCFxcXEsXryYcePGceLECcaOHUunTuKDRVJSkvdYlSIhIiLCu+7daDTyxRdfsGjRIgYNGgTA/PnziYmJqTGXq6++mscee8zbnjx5Mrfddps3F0BKSgrvvvsuAwYM4MMPPyQ2NpZ3332XJ598kpkzZ9KzZ08GDhzIbbfd5p1Xeno6gYGBREfX/H6q1WqSkpJIT0+/oM+ukmXLlnHLLbdgsViIjo5m1apVhIWF1dr3yJEjvPfee2f18NUn+fn5mEwmXn31VWbNmsVrr73G90uW8eg9dxAd8Qvx11b9xv/973/z5JNPYjabadu2LatWrUKtVgNgMBhYs2YN1113HS+99BIg/vusWLECpVKUHUVFRdx5553873//IyAgoOFPVkJC4oJweQRO2h0YK7SULyLOi4vl7C67j5PqXggeI6ayUqzlouFImyVqjW+vVLC8TRtsjssZYVVxhVxJoVycw6gug+k2ujdKpZKf3pxN+paN3mNr9H5VA2XvgsLDYBUdZmgDL3ru54vFchwAf7+26PQJxMTcUqNPeUXqg3bRAbx9c1fiQ2sxrF1iCIKA1enBoxD/zX2voVzYnG7cHqHGsS9URwmCwPpNm1iz7ncGXz2EpUuXShrqPGnuGurnX5bz6D13MO/rn+g0bpS3r6ShaiIZpSQuKUqc4s3sxshg3m8ff47eTQSL6C0sCLseT4boKVO6/sYNpOYUEp1vIbd/b7YmnwRkxBamkG4aTIkgGtw6tKofj4HLJSZYbx03iaioa6ttM9rFG/qA1HDu6JNQL+M3J6xON73frem5agj2vzgMvfr8LvXL160jLikVp9OJRxAYP348N9xwA8uWLasWhh0aGkrbtm05cOAAAA8++CD33nsvK1euZPDgwYwdO5bOnc+cOPbo0aM4nU4uu+wy73uBgYG0bdu2Rt+ePXtWa+/evZs9e/awcOFC73uCIODxeDh27Bjt2rVj2rRpTJgwgTVr1vDnn3/y7bff8sorr7B06VKGDBlSp8+iUiScjYULFzJlyhRve/ny5d71/QMHDmTXrl0UFhby6aefctNNN7FlyxYiIiKqHePUqVMMHz6ccePGcffdVUtN/P2rlqPcfvvtfPTRR+ecz/r166uFmH/88cfcdttt59zP4xEjH8aMGcMjjzwCQKs27Vi/YSMLF8zj5tOMUrfddhtDhgwhJyeHOXPmcNNNN7Fx40a0Wi1Wq5VJkybRr18/vvzyS9xuN3PmzGHUqFFs3boVnU7H3Xffzfjx4+nfv3+dz2H8+FvPeQ4SEhL1y617MlhfYvK2L8oo5XFD0RG2Z6SRbhuAYHFjL/8f+34Xk0IbQsPxOypGPCUNmkHOriA6RGi4zWymTGHkhMIGAkR3be19WCvJEY1YYXHxBEZGkdqnIteKMQ8+vRqE06I+GiWXlKidkpIeITy8+n3I5fZwON/EoVwxAiwyQEPbqJrL+y5FrE4PA+cfPu2dPQ029vnqqOXr1hHfrptXQ10/+lpGDR/BitW/ShqqFlqyhurQsTOr/ljHN/+bz12nGaUaQ0PV5RwaE8koJXFJYakIQW0Wy/ZOboMtH8HebwGwCGG4nSfQqPZgdtlBJiO4WAwPdsnEi3OcNQr/4sF43PEEKD30TI7g6bF1T+JXF3Jzl1JY9Acmk3gTrcwjBbBoywn2ZZex60QpAP5aKQdC80L0BA7o1YvX33oDwekmMbkNoTGxLF269Jx7T548mWHDhvHzzz+zcuVKZs+ezdy5c3nggQcuemZ+fn7V2iaTiSlTpvDggw/W6Nu6dVVpbYPBwOjRoxk9ejSzZs1i2LBhzJo1iyFDhpCSkkJZWRnZ2dk1PIsOh4OMjAyGDRt2zrlde+211YRmbGxstXm3adOGNm3a0Lt3b1JSUpg3bx4zZszw9snOzmbgwIH07duXTz75pNqxT69UU1dvWM+ePavtFxkZWaf9wsLCUCqVtG9fPbIyMSWVvdv/qvZeYGAggYGBpKSk0Lt3b4KDg/nxxx+59dZbWbRoEcePH2fz5s3I5eK1dtGiRQQHB7NkyRJuueUWfv/9d5YuXer1aFaKYaVSySeffMKtt956QecgISFRfxQ4nF6DlFYuo3egP620537oPCM/ToG932J0i/lokjrIOLDRikwuJ9QvgPgT2QQYxQe9ebstQBCyjBx+DzuKRyZ4M2H7B1ddG+1WMen50CkPEp1y2sN5aaZokFLqIO4ySOzfoJFSFssxysv3UF4uVtBSKmuO/dBXu/h5b1U14wBJQzV5BEGoEUU1oFcvXn3tRZQqPeEhISiVSlas/u2cx5I0lEhL1FC7tm6p9p6koWoiGaUkLiksFTkQmoVR6vdZcPQPbB5/1pZP4UhuAi7LFzg9RSCToXa6cPoH8leCnQ96/wzI0NmUlApi/qahreTMuevCkgueCUEQOHBwBh6PzfueViveiLJLrTz9495q/aMCtEiIod9/Ptgdi8WCoFKj1WgJDvHt0tHcMhuFJjuhfhqig6o+d90F5KHQ63QkJSZiN1lQKsX927Vrh8vlYsuWLd7Q86KiIg4dOlTtBhwXF8fUqVOZOnUqM2bM4NNPP+WBBx7westOz02QlJSESqVi69atXhFUVlZGenr6Gb0/lXTv3p39+/dXS/h4LmQyGWlpad5kkDfeeCPTp09n7ty5zJ07t1rfjz76CIvFwoQJE855XIPBgMFQN2+2x+PBbq/KNXHq1CkGDhzorcZSKUAqOZ/zq0Sn013Qfmq1ml69enHo0KFq72cezSC2VdwZ9xMEAUEQvOdlsViQy+XVhHplu9KTuHnz5mrfhSVLlvDaa6+xadMmYmNjaz0HQfAgISHReJRWRJsHKRUcvLLTxR3M44Z9PwJgcocCENNOz4GNEBQZRdffNqJ2ir/5Uj8ZJ9xhIIdEXSgeWQZyQUanTp2IiYslKCiI7PQDFGQex1ouRiJpTn8Idzmg7KT4OrwtTDy3k8WXeDwutm0fh9NZ4n1Pq42t0W/3yVIAQvzU+GuUXN+tZp9LFZ1Kzh93peDRiho3KirKp5UIrQ4XGQVmVAp5jei089VRep2OpIR4gmKTsJZbMJeUkNImWdJQZ+BS0FDRsY2voZo6klFK4pKiWRmlyrIAOBjxHEfyUxEEF4KnCIC2hYVEFFpYM7g7/+28ncoIlyxrD/I9YtRUcrh/rYe9GNxuk9cg1abNDPS6BPz9RU9kgVG8mAZolUy6IomoQA19k0N9PodGp+ImIZwlSWfNXWToVQoElRxBpUCrVpz3krpzoVMr0KoU6Orh2CCuZx8zZgx33303H3/8MQaDgaeeeorY2FjGjBkDwMMPP8yIESNITU2lpKSEP/74g3bt2gFi1RaZTMayZcsYOXIkOp0Og8HAxIkTeeKJJwgJCSEiIoLnn3++xs24NqZPn07v3r25//77mTx5Mn5+fuzfv59Vq1bx/vvvs2vXLp5//nnuuOMO2rdvj1qtZu3atXz++edMnz4dEL2Br7/+Oo8//jharZY77rgDlUrFkiVLePrpp5k1axYdO3asNu4/xQZAhw4dUKmqe7TNZjMvv/wy1157LdHR0RQWFvLBBx9w6tQpxo0bB4hi6qqrriI+Pp45c+Z4yxyDKLjPRqUHzGQyUVBQwK5du1Cr1TU8dKdjMpk4cuSIt33s2DF27dpFSEiIV9A+8cQT3HzzzfTv35+BAwfy3ZJlrFv9K18tWQ6IywW+/vprhg4dSnh4OCdPnuTVV19Fp9MxcuRIAIYMGcITTzzBtGnTeOCBB/B4PLz66qsolUpvBaHK70Ul27ZtQy6X1/i8a56DhaNHT+Dn5zjjOUhISNQP5goN5ZPKxbYyzE4DRa54zLJIPO4SyvLEinlKf73XIDX7Vj37FJcTb1Nxg0vL5UobPwNa1Fx3w/XI5DKsxnK+fuEpPKc9pGn9Kx5yy07Bh33BViq2dQ2fS9TpKvUapEKCryA0dAA6XU2DU5lFzCX17dQ+9aLhmg1CzdcymQydSo6nwkCkVyt9apSSAVqVApVCfk4NVfuo/3hXAIVCiUqjA8pJSkjgmpEjJA11iWmon39ezrrVvzLvm2VAU9BQZtLTD6LRlJzxHBoLySglcUmw22jhqUMnybCKBhW9vAkbpQrSIWcXFIkXvgJlN8BMkF8BeaUgFzwknipDDuRWRH/3KEphe/F15LtEI5ASD9cM6O7zqTmdYuJRuVxLfOvJ3vfLrE4yi8WQ+ZggHQ8NTvH52BKNz/z583nooYe45pprcDgc9O/fn19++cUrJtxuN9OmTePkyZMEBAQwfPhw3nrrLUAMx545cyZPPfUUd911FxMmTGDBggW8+eabTJ06lWuuucZbzjgrKwut9uxRdp07d2bt2rU888wzXHnllQiCQHJyMjfffDMArVq1IiEhgZkzZ3L8+HFkMpm3XbnWH+CRRx4hKSmJuXPn8s4772A2iw9FX375JbfcUjMBbW3vZWVl0apV9fK6CoWCgwcP8sUXX1BYWEhoaCi9evVi/fr1dOjQAYBVq1Zx5MgRjhw5UmP/cxk9u3Xr5n29fft2Fi1aRHx8PMePHz/jPtu2bfMKGhCr9kBVaWmA66+/no8++ojZs2fz4IMPkpySytyP/0Ov3qJnV6vVsn79et5++21KSkqIjIykf//+bNq0yZvjIS0tjZ9++omZM2fSp08f5HI53bp149dff601Ier5sHPnPq65ZtJZz0FCQqJ+MPkwBYLHWMS3RW9g9oTidh7FafqRbT+J2xQq8YHaopPTpvt/WbfxGH2ULlops9gpiJFQ+iA/ZHKxn7GoEI/bjVKlJqFrD2LatkMfUCGQsndUGaRkCmg78qLnfr44HcUAqFTBdOv2RbVtLreH+xbu4HC+yZuPM1h/EUsiJZosH37wPk//3wuShvoHLVlDpaa2Ze7H/6H7ZX2AxtdQO3bsZcSI8Wc9h8ZCJpyPu7+FUF5eTmBgIGVlZS0mY73E2Xn+yCk+zqqyoH/RKZFhYQ1fdeWcOMwwJxUcJgQBTIrWfG9+n+KsLxDc+QDo7U6uOngCh17PxAecuOUCo3OuYlGpmIT4hdHt6Z0cSlqU777bdnseO3dNxGwWk0xqNFFc0U+sbvP7wTzu/s923B7xUnJ5YghfT+njs7GbGpkT78SyZQsxc+cQOGpUtW37XvqTQLOT5WH7SO2fwuWtYtDGiN6M8oJ8zBYzgkqDVqv1ecnanDIrBUY7Yf4aYoJ0Z+1b5HBx0uYgQKkgUa/BbnFSVmBFKbOjNuejcAvYwoOxmyzo/A0ERp7d4+RLzGYzsbGxzJ07l0mTJp17Bx9TXFzMoEGDCAgIYPny5ej1l3bVo0KTnexSK4E6FfGhfufeoR4RBA9G4z4ADIb2yGS+K5Fus9k4duwYiYmJNcS8pBmqI30elx6CIPBuZj6bSk2sLTHS1aDn156pF3YwcxEsvpeiw5l8lTsbAIVsHebibQAYgoPw0zvo/steciI0/KvvywDc6CnGX5/hPUxycjJ33HEHAFn79/LNzBmExLTirrf+kch415eweCokDYTbvgNFw/njBcFDcfF6cvOWkpu7GL0+mT69V1brs+dkKde+X1UtMCpAy8anrkYh910UUFOi5MsvyZ35IoahQ2n17jvVth398QjqLTlkG+wYh8roGRlCYEwHUKqxWyyU5Gbj0Yr35OjoaJ8v3zucb0KlkNMu+uzXNZdHYJ9JTMbf2aAT51GSCdZiTE4/FEYHFoOa0PhU7BYnpbl5CIIVQ2gofkH1U3yoEklDNS2cLg8HcsuRIaNTq8Z/7rRYjuFymdBqW6FW+y5q1BcaSoqUkrgkMLvEMPDx0SHc3SqcNL8mmuvImAsOE8iVbBSeYnd2D9zOo16DFEBcUTlrBrXn29RDuCtEy2qHmNdJi5M7+yX6fFrFxRu8BimAyMhrvK+3HCv2GqQ0SjkjO12cFb8l0JKkZH17LXbu3MnBgwe57LLLKCsr48UXXwTwhrM3NCEhIaxevZoPPviAzZs3e8ssX6q0pO+yhITEhbHLaGX2saoE3NGai0jAfehnOLwCs70rAKEBZahD4FgxtG+XSsJXy71dczQa7+t4lYwiwODU0nNoHzp27EhZfh5r/zuP0jxxbhq/WgzndrGSHdrABjVIARQW/cGePfd425XpDk6ntGLJXkKonjfGdSE1wtBiDVLVaOExEUK9qycRSUM1cS6Bn7KvkIxSEpcE5oqQ8zQ/Le38zx5F0qhYxJxRBMSQkdcXsCN4SgEIcVrofigPZYeOLOhooUAvI8wYyClbT4wWMeFoa72rXqblcIqh52Fhg0lp8zQ6XVXCvsocCI8NSeWBQdKyvcaiOd/35syZw6FDh1Cr1fTo0YP169cTFhbWaPMJDQ3l//7v/xptfAkJCYmmRJFT1BbRGhV3twpndETQhR+s7BQAtoh+CMVOBL3A8V07ADDlHgeg2B/yAjT8kDSYJA9cqXCjl5dQBMgC5AwYMACAzd9/yeG/NnkPHRR1WgWwP16BU9uhRDwmmrolUvYlFstRcWh1JAEBnUmIv8+7zeMR+HHnKdami1H8UYFaeiXUbxSNRMPhETyU2krRUBUpVF92OElDSbQEJKOUxCVBVXJO3y338ClFGfDD3aKAAtzaCIzFFjzOTGIVf5AJ+JU7Ubs92C2tOKVZD0BS4VUcs4lL5W5I8+Puwb6utufGaNxPQcEqAHS61uj18QDszy7nnd/S2XGiFIBAvVS6uNly1hD4+vX2devWje3bt9frGBISEhISF47JJTr24rVq7msdcVHHshUXsKb0cYrMPXCafyb7wFHvNpVFzE1ZOKYfj5qvB+AFoZDjmmNkVfTp1KcqF4zNKEZBtenVm3ZXXEV854ptZSdh7WvVBw6Ov6h5XwhOh5hMOCJyJKkpz1bb9tfxYh77dre3HW5oohH8DUlz9q5VUHkKbsHNKdMpwhQX93s5F5KGkmgpSEYpiUuCJl91b/8Sr0Eq096NI2VTcNt347KuIbOii8bppjAymA8HbsekENey77SL+Yo6qkt4885RtR35ojh85FWysj73tv30Sd7XCzYdY8W+PG+7sfPNNDgtO/JcQkJCQkICqHLsGZQX4dgzFcChnzm8TyDD1g/B6sHjFA1SOn8DIXo1bVf9BUCpQowuUQIuuah3dDIlsckJXN5VdL65XS5sJtEoFZ2SRmrvK06bcKH4VxsEw18FtR5Shl743M+T8vI9nDr1Jdk53wCgVtWsRJxTJp5XVICWIe0jmdi34Y1mEr5HJVPgBpQyBeDBLbhpou5wCYkmhWSUkmjReASBkzYHBRWh5xclqOoTsxi+bWt3B7+svQFPCXic67ybI0tNRPTrxj1tq95zmVIwCkEARGs99TIto/FvANTqMPS6RCIiRni3FZvFZXvjerRiVOdormzTeKHCDYoPE2tKSEhISEg0dSqr7vlfjGPv16fg7+8oKpsKQECgnYJScVO8wkjSqqok5l8XKEADkR4ZqMWxOwVFM/L22wH444tP2fHLEm9/rZ9/1Th2ExRW5MA0REHXWy98zhdIxtE3KS5e720HBfWq0afcKurS7vFBvHTd2cu4XzpU6KvanH7NRHpVTlOj1AKWxpyKhEQtNN0fkmSUkmjRTNh7jNVF5d52kk5zlt6NgNMKh36BrZ8BUKrtiscDapUbj+cUDuDyI6cINdvY1raHdzdD5liybZ1R4qadvJDHx9RPtTtHRRnjDh3eJiS4+hjlNtEoNaBtOFe1rd/wZIlGRIoIk5CQkLgkOWlz8OnJAjaXmgAIU1/EY0NFbiezJgmskHZFNAWZoNJocZ8SI6Z2J8rYGB/Hft0VBHkEhinsmCsipQyJVbksD2+pyiOl0uqISU0TG8ZceK+HWDAGxEipRsBZoZ1iom8iJOQKgoJ6eredLLHwzbaTbDkq5hA1XEzSeIkmSNN96JeQaMpIRimJFs3WMjMAGrmM3oH+JOjUjTyjf7DiadgmLo+ze/Tk2xNwWtZis1etD/e3O/HIFeyPFivwtTG2Za+lO6Dg3jQnj935L59PKz9/BSWlf2KxHAGqh54/+s0uftmbg72iomGAVhJUEhISEhISLY2Ps/L59GSht93ZcOHl3XOKAjlhvIVjpiScpu/583sxQlzj54fumB2AoNtm8NPfIUQqBUbIt+EBSir2D09t7T1W5bK922e/TWhcPEpVhQ7J+7vCICUDTQB0uvGC53sxOF2iMzQ65kaCAntU2/b26sN8t/2ktx1uaGLO0iZASzLrSH49CYm6IRmlJFosgiBgrEjO+Vfv9kQ2RW/U8Q0AZCmu4qe8BxB+l+N2HPRujigzc7BjIl92PcbR6F0A7HcbcFWsUG8V4vs8Tm63hb/3PYQgiJFQSmUgen2iuM0j8MOOU96+/holadENX9FGQkJCQkJCon4pcIhLzK4OMTA4NIAxF1F1b/mJCVg9AQjubDyuTDwVxYKVJYW0KhCdXFmOUEDA3+YAPeg8asKToggNDiU5KYnfPv+Q4lMncdptAARGRFUZpABsFZHxrfvAv5Zf8FwvlKyT/6W8fBcOh5hvU6moqY/yysW5X9U2nM6tgpjQ5xLLJeVNgdBSzTUt9bwkJOoXySgl0WKxuD1UZlryVzaxBOeCAPZyKD4GwImEZxBOmUBwgSBGd/U/eAI/u5MPJ/TgaLSMUFswObZknEX90eMgTlFK365X+3xqTmcpguBEJlPSuvXdhIVehVwuij5jxZI9gDWPX0VEgAb9xYTzSzQDJIEl0fQQBCm9m4REfVNe4dgbHRHErdE1k3XXid9n4VjzHlbPlwDEJLk5vhv8g0Po+ucuDBW6olwHsw+5QKYgUCaOG+sM5PaKaPCcI4fYteJn72F1AYFo9KdFbllLoTxbfK0NuLC5XgR2ez7p6S942zKZEo2mZmqDcptojbvt8niGtI9sqOlJNBqShpJoijS976X0NCnRYjFWVIuRA3p5EzNKfXkrpFd58YqLwGXdgr9qLzZA7vHgZ3fiVGv4M0qMnAop7sbxsqGocfL6FUrCwtrRKq71GQa4cCrDzpXKQNokPw6IUWf7c8rZny1u06kUJIRdYtX2Loimd9E/X5r/GUhISEhIXAjGymX6F1Ekxrbla47bewOgkjuI72Tg+G4ICAshwOakXC9j89DOLHUk45GJ40QpxXQFTn1VERdruag/AiOj6HfT7US1SUVWqe12/BeWPoD3jqVpeKOUzSZGkatUwcTHT8Xg3w6VKsi7/au/TrD+SCFH88V8VwFa6RFMQkJCopIm9qQuIeE7Sioq7gUqFciakkvdXOQ1SB2wXM1XpgUc27MDl20jpUZRdAVZ7MiAVV0c2BRiroVd9nYAhHqMXHPNNfTu3dun52W3F7Bn773s3/8EACpVlajbcaKUUe9u4Inv9gAQqGuCSyEbCm/keS3mmib0NbtQpjz9DPpOnQiJakXrdh3o0acfL774Ii6X66KOu2bNGmQyGaWlpb6ZaB04duwY48ePJyYmBq1WS6tWrRgzZgwHDx6s1m/ZsmUMGDAAg8GAXq+nV69eLFiwoFqf48ePI5PJ2LVrV53Hf+GFF0hLS8PPz4/g4GAGDx7Mli1bqh1z0qRJJCYmotPpSE5O5vnnn8fhcJz1uDk5OYwfP57U1FTkcjkPP/xwnebz4Ycf0rlzZwICAggICKBPnz4sX36acby4mAceeIC2bdui0+lo3bo1M554FGN5mbfPggULkMlktf6Xn5/v7We323nmmWeIj49Ho9GQkJDA559/Xm0+b7/9tnesuLg4HnnkEWw221nPYenS1Vx33RTCwyPO+99DQkLi/Ch1VemoC8FdXsiirJn8VvYQgscK8h0c3CxWpZOnixXyCuIDONz6YY6q+5KMnf6qDMKVYr4pnZ8Wq7GcrUu/5+8/VgEQFBlNuyuuIjgqpmqgzI14DVIqPbStqhTcUNjsOQDodAnEt55MSEg/7za7y80zi//m5z05GO3iZxoTpGvwOUrUP5MeexJ9p04ExiXRNaYr/Xr2Ze57b1doqAt380kaqnlqqEcefqhJaaglS37luuumEB3dpslpKMlML9Ei2VJq4o9iMRFmRFPLJVUsVpnBP5IdwpOU5lkR3AcAkOMhJbuEVnIZM/8Vxv6IEoLM0eSZO+GxtSJYZqGv/ES9TCs//2cKClZ62zpdgvd1RoHo2TNolSSG+XFTz7h/7i7RghjSrx/vfvgexpIy1m3azBNPP4NKpWLGjBmNPTUAHA4HavXZixY4nU6GDBlC27Zt+eGHH4iOjubkyZMsX768mqh77733ePjhh5k+fToffvgharWaJUuWMHXqVP7++2/mzJlzwfNMTU3l/fffJykpCavVyltvvcXQoUM5cuQI4eHhHDx4EI/Hw8cff0ybNm34+++/ufvuuzGbzWcd1263Ex4ezrPPPstbb71V5/m0atWKV199lZSUFARB4IsvvmDMmDHs3LmTDh06kJ2dTXZ2NnPmzKF9+/ZkZmZy9z1TOHbiJJ/9ZxEAN998M8OHD6923DvvvBObzUZERNVSlZtuuom8vDzmzZtHmzZtyMnJweOpinpYtGgRTz31FJ9//jl9+/YlPT2dO++8E5lMxptvvnnGc7BYrPTp041bbrmTKVOm1PncJSQk6o7d4yHDYifPIS6tC1dfmI6yZB7G6gkCQCHbirFgG0bR3oR/jlh9ztEukaN5ol5Lw0K4ophou5bkLh25YtjVbPv5e7b8+LX3mP7BIbVMWNyfUW9Cr0kXNNcLxe4oZPv2m7BaRW3mV5GD83RMNhduj2iQeGF0e9pEGIgLufCk8S2WFuDYA1FD/fvdNzkmK2Pbb9t55smnUSoEnn7m6caeGiBpqIbUUFOmTuXQ0RO8+fF/gMbXUGazhT59unHTTTdz770P1/ncGwLJKCXR4jhgsjJm5xFvO+oCxZTPcVjgwFLY8w0AQmA85cdtCIKdWPWfZNqgTWkJyQWl5HTvwIGIwwgyGa1ODiXL044UWT5jQvIZNfLaeplepZcvLGww0dE3EBzU27ut3CoK06vTInjnlm71Mr5E00GjVhMZEUGQ3p9/TZzIit//YOnSpUydOpWHHnqIn376CbvdzoABA3j33XdJSUkBIDMzk/vvv58NGzbgcDhISEjgjTfeoH379gwcOBCA4OBgACZOnMiCBQswGo1MnTqVxYsXExAQwJNPPsmSJUvo2rUrb7/9NgAJCQlMmjSJw4cPs3jxYm644QYWLFjAhg0bmDFjBtu2bSMsLIzrr7+e2bNn4+fnx759+8jIyOC3334jPl5MJBsfH0+/flXe66ysLB577DEefvhhXnnlFe/7jz32GGq1mgcffJBx48Zx+eWXX9DnOH78+GrtN998k3nz5rFnzx4GDRrE8OHDq4mTpKQkDh06xIcffnhWQZWQkMA777wDUMNzdjZGjx5drf3yyy/z4Ycf8ueff9KhQwc6duzI999/792enJzMM8/PZOrku7yRcjqdDp2uysNfUFDA77//zrx587zv/frrr6xdu5ajR48SEhLinfPpbNq0iX79+nk/o4SEBG699dZqXtDauOUW8RwKC6UHOgmJ+uK6HUfYabR425HnmzvS5YD9S7Dv2g4MRaeyoAu2YCkVl//HH88jrricv9rKKek9jgObxMiGMHcpABE2G4NvuQYAU7FY/S86NY3oNm3pOmxUzfEqjVKahi+8kpf3E1ZrZkVLTmhYzVyfxoo8Uv4aJXf2q2m0kmhZiBoqHLvWjwn/6siKJb+w8rffufe++7jvoUckDVVHWoKGevGll5g4YUKT0VDjx9+Ay2UkN9dd5/NuKKTlexItjkyrKG4ClHIGhQTwYHzNRJONwtbP4McpkPEbJncomUJ/nOZ92Es/ILO8Iv+VRfSk/RZ4AI/MAx41Wz2pAETqFdz/xHQSO3Ty+dScznKvly8oqCcR4cNQqQL5+1QZH/xxhDWHRNemQcqBUEeal7vvXLPV6XQ4HA7uvPNOtm3bxtKlS9m8eTOCIDBy5EicTtFoOW3aNOx2O+vWrWPv3r289tpr+Pv7ExcX571RHzp0iJycHK8gePTRR9m4cSNLly5l1apVrF+/nh07dtSYw5w5c+jSpQs7d+7kueeeIyMjg+HDhzN27Fj27NnD119/zYYNG7j//vsBCA8PRy6X89133+F2137z/e6773A6nTz++OM1tk2ZMgV/f3++/PLLun6MZ8XhcPDJJ58QGBhIly5dztivrKzMK0LqE7fbzVdffYXZbKZPnz5n7FdeVoa/vwGlsvbf/n/+8x/0ej033lhVen3p0qX07NmT119/ndjYWFJTU3n88cexWq3ePn379mX79u389ddfABw9epRffvmFkSNH+ugMJSQkLgRBENhjEg1SoSolN0eFEKQ6z3v/39/DD5NxHFwDgFotYCkrASBGsJNUWMb+8b14s/urvL1JA4AMAZe+GABXu6p8mTazWPylQ/9BDJx4d/Vle+kr4efHIF+MNm8Mo5TNehKAqMjr6H/ldiIjqpYOmuwuluw6xY87xXxT/hpJQ11qCAhotVocTidTp90vaagLRNJQLV9DSVdHiRaHseLi2c3gx8IuSY08m9MoEvMnlAVeyVeHH8RVoMTt+MG7WeVyE2R38kdnGau7KpA7ArGW9cSFmMsh2d9T62Evluzs7zhwcLq37adP9r6e+r/tnCypugiG+WvqZQ4tHkEAlwWZ0wq4QeEBh28/S5nTiszpQOZ0geO074pKf0FlygTEh5M169axYsUKRowYweLFi9m4cSN9+/YFYOHChcTFxbF48WLGjRvHiRMnGDt2LJ06iYbTpKSq31+lSIiIiCAoKAgAo9HIF198waJFixg0aBAA8+fPJybmtIeOCq6++moee+wxb3vy5Mncdttt3lwAKSkpvPvuuwwYMIAPP/yQ2NhY3n33XZ588klmzpxJz549GThwILfddpt3Xunp6QQGBhIdHV1jPLVaTVJSEunp6ef92Z3OsmXLuOWWW7BYLERHR7Nq1SrCwsJq7XvkyBHee++9iwp3Pxd79+6lT58+2Gw2/P39+fHHH2nfvn2tfQsLC5n7+mzGjp94xuPNmzeP8ePHV/P8HT16lA0bNqDVavnxxx8pLCzkvvvuo6ioiPnz5wOiB7SwsJArrrgCQRBwuVxMnTqVp59uGssbJCQuVWweAXdF6ps/e7fDcAH5pIwns1lb8gxZ9q4IHiNOsinNFaOxA47lAqAJbEXZKdE3niArJUZRgkrmQSUoSIxvw7affuDAhrWU5IoV9bT+/jUH+uFusJVWtf0brpqdw1FMaelWTmWLS5sDAjpVy8UJ8N5vh/l43VFv+5LOx+nlAp12giDqnMqvo8Ps2xKsDhcypwWZRw6Of3znL0hHyRAEgfVr1rFm3ToGDriSX379VdJQ50lz11CvvPyypKHqiGSUkmhxmCqq7vkrm1ggoDEPgBNhd+E6JP70ZB4xAumK7EwCClz8fltfPmr9F2mWBA4cuxMHGvqrMoiQGbl1wNB6mVZ2zjfe13p9EkFBvQDRIJFTJibMG9M1hjB/DeMv9321v0sCp4WAj7tQn/WAIiv+q8HT2aA+v0qJy9eto3VSKk6nE48gMH78eG644QaWLVtWLQw7NDSUtm3bcuCA6KV+8MEHuffee1m5ciWDBw9m7NixdO7c+YzjHD16FKfTyWWXXeZ9LzAwkLZt29bo27Nnz2rt3bt3s2fPHhYuXOh9TxAEPB4Px44do127dkybNo0JEyawZs0a/vzzT7799lteeeUVli5dypAhQ+r0WZwr7wKIwvL0/EbLly/nyiuvBGDgwIHs2rWLwsJCPv30U2666Sa2bNlSLXcAwKlTpxg+fDjjxo3j7rvv9r7vf9qD2O23385HH310zvmsX7+eESOqvPUff/wxt912GwBt27Zl165dlJWV8d133zFx4kTWrl1bQ1SVl5czatQo2qa1Y+qjT9U6zubNmzlw4AD//e9/q73v8XiQyWQsXLiQwMBAQAy7v/HGG/n3v/+NTqdjzZo1vPLKK/z73//m8ssv58iRIzz00EO89NJLPPfcc7V+pldc0Q8JCYn6xXRaVISf4sJ01N+HAsm0JyEIAg7j99jLxAgohdtDZLFYvEXwSwBAKcAgTQZumYdrHB0Jax1H3BXd+fD+27FbzN5jhsT+I5ely1FlkLriEQhNgZiGSy/w976HKCnZ5G37+6fV6FPp1EuLEnNI3dJLysdZiVBbsZiz4bQS+eUV9TMZQAeccR3Ceeqo5evWEd22Aw6XE8EjcP3o6xg59GpW/7FG0lC10JI1VLt2TUdDVX6mTRXJKCXR4jC5REFlUFx4CWOfsn8p7P4KDq8AwCoE43HlExZymOwSUXApS8Wu3wdsAWQU2kMwIUbSjO/bjr79LicgoH5MGna76LXs2eM7AgOrBJ3F4fYm5nxtbGe0qibyeUrUI6IncECvXrz21hvgdBOfkEB4XDxLly49596TJ09m2LBh/Pzzz6xcuZLZs2czd+5cHnjggYuemZ9fdUFoMpmYMmUKDz74YI2+rVtXGU8NBgOjR49m9OjRzJo1i2HDhjFr1iyGDBlCSkoKZWVlZGdn1/AsOhwOMjIyGDZs2Dnndu2111YTmrGxsdXm3aZNG9q0aUPv3r1JSUlh3rx51ZLGZ2dnM3DgQPr27csnn3xS7dinV0ap6zWgZ8+e1faLjKwyV6rVatq0aQNAjx492Lp1K++88w4ff/yxt4/RaGT48OEYDAa+WPQNRbbaHx4+++wzunbtSo8ePaq9Hx0dTWxsrFdMAbRr1w5BEDh58iQpKSk899xz3HHHHUyePBmATp06YTabueeee3jmmWfO+plKSEjUHyaX6NjzU8iRn290SOkJ2PguhZniNSc2Ip+jpaJBKsBqJbGgnF97yrCldmVTYRvAgt7twi0TxwxqXUrC1BvxuN1eg9Q1Dz9FaKs4wuLiq49lL696ffVzIG84jSIIAkbjXgACArpgMHT0OvROp7LS3uQrk7ixR6sGm59E4zKgVy/mvj6bQoOLNjGp6MwKfl350zn3kzSUSEvSUN9+/wPHShzUVnlR0lDVkYxSEi2OQqcoAoKaihFlxTNQdgKbx5+91mvY/ic4zEvJNoqCSuVyo3W6OBwNBUEyBI+CLJNocffDTtfU1HoxSNntBVgsx7DZxFwHanU4AA6Xh9d+PcjxQlEQqhVyNE0t6qwRkXlF+nl4+VR6yqfsxmK2IKjUaLRaQiqSVfqKvHIb+UY7Yf5qogNPKzWtOv+E0HqdjqSkRBxGC4qKdfDt2rXD5XKxZcsWb+h5UVERhw4dquYhiouLY+rUqUydOpUZM2bw6aef8sADD3i9ZafnJkhKSkKlUrF161avCCorKyM9PZ3+/fufdY7du3dn//79XnFQF2QyGWlpaWzaJHq3b7zxRqZPn87cuXOZO3dutb4fffQRFouFCRMmnPO4BoMBg6FuuUw8Hg92u93bPnXqFAMHDqRHjx7Mnz8fubz6b+18zq8SnU5X5/3+OZ/y8nKGDRuGRqNh6dKlWD0KsFlr7Gcymfjmm2+YPXt2jW39+vXj22+/xWQyeb2U6enpyOVyWrUSH8wsFkuNc1VUOBIEQaj1MxWE+lnCLCEhUUW5+8Ide+5fn6dw7x5OOsTrQptOCo6mg9bfQN/dGcgB2X1fMGlpAVjEvFVByqpoqKhrRpFz+BBFJ6uqDKdc1gf5P+ey6X3I+F18rTY0qEEKwOksweUSk6t377YIhUJbbbsgCNhdHow2MVeQlEuqbpzVBKrSkXfrBjxaUd9ERUWdpscuHqvDzZECEyqFnLSof9zPz1NH6XU6khMTUGnNKOVKQCClTbKkoc5AS9ZQKo0WcNTYrzE0VFNHukpKtBj+Nlp483iet2JMtKaJrN035wOwJ/INtu6NQhCc4BENUrHF5bQyWfjktlTWxmYwJHcIP5QOAEFJF8Up4t15+AWf/cZyIbhcRjb/ORi32wSAQuGPRiN6AjZlFDJvwzFv39hgnU9v/JckMhmo9AgqAUGlQVBqzntJ3bkQVIqK/zSg1p17h9qOcZY3U1JSGDNmDHfffTcff/wxBoOBp556itjYWMaMGQPAww8/zIgRI0hNTaWkpIQ//viDdu3aAWLVFplMxrJlyxg5ciQ6nQ6DwcDEiRN54oknCAkJISIigueffx65XH7O79z06dPp3bs3999/P5MnT8bPz4/9+/ezatUq3n//fXbt2sXzzz/PHXfcQfv27VGr1axdu5bPP/+c6dPFHGqtW7fm9ddf5/HHH0er1XLHHXegUqlYsmQJTz/9NLNmzaJjx47Vxj106FCNuXTo0AGVqvr1xmw28/LLL3PttdcSHR1NYWEhH3zwAadOnWLcuHGAKKauuuoq4uPjmTNnDgUFBd79o6Kiznr+lV48k8lEQUEBu3btQq1WnzG3AcCMGTMYMWIErVu3xmg0smjRItasWcOKFWIUZ3l5OUOHDsVisfC///2P8vJyis12Csts+LeqnjPi66+/xuVycfvtt9cYZ/z48bz00kvcddddzJw5k8LCQp544gn+9a9/efMmjB49mjfffJNu3bp5Q8+fe+45Ro8e7RVWtVFcXMbJkzmUlooPgZX/HlFRUef8zCQkJM7ObqOFFYVlAERcgCFl1Y7OZJTfIS4Dch7kRK74MKYoLkYOWNSwfk/VQ3U35UnaKMTqegaPDrPTwqJnq/LeaPR+NQ1SlmJY+UxVO6jh0gq43Va2brses1nMEarRRNUwSAFM/mIbvx3M97alIjE+QCZDUOkQKg1Eaj/f5pTCjaDy4FHIfazPRBGVlJDAqBEjJA11iWkop7uUwnwjIaHV82A1noYq5fjxwxQViU6+pqShGvQqmZCQQGZmZo3377vvPj744AOuuuoq1q5dW23blClTqq3/PHHiBPfeey9//PEH/v7+TJw4kdmzZ58xq73EpcMnJwv4pUJMAaTqawqFBsVphfJscIl5mYpkaUApESE5ZJWC0uOmS1YBJUEafm99FJCRZ9SBoMSAlXGRJpKTu2AIqT2h38VgMqfjdpuQyVTodK2IjRmPXC7eEApNoohMjfTnjt7x9G3j+/FbOrJmVn2vrsyfP5+HHnqIa665BofDQf/+/fnll1+8YsLtdjNt2jROnjxJQEAAw4cP56233gLE0OGZM2fy1FNPcddddzFhwgQWLFjAm2++ydSpU7nmmmu85YyzsrLQas/+++3cuTNr167lmWee4corr0QQBJKTk7n55psBaNWqFQkJCcycOZPjx48jk8m87UceecR7nEceeYSkpCTmzp3LO++8g7mi0tOXX37JLbfcUmPc2t7Lysryeq8qUSgUHDx4kC+++ILCwkJCQ0Pp1asX69evp0OHDgCsWrWKI0eOcOTIkRr7nyvfRrduVUttt2/fzqJFi4iPj+f48eNn3Cc/P58JEyaQk5NDYGAgnTt3ZsWKFd7cEDt27PCWE/6nl3D9jn0kRVSJtXnz5nHDDTd4E66ejr+/P6tWreKBBx6gZ8+ehIaGctNNNzFr1ixvn2effRaZTMazzz7LqVOnCA8PZ/To0bz88stnPe/ly9dw333PeduV/x7PP/88L7zwwln3lZCQODM7yy2M2F6VlPhCHHt5ZjFnkkadRXnpLxzcKL6vcYgR7Fs7qDhQKGqi3m47adocAj16+sg6EdcpkZIcMXJb4+dHeHwiaX1rccpZxSp+KHUwfDYkDTjveV4oJtMBr0EKICxsUI0+TrenmkEq3KChfXR9ZpRsQdQqnYQzb2oGnH4n//D993jmhZmShvoHl4KGWr5pN8SHetuNpaF+/nk1U6c+4W03JQ0lE84709yFU1BQUC3s8O+//2bIkCH88ccfXHXVVVx11VWkpqby4osvevvo9Xrv0iW3203Xrl2JiorijTfeICcnhwkTJnD33Xfzyiuv1Hke5eXlBAYGUlZWVm95eiQantt2H+W34nLGR4cwKjyIq0MMjRfhY8qH93qCvcJIptTxP/si8jO+RHCLFWiCzVb6HMlmfXsZ741RILg1mI5MB4+eGKGETa/VtJ77itzcJezb/yhBQZfTo7tYOcbh8rB45ylW7s9j9YE8xnSN4Z1bGi5paHPhxL/+hXnTZmLeeJ3A0aOrbds3608CTU5WhB2gTf9kLm8VjTZGfJAvL8zHbDYjqDRoNBpCQ0NrO/wFk1tmI99oI8xfQ0zQ2SOlihwuTtocBCgVJOo1OKwuSvMtKGQONJY8FC4Ba0QQDqMVtU5HSEzD5cIwm83ExsYyd+5cJk2a1GDjVlJcXMygQYMICAhg+fLl6PXnv/yxJVFksnOq1EqgTkV8qG+j+84XQfBgNO4DwN+/HXK575xRNpuNY8eOkZiYWEPMS5qhOtLn0TL5NreYBw6cIEApp4O/jscTougXXIflH4IAvz6F69TffLztEUBOp8uPsPVXMQ9hXGEZfg4jH1/jIkOfgvmUmANlrDETQ3g+UXYNU2eL+WF2r/qF1Z/9mza9ejPm8WdrH+/UDvh0IATEwqP7fXHqdSa/YAV7996HwdCRrl0+R62ueR8vNNnpOWs1ALufH4qfWoHyAhPGt0RKvvqa3BdewH/wIOLef7/atmNLM1BtyibH3075MBk9I0MIjGkPSg0Oq4XinGw8WvGeHB0d7fPle4fzjSgV8nMaEV0egX0mcVl7Z0PFaoKSTLAW43QF4iq34Ary54TWTIA8CHUZCB4L/sEh+If4Vvv9E0lDNS2cbg8HcsqRAZ1aBTX2dLBYjuNyGdFqY1GrQ3x2XF9oqAYNLwoPD6/WfvXVV0lOTmbAgCovh16vP2P42MqVK9m/fz+rV68mMjKSrl278tJLLzF9+nReeOGFOmX4l2i5lLpET9yQ0AAGhTayUM7722uQWmO8j33mwbisf3kNUgCxDgcfj5CzKU1G6/xBHDB1QOnRoJPZ6CM7caYjXxROZxlZWQsoKdkMgE5bZWz4ZW8OT36/x9uOMGjqZQ4SzYWGMeju3LmTgwcPctlll1FWVuZ1SlSGszc0ISEhrF69mg8++IDNmzd7yyxLSEhItGTKKorEDAgO4NOOCXXeT8g/wI7f8jlqvxaQo5absFjFaInIyCA67c7geFoQDtlDmE+JD6hhgoe2BsgGPBoFGdv/Ys0Xn2IpF3WT1r8WY5jdCFs+gjzRMI2m4XSe2XyUIxmvUVgoGpu02phaDVJvrjzEpowiAAK0SgJ1TSSNRFOiDoak5hoVJdKwkV2ShpJoKTTamjeHw8H//vc/Hn300WqW7oULF/K///2PqKgoRo8ezXPPPee1sm7evJlOnTpVy4I/bNgw7r33Xvbt21ctFE/i0qPUKQqqwKawlNMmCitHbH/27xwKCAge8b1Yykg6WMaJNip+6yon2BmIPa8bHmUYPdzp9Cz8i55X1k84enb2Vxw7/q63rfdL9r4+VSp6fZLC/LgiJYyJfRPqZQ4SzYUGC6Jlzpw5HDp0CLVaTY8ePVi/fj1hYY23bDQ0NJT/+7//a7TxJSQkJBqaSg11vkViSjLz+dN0BwBuRzpGy3L2rRWPFblVXA7ojgyhsCwIcHOD7CQB2hyyKw/gp2L/ut8pzaty2kUkVmkTL3u+gd+rlq/gH1GzTz2Rnf2V1yAFEBpSc1lhXrmNd38/4m0nhjVuZGmTp+EkRsPSCCs0JA0l0RJotKf3xYsXU1payp133ul9b/z48cTHxxMTE8OePXuYPn06hw4d4ocffgAgNze3mkEKqso05ubmnnEsu91eIzO+RMujtMLLF9zYVffKc6BQzDlgpBUetwOPMxOZcw8gI+ikA4PdyWGDC1BQYIvFqhRvHolBGu6b8R7+wfUT3muziaIvMLAnYaEDaRU7HgCPR6DUIuaSGtQugmdGnTnRn8R50MRFl3d6jeiW7NatG9u3b2+8CUhISEhIUO6qdOydh4Zy2ijLygUiMGjKEAKOU5gpHkfjdBFsNlPsD18Hh1FYkb5Dr6iIJHKrkQVruPqaYfz97ZcA9LvpdlL7XElITC3ly0154t/oLtBmMHS66cJO9AJwOMRk7FFR1xEZcQ2hoTWNUsVmUUMZtEpmXdeR3kn1u0xLorkgUJ8iS9JQEi2FRjNKzZs3jxEjRhATE+N975577vG+7tSpE9HR0QwaNIiMjAySk2vxmtSR2bNnM3PmzIuar0TTRhAE7/K98/Xy+ZSja+A/1+EWFPxW9jCFxi64rBtw23dSeVPS2504lHC0tQFtfm8KS8XSsAaZjfah8npJbF6JwymKwciIEcTF3QnAe78d5q3V6XgqLBRBemkZ7NmpEBe1puNr/KDzi7GDuQUVVm00CCBYXYAVp91NcY6ZgDAtysY2+EpISEhI1AuVGqrORqn0lfD1bRjLBwN3Ex5kJKe8FIAE7KTtP8nnQ+Ws7BqE6fhAcECUS4ZO5cAJXOEO57JH7wZgu0Vc7hcWn1i7QQrAVuFQTr4aBjVMFIbH48Jmy6K0THzoDwm+grCwgTX6FZrspOcZAQj31zCm6xnOQeKSpon7KSUkGpVGMUplZmayevVqbwTUmbj88ssBOHLkCMnJyURFRfHXX39V65OXJ3pOzlbGcMaMGTz66KPednl5OXFxcRc6fYkmxtR9x1lWUIq70qjSmMv39nwLCGQ72nHYJi7B87jEKL4Ah42QMhu/XqFheScHXSwJWLMHIAgahsv/JtpTRPukq+plWsczP+Zk1hfYHeLvRaOtKu++Yn+u1yClVsrpleC7xHcSzQOFUk6lN0+QKUEGgiA+oAgCuBxuHFa3ZJSSkJCQaGEIgsAJm4McuxOou2Mvf8cOfst7HZM7DEFwoQjWYskqBSAmowA5cHW/u/h+p1jSfppVIEXjYHdFzm9FbChL5rxMxrYtCIJYnlyrr2XJ247/wrF1cHKr2G7AXFK790ymuHi9t63Xx9fos+ZQPnct2Or1UwVIeaSaNz62HEmGKAmJutEoT+/z588nIiKCUaNGnbXfrl27ALHCAkCfPn14+eWXyc/PJyJCXEu+atUqAgICaN/+zMuNNBqx2pVEy8MtCCzOL/W2uxn06BqzyknxUQBM3Z6E3yEsxEpuaTYuZHQ+VkCAzcFnIxW4lDKybRGYBPF7OTgpnPZtL6NtnyvrZVqnTv7Pa5BSKgMIDurt3Wa0icaH+Xf2ondSKDq1ZHi41FAo5YSqsvAIcqwmFXK3gD3EH6cZ5N6fkyStJBqbxo9ElJBoabx5PI83jlelwAioY6TU4cxgil2ikcZh/Iq9m71ZotBV6Irv8sVKsDoPKAP3s0tu8fYJT0tlzSefe9taQwChrf9h9HFY4KeHQKiq3E1gwziVBUGgtFR0hCsU/gQFdsdg6Fyj366sUgQBVAoZfholN3SXoqQumBZ/iZd0lITEmWhwo5TH42H+/PlMnDgR5WkRLRkZGSxatIiRI0cSGhrKnj17eOSRR+jfvz+dO4s3gaFDh9K+fXvuuOMOXn/9dXJzc3n22WeZNm2aZHS6RDG7Pd7Xf/VuR6y2kZaemQsheyeu/KOctPVg5x4DDuN3nCzJpCLsBD+7E4saskPBXdqVw2Xisj09dgYMH0J4q/oTWg5nMQBdOn9GYGA3VKpAPB4Bh9vjNUrFBOkkg5SPkNWqrJq22lLI3ChwYhcEFB4Bmbzit9W0py0hISEhcRHsNIqGIr1CTrxWTd8g/zrtZ7GIHouObYvZvkXMV6lyuwkrt+CRufm9s4w1+WIVvQi3QJlMHCfYL5CUuCRCu1dV/73nwwXoDIEoVf+IMrKVigYpmQKGvgT6UGjfMFXFXK4yPB4xH+2VV/yFQlH7c0a5VdRQk65I4qkRaQ0yNwkJieaFZI48Nw1ulFq9ejUnTpzgX//6V7X31Wo1q1ev5u2338ZsNhMXF8fYsWN59tlnvX0UCgXLli3j3nvvpU+fPvj5+TFx4kRv+UuJSw9jRWJOtUxGa10jGibnj4DCdLYbb2Wb+SYEjwmPK9O7Oa6onJwwBct6erjx5ATmmTsA0E15kiRTBnr/mjkKfIHH48Buz8fjsQEQFNQLpdIfu8vN6Pc2kJ5n8vY1aJtA1UKJJoCMardPoeZbEhISEhItA1OFjnorLY4xEcF13s9qEzWDf4AFQRBQqtUM3noAGfDmM9fyR2YogimUAXYlQ0z5HBHtU0x98D40Gg1l+WJ0llKtOXMuzYpKxuiCoM+0Czm980YQPJzImofRuA8AtTqiVoOUye5iR2YJRwpEHRWgkzSURG2cluhc0lESEmekwa+gQ4cORaglQXBcXBxr16495/7x8fH88ssv9TE1iWaIsaKai7+yEZfsuRxQKJY9LpB3BUCvOI4dMCgc9N51CrPOwz0PKgE5ff62gQKCPUb6Hl1OaGQUugDf50hwOkvZ/OdQnBXJzVWqEBQKMV9DZpGlmkGqXXQAEQYp2lCiJoLgBsGKmANX+o5ISEhItCQqI879FXWMlF71f/DXZ1jNLyIIbuyCmItKHxCADDBpIcrvFlymbK5SKXhKUFAeHsARQC7IcNms/L16OWX5YkoBtU5Xc4ySTPj6djCKEVhoAy/yLOtOWdkOjhx51ds2GDrU2u+BRTv441CBtx2glXJJ1Qkp+lpCQqIWJLO+RLOm3CkapQx1FVP1gUU0+iBTUKJJwZH9PbaKKCm9Q4HK46HUD5QeFTZLPCsV3QDwlzuZ8s4n+AUHI5f7fv5G4z6vQQrktIq9DZlMVANlVlFExoXo+OXBK/FTK5HLJaVQJ2Rnq77X8hA8bqAcS2k5fkF6FArptiEhISHRUqh07hnqmo9z99fgNGN0KrCXfcTmVeISN81RUffkBKv4719ifimFycnXAVsQZOL9Uq6Ss+2nH9j2U1WhI52hFqfc4ZWQu6eqHdXpfE/rgrHZxLnrtK2Jjr6BqKjalwsezhcde8nhfsQG6xnSPrLB5tgiOKuGagQ96vMhJU0tIXE+NGJ4iYTEhSMIAjvKzKwqEksER2oayUP150fwn2vZZxnCT2UvUJq9p9qyvchTolGoJEhDm8OPY82ajBxQ46KjspiA8AgUyvqZu90ueiFDgvtx9cB0kpIexmR3MX/jMb7ccgKAYL0ag1YlGaR8RQv4GKfMeBp9p06ERsbRul0H+gwawpvvvY/L5UI4LYfb+bJmzRpkMhmlpaW+m+w5OHbsGOPHjycmJgatVkurVq0YM2YMBw8erNZv2bJlDBgwAIPBgF6vp1evXixYsKBan+PHjyOTybwFOOrCCy+8QFpaGn5+fgQHBzN48GC2bNlS7ZiTJk0iMTERnU5HcnIyzz//PA6H46zHzcnJYfz48aSmpiKXy3n44YfrPKdKXn31VWQyWY19MzIyuP766wkPDycgIIBJE26jqCC/Wp+XX36Zvn37otfrCQoKqvX4Mpmsxn9fffWVd/sPP/zAkCFDvOP06dOHFStWnHPeS5eu5rrrphAeHnne/x4SEhI1Ka9YvmeoY4LzQ0Wd+KHoZcy2XBBEg5TcIxBfKOqxzbEJAGg8kOIqRJAJyAQZer2ePn36YiwUo4tiUtvRedBwBk26t+Yglcv22o6CKetg7Oc1+9QTDkchAAEBnUlMfACdrnWt/cosonPv0wk9+c+/LiMyQNtgc5RoOvzTtDbp0SfQd+qEIS6BrjFd6d/zSua++xYuMdz8gpE0VPPUULfecnOT0lBLlvzKdddNITq6TZPTUJJRSqJZ8leZmZE7DvPeCfGHHtUYRqmc3fDrdISCw6wvn8QJS0fcLlGUxctL6Jt+EtQ23r9GzqoBsZR6xBtST1c6dxqXMSr6wh/wz4bbbSE3dykFhasB0GhjvBFSX/11gpk/7eeHnacACPeXlmNJ1GRIv34cPLCbw4cP88C0R5jz7nv8+9PPGntaXs4lOACcTidDhgyhrKyMH374gUOHDvH111/TqVOnaqLuvffeY8yYMfTr148tW7awZ88ebrnlFqZOncrjjz9+UfNMTU3l/fffZ+/evWzYsIGEhASGDh1KQYH4UHbw4EE8Hg8ff/wx+/bt46233uKjjz7i6aefPutx7XY74eHhPPvss3Tp0uW857V161Y+/vhjbxGRSsxmM0OHDkUmk/H777+zceNGHA4HD9x1Kx5P1fXK4XAwbtw47r23lofJ05g/fz45OTne/6677jrvtnXr1jFkyBB++eUXtm/fzsCBAxk9ejQ7d+486zEtFit9+nRj9uxXzvu8JSQkqrC4PfxttFBcEXEerj63jvLY7awrnUiOsz2CYAYgOjKUoXuPgt7Nazc/wFexk7nJD+bY9aSpRKNVrBDIk08+yaBBg7BbxP06Dx7OkHvuJ659LVFQdlFLEZwA0V2gASJ0BcFNbu4SCov+AECjqRn55HJ7mPzFVvq//gdGu6jpAnXSsj3f0QI8e4ga6sj2v/hlyy9Mvu8e5rzzpqShLgBJQ/leQ5nNFvr06cbLLz9/3udd30jrMCSaJcet4gU1UKmgk7+Ou1uFN/wk8kVPgdkTjEtQILizCGIbRYBc50+QtZi/0mSs66QgtKgVxwkFIM5PxfVjxpPYrVe9TCvzxGccO/aOt+3vl+p9nVsmJjxvHx1Ar4Rgbr28dg+gxMXR3GWVRq0mMjKcoOBoJt91D0uWfMvK337nkZISHnviCX766SfsdjsDBgzg3XffJSUlBYDMzEzuv/9+NmzYgMPhICEhgTfeeIP27dszcKCYzD84WEykO3HiRBYsWIDRaGTq1KksXryYgIAAnnzySZYsWULXrl15++23AUhISGDSpEkcPnyYxYsXc8MNN7BgwQI2bNjAjBkz2LZtG2FhYVx//fXMnj0bPz8/9u3bR0ZGBr/99hvx8WKZ8fj4ePr16+c9z6ysLB577DEefvhhXnmlysjx2GOPoVarefDBBxk3bhyXX375BX2O48ePr9Z+8803mTdvHnv27GHQoEEMHz6c4cOHe7cnJSVx6NAhPvzwQ+bMmXPG4yYkJPDOO+Jv/PPPzy+CwGQycdttt/Hpp58ya9asats2btzI8ePH2blzJwEVee4++PgzkuOi2LR+LYk3XAPAzJkzAWp4Qv9JUFAQUVFRtW6r/Let5JVXXmHJkiX89NNPdOvW7YzHvOWW0QAUFtaSh0ZCQqJOeASBQVsPcqxCSyllEKI6d6SUKb8IhyDmpoxK1HDqIMidduTAsZQI1tjjQQYdymR00ynZrRAr+Sl1Gvb8toLDf20i58ghADR6v5oD7PgvrH2tKi2C1vf5Ns9EdvY3HDxUVVzJ7zTtVMmBHCOrD1RFPUQHagnSN1LV50uOJq6sTpueRq0mMiICm1bPHf+6ndVLVrDyt9+Zeu+9THvkUUlD1ZGWoKE+n7+AiLBQ/tq4jq6trwMaV0ONH38DLpeR3Fz3WcduDKRIKYlmibXC4nxFsD/fdWtDr8BaxE19YxFDvI3xN+G0rMZh/JYiuxjIG3iwBIDCABn+RX3JLBpUsZNAr7RWtLtyIFr/upVdPl/M5iMA+PunER19I9HR13u3GW2iZ29U52hmjulIWlTDCb5Li+riSRAErC4rVpcNm9uG1WXF4rT49D+ry4rNbcX2j2PXVliiLhgdRnJMYpJZnVaLw+lk0uTJbNu2jaVLl7J582YEQWDkyJE4neIyhmnTpmG321m3bh179+7ltddew9/fn7i4OL7//nsADh06RE5OjlcQPProo2zcuJGlS5eyatUq1q9fz44dO2rMZ86cOXTp0oWdO3fy3HPPkZGRwfDhwxk7dix79uzh66+/ZsOGDdx///0AhIeHI5fL+e6773C7a7/5fvfddzidzlq9eVOmTMHf358vv/zygj6/f+JwOPjkk08IDAw8q2eurKyMkJAQn4xZG9OmTWPUqFEMHjy4xja73Y5MJkOjqYqg1Gi1yOVytv656YLGCgsL47LLLuPzzz8/63fR4/FgNBrr9dwlJCREzG6P1yAVrlbyr9hw5LJzPPR7PLiKc/C4TuE0fkn+8d0AhOw+CsARm2jU0nrAojzFfM0fbFOKeiQsNZY1X3zK8V3bsZvFSKnAyFoetnZ8AWVZ4LSI7ajONfvUE6Wl27yvW7W6g4iIETX6lFjEzywhVM8P9/Xl14f7o5DSHzQIgiBgdYsayua21Z+GctfUZxeqoyrRVmioe+9/QNJQF0hz1VDaCg21c+ufFzTWpaShpEgpiWaJpSK3jU7eCHbVE1tg/RyMB7ezuPhDTHnheJyfiNsEgXCjhcgSMQFmot8V2AuGIAg62gtZJFkz6dJ6+FkOfvFU5pJKiL+PyMhRAPy0O5uvt2ZxMFcMiQ/QSj/9hsTqsjJ4xahGGXvL+C3oVfo696+U1w6PkzJrEZvX/sWa9esZOKA/Py1bxsaNG+nbty8ACxcuJC4ujsWLFzNu3DhOnDjB2LFj6dRJXI6RlJTkPW7ljTIiIsK7ht5oNPLFF1+waNEiBg0SDbfz588nJiamxryuvvpqHnvsMW978uTJ3Hbbbd71/CkpKbz77rsMGDCADz/8kNjYWN59912efPJJZs6cSc+ePRk4cCC33Xabd17p6ekEBgYSHR1dYzy1Wk1SUhLp6el1/uxqY9myZdxyyy1YLBaio6NZtWoVYWG1lz8/cuQI77333lk9fBfDV199xY4dO9i6dWut23v37o2fnx/Tp0/nlVdeQRAEnn/mKdxuN/l5uec11osvvsjVV1+NXq9n5cqV3HfffZhMJh588MFa+8+ZMweTycRNN9103uclISFxflRqKBmwp28H7xL/M+9QDB/3x1mowWUbgMeVg7siRY6fXXyg3hOaQpwLOtlVFAXn4JZVLVeJS4rjkF2M1B5y9/0Ex8QS3jqh5jhW0aHHte9DYn8Ijr+Y0zwvnM5iANqlvUZMzI3VtpVZnXyzNYtdJ0sBiAzQ0r11cIPN7VLl9Edwm9vGtZtubZR5nK+OAvG3JQgCG9ZsYM26tQwccCW//PqrpKHOk+auoaZPn47b7aYgX9JQ50KKlJJollgrBJW+rtVifMmGt+DwSo7a+lDujsLtcYNgBWDg4eP0OpbLm9fLuO8+BcXaUIoFcZnJQOEYg+P8SOzao16mVVS8gR0778Bo3AuAThfn3fbmqnQ2HCmk0CR6+eJDGyGyTKJZIEPG8nXr6NzmMrq36s7Nt97ItaNGcfMNN6BUKquFYYeGhtK2bVsOHDgAwIMPPsisWbPo168fzz//PHv27DnTMAAcPXoUp9PJZZdd5n0vMDCQtm3b1ujbs2fPau3du3ezYMEC/P39vf8NGzYMj8fDsWPHANHLlJuby8KFC+nTpw/ffvstHTp0YNWqVXX+PNTqcy/NWLhwYbV5rF+/3rtt4MCB7Nq1i02bNjF8+HBuuukm8vPzaxzj1KlTDB8+nHHjxnH33Xd73z/9uFOnTq3TnNevX19tv4ULF5KVlcVDDz3EwoUL0WprT8gbHh7Ot99+y08//YS/vz+BgYGUlZXSrlMX5OfpAHjuuefo168f3bp1Y/r06Tz55JO88cYbtfZdtGgRM2fO5JtvviEiIgI4+2cqISFxcVRGm+sV8nMbpACyd0JZFi6PBsFjBCDUYaZv+kmsUX48c9V1nAofxYtONTP8tLgqDFLdE1N44oknSI6vSBUgk9Hp6qE180gd+Q3WvwnGige32B4NZpByOkspLt5EUfEGAFTqmsamLzYd5+VfDvDzHjF6OEJKan7h1OH71txjz5avW0dk2/Z0b9WdO2+eyLXXjJY01FloyRqqtLRCQ8kkDXUupHAJiWZJpaBqlEipEvFiXRI+AmfeWhSC6AVQATqrOK8DcTJs7na8L4g3Cjke7nzsUcIj669kcHr6i1gsGQAolYZq+RCKzaIx6pmR7egQE0Cf5NB6m0eLp0JQnU84t06pY/WwnzGbzaDWoFarfR5im2e0U2C0EarXEB1UdcPUKeuae0fm/TOgVy9eeHsWdo1Ap8juCJYSVqw+twiZPHkyw4YN4+eff2blypXMnj2buXPn8sADD1zAGVXHz6+6IdVkMjFlypRavUatW1flSjMYDIwePZrRo0cza9Yshg0bxqxZsxgyZAgpKSmUlZWRnZ1dw7PocDjIyMhg2LBh55zbtddeW01oxsbGVpt3mzZtaNOmDb179yYlJYV58+YxY8YMb5/s7GwGDhxI3759+eSTT6od+/TKKJU5Cs5Fz549q+0XGRnJb7/9Rn5+Pt27d/e+73a7WbduHe+//z52ux2FQsHQoUPJyMigsLAQpVKJW6mjbVJrWscn1mnsM3H55Zfz0ksvYbfbq4W2f/XVV0yePJlvv/22Wjj82T5TCQmJi+O8o80txeQ7k8nSjkIQ/gYgtKycIKudX/rcyg5TR+LLnPhrVGTI87y3k+h2CSx99QWy08WHbo1ej+yfY1qKYeE4EE5bIuTXcHlCt267Aau1qmqyVlMzyiS7VHQ8do0LomtcEHf0abgIrhbLeS6J0yq0LO37JYJWjFiKjIysm0G1jthcHo7kG1HK5aRFGaptq7uOEhnQqxdvvf4q+QYnCTFJGMwafl350zn3kzSUSEvSUH6GAKKjo2l1bUKdxj4Tl4KGkoxSEs2KIxYb/8su4qMssfJCg0ZKCQK4HVB6AoAikwO3fTuVMiqkTFyyV+wPffNu53tblSewnTyX4JD6C/UWBMErqtq0mUF42CAUCi0Wh4sikwOjTQyvH9M1RvLwNQIymQydUodH4UZQaNAoNecdCn4udEo5WoUMrVKDXnVxSaD1Oh2JifGUye0oBSVOIKVNMi6Xiy1btnhDz4uKijh06BDt27f37hsXF8fUqVOZOnUqM2bM4NNPP+WBBx7westOz02QlJSESqVi69atXhFUVlZGeno6/fv3P+scu3fvzv79+2nTpk2dz0smk5GWlsamTWJ+pBtvvJHp06czd+5c5s6dW63vRx99hMViYcKECec8rsFgwGAwnLMfiOv+7Xa7t33q1CkGDhxIjx49mD9/fo2IpPM5v0p0Ol2N/QYNGsTevXurvXfXXXeRlpbG9OnTUSiqJzmuDI//8edfKS4sYNDwkec9j9PZ9f/snXd4VNXWh9/pM+m9h4TQe1eKUkSaYkUU8QKfAoICKigCNsSLDQFF7F4V7r2gXjsiKqBIF6WETkICgXTSyySZur8/TjIhJIQACQTY7/MEZp+zzy6TzJzfWXvttWJj8fX1rSKmPv/8cx566CG++OILbr216vbWmt7Ti43rIZFIFM7X2zwvvZCvchYqn0GnkpI9PEtZ7Np4yghuEGDTst57JxaVoje0Oi2tm7diU7lBCiCqY9fqjRefUgxSWiN0uAfCu4PHpTFK2e1ml3Zyd2+Br28vPDxau86bLXYOpBZwPFuJgzWiWwRjekqD1OVApVJh0hhxahQN66Zzq1ejlBoHRo0drVp90frMzWSiWdNoNMZitGrl3io11Nm5mjXU2nXryc3Oov+g6jHqzof60FCNHWmUklxRvHYsndVZBa5yt0sV4FwIWH4bJG3mUMlAthY9SGlZkut016QMAopKWNNdxZa2agLKFKNAsLOA4SWb8Dfq0eoaLkOL3V6IEEqAh8iIMajVBnLNVvq/sYHC8uDmAF4ydbGkjpwp9WKio7n9ttuYOHEiH374IZ6ensyePZvw8HDuuOMOAJ544gmGDRtGy5YtycvLY8OGDbRp0wZQsraoVCpWr17NLbfcgslkwtPTk3HjxjFz5kz8/PwICgpi7ty5qNXn3lIya9YsevbsydSpU5kwYQLu7u4cOnSIdevW8c477xAbG8vcuXMZM2YMbdu2Ra/Xs3HjRj799FNmzZoFKKuBCxYs4KmnnsJoNDJmzBh0Oh0//PADzzzzDPPnz6d9+/ZV+o2Li6s2lnbt2qHTVf1smc1mXn75ZW6//XZCQ0PJzs7m3XffJTU1lZEjRwKKmOrfvz9RUVEsXLjQleYYOGvGlQoqVvGKi4vJysoiNjYWvV5fRdyejqenZ7W5uLu74+/vX+X4Z599Rps2bQgMDGT79u089tjj/GPCozRrXul5efLkSXJzczl58iQOh8M1lubNm+Ph4cGPP/5IZmYmPXv2xGg0sm7dOl555ZUqwVBXrlzJuHHjWLJkCddffz0ZGcq2HZPJhLe391nnnZtbQEpKOvn5yoNJxe8jJCTknO+ZRHKtU2x3sDgpk28ylfhJHnU0SmWl2bFbDiBs+wEnCDDY7JRpNTh8mtGsRM1wh5UT5QapiJBw2nfugLVECVhudPfgobc/xuheQ4IXixLrEo9guOPdi57j+WC1KglrNBo3el7/S7XzYz/9i10n8lxlXzepoRqUK33fXi3EREdz67BhUkNdYxrq8ccVDRXdrIWrzuXVUPkkJR0lJ0dZmGhMGkoapSRXFNlWxcAyPNCbvr6eDPS7RFbg0jxIUvbjHigZhsWpRTgVIRUR5EHIXjOlelg2SIvB5smeBCUIYIC6hIemPU5gk4ZZWbPZ8ond+xBFRYo7vUbjgVqtWNHjMoooLLOjUoFRq+HmtsEY65DyWXLxXK266uOPP+KpmU8zfPhwrFYrffv2Zc2aNS4x4XA4mDJlCikpKXh5eTF06FDefPNNQHEdnjdvHrNnz+bBBx9k7NixLFu2jMWLFzN58mSGDx/uSmecnJx81j37FXTs2JGNGzfy7LPPcuONNyKEoFmzZtx3330AREREEB0dzbx580hKSkKlUrnK06dPd7Uzffp0YmJiWLRoEUuWLFG2WKKsQI0aNapavzUdS05OJiIiosoxjUbDkSNHWL58OdnZ2fj7+9OjRw82b95Mu3btAFi3bh0JCQkkJCRUu/5cXkGnp/zdtWsXK1euJCoqiqSkpFqvOxdxcXHMmTOH3NxcoqOjmT5zFrf/Y2KVOi+88ALLly+vNpYNGzbQv39/dDod7777LtOnT0cIQfPmzVm8eHGVOA8fffQRdrudKVOmMGXKFNfxijTXZ+Pnn//g0Uefd5Urfh9z587lxRdfvJipSyRXPWuyC3gvuTIeS50yF9st5OeUYC/ZACgPMr7mUuI692eFqTm3Ng9mzMFSCj1KOQHohIaH/u9BhFaQcuggAAYPD0weZ+g1pxNS/oLj5bFODJcuG7AQgty8reTn/wWAXh9UY724DCV+VrS/G+G+Jm5sfum2FUquNGpTfsq595Yu4bl5/5Qa6gyuZg01e84zDL7voSp1LqeG+umn9UyePNNVbkwaSiWuQX/4wsLC8gCuBXXeXyppHNz01xEOmcv4olMM/f0u4e8uJxGWdkXoPHjv5MuU5X9DRV6QJg4n7Q8c52QgrBxyP5tKWyEcymrgXaYk3pw7pZaGL45Tp35h/4HK9kNDR9K2zWsA/Howg0n/2UWXJj5892ifBhvDtcbJCRMxb9lC6Guv4nPnnVXOHXx5B95FVtYHxNG0b1OuDw/FGK6suhRmZ2EuLkboDRgMBvz96zeuV2ZhGZmFZfi7Gwj3rX37Xo7VTkqZFU+thhi3clfg9H0gHJQVuyGsNnKDTOSrywgRkdgKswAn/pFN0OkNtbZ9sZjNZsLDw1m0aBHjx49v0L5qIjc3l4EDB+Ll5cXPP/+Mm1v9brO80sgptpCaX4qXUUd0wOVNkCCEcBngPTzaoFbX37paWVkZx48fp2nTptXEvNQMVZHvx5XL+ydPMS8xjY4eJu4N9WNEsC++ulo+R6m74LNb+f3UbezJTEel0tA2OQODKOOxwQsoKrPzoI+GbkVZ5KqKOabNRK/T8X8j7+ar+c9hL99mExTdjDGvL6na9t4v4LtJleWoG+DBnxpg1tXJzdvOnj3/cJUDAwbRseMHVerYHE5aPPszALEvDMLHreG83a8l8r76ioznX8BjwAAi33+vyrnjq4+h25JKpoeV/CHQLdgPn7C2oDVgLS0lNz0Fp1G5D4WGhtZvTCmbg/hMJaZU27Dav9fsTsHBYiXOWAdPE2qVSgntUZKDzeGNvaAEp48nScZi3NUemAp0CKcZdx8fPP0b1rApNVTjwuZwcjhdcWLoGOFzeQcDlJQkYbcXYTSGo9fXX2zb+tBQ0lNKckVRVB4HwVNziT1+SnIosAeTq+mGrSSeCoOUzu4g+EQmANlB3hSWNkE4PAhWFdLMkc7AwIYdp8WqrHj6+fahRYvncHOLIafYwhd/J7PnpOJy7i237EkuClHjy/piz549HDlyhOuuu46CggJeeuklAJc7+6XGz8+P9evX8+6777J9+3ZXmmWJRCK50im0K/Founi5MSGiDg/He/4L9lLMDuVxwa7REpVTSGKQnqLy0ACOrEJ2eia6LgkMCiL50AGXQQogpluP6m1nlW/jcQ9SMu31argFvDMpLioPvK4PxtOrA9HRj7rOFZbZuPeD7aTkKUYHlQo8jVJHSSqp3RYmzihJDSWR1AVplJJcURSVCypP7SUyStlK4dOh5CWfYmX2e4Aa4fwGgOa6AlruzWZvtIov+6txC2pNVr6yktbNkcxtUVquu/3uBhtaaWkqeXl/AuDmFoOHhxLz5ZMtCbz3R6VADPJsWM+Wa456XJlrGM6tes5nBpfClXbhwoXExcWh1+vp1q0bmzdvdgWJvBz4+/vzwgsvXLb+JRKJpCEoLg+S7FVXDZWXBECOVwxkJ+NRVn7YoGzFa2PVEEo+mYC3w0jH/j1o164dR39X4jN1HnIr/cZMQKurwahTWh6rqftDMGBO9fMNSFlZKgDBIbfTovnsKud2n8jjSPm2PYAukT5o1I39vi+5lpEaSnI1II1SkisGi9NJfrlRKkB/if50U3ZCeizZthsQwoGadFRCCRBqOqFknomPDiAppB3x+b2wOZXgcjf27Miwu4c22LCSkj4g8dgbrrKbezPX64wCRTVeF+1H1yhfHri+SbXrJfXAVb7x+VJJ8C5durBr165L1JtEIpFcuxSca2Hv1BHIPADCCcJJwsEyNhT8l1KLknVY41RufAc8uzM1r4wIdw2Z7jkAeOvdGdC/P+aCPIrzFJ1k9PCqbpBK/gvWPlfpKWXyqd9J1oLdbiY19b/k5m1Vxmesnia9oFQJ1t4typdFIzsRcY7t8JLzoz633EmkhpJcPUijlKTRI4Rg9L5jbMkrBkCvUuF7qTylMg+Qbw8lUXsHtuJVOO0nXKc8ixXX9DCPLqTn9MEmlH3u3pTQvYECm1eQl6ekY1WrTRiNIQQGVLrHFpYpguquruHcf500SF1SpNaSSCQSSSNDCMGJMisnS5XFtKCaFvbKCuDjm8Bmdh3aZ36FMrsNp13JaqXByptd7mVjeGcm67I4Ykhz1XUzmPjv7MfJOpnkOmaoKZ7Mnv9C8o7KcmCri5vceZCW9gUJiQtcZTdTtOt1RkEZn/91kt3loQ+CvQyXPY7eVc01EtJYnOW1RCKpijRKSRo9eXYHG3IrXan7+Ho0/EqLEFCYSsreE/yQ/R5CWHHaVwGgs9vxNVvwKrWwqb2aJoZuFDiUlbSRxRto6+mkSdtbG3R4pWXJAHTu9Cm+vtcB8Nb6eL7dnUpmoeIpJWNJXV6k+JBIJBJJY+CFhFQ+Tsl2lUMM1fWBSNlFXGEPigkD73BARabFDWvhp646ap2DtVGK5nBolIVCk8qAl8GdngP68M3C75V6Gi0mLy+iOnY5sxuwKEF/6TEBuo6DkA71M8k6UFAYC4CvT0/8A/rj51eZBOb9PxJYvr1y4THYq/bsZRJJzcjVSYnkQpBGKUmjp7Q8uLlOpWJHzzY1iql659dn4c93yTEPB0CryscC6FQOBhw+gdYJ/7u3H77q7nxnBodGjUY4mL/oFQyGhsvQYjYfI/PUT5SVKauTJlNlCtR/bT5OsUUJPKpSQctgzxrbkEgkEolEcu0QW6gE7XbTqGnhZqC71xkeQHYrKTuP8FvB40q5oPywbS+gaAqPEgtlGjUAagFOleJ1dUO/XvTp35/8jHQAdAYjj/3767MPxlruiRXWBUI71sPs6k5F9s7o6EerGKQAMsoX9G5oHkCXJj48cH3DerxLLg4hRKPeClg5MrlEKZHUBWmUkjR6Sp2KUcpNoybMeIlS8p5UtseV4Y3DloxJuw0zoHYItMpw8Lb2YDEhUL6TMICiBjVIARyJe5b8/L8A0GjcMBiCASXlaIVB6t8PXUezIA/CfWQcBMnF0HjFnkQikUjqToWO+qRdNAP8z0jJ/fcnsGYmucXDgNZ4e1oJ6xiFCjh2eBf5ieBQF3JjfBbftVW22rVQlWFRK0YpD08Pdv30A9nJipeRwcOj5kE4neC0gaXc811/abbGCSE4dHgmeXl/YrEohjNPz7bV6lXEkhrZPYI7OlePNSWRnB9SQ0kk54M0SkkaPRWeUia1+pL1aSsuJsPSiSP0w1b8H8pzxOBXvpKW66khRW0AJxiwEaAq5gbH0QYdkxAOCgv3AxASchdBQcNQqTQcyyrm6KliV73ezfzRai7deyW5kpEreBKJRHK149JRNWmDo+tAOCh0BAEQ0zmA3g+0AWDry69iAjxLlOsLVKEM0B0lRF2EQ+VEJUDk5fHHvz92Nefh41u9D0sxfHAD5B2vPKa/NN7cVuspMjK+c5U9Pduj01WO8fnvD7Bmfzr55UYpGfpAcnGIM/4//ZTA6RSoZTZHiaQa0iglafSUlWd7MWouwZf48U1w5Cd+P3k7CWU3YC+LdZ0KyysiND+PP25sQRvPm8i2l4EamjpP8eL1XjTtOrZBh1ZaehKnsxS12kjbNq+jUmmIzyxi8JubXHU8DVppkGporhEtcY1MUyKRSK56KjylajJKOUrNnLK2IoFbAPCKCHGdcz+aiRMdETlK1j6Vxp8oTT5aoaFnm+uIbBdD4fFDAPiFR9K0c1da9+lffQBZcVUNUm4Bl2zrXmmpEoPTYAihY4cPcHdv4TrndAr+u+OEK+a2QaumdYhXTc1IJOeJoqLEacap0mIbZSVFeAWYMLpL46dEcjrSKCVp1JjtDk6UKlnuGtxTylYKXzyAKCsk2fIfAFQqJQ6Dn9FM55OnSAw1ofKdyMNqFdbyG46fm46eI0Y12LDs9mKOJryCuTgeAA+PVqhUyp7B+EzFDd5NryHS1407u0iX80vGVZs5pjZz1NU6Z4lEIrl6KSn3lHKrQUdtT+rJ3txerrJvSOW2Ol2JA4tKh9Dq+DuoFQeD2tKNeNyEngFDB6LxNrD14N8ANGnfkf5jJ9Y8gIqMfgEtYcJvoHMDTcM/gpSWppCfr4zPZIrCy6tqUPWiMrvrVr7msRsJ8zHi43aJwkRcqzTiOFANgVA5UWtUlH8EAbCVOaRRSiI5A+lSIWm07Cww02bLAaYePglAQE0pjOuT/JNgKcQi3Cm1l2It+hq1dQsAvieU2Akl3m58oc13GaS0OOjuVdagwzp16hfS0r6koHAPAN5eldlsKmIg9GkewK/T+/JI/2YNOhbJ+XLlGXEmzp6NW4cOhAU3o3NYZ3pc14XFS5dit9svqt0//vgDlUpFfn5+/Qy0Dhw/fpzRo0cTFhaG0WgkIiKCO+64gyNHjlSpt3r1avr164enpydubm706NGDZcuWVamTlJSESqUiNja2zv2/+OKLtG7dGnd3d3x9fbn55pvZsaMyFXpSUhLjx4+nadOmmEwmmjVrxty5c7FarbW2m56ezujRo2nZsiVqtZonnniizmNKTU3lH//4B/7+/phMJjp06MDOnTtd5//v//4PlUrl+gnwNPLIP+6p0kZ0dHSVOiqVitdee811Pi4ujgEDBhAcHIzRaCQmJobnnnsOm81WpZ38/HymTJlCaGgoBoOBli1bsmbNmlrHv2rVeu68cxKBgcHn/fuQSK41vsvM45n4FPLtiqeTsQZPqZTCyoDerXuGENbCh8NbN/LJ4xOxYADgRExrXug9kdJye5UOLdkZyfz+2Yck7lS+0wxutcSIqghurvcAo9clMUjl5Gxk2/Z+JB5bCIDJWJkYxukUfLs7hfc3JgLKwl7bMC9pkLqUXKULe+NnPI1bhw64R0bROawzA7sN5K33l2C329HqNRfcrtRQV6aG0ms1jUpD/fDDL9x55yRCQ5s3Og0lPaUkjZa/C8xYy29aJrWa/wsPaNgOzVkcKBlCnG0o9tJtOO0nsZRHMfewWHGqICMmiiKhiLR+jkM0s56gb5vBDTqs0jLFKOfr24vQkBEEBt7MrhO5LF4Xz4mcEkDGQGhsXOnrgIP69OGNDxZxylZI7Pp9zJo1E61Ww7yXX77cQwPAarWi19f+8GCz2Rg0aBCtWrXi22+/JTQ0lJSUFH7++ecqom7p0qU88cQTzJo1i/fffx+9Xs8PP/zA5MmTOXDgAAsXLrzgcbZs2ZJ33nmHmJgYSktLefPNNxk8eDAJCQkEBgZy5MgRnE4nH374Ic2bN+fAgQNMnDgRs9lca78Wi4XAwECee+453nzzzTqPJy8vjz59+jBgwAB+/vlnAgMDOXr0KL6+VWPADB06lM8++wyAXLOF3NLqDw8vvfQSEydWekV4elbGh9HpdIwdO5auXbvi4+PD3r17mThxIk6nk1deeQVQfoeDBg0iKCiIr7/+mvDwcE6cOIGPj0+tcygpKaVXry6MGjWOSZMm13nuEsm1RrbVzqOHTriWRgJ0WkL1p2mF3GOQvpdiqzcA908Lwq+dEgA89teflGx6KhUqIUhUKXV0WmURzl0Y2PzVvzmxf7erOQ9f/7MPxmWUujTBzQGysta5XptM0YSG3u0qb0nIZsb/9rrKAR6GSzYuydXPoD59+ODtt0hU5bHt923MmzkPYbPx5PSZ5TUur0FOaqhLp6FsDicn8qobyS6XhjKbS+jVqwv33nsfjzzyRJ3nfimQRilJo6WwfGXvwfAAXm0ZcY7aF0HqbvjyHxTmWdlY+BEAwvEHAO4in/aJZpJiPFg3aCh/2jqSI9wAGHXz9XSOuZ2QZi3O1nK9UFaaAoC/342Eht4FwPJte9iakOOq0yzwLNluJI2GK8lQZdDrCQoKRKv2oMuDPVj9w3es/e13nngqj6eensWPP/6IxWKhX79+vP3227RooXwGTpw4wdSpU9myZQtWq5Xo6GjeeOMN2rZty4ABAwBcN+9x48axbNkyioqKmDx5Mt9//z1eXl48/fTT/PDDD3Tu3Jm33noLUFaVxo8fz9GjR/n++++5++67WbZsGVu2bGHOnDns3LmTgIAA7rrrLl599VXc3d05ePAgiYmJ/Pbbb0RFKZ4AUVFR9OlTmQY8OTmZJ598kieeeMJ1owd48skn0ev1PPbYY4wcOZLrr7/+gt7H0aNHVykvXryYTz75hH379jFw4ECGDh3K0KFDXedjYmKIi4vj/fffr1VQRUdHs2TJEgA+/fTTOo/n9ddfJzIy0iWWAJo2bVqtnsFgICREiSujK7Zgzy+tVsfT09NV50xiYmKIiYlxlaOiovjjjz/YvHmz69inn35Kbm4u27ZtQ6fTueZ1LkaNug2A7GyZXVQiqY1Mqw0BuGvUPBQewNAAb7QVAZYddvh4IKIkjzLnCuxlW/nrD2+02zcBgrQ4JU5UTFYm0adKmXWD8j0VAfSwNSNY782BPKVOu/43ExQdQ7t+A6sPIi8JNr4Bpw4q5UtolCotU7RTmzavExZa1VMho0AxroV5G7mhRQDDO4ZdsnFJzs7VsrPPoNcTEhREqdHEAw89wKbVf7D2t98Z/+BE5rwwnbW//YLVKjXUubgaNJTN4SRPFFarc7k01OjRd2O3F5GR4Thn3UuN3L4nabRUGKW8tBfu7lon4n6GwlRy7ZEIZyl69VGEMxeAJumF+JvLcDO15xvrdZwoN0h5iFIGDuhFaItWqBoo1lVKygo2bupG5qnVABhPcz2vyBLzYJ9o/v3QdUy4sfqXoqTxIITAWVqKKCtDlJYiSktxlpTU648oLYUa2hYX6iJ/mjo0GY1YbTbGT3yYnTt3smrVKrZv344QgltuucXlUjxlyhQsFgubNm1i//79vP7663h4eBAZGck333wDKG7J6enpLkEwY8YMtm7dyqpVq1i3bh2bN29m9+7d1YazcOFCOnXqxJ49e3j++edJTExk6NChjBgxgn379vHll1+yZcsWpk6dCkBgYCBqtZqvv/4ah6Pmm+/XX3+NzWbjqaeeqnZu0qRJeHh48Pnnn1/Y+3cGVquVjz76CG9vbzp16nTWegUFBfj5+dVLn2eyatUqunfvzsiRIwkKCqJLly58/PHH1er98ccfBAUF0apVK556Yhr5ebnV6rz22mv4+/vTpUsX3njjjVq3dyYkJPDLL7/Qr1+/KmPp1asXU6ZMITg4mPbt2/PKK6+c9XclkUjOj1yr8pkMN+h5tlkY3bxPMwiZs7CaS0i3tcZhOYKjbAcHN61l77o17F33MwB2tZPIbDNGu4MCnTctNafo43QS1jOUsqh8CrOzAOh2yx10HXY7OqOx+iB2fgax/4U0JfwAXg1v/ElOXsbGTd3Izd0KgEEfXK1OYZlyz+oe7ceCezrRt2Vgg49LcnEIIRpUQzlLSqC0FEpr0FcXsdVQIDCWa6ipMx5n7749fPHfr6SGOk+uVA01dcqjUkPVEekpJWm0FJZ/sDwbOpucOYsihz/HPB/EeuJbLI5MADQOJ02ylRuF2SsAe7kNd6AunojSNPT6e87aZH2QnLIcuz0fALXagLd3ZSypwnKjVO9mAVJMXQGI0lLSBg2pciyrAfrRAUVA3GnHWu3ehcrN7bzbUqGIwI2b/uCPzZsZ0K8vq1evZuvWrfTu3RuAFStWEBkZyffff8/IkSM5efIkI0aMoEMHJZjs6Ss9FSIhKCjI5V5cVFTE8uXLWblyJQMHKqvsn332GWFh1R9cbrrpJp588klXecKECTzwwAOuWAAtWrTg7bffpl+/frz//vuEh4fz9ttv8/TTTzNv3jy6d+/OgAEDeOCBB1zjio+Px9vbm9DQ0Gr96fV6YmJiiI+PP+/37nRWr17NqFGjKCkpITQ0lHXr1hEQUPNW5ISEBJYuXXpR7u61cezYMd5//31mzJjBM888w99//81jjz2GXq9n3LhxgOJ2fvfdd9O0aVMSExOZNXsOf+/cxQ+/bnC189hjj9G1a1f8/PzYtm0bc+bMIT09ncWLF1fpr3fv3uzevRuLxcLDDz/MSy+9VGUsv//+Ow888ABr1qwhISGBRx99FJvNxty5cxtk/hLJtURu+UOOn676wp6z6BRf5LxFkSMY4fwNgDzPUlqkleJuAb0dAotKcLcqD+Od9HbCdCcx2cPZ+8e35KQoYQVQqXD3reUBsDRP+b/lMGg1FNrcXn8TPAtp6d+4tJNG446nZxvXuaIyG5uPZrP7pDIuT6N8DGr8KH+DoqyM/LvvdR2t7nty8VRsbo074/iF6ighBFv/2MpvGzYwoO+N/LJ2Lau/WUvvXn3w8jdJDVUHrnQN9cwzz7D1z7/5zw9rXe1IDVUz0lNK0mjJsVYIqgYSDXkn4K+PObb1IP/O+heHkvwQ5QYpN4uV1uk5bG6n4oc+TXnNrTsAPpRwb3MvJowf1zBjKkcIByUlSvrkLl3+y4037MBoDOPxL/bQ7oVf2JuSD0hBdVmo8CC6SoN0Avy8aRPNotvTNaIro0aN5PZbb+W+u+9Gq9VWccP29/enVatWHD58GFButPPnz6dPnz7MnTuXffv21drPsWPHsNlsXHfdda5j3t7etGrVqlrd7t27Vynv3buXZcuW4eHh4foZMmQITqeT48eVz86UKVPIyMhgxYoV9OrVi6+++op27dqxbt26au2fjXPFXQDFOHf6OE53sR4wYACxsbFs27aNoUOHcu+993Lq1KlqbaSmpjJ06FBGjhxZJc7A6e1Only3GEqbN2+uct2KFSsAcDqddO3alVdeeYUuXbrw8MMPM3HiRD744APXtaNGjeL222+nQ4cO3Hnnnaz8+lsO7t3Nn1s3uerMmDGD/v3707FjRyZPnsyiRYtYunQpFoulyji+/PJLdu/ezcqVK/npp5+qCEWn00lQUBAfffQR3bp147777uPZZ591jaW291QikZybXJuysFeThirNyqLIoXgQOZ1KKIC+h4q47lge7VLzaJGZh4/VToHBk7VNeqDWK/c7lZua4jylfvsBg7h12lO4eXmffRDWYuX/mH7Q7f/ArWE8GKp0ac0GoGOH97mhz1b0+soH2FfWHOHRFbtZsz8DkPE4JQ3Dz5s2EdSqDV0jujLx3oncfeedLg3VtXOllpEaSuFq1lDf/7CKg3t3s3P7FlcdqaFqRj7RShodsYUlfJGRy74iJY5JkKGBRMN3k+HkNtKsDwKgViviyWDQ039vIjYNJPV4lQ+Mlf1H64oZMm58w4ynnLKyNAoK9gBK/lgf7+6o1TrKbA5+iE1z1fM0aGkRJGNJNS5qDoigMpkIW/crZrMZodNjMBjq3b34VJGFU4Vl+LrrCfepjLejMp1/7J1+PXow/61XMBsctAvpjKqkkF/XrT3ndRMmTGDIkCH89NNPrF27lldffZVFixYxbdq08x7Dmbi7V41FUlxczKRJk3jssceq1W3SpInrtaenJ7fddhu33XYb8+fPZ8iQIcyfP59BgwbRokULCgoKSEtLq7ayaLVaSUxMZMiQIWc2X43bb7+9irEuPDy8yribN29O8+bN6dmzJy1atOCTTz5hzpw5rjppaWkMGDCA3r1789FHH1Vp+/TMKF5eXuccCyji8/TrgoOVh8/Q0FDatm1bpW6bNm1c2wJqIrppDL5+/pw4fuysda6//nrsdjtJSUlVxHBkZCQAbdu2xeFw8PDDD/Pkk0+i0WgIDQ1Fp9Oh0VR6cbRp04aMjAysVmut76lEIjk7NqdgXU4BW/KKgJqNUiXZ+ThtJWCPRdiU2EtuFhuawADC33gDfWQk2tBQ+j29ipNaHbdolIdUtVaNpURJsHLDqLG4+/hWa7sKlzDAeW7uNjIyV2G1Kg+sXl6d0Go9q9Q5kaOMp3WIJ9H+7tzbPbLBxyU5k7oEjlJxZjBwldGIzzf/w2lUPJaCg4NR12P4jDKbg4RTxWjVKlqHVr3Xnq+O6tejB28teJ1MTyvh4eFEaoL45quvznmd1FAKV5OGiolRNNTJJKmhzoU0SkkaHS8lprEtv9hVjjI2UIrefMX9PF/fFlv2b7h5Knt+9fmKkEsOVHPCVATCD29VKZ20aVznZTlrc/WBw1HKjr9uwW5XxqDT+aFWK0axii17ahVseKo/AR4G3A3yI9woEVVFl0qlQm0yoXI4QG9AZTCgvgBX8NpQ2dVgU6Ey6S+6bTeTiaYx0eSoStCixQG0aN4Mu93Ojh07XNv3cnJyiIuLq3KTjoyMZPLkyUyePJk5c+bw8ccfM23aNNdq2en73WNiYtDpdPz9998uEVRQUEB8fDx9+/atdYxdu3bl0KFDNG/evM7zUqlUtG7dmm3btgFwzz33MGvWLBYtWsSiRYuq1P3ggw8oKSlh7Nix52zX09OzSuaU2nA6nVVWw1JTUxkwYADdunXjs88+qyayz2d+FZhMphqv69OnD3FxVTcmxMfHu4KY1kRaagr5ebkEBtcckBMU0adWqwkKCjprHafTic1mw+l0otFo6NOnDytXrsTpdLrmHB8fT2hoKHq9Hr1eX+09vZi4HhLJtcLXmblMP5LsKgfqT9MJOYnwn7swZ4VgKw1DOBSvIo3DiffsqbS4axwqrVI/u9hCnrZ865RaCQxOQYnLS9jgVouh6c/3IXYF5CrGLPQNu4AmhODgoekuLymjMQK9vvr3UUUsqVnDWjOg1dm/rySND5VKhcpodBmI1G5u9WqUUtscYHKAWlUvGqp502jUxiK0Gi2ISg21O3YnN/a9AZAaqoKrWUOlpJRrqKDqse0quFQaqrEjn2gljY58m7Jt794QXwb6e9HCvYbgmfVASn4YcYV3kWI14LDspaj8O87dYsNsgM0dwtmCcmMKE8X0dCtg2PARDTKWCiyWDOz2IlQqDR4ebQkNvRunU/DbkVMcTld20HuZdET5X7oMNpKrkAvIcBMTHc1tw4czceJEPvzwQzw9PZk9ezbh4eHccccdADzxxBMMGzaMli1bkpeXx4YNG2jTRonnERUVhUqlYvXq1dxyyy2YTCY8PT0ZN24cM2fOxM/Pj6CgIObOnYtarUZ1jjQ8s2bNomfPnkydOpUJEybg7u7OoUOHWLduHe+88w6xsbHMnTuXMWPG0LZtW/R6PRs3buTTTz9l1qxZgLIauGDBAp566imMRiNjxoxBp9Pxww8/8MwzzzB//nzat29fpd8zBQlAu3btXNlPKjCbzbz88svcfvvthIaGkp2dzbvvvktqaiojR44EFDHVv39/oqKiWLhwIVlZlZHGzpaVpYKKVbzi4mKysrKIjY1Fr9dXW8U7nenTp9O7d29eeeUV7r33Xv766y8++ugj18picXEx8+bNY8SIEYSEhJCYmMiMp2YSGR1D3wE3A7B9+3Z27NjBgAED8PT0ZPv27UyfPp1//OMfrqxAK1asQKfT0aFDBwwGAzt37mTOnDncd999rvfpkUce4Z133uHxxx9n2rRpHD16lFdeeaXGVdvTyc0tICUlnfx85b5Q8fsICQk553smkVwLpJYbXiKMOnp4uXN/aKVXrjNxI8cywjhe2hXh2A9AVFY+4XnF+Hfrxbw1cRxILaDIYicuowhQHoSjhJZQRxDe+UrbHr5+aGvblrNpIZRkV5b9z//B8HwoK0vFas1GpdIRHf0ogQE3V7mH/HIgg7+TcjmZo3h5eRnltr3LjeDaWGSomGdMdDTDhgzhydmPsWTxO4REBkgNVc7VrKFmPv00kdEx9O43ECEEf/7552XXUElJ8eTkKLtxGpOGkkYpSaOjzKl8gY8O9aenTwOtrjkdbM4dTa49CrtlLwBubkZaHj5BvpeNN297hq12HxCK9TnGS/DonOcbZiynYbUqsRqMxnCu6/E9ABviTjHx3ztddfzcG8hzTCKpQoWgqRSOH3/0ETNnzWL48OFYrVb69u3LmjVrXDdJh8PBlClTSElJwcvLi6FDh/Lmm28CiuvwvHnzmD17Ng8++CBjx45l2bJlLF68mMmTJzN8+HBXOuPk5GSMNWVyOo2OHTuyceNGnn32WW688UaEEDRr1oz77rsPgIiICKKjo5k3bx5JSUmoVCpXefr06a52pk+fTkxMDIsWLWLJkiWYzcr2js8//5xRo0ZV67emY8nJyURERFQ5ptFoOHLkCMuXLyc7Oxt/f3969OjB5s2badeuHQDr1q0jISGBhISEatefyyuoS5fKxAe7du1i5cqVREVFkZSUdNZrevTowXfffcecOXN46aWXaNq0KW+99RYPPPCAa8z79u1j+fLl5OfnExYWRt8BA3nwsVkYDAZASXX8xRdf8OKLL2KxWGjatCnTp09nxowZrn60Wi2vv/468fHxCCGIiopi6tSpVd73yMhIfv31V6ZPn07Hjh0JDw/n8ccfd4nds/Hzz3/w6KOV38UVv4+5c+fy4osv1nqtRHItUOpUHjZuDfRhXvOqWzYSj2pZm/80wlkE7EOgom1aDjYN3L7iJNnmqpmbNDgJUxfQ0xaEqiiXZNUxhk2ZQWjL1rUPwlIehvrujyGkAwS1qb3+RWCzFZKTq8S88/BoRUzTqg9lpVYH0z7fjc1R+Z0a5GlosPFIJGdj6aI3mfPCS9z3wAisNqmhKriaNdTNgwbxwKMz0TcSDfXTT+uYPHmmq9yYNJRKXIP+8IWFhXh7e1NQUFDn/aWSS0e3bQdJtdj4pVtLOnvV7xYnAI79gTi2iY++6YZdmPDx/4uMhC00yc6nfWoOO9uH8E7zqWRiJEhVRLQmj3ui1Nw7cVL9j6UcIQQnTnzAiZMfYrcX4e3dle7dlP3n/96exAs/HCTYy0CnCB9Gdo9kUNuzu4FKGpaTkyZh3riJ0JdfxmfE3VXOHXzlL7wLLfzmH09Uv2h6hodgDFdunkXZWRQXFyP0BgwGA/7+/vU6rszCMjILy/Bz1xPhW/vnJtdmJ7nUiqdWTYxbuXBJ3wfCQVmxO8JqpSDYgxyVmSDCcBTmgXDgFx6B3nj+MarOB7PZTHh4OIsWLWL8+IaN31YTubm5DBw4EC8vL37++Wfc6nmb5ZVGjtlCal4pXkYd0QGX10NTCEFR0QEAPDzaoFbX37paWVkZx48fp2nTptXEvNQMVZHvR+PmmfgUPk3NZnpUMLNiqmbF2rz4c/bG+eCwJmAv+RW93cnNB4+TEGRgWu+XAbijcxjqLacIdGpwBG7HoXLQ36c1u7b/l4g27bnvxddqH4DdCvPLswLPSgLTOeJOXQTFxXH8vfNunE5le2F42P20bj2/Sp30glJ6vfo7GrWKh/vG0CrYkzu7NP74Klcr+d98S/qzz+Lery9NPvywyrmkNcfRbkoh08NG/hBBt2A/fMLagNaItayU3NQUnCblPhQSElLvMaXiM4vQqFW0C6sleD/gEIID5XFvO3iaUKtUSkiQkhxsDm/sBSXg48UxYxE6jY4w4U9xXi46owcOuztGdx1eAQ2jpaSGalzYHU4Ole906RDufU4PtoampOQEdnshRmM4en39xbatDw0lPaUkjY6KVT6jpgE+uHkn4N93YHW6YSl7FlvJOjLylJVBz3KXd3NAJJkoH6jrdCcJoJio8O5nbbI+KCjcTeKxyqwKPt49XK8rYkn1bxnE6/d0bNBxSM6N6kL2vl2BXKpZ7tmzhyNHjnDddddRUFDgSnlb4c5+qfHz82P9+vW8++67bN++3ZVmWSKRSK4EKjSUSVP9gb2g0I6l4F8glHgFbhYLacERrIy6iX4tA5l4YwzXN/Hhoz82IRBko+gjfbmHtu4c3hcIAcUZleUGjiV16tQvLoOUQR9MSMid1eoUlSkhIbyMWmYNPYeHl0RS3zSw64fUUJKrBWmUkjQ6KrbvmepxBcRFgRL806yJxG7ZDRWCy2bHZC/ll04xLPW+01W9Z4gX7dt2pcMN/ep/LKdRVKjEdvDwaE1Y2H2EhtzF3uR8lm9PYn9KAQBeJvlxbVxcc06mDcbChQuJi4tDr9fTrVs3Nm/eTEBAwLkvbCD8/f154YUXLlv/EolEcr5kWW1syi0i3qwYaWrSUEVFxS6DlNFqw9dmZsk9C9mXWsDiaB9a4ST98CmKPY5hMWW5VidyExMA0NXmKSsEfDIYUv5SyhoDaBo2dpPFohjAYppOp2nTqVXOldkcfPl3sisep6eMIyW5SpEaSnI1IJ9yJY0CpxBMPnSC/UUllDjKPaUawCglSvL5s+gfHLEORjhXAtAyO5uYtAI23XQz73gOwYkKA3aaOdIYNHQQwTENG6AToKjoEACBAYOIjFAyVby1/i82xFUG7Qv3adhtUxLJ5aBLly7s2rXrcg9DIpFIrmimHDrBprzKzMUe2koNlXEgif2/HiArT5H9RoOem/YmcryND2mZSrbfXd+cJN2RgkBQGpziMkh5OI0UZSrGH0+/WrZ7WIoqDVIArW+pp5lVp7g4nqzsdaSl/w8Ag6F6SIM1+9OZu+qgq+zvIeNxXilcdf7oDTghqaEkVwvSKCVpFBwvtbDqVL6r7K/T4qvT1Hs/J4+WsLPwZoQ9GYSyHzz8lBm1ALvJGwcqdNgZZdiDPv8UBve76n0Mp5OVtY7DR57BZssHwNOznetcdrEVgNHXN6FLpA+3dQpr0LFI6pmrTlVJrkXkn7FEcmVwolTRDN283GhqMjAkoDIuzp//3UpqfihCKEGITbmK91AyWrLtykKgw2c3OSobqASoQC1UDLN0xh8vkpodpM11N9Oq941nH4CtpPyFCp7LBG3DBRM/dHimK74cgJdX9dAGGYWKx1jzIA/6NPPnrq4R1epILgOXOabOpeZayTIokVws0iglaRSYy72j/HValnVoSjM3A/oG8JTKyyzDVvw9wlmeGUYIdA4HR8NUvGloCw7wowRTbjoR/r54BQbW+xhO58SJD7HZcgHQar3w9u6G2WInJa+U7GLFxX5E13C6RdVfMDpJw3MlSy4VZ25MFDW+lEgkEknjoUJHLWwVSRuPqp7VxaV6hLBhcB7ADniUKQasOI9IALxVpRh1JThPuybE6UMoivYIaN+MjoOH1T4Aq2LwQu/RoAYpgLKyNACCgm7B1+d6PDxaVatTWKrEkurXMpDnh589zbvkMnFN5dmqqgqvqalLJHVEGqUkjYKKLXveWg09vBsgw9OxjfDdJErS+rkMUgFFJQQUlbDy9lv5Sh+D06qsKrY0FDP7tQ9ra63eqBBW7dstwd9/AE5MDFywwbXCB+BtknEQrgquOEuVMmCpnSQSiaTxY3YoMTLdawhwXmg+haXoP1jKzU5a4eTfbQfyY8ggbtImEKIpxFCQzp/NUxnR9C66bA7DW7hx2LSTxPhd3DjswXMPwGWUathsW0II7HYl1mbLFs9V27r32+FMPtlynMQsZSujl4wlJWkkXHEyUCK5hEijlKRRUGGUcqtBTNULh1dBUTrFVqV9NRquO5bOKW81BaIHdqs7Qaoi2moz6ella5gxnIbNlk9p6Uks1kwAfHx6oNW6k5pf6jJIBXjoaRfmTdOAhs1eI5HUhBRPEolEcmVgdwpKy5PEuGuqhj6wWx1YrZlQYZByOEjrFMbn+mFoBURq8lCp4B7DvYxJ1oOSDwaVQUO2Ix2zPb/2rHuZB2HzIigqz7qnaxijlBAOjhx5jsKiAwihGOC0Wu9q9d77I5FdJ/Jc5eiAazsl/ZXE1aU7qs9GLvJJJGdHGqUkjYIKo1RNK3z1gTU/l4SSgaQ6WgDJ6ByKaEsLNPCnSllFC9cUEK3OISKoaYOMoQKbrZCt2/rhcCireFqtF3q9kiWjsFQxiPm769n53KAGHYfkArnG4iFIJBKJpPFidjhILLG4yqcHOD++L5u0uFyEUOI9RVhK6HAknR9aXg9O8LM7XLc0rVqLqlyD2e02Ek/tJC1XScKiM9RilPrzPTjwTWXZu2FiNxUWHXAFNgfw9u6KRlN9XPklytbE6Te3pHu0Lz1j/BtkPBKJRCKpP6RRStIoKCx3O28oT6m/4yPYkaJDOH4HQG9X81N3d76Ovolcu5KRpZO6jGHdutD55iENMoYKSkuTcDiKUak06PVBREaMRaXSkFVkIb48C46nUX40Gz01BQWQ9iqJpMFQSYOwRFKFApudnn8eJs+uaKgIow5DeTxOc76Fn9/fp9yqnIpRyj+zCBWws9AdPMBXlLja8r23OT6dwxFC8NYDd+F0KDGZjB6eBEXHnH0QpfnK/x3vg6g+0Pzm+p4mAPbyhDBGYyQtWszB1+e6GusVlinjvrltEO3CqntSSRoxNX3FS/ciieSaQD75Si4ruwrMTDiYRI5VERFNjA2Tsjcp04ZwpLnKNkMZ/4mYS4FdjTsW/NUlDL2pI9f3H9Ag/Z9ORaY9d/eWXH/dagA2H81i7Kd/uewcnjIGgkQikUgkklpILLGQZ3egAjy1asaFBbjOZZ0scmkKlT0LAL3NgRNI1nRFh4MwdyWEgE5oMLgr29wcNpvLIDVh6b9w9/VHq6tFk1iUxTSa3wwd763X+Z2Oza7EAzUawwgKrLp4KIRg+pex7E8tcCWJkbGkJI0BmX1PIqkbDRTARyKpG+tzCkm32LCWK6f+fp7120HqLvhmIuYyRaT4m9X0PXISL5OG8vx73GI4wk26eIKDGjbTnt1eTErKfzl27E0AdDof17l9KQUIAXqNGl83HSO6hjfoWCQNzZXr0TFh9mzcOnQgOCiazmGduf667ixeuhS73X5R7f7xxx+oVCry8/PrZ6B14Pjx44wePZqwsDCMRiMRERHccccdHDlypEq91atX069fPzw9PXFzc6NHjx4sW7asSp2kpCRUKhWxsbF17v/FF1+kdevWuLu74+vry80338yOHTuqtDl+/HiaNm2KyWSiWbNmzJ07F6vVWmu76enpjB49mpYtW6JWq3niiSfqNB6Hw8Hzzz9fpb9//vOfiNO8/r799lsGDx6Mv78/KpWK/fv2VmsnMTGRu+66i8DAQLy8vLj33nvJzMw873nt27ePG2+8EaPRSGRkJAsWLDjnHLZu3cl9900lIqIJKpWK77//vk5zl0iuRorKQx+0cTcSf2NHpkVVBv0uySvEYUvCULYS4VSCkKcFebCkxxBaYOAB426aqwsJdfjSw94cjUlZp7aWVnpPeQUE1W6QgqpZ9xqArOzf2PBHew4efAIAna6699OJnBK+j00jMcuMEODjpiPQs2EzAEoukKvc43X8jJm4deiAW2QTOod1Zkj3Iby24A3sdvtpyvD8DVVSQ12ZGqqm+V5ODbVlyw7uu28q0dFtG52GkkYpyWWlIoXx2DB/9vdpx7BAn/rtYNVjsP9/WOzlAUCtdjwsNn4IDEagRoXAJy0e7/TjhEU3bCyp1NQVxMXPpbBoHwBubpXu8BWxpMb2imLPC4P5vz4NOxbJ5eDKEWKD+vRh//6/WLNjDY888ggLlyzhvY//RWPxoz+X4ACw2WwMGjSIgoICvv32W+Li4vjyyy/p0KFDFVG3dOlS7rjjDvr06cOOHTvYt28fo0aNYvLkyTz11FMXNc6WLVvyzjvvsH//frZs2UJ0dDSDBw8mK0vxWjhy5AhOp5MPP/yQgwcP8uabb/LBBx/wzDPP1NquxWIhMDCQ5557jk6dOtV5PK+//jrvv/8+77zzDocPH+b1119nwYIFLF261FXHbDZzww038Prrr9fYhtlsZvDgwahUKn7//Xe2bt2K1Wrltttuw+l01nlehYWFDB48mKioKHbt2sUbb7zBiy++yEcffVTrHEpKSmnfvhVLl75d53lLJFcrheXb9jy1mmrnytKTsJl/oqA0A6dajUoIfmp9J2vDB+FeHozc3+nJAG1bAp0avv1wPp+/8DTfvvYiAHqTCZW6lseENTNhUWtIj1XK+gbInAzkZG/A6Sx1lX19elarU1CuoQI8DHz5cE/Wz+iHUVf9PZFILgWD+vTh+K6drNmxhv979P945fXXyzVU40BqqGtXQ5nNJbRv34olS85twLrUyO17kstKRYDzUIOOQH09u1rbLYjMw5Q4fHGUZ53Jc7ex9FYNu916gAVCyWf87GfxDgrG4NYwgqqCsrJ0ADw82uLj052m0VM5llXM/tQCDqQp6Y29TNLdXHJhXIjJq4qJSaVyHTDo9QSHBKPCjU4PdeWnVatY+9vvPD5jBjMnTebHH3/EYrHQr18/3n77bVq0aAHAiRMnmDp1Klu2bMFqtRIdHc0bb7xB27ZtGTBA2Rrr6+sLwLhx41i2bBlFRUVMnjyZ77//Hi8vL55++ml++OEHOnfuzFtvvQVAdHQ048eP5+jRo3z//ffcfffdLFu2jC1btjBnzhx27txJQEAAd911F6+++iru7u4cPHiQxMREfvvtN6KiogCIioqiT58+riknJyfz5JNP8sQTT/DKK6+4jj/55JPo9Xoee+wxRo4cyfXXX38B7y6MHj26Snnx4sV88skn7Nu3j4EDBzJ06FCGDh3qOh8TE0NcXBzvv/8+CxcuPGu70dHRLFmyBIBPP/20zuPZtm0bd9xxB7feequrnc8//5y//vrLVWfMmDGAslJXE1u3biUpKYk9e/bg5eUFwPLly/H19eX333/n5ptvrtO8VqxYgdVq5dNPP0Wv19OuXTtiY2NZvHgxDz/88FnnMGjQjQwadCMeHm3qPG+J5GqlqDwep8dpGfeEEOSmm8lMygCheIm3TM/BZLXwr6ZNAPBTKd5Qdp2Dg4ZtHDv0d7W2fULCzt6x0wl/fYzrpqExQEDLephRdex2ZXtgTNPpREaOQ6ut7lFfWFZhlNJzvQxsfmXQONa46pFKFWbQ6wkJCsJsNHL/Q/ez5adNrP3tdyY8OIHZL8xg7W+/YLVKDXUupIY6+7wuVEMNGTKAgQO7YTQ2vh050lNKclkxlwuqesm6ZyuFjW/Az7OUFbzlt/P1qel8fOIBHPZTAOR4e/OL+5M4LWHcpDvKzerDhDRrgcnT6+L7Pwf28ngIoSF30qrlXFQaX+5+fxuPfxHL1oQcAHzdpFHqakQIgc3qxO76cWCz1O+P3erAYXVUa1vUFJD9PDEZjVhtNiY8PImdO3eyatUqtm/fjhCCW265BZtNeSCYMmUKFouFTZs2sX//fl5//XU8PDyIjIzkm2+U7ExxcXGkp6e7BMGMGTPYunUrq1atYt26dWzevJndu3dXG8PChQvp1KkTe/bs4fnnnycxMZGhQ4cyYsQI9u3bx5dffsmWLVuYOnUqAIGBgajVar7++msc5d8zZ/L1119js9lqXM2bNGkSHh4efP755xf9/oGyMvnRRx/h7e1d68pcQUEBfn5+9dLnmfTu3ZvffvuN+Ph4APbu3cuWLVsYNmxYnduwWCyoVCoMhsqtMUajEbVazZYtW8563Znz2r59O3379kWvr4wjOGTIEOLi4sjLy6upCYlEUs6xEgsTDhxnxpFkAAL1lWvMibuz+OKlv0hIKNdVai3NT+Xj0JZRojIp9bXKZ0xrcXByv7JFt9c9o7n9yWeUn6eeZcSceWcfgM2My6ow4TeYcQi8Qut3kuXYHYpRymAIrmaQ+vf2JFo//zPjPlUeCmUcqasXIcRpGspZ7xrKZlE0lKMGfXaxOspoUjTUlBlPsHffHj7/9/+khjpPpIa6+jWU9JSSXFYqtu+5a+rBzTp2BWyY7yoW2oNIKWyP0xZXWUfrgdMahL/KTBNNPv5q58X3ew5SUlaQlv4lpaUnlSFoFQNYfomN/BLlRtSnuT++bnqGtm8YUSepRy4gHoLd6uTzeQcaYDDn5uEl/dAZLuzzJYRg46aN/LFpEwP69WX1Tz+xbs3v3HDDDahUKlasWEFkZCTff/89I0eO5OTJk4wYMYIOHToAyupOBRU306CgIHx8fAAoKipi+fLlrFy5koEDBwLw2WefERZWfYX+pptu4sknn3SVJ0yYwAMPPOCKBdCiRQvefvtt+vXrx/vvv094eDhvv/02Tz/9NPPmzaN79+4MGDCABx54wDWu+Ph4vL29CQ2t/rnT6/XExMS4xMeFsnr1akaNGkVJSQmhoaGsW7eOgICAGusmJCSwdOnSWlf4LobZs2dTWFhI69at0Wg0OBwOXn75ZR544IE6t9GzZ0/c3d2ZNWsWr7zyCkIIZs+ejcPhID09vcZrappXRkYGTZtW3aYcHBzsOlexGnx2rrpldomkzqxIz2F1VoGrfL1Ppad31ol8ADQqxZhjKlO26mR4GYmxl9DaLYkitRIHSm13YrdZ0Wi1dLx5KB6+dXyYq4gjpVJDeLcGiRN0JG4uGRnf4nCUAdToIbV6Xzpltkodd31MwzyMSi4/dquTH5aknnbk4u7NtbH5jHJtOqq2O5EQgm1/bOO33zcwoO+N/LJ2Lau/WUvvnn3wDnKTGqoOSA117Wgo6SkluSzkWO38lJXP8VLFtdy7hngI58uxv46z7NTH/Cv7cz7O+YrP899DOBVRFlhYRKeTmZS6Kx9YT+Hk9ht68tD0py+633ORdOI9iooOulzQ3d2bAZUxELyMWlZM6Mk7o7vKwJxXEPXhgdRY+XnTJqKj2tA1oiuj77uP228dzn13341Wq6Vdq87YLMqqmb+/P61ateLw4cMAPPbYY8yfP58+ffowd+5c9u3bV2s/x44dw2azcd11lam9vb29adWqVbW63bt3r1Leu3cvy5Ytw8PDw/UzZMgQnE4nx48fB5RVx4yMDFasWEGvXr346quvaNeuHevWravze3H6KtTZWLFiRZVxbN5cKWkHDBhAbGws27ZtY+jQodx7772cOnWqWhupqakMHTqUkSNHMnHiRNfx09udPHlynca8efPmKtetWLECgP/973+sWLGClStXsnv3bpYvX87ChQtZvnx5ndoFZfX0q6++4scff8TDwwNvb2/y8/Pp2rUr6hriz5xtXhc6B4lEAgU25Tv41kBvlndoysjgSmNM6Yk4HNbDOMxrADDYrOS4mfg1eDg9tAUEqc2ohAqD0OJeYmXk86/w0Fsf1d0gBVWDmzeAQUoIJ+np/8PhKAGcqNUGPD3bVqtXEY/z7fu7sPO5m3lycPV7h+QK4soJvVkrP2/aRECr1nSN6Mqk+yYx4q47XRqqa+dKLSM1lILUUFJDgfSUklwmJhw8zvZ8s6vc3P0ijDE7P4P4XziS0B2zMwBOd34SStyEZqcK8TOXsUYTDYAJM11vHnXhfZ4HFdv22rZZgIdnO9zdWjHr633sOqm4V3rLLXtXD6pqLwDQ6tXcP7c95qIihN6AwaDHz69+415kFZWRWViGr7uecB+3Kn2fL/169OCVJa9TpLfSpmkb9Pk21vzyi+v82exxEyZMYMiQIfz000+sXbuWV199lUWLFjFt2rTzHsOZuLtXjflWXFzMpEmTeOyxx6rVbdKkieu1p6cnt912G7fddhvz589nyJAhzJ8/n0GDBtGiRQsKCgpIS0urtrJotVpJTExkyJAhZzZfjdtvv71KzITw8Mq9+u7u7jRv3pzmzZvTs2dPWrRowSeffMKcOXNcddLS0hgwYAC9e/euFqTy9MwtFfEHzkX37t2rXFexejZz5kxmz57NqFHKd1+HDh04ceIEr776KuPGjatT2wCDBw8mMTGR7OxstFotPj4+hISEVFnVPde8QkJCqmSbAVzlkJAQoqOja5yDRCKB4vLtNNd7uzMkoGo2urysDGzmn11lYVIx9aa55Gu1jFErniYtjWHYjuwix5FFk/Yv1L3j/JOw7FYoylDKDRTc3GrLxem0Aip69VyPXu9fxVPqSEYhvxzIIDVfCYDe1N+dAA+5qHc1o9WruePxcJwm5W8uODi4xof4C6XM5iDhVBEatYo2oVU/U+ero/r16MHbCxaQ7mkhODSYGEM4X3/5P9f5sy1pSg2lIDXUued1NWooaZSSXBZOlCru5O09TPTycaeVm/HCGnI64eenwWEl36bs6b3pH80JbREAKlj26CIcGhUq4WBPtJYcXRgqBJ20medouH5wOu3lK33g7z8Avd6P+MwivtyZ7KrTPLBh0ihLLh9nLvapVCp0ejVavRqhV6PVay54S93Z0Fo0aPSaemnbzWQiJiaaUxSh1WpRqe20aN4Mu93O7tid3ByqBNzMyckhLi6Otm0rV7AjIyOZPHkykydPZs6cOXz88cdMmzbNtVp2emyCmJgYdDodf//9t0sEFRQUEB8fT9++fWsdY9euXTl06BDNmzev87xUKhWtW7dm27ZtANxzzz3MmjWLRYsWsWjRoip1P/jgA0pKShg7duw52/X09MTTs/rWkppwOp1YLBZXOTU1lQEDBtCtWzc+++yzaiL7fOZXgclkqvG6kpKSau1rNBpXxpfzpcKF/vfff+fUqVPcfvvtrnPnmlevXr149tlnsdls6MpTzq9bt45WrVq53M4vZO4SybVAcS2hD4qLiwHQqNU0ycglw0NFvlaR+3qVHQeg8lWTVZaC8XzjaSZtVQxTFTSpngmvPrCUpQFg0Afh5hZd7fxTX+3lQGqhqyy9zK8uanKYUqlUaPVqnOUGIp1BU69GKYcaNHoNGrWqXjRUs6bRYCxErVLGeLqG6nODEixcaigFqaGkhgJplJJcJipiSX3QLormF2qQArAWU2ozkG1rQ55d+UIObx2IVm8l8cDfODTKre3FEe1JtPehlSWHHs4Eep2xClLfOBxl7N//CCWlJ1zHKlb5KuJIhXgZeXVEB7pHnWvfr0Ry+YmJjmbY4GE8Ofsx3vN+H/8AX2bPnk14eDh33HEHAE888QTDhg2jZcuW5OXlsWHDBtq0UbKkRUVFoVKpWL16NbfccgsmkwlPT0/GjRvHzJkz8fPzIygoiLlz56JWq1GdY0vIrFmz6NmzJ1OnTmXChAm4u7tz6NAh1q1bxzvvvENsbCxz585lzJgxtG3bFr1ez8aNG/n000+ZNWsWoKwGLliwgKeeegqj0ciYMWPQ6XT88MMPPPPMM8yfP5/27dtX6TcuLq7aWNq1a+cSBRWYzWZefvllbr/9dkJDQ8nOzubdd98lNTWVkSNHAoro6N+/P1FRUSxcuNCV5hiUla7aqFgBKy4uJisri9jYWPR6fRVxeya33XYbL7/8Mk2aNKFdu3bs2bOHxYsX89BDD7nq5ObmcvLkSdLSlIfChPh4PAstNI0IJzpAWcX77LPPaNOmDYGBgWzfvp3HH3+c6dOnu7YM1GVeo0ePZt68eYwfP55Zs2Zx4MABlixZwptvvlnrvIuLSzh27CRubkqcmePHjxMbG4ufn1+V1V2J5Gqm2F49ScyhLWkc3JxKQbFyzq520iY9h+NtFQ+GIKcKD52ZAkBlUz4/OsN5GnMsShgCWgyB4YvBq34zONntRezb/wgl5mMAGIw1x9lMz1fGf1unMPo08yfE+yJ0pOTSch5b9K6eIAkqRUMNGcKTsx/jzUVLCWsSKDVUOVezhoqPj0ObbSYgMAjClWfPy6uhzMTHH8FgUBJsNSYNJY1SkkuOEKLesu6Jkny+ynmDIofilqgzanDz1vHJtEkU5+UCoHIKnEXDcOBHG8cxpvR2J+j2J2tr9qLJz99BTu4mV9nNLQa1WofF7iCrSLHwB3sZGNAqqEHHIZFcKDXJmbcXvcMzc5/l7hF3YrVa6du3L2vWrHGJCYfDwZQpU0hJScHLy4uhQ4e6bpDh4eHMmzeP2bNn8+CDDzJ27FiWLVvG4sWLmTx5MsOHD3elM05OTsZorP0ho2PHjmzcuJFnn32WG2+8ESEEzZo147777gMgIiKC6Oho5s2bR1JSEiqVylWePn26q53p06cTExPDokWLWLJkCWazsq34888/d7lon05Nx5KTk4mIiKhyTKPRcOTIEZYvX052djb+/v706NGDzZs3065dO0BZ1UpISCAhIaHa9eeKWdalSxfX6127drFy5UqioqLOmoYYYOnSpTz//PM8+uijnDp1irCwMCZNmsQLL1Ru31m1ahUPPvigqzzh/5T0xo/PnEOPBUrK57i4OObMmUNubi7R0dE8++yzVd7TuszL29ubtWvXMmXKFLp160ZAQAAvvPBCramMAfbsOcjw4eNd5RkzZgCV6bElkquZL9Nz+SYzlz8LlO+pYIPy3et0CrZ9m4ClxI6zPDB4xCnFS9uKO686y0CXxwm14qWee+AIADrDeRpzLOXeSR6B4B1Re90LIDd3K3l5211lL6+OVc7nl1hJyy8jvzyW1LO3tJEGKckVw9JFi5nzwj8Z9Y97sNmkhqrgatZQD4weDcDk6bMY0OVV4PJqqN279zFs2P2ucmPSUCpxNUfrPQuFhYV4e3tTUFBQ5/2lkvrD4nQStVEJ3hd3Q3u8dRduG80/tJf/LslE2DPw9NcR0yUAD58yNiz7EFQqPEot+JSaWdptGinCk/E+p3h+9oPnbvgiSUldSVzc8/j4XEezmCfx8GjF5oRSJv13F1a74iV2Y4sA/jP++nO0JGlsJD86heLffyfkny/hW75aU8HB1/7CO9/CBv8EIvs3oWdYCMZw5eZZlJNNsSumlAF///qNKXWqsIyMwjL83PRE+LnVWjfXZie51IqHVk2zCk/FjP3gtGMxu+O0WDGHeJNJIf4mf7S5VuxWCzqDPw6HFu9AE4YGioVmNpsJDw9n0aJFjB8//twX1DO5ubkMHDgQLy8vfv75Z9zcan8vr3ZyzRZS8krxMuqIDmiY+DHnQ2HhfgA8PFqjVtff32BZWRnHjx+nadOm1cS81AxVke/H5aPz1oNkWBWDjJtGzd7e7fDUaigtsvLJUxtw2o7hLPkZh3DSIiOXFpl5vN35HsJb6bGrKrf9+GWewMOgp+std9B58C3n7rg0D7a/BwnrIG0P9HwUhr5a7/M7efJTjia8jJ9vH2KaPYmnRzvUakUjZhdbuPH1DZTaKudx5J9DMerqdyu8pGHJ//570mfPwf2GG2jyr4+rnDvxy3E0f6SQ5WEjd4iga7AfvqFtQGfEWlZKbmqKK6ZUSEhIvW7fs9gcxGUqMaXahdW+m8IhBAeKlHhm7T1NaFQqyE+GkmxsDm/sBSWofLxJLN++10QTQlFONnqjO3a7B3qTFp+ghtEWUkM1LuwOJ4fSFWN+h3Dvc3qwNTQlJSew2wsxGsPQ6+vvOaQ+NJT0lJJcciq27gG41RAPoU6UFcCPj1O8OwFbSW+c1kPkFENO5W453O02+sYlczzYQIpQts4F+DV8wkmL5RTFxUomDQ+PNvj4KBkvtiQkuwxSahX0l15SVzbXnj2/QVzp9+zZw5EjR7juuusoKCjgpZdeAnC5s19q/Pz8WL9+Pe+++y7bt293pVmWSCSSy01B+ba9+S3CucHXA8/yzMXWMgf2sr9wlO1w1bUajczvMZYc72CCVUocqDD05KbFMfAf42jX96a6d7z3C9i0oLLs0TBBc8ssypYXD8+2eHt1qnIuPqOIUpsDjVqFr5uem9sESYPUNcWVmZpPnKacRLUXF4/UUJKrBWmUklwyhBAsSspkb1F54G+dFp36Am8ycb/Awe+wiJ4IezoAbnYHGpsdlQC1ELRKV/bLnvRSrPQqnLQJMl38RGohJeW/xMXPdZVNpkjX64Jyd/PpN7dkcv8YDFoppq5VrkEH1VpZuHAhcXFx6PV6unXrxubNm10BIC8H/v7+VdyxJRKJ5HLjEILS8oC6dwb5EqCvlPA2iwPhUOKOGGwWAoosfBt5A9uCOtLJqgIUo5RPXgFFBTkY3c/T67G4PAV7eDdoewd0+7+LnU4VcnI2cjThVcrKA5wbjVUzeTmdghyzsvWwS6QPXz/Su177l0guBQ1lVpMaSnI1II1SkkvGgeJSFiZluModPC7cQGTNzWBrwSNk0hHh/AKA6+NTMNns/N5RRZEJDsWoKMWHbe73Eq3KpYUmizbth170PGojN0/JSKFS6TEYggjw78/uk3n8ejCD3SfyAAjw1EuDlOSycqHCqCG8jrt06cKuXbvqv2GJRCK5iig5zcvc44x4nIpRqgCA8PwcWqeV8m2EPzE2NX3sTkoArdBQkKNkHjadb9Y9q5LRj2Y3QZ/HL3gOZyMt7SvM5qOustdpXlJrD2bw2Bd7KLMp8/dx09d7/5LGguq0/6++xbuGmJHUUJKrBWmUklwy8svjAATrtUyLCmZYwIVnwEtKcHKg+DqctiTACULF7uYOtnTUcaKVP5pcDwYeH8mHOn8QMDVgJ11aRRHc/OxZFeqDstIUADp2eJeAAMU1fuZXf5CYZXbVCfaUQTmvdiptN1eJqLoyveYlEonkqqEi9IFGBYbTvMwzkwrZt+EkwqnELYnIsQPQurSUcLd4TqkVY5UeDf7RTWjZui8hzVvWrVOnA3ISoCBVKRvqlrb9fLHaFM/2mJgZhATfhslUmQXqj/gsl0FKpYK+LS+fB4hEcjFIKSWRnB1plJJcMkrK3c7DjXomRAReeEN2K3nZZqyF/wGULXFGmxUxbzqxe97lusQYZhSOI1WXz4fll9w7/nG8fHwuavy1UVR0mLz8PykpVYJaGY2V2RJOlWfbu697JC2CPejX6iLmLpFcIirEk7haDGuSC0TKaInkcuIUgvdOnuLHrHwAfLVaV7DcotwyvnrlVxyWeMAGAkxWO2UaHaW+waRrUl3teFjV9PjHPUS261hDL2fh24lw4JvKst6jHmZUHatVMUp5e3etYpACKCwPfTBzSCvG9orC09gwSTYkl4bLHej5ciLVlERydqRRSnLJqHA9d7uYbBl/vg+/PkNW5j1UGKR8zaUYRCEF//mGYUUOOhFFkY9gVfklehy4nW/8hPMkdu9DWK1KzAWVSoPRGA4ocRCKLcqq5ZNDWhIkvaQkEolEIpHUkZ0FZuYfS3eVO3tVZrPKiTuGpfAbEMr2Ojebk4Tw1qyM6EWk0RtIRSs0eJ46SkluLnrTPefXedoe5X+jN3iGQfP6DVqcmfkTublbKC1NVroxVMaSis8s4lhWMcezFU/zEC+jNEhJrhhUFQs60hIlkdQJaZSSXDJcRinNRRil4n8F4aTQagDA02qiV0Ii2zr4kOd4kh+9rXyuAigGlLhNvqIIjbbh/tTt9mKXQSo4aDh+fjdSYtfzn80J5BRbXUnavKSYujq41lb5RHVfGRmnXSKRSC4Np6zKwla4QcfYsADuDPZxnctKSgJRjABC8osJzyvkwQEvgUpF8/JMfVon2PPyUAF603nG8rQqiWkYtxpCz8PDqg4I4eDQ4adwOpUA5lqtJyaT4mWeXWzh1rc3Y3NU3mx83KSGuqq46oWEKP9XUKGirjH1KJGcF9IoJblkFDsUgXQxRqmEjEh2nHqTbFsSkIS+XHRtjPBnk95apa6/yoxJZaObLb5B3YUtFiVwqEbjQfv2SwD4dMtx3vg1zlXH06jFoL0IY5yk8XG16ymJRCKRXHYKy7VTK3cjj0cHVzl3PFWJY+nU6Oh2IpM8kwFUKiKEmpu0NrYAaqcAITC4u+Ph639+nVvL42Hq69/b3G4vdhmkYmJm4OfbC5VKWUxMzi3B5hAYtGo6hHsT6mOidzMZS0pyJVAhDs/+3CHlo0RSHWmUkjQ4OwvMPBOfQnKZIj7CjReeOeXPE03IzPkBUEQaopiZ97TlkHoYWMFbVcZN2niMajte1kI62PfTrVv7ephFdez2Ig4ceIyc3E0AuJmiXOcyC8sA6BThzXVN/ejbMvCa3kcvuRKRf68SiURyuSkuX3zzqiFrb3Ge4slkUJypKNT6MLkkDbVPNn+plOuEsHHfvNfxCw1HZ6xjCAGnExCVWfcaIJaU3a4EZlerjTSNnlLlXH55HKnmQR58/Ujveu9b0khpDLLjYi1GNWn9aoekWUoiORNplJI0OF9l5LKvuNRV7u1z4eImz1xMhUFKZ3eS46vjgP0hAP5h2IlWVflFH2TUMPzRJRBQxywz50lu7laXQQrAx/c6AApKbGSUG6UGtQ1m6k0tGqR/SSNGNAZlVT/IQOcSiURy+civwSjldAoyjhVgyVKsUYby7HRJXqGUuJWiVlsqG3CYiWjdru4d7v4PrJ4OTlvlsXr2lCopOU5G5moAtFov1/GcYgsjP9hOcrmxTW7Zk1yVSFklkVRD7ieSNDiF5YJqfHgAG69rzUB/r3NcUQN7v8D+zTQcDsXYE51VxM0Hj6NxV9rS48Dv5BG8ThzG82gsHvF7CA8IgsBWDRYDyGbLA8Dbuxtdu35B82ZP87+/k+n8z7X8EJumnDNJQXVNcwUKjwmzZuPWoQMBgZF0DutMn059eOOtJdjt9otq948//kClUpGfn18/A60Dx48fZ/To0YSFhWE0GomIiOCOO+7gyJEjVeqtXr2afv364enpiZubGz169GDZsmVV6iQlJaFSqYiNja1z/y+++CKtW7fG3d0dX19fbr75Znbs2FGlzfHjx9O0aVNMJhPNmjVj7ty5WK3WWlqF9PR0Ro8eTcuWLVGr1TzxxBN1Gk9RURFPPPEEUVFRmEwmevfuzd9//12lTnFxMVOnTiUiIgKTyUSvbp34338+rVJn0qRJNGvWDJPJRGBgYI3v6cmTJ7n11ltxc3MjKCiImTNnnvVvaOvWrWi1Wjp37nzOOaxatZ4775xEYGDIef8+JJIrCYcQ/F1gZn+RsqgXrK/UE7H/28BX/3yPMnMiACqVg++a9+Xj9reh0SgGqhibD26JBwit8CyvK/G/VDVIhXerV6OUxZLJjr9u5fjxtwAwGkJc53afzOdYttkVS+q66PPcbiiRXGbGT5+JW4cOGCMVDTWsxzBefX0Bdrv9oiSh1FBXpobq2KF9o9JQP/zwC3feOYnQ0BaNTkNJo5SkwSm0KwKpnaeJVu4XkH3OUkTZtzM5/lciwqnEN/AsLUUFbHFT4iu4Y0eUFCFKzGC3o3I4CGvdtr6mUCM2WwEAbqZofH16oFbr+fN4DkIodrAgTwO9ZAwEyaWiHm2vg/r04dCBXazZsYaHpz3MgsVv8t7H/6KxWNnOJTgAbDYbgwYNoqCggG+//Za4uDi+/PJLOnToUEXULV26lDvuuIM+ffqwY8cO9u3bx6hRo5g8eTJPPfXURY2zZcuWvPPOO+zfv58tW7YQHR3N4MGDycrKAuDIkSM4nU4+/PBDDh48yJtvvskHH3zAM888U2u7FouFwMBAnnvuOTp16lTn8UyYMIF169bxn//8h/379zN48GBuvvlmUlMr08bPmDGDX375hf/+978cPnyYyVOm8drzT7Pul59cdbp168Znn33G4cOH+fXXXxFCMHjwYBzlsW8cDge33norVquVbdu2sXz5cpYtW8YLL7xQbUz5+fmMHTuWgQPrltWrpKSUXr268Oqrr9R53hLJlcibSZnctvso63KUbW4hhkqj1KGdf2Mv24bTrmSts2rK+Kj97eSYvDGolAcXdUE+GmsZbl7nuRBoUfpj+Jsw8xiMX1+vi3unstbidFrQan3w9u5Gs+ZPu84VWxRj2HXRfvz17EAev1l6ml911OFv6Ur3NR/Upw9JuxQNNe7Rcbzy2mu89/G/Gs28pIa6dBpq2mOP8drzT/PH2jWuOpdTQ5nNJfTq1YWXX67e1mVHXIMUFBQIQBQUFFzuoVwT3LYrXgT/vkf8mJl3QdfbMxPFx5NWiCUPfiQWjRotFt57q/i1Zxex5L62IvrZz0TUrNVi0NP/EgVzo0XBM4Gi4JlAYX6tXf1O4jSKi4+KHX/dJtb/FiPW/xYj4uNfdp2buPxvETVrtfjvn0kN1r/k8nJyyhRxqFVrkfvFl9XOHXh1h0ietUn85/XPxIa/1ovS5P2uc4XZWSLt+DGRmpoqsrKy6n1cmYWlYm9ynjiZYz5n3VyrTcQWmEWCubTyYPo+IVJ3i3/cdZcYPmCAyMlKFgeyDojUolTR/8YbRbfOnUXCgUQx8u5RwsfHR5hMJjF06FARHx/vaiIpKUkMHz5c+Pj4CDc3N9G2bVvx008/iePHjwsUi5brZ9y4cUIIIQoLC8Xo0aOFm5ubCAkJEYsXLxb9+vUTjz/+uKvdqKgo8dJLL4kxY8YIT09P17WbN28WN9xwgzAajSIiIkJMmzZNFBcXCyGE2LNnjwBEUtLZP4snT54UOp1OzJgxo9q5t99+WwDizz//FEII1xz27Nlzzvf3bFTce9avX3/WOgsWLBBNmzatc5tnvldno6SkRGg0GrF69eoqx7t27SqeffZZV7ldu3bipZdecpVzii2iTYdOYsr0mWdte+/evQIQCQkJQggh1qxZI9RqtcjIyHDVef/994WXl5ewWCxVrr3vvvvEc889J+bOnSs6dep0znkUFOwTBQX7RGJi/EX/Pk6ntLRUHDp0SJSWllY7JzVDVeT7cWmYeOC4CP59j+i05YAYueeoOGWxus4tmvSiWHjvrWLhfcPFjzf0FC/cO0K0eHq1mDDrF7HwudfE3LlzxYoZL4lfP1gi0hPia+mlBj7sL8RcLyGO/FzPM1I4cHCGWP9bjDh2bGm1c//edlxEzVotJv9nZ4P0Lbn85P/wgzjUqrU48dD4aueSfjkukmdtEnv++btY/9d6kXtitxBW5TvZUloq0hPiRWpqqkhNTRUOh6Nex1VmtYu9yXniQEr+OevanU4RW2AWsQVmYXc6lYN5J4VI3S3G3HO3GD5ggChLVjTUgawD4qYBA8o11EEx8u5RwttbaqgL4UrUUDa7Q7Tp0ElMnPakcFb8rZzBpdRQZnOSKCjYJ+Lidjc6DSU9pSQNTp5NWbXzriFIZ10ozsqlqGgrNvMPCKfinfRj32682ewFTHZvumuTGeyfixe5eOlteEV3wG3gk/U2/jM5efITiooOlpdU+AcMcJ0rKlPm6mGQ4doklQghsFks2K0W7BYLNosFW1lZ/f5YynBYyrBbqh4X9ZB22Wg0YrXZmDpjCnv37eGrL79l+/btCCG45ZZbsNmU1e0pU6ZgsVjYtGkT+/fv5/XXX8fDw4PIyEi++eYbAOLi4khPT2fJEiVT5YwZM9i6dSurVq1i3bp1bN68md27d1cbw8KFC+nUqRN79uzh+eefJzExkaFDhzJixAj27dvHl19+yZYtW5g6dSoAgYGBqNVqvv76a9fq05l8/fXX2Gy2GlfzJk2ahIeHB59//vlFv3+grEx+9NFHeHt717oyV1BQgJ+fX730eTp2ux2Hw4HxjEDHJpOJLVu2uMq9e/dm1apVpKamIoRg88Y/OHEskRv717wKZzab+eyzz2jatCmRkZEAbN++nQ4dOhAcXJkpbMiQIRQWFnLw4EHXsc8++4xjx44xd+7c+pyqRHJVUFQe+mBOTCj/69ycwNO27znLz5mEmmZZ+ThFFM9qU2il30ORWtnup23uzuBJjxHSrI7eRim74McnIFfZEojBs97mAlBamsz+A9PIyVFicZpMTVznfjucyWOf7+HzvxTPL6mhJGcihHBpKHtDaKiymjVUTTrqfD2eTC4NNZ29+/awctmXUkOdJ1eqhvpjwwZOHEukV98BZzYJSA11OvJbX9JgZFps7Cw0k17ujh1kuLD4SiXZhTgdiqumV4kFn5IydrXuhbB4EKTOZWC4YHCPrrAacPOHib/V1xRqJDvnDwBat3oZX9+eqHWR3Pr2ZhJOFWN1KFsVvYwyltRVz3kYe+wWC59Nn9SAgzk7jy3/uu4Zl85ACMGmDZvYsGkTA/reyC9rf2H1N2u5ofcNGD10rFixgsjISL7//ntGjhzJyZMnGTFiBB06dAAgJibG1VaFSAgKCsLHxwdQ9ucvX76clStXulyPP/vsM8LCwqqN5aabbuLJJyuNzRMmTOCBBx5wxQJo0aIFb7/9Nv369eP9998nPDyct99+m6effpp58+bRvXt3BgwYwAMPPOAaV3x8PN7e3oSGhlbrT6/XExMTQ3x8/AW9dxWsXr2aUaNGUVJSQmhoKOvWrSMgoOZtvQkJCSxdupSFCxdeVJ814enpSa9evfjnP/9JmzZtCA4O5vPPP2f79u00b97cVW/p0qU8/PDDREREoNVqUavVvPD6Eq7vfUOV9t577z2efvppzGYzrVq1Yt26dej1SmbVjIyMKmIKcJUzMjIAOHr0KLNnz2bz5s1otVKKSCRnUlwe+sBTW339WG1T4tP45isBzUucWo7r0isrOByEBARXu65W1j4HJ7dVlj1Dzl73Akg8tphTpyq3sLi7V37vzPvxECdzS1zlUB9TvfYtaYSc54KZ3WrhyxdnN9BgqrL+jPKF6ighBH9u+pP1v/9erqHWsvqbtfTq2RvfEHepoerA1aKhuvXsU6U9qaGqIz2lJA3GyNhExh9IorjcUBOsv4APTfEpipKOglDESo/j6cRkZ5MnfAGIVNt55JFHaBZUHoSzAdIWV1BWlk5a2ldYracACAwcjJtbNIfSCzmYVojF7kQIcNdraBN6AcHcJZJGws+bNtEkuhVdI7oy5u4x3HnbcO67+260Wi1dO3enIraUv78/rVq14vDhwwA89thjzJ8/nz59+jB37lz27dtXaz/Hjh3DZrNx3XXXuY55e3vTqlWranW7d+9epbx3716WLVuGh4eH62fIkCE4nU6OHz8OKKuOGRkZrFixgl69evHVV1/Rrl071q1bV+f3okIk1MaKFSuqjGPz5s2ucwMGDCA2NpZt27YxdOhQ7r33Xk6dOlWtjdTUVIYOHcrIkSOZOHGi6/jp7U6ePLlOY968eXOV61asWAHAf/7zH4QQhIeHYzAYePvtt7n//vtRqyulwNKlS/nzzz9ZtWoVu3bt4qVXXueV52ayZeOGKn088MAD7Nmzh40bN9KyZUvuvfdeysrK6jQ+h8PB6NGjmTdvHi1b1pwdtbb3VCK5Figq907w1FR6mVvzc0n99QfUTuWc0WalTKMjzUdZYdcINUEZmbgn7sfD4zx1SEmO8n/XsXDvv8G/2cVP4vTmS5Tv5cDAwXTp/G88PSvjfuYUK8a1xwa24PURHZh4Y9N67Vty5dNY4jHVhZ83bcK/laKhHhn1CCPuuusMDaUgNZTC1ayhFryxkFeem8mfm/+o0ofUUNW5OkxrkkaHEILjpYrI6OLpxgB/T3x05/fn5sxN5tiiqRzOK09lLFTo7Q7+bGrksFURYMEmK/z9L0jdo9RpIKOUEIK9+yZQXKxkR1CrTeh0imGsoETxBGsZ7MGn/9cDXzc97tL1/JrmTGu/1mDgwTc/xFxchNAZ0On1BPjXb1ahU8VlnCoow8dNT4SvW5W+z5d+PXrw+ttvkK8ro0V0CzzMalavrgx0fbb1zQkTJjBkyBB++ukn1q5dy6uvvsqiRYuYNm3aeY/hTNzdq2Z/Ki4uZtKkSTz22GPV6jZpUrktxNPTk9tuu43bbruN+fPnM2TIEObPn8+gQYNo0aIFBQUFpKWlVVtZtFqtJCYmMmTIkHOO7fbbb+f66693lcPDw6uMu3nz5jRv3pyePXvSokULPvnkE+bMmeOqk5aWxoABA+jduzcfffRRlbZPz4ziVceAxd27d69yXcUKW7Nmzdi4cSNms5nCwkJCQ0O57777XKuepaWlPPPMM3z33XfceuutAEQ0a82Onbv5+N0l/GPEcFeb3t7eeHt706JFC3r27Imvry/fffcd999/PyEhIfz1119VxpSZmQlASEgIRUVF7Ny5kz179ri2CjidToQQaLVa1q5dW+t7KpFcC+RWhD7QVRqlvpv/M5k5uS7v8UP+QbzYaRLt1O5ANnq0OAtyUDvtBEQ2qanZs2MtVv7v9iCEd62PKVRt3qqMOTrqEby8OrqO2x1OzFbFyPZg72h83c/9ECu5SqnF8qTVG7jvxddwGhUtEBwcXMUYcLFYbA6OnipCrVLRNsy7at/nqaP69ejB0gULSPO0EBgSSHNTFF9/8cU5r5MaSuFq0lBt27Vn4/a/Wf7hO0wcdYerTamhqiOfnCUNgsUpsJW75v6vczM8LyCeVNxPm/g1uSvCobgqatCy+NambDcNQmUHD1UZ7VQn4ad3Ki9yq/99xAB2e4HLIOXn24fgkNsptthZtTeNnUl5AAR4GKoYAySSClQqFTqDAa3VitArRqkL3VJ3NnQ20BhAa7j4tt1MJpo1bUoa+Wg1WsBJi+bNsNvt7I7dyU2D+wGQk5NDXFwcbdtWrnhHRkYyefJkJk+ezJw5c/j444+ZNm2aa7Xs9NgEMTEx6HQ6/v77b5cIKigoID4+nr59+9Y6xq5du3Lo0KEqbtPnQqVS0bp1a7ZtU7ao3HPPPcyaNYtFixaxaNGiKnU/+OADSkpKGDt27Dnb9fT0xNOzbvFXnE4nFovFVU5NTWXAgAGubCxniuzzmV8FJpOp1uvc3d1xd3cnLy+PX3/9lQULFgBKth2bzVZtDGqNGqdwnrU9IQRCCNe8evXqxcsvv8ypU6cICgoCYN26dXh5edG2bVt0Oh379++v0sZ7773H77//ztdff03Tpk1xd3ev83sqkVxNnCi1sLuwhJxyo1RguZe5w+4kPfMADmvlZ+e4WxhWgztdNTkUA3qhpf/4iYS2aY1/eOT5dWwpN0rVYywpIQSHDj9FTs4mbLZcAIxG5eGooMTGbe9sqbJtz9MoH0uubWqySinPEiqVCq3egLPcQKQzGuvVKOXUONAYbGhUqnrTUMJYUH5EVNFQvXr1BqSGquCa0FBOqaHOhfz2lzQIFW7nKsBdc2E3jSP7k3BY/naVNU4Lf+omYrbruUV/iCC1mS4hDjgJBLaGqN7QZUw9jL46FotiodZqfejS5d8AvP3bURavq9wrHeBx/h4pEkmjRUUVl6iY6GiGDRnGk7Mf412P9wgI9mP27NmEh4dzxx3K6s8TTzzBsGHDaNmyJXl5eWzYsIE2bdoAEBUVhUqlYvXq1dxyyy2YTCY8PT0ZN24cM2fOxM/Pj6CgIObOnYtarUZ1jrTRs2bNomfPnkydOpUJEybg7u7OoUOHWLduHe+88w6xsbHMnTuXMWPG0LZtW/R6PRs3buTTTz9l1qxZgLIauGDBAp566imMRiNjxoxBp9Pxww8/8MwzzzB//nzat29fpd+4uLhqY2nXrh06XdU4cmazmZdffpnbb7+d0NBQsrOzeffdd0lNTWXkyJGAIqb69+9PVFQUCxcudKU5BmU1rDYqVvGKi4vJysoiNjYWvV5fRdyeSUXq4VatWpGQkMDMmTNp3bo1Dz74IKCsIvbr14+ZM2diMpmIiorip7W/sfrrL3nun68CynaBL7/8ksGDBxMYGEhKSgqvvfYaJpOJW265BYDBgwfTtm1bxowZw4IFC8jIyOC5555jypQpGMofKM58X4OCgjAajdWOn0lubgEpKenk5yvtVPw+QkJCzvmeSSRXAnftSSCtPBanGvAv9zIvzitDOAsBcLOUEVBkIatJIPcadlJc/nXptFuI7NgB76A6fhbsVvhkEKTvxfWFX48e5xZrJhkZ37vKXl6d0esVL+H9qQVVDFI9Y/zQXqBelEgaO4qGGsKTsx9j8YK3CW8aJDVUOVezhvp9wwZWf/0lT70wH2gMGiqfpKR4cnKU5/TGpKGkUUrSIBSWZ4Zx16hRn+OL8axtFBW5XrdPPsWJKANmlC+tW/r2pH3zSKKPfKgYpVoOgUEvXfS4z8RuLyLx2CIyMlYBYDRUBp5LyVPEVPtwL9qHefNgHxkD4VrgXDf6q5mli5cy5/nnGHHvXVitVvr27cuaNWtcYsLhcDBlyhRSUlLw8vJi6NChvPnmm4DiOjxv3jxmz57Ngw8+yNixY1m2bBmLFy9m8uTJDB8+HC8vL55++mmSk5OrZTg5k44dO7Jx40aeffZZbrzxRoQQNGvWjPvuuw+AiIgIoqOjmTdvHklJSahUKld5+vTprnamT59OTEwMixYtYsmSJZjNZgA+//xzRo0aVa3fmo4lJycTERFR5ZhGo+HIkSMsX76c7Oxs/P396dGjB5s3b6ZdO2VL8rp160hISCAhIaHa9efKmtilSxfX6127drFy5UqioqJISko66zUFBQXMmTOHlJQU/Pz8GDFiBC+//HIVMfjFF18wZ84cHnjgAXJzc4mIbMLUp5/jgf+bACiZGDdv3sxbb71FXl4ewcHB9O3bl23btrlW9DQaDatXr+aRRx6hV69euLu7M27cOF566eK/o3/++Q8effR5V7ni9zF37lxefPHFi25fIrmclDicLoNUbx8PBvt7oS9fdbeYbQihxBxpdiqfyFwzu5rrUaksGO1q7MWnsOdnY3A7D6NSbiKkx1aWA1qBe2B9TQebVfEk1+l86dTpEzzcK+OfFJQq8+zSxId/je2On9y2d21wjWiomma5dNFi5rzwT+4fNxKbTWqoCq5mDRUVFcXUp59j5JiHgMuvoX76aR2TJ890lRuThlKJ+sgXfoVRWFiIt7c3BQUFdd5fKjk/dhaYGb77KJFGPX/3OrvV+aw4HXzw4EzMZfEEF+volniE9wdEs8p7KioEh14chMlogB+mwp7/wE3PQd+Z5273PElL+5rDR2a5yhERY2nVci6lVgdTV+7mtyOnmH9ne/7RM6re+5Y0TlKmTaNo3XpCXnwR31H3VTl38LW/8M63sMkvkbABkfQMDcYYoaxaFOVkU1xUhNAb0Ov1Z80ecqGcKiojo6AMXzc9kX61byPNs9k5WWrFQ6ummVu5cMnYD047FrMHTouFslBf0kQ+3gZvTIUCW1kZOpMfDpsOT38jJo+GeYAwm82Eh4ezaNEixo8f3yB91EZubi4DBw7Ey8uLn3/+GTe3a3tLbq7ZSkpeCZ5GHU0D3M99QQNTWKi4rHt4tEatrr8sp2VlZRw/fpymTZtWE/NSM1RFvh8NR1qZla7bD6FVQXK/TlUWQRJiT7Dq9TkIZyG9jqbgW2Lhs8GP4OaXS6hZS/HJP3EPDGDS25+iquu2puS/4ZObwSsCJv6uZDDWXPx6tcNRSmrq52RlryM//y/c3VvS8/qfAXA6BVsSslm9L43/7Uzh5jbB/Gtc93O0KLlaKPjxR9JmPo177940+fSTKudOrD2B5veTZHvYyRnipGuwH76hrUFnwlZWRk5qMk6Tch8KCQmp95hScZlFaFQq2oV711rXKQT7i0oBaO9pQqNSQUEymLOxOb2x55eg8fHhaPn2vWhdGEXZ2eiMbjjsnmj1GvxCG+Z+KjVU48LucHIoXfFwbR/ufcGOGvVFSckJ7PZCjMYwl9dqfVAfGkp6SknqFSEE63IK2ZCreDkFXkDGvQP/+pgdO/IxW1IB0NtsxDZVsTmsNZghQFWMMek3+PZhsJZ7U+kbZt9sRWBOL68uhIXeQ1DQLSzflsSLPx50ZbP1NtXfg5HkSqIGe/5VvgLYELPbs2cPR44c4brrrqOgoMC1ElThzn6p8fPzY/369bz77rts377dlWZZIpFIGpq8ci9zX522ikHKmbiRU38eQjiVuE9Gm51CnVv5A3ouapWKsW+8g09wSN0NUgAW5WEJozd4Btde9zzIyPieowkvu8ru7pXxWbYmZjP208ogvr5uUkNdm1ytPhGXdl5SQ0muFqRRSlKv7C4sYez+465ysP78xcafO05QUBjrKsdF2FgW/QgOcxTD9IcJNVhRHT1VaZDSGCCiYVbZbPZ8AHy8uxIerrg4boyPcxmk/N31dIvybZC+JVcyV6JxSlVL6QzqWXMtXLiQuLg49Ho93bp1Y/PmzfXuSXY++Pv788ILL1y2/iUSybVJXnlwc5/TksOUJO7ji0XZmG1BgBOVULM7oDW/RfYgxFCRGt1JYJPounckBOxaBom/K+V6DG4OUFamLCp6eLTFz683TSIfcp1LylFCHwR4GOjaxIf/6xNdr31LJBfElSjbypEaSnI1II1SknrleKmSOSBQr6WPjweTI4POu43S8gwwWqeawMISjnuH4SiJQYuDZl7Qpcv1kF+eWrXfbOg9DQz1F5gTIC3tK44dX4LFkg6ATleZ1a+oTImD8Pb9Xbi1Qyga9RV8J5NIzorqLK/rly5durBr164Ga18ikUiuFPJsiqeUn65SnmfGZ1BQtB2nNREAnUPwac97aabNxE+Vh9YmcGhyz6+jlJ2w+onKsnv9PMA6HBaKivaTlf0bAIGBg4lpWjWdfWF5LKn+rQJZOLJTvfQruTpoDGq63tbcLtFkpIaSXC1Io5SkXqkQVL18PPigXfR5X+9wOLE7FMNWq7RconJy+Kt1RwDccfLUU08pFT8v34fuGVLvBimAtLQvXQYptVpPQMAACstsJJwq5lSRMr4Ad700SEnOk6vVXV0ikUgkF0q+zc7Uwyc5Ylbi1PjoKj2lEjJTcVqPuMqmMjMD1cfRaEppmaUmJXsX3p06nl+H5nIPK48Q6HgvdD132va6cPDQDLKyfnGVjYZQ1+uUvBJW7U1jY3x5WASj3LYnOYOrSVKLGl9KJJKzII1Sknolt9z13Pc01/O6Uma2khKX4Up57FFmpsAN1no1ARu4YausbFW8qeozdfHpVGzba9P6Nfz9+6HVBdJ3wQZS80tddbxkLCnJNYBAoLqqlKJEIpE0Lv7ILWJ9TqGr3MqtMlBsdr5yXKBiwOEkDvpGoVGX6yGnormiW3Y4vw6tyhY6AlvB4H9e+MDPoLjoEABGYwQeHq0IDr7Fde7VNUf4aX+6qxzgKbPtSWpGKg6J5Nqj/tIW1IEXX3wRlUpV5ad169au82VlZUyZMgV/f388PDwYMWIEmZmZVdo4efIkt956K25ubgQFBTFz5kzsdvulnIakFiqCdJ7uel4XSossfPjI0/zw+qMIp5Kt4usbnMy53x+NM4gYdQ63RpbB1iXwwQ2Q8rdyob5+szo4nRZKS1MpKVHiYnl5dcRgCKKozOYySEX6mRjYOojWIQ0TXF3S2JFySSKRSCT1R2G5duru5cY3nZsxs2mlh1FpoRUAjdDgZrWTbfRHqBTdawoIYcLST+h1z/3n12EDLexZypPDdOn8bzp1/AiNplKjpRcoGqpvy0Am9Y3hvu6R9dq35ErhatdQ556fw+6kKKcMh8N5CcYjuaxc7X/u9cgl95Rq164d69evrxyAtnII06dP56effuKrr77C29ubqVOncvfdd7N161YAHA4Ht956KyEhIWzbto309HTGjh2LTqfjlVdeudRTkZyB2eEgy6qs3vnqzs9T6vj2/dgtia6y0W4g1/g0x3O86aDJ4M5mKoYNGwbLr6/MFgPg37yG1i4Mh8PC9j8HurbtAej1SpyFwtJyAajTsPnpm+qtT8kVjLh2HbKv3ZlLJBJJ/VNc/nAabTLQx7fqgpct2wyAzqmsI2d7+qJXg05oMJrc8Q46j6x51hIluPnJP5Wy/uLT0judVvbEjiM//2+Uu4Mag6F6PNGiMkVHTe4bQ+/mly8Is0TSMJzb+lCRUVM4BaXFVjQ6NW5e0mNQIoHLYJTSarWEhIRUO15QUMAnn3zCypUruekm5aH/s88+o02bNvz555/07NmTtWvXcujQIdavX09wcDCdO3fmn//8J7NmzeLFF19Er5cf7MvF8tRs5sSnUGHz9z1PT6nclGQU53QtQ/bFkeeh5seWbiBU+Olg/PjxihHAUp5x755PIbi94npeT5SVJZ8WR8pEaOjd2IQ3a/elcTxLEYVeJrnjVVILV+uKyNU6L4lEImkEFDsUTyl3TeUGBufB1eR8uwhroaKJtU41X3UciDUmlKHWZvgLT3LD8s+vo00LYMubleV6yLpXbI4nP/8vVzkwcBAajQkAp1Pw4740MgrKyCwsA8BTxpKSXNWcfdnObilFrbHjdAoEbghhuITjkkgaN5f8Cfvo0aOEhYVhNBrp1asXr776Kk2aNGHXrl3YbDZuvvlmV93WrVvTpEkTtm/fTs+ePdm+fTsdOnQgOLhyVWjIkCE88sgjHDx4kC5dutTYp8ViwWKxuMqFhYU11pNcOJvyilwGKT+dhuu8z2/1LT9NSR+scxpQC0jxMXBEKEZGP6Mi1rCV4vqybzGk3gOcW61K9hqTKZrevZTMMa+sOcxHm4656vi6ScOn5Nxc0TYcVZX/atZX0lVKIpFI6g2zXVFQHqfF49zxYyJ/Jd6CwxoHgEMLzrYBhDnBWXiKEyVxePdtXWN7ZyUvSfnfv7ny0/2hix671aJs2XN3b0HHDh9gMlVuy/vzWA6PfxFbpb6fh9RREhDn621+BQsrdfmuIKfTidNZ/jyqAvC6bGOSSBobl9Qodf3117Ns2TJatWpFeno68+bN48Ybb+TAgQNkZGSg1+vx8fGpck1wcDAZGRkAZGRkVDFIVZyvOHc2Xn31VebNm1e/k5FUoag8HsJbrSMZGeKHRlW3u4e1tIRVi1/lxP49AOgdWjZ0UPF1s74gBF7qMm5oUf47r4iBgAp09RdLyum0kZu7hdS0L5Qx6P1c55LK3eZbBnsQ7mNi9PVR9dav5BrjChVUAsEVO3iJRCK5AsgpTxLjc5pRandSCfbSra6yVSgxmbRoOJC9CYutmIEePc6vI6uiabhhOnT5x0WNWQhBcfFhMk+tBsBoDMPNLbpKnYpYnKHeRno186d9mDfhPqaL6lciudLQm0z4hUfidDiwlZVizs+73EOSSBodlzTQ+bBhwxg5ciQdO3ZkyJAhrFmzhvz8fP73v/81aL9z5syhoKDA9ZOcnNyg/V2LFJWv8vnqtHU2SAEcWLeeE/v2uMpCb+T9Fs9xjEHcYjjM3YYDRHg54eOb4NMhSiW9O6jr7083I+N79u6bQHa2EuvMw71yS2BBqRIja+pNLfjswesY1PY8YjdIrmkutTNRfZmNJjw9C7cOHfAJCKdzWGf6du7LG2++ddEJJf744w9UKhX5+fn1M9A6cPz4cUaPHu3yzo2IiOCOO+7gyJEjVeqtXr2afv364enpiZubGz169GDZsmVV6iQlJaFSqYiNja1z/y+++CKtW7fG3d0dX19fbr75Znbs2FGlzfHjx9O0aVNMJhPNmjVj7ty5WK3WWttNT09n9OjRtGzZErVazRNPPFGn8WzatInbbruNsLAwVCoV33//fbU63377LYMHD8bf3x+VSsX+fXvP2p4QgmHDhp21rWXLltGxY0eMRiNBQUFMmTKlyvlff/2Vnj174unpSWBgICNGjCApKalKnRUrVtCpUyfc3NwIDQ1lypQXyM3Nv+h5SiSNgT2FJUw+mMSmPCU0QbChcmubxaIYkLROJ63ScygT3koZDZTHoAoNjzm/DiuMUvUQSyo17XP++vs2MjK+B8DdvWW1OhUaqke0H4vv7cxDNzS96H4lksbM+OlP49ahA4bISDqHdWZYj2HM/+d81FotRnd3dAbjuRupAamhrkwNVdt8L4eGmjx5ZqPVUJfUKHUmPj4+tGzZkoSEBEJCQrBardU+bJmZma4YVCEhIdWy8VWUa4pTVYHBYMDLy6vKj6R+qYiH4KE5vz+po5uUYJsqtS96zzF4k4XFqYilJgF+dOrUiXbWWEjdBbnl2+gCqgufi8FsPgqA0RhJYOBgmjSZwO9HMrn3w+3sT1UyAXqbZAwESTnnYXS9UhnUpw9xB2NZs2MNE6dO5PVFi3nv4381GoepcwkOAJvNxqBBgygoKODbb78lLi6OL7/8kg4dOlS5zyxdupQ77riDPn36sGPHDvbt28eoUaOYPHkyTz311EWNs2XLlrzzzjvs37+fLVu2EB0dzeDBg8nKUra7HDlyBKfTyYcffsjBgwd58803+eCDD3jmmWdqbddisRAYGMhzzz1Hp06d6jwes9lMp06dePfdd2utc8MNN/D666+fs7233nrLFbj1TBYvXsyzzz7L7NmzOXjwIOvXr2fIkCGu88ePH+eOO+7gpptuIjY2ll9//ZXs7GzuvvtuV52tW7cyduxYxo8fz8GDB/nqq6/YtWs/06bV7vlcl3lKJI2BpScy+f5UPqesitG/uakyxozKXgJAkxwrzU7lY/YMA0AvNPR8+EH+8epbBMfUMdlL2h448C0UKqES6iPrXm7uZtdrL8+OhIaOcJWTss3c+e5W3tmQoJyX8TgldaGRaIyLZVCfPpzYtZs1O9Yw7tFxvDTvJd54440zaonLFgpBaqhrV0Pt3Lm38WoocRkpKioSvr6+YsmSJSI/P1/odDrx9ddfu84fOXJEAGL79u1CCCHWrFkj1Gq1yMzMdNX58MMPhZeXlygrK6tzvwUFBQIQBQUF9TeZa5yOW/aL4N/3iL2F5vO67oMxU8TCe28V/7prgviz+2Dxxj/uFFGzVouoWatFXOJJpdKP04WY6yXEd48IcXyzEGWF9Tr2AwdmiPW/xYikpA9dx0Z+sM01jujZq8WJ7PObl+TqJXnaY+JQq9Yid+XKaucOvP6XSJ61Sax8fZn4/a/1ojR5v+tcYU6WSDueKFJTU0VWVla9j+tUYanYm5wnTuac+28112oTsQVmkWAurTyYvl+I1N3iH3fdJYYPGCDys9PEgawD4kTBCdG/742iW+fOIvFgghh59yjh4+0jTCaTGDp0qIiPj3c1kZSUJIYPHy58fHyEm5ubaNu2rfjpp5/E8ePHBYr8cv2MGzdOCCFEYWGhGD16tHBzcxMhISFi8eLFol+/fuLxxx93tRsVFSVeeuklMWbMGOHp6em6dvPmzeKGG24QRqNRREREiGnTponi4mIhhBB79uwRgEhKSjrr+3Dy5Emh0+nEjBkzqp17++23BSD+/PNPIYRwzWHPnj3nfH/PRsW9Z/369Wets2DBAtG0adM6t3nme1VXAPHdd9+d9XzFfP/Y9pfYm5wnjmUVVzm/Z88eER4eLtLT06u1lZubK0wmU63z/Oqrr4RWqxUOh8N1bNWqVUKlUgmr1SqEEOKNN94QMTExVa5bsGC2CAsLEg6HtV7mWUFpaak4dOiQKC0trXZOaoaqyPej/rhr91ER/PseMePwCbE2K184nU4hhBBOh1Msuv9hsfDeW8XPfW4Uv/W4Qcyd9aJ49/nFYtucb0VW0XncQ3KThJjrreioip8Tf1702HfsuE2s/y1GZGX9Xu3chxsTXBoqatZq8Z/tZ/8ellxb5K/6URxq1Vok/d//VTt3Yl2SSJ61ScT+83ex/q/1IvfEbiGsJUIIIaxlpSI9IV6kpqaK1NTUKveO+qDMZhd7k/PE/pT8c9Z1OJ0itsAsYgvMwl7+mRX5yUKk7hZj7rlbDB8wQFiSU8SBrAPiQNYBceOAG0XPnj1Fbm6uGH3//cLby0sYjUYxaOBgqaHOgytRQ/29a5fYm5wn9ibnCUfF34q4fBpq4cIXRVhYkLBYsutlnhXUh4a6pJ5STz31FBs3biQpKYlt27Zx1113odFouP/++/H29mb8+PHMmDGDDRs2sGvXLh588EF69epFz549ARg8eDBt27ZlzJgx7N27l19//ZXnnnuOKVOmYDDIDAaXg3ybnW15xWSVr/IF6c/Po8hqV5YJ3EuyMGtP8nmIkmXGHQvRERWxpMrdzQNbQ/QN9ZItBqC09CTJKf+hsGgfAAZDpbddnllZRZgxqCU/TbuRJv71F8NKcnUgziNIpxACYXUibOU/VidOq6Nef4TVATYnnHn8fIOJ1oDRaMRqszFl+lT27tvD/774mu3btyOE4JZbbvl/9s47PKpq68PvTDKTmUnvCUkICWl06UQQBIQgRVREEC9FhQ8QUEARO+LFiyKIoIjlKnDvBfXa0IuggkhHRAgdQktISEJJm/RM298fJ5kQ0yH0/T7PPMk+Z5999plM5vzOWmuvhdmsLNGYNGkSJSUlbNmyhYMHD/LWW2/h4uJCSEgI33zzDQAJCQmkp6ezaNEiAKZPn8727dv54YcfWL9+PVu3bmXv3r2V5jB//nzatGlDfHw8r7zyCqdOnaJfv34MGTKEAwcO8OWXX7Jt2zYmT54MgK+vL2q1mq+//hpraSTnX/n6668xm81VevPGjx+Pi4sLn3/++RW/f6B4Jj/++GPc3d1r9MwZjUa8vLyq3X8jUFhYyIgRI1iyZEmVUcrr16/HZrORmppKs2bNCA4O5uGHH66wdL59+/ao1WqWLVuG1WrFaDTy73//m3vuuQeNRrmPxMbGkpKSwtq1axFCcP78eb7/fj19+tx1za5VIrmaFJYuw4vzcaePj7viNc87h/n3ZQihFOU5Fe7Flnt70Rhv7jN1IMjqhU5bjyVAOcmAUHJxNrkL2o6EoPaXPefcvEOcOr2QouJkALRan8qnLFTuCQNaBbLu6bt4tHPjyz6f5BbjMqPNhRDlGsp8FTVUFWNfro7SOihJ/R2dHDGZTIwZM4a9e/ey/KOlrPn6GwRSQ9UVqaEaRkOtXr32htVQ1zSe9uzZszzyyCNkZmbi6+tLt27d+P333/H19QVg4cKFqNVqhgwZQklJCXFxcXzwwQf24x0cHFizZg0TJ04kNjYWZ2dnRo8ezeuvv34tL0NSihCCe/5M4Gyx8mWqBnw0dftIHduxhZ8/XITFqlShSAm18oLfiwizF+0dU2jmakarLa3QUpbgvAFyIFzKwUNTyMs7ZG+7uERTUGIhr9hCTmkehF4xfjRvJJd7Sq4MYbaR+26CvV0CpF2F85Tdhi8du9Hrd6LSOlTVvdbIcSEEW3/bym+bt9Cz+1389MtPrPnmF7re2Q2DmxMrV64kJCSE1atXM3ToUJKTkxkyZAitWrUCIDy8PN9JmUjw8/OzF7TIy8tjxYoVrFq1it69ewOwbNkyGjVqVGkuvXr14plnnrG3x44dy6OPPmrPBRAZGcnixYvp0aMHS5cuJSgoiMWLF/Pcc88xe/ZsOnToQM+ePXn00Uft8zp+/Dju7u4EBgZWOp9WqyU8PJzjx4/X8i7VzJo1axg+fDiFhYUEBgayfv16fHwqP8QBnDx5kvfee4/58+df0TmvNtOmTePOO+9k8ODBVe4/ffo0NpuNf/zjHyxatAh3d3defvll+vTpw4EDB9BqtYSFhfHLL7/w8MMPM378eKxWK7Gxsaxdu9Y+TteuXVm5ciXDhg2juLgYi8XCvff2YMGCmkPzJZKbhTKjlOGS1AdfvfpPUi6kgE3JM2Vx8ACVCl8HN7CCSZSgc6yHUepSx96YNVc858OHn6Gw8GRpS4WTrvz783xuMUfTc0k4p8w9ws+FZoFSQ0kaALMN6/IL9uY5Ehv8FFVpKKhZR1WPoIlbE1asXsH237Zzb797+f7779m4YT3NmoSCSsOnHy8npmWE1FA1IDVUw2qo/v3vuWE11DWNlPriiy9IS0ujpKSEs2fP8sUXX9C0aVP7fp1Ox5IlS8jKyqKgoIBvv/22kgUxNDSUtWvXUlhYyMWLF5k/fz6OjnKt+vWgyCbsBqmmeieeCvXHUV03D8jBjZuxlJSWRcURg5NAmL0wYKKV4zmaeOvh+C/w3QQlnxQ0qFHKYimwG6Q8PboQHj6d1PxA2v19PV3m/srFPGVubjqZS0py+7FuyxaCQiNoF9yOMQ+N4f5Bgxj24IM4OjrS7o4OdmuWt7c30dHRHD16FICnnnqKOXPm0LVrV2bNmsWBAwdqPM/p06cxm8106tTJvs3d3Z3o6OhKfTt06FChvX//fpYvX46Li4v9FRcXh81mIzFREauTJk3i3LlzrFy5ktjYWL766itatGjB+vXr6/xe2I3jNbBy5coK89i6tTzXSs+ePdm3bx87duygX79+PPzww1y4cKHSGKmpqfTr14+hQ4cybtw4+/ZLx50wYUKd5rx169YKx61cubJOx9WFH374gY0bN/Luu+9W28dms2E2m1m8eDFxcXF06dKFzz//nBMnTvDbb78BSsXccePGMXr0aHbv3s3mzZvRarU89NBDdq/0kSNHePrpp3n11VfZs2cPP/30E8nJaUydOueqX6dEci0otCkRCIbS4i1Wi42UCykIi5L7ycGmQaiVqHGLtZgz+UdYK37AUV0P3duAjj0hBEVFSoRUYOBDNG82D6fSSCmrTTBg8TbGLNvNr8eU7zgPg9RQkmq4TvmUrgXrtmzBKzoaF4MLE4dPpN/gfowePRpHR0c6dSyvmOnlJTUU3Noa6q9PxddbQ505c/aG1VDSmiO5bAouCefc2jkGdT1CctMSFFHjaOiNs9WXIuf/gQADVuLi4oiKioJ/94ScM+UHuVa2xF8uJpPyhebgYKBdO+Wf8L+7UygprSKocVBxR4gHQZ6ydLHkylFp1LhNjSE/z4jQ6tBqtHj7eDfoOTLyijmXW4KnXkOQV/lyU5Wm/r6HHh07Mn/xAjI1hYQ1DsOzWMf//vc/+/7qtOTYsWOJi4vjxx9/5JdffmHu3LksWLCAKVOm1HsOf8XZueIDVX5+PuPHj+epp56q1Ldx4/KlIq6urgwaNIhBgwYxZ84c4uLimDNnDn369CEyMhKj0UhaWlolz6LJZOLUqVMVEktWx3333Ufnzp3t7aCgoArzjoiIICIigi5duhAZGcmnn37KCy+8YO+TlpZGz549ufPOO/n4448rjH1p5Za6Funo0KFDheP8/RuuaujGjRs5deqU3VNbxpAhQ7jrrrvYtGmT3WvavHlz+35fX198fHxITla++5csWYK7uzvz5s2z9/nPf/5DSEgIu3btokuXLsydO5euXbsyY8YMAFq3bg28RL9+Y3jzzfSrep0SybWgLFJKXxoplZOTD7YiAJpeyCckI4Nt99wBCIymDD4K/Q6nJv5U/tarhqIcyC8tENQARimLxYgQSnqD6KjXcXAoT52RU2giI19x6LUMcsPToCWuRfVFiCSSeqFR4zDGD5te+Rz7+fnh4FDf6KXqMVusJJzPR61SVVohUV8d1aNjR96bNw99SDC5ulwcHR05se1ErcdJDaUgNdTV01AODn+nT5+hzJnz9xtOQ0mjlOSyuTTsvD4GKVORGatFETUBGacJyPyF2aF3gxl0ajOxsbGlJ8hSfnabDv4tlFwIV4gQVo4efYHcvIMAaDXlIaBlpYvvv6MR7w5ve8XnkkjKUKlUqLRqRdho1Ki0atT1DgWv5RxaB9CoQetwxWMb9HqahoehFVn2SNTIiKZYLBb27vuTu3t3ByAzM5OEhIQKN86QkBAmTJjAhAkTeOGFF/jkk0+YMmWK3Vt2aW6C8PBwNBoNu3fvtosgo9HI8ePH6d69e41zbNeuHUeOHCEioo7Vp1D+DjExMezYsQOAhx56iJkzZ7JgwQIWLFhQoe+HH35IYWEho0aNqnVcV1dXXF3rluvOZrNRYo8SVbx7PXv2pH379ixbtgy1uqL4rc/1laHX6y/ruLrw/PPPM3bs2ArbWrVqxcKFCxk0aBCghIyDkvsiODgYgKysLDIyMggNDQWUnAp/vdayBwybzWbv89dI6LI+Qoirep0SydXk5wwju3IKyDIr34dl+TgTk44jhGKUapSdjUmrJ9u91A3goOKZh/9BG986Vova/4USbV7mRtBcWW7Mc+d+wJir5KrRaLwqGKQAe9oDV50ja6bcmDlLJDc2qhrK76lUKlQatd1ApNY6oG5Ao5RKjaKhVKoG0VARYWE4BjXiaKYSBRXTLAaLxcIfu3cry/eAzCypoUBqqGuroZRjbkQNJY1SksumoNQo5eJQPw9C6rlUhFBKHRvyd/BDTCNOm1vgpirmnqjSMsVClIecd5kILn4NMufcvEOkn/vG3nZ2iSLdWMT/9qex+bhSYtRNL8PNJTVQrySdt058eniTJtwbdy/PPP8U7y1egl+gN88//zxBQUH2dfFTp07l3nvvJSoqiuzsbH777TeaNWsGKEuvVSoVa9asoX///uj1elxdXRk9ejQzZszAy8sLPz8/Zs2ahVqtrrZMbhkzZ86kS5cuTJ48mbFjx+Ls7MyRI0dYv34977//Pvv27WPWrFmMHDmS5s2bo9Vq2bx5M5999hkzZ84EFG/gvHnzePbZZ9HpdIwcORKNRsP333/Piy++yJw5c2jZsmWF8yYkJFSaS4sWLeyJJcsoKCjgjTfe4L777iMwMJCMjAyWLFlCamoqQ4cOBRQxdffddxMaGsr8+fPtZY6BKpNfXkqZdys/P5+LFy+yb98+tFptBXH7V/Lz8zl58qS9nZiYyL59+/Dy8rIL2qysLJKTk0lLU7JqnDx+HNfcYpoEBxHmE05AQECVc2vcuDFhYWGAUsZ58ODBPP3003z88ce4ubnxwgsvEBMTQ8+ePQEYMGAACxcu5PXXX+eRRx4hLy+PF198kdDQUNq2VZwCgwYNYty4cSxdupS4uDjS09N57rk3ad++ZZU5M+pznRLJ9aLQamPsoSTMpUssfDSOeGmUh4kLew+AKAYgz82bU1FN0dgc8MYVN0cTfUL71P1EZ7ZTwSAV3f+y55ybd4jDR6bZ287OkfbfzxmLefqLeNKMijFNLtmTXDmXlwz9RiYyMpLBgwczafIU5r72Ki4u7ry1cJHUUNzaGup4QgIOFwvw8fWDIPfrrqGefXZ2qYaqfvXR9dJQ0igluWzyLaW5EOphlEo6EM/uH76DUk/g1x3Gs9khiBYO6XTUnKVXuFJ9TzFIlYoprUuDzbmk5JwyZ0MEkRHP4+HRgelfHeOH/eVpDX1cZCVHiaRMFAoh7Prw/YXv8fzLLzN02IOYzCa6d+/O2rVr7WLCarUyadIkzp49i5ubG/369WPhwoWAEo49e/Zsnn/+eR577DFGjRrF8uXLeeedd5gwYQIDBw7Ezc2N5557jpSUFHS6mhP5tm7dms2bN/PSSy9x1113IYSgadOmDBs2DIDg4GCaNGnC7NmzSUpKQqVS2dvTppU/XE2bNo3w8HAWLFjAokWLKChQkgJ//vnnDB8+vNJ5q9qWkpJi92aV4eDgwLFjx1ixYgUZGRl4e3vTsWNHtm7dSosWLQClwsrJkyc5efJkpeNrq/ZTJjoA9uzZw6pVqwgNDSUpKanaY/7880+7oAGlag/A6NGjWb58OaDkO3jsscfsfcaO+RsAT814gU7z/lHjnC7lX//6F9OmTWPAgAGo1Wp69OjBTz/9ZP+s9OrVi1WrVjFv3jzmzZuHwWAgNjaWn376Cb1eWTY9ZswY8vLyeP/993nmmWfw8PDgrrvaMXv21BrPXZfrlEiuF7kWK2YhUAP/F+JLX293+wNk7rkMyrTPwdg4cvRFdDKF0toWxl7t7/U7UVmC835vKs69K6Cw4DSgVCn28bmHoEYP2/dtOHqeXYlZ9na0f8NUSJZIbjWWLVvG5EmTGDVuPCazmW533iU1FLe2hhoxYgQAE6bN5O62c2uc06VcLQ3VvXtnXnttUo3nvl4aSiUaol74TUZubi7u7u4YjcY6ry+VlFNktfF+8nn25hbyW1YeXdydWd0ustbjhBC8P2YYpuLC0i0O/BI2jATc6a5LY1ALD/r06YPHj/8HJ35WuqjU8GrWZZeQvRSbzczZs//mxMk38PWNo3UrpbLjQ0t38OeZbLpF+BAd4Mr4HuH4udajso3ktuLs01PJ+/ln/F95Ga9HH62w7/C83bhnFbPV6zQBPYOJDfRDF6xUUcnLyiQ/tzSnlFZbbfWQy+ViXjHpxmI8DVpCvGpeppFttpBcZMLZUU2EofSzfu4Q2MyUFLpgKy7BHOhDisjEWeOMW6EGU2EhWoMXFpMGZw8nnN2vjvG2oKCAoKAgFixYwBNPPHFVzlETWVlZ9O7dGzc3N9atW4fBcGVLXm52sgpMnM0uxFWnIcynYSugXg65ucrSaxeXGNTqhovIKC4uJjExkbCwsEpiXmqGisj348o4VVhM113HcHNUc/yu1gAUp5/h81fmk11YgrCmocIBbdOuZGgL6W5uRpS1EdtdtzDspZfqfqKVDyta6r73oF3tS2hq4syZjzh5ah4B/oNp0eKdCvve33iC+b8cp1eMH+O7h9MmxAOdpmGXp0tuHYw//kjaM89i6NKF0OXLKuxL2ZCMasMZMl2sZMRZaefvhWdgDGj0mEuKyTybYs8p5e/v36A5pUwWK8fO5aFWqWgZ5F5jX5sQHMxTnOstXfU4qFRgPAsFF7HY3DDnFOHg4VFx+Z5XDA5qB4oL8sk5lw4qDS6eAbh4NuzzhtRQNxZWm43DabkAtAxyr1e6m6tBYeEZLJZcdLpGaLUNl9u2ITSUjJSS1JtfMo0sSDpvbzdzqVsy8Ky0LLtBysGpPS4mKwkoX/x3hHgydOhDYC4qN0gBhPVoEIPUxYsbOHR4CjabksvKYAiz7yvLJTXx7qZ0jWhYQ4HkdkP1l5+S2oiPj+fYsWN06tQJo9HI66+/DlBtqdyrjZeXFxs2bGDJkiXs3LnTXmZZIpFIGoKy1AfOlzxQ//HDz2TllZe4dxQqbCqlX0bRWfaVrCOgT5e6naAkHxK3QI6SEPdKos1tthKysnaQnbMbACdd+ZKPC3nFbDx6wR4lFennQufwhi3gIbm9ue2iJi4DqaEktwrSKCWpN5kmCwDRzjqG+nsyLNCrTscd2bCx9DcN7iIKD+OXQCwaLHQKK80ZZSosP+DZk+DcMEaijIxf7QYptVqHj08vXv3+EDtPZZKYoYSaustcUhKJHVU1v18N5s+fT0JCAlqtlvbt27N169YGjySrD97e3rz66qvX7fySmlAhH1UkNzP2IjGXJKk9euw4AA44E36xgGJSSItSjFDnNDksa7OHT5rXrZw5v7wEe5aXt3WXH82WlPQhiUmLy4dyKs/l9srqQ/x8uNxB6e1Se+l3iUTS8EgNJak7N67TXBqlJPWmTFC1cdUzObTu5SNT/zwAgKPNgS675/Df5m1p75hChEMGzdqU5jsoS27uqAcX3wabc1HxWQBioucQGDiE7ELBv3ZusO/XadSEeN7eIaaSq8vVvw1cwxtNA9oE2rZty549expuQIlEIrmByS3Nx+l8ST5OkaNUk3KyOuKbm8bhlr0pVCtR3J4efnwW9xkd/DvU7QRZpRFXPlEQeAeEdrvsueblHwaU6HJn5yj8/PrZ953JVJyInZp4EebjzP1tg6ocQyKpktsve8xVQWooya1C/cqmSSRUHXpeGxaTifz8HAAc1Frmtx/OyqYPE6nLp1VkEzw9PZWOZYk5tQ1jILLZSsjLO0xR0RkADIamqNVasgsVsefi5MiqcZ357dm7cZcVYySSckptXOISC9SN61+RSG595s6dS8eOHXF1dcXPz4/777+/UiWj4uJiJk2ahLe3Ny4uLgwZMoTz589X6JOcnMyAAQMwGAz4+fkxY8YMLBbLtbyU25JThcV033WMJ48oeiREXx5ZZDMrusrspOLngfdxtokzJrVivPL39KNjQMdaq2nZMZdGnPeeBUM+Ac3l56wpLlIcelGRr9C61Qdotd7kFpvZfPwiF/IUQ9orA5vz1kOtZS5OiUQikVw2MlJKUm8K7Uaputk0s9LO8p/np2IuUcoco3Hk12DF4zfpbyMIadIIUv6AX16BotIKLtqGSagbHz+aHONue1unC2LVrmR2nMoAwMtZy51NZR4pST24zkkKG4LLvQLp15RIrh+bN29m0qRJdOzYEYvFwosvvkjfvn05cuQIzs7KPXPatGn8+OOPfPXVV7i7uzN58mQefPBBtm/fDijVnQYMGEBAQAA7duwgPT2dUaNGodFo+Mc/6l5dUVJ/fsvK43hhsb19l2d5lTpbWdRIqazS2ByJtPrjiQv+AfXM01SWBuEKdFRW1nYyMjdRWOrQ0+nKK1s9sXw3u5Oy7W1PZ+nQkzQQqgo/JBLJbYQ0SknqjbE09Nyljkapo5t2lBukVE6oNcrHzoAJb+/SBJx7/wUpl5Q79mp6xfO02SwYc/cCoNX64enRidQ8N178bou9T6C79OxJJHWlTCgW5powl1hx99PX3XsvuSmRf90bh59++qlCe/ny5fj5+bFnzx66d++O0Wjk008/ZdWqVfTq1QtQSpA3a9aM33//nS5duvDLL79w5MgRNmzYgL+/P3fccQd///vfmTlzJq+99hparcwLdLUoKnXo3evjzmsRjQjVO7H5k38Tv2k9VkupQ670H84dPXdaYwAo8KpnhTFzWcT55RmlhBAcPDQFi8UIgFqtRacrX5p3/LySZiHK34VOYV4EedSt2I1EcisiBNLTJ5E0ANIoJakzK1IzmHMqzb58L1Rft5Lwh39XIpXU2mY46XojtO8SrM6hmTUZJ/0gpVNJnvKz41iI7g8hna54viUl5xDCilqtpVvX7ahUanaeygSUCKlHOzdmUJtGtYwikVTDLS8mKqc6t1qLETYTAhWmYj1WixOOsvS3RHJdMBoVo4GXl1JsZM+ePZjNZu655x57n5iYGBo3bszOnTvp0qULO3fupFWrVvj7l+eDjIuLY+LEiRw+fJi2bdtWOk9JSQklJSX2dm5u7tW6pFuasijzACeNXT/Fb9lcbpACVEIpM++IA7uz15PucI7R7efXPnixEb78G+SmQU6Ksk1zeWkQzObMUoOUitDG4/Dw6ISDg+LAs9oEucVK+oP/jO0sl+xJ6o10ZJVzy8tIiaQeSKOUpM78cCGHvLKqMQ5qOrnXzQtXkq2ILPf8i7Q5+AYf3t2VezTH8aQQB8fSj2BZLqlG7SDiysqHCmHjzJmPyM1TEqvrdMGoVEpUV5mYCvU28Ezf6Cs6j0RSibLQc3HriC6BQKVWrsdSckl1TFQgLr/UuEQiuXxsNhtTp06la9eutGzZEoBz586h1Wrx8PCo0Nff359z587Z+1xqkCrbX7avKubOncvs2bMb+ApuP4psin7SX1J1T5RqqqBcJxpfSCMhPJRMwFE48EbHH/D28GeiwbWq4SqStB0Sy6PA0RjAPbj6/jXNszgVACcnfyIiZgKKdhrywQ7OZBba81N76GVUnURSf24dfSiRNCTSKCWpM2WCakF0CPf7eeDsWLcICZtF8bCqyGdp87tJ0rVi7rgueAYElncyXVm4+aVkZ//OqdPlnkVn5wgSzuXxxtqjnM1SHqrddDIHgkRSE5fKJhdPL9QOjiAEpqJCLGYz0scnkVw/Jk2axKFDh9i2bdtVP9cLL7zA9OnT7e3c3FxCQkKu+nlvNcoipfQOyrerEAIhlHQIDtpCUkKDSYtsAVhxRM3ifkto5tO8bpElZZWLG7WDuH+AVxjoPeo1P4slj0OHp1JQcAqgwpK9/Sk5nLiQb2+3beyB1lHWSpJIJBJJwyCNUpI6U5YPIUSnrZNBKjs9lYMbf8FiU0LT072c2ODbhTbk4hPcWOn0xydwbA2cO6i0tVceeVFYlASAs3MkAf6D8fcfxPxfU9hy/KK9T5hPwyRSl0hudYrMRQgXNW4+vgAYL5wrNUpJJJLrweTJk1mzZg1btmwhOLg8GiYgIACTyUROTk6FaKnz588TEBBg7/PHH39UGK+sOl9Zn7/i5OSEk1PdlutLKmO2CQ7kFbItWzHqlEVKWS02hFCcdilhAeR6hAKKkcrZquXO4K51P0lZCgS3RhAae1nzzMraTmbmJnvbza21/feyisXtGnvw/oh2+LvJZXuSK0TU17F1c0cYCenIk0hqRLo5JHXGHnpexwTnv376Mbt/+AYoAdRkOWtQIWijLve28csrcHoTmEoFlUfjK55ncZGST8HT806aNJmIXh9MdqEJgCHtglk2piPP3xtzxeeR3Kbc4LroSmXP2OdmYmjVClfvAO5odAf3dryX5199/opLxm/atAmVSkVOTs4VzrDuJCYmMmLECBo1aoROpyM4OJjBgwdz7NixCv3WrFlDjx49cHV1xWAw0LFjR5YvX16hT1JSEiqVin379tX5/K+99hoxMTE4Ozvj6enJPffcw65duyqM+cQTTxAWFoZer6dp06bMmjULk8lU47jp6emMGDGCqKgo1Go1U6dOrdN8tmzZwqBBg2jUqBEqlYrVq1fXOucHBvbjQPyfFfq88cYb3HnnnRgMhkpLxcpITk5mwIABGAwG/Pz8mDFjRoXP0JgxY1CpVJVeLVq0sPeZO3cuHTt2xNXVFT8/P+6//35OnEis9TrrMr+bESEEkydP5rvvvmPjxo2EhYVV2N++fXs0Gg2//vqrfVtCQgLJycnExiqGitjYWA4ePMiFCxfsfdavX4+bmxvNmze/NhdymzHtWDID9p7gdJFigArWaTFeOM/ub/4LQtFDFr0bAE2t/vQxtaaFObDa8arEHm1++Y49c2lic3e3trRru4qIps+RmlNE7wWbmPm1kg4hwF1HIw89Duob/EYokVwnHp/2HIZWrXAKCUHnpOPejveydP5S+/3vcv9zpIa6OTVU3759bygNdfz4qVqv83ppKGmUktSZskgpfR3EiM1qI/nISUBJcK7T9aHEoGW4UzyuLklKJ0sJWJR8U9z3HjyxHnyjLnt+Fy7+zJatHUlO+UyZpz6EYrOV345d4NRFRbB1bOJJzxg/dDI5s0RSLX26diXleALr/1zP6CdHs3DuQt5+++1K/a6X3682wQFgNpvp06cPRqORb7/9loSEBL788ktatWpVQdS99957DB48mK5du7Jr1y4OHDjA8OHDmTBhAs8+++wVzTMqKor333+fgwcPsm3bNpo0aULfvn25eFGJ2jx27Bg2m42PPvqIw4cPs3DhQj788ENefPHFGsctKSnB19eXl19+mTZt2tR5PgUFBbRp04YlS5bUec4hoU2Y+OiDZGaUR5qaTCaGDh3KxIkTqxzDarUyYMAATCYTO3bsYMWKFSxfvpxXX33V3mfRokWkp6fbXykpKXh5eTF06FB7n82bNzNp0iR+//131q9fj9ls5oEHxlNQUFjVaes8v5uVSZMm8Z///IdVq1bh6urKuXPnOHfuHEVFpXkb3d154oknmD59Or/99ht79uzhscceIzY2li5dugDQt29fmjdvzsiRI9m/fz8///wzL7/8MpMmTZLRUFeJhAKl+nCAVkMvL1f6eLux8oUX2fHdytIeGsw2TwB8be6EWL1ILTlRt8GPrYVFbWDzPKV9mSkQSkwZFJfmktIbQvH07IxarWX7yQxOXSygyKxEcLVr7HlZ40skdeIWsXX26dqVM3v2kHA8gdFPjuaDeR+wYP6C6z0tO1JDXTsN1SQ0lImPPkhWZoa9z/XUUPfdN/LG1VDiNsRoNApAGI3G6z2VmwKLzSayTWYRsDFe+G+MFycKimo95kKKUcx/eJCY//AA8e+H3hK/3D1MjHhhrpg94xmxYeO3Sqf8DCFmuSkvi/mK53nw0NNiw6/hYsOv4eLXjZHCmHtQzPr+kAiducb+Wncw/YrPI7m9SZk6VRyJjhGZ//p3pX2H5u0WKTO3iM/f/JfY+McGUZRywL4vLzNDpCWeEqmpqeLixYsNPq8LucVif0q2OJNZUGvfbJNZ7DMWVPxfPndIiNS94m8PPCAG9uwpLEajyC7OFocuHhLdenYTXbp0EVlZWWLY0IeEu5ub0Ot0Iq5vnDh+/Lh9iKSkJDFw4EDh4eEhDAaDaN68ufjxxx9FYmKiQLFh2V+jR48WQgiRm5srRowYIQwGgwgICBDvvPOO6NGjh3j66aft44aGhorXX39djBw5Uri6utqP3bp1q+jWrZvQ6XQiODhYTJkyReTn5wshhIiPjxeASEpKqvZ9SE5OFhqNRkyfPr3SvsWLFwtA/P7770IIYb+G+Pj4Wt/f6ii792zYsKHaPvPmzRNhYWF1HvOv71VdAcR3331Xa7+ktIsCEP/+5n+V9i1btky4u7tX2r527VqhVqvFuXPn7NuWLl0q3NzcRElJSZXn+e6774RKparx73XhwgUBiLVrPxNWq6nWuVc3v6ooKioSR44cEUVFle9vN4pm+Ov/UNlr2bJl9j5FRUXiySefFJ6ensJgMIgHHnhApKdXvO8lJSWJe++9V+j1euHj4yOeeeYZYTbX/R58o7wfNwuxO48I/43xYmd2nhBCiHOJmWL+sIfF/IcHiHdGTBJLHn1dvD3jDTFr1izx32feFfMfHiD+/sqIug3+xd/KddQsNyF2f1rv+SUmfWjXTht+DRfHEl6z7/vn1tMidOYa8fiyP0RKVu33FomkNow//iiORMeIpJGjKu1L/vWMSJm5Rez/+29iwx8bROaZvUKYlM+dqbhYpJ88LlJTU0VqaqqwWCwNOq8Ss0XsT8kWB8/m1NrXarOJfcYCsc9YIMxWm7IxJ0WI1L1i5EMPioE9e4qSlBRhtVnFoYuHROzdsaJzl84iKytLjHjkEeHu5iZ0Op24p3dfqaHq2o21lAABAABJREFUwc2oobKyswUgPv58tbCWfVZKuZ4aqqQko9a5X2sNJSOlJDVisQl6704gZtshBIoTw0dTeyqyrJRUwAao8Uj/L183cSVM58a0mc/Tu+cDYLNBcY7S2VEPDlee3sxiVkLPI5o+x13d/sDNtSWJGUqEVJiPMwNaB3JXpM8Vn0ciqS9CCExmM+ZLXiaTqUFfZrMJi9mM2Vxxu6h33obK6HQ6TCYTY8aMYd/+/Sz/aClrvvkfQgj69++PuTTH1KRJkygpKWHLli0cPHiQt956CxcXF0JCQvjmm28AZTlReno6ixYtAmD69Ols376dH374gfXr17N161b27t1baQ7z58+nTZs2xMfH88orr3Dq1Cn69evHkCFDOHDgAF9++SXbtm1j8uTJAPj6+qJWq/n666+xWq1VXtfXX3+N2Wyu0ps3fvx4XFxc+Pzzz6/4/QPF8/Txxx/j7u5eo2fOaDTi5eXVIOe8UkwmEyuW/RNXNzeatWhV5+N27txJq1atKlR5i4uLIzc3l8OHD1d5zKeffso999xDaGhoteMajcp3vKene53ncishhKjyNWbMGHsfnU7HkiVLyMrKoqCggG+//bZSrqjQ0FDWrl1LYWEhFy9eZP78+Tg6yhSjV4vCS6oWAxzcuwuEEt3WOjkNt5wfUDsqISJWNXzZN40WIx+q2+BluaR6vgyT90CHx+s9v5wcJceYSuWIRuOJj09vTBYbGfklnM9VorwCPXQEexrqPbZE0lAIITCbLVdNQ5lMioayVDH25eooVWno16Uaam/8XkVDff2N1FD14GbVUJ988gmubm5ENW9Z5+NuVw0lVYikRi6YzBwrDT0HGOLviUctRqmzRw6xf/23ADhg4Pkuz1Dg6MJrAZm4evtA9hn4Z28oKF0O4nRlyc1Npgxy8w5RVJwGgMEQjkbjAUB+ibL+dma/aPq1rGeOBonkMvlrBLrZbGbx0g+vy1xefPFFtNrLK90thGDn5p1s2biF/vf2Z/Xq1fy85n+0jolGpXZhxfJ/Ex7RhNWrVzN06FCSk5MZMmQIrVopBozw8HD7WGUiwc/Pz75GPS8vjxUrVrBq1Sp69+4NwLJly2jUqFGlufTq1YtnnnnG3h47diyPPvqoPRdAZGQkixcvpkePHixdupSgoCAWL17Mc889x+zZs+nQoQM9e/bk0Ucftc/r+PHjuLu7ExhY+btBq9USHh7O8ePHL+u9K2PNmjUMHz6cwsJCAgMDWb9+PT4+VRvHT548yXvvvcf8+fOr3H+tuHTOAQGBfLjyO7y8627QP3fuXAUxBdjb586dq9Q/LS2NdevWsWrVqmrHtNlsTJ06lS5d2tK8eWSd5yKRXG8KbaXJy0uNUhmnTqI47aDAG3IC7qHQUXko1Tk6sX3MLjQOdawQXFZ1z68Z+ERc1vzKHHotWyzGzy+OvGIzXd/ayMW8EnsfWbFY0mDUpZpkFZjNZj794ssGnkzVrP5L+3J1VJmG2v7bdu7tdy/ff/89v/26gZjQxqDS8M8Pl9G8TaTUUDVws2uowEBFQ3l6edf5+KupoWJjO9ywGkpGSklqpKDUw+fmqOZsjza837x6CyyAuaSYr//xKimHFc+bI84EaEqI0yYQ4lfqZTu7u9wgBdC01xXNcfefD7F//xMUFio5rBwd3bmQV0xiRgHZBcq6aRcnKagkkrqybssW3Bs1IsA9gInDJzLwgYGMGTMGR0dHOrRrZ+/n7e1NdHQ0R48eBeCpp55izpw5dO3alVmzZnHgwIEaz3P69GnMZjOdOnWyb3N3dyc6OrpS3w4dOlRo79+/n+XLl+Pi4mJ/xcXFYbPZSExUkmFPmjSJc+fOsXLlSmJjY/nqq69o0aIF69evr/N7URchunLlygrz2Lp1q31fz5492bdvHzt27KBfv348/PDDFZJMl5Gamkq/fv0YOnQo48aNs2+/dNwJEybUac5bt26tcNzKlStrP+gSLp1zrz59mfHkY2RcrDznhmLFihV4eHhw//33V9tn0qRJHDp0iM8+m2ffNmHChArXKZHcaAgh7DrK2UHJZVmSqRiBVDiwr1U7MgKcsKiVPjoHTd0MUrlpkLAO8pTKiZfj3Msx7uFM8icUFZ8FwFGjJFs/fj6/gkHKVedI9yjfeo8vkdyurNuyBa/oaPR6PROHT6Tf4H6MGj0KR0dHOnXsaO/n7SU1FNzaGiouLo4ZTz5WIS9nQ1MfDbVixfv2bTeahpKRUpIaKbSViynHOiQ4P594DqvZBKhx0LbArVhDZ20yGpUND+/SBJllnr2IPvDQp6C7/DBCq7WE4mKl2p6rSwv0hlB2nQ1gwspfK/Rz0cmPuuT6odFoeGriBPJzjQitDq1Wi7d33b0mdSEjv4RzxmLcDRpCLllmodHU3yDbo2NHPvjgA8wuGqyuVtz17hzYXLM4AsXzFhcXx48//sgvv/zC3LlzWbBgAVOmTKn3HP6Ks3PFBL75+fmMHz+ep556qlLfxo3Lq3i6uroyaNAgBg0axJw5c4iLi2POnDn06dOHyMhIjEYjaWlplTyLJpOJU6dOERcXV+vc7rvvPjp37mxvBwUFVZh3REQEERERdOnShcjISD799FNeeOEFe5+0tDR69uzJnXfeyccff1xh7Esr1bi5udU6F1DE56XH/dXjVhuXzjm6VTvuaNmM/678Fx3nzKrT8QEBAfzxxx8Vtp0/f96+71KEEHz22WeMHDmyWvE6efJk1qxZw5YtW/D2LqAsxf7rr79+xYlUJZKrxY8Xc9ibW4hVKB5gNxX87525ZCXvA0CFI6iVKKq2ljC8bC44OZdUP2AZNht83BPyL/GYO9Xtu6F8iBL27RuD1Vqe8FarUe5JuUVK1FbLIDfWTLmrXuNKJFcLjUbDE8OHYdMr+sbPzw8Hh4YrWmSyWDl+Ph+1SkXzRhX/n/6qo2p7GurRsSPvzZuHc+PG5Djl4OjoyPFttUcMSQ2lcCtpqI6dOhPeNILVX/ybHq1n1+n4q6mh/AMc7NGxN5qGkk/qkhqx50JQ1y2o7uiu0rKXahd0Tt1wyf4Ijaod6uICwqNK19OWlS7We1yRQQrAYi3Np4CKjh1Xo1KpWbNW8ThoHdQ4OaqJ8HchJsD1is4jkZShuozQc5VKhVajQaPRIEp/Xu6SuurQaASOGisajfaKxzbo9UQ0bUq+k+BsnuJFb9asGRaLhT/37qV1jOKFy8zMJCEhoUIp+ZCQECZMmMCECRN44YUX+OSTT5gyZYp9TpfmJggPD0ej0bB79267CDIajRw/fpzu3bvXOMd27dpx5MgRIiLqvmRFpVIRExPDjh07AHjooYeYOXMmCxYsYMGCipVxPvzwQwoLCxk1alSt47q6uuLqWrfvGJvNRklJ+YNnamoqPXv2pH379ixbtgz1X75r63N9Zej1+ss6rjpsNhsmUx0elkuJjY3ljTfe4MKFC/j5+QGwfv163NzcKnxWQKkOc/LkSZ544olK4wghmDJlCt999x2bNm0iLCyM3NxD9v1+fn728SWSG4lzJWbGHkqyVygNNzhxfMsuju/abu/joHLCplJ6NC5xw9FiJTO4qPbBzQXlBqmg9uATDYF1ryAFUFycjtVaiEqlxd9/AM6GCNSacFbHp/L76UxALtmTXGXqmadJpVKh0ThiKzUQabXaBjVKobbiqNGgVqkaRkOFhaEJCiI/U3HExzSLwWKx8Mfu3cryPSAzK0NqKG4XDVV7xcMyrqaGKixKtu+/0TSUNEpJaqTgLwk6ayPlz90AaC02emx7lv+2bcuD9/Qh8o7W6F1Kv3DKjFKXWboYQAgbFy6sI79A8Tw4OrqgUilzzC1WvHyTe0XwVO8bc92sRHKzERkZyeDBg3n6mWd4c/ZruLr6Mm/RfIKCghg8eDAAU6dO5d577yUqKors7Gx+++03mjVrBijJlVUqFWvWrKF///7o9XpcXV0ZPXo0M2bMwMvLCz8/P2bNmoVara7V+Ddz5ky6dOnC5MmTGTt2LM7Ozhw5coT169fz/vvvs2/fPmbNmsXIkSNp3rw5Wq2WzZs389lnnzFz5kxA8QbOmzePZ599Fp1Ox8iRI9FoNHz//fe8+OKLzJkzh5YtKyanTEhIqDSXFi1aVPKkFhQU8MYbb3DfffcRGBhIRkYGS5YsITU11V6yNzU1lbvvvpvQ0FDmz59vL3MMlb1hf6XMi5efn8/FixfZt28fWq22kmC5lPz8fE6ePGlvJyYmsm/fPry8vGjcuHGVc35n0XtcOJ9O//sesB+XnJxMVlYWycnJWK1W+1wiIiJwcXGhb9++NG/enJEjRzJv3jzOnTvHyy+/zKRJk3Bycqowp08//ZTOnTtXep9BCTdftWoV33//Pa6urpw7d468vAzc3JypKdK8tvlJJFebtGITAiX1wVB/L+7392TbnO8AUKk9cdLdjS7/W7JK+29N/RyztZBOnYdWO6adktJoc5Uaxv5a7xw9RUUpXLiwFgC9PpgWzZX8Kx9sOsm8n8q/3zydG9ZxIpHc2Cj/R1deGqZqyjTUk5MnM3fWq7i4uPPmwnelhuLW1lDvv/8+F86n02fAYPtx11NDFRZdwNkg0Omqf2+ul4aSRilJtaQVmziar3jt3Bzr5o0w5Sih4A5Cxb879Kcw1JvQ5s0Ug9T+L+DnF8urxWgv/4OdlbWNQ4fLQ041Gk+SMwvZfPwCh1JzlTnLJXuSq0kDVLW77tTzEpYtW8bE8f/HqHHjMZvN3HVXd9auXWsXE1arlUmTJnH27Fnc3Nzo168fCxcuBJRw7NmzZ/P888/z2GOPMWrUKJYvX84777zDhAkTGDhwIG5ubjz33HOkpKSgq+mOCbRu3ZrNmzfz0ksvcddddyGEoGnTpgwbNgyA4OBgmjRpwuzZs0lKSkKlUtnb06ZNs48zbdo0wsPDWbBgAYsWLaKgQDGaf/755wwfPrzSeavalpKSQnBwcIVtDg4OHDt2jBUrVpCRkYG3tzcdO3Zk69attGjRAlA8XydPnuTkyZOVjq+t2k/btm3tv+/Zs4dVq1YRGhpKUlJStcf8+eef9OzZ096ePn06AKNHj2b58uVVzvmOdu1Z9vVaomLKhdqrr77KihUrKs3lt99+4+6778bBwYE1a9YwceJEYmNjcXZ2ZvTo0bz++usV5mM0Gvnmm2/sVYT+ytKlSwG4++67K2z/4IO/M3589ZEhtc1PIrnaZJiVIitheifeiFL+t3/PUvSUobiIu/a9S6qfFynKVwGOAe74eTWlRffetQ9elgJB61pvg1RW9k7i4/9mbzs7R9l/T8lS9FuknwsxgW6M7x5e6XiJ5GpyeSnQbx6WLVvG5EmTGDVuPCazma53dpMailtbQ3Xo0JFlX68lIrqZ/bgbQUM98UT1+bWul4ZSiYaoF36TkZubi7u7O0ajsc7rS283fs3M5dEDp+3tkY28eTs6pNr++VmZrP/kfRLjDyBECVoHVzKjlCU+L7/8Eo6OGlg5FE78Un7QkE+hVR3LHv+FlJQVHD/xOjpdEO5ubQkIuJ8nvtCw/6zR3mfxI225r03lChQSyZWQOn06uWvX4f/ii3iNGllh3+G3/8Q9s4jtnkn49WpEbKAfumClikp+ViZ5l+SUqq56yOVyMa+EdGMRHgYtjb1qLt2dY7ZwpsiEs4OaCOdS4XL+MFhNlBS6YCsuQdu4sX35nrPGmSbuTQAwXjhPUV4uKrULXo180Tg1rPG3oKCAoKAgFixYUGU48tUmKyuL3r174+bmxrp16zAYbu8y6NkFJlKyC3HVaQjzufzo1oZCWb4ncHGJRq1uuEiO4uJiEhMTCQsLqyTmpWaoiHw/amdVeibTj6XQy8uVVW2aArB41IuYSw7gYtUQllPE2ai2JPs54SjUjJ8yFl+fWvSKuRh2fQgXjsCBL8EtCKYfqde8EhPf43Tiuzg4OOPk5E901Gt4eXUF4MmVe1h78Byz72vB6DubXM5lSyS1krtuHanTpmPo2JHQf/+rwr6zvyXDz2fIcrFyMc5KW38vvAKiQWvAXFJC5tlkbHrlPuTv79/AOaVsHDuXi0qlolVQzalFhBAcyFOMzC1c9ErOXWMqFFzAYnPDnFOEg4cHmqAgjmQq/6PRXtE4qh0pKSwgOz0NVBoM7v64eesb7BpAaqgbDatNcDittMJpI3fUdcjPfDUpLErGYjai0wWi1Tbcc0hDaCgZSiKpkn25isdMp1bhp9UwxN+zxv67v13N6b277W2H0uV+KoFikILyZXv3zoPm94Nr/RLHXUqJSQnR9PHpTXSUknw3JVupBtEjypcwH2d6x9w462Qltxu3ur+v4YiPj+fYsWN06tQJo9Fo9wSVhbNfa7y8vNiwYQNLlixh586d9jLLEolEUlcyTUqklLf2EpktlFwwNp2KHd262DdrhQZX15o1FgAJa2HDJcUGnOtfEa+oNJ9IaOh4wppMAmDX6UwW/XqCQ6nKg5ObXj4aSK4il5GXU1I9UkNJbhXknUdSJVmloef/F+zLi01rjzY6vEMxSKm1zXHURGFx+BEAIcoT8tmX7XmFX7ZBqqDgFGlpX5KZtQUAnVNg6XkExtKKMW8NaU2Ae81hqxKJ5MppqDjb+fPnk5CQgFarpX379mzdurXBI8nqg7e3N6+++up1O79EIrk5OZpfxPRjKSQVKYl4fTSOHPhlG5tXfoS51DGnVilaxSCcaGL1RZuXi5O2DpqloDRfik8UxAxQnHt15GLGrySf+YT8gmMA6PXl1bWWbU9ix6lMezvcR+Zdk0iumLroI6mhJBI70iglqZJsi2JM8tLU7SNiKRVg3nmFRKZ+zU93NUONICoiXAk5N6ZAcY7S+QpySZ08NY+MjA32tqtrC15efZB1B89htSnf7u56WTFGcjW5wb18V2FBtrhqqT+Vtep79uy5auNLGobbcKW/RFJv/ncxh/i8Qnu7pYueDas+RxRn27fpNEoVJmeLmpSTqzFpBPerptc+eJljL6QT3PNaveaVlPQBubn7Slsq3FzLk+KWOfTGdgtjYJtGtAnxqNfYEonkcmiYe6rUUJJbBWmUklRJdmmklGcdjVJCKP0tjufZc0cgkZrG/O21aWCzwvsdIKs8PxVOl2+UKixMAiAg4H7c3dvj5h7Lf35fZ98f6eeCTlO3SoESiaQqbnCjm0QikdygFFiUisUP+nsyubEfMQYn3jUpRiqvEh/Czp/D2EIpNa62gcnNAf9Od9Rt8EsTnNeTMu0UFTULD/cOGAxh9n15JYpRqmuED3dIg5TkWiEdHRKJ5BKkUUpSJZl2o1TNSQTNJcVkp6dhE4oXMDvAkzyfRniaSg1DRTnlBimdB/i3AN+Yy5qTEILi4rMAhDWZgsHQBGOh2b7/x6e60dTXpdYyqBKJRCKRSCQNTaFNMUpFGJxo7qLHVGwBoeiUiLOH8c7P57wuFhCohOCFT76vfdDdn8KG2WAuzcvpVHejlNEYT27uASyWHAAaBT6Eg4OBYrOVGV8f4Gx2ISfOK8YuV1mxWCJpUOTziERSd+QdSFKBj1Mu8F7yhfIknTVESgkhWPHMJIwXz9u3WbVKVYxCdal4KvPsOerg+TOXNSchBMdPzCY7+3dstmJAhU7XCJPFxsX8YgB0GjUtGtVcLUMiaVgu38snl0JJJBLJrUeBVTFKOZcWeynOLUQIZbleSWgAGdoo8t09gGxUdb0NHPoGSsoqC6sgqH2dDjObc9mzd4T9/E5OATg4KJWw/kjM4n/70+x9HdWqWqu2SiRXH2nEkUhuV6RRSlKBz9OzuFhqkHJ1UNPU4FRt35K8/HKDlMqAg6Yp55zUOAMlnkqp1PJw88tfsmcyXeDs2X/b264uzVl3KJOpX8ZjtiqqzlUn80hJbgBUFX7c3EjDmQRukQ+zRHJ1EUJwwWThVKHiKDM4qBFCkHriEAhl+d6x6FgytCZAiSwXNkvdBi/JVX7evxQi48DZu26HlaQjhAm12glv77sJCCivxpVTmkcqJsCV6X2iCPNxxs9NFoiRXGdu4fvN1czNKZHcCkijlKQCRaWh50uaNaaPjztujtUv3zt7IrH0NzV+oje+6fvJauKDECZ69h0M+1ZB2j6lyxXkkSoqSlGGcAqgebO3cXNrxYurT9sNUgC9Y/wue3yJRFIPbmHRKJFIJJfDlKPJfH2+PJm5j9qRRY9PxFp4tnSLCotZBVpwteoRxTkU5iXXbfCyBOfeEXU2SAGYzFkA6HQhtG71gX17doGJpAwlmj3U20DfFgF1HlMikdSV6oxQUkRJJFUhjVKSChSVhp5HO+tqNEgBJB1RSgur0NBh/7skBvjRhwe4a/ZUJdx89cTyznqvy5pPQcFpsrK2A2AwhOHldSdQXi3mlYHNGdGpMXptzXOVSG51Gkzm1Gcg6fiTSCQSfjcqUeEOKmjhosf1wnmsRRn2/QZbIGa1UtU4KF9FatpBnAJrKdm+ZT6k/AG5pcvs6phLymzO4UzyJ6Sl/RcArbbckLU3OZuhH+60Vyt2k1HmkmuONMpIJJLKSKOUpAJlkVJ6h5or2AmbjazTJwFQ4cB3D9yPSatlcFAjpUNuuvLTIxRCu0Lbv9V7LpmZm9m3/3F7W68L4eSFfL74I5mDZ5X8Cr6uTtIgJbm2yMSVEolEIrmEwlKH3q8do4lx1vPtT+vtCc47n87HULiTTZGNlc7ChlBBq9he1Q9YkAEb/17edtCCa90imtLSv+LMmQ/tbXf3dvbfD6TkYLUJHNUqPJ219G8VWMcrlEgkDY3MkiCRlFOz5UFy21FUuiROr67+o2Exm1n+7CRSjuwAQK3SY3JyApUKl9BgpZNZyaFA+N3wwFJo0rXec8nLOwyAg4MLLi7NCGz0EO+sT+Cf2xJJMyp5GwLdZQ4EiaQhGfvccxhatcLRwwNfV1/u7Xgvi99ajMVSx/wn1bBp0yZUKhU5OTkNM9E6kJiYyIgRI2jUqBE6nY7g4GAGDx7MsWPHKvRbs2YNPXr0wNXVFYPBQMeOHVm+fHmFPklJSahUKvbt21fn87/22mvExMTg7OyMp6cn99xzD7t27aow5hNPPEFYWBh6vZ6mTZsya9YsTCZTrWOvXLmSNm3aYDAYCAwM5PHHHyczM7PGY7Zs2cKgQYNo1KgRKpWK1atXV9nv6NGj3Hfffbi7uxPs68mIAb1IO5ti3z9+/HiaNm2KXq/H19e3yvd09+7d9O7dGw8PDzw9PYmLi2P//v1Vnu/kyZO4urri4eFR63Vv3/4nw4ZNJji4SY3XIJFcS8qizMu0U2FiIqBERrkVXkRvtWAr9WcYPIJ49os1dB82qvoBi0sTmzvqYfASePxn0HvWbS5FyrJAT89YIiNepEnoePu+3GLle3xoh2B2v3QPPWXqA4mkQXl8mqKhnBo3RqvVcm/He1k6f6nUULephnJzdWHEgF6kp94YGmrbtl0MGzaZJk1a3nAaShqlJADkmC3E5xZiLjXb1xQplbL/EFn2fy4Vjg6lS/ME6AJKc0eZSqvvXUmCc7OSnyEo6BE6d1qDh3t7LuSWADCgVSBzH2xFh9C6iTSJpMG5hV1cfbp25WxCAnsP7WX0k6NZ9OYi3n777Ur9rtc7UBfBYTab6dOnD0ajkW+//ZaEhAS+/PJLWrVqVUHUvffeewwePJiuXbuya9cuDhw4wPDhw5kwYQLPPvvsFc0zKiqK999/n4MHD7Jt2zaaNGlC3759uXjxIgDHjh3DZrPx0UcfcfjwYRYuXMiHH37Iiy++WOO427dvZ9SoUTzxxBMcPnyYr776ij/++INx48bVeFxBQQFt2rRhyZIl1fY5deoU3bp1IyYmhk2bNrF115/839PPonUqdwC0b9+eZcuWcfToUX7++WeEEPTt2xerVXkIz8/Pp1+/fjRu3Jhdu3axbds2XF1diYuLw2w2Vzif2WzmkUce4a677qpx7mUUFhbRsmU07723qE79JZKrjU0IikqXwxlKtZM4ec6+3+rmy6n2PShxVPo4OtRhyVxZkRi9hxJpHtSuxu6XUlysLPfz9x9E48ZP4OjoSpHJytYTFzmariRNl8v2JNebWznxd5+uXTnz55+cOHGC0U+O5oN5H7Bg/oLrPS07UkNdOw0Vv2//DaWhCgoKadkymkWL3qpT/2uKuA0xGo0CEEaj8XpP5YYgx2QWTTfvF/4b44X/xnjRdPN+Ybbaqu2//JW3xPyHB4gFw0eK9/7vZ7HosWli1qxZYvbzz4mMlGQhCjKFWD1JiFluQvz693rPx2TKEefP/yR+29RSbPg1XCQlfWTfd8+CTSJ05hqx/cTFy7pWieRKOTv9GXEkOkZkLl9ead+ht3eLlJlbxJdv/lts/GODKEo5YN+Xl5kh0hJPidTUVHHhwoUGn9fF3GKxPyVbnMkoqLVvtsks9hkLxIn8ovKN5w4JkbpX/O3BB8TAnj2FJSdHGIuN4tDFQ6Jbz26iS5cuIisrSwwfOlS4u7kJvU4n+vaJE8ePH7cPkZSUJAYOHCg8PDyEwWAQzZs3Fz/++KNITEwUKDYs+2v06NFCCCFyc3PFiBEjhMFgEAEBAeKdd94RPXr0EE8//bR93NDQUPH666+LkSNHCldXV/uxW7duFd26dRM6nU4EBweLKVOmiPz8fCGEEPHx8QIQSUlJ1b4PycnJQqPRiOnTp1fat3jxYgGI33//XQgh7NcQHx9f6/tbHWX3ng0bNlTbZ968eSIsLKzGcd5++20RHh5eab5BQUF1ngsgvvvuu0rbhw0bJv72t7/Z21kFJWJ/SrY4dSGv2rH2798vAHHy5EkhhBC7d+8WgEhOTrb3OXDggADEiRMnKhz73HPPib/97W9i2bJlwt3dvdZ5G40HhdF4QFitJdVew+VQVFQkjhw5IoqKiirtk5qhIvL9qEi+xWLXT/kWixCmQvHJ+Nli/sMDxPyHB4rXXn1NzJo1y/5aP3917YMmbVc01OJ2dZ5HXt4xcerUQrFla2ex4ddwkZGx2b5v2hfxInTmGvvr/Y0nahhJIrl6GNf9JI5Ex4jERx+ttC/lt2SRMnOL2P/338SGPzaIzDN7hShRNI2puFiknzwuUlNTRWpqqrBYLA06rxKzVexPyRYHzubU2tdms4l9xgKxz1hQ/ryUc1aI1L1i5EMPioE9e4qS0vvfoYuHROzdsaJz584iKytLjHjkEeHu5iZ0Op24p1cfqaHqwc2ooSxWm9ifki32p2QLazXP1tdSQxUUnhFG4wFRUnLxhtNQMlJKQkqxiXyrDTXQyEnD1FB/HNXV583JTVUqujhZrMT+8QY5The5I8iPAXd3x/voJzAvDOL/rXTWGOo9nyNHn+PgoSexWpUlgM7OUTz9RTwd39jAqYuK99BNL718khsQVdmPiv8/Qgis1iJstvKX1VrY4C9hK8L2120NENGl0+kwmUyMGTOG+P37Wf7RUtZ88z+EEPTv39/uuZk0aRIlJSVs2bKFgwcP8tZbb+Hi4kJISAjffPMNAAkJCaSnp7NokRLpMn36dLZv384PP/zA+vXr2bp1K3v37q00h/nz59OmTRvi4+N55ZVXOHXqFP369WPIkCEcOHCAL7/8km3btjF58mQAfH19UavVfP3113bv01/5+uuvMZvNVXrzxo8fj4uLC59//vkVv3+geCY//vhj3N3dadOmTbX9jEYjXl41F4aIjY0lJSWFtWvXIoTg/PnzfP311/Tv3/+K5miz2fjxxx+JiooiLi4OPz8/7unRjY0//VjtMQUFBSxbtoywsDBCQkIAiI6Oxtvbm08//RSTyURRURGffvopzZo1o0mTJvZjN27cyFdffVWj11EiuVEpttq4f+8JIrccBMBRBecS9rLg6RfJK1AiktSoESrlO9g7Mw/v1HPoQmqI8C7Khl9ega2lURVa5zrP58jRmSQmvYfJpEQR6PWN7ftOlmqnJt4GukX4MLC1zCUluZGp/AwihMBmK77qGkpUMfaV6iidTofJrGiovfHxiob6+hupoerBzaqhYmO7SA1VR2Sic4k97DxEp2VXbPNa+6tMypenGhO/x7bAwyOE+8c9qez8+JIlPjoPCO9R7/mU5ZJydW2Jq0tzVE4d+X7fJvt+V50jjb3rb+ySSK4XNlsRfx6s///C5ZABnLqkfXePgzg4XN7/ixCCnZt3smXjFvrf25/Vq1fzy5o1tIqJQqV2YfmyfxERFcbq1asZOnQoycnJDBkyhFatWgEQHh5uH6tMJPj5+dnXvefl5bFixQpWrVpF7969AVi2bBmNGjWqNJdevXrxzDPP2Ntjx47l0UcfZerUqQBERkayePFievTowdKlSwkKCmLx4sU899xzzJ49mw4dOtCzZ08effRR+7yOHz+Ou7s7gYGVH9C0Wi3h4eEcP378st67MtasWcPw4cMpLCwkMDCQ9evX4+NTddWtkydP8t577zF//vwax+zatSsrV65k2LBhFBcXY7FYGDRo0BULkwsXLpCfn8+bb77JnDlzeOutt/juhx+Z/n8j8fddS/jgfva+H3zwAc899xwFBQVER0ezfv16tFotAK6urmzatIn777+fv/9dSdYcGRnJzz//jKOjIjsyMzMZM2YM//nPf3Bzc6v7JFXIqo+SG4KD+UX8biywtwf6evD9yo8h8wS20m2OpcVjEFB8IQGrwZm2ce2rH/TAf2HH4vK2S92SmwMUFiYCEBDwAB7uHTAYmtj35ZXmkpr3UBs6hV1eNWSJ5FpRlVvcZiviaMr99nbCld2aa2TTiYrty9VRZRpq+2/b6devHz98/wO//forMaEhoHLkk6XLaNE2SmqoGrjZNdTadeuY/n8j+eeX/6PlkHKj13XTUDcwMlJKUp6gs5aKe7kZF/hx8duYzGcBsGrVXPTzQ6265LiSPOXnmLXw/BkIqkF8VYHNZqKk5DwAbVr/k2bN5pKnpJHCWevA2qfuYttzvWQ+BInkKrJuyxbcg4Lwc/dj4vCJDHhgAGPGjMHR0ZEO7ctzm3h7eREdHc3Ro0cBeOqpp5gzZw5du3Zl1qxZHDhwoMbznD59GrPZTKdOnezb3N3diY6OrtS3Q4cOFdr79+9n+fLluLi42F9xcXHYbDYSE5WHs0mTJnHu3DlWrlxJbGwsX331FS1atGD9+vV1fi/KREJNrFy5ssI8tm7dat/Xs2dP9u3bx44dO+jXrx8PP/wwFy5cqDRGamoq/fr1Y+jQoRXyGlw67oQJEwA4cuQITz/9NK+++ip79uzhp59+Iikpyb5/69atFY5buXJlna7VVvoAPXjwYKZNm8Ydd9zB1Gdn0L13HKtWfFqh76OPPkp8fDybN28mKiqKhx9+mOJipQBFUVERTzzxBF27duX3339n+/bttGzZkgEDBlBUVATAuHHjGDFiBN27d69yLpd7DRLJtSLPokQPRBqc2NQpmvebhWLOybbvD8iFmFQlYbkjarpPncwzn/4HZ/caop8KlCgngjvBPbOh/7w6zcViycNqVaKhoqNmExQ0HIBzxmK2n8wgu1DJIePiJH3RkuvMbVDBeN2WLXjFxKDT6Zg4fCL9Bvdj1OhRODo60qljR3s/L6mhgFtbQ82c+Tzde8fx1X8+q9BXaqjKyLuThCJbxaox1RH/zUqObd9sb9tKrbXFqqLyTmVGKV39rbapaV9izPkTsKFWO6HV+pBbbOZ0hiK0PAxamje6NazBkpuYyxBUarWeDq02k59nRGh1aDSaaj09l0tGfgnnjMW46xwJ8S5/6FGr9fUeq0fHjnzwwQdYXLRYXC246l05tPlQrceNHTuWuLg4fvzxR3755Rfmzp3LggULmDJlSr3n8FecnSs+yOXn5zN+/HieeuqpSn0bNy5ftuLq6sqgQYMYNGgQc+bMIS4ujjlz5tCnTx8iIyMxGo2kpaVV8iyaTCZOnTpFXFxcrXO777776Ny5s70dFBRUYd4RERFERETQpUsXIiMj+fTTT3nhhRfsfdLS0ujZsyd33nknH3/8cYWxL61UU+YNmzt3Ll27dmXGjBkAtG7dGmdnZ+666y7mzJlDhw4dKhzn7+9f6zUA+Pj44OjoSPPmFSNmwyKjOPDnrgrb3N3dcXd3JzIyki5duuDp6cl3333HI488wqpVq0hKSmLnzp2oS+8rq1atwtPTk++//57hw4ezceNGfvjhB7tHU1maYcPR0ZGPP/6YRx555LKuQSK5VuSXOvS8NY7EOCvfs9p8CzbAu9iTdol/UuChRDo5oCbUrykadS0OtTIN1aQbdJtap3lkZe8kJ2c3AI6O7jg6Kt+VhSYLfd7ZTF5JedUvN72U/ZKbE7VaT7OQ1dh0elCp8PPzw8HBocHGN1lsHD+fh0qlosVfnjXqq6N6dOzIe/Pm4RIaSrY2G0dHRxK2JSg7a5CQUkMp3Ioaat/u3ytskxqqMvLuJKlzpNS+XacBUGua4qBtTob2D9RAibsJ9iyH+P+Ue/mcXOs3h6IUjh0rr5ZgMDRlz5lsHvnkd8xWZa2Gq05+XCU3JyqVCgcHPWq1CaHWoVZrLntJXXU4ODigUqtQO1z52Aa9nojwcAp0KlLylEqbzZo1w2Kx8OeevbSKiQKU8OGEhIQKN+CQkBAmTJjAhAkTeOGFF/jkk0+YMmWK3Vt2aW6C8PBwNBoNu3fvtosgo9HI8ePHq/X+lNGuXTuOHDlCREREna9LpVIRExPDjh07AHjooYeYOXMmCxYsYMGCipVxPvzwQwoLCxk1qoay7aW4urri6lq37zybzUZJSYm9nZqaSs+ePe3VWNR/cQ5UdX2FhYX2EO4yysS5EAK9Xl+v96UMrVZLx44dSUhIqLD9zOlTBIU0ruYo5ZxCCPt1FRYWolarUV1iwC1rl3kSd+7cWeGz8P333/PWW2+xY8cOgoKCLvsaJJJrRX5ppJTzJQ/GDmYbNkClVpHr7c+xO5QHLUehRqPTVTWMQkk+HFsDafFKu46OvaKiFOLjR1K2plWvC7bvSzcWk1diwUGtItLPhbaNPQjyqL+TQiK5EVCpVKjVOlArRikHB0ODGqUchA2V2lKq1xpAQzVpgjYkhLwMxdAcExODxWLhj927iWms5A7KypIaCm4PDRUYFFLtcVJDKcin/NsYIQQH8ovYkKkk5KwpUkoIgc2k7DdYXQk/E8/qtoE0beTCA/2HwH8HQG6q0lnrCs5+9ZpLYWGScqjWl6CgEfj69uXzvdmYrQKVCpwc1QxqU3mNtERyvWiIBOI3E5GRkQwePJinnnmGN2fPwtXVl7fenU9QUBCDBw8GYOrUqdx7771ERUWRnZ3Nb7/9RrNmzQAIDQ1FpVKxZs0a+vfvj16vx9XVldGjRzNjxgy8vLzw8/Nj1qxZlW7GVTFz5ky6dOnC5MmTGTt2LM7Ozhw5coT169fz/vvvs2/fPmbNmsXIkSNp3rw5Wq2WzZs389lnnzFz5kxA8QbOmzePZ599Fp1Ox8iRI9FoNHz//fe8+OKLzJkzh5YtW1Y471/FBkCLFi3QaCpGQBQUFPDGG29w3333ERgYSEZGBkuWLCE1NZWhQ4cCipi6++67CQ0NZf78+fYyxwABAdXnkhk0aBDjxo1j6dKlxMXFkZ6eztSpU+nUqVOVuSTKyM/P5+TJk/Z2YmIi+/btw8vLyy5oZ8yYwbBhw+jevTs9e/bk2x/WsGXDT6z6bi2gLBf48ssv6du3L76+vpw9e5Y333wTvV5vTxLap08fZsyYwaRJk5gyZQo2m40333wTR0dHevbsCWD/XJTx559/olarK73fla+hkNOnzmAwFFd7DRLJtSCv9IHAxbFUO1lMUPrAUOipZ12bu+19nWwOaJxqMErtXAKb/lHe1tct71NBwUlA4OjogZfXnQQ1Gm7fl1uk5P8McNPx09SaH1AlkmvObSKhVKgQCLuGenLSZObOegUXF3fefOddqaG4tTXU2nXr2LLhJ/753/8BN4KGKuB4wjGcnDKqvYbrhTRK3casTM/i2YQUezu4hjxN5mIrQigPAe45OzgZFEx7lTOP/19pxYWykPOBCyG8J2jr52UoLlbyVLm6tiQ8TAklNRYdA2B0bBNeu69FvcaTSG4IbjHD1bJly3hy/HhGjRuP2WymW7furF271i4mrFYrkyZN4uzZs7i5udGvXz8WLlwIKOHYs2fP5vnnn+exxx5j1KhRLF++nHfeeYcJEyYwcOBA3NzceO6550hJSUFXU1QBSrj15s2beemll7jrrrsQQtC0aVOGDRsGQHBwME2aNGH27NkkJSWhUqns7WnTptnHmTZtGuHh4SxYsIBFixZRUKAkLv78888ZPnx4pfNWtS0lJYXg4OAK2xwcHDh27BgrVqwgIyMDb29vOnbsyNatW2nRQvk+W79+PSdPnuTkyZOVjq/J6DlmzBjy8vJ4//33eeaZZ/Dw8KBXr1689dZbNb5nf/75p13QgFK1B2D06NEsX74cgAceeIAPP/yQuXPn8tRTTxERGcWCj/5Fhy53AkoVoa1bt/Luu++SnZ2Nv78/3bt3Z8eOHfj5Kc6ImJgY/ve//zF79mxiY2NRq9W0bduWn376qcqEqPUhPv4wAwc8XuM1SCTXgkyTsizOW+PIwW/HsfnwNqy0BcCmUqIaPKw6PPItlBiT0NeUjNZYqsV8m0HjztD8vjrNobg4TTmPRwdatXwPgLxiM//+/QxH0hSHo6xWLJHcGCxbtozJkycxatx4TGYzXWO7SQ3Fra2hoqOjWfDRv2jXKRa4/hpq794D3Nuv/G9wI2kolbjd3P1Abm4u7u7uGI3GWyZj/eXwyomzfHI2Ay+NA2F6JxbGNCbKueovsbOnzvLfl19A2LJx9Akg2zeYMIsro+c8ozx4v+4FwgbPJIBr3avF5OcncPTYixQVJWM2ZxEcPBLPgOfZeOwC3+9LY+fpTJ7qFcH0vpWT9kkk14PUZ2eQu2YNfs/PxHvMmAr7Di/4E/eLRfzumYJ3L39iA3zRhbQGID8rk7zc8pxSvr6+DTqvjPwS0nKK8NBraOxdcxnxHLOFM0UmnB3URJT9z58/DFYTJUWu2IqK0YaE2Jfv6TV6wt2Vaiu5Fy9QmGtEpXbBw98HJ0PDPvAUFBQQFBTEggULeOKJJxp07LqQlZVF7969cXNzY926dRgMt3elz+xCEylZhbg4ORLu63K9p0Nu3iEQAheXaNTq2hOo1pXi4mISExMJCwurJOalZqjI7f5+HM4vYs6pNA7nF3HBZOH5sABy583COTPV3sdgiOF8qAuBxXr0Ol/a3t2JVnfX4MH++nE49A30exO6TKx1DhZLPufPr+HCxZ/IytpKcPAooqNmAbBiRxKzfjhs79sjypcVj3eqbiiJ5JqS+/MvpD79NPr27Wmy8j8V9p3dnALrksh2sXEhzkJbfy+8AqJBa8BcUkLm2WRsOgOoVPj7+zfo8j2zxcbRc7moUNEq2L3GvkIIDuQp+XRbuOhxVKvAmAoFF7DY3DDnFOHg7o42JIQjGUcQCKI8o9A4aCgpKiQ7LRVUjuhd/HH3a1iNITXUjYXVJjicphS8aNnIHbX6+ib6LyxKxmI2otMFotU2XG7bhtBQMlLqNibPooSZTwzxY0po9QnQvn9zNifjd9vbNr3ygXLyKH0YtZQoBikATf2+fNLPfUdu7j572821DS98e5Bfj5VXVvB0brgHD4nkunGN7kPXzsvQMGeKj4/n2LFjdOrUCaPRyOuvvw5gD2e/1nh5ebFhwwaWLFnCzp077WWWJRKJBGBlWia/ZeXZ2xF6RxJyS7/gVQa0Kh98bCrOA2objHrt8aoHuhSTEl1QVw2VcnYFp0+/Y2/r9eXLLs7nKlHtrYLcuTPCm4faBVc6XiK5MbkFK/OpqFYuNYSKkhpKcqsgjVK3MeX5EKr3NORn5XIy/k972wEXCg1Kf4OPDn6bCxnHyw/Q1hyh8VeKi5RleyHBYwgMHIKLSzNSsrcA0KmJF2E+ztwnc0lJbiRug3LGdaWhDGDz588nISEBrVZL+/bt2bp1a4NXJ6wP3t7evPrqq9ft/BKJ5MYly6ws23sk0IuHA7wIMudy3JqPANolpeGfc4g9vR+s36BlRqk6aqiiImW5n4tLczw82hMY8IB9X26xkkuqV4wf0/pE1W8eEsnV5jaXUFfj8qWGktwKSKPUbUxeaeUYtxqq7h3duR3l0dMBH/V9aAvXkSAMqISJ2FYh8L8Z5Z2d/UBdt1Bam81MQcEJCgqVhHGenrG4uirVJ/KKFcH38sBmtA72qPd1SSSSBqY661MDWKXatm3Lnj17rnwgiUQiuQbkmBXtFOvhQqyHCwePJyGEspTHuSgXq4OaZPfS6PHaviS/nwz7VoEoraJUx0gpszkbgKCgRwgOGgHAog0n+P10Jicu5AMyl5REcqNjKrJc8RhSQ0luFaRR6jYmu1RYeWiq/xic33MQADWOxBxdzNa2HRkW2J5mT94HCT8pndyCofN4CKt7dZeDB58kI3Ojva11Cubnw+fIzDeRXWgCwLWGxOsSieTKue0SCkokEskVklPq0PMojTLPyTgPQinlfbBZB7KDPEGjx82mxc1cvdMPgMPflRuktK4Q2LrG7kbjPjIyN5KRsUE5RKNU6cspNLFww/EKfZt43965XCSSG53aKuRJbi2k5q4ZaZS6DTmYV8gvGbmcKVZElK+2+o9BbnaO8ovKkR8HP4haJfBo30bZZlK8cXiFQden6jUHY+5+ADQab9zd2/LnWTfG/7uipd9DevkkNzK3691FaiiJRHIbY7Qo0Q3ujg4c3vU+W7bsoCyta1poJFZ9CXcWNMalWM0O7+TqBxKifNnehO3g3RQ0+hrPfejw0/ZqxQCurq0AyCxQnHkGrQNvDWmNt7OWLuHel3eBEskNQgWZJbWHRHLF3Mj/RtIodRvy5JEznChUDFIqINCpsvHHYjLx3dxXSE87XNpPjVolcBRqXBt5Kp3sORDqV5FJCBsWSw4AnTv9Dycnf5ZtTwQg0F1HyyB3OjXxkgnOJTchN/LXfTl1naX04kkkEklFypbvFeeeYPW/9uKTpURMqdHhoFFjBZKseZzzdKbLg3dWP5C5CPtjt2eTWg1SVmuJ3SAVFDQCD/cO6HSNWLj+OH+eyQLAx8WJQTIPp+Rm4FYt/l6NbBK3rSdTIqkb0ih1G5JaoiTBfMjfk26eLvhqKxulDm/eRPKR8pLCGrUHACohcNadh+9fhHPK0r76JDfPzNxMjnEvojRcXaPxpNhs5XyuYiTr3cyPOfe3upzLkkgkEolEIrkqfJJyka/PZ5FdunwvZedWfDLKKwVrrTpMKmVfq9im/N/Qe2sesMyxB3XKJVVSkg6AWq0nOup1VCoVCefyWPTrCXufULlkTyK5PKQPTiK5rkij1G1Gic1GoVVJwDknMqjafFKbNu4AQKX2QuMyCIf83wBwaeyK6o8PIf7f5Z3dAut07oKCk+zbX14a2WCIYNtJI2NX/ImpdE4eehkdJblVkYpHcvMhP7USicI7SefsBikvjQM56eUGqYhMZ/SFZ9ndIhoANw+P6geylMAvr0BmqTFJYwB19bmnhBCkpn2O0aikONDpGtmjWDPzFYeev5sTU3pF0ruZ3+VenkRy3VGpqsqMcJNEGNX5ZinvqrcT8q9dd6RR6jajLLm5GnBzrL5SnjbViAVwMpvpsnsxByJDeWHG2zg5O8NXjymdYgZCRG9o8UC141xKfoGShFOj8cbLM5agoEf4eFem3SBl0DrQLfL6lTCVSOrELXuHuWUvTCKRSK6YglKtsiimMd08Xfjuf0peTY1wI+psPAdbtsRcGinl4ulR/UBJW+GPj8rb7sE1nteYu5eEhFfsbYM+FCEE6cZiTmco0VYhngb+1iX0Mq5KIpFcCZdvMrtJjG0SyTVCGqVuM7LNSoJOD40D6hryxagsitdOjZVDrcMo8YtQDFJQHnIeFQftRtX53MXFqQB4eXWlZYuFAOQVK0sAJ/eMYFqfKBzU8sFYIrlpkJpKIpHcBliFwFSaA+cebze8tY7Y8hUDlAqIb3sHaU0iCbR64CPcaBRag4GoKEf56R0JsZNqrVxcVJQCgE4XhJ9ffxoFDuXV7w/z79/P2Pu4y8IwkpsFmatSIpFUQS21aiW3EhabIK00n5RXNcv2hM3G+cRT9rwIRXpBYng4QnPJsjp7gvO65ZIqKkrm6NEXSEv7CgC9LgiL1caFvGIu5imh5x4GjTRISSQ3AGOfew5Dq1Y4enjg7eLNvR3vZfG8xVhKK05dbkTVpk2bUKlU5OTkNNhcayMxMZERI0bQqFEjdDodwcHBDB48mGPHjlXot2bNGnr06IGrqysGg4GOHTuyfPnyCn2SkpJQqVTs27evzud/7bXXiImJwdnZGU9PT+655x527dpVYcwnnniCsLAw9Ho9TZs2ZdasWZhMplrHXrlyJW3atMFgMBAYGMjjjz9OZmZmjccsXbqU1q1b4+bmhpubG7Gxsaxbt86+PysriylTphAdHY1er6dx48bMfHYaeblGe5/ly5ejUqmqfF24UL6cqaSkhJdeeonQ0FCcnJxo0qQJn332WYX5vPvuu/ZzhYSEMG3aNIqLi2u8hh9+2MD994/H1zew3n8PieRyKbbZ7L/rHFSQdx5Vcek2lYrj0dF4O/ozwNyeaEJx9NRVMxLlGso7Ajo8plTdqwFTifJ/5e7ensiI53F2bsofiUpic62jGne9hgGt65ZGQSKRXDk1FYF5fJqioZwaN0ar1dKvYz+Wzl96iYa6PKSGujk11NNPP3VDaajVq9dx//3jCQyMuuE0lIyUuk3IMlu4+49jXDCVRkpVs3Tvp4ULOfLHb/a21VERXVZMcOQHOP4TXDyq7NS61uncySnLSEv/r72t00fQd+EWe9g5gKtOfhQlNxm3auUYoE/Xriz77DNyVGa+WP0Fb8x8A39Xf1544YW/9Lw+74HJZEKrrTn/nNlspk+fPkRHR/Ptt98SGBjI2bNnWbduXQVR99577zF16lRmzpzJ0qVL0Wq1fP/990yYMIFDhw4xf/78y55nVFQU77//PuHh4RQVFbFw4UL69u3LyZMn8fX15dixY9hsNj766CMiIiI4dOgQ48aNo6CgoMbzbt++nVGjRrFw4UIGDRpEamoqEyZMYNy4cXz77bfVHhccHMybb75JZGQkQghWrFjB4MGDiY+Pp0WLFqSlpZGWlsb8+fNp3rw5Z86c4f/Gj+f0mbN8tHwlAMOGDaNfv34Vxh0zZgzFxcX4+ZXns3n44Yc5f/48n376KREREaSnp2O75MF+1apVPP/883z22WfceeedHD9+nDFjxqBSqXjnnXeqvYbCgiJiY9syfPgoxo+fWOvfQCJpCIqt5d91x3d8x4bPvkZdqCzfK7PTOwhQd8ulxYD+NVcuraNjLzfvEImJi8nI+BUAva58mV92ofLQ9e3EO2kZ5F7Pq5FIbj5uJrd1n65d+eeiRQgfHz7976fMmTmHANcAXn7p5es9NUBqqGupoSZMmMCx08ks+GgFcANoqEJFQw19eChPTpxe69/gmiJuQ4xGowCE0Wi83lO5ZmzNyhX+G+OF/8Z4EbAxXixKOldlv/mP/k3Mf3iAmP/wALFw2Gjx/MSRYtasWeLLfy8X4h8hQsxyK3+l7a/Tufft/z+x4ddwceDgFJGW/p04k5EjQmeuEaEz14gmz68RHeesF4kX8xvyciWSq8bZGTPEkegYkfHpZ5X2HVrwp0iZuUV8NXeV2PjHBlGUXP4/kpeVKdIST4nU1FRx4cKFBp/XxbxisT8lWyRl1P6/lGMyi33GAnE8v6h847nDQqTuFX978AExsGdPYcnJEbklueLQxUOia8+uokuXLiIrK0sMf3iocHdzE3qdTvTp01ccP37cPkRSUpIYOHCg8PDwEAaDQTRv3lz8+OOPIjExUaBYsOyv0aNHCyGEyM3NFSNGjBAGg0EEBASId955R/To0UM8/fTT9nFDQ0PF66+/LkaOHClcXV3tx27dulV069ZN6HQ6ERwcLKZMmSLy85Xrj4+PF4BISkqq9n1ITk4WGo1GTJ8+vdK+xYsXC0D8/vvvQghhv4b4+Pha39/qKLv3bNiwodo+8+bNE2FhYTWO8/bbb4vw8PBK8w0KCqr3nDw9PcU///nPavcv+/cqodFqRUJadpX7L1y4IDQajfjXv/5l37Zu3Trh7u4uMjMzqx130qRJolevXhW2TZ8+XXTt2rXG+RpzDwqj8YA4dSrhiv8el1JUVCSOHDkiioqKKu27HTVDTdyO70dKUYnw3xgvQn7bJ956+nm7Tpr/8ACxaNgEMWvWLPGfF5eIzC2bqx/k4nEh/jdNiA+7Kxrq+yk1nvPQoeliw6/h9tfFixvFq6sPisgX19o11Nnswga+Uonk6mL85RdxJDpGJA5/pNK+s5tTRMrMLeLA3zeJDX9sEBln9gpRotzTzSXFIv3kcZF69qxITU0VFoulQedlsljF/pRscSAlp0799xkLxD5jgTBZbcoG41khUveKkUMfFAN79hQlyclCCCEOZxwWsXfHis6dO4usrCzx6IgRwt3NTeh0OtGrxz1SQ9WDm1FDffHFl0Kj1Yo9iReFpeyzcgnXWkMVFp4RRuMBcSxhzw2noeTyvduEsop7rV31nOnRmqdC/avsp7Io3rcmeY3pfuwkrmpfWrVqxT39+kNJafhhj+fhoWUQ0KpO5y4pOQ9AgP9AAgPux1ikbA9015E4dwB/vHQPTXzqthRQIrkZEUJQaLVRZBMU2QSFNhsFVmuDvpTxldel20UDRHTpdDpMJhNjxowhft9+ln+0lDXf/IAQgv79+2M2K8uCJ02aRElJCVu2bOHgwYO89dZbuLi4EBISwjfffANAQkIC6enpLFq0CIDp06ezfft2fvjhB9avX8/WrVvZu3dvpTnMnz+fNm3aEB8fzyuvvMKpU6fo168fQ4YM4cCBA3z55Zds27aNyZMnA+Dr64tarebrr7/GarVWeV1ff/01ZrOZZ599ttK+8ePH4+Liwueff37F7x8onsmPP/4Yd3d32rRpU20/o9GIl5dXjWPFxsaSkpLC2rVrEUJw/vx5vv76a/r371/n+VitVr744gsKCgqIjY2ttl9urhEXF1ccHauOZv3Xv/6FwWDgoYcesm/74Ycf6NChA/PmzSMoKIioqCieffZZioqK7H3uvPNO9uzZwx9//AHA6dOnWbt2bb2uQSK5FiQUFLP2Yg6gLN1T5yv/C44qX5rm+FHgqORzchAqXNq2q36gre/An59C+j6l7RpQ43mLS9IBCA4exR1tluPtfTff70+zF4cJ83HGz9Xp8i9MIrmJEELYNVSRTdFU10JDNYSO0ul0mMyKhtqzd6+iob7+GoHUUHXlZtVQRqPUUHVFrpm6TSgqDflzdlCjrab0sM1qRYjSdbiWdI6FBtLI5sCQIUOguHw9LHc9A441h30CHD32IufOfYfNpozppAvjhW8Psj8lB5CJOSW3D4U2G60Pni1t5ZX+TL8m5z7VvRXODtVX2qwJIQQ7N+9k68at9L+3P6tXr+aXH9fQKjoKldqZZf9cQVSzpqxevZqhQ4eSnJzMkCFDaNVKMViHh4fbxyoTCX5+fniUlkvPy8tjxYoVrFq1it69ewOwbNkyGjVqVGkuvXr14plnnrG3x44dy6OPPsrUqVMBiIyMZPHixfTo0YOlS5cSFBTE4sWLee6555g9ezYdOnSgZ8+ePProo/Z5HT9+HHd3dwIDK+dj0Wq1hIeHc/z48ct678pYs2YNw4cPp7CwkMDAQNavX4+PT9VVRk+ePMl7771Xa7h7165dWblyJcOGDaO4uBiLxcKgQYNYsmRJrfM5ePAgsbGxFBcX4+LiwnfffUfz5s2r7JuRkcHbb85lyIjR1Y736aefMmLECPR6vX3b6dOn2bZtGzqdju+++46MjAyefPJJMjMzWbZsGQAjRowgIyODbt26IYTAYrEwYcIEXnzxxVqvQSK5VhzNL6Ln7gR7O0zvhKPJihXwzTlP9JlEkqL74m5zI8Tsgca5BgdbkZIHimb3QZNu0HpYld1sthIKi5IpLk1w7ufXH0+PjgghyC9WUjD8MLkrzQLd0DhI37LkVqL6RXpFNkHs2UKgUNlw4uLVm8apvzQvU0eVaajtv22nX79+/PD9D2zauJHoxsGgcmDpon/SNra51FA1cLNrqDfemCM1VB2Rd7PbhKJSz5q+GoMUQM7JBECx1h9r05LjbVtgcy41HJWU5k5Qa+pkkBJCkJ7+rd0gZTCEcyrbk8//SOZIei4A4b4yOkpy81FjrpBLuJkzTq3bsgX3oCB83XyZOHwiAx4YwJgxY3B0dKRD+/b2ft7e3kRHR3P0qJJn7qmnnmLOnDl07dqVWbNmceDAgRrPc/r0acxmM506dbJvc3d3Jzo6ulLfDh06VGjv37+f5cuX4+LiYn/FxcVhs9lITEwEFK/juXPnWLlyJbGxsXz11Ve0aNGC9evX1/m9qC3vAigJMy+dx9atW+37evbsyb59+9ixYwf9+vXj4YcfrpDMsozU1FT69evH0KFDGTdunH37peNOmDABgCNHjvD000/z6quvsmfPHn766SeSkpLs+7du3VrhuJUrV9rHi46OZt++fezatYuJEycyevRojhw5Umk+ubm5DBgwgOiYGCZMf77K6965cydHjx7liSeeqLDdZrOhUqlYuXIlnTp1on///rzzzjusWLHC7unbtGkT//jHP/jggw/Yu3cv3377LT/++CN///vfa31PJZJrxclCpRiLs4Oatq4GnmkSAELRSTaNYHeHDvg4R3GfqSMGR6+a7w9lOqrF/dB5POg9quy2+88h7NrVj+KSNOXcBiUReonFhsWm3FnCfV2kQUpy66Gq8OOmZd2WLXjFxKDT6ZgwbAL9Bvdj5OiRODo60qljR3s/T0+poeDW1lDNmjWXGqqOyEip24SiUiGjr0bEbFoyhz1bfi9taTFrDUAJJf5aWDsDMk+W7qqbIclszkaUCrfYLhvR6Rqx5UQ2ACFeel7q34zYplVbuiWSWw2DWs2BVsHk5xoRWh2OGsdqPT2XS2a+iXRjEe56DSFehgrnri89OnZkyZIl2Nx0mF3MuOhcOLzlcKV+NktF09vYsWOJi4vjxx9/5JdffmHu3LksWLCAKVOm1P+C/oLzXyIQ8vPzGT9+PE899VSlvo0bN7b/7urqyqBBgxg0aBBz5swhLi6OOXPm0KdPHyIjIzEajaSlpVXyLJpMJk6dOkVcXFytc7vvvvvo3LmzvR0UFFRh3hEREURERNClSxciIyP59NNPKySNT0tLo2fPntx55518/PHHFca+tDKKm5sbAHPnzqVr167MmDEDgNatW+Ps7Mxdd93FnDlz6NChQ4Xj/P3Ll2trtVoiIiIAaN++Pbt372bRokV89NFH9j55eXn069cPV1dX/vPFV1woLE+ueSn//Oc/ueOOO2h/iaESIDAwkKCgINzdyxMwN2vWDCEEZ8+eJTIykldeeYWRI0cyduxYAFq1akVBQQH/93//x0svvVTjeyqRXCvySpetxHq48J/W4QghOFyqbYrddZyNaEobiwEscM77fM2DmUqNUlqXartYrYXk5ysPqBqNJz7ePUnPc+Lva/60JzdXqcCgubzoV4nkelNXx95f0atV7Aw2YNMZQKXCz88PdQMaZi1WwbFzuaiAFn8pHlBfHdWjY0fee2seLk1CMToZUTuoObbtWK3HSQ2lcCtpqG+//ZaTWSVVXrfUUBWRRqnbgByzhaRSb19VkVL5Z0+zZ0t5iU0Hh0ZYHEw4AlqfPPjjk/LO7sGVjv8reXmHuXhxAwAajTcGQ6hynhIl7LyRu55+LWX5YslNTj1yDKhUKgwOaqxqFUKtQqNWX/aSuuooclCjVyuvKx3boNcTER5OkcGB5NxkQLkhWiwW/tyzh1bRUQCcP3eBhISECqHLISEhTJgwgQkTJvDCCy/wySefMGXKFLu37NLcBOHh4Wg0Gnbv3m0XQUajkePHj9O9e/ca59iuXTuOHDliFwd1QaVSERMTw44dOwB46KGHmDlzJgsWLGDBggUV+n744YcUFhYyatSoWsd1dXXF1bVu1UhtNhslJeUCJTU1lZ49e9K+fXuWLVuG+i/f0VVdX2FhYaX8BA6lf3MhBHq9vs7vy1/nk5ubS1xcHE5OTvzwww+YcITCwkrH5efn89///pe5c+dW2te1a1e++uor8vPzcXFRHsCPHz+OWq0mODjYfg1/vdZLr6E+76lEcrXItyjfV64OalZ99AXn91zEZlacdI4OysN1sTmP/7RaT2yXnlUPcvBrOPUbZCnRBzU590pKlCVJarWeu7rtVioprT/OhqPlBq9QLwNq9c0eSyKR1A+VSoVercKmVkGppnJoQB1lxoZerUYF9dRQgr/Gdhn0eiKaNEHbOISjmUexCRsxMTFYLBb+2L1bWb4HZGVnSg3Fra2hdDodUNkoJTVUZaRR6hZnVVom0xNS7O1GTpXzOG3dvBHlS1WDzvlBvLMOkOlsQuXmyJAWzSAJ8G0Gnf8Pwu+u8Xx5eUf4Y/d99raLcyRH0nL534E0jpYu23PVyY+dRHKzERkZyeDBg3lq+jO8OXsWrq4+zF3wNkFBQQwePBiAqVOncu+99xIVFUV2dja//fYbzZo1AyA0NBSVSsWaNWvo378/er0eV1dXRo8ezYwZM/Dy8sLPz49Zs2ahVqtr9abOnDmTLl26MHnyZMaOHYuzszNHjhxh/fr1vP/+++zbt49Zs2YxcuRImjdvjlarZfPmzXz22WfMnDkTULyB8+bN49lnn0Wn0zFy5Eg0Gg3ff/89L774InPmzKFly5YVzpuQkFBpLi1atECjqfjdWlBQwBtvvMF9991HYGAgGRkZLFmyhNTUVIYOHQooYuruu+8mNDSU+fPnc/FieY6MgIDqkyAPGjSIcePGsXTpUuLi4khPT2fq1Kl06tSpylwSZbzwwgvce++9NG7cmLy8PFatWsWmTZv4+eefAUVM9e3bl8LCQv7zn/+Qm5uLsdBERk4R+kYV5/Pll19isVj429/+Vuk8I0aM4O9//zuPPfYYs2fPJiMjgxkzZvD444/b8yYMGjSId955h7Zt29K5c2dOnjzJK6+8wqBBg2p80MjKMnI2JY2cHEWgl/09AgICanzPJJLLIc+iRAm6OjqQvnkdWDPt+2wGRctYrSU8/7fXqx7AZoXVE8FqKt/mWtkpJ4SV9PTvOHf+ewCcnPzt34HZBcqxA1oF0r9VIO1CPa70siSSm5Cb2xBbpqEmTprE3Fmv4OLixj/efldqKG5tDZWTYyTjQi6e3hVXR1w/DZVDYmICmZlKoMiNpKGkdeAWZ0eOEi6uArw1jgwJqFyR4MIxJQGzo9DQa8c/OBEUwt9n/qLs3P1P5adPBHR4vNbz5ecr4amOjm64OEcT2mQi4744yN7kHHsfX1ktRnKLc3NLp+pZtmwZT04Yz6hx4zGbzdwZ2421a9faxYTVamXSpEmcPXsWNzc3+vXrx8KFCwEldHj27Nk8//zzPPbYY4waNYrly5fzzjvvMGHCBAYOHIibmxvPPfccKSkppd6l6mndujWbN2/mpZde4q677kIIQdOmTRk2TEkeHBwcTJMmTZg9ezZJSUmoVCp7e9q0afZxpk2bRnh4OAsWLGDRokUUFBQA8PnnnzN8+PBK561qW0pKit17VYaDgwPHjh1jxYoVZGRk4O3tTceOHdm6dSstWrQAYP369Zw8eZKTJ09WOr6maj9jxowhLy+P999/n2eeeQYPDw969erFW2+9VeN7duHCBUaNGkV6ejru7u60bt2an3/+mT59+gCwd+9edu1Somb/6iXc/OchIgPKQ8k//fRTHnzwQXvC1UtxcXFh/fr1TJkyhQ4dOuDt7c3DDz/MnDlz7H1efvllVCoVL7/8Mqmpqfj6+jJo0CDeeOONGq9h3brfeHLiK/Z22d9j1qxZvPbaazUeK5HUlyyzItxdLGawKgVfDCbwM+ZyonEMKgEGasiZYi4sN0j1ellx8Hk3rdQtM3MLR4/NtLddXZuTU2jifwfSiU9RUh+0D/VkQGsZZS6R3KwsW7aMKZMnM2rceExmM7Gdu0oNxe2hodbu2E/rkPJn8OuloX78cT3jx5dXS7yRNJRKNES98JuM3Nxc3N3dMRqN9vWltypjDp7mp4xc3o4OZmSjqnPYfDj5WQouHkMrXBG+3hR6+vD8nNeUndsXw/pXlCoxD35c5fGXcubMR5w8NY+AgPtp0VwJ5Yyd+yvpxmIeaBtEIw8dj3RqTLCnoZaRJJIbk7SZMzF+/wN+M2bg/URFQ+3hd/bgfqGQXR5n8eztx50BvuhCWgOQn51FnjEHodWh0Wjw9fVt0Hll5peQmqPklAr1rjn3m9FsIanIhMFBTaRzqXA5fwSsJZQUuWIrKkYTHGxfvqdz1NHUQ3mQysu4SIExB5XaGb2rJ24++hrOVH8KCgoICgpiwYIFlZI/XguysrLo3bs3bm5urFu3DoPh9v6uyik0kZxViIuTI+G+1efCuVbk5h0CIXBxiUatrj2Bal0pLi4mMTGRsLCwSmL+dtIMdeF2eD+Si0r4d1om6zKMnCwsYYbBCu/MAqDX4SRUKjUH7h1DF3VrUtRn6P2Par6r8i/A/EhABbOylYRQVZ0vZRknTsxBr2+Ml9ddhASPYcHGYj7bnmjvs/iRttzXpnovvkRyM5C3YQNnJ09Bf8cdNPni8wr7UremIn48TY6LjfNxFu7w98I7IAq0zlhMJjJSzthzSvn7+zfs8j2rjaPpSk6pVsEetfbfn6ssa2/uokOjVkNuKuRfwCLcMGcX4eDmXmH5XqRnJFoHLabiIrJSz4LKAbWjD36NG/Y7VGqoGwubTXAoTXFotGjkjsN1XnpdVJSM2WzESReIk7bhcts2hIaSkVK3OPbQ8yq+uIUQHPp1LQUXTwCgUqvJ9PVBZ7vkY2FWsvyjqflLpaTkPOnp33LqtFKG08kpkINnjWw+foHMfMVLOL1PVIUEzBLJzcmtGgdVGdU1uNb4+HiOHTtGp06dMBqNvP66sgymLJz9WuPl5cWGDRtYsmQJO3futJdZlkgktw/vnjnPqvQse9slO4PSNOWYnfSciIrET+OPweqET7saco+YlKgBNIZqDVIAJSXnAPDxuYeoyJcASMvZA0CbEA86NfGkTzP/ao+XSCQNw+VHavz1/7sOIzVAWIjUUJJbBWmUusXJK03S6eJY2Si188uV7PzuC3tbpS7Nj6C2wCe94fwhsCpVZmqrunf69Lukpf/X3nZ1acboZXtIzVGMWg5qFd4uDefVlkgktw7z588nISEBrVZL+/bt2bp1a4NXJ6wP3t7evPrqq9ft/BKJ5Ppy0aQs2+vt5UZPb1cMWw7bjVJ/dO9PhrsKt5IStrjuoX3nGqpLlTn2tFU75C5e3MDpxIUUFSlpFPT68qpXeSWK/hpzZygPtK29yIxEctNz+/j8GhSpoSS3AtIodYuTZVGElUcVRqk/Nu+w/+7o1J5C1WkAAgO9IfXPS3qqIKg9NVFYdAYAb6/uuLu3w9u7D+nG9QA80DaI7lE+GLTy4yaRSCrStm1b9uzZc72nIZFIJHbKHHoPeOpJWbmRopOKUUkl1Nh0WsBMmjjDtranGdpoUuUBDn4Ne5ZDsbJsA03Vy5zPnv2XPRcngKdHJ/acyWbnqQxOX1SirNx0lQvUSCSSmwvREGFRVSA1lORWQVoJblG2ZOXxa1Yu50sUo5R/FVX3VHmKF87T1Ig7Ejbwv069lKoPzgXwNeDRGMasVaKkDJUTpF9KSYlSrjg0dCKenp3IKzZjK/3+nftgK3Sahlv3LZHcGNx26fgqcftlJJRIJLcDBVYl9UHann2IAxsxWVIBcLRBiYPyxRftG8X4/rOrHmDTm5B5orztEVpltxLTBQAiI17Cx6cnBkMYY9/5hexCs72Pt4ssDiO5hailKpxEIrk9kUapW5QJR5LIMiuePp1ahV9VUUplViN1AQfaRBCtd6Fz585wXCltid4LPEJqPM/pxPfIzNxEUVGyssExkPH//pPkLCVkXeuolgYpye2D1FoSiURy05NnVfST7cgxRKlBCiDImM1BR8XZ5+xfQ7GK4hzlZ9w/wD0EQrtW2F1YmEhe3hEKChTDlbd3dwyGMEosVrtBaki7YJr6OdMm2B2JRCKRSG5lpFHqFsRiE3aD1LhgH3p6ueGkVtv3m00lJB/cj8WqRDcVuGjIDGtCVJ4KNrwGh79TOjq51ngeq7WYxMR37W2dLoi9KRp+Pnzevq3pDVCtSSKRXBkVws6l4U1yXVEhoxQlV5vM0pxS1uwcALRWLd2PJnDexx9vsw5PtQcRMc2rH6A4V/nZbJASdX4JVmsxu/98AIslDwC12gm9Xomkyi+22PvNe6j1da/UJJFIJJJbiRv3niKNUrcg+aUePoBXmjZCe4lBCuDXd//O4T377O1CJyU0vNDTBNsWlnf0iarxPCbTRUARVC1bvoeba0t+PKx4+FoGuTG9TxR3hHheyaVIJBKJRCKRXBPeO3Oe9Zm55JUu33PMLcYCaK2OaK02rAERDLR0RKPSotNXkScqLR7++CdYS5S2U+Xy14VFSVgseahUWtzd78DfbyBqtYYLecWcuqDkkXLWOkiDlOTWRq7/l0gklyCNUrcgZWJKp1ZVMkgJm+DwQSWSSaX2Qq0JJdFFgw82vO8JgZ8AlRr+9i00jq3xPGV5pLRaP3x9lJKfecVJADT2MtArRpYvltyCyHwIEolEcsthtgn+cTpdicMTguYmNZhKdzoItnS/C0/fDmisSiVhR98qjFK//QNO/KL87uRWKeLcZiuxJzZ3dW1G+3afA/Df3Sk8980Bez9nJynPJZKaEDetUUtqSImkKuRd7xakrGqMs0PlXE55WcWorGYE4GmLwCMzl9NB3nS7ryW9Q0oTcWpdoWnPascvLExkb/zf7JFSBkMT1hxIY3V8KokZipfPtYrE6hKJ5CagVr1U1uFmFYQSiURSmXyr1f6t9mJSBmLLfixFigHJ5gjnGzXC0ySIb7qL5vcMQuNnqDxIYabys+1IaP8YqMt1mNG4j73xj2KzFQNg0Dex79tzJhsArYMaraOah9oHN/j1SSQ3Orf04uxb9sIkkoZBGqVuQS6W5kLwqSK5ebYxF2FTDEfu5zezO6QtPZzV3NPuHiXsHMCp5jxQGZmbKCk5Z2/7+PRm0r+PkmYstm8L8aq6/LFEIpFIJBLJjUb+JVHmJQd3oC7abd/n5KDkf1LZbNzTtT/6sOiqBynJV362HgbB7Svsys7eYTdIqdVafH372vfllSipD14e2IxRsU0a4nIkkpsWGUskkdx+qGvvIrlZyDJbGLz3BJOOnAHAvwqjVGrSaRBKZbzTndqjbeqCp58BFreD5QOVTlrnGs9TXHQWgKCgEdzV7Q9CgkeSVajEuL9wbwzvPdKWJ7qFN9RlSSQ3Jjdt6HjNjJ3xHIZWrdB4euLl4sW9He/lvXnvYbFYaj+4BjZt2oRKpSInJ6dhJloHEhMTGTFiBI0aNUKn0xEcHMzgwYM5duxYhX5r1qyhR48euLq6YjAY6NixI8uXL6/QJykpCZVKxb59++p8/tdee42YmBicnZ3x9PTknnvuYdeuXRXGfOKJJwgLC0Ov19O0aVNmzZqFyWSqYVSFlStX0qZNGwwGA4GBgTz++ONkZmbWeW5vvvkmKpWKqVOnVth+6tQpHnjgAXx9fXFzc+OxkSPIvHihQp833niDO++8E4PBgIeHR5Xjq1SqSq8vvvjCvv/bb7+lT58+9vPExsby888/1zrvH35Yz/33j8fXN7Defw+JpCbyL4kyt+VetG+PTM9CaJUKeAarAxrfKqruWUyQkwLFRqVdhXOvuNSZFxo6kR7dD+Ln1w9jkZntJzNIKa1Y7KqTvmLJLc4tngLh8WmKhnIKDUWr1RLXMY6l85dKDXWbaqhhw4bdUBpq9ep13H//eBoFRt1wGuqaGqXmzp1Lx44dcXV1xc/Pj/vvv5+EhIQKfe6+++5Kf4QJEyZU6JOcnMyAAQMwGAz4+fkxY8aMK/5nvxXYlp3PLmMBGWblvbjDtTy03GI28+2sZ9j12dulW1QUOSl5EZw5C1mnwFTq4Quq6N0rw2zO4dy5HzAa9wLg4hyDo6MX+SUWis2Kh3F4p8YMatMIvbby0kGJ5FZH9ZefNyt9unYl5dgx9h3ex+gnR/Pem+/x9ttv137gNaIugsNsNtOnTx+MRiPffvstCQkJfPnll7Rq1aqCqHvvvfcYPHgwXbt2ZdeuXRw4cIDhw4czYcIEnn322SuaZ1RUFO+//z4HDx5k27ZtNGnShL59+3LxovLAe+zYMWw2Gx999BGHDx9m4cKFfPjhh7z44os1jrt9+3ZGjRrFE088weHDh/nqq6/4448/GDduXJ3mtXv3bj766CNat25dYXtBQQF9+/ZFpVKxceNGtm/fjslkYspjj2Cz2ez9TCYTQ4cOZeLEiTWeZ9myZaSnp9tf999/v33fli1b6NOnD2vXrmXPnj307NmTQYMGER8fX+OYhQVFxMa2Ze7cN+p0rRJJXSlLfeDioMaxRElUHpapJvJCNqd0LRlY0h5fmw7HvxqlrGZY0hHebQn5pVHk2vJcUhcvrmfP3hGkpq4EwKAPRa1WjE/DP/6dR/+5i4OpijHLXS9TH0gkNzt9unblzO7dnDhxgscmPsYH8z7gnQXvXO9p2ZEa6jbWUIWFxMa2Zc4br9TpWq8p4hoSFxcnli1bJg4dOiT27dsn+vfvLxo3bizy8/PtfXr06CHGjRsn0tPT7S+j0Wjfb7FYRMuWLcU999wj4uPjxdq1a4WPj4944YUX6jwPo9EogArj3gr8JzVD+G+MF/ftOS4O5BYIq81m33dg3bdi/sMD7K/3Hh4tZs16Vcx69RVxbvUcIWa5CfH5CCEyTgpxyXGXcvDQ02LDr+H2V9LZjaLzGxtE6Mw1InTmGtHk+TXCaq36WInkViF15vPiSHSMyPjkk0r7Dr3zp0iZuUV8M3eV+PWPDaIoeb99X15WpkhLPCVSU1PFhQsXGnxeGXnFYn9KtkjKyK+1b47JLPYZC8Tx/KLyjecPC5G6V/ztwQfEwJ49hTk7W+SV5IlDFw+Jrj27ii5duoisrCwx/OGHhbubm9DrdOKeXn3E8ePH7UMkJSWJgQMHCg8PD2EwGETz5s3Fjz/+KBITEwVKRgX7a/To0UIIIXJzc8WIESOEwWAQAQEB4p133hE9evQQTz/9tH3c0NBQ8frrr4uRI0cKV1dX+7Fbt24V3bp1EzqdTgQHB4spU6bY7yfx8fECEElJSdW+D8nJyUKj0Yjp06dX2rd48WIBiN9//10IIezXEB8fX+v7Wx1l954NGzZU22fevHkiLCysxnH+n70zj4uy2v/4e4aZYWZYBUEWEUEQNzT3hcrIFLXUul6XNJdKr5Z7ZWabWaZpWrllyy3td696u1qZ16XCcsElNXdFQRAUEXFhX2c7vz8eHCUUNFEQz/v1mhc8z1mec56BeT7zPd/z/X744YciODi4zHj9/f0rHENubq4IDQ0V0dHRZe7zzz//LNRqdalnY/K5C0KlUon/W7W2TF9Lly4Vbm5u170OIH744YcKx3MtTZo0EdOnTy+3TnbOUZGdfVgkJsbd9vtxLYWFhSI2NlYUFhaWKaupmuGvUlPvx8YLWaLObwdEjz/ixLynh4u5/R8X6x/qJva2aCnWvvqVSJmyTWz88JuyDTPPKBpqmqsQ73kL8VWUEBazvXjPniev0U4hIj8/SQghhM1mE8FT14vAKetEl3lbxPCvd4u8InPZ/iWSGkTOr7+K2LBGIqn/gDJlqTFnRcqUbeLoe1vEpj2bxKXT+4UoVp7p5uJikZYQL1LPnhWpqanCbK7c/xWTxSoOpWSKQymZN1X/YHa+OJidL0xWq3IiO1WI1P1iSL+/iSciI0Xx6dNCCCFiL8WKjo90FO3btxcZGRli8KBBws3VVej1evFo58ekhroF7kUNlZGRKVQqlfh8xQ/C8qfvyFWhoQoKzojs7MPiRNy+aqeh7qqn1E8//cTw4cNp2rQpLVq0YNmyZZw5c4Z9+/aVqmc0GvHx8bG/XF2vptT95ZdfiI2N5d///jcPPPAAPXr04L333mPx4sU3ZfmtyVxZ5fPX6wh3MaK+xkX22LEjAKjUtXDSdsMnLwePAFe6PtWNOq4l9ZzrgGeDG7rW5ucnAODq0hx/v6c5lRvG+ZyrcaQeDvVCLVMYSyRlEEJQYLJSaLZRaLZSaLZSYLJU6qvQZKXIbKXQVLpvUQnbDPV6PSaTieHDh3Pg4EGWfb6Edd+tRQhBz549MZuVeChjxoyhuLiYbdu2ceTIEWbPno2zszMBAQF89913AMTFxZGWlsb8+fMBeOmll9ixYwdr164lOjqamJgY9u/fX2YMc+fOpUWLFhw4cIC33nqLxMREunfvTt++fTl8+DDffvst27dvZ+zYsQB4eXmhVqtZvXo1Vqv1uvNavXo1ZrP5uqt5o0aNwtnZmZUrV972/QNlZeyLL77Azc2NFi1a3LBednY2Hh4e5fbVsWNHUlJS2LBhA0II0tPTWb16NT179qxwHGPGjOHxxx/nscceK1NWXFyMSqXC0dHRfk6v16NWq/lj964K+77etWrXrk27du34+uuvy/1btNls5ObmVjh3iaSyKbTa+DApjS/PXqTp6WI6/XQBIRRPqct+Tmx8oidCrWKj+3Z2Nogt24FJidOJwQPeTIfnfgKHq9vwik3K1o2QkNdo13YNRmN9APJNVqw25X/if2MfZOmz7WTWPYnkBggh7qiGKjBZKDIrOurP529XR12rofbt369oqNWrpYa6Be51DXVg7+8V9n29a90xDVUNI5BU6dMvO1txV/7zDVy+fDn//ve/8fHxoVevXrz11lsYjcpWtF27dhEeHk6dOnXs9aOionjhhRc4duwYLVu2LHOd4uJiiktcsQFycnLuxHSqnFzrVdfzMmUpWQDorCo6H1jC9+0eY/Tjw/D0qQ0/b1Qq6a6TSeYaiovTAWjUaCYuLo2JO5gKQLv6HvxzeBtcpJiS3A/8hXgIhWYr7T7ecwcGUzGx70ZhvE58uZtBCMGurbuI+S2Gnj16smbNGqI3rKdZw1BUaiNfLvmapi3DWLNmDf369ePMmTP07duX8PBwAIKDr8aWu/I57+3tbd9Dn5ubyzfffMOKFSvo0qULoLgr+/n5lRnLo48+yssvv2w/HjFiBIMHD7bv5w8NDWXBggV07tyZJUuW4O/vz4IFC3j11VeZPn06bdq0ITIyksGDB9vHFR8fj5ubG76+vmWup9PpCA4OJj4+/i/duyusW7eOgQMHUlBQgK+vL9HR0dSuXfu6dRMSEli4cCFz584tt8+IiAiWL1/OgAEDKCoqwmKx0KtXLxYvXlxuu//85z/s37+fvXv3Xre8Q4cOODk5MWXKFGbOnIkQgrden4LVauVC+vnrtrkR7777Lo8++ihGo5FffvmFF198kby8PMaPH3/d+nPnziUvL4/+/fvf0nUkktvl50vZzEtOR20TTN6yCVvhVQNsoYsnVo0Gk6mQBb4reNrv6bIdXAl98Kc4UpcztpObc9SeGKaO9+Po9cpn26yNx4mJvwQoGff0WhniVXJ/IW7xW3Gh2UbksoQ7NJry+as66oqG2rF5B927d2ftj2vZ+ttvNKxXF1QOfDr/n7Tq1ERqqHK41zXUlCmKhrp4QWqoiqiyp6DNZmPixIlERETQrFkz+/lBgwbx73//m82bNzN16lT+9a9/8cwzz9jLz58/X8ogBdiPz5+//hs+a9Ys3Nzc7K+AgIA7MKOqJ9ei7Fd10ZSN51ScXxJzS2VjzZN9MAd74pgZC9vmwpkS663u+ln3Tp/5J4ePvIDZnAGAVe3D2z8e5Z8xSQB4Outw1WtR1fDghRLJ/cLGbdtwr1uX2q61eWHgCzz+1OMMHz4cjUZDm9ZXY855eHgSFhbG8ePHARg/fjwzZswgIiKCadOmcfjw4XKvc+rUKcxmM+3atbOfc3NzIyysbGarNm3alDo+dOgQy5Ytw9nZ2f6KiorCZrORlKR8No0ZM4bz58+zfPlyOnbsyKpVq2jatCnR0dE3fS90Ol2FdZYvX15qHDExMfayyMhIDh48yM6dO+nevTv9+/fnwoULZfpITU2le/fu9OvXr1Rcg2v7vRJfMTY2lgkTJvD222+zb98+fvrpJ5KTk+3lMTExpdotX76clJQUJkyYwPLly9Hr9dedh5eXF6tWreJ///sfzs7OuLm5kZ2VTePwFqjVtyYX3nrrLSIiImjZsiVTpkzh1VdfvWFcshUrVjB9+nT++9//4u3tXeE9lUgqk3ST4qXQQqVCmK5+6XXPN1NsUL4IqgV83vVzXmlzjUeAuRDif4HE35TjazRUcfFFDh58lsRTyt+8VuuBo6OiVbMLzHy+9RSxacoCaQNvZ6mfJJJS3Nv/Dxu3bcOjcWP0ej2jBoyie5/uDBk6BI1GU0rveNTykBqKmq2hsq5oKJWaW3FPuh81VJW5towZM4ajR4+yffv2Uuf/8Y9/2H8PDw/H19eXLl26kJiYSIMGDf7StaZOncpLL71kP87JyamRhqmLJcLKS3v1bRVCkLBnF6aS4JtqbBSX/DPp1gyH4msyDRjKuvyZTJdISJhlPzYaQ9gcn8//7TptPxfgUb6HlURyv2PQOrBnUjvycrIROke0Wu0NV3r+Khl5Js5lF+Kq11LP8+r/pEF760kHOrdtq6wYuRopdi7GydGJ2JjrbFv5EyNGjCAqKor169fzyy+/MGvWLObNm8e4ceNueQx/xsmpdFbQvLw8Ro0add1Vo3r16tl/d3FxoVevXvTq1YsZM2YQFRXFjBkz6Nq1K6GhoWRnZ3Pu3LkyK4smk4nExESioqIqHFvv3r1p3769/djf37/UuENCQggJCaFDhw6Ehoby1VdfMXXqVHudc+fOERkZSadOnfjiiy9K9X1tZpQrW9lnzZpFREQEkydPBqB58+Y4OTnx0EMPMWPGDNq0aVOqXZ06dfj111+5cOECrVq1sp+3Wq1s27aNRYsWUVxcjIODA926dSMxMZFLly6h0WhAZySkfgABgfUrvA/l0b59e9577z2Ki4tLubb/5z//YcSIEaxataqUO3x591QiqUyyzIqXeTNVMcJWAED7hFQ88otY1aItAGqsdPLrVLph9Nuw55r/V8eroSYKC08DNhwcnPHy6opPnd6oVMpncXahotUcNWqWPNOKBwJq3aGZSST3GOUYZw1aNZuHh2DTG0ClwsvLS3lGVRJmq42487kANPN3+9O1b01HdW7bloWzZ+Ncvz45jjmoHFSciDlRYTupoRRqkoZydXXD28eHur3rV3gfyuN+0FBVYpQaO3Ys69atY9u2bdStW7fculduaEJCAg0aNMDHx4c9e0pvg0lPV7aV+fj4XLcPR0fHUm9gTWPFucu8fvIsRSWxCbwdr2Zv2fjVYo5H/2Q/vvYN11wxSLUYBE6eEP73Mn0XFysZDjQaFxo0eBWPWp04tk+J3dW8rhuD29ejR3hZt02JpKZzKzEGVCoVRp0DVq0aoXVAq3X4y1vqbkShzope64BBd/t9Gw0GQoKDKTZqSc5JBqBx48ZYLBb+2LePZg1DAcjIuExcXBxNmjSxtw0ICGD06NGMHj2aqVOn8uWXXzJu3Dj7atm1sQmCg4PRarXs3bvXLoKys7OJj4/n4YcfLneMrVq1IjY2lpCQkJuel0qlolGjRuzcuROAv//970yZMoV58+Yxb968UnU/++wzCgoKGDp0aIX9uri44OLiUmE9ULyEr91OnpqaSmRkJK1bt2bp0qVlPJKuN7+CgoIyYtzBQRHNQggMBkOZdl26dOHIkSOlzj377LM0atSIKVOm2Ntf4YrRdO2Gn8m4dJHHulcca6E8Dh48SK1atUo9i1euXMlzzz3Hf/7zHx5//PFS9W90T1VUy1AIknuYzJJ4nPoL50EUAmA0WchwdkVoNSDA2dOtbMPLJV5VHsHg7AOdxtqLrsSRcnZuSNMmV7eSmK02LuYpsThrGXU82qi0579EUvMpxwuqvCKVCoNWjU3rACoVRp2m0o1S+hLjU6VoqPr10dWrx4mME1htVho1aoTFYmHPnj3K9j0BGZkZUkNRszXUpk2/knHpIo907XFT87sRlaWhqjN31SglhGDcuHH88MMPbNmyhaCgoArbXLFUXtmv2rFjR95//30uXLhgd1GLjo7G1dW11D/1/cS6i1l2g5TRQU1r16teErG7j9o/4x20jVGZzwDg7GREXRKbkz6L4QZbM65s2XN09KGu/yAAcoqU/cHN67oxoG2967aTSO5LSlb5VPek6/l1xnzNqdDQUPr06cO4SS/xwfRpuLjUZta8D/H396dPnz4ATJw4kR49etCwYUMyMzPZvHkzjRs3BiAwMBCVSsW6devo2bMnBoMBFxcXhg0bxuTJk/Hw8MDb25tp06ahVqsr3M4yZcoUOnTowNixYxkxYgROTk7ExsYSHR3NokWLOHjwINOmTWPIkCE0adIEnU7H1q1b+frrr5kyZQqgrAbOmTOHV155Bb1ez5AhQ9Bqtfz444+8/vrrzJgxo9T2clCCjP6Zpk2botWWTuWen5/P+++/T+/evfH19eXSpUssXryY1NRU+vXrByhi6pFHHiEwMJC5c+fa0xzDjRdZAHr16sXIkSNZsmQJUVFRpKWlMXHiRNq1a3fdWBKgCJQ/z8XJyQlPT89S55cuXUrjxo3x8vJi165djJ8wgWdGvEhwSEN7nTNnzpCRkcGZM2ewWq3253RISAjOzs7873//Iz09nQ4dOqDX64mOjmbmzJmlgqGuWLGCYcOGMX/+fNq3b2/ffm8wGHBzu44BoISMjGxSUlLJylIE+pX340piFInkVskyK+ENXBMSASUMQrq3L6dCG9DFFI63zZW84OuYQotLYkl1fRca9wIgLy+eEydeJztHScttMFzVSEfOZvP0l7+TV1xyPYOMwymR3C+EhIbQp08fRo8Zw6xpb+Hs5MrMuZ9IDUXN1lATSjRU/Qah9jpVq6GySEo6weXLynOoOmmou/pEHDNmDCtWrODHH3/ExcXFfgPd3NwwGAwkJiayYsUKevbsiaenJ4cPH2bSpEk8/PDDNG/eHIBu3brRpEkThgwZwpw5czh//jxvvvkmY8aMqdHeUOWRVbLK90mjAHp718J4TaBzhwJFYtUp8KJR6l72hD9AVFQU9Wtp4D/vKzEQrmOQysk9yqFDIzGVrPbp9X78365kPth4gqISV3c3g7ZMO4lEcn3uVsiQSki2d0OWLl3Ki6NHM3TkKMxmM506PsiGDRvsYsJqtTJmzBjOnj2Lq6sr3bt35+OPPwYU1+Hp06fz2muv8eyzzzJ06FCWLVvGRx99xOjRo3niiSdwdXXl1VdfJSUl5YZ79q/QvHlztm7dyhtvvMFDDz2EEIIGDRowYMAAAOrWrUv9+vWZPn06ycnJqFQq+/GkSZPs/UyaNIng4GDmzZvH/Pnzyc9XrPUrV65k4MCBZa57vXMpKSllvH4dHBw4ceIE33zzDZcuXcLT05O2bdsSExND06ZNAWVBJSEhgYSEhDLty/PEGz58OLm5uSxatIiXX34Zd3d3Hn30UWbPnl3uPbsZ4uLimDp1KhkZGdSvX5+XJ0/hicEjS9V5++23+eabb+zHVxKMbN68mUceeQStVsvixYuZNGkSQghCQkL46KOPSsV5+OKLL7BYLIwZM4YxY8bYzw8bNoxly5bdcHwbN27mhRfetB9feT+mTZvGO++8cztTl9yn5OWYeHrzObTnBFZAhQN7H4zAphK4FjqSq8vDFOpatuGVAOfXxJJKT19rN0gB1KrV0f777qTLdoMUQGQj70qfi0QiqZ4IBEuXLmXc2LEMHTkKk9lMx3YRrF+/XmqoGqyhXn/9dR7r/1ypOlWpodavj2bUqKsB76uThlKJysgXfrMXu8G3sqVLlzJ8+HBSUlJ45plnOHr0KPn5+QQEBPDUU0/x5ptv2veBApw+fZoXXniBLVu24OTkxLBhw/jggw9u2o0zJydHCeCanV2q33uVTr8f51RhMWtahtDBvXSw8o8HjcRmTaNelsDRQUVhvbYMiEqDy4lwdo/icv5KWav1qaSFJCV9Yj9u0nguE9b6sCdJ8ZxSq+Cfw9pI13PJfce5198g+/vv8Xr5JWqPLP1l/dgn+3E7n89e91TcunjRyccLfYBiUM/PyiAnKwuh06PVavHy8qrUcV3OKyY1S4kpVb+2U7l1s80WkgtNGB3UhDqVCJcLx8FSRHGRC7aCIrR161LspCU5Oxmdg47QWsoqT+7lS+RnZaJSG9E71cLNu3JjyuXn5+Pv78+8efN4/vnnK7XvmyEjI4MuXbrg6urKxo0b7Zlf71eyCkycySjA2VFDsNf1k2HcTXJzjyGEDWfnMNTqigOo3ixFRUUkJSURFBRURszXNM1wu9SU+7Ei7TLvJ6YRvjeZtr9/BSixnhyElqwmSspxR00e5i6uvNLmFYzaks+CvV9B0jY4GQ3mfBjxK9RVggjHHp9CWtpq/Hz74+8/CBeXZnbt+9EvcSz4LYGn29VjWq8m9q1CEsn9RO5vmzn74ovoWzQn6NtvS5Wd23kO29pEsp0F56PMPFDHA0+fhqBzwmIycSnlNDa9EVQqvL29K3373vGS5APN67pXWP9QjhJ/romzHq1aDTnnIC8di3DFnFmIg6trqe17DdwboNfoMRcXcflsCqBGrfHCq55LpSY6kBqqemETgqOp2QA09XPF4RaTxlQ2hYUpmM1ZODr64uhYebFtK0ND3fXte+UREBDA1q1bK+wnMDCQDRs2VNaw7nmyLMrKm/s1AkcIQWbaOWxWxYiUWs+NLP+GNMy2wKGVVxvXCrxunyaT4gIZUHc49euPQafzIKdwGwCfDHiAyDBv3IzSU0oikdweBw4c4MSJE7Rr147s7GzeffddALs7+93Gw8ODTZs2sXjxYnbt2mVPsyyRSGoW353P5LLZgs+lVBSDlAqDCepa0tiPYpTqGPYgj3R88mojUwFseAWEreSEClyU8BJmcxa5uUcBcHNriaurktY9p8jMyfRcEi8qHgSeTjppkJJIZHDASkFqKElNQW5ov8exCWHPHFPrmhWDVR+8TcrBqy7keXrFUp3vdwHyAb9W0OEFCCodCE8IK/n5CVy+rBgHjcZgrLhxMbeYnJKMMYGeRmmQkkgklcbcuXOJi4tDp9PRunVrYmJiKj074a3g6enJ22+/XWXXl0gkd57ckoDBAblZADhaHIg8HkdRiJ79gEpArbp/yoxXnFtikFJBzw+hdkNw8yfl7P8RHz/dXs1oDAbAZhP0nB/D2cxCe5mMJSWRVG+EEJXqvXSnkRpKUhOQT8Z7mNOFxfyRnc+V9bprPaVSjpyy/+6gDSHZ1Ys6mgKiWvrDdsCrETTvX6bPY7Evk57+P/txjqUu3WZEU2C6mu3BVcaSkkhq8Crf3RViLVu2ZN++fXf1mhKJRJJnUdSTLr8IE6CxgVDDvvpKyu9AmxdutT1LN7oSR8rRBdpd3b6dnr7e/rurS3O7l1RukcVukKrvacTNqKNrExmQXyK5Hqo//ayKa99rSA0lqSlIo9Q9isUm6LEvnowSLyknBzWOJftUc3IzwZoLgL+pHfrs0xTWC2fya8PQbPtA6UB3/Zgz2dmKd5VG446LS2NOXA6gwHQcUAI1h/u7Uc/j/t4fLJHUbCqwtt2ryk1Sw6ixVmHJXSLXakVlEwizkl7c5qjiu7/1xarRMLzoEcyYqFO/QelG9uDmpTVUQYGyENiu7f9wcVEyQV/KK7bH4XTSObBlcuQdnI1EUgOQ+kIiuUtUPw0ljVL3KNkWq90g1c7NiT7e7vayxCN7uJLW2C95PRtDI+ioLkTzcSMouKxUciwbsFYIYY8l1a7tGgyGAA5uTwKgVws/Fj7d8s5NSCKpAdxveqr6PdIkEomkYoQQhB1KZ8T+FKxWJQitoxqsGg0IWO++jX0usfxT85jSwGaDdRMhZY9yXGKUEkJgtRZgNivGJ71eSSeeV2zhkQ+32LPt1XKqvKD8Esk9TU0RSiqkCJJIKhFplLpHySuJhWBQq1nbKrRU2eld20t+0/LbEz1wdAAPdR7kKwYnVGqo265Um6zsfaSdW43NVgyoSct14tVlO0m6pATmdJdb9iSSGke5euqGiSlqiqKU3ApSe0tqCkdyC9iXU0DzI9ux5O61n/cQOaQAaqHiM99VeOg9UKtKMiVdioP9V1N449EAiyWXPXt7U1h4BgCtthYajRsAKRkF5BVbcFCrCKhlYFin+ndpdhKJRCKR3HtIo9Q9Sp5V8YRy0VxNLSmE4Oc5b5K4/xAAapUBSsJMNQg2QQLQ5jl49C0welzTzsrhw6MwmzMBcHIK4ZfjmfxxOtNeJ8zH5Q7PSCK5R5A2GYlEIrknybdY6b3/JIU2wUv55+znfbLy8KyjhCZQA2MfGEsHvw5XGxYp3lQ4+0Cv+RDYkdy8E3aDFICPz1P24MjXJob57eVH7uicJBLJPYxA6kqJBGmUumfJtSieUs4OV4Obn9y5k2MlBikAvTBSIqPwcr6k/OLiW8ogBZBfcMpukKrrPwQfnyfZtksRVD2a+fDiIyE083e9QzORSCTVC6mOJBJJzSTNZKbQJtACGosZATRNLSDwUjoXAsIAxVNqVItRpRsWl8SScvaCsO4AWHIVheXi0pSWD/wbrdaVw2ez+Neu0/bg5m7Sy1wikZRCaiyJ5HpIo9Q9SqZZiVPgprlqlNq1c4vyi0qPq0MEhqytqL1bEOpuQ3MxRinTlY0lVVR4FgBn5yaEhb0DQG7RUQBCvZ0Jr+t2ZyYhkUjuOaSckkgk9yqXTYp2CtBYQSiLbzpbETnermz3UQKUXyOrlG3MF+PgfMmCn+6q17jFkgOAVuuBVqss3M37JZ6t8RftdfzcDXdqKhLJvc0NQwTUEGr49CSSykYape4xci1W5iad548cJdaTr+PVVbii+HQAdFYHHjz4BWtaPMZUw0aI33G1A4O7/deCgiQSEmZz8VK0UmSoy7v/i2V7wkXOZxcB4KKXq3wSyXWp6YJKIpFIahiXzRYQAu+iAoRQsu4lNG7CuYC6+FndcSt2pLiZ+WqDg8vhxzFXjx2dyck9ysmTM8nK2g2ARnPVUHUxV+nz6Xb1aFjHmR7NfO/8pCQSiUQiucdRV1xFUp3438UsPj97kX05BQA0MDray6wFypY+NSp+6NQNbbAfZKUohfU6QcshENbTXv9c2mq7QQrA6NKJr3ckEZ+eR06RspoYWqesZ5VEIikfVQX+RKIaG7RGTH4VY3g4Wg8PajnVokfbHiyaswiLxXJb/W7ZsgWVSkVWVlblDPQmSEpKYtCgQfj5+aHX66lbty59+vThxIkTpeqtW7eOzp074+LigtFopG3btixbtqxUneTkZFQqFQcPHrzp67/zzjs0atQIJycnatWqxWOPPcbu3btL9fn8888TFBSEwWCgQYMGTJs2DZPJVGHfy5cvp0WLFhiNRnx9fXnuuee4fPlyhe1SU1N55pln8PT0xGAwEB4ezh9//GEvHz58OCqVyv6q5eTIC8/8vVQf9evXL1VHpVLxwQcf2Mvj4uKIjIykTp066PV6goODefPNNzGbzaX6ycrKYsyYMfj6+uLo6EjDhg3ZsGFDueNfuzaaJ58chZeX3y2/HxLJxeJiBm/aRZf/nAKhLL4VOroDoMrPZlbjz2nZLfJqg/RY5aejG3iGQKuhnDv3X7tBCsDTozMn03P58WAq6TlKnwPaBvBsRBA+bvq7Mi+JpMZSjfXS9XhukqKhHOsHotPpiGoTxZK5S6SGuk81lINaXa001Jo1G3nyyVH4+YVVOw0lPaXuMS6WpBdu5WpkgI8HT3q7YzYVc+yXHzFbFVdym06NqV4tXE0qMJXEQXjiY/BuVKovs0lJYezt/Ti+Pk9RoGoNxKDTqFn2bFs8nHQ08pGxpCSSm6aG7G3rGhHB1//8J3kaWP7Dct6f8j4+rj5MnTq1qocGgMlkQqcrP8W62Wyma9euhIWF8f333+Pr68vZs2fZuHFjKVG3cOFCJk6cyJQpU1iyZAk6nY4ff/yR0aNHc/ToUebOnfuXx9mwYUMWLVpEcHAwhYWFfPzxx3Tr1o2EhAS8vLw4ceIENpuNzz//nJCQEI4ePcrIkSPJz88v97o7duxg6NChfPzxx/Tq1YvU1FRGjx7NyJEj+f7772/YLjMzk4iICCIjI9m4cSNeXl6cPHmSWrVqlarXvXt3li5dCkB2gYmLBbYyfb377ruMHDnSfuzictVbRKvVMnToUFq1aoW7uzuHDh1i5MiR2Gw2Zs6cCSjvYdeuXfH29mb16tX4+/tz+vRp3N3dy72n+fmFdOzYkoEDhzBq1Ivl1pVIrpBnsfLl2YvsjI+n0+mjmCxKgHKVUFNgrA0UoVNr2Nx/M7X01/w/XNFQncZB58nKqSM/AeDv/ww+dXqh0bfgsZm/UmCy2pt5GMv/fJJI7ltUNUQolUPXiAj++fEnCG8vlq5ayruvvksdlzq89cZbVT00QGqou6mhbEJw6nJxmb6qSkMVFBTQsWNL+vXrx4svvlRu3buNNErdY2SUWNrbuzkxzL82AOtmTyVu/3F7HXXJB36BUzGYlG1+6JzK9GW2ZAFQy709xZoOHCrJtudu0NKpQe07NQWJ5N7mLwuqOyzEKrF7R50Onzp1MDk7MvDZgWzesJm1a9cyevRoxrzwIht++gmTyUSnTg+x5LPFhIaGAnD69GnGjh3L9u3bMZlM1K9fnw8//JAmTZoQGal4H1x5eA8bNoxly5aRm5vL6NGjWbNmDa6urrz66qv8+OOPPPDAA3zyySeAsqr0/PPPc/LkSdasWcPf/vY3li1bxvbt25k6dSp//PEHtWvX5qmnnmLWrFk4OTlx7NgxEhMT+fXXXwkMDAQgMDCQiIgI+zxTUlJ4+eWXmThxov1BD/Dyyy+j0+kYP348/fr1o3379n/pPg4aNKjU8UcffcRXX33F4cOH6dKlC927d6d79+728uDgYOLi4liyZEm5gmrXrl3Ur1+f8ePHAxAUFMSoUaOYPXt2ueOZPXs2AQEBdrF0pe2fcXR0xMfHBwB9gYnijIIydVxcXOx1/kxwcDDBwcH248DAQLZs2UJMTIz93Ndff01GRgY7d+5Eq1W2idevX7/c8QM8/XRvhLBx6ZL80i+5eVanZzI76TyNUtKxWdIAMJhs1Lt8ieMhjhRThNrNWNogBdfVUFcSw9Ryb4u7exuSLuVTYLKiUatoH+xBM383AjxkLCmJ5H7FUafDx9sbXWA9nn7uaX5Z/wvr/reOsS+OZdzYsaxbt45ik4lO7R/k088XExbWEJAa6s/UBA1lE4JL1uwydapKQw0a1BezOYu0tIq9ye42cvvePUaWWVmJq6W9ak+MO6n8VDnUxsGxNSZNbZKdk/FumgvWEuvsNYLqZMIstmwN5+LFXwBIytAQ8cFvjFt5AABXmS1GIqlchABzASpzISpzAZgLlC87lfxSmQuU/q89Xwmu73qDHpPJxPDhw9l/8CDLPl/Cuu/WghD07NnT7lI8ZswYiouL2bZtG0eOHGH27Nk4OzsTEBDAd999ByhuyWlpacyfPx+Al156iR07drB27Vqio6OJiYlh//79ZcYwd+5cWrRowYEDB3jrrbdITEyke/fu9O3bl8OHD/Ptt9+yfft2xo4dC4CXlxdqtZrVq1djtVrL9AewevVqzGYzr7zySpmyUaNG4ezszMqVK2/7/oGyqvXFF1/g5uZGixYtblgvOzsbDw+PG5YDdOzYkZSUFDZs2IAQgvT0dFavXk3Pnj3Lbbd27VratGlDv3798Pb2pmXLlnz55Zdl6m3ZsgVvb2/CwsJ4acJYsjIzytT54IMP8PT0pGXLlnz44Yflbk1ISEjgp59+onPnzqXG0rFjR8aMGUOdOnVo1qwZM2fOvOF7JZHcDhdMymdU45xLgPJ75xNJNMgvwqlETmnqXGNIsprh/BHIPa8c65xIPv05u3f3tG/d0znWQQhBZoEi7uu46lk+ogNTezRGdR94g0gkdxdh11BldM6d1FCVoKP0ej1mk5nhw4ezb/9+RUOtWoUQgieeeFxqqJvgXtVQL77wgtRQN4n0lLrHuJJ1r5b2anoYh2IVVsAjX0Vo+kF2tGrKp/n/h/FgyZYLlbpU1r20tO+xWpWVb53Oi5NZYUAqeq0aD6OOwe3r3a3pSCT3B+YCnBY3oay/YuXhWfIqw+vnruspeTMIIdi1dRcxv8XQs0dP1qxZQ/TGDTQLDUGlNvLF4q9p1jqMNWvW0K9fP86cOUPfvn0JDw8HKLXSc0UkeHt7292Lc3Nz+eabb1ixYgVdunQBYOnSpfj5+ZUZy6OPPsrLL79sPx4xYgSDBw9m4sSJAISGhrJgwQI6d+7MkiVL8Pf3Z8GCBbz66qtMnz6dNm3aEBkZyeDBg+3jio+Px83NDV/fssGIdTodwcHBxMfH/6V7d4V169YxcOBACgoK8PX1JTo6mtq1r++JmpCQwMKFCyt0d4+IiGD58uUMGDCAoqIiLBYLvXr1YvHixeW2O3XqFEuWLOGll17i9ddfZ+/evYwfPx6dTsewYcMAxe38b3/7G0FBQSQmJvLa1Kns2buP73/6zd7P+PHjadWqFR4eHuzcuZOpU6eSlpbGRx99VOp6nTp1Yv/+/RQXF/OPf/yDd999t9RYfvvtNwYPHsyGDRtISEjgxRdfxGw2M23atHLnIZHcKjkWRajXu6DEDFEJB9QCkoIfIEOVC4BD/avbJ1jRHxKv/s2jcyI5eR5Wq+I5pdV64KBrTOTcLSRfVvSUu1Eu6EkkdwxzAXX+89Ad614DhN+o8KZ01J8N0QIhBDu37GTH5h1EdY9i7Y9r2bp5Mw0D/AE1n87/J606NZEaqhzudQ31+uuvs/33vfzrx1/s/UgNdX2kp9Q9RIbZwsWSdMbuGsWeKGwCYVMCazqaUkkMMKJ1N2AUNtAaIaQrRM0CjbLVQQir3fW8bZsf6NRxCxmFyurggDYB7JzahWcjyroiSiSS+4eN27bhHhCAh4sHLwx8gZ5P9WT48OFoNBratm5tr+fh4UlYWBjHjyvbh8ePH8+MGTOIiIhg2rRpHD58uNzrnDp1CrPZTLt27ezn3NzcCAsLK1O3TZs2pY4PHTrEsmXLcHZ2tr+ioqKw2WwkJSUByqrj+fPnWb58OR07dmTVqlU0bdqU6OjoMv3fiIriLoASMPPacVzrYh0ZGcnBgwfZuXMn3bt3p3///ly4cKFMH6mpqXTv3p1+/fqVijNwbb+jR48GIDY2lgkTJvD222+zb98+fvrpJ5KTk+3lMTExpdotX74cAJvNRqtWrZg5cyYtW7bkH//4ByNHjuSzzz6zX2/gwIH07t2b8PBwnnzySf6z+geOHdrP7h1X5/TSSy/xyCOP0Lx5c0aPHs28efNYuHAhxcWl4yZ8++237N+/nxUrVrB+/fpSQtFms+Ht7c0XX3xB69atGTBgAG+88YZ9LOXdU7jnYt9KqpiM4lyM2T9SnK14PqlQ8/3fnmJP0/pYVMoCXlBww6sNzh9Rfhprg19LrIHt7Aap5s2/oH27dRw/X2w3SAE8GCrDHkgkEkVDeTRpgl6v5x8D/kH3Pt0ZMnQIGo2mlN7xqOUhNRQ1W0Ot/d//OHZoP3/s2m6vUx00VHVEekrdI7yfeI6FZ67+E17xlMrJysVmvQjAxfp1yahTD88rb6tHMDyz2t6muPgiuXnHAEXNn87xY+o3ezltX+WTMTokkpvmVr4Va43kj4klNysLoXPEQaPB28urUodzOb+Yc1lFuOq1BHoaS137z1S0saRz27YsXrQIlbszRU5FGBwNnIg5UUErZeUtKiqK9evX88svvzBr1izmzZvHuHHjbnE2ZXFyKr1KmZeXx6hRo+wxAa6lXr2r3p4uLi706tWLXr16MWPGDKKiopgxYwZdu3YlNDSU7Oxszp07V2Zl0WQykZiYSFRUVIVj6927d6mYCf7+/qXGHRISQkhICB06dCA0NJSvvvqqVND4c+fOERkZSadOnfjiiy9K9X1tZhRXVyXxxKxZs4iIiGDyZCXwcvPmzXFycuKhhx5ixowZtGnTplS7OnXqAODr60uTJk1K9d+4cWP7toDrUT8omFoenpxOOnXDOu3bt8disZCcnFxKDAcEBADQpEkTrFYr//jHP3j55ZdxcHDA19cXrVaLg8NVr9/GjRtz/vx5TCZTufdUIrlVLpzcxtBt/ngU1cZMMmqVCrNOh1E4Uttow6NLU9qGtL3awFyo/BwRjagVhKnoHAAqlY7ano+iUqnILlQMXM38Xfn38+2lhpJIboVbXVnQGkkfGINNbwCVCi8vLzSayvsaa7HaOH5e8Zps5udaegvudXRUeXRu25aFH3yAc1AQufpcUENsTGyF7aSGUqhJGio4WNFQZ5KlhqoIaZS6R9iemWf/Pcigo7mLkR/eeYlTx6+6RRYalNTDXr6OkAZor8ZHKCo6x85djyKEsm/ZYKjHusMXOZqaY6/T2Pca13WJRPKXUf1Za6lUoDUitMUIrR40mr+8pe6GmDUIrRqh1d5230aDgZDgYEzOjiRlKytmjRs3xmKxsHffPpqFhgCQkXGZuLi4Ug/pgIAARo8ezejRo5k6dSpffvkl48aNs6+WXbvfPTg4GK1Wy969e+0iKDs7m/j4eB5++OFyx9iqVStiY2MJCQm56XmpVCoaNWrEzp07Afj73//OlClTmDdvHvPmzStV97PPPqOgoIChQ4dW2K+Li0upzCnlYbPZSq2GpaamEhkZSevWrVm6dClqdWkH5uvNr6CgoIwYvyJMhBAYDIbrtouIiCAuLq7Uufj4eHsQ0+uRmnqWrMwMvEpE2fU4ePAgarUab2/vG9ax2WyYzWZsNhsODg5ERESwYsUKbDabfc7x8fH4+vqi0+nQ6XQ3fU8lkhuxLzufb89n4HXEisu5nzGjxH/Sl8TbNAodD4eGE9Km29VGJTEAAYpFAXt3PkhxsWKAMhj8KTBZ+fnYeXYmKlsBPZwcpUFKIrnTqFQIrQGhNSqaSuekaKnKwmpDaEv0ic7ptrIEGg0GQurXR1evHnEZcVhsFho1aoTFYmHPnj0l2/cgIzNDaihqtoY6e7ZEQ3nX4UZmWKmhFKRR6h4hr+RD6LsHGhBRy4X8rIucOp5gL9eq/Mk2uKJC0CzAtcQoddWyn5t3HCHMqFRaHB3rUD/wBX5MVQxUT7erx3MR9Qmtc2/98Uokkqvc6bC6oaGh9OnTh3ETJ/HB9Gm4uNRm5twP8ff3p0+fPgBMnDiRHj160LBhQzIzM9m8eTONGzcGlOwhKpWKdevW0bNnTwwGAy4uLgwbNozJkyfj4eGBt7c306ZNQ61WVxgoeMqUKXTo0IGxY8cyYsQInJyciI2NJTo6mkWLFnHw4EGmTZvGkCFDaNKkCTqdjq1bt/L1118zZcoUQFkNnDNnDq+88gp6vZ4hQ4ag1Wr58ccfef3115kxYwbNmjUrdd0/CxKApk2b2rOfXCE/P5/333+f3r174+vry6VLl1i8eDGpqan069cPUMTUI488QmBgIHPnzuXixYv29jfKygLQq1cvRo4cyZIlS4iKiiItLY2JEyfSrl2768aSuMKkSZPo1KkTM2fOpH///uzZs4cvvvjCvrKYl5fH9OnT6du3Lz4+PiQmJvLyK5MJqB/MQ5GPAUrWmt27dxMZGYmLiwu7du1i0qRJPPPMM/asQMuXL0er1RIeHo6joyN//PEHU6dOZcCAAfb79MILL7Bo0SImTJjAuHHjOHnyJDNnzrzuqu21ZGRkk5KSSmamrtT74ePjU+49k9yfvJ2Qyr6cAkZmZEOJQUpjteFdXEgaoMEBo9+f4qFYikEoW/qyCk/YDVIAPnWe5J8xSXy86eqCoKeTNEhJJJVCDU4QEBIaQp8+fRj94ovMmvYWzk4uzJw7X2ooaraGevXVVwmoH0ynzkrMr6rXUFkkJZ3g8mVLqfejOmgoaZS6R8izKgLJRaNYco8f3QUo5+qaIvBP2461gxdtaydgPPOr0ujaFMYmJfK/h0cnGjX5khPnc0nJVLbjNPZ1kQYpieQmuZ+zKi1dupQxo0czdOQozGYznTo+yIYNG+wPSavVypgxYzh79iyurq50796djz/+GFBch6dPn85rr73Gs88+y9ChQ1m2bBkfffQRo0eP5oknnrCnM05JSUGv15c7lubNm7N161beeOMNHnroIYQQNGjQgAEDBgBQt25d6tevz/Tp00lOTkalUtmPJ02aZO9n0qRJBAcHM2/ePObPn09+vhI3ZuXKlQwcOLDMda93LiUlhbp165Y65+DgwIkTJ/jmm2+4dOkSnp6etG3blpiYGJo2bQpAdHQ0CQkJJCQklGkvytnaMHz4cHJzc1m0aBEvv/wy7u7uPProoxWmM27bti0//PADU6dO5d133yUoKIhPPvmEwYMH28d8+PBhvvnmG7KysvDz8+ORR7swbNwUHB0dASXV8X/+8x/eeecdiouLCQoKYtKkSbz00kv262g0GmbPnk18fDxCCAIDAxk7dmyp+x4QEMDPP//MpEmTaN68Of7+/kyYMMEudm/Exo2beeGFN+3HV96PadOm8c4775TbVnL/cSUOp6NJMUgZrQ48cjSRCw2aA6ARDji6l+if4jxI2gZFV9N3m23K54GnZyRNm3yEVutKyh+HAAir40IjXxf+8fDVYMQSiaR87ncNNW7sWIaOHIXJbKZjuwjWrVsvNVQN1lBdu3Zl0IuT0VUTDbV+fTSjRl0NeF+dNJRKlPeu1VBycnJwc3MjOzvbvr+0uhOy7TB5Vhu72jcmyOjId5/NJnlzDCociToUy/HAUDo0OkDdWle349F2JOZub5N+YR1JSQsxmS7g4/MU7+/4u93tHGD+wAfo80D132sqkVQH0t56i6xVq/GaOJHao0eVKoudvx/XtHz2uZ3D5bHadPLxQh+gfPnJz8okJysTodOj0WjKddP9K2TkF3M2sxBXvZb6tcvfvpdjtpBUaMLgoKahU4lwuXAcLEUUF7liKyhE6+9v376nddDSsJYSBDgv4zJ5mRmoVAYcnTxwr3NrsRYqIj8/H39/f+bNm8fzzz9fqX3fDBkZGXTp0gVXV1c2btyI0Vi587vXyCowcSajACdHDQ28nCtucIfJzT2GEDacnBri4OBYaf0WFRWRlJREUFBQGTF/L2qGO8m9dD8axxwh02Ll1f/7DlFwAPdCNZ3iT3K0WVOONWuGp0nH6HdeQavTwY9j4cC/AGXJL9fdQMLDkWRl7cHPbyCNG70PwKh//cHPx9J578lmDOlw420bEomkLHlbt5IyajT6Zs0IWr2qVFna72lY1ySQ4yxIizLzQB0PPOuEgqMzFrOJS2dOY9Mr2/e8vb0rPaZUbJryHSrc361C49mh3AIQ0NhZj06thpw0yDuPRbhizizEwcUFXWCgfftesHswBo0Bc3Exl8+eAdSoNV7UDnBBra48Q53UUNULmxAcTVUWOpr4uaJRV22OucLCFMzmLBwdfXB0rLzYtpWhoaSn1D2A2SbKeEplJitBz1Vo+e+AAahU8IS1JLJ/r/mg0UPD7iSf/pQzZ7609+Xi0pTjJR+6vm56/NwNPBgiM8ZIJJKq4cCBA5w4cYJ27dqRnZ1tT3l7xZ39buPh4cGmTZtYvHgxu3btsqdZlkgk9xZCCPIL4nHOi8HB4oQF0NgEx5o2ISk4lAzdZY4EnmPclexQmcnKz9oNOeUnOO2eCVl7AHByCmH7yUvEp+dyMl2J8emqlxJaIpFULVJDSWoK8olazTmeV8jv2YorpEYFbtYifnxjItlJSowDB3T2LdiODlbQGKD1cHv7wsIUAFxdmuPq1gJfn7+TU6SkhfzhxQh83Mp375RIJJI7zdy5c4mLi0On09G6dWtiYmKoXbvqjOWenp68/fbbVXZ9iURy++RabQQlR9P0nB+iJJ6U1VXP0YZN8So2kt/6AkMaDLnawFSSUKbbDLLzlkHWHhwdfTAYAlEZujHk092lEoZ5yFhSEsl9iwpuGLi6woaVjNRQkpqANEpVY3IsVnrsi6fIpnzs1dFp2fndYhISrgbd1KqUDHsqNahslMm6ZTYrsaT86z5PbGZbDh7MxFrSn6tBvv0SyV+nPDly78ZMuO7I7+Am75YtW7Jv3747dwGJRHJfIYRgTtJ59uXk89ixFrhkpWKznAaufr45AF9FfVW6oUlZAETnRGHhGQDCmy3Cza0lfyRnIAQ4O2qIbOSNn5ueDsGed2dCEklN5P6LHnNHkBpKUlOQVolqTHqxmSKbQKtS0dHdiad9PTn6Q8m2PQdftIZIyPoZgDBDFuRjN0pdvPQrly9tJqvE9XxXkpWX1/5h71unUWPQOtzV+UgkNZ97xBh1O4FG75EpSiSS+5PEwmI+Pp0OQtAhKwlrcay9zKZ2A0Cluiauh7kIclKhKIfEQCOXU9+xZ9wzGOqRXWAmLj0XgAZeTix8uuXdm4xEch9yX8kMIbjPZiyRXBdplKrG5FqtANRx1PDfB0IAWHxBySTjXFRI+yMfs/GBKKayCF2+WWnk6o8QgmPHXsJqVVzR1WodCVl1gfPUrWUgqLYTUU197usMGBKJRCKRSGoeGSUZ93wBLEpSF6ciC8EXMzjdogEAKk2JUcpqhsXtIOs0FjUkt6oNxUkA6PUBnMtxpNvHmzCVxPV0M8otexLJHeM++F5S82cokfw1pFGqGpNnUUSQs8NVjyZhUdxd1ZjY2aElDT0DcMQMfq2gxUAI7YbJdLHEIKUmOGg8JnU4yUoYKZ5uV48xkSF3eyoSSQ3i/pEUqgrmKp3vJRJJdSPboizo+VkLQSixpJqdTcczv4jjWuVTS9fURamcfxGylK19Ra6KF5WDgxPNmi3AxaUZv8XlYrLacFCrqGXU8VRLv7s8G4mkhnEfGJ4kEsmtI41S1Zi8Ek8pFwcH8jIus/c/X2K2XgSg0EnNZX8/fIpKvhb6t4L2Snr6ouz9AOj1vmw59wTT/xeLsrcP3I3auzsJieR+pkbGTJCCUiKRVF9yrTYQZtwKUhBC8SLX2GwUGAw44s42n2307jxXqVych00FZ+rXIjW0PhSlYDAEUtvzEaWvIiVZzMOhtVn6bLsqmI1EIlG4N7VHRYt7EolEQRqlqjEZZsUo5aZ1YMOn00k5cspeZlMrruen3f+AIsDRBbM5iyNHx1JQcMX1vC4H47MAMOoc8Hc38HCo112dg0Qiuce4Jf1UE41uEonkXuZ8QTaBp18kI8cfJaQ57GrfjVwvPfUz9Ux7fBot65TEhSrO5aKnjsQAByi6kq24GQDpOUWkZBYA4KKXC3oSieQ2sMslaaS6b5GSuVykUaoakl5s5oOkNPbnKGLI11HLmQSBClBrAnHQBJGpTQHNJXqYlUDnGD25fHkbmZm77P24ujYnu1BZJXynV1P6tw2421ORSGouNc4LSgoliURy75JaZOKj5POcjt/MU/tfwalIhUn8G4ACV1dsDla0qOgc0FlpcHAF7P8/ivSK4crZKQwv7x74+/Xny22neH/DcXvfLnoplyUSiUQiuVPIp2w15L/nM1iZlmE/DtHrKLCosAG1CjWEpO0gvmlDnrN8Bk5e0OwFaPE0xZd/AMDD4yEyVEP45ognx85dAsDVIFf5JJK7xX1j3qlpdjmJRHLPsiLtMsvTMuh2pgBdxu+YLKn2MrXGAVCMUnY2vAqmXExBRgA8PB4kOGgcAHuTlWzFOgc1rgYNUU197to8JBKJRCK531BXXEVyt8ks2bb3cC1nPm0SyBMuWoRN8ZqqlXGI5Noaank5K5V9whHdZ5JjO8+F9A0AuDg3ZtIPFv69O5WLucUA+Lnr7/5EJJL7jRpgjRox+VWM4eFoPTxwc3KjR9seLPpwERaL5bb63bJlCyqViqysrMoZ6E2QlJTEoEGD8PPzQ6/XU7duXfr06cOJEydK1Vu3bh2dO3fGxcUFo9FI27ZtWbZsWak6ycnJqFQqDh48eNPXf+edd2jUqBFOTk7UqlWLxx57jN27d5fq8/nnnycoKAiDwUCDBg2YNm0aJpOpwr6XL19OixYtMBqN+Pr68txzz3H58uVy21itVt56661S13vvvfcQ13j9ff/993Tr1g1PT09UKhVHDh0q009iYiJPPfUUXl5euLq60r9/f9LT0295XocPH+ahhx5Cr9cTEBDAnDlzKpz3jh1/MGDAWAICglCpVKxZs6bCNpL7g5wrAc6LrQjLOQC0Fiu1c4oo1ipayOBZshZrtZDiaWZzhCdnAhSjlKPe195XXrHyefdhv+b88WZXHm4oQx9IJJVKNfY2v52RPTdJ0VCO9euj0+no2qYrS+YukRrqPtVQh64z36rUUNu372bAgLEEBYVXOw0ljVLVkNySAOft3Jx5ysuNMycOImxKoPKkFs1JaN0UD3+DUlnnTELiHPbu7UNO7mHllD6YnCLlw29MZAPm9WtBuL/b3Z+IRFITuZ3MMXdUg1WeRaxrRAQpsbEcOX6EYS8OY9HsRXz44YeV1v/tcjOCw2w207VrV7Kzs/n++++Ji4vj22+/JTw8vJSoW7hwIX369CEiIoLdu3dz+PBhBg4cyOjRo3nllVdua5wNGzZk0aJFHDlyhO3bt1O/fn26devGxYtKwooTJ05gs9n4/PPPOXbsGB9//DGfffYZr7/+ern97tixg6FDh/L8889z7NgxVq1axZ49exg5cmS57WbPns2SJUtYtGgRx48fZ/bs2cyZM4eFCxfa6+Tn5/Pggw8ye/bs6/aRn59Pt27dUKlU/Pbbb+zYsQOTyUSvXr2w2Ww3Pa+cnBy6detGYGAg+/bt48MPP+Sdd97hiy++KHcO+fmFNGsWxsKFn5RbT3L/UWRTPmCNhQWAAAFdjiXTMDMPVCpsmKkzsmTrnimXdG9HbA7K56aDgxNetbsihCCv2GIPfSC37Ukkklula0QEp/fs4eTJkzz74rN8OudTPp738Z9qVZ1RTmqo+1lDFdCsWRiffPJBufWqBHEfkp2dLQCRnZ1d1UO5LqOOJok6vx0Qn59JF19OGCTm9n/c/npn8sti2rRp4uQnfYWY5irE96PFvv3PiE2/Bout29qIvX/0E2mZ50XglHUicMo6YbHaqno6EkmN4txbb4vYsEbi4qeflik7Nn+/SJmyTfw481vx655NovD0QXtZXmaGOHcqUaSmpor09PRKH9flvGJxKCVTJF3Mq7ButtkiDmbni7i8wqsn048LkbpfDOn7N/FEZKQwX74sCswF4ujFo6LTI51Ehw4dREZGhnh6QH/h5uoqDHq96BLZVcTHx9u7SE5OFk888YRwd3cXRqNRNGnSRKxfv14kJSUJFAVmfw0bNkwIIUROTo4YNGiQMBqNwsfHR3z00Ueic+fOYsKECfZ+AwMDxbvvviuGDBkiXFxc7G1jYmLEgw8+KPR6vahbt64YN26cyMtT5n/gwAEBiOTk5BvehzNnzgitViteeumlMmULFiwQgPj999+FEMI+hwMHDlR4f2/ElWfPpk2bblhnzpw5IigoqNx+PvzwQxEcHFxmvP7+/uW2e/zxx8Vzzz1X6tzf/vY3MXjw4DJ1r8x328494lBKpki4kCuEEOLnn38WarW61PMzKytLqFQqER0dfdPz+vTTT0WtWrVEcXGx/dyUKVNEWFhYuXPIyTkqsrMPC4ulSADihx9+KLf+zVJYWChiY2NFYWFhmbLqrhnuNtX1fow5liwe+/FbMX/sBDG3/+Pi478/KWLDGom1PR8Xjy14XIQvDRfHLx9XKmeliJ3/qyc2/Ros0tM3CoslX9hsNjHw8112/RQ4ZZ3Yk3S5aiclkdQwcrdtE7FhjcSpp/5Wpuzc7jSRMmWbiH1vq9i0Z5O4dHq/EEXKs8dsMom0hHiRevasSE1NFWazuVLHZbZYxaGUTHEoJVNYbRV/dzqUky8OZueLYqtVOZF9TtFQ/RQNVVyiPeIux4mOj3QU7dq3ExkZGWLw4MHCzdVV6PV68Wjnx8SJ4yfsfUoNVT73oobav3+//e/KbLFWuYYqKDgjsrMPi6KiC9VOQ0lPqWpIdokLuj7lKNlp2fbzDmofch3dAUHtzN+Vky51MJszAQgOnc2yuNcY9e+TSpGjBgd1DdhPJJHc4wghKLQUUmgtoshaRKGlkAJzQaW+Ci2FFFkLKfpT36ISXOT1ej0mk4nhw4ez/8BBln2+hHWrf0QIQc+ePTGbFa+CMWPGUFxczLZt2zhy5AizZ8/G2dmZgIAAvvvuOwDi4uJIS0tj/vz5ALz00kvs2LGDtWvXEh0dTUxMDPv37y8zhrlz59KiRQsOHDjAW2+9RWJiIt27d6dv374cPnyYb7/9lu3btzN27FgAvLy8UKvVrF69GmuJ9+mfWb16NWaz+bqreaNGjcLZ2ZmVK1fe9v0DZWXyiy++wM3NjRYtWtywXnZ2Nh4eHuX21bFjR1JSUtiwYQNCCNLT01m9ejU9e/Yst12nTp349ddfiY+PB+DQoUNs376dHj163PQ8iouLUalUODo62s/p9XrUajXbt2+/6Xnt2rWLhx9+GJ1OZz8XFRVFXFwcmZmZNz0eieQKmpQ1OFyYRkGh4imuERoOtHyA4+EtEI6CprWbEuzgQvGXnUj/9kEKjIoXlJNTCA4ORootNnadurp9w9/dQJiPS5XMRSKRlEYIYddQd0JHFVoKFA1lLdvv7eqoUhpq3z5FQ636L0IInuj1hNRQN4HUUDVfQ0m/5GqE2SY4nl9ISpHiVilOJpaUOOLl8ATul/bQpG4KLZ1+wT3sYXLqhZLj60tespIh5liainWH0+z91a/tdLenIJFIrkOhpZDI9VFVcu3dg3Zj1Br/UlshBLu27mL75u307NGTNWvWEL1xI81CG6BSGfhi8VeEt2nEmjVr6NevH2fOnKFv376Eh4cDEBwcbO/rysPU29sbd3d3AHJzc/nmm29YsWIFXbp0AWDp0qX4+fmVGcujjz7Kyy+/bD8eMWIEgwcPZuLEiQCEhoayYMECOnfuzJIlS/D392fBggW8+uqrTJ8+nTZt2hAZGcngwYPt44qPj8fNzQ1fX98y19PpdAQHB9vFx19l3bp1DBw4kIKCAnx9fYmOjqZ27drXrZuQkMDChQuZO3duuX1GRESwfPlyBgwYQFFRERaLhV69erF48eJy27322mvk5OTQqFEjHBwcsFqtvP/++wwePPim59OhQwecnJyYMmUKM2fORAjBa6+9htVqJS0t7bptrjev8+fPExQUVKpenTp17GW1atW66TFJ7m+EEFwwWUg/vxHPtAfQFuYCYHVwJD4sBL1Ny/d/W41rbQPi6Pfs9kkl30mRv2qbCoNByUycWxL2QKWCY9Oj0GscUMuFPYmkWlBkLaL3rkFVcu2/qqOEEOzcspMdm3cQFRXF2rVr2bplCw3r+gEqPp3/T1p1aiI1VDlIDXX/aCjpKVWNGHUsmW5/xJNQoATkNCcqgTrVQkXb/XMoJpUm1vN4kYGt8ePst6whLlkJaqZS6cg0KR9CLeq68dkzrfh6eNuqmYhEch9QGR5I1ZWN27bhXq8etZxr8cLAF+jxZA+GDx+ORqOhbZvW9noeHp6EhYVx/LhiGB8/fjwzZswgIiKCadOmcfjw4XKvc+rUKcxmM+3atbOfc3NzIywsrEzdNm3alDo+dOgQy5Ytw9nZ2f6KiorCZrORlJQEKKuO58+fZ/ny5XTs2JFVq1bRtGlToqOjb/peXLsKdSOWL19eahwxMTH2ssjISA4ePMjOnTvp3r07/fv358KFC2X6SE1NpXv37vTr169UXINr+x09ejQAsbGxTJgwgbfffpt9+/bx008/kZycbC+PiYkp1W758uUA/Pe//2X58uWsWLGC/fv388033zB37ly++eabm74fXl5erFq1iv/97384Ozvj5uZGVlYWrVq1Qq0uKyluNK+KuNEcJJI/Myr2NC12HsP7ZANaHc0Fi+LtpBaKl5MDajQ6BwCKiq4apNyMjWkYNh21WlmxvhLc3FmnwajTSIOURCK5ea75uNi4bRseTZqg1+sZOWAk3ft055mhz6DRaGh/jd7xqOUhNRRSQ0kNpSA9paoRx/MLAait1dDK1YgtTRFWKpWaNU/2waIz0N28CQCTxobVmgeo8fLqilftriSe1AIQ7OVM92ZlrdYSieRuUfrLjEFjYPPjP5OTlQWOehwcHPDyqtxsTpkFZlKzCnBx1BLoeXVFz6Ax3HJfndu2ZfHChag9XCk0FqLX6YnbHldhuxEjRhAVFcX69ev55ZdfmDVrFvPmzWPcuHG3PIY/4+RU2vMzLy+PUaNGMX78+DJ169WrZ//dxcWFXr160atXL2bMmEFUVBQzZsyga9euhIaGkp2dzblz58qsLJpMJhITE4mKqtjDrXfv3rRv395+7O/vX2rcISEhhISE0KFDB0JDQ/nqq6+YOnWqvc65c+eIjIykU6dOZYJUXpupxtXVFYBZs2YRERHB5MmTAWjevDlOTk489NBDzJgxgzZt2pRqd2X1bPLkybz22msMHDgQgPDwcE6fPs2sWbMYNmxYhfO8Qrdu3UhMTOTSpUtoNBrc3d3x8fEptapb0bx8fHxKZZsB7Mc+Pj7Ur1//unOQSP7M9kzFM8ol78qXHy0GqzMGWx6XqYNaOKDTK0apguJUAJwsRtp0WAfAvtMZvLfuuD24ubMMbi6RVDv0DnrWdlyB0BtBpcLLywsHB4dK699qs3H8vPJZ0sTXFfU1SW1uVUd1btuWhR98gHNQEHmGPIRKELsttsJ2UkMpSA1V8bxqooaST95qRHFJ5pjljepw7sv3ictTxBMqNcV6PTqbCuda6VAAZgdlf69O58Ef2ZP5fstZLuScAmS2GImkuqFSqTBoDJgdihAOejQazV/eUncjijQm9A4CvUZ7230bDQZCgoMxuxo4laV8rjRu3BiLxcLeP/bRLLQBABkZl4mLi6NJkyb2tgEBAYwePZrRo0czdepUvvzyS8aNG2dfLbs2NkFwcDBarZa9e/faRVB2djbx8fE8/PDD5Y6xVatWxMbGEhISctPzUqlUNGrUiJ07dwLw97//nSlTpjBv3jzmzZtXqu5nn31GQUEBQ4cOrbBfFxcXXFxuLvaMzWajuLjYfpyamkpkZCStW7dm6dKlZVbKrje/goICNJrSn/NXxLkQAoPBcMN2f+7fwcHBnvHlVrniQv/bb79x4cIFevfufdPz6tixI2+88QZmsxmtVllQiY6OJiwszO52fivvreT+RAhhj8PpWKz8HTmb1Dx8/A8Oh4eDAJMnoC4gMfFzskw7ADCKq/+v3+5N4WBKlv04xNv5ro1fIrlfEbeYfU6lUmFw0GNz0EOJpvrzc/B2sFht6B0Ub0mj1ljKKHWrGA0GGtSvj2O9esRnxmO2mglrFIbFYmH3nj0l2/cgIzNDaiikhpIaSkFaL6oRRSV/1Ef/M4/zBxPs59Uq5Y8tT5sNBemc8deTcukzAHRaTxb+fJLMArO9fgMvKagkkjvGbQiVe5nQ0FD69OnDuIkT+WD6NFycPZk5by7+/v706dMHgIkTJ9KjRw8aNmxIZmYmmzdvpnHjxgAEBgaiUqlYt24dPXv2xGAw4OLiwrBhw5g8eTIeHh54e3szbdo01Go1qgru85QpU+jQoQNjx45lxIgRODk5ERsbS3R0NIsWLeLgwYNMmzaNIUOG0KRJE3Q6HVu3buXrr79mypQpgLIaOGfOHF555RX0ej1DhgxBq9Xy448/8vrrrzNjxgyaNWtW6rpxcWU9xpo2bWoXBVfIz8/n/fffp3fv3vj6+nLp0iUWL15Mamoq/fr1AxTR8cgjjxAYGMjcuXPtaY5BWem6Eb169WLkyJEsWbKEqKgo0tLSmDhxIu3atbtuLIlr273//vvUq1ePpk2bcuDAAT766COee+45e52MjAzOnDnDuXPK9vGEk/E45RRRz9/P/mxZunQpjRs3xsvLi127djFhwgQmTZpk3zJwM/MaNGgQ06dP5/nnn2fKlCkcPXqU+fPn8/HHf06bXZq8vAISE5MxGBTP4qSkJA4ePIiHh0ep1V3J/UGe1YbBnM8DuSdwz3PABGhLjFSuWh++C/6OoU2Gcn7nJJItm+3tnFVXA8Ze8ZB6LiKILo29eSDA/W5OQSKR3AeEhIbQp08fXnjhBWZOewtnJ2dmzl0gNRQ1W0PFxcWhvpBHbS9v8FU8tapWQ+UTF3cCnU7ps1ppqErJA3iPUV3TGdffckjU+e2A+HjsFDG3/+Ni3tPPivnPfio+GfiKmPfucLFzZmdxaf3TYtOvwfZX7PE3Rf3XlNTFPx5MFXuTLguLteJUphKJ5K9x7u1pIjaskbiweHGZsmPz94uUKdvEjzP/K37ds0kUnj5oL8vLzBDnTiWK1NRUkZ6eXunjupxXLA6lZIpTF/MqrJtttoiD2fkiLu+a1K3px5V0xn2VdMbmy5dFgblAHL14VJy4rKQszsjIEE8P6C9cXVyEQa8Xjz7ymIiPj7d3MXbsWNGgQQPh6OgovLy8xJAhQ8SlS5fs5e+++67w8fERKpWq3HTG7dq1E6+99pq9XWBgoPj444/LzGPPnj2ia9euwtnZWTg5OYnmzZuL999/XwghxMWLF8X48eNFs2bNhLOzs3BxcRHh4eFi7ty5wnolhXMJa9asEQ899JBwcnKyp1teuXJlqTrXS8l85ZWSklJmbIWFheKpp54Sfn5+QqfTCV9fX9G7d2+xZ88ee52lS5fesM+KWLBggWjSpIkwGAzC19dXDB48WJw9e7bcNjk5OWLChAmiXr16Qq/Xi+DgYPHGG2+USil8ozGNe2Wqvc6UKVNEnTp1hFarFaGhoWLevHnCdk0K7Zud16FDh8SDDz4oHB0dhb+/v/jggw8qnPf69V9ft98rf09/lcpIZ3y/UJ3ux+mCIjFjcVvx0qIgsWDwG2Ju/8fFl32eFN/37iO+HTdHfLjnQ5GWlyYS/hUkNv0aLPb8ECCSv6gjTL8vEDabTRSaLKL/ZzvtGkoikdxZcrdtE7FhjUTiU0+VKUvbkyZSpmwTse9tFZv2bBKXTu8XoihXCCGE2WQSaQnxIvXsWZGamirMZnOljststYpDKZniUEqmsNoq/h51KCdfHMzOF8VX9ETOOUVD9VM0VFFyshBCiLiMOHH04lGRb8oXGRkZYvDgwcLVxUXo9XoR+XAXcTz2hL1PqaGuUtM01OhJU4TZoty3qtRQP/30bbXVUCohanC03huQk5ODm5sb2dnZ9v2lVY0QAv8th7ABr3/9f5hN8biaa9My+TSrwx/ig6D5ULctp7r0ISnpE1QqDX4Bk8h3iKLv58o+5RPvdUevrbz91RKJpCxp094h69tvqT1+HF4vvliqLHbBAVzP5bHf7TzOj3nQqU5t9PWU1LX5WZnkZGYiHJXte97e3pU6rox8E2czC3DRawmqIPNmjsVKUkExBgc1DZ30yskLJ8BSiKnYFWt+IVo/PyyuRhKzEtGoNYR5hJXMI4Pcy5dRqQzojLWo5VO5WT7z8/Px9/dn3rx5PP/885Xa982QkZFBly5dcHV1ZePGjRiNlbvN8l4ju8DE6YwCnHQaGlSDbU25uccQwoaTU0McHBwrbnCTFBUVkZSURFBQEHq9vlRZddQMVUl1uh9bL5xm7IYnMBa78PSOx7AW78emq0N+gwDCM1zpu+AlAOL+HcBZPx31DZE0CHgB/Fsx8l/7iI69GpNj6bNtiQyr3M9liURSmryY7aSMHIljk8YEf/99qbLze89j+e4kuc6Cc1FmHqjjgWedUHB0xmI2c+lMMraSmFLe3t6Vu33PZiP2XA4AzfzdKty+dzi3ACGgsbMenVoNuWmQex6LcMWcWYjaxQXHwED79r0gtyCMWiMWk4lLKacBFWqNN57+zjhoKi/vmNRQ1QshBEdSswElVpnGoWpzzBUWpmA2Z+Ho6IOjY+XFtq0MDSWz71UDThcWsyUjF/uOVGsRAI7mHHY3DSHQp2SfrdZIQYES38XTZyy9ltazG6QcNWppkJJIJPccBw4cYOXKlSQmJrJ//357at0r7ux3Gw8PDzZt2kSXLl3YtWtXlYxBIpFUTFJBMTEXztB7Xzf6/1Yba/F+AKxa5cukVqixWHK5dHETFz0VfaSp3RTqtsYqYNPxqwap2s6OhPu73f1JSCQSyW0gNZSkpiBjSlUxF4rNPLj7BGYhcM+6RPuDMZitZwDI9nLicj1/6qtVnPYzkFg3FpF+DIDzBd6YrQKNWoWrQcuTD/iXdxmJRFLZ3H9OpneMuXPnEhcXh06no3Xr1sTExNgDQFYFnp6evP3221V2fYlEUj6nC4vptPs4tXNjGZZVDCXLeiqhxsFJj4vNgKXwEMeOvcSly7+Bo2KUcjQoWim3yGz/CD/0djecHB2qfAVbIpHUIG6kEe9AWFKpoSQ1AWmUqmISC4sxC4GjWkW/XctxP30lmJmKIp3i/lbb+gcXausQKuUDTqNx56K5EXCWzg29+Gp426oZvEQikdwmLVu2ZN++fVU9DIlEcg9xutCEAGqZL6O2mRFA43M5BF66yDGXZmx1/DdxPZozJOc4AM55FpzzLdR+qBdTvz/MrsTLynlHDW5G7Y0vJJFIJNUYqaEkNQVplKpissxK+tFmTjqcLyjpPtXaUBwcm3NOm4Ae8FedplCrrOD5Bi3ilR91nM5IA5BiSiKpTpS7AlZTsvZdnYd0FpNIJFVBoc1Gi9wTtMg5DjZFHzkXFVLsqCfX6MC2cIgwqDCZlYW+lkey0WEgvVDFyj0p9n4a+dxcGnKJRFIV3Pu6SVUD5iCR3A2kUaqKyTSXpC625aIzqbAB7kUO+KftobihC4PU/8Etcii7zf8HwIFUA7Hn8+3tW9R1r4JRSyT3MVJfSCQSSZVivXicBqlvkpLrRx2hpMhO8/XnQr26CFsBflobTVTK4p3aKtBigBYDySowA+Ci1/DPoW1oJuNISSRVg1zUkkgk1yCNUlVMpkUxStXJSEeg/O6TtoeLbt7Ud8jnVDsbphKDFEBWsQuQT49mPrzWoxGBnpWb+UoikUj+jJDqUSKRVCPOnt9JjNFA+EUXEEpymBNNWyAcVQQJK6/4FKMmGQC9zRFeT2R/ShZ/xF8AwNNJR/tgz6oavkQiuWnujv6Q640SSdUijVJVTJbZgs5UhPeJYwirsqq3qcODuDo70sxjOyadGlCh0bgh9FEcjVfa1fMwSoOURCKRSCSS+478ggz67HoA9zw1oMSHsjooKaVD6rpRhECNBrfMAvxpwIYj5xmzYr+9vbtRVzUDl0jud1TlmH+kZUgiuW+RRqkqIqXIxMLT6WzPyGHEqrk45hbZy3R6DUJlQ+N0HHDETVeff5/9kDUHzwHnARlLSiKp7tR836KaP0OJRFK9EEJwIr+IzGMF1MrMtJ9Xo0etUaGxqagTrOE04KyqTasjR6FZAIkX8wDFQyrAw8ioh4OraAYSieSvUHPsVTVnJhJJZSKNUlXE/6Ve4v/OXaZB2k84lRikVGp39MIVg6MFj3p/4O2qpgAwOIeQeFGJI1Xf04h/LQNPhPtV4eglEkl5NhkZ2FIikUgqnyUpF3k38RwjLirhDtQ4UTdHh7Y4m0yXgxS2TiZNmEEF2ktnlEY6J3KLlFhSfVvX5fWejatq+BKJpMYidZ9EcjtIo1QVkV0SS6r1hYySMyrctE9Q+/z/aO+xmax6JgpQvKGMbk3JK1ay9M35ewvaBXlUxZAlEklFlOeWLpFIJJLb4lheIWphxeuSBQugs6pplvQHiWFNMLVKJCwsF1NJXddcM0KlJs4xnIRziqeUi6OUvRKJ5O4jY3NKJOWjruoB3K8UWG0ABCblAKBGR6c907noqsXRqQAAV9cHqFtvHI7u/cgpvJoxRiKRVCF/1fB0j9irRkx+FWN4OFpPT1yNrvRo24PFHy7GYrHcVr9btmxBpVKRlZVVOQO9CZKSkhg0aBB+fn7o9Xrq1q1Lnz59OHHiRKl669ato3Pnzri4uGA0Gmnbti3Lli0rVSc5ORmVSsXBgwdv+vrvvPMOjRo1wsnJiVq1avHYY4+xe/fuUn0+//zzBAUFYTAYaNCgAdOmTcNkMpXTq8Ly5ctp0aIFRqMRX19fnnvuOS5fvlxum9zcXCZOnEhgYCAGg4FOnTqxd+/eUnXy8vIYO3YsdevWxWAw0L51C/77r69L1Rk1ahQNGjTAYDDg5eV13Xt65swZHn/8cYxGI97e3kyePPmGf0M7duxAo9HwwAMPVDjvtWs38eSTo/D29rvl90Ny76O5dIj3D/XDalUW9oRaxeHm4SQ1fgAHo6KTXHOtBJ4pwK/Lajqr/4/um/3YHHdRKTPI0AcSieTO8dwkRUPpg4LQ6XQ81voxlsxdIjXUfaqhmjZtWq001Jo1P/Hkk6Pw8wurdhpKGqWqiEKbYpTS5ig/1Wj4pVtXLjcOAb0itlSGSPp8E0an2fu4nK/8g0mjlEQiudN0jYggJTaWI8ePMOzFYSyevZgPP/ywqodl52YEh9lspmvXrmRnZ/P9998TFxfHt99+S3h4eClRt3DhQvr06UNERAS7d+/m8OHDDBw4kNGjR/PKK6/c1jgbNmzIokWLOHLkCNu3b6d+/fp069aNixeVL8gnTpzAZrPx+eefc+zYMT7++GM+++wzXn/99XL73bFjB0OHDuX555/n2LFjrFq1ij179jBy5Mhy240YMYLo6Gj+9a9/ceTIEbp168Zjjz1Gamqqvc5LL73ETz/9xL///W+OHz/OC2PG8cFbr7Lpp/X2Oq1bt2bp0qUcP36cn3/+GSEE3bp1sxsKrFYrjz/+OCaTiZ07d/LNN9+wbNky3n777TJjysrKYujQoXTp0uWm7ml+fiEdO7Zk1qwZN1VfUrM4n/I1H3k44WBzAMDsoOF4kyagM+DurCR/qXOhkJDkAnINIZzJV2RuE19XHgypTbemdaps7BKJ5BpExZ5DoqoW827TqalrRATJe/Zw8uRJnhvzHJ/O+ZRP5n1SKUOrDKSGunsaasKECXzw1qts+WWDvU5VaqiCggI6dmzJjBlv3VT9u4q4D8nOzhaAyM7OrrIxPPdztHh14gAxb+DfxNz+j4tPBgwSSz57Wqxd+4DY9Guw2PRrsPh++z9F4JR1InDKOhH02jrR99MdwmK1VdmYJRKJEOfeeUfEhjUSFxYuKlN2bOEBkTJlm1g7c5XYtGeTKDx90F6Wl5Upzp1KFKmpqSI9Pb3Sx3U5r1gcSskUpy7mVVg322wRB7PzRVxe4dWTF44LkbpfDOn7N/FEZKQwX74sCs2F4ujFo6LTI51Ehw4dREZGhnh6wADh5uoqDHq96BLZVcTHx9u7SE5OFk888YRwd3cXRqNRNGnSRKxfv14kJSUJFJlnfw0bNkwIIUROTo4YNGiQMBqNwsfHR3z00Ueic+fOYsKECfZ+AwMDxbvvviuGDBkiXFxc7G1jYmLEgw8+KPR6vahbt64YN26cyMtT5n/gwAEBiOTk5BvehzNnzgitViteeumlMmULFiwQgPj999+FEMI+hwMHDlR4f2/ElWfPpk2bblhnzpw5IigoqNx+PvzwQxEcHFxmvP7+/jdsU1BQIBwcHMS6detKnW/VqpV444037MdNmzYV7777rv04q6BYNA5vIV6cOPmGfR86dEgAIiEhQQghxIYNG4RarRbnz5+311myZIlwdXUVxcXFpdoOGDBAvPnmm2LatGmiRYsWN550CTk5x0R29mGRkHDitt+PayksLBSxsbGisLCwTFl10AzViaq8H70WdhbvDn1SzO3/uJjb/3ExZ+A/xOzZE8TKL56xa6fUT72EmOYq/nfwjAicsk60fPeXuz5OiURyfXJjtovYsEYisc+TZcrS9qaJlCnbROx7W8WmPZvExTMHhCjKEUIIYTGZRFpCvEg9e1akpqYKs9lcqeOyWK3iUEqmOJSSKaw38V3rUE6+OJidL4qtVuVETpqiofopGqooKUkIIUR8Rrzo+EhH0a59O5GRkSEGDx4s3FxdhV6vF492fkwcjz1h71NqqPK5FzWUzWYTjcNbiJHjXhZmi/W6fd9NDVVQkCKysw+LEyf+qHYaSnpKVREBv3yN97k8hK0YAAeVFn//WIxOJdv51AYum5sD8LeW/pya9TirX+iEg/oe2QMkkUjsCCGwFRYiiooQhYWIwkJsBQWV+hKFBXCdvsVNrEZWhF6vx2QyMXz4cPYfPMCyz5ewbvUahBD07NkTs1nZNjNmzBiKi4vZtm0bR44cYfbs2Tg7OxMQEMB3330HQFxcHGlpacyfPx9QVpV27NjB2rVriY6OJiYmhv3795cZw9y5c2nRogUHDhzgrbfeIjExke7du9O3b18OHz7Mt99+y/bt2xk7diwAXl5eqNVqVq9ebV99+jOrV6/GbDZfdzVv1KhRODs7s3Llytu+f6CsTH7xxRe4ubnRokWLG9bLzs7Gw6P8uIEdO3YkJSWFDRs2IIQgPT2d1atX07Nnzxu2sVgsWK1W9Hp9qfMGg4Ht27fbjzt16sTatWtJTU1FCMG2rVs4fSqRBx959Lr95ufns3TpUoKCgggICABg165dhIeHU6fOVa+UqKgocnJyOHbsmP3c0qVLOXXqFNOmTSt3vhLJFVoeD8dYErQcwORYh0aNY/BqsNN+zmA1sFJ0Y+zKwwC4y2zFEsk9gaqc8AhCiDuqoWwFiobiOn3fro4qpaH27VM01Kr/IoSgV+8npIa6Ce5VDbV582ZOn0qk48OR1+1XaqiryL1gd5kvUi6w6nwmXTKNQA5qbUMcdKGYCs/hqN0FQGDwB/x4vA6bE5SsfDIGgkRSDbkFkSIKCzn7py/1GTeoeztogWIg7ppzYfv3oTIa/1J/Qgh2bd3F9s3b6dmjJ2vWrGHTTxtpGtIAlUrP54u+onnbRqxZs4Z+/fpx5swZ+vbtS3h4OADBwVfTrl8RCd7e3ri7uwPK/vxvvvmGFStW2F2Ply5dip9f2eyijz76KC+//LL9eMSIEQwePJiJEycCEBoayoIFC+jcuTNLlizB39+fBQsW8OqrrzJ9+nTatGlDZGQkgwcPto8rPj4eNzc3fH19y1xPp9MRHBxMfHz8X7p3V1i3bh0DBw6koKAAX19foqOjqV279nXrJiQksHDhQubOnVtunxERESxfvpwBAwZQVFSExWKhV69eLF68+IZtXFxc6NixI++99x6NGzemTp06rFy5kl27dhESEmKvt3DhQv7xj39Qt25dNBoNarWat2fPp13HB0v19+mnn/Lqq6+Sn59PWFgY0dHR6HQ6AM6fP19KTAH24/PnzwNw8uRJXnvtNWJiYtBopBSR3By1co1YAa1DMP45ek7WccLoqGQn9srS4X4pg0ttvmLqGhUOahW+bnqGdaxfpWOWSCTX8BfX1kVhIVl9+9uPcyppONdy5dvWyT+d/6s6SgjBji072LF5B92iurF27Vq2bt1KQ39fQMWn8/9Jq05NpIYqh5qioVp3iCjVn9RQZZGeUneZj5PTOZJXiKFQiYdQOyeb9kfWkK0DB60SwGzb6SAWbs3laKrykevnrr9hfxKJpPpxr/gz3sistnHbNtzr1cPd2Z0XBr5Ajyd7MHz4cDQaDW3btLHX8/DwJCwsjOPHjwMwfvx4ZsyYQUREBNOmTePw4cPlXv/UqVOYzWbatWtnP+fm5kZYWFiZum2uuS7AoUOHWLZsGc7OzvZXVFQUNpuNpKQkQFl1PH/+PMuXL6djx46sWrWKpk2bEh0dfTO3B8AuEspj+fLlpcYRExNjL4uMjOTgwYPs3LmT7t27079/fy5cuFCmj9TUVLp3706/fv1KxTW4tt/Ro0cDEBsby4QJE3j77bfZt28fP/30E8nJyfbymJiYUu2WL18OwL/+9S+EEPj7++Po6MiCBQt4+umnUauvSoGFCxfy+++/s3btWvbt28eMWbOZ+eZkdmzdXGq8gwcP5sCBA4rAbtiQ/v37U1RUdFP31Gq1MmjQIKZPn07Dhg1v+Z5K7j9mnUqj3c5jYFX+xtxyU8hyT8fbYEGlUbwMmqQ4UO9cEZdMyv9sIx8Xtk95lGGd6lfVsCUSyX3Ixm3b8GzaFL1ez8j+I+nepzvPDH0GjUZD+2v0jkctD8IaSg1VkzXU3LlzmfnmZH6P2VJqvFJDlaVmmNbuEaxCkGUpcYEUSoBzlcgkIyyXjoP+W3Iezucptvp29T3oEe5DvzYBVTFciURSSagMBupu+Y3czEyEzhGNRoOXl1elXiOzwERqZiHOei31Pa+u6KkMhlvuq3PbtixeuBAHDzcKjAU46hyJ317xateIESOIiopi/fr1/PLLL8yaNYt58+Yxbty4Wx7Dn3Fycip1nJeXx6hRoxg/fnyZuvXq1bP/7uLiQq9evejVqxczZswgKiqKGTNm0LVrV0JDQ8nOzubcuXNlVhZNJhOJiYlERUVVOLbevXvTvn17+7G/v3+pcYeEhBASEkKHDh0IDQ3lq6++YurUqfY6586dIzIykk6dOvHFF1+U6vvazCiurq4AzJo1i4iICCZPngxA8+bNcXJy4qGHHmLGjBm0adOmVLsrK2wNGjRg69at5Ofnk5OTg6+vLwMGDLCvehYWFvL666/zww8/8PjjjwMQGNqIXXv3888lCxjar5e9Tzc3N9zc3AgNDaVDhw7UqlWLH374gaeffhofHx/27NlTah7p6ekA+Pj4kJubyx9//MGBAwfsWwVsNhtCCDQaDb/88ku591Ry/7Eubj9d0n+0O6herlUbp4g8/Fw3AWBDg7UgDw3w9sYkoC61jBV/GZJIJPcGKoMB9+/+i83RACoVXl5eleohYrXZOJ6WCyiJEdTXhEu5VR3VuW1bFs6ahXNwMPmGfGwqG8e2Kduuylu0lBpKoSZpqPDwcDbv3Ms3ny/iuf697X1KDVUWaZS6i+RYrGhNRQSficdiSwMgvZ4R377p9jq1s504ma3EmXqkkRfPRgRVyVglEsn1KS/mQXlt1AYDqsJCcNSj0mhQ/8UtdTdCLTRQBCq9tsK+K5qB0WAgJDgYq6sTCVkJADRu3BiLxcLeP/bRNER5AGdkXCYuLo4mTZrY2wYEBDB69GhGjx7N1KlT+fLLLxk3bpx9teza2ATBwcFotVr27t1rF0HZ2dnEx8fz8MMPlzvGVq1aERsbW8ptuiJUKhWNGjVi504l/szf//53pkyZwrx585g3b16pup999hkFBQUMHTq0wn5dXFxwcXG5qTHYbDaKi4vtx6mpqURGRtqzsVy74gZcd34FBQVlxLiDg+J9K4TAYDCUe1+cnJxwcnIiMzOTn3/+mTlz5gBKth2z2VxmDGoHNbaSjLHXQwiBEMI+r44dO/L+++9z4cIFvL29AYiOjsbV1ZUmTZqg1Wo5cuRIqT4+/fRTfvvtN1avXk1QUBBOTk43fU8lNRuTzUad5OmcvOBAbasnAGaDgZDQ3+x13HOKcSzOBKBAOKJWwaONvKtkvBKJpPJRqVSo9HpUesUopTYaUVeiUUrYbGBQdqyojcZSRqlbxWgw0KB+fRzr1eNk5klMVhNhjcKwWCzs3rOHUH9lu1tGZgZx8VJDSQ0lNRRIo9RdJctsZdBPc/E6d9U9z2xQtubZ8p1wjQ/gg8ud2WVTUl26G+Qqn0QiqQYIJd5Anz59GDtxIh+88zYuzh7MnDcPf39/+vTpA8DEiRPp0aMHDRs2JDMzk82bN9O4cWMAAgMDUalUrFu3jp49e2IwGHBxcWHYsGFMnjwZDw8PvL29mTZtGmq1ukLj35QpU+jQoQNjx45lxIgRODk5ERsbS3R0NIsWLeLgwYNMmzaNIUOG0KRJE3Q6HVu3buXrr79mypQpgLIaOGfOHF555RX0ej1DhgxBq9Xy448/8vrrrzNjxgyaNWtW6rpxcXFlxtK0aVO02tKx//Lz83n//ffp3bs3vr6+XLp0icWLF5Oamkq/fv0ARUw98sgjBAYGMnfuXHuaY1BWw25Er169GDlyJEuWLCEqKoq0tDQmTpxIu3btrhtL4gpXUg+HhYWRkJDA5MmTadSoEc8++yygrCJ27tyZyZMnYzAYCAwMZGP0r6xb/S2vvzsLULYLfPvtt3Tr1g0vLy/Onj3LBx98gMFgsAcJ7datG02aNGHIkCHMmTOH8+fP8+abbzJmzBgcHR0BytxXb29v9Hp9mfN/JiMji5SUVDIzlefjlffDx8en3HsmuXe5WJRLwHE36qU72s8VeykuU7ZCA0EXL+Obroj5VOHJwEfb8Y9Hw3DUOFTJeCUSieTPhISG0KdPH0aPHs3MaW/h7OTMzLkLpIaiZmuoLVu2sG71t7zy9gygOmioTJKSTnD5smKArU4aShql7iJn8i7hedEFKELl4I1aG4QqSNlH7O4awETzy6TaCgnwMODnZqBLY7nKJ5FIqg9Lly5lzAsvMHTkKMxmMx07PMiGDRvsYsJqtTJmzBjOnj2Lq6sr3bt35+OPPwYU1+Hp06fz2muv8eyzzzJ06FCWLVvGRx99xOjRo3niiSdwdXXl1VdfJSUlpUyGkz/TvHlztm7dyhtvvMFDDz2EEIIGDRowYMAAAOrWrUv9+vWZPn06ycnJqFQq+/GkSZPs/UyaNIng4GDmzZvH/Pnzyc9XgiavXLmSgQMHlrnu9c6lpKRQt27dUuccHBw4ceIE33zzDZcuXcLT05O2bdsSExND06ZNAWXlKyEhgYSEhDLty8v2M3z4cHJzc1m0aBEvv/wy7u7uPProo8yePbvce5adnc3UqVM5e/YsHh4e9O3bl/fff7+UGPzPf/7D1KlTGTx4MBkZGQTUq8fYV99k0LDnASWLUExMDJ988gmZmZnUqVOHhx9+mJ07d9pX9BwcHFi3bh0vvPACHTt2xMnJiWHDhvHuu++WO76bYePGzbzwwpv24yvvx7Rp03jnnXduu39J9SMx5yz1LvkAmag1AejUgVi8FA9Oh0w3QpJTuOj7CK8YhvDbOQfedHWSBimJpLpzmxntKiOz8N1m6dKljB83jqEjR2Eym+nYLoK1P66TGqoGa6jAwEDGvvom/YY8B1S9hlq/PppRo64GvK9OGkol7sX/6tskJycHNzc3srOz7ftL7zRmm2DpH3vI/egjEPl4EoFTXja6cetx1hUQ6NKdp9b1JrfYwm8vdybYy/mujEsikdwa5999l8wVK6k9Zgxe48aWKotddBDXs7kcdEvH8FgtIurURl9PSV2bn51FTkYGwlGPRqOxP3wqi8x8EymZBbjotQTVdiq3bq7FyqmCYvQOasKcSoTLxRNgLsRU7Io1vxCtry9WN2cSshJQq9Q09mxsn0fupYuoVHq0eg88/Mq/1q2Sn5+Pv78/8+bN4/nnn6/Uvm+GjIwMunTpgqurKxs3bsRYydss7zWyC02cvlyAk05DA++qfy7l5sYihBUnp4Y4ODhW3OAmKSoqIikpiaCgoDJivio0Q3Xmbt+PtTHfc3LxtyDyqaWOxCkzGfdXfkajtmI440Wn5OOssETyukUJbrvw6Zb0anHj1W6JRFJ15O3YQcrzI3AMCyP4xzWlytL3pWNeFU+us+BclJkWPp7U9m4Aji5YzWYunknGpjfaY0r92bvmdrDabBw7pySYaubnVuH2vcO5BQgBjZ316NRqyD0PuWlYcMWcUYja2RnH+vVJyEyg2FpMfbf6OGmd7PMAFWqNNx5+zmi0lZd3TGqo6oUQgiOp2YASq0zjULU55goLz2I2Z+Lo6IOjY+XFtq0MDSWz790FLhSbabHzKCtij4NQLMjBid9jrb8XJ5sZt2wz2xMbk1usuNK5GSrvQ1Yikdwh7j97/h3hwIEDrFy5ksTERPbv38/gwYMB7O7sdxsPDw82bdpEly5d2LVrV5WMoXpxr+SSlNRU8k+dBlEAgEP+VszdDqNRK3FVXKzKl8g8jDT1c6VHMx86h1VuEgmJRFJ53Exczqp56lTVs+72tKTUUJKagty+dxc4lFtAZrGZB88ml5xx4PCLdWlc/zC+x6DRpRzGFyvByAxaB1ylUUoikfxF7kXn17lz5xIXF4dOp6N169bExMRQu3btKhuPp6cnb7/9dpVdXyKRKJ9lGy9lczblPOqSL275T+oIq3+WSyeb8oUxge9TlaQxZ4Q3S4e3xdu1/C0rEolEUtOQGkpSE5BGqbtAVnERL6x8C6dcxQrvgDPBAfsAKAh+gv7n6mFy9mN8u3q0C/JEW8WufRKJpDzKWU2rcKHtHjAY3dJi4e3Pp2XLluzbt++2+5FIJDWLbRcvsueDgTifU7Z/qHDE3VnJsKfPcebLS+kc8fg7S88FsM3Wgjflgp5EIrnLVLWqkxpKUlOQRqm7wIlDP9sNUqDGoPLC0cEMwEX/Yfwh0mjj6cRL3cKqbpASieQ+5Fo5JbdpSSSS6sPug8txSb0aj0Tj4IOX5yEAvItsBFstvHkuhJ22Zrgbtei1Mri5RCKpplS19UoiqeZIo9Td4JCSJQaVE0aXZ9FfXIPHORuuuTYGXM4AkFv2JBJJ9aMCO5XUWBKJ5E6Rl3gONwCVIzqn3miL8lGrfqKgwBWfbBM4g6PRjQntQ3kwtOq2qkgkEslNI9f/JJLrIo1Sd4Fa8RcoBrQ2NZ1jXmJft7o0TMjnss2VS6ZiAMJ8XKp2kBKJRCKRSCTVBO1ZEwAqlQH3QguFlhOci/k7Il9FI+PnALjX9mZS14ZVOUyJRPJXuAfjX/4lbmiEuk/mL5HcJNIodQfJt1r57XIuwqx88KhUDmQ+Z8araQr6vWZOizoM7RhI31Z1aebvVsWjlUgkkoqRi3wSieRuYLyshDnQWWyEx37CvmF+LHPKoYXXBVrmt2Nztg8FxoAqHqVEIpFUjJBGKImkXKRR6g7y8f4jiK9nYTTnAyA0aora2Mi+WIeFtf/B0rN+vObrSosA96odqEQi+QvcWGCo7KYbKUIkEonkr6AqVr7GCbWKy58UUMeUznsHLlHfIuhUNB6Ap51ltj2JpMYgV70kkvsWaZS6gxRsWIBnRr79WK01EB/XkcwMD77IVdzNXfUylpREIpFIJBIJQMKleL7/32c4mHIBUKtVmG06Us40o6f5f6QKLx5t5E0dV0dGPhRUxaOVSCS3hOovWp6kwUoiqdFIo9QdxHBeyRqj1oagMURgUv1Ov/QtbLC0BsDbxZHWgbWqcogSieRWKUdQlaeZ7rieugMXUEkVKCmh+vn8Vb8RSSqHZf95j1oxmfZjBxX8vmsAGqFGrYI8oWdaryYEejpV4SglEolEIrlXqX4aSl3VA6jJGPJtALgUFtLi+HcYnM8RwHn0RhdOzezJ7te74OMmXc8lEkn1YcQrr2IMD0dbuzbOBmd6tO3Bpx9+isViua1+t2zZgkqlIisrq3IGehMkJSUxaNAg/Pz80Ov11K1blz59+nDixIlS9datW0fnzp1xcXHBaDTStm1bli1bVqpOcnIyKpWKgwcP3vT133nnHRo1aoSTkxO1atXiscceY/fu3aX6fP755wkKCsJgMNCgQQOmTZuGyWSqsO/ly5fTokULjEYjvr6+PPfcc1y+fLncNtu2baNXr174+fmhUqlYs2ZNmTrff/893bp1w9PTE5VKxeFDN56vEIIePXrcsK9ly5bRvHlz9Ho93t7ejBkzplT5zz//TIcOHXBxccHLy4u+ffuSnJxc7jxffPFNMjKybnuekuqLOVn5rFGp3XDQNceocwfAQSiSNVH44yK9zCUSSTXkuYmKhtIHBaHT6ejSqgtL5i65RkP9tcU+qaHuTQ1V3nyrQkONGvVytdVQ0ih1B9FYFKOUW246essJXP0UEXXeEIparUL1V11YJRKJ5A7SNSKClGPHOHbiGMNeHMbiOYv58MMPq3pYdm5GcJjNZrp27Up2djbff/89cXFxfPvtt4SHh5cSdQsXLqRPnz5ERESwe/duDh8+zMCBAxk9ejSvvPLKbY2zYcOGLFq0iCNHjrB9+3bq169Pt27duHjxIgAnTpzAZrPx+eefc+zYMT7++GM+++wzXn/99XL73bFjB0OHDuX555/n2LFjrFq1ij179jBy5Mhy2+Xn59OiRQsWL15cbp0HH3yQ2bNnVzi/Tz755IbPsY8++og33niD1157jWPHjrFp0yaioqLs5UlJSfTp04dHH32UgwcP8vPPP3Pp0iX+9re/lTvPffuOMG7c9Nuep6T64prjBYBaG4zW+CjpJQYoRwT9i9/idV7ERS8d/SUSSfWka0QEyXv2cPLkSZ4b8xyfzvmUTz76pKqHZUdqqLunocr7rl81Gupg9dVQ4j4kOztbACI7O/uO9G+z2cSFjHPio4HPibn9HxefP/u0WPDJcLHgjbdFxynLxNgV++/IdSUSyZ0n7d33RGxYI3Fh/vwyZbGLDoiUKdvEupmrxaY9m0Th6QP2svysTHHuVIJITU0V6enplT6ujPxicSglUyReyK2wbo7ZIg5m54sTeQVXT144IUTqfjGk79/EE5GRwnzpkii2FIujF4+KTo90Eh06dBAZGRni6QEDhJurqzDo9aJLZFcRHx9v7yI5OVk88cQTwt3dXRiNRtGkSROxfv16kZSUJFB8he2vYcOGKWPJyRGDBg0SRqNR+Pj4iI8++kh07txZTJgwwd5vYGCgePfdd8WQIUOEi4uLvW1MTIx48MEHhV6vF3Xr1hXjxo0TeXl5QgghDhw4IACRnJx8w/tw5swZodVqxUsvvVSmbMGCBQIQv//+uxBC2Odw4MCBCu/vjbjy7Nm0adMN68yZM0cEBQWV28+HH34ogoODy4zX39//pscCiB9++OGG5Vfmu23XHnEoJVOcTC/9d3XgwAHh7+8v0tLSyvSVkZEhDAZDufNctWqV0Gg0wmq12s+tXbtWqFQqYTKZbjjPOXNeF35+3sJiKayUeV6hsLBQxMbGisLCsv3eac1wr3Gn78es5yaIuf0fF/98crDY37yD+Pj5V8SHs3uIH9/pIN773zGxJe7CHbmuRCK58+Tt3CliwxqJxF69y5Sd33depEzZJo6/t1Vs2rNJXDxzQIiiHCGEEBazSaQlxIvUs2dFamqq/TlRWVisNnEoJVMcSskUVqutwvqHcvLFwex8UXTlGZaTpmiofoqGKkpKEkIIcTLzpOj4SEfRtn1bkZGRIZ4ZPFi4uboKvV4vHu38mIg9etzep9RQ5XMvaqgDBw7Y/67Mlqt6p6o01Lx57wo/P29RVHRz30PupoaSnlJ3gKkz/sb/jR6JzZYOgMVRzeXMQHJ0hQzv+SCv92xUxSOUSCR3gys7toUQmE1WLCab/WUutlbqy1JsxWqyYjGVPq88U24PR70jJpOJ4cOHc+DgQZZ9voR1q9cgbIKePXtiNiup28eMGUNxcTHbtm3jyJEjzJ49G2dnZwICAvjuu+8AiIuLIy0tjfnz5wPw0ksvsWPHDtauXUt0dDQxMTHs37+/zBjmzp1LixYtOHDgAG+99RaJiYl0796dvn37cvjwYb799lu2b9/O2LFjAfDy8kKtVrN69WqsVut157V69WrMZvN1V/NGjRqFs7MzK1euvO37B8rK5BdffIGbmxstWrS4Yb3s7Gw8PDzK7atjx46kpKSwYcMGhBCkp6ezevVqevbsWSljrYiCggIGDRrE4sWL8fHxKVMeHR2NzWYjNTWVxo0bU7duXfr3709KSoq9TuvWrVGr1SxduhSr1Up2djb/+te/eOyxx9BqtTec548//kLXrg/dlXlKqgadRVk5di7IQl+cRT2LhlcKdlDLoua1Ho3o3NCrikcokUhum1vUJkKIO6qhzCUaymqyYiquWEfd2P+lbF29Xo/ZZGb48OHs279f0VCrvkUIQe8+vaSGugmkhqocDfXDD+urrYaS/s+VTJ4pD5cELaB8wKjUbljcHAFw1zvyj4cbVOHoJBJJZVGesefPYsVisvHvtw7d2QHdgH/M74zW0eEvtRVCsGvrLnZs3kHPHj1Zs2YNv/78M00aBKFS6fls0T9p0a4xa9asoV+/fpw5c4a+ffsSHh4OQHBwsL2vKyLB29sbd3d3AHJzc/nmm29YsWIFXbp0AWDp0qX4+fmVGcujjz7Kyy+/bD8eMWIEgwcPZuLEiQCEhoayYMECOnfuzJIlS/D392fBggW8+uqrTJ8+nTZt2hAZGcngwYPt44qPj8fNzQ1fX98y19PpdAQHBxMfH/+X7t0V1q1bx8CBAykoKMDX15fo6Ghq16593boJCQksXLiQuXPnlttnREQEy5cvZ8CAARQVFWGxWOjVq9ddc7WeNGkSnTp1ok+fPtctP3XqFDabjZkzZzJ//nzc3Nx488036dq1K4cPH0an0xEUFMQvv/xC//79GTVqFFarlY4dO7Jhw4Zy59mjxyPMm1e+a77k3sbBYsEC6IsLSk4on19FagMaB7mWKpHcj1hMNn6cn3rNmdt7NpfHzj8d/yUdJQRCCHZs2cGOzTvoFtWNtWvXsm3rVkL9Fc3x6fx/0qpTE6mhykFqqMrVUD17PlZtNZR8ulcyR+JjMZh0AOic++OmeRzXbAtjWIa7m7GKRyeRSCQVs3HbNtwDA3F1cuWFgS/Q48keDB8+HI1GQ9s2bUpqCTxqeRIWFsbx48cBGD9+PDNmzCAiIoJp06Zx+PDhcq9z6tQpzGYz7dq1s59zc3MjLCysTN029usqHDp0iGXLluHs7Gx/RUVFYbPZSEpKApRVx/Pnz7N8+XI6duzIqlWraNq0KdHR0Td9L3Q6XYV1li9fXmocMTEx9rLIyEgOHjzIzp076d69O/379+fChQtl+khNTaV79+7069evVFyDa/sdPXo0ALGxsUyYMIG3336bffv28dNPP5GcnGwvj4mJKdVu+fLlNz3fili7di2//fYbn3zyyQ3r2Gw2zGYzCxYsICoqig4dOrBy5UpOnjzJ5s2bATh//jwjR45k2LBh7N27l61bt6LT6fj73/9uN/heb55nzpxj4sQZd3yekqrDI/8oADaNlcPh4egczKQJD3Yau1TxyCQSyW1TXgZjdc2Itbtx2zY8mzVDr9czot8IuvfpzuAhg9FoNLRv395ez6OWBw0bSg0lNVRp7qyGOlttNZT0lKpkjm3/HSGKAGh6fCWawlwcWjuCsKEO7FjFo5NIJLdNOYJK3KBMo1PzzHstyMnIQDgacHBwwNvbu1KHlVVg4mxmAU6OGoJqO5e69q3SuW1bFi9YgKZ2LfIN+ei0Ok7uOFlhuxEjRhAVFcX69ev55ZdfmDVrFvPmzWPcuHG3PIY/4+RUOv17Xl4eo0aNYvz48WXq1qtXz/67i4sLvXr1olevXsyYMYOoqChmzJhB165dCQ0NJTs7m3PnzpVZWTSZTCQmJpYKLHkjevfuXUpo+vv7lxp3SEgIISEhdOjQgdDQUL766iumTp1qr3Pu3DkiIyPp1KkTX3zxRam+r83c4urqCsCsWbOIiIhg8uTJADRv3hwnJyceeughZsyYQZs2bUq1q1OnToVzuFl+++03EhMT7Su1V+jbty8PPfQQW7Zssa+aNmnSxF7u5eVF7dq1OXPmDACLFy/Gzc2NOXPm2Ov8+9//JiAggN27d9OhQ4frzlOlepOoqKHMmpV2R+cpqTqsJZElztavw+W6TQg7n8j6x37labltTyK5b9Ho1PSZ4I9NbwSVitq1a9u3KVUGVpvgeFo2AI193XC4xkB2qzqqc9u2LJw5E+cGDSgwFmDFytGtRytsJzWUgtRQd05DaTTv8//s3XdYVMf6B/DvLuyyy+6ySJMqghRB0dgLRkREwARJYg0G0aiRRCyxoSYGJajRgN1ryU/Rey8ar0bRoMagsaASrNhQiAgWQAWRpded3x+EE1e6Uizv53n2edxz5sy8cxbCm9k5M4MGDcP33y9+7XKoN3am1IYNG9C2bVuIRCL06tUL58+fb+mQAAD6+ZoAKwYAtMp5AGjwcee9UXg86RpGuzm1cHSEkJbA4/EgEKpBXcjnXgINtUZ9qWuoQU2oBnWh6vGX2eVTUyyGlaUl2rRpA3X1iu8u7OzsUFZWhguXLnLlsp49RUJCgsofTjMzM/j5+WHfvn2YNWsWfvrpJwD/fFv2/NoElpaWEAgEuHDhAndMoVDUa7p3165dER8fzyUrz79q+maOx+Ohffv2yM/PBwAMHz4c6urqCA0NrVJ206ZNKCgowNixY+uMRSaTqbQvFotrLKtUKlFcXMy9T01NxYABA9CtWzeEhYWBz1f9s/x8vZUDmQUFBVXKqf39iBNjDGKxWOU6mUxWZx/qa968ebh27Rri4uK4FwCsWrUKYWFhACqmjAMVa19UysrKQmZmJszNzevsg1KprLEMn988/XwXvK55VPnfD0CXCCp+j3M7tMLE9y1h05o+X0LeVTwer0lzKMHfOZSasOrxhuZRmmIx2rVtizZt2kCgXjFwZtveFmVlZYiNjeXKZT3LQmIi5VCUQzVfDtVc/XwZb+RMqd27d2PmzJnYtGkTevXqhdWrV8PNzQ0JCQmNPvugodSMn6BykTseA9Lb6MGse1d0NNVu0bgIIeRlMTBYW1vDy8sL/tOmY9mi7yCTtsLSkJUwMTHhnoufMWMGPDw8YGNjg2fPnuHEiROws7MDAJibm4PH4yEyMhJDhgyBWCyGTCaDr68v5syZAx0dHRgYGCAwMBB8Pr/OJDAgIAC9e/eGv78/Jk6cCIlEgvj4eERFRWH9+vWIi4tDYGAgfHx8YG9vD6FQiFOnTmHbtm0ICAgAUPFt4IoVKzB79myIRCL4+PhAIBDgwIEDWLBgAYKDg9GxY0eVdp9PEip16NChyje2+fn5WLJkCYYOHQojIyNkZmZiw4YNSE1NxYgRIwD8k0yZm5sjJCSE2+YYQLWLX1by9PTEpEmTsHHjRri5uSE9PR0zZsxAz549q11LolJeXh7u3LnDvU9OTkZcXBx0dHS4b0azsrJw//59pKWlAQDu/JUIiaIIZibGsDKQwtDQsNrY2rRpAwsLCwAV2zh7eXlh+vTp2LJlC7S0tDB//ny0b98ezs7OAIAPPvgAq1atQlBQED799FPk5uZiwYIFMDc3R5cuXWrs59y5S9GtW8dX7ue77nXOo8oqV+XT4GEgTuGZxoAWjYcQQl6VlbUVvLy84Pfll1j63beQSiRYGrIOJsaUQ73NOVRCQgJ4j3Ohp28AGGm1eA41a9Z3f+dQNd+fFsuh6rUf4GumZ8+ebMqUKdz78vJyZmxszJYtW1av65tyO+P96+exkJEfsJXDPdic775n/w38lJ27eqvuCwkhb4T074NZvG179nj16irnbm6IYw8CTrNDS/eyY+ePsYJ7V7hz+dnPWNrdOyw1NZU9evSo0ePKyi9mVx88Y0lPcussm1NaxuIU+ex2XsE/B5/crtjOeFjFdsalmZmsuKyY3ci4wW5m3qxoIyuLfTp6FNOSyZj47+2MExMTuSr8/f1Zu3btmIaGBtPX12c+Pj4sMzOTOx8UFMQMDQ0Zj8erdTvjnj17snnz5nHXmZubs1WrVlXpx/nz55mrqyuTSqVMIpGwTp06sSVLljDGGMvIyGDTpk1jHTt2ZFKplMlkMubg4MBCQkJUttBljLGIiAj2/vvvM4lEwm23vGvXLpUy1W3JXPl68OBBldgKCwvZxx9/zIyNjZlQKGRGRkZs6NCh7Pz581yZsLCwGuusy9q1a5m9vT0Ti8XMyMiIjRkzhj18+LDWa06cOFFtW5WfRW0xTZ09v8Z6Uc2WwQqFgn3++edMW1ub6ejosI8//pjdv39fpcyuXbtYly5dmEQiYfr6+mzo0KHs1i3Vv5cv9nPkyA/ZrVtRrKys6rbDDennixpjO+M3yavkUU19PzaOdmUhIz9ga+ePYCxQix3asaJJ2iGENL+8mBgWb9ueJX3oWeXc4yuP2YOA0+zW96fYsfPHWMb9K4wV5TDGGCsrLWHpdxJZ6sOHLDU1ldv2vrGUlSvZ1QfP2NUHz1hZubLO8tdy8lmcIp8VVeYTOekVOdSIj9mHzs6s6O5dxhhjd57dYTcybrDc4lyWlZXFPhszhmnJZEwkEjHn/i4s/sY/f/Moh/rH25ZD+X0dwErLyquttzlzqNGjP2a3bkWxoqLHr9TPFzVGDsX7+2a8MUpKSqCpqYm9e/fio48+4o77+voiOzsbBw4cqLOOnJwcyOVyKBQK7vnSxrI3aAru3bwHjbIy9OuYBRvePTz+4josjFv2m0dCSON4FLwEz/77X8g/+gjaI0cCAEQdO4AvFCL+X1ehdT8Hd2V54A+Swc6wNTRa6UIkkaIkrwCKrKdgGmLw+XzIJBKoqalBpNk4GyA8KyjBg6wCiAVqMNb+Z+qzhoAP9Rem7+aWleNuQTGEfB7aiCqmaYuy7kCtrAAlRVKUFxRDXVsLSqkIDwozwANgpGMO8PkoyctHUVY2wBNCTV0GibYGV6+6QAiBhvorLVaan58PExMThIaGYsKECS9dz8vKysqCi4sLtLS0cOTIEWg20ufzplIUluLe03yIBGow0RZDqM6HoAV3QMvNjQdj5RCLzcDj/fPNKo/Hg5ray39WRUVFSE5OhoWFBUQikcq5pswZWsKr5lFNfT+CvYdDXF4EU1s1jOKfRKb7Ruj19m70dgghzS//zz9xf9x4CExNYfz3ejgCUxMIDAzwJO4JSn5OQKEUeOzKg5WRIaSaUgi0pFDnayDjXgq3ppRMIgGfz4emVAIe79X/JpUrGW6mVawpZakn4WYaqavxoKFedee967kFUDLAXCyEgMeDoOAJhHmPUKaUoDS7BHwNIdQNdJFWmIliVgYdqR5EIhmU5eXIS30EAOCp6UAiF4L/999Uvpo6BBoCqKm/fH8oh3r9XHuYDQBoqyuBUJ0PkeDldsRuDIWFD1Fa+gwCgQ4EAm2Vc2pqIvB4LxdbY+RQb9zje5mZmSgvL6+yGFfr1q1x+/btaq8pLi5Wef40JyenyeIrtXBAefwDZInleI8XAwYeLAyr37qSEPIG+nvARRERAUVEBADA6uQJ8A0NuTXQ20CG3HIJBEwHuTllKFNXQIh/ntFXKpVQ5OaCDwbDRvqDXTkMVFhajqSMPO64hZ4EMlH1CU6JkuFOQcV/G62USkgAoKwQAB9l2TlAdg4ql5tMxT0UCwCNEj6kUAdYCcpLnyLnn9nS4KnpQs9UW2WB0LpcuXIFt2/fRs+ePaFQKBAUFAQANW6V29R0dHRw7NgxbNiwATExMdw2y++qyk+y6O+fK2NtMfSkGrVe0xwKCx+ovOfzBZBK27dQNG+WhuZRzZlDAcAFnR5QKoEV5TsAPqCnLW/S9gghzejvAaTShw9xz7tisLn1t99C57Mx3ECQgMeDvFwCTWUrKAsEeMxPh4mWhUo1uX+vayQSi19pEIcL67l/383M5/6tKxHCpFXNedq9whIAgH5JOYwB8MoKAKhDWVyCkgfpqPw/wGfFGUiXZoLHAJ2/80FWnoW8rOdi4Esh09WFplbdO9ZVohzqzZHyNB9SDXVY6kvrLtzESkuzUFqapXJMIrGCmlrN63k1tTduUOplLFu2DIsXL26Wtgb06omoh3HgK8sBWTvw7D4E+G/sevKEkBdoeXig4MJFKAv+SVp4fy8cqNfXGE8f5kLJlGAAlGAATwk+TwihpiaEeUKUMCXY3+kPvxG3P5ZoqEMiVEfZ3wscVuJXs66AphofUnU+SpT/TJRVaLSCoPgp1MQAK2eoPFMGHhgPUFcTgKnxAA2gvBRQK1fDizW/bGIYEhKChIQECIVCdOvWDdHR0dDTa7nBfF1dXXz33Xct1v7rRFOoBomGOsrKK36u1F5i4fzGJBTqobT0WZXjz8+aIo2rOXMoANjZ6STy8vOhwxcD8vcBc8dma5sQ0rTEnRwg6dsXJakPuWNqsor/Sdex08FtsTr4KOVyKMZTQp2vDr6aGsQyGQpLSqF8fp+uRvqTxOfzoCvVQF5RqcpxtRpmBusJ1ZFd+s+i44VCGQrLc6GhoQS/mIH9nYopAZTzeOCpqUH4d65YqgGol/LAZy9s5KHGf6n/ZaQc6vWmL9NATmHFz1VLzjQHAIFAG+Xlhaj4yXxRy+Z378Tje9V9y2dmZvbWTMUnhLxeapvGSgh5/dDjezXnUZRDEUKaE+VQhLxZGiOHeuOm8FSOAh8/fpw7plQqcfz4cfTp06faazQ0NKClpaXyIoQQQgh51zQ0j6IcihBCCCFN6Y18fG/mzJnw9fVF9+7d0bNnT6xevRr5+fkYP358S4dGCCGEEPJaozyKEEIIIa+LN3JQatSoUcjIyMB3332HR48e4b333sNvv/1WZdFOQgghhBCiivIoQgghhLwu3shBKQDw9/eHv79/S4dBCCGEEPLGoTyKEEIIIa+DN25NKUIIIYQQQgghhBDy5qNBKUIIIYQQQgghhBDS7GhQihBCCCGEEEIIIYQ0OxqUIoQQwhk3bhx4PB54PB6EQiGsrKwQFBSEsrKyV6r35MmT4PF4yM7ObpxA6yE5ORne3t4wNjaGSCSCqakpvLy8cPv2bZVykZGRcHJygkwmg6amJnr06IHt27erlElJSQGPx0NcXFy921+0aBHat28PiUSCVq1aYdCgQYiNjVWpc8KECbCwsIBYLEa7du0QGBiIkpKSOusODw9H586doampCSMjI3z++ed4+vRprdecPn0anp6eMDY2Bo/HQ0RERINjBoAlS5agb9++0NTUhLa2drVt3b9/Hx988AE0NTVhYGCAOXPmqPwMPf9z9vyrQ4cOXJlly5ahR48ekMlkMDAwwEcffYSEhIQ670194iOEEEIaG+VQlENRDvVyaFCKEEKICnd3d6Snp+Ovv/7CrFmzsGjRIvz4448tHRanPglHaWkpXF1doVAosG/fPiQkJGD37t1wcHBQSerWrVsHLy8vODo6IjY2FteuXcPo0aPh5+eH2bNnv1KcNjY2WL9+Pa5fv44zZ86gbdu2GDx4MDIyMgAAt2/fhlKpxObNm3Hz5k2sWrUKmzZtwoIFC2qt9+zZsxg7diwmTJiAmzdvYs+ePTh//jwmTZpU63X5+fno3LkzNmzY8NIxAxX3f8SIEfjyyy+rraO8vBwffPABSkpKcO7cOezYsQPbt2/Hd999x5VZs2YN0tPTudeDBw+go6ODESNGcGVOnTqFKVOm4M8//0RUVBRKS0sxePBg5Ofn19rPuuIjhBBCmgrlUJRDUQ71Etg7SKFQMABMoVC0dCiEkLdQYWEhi4+PZ4WFhS0dSoP5+voyLy8vlWOurq6sd+/eLCsri/n4+DBtbW0mFouZu7s7S0xM5MqlpKSwDz/8kGlrazNNTU1mb2/PDh06xJKTkxkAlZevry9jjLGcnBzm7e3NNDU1maGhIVu5ciVzcnJi06dP5+o1NzdnQUFBzMfHh8lkMu7a6Oho1q9fPyYSiZipqSmbOnUqy8vLY4wxduXKFQaApaSk1NjX+/fvM4FAwGbOnFnl3Nq1axkA9ueffzLGGNeHK1euNPym/q3yb8+xY8dqLLNixQpmYWFRaz0//vgjs7S0rBKviYlJvWMBwPbv319nudpiDgsLY3K5vMrxw4cPMz6fzx49esQd27hxI9PS0mLFxcXVtrN//37G4/Fq/byePHnCALBTp07VGXdt8VWntt9ZyhlU0f0ghDQlyqEoh6oO5VBvdw5FM6UIIaSJMcZQWlTUIi/G2CvHLxaLUVJSgnHjxuHixYs4ePAgYmJiwBjDkCFDUFpaCgCYMmUKiouLcfr0aVy/fh3Lly+HVCqFmZkZfvnlFwBAQkIC0tPTsWbNGgDAzJkzcfbsWRw8eBBRUVGIjo7G5cuXq8QQEhKCzp0748qVK1i4cCGSkpLg7u6OYcOG4dq1a9i9ezfOnDnDbXGvr68PPp+PvXv3ory8vNp+7d27F6WlpdV+mzd58mRIpVLs2rXrle8fUPHN05YtWyCXy9G5c+cayykUCujo6NRaV58+ffDgwQMcPnwYjDE8fvwYe/fuxZAhQxol1obG/KKYmBg4ODigdevW3DE3Nzfk5OTg5s2b1V6zdetWDBo0CObm5jXWq1AoAKDO+0MIIeTt8ibnUZRDvTrKod7+HEq9pQMghJC3XVlxMdb6Dm+Rtqft2AuBSPRS1zLGcPz4cRw9ehQeHh6IiIjA2bNn0bdvXwAVz+SbmZkhIiICI0aMwP379zFs2DA4ODgAACwtLbm6Kv8IGhgYcM+o5+bmYseOHdi5cydcXFwAAGFhYTA2Nq4Sy8CBAzFr1izu/cSJEzFmzBjMmDEDAGBtbY21a9fCyckJGzduhImJCdauXYu5c+di8eLF6N69O5ydnTFmzBgursTERMjlchgZGVVpTygUwtLSEomJiS917ypFRkZi9OjRKCgogJGREaKioqCnp1dt2Tt37mDdunUICQmptU5HR0eEh4dj1KhRKCoqQllZGTw9PWudUt5UMVfn0aNHKskUAO79o0ePqpRPS0vDkSNHsHPnzhrrVCqVmDFjBhwdHdGxY8d6x0IIIeTN9ybmUZRDUQ5FOVT90UwpQgghKiIjIyGVSiESieDh4YFRo0Zh3LhxUFdXR69evbhyurq6sLW1xa1btwAA06ZNQ3BwMBwdHREYGIhr167V2s7du3dRWlqKnj17csfkcjlsbW2rlO3evbvK+6tXr2L79u2QSqXcy83NDUqlEsnJyQAqvnV89OgRwsPD0adPH+zZswcdOnRAVFRUve+FUCiss0x4eLhKHNHR0dw5Z2dnxMXF4dy5c3B3d8fIkSPx5MmTKnWkpqbC3d0dI0aMUFnX4Pl6/fz8AADx8fGYPn06vvvuO1y6dAm//fYbUlJSuPPR0dEq14WHh9e7vw2JubHs2LED2tra+Oijj2osM2XKFNy4cQM///wzd8zPz0+ln4QQQkhLoxzqH5RDUQ5VXzRTihBCmpi6hgam7djbYm03lLOzMzZu3AihUAhjY2Ooq6vj4MGDdV43ceJEuLm54dChQ/j999+xbNkyhIaGYurUqS8TugqJRKLyPi8vD5MnT8a0adOqlG3Tpg33b5lMBk9PT3h6eiI4OBhubm4IDg6Gq6srrK2toVAokJaWVuWbxZKSEiQlJcHNza3O2IYOHaqSaJqYmKjEbWVlBSsrK/Tu3RvW1tbYunUr5s+fz5VJS0uDs7Mz+vbtiy1btqjU/fxONVpaWgAqdlRxdHTEnDlzAACdOnWCRCLB+++/j+DgYHTv3l3luhe/catLfWKujaGhIc6fP69y7PHjx9y55zHGsG3bNvj4+NSYvPr7+yMyMhKnT5+GqakpdzwoKOiVF1IlhBDy+nuT8ijKoSiHohyq4WhQihBCmhiPx3vpR+haQuUf1OfZ2dmhrKwMsbGx3NTzp0+fIiEhAfb29lw5MzMz+Pn5wc/PD/Pnz8dPP/2EqVOncn8sn1+bwNLSEgKBABcuXOCSIIVCgcTERPTv37/WGLt27Yr4+PgqcdaGx+Ohffv2OHfuHABg+PDhCAgIQGhoKEJDQ1XKbtq0CQUFBRg7dmyd9cpkMshksnrFoFQqUVxczL1PTU2Fs7MzunXrhrCwMPD5qhOYq+tfQUEB1NVV/3yrqakBqEhQxGJxg+5LQ2OuS58+fbBkyRI8efIEBgYGAICoqChoaWmp/KwAFbvD3LlzBxMmTKhSD2MMU6dOxf79+3Hy5ElYWFionDcwMODqJ4QQ8vZ6k/IoyqEoh6ot5rq8qzkUDUoRQgipk7W1Nby8vDBp0iRs3rwZMpkM8+bNg4mJCby8vAAAM2bMgIeHB2xsbPDs2TOcOHECdnZ2AABzc3PweDxERkZiyJAhEIvFkMlk8PX1xZw5c6CjowMDAwMEBgaCz+eDx+PVGk9AQAB69+4Nf39/TJw4ERKJBPHx8YiKisL69esRFxeHwMBA+Pj4wN7eHkKhEKdOncK2bdsQEBAAoOLbwBUrVmD27NkQiUTw8fGBQCDAgQMHsGDBAgQHB1d59j4hIaFKLB06dIBAIFA5lp+fjyVLlmDo0KEwMjJCZmYmNmzYgNTUVG7L3tTUVAwYMADm5uYICQlR2TL4xW/Dnufp6YlJkyZh48aNcHNzQ3p6OmbMmIGePXtWu5ZEpby8PNy5c4d7n5ycjLi4OOjo6KBNmzb1ihkA7t+/j6ysLNy/fx/l5eXcN4pWVlaQSqUYPHgw7O3t4ePjgxUrVuDRo0f49ttvMWXKFGi88I3z1q1b0atXr2rXOJgyZQp27tyJAwcOQCaTcWspyOVyiMXiGvtZV3yEEEJIc6IcqgLlUJRD1ahe+/y9ZWg7Y0JIU3rbtjOuVLmdsVwuZ2KxmLm5ualsZ+zv78/atWvHNDQ0mL6+PvPx8WGZmZnc+aCgIGZoaMh4PF6t2xn37NmTzZs3j7vO3NycrVq1qko858+fZ66urkwqlTKJRMI6derElixZwhhjLCMjg02bNo117NiRSaVSJpPJmIODAwsJCWHl5eUq9URERLD333+fSSQSbrvlXbt2qZSpbkvmyteDBw+qxFZYWMg+/vhjZmxszIRCITMyMmJDhw5l58+f58qEhYXVWGdd1q5dy+zt7ZlYLGZGRkZszJgx7OHDh7Vec+LEiWrbqvws6hMzYxU/I9XVc+LECa5MSkoK8/DwYGKxmOnp6bFZs2ax0tJSlXqys7OZWCxmW7ZsqTbemu5NWFhYrf2sT3wvaoztjN8VdD8IIU2JcijKoSiHevdyKN7fQb9TcnJyIJfLoVAouOdLCSGksRQVFSE5ORkWFhYQvSHTzV8X+fn5MDExQWhoaLXTkZtaVlYWXFxcoKWlhSNHjkBTU7PZYyDNr7bfWcoZVNH9IIQ0JcqhXh7lUKQlNEYORbvvEUIIaTFXrlzBrl27kJSUhMuXL2PMmDEAwE1nb246Ojo4duwYXFxcEBMT0yIxEEIIIYTUhXIo8ragNaUIIYS0qJCQECQkJEAoFKJbt26Ijo6Gnp5ei8Wjq6uL7777rsXaJ4QQQgipD8qhyNuABqUIIYS0mC5duuDSpUstHQYhhBBCyBuFcijytqDH9wghhBBCCCGEEEJIs6NBKUIIaSLv4D4ShLyR6HeVEEJeL/TfZULeDI3xu0qDUoQQ0sgEAgEAoKCgoIUjIYTUR+XvauXvLiGEkJZBORQhb5bGyKFoTSlCCGlkampq0NbWxpMnTwAAmpqa4PF4LRwVIeRFjDEUFBTgyZMn0NbWhpqaWkuHRAgh7zTKoQh5MzRmDkWDUoQQ0gQMDQ0BgEuqCCGvL21tbe53lhBCSMuiHIqQN0dj5FA0KEUIIU2Ax+PByMgIBgYGKC0tbelwCOFBJDMAAQAASURBVCE1EAgENEOKEEJeI5RDEfJmaKwcigalCCGkCampqdH/8BJCCCGENBDlUIS8G2ihc0IIIYQQQgghhBDS7GhQihBCCCGEEEIIIYQ0OxqUIoQQQgghhBBCCCHN7p1cU4oxBgDIyclp4UgIIYQQ8jqrzBUqc4d3HeVQhBBCCKmP+uZQ7+SgVG5uLgDAzMyshSMhhBBCyJsgNzcXcrm8pcNocZRDEUIIIaQh6sqheOwd/OpPqVQiLS0NMpkMPB6v0evPycmBmZkZHjx4AC0trUav/3VCfX07UV/fTtTXtxP1tWkxxpCbmwtjY2Pw+bTqAeVQjYf6+naivr6dqK9vJ+pr06pvDvVOzpTi8/kwNTVt8na0tLTe+h/uStTXtxP19e1EfX07UV+bDs2Q+gflUI2P+vp2or6+naivbyfqa9OpTw5FX/kRQgghhBBCCCGEkGZHg1KEEEIIIYQQQgghpNnRoFQT0NDQQGBgIDQ0NFo6lCZHfX07UV/fTtTXtxP1lbxN3qXPmPr6dqK+vp2or28n6uvr4Z1c6JwQQgghhBBCCCGEtCyaKUUIIYQQQgghhBBCmh0NShFCCCGEEEIIIYSQZkeDUoQQQgghhBBCCCGk2dGgFCGEEEIIIYQQQghpdjQoRQghhBBCCCGEEEKaHQ1KEUIIIYQQQgghhJBmR4NShBBCCCGEEEIIIaTZ0aAUIYQQQgghhBBCCGl2NChFCCGEEEIIIYQQQpodDUoRQgghhBBCCCGEkGZHg1KEEEIIIYQQQgghpNnRoBQhhBBCCCGEEEIIaXY0KEUIIYQQQgghhBBCmh0NShFCGk1KSgp4PB62b9/e0qG8NsaNG4e2bduqHOPxeFi0aFGLxEMIIYSQlvWu5EsnT54Ej8fD3r17WzqUGjV2TlbZ55MnTzZanYS87WhQipC3yLlz57Bo0SJkZ2e/1PX/+te/3voEqSmkpaVh0aJFiIuLa+lQCCGEEFIHypca186dO7F69eoWjaGgoACLFi2qdjDo8OHD9GUgIa8xGpQi5C1y7tw5LF68mJKsZpaWlobFixdXOyj1008/ISEhofmDIoQQQki1KF9qXK/LoNTixYtrHJRavHhx8wdFCKkXGpQihJAmJBAIoKGh0dJhEEIIIYS8UQoKClo6BEJIM6BBKULeEosWLcKcOXMAABYWFuDxeODxeEhJSUFZWRm+//57tGvXDhoaGmjbti0WLFiA4uJi7vq2bdvi5s2bOHXqFHftgAEDAABZWVmYPXs2HBwcIJVKoaWlBQ8PD1y9erVRYi8qKsKiRYtgY2MDkUgEIyMjfPLJJ0hKSgLwz9oLISEhWLVqFczNzSEWi+Hk5IQbN26o1DVgwAAu7udVt7ZTXdq2bYtx48ZVOf58GydPnkSPHj0AAOPHj+fuXeU3qC/TbnV+/vlndOvWDTKZDFpaWnBwcMCaNWsAAHfv3gWPx8OqVauqXHfu3DnweDzs2rULAJCbm4sZM2agbdu20NDQgIGBAVxdXXH58uV6x1JaWorFixfD2toaIpEIurq66NevH6Kiol65n4QQQkhTonypQmPlSwMGDMChQ4dw79497n68eL1SqcSSJUtgamoKkUgEFxcX3Llzp0o9HTt2xKVLl9C/f39oampiwYIFAIAnT55gwoQJaN26NUQiETp37owdO3Zw16akpEBfXx8AsHjxYi6ORYsWYdy4cdiwYQMAcMd5PF6tfUpNTcXnn3+O1q1bQ0NDAx06dMC2bduqlHv48CE++ugjSCQSGBgY4Ouvv1b5WakvyqvIu069pQMghDSOTz75BImJidi1axdWrVoFPT09AIC+vj4mTpyIHTt2YPjw4Zg1axZiY2OxbNky3Lp1C/v37wcArF69GlOnToVUKsU333wDAGjdujWAikGPiIgIjBgxAhYWFnj8+DE2b94MJycnxMfHw9jY+KXjLi8vx4cffojjx49j9OjRmD59OnJzcxEVFYUbN26gXbt2XNl///vfyM3NxZQpU1BUVIQ1a9Zg4MCBuH79Ohdrc7Ozs0NQUBC+++47fPHFF3j//fcBAH379m20NqKiovDpp5/CxcUFy5cvBwDcunULZ8+exfTp02FpaQlHR0eEh4fj66+/Vrk2PDwcMpkMXl5eAAA/Pz/s3bsX/v7+sLe3x9OnT3HmzBncunULXbt2rVc8ixYtwrJlyzBx4kT07NkTOTk5uHjxIi5fvgxXV9dG6zchhBDS2Chfatx86ZtvvoFCocDDhw+5L8ekUqlKmR9++AF8Ph+zZ8+GQqHAihUrMGbMGMTGxqqUe/r0KTw8PDB69Gh89tlnaN26NQoLCzFgwADcuXMH/v7+sLCwwJ49ezBu3DhkZ2dj+vTp0NfXx8aNG/Hll1/i448/xieffAIA6NSpE/Lz85GWloaoqCj85z//qbM/jx8/Ru/evcHj8eDv7w99fX0cOXIEEyZMQE5ODmbMmAEAKCwshIuLC+7fv49p06bB2NgY//nPf/DHH380+B5SXkXeeYwQ8tb48ccfGQCWnJzMHYuLi2MA2MSJE1XKzp49mwFgf/zxB3esQ4cOzMnJqUq9RUVFrLy8XOVYcnIy09DQYEFBQSrHALCwsLB6x7xt2zYGgK1cubLKOaVSqVKvWCxmDx8+5M7HxsYyAOzrr7/mjjk5OVXbB19fX2Zubl7vuBhjzNzcnPn6+lY5/mIbFy5cqLHf1bULgAUGBtY7junTpzMtLS1WVlZWY5nNmzczAOzWrVvcsZKSEqanp6fSB7lczqZMmVLvtqvTuXNn9sEHH7xSHYQQQkhLoXypcfOlDz74oNprTpw4wQAwOzs7VlxczB1fs2YNA8CuX7+uEg8AtmnTJpU6Vq9ezQCw//73v9yxkpIS1qdPHyaVSllOTg5jjLGMjIwa86spU6awmv6398VrJkyYwIyMjFhmZqZKudGjRzO5XM4KCgpU4vrf//7HlcnPz2dWVlYMADtx4kS17VWH8iryrqPH9wh5yx0+fBgAMHPmTJXjs2bNAgAcOnSozjo0NDTA51f856K8vBxPnz6FVCqFra1tgx77qs4vv/wCPT09TJ06tcq5F6dXf/TRRzAxMeHe9+zZE7169eL6+LbS1tZGfn5+rdO4R44cCZFIhPDwcO7Y0aNHkZmZic8++0ylrtjYWKSlpb1SPDdv3sRff/310nUQQgghrxPKl5rO+PHjIRQKufeVs8rv3r2rUk5DQwPjx49XOXb48GEYGhri008/5Y4JBAJMmzYNeXl5OHXqVKPFyRjDL7/8Ak9PTzDGkJmZyb3c3NygUCi4z/Hw4cMwMjLC8OHDues1NTXxxRdfNLhdyqvIu44GpQh5y927dw98Ph9WVlYqxw0NDaGtrY179+7VWYdSqcSqVatgbW0NDQ0N6OnpQV9fH9euXYNCoXil+JKSkmBrawt19bqfJra2tq5yzMbGBikpKa8Uw+vuq6++go2NDTw8PGBqaorPP/8cv/32m0oZbW1teHp6YufOndyx8PBwmJiYYODAgdyxFStW4MaNGzAzM0PPnj2xaNGiKklhXYKCgpCdnQ0bGxs4ODhgzpw5uHbt2qt1khBCCGlBlC81nTZt2qi8b9WqFQDg2bNnKsdNTExUBq+Ais/F2tqaG+yrZGdnx51vLBkZGcjOzsaWLVugr6+v8qocLHvy5AnXrpWVVZUBQVtb2wa3S3kVedfRoBQh74i6FnWszdKlSzFz5kz0798f//3vf3H06FFERUWhQ4cOUCqVjRjlq6upn+Xl5S1a16swMDBAXFwcDh48iKFDh+LEiRPw8PCAr6+vSrmxY8fi7t27OHfuHHJzc3Hw4EF8+umnKoncyJEjcffuXaxbtw7Gxsb48ccf0aFDBxw5cqTe8fTv3x9JSUnYtm0bOnbsiP/7v/9D165d8X//93+N1mdCCCGkJVC+1Pg5jpqaWrXHGWMq78VicaO33RCVn9Fnn32GqKioal+Ojo6N3i7lVeRdRwudE/IWqS7BMDc3h1KpxF9//cV9qwRULOSYnZ0Nc3PzWq8HgL1798LZ2Rlbt25VOZ6dnc0tEPqy2rVrh9jYWJSWlkIgENRatrppzYmJiSq7vLRq1aramT8v801aq1atkJ2dXW1dlpaW3PtXSWDrSygUwtPTE56enlAqlfjqq6+wefNmLFy4kPtW193dHfr6+ggPD0evXr1QUFAAHx+fKnUZGRnhq6++wldffYUnT56ga9euWLJkCTw8POodj46ODsaPH4/x48cjLy8P/fv3x6JFizBx4sRG6zMhhBDSFChfatx8qSnzIHNzc1y7dg1KpVLlS7bbt29z5+uKob7x6evrQyaToby8HIMGDaozrhs3boAxplJ/QkJCvdp6EeVV5F1GM6UIeYtIJBIAUBlIGTJkCICK3WKet3LlSgDABx98oHJ9dYMwampqVb7N2rNnD1JTU1855mHDhiEzMxPr16+vcu7FNiMiIlTaPH/+PGJjY1UGU9q1a4fbt28jIyODO3b16lWcPXu2wbG1a9cOf/75J0pKSrhjkZGRePDggUq56u57Y3r69KnKez6fj06dOgGAytbD6urq+PTTT/G///0P27dvh4ODA1cOqPj288XHBwwMDGBsbNygLYxfjEcqlcLKyuqltkEmhBBCmhvlS42bL0kkkld+PLEmQ4YMwaNHj7B7927uWFlZGdatWwepVAonJycAFes5AdXnYvXN09TU1DBs2DD88ssvuHHjRpXzz9+rIUOGIC0tDXv37uWOFRQUYMuWLfXuWyXKq8i7jmZKEfIW6datG4CK7XlHjx4NgUAAT09P+Pr6YsuWLcjOzoaTkxPOnz+PHTt24KOPPoKzs7PK9Rs3bkRwcDCsrKxgYGCAgQMH4sMPP0RQUBDGjx+Pvn374vr16wgPD1eZLfSyxo4di3//+9+YOXMmzp8/j/fffx/5+fk4duwYvvrqK3h5eXFlrays0K9fP3z55ZcoLi7G6tWroauri7lz53JlPv/8c6xcuRJubm6YMGECnjx5gk2bNqFDhw7IyclpUGwTJ07E3r174e7ujpEjRyIpKQn//e9/VbZdBioSO21tbWzatAkymQwSiQS9evWChYXFq92c5+LIysrCwIEDYWpqinv37mHdunV47733VL7NBSru59q1a3HixAksX75c5Vxubi5MTU0xfPhwdO7cGVKpFMeOHcOFCxcQGhpa73js7e0xYMAAdOvWDTo6Orh48SL27t0Lf3//RukvIYQQ0pQoX2rcfKlbt27YvXs3Zs6ciR49ekAqlcLT0/OV+wwAX3zxBTZv3oxx48bh0qVLaNu2Lfbu3YuzZ89i9erVkMlkACoe/bO3t8fu3bthY2MDHR0ddOzYER07duQ+72nTpsHNzQ1qamoYPXp0te398MMPOHHiBHr16oVJkybB3t4eWVlZuHz5Mo4dO4asrCwAwKRJk7B+/XqMHTsWly5dgpGREf7zn/9wg2MNQXkVeee13MZ/hJCm8P333zMTExPG5/O57Y5LS0vZ4sWLmYWFBRMIBMzMzIzNnz+fFRUVqVz76NEj9sEHHzCZTMYAcFsFFxUVsVmzZjEjIyMmFouZo6Mji4mJqbKd8MtsccwYYwUFBeybb77h4jM0NGTDhw9nSUlJKvX++OOPLDQ0lJmZmTENDQ32/vvvs6tXr1ap77///S+ztLRkQqGQvffee+zo0aMvtcUxY4yFhoYyExMTpqGhwRwdHdnFixer3Ub5wIEDzN7enqmrq6vcg+raRQ1bFtdk7969bPDgwczAwIAJhULWpk0bNnnyZJaenl5t+Q4dOjA+n6+yHTRjjBUXF7M5c+awzp07M5lMxiQSCevcuTP717/+Ve9YGGMsODiY9ezZk2lrazOxWMzat2/PlixZwkpKShpUDyGEENJSKF9qvHwpLy+PeXt7M21tbQaAu/7EiRMMANuzZ49K+er67+TkxDp06FBt/Y8fP2bjx49nenp6TCgUMgcHh2rv3blz51i3bt2YUChUybXKysrY1KlTmb6+PuPxeOz5/wWuLid7/PgxmzJlCjMzM+Pus4uLC9uyZYtKuXv37rGhQ4cyTU1Npqenx6ZPn85+++03BoCdOHGiXveOMcqrCOEx9sJ8T0IIec2kpKTAwsICP/74I2bPnt3S4bz2unTpAh0dHRw/frylQyGEEEJIM6F8iRDyJqI1pQgh5C1y8eJFxMXFYezYsS0dCiGEEEIIIYTUitaUIoQ0iZKSEu65+5rI5fIW2f43KytLZfHyF6mpqUFfX7/J4ygvL1dZNLM6UqkUUqm0zrpu3LiBS5cuITQ0FEZGRhg1alSD4yksLKxzoVIdHR0IhcIG100IIYSQqihfentRXkVI/dCgFCGkSZw7d05lUdDqhIWFYdy4cc0T0HM++eQTnDp1qsbz5ubmSElJafI4Hjx4UOdi6IGBgVi0aFGdde3duxdBQUGwtbXFrl27IBKJGhzP7t27MX78+FrLnDhxAgMGDGhw3YQQQgipivKltxflVYTUD60pRQhpEs+ePcOlS5dqLdOhQwcYGRk1U0T/uHTpEp49e1bjebFYDEdHxyaPo6ioCGfOnKm1jKWlZaPs2lMf6enpuHnzZq1lunXrhlatWjVLPIQQQsjbjvKltxflVYTUDw1KEUIIIYQQQgghhJBmRwudE0IIIYQQQgghhJBm906uKaVUKpGWlgaZTAYej9fS4RBCCCHkNcUYQ25uLoyNjcHn03d5lEMRQgghpD7qm0O9k4NSaWlpMDMza+kwCCGEEPKGePDgAUxNTVs6jBZHORQhhBBCGqKuHOqdHJSSyWQAKm6OlpZWC0dDCCGEkNdVTk4OzMzMuNzhXUc5FCGEEELqo7451Ds5KFU53VxLS4sSKkIIIYTUiR5Vq0A5FCGEEEIaoq4cihZHIIQQQgghhBBCCCHNjgalCCGEEEIIIYQQQkizo0EpQgghhBBCCCGEENLs3sk1pQghhBBCCCGEvL7Ky8tRWlra0mEQQmogEAigpqb2yvXQoBQhhBBCCCGEkNcCYwyPHj1CdnZ2S4dCCKmDtrY2DA0NX2lDGBqUIoQQQgghhBDyWqgckDIwMICmpibtfkrIa4gxhoKCAjx58gQAYGRk9NJ10aAUIYQQQgghhJAWV15ezg1I6erqtnQ4hJBaiMViAMCTJ09gYGDw0o/y0ULnhBBCCCGEEEJaXOUaUpqami0cCSGkPip/V19l/TcalCKEEEIIIYQQ8tqgR/YIeTM0xu8qDUoRQgghhBBCCCGEkGZHg1KEEEIIIYQQQgghpNnRoBQhhBBCCCGEEPIKxo0bBx6PBx6PB6FQCCsrKwQFBaGsrOyV6j158iR4PB6ys7MbJ9B6SE5Ohre3N4yNjSESiWBqagovLy/cvn1bpVxkZCScnJwgk8mgqamJHj16YPv27SplUlJSwOPxEBcXV+/2Fy1ahPbt20MikaBVq1YYNGgQYmNjVeqcMGECLCwsIBaL0a5dOwQGBqKkpKTWetPT0+Ht7Q0bGxvw+XzMmDGjXvGcPn0anp6eMDY2Bo/HQ0RERLXlbt26haFDh0Iul0MikaBHjx64f/8+d37y5Mlo164dxGIx9PX1q72nFy5cgIuLC7S1tdGqVSu4ubnh6tWr1bZ3584dyGQyaGtrN1ofWgINShFCCCGEEEIIIa/I3d0d6enp+OuvvzBr1iwsWrQIP/74Y0uHxalr0AaoWLDa1dUVCoUC+/btQ0JCAnbv3g0HBweVgbF169bBy8sLjo6OiI2NxbVr1zB69Gj4+flh9uzZrxSnjY0N1q9fj+vXr+PMmTNo27YtBg8ejIyMDADA7du3oVQqsXnzZty8eROrVq3Cpk2bsGDBglrrLS4uhr6+Pr799lt07ty53vHk5+ejc+fO2LBhQ41lkpKS0K9fP7Rv3x4nT57EtWvXsHDhQohEIq5Mt27dEBYWhlu3buHo0aNgjGHw4MEoLy8HAOTl5cHd3R1t2rRBbGwszpw5A5lMBjc3tyoLiZeWluLTTz/F+++/32h9aDHsHaRQKBgAplAoWjoUQgghhLzGKGdQRfeDENKUCgsLWXx8PCssLGzpUBrM19eXeXl5qRxzdXVlvXv3ZllZWczHx4dpa2szsVjM3N3dWWJiIlcuJSWFffjhh0xbW5tpamoye3t7dujQIZacnMwAqLx8fX0ZY4zl5OQwb29vpqmpyQwNDdnKlSuZk5MTmz59Olevubk5CwoKYj4+Pkwmk3HXRkdHs379+jGRSMRMTU3Z1KlTWV5eHmOMsStXrjAALCUlpca+3r9/nwkEAjZz5swq59auXcsAsD///JMxxrg+XLlypeE39W+Vf3uOHTtWY5kVK1YwCwuLetf54r2qLwBs//79VY6PGjWKffbZZw2q6+rVqwwAu3PnDmOMsQsXLjAA7P79+1yZa9euMQDsr7/+Url27ty57LPPPmNhYWFMLpc3Sh9eRm2/s/XNGWimFCGEEEIIIYSQ1xJjDAUlZS3yqvj/95cnFotRUlKCcePG4eLFizh48CBiYmLAGMOQIUO42S9TpkxBcXExTp8+jevXr2P58uWQSqUwMzPDL7/8AgBISEhAeno61qxZAwCYOXMmzp49i4MHDyIqKgrR0dG4fPlylRhCQkLQuXNnXLlyBQsXLkRSUhLc3d0xbNgwXLt2Dbt378aZM2fg7+8PANDX1wefz8fevXu5GTwv2rt3L0pLS6udETV58mRIpVLs2rXrle5dpZKSEmzZsgVyubzW2U0KhQI6OjqN0mZDKZVKHDp0CDY2NnBzc4OBgQF69epV6yNy+fn5CAsLg4WFBczMzAAAtra20NXVxdatW1FSUoLCwkJs3boVdnZ2aNu2LXftH3/8gT179ryes55egnpLB0AIIYQQQgghhFSnsLQc9t8dbZG244PcoCls+P8yM8Zw/PhxHD16FB4eHoiIiMDZs2fRt29fAEB4eDjMzMwQERGBESNG4P79+xg2bBgcHBwAAJaWllxdlQMtBgYG3NpBubm52LFjB3bu3AkXFxcAQFhYGIyNjavEMnDgQMyaNYt7P3HiRIwZM4ZbT8na2hpr166Fk5MTNm7cCBMTE6xduxZz587F4sWL0b17dzg7O2PMmDFcXImJiZDL5TAyMqrSnlAohKWlJRITExt8354XGRmJ0aNHo6CgAEZGRoiKioKenl61Ze/cuYN169YhJCTkldp8WU+ePEFeXh5++OEHBAcHY/ny5fjtt9/wySef4MSJE3BycuLK/utf/8LcuXORn58PW1tbREVFQSgUAgBkMhlOnjyJjz76CN9//z2Ais/n6NGjUFev+Dl8+vQpxo0bh//+97/Q0tJq/s42AZopRQghhBBCCCGEvKLIyEhIpVKIRCJ4eHhg1KhRGDduHNTV1dGrVy+unK6uLmxtbXHr1i0AwLRp0xAcHAxHR0cEBgbi2rVrtbZz9+5dlJaWomfPntwxuVwOW1vbKmW7d++u8v7q1avYvn07pFIp93Jzc4NSqURycjKAiplbjx49Qnh4OPr06YM9e/agQ4cOiIqKqve9qBxoqU14eLhKHNHR0dw5Z2dnxMXF4dy5c3B3d8fIkSPx5MmTKnWkpqbC3d0dI0aMwKRJk7jjz9fr5+dXr5ijo6NVrgsPD6/XdUqlEgDg5eWFr7/+Gu+99x7mzZuHDz/8EJs2bVIpO2bMGFy5cgWnTp2CjY0NRo4ciaKiIgBAYWEhJkyYAEdHR/z55584e/YsOnbsiA8++ACFhYUAgEmTJsHb2xv9+/dv1D60JJopRQghhBBCCCHktSQWqCE+yK3F2m4IZ2dnbNy4EUKhEMbGxlBXV8fBgwfrvG7ixIlwc3PDoUOH8Pvvv2PZsmUIDQ3F1KlTXzZ0jkQiUXmfl5eHyZMnY9q0aVXKtmnThvu3TCaDp6cnPD09ERwcDDc3NwQHB8PV1RXW1tZQKBRIS0urMjurpKQESUlJcHOr+zMbOnSoymCdiYmJStxWVlawsrJC7969YW1tja1bt2L+/PlcmbS0NDg7O6Nv377YsmWLSt3P7/ZX3xlF3bt3V7mudevW9bpOT08P6urqsLe3VzluZ2eHM2fOqByTy+WQy+WwtrZG79690apVK+zfvx+ffvopdu7ciZSUFMTExIDPr5g/tHPnTrRq1QoHDhzA6NGj8ccff+DgwYPcrDDGGJRKJdTV1bFlyxZ8+umnL9WHlkSDUoQQQgghhBBCXks8Hu+lHqFrCZUDKc+zs7NDWVkZYmNjucf3nj59ioSEBJVBDDMzM/j5+cHPzw/z58/HTz/9hKlTp3Izjp5f38nS0hICgQAXLlzgBpIUCgUSExNrnEFTqWvXroiPj68SZ214PB7at2+Pc+fOAQCGDx+OgIAAhIaGIjQ0VKXspk2bUFBQgLFjx9ZZr0wmg0wmq1cMSqUSxcXF3PvU1FQ4OztzO9pVDuJUakj/KonF4pe6TigUokePHkhISFA5npiYCHNz8xqvY4yBMcb1q6CgAHw+HzwejytT+b5yNlZMTIzKz8KBAwewfPlynDt3DiYmJi/dh5b0Zvx2E0IIIYQQQgghbxhra2t4eXlh0qRJ2Lx5M2QyGebNmwcTExN4eXkBAGbMmAEPDw/Y2Njg2bNnOHHiBOzs7AAA5ubm4PF4iIyMxJAhQyAWiyGTyeDr64s5c+ZAR0cHBgYGCAwMrDKgUZ2AgAD07t0b/v7+mDhxIiQSCeLj4xEVFYX169cjLi4OgYGB8PHxgb29PYRCIU6dOoVt27YhICAAQMWMqhUrVmD27NkQiUTw8fGBQCDAgQMHsGDBAgQHB6Njx44q7b44YAMAHTp0gEAgUDmWn5+PJUuWYOjQoTAyMkJmZiY2bNiA1NRUjBgxAkDFgNSAAQNgbm6OkJAQZGRkcNcbGhrW2v/KWUR5eXnIyMhAXFwchEJhlVlOz8vLy8OdO3e498nJyYiLi4OOjg43KDhnzhyMGjUK/fv3h7OzM3777Tf8+uuvOHnyJICKRy53796NwYMHQ19fHw8fPsQPP/wAsViMIUOGAABcXV0xZ84cTJkyBVOnToVSqcQPP/wAdXV1ODs7AwD3c1Hp4sWL4PP5Ve73y/ShxTTKPoBvGNrOmBBCCCH1QTmDKrofhJCmVNv28q87X19f5uXlVe25rKws5uPjw+RyOROLxczNzY0lJiZy5/39/Vm7du2YhoYG09fXZz4+PiwzM5M7HxQUxAwNDRmPx2O+vr6MMcZycnKYt7c309TUZIaGhmzlypWsZ8+ebN68edx15ubmbNWqVVXiOX/+PHN1dWVSqZRJJBLWqVMntmTJEsYYYxkZGWzatGmsY8eOTCqVMplMxhwcHFhISAgrLy9XqSciIoK9//77TCKRMAAMANu1a5dKmeTkZO7ci68HDx5Uia2wsJB9/PHHzNjYmAmFQmZkZMSGDh3Kzp8/z5UJCwursc66VHeNubl5rdecOHGi2usqP4tKW7duZVZWVkwkErHOnTuziIgI7lxqairz8PBgBgYGTCAQMFNTU+bt7c1u376tUsfvv//OHB0dmVwuZ61atWIDBw5kMTExNcYWFhbG5HJ5nf2ubx8aqrbf2frmDDzGXnGfyzdQTk4O5HI5FArFW7NiPSGEEEIaH+UMquh+EEKaUlFREZKTk2FhYQGRSNTS4bxR8vPzYWJigtDQUEyYMKHZ28/KyoKLiwu0tLRw5MgRaGpqNnsMpPnV9jtb35yBdt8jhBBCCCGEEELeIFeuXMGuXbuQlJSEy5cvY8yYMQDAPRLY3HR0dHDs2DG4uLggJiamRWIgbyZaU4oQQgghhBBCCHnDhISEICEhAUKhEN26dUN0dDT09PRaLB5dXV189913LdY+eTPRoBQhhBBCCCGEEPIG6dKlCy5dutTSYRDyyujxPUIIIYQQQgghhBDS7GhQihBCCCGEEEIIIYQ0OxqUIoQQQgghhBBCCCHNjgalCCGEEEIIIYQQQkizo0EpQgghhBBCCCGEENLsaPc9Qggh5B1WXJKJR4/2Q1le3NKh1IuurhO0tBxaOgxCCCGEENIIaFCKEEIIeYelJK/Hw9T/tHQY9Zae/gv69j3R0mEQQgghhJBGQI/vEUIIIe+wouI0AIC2dk8YG496bV8G+h4AgNKynJa8XYQQQki1xo0bBx6PBx6PB6FQCCsrKwQFBaGsrOyV6j158iR4PB6ys7MbJ9B6SE5Ohre3N4yNjSESiWBqagovLy/cvn1bpVxkZCScnJwgk8mgqamJHj16YPv27SplUlJSwOPxEBcXV+/2Fy1ahPbt20MikaBVq1YYNGgQYmNjVeqcMGECLCwsIBaL0a5dOwQGBqKkpKTWetPT0+Ht7Q0bGxvw+XzMmDGjXvFs3LgRnTp1gpaWFrS0tNCnTx8cOXKEO5+VlYWpU6fC1tYWYrEYbdq0wbRp06BQKLgy27dv534+Xnw9efKEK1dcXIxvvvkG5ubm0NDQQNu2bbFt2zaVeFavXs21ZWZmhq+//hpFRUW19mHfvn0YPHgwdHV1G/x5NDWaKUUIIYS8w0pLswEAZqa+MDBwb9lgapGffwdPMo7UXZAQQghpIe7u7ggLC0NxcTEOHz6MKVOmQCAQYP78+S0dGgCgpKQEQqGw1jKlpaVwdXWFra0t9u3bByMjIzx8+BBHjhxRGRhbt24dZsyYgYCAAGzcuBFCoRAHDhyAn58fbty4gZCQkJeO08bGBuvXr4elpSUKCwuxatUqDB48GHfu3IG+vj5u374NpVKJzZs3w8rKCjdu3MCkSZOQn59fa7vFxcXQ19fHt99+i1WrVtU7HlNTU/zwww+wtrYGYww7duyAl5cXrly5gg4dOiAtLQ1paWkICQmBvb097t27Bz8/P6SlpWHv3r0AgFGjRsHdXTXPGjduHIqKimBgYMAdGzlyJB4/foytW7fCysoK6enpUCqV3PmdO3di3rx52LZtG/r27YvExERuQHTlypU19iE/Px/9+vXDyJEjMWnSpHr3vVmwd5BCoWAAmEKhaOlQCCGEkBaRlfUnu3Hja3bsuCU7dtySPX16tqVDqlVe3l/s2HFLdvJU12Ztl3IGVXQ/CCFNqbCwkMXHx7PCwsKWDqXBfH19mZeXl8oxV1dX1rt3b5aVlcV8fHyYtrY2E4vFzN3dnSUmJnLlUlJS2Icffsi0tbWZpqYms7e3Z4cOHWLJyckMgMrL19eXMcZYTk4O8/b2ZpqamszQ0JCtXLmSOTk5senTp3P1mpubs6CgIObj48NkMhl3bXR0NOvXrx8TiUTM1NSUTZ06leXl5THGGLty5QoDwFJSUmrs6/3795lAIGAzZ86scm7t2rUMAPvzzz8ZY4zrw5UrVxp+U/9W+bfn2LFjNZZZsWIFs7CwqHedL96rhmrVqhX7v//7vxrP/+9//2NCoZCVlpZWe/7JkydMIBCwf//739yxI0eOMLlczp4+fVpjvVOmTGEDBw5UOTZz5kzm6OhYr7gb4/N4Xm2/s/XNGejxPUIIIeQdwxjDzfiZePT4AACAzxdBKm3fwlERQggh1WAMKMlvmRdjrxS6WCxGSUkJxo0bh4sXL+LgwYOIiYkBYwxDhgxBaWkpAGDKlCkoLi7G6dOncf36dSxfvhxSqRRmZmb45ZdfAAAJCQlIT0/HmjVrAAAzZ87E2bNncfDgQURFRSE6OhqXL1+uEkNISAg6d+6MK1euYOHChUhKSoK7uzuGDRuGa9euYffu3Thz5gz8/f0BAPr6+uDz+di7dy/Ky8ur7dfevXtRWlqK2bNnVzk3efJkSKVS7Nq165XuXaWSkhJs2bIFcrkcnTt3rrGcQqGAjo5Oo7RZm/Lycvz888/Iz89Hnz59ao1HS0sL6urVP5z273//G5qamhg+fDh37ODBg+jevTtWrFgBExMT2NjYYPbs2SgsLOTK9O3bF5cuXcL58+cBAHfv3sXhw4cxZMiQRuph86PH9wghhJB3THl5HoqLHwEALC1mQEe3P4TCpk/kCCGEkAYrLQCWGrdM2wvSAKGkwZcxxnD8+HEcPXoUHh4eiIiIwNmzZ9G3b18AQHh4OMzMzBAREYERI0bg/v37GDZsGBwcKnaXtbS05OqqHGgxMDCAtrY2ACA3Nxc7duzAzp074eLiAgAICwuDsXHV+zRw4EDMmjWLez9x4kSMGTOGW0/J2toaa9euhZOTEzZu3AgTExOsXbsWc+fOxeLFi9G9e3c4OztjzJgxXFyJiYmQy+UwMjKq0p5QKISlpSUSExMbfN+eFxkZidGjR6OgoABGRkaIioqCnp5etWXv3LmDdevWvdIjg3W5fv06+vTpg6KiIkilUuzfvx/29vbVls3MzMT333+PL774osb6tm7dCm9vb4jFYu7Y3bt3cebMGYhEIuzfvx+ZmZn46quv8PTpU4SFhQEAvL29kZmZiX79+oExhrKyMvj5+WHBggWN2+FmRDOlCCGEkHdMcXEGAEBNTQoLi6mQa9X8zSMhhBBC6icyMhJSqRQikQgeHh4YNWoUxo0bB3V1dfTq1Ysrp6urC1tbW9y6dQsAMG3aNAQHB8PR0RGBgYG4du1are3cvXsXpaWl6NmzJ3dMLpfD1ta2Stnu3burvL969Sq2b98OqVTKvdzc3KBUKpGcnAygYubWo0ePEB4ejj59+mDPnj3o0KEDoqKi6n0v6lq7CqgYnHs+jujoaO6cs7Mz4uLicO7cObi7u2PkyJEqC4JXSk1Nhbu7O0aMGKGyVtLz9fr5+dUr5ujoaJXrwsPDuXO2traIi4tDbGwsvvzyS/j6+iI+Pr5KHTk5Ofjggw9gb2+PRYsWVdtOTEwMbt26hQkTJqgcVyqV4PF4CA8PR8+ePTFkyBCsXLkSO3bs4GZLnTx5EkuXLsW//vUvXL58Gfv27cOhQ4fw/fff13lPX1c0U4oQQgh5R5SWKnDr9gJkZPwGABCJqn7DSQghhLxWBJoVM5Zaqu0GcHZ25hb9NjY2hrq6Og4ePFjndRMnToSbmxsOHTqE33//HcuWLUNoaCimTp36spFzJBLVmV55eXmYPHkypk2bVqVsmzZtuH/LZDJ4enrC09MTwcHBcHNzQ3BwMFxdXWFtbQ2FQoG0tLQqs7NKSkqQlJQENze3OmMbOnSoymCdiYmJStxWVlawsrJC7969YW1tja1bt6osGp+WlgZnZ2f07dsXW7ZsUan7+d3ltLS06owFqBjAe/661q1bc/+u3FERALp164YLFy5gzZo12Lx5M1cmNzcX7u7ukMlk2L9/PwQCQbXt/N///R/ee+89dOvWTeW4kZERTExMIJfLuWN2dnZgjOHhw4ewtrbGwoUL4ePjg4kTJwIAHBwckJ+fjy+++ALffPNNrff0dUWDUoQQQsg7IiPjd25ACgB0dPq1YDSEEEJIPfB4L/UIXUuoHEh5np2dHcrKyhAbG8s9vvf06VMkJCSoPP5lZmYGPz8/+Pn5Yf78+fjpp58wdepUbsbR8+s7WVpaQiAQ4MKFC9xAkkKhQGJiIvr3719rjF27dkV8fHyVOGvD4/HQvn17nDt3DgAwfPhwBAQEIDQ0FKGhoSplN23ahIKCAowdO7bOemUyGWQyWb1iUCqVKC4u5t6npqbC2dkZ3bp1Q1hYGPh81YfAGtK/SmKxuN7XvRhPTk4O3NzcoKGhgYMHD0IkElV7XV5eHv73v/9h2bJlVc45Ojpiz549yMvLg1QqBVDxqCSfz4epqSkAoKCgoEpf1dTUAFQ8NtqQe/q6oEEpQggh5B1RWHgPAKCr6wxTkzFo1armBToJIYQQ8uqsra3h5eWFSZMmYfPmzZDJZJg3bx5MTEzg5eUFAJgxYwY8PDxgY2ODZ8+e4cSJE7CzswMAmJubg8fjITIyEkOGDIFYLIZMJoOvry/mzJkDHR0dGBgYIDAwEHw+Hzwer9Z4AgIC0Lt3b/j7+2PixImQSCSIj49HVFQU1q9fj7i4OAQGBsLHxwf29vYQCoU4deoUtm3bhoCAAAAVM6pWrFiB2bNnQyQSwcfHBwKBAAcOHMCCBQsQHByMjh07qrSbkJBQJZYOHTpUmU2Un5+PJUuWYOjQoTAyMkJmZiY2bNiA1NRUjBgxAkDFgNSAAQNgbm6OkJAQZGRkcNcbGhrW2v/KmVB5eXnIyMhAXFwchEJhjetDAcD8+fPh4eGBNm3aIDc3Fzt37sTJkydx9OhRABUDUoMHD0ZBQQH++9//IicnBzk5OQAqFo6vHDQCgN27d6OsrAyfffZZlXa8vb3x/fffY/z48Vi8eDEyMzMxZ84cfP7559zaU56enli5ciW6dOmCXr164c6dO1i4cCE8PT1V2nlRVlYW7t+/j7S0ilmHlZ+HoaFhnfesyTXKPoBvGNrOmBBCyLukrKyIPX16hl26PIYdO27JUu791NIhNVhe3l/s2HFLdvJU12Ztl3IGVXQ/CCFNqbbt5V93vr6+zMvLq9pzWVlZzMfHh8nlciYWi5mbmxtLTEzkzvv7+7N27doxDQ0Npq+vz3x8fFhmZiZ3PigoiBkaGjIej8d8fX0ZY4zl5OQwb29vpqmpyQwNDdnKlStZz5492bx587jrzM3N2apVq6rEc/78eebq6sqkUimTSCSsU6dObMmSJYwxxjIyMti0adNYx44dmVQqZTKZjDk4OLCQkBBWXl6uUk9ERAR7//33mUQiYQAYALZr1y6VMsnJydy5F18PHjyoElthYSH7+OOPmbGxMRMKhczIyIgNHTqUnT9/nisTFhZWY511qe4ac3PzWq/5/PPPmbm5ORMKhUxfX5+5uLiw33//nTt/4sSJGuNJTk5WqatPnz7M29u7xrZu3brFBg0axMRiMTM1NWUzZ85kBQUF3PnS0lK2aNEi1q5dOyYSiZiZmRn76quv2LNnz2rtQ033LDAwsNbr6lLb72x9cwYeY6+4z+UbKCcnB3K5nNumkRBCCHmb3U5YiNTUndx7B4d/wUC/7rUeXif5+XfwZ6wb1NXlcOpfdcvrpkI5gyq6H4SQplRUVITk5GRYWFjU+PgTqV5+fj5MTEwQGhpaZQHt5pCVlQUXFxdoaWnhyJEj0NRs2Hpc5M1U2+9sfXMG2n2PEEIIecvl5Vbs7iMWtYGe3iDo6rzfwhERQggh5FVcuXIFu3btQlJSEi5fvowxY8YAAPdIYHPT0dHBsWPH4OLigpiYmBaJgbyZaE0pQggh5C3FmBJlZbkoKEwBANh3CIG2vFvtF722al8jgxBCCHnXhISEICEhAUKhEN26dUN0dDT09PRaLB5dXV189913LdY+eTPRoBQhhBDyFmKsHOcveCEv7xZ3TKRhXMsVhBBCCHlTdOnSBZcuXWrpMAh5ZfT4HiGEEPIWKi5+rDIgZWAwBCKRUQtGRAghhBBCiCqaKUUIIYS8hUpKngIAhEIDOPaNBp9f8598pbL2PU/4fHp0jhBCCCGEND4alCKEEELeMo8e/4oH97cBAIRCvVoHpBYdvInt51JqPK8pVMPGz7rByUa/scMkhBBCCCHvOHp8jxBCCHmLZGWdxc2bM5CTew0AoKXlUGv5IzfSaz1fUFKOc3cyGy0+QgghhBBCKtFMKUIIIeQt8uzZn9y/zczGo43ZhFrLZxeUAgAip/aDibZY5dzKqET85897jR8kIYQQQgghoEEpQggh5K1RUpKJvLzbAABr62/Rxmx8jWWP3nyEkwkZKC5TAgDMdTUhEwlUyogENKGaEEIIIYQ0HRqUIoQQQt4CCYlBePhwB/deotmuxrJKJcOMn+NQWFoOAJCJ1CHVoJSAEEIIIYQ0L/oKlBBCCHkLPHt27u9/8SGRWEMu71pj2bySMm5AapqLNbb69gCPRzvsEUIIIS9r3Lhx4PF44PF4EAqFsLKyQlBQEMrKyl6p3pMnT4LH4yE7O7txAq2H5ORkeHt7w9jYGCKRCKampvDy8sLt27dVykVGRsLJyQkymQyampro0aMHtm/frlImJSUFPB4PcXFx9W5/0aJFaN++PSQSCVq1aoVBgwYhNjZWpc4JEybAwsICYrEY7dq1Q2BgIEpKSmqtNz09Hd7e3rCxsQGfz8eMGTPqHVOlH374ATwer8q1SUlJ+Pjjj6Gvrw8tLS2MHDkSjx8/VimzZMkS9O3bF5qamtDW1q62/sqfoedfP//8M3d+3759cHV15drp06cPjh49Wmfc+/btw+DBg6Grq9vgz6Op0aAUIYQQ8hYoKXkKAOjVMxK9e/0GdXVpjWVzCivWkRKq8zHT1QY9LXSaJcbGwVo6AEIIIaRa7u7uSE9Px19//YVZs2Zh0aJF+PHHH1s6LE5dgzYAUFpaCldXVygUCuzbtw8JCQnYvXs3HBwcVAbG1q1bBy8vLzg6OiI2NhbXrl3D6NGj4efnh9mzZ79SnDY2Nli/fj2uX7+OM2fOoG3bthg8eDAyMjIAALdv34ZSqcTmzZtx8+ZNrFq1Cps2bcKCBQtqrbe4uBj6+vr49ttv0blz5wbHdeHCBWzevBmdOnVSOZ6fn4/BgweDx+Phjz/+wNmzZ1FSUgJPT08olUquXElJCUaMGIEvv/yy1nbCwsKQnp7OvT766CPu3OnTp+Hq6orDhw/j0qVLcHZ2hqenJ65cuVJrnfn5+ejXrx+WL1/e4H43OfYOUigUDABTKBQtHQohhBDySpTKMlZcnMGOHbdkx45bsuLijBrL3svMZ92Do5h5QCQzD4hk3YOjaq07OPImMw+IZEsPxTd22A2Wl3eHHTtuyU6eeq9Z26WcQRXdD0JIUyosLGTx8fGssLCwpUNpMF9fX+bl5aVyzNXVlfXu3ZtlZWUxHx8fpq2tzcRiMXN3d2eJiYlcuZSUFPbhhx8ybW1tpqmpyezt7dmhQ4dYcnIyQ8W3MdzL19eXMcZYTk4O8/b2ZpqamszQ0JCtXLmSOTk5senTp3P1mpubs6CgIObj48NkMhl3bXR0NOvXrx8TiUTM1NSUTZ06leXl5THGGLty5QoDwFJSUmrs6/3795lAIGAzZ86scm7t2rUMAPvzzz8ZY4zrw5UrVxp+U/9W+bfn2LFjNZZZsWIFs7CwqHedL96ruuTm5jJra2sWFRVV5dqjR48yPp+v8rcxOzub8Xg8FhVVNdcKCwtjcrm82nYAsP3799c7LsYYs7e3Z4sXL65X2cb4PJ5X2+9sfXMGmilFCCGEvKHKy4sQ8+cgRJ/pBQBQV9eCQKBbY/k/7z5FRm4x996xXc1lXz/0eCEhhLyLGGMoKC1okRdjrzY7VywWo6SkBOPGjcPFixdx8OBBxMTEgDGGIUOGoLS0YubylClTUFxcjNOnT+P69etYvnw5pFIpzMzM8MsvvwAAEhISkJ6ejjVr1gAAZs6cibNnz+LgwYOIiopCdHQ0Ll++XCWGkJAQdO7cGVeuXMHChQuRlJQEd3d3DBs2DNeuXcPu3btx5swZ+Pv7AwD09fXB5/Oxd+9elJeXV9uvvXv3orS0tNoZUZMnT4ZUKsWuXbte6d5VKikpwZYtWyCXy2ud3aRQKKCj03Qzv6dMmYIPPvgAgwYNqnKuuLgYPB4PGhoa3DGRSAQ+n48zZ868VFt6enro2bMntm3bVuvPoVKpRG5ubpP2vanRqqaEEELIG6qgIAmFhfe594aGH9W6NlRWQcW0/Q86GSFoaAfoSIRNHiMhhBDyKgrLCtFrZ68WaTvWOxaaAs0GX8cYw/Hjx3H06FF4eHggIiICZ8+eRd++fQEA4eHhMDMzQ0REBEaMGIH79+9j2LBhcHBwAABYWlpydVUONhgYGHDrEOXm5mLHjh3YuXMnXFxcAFQ88mVsbFwlloEDB2LWrFnc+4kTJ2LMmDHcmkjW1tZYu3YtnJycsHHjRpiYmGDt2rWYO3cuFi9ejO7du8PZ2Rljxozh4kpMTIRcLoeRkVGV9oRCISwtLZGYmNjg+/a8yMhIjB49GgUFBTAyMkJUVBT09PSqLXvnzh2sW7cOISEhr9RmTX7++WdcvnwZFy5cqPZ87969IZFIEBAQgKVLl4Ixhnnz5qG8vBzp6ekNaisoKAgDBw6EpqYmfv/9d3z11VfIy8vDtGnTqi0fEhKCvLw8jBw5ssH9el3QTClCCCHkDVW5jpRUYgvnAbdhaxNYbbmfz9+Hw6KjCDmaAAAw1BJBV6pBi5sTQgghjSgyMhJSqRQikQgeHh4YNWoUxo0bB3V1dfTq9c/Amq6uLmxtbXHr1i0AwLRp0xAcHAxHR0cEBgbi2rVrtbZz9+5dlJaWomfPntwxuVwOW1vbKmW7d++u8v7q1avYvn07pFIp93Jzc4NSqURycjKAipk6jx49Qnh4OPr06YM9e/agQ4cOiIqKqve9EArr/uIrPDxcJY7o6GjunLOzM+Li4nDu3Dm4u7tj5MiRePLkSZU6UlNT4e7ujhEjRmDSpEnc8efr9fPzq1fM0dHRKteFh4fjwYMHmD59OsLDwyESiaq9Tl9fH3v27MGvv/4KqVQKuVyO7OxsdO3aFXx+w4ZcFi5cCEdHR3Tp0gUBAQGYO3dujeuS7dy5E4sXL8b//vc/GBgYAKj9nr6umn2mVGpqKgICAnDkyBEUFBTAysoKYWFh3C8LYwyBgYH46aefkJ2dDUdHR2zcuBHW1tZcHVlZWZg6dSp+/fVX8Pl8DBs2DGvWrIFUWvOiroQQQsjbpLgkE9nZ5wEAQqE++HxBjWV/vZaG3KKK3X94PKC7eatmiZEQQgh5VWJ1MWK9Y+su2ERtN4SzszM2btwIoVAIY2NjqKur4+DBg3VeN3HiRLi5ueHQoUP4/fffsWzZMoSGhmLq1KkvGzpHIpGovM/Ly8PkyZOrnXnTpk0b7t8ymQyenp7w9PREcHAw3NzcEBwcDFdXV1hbW0OhUCAtLa3K7KySkhIkJSXBzc2tztiGDh2qMlhnYmKiEreVlRWsrKzQu3dvWFtbY+vWrZg/fz5XJi0tDc7Ozujbty+2bNmiUvfzu8tpaWnVGQtQMYD3/HWtW7fG8ePH8eTJE3Tt+s+uxuXl5Th9+jTWr1+P4uJiqKmpYfDgwUhKSkJmZibU1dWhra0NQ0NDlVlvL6NXr174/vvvUVxcrPJ44M8//4yJEydiz549Ko8U1nZPX1fNOij17NkzODo6wtnZGUeOHIG+vj7++usvtGr1T3K8YsUKrF27Fjt27ICFhQUWLlwINzc3xMfHcyOTY8aMQXp6OqKiolBaWorx48fjiy++wM6dO5uzO4QQQkiLePLkKK7f+Ip7rylpV2v57IKKNStCRnTGwPYGDX5sj/a7I4QQ0lJ4PN5LPULXEioHUp5nZ2eHsrIyxMbGco/vPX36FAkJCbC3t+fKmZmZwc/PD35+fpg/fz5++uknTJ06lZtx9Pz6TpaWlhAIBLhw4QI3kKRQKJCYmIj+/fvXGmPXrl0RHx9fJc7a8Hg8tG/fHufOnQMADB8+HAEBAQgNDUVoaKhK2U2bNqGgoABjx46ts16ZTAaZTFavGJRKJYqL/1kXMzU1Fc7OzujWrRvCwsKqzEhqSP8qicXiKte5uLjg+vXrKsfGjx+P9u3bIyAgAGpqairnKh8x/OOPP/DkyRMMHTq0wXE8Ly4uDq1atVIZkNq1axc+//xz/Pzzz/jggw9Uyjfknr4umnVQavny5TAzM0NYWBh3zMLCgvs3YwyrV6/Gt99+Cy8vLwDAv//9b7Ru3RoREREYPXo0bt26hd9++w0XLlzgZletW7cOQ4YMQUhISLXP0RJCCCFvE0VOxUKmPJ4QQqEuDFtXn/D8OyYFsclZSM7MBwBYGUhpHSlCCCGkGVlbW8PLywuTJk3C5s2bIZPJMG/ePJiYmHD/zztjxgx4eHjAxsYGz549w4kTJ2BnZwcAMDc3B4/HQ2RkJIYMGQKxWAyZTAZfX1/MmTMHOjo6MDAwQGBgIPh8fp2P5gcEBKB3797w9/fHxIkTIZFIEB8fj6ioKKxfvx5xcXEIDAyEj48P7O3tIRQKcerUKWzbtg0BAQEAKmZUrVixArNnz4ZIJIKPjw8EAgEOHDiABQsWIDg4GB07dlRpNyEhoUosHTp0gECgOtM7Pz8fS5YswdChQ2FkZITMzExs2LABqampGDFiBICKAakBAwbA3NwcISEhyMjI4K43NDSstf+VM6Hy8vKQkZGBuLg4CIVClQHC58lksip9kUgk0NXVVTkeFhYGOzs76OvrIyYmBtOnT8fXX3+t8kjl/fv3kZWVhfv376O8vJyLxcrKClKpFL/++iseP36M3r17QyQSISoqCkuXLlVZUH7nzp3w9fXFmjVr0KtXLzx69AhAxYCaXC6vsd+V7aalpQH45/MwNDSs8541uUbZB7Ce7Ozs2IwZM9jw4cOZvr4+e++999iWLVu480lJSdVuT9i/f382bdo0xhhjW7duZdra2irnS0tLmZqaGtu3b1+94qDtjAkhhLzJbsYHsGPHLVly8oYayygKS1jbeZHMPKDiZTEvkj1WNGyL7SWH4pl5QCRbcij+VUN+ZXl5SezYcUt28tR7zdou5Qyq6H4QQppSbdvLv+58fX2Zl5dXteeysrKYj48Pk8vlTCwWMzc3N5aYmMid9/f3Z+3atWMaGhpMX1+f+fj4sMzMTO58UFAQMzQ0ZDwej/n6+jLGGMvJyWHe3t5MU1OTGRoaspUrV7KePXuyefPmcdeZm5uzVatWVYnn/PnzzNXVlUmlUiaRSFinTp3YkiVLGGOMZWRksGnTprGOHTsyqVTKZDIZc3BwYCEhIay8vFylnoiICPb+++8ziUTCUDGxmu3atUulTHJyMnfuxdeDBw+qxFZYWMg+/vhjZmxszIRCITMyMmJDhw5l58+f58qEhYXVWGddqrvG3Ny8zuue5+TkxKZPn65yLCAggLVu3ZoJBAJmbW3NQkNDmVKpVCnj6+tbbfsnTpxgjDF25MgR9t5773GfS+fOndmmTZtU7ruTk1O1dVT+XNSkpnsWGBjYoL6/qLbf2frmDDzGXnGfywaofPxu5syZGDFiBC5cuIDp06dj06ZN8PX1xblz5+Do6Ii0tDSVlfxHjhwJHo+H3bt3Y+nSpdixY0eVkVYDAwMsXrwYX375ZZV2i4uLVab65eTkwMzMDAqFot7PlxJCCCEtTaksRW7uDVy/PgXFJY9ha/s9TE28qy17/2kB+v94AkJ1Pr4ZYgfr1lL0bVf9rjU1WXr4Fracvosv+ltiwRC7xujCS8vPv4s/Y12hrq4Fp/5Xmq3dnJwcyOVyyhn+RveDENKUioqKkJycDAsLixoXlSbVy8/Ph4mJCUJDQzFhwoRmbz8rKwsuLi7Q0tLCkSNHoKn5ZjxySV5Nbb+z9c0ZmnX3PaVSia5du2Lp0qXo0qULvvjiC0yaNAmbNm1q0naXLVsGuVzOvczMzJq0PUIIIaQp3LnzAy5eGo7ikscAAJFGzdOtc4oq1pFqpSmAb9+2DR6QIoQQQsjr68qVK9i1axeSkpJw+fJljBkzBgC4RwKbm46ODo4dOwYXFxfExMS0SAzkzdSsg1JGRkZVntW0s7PD/fv3Afzz/Ofjx49Vyjx+/Jg7Z2hoWGUryLKyMmRlZdX4LOT8+fOhUCi414MHDxqlP4QQQkhzysj4HQDA46nDwGAIdHTer1LmkaIIE7ZfwMz/xQEAZKKad+V7M9Gy64QQQggAhISEoHPnzhg0aBDy8/MRHR3NLbTdEnR1dfHdd9/BxcWlxWIgb55mXejc0dGxymN3iYmJMDc3B1Cx6LmhoSGOHz+O9957D0DFlK/Y2Fjusbw+ffogOzsbly5dQrdu3QBUrGyvVCpVtj58noaGhspq9YQQQsibhjGG4pKKhTz79jkBkaj6jT2O3EjH8dv/fHljoSepthwhhBBC3lxdunTBpUuXWjoMQl5Zsw5Kff311+jbty+WLl2KkSNH4vz589iyZQu2bNkCoGKryRkzZiA4OBjW1tawsLDAwoULYWxsjI8++ghAxcwqd3d37rG/0tJS+Pv7Y/To0bTzHiGEkLdSbm48FIorYKzikTyhULfGsorCijJONvoY28ccPS10miXGplbXbkKEEEIIIeTN06yDUj169MD+/fsxf/58BAUFwcLCAqtXr+aefwWAuXPnIj8/H1988QWys7PRr18//PbbbyqLZoWHh8Pf3x8uLi7g8/kYNmwY1q5d25xdIYQQQppFYeEDnL8wFJWPrWlqWoLPr3n2b05hGQDAzkgLLnatmyNEQgghhBBCXkqzDkoBwIcffogPP/ywxvM8Hg9BQUEICgqqsYyOjg527tzZFOERQgghr5WCgmQADGpqmpDJHNDGbHy15Vb8dhsnEzKQrigEAMhEzf4nnhBCCCGEkAahjJUQQgh5jZWWZgMAtGSd0LVreLVlikrL8a+TSSrHrAykTR0aIYQQQgghr4QGpQghhJDXUHl5MbKyTuNh6n8AAAJBqxrL5hZVPLLH4wHbx/eEjqYQHU20Gi0WxmjHO0IIIYQQ0vhoUIoQQgh5Dd27vxnJyWu495qSdjWWzS2qWNxcKlSHk41+o8VAS4sTQgghhJCmRINShBBCyGsoLzceAKCpaQWpxBqmpj5VyuQUlWJJ5C0kP80HQOtIEUIIIYSQNwu/pQMghBBCSFWFRakAAGureXBwWA8NoV6VMr/ffIzdFx/gfHIWAMBUR7NZYySEEEJIhXHjxoHH44HH40EoFMLKygpBQUEoKyt7pXpPnjwJHo+H7Ozsxgm0HpKTk+Ht7Q1jY2OIRCKYmprCy8sLt2/fVikXGRkJJycnyGQyaGpqokePHti+fbtKmZSUFPB4PMTFxdW7/UWLFqF9+/aQSCRo1aoVBg0ahNjYWJU6J0yYAAsLC4jFYrRr1w6BgYEoKSmptd709HR4e3vDxsYGfD4fM2bMqHdMqamp+Oyzz6CrqwuxWAwHBwdcvHiRO//851/5cnd3V6mjbdu2Vcr88MMP3PmEhAQ4OzujdevWEIlEsLS0xLfffovS0lKVerKzszFlyhQYGRlBQ0MDNjY2OHz4cK3x79u3D4MHD4aurm6DP4+mRl+pEkIIIa+RZ89ikfn0xN+77gEikXHNZfMrkq8ubbTxaY82eN+m6sAVIYQQQpqHu7s7wsLCUFxcjMOHD2PKlCkQCASYP39+S4cGACgpKYFQKKy1TGlpKVxdXWFra4t9+/bByMgIDx8+xJEjR1QGxtatW4cZM2YgICAAGzduhFAoxIEDB+Dn54cbN24gJCTkpeO0sbHB+vXrYWlpicLCQqxatQqDBw/GnTt3oK+vj9u3b0OpVGLz5s2wsrLCjRs3MGnSJOTn59fabnFxMfT19fHtt99i1apV9Y7n2bNncHR0hLOzM44cOQJ9fX389ddfaNVKdb3Pys+/koaGRpW6goKCMGnSJO69TCbj/i0QCDB27Fh07doV2trauHr1KiZNmgSlUomlS5cCqPgMXV1dYWBggL1798LExAT37t2DtrZ2rX3Iz89Hv379MHLkSJX2Xwc0KEUIIYS8Rm7cnI6SkgwAAI8ngEhkWmPZnL/XknIwkWNkD7NmiY8QQggh1dPQ0IChoSEA4Msvv8T+/ftx8OBB+Pn5Yfr06fj1119RXFwMJycnrF27FtbW1gCAe/fuwd/fH2fOnEFJSQnatm2LH3/8Efb29nB2dgYAbgDE19cX27dvR25uLvz8/BAREQEtLS3MnTsXBw4cwHvvvYfVq1cDqJiZM2HCBPz111+IiIjAJ598gu3bt+PMmTOYP38+Ll68CD09PXz88cdYtmwZJBIJbt68iaSkJBw/fhzm5uYAAHNzczg6OnL9fPDgAWbNmoUZM2ZwgyUAMGvWLAiFQkybNg0jRoxAr169Xuo+ent7q7xfuXIltm7dimvXrsHFxQXu7u4qs5AsLS2RkJCAjRs31joo1bZtW6xZU7Fe57Zt2+odz/Lly2FmZqYy4GRhYVGl3POff01kMlmNZSwtLWFpacm9Nzc3x8mTJxEdHc0d27ZtG7KysnDu3DkIBAKuX3Xx8alYBiIlJaXOss2NHt8jhBBCXhNKZSk3IGVqOhYOHddBXV1Spdzl+8/g+MMf2HzqLgBALhY0a5wtiXYCJISQdwtjDMqCghZ5verfHLFYjJKSEowbNw4XL17EwYMHERMTA8YYhgwZwj2WNWXKFBQXF+P06dO4fv06li9fDqlUCjMzM/zyyy8AKh7tSk9P5wZVZs6cibNnz+LgwYOIiopCdHQ0Ll++XCWGkJAQdO7cGVeuXMHChQuRlJQEd3d3DBs2DNeuXcPu3btx5swZ+Pv7AwD09fXB5/Oxd+9elJeXV9uvvXv3orS0FLNnz65ybvLkyZBKpdi1a9cr3btKJSUl2LJlC+RyOTp37lxjOYVCAR0dnUZp80UHDx5E9+7dMWLECBgYGKBLly746aefqpQ7efIkDAwMYGtriy+//BJPnz6tUuaHH36Arq4uunTpgh9//LHWxzvv3LmD3377DU5OTiqx9OnTB1OmTEHr1q3RsWNHLF26tMbP6k1AM6UIIYSQ10B5eTHy8uL/fseHjfVC8HjVf3d0LP4xUrMLAQA8HtDZVLt5giSEEEKaGSssRELXbi3Stu3lS+BpNny9RsYYjh8/jqNHj8LDwwMRERE4e/Ys+vbtCwAIDw+HmZkZIiIiMGLECNy/fx/Dhg2Dg4MDAKjMlqkcaDEwMOAe0crNzcWOHTuwc+dOuLi4AADCwsJgbFz1kf+BAwdi1qxZ3PuJEydizJgx3HpK1tbWWLt2LZycnLBx40aYmJhg7dq1mDt3LhYvXozu3bvD2dkZY8aM4eJKTEyEXC6HkZFRlfaEQiEsLS2RmJjY4Pv2vMjISIwePRoFBQUwMjJCVFQU9PSqX6bgzp07WLdu3Ss9Mlibu3fvYuPGjZg5cyYWLFiACxcuYNq0aRAKhfD19QVQ8ejeJ598AgsLCyQlJWHBggXw8PBATEwM1NTUAADTpk1D165doaOjg3PnzmH+/PlIT0/HypUrVdrr27cvLl++jOLiYnzxxRcICgpSieWPP/7AmDFjcPjwYdy5cwdfffUVSktLERgY2CT9b2o0U4oQQghpYWVluYj50wUXLw0HAAiFejUOSAFAXnHFt2o+vc1xfsEgDLJv3SxxEkIIIaRmkZGRkEqlEIlE8PDwwKhRozBu3Dioq6urPMqmq6sLW1tb3Lp1C0DFYEVwcDAcHR0RGBiIa9eu1drO3bt3UVpaip49e3LH5HI5bG1tq5Tt3r27yvurV69i+/btkEql3MvNzQ1KpRLJyRXrWU6ZMgWPHj1CeHg4+vTpgz179qBDhw6Iioqq972oa+0qoGJw7vk4nn9MzdnZGXFxcTh37hzc3d0xcuRIPHnypEodqampcHd3x4gRI1TWSnq+Xj8/v3rFHB0drXJdeHg4AECpVKJr165YunQpunTpgi+++AKTJk3Cpk2buGtHjx6NoUOHwsHBAR999BEiIyNx4cIFnDx5kiszc+ZMDBgwAJ06dYKfnx9CQ0Oxbt06FBcXq8Sxe/duXL58GTt37sShQ4dUBtuUSiUMDAywZcsWdOvWDaNGjcI333zDxVLbPX1d0UwpQgghpIU9e/YniovTAQBqahKYm39Ra/m8oopBKdNWYujLqi6iSQghhLwteGIxbC9farG2G8LZ2Zlb9NvY2Bjq6uo4ePBgnddNnDgRbm5uOHToEH7//XcsW7YMoaGhmDp16suGzpFIVJcByMvLw+TJkzFt2rQqZdu0acP9WyaTwdPTE56enggODoabmxuCg4Ph6uoKa2trKBQKpKWlVZmdVVJSgqSkJLi5udUZ29ChQ1UG60xMTFTitrKygpWVFXr37g1ra2ts3bpVZdH4tLQ0ODs7o2/fvtiyZYtK3c/vLqelpVVnLEDFAN7z17VuXfGln5GREezt7VXK2tnZcY9WVsfS0hJ6enq4c+cON5vtRb169UJZWRlSUlJUBhTNzCrWCbW3t0d5eTm++OILzJo1C2pqajAyMoJAIOBmX1XG8ujRI5SUlNR6T19XNChFCCGEtLDiv9eR0tMbhM6dNtdY7qfTd3HlwTNcvpcNAJCK6M84IYSQtxuPx3upR+haQuVAyvPs7OxQVlaG2NhY7vG9p0+fIiEhQWWgw8zMDH5+fvDz88P8+fPx008/YerUqdyMo+fXDLK0tIRAIMCFCxe4gSSFQoHExET079+/1hi7du2K+Pj4KnHWhsfjoX379jh37hwAYPjw4QgICEBoaChCQ0NVym7atAkFBQUYO3ZsnfXKZDKV3edqo1QqVWYUpaamwtnZGd26dUNYWBj4fNUZ5g3pXyWxWFztdY6OjkhISFA5lpiYyC0EX52HDx/i6dOn1T7iWCkuLg58Ph8GBgY1llEqlSgtLYVSqYSamhocHR2xc+dOKJVKrs+JiYkwMjKCUCiEUCis9z19XVA2SwghhLSQ3NybSLm3CU+eHAZQ8dheTZ7kFmHJ4Vsqx0y0G/YN7suitcUJIYSQl2NtbQ0vLy9MmjQJmzdvhkwmw7x582BiYgIvLy8AwIwZM+Dh4QEbGxs8e/YMJ06cgJ2dHYCKHdh4PB4iIyMxZMgQiMViyGQy+Pr6Ys6cOdDR0YGBgQECAwPB5/PB4/FqjScgIAC9e/eGv78/Jk6cCIlEgvj4eERFRWH9+vWIi4tDYGAgfHx8YG9vD6FQiFOnTmHbtm0ICAgAUDGjasWKFZg9ezZEIhF8fHwgEAhw4MABLFiwAMHBwejYsaNKuy8O6gBAhw4duB3kKuXn52PJkiUYOnQojIyMkJmZiQ0bNiA1NRUjRowAUDEgNWDAAJibmyMkJAQZGRnc9XXtflc5EyovLw8ZGRmIi4uDUCisMhPqeV9//TX69u2LpUuXYuTIkTh//jy2bNnCzc7Ky8vD4sWLMWzYMBgaGiIpKQlz586FlZUVN2MsJiYGsbGxcHZ2hkwmQ0xMDL7++mt89tln3M6K4eHhEAgEcHBwgIaGBi5evIj58+dj1KhR3H368ssvsX79ekyfPh1Tp07FX3/9haVLl1Y78+15WVlZuH//PtLS0gD883kYGhrWec+aHHsHKRQKBoApFIqWDoUQQsg77Pr1aezYcUvulZa2r8ayN1MVzDwgknUM/I39+1wyO3I9jZWXK5s0vqWH45l5QCT7/tebTdpOfeTn32XHjluyEyc7NWu7lDOoovtBCGlKhYWFLD4+nhUWFrZ0KA3m6+vLvLy8qj2XlZXFfHx8mFwuZ2KxmLm5ubHExETuvL+/P2vXrh3T0NBg+vr6zMfHh2VmZnLng4KCmKGhIePxeMzX15cxxlhOTg7z9vZmmpqazNDQkK1cuZL17NmTzZs3j7vO3NycrVq1qko858+fZ66urkwqlTKJRMI6derElixZwhhjLCMjg02bNo117NiRSaVSJpPJmIODAwsJCWHl5eUq9URERLD333+fSSQSBoABYLt27VIpk5yczJ178fXgwYMqsRUWFrKPP/6YGRsbM6FQyIyMjNjQoUPZ+fPnuTJhYWE11lmX6q4xNzev87pff/2VdezYkWloaLD27duzLVu2cOcKCgrY4MGDmb6+PhMIBMzc3JxNmjSJPXr0iCtz6dIl1qtXLyaXy5lIJGJ2dnZs6dKlrKioiCvz888/s65du3Kfi729PVu6dGmV34dz586xXr16MQ0NDWZpacmWLFnCysrKao2/pnsWGBhYZ99rU9vvbH1zBh5j7973nzk5OZDL5VAoFPV+vpQQQghpbJcvj8Gz7D9hbDwKeroDoKfnWuUbTsYY/h1zD3/efYojNx7B2kCKqJlONdTYuJYduYXNp+5iYj8LfPthzd8gNoeCgmTE/DkIampSDHC62mztUs6giu4HIaQpFRUVITk5GRYWFhCJRC0dzhslPz8fJiYmCA0NxYQJE5q9/aysLLi4uEBLSwtHjhyB5hvyyCV5NbX9ztY3Z6Dd9wghhJBmVl5egJzcG1DkVAyuGOi7Q19/cLVT7uPTcxB48CaO3HgEADBqpkf2CCGEEPL6unLlCnbt2oWkpCRcvnwZY8aMAQDukcDmpqOjg2PHjsHFxQUxMTEtEgN5M9GaUoQQQkgzYkyJ2PMfoLDwPndMKNSvsfyT3IpFPQ1kGvi0ZxsMfc+4xrKEEEIIeXeEhIQgISEBQqEQ3bp1Q3R0NPT0al6fsqnp6uriu+++a7H2yZuJBqUIIYSQZlRWpuAGpDQ0DKGv5wqptH2N5XMKSwEA7fSl+NrVplliJIQQQsjrrUuXLrh06VJLh0HIK6NBKUIIIaQZlZRkAQDU1WXo53i2xnJn/spEwC/X8KygBAAgFwtqLEsIIYQQQsibiAalCCGEkGby9OkpPHj4bwCAQKBba9lD19OQml3Ive9spt2Uob0Bat/imhBCCCGEvHloUIoQQghpBnl5iYi7+jn3XibrUGv5nMIyAIC/sxVGdjdDG13axYYQQgghhLxdaFCKEEIIaQbZ2Re4fxsbj4J5m0nVlissKUdmXjEy/l7g3FJfQgNShBBCCCHkrUSDUoQQQkgzKC5OBwCYmvrA1mZRtWVyikrhtOIEnhWUcsdkIlpLihBCCCGEvJ1oUIoQQghpQmVluXj27E9kKy4DAEQaRjWWvfMkjxuQ0hSqwVhbjO7mrZolztqwlg6AEEIIIYS8lWhQihBCCGlCCQmBePT4APdeIrGptpxSybhH9hxM5Ph1ar9mia82PFpcnBBCCCGENCF+SwdACCGEvM1ycm8AAKTS9jA0/Ag6Oo5VyjxSFKHn0mOY/J9LAIBWEmGzxkgIIYSQVzNu3DjweDzweDwIhUJYWVkhKCgIZWVlr1TvyZMnwePxkJ2d3TiB1kNycjK8vb1hbGwMkUgEU1NTeHl54fbt2yrlIiMj4eTkBJlMBk1NTfTo0QPbt29XKZOSkgIej4e4uLh6t79o0SK0b98eEokErVq1wqBBgxAbG6tS54QJE2BhYQGxWIx27dohMDAQJSUltdabnp4Ob29v2NjYgM/nY8aMGfWKp7y8HAsXLlRp7/vvvwdj/8wl37dvHwYPHgxdXd0a+5uUlISPP/4Y+vr60NLSwsiRI/H48eMG9+vatWt4//33IRKJYGZmhhUrVtTZh9OnT8PT0xPGxsbg8XiIiIioV9+bAw1KEUIIIU2EMSWKih4AADo5bEQH+1Dw+VUHnC7de4bMvIqEg8cDnGz0mzVO8vrasGED2rZtC5FIhF69euH8+fO1lt+zZw/at28PkUgEBwcHHD58uMayfn5+4PF4WL16dSNHTQgh7yZ3d3ekp6fjr7/+wqxZs7Bo0SL8+OOPLR0Wp65BGwAoLS2Fq6srFAoF9u3bh4SEBOzevRsODg4qA2Pr1q2Dl5cXHB0dERsbi2vXrmH06NHw8/PD7NmzXylOGxsbrF+/HtevX8eZM2fQtm1bDB48GBkZGQCA27dvQ6lUYvPmzbh58yZWrVqFTZs2YcGCBbXWW1xcDH19fXz77bfo3LlzveNZvnw5Nm7ciPXr1+PWrVtYvnw5VqxYgXXr1nFl8vPz0a9fPyxfvrzaOvLz8zF48GDweDz88ccfOHv2LEpKSuDp6QmlUlnvfuXk5GDw4MEwNzfHpUuX8OOPP2LRokXYsmVLrX3Iz89H586dsWHDhnr3u9mwd5BCoWAAmEKhaOlQCCGEvKVSUjaxK3Gfs2PHLdmx41asvLykxrLhf95j5gGRbNy2WFZQXNaMUdZu2eFbzDwgkgX9erOlQ2H5+cns2HFLduJkp2ZttyVzhp9//pkJhUK2bds2dvPmTTZp0iSmra3NHj9+XG35s2fPMjU1NbZixQoWHx/Pvv32WyYQCNj169erlN23bx/r3LkzMzY2ZqtWrap3TJRDEUKaUmFhIYuPj2eFhYUtHUqD+fr6Mi8vL5Vjrq6urHfv3iwrK4v5+PgwbW1tJhaLmbu7O0tMTOTKpaSksA8//JBpa2szTU1NZm9vzw4dOsSSk5MZKpZ25F6+vr6MMcZycnKYt7c309TUZIaGhmzlypXMycmJTZ8+navX3NycBQUFMR8fHyaTybhro6OjWb9+/ZhIJGKmpqZs6tSpLC8vjzHG2JUrVxgAlpKSUmNf79+/zwQCAZs5c2aVc2vXrmUA2J9//skYY1wfrly50vCb+rfKvz3Hjh2rscyKFSuYhYVFvet88V7V5oMPPmCff/65yrFPPvmEjRkzpkrZmvp79OhRxufzVf5+ZmdnMx6Px6Kiomps+8V+/etf/2KtWrVixcXF3LGAgABma2tbr74wxhgAtn///nqXr01tv7P1zRlophQhhBDSyIpLMnEnaQWePj0JAJBKrMHnV91F797TfCw5FI99lx8CAHQkGhAL1ZozVPIaW7lyJSZNmoTx48fD3t4emzZtgqamJrZt21Zt+TVr1sDd3R1z5syBnZ0dvv/+e3Tt2hXr169XKZeamoqpU6ciPDwcAgHt7kgIeb0xxlBaXN4iL8ZebasPsViMkpISjBs3DhcvXsTBgwcRExMDxhiGDBmC0tKKzU2mTJmC4uJinD59GtevX8fy5cshlUphZmaGX375BQCQkJCA9PR0rFmzBgAwc+ZMnD17FgcPHkRUVBSio6Nx+fLlKjGEhISgc+fOuHLlChYuXIikpCS4u7tj2LBhuHbtGnbv3o0zZ87A398fAKCvrw8+n4+9e/eivLy82n7t3bsXpaWl1c6Imjx5MqRSKXbt2vVK965SSUkJtmzZArlcXuvsJoVCAR0dnUZp80V9+/bF8ePHkZiYCAC4evUqzpw5Aw8Pj3rXUVxcDB6PBw0NDe6YSCQCn8/HmTNnarzuxX7FxMSgf//+EAr/mXnv5uaGhIQEPHv2rCHdem3QQueEEEJIIysteQoAUFOTwtpqPnR0+lZbbs3xv7Dvcir33kguapb4yOuvpKQEly5dwvz587ljfD4fgwYNQkxMTLXXxMTEYObMmSrH3NzcVNaNUCqV8PHxwZw5c9ChQ4c64yguLkZxcTH3Picnp4E9IYSQV1NWosSW6adapO0v1jhBoNHwL4sYYzh+/DiOHj0KDw8PRERE4OzZs+jbtyIfCA8Ph5mZGSIiIjBixAjcv38fw4YNg4ODAwDA0tKSq6tyQMLAwADa2toAgNzcXOzYsQM7d+6Ei4sLACAsLAzGxsZVYhk4cCBmzZrFvZ84cSLGjBnDradkbW2NtWvXwsnJCRs3boSJiQnWrl2LuXPnYvHixejevTucnZ0xZswYLq7ExETI5XIYGVXdUVgoFMLS0pIbwHlZkZGRGD16NAoKCmBkZISoqCjo6elVW/bOnTtYt24dQkJCXqnNmsybNw85OTlo37491NTUUF5ejiVLlmDMmDH1rqN3796QSCQICAjA0qVLwRjDvHnzUF5ejvT09Gqvqa5fjx49goWFhUq51q1bc+datWr5XZsbimZKEUIIIY2stLTimyoNjdYwMRkNsbhNteUqd9tz69Aa8zzaY0I/i2rLEQDcToCv9q31myIzMxPl5eVcolmpdevWePToUbXXPHr0qM7yy5cvh7q6OqZNm1avOJYtWwa5XM69zMzMGtgTQgh5d0RGRkIqlUIkEsHDwwOjRo3CuHHjoK6ujl69enHldHV1YWtri1u3bgEApk2bhuDgYDg6OiIwMBDXrl2rtZ27d++itLQUPXv25I7J5XLY2tpWKdu9e3eV91evXsX27dshlUq5l5ubG5RKJZKTkwFUzNx69OgRwsPD0adPH+zZswcdOnRAVFRUve/F8zN5ahIeHq4SR3R0NHfO2dkZcXFxOHfuHNzd3TFy5Eg8efKkSh2pqalwd3fHiBEjMGnSJO748/X6+fnVK+bo6GiV68LDwwEA//vf/xAeHo6dO3fi8uXL2LFjB0JCQrBjx4561QtUzEDbs2cPfv31V0ilUsjlcmRnZ6Nr167g86sOy9TUr5ftw+uMZkoRQgghjejxk8O4l7IJACAQVP9tVU5RKZ7mlXCDUqN6mGFg+9bVliWksVy6dAlr1qzB5cuXwePx6r4AwPz581VmX+Xk5NDAFCGkWakL+fhijVOLtd0Qzs7O2LhxI4RCIYyNjaGuro6DBw/Wed3EiRPh5uaGQ4cO4ffff8eyZcsQGhqKqVOnvmzoHIlEovI+Ly8PkydPrvbLiTZt/vkSTSaTwdPTE56enggODoabmxuCg4Ph6uoKa2trKBQKpKWlVZmdVVJSgqSkJLi5udUZ29ChQ1UG60xMTFTitrKygpWVFXr37g1ra2ts3bpVZQZxWloanJ2d0bdv3yoLfT+/+52WlladsQAVA3jPX1f5Rc+cOXMwb948jB49GgDg4OCAe/fuYdmyZfD19a1X3QAwePBgJCUlITMzE+rq6tDW1oahoaHKzLi6+mVoaKiyYx8A7r2hoSHatm1bbR9eZzQoRQghhDSSrKyzuHHjnwRSS9axSpl0RSGcQ06iqFTJHZOLaV0fokpPTw9qamrVJp6GhobVXlNTolpZPjo6Gk+ePFH5n47y8nLMmjULq1evRkpKSpU6NTQ0VNa/IISQ5sbj8V7qEbqWUDmQ8jw7OzuUlZUhNjaWe3zv6dOnSEhIgL29PVfOzMwMfn5+8PPzw/z58/HTTz9h6tSp3Iyj59d3srS0hEAgwIULF7j/pisUCiQmJqJ///61xti1a1fEx8dXibM2PB4P7du3x7lz5wAAw4cPR0BAAEJDQxEaGqpSdtOmTSgoKMDYsWPrrFcmk0Emk9UrBqVSqfI4eWpqKpydndGtWzeEhYVVmW3UkP5VEovF1V5XUFBQpX41NTVu17yGqnwM8Y8//sCTJ08wdOhQ7lxd/erTpw+++eYblJaWcutCRkVFwdbWlnt072X63pJoUIoQQghpJM+yY7l/m5r6oI151enWt9JzUFSqBJ8HSDTU0U5fig7G8uYMk7wBhEIhunXrhuPHj+Ojjz4CUJGQHz9+nFuM9kV9+vTB8ePHuXVCgIpEtU+fPgAAHx8fDBo0SOUaNzc3+Pj4YPz48U3SD0IIeddZW1vDy8sLkyZNwubNmyGTyTBv3jyYmJjAy8sLADBjxgx4eHjAxsYGz549w4kTJ2BnZwcAMDc3B4/HQ2RkJIYMGQKxWAyZTAZfX1/MmTMHOjo6MDAwQGBgIPh8fp0zYQMCAtC7d2/4+/tj4sSJkEgkiI+PR1RUFNavX4+4uDgEBgbCx8cH9v/P3p3HVVXnjx9/XYQrF7iAIMimKIoLpmbuW4YbaCozmVo6iKWO9HPNMtTKLc000HEbl76FzYxao5kxqBmaGq6VYloqhEK44IIoyL59fn+QJ28gYibX5f18PO4jzvl8zue8z7nSPbzvZ/HzQ6/Xs2fPHj766CPCwsKA0h5VCxYs4PXXX8fa2prg4GCsrKz44osvmDZtGnPmzOGJJ0y/mIuPjy8TS9OmTcssuJGdnc3cuXPp378/7u7upKWlsXz5cs6fP8/AgQOB0sTNM888g7e3N+Hh4Vy5ckU7/nZf3Nx0sxdRVlYWV65c4ejRo+j1epME4e/169ePuXPnUqdOHZo2bUpcXBwLFy7k5Zdf1uqkp6eTkpLChQsXTK7Xzc1NiykyMpImTZrg4uLCgQMHmDBhAq+++qo27LIy1zVkyBBmzZrFiBEjCAsL48cff2Tx4sUsWrSowuvOysoiMTFR205KSuLo0aM4OTmZfFllFn/KOoAPGVnOWAghxP1w/McJasdOH5WcvOq2dT47fFZ5h0Wrv/3fwSqM7I+Zt/Wk8g6LVrOifjJ3KCo7O1nt2Omjdu1uVqXnNeczwyeffKKqV6+u1qxZo06cOKH+/ve/K0dHR3Xx4kWllFLBwcFqypQpWv19+/YpS0tLFR4erk6ePKlmzJihrKys1PHjx297Dm9vb7Vo0aJKxyTPUEKI+6mi5eUfdCEhISooKKjcsvT0dBUcHKwcHByUwWBQAQEBKiEhQSsfO3asql+/vqpevbpycXFRwcHBKi0tTSufPXu2cnNzUzqdToWEhCillMrMzFRDhgxRNjY2ys3NTS1cuFC1bdvW5HPhdv+P//bbb1XPnj2VnZ2dsrW1Vc2bN1dz585VSil15coVNX78ePXEE08oOzs7ZTQaVbNmzVR4eLgqLi42aWfz5s2qS5cuytbWVlE66aNav369SZ2kpCSt7Pevs2fPloktNzdX/fWvf1UeHh5Kr9crd3d31b9/f/Xtt99qdSIjI2/b5p2Ud4y3t3eFx2RmZqoJEyaoOnXqKGtra+Xj46PefPNNlZ+ff8eYZsyYodUJCwtTtWrVUlZWVsrX11dFRESokpKSu76uH374QXXu3FlVr15deXp6qvfee++O171r165y27357+mPquh3trLPDDql7nGdy4dQZmYmDg4OZGRkVHp8qRBCCHE7ubnnuXp1FylnPyQ3N4VmTyzH1TXQpE5cyjXmf3mKc9dyOXctl34tPFj6YkszRVw58788xYrdp3m5Uz2m97v9N4hVISfnFw4c7Ea1arY807XiCWD/TOZ+Zli2bBnvv/8+Fy9e5Mknn2TJkiXa/BvPPPMMdevWZc2aNVr9DRs28NZbb5GcnIyvry8LFiygT58+t22/bt26TJw40aR3VUXMfT+EEI+2vLw8kpKSqFevHtbWsiLt3cjOzsbT05OIiAhGjBhR5edPT0+ne/fu2Nvbs23bNmxsbKo8BlH1KvqdrewzgwzfE0IIIe7RiZOTuX7L0D2DTd0yddYeSuHgmXRtu76LbZk6Qvze2LFjbztcb/fu3WX2DRw4UBveUBnlzSMlhBDiwRcXF8epU6do27YtGRkZzJ49G0AbEljVnJyc2LFjB8uXL+fAgQN0797dLHGIh48kpYQQQoh7lJv7CwBOTl1wcGiFnW3ZJZmv5xQAMLxjXXo0qUXbek5VGqMQQgghHi3h4eHEx8dr8xDGxsZqk2ibg7OzM9OnTzfb+cXDSZJSQgghxD1QSlFQUNoDqknjd7G2Nl0a+VJmHj+cvU5Keg4Abes50dnXfA+MQgghhHj4tWzZksOHD5s7DCHumSSlhBBCiD8oJyeJG1knUaoA0GFl5VymzsCVB7SEFICjjVWZOkIIIYQQQjyOJCklhBBC/AH5BWkcPNTn14QUGKxrU61adZM6hcUlWkKqRW1H6jnb0Npbhu0JIYQQQggBkpQSQggh/pDsrHiUKsDCwoCdrS9eXsPK1LmRV6T9/FloByyrWVRliI+ox27RYCGEEEKIR5YkpYQQQog/IC/vPAA1HNvw5JORJmVFxSX8++AvJF7OAsBWX00SUvdIp9OZOwQhhBBCCPEnk6SUEEIIcReKi/NJS9tBWtrXAFhbe5apE/tzGrP+d0LbdrW3rrL4hBBCCCGEeFhIUkoIIYS4C+fO/5vExHnatsFQu0yd1Iw8AOo629DTrxaBT7hVWXxCCCGEEEI8LCQpJYQQQtyF3NwUAGxsfLC3b4Gb23Mm5eeu5fDz5RsAtK7rxJvP+lV5jH82JfM4CSGEEEKI+0AmuBBCCCHuQlFhBgCenkNo6hdO9eouWtnOk5foPH8XkfuSAXAwWJkjxD+NzOIkhBBCVM7w4cPR6XTodDr0ej0NGjRg9uzZFBUV3fngCuzevRudTsf169f/nEArISkpiSFDhuDh4YG1tTVeXl4EBQVx6tQpk3rR0dF07doVo9GIjY0Nbdq0Yc2aNSZ1kpOT0el0HD16tNLnnzlzJo0bN8bW1pYaNWrQo0cPDh06ZNLmiBEjqFevHgaDgfr16zNjxgwKCgoqbDc1NZUhQ4bQsGFDLCwsmDhxYqXiuXHjBhMnTsTb2xuDwUDHjh357rvvTOpkZWUxduxYvLy8MBgM+Pn5sXLlSpM6o0ePpn79+hgMBlxcXMq9pykpKTz77LPY2Njg6urK5MmTb/tvaN++fVhaWvLkk0/e8Ro2bdpEr169cHZ2vuv3436TpJQQQghRCTk5yZw7t5ZLl6MBsLJ0KFPn+PnShJXBqho+LrY829y9SmMUQgghhPkEBgaSmprKzz//zGuvvcbMmTN5//33zR2W5k5JG4DCwkJ69uxJRkYGmzZtIj4+nk8//ZRmzZqZJMaWLl1KUFAQnTp14tChQxw7dowXXniB0NBQXn/99XuKs2HDhixbtozjx4+zd+9e6tatS69evbhy5QoAp06doqSkhFWrVvHTTz+xaNEiVq5cybRp0ypsNz8/HxcXF9566y1atGhR6XhGjhxJTEwM//73vzl+/Di9evWiR48enD9/XqszadIkvvzyS/7zn/9w8uRJJk6cyNixY4mKitLqtGrVisjISE6ePMn27dtRStGrVy+Ki4sBKC4u5tlnn6WgoID9+/fz8ccfs2bNGqZPn14mpuvXrzNs2DC6d+9eqWvIzs6mc+fOzJ8/v9LXXWXUYygjI0MBKiMjw9yhCCGEeEgcPNRH7djpo72uXz9cps7MqB+Vd1i0mrf1pBki/PPN33ZSeYdFq5lRP5o7FJWT84vasdNH7dr9RJWeV54ZTMn9EELcT7m5uerEiRMqNzfX3KHctZCQEBUUFGSyr2fPnqp9+/YqPT1dBQcHK0dHR2UwGFRgYKBKSEjQ6iUnJ6u+ffsqR0dHZWNjo/z8/NSWLVtUUlKSAkxeISEhSimlMjMz1ZAhQ5SNjY1yc3NTCxcuVF27dlUTJkzQ2vX29lazZ89WwcHBymg0asfGxsaqzp07K2tra+Xl5aXGjRunsrKylFJKxcXFKUAlJyff9lpTUlKUlZWVmjRpUpmyJUuWKEAdPHhQKaW0a4iLi7v7m/qrm589O3bsuG2dBQsWqHr16lW6zd/fq9vJyclR1apVU9HR0Sb7n3rqKfXmm29q202bNlWzZ8+usM7v/fDDDwpQiYmJSimltm7dqiwsLNTFixe1OitWrFD29vYqPz/f5NjBgwert956S82YMUO1aNHijtdx05/xftyqot/Zyj4zSE8pIYQQohJyc88B4Ozclfo+r2Nv31Ir+y45nbCNx9gdX/oN3sM+bE8IIYR4UCilKMzLM8tLqXubU9FgMFBQUMDw4cP5/vvviYqK4sCBAyil6NOnD4WFhQCMGTOG/Px8vvnmG44fP878+fOxs7Ojdu3afPbZZwDEx8eTmprK4sWLgdKeOfv27SMqKoqYmBhiY2M5cuRImRjCw8Np0aIFcXFxvP3225w+fZrAwEAGDBjAsWPH+PTTT9m7dy9jx44FwMXFBQsLCzZu3Kj14Pm9jRs3UlhYWG6PqNGjR2NnZ8f69evv6d7dVFBQwOrVq3FwcKiwd1NGRgZOTk5/yjlvVVRURHFxMdbWpispGwwG9u7dq2137NiRqKgozp8/j1KKXbt2kZCQQK9evcptNzs7m8jISOrVq0ft2qWL5hw4cIBmzZpRq1YtrV5AQACZmZn89NNP2r7IyEjOnDnDjBkz/sxLNRuZ6FwIIYS4g5KSQoqLswBo6heBlVUNk/I5W07yw9nr2raHo+mDixBCCCH+mKL8fJaEPG+Wc4//eCNW1nf/ma6UYufOnWzfvp3evXuzefNm9u3bR8eOHQFYu3YttWvXZvPmzQwcOJCUlBQGDBhAs2bNAPDx8dHauplocXV1xdHRESid4+jjjz9m3bp12vCtyMhIPDw8ysTSrVs3XnvtNW175MiRDB06VJtPydfXlyVLltC1a1dWrFiBp6cnS5Ys4Y033mDWrFm0bt0af39/hg4dqsWVkJCAg4MD7u5lpynQ6/X4+PiQkJBw1/ftVtHR0bzwwgvk5OTg7u5OTEwMNWvWLLduYmIiS5cuJTw8/J7OWR6j0UiHDh145513aNKkCbVq1WL9+vUcOHCABg0aaPWWLl3K3//+d7y8vLC0tMTCwoIPPviAp59+2qS9f/7zn7zxxhtkZ2fTqFEjYmJi0Ov1AFy8eNEkIQVo2xcvXgTg559/ZsqUKcTGxmJp+Wikc6SnlBBCCFGBq1f3cCr+bW3b0tK+TJ307HwAhnXwZv6AZvR+QuaSEkIIIR430dHR2NnZYW1tTe/evRk8eDDDhw/H0tKSdu3aafWcnZ1p1KgRJ0+eBGD8+PHMmTOHTp06MWPGDI4dO1bhec6cOUNhYSFt27bV9jk4ONCoUaMydVu3bm2y/cMPP7BmzRrs7Oy0V0BAACUlJSQlJQGlPbcuXrzI2rVr6dChAxs2bKBp06bExMRU+l7cTLRUZO3atSZxxMbGamX+/v4cPXqU/fv3ExgYyKBBg7h8+XKZNs6fP09gYCADBw5k1KhR2v5b2w0NDa1UzLGxsSbHrV27FoB///vfKKXw9PSkevXqLFmyhBdffBELi9/SKUuXLuXgwYNERUVx+PBhIiIiGDNmDDt27DA5x9ChQ4mLi2PPnj00bNiQQYMGkZeXV6n4iouLGTJkCLNmzaJhw4bl1qnonj6oHo3UmhBCCHEf5Odf5odjf0ep0lVPbGzqo9NVK1MvK6+0PLi9N761jFUa4+PmXodSCCGEeLhYVq/O+I83mu3cd8Pf358VK1ag1+vx8PDA0tLSZKLr2xk5ciQBAQFs2bKFr776innz5hEREcG4ceP+aOgaW1tbk+2srCxGjx7N+PHjy9StU6eO9rPRaKRfv37069ePOXPmEBAQwJw5c+jZsye+vr5kZGRw4cKFMr2zCgoKOH36NAEBAXeMrX///ibJOk9PT5O4GzRoQIMGDWjfvj2+vr58+OGHTJ06Vatz4cIF/P396dixI6tXrzZp+9bV5ezty36hWJ7WrVubHHezl1L9+vXZs2cP2dnZZGZm4u7uzuDBg7WeY7m5uUybNo3PP/+cZ599FoDmzZtz9OhRwsPD6dGjh9amg4MDDg4O+Pr60r59e2rUqMHnn3/Oiy++iJubG99++61JTJcuXQLAzc2NGzdu8P333xMXF6cNtywpKUEphaWlJV999VWF9/RBJUkpIYQQ4jZu3PhJS0jVrv0y7m7PmZQnXs4iKS2bG78mpeys5WP1/tGZOwAhhBBmoNPp/tAQOnO4mUi5VZMmTSgqKuLQoUPa8L2rV68SHx+Pn5+fVq927dqEhoYSGhrK1KlT+eCDDxg3bpzW4+jW+Z18fHywsrLiu+++0xJJGRkZJCQklBku9ntPPfUUJ06cKBNnRXQ6HY0bN2b//v0APP/884SFhREREUFERIRJ3ZUrV5KTk8OwYcPu2K7RaMRorNyXeSUlJeTn52vb58+fx9/fX1vR7tZeS8BdXd9NBoOhwuNsbW2xtbXl2rVrbN++nQULFgClKxYWFhaWiaFatWqUlJTctj2lFEop7bo6dOjA3LlzuXz5Mq6urgDExMRgb2+Pn58fVlZWHD9+3KSNf/7zn3z99dds3LiRevXqYWtrW+l7+qCQp2chhBDiNvILSruJOzs/Q0PfN03K0rLy6b34GwqLf+u5Y7SWCc6FEEII8RtfX1+CgoIYNWoUq1atwmg0MmXKFDw9PQkKCgJg4sSJ9O7dm4YNG3Lt2jV27dpFkyZNAPD29kan0xEdHU2fPn0wGAwYjUZCQkKYPHkyTk5OuLq6MmPGDCwsLNDpKv4SJywsjPbt2zN27FhGjhyJra0tJ06cICYmhmXLlnH06FFmzJhBcHAwfn5+6PV69uzZw0cffURYWBhQ2qNqwYIFvP7661hbWxMcHIyVlRVffPEF06ZNY86cOTzxxBMm542Pjy8TS9OmTbGyMn12ys7OZu7cufTv3x93d3fS0tJYvnw558+fZ+DAgUBpQuqZZ57B29ub8PBwrly5oh3v5uZW4fXf7AmVlZXFlStXOHr0KHq93iRB+Hvbt29HKUWjRo1ITExk8uTJNG7cmJdeegko7YnVtWtXJk+ejMFgwNvbmz179vCvf/2LhQsXAqVDLj/99FN69eqFi4sL586d47333sNgMNCnTx8AevXqhZ+fH8HBwSxYsICLFy/y1ltvMWbMGKr/2mvv9/fV1dUVa2vrMvt/Lz09nZSUFC5cuAD89n64ubnd8Z7db5KUEkIIIX4nvyCN+Pi3uXLlKwCqVy/7YX02PYfCYoXe0oKmHvZ0blATu+rysSqEEEIIU5GRkUyYMIG+fftSUFDA008/zdatW7WETHFxMWPGjOHcuXPY29sTGBjIokWLgNLhV7NmzWLKlCm89NJLDBs2jDVr1rBw4UJCQ0Pp27cv9vb2vPHGG5w9e7bMKnG/17x5c/bs2cObb75Jly5dUEpRv359Bg8eDICXlxd169Zl1qxZJCcno9PptO1XX31Va+fVV1/Fx8eHiIgIFi9eTHZ2NgDr16/nhRdeKHPe8vadPXsWLy8vk33VqlXj1KlTfPzxx6SlpeHs7EybNm2IjY2ladOmQGnvocTERBITE8scf6dh/i1b/rZ68uHDh1m3bh3e3t4kJyff9piMjAymTp3KuXPncHJyYsCAAcydO9ckofbJJ58wdepUhg4dSnp6Ot7e3sydO1ebz8ra2prY2Fj+8Y9/cO3aNWrVqsXTTz/N/v37tV5R1apVIzo6mldeeYUOHTpga2tLSEgIs2fPrvCaKiMqKkpLosFv78eMGTOYOXPmPbd/L3TqMZycITMzEwcHBzIyMio9vlQIIcTjIzFxPr+k/DY3QbNm/8TVxXRuhG8SrjDso29p7Gbky4kVd5V/WC348hT/3H2a4R3rMrN/U7PGkpt7lv0HnsHCwoD/Mz9W2XnlmcGU3A8hxP2Ul5dHUlIS9erVu2NyRZjKzs7G09OTiIgIRowYUeXnT09Pp3v37tjb27Nt2zZsbGyqPAZR9Sr6na3sM4OsvieEEEL8Tm7eOQAcHdrQ8sl/4VKzl1amlCLx8g1+vJABgP0jPGTvDiMAhBBCCGEmcXFxrF+/ntOnT3PkyBGGDh0KoA0JrGpOTk7s2LGD7t27c+DAAbPEIB5OMs5ACCGE+J2iwtKEk4fnCzg5dTIp2/D9Od747LelmmVycyGEEEKYQ3h4OPHx8ej1elq1akVsbCw1a9Y0WzzOzs5Mnz7dbOcXDyd5khZCCCF+9dOJ17h8eSslJQUAWFk5lq3zaw8po7UlLnbVGdymdlWGKIQQQghBy5YtOXz4sLnDEOKeSVJKCCGEAEpKCrl48QugdKrFatXsMNqVXYklI7cQgPHdfBn1tE9VhiiEEEIIIcQjRZJSQgghBFBYmE5pQsqCjh12o9fXoFq13ybp3HHiElE/XODbpHQAHAyP7lxSQgghhBBCVAVJSgkhhHjsXUjdyLlz/wFAr6+JweBZps6MqJ84fz1X2/aqYaiy+IQQQgghhHgUSVJKCCHEY+3GjZOcPBmmbTs6tCq3XlpWPgATuvvSsJaR9j7OVRKfEEIIIYQQjypJSgkhhHisZWWd0H72qTcRd/cBJuWpGbn8cjWH/KISAEZ2qYfRWobuVT3dr/9VZo1CCCGEEEL8eSQpJYQQ4rFWUFg6R5Rbrb9Qr944k7Kz6Tk8E76b4pJfJz+30GFXXT46hRBCCCGE+DNYmDsAIYQQwhwuXvofe/d1JjHxPQD0+rLD8RIvZ1FcotBXs6COkw1/f9oHnU5Xpp4QQgghHm/Dhw9Hp9Oh0+nQ6/U0aNCA2bNnU1RUdE/t7t69G51Ox/Xr1/+cQCshKSmJIUOG4OHhgbW1NV5eXgQFBXHq1CmTetHR0XTt2hWj0YiNjQ1t2rRhzZo1JnWSk5PR6XQcPXq00uefOXMmjRs3xtbWlho1atCjRw8OHTpk0uaIESOoV68eBoOB+vXrM2PGDAoKCipsNzU1lSFDhtCwYUMsLCyYOHFipeL55ptv6NevHx4eHuh0OjZv3lymzqZNm+jVqxfOzs53vF6lFL17975tW2vWrKF58+ZYW1vj6urKmDFjTMq3b99O+/btMRqNuLi4MGDAAJKTk03qrF27lhYtWmBjY4O7uzsvv/wyV69evefrvB8kKSWEEOKxdP78evLzUwHQ6apR06VnmToZuYUAtKlXg2/e8CcssHGVxiiEEEKIh0dgYCCpqan8/PPPvPbaa8ycOZP333/f3GFp7pS0ASgsLKRnz55kZGSwadMm4uPj+fTTT2nWrJlJYmzp0qUEBQXRqVMnDh06xLFjx3jhhRcIDQ3l9ddfv6c4GzZsyLJlyzh+/Dh79+6lbt269OrViytXrgBw6tQpSkpKWLVqFT/99BOLFi1i5cqVTJs2rcJ28/PzcXFx4a233qJFixaVjic7O5sWLVqwfPnyCut07tyZ+fPn37G9f/zjH7f9knPhwoW8+eabTJkyhZ9++okdO3YQEBCglSclJREUFES3bt04evQo27dvJy0tjeeee06rs2/fPoYNG8aIESP46aef2LBhA99++y2jRo265+u8L9RjKCMjQwEqIyPD3KEIIYQwk9jYDmrHTh+VejFK5ealmpR9n5yuZnzxoxq8ar/yDotWr/znezNFaV7vf3lKeYdFqxlf/GjuUFROzlm1Y6eP+nqXX5WeV54ZTMn9EELcT7m5uerEiRMqNzfX3KHctZCQEBUUFGSyr2fPnqp9+/YqPT1dBQcHK0dHR2UwGFRgYKBKSEjQ6iUnJ6u+ffsqR0dHZWNjo/z8/NSWLVtUUlKSonQyRe0VEhKilFIqMzNTDRkyRNnY2Cg3Nze1cOFC1bVrVzVhwgStXW9vbzV79mwVHBysjEajdmxsbKzq3Lmzsra2Vl5eXmrcuHEqKytLKaVUXFycAlRycvJtrzUlJUVZWVmpSZMmlSlbsmSJAtTBgweVUkq7hri4uLu/qb+6+dmzY8eO29ZZsGCBqlevXqXb/P29qixAff7557ctv9P1xsXFKU9PT5WamlqmrfT0dGUwGCq8zg0bNihLS0tVXFys7YuKilI6nU4VFBQopZR6//33lY+Pj8lxS5YsUZ6enne+wF/d6Tpvquh3trLPDNJTSgghxGPll19WE3d0OPkFlwBwdnoa6+puJnXe2vwja/Ync/BM6XxTteytqzxOIYQQQjzcDAYDBQUFDB8+nO+//56oqCgOHDiAUoo+ffpQWFjaI3vMmDHk5+fzzTffcPz4cebPn4+dnR21a9fms88+AyA+Pp7U1FQWL14MwKRJk9i3bx9RUVHExMQQGxvLkSNHysQQHh5OixYtiIuL4+233+b06dMEBgYyYMAAjh07xqeffsrevXsZO3YsAC4uLlhYWLBx40aKi4vLva6NGzdSWFhYbo+o0aNHY2dnx/r16/+Ue1hQUMDq1atxcHCosHdTRkYGTk5Of8o575ecnByGDBnC8uXLcXNzK1MeExNDSUkJ58+fp0mTJnh5eTFo0CDOnj2r1WnVqhUWFhZERkZSXFxMRkYG//73v+nRowdWVqUL8XTo0IGzZ8+ydetWlFJcunSJjRs30qdPnyq71rshs7UKIYR4bBQV3SDx9G/dqq2ta2Nl5VCm3qXMPAD+1r4O7g4GBrWuXWUxCiGEEOI3SilUYYlZzq2zsvhDc0kqpdi5cyfbt2+nd+/ebN68mX379tGxY0egdL6f2rVrs3nzZgYOHEhKSgoDBgygWbNmAPj4+Ght3Uy0uLq64ujoCMCNGzf4+OOPWbduHd27dwcgMjISDw+PMrF069aN1157TdseOXIkQ4cO1eZT8vX1ZcmSJXTt2pUVK1bg6enJkiVLeOONN5g1axatW7fG39+foUOHanElJCTg4OCAu7t7mfPp9Xp8fHxISEi46/t2q+joaF544QVycnJwd3cnJiaGmjVrlls3MTGRpUuXEh4efk/nvN9effVVOnbsSFBQULnlZ86coaSkhHfffZfFixfj4ODAW2+9Rc+ePTl27Bh6vZ569erx1VdfMWjQIEaPHk1xcTEdOnRg69atWjudOnVi7dq1DB48mLy8PIqKiujXr1/VD8urJElKCSGEeGzk55fORWBhYaBxo9k4OrY2KT9zJYtf0nO0uaTGdfOVXlJCCCGEGanCEi5M32+Wc3vM7ohOX63S9aOjo7Gzs6OwsJCSkhKGDBnCc889R3R0NO3atdPqOTs706hRI06ePAnA+PHjeeWVV/jqq6/o0aMHAwYMoHnz5rc9z5kzZygsLKRt27baPgcHBxo1alSmbuvWps86P/zwA8eOHWPt2rXaPqUUJSUlJCUl0aRJE8aMGcOwYcPYvXs3Bw8eZMOGDbz77rtERUXRs2fZOTjLo9fr71hn7dq1jB49Wtvetm0bXbp0AcDf35+jR4+SlpbGBx98wKBBgzh06BCurq4mbZw/f57AwEAGDhxoMmeSnZ2d9vPf/vY3Vq5cecd4YmNj6d27t7a9atUqhg4desfjKiMqKoqvv/6auLi429YpKSmhsLCQJUuW0KtXLwDWr1+Pm5sbu3btIiAggIsXLzJq1ChCQkJ48cUXuXHjBtOnT+f5558nJiYGnU7HiRMnmDBhAtOnTycgIIDU1FQmT55MaGgoH3744X29zj9CklJCCCEeeUqVcO3aAS5f+RKA6tVr4e7+nEmd1Ixcei76huISpe1zMFhVaZxCCCGEeHj5+/uzYsUK9Ho9Hh4eWFpaEhUVdcfjRo4cSUBAAFu2bOGrr75i3rx5REREMG7cuHuOydbW1mQ7KyuL0aNHM378+DJ169Spo/1sNBrp168f/fr1Y86cOQQEBDBnzhx69uyJr68vGRkZXLhwoUzvrIKCAk6fPm0yOfft9O/f3yRZ5+npaRJ3gwYNaNCgAe3bt8fX15cPP/yQqVOnanUuXLiAv78/HTt2ZPXq1SZt37r6nb29/R1jgdIE3q3H1apVq1LHVcbXX3/N6dOntd5uNw0YMIAuXbqwe/dureeZn5+fVu7i4kLNmjVJSUkBYPny5Tg4OLBgwQKtzn/+8x9q167NoUOHaN++PfPmzaNTp05MnjwZgObNm2Nra0uXLl2YM2fOfb3OP0KSUkIIIR55aWk7OHb8FW3bzq5hmTpJadkUlyiqW1rQsJYR/0YuWFtV/ttRIYQQQvz5dFYWeMzuaLZz342biZRbNWnShKKiIg4dOqQN37t69Srx8fEmyYfatWsTGhpKaGgoU6dO5YMPPmDcuHFaj6Nb53fy8fHBysqK7777TkskZWRkkJCQwNNPP11hjE899RQnTpwoE2dFdDodjRs3Zv/+0h5rzz//PGFhYURERBAREWFSd+XKleTk5DBs2LA7tms0GjEajZWKoaSkhPz8fG37/Pnz+Pv706pVKyIjI7GwMH2v7ub6bjIYDH/ouMqYMmUKI0eONNnXrFkzFi1aRL9+/YDSYXdQOn+Yl5cXAOnp6aSlpeHt7Q2Uzkv1+2utVq30ebWkpESrY2lpWW4dpdR9vc4/QpJSQgghHnlZWaXzGlTX18LO2Jh6dceWqZOZWwRAUw97Nv2/TlUanxBCCCHKp9Pp7moI3YPG19eXoKAgRo0axapVqzAajUyZMgVPT09tbqGJEyfSu3dvGjZsyLVr19i1axdNmjQBwNvbG51OR3R0NH369MFgMGA0GgkJCWHy5Mk4OTnh6urKjBkzsLC48xxYYWFhtG/fnrFjxzJy5EhsbW05ceIEMTExLFu2jKNHjzJjxgyCg4Px8/NDr9ezZ88ePvroI8LCwoDSHlULFizg9ddfx9ramuDgYKysrPjiiy+YNm0ac+bM4YknnjA5b3x8fJlYmjZtqk3OfVN2djZz586lf//+uLu7k5aWxvLlyzl//jwDBw4EShNSzzzzDN7e3oSHh3PlyhXt+PImEL/VzR5CWVlZXLlyhaNHj6LX600ShL+XlZVFYmKitp2UlMTRo0dxcnLSkoLp6emkpKRw4cIFk+t1c3Mzef1enTp1qFevHgANGzYkKCiICRMmsHr1auzt7Zk6dSqNGzfG398fgGeffZZFixYxe/ZsbfjetGnT8Pb2pmXLlgD069ePUaNGsWLFCm343sSJE2nbtm25847dzXXeF5VeE/ARIssZCyHE4+Xkqelqx04flXg6okzZmStZaty6I6rP4m+Ud1i0Gv7RITNE+GB6/8tTyjssWs344kdzh6Jycs6pHTt91Ne7mlTpeeWZwZTcDyHE/VTR8vIPupCQEBUUFFRuWXp6ugoODlYODg7KYDCogIAAlZCQoJWPHTtW1a9fX1WvXl25uLio4OBglZaWppXPnj1bubm5KZ1Op0JCQpRSSmVmZqohQ4YoGxsb5ebmphYuXKjatm2rpkyZoh3n7e2tFi1aVCaeb7/9VvXs2VPZ2dkpW1tb1bx5czV37lyllFJXrlxR48ePV0888YSys7NTRqNRNWvWTIWHh6vi4mKTdjZv3qy6dOmibG1tFaAAtX79epM6SUlJWtnvX2fPni0TW25urvrrX/+qPDw8lF6vV+7u7qp///7q22+/1epERkbets07Ke8Yb2/vCo/ZtWtXucfdfC8qimnGjBkVxvL555+b7MvIyFAvv/yycnR0VE5OTuqvf/2rSklJMamzfv161bJlS2Vra6tcXFxU//791cmTJ03qLFmyRPn5+SmDwaDc3d3V0KFD1blz5+75On+vot/Zyj4z6JRSv02e8ZjIzMzEwcGBjIyMSo8vFUII8fDJyoon9eLnXLnyFbm5v9C40Vw8PV8wqfNO9Ak+3JukbYd08GZW0BO/b+qxFL49nmW7EhnesS4z+zc1ayy5uefZf+BpLCyq4//MiSo7rzwzmJL7IYS4n/Ly8khKSqJevXpYW8tCI3cjOzsbT09PIiIiGDFiRJWfPz09ne7du2Nvb8+2bduwsbGp8hhE1avod7ayzwwyfE8IIcQj6+ef55J+bZ+2bTSW7ZqdllU6P0Hf5u50a+xKDz/zTvYohBBCCHEncXFxnDp1irZt25KRkcHs2bMBtCGBVc3JyYkdO3awfPlyDhw4QPfu3c0Sh3j4SFJKCCHEIysvPxUAt1pBODq2xWhsppXFX7zBNwlX+OlCJgDPNHLluae8zBKnEEIIIcTdCg8PJz4+Hr1eT6tWrYiNjaVmzZpmi8fZ2Znp06eb7fzi4SRJKSGEEI+swsJrAHh7h5ZZcW/0v78n+WqOtl3TTl+lsT0Mbs6V+hiO9BdCCCEeaC1btuTw4cPmDkOIeyZJKSGEEI+cs+f+zbVrB7SklF5v+q2hUopz13IBeLaZO97ONnRqYL5vFoUQQgghhHgcSVJKCCHEIyUvL5WEhJnato2ND3q9k7atlOLKjXyKSkp7/0QMaoG11cO71LQQQgghhBAPK0lKCSGEeKTk518EwMqqBt51RuHs7K+VlZQoBqzcT1zKdQD0lhaSkBJCCCGEEMJMJCklhBDikVJQcAUAg8Ebb+/RJmUZuYVaQgqgl6y0J4QQQgghhNlIUkoIIcQjIScniVPxb3Pt2gEArK09y9S5kVcEgMGqGnHTe0ovKSGEEEIIIcxIklJCCHEXsoqKySwq5nhWLiezcs0dzh9mqGbBQDcnnKwenY+Bi5f+pyWkAGrUaG9SnpaVz8mLmQDYGywlISWEEEIIIYSZPTp/jQghxH2SXVxMbHoWP9zIYfEvlygxd0B/kqsFRUyr72HuMP40hQXpANSq1Q8vz7/h4NBSK/suOZ3Bqw7w69zmGK2tzBGiEEIIIYQQ4hYW5g5ACCEedO+dSWX4j0ksuiUhpdfp8KhuxVB3J/7m7vxQvZrbGQDIKCo23029DwoLrwFgb98CR8fW6HS/9YQ6di6DEgVW1XTUsLFiUGsvc4Up/iCdTvfrT8qscQghhBDlGT58ODqdDp1Oh16vp0GDBsyePZuioqJ7anf37t3odDquX7/+5wRaCUlJSQwZMgQPDw+sra3x8vIiKCiIU6dOmdSLjo6ma9euGI1GbGxsaNOmDWvWrDGpk5ycjE6n4+jRo5U+/8yZM2ncuDG2trbUqFGDHj16cOjQIZM2R4wYQb169TAYDNSvX58ZM2ZQUFBQYbupqakMGTKEhg0bYmFhwcSJEysVzzfffEO/fv3w8PBAp9OxefPmu44ZYO7cuXTs2BEbGxscHR3LPVdKSgrPPvssNjY2uLq6MnnyZJN/Q7f+O7v11bRpU63OvHnzaNOmDUajEVdXV/7yl78QHx9/x+usTHz3g/SUEkKI2/g+I5sD17P44Fyatq+viwPvNaxNTf3D+7/P8KSLHHuIhx7+XmbmMZKSlpJ29WsAqutdytS5kVcIwKDWtZn712ZVGp8QQgghHg+BgYFERkaSn5/P1q1bGTNmDFZWVkydOtXcoQFQUFCAXq+vsE5hYSE9e/akUaNGbNq0CXd3d86dO8e2bdtMEmNLly5l4sSJhIWFsWLFCvR6PV988QWhoaH8+OOPhIeH/+E4GzZsyLJly/Dx8SE3N5dFixbRq1cvEhMTcXFx4dSpU5SUlLBq1SoaNGjAjz/+yKhRo8jOzq7wvPn5+bi4uPDWW2+xaNGiSseTnZ1NixYtePnll3nuuef+UMxQev8HDhxIhw4d+PDDD8u0UVxczLPPPoubmxv79+8nNTWVYcOGYWVlxbvvvgvA4sWLee+997RjioqKaNGiBQMHDtT27dmzhzFjxtCmTRuKioqYNm0avXr14sSJE9ja2t72Ou8U332jHkMZGRkKUBkZGeYORQjxgCoqKVEN9vygan0dp2p9Hac8dsWpi3kF5g7rT/H+mVRV6+s49capFHOH8qf4/vCLasdOH7Vjp4/a+XUjlZt7QSsrKCpWcSnX1Nh1R5R3WLSat/WkGSN9+IRvP6W8w6LV9M3HzR2Kys09r3bs9FFf72pcpeeVZwZTcj+EEPdTbm6uOnHihMrNzTV3KHctJCREBQUFmezr2bOnat++vUpPT1fBwcHK0dFRGQwGFRgYqBISErR6ycnJqm/fvsrR0VHZ2NgoPz8/tWXLFpWUlKQo7SKsvUJCQpRSSmVmZqohQ4YoGxsb5ebmphYuXKi6du2qJkyYoLXr7e2tZs+erYKDg5XRaNSOjY2NVZ07d1bW1tbKy8tLjRs3TmVlZSmllIqLi1OASk5Ovu21pqSkKCsrKzVp0qQyZUuWLFGAOnjwoFJKadcQFxd39zf1Vzc/e3bs2HHbOgsWLFD16tWrdJu/v1eVBajPP//8jvUqijkyMlI5ODiU2b9161ZlYWGhLl68qO1bsWKFsre3V/n5+eWe5/PPP1c6na7C9+vy5csKUHv27Llj3BXFV56Kfmcr+8wgw/eEEKIcVwuKuFFcggXwgpsTy5p4U6u6zEP0IMrJOQNA7dov07rVBqyt3bWyqZuO85fl+/jfDxeA0gnOReXJgDkhhBDijzMYDBQUFDB8+HC+//57oqKiOHDgAEop+vTpQ2FhaU/uMWPGkJ+fzzfffMPx48eZP38+dnZ21K5dm88++wyA+Ph4UlNTWbx4MQCTJk1i3759REVFERMTQ2xsLEeOHCkTQ3h4OC1atCAuLo63336b06dPExgYyIABAzh27Biffvope/fuZezYsQC4uLhgYWHBxo0bKS4uf6qHjRs3UlhYyOuvv16mbPTo0djZ2bF+/fo/5R4WFBSwevVqHBwcaNGixW3rZWRk4OTk9Kec815VNubfO3DgAM2aNaNWrVravoCAADIzM/npp5/KPebDDz+kR48eeHt737bdjIwMgAfm/vyePJ0LIcQtlFIczMhm59XSVdpc9Jb8o0kdM0clbkepYgoKrgLgXWcU1au7mpSf+nW1PVdjddwcrAlo6lblMQohhBDij1NKacmbqmZlZXXLnIaVp5Ri586dbN++nd69e7N582b27dtHx44dAVi7di21a9dm8+bNDBw4kJSUFAYMGECzZqVTDPj4+Ght3UwkuLq6avP83Lhxg48//ph169bRvXt3ACIjI/HwKLuATbdu3Xjttde07ZEjRzJ06FBtPiVfX1+WLFlC165dWbFiBZ6enixZsoQ33niDWbNm0bp1a/z9/Rk6dKgWV0JCAg4ODri7u5c5n16vx8fHh4SEhLu+b7eKjo7mhRdeICcnB3d3d2JiYqhZs2a5dRMTE1m6dOk9DRn8M9xNzOW5ePGiSUIK0LYvXrxYpv6FCxfYtm0b69atu22bJSUlTJw4kU6dOvHEE09UOpaqJEkpIYS4xe70G7x47Iy23djWYMZoxO2UlORz7Pj/49q1A0AJFhZ69HrnMvUyc0snhlzxt6do5f1gfjskhBBCiNsrLCzU5tOpatOmTbvjHEy3io6Oxs7OjsLCQkpKShgyZAjPPfcc0dHRtGvXTqvn7OxMo0aNOHnyJADjx4/nlVde4auvvqJHjx4MGDCA5s2b3/Y8Z86cobCwkLZt22r7HBwcaNSoUZm6rVu3Ntn+4YcfOHbsGGvXrtX2KaUoKSkhKSmJJk2aMGbMGIYNG8bu3bs5ePAgGzZs4N133yUqKoqePXtW6l5U5r6tXbuW0aNHa9vbtm2jS5cuAPj7+3P06FHS0tL44IMPGDRoEIcOHcLV1fQLyPPnzxMYGMjAgQMZNWqUtt/Ozk77+W9/+xsrV668YzyxsbH07t1b2161ahVDhw6943E3VTbmP8vHH3+Mo6Mjf/nLX25bZ8yYMfz444/s3btX2xcaGsp//vMfbTsrK+u+xFdZkpQSQohbfJeZDYB7dSsa2lgzuZ70rHkQZWQc5erV3dq2s3M3k9X2Tl3MJP7iDa5ll67CYm8tQy+FEEIIcX/5+/trk357eHhgaWlJVFTUHY8bOXIkAQEBbNmyha+++op58+YRERHBuHHj7jmm309snZWVxejRoxk/fnyZunXq/DY6wGg00q9fP/r168ecOXMICAhgzpw59OzZE19fXzIyMrhw4UKZ3lkFBQWcPn2agICAO8bWv39/k2Sdp6enSdwNGjSgQYMGtG/fHl9fXz788EOTSeMvXLiAv78/HTt2ZPXq1SZt37ran729/R1jgdIE3q3H/b7X0p1UJuaKuLm58e2335rsu3TpklZ2K6UUH330EcHBwbdNAI4dO5bo6Gi++eYbvLx+W3l69uzZ5Q69NBdJSgkhBPBLbj6fXbrGl1dKx1yP9nIhtM79+VZD3Lu8vHMA2Ns/ScOG0zHaNdbKMnIL6b9sHwVFJdo+BxtJSgkhhBAPIysrK6ZNm2a2c9+Nm0mJWzVp0oSioiIOHTqkDd+7evUq8fHx+Pn5afVq165NaGgooaGhTJ06lQ8++IBx48ZpCYdb53fy8fHBysqK7777TkskZWRkkJCQwNNPP11hjE899RQnTpwoE2dFdDodjRs3Zv/+/QA8//zzhIWFERERQUREhEndlStXkpOTw7Bhw+7YrtFoxGg0ViqGkpIS8vPzte3z58/j7+9Pq1atiIyMxMLCdLrsu7m+mwwGwx867nZ+H/OddOjQgblz53L58mWtd1VMTAz29vYm/1agdIW9xMRERowYUaYdpRTjxo3j888/Z/fu3dSrV8+k3NXV9b713vojJCklhBDAzMQLbEvL0Lab2j36w/Ye1smr8/MvkXnjOAB2do1wsDedQPJSZh4FRSVYVdPRtp4TT9WpgavR2hyhCiGEEOIe6XS6uxpC96Dx9fUlKCiIUaNGsWrVKoxGI1OmTMHT05OgoCAAJk6cSO/evWnYsCHXrl1j165dNGnSBABvb290Oh3R0dH06dMHg8GA0WgkJCSEyZMn4+TkhKurKzNmzMDCwuKOc2CFhYXRvn17xo4dy8iRI7G1teXEiRPExMSwbNkyjh49yowZMwgODsbPzw+9Xs+ePXv46KOPCAsLA0p7VC1YsIDXX38da2trgoODsbKy4osvvmDatGnMmTOnzPxF8fHxZWJp2rRpmcRfdnY2c+fOpX///ri7u5OWlsby5cs5f/48AwcOBEoTUs888wze3t6Eh4dz5coV7fjf9yj6vZs9obKysrhy5QpHjx5Fr9eXSfrcKisri8TERG07KSmJo0eP4uTkRJ06dSoVM0BKSgrp6emkpKRQXFysxdKgQQPs7Ozo1asXfn5+BAcHs2DBAi5evMhbb73FmDFjqF69uklMH374Ie3atSt3nqgxY8awbt06vvjiC4xGozYflYODAwbD7f/GuVN8902l1vl7xMhyxkKI3+t66KSq9XWceunYGbXsl0uquKTE3CHdN++fSVW1vo5Tk0+lmDuUu3Y1fb/asbOB2rHTR+3Y6aOSkv5Zps73yVeVd1i06jL/azNE+GiJ2H5KeYdFq7c3Hzd3KCo397zasdNHfb2rcZWeV54ZTMn9EELcTxUtL/+gCwkJUUFBQeWWpaenq+DgYOXg4KAMBoMKCAhQCQkJWvnYsWNV/fr1VfXq1ZWLi4sKDg5WaWlpWvns2bOVm5ub0ul0KiQkRCmlVGZmphoyZIiysbFRbm5uauHChapt27ZqypQp2nHe3t5q0aJFZeL59ttvVc+ePZWdnZ2ytbVVzZs3V3PnzlVKKXXlyhU1fvx49cQTTyg7OztlNBpVs2bNVHh4uCouLjZpZ/PmzapLly7K1tZWUfp9p1q/fr1JnaSkJK3s96+zZ8+WiS03N1f99a9/VR4eHkqv1yt3d3fVv39/9e2332p1IiMjb9vmnZR3jLe3d4XH7Nq1q9zjbr4XlYlZqdJ/I+W1s2vXLq1OcnKy6t27tzIYDKpmzZrqtddeU4WFhSbtXL9+XRkMBrV69epKXyOgIiMjK7zOysT3exX9zlb2mUH3a9CPlczMTBwcHMjIyKj0+FIhxKOtUexxMoqK2dO2MY1sH+1eNRFJF3k/+SLDPJxZ0Ki2ucO5K6fip3P+fOnEnDY2PjRvtgJb29Ju1ln5RexPTOPYuQyW7UqkqYc9W8Z3MWe4D72FX8Wz5OtEhnXwZnaQeVdsycu7wL79XbCw0OP/zMkqO688M5iS+yGEuJ/y8vJISkqiXr16WFs/2s9jf7bs7Gw8PT2JiIgod0jX/Zaenk737t2xt7dn27Zt2NjYVHkMoupV9Dtb2WcGi9uW3AczZ85Ep9OZvBo3/m0ekLy8PMaMGYOzszN2dnYMGDBAm9jrppSUFJ599llsbGxwdXVl8uTJFBUVVeVlCCEeIQUlJSTm5JFRVDpO3726zD30IMvPL+1+3KjRO3RoH6MlpABmRf3E3/99mGW7SrtXOxjkvXwUPX5fpQkhhBBlxcXFsX79ek6fPs2RI0e0VeJuDgmsak5OTuzYsYPu3btz4MABs8QgHk5VPqdU06ZN2bFjx28BWP4WwquvvsqWLVvYsGEDDg4OjB07lueee459+/YBpZO7Pfvss7i5ubF//35SU1MZNmwYVlZWZlsmVAjx8CosUTz97SmSc0tXaLOtZoGxWpXm6kUlnT4dTmrqJvILSr+osK7uXrbOldLlbBvWsqOmXXVCu9av0hiFEEIIIapSeHg48fHx6PV6WrVqRWxsLDVr1jRbPM7OzkyfPt1s5xcPpypPSllaWpY7+VhGRgYffvgh69ato1u3bgBERkbSpEkTDh48SPv27fnqq684ceIEO3bsoFatWjz55JO88847hIWFMXPmzId6AjwhRNW7VFCoJaQMFjpecHO64+SQouopVULK2Y8oKSldvUSvr0mNGu1uKVdcyykkPbv0vZwd9ATtfZzNEqsQQgghRFVo2bIlhw8fNncYQtyzKu8S8PPPP+Ph4YGPjw9Dhw4lJSUFgMOHD1NYWEiPHj20uo0bN6ZOnTpa978DBw7QrFkzatWqpdUJCAggMzOTn376qWovRAjx0LteWDr010VvSVLXFsxt6GXmiER58vMvUlKSj05nSZvWm2nfLoZq1X6bp2DqpuM89U4MyVdzAKhhI19Q/Gl+TdLKkDkhhBBCCHE/VGlPqXbt2rFmzRoaNWpEamoqs2bNokuXLvz4449cvHgRvV6Po6OjyTG1atXSljC8ePGiSULqZvnNstvJz88nPz9f287MzPyTrkgI8TC7/us8Uo6W1cwciSiPUsX88ssqMjOPAWAw1MbevlmZensT07Sf/dztqVfTtspiFEIIIYQQQvxxVZqU6t27t/Zz8+bNadeuHd7e3vz3v//FYDDct/POmzePWbNm3bf2hRAPp6u/9pSqYVXlI5lFJVy7/i2nz0Ro27a2jcqtl5lbCMCOSV1p4GpXJbEJIYQQQggh7p1ZZ/R1dHSkYcOGJCYm4ubmRkFBAdevXzepc+nSJW0OKjc3tzKr8d3cLm+eqpumTp1KRkaG9jp79uyfeyFCiIdKZlEx886kEnmutIeNrLj3YMrPL/3/u8HgTX2fyTT0fdOk/Jer2exJuMKN/NLkor1BkotCCCGEEEI8TMyalMrKyuL06dO4u7vTqlUrrKys2Llzp1YeHx9PSkoKHTp0AKBDhw4cP36cy5cva3ViYmKwt7fHz8/vtuepXr069vb2Ji8hxOPrs0vXWPzLJQ5mZAPgY6hu5ojErZRSZGefJj19LwD2xmbUrRuKtbWHVudSZh7dI/YQ8tG32nxH9taSXBRCCCGEEOJhUqVfK7/++uv069cPb29vLly4wIwZM6hWrRovvvgiDg4OjBgxgkmTJuHk5IS9vT3jxo2jQ4cOtG/fHoBevXrh5+dHcHAwCxYs4OLFi7z11luMGTOG6tXlj0ohROWk5pWu0tba3oa+Lo684O5k5ojErX75ZSWnz4Rr29Wty/aETUrLpqhEobe0oIGLHf6NXbC2krnBhBBCCCGEeJhUaVLq3LlzvPjii1y9ehUXFxc6d+7MwYMHcXFxAWDRokVYWFgwYMAA8vPzCQgI4J///Kd2fLVq1YiOjuaVV16hQ4cO2NraEhISwuzZs6vyMoQQD7mbc0l1c7YntI6rmaOper8uqPbAyrxxHABLSyPW1T3w8hxats6v80j5uduzeUynKo1PCCGEEEII8eeo0uF7n3zyCRcuXCA/P59z587xySefUL9+fa3c2tqa5cuXk56eTnZ2Nps2bSozV5S3tzdbt24lJyeHK1euEB4ejqWlzCMihKi8tF+TUs4ywfkDqbDwOgCNGr1Du3ZbMRjqaGUXM/KYE32CNfuTAbA3yJA9IYQQQpjf8OHD0el06HQ69Ho9DRo0YPbs2RQVFd1Tu7t370an05WZe/l+SkpKYsiQIXh4eGBtbY2XlxdBQUGcOnXKpF50dDRdu3bFaDRiY2NDmzZtWLNmjUmd5ORkdDodR48erfT5Z86cSePGjbG1taVGjRr06NGDQ4cOmbQ5YsQI6tWrh8FgoH79+syYMYOCgoI7tr127VpatGiBjY0N7u7uvPzyy1y9erXCY7755hv69euHh4cHOp2OzZs3l1vv5MmT9O/fHwcHB2xtbWnTpg0pKSla+ejRo6lfvz4GgwEXF5dy7+l3331H9+7dcXR0pEaNGgQEBPDDDz+Ue77ExESMRiOOjo53vO7KXoM5mHVOKSGEMIerBZKUehCVlBSRm3uO7OwEAKwsHcvUWbM/mf/bm8T+06UPDx4O1lUZojCrm138lFmjEEIIIW4nMDCQ1NRUfv75Z1577TVmzpzJ+++/b+6wNJVJ2hQWFtKzZ08yMjLYtGkT8fHxfPrppzRr1swkMbZ06VKCgoLo1KkThw4d4tixY7zwwguEhoby+uuv31OcDRs2ZNmyZRw/fpy9e/dSt25devXqxZUrVwA4deoUJSUlrFq1ip9++olFixaxcuVKpk2bVmG7+/btY9iwYYwYMYKffvqJDRs28O233zJq1KgKj8vOzqZFixYsX778tnVOnz5N586dady4Mbt37+bYsWO8/fbbWFv/9qzaqlUrIiMjOXnyJNu3b0cpRa9evSguLgZK59wODAykTp06HDp0iL1792I0GgkICKCwsNDkfIWFhbz44ot06dKlwtjv5hrMRj2GMjIyFKAyMjLMHYoQogqtOXdFtdr/o/LcFadqfR2n9l+7Ye6QzCIiKVXV+jpOTT6VYu5QNCUlJerQt/3Vjp0+2uvGjVNl6r3236PKOyxa/e3/DqoVuxPVpYxcM0T7+Ij4Kl55h0Wrtz4/bu5QVG7uBbVjp4/a+XWjKj2vPDOYkvshhLifcnNz1YkTJ1Ru7sP3+R4SEqKCgoJM9vXs2VO1b99epaenq+DgYOXo6KgMBoMKDAxUCQkJWr3k5GTVt29f5ejoqGxsbJSfn5/asmWLSkpKUpR+G6O9QkJClFJKZWZmqiFDhigbGxvl5uamFi5cqLp27aomTJigtevt7a1mz56tgoODldFo1I6NjY1VnTt3VtbW1srLy0uNGzdOZWVlKaWUiouLU4BKTk6+7bWmpKQoKysrNWnSpDJlS5YsUYA6ePCgUkpp1xAXF3f3N/VXNz97duzYcds6CxYsUPXq1auwnffff1/5+PiUidfT07PSsQDq888/L7N/8ODB6m9/+1ul21FKqR9++EEBKjExUSml1HfffacAlZLy2zP6sWPHFKB+/vlnk2PfeOMN9be//U1FRkYqBweHuzrv7a7hj6jod7ayzwzSU0oI8dj4z4WrnMsrpEiBwcICXxvpZfOgKCrK5MaNHwGwsDDg4hKArW3DMvVuziUV+IQboV3r42ov76EQQgjxKFNKUVycY5aXUvfWO9dgMFBQUMDw4cP5/vvviYqK4sCBAyil6NOnj9b7ZcyYMeTn5/PNN99w/Phx5s+fj52dHbVr1+azzz4DSlemT01NZfHixQBMmjSJffv2ERUVRUxMDLGxsRw5cqRMDOHh4bRo0YK4uDjefvttTp8+TWBgIAMGDODYsWN8+umn7N27l7FjxwLg4uKChYUFGzdu1Hrw/N7GjRspLCwst0fU6NGjsbOzY/369fd0724qKChg9erVODg40KJFi9vWy8jIwMmp4sWLOnTowNmzZ9m6dStKKS5dusTGjRvp06fPPcVYUlLCli1baNiwIQEBAbi6utKuXbsKh8hlZ2cTGRlJvXr1qF27NgCNGjXC2dmZDz/8kIKCAnJzc/nwww9p0qQJdevW1Y79+uuv2bBhw4PZ6+kPkLErQojHRk5xCQARjWoTUNOBmnr5X+CDIi/vAgBWVk483eW7MuVLd/7MxiPnuJSZB4C9tcwlVRV+GzAnQ+aEEEKYR0lJLrv3NDPLuZ/pepxq1Wzu+jilFDt37mT79u307t2bzZs3s2/fPjp27AiUzmtUu3ZtNm/ezMCBA0lJSWHAgAE0a1Z6nT4+PlpbNxMtrq6u2txBN27c4OOPP2bdunV0794dgMjISDw8PMrE0q1bN1577TVte+TIkQwdOpSJEycC4Ovry5IlS+jatSsrVqzA09OTJUuW8MYbbzBr1ixat26Nv78/Q4cO1eJKSEjAwcEBd3f3MufT6/X4+PiQkJBw1/ftVtHR0bzwwgvk5OTg7u5OTEwMNWvWLLduYmIiS5cuJTw8vNzymzp16sTatWsZPHgweXl5FBUV0a9fv3tO7ly+fJmsrCzee+895syZw/z58/nyyy957rnn2LVrF127dtXq/vOf/+SNN94gOzubRo0aERMTg16vB8BoNLJ7927+8pe/8M477wCl78/27du1ebSvXr3K8OHD+c9//oO9vf09xf2gkJ5SQojHRm5JaVLqCaNBElIPkJKSfLKySid5tLYu+zAF8EHsGX65mkNeYel72MjNWGXxCSGEEEJURnR0NHZ2dlhbW9O7d28GDx7M8OHDsbS0pF27dlo9Z2dnGjVqxMmTJwEYP348c+bMoVOnTsyYMYNjx45VeJ4zZ85QWFhI27ZttX0ODg40atSoTN3WrVubbP/www+sWbMGOzs77RUQEEBJSQlJSUlAac+tixcvsnbtWjp06MCGDRto2rQpMTExlb4XNxMtFVm7dq1JHLGxsVqZv78/R48eZf/+/QQGBjJo0CAuX75cpo3z588TGBjIwIEDTeaGurXd0NBQAE6cOMGECROYPn06hw8f5ssvvyQ5OVkrj42NNTlu7dq1lbrWkl//xggKCuLVV1/lySefZMqUKfTt25eVK1ea1B06dChxcXHs2bOHhg0bMmjQIPLySr90zc3NZcSIEXTq1ImDBw+yb98+nnjiCZ599llyc3MBGDVqFEOGDOHpp58uN5Y/eg3mJH+VCSEeG7m/9pQyWEg+Hh6M6aILC69x6NCz5BdcAspPShWXKDLzSienj3ypDb6udnjVuPtvLYUQQgjx8LGwMPBM1+NmO/fd8Pf3Z8WKFej1ejw8PLC0tCQqKuqOx40cOZKAgAC2bNnCV199xbx584iIiGDcuHF/NHSNra2tyXZWVhajR49m/PjxZerWqfPbisdGo5F+/frRr18/5syZQ0BAAHPmzKFnz574+vqSkZHBhQsXyvTOKigo4PTp0wQEBNwxtv79+5sk6zw9PU3ibtCgAQ0aNKB9+/b4+vry4YcfMnXqVK3OhQsX8Pf3p2PHjqxevdqk7VtX+7vZo2jevHl06tSJyZMnA9C8eXNsbW3p0qULc+bMoXXr1ibH1apV647XAFCzZk0sLS3x8/Mz2d+kSRP27t1rss/BwQEHBwd8fX1p3749NWrU4PPPP+fFF19k3bp1JCcnc+DAASx+/Xtl3bp11KhRgy+++IIXXniBr7/+mqioKK1XmFKKkpISLC0tWb16NS+++OIfugZzkqSUEOKxkfPrtxiGapKUelBcvRqrJaQsLAy4uvTWyvIKi9l58jJXbuRp+zo3qImVvH9CCCHEY0On0/2hIXTmcDORcqsmTZpQVFTEoUOHtOF7V69eJT4+3iSJUbt2bUJDQwkNDWXq1Kl88MEHjBs3TutxdOv8Tj4+PlhZWfHdd99piaSMjAwSEhJu24PmpqeeeooTJ06UibMiOp2Oxo0bs3//fgCef/55wsLCiIiIICIiwqTuypUrycnJYdiwYXds12g0YjRWrvd7SUkJ+fn52vb58+fx9/fXVrSz+N2XzuVdX05OjjYM7qZq1aoBpckdg8FwV/flJr1eT5s2bYiPjzfZn5CQgLe3922PU0qhlNKuKycnBwsLC3Q6nVbn5vbN3lgHDhww+bfwxRdfMH/+fPbv34+np+cfvgZzkqSUEOKRd6WgkDM5+eSXlPYNsnnMe0rp7lylyhQUXgWglmtfnnhisUnZukMpzI4+oW3bW1tKQkoIIYQQDxVfX1+CgoIYNWoUq1atwmg0MmXKFDw9PQkKCgJg4sSJ9O7dm4YNG3Lt2jV27dpFkyZNAPD29kan0xEdHU2fPn0wGAwYjUZCQkKYPHkyTk5OuLq6MmPGjDIJjfKEhYXRvn17xo4dy8iRI7G1teXEiRPExMSwbNkyjh49yowZMwgODsbPzw+9Xs+ePXv46KOPCAsLA0p7VC1YsIDXX38da2trgoODsbKy4osvvmDatGnMmTOHJ554wuS8v0/YADRt2hQrK9N5QrOzs5k7dy79+/fH3d2dtLQ0li9fzvnz5xk4cCBQmpB65pln8Pb2Jjw8nCtXrmjHu7m53fba+/Xrx6hRo1ixYgUBAQGkpqYyceJE2rZtW+58XDdlZWWRmJiobSclJXH06FGcnJy0pODkyZMZPHgwTz/9NP7+/nz55Zf873//Y/fu3UDpkMtPP/2UXr164eLiwrlz53jvvfcwGAzaROs9e/Zk8uTJjBkzhnHjxlFSUsJ7772HpaUl/v7+ANq/i5u+//57LCwsytzvP3IN5iJJKSHEIy2jsIh2B09qk5wbq1ngYFnNzFGJkpJ8MjJ+4PLlbQBY6WuUqZOSngOAT01bfFxs6dOs7GSaQgghhBAPusjISCZMmEDfvn0pKCjg6aefZuvWrVpCpri4mDFjxnDu3Dns7e0JDAxk0aJFQOmQtlmzZjFlyhReeuklhg0bxpo1a1i4cCGhoaH07dsXe3t73njjDc6ePYu1dcUrEzdv3pw9e/bw5ptv0qVLF5RS1K9fn8GDBwPg5eVF3bp1mTVrFsnJyeh0Om371Vdf1dp59dVX8fHxISIigsWLF5OdnQ3A+vXreeGFF8qct7x9Z8+excvLy2RftWrVOHXqFB9//DFpaWk4OzvTpk0bYmNjadq0KQAxMTEkJiaSmJhY5viKVkwcPnw4N27cYNmyZbz22ms4OjrSrVs35s+fX+E9+/7777WkEJSufAgQEhLCmjVrAPjrX//KypUrmTdvHuPHj6dRo0Z89tlndO7cGQBra2tiY2P5xz/+wbVr16hVqxZPP/00+/fvx9XVFYDGjRvzv//9j1mzZtGhQwcsLCxo2bIlX375ZbmTyt+NylyDuejUva5z+RDKzMzEwcGBjIyMR2bGeiFE+U5k5dLtu3gsAG+DnuGeNRld29XcYZnVouSLzE+6SLCHM+83qm2WGE6deovzF35bKrh+/Teo6z1a2y4pUbz636N8cfQCb/ZpwqinfcprRtxni2ISWLzzZ/7Wvg5z/mKelY9uystLZd/+zuh0VnTzP1Vl55VnBlNyP4QQ91NeXh5JSUnUq1fvjskVYSo7OxtPT08iIiIYMWJElZ8/PT2d7t27Y29vz7Zt27CxeTiGXIp7U9HvbGWfGaSnlBDikXZzcnMvaz0H2vvdobaoKjeySlebsbb2wsamHh7uz2tlnx0+x9RNxyn49b1zsLEqtw0hhBBCiMdVXFwcp06dom3btmRkZDB79mwAbUhgVXNycmLHjh0sX76cAwcO0L17d7PEIR4+kpQSQjzScmVy8wdSQUEaAE80XYSDw1MmZTtPXdISUrb6ajxVx7GqwxMPojvMkSGEEEI8bsLDw4mPj0ev19OqVStiY2OpWbOm2eJxdnZm+vTpZju/eDhJUkoI8Ui7OZeU4TGf3PxBkZd3gaysePLzLwOg15ddpvZadiEA7z3XjL+09MTaSuYAE7d67GYdEEIIIcpo2bIlhw8fNncYQtwzSUoJIR5pv/WUkl4W5lZSks+hb/tSVJQBgIWFAWvr3yZtfH/7Kb766ZI2wbmHo0ESUkIIIYQQQjzCJCklhHgkncsrYEFSKp9fug5IT6nyVPUyFwUFV39NSOkwGp/AzS0Ina70fSkuUfxz92ktpmoWOhq42lVtgKKMmyPmHr8lUYQQQgghRFWQpJQQ4pH0nwtX+e/Fa9p2WwdbM0YjAIqKbgBgZVWDtm02m5Rl5RVpiY+1I9tRx8kGD0dDFUcohBBCCCGEqEqSlBJCPJIu5BcA8KyLA31qOtDP1dG8AT1Aqnogo1LFXLt2kIyMOAAsLY1l6mTmlc4jZW1lQacG5pugUwghhBBCCFF1JCklhHgkXSkoAqCnsz0D3JzMHM3j7fLlL/nxp/HatpWVo/bz1ax8JnxylHPXSueRMlpbVXV4QgghhBBCCDORpJQQ4pF0Kb+0542rXpIc5padnQhA9epu2Nj4ULv2cK1sT8IV9iamadu+Mo+UEEIIIYQQjw1JSgkhHloJ2XlEJF8kp7gEBZQopS0WfyY3H4Ba1SUpZW4FhekAuLsPoL7PJJOyzNzS5GEHH2fGdW/Ak7Udqzo8IYQQQgghhJnIclRCiIfWqrOX+eLydWKuZrLjaiZfp99g16+vvBKFtYWO2tZ6c4f52LqecZgTJ6dw/vx/ANDrXcrUuZFXOsyybk0bOtaviY1evisRQgghxMNn+PDh6HQ6dDoder2eBg0aMHv2bIqKiu6p3d27d6PT6bh+/fqfE2glJCUlMWTIEDw8PLC2tsbLy4ugoCBOnTplUi86OpquXbtiNBqxsbGhTZs2rFmzxqROcnIyOp2Oo0ePVvr8M2fOpHHjxtja2lKjRg169OjBoUOHTNocMWIE9erVw2AwUL9+fWbMmEFBQcEd2167di0tWrTAxsYGd3d3Xn75Za5evVrhMStWrKB58+bY29tjb29Phw4d2LZtm1aenp7OuHHjaNSoEQaDgTp16jB+/HgyMjK0OmvWrNH+ffz+dfnyZa1efn4+b775Jt7e3lSvXp26devy0UcfmcTzj3/8QztX7dq1efXVV8nLy6vwGjZt2kSvXr1wdna+6/fjfpOnfyHEQ2fLlevsuJrJ+tTSHjjDPJxpaW+DDtChQ6crnczbz86AvWU1s8b6OEv8eR4ZmXHatqNDa+3nFbtP878fLnD5RukHqF11+TgSQgghxMMtMDCQyMhI8vPz2bp1K2PGjMHKyoqpU6eaOzQACgoK0Osr/sK2sLCQnj170qhRIzZt2oS7uzvnzp1j27ZtJomxpUuXMnHiRMLCwlixYgV6vZ4vvviC0NBQfvzxR8LDw/9wnA0bNmTZsmX4+PiQm5vLokWL6NWrF4mJibi4uHDq1ClKSkpYtWoVDRo04Mcff2TUqFFkZ2dXeN59+/YxbNgwFi1aRL9+/Th//jyhoaGMGjWKTZs23fY4Ly8v3nvvPXx9fVFK8fHHHxMUFERcXBxNmzblwoULXLhwgfDwcPz8/Pjll18IDQ3lwoULbNy4EYDBgwcTGBho0u7w4cPJy8vD1dVV2zdo0CAuXbrEhx9+SIMGDUhNTaWkpEQrX7duHVOmTOGjjz6iY8eOJCQkaAnRhQsX3vYasrOz6dy5M4MGDWLUqFF3fA+qlHoMZWRkKEBlZGSYOxQhxF3KKixS3ruPqlpfx6laX8cpt6/j1M/ZueYO66GyKClV1fo6Tr12MuW+nmfv3s5qx04fdSp+lrp8+SuTskZvbVXeYdHa65Nvf7mvsYg/ZlFMvPIOi1bTNh0zdygqL++i2rHTR+38umGVnleeGUzJ/RBC3E+5ubnqxIkTKjf34Xu2CwkJUUFBQSb7evbsqdq3b6/S09NVcHCwcnR0VAaDQQUGBqqEhAStXnJysurbt69ydHRUNjY2ys/PT23ZskUlJSUpwOQVEhKilFIqMzNTDRkyRNnY2Cg3Nze1cOFC1bVrVzVhwgStXW9vbzV79mwVHBysjEajdmxsbKzq3Lmzsra2Vl5eXmrcuHEqKytLKaVUXFycAlRycvJtrzUlJUVZWVmpSZMmlSlbsmSJAtTBgweVUkq7hri4uLu/qb+6+dmzY8eO29ZZsGCBqlevXoXtvP/++8rHx6dMvJ6enncdU40aNdT//d//3bb8v//9r9Lr9aqwsLDc8suXLysrKyv1r3/9S9u3bds25eDgoK5evXrbdseMGaO6detmsm/SpEmqU6dOlYr7z3g/blXR72xlnxlk+J4Q4qFyMjuPvJLSmaOm1nMn6ilfGthYmzkqUZ6CwmsA1Kk9HBeXntr+vMJi8gpLv/FZFdyKTf+vIwNb1TZLjOJhpO5cRQghxCNDKUV2cbFZXkrd22eOwWCgoKCA4cOH8/333xMVFcWBAwdQStGnTx8KC0vn1hwzZgz5+fl88803HD9+nPnz52NnZ0ft2rX57LPPAIiPjyc1NZXFixcDMGnSJPbt20dUVBQxMTHExsZy5MiRMjGEh4fTokUL4uLiePvttzl9+jSBgYEMGDCAY8eO8emnn7J3717Gjh0LgIuLCxYWFmzcuJHi4uJyr2vjxo0UFhby+uuvlykbPXo0dnZ2rF+//p7u3U0FBQWsXr0aBwcHWrRocdt6GRkZODlVvOJ2hw4dOHv2LFu3bkUpxaVLl9i4cSN9+vSpdDzFxcV88sknZGdn06FDhwrjsbe3x9Ky/NEA//rXv7CxseH555/X9kVFRdG6dWsWLFiAp6cnDRs25PXXXyc3N1er07FjRw4fPsy3334LwJkzZ9i6detdXcODRsZLCCEeCtcKi3jpeJI2gXl7B1sm1K1l5qgebuo+/XF/7vw6zp9fR0lJLqBDr6+pleUXFRN/8QYAOh30bFILCwvdfYlDCCGEEA+/nJIS6n9z3CznPv10M2yr3f1UEEopdu7cyfbt2+nduzebN29m3759dOzYESid16h27dps3ryZgQMHkpKSwoABA2jWrBkAPj4+Wls3Ey2urq44OjoCcOPGDT7++GPWrVtH9+7dAYiMjMTDw6NMLN26deO1117TtkeOHMnQoUOZOHEiAL6+vixZsoSuXbuyYsUKPD09WbJkCW+88QazZs2idevW+Pv7M3ToUC2uhIQEHBwccHd3L3M+vV6Pj48PCQkJd33fbhUdHc0LL7xATk4O7u7uxMTEULNmzXLrJiYmsnTp0jsOGezUqRNr165l8ODB5OXlUVRURL9+/Vi+fPkd4zl+/DgdOnQgLy8POzs7Pv/8c/z8/Mqtm5aWxjvvvMPf//7327b34YcfMmTIEAwGg7bvzJkz7N27F2traz7//HPS0tL4f//v/3H16lUiIyMBGDJkCGlpaXTu3BmlFEVFRYSGhjJt2rQ7XsODSnpKCSEeCrvSb3AwI5vLBaWTRT5lb2vmiER5CgrSSUiYSVbWSQAc7J+kWjUbAIqKS+i16BuClu8DwFjdUhJSDzgdpe+P9E0SQggh7iw6Oho7Ozusra3p3bs3gwcPZvjw4VhaWtKuXTutnrOzM40aNeLkydLnpfHjxzNnzhw6derEjBkzOHbsWIXnOXPmDIWFhbRt21bb5+DgQKNGjcrUbd26tcn2Dz/8wJo1a7Czs9NeAQEBlJSUkJSUBJT23Lp48SJr166lQ4cObNiwgaZNmxITE1Ppe3GnuaugNDl3axyxsbFamb+/P0ePHmX//v0EBgYyaNAgkwnBbzp//jyBgYEMHDjQZK6kW9sNDQ0F4MSJE0yYMIHp06dz+PBhvvzyS5KTk7Xy2NhYk+PWrl2rtdeoUSOOHj3KoUOHeOWVVwgJCeHEiRNl4snMzOTZZ5/Fz8+PmTNnlnvdBw4c4OTJk4wYMcJkf0lJCTqdjrVr19K2bVv69OnDwoUL+fjjj7XeUrt37+bdd9/ln//8J0eOHGHTpk1s2bKFd95554739EElPaWEEA+Fc3mlq2n0cLbn9bpuNDMa7nCEuJ2biYb7ITfvLEqVdvVu6reIGjXaa2VpWQX8cjUHAINVNQa08rpvcQghhBDi0WBjYcHpp5uZ7dx3w9/fX5v028PDA0tLS6Kiou543MiRIwkICGDLli189dVXzJs3j4iICMaNG/dHQ9fY2pp+kZuVlcXo0aMZP358mbp16tTRfjYajfTr149+/foxZ84cAgICmDNnDj179sTX15eMjAwuXLhQpndWQUEBp0+fJiAg4I6x9e/f3yRZ5+npaRJ3gwYNaNCgAe3bt8fX15cPP/zQZNL4Cxcu4O/vT8eOHVm9erVJ27euLmdvbw/AvHnz6NSpE5MnTwagefPm2Nra0qVLF+bMmUPr1q1NjqtV67dRGTdXVARo1aoV3333HYsXL2bVqlVanRs3bhAYGIjRaOTzzz/Hysqq3Ov+v//7P5588klatWplst/d3R1PT08cHBy0fU2aNEEpxblz5/D19eXtt98mODiYkSNHAtCsWTOys7P5+9//zptvvlnhPX1QSVJKCPFA++LyNWYmXiA1v3TMfSt7G560tzFzVKI8hYXXuX6tdLleo7EZbm79Tcoz80rfQydbPUfe7lnmeCGEEEKI39PpdH9oCJ053Eyk3KpJkyYUFRVx6NAhbfje1atXiY+PNxn+Vbt2bUJDQwkNDWXq1Kl88MEHjBs3TutxdOv8Tj4+PlhZWfHdd99piaSMjAwSEhJ4+umnK4zxqaee4sSJE2XirIhOp6Nx48bs378fgOeff56wsDAiIiKIiIgwqbty5UpycnIYNmzYHds1Go0YjcZKxVBSUkJ+fr62ff78efz9/WnVqhWRkZFY/C6BWN715eTklJnjqdqv/7aUUhgMhkrfl9/Hk5mZSUBAANWrVycqKgpr6/LnvM3KyuK///0v8+bNK1PWqVMnNmzYQFZWFnZ2dkDpUEkLCwu8vLy0a/j9td56DXdzTx8UkpQSQjzQ/pt6TUtIVdNBr5oOdzhCmENubgoHDgagVGmPturVf/tmqbhEsTcxjbiU0onP7a3lo0cIIYQQjwdfX1+CgoIYNWoUq1atwmg0MmXKFDw9PQkKCgJg4sSJ9O7dm4YNG3Lt2jV27dpFkyZNAPD29kan0xEdHU2fPn0wGAwYjUZCQkKYPHkyTk5OuLq6MmPGDCwsLNDpKu4RHxYWRvv27Rk7diwjR47E1taWEydOEBMTw7Jlyzh69CgzZswgODgYPz8/9Ho9e/bs4aOPPiIsLAwo7VG1YMECXn/9daytrQkODsbKyoovvviCadOmMWfOHJ544gmT88bHx5eJpWnTpmV6E2VnZzN37lz69++Pu7s7aWlpLF++nPPnzzNw4ECgNCH1zDPP4O3tTXh4OFeuXNGOd3Nzu+219+vXj1GjRrFixQoCAgJITU1l4sSJtG3bttz5uG6aOnUqvXv3pk6dOty4cYN169axe/dutm/fDpQmpHr16kVOTg7/+c9/yMzMJDMzEyidOL7aLUnVTz/9lKKiIv72t7+VOc+QIUN45513eOmll5g1axZpaWlMnjyZl19+WZt7ql+/fixcuJCWLVvSrl07EhMTefvtt+nXr5/JeX4vPT2dlJQULly4APz2fri5uVV4z6qC/GUghHggZRYV83N2Hvuul06KvaChF71dHHDRl98NVpjX9euHUaoAnc4Kvb4mdWr/NkZ+24+pjF0Xp2072Nx5jgEhhBBCiEdFZGQkEyZMoG/fvhQUFPD000+zdetWLSFTXFzMmDFjOHfuHPb29gQGBrJo0SKgdPjVrFmzmDJlCi+99BLDhg1jzZo1LFy4kNDQUPr27Yu9vT1vvPEGZ8+evW0PnZuaN2/Onj17ePPNN+nSpQtKKerXr8/gwYMB8PLyom7dusyaNYvk5GR0Op22/eqrr2rtvPrqq/j4+BAREcHixYvJzs4GYP369bzwwgtlzlvevrNnz2o9gG6qVq0ap06d4uOPPyYtLQ1nZ2fatGlDbGwsTZs2BSAmJobExEQSExPLHF/RionDhw/nxo0bLFu2jNdeew1HR0e6devG/PnzK7xnly9fZtiwYaSmpuLg4EDz5s3Zvn07PXuW9vw/cuQIhw6Vjhb4fU+rpKQk6tatq21/+OGHPPfcc9qk9beys7MjJiaGcePG0bp1a5ydnRk0aBBz5szR6rz11lvodDreeustzp8/j4uLC/369WPu3LkVXkNUVBQvvfSStn3z/ZgxY8Zt576qKjp1r+tcPoQyMzNxcHDQlmkUQjxYSpSizYETnP+1hxTA7raNaGwr80j9GRYnX2JeUipD3Z2IaFznzgdUwpkz/yApeSkeHoNp0vhdk7LluxJ5f3s8teyr07CWkZc61aVbY1k58WGweMfPLNqRwJB2dXj3r+aZz+Om/PxL7N3XEZ2uGt38721Fn7shzwym5H4IIe6nvLw8kpKSqFev3h2TK8JUdnY2np6eRERElJlAuyqkp6fTvXt37O3t2bZtGzY2Mt3G46Ci39nKPjPI6ntCiAfO1cIiLSFVx1rPMA9nGtnIg8mDqLAwgwsX/svZc2sAsDF4l6lzcy6pZ5t58O8R7SQhJYQQQghxj+Li4li/fj2nT5/myJEjDB06FEAbEljVnJyc2LFjB927d+fAgQNmiUE8nGT4nhDigZJfUsKPN0qXPHWyqsa3HfzucIQwp5OnpnHlypfatp1dY+3nnIIijvxyncRLWQAYZS4pIYQQQog/TXh4OPHx8ej1elq1akVsbCw1a9Y0WzzOzs5Mnz7dbOcXDyf5C0EI8cD48UYO/eMSySkuAcBN5o+6r/6MsdvXr38LgJ1dE1xq9sTJ6bcVX1777w9s+/Gitm1vkPdTCCGEEOLP0LJlSw4fPmzuMIS4Z5KUEkI8MA5cz9YSUgDjvWWY14OqpKSIwqLrFBamA/BUy/9gZeVoUufny6U9pOrVtMXT0UDgE+Zd2UM87CpeTUgIIYQQQjx8JCklhHhgXCkonXtouGdN5vp6Uu0OS9qKP+Zeb2th4TUOHupNQUHp8ruWlvZYWjqUqZeZW/p+LhvSkqYeZcuF+CMew/VZhBBCCCEeWZKUEkKY3dHMHP59IY21qaW9bjyqW0lC6gGWmfmjlpAC8PIKRnfL+/V/sWc4kZpJenYBAPbWMmzvYXXzbZU8kBBCCCGEuB8kKSWEMLt5Z1LZc+2Gtt3OwdaM0Yg7KShIA6BGjQ482eIjLCz0WtnZ9BzmbDmpbVe3tMDZTl+mDSGEEEIIIYSQpJQQwuxuDtsb6u5ElxpG2jnamTkiUZ6iohv8/PO7XEj9LwDVq9cySUgBWu8oB4MVY/zr08LLERu9fNQIIYQQQgghypK/FIQQZpdRVAzAUA9nnrKXXlIPqpSza7SEFJT2lPq9G3lFALjZW/P3p+tXWWxCCCGEEEKIh48kpYQQZhN1+Tpxmdmczy/tKeVoKf9LepBlZZ0AwGh8Am/v0bi6BGhlOQVFfHH0Aod/uVZax1reSyGEEEIIIUTFLMwdgBDi8XQ5v5DRPyWz4mzphNnGaha4V5cJsR9EBQXpXL0ay5UrXwHgU28itVz7oNNV0+qsO5TC1E3H2Xj4HAA1bGUeKSGEEEI8PoYPH45Op0On06HX62nQoAGzZ8+mqKjontrdvXs3Op2O69ev/zmBVkJSUhJDhgzBw8MDa2trvLy8CAoK4tSpUyb1oqOj6dq1K0ajERsbG9q0acOaNWtM6iQnJ6PT6Th69Gilzz9z5kwaN26Mra0tNWrUoEePHhw6dMikzREjRlCvXj0MBgP169dnxowZFBQU3LHttWvX0qJFC2xsbHB3d+fll1/m6tWrlY7tvffeQ6fTMXHiRJP9p0+f5q9//SsuLi7Y29szaNAgLl26ZFJn7ty5dOzYERsbGxwdHctt/+a/oVtfn3zyiVa+adMmevbsqZ2nQ4cObN++/Y5xb9q0iV69euHs7HzX78f9JkkpIYRZnM7NRwFOVtV4pbYL/2rug6Ga/C+pKlV2QbXDR17k6A/DtW07Y5Mydc6m5wDQ2M3IoNZeTOju+ydEKIQQQgjx8AgMDCQ1NZWff/6Z1157jZkzZ/L++++bOyxNZZI2hYWF9OzZk4yMDDZt2kR8fDyffvopzZo1M0mMLV26lKCgIDp16sShQ4c4duwYL7zwAqGhobz++uv3FGfDhg1ZtmwZx48fZ+/evdStW5devXpx5Urpl9mnTp2ipKSEVatW8dNPP7Fo0SJWrlzJtGnTKmx33759DBs2jBEjRvDTTz+xYcMGvv32W0aNGlWpuL777jtWrVpF8+bNTfZnZ2fTq1cvdDodX3/9Nfv27aOgoIB+/fpRUlKi1SsoKGDgwIG88sorFZ4nMjKS1NRU7fWXv/xFK/vmm2/o2bMnW7du5fDhw/j7+9OvXz/i4uIqbDM7O5vOnTszf/78Sl1rlVKPoYyMDAWojIwMc4cixGNr/YU0VevrODUoLtHcoTx2FidfVLW+jlMTT/5yx7qFhZlqx04ftWOnjzp46FmVkDDXpLy4uEQlp2WpEWu+U95h0Wr1ntP3K2xhBot3JCjvsGg15bNj5g5F5eVd+vXfYoMqPa88M5iS+yGEuJ9yc3PViRMnVG5urrlDuWshISEqKCjIZF/Pnj1V+/btVXp6ugoODlaOjo7KYDCowMBAlZCQoNVLTk5Wffv2VY6OjsrGxkb5+fmpLVu2qKSkJEXp94jaKyQkRCmlVGZmphoyZIiysbFRbm5uauHChapr165qwoQJWrve3t5q9uzZKjg4WBmNRu3Y2NhY1blzZ2Vtba28vLzUuHHjVFZWllJKqbi4OAWo5OTk215rSkqKsrKyUpMmTSpTtmTJEgWogwcPKqWUdg1xcXF3f1N/dfOzZ8eOHbets2DBAlWvXr0K23n//feVj49PmXg9PT3vGMONGzeUr6+viomJKXOft2/friwsLEw+G69fv650Op2KiYkp01ZkZKRycHAo9zyA+vzzz+8Yz638/PzUrFmzKlX3z3g/blXR72xlnxmkW4IQokrFZebwxN4fmXTqLADeBhnmVdV0d1E3JycZACsrZ9q1jcbX1/QbqP+39ghd39/NjpOl3ZMdbGQIphBCCCH+PEopcgqKzPJSqrL9ystnMBgoKChg+PDhfP/990RFRXHgwAGUUvTp04fCwtJ5VceMGUN+fj7ffPMNx48fZ/78+djZ2VG7dm0+++wzAOLj40lNTWXx4sUATJo0iX379hEVFUVMTAyxsbEcOXKkTAzh4eG0aNGCuLg43n77bU6fPk1gYCADBgzg2LFjfPrpp+zdu5exY8cC4OLigoWFBRs3bqS4uLjc69q4cSOFhYXl9ogaPXo0dnZ2rF+//p7u3U0FBQWsXr0aBwcHWrRocdt6GRkZODk5VdhWhw4dOHv2LFu3bkUpxaVLl9i4cSN9+vS5Yxxjxozh2WefpUePHmXK8vPz0el0VK9eXdtnbW2NhYUFe/fuvWPb5Z2rZs2atG3blo8++qjCf4clJSXcuHHjjtf+IJOZaIUQVWpXeiZphaVj6y2Ap2sYzRuQKFd+/hUOHxlEXl4qADY2dcutdzildGJzg1U13Bys6dSgZlWFKB47d5NOFUII8ajILSzGb/qd58y5H07MDsBGf/d/Miul2LlzJ9u3b6d3795s3ryZffv20bFjR6B0XqPatWuzefNmBg4cSEpKCgMGDKBZs2YA+Pj4aG3dTDa4urpq8xDduHGDjz/+mHXr1tG9e3egdMiXh4dHmVi6devGa6+9pm2PHDmSoUOHanMi+fr6smTJErp27cqKFSvw9PRkyZIlvPHGG8yaNYvWrVvj7+/P0KFDtbgSEhJwcHDA3d29zPn0ej0+Pj4kJCTc9X27VXR0NC+88AI5OTm4u7sTExNDzZrlP2cmJiaydOlSwsPDK2yzU6dOrF27lsGDB5OXl0dRURH9+vVj+fLlFR73ySefcOTIEb777rtyy9u3b4+trS1hYWG8++67KKWYMmUKxcXFpKamVu6CfzV79my6deuGjY0NX331Ff/v//0/srKyGD9+fLn1w8PDycrKYtCgQXd1ngeJ9JQSQlSpjKLSb1xCPJw50fkJ+ro6mjcgUa7r1w+Rm5uCUqXf4Dk7PV1uvRt5peVfvfo0u15/Bk9HQ5XFKB5X9/attRBCCHG/REdHY2dnh7W1Nb1792bw4MEMHz4cS0tL2rVrp9VzdnamUaNGnDx5EoDx48czZ84cOnXqxIwZMzh27FiF5zlz5gyFhYW0bdtW2+fg4ECjRo3K1G3durXJ9g8//MCaNWuws7PTXgEBAZSUlJCUlASU9tS5ePEia9eupUOHDmzYsIGmTZsSExNT6Xuh1995NMTatWtN4oiNjdXK/P39OXr0KPv37ycwMJBBgwZx+fLlMm2cP3+ewMBABg4caDI31K3thoaGAnDixAkmTJjA9OnTOXz4MF9++SXJyclaeWxsrMlxa9eu5ezZs0yYMIG1a9dibW1d7nW4uLiwYcMG/ve//2FnZ4eDgwPXr1/nqaeewsLi7lIub7/9Np06daJly5aEhYXxxhtv3HZesnXr1jFr1iz++9//4urqesd7+qCSnlJCiCp149eklHt1Kxyt5H9BD6qCgjQAnJ39adL4XapXdzUpv5ZdwIWMXPIKSydvNFrLe/ko+q1vkiSChBBCmIfBqhonZgeY7dx3w9/fnxUrVqDX6/Hw8MDS0pKoqKg7Hjdy5EgCAgLYsmULX331FfPmzSMiIoJx48b90dA1tra2JttZWVmMHj263J43derU0X42Go3069ePfv36MWfOHAICApgzZw49e/bE19eXjIwMLly4UKZ3VkFBAadPnyYg4M7vWf/+/U2SdZ6eniZxN2jQgAYNGtC+fXt8fX358MMPmTp1qlbnwoUL+Pv707FjR1avXm3S9q2ry9nb2wMwb948OnXqxOTJkwFo3rw5tra2dOnShTlz5tC6dWuT42rVqsXOnTu5fPkyTz31lLa/uLiYb775hmXLlpGfn0+1atXo1asXp0+fJi0tDUtLSxwdHXFzczPp9fZHtGvXjnfeeYf8/HyT4YGffPIJI0eOZMOGDSZDCiu6pw8q+StCCFEljt3IYfOl66xLTQfA3vLuPuRF1cjNPceF1A0kJy8DwGDtVSYhdTkzjy4LdpFf9NtqInbV5eNECCGEEH8+nU73h4bQmcPNRMqtmjRpQlFREYcOHdKG7129epX4+Hj8/Py0erVr1yY0NJTQ0FCmTp3KBx98wLhx47QeR7fO7+Tj44OVlRXfffedlkjKyMggISGBp58uv3f7TU899RQnTpwoE2dFdDodjRs3Zv/+/QA8//zzhIWFERERQUREhEndlStXkpOTw7Bhw+7YrtFoxGis3FQeJSUl5Ofna9vnz5/H39+fVq1aERkZWaZHUnnXl5OTg6Wl6b+latVK/yZRSmEwGMoc1717d44fP26y76WXXqJx48aEhYVpx990c4jh119/zeXLl+nfv3+lru92jh49So0aNUwSUuvXr+fll1/mk08+4dlnnzWpfzf39EHxcPx2CyEeem/En+PojRxt289Ohnk9iM4k/YOLFz/Xtu3ty04omXApi/yiEqpZ6KhhoyegaS0sq8locCGEEEKI3/P19SUoKIhRo0axatUqjEYjU6ZMwdPTk6CgIAAmTpxI7969adiwIdeuXWPXrl00adIEAG9vb3Q6HdHR0fTp0weDwYDRaCQkJITJkyfj5OSEq6srM2bMwMLCAp2u4jkYw8LCaN++PWPHjmXkyJHY2tpy4sQJYmJiWLZsGUePHmXGjBkEBwfj5+eHXq9nz549fPTRR4SFhQGlPaoWLFjA66+/jrW1NcHBwVhZWfHFF18wbdo05syZwxNPPGFy3vj4+DKxNG3aFCsr00VysrOzmTt3Lv3798fd3Z20tDSWL1/O+fPnGThwIFCakHrmmWfw9vYmPDycK1euaMe7ubnd9tr79evHqFGjWLFiBQEBAaSmpjJx4kTatm1b7nxcUJrk+f212Nra4uzsbLI/MjKSJk2a4OLiwoEDB5gwYQKvvvqqyZDKlJQU0tPTSUlJobi4WOuV1aBBA+zs7Pjf//7HpUuXaN++PdbW1sTExPDuu++aTCi/bt06QkJCWLx4Me3atePixYtA6aT6Dg4Ot732m+e9cOEC8Nv74ebmVuE9qwqSlBJCVImzeQUAvOjuRFsHW9o72pk5IlGe3NzSVRFr1uyBo8NT1KrVr0ydzF/nkWpVpwb/De1QpfEJIYQQQjxsIiMjmTBhAn379qWgoICnn36arVu3agmZ4uJixowZw7lz57C3tycwMJBFixYBpcOvZs2axZQpU3jppZcYNmwYa9asYeHChYSGhtK3b1/s7e154403OHv27G3nPbqpefPm7NmzhzfffJMuXbqglKJ+/foMHjwYAC8vL+rWrcusWbNITk5Gp9Np26+++qrWzquvvoqPjw8REREsXryY7OxsoLQXzwsvvFDmvOXtO3v2LF5eXib7qlWrxqlTp/j4449JS0vD2dmZNm3aEBsbS9OmTQGIiYkhMTGRxMTEMsdXtFLd8OHDuXHjBsuWLeO1117D0dGRbt26MX/+/ArvWWXEx8czdepU0tPTqVu3Lm+++abJ/QKYPn06H3/8sbbdsmVLAHbt2sUzzzyDlZUVy5cv59VXX0UpRYMGDVi4cKHJXFmrV6+mqKiIMWPGMGbMGG1/SEgIa9asuW18UVFRvPTSS9r2zfdjxowZzJw5814u/Z7p1L2uc/kQyszMxMHBgYyMDG18qRDi/ilWCq/dP6CAYx2b4lrd6o7HiPtn6S+XmHsmlRfdnVjUuI5J2f4D/uTmpvDUU59Qw7GNSVl6dgEbvj/L979cI+bEJXo0ceX/QkzriEfL0p0/ExGTwIttazPvueZmjSU//wp797UHdHTvllhl55VnBlNyP4QQ91NeXh5JSUnUq1fvjskVYSo7OxtPT08iIiIYMWJElZ8/PT2d7t27Y29vz7Zt27CxsanyGETVq+h3trLPDNJTSghx3yilWJ5ymZirmSiguoUO54dkToDHwa1fScQnzOLKlRjy80uXrTUYapepv+qb06zac0bbdjFWL1NHCCGEEELcf3FxcZw6dYq2bduSkZHB7NmzAbQhgVXNycmJHTt2sHz5cg4cOED37t3NEod4+Mhfh0KI+yY+J485Z1K17RZGG6rdYZy7qHpFRVmcO/cvbdvGpj7V9bXK1LtwPQ+ANnVr0NzLkZAOdasqRCGEEEII8Tvh4eHEx8ej1+tp1aoVsbGx2kTb5uDs7Mz06dPNdn7xcJKZaYUQ983F/NK5h9z0Vsyo78GSJnXucIQwh4KC0skhLSwMtHrqU9q0/sxkksy8wmJ+upDBheu5ALzQpg5v9/WjjrN0yxbiflu+fDl169bF2tqadu3a8e2331ZYf8OGDTRu3Bhra2uaNWvG1q1btbLCwkLCwsJo1qwZtra2eHh4MGzYMG3SUyGEEA+Pli1bcvjwYbKyskhPTycmJoZmzZqZOywh7pokpYQQ901aQREAvrbVeaWOK3UNMtzrQZSfX5qUql7dBUfH1lhami4jO3j1QZ5dspfDv1wDwNFG5gQToip8+umnTJo0iRkzZnDkyBFatGhBQEAAly9fLrf+/v37efHFFxkxYgRxcXH85S9/4S9/+Qs//vgjULoU9pEjR3j77bc5cuQImzZtIj4+/p6XqxZCCCGE+KNk+J4Q4k+3J/0Go39K5npRMQBe1nozRyTKU1R8g337nyYv7zwANoa6ZeqUlCiOn7sOQE276tR2MtCmnlMVRinErx7Dob83V9y5uVrOypUr2bJlCx999BFTpkwpU3/x4sUEBgYyefJkAN555x1tie+VK1fi4OBATEyMyTHLli2jbdu2pKSkUKeO9GYVQgghRNWSpJQQ4k/3ZVqGlpCyAP7iWsO8AYly5edd1BJSAM41u5mU38grJCU9h5JfJ0TfP6UbekvpYPs4eTDzQI/HosEFBQUcPnyYqVOnavssLCzo0aMHBw4cKPeYAwcOMGnSJJN9AQEBbN68+bbnycjIQKfT4ejoWG55fn4++fn52nZmZmblL0IIIYQQ4g4kKSWE+NOlF5YO25tc141RtV2wt6xm5ohEeYqLcwDwcB+Ej8+rVK/uqpUlp2UT8I9vyC8qAcCuuqUkpISoQmlpaRQXF1OrlumiA7Vq1eLUqVPlHnPx4sVy61+8eLHc+nl5eYSFhfHiiy/edqnmefPmMWvWrD9wBUIIIYQQdyZ/YQgh/jRZRcXsu3aDr9IyAKhr0EtC6gFWXFI6cbmtXUOThBTAsfMZ5BeVYKEDg1U1nm/lZY4QxQNCPR6dkx4rhYWFDBo0CKUUK1asuG29qVOnkpGRob3Onj1bhVEKIYQQ4lEnPaWEEH+aF344zfeZOdp2A1trM0Yjbic39yxgqQ3ds7b2KFPnek4BAL383FgZ3KoqwxNCADVr1qRatWpcunTJZP+lS5dwc3Mr9xg3N7dK1b+ZkPrll1/4+uuvb9tLCqB69epUry6LVAghhBDi/pCeUkKIP82p7DwAfAzVedHdiWZ2BjNHJMpz/XrpkvJKKSwsqmNv/G354F3xlwlY9A2LYhIAqGErK+0JYQ56vZ5WrVqxc+dObV9JSQk7d+6kQ4cO5R7ToUMHk/oAMTExJvVvJqR+/vlnduzYgbOz8/25ACGEEEKISpCklBDiT1FUosgqLp1/6H9P+bKocR0sHsxZkh97BYVXAXCwb0nnTvtNekp9+u1Z4i/d4FpOIQBN3G/fg0IIcX9NmjSJDz74gI8//piTJ0/yyiuvkJ2dra3GN2zYMJOJ0CdMmMCXX35JREQEp06dYubMmXz//feMHTsWKE1IPf/883z//fesXbuW4uJiLl68yMWLFykoKDDLNQohxKNi+PDh6HQ6dDoder2eBg0aMHv2bIqKiu6p3d27d6PT6bh+/fqfE2glJCUlMWTIEDw8PLC2tsbLy4ugoKAycxpGR0fTtWtXjEYjNjY2tGnThjVr1pjUSU5ORqfTcfTo0Uqff+bMmTRu3BhbW1tq1KhBjx49OHTokEmbI0aMoF69ehgMBurXr8+MGTMq9Vm2du1aWrRogY2NDe7u7rz88stcvXr1jsedP3+ev/3tbzg7O2MwGGjWrBnff/+9Vn7r+3/zFRgYaNJG3bp1y9R57733tPL4+Hj8/f2pVasW1tbW+Pj48NZbb1FYWGjSzvXr1xkzZgzu7u5Ur16dhg0bsnXr1grj37RpE7169cLZ2fmu34/7TYbvCSHuSVGJ4t0zqSTn/rY6k4PMI/XAKikporiodPWs6tbuWFk5mpRn5pV+6E3o7kuvprXwk6SUEGYzePBgrly5wvTp07l48SJPPvkkX375pTaZeUpKChYWv32/2LFjR9atW8dbb73FtGnT8PX1ZfPmzTzxxBNA6QN1VFQUAE8++aTJuXbt2sUzzzxTJdclhBCPqsDAQCIjI8nPz2fr1q2MGTMGKysrky8QzKmgoAC9Xl9hncLCQnr27EmjRo3YtGkT7u7unDt3jm3btpkkxpYuXcrEiRMJCwtjxYoV6PV6vvjiC0JDQ/nxxx8JDw//w3E2bNiQZcuW4ePjQ25uLosWLaJXr14kJibi4uLCqVOnKCkpYdWqVTRo0IAff/yRUaNGkZ2dXeF59+3bx7Bhw1i0aBH9+vXj/PnzhIaGMmrUKDZt2nTb465du0anTp3w9/dn27ZtuLi48PPPP1OjhukK4zff/5vKG/4+e/ZsRo0apW0bjUbtZysrK4YNG8ZTTz2Fo6MjP/zwA6NGjaKkpIR3330XKH0Pe/bsiaurKxs3bsTT05Nffvnltqvo3pSdnU3nzp0ZNGiQyfkfCOoxlJGRoQCVkZFh7lCEeOjtuZqpan0dp71a7vvR3CGJcpSUlKhjx8ep2L0d1YSdr6paX8ep8SeSy9TrtzRWeYdFq50nL5ohSvGgWbozQXmHRauwjT+YOxSVl39F7djpo3bs9KnS88ozgym5H0KI+yk3N1edOHFC5ebmmjuUuxYSEqKCgoJM9vXs2VO1b99epaenq+DgYOXo6KgMBoMKDAxUCQkJWr3k5GTVt29f5ejoqGxsbJSfn5/asmWLSkpKUoDJKyQkRCmlVGZmphoyZIiysbFRbm5uauHChapr165qwoQJWrve3t5q9uzZKjg4WBmNRu3Y2NhY1blzZ2Vtba28vLzUuHHjVFZWllJKqbi4OAWo5OSyz4k3paSkKCsrKzVp0qQyZUuWLFGAOnjwoFJKadcQFxd39zf1Vzc/e3bs2HHbOgsWLFD16tWrsJ33339f+fiYPkcsWbJEeXp6VnhcWFiY6ty5c4V1ynv/f8/b21stWrSowjq/9+qrr5qce8WKFcrHx0cVFBTcVTs3/Rnvx60q+p2t7DODDN8TQtyTmz2kmtpZM9fXk3UtfMwckShPXt45Ll/eQn7+rUvDlw6vzC8qZtz6OP76z33EX7wBgNFa5pISQgghxANAKSjINs/rHpefNRgMFBQUMHz4cL7//nuioqI4cOAASin69OmjDcsaM2YM+fn5fPPNNxw/fpz58+djZ2dH7dq1+eyzz4DSoV2pqaksXrwYKB3ivW/fPqKiooiJiSE2NpYjR46UiSE8PJwWLVoQFxfH22+/zenTpwkMDGTAgAEcO3aMTz/9lL1792pDvV1cXLCwsGDjxo0UFxeXe10bN26ksLCQ119/vUzZ6NGjsbOzY/369fd0724qKChg9erVODg40KJFi9vWy8jIwMnJqcK2OnTowNmzZ9m6dStKKS5dusTGjRvp06dPhcdFRUXRunVrBg4ciKurKy1btuSDDz4oU2/37t24urrSqFEjXnnllXKHBb733ns4OzvTsmVL3n///QqHdyYm/n/27js8qmp7+Pj3TEuZTDrpIQVClSYdBAwICSigIqJwKQpIvHSRZgMU5KKg0i6IL5fgvYj+RAVEVBApoUhvUhISCISEEFJIT2Yyc94/hhwYAgmhJej+PE8gp68zaTNr1l47nl9++YVOnTrZxNK2bVtGjhyJt7c3jz32GB9++OFtv1aPAjF8TxCEe5JUZB273cbFiaEBNao4GuF2jMYrANjZ+RBYYzAkX3+Stf9cFj8eTVGW1SqJmu6ODz1GQRAEQRCEMkwF8GHZmYIfirdSQKev9GGyLLNlyxZ+/fVXunfvztq1a9m1axft2rUDrH2NAgMDWbt2LX379uXChQv06dOHRo2sk8+Ehl5/k7c00eLl5aUM0crNzWXlypV89dVXdOnSBYAVK1bg51f2cercuTMTJkxQlocNG8aAAQMYN24cAGFhYSxYsIBOnTqxZMkS/P39WbBgAZMmTWLGjBm0aNGC8PBwBgwYoMQVFxeHi4sLvr6+Za6n0+kIDQ0lLi6u0o/bjTZs2MBLL71EQUEBvr6+bN68GU9Pz1vuGx8fz8KFCyscMti+fXtWrVpFv379KCoqoqSkhJ49e7J48eJyjzt79ixLlizhjTfe4K233mL//v2MGTMGnU7H4MGDAevQveeff56QkBASEhJ466236N69O3v27EGttrY2GTNmDI8//jju7u7s3r2bqVOncunSJT755BOb67Vr145Dhw5RXFzMa6+9xvvvv28Ty++//86AAQPYuHEj8fHx/POf/8RkMjFt2rQKH9fqSFRKCYJwV7Zk5NB6z0n+30VrsiPQvvzx6ULVKi5OA6xJKTs72+nhMwusicV6Pga+GNSCX8Z2wNvZ/qHHKAjlEdMmCIIgCNXdhg0bcHJywt7enu7du9OvXz+GDBmCRqOhdevWyn4eHh7UrVuXU6dOAdZkxcyZM2nfvj3Tpk3j2LFj5V7n7NmzmEwmWrVqpaxzcXGhbt26ZfZt0aKFzfLRo0eJjo7GyclJ+YiIiMBisXDu3DnAWrmVmprKqlWraNu2Ld9++y0NGzZk8+bNd/xYVNS7CqzJuRvjiImJUbaFh4dz5MgRdu/eTWRkJC+++CJpaWllzpGcnExkZCR9+/a16ZV043mjoqIAOHnyJGPHjuW9997j4MGD/PLLLyQmJirbY2JibI5btWoVYJ399vHHH+fDDz+kWbNmvPbaawwfPpylS5cq13vppZfo1asXjRo14tlnn2XDhg3s37+fbdu2Kfu88cYbPPnkkzRu3JioqCjmzZvHwoULKS6+3psX4JtvvuHQoUN89dVX/PTTTzbJNovFgpeXF8uWLaN58+b069ePt99+W4mlvMe0uhKVUoIg3JWvL2Vyvuj6DBctXSr/LpLw4GXnHOXIkVcpKbkKgKNjsLJNlmW2xqaxI86aWAzycKRrA+8qiFKoriQxg6YgCIJQ1bSO1oqlqrp2JYSHhytNv/38/NBoNMoEE+UZNmwYERER/PTTT2zatInZs2czb948Ro8efbeRK/R62+foeXl5jBgxgjFjxpTZt2bNmsrnBoOBnj170rNnT2bOnElERAQzZ86ka9euhIWFkZ2dTUpKSpnqLKPRSEJCAhERERXG1qtXL5tknb+/v03ctWvXpnbt2rRp04awsDCWL19u0zQ+JSWF8PBw2rVrx7Jly2zOfePscs7O1ol7Zs+eTfv27Zk4cSIAjRs3Rq/X06FDB2bOnEmLFi1sjiudWMTX15cGDRrYnL9+/frK0MpbCQ0NxdPTk/j4eKWa7WatW7empKSExMREm4RiYGAgAA0aNMBsNvPaa68xYcIE1Go1vr6+aLVapfqqNJbSmXTLe0yrK5GUEgThrly8lpB6v7Yfz9RwxU9USlVLGRk7lIQUqPD0fAoKrUupOUW8svZPZV93fdkZQgRBEARBEKqUJN3VELqqUJpIuVH9+vUpKSlh7969yvC9jIwMYmNjbRIdgYGBREVFERUVxdSpU/niiy8YPXq0UnF0Y8+g0NBQtFot+/fvVxJJ2dnZxMXF0bFjx3JjfPzxxzl58mSZOMsjSRL16tVj9+7dALzwwgtMnjyZefPmMW/ePJt9ly5dSkFBAYMGDarwvAaDwWb2ufJYLBabiqLk5GTCw8Np3rw5K1assJmNFrjl/RUUFKDR2KZASpM7sizj4OBwy+Pat29PbGyszbq4uDiCgoJuG+/FixfJyMi45RDHUkeOHEGlUuHl5XXbfSwWCyaTCYvFglqtpn379nz11VdYLBblnuPi4vD19UWn06HT6e74Ma0uRFJKEIS7klxsTUq1dnUSCamcS5CbgnHzLApz86o6Ghv64kvUMRai03lgZ+eNc8Kn9DGZaFVkxAmJS1oNC+2G4xNUj8Htbv+HVfh7u8c+r4IgCILwtxUWFkbv3r0ZPnw4n3/+OQaDgSlTpuDv70/v3r0BGDduHN27d6dOnTpkZWWxdetW6tevD0BQUBCSJLFhwwZ69OiBg4MDBoOBwYMHM3HiRNzd3fHy8mLatGmoVKoKq5wnT55MmzZtGDVqFMOGDUOv13Py5Ek2b97MokWLOHLkCNOmTWPgwIE0aNAAnU7H9u3b+c9//sPkyZMBa0XVRx99xJtvvom9vT0DBw5Eq9Wybt063nrrLWbOnMljjz1mc92bkzoADRs2RKu1nVwnPz+fWbNm0atXL3x9fUlPT2fx4sUkJyfTt29fwJqQevLJJwkKCmLu3LlcuXJFOd7Hx7ZNxY169uzJ8OHDWbJkCREREVy6dIlx48bRqlWrW/bjKjV+/HjatWvHhx9+yIsvvsi+fftYtmyZUp2Vl5fHjBkz6NOnDz4+PiQkJDBp0iRq166tVIzt2bOHvXv3Eh4ejsFgYM+ePYwfP55//OMfuLm5Adahd1qtlkaNGmFnZ8eBAweYOnUq/fr1Ux6n119/nUWLFjF27FhGjx7NmTNn+PDDD29Z+XajzMxMLly4QEpKis3Xw8fHp9zH7GEQSSlBECplUmwSG65cJdNkfbcmwO5vmpC6fALOxZBxei+7dp4iv0RLSqELUN0ej6BrH1Y+9rkMCDlC6Xs2DdRg9DxG94EDqiQ6QRAEQRCEv7oVK1YwduxYnnnmGYxGIx07dmTjxo1KosFsNjNy5EguXryIs7MzkZGRfPrpp4B1+NWMGTOYMmUKr7zyCoMGDSI6OppPPvmEqKgonnnmGZydnZk0aRJJSUnY25ffF7Rx48Zs376dt99+mw4dOiDLMrVq1aJfv34ABAQEEBwczIwZM0hMTESSJGV5/PjxynnGjx9PaGgo8+bNY/78+eTn5wOwevVqXnrppTLXvdW6pKQkAgICbNap1WpOnz7NypUrSU9Px8PDg5YtWxITE0PDhg0B2Lx5M/Hx8cTHx5c5Xi7nnbQhQ4aQm5vLokWLmDBhAq6urnTu3Jk5c+aU+5i1bNmSH374galTp/L+++8TEhLCZ599xoABA5SYjx07xsqVK7l69Sp+fn5069aNDz74ADs760gEOzs7vv76a6ZPn05xcTEhISGMHz+eN954Q7mORqNhzpw5xMXFIcsyQUFBjBo1yuZxDwwM5Ndff2X8+PE0btwYf39/xo4dqyQMb2f9+vW88sorynLp12PatGlMnz693GMfNEku76v2F5WTk4OLiwvZ2dnK+FJBECpmtFiouf1648UwRzt2tKr39+o7k3YaclMwrxnO5YxiDmQGcCbXdiYQjbYa5PtlM7JsQcYCgCRpMJdYf937D+3DL9l5RF34gTa5B9kWEMWTw8r/Yyz8PS3eGs/Hv8bSr0Ugc15oXKWxGI3pxOy09kjo0jnhoV1XPGewJR4PQRAepKKiIs6dO0dISEiFyRXBVn5+Pv7+/sybN4+hQ4c+9OtnZmbSpUsXnJ2d+fnnn3F0FDM5/x2U9zN7p88ZqsErJ0EQHhXpxhIA1BJsaVmXYHu7v0dCymKBtBNwagNs/xcA21NDOZx1vXFg0zrO+Pm6EhLgjL2dGtRaaPoP8LSOSy/MNWIusZBw+AqZKfkPPOTLlzdQYrYOJZRQ4+76JCe3WBNP22NCUBu0HM+QKDS2Is3SgJj/i6NJ50CcPR0eeGyCIAiCIAjCvTl8+DCnT5+mVatWZGdn8/777wMoQwIfNnd3d3777TcWL17Mnj17btvcWxBuJpJSgiDckSxTCX9kW5MpNbRa6un/RsmLbbNhx0cAXMh34VKhwSYhFaC7Sour+7DLMUMsZMju5Mg+pO9Qk+n+FCkXiynIszzkoB+3WcqyZCufN0wzI12xYKQBJ2kAhZD++0UkJJ54MewhxykIgiAIgiDcjblz5xIbG4tOp6N58+bExMTg6elZ8YEPiIeHB++9916VXV94NImklCAIFTqVV0jXA7FcG/1F2N9llrZj38LZrXBkFRYZsgvsWHP+MWTJOtOFZJFpey6PPOcGbM/sSKZ7AyyShkLHazNopAFphTanVFlM2BVl4Zv6x0O9lRLJTJyr9fPQc+u56OWHRwMtQZknSNY/w8XLLphM5nLPIQiCIAiCIFQPzZo14+DBg1UdhiDcM5GUEgShQgdzCiiRQSOBi0bDAF+Pqg7pwSvKgR9GgGwmucCZr883sa6XQGPRgl0tJF1tDrWoc9tT6AsvoULGJ+ckDsZMvHNO8qAHOxqNGchYk0uSpEGndbfejkoiDuv0sMEXNuGY64Emoh4tjGugRicuXnZ5wJEJgiAIgiAIgiDYEkkpQRAqdLnYBEA/H3fm1atZxdE8YCXFsGsBXP6TsznOHM4JIjHHcMMOEpJTZ9R2DW0OC2niiVqjotbjXjim7aDGnn+irdMB/vHdQwu9qOgSu3Y/Aajw8OhIgP8APD07A7D50FmYY50qVgYkZOTSFFnpfBd/u2kvBEEQBEEQBEGoSiIpJQjCbRWaLey5msehnAIAfOy0VRzRQ3D6JzJ/mUeW0Z5fk+tTKKuVTVqnvqg0vrh4OFC7pS/eIS7413FFa69BpbqhBuqICVTFDz30vLzTAOj1tWjaZLnNtiu5tvFIMvB3aFIvCIIgCIIgCEK1JZJSgiDc1rT4ZL5MyVCW6+j/2lPzFqRd5MqhPXx/9nEsqK6t1aB1fApJ40PrZ5ri6OZAgyf8bJNQVayoOJWjR4eRl3cKAIOhYZl98opv6BclAfINlVKiREp4JFSfnzlBEARBEATh/hBJKUEQbutorrVCqrajHXX19jzl4VzFET048d/OZd2abdeWrjUyV3ujtnuMEDs1jSJcCO5dGwBZljmQeoBcY+6tT5YdB44OIOfBha0PPPbUtA2kXYkDrFVduZYA0q5dNz2vmN0JGcRfyODJa/vLgEo2cljOxNHeDrk0KSWL5JTwaJBlGUlU+gmCIAiCIDzyRFJKEITbSi6y9pJa0iCIRgbHKo7mwcjLzODiqT+J2bAVkKzD2tQeaJ2eQaX2IFifQIP3nuLXxE38uWU0f2b8SUZhxvVEzu141wBLCmwd8zBuA7hhRsT0/5TZqrWTgNJ+YBIqcz7LLKdZ5uvN5IwsIOhhBCk8oir8fhcEQRAEQRCEuyCSUoIglBGXX8ThnALSTSUABNjrqjiiB0O2WPj2g7fITEmmdGiQxqknal0YWnMGe32WsjT4FKxdUOlzO5kthKodocbtZ+e7VxZzESUluRhNGZjNhTjYB6Kz87TZJ+5yLvlFZlw0GuCGIXyocUJLHibyZGvyUaQdBEEQBEEQBEF4mERSShAEG8UWC08fjCPXbAHASa3CVaOu4KhHz5l9uzl3aP+1hBRImgBUak9U2loAfNv4S1KdE22OcdW5kJ+fg7/ai4aFAXikSUg39bnJN+VzueAybmYL7TWuENJM2WZvMND2hf44OBm4H/b80Y2CggRluXGjCdSo0U1ZLjKZ6blwJ1fS8lg6sDH7f3td2Sar9DSSnNkjp4oqGEEQBEEQhHs0ZMgQVq5cCYBWq6VmzZoMGjSIt956C43m7l92b9u2jfDwcLKysnB1db1P0Zbv3LlzvP3222zbto3MzEw8PT1p3rw5c+bMoV69esp+GzZs4OOPP+bQoUOYzWYaNmzIyJEjGTJkiLJPYmIiISEhHD58mKZNm97R9adPn87XX39NUlISOp2O5s2bM2vWLFq3bq2c84MPPuD3338nNTUVPz8//vGPf/D222+j05X/ZvqqVav46KOPOHPmDC4uLnTv3p2PP/4YDw+P2x5jNpuZPn06//vf/5TrDRkyhHfeeUdpJ/D999+zdOlSDh48SGZm5i3vNyEhgTfffJOdO3dSXFxMZGQkCxcuxNvbu1L3dezYMUaOHMn+/fupUaMGo0ePZtKkSeXe944dO/j44485ePAgly5d4ocffuDZZ58t95iHRSSlBEGwccVYQq7Z2ua7g5uB3t6uf7neLWmJZ1k/70NlWaUJRGfoi7qkkN01vyLNKRt8iwjThTG22Vh+3v8dV3cexT/dAcdi12tHpd/y3E6AE04AnMICydtstnv416RJ1+73fA+ybKawMBEArxrdsXcIwMOjk7J91k8n+SLmnLLs7HD9D5ksWWffk66f7J7jEQRBEARB+LuLjIxkxYoVFBcXs3HjRkaOHIlWq2Xq1KlVHRoARqOxwqSNyWSia9eu1K1bl++//x5fX18uXrzIzz//zNWrV5X9Fi5cyLhx45g8eTJLlixBp9Oxbt06oqKi+PPPP5k7d+5dx1mnTh0WLVpEaGgohYWFfPrpp3Tr1o34+Hhq1KjB6dOnsVgsfP7559SuXZs///yT4cOHk5+fX+51d+3axaBBg/j000/p2bMnycnJREVFMXz4cL7//vvbHjdnzhyWLFnCypUradiwIQcOHOCVV17BxcWFMWOsrTry8/N54oknePHFFxk+fHiZc+Tn59OtWzeaNGnC77//DsC7775Lz549+eOPP1CpVHd0Xzk5OXTr1o2nnnqKpUuXcvz4cV599VVcXV157bXXbnsP+fn5NGnShFdffZXnn3/+jr4OD4tISgmCYCPr2pC9GjoN3zStVcXRPBgXj+4DwF6lxqRthNquGSqLCaesnzncYT9eFljXaw9b1q7k5LLV1Ii7SA1sq5scnF1wdHbhsfCuNuvjs+L5If4H/EpKGKDzheZDADgZs5UriWcxm4z35R6KjVeQZTOgomHDz1CpbH+dbzmdpnwe5OFIqKcTW27YLiGDJIF8w7A9kZsSBEEQBEG4a3Z2dvj4+ADw+uuv88MPP7B+/XqioqIYO3YsP/74I8XFxXTq1IkFCxYQFhYGwPnz5xk1ahQ7d+7EaDQSHBzMxx9/TIMGDQgPDwfAzc0NgMGDBxMdHU1ubi5RUVGsXbsWZ2dnJk2axLp162jatCmfffYZAMHBwQwdOpQzZ86wdu1ann/+eaKjo9m5cydTp07lwIEDeHp68txzzzF79mz0ej0nTpwgISGBLVu2EBRk7TkaFBRE+/btlftMSkpiwoQJjBs3jg8/vP5G74QJE9DpdIwZM4a+ffsqlU2V1b9/f5vlTz75hOXLl3Ps2DG6dOlCZGQkkZGRyvbQ0FBiY2NZsmRJuUmpPXv2EBwcrCSSQkJCGDFiBHPmzCk3nt27d9O7d2+efvppwPq4rl69mn379in7DBw4ELBWO93Krl27SExM5PDhwzg7WyePWrlyJW5ubvz+++889dRTd3Rfq1atwmg08p///AedTkfDhg05cuQIn3zySblJqe7du9O9+72/Mf4gqCreRRCEv4MSi8yPaVeZm5gKgJv2r5ezTj59ki8njWbrV/8DoETXGq1jZzwzT7I5eAKfdt/GZ5ev8IM6hEvZycR9t5GCuIvK8YbAptRqNZBWz39C467Tqd16PEUFj9l8qHTNOR1cwJWaV2kRqqbFM8/R4pnn8PAPvC/3UFKSy779vdi1y/rEwMGhZpmEFEBOoTW5+P0/27F1wpM42NkOwZREdZQgCIIgCI8AWZYpMBVUyYd8j8+XHBwcMBqNDBkyhAMHDrB+/Xr27NmDLMv06NEDk8na13PkyJEUFxezY8cOjh8/zpw5c3ByciIwMJDvvvsOgNjYWC5dusQUYIUmAAEAAElEQVT8+fMBeOONN9i1axfr169n8+bNxMTEcOjQoTIxzJ07lyZNmnD48GHeffddEhISiIyMpE+fPhw7doxvvvmGnTt3MmrUKABq1KiBSqVizZo1mM3mMucDWLNmDSaTiTfffLPMthEjRuDk5MTq1avv6bErZTQaWbZsGS4uLjRp0uS2+2VnZ+Pu7l7uudq2bUtSUhIbN25ElmUuX77MmjVr6NGjR7nHtWvXji1bthAXFwfA0aNH2blzZ6WSPMXFxUiShJ3d9cmJ7O3tUalU7Ny5847va8+ePXTs2NGm4i0iIoLY2FiysrLuOJ7q5K/3qlMQhLuy4cpVok6eV5YbOjlUYTQPxqGN67hyvnRImxqVri664mzSHQ6R5CvTs9hC21Zv8fPviaRO/wAVErKkxs2pB152Xtib3Ai+rEK6nHrba7jJGhp5twDDjgdyD1evHiA394SyfOOQPYC0nCIuZBaQU2h9kuPtbI9KJWG+YQjm9adXUpk1giAIgiAI1UlhSSGtv7q7ipt7tbf/Xhy1lZ+BWpZltmzZwq+//kr37t1Zu3Ytu3btol27doC12iUwMJC1a9fSt29fLly4QJ8+fWjUqBFgrZApVZqQ8PLyUnpK5ebmsnLlSr766iu6dOkCwIoVK/Dz8ysTS+fOnZkwYYKyPGzYMAYMGMC4ceMACAsLY8GCBXTq1IklS5bg7+/PggULmDRpEjNmzKBFixaEh4czYMAAJa64uDhcXFzw9fUtcz2dTkdoaKiSwLlbGzZs4KWXXqKgoABfX182b96Mp6fnLfeNj49n4cKFFQ4ZbN++PatWraJfv34UFRVRUlJCz549Wbx4cbnHTZkyhZycHOrVq4darcZsNjNr1iwGDBhwx/fTpk0b9Ho9kydP5sMPP0SWZaZMmYLZbObSpUt3fF+pqamEhITY7Ffakyo1NVWpqHuUiKSUIAgAXCiyDisLtNfRykXPG8HeVRzR/Zd07CgAGvt2qHUNaHTqa9yyjrJzYG32xidTrG3I1gO7SczNQ4WaNjV64qT1osjOnXUYMWK6o+tkZbcj0+jB9GwPWG9NICVme5Pl3p6z8SrWrz9RwRluLz8/i8ys57G388XNrS2aPGc4bT2fVi2xcnciRvP1JJOzvfXXvG1DdglJlm9IScnX/hcEQRAEQRDu1oYNG3BycsJkMmGxWOjfvz/PP/88GzZssBnK5uHhQd26dTl16hQAY8aM4fXXX2fTpk089dRT9OnTh8aNG9/2OmfPnsVkMtGqVStlnYuLC3Xr1i2zb4sWLWyWjx49yrFjx1i1apWyTpZlLBYL586do379+owcOZJBgwaxbds2/vjjD7799ls+/PBD1q9fT9euXW++xC1V1LsKrMm5ESNGKMs///wzHTp0ACA8PJwjR46Qnp7OF198wYsvvsjevXvx8vKyOUdycjKRkZH07dvXppeTk5OT8vk//vEPli5dysmTJxk7dizvvfceERERXLp0iYkTJxIVFcXy5cuJiYmxqX76/PPPGTBgAP/3f//HqlWr+Oqrr5ThcuPGjcPPz4/Bgwff0eNRo0YNvv32W15//XUWLFiASqXi5Zdf5vHHH0elKjuA7Xb3VZHb3UN1JpJSgiAAcNVkLc/tUcOFGbX9qzia+2vLf5ZyKmYrxYX5AKh09dAXFbD+8VP83kTNOK8aJM70pCAni6JgX+oEtCDQqTGH7FzZRwm/kFe5C5q8weRNNMDuxGsrPcDFg6MpQEribQ68E3bAk9c+z7z2YUujkghwc6BDWA0M9lrrypua1UsylFZKycBfq5W9IAiCIAh/FQ4aB/b231tl166M8PBwpem3n58fGo2G9evXV3jcsGHDiIiI4KeffmLTpk3Mnj2befPmMXr06LsNXaHX622W8/LyGDFihNJX6UY1a9ZUPjcYDPTs2ZOePXsyc+ZMIiIimDlzJl27diUsLIzs7GxSUlLKVGcZjUYSEhKIiIioMLZevXrZJOv8/a+/BtHr9dSuXZvatWvTpk0bwsLCWL58uU3T+JSUFMLDw2nXrh3Lli2zOfeRI0eUz0t7OM2ePZv27dszceJEABo3boxer6dDhw7MnDmTFi1a2BxXWoE0ceJEpkyZwksvvQRAo0aNOH/+PLNnz77jpBRAt27dSEhIID09HY1Gg6urKz4+PjaVcRXdl4+PD5cvX7ZZV7rs4+NDcHDwLe+hOhNJKUEQALhaYu1B5KpRV7Dno6UoP4+jmzYiyxYAJJUzrQ8uwLEog/97VSY8vZiW/9vGbrcgLgfraerejtouLchG5kPyKLnhXB3r1CBwz2ZK0tNx7tEDXc1AZBmKi4swGk0kHklAJctkqfIp1mQRKNmBWzAAuelXKCrIw+DmQZ2GDXFwqNyTnKysfWRnH1CW3d074OzcSFneFnuFEyk5ANT3debH0U/YHG8zg6J0rdG5kpSSRVJKuKXqNfFmtQpGEARBeEgkSbqrIXRVoTSRcqP69etTUlLC3r17leF7GRkZxMbG0qBBA2W/wMBAoqKiiIqKYurUqXzxxReMHj1aqTi6sb9TaGgoWq2W/fv3K4mk7Oxs4uLi6NixY7kxPv7445w8ebJMnOWRJIl69eqxe/duAF544QUmT57MvHnzmDdvns2+S5cupaCggEGDBlV4XoPBgMFgqHA/AIvFQnFxsbKcnJxMeHg4zZs3Z8WKFWWqjW51fwUFBWg0tikQtdr62keWZRwcHG573M3nV6vVWCyWO4r9ZqXDEH///XfS0tLo1avXHd9X27ZtefvttzGZTGi11jefN2/eTN26dZWhe5X52lYHIiklCH9z36VmsuhCGqfyiwDwtdNWcUT3V+bFJCUhpXN+BV0JmDXT2NTMwhuhjxPy4V6MeXb4d36WNvp6WFQ6BpDPRazH6LVqxnYNo6a7nsjHfIjd+BEFZ+O56tCcYtnM3r17kWUZNVDr2kOnjPKW8yHzWiWTCnACTFk017rxdMTTlbqP438uJi1tIw72NdE71aF+vS7odNYeA38mZ/P1viRlX1fHsl9D6eaeUrJ8w7prA/dE83NBEARBEIT7KiwsjN69ezN8+HA+//xzDAYDU6ZMwd/fn969ewMwbtw4unfvTp06dcjKymLr1q3Ur18fsM58J0kSGzZsoEePHjg4OGAwGBg8eDATJ07E3d0dLy8vpk2bhkqlsn0j8hYmT55MmzZtGDVqFMOGDUOv13Py5Ek2b97MokWLOHLkCNOmTWPgwIE0aNAAnU7H9u3b+c9//sPkyZMBa0XVRx99xJtvvom9vT0DBw5Eq9Wybt063nrrLWbOnMljjz1mc93Y2NgysTRs2FBJrJTKz89n1qxZ9OrVC19fX9LT01m8eDHJycn07dsXsCZunnzySYKCgpg7dy5XrlxRji+d/fBWevbsyfDhw1myZIkyfG/cuHG0atXqlv24bjxu1qxZ1KxZk4YNG3L48GE++eQTXn31VWWfzMxMLly4QEpKis39+vj4KDGtWLGC+vXrU6NGDfbs2cPYsWMZP368MuzyTu6rf//+zJgxg6FDhzJ58mT+/PNP5s+fz6effnrb+MFaIRcfH68snzt3jiNHjuDu7m5TIVcVRFJKEP7mll28oiSktJJEO1enCo54NORfzWLV22+Qm279ZS5p/FGp3bArSmHiEMjWq/n8j0sYHetT4ONHbUMzJEniKCVKQgrg6cdqEBGkIT7+BMt2ryflscfgsccgPt76cY0kSWgsakLMNUjQpZKqP0R/rTc0t5b0ntq5jUtX0jE7uVBSUkJllZisVVAhIWPw9X3OZtu6I8lk5BuV5Tret3jHSSpnUeSihApUv3ylGHQqCIIgPDpWrFjB2LFjeeaZZzAajXTs2JGNGzcqCRmz2czIkSO5ePEizs7OREZGKkkGf39/ZsyYwZQpU3jllVcYNGgQ0dHRfPLJJ0RFRfHMM8/g7OzMpEmTSEpKwt7evtxYGjduzPbt23n77bfp0KEDsixTq1Yt+vXrB0BAQADBwcHMmDGDxMREJElSlsePH6+cZ/z48YSGhjJv3jzmz59Pfr61Tcbq1auVYW43utW6pKQkAgICbNap1WpOnz7NypUrSU9Px8PDg5YtWxITE0PDhg0Ba2VQfHw88fHxZY4vb8bEIUOGkJuby6JFi5gwYQKurq507tyZOXPmlPuYLVy4kHfffZd//vOfpKWl4efnx4gRI3jvvfeUfdavX88rr7xS5n6nTZvG9OnTAWuiaurUqWRmZhIcHMzbb79t85jeyX25uLiwadMmRo4cSfPmzfH09OS9997jtddeK/ceDhw4QHh4uLL8xhtvADB48GCio6PLPfZBk+R7nefyEZSTk4OLiwvZ2dnK+FJB+LtqvvsEycUmPqoTQCd3A0EOdhUf9Ag4tXMbGxeWzlShQmcfTo18FXZ5u/jf0EIabzpL7zON8WzzTwCysfClXMi5AD37knNo6W9PvfSdqKVb/4qUgBpeXtSpU4eAgADq1avHyfd242w086XTNk7U+C+rHBvCwB8A+GnBxxw9HYvRK4BmzZop74zdCaMxg/37n6WoOIUmjb/A07OzzfbJa47xzQFrpVS/FgHMeq4RGrVtqa9ssfDJy9bS4Kf+PEeJRsfyiX7EmC8w/Epf1PFPUK+tD10GN0AQSv17Wzwf/RJL3+YBfNz39tMwPwxGYyYxO1sC0Dn8DJJUtinogyCeM9gSj4cgCA9SUVER586dIyQkpMLkimArPz8ff39/5s2bx9ChQx/69TMzM+nSpQvOzs78/PPPODo+GkMuhXtT3s/snT5nEJVSgvA3l2myVu38lRJSAFmXrKWzfh4+ZJhfwCXnIg1PzuPz7mr+n9unZKSsx1jf2lixyJzPv8njJ7UDJFsrkkoux6PWWBNSKpUKjUZjHff/yy/U3hFD0NIlGCoYs38/nIn/FxcufKEs63Rlp8LNLb4+K6Cvq0OZhBRg0xzIWmNyQ6WJjO3/giAIgiAIQrV2+PBhTp8+TatWrcjOzub9998HqNQbn/eTu7s7v/32G4sXL2bPnj106dKlSuIQHj0iKSUIf1OZphJO5hVSaLFmImro/hq9pFITzvDH919z+cxJADQ5uUhOOizaPAa+qcYg23Hp/23EudGL2CGzhmz2yZns1ngAUEuVjruqgDD1FYKDg2natClNmzZVzn/2yy8ptlgqGK9//4YVpaVtVD53d++AwWAdny/LMjN+PMnx5GzOXM6t8Dy2jc4lmwSULLJRgiAIgiAIj5y5c+cSGxuLTqejefPmxMTEKE20q4KHh4fNkDZBuBMiKSUIf0O5JWba/HGSnBJr7yQvnQbHW1XXPIL2rf2WhAPXpw2+ZBeJGshRp2FWS3hdLCbfvjbOwA7imI8P8rWElBYzfWuBr6cfTz89vMzsHDYewshni8VIUVEyAB2e2IdO56Fsu5BZQPTuxLsOS5LlG6qnRFJKEARBEAThUdKsWTMOHjxY1WEIwj0TSSlB+BuKyy8ip8SCRgIfOy2v+teo6pDum/SLFwCoYR/IVU1LVJqaqMxGrrqe49VLbWiT2xFv70CKMHJKzkSWfNFipoVzLl0f8+fVG6ZkrbSbC6TuMXFlNGZYTyup0WrdbLZlXmts7umkY9ZzjfjhcDK//JlaQXwSyLIyfE+6FrAYvScIgiAIgiAIQlWo0tKIf/3rX0iSxLhx45R1RUVFjBw5Eg8PD5ycnOjTpw+XL1+2Oe7ChQs8/fTTODo64uXlxcSJE+9qNitB+LtKKrImNJo76znQtiH/rOlVxRHdP/lZ1kSOvdkXtTYYf+NW/nSeRKJ/Ej1TuhNIMJdU2bypTmCtqjYAvs46Vr81gFd7PVnh+aX7MDSvovklLJYSDhzsx67dTwCg09Wwaeq8JyGDn68loLyd7Ylo6EMNp4r7gd0YuyTfn3sRBEEQBEEQBEG4W1VWKbV//34+//xzGjdubLN+/Pjx/PTTT3z77be4uLgwatQonn/+eXbt2gVYp8t8+umn8fHxYffu3Vy6dIlBgwah1Wr58MMPq+JWBOGRUWKR2XU1j98zrc28A+x1VRzR/XNsyy+cO3wQY2EhACazCwDH/bPZESYTcTALdAYAvi/6kyN2TZVj29auXkm5goKzZGcfUJb9fF9UPo9NzeXlL/5Qlt31lfgaStxQDnU9Mab0lBKlUoIgCIIgCIIgPERVkpTKy8tjwIABfPHFF8ycOVNZn52dzfLly/nqq6/o3Nk65fmKFSuoX78+f/zxB23atGHTpk2cPHmS3377DW9vb5o2bcoHH3zA5MmTmT59OjrdX+dFtiDcb1+nZvJmbJKyHPgXSUoVFxTw2xf/RpatPbLUspos58eQgMOGBABCffpgn2OdpjRJsv5fUy8zolsjejf1r5K4b6eg8BwABqeGNG0ajU7nrmw7n5EPgLO9hlYhHgzvEHLH55Uk65x7sgSS5frsexVVbgmCIAiCIAiCIDwIVTJ8b+TIkTz99NM89dRTNusPHjyIyWSyWV+vXj1q1qzJnj17ANizZw+NGjXC29tb2SciIoKcnBxOnDjxcG5AEB5RZwqKAPC309LNw5mXfd0rOOLRkH4hUUlI6dXNUbsMQJIkVCUFeLk6M/pSfyJyO7FeSqMnGezW1QOglb8dA1oH4WT34PPz5c/WZ6ugIBEAR30tm4QUwNVCEwDNarrx/wa3oHWox82HlxfF9c/kG5bFKD7hNqrTEM/K/AwJgiAIgiAIj4aHXin19ddfc+jQIfbv319mW2pqKjqdDldXV5v13t7epKamKvvcmJAq3V667VaKi4spLi5WlnNycu7lFgThkZVlsvZeG+Lvyegg7wr2rr5MycdJ2fMTZrMZgORkax8pPxcV2ZZWqNQOmDRH+SNgBz2P+dDJ8ATnClJYpS8hC1cANJjpEuZ2u0vck7t96Zyc8g1nzszEbC4AwEkfpmxbuTuRlXsSyS6wJqVcHLSVj0sJTELCUmb2PVmM3xMEQRAEQRAE4SF6qEmppKQkxo4dy+bNm7G3t39o1509ezYzZsx4aNcThOrIIstkGK1JHDftozfxpmyxsGHBxySfPkFBVgbyLVI/jkVXyHR0AGBV028o0uYz1tgfjJBpOku6XB+AIfXVPFHLk06tm9xDQPc/gZN2+SclIaVS2ePl1V3Z9kXMWS5mFSrLdX0Mlb/AjZUmN8QvRu8JFal+3yLVLyJBEARBEASh8h7q8L2DBw+SlpbG448/jkajQaPRsH37dhYsWIBGo8Hb2xuj0cjVq1dtjrt8+TI+Pj4A+Pj4lJmNr3S5dJ+bTZ06lezsbOUjKSnplvsJwl/V1LiL+G07ypZrDc5rPoK9pDIuXiBuTwz5WZnISGhVZrxc1Xhf+/D30FA7tJGyf7GmAEezPX7GGhyQc/g/B2eK0QIyk1/uylNPtEarrXy1UeVU7oWz0ZgOQMMGn9Kxw34cHa/3i8rKt86YuODlZqwf1Z7XO9Wq9BVLh2KVdpO6vixe4AuCIAiCINyLIUOGIEkSkiSh0+moXbs277///j3PEr9t2zYkSSrzGvlBOnfuHP3798fPzw97e3sCAgLo3bs3p0+fttlvw4YNdOrUCYPBgKOjIy1btiQ6Otpmn8TERCRJ4siRI3d8/enTp1OvXj30ej1ubm489dRT7N271+acQ4cOJSQkBAcHB2rVqsW0adMwGo0VnnvVqlU0adIER0dHfH19efXVV8nIyCj3mNzcXMaNG0dQUBAODg60a9euzMivvLw8Ro0aRUBAAA4ODjRo0IClS5fa7DNixAhq1aqFg4MDNWrUuOVjeuHCBZ5++mkcHR3x8vJi4sSJt/0e2rVrFxqNhqZNm1Z4399//z3dunXDw8Oj0l+PB+2hJqW6dOnC8ePHOXLkiPLRokULBgwYoHyu1WrZsmWLckxsbCwXLlygbdu2ALRt25bjx4+Tlpam7LN582acnZ1p0KDBLa9rZ2eHs7OzzYcg/F0Umi2sSrn+izbQXkdzF8cqjOjuZJyLBcBeZWJgyGFebqWnx3uriHjnfzw1fhl1UmuQtMtagSmVZBJc6EHU5Rc5nHOSSVIJu3TBALirCnHQqe8+kDvsa3M3aZ5i4xUA9Pow1Grr1yh61zleXvYH+deq3DqF1aBxgCsq1V0MEpSu95BSydcbnd9T0IIgCIIgCAIAkZGRXLp0iTNnzjBhwgSmT5/Oxx9/XNVhKe4kaWMymejatSvZ2dl8//33xMbG8s0339CoUSObxNjChQvp3bs37du3Z+/evRw7doyXXnqJqKgo3nzzzXuKs06dOixatIjjx4+zc+dOgoOD6datG1euWJ8rnz59GovFwueff86JEyf49NNPWbp0KW+99Va55921axeDBg1i6NChnDhxgm+//ZZ9+/YxfPjwco8bNmwYmzdv5r///S/Hjx+nW7duPPXUUyQnJyv7vPHGG/zyyy/873//49SpU4wbN45Ro0axfv16ZZ/mzZuzYsUKTp06xa+//oosy3Tr1k1pSWI2m3n66acxGo3s3r2blStXEh0dzXvvvVcmpqtXrzJo0CC6dOlyR49pfn4+TzzxBHPmzLmj/R+mhzqGx2Aw8Nhjj9ms0+v1eHh4KOuHDh3KG2+8gbu7O87OzowePZq2bdvSpk0bALp160aDBg0YOHAgH330EampqbzzzjuMHDkSOzu7h3k7gvBISC02Ybw2PuvP9o/hqlGjuZuERhWRZZnUhDgu7tsMQKA+h825s7l6NQA+2Hd9R6+Xwcv6aZ72PDMPDcTdI4xv1fsxXvtV10idxIs+aTdfokrJssyJk2+QlbUbkykTAAeHQGXbhxtPYzRbm7h7Oukw2N/61/Yd5cpu3kcu/U9kowRBEARBEO6VnZ2dMnrn9ddf54cffmD9+vVERUUxduxYfvzxR4qLi+nUqRMLFiwgLMzaP/T8+fOMGjWKnTt3YjQaCQ4O5uOPP6ZBgwaEh4cD4OZm7YU6ePBgoqOjyc3NJSoqirVr1+Ls7MykSZNYt24dTZs25bPPPgMgODiYoUOHcubMGdauXcvzzz9PdHQ0O3fuZOrUqRw4cABPT0+ee+45Zs+ejV6v58SJEyQkJLBlyxaCgoIACAoKon379sp9JiUlMWHCBMaNG8eHH36orJ8wYQI6nY4xY8bQt29fWrdufVePY//+/W2WP/nkE5YvX86xY8fo0qULkZGRREZGKttDQ0OJjY1lyZIlzJ0797bn3bNnD8HBwYwZMwaAkJAQRowYUW6iprCwkO+++45169bRsWNHwFrJ9eOPP7JkyRJmzpwJwO7duxk8eDBPPvkkAK+99hqff/45+/bto1evXsq6UsHBwcycOZMmTZqQmJhIrVq12LRpEydPnuS3337D29ubpk2b8sEHHzB58mSmT5+OTnd9tEtUVBT9+/dHrVazdu3aCh/TgQMHAtYqs+qmSmbfK8+nn37KM888Q58+fejYsSM+Pj58//33yna1Ws2GDRtQq9W0bduWf/zjHwwaNIj333+/CqMWhOrpj6t5/F+qNdFR016Hp07zSCWkAGL3xPDV2xM4csBa2iq5hnHVHACAg0GLo4sORzsL9kUZ2Jmvkml/kYSQWFzcQwG4irUxuDt5/KidzMD6lqq5kdswGtO4fHm9MnTP2bkpGo0TAPlGs5KQ+rRfE75/vf3dVUhdc+PwPbgxkSWSUoIgCIIgVE+yLGMpKKiSD/keG286ODhgNBoZMmQIBw4cYP369ezZswdZlunRowcmk/V56siRIykuLmbHjh0cP36cOXPm4OTkRGBgIN999x1gHUF06dIl5s+fD1grc3bt2sX69evZvHkzMTExHDp0qEwMc+fOpUmTJhw+fJh3332XhIQEIiMj6dOnD8eOHeObb75h586djBo1CoAaNWqgUqlYs2aNUsFzszVr1mAymW5ZETVixAicnJxYvXr1PT12pYxGI8uWLcPFxYUmTW7fDzY7Oxt39/JnFm/bti1JSUls3LgRWZa5fPkya9asoUePHrc9pqSkBLPZXKYntoODAzt37lSW27Vrx/r160lOTkaWZbZu3UpcXBzdunW75Xnz8/NZsWIFISEhBAZa35Des2cPjRo1spnYLSIigpycHE6cOKGsW7FiBWfPnmXatGnl3u+josq7HW/bts1m2d7ensWLF7N48eLbHhMUFMTGjRsfcGSC8Gg7X1jMs4fjlWVv3YPun/RgJO78Wflcp/HgYp71F7t/HVeefeNxAC4tWcTV+YuJaaLl/56Qicxqj0myMF9KZ6ve2nvJoDJC5L+gcb+HfxOlbvG8prDQ2uPOzs6HJk2Wo7/WRyrlaiGnU609wHRqFc829Ue6w6GDt3XT8ZJsm6QSDc8FQRAEQahu5MJCYh9vXiXXrnvoIJJj5dteyLLMli1b+PXXX+nevTtr165l165dtGvXDrD2NQoMDGTt2rX07duXCxcu0KdPHxo1svZHDQ0NVc5Vmmjx8vJSZqnPzc1l5cqVfPXVV8rwrRUrVuDn51cmls6dOzNhwgRlediwYQwYMIBx48YBEBYWxoIFC+jUqRNLlizB39+fBQsWMGnSJGbMmEGLFi0IDw9nwIABSlxxcXG4uLjg6+tb5no6nY7Q0FDi4uIq/bjdaMOGDbz00ksUFBTg6+vL5s2b8fT0vOW+8fHxLFy4sNwqKYD27duzatUq+vXrR1FRESUlJfTs2bPc3IPBYKBt27Z88MEH1K9fH29vb1avXs2ePXuoXbu2st/ChQt57bXXCAgIQKPRoFKp+OKLL5TqqlL//ve/mTRpEvn5+dStW5fNmzcrFVCpqak2CSlAWU5NTQXgzJkzTJkyhZiYGDSaKk/n3BfVrlJKEIT741xhMQDOGhURns5MDLn1RADV3dXEkwA09VSjMgzGgvWPn5dbCUWnTlF06hSX/zwAQLqjtQlgw5xAFhXu4nvZgSyss/H52xVCm9fBsfx3UO6PWySPbkoIybJMds5R0tOtPfQcHUMwONVDpbLjz+Rs2v3rd16Ntt6Xs4P23hNScMM5bv5fZKMEQRAEQRDu1YYNG3BycsLe3p7u3bvTr18/hgwZgkajsRnK5uHhQd26dTl16hQAY8aMYebMmbRv355p06Zx7Nixcq9z9uxZTCYTrVq1Uta5uLhQt27dMvu2aNHCZvno0aNER0fj5OSkfERERGCxWDh37hxgrdxKTU1l1apVtG3blm+//ZaGDRuyefPmO34sbhxqdjurVq2yiSMmJkbZFh4ezpEjR9i9ezeRkZG8+OKLNn2lSyUnJxMZGUnfvn1tekPdeN6oqCgATp48ydixY3nvvfc4ePAgv/zyC4mJicr2mJgYm+NWrVoFwH//+19kWcbf3x87OzsWLFjAyy+/jEp1PZ2ycOFC/vjjD9avX8/BgweZN28eI0eO5LfffrOJd8CAARw+fJjt27dTp04dXnzxRYqKiu7oMTWbzfTv358ZM2ZQp06dSj+m1dVfI7UmCEIZmSZruW1jJ0dWNgqtYO/qJ/7AXo78uoHkDOt9FBnawlXwSd1LcOJGHLalc+7avqXd5Oz0bqyIfxNDnppf1dbhfu5SIU+o/2RsnYKHFvudpI8yMrZy9Nj1P5wO9oHK5ycvWSuk7DQqPJ3s6N+65v2JS7pp+J6YfU8QBEEQhGpOcnCg7qGDVXbtyggPD2fJkiXodDr8/PzQaDQ2ja5vZ9iwYURERPDTTz+xadMmZs+ezbx58xg9evTdhq7Q6/U2y3l5eYwYMULpq3SjmjWvP+c0GAz07NmTnj17MnPmTCIiIpg5cyZdu3YlLCyM7OxsUlJSylRnGY1GEhISiIiIqDC2Xr162STr/P39beKuXbs2tWvXpk2bNoSFhbF8+XKmTp2q7JOSkkJ4eDjt2rVj2bJlNue+cXa50onOZs+eTfv27Zk4cSIAjRs3Rq/X06FDB2bOnEmLFi1sjiutUqpVqxbbt28nPz+fnJwcfH196devn1I5VlhYyFtvvcUPP/zA008/rZz7yJEjzJ07l6eeeko5p4uLCy4uLoSFhdGmTRvc3Nz44YcfePnll/Hx8WHfvht65gKXL18GwMfHh9zcXA4cOMDhw4eV4ZYWiwVZltFoNGzatKncx7S6EkkpQfiLuWI08b+UDJYkWd9JcNM+mj/mu1ct40qK9ZewVqXiXFYzJAmccxIxOAEGa/muhERBSSHJujzS3TzwMXmSySVS1NbtzRxyWGD5FNxG3tf47rXHQH7+GQC0Wnf0+tr4+19v6JhTaO0vENHQhwUvN6tsYLffJgqkBEEQBEF4xEiSdFdD6KpCaSLlRvXr16ekpIS9e/cqw/cyMjKIjY21mT0+MDCQqKgooqKimDp1Kl988QWjR49WKo5u7O8UGhqKVqtl//79SiIpOzubuLi4MsPFbvb4449z8uTJMnGWR5Ik6tWrx+7duwF44YUXmDx5MvPmzWPevHk2+y5dupSCggIGDRpU4XkNBgMGg+GOYrBYLBQXFyvLycnJhIeHKzPa3Vi1BNzy/goKCsoMeVOrrbNyy7KMg4NDuY+LXq9Hr9eTlZXFr7/+ykcffQRYZyw0mUxlYlCr1Vgst+9nK8sysiwr99W2bVtmzZpFWloaXl7WGZw2b96Ms7MzDRo0QKvVcvz4cZtz/Pvf/+b3339nzZo1hISEoNfr7/gxrS4ezVergiDc1r8vpLEk6Yqy3Mz50fgjfiO5pISrqZcAFT76QDLVXZEka0+s4Oc6Ejb6c5v9Z29+n69SvuX5jFBMaTIHLEVkqF0BaO2WDhmA1rY54V27w2F0skS5CSKT6SoAPj69qRP2DgCr9p5n3ZEUkrMKAXB1vL99wKQyNVyPVtN74eG7D6NG76NqFYwgCIIg3JGwsDB69+7N8OHD+fzzzzEYDEyZMgV/f3969+4NwLhx4+jevTt16tQhKyuLrVu3Ur9+fcDaT1mSJDZs2ECPHj1wcHDAYDAwePBgJk6ciLu7O15eXkybNg2VSlVhy4fJkyfTpk0bRo0axbBhw9Dr9Zw8eZLNmzezaNEijhw5wrRp0xg4cCANGjRAp9Oxfft2/vOf/zB58mTAWlH10Ucf8eabb2Jvb8/AgQPRarWsW7eOt956i5kzZ/LYY4/ZXDc2NrZMLA0bNkSrtX2+m5+fz6xZs+jVqxe+vr6kp6ezePFikpOT6du3L2BNSD355JMEBQUxd+5crly5/tqndPbDW+nZsyfDhw9nyZIlREREcOnSJcaNG0erVq1u2Y+r1K+//oosy9StW5f4+HgmTpxIvXr1eOWVVwBrJVanTp2YOHEiDg4OBAUFsX37dr788ks++eQTwDrk8ptvvqFbt27UqFGDixcv8q9//QsHBwel0Xq3bt1o0KABAwcO5KOPPiI1NZV33nmHkSNHYmdnHRty8+Pq5eWFvb19mfU3y8zM5MKFC6SkpADXvx4+Pj7lPmYPg0hKCcJfTEKBNdP+pJuBli56hvjfuiFgdZWZksyfm9ZjsqjQqUooUT2BSu1KjSuH8Uw/jm//V5V9tyVtY96BeVzMuQiAc5GOCcRxyOF608XAK9us3fO0lSu/flDUaiMabQznL1hLubUaV2XbR7/Ekn2tSgogxFN/8+G3dUcv1296kqK6ljOziJIpQRAEQRCEB2bFihWMHTuWZ555BqPRSMeOHdm4caOSkDGbzYwcOZKLFy/i7OxMZGQkn376KWAdfjVjxgymTJnCK6+8wqBBg4iOjuaTTz4hKiqKZ555BmdnZyZNmkRSUlKZWeJu1rhxY7Zv387bb79Nhw4dkGWZWrVq0a+fdTKggIAAgoODmTFjBomJiUiSpCyPHz9eOc/48eMJDQ1l3rx5zJ8/n/z8fABWr17NSy+9VOa6t1qXlJREQECAzTq1Ws3p06dZuXIl6enpeHh40LJlS2JiYmjYsCFgrR6Kj48nPj6+zPHljWYYMmQIubm5LFq0iAkTJuDq6krnzp2ZM2dOuY9ZdnY2U6dO5eLFi7i7u9OnTx9mzZplk1D7+uuvmTp1KgMGDCAzM5OgoCBmzZql9Kuyt7cnJiaGzz77jKysLLy9venYsSO7d+9WqqLUajUbNmzg9ddfp23btuj1egYPHsz7779fbnx3Yv369UoSDa5/PaZNm8b06dPv+fz3QiSlBOEv5mKREYDXAmvQ2cO5iqOpnJz0NL6cNArztelx/ZxMpKqtCaZ6gWkcftzEOuMa+N06Ne7vSb/bHO+ZqydZcgIZDFIRfqpsHpdOg0oLAS0f7s3cRmitAzg4JCjLTk7WJoVmi6wkpD56oTHezva0q+Vxfy9+U0+pMqksMf2ecBvV7VtDluVqVsUlCIIg/N1FR0ffdpubmxtffvnlbbcvXLiw3HO/++67vPvuuzbrDAaD0ogbrBVGM2bM4LXXXlPWJSYm3vJ8LVu2ZNOmTbfc5unpyfz588uNp1Tv3r2Vaq/MzEy6dOnCkiVL6NWrF47XhlwGBwdXqu2Fvb0933//fbn7DBkyhCFDhtzxOW80evToSvfqevHFF3nxxRfL3cfHx4cVK1bcdrufnx8bN26s8FpBQUF3tF+p6dOn31FS6V4eswdNJKUE4S/i29RMfky7SsK1WfcC7Cue8aK6Obt7q5KQ0mo8SJG7ogJU5mLeDNzIJU8guexxsxL/SaDJjysFyVx1sL479IXmY5qp47EbfxTsncGu6sdWS8gYnDIA0OvD8PJ6Gk/Pp0jKLCA+LU/Z77lm/mjV939y1Jtfw6tKG51Xt4yDIAiCIAiCUK7Dhw9z+vRpWrVqRXZ2tlJNU5oketjc3d357bffWLx4MXv27KFLly5VEofw6BFJKUH4C5BlmbfiLpJrtjbS06tVBD5CSakSo5Eze3cRu/VHAJq5XuGU9AYA6pJCal74lSttZBw1ev7h1he7Y9eHuNUpDKJ2cSAmZH6XEynGWkbbWHUWO40GXKrHjBOlCSGtztovqmHDzzA41SM+LZenPtmh7KfXqR9IQsoahGT7v7LempQSqSlBEARBEIRHx9y5c4mNjUWn09G8eXNiYmLw9Ky61h0eHh689957VXZ94dEkklKC8BdwtcSsJKQ+rhtAM4MjDg8qsfEA7Fu3hj1rvlKWNS7tIAccCy7z+KH32V1f4v+eXIPu/6Whlq0zZGgC9BQf/jf5p3dyxKsmM0I7cMXROluGm5SPo1QM9t5Vcj/WLue2VK4nqR9+CJ3OWslmp6sBQNxla4WUvVaFn4sDzzV7cEk06abhe/It4hQEQRAEQRCqv2bNmnHw4MGqDkMQ7plISgnCX0BpHylPrYaBfo9WY3OAC/u3AaCSZDS6xhzL7oIkgVmK5x8TNagkFT1OF6CW1ZjlEgrNeRw5+D3JBakQIJHhWMQVrQsAWkpooT5rPXHwEw8u6EoMeTOZslD77sAgWROHZrMfOp21X1TOtT5S7Wt5snzIvfe9qky1k0qSQBbD9wRBEARBEARBqBoiKSUIj7BCs4U3Y5M4mWcdEuZvr63giOolPek8548dIfOSdWrSUPsgLtp3BUBlNpLksBOAdu4tSDt8Al9CSc4/w54r623Ok+EeAoCbVEBvuxPUCQ2C5+LAyesh3s3t5eWdQbqWkDp9uj3+fp1Jzytm3ZEUdsWnA+Ds8OC/dmWmCJZt/hPj9wRBEARBEARBeKhEUkoQHmFbM3P47nKWsvyYk0MVRlM5JUYj//f+WxTmZCvrCnRNAKiV8APx7juI6e7I+6nP0uhoa7QaPajAJDmjMwxAUjmDZP0VVqg7DzK4aNR07NiRxo0bg+EBVYyVM+WXfEMr8dIuTSUlueTmHgfgaqobV9JC8fN14bPf4vjfHxeU/T30D6EH2E2xS2VanwuCIAiCIAiCIDw8IiklCI+w84XWYXttXPREBXrRwc2piiO6c1mXkpWElK+Dijy5EZmqMAAyw9343N9CY89Qgg4GY693oQgT32kPkexsQnYyIyMhA7Kk4hy+IEOtwBp07tyhCu/KVrp9LsdimiPLZgCKch2VbSlXiwBoFexOAz9nXnki5J6uVaYK6lb7XPv/eiupaz2mJFEiJQiCIAiCIAjCwyeSUoLwiEotNnEy3zpsr5WLnsgaLlUc0Z2RZZkT27dwZOP3AHjZ5ZGnfQOT2ppQsyvO4kfjWgCeCHgCjUoPwKbCwyyjFkXcNMzthnxKk5AaDzz+yrhqV6AkpGSzHVkXa4C1T7vSS+rVJ4KJfMz34QRUJnGlpKms/4rclCAIgiAIgiAID5FISgnCI2jJhTRmJKQoy0EOdlUYTeUkHNzHr0s+U5a9DBBvtiak6ib+h3inOE7VtPBYUSAtoksw2FkTTSc1HkpCylNTiMregCRJqCQJlQQeTnY836LmQ7+f8phU1oRUaOgbnN5QRG76SfCG30+n8WeBPQDOD7MP2E1JKZVcOshQEG6teg3wrF7RCIIgCIIgCPdOJKUE4RG0LzsfAK0k4Wen5Ul3QxVHdOfOHzsMgEoCP7WW3KtdwQBqczH/HaPi0JVCJjQcQ5dv6yLZqdgjZTJLhqtaa3KqjXshX096oSpvoUIeHufo7mcmxfEqAFqtG0ipyvasAiNFJgsqCYI89Q8trtIeUtd7X11bFiVSgiAIgiAIgiBUAVVVByAIQuVlmUoAWNSgJnvbNsDf/iE0yb5H2Wmp/Pb//k383hgAWuszSDeM5rKhLQCyJYNDV6wJK9Olq0iSCrNsZjWXuXotf67GTIea9lVzA5XgH7yPAKV9lApXl+Zl9lk+uAWbxnfE3/UhNqe/udBELrPiYUUiPGJk8b0hCIIgCOUaMmQIkiQhSRI6nY7atWvz/vvvU1JSck/n3bZtG5IkcfXq1fsT6B04d+4c/fv3x8/PD3t7ewICAujduzenT5+22W/Dhg106tQJg8GAo6MjLVu2JDo62mafxMREJEniyJEjd3z96dOnU69ePfR6PW5ubjz11FPs3bvX5pxDhw4lJCQEBwcHatWqxbRp0zAajRWee9WqVTRp0gRHR0d8fX159dVXycjIKPeYHTt20LNnT/z8/JAkibVr15bZ5/vvv6dbt254eHhUeL+yLNO9e/fbnis6OprGjRtjb2+Pl5cXI0eOtNn+66+/0qZNGwwGAzVq1KBPnz4kJiY+lPt8EERSShAeIVeMJrZl5vDHtUopN82jU+y4f/13HN28kbyr1ubmZjlU2VZk2cgv9b4EoI45gFY7rT2Wis0FXJWsSahIhziW1jnKq727POTIb+MWr9ElCSwqI3b2eQDUz/SlZYvvcHKqS3JWobKfTq2iS31vanvd/wq38oqelGbotoVSyEbr9xOpf973eAThwRBJMkEQBKH6iYyM5NKlS5w5c4YJEyYwffp0Pv7446oOS3EnSRuTyUTXrl3Jzs7m+++/JzY2lm+++YZGjRrZJMYWLlxI7969ad++PXv37uXYsWO89NJLREVF8eabb95TnHXq1GHRokUcP36cnTt3EhwcTLdu3bhy5QoAp0+fxmKx8Pnnn3PixAk+/fRTli5dyltvvVXueXft2sWgQYMYOnQoJ06c4Ntvv2Xfvn0MHz683OPy8/Np0qQJixcvLnefJ554gjlz5lR4f5999tltJyn65JNPePvtt5kyZQonTpzgt99+IyIiQtl+7tw5evfuTefOnTly5Ai//vor6enpPP/88w/lPh+ER+cVrSD8zcmyTOSBOJKLTco6b7uH2I/oHmUmXwQg1NuR7KsNiFU1AyDQ7iJvP/4rAEuujiXoUh0kSSKWHNarMzlr8QCg93Mv0rWxf9UEf6NyZrkr8N5BgeMZAIrN4JvnguTcmCu5xew9l0HotYI2B636YURaRukfv9KX84VaFzAB15qxk5EARdlg/2g0zRcEQRAEQahO7Ozs8PHxAeD111/nhx9+YP369URFRTF27Fh+/PFHiouL6dSpEwsWLCAszDrz9Pnz5xk1ahQ7d+7EaDQSHBzMxx9/TIMGDQgPDwfAzc0NgMGDBxMdHU1ubi5RUVGsXbsWZ2dnJk2axLp162jatCmfffYZAMHBwQwdOpQzZ86wdu1ann/+eaKjo9m5cydTp07lwIEDeHp68txzzzF79mz0ej0nTpwgISGBLVu2EBQUBEBQUBDt27dX7jMpKYkJEyYwbtw4PvzwQ2X9hAkT0Ol0jBkzhr59+9K6deu7ehz79+9vs/zJJ5+wfPlyjh07RpcuXYiMjCQyMlLZHhoaSmxsLEuWLGHu3Lm3Pe+ePXsIDg5mzJgxAISEhDBixIgKE0ndu3ene/fu5e4zcOBAgDIVSzc7cuQI8+bN48CBA/j62k52lJWVxTvvvMOPP/5Ily7X34hv3Lix8vnBgwcxm83MnDkTlcpaY/Tmm2/Su3dvTCYTWq32gd7ngyAqpQThEZFntigJqYZO9vwz0Is6jtW/wXlO+hXO7N9DRmIsANp0F/IdO1KssVYJXeIUAHqtnvwEMxISacUpjKWYdZL7tbPIPBbgVhXh37G8vDiy6y4jO3ArAFnG6z2c0vOKbeo6mtV0ffgBgpJQK9BpybXXkW9ywzVXi6TzwmJOp8hUQHrSeXIz06smPkEQBEEQhJvIsoyp2FwlH/fad9PBwQGj0ciQIUM4cOAA69evZ8+ePciyTI8ePTCZrM/tR44cSXFxMTt27OD48ePMmTMHJycnAgMD+e677wCIjY3l0qVLzJ8/H4A33niDXbt2sX79ejZv3kxMTAyHDh0qE8PcuXNp0qQJhw8f5t133yUhIYHIyEj69OnDsWPH+Oabb9i5cyejRo0CoEaNGqhUKtasWYPZbL7lfa1ZswaTyXTLiqgRI0bg5OTE6tWr7+mxK2U0Glm2bBkuLi40adLktvtlZ2fj7u5+2+0Abdu2JSkpiY0bNyLLMpcvX2bNmjX06NHjvsRakYKCAvr378/ixYuV5OWNNm/ejMViITk5mfr16xMQEMCLL75IUlKSsk/z5s1RqVSsWLECs9lMdnY2//3vf3nqqafQarXV4j4rS1RKCcIjorSPlINKYkvLelUczZ0xFRfx1dtvkH81S1lXYrb+AvbNPswRt9/5pf4F63KRMx6SNfF01pRBnp31nZkmqkQ6+xoJdH/mIUdfOYVF1j8W6iJXUjIC2GU+yYBr23KLbHsJuOurpgdYaaXU0SBvAOpvPEB9/IDjGDlOApDwzjGQJF54+wOCGjWtkjgFQRAEQRBKlRgtLBu7vUqu/dr8TmjtKl/hLssyW7Zs4ddff6V79+6sXbuWXbt20a5dO8Da7ycwMJC1a9fSt29fLly4QJ8+fWjUqBFgrfwpVZpo8fLywtXVFYDc3FxWrlzJV199pVTUrFixAj8/vzKxdO7cmQkTJijLw4YNY8CAAYwbNw6AsLAwFixYQKdOnViyZAn+/v4sWLCASZMmMWPGDFq0aEF4eDgDBgxQ4oqLi8PFxaVMpQ+ATqcjNDSUuLi4Sj9uN9qwYQMvvfQSBQUF+Pr6snnzZjw9PW+5b3x8PAsXLiy3Sgqgffv2rFq1in79+lFUVERJSQk9e/Z8aMPVxo8fT7t27ejdu/ctt589exaLxcKHH37I/PnzcXFx4Z133qFr164cO3YMnU5HSEgImzZt4sUXX2TEiBGYzWbatm3Lxo0bq819VpaolBKER4DJIitVUq7aRyeXfOV8opKQcteY8cSLZDdrCbLc3oMfWl+g0AGGJjzJ1HNR+Dj4cgkLx64Nb9NRwrqx4YwdObbK7uFOWCwlFBZak2v2OcFcTGxDhlHCLMMPhy/y49GUKo7Q6rEnu+Lo4orOZEZnKsFkr6VQZ8ai1YLkiFqlRa3RgCyTcfFCVYcrCIIgCILwSNmwYQNOTk7Y29vTvXt3+vXrx5AhQ9BoNDZD2Tw8PKhbty6nTllHDIwZM4aZM2fSvn17pk2bxrFjx8q9ztmzZzGZTLRq1UpZ5+LiQt26dcvs26JFC5vlo0ePEh0djZOTk/IRERGBxWLh3LlzgLVyKzU1lVWrVtG2bVu+/fZbGjZsyObNm+/4sdDpKn4TdtWqVTZxxMTEKNvCw8M5cuQIu3fvJjIykhdffJG0tLQy50hOTiYyMpK+ffva9Ey68bxRUVEAnDx5krFjx/Lee+9x8OBBfvnlFxITE5XtMTExNsetWrXqju+3IuvXr+f3339XhlbeisViwWQysWDBAiIiImjTpg2rV6/mzJkzbN1qHY2RmprK8OHDGTx4MPv372f79u3odDpeeOEFpbKvKu/zbjw6r24F4W8qLr+Ipw/GkWu2AOD3CPSRkmWZUzu3ceHoQQB8HXIxmweT4xas7POz2vpH7dngnnQ50gI3uxrEmON5R+2B2S4AAEdVCXg3eOjxV0balV85cWIcFou1caSu4Hop7pXcIsZ/cxSAp8pMfffwtX7uRVo/9yInGzyGZDEz+1/DOJwdzbPFQ/A51IxQuz2Yg2Ri9/5Rfsd0QRAEQRCEh0SjU/Ha/E5Vdu3KCA8PZ8mSJeh0Ovz8/NBoNKxfv77C44YNG0ZERAQ//fQTmzZtYvbs2cybN4/Ro0ffbegKvV5vs5yXl8eIESOUfkM3qlmzpvK5wWCgZ8+e9OzZk5kzZxIREcHMmTPp2rUrYWFhZGdnk5KSUqY6y2g0kpCQYNOc+3Z69eplk6zz97/eP1av11O7dm1q165NmzZtCAsLY/ny5UydOlXZJyUlhfDwcNq1a8eyZctszn3j7HfOzs4AzJ49m/bt2zNx4kTA2qtJr9fToUMHZs6cSYsWLWyO8/b2rvAe7tTvv/9OQkKCUu1Wqk+fPnTo0IFt27YplWcNGlx//VOjRg08PT25cMH6hvHixYtxcXHho48+Uvb53//+R2BgIHv37qVNmzZVep93QySlBKGa25edrySk1BIM8PWo4ogqduHPo/y8aJ6ybNAUcUlljVtvf4oDDn+w19H6DlBQuoROZe2N9as6DzNeALhJBXT1zHnIkVdeevrvSkIKsw7D5RbAZQCKTNavW2gNPYFmR8i7WjVB3kSWrBPvSaV5pxvyT0ozdJGTEgRBEAShGpAk6a6G0FWF0kTKjerXr09JSQl79+5Vhu9lZGQQGxtrk3wIDAwkKiqKqKgopk6dyhdffMHo0aOViqMb+zuFhoai1WrZv3+/kkjKzs4mLi6Ojh07lhvj448/zsmTJ8vEWR5JkqhXrx67d+8G4IUXXmDy5MnMmzePefPm2ey7dOlSCgoKGDRoUIXnNRgMGAx3Nhu1xWKhuLhYWU5OTiY8PJzmzZuzYsUKpel3qVvdX0FBAZqbZi9Xq63fW7Is4+DgUKnHpTKmTJnCsGHDbNY1atSITz/9lJ49ewIozeRjY2MJCLC+SZ+ZmUl6errSdL6goKDMvZbeg8ViUfapqvu8GyIpJQjVXE6J9Q/Qc16uzK9fE52q+o+6Tb+QCICLmzOemRfwSHHlQk3rH5x9T54gJvsIj9vXI/JkC1oVPQ5aLT+TxSGs7w48bX+CDwP34vzikqq6hTtgzdoUF6UCULfuB1z9fwE4FEqgtyalzBbrPs819Scs1p3Dxx/8MD6ZO8gmXUs8vbLwB57RmonrWvoHXuJ6hkpkpQRBEARBEO5VWFgYvXv3Zvjw4Xz++ecYDAamTJmCv7+/0lto3LhxdO/enTp16pCVlcXWrVupX78+YJ35TpIkNmzYQI8ePXBwcMBgMDB48GAmTpyIu7s7Xl5eTJs2DZVKpbzBeDuTJ0+mTZs2jBo1imHDhqHX6zl58iSbN29m0aJFHDlyhGnTpjFw4EAaNGiATqdj+/bt/Oc//2Hy5MmAtaLqo48+4s0338Te3p6BAwei1WpZt24db731FjNnzuSxxx6zuW5sbGyZWBo2bKg05y6Vn5/PrFmz6NWrF76+vqSnp7N48WKSk5Pp27cvYE1IPfnkkwQFBTF37lyuXLmiHH+rBuKlevbsyfDhw1myZAkRERFcunSJcePG0apVq1v24yqVl5dHfHy8snzu3DmOHDmCu7u7khTMzMzkwoULpKSk2Nyvj4+PzcfNatasSUhICAB16tShd+/ejB07lmXLluHs7MzUqVOpV6+eMgvj008/zaeffsr777/Pyy+/TG5uLm+99RZBQUE0a9bsgd/ngyCSUoJQzZUmpdy0mkciIZV/NYsr563j0WtqcjnrPJVkdwcA1JZCThSdAKD9uSA6FLcDCf6lOs8Gixtg3a9pu664dJtUJfHfqXzOk5H4b/LyTwOgdwwlW5aB603NMwusFVTODtVryGWxtw8OyRfxTsnAGzh3NhmAXJWE07V97nW2GeGvoYLntYIgCIIg3IEVK1YwduxYnnnmGYxGIx07dmTjxo1KQsZsNjNy5EguXryIs7MzkZGRfPrpp4B1SNuMGTOYMmUKr7zyCoMGDSI6OppPPvmEqKgonnnmGZydnZk0aRJJSUnY29uXG0vjxo3Zvn07b7/9Nh06dECWZWrVqkW/fv0ACAgIIDg4mBkzZpCYmIgkScry+PHjlfOMHz+e0NBQ5s2bx/z588nPzwdg9erVvPTSS2Wue6t1SUlJSkVQKbVazenTp1m5ciXp6el4eHjQsmVLYmJiaNiwIWCdpS4+Pp74+Pgyx5f3HHbIkCHk5uayaNEiJkyYgKurK507d2bOnDnlPmYHDhxQkkJgnfkQYPDgwURHRwPWnlGvvPJKmfudNm0a06dPL/f8N/ryyy8ZP348Tz/9NCqVik6dOvHLL78o3yudO3fmq6++4qOPPuKjjz7C0dGRtm3b8ssvv+Dg4PDA7/NBkOS/4SuPnJwcXFxcyM7OVsaXCkJ1szsrj6VJaWzKsA5hGxfkzZTQsjNcVCd7vlvN7v+73iivrr0d5x1GAmAhjxNeW9hV63cAFh8bSai2IefzTvKOkz3n8MRVyidEk8X/3hqC3sGuSu6hIuf69aPo6DHS/23ASMa1tRIdntjHmQ9jcSkq4Sv9Lg54r2B8kjsvm94h+pWWFG1ZxeHjf1LsHUjjxo15/vnn72tc09efIHp3IiPDazExovzZGVeciOf7bbt4bet31P7zDGs7dcBZegmj4SB1/U2c2rObTv94lRY972+MwqNn2Y4EPtx4mucf9+eTF5tWaSwmUw47YqzvAIY/eRqV6uEke8VzBlvi8RAE4UEqKiri3LlzhISEVJhcEWzl5+fj7+/PvHnzGDp06EO/fmZmJl26dMHZ2Zmff/4ZR0fHhx6D8PCV9zN7p88Zqn/ZhSD8TS28cFlJSAG0dXUqZ+/q4fTO69P1OqmMlBRZxyoHquJZ1vZtdtX6nadKWvBGykBCtA1YJmUy2dGNJNwAmK75kh+evFxtE1KlZI2sJKR8fZ6nQf056HTuZfar6eHI/4a2pmNYjQceU2UqWkqcXdjfoAmF3tZpfWs4WOOTka73lLrvEQqPNPENIQiCIAjVyuHDh1m9ejUJCQkcOnSIAQMGAChDAh82d3d3fvvtN7p06cKePXuqJAbh0SSG7wlCNZVhtA4Dez2wBl08nHnC7c6aAFYVWZbJvmLtpdTKrSbHeIHka9su67MA8Hb0pvcfXaitDWKfKZb/an2QVdYZQTSYaf7aYggMqorwK8XsYv1fpdJRv/5Htx277+mkwz/M8yFGVknX4jZonSguumnb36+IVnikiO9PQRAEQZg7dy6xsbHodDqaN29OTEwMnp5V99zTw8OD9957r8quLzyaRFJKEKqprGu9pJ6u4UoLF30Fe1etUzu3cf7YYcwmEwCX8kPhWsiSOYtvA6xD9rwvmnE160ELpy05yNcamw/U7uAxdzOBgb2qJP47JcsyVzomUuBlvU8HhyAlIWUyW8gtMuHC9QSVWlU9G/IoOTTlE/mGbaWz74kX/YIgCIIgCNVVs2bNOHjwYFWHIQj3TCSlBKEakWWZqWeS2Xs1j6Qia5NsF031ngLXZCzml39/iuXaNLWOaiMFGuusDt7Be5jh+zUA4Veb83LW0+jsPZhAPnt1dQAIlNL5QL0U6kVVzQ1UQm7un+TWT1eWXV1bK58fT87GWGIBjVpJS6ltKqiqYYLqWnzStfyTjCQ6WwuCIAiCIAiC8NCIpJQgVCOpRhPRydeTHiEOOkKqeX+lvIx0LGYzGq2Ouk75FKsac9Fine40x60YgJdcIxl8qhcW2cwsKZ69eCvJj6b2l6HXv6He01V2D3eqoMA6q6BUBPXsp+ATNkTZlpVv5Oa2yxVNyfsgVKbASS4nPlEpJQiCIAiCIAjCgyaSUoJQjVy51kfKXatmaYNgHjM4oKmmQ8BK5WVaG34bnLRcNI+gGFcAdMYcvs5fB/agO5gJQEFJLhfsZLCAl5RLC20Sw/yTodmkqgq/UoqNaQDYH1NhaBmKSqUlPa+Y/+45z/HkbAZXcXyVJZczfE/0lBIEQRAEQRAE4UETSSlBqEZKk1J+djo6ulfvxuYWs5mU2FMk7vkNAH1RCun2rgDUSvgB2XSctCfMOJodaCN15TfyWaQpIf1aFdU//FMYnP4ZLj79quoW7lhGxnbiznxIQUE8AOrM69uW7zzHkm0JAAzmpt5f1T6xc/PwvevrBEEQBEEQBEEQHjSRlBKEaiC12MQ7Zy4Sl28d7hZgf/NAsOrnj++/Zs+a1cqyGicANCUFrHw5llOk0yu3IwMuP4vKWMJ4TS7pkqN1H8z0TPscF1Ue2FXv5BtAyqU1SkIKwP5PFURYP0/Ntk5b1zbUA8dEE1gqPt+DGBon3UUySb7FIdcLpap7Qk0QBEEQBEEQhEedSEoJQjXw/eUsNlzJVpabO1fv2fYAMpIvAqDXO1BU7MwlTTgqwFCSQazmCmZZ4onzDXDU2ZNgSiZDY00+9dfuJlK1mxCDDPZ1oUH1nnEPwGS0lkaFhoyjZNYWSs7GUmg0czwhncSMfACea+aPY8pFKCqpylAr56ZG5zeuq/5VXoIgCIIgCIIgPOpEUkoQqoHUYhMAkZ7O9Pf1oFM1H7oHYMy29pIK0Gk4rxsAgGQxIV/9GZNcgkZWU9MujNfkTE45OANgj4mJqpW4SbkwKgnsnass/sowlVwFwNm5Cbm5uygB5m2K45vtJmUfF8fqX912M7lMddX1eisZkZQS7q4CTxAEQRAEQRDulKqqAxAEwTrrHkA7Vye6ebpgp6q+P5rGwgLOHtpPzqXzABQXuwJQ88JmntwxnnPuxwAIz27Jb6YETt0wJ11tTQZOUgFIKtA5PfTYK+vcuYXs29+bvLzTAOjsvJRtydmFAIR66ulYpwbtannccOStxsU9yEjvkmTzn+2CyEkJ1UxVzGYpCIIgCHdqyJAhSJKEJEnodDpq167N+++/T0nJvVXRb9u2DUmSuHr16v0J9A6cO3eO/v374+fnh729PQEBAfTu3ZvTp0/b7LdhwwY6deqEwWDA0dGRli1bEh0dbbNPYmIikiRx5MiRO77+9OnTqVevHnq9Hjc3N5566in27t1rc86hQ4cSEhKCg4MDtWrVYtq0aRiNxgrPvWrVKpo0aYKjoyO+vr68+uqrZGRklHvMjh076NmzJ35+fkiSxNq1aysdM8CsWbNo164djo6OuLq63vJaFy5c4Omnn8bR0REvLy8mTpxo8z104/fZjR8NGzZU9pk9ezYtW7bEYDDg5eXFs88+S2xsbIWPzZ3E9yBU31e+gvA38M2lTDrvO83m9BwAgh3sqjiiiv26dAE/zJlBZpZ12Fq2qj4AdsZsFj0j8V17FctPv8cblwYRW5IFgJuqiE/sovmXZilazGDvAtU48QZgNhdx9tx8cnP/BMDOzgcnfZiyvcRsbR61dlR7vny1FYYb+oA9Ki+dS2ffuzEPpXwuhu8JNxDfDYIgCIJQscjISC5dusSZM2eYMGEC06dP5+OPP67qsBR3krQxmUx07dqV7Oxsvv/+e2JjY/nmm29o1KiRTWJs4cKF9O7dm/bt27N3716OHTvGSy+9RFRUFG+++eY9xVmnTh0WLVrE8ePH2blzJ8HBwXTr1o0rV64AcPr0aSwWC59//jknTpzg008/ZenSpbz11lvlnnfXrl0MGjSIoUOHcuLECb799lv27dvH8OHDyz0uPz+fJk2asHjx4ruOGayPf9++fXn99ddveQ6z2czTTz+N0Whk9+7drFy5kujoaN577z1ln/nz53Pp0iXlIykpCXd3d/r27avss337dkaOHMkff/zB5s2bMZlMdOvWjfz8/HLvs6L4HhQxfE8QqtCSpDRO51sbZeskiSYGxyqOqGLnjx8GQK1SIWvqUKCpjwTo2zYkpnYMOouWEknNKvUJTjjWBAsEGyw8X7wJdAbwaAKNX6ram7gDxcWXABm12pGGDT/DYGiIySyRlFWAJ9Y+TCoJnHTV69do5ZIHpf2jblhWMmoiDSEIgiAIglAZdnZ2+PhYZ5p+/fXX+eGHH1i/fj1RUVGMHTuWH3/8keLiYjp16sSCBQsIC7O+4Xn+/HlGjRrFzp07MRqNBAcH8/HHH9OgQQPCw8MBcHNzA2Dw4MFER0eTm5tLVFQUa9euxdnZmUmTJrFu3TqaNm3KZ599BkBwcDBDhw7lzJkzrF27lueff57o6Gh27tzJ1KlTOXDgAJ6enjz33HPMnj0bvV7PiRMnSEhIYMuWLQQFBQEQFBRE+/btlftMSkpiwoQJjBs3jg8//FBZP2HCBHQ6HWPGjKFv3760bt36rh7H/v372yx/8sknLF++nGPHjtGlSxciIyOJjIxUtoeGhhIbG8uSJUuYO3fubc+7Z88egoODGTNmDAAhISGMGDGCOXPmlBtP9+7d6d69+z3FDDBjxgyAMtVkpTZt2sTJkyf57bff8Pb2pmnTpnzwwQdMnjyZ6dOno9PpcHFxwcXFRTlm7dq1ZGVl8corryjrfvnlF5vzRkdH4+XlxcGDB+nYseNt76Gi+B6U6l2qIAh/cRkmaynmvLqB7GxdD2+76t2XyFRcRPG1DLur8/Po9D2QJDVuWaf5Pdc6E5+PyZN1qsssKQnkrMUdgDAn66yChHaCETug7T+rJP7KKCxKBsDe3p8anl2wt/Phj7MZpOVdf4epprsjKtWjUhdVlnzL4VDWdaJSSqjexPenIAjC34Usy5iKiqrk416fDzk4OGA0GhkyZAgHDhxg/fr17NmzB1mW6dGjByaTtYXHyJEjKS4uZseOHRw/fpw5c+bg5OREYGAg3333HQCxsbFcunSJ+fPnA/DGG2+wa9cu1q9fz+bNm4mJieHQoUNlYpg7dy5NmjTh8OHDvPvuuyQkJBAZGUmfPn04duwY33zzDTt37mTUqFEA1KhRA5VKxZo1azCbzbe8rzVr1mAymW5ZETVixAicnJxYvXr1LY6sPKPRyLJly3BxcaFJkya33S87Oxt3d/dyz9W2bVuSkpLYuHEjsixz+fJl1qxZQ48ePe5LrJWN+WZ79uyhUaNGeHt7K+siIiLIycnhxIkTtzxm+fLlPPXUU0oC8Vays60TalX0+FSV6vUWvyD8TZhlmQKzhStGa1Kqs4cBXztdFUdVvpS40ySdtPaLUksWikvcQQut932AviCVDfVVgIqwPH+OlaiV4+o55vGa9IN1wd7lFmeuXozGDE6cnEBBwVkA7O39lG2Z+dcTUgPbBtGgbyvbg2/I8cg3/FttKT2lrscpXR+/9/DjEQRBEARBuElJcTELBr9QJdces3INWnv7Sh8nyzJbtmzh119/pXv37qxdu5Zdu3bRrl07wNrXKDAwkLVr19K3b18uXLhAnz59aNSoEWCt/ClVmkjw8vJS+vzk5uaycuVKvvrqK6UKZ8WKFfj5+XGzzp07M2HCBGV52LBhDBgwgHHjxgEQFhbGggUL6NSpE0uWLMHf358FCxYwadIkZsyYQYsWLQgPD2fAgAFKXHFxcbi4uODr61vmejqdjtDQUOLi4ir9uN1ow4YNvPTSSxQUFODr68vmzZvx9PS85b7x8fEsXLiw3CopgPbt27Nq1Sr69etHUVERJSUl9OzZs9xheQ8q5ltJTU21SUgBynJqamqZ/VNSUvj555/56quvbntOi8XCuHHjaN++PY899tgdx/IwiUopQXjICswW2u89RVjMcQAcVCo8tdW7QqooP4//e38qO1d/CYCj2kSJxjrUMCuyEe/9Q40xoCbTE0fS9nJzClQOALxR9yq/WF6jdvpv1hM5+1dJ/JWRnr6VzMwYiq5VShkM1l/e2YUmLucUKft1CPMk2FNfJTHeyt30gC47+971E4mclCAIgiAIQuVs2LABJycn7O3t6d69O/369WPIkCFoNBqboWweHh7UrVuXU6dOATBmzBhmzpxJ+/btmTZtGseOHSv3OmfPnsVkMtGq1fU3SF1cXKhbt26ZfVu0aGGzfPToUaKjo3FyclI+IiIisFgsnDt3DrBWbqWmprJq1Sratm3Lt99+S8OGDdm8efMdPxY6XcVvuK9atcomjpiYGGVbeHg4R44cYffu3URGRvLiiy+SlpZW5hzJyclERkbSt29fm95QN543KioKgJMnTzJ27Fjee+89Dh48yC+//EJiYqKyPSYmxua4VatW3fH9Vibm+2XlypW4urry7LPP3nafkSNH8ueff/L1118r66Kiomzus6qJSilBeMhi84tILLxecfOyrzvaaj4ELDf9CmaTCbVahb2mBkWa1qgla077eKiW01qJnpm12G8y8YfahfPXhu0F2+dZT+DbFBr3g6YvV9Ed3Dmj0dqM0N29A8FB/8TFpRlv/N8Rvj9kTVLNu5eTV7dMz02ZLGujczH9niAIgiAI1YfGzo4xK9dU2bUrIzw8nCVLlqDT6fDz80Oj0bB+/foKjxs2bBgRERH89NNPbNq0idmzZzNv3jxGjx59t6Er9HrbN1Hz8vIYMWKE0lfpRjVr1lQ+NxgM9OzZk549ezJz5kwiIiKYOXMmXbt2JSwsjOzsbFJSUspUZxmNRhISEoiIiKgwtl69etkk6/z9r7+BrdfrqV27NrVr16ZNmzaEhYWxfPlypk6dquyTkpJCeHg47dq1Y9myZTbnvnG2P2dnZ8A6K1379u2ZOHEiAI0bN0av19OhQwdmzpxJixYtbI67uWqpIncSc3l8fHzYt2+fzbrLly8r224kyzL/+c9/GDhw4G0TgKNGjWLDhg3s2LGDgIAAZf37779/z83o7yeRlBKEh+yK0Tp2vLGTA+sfD8NeXf0LFgvirdOZOqmLKXYcQOngPLfMU/ynZDdowcPowtdmb67I1j98GhW0c702vWpg60eijxSA0ZgOgMGpPm5u1nefdsSlK9tVj8zcenegdPjeLRqdi55SgiAIgiBUB5Ik3dUQuqpQmpS4Uf369SkpKWHv3r3K8L2MjAxiY2Np0KCBsl9gYCBRUVFERUUxdepUvvjiC0aPHq0kHG7s7xQaGopWq2X//v1KIik7O5u4uLhyG1kDPP7445w8ebJMnOWRJIl69eqxe/duAF544QUmT57MvHnzmDfP9i3bpUuXUlBQwKBBgyo8r8FgwGAw3FEMFouF4uJiZTk5OZnw8HCaN2/OihUrUN00s/et7q+goACNxjYFolZbX9nIsoyDg0OlHpfKxlyRtm3bMmvWLNLS0vDy8gJg8+bNODs723yvgHWGvfj4eIYOHVrmPLIsM3r0aH744Qe2bdtGSEiIzXYvLy/l/NWBSEoJwkNikWUOZOez6pI1UeNtp632CSnZYuHiqT85um0rAHZqDcWAY0EqLQ/8i7PeJi7bqwEJKSufTKzD9oa0CaDX4zXx/HO79UR2VV8WWpGc3D85dXISefmxANg7BCrbcousicRtbz6JnPg/ijIrONkt8jnS3Yyve8DkW1RFXZ98TySlBEEQBEEQ7lVYWBi9e/dm+PDhfP755xgMBqZMmYK/vz+9e/cGYNy4cXTv3p06deqQlZXF1q1bqV+/PmCd+U6SJDZs2ECPHj1wcHDAYDAwePBgJk6ciLu7O15eXkybNg2VSlXhc87JkyfTpk0bRo0axbBhw9Dr9Zw8eZLNmzezaNEijhw5wrRp0xg4cCANGjRAp9Oxfft2/vOf/zB58mTAWlH10Ucf8eabb2Jvb8/AgQPRarWsW7eOt956i5kzZ5bpXxQbG1smloYNG6K9qY1Jfn4+s2bNolevXvj6+pKens7ixYtJTk6mb9++gDUh9eSTTxIUFMTcuXO5cuWKcvzNFUU36tmzJ8OHD2fJkiVERERw6dIlxo0bR6tWrW7Zj6tUXl4e8fHxyvK5c+c4cuQI7u7u1KxZ845iBrhw4QKZmZlcuHABs9msVGXVrl0bJycnunXrRoMGDRg4cCAfffQRqampvPPOO4wcORK7m6r2li9fTuvWrW/ZJ2rkyJF89dVXrFu3DoPBoPSjcnFxwcHB4bb3WVF8D4pISgnCQ/K/lAwmxV1Uluvpq/87Pqd3bWfjouvvfjg5+ZFTAvYluSx5tyExRcfplNEM3+JQLps9MF9Lsk3Sfovjul8g79oYal31T0pduLBcSUiBCjfXNhSZzGTkGykusQDg5qgjq+pCvCOVySWVzr5n89SltKfU/QtJEARBEAThb23FihWMHTuWZ555BqPRSMeOHdm4caOSkDGbzYwcOZKLFy/i7OxMZGQkn376KWAd0jZjxgymTJnCK6+8wqBBg4iOjuaTTz4hKiqKZ555BmdnZyZNmkRSUhL2FVSVNW7cmO3bt/P222/ToUMHZFmmVq1a9OvXD4CAgACCg4OZMWMGiYmJSJKkLI8fP145z/jx4wkNDWXevHnMnz+f/GszdK9evZqXXnqpzHVvtS4pKclmWBlYK5dOnz7NypUrSU9Px8PDg5YtWxITE0PDhg0Ba/VQfHw88fHxZY4vr9p/yJAh5ObmsmjRIiZMmICrqyudO3dmzpw55T5mBw4cIDw8XFl+4403ABg8eDDR0dF3FDPAe++9x8qVK5XlZs2aAbB161aefPJJ1Go1GzZs4PXXX6dt27bo9XoGDx7M+++/bxNPdnY23333nTIT482WLFkCwJNPPmmzfsWKFQwZMuS291lRfA+KSEoJwkNyKt/aJNtbp6GWoz39fT2qOKKKpV+wNjt01IFJDibZ2B1JBfZ2Mn/mJyJrJbwLg1id35g8tfUPoLOqGMf9C21PVKPeww690vLzre9+BAePwt+vH3klHnT5cAvZhSZlHyd7jZKUepSHtylJqDLvpEnX3117hO9PuH+qYYGfIAiCIFRL0dHRt93m5ubGl19+edvtCxcuvO02gHfffZd3333XZp3BYLBpxJ2fn8+MGTN47bXXlHWJiYm3PF/Lli3ZtGnTLbd5enreNtlxs969eyvVXpmZmXTp0oUlS5bQq1cvHB2tkyIFBwdX6nmzvb0933//fbn7DBkypNzkSnlGjx5d6V5dTz75ZLn3cCcxg/V7pLzvE7BWxm3cuLHcfVxcXCgoKLjt9rt9nXIn8T0I1XvskCD8hWSYSgAYHeTN981qE+JYucaJVaHg5BYAfLRa1E7PI6kckCwllMj7uKqxvhuSZXIiT7YmpFx0MLRl6bSnEgzZCP/8A+r1qIrw74gsy5hMWeTlnQTA26sH9vZ+nEzJURJSKgmebuyLWiX9pV6lK3+uLDct82gn3QRBEARBEP7qDh8+zOrVq0lISODQoUMMGDAAQEkSPWzu7u789ttvdOnShT179lRJDMKjSVRKCcIDllBQxLbMXNanXQXAQ/vo/NjlZl0FJEpKPEAHvpf2UDPxG/71ogWLJOFotudqifVdkFAHNb+/2QLObYejgL0LBLevyvDvyJ8nxpCWZn03QpI0ODoGAygJqdYh7nwzom2lzyvDbauNHkTC525SZfK1hpDSjemov1DSTRAEQRAE4a9s7ty5xMbGotPpaN68OTExMXh6elZ84APi4eHBe++9V2XXFx5Nj86rY0F4RA39M5HT14buATzmdPvmctXF1uhlHP5lA7J8LUGhtc5CYWgUyKvPWpAkFe3SmnO5KJBDFmtTwJreDrCgGRTnWI9xcK2CyCvHZMpSElIAPt69KS7R8Nlvp9iXaO1m7uKgvd3hf0nXR++JSinhOvH9IAiCIAjVS7NmzTh48GBVhyEI90wkpQThATJZZM4UWBNSPTxdaOmiJ6yaNzg3FRVx+JcflRehWrUn6VJjAAp9QFZJeBQ6kX+1DUfM1xsLNvJSQ2oOSCpwC4ZWI6oi/EopLrY2Ytdq3ejwxH7rzCbHUvh8x1llH3+36p9EvGtlGp1L15dEEkKoxsS3pyAIgiAIwl+DSEoJwgOUUmzELIO9SuL/PRaM6hEYGpWffVVJSLk5PEeBXTCWa3EvL/kGgECzPxdl67A9rQSD2ofwWt2rcAxrQmrM4SqIvHLy8s9wOe0nAOx0XkqD76x8IwD1fAz0b12Tno1vPz3s7ahuOZiu+n3t5Vs0Nb8+jbB41S8IgiAIgiAIwoMlklKC8AAUmC0MPHZWqZIKtNc9Egkpc0kJWedOAWDQFFGkC0SSJEJLfmOj607Oul2be86oo+Dar48Pn61P36B8SDxm3WbnXBWhV8qV9C0cO3Z9ZhJHfS3l89xia0P6Rv4uDGob/LBDu2dyZZJJN31Pytw4fO/+xSQIgiAIglAZYti4IDwa7sfPqkhKCcIDcDA7n11X85TlVi76KozmzhQXFBA94XXyMjMA0GtlrqqsvyLSB/ix7UIWtfP98cpoRr7Rl1SLNfnkc2Y1/PzR9RPZV/+kVG6udaY9jcYZB/tAaga+QpHJzJnLeSSmW2cV1NtV8OvxL/Bk6dZ3ILJSgiAIgiBUDa3W2suzoKAAB4e/cAsFQfiLKCgoAK7/7N4NkZQShAcg3WSttmlicGBu3UAaPALNzS+fjVcSUipZRpUZCn6gspjYfWoH6MGv0Iut+a0oQKccVy9/v/UTRw+wM8Djg6si/Eoxmaz3GeD/D2rVmgDAMwtj+DM5R9nHYH+bX4+PQMXbnZK5uafU9eF7laq4EgRBEARBuA/UajWurq6kpVn7fjo6Ot7QWkAQhOpClmUKCgpIS0vD1dUVtVp91+cSSSlBuM+KLRaSiqx9iWra29HI4FjFEd2ZnD+3AhBgn02mZjKZ7ta4VVI2JzUXAXA3eykJqfa1PQiv60WN45etJ+izHGqFP/zAK6GoKIX09N+5ePG/AGh17gBYLDInU6wJKR9ne1wctEQ09Lmna8k3/FttKWP1ri3LNzzpq+ahC4IgCILw1+TjY30OVpqYEgSh+nJ1dVV+Zu+WSEoJwn30XWomY09foOTaC/qaDrryD6gGTMZi4vf/QcJRa3NyO3RYtI5IcgnFhiQ2+v1Ipl0uAJdLTMpxXw5ujlo2wv5r1UWPwLC9U6emkpm1U1k2ODUEIM9YguXa12zbxCex1959pr+qVOZNRKWVuVS6XLbRuejlIAiCIAhCVZAkCV9fX7y8vDCZTBUfIAhCldBqtfdUIVVKJKUE4T7anJGjJKT0ahXPerlWaTx3Yt/ab/nju6+vrzB6gQPoVYV82Wgp+RTx2NU6SIW+5BdaG4LbqUE9rzYUXb1+3CPQ4Lyg8DwA7m5P4OLSDFfXluw7l8nO+HQAdBrVI5mQuns3VUpJ0g1j+URSShAEQRCEqqNWq+/LC15BEKo3kZQShPsotdj6bs6C+jV53ssNjar6j4FPPHoIABXgk5WPzuwNLuDopCIf6+yBYenhfGkKUY5x01lsE1I16oFr0EOM+u6U9pKqW3cGjo7B5BeX8I/lezGWWADw0Ff/yrb7SZZse0rJNyyJQimh+qn+v08FQRAEQRCEyhFJKUG4D9anXWVTejZ/ZFtnbgt1sKv2CSmLxUxOWhqp8XEAPKZ2IS5kHJmSCoBsL2uzdrWsIs1s7S/loJIJ8XbhJc9zcAZo0BueXQoae1CpquQ+KiLLZk6ceIOr2Qcwm62zQ+h0ngBk5BkxlljQqCR6NvHj6Ua+9+mqZb/21bJH5y2CUlbJlocbiyAIgiAIgiAIfzsiKSUI90iWZd44fYE8s/VFvINK9UjMtrd2zvucO3IQALVkIVvVGK4lpEpURn7RfAuAi9GZK5I1QfVEoJYv9HMhNdZ6En0N0FXvRu55ebFcTtugLLu5tUWjcQIgp8ha2eau1/Fpv6ZVEd79dxcVTlJpWZQM1yulRKmUcJ34bhAEQRAEQRAeBJGUEoR7lG+2KAmpd0J9aePqhKO6elYNlZItFi6cOAaAVrJQx5ROptZaPRQcdpYpHgtAkqlR6IVDZksOmv0B8LGkwtlt109Uo97DDr3SioutswM6OoZSr+4sDIaGFBhLWPXHBU5esjZpN9hX4lfhzTPWPcLkW1ZK/XXuT/grE9+ggiAIgiAIfwUiKSUI9+iK0VpF5KhWMSrIu4qjuTP52Vcxm0xIkooOWYVc0EaQ52JNSqXrC0CSaZ5Xn/yUcPabayrHtXPJhCtA/Z7QZiQEtqqiO6iYxWIiM2sX5y8sA8DRMQQ3N2u8a/ZdYNbGU8q+Xgb7Komxyt0qAaWsEi/6BUEQBEEQBEF4sERSShDuUnKRkZ6HzpByrbl5oP2j0SQ74+IFzh+zNjd30hRxwuMlsp1rKdtPaC8CoDc7kCg7KevH1c2ka8FP1gWfJhDU9uEFfReSU74mLm66suykr6N8npZbDEA9HwMdwjx5rlnAfb++LHHbbuEPYmicdBdNq8pGISEpWSmRlBIEQRAEQRAE4cESSSlBuEvbs3KVhBTAC95uVRjNnclITiL6zZFKwsGgLiTH3trc27uZiq/z/kusZh8AuhIthbL1V8QC3030Oh99/UROXg817rtRUJAAgL19AE5O9fDze1nZlldsrW7rWKcGb/WoXyXxVQfXh+/JN/x7bY3ISQmCIAiCIAiC8ICJpJQg3KXzhUYA+vm4M622H+7a6v/jdDnhDMgydvZ26HOy8EhWk/mYI5Js5rT/DmIz9qGSJbQWHYUmDcZrvyLcipKsJwjrBp51oOGzVXcTd8hkzAIgMHAINQNfASAjr5jY1FwS0vIAcLKr/l+zB0Gpqir9T77FNjF8TxAEQRAEQRCEB+zv+YpMEO7BhcJivk7NZFN6NgD19PaPREIK4OrlSwAE+/tgvNqMy4E+ADir8tgRfxDc4Pkr3dh3tT6bzF5YsDZsdzWlWU/QbRbUqHPLc1cXcXEfcDH5f8iytRpKp/UAwGyR6T4/Rhm6B5VscF4JyhA4m5WVH173oMncnICSrveUEqVSgiAIgiAIgiA8YI/GK2lBqEbmnEvlu8tZynKYvvo3yTYVFXHuyAEOb1wLgPniRS759rm+Q3M9J7SJAOgKHDhp9lYSFp6qPEJMZ6zJCnuXhxt4JcmyzKXU764npHReuLu3B+BqgVFJSNXxdsLNUUfXBo9GY/rKqEwqSVZZv8a26TIx+54gCIIgCIIgCA+HSEoJQiVduDZsL8LTmdYuToS7G6o4oort+f5r9q9boyyrZWvMbiUpHGt+nuWqHwCQZAmpwFnpNbTHbhRu5GIvmUBfAxzdH37wlWAyZVFSkgtAu7bbsbOrgUplB8DVQmv/L4Odhk3jO937xf4SlUTXklIy14fyKRmqv8L9CffqbhroC4IgCIIgCMKdEkkpQaiky0ZrcmNkoBetXJ0q2Lt6yEg6D4CHQYNnZiqypQXowdPbgcPq3zCpiwkpDMCcG8J3qpogQ6C9EV8ywTUIes4H74ag1lbxndyaLMtcuvQt2dmHAbDTeePgYJ1R72JWAVH/O0hqtrVKysXxHu+hvNfoj9oL+FvGa10nhu8J1c8j9vMlCIIgCIIgVEgkpQShEmRZ5sq1pJS3XfVM0NxKXmYGAIFGO2I930dWWX/09cE+5EuFAAQkd2ajqYFyTD35rPU1oEsg1Ap/6DFXRm7eCU6dnqosO+prKZ9vPZ3Gn8k5ynJDP+eHElPZ+eyqH2X2PVkuWyklklKCIAiC8P/Zu/M4m+v28eOvs58z+76YGbMw9n1fiibJqFBJxI26EWW5SbY2KdGCorqVbsX9+1LdbUhUWuySNSJjZ+zG7MvZP78/PjOHyTYYs3A9Hw85n/36nDkz+Vxzva+3EEKIm0ySUkKU0NenM1idnkOBW31YDzVWoqTUycMAnHbX8SSkDAYXpxqnk7UrD4AMqw50EKKzcje/MYKv1YMreGNzAGvBMQBMpgjCw+4n8oJ+Wel5ahIxuW4Ew+6uTs2Iij/c8nrcSA1JsWMLs1KSkhIXkhylEEIIIYS4GSQpJUQJWF1u/vXXURyFT2bhRj1eOm05R3V1vy/+kv2bNpBvcwPg0KqNvZvVOMPQgLew7VL7Y4U6AsE7AqzQNLCAN3PnQHh9uPs9iG9XbvGXlN2eBoCfXwMSE58DYP+ZXCZ9u4uUU2qPqYRQb+pFlXej9or1ZK9cNHzvgnkDJQshhBBCCCGEuMkkKSVECWQ7XTgUdT668fGRtKsEzc2dDgdrP/0viqImpIxuhRxLIhrgUP4hbMF2LC4TFls4J9I6cNCqJmwC9GqiiuBqULNzOUVfMhmZm9i7dxK5uX8BYDZHe7Yt2nacNfvSPMvVw8qu/5emkvS+OT9874K/NNJTSlQG8vkUQgghhLgVSFJKiBLIcroA8NPr+FdceDlHUzLZZ06hKG4MOvBVmpDn39Qzk9YfWrXxeaPM6mw5+zBWxRsAAy7aZi1TT2Aum95LN+LkyS89CSmA4KA7Pa8zC2dJ7NqwCv9oFUuz2MAyj+9CZZWoKkky6eL6KMXzqnKk04QQQgghhBC3AklKCVEC2RckpSqLzD0bAQjQ55JvbIlGa8HbZCU7dD9rw3YCEJbrjw31np4M/IPG+etJUtTjiGxYLnFfC7v9LABxsU8REfEQ3hc0OM8ucALQMCaAFvFB5RJfRff3SilAKqWEEEIIIYQQZUaSUkKUQFGllH8lSUod/XMHvy3/HgBfo44cvQWArQ2/4lfd7579YrKDsevVHwOPBu+jesEauPsFqPuwOnyvAnO5bBQUHAfA37+pJyE1eelu/rvhCHaXOmzR11y6P+bO1xLdAkkbzcX3orlwRj4hhBBCCCGEuIkkKSVECVSmSql9v69nyfQpnmWD1Qd8wOjMJdV2ArygQV4N7OmteV1XC6UwyRLoOqceEFq7wiekduwcytmz33uWvbziPK8XbT/hSUiZ9FoaxQSUcXRXV1GqkIq+9ppLxHNg6+/MHzOMe58cTmRizbIOTQghhBBCCHEbkKSUECVwPilV8WfcO7J6iee1URPFYa8H0AAW8sjV5QNQ63hdPnbV8gzfitdnEpy1Sz3IVLGbuCuKQlraCs+yn19DLJZYz7bMfLWX1JJhbakW6oO3qRx/zJVl8ul6mkFd4pigcLVnmtNmI+3oYVJ+WytJKSGEEEIIIcRNIUkpIa7gaIGNAX8e5ojVBlSOSqn8UwcBqKmBIwE9Pes3hazklCkdgLMubxQ0aHAz1PQzd/E75BfOVOcTVuYxXwunMwdFUZOEd96xCYMhEIdL4V+fbeFQWh5Ot5oIqhHui9lQ8b9e5elSPaXi6tXjnzPn8NtXn7F79S9QOHujuD1J43shhBBCCHEzSVJKiCtYmZ7DztwCz3J9H69yjObK8jIz2L9pA/tS1Wooh3cNAILMObxbexo55kwAwq1RbCUKgHhTLs9qPoEqTSBuOAQnQljtcom/JBRFweFQE2s6nRdGo9rAfNvRdJb/ecqzX0yQRRJSJaKmHHRHjkMiVDmt4WDvgRgTa+DdtAEAirtiDDUUQgghhBBC3Hoq/lgkIcpRXmFvoruDfFndohYDo0PKOaLL+3Xeh/z0n397lp1n1L/NXlnkmDMxuPU8vXUw+w8N4xiBAMQbs9Wdat4H906Gpv3LOuwSs1pPsnZdGzb81gEAk6mKZ1tWgQOA6mE+/PefLVj0dNtyibGyyQqPAEBjV2cqNDg02PYfJGf597gzMwFQboWG7uKW4GnCf5t5//33iYuLw2w207JlS37//fcr7v/FF19Qq1YtzGYz9evXZ9myZcW2K4rCSy+9RGRkJBaLhXvuuYd9+/bdzFsQQgghhLgsSUoJcQX5hUmpKLORGt7mCv1QdHz7BgDMioKXrgnnIjoCcNYvD4AQZyCbzCZAgxkH1bRpdFNWqgeb/coh4muTmbUZu/2MZzky4iEAcqwOTueowyujAiy0qxFKsI+pXGK8ojL66FxLG6vUeg2IX7wYa78uAJwOUdD5F30WlGJ/idubfAzKx+eff84zzzzDxIkT2bp1Kw0bNqRTp06cOXPmkvuvX7+exx57jAEDBrBt2zYefPBBHnzwQf7880/PPm+++SazZs3igw8+YOPGjXh7e9OpUyesVmtZ3ZYQQgghhIckpYS4gny3mpTy0lbsbxXF5SKvQK12idA2we13Fy6dmpj52vITAGGOQLI16n3U9c7lBeNCOjp/Vk8QlFD2QV8jhyMDgJCQDrS7cxtxcUN4afGf1H/5R15cpD5w+VkMNz8QTx+mW+Mx3VyzBkpCVQCyzRpytWrVmaYwi1ZRZgoU4nY0Y8YMBg0axBNPPEGdOnX44IMP8PLy4uOPP77k/jNnziQ5OZkxY8ZQu3ZtXn31VZo0acJ7770HqN/P77zzDi+88ALdunWjQYMG/Pe//+XEiRMsWrSoDO9MCCGEEEIlPaWEuIKiSikvXcVNSuVlZnB69xaUwiRCviURAE3wVv6v6rfkmNMJtYdgTEtihy4YXNA+0k7Ssd8gpiXcNQHi25fnLZSIw64mpUzGMAwGtZrn15Tz1QJGnZakmqHlEltl8/eiLbPeDNhwaTTkOwuwALmO3MKtkpQSFdGt/7m02+1s2bKFCRMmeNZptVruueceNmzYcMljNmzYwDPPPFNsXadOnTwJp0OHDnHq1Cnuuecez3Z/f39atmzJhg0b6NWr10XntNls2Gw2z3J2dvaN3NZVzXzsCZlgQQhxy1A04NJpcP6t1alRU/zZwuAXh1eDDAwRB8owOlGWvE164kK8yzuMS6pV81W8vOLK7fqSlBLiCnKc6ixvFTUp5bTbmf/sUxTkqAkEvdtNrl5NzJzy2UuOOZ3k9DYcOt2BXzj/Q7C1fzocA8LqQLWk8gi9xHJzU9j551Dy8w8BYDaf7yWVmadW9fw4qh0JId7oK+jXqSxobmB8YLRvDLvIItzpLDyPglNRK++kUEqI8pGWlobL5SI8PLzY+vDwcPbs2XPJY06dOnXJ/U+dOuXZXrTucvv83dSpU5k0adJ13cP1cCm5KErB1XcUQojKQAHcoHcUX/331LtLScTPlUOg166yikyUg4yM8o7g0lyuvHK9viSlhLiE/ztxjjcPnSTDoSalqlqM5RzRpZ09tNeTkDK5DGgNtXDrTGhddlJ8jgOgd2g5rFFAgQTtOeJ156h79P/UE1SCXlInT33jSUiBluDgJEb/7w8WbT+Oq3BmuDBfU4VLSCkX/LeiKxqRGOV0F/ZNu6C9uWSlhLitTZgwoVj1VXZ2NjExMTftelpfH1B8btr5hRAVzZV+qaZceR+t9irH3xitRuFa/nlp0Lgvisapt2DzNuL4W7/TEGNg8WP9AtHHV8Xqfed1RisqOl+znhrhvuUdxiWZzVHlen1JSglxCf87lc6ZwhnJzFoNzf0qZqllTupeACLMuWSZnkPRqt/Sp3wPsNvvKABGh4lMxQLAM8avacIuvHIKh70FVSv7oK9RWtqvAMTGDiEm+nGMxhCW/LHck5CqE+mHn7kMekndJjR/+7uyJNaEuNWEhISg0+k4ffp0sfWnT58mIiLiksdERERccf+iv0+fPk1kZGSxfRo1anTJc5pMJkymsps8YuRHn5TZtYQQQghR/ipWaYEQFURBYS+pt2pGs61NXaqYK2allPXcCQB0Wm9PQmp99f/ybb1P0Cga4nJr8FdOPZzo0OOms7KSKpyBru9Bn6+gUZ/yDP+qFMVNQcERAKKj+mAyhWJzunG41ETJL6Pb8+3wO9BqK9asiFqlYsVzNZca+leUipJG50KUD6PRSNOmTfn5558969xuNz///DOtW7e+5DGtW7cutj/AihUrPPvHx8cTERFRbJ/s7Gw2btx42XMKIYQQQtxMUiklxCUUFM66V93LTKCh4n2b5Gaks+Kj90jbvxsAxWECE/g6znIo4C8cOhvP7HuaV5wxngboESY7Ok1hgqFBT9BXzEQbqImQXbtGci59FYqiDsI3GkOwOV0cy8gHQKuBuGDvCpeQuhyNpmzivJEUkgKez0upnFAIcUOeeeYZ+vfvT7NmzWjRogXvvPMOeXl5PPHEEwD069ePqKgopk6dCsC//vUv2rdvz/Tp07n//vv57LPP2Lx5M3PmzAHUn0MjR45k8uTJJCYmEh8fz4svvkiVKlV48MEHy+s2hRBCCHEbq3hP20JUABV91r09X77LwS2bPMuZ7toAuJQccgxq0maHy+FJMDTUHeeeql6QCuiMFTohBeB05nD6zFLPsp9fY45nOrlv5q/k2NRhlT4mffkmpG71CqLCt1aRrNRtrYxyqeIyevbsydmzZ3nppZc4deoUjRo14vvvv/c0Kj969Cha7fn/T7Vp04aFCxfywgsv8Nxzz5GYmMiiRYuoV6+eZ5+xY8eSl5fHk08+SWZmJnfccQfff/89ZrO5zO9PCCGEEEKSUkJcQtHwPYu2Yial0vb9AUCk1kWa16O49NFogL2BakPwYIc/dqcJdFDNUsBboauILVB7TGGsmP2xLmS3pwGg03nTovlizOZovtt51pOQAuhcL/Jyh99cV3pKr2QP8MpF/UMvMYzPLUkpIcrTsGHDGDZs2CW3rVy58qJ1PXr0oEePHpc9n0aj4ZVXXuGVV14prRCFEEIIIa6bJKWEuIT8wuF7lgpaKXXktB0AH98GZGhjAdge+Qvbon6i85kO/Jxbh+906iwKUfpsalxQdVQZmpsXJaWMxmC8vOIByC1MSHWoFcZH/ZpVmmF7l1K5+jRVpljFra3yfs8LIYQQQohLk6SUEBfYlJXHlqw8bIXVIcEVrJ/UuWOp7Fm/mlyrAmhwnDFCBPgZdvBb3GLirFXIz2zEOVdo4REKd/kcgwygcV+o3RVimpfjHVxZQcFxdv75FFar2sDdYon1bMuxqr2l/CyGSpGQUtCU6RC/axlmdaVdPbPvFQ3fq1QJNHGzyOdACCGEEELcDBXriVuIcpTtdNF9237shQ9fUSZDhesp9eN7r3Pi0BFAg87lxqn1A2CnaT8A/g5vjhfGX0efzqN1TDziTFGTUtHNoMa95RR5yaSd+5mcnF2e5aDANnyz7RgvL9lNXmGllK+5Ev/YquDP9QoaFE8vKf72QgghhBBCCCFKVyV+uhOidKXZndgVBYNGQ3KIP49EBJZ3SMW4nXZOHz4EaAl0gMvcnjS/pgCkRGYCUC03hnXoAEiqG87jp0ZD9jH1BGb/coj62thtZwAIC7uf+PjheHtV59WVW8gqcHj2aVK1Yn1dblXKJV4JIYQQQgghRGmSpJQQhfJcLkAdsvdRvbjyDeYSCs6k4lK0gILe62EKfNReSzZdASf899PuVDd+zmzMMdQZlKo6D0FWYXNznQkiGpRT5CVjs6eRnb0DAB+fmvh4JwLnh+1N6lqX+xtEEuJjKrcYK4PrGWV1qaF/Ratk2JaoiORzKYQQQghxayjTsUmzZ8+mQYMG+Pn54efnR+vWrVm+fLlnu9VqZejQoQQHB+Pj40P37t05ffp0sXMcPXqU+++/Hy8vL8LCwhgzZgxOp/PvlxLimuUXzrhX0YbsARzZsZ3VC+cDYMZFgVmdDvxI0A/8r+FUHspox8qMJp6ElAEnbfzPqgc3+geM2QfBFbfB+f79b7J2bUvSM9YB4O11PtYcq/r9HRvsVckTUhW/DxZckIwqWiEP/0IIIYQQQoibpEwrpaKjo3n99ddJTExEURTmz59Pt27d2LZtG3Xr1mXUqFF89913fPHFF/j7+zNs2DAefvhh1q1TH1RdLhf3338/ERERrF+/npMnT9KvXz8MBgNTpkwpy1sRt6C8CpqUyj57hq+mvOipDPDKdZAf6AXAr/G/YjUW4LAp5KEmbLoFnqJNrUhiKEzo+kdX+KF7GRkbANBodFgsVQkMbM2zX/zBypQzpOepMw36mg3lGeJ5hWVFt3qlxkXJKSGEEEIIIYQoZWWalOrSpUux5ddee43Zs2fz22+/ER0dzdy5c1m4cCF33303AJ988gm1a9fmt99+o1WrVvz444/s3r2bn376ifDwcBo1asSrr77KuHHjePnllzEajWV5O+IWU1ErpY6vX+JJgERk2fB1x5MPuHFiNVgB0Oaps+3pcfF2/UNof3/m/AnMfmUd8jVzODMBaNJ4IQEBzci3O/lyyzHPdm+jjoQQ73KK7jZwifF7yvnxe2UbixBCCCGEEOK2UW5P3y6Xi88++4y8vDxat27Nli1bcDgc3HPPPZ59atWqRdWqVdmwQa2i2LBhA/Xr1yc8PNyzT6dOncjOzmbXrl0XXaOIzWYjOzu72B8hiiiKwu7cAjZl5wEQaqxYrdbyju8DIE6XTW7UcFITegOQ7nWKOzIbYznaj7lKXQBCTW60h346f7DRB2LblHnMJZWbm8Lhwx9QUKD2vjIYAtT1hUP2NBpY/q87WT++A4HeknS+kusZHPj3dJM6+17xM93qFWFCCCGEEEKI8lPmT987d+6kdevWWK1WfHx8+Oabb6hTpw7bt2/HaDQSEBBQbP/w8HBOnToFwKlTp4olpIq2F227nKlTpzJp0qTSvRFxy1hyNpPBu454lqNNFSP5kXHyOL/Om8PZlL0AWDP8cfr5AHDG5xBbon6iflYLzhTUAECDQtMQN9gKk66PL4Po5qCvGPfzd4qisGPnEE9CSqs1YTJFAJBrU5NS3kY9tSMrfqXXpSgX/Lcyk6TU7a1ydEITQgghhBCVVZknpWrWrMn27dvJysriyy+/pH///qxateqmXnPChAk888z54UzZ2dnExMTc1GuKyiMlTx0C56/XEWcx0iMisJwjUm35bjGHtm/xLBvdFgBcmiN8Xf8dACJPtgQtxBjyeba5hVYt28LHOeoBPuEVNiEFYLeneRJS4WEPEBHRDY3Wmy1HMkg5pd6Dj6liVa2VXMV+lP/7aL1LRivD94QQQgghhBA3WZk/8RmNRqpXrw5A06ZN2bRpEzNnzqRnz57Y7XYyMzOLVUudPn2aiAi1eiIiIoLff/+92PmKZucr2udSTCYTJlNlnrVL3Ex5TrWXVN8qwbxQrUo5R3PemT9/AyDGlknoSScFTR4DBQ4GpQHg7/DjhEatIooN9aGb9VNY/sH5SimTb7nEXVJ2uzo7oNEYSr16MwF456e9vPPTPs8+PubKmZSq2CmpK9FcFLukpETFUXm/s4QQQgghxKWVe0dnt9uNzWajadOmGAwGfv75Z8+2lJQUjh49SuvWrQFo3bo1O3fu5MyZM559VqxYgZ+fH3Xq1Cnz2MWtIcflAsCngjQ4d9isHNv9JydPpgMQfNaHvxq9yiGlPgBZljNE5sVz8tSD7NKow1fDOQe7F8PhNepJzP5gqRgVX39ntZ5gx44h7P5rHABGQ5Bn297TaoVUuJ+JWhG+DLozvlxivCku0Uz8ZlBKK41UdBqplBJIclIIIYQQQtwcZVqGMGHCBDp37kzVqlXJyclh4cKFrFy5kh9++AF/f38GDBjAM888Q1BQEH5+fgwfPpzWrVvTqlUrAO69917q1KlD3759efPNNzl16hQvvPACQ4cOlUoocd1yC2fd89HryjkS1eJpr3FkxzYAtG6FXP+GKBo1thxjBk6fUxhT/4FLUWejC9IW8HjMGUgHEu6CJv0hsmGFHbp34uSXnE1b4Vn28q7meZ1V4ABgfOdaPNQ4usxjK5Gi5NKt9JR+qXyZDN8TQgghhBBC3GRlmpQ6c+YM/fr14+TJk/j7+9OgQQN++OEHOnbsCMDbb7+NVqule/fu2Gw2OnXqxL///W/P8TqdjqVLl/LUU0/RunVrvL296d+/P6+88kpZ3oa4xWQ71EopX13FSEqdPqA2Nvd22IlKy8EanwDA8eq/8W3opzTLrUuWywlaeCo6h2ea52HYXVhhGNkI6j1cTpGXTH7+IQAiIh4iNKQjQUFt+HLLMX7Zc5pdJ9Shh/4WQ3mGePtSLiiQ8rRql6SUEEIIIYQQ4uYo06TU3Llzr7jdbDbz/vvv8/777192n9jYWJYtW1baoYnbWJpDnektxFj+/YuceVlY8/IAaHYki4yAxhy1JALwh/4PAI47vEjV+gNQ1ecchuXPnT+BT1jZBnwN8vMPcTbtZ7Ky1Cqw0JCOhIV1QlEUnv9mLbbC3l4AMYFe5RVmmagMM9p5uktV/FDFbUk+mEIIIYQQt4LyfwoXopy8cfAkc46dJa9w+F55JqUURWHnzz9wJmU7AAZc7I/vxbmQhup23CjGHDTZ9dif0RYALW6qa0+pJwivB3F3QINe5RF+iezePYas7G2eZS9vtQIsx+b0JKQmdqlDXIg3ieEVu0l7SShQpkPfSqNllXJBo3NPpVQlSKAJIYQQQgghKidJSonb1v+dPHc+IWXQU81Sfn3JDm3fzIqP3vMs++TZyQpXK6TyjGlsil5BrbxEdp+7F4B6upNEabOI0aoz8dGwF7QZXuZxX4u8/IMAhIZ2wt+/CT7eieTanPyRmgmAUa/liba3UGPzS6pYCZ5LDs0rzG5pNOfTU0IIIYQQQghxM0hSStyWcp0uztrVYXurWtSiqtmIpRxn3ztb2EcKIOFMBuFZdrZFq0PYPm30Bk6dHd+j9wNg0Th5Ku40wY4ThJ8s7CVlDijrkEvMZjtDRsZvOJ1ZANSp/QZ6vS9Wh4u73lpJWq4NuLX6SN0KE9efr5Qq50CEEEIIIYQQtyxJSonbUpZTbW5u0Gio6W0u52jAengLAPV0p7BbOrKnWjMAbLp8nDo7uCz8UtAUgCq+Ou4//mbxEwRULdN4S8rttrFp88PYbCcBMJuj0OvVoXkns6yehFSIj4k+LSvmPVQ215NEOl8Vdal0mmSlbmea0hgXKoQQQgghxGVIUkrcloqG7fmUY3UUQH52Fn/+uoLUQ8cAcNoCOVq1o2d7asAe7jz1EMtzaoDbCwNOOke74SBg9od7XgafCIhvVz43cBW5uXs9CSk/v4ZER/fzbMuxOgCo4m9m/YQO5RJfWapIz/aaa6jlUtzuq+8khBBCCCGEENdBklLitlSUlPIq56TU74v+x5bvFnuW7VkWCAW9NpclNRZywm8fjfY/heIOJEF7jnbGg3QMqaompXwjodk/yy/4ErA7zgHg61OX5s2+BiDf7uS3g+fYeSxb3WauZMP2PK2WbqEKokvlqCpQEk0IIYQQQghxa5KklLit2N1uJuw9xvacfAB89LpyjefkLnXYnsntxL8gAJt/YwCOeB/iaOAuvJw+pLosoIFAo5vWbKXW74UN0c3+5RX2VeXnH2bb9n7YbKcBMBiDPNteXfoXn/5+1LPs71XJklJXUskTOcolXsvse6LiqOTfYEIIIYQQ4iKSlBK3le/TsllwMt2zHGs2lmM0kHtaHbYXbwvlcPQTnvXp3ucIzmrEsez6nNYEAJDob6dT1ip1B50J6jxYxtGW3ImTX2K1HvcsBwa09Lw+lJYLQEKoN6E+Jga3Tyjz+MqSy+XC4XCgNZnx8g/E4OODwWDAarWW6nW8dQpRvjp89O6rntvotBOtVQhUXFitVpxuO2Z/LQa9CcIjcJudGMw+eAWFoLd4l3qsovIwalxE+erwNyjl/jlwuexotVUAsFpt6PWl808Yg8GATle+v6AQQgghhLhdSVJK3FaOWe0A+Ot1zKgVQ9sAn3KJw2m3c+54KtkF6nKeNk59YUlnR8AOCgIP4D7xGE40hGnz8aKAZP9jkAW0GwN3v1AucZdUUR+p6Oi+xMUNw2QM8WzLLlBnPXzpgTrcVTOsXOIrCxo0nIzoQOZedWbFgBp1aRlbHUWnx2AwcOjQoVK9XtMgB4lJYfiYlKueO97lYoqfFoti5dChQzgVF/W7+KPV1EJ/zzhcbojy9SK8Rkv0RmOpxyoqj+oWJy8nheFl1JX750BRFAL8JwJw9OgpNJrSG34dEBBARESENHYXQgghhChjkpQSt5X8wl5S3cICuD80oNzi+N9Lz3Dy0GEAtG6FzIAGAPwWuoztUZtIymzGKVyAntb6AwRqrVTP2qAebA4ol5hLIiNzE2lnV3Dq1CIA/HwbeBJS6w+kse1oJiez1Eycn+UWGrZ3EQ13RnQlM7I9YWFheHl5kZeZTn5+ARiMGI1GAgICSvWKZ3NsmPNsBHoZCfO78oySGXYnBrsDH52OaIsRu9VJzjkrOo0dQ8E5dC4FW7A/9rwCjGYL/mHhpRqrqDwy8uwYc6z4mPREBXqVayyK4iYvT01qe3vHodHceHWToijk5+dz5swZACIjI2/4nEIIIYQQouQkKSVuK/kVoMG52+Xk1KFDgAadYkTj3QKHORiAowHqcL5l+bE40aNB4e6IPCLPrCQqa4d6Ar8q5RT51e3ePQarNdWz7ONbB1Cbmz/+ySbszvMzuYV4m8o8vrKi0+toEnoXYcGBBAerX1tHngGH3o6i12M0GjGbr5w4ulYGG2hsCnqj6arnNmqdaNCi0+swm01oFCdWvRu9RsGo1aJTFNwGPYpOh8GgL/VYReVhcGrQFLjRGw3l/jlQFDcOh1rJZDabSyUpBWCxWAA4c+YMYWFhMpRPCCGEEKIMSVJK3FbyXC6gfJNS+am7UNCgQcHb0gu7OQSHzsqBoO20ykvki5N9cTvUxuBR2iweCDmG7swOqNYBanSCWveXW+xXoijuYsP2Avyb4+tTC4C0HDt2pxuDTsPDjaOpFelL1eDyrbq4mQwmIzqtAS9j+c7uKIQoGS8v9eeRw+GQpJQQQgghRBmSpJS4LWzNzmNMSipHCtSeUl7a8ksWZB3+qzAGFw5zIACfNnqNfGM2T6YO8iSkepi2E2DUoLPnqAfWexga/6NcYi4JpzMbRVGH1iRWn4BWq1ZC/bjrFOv2pwEQ6mPijUcalFuMpeF8z5krz0qnQXNr9KeRyffEbeCW+F4VQgghhKiEJCklbguLT2eyK/f8zFE1vct+GEr24d3879Xnycp1AGDI02P114HiJN+gJp525rhBA34aK94aBwFeFshSh/Rh8ivzmEvC6cxh67a+5OTsBMBgCPIkpFLT83ny/23x7Hu1XkdCCCGEEEIIIW4fkpQSt4XcwmF7/aoEMzgmlGpeZZ8c2fXlu56EFEBeyAPoAJsuk3BrJEeymvOjJhEAf72TzvxKtawjQIZ6gLliJqXSM9Z7ElIAYWH3eV6fyFSbmvua9TzQIJJHmkaXeXwVkaJUrPKjK9eIVKxYhRBCCCGEELcOaXgibgu5hQ3Oa3ibyyUhBZCboSaXIrz8Mfk/hc5YgwJ9DjujNtLq8DM4Mlqjw40Xdu4LPEVLthPipYMqTaDuQ1C1dbnEfTUFBWpj8+DgJFq1XEHNGhM927Kt6nC+hFAfpj7cgKaxQeUSoyi5wc89j1f9+gSHR1O1dl2atb2DV155BafTeUPnXblyJRqNhszMzNIJtAQOHTpE7969qVKlCmazmejoaLp168aePXuK7bd06VLat2+Pr68vXl5eNG/enHnz5hXb5/Dhw2g0GrZv317i67/88svUqlULb29vAgMDueeee9i4cWOxcw4YMID4+HgsFgvVqlVj4sSJ2O32K5735MmT9O7dmxo1aqDVahk5cmSJ4lm9ejVdunShSpUqaDQaFi1adMn9/vrrL7p27Yq/vz+x4UH0vv9ujh87P4HB4MGDqVatGhaLhdDQ0Eu+p5s2baJDhw4EBAQQGBhIp06d+OOPPy55vf379+Pr61uiGSnXrdtMz57DiIqKueI9CCGEEEKIykGSUuK2kFfOs+7ZC/LJyMgHQG+qgkZrQZu/lvnNXyAt5E9S3JkANNSf4FHzHzTzUXsw0egxePJX6DEP9BVrtjqHI5sTJ77gXNqvAPj61MLbOwGNRkvKqRz+8Z+NvPbdbgD8zLdXUaaGkvWdqqg6tm3L7p1bWffTjzz95JO8/PLLvPXWW+UdlsfVkjagNqzu2LEjWVlZfP3116SkpPD5559Tv379Yomxd999l27dutG2bVs2btzIjh076NWrF0OGDOHZZ5+9oThr1KjBe++9x86dO1m7di1xcXHce++9nD17FoA9e/bgdrv58MMP2bVrF2+//TYffPABzz333BXPa7PZCA0N5YUXXqBhw4YljicvL4+GDRvy/vvvX3afAwcOcMcdd1CrVi1WrlzJyg2bePJfz2Iynf/507RpUz755BP++usvfvjhBxRF4d5778VVWJGam5tLcnIyVatWZePGjaxduxZfX186deqEw+Eodj2Hw8Fjjz3GnXfeWaJ7yM8voF69mrz33rslvm8hhBBCCFFx3V5PiuK2VTTrnnc5JKW2fziOn3/5k6JBUmdscWhNYDXkoFG0HMloRbbWB4Bwk4t6lgyaZqxWD7YElnm8JXX4yPscPfofz7KXV7zn9ZdbUllb2NwcoFqoT5nGJq6X+hk1GY2Eh4URaPHhn/378eOvK1myZAlDhgzhX//6F99++y02m4327dsza9YsEhPVYadHjhxh2LBhrF27FrvdTlxcHG+99RZ16tQhKSkJgMBA9TPdv39/5s2bR05ODkOGDGHRokX4+fkxduxYFi9eTKNGjXjnnXcAiIuLY8CAAezbt49Fixbx8MMPM2/ePNauXcuECRPYvHkzISEhPPTQQ0ydOhVvb2927drFgQMH+Pnnn4mNjQUgNjaWtm3beu42NTWV0aNHM3LkSKZMmeJZP3r0aIxGIyNGjKBHjx60bNnyut7N3r17F1ueMWMGc+fOZceOHXTo0IHk5GSSk5M92xMSEkhJSWH27NlMmzbtsueNi4tj5syZAHz88ccljqdz58507tz5ivs8//zz3Hfffbz55psApOXaMAVVwd9i8Ozz5JNPFotl8uTJNGzYkMOHD1OtWjX27NlDeno6r7zyCjExMQBMnDiRBg0acOTIEapXr+45/oUXXqBWrVp06NCB9evXX/UeOna8k44d78TXt06J71sIIYQQQlRcUiklbml786zMST3DwXwbAMGGss/DHtjyO0UP+xptMBqj+kBW4J1D3b+mkJ3ZAgATTjoGn+GR3HkEFRxUDw6ufqlTVgjWguMA+PrWJTqqL6Gh5x+uM/PVaoiHG0cx/58tGN+5VrnEWFEoikK+3UWBw02Bw0WB3UW+3VmqfwrsLqwOF/l/O/cN969SwGKxYLfbefzxx9m8eTNLlixhw4YNKIrCfffd56l+GTp0KDabjdWrV7Nz507eeOMNfHx8iImJ4auvvgIgJSWFkydPepIqzzzzDOvWrWPJkiWsWLGCNWvWsHXr1ovCmDZtGg0bNmTbtm28+OKLHDhwgOTkZLp3786OHTv4/PPPWbt2LcOGDQMgNDQUrVbLl19+6ang+bsvv/wSh8NxyYqowYMH4+Pjw6effnpj718hu93OnDlz8Pf3v2J1U1ZWFkFB5TPM1e12891331GjRg06depEWFgYnZLu5Jfvv7vsMXl5eXzyySfEx8d7ElA1a9YkODiYuXPnYrfbKSgoYO7cudSuXZu4uDjPsb/88gtffPHFFSu3hBBCCCHErU0qpcQtbcCfh9hXmJACSCzrflKKQlaBmvsNN7ck09wGnAc4GrCb3JgCDp9SAA2dzKmEKmcI0aqz8NHwMWjct8L2kQJwOrMBiIn5J5ERDxbbllPYS6px1QDa1wgt69BusmufOr7A4aLVrIsTLWVh9yud8DJe3496RVFYuWYNP/zwA507d2bRokWsW7eONm3aALBgwQJiYmJYtGgRPXr04OjRo3Tv3p369esDauVPkaJES1hYmKd3UE5ODvPnz2fhwoV06NABgE8++YQqVapcFMvdd9/N6NGjPcsDBw6kT58+nn5KiYmJzJo1i/bt2zN79myioqKYNWsWY8eOZdKkSTRr1oykpCT69OnjiWvv3r34+/sTGRl50fWMRiMJCQns3bv3ut67IkuXLqVXr17k5+cTGRnJihUrCAkJueS++/fv5913371ildTNdObMGXJzc3n99deZPHkyb7zxBl8tXsozT/YlMmwZsV3PJ57//e9/M3bsWPLy8qhZsyYrVqzAaDQC4Ovry8qVK3nwwQd59dVXAfXr88MPP6DXq5/Fc+fO8fjjj/N///d/+PlVzEkchBBCCCHEzSeVUuKWdtymVnAkh/gxJTGKcJPhKkeUovSDKH99S45DfVCzuoPRaDT8FfYzyxr8jMYaycnCBIe3OwO9xo0Pat8poptDXFvQVrxv0aysbRw+/G/y8tVqLr3eF1ATGM9+8QfJ76xmzT61Z46vuQzf77JWwWbQKw1Fd7R89Wqqxtcgrk49evbtR8+ePXn88cfR6/XFhrIFBwdTs2ZN/vrrLwBGjBjB5MmTadu2LRMnTmTHjh1XvN7BgwdxOBy0aNHCs87f35+aNWtetG+zZs2KLf/xxx/MmzcPHx8fz59OnTrhdrs5dOgQoFZunTp1igULFtC6dWu++OIL6taty4oVK0r8nhQlWq5kwYIFxeJYs2aNZ1tSUhLbt29n/fr1JCcn8+ijj3LmzJmLznH8+HGSk5Pp0aMHgwYN8qy/8LxDhgwpUcxr1qwpdtyCBQtKdJzbrfbe69atG6NGjaJRo0b8a/QY2nXoxIJ5c4vt26dPH7Zt28aqVauoUaMGjz76KFarFYCCggIGDBhA27Zt+e2331i3bh316tXj/vvvp6BAnZFz0KBB9O7dm3bt2pXqPQghhBBCiMpFKqXELculKOQXNjifVrMqIddZLXJdMo7w/fie7MkOxaXoALB6JaIBzgbmYzn9AEuz1AdxLW7aROkIzD1K3fSV6vFm/7KL9RooisIfOwbhcGR41hkNwQAcTMvjyy3Hiu1fPex26yV16Soqi0HHbyOakp+fh2IwYjKaCAou3SFap7NsnM21EuRtokrA+YpAi0F3zedq37w5b7zzFthdxFStSnhsPEuWLLnqcQMHDqRTp0589913/Pjjj0ydOpXp06czfPjwa47h77y9vYst5+bmMnjwYEaMGHHRvlWrVvW89vX1pUuXLnTp0oXJkyfTqVMnJk+eTMeOHUlMTCQrK4sTJ05cVJ1lt9s5cOAAnTp1umpsXbt2LZasi4qKKhZ39erVqV69Oq1atSIxMZG5c+cyYcIEzz4nTpwgKSmJNm3aMGfOnGLnvnC2v5JWFDVr1qzYceHh4SU6LiQkBL1eT506xfs1xSfWYOeW34ut8/f3x9/fn8TERFq1akVgYCDffPMNjz32GAsXLuTw4cNs2LABbWFifeHChQQGBrJ48WJ69erFL7/8wpIlSzxVYYqi4Ha70ev1zJkzh8cee+y67kEIIYQQQlQukpQSt6yiGfcAfPVlW3FkPfYnu7LOP0RpjbXQaHQYbefokt+FF63qQ2uQJo/6lkweyfoA8s+dP0EF7SXldls9CanIyEfwssTh56f2x8nMV2dEC/czMa1HQyL8zCSG+5ZbrBWJRqPBy6hDcWhRDDpMRt11D6m7HIvRidmgw1IK5/ayWEiIj8eek+8ZblW7dm2cTicbN270DN87d+4cKSkpxZIYMTExDBkyhCFDhjBhwgQ++ugjhg8f7qk4urC/U0JCAgaDgU2bNnkSSVlZWezdu/eyFTRFmjRpwu7du4s1zb4ajUZDrVq1PA21H3nkEcaNG8f06dOZPn16sX0/+OAD8vPz6dev31XP6+vri69vyT7rbrcbm+38kOLjx4+TlJTkmdFO+7fqyGu5vyIWi+W6jjMajTRv3pyUlJRi648cPEBUdMxlj1MUBUVRPPeVn5+PVqtFozmfpC1aLqrG2rBhQ7HPwuLFi3njjTdYv349UVFRl7wHRXEjhBBCCCFuLZKUEresHKf6wGPUaDCV8TC4rFMnADDrwe31BBqtPxGpC/it2l7i3P8EwEdjpatpN0EBQZCZpR7Y7X0IrwdVGpVpvCXlcGQCoNHoqF3rdTQaDVn5DuZvOMzuE2qPqQg/M3cm3mp9pERiYiLdunVj0KBBfPjhh/j6+jJ+/HiioqLo1q0bACNHjqRz587UqFGDjIwMfv31V2rXrg2oM99pNBqWLl3Kfffdh8ViwdfXl/79+zNmzBiCgoIICwtj4sSJFyU0LmXcuHG0atWKYcOGMXDgQLy9vdm9ezcrVqzgvffeY/v27UycOJG+fftSp04djEYjq1at4uOPP2bcuHGAWlH15ptv8uyzz2I2m+nbty8Gg4HFixfz3HPPMXnyZOrVq1fsun9P2ADUrVsXg6H4UNW8vDxee+01unbtSmRkJGlpabz//vscP36cHj16AGpC6q677iI2NpZp06Zx9uxZz/ERERFXvP+iKqLc3FzOnj3L9u3bMRqNF1U5XSg3N5f9+/d7lg8dOsT27dsJCgryJAXHjBlDz549adeuHUlJSXy5eCmrf/qezxYvB9Qhl59//jn33nsvoaGhHDt2jNdffx2LxcJ9990HQMeOHRkzZgxDhw5l+PDhuN1uXn/9dfR6vWcWxqLPRZHNmzej1Wover8vvod8Dh48ire3/bL3IIQQQgghKg9JSolbVoZDbbbtfx3Dl26Ew1rA8UNHALAYDRToAjHazvHyo79jcfqw9y8r6MGMGl/1hHjYrL6mdlcwV7ymv263k+MnPiU9Xe2Vo9f7e5IGn246yowV55tBh/uVcTP5CkhzHc3QKyqH1crpQwcwGE18/PHHjBw5kgceeAC73U67du1YtmyZJyHjcrkYOnQox44dw8/Pj+TkZN5++21AHdI2adIkxo8fzxNPPEG/fv2YN28eM2bMYMiQITzwwAP4+fkxduxYUlNTMZuv/Dlq0KABq1at4vnnn+fOO+9EURSqVatGz549AYiOjiYuLo5JkyZx+PBhNBqNZ3nUqFGe84waNYqEhASmT5/OzJkzycvLA+DTTz+lV69eF133UutSU1OJjo4utk6n07Fnzx7mz59PWloawcHBNG/enDVr1lC3bl0AVqxYwf79+9m/f/9Fx19t1sTGjRt7Xm/ZsoWFCxcSGxvL4cOHL3vM5s2bPUkhUGc+BOjfvz/z5s0D4KGHHuKDDz5g6tSpjBgxgmqJNZj+4X9p3kqtjjObzaxZs4Z33nmHjIwMwsPDadeuHevXrycsLAyAWrVq8e233zJp0iRat26NVqulcePGfP/995dsKn8ttm3bxQMPDLjiPQghhBBCiMpDo9zwfOGVT3Z2Nv7+/mRlZcmsP7eoTVl5/HQum5lHTlPH28wvLWqVyXXPblnBwrfexqmolVk6Y10M3p0w5x9mX5yGz5x+4FYftmuarCxOzsCcuR82zgY08FJ6hWxunpb2C3/sON98OTCgFU2aqI2HJ327i0/WHaZJ1QDaVAuhe9No4kO8L3eqSu/oPweQt349Vd58A/+uXYtt2zV5I/65dn4M2UO1dgm0jI7EXEWtXMlOO0teXi6KwYTJZCI4OLhU4zqVZeVMjpVgHxNRAZYr7nvO7uSY1Y6fXke8lwm71Unm6Xx0Gjum/DPonG6skcHYs/KKJUdCYmLRl6Dx943Iy8sjKiqK6dOnM2DAgKsfUMrS09Pp0KEDfn5+LF++HC8vrzKPoSI5l2vjeGYB/hYDscHl+32tKG5ycnYB4OtbB42m9H7hYLVaOXToEPHx8RclROXfDMXJ+yGEEEKIkijpvxmkUkrccv7KLaDL1n2e5TBj2c0Al7rqc09CCo0JnUntt2Qu2E++/U7ATQAFBGgLeDhBi/mH81Pc4x1aIRNSAFarOhzRYoklNOQeoqJ6A5Brc3I2R+0jc2/dCIa0r1ZuMYob51Z0OPR+OLXgdhjxCghAUVwUZJ26auXO9dq2bRt79uyhRYsWZGVl8corrwB4hgSWtaCgIH766Sfef/99NmzYQIcOHcolDiGEEEIIIW4HkpQSt5xUq9prxFenpZm/N0OrhpXZtXPS1J4wUUHRnFMeJSAjhcS9M9jULID91AECqa5Po57+FA38Cmf78ouCOt2gxtVn+Sov9sLm5oGBrUhMfA6Az34/yoRvdlKUqwiwlF3yr1wV9Tq6hYpMi4ZiKuhwGAp/i2GDAptDXX+Tb3XatGmkpKRgNBpp2rQpa9asISQk5OZe9AqCg4N56aWXyu36QgghhBBC3C4kKSVuOUWz7jX09eLThmVbuZObnQeYyVVM6rIxnQEjbfQ63YaT6eqQEH+thlatWtHA77h6UGRDSJ5apnGWlN1+jrNnf+Tw4fcAMBrODzlbf+CcJ1kR7G2kRXxQeYQoSoHeqMVHdw6Xosdh16F1Kzh9LJhMXtgLnLidN+/ajRs3ZsuWLTfvAkIIIYQQQogKS5JS4pZTlJTy1pfdULhdn05j/Yo15Oariad8ey10RnDpM2ifOoCPcuMp+nZrEFmV5LNzYNdf6sFm/zKL81rt2z+VU6e+8Sz7+J6fMSvHqlbRvNG9Po82i7nqbGm3hUr2FhQVQGk0Grx02aC4yXWY0DndEKLDNzCI7LQCHNZyDVMIIYQQQghxi5KklLjl5LlcAHjrym7WvS0/LCe7oKi5tBaNLhyt24GvI509eS0APXpcBGvy6BqbC7//fP7gkMQyi/NaFRQcBcDfvyl+fg0JDbkHq8PFgbO5nM5We0n5WwySkKoI5EsghBBCCCGEqGQkKSVuObnOwkopXdlUSim2PNKt6nA9f30LrN6Nqb1vEeGnN/NX+5ZkFmYL7vVJpX1iCHE+2eqB1e6GO5+FmJZlEuf1cDjSAaiWMJrAQDXOB2etZs+pHM8+vubbpJfUNfDkh/7ei6lStaGqVMEKIYQQQgghKiFJSolbzjmH2gAnyFA2H2/buWO4CmfccxtqoNF6szn+FAdbOOngqkquoiZt+nXvSqvaMbBionpgaC2Ia1smMV6rs2dXkJH5O/n5hwAwGtVeUg6X25OQCvU1ERfsReOqAeUVZgVWjmVLpZRLcrpdONyOwiVN6Z1YCCGEEEIIIQpJUkrcMnblFjDj8Cm2ZOUDEGq8yR9vRWHrv0ezZ8sOwIxGo8dhUmcMOxbrjb/uCRZmxmBFTUpVT/8VZk6HvDT1eJPfzY3vOrlcBez8cziKoiYk9Hp/LJY4AHKs5ztebxh/N/oyqkYTZS/LnsXp9CyqKLHlHYoQF1GU8xNhCiGEEEKIykuSUuKW8VHqWb47m+VZrmYx3dTrpW39kV9X7wXU5uYaXTRotBjsOcQU1GE2tVD06lNTkCaPoN3/DzIOnz9BRP2bGt/1cjgyUBQHGo2emJgnCAlOAnQs3XGCvYVVUj4m/e2bkLrFn4S1Gi3g9iy7FfcFW6VaSgghhBBCCFF6JCklbhnphcP2ekUE8UBYAO2DfG/q9dL2/eF5rbckoTNUp96fc8g1pLK7Sg8Up5q8aG4+RafaoWiLEmYPvA0Jd0FQwk2N73o5nWriSa/3J7H6eADW7ktj2MJtnn2CvI3lEltFoii3ZoJGq9GgACadCSu28g5HCCGEEEIIcQu7TUsdxK0o26nOund3sB/3BPuhvckVLfZcNckUGWxBb26MyaWwrOFO5jzgINetVmlVU3L44vneDHygDRRkqAdGNa2QCSmbPY2dfw5n91/jADAYzg8vPJFZAEC4n4muDavwctc65RKjuPkGjR+PV/36xIQn0qhKI5q3bMSMd9/F6XTeUJ3UypUr0Wg0ZGZmllaoV3Xo0CF69+5NlSpVMJvNREdH061bN/bs2VNsv6VLl9K+fXt8fX3x8vKiefPmzJs3r9g+hw8fRqPRsH379hJf/+WXX6ZWrVp4e3sTGBjIPffcw8aNG4udc8CAAcTHx2OxWKhWrRoTJ07Ebrdf8bwnT56kd+/e1KhRA61Wy8iRI0sUz+zZs2nQoAF+fn74+fnRunVrli9f7tmenp7O8OHDqVmzJhaLhapVqzJhzDPkZJ+vQJ03bx4ajeaSf86cOePZz2az8fzzzxMbG4vJZCIuLo6PP/64WDzvvPOO51oxMTGMGjUKq9V6xXtYsuQnHnxwMKGhYdf89RBCCCGEEBWPVEqJW0ZRUspPXwa5Vnsetkz1ASzP6QNaMNgzqVqtJ2E5fizFBwBvfz28WQ0ceeePNfvf/Piuw5nT33HmzDLPssVS1fM626r2l2oZH8ysxxqXeWzi6kozBduxbVve+OAt0hy5bF+xk3Hjn0Wv1zFpypRSvMr1s9vtGI1XrtZzOBx07NiRmjVr8vXXXxMZGcmxY8dYvnx5scTYu+++y8iRIxk3bhyzZ8/GaDSyePFihgwZwp9//sm0adOuO84aNWrw3nvvkZCQQEFBAW+//Tb33nsv+/fvJzQ0lD179uB2u/nwww+pXr06f/75J4MGDSIvL++K17XZbISGhvLCCy/w9ttvlzie6OhoXn/9dRITE1EUhfnz59OtWze2bdtG3bp1OXHiBCdOnGDatGnUqVOHI0eOMOjJwRw6eoz//HchAD179iQ5ObnYeR9//HGsVithYWGedY8++iinT59m7ty5VK9enZMnT+J2nx8KunDhQsaPH8/HH39MmzZt2Lt3L48//jgajYYZM2Zc9h7y8wto3boxvXo9zuDBg0t870IIIYQQomKSpJS4ZWS7CpNSOt1Nvc7pxa/z9ee/UOAyABryrFEYvEDryuR4QTALnXGefe+IcMDRCxJSUc3AL/qmxne9bLbTAAQH30VkxEMEBrbB5nSx/0wuh8+p9+Brlh8ZtwOT0UhYWChGrR9NHm/J0iVf8+PPvzAyPYNnx47l22+/xWaz0b59e2bNmkViYiIAR44cYdiwYaxduxa73U5cXBxvvfUWderUISkpCYDAwEAA+vfvz7x588jJyWHIkCEsWrQIPz8/xo4dy+LFi2nUqBHvvPMOAHFxcQwYMIB9+/axaNEiHn74YebNm8fatWuZMGECmzdvJiQkhIceeoipU6fi7e3Nrl27OHDgAD///DOxsWqz9tjYWNq2PT/jZWpqKqNHj2bkyJFMuSDhNnr0aIxGIyNGjKBHjx60bNnyut7H3r17F1ueMWMGc+fOZceOHXTo0IHk5ORiCZ6EhARSUlKYPXv2FZNScXFxzJw5E+Ci6qMr6dKlS7Hl1157jdmzZ/Pbb79Rt25d6tWrx1dffeXZXq1aNZ6fOIkhA5/A6VSHR1ssFiwWi2efs2fP8ssvvzB37lzPuu+//55Vq1Zx8OBBgoKCPDFfaP369bRt29bzHsXFxfHYY48VqyS7lF691HtIS/Mq8X0LIYQQQoiKS4bviVtGjlP9Lbyf4eYmpfb8to58lxGlsDZFq4/CL/sQloLfOaSo1RsGXMQFGOhVNVs9qF53mJgJA38CXcVL7DidOeTk7gYgIKAF4eEPYDQG0fujjdw/ay3/99tRQG1wLq7uoqolRQFHPhpHARpHPjjywZ5Xun8ceWgc+Wgcf1t/g72vFMBiNmN3OBgwaBCbN29myZIlbNiwAUVRuO+++3A41Eq6oUOHYrPZWL16NTt37uSNN97Ax8eHmJgYT7IjJSWFkydPepIqzzzzDOvWrWPJkiWsWLGCNWvWsHXr1ovimDZtGg0bNmTbtm28+OKLHDhwgOTkZLp3786OHTv4/PPPWbt2LcOGDQMgNDQUrVbLl19+iaswYf13X375JQ6Hg2efffaibYMHD8bHx4dPP/30ht6/Ina7nTlz5uDv70/Dhg0vu19WVpYnkXMzuVwuPvvsM/Ly8mjduvVl98vOysLHxxe9/tLf+//973/x8vLikUce8axbsmQJzZo148033yQqKooaNWrw7LPPUlBQ4NmnTZs2bNmyhd9//x2AgwcPsmzZMu67775SukMhhBBCCFEZyBOmuCW4FeX88L2bXCmVkWkFTHh7J+DUdyLi1K84HMs4U7clGYr6LdXdO5PXn+oA639RDzL7V9hZ206c+B9/7ZngWfb2Ot/vaudxtZdMiI8RP4uBzvUjyzy+W4IjH78PG+B39T2vW3jhn4s8dwKM3tdxRg2KorB61a+sXLOGpPbtWLp0KevWraNNmzYALFiwgJiYGBYtWkSPHj04evQo3bt3p359dWbJhITzn6WiREtYWBgBAQEA5OTkMH/+fBYuXEiHDh0A+OSTT6hSpcpF0dx9992MHj3aszxw4ED69Onj6aeUmJjIrFmzaN++PbNnzyYqKopZs2YxduxYJk2aRLNmzUhKSqJPnz6euPbu3Yu/vz+RkRd/ro1GIwkJCezdu/c63rvzli5dSq9evcjPzycyMpIVK1YQEhJyyX3379/Pu+++e0NDBq9m586dtG7dGqvVio+PD9988w116ly6R1xaWhrT35xK9979L3u+uXPn0rt372LVUwcPHmTt2rWYzWa++eYb0tLSePrppzl37hyffPIJoFaRpaWlcccdd6AoCk6nkyFDhvDcc8+V7g0LIYQQQogKTSqlRKU3NiWVumv/9DRh9tPf3KRUQWF/Ja3LD43WwtkQ2NG6K2d9YslGbXBeJ+QcvF0HNs5WDzLdzHTEjTl+4n+e1xZLHIGBrQCwOV3YC6vPfn7mLn4ZfReNYgLKI8SKpYImF2/c+ftavno1NeIb0CS6CT17P0LX+++n58MPo9friw1lCw4OpmbNmvz1118AjBgxgsmTJ9O2bVsmTpzIjh07rnjFgwcP4nA4aNGihWedv78/NWvWvGjfZs2aFVv+448/mDdvHj4+Pp4/nTp1wu12c+jQIUCt3Dp16hQLFiygdevWfPHFF9StW5cVK1aU+F25Wu8qUJNzF8axZs0az7akpCS2b9/O+vXrSU5O5tFHHy3WELzI8ePHSU5OpkePHgwaNMiz/sLzDhkypEQxr1mzpthxCxYs8GyrWbMm27dvZ+PGjTz11FP079+f3bt3X3SO7Oxs7r//fmrWqs2QZ8Zf8jobNmzgr7/+YsCAAcXWu91uNBoNCxYsoEWLFtx3333MmDGD+fPne6qlVq5cyZQpU/j3v//N1q1b+frrr/nuu+949dVXr/qeCiGEEEKIW4dUSolKza0o/L8T5zwJqVreZsy6m5NrPbn8ffasX8vZArXqxKFRG4E7tQppjjB2OiM5pajJp9rKLvUgnREsQVCz802JqTTYbKcAaNb0K/z9GwHgcLk5lXV+Fiwf6SV1sWsZFWfwInvwDvJz81CMRowmE8GlPETrdI6VM9k2gr2NVAk4X7WC4dp777Rv3pxJ70zGalKoF9YYCjL54aerJ3IGDhxIp06d+O677/jxxx+ZOnUq06dPZ/jw4dccw995exev9srNzWXw4MGMGDHion2rVj3fpN/X15cuXbrQpUsXJk+eTKdOnZg8eTIdO3YkMTGRrKwsTpw4cVF1lt1u58CBA3Tq1OmqsXXt2rVYsi4qKqpY3NWrV6d69eq0atWKxMRE5s6dy4QJ56sTT5w4QVJSEm3atGHOnDnFzn3h7HJ+fiVLbjdr1qzYceHh52vojEYj1atXB6Bp06Zs2rSJmTNn8uGHH3r2ycnJITk5GV9fX+Yv/B/nrJf+sP/nP/+hUaNGNG3atNj6yMhIoqKi8Pc/P6lD7dq1URSFY8eOkZiYyIsvvkjfvn0ZOHAgAPXr1ycvL48nn3yS559//orvqRBCCCGEuHXIk6ao1Apcbk9uYEWzGtTwNt+U6yj2ApYu+IZsh5miihK3IRgtEBZUgx1OP04XJqQCvAzUZ5964GOfQvV7bkpMNyo3N4Xc3D3YbCcBMJnUmbNOZBbQeeYasgrUijAvow6d9latDiojGg0YvFAMbhSDCQym6xxSdwUGHYpBh2IwgvHGmkB7WSzEx8eRqbWiV/Q4CyCxejWcTicbN270DN87d+4cKSkpxYZ/xcTEMGTIEIYMGcKECRP46KOPGD58uKfi6ML+TgkJCRgMBjZt2uRJJGVlZbF3717atWt3xRibNGnC7t27PQmWktBoNNSqVYv169cD8MgjjzBu3DimT5/O9OnTi+37wQcfkJ+fT79+/a56Xl9fX3x9fUsUg9vtxmazeZaPHz9OUlISTZs25ZNPPkGrLZ5Uv5b7K2KxWEp83N/jyc7OplOnTphMJpYsWUKBWwfWgouOy83N5X//+x9Tp069aFvbtm354osvyM3NxcdHnYl07969aLVaoqPViR7y8/Mvuldd4dBrRVEu+Z4qihshhBBCCHFrkaSUqNRyXepDihao52NBc5OGVlnTUgsTUqA31EdjjMbBepRgHRFKc7Ld6rfS+MQc7g89gHmXOnwIc+BNiedG2e3n+H3TgyiKHQC93h+TSa2m2J6a6UlIAXSqG1EuMVZKt0TuTnPBf89LiIujS5cuDBo0iA8//BBfX1/Gjx9PVFQU3bp1A2DkyJF07tyZGjVqkJGRwa+//krt2rUBdeY7jUbD0qVLue+++7BYLPj6+tK/f3/GjBlDUFAQYWFhTJw4Ea1We9Xv5XHjxtGqVSuGDRvGwIED8fb2Zvfu3axYsYL33nuP7du3M3HiRPr27UudOnUwGo2sWrWKjz/+mHHjxgFqRdWbb77Js88+i9lspm/fvhgMBhYvXsxzzz3H5MmTqVevXrHrpqSkXBRL3bp1MRgMxdbl5eXx2muv0bVrVyIjI0lLS+P999/n+PHj9OjRA1ATUnfddRexsbFMmzaNs2fPeo6PiLjy911RJVRubi5nz55l+/btGI3Gy/aHApgwYQKdO3ematWq5OTksHDhQlauXMkPP/wAqAmpe++9l/z8fP7v//6P7Oxs0vNspGVZ8Yku3nfr888/x+l08o9//OOi6/Tu3ZtXX32VJ554gkmTJpGWlsaYMWP45z//6ek91aVLF2bMmEHjxo1p2bIl+/fv58UXX6RLly6e5NSlpKdncezYSTIz1Z/HRV+PiIiIq75nQgghhBCi4pGklKjU8gqTUt66qz/E3oj8M8cAMOlcaHw6AuDnk0maXsdP7r8ocKvDV3oeGUtgatb5A30v2Xq63OXl7UNR7Oh0Xvj5NaRKZA80GvVBMDNfTUh1qBXG7H80xaiX1nNC9Z85c3h27FgeeOAB7HY77dq1Y9myZZ6EjMvlYujQoRw7dgw/Pz+Sk5N5++23AXX41aRJkxg/fjxPPPEE/fr1Y968ecyYMYMhQ4bwwAMP4Ofnx9ixY0lNTcVsvnLVY4MGDVi1ahXPP/88d955J4qiUK1aNXr27AlAdHQ0cXFxTJo0icOHD6PRaDzLo0aN8pxn1KhRJCQkMH36dGbOnEleXh4An376Kb169broupdal5qa6qkAKqLT6dizZw/z588nLS2N4OBgmjdvzpo1a6hbty4AK1asYP/+/ezfv/+i45WrzJrYuHFjz+stW7awcOFCYmNjOXz48GWPOXPmDP369ePkyZP4+/vToEEDfvjhBzp2VH+mbd26lY0bNwIXV2it2bqLhLDzCa+5c+fy8MMPe5rWX8jHx4cVK1YwfPhwmjVrRnBwMI8++iiTJ0/27PPCCy+g0Wh44YUXOH78OKGhoXTp0oXXXnvtive9fPlKnn76Rc9y0ddj4sSJvPzyy1c8VgghhBBCVDwa5Wr/8r0FZWdn4+/vT1ZWVol7dIiKaWdOPh037yXCaGB727o35RrH/vidrV/8h337TqDDF0PgIDRuB+agXfxhdJDq9merMwYvvcJufR+1j1SLJyGiPjS8+AG2Ijhx4gv+2jOeoKA7adxoHgBncqxMXLyLXSeyOZqezyNNo5nW4/JT19+ujg56krw1a4icOpWAhx4stm3XlI34Z9v5KSSFuHbxtIqKxBylPshnp50lLzcXxWjCZDIRHBxcqnGdzrZyOttKsLeRqMArD987Z3dyzGrHV68jwUttzs/JHaC4sOZ6o9jtZIRZyNBaCVeicWanAW6Co6tiMJlKNe6/y8vLIyoqiunTp1/UQLsspKen06FDB/z8/Fi+fDleXjc2FLKyO5dr43hmAf4WA7HBpTzk9BopipucHLVfn49PbbTa0vu9mtVq5dChQ8THx1+UEJV/MxQn74cQQgghSqKk/2aQSilRqWU41P40N2vGvbSUbXw+ZRJFg5kUg9oM2VxwkDR9AIvt5yuhGgYrkAV4h0GnK/+2v7zk5Oxm1+7Rnj5SFsv5htDf/3mK5X+e8iwnhJbvA6ioiEr/dxjbtm1jz549tGjRgqysLF555RUAz5DAshYUFMRPP/3E+++/z4YNG+jQoUO5xCGEEEIIIcTtQJJSolJSFIUNmXn8eE4dKhdqvDkf5eNrF1GUkNIaauJDHLmWNTQKrMtWVzYAJsVBHe1hnk7/AnSAJeCmxFIaTp9ZRl7eXs9ygH8zz+v0PLW/1J2JIfyzbTxtqpduJY+obMquQda0adNISUnBaDTStGlT1qxZQ0hISJld/++Cg4N56aWXyu36QgghhBBC3C4kKSUqpd+y8nh4+37PcrjJcIW9r19++hkA9Kaa6L3uxytrI2GGCI7rMslwWgGoZT7DN5qJoDWAKQga9b4psZQGu+00ANHR/YiJ7oeXVzw2p4udx7LYdzoXgLpV/EmqFVaeYVZs15mruSV6oN8EjRs3ZsuWLeUdhhBCCCGEEKIcSFJKVEpHC9SqniCDjsa+3gyMLt2qClt+Prt+XsZfKekAKKhTkzvcx9lssXPQFcw2ogCI9NVCLtB8AHR+o1TjKC1ZWds4fWYZJ099DYCfb328vOIBGPvlDhZvP+HZN8Dr5iT4bjmVuB1fSRJkkkQTQgghhBBC3GySlBKVktWtzrrXyt+Hj+vHl/r5107/F9v/POlZNrgh6vgqDseeZJerHludMZ5tTY2FCR1TxW34umfP8+TmnZ/K3t///MxdKadyAKjibyYywELnejKtuhCiIpJUqRBCCCHErUaSUqJSKnCpSSmLTntTzn/iyHFAi1ZjQGNsgMHl4vf6m6mr78Rpp1o15aVx8Jh2Bf849z/1Wcnsf1NiKQ1Wm9rAvEqVXgQGtvJUSQHkWJ0AvN+nCY2rBpZLfEIIIYQQQgghbj+SlBKVUlGllFl7c35znmtVh2Z5m1rhsDTHYP+dDprH2e88Rr5iBOA9v8+527YM/KLBPwpq3X9TYrlRbrcTp1NtCF8t4RmMRrWB+d7TOew9nUNmvjoU0s8iw/ZKy61Vz6HguaPKO2JRCCGEEEIIUQFJUkpUSgVu9em4tCulVs+dyZaffsLt1gFgNzdAA+gNJt7XZLDHlUA+alKqqva4elCvBVClUanGURoURSE19WPOpa8BQKPRo9er1VxZ+Q4eeHctdqfbs7+/JKVuCZI3EkIIIYQQQlQWkpQSlYqiKKTkW9mYqc4UZ9aWXlLKabOydcWPuBW1KkSrj0OjMWHJP4a7ipvtzijcqNerZs6mmnWXeqAloNRiKE05ubvYt3+KZ9nPryFarfotfyKrALvTjVGnpXHVAJrHBRHiYyqvUEVFpLmg3kuDZLuEEEIIIYQQpU6SUqJSeeXACWannvUsx5iNpXbu7APbcBUmpIx+T6DR+vN1rWcJ11fljsP34darCamlge+QkP8HGpygN4N3aKnFUJqsVrWSy2yqQlTUY4SFdfZsyy5wABAdaOHzwa3LJb5KS3NrDc67nNvjLoUQQgghhBDl6eZ0iRbiJvkztwCAAL2Oxr5edAkLKJXzpu7awa41KwEw6sxodYHoXTbGHB1Ms2P/5L86tQF4gK6Aeo6deGls0G4M9F0ERu9SiaG02WxnAPD1rUtc3NN4ecWTbXUwZ/UB/m/jUXWbDNm7fsqtUDp08T0MGj8er/r1iQxLoFGVRjRv0YQZ776L0+m8oWKplStXotFoyMzMvIGzXJtDhw7Ru3dvqlSpgtlsJjo6mm7durFnz55i+y1dupT27dvj6+uLl5cXzZs3Z968ecX2OXz4MBqNhu3bt5f4+i+//DK1atXC29ubwMBA7rnnHjZu3FjsnAMGDCA+Ph6LxUK1atWYOHEidrv9iuc9efIkvXv3pkaNGmi1WkaOHFnimIq8/vrraDSai449cOAADz30EKGhofj5+TGgXx/OnT1TbJ/XXnuNNm3a4OXlRUBAwCXPr9FoLvrz2WefebZ//fXXdOzY0XOd1q1b88MPP1w17iVLfuLBBwcTGhp+zV8PIYQQQghR8UhSSlQqOYU9kGbVrsryZjUIMtx4sd+5/Tv53yvP8fsv6wBwaEIA0NtPkmoxMwsdpzReAFQL1IFTTYzR8imIrXhVRrm5KWz/YwBHj8wBwGKp6tn2+e+pTFm2h2//OAFAqAzZE5fQsW1b/ti5kWUbl/HUU0OZNnMm//7oP+UdlsfVkjYADoeDjh07kpWVxddff01KSgqff/459evXL5YYe/fdd+nWrRtt27Zl48aN7Nixg169ejFkyBCeffbZG4qzRo0avPfee+zcuZO1a9cSFxfHvffey9mzarXnnj17cLvdfPjhh+zatYu3336bDz74gOeee+6K57XZbISGhvLCCy/QsGHDa45r06ZNfPjhhzRo0KDY+ry8PO699140Gg2//PIL69atw263M/yJx3C7z/efs9vt9OjRg6eeeuqK1/nkk084efKk58+DDz7o2bZ69Wo6duzIsmXL2LJlC0lJSXTp0oVt27Zd8Zz5+QW0bt2YqVOnXHE/IYQQQghROcjwPVGp5LpcAPjqdaV2zvR16m/vDRo3Ln0iRn0dIk9u4EDob6Qp3QDwwk7jQDuj760LXxceaPIptRhK07HjCzl3bqVn2c+/sef1ySwrAA2i/WkRF0TP5jFlHd4t7tYY9GYyGgkLD0Wn8abRE8357ttF/PjzL/xrdAZjxo3j22+/xWaz0b59e2bNmkViYiIAR44cYdiwYaxduxa73U5cXBxvvfUWderUISkpCYDAQLXqsH///sybN4+cnByGDBnCokWL8PPzY+zYsSxevJhGjRrxzjvvABAXF8eAAQPYt28fixYt4uGHH2bevHmsXbuWCRMmsHnzZkJCQnjooYeYOnUq3t7e7Nq1iwMHDvDzzz8TGxsLQGxsLG3btvXcZ2pqKqNHj2bkyJFMmXI+yTF69GiMRiMjRoygR48etGzZ8rrex969exdbnjFjBnPnzmXHjh106NCB5ORkkpOTPdsTEhJISUlh9uzZTJs27bLnjYuLY+bMmQB8/PHH1xRTbm4uffr04aOPPmLy5MnFtq1bt47Dhw+zbds2/Pz8AHj/w/9QLSaC9WtWEf/wAwBMmjQJ4KJqsr8LCAggIiLiktuKvrZFpkyZwuLFi/n2229p3LjxJY8B6NWrCwBpaZYrXlsIIYQQQlQOUiklKpUcZ2FSqhRn3cs9dxoAs8kPo083LE4Xv7b4HVvcXfzpVPO2tbxyWRD+/2iy9kn1IK0edKXXz6o02WynAKhSpReNG/2XsNBOALjdClmFvaSS60XwwgN1SAz3Lbc4byeKolDgLKDAZcXqslLgLCDfkV+qfwqcBVhdBVj/dm6lFIYZWsxm7A4HA598ks2bN7NkyRI2bNiAoijcd999OBzq52ro0KHYbDZWr17Nzp07eeONN/Dx8SEmJoavvvoKgJSUFE6ePOlJqjzzzDOsW7eOJUuWsGLFCtasWcPWrVsvimHatGk0bNiQbdu28eKLL3LgwAGSk5Pp3r07O3bs4PPPP2ft2rUMGzYMgNDQULRaLV9++SWuwmT233355Zc4HI5LVkQNHjwYHx8fPv300xt+/0CtLpozZw7+/v5XrG7KysoiKCioVK55KUOHDuX+++/nnnvuuWibzWZDo9FgMp2voDSZzWi1Wjb9tv66rhUSEkKLFi34+OOPr/hZdLvd5OTk3NR7F0IIIYQQFY9USolKQ1EUMguTUn6lUSmlKJCXxolUdSa/fKU6BkCrPUtY1tP8R+v0pG1r+Fnh8JrzxwYnVtiG1/bCXlIhwe0JClKrQl5dupu5aw959gmwVMyE2i1DKfpsqA/hBc4COvxwf7mEsrH3RrwMXtd1rKIorFq9kpWrV5PUvh1Lly5l3bp1tGnTBoAFCxYQExPDokWL6NGjB0ePHqV79+7Ur18fUCt/ihQlG8LCwjx9iHJycpg/fz4LFy6kQ4cOgDrkq0qVKhfFcvfddzN69GjP8sCBA+nTp4+nJ1JiYiKzZs2iffv2zJ49m6ioKGbNmsXYsWOZNGkSzZo1IykpiT59+nji2rt3L/7+/kRGRl50PaPRSEJCAnv37r2u967I0qVL6dWrF/n5+URGRrJixQpCQkIuue/+/ft59913r1gldSM+++wztm7dyqZNmy65vVWrVnh7ezNu3DimTJmCoihMfH48LpeLM6dPXdO1XnnlFe6++268vLz48ccfefrpp8nNzWXEiBGX3H/atGnk5uby6KOPXvN9CSGEEEKIyksqpUSlcNbu4Of0HGxu9SE/1HjjDbr3vDuAdwf1Zc8JNSml0Qahd+Sic6ewTJft2a+KNosHggsfyOo8CH2+gieW3fD1S9uxYwtYtboR2Tk7ALB4xXu2Ld950vPay6ijSWxAWYcnKpHlq1dTLa4eTaKb8FivHnS9/356Pvwwer2+2FC24OBgatasyV9//QXAiBEjmDx5Mm3btmXixIns2LHjitc5ePAgDoeDFi1aeNb5+/tTs2bNi/Zt1qxZseU//viDefPm4ePj4/nTqVMn3G43hw6pCdihQ4dy6tQpFixYQOvWrfniiy+oW7cuK1asKPF7YTRePYG7YMGCYnGsWXM+gZ2UlMT27dtZv349ycnJPProo5w5c+aicxw/fpzk5GR69OjBoEGDPOsvPO+QIUNKFPOaNWuKHbdgwQJSU1P517/+xYIFCzCbzZc8LjQ0lC+++IJvv/0WHx8f/P39ycrKpHb9hmi11/bPhRdffJG2bdvSuHFjxo0bx9ixY3nrrbcuue/ChQuZNGkS//vf/wgLCwOu/J4KIYQQQohbh1RKiQrP4VZI+j2FNIcTUIfuWUph+N6WP45hdxc+cGosJJzYT0LqXLZ0uJPcwnxtZ+NfVLU4aOSToe4XVgcSLx72UhEcOfohTmcOoDY397LEebZlFg7b+3bYHSSG+2A2lF5PrtuN5jr6Rln0Fn7u9B25eXlgNGE0Gkt9mNKZHBtncqwEeRmpEnC+345Ff+29d9o3b87kd6aSZ3JSN6Ihmvwcfljx41WPGzhwIJ06deK7777jxx9/ZOrUqUyfPp3hw4dfcwx/5+1dfJbL3NxcBg8efMnKm6pVzzf39/X1pUuXLnTp0oXJkyfTqVMnJk+eTMeOHUlMTCQrK4sTJ05cVJ1lt9s5cOAAnTp1umpsXbt2LZasi4qKKhZ39erVqV69Oq1atSIxMZG5c+cyYcIEzz4nTpwgKSmJNm3aMGfOnGLnvnB2uaI+T1fTrFmzYseFh4fz888/c+bMGZo0aeJZ73K5WL16Ne+99x42mw2dTse9997LgQMHSEtLQ6/X49JbqJlQlZjY+EtcqeRatmzJq6++is1mKzY88LPPPmPgwIF88cUXxYYUXuk9FUIIIYQQtw5JSokKL9Pp9CSkanqb6REeWCrnzbWpyQUv8524zI1wZ/2XVW2asNyrIzmKWknwUJd23NWwEcalhQ/VhorZXFdRFE8vqSZNPsPfrwGg543v93DwbC75dnXYY9UgL0lIlQONRoPFYMGlc6HoTJj0puseUnc5Fr0Ws06DWW+84XN7WSwkJMSRpslDjx4XkFi9Gk6nk40bN3qG7507d46UlBTq1KnjOTYmJoYhQ4YwZMgQJkyYwEcffcTw4cM9FUcX9ndKSEjAYDCwadMmTyIpKyuLvXv30q5duyvG2KRJE3bv3k316tVLfF8ajYZatWqxfr3aH+mRRx5h3LhxTJ8+nenTpxfb94MPPiA/P59+/fpd9by+vr74+pasP5vb7cZms3mWjx8/TlJSEk2bNuWTTz65qCLpWu6viMViuei4Dh06sHPnzmLrnnjiCWrVqsW4cePQ6Yr/XCgaYvjNd9+TnnaWe5Lvu+Y4LrR9+3YCAwOLJaQ+/fRT/vnPf/LZZ59x//3Fh7de6j0tjf5oQgghhBCiYpGklKjwrIVD9kxaData1CqdkyoKeU4T4MZprI5WYyC3Wjz/9mlNbuEuFq2NOxs2xmg0gCNfXWks3URCaXE6c1CUwn5bvg3Qak3sPJbF7JUHPPsEeBnwNcu3fOm5vR6QE+Li6PLAAwwaNIgPP/wQX19fxo8fT1RUFN26qbNUjhw5ks6dO1OjRg0yMjL49ddfqV27NqDOfKfRaFi6dCn33XcfFosFX19f+vfvz5gxYwgKCiIsLIyJEyei1WrRXKVn27hx42jVqhXDhg1j4MCBeHt7s3v3blasWMF7773H9u3bmThxIn379qVOnToYjUZWrVrFxx9/zLhx4wC1ourNN9/k2WefxWw207dvXwwGA4sXL+a5555j8uTJ1KtXr9h1U1JSLoqlbt26GAzFhxTn5eXx2muv0bVrVyIjI0lLS+P999/n+PHj9OjRA1ATUnfddRexsbFMmzaNs2fPeo6/3Kx1RYoqoXJzczl79izbt2/HaDQWSxBeyNfX96J78fb2Jjg4uNj6Tz75hNq1axMaGsqGDRsYMeJf/GPg01SrXsOzz9GjR0lPT+fo0aO4XC5PLNWrV8fHx4dvv/2W06dP06pVK8xmMytWrGDKlCnFGsovXLiQ/v37M3PmTFq2bMmpU2pS3WKx4O/vf9n7Tk/P4tixk2Rmqr84KPp6REREXPU9E0IIIYQQFY88oYoKr8DlBsByjT1NLmf1/33MnnUrURT1vCa7lYDcbeTG4ElItdYfpn2tcCyrJsPGD8FpVTeUcnXLjXK7nRw+MpvMjN8A0Got6HRqJcLZXDXm6EALQ9pXo2lsIFptxWzOLiqHjz78kDHjx/PAAw9gt9tp164dy5Yt8yRkXC4XQ4cO5dixY/j5+ZGcnMzbb78NqMOvJk2axPjx43niiSfo168f8+bNY8aMGQwZMoQHHngAPz8/xo4dS2pq6mX7HhVp0KABq1at4vnnn+fOO+9EURSqVatGz549AYiOjiYuLo5JkyZx+PBhNBqNZ3nUqFGe84waNYqEhASmT5/OzJkzycvLA9Qqnl69el103UutS01NJTo6utg6nU7Hnj17mD9/PmlpaQQHB9O8eXPWrFlD3bp1AVixYgX79+9n//79Fx1/taqgxo0be15v2bKFhQsXEhsby+HDh6943NWkpKQwYcIE0tPTiYuLY9SYcXT9x6Bi+7z00kvMnz//olh+/fVX7rrrLgwGA++//z6jRo1CURSqV6/OjBkzivXKmjNnDk6nk6FDhzJ06FDP+v79+zNv3rzLxrd8+UqefvpFz3LR12PixIm8/PLLN3LrQgghhBCiHGiU27AePjs7u7CBa1aJe3SI8rMjJ597N+8lwmhge9u6N3QupSCLd57ojbtwdjSN1o+kXQdByWJBp758qW+Iv6aAnr576dq1K/V+7AnZx9SDdSZ48lcIv7EYStO59LVs397fsxwQ0JLqteezaNtxNh/J4Ns/TnBnYgj/b0DLK5xFXIvUwUPIXbWKyNcmE9C9e7Ftu6b8jn+2jZ+D9xLbPo5WURGYo9TPS865s+Tm5KIYTZhMJoKDg0s1rtPZVk5nWwnyNhIdeOXkabrdSarVjq9eS4JXYfLn5A5QXNhyvXHb7WSH+5CmySOMKriyM0BxEVQlGqPl5g5hzcvLIyoqiunTpzNgwICbeq1LSU9Pp0OHDvj5+bF8+XK8vCpWIrqsncu1cTyzAD+zgbgQ76sfcBMpikJOzp8A+PjURqstvd+rWa1WDh06RHx8/EUJUfk3Q3HyfgghhBCiJEr6bwaplBIVnrWoUkp341U++Ye2FiakFIy+vdHogjkYM4Wv45JZp28IQIjZxnPPPacesLSwdqr/txDZCMwV6x/gNqs6q56XVzWqRHYnPLwL/159kFm/7PfsE+prutzh4iaRerSS27ZtG3v27KFFixZkZWXxyiuvAHiGBJa1oKAgfvrpJ95//302bNhAhw4dyiUOIYQQQgghbgeSlBIVWoHLzQmbOnOcuRSG7+WlqUkco06DVh+J3pHDocSBrDOrVSs6XNwTf0FzXbs6lIegahUuIQVgt58DwN+vIbGxgwE4lrkdgIbR/tSL8uefd9zYrFniOlXkzNQ1xXbzi2mnTZtGSkoKRqORpk2bsmbNGk+j7fIQHBzMSy+9VG7XF0IIIYQQ4nYhSSlRYW3NyqP79v0UFDY6DzHe+Mc169xpAJxuP4yAzpnDXi89uCFBm8adhkO0iLoTnHbIPwduNSGGyeeGr12abPY0Tp9aQtq5XwAwmc43+M3KV2N+rEVVerWoWi7xiVuBmrm62Smpxo0bs2XLlpt8FSGEEEIIIURFJEkpUWFtzMrzJKRMWg19q1x/5YTL6WDd/xawdelKdYUuSP3LdYq/lFgAQrFSvXo1GtaIgxm1IT/t/AkM5dtL5e8OHpjOiZP/8yx7+9RgzBd/8MWWY551AV6GSx0qbtRVZoW7VdwedymEEEIIIYQoT5KUEhVWttMFQP8qwUypEY3uBpIBB7duYtPiLz3LWn0UppwdLAwMJFVRGxm3bxxD3x73weG1xRNSNe8HXcX6VsnLV3tGBQW2xc+vAWGh9/Ldzl89231NeupHB5RTdLeJa54jQtI8QgghhBBCCHGhivWkLcQFipJSAQb9DSWkANI3LwXAoDGiWNrh487n3Zg4MjGgwU2QpoDOLduqO9vz1b8jG8KTqypkZYy14DgA1ao9i59fAxwuN/l29f36ZXR7qgRYMBt05Rni7anifVSu3a1wD0IIIYQQQohKQZJSosLKKkxK+epuvMF57qnD6gutL3pTA7T2reSinvch45+Ee2upEl4425e9cMY9o2+FS0idTfuZ1NR52OxqbyyzOYrU9Hz2n8n17FM1yAt9KbxnonK5uZ/UorPf/KbnQgghhBBCiNuHJKVEhXXO4QQguBQanO87dw4w4JdvJM8PbDojTtRKomGDHicqLAiTyaTuXDTjnrFi9ZECOHhwBrm5ewC1ufmRDAMd3z4/bM/HpJeEVIVQsZKZQgghhBBCCFERSVJKVDjbsvP59OQ5duQUABBqvPGG3co5B2BAozECsMUQDYBZ4yQ+OgKNRgNZx2B+V8hKVQ+qYEkpt9tBXt4BAGrVnExQUDt+2acm0MwGLVX8LTzUOKo8QxS3EEmrCSGEEEIIIW42KakQFc6rB07w3xPnPJVSsWbjdZ8r/cRxfp03B5vbAkCWfyIAmUZvvLDTNiBHTUiB2uA8/QC47OpydPPrv4mbID//IIriQKfzoUqVXlgsUWQWqLHemRjKL8/exfAOieUcpajsBo4bj1f9+oSFxdGoSiNaNm/GjHdn4XQ6b+i8K1euRKPRkJmZWTqBlsChQ4fo3bs3VapUwWw2Ex0dTbdu3dizZ0+x/ZYuXUr79u3x9fXFy8uL5s2bM2/evGL7HD58GI1Gw/bt20t8/ZdffplatWrh7e1NYGAg99xzDxs3bix2zgEDBhAfH4/FYqFatWpMnDgRu91+xfOePHmS3r17U6NGDbRaLSNHjixxTMePH+cf//gHwcHBWCwW6tevz+bNmz3bH3/8cTQajedPiK+Zp/7xSLFzxMXFFdtHo9Hw+uuve7anpKSQlJREeHg4ZrOZhIQEXnjhBRwOR7HzZGZmMnToUCIjIzGZTNSoUYNly5ZdMf4lS37iwQcHExoafs1fDyGEEEIIUfFIpZSocLIKH357RgTRIdiPRG/zdZ9rw5cL2bPugmblugAA8vVW+vrvod0d7c7vXDRsr9rd0O3f4Bd53dctTQ5HNil7J5KXp8645+OdyLbUTN75aR+H09SY/S03Xk0mSqiC9Rm7GTq2bcuMD9/hpD2DbT9tZ/y4ceh1Wia++mp5hwaA3W7HaLxystrhcNCxY0dq1qzJ119/TWRkJMeOHWP58uXFEmPvvvsuI0eOZNy4ccyePRuj0cjixYsZMmQIf/75J9OmTbvuOGvUqMF7771HQkICBQUFvP3229x7773s37+f0NBQ9uzZg9vt5sMPP6R69er8+eefDBo0iLy8vCte12azERoaygsvvMDbb79d4ngyMjJo27YtSUlJLF++nNDQUPbt20dgYGCx/ZKTk/nkk08ASM+zkV5wcS+xV155hUGDBnmWfX19Pa8NBgP9+vWjSZMmBAQE8McffzBo0CDcbjdTpkwB1K9hx44dCQsL48svvyQqKoojR44QEBBwxXvIzy+gdevG9OrVn8GDh5T43oUQQgghRMUkSSlR4Vhd6gPQY5FBtArwuaFz5R3cAoBBG4lirodOm8FHvmFY9C4mTJhQfGeHOlwQr5AKk5ACOHv2e06fXuJZ9vdvwnvrD7N671nPuviQijXUUFRuJqOR8PAwNFho+EQTvluyhB9//oURzzzD2MFD+Pbbb7HZbLRv355Zs2aRmKhW6B05coRhw4axdu1a7HY7cXFxvPXWW9SpU4ekpCQATwKkf//+zJs3j5ycHIYMGcKiRYvw8/Nj7NixLF68mEaNGvHOO+8AamXOgAED2LdvH4sWLeLhhx9m3rx5rF27lgkTJrB582ZCQkJ46KGHmDp1Kt7e3uzatYsDBw7w888/ExsbC0BsbCxt27b13GdqaiqjR49m5MiRnmQJwOjRozEajYwYMYIePXrQsmXL63ofe/fuXWx5xowZzJ07lx07dtChQweSk5NJTk72bE9ISCAlJYXZs2dfMSkVFxfHzJkzAfj4449LHM8bb7xBTEyMJ+EEEB8ff9F+JpOJiIgIAAy5NpyZBRft4+vr69nn7xISEkhISPAsx8bGsnLlStasWeNZ9/HHH5Oens769esxGAye+7qaXr26AJCWZrnqvkIIIYQQouKT4XuiwrG63QCYtTf+8czKTAPAoEtEb6pPrs5Jpk7BYHBfvLMjX/3b6HXD1y1N+QVHAQgOakf9eu+TkDCSjHx1GEz/1rF88nhzBt2ZcKVTiJtAUW6PmegUwGI2Y3c4GPTkYDZv3sySJUvYsGEDiqJw3333eYZlDR06FJvNxurVq9m5cydvvPEGPj4+xMTE8NVXXwHq0K6TJ096kirPPPMM69atY8mSJaxYsYI1a9awdevWi+KYNm0aDRs2ZNu2bbz44oscOHCA5ORkunfvzo4dO/j8889Zu3Ytw4YNAyA0NBStVsuXX36Jy+W65L19+eWXOBwOnn322Yu2DR48GB8fHz799NPSeBux2+3MmTMHf39/GjZseNn9srKyCAoKKpVr/t2SJUto1qwZPXr0ICwsjMaNG/PRRx9dtN/KlSsJCwujZs2aPDtyOJkZ6Rft8/rrrxMcHEzjxo156623rji8c//+/Xz//fe0b9++WCytW7dm6NChhIeHU69ePaZMmXLZr5UQQgghhLg1SaWUqHAKCpNSJu0NDpOy5XDWpcMEaLRqxdVvGvU3+96+FyS80vbD4TWQWtjrxVAxklKKomCznSIvbx8AgUFtCQtTqypyrGoSoG31EJJqhZVbjOJvLvORVRQFd0EBitWK4nKjuN248/NL9dJKgQ0KrChaF27TBSFZLOf7pl3rORWF1atXsXL1apLat2Ppd9+xbt062rRpA8CCBQuIiYlh0aJF9OjRg6NHj9K9e3fq168PUKxapijREhYW5hmilZOTw/z581m4cCEdOnQA4JNPPqFKlSoXxXL33XczevRoz/LAgQPp06ePp59SYmIis2bNon379syePZuoqChmzZrF2LFjmTRpEs2aNSMpKYk+ffp44tq7dy/+/v5ERl5cGWk0GklISGDv3r3X9d4VWbp0Kb169SI/P5/IyEhWrFhBSEjIJffdv38/77777g0NGbySgwcPMnv2bJ555hmee+45Nm3axIgRIzAajfTv3x9Qh+49/PDDxMfHc+DAAcaNn8CmzVtY/MP5WT5HjBhBkyZNCAoKYv369UyYMIGTJ08yY8aMYtdr06YNW7duxWaz8eSTT/LKK68Ui+WXX36hT58+LFu2jP379/P000/jcDiYOHHiTbl/IYQQQghR8UhSSlQ4NrdagWLRXWOllMsJOz6HvLOguMg5vhmzTYeiAbRqv5MMo9qfKrle9fPHLXgEMg6dXzb730j4pWb//qkcTZ3rWbZYYhj/1Q5++usMGflqI2Rfs/SSqgyUggJO3HNvsXVnL7PvjTAAuUDKBetqbt2CxqsEiVaNRi2LApavXk1cbG0cTgeKW+GhLl257957+OnXlcWGsgUHB1OzZk3++usvQE1WPPXUU/z444/cc889dO/enQYNGlz2kgcPHsThcNCiRQvPOn9/f2rWrHnRvs2aNSu2/Mcff7Bjxw4WLFjgWacoCm63m0OHDlG7dm2GDh1Kv379WLlyJb/99htffPEFU6ZMYcmSJXTs2PHq7wlctXcVqMm5wYMHe5aXL1/OnXfeCUBSUhLbt28nLS2Njz76iEcffZSNGzcSFlY8mXz8+HGSk5Pp0aNHsV5NPj7nhzD/4x//4IMPPrhqPGvWrKFz586e5Q8//JA+ffrgdrtp1qyZZ6hi48aN+fPPP/nggw88SalevXp5jqtfvz4x1WvSrH4dflu3mmoPPwCo1W1FGjRogNFoZPDgwUydOhWT6XxG9PPPPycnJ4c//viDMWPGMG3aNMaOHQuA2+0mLCyMOXPmoNPpaNq0KcePH+ett95i4sSJl3xP77jjjqveuxBCCCGEqFwkKSUqBEVRmHTgBDtzCsh3XefwvT+/gsVPexZP6gwomlYAuAwBAFiNZt7p2Yj7G1xQGZF1TP27WgfwDoVGfa77PkrT6TPfeV57eVXHy6cZn236zbPObNBSPezGem6Jm0NzuZKpSqJ98+ZMmfkGOUY7tSPqo8vP54cVPwCguBXQXfq4gQMH0qlTJ7777jt+/PFHpk6dyvTp0xk+fPgNx+TtXbxvWm5uLoMHD2bEiBEX7Vu1alXPa19fX7p06UKXLl2YPHkynTp1YvLkyXTs2JHExESysrI4ceLERdVZdrudAwcO0KlTp6vG1rVr12LJuqioqGJxV69enerVq9OqVSsSExOZO3dusZ52J06cICkpiTZt2jBnzpxi575wdjk/P7+rxgJqAu/C48LDwwGIjIykTp06xfatXbu2Z2jlpcTFJxAYFMyRQwcvu0/Lli1xOp0cPny4WEIxJiYGgDp16uByuXjyyScZPXo0Op2OyMhIDAYDOt35D1Pt2rU5deoUdrv9iu+pEEIIIYS4dUhSSlQIR612Pkg9Xzvio9Pir7/Mk+/lpKoJGyWiIV/9FcaRU9bCDRoUrRca4A6TjQcbX/Bw43KAu3Ca8u7/Aa+b08vlWrndNmy2UwC0u3MzBkMgZ3LU+9FoYNmIO4n0NxPgdfUqDlH+NBYLVX76kbzcXBSDEZPJVOp9g87m2DidbSXQy0hU4Pkm0BrLtTeE9rJYSEiI4ww56DV6FCCxejWcTic/LF1Jcpe70em1nDt3jpSUlGKJjpiYGIYMGcKQIUOYMGECH330EcOHD/dUHF3YMyghIQGDwcCmTZs8iaSsrCz27t1Lu3btuJImTZqwe/duqlevfsX9LqTRaKhVqxbr168H4JFHHmHcuHFMnz6d6dOnF9v3gw8+ID8/n379+l31vL6+vsVmn7sSt9uNzWbzLB8/fpykpCSaNm3KJ598gvZvyfhrub8iFovlkse1bduWlJSUYuv27t3raQR/KSeOHyMzI53Q8Es3NQc1cabVai+q/rqQ2+3G4XDgdrvR6XS0bduWhQsX4na7Pfe8d+9eIiMjMRqNGI3Gi97T26WPmxBCCCHE7USSUqJCyHGqD6oBeh2v14imnq/l2ofvndgGQH7jwRz59XxzYq2+KieNNvbotDSM+FulgT3v/Gtj+VcdKYpCyt6XyMhQ+1tptUb0+gBS0/PZcSwLAF+TntqRJauYEDfBdfRn0mg0aC0WNE4nGE1oTCa0JRlSdy3XcGrBoUFjMZb43Fd6xPfcpcGFBkiIiyO5Y2dGjxuOxW82wSGBjB8/nqioKLp16wbAyJEj6dy5MzVq1CAjI4Nff/2V2rVrA+oMbBqNhqVLl3LfffdhsVjw9fWlf//+jBkzhqCgIMLCwpg4cSJarfaqfbDGjRtHq1atGDZsGAMHDsTb25vdu3ezYsUK3nvvPbZv387EiRPp27cvderUwWg0smrVKj7++GPGjRsHqBVVb775Js8++yxms5m+fftiMBhYvHgxzz33HJMnT6ZevXrFrvv3pA5A3bp1PTPIFcnLy+O1116ja9euREZGkpaWxvvvv8/x48fp0aMHoCak7rrrLmJjY5k2bRpnz55PzF9uZrsiRZVQubm5nD17lu3bt2M0Gi+qhLrQqFGjaNOmDVOmTOHRRx/l999/Z86cOZ7qrNzcXCZNmkT37t2JiIjgwIEDPPPsGGLiEmiXdA8AGzZsYOPGjSQlJeHr68uGDRsYNWoU//jHPzwzKy5YsACDwUD9+vUxmUxs3ryZCRMm0LNnT8/79NRTT/Hee+/xr3/9i+HDh7Nv3z6mTJlyycq3C6WnZ3Hs2EkyM9Wh2EVfj4iIiKu+Z0IIIYQQouKRpJSoEPIKh+wFGfQ8GB54Tccem92XrVv3k+P0J93xKM5Zy9QNWm9Mvn3xyj/H/3yyOan4ck/M3/pFFc24p9WDvvyrjmz20xw/vtCz7ONTh61HM+k+e71nnZ9F+kiJsqAmhRSdG71Bh9Pu5N0Z7/LcxBd4uPuD2O122rVrx7JlyzyJBpfLxdChQzl27Bh+fn4kJyfz9ttvA+rwq0mTJjF+/HieeOIJ+vXrx7x585gxYwZDhgzhgQcewM/Pj7Fjx5KamorZbL5idA0aNGDVqlU8//zz3HnnnSiKQrVq1ejZsycA0dHRxMXFMWnSJA4fPoxGo/Esjxo1ynOeUaNGkZCQwPTp05k5cyZ5eWqi+tNPPy3WX6nIpdalpqYSHR1dbJ1Op2PPnj3Mnz+ftLQ0goODad68OWvWrKFu3boArFixgv3797N///6Ljr9aVVDjxo09r7ds2cLChQuJjY3l8OHDlz2mefPmfPPNN0yYMIFXXnmF+Ph43nnnHfr06eOJeceOHcyfP5/MzEyqVKlCu6QOPDFinKdXlMlk4rPPPuPll1/GZrMRHx/PqFGjivWZ0uv1vPHGG+zduxdFUYiNjWXYsGHF3veYmBh++OEHRo0aRYMGDYiKiuJf//qXJ2F4OcuXr+Tpp1/0LBd9PSZOnMjLL798xWOFEEIIIUTFo1Fuw3r47Oxs/P39ycrKKnGPDnFz/XIum947DlLfx8KK5hc3Ob4st4vP/nkXxwsubk6uM9bF4N2JgLOrmZTYGDt6ZvVMoGvj2pB7Bj7upPaTctnB5A8TjpbiHV2f7OwdbNr8EAZDMPXqzcTPtx6fb0nn+W/+xGLQEepron+bOAbcEV/eod62Up8eSu4vvxDxyiQCH3202LZdr/+Of6aNX4P3E3NXVVpVicAcpSYgcs6lkZuTg2I0YTKZCA4OLtW4zmRbOZVtJcjLSHTQlSul0h1OUgvs+Oi1VPMqTP6c2gluJ7Y8b9w2O3kR/pwmm2BLMPoMO06bDb0pCLfLgH+YFybLzfmdRl5eHlFRUUyfPp0BAwbclGtcSXp6Oh06dMDPz4/ly5fjVcoVbZXNuTwbxzMK8DMbiAvxvvoBN5GiKOTk/AmAj09ttNrS+wxarVYOHTpEfHz8RQlR+TdDcfJ+CCGEEKIkSvpvBqmUEhVCUaWU97UO2bPnkur0Rgu4vOthUqIw5f6Of84ZwrO34mf9nYNeeuyJzdHi5o7EwmRO6kZIv6Bxb9WWlzx9WVEUhdOnv+Vo6n8AMJurEBTYGoAc6xkAOtePYMajjcorRFGKbsPfBVzWtm3b2LNnDy1atCArK4tXXnkFwDMksKwFBQXx008/8f7777NhwwY6dOhQLnEIIYQQQghxO5CklChXiqKwO8/K9hx1GJ3PNTY3z8s4idahfox9NS1xG/1p9sdXeOef9uyzN7IdnWsG0/eOBIJ8Cn8DXtRLqmobePhD8Iv++6nLVHrGOnbtPj+0xc+vAW63wv6zuRxOU2P1M8uwPVFBlHJSbdq0aaSkpGA0GmnatClr1qwhJCSkVK9xLYKDg3nppZfK7fpCCCGEEELcLiQpJcrVl6czGP7X+WFz1b1MJT526/Jv2fbDN+qCxozb4A+KG3P3ZDav+YECvyD+X+h9pPqEs75LfapcOPTEnqv+7R0MAVUvPnkZy8rc7HkdE/MEsVUH8ep3u/lk3WHPel+zfLtWFtfeCv321bhxY7Zs2VLeYQghhBBCCCHKgTzlinK1N88KqLPuxVtM9IwIKtFxmadP8eu8Dz3LWr2aWIpPNHMupDoZAb9DUD1SfdXZmHx9/tbEvKhSqgLMuAdQUJAKQLWEZ4mLewqAnccOABDgZSDEx0SnujKzlCg7RYk1BUWSbLcx+doLIYQQQoibSZJSolzlFvaSeiIqhHEJkSU+7uy2nzyv9ZYkdMaa3Du+GsvTFmNYlEaVavdzSJsHDtCg4GMq/Kj/+RUsGwO2HHW5nJNSp05/y549z+NyqUkyb+9qnm2ZBQ4A/t27CW2ql99QJiGEEEIIIYQQ4maQpJQoV7kuF3DtDc5PHNoGgM2kw2xujNF6lCXjhqrnCqrFxrBTHHapVVdmjQuNpvD3/bu+gfxz508U1fQG7+DGpB792JOQMhiCCAhowYerDrDpcAap6WqfLT+L9JKqUDRSOyKEEEIIIYQQpUGSUqJc5RdWSpW0wbnidnM8ZTc7d6hD2yKzvMj3ArfGzrGYFvysq0O+xojTdv58NapcMP2krbCX1L2vQf0e4BteOjdynay2EwA0bPARgYFtybZqmLp8nWe7XquhSoClvMITV3K7TKB3wX1KOk4IIYQQQghRmiQpJcqFW1E4UmBne3bhrHslrJT6a90qlr833bOcHdgYPZCh9eUbfVSxfcM1DmomVmFwu4TzK4t6SQXGlWtCKj//CHl5e7Hb0wDw9a2PTmcis0CNz2zQ8nKXutSI8CXI23ilUwlxk0gKSgghhBBCCHFzSVJKlIvBu47w7dlMz3JCCWfdO3vkEABatGCIR2eog8Nt41c/tRpKj8Iok5UqBh13P9Qa/6Lm4IoC2SegIENdNpVfLym7PZ3fNiajKHZAHbZnNKo9o3KtTgACvYz0alH+swKK21HxZJQipVKigtDI0FkhhBBCiFuOJKVEudiaXdjYW6elka8X9X28SnRc3uE/ALBog3D5dMNg38C0sEYAvHd/NVo2iifU9xIJrmVjYNNH55fLscF5gTUVRbGj0Rjx9alFVFQfChwuFm48yu4T2QD4muVbs1JTyuHh+RoueeVdLzUu8e+JKiGEEEIIIYS4cdfWXfoGTZ06lebNm+Pr60tYWBgPPvggKSkpxfaxWq0MHTqU4OBgfHx86N69O6dPny62z9GjR7n//vvx8vIiLCyMMWPG4HQ6y/JWxA3KK+wl9X3TGnzVuDoGbcmeqI+e3AeAG7Uyyq1RH4+1KNx/R81LJ6QAUn9T/9YZIaIBhNe9gehvjNORCYC3d3WaN/+GKlUeYfH2E0z+7i++3nYcgGDvklWO/X/27jw+pnN/4PhnJpnJTLbJIolIIovEWktrqUgtsSUo2qqlXNulld6g1N4q1VKlQm2lelXcW1w/2qKKSquItbaINSoSIrYEmeyZycz5/TEyTLMitnrer9e8knPOc57znDGSzHe+z/cRhL962IDR0AkTsa1fnypuPjSq1oiQhiF88eWXlj9jH+AiO3fuRCaTkZGR8ZAjrLikpCT69u1LtWrVUKlUeHt70717d86ePWvRbvPmzbRu3RoHBwdsbW1p2rQp0dHRFm2Sk5ORyWTExcVV+Poff/wxtWvXxs7ODmdnZ9q3b8/Bgwct+hwyZAj+/v6o1Wpq1KjB1KlT0el0ZfZ79epV+vbtS82aNZHL5YwaNapC4zEYDHz00UcW1/v000+RpLv/oD/88AMdO3bE1dUVmUzGifjjxfpJTEzk9ddfx83NDUdHR3r16mXxe7qi9xUfH0/Lli1RqVT4+Pgwe/bscu9h797D9O49HG/v6shkMjZs2FChexcEQRAEQRCeTo81KLVr1y4iIyM5cOAAMTEx6PV6OnbsSE5OjrnN6NGj+emnn1i3bh27du3iypUrvPHGG+bjBoOBLl26oNPp2LdvHytXriQ6OpopU6Y8zlsRHoIkSeZV9+ytK/YSzL51k1O7fiM7w7RtLfMBQG5lynhSYyh7akdRgfOBmyEiFhSPv3i40VhAWtp2LqWsAECh0JiPXdPmA1C7qgP/DPFn8qt1Hvv4hEfh2cwp6hASwumTR9hycAvvjHiH2XPn8dU3/37SwzIrL2gDoNfr6dChA1qtlh9++IGEhATWrl1L/fr1LQJjCxcupHv37oSEhHDw4EHi4+Pp06cPERERjB079qHGWbNmTRYtWsSJEyfYs2cPfn5+dOzYkbS0NADOnj2L0Wjk66+/5tSpU8ybN4+lS5fywQcflNlvQUEBbm5uTJ48mYYNG1Z4PLNmzWLJkiUsWrSIM2fOMGvWLGbPns3ChQvNbXJycnjllVeYNWtWiX3k5OTQsWNHZDIZO3bsYO/eveh0Orp27YrRaKzwfWVmZtKxY0d8fX05cuQIX3zxBR9//DHLli0r8x5yc/N44YVaLFy4oML3LQiCIAiCIDzFpCfoxo0bEiDt2rVLkiRJysjIkBQKhbRu3TpzmzNnzkiAtH//fkmSJGnLli2SXC6Xrl27Zm6zZMkSydHRUSooKKjQdbVarQRIWq22Eu9GqKh8g0Hy2HFM8thxTNLqCyt0ztqPJ0pzenUxPxYM/T9p0bDfpPCRP0q+EzZLzSf/X9kdzAqQpKmOknTtZCXcwYO5dGmF9OtvAebH6TMfmI99vOmk5Dths/T51jNPbHxCxVyKjJRO16ot3frf2mLHTs48KKVM2C39d9YK6fc/fpXyLp8wH8tMT5OuJF2QUlNTpbS0tEof1/XMPOl4ym3p0s2cctve0umlOG2OdD4n7+7Oq/GSlHpU+sfrr0uvhoZKN9NSpJNpJ6XUrFSpTcuWUuNGjaTzJ89LPd/oIzk5OUlqtVoKDw+Xzp07Z+4iOTlZevXVVyUnJyfJ1tZWqlu3rvTzzz9LSUlJEqYInfkxcOBASZIkKTMzU+rbt69ka2srVa1aVZo7d67UunVr6b333jP36+vrK33yySdS//79JQcHB/O5sbGx0iuvvCKpVCrJ29tbGjFihJSdnS1JkiQdO3ZMAqTk5ORSn4dLly5JCoVCev/994sdW7BggQRIBw4ckCRJMt/DsWPHyn1+S1P0u+fXX38ttc3s2bMlf3//Cvf51+eqLF26dJH++c9/Wux74403pH79+hVrW3S/O/cdlI6n3JaS0kzP6y+//CLJ5XKL358ZGRmSTCaTYmJiSr32X+/rq6++kpydnS1+b0+YMEGqVatWmfeg1cZLWm28ZDDoJUD68ccfy2xfUXl5edLp06elvLy8YsfE3wyWxPMhCIIgCEJFVPRvhseaKfVXWq0WABcXFwCOHDmCXq+nffv25ja1a9emevXq7N+/H4D9+/dTv359PDzurpwWFhZGZmYmp06dKvE6BQUFZGZmWjyEJyer0Gj+3lZesZfgrSuXAbCSV8VK1RQ5VpySZ5GgUgAQXr9qyScmbIVdX0C+6bX2JGtJ5eZdAkCtro67Wyf8/SJZsjORfv8+wJYTVwFwvHM/gvA0UalV6PR6hr8/nOPxx1i39gf279+PJEl07twZvV4PQGRkJAUFBezevZsTJ04wa9Ys7O3t8fHx4fvvvwcgISGBq1evMn/+fADef/999u7dy6ZNm4iJiSE2NpajR48WG8OcOXNo2LAhx44d46OPPiIxMZHw8HB69OhBfHw8a9euZc+ePQwfPhwANzc35HI569evx3AnM/Ov1q9fj16vLzEjatiwYdjb27NmzZpKeQ51Oh3Lli1Do9GUmd2k1WrNvxMrW4sWLfjtt984d+4cAMePH2fPnj106tSpwn0UFBQgk8mwsbk7xVilUiGXy9mzZ0+p5/31vvbv30+rVq1QKu+uLhoWFkZCQgK3b9++n9sSBEEQBEEQnmFPrJqy0Whk1KhRhISE8MILLwBw7do1lEolTk5OFm09PDy4du2auc29Aami40XHSjJz5kymTZtWyXcg3C9JkohKvk5cVi4A7kprrCtQS8poNJB7J4Bpbd8VmZUDl102s8XYjmrk8tPkbrjal1CDKes6rHkL8xQqmRzUTpV0N/evsNAUDPWq1gdf32Hk6gqZte0XizZ+rhUr+C48BaSKT82TJAm9zkihzoiEETlG9AUlB0oeVKHOgEFnoNDaYNG3tVL+wKuWSZLE7t938/uu3YS2asm27dvY/P12Xgl5BZWdglWrVuHj48OGDRvo2bMnly5dokePHtSvXx+AgIAAc19FAQl3d3fzz/isrCxWrlzJ6tWradeuHQArVqygWrVqxcbStm1bxowZY94eOnQo/fr1M9dTCgoKYsGCBbRu3ZolS5bg5eXFggULGD9+PNOmTaNJkyaEhobSr18/87jOnTuHRqPB09Oz2PWUSiUBAQHmAM6D2rx5M3369CE3NxdPT09iYmKoUqVKiW3Pnz/PwoULmTNnzkNdszQTJ04kMzOT2rVrY2VlhcFgYMaMGfTr16/CfTRv3hw7OzsmTJjAZ599hiRJTJw4EYPBwNWrV0s8p6T7unbtGv7+/hbt7v1d7uzsXM5Ins2psYIgCIIgCIKlJxaUioyM5OTJk2V+slpZJk2axPvvv2/ezszMxMfH55FfV7B0MjuPOcl3A4f17CtW1yk/MxNJMpqWppfbAaCVuQPg5SgrOSAFkHMDkMBaDQ16QfXmoNKU3PYRys5OIP3mTrKyTgJgbW0q0n4715RdorCSMadnQ5xtlbwSWPKbVeHZVqgzsmbaySdy7Xfmt0ZhY3Vf52zdvZvqvrXQFeqRjBI9XutOeLt2/Pr7Tl5q1MTcztXVlVq1anHmzBkARo4cybvvvsv27dtp3749PXr0oEGDBqVe58KFC+j1epo1a2bep9FoqFWrVrG2TZo0sdg+fvw48fHxrFq1yrxPkiSMRiNJSUnUqVOHyMhIBgwYwM6dOzlw4ADr1q3js88+Y9OmTXTo0KFCz8W9mTylWbVqFcOGDTNvb926lZYtWwIQGhpKXFwc6enpfPPNN/Tq1YuDBw/i7u5u0Udqairh4eH07NmTt99+27zf3v5uduc//vEPli5dWu54YmNjLbKfvv76a/r168f//d//sWrVKlavXk29evWIi4tj1KhRVKtWjYEDB5bbL5gy0NatW8e7777LggULkMvlvPXWW7z00kvIS8h8Le2+HvQeBEEQBEEQhL+XJxKUGj58OJs3b2b37t14e3ub91etWhWdTkdGRoZFttT169epWrWquc0ff/xh0V/Rqj9Fbf7KxsbGYqqB8GRk6E3ZGx5Ka0b4etCpSvkBottXU0n443cAZDJbZDI51vpsrhirA+DkVMabbZ0pIwsHD+j25Irinjr9PtnZd1f7UipdSUrPIfZPU7FjJ1sl3Rt5PanhCUIxrZs2ZdaCL8hQ5BPkF4R9jpzNm38u97yhQ4cSFhbGzz//zPbt25k5cyZRUVGMGDHiocdkZ2dnsZ2dnc2wYcMYOXJksbbVq1c3f+/g4EDXrl3p2rUr06dPJywsjOnTp9OhQweCgoLQarVcuXKlWHaWTqcjMTGRsLCwcsfWrVs3Xn75ZfO2l9fd/892dnYEBgYSGBhI8+bNCQoKYvny5UyaNMnc5sqVK4SGhtKiRYtihb7vXe3P0dGx3LGAKYB373lFGUjjxo1j4sSJ9OnTB4D69etz8eJFZs6cWeGgFEDHjh1JTEwkPT0da2trnJycqFq1qkVmXHn3VbVq1WIr6977u9zPz6/EexAEQRAEQRD+Xh5rUEqSJEaMGMGPP/7Izp07i6XuN27cGIVCwW+//UaPHj0AU/2RS5cuERwcDEBwcDAzZszgxo0b5k+aY2JicHR0pG7duo/zdoT7lHtnZSYvlZKh3m7lts+4fo3oMZEYDaal6GV3sqQK8y4RL/kCEOhZxhQP/Z1VHRV2pbd5DPLzTdlhbm7h2NkGIFMFE/b5bnQG0/PhbCvqSP3d/DVfxFop562pL5CTlYWktEGpVOLq6lqp10zLzue6Nh8nWyXeznengVor7790oK1aTQ1/f66QgbW1NWAkKLAGhYWFHI07TLuwNgDcvHmThIQEi5+9Pj4+REREEBERwaRJk/jmm28YMWKEOePo3vpOAQEBKBQKDh06ZA4kabVazp07R6tWrcoc40svvcTp06cJDAys8H3JZDJq167Nvn37AHjzzTeZMGECUVFRREVFWbRdunQpubm5DBgwoNx+HRwccHBwqNAYjEYjBQUF5u3U1FRCQ0Np3LgxK1asKJZtdD/3V0StVpd4Xm5ubrH+rayszKvm3a+iaYg7duzgxo0bdOvWzXysvPsKDg7mww8/RK/Xo1CYfgbGxMRQq1Yt89S9B7l3QRAEQRAE4dnyWINSkZGRrF69mo0bN+Lg4GCuAaXRaFCr1Wg0GoYMGcL777+Pi4sLjo6OjBgxguDgYJo3bw6YPqGtW7cu/fv3Z/bs2Vy7do3JkycTGRkpsqGecrl3gjAVLW5+6UTc3YCUlTtKRT3iSGCXlw9G5MgxEtYgqPQO9Hmmr8onV6dJkiQMhiwAatb8CJVNVeJSMtAZjCit5NSt5sigFn5PbHzC4yGTyVAo5Vgr5Uh3vt7vlLryWOussFJaYa20qpy+ZdxdKw8I8POjU1gnxkwcyWL7JVTxcGbixIl4eXnRvXt3AEaNGkWnTp2oWbMmt2/f5vfff6dOnToA+Pr6IpPJ2Lx5M507d0atVuPg4MDAgQMZN24cLi4uuLu7M3XqVOTy8utgTZgwgebNmzN8+HCGDh2KnZ0dp0+fJiYmhkWLFhEXF8fUqVPp378/devWRalUsmvXLr799lsmTJgAmDKqZs+ezdixY1GpVPTv3x+FQsHGjRv54IMPmD59urnmYZGEhIRiY6lXr545sFIkJyeHGTNm0K1bNzw9PUlPT2fx4sWkpqbSs2dPwBS4adOmDb6+vsyZM4e0tDTz+aVl/hYpyiLKzs4mLS2NuLg4lEplmR/OdO3alRkzZlC9enXq1avHsWPHmDt3Lv/85z/NbW7dusWlS5e4cuUKAOfPncMhswB/by/8qpgyoVasWEGdOnVwc3Nj//79vPfee4wePdo87bIi99W3b1+mTZvGkCFDmDBhAidPnmT+/PnMmzevzPvOzs7lwoVL2NrmA5CUlERcXBwuLi4WGXKCIAiCIAjCs+GxBqWWLFkCQJs2bSz2r1ixgkGDBgEwb9485HI5PXr0oKCggLCwML766itzWysrKzZv3sy7775LcHAwdnZ2DBw4kE8++eRx3YbwgHKKglJWFQtK5WWZCoM72GnQK/+BQpfKQWdbdJI141t50K1JDbzdS8iUWjcYTv1wd1vxZIJShYVZ5OWnIkmmzBBrK1NtGG2eqZZUgJsdGyJDnsjYhMfkb1aLeWHUQiZNmUyPXq+h0+lo1aoVW7ZsMQdkDAYDkZGRXL58GUdHR8LDw81BBi8vL6ZNm8bEiRMZPHgwAwYMIDo6mrlz5xIREcGrr76Ko6Mj48ePJyUlBZVKVeZYGjRowK5du/jwww9p2bIlkiRRo0YNevfuDYC3tzd+fn5MmzaN5ORkZDKZeXv06NHmfkaPHk1AQABRUVHMnz+fnBxThuWaNWvM09zuVdK+lJQUi6noYPpddfbsWVauXEl6ejqurq40bdqU2NhY6tWrB5gyg86fP8/58+eLnS+VU0j/xRdfNH9/5MgRVq9eja+vL8nJyaWes3DhQj766CP+9a9/cePGDapVq8awYcOYMmWKuc2mTZsYPHiweXvooP4AvDduEk1nfwaYAnOTJk3i1q1b+Pn58eGHH1o8pxW5L41Gw/bt24mMjKRx48ZUqVKFKVOm8M4775R538eOneLVV4eYt4vqRQ4cOJDo6OgyzxUEQRAEQRCePjKpvL98/4YyMzPRaDRotdoK1+gQHk6uwciiS9eZm3yd19ydWFrPr9xzfln5FSe3bMHK2haFQwRKXQKfu3thwIqY91oQVNLUPUmCac5YRANCJ0PrcZV2LxWRX3CN/fvbYzTeydZCRvV6R/hk81ku384jKT2H5gEu/O+d4Mc6LuHhXR4xgqyYX6n68cc49+ltcezU53+gyShgt0si1UJ9aO7pgcrblGmTdTOd7Hum75W2AtuDupGVzzVtPs62Snxcyg7E3tYXcilPh721nBq2d4I/106AsZCCHHuMBQXkezpzRcpAY6NBnSmhz89HoXLBUKjA0VWFyr78AuAPIicnBy8vL6KiohgyZEj5J1SyW7du0a5dOxwdHdm6dSu2ts/3ipi3cgq4fDsPR5UCvypPdio0QGbmCQDs7Wsjl1fe1Of8/HySkpLw9/cvFhAVfzNYEs+HIAiCIAgVUdG/GZ7Y6nvC82PD9dsMP3ORwjtxIj91+dMsC/V6/jxzBACl0dc0i8gqFwOmaUneLvYln6jLwRyQGnUClPZg6/KQd3D/sjLjMRrzkMmssLKyxd2tE98fvUrsn+nmNjXcSrkH4Rnx3MXzzSrzzo8dO8bZs2dp1qwZWq3WnPVaNCXwcXNxceHXX39l8eLF7N+/n3bt2j2RcQiCIAiCIAjC8+D+K+AKwn3aczvbHJCyt5LTya3sVffOHzrAokE9KUgyrcSkt/EEIPfOtD9bmQ61TSmfkOuyTV9lctD4PJGAFEB+/lUAqlRpR+tWcdSpM5NbOabixm+86MWKwU2Z3EUU5heeFWXXd3pYc+bMoWHDhrRv356cnBxiY2MrPZPsfri6ujJlyhQRkBKeqFu3btGvXz8cHR1xcnJiyJAhZGdnl3lOfn4+kZGRuLq6Ym9vT48ePSxWOTx+/DhvvfUWPj4+qNVq6tSpw/z58x/1rQiCIAiCIJRKZEoJj1zmndW2Pq5Rjbd93LAqp4Bx8vGjGApNBc6R2aMpNHCCC/ykqUkdq+vUdyos+cTzv0HiDtP3Sgco5zqPUkGBqYi/jY0n209dY0NcKkcvZgDQ2M+Z0FruT2xswiP0BF9zle1x3cmLL77IkSNHHtPVBOHZ0a9fP65evUpMTAx6vZ7BgwfzzjvvsHr16lLPGT16ND///DPr1q1Do9EwfPhw3njjDfbu3QuY6o+5u7vz3Xff4ePjw759+3jnnXewsrJi+PDhj+vWBEEQBEEQzERQSnjksgpNQSlnhXW5ASmAbO0tANRWtTA6dMLK8BPfO9VFhsTkLrUJKmmZ8LwMWN0LjHcCVnaulTX8+5KWFsPpMxMoLDStuKdSefLphtOk3Mozt/F1efJ1WYRH7e8QnJIV/+7vcFuC8Aw4c+YM27Zt49ChQzRp0gQwFarv3Lkzc+bMoVq1asXO0Wq1LF++nNWrV9O2bVvg7kqJBw4coHnz5hYrLQIEBASwf/9+fvjhBxGUEgRBEAThiRDT94RHrigo5WBd/stNkiSOJR0EQCZzRCaTr+2/3gABAABJREFUY2Vtip2qMBLSogXu7iVkGeXeNAWk5Ap4aSC8Wvay4o/K9Rs/U1ioBYzIZAqcnJpxO8e02t7o9jX5un9jWtR4MgEz4Wnw/NahEp5VIhL5JOzfvx8nJydzQAqgffv2yOVyDh48WOI5R44cQa/X0759e/O+2rVrU716dfbv31/qtbRaLS4upU91LygoIDMz0+IhCIIgCIJQWUSmlPDIZdwJSmmsrcptm6PPQak1vXE3KkyfBF+X1AAoZYbSTyyqJWXrCt0WPMRoH05RLalaNadRtWp3ZHJ7sgsuA9CveXWq2Jdf5F0QniYSEiIwIQiP17Vr14p9AGNtbY2LiwvXrl0r9RylUomTk5PFfg8Pj1LP2bdvH2vXruXnn38udSwzZ85k2rRp93cDgiAIgiAIFSQypYRH5kaBni1pGVwrMGUKuSnLXr77TOzvbJo9HZXO9AbYqHAG4LSNEwClLbgH3Fl1D7B5sivaFRSYglJ5UgCRaxJ465sD5mMOKhED/nsQARqR8CUID2bixInIZLIyH2fPnn0sYzl58iTdu3dn6tSpdOzYsdR2kyZNQqvVmh8pKSmPZXyCIAiCIDwfxLtk4ZHpeTyRhJx887a7suyX246V35CfVTQtQEHA7f3I7K/xnXNnwj3yeLtT0+InZV6BXz6Am4mmbeWTqdeUlLyYGze2kJ9/BYAdf8Ivp+6ueFRNo8KmApligvDklBFsE3E4QagUY8aMYdCgQWW2CQgIoGrVqty4ccNif2FhIbdu3aJq1aolnle1alV0Oh0ZGRkW2VLXr18vds7p06dp164d77zzDpMnTy5zPDY2NtjYiCxfQRAEQRAeDRGUEh6ZpNwCABo52NLW1QEnRekvt5xsrTkgpVC3RWbtRZxrCt/I2tLcLpOlo94s+cST38OpH+9uO/tV1vArTJIMJCUtQJJMRdaVSnduZDgAt+lQ14NuDavxYnWnxz4u4RGT7jNd6G8Q2Pkb3IIgPFFubm64ubmV2y44OJiMjAyOHDlC48aNAdixYwdGo5GXX365xHMaN26MQqHgt99+o0ePHgAkJCRw6dIlgoODze1OnTpF27ZtGThwIDNmzKiEuxIEQRAEQXhwIiglPBI6oxHdnTft/2sYUGZACuBk4mHTedZGVKpGAKTLTFlHtrZlzDLN15q+1mgHL/4DAto81LgfREHBdSSpEJnMmrr1vuHUDTdOnzaN66XqznRtWHyVJEF42pkDUGKqniA8dnXq1CE8PJy3336bpUuXotfrGT58OH369DGvvJeamkq7du34z3/+Q7NmzdBoNAwZMoT3338fFxcXHB0dGTFiBMHBwTRv3hwwTdlr27YtYWFhvP/+++ZaU1ZWVhUKlgmCIAiCIFQ2UVNKeCSyDUbz9/ZW5U9bu3z5PAAqowMA1oW5HJI5AeDprCz9xII7Bc49G8ILb4Bt6SsIPSpFU/ZsbDxZc7wqQ767wP4LNwFwsSu7jpbwN/MEU4kq69JDJ0zAtn59nKp40ahaI1o2askX876ksLDwofrduXMnMpmMjIyMyhloBSQlJdG3b1+qVauGSqXC29ub7t27F6vZs3nzZlq3bo2DgwO2trY0bdqU6OhoizbJycnIZDLi4uIqfP2PP/6Y2rVrY2dnh7OzM+3bt7dYOS05OZkhQ4bg7++PWq2mRo0aTJ06FZ1OV2a/V69epW/fvtSsWRO5XM6oUaMqNJ6srCxGjRqFr68varWaFi1acOjQIYs22dnZDB8+HG9vb9RqNcGNG/J///3Wos2wYcOoUaMGarUaNze3Ep/TS5cu0aVLF2xtbXF3d2fcuHGlvob27t2LtbU1jRo1KvceNm36lddeG4abW9X7/vd41qxatYratWvTrl07OnfuzCuvvMKyZcvMx/V6PQkJCeTm5pr3zZs3j1dffZUePXrQqlUrqlatyg8//GA+vn79etLS0vjuu+/w9PQ0P5o2LWF6vCAIgiAIwmMgglLCI5F9Z8U9lVyGtbz0t8v6gnw2fPEpyf/5ybTD2gcAdeFNciQVSgoJDSwj06ho1b0nUEuqQJfOgYOdiDs+GACVqhqXbpneHPi62tKlvicd6pZc+0P4e3vWp7l1CAkh4dQxthzcwtvD32ZW1Fy++ubf5uNPOnmqvKANmN6wd+jQAa1Wyw8//EBCQgJr166lfv36FoGxhQsX0r17d0JCQjh48CDx8fH06dOHiIgIxo4d+1DjrFmzJosWLeLEiRPs2bMHPz8/OnbsSFpaGgBnz57FaDTy9ddfc+rUKebNm8fSpUv54IMPyuy3oKAANzc3Jk+eTMOGDSs8nqFDhxITE8N///tfTpw4QceOHWnfvj2pqanmNu+//z7btm3ju+++48yZM0REjuDzj8YTs+3u6myNGzdmxYoVnDlzhl9++QVJkujYsSMGg+nnvsFgoEuXLuh0Ovbt28fKlSuJjo5mypQpxcaUkZHBgAEDaNeuXYXuITc3j+DgF5k587MK3/ezysXFhdWrV5OVlYVWq+Xbb7/F3v7uYh5+fn5IkkSbNm3M+1QqFYsXL+bWrVvk5OTwww8/WNST+vjjj5EkqdgjOTn5Md6ZIAiCIAjCXSIoJTwSWXcypcrLkkqOP0bi4buZA3Lr6tS49Qs17dbSySGPL0NteaVpCW+6ErbBTB849l/Tto1DpY29ojJuHyQn5xwGgykQ5ezcnKx8UyZAROsaLO73Ei52ZWR5CcJTykapxMPDg2o+1eg/tD+tW77C9t92kJGRwfD3h+FV3QNbW1s6derEn3/+aT7v4sWLdO3aFWdnZ+zs7KhXrx5btmwhOTmZ0NBQAJydnZHJZOZiz1lZWfTr1w87Ozs8PT2ZN28ebdq0scj+8fPz49NPP2XAgAE4OjryzjvvALBnzx5atmyJWq3Gx8eHkSNHkpNjWonz1KlTJCYm8tVXX9G8eXN8fX0JCQlh+vTp5qlMKSkpjBkzhlGjRvHZZ59Rt25dAgMDGTNmDF988QVRUVEWmU33q2/fvrRv356AgADq1avH3LlzyczMJD4+HoDw8HBWrFhBx44dCQgIoFu3bowdO9Yis6Ukfn5+zJ8/nwEDBqDRaCo0lry8PL7//ntmz55Nq1atCAwM5OOPPyYwMJAlS5aY2+3bt4+BAwfSpk0b/Pz8GPjPodSs+wLHjx42t3nnnXdo1aoVfn5+vPTSS0yfPp2UlBRzYGP79u2cPn2a7777jkaNGtGpUyc+/fRTFi9eXCygGBERQd++fS1qHpWlT5+uTJgQQfv2bSvUXhAEQRAEQXi6iaCU8Ejc0pmCM67lrLj3x6nfAShUqFA69MFNl8uvgRLvObxFp+CX6RzWAZVKVfzEc9ug4M5KfVY24NW4UsdfEfpCU90oF+cQXn75d1zcI9Dmmd5w2duIcm1/W7KK5UE96WyiyqRSqdDp9USOHs7x+GP835rv2b9/P5Ik0blzZ/R6PQCRkZEUFBSwe/duTpw4waxZs7C3t8fHx4fvv/8eMBVevnr1KvPnzwdMmTl79+5l06ZNxMTEEBsby9GjR4uNYc6cOTRs2JBjx47x0UcfkZiYSHh4OD169CA+Pp61a9eyZ88ehg8fDpgKSsvlctavX2/O4Pmr9evXo9frS8yIGjZsGPb29qxZs6ZSnkOdTseyZcvQaDRlZjdptVpcXCp/GnJhYSEGg6HYz1O1Ws2ePXvM2y1atGDTpk2kpqYiSRKxu3Zy8UIiLduUnMmUk5PDihUr8Pf3x8fHlOm6f/9+6tevj4eHh7ldWFgYmZmZnDp1yrxvxYoVXLhwgalTp1bmrQqCIAiCIAjPEPHOWahUeQYj4xJSOJGdB4CLouxMqdQbyVgBVjIVcutq2MmS2GB8hUKscAsoa9qeKRuC1hOhxfAnkilVWJgFgNzanfbz/+Ra5gnzMQeV+K8l3CVJEvqCAgp1BUiSDJkkoc/Pr9Rr6AvyMRTkU2hlRJ9/9/MGaxsbZBUMpP2VJEns+X0Pv+/aTWirlmzbvo3N328npMUr2DoqWbVqFT4+PmzYsIGePXty6dIlevToQf369QHT0vZFigIt7u7u5uXqs7KyWLlyJatXrzZP31qxYoW5kPO92rZty5gxY8zbQ4cOpV+/fuaMqqCgIBYsWEDr1q1ZsmQJXl5eLFiwgPHjxzNt2jSaNGlCaGgo/fr1M4/r3LlzaDQaPD09i11PqVQSEBDAuXPnHui5K7J582b69OlDbm4unp6exMTEUKVKlRLbnj9/noULFzJnzpyHumZJHBwcCA4O5tNPP6VOnTp4eHiwZs0a9u/fT2BgoLndwoULeeedd/D29sba2hq5XM6UWfN5ucUrFv199dVXjB8/npycHGrVqkVMTAxKpSkz9Nq1axYBKcC8XVRY+88//2TixInExsZibS1+XgqCIAiCIDyvxF+CQqWKvZ3F+uu3zdtBtiVkOd0j+8YNNIBzjpJ8O0CmoxBTIKuqexl1ovR3Crs6eDz2gFReXirnzn1M+s0dAGTpVFzLvBtg8NSoaODt9FjHJDx+klTxXKjCggJWjBr2CEdTupEr16MoKduwDFt378bLNxCdXo9klOjx2muEt2vLr7/v5KVGTcztXF1dqVWrFmfOnDFda+RI3n33XbZv30779u3p0aMHDRo0KPU6Fy5cQK/X06xZM/M+jUZDrVq1irVt0qSJxfbx48eJj49n1apV5n2SJGE0GklKSqJOnTpERkYyYMAAdu7cyYEDB1i3bh2fffYZmzZtokOHDhV6LooCLWVZtWoVw4bd/ffdunUrLVu2BCA0NJS4uDjS09P55ptv6NWrFwcPHsTd3d2ij9TUVMLDw+nZsydvv/22ef+9NYT+8Y9/sHTp0nLHExsbS6dOnczbX3/9Nf369eO///0v//znP/Hy8sLKyoqXXnqJt956iyNHjpjbLly4kAMHDrBp0yZ8fX3ZGrODTyaPw9fHG78er5rb9evXjw4dOnD16lXmzJlDr1692Lt3b8mZrX9hMBjo27cv06ZNo2bNmiW2Kes5FQRBEARBEP4+RFBKqFS39aZpMi/YqxnrV5WWLvalts26lY77pRwKZDYYlKY3aJK1adqfvyobJ9sy3gwWZUopHn+B86TkheaAFIDO6iUA6no6sml4CFZy2QNnpgjC06B106bMWRDFTUUu/tX9cc5X8dNPP5V73tChQwkLC+Pnn39m+/btzJw5k6ioKEaMGPHQY7Kzs/y/np2dzbBhwxg5cmSxttWrVzd/7+DgQNeuXenatSvTp08nLCyM6dOn06FDB4KCgtBqtVy5cqVYdpZOpyMxMZGwsLByx9atWzdefvll87aXl5fFuAMDAwkMDKR58+YEBQWxfPlyJk2aZG5z5coVQkNDadGihcXqaoDF6nKOjo7ljgVMAbx7zyvKUqpRowa7du0iJyeHzMxMPD096d27tzlzLC8vjw8++IAff/yRLl26AOBdozYHDx/lm8Xz+cc9QSmNRoNGoyEoKIjmzZvj7OzMjz/+yFtvvUXVqlX5448/LMZ0/fp1AKpWrUpWVhaHDx/m2LFj5umWRqMRSZKwtrZm+/btZT6ngiAIgiAIwt+HCEoJlSrzzqp7NWxtCHcrvQDv0a2b+D16GchsAMhTV8MayHPWM65WJqHNG5V84rlf4OxmuH6nLonSthJHXzEZGabCx1U9e3OzMJTYS15AEhq1AmsrUaZNKM7axobBXy4jJ0uLpFChUCqp4upaqddIy87nujYfJ1sl3s53/19Y29jcd1+2ajU1AvxRSrfMU6uCAmtQWFjI0bjDhLZvDcDNmzdJSEigbt265nN9fHyIiIggIiKCSZMm8c033zBixAhzxtG99Z0CAgJQKBQcOnTIHEjSarWcO3eOVq1alTnGl156idOnT1tMPSuPTCajdu3a7Nu3D4A333yTCRMmEBUVRVRUlEXbpUuXkpuby4ABA8rt18HBAQeHimVsGo1GCgoKzNupqamEhoaaV7STyy1/htzP/RVRq9VlnmdnZ4ednR23b9/ml19+Yfbs2YBpxUK9Xl9sDHIrOUbJWGp/RSu4Fd1XcHAwM2bM4MaNG+aMsJiYGBwdHalbty4KhYITJ05Y9PHVV1+xY8cO1q9fj7+/P3Z2dhV+TgVBEARBEIRnlwhKCZUqo9CU6aSxLruW1I59PyIDkGTIrDQorN1wUpxnm3U1Vg5+q/QTNw6HnBt3t+2rlt62khmNenJzL5Cfb1o+/Y+015i2JQ1IAsDJVvHYxiI8W2QyGQobG6wLbJCUNiiUyvueUlcehd5U89/apvL7Bgjw86NTWCfGTBzJooWLcavqysSJE/Hy8qJ79+4AjBo1ik6dOlGzZk1u377N77//Tp06dQDw9fVFJpOxefNmOnfujFqtxsHBgYEDBzJu3DhcXFxwd3dn6tSpyOXycrMNJ0yYQPPmzRk+fDhDhw7Fzs6O06dPExMTw6JFi4iLi2Pq1Kn079+funXrolQq2bVrF99++y0TJkwATBlVs2fPZuzYsahUKvr3749CoWDjxo188MEHTJ8+nRdeeMHiugkJCcXGUq9ePRQKy///OTk5zJgxg27duuHp6Ul6ejqLFy8mNTWVnj17AqaAVJs2bfD19WXOnDmkpaWZz69ateyfbUWZUNnZ2aSlpREXF4dSqbQIEP7VL7/8giRJ1KpVi/PnzzNu3Dhq167N4MGDAVMmVuvWrRk3bhxqtRpfX19+3v4bm9evZfKnMwHTlMu1a9fSsWNH3NzcuHz5Mp9//jlqtZrOnTsD0LFjR+rWrUv//v2ZPXs2165dY/LkyURGRmJzJ0j61+fV3d0dlUpVbP9f3bql5fLlq2RkmPop+veoWrVquc+ZIAiCIAiC8PQRQSmhUmnvZEqVFZTKK8zj2s0UPFHhKKuHTtMRd9kvjLVrRRVjbumdSxLk3jR9HzIK3OuAd5PS21eyEyeHk57+KwAymRXn0k2ZH9U0Kqq72jKohd9jG4sgPAmL5i5k4keTebP3G+h0Olq1asWWLVvMARmDwUBkZCSXL1/G0dGR8PBw5s2bB5imX02bNo2JEycyePBgBgwYQHR0NHPnziUiIoJXX30VR0dHxo8fT0pKSrm1iRo0aMCuXbv48MMPadmyJZIkUaNGDXr37g2At7c3fn5+TJs2jeTkZGQymXl79OjR5n5Gjx5NQEAAUVFRzJ8/n5wc09TgNWvW0KdPn2LXLWlfSkoK3t7eFvusrKw4e/YsK1euJD09HVdXV5o2bUpsbCz16tUDTNlD58+f5/z588XOL69m2Ysvvmj+/siRI6xevRpfX1+Sk5NLPUer1TJp0iQuX76Mi4sLPXr0YMaMGRYBtf/9739MmjSJfv36cevWLbx9qjN8/GT6DRoKmFZijI2N5csvv+T27dt4eHjQqlUr9u3bZ86KsrKyYvPmzbz77rsEBwdjZ2fHwIED+eSTT8q8p4rYunUn//rXR+bton+PqVOn8vHHHz90/4IgCIIgCMLjJZPup1rv30RmZiYajQatVlvhGh1CxYw4c5F1124zOcCT4b4eJbZJzU7lq1GDcclS4mjVEp1jU+TWvzDLvhVV1bkcmNqz5M4LC2D6neLAEy+BqvTpgZXNYMhl5y7TimJWVrZUq9ab+Yc683P8VaZ2rcvgEP/HNhbhybo88j2ytm/HY8pHuPTta3Hs1OxDaG7lE+tygaqh3gR7eqDyNmV+ZN26SXamFkmpQqlUlroC24NKy8rnqjYfZ1slPi5lT2u9rS/kUp4Oe2s5NYoWI7h2Eox6CnLtMeYXoPd0JUW6hb3SHocca3S5uShtXSjUKbB3tsHW8f6nBVZETk4OXl5eREVFMWTIkEdyjbLcunWLdu3a4ejoyNatW7G1ffxThJ8mt3J0XL6di6NKgV+Vx1/D768y76xyam9fG7m88rJT8/PzSUpKwt/fv1hAVPzNYEk8H4IgCIIgVERF/2YQBXCESnFTV8jK1HROZuUBoFGUnimVo8/BPs/00itUmt6YZ9iYpur4OpeRvFdU3Bwee4HzggJTkV4rK1sCGxxky8VenLisBcBRJabtPVeesyL2JX5uUYkfZRw7dow1a9aQmJjI0aNH6devH4B5SuDj5uLiwq+//kq7du3Yv3//ExnD0+i5+/RKEARBEARBeCzE9D2hUnyRfI3o1HTztqui9JdWti4bG50cSQ6FChfkgE5pYPLLKnp3CC1+QqEOEneANsW0bWUDVo/npWs06rl+fRPXrptWHlMq3Zkbc44fjqaa27g5PJqMEUF4skoPvlV2gGLOnDkkJCSgVCpp3LgxsbGxlZ5Jdj9cXV2ZMmXKE7u+IAiCIAiCIDwvRFBKqBRX8nUAvORoS1ONHW1dSk7P271qBfF7f0O6s7qTTK5CQS52jt4Mfa1dyZ0f+jf8cnf5dGwe34pMaekxnD4z3rzt6FifG5mmFaZa13QjJNCVkMAn9+ZZeILuc+bz05hf9TRkv7z44oscOXLkSQ9DEARBEARBEIQnQASlhEqRYzAtF/6OtxuveTiX2Ca7IJs/Nn1vfnMuk2sAJfHKAqrXCC6984yLpq9O1cHZD+qXUnPqEcjPuwyAWl0dF+cQqld/m6zfTRlb/Zv70r5uyXWzBOHv5GkMqAmCIAiCIAiC8OwTQSmhUmQbTKvu2VqVXqYs7tIf5je3SvteyKzdWOyUTZ7MmtlVyyiWWlRL6qUB0GpcJY24YvSFprpRVVzbkioNY+PuW1y6ZVoh0EEl/vsIfyX7y9cnce2nsTdBEARBEARBEITixLtqoVLk3smUsrcqvcD56aN7ATDKJOQKb6wMeeTJrJFjpHVD39I715uCQI+zuHl2dgJXr37PpZTlAMisHIlYcYSCQqO5jaglJQiCIAiCIAiCIAgPTgSlhEqRWWjKlHKwLj1T6ua1FJSAjakp1oY8+nk60LvHy3ho1KV3rjet6Ify8S3N/uf5mdy6FWvelivrUFCoB+CfIf4EedgT4Gb/2MYjCI+dDJBAeioqTwmCIAiCIAiC8HckglLCQ5EkCZ0kcVNfCEAVZekvKcdTl8jHGtsCOQWADB1dfG1p4O1U8gmHlsOx7+DmedP2Y8yUKii4BkBVj9dwcm5GvnUwsBsHG2umdK372MYhPIVk9zOx7e8W0Pm73Y8gCIIgCIIgCE+SCEoJD0ySJPrGX+D3W1nmfVUUimLtjAYDR7ZuRJ9lekObrWmAAki2caZdw9qlX2D3HMi6cnfbJaCyhl4qSTJiNBaYg1Jq53/wv5O2pN5OBEQdKeF5JypNCYIgCIIgCIJQecQ7bOGB6STJIiDVxtkBhbz4m9Yftv+bi//9CTAFrGTWbgBcUMpxr1bySn0AFNzpu9si8GwIng0qbewlMRp1HDr0Gtk5CeZ9//0jixUH7gbG3BxVj3QMwjPkb580JCv2vT4vA0mCnAwrbNSeWCtFXTVBEARBEARBEB5c6QWABKEceYa7Rb9PhrzAmoYlZzKdPPcHADKssFaF4CB35CdbHcdtc7G1KSUuKkmgyzZ9XzPskQekAPLyUiwCUu7unUnRmupYtarpxrDWAcx47YVHPg5BeJKGjp+Abf36OLpWpVG1RrR5sQ1z5i+gsLAQSTICRoyFegpyc++r3507dyKTycjIyHgUwy5RUlISffv2pVq1aqhUKry9venevTtnz561aLd582Zat26Ng4MDtra2NG3alOjoaIs2ycnJyGQy4uLiKnz9jz/+mNq1a2NnZ4ezszPt27fn4MGDFn0OGTIEf39/1Go1NWrUYOrUqeh0ujL7vXr1Kn379qVmzZrI5XJGjRpVofHs3r2brl27Uq1aNWQyGRs2bCjW5ocffqBjx464uroik8k4EX+81P4kSaJTp06l9hUdHU2DBg1QqVS4u7sTGRlpcfyXX36hefPmODg44ObmRo8ePUhOTrZos2rVKho2bIitrS2enp5ERk7h1q2Mh75PQRAEQRAE4ekgglLCAytacc9aZqolJSul1k5OWjoAKskea/XL2EnXOe8ST8OXTpfeuT4XcyqK8vHUktLpTONUq31p0/ok9V9YSGa+qbh5rybeTOpUhxe8NI9lLMIz6m8yu61DSAh/no5ny8EtDB0+lJmzZ7Ny3feoHTyQyZ58dlR5QRsAvV5Phw4d0Gq1/PDDDyQkJLB27Vrq169vERhbuHAh3bt3JyQkhIMHDxIfH0+fPn2IiIhg7NixDzXOmjVrsmjRIk6cOMGePXvw8/OjY8eOpKWlAXD27FmMRiNff/01p06dYt68eSxdupQPPvigzH4LCgpwc3Nj8uTJNGzYsMLjycnJoWHDhixevLjMNq+88gqzZs0qt78vv/yy1J/7c+fO5cMPP2TixImcOnWKX3/9lbCwMPPxpKQkunfvTtu2bYmLi+OXX34hPT2dN954w9xm7969DBgwgCFDhnDq1CnWrVvHkSMnGDFi2kPfpyAIgiAIgvB0ENP3hAeWZzQFpWytyo5tWufmAUqURiUFgNxKx9cDXuHlqi+XfMKeeXB2yz0dlLEyXyUoLMwm9cr/SE1dDYCN0p2Nx2+y4Lc/Sc0wrfynURevlSUIpZFJTy46VRmzCm2USqp6uFNglNNvSD9it8Wy+eef6f/WEMaMHU3Mjl/R6fS0btOaBQsWEBQUBMDFixcZPnw4e/bsQafT4efnxxdffEHdunUJDQ0FwNnZNGV34MCBREdHk5WVRUREBBs2bMDR0ZHx48ezceNGGjVqxJdffgmAn58fQ4YM4c8//2TDhg288cYbREdHs2fPHiZNmsThw4epUqUKr7/+OjNnzsTOzo5Tp06RmJjIb7/9hq+vLwC+vr6EhISY7zMlJYUxY8YwatQoPvvsM/P+MWPGoFQqGTlyJD179uTll0v5WVWOvn37WmzPnTuX5cuXEx8fT7t27QgPDyc8PNx8PCAggISEBJYsWcKcOXNK7dfPz4/58+cD8O2331Z4PJ06daJTp05ltunfvz9AsYylv4qLiyMqKorDhw/j6elpcez27dtMnjyZn376iXbt2pn3N2hwN+P1yJEjGAwGpk+fjlxu+h0yduxYunfvjl6vR6FQsH//fvz8/Bg5ciQA/v7+DB7cky+/LPueK3KfgiAIgiAIwtNBZEoJD6xo+p5aXvbLyOOqaWU+a6M9ANnWCtpVb4e90r54Y4Mefp0Gl01T/nDyhXL6f1hXrq7j/PmZ5OVdBMBR05BVBy+RfDMXvUFCYSUj0L2EsQpCBUmShKQzIunvPHRGjDpDpT4knQH0Rvjrfql4mOp+QmZ5+jwUNgp0Oh3/GvEOx0/GE/31EjZ//xNGo5HOnTuj15syCiMjIykoKGD37t2cOHGCWbNmYW9vj4+PD99//z0ACQkJXL161RxUef/999m7dy+bNm0iJiaG2NhYjh49Wmwcc+bMoWHDhhw7doyPPvqIxMREwsPD6dGjB/Hx8axdu5Y9e/YwfPhwANzc3JDL5axfvx6DwVDiva1fvx69Xl9iRtSwYcOwt7dnzZo19/FslU6n07Fs2TI0Gk2Z2U1arRYXF5dKueajkpubS9++fVm8eDFVq1YtdjwmJgaj0Uhqaip16tTB29ubXr16kZKSYm7TuHFj5HI5K1aswGAwoNVq+e9//0v79u1R3FkwIzg4mJSUFLZs2YIkSVy/fp2NG2Po0KHlY7tXQRAEQRAE4dESmVLCAyuavqcuJVPKUKjn6p8JSAYVyCDTuTFWwCFlXQaX1qkuB3OuR4/lUD24soddTF7unWCUY0OcnVtQ3WcwGbknAJjx+gt0qOOBuyhwLhR5gCQoSW9E++XdOkYFwJXSmz+wolDGvX1X+6QFMqXVffdlJbNCkiQO7D7ArzG/0rlTZzZs2MDWjRtpVK8OMrkD/4n+L/41/NiwYQM9e/bk0qVL9OjRg/r16wOmzB/z2O4EWtzd3XFycgIgKyuLlStXsnr1anNGzYoVK6hWrVqx8bRt25YxY8aYt4cOHUq/fv3M9ZSCgoJYsGABrVu3ZsmSJXh5ebFgwQLGjx/PtGnTaNKkCaGhofTr1888rnPnzqHRaIpl+gAolUoCAgI4d+7cfT9399q8eTN9+vQhNzcXT09PYmJiqFKlSoltz58/z8KFC8vMknoajB49mhYtWtC9e/cSj1+4cAGj0chnn33G/Pnz0Wg0TJ48mQ4dOhAfH49SqcTf35/t27fTq1cvhg0bhsFgIDg4mC1b7mbJhoSEsGrVKnr37k1+fj6FhYV06tSaqKiypzcKgiAIgiAIzw6RKSU8kBsFeuKzTVPbXBUlxzbXLvmMtR9PxCgzvczkVi5ISOiUGaV3rL9TPFluDfXfBI1XZQ67RPkFVwGo6vEalwsHsDE+lxtZBQC86OMsAlLCc2fr7t24+fjR2Lsx7/Z5l1dff5VBgwZhbW1Ns6aNze1cXV2pVasWZ86cAWDkyJFMnz6dkJAQpk6dSnx8fJnXuXDhAnq9nmbNmpn3aTQaatWqVaxtkyZNLLaPHz9OdHQ09vb25kdYWBhGo5GkpCTAlLl17do1Vq1aRXBwMOvWraNevXrExMRU+LlQKpXltlm1apXFOGJjY83HQkNDiYuLY9++fYSHh9OrVy9u3LhRrI/U1FTCw8Pp2bMnb7/9tnn/vf1GRERUaMyxsbEW561atapC51XEpk2b2LFjh3lqZUmMRiN6vZ4FCxYQFhZG8+bNWbNmDX/++Se///47ANeuXePtt99m4MCBHDp0iF27dqFUKnnzzTfN2X2nT5/mvffeY8qUKRw5coRt27Zx6dIVRo2a/sjvUxAEQRAEQXg8RKaUcN+OZubw6pE/KVp7z1tV8pu2U/H7cEGBHBUym9oYZNf53tEZ/5CEEtsDoLsTlFLYVu6gS5B88WsuX/4POt1NAJIyXBm06pBFGxe78t+QCkJ5ZAo5mlG1ycrSIilVKBVKXKu4Vuo10rMKuJaZj5NagbfL3f8/MsX9f/bQumlTvvrqK3T21hgdjGjUGuJ3/TXAVHxa4NChQwkLC+Pnn39m+/btzJw5k6ioKEaMGHHfY/grOzvLBQ+ys7MZNmyYud7QvapXr27+3sHBga5du9K1a1emT59OWFgY06dPp0OHDgQFBaHVarly5Uqx7CydTkdiYqJFce7SdOvWzaLulJfX3WC6nZ0dgYGBBAYG0rx5c4KCgli+fDmTJk0yt7ly5QqhoaG0aNGCZcuWWfR972p/jo6O5Y4FTAG8e8/z8PCo0HkVsWPHDhITE83ZbkV69OhBy5Yt2blzpznzrG7duubjbm5uVKlShUuXLgGwePFiNBoNs2fPNrf57rvv8PHx4eDBgzRv3pyZM2cSEhLCuHHjgKKaVB8SHj6Izz+/+kjvUxAEQRAEQXg8RFBKuG+ns/MxAkqZDDelNW96OBdrI0kS6nzTm2FH+cvk2zZGsv6F2/W28LJTeLH2AORlQOZl0/ePOCglSUYuXlxKYWEmANbWDqTm+AHJuDnY8EI1Rxr5OFNVI7KkhFKUUKupNDKZDJlSbgoQKeTIlHLkDzClrsxrKK1AIQel1UP3batWE1ijBlk2RlKzUgGoU6cOhYWFHD56lAa1awNw8+ZNEhISLIIPPj4+REREEBERwaRJk/jmm28YMWKEOePo3vpOAQEBKBQKDh06ZA4kabVazp07R6tWrcoc40svvcTp06cJDAys8H3JZDJq167Nvn37AHjzzTeZMGECUVFRREVFWbRdunQpubm5DBgwoNx+HRwccHBwqNAYjEYjBQUF5u3U1FRCQ0Np3LgxK1asMBf9LnI/91dErVY/0HkVMXHiRIYOHWqxr379+sybN4+uXbsCmIvJJyQk4O3tDcCtW7dIT083F53Pzc0tdq9WVqbXrfHOIhq5ublYW1uX2EaSpEd6n4IgCIIgCMLjIYJSwn0rKnDe2U3D0np+JbbR5txGrbvzxtjaDYBMVT5ymZymVZsWP+Hof2DTSMzZF8pHG5TS6dLNAammTTagVlfnm72mZdpb13RjTs+KL7MuCM+DoKAgunfvzntjxvL5tI9xcHBj9vw5eHl5mWsLjRo1ik6dOlGzZk1u377N77//Tp06dQDTyncymYzNmzfTuXNn1Go1Dg4ODBw4kHHjxuHi4oK7uztTp05FLpcjk5VdvGvChAk0b96c4cOHM3ToUOzs7Dh9+jQxMTEsWrSIuLg4pk6dSv/+/albty5KpZJdu3bx7bffMmHCBMCUUTV79mzGjh2LSqWif//+KBQKNm7cyAcffMD06dN54YUXLK6bkFA807NevXrm4txFcnJymDFjBt26dcPT05P09HQWL15MamoqPXv2BEwBqTZt2uDr68ucOXNIS0szn19SAfF7FWUIZWdnk5aWRlxcHEql0iJA+FfZ2dmcP3/evJ2UlERcXBwuLi7moOCtW7e4dOkSV66YKpOdP3cOh8x8/Ly98K8SQNWqVUscW/Xq1fH39wegZs2aptfKe++xbNkyHB0dmTRpErVr1zavwtilSxfmzZvHJ598wltvvUVWVhYffPABvr6+vPjiiwB07dqVt99+myVLlhAWFsbVq1cZP/5zGjd+ocS6Y/dzn4IgCIIgCMLTQQSlhPtWVODctpQC5wBXUxMBsDIY0StN05QcA4PZ/9ZMbEvKgkreizkgJbOCOt0qdcz3KizMISvrFAAKhSv7LrkxNybOXEdKo1aUdboglOsBaqE/E1asWMG7w95hwNvD0Ov1tGzZii1btpgDMgaDgcjISC5fvoyjoyPh4eHMmzcPME1pmzZtGhMnTmTw4MEMGDCA6Oho5s6dS0REBK+++iqOjo6MHz+elJQUVKqysxQbNGjArl27+PDDD2nZsiWSJFGjRg169+4NgLe3N35+fkybNo3k5GRkMpl5e/To0eZ+Ro8eTUBAAFFRUcyfP5+cnBwA1qxZQ58+fYpdt6R9KSkp5oygIlZWVpw9e5aVK1eSnp6Oq6srTZs2JTY2lnr16gGmVerOnz/P+fPni51f0qqJ9yoK3AAcOXKE1atX4+vrS3JycqnnHD582BwUAtPKhwADBw4kOjoaMNWMGjz47lIUQwf9A4CR4ybRbPZnZY7pXv/5z38YPXo0Xbp0QS6X07p1a7Zt22Z+rbRt25bVq1cze/ZsZs+eja2tLcHBwWzbtg21Wg3AoEGDyMrKYtGiRYwZMwYnJydatnyJadNGlXntitynIAiCIAiC8HSQSeX95fs3lJmZiUajQavVVrhGh3DXzAtXmX/xOkO8qjCjpnex49cS/2T31rWkxB5AaVQhd/0XAJ79bHmjZfOSO137DzjzE3SJgqZDS25TCfT6DPbtDzVnSdnZBbH45DRi/0w3t/nizQb0bOLzyMYgPNsujx5N1tZteHz4IS79/2Fx7NQXh9HczGOvczLubasR7OmOytu0El32rZtkZd6pKaVUlroC24NKyyrgqjYPJ1sl1V3KzjTM0BdyMU+HnbWcQNs7wZ/rp8CgoyDXHmN+Acrq1c3T9+wUdvhp/ADQ3rhOXlYmMrk9Ll7uKCp5GmJOTg5eXl5ERUUxZMiQSu27Im7dukW7du1wdHRk69at2No++vp2T7NbOTou387FQaXAv4pd+Sc8YpmZppVR7e1rI5dX3gcI+fn5JCUl4e/vXywgKv5msCSeD0EQBEEQKqKifzOITCnhvhVN31OXkClVqNOxdtpECu/UTCm0qYYSyJXraFy/RumdmgucP9o3PdnZ5+4EpGRYWzvi6dkD7SE9AJM61aZVTTdqV61YbRhB+LuTPYacr2PHjnH27FmaNWuGVqvlk08+ATBPCXzcXFxc+PXXX1m8eDH79++nXbt2T2QcgiAIgiAIgvA8EEEp4b5l3SlUbFdCUCohKY7CggIkJKwUtbFWNeai0zGOeO9gkDK69E71d4JSj7yWlKlmi5NTUxy9lnHsSiZXtabl7Bv7OlPHU3zqK5StvFpHz5VKyrOdM2cOCQkJKJVKGjduTGxsbKVnkt0PV1dXpkyZ8sSuL5RFRqW98ARBEARBEIQnTgSlhArbnq7ly4vXOZ+bD4C3Slmsza64LQAUWslQ23dBnX+DA74buG2bgcq6hBoxB782Tdu7ZpqSgfLRZUrl518hK9sUgLK2rsLrX+0ju6DQfNzZrvj9CILwaL344oscOXLkSQ9DEARBEARBEIQnQASlhApbfjmdo5mmjCYZ0MiheFbTrfRU1IBjngzJERTkYeukpk31UByUJUyLi5kKhXl3t518H8nYr1xdz5kzE8zbRisfsgsKsZLLCA5wpW41RwKegnopwjPk+SvHJwiCIAiCIAiCUKlEUEqosJw70/ZG+3rQ3cOJILvimU+O8anokWMlySkE5NY6tvb5peQpTwb93YBU98XgVgeqBD2SsWdkHAJALldhpXDjfGYzIAc3exu+G/ryI7mmIAiCIAiCIAiCIAilE0EpocLyjabMkKYaO2rbqUtsY5WRjx5bcu39UQIZtral1+DR5dz9vn4vsH500+cK8q8B4OU7hVf/7YjOYLq2mLInCIIgCIIgCIIgCE9G8UrVglCKfKNp1T2VvPjL5npSIouG9CEf05Q+mcyURZVrU1B6h0XFzeXWjzQgBZBfYApKpedp0BmMKKxkBLnbMzjE75FeV3hePcFi6I91VqGYwvh3J8r6C4IgCIIgCI+SyJQSKizPcCcoZVX8bcp/1s5Gnp19Z0uG0sqWZLe95AelF+9IkuDcL4+luHly8lKuXvuevLyLAGTrnYF06lbTsDEy5JFdVxD+TiQRfBIEQRAEQRAE4REQQSmhwoqm76lLyJS6nXoJV6yokudMVtW3cDGcZEngf2nl1ap4Rxf3wpred7dVmkcyXkmSSL64BIPBFCzL0dvz8YY0QIaTWvFIrik8D/7uuSN/9/sTBEEQBEEQBOFpIYJSQrkSc/M5lZ3PTX0hAGqr4kEptxuFGLFCLndEJldhJddhp7Cjg2+H4h1qL5u+2rmBz8vQoHfxNpWgsDDLHJCKz/uU5QfkZOtNb7gbeD+aQJggPFMeMgFKLEAoCIIgCIIgCMLDEDWlhDLlGox0PHyOd04lA6YsKU+b4llGSr3pq9HGHgCFnTUH+h7gtcDXinequzPNr3pz6LMK6nZ7BCOH/PxU01gULiRn1SFb78DbLf359f3WvN+h5iO5piA864aOH49t/fpYazS4ObjRqWknFsxaQGFh4UP1u3PnTmQyGRkZGZUz0ApISkqib9++VKtWDZVKhbe3N927d+fs2bMW7TZv3kzr1q1xcHDA1taWpk2bEh0dbdEmOTkZmUxGXFxcha//8ccfU7t2bezs7HB2dqZ9+/YcPHjQos8hQ4bg7++PWq2mRo0aTJ06FZ1OV2a/V69epW/fvtSsWRO5XM6oUaMqNJ7du3fTtWtXqlWrhkwmY8OGDeWO+fVXw4k/dtiizYwZM2jRogW2trY4OTmVeK1Lly7RpUsXbG1tcXd3Z9y4cRavoUGDBiGTyYo96tWrZ24zc+ZMmjZtioODA+7u7rz22mv8+WdSufdZkfEJgiAIgiAITwcRlBLKdFNfSI7BiBwIdrLj0yAvbEqYvmeQmQJVmQ71ASiwq1J6p7o7Bc4Vj6aWVGFhFoeP9OZY3AAAbue7cOTibQCCPBwIdLcvfUVAQaiwv2+aUIeQEC6fO8eRk0cY+K+BzP98Pl988cWTHpZZeUEbAL1eT4cOHdBqtfzwww8kJCSwdu1a6tevbxEYW7hwId27dyckJISDBw8SHx9Pnz59iIiIYOzYsQ81zpo1a7Jo0SJOnDjBnj178PPzo2PHjqSlpQFw9uxZjEYjX3/9NadOnWLevHksXbqUDz74oMx+CwoKcHNzY/LkyTRs2LDC48nJyaFhw4YsXry4wmP28fXj3X5vcDM9zdxGp9PRs2dP3n333RL7MBgMdOnSBZ1Ox759+1i5ciXR0dFMmTLF3Gb+/PlcvXrV/EhJScHFxYWePXua2+zatYvIyEgOHDhATEwMer2e118fRk5Obpn3Wd74BEEQBEEQhKeHmL4nlCn3TnFzjbUVP74YZHFMkiTWzPyQq8fjwdoUqJLJnZAwklWvhJeWJEH6Obh955PuR1Tg/PbtA2i1dz/ZP3C5Gpdv5wFQTaN+JNcUBKDC5Zikp3zem41SSVV3d+xV0GdwH3Zu3cmmTZuIiIjg3eHD2fbLdnQ6HS1btWbRooUEBZl+Nly8eJHhw4ezZ88edDodfn5+fPHFF9StW5fQ0FAAnJ2dARg4cCDR0dFkZWURERHBhg0bcHR0ZPz48WzcuJFGjRrx5ZdfAuDn58eQIUP4888/2bBhA2+88QbR0dHs2bOHSZMmcfjwYapUqcLrr7/OzJkzsbOz49SpUyQmJvLbb7/h6+sLgK+vLyEhdxc4SElJYcyYMYwaNYrPPvvMvH/MmDEolUpGjhxJz549efnllx/oeezbt6/F9ty5c1m+fDnx8fG0a9eO8PBwwsPDzccDAgJISEhgyZIlzJkzp9R+/fz8mD9/PgDffvtthcfTqVMnOnXqdF9jnj5zNt+tXMHZ0ydpUtsPgGnTpgEUyyYrsn37dk6fPs2vv/6Kh4cHjRo14tNPP2XChAl8/PHHKJVKNBoNGs3dadQbNmzg9u3bDB482Lxv27ZtFv1GR0fj7u5OXNxpwsJeKvUeyhufIAiCIAiC8PQQmVJCmYqCUrYl1JHS6/JNAak7ZNZeWCuvEFd9E84NHYp39tsnsLgZHL7zJkpp+0jGnJ9/BQAX5xA2XJ7J/xLeIKyeBzNef4EWNVwfyTUF4V5/jU1JkoROr0d/z0On01Xqo1Cvo1CvR6+33F8ZATCVSoVOp2PQoEHEHT9O9NdL2Pz9T0iSROfOndHrTfN3IyMjKSgoYPfu3Zw4cYJZs2Zhb2+Pj48P33//PQAJCQlcvXrVHFR5//332bt3L5s2bSImJobY2FiOHj1abAxz5syhYcOGHDt2jI8++ojExETCw8Pp0aMH8fHxrF27lj179jB8+HAA3NzckMvlrF+/HoPBUOJ9rV+/Hr1eX2JG1LBhw7C3t2fNmjUP/fyBKXtn2bJlaDSaMrObtFotLi4ulXLNh6XT6Vi54t84ODpSp179Cp+3f/9+6tevj4eHh3lfWFgYmZmZnDp1qsRzli9fTvv27c0BxJJotVoAnJ1FTUBBEARBEIS/C5EpJZQp986buZKCUum3rwOm5eJdrLuTa18DBds56PU7PWxK+DT+2p0Alo0G7N2gTvdHMuaiWlL29rW5lFkNCS29mvjQro5HOWcKwqOh1+tZsGTpE7n2Bx98gFKprPgJ90TUJEli/6797N6xm86dOrNhwwZ+2fwTDWrXQia3Z+WK/1AjyJ8NGzbQs2dPLl26RI8ePahf3xTACAgIMPdVFGhxd3c31/nJyspi5cqVrF69mnbt2gGwYsUKqlWrVmxYbdu2ZcyYMebtoUOH0q9fP3M9paCgIBYsWEDr1q1ZsmQJXl5eLFiwgPHjxzNt2jSaNGlCaGgo/fr1M4/r3LlzaDQaPD09i11PqVQSEBDAuXPnKv7clWDz5s306dOH3NxcPD09iYmJoUqVkqc3nz9/noULF5aZJfU43DvmqlU9WbrqR1xcy5iS/RfXrl2zCEgB5u1r164Va3/lyhW2bt3K6tWrS+3TaDQyatQomjd/kbp1g0ptJwiCIAiCIDxbRKaUUKaiTKmSVtxLPGvKZlAYjBhs3O/UacrGReVCA7cGxTvT5Zi+dl8II46AT9NKHWta+m/s2RtCyuX/ArD1jJELaaZrOqiKF2cXhAfyHNQj27p7NxovLzw0Hrzb511eff1VBg0ahLW1NU0a35025erqSq1atThz5gwAI0eOZPr06YSEhDB16lTi4+NLuwQAFy5cQK/X06xZM/M+jUZDrVq1irVt0qSJxfbx48eJjo7G3t7e/AgLC8NoNJKUZJoiHBkZybVr11i1ahXBwcGsW7eOevXqERMTU+HnoiIBvVWrVlmMIzY21nwsNDSUuLg49u3bR3h4OL169eLGjRvF+khNTSU8PJyePXvy9ttvm/ff229ERESFxhwbG2tx3qpVqyp0XkljbtuhI+P+NZj0tOJjriwrV67EycmJ1157rdQ2kZGRnDx5km+/nW3eFxERYXGfgiAIgiAIwrNHZEoJJTJKEkcyc9mbYVopz8naqlib62dOAGBtMKK/U7S89ctdGNxrIXJZCfHOolX3HlEtqevXf6KgwPQpvFGS8f1JV7IKTKs9eWpUj+SaglARCoWCke9GkJ2pRVKqUCgUpWbLPKib2QVc1eajUSvwcbk7NVahuP+AbOumTfnqq6/Q2yswOBhwVDtyYteJcs8bOnQoYWFh/Pzzz2zfvp2ZM2cSFRXFiBEj7nsMf2VnZ/lzIzs7m2HDhjFy5MhibatXr27+3sHBga5du9K1a1emT59OWFgY06dPp0OHDgQFBaHVarly5Uqx7CydTkdiYiJhYWHljq1bt24Wdae8vLwsxh0YGEhgYCDNmzcnKCiI5cuXM2nSJHObK1euEBoaSosWLVi2bJlF3/eu9ufo6FjuWMAUwLv3vL9mLZXn3jHXqv8SjV6ow/+t+g9Np0+t0PlVq1bljz/+sNh3/fp187F7SZLEt99+S//+/UsNAA4fPpzNmzeze/duXF1zKFpk4JNPPnnoYvSCIAiCIAjCkyWCUkKJfkrLYNipi+btGraWQZ3DP/3ApV2mYuI6VVWUMlPQyrNNSPGAVF4GpP8JuaYV8FA+mk+0C/WmeiNJBf1ZsL8WDaoH8I9X3Ah0t7d4ky4Ij5tMJkOpUKBQKJDufL2vKXUVoFBIWCsMKBTKh+7bVq0mMCCAHJWMlKwUAOrUqUNhYSGHjxylQW1TJtPN9JskJCRQt25d87k+Pj5EREQQERHBpEmT+OabbxgxYoR5TPfWdwoICEChUHDo0CFzIEmr1XLu3DlatWpV5hhfeuklTp8+TWBgYIXvSyaTUbt2bfbt2wfAm2++yYQJE4iKiiIqKsqi7dKlS8nNzWXAgAHl9uvg4ICDQwl19EpgNBopKCgwb6emphIaGkrjxo1ZsWIF8r+sbno/91dErVY/0HmlMRqN6HQF5Te8Izg4mBkzZnDjxg3c3d0BiImJwdHR0eK1AqYV9s6fP8+QIUOK9SNJEiNGjODHH39k586d+Pv7k5l50nzc3d3d3L8gCIIgCILwbBJBKaFECTn5ALgprallq2JAtbsFwjOuX2PXd3dXfJIpfAAotMrBzucvBWgNhfBVMGRdubuvkoNSOTnnydAeITcvGYC0PE8ydY60qlmFt1sFlH2yIDyop3wFvcoWFBRE9+7deW/MWD6fNhUHBzdmfTkHLy8vunc31YcbNWoUnTp1ombNmty+fZvff/+dOnXqAKaV72QyGZs3b6Zz586o1WocHBwYOHAg48aNw8XFBXd3d6ZOnYpcLr8zHbh0EyZMoHnz5gwfPpyhQ4diZ2fH6dOniYmJYdGiRcTFxTF16lT69+9P3bp1USqV7Nq1i2+//ZYJEyYApoyq2bNnM3bsWFQqFf3790ehULBx40Y++OADpk+fzgsvvGBx3YSEhGJjqVevXrGMtJycHGbMmEG3bt3w9PQkPT2dxYsXk5qaSs+ePQFTQKpNmzb4+voyZ84c0tLSzOf/NaPor4oyobKzs0lLSyMuLg6lUlks6HOv7Oxszp8/b95OSkoiLi4OFxcXqlevXuKY585fyI3rV+nc7XXzeZcuXeLWrVtcunQJg8FgHktgYCD29vZ07NiRunXr0r9/f2bPns21a9eYPHkykZGR2NjYWIxp+fLlvPzyy8WeZzBN2Vu9ejUbN27EwcGBa9eukZWVjqOjHWXN1itvfIIgCIIgCMLTQwSlhBLd0puyGfpXc2W8v2UR4F1ntwOmCRQK23YorDy46XKMTI80oKtlR/kZdwNSzn7gXhfcalfaOCVJ4uixf6DT3X0z92uCDgBHUUdKECrVihUr+NewYQx4exh6vZ5XXmnFli1bzAEZg8FAZGQkly9fxtHRkfDwcObNmweYprRNmzaNiRMnMnjwYAYMGEB0dDRz584lIiKCV199FUdHR8aPH09KSgoqVdlTbhs0aMCuXbv48MMPadmyJZIkUaNGDXr37g2At7c3fn5+TJs2jeTkZGQymXl79OjR5n5Gjx5NQEAAUVFRzJ8/n5wcUx26NWvW0KdPn2LXLWlfSkoK3t7eFvusrKw4e/YsK1euJD09HVdXV5o2bUpsbCz16tUDTNlD58+f5/z588XOL2/VxBdffNH8/ZEjR1i9ejW+vr4kJyeXes7hw4cJDQ01b7///vsADBw4kOjo6BLH3OilxqxYv4Wate8Gu6ZMmcLKlSuLjeX333+nTZs2WFlZsXnzZt59912Cg4Oxs7Nj4MCBfPLJJxbj0Wq1fP/99+aVGP9qyZIlALRp08Zi/1dffcqwYaWvYFje+ARBEARBEISnh0yqjPXCnzGZmZloNBq0Wm2Fa3Q8b94+mcxPaRlMD/JiqLebxbHPZw1AcfQWdjoZBo/R2BmSmPvKfEa+NJKh9YdadnQrCRY0AoUtfHi10sdpMOSzc5fpDd7Z2/W5pHXl/869hlqpYENkCDU9KjalRhAqKnXMWDJ//hmPSRNxGTjQ4tipqMNo0vLY73yJKm2rEuzpjsrbtBJd9q2bZN1TU8rNza2k7h9YenYBVzLycFIrqe5a9nTVDH0hF/N02FnJCbS7E/y5fgoMOgryHDDm5aP08TFP37NV2OKv8QcgM+0GuZlaZHJ7nKu6oVRX7mcbOTk5eHl5ERUVVeKUrkft1q1btGvXDkdHR7Zu3Yqt7fM99fd2jo6U27k4qBT4V3k09QDvh2n6noS9fS3k8sqbApufn09SUhL+/v7FAqLibwZL4vkQBEEQBKEiKvo3g8iUEkp0S28qEO6iKP4SUSWkYkCNldEKA2BjXcChfxzCxsqmWNu7xc0fUR2pwsw738lZfHwYuTojPw1/hSAPe1SK4sXZBeHv7/F9zlAZVzp27Bhnz56lWbNmaLVaczZN0ZTAx83FxYVff/2VxYsXs3//ftq1a/dExiEIgiAIgiAIzwMRlBIs5BqMHM3M4XK+aQqcSwmBHWWOgTzAYKsGwKCUFQ9I5Wth5yxIv1N/xaZyg1IGQx6JiXPMdaQkmT25OiMAPi5qEZAShEokPeJA15w5c0hISECpVNK4cWNiY2MrfXXC++Hq6sqUKVOe2PUFQRAEQRAE4XkhglKChcjTF9marjVv35spdfPyJbZ/vZB8yR5kkK+oiQLIkGmKd3TmJziw+O62o1fxNg8hPf03Ui5Hm7cvaU3pgFZyGfY24mUtPELlFOAW7s+LL77IkSNHnvQwhHI8hzP9BUEQBEEQhMdAvHsXLJzPNa2656tS8qKjLfXs1eZj329cQta5M3DnPbncyg2DPJ9sp4ziHeXdNn31bAQNekGtzpU6zvx8U/F0e4cGfP1HTU6m1yE4wJUOdT2wtpKXc7YgCIIgCIIgCIIgCE+aCEoJFvKMpilwS+r68pLGsqjt+aun8QCUMg+wb4+T7CiJ7unIapeQOaLLNX2t9iIER1bqGA2GXHJyLwCgsmvMjpQXkcngwNCXkctFFosgPDYie0YQBEEQBEEQhIcgglKChVyDKSilLiHbyOliJmCH2uBMgbUH1jI5+lf0DG06tFhb9KZl1VFW7mpNFy8u43ziLPP2nzedAbBXWouAlPBY3fd0JvHyFARBEARBEARBsCCCUoKFPIPpjbbtX4JSBYYCnLLl5ClBkpuWSM+x0zCj/QeWHUgSZF2DnHTTtqJyl1NPS9tu/l5b4MCMXaZ6Vo5qRaVeRxCE8ogsqeeCCKYKgiAIgiAIj5AISglmRkkyT9/7a1AqI/c2EkoA8uz9sAJUzjWKd/LLh5YFzpWVG5TKy78MwL6MmXz7hxpvFzuCPNX0aupTqdcRhIche4Lv5EWoSBAEQRAEQRCEZ4UISgnojEbeOHaew5mmOlAywN7Kynz8l13/49COn7BVKgEDMpkaCQnrKk7FO7u0z/RVbg22VSAgtFLGmJl1kszMeHS6NACu57gjkcOwVjX4R3PfSrmGIAiCIAiCIAiCIAiPjwhKCZzPLTAHpAC6uGnMNaUy87UcWr4SdYHVnQwMGZJNHtn2Z3mp7svFOyvIMn0d+BP4tqiU8RkMuRw9+hYGg2mMksyec3dmBzqoxEtYeMxkYj6TIAiCIAiCIAhCZShezVp47hQVN/eyUfBH8zosq+dnPnbxyp+oC0xZU1aq5ijsu2NwOU6++gZBdUvIUCoKSintK218eXkpGAy5yOU2XNc145vjb3DuuqmQupOtstKuIwgCDB0/Htv69bF2cqKKQxU6Ne3EwlkLKSwsfKh+d+7ciUwmIyMjo3IGWgFJSUn07duXatWqoVKp8Pb2pnv37pw9e9ai3ebNm2ndujUODg7Y2trStGlToqOjLdokJycjk8mIi4ur8PU//vhjateujZ2dHc7OzrRv356DBw9a9DlkyBD8/f1Rq9XUqFGDqVOnotPpyu171apVNGzYEFtbWzw9PfnnP//JzZs3yzxn9+7ddO3alWrVqiGTydiwYUOJ7c6cOUO3bt3QaDR4uznTt0tbrlxOMR8fNmwYNWrUQK1W4+bmVuJzeujQIdq1a4eTkxPOzs6EhYVx/PjxEq93/vx5HBwccHJyKve+9+49TO/ew/H29ivzHgRBEARBEIRngwhKCeTdCUo5WFtRXW2D/J5MkOs3TTWc5EYjCnULFFY+eFpb83LPl3FzdbvbyYn18N2bdwuc2zhU3vjyTG+G7OyC2HhxJAevNaGOpyN9mvrQPMCl0q4jCJXuflfoe0p0CAnhckICR08eZeC/BjL/8/l88cUXpoNPQaJYRYI2er2eDh06oNVq+eGHH0hISGDt2rXUr1/fIjC2cOFCunfvTkhICAcPHiQ+Pp4+ffoQERHB2LFjH2qcNWvWZNGiRZw4cYI9e/bg5+dHx44dSUszTUM+e/YsRqORr7/+mlOnTjFv3jyWLl3KBx98UGa/e/fuZcCAAQwZMoRTp06xbt06/vjjD95+++0yz8vJyaFhw4YsXry41DaJiYm88sor1K5dm507dxJ78DDvvDcWpY3K3KZx48asWLGCM2fO8MsvvyBJEh07dsRgMACQnZ1NeHg41atX5+DBg+zZswcHBwfCwsLQ6/UW19Pr9bz11lu0bNmyzLEXyc3N44UXarFw4fwKtRcEQRAEQRCebmLuk0DuneLmannxGGXG4SMAKAymd6JKKYdXWvbGu14zy4a/TgPtJdP3Cluwc+NhFRSkkXDuY3JyzpnGp/IhK9+UrTEhvBZtark/9DUE4YE9m/GmCrFRKqnq4YGDSkafwX3YuXUnmzZtIiIign9FDmfrtl/Q6XS0bNmaRYsXEhQUBMDFixcZPnw4e/bsQafT4efnxxdffEHdunUJDTXVl3N2dgZg4MCBREdHk5WVRUREBBs2bMDR0ZHx48ezceNGGjVqxJdffgmAn58fQ4YM4c8//2TDhg288cYbREdHs2fPHiZNmsThw4epUqUKr7/+OjNnzsTOzo5Tp06RmJjIb7/9hq+vKavT19eXkJAQ832mpKQwZswYRo0axWeffWbeP2bMGJRKJSNHjqRnz568/HIJU5UroG/fvhbbc+fOZfny5cTHx9OuXTvCw8MJDw83Hw8ICCAhIYElS5YwZ86cUvvdv38/fn5+jBw5EgB/f3+GDRvGrFmzyhxPp06d6NSpU5ltPvzwQzp37szs2bMBuJ2rw9rJE3ubu38uvPPOO+bv/fz8mD59Og0bNiQ5OZkaNWpw9uxZbt26xSeffIKPj2kRiqlTp9KgQQMuXrxIYGCg+fzJkydTu3Zt2rVrx759+8ocG0CHDi3p0OEV7O1rldtWEARBEARBePqJTCnBnCn11xX3jJKR3PNJAOhUpiCTzCYLK89AisnXmr52+ASGbAebh5++d+PGFtLStpGbewGAS1ne3MjKB8BBpXjo/gXhcZEkCYMhH6Mxz/wwGHIr/SEZ8zD+dd9DZGvJ7mRNqlQqdDodgwYN4ljccaK/XsLm7zchSRKdO3c2Z79ERkZSUFDA7t27OXHiBLNmzcLe3h4fHx++//57ABISErh69Srz55syXd5//3327t3Lpk2biImJITY2lqNHjxYby5w5c2jYsCHHjh3jo48+IjExkfDwcHr06EF8fDxr165lz549DB8+HAA3Nzfkcjnr1683Z/D81fr169Hr9SVmRA0bNgx7e3vWrFnzwM/fvXQ6HcuWLUOj0dCwYcNS22m1Wlxcys4ADQ4OJiUlhS1btiBJEtevX2f9+vV07tz5ocZoNBr5+eefqVmzJmFhYbi7u9O+9Svs2PZzqefk5OSwYsUK/P39zQGoWrVq4erqyvLly9HpdOTl5bF8+XLq1KmDn5+f+dwdO3awbt26MjO3BEEQBEEQhL83kSn1HLulL2RlajorUk1T7tT3BKWOXT7MD9Mm45RpeokUrbiXptKhdPxLHSdJAr2pxhP1e4JjtUoZn05nGpezcytm7a7HkWuBFEqmaTvOtiIoJTyNSp7bZjTmcTi+1WMZQTpw4Z7tNq1PYGVl+0B9SZLE/l372b1jN507dWbDhg1s/3kz9WvVRCa3Y8XylQTVDmDDhg307NmTS5cu0aNHD+rXrw+YMn+KFAVa3N3dzbWDsrKyWLlyJatXr6Zdu3YArFixgmrViv8Madu2LWPGjDFvDx06lH79+jFq1CgAgoKCWLBgAa1bt2bJkiV4eXmxYMECxo8fz7Rp02jSpAmhoaH069fPPK5z586h0Wjw9PQsdj2lUklAQADnzp17oOeuyObNm+nTpw+5ubl4enoSExNDlSpVSmx7/vx5Fi5cWGaWFEBISAirVq2id+/e5OfnU1hYSNeuXR86uHPjxg2ys7P5/PPPmT59OrNmzeLHTT/z/jv98XDbQkD3u1ldX331FePHjycnJ4datWoRExODUmn63eDg4MDOnTt57bXX+PTTTwHTv88vv/yCtbXpd8rNmzcZNGgQ3333HY6OjhUfpIy/dZaiIAiCIAjC80ZkSj3H/pOazqyka9zQmabE1bdXm48diP/NHJACUMndSffYQ4E6DSvrv7xsDDow3imCrLSrtPHp9bcBsFK9wMGrdTCioFVNN4a1DsC/SuVdRxAES1t370bj5YWboxvv9nmXLq93YdCgQVhbW9Ok8Uvmdq6urtSqVYszZ84AMHLkSKZPn05ISAhTp04lPj6+zOtcuHABvV5Ps2Z3pwNrNBpq1So+NatJkyYW28ePHyc6Ohp7e3vzIywsDKPRSFKSKcMzMjKSa9eusWrVKoKDg1m3bh316tUjJiamws9FUaClLKtWrbIYR2xsrPlYaGgocXFx7Nu3j/DwcHr16sWNGzeK9ZGamkp4eDg9e/a0qA11b78REREAnD59mvfee48pU6Zw5MgRtm3bRnJysvl4bGysxXmrVq2q0L0a70zl7t69O6NHj6ZRo0aMGjuOVu3CWL1yuUXbfv36cezYMXbt2kXNmjXp1asX+fmmTNa8vDyGDBlCSEgIBw4cYO/evbzwwgt06dKFvLw8AN5++2369u1Lq1YlB2sf9B4EQRAEQRCEZ4vIlHqOFQWjmjjaEuriyDs+d+tA5WRnIANkMmuUjm+jyU8izZCFrVQVB5e7BW859wvcOHN3W/HwwaL0mzu5fPm/3Ly5EwC95AqAs62S//yzWRlnCsJj8ACFvuVyNU0a7CY7MwNJqUKhUJSaLfOg0rMLuKbNx1FlTXXXu/8P5XJ1qeeUlnDSumlTvvrqKwwONujt9TioHDi5+2S5Yxg6dChhYWH8/PPPbN++nZkzZxIVFcWIESPu93aKsbOz/NmSnZ3NsGHDzHWV7lW9enXz9w4ODnTt2pWuXbsyffp0wsLCmD59Oh06dCAoKAitVsuVK1eKZWfpdDoSExMJCwsrd2zdunWzqDvl5eVlMe7AwEACAwNp3rw5QUFBLF++nEmTJpnbXLlyhdDQUFq0aMGyZcss+r53tb+ijKKZM2cSEhLCuHHjAGjQoAF2dna0bNmS6dOn06RJE4vzPDw8yr0HgCpVqmBtbU3dunUt9vsH1ST+8EGLfRqNBo1GQ1BQEM2bN8fZ2Zkff/yRt956i9WrV5OcnMz+/fuR36lVuHr1apydndm4cSN9+vRhx44dbNq0yZwVJkkSRqMRa2trli1bxltvvfVA9yAIgiAIgiA8W0RQ6jmWdafOSngVDcN9Lf/gv3TuT3wBG6Mc5Gpk6Bk74X1UtgrkRdP8rp+G1b3unqS0B6uHf0lduDCPrCzTG2BJkvHlbtPUI41aTNkTnk0ymQwrKzVyeQGSXIVcrnjgKXWlsbKyQiaXIbd6+L5t1WoCAwLIVcu5lGlawKBOnToUFhZy+MhR6teqCZimYCUkJFgEMXx8fIiIiCAiIoJJkybxzTffMGLECHPG0b31nQICAlAoFBw6dMgcSNJqtZw7d67UDJoiL730EqdPn7Yoml0emUxG7dq1zQW133zzTSZMmEBUVBRRUVEWbZcuXUpubi4DBgwot18HBwccHCq24qjRaKSgoMC8nZqaSmhoqHlFO/lfFpwo6f5yc3PN0+CKWFlZAabgjlqtvq/npYhSqaRp06YkJCRY7L94IREvn+qlnGW6piRJ5vvKzc1FLpeba5IB5u2ibKz9+/dbvBY2btzIrFmz2LdvH15eXg98D4IgCIIgCMKzRQSlnmPZhaY3Bw7WVsWOVf8zHbAHyfTm1gDYOthYNsq8YvqqcoIaoVDr4YrsFsnLuwyA1nooi/fak6g1ZUiIKXuCUDnuN9lLQiIoKIju3bsz8v0xfD5tKg4OVZj1ZRReXl50794dgFGjRtGpUydq1qzJ7du3+f3336lTpw5gWvlOJpOxefNmOnfujFqtxsHBgYEDBzJu3DhcXFxwd3dn6tSpxQIaJZkwYQLNmzdn+PDhDB06FDs7O06fPk1MTAyLFi0iLi6OqVOn0r9/f+rWrYtSqWTXrl18++23TJgwATBlVM2ePZuxY8eiUqno378/CoWCjRs38sEHHzB9+nReeOEFi+v+NWADUK9ePRQKy6B5Tk4OM2bMoFu3bnh6epKens7ixYtJTU2lZ8+egCkg1aZNG3x9fZkzZw5paWnm86tWrVrqvXft2pW3336bJUuWEBYWxtWrVxk1ahTNmjUrsR5XkezsbM6fP2/eTkpKIi4uDhcXF3NQcNy4cfTu3ZtWrVoRGhrKD5s2s/vXbaz+cQtgmnK5du1aOnbsiJubG5cvX+bzzz9HrVabC6136NCBcePGERkZyYgRIzAajXz++edYW1ubV2Esel0UOXz4MHK5vNjzXfwecrmQeBFb2/xS70EQBEEQBEF4doig1HMs+86n1PYlrLrnkOtBtjwHnU0VlEC2k3vxDoqKm7vVhp7RlTKmwsIcCgszALii70SiNpWWQVXo93J1ggMqd7qTIAj3Kj9UtWLFCv4VMYwBbw9Dr9fzyiut2LJlizkgYzAYiIyM5PLlyzg6OhIeHs68efMA05S2adOmMXHiRAYPHsyAAQOIjo5m7ty5RERE8Oqrr+Lo6Mj48eNJSUlBpVKVNRQaNGjArl27+PDDD2nZsiWSJFGjRg169+4NgLe3N35+fkybNo3k5GRkMpl5e/To0eZ+Ro8eTUBAAFFRUcyfP5+cHNPPtTVr1tCnT59i1y1pX0pKCt7e3hb7rKysOHv2LCtXriQ9PR1XV1eaNm1KbGws9erVAyAmJobz589z/vz5YueXtWrioEGDyMrKYtGiRYwZMwYnJyfatm3LrFmzynzODh8+bA4KgWnlQ4CBAwcSHR0NwOuvv87SpUuZOXMmI0eOJDCoJlFf/4cmzVsAppUYY2Nj+fLLL7l9+zYeHh60atWKffv24e5u+j1Ru3ZtfvrpJ6ZNm0ZwcDByuZwXX3yRbdu2lVhU/n4cO3aKV7v8s8x7EARBEARBEJ4dMulh1gt/RmVmZqLRaNBqtfe36s/fTPtDCZzMzuO7BgG0dzU9DwuOLOCHvSvpsbcOOjKwUtZCcg5B5pbBqI/+adlB3BrYEAE12kL/Hx9qLJIkce7PaWi1cWRlncDa2oHYzNX8e08S77QK4IPOdcrvRBAeg9Tx48nc9BPu48fj+s/BFsdORR1Bk5bLAecUXNt6EFzVDZVPAwCyb98iS3u3ppSbm1tJ3T+w9OwCrmTkoVEr8HUtO6tQqy8kOU+HrZWcILs7wZ/rp8FQQEGeA8a8fJQ+PubpeyprFTWcagCQmZ5GrjYDmdwOjZsbKvvKnVabk5ODl5cXUVFRDBkypFL7rohbt27Rrl07HB0d2bp1K7a2lTvN8llzO1dHyq1c7G2sCXCzf9LDITPrJEgS9va1kMvLL0JfUfn5+SQlJeHv718sICr+ZrAkng9BEARBECqion8ziNX3nkNafSE7bmZytUAPQBXF3YS5hG0xdN3riY4MAGxkuWhd4lE5lJBUV5QppXj4N205uee5fPm/ZGWdAOBSphcb4kzTAx1sREKf8IwoSjaSHqAa+nPq2LFjrFmzhsTERI4ePUq/fv0AzFMCHzcXFxd+/fVX2rVrx/79+5/IGARBEARBEATheSHe7T+H/hGfxKHMHPN2FeXdl4FTip6il4XMyhO50gUk8Knqd7eDpFjYOh6yrpm2lQ9f6yn/Th0ptbo66869zvbzVcnRm4rm+ruJWlKC8HSqnETbOXPmkJCQgFKppHHjxsTGxlb66oT3w9XVlSlTpjyx6wuCIAiCIAjC80IEpZ5D53JNBWJr26lo4WSPl41p+k1BQT7WBaY3mRpFWwrsGyHT7+LNDv+kVrO7S5wT/z+4cfrutlvthx5Tfr4pK8rOriZxaQ3I0ecwLqwWjX2daebn8tD9C4JQ+SojJPXiiy9y5MiRSuhJEARBEARBEIRnjQhKPWeMkkRmoanA+f81rIG7zd16MOk3LuGYYwUyKLAxrfyklhXywit/WdFIdyfLKng4NOgNVes/8HiysxM4fWYC+fmmTCmVqhpZ+aZphW1ru1PHU9SrEJ4u5a0KJwiCIAiCIAiCIFSMCEo9Z7IKDebsBo3CyuLY9evJILMCJCQrO+RGHXkvev21C9Dlmr661QbPBg81nmvXNpjrSAEs3qPkZo4OAEd15RZQFoTH6VlfQeI5XANDEARBEARBEITHTASlnjMZd7Kk1HIZNnJTnXu9Uc+oHe+ReP44HXAGwGCVS5bDFZw81MU7KcqUUj58gfOiaXu5iteZtasml7OrAeBip6SKfeWtrCQIgiAIgiAIgiAIwtNFBKWeM9o7QSmN9d1/+tM3T2O96SwdrpsCUsjsyNRcxKDKx96x3t2T0/+Ei3tBe8m0raiEAucFpqDUbX09Lme7E1rLjXfbBFLDzQ4ba6tyzhaEJ0hkEgmCIAiCIAiCIDwUEZR6juQZjCTnmabG3Tt178/UU3hfv5sRZaWsjZXOA9t8Ne3qhd7t4D+vQeblu9sqzQOP5cqV/+Ny6mqysxMA2HLGCECQhwPN/EVhc0F4FkgGEZj7uxMV1ARBEARBEIRHSQSlnhNpOj2vHDx7T6bU3aDU9QunkSNDkhlRO4wEKyUv1XXHM0BDNa87y7IbjXcDUoEdoEoQeDd94PEkJS82FzcvMCg5ftVU0NzP9eGzrwThSXsSb+Qf1zXvvY4u34Dtg8emBUEQBEEQBEF4zomg1HPibHa+OSBlI5fR1c3JfCzv9jVkgE2hAaxMdZxC+9XGRn3Py0Ofe/f7Xv956HpSev0tABLyRvDtYWdCgvzp2cSb0FruD9WvIAiVR1ZOqEtuJfJoBEEQBEEQBEF4cPInPQDh8cg3mqbHNXRQc7F1Q972cTMfky6aAkSFClORcbkhD6XqL/WczEEpGShKKH5+HwyGAgwGU3+nbr1Iel4Vmvk7E1avKkpr8ZIUnnZ/70DM0PHjsa1fH4WzMy72LnRq2omFsxdSWFj4UP3u3LkTmUxGRkZG5Qy0ApKSkujbty/VqlVDpVLh7e1N9+7dOXv2rEW7zZs307p1axwcHLC1taVp06ZER0dbtElOTkYmkxEXF1fh63/88cfUrl0bOzs7nJ2dad++PQcPHrToc8iQIfj7+6NWq6lRowZTp05Fp9OV2/eqVato2LAhtra2eHp68s9//pObN2+Wec6SJUto0KABjo6OODo6EhwczNatW83Hb926xYgRI6hVqxZqtZrq1aszYexosjK15jbR0dHIZLISHzdu3DC3Kygo4MMPP8TX1xcbGxv8/Pz49ttvLcbz5Zdfmq/l4+PD6NGjyc/PL/MeNm36lddeG4abm+d9/3sIgiAIgiAITx8RAXhO5BtNtV9U8rv/5Hqjnn2p+7h9686bTbkp+8mgzEQmu+eNd14GpJlqP6G0A9mDvSk3GnXEn3iX2D2maX8FBgVbTmUCoFErHqhPQRAqX4eQEFLOniXuVBwD/zWQBZ8v4IsvvnjSwzKrSNBGr9fToUMHtFotP/zwAwkJCaxdu5b69etbBMYWLlxI9+7dCQkJ4eDBg8THx9OnTx8iIiIYO3bsQ42zZs2aLFq0iBMnTrBnzx78/Pzo2LEjaWlpAJw9exaj0cjXX3/NqVOnmDdvHkuXLuWDDz4os9+9e/cyYMAAhgwZwqlTp1i3bh1//PEHb7/9dpnneXt78/nnn3PkyBEOHz5M27Zt6d69O6dOnQLgypUrXLlyhTlz5nDy5Emio6P5LWY7H48bae6jd+/eXL161eIRFhZG69atcXe/m+naq1cvfvvtN5YvX05CQgJr1qyhVq1a5uOrV69m4sSJTJ06lTNnzrB8+XLWrl1b7r3n5uQRHPwiM2fOKLOdIAiCIAiC8GwQ0/eeEwV3MqXuDUqtOPQNW2P+QzOtJ2BEIcEt18M4O1e5e2LaOVgaAoY7bwIVDz5tL0N7hLS07ebtE2n1UCkUVHFQ0qJGlTLOFAThcbJRKqnq4YGTrTV9Bvfh962/s2nTJiIiIvhXZCRbt/2CTqcjpEVLvlq6mKCgIAAuXrzI8OHD2bNnDzqdDj8/P7744gvq1q1LaKhp0QRnZ9MqnwMHDiQ6OpqsrCwiIiLYsGEDjo6OjB8/no0bN9KoUSO+/PJLAPz8/BgyZAh//vknGzZs4I033iA6Opo9e/YwadIkDh8+TJUqVXj99deZOXMmdnZ2nDp1isTERH777Td8fX0B8PX1JSQkxHyfKSkpjBkzhlGjRvHZZ5+Z948ZMwalUsnIkSPp2bMnL7/88gM9j3379rXYnjt3LsuXLyc+Pp527doRHh5OeHi4+XhAQAAJCQksWbKEOXPmlNrv/v378fPzY+RIU7DI39+fYcOGMWvWrDLH07VrV4vtGTNmsGTJEg4cOEC9evV44YUX+P77783Ha9SoweSpn/DOkEHmTDm1Wo1afTdbNi0tjR07drB8+XLzvm3btrFr1y4uXLiAi4tp4Qo/Pz+La+/bt4+QkBDzc+Tn58dbb71lkUlWkj5vdQVJIj3dpsx2giAIgiAIwrNBZEo9J8yZUvfUgDm55zdeOVEFpU4PgI1kRaD9K7z5Ro+7J16LNwWkZHKwcYRGbz34GPJSAbC2qcfsQyPYkjKEM5+GEzu+LT4uD1ejShAev4qvPCdJErkGI3lGiTyjRK7RSI7BUKkPU/+mx737JenhV8hTqVTodDoGDRrEsbjjRH+9hM3fb0KSJDp37oxeb/oZEhkZSUFBAbt37+bEiRPMmjULe3t7fHx8zMGOhIQErl69yvz58wF4//332bt3L5s2bSImJobY2FiOHj1abAxz5syhYcOGHDt2jI8++ojExETCw8Pp0aMH8fHxrF27lj179jB8+HAA3NzckMvlrF+/HoPBUOJ9rV+/Hr1eX2JG1LBhw7C3t2fNmjUP/fyBKbtr2bJlaDQaGjZsWGo7rVZrDuSUJjg4mJSUFLZs2YIkSVy/fp3169fTuXPnCo/HYDDwv//9j5ycHIKDg0ttl5mpxd7eAWvrkj/D+s9//oOtrS1vvvmmed+mTZto0qQJs2fPxsvLi5o1azJ27Fjy8vLMbVq0aMGRI0f4448/ALhw4QJbtmy5r3sQBEEQBEEQnn2PNVNq9+7dfPHFFxw5coSrV6/y448/8tprr5mPS5LE1KlT+eabb8jIyCAkJIQlS5aYP4WHuzUvfvrpJ+RyOT169GD+/PnY29s/zlt55hTVlLK5J1NKdiMTMH3abGXTBLXRmrcmtbA8sfBOfY/A9tBv3UONISsnBYDfL2hIuB1EXU+Hh+pPEJ4VuUYjDU7cWb2SrDtfrz6Waye2qo+dlVX5DUsgSRL7d+0ndkcsnTt1ZsOGDcRs2cwLNWsik9vx76UrqNuoJhs2bKBnz55cunSJHj16UL9+fcCU+VOkKNDi7u6Ok5MTAFlZWaxcuZLVq1fTrl07AFasWEG1atWKjaVt27aMGTPGvD106FD69evHqFGjAAgKCmLBggW0bt2aJUuW4OXlxYIFCxg/fjzTpk2jSZMmhIaG0q9fP/O4zp07h0ajwdPTs9j1lEolAQEBnDt37oGeuyKbN2+mT58+5Obm4unpSUxMDFWqlJwZev78eRYuXFhmlhRASEgIq1atonfv3uTn51NYWEjXrl1ZvHhxueM5ceIEwcHB5OfnY29vz48//kjdunVLbJuens4Xn8+kR9+Bpfa3fPly+vbta5E9deHCBfbs2YNKpeLHH38kPT2df/3rX9y8eZMVK1YApiyy9PR0XnnlFSRJorCwkIiIiHKn7wmCIAiCIAh/L481UyonJ4eGDRuW+ofz7NmzWbBgAUuXLuXgwYPY2dkRFhZmUfi0X79+nDp1ipiYGDZv3szu3bt55513HtctPJMy9IVczCsAQCW/mylldacui7OuKgrbVmTLSwjs6e98sv0Qxc3T0n9j566GXE4x/bun5Zqm7zTzLzsbQBCeOX+TGuhbd+/GydubKo5VeLfPu3R5vQuDBg3C2tqaJo0bm9u5uLhSq1Ytzpw5A8DIkSOZPn06ISEhTJ06lfj4+DKvc+HCBfR6Pc2aNTPv02g0FrWHijRp0sRi+/jx40RHR2Nvb29+hIWFYTQaSUpKAkyZW9euXWPVqlUEBwezbt066tWrR0xMTIWfC6VSWW6bVatWWYwjNjbWfCw0NJS4uDj27dtHeHg4vXr1sigIXiQ1NZXw8HB69uxpURvq3n4jIiIAOH36NO+99x5TpkzhyJEjbNu2jeTkZPPx2NhYi/NWrVpl7q9WrVrExcVx8OBB3n33XQYOHMjp06eLjSczM5MuXbpQq3ZtIt6fWOJ979+/nzNnzjBkyBCL/UajEZlMxqpVq2jWrBmdO3dm7ty5rFy50pwttXPnTj777DO++uorjh49yg8//MDPP//Mp59+Wu5zKgiCIAiCIPx9PNZMqU6dOtGpU6cSj0mSxJdffsnkyZPp3r07YJoW4OHhwYYNG+jTpw9nzpxh27ZtHDp0yPwGZeHChXTu3Jk5c+aU+On68271lZu8n5Bi3vayufsGq2qaHQBZmiCsgXy1U/EOioJS1g8RlLqxDYMhG4BCoxV5sobsn9SWqo6qB+5TEJ4ltnI58fW9yc7UIilVWCusS82WeVC3snVc0eahUSsspsPayu//s4fWTZuyePFiJEc1Onsddio7Tu8uHrj468zAoUOHEhYWxs8//8z27duZOXMmUVFRjBgx4r7H8Fd2dnYW29nZ2QwbNsxcV+le1atXN3/v4OBA165d6dq1K9OnTycsLIzp06fToUMHgoKC0Gq1XLlypdjvD51OR2JiImFhYeWOrVu3bhZ1p7y8vCzGHRgYSGBgIM2bNycoKIjly5czadIkc5srV64QGhpKixYtWLZsmUXf964u5+joCMDMmTMJCQlh3LhxADRo0AA7OztatmzJ9OnTadKkicV5Hh4e5u+VSiWBgYEANG7cmEOHDjF//ny+/vprc5usrCzCw8NxcHDgu/+t40auscT7/ve//02jRo1ofE+gEsDT0xMvLy80Go15X506dZAkicuXLxMUFMRHH31E//79GTp0KAD169cnJyeHd955hw8//LDM51QQBEEQBEH4f/buPC7qan/8+GsGZtgXQRBEZBFcUzNXJFPcQAutzCW9LqUm5a6paeV2Sa8Lmtu17Fvi7140r1bmNa2oTHG5agppkqAIiSgqsq8zMJ/fH6OjEwpY7r2fj8c88vP5nHM+53wGbXjP+5zz+Hho1pRKTU0lMzOT7t27m845OTnRvn17Dh48CBi/lXV2djb7xrx79+6o1eoqF0ctKysjPz/f7PVXcTDPGAxSAbU1ljxfp5bpmqbC+fqfQKmgfj3n31e/K5lSpWWZAJTZTmTi7gWUqprh6WRjvsOfEI+KP/Bzq1KpsLVQY6NWYaNWYatWY2dhcVdfxvaNr5vP/5G/Z7Y2NgT4++Nd39u0llCTJk0oLy/np6M31nvKzr5KUlKS2fQvb29vIiIi+Pzzz5k6dSofffQRcCPj6Ob1nfz9/dFoNBw5csR0Li8vr0ZT5p566ikSExNNAZ+bX7fLblKpVDRu3JiioiIAXnrpJSwtLYmKiqpU9oMPPqC4uJhhw4ZV2xcHBwez+988le33DAYDZWVlpuOMjAy6dOlC69atWb9+PerfBRFvbvf67nbFxcWVyllcm6KpKAo2NjZm9Rwcbj9V+vf9yc/Pp2fPnmi1WrZv34619a2/PCgsLOQ///lPpSwpME4vvHDhAoWFhaZzycnJqNVq6tWrV6Mx3MkzFUIIIYQQj66HZve9zExj4OLmb3SvH1+/lpmZabblNIClpSUuLi6mMreycOFC5s2bd5d7/GgoKjd+w72wYT1GeBkzMxbsnseupB28YDBmE2grLtHArgn64Gsf+hUFdk2HzF8g95zx3B8IShUWJpGdvZ+ruadQA//6SUNphQ0O1g/Nj50QooYCAwPp27cv4ydP4R/z5uDgUJuFUUvw8vIyZbdOmjSJXr160bBhQ3Jycti9ezdNmjQBjDvfqVQqduzYQe/evbGxscHBwYHhw4czbdo0XFxccHd3Z86cOajV6mqDaTNmzKBDhw6MGzeOUaNGYWdnR2JiIrGxsaxevZqEhATmzJnD0KFDadq0KVqtlj179vDJJ58wY8YMwJhRtXjxYt58802sra0ZOnQoGo2GL7/8klmzZhEZGckTTzxhdt+kpKRKfWnWrBkajcbsXFFREe+99x59+vTB09OTrKws1qxZQ0ZGBv379wduBKR8fHxYunQpV65cMdX38PC47djDw8MZPXo0a9euJTQ0lIsXLzJp0iTatWtXZcbwzJkz6dWrF/Xr16egoICNGzfy448/8s033wA3AlLFxcX8+9//Jj8/n7xiHVm5JdjUNe/P5s2bKS8v529/+1ul+wwePJi///3vvPLKK8ybN4+srCymTZvGq6++agouhYeHs2zZMlq1akX79u05c+YM7777LuHh4abg1K1kZ+dxPv0CubnGwOP198PDw6PKZyaEEEIIIR5Of4nowMyZM5kyZYrpOD8/H29v7wfYo/un8FpWgr2F8RvpsuIifv3uO54/UwcF47fjlmo97m950tLt2o5QWafhsPkUEpx97vjePx9/jdLS86gBg6Li+CVXABq4yaL0QjyK1q9fzxsREQwbPQa9Xk/HoKfZuXOnKSBTUVHB2LFjOX/+PI6OjoSFhbF8+XLAOP1q3rx5vPXWW7zyyisMGzaM6Oholi1bRkREBM899xyOjo5Mnz6d9PT022boXNeiRQv27NnD22+/TadOnVAUhQYNGjBw4EAA6tWrh6+vL/PmzSMtLQ2VSmU6njx5sqmdyZMn4+/vT1RUFCtWrDBlUW3atIlBgwZVuu+tzqWnp5sygK6zsLDg1KlTbNiwgaysLFxdXWnbti1xcXE0a9YMgNjYWM6cOcOZM2cq1a9q18QRI0ZQUFDA6tWrmTp1Ks7OznTt2pVFixZV+cwuX77MsGHDuHjxIk5OTrRo0YJvvvmGHj16AHDs2DFT1vH1KX7X7fnpFwI9bkzH+/jjj3nxxRdNi9bfzN7entjYWMaPH0+bNm1wdXVlwIABREZGmsq88847qFQq3nnnHTIyMnBzcyM8PJz33nuvyjHs2rWbN15/13R8/f2YM2cOc+fOrbKuEEIIIYR4+KiUu7Ff+B+5sUpltvve2bNnadCgAfHx8Tz55JOmcp07d+bJJ59kxYoVfPLJJ0ydOpWcnBzT9fLycqytrdmyZQsvvPBCje6dn5+Pk5MTeXl5pjU6Hle9jyZzLL+Y6Cf8CHNz4vL5cyz4xwi8r9gCFqgtvbCv5c/o1TdtiZ5+BD7uDnbu0HsJWNmDX2ew0Nz2Pr9nMOjY/aMxQ+J4VmviLwUQ2m4MAW72tPaphaXFQzNzVIg7cuGtmeRt24b7tDdx/d3UpZPLj+J0qZhDzuep1c2djh5uWHu3AKAwJ5uCvFwUrTUajQY3N7e72q+rhWVk5BrXlPJxtauybJ6+nLQSHbYWagLtrgV/LiVCRRllpQ4YikvR1KtHqa0lv+X/hpWlFQHOxiBFwdUsinJzUKltsbZ3wcnt7k6rKioqwsvLi6ioqFtODbvXsrOz6datG46OjuzatQtbW9vqKz3Gcot1nMsuxt7KEv+H4AuF/IJfQFGwt2+EWl39IvQ1VVpaSmpqKn5+fpUCon+lzww1Ic9DCCGEEDVR088MD01kwM/PDw8PD77//nvTufz8fA4dOkRQUBAAQUFB5ObmcvToUVOZH374AYPBYLYgqrihoPxappSl8a2+WnQZa73FtXMd0Tq8RLm7v3mlsmtrbtnXgWbPQ0D3OwpIAeh0VwEwKJasSRjG3oxgujZ2p72/qwSkxOPhwcTzHzvx8fFs2rSJlJQUjh07xpAhQwBMUwLvNxcXF7777ju6detmWs9QCCGEEEIIcW/c1+l7hYWFnDlzxnScmppKQkICLi4u1K9fn0mTJhEZGUlgYCB+fn68++671K1b15RN1aRJE8LCwhg9ejQffPABer2ecePGMWjQINl57zau6ssBcNUY3+qsoiu45hm/XS7XGNeYsg9scKPC+Z/g5OfGP1vdfnHc21EUAxcubCY/37gV/NVSR8oNKmy1FrjY3b1vtYV4mMkS/ndm6dKlJCUlodVqad26NXFxcXd9d8I74erqyuzZsx/Y/YUQQgghhPiruK9BqZ9++omQkBDT8fV1noYPH050dDTTp083bQmdm5vL008/zddff22WSh8TE8O4cePo1q0barWafv36sXLlyvs5jEfC3DMZfHk5l2y9MVPKXWvMdEq7nI5a0QJ6DBpn1IpCt/bX1osq18H/6wu6azsm2brc8X1zcg9xKukd0/H5Ai+mhTaiYwNXrCxvv3itEOKvqVWrVmbZr0IIIYQQQoi/jvsalOrSpUuVi7eqVCrmz5/P/Pnzb1vGxcWFjRs33ovuPTYUReHj81norz1rH2sttqpyRm19hVOXf+MFjPM5bbhKvncWdf27GSuW5d8ISLUcDO3H3PG9S0vOA2BlVY/tSYHsOd+RPf38sNZIQEoIIYQQQgghhBA3/CV23/urKTMopoDUtlYBNLe34ceEbWj3n6dX1vUpeWpcn4fnuty0bktZgfG/Gjt4Ye0fundJ6SUAknMD+U/yC2gsVFhZyhpS4jGiekwn5z2mwxJCCCGEEEI8vCQo9RgqrDCY/tzWyQ4LlYrM5FM0uHBjRy6N2pMeT/XD3s71RkWdcSt0tFXv3HUrpaUXuXhxK79lfAPAzxesAPB0skH1uP4SL8RfhazpLoQQQgghhLgHJCj1GCqqMK4jZWuhxuJaQCg/07jAvGIJWuvncSqrwMr+WvBJVwyH1sKlk8Zjqzvf9vts6vtcvLjVdFyGH9PDGtG54d3d9l4Icf+oJH1KPHRUSJRUCCGEEOLxIUGpx1B+uTEoZW9xY9rclavZ1ALUeGGh8cdQehoLq2tv/6//he9vWsfLzv2O71lScg6AUov2fHXKDYPN07zRJeAPj0GIh11V6+P9dcgzEEIIIYQQQvxxEpR6DGXpygGorbnx9lrl2ACFqDDuwmdTfhHV9cXHi64Y/+vWBBr3hmYv3vE9S0svAnC2+AV2ptryYivramoI8dcis1iFEEIIIYQQwpwEpR4jefpyxpz8jdPFpQC4aTX8fCGeJfsX4lehxhawrNDR8coenBsF3Vjr6fpaUvU7QLfZd3TPlLPLuHr1R0pKzqNSwf8d1ANgZyU/WuIv6NrfqQc57e2uJnBJIE0IIYQQQghxD8m2aI+RvTmF/JhTQEaZMTDUzN6Gtd8tpvTXdBzzigGwVMoJmPwaXuOevlFR/8cWOK+oKCEtbQ0FBSdRqRSuFLuisnSlvostvZt73pUxCSHur1HTpmPbvDmaWrWoZVeLXm17sWrxKsrLy/9Uuz/++CMqlYrc3Ny709EaSE1NZfDgwdStWxdra2vq1atH3759OXXqlFm5HTt20LlzZxwcHLC1taVt27ZER0eblUlLS0OlUpGQkFDj+8+dO5fGjRtjZ2dHrVq16N69O4cOHTJrc+TIkfj5+WFjY0ODBg2YM2cOOp2u2rZjYmJo2bIltra2eHp68uqrr3L16tUa9+0f//gHKpWKSZMmmZ1PSUnhhRdewM3NDUdHR14ZOpirVy6blXnvvffo2LEjtra2ODs737J9lUpV6fXpp5+arn/++ef06NHDdJ+goCC++eabavu9fXsszz8/Bjc3zzt+P4QQQgghxMNHglKPkYJra0m1drTly1YBzPL3RJWcQ9BJV9SKcUc+G4MFDk97oa1rD7nn4OS2Gwuc32FQqqzsEgBqtTXvH4tgweHJfDupM3unhxDUwLWa2kI8oh7beXg3xtUjOJj0U6f4OfFnhr8xnFWLVrFkyZIH2DdzNQna6PV6evToQV5eHp9//jlJSUls3ryZ5s2bmwXGVq1aRd++fQkODubQoUMcP36cQYMGERERwZtvvvmn+tmwYUNWr17NiRMn2LdvH76+vvTs2ZMrV4xTpk+dOoXBYODDDz/k5MmTLF++nA8++IBZs2ZV2e7+/fsZNmwYI0eO5OTJk2zZsoXDhw8zevToGvXryJEjfPjhh7Ro0cLsfFFRET179kSlUvHDDz+wf/9+dDod4195GYPhxq6uOp2O/v378/rrr1d5n/Xr13Px4kXT6/nnnzdd27t3Lz169GDnzp0cPXqUkJAQwsPDiY+Pr7LN4qISgoJasXDhezUaqxBCCCGEeLjJHKvHSOG1Xfe8rbW0dzbuoOeQd+O6hXVbHAuvnVAU+LgnFFy8UcDK4Y7ud30dqZKKWpzIagqAo43mD/ZeCPGwsNJq8ahTh1p2Gga9MojdO3ezfft2IiIieOONsez6+mt0Oh3BHTvxzw/WEBgYCMBvv/3GuHHj2LdvHzqdDl9fX5YsWULTpk0JCQkBoFatWgAMHz6c6OhoCgoKiIiIYNu2bTg6OjJ9+nS+/PJLnnzySd5//30AfH19GTlyJKdPn2bbtm28+OKLREdHs2/fPmbOnMlPP/1E7dq1eeGFF1i4cCF2dnacPHmSlJQUvv/+e3x8fADw8fEhODjYNM709HSmTp3KpEmTWLBggen81KlT0Wq1TJgwgf79+9O+ffs/9BwHDx5sdrxs2TI+/vhjjh8/Trdu3QgLCyMsLMx03d/fn6SkJNauXcvSpUtv2+7Bgwfx9fVlwoQJAPj5+TFmzBgWLVpUbZ8KCwsZMmQIH330EZGRkWbX9u/fT1paGvHx8Tg6OgLwz3Uf4+dVh4Nxewh4KRyAefPmAVTKJvs9Z2dnPDw8bnnt+nt73YIFC/jyyy/573//S6tWrW7b5qCX+4BiICvLqsp7CyGEEEKIR4NkSj1GCiuM32Q7WFqYzjkWGXfSs7TpisamE4rFtWyI8rIbASnvDtDoWWj2Qo3uU1ycSty+IOIThgGQlGX8JdNOa4GVpfxICfF7iqJQrKugRG+gRF9Bib6CYl35XX2V6Coo1VdQojNv+27sEmhtY41Op2PEiBHEJyQQ/eFadny2HUVR6N27N3q9ccrw2LFjKSsrY+/evZw4cYJFixZhb2+Pt7c3n332GQBJSUlcvHiRFStWADBlyhT279/P9u3biY2NJS4ujmPHjlXqw9KlS2nZsiXx8fG8++67pKSkEBYWRr9+/Th+/DibN29m3759jBs3DgA3NzfUajVbt26l4lrA/ve2bt2KXq+/ZUbUmDFjsLe3Z9OmTX/6+YExu2jdunU4OTnRsmXL25bLy8vDxcWlyraCgoJIT09n586dKIrCpUuX2Lp1K7179662H2PHjuXZZ5+le/fula6VlZWhUqmwsroR8LG2tkatVvPToYPVtn2re9WuXZt27drxySefVPmzaDAYKCgoqHbsQgghhBDi8SKZUo+R69P37CxuBIasdca3WKsvo1HqBqxD/I0XdIU3Kr6yE9Q3AlnVybr6IzrdjTVGUgpaMqBNPbo2dr+xeLoQwqREX0HbZYcfyL0T54diq72Tf+pv/B1WFIWDew4S90McvXv1Ztu2bcTu+oonAgNRqW356J+f0OypRmzbto3+/ftz7tw5+vXrR/PmzQFj5s9114MN7u7upnWICgoK2LBhAxs3bqRbt26AccpX3bp1K/Wqa9euTJ061XQ8atQohgwZYloTKTAwkJUrV9K5c2fWrl2Ll5cXK1euZPr06cybN482bdoQEhLCkCFDTP1KTk7GyckJT8/Ka+BptVr8/f1JTk6+g2dX2Y4dOxg0aBDFxcV4enoSGxtL7dq1b1n2zJkzrFq1qsosKYDg4GBiYmIYOHAgpaWllJeXEx4ezpo1a6qs9+mnn3Ls2DGOHDlyy+sdOnTAzs6OGTNmsGDBAhRF4d1ZM6ioqODypcyaDfia+fPn07VrV2xtbfn222954403KCwsNGV3/d7SpUspLCxkwIABd3QfIYQQQgjxaJO0lsfIVb1xIWJXjSUf74xi6IfhqK9lT/mc34Nn9nGUrk8aC18PSmls7yggBVBS/JvxfkofJuxeSJFFHxa/1JKwJ2Rxc/EXcjd3uXvI7Nq7F+d69XB1cOX1Qa/T+4XejBgxAktLS9q0bm0q5+LiSqNGjfj1118BmDBhApGRkQQHBzNnzhyOHz9e5X3Onj2LXq+nXbt2pnNOTk40atSoUtk2bdqYHf/8889ER0djb29veoWGhmIwGEhNTQWMmTqZmZnExMQQFBTEli1baNasGbGxsTV+FlqtttoyMTExZv2Ii4szXQsJCSEhIYEDBw4QFhbGgAEDuHz5cqU2MjIyCAsLo3///mZrQ93cbkREBACJiYlMnDiR2bNnc/ToUb7++mvS0tJM1+Pi4szqxcTEkJ6ezsSJE4mJicHa2vqW43Bzc2PLli3897//xd7eHicnJ/Jy82jSvCVq9Z19XHj33XcJDg6mVatWzJgxg+nTp992XbKNGzcyb948/vOf/+Du7l7tMxVCCCGEEI8PyZR6DJwqKuGT81nszzEGmlw0Fvz30Oe0POOEYsgCoMDDhbQVI+nRrCf89MlNi5vb1/g++fknyMjYSOaVvQBsT7SjSG+Hs231v7QJ8Vdmo7HgyJR2FOTloWit0Gg0t82W+aOyC3VcyCvBwUqDT21bs3vfqc5t2xqzbpxsKbMrw9bKll/jfq223qhRowgNDeWrr77i22+/ZeHChURFRTF+/Pg77sPv2dmZb8RQWFjImDFjbpl5U79+fdOfHRwcCA8PJzw8nMjISEJDQ4mMjKRHjx4EBgaSl5fHhQsXKmVn6XQ6UlJSCA0NrbZvffr0MVt3ysvLy6zfAQEBBAQE0KFDBwIDA/n444+ZOXOmqcyFCxcICQmhY8eOrFu3zqztm3eXu77O08KFCwkODmbatGkAtGjRAjs7Ozp16kRkZCRt2rQxq1enTh2+//57Ll++zFNPPWU6X1FRwd69e1m9ejVlZWVYWFjQs2dPUlJSyMrKwtLSErS2BPh64+3jW+1zqEr79u35+9//TllZmdn0wE8//ZRRo0axZcsWsymFVT1TIYQQQgjx+JCg1GNgedolvrycazquY1FOw3QntOXGb7ZV6lpoXD3p9WR/SNoFOybfqGxb813yUlKWkp2zz3R8qdgLL2cb+jxZeaqNEH9Ft5u8qlKpsNVaUK5Ro2gs0Ggs7nBKXfVKtBVYayyw0f7ZthVsbWwI8PenzE5DWl4aAE2aNKG8vJyfjh7jicAAALKzr5KUlETTpk1Ntb29vYmIiCAiIoKZM2fy0UcfMX78eFPG0c3rO/n7+6PRaDhy5IgpkJSXl0dycjLPPPNMlb186qmnSExMJCAgoMYjU6lUNG7cmAMHDgDw0ksvMWPGDKKiooiKijIr+8EHH1BcXMywYcOqbdfBwQEHh5ptFGEwGCgrKzMdZ2RkEBISQuvWrVm/fn2ljKRbja+4uNgYMLqJhYUx+KgoCjY2NpXqdevWjRMnTpide+WVV2jcuDEzZsww1b/uetB0+85vyM66Qvew6terqkpCQgK1atUyC0ht2rSJV199lU8//ZRnn33WrPztnqmKxzpJUQghhBDiL0eCUo+ByzrjIsMv1qlFiIsDvlwhocgSMKCxfwm1hSfldU4bCxdcWxfE2QcCe8AT/Wp8n5LS8wDkEM6nP9emVYOOLH7p9gv2CvFY+qssm/a7RakDAwPp27cv4ydN5h/z5uDgUJuFUUvw8vKib9++AEyaNIlevXrRsGFDcnJy2L17N02aNAGMO9+pVCp27NhB7969sbGxwcHBgeHDhzNt2jRcXFxwd3dnzpw5qNXqatenmzFjBh06dGDcuHGMGjUKOzs7EhMTiY2NZfXq1SQkJDBnzhyGDh1K06ZN0Wq17Nmzh08++YQZM2YAxoyqxYsX8+abb2Jtbc3QoUPRaDR8+eWXzJo1i8jISJ544gmz+yYlJVXqS7NmzdBozHceLSoq4r333qNPnz54enqSlZXFmjVryMjIoH///oAxINWlSxd8fHxYunQpV65cMdW/3a51AOHh4YwePZq1a9cSGhrKxYsXmTRpEu3atbvlelxgDPL8fix2dna4urqanV+/fj1NmjTBzc2NgwcPMmHiRP426g38Axqaypw7d47s7GzOnTtHRUWFKSsrICAAe3t7/vvf/3Lp0iU6dOiAtbU1sbGxLFiwwGxB+Y0bNzJ8+HBWrFhB+/btycw0/r/JxsYGJyen2449OzuP9PQMcnONQc7r74eHh0eVz0wIIYQQQjycJCj1GMjTGzMPBnjUoouLI9/s+BIVxrWkahfkUTv7EPnB1xaP1RUZ/+vdDp6NulVzlZSUnKew8BQlJWkAfJXyDD9dsuLJQE3VFYUQj5X169fzRkQEw0aPQa/X0zHoaXbu3GkKyFRUVDB27FjOnz+Po6MjYWFhLF++HDBOv5o3bx5vvfUWr7zyCsOGDSM6Opply5YRERHBc889h6OjI9OnTyc9Pf226x5d16JFC/bs2cPbb79Np06dUBSFBg0aMHDgQADq1auHr68v8+bNIy0tDZVKZTqePPlGtujkyZPx9/cnKiqKFStWUFRk/Ddy06ZNDBo0qNJ9b3UuPT2devXqmZ2zsLDg1KlTbNiwgaysLFxdXWnbti1xcXE0a9YMgNjYWM6cOcOZM2cq1a9qp7oRI0ZQUFDA6tWrmTp1Ks7OznTt2pVFixZV+cxqIikpiZkzZ5KdnY2vry9Tp83guSGjzcrMnj2bDRs2mI5btWoFwO7du+nSpQsajYY1a9YwefJkFEUhICCAZcuWma2VtW7dOsrLyxk7dixjx441nR8+fDjR0dG37d+uXbt5/fV3TMfX3485c+Ywd+7cPzN0IYQQQgjxAKiUu7Ff+CMmPz/fuIBrXp5pjY5HWesDJ8ko07OrdUNaOdryz9VvUxL3M6Cl18+nuGRbizr/jKFpB1/Ysxh2vwetR0D4imrbrqgoIW5fByoqjOtVlZZrGffDYhTUzOrdmNeeaXBPxybEw+bC22+T99nnuE2ZQu3XzH9ZT3z/GI6ZRRxxzsCpmxsdPdyw9m4BQFFuNvm5uShaazQaDW5ubne1X1cLy8jILcHRWoNvbbsqy+bpy0kr0WFroSbQ7lrw5/KvUF5KWakjhuISNF5elNlrSctLQ2uhJbBWIACF2VcpzMlGpbbFyq4Wzu62VdzpzhUVFeHl5UVUVBQjR468q23XRHZ2Nt26dcPR0ZFdu3Zha3t3x/eoyS3WcS67GHsrS/zdar4G4b1SUHASRTFgb98ItfrurWdYWlpKamoqfn5+lQKij9tnhj9LnocQQgghaqKmnxlk973HQG65MVPK2dKCb/79wbWAFKjVdqhQcK/lj7+LLZzYCucOGivVcIHz0tILVFQUolJZklniz9bTfeje1JOJ3QIZ2KZ+9Q0IIR5aD8M3EvHx8WzatImUlBSOHTvGkCFDAExTAu83FxcXvvvuO7p168bBgwcfSB+EEEIIIYT4q5Dpe484vUGhqMI4Ve+Xn3aR/N8dpmtaXLDu/y72TZpjlbsDdt60wLm1c43a1+mMu/dZW9fj46NvczariM2v+dHev+YLpAvxWPrrJZneM0uXLiUpKQmtVkvr1q2Ji4u767sT3glXV1dmz579wO4vhBBCCCHEX4UEpR5h313NZ292gen42I8/Yg+gskJj25M62Rn4/X2w8eL3Xxj/6+IPPh3hycFVtl1YmMTxE2+Y1pFKz7PjQl4JAI42spaUEFVRVbMa+qMya7q6cdwNrVq14ujRo/f8PkIIIYQQQoiHjwSlHlFlBgMjf0mlzGD85dZNa4mSb5zGp1Lb46i3xyv7pqknZcY1oWj2InR7t9r2r1yJNQWkAL46/QSlegMWahXuDla3ryjEX1mVMZy/yrZ9QgghhBBCCFEzEpR6ROWXV1BmUFABr9Vzo0dtR77drAPAEj3tj0Ry3u2m7bF114JS2qoXQDYV1xun7RVZPMe83a1xr+XHO8960cTTEVd7CUoJ8dCRmJf4S3k0sg2FEEIIIUTVJCj1iCooN64jZW+hZl6gF9kXMthbqAfAqtS4fn2+vQckfwPH/h9kXJseY+VQZbsGg57CwlNcuvw9APt+c+BqqSs9vZ0Z1cn/Ho1GiEeISqI/QgghhBBCCHE3SFDqEVVQYZyq52BpwZF9X7N31Wqu5y9pKwwoVo64tWoL382Fy4k3Kjp5V9nuycQpXL6803R8ItMFAL/af+1t0YUQ4q9M8pKEEEIIIcS9IEGpR1RBuTEoZWehZud3W40LnKNBZeGErZ0FRc+/haarIxz9P2OFTm+C11MQ2KPKdvPzTwCgV2px6qoH7q7tmNCrASGN3e/dYIQQQgghhBBCCPGXI0GpR9QVXTkAtbWWaNOMWUwW1q3Q2DyNU+F62s57wVjwf8XG/7YYAG6Nqm1Xr78KwLHChaw7pmNCN3d6Nfe8+wMQQjwylNvlyUj6jBBCCCGEEOJPkKDUI+ZUUQn94lO4qjcGpTyttGjLjWtI2euy8Pvt31T45t6ooLsWlNJUPf2upCSDrKu7qagwlv9/h/MBaxyt5UdEiFtSJCIjhBBCCCGEEH+G+kF3QNyZfTmFpoCUCnja0QZVeQEA3ucSqJt5kByP5sZgVE4aVJQZK1YTlIpPGEZy8hwArpS4UFphjdZCzVM+te7VUIR4bKke4XjVqGnTsW3eHI2LC852zvRq24vVi1dTXl7+p9r98ccfUalU5Obm3p2O1kBqaiqDBw+mbt26WFtbU69ePfr27cupU6fMyu3YsYPOnTvj4OCAra0tbdu2JTo62qxMWloaKpWKhISEGt9/7ty5NG7cGDs7O2rVqkX37t05dOiQWZsjR47Ez88PGxsbGjRowJw5c9DpdNW2HRMTQ8uWLbG1tcXT05NXX32Vq1evVlsvIyODv/3tb7i6umJjY0Pz5s356aefTNdHjBiBSqUyvWrZWfH6314ya8PX19esjEql4h//+IfpelJSEiEhIdSpUwdra2v8/f1555130Ov1Zu3k5uYyduxYPD09sbKyomHDhuzcuZOqbN8ey/PPj8HNre4dvx9CCCGEEOLhI2kwj5jsawGpAR61mKTV8+s3/+FiRRYATsXFGFQq3Jo3guVNoSTnRkXt7YNSen0uJSVpAPyS1Zj/ZXbi8Kxu2FpZYm8lPyJCPAruZE/A6sr2CA7mk//7PwotIeaLGN6b8R6ejp7MnDnzz3TxrtHpdGi12irL6PV6evToQaNGjfj888/x9PTk/Pnz7Nq1yywwtmrVKiZNmsSMGTNYu3YtWq2WL7/8koiICH755ReWLl36h/vZsGFDVq9ejb+/PyUlJSxfvpyePXty5swZ3NzcOHXqFAaDgQ8//JCAgAB++eUXRo8eTVFRUZX33b9/P8OGDWP58uWEh4eTkZFBREQEo0eP5vPPP79tvZycHIKDgwkJCWHXrl24ublx+vRpatUy//IhLCyM9evXA5BXrONKsaFSW/Pnz2f06NGmYweHGzu7ajQahg0bxlNPPYWzszM///wzo0ePxmAwsGDBAsD4Hvbo0QN3d3e2bt2Kl5cXv/32G87OzlU+06KiEoKCWjFo0FDGjHmjyrJCCCGEEOLhJxGHR0yu3rjAuaeVlm3LZqBcKbx2RUuxuyvl3n14un0gnL4WkLK0gYY9QWNz2zav5iYDUFzhyvJjb+DlbIO7o/W9HIYQjyyV6k7CP48mK60Wjzp10NlbMeiVQezeuZvt27cTERHB2NffYOfXX6PT6egY1Im1H64hMDAQgN9++41x48axb98+dDodvr6+LFmyhKZNmxISEgJgCoAMHz6c6OhoCgoKiIiIYNu2bTg6OjJ9+nS+/PJLnnzySd5//33AmJkzcuRITp8+zbZt23jxxReJjo5m3759zJw5k59++onatWvzwgsvsHDhQuzs7Dh58iQpKSl8//33+Pj4AODj40NwcLBpnOnp6UydOpVJkyaZgiUAU6dORavVMmHCBPr370/79u3/0HMcPHiw2fGyZcv4+OOPOX78ON26dSMsLIywsDDTdX9/f5KSkli7dm2VQamDBw/i6+vLhAkTAPDz82PMmDEsWrSoyv4sWrQIb29vU8Dpet3fs7KywsPDAwDrYh1l2cWVyjg4OJjK/J6/vz/+/v6mYx8fH3788Ufi4uJM5z755BOys7M5cOAAGo0GML7P1Xn55T4oioGsrKqDko+D7Oxsxo8fz3//+1/UajX9+vVjxYoV2Nvb37ZOaWkpU6dO5dNPP6WsrIzQ0FD++c9/UqdOnUplr169SsuWLcnIyCAnJ6fagKAQQgghxL0g0/ceMTnXMqW0JZdNASm1tinW1j0oa9ua9gvfRKu+NkXCrQm8kwkD/t8t26qoKCUzczs/n5wHQGpObQA8nSQgJcRdpSigL0alL0GlLwZ9MeiK7vpLpS82tn/z+buw9pWVjRU6nY4RI0ZwLCGB6A/XsmPrl4BC7969TdOyxo4dS1lZGXv37uXEiRMsWrQIe3t7vL29+eyzzwDj1K6LFy+yYsUKAKZMmcL+/fvZvn07sbGxxMXFcezYsUp9WLp0KS1btiQ+Pp53332XlJQUwsLC6NevH8ePH2fz5s3s27ePcePGAeDm5oZarWbr1q1UVFTcclxbt25Fr9fz5ptvVro2ZswY7O3t2bRp059+fmDMDFq3bh1OTk60bNnytuXy8vJwcXGpsq2goCDS09PZuXMniqJw6dIltm7dSu/evaust337dtq0aUP//v1xd3enVatWfPTRR5XK/fjjj7i7u9OoUSOmTBxHbk52pTL/+Mc/cHV1pVWrVixZsqTK6Z1nzpzh66+/pnPnzmZ9CQoKYuzYsdSpU4cnnniCBQsW3Pa9+isaMmQIJ0+eJDY2lh07drB3715ee+21KutMnjyZ//73v2zZsoU9e/Zw4cIFXnzxxVuWHTlyJC1atLgXXRdCCCGEqDHJlHrE5JYbP7DnnT6JEwBqNLaheGT+D/tgNzRutpBTaixcRXYUwPmMf3PmzELTD0Gh0pApPRrSu/mtv/0WQvxB+mLs1jTF7h7ewuXaq5JZF0D7x+6sKAoH9xxk3w/76N2rN9u2bSN2106eCAxApbJh3ZpPeKJ1I7Zt20b//v05d+4c/fr1o3nz5gBm2TLXAy3u7u6mjIyCggI2bNjAxo0b6datGwDr16+nbt26lfrStWtXpk6dajoeNWoUQ4YMYdKkSQAEBgaycuVKOnfuzNq1a/Hy8mLlypVMnz6defPm0aZNG0JCQhgyZIipX8nJyTg5OeHpWXmHUa1Wi7+/P8nJyX/o2V23Y8cOBg0aRHFxMZ6ensTGxlK7du1blj1z5gyrVq2qdspgcHAwMTExDBw4kNLSUsrLywkPD2fNmjVV1jt79ixr165lypQpzJo1iyNHjjBhwgS0Wi3Dhw8HjFP3XnzxRfz8/EhJSeGtmTM5fOQon3/9g6mdCRMm8NRTT+Hi4sKBAweYOXMmFy9eZNmyZWb369ixI8eOHaOsrIzXXnuN+fPnm/Xlhx9+YMiQIezcuZMzZ87wxhtvoNfrmTNnTpXj+Cv49ddf+frrrzly5Aht2rQBjFNNe/fuzdKlS2/5dyQvL4+PP/6YjRs30rVrV8D496lJkyb873//o0OHDqaya9euJTc3l9mzZ7Nr1677MyghhBBCiFuQTKlHxIVSHf93/gqni40BJ9XFTOMFlRWt45fROPlTPFoZP7iir9mOe/mFvwGQo6vL/ox2aB0HMKFbIAHuDlXWE0I83nbt3YuztzcuDi68Puh1er/QmxEjRmBpaUnb1q1N5VxcXGnUqBG//vorYAxWREZGEhwczJw5czh+/HiV9zl79ix6vZ527dqZzjk5OdGoUaNKZa//Yn7dzz//THR0NPb29qZXaGgoBoOB1NRUwJi5lZmZSUxMDEFBQWzZsoVmzZoRGxtb42dR3dpVYFx0/OZ+3DxNLSQkhISEBA4cOEBYWBgDBgzg8uXLldrIyMggLCyM/v37m63VdHO7ERERACQmJjJx4kRmz57N0aNH+frrr0lLSzNdj4uLM6sXExMDgMFg4KmnnmLBggW0atWK1157jdGjR/PBBx+Y7jdo0CD69OlD8+bNef755/l06xec/PkYh/bfGNOUKVPo0qULLVq0ICIigqioKFatWkVZWZnZmDZv3syxY8fYuHEjX331lVmwzWAw4O7uzrp162jdujUDBw7k7bffNvWlqmcKj//mlwcPHsTZ2dns57579+6o1WqzxfJvdvToUfR6Pd27dzeda9y4MfXr1+fgwYOmc4mJicyfP5//9//+H2q1fAwUQgghxIMlmVKPiJmnz/NNVr7pWHX1CgBqLHHOP4tBpcKvVRCU5kHxtakWmqqn4Z3JvIAj8M3Z9sSeC+Hd5ypnCwghbucOfivW2FI0NpGC3FwUrRUWlpa4u7nd1d5kF5WRkVuKo7UGH9ebAtLVBKd/TwV0btuWNatXo3K2p9SuFBsrG07Fnaq27qhRowgNDeWrr77i22+/ZeHChURFRTF+/Pg7HE1ldnbm2V6FhYWMGTPGtK7SzerXr2/6s4ODA+Hh4YSHhxMZGUloaCiRkZH06NGDwMBA8vLyuHDhQqXME51OR0pKCqGhodX2rU+fPmbrTnl5eZn1OyAggICAADp06EBgYCAff/yx2aLxFy5cICQkhI4dO7Ju3Tqztm/eXc7R0RGAhQsXEhwczLRp0wBo0aIFdnZ2dOrUicjISNq0aWNW7/p6Qp6enjRt2tSs/SZNmpimVt6Kr58/tVxc+S317G3LtG/fnvLyctLS0swCit7e3gA0bdqUiooKXnvtNaZOnYqFhQWenp5oNBosLCzM+pKZmYlOp6vymf4VZGZm4u7ubnbO0tISFxcXMjMzb1tHq9VWWhuqTp06pjplZWW8/PLLLFmyhPr163P27O3f1+vKysrMAo75+flVlBZCCCGEuDMSlHpEZJQa12zp6Kih/qGPsUg9B4ClYvwWP8/JCcsNvSH9pm9QbzN9r6DwFFezfsCRHwFwtndh5NN+vNjqr/WhX4h753eLoatUoLFF0ZShaKzB0vIPT6m7Lb0likaNotH86bZtbWwI8PdHZ29Fal4qKMaAQXl5OUeOHuWJwAAAsrOvkpSUZBbo8Pb2JiIigoiICGbOnMlHH33E+PHjTRlHN68Z5O/vj0aj4ciRI6ZAUl5eHsnJyTzzzDNV9vGpp54iMTGRgICAGo9LpVLRuHFjDhw4AMBLL73EjBkziIqKIioqyqzsBx98QHFxMcOGDau2XQcHB7Pd56piMBjMfsHPyMggJCSE1q1bs379+kqZK7caX3FxMZaW5v/7vh7cURQFGxubW9YLDg4mKSnJ7FxycrJpIfhbycg4T25ONm63WCj7uoSEBNRqdaUgys0MBgN6vR6DwYCFhQXBwcFs3LgRg8FgGnNycjKenp5otVq0Wm2Nn+mj5K233qp2QfrrmYf3wsyZM2nSpAl/+9vfalxn4cKFzJs37571SQghhBB/bRKUekTkX1tLqlPBAQx7bqxxojVY80PXEMq8vOiYvvhGBbUlBPS4ZVu//DKR4uIzpuMWvk8y9JmmtywrhLgTj+/OfIGBgfTt25fxkybzj3lzcLB3ZUHUUry8vOjbty8AkyZNolevXjRs2JCcnBx2795NkyZNAOMObCqVih07dtC7d29sbGxwcHBg+PDhTJs2DRcXF9zd3ZkzZw5qtbraXQ5nzJhBhw4dGDduHKNGjcLOzo7ExERiY2NZvXo1CQkJzJkzh6FDh9K0aVO0Wi179uzhk08+YcaMGYAxo2rx4sW8+eabWFtbM3ToUDQaDV9++SWzZs0iMjKSJ554wuy+vw/qADRr1sy0g9x1RUVFvPfee/Tp0wdPT0+ysrJYs2YNGRkZ9O/fHzAGpLp06YKPjw9Lly7lypUrpvq329kOIDw8nNGjR7N27VpCQ0O5ePEikyZNol27drdca+i6yZMn07FjRxYsWMCAAQM4fPgw69atM2VnFRYWMm/ePPr164eHhwcpKSlMfXMa3r7+dAoxTgk7ePAghw4dIiQkBAcHBw4ePMjkyZP529/+ZtpZMSYmBo1GQ/PmzbGysuKnn35i5syZDBw40PScXn/9dVavXs3EiRMZP348p0+fZsGCBbfMfLtZdnYe6ekZ5ORozd4PDw+PKp/Zw2Lq1KmMGDGiyjL+/v54eHhUmuZZXl5Odnb2bcfp4eGBTqcjNzfXLFvq0qVLpjo//PADJ06cYOvWrYAxiAlQu3Zt3n777VsGn2bOnMmUKVNMx/n5+aYsOCGEEEKIP0uCUo+IgmtBqZLj6VgBqBywtG6JW04WFqGdaOzrCV9cC0q9nWkMSlloKrWjKAqFRedQq+DQxTYk5/jxXJDsviNEzT2+gaffU/1urOvXr2fs6xEMGz0GvV5Px6Cn2blzpynQUFFRwdixYzl//jyOjo6EhYWxfPlywDj9at68ebz11lu88sorDBs2jOjoaJYtW0ZERATPPfccjo6OTJ8+nfT0dKytq55+3KJFC/bs2cPbb79Np06dUBSFBg0aMHDgQADq1auHr68v8+bNIy0tDZVKZTqePHmyqZ3Jkyfj7+9PVFQUK1asoKioCIBNmzYxaNCgSve91bn09HTq1atnds7CwoJTp06xYcMGsrKycHV1pW3btsTFxdGsWTMAYmNjOXPmDGfOnKlUX6li0aQRI0ZQUFDA6tWrmTp1Ks7OznTt2rXaDJy2bdvyxRdfMHPmTObPn4+fnx/vv/8+Q4YMMfX5+PHjbNiwgdzcXOrWrUuXrt0YPn4GVlZWAFhZWfHpp58yd+5cysrK8PPzY/LkyWZBC0tLSxYtWkRycjKKouDj48O4cePMnru3tzfffPMNkydPpkWLFnh5eTFx4kRTwPB2du3azeuvv2M6vv5+zJkzh7lz51ZZ92Hg5uaGWw2m7gYFBZGbm8vRo0dpfW0dtx9++AGDwWA2rfFmrVu3RqPR8P3339OvXz/AGLQ7d+4cQUFBAHz22WeUlJSY6hw5coRXX32VuLg4GjRocMt2raysTO+/EEIIIcTdplKq+uT7mMrPz8fJyYm8vDzTGh0PM4Oi4L3nZyoUiPhsHQ5XzqHWBGCv7ULT1DUE746FnDRY0dK4fszbF2/bVnl5EXv2GoNQr3+/BINizVcTOtHI4/GbJiHEvXDx3dnkbtmC26SJ1L62sPR1iSvicbxYyFGnizh0d6WjhxvW3sa/b0W5OeTn5qBorbG0tKxyqtMfkV1UxvmcEhytNfjWrnr6Xn55BanFZdhYqGlody34c/lXKC9FV+pIRXEJGi8v9PbWnM07i0atoaFLQwAKc7IpzL6KSmWDlZ0LznXubM2q6hQVFeHl5UVUVBQjR468q23XRHZ2Nt26dcPR0ZFdu3Zha3t3x/eoyS3WcS67GDsrSxq42T/o7lBQcBJFMWBn1xALi7sXKCktLSU1NRU/P79KAdEH9ZmhV69eXLp0iQ8++AC9Xs8rr7xCmzZt2LhxI2DMtOvWrRv/7//9P9NmAa+//jo7d+4kOjoaR0dH03pu16es/t6PP/5ISEgIOTk5ldaiup1H7TOUEEIIIR6Mmn5mkEyph1y5QSGttIyKa6FDy3Lj2htWSiZPH5jJ+brX0vj11775vM06UhUVZZxMnMTVq8YdjIr11mx4tTNNPB1wtq1+dykhhLgX4uPjOXXqFO3atSMvL4/58+cDmKYE3m8uLi589913rFmzhoMHD9KtW7cH0g8hYmJiGDduHN26dUOtVtOvXz9Wrlxpuq7X60lKSqK4uNh0bvny5aayZWVlhIaG8s9//vNBdF8IIYQQokYkKPUQKzMY6HL4FKklOgBqayxNQSnbAgMAmTY+cP4opP/PWElz6wyJvLyfuHLlW9Px8axmjO/siKN15Sl+Qoi/sDuYnXi30myXLl1KUlISWq2W1q1bExcXR+3ate9S63fO1dWV2bNnP7D7CwHGAOn1rKhb8fX1rTTN09ramjVr1rBmzZoa3aNLly5VThUVQgghhLjXJCj1EMso1ZsCUtrin3Ap+xZtmQcKYHltByvXpp7wf11vVLrNrlsJaakAnMv3YnPyC6Tm+TLzZXn7hRAPVqtWrTh69OiD7oYQQgghhBDiAZCoxEOs4FrgydNKw1O/fYtnXC6KzriVuMFKxVfP9ubl7nXhIGBTC1wDoN1rldoxGMo5fzUdLwu4XOJOWkFjnmtZF7X6r7NgsxB3XU2yCx6pDIQ/8u/BozQ+IYQQQgghxMNGglIPses77tlbqHFM0FOrUAsYz1naaBn17rs4H/8/Y+HGz0Lfyun6mZf+S2LidLwsjBlX9d0acOrvve5L/4X4q3pswr3XBqJI8EkIIYQQQghxD6gfdAfE7RVVGNeNslPp8cj1BsDC6klsbQejtbI27pSjKzQW1t5697y0jG9RFGNAqqxCQ7lWFu0V4p6pLhp1T2M7dzkUVqNMsLt7SyGEEEIIIcRfiwSlHmLZ+nIArHRZaMuNv3C6Fl6kzfGPKa/bHL6aCr98Zixsdeutus9lXQTgX4n9mfDDP3B3bXHvOy7E40z12ORBCSGEEEIIIcQDJdP3HkJZunJW/JbJobwiABzLslAMJQC4ZyZiX5RLoIsejvzfjUrO9c3aKCo6Q27uEVwt4wHw92jAC0+3pVtj9/szCCGEEEIIIYQQQogqSFDqIfSfzGw+Op8FSgXOlxdwuuAyrRQ/AGzLSlGAWvXt4BeMi5t3nwsNw0z1FUUhPn4YZbpLpnMtfJ+k75Ne93cgQgghhBBCCCGEELchQamHUJbOOG2vlSaHvOyzNLhQG8VgXDsquVEgqoZNGeLjbAxKOftAk3Cz+nr9Vcp0l1AUFSeuNueXrEBe7lIfIYQQQgghhBBCiIeFrCn1ECqoMO6w55+XRp8DATx52gowLlZe78kQXp07Fyul2FhYa1epfknJOQCyS51ZcWwU35/rjG/tyuWEEH+cUpOFwB9Bo6ZNx7Z5czSurjjZOtGrbS/WLFlDeXn5n2r3xx9/RKVSkZube3c6WgOpqakMHjyYunXrYm1tTb169ejbty+nTp0yK7djxw46d+6Mg4MDtra2tG3blujoaLMyaWlpqFQqEhISanz/uXPn0rhxY+zs7KhVqxbdu3fn0KFDZm2OHDkSPz8/bGxsaNCgAXPmzEGn01XbdkxMDC1btsTW1hZPT09effVVrl69WmWdiooK3n33XbP7/f3vfzf7Wf7888/p2bMnrq6uqFQqTvz8c6V2UlJSeOGFF3Bzc8PR0ZEBAwZw6dKNzNyajuv48eN06tQJa2trvL29Wbx4cbXj3r//JwYOHIe3tx8qlYpt27ZVW0cIIYQQQjy8JCj1EMovNwalHM+dR6M3riWltvTFUWlE7VpOcGA1JH9jLHxTUKq0LJP9B7pw9NjLAFwpcWX5wJbsGP80Ae63XghdCHEvPLjF0O9GqKxHcDDpiYmc+PUEw98YzupFq1myZMldaPnuqEnQRq/X06NHD/Ly8vj8889JSkpi8+bNNG/e3CwwtmrVKvr27UtwcDCHDh3i+PHjDBo0iIiICN58880/1c+GDRuyevVqTpw4wb59+/D19aVnz55cuXIFgFOnTmEwGPjwww85efIky5cv54MPPmDWrFlVtrt//36GDRvGyJEjOXnyJFu2bOHw4cOMHj26ynqLFi1i7dq1rF69ml9//ZVFixaxePFiVq1aZSpTVFTE008/zaJFi27ZRlFRET179kSlUvHDDz+wf/9+dDod4eHhGAyGGo8rPz+fnj174uPjw9GjR1myZAlz585l3bp1VY6hqKiEJ55oxKpV71dZTgghhBBCPBpk+t5DKE9vDEppLhsXOkeloWPyaSxKruDfKR++/c+NwjYupj/mZB+gtDTddPxLVhPGvFAXSwuJPQohas5Kq8WjTh30jjYMemUQP+z8ge3btxMREcHY119n566v0el0dAzqxNoP1xAYGAjAb7/9xrhx49i3bx86nQ5fX1+WLFlC06ZNCQkJAaBWrVoADB8+nOjoaAoKCoiIiGDbtm04Ojoyffp0vvzyS5588knef/99AHx9fRk5ciSnT59m27ZtvPjii0RHR7Nv3z5mzpzJTz/9RO3atXnhhRdYuHAhdnZ2nDx5kpSUFL7//nt8fHwA8PHxITg42DTO9PR0pk6dyqRJk1iwYIHp/NSpU9FqtUyYMIH+/fvTvn37P/QcBw8ebHa8bNkyPv74Y44fP063bt0ICwsjLOzGeoD+/v4kJSWxdu1ali5dett2Dx48iK+vLxMmTADAz8+PMWPG3DaQdN2BAwfo27cvzz77LGB8rps2beLw4cOmMkOHDgWM2U63sn//ftLS0oiPj8fR0RGADRs2UKtWLX744Qe6d+9eo3HFxMSg0+n45JNP0Gq1NGvWjISEBJYtW8Zrr7122zH07NmJHj2CsbNrWOVYhRBCCCHEo0GiFQ+Ri2U6Nl28yuniUgDUpYZrV9Q4FpwDC3B2M2ZO4d0B2r8OHV431S8ru2z8r2VnJv8YyY8ZYRKQEuJuU915FpSiKJSUl1BSUUppRSkl5SUU64vv6qukvITSihJKf9f23ZhmaG1tjU6nY8SIERyLTyD6w7Xs2PoliqLQu3dv9Ho9AGPHjqWsrIy9e/dy4sQJFi1ahL29Pd7e3nz22WcAJCUlcfHiRVasWAHAlClT2L9/P9u3byc2Npa4uDiOHTtWqQ9Lly6lZcuWxMfH8+6775KSkkJYWBj9+vXj+PHjbN68mX379jFu3DgA3NzcUKvVbN26lYprU6J/b+vWrej1+ltmRI0ZMwZ7e3s2bdr0p58fGLO71q1bh5OTEy1btrxtuby8PFxcXG57HSAoKIj09HR27tyJoihcunSJrVu30rt37yrrdezYke+//57k5GQAfv75Z/bt20evXr1qPI6ysjJUKhVWVlamc9bW1qjVavbt21fjcR08eJBnnnkGrVZrOhcaGkpSUhI5OTk17o8QQgghhHi0SabUQ+SNxN84mFuEuvwyjtn/ItdghQNgaTAGlsqt1KjKrwWlWg+HJ43fwhcXp5KRsYlz6R8DEJtsRb7OEXcHeXuFeBiUlJcQ8lXoA7n3ocGHsNXY/qG6iqJwcM9B9u3eR+9evdm2bRvffb2LZgENUKlsWLfmY5q3acy2bdvo378/586do1+/fjRv3hwwZshcdz0g4e7ujrOzMwAFBQVs2LCBjRs30q1bNwDWr19P3bp1K/Wla9euTJ061XQ8atQohgwZwqRJkwAIDAxk5cqVdO7cmbVr1+Ll5cXKlSuZPn068+bNo02bNoSEhDBkyBBTv5KTk3FycsLT07PS/bRaLf7+/qYAzh+1Y8cOBg0aRHFxMZ6ensTGxlK7du1blj1z5gyrVq2qMksKIDg4mJiYGAYOHEhpaSnl5eWEh4ezZs2aKuu99dZb5Ofn07hxYywsLKioqOC9995jyJAhNR5Phw4dsLOzY8aMGSxYsABFUXjrrbeoqKjg4sWLNR5XZmYmfn5+ZuXq1KljunY9o04IIYQQQjzeJI3mIXKxzJht4Jf3HdbFCdgWGzMy1IqaS4280I5/BXTXFji/6ZfMs2ffNwWkAC4UN+BJb2cmdg+8f50XQjw2du3di3P9+tSyr8Xrg16n1/O9GDFiBJaWlrRt09pUzsXFlUaNGvHrr78CMGHCBCIjIwkODmbOnDkcP368yvucPXsWvV5Pu3btTOecnJxo1KhRpbJt2rQxO/7555+Jjo7G3t7e9AoNDcVgMJCamgoYM7cyMzOJiYkhKCiILVu20KxZM2JjY2v8LG7O5LmdmJgYs37ExcWZroWEhJCQkMCBAwcICwtjwIABXL58uVIbGRkZhIWF0b9/f7O1oW5uNyIiAoDExEQmTpzI7NmzOXr0KF9//TVpaWmm63FxcWb1YmJiAPjPf/5DTEwMGzdu5NixY2zYsIGlS5eyYcOGGj8PNzc3tmzZwn//+1/s7e1xcnIiNzeXp556CrW68keK242rOrcbgxBCCCGEeLxIKs1DpMxgnGbT/koCLgfqYaO79q2zSk2XL78z/vnDzcb/3rzAeWkGACUWXdh6wg0Xl86s/Vvb+9ZvIUTVbCxt2P3sN+Tn5oKVNRYWFri5ud3Ve+QU68nILcbBSoOP642gtY2lzR231bltW9asWoXaxZES2xKstdYk7Uuqtt6oUaMIDQ3lq6++4ttvv2XhwoVERUUxfvz4O+7D79nZme8gWlhYyJgxY0zrKt2sfv36pj87ODgQHh5OeHg4kZGRhIaGEhkZSY8ePQgMDCQvL48LFy5Uys7S6XSkpKQQGlp9hlufPn3M1p3y8vIy63dAQAABAQF06NCBwMBAPv74Y2bOnGkqc+HCBUJCQujYsWOlhb5v3u3v+hpOCxcuJDg4mGnTpgHQokUL7Ozs6NSpE5GRkbRp08as3vUMpGnTpvHWW28xaNAgAJo3b85vv/3GwoULGT58eLXjvK5nz56kpKSQlZWFpaUlzs7OeHh4mGXGVTcuDw8Psx37ANOxh4cHvr6+txyDEEIIIYR4vEhQ6iFSWmFcQ8rqnCs2ugLTebXiAqtaQ/ZZUK6tM6WxRa/PobDoDHn58QBcrujDj+ct6V+n+m/2hRD3j0qlwsbSBr1FKYqFNZaWln94St3tlFrqsLZQsLbU/Om2bW1sCPD3p9zRlpTcFACaNGlCeXk5R346SrOABgBkZ18lKSmJpk2bmup6e3sTERFBREQEM2fO5KOPPmL8+PGmjKOb13fy9/dHo9Fw5MgRUyApLy+P5ORknnnmmSr7+NRTT5GYmEhAQECNx6VSqWjcuDEHDhwA4KWXXmLGjBlERUURFRVlVvaDDz6guLiYYcOGVduug4MDDg4ONeqDwWCgrKzMdJyRkUFISAitW7dm/fr1lbKNbjW+4uJiLC3N//dtYWEBGKdc2tjY3Lbe79u3sLAw7Zp3p65PQ/zhhx+4fPkyffr0qfG4goKCePvtt9Hr9Wg0GgBiY2Np1KiRaerenby3QgghhBDi0SRBqYdI6bVMKfs8L+AUaktfbKy7o8raB1fP3Cho44LBLZBDh56lTGf8ZtmgqFj2YwnggL21vK1C3HN3YQHxR0lgYCB9+/Zl3KRJ/GPuHBzsXVkQtRQvLy/69u0LwKRJk+jVqxcNGzYkJyeH3bt306RJE8C4851KpWLHjh307t0bGxsbHBwcGD58ONOmTcPFxQV3d3fmzJmDWq1GVc2C8jNmzKBDhw6MGzeOUaNGYWdnR2JiIrGxsaxevZqEhATmzJnD0KFDadq0KVqtlj179vDJJ58wY8YMwJhRtXjxYt58802sra0ZOnQoGo2GL7/8klmzZhEZGckTTzxhdt+kpMoZY82aNTMFVq4rKirivffeo0+fPnh6epKVlcWaNWvIyMigf//+gDFw06VLF3x8fFi6dClXrlwx1ffw8Ljt2MPDwxk9ejRr164lNDSUixcvMmnSJNq1a3fL9bhurvfee+9Rv359mjVrRnx8PMuWLePVV181lcnOzubcuXNcuHABgDOnk7HLL6W+V10auNkDxnW/mjRpgpubGwcPHmTixIlMnjzZNO2yJuMaPHgw8+bNY+TIkcyYMYNffvmFFStWsHz58tv2H6CwsJiUlDRsbIzrK6amppKQkICLi4tZhpwQQgghhHg0SPTiIaEoCmXXvq1W642/7NqUXqLz0Zkcb3JtDZc6T8DfPgdrJ/SGfFNA6lJxHY5ktqRQ74ClWkV7P9cHMgYhRFXufNe+h8369esZ+3oEw0aPQa/XE9ThaXbu3GkKyFRUVDB27FjOnz+Po6MjYWFhpiCDl5cX8+bN46233uKVV15h2LBhREdHs2zZMiIiInjuuedwdHRk+vTppKenY21tXWVfWrRowZ49e3j77bfp1KkTiqLQoEEDBg4cCEC9evXw9fVl3rx5pKWloVKpTMeTJ082tTN58mT8/f2JiopixYoVFBUVAbBp0ybTNLeb3epceno69erVMztnYWHBqVOn2LBhA1lZWbi6utK2bVvi4uJo1qwZYMwMOnPmDGfOnKlUv6pdE0eMGEFBQQGrV69m6tSpODs707VrVxYtWlTlM1u1ahXvvvsub7zxBpcvX6Zu3bqMGTOG2bNnm8ps376dV155xXT86vC/ATD+zZl0WLIAMAbmZs6cSXZ2Nr6+vrz99ttmz7Qm43JycuLbb79l7NixtG7dmtq1azN79mxee+21KscQH/8Lzz57I4g2ZcoUAIYPH050dHSVdYUQQgghxMNHpdyN/cIfMfn5+Tg5OZGXl2dao+NBKiyvIKNMT8iBg2jKEpnwn1NQlkrdfEueTE1C93wILa1joH5HeHUXAAWFpzh8+Fk0GheGfTUXgB+mdqaOozV2VhJrFOJeuTh3Lrmfbqb2+HG4jR1rdi1xVTyOGYUcc8rEvrsLHevUxrp+SwCKcnPJz8lGsTJO33N3d7+r/cou0nE+pxgHaw1+te2qLJtfXkFqcRk2Fmoa2l0L/lw+BeUl6MocqSgqQVO3rmn6nqXakkYuja6NI4eCq1moVDZobWtRy6Pqe92poqIivLy8iIqKYuTIkXe17ZrIzs6mW7duODo6smvXLmxt7+40y0dNXrGO37KLsdNa0sDd/kF3h4KCkyiKATu7hlhYWN21dktLS0lNTcXPz69SQPRh+8zwoMnzEEIIIURN1PQzg+y+94Dl6Mt56uBJOh8+Rd1LC3G8+gEW5cb1RrTlBjSNGtGsdytjYa0tiqJwPmMjJ09OAqDMcOPNrVfLVgJSQoj75m58pREfH8+mTZtISUnh2LFjDBkyBMA0JfB+c3Fx4bvvvqNbt24cPHjwgfRBCCGEEEKIvwqJYDxgp4tKyS83oDKU4nwlm/YnPamoyAQgs44f/WZ2geRvjYU1NuTmHiYp6V1T/X2/GdfnsNVaoLWUGKMQ4u5TuLcJtUuXLiUpKQmtVkvr1q2Ji4szLaL9ILi6uppNaRNCCCGEEELcGxKUesDyyo07UTWzNdAszR2XAjVgADRUWGhhy4gbha2cyMs7ajr84kxvfrr8NM29nAhv6Xlf+y2EEHdDq1atOHr0aPUFhRBCCCGEEI8dCUo9YNeDUrZKGZ559YHzWFg9haV1G2wrdhoLuQaCWyNoP4binH8BkGPxCjvOtqJ7kzr83/A2D6j3Qoi/rr/ccoRCCCGEEEKIu0yCUg9Ynr4cgIqzCWgqjLtzORbl4/vbZxQ9k2Es1O41Lvl6kfbb2xQVpQHw6THjL4S1bDWV2hRC3AfVxGQkZCOEEEIIIYQQVZNFiB6wC1lXAXDIO4/KYACg3sUjeF46TIWnMYsKrR3p6espLExEUYqpMKhJy/dBa6kmpPHd3cFLCPHnqVA96C4IIYQQQgghxENPMqUesOziK/Q/PZ3zZSpQGgNgpS8lsZk9HS2NWVRobdEX5AJwwTCGlfvd6dH8SSKfb46FWn75FeKhoari76P8VRVCCCGEEEIIMxKUekASC0uYfTqDvIwvscpWaJbmglKRA4BnMHR2ToYL16YAWdpSVma8tj/dlysldjjbaiUgJcSDUFXgSQghhBBCCCFEjUlQ6gHZnJnNvtxCmuuu8szP7lgYFKAcsMRL+xsABit7fmphT0HGG6Z6+1ONU/xc7bQPoNdCCCGEEEIIIYQQd4esKfWAFFcYg0s+WaprASmwtHma2rrG2Fjpwb0ZReO/p8Cm3FQn/nJzWtb3Y0RHX158qt4D6bcQ4jElCWBCCCGEEEKI+0yCUg9I6bVFzW0Lr+/RpaZJeiq+F/+H2gKwcqC05DwA9vZNWZywjNUJo5jcoyFz+zTDRTKlhBD3wKhp07Ft3hyNqyuOto70atuLNUvWUF5eXn3lKvz444+oVCpyc3PvTkdrIDU1lcGDB1O3bl2sra2pV68effv25dSpU2blduzYQefOnXFwcMDW1pa2bdsSHR1tViYtLQ2VSkVCQkKN7z937lwaN26MnZ0dtWrVonv37hw6dMiszZEjR+Ln54eNjQ0NGjRgzpw56HS6atuOiYmhZcuW2Nra4unpyauvvsrVq1errFNQUMCkSZPw8fHBxsaGjh07cuTIEbMyhYWFjBs3jnr16mFjY0P71i35z78+MSszZswYGjRogI2NDW5ubrd8pufOnePZZ5/F1tYWd3d3pk2bdtufof3792NpacmTTz5Z7bi3b/+O558fg7t73Tt+P4QQQgghxMNHglIPSNaVK7jprmJVZAxKqdHgnbEXld0VFCDXXkXW1T3GsiVunM+1AlQ4WsuMSyHEvdUjOJj0xERO/HqC4W8MZ82iNSxZsuRBd8ukJkEbvV5Pjx49yMvL4/PPPycpKYnNmzfTvHlzs8DYqlWr6Nu3L8HBwRw6dIjjx48zaNAgIiIiePPNN/9UPxs2bMjq1as5ceIE+/btw9fXl549e3LlyhUATp06hcFg4MMPP+TkyZMsX76cDz74gFmzZlXZ7v79+xk2bBgjR47k5MmTbNmyhcOHDzN69Ogq640aNYrY2Fj+9a9/ceLECXr27En37t3JyMgwlZkyZQpff/01//73v/n11195fex4/vHudL77+itTmdatW7N+/Xp+/fVXvvnmGxRFoWfPnlRUGHeMraio4Nlnn0Wn03HgwAE2bNhAdHQ0s2fPrtSn3Nxchg0bRrdu3Wr0TIuKSggKasXChZE1Ki+EEEIIIR5uEpR6QLzPRtP4tzewyzG+BRaKMdiUHVBMprsVR91Oc+HCRgB2n7GkSGf8sO9sKxlSQjwUFOW2lx71mXBWWi0ederg6+PLoFcGEdQ5iO3bt5OTk8PoiNdp/FQb/Jo1ZMCQFzh9+rSp3m+//UZ4eDi1atXCzs6OZs2asXPnTtLS0ggJCQGgVq1aqFQqRowYARizd4YMGYKdnR2enp4sX76cLl26MGnSJFO7vr6+/P3vf2fYsGE4Ojry2muvAbBv3z46deqEjY0N3t7eTJgwgaKiIgBOnjxJSkoK//znP+nQoQM+Pj4EBwcTGRlJhw4dAEhPT2fq1KlMmjSJBQsW0LRpUwICApg6dSpLliwhKirKLLPpTg0ePJju3bvj7+9Ps2bNWLZsGfn5+Rw/fhyAsLAw1q9fT8+ePfH396dPnz68+eabfP7551W2e/DgQXx9fZkwYQJ+fn48/fTTjBkzhsOHD9+2TklJCZ999hmLFy/mmWeeISAggLlz5xIQEMDatWtN5Q4cOMDw4cPp0qULvr6+jBg5ioZNn+B4/FFTmddee41nnnkGX19fnnrqKSIjI0lPTyctLQ2Ab7/9lsTERP7973/z5JNP0qtXL/7+97+zZs2aSgHFiIgIBg8eTFBQUI2e6csv92HGjAi6detao/JCCCGEEOLhJkGpBySv6ARcdMW2sOzaGUvi/1ZIiHchRa37AlCBC79ebUhS3jP0bFqHGWGNcXOwenCdFkL8IYqiYCgpQSktRSkpQSkpwVBcfFdfSkkx3KJtpYrgWU1ZW1uj0+kYMWIExxLiif5wLTu2bkNRFHr37o1erwdg7NixlJWVsXfvXk6cOMGiRYuwt7fH29ubzz77DICkpCQuXrzIihUrAGNmzv79+9m+fTuxsbHExcVx7NixSn1YunQpLVu2JD4+nnfffZeUlBTCwsLo168fx48fZ/Pmzezbt49x48YB4ObmhlqtZuvWraYMnt/bunUrer3+lhlRY8aMwd7enk2bNv3p5wfG7K5169bh5OREy5Ytb1suLy8PFxeXKtsKCgoiPT2dnTt3oigKly5dYuvWrfTu3fu2dcrLy6moqMDa2trsvI2NDfv27TMdd+zYke3bt5ORkYGiKOzd8yO/nU3h6S63DgIVFRWxfv16/Pz88Pb2BoxBs+bNm1OnTh1TudDQUPLz8zl58qTp3Pr16zl79ixz5sypcrxCCCGEEOLxJXPB7jO9QeFsSRnOv9nS8DcLIB8Ag8qaweX5YFOLC461oQgyy59l6dG2DGrrzT/6tXiwHRdCAKBS3XkelFJSwvnf/VKffbc6dBMNUAYk3XSu0bGjqGxtb92vatpTFIWDew6yb/c+evfqzbZt2/ju669pFuCPSmXNh6s/pkXbxmzbto3+/ftz7tw5+vXrR/PmzQHw9/c3tXU90OLu7o6zszNgzJLasGEDGzduNE3fWr9+PXXr1q3Ul65duzJ16lTT8ahRoxgyZIgpoyowMJCVK1fSuXNn1q5di5eXFytXrmT69OnMmzePNm3aEBISwpAhQ0z9Sk5OxsnJCU9Pz0r302q1+Pv7k5ycXM1TqtqOHTsYNGgQxcXFeHp6EhsbS+3atW9Z9syZM6xatYqlS5dW2WZwcDAxMTEMHDiQ0tJSysvLCQ8PZ82aNbet4+DgQFBQEH//+99p0qQJderUYdOmTRw8eJCAgABTuVWrVvHaa69Rr149LC0tUavVzF60gnZBT5u1989//pPp06dTVFREo0aNiI2NRas1ZvJmZmaaBaQA03FmZiYAp0+f5q233iIuLg5LS/koIoQQQgjxVyWZUvfZyz+n0PnwKRzyPABQWbhjYdUSteJJqVbNhTpWXLj4HwC+TzZmUTnZah5Yf4UQfz279u7FuX59nOydeH3Q6/R6vhcjRozA0tKStm3amMq5uLjSqFEjfv31VwAmTJhAZGQkwcHBzJkzxzRN7XbOnj2LXq+nXbt2pnNOTk40atSoUtk2N90X4OeffyY6Ohp7e3vTKzQ0FIPBQGpqKmDM3MrMzCQmJoagoCC2bNlCs2bNiI2NrfGzuB5oqUpMTIxZP+Li4kzXQkJCSEhI4MCBA4SFhTFgwAAuX75cqY2MjAzCwsLo37+/2dpQN7cbEREBQGJiIhMnTmT27NkcPXqUr7/+mrS0NNP1uLg4s3oxMTEA/Otf/0JRFLy8vLCysmLlypW8/PLLqNU3PgqsWrWK//3vf2zfvp2jR48SuXARC96Zxv49u836O2TIEOLj49mzZw8NGzZkwIABlJaW1uiZVlRUMHjwYObNm0fDhg3v+JkKIYQQQojHh3w9eZ8lFBQDoNEbA01anGl0/gpnHbScbOxArvON3YnOF9TFwcqSLg3dH0hfhRB3h8rGhno//kBBTg6K1gpLS0vc3Nzu6j1yinVk5JRgb63B1/VGZpTKxqZyf6ppq3PbtqxZtQoLFyeKbYux0liRvL/6jKFRo0YRGhrKV199xbfffsvChQuJiopi/PjxdzqcSuzs7MyOCwsLGTNmDBMmTKhUtn79+qY/Ozg4EB4eTnh4OJGRkYSGhhIZGUmPHj0IDAwkLy+PCxcuVMrO0ul0pKSkEBoaWm3f+vTpQ/v27U3HXl5eZv0OCAggICCADh06EBgYyMcff8zMmTNNZS5cuEBISAgdO3Zk3bp1Zm3fvLuco6MjAAsXLiQ4OJhp06YB0KJFC+zs7OjUqRORkZG0adPGrN71LKUGDRqwZ88eioqKyM/Px9PTk4EDB5oyx0pKSpg1axZffPEFzz77LAA+gY05eOQY/7d2JcP6h5vadHJywsnJicDAQDp06ECtWrX44osvePnll/Hw8Ki0vtWlS5cA8PDwoKCggJ9++on4+HjTdEuDwYCiKFhaWvLtt99W+UyFEEIIIcTjQ4JS91G5QaGwwgCARqdCATyvnKXehSTcWjlTaGP8tvqqrgn/O+9Fn7ahTOx+62+RhRCPDpVKhdrGBlVJCVhZo7K0RH2bKXV/lFqxhFJQWWv+dNu2NjYE+PtT4WjHmdwzADRp0oTy8nKOHP2JZg2MQYzs7KskJSXRtGlTU11vb28iIiKIiIhg5syZfPTRR4wfP96UcXTz+k7+/v5oNBqOHDliCiTl5eWRnJzMM888U2Ufn3rqKRITE82mnlVHpVLRuHFjDhw4AMBLL73EjBkziIqKIioqyqzsBx98QHFxMcOGDau2XQcHBxwcHGrUB4PBQFlZmek4IyODkJAQ0452N2ctAbccX3FxcaUpbxYWFoBxyqWNjU2Vz8XOzg47OztycnL45ptvWLx4MWDcsVCv11fqg9pCjcFguG17iqKgKIppXEFBQbz33ntcvnwZd3fjlyqxsbE4OjrStGlTNBoNJ06cMGvjn//8Jz/88ANbt27Fz88POzu7Gj9TIYQQQgjx6JKg1H1UUFHBwPMxhFzaRJqhFxWApkKHzlKhgU8KP1naA7D4UH+ySmrz92ay054Q4gG5aYF0BYXAwED69u3LuImT+Mfc2TjYu7AgKgovLy/69jVuzjBp0iR69epFw4YNycnJYffu3TRp0gQAHx8fVCoVO3bsoHfv3tjY2ODg4MDw4cOZNm0aLi4uuLu7M2fOHNRqdbVrd82YMYMOHTowbtw4Ro0ahZ2dHYmJicTGxrJ69WoSEhKYM2cOQ4cOpWnTpmi1Wvbs2cMnn3zCjBkzAGNG1eLFi3nzzTextrZm6NChaDQavvzyS2bNmkVkZCRPPPGE2X2TkpIq9aVZs2ZoNObTrIuKinjvvffo06cPnp6eZGVlsWbNGjIyMujfvz9gDEh16dIFHx8fli5dypUrV0z1PTw8bjv28PBwRo8ezdq1awkNDeXixYtMmjSJdu3a3XI9ruu++eYbFEWhUaNGnDlzhmnTptG4cWNeeeUVwJiJ1blzZ6ZNm4aNjQ0+Pj7siv2eHVs3M2v+QsA45XLz5s307NkTNzc3zp8/zz/+8Q9sbGxMC6337NmTpk2bMnToUBYvXkxmZibvvPMOY8eOxcrKuFnH75+ru7s71tbWlc7/XnZ2LunpGeTkGP//eP398PDwqPKZCSGEEEKIh5MEpe6jPH05pwu+5UKRNx0qLgJwyb0uwV0Pk9tzGIbCLwEoq7DDw9GajgG3XgxXCPEQuAu72j1q1q9fz9jXX2fY6DHo9XqCOjzNzp07TQGZiooKxo4dy/nz53F0dCQsLIzly5cDxulX8+bN46233uKVV15h2LBhREdHs2zZMiIiInjuuedwdHRk+vTppKenV9ol7vdatGjBnj17ePvtt+nUqROKotCgQQMGDhwIQL169fD19WXevHmkpaWhUqlMx5MnTza1M3nyZPz9/YmKimLFihUUFRUBsGnTJgYNGlTpvrc6l56eTr169czOWVhYcOrUKTZs2EBWVhaurq60bduWuLg4mjVrBhizh86cOcOZM2cq1a9q18QRI0ZQUFDA6tWrmTp1Ks7OznTt2pVFixZV+czy8vKYOXMm58+fx8XFhX79+vHee++ZBdQ+/fRTZs6cyZAhQ8jOzsa7fn3GTX+HwcNHAsadGOPi4nj//ffJycmhTp06PPPMMxw4cMCUFWVhYcGOHTt4/fXXCQoKws7OjuHDhzN//vwq+1cTu3bt5vXX3zEdX38/5syZw9y5c/90+0IIIYQQ4v5SKXdjv/BHTH5+Pk5OTuTl5ZnW6Lgfvss8w38XjKf+JQvTuTrOHngO+AGuZQUU6Oxo1mofgXXuX7+EEDWXOX8+ORs3UfuNN3CbYL5WUuLqBBzPF5DgdAmb7rUIrlMb6/otASjKyyU/OxvFyhpLS0vTL/B3S06RjvScYuytLPF3s6+ybEF5BWeLy7C2UNPI7lrw58op0JegK3OkoqgEjacnFU72nMk9g1qlpolrE9M4CrKuoFJZo7F2waWuXRV3unNFRUV4eXkRFRXFyJEj72rbNZGdnU23bt1wdHRk165d2N7laZaPmrwSHb9dLcZOa0kD96p/ru6HgoJEFKUCO7uGWFhY3bV2S0tLSU1Nxc/Pr1JA9EF9ZnhYyfMQQgghRE3U9DOD7L53H13MzsD7qnF6gdqyHpY2XXB3vAgqFYpiTfzlJ1h/cjDOtnfvg7YQ4j6qbgVxHoHvAKodw90VHx/Ppk2bSElJ4dixYwwZMgTANCXwfnNxceG7776jW7duHDx48IH0QQghhBBCiL8Kmb53HyiKwr8uXOVA0jkCK0oAcCt1wzXzDN4Bp7kApOXUYXXCa1iqVTjayNsixMPrPkdtHmp3J8i2dOlSkpKS0Gq1tG7dmri4OGrXfnDTl11dXZk9e/YDu//DRX7ehRBCCCHEvSPRj/vgaH4x05PP0yHrMoGKcb2SJ5K+QO+kJTPIEqggt8KVF1p5ERxQGytLi6obFEKIu+LmoNItgg/3IR7RqlUrjh49eu9vJIQQQgghhHjoSFDqPjiVms4/Et/m4mUw/panJqWlDbV75mBQGX8pLFYasnzQkw+wl0IIcWcegcmIQgghhBBCiIeYBKXug+PxOzGcLMXzqg0AFtjh1aOQIm+FiyUN+emCHwWWPR9wL4UQQgghhBBCCCHuH1no/D4oKE42BaQAtCpPrOyM0/i+PtuabSnP4u5U60F1TwghakxWGBJCCCGEEELcLZIpdR9YX732a5zKCivHkdhfOUS2qwYAX7e6dHuqKc+1qPsAeyiEuHO3n7ymMoVuZIKbEEIIIYQQQtyOBKXuA9crFQBYKFY0TdpMeq08AHQVGhp5BzM02O9Bdk8IcR9IhpEQQgghhBBCmJOg1H3gnKdQBmgM4HnpMCW9bPjqtyH8dKEuk3q5PujuCSHuhOr24aUHGni6BzdXSShNCCGEEEIIcQ9JUOoeWvf5V2iS1lOhN07Vq7C0IHORDq2tns+/bweoqG1v9WA7KYQQQlTj4ZuI+vD1SAghhBBC3DlZ6PweOp24nuyEUsoNBQAYLCwxOEBZkT3Dg3yZEdaYjg0kU0oI8fAY9eZ0bJs3R1O7NvY29vRq24t/Lvkn5eXlf6rdH3/8EZVKRW5u7t3paA2kpqYyePBg6tati7W1NfXq1aNv376cOnXKrNyOHTvo3LkzDg4O2Nra0rZtW6Kjo83KpKWloVKpSEhIqPH9586dS+PGjbGzs6NWrVp0796dQ4cOmbU5cuRI/Pz8sLGxoUGDBsyZMwedTldt2zExMbRs2RJbW1s8PT159dVXuXr1apV19u7dS3h4OHXr1kWlUrFt27ZKZT7//HN69uyJq6srKpWK4z/ffryKotCrV6/bthUdHU2LFi2wtrbG3d2dsWPHml3/5ptv6NChAw4ODri5udGvXz/S0tKqHOcbb7xDdnbunx6nEEIIIYR4OEhQ6h6yvXQt4KSyRm3pQ7mVG+5XyvjtwtPM6/sEr3dpgKWFvAVCiIdLj+Bg0k+e5OSpkwx/YzhrFq9hyZIlD7pbJjUJ2uj1enr06EFeXh6ff/45SUlJbN68mebNm5sFxlatWkXfvn0JDg7m0KFDHD9+nEGDBhEREcGbb775p/rZsGFDVq9ezYkTJ9i3bx++vr707NmTK1euAHDq1CkMBgMffvghJ0+eZPny5XzwwQfMmjWrynb379/PsGHDGDlyJCdPnmTLli0cPnyY0aNHV1mvqKiIli1bsmbNmirLPP300yxatKja8b3//vuobjOdddmyZbz99tu89dZbnDx5ku+++47Q0FDT9dTUVPr27UvXrl1JSEjgm2++ISsrixdffLHKcR49eoLx4+f96XEKIYQQQoiHhPIXlJeXpwBKXl7ePb1P5KixytIBzyqrXn5T+bTfciVqzEjl+beWKwPW7r+n9xVC3DsX5/9dSWzUWLm8YkWla4mr45X0GXuVHQu2Kt8d/k4p+S3edK0oN0e5cPaMkpGRoVy6dOmu9yu7qEz5OT1HSblcUG3ZfH25kpBXpJwqLL5x8vIpRck4pgzt96LyXEiIos/KUsrKy5RfrvyidOzSUenQoYOSnZ2tvDxwoOLk6KjYWFsr3UJ6KMnJyaYm0tLSlOeee05xdnZWbG1tlaZNmypfffWVkpqaqmCcb2V6DR8+3NiX/Hxl8ODBiq2treLh4aEsW7ZM6dy5szJx4kRTuz4+Psr8+fOVoUOHKg4ODqa6cXFxytNPP61YW1sr9erVU8aPH68UFhYqiqIo8fHxCqCkpaXd9jmcO3dO0Wg0ypQpUypdW7lypQIo//vf/xRFUUxjiI+Pr/b53s71//d89913ty2zePFixc/Pr8p2lixZovj7+1fqr5eXV437AihffPHFba9fH+/eg4eVn9NzlNOXzH+u4uPjFS8vL+XixYuV2srOzlZsbGyqHOeWLVsUS0tLpaKiwnRu+/btikqlUnQ63W3HuXjxLKVuXXelvLzkrozzupKSEiUxMVEpKanc7v36zPCokOchhBBCiJqo6WcGSdO5h2xKjLvu1c5OocUvH6JxKyJeCaRJXacH3DMhxJ+lKLdf0+Z67sj1EoqioNdVUK4zUK4zoC+ruOuv8rIKKnQVlOvMz1fVz5qysrZCp9MxYsQI4hMSiP5wLTu2bkMxKPTu3Ru9Xg/A2LFjKSsrY+/evZw4cYJFixZhb2+Pt7c3n332GQBJSUlcvHiRFStWADBlyhT279/P9u3biY2NJS4ujmPHjlXqw9KlS2nZsiXx8fG8++67pKSkEBYWRr9+/Th+/DibN29m3759jBs3DgA3NzfUajVbt26loqLiluPaunUrer3+lhlRY8aMwd7enk2bNv3p5wfG7K5169bh5OREy5Ytb1suLy8PFxeXKtsKCgoiPT2dnTt3oigKly5dYuvWrfTu3fuu9LU6xcXFDB48mDVr1uDh4VHpemxsLAaDgYyMDJo0aUK9evUYMGAA6enppjKtW7dGrVazfv16KioqyMvL41//+hfdu3dHo9HcdpxffvktPXp0ui/jFEIIIYQQ954sdH6PFBQUoDJUoABqKvitlRNadw3/feFpmtZ1fNDdE0LcR+U6A/9+9+ffnf31vtz7tRWd0VhZ/KG6iqJwcM9B9u/eT+9evdm2bRvff/MNTRv4oVJZ88Hq/6NluyZs27aN/v37c+7cOfr160fz5s0B8Pf3N7V1PdDi7u6Os7MzYPx3csOGDWzcuJFu3boBsH79eurWrVupL127dmXq1Kmm41GjRjFkyBAmTZoEQGBgICtXrqRz586sXbsWLy8vVq5cyfTp05k3bx5t2rQhJCSEIUOGmPqVnJyMk5MTnp6ele6n1Wrx9/cnOTn5Dz2763bs2MGgQYMoLi7G09OT2NhYateufcuyZ86cYdWqVSxdurTKNoODg4mJiWHgwIGUlpZSXl5OeHj4fZuuNnnyZDp27Ejfvn1vef3s2bMYDAYWLFjAihUrcHJy4p133qFHjx4cP34crVaLn58f3377LQMGDGDMmDFUVFQQFBTEzp07qxxnr15diIqqenqjEEIIIYR4dEim1F1mMCis+GIOkfMGYDBkA3C1nh0eLXVo8ad5PScs1LLNuhCPrNusoQOgVHHtUbJr716cfXxwtHPk9UGv0+v5XowYMQJLS0vatmlzrZSCSy1XGjVqxK+/GgNsEyZMIDIykuDgYObMmcPx48ervM/Zs2fR6/W0a9fOdM7JyYlGjRpVKtvGdF+jn3/+mejoaOzt7U2v0NBQDAYDqampgDFzKzMzk5iYGIKCgtiyZQvNmjUjNja2xs9Cq9VWWyYmJsasH3FxcaZrISEhJCQkcODAAcLCwhgwYACXL1+u1EZGRgZhYWH079/fbG2om9uNiIgAIDExkYkTJzJ79myOHj3K119/TVpamul6XFycWb2YmJgaj7c627dv54cffuD999+/bRmDwYBer2flypWEhobSoUMHNm3axOnTp9m9ezcAmZmZjB49muHDh3PkyBH27NmDVqvlpZdeMmX33Wqc585dYNKkyHs+TiGEEEIIcX9IptRdFh93iItfH8Y91wIoBcDGqpwnS1P4qbbbg+2cEOKBsNSq+dvfW5KfnY1iZYOFhQXu7u539R65xTrO5xRjZ2WJX217s3vfqc5t27Jm5Uosa9eiyKYIrUbL6f2nq603atQoQkND+eqrr/j2229ZuHAhUVFRjB8//o778Ht2dnZmx4WFhYwZM4YJEyZUKlu/fn3Tnx0cHAgPDyc8PJzIyEhCQ0OJjIykR48eBAYGkpeXx4ULFyplZ+l0OlJSUswW576dPn360L59e9Oxl5eXWb8DAgIICAigQ4cOBAYG8vHHHzNz5kxTmQsXLhASEkLHjh1Zt26dWds37/bn6GjMsl24cCHBwcFMmzYNgBYtWmBnZ0enTp2IjIykTZs2ZvXq1KlT7Rhq6ocffiAlJcWU7XZdv3796NSpEz/++KMp86xp06am625ubtSuXZtz584BsGbNGpycnFi8eLGpzL///W+8vb05dOgQHTp0uOU4Vap3CA0dxsKFF+/pOIUQQgghxP0hQam77Fzyz9QucAVysbBqhYWFN3kWP/KO/hVq1+vygHsnhHgQVCoVGq0Fllo1ilaNhYX6D0+pux3LCgsstBZYai3+dNu2NjYE+PtjcHbgdI4xGNWkSRPKy8s5cvQnmvr7AZCdc5WkpCSz4IO3tzcRERFEREQwc+ZMPvroI8aPH2/KOLp5fSd/f380Gg1HjhwxBZLy8vJITk7mmWeeqbKPTz31FImJiQQEBNR4XCqVisaNG3PgwAEAXnrpJWbMmEFUVBRRUVFmZT/44AOKi4sZNmxYte06ODjg4OBQoz4YDAbKyspMxxkZGYSEhNC6dWvWr1+PWm0eRLzV+IqLi7G0NP/ft4WF8T1XFAUbG5s7ei534q233mLUqFFm55o3b87y5csJDw8HjNPuwLh+WL169QDIzs4mKysLHx8f0xh+P9brYzAYDKYyvx+nWn1/ximEEEIIIe6PRzYotWaNcYvyzMxMWrZsyapVq8ymgDwoJUopKoPxFw7XEitcs4/xU58wnurUldBmlReEFUKIh52CQmBgIH379mXchIksnDsbB/taLFi6DC8vL9PaQpMmTaJXr140bNiQnJwcdu/eTZMmTQDw8fFBpVKxY8cOevfujY2NDQ4ODgwfPpxp06bh4uKCu7s7c+bMQa1Wo6pmKuSMGTPo0KED48aNY9SoUdjZ2ZGYmEhsbCyrV68mISGBOXPmMHToUJo2bYpWq2XPnj188sknzJgxAzBmVC1evJg333wTa2trhg4dikaj4csvv2TWrFlERkbyxBNPmN03KSmpUl+aNWtmWpz7uqKiIt577z369OmDp6cnWVlZrFmzhoyMDPr37w8YA1JdunTBx8eHpUuXcuXKFVP9Wy0gfl14eDijR49m7dq1hIaGcvHiRSZNmkS7du1uuR7XdYWFhZw5c8Z0nJqaSkJCAi4uLqagYHZ2NufOnePChQsAnDmdjF1eKd5edQlwt8fDw+OWfatfvz5+fsZgZcOGDenbty8TJ05k3bp1ODo6MnPmTBo3bkxISAgAzz77LMuXL2f+/Pm8/PLLFBQUMGvWLHx8fGjVqtVtxzl9+gJat37iT49TCCGEEEI8JO7tJoD3xqeffqpotVrlk08+UU6ePKmMHj1acXZ2rvE26/dyO+OtGz9Rlg54Vlk64FnlWLNmyretn1a+PRh/1+8jhHgwLv49Ukls1Fi59P77la6dXJOgpM/Yq3y1YKvy3eHvlOLf4k3XinJzlAtnzygZGRlKZmbmXe9XdlGZ8nN6jpJyuaDasvn6ciUhr0g5VVh84+TlU4qScUwZ2u9F5bmQEEWflaWUlZcpv1z5RTmZddJ4j+xs5eVBAxVHBwfFxtpa6dq5u5KcnGxqYty4cUqDBg0UKysrxc3NTRk6dKiSlZVluj5//nzFw8NDUalUyvDhw419yc9XBg8erNja2ioeHh7KsmXLlHbt2ilvvfWWqZ6Pj4+yfPnySuM4fPiw0qNHD8Xe3l6xs7NTWrRoobz33nuKoijKlStXlAkTJihPPPGEYm9vrzg4OCjNmzdXli5dqlRUVJi1s23bNqVTp06KnZ2dgnHTRGXTpk1mZVJTU03Xfv9KT0+v1LeSkhLlhRdeUOrWratotVrF09NT6dOnj3L48GFTmfXr19+2zeqsXLlSadq0qWJjY6N4enoqQ4YMUc6fP19lnd27d9/yXtffi6r6NP7NmbdtF1C++OILs3N5eXnKq6++qjg7OysuLi7KCy+8oJw7d86szKZNm5RWrVopdnZ2ipubm9KnTx/l119/rXKcAwY8p/z6a6xSXl7yp8b5eyUlJUpiYqJSUlK53Xv5meFRJM9DCCGEEDVR088MKkW5C/uF32ft27enbdu2rF69GjCm+nt7ezN+/Hjeeuutauvn5+fj5OREXl6eaY2Ou2XbvxaQsuMAKoNC2ImzZHvXQvX+vwlu5l99ZSHEQy8z8j1y/v1vXF+PwH3iRLNrif/8Gcdz+Rx3uoxVd2c61nHFpv6TABTn5ZKXfdW0ptTdXv8mp1hHenYx9laW+LvZV1m2oLyCs8VlWFuoaGRnYzx5JQn0xeh0TlQUFqPx9DRN31OpVDR1NU7RK87PI//KZVQqKyytXHD1qvped6qoqAgvLy+ioqIYOXLkXW27JrKzs+nWrRuOjo7s2rULW1vb+96Hh0leiZ7frhZhq7UkwP3uvtd/REFBIopSgZ1dIBYW1net3dLSUlJTU/Hz88Pa2rzde/mZ4VEkz0MIIYQQNVHTzwyP3PQ9nU7H0aNHzRaJVavVdO/enYMHD96yTllZmdkaHvn5+feuf8eNu1BZ68uxehra1fmVi+633v5bCPHourr2A65+aFyUOuCH79HcNKWpqaEOBXo79AZvcs9fxsZFjfamf24rKiq4kJGBWgUedb0qtf1nFJaVc+J8runYt7YdDtaaW5YtrVD4Ob/YOIYKA3YAukJAjf7iRbh4EWM4XeGM7iRlGrDWqbHDEkUpQ196kcyUG+2pLVxxreeMhWXNF1ePj4/n1KlTtGvXjry8PObPnw9gmhJ4v7m4uPDdd9+xZs0aDh48SLdu3R5IPx42xTrjz5Wnsw217a0edHcoKjJfeF+t1mBv3/gB9UYIIYQQQvxRd74t0wOWlZVFRUVFpSyDOnXqkJmZecs6CxcuxMnJyfTy9va+Z/2z6tiXcza+ZDrVpUG9C+i92+DjJt8kCvG4sGnZEq4v0GwwGF/X2DVwwnDL5FMFSysrVADXr1ezZtId90tjgfpamzfPWboVa7UK9e9uX2RhzJhSW1adPFtuoaDcput/NO126dKltGzZku7du1NUVERcXBy1az+4YL6rqyuzZ8+WgBRgrVGb/Vw9aBYWf+3MNSGEEEKIx80jN33vwoULeHl5ceDAAYKCgkznp0+fzp49ezh06FClOrfKlPL29r43qecVeijNo0hXgZ3WAmxcbvwCK4R4LFTk56Pc9G+KhYsLqms7h5XmlpKfU8Clgkx86tfD2sYaS40WtdoCg8GAoaKC6//sqlQqLDW3zmL6Q/0yKJWCYhZqlSmocDODolDxu7IqQwWWKlAqKkzBMwWoUKnAwgKuNaMYFDAoqBTzf9vUFmrUFtUvUi4eLQbDjZ8VtUqFxe8jmveRoigoSvktr6nVf/zvkkzfqzl5HkIIIYSoicd2+l7t2rWxsLDg0qVLZucvXbp0292KrKyssLK6T9MNLDRgVxs7u/tzOyHE/WdRxT+q1s7WYA1XS7PQWtugtbrxC65arUZ9D4PUFmoVFtQsYKBW3SJYda1vKosbv9yruEVKrcTZ/1LUahXqGv5c3WsqlQqV6u4FcoUQQgghxIP1yP1qodVqad26Nd9//73pnMFg4PvvvzfLnBJCCCGEEEIIIYQQD69HLlMKYMqUKQwfPpw2bdrQrl073n//fYqKinjllVcedNeEEEIIIYQQQgghRA08kkGpgQMHcuXKFWbPnk1mZiZPPvkkX3/99V3fYl0IIYQQQgghhBBC3BuPZFAKYNy4cYwbN+5Bd0MIIYQQQgghhBBC/AGP3JpSQgghhBBCCCGEEOLRJ0EpIYQQQgghhBBCCHHfSVBKCCGEyYgRI1CpVKhUKrRaLQEBAcyfP5/y8vI/1e6PP/6ISqUiNzf37nS0BlJTUxk8eDB169bF2tqaevXq0bdvX06dOmVWbseOHXTu3BkHBwdsbW1p27Yt0dHRZmXS0tJQqVQkJCTU+P5z586lcePG2NnZUatWLbp3786hQ4fM2hw5ciR+fn7Y2NjQoEED5syZg06nq7btmJgYWrZsia2tLZ6enrz66qtcvXq1yjp79+4lPDycunXrolKp2LZt2x33GeC9996jY8eO2Nra4uzsfMt7nTt3jmeffRZbW1vc3d2ZNm2a2c/QzT9nN7+aNWtmKrNw4ULatm2Lg4MD7u7uPP/88yQlJVX7bGrSPyGEEEII8XCQoJQQQggzYWFhXLx4kdOnTzN16lTmzp3LkiVLHnS3TGoStNHr9fTo0YO8vDw+//xzkpKS2Lx5M82bNzcLjK1atYq+ffsSHBzMoUOHOH78OIMGDSIiIoI333zzT/WzYcOGrF69mhMnTrBv3z58fX3p2bMnV65cAeDUqVMYDAY+/PBDTp48yfLly/nggw+YNWtWle3u37+fYcOGMXLkSE6ePMmWLVs4fPgwo0ePrrJeUVERLVu2ZM2aNX+4z2B8/v379+f111+/ZRsVFRU8++yz6HQ6Dhw4wIYNG4iOjmb27NmmMitWrODixYumV3p6Oi4uLvTv399UZs+ePYwdO5b//e9/xMbGotfr6dmzJ0VFRVWOs7r+CSGEEEKIh4jyF5SXl6cASl5e3oPuihDiMVRSUqIkJiYqJSUlD7ord2z48OFK3759zc716NFD6dChg5Kdna0MHTpUcXZ2VmxsbJSwsDAlOTnZVC4tLU157rnnFGdnZ8XW1lZp2rSp8tVXXympqakKYPYaPny4oiiKkp+frwwePFixtbVVPDw8lGXLlimdO3dWJk6caGrXx8dHmT9/vjJ06FDFwcHBVDcuLk55+umnFWtra6VevXrK+PHjlcLCQkVRFCU+Pl4BlLS0tNuO9dy5c4pGo1GmTJlS6drKlSsVQPnf//6nKIpiGkN8fPydP9Rrrv+/57vvvrttmcWLFyt+fn5VtrNkyRLF39+/Un+9vLxq3BdA+eKLL6otV1Wf169frzg5OVU6v3PnTkWtViuZmZmmc2vXrlUcHR2VsrKyW97niy++UFQqVZXv1+XLlxVA2bNnT7X9rqp/t1LV31n5zGBOnocQQgghaqKmnxkkU0oIIe4xRVHQl5Y+kJeiKH+6/zY2Nuh0OkaMGMFPP/3E9u3bOXjwIIqi0Lt3b/R6PQBjx46lrKyMvXv3cuLECRYtWoS9vT3e3t589tlnACQlJXHx4kVWrFgBwJQpU9i/fz/bt28nNjaWuLg4jh07VqkPS5cupWXLlsTHx/Puu++SkpJCWFgY/fr14/jx42zevJl9+/aZdmV1c3NDrVazdetWKioqbjmurVu3otfrb5kRNWbMGOzt7dm0adOffn5gzN5Zt24dTk5OtGzZ8rbl8vLycHFxqbKtoKAg0tPT2blzJ4qicOnSJbZu3Urv3r3vSl/vtM+/d/DgQZo3b06dOnVM50JDQ8nPz+fkyZO3rPPxxx/TvXt3fHx8bttuXl4eQLXPRwghhBBCPDosH3QHhBDicVdeVsbK4S89kHtP2LAVjbX1H6qrKArff/8933zzDb169WLbtm3s37+fjh07AsZ1jby9vdm2bRv9+/fn3Llz9OvXj+bNmwPg7+9vaut6IMHd3d20zk9BQQEbNmxg48aNdOvWDYD169dTt27dSn3p2rUrU6dONR2PGjWKIUOGMGnSJAACAwNZuXIlnTt3Zu3atXh5ebFy5UqmT5/OvHnzaNOmDSEhIQwZMsTUr+TkZJycnPD09Kx0P61Wi7+/P8nJyX/o2V23Y8cOBg0aRHFxMZ6ensTGxlK7du1blj1z5gyrVq1i6dKlVbYZHBxMTEwMAwcOpLS0lPLycsLDw6uclnev+nwrmZmZZgEpwHScmZlZqfyFCxfYtWsXGzduvG2bBoOBSZMmERwczBNPPFHjvgghhBBCiIebZEoJIYQws2PHDuzt7bG2tqZXr14MHDiQESNGYGlpSfv27U3lXF1dadSoEb/++isAEyZMIDIykuDgYObMmcPx48ervM/Zs2fR6/W0a9fOdM7JyYlGjRpVKtumTRuz459//pno6Gjs7e1Nr9DQUAwGA6mpqYAxcyszM5OYmBiCgoLYsmULzZo1IzY2tsbPQqvVVlsmJibGrB9xcXGmayEhISQkJHDgwAHCwsIYMGAAly9frtRGRkYGYWFh9O/f32xtqJvbjYiIACAxMZGJEycye/Zsjh49ytdff01aWprpelxcnFm9mJiYGo/3Tvp8t2zYsAFnZ2eef/7525YZO3Ysv/zyC59++qnpXEREhNk4hRBCCCHEo0cypYQQ4h6ztLJiwoatD+zedyokJIS1a9ei1WqpW7culpaWbN++vdp6o0aNIjQ0lK+++opvv/2WhQsXEhUVxfjx4/9I183Y2dmZHRcWFjJmzBgmTJhQqWz9+vVNf3ZwcCA8PJzw8HAiIyMJDQ0lMjKSHj16EBgYSF5eHhcuXKiUnaXT6UhJSSE0NLTavvXp08csWOfl5WXW74CAAAICAujQoQOBgYF8/PHHzJw501TmwoULhISE0LFjR9atW2fW9s27/Tk6OgLGXen+P3t3Hh9Vdf9//HVnnyQz2VcSQghrWERRMG64o1KXutXWKnWpP63ar2vVb/261tq6269W22rVfutSl6pVVNwAUREQ2WQVCGsWQvZt9vv7Y8JoBAJqJpPA+/l4ULzn3jnnc6dA7nzmnM859NBDuf766wEYO3YsycnJHH744fzud7/jwAMP7PK6b89a2p09ibk7eXl5zJs3r0tbTU1N7Nw3mabJ3//+d84777xdJgCvuOIK3nzzTT766CMKCwtj7XfccccPLkYvIiIiIomlpJSISJwZhvG9l9AlwvakxDeNHDmSUCjE3LlzY8v36urqWLVqFWVlZbHrioqKuPTSS7n00ku56aab+Nvf/saVV14ZSzh8s77T4MGDsdvtzJ8/P5ZIampqYvXq1RxxxBHdxnjAAQewfPnyHeLsjmEYjBgxgk8//RSAM888kxtuuIH777+f+++/v8u1jz/+OO3t7Zx//vm77dfj8eDxePYohkgkgt/vjx1v2bKFo446ivHjx/PUU09hsXSdwLyz+2tvb8dm6/rj22q1AtEkj9vt/k7vy3eNeXfKy8u566672Lp1Kzk5OQC89957eL3eLn9WILrD3po1a7jooot26Mc0Ta688kpeffVVZs6cSUlJSZfzOTk5sf5FREREpH9SUkpERHZr6NChnHrqqfzyl7/kL3/5Cx6PhxtvvJEBAwZw6qmnAnDVVVdx4oknMmzYMBoaGpgxYwYjR44EoLi4GMMwePPNNznppJNwu914PB6mTp3K9ddfT0ZGBjk5Odx6661YLBYMw+g2nhtuuIGDDz6YK664gosvvpjk5GSWL1/Oe++9xyOPPMKiRYu49dZbOe+88ygrK8PhcDBr1iz+/ve/c8MNNwDRGVX33HMP1113HS6Xi/POOw+73c7rr7/Of//3f/O73/1uh/pFq1at2iGWUaNGYbfbu7S1tbVx1113ccopp5Cfn8+2bdt49NFH2bJlC2eddRYQTUgdeeSRFBcXc99991FbWxt7/bdnFH3TySefzC9/+Usee+wxJk+eTFVVFVdddRUTJkzYaT2u7VpbW1mzZk3suKKigkWLFpGRkcHAgQP3KGaAjRs3Ul9fz8aNGwmHw7FZWUOGDCElJYXjjz+esrIyzjvvPO655x6qq6u5+eabufzyy3F+a+bek08+ycSJE3daJ+ryyy/nueee4/XXX8fj8cTqUaWmpuJ2u3d5n7uLT0RERET6kDjvAtgnaTtjEYmn7raX7+umTp1qnnrqqTs9V19fb5533nlmamqq6Xa7zcmTJ5urV6+Onb/iiivM0tJS0+l0mtnZ2eZ5551nbtu2LXb+jjvuMPPy8kzDMMypU6eapmmazc3N5s9+9jMzKSnJzMvLMx944AFzwoQJ5o033hh7XXFxsfnggw/uEM+8efPM4447zkxJSTGTk5PNsWPHmnfddZdpmqZZW1tr/vrXvzZHjx5tpqSkmB6PxxwzZox53333meFwuEs/r732mnn44YebycnJJmAC5vPPP9/lmoqKiti5b//atGnTDrF1dHSYP/7xj82CggLT4XCY+fn55imnnGLOmzcvds1TTz21yz53509/+pNZVlZmut1uMz8/3zz33HPNzZs3d/uaGTNm7HSs7f9f7EnMphn9M7KzfmbMmBG7Zv369eaJJ55out1uMysry7z22mvNYDDYpZ/GxkbT7Xabf/3rX3ca767em6eeeqrb+9yT+L6tu7+zemboSu+HiIiI7Ik9fWYwTLMH9gvvZ5qbm0lNTaWpqSlWo0NEpKf4fD4qKiooKSnB1Y+W7fUFbW1tDBgwgPvvv3+nS7rirb6+nmOOOQav18vbb79NUlJSr8cgva+7v7N6ZuhK74eIiIjsiT19ZtDueyIikjALFy7k+eefZ+3atXzxxRece+65ALElgb0tIyOD999/n2OOOYY5c+YkJAYRERERkX2FakqJiEhC3XfffaxatQqHw8H48eOZPXs2WVlZCYsnMzOTW265JWHji4iIiIjsK5SUEhGRhNl///1ZsGBBosMQEREREZEE0PI9ERERERERERHpdUpKiYiIiIiIiIhIr1NSSkQkTiKRSKJDEJE9oL+rIiIiIomhmlIiIj3M4XBgsViorKwkOzsbh8OBYRiJDktEvsU0TQKBALW1tVgsFhwOR6JDEhEREdmnKCklItLDLBYLJSUlVFVVUVlZmehwRGQ3kpKSGDhwIBaLJpCLiIiI9CYlpURE4sDhcDBw4EBCoRDhcDjR4YjILlitVmw2m2YzioiIiCSAklIiInFiGAZ2ux273Z7oUERERERERPoczVMXEREREREREZFep6SUiIiIiIiIiIj0OiWlRERERERERESk1+2TNaVM0wSgubk5wZGIiIhIX7b9WWH7s8O+Ts9QIiIisif29Blqn0xKtbS0AFBUVJTgSERERKQ/aGlpITU1NdFhJJyeoUREROS72N0zlGHug1/9RSIRKisr8Xg8cdkCurm5maKiIjZt2oTX6+3x/vsS3eveSfe6d9K97p10r/FlmiYtLS0UFBRgsajqgZ6heo7ude+ke9076V73TrrX+NrTZ6h9cqaUxWKhsLAw7uN4vd69/g/3drrXvZPude+ke9076V7jRzOkvqZnqJ6ne9076V73TrrXvZPuNX725BlKX/mJiIiIiIiIiEivU1JKRERERERERER6nZJSceB0Orn11ltxOp2JDiXudK97J93r3kn3unfSvcreZF/6/1j3unfSve6ddK97J91r37BPFjoXEREREREREZHE0kwpERERERERERHpdUpKiYiIiIiIiIhIr1NSSkREREREREREep2SUiIiIiIiIiIi0uuUlBIRERERERERkV6npJSIiIiIiIiIiPQ6JaVERERERERERKTXKSklIiIiIiIiIiK9TkkpERERERERERHpdUpKiYiIiIiIiIhIr1NSSkREREREREREep2SUiIiIiIiIiIi0uuUlBIRERERERERkV6npJSI7NT69esxDIOnn3460aH0Gb/4xS8YNGhQlzbDMLjtttt6NY7bbrsNwzDYtm1br44rIiIifYee1Xbt6aefxjAMPv/880SHIiK7oaSUSB/16aefctttt9HY2Pi9Xv/nP/9ZDynfQ2VlJbfddhuLFi1KdCj8/ve/57XXXkt0GCIiIrITelaL+qHvg4js25SUEumjPv30U26//fZ9/kGnt1VWVnL77bfvNCn1t7/9jVWrVvVaLEpKiYiI9F16Vov6oe+DiOzblJQSEdlDdrsdp9OZ6DB6TXt7e6JDEBEREdljPp+PSCTS78cQ2ZcoKSXSB912221cf/31AJSUlGAYBoZhsH79ekKhEHfeeSelpaU4nU4GDRrEf//3f+P3+2OvHzRoEMuWLWPWrFmx1x555JEA1NfXc9111zFmzBhSUlLwer2ceOKJLF68uEdi9/l83HbbbQwbNgyXy0V+fj6nn346a9euBb6uf3Dffffx4IMPUlxcjNvtZtKkSXz55Zdd+jryyCNjcX/Tzmo77c6gQYP4xS9+sUP7N8eYOXMmBx10EAAXXHBB7L3b/i3m9xl3Z9ra2rj22mspKirC6XQyfPhw7rvvPkzTjF1jGAZtbW0888wzsTi+HX9jYyO/+MUvSEtLIzU1lQsuuGCniaR//vOfjB8/HrfbTUZGBueccw6bNm3a4X0YPXo0CxYs4IgjjiApKYn//u//BuDzzz9n8uTJZGVl4Xa7KSkp4cILL/xO9/zVV19xxhlnkJeXh8vlorCwkHPOOYempqbv1I+IiEhf0F+f1WbOnIlhGLz44ovcddddFBYW4nK5OOaYY1izZs0O18+dO5cTTjiB1NRUkpKSmDRpEp988skevQ+nn346BxxwQJf+Tj75ZAzD4D//+U+XMQzD4O233461rVu3jrPOOouMjAySkpI4+OCDmTZt2k7v5YUXXuDmm29mwIABJCUl0dzcvNN7b2hoYMKECRQWFu7xzPddjfHaa69hsVi45ZZbulz/3HPPYRgGjz322B71LyJgS3QAIrKj008/ndWrV/P888/z4IMPkpWVBUB2djYXX3wxzzzzDGeeeSbXXnstc+fO5e6772bFihW8+uqrADz00ENceeWVpKSk8Nvf/haA3NxcIPpD/rXXXuOss86ipKSEmpoa/vKXvzBp0iSWL19OQUHB9447HA7zox/9iA8++IBzzjmH//qv/6KlpYX33nuPL7/8ktLS0ti1//jHP2hpaeHyyy/H5/Px8MMPc/TRR7N06dJYrL1t5MiR3HHHHdxyyy1ccsklHH744QAccsghPTaGaZqccsopzJgxg4suuohx48Yxffp0rr/+erZs2cKDDz4IwP/93/9x8cUXM2HCBC655BKALu8fwNlnn01JSQl33303X3zxBU888QQ5OTn88Y9/jF1z11138T//8z+cffbZXHzxxdTW1vK///u/HHHEESxcuJC0tLTYtXV1dZx44omcc845/PznPyc3N5etW7dy/PHHk52dzY033khaWhrr16/n3//+9x7fcyAQYPLkyfj9fq688kry8vLYsmULb775Jo2NjaSmpv6Ad1RERKT39ddnte3+8Ic/YLFYuO6662hqauKee+7h3HPPZe7cubFrPvzwQ0488UTGjx/PrbfeisVi4amnnuLoo49m9uzZTJgwodv34fDDD+f111+nubkZr9eLaZp88sknWCwWZs+ezSmnnALA7NmzsVgsHHrooQDU1NRwyCGH0N7ezq9//WsyMzN55plnOOWUU3j55Zf58Y9/3OVe7rzzThwOB9dddx1+vx+Hw7HD/W7bto3jjjuO+vp6Zs2atcMz1e58e4wTTjiBX/3qV9x9992cdtppHHDAAVRVVXHllVdy7LHHcumll36n/kX2aaaI9En33nuvCZgVFRWxtkWLFpmAefHFF3e59rrrrjMB88MPP4y1jRo1ypw0adIO/fp8PjMcDndpq6ioMJ1Op3nHHXd0aQPMp556ao9j/vvf/24C5gMPPLDDuUgk0qVft9ttbt68OXZ+7ty5JmBeffXVsbZJkybt9B6mTp1qFhcX73FcpmmaxcXF5tSpU3do//YY8+fP3+V972xcwLz11lv3OI7XXnvNBMzf/e53XdrPPPNM0zAMc82aNbG25OTkncZ86623moB54YUXdmn/8Y9/bGZmZsaO169fb1qtVvOuu+7qct3SpUtNm83WpX3SpEkmYD7++ONdrn311VdNwJw/f/4e3+O3LVy40ATMl1566Xv3ISIi0tf0x2e1GTNmmIA5cuRI0+/3x9offvhhEzCXLl1qmmb0uW3o0KHm5MmTY89wpmma7e3tZklJiXncccd1+z6Y5tfPVG+99ZZpmqa5ZMkSEzDPOussc+LEibHrTjnlFHP//fePHV911VUmYM6ePTvW1tLSYpaUlJiDBg2KvTfb72Xw4MFme3t7l7Gfeuqp2PNLVVWVOWrUKHPw4MHm+vXr9/i92t0YbW1t5pAhQ8xRo0aZPp/PnDJliun1es0NGzZ8pzFE9nVavifSj7z11lsAXHPNNV3ar732WoAdpjXvjNPpxGKJ/tUPh8PU1dWRkpLC8OHD+eKLL35QfK+88gpZWVlceeWVO5wzDKPL8WmnncaAAQNixxMmTGDixImxe9xbvfXWW1itVn796193ab/22msxTbPL1PXd+fa3cIcffjh1dXWxaev//ve/iUQinH322Wzbti32Ky8vj6FDhzJjxowur3c6nVxwwQVd2rbPpHrzzTcJBoN7HNs3bZ8JNX36dNWpEhGRvVpff1bb7oILLugyo2j77PB169YBsGjRIr766it+9rOfUVdXF3uGaGtr45hjjuGjjz7abV2l/fffn5SUFD766CMgOiOqsLCQ888/ny+++IL29nZM0+Tjjz+OjQ/R93DChAkcdthhsbaUlBQuueQS1q9fz/Lly7uMM3XqVNxu905j2Lx5M5MmTSIYDPLRRx9RXFz8Hd6l7sdISkri6aefZsWKFRxxxBFMmzaNBx98kIEDB36vMUT2VUpKifQjGzZswGKxMGTIkC7teXl5pKWlsWHDht32EYlEePDBBxk6dChOp5OsrCyys7NZsmTJD67vs3btWoYPH47NtvuVwUOHDt2hbdiwYaxfv/4HxdDXbdiwgYKCAjweT5f2kSNHxs7vqW8/9KSnpwPRmgkQreNkmiZDhw4lOzu7y68VK1awdevWLq8fMGDADlPeJ02axBlnnMHtt99OVlYWp556Kk899VSXuhi7U1JSwjXXXMMTTzxBVlYWkydP5tFHH1U9KRER2ev09We17fbkGQKiyZhvP0M88cQT+P3+3cZitVopLy9n9uzZQDQpdfjhh3PYYYcRDof57LPPWL58OfX19V2SUhs2bGD48OE79LerZ6WSkpJdxnDeeeexdetWZs2a1eXL0O9qV2MceuihXHbZZcybN4/Jkyd/55qbIqKaUiL90rdnHX0Xv//97/mf//kfLrzwQu68804yMjKwWCxcddVVfW4nEcMwuhT/3i4cDn+vvnYmHA5jtVq/c399wa7i3v6eRSKRWOHQnV2bkpLS5Xhn3zIahsHLL7/MZ599xhtvvMH06dO58MILuf/++/nss8926GNX7r//fn7xi1/w+uuv8+677/LrX/+au+++m88++4zCwsI96kNERKS/6OvPanvyDAFw7733Mm7cuJ1euyfPAIcddhh33XUXPp+P2bNn89vf/pa0tDRGjx7N7NmzY3W0vpmU+q52NUsKorW//vGPf/Dwww9z99139/gYfr+fmTNnAtEvZ9vb20lKSvre44jsi5SUEumjdvYwU1xcTCQS4auvvop9WwTRgpCNjY1dpiTv6mHo5Zdf5qijjuLJJ5/s0t7Y2BgrTvl9lZaWMnfuXILBIHa7vdtrt38D902rV6/usrtdenp6bBr5N32X2UTf7KuxsXGnfQ0ePDh2/EMeIvdEcXEx77//Pi0tLV1mS61cuTJ2vqdiKS0txTRNSkpKGDZs2A/q6+CDD+bggw/mrrvu4rnnnuPcc8/lhRde4OKLL97jPsaMGcOYMWO4+eab+fTTTzn00EN5/PHH+d3vfveDYhMREUmE/vistqe2FwL3er0ce+yx3V7b3fPK4YcfTiAQ4Pnnn2fLli2x5NMRRxwRS0oNGzasyyY3xcXFO90db2fPSrtz5ZVXMmTIEG655RZSU1O58cYb9/i1e+LWW29lxYoV3Hfffdxwww3ceOON/OlPf+rRMUT2dlq+J9JHJScnA3RJpJx00klAdMeWb3rggQcAmDJlSpfX7ywJY7Vad5h99NJLL7Fly5YfHPMZZ5zBtm3beOSRR3Y49+0xX3vttS5jzps3j7lz53LiiSfG2kpLS1m5ciW1tbWxtsWLF3fZinhPlZaW8tlnnxEIBGJtb775Jps2bepy3c7e95500kknEQ6Hd3iPHnzwQQzD6HL/u/r/cE+dfvrpWK1Wbr/99h3ef9M0qaur220fDQ0NO7x2+zeme7qEr7m5mVAo1KVtzJgxWCyW77QMUEREpC/pj89qe2r8+PGUlpZy33330drausP5bz6bdffsNHHiROx2O3/84x/JyMhg1KhRQDRZ9dlnnzFr1qwdZkmddNJJzJs3jzlz5sTa2tra+Otf/8qgQYMoKyv7TvfyP//zP1x33XXcdNNNPPbYY9/ptd2ZO3cu9913H1dddRXXXnst119/PY888gizZs3qsTFE9gWaKSXSR40fPx6A3/72t5xzzjnY7XZOPvlkpk6dyl//+lcaGxuZNGkS8+bN45lnnuG0007jqKOO6vL6xx57jN/97ncMGTKEnJwcjj76aH70ox9xxx13cMEFF3DIIYewdOlSnn322S6zhb6v888/n3/84x9cc801zJs3j8MPP5y2tjbef/99fvWrX3HqqafGrh0yZAiHHXYYl112GX6/n4ceeojMzEx+85vfxK658MILeeCBB5g8eTIXXXQRW7du5fHHH2fUqFGxYt576uKLL+bll1/mhBNO4Oyzz2bt2rX885//3GFL4NLSUtLS0nj88cfxeDwkJyczceLEbusVfPyrjjoAAQAASURBVBcnn3wyRx11FL/97W9Zv349++23H++++y6vv/46V111VZd4xo8fz/vvv88DDzxAQUEBJSUlTJw4cY/HKi0t5Xe/+x033XQT69ev57TTTsPj8VBRUcGrr77KJZdcwnXXXddtH8888wx//vOf+fGPf0xpaSktLS387W9/w+v1xh68d+fDDz/kiiuu4KyzzmLYsGGEQiH+7//+D6vVyhlnnLHH9yMiItKX9MdntT1lsVh44oknOPHEExk1ahQXXHABAwYMYMuWLcyYMQOv18sbb7zR7fuQnJxMUlIS48eP57PPPuPkk0+Ozao64ogjaGtro62tbYek1I033sjzzz/PiSeeyK9//WsyMjJ45plnqKio4JVXXokVgf8u7r33Xpqamrj88svxeDz8/Oc//0Hvj8/nY+rUqQwdOpS77roLgNtvv5033niDCy64gKVLl8aSdSKyGwnZ809E9sidd95pDhgwwLRYLLGtdoPBoHn77bebJSUlpt1uN4uKisybbrrJ9Pl8XV5bXV1tTpkyxfR4PCYQ23LY5/OZ1157rZmfn2+63W7z0EMPNefMmWNOmjSpy7bE32ebYdOMbhX829/+NhZfXl6eeeaZZ5pr167t0u+9995r3n///WZRUZHpdDrNww8/3Fy8ePEO/f3zn/80Bw8ebDocDnPcuHHm9OnTzalTp5rFxcXfKS7TNM3777/fHDBggOl0Os1DDz3U/Pzzz3e4b9M0zddff90sKyszbTZbl/dgZ+MC5q233vqd4mhpaTGvvvpqs6CgwLTb7ebQoUPNe++9t8uWy6ZpmitXrjSPOOII0+12m4A5depU0zRN89ZbbzUBs7a2tsv127c//vaWzK+88op52GGHmcnJyWZycrI5YsQI8/LLLzdXrVoVu2bSpEnmqFGjdoj1iy++MH/605+aAwcONJ1Op5mTk2P+6Ec/Mj///PM9vt9169aZF154oVlaWmq6XC4zIyPDPOqoo8z3339/j/sQERHpi/rbs9qMGTNMwHzppZe6tO+qr4ULF5qnn366mZmZaTqdTrO4uNg8++yzzQ8++GC378N2119/vQmYf/zjH7u8ZsiQISYQe0b8prVr15pnnnmmmZaWZrpcLnPChAnmm2++uUf3YppfPxPNnz8/1hYOh82f/vSnps1mM1977bVu36fdjXH11VebVqvVnDt3bpf2zz//3LTZbOZll122R/2LiGkaprmTKsIiInGyfv16SkpKuPfee3c7S0dERERERET2XqopJSIiIiIiIiIivU41pURktwKBAPX19d1ek5qa2u2WvPFSX1/fpXj5t1mtVrKzs+MeRzgc7lL0c2dSUlL2aPvk/qSvvP8iIiL7sr78rNYX6f0S6TuUlBKR3fr000+7FObcmaeeeopf/OIXvRPQN5x++und7nJSXFzM+vXr4x7Hpk2bdlsM/dZbb+W2226Leyy9qa+8/yIiIvuyvvys1hfp/RLpO1RTSkR2q6GhgQULFnR7zahRo8jPz++liL62YMECGhoadnne7XZz6KGHxj0On8/Hxx9/3O01gwcP7tWdc3pDX3n/RURE9mV9+VmtL9L7JdJ3KCklIiIiIiIiIiK9ToXORURERERERESk1ykpJSIiIiIiIiIivW6fLHQeiUSorKzE4/FgGEaiwxEREZE+yjRNWlpaKCgowGLRd3l6hhIREZE9safPUPtkUqqyspKioqJEhyEiIiL9xKZNmygsLEx0GAmnZygRERH5Lnb3DLVPJqU8Hg8QfXO8Xm+CoxEREZG+qrm5maKiotizw75Oz1AiIiKyJ/b0GWqfTEptn27u9Xr1QCUiIiK7paVqUXqGEhERke9id89QKo4gIiIiIiIiIiK9TkkpERERERERERHpdUpKiYiIiIiIiIhIr1NSSkREREREREREep2SUiIiIiIiIiIi0uuUlBIRERGJo8cee4yxY8fGdqwrLy/n7bffjp0/8sgjMQyjy69LL720Sx8bN25kypQpJCUlkZOTw/XXX08oFOpyzcyZMznggANwOp0MGTKEp59+eodYHn30UQYNGoTL5WLixInMmzcvLvcsIiIisieUlBIRERGJo8LCQv7whz+wYMECPv/8c44++mhOPfVUli1bFrvml7/8JVVVVbFf99xzT+xcOBxmypQpBAIBPv30U5555hmefvppbrnlltg1FRUVTJkyhaOOOopFixZx1VVXcfHFFzN9+vTYNf/617+45ppruPXWW/niiy/Yb7/9mDx5Mlu3bu2dN0JERETkWwzTNM1EB9HbmpubSU1NpampCa/Xm+hwREREpI+K1zNDRkYG9957LxdddBFHHnkk48aN46GHHtrptW+//TY/+tGPqKysJDc3F4DHH3+cG264gdraWhwOBzfccAPTpk3jyy+/jL3unHPOobGxkXfeeQeAiRMnctBBB/HII48AEIlEKCoq4sorr+TGG2/co7j1DCUiIiJ7Yk+fGTRTSkRERKSXhMNhXnjhBdra2igvL4+1P/vss2RlZTF69Ghuuukm2tvbY+fmzJnDmDFjYgkpgMmTJ9Pc3BybbTVnzhyOPfbYLmNNnjyZOXPmABAIBFiwYEGXaywWC8cee2zsmp3x+/00Nzd3+SUiIiLSU2yJDkBERERkb7d06VLKy8vx+XykpKTw6quvUlZWBsDPfvYziouLKSgoYMmSJdxwww2sWrWKf//73wBUV1d3SUgBsePq6upur2lubqajo4OGhgbC4fBOr1m5cuUu47777ru5/fbbf9jNi4iIiOyCklIiIiIicTZ8+HAWLVpEU1MTL7/8MlOnTmXWrFmUlZVxySWXxK4bM2YM+fn5HHPMMaxdu5bS0tIERg033XQT11xzTey4ubmZoqKiBEYkIiIiexMlpURERETizOFwMGTIEADGjx/P/Pnzefjhh/nLX/6yw7UTJ04EYM2aNZSWlpKXl7fDLnk1NTUA5OXlxX7f3vbNa7xeL263G6vVitVq3ek12/vYGafTidPp/I53KyIiIrJnVFNKREREpJdFIhH8fv9Ozy1atAiA/Px8AMrLy1m6dGmXXfLee+89vF5vbAlgeXk5H3zwQZd+3nvvvVjdKofDwfjx47tcE4lE+OCDD7rUthIRERHpTZopJSIiIhJHN910EyeeeCIDBw6kpaWF5557jpkzZzJ9+nTWrl3Lc889x0knnURmZiZLlizh6quv5ogjjmDs2LEAHH/88ZSVlXHeeedxzz33UF1dzc0338zll18em8V06aWX8sgjj/Cb3/yGCy+8kA8//JAXX3yRadOmxeK45pprmDp1KgceeCATJkzgoYceoq2tjQsuuCAh74uIiIiIklIiIiIicbR161bOP/98qqqqSE1NZezYsUyfPp3jjjuOTZs28f7778cSREVFRZxxxhncfPPNsddbrVbefPNNLrvsMsrLy0lOTmbq1KnccccdsWtKSkqYNm0aV199NQ8//DCFhYU88cQTTJ48OXbNT37yE2pra7nllluorq5m3LhxvPPOOzsUPxcRERHpLYZpmmaig+htzc3NpKam0tTUhNfrTXQ4IiIi0kfpmaErvR8iIiKyJ/b0mUE1pUREREREREREpNcpKSUiIiIiIiIiIr1OSSkREREREREREel1SkqJiIiIiIiIiEivU1JKRERERERERER6nZJSIiIiIiIiIiLS65SUEhERERERERGRXtdjSanHHnuMsWPH4vV68Xq9lJeX8/bbb8fOH3nkkRiG0eXXpZde2qWPjRs3MmXKFJKSksjJyeH6668nFAp1uWbmzJkccMABOJ1OhgwZwtNPP91TtyAiIiIiIiIiIr3E1lMdFRYW8oc//IGhQ4dimibPPPMMp556KgsXLmTUqFEA/PKXv+SOO+6IvSYpKSn23+FwmClTppCXl8enn35KVVUV559/Pna7nd///vcAVFRUMGXKFC699FKeffZZPvjgAy6++GLy8/OZPHlyT92KiIiIiIiIiIjEmWGaphmvzjMyMrj33nu56KKLOPLIIxk3bhwPPfTQTq99++23+dGPfkRlZSW5ubkAPP7449xwww3U1tbicDi44YYbmDZtGl9++WXsdeeccw6NjY288847exxXc3MzqampNDU14fV6f9A9ioiIyN5Lzwxd6f0QERGRPbGnzwxxqSkVDod54YUXaGtro7y8PNb+7LPPkpWVxejRo7nppptob2+PnZszZw5jxoyJJaQAJk+eTHNzM8uWLYtdc+yxx3YZa/LkycyZMycetyEiIiIiIiIiInHSY8v3AJYuXUp5eTk+n4+UlBReffVVysrKAPjZz35GcXExBQUFLFmyhBtuuIFVq1bx73//G4Dq6uouCSkgdlxdXd3tNc3NzXR0dOB2u3cal9/vx+/3x46bm5t75oZFREREREREROR76dGk1PDhw1m0aBFNTU28/PLLTJ06lVmzZlFWVsYll1wSu27MmDHk5+dzzDHHsHbtWkpLS3syjB3cfffd3H777XEdQ0RERERERERE9lyPJqUcDgdDhgwBYPz48cyfP5+HH36Yv/zlLztcO3HiRADWrFlDaWkpeXl5zJs3r8s1NTU1AOTl5cV+3972zWu8Xu8uZ0kB3HTTTVxzzTWx4+bmZoqKir7HHYqIiEh3oqUqI5hmJPa7aYYBs2sbJpjhzrZvnTMjmIQhdl0Ek0j09x36iGCx2ElNPSCBdy0iIt8WrNlKpLUFMxyGSAQzFIZIGF9bkPU1fmrr6zAMC9WRFoKBEA0dbYRaNhGKhDEjYOLHkeIgLdiB4e8g+rOis3PTJMmThhm2YwLR/zHYfmBubwIM8xstphGLL9LZWfR8tP3rYssmDqsVp82Inuu8NtrPt6+N/rfHasGK0aUNdwam14OZmsI3XzTQUxw7MIHktCwKhg4kJd35fd5q6UN8wTBLtzQRDgeIBDd2tpqkOG2UZCd3Hsb+IHf53dx+vMP5r+36ml31savXff0aj2c0NlvyntxeXPRoUurbIpFIl2Vz37Ro0SIA8vPzASgvL+euu+5i69at5OTkAPDee+/h9XpjSwDLy8t56623uvTz3nvvdalbtTNOpxOnU3/BRUREvivTDLNo0QU0tyztTAhB16TTN5NQcds7pVsu1wAOPeSjhIwtIiJfa539MY0vvYR/1SoCGzbQ4SmkIX8UawaWEUpy8ULqWprsHdjMag6q3MDJCxvYvzaItTMxtCkrm/pkJ1s9DkLWzj53NRbVvXZfe+K7RPPVt45trkM56hfnMfaowp4MSRLgV89+wYcrt3LThAcYkrY+1t4B1FYkLKxuTTjoDTyesoSN32NJqZtuuokTTzyRgQMH0tLSwnPPPcfMmTOZPn06a9eu5bnnnuOkk04iMzOTJUuWcPXVV3PEEUcwduxYAI4//njKyso477zzuOeee6iurubmm2/m8ssvjyWULr30Uh555BF+85vfcOGFF/Lhhx/y4osvMm3atJ66DREREfmGjo5N1Dd8EoeeDQzDAlgwDAOwdh5H2w3D2vnfVgwsYBidv1u+/r3z9U5nThziExGRPdW2Zg0d69ez8rHH2WKzUzVmPFsO3o91bj9rHe2EM/8Xa9hk/7Um7gCc/WkRbSkHEE4ymH3QQHzBpZgEMCMNOx/ASMYwdjXJILKL9t0wd/iPPWbs/pLOfg0iBpjf2l7MZun6MTwpzYszKa7zRaSXrKhqBkxKvJsAaA+lYJoWbFYDj8veeZXR5Xdj+7Gxsz9Zu7rm279/8xp2eo2xw2uj/22xOPbk1uKmx/7kb926lfPPP5+qqipSU1MZO3Ys06dP57jjjmPTpk28//77PPTQQ7S1tVFUVMQZZ5zBzTffHHu91WrlzTff5LLLLqO8vJzk5GSmTp3KHXfcEbumpKSEadOmcfXVV/Pwww9TWFjIE088weTJk3vqNkREROQbIpHojGebLY2DDnyZaBLpG8mk7UkijM6HnW+d7zz+uu2b50REpL/b8OWX/OOFFwjbbDBmNB0WHw32JuYUzALAME3GrjM5+6MIvoxfsi01i8XDGgm1fwCEwb96hz5dnoPxZA7Ak1mKN9uDIykZb5Ybu8tKkteBJ8OFxWqQlpuknyfSJ2xuaGdjXTt1bQEc1gBWSxiAE4/+NKFL4/qDHktKPfnkk7s8V1RUxKxZs3bbR3Fx8Q7L877tyCOPZOHChd85PhEREfnuIpEAAFari6SkkgRHIyIifUVTUxMzX3mFzZs3RxNSgJ8wbxW+D9avS7iULx7GhG1nsqGkFTPSRKjtxZ32d+hPLiF7YB4FI0biTvH0yj2I9ITaFj9H3TeTYDhCsXcTWa56AAzDitWalODo+j7NERQREZFdipjRpFSip3aLiEjfMvftt1m4MVrI2cRksJFBgy0MVj9On8GNrx9A2DmMrVnDaDGWEW6b3+X1JQVuhk6aQtmPfo7FYsGwWHY2jEift76ujWDY5NiBn/DTEV8nXa1Wj2by7QElpURERGSXIuHot90WizYMERGRr7XUR2eDDAhnMCPjS/6d8W8AvG0GB32ZRc2An+BvfRaz+dMurxuYZ+fAc6+hZMLhvR6zSDw0dwQBGJWzDQC7PQOHI5P8vNMTGVa/oaSUiIiI7JJmSomIyLe1zq2itcoEKxRFsljjrAFg5IYBHL3xCgKRDQRDn2BGGgGwG5Bk8xE8/wrOOv60xAUu0oOafUFeX7iF+eujBfpTHD4ABhVfxsCBFyYytH5FSSkRERHZJbOzppTFUFJKRETg3XffZf6ceYQsIUwTghEbIXwUNg5n/IZDCFoCBNvejl2f5Woj/6TxHD/iINjvtMQFLtLDnvp4PQ++v5oS7wZOK/2SHFcFADa7N8GR9S9KSomIiMgOTNNky5Znqav/CNDyPRERiVr46acEgQgmr2Uv45WkNzli/amU1RxMhA2EA8sAcFuDlKXW4MmG6Qdew/GlBYkNXKSHVTZ2AHD5/v8kvXO2IIDTkZ2okPolJaVERERkB83Ni1m1+tbYsd2ensBoRESkL9j6wkoCpgWMCAeERvJqyr9xh1IYVF9E2L+EUMeM2LVZ7nZKiv3MH3Im5w3ISmDUIvHR7IvWkkp1NgKQn3cGScmlpKcfmsCo+h8lpURERGQHgUC0WKfTkUt+wVkq1ikiso8LtwbwLaoh7IoA4DMiHF5xNqNqoh/Ag+HVACT5g6S72qkbXswvj36Cdw8cnrCYReLhpc838fqiSr6sbMJqhLEQ3RRm6ND/xm5PS2xw/ZCSUiIiIrKDcLgNgKTkUkoHX53gaEREJJEikQgfzphBpX0tERM2RdJY2LGICeH9CQfWEA6sgOBmAMZnbeagAZu5N3s8SRZLgiMX6Xl/fGclHf4Gjhs4E4+jJdZutaYkMKr+S0kpERER2UGoMylltSYlOBIREUm0itUVfLJgDlhhfTiV+bmfYHFvYdKCckIdb2JGmmLX5qS10mxL5q2sw8m3Kikle5dIxKS+LcDk4k85uXR6rN3hyMJiUXrl+9C7JiIiIjHt7RVs3PgkzS1LAbDpWz8RkX2af30TVf9YAg5IMV1YLDZsnpXYgyZJAQdtkWix56FV9QwaXccTY3/OkrRRrEwppVRJKdmL1DT7qNjWRsSENGczAKmpB5KePpHMjCMSHF3/paSUiIiIxGzc+CRbKp+PHTtdeQmMRkREEs2/oZkwIQBSIi4CkSZyWwYxcGshIYsdCABwYMEm6kuyeaLorNhrcxz2RIQs0uM21LVx9P2zCEdM3LYO0l3RZXvZWcdQXHxJgqPr35SUEhERkZhAsA6AnJyTyEg/hJycKQmOSEREEinSHiJohAGobN9Eo83BKYt/TqhtOgHz6dh1uWV+3kwdB8CkdA9HZXg4I087t8reYVV1C+GIyVED5/Cz4S9gMUwAbPbUBEfW/ykpJSIiIjGhYHQ6enbWceTlnZLgaEREJJEaGhqYseYzqq3VbAinMdM2nkJHBWZgLWZ4a+y6DI8Na2oBSzzRnfYmZXi4dGBOosIW6XHNvuhswUML18cSUnZ7JulpExIZ1l5BSSkREZF9nGmaVKx/hPa2NbS0rgTAZvMkOCoREUmkwJZWPnj633wZ3AQWqA4OwHBvYWBrNaYZ/Rg5oL6FEdatlP1sCqxZScASXa7ntBiJDF2kxzS1B3nryypmf1ULQJI9WkNt5Mg/UpB/ZiJD22soKSUiIrKPa2n5koqKh7q0udyFiQlGRET6hOZ51XT4AmCFonAm07PfIzltBRnLR2JGoj8jCgsbGVtYiSWjAEI+/BYHAE6LCpzL3uHhD77i759UMCClkqOK1uC1VwFgt2nZXk9RUkpERGQft72OlNOZz6Diy0hKGkRK8tAERyUiIonUVttOiGgtqda61fjyt3LYkkwGbWknwmoAUkoHY0l3wco3wdekmVKy19nU0A7ADRMeI9nWFGt3ODITFdJeR0kpERGRfZhphgkG6gFIchdTWHhugiMSEZG+wAxGCBIBoCPYRG5bDqVVBtAGWLFip3hEKXz5Yew1PqsbAIeSUrKXaO4IYrcEYgmp7OzjSXKX4PWOS2xgexElpURERPZRW2uns2zZ1UQifkA7yIiIyNfMYJiQEaY2kkylezSnLW6mzYzWHXR4z2VY0zzSU10APD3yClYUn8iaoAdCJi4t35N+7qlPKnh/RQ3LKptJtkdnSxmGlTGj/4xhKOnak5SUEhER2UfV1c2KJaQMw0pmxhEJjkhERPqCN954gyWNiwkZIWYHRtOc5Oa06nm0GQEADlr/F0aVfgnGr9jgyufGnLOgAyC6K1mmXR8zpf+KREzumraCcCTMdQc+wpC0CgBstlQlpOJA/1qIiIjso0KhFgCGlN5AYeFUrFZngiMSEZFEMiMm255exqINXxA2TDAgFDb5adW/2EYD25NO+x+8EKfDBnYXTbYUADxWC5cUZTPA5WC8NymBdyHyw7QFQoQiJpmuBkZkrIm1p6VNSGBUey8lpURERPYxkUiA9vYK/L7oDjIOR7YSUiIiQqiuA9/qesKuaPLpBN9YZmT/mawNLuicIJJks+H4+fOQPRS+fIVA5457GXYb15fkJyp0kR7T6g8B4HX6ALDbM5hw0Os4nfrzHQ9KSomIiOxjvlj4c5qaFsSObXZvAqMREZG+wgxGiHTOhgKYXvcPnNlNgAurmYQt7VwmpPwbY/jk6AUhP34juuOeiptLf1fV1MHTn6ynutmH0+pngCda3NxuT8flKkhwdHsvJaVERET2Mc3NSwFwOLJwu4pISz0owRGJiEifEDYJd+64B2AGOjj/fYMaL1gMN4bFg9tlgXAI1n4AVYsJWqIfKZWUkv7uidkVPPlxBSMyVvOnox7DZgkDYLN5EhzZ3k1JKRERkX1IOOzHNKOFassPfl8PWiIiEmMGI18npcwI6a0hGrwjgTrCNg9WwJFshSX/gtd/BUAg8xAAHIZ23JP+bWtLdPOX40qrYwkpw7CRkz05kWHt9ZSUEhER2QeYpsm2ug9pa/2qs8WC1Zqc0JhERKRvMUPRpFS7aWdzk4XxNjdQB4DNYiPPtpzCkRnQtDn6Au8A/EWHAuDUTCnpx3zBMI3t0S/tRuQaEIDigf+PIUN+k+DI9n5KSomIiOwDmpsXs2TJJbFjhyMDQ99qi4jIN3z16qtYjAGsCWfSEooWeTYMD1bXfpwx9D0KLr8WUgvhw99FXzDiRwQO+BWs2Kjle9JvPTF7HXe9tQKXtZ39stfiZD0ANptqbvYGJaVERET2AR2+TUC0jlR62sHk5JyU4IhERCRRzFCESEcITBPTBCIm9VVb+LR6HbaUdgIRF8nWjQAY1gxsrgl4PR9BWlG0g7Afn+HgBuchfLGhBgC7vuiQfurDlVsxTfh/Y59hTNYKiE6Y0kYwvURJKRERkX1AKNQCQGrqAYwe/XCCoxERkUQJtwWpeWABkbZgl/Z5tjVUpdqAbQzeWs8Jy+ayYkA2GNGPjDan/euLQwHmpO3HvyyDoD1ah2eAy45If9TUEf27MDqnCSKQkjwcl7uI7OzjExzZvkFJKRERkb1Ya+sqNmz4K62tKwBNRRcR2dcFq9u+TkhZAMMAw8BvCQFQEEojbdsyDLYvx4t+ZLQ6vvHRMRygw+ICoNTt5MbB+RyVoY0zpH/5cksTSzY3Ud0UXapqoRUTGD36TyQnD0lscPsQJaVERET2Yhs2/JXqmtdix25XYeKCERGRhDP90V3FwmlOOo6MLseLhE0aZn8JPqirW0pSKETY6ExKGVYArE7n152EAwQs0Y+SeU47J+ek9Vr8Ij3BFwxz9l/m0B4IM6nwEwoKqzAjrYC+wOttSkqJiIjsxQLB6K5J+flnkpF+CNnZxyU4IhERSaSWmjYAtlWvZ9afnoi1t+enE05JYrM1ixE0sy1jBFCLgRULISzZQ7/uJOQnYHEAqMC59Et1bQHaA2Hyk7dyftm/Yu0WixO7PTWBke17lJQSERHZC5lmGL+/hkBgGwA52ZPJyjo6wVGJiEiihFsDtM2voWX+RpxAMNyCGa6Mnbe2+Gloz6Ha9DLElU6DzQohwLDiSrHDMbdCez2s/xgaNxA0cgCwG0pKSf/T4osuYS1M7QDAbk9nQMFPSUs7CIvF2d1LpYcpKSUiIrKXMU2T+Z+fQUvL0libpqKLiOzbWmdvoWnWRuosTYQtEWrsbQw+/GjWzf4QAEdTHSXUUQJEIJqQAgoGeTj8/P3BYoGXL4R1MwAIFJwWfZ1mSkk/4guGeW7uRlZUNQOQ7o5uted2D6S09NpEhrbPUlJKRERkLxMOt8cSUhaLk+SkIXg8oxIclYiIJFJrZRsLbOtYbNsA4TCGK0jusq8ASHX4KHI3EokYhP0GmwKj8DtysRgbOfGik/EUp0U7adoc/T13DMH8/QFwWCwJuBuR7+c/iyu5483lFKZs4TcHvky+J5qc0pd3iaOklIiIyF4mFGoCwDAcHDlpGYaWVoiI7PO2Vayl0WjDCAVJXrMUw4zQ1nnOtI2l0VGGr9UGEQOLJxO7LQmb/UU8hcO+7iTsj/5+8kP4w0WwrkrL96RfqencaW/KkEUMz1gba09OKk1USPs8JaVERET2EqZpsm7dAzQ0zgXAbk9VQkpERACIdHTgTw5h8XVgmJHOVjsYTnzWAwmE8sBF9Fcn2xEHgPUbHxnDQUygCRstoegufk4t35N+pMUfXZc6KCP6dyA//0zyck8lLW18IsPapykpJSIispfw+TazfsOfY8dJSSUJjEZERPqC9oVb+fyTecxLrqDdCOAPGSQBRmoRTstZADSFq1jiWM0lC9/DETL58NyDOPrw4zh49IVdOwsHuHLEb3n5K4CtgAqdS//w8oLNfLJmG4s2NQLgsrYD4PWMISPjkARGJkpKiYiI7CUCwXoA7PYMhg27hfT08gRHJCIiiVb376/40viKVkt06d3yYDaHsYqO1gBOLxSHP+XNDj/ODif5tcsBGDj2FA7b78AdOwsH+egbM0rcFoNJGZ5euQ+R7ysQinDjK0sIR8JcdcDjFI/eRIoR/fugWlKJp6SUiIjIXiAYbKS9vQIApzOHvNyTExyRiIgkmhkxMYIRgo4wRtBPyroVHBYOgQHZHW0EvRCoMfmv1S/HXhMxoGhAwc47DAcIWOwAzDhoOMOSXVg1U0r6uGZfkFDEJDepltFZK2PthmElxTMygZEJKCklIiLS723b9iGLl/w/OjfxxmZL7ZF+g+EIyyqbCYUjhCMmxZnJ5KW6dv9CERHpE8xAtO5TiBDW9laIRBNSAH7POCxAS5KPFYVgWiyYwIIhcIp7F7OfwgECluhHSLfVooSU9AstvmgdqaykAABOZx7jxj2Nw56Bw5GZyNAEJaVERET6vcamBUAEw7BhtSb12Cyp619azGuLKmPHd5w6ivPLB/VI3yIiEl/hlgC+dY0ABI0wRrizMLmZBWlnYVjcALwxvppVOV9/LLRZbPxX6k5qEkbCYEYIGA4AHEpISR/X4gvyx3dWUrGtDZslSG5KKwB2ezopyUMTHJ1sp6SUiIhIPxcKtQAwqPhXDB78Xz3W7+qa6MNbrtdJstOGx6XHBhGR/sAMRVjzwCe8E/6cDmeAVkLUBFMZARiGGyxuOrJf5s0Ba2lwVwMwMW8i1xx4DblJuWS6vzF7JBKGyoXgbyaCQahzppTDYknAnYnsuXeX1fDPzzZSlrGSR476K3ZrdMaU6kj1LXq6FBER6af8/lra2r6K1ZKy2Xq22Ky/c7vvh8/Zn4MHa3q7iEh/EWkPscVfS4OjDcIhOpr8DN62HiyAxQlAkrOCOvfXs2EnFU2iLLNsx84+vBM+fhAAv8URa3ZaNFNK+rb6tuhyvUmDNsUSUmAhK+uoxAUlO1BSSkREpB8Kh318NncyoVBTrM1m79lv/vyhaI0qp03fhouI9Cf+5jaCRvRDuHvzWjztLdGEFBCxpGABynKH8d6ZTwFgt9i7zo76pm1fRX9PziGQnB9rdigpJX1YIBShvj2alCrwRv8uDCq+jJKS/8LSWaxf+gYlpURERPohv7+mMyFlISVlGA5HNlmZR/bsGLGklLVH+xURkfj69PlnCRLd9MIIRT+YWyxZYMvCcB0IwKAJ55GXnLf7zkJ+AKqP/h2fDDgOVmwEVFNK+q4/z1zDvdNXkWRtY7/sdXjtmwCw2zOUkOqDlJQSERHph7bPkHI585g4YVpcxvAFo8v3XHbNlBIR6Q8ivhB1768jWO9im60ZAEs4+gWDNelwrPYSXKltZJV4GDhm/J51GvJhAie0llLdmZByWwwMJaWkj3p/eQ2mCb8a9yQjMtbE2u32ntmdWHqWklIiIiL9SDjs44uFP6etbRUANnta3MaKzZSya6aUiEh/0LKghvc+m8lqZ7RW1Gp/OiNwkEwQw3BgRDq46Od+GHPQnncaDhA0bFRHoh8dx3rcnJqTHo/wRXpEU0cQgBFZjRCBlJSRuF2FZGUdndjAZKeUlBIREelHWlq+pLl5Yew4LXUPv+neQ6FwhHOfmMuXW5oIqKaUiEi/UvtVI82WdgCStmxgfPPnX580HFhMHzhSvlunIR9B4+slT6/tP5Qkq34uSN8zY+VWXvliM5sbOgAwzFZMYOyYx3C7ixIbnOySklIiIiL9SCjUAkBy8jD2G/s3XK4BPdr/xvp25lbUx44HZyWT5lb9BRGR/qBpy0aCRIs6W1rqYu0WIx3Dko5pbIPCI79bp6EAQcvXM2ZVS0r6qjvfXM66ba0cWfgxBSlbMU0fADZbz24EIz1LSSkREZF+wjQjBDtrSTkcWbjdhT0+RihiApDqtjPt14eR43Fh0zfiIiJ9XmtDPY2bVxDIjialMKP/njs852JYczAMg4xRAyF5F7vsfZu/FVb8B9pqu8yUsionJX1UXVuAwpRKzit7KdZmtSZhs33H2YHSq5SUEhER6QfWrnuQ9esfBaIfMmw2T1zGCYU7P8TYLBSmJ8VlDBER6VkdK+t59/U3WZIbLW6+IpTD/oYFuxkGw4HHWMQJ1/+CrEHfoRbUvL/AB3cAEHBmA9FZUipwLn2RaZq0+IIUZWz/8i6b/PwzyUgvxzBUG7MvU1JKRESkH6itnc72hBRYyMg4LC7jhDtnStks+tAhItJf1L6xlvVtVWCBSDhMasUW7JEwGGAYDly2WnJL93CG1HYtNdHfs4YTGvVTQD8bpO8JhSPc+O+lrKttJcu9ldK09QAkJw9hSOl1iQ1O9oiSUiIiIv3A9lpS++//T1K947Ba3XEZJxiJFje3aX2GiEi/4W/wE7SHIRwi9aulpJrRhBQAhh27M/jdOw37o7+POZPAgZfBvJWqJyV9zuLNjby8YDPF3o3cfdh9sXa7XTtE9hdKSomIiPQD25NSLmde3BJS8M2ZUqojJSLSH/jaWiHYStAexhLwgRmOTqw1HFjsgzAMB+5h+333jsOdiSyrnVBnfSqbklLSxzS2R/+c7pcbLexvWNwkJw2ioOAniQxLvgMlpURERPqo9vYKFi2+kECgjnC4DYhfLanttteUsmqJhohInxfxh9k8fxkhwyRkhAmFDZIBq+HFnn4xYauPcHIHB0457bt3HuqcKWV1EtheNF0/G6SPafFFC/vneqIzvbOzjmLM6P9NZEjyHSkpJSIi0kfV1c+mo2Nj7DgpqTTu09FVU0pEpH+IBMIs+uO7TAvPJ5wUYVskmfWtyRzFCgzDAcApYz5g0KX371l/psnzVfXUBDpnSDn3h4FJEB5I5ZboLBTNlJK+4qH3V/PnmWsJhaPJqBRnNIlqs2qnvf5GSSkREZE+KhSM7iCTm/MjSkuvx+nMifsOMqopJSLSP4S2dVDlryNsj0A4hLdyI1PXL2JjVipmZ1IqOXnPl3t/WN/Ctas2fd2Qclj0VxCoiialvDbtYiZ9w38WVxIIRTh3xIscUjAPpy0MgNWmpFR/o6SUiIhIH2OaYVpaltPWvg4Apysft7uwV8YOx5bvqaaUiEhfVrVqE0EjunQpacMqPP4ONmalRk9akgCwe1N3289rNQ3cvraS5lD0Q/3QJCcHp6XA6unQXAklR0BmKQZweq6KR0vf0NwR/bN/dPF8MAOdrQap3nEJi0m+HyWlRERE+pgVK39LVdVLsWO7bfcfKnpKSMv3RET6hYq5cwgQnd1qhKJL7gxLFoYlGat7PADOiT/vvpNAO6+sXUmV/+sZVb+ybuKnwRbY8FfYtgr2Gw3Dj4zLPYh8V1saO9hQ10ZzRxC7JQBmdNnexAlv4XBk4nBkJThC+a6UlBIREeljWluWA+B05OJ0FZCTc0Kvja2aUiIifVuoroO1ry5idVszDdZ2/KYVh2nFSQh78rFYrNkMHJlO/rAc3Hn53Xc2825a2kohbRy3rX2UKbWzKPLXdL3GnhS/mxH5Dupa/Rx130wCoQgnD36b0VkrADAMG8nJwzBU86xfUlJKRESkjwmGGgEYM+ZRUlP379WxQ6opJSLSpzXPq2bp+uVU2hoBWBPMYb/tJw0H1kgjJ//qcHB0k0yqWgIN66FiFm35YwAYmpJCkW0YMOzr67wF0eV7In3A+rp2AqEIHoeP04a8HWtPSipRQqofU1JKRESkj6isfJnKqpfwd35Lbben9drY73xZxf9+uIa61mhdBtWUEhHpm7atayJAtJ6Op7qKyZvn0pxkwTQMDBxYaAJ7NwXOG9bDX45ggyuXL1OGUuuI1olKOeFOSFORaOm7mjuiy1RH5UcL7huGnVGjHiAtdXwiw5IfSEkpERGRPmJdxUP4/VUAWK3JOBw5vTb23z9ez7LK5tjxoEwt1xAR6YvatlYRMEIYwQA0bKEpefuOeBawuDCdDdDdrJH6CoKGhRMP+Cv19q9rFmpnPemrfMEwd765nMWbGwHISop+gWazecjNOSmBkUlPUFJKRESkjwiFmgAYMfx3ZGQcis2W3GtjN7RHH/BunjKScUVpjCtK67WxRURkz9TW1rKqfSUN7iBGODpbymJaMNwTsNjyMQwHA/bbr/tO/C002VJiCakJqcmMSHYxPNkV7/BFvpc5a+t4du5GcpO2cu6ImYzJ8wHRpJT0f0pKiYiI9AGmGSYcbgcgO3syDkdGr4y7YEM9SzY3Ud0cfcArL81kVEHv7fYnIiK7Z5omDa+t4Z9LXqMpuQ2ADYFURgNW04bVfQhu7wqOmbofBUPTdt1Rez3Ur6PNGp0N67ZY+M8BQ+N/AyI/QF1b9Iuzn5XNYHTGJ7F2pzMvUSFJD1JSSkREJIECgW1UrH+UQKAu1maz9U5Nj6aOID/961wC4UisLSvF2Stji4jInou0BGifW02b0wcGFIUyyFw9g0AyWDo/0qV5mykelbnrTmqWwV8mQSRIa3IpACk21Q+Uvm97Lans5FYAcnJOwusZTXb28YkMS3qIklIiIiIJVFX1Cps3/yN27HBkYbE4emXs2hYfgXAEh83CiaPzGFeURq5XyzdERPqaiC+MiUnICGNpb6VpwwJwRwADsAOQ5dlNLcCqxTRYXNw+9FoqkgcBkGJVUkr6rn9/sZmbX/uScLidUZnrSLHVApCf92Oyso5OcHTSU5SUEhERSSBf5057GemHkZl1JOlpB/fKuJGISW1LdDp8fqqLh8/Zv1fGFRGR765+/UZCRGe12lqbMDHBEi1mHkwaigPIHHFM9534W3gr6wheyDsx1lTk6p0vQUS+j3e+rKY9EOb/jXmeCflfxNp7c3diiT8lpURERBIgFGplzdp7qaubAUBm5hEMLLqgV8Zu6ghy0sOz2dLYAUCa294r44qIyHcTCYRpnV/FV3NXELBGv0gwImEAnJZh4DkSwxJd8p1eWth9Z50FzgEO9CZxbkEmR2V44xe8yA/U4osW89+/oBlMSEoqweMZg8czNsGRSU9SUkpERCQBtm37kC1b/hk7drsH9trYyyqbYgkpgCOH5/Ta2CIisufaF21l7luz+cS+CuxQF0nC2u6iCMDqwbCkMG7sF4w641ek5e5i+V7TZlj6MqydQZt1CACjUtz8NL+b+lMiCeQLhtlQ105tqx8Au6UdwlA28l5SUzWze2+jpJSIiEgCBIMNAHg8oxlUfFmv1kZo7oh+87hfURov/PJg3A5rr40tIiJ7rqO6nSYjujOrM2yhvdnC0TXLqE7zYFrcGMDAAeauE1IA790KX74MQOvg6AyTFJv+3Ze+yTRNTvrTbNbVtpFsayPH3Y5htmIC1l7aCEZ6l5JSIiIiCRAKtQDgSSkjJ+eEXhmzxRfk8/UNzK2I7vSXkWRXQkpEpA9r29ZCgOhyPcvGZYz0tVGd5gEgYnFjATyjTuq+k9Ya3s08hMeGXMJaZx4AySpwLn1UWyDMuto2Bno2cfPE+7FaIpidmwTbrEpK7Y30r5GIiEgvamj4jK/W/IFtdR8CYLN5em3sK59fyAVPz+epT9YDkKpaUr3iscceY+zYsXi9XrxeL+Xl5bz99tux8z6fj8svv5zMzExSUlI444wzqKmp6dLHxo0bmTJlCklJSeTk5HD99dcTCoW6XDNz5kwOOOAAnE4nQ4YM4emnn94hlkcffZRBgwbhcrmYOHEi8+bNi8s9i8gPZwYjbKlYQbsRXcJkDXRgdJ4zTLDYowkm94Dh3XcUbOfRop8yx1XCVsMNwCC3M15hi/wgzR1BAIakb8RqiWAYNqzWFDIzJ+F05iY4OokHzZQSERHpRUu/vCK2dA/A4ey9ek5rtrYCMDzXQ2aKg/PKB/Xa2PuywsJC/vCHPzB06FBM0+SZZ57h1FNPZeHChYwaNYqrr76aadOm8dJLL5GamsoVV1zB6aefzieffAJAOBxmypQp5OXl8emnn1JVVcX555+P3W7n97//PQAVFRVMmTKFSy+9lGeffZYPPviAiy++mPz8fCZPngzAv/71L6655hoef/xxJk6cyEMPPcTkyZNZtWoVOTmqKybSl7QvqWXWi+8y1/ZVrM2ImAA4Us7EsOVhGA4wwO7YzTyDQDuNncuerh+Ux8FpyZSnacaJ9D1bGjtYVd0MQLormozNyz2VsrJ7EhmWxJmSUiIiIr0kEvHHElJFhb/A4cimIP/sXhu/qfPbx0fPPYAhOfpA0ltOPvnkLsd33XUXjz32GJ999hmFhYU8+eSTPPfccxx9dLSu2FNPPcXIkSP57LPPOPjgg3n33XdZvnw577//Prm5uYwbN44777yTG264gdtuuw2Hw8Hjjz9OSUkJ999/PwAjR47k448/5sEHH4wlpR544AF++ctfcsEF0V0eH3/8caZNm8bf//53brzxxl58R0Rkd1qX1VFrRD+cW00LC/wFHMIXWDExrOlYTMjO7mBQeRmW3S3FC7bRak0G4OhML/t7u6k/JZIgT31Swe1vLCc/uZqzhn3GmOx1ANjsqQmOTOJNy/dERER6SbCzjhQYDB36WwYNuhS7Pb7bcZumyd1vr+AXT82Lba2sZXuJEw6HeeGFF2hra6O8vJwFCxYQDAY59thjY9eMGDGCgQMHMmfOHADmzJnDmDFjyM39etnC5MmTaW5uZtmyZbFrvtnH9mu29xEIBFiwYEGXaywWC8cee2zsmp3x+/00Nzd3+SUi8dde7yPUWUvKXrmWU+b9ByudhXWw4wpWctaPt3HQlJKdd9BaC/97IEsfOox7U4+mzp4GgNemj3/SNy3c2AjAWcPe5IRBHzIgeT0Ars46aLL30kwpERGROPP5q1mw4Gx8vioAbDYvhtE7HwxW17Tyl1nrYsepbjtpSUpK9balS5dSXl6Oz+cjJSWFV199lbKyMhYtWoTD4SAtLa3L9bm5uVRXVwNQXV3dJSG1/fz2c91d09zcTEdHBw0NDYTD4Z1es3Llyl3Gfffdd3P77bd/r3sWke/PDIQJEYFQCFtzPQ3Z5tcnDTuGzQfeobvuYNNnUPcVVxz4FKuSB0dfBqTb9fFP+qbts7lH5QUhDDk5J+H1jKagoPdmlEti6F8lERGROGtsmIfPtyV2nJFxaK+Nva01WpMhP9XF9ZOHM7YwFbt2Xep1w4cPZ9GiRTQ1NfHyyy8zdepUZs2aleiwduumm27immuuiR03NzdTVFSUwIhE9n4BXwfN1esJOcNY/R0YdCakTAgnpWMYVjJKBkHp0d100g5ArStaL+7H2R6OykonQ0kp6WNWVjfzr/mbWF7VuVyVNgAKC88nPe2gRIYmvUT/KomIiMRZKBR90MrMPIqykX/Ebs+I+5imafL+iq18sCK6i1tRehKnH1AY93Fl5xwOB0OGDAFg/PjxzJ8/n4cffpif/OQnBAIBGhsbu8yWqqmpIS8vumQhLy9vh13ytu/O981rvr1jX01NDV6vF7fbjdVqxWq17vSa7X3sjNPpxOnULl0ivSXcGmDzzEWYwQhBZxgi0SV7rpADsq+IXZeUVwwW6647CkQ3tuiwRP/+3lRayEDtuCd90D3vrOLDlVv58ZA3GTp8LUZk+6zy3tudWBJLX5WKiIjESTjsZ8uWF6jd9j4ATkc2DkcmhmHs5pU/3IINDfzyH5/zwvxNAGR79GGkL4lEIvj9fsaPH4/dbueDDz6InVu1ahUbN26kvLwcgPLycpYuXcrWrVtj17z33nt4vV7Kyspi13yzj+3XbO/D4XAwfvz4LtdEIhE++OCD2DUiknib/rKAl+fP5DXvMhosrTSGHNETRvTfcIujlkFjsxh79G5mLAbbiWDQYUSXa7s1Q1b6qNoWPx5HCz8a/C7DM9aCGcRiceBy5ic6NOklmiklIiISJzU1/2Hlqt/Gjh3O7F4be1NDdOlGtsfJ4UOzuPiwwb02tnR10003ceKJJzJw4EBaWlp47rnnmDlzJtOnTyc1NZWLLrqIa665hoyMDLxeL1deeSXl5eUcfPDBABx//PGUlZVx3nnncc8991BdXc3NN9/M5ZdfHpvFdOmll/LII4/wm9/8hgsvvJAPP/yQF198kWnTpsXiuOaaa5g6dSoHHnggEyZM4KGHHqKtrS22G5+IJN7W+lra7dFl12Z7kBHLl9OcDoZhwwSSsj9lyq9+susOOhpg1j1QMTs2SwogSUkp6aOafUGSbdFnFqs1mZEj/0By0hDs2nVvn6GklIiISJz4/NEp6MnJQ8nMOILCAT/vlXGD4QjbWgIATCjJ4IGzx/XKuLJzW7du5fzzz6eqqorU1FTGjh3L9OnTOe644wB48MEHsVgsnHHGGfj9fiZPnsyf//zn2OutVitvvvkml112GeXl5SQnJzN16lTuuOOO2DUlJSVMmzaNq6++mocffpjCwkKeeOIJJk+eHLvmJz/5CbW1tdxyyy1UV1czbtw43nnnnR2Kn4tIYpimSciM7rhna20mef0a2rxhootbojOeXHZz1x0ALH+dj1fO4ZGi8+nId8Wa3RYlpaTvaPWH+O2rS6lp9lHZ2EFRSjQpZbdnkJtzUoKjk96mpJSIiEicbK8llZV5NEOG/KZXxnxu7kZuef1LQpHoB5c0t3baS7Qnn3yy2/Mul4tHH32URx99dJfXFBcX89Zbb3Xbz5FHHsnChQu7veaKK67giiuu6PYaEUkMMxgmSAgAa3sLEWuE7dVW2j35uAFHek73nXQ08FjhT5iZMSHWVOiyY+mFZeMie+qj1bW8vqiSYu9G7j/izyTbO5NSNm+CI5NEUFJKRESkh1VVv0ZD/ac0Ni0AwNaLD1kfrtwaS0g5rBYOH9p7SwZFROT7Wz5jJkEjOlOKcDQ5ZTNysHh+hMWaBkDO2JO77yTYQastE4D/V5TN/p4kDkxNjlfIIt9LQ3t0NvexgzfEElIA6RmqcbgvUlJKRESkB4XDPlasuAHTDMXaXK6CXhu/qSP6oPfgT/ZjypgCHDYt2RAR6evq6+t5fc4nBDuX5xmRaHLKtKZisabhStuGt3gAE8eP7r6jQBvtluiyvUnpHo7O1MwT6XuaO6LPSHmeIAADBpxL6eBrsNvTEhiVJIqSUiIiIj0oGGrENEMYhpXS0utx2DPIyTkh7uO+82U1n6zZxpqt0W3AczwuJaRERPoBf0UTS5+dSZBoQqou7MbekcIA6qEzwfTTIzeSdMLZu+8s2EGHNVrgXDvuSV/z4vxN3P7GMjBbOLroc7IdKwBwOnKUkNqHKSklIiLSQ0wzTDBQB4DNlkrxwF/2yrjBcIRfv7CQQCgSa8tPdXXzChER6StaF9cS6PCDHQraHaSvX47bV0mL2wlGtC6g3e3ovpPPn8KcfT++jmbaDoh+EaId96SveevLKtoCYU4tncEppdNj7Q5HVgKjkkRTUkpERKQHtLauYsEX58SKm/dmHammjmAsIXXVsUMZkpPC4OyUXhtfRES+v9ZtHQSJLtdrqlmCxWiNJqQAw5KCSQSby91tH5Ev/o8pg/+bhd6yWJt23JO+prkjulzv+OEGhMDjGUN6+sHk5k5JcGSSSD32L9Vjjz3G2LFj8Xq9eL1eysvLefvtt2PnfT4fl19+OZmZmaSkpHDGGWdQU1PTpY+NGzcyZcoUkpKSyMnJ4frrrycUCnW5ZubMmRxwwAE4nU6GDBnC008/3VO3ICIi8r01NHwWS0gBZGcd02tjb3/I87hsXHXsMH40tvdqWImIyA/jb2oiTPSLBTMS/ezjsAzE5p6E1TmWiCWAUXhAt31si9i6JKRK3U4GunYzu0qkl5imSSgcodkX/fOdZO8AoKDgbIYOuRGbzZPI8CTBemymVGFhIX/4wx8YOnQopmnyzDPPcOqpp7Jw4UJGjRrF1VdfzbRp03jppZdITU3liiuu4PTTT+eTTz4BIBwOM2XKFPLy8vj000+pqqri/PPPx2638/vf/x6AiooKpkyZwqWXXsqzzz7LBx98wMUXX0x+fj6TJ0/uqVsRERH5zoKdCan8/LMYPuxWrNbuv9XuCZvq25n61DxqmnwAeF32uI8pIiI9JxKJUNO4hRYj+iHdMDuTU+79sDmGApA8IAgDxnfbT3sk+jq3YbL0sLG4rRashhHHyEX2jGmanPPXz5hbUc+xA2dw+KhKCKwDUDJKgB5MSp18ctftSe+66y4ee+wxPvvsMwoLC3nyySd57rnnOProowF46qmnGDlyJJ999hkHH3ww7777LsuXL+f9998nNzeXcePGceedd3LDDTdw22234XA4ePzxxykpKeH+++8HYOTIkXz88cc8+OCDSkqJiEhCdHRsZuvWt6ivnw2Aw5HZKwkpgNlfbWNdbVvseHxxeq+MKyIiP5wZjvDOK28yzxot9txu2rBFbLgJgGHDpIKfX3Uw3mFlu+kJ2iPRIunJFoMUmzWucYt8F/VtAeZW1JPjruWnI14FoHNzSVzO/ARGJn1FXBYah8NhXnjhBdra2igvL2fBggUEg0GOPfbY2DUjRoxg4MCBzJkzB4A5c+YwZswYcnNzY9dMnjyZ5uZmli1bFrvmm31sv2Z7H7vi9/tpbm7u8ktERKQnrF59O2vW/pGmpgVA7xbrbPZ11mYoy2XW9Ufy0E/G9drYIiLyw9S/uY7NS9cD4DBtuL+qJ6utsfOsFdPSSlp+KhbL7mc8tUei1yRZNTtK+paG9uizSm5KOwB2ezqlpb9hVNmDpKZ2PwNQ9g09Wuh86dKllJeX4/P5SElJ4dVXX6WsrIxFixbhcDhIS0vrcn1ubi7V1dUAVFdXd0lIbT+//Vx31zQ3N9PR0YHbvfNvpu+++25uv/32nrhFERGRLnz+SgCyMo8mOWUY+Xmn99rYLZ1JqYI0N8WZyb02roiI/HBN65oIGdEpI6Na0/FtnktdRjSpZBg2gs4AOLr5t72jAd6+kTcimXyQFV2NkmTRLCnpG0zT5M43V7BgQz0A2SnRZxaXawCDiv9fIkOTPqZHk1LDhw9n0aJFNDU18fLLLzN16lRmzZrVk0N8LzfddBPXXHNN7Li5uZmioqIERiQiInuLYLAJgJKSK/F6x/bKmNf8axFvLKkk1Llcw+vSZroiIv2NGYwQJgymyaqtM8hJ9hOwbf/33EY4CXCm7rqDVW9TsXo2v5z4XKwp3aHagtI3rK5p5e+fVDDQs4lbDn6e7KRWoHd3J5b+oUefYh0OB0OGDAFg/PjxzJ8/n4cffpif/OQnBAIBGhsbu8yWqqmpIS8vD4C8vDzmzZvXpb/tu/N985pv79hXU1OD1+vd5SwpAKfTidPp/MH3JyIiAmCaYRYtvoimpoWEw737kBWOmLy6aAtmNB+FzWIwflBGr4wtIiI9J9jWTIgI1vYWrAEfdd6vd8szLG6MjAKwdFNtxdfMVkf033+vEebHaXbOGawv3qVvqG8LAHBU8WKKvZtj7SkpwxMVkvRRcf1qNRKJ4Pf7GT9+PHa7nQ8++IAzzjgDgFWrVrFx40bKy8sBKC8v56677mLr1q3k5OQA8N577+H1eikrK4td89Zbb3UZ47333ov1ISIi0hs6OjbFCpsDOJ35uFy9U6yzxReMJaQ+ufFovC4bHu26JyLSr7Q1NtDRvI2gN4wRCgFgGMlYHCOwWLMwLB5SMoLddxJopcMa/eK9KDmZP44bEe+wRfZIU0eQTQ3RGlKZSX4ACgrOYUDBT/B4RiUyNOmDeiwpddNNN3HiiScycOBAWlpaeO6555g5cybTp08nNTWViy66iGuuuYaMjAy8Xi9XXnkl5eXlHHzwwQAcf/zxlJWVcd5553HPPfdQXV3NzTffzOWXXx6b5XTppZfyyCOP8Jvf/IYLL7yQDz/8kBdffJFp06b11G2IiIjsVigU3TDD4cjhwPH/wuHIxWKJ74zcYDjCkx9XsGZrdGZWssPKgLTe2eVPRER6TrgjyD+efpaa1G0AJNc2AmCxZGJPmkQk6S2KJo/h2COmdN9RoI0OiwsAd3czqkR60dtLq7j8uS+wEKQsYy3Zrmh96JSUEb1W5kD6lx5LSm3dupXzzz+fqqoqUlNTGTt2LNOnT+e4444D4MEHH8RisXDGGWfg9/uZPHkyf/7zn2Ovt1qtvPnmm1x22WWUl5eTnJzM1KlTueOOO2LXlJSUMG3aNK6++moefvhhCgsLeeKJJ5g8eXJP3YaIiEi3mpuXUrvtAwAc9nTc7oG9Mu6sVbX84e2VseO8VFevjCsiIj3HNE3W3PspNZFoQsrb0MiI9atZMSALjOiXG4Xpyzll8n277qRpM3x4F2ycQ7u9FAC3VUkp6Rvmra8nYsLpQ9/ixJIPYu12e1rigpI+rceSUk8++WS3510uF48++iiPPvroLq8pLi7eYXnetx155JEsXLjwe8UoIiLyQ7S3VzD/89Nix3Z7eq+NXdXsA2BITgonjc7juLK8XhtbRER6hhmMEOnwgxOsoTC5Nc1szvBET3bOenIO2M3M28XPs2Xle/y58Kcs9QwFNFNK+o4WX3Q56mEl0eV7LlcRnpQRZGZMSmRY0odpux4REZE91N6xAQCrNYXU1P0pHvjLuI/pC4Z5deEW3lse3ejjoEHpXHO8ioSKiPRHZjBCiDAAlqZaqs2t4I4moQxLCgDJpbupl+tr5umC03iy8IxYU65TtQUlsUzTJBg2ae6I1kJzWDogAqWl15KXe3KCo5O+TEkpERGRPRQKtQDg8Yxi/3FP98qY//5iC//96tLYcY5Hy/ZERPqrcIefEBEAjHB0RondTMXqGonpGg+Ae+iR3XcS7KDJFp1dNSndwzGZHn6c23szd0W+LRCKcMojH7OyuoUsdx3D0+uxUweArfPPqsiuKCklIiKyGz5fJdvqZtLYMBcAu83ba2NvaYxOfx+Wm8LhQ7M5d2Lv1LASEZGeZZomX3z4AR1GdDcyIxydMRVxDcKadAgGUO+uJs19YPcdBTtot2QDcESGh0uKcuIZtshubaxvZ2V1C5muOu4+7A4shkln7rVXn5mkf1JSSkREZDeWLbuGxqb5sWO7I6PXxm7qnAZ/wuh8rjluWK+NKyIiPWvGW+/z0fKF4AB3SyvF6yrYkpECOCBUTePh8ygZN4GhaUO77yjYjs8aXfLnthjxD1xkN7Y/q4zObcRimFgsTtzugSS5B+HxjE5wdNLXKSklIiKyGx2+zQBkZByOy5nfK7WkHp2xhsdnrqU9GP0mPdWteiEiIv2Vb20jGz5bBVawByOYlQ347NHi5IZhp8Peyg37TcS230933cmy12DLAqhaREfBBABc2nVPEuytpVV8tLoWgMyk6CxAr3cc4w94LpFhST+ipJSIiMhubK8lNXzYrSQllfTKmK98sZkWf7TeiM1iMK4orVfGFRGRnte8rolg53qmrC1VtEZqqPMkRU8aDrZ5g9i8BbvuoKMRXr6AZoubRZ4R1DiyAEjSrnuSQF9uaeJXz35Bkq2do4oWMCpjI6Ale/LdKCklIiKyC9u2zaCtbTXhcCvQu8U6t+9e8/QFB7H/wHTNlBIR6ceatrQQMqIzX1v8WzEAb7sPizuVDscwTGsFDDp81x34GsGMcNZ+D7LY8/UOrEmaKSUJVNnYAcAZwz/kyAHvxtp7s8yB9H9KSomIiOxER8dGFi+5OHZsGPZeSUp9sbGBr2paYvUZhuZ6lJASEenHIuEwG754n1BaNCmFaQJgTT6WkGckhiUF025Cd7OegtEP/+vchQAMSXIyyO3kkLSUuMYu0p3tzyrFqdEZ5V7PWFI8ZRQPvLi7l4l0oaSUiIjITnT4tgBgs3nJzj6ejPRDsViccR2zusnHmY99SiT6eQXDgPQkJaRERPqzTevXscHeSpsRLUpumNFlfG0pxVis0S872j2N3XfSmZTq6Cxw/tK4UvKdjvgELLIbM1dt5bevfkljewCAJHv0z+eAwnMpyD8zkaFJP6SklIiIyE6Egs0AJCcPoWzkH3tlzM0N7URMSHJYOXRIFocNySLJoR/VIiL9VaQ9yHtvvM9mT7RGoGdlFZawScRqgGEnFFnNa/u9zlH7l3ffUchHwLARMqI/E9yqJSUJ9J/FlWxp7GBC3gL2z15KlrMCUC0p+X70pCsiIvIN9fWf8OWyqwmFokkpmy2118bePg1+SE4Kfzv/wF4bV0RE4qPhP2tpr28DC+Q3meRULaMiJ/pzxTBspBq1vHHxi6Q4u1ke3rYNGtbTYXHFmlRLShKpxRdNsl485iWsRnus3eUakKiQpB9TUkpEROQbamvfIxisix2np02I+5iLNjVyw8tL2NriA1ANKRGRvUTb5lbCRDBCQVorF9Oal/b1ScOJmWV2n5Ba+yGhf57Fx2nj2Jx9JABWA+ydSwFFEqHFF8RmBGMJqSGlN5CUXIrHMyrBkUl/pKSUiIjINwRDjQAMGnQFRYXn4ejcdjue3lxcyaqaltjx6AG9NztLRETiIxQM0rK1kpA7jBGOziyxREzS/G62FgzDhRP7oPHdd1K5kH/mTeHGYdfEmpKtFgwlpaSXBcMR/uuFhayrbWN9XRtuu6/zjMHAgRdjGJq9J9+PklIiIiJAa+tq6utn09KyAgC3q6hXElIAzb7osr2p5cX8/OBihuRoNyURkf6udsM6jFCEMBGIRIubG4aL9oJfsf1feacnqftOgh1scOcDUOC0M9Dl4NTc9DhGLbJzX25p4q2l1aTYW/jN+MfIcDUAYLOlKCElP4iSUiIiIsDSLy+nvX1d7Njh7J2EFHxdm6E0J4Whud0s4xARkX4j5Pdjtdiiy/c6d9yjs1B5dUoFDUnVTDjopO47CXbQZo0mrn6Wn8l1JXnxDFlklxrbo1+gTRq0kWLv5li7xzMmUSHJXkJJKREREcDn2wJATs5JJCWVkJF+aFzHC0dMLn5mPks2N8VmSnldqiUlIrI3CNS0Ub24knZ7G2YogK2yCQCj8+OXr3A2h54wmQMHj+u+o2AH7dboku5kFTeXBDBNk4/XbOP9FTUA5KUEAEhPP4RhQ28mKWlwIsOTvYCSUiIiss8Lh/1EIn4ARo74PTZb/GcrVWxrY8aq2tixzWJQVqCtlEVE+rtIIMzCRz/gbcsX4IQhy1dTsGEtCwflgRH98uEQh5cfj/hpt/2YpskXEQ/rXQWAklKSGPPXN3Dek/NwWTs4pXQGw1MrAHC7CklJGZ7g6GRvoKSUiIjssyIRP6tW3UZ7e0Vni4HVmtwrYze2R79pLEh18Y+LJpCR7CQj2dErY4uISPxE2oI0hdvAAq7aampoo2ZQdNldxBJNSqVkDei+k4/u48OlH3Fu2R2xJo/NGreYRXZlQ10bAEcXL+bU0ndi7U5XfqJCkr2MklIiIrLPamicT2XVi7HjpKRBcS/WuaWxg7vfWsH6zoe8bI+TITmqIyUisrdo3FJJiDAAluZa+OZGec4SAFwjjuq+k6UvU2EfCUB6sJmD01I4KkM/K6T3tfqjdS9H5kZ/93jGkJtzIgUFP0lkWLIXUVJKRET2WcFAPQApycMZNOhyUlMPiPuYryzYzJtLqmLHg7O1056IyN7kq08+IUTnbnsREwCv5WD83oMwOpfvJXmc3XcSaKPDFb3m+IJ8Hh49NH4Bi+yELxhmdU0La2tbAUi2dwCQkX4IxcX/L5GhyV5GSSkREdnnmGaEhoY51Dd8AkBS0mByc6f0ytj1bdFle8eX5XLquAEcPqz3dvkTEZH4C3X4CXbOurVEojOmwrZUDMNORfYC1qZ9yXFpv+2+k2AbHRYXAG6HO67xiuzMuU/MZcGGBsZmfclZw9aQ5YjuUGyz6cs06VlKSomIyD6nrm4mi5f8MnZsd6THfcyOQJgZq7by5ZboDkwHDcpgyljVYxAR2VuYEZOtizeysqmJJkuQ0q/W0Ozz4XPYMS3RxNK8gvdoSKrCbd1NoinQRoc1OlPKbTG6v1YkDpZVNmGzBPnVuL9jt4Ri7Q5HTgKjkr2RklIiIrLPae/YAIDDkY3XO5YBA86N+5j/++FX/Hnm2tixipqLiOxdOpbUMvflmWyxt2AJdBBorCfojhYnj1ijs54GJKdyaMl4Cj2FO+9k/pO0LXuDr1zFbHZGi6O7teue9DJ/KIwvGCHN2d6ZkLIwcOCF2O0Z5OaelOjwZC+jpJSIiOxzQsFmALKzj2PE8Dt7Zczthc2H53oYW5jKcaNye2VcERHpHS3r6wga0eV6KZUbaEz5OpkUtnmwAk+c8DjJOZm77uSDOzhh9MN8VTwo1uS2KCklvcM0TV5asLmzjpRJiiP67GK3pzJ0yE2JDU72WkpKiYjIPsPv30rttvdpaJwLgM3aezsZNbYHAfjVUaWcOm43W4GLiEi/s3r2R4Tc0QRSJNiOAeQ0+wgXhGmzRH/e2Dyp3fYRDHbwVfIgAPLtBukOJ8dndf8akZ6yYEMDv3l5CTZLkDsOuY8BKdGNWWw2b4Ijk72ZklIiIrLPWLX6Vmpr340d2x0ZcR/z+pcW88aSSvyh6E5MqW573McUEZHeF/EHCW//N96M7rrXOOASLLavN7Sw2buZ9RQO4sMaO5xTPgaXlu5JL6pq8gEwJqcxlpACyMw4IlEhyT5ASSkREdln+Dq2AJCedjDJyUPJz/txXMeLRExe+WIznTuC43HaKMvXt40iInuTcLOfjlX1pNoy2WA0kFtdTUckgmkYGBYnEUIErH6sJR1Ybd0kmYIdsR33DMCpAufSy5p90VndZfnRP3tJSSUcOP7f2O16dpH4UVJKRET2GaFQCwCDS68hLXV83MdrC4RiCakZ1x1JnteF22Ht/kUiItKv1L+0mpavtmG4U/FFKjl49id8OLq486yNDamfMb3sJW6eeHP3HQU7vrHjngXDUFJKesf89fXcO30VVQ3NjMteQklKNQB2W5oSUhJ3SkqJiMheLRIJsnnz/+EP1OAPbAV6pzbC1hYf67e1A+CwWhiUmaQPGCIieyF/YzsvOefQgR9n5QaWDMz++qRhx+sM8MKUFyjLLNt5B+EgzLiL2rotrEwuAbTjnvSu/5uzgXkV9RxdNItzR74Sa7fb0xMYlewrlJQSEZG9Wl3dLL5ac9c3Wiw47N3sfNQDXvp8E9e/vCR27HHZlJASEdkLRSJh6uvr6LAHsHS042jexjZvUvSk1QZY8SSnMipr1K47WT+bpYve5IQDHiecE/145rbqZ4b0nqaO6LK9o4YEAHC5BpKSMpTigZckMizZRygpJSIiezW/PzoFPSlpMNlZx+H17ocjzgXOP1/fAERnSDntFn5yUFFcxxMRkcTYsmIZwaAf7GAJRT/YuwIhhm/bxtJDT8ZoNLBm7mbH1Y5GlicPJmzYsBPBa7Xws/z4fnki8k0tnbWk8jxB8EHhgJ9SXKyElPQOJaVERGSv5fNX09a+FoC0tIMYMuQ3vTJuQ3v0m8b/ObmM8w4u3s3VIiLSX/laWzE7Z8JaOndZtUcsdGSegMU/Mnps300twWAHPku0ltTx2ek8ObokfgGLfMMdbyznvRXVpFkW8YuyBViDGzDpnTIHItspKSUiInul2m0fsGTJ19/y2W2pcR/zlQWbuXPacpo7p8FnJDniPqaIiCSGGTEJ+vyYFoPkllaGLF7MulwPflcOG9OPxtYRvc6espv6UMF2OqzRXfdcFtWSkt4RDEf4+ycVAFx66IvkJddihqPnXK78BEYm+xolpUREZK/U0rwUAIvFhctVQE7OiXEf8z+LK2ls71y+YbcwZkD8E2EiItL7AlVt1P5lCV6fjWYjQkplJWFL9BO9aURnPa3Knktt8iZ+NnpK950FO/BZol9iuCyqJSW9Y3sdKYA8TwdEYODAi0lJHk5GxmEJjEz2NUpKiYjIXikYagagqOgXDCm9vlfGbOxctvfHM8YwZWwBKU79mBUR2RsFKppo87Uxz76GuvoVhCLNbMhOi55zOHED48YEyBp/AicMOn7nnVQthtn3Q81yfJ4jAM2UkvgzTZNP1tSxoir6nOR1WSDSBsDAootwOnMSGZ7sg/S0LCIie5Vw2EeHbxN+XyUANqsn7mO+vGAzn67dxrra6ENdaXaKElIiInux+k1VrLXWsMZajTPUhINogfNkq49t7tEAnHrYtWQWpOy6k08f4YtNq/hr4U9ZkjIMALdVSSmJr0/W1PHzJ+fitrVz8uBZFHj9gAmAzRb/ZyaRb9MTs4iI7DUikRCfzZ2Mz7c51hbvB6z2QIgbXllCOBJ9oDMMKEhzx3VMERFJrKoVKwkYIQAsAT8Ag7Y1MSyzkmnWgRABu2M3Bc79LTw88DymZ329VCrPaY9bzCIAFXXRL9COL/mCU0rejrXbbB4sFleiwpJ9mJJSIiKy1wgEt8USUnZ7Jk5HFpmZR8R1zPq2AOGIid1qcMMJIxia61FSSkRkLxcJhgkZ0RpSTl8HYaA2+wDq0i/CHonWh7LtLikV6qDZnQzAz/IzODQthZM6lwCKxEtTZ6mB0XnRpKrXux/p6YeQkX4IhqGaZtL7lJQSEZG9RijYBEQTUkccPi/u421p7GDBhgYA0pMcXHz44LiPKSIiiWeETUK2MJlbqkltbKbWm0RT6jBs9ujPgYC9HWfSbj5qBTvo6JyZckJWKsdnaXMMiZ/VNS1c++JiNnTOlEq2+wDIzDiCwYOvSmBksq9TUkpERPo90wyzfMUNNDcvBsBuT4v7mJ+u3cbP/jY3dpzq1pILEZG9XcfyOlpmbyHbLGAt63DUtBLpnFxiGDYClmbeH/Y8KXl2rrb9qPvOgh10WKM79SWplpTE2dtLq1m6pYmyjJWUFlSQ5fwKwqojJYmnpJSIiPR7La0rqK5+NXacnDwk7mMur4zuWuO2W8nyODi/vDjuY4qISGJte2cVa7dtYZlzE60Na0m2tRCwOTrP2mhzttOYu5nTR124606aNkPTFuhoxGeJJqXc2nVP4qzFF8Rp9XPV+L9iNUIQXX2K3ZGZ2MBkn6eklIiI9Hvbl+25XIWMHPF7UlMPiPuYzR1BAM4cX8idp42O+3giIpJYpmnStKWaJckbaAjVkbJ1A347bP9IZViSSXYn8clPP9l1Jw0bMP+0P69nHUGV52Dq7dEley7NlJI4a/GF8DhasBohDMNOQf6Z2B2Z5GQfn+jQZB+npJSIiPRrphkmGIzWdXI688jIODSu422sa2fhpgYWb44mwrxu/SgVEdkXhIIBrFgJEsYId+68FzEpaLHTmJtP0JqPYW/uvpO6Ncz1juLSstu6NHttuymKLvI9/WPOeuavb2Dllo0MSasAwOHIZMSI3yU4MpEoPUmLiEi/ta7if6moeBgwAbDbvHEdzzRNTn/sU7a1+mNtaW5HN68QEZG9Rcjvx2rYCRlhDDMCgGE42Tboiuh/A511y7vpxEeVIxuAHIeNI9I9jE5xU+TSzxLpeY3tAW55fRkp9lbuOeJWnNboLG+7PT3BkYl8TUkpERHpt2prp7M9IQUWMjIPj+t4zb5QLCF12JAs0pLsnDKuIK5jiohI4pnBMP7qZmwWB2Ei5G3ZQjNgNaMznEJGHZWpNRSPS+m+o2AH7dZo5mo/TxKPlKkeocRPXVsAgIHeOpzWICZW3K58Bgz4WYIjE/maklIiItJvhULRZRL7j/sHqakHYLW64zZWsy/IquoWIFrc/J8XT4zbWCIi0neYwTBV93xOpCWAw+LE0tHGkK/W8EVJHhYzWguq2j2Pt0a+wz0j7um+s2AHbZ0/q5JVR0riqLKxg8/W1QGQ543OkPJ6RjDhoP8kMiyRHSgpJSIi/U5b2xra2tbGakm5XAVxTUgtr2zmtEc/IRCOLtdIT7LHbSwREelbOmqaiLQE2Gypo9ZsJNzWRlNSdNe8kMOKDXBlWHnupOcYndX9xheV/hAbXNEZtklKSkmcbG3xMeneGRimn4l5SxibtQEAW5zLHIh8H0pKiYhIvxIMNjJv/slEIoFYW7wfshZtaiQQjmAxIMlh48zxhXEdT0RE+o7NS78kgp93HIuwN9Ti2raBtbnRmjxBpwMbkF00ljHZY3bdyfqP+WjWU5w98Eoo3B9QUkriZ11tG8GwyY8Gf8SPh3w9M0q1pKQvUlJKRET6FZ9vC5FIAMNw4PWOJT3tIByOzLiO2dgRTYCdfkAh9521X1zHEhGRviXY7sNvRH8OWHwdADhCYdzhII35JeADu3M3hcoXP8+yYDQJ5Qr7ybOG+VF2WjzDln1YU0d0ud6wzOhOwcnJQ0lOHkZx8SWJDEtkp5SUEhGRfiUYjD5gud0DOXD8v+I6VlVTB/e+s4oFG6PLBNPcWrYnIrKvifiDhIzo8m2HP5qcym5z4kidRFukLNru2M3HqkA7HZZoEfSzMhzcO24/sGimlPSstbWt3P/uKtbVtgGQ4ogmUQcM+BlFhecnMjSRXVJSSkRE+gW/v4aKiv+lte0rAOz2+NdFeGXBZv69cEvsuDgrOe5jiohI3xL2h6I77lVVkVq5icp0D/UZYzG9E7B1riR3eneTYAp20GGNzup1e3KUkJK4eH7uRt5aWs2ozBX8z8FvMCBpGwB2W2qCIxPZNSWlRESkX6isfJEtlc/Hjl2u+Nd12tYa/bRx7Mgczj6wiCOH58R9TBER6Rsi7UFaP60kqdpFCy146xoJG0b0nM2NAXwx4F1qkzdz5ZBfdN9ZsB2fJVoc3WUx4hu47LMa2qPL9s4Z9TkFrs2x9uTkoYkKSWS3lJQSEZF+wR+IftuXmTmJ7Kzjyc4+Lm5jbW5oZ+aqWhZtagRgQkkGx4/Ki9t4IiLS97R9Xk3j++ups3SwKbyFRjMAnbvuBewunEDGoC0MHjqSQwcc0n1nwXY63C4A3CpwLnHS4osmpTKT/BCBkkG/Jjf3ZJKTByc4MpFdU1JKRET6tHC4g7r6j2htXQ5ARsbhDBhwTlzH/K8XFrFgQ0PsOCvFGdfxRESk71n23oc0Wm18Zv8KZ+V6HLYgEK0taMMDwG3H3ktyfjdfWrx9I0/XtPCnwt9Q37mEyq2le9LDXvx8E/9ZVMnK6loKkqux0whAatp4JaSkz1NSSkRE+rSKiv9lw8a/xI4d9oy4j7mxvh2Aw4dmUZqdollSIiL7oI76RlrSo7UELaHOAufNbWSmtlBhGwSAPS2r+07m/43nxj1KpfPr5d8jU9xxiVf2XX94eyUNbT5+d+hd5CXXQrQuP3Zb/OtvivxQSkqJiEif1t6xAYjWQ/B6xpCVdXRcxzNNM7aV8t2nj6EwPSmu44mISN8TDoWwYiPU+ene3dZOEHBRSCgpE8OIznayOrqZ9RQOQiREuzWahHqgJJ1JefkMcDniHb7sQyIRk4b2AG6bL5qQAuz2DJKTh5CSMjzB0YnsnpJSIiLSp4VCzQAMKv4VeXmnxG2cjkCYn/x1Dl/VtBIIRT+EpCXpg4OIyL4m0h6kef5m0h25bDBqOeDzBWwz22lIcVOdfxhWR7RodMgawNpdfahAGwDtlmhSqiwjWwkp6VFVTR1U1LZhmpBk7wDAYnFzxOHzExyZyJ5TUkpERPoc0zTZUvk87e0VtLWtBsBm88R1zOVVTSzZ3BQ7Lsv3kuywxnVMERHpe5pnbaZt1mbSnbmEqCazeis1+Z3LoAwbLfZKNqWvxzbIB5yw646C0SRBuzVa4DxJBc6lB1Vsa+OY+2dimhHGZq2gND26256W7El/o6SUiIj0Oa2tK1m16n+6tDmduXEds7kjBMDwXA9P/uJA8rwuDEPbdouI7GtaNtXQaLTxVaSCrb7NpKc48NujX1IY2FibvYLPiv/D+WXn77qTjkZWVK1ldfZRtHUu31NSSnrSquoWIiYcmLecy8b+NdZut6clLiiR70FJKRER6XP8gRoAHI5sCvLPxO0eRErKyLiMFY6YrNnayorq6DLBLI9DdaRERPZhW79ay8fuShqMVlK+WsHa3NSvTxpOSjOKuf2M6eQn5++8g9pV1D9xIpMnvECg7LZYc4qSUtKDmn3R+pcHFUZn5DkduXg8oyiI8w7FIj1NSSkREelzQsFogig5eQilpdfFdazrXlrMqwu3xI69LntcxxMRkb7NDEG74QczghEOA5Db1MrWwuEY1mySksIUpBTsuoOqJdTYUglYHNgjQQ40GikvGU2aXR+95Ifb2uzjlS+2MLeiDgCP0wdAVtbRjBjxu0SGJvK96F9GERHpM3y+ShZ88TP8/koAbL1QF2HJ5kYAMpIdeF02zjigMO5jiohI32UxLYSI4OzoiLU53ZOxuYZjhAzszt18hAq202FxApCXlMyr5QfFM1zZx/zpw6/452cbGZBSyVFFa8l1ba+9qVpS0j8pKSUiIn1GQ8McfL5NseP0tIlxH7Ops5bUsxdPZGS+HuhERPZVpmliBsJYDSvWQAfHvPces4cXYZgGW3MnYo3+uMDh3U29wWB7rLi526Ile9Kzapr9gMmNE/5Mkq051m53pCcuKJEfQEkpERHpM4KhzrpOWcdSNvIP2O3xecAyTZM/vLOS5ZXN1Lf5AUh1a9meiMi+rO6Z5fhW1uN1ZpPc0ophmp1noomltRkLWZP1BecOObX7jgJttFu0457ER6svhN0SjCWksrOOw25PJy/3tMQGJvI9KSklIiIJFwq1sK1uJo2N8wBwOnPilpACWLetjb/MWhc79jhtZCQ74jaeiIj0fe2r6qiw1FBntNLkg2Z3dAmeaYvuvLcl9Svq8tdzQN7+O++guRJz8Yu8Xr2N93KOBsBt1S6u0jM2N7SzpaGDmhYfSbbtS0stjBnzmHYLln5NSSkREUm41V/dRVXVS7Fjuz0jruPVtwUAyPE4+e2UkYwqSMXVud23iIjsexoqq6inhRmOZdjrqklu2cyi4lwAIkZ0Ju1RJUfxyzMfxWrZxc+LD+5g0bqFXHrAX2JNaTZ93JIfbktjB5PunQlmiGMHzuSI7OguxTabRwkp6ff0r6T8f/buO8yuqlz8+HeX08v03jLpnfQQahBIkKAiICKKIILCTbg/QAVR9ApeRfEq6BXBcgULUVFBNKGFQEJJIBAS0uskmUym1zMzp5+9f3/syQmRZCbJnMm09/M882TWPvusvSaE2fu8a633FUKIfhcKVQLg803C7R5FYcGn+uQ6hmHyflUra/daFWsK0l18YlpRn1xLCCHE4NHZ1ExIsSYstHAQAD2RwG4m6MiYCoDH7Tx+QAqgo456uzWpkmWGuTQnkxvK8/t24GJY2FPfQcIwmZW/navHPZs87nDk9uOohEgNCUoJIYTod/F4OwCjRn6FrKzz++w6f3n3IPc8vTnZznBLHikhhBCQCEWIk8ARDpPR3EKHDn5zLLpvOnG1AAxwOHq4Z0SDhFQXAOMysvnRlNGnYeRiOGgNWgHTKfkxANzucnKyF5CTu7A/hyVESkhQSgghRL9paVlHOHyISOTIMvS+tLPWCn7l+BwUZ7i44awRfXo9IYQQg0M8FCOOwZjduwkGO+nwuwn4R6M7SlEN6xxPVg9BqViQkGrlQ5SqeyIVGjsi3LZ0A3saOgBIc3YVZ/HPYPTou/pzaEKkjASlhBBC9ItAYBPvbfjMUcf6Mrk5QFvImmG8+dxyvnTeqD69lhBCiIEv0RGl6XfbsNdHiSsJ7OEo7aqVo0dRbET1Zl4d+zda7A18P/c73XcWCxJyWMnRnZLgXKTA6p0NrK1oYlzGbj43YwVjfc0A6DZ/P49MiNSRoJQQQoh+EQzuB6xAlN8/Fa93Ii7XiD651qOr9vLHtw7Q2GHNMKa7pNKeEEIIiFS00XGwhQNqAwcTh4hpKjG9a0WUohOwB9mXthWAUn/psTt582cY+1azKeFit7sMkJVSIjUCYWsy7ZqJr1Pq2ZE87nKV9deQhEg5CUoJIYToF4fzSKWnz2HqlF/06bUef3Mf9e1WQEpRYGKhzDAKIYSAut0VbNT3s0k/gLNqDzZXgsMfkRTFhWKL86uLf0WBp4Ay/zECAdFOWPFtHir7PD8641vJw25NglKi99rDcQD8jhAApaU3kZExj8yMs/tzWEKklASlhBBCnFbtHTuoPPBrOjq2A6DrfRsgMk2T1qA10/j4F2YzId9PfpqzT68phBBi4EvE42x+6Xk6c/MAUKPW5EVOoBMlJ502LR/Vdoh5hfOO30mkAzCTK6SyNJMCl5sr8/p2O7oY2n7y0k6efb+alk4rwbldtYJSWZnnk5l5Vn8OTYiUk6CUEEKI0+rAgV9SV/fPZNvlLO6za/1jwyFe2VFPNGFlqZ0zIhOPQ259QgghIBoOoRgQx2DKpk00xdtpdzmI+y8g6p6KggK62X0nsSAAEc2qunf3qBI+X5Td10MXQ9wvX6vANEN8cdKTZDhbcak1QN8XhBGiP8i6UiGEEKdVNNoIQGHB1Uya+BNKS2/sk+sYhsldf9/EP9+vBiDLY8dt1/rkWkJ054EHHmD27Nn4fD5yc3O5/PLL2blz51HnzJ8/H0VRjvq65ZZbjjqnsrKSRYsW4Xa7yc3N5Wtf+xrxePyoc1atWsWMGTNwOByMHj2aJ5544kPjeeSRRxgxYgROp5O5c+eybt26lP/MQgwG8UgETdGJk2Dknr2YipWcvMNbRgJrFW88raP7TrqCUmHdCko5JJeU6KVwLEEkbjAhcxez8jcyKn0/CjEUxY7TWdTfwxMi5eS3phBCiNMikQjS1PQ64fAhAHJyF5Kf/wk0zd0n12sPx4nGrRVS37psIn/44lwURaohidNv9erVLF68mLfeeosVK1YQi8VYsGABnZ2dR5138803U1NTk/x68MEHk68lEgkWLVpENBplzZo1/O53v+OJJ57g29/+dvKcffv2sWjRIi644AI2btzI7bffzk033cSLL76YPOcvf/kLd955J//1X//Fe++9xxlnnMHChQupr6/v+78IIQYQIxwntKmRLEchCcVASxgkklX3dOq8+/nblB8RnXno+J3EoxCwVrBENKvqnkOV+4w4dW3BGFurAwB4bVbA0+ebzNQpjzF3zjLs9sz+HJ4QfUL2MAghhDgttm2/m/r655Jtm61v820crljjsml88ZzyPr2WEN154YUXjmo/8cQT5Obmsn79es4777zkcbfbTX5+/jH7eOmll9i2bRsvv/wyeXl5TJs2je9+97vcfffdfOc738Fut/PYY49RXl7Oj3/8YwAmTJjAG2+8wUMPPcTChQsB+MlPfsLNN9/MF77wBQAee+wxli9fzm9/+1u+/vWv98WPL8SA1Lq8guA7tTi9+YTiNXQ4NOKHVzkpOglbE4tmnc/VE649dgfRTvjfWdBurcaNqFauQqeslBKnaG9DBx99+HWiCQNVSZDlsvJIuV0jyMm5uJ9HJ0Tfkd+aQgghTotgsAIAt3sUBflX4PdN7pPrvL67gbN/8AqLfvY6AH6XzL+IgaWtrQ2AzMyjZ7yffPJJsrOzmTx5Mvfccw/BYDD52tq1a5kyZQp5eXnJYwsXLiQQCLB169bkORdddNFRfS5cuJC1a9cCEI1GWb9+/VHnqKrKRRddlDzn30UiEQKBwFFfQgx2hpGg6p2t/NP+Ls/Y3iKxfx1rxxQT0w9v8bbh9vr56tyvU+ovPXYnzRXJgBSKStiVBYBTk5VS4tRsOdRGNGFwfvFaHrvwK3xi1NMA6DapGCyGNnlSF0IIcVrE4+0ATJz4I9L8Z/TZdZ7dWM2h1lCyPa0kvc+uJcTJMgyD22+/nbPPPpvJk48EZq+99lrKysooLCxk06ZN3H333ezcuZOnn7Y+lNTW1h4VkAKS7dra2m7PCQQChEIhWlpaSCQSxzxnx44dxxzvAw88wH333de7H1qIAaaluppYqJNmZwdqJIqSSADgjsSIZmeiqGmoeg8B2FiI7e5yvjzle7T5y2iMxcGUnFLi1LWFrBXeF5XvRlOt9AOKopOR0U31RyGGAAlKCSGE6FOGESGRCCeDUrrm7dPrHS6f/JWLx7JoagEjsjx9ej0hTsbixYvZsmULb7zxxlHHv/SlLyW/nzJlCgUFBVx44YXs3buXUaNGne5hJt1zzz3ceeedyXYgEKCkpKTfxiNEKsSjERRVxxEOc+7Klbw9Mg8tYTKqcyR7xp6BGVBQevqUFAuxIussdjmLIGoVHHCoCiNdjr7/AcSQUt8e5v5/bWPLIWsVrctm5RucOOFH5OZ+FK2rsqMQQ5UEpYQQQvSZjo6dvLv+UyQSRxI663rfBKX+tr6KHzy/g5agFZQam+9jZE7fBsCEOBlLlixh2bJlvPbaaxQXF3d77ty5cwHYs2cPo0aNIj8//0NV8urq6gCSeajy8/OTxz54jt/vx+VyoWkamqYd85zj5bJyOBw4HPIhWwwtsUgYVI2M5hZsMeueYWgudo/6FHQtkFKdZvedxMN0dgULrsjL4D9Kcihw2Mmyy8crcXKe21TDsk01TM3eyp0zVpGmVwLgcBZIQEoMC7K+VAghRJ9pbX33qIBUWtpM7PacPrnW0+9V0dgRIWGYOG0qk4vS+uQ6Qpws0zRZsmQJzzzzDK+88grl5T0n3t+4cSMABQUFAMybN4/NmzcfVSVvxYoV+P1+Jk6cmDxn5cqVR/WzYsUK5s2ztn7Y7XZmzpx51DmGYbBy5crkOUIMdeFdLRjvdqBrLqJxJVlxD9UGQHP6drblriExvqn7jmIhgpqV3LzYYWOyzy0BKXFKWru27X1m4stMyt6JSghQcbvK+ndgQpwm8ptTCCFEn4nHraXoBflXMmHCD1GUvksA2xq0HuoevHIql0zJx++09dm1hDgZixcvZunSpTz77LP4fL5kDqi0tDRcLhd79+5l6dKlXHrppWRlZbFp0ybuuOMOzjvvPKZOnQrAggULmDhxItdddx0PPvggtbW13HvvvSxevDi5kumWW27h5z//OXfddRc33ngjr7zyCk899RTLly9PjuXOO+/k+uuvZ9asWcyZM4eHH36Yzs7OZDU+IYYyM27Q+PttdCY6adFDROMqiWTFPeuesXzkn+l0tHJr1q3H7qR2C7z/J6jfRqc2EwCPph37XCFOQHvY2v7pt1v5MMvL/x/ZWRfgdBb257CEOG0kKCWEECLlgsED1Nb9k+am1QDYbOl9FpBaf6CZDZWtVLdZD3Nj8rwSkBIDyqOPPgrA/Pnzjzr++OOPc8MNN2C323n55ZeTAaKSkhKuvPJK7r333uS5mqaxbNkybr31VubNm4fH4+H666/n/vvvT55TXl7O8uXLueOOO/jpT39KcXExv/nNb1i4cGHynE9/+tM0NDTw7W9/m9raWqZNm8YLL7zwoeTnQgxF4dYOGhOt/MPxDmqwA0+0nh0FWV2vWveNS0ZcQG5uPteMv+bYnbx0L/uqd/Gz0s/yesYMANyabD4RJ+9f71ezZm8T7+xvBkBXrYqrOTkL8HnH9+fQhDitJCglhBAi5Xbv+T6NjS8n2w5H33zgDUbjXPvrt4nEjeSxbK/kvxEDi2l2n5umpKSE1atX99hPWVkZzz33XLfnzJ8/nw0bNnR7zpIlS1iyZEmP1xNiqHntd7/FrlirT+xNtWCGCbite4ai+gC4Zc4S8tNzj99JsJHHiy7nTwWLkocKHDIRIk5OJJ7gzqc2EksYfGrss1xeUoXWldBM13z9PDohTi8JSgkhhEi5SKQGgJzsi/H6JlJQ8Kk+uU5TR5RI3EBXFT52RiGTCv2UZLr75FpCCCEGt46GZtK0fPJrarDV19HqdlDa2EaON8qWNGu7ntfVwz0k2klbmhU0WJDl5/K8DBZmSw5DcXLaQjFiCZM8dyOXjHgleVzTvNjtWd28U4ihR4JSQgghUsY0DeLxDmKxVgDKyr5EWtqMPrteW1dy0EyPnYc+Pa3PriOEEGLwM2IJYlqCnP3VtOnWCtvW3AU0+89AUVzElRguWw/VzqJBIqodgHMzfFyRl9HXwxZDUCBk5ZHK9YQBsNmyGDv2W/i8E9C6EugLMVykbAP0Aw88wOzZs/H5fOTm5nL55Zezc+fOo86ZP38+iqIc9XXLLbccdU5lZSWLFi3C7XaTm5vL1772NeLx+FHnrFq1ihkzZuBwOBg9ejRPPPFEqn4MIYQQp8gw4qxbdxmvvT6dcPgQALqe3ifX2l3Xzjee2cyPXrTuM36XbJ0QQgjRPTOaIE4C4may6l7IXUBc8QLQ7K1GU4+TtLyzCXY8B5EA4a6glFPru+IdYmiqagmy6Gev8+lfrqHEV8XE7H0AOB355Od9DI9ndD+PUIjTL2UrpVavXs3ixYuZPXs28Xicb3zjGyxYsIBt27bh8XiS5918881HJeV0u48skU0kEixatIj8/HzWrFlDTU0Nn//857HZbHz/+98HYN++fSxatIhbbrmFJ598kpUrV3LTTTdRUFBwVCJPIYQQp1ckUktH55HJCJ9vEi5XSZ9c62ev7OFf71cn24XpPcxsCyGEGLaCmxtofnoXRd5Z7FLryEjEMQ5X3UOnwXOQjROe5bwp5x6/kz99GqreASCsWnmonKokOBcnZ9XOBrZWB5hXsI6bpvwxeVy3yRZQMXylLCj1wgsvHNV+4oknyM3NZf369Zx33nnJ4263m/z8/GP28dJLL7Ft2zZefvll8vLymDZtGt/97ne5++67+c53voPdbuexxx6jvLycH//4xwBMmDCBN954g4ceekiCUkII0Y/icStBp92ezTlnrwHUPqu4VxewlrtfMb2IyUVpLJgklcOEEEIcW+vbB9kdOcRqxzaUWASXbhLtqpinKDphPcAzN/4NpbsgU8t+68+8KYTTywFwSFBKnKTDaQfOHtEGWCvKnc58ios/15/DEqJf9dlv0rY263+0zMzMo44/+eSTZGdnM3nyZO655x6CwWDytbVr1zJlypSjyhIvXLiQQCDA1q1bk+dcdNFFR/W5cOFC1q5d21c/ihBCiG6YpkFr67s0Na0CQNfTUBStTwJSO2oD/OD5Heyt7wDgypnF3HhOOcUZktxcCCHEsdXs2EWHEgbTxFOxjUNZNqK2rrl5xY6hxbsPSAHEwvym6Eo+NuMXbLZZn1WcqmzfEycmGI3zp3WVvLG7EYBMlxWcKim5gblzlpObI4srxPDVJ4nODcPg9ttv5+yzz2by5MnJ49deey1lZWUUFhayadMm7r77bnbu3MnTTz8NQG1t7VEBKSDZrq2t7facQCBAKBTC5frwFo5IJEIkEkm2A4FAan5QIYQQ1NUvZ+vW25Ntmy29z6717We3sm5fc7JdkCbJQIUQQnRPSRjElQT2nXUoZgIAXyiBmp5NWM3C0A/13Ek8xA9H3Eh70EgeKnXZ+2rIYohZ+nYl/718O3Y1ypj0g/hsdWCCrnv7e2hC9Ls+CUotXryYLVu28MYbbxx1/Etf+lLy+ylTplBQUMCFF17I3r17GTVqVF8MBbCSsN9333191r8QQgxnwc69ANjtuXjcIyktvanPrlX/gW1754zJZmSOPMwJIYTonoZGzIhz4ba3eGNCMYoJscKvAaAA6InuO0jEMY04HZq1Kveh8SVM8roY75F8huLEHGoNAXDX3Mcp920F0zpu0/39OCohBoaUb99bsmQJy5Yt49VXX6W4uLjbc+fOnQvAnj17AMjPz6euru6ocw63D+ehOt45fr//mKukAO655x7a2tqSXwcPHjz5H0wIIcQxxeKtABQWXMWMGU+SnX1Bn10rELaqsX75/FFcMaP7e4wQQojhzTRMYnWd2FQHESOGRtcqJ82alzfUMA2eg9QU7eymFyAeIqQ6MBXro9PHctKZ6pNt4+LEtXc9v5T4agBwOktIT59LZtb5/TksIQaElK2UMk2T2267jWeeeYZVq1ZRXl7e43s2btwIQEFBAQDz5s3je9/7HvX19eTm5gKwYsUK/H4/EydOTJ7z3HPPHdXPihUrmDdv3nGv43A4cDgcp/JjCSGEOI7m5jVs33EPkUg90Hfb9po7o3zrH1to6IjQEowC4Hf1yUJfIYQQQ0jrs3s4sG4Xe13N1EWbGduVA8pUrODU7sxNvDrmSSZnTT52B6YJ634F9dsJake2i7s0SXAuTsy7+5tZtqmGd/ZbqQc0rJyYM6b/EZdLJteEgBQGpRYvXszSpUt59tln8fl8yRxQaWlpuFwu9u7dy9KlS7n00kvJyspi06ZN3HHHHZx33nlMnToVgAULFjBx4kSuu+46HnzwQWpra7n33ntZvHhxMqh0yy238POf/5y77rqLG2+8kVdeeYWnnnqK5cuXp+pHEUIIcQLq658jHK7qaqn4/FP75Dovbq1l+eaaZNvv1Mn0SB4PIYQQ3eusaGONbRf1ahuEIsS7gklGV1LzDCXGtWOvZtHoTxy7g+oN8PxdVDryeT3rHMBKbq71UWVZMfR8/enN7KnvYF7BOmaMrkfBmlzTZdueEEkpC0o9+uijAMyfP/+o448//jg33HADdrudl19+mYcffpjOzk5KSkq48soruffee5PnaprGsmXLuPXWW5k3bx4ej4frr7+e+++/P3lOeXk5y5cv54477uCnP/0pxcXF/OY3v2HhQqlYIIQQp1MsbhWNGFH2H5SUXI/dnt0n12nqsApVnD06i8/NLWNioR+HrvXJtYQQQgwNkWAngZpDhN1R9M52XFW7eGt0EQCmagOgvGQWN8z76PE7CTYTUWxcPOv/aOtKSO3R5P4jTlxdIEyRt5qbpvwxeUxVnei6px9HJcTAktLte90pKSlh9erVPfZTVlb2oe15/27+/Pls2LDhpMYnhBAiNUwzQTzeSSzWAoDbPaJPAlIHm4P88IUdvF/VCsCUonQ+OqUg5dcRQggx9NTvr0A1FaKJOJPeeYeKvCMrU2LeDDDA7ujho1A8RJvuSwakZvndXJWf2ZfDFkNEPGHQGU3QHo5Tlt0KgM2WRV7eIjIzz0FRJLgpxGGSlEMIIcQJSySCvPX2Rz+wba/vlqD/9d2DLNt0ZNveyByZVRRCCHFiYpEwmmKjMQiTEzEA0sMOjJxPopMFgN1u66GTMCHN2i7u1lSWzRzbp2MWQ0NrMMqCh16jvj1ChqOFUp/1zOT1jmPc2P/q59EJMfBIUEoIIcQJ6+zcc1RAyuHIx++f1ifXauq08i5cMimfq2cXc96YnD65jhBCiKElEYiSqAqjq3bikQQJzcoB1ZBdiE8vRO8qwpdW4OymF7qq7lnnOFXJIyVOzLbqAPXtEUp9B/nWmf+Dqlg7ivqqIIwQg50EpYQQQpyww3mkPJ6xzJ2zDFBRUpzwNWGY7GvspLo1BMDs8kw+Mj4vpdcQQggxNBmRBPt/vIZ1iZ2EHVHoMIh3JTY3FGvV046xK3CMhpvPva/7zmJhQl1V91yqVNwTJyYQtlbmnTOiBVUxUVUHDkc+BflX9PPIhBiYJCglhBCiR/F4OzU1T9MWsPL52WzpfZYP4ct/WM/L2+uS7TRXD9srhBBCiC7R5k72xWvZbatBb2siv6WGqkwfAKppVfP+2qVfoXR8N7kQX/4OvPkzamwZHEizKsu6NQlKie5F4wZr9jaydm8TAGkOq1BLTvbFTJ780/4cmhADmgSlhBBC9Kiq6o/srfifZNtu77utdBsPWgnU01w2CtKcnDumb6r6CSGEGHrW/3M5ERKYJqhN9diMMPGuinmqZt1PnC57951se5b/Lb6a7428JXnIKSulRA9+uXovP16xC4cWYXR6FbmuagB03dfPIxNiYJOglBBCiB6FI7UA+HxTSE+bSVHRtX1yHdM0CYTiADz3/86lKN3VJ9cRQggxNLVWNxFXfHQcjJHd3k7UrjK2NkDcl83+rPFggM3Rw0rfaJD3CiYBYFfAqalckZdxGkYvBrN9jZ0A3Hvmzyn0HEge76uCMEIMFRKUEkII0aN4Vy6p/LyPUVr6xZT3H40brNhWR1NnhGjCykDrd8otSgghxEmKJYipCWZXbKYlPU4UOw0FlxJKn4O9K8G5zdHD/SUWJKxaq6l+NK6UTxdk9vGgxVBg5ZIyKfBYK6SczhJstjTy8i7r34EJMcDJE78QQojjamvbSEPDSwQC7wN9twT9mQ1V3P33zcm2XVPx2OUWJYQQ4sQ1NjZSRZCYGqcwHiPRteWuxZ+FE4h7GymclI83w9F9R7EgIdU6x6lJ1T3RvfUHmlm9s4HtNe3Y1BgKVqLzuXP+JVv3hDgB8sQvhBDiuLZt/xrBYEWy3Ve5pPY1BgEoz/YwLs/HhRNyUaX8thBCiBMUfL+eZ5/9KzX2CJhhio0YCbWrUIZiVdC7fkEH6QvOO34nNZugcRcYccJdQSmpuid68h9PvkddIEKx9xAzcqu7jipomqdfxyXEYCFBKSGEEMcVidQDUFj4aTyeMWRmnpvS/qNxg7UVTWytbgPgyhlFLPnImJReQwghxNDX+U4dwXgYFIO0vTvZW+JMvqabblBAm7zo+B20HYJfnQ+mtcdPglLiRBiGSX27FZC676wfJo/ruh9FkX87QpwICUoJIYQ4JtM0SCQ6ABg58k4c9tRXwXts9V5+smJXsp3p6WFLhRBCCHEMHQ2txEmgxKIYsc7kca8tSExJA8Dm7yY3VNtBMA2W517EG0UXUe0tAawk50IcT0c0jmlCodcqCKNpXtzucgryL+/fgQkxiEhQSgghxFESiTB1df8kEm1IHtO1vsmJUNFgBb1KM91MLvKzcFJen1xHCCHE0BVorKe9vpaIz6S5DryALZ7g/B21/O7KbEbVW4El3d5NgCnaQRyN/xj3dSKHt/0BWTb5uCQ+zDBMnnz7AHvqO9CUBJmudgAyM89h6pRH+nl0Qgwu8ltWCCHEUaprnmLXrvuSbU3zoml9s4KpNWQlA11ywWiunl3SJ9cQQggxtHU0N6ErNqpiNj71/greHVWAbsDas77PqPoj9y/N1l1QKkhIcyQDUreX5THO42SkW1bwig9bW9HEt57dSpmvkp9e8L+49AgANlt6/w5MiEFIglJCCCGOEgodBMDrGYfPP4XsrI+k/Bo/WbGLf248RHVbGIA0t62HdwghhBDH1tzUTIOtA6JRVEwAYnYNXXNgYqA5FEZOz0FRjlNAIxGDYBMh1cpDpQB3l+cf/3wx7NV0Pb/MKTqQDEgpio2sFOfeFGI4kKCUEEIIAAwjTn39c7S1vgtAfv7llJV9qU+u9cvVe4nErWSyqgLj8qRkshBCiJPX+Oo+/rF6JXGXgaumnZp0q+JZh0chHXDnxLjxux89fgct++GX50O4lZCzAAC3pkpASnSrrWuld1lXmrLCgqsZN+47qKqsrBPiZElQSgghBABNTavYuu2OZNvuyO2T64RjiWRAaulNcxmZ4yU/zdnDu4QQQoijGaE4NS/tJO4w0MJh8lt3cjDLSmqe0DQAdLer+04OrYdwKwBB3QpoScU9cTzPbKji2//YSjCWAMBjO7JtTwJSQpwaCUoJIYQAIBw+BIDTWUxu7kfJzVmQ8mvUB8LsqrOSm6sKnDkyC1WV2WghhBAnr7OxmThWcECPWMEBPZ4gP9TB6+NGkFUPul3rvpNYiKii86cpd7JlwmehthWXVNwTx/Hc5lraI3GuHvsMZ+RsJc8ZBBN0XVZ8C3GqJCglhBACgHg8AEBm5tmMGf31lPe/u66dhQ+/hmGl+8DntElASgghxCmr3bmLmJIg1hJj+nvr2VPoxxON44naCNqsrXg2ew8fd2IhVmTN4+6MRVDbCkCG3kMgSwxbgVAMXYmxcMSr1oGuZxqPZ2z/DUqIQU6CUkIIMcwFAps4WPV7AoFNAOi6v0+us60mgGGCXVfJ9til2p4QQoheiXaGCRPFURPAGwsCfjq9ZRwoupaZ1uJfvC53953EgtTZswAoc9q5IMvPlXkZfTtwMegYhkl7OE5bKIbbFuo6qjBjxp+w2dLxesb06/iEGMwkKCWEEMNcRcVDNDW/lmy7nMV9cp3WoJUU9OIJeTzy2Rl9cg0hhBDDQ0VFBX/f+CaG3cSWSGAo1pY7o6uCnk3vxO7LYMKcouN3YiQg2klQs/JOzUn38IOxfXMPFIOXaZpc9dga3qtsRcGg0GulIdB1Lxnps/t5dEIMfhKUEkKIYS4aawKgqOizpKXNIDenmypFp2DFtjq+/9x2GtutfB9pbltK+xdCCDG8JNqj7HhuPYZp7Z3S43ESh7eDKzoxNcTiaw/AWR87fifv/B88fxcYcYJlXwDALQnOxTG0R+K8V9lKgaeWe+Y8jMcWBPpuZbkQw40EpYQQYpiLx9oByM//BOlpM1Pe/1/fPci+xs5ke0pRWsqvIYQQYvjofL+OYG076DAq4KBRa+ZgZleAQNFJ6HE4a0n3nex6EYw4AEHd2uLnlgTn4hgCIWul94SsimRACiAr6/z+GpIQQ4oEpYQQYhgyTYMNG6+ntfUdTNN62LLpfRMsau16mPv6R8ezcFI+5dmePrmOEEKI4WHfuneJkyBk6uyv34zbFiZgcwCgKB4rKNWTWJAn8xfxwPg7aMcOpilBKXGUeMLgn+9Xs6PWmrzLcEUByMv7GOPHfVcq7gmRIhKUEkKIYSgSqaWlZU2y7XQW4XSmNvH4tuoA6ytbqGyyZhUnF6ZJQEoIIUSvRQOdxJUE2oEAvlAbCV1Bd8wALRPNNpaEI9RzJ7Egf8+7kkbTxuESalN9PSRFF8PKy9vruPOp99GUOKPTKynz1wBgt2VJQEqIFJKglBBCDEPxuDXrZ7NlMnfOcmy2dFTVnrr+EwbX/GotgfCR2eosb+r6F0IIMTzV1dWxK9FMoxLm3F3vsqvAAWiojqmg+fCW2PnIgik9dxQNElKt1VU/GFvMJdlp5Dsk56E44lBrGIAvT3uGmTmvJ49LLikhUkuCUkIIMcyEQlUEAu8DYLOl4XDkpvwabaFYMiC1aEoBo3K9jM+XWUUhhBCnLhGI8PTvn6JOawbAGY+Q6Kqcpyg2gq4WbvvmNd13UrEaDr4N7TWEuir1jXI5JCAlPqQ9bKUfGJ1RD4DDUYDTkU9e3qL+HJYQQ44EpYQQYhhpbHyV9zfdlGz31WxfW1ceKZ9T55HPzuiTawghhBheOtbW0NHRAQoUtiaozHJhKoer7tkx7ZHuO4hHYemnIW5t7wtr1gpep+SSEh+wvSbAX945yLp9VvDTrlrFWiZN/B8yMs7sz6EJMSRJUEoIIYaR9vYtAGiaB7s9i6LCa1Paf1VLkC//YT01bdaS9zSXzDwLIYRIjXh7mDgGAB21m2j3WyudrLiUDXSz+w6iHcmAFDNvIOzOBRNcqtJ3gxaDzg9f2MGqnQ0sKHuF+Wfsw6FaK6X0PioII8RwJ0EpIYRIEdM0CRkmgXiC99uDxAyTBCYJExKm2fXV9T1HjsXND35vYvzbOf/ejv/7eSYYHN2/YUICk5hhEus6P2FCMHIGYR5GUzPQlEziB0yM/VtJmCYj3Q6emT6mV38Hq3c1sLU6kGyfUZzeq/6EEEIIANMw2PXmWuL+BHUJDz4zAcCY2mZeOLOcSW0qSk9BqZhVeOOVrLPZOOUe2g7UgWnKSilxlIb2CD57O58e94/kMUXRcTrz+29QQgxhEpQSQohe2toRoi4S4//tqKQhegJlqPuVHxQ/xLG2MXzwFV3rde+Ht+1dPDGPry4Yx+hcb6/7FEIIIWLRCGY8Ricqtp2N0LW4qbb8/zG23cpZmOXN6KGTEAHNw+cn3k98X23ycFoK7n9i6GgPx/HZOgBrZfnoUXfj9Y7DZuvh35cQ4pRIUEoIIU7BnmCYP1Q38VZrB++3f7j0dLZNZ6TbgaaAhoKmKKgK6IpiHVOsY8k21vdq8rUj7zt8vqqATTl8noLGkeMffI/6gf5tioJGgl3bv4qZCKBioGBQXnID+bkLrD5Uqy9XL2aKI/EEB5qCHGi0ZqFLM92Mk8TmQgghUmTXzp1UukKonRG+uHUZL08uByDqyMJmWPevKeN7WO0bC9Ji8xFXdXQFPlOQxRk+Nzl22Wo+3EXiCR55ZQ/17RGC4QbGpR8AwG7Porj4s/08OiGGNglKCSHEKXigooblDW1HHTvD52JRTjo3F+fgVBUUZWDkqIhEGnAkXgMgPX0udnsWY8vOxWH3pOwaV/xizVHb9vxOecAXQgiRGnXbq/jbM/8AN+jNMRLq4UkUDUVRcY99kU9+9r9Iy3Udu4N4BN77PdS8n6y459c1fjSu5LSMXwx8q3Y28LNX9uC3B/jhufdh16yV3zY9vX8HJsQwIEEpIYQ4QRHD4J5dVRwMR9kQsFYEfTo/k/EeJ9cWZJJmG5i/UuNxK3im62nMnLE05f2HY4lkQCrLYyfdbePiiXkpv44QQojhqfqfWwGwJRTcrU1sKc4GwFSs+65n5lmk57mP38H2f8FzXwUg5BsPgEuVPFLiiMYOq3Lj7OJAV0BKw+ksoKjoM/07MCGGgYH5CUoIIQag15rbWVrTnGzrCnx9ZD4FDns/jur4otEmdu26n2BoPwC2Pqga0xGJs7GyFQBdVXj33osGzAoxIYQQQ0MkGAEFnO0BjEgNDf6ulb6qFYjyeHrIX9jZYP2ZOZLQmCsAcEtyc/EB7WErJ+jYXOvfhd8/hdmz/t6fQxJi2JCglBBCnICXmwL8pdYKSE3zubmlJIfRbseADUgB1De8SF39smTb7R6R0v7DsQTzf7QqObuY4bFLQEoIIURKNR48QDQaBQdEo+3YAW84iifaRmPZtQDMLJzefSexIHE0Xhl1DWvHfA4ONshKKQHAqp31PPzybuoDbYzP3EWeswYAXZe8mEKcLhKUEkKIHlSFo3xuU0WyPTvNzeV5A78CSyzWAkBGxlkUF32WjIwzU9p/TVuYxo4IigKFaS6unVua0v6FEEKIQ9u2kVAMAoaDQCyTCVSjKT6CuVdjIx8An7uHHImxEM/kXsht7oVw0Fo15ZWKewL43Zr9bDzYypJpv2Z67ubkcV339+OohBheJCglhBA9qApHAfDrKlfnZ/Llktx+HlHPYrFWwuFqAHy+ieTmXpLyawRCVhLQAr+TN7/+kZT3L4QQYnhraWlh/a49hPQYjqpWLt+9mp2F2QTdxWiukQDYXToOTw8faWIhqpxWrsMih42JXhc3F+f09fDFINAStJ5lJuY0AeBylWGzpUsuKSFOIwlKCSHEcXTGE6xt6+Sdtk4ARrud/PeY4n4eVc/q619g85bbAANI/WzfweYgz2w4REVDBwB+l1TaE0IIkXrr3nqbyqYmUKGwqQ5DsbbcGaoDDZh3QSejL7wI3XacVU+tB2HHMqh6h6A+FYBLc9L47iC4l4u+tbehgxe31nKw2Spc49Q6MQ2YOuUxvN6x/Tw6IYYXCUoJIcRx3LnzIM/WtybbWQO0ut6/a219BzBQFBsORx7ZWaldxfTgizv51/vVyXau35nS/oUQQoh4a4TmtZWgQm5zmJCjkd0FmdaLqnXfGb3gAvwZruN38vxdsPM5AEKj5gDg1mTbnoB7/r6ZdfubuaDkNeZOXI9pWFWEbbb0/h2YEMPQ4PiEJYQQ/aAiaCXwHut2kmvXuaVkcCz1j8VbARg18k7Kyr6U8v6rW0MAXDQhl5E5Xq6aKTPOQgghUiu4v4mYmQBAa2+GZB0NE1UvBMDp7mFSpN1KWk35eYTypwHgUqUgh4DqNutZ5upxz2NXrRXxup4uQSkh+oEEpYQQ4jjaE9bD8I/HlzA7rYckqgNAY9Mq6mr/RUvrWwDotrTU9t8R4Y3djVS1WEvdbzp3JGeOzErpNYQQQgiADc89RxzrPtwcbcYOlLXo7B0xGac6FhMDm72HVU+xMA22dN6YcQ+7ojkQ6MSlSdU9Ae3hOApGMiA1ccKPSE+fjaoO3KrKQgxVEpQSQoh/Y5omUdMkELcehr2D5AF21877CIUrk22XM7UrmG7/80be2NOYbGd75cFNCCFE3+hobiPq1tgSz6NMq6IwXktN4cV41QkAaG5QlB5WPcWC3Db+m6xqdANW8MEr2/eGLcMweWtfE63BGB2ROE49nHwtL28Rqurox9EJMXxJUEoIIT4gZphcsn4nWzuOPKj4BknZ6GisGYARI5bg9Y4nI2NeSvvf32Q90M8sy2BOeSajcrwp7V8IIYQAWLt2Le942kGBs94/iMc8SIfLjqlZ+aOmnZfBiJkjeu4oHuagM996j8/NSLeDS7JTu4pYDB4rttfx5T+sx6N38o3ZvyDLZT03qapDAlJC9CMJSgkhxAccDEePCkhN9rrItw/86nKmmSCRsKrhlRRfh92enfJrBEJW2eQHr5oqASkhhBB9pqKiIplDau7BLWwusQJJCjqQ4KzLy1DcGcfvIBqEaCdEgwQ1K+/UD8cVc4bP3ccjFwPZ3q6qwbMKKxmRdjB53Oeb0l9DEkIgQSkhhDhKsCuPVI5d5625E3BpKmpP2wP6UTzezsGDvyMaO7KtTtd9Kes/EI7xvyt309QZpT0SB8DvHPhBOiGEEINT5ECAzv3NkIiTd+Ag68sziR3eRq/YQE+guDOP30H9Dvj1BRCz8h+Guir1udXBsRVf9I1QNEF9wCpgM6/c+jeRljaT8eO+i9td3p9DE2LYk6CUEEJ8QDBhAODRVDyDYNtedfVfqdj3ULKt6+kpXYK+fFMNv359X7LtsWukuSQoJYQQom+0vV5FLBJDC3USjDRB1704oZooahqqo4ePL9XvJQNSAEHdWh3lHiT5IUXqvbi1lsVPvkfcMAHwOazglMORh9c7rj+HJoRAglJCCHGUoGEFpQbLjGokUguA3z+dzIwzycw8N6X9H55VnFGazkcnFzCjLAO7Pjj+boQQQgwuwUAbBza8T9yTQOm6H3vCcTKNyWwcm4en04nd3sM9KBbCBB6c+QDbR1xCtDEASFBqOFu7t4m4YXJ+8RucX/w2BVoIMwG6JqkIhBgIJCglhBBAQzTGw/vr2NYZAsAzwKvzmKZJZ3APwdABAHKyL2LEiFtS1n97OMZbFc1sqmoF4MyRWdx83siU9S+EEEL8uz0b3qXVCBAiTmvCjgswbJk0ZF9KkVVrg/SMHraox0LsdpfxkPcs6ApI+TRVqu4NY4GwlRPzMxNXYqMJ08rUgNsjzzVCDAQSlBJCCOCp2hb+79CRvEz5joG9Ra3y4P+xZ88DybbNltpqQnf/fRPPba5NtjM99pT2L4QQQnyQYRi8sGYdwbQIh8IeSg/Wgw1QrPtPtm8Xoy+8hPIzcrrvKB6iXfMAkGnT+Hp5ATP8bmzqwM0PKfpGOJZgZ207h1qsCUcdK0g5ccKDOJ3FpKXN7M/hCSG6SFBKCCGAlpiVxHteuoeP52Zw6QAvGd3Rvg0AXffjcpWSlXV+SvvfW29NSY/P91Ga6eayqYUp7V8IIYT4oHA4TDBibRkfu/8Ak+p3sr0o20puDpTl7WfmJSN67igWTlbcy7Xb+HxR6qvRisHhhsfX8VZFM8XeQ8zMq0fBWjGVk7MgpUVhhBC9I0EpIYTgSILzuWlevjAIHmDj8XYARo+6m6Kia1Lef1vIenD70VVnMKV4YAfohBBCDH7RzjAAWmc7zkQtFbnpAITtNhyAe9wF3XfQuBs2/AEqVhPUJLm5gK3VAXLd9dx31g+TxxTFhia5pIQYUCQoJYQQQOcHqu4NZPF4O5FIHZFoA0BKZ/pM0+TBF3eyuaqNhg5rtloq7QkhhDgd9v3sHdDA0dpEVA2Dan1MiTmycQCesjO672DlfbD9X5hAMOdCAFyDpGiJSD3DMOmIxBmRZT0vaZobr2ccObkLURTZyinEQCJBKSHEsLa7M8zmjhB7gtYMrWsAB6VisRbeXDOfRKIjeSyVQamDzSEeXbU32fbYNXJ8jpT1L4QQQhzL3nfWocYToIFiWFmo7doEcE3BoVvbx13uHu5HnU2sypjFjZMfIKhaeahkpdTwY5omf3y7koqGDkwTXLr1fOf3TWXGjCf7eXRCiGORoJQQYtgKJQw+un4XHV2rpAD8+sCtztPZubcrIKVis6XjcpWQljYjZf03dlqro7K9dr79sUlMLPDjsg/cvw8hhBBDQ92eCpx4MUzoSCj4AdNRhmYrxpbVSN7IEeSX97CVPNrBqxnnJANSAGelyzat4WbjwVa+9Y8tOLUQ8wo2Mz1vFwC6zd/PIxNCHI8EpYQQw1ZTLE5HwkAFzsvwkePQWZA1cB9a4nGraozfN5nZs59JWb/hWIIXt9ay/kALAPlpTj5+hiQ2F0II0fcaGhrYUnUIRbeh17ST21xHp8uWTHD+hcs6sc2b03NHsSChrgTni0tz+c/SXNJs8lFnuKkLWBNsnxq/ivlFzyeP2/T0fhqREKIn8ptaCDFsHc4jlW7T+PO0Uf08muNLJEI0NL5MS/MawKq4l0p/eecg//XPrcl2tle27AkhhDg93nzzTao721GMKEW1FUQP77jrCkrpLlf3HYRa4MAaCDYTzLHOzbbpEpAapgJdhVpGpLcC4PVOwOMZQ0nJF/pxVEKI7shvayHEsNUZt/JWeLSBvUXt4MHH2Vvx42TbZs9Iaf8HmoIAjM71MrnQzw1nl6e0fyGEEOJ4wqEQAP79u2hzxQArGKUodgwlhlI0vfsO/voFqHgVgKBqrZQayPkhRd9YvauBb/1jCy2dUQDcuvXvqqTkBgoLrurPoQkheiBBKSHEsPTEoUZWN7cD4B3gD6/BUCUAHs8YvN4JlJXenJJ+4wmD9Qda2FVn/T18amYxXz5/4K4YE0IIMbQEqjpo2FYPqoERtxJSp3eGqc3ScGj5mLYE5IzrvpPmCva4SlhV+nF2Z1kV+iTB+fDz7MZDVDYHmZq9hakjt5LpsJ6dbCleXS6ESD0JSgkhhp1dnWG+vqsq2c532PpxND2Lx1oBKC7+PMVF16as3/99ZQ8/Xbk72c702Ls5WwghhEitHb9cjh0TjCMFR+yeK0lz5aCg4nKewH0pFuLmiT9gu/fIpEr6AC5aIvpGezgOwOLpS9GVI1WKHY78/hqSEOIESVBKCDHsNEatB5csm84tJTl8LDe9fwd0HHv2/ojq6qeSCc5TPdu3u95aIVWU7mJ8vo8LJ+SltH8hhBCiO4mOIHGfQSLRdcCEtoyxKCgAZBf6eu4kFqTGkQPARVl+RrsdnJdxAu8TQ0pHOI6uxJIBqRFlt+J2j8Lnm9LPIxNC9ESCUkKIYaej6+m3xGnntrKBG4g5dGhpMiClKHZ8vkkp7b+tKxno1xaO4/LpRSntWwghhOiJaqokMGitM0kHFBQURcHFLi694xNkj8ztvgPThGgnwa6qez8YW0zxiayuEkOCaZo89PJu9jV2sr02gMsWTr42cuQdKIqsmBNiMJCglBBi2Al2Vd3zDOCcE6ZpEo9bs30zZ/wFj2c0Nlt6Svr+xao9vLillt31Vv9proG9fVEIIcTQEo/Heeqpp6j2HSKU6OQje16jIi8NzbRWSNm0FvJH58DxCpGYJrzxEDTsII5KVLUCUZJLanjZWh3gZyt3U+ip4fPj/onXZj3XaJpXAlJCDCISlBJCDBvhhMEDFTW81WY9tAzkoFQi0QlYwTOfbxKa1kNJ7BNkGCY/eWkXccMEQFFgZI4nJX0LIYQQJ+Lg/kp27doFSgJvxRYq8tIAiKsqOmDzAlo3H1MadsDK+wAIae7kYbc6cO/rIvUa2iMAXDpqHWfkbE0ed7tH9NOIhBCnQoJSQohhY3VLO7+saki2B+IS/0QiyOYttxEKHQBAUXTUrhLXqdARjScDUr/+/CzKsz2UZUlQSgghxOlT8bcNAPijOqaRANPEG47SWpoLccibsKD7DkKtdKouPjPtIfb5rATnKuBQlT4euRgITNNkxbY6VmyrAyDXEwKgIP8KsrI/Qnr67P4cnhDiJElQSggxbLTGrFxS4z1O/qM0l0uy0/p5RB/W0vI2TU2rkm2PZyyK0vuHbNM02VodYFu1laPKoatcPHHg5tMSQggxNAUaG+hsrAcv2BImUaw/R7eX0uyYTX0cbJ4eCnvEgrznn8A634TkoUleV0rul2LgW7u3iS/9YT26GuPconfIdVkTeekZc8nL/Wg/j04IcbIkKCWEGDY6uxKcj3Y7uDo/s59Hc2yxWCsAft9URo/5Bj7vhO7fcILeq2zhykfXJtsZ7oG3SkwIIcTQ19nabO0dB3ZENUYCCd3LjnGfhU7rHLuzh3xAsRCdXdvaJ3ic/O+EUka7U7eqWAxsB1uCAFw84n2uGv3n5HGHPae/hiSE6AUJSgkhho3OZILzgZf8Mhptoq7uXzS3WIEjp6uEjBQuP9/zgaTmo3O9XD2rOGV9CyGEECcqHAwS0hLEE5BduR/sYHYlKi9Mq8Q7fjbj5xV030ksRKhra3uWTWeyz939+WJICYTiAEwpsLbtud2jyM29hIyMs/pzWEKIUyRBKSHEkLc/FOFPNc280dIODMwE5/v2/y9VVX9Ith2OHspgn6S2UAyAj4zP5aFPT0tp30IIIcSJiMViPLX8BULOCN6GKs6q2sA7IwtBsarAXjJ1La7P3nD8DgLVsObnULORoJYOgGsA3tNF39hWHeCJNfvYVNUGgMcWBiAn52JGjbyzP4cmhOgFCUoJIYaUhmiMZ+paCCVMgoZBSyzO76ubjjonxz7wfvWFwzUApKXNwu+bTGnJjSnpd9XOeh56eTeHWqzZxDSXLSX9CiGEECcrEAgQikRQ4jHU9kYqctK7XrHuy3padvcdrPs1vPUI9bZMDhRfCYBbglLDxv++spvnt9Qyr2AdX5i0m1x7FQC63kMOMiHEgDbwPpkJIcQpeLu1gzdbO3hwX+1xz7k4y8+cNA+fK8w6jSM7MfG4tYqrpPg68vIuS1m/v1uzn/cPtibbY/N8KetbCCGEOFGmYbL591sAcLW1okXiNHVtu1NUqwqsPr+H1S6hZt7zjeey6Y9iKFYwyqVKUGq4aOqIYlOj3Dh5KapiJI87HT1s9xRCDGgSlBJCDHqGafK5TRW0J448oIxxOzgr3UuO3YauwFiPk0uTM7IDR0vLOlpa1hAM7gNA11MbNGrt2rZ358VjOX9sDlOLB17FQSGEEENfzZtb8dW3gwO0rvt1WjCK4nATSpuPpqso3h4mjaKdbPOMxlBU7IpCrkPn47npfT94MSAEwjE8tiCqYqAoGiNHfgW7LYPc3Ev6e2hCiF6QoJQQYtBriSWSAanrC7MY6XbwpeKcAV8a2jRN3t90M4lER/KYPUWVY5o6Iuysa6c+EAFgTnkmZ5Skp6RvIYQQ4mRtX/EKXqWMNsPBwZifiUDIPwPVtwAF0O0nsOIpGiSkWQnOL81J47FJI/pyyGKAuOfpTbyxp5Hq1jC5Lisdga77GVH25X4emRAiFSQoJYQYtJqicW7bfoCD4SgAGbrGD8eV9POoTlwi0ZkMSBUXXYfbMxKvd0Kv+40lDBY+/DqNHZHksXS35JISQgjRf0KRCKYe4gAOcux7AEjoHlTA708w/vzy4785HIDqDRA4RFifCEiC8+GiLRjjT+sOkmZv47ZpS8lxNQOpX1kuhOg/EpQSQgxaK5raeKW5Pdme6HWd/kHseRnaqsBIgGmAaXb9ebhtwMwbwPnhbXPxeAAARbEzdux/pWxlV3NnNBmQGpfnY3yBj7G58vAmhBCif6xcuZJ3XZ3ADqbt38C4qhaqsvwo2FDMCNfdaML4boJSf7gcDq0HIDhiBgBOySU1LLRHrDQEs/K3MCV7e/K42z2qv4YkhEgxCUoJIQal6nCU3UEr8HJBpo/FpblM70qY2ucadsLul+DAWti5vOfzJ37iqKBULNbK9h33EAodBKzZvlRuNWwNWg9wWR47L95xXsr6FUIIIU7FwcpKAFRTYXRtM4nDASVFx0YUXLndd9BorawiazShzLGAJDgfLjoicQAyXNYzX2bmuZSW3Eha2oz+HJYQIoUkKCWEGHR+UFHDwwfqku0JHhfnZJyGlUAd9VCzCZ688sOvjb8MFNX6UrUj3ysq2DxHndrYtIqGhpeSbY8nNbN9lU1BFi99j5o2K99CmmzZE0II0c9iwShNFc2gmow41EaD14d5+EVFx+51QMnc7juJh7h/5C38a9RnaUkACQOXNrDzRore2V3Xzq9fr6CmLQyA32H96fGMJitLJtyEGEokKCWEGHTWtlp5mJyqQpZN59Kc01BRzjTh1xdCW+WRY+MWgb8A5i2BzG62HfybWNTKh5CePpey0ptJS5uZkiG+vL2OzYfaku2pRVJpTwghRP+qXLYFXTFQEnEa2nfDB3JBqWomNl86dLfqyUhAIsqvij5FPHqkyu44Tz9s2RenzaOr9/L0e4e4rPxFvjl3MwWeVgB0TdIRCDHUyLpXIcSgcSAUYXlDazKx+dKpo1h/1iRmpXl6eGcKhFuPBKTyp8J5d8FnlsKiH59wQCoeb2f//kepb3geAK9nLNnZF2Cz+VMyxNaQtW1v0ZQCXrz9PH589bSU9CuE6J0HHniA2bNn4/P5yM3N5fLLL2fnzp1HnRMOh1m8eDFZWVl4vV6uvPJK6urqjjqnsrKSRYsW4Xa7yc3N5Wtf+xrxePyoc1atWsWMGTNwOByMHj2aJ5544kPjeeSRRxgxYgROp5O5c+eybt26lP/MQhy2f+3rxEjwfjTPOmAq2H2fwe7/IqqtGLurhznyWIioohNXrfP+esYo3pw7no/npvftwEW/auyIomBw+ejnGZlWiUu38nC63Sc+CSiEGBxkpZQQYlAIJQwufncngfiRWdIc+2n4FdZ2CP54BQSqrbYzHW55/aS6CLa1UrVjKw31K6mpfsbKhW6moTbFiFS9gGkYGIaBaRiYholhJKzvrRO72mZX2zqefI9pEghGqWho51BzJ+cHIpTv8lMZXMOBrvOs9x55n2mamIkEiUT8qOuYh78+dOxIH5h8oC/rmJFIYBgGV3z9O6Tn5af+v4EQg9zq1atZvHgxs2fPJh6P841vfIMFCxawbds2PB4rqH7HHXewfPly/vrXv5KWlsaSJUu44oorePPNNwFIJBIsWrSI/Px81qxZQ01NDZ///Oex2Wx8//vfB2Dfvn0sWrSIW265hSeffJKVK1dy0003UVBQwMKFCwH4y1/+wp133sljjz3G3Llzefjhh1m4cCE7d+4kN7eHvD5CnKTKykr22DvowCDcZt2/FTRUvQBNPUDZ6HQmXdJDkCEWIqQ6k8256R7skk9qyDIMk+ZglObOCG49hKJY/26mTv0VNls6af7p/TxCIUSqKaZpmj2fNrQEAgHS0tJoa2vD70/NCgUhRN/aEwxzzts70BWY5fcwxefi/tFFKU0Qfkwb/gjPLj7SHn8ZXPPkcU83TZNYIkpbRzPP//qnhJtaad9X1bdjHCD8+Tdy7f2L8KQ5+nsoQqRMXzwzNDQ0kJuby+rVqznvvPNoa2sjJyeHpUuXctVVVwGwY8cOJkyYwNq1aznzzDN5/vnnueyyy6iuriYvz1px8thjj3H33XfT0NCA3W7n7rvvZvny5WzZsiV5rWuuuYbW1lZeeOEFAObOncvs2bP5+c9/DoBhGJSUlHDbbbfx9a9/vV/+PsTQ9dhjj1FbW0vE1Bi/9gUaMzJQcWLP+A88/l9yw39+DYpnHfvNG5fCqgcgHqE2GmfavKfRFKg6/4y+v/eLfmGaJlc8uoYNla2oSoICTx33n/UDNM3N/PM39/fwhBAn6USfGWSllBBiQIsaBtdv3seWDit5d6nTwT9mjDk9FzcS0NG1fWb8ZXDx/ZBxZEY3kohwqOMQlYFK1lavpSncxFvbX+Wjb+TijGkf6q4xLW4ldY27sBlObIYLe8IFKF1fh6sRqSjJ3dXKkS9FObp91Gsk32+991ivHT7W1VaOHFM++NqHrvNv40j2eWTcCiqRsAcjMezmOYQ4aW1tVu63zMxMANavX08sFuOiiy5KnjN+/HhKS0uTQam1a9cyZcqUZEAKYOHChdx6661s3bqV6dOns3bt2qP6OHzO7bffDkA0GmX9+vXcc889yddVVeWiiy5i7dq1xxxrJBIhEokk24FAoHc/vBhWgp1BAIrjuXgTQRrJwFSsjx85zg7Qu5nE2PBHaK3EQKHdVQJYFfckIDV0hWIJNlS2kueu4965P8Fts579dF0C4EIMZRKUEkIMaJvbQ7za3J5sz/C7T8+F3/4lvHAPmAmrnTECskYRM2L8ccvvqA/W88ftf0QxwRPSufDdHLJDOp9MFBzVTcTjQXFNQFVzKY6Ntw4eoyheQg0TcVYTtzUBJopiBXcOL1tHMVGSx63vrTiVQTyRQMHEpiloinWO0nW+qlphI001UTFRFbq+DFTFRFVN68/kcRMt+T2onkzUsRejaSqapqKqKpqq4nF4yPfmo6oKiqJYhQYVBbff3hf/NYQYMgzD4Pbbb+fss89m8uTJANTW1mK320lPTz/q3Ly8PGpra5PnfDAgdfj1w691d04gECAUCtHS0kIikTjmOTt27DjmeB944AHuu+++U/thxbC2+6/bibSFUGJhElWvczDD2t6tduWGmhoLgKObpNXRDiod+Vx65h9p7LpxujTZtjeUtXXlxhyfuS8ZkALIzrqgv4YkhDgNJCglhBjQmmJWEt9xHiePTixjnMfZwztSZMfyIwEpzcHrGfn86rnr2Niw0TpmgmrAx98sIL3jw4EY3fURNMdknIoOCayvLp6MBG6vn3Fzc3F6bIyZlYeqadYKpROcAY7GDT7xyJtsrzmyauHNuz5CUbpUIxJiIFu8eDFbtmzhjTfe6O+hnJB77rmHO++8M9kOBAKUlJT044jEYNDR3ERozRYMv0Gio4NYtBU0awWxqRUCYJv5aWvC53iiQdb7JyUDUgDnZ0jltaHq0VV7WVvRBEC22wpI5eV9nAnjH0DTTtOznxCiX0hQSggxIC2rb+VXVQ3UR61Zs0KHjYne0xhwCVvba3599hd4OxHg7e2/Sr6UEbDx0bfzscc+OGOroTnOQHNMR1FsKKq1oqs2YxujXRH8JZvILzmL/JFOykZcg6r2Lu9SZXPnUQGpCQV+8nySy0mIgWzJkiUsW7aM1157jeLi4uTx/Px8otEora2tR62WqqurIz8/P3nOv1fJO1yd74Pn/HvFvrq6Ovx+Py6XC03T0DTtmOcc7uPfORwOHA753SJOTkPlfnTFRo3hojaWyzz2Y1cKwXcRipqFN9NB5qJbuu8kFiTktv7tzc/w8ctJZaTZ5KPLUFTdGuKHL+xAVRJcN+GvTM/bDYDdniUBKSGGAfnNLoQYkH52oI5NHUeWbp+2FVLRILQeINHWyL5KDz8rX5l8aUyll3O2pGNydL4ozT4Vm+ci3K4DtOW3Ey5rI5EWwe5pYoRaSXH0LZzOIuad9buUDbM1aAXrSjJdPPef5+Kx66iq5NkQYiAyTZPbbruNZ555hlWrVlFefnS1sZkzZ2Kz2Vi5ciVXXnklADt37qSyspJ58+YBMG/ePL73ve9RX1+frJK3YsUK/H4/EydOTJ7z3HPPHdX3ihUrkn3Y7XZmzpzJypUrufzyywFrO+HKlStZsmRJn/38YviJRyOoqo2WhJ2xbe8DoCheFC2bS2bvpPwLtxz/ntXRAAfegHAbQa917/fbNAlIDWEtwSgAU3IOMr9kTfK429VDZUYhxJAgv92FEANSY9e2ve+OLmK8x8mcdE/fXzQRh0fm8sSuED+d5SR+fhaYMP6Ai/M3+4hoLj6Yxlt3noPmnMb5I59Fu8DOxNk3JLffRSINvLnmHMy49XPYbOmA9eEU0wTDAMOw2oe/NwxIJKxjiYTVTn5vgmnQEYzw3PvV7KoNUBaoZbzTg61iN5Gu15P9dPVrGgZ0vXbU94mEdV3TPP45hgEmYBh4P3IBekZG3/83EGIIWrx4MUuXLuXZZ5/F5/Mlc0ClpaXhcrlIS0vji1/8InfeeSeZmZn4/X5uu+025s2bx5lnngnAggULmDhxItdddx0PPvggtbW13HvvvSxevDi5kumWW27h5z//OXfddRc33ngjr7zyCk899RTLly9PjuXOO+/k+uuvZ9asWcyZM4eHH36Yzs5OvvCFL5z+vxgxJEUiETbv3E3cEWFE7V5m1O1jf046KNZWd1e6o/tJlL98Fg6+DUBIs/5tu1TJJTWUdYStZ6VCv1VUwe0uZ8zob5CZeW5/DksIcZpIUEoIMaAsrW7ib3Ut1HVt21uY7afUdXq2jkR3byaxr4ZXcvKI69YDc1GDkzO35RL5wOIo3X0xo5zvUVu+jbOmGowa8R9E9lfT8PNH6HjjDcxolFhTLfktCph2MEEx97DdmJCScc7s+vpMV3vfn1PSbbdG/O1vEpQS4hQ9+uijAMyfP/+o448//jg33HADAA899BCqqnLllVcSiURYuHAhv/jFL5LnaprGsmXLuPXWW5k3bx4ej4frr7+e+++/P3lOeXk5y5cv54477uCnP/0pxcXF/OY3v2HhwoXJcz796U/T0NDAt7/9bWpra5k2bRovvPDCh5KfC3Gq3n16NZv27gPdxBVpIaJbN9CE7kAHHOk95IVq2W/9WTid8IjzAUlwPlTVt4d5aWsd22sCaEqCDGcnAC5XKdnZH+nn0QkhThcJSgkhBpT/rqimOWZlBffrKrn2Y5Sq6wOBF17kv56/k/Vj8wm4wRvUuZWP076rhTAVKGoaipZHvsdOvruas8prCE96mNZ/raTihauP2afCB2eCzWOe0y1VBVVF+cCfEQPCCRNV09B1FYfdhq5roGlWmezD5x5Omq6qoCooipp8DQUUVQNN/cBxpdvvVc9pqnooxBBkmj3//+90OnnkkUd45JFHjntOWVnZh7bn/bv58+ezYcOGbs9ZsmSJbNcTfSLeGqZ5Sy3YwF9bgxlrpqYrObnWlUtRd/VQpTUa5A8FH+ObY79KtOt/HZdsTx+S7v/XNpZtqmFO/np+ceEf0VXr+U/X0/p5ZEKI0yllQakHHniAp59+mh07duByuTjrrLP44Q9/yLhx45LnhMNhvvKVr/DnP//5qFnAD87OVVZWcuutt/Lqq6/i9Xq5/vrreeCBB9D1I0NdtWoVd955J1u3bqWkpIR77703OdMohBi8DNOkpSsg9dD4Euale3GeptnR5k3reXnGkWudvaWAhsb1ybZmn8SodJ0L0p6jNXo39YcupfPxmzFDzclzEtmjiGsJmmeoRPNbcJbV0daRx56K+dYuONPEUMBEwQByszK58cu3HB1MUtWjA0v/5u6/beIv7x7kqwvGsuQjY/ryr0QIIYQ4KXvXbCSuJGgwPNAZxApHKaC4MfVRKIBeNvP4HZgmxIK8kHV2MiClKTAn7TRs4Ren3cEWK3fo/BEVyYCUomhkZp7dn8MSQpxmKQtKrV69msWLFzN79mzi8Tjf+MY3WLBgAdu2bcPjsW4kd9xxB8uXL+evf/0raWlpLFmyhCuuuII333wTgEQiwaJFi8jPz2fNmjXU1NTw+c9/HpvNxve//30A9u3bx6JFi7jlllt48sknWblyJTfddBMFBQVHLU8XQgweUcNgVXM7ddFYcj3RFXkZOE5DDonONWvY/vfH2FHzPiwEZxQeqJ7EpmYHJk2ottG4dAefLvoV6XoL1Xs+Svvun5AwIqihZkwUmrKz2Tl2DFWlJZSVbaS0bDM2IAF0GF7a7ceeFW5tD6B5vYC1ksI0IWGaGCYYccNKC2WaGKbJY6v2sr6yhV11Hdb5wKHWEIZhdp0DCcPE/MD3hmlSluXG5zw9q82EEEIMb5Ub3yOOg/fjhcxnIwB276dQbVa1SV+WE2d+4fE7SETBTBDqqrj2o3HFfDI3A6+uHf89YtBJGCZ7GzpobLdySE3KV4gHYeyYb1FYeI1U3BNimFHME1lTfgoaGhrIzc1l9erVnHfeebS1tZGTk8PSpUu56qqrANixYwcTJkxg7dq1nHnmmTz//PNcdtllVFdXJ1dPPfbYY9x99900NDRgt9u5++67Wb58OVu2bEle65prrqG1tZUXXnjhhMYWCARIS0ujra0Nv9+f+h9eCHFSflvVwDd2H0q2fZrK7vOmnpZrL7/hYr5+gZV0OKu9kIVvO7FHE8nXczIuZrb/VaKt0Fqtkrtn+1Hv351VwgPn30CH6cAwFXRbFFVNkDA0TEPDMHRMlK4vME1rlVTymKJg9MlvYcsfvziXc8Zk990FhBji5JnhaPL3Ibrzwnd+RkvcyUOGnU/sfwZnIoHd91lUzc1nb9Dwzvoouu04AabXfgTb/wU173PJ9MfY6J/A76eUsyBbtnINNbf8YT0vbK3FpQcp9VXxzXNfIhbexeRJPyMvb1F/D08IkSIn+szQZzml2traAMjMzARg/fr1xGIxLrroouQ548ePp7S0NBmUWrt2LVOmTDlqO9/ChQu59dZb2bp1K9OnT2ft2rVH9XH4nNtvv/24Y4lEIkQikWQ7EAik4kcUQqRIRcj6/3OEy85Il4OP5aaftmvvUa3td+4YfHzL9ZjRpdYLiosMR4zP5X0bBdj8Qim50Xjyfd+Z+wXa7W72phURMT6wEip2kknZTyEgpSigqwqqcvgL1K62plptRVHQFAVdkzwcQggh+t6bb77JO2YLhgbXbFuLrijEdA0UG4oZJj0nC44XkDJNePUBMK1JoZDN2vjnlgTnQ9LmQ9bnxHvn/pR8Tw2xsHVc1yXQLcRw1CdBKcMwuP322zn77LOZPHkyALW1tdjtdtLT0486Ny8vL1kauba29kPVXw63ezonEAgQCoVwuVwfGs8DDzzAfffdl5KfTQiRWgnTTCY2v74wm1tLc/v8mmYiQe13v0t0bwUBewhMjY9vzoLAKusEzcOMvBHM0v/M1mUlaJ0JbMQxUPjz2AvZmlXOe3lWvrzybA9fOHsELnMLhF+ns3MHRqKVMaPuJCfngmTQSPlgAElRUBTQVCtwpHzguKooKKr1PabJj1/ayYaDrWw82MaoHA8r7ji/+1LaQgghxGlmGiZvr36bhGKiRCPkdHTSkGYFGBRFx60FwdZNXqh4GMwEbZqXPR/7DW0dRRAzcJ2Gbfzi9AuEYygY5Husz3du9yhcrlLS02f188iEEP2hT4JSixcvZsuWLbzxxht90f1Ju+eee7jzzjuT7UAgQElJST+OSAgB8NfaZr6y4yDRrl3E6cebQU2x8Nat/HPzU/z5fJUOp8Zlmz6Ns/YtTKoByHM2cEHaC7QccKN3HtnK927eOP4w8RIAfnndTCYXpVGY5kRRFF5/4xqiNJDZ9cw9tbSEtLTezfhtqmrl8TUHku2ROV4JSAkhhBhwalZXQTgOZhxfxTbqMz645c6GWwuDw3f8DmIh4mjMn/04NS25gAHISqmhpiMSJxiJ0xGJ49TDHF4uPnfOv1DVk1xpLoQYMlIelFqyZAnLli3jtddeo7i4OHk8Pz+faDRKa2vrUaul6urqyM/PT56zbt26o/qrq6tLvnb4z8PHPniO3+8/5iopAIfDgcMhv+iEGGheagwkA1JpunbaquvEGxt59QyFxjSF9GAeBW0FxABF9VPoy+PCxF/YsyyXWNgKkr1ROIWfn3EFzswMnrl+Dnl+J4XpR37fmKZJLNYCwJjR38TrHYffP73X42zqjAJQnOHiqwvGcd7YnF73KYQQQqRacE8dCSVBLGpgmgkwTZwJB4YvC0V1oadlQ96k43cQDxPQPdQ4rNXSZU47E7xOxnok4fVQ8XZFE5/7v7eJJxKcU/QWBR7r85yqOiUgJcQwl7KglGma3HbbbTzzzDOsWrWK8vLyo16fOXMmNpuNlStXcuWVVwKwc+dOKisrmTdvHgDz5s3je9/7HvX19eTmWjelFStW4Pf7mThxYvKc55577qi+V6xYkexDCDF4tMatHE0/HlfC1fmZ2Pp4FVCspob913yGeF0dHTdqpLfbWLAxk3hwFQBZziauLnie7W+Uo3aEku/bXziaGxfN5IoZRZRkuj/Ur2GEME3rZyks/DS63rvgmmGYvF/Vyrv7rXxXZVluLp9e1Ks+hRBCiL7Q0dxE5YbXCWebrI6M4JNsQsUJOYs5vM7JUTTaSoh4PLEQwa6Ka3ZF4e15E/t+4OK0evdAC7GEyYTM3dww6c/J43a7FGMRYrhLWVBq8eLFLF26lGeffRafz5fMAZWWlobL5SItLY0vfvGL3HnnnWRmZuL3+7ntttuYN28eZ555JgALFixg4sSJXHfddTz44IPU1tZy7733snjx4uRKp1tuuYWf//zn3HXXXdx444288sorPPXUUyxfvjxVP4oQog+Zpsn/HWpkbzDC9g4rs2Wew9bnASmA4Lvv0hKo41ARhBxuzt02AXd7EyZBAEoc9RgRaO60kU2IX03+GG8VTOKWz5zP9WeN+FB/gfYtbNv2NWKxVgAURUPTPhy0Olm/fXMf/738SJW/dJe9m7OFEEKI/tNaW4OKRgcKo5qrAFAUGwB2+zbGzL2ISecdZ2LFNKFpL9RtIaRaQSmXbNkbkgLhGACXT7E+fjqdRWRlzSc3Z2F/DksIMQCkLCj16KOPAjB//vyjjj/++OPccMMNADz00EOoqsqVV15JJBJh4cKF/OIXv0ieq2kay5Yt49Zbb2XevHl4PB6uv/567r///uQ55eXlLF++nDvuuIOf/vSnFBcX85vf/IaFC+UXmhCDweaOEPfuPnTUsSKH7bRcO9jSxO1f0mh3K5xxaB45AR2DJjT7ZIo8CfI37WN3cz7ZWBU6y8fmsuSOKxmZfeyVT/X1L9DZuSvZ9vkmo3Q3E3yCdtW1A5Djc1CU7uKzZ5b2uk8hhBAi1UzT5O0NG6lO6yCCymUHVlOZ5+PwRwxv1krmf3bJ8TtY92t4/msAhLxjAMkjNdR0ROK8s7+ZnbXWs43Xbq1ET0ubwfhx93f3ViHEMJHS7Xs9cTqdPPLIIzzyyCPHPaesrOxD2/P+3fz589mwYcNJj1EI0f9qI9ZMWYHDxrUFmYxyO5ngPXY+uFQJbd1K828f58DBLbQvUphU4WPSvmqMmLXlbqT3IOelraOm2fqVGFdUDvpyWXDTdYzK8R6333jcCl4VFl5DcdFn8XhGpWS8bSHr7+g/LxzDdWeWpaRPIYQQItWam5vZvHsPOCBs2rCbnYAPQ7Mmm9zuHj4f1G4ijsYL+RexPn0KgFTcG2Ju//NGXt5ex4TMndwzZzk5ihWc0vXeFYMRQgwdfVJ9TwghjmV/6MiWvXFuJ18rLzgt12361a9pf/FF2nIBdKbuTcceO5IzajqvQ3UUyCCk2fn71/+X6RNHMn5kXrf9xuPWg5XHPRKfr/f5L17cWsvzm2t4r7IVAL9TfkULIYQYuLas3AeALWYwqnILe3O77puqFZSalTmi+w5iIV7IPpubxn0jecinS1BqKNnb0AHAx0avYXT6/uRxjzs1E3lCiMFPPvEIIU6L31Y18I0PbNtLt2mn7drx1hb258Luj08js6MZe8x64LV5Ps50bRUdr3rowNqi1+7y8d+fO7fbbXgHDvySqkNPEo02AqDr3ZS5PgnffGYzjR3RZLs4o/f5qYQQQoi+kIjEcW44SMyusr4jnfnRdsyu/JCqVgKAZ9F/d99JLER1V8W9IoeN6X431xVK4uuh5PDq7ymFGtEglJXdQnbWBaSl9b5KsRBiaJCglBDitHgvYCUT92oq2XadT+VnnrZrr/HW8tNrHczcWcfHGyYABwBQbSPxhF4CIGBzEcwpxHnV1T3mhTpY9XsikdquloLXO6HXY0wYZjIg9bWF4xiV42VGaXqv+xVCCCH6QsehBkxFocV0EzSsiSZNyUL3X4Gieskd4cef08PkSixISMsA4PxMHz8ZLzkUh4q/r6/iX5uqaQ1azzaq2QlAevps0tNn9efQhBADjASlhBCnRWs8AcD9o4u4tjDrtFwzeuAAsepqDuitjKnyMqrazeGAlK46GaesJKthM0FU3imayJIX/nhC/cZibQCcMfXX+HyTcXTN8p6qnbXtyeTmAF86byQ2SfQqhBBiAIuHIiQwiJsKOlbAAcWJovr41JmryL2hmyTWiZhVdS/YRMg5EpBcUkPN957bTlswyGfH/508TwvRyH4gdavLhRBDhwSlhBB96nt7q3m6roWGqJVU/HRt24tUVFBx6SIAOuarOO3WdgDVNhKnPZ+P1P0WY8NWglgPwc78wh77DAQ2EQzuwzAOV46Zic2W1qtx7qxtZ+HDryXbPocuASkhhBADmmmaHHrlVdoVO85gIxe0rAKyQLUDYPM4uu/gicvg4FsAhEadC4BL7n1DhmmatAajjM/Yw/ySNwEwDAAVp7OoX8cmhBh4JCglhOgzpmnyq6oGIoZVfUdXYFIfV9o7LFpRYY0hfyyBLJPMJmv7oKqX4nPlE2+2oQL1nnSUwhLOX/L5bvsLBg/wzrufTLYVRU/JbN+eeisBqNehMzrXyyem9RwcE0IIIfrT8n8u492mA2CDs9a/i7/DZHsRoFgJzm2eHu71NRvpVF2szTmLXRmTAVkpNZR0RhMYJvjs1jOOxzOGstKbcbtH4nTk9/PohBADjQSlhBB9JmSYyYDUv2aMYYTLTo7ddlqunejo4LVJCttHRhmxRwOcACiqC7sSJB7VsROn8qavct2tV/bYXyhkbfvTNC9p/mlk51yIovT+AfpwAtAzR2bym+tn97o/IYQQoq/teG8PKGALBmlxqrQ4u1YNHw5KjTnn+G82DIiH+cqEb/OP3AuThz2yUmrQq2oJ8pOXdtHUGaHMV8mYDKs6o8c9moKCnp+1hBDDkwSlhBApZ5gmf6huYncwDFgrpGb53T0mEE/pGDo7WTZHZUR1GPCgqFkoeh6qbSTuvauwd1rbCT35J5YPKhZrBcDvm8z06b/r9fjW7Wvmuc01bDlk5afyO09PsE4IIYTojWhdJzYzjgFkNcfpdBy5fymqFZzSy7tJZB23ng32O62VwaPdDkqddhblpvfVkMVp8tQ7B3l6wyEmZW3n2/MeTR7Xe5nqQAgxtElQSgiRcm+2dHD3rqpkO99hO20BqeB771H/k58QqzpE8HKwx6yZV905h8neSrJf/Sa2uJUTqtabzdTZE7vtr6X1HXbu/DbRaIPVT4oerO7++yb2NXYm2/lpzpT0K4QQQvSlg+s3ESPBG7FyxhgbGAto9kmottGotjKyiryoWjf3/Jh1D4505Z/6/phizsuU5NdDQUNXFeH5o6znG1Xz4/OOobDw6v4clhBigJOglBAi5aoj1pa0Uqedj+ak8dHs0zdD1vKnPxNav5H6EVPIb4mR1tmVbFVx4DRascVDNDr95PzpKc4bVYjWw3bC2tpn6OzclWz7fJNSMs7aNmum+AtnjyDf7+TqWSUp6VcIIYToS+8tf5Z4to+0llamNu4m7FJQ9AJw+fncwm34Lv3P7ieiuiaGwpo1GeNUT98qatE3YgmDd/e3sLfByiE1KluBOBTkLWL8+P/u59EJIQY6CUoJIVKqJhJlXygCwEy/m/tGn94qK4lAG20jp/Out4UZO9KTxxXVRccOlQygzeFlfHF+jwEpgFjM2l5XVvol8vM/icczplfj21rdxtsVzYRiCQDuuHisbN0TQggxKLy3Zg1bsx2gxDjn0Gv4YkHCLg+gYWhh0jMM0I+TGyrSAc98GZqtQiRhzZo0ckouqUHvoRW7+MWqvaTZ25iafRCPYv03TkVBGCHE0CdBKSFEyvzvgTq+V1GTbKfZTs+vmEBjAzvXvEY8GqWhrZF3ijpIb7OR0GzY1JHomhdfMEZW0xYA3s0dz0XO7seWSIRoaXmLUGg/AF7vBLzesb0ap2GYXPvrt5PJzZ02FZ9Dfg0LIYQYHLa9/DJ0rYKyq00YXQU/FEXFpsZAdxz/zftfhx3Lks1I10oph1TdG/R213cAJt+e9xDpjmawHnPQdcklJYTomXwaEkKkzNttVg4Bp6qQYdO5LKdvH0YaDx6grmIPL/zioaOOp7dZK4/irgI8tkWcafwK99tPEUvTuerC+5g1aQROm9Zt37t2f5fq6r8k2zZbeq/H2x6JJwNSHzujkIsm5J7W5O9CCCFEb8QjEbDZmBMbTaXxCoZy+F6qkZeIgGY//ptjQQDaC2axYd69BJt9YJqyfW8IaAvFsKkxKyAF+HxTsNnSyctb1M8jE0IMBhKUEkKkTFvXlrRHJpaxKCe9T68VDgdZeu9XiYVDyWOKloOqF6EoXlB0HNp4AKKxOG6gKXscGx+8CtsJbBUIBq0yxm73aPz+yaSnz+31mAMfWCH1v5+Z3uv+hBBCiNMploiDzYYdHd1IYCiHg1A6mhIBzXv8N8etrf2fK/t/vN2UAZgAuGX73qC19O1KVu2sZ3tNAI/t8POYyuxZz8ikmxDihElQSgjRa881tPJ6Swd7glby7jS9+1VIvfVO7Tt87V+38bFwNiag6SNQtGx017nJhyADA92I4QzV4Np8wHqjx3dCASmAeDwAwNgx95KVdW6vxlsXCHPLH9dzqMV6YEtzSQ4pIYQQg0/cNADQTBU9YRC1dQUeFBWNHrbvdVXd22vLAmCUy8E5GV5yTiC/oxh4EobJt5/dAkS5dMTL5HvqANB1vwSkhBAnRYJSQoheiRoGt2w9QNQ0k8cKHd0s30+BNw69gRG2yg6bqh277woOZL5Li/evRP3vEUNnckDlk79vOnqsZSN77LuhcSVtre8SDh8CQLf5ez3e1Tsb2FDZmmxPKpQcC0IIIQaXxoPtdKqZYIapa9lM0OEmplsfJRQ0VCUO2d0UA+laKRXt+vjxh6kjGenuJoglBrT2cIy4YTIjdxufGP188rjTmd+PoxJCDEYSlBJC9EprLEHUNFGAr47IZ4zH2ScPmaZpsvOu/8dvYuuxBV1cFC0BEui4AfhiZBf+zhKeiZxFvZKOd/sGoImYovG1c/8Dw+7gB4s/2e014vFONm9ejGnGkscc9pxej701ZAXQ5o/L4asLxjEuX6rRCCGEGFxqf/suHpuTYKSFQ83bwOE68qLqRhv7ESiaefwO4tZq6khXHiq75JIa1AKhOADZrg4APJ4x5OUuIjvn4v4clhBiEJKglBDilDXH4mzpsJbjp+saXynvu9mxeH0Dr+5/mXRnGa6oBlj5q9CsbQA1RiYrIufQqLwOgC1qBYKCNidfXXIZ88YV4u2h0l0s1oppxlAUnZKSL+DzTsDpLDzlMTd2RNhU1cqmqjYAyjLdTC6SVVJCCCEGH62jE8Nlsi/qZzKgmDqaex6Kmo6qZeHKOM79raMBtvwd9r2GCUQU617skKDUoFQXCPOlP6ynptV6/stwdaVu8E+nvPy2/hyaEGKQkqCUEOKUvBfo5GPv7SbRtWsvrYdqdr1hhMNE9u+jzanjjFo5oWzuS0B1MjftNVy2n7JGG0WT5020eJzx23eQVd0AQFB3Mrowq8eAFEA80Q5YJYzHjP56r8d99WNrqWjsTLbT3X27rVEIIYToK4qp0JJQOO/9t2jOBptpR3XOxq3u4IxPjGLcmceZmHr1e7D+cQAiypH7oFOVBOeD0epdDbx/sJW5+e/w1WnL8Dusqoq6LqvAhRCnRoJSQohT8l4gSMIEm6Lg01U+W5DVJ9cJvreBx352PbWudPKipYBVr0e1j8elttPsb+NtDleyMyitqGTy1q3J9ze6/Ew5gRVSDQ0v0dm5B0jNg1UsYSQDUlOK0sjw2Ll8elGv+xVCCCH6g6qo2ANtlAdqaM4uAKyVTl7fDmYs/I/jv7Gj3vqzeA6RgiPb+2T73uB0uJLwZWM2kuVqSR73+Sb315CEEIOcBKWEECctnDCoj1gPJZ8pyOTBcSV9dq3Ot9fyx3MNLl3j7Dqio9snoCgqfr2OcEuQ9NbNJJQYWixGab21jHx7RhlvFUxkx+iZXOHuvrLP3oofc+jQ0mTbbsvo1Zgj8QQ7aqxVV4oC/1h8Npo8fAshhBiEEokEz/7pT9Q66wiFgphd97NOp4YPUN09dBAP0aG5+NOUr1KTNQUOWkEqu1RoG3QShpkMSnlt1vPW2LH/RXbWR3C5ivtzaEKIQUyCUkKIk/LT/XX8YF8Nh2vtZdn65tdIvKmJ+j89yY53XkI5V8UZ7UqM6ruGfGcr2fV/Jr1hC86aFsYf4/1vFUxk0Q/u4RvFaeha91sEQqGDAPj903C7yigsvOaUxx1LGFz8k9eobLaWs/udNglICSGEGLQObHyfTXv2gAYRNYDRFUxKaNZ9OUsxu3s7xCP8Oe+jfCuYB0ErIJWuaygSlBpUfvN6Bd9/bjumaeDWw9g1K8G51ztBAlJCiF6RoJQQ4qS81NSWDEi5NZXzMvsmh0D973/HDebjnKkWcu2K0uRxRXWRE3+LvE2vH3V+JD2ThG6nw5PGnqiNV0tm8oPR2ag9BIRMM0Es1gpA+YjFZGd/pFfjrguEkwGpNJeNz8wp7eEdQgghxMAVrq0BwGM4yI2nJ4NSaboXgFyth+BSPEyTPR2A8R4nc9M8XJTl77Pxir7x8vY6TNPg22f+iFL/oeRxmy7/LYUQvSNBKSHESWmNWVXv/nLGKM5O96L30Sqg6qYKwnk20oJHtt4pejGK4iI7tguAA748lo67mF0ZJdR6js5pled3dBuQMk2T99+/kabm15LHdFvvK+O1Bq1l7Tk+B+9886Je9yeEEEL0p3hXNVsXdjwJDaPr1qqbVh1craegVCxMxGElOL8g08d/jZb8ioNRIBTHb28/KiDl8YzB5RrRf4MSQgwJEpQSQpyQFxra+EttM1UR6+E01673SUCqbd1ant/xT7aHNlHUYCWqULR07L4vcHbiEWw770YNW2u1DnpzqZlxDqVuO3PSnDhtKg5dw6apXDQxt9vrJBKdRwWkHI58vJ6xpzzuxo4IP3h+B/u6kpunu7rPYyWEEEIMBtEO676vohI3ohiH7/2xKNhA1Y9TfdcwoGkPRNqJ+KyglEMq7g06gXCM1s4YrcEoTt3KI6XrPs49510URbZhCiF6T4JSQogTct/eQ+wLWQ+mdkWhwJH6oEu8oYGl/3MTL031cU5VNrO6jiuKD0VRSOxoxdkYTp5fm5bLijvPP6VrxWJtXX3bOfect9E0N6p66r8S/7mxmr+tr0q2y7I8p9yXEEIIMRAYhknbDgVsEG/YSyiwn9aiHOs1xQGANvGjx37zv26DDX8EIJJ7OCglAYzBZG9DBx99+HWiCQOAcn9XUErz9eqZSQghPkh+mwghTkhz17a9b44s4LxMH+l9kOA8WlVFbTqkd1gPryhuFNWP5pxJlr4PR1sDAL+c/HFqPZlUj57Kt07hOtXVf6O55Q0AbLY0bLbe50NoCVoBu7NHZ3HljGLOH5vT6z6FEEKI/tR0qB1Ma3VyrL3+qNdi6lh0QCudcew312yy/nSkEfFbW/ZkpdTgsuVQG9GEwTmFb/PZCU9hU+OAtVJKCCFSRYJSQogeGaZJIG4Fpa4pyCTHntpVUqZhsO7xH/F83SreL9OYXFkEtKM7ZzAxPUjx9p9iHIhz+FH25dJZdNjdfHrCyeelCIer2b7j7mTb6Sjo3dhNk4RhJoNSM0ozuGKGVKERQggx+O3fuA4Dg3h9GHtnO1G7hs17OapWiN9r4itKp2DUcfIxxiPWn9c8SSRYAvWtslJqkAmErSDUglE7sGux5PH0jDP7a0hCiCFIglJCiOP6W20z39lTTcQwkhX3fNpxckf0QvCdd/mfmj8wdn8h57aXAu3WC4qLdG035gcCUjsySrnrqll8fFoR6W77SV8rErVWW+m6n9KSL5KTu/CUx22aJtf93zre2NOYPOZ3Si4pIYQQQ0Og+hCmYqOwqhpTMwANRXGj0sHnF+2EC7tZrxwPsSLzTP7c4OGdWAcgK6UGi2jc4N0DzWypslIduHXrv9+E8Q+QnX0hdntWd28XQoiTIkEpIcRx/a22hcZYPNme6nXh1FL/QBmvraHTrpPZfiTIpCgOZtneoLjyPVqxk0Dhc5d8mzaHh99mek4pIAUQ78ol5XQWUV6+pFfjDoTiRwWk3HaNOeWZvepTCCGEGAhq3nmHLe+vR8suQzc7iR1OaK1ohF0x0J3ddxCP8L1xX2ZHpwpYzxL5fZCPUqTeD57fwW/f3Me0nE18ddZq/HolAC5XqQSkhBApJ0EpIcRxNceth8j/GVfCORleihynFgg6nuCmzXz3uTupjgYoCJUCBorqwe6/mULbJjJe+TWthnXNJlcatpxspme4mH0KgZ/WtvVs3ryEWKwFsFZK9VZbyFrK7rSprPvmRTh0q/qfEEIIMdi9tXYtLbmZQDuFdGIkq6xp+Mwg6I7uO4iH6dBdAPxnaS4z/B4uyJRcRIPB7nprxfonx6yk2Luv66iKy1XWf4MSQgxZEpQSQnzIq00B/ljTxJ6glQ9ivMfJCFcPD5+nYMNTv2CTr42PbM0FrMouKD4URUWPt6IYEFc1Xi2azpsl03j7ngtRTzEfRWPDSqLRI0laM9LnnvK4I/EEf323iu01AQDSXXbZtieEEGJICUWsZ4CyRA563KTTeXiltEa6GTmBoFSEiGpNLF2el8FEr6sPRytSqTVoTboVp8UgAaNGfoWsrPk4nb3LwymEEMciQSkhxIf8d0U1Wzussr+aAiXO1K6QOqw52ECWebjSngNF9TPKmyC/8/9I1Fszc3WuDH4y8xoK05ynHJACiMetAFJpyRcpLfsSDnv2Kff14tY67v3HlmQ715/6gJ0QQgjRnyJdq6VLjWwaE3EMxfrYoCgaOjFw5X34TYYBT11nVd6Lhwmr1v3RKbmkBoWfv7Kbn72yh2jcmihUzE5MIDv7Qrzecf07OCHEkCVBKSHEhzRGrQfRr4zI44JMP3kpzAFhxmK88b3beTG+jY5EhHGHyoB2dMd0dNdZlB78Ns69TUfG4krj6lnFXDrl1GbnotFmWlvX0dG5CwCns7BXASmAmtYQACNzPJw3JodPTCvsVX9CCCFEf6s7VMWaZU8TrTPZ13EIo303TtPGDqOeLN0PyuHqaxpaVgmMX/DhTpr3wo5lyWakKyglVfcGh2WbaojGE1w/8U+MTK/GNFoB0HXZdimE6DsSlBJCJDVF41SGo7TFEwB8Oj+T0hRv2wu9/z6PsorC5gJKmqxcFQCoXpxKG0qLtaJpfd44Dnpy0Bd9nAevOuOUr7dp8620tb2bbNtsGb0ZPnAkl9R5Y3L4zscn9bo/IYQQoj/FYjF+9dgvMUwDo+kQ4/fsozrTB8QIU8mhD8YkFB0ttwTs7g93FLdWWePOwrj2r0R3W3kWpere4NAejpPvrue84reSx3Q9TZKbCyH6lASlhBAANMfizH5rG8GEkTyWYUv9r4h4YxPNPoVx+6y+Vb0Mm+7irNDzOCsaMNqsgNifx3yELdmjePisab26XjBobQP0+8/A5SojO/sjp9zX39dX8bNXdtPYbuXZ8Lskj5QQQojBr626mYSm4aipwt7a2BWQ6qJ4ULryPtqchWQX+Zl0znFWCMet+2ODu4AK7zhgDwBOWSk1KATCMXIdQQDs9lwmTvgBHs9YVFXSFAgh+o4EpYQQAFQEIwQTBroCxU478zP9+FJYSS743gae//U3WGcPkOdOxxWx+tbdF5HnqMP19nIANCCmaMw7bzq//eRscn09lJzuhmmaxOPWSqwpk3+O09m7bXZ/fPsAB5qCyfbkwt5X8BNCCCH6UywS4eCj68EJWlceKVXLQ9Fy0ZxzGDltJIsWn+CK5XiEBls6syc8RHjDnuRhWSk1cEXiCa56dC3bawI4tA7yPFZRGIcjh6ys8/t5dEKI4UCCUkIIAFpi1oPoJK+LF2elPpll69//xhNlNczfUExu8qiKorpxmB0AhDUbP5j1OQ55c/jSmJJeBaRqap6mM7gX04wCqcmH0NJp9fXDK6dw1qhsSjKPsXVBCCGEGES2vPwymqJimkDX9n3NMQ3NMYm5Z9Qw9lNjT7yzeJgDriLCqh1NgQKHjQVZadhkpdSAtae+g82H2pies4n/mPZ/qIoJgK7LxJsQ4vSQoJQQw9zm9iB37ayiJmLlScrQU/trwYzFCG3eQnRvBeZ0a7ubodqw2SZi17PwhOtI2/82AK0OL7G5ZzM7y8OiU0xsDtDRsZNt27+WbGuaG03znHJ/z248xN/WV3GoK8H5jNIMCUgJIYQY9BIdndS/spoc+3mYu1vJaauj2euCrkp7M6a2oWa7TrzDeISwalXVHe12snrO+L4Ytkihw3kyZxQc7ApIaWiai7zcy/p3YEKIYUOCUkIMc3+ra2FD+5EtaRO8p7466VjqHniA2r/8hbdHFXLuRmuNlKZnYnNfyJTQUrLffjN57u70En70qTMYlePt1TUjkVoAbLYs8vM/QWbm2SjKqW8dePCFncmAlMumkZ+W2r8jIYQQoj8EnltOaNsOEtPOIb+5CkM/vKJJAxKo9pPIJRTthHBbMiglFfcGttZglD+sPcCW6jYA0pxWPrCR5bdRXn5bfw5NCDHMSFBKiGHu8La9zxdm8ZmCLKb6TmJG9AQ0793OTz/hY/JeB3pXDnVNHWl90xUMW100jafGXMB+fz5Xue29vmYsblXw83rGMHbMN3vdX3PXtr37Pj6Js0Zl4XNKgnMhhBCD3/66OnZNGk+FbTteJYBxOJCk6KDEQD/BoNTqH8Gr/w1AJPtcAFySR2pAe/LtSn68YhfpjlbOLNhNgfsQINv2hBCnnwSlhBim6iMx1rZ1sLPTKt88xediuj/1W9J26o0EXNZDrqqXonkuJjPeht60hbRdOwA44MsjMmI0V43OItNz6kGp9vat7NnzQ4KhSgB0W+8erN6qaKKioZNQzMqx8ckZRfglICWEEGKI2NLeTtDrBkJkJOJE7NZHAwUNJ1HQT3BlcMWryW/DmjW5JSulBrb6gPX897U5vyPftTd53GbL6K8hCSGGKQlKCTFMfW5zBZvaQ8l2pi11vw6McJja++6nofogVcEEU/dmAyaK6iPb3sbUjQ+iBUyaXH7qfbkUXn4Zb97wkV5f91D1X2huObId0O0edcp97anv4JpfvZVs23UVn0N+ZQohhBg6Yoa1hHlEM7T5HCQOr25SdDQlCs7ME+sobgU4Gq58kmrfDNhXj1NWSg1o7WFrpXyOqxGAtLRZuF2lZGdf0J/DEkIMQ/IJS4hham/Qyh0wJ83DCJed+Zm9r053WOeaNbQ98wybJo4nanPjDVmVXBQ1HZfRihlVgQT3z7mBXRml/GRqahKhxmItABQVfobc3I+Snj77lPs60NQJQJrLxpzyTC6ekIeiyKyvEEKIocGIG7SHXaC3E27dT1zXul5RUVQ/mluHkeefWGexMH/NXcBtjcXQWA+AQ4JSA9KbexpZtqmadfubUTBQaQdgyuSf4XDk9fPohBDDkQSlhBiGooZBZ8KaHf3dlHIyUrhKCiDR0sJvL3FiRAMUNrnQ7FPAkUNRSycF219ED1vb4eZNG8l9C2Yxt/wEZ2KPd71EiI6OHYTD1QCkpc8iM/PsU+6vLhBmT30HAFOL0/j152f1anxCCCHEQNO0rhp7V+DIMK37su46F802DkX1UDKjCLQT3LIeD7Mhc4LVhwI+TWNRTlqfjFv0zrf+sYWKxk5unPxHZs3YiIL1PKjr8t9LCNE/JCglxDDSGU/w2U0V7AtZq6QUwJ+cGe090zSJHThA/ZbN1HldjD5oJUhV7aPxuQJMemMpAO02F9szyxg/fRzzRmX1+rrr3/sM7e2bk21bLx6snnz7AN98ZkuynZGCxOtCCCHEQGIkErz3tz+T8CocCrjwRDpQFVC1AnR7BTd++yrseaUn3mE8QqSr6t5XRuRzx4j8Phq56K2GjgiqkuDswnXJYz7fZDRNKgsLIfqHBKWEGEbeCXTyVltnsj3F50JL4Za0xkd+QcPPH+HlqWM4Qzmy+klR3OQEraouVd4cbr7obgD+lt/7Ci+madLRYSVMdzpLcLtKe7Vtb/0BawugQ1dJc9n42BmFvR6jEEIIMZA0vbaaSHs7Ca+X2e+/S8wfJGy3gaKBGsbuPcnCJ/EwEcVaVWWXbXsDlmGYdETiuLVw8ti8M1/G6Szpx1EJIYY7CUoJMYy0dlWRO8Pn4ifjSxntPsFSzycouPl9Xjg3FzNgXUe1laOpPrzhBBl737PG4PDyf9fPItfnZHJR74NShhHBNGMAzJ3zL3S9d7mxAiEr8ed/fWwS1849iVliIYQQYpCo++Wv0PwTiZsGGUYltcrhims6hisK2gmuEn7/z/De7yHUQlS1glJSdW/gqW8P8z8v7qQlGAPTwGMLAqCqTtzu8n4enRBiuJOglBDDgGma7AyG2dphVdsrdNiZ5HWl/DoH4vX8bWYbV672Yioadu8nmdH2K9I3PEPUplPhL2D9zIv5wYTUJNJMJILJPFKgoGmeU+5r48FW9tZ3sK/RyiWV5jrBPBpCCCHEIPN2Tg416QZhJcxoI4pxOJCkaJQkwqCf4KTVqh9Ayz4AIpr1XCFBqYHn6fcO8dS7VczIfZ9fXPh77Jo1mdfbiTwhhEgFCUoJMQz8vLKe71XUJNupzCMF0PzkkzS+vpb1EYWPrykD4ih0Bb0iVv6qv42czx8mXMLFE1MTkGpoeInNW27DNK2VTZrmQVFObctATVuIK37xJoZ55FiGW4JSQgghhp5oNMrBLCufY8JUsSUMjK6t/Ao6GWb4xFdKxawVNyz4b6K2c6Ajgf0U78Wi7zR1WM9iF4/amwxIAWRmntNfQxJCiCQJSgkxDGxqt1ZIZdo0cu02rs7P6OEdJ84Ih6n73vfZPW0+RiLG4VCOqmXji1bhqToAQLvNzd2XjOeyqQUpuW5zy5pkQAogL/fSU+6rsimIYYLbrjGnPJPiDBeze1kRUAghhBiI4nHr3qnEooyoamJfTh7G4TxQioamGnCi+SbjXbmJxl5C5KACdMhKqQGmpi1Edav13ynfFwVg9Ki7KSy8GpstvR9HJoQQFglKCTEMtHY9gH53dBFX5qc22JJoa6Mqw+Avo95nxq50Eo5CXPb5TNvyZ7JbVybPO/vcKXxq/qiUXTcWawNg9OivU1Z6c6/6agtZs4Zj83w88YU5vR6bEEIIMVAdeH0TALaOAB3hQ2DvWhWlOEFxouWMPOG+EvEYN0/8Llt2hqiLW8uNJSg1cPzxrQPc+48teG3tnFu0GZdyEExwOPIlICWEGDAkKCXEEHbr1v08W9+K0dXOsKXuf3kzHifw3HNUrX+HjSNKmbzfB4SxKbmoej6OeIiwZuN3Ez5Ki9PHJ846NyXXPVj1B2qq/0owZK3AstlOfdXXjtoA/71sOwdbrO0HkkdKCCHEUBZoqKf2+c2QDtUJH+WAjUzwfgRVy0ZVNXI/+rkT68w02WvP4bmc8yBqPWkowCi3s6+GL07ShspWAD4z/lnOLFgHXWkK7Pas/huUEEL8GwlKCTFEJUyTZ+pbk+1Mm8YUX+qSm7e/8grVd93NWzPmoP5/9u47PKoqfeD4907LTHqvhEBIQgfpVTEiJIiAiiALsrACwkrRxYK6KoLYKQuiKBZ0fwt2RQQVqVKlJhTpkFCSAOk9U8/vj5sMRCAkMBjK+TzPPHBn7j333Jtk5p1T3mPXY0AdGq5R/NE4rBjLcjlr9KHozq40jI4hoUWES86bmvouFkumc9vTI+6Ky/pq2yk2HMlybscEe15V3SRJkiTpelaQnYlGo8fs0FD/xFEwgQZ3FH1dYutv5faxEzF5VjOflN1CmUbdN1Cv4bPmDQh10xNhrObx0jVXUKaOBG8dUQYO8PFuhY9Pa3x9O9RyzSRJks6RjVKSdJPKt9md/0/u3BQ/vRY3jeuSj1pPnuKMr8JZtwIMJaB1uw3FYKDZ4SS8in9GbysmPSCSyYO7E+nv7pJzCiGwWvMAaNr0P3h6NsLTI/aKy8spVhN/PtQ2kj4tw2lX33W5tiRJkiTpeiJsNjJefx0R1AOt2UZc3kkOmQJQFPXrgIc/1W+Qyj0OZ/djLm+U8tJqaeNz5SvgSq51KreEHcdzSc0qBkCnqCPC69efQEDAHbVZNUmSpAvIRilJugl9ciqT33ILAfDUagh1c920NOFwUJqcTN6eXXxxpzfhGaUY0KE1NMLolkr4me1kGX34sNVAtoc0op+LpsRZLFmUlp5ACLXXLzDgLnS6KwuAT+aU8MW2E+wsH9bepp4fXWMDXVJPSZIkSboelR07xkZvX4o8jiOKLTjKcz+VuOlxB9w8qtkglZ8Gc1qBsFPm2xoAN61rV/WVrs7DH20hNbuYpgEH6BqRh0ZkA6DTedVyzSRJki4kG6Uk6SaTabHy/OE053ZdFw+jz/v2W4688TbrYkKI5byGHMVIRJHaI5fhEcCKqPY0CvXC23j1bzOlpWls/r27s0FKUXRotVc++mrWikN8l3TuHoX7uG5aoyRJkiRdj7Kys8kLCAQc5BvOYlfU0dMOrdp55OtWzc/V3FQQdtAaKPNTFzCRyc2vHw6H4HhOCdE+qUxsM6/8SfUfmdxckqTrkWyUkqSbTLZVXWnPQ6vh+egw4v29XVq+5chRCuu1Bk4hUFAUAxptKIrGF2NqurqTtzcbJsUT6m1Eqe6y0lUoLj6EEFYURY+bIYiQkHuvqtzTBWr+qx5NQrg9NpBODWTCT0mSJOnmZitTP/vcbAr1czXkebgBYEL919tUzQ4am1oOQQ0x95oOf6RidGF6AOnqFFlsCAFBJjVnpl7vj49PKzw9G2Ey1avdykmSJF2EbJSSpJtMgVXNJRVk0DGiTpBLyxZCcDw7jaV1jhFx2oDVvQ7ebgNocPJLQva+SJHGwVGfcA60u5uBfq7JIwVgsxUA4Ovbjtat/u+qy8svVUdcDW5fl/hGwVddniRJkiRdz+w2G6mHjgKgz8+CnNPkeqiNUDphQABafTWn29vMCOBzvztYeSYXQDZKXQfsDsGCjSkczVRHrfu4qY2Hfr4daN58bm1WTZIkqUqyUUqSbhI/ns1j2tF0Cu1qo5S3zrX5Hc7O+g+Ht//O77YiIlCnBLo51BFG3rlpGM15PH7XU2T4hvLKvc1dck6LJYfTZ34gN/d3APQ6nysuK7/EykPzN3Mqt5RiizqazNtF+a4kSZIk6Xq2Y9litm9ZC3VjUGxqx4xG8UHR18ehb4UCaD2qmW/IVsZ276ZMDB4IWfkA+OhlTqnatvFIFtOW7SfQlM2z7f6PcE91pWKd3rUj5iVJklxNNkpJ0k1iUUY2x8sszu2WXq4bqWQ9c4bsDz4gt1V3oAgUI4o2AL2+OYqw416kDhFvWc+NtU/2QqN1TY9p6vF5nDz5iXPbYLjyZOQ7TuRw4HShc9vXXU9MsOdV1U+SJEmSbgSlp3LpHHwfP4l9nLUbCQYUQyx6d3UlNi8PC56t7q5eYTYzWXp1tdpgg477g/14OFxOg69tZ8pTE8TXO0is3zHn854eDWurSpIkSdUiG6Uk6SaRVz5t75WYCG739yTO3eiysu256vB8m4cfFKaiNTRD596ZZgf+i3vRGfb5h7A5OB6v2JYua5ACKCs7BYCvTzu8vJsRWWf4FZeVV6L2DLev58+MgS0J9HTDZJA9u5IkSdLNTQiB5mQhaAJIsfujdxQTDKDo8Cw6yIOTO2OMbo62up/ftjLKNGoeqlh3I1NiI65Z3aXqq0hNUM+vPI1DYA/q1R+Hl2fT2qyWJEnSZclGKUm6wa3OLmBLfjHHy8wAtPAy0cjDNavJCYeD0uRdpKxazg+dIylmG/7oUDRGhLaYkNM7AHjtjqkUGdx52UUjjxwOM/n5yZSWngSgTp2HCQm594rKOplTwn83p5J8Mg+AEB8jkf6uG0UmSZIkSdezsj17sBw/ib5+Xdoc2olfUSq5Xu4oaNE6SvHwNUJ1GqRyjsH6mXB6D6XacEDmkroeLP/jNK/9tJ+cInW0vIdeHTHl7h6Nt1ez2qyaJElStchGKUm6gZXYHQzfk4JFCOdzoW6uy5NU8NPPnHz6KVa2iMMNQ/n6PIDijru5xLnfI+086Na5I60i/Vxy3oMHXyY94yvntl5/5eW+t/Yon2894dwO93XdCDJJkiRJut6dSknlcKgH6E5x+6HtHA32IxdA0SJ0VtAaqlfQ1g8hSV1spCy8HgBG7dWvsCtdnW92nOJ4dglDGn1Fi6B9+LuVAqDTVTNHmCRJUi2TjVKSdAPLttqwCIFOgRF1gmjsYSTK5Hb5A6vJfOQwFqMnduwIQGdojqIY8LAHUPfEerUORm86tm9Pmyh/l523qPgwAEZjBJ6ejfHxaXvFZWUWqj2GPZuE0L6+P/1b13FJHSVJkiTpRrDh2FFO++iAPPQ2Ow6loiFJS6B/LuiqGTeY1ZVwiU2grP4AMINJjpSqdfmlVgwaC3fV3VDpeU/PRrVUI0mSpJqRjVKSdINKK7OwI19d9jdAr2NKjOtyOgghMB86jOXoUZa3ccNQCHatFpNHD0KL19Bk2zT2BESzLu5utoc04l1v144+stnUhOSNG7+Jv1+nKypDCEGZ1UFueS6pfrdF0LtFmMvqKEmSJEnXO4fDTkmZ2jkTYwvBptFgrZiqp+gwKRbQVrNRymbmlFswYyPGctjhD9jl9L1alFVk5kBGIafzy3DXq6PXFUVLmzZfo9f54u4eVcs1lCRJqh7ZKCVJN6ANuYU8mHzUue2rd+2fcu5//8uRmTPZ3LAuBsUXAC1qvihTgTosfGN4cwLjYxnergfRQa7JJVVYdACz+TRWazZwdUPPH/l0G2sOZjq3fUyum9YoSZIkSTeCb199idxiB7jpyUv5jXWNzzVUKGjRKRbQVvPz0VbGKv+ObBE+UL64SqyH60ZnS9Vndwh6z1nPmQIzIe5naOx/HACdzhsf75a1XDtJkqSakY1SknQD2lOoNgyZNBoCDTr+ERHo0vLL9h8gJ6IBNsXifE6nq6+eM+8sAEWensweFA/+dV1yzvz8ZLbv6F/pOb3O54rKstgclRqkwnyMNIvwvqr6SZIkSdIN54QVj7BACmx5mG1F5U9qUTQeKLoIvLSbqz99z2amTKN+Lnfz8+LfDcJo7umahVWkmikss3KmwEyc3xEmtZvjfF6nk7GOJEk3HtkoJUk3oAKb2kM5KMyf1+NcnyPJXlhItq8v2M9S5B1IgDKAgKL9RCXN4qBRz3ct7iOlUUfwj3bZOYuLDwFqQOVuqoeXdwuMxiu7trwStTFNo8CelxMw6bVoNDIZqyRJknRr8dT4YMfBXkswHQGNQ4Mh4HGE+z76uM2hjm9a9ROd28yYNeq+EUY9LbzkSra1pbDMBkCU92kAtFpP3NxCiazz99qsliRJ0hWRjVKSdANJKTGzo6CYpAI1d4CPTuvS8gt+/ZWDmzawOec4BTobJrsWFHcUjQmv/BP45R9hRcNhbApvzrBGoS47r91eSllZBgCBgXfRtMmMKyonq8jMY//bSVqeOpLMx6THw02+zUmSJEm3nuJdu9Cgxa44MOWqScoV1A4axZhF1ICRENkelGp22tjMlJU3SrnJXFK1QgjBrlP5JJ/IBcDXZAYgOLgXTRq/UZtVkyRJumLy25ok3SAcQtBn52GyrDbnc3561zVKWU6dIm3C4+xt0wGrQ2CyqGUHlkWDO5hK1KTqLUMtfPByT7yMrsnRlJu7leRdw3A41NFNer3fFZf128FMtqbmOLebhl/Z9D9JkiRJutFlLVyI0AThsJv5x66l7IwOQUFtTNLpFGg15PKF2K3wv/5wdj+U5mCOUvMVucnRx7Vi3eEshn2yFb3GQtOAo0R5pQFXl4NTkiSptslGKUm6QRTY7M4GqXh/L/z1Ou4PvvIGnD+zpqeD1g0z6jl0pjvR6CIQ2mAUINtNx66oDojbH3BZgxRAXt5WZ4OUTudNYED8FZeVWz5t7464ICb2iKNxmAzSJEmSpFvTOo2GoyHFaKyl6B3qZ7tdq0EHaDX26hVydj+k/ObcLNOqOaTkqnu141immhfskebf0j5ks/N5vcwlJUnSDUw2SknSDSCtzMLGPDUQ8dRq+LxlA5eVLex2SpOT2fndV/wRF0qRLQ8F0OjrgamAuD++QWspZESnQaBReNrT6LJzA9jshQDUjRxBbOzzV1RGWl4pU5b8wR/p6vSE6EAPbov0dVUVJUmSJOmGIhwO0nVqmF+gOYtNqzYilRm0uAFe2upP2QPI9GvE6sSP+KNQC4UWOVKqlhSUqo2LDQOyADCZ6mEyRhAScm9tVkuSJOmqyEYpSbrOFdjs3L71ACV2BwABetf+2eZ+/gVnZ81nd1wIZQadmm1CMaBovIhI3UVk2lpy3TyJ9rISHhbOvS3CXHJeh8OK2XwGs/kMcHUrxixOSuPXfWec2w2CPK66fq5it9uxWq21XQ1Jki5Br9ej1bo2P58k1SbhcLDohaco07ijKSki/EQ2O+qrn93u5SOdGmirOeLZpuZofLbeaJal2wF1hJWHVo6U+ivtOpnH78ey2XRUbYxy06gpFRo3fgM/33a1WbVrSsZQknR9c1UMJRulJOk6d6LUTIndgV5RaOxpZHh4oEvLNx8+jBIYi9lxFgC9ey80+jooih7f/OMAHPCvx6rn+6K46IubEHa2butDcfFh53NXkw8ht1idtpfQNIShHevRMdr/qut4tYQQnD59mry8vNquiiRJl+Hr60toaChKdRM+S9J1zFxaQmR+NKmBuSglmQjhcL7m5RFFma08p1R1lI+UStern6u3ebkT6+HGfS5MHyBVTQjB8AVbyS2x8kDMEp5pm4Kbpjxmu0mn7ckYSpJuHK6IoWSjlCRdx46XmtmQq07bi3Z349e2DV1avr2khMzTaeR6uiFQg1aNIRqjPZlW235mt08Q/757ErbQcB5x4UgCqzXP2SCl1Xqg1/vj7397jcs5lVvCmoOZ7Chfhea2SD+6xrq20e5KVQRTwcHBuLu7yy+7knQdEkJQUlLC2bPqF7ywMNeMBJWk2mS3WglwC8dGNvryBik3TQPwvocymzpCSlvdRimrOlLKXL7q3rPRodzpf3M2hFyvSq12ckus+Bjy6R290vm8RuOGm9vN+Z4lYyhJuv65MoaSjVKSdJ06Xmqm0+/7qejfdPW0vZxFi0j6+P9IDtQ63wkECmAg6EwG7qWZnAlryFnvIIbfVsel57bZ1NxPWq0nd3bbdcXlTPxqF1tTzq22F+hpuOq6uYLdbncGUwEBAbVdHUmSqmAyqdOZzp49S3BwsJzKJ93w7DYrKFrsQqAtVKc+2fS+6BU9OqUUd00+daLdqldY+Ugpi0ZtzHKTCc7/UkIIzhaoPwNfYwmgxk6NG7+Oh0csev3N10AoYyhJunG4KoaSjVKSdJ06WFyGAzBpFGI9jDxaJ8il5Rdv2EhxaBzYjuLQGNAqvuj0cSiKgmehOjorKNzEkVfvARf1UAkhKCjcTX7+TuDqlzA+laMGaHfEBREd6EFis9CrrqMrVOQ/cHd3r+WaSJJUHRV/q1arVTZKSTe8kv0HUBQN+rQCGp06wvEgX1DUkH9U2D/QjFwOoYOqLsRaCsuegrQdAJiV8kYpOWLlL2OzO+g7dyP7MgrQKjbCvdSYx2AIICT4nlqu3bUjYyhJurG4IoaSjVKSdJ3Ks6nJRDv6erp0tb0KjoICLLoQsIEwNcHNcBdehScwnd3B8uAQMiIfptG997qsQQogO3stu3aPdG7r9T5XVV5eqRq4vNKvKVEB109y8wpyuLkk3Rjk36p0szCfPMma2bOxNbwLt7IsHOUjmxS0gAWN3gjhrS5fUOoGSP7fuXLLp++5yQTnf5n0vDL2ZRQQ43uUiW3m4aZV82dezcIwNxL5vixJNwZX/K3KTxZJus58eDKTjr/vY/LhNAB8da7ttTcfOcKBT/6P5aX5HLPuB0Av1BFLTfd9QuN9C/i6fmfWR9xGs3quzc9UXHJEPZ/eHx+f1tSLeqzGZRw8XUjn11fR6MWfKbGoDXe+putj2p4kSdLFrFu3jj59+hAeHo6iKCxevLjS68OHD0dRlEqPxMTESvvk5OQwZMgQvL298fX1ZcSIERQVFVXaZ/fu3dx+++0YjUYiIyN56623LqjL119/TaNGjTAajTRv3pyffvrJ5dcr1Z60/Qc42Kw5R/WZ2DS52Cu+LCg6FI0FdNX8vLSU/24FxsGAT7EYPAEwyIaCv0xBmdrx1iY0xdkgBRAYeFdtVUmSJOmakI1SknSdmX8qk9RSC7nlI6Wae7lu+LIlNZVjfR9g7/pdFOocaO1qcKnTqInpdLYSco1eTE2IZP0z8fS7LcJl5wawWdVcUiEh99K2zdeEhPSucRnrDmWSnl9GmVXNttUo1Asvoxz0KUnS9au4uJiWLVvy7rvvXnKfxMREMjIynI/PP/+80utDhgzhjz/+YMWKFSxdupR169bx6KOPOl8vKCigZ8+eREVFsWPHDt5++21efvll5s+f79xn06ZN/O1vf2PEiBEkJSVx3333cd9997F3717XX7RUK8pK1Sle7mdP42YRpPtXTJPXYcIC2mo2StnMCGB7UEd+Co6n1CEAcNPIRqm/SpHZBoCPUU02Hxn5CHd220d0/Qm1WS1JkiSXk41SknSdybGqQciCZvX4rX0j/hnpulxS5pQUFKMPpag9blq3thi8H0Gjr4PeUsCGiMbMav0QTRpEEenvusawoqKDHD78GlnZa4CrG3qeV6rW/cE2ddj07F0sHd8VjQySXeb8ERsGg4GYmBimTp2KzWa7qnLXrl2Loih/6fLOKSkpDB48mPDwcIxGI3Xq1KFfv34cOHCg0n5Lly6lW7dueHl54e7uTrt27fj0008r7ZOamoqiKCQnJ1f7/C+//DKNGjXCw8MDPz8/7r77brZs2VKpzBEjRlC/fn1MJhMNGjRg8uTJWCyWKkqFjIwMBg8eTFxcHBqNhieeeKJa9bncaJ0K+/fvp2/fvvj4+ODh4UG7du04ceKE8/XRo0fToEEDTCYTQUFBF72n27Zto3v37vj6+uLn50dCQgK7dl18UYMjR47g5eWFr6+vy67hetOrVy+mTZvG/ffff8l93NzcCA0NdT78/Pycr+3fv59ffvmFjz76iA4dOtC1a1feeecdvvjiC9LT0wFYuHAhFouFTz75hKZNmzJo0CAmTJjAzJkzneXMnj2bxMREnn76aRo3bswrr7xC69atmTt37rW7eOkvs2/dGtau2AyArjC30msaXSg6xQJaffUKs5Wxyec27g0ewSN7UzGXN0qZ5PS9a+77pFN0eG0lT36+kvtjlhLjvQ8Agz4ArbaaCeqlWiFjKBlDyRjqyshPFkm6Tsw5foYe2w5SbFdHAHX29aShh9Glc+ptZ4vRhLWgGHXEkkYXjMNgpfmeD4jZ+x5v3zaIncENCfZybdBz+PCrnDj5MUVF6nRBN7eQGpdxNLOI2SsPs+FwFgDhvibCfU3oZIDschUjNg4fPsyTTz7Jyy+/zNtvv13b1XK6XMABarLFHj16kJ+fz3fffcfBgwf58ssvad68eaWg7p133qFfv3506dKFLVu2sHv3bgYNGsSYMWN46qmnrqqecXFxzJ07lz179rBhwwbq1atHz549yczMBODAgQM4HA4++OAD/vjjD2bNmsX777/P888/X2W5ZrOZoKAgXnjhBVq2bFnt+lRntM7Ro0fp2rUrjRo1Yu3atezevZsXX3wRo9Ho3KdNmzYsWLCA/fv3s3z5coQQ9OzZE7tdHd1ZVFREYmIidevWZcuWLWzYsAEvLy8SEhKcCWwrWK1W/va3v3H77be77BpuVGvXriU4OJiGDRvyz3/+k+zsbOdrmzdvxtfXl7Zt2zqfu/vuu9FoNM4gffPmzdxxxx0YDOdGwiQkJHDw4EFyc3Od+9x9992VzpuQkMDmzZsvWS+z2UxBQUGlh3R92vLFVzTzaqNuCPXvMcB+G24+j6DRhaJVLFDdRg2bmRNGdRS1r05Lex8PHosMJshQzUYt6Yp9n5TOmQIzncNWcm/0rwQY1XQOVxI7SX89GUPJGErGUFdA3ILy8/MFIPLz82u7KpIkhBDC4XCIOmuSRcjqJBGyOkm02rhX2B0Ol5VvzckRp+f/V/xv2DgxY8h94q2HeovpA3uL2Y98KP476D2xr2Ej8UvbO8SkeV+JTzemuOy8FTb/niBWrooWe/+YKI6f+ETYbMU1LmPwh5tF1KSlzsf/fk91eT1dpbS0VOzbt0+UlpbWdlVqbNiwYaJfv36VnuvRo4fo2LGjyMnJEUOHDhW+vr7CZDKJxMREcejQIed+qamp4t577xW+vr7C3d1dNGnSRCxbtkykpKQIoNJj2LBhQgghCgoKxODBg4W7u7sIDQ0VM2fOFN26dROPP/64s9yoqCgxdepUMXToUOHl5eU8dv369aJr167CaDSKOnXqiPHjx4uioiIhhBBJSUkCEKmpl/49OXHihNDr9WLixIkXvDZnzhwBiN9//10IIZzXkJSUVPObWq7is2flypWX3Oett94S9evXr3aZf75X1QWI77///oLnH3roIfHwww/XqKxdu3YJQBw5ckQIIcS2bdsEIE6cOOHcZ/fu3QIQhw8frnTsM888Ix5++GGxYMEC4ePj45JruBJV/c26Oma4WL0///xz8cMPP4jdu3eL77//XjRu3Fi0a9dO2Gw2IYQQr776qoiLi7ugrKCgIPHee+8JIdS/00cffbTS63/88YcAxL59+4QQQuj1erFo0aJK+7z77rsiODj4kvWdPHnyBX+/Moa6Pv3fo+PF2ue+FpNfeknMfKivmD6wt5gz4nMxd/QqMXf0KvHz41OFeK9L9QrbMFsseH+oCFmdJB7Zc+zaVlyqpN/cDSJq0lKxZO2jYuWqaLFj51Bx/PjHwma78WKKKyFjKBlDXYyMoW7uGEoOMZCk60Cx3YFVqEPj/695fVa0bYjGlavevf8+qYu+4nRpCsJqRSMANGi0gRjLCgE4HhLNG2MGMKxzPZedt4LVmg9AZOQ/qBv5D7Tamk8NTM8rA+Ce5qH86+44l+e7upaEEJRYbLXyEOW/V1fDZDJhsVgYPnw427dvZ8mSJWzevBkhBPfcc4+z52bs2LGYzWbWrVvHnj17ePPNN/H09CQyMpJvv/0WgIMHD5KRkcHs2bMBmDhxIhs3bmTJkiWsWLGC9evXs3PnzgvqMH36dFq2bElSUhIvvvgiR48eJTExkf79+7N7926+/PJLNmzYwLhx4wAICgpCo9HwzTffOHuf/uybb77BarVetDdv9OjReHp6XpDX50pZLBbmz5+Pj49PlT1z+fn5+Pv7u+ScNeVwOFi2bBlxcXEkJCQQHBxMhw4dqhzeXVxczIIFC6hfvz6RkZEANGzYkICAAD7++GMsFgulpaV8/PHHNG7cmHr16jmPXb16NV9//fX12WP3Fxs0aBB9+/alefPm3HfffSxdupRt27axdu3a2q4azz33HPn5+c7HyZMna7tK0qXYFRw4qHP0OBpb+WgIRQ8UMyBhHz18ZtVg+p4Zi0bd100jvy78FWx2B2cKysgtUX92XgYzACHB91C37iNotcaqDr+p3chxlIyhrp6MoW7+GEpmB5akWpZjtXGqTA1A9IrC3QHeLl8G15KWRqmbCSjBrjdhMj6A0VpIwJm9bDbBf7o/g3dMfR69bEnVJ4SDPXseo6BgNxbLWQD0Op8al5NfYuVkbgnZRWpw9nj3OBqGel3mqOtLqdVOk5eW18q5901NwN1wZW/1QghWrVrF8uXL6dWrF4sXL2bjxo107twZUHPYREZGsnjxYgYMGMCJEyfo378/zZs3ByA6OtpZVkWQEBwc7Jz3XlhYyGeffcaiRYvo3r07AAsWLCA8PPyCutx11108+eSTzu2RI0cyZMgQZy6A2NhY5syZQ7du3Zg3bx4RERHMmTOHZ555hilTptC2bVvi4+MZMmSIs16HDh3Cx8eHsLCwC85nMBiIjo7m0KFDV3TvKixdupRBgwZRUlJCWFgYK1asIDDw4qtaHjlyhHfeeYfp06df1Tmv1NmzZykqKuKNN95g2rRpvPnmm/zyyy888MADrFmzhm7dujn3fe+993jmmWcoLi6mYcOGrFixwjltzMvLi7Vr13LffffxyiuvAOrPZ/ny5eh06u9idnY2w4cP53//+x/e3rfG8uY1ER0dTWBgIEeOHKF79+6EhoZy9uzZSvvYbDZycnIIDQ0FIDQ0lDNnzlTap2L7cvtUvH4xbm5uuLnJPDbXO1tuLorVjl1xkJmvwc2oNiQpig5FW0jwrn+DAugu07Cxcgrs+BSsJZjDHgBkcvO/gt0h6DV7PYfPFtEqaDdN658GWwoAOp1nLdeu9t2IcZSMoWQMJWOo6pNdH5JUi/596BRNNuyl53b1Tdtbp3Vpg5S9oIAzX33H8Vwte6LUnh6tcEOjCyHMr8THAAEAAElEQVTq1E4aH1zIAU8vcvyC6dOqjsvOC1BaepzMrBWYLeoXIIMhGDe34BqVUWS2ccfba7j3nQ0UlKlJIv3cZT6La23p0qV4enpiNBrp1asXDz30EMOHD0en09GhQwfnfgEBATRs2JD9+9VcYRMmTGDatGl06dKFyZMns3v37irPc+zYMaxWK+3bt3c+5+PjQ8OGDS/Y9/xcOgC7du3i008/xdPT0/lISEjA4XCQkqIG8mPHjuX06dMsXLiQTp068fXXX9O0aVNWrFhR7Xtxfn6eS1m4cGGleqxfv975Wnx8PMnJyWzatInExEQGDhx4QeMCQFpaGomJiQwYMIBRo0Y5nz+/3DFjxlSrzuvXr6903MKFC6t1nMOh5rPr168f//rXv7jtttt49tlnuffee3n//fcr7TtkyBCSkpL47bffiIuLY+DAgZSVqaMZS0tLGTFiBF26dOH3339n48aNNGvWjN69e1Naqq4iNWrUKAYPHswdd9zh0mu4WZw6dYrs7GxnsN+pUyfy8vLYsWOHc5/Vq1fjcDicf5OdOnVi3bp1lXJOrFixgoYNGzqTpnfq1IlVq1ZVOteKFSvo1KnTtb4k6RorWr8ejaIlv/QsOuMJhLMhSYeitYJPJIS3go6XeR9J+h+U5oCtjDKN+v5ncHFHmXSh7GIzh88WEWDMYVyrj+gfuxS79RQAekNALddOqgkZQ50jYygZQ1WXS0dKrVu3jrfffpsdO3aQkZHB999/z3333ed8ffjw4Xz22WeVjklISOCXX35xbufk5DB+/Hh+/PFHNBoN/fv3Z/bs2Xh6nusl2L17N2PHjmXbtm0EBQUxfvx4nnnmGVdeiiT9JdblqlPnFECnKDwQ4uvS8k9PmcqaE+mc0RRAnvqcFvXLic5WSr7Bgztuj+XHv/cCFwedVqt6Qje3UFq2/BiTMRKNpma97SeyS8gvtaJRINTbSPv6/gS5OAn7X8Gk17JvakKtnbum4uPjmTdvHgaDgfDwcHQ6HUuWLLnscSNHjiQhIYFly5bx66+/8vrrrzNjxgzGjx9/JVWvxMPDo9J2UVERo0ePZsKEC5fGrlu3rvP/Xl5e9OnThz59+jBt2jQSEhKYNm0aPXr0IDY2lvz8fNLT0y/oWbRYLBw9epSEhMv/3Pr27Vsp0IyIODe11MPDg5iYGGJiYujYsSOxsbF8/PHHPPfcc8590tPTiY+Pp3PnzsyfP79S2eevVFPd3rC2bdtWOi4kpHrJcQMDA9HpdDRp0qTS840bN2bDhg2VnvPx8cHHx4fY2Fg6duyIn58f33//PX/7299YtGgRqampbN68GU35tJ9Fixbh5+fHDz/8wKBBg1i9ejVLlixx9mgKIXA4HOh0OubPn8/f/va3K7qG61VRURFHjhxxbqekpJCcnIy/vz/+/v5MmTKF/v37ExoaytGjR3nmmWeIiYlx/v41btyYxMRERo0axfvvv4/VamXcuHEMGjTI+bs7ePBgpkyZwogRI5g0aRJ79+5l9uzZzJo1y3nexx9/nG7dujFjxgx69+7NF198wfbt2y/4vZNuPNtPneJoHR/cUtai0Zw3GkrR4y3M0H0ytBhw+YJs6qhkhnyD2VoXzpRilNP3rrmCUrUxuY53EQBarSchwfdgNIbj59u+qkNvCTdSHCVjKBlDnU/GUNXj0kapiozujzzyCA888MBF90lMTGTBggXO7T8PCR8yZAgZGRmsWLECq9XKP/7xDx599FEWLVoEQEFBAT179uTuu+/m/fffZ8+ePTzyyCP4+vry6KOunHwkSddejlWdp726XUMae5pcXr75eCqFej04QNEGoygeaE3qG//n0R1YG3g//4qKc3mDVFbWGrKy1wDqEsZeno2uqJy8UnVaY4MgT1ZM7HaZva9fiqJc8RS62lARBJyvcePG2Gw2tmzZ4hx6np2dzcGDByt9AEdGRjJmzBjGjBnDc889x4cffsj48eOdvWXn5yaIjo5Gr9ezbds2ZxCUn5/PoUOHLtn7U6F169bs27fvgnpWRVEUGjVqxKZNmwB48MEHmTRpEjNmzGDGjBmV9n3//fcpKSnh73//+2XL9fLywsurelNKHQ4HZrPZuZ2WlkZ8fLxzNRbNn7781eT6KphMpis6zmAw0K5dOw4ePFjp+UOHDhEVFXXJ44QQCCGc11VSUoJGo6k06rNiu6IncfPmzZV+F3744QfefPNNNm3aRERExBVfw/Vq+/btxMfHO7cnTpwIwLBhw5g3bx67d+/ms88+Iy8vj/DwcHr27Mkrr7xSKUZauHAh48aNo3v37s5Ouzlz5jhf9/Hx4ddff2Xs2LG0adOGwMBAXnrppUqxUefOnVm0aBEvvPACzz//PLGxsSxevJhmzZr9BXdBulaEQ7A3Ow+bToPRro4qDs8pRDRtT26ZDhMW0F1+xAIAtjL2esTwaWkdtpaqI6zl9L1rx2p38PPe0+xNU3NvBniocY+7exSNG79em1W7rtxIcZSMoWQMdT4ZQ1WPS/+6e/XqRa9evarcx83N7ZK5C/bv388vv/zCtm3bnMMM33nnHe655x6mT59OeHg4CxcuxGKx8Mknn2AwGGjatCnJycnMnDlTNkpJNwSHEIzbf4I9hSVkW9Xg0fcKRrNcjq3MzFkzWPRqr5veoxcOnYG4I79gKs1lUctETB4musZcfG72lSosOsCu3SOd24YrGHZeZLbxyKfbOHJWrbuvnLJX62JjY+nXrx+jRo3igw8+wMvLi2effZaIiAj69esHwBNPPEGvXr2Ii4sjNzeXNWvW0LhxYwCioqJQFIWlS5dyzz33YDKZ8PLyYtiwYTz99NP4+/sTHBzM5MmTL/gwvphJkybRsWNHxo0bx8iRI/Hw8GDfvn2sWLGCuXPnkpyczOTJkxk6dChNmjTBYDDw22+/8cknnzBp0iRA7Q186623eOqppzAajQwdOhS9Xs8PP/zA888/z7Rp0y74sv7nYAOgadOm6PWVf0eLi4t59dVX6du3L2FhYWRlZfHuu++SlpbGgAHqaIW0tDTuvPNOoqKimD59unOZY6DKHD9wrvevqKiIzMxMkpOTMRgMF/TQna+q0ToVAe3TTz/NQw89xB133EF8fDy//PILP/74ozPh9rFjx/jyyy/p2bMnQUFBnDp1ijfeeAOTycQ999wDQI8ePXj66acZO3Ys48ePx+Fw8MYbb6DT6ZwNMxW/FxW2b9+ORqO5bONIda7henTnnXdWmSx3+fLL50rx9/d3dtBdSosWLSpNfbiYAQMGOH8HpZtD8ZYMbFYNaEAp/z2LPVNA1h1x5KaBVrGAthqjjB0OsJuZXm84v2Sf++IXZJCfwdfKT3syePyLZHzd8vhbw5U0ClSnJul0N0eeGEklYyiVjKFkDHVJLlkH8CK4yDKDw4YNEz4+PiIoKEjExcWJMWPGiKysLOfrH3/8sfD19a10jNVqFVqtVnz33XdCCCGGDh16wVKbq1evFoDIycmpVt1cvbyzJNXEvsISEbI6yflotmGPsNgdLivf4XCI9MmTxadD/iGmD+ztfLwz6kfx3799JPY1bCT2NWwkPv6/b4TdheetcPbsCrFyVbT4bV1b8ccfT4v8/F01LmP1gTMiatJS5+PlJXtdXs9r6WZbzrhCxXLGPj4+wmQyiYSEhErLGY8bN040aNBAuLm5iaCgIDF06NBK7/FTp04VoaGhQlGUKpczbt++vXj22Wedx0VFRYlZs2ZdUJ+tW7eKHj16CE9PT+Hh4SFatGghXn31VSGEEJmZmWLChAmiWbNmwtPTU3h5eYnmzZuL6dOnC7vdXqmcxYsXi9tvv114eHg4l1v+/PPPK+1zsSWZKx4nT568oG6lpaXi/vvvF+Hh4cJgMIiwsDDRt29fsXXrVuc+CxYsuGSZl3OxY6Kioqo8Zs2aNRc9ruJnUeHjjz8WMTExwmg0ipYtW4rFixc7X0tLSxO9evUSwcHBQq/Xizp16ojBgweLAwcOVCrj119/FV26dBE+Pj7Cz89P3HXXXWLz5s2XrFt1lzOu7jXUlCuWM75VyPtxfbGazWLTpM/EGy+9Kia/9JLzM3/uiB/E3NGrxNzRq8SPE94U4siqyxdmKRFisre477tPRMjqJPHPP1LFp6cyRZHVdu0v5BY1d/VhETVpqXjx/8aLlauinY8//niqtqtWa2QMJWMoGUPdejGUIoQL1gu/CEVRLsgp9cUXX+Du7k79+vU5evQozz//PJ6enmzevBmtVstrr73GZ599dkEranBwMFOmTOGf//wnPXv2pH79+nzwwQfO1/ft20fTpk3Zt2/fBS2HAGazudJQv4KCAiIjI8nPz79pMtZLN45NuUU8kHyEOkY9cxtHEedhxF/vukGL1owMjsTfxS+3NcQhbKC4o9HXRe/ei+DM7ZRm/87egGjaPf8EA9tGuuy8FTIyvmPf/qfx97+dVrd9ekVlfLfzFBO/2kWrur688UALYoM90dxA0wfKyspISUmhfv36GI237hLOV6K4uJiIiAhmzJjBiBEj/vLz5+Tk0L17d7y9vfn5559xd3f/y+sg/fWq+pstKCjAx8dHxgzl5P24vpzat5fDc1exKagAU14m4vQxANx8x6Iobmiwc7v3hzR77HGo16Xqwkpz4c169Go1jyTvJnzWvD4JgTVfNVeqvtd/2s8H647x2l1LCdH9SoD/HfgH3EFIcO8aLw5zs5Ax1JWTMZRUG1wRQ/2lk3MHDRrk/H/z5s1p0aIFDRo0YO3atc6lLK+F119/nSlTplyz8iWpOsrsDpZn5/N7XjEAoQY9HX1dv8yvPTcXm1avNkgBbj7/ACWfhoe+pKTsNM/cMRqAnu7VzC9RTbm5Wzh9ejFFxYcB0OmqNz/8fHtO5TNzxUFSs0sAqOPnTsPQmpcj3TiSkpI4cOAA7du3Jz8/n6lTpwI4h7P/1fz9/Vm5ciXvvvsumzdvvqafTZIkSVcr96dlaBUPFKuZO1etYU3TitwlWurXL6SX4UWU/OOgq2JBIIcDNs2GswcAKCtflEQmOL92ftyVzvx1x0jPLSTG9yie2gwAAgO7U6fOw7VcO+lGIWMo6WZRqxnjoqOjCQwM5MiRI3Tv3p3Q0NALlnm02Wzk5OQ454aGhoZy5syZSvtUbF9q/uhzzz3nTCoK50ZKSdJf6bP0LCYfSXduB7o4YaMtN5fT777HpkPHyLwtBmyW8lcMBGWdpk76epIDY4iP1BIeHsHtsa7NJXXw0MsUFx9ybhvdwmpcxmebU1lz8Nyc8AZBHlXsLd0spk+fzsGDBzEYDLRp04b169cTGOja38+aCAgI4KWXXqq180uSJFVX0e49WH07UmYpRSsc572ixU05hVKSVb5ZRUdU2g5Y+bJz06xTF14x3kAjlG80H21IYU9aPv1jl3BP/ZXO53V6OTJNqhkZQ0k3g1ptlDp16hTZ2dmEhalfXjt16kReXh47duygTZs2AKxevRqHw+FcKrJTp078+9//xmq1OpOirVixgoYNG+Ln53fR87i5uV2wyp8k/dWOlqhTSGPd3WjiaWJMpGuHZRcsWULKmi2cDDwXlCoaXxRFQeMo44zJjz3Nu7BgbKJLz1vBYlED37qRIzCaIgkN6VPjMnKL1Ya0hzvWpXujEDrH1DxJunRjadWqFTt27KjtakiSJN2QtoeEku2RRa75LI7y5MYCBUVR8MjcAR7q6GxMF4+RASjLU//1DIV2IyjThIENjFo5UupaKSi1AnBndBEIcHMLwcMjjgD/qldNk6TzyRhKulm4tFGqqozu/v7+TJkyhf79+xMaGsrRo0d55plniImJISEhAVAzyScmJjJq1Cjef/99rFYr48aNY9CgQYSHhwMwePBgpkyZwogRI5g0aRJ79+5l9uzZzJo1y5WXIkkuU2SzM/v4GdbmFALwSJ0g/hHh+h4MS1YmFqMHUIjQ+WMwdkOjVUcPHvLw4OmEf9Ohvr/LzyuEA7PlLDZbAQCRkf/AaKzZKKmCMitnC8ycLVQb7ro0CCS+0a2ZS0GSJEmSqivXVJ6zxWHDUT6ySdGoK/oasULXf0FIM/CtYoaATf3sfbfeULb4PUhWTiEgcJMjpa6ZwjK1UcrXZMFSArEx/yYkpHct10qSJKl2uLRRavv27c6lCgHnlLlhw4Yxb948du/ezWeffUZeXh7h4eH07NmTV155pdIopoULFzJu3Di6d++ORqOhf//+zJkzx/m6j48Pv/76K2PHjqVNmzYEBgby0ksv8eijj7ryUiTJZZZk5vHOiXPTUqOMrs3lBGA3W9mXms5pXy3YQKv4o9XXJ+7QF5hKs1gY1QyIpkuM6xvDdiY9TF7eFue2voZDz7OKzNzx1hpKLHbncz4mufy0JEmSJFVFCIFDo0GxlFHvjJ1d5SOwNRo1vNdq7HD3y5cvyFZGvtaTVwLuhWy1g0mnQJBefha7khCCSd/uZm9aAVpHGo38cxF2dZS5TicXDZAk6dbl0kapO++8k6oW81u+fPlly/D392fRokVV7tOiRQvWr19f4/pJUm04a1Z7w1p5ufNInUC6+bsucbcQgvQnn+JYhp0kx7lRiopGTaAenJmETVip36Y3yY/dja+Ha6exCuEgL28rABqNgcDAu9FoTDUq4+DpQkosdrQaBR+TnqgAd26r6+vSekqSJEnSzSZ7mfq5r8/LhtIScj3Vz1+9Xo0zqj37zmamqDyPlFaBt+MiaeRhJMDFuS9vdSlZxXy1/RRBpkxe6zoNjSKwli8OrtPLRilJkm5d8tNGkq4RuxCcNltJK2+U6uDrwYBQ106fs+flUfDTTxS2vw/MgMYLra4uWrdWALzXpRervVrzQpfbXN4gBWCzqUP8AbrdsQuNpmajwOwOQWb5lL02UX58NbqTq6soSZIkSTel/CR18RRFqCON/Yvt2N2i0AX1prgQtLpLdxRXYjdjLv/8dtdoGBwu8zleC/nleaQaBuaiUQSKYsTdvS7u7tF4eTap5dpJkiTVHtkoJUnXgBCC3jsOk1xY4nzOV6d1+XnsuXkAmLVqQKrVR6Mz3YF7aS5BWSt4t3EbrFo9oT5Gl55XCEF29lqKitTlozUaU40bpI5nF3P/e5vIKU9u7u/u+mmNkiRJknQzOpt6jNLCQoQJsmwmwoFSrxYInwTMagpL3HTW6hVmM2PWqB1XbhqZ3PxaMNvszryZQR7l+aR8bqN164W1WS1JkqTrgmyUkqRroMThcDZIGTUK/nod3QNcNzRbCMHZ6dM5tXYPZ1rdzXFtMmAAxQ2//BRaJ8+mUG/ivrvCaNCxD/ENXZs0PC9vK7t2j3RuG/RVrOpzCVtTcpwNUlqNwp0Ng1xWP0mSJEm6WQkh2PX227h5x1NYpuO2EwfI9DXh0BpRgJjGOgJOfkak99GqCzrzB/z2JpzdT2l5x5JMbu566w9nMvKz7dgdZqJ9ThHpeQoAnc516RwkSZJuZLJRSpKugVyrOnJJryik3NECRXFtkGc5coTsjxewsVUTrI4cKFSDSUVxB1HMF03uYktgU754bCS+12AEUmnZSQAMhiB8fdoSGtq3xmVUDGPv3TyMGQNbYtS7fiSZJEmSJN1szhw7xsbAYFD24XkmB4PDBoBQdChA+4aH8cv9BvQNqy5oywew7wcAzD4tADBVOxGVVF0bj2Rjtjl4vNXHtAja53xeJjeXJElSyU8eSXIhhxCM+SOVvjsPA+Cn17q8QQrAlpOL1c0Dq6MMAI2+IVq3VmgNjTGbs/ks7h5Ohkbjbbw2K+eouaTA17c9zZvPJSioZ7WPTTqRy2MLd7BoywkAAj0NskHqOjJ8+HAURUFRFAwGAzExMUydOhWbzXZV5a5duxZFUcjLy3NNRashJSWFwYMHEx4ejtFopE6dOvTr148DBw5U2m/p0qV069YNLy8v3N3dadeuHZ9++mmlfVJTU1EUheTk5Gqf/+WXX6ZRo0Z4eHjg5+fH3XffzZYt51aqTE1NZcSIEdSvXx+TyUSDBg2YPHkyFoulynIzMjIYPHgwcXFxaDQannjiiWrVZ968ebRo0QJvb2+8vb3p1KkTP//8s/P1nJwcxo8fT8OGDTGZTNStW5cJEyaQn5/v3OfTTz91/n78+XH27LlVRs1mM//+97+JiorCzc2NevXq8cknn1Sqz3/+8x/nuSIjI/nXv/5FWVlZldfw3Xff0bNnTwICAmr885Ckm0XmmbOgKGiEgl1TjKM8zLDp1E4o7YY31Cd0l8klaSkC4OdWz/BVh1cBOVLqWsgrUd/TGwWeAcDNLRQPjzhCw+6vzWpJ14CMoWQMJWOoKyNHSkmSC6WWWlh8Ns+53dzT3aXlCyGwnjxJ2cFjZEXFAfmAgsGzN4FZu2mU9DKbgxswumknbu/YAY2Lg8uiokMUlxwlPz8JuLKh5++uOcrK/Wec21EBHi6rn+QaiYmJLFiwALPZzE8//cTYsWPR6/U899xztV01ACwWCwZD1SMArVYrPXr0oGHDhnz33XeEhYVx6tQpfv7550pB3TvvvMMTTzzBpEmTmDdvHgaDgR9++IExY8awd+9epk+ffsX1jIuLY+7cuURHR1NaWsqsWbPo2bMnR44cISgoiAMHDuBwOPjggw+IiYlh7969jBo1iuLi4irPazabCQoK4oUXXmDWrFnVrk+dOnV44403iI2NRQjBZ599Rr9+/UhKSqJp06akp6eTnp7O9OnTadKkCcePH2fMmDGkp6fzzTffAPDQQw+RmJhYqdzhw4dTVlZGcPC5acIDBw7kzJkzfPzxx8TExJCRkYHD4XC+vmjRIp599lk++eQTOnfuzKFDh5zB/MyZMy95DcXFxXTt2pWBAwcyatSoal+7JN1MbOVfukIdvmAvwlHe+aVF7YjSuhkhoAl0GFN1QdYyUo3h/MO7t7pYCuB9DfJf3qp2HM/lzZ8PcPCM2pGnU9RGwDatP8dkqlubVZOuIRlDyRhKxlBXQNyC8vPzBSDy8/NruyrSTWZ7XpEIWZ0kWm7YK3bmFwuz3e7S8tNfflns6NxDzPnbADF9YG8xfWBvMeOh+8Xc0avEt30nizW3dRRDhr8hhKXUpecVQgizOUusWt1QrFwV7XwcPvxmjcu5790NImrSUjH5h73i5z3posxqc3lda1tpaanYt2+fKC11/c/hWhs2bJjo169fped69OghOnbsKHJycsTQoUOFr6+vMJlMIjExURw6dMi5X2pqqrj33nuFr6+vcHd3F02aNBHLli0TKSkpAnWZRudj2LBhQgghCgoKxODBg4W7u7sIDQ0VM2fOFN26dROPP/64s9yoqCgxdepUMXToUOHl5eU8dv369aJr167CaDSKOnXqiPHjx4uioiIhhBBJSUkCEKmpqZe81hMnTgi9Xi8mTpx4wWtz5swRgPj999+FEMJ5DUlJSTW/qeUqPntWrlx5yX3eeustUb9+/WqX+ed7VVN+fn7io48+uuTrX331lTAYDMJqtV709bNnzwq9Xi/++9//Op/7+eefhY+Pj8jOzr5kuWPHjhV33XVXpecmTpwounTpUq16u+Lncb6q/mZlzFCZvB+1b+vy5WLy5MniwxfmiPdGPS7+m3CnmD6wt/jP8Nli7uhVouTzcdUr6L/3iW0zOomQ1Uki+rddYuL+42JHXtG1rfwtZOKXySJq0lIx6r2JYt43dztjJ4slr7ardl2TMZSMoS5GxlDn3IwxlJy+J0kukGe18eaxDOacUEcABRt0tPJ2x+DiVWxKk5LICgzDYj+3qp+ijwEgJVjL8IQXOBbXFvSuXW0PoLT0JEJY0Wjc8PXtQGDg3YSHD6j28YVlVnafyuNsgdodm9gslMRmYbjdCr2yQoCluHYeoppLglfBZDJhsVgYPnw427dvZ8mSJWzevBkhBPfccw9Wq5ofbOzYsZjNZtatW8eePXt488038fT0JDIykm+//RaAgwcPkpGRwezZswGYOHEiGzduZMmSJaxYsYL169ezc+fOC+owffp0WrZsSVJSEi+++CJHjx4lMTGR/v37s3v3br788ks2bNjAuHHjAAgKCkKj0fDNN99gt9svel3ffPMNVquVp5566oLXRo8ejaenJ59//vlV3z9Qeybnz5+Pj48PLVu2vOR++fn5+Pv7u+ScVbHb7XzxxRcUFxfTqVOnKuvj7e2NTnfxgdX//e9/cXd358EHH3Q+t2TJEtq2bctbb71FREQEcXFxPPXUU5SWljr36dy5Mzt27GDr1q0AHDt2jJ9++ol77rnHRVcoSTcvq7l8kRA0OIQFR/moaKU8K4fWUM2JEDYzZkUdXRXupmdGo7q09pGjl11FzZ0pGBC3lFi/YwAYDIEywfmVuIHjKBlDXT0ZQ938MZScvidJLrAoI4dZx89NSYswuj65OEBRVgal4eWr1OnDcXPvh2dJJp5ntvGLlxut6/oyqJ3rh4QLISgzZwDg4R5Dm9aLanS81e6g56x1ZOSfm+vsY7o2+a6uS9YSeC28ds79fDoYruxLhhCCVatWsXz5cnr16sXixYvZuHEjnTt3BmDhwoVERkayePFiBgwYwIkTJ+jfvz/NmzcHIDo62llWRZAQHByMr68vAIWFhXz22WcsWrSI7t27A7BgwQLCwy+8V3fddRdPPvmkc3vkyJEMGTLEmQsgNjaWOXPm0K1bN+bNm0dERARz5szhmWeeYcqUKbRt25b4+HiGDBnirNehQ4fw8fEhLCzsgvMZDAaio6M5dOjQFd27CkuXLmXQoEGUlJQQFhbGihUrCAwMvOi+R44c4Z133rmq4e6Xs2fPHjp16kRZWRmenp58//33NGnS5KL7ZmVl8corr/Doo49esryPP/6YwYMHYzKZnM8dO3aMDRs2YDQa+f7778nKyuKxxx4jOzubBQsWADB48GCysrLo2rUrQghsNhtjxozh+eefd+0FS9JNxl5spXBHAQCW3OOUFaVjdS/viFLUTh6tvprhvbUUi0b9LHZzcSeaBAVlVgxaCxpFzSfUtOl/8PVpg6LIe11jN2AcJWMoGUPJGKr65LuiJLnAGbPay9HBx4Nn64fycoxrPzgz577Lrr5D2R4Zy2G92jhktHuiaEzEHv2Bpvs/5b676vPdY10Y2C7SpecWwsH2HQPYu1ftPdHpfWpcRk6xxdkgVcfPxN2NQ4gLkT2F16ulS5fi6emJ0WikV69ePPTQQwwfPhydTkeHDh2c+wUEBNCwYUP2798PwIQJE5g2bRpdunRh8uTJ7N69u8rzHDt2DKvVSvv27Z3P+fj40LDhhStGtW3bttL2rl27+PTTT/H09HQ+EhIScDgcpKSkAGqv4+nTp1m4cCGdOnXi66+/pmnTpqxYsaLa9+JyeRdADSzPr8f69eudr8XHx5OcnMymTZtITExk4MCBlZJZVkhLSyMxMZEBAwZUmud/frljxlwmP0y59evXVzpu4cKFztcaNmxIcnIyW7Zs4Z///CfDhg1j3759F5RRUFBA7969adKkCS+//PJFz7N582b279/PiBEjKj3vcDhQFIWFCxfSvn177rnnHmbOnMlnn33m7Olbu3Ytr732Gu+99x47d+7ku+++Y9myZbzyyiuXvaeSdCuzZhRhtzrIdpjIyUkBhw17+Yp5ikb9fNboL/O+tfc7mNsezux1NkoZZIJzl3n9p/3c8dYa9p7MJMCYA4Ci6AgJvhejsZYaVqS/jIyhzpExlIyhqkuOlJKkq2BzCPYXl5JSqk5JuzvAm/FRIS4/T+7nn3MyujO5ln0o5XnuHIY6aIClUa1JievI6A53uPy8ADZbPgUFamJzRdERFNSjxmWoQ9jBz13Phkl3ubR+NwS9u9rTVlvnrqH4+Hhnwsrw8HB0Oh1Lliy57HEjR44kISGBZcuW8euvv/L6668zY8YMxo8ffyU1r8TDo3IvZVFREaNHj2bChAkX7Fu37rnRgl5eXvTp04c+ffowbdo0EhISmDZtGj169CA2Npb8/HzS09Mv6Fm0WCwcPXqUhISEy9atb9++lQLNiIiISvWOiYkhJiaGjh07Ehsby8cff1wp4Wl6ejrx8fF07tyZ+fPnVyr7/JVRvL2rt3x427ZtKx0XEnLuPaliNSCANm3asG3bNmbPns0HH3zg3KewsJDExES8vLz4/vvv0esvPqrxo48+4rbbbqNNmzaVng8LCyMiIgIfn3MN2I0bN0YIwalTp4iNjeXFF19k6NChjBw5EoDmzZtTXFzMo48+yr///e8q76kk3cocNoEdB5ut9bhPbANA594DjS4cjTYAN6UQRXeZL4I7FkDWQQDMGnWUleEarBR8K3I4BB+uP0agMZM3b38bd73aIafTeV+T1ZhvGTdQHCVjKBlDyRiq5mSjlCRdhVF/pPJz1rmlPv2qO2S+BoQQ2AryMGvVYEZjaITOrQ2KNhgcdpLq1yWmeXM6xVx8OOvVslrV69Nq3el2RzKKUv0cUIfOFPLR+mPOUVK31JS98ynKFU+hqw0VQcD5GjdujM1mY8uWLc6h59nZ2Rw8eLDS0OXIyEjGjBnDmDFjeO655/jwww8ZP368s7fs/NwE0dHR6PV6tm3b5gyC8vPzOXToEHfcUXUja+vWrdm3b98F9ayKoig0atSITZs2AfDggw8yadIkZsyYwYwZMyrt+/7771NSUsLf//73y5br5eWFl1f1Rv45HA7MZrNzOy0tjfj4eNq0acOCBQvQ/GkKTU2ur4LJZKr2cX+uT0FBAQkJCbi5ubFkyRKMxovnpysqKuKrr77i9ddfv+C1Ll268PXXX1NUVISnpyegDvPXaDTUqVMHgJKSkguuVatV31uEEDW6p5J0q8jJyeHnLz6mTGPE7AhHK9T3U42uDjrFjeb1jxKV93+gu0xeEWv5VPruk7FE9IXjRXL6nosUmm04BDTwTXE2SAEEBfWsxVrdBG6gOErGUDKGkjFUzclGKUm6Cn8UqcMoQww6IowGuge49g3AlpvLsd82sTe2EensBRQ02mB0ih9N9n3Mbm9/XnrwTjr3bO3S8wLY7WXk5m6iqPgwUNHLV7Ok5PPWHuX7pDTndh2/mo/aka4PsbGx9OvXj1GjRvHBBx/g5eXFs88+S0REBP369QPgiSeeoFevXsTFxZGbm8uaNWto3LgxAFFRUSiKwtKlS7nnnnswmUx4eXkxbNgwnn76afz9/QkODmby5MloNJrL9ihPmjSJjh07Mm7cOEaOHImHhwf79u1jxYoVzJ07l+TkZCZPnszQoUNp0qQJBoOB3377jU8++YRJkyYBam/gW2+9xVNPPYXRaGTo0KHo9Xp++OEHnn/+eaZNm0azZs0qnffgwYMX1KVp06YX9IQVFxfz6quv0rdvX8LCwsjKyuLdd98lLS2NAQPUBQLS0tK48847iYqKYvr06WRmZjqPDw0NrfL6K3rxioqKyMzMJDk5GYPBcMncBgDPPfccvXr1om7duhQWFrJo0SLWrl3L8uXLATWY6tmzJyUlJfzvf/+joKCAggI1d01QUJAz4AH48ssvsdlsPPzwwxecZ/Dgwbzyyiv84x//YMqUKWRlZfH000/zyCOPOPMm9OnTh5kzZ9KqVSs6dOjAkSNHePHFF+nTp0+l8/xZTk4OJ06cID1d7TGv+HmEhoZe9p5J0o1u4XvvkY0NtMW0zkhBLyyAgqLo0Dly6Or+PpQeAe19VRdkK28sCW2BxegHFMnpey5wIruEfRlqR56Pm3qPg4N60bTpf9Bo5FeuW5mMoVQyhlLJGOoiXLIO4A1GLmcsuUrT9XtEyOoksa+wxOVlF6xeLXY3bylmDOwjpg/s7XzMHj5XfDjsKzGz/99FqwkLxd60a7O08KHDrzuXL165Klr8vqV3jct4+KPfRdSkpeJfXySJzzaliFO5rr9P16ObbTnjChXLGfv4+AiTySQSEhIqLWc8btw40aBBA+Hm5iaCgoLE0KFDRVZWlvP1qVOnitDQUKEoSpXLGbdv3148++yzzuOioqLErFmzLqjP1q1bRY8ePYSnp6fw8PAQLVq0EK+++qoQQojMzEwxYcIE0axZM+Hp6Sm8vLxE8+bNxfTp04Xdbq9UzuLFi8Xtt98uPDw8nMstf/7555X2udiSzBWPkydPXlC30tJScf/994vw8HBhMBhEWFiY6Nu3r9i6datznwULFlyyzMu52DFRUVFVHvPII4+IqKgoYTAYRFBQkOjevbv49ddfna+vWbPmkvVJSUmpVFanTp3E4MGDL3mu/fv3i7vvvluYTCZRp04dMXHiRFFScu7v32q1ipdfflk0aNBAGI1GERkZKR577DGRm5tb5TVc6p5Nnjy5yuMuxxXLGd8q5P2oPa+/+KKYPHmy+PDZ6WJX48bOuOCdUUvER4/MF2Kyt/rY8d8qy3G800488uUsUW/NTlFnTbIIWZ0kRuw59hddxc1p98k8ETVpqYh57jsxdM5z4r1v7xUrV0WLffufr+2q3XBkDCVjKBlD3XoxlCKEC9YLv8EUFBTg4+PjXKZRkq5Ug3W7KbY7+L1jY+qZ3Fxa9pkZMzj+9Y+sj/LEoYBe3xw0HuiM7XAvOcvUCH8ahXqxeGwXjPqajWCqjl27R5OVtRJ39wYY3cKoU2dItYefF5ttHDlbxJNf7+LI2SI+Gd6Wuxq5PtfW9aqsrIyUlBTq169/yaG70sUVFxcTERHBjBkzLkj++FfIycmhe/fueHt78/PPP+PuLkf33Qqq+puVMUNl8n7UnldfegmrRsPA/CaIXybzS4sGALj5PEaY/gj92/4CzfrDbYNBb7pkOcVz2tKg+UeVnnuxQThj6wZf0/rfzL7efpKnv9nNXXV/Z0ijcysU16s3jgbR/6rFmt14ZAx15WQMJdUGV8RQciypJF0hIQQldjXruLuLczEIITh8fD9/1HMHAUKjQ+/RA721APf84/hm/07KM72h2T3XLHGmzVYIQHT9xwkJ6V2jut8zZz3Hs0ucz/mYLr/6hnRrSkpK4sCBA7Rv3578/HymTp0K4BzO/lfz9/dn5cqVvPvuu2zevNm5zLIkSVJts5d/3Cs2B/bzP/sVLXqtFep1hXaX/yJadi4tDb93bIxRoyHU7RbN+egiBWU2ANrUURd2cXePwd+/C3UiBtdmtaSbnIyhpJuFbJSSpBoqszv46nQOZy02KoYZumtd1yhVkpRE0vT/sMWWDajl6h1qsBh6eiuxR78ntUlblOb9XXbO8505+zPZ2b9RVKTOM9bpatYTXlBmczZI1fEzERPsSfMIn8scJd3Kpk+fzsGDBzEYDLRp04b169cTGHhtEvdXR0BAAC+99FKtnV+SJOnPhBA4lPJYw2HDUalDSotWsYL2Mg1LlmIwF1Iq1A41g4LLR3nfanKKLew6mcfeNDWXlLtezTUaFNidmJhnarNq0i1CxlDSzUA2SklSDS0+m8szh045t900CiYXNkrlfPUVeQ4fIBuzHvQEYdC3BaDIT8ukO8fx2Oi+Ljvf+YRwsG/fkzgc51aSMBqrv4xokdlG0olcADwMWjZMusvldZRuLq1atWLHjh21XQ1JkqTrmsPhQAjYYatDSVkqXQMqOnsUFEWDFhtoLz1lj6wj8MHtYC2hzBQJgFHmNr9qgz/8nQOnC6nnfZy7IlPx1x8BQKe7sVa+km5MMoaSbhayUUqSauisRR2iHevuRidfT+7w80Lrwil0ZzOOUGYIgTLQ6kJwNw5RXxAOsjw1fPvuP9G7sBHsfDZbkbNBKqbBM3h4xOLhEV2tY4vNNu54aw05xRYA/DzklD1JkiRJcgXzmSLyhImMUgPxRb9zOMwfAEWnjo7SKFbQVvG5m5EMVnUUc6lWzfNi0smvAVdDCMHhs0XoFCuT2r2LQVvmfE2v96vFmkmSJN1Y5KeRJNVQRR6pO/y8eDWujsvKdVgsHFu1njUWC3ZHCloUAgtNlBmh7olfiTy1hs2PPX7NGqTgXB4pjcaNqKjRNTr2RE4JOcUWFAWCPN14uGPUtaiiJEmSJN1ShMPBwTkrsRi0eNiKAdA4NOAWi9agJjvXKraqp+9Z1WllO5sM5/9aPAkZORhdnA/zVlNktmF3CHzdissbpDQEBydi0AcQHNyrtqsnSZJ0w5CNUpJUQ6XljVKunLJnz8/naK972d2oM9jtaFEQgMWjMQCbAuqwN3wID93WxWXnPJ/NVsyRo29RUnIMuLJh53klanLP6EAPVj15pyurJ0mSJEm3rKK8XBw2sOsVtELNUq7HHcWzN1p38NNk0siwBrQNL12ITR3F85jffaRm5ADgp5dfA66EEIKJX+1i/eEsQBBgUkeg6fW+NG/2Tu1WTpIk6QYkP40kqYZKHOUr7rmwUars4EEcxWYsqD2gWmN7dG5tcGjU/BCm+oL4rgn0uy3cZec8X1bWKtLS/ufcNhojq33sgdMFPPX1Ls4UqNP+/NzltD1JkiRJcoXi4mLemzmTUk89wurF31K+odDDk4qFUEK76riv+As4+kfV0/fKG6Wyy6fuPRTqz7DwgGtd/ZtSXomV75PS0GssvNL5bcI9zwBqo5QkSZJUc7JRSpKqaXlWPh+dymR/kRrYubtw2HvmgeP82q4eBY5DmDCgaHwx2O3UO/o1pVh57MlBKLFV9IBeJatV7TX19mpBRMTf8PfvWu1jl+3OYG9agXO7SXjNVuuTJEmSJOni0k+coLQ8b5Rffh7R2cXs8vBEQQtA0LHV4Nil7lzl9D01djGXh/6T6ocSbpSdSFeioEwdGV7P56yzQQrA3//22qqSJEnSDU02SklSNc1KPUNyYYlzO8p09cFc8aZNpP97Cr9GBGK1lmBCLVPRuONmzoHCP9jStDv9Yu++6nNVpSKXlKdXE8LDB9bo2IJSNTgb0KYOwzrXo3GYbJSSJEmSJFewm9VRyP4OD2It3tjLF1YRnh4ogN/Z3eCere7sFXbxQvJOQv5JHChYFLUxy03mk7oiZVY7ablqfq4gDzX+cXdvQNs236DXy/hHkiTpSshGKUmqpmK7msdhUv1QOvt60t7H46rLLPj1V6xlOswVCcZ19VC0fmh0dcm3nubNHk8x8s5GV32eSzl6bBZnzvzoHCml11U/oBJCYLULcstzScWFeNEswucyR0mSJEmSVF02sxmHgD/s/vg7SrijvFFKqzPgALS+oZAwG7zCoW6nCws49CssGgCAWXOuM82ocd2qwbeK5JN5PPTBZuwOM21D9nJb8HFAXWlPNkhJkiRdOdlNIknVVLHq3p3+3nTw9URRrj6gK8vL4fM7ixBCLVvveS8+SiNCzyYRWLyWfQ/kMLFH3FWf52KEEBw/Pp/S0uPnRkp5Nq7WsXaH4L73NhH3ws8s2ZUOgJdRtnHfDIYPH46iKCiKgsFgICYmhqlTp2Kz2a6q3LVr16IoCnl5ea6paDWkpKQwePBgwsPDMRqN1KlTh379+nHgwIFK+y1dupRu3brh5eWFu7s77dq149NPP620T2pqKoqikJycXO3zv/zyyzRq1AgPDw/8/Py4++672bJlS6UyR4wYQf369TGZTDRo0IDJkydjsViqLDcjI4PBgwcTFxeHRqPhiSeeqHadKrzxxhsoinLBsUePHuX+++8nKCgIb29vBg4cyJkzZyrt8+qrr9K5c2fc3d3x9fW9aPkVv0PnP7744gvn69999x09evRwnqdTp04sX778svX+7rvv6NmzJwEBATX+eUjSjchmNnPa4cVyWwinrWnkehgBnNP3tN6B0GY4xPWEi8UlZ/ao/+qMmAPOdXLJkVI1tz01B7PNwV2R6/lnywW0CVwNgEHvV8s1k64XMoaSMZSMoa6M/ESSpGoqcwgATNqrb4yyHD/O/tnz+D4zHfcTFSOuFEBPWPrvNN3/KdpwH2j24FWf61IcjlKEUN+4W7X6Hx07rCA0tG+1jk3PK2XXyTzntpdRR5soGZTdLBITE8nIyODw4cM8+eSTvPzyy7z99tu1XS2nywUcAFarlR49epCfn893333HwYMH+fLLL2nevHmloO6dd96hX79+dOnShS1btrB7924GDRrEmDFjeOqpp66qnnFxccydO5c9e/awYcMG6tWrR8+ePcnMzATgwIEDOBwOPvjgA/744w9mzZrF+++/z/PPP19luWazmaCgIF544QVatmxZ43pt27aNDz74gBYtWlR6vri4mJ49e6IoCqtXr2bjxo1YLBb69OmDo3yBB1Dv/4ABA/jnP/9Z5XkWLFhARkaG83Hfffc5X1u3bh09evTgp59+YseOHcTHx9OnTx+SkpKqLLO4uJiuXbvy5ptv1vi6JelGZLNYKENP3dKTNCvbS4Zfxeq4av4onV57uQLUf28bgnmk2oiiVUAnR0rVWH55uoKu9dV76u5en6CgBKKixtRmtaTrjIyhZAwlY6grIG5B+fn5AhD5+fm1XRXpBlL/t10iZHWSSC0pu+qyjiT2Et8MeERMH9jb+Zgx+FExd/Qq8cbAN8Tox2aL5JRMF9T64goK/hDHj38kVq6KFqtWxwmHw1Gj43efzBNRk5aKdtNWiMIyq7DY7Neopjem0tJSsW/fPlFaWlrbVamxYcOGiX79+lV6rkePHqJjx44iJydHDB06VPj6+gqTySQSExPFoUOHnPulpqaKe++9V/j6+gp3d3fRpEkTsWzZMpGSkiKASo9hw4YJIYQoKCgQgwcPFu7u7iI0NFTMnDlTdOvWTTz++OPOcqOiosTUqVPF0KFDhZeXl/PY9evXi65duwqj0Sjq1Kkjxo8fL4qKioQQQiQlJQlApKamXvJaT5w4IfR6vZg4ceIFr82ZM0cA4vfffxdCCOc1JCUl1fymlqv47Fm5cuUl93nrrbdE/fr1q13mn+/V5RQWForY2FixYsWKC45dvny50Gg0lT4b8/LyhKIoYsWKFReUtWDBAuHj43PR8wDi+++/r3a9hBCiSZMmYsqUKdXa1xU/j/NV9TcrY4bK5P34a/3+009i8L/fEb0ee0tMH9hb/OfBPmLmkMfFnJFfirmjV4kTH79SdQG/viRyXwkX3VauccYx9dbu+msqf5PILTaLH3elib9/vEVETVoqvloxQqxcFS1Sj39Y21W7KckYSsZQFyNjqKrd6DGUHCklSZex+Ewurx1Np7R8+p7pKoe8CyE4m5vJxrA0ABS3phi8/4Gnvgfe+ccIqnOa99+dQMt6gVdd94ux20vZvmMgh4+8BoBe71/tqYgnc0oY+vEWJnyhtsT7exjwdNOh18q3kqoIISixltTKQwhx1fU3mUxYLBaGDx/O9u3bWbJkCZs3b0YIwT333IPVqvYejx07FrPZzLp169izZw9vvvkmnp6eREZG8u233wJw8OBBMjIymD17NgATJ05k48aNLFmyhBUrVrB+/Xp27tx5QR2mT59Oy5YtSUpK4sUXX+To0aMkJibSv39/du/ezZdffsmGDRsYN24cAEFBQWg0Gr755hvs5fng/uybb77BarVetDdv9OjReHp68vnnn1/1/QO1Z2z+/Pn4+PhU2TOXn5+Pv7+/S855MWPHjqV3797cffeFiyeYzWYURcHNzc35nNFoRKPRsGHDhis6V2BgIO3bt+eTTz6p8nfR4XBQWFh4Ta9dkm40BafPcmZ9BjY0aMun+es0wRg8+6LRBmJUCgjwM1ddiN3CDu+mHND4OtMQtPJ2v9ZVv6lM+nY34xYlcTZrA39v8gXemj+AmuXhlK7OjRxHyRjq6skY6uaPoWQSGEmqQnqZhTH7jju39YqCp+4yQ+UvI2v/YVa1qI9PfgEAOiUQjdaPtttewlCWw64HZlxV+ZdjsWTjcJSiKFoCA7sTEtKn2scu25PB+sNZzu3YEK8q9pYqlNpK6bCoQ62ce8vgLbjrr+wLiBCCVatWsXz5cnr16sXixYvZuHEjnTt3BmDhwoVERkayePFiBgwYwIkTJ+jfvz/NmzcHIDo62llWxQdlcHCwcw59YWEhn332GYsWLaJ79+6AOlw5PDz8grrcddddPPnkk87tkSNHMmTIEOd8/tjYWObMmUO3bt2YN28eERERzJkzh2eeeYYpU6bQtm1b4uPjGTJkiLNehw4dwsfHh7CwC1esMhgMREdHc+jQoSu6dxWWLl3KoEGDKCkpISwsjBUrVhAYePEG5yNHjvDOO+8wffr0qzrnpXzxxRfs3LmTbdu2XfT1jh074uHhwaRJk3jttdcQQvDss89it9vJyMio0bmmTp3KXXfdhbu7O7/++iuPPfYYRUVFTJgw4aL7T58+naKiIgYOrNnqn5J0M0v5ZR16xQ07ZjSi4ouhGoPc1XofcWmT0Xo8VnUhtjLMiprgvIWnifnN6hFpvPrVg28lx7PVlZdHNv8aX7ezzufd3C6x2qHkcjdiHCVjKBlDyRiq+uTwBkmqQrZVTUzoodUwJjKI+U2jcL/CUUHCZuPMjNmsm/ExpvwSPEvL24R16gfNinrNmdZhGH6NbnNF1S/JZlMbw/R6f1o0n0dI8D3VPja3WJ2H3qtZKItGduDtB1tc5gjpRrR06VI8PT0xGo306tWLhx56iOHDh6PT6ejQ4VxQGBAQQMOGDdm/fz8AEyZMYNq0aXTp0oXJkyeze/fuKs9z7NgxrFYr7du3dz7n4+NDw4YNL9i3bdu2lbZ37drFp59+iqenp/ORkJCAw+EgJSUFUHuZTp8+zcKFC+nUqRNff/01TZs2ZcWKFdW+FwbD5b+8LVy4sFI91q9f73wtPj6e5ORkNm3aRGJiIgMHDuTs2bMXlJGWlkZiYiIDBgxg1KhRzufPL3fMmOrlLVm/fn2l4xYuXMjJkyd5/PHHWbhwIUaj8aLHBQUF8fXXX/Pjjz/i6emJj48PeXl5tG7dGk0NR4i++OKLdOnShVatWjFp0iSeeeaZS+bUWLRoEVOmTOGrr74iODgYqPqeStKt4HRqKpt2bOaQNgOLxoLR53f1BUVtlDIe/wmtYgPdxf+enWwW56p73jot9UxuaF2wUMutpLBMjQV9jUUA1K07ksaN3sTfv3NtVku6TskY6hwZQ8kYqrrkSClJqkLFUPcQg56XYyKurqytW8n7fDElzZoCoNE3RGtogEZXD4SD4k4xdG3Xl7saBV9ttS/KbD7D6dM/UFKiftjodNUf5ZSaVczyP07ze0oOAE3Dvekcc22mF96MTDoTWwZvufyO1+jcNRUfH8+8efMwGAyEh4ej0+lYsmTJZY8bOXIkCQkJLFu2jF9//ZXXX3+dGTNmMH78+CupeiUeHh6VtouKihg9evRFe43q1q3r/L+Xlxd9+vShT58+TJs2jYSEBKZNm0aPHj2IjY0lPz+f9PT0C3oWLRYLR48eJSEh4bJ169u3b6VAMyLi3HuFh4cHMTExxMTE0LFjR2JjY/n444957rnnnPukp6cTHx9P586dmT9/fqWyz18Zxdu7elNF2rZtW+m4kJAQVq1axdmzZ2ndurXzebvdzrp165g7dy5msxmtVkvPnj05evQoWVlZ6HQ6fH19CQ0NrdRjeyU6dOjAK6+8gtlsrjS0/YsvvmDkyJF8/fXXlYbDV3VPJelWsGXjRg75BXLQ7ofGso9WGVmAPxUjpbSOYnXH0OYXL8Bhh5IcMOdTVt4oJVfcq5nMQjO5JRYKyqxoFDsIdcRUVN3RGAw37jSZG9GNFEfJGErGUDKGqjnZKCVJVSgtXy3hSkdHne9w8l4+7e6Jd+ZhfNCjNTTESBCmwlRMJccY+0I/iIy96vNcytFjM8nI+Ma5bTBUv1HpmW93s7W8QQogyMutir2lP1MU5Yqn0NWGiiDgfI0bN8Zms7Flyxbn0PPs7GwOHjxIkyZNnPtFRkYyZswYxowZw3PPPceHH37I+PHjnb1l5+cmiI6ORq/Xs23bNmcQlJ+fz6FDh7jjjjuqrGPr1q3Zt2/fBfWsiqIoNGrUiE2bNgHw4IMPMmnSJGbMmMGMGZWnzb7//vuUlJTw97///bLlenl54eVVvUZeh8OB2XwuB0xaWhrx8fG0adOGBQsWXNCbVpPrq2AymS44rnv37uzZs6fSc//4xz9o1KgRkyZNQqutPC25Ynj86tWrOXv2LH37Vm9lzktJTk7Gz8+vUjD1+eef88gjj/DFF1/Qu3fvSvvX5J5K0s3IbDazyxbOMUcgb2z7P0wCjoQCihq6axrcDgMWgk+dCw92OGB+Nzit/s2bw/oBYHTB6sG3iuSTeTzw3kYU7Py9yReEuGc6X6tJp57kGjdSHCVjKBlDyRiq5mSjlCRVocQFyc0dZjPpPy5n1W9LiAQqlnFWNCbqnNxA/eM/cbRDD4hsX1UxV62sTE2s7u/XFXePaMLC+lf72LTcUgB6NgkhJtiT3i0unK8u3dxiY2Pp168fo0aN4oMPPsDLy4tnn32WiIgI+vVTv/A88cQT9OrVi7i4OHJzc1mzZg2NGzcGICoqCkVRWLp0Kffccw8mkwkvLy+GDRvG008/jb+/P8HBwUyePBmNRnPZ5PuTJk2iY8eOjBs3jpEjR+Lh4cG+fftYsWIFc+fOJTk5mcmTJzN06FCaNGmCwWDgt99+45NPPmHSpEmA2hv41ltv8dRTT2E0Ghk6dCh6vZ4ffviB559/nmnTptGsWbNK5z148OAFdWnatCl6vb7Sc8XFxbz66qv07duXsLAwsrKyePfdd0lLS2PAgAGAGkzdeeedREVFMX36dOcyxwChoaFVXn9FL15RURGZmZkkJydjMBgqBbfn8/LyuuBaPDw8CAgIqPT8ggULaNy4MUFBQWzevJnHH3+cf/3rX5WmA5w4cYKcnBxOnDiB3W531iUmJgZPT09+/PFHzpw5Q8eOHTEajaxYsYLXXnutUjLURYsWMWzYMGbPnk2HDh04ffo0oAaDPj4+l7zuivOmp6cD534eoaGhl71nknQjsdtsWFC/gASVlVFgKv/So1e/nGo9fC/eIAVgLnA2SAGYjX6AHClVE3tO5eEQ0DQgha4R50boGI110Gj0VRwpSReSMZRKxlAyhrokl6wDeIORyxlLl3OsuEz8ffdR0fX3fSJkdZIYmHTkiss6/dZbYl33fmL6wN7izUF9xMzBo8Wsh58V7zy6Qrx7/2TRfdxHYvUfGS6sfWU2W6nIzt4oNm66U6xcFS2ysn6r9rHFZqvYlpItGr/4s4iatFSkZBZds3reTG625YwrVCxn7OPjI0wmk0hISKi0nPG4ceNEgwYNhJubmwgKChJDhw4VWVlZztenTp0qQkNDhaIoVS5n3L59e/Hss886j4uKihKzZs26oD5bt24VPXr0EJ6ensLDw0O0aNFCvPrqq0IIITIzM8WECRNEs2bNhKenp/Dy8hLNmzcX06dPF3a7vVI5ixcvFrfffrvw8PBwLrf8+eefV9rnYksyVzxOnjx5Qd1KS0vF/fffL8LDw4XBYBBhYWGib9++YuvWrc59FixYcMkyL+dix0RFRV32uPNdbCnkSZMmiZCQEKHX60VsbKyYMWOGcDgclfYZNmzYRc+/Zs0aIYQQP//8s7jtttucP5eWLVuK999/v9J979at20XLqPi9uJRL3bPJkyfX6Nr/zBXLGd8q5P34a/zfe++Jjs8tFFGTlooN7dqKb+K7iOkDe4t3H3lBzB29Spz5aualDy7IEGKyt8iZFik+PXlWPLzrqAhZnSSe2H/8r7uAG9yclYdE1KSlYsYP74uVq6LFps09xOkzy0RpaVptV+2mJ2MoGUPJGOrWi6EUIVywXvgNpqCgAB8fH/Lz86s9v1S6tbx5LINZx884t/8eHsBbDSNrXI4Qgt9Gj+A35QyeeQoWoy/epkfwKk7BL/swvh6b6PT2W+jqdXRl9SvZvWcsmZm/OLfbtV2Mt/clclD8Sd+5G9h9Kt+5nfxSD3zd5ao9l1NWVkZKSgr169e/ZEJE6eKKi4uJiIhgxowZjBgx4i8/f05ODt27d8fb25uff/4Zd/cbY7qAdHWq+puVMUNl8n78NT6cPYOPTkdAWQlP7/mUfKOBPA8jRo+2YLiDhxL/IPC+S+SayU2F2S15MfZffBh+n/PpR+sEMTX2+s8tUpv+SM/niS+SSc8rpcRi5d/xx6ivn0NAwJ3c1vLj2q7eLUHGUFdOxlBSbXBFDCWn70nSRRSXT9u7J9CHQWH+dPWr+bzc0r1/cOCnn9iRfxZP1GG07lZPMEGdkxsIO/075n+OuaYNUgDFxYfVc7vXx9urJV5eFx+a+mdCCPZnqCv11Qtwp1tckGyQklwuKSmJAwcO0L59e/Lz85k6dSqAczj7X83f35+VK1fy7rvvsnnzZucyy5IkSX8lq82GHYW+Z37meMC5QN4hjGgArV576YNtas6VM25qXpMWXiaae5p4pI5coORylu89zeGzRbQL2cmIZv9Dr1VX3tPrLj0lRpJqi4yhpJuFbJSSpIuoSHDezMtEz8CaByLC4eDEiBGcjFZXaRCKHq02FI2pCwApnr781qgHYwddPgHg1bLZ1JFOzZq+g5dX42ofV2KxY7WrAyl/evx23A3y7UK6NqZPn87BgwcxGAy0adOG9evXO5NE1oaAgABeeumlWju/JEm3ttKDOSj5BhwC3O1qTkeNoRGK4oGiV0c6G4xVNUqVAWDWqj3Wfw8P5OHwgGtb6ZtEoVlthOrTKMXZIAUa/Pw61V6lJKkKMoaSbgbyW6YkXUTpVSY4dxQUcFYDv4dmEZAOWn0MBo9euBdnYMrbQ067AB4e8zjBIdduZYTU1PcoLNqP1ZoLgE5XvWkWxzKLeO2nA+QUqz2teq2CqaoeWUm6Cq1atWLHjh21XQ1JkqTrRsaafTgQOFCoSFesN8WDu0LzgBSCClfh4dXr0gWUj5Qya9VE6W4auepedRWVqQ1R3m7qPYyN+Tfh4Q+h03nUZrUk6aJkDCXdLGSjlCRdRMWqe+7amjdKWU6eZPeXC1nTLAJ9XgGgQ1FMALTf/gYaYcP99eVEXcMGqZKS4xw9dm55Vq3WHYOher2kX20/xcr95/JpRQd6XnYVD0mSJEmSrl5pSgondydjD3TQ6uzWcy8oOoQ+lW5uM8GeBbr7Ljy4rAA2zIQzf6ibmopGKbnq3uUs2ZVO0olcth/PRq+xYNAUgwPc3IJlg5QkSdI1JhulJOk8P57N46vTOewoKAbAVMNGKXthIcf63sfGuDp4YKfiT0zR+KC1laERNs6Y/LgtLNjVVa/Eas0BQK/3J7r+E3h7t0CrrV6yyIoRUv1uCyexaShtovyuWT0lSZIkSTpnw1df8ZlPAEetgYzM+I48b//yVzRoHYVQkqVueodfePD+H2HDLOemWad2iBnlSKkq5ZdYeeKLJAyaUl7u/CZBphxQ+ybR6a5dB6IkSZKkko1SknSeaUfTOV5mcW5HuOlrdLw1PYNS91Bs2AHQme4EjQmTI4SAzE28nTCCOp26cafntV1NxGZTE5Qb3cKoU2dItY7JLDTzQ3IaySfzAGhXz59ezcOuVRUlSZIkSfqTDSVlbBChgIJO2M97RUOkvRS6PQuR7SE6/sKDy/LUf0ObQ7P+mLVRUOaQI6UuI7OoDIeABn6n1QapcgZDIF5eTWuxZpIkSbcG2SglSecpsKkB4L+jw7jNy53Ovp41On7vtt/5op2WsAwHAtC6tcLo2EWXTS+SGhzFJ198ASZf11e8XFHRQQ4cfIGysnQAtLrq13/WykMs2nLCuR3iLZfhlSRJkqS/isPhwIoGyjNJGcsXXVEUDYqiYMQKjfpBWIuLF2BVk6KPrz+BnxyNKLGqx8ucUpd2MqeEjUeyAQj3tgLg5dWU1q0WodEY0WjkVyVJkqRrTb7TStJ5istzST0Q4keE0VDt46wZGaS9PZ3f0g8RJtQV6xTFiKIo+GWqq+DYPH2vaYMUwOkzP5Kfv9O57enZsNrHpuWqwWyn6AA6RPvTLS7I5fWTJEmSJOnibDYbDs41IBnK4wkUdaSTVrGBtorYxFaGA4WvDXFQHs94ajXEuMtOpos5nV9G/PS12B127qyzkXYhxwA19YGuBp16kiRJ0tWRjVKSVM7qEFjKA0CPGuaSyv/hB04esoCHQKCgNTRGq48DwM2aywnvELT9HnB5nf/MZs0DICxsABHhg/DyanbZY8w2OydzSjhToDaejehan7ubhFzLakqSJEmS9Cd2u11tlBKCyLIMivVqY5KiUVfA1WIFXdWNUmbNubQDa9o1pK7RgIdOrqB7MceyirA5BC2DDzO0ydfO5w2GwFqslSRJ0q1HNkpJErAiK5+V2QXO7Zquuncw/yj/6foHnZPccWgNmDwS8S/eTmDqVg7V82Ps0jVwDVewczhslJSmUFaWBoCXZyN8fG677HFCCPq8s4FDZ4qcz/m61yyPliRJkiRJV89ms2EXCmHm09x3+gfOePmqLwi1IUqrWKseKWUtw6w593qMuxG9nLp3SQWlNgCahqgLvBiNdQgOSiAionq5OCVJkiTXkJkPpVueEILR+47zWbqaU8BXp8VQzaSgllOnOPreu/x0/AD1TqiBn1aojTrhx3dQJ309SlDYNW2QAtiz559s2ZJIds46AHQ672odV2S2ORukAjwMtK/vT7MIn2tWT+n6N3z4cBRFQVEUDAYDMTExTJ06FZvNdlXlrl27FkVRyMvLc01FqyElJYXBgwcTHh6O0WikTp069OvXjwMHDlTab+nSpXTr1g0vLy/c3d1p164dn376aaV9UlNTURSF5OTkap//5ZdfplGjRnh4eODn58fdd9/Nli1bKpU5YsQI6tevj8lkokGDBkyePBmLxVJFqZCRkcHgwYOJi4tDo9HwxBNPVLtOaWlpPPzwwwQEBGAymWjevDnbt293vn7+z7/ikZiYWKmMevXqXbDPG2+84Xz94MGDxMfHExISgtFoJDo6mhdeeAGr1VqpnLy8PMaOHUtYWBhubm7ExcXx008/VVn/7777jp49exIQEFDjn4ckXe9y9pxEoOBpUz+XFXRodHXRunUBwF2Te/FGqaJMWDUVUjdgUdTXNYBOtkddVJHZxtfbT/LrvtMAeLup77k+3rcRG/s87u5RtVk96QYmYygZQ8kY6srIkVLSLa/MISgpz70wvm4w3QOq16ADkP7U02yy6/DXCEBdelmjCQBAb1FzNJnr1ndthS+ioHC3ek69H0ZjOP7+XS97jNXuIC1PraNJr2XHiz2uaR2lG0diYiILFizAbDbz008/MXbsWPR6Pc8991xtVw0Ai8WCwVB1zjer1UqPHj1o2LAh3333HWFhYZw6dYqff/65UlD3zjvv8MQTTzBp0iTmzZuHwWDghx9+YMyYMezdu5fp06dfcT3j4uKYO3cu0dHRlJaWMmvWLHr27MmRI0cICgriwIEDOBwOPvjgA2JiYti7dy+jRo2iuLi4yvOazWaCgoJ44YUXmDVr1iX3+7Pc3Fy6dOlCfHw8P//8M0FBQRw+fBg/P79K+1X8/Cu4ubldUNbUqVMZNWqUc9vL69yy6Xq9nr///e+0bt0aX19fdu3axahRo3A4HLz22muA+jPs0aMHwcHBfPPNN0RERHD8+HF8fX2rvIbi4mK6du3KwIEDK51fkm4GWT8cxO6moC1fdU+HL1qvBwmMLKVF/hxijJtAO/vCA7d/AutnAFDmFgqAm0ZNji5d6KP1x/jPysP4G3PoFHaEOh5HgZotDiNJlyJjKBlDyRjqCohbUH5+vgBEfn5+bVdFug7kWKwiZHWSCFmdJCx2R42O/XB4B/HkmO5i+sDeYubDT4v/DJ8l3hn1g3j30V/F44+8Lh6e/JXYnpp9jWp+zuo1jcTKVdGitDStWvsfOl0gmk3+RURNWiqiJi0VnV5beY1reGspLS0V+/btE6WlpbVdlRobNmyY6NevX6XnevToITp27ChycnLE0KFDha+vrzCZTCIxMVEcOnTIuV9qaqq49957ha+vr3B3dxdNmjQRy5YtEykpKQKo9Bg2bJgQQoiCggIxePBg4e7uLkJDQ8XMmTNFt27dxOOPP+4sNyoqSkydOlUMHTpUeHl5OY9dv3696Nq1qzAajaJOnTpi/PjxoqioSAghRFJSkgBEamrqJa/1xIkTQq/Xi4kTJ17w2pw5cwQgfv/9dyGEcF5DUlJSzW9quYrPnpUrL/339tZbb4n69etXu8w/36uqTJo0SXTt2rXKfS728/+zqKgoMWvWrOpVsNy//vWvSueeN2+eiI6OFhaLpUblVHDFz+N8Vf3NypihMnk/ro3SkyfFlknfi3EvviEmP/APMX1gb/HOwH+IuaNXiRUz/yPEZG/1YS6+8OCfJqmvfdRTHNrwsQhZnSQartv911/EDeLJr5JF1KSl4vNlt4uVq6Kdj8NH3qrtqklCxlAyhro4GUPd3DGUnL4n3fLKypdc1irUKPdCaWkpyxt74GYtXxXHEIfOrQUt/vgf7be9ygtvjuH/Xh5Amyj/a1JvgPz8ZDIyvsXhUIeq6nRelzlCtTU1h8Kyc0OJE5qFXpP6SSohBI6Sklp5iIrVm66CyWTCYrEwfPhwtm/fzpIlS9i8eTNCCO655x7nkOKxY8diNptZt24de/bs4c0338TT05PIyEi+/fZbQB2WnJGRwezZam//xIkT2bhxI0uWLGHFihWsX7+enTt3XlCH6dOn07JlS5KSknjxxRc5evQoiYmJ9O/fn927d/Pll1+yYcMGxo0bB0BQUBAajYZvvvkGu91+0ev65ptvsFqtPPXUUxe8Nnr0aDw9Pfn888+v+v6B2qs1f/58fHx8aNmy5SX3y8/Px9//2rxnLFmyhLZt2zJgwACCg4Np1aoVH3744QX7rV27luDgYBo2bMg///lPsrOzL9jnjTfeICAggFatWvH2229XOTXhyJEj/PLLL3Tr1q1SXTp16sTYsWMJCQmhWbNmvPbaa5f8WUnSzSw7O5uZH3zAT8ZkFJuDDqf/AEBBTVCuz1ip7qhoQHdhrzt2M3Y0bI2+j831+gLgJnNJXVJhmRUQBBrPAuDr24GgoETCwwbUbsWkS7qR4ygZQ109GUPd/DGUnL4n3fLK7OqHjbGaeaQcxcXk/N//+Cl5Px1zTc7nFcWIzlZCUPYeinVGfHyr10B0pUpKUti+o/9559ej1XpU69j8UvUD8IFWEbz5YAv0NUzsLtWMKC3lYOs2tXLuhjt3oLi7X9GxQghWrVrF8uXL6dWrF4sXL2bjxo107twZgIULFxIZGcnixYsZMGAAJ06coH///jRv3hyA6OhoZ1kVQUJwcLBzeHFhYSGfffYZixYtonv37gAsWLCA8PDwC+py11138eSTTzq3R44cyZAhQ5y5AGJjY5kzZw7dunVj3rx5REREMGfOHJ555hmmTJlC27ZtiY+PZ8iQIc56HTp0CB8fH8LCwi44n8FgIDo6mkOHDl3RvauwdOlSBg0aRElJCWFhYaxYsYLAwIuv7HTkyBHeeeedqxruXpVjx44xb948Jk6cyPPPP8+2bduYMGECBoOBYcOGAeqw8wceeID69etz9OhRnn/+eXr16sXmzZvRatUvyBMmTKB169b4+/uzadMmnnvuOTIyMpg5c2al83Xu3JmdO3diNpt59NFHmTp1aqW6rF69miFDhvDTTz9x5MgRHnvsMaxWK5MnT74m1y9J16v09HQs5X9fQlhxlDcolbjpcEfN+UjdrhDXEzQXWUnPZmFe5ENMoxMcOgVUP6a5lew6mceRs0WkZBVj0FpQUGOhli0+RKerXvwk1Y4bMY6SMZSMoWQMVX3yE0u65VWMlDJVM4DL/3Epu//7LmdKTzmfUzR+KNpAtLYyfq7XgWV9x6C/xkswl5QeB0Cr9cTf/3biYl9AUaq+htSsYmauOMTKfWcA8PMwyAYp6QJLly7F09MTo9FIr169eOihhxg+fDg6nY4OHTo49wsICKBhw4bs378fUD9op02bRpcuXZg8eTK7d++u8jzHjh3DarXSvn1753M+Pj40bNjwgn3btm1baXvXrl18+umneHp6Oh8JCQk4HA5SUlIAtdfx9OnTLFy4kE6dOvH111/TtGlTVqxYUe17cbm8C6AGlufXY/369c7X4uPjSU5OZtOmTSQmJjJw4EDOnj17QRlpaWkkJiYyYMCASvP8zy93zJgx1arz+vXrKx23cOFCABwOB61bt+a1116jVatWPProo4waNYr333/feeygQYPo27cvzZs357777mPp0qVs27aNtWvXOveZOHEid955Jy1atGDMmDHMmDGDd955B7PZXKkeX375JTt37mTRokUsW7asUqDocDgIDg5m/vz5tGnThoceeoh///vfzrpUdU8l6WZjt9vZbQvjm7JW7DRH4ijPBWXSqx1fXnVawT+WQZfHL16ArYxjpjoABBt0NPU0MrZu8F9S9xvF2YIyHpi3iRe/38yg+i8x/Q71i5ui6NBqr6zjRpIuRsZQ58gYSsZQ1SVHSkm3rDePZTD3xFms5cNyjdrqDXW3nT3D1L8pxG8vwhMdBq9BKNowFEVBlJzgkW8/wMf98m/CV8tmLQDA26sZrW77tFrHvPbTfn4tb5ACCPG+yDQAyeUUk4mGO3fU2rlrKj4+3pmwMjw8HJ1Ox5IlSy573MiRI0lISGDZsmX8+uuvvP7668yYMYPx48dfSdUr8fCo3ItdVFTE6NGjmTBhwgX71q1b1/l/Ly8v+vTpQ58+fZg2bRoJCQlMmzaNHj16EBsbS35+Punp6Rf0LFosFo4ePUpCQsJl69a3b99KgWZERESlesfExBATE0PHjh2JjY3l448/rpTwND09nfj4eDp37sz8+fMrlX3+yije3tVbhKFt27aVjgsJCQEgLCyMJk2aVNq3cePGzmkBFxMdHU1gYCBHjhxx9sT+WYcOHbDZbKSmplYKhiMjIwFo0qQJdrudRx99lCeffBKtVktYWBh6vd7Zc1hRl9OnT2OxWKq8p5J0s7Hb7RyyB1GEDqOwIsobpbTocABa/WU6uexmzBo17ngsMpgxskHqAidzS7A7BE2DU4nyPtep6O3dUiaEvwHcSHGUjKFkDFVBxlDVJxulpFvWkrN5zgYpgC6XmW4nrFbKDhxgfcoxNFF6Zy4pFBONDy8iNON3Nke1wtfj2jb0FBTs5vDh1ygtU4Mqnd6n2seeKSgDIKFpCM3CfXiobd3LHCG5gqIoVzyFrjZUBAHna9y4MTabjS1btjiHnmdnZ3Pw4MFKH9KRkZGMGTOGMWPG8Nxzz/Hhhx8yfvx4Z2/Z+fPdo6Oj0ev1bNu2zRkE5efnc+jQIe64444q69i6dWv27dt3QT2roigKjRo1YtOmTQA8+OCDTJo0iRkzZjBjxoxK+77//vuUlJTw97///bLlenl5VVo5pSoOh6NSb1haWhrx8fG0adOGBQsWoPnTiM2aXF8Fk8l00eO6dOnCwYMHKz136NAhoqIuvfz5qVOnyM7Ovujw/ArJycloNBqCgy/9RdjhcGC1WnE4HGi1Wrp06cKiRYtwOBzOaz506BBhYWEYDAYMBkO176kk3ejsdjt2oTaMjHY4sDvzQalfOLSXG3ltM1OmV99j3eTo5wtkFprZcyofgPoB6uh4H5/WNG70OibTpd//pOvHjRRHyRhKxlAVZAxVfbJRSrplFZW/sX/dsgFNPE34X6YnMn3Ss6TuOUGKfym9088lBlcUN/TmQjTCwYmIuGtaZ4C09C/Jy9/m3PbwiK32sQXlyc1H3h5Nu3rXLgG7dPOJjY2lX79+jBo1ig8++AAvLy+effZZIiIi6NevHwBPPPEEvXr1Ii4ujtzcXNasWUPjxo0BiIqKQlEUli5dyj333IPJZMLLy4thw4bx9NNP4+/vT3BwMJMnT0ZTjaXMJ02aRMeOHRk3bhwjR47Ew8ODffv2sWLFCubOnUtycjKTJ09m6NChNGnSBIPBwG+//cYnn3zCpEmTALU38K233uKpp57CaDQydOhQ9Ho9P/zwA88//zzTpk2jWbNmlc7754AEoGnTpuj1+krPFRcX8+qrr9K3b1/CwsLIysri3XffJS0tjQED1GS6aWlp3HnnnURFRTF9+nQyMzOdx4eGVr34QEUvXlFREZmZmSQnJ2MwGC7oxTvfv/71Lzp37sxrr73GwIED2bp1K/Pnz3f2LBYVFTFlyhT69+9PaGgoR48e5ZlnniEmJsbZ27l582a2bNlCfHw8Xl5ebN68mX/96188/PDDzmWRFy5ciF6vp3nz5ri5ubF9+3aee+45HnroIed9+uc//8ncuXN5/PHHGT9+PIcPH+a11167aK/t+XJycjhx4gTp6enAuZ9HaGjoZe+ZJF2vbDYbdjS0KNhDQfYGCoLVvyWbXY9GX0WjVNpOOLsP8k5gDokHZILzPzuWWUSPWeuwOxyEup8l3PM0AG5uoXh41PwLqyRdCRlDqWQMJWOoS3LJOoA3GLmcsSSEEA1+2yVCVieJY8Vl1do/6d4e4smneovpA3uL6QPvEzMGPSxmPfysmDt6lZg5YJx4dPZysXRX+jWutRC7d48VK1dFiwMHJ4vc3G3CbrdWuX9+qUWM+HSb6D1nnWjw3DIRNWmpOJBRcM3reSu72ZYzrlCxnLGPj48wmUwiISGh0nLG48aNEw0aNBBubm4iKChIDB06VGRlZTlfnzp1qggNDRWKolS5nHH79u3Fs88+6zzuUsvnbt26VfTo0UN4enoKDw8P0aJFC/Hqq68KIYTIzMwUEyZMEM2aNROenp7Cy8tLNG/eXEyfPl3Y7fZK5SxevFjcfvvtwsPDw7nc8ueff15pn4styVzxOHny5AV1Ky0tFffff78IDw8XBoNBhIWFib59+4qtW7c691mwYMEly7ycix0TFRV12eN+/PFH0axZM+Hm5iYaNWok5s+f73ytpKRE9OzZUwQFBQm9Xi+ioqLEqFGjxOnTp5377NixQ3To0EH4+PgIo9EoGjduLF577TVRVnbuffSLL74QrVu3dv5cmjRpIl577bUL/h42bdokOnToINzc3ER0dLR49dVXhc1mq7L+l7pnkydPvuy1V8UVyxnfKuT9cC2H3SF+fvML0WDSD+Kx4Y+Vxxi9xfSBfcXsRz4Uc0evErlLZl54YEmOEFMDhZjsLcRkb/Hgtx+KkNVJ4tvTOX/9RVzHlu1OF1GTlorxHzwuVq6Kdj727X+utqsmXYKMoWQMJWOoWy+GUoRwwXrhN5iCggJ8fHzIz8+v9vxS6eZhdjg4WmKm+7aDCGBPl6YEGfSXPW7K4z057FVCq8O+aA0t0HvcTePDn+JRcIaS0SOJH3ltlxIWwk5ZWRp/7HuK/PwdNG0yk9DQfpc9btnuDMYuOrc8rEmvZcu/u+NtvPw1S1emrKyMlJQU6tevj9ForO3q3FCKi4uJiIhgxowZjBgx4i8/f05ODt27d8fb25uff/4Z9xtkuoB0dar6m5UxQ2XyfrjWqd17SfpyJxPsfvQ5/RNRpSfRud+N1tCExnVOEViwipZ9W8PtT1Y+MOswzG0LGj00uIu+ISPYqg3h42b16B3kWyvXcj36YusJnv1uD5O7/o+67lvR6bzQ6wNo1Gga/n6dart60kXIGOrKyRhKqg2uiKHk9D3plnN/0hF2FpQ4t92ryL8gHA4ynnuOQymZKF7uNM0yAXbQGNHazYSlqdPoTA2ufW6mnUlDycvb4tzW6ar3ZSCnWJ173a6eH+PviqVBsKdskJKuG0lJSRw4cID27duTn5/vXPK2Yjj7X83f35+VK1fy7rvvsnnz5ksmppQkSXKFoxvWY8WEQINGqGkFFMUNRdFxV72fUI6uAO1FGk+spQAsjujDspaTOZRbCDY7btVcSfhml1lo5ofkNDYeyQLAXafer4ZxUwkN7VubVZMkl5ExlHSzkI1S0i1nd6HaIBVs0NEzwAcP7aVzSZkPHyFt+RI2t2mCR5HN+bxG44+pNJPjLSLR3DmcHne2v2QZriCEID9/OwBarQcmUyQ+Pm2qPOZkTglfbT/JlmM5ADQI8uSOuKBrWk9JuhLTp0/n4MGDGAwG2rRpw/r16wkMDKy1+gQEBPDSSy/V2vklSbo1WE+fJu/Hn7G0vp/WZw7SMPcEJSYdoAGHTW2QAtBdZAEVm9rh9FzdEeRm5jmfDjHI0B7gPysPsXDLCSI80+lWJwUvvbrysE53YyX/laTLkTGUdDOQn1zSLcXicGArn7C6rn0jfPVV/wmUZp7l854RuGcXYuD/2Tvv8Kiq9I9/7rTMpE0SSCeEBEIvIkWaIiIkgIANRFiEFRT2R9FVEXAVFHFdMchKUcRV1F1EVlRkY8HQpBcxAaQklMRACCWETEiddn5/3GRgTAgBAoFwPs8zD7n3vufc91wyme+855z3NaAzdkWjD6TpkS345R5GO/8V7uza67r77XDkI0pnUO/utgOt9vLLmWf/lMKK5BOu4xCzXAItuflo27Ytu3bVTJlniUQiqUl2bdlC0p1tsGhO0/P0WvQaB6ADRQvYwbMu+IZBowpWG9jVlT/ntWq5+ilRITT3NtHS+8rK19dWsizFgGBqxwWYdOdd5/UGWeRFUnuQGkpSW5BBKcltRYHD6fq5sm17zsJCMl+YxM5zOVgjvQkstgKg0UfhZVOol7UVi8GTgMbXPx/BseP/Jidno3p/jUeVAlIAJyzFAPRqHkzrcDN/6iTLHkskEolEcrOQeuIE3ztbcNrhw8t8i1PxKr2iBZ0dHvs3RHapuLG9BAca7Iq62vuJ8LoEXGai7XYir8iGUVvsCkjVrXs/np5R+Pq0qmHPJBKJRPJH5KeX5LaisDQopVcUDJXkXSjYsYPsXQdIi/IiKk0Aqq2i8URnU/MTHG3agQ51vC7ZR3Vgs+WRmvoaanEEMBojLtsmO7+EjYfOcDxH3aY4sksDujaquWW8EolEIpFIymOzOzgt1O1keqeDIp1axl1BiydW0FawbU8IyEqGzF8p0VzID+lxmRLwtwufbklnXcppDp48j6deXU2mKAZat1qIIp+RRCKR3JTIoJTktkAIwRN709h0Tp0x86pklRRA4ZlTzHyohC5JnjgVBZ2+KVptXUwlxYQXb6bpV2/TrMUD191vuz0XEGg0BmIavUxAwCVmTC/i+f/u5ufUM67jut4ViFqJRCKRSCQ1SpHd5vo5wOHkeFnQRNGgxQ46Q/lGe/4L3zwNQMlF+ZFkgnOwOZzMSNiPw+lkRPMviPE/AoBe7ysDUhKJRHITI4NSktuCbJudxLN5ruMO5opXOFmPHePcks9ZdTyVc43UJKIoegxefaif8RONjn7CkUb1UCIqTzJeXdjt+QDodH7UqzesSm1+P1sAQLtIf9o38KdxsPd1808ikUgkEsnVUWhTUwPonDasigabq/CKFo1iB10F2/XPHlb/NflTEtBCtVZAp5FBl/PFdhxOQR1jDvfU2+o67+XZqAa9kkgkEsnlkEEpyW1BUem2PaNGYfNdzQj10Fdod3bRIlJ+Pclpv7P03RoCgB41qKO3FeJUFJo8/iT4hl5Xf63WHE6f+ZGCglQAdLqqB5YsRerM65sPt6JxsKwyI5FIJBLJzYaz2I7VqkMRToZm/pd0v4uq4ypatEoxaCtYKWVX80VyxzBK7pkG2w7IVVKlnC9W9U+ASQ326fX+tGzxLr6+bWrSLYlEIpFcBhmUktwWFDnVnEyeWg3hxgpEXikFpzI5GuiBUmS/cFIfDYA9vIimy7eiNZuvq68AR47Gc+LEsgsu6P0rtc8psPJ6wn6y80vILQ1KmU0VB94kEolEIpHULDnfp+G069ALG2Z76UpuxYRGVwcvnUIz01rQ9Snf0F7CGb0fD+vjOL4jBVAn3G5nsvNLePaLZDJz1RxSdTxVHaTX+xMQ0LUmXZNIJBJJFZBBKcltQdlKKdNlZhOX+edyhGxapPui9WiDzqM9TX5fha74Y060tN+QgBRAcdFxAMzm9nh6RhEeNrhS+x9/O8k3SZmuYx+jDj9PGZSSSCQSieRmJDc9CxsKGnGhKrCHeSwN9P/hgbqj1RO6ueUb2ovY6duKQ4oPONW2bXw8b4TLNy3rDp5m0+FsGvkd4aFGB2gepOYP1WqvbzEaiUQikVQPcr2v5LagqFS4mSpIcC6sVjKff4FdT0zBUqzQ4JQfAIrGF6PdSb2Mnwk5vQu/uhXkdqhmhBA4nTZs9lwAGkSOpXmzf2A231lpu+x8Nf9V10Z1eHfIHawY1xUPnbbSNhJJRYwcORJFUVAUBYPBQKNGjZgxYwZ2u/3yjSth/fr1KIpCbm5u9ThaBdLS0hg6dChhYWEYjUbq1avHwIEDOXjwoJtdQkIC3bt3x8fHB09PTzp06MAnn3ziZpOeno6iKCQnJ1f5/q+++ipNmzbFy8sLf39/7r//frZv3+7W56hRo4iKisJkMtGwYUOmT5+O1WqttN+srCyGDh1K48aN0Wg0PPvss1Xyx+Fw8Morr7jd7/XXX0cI4bL5+uuv6d27N3Xq1LnkeI8cOcJDDz1EYGAgvr6+DB48mFOnTl3xuPbs2cPdd9+N0WgkIiKCWbNmXXYMGzZsoH///oSFhaEoCitWrKjS2CWSm4m8gwfITjuEDUFr24rSs+rfXR2l+SzrNgYP3/KN7SWUaNQV3+19PdnWqRn/aR19Q/y+WSlLW/DMnZ/wQPRPRHur+aQMBll5WHJjkRpKaiipoa4OGZSS1GrWns2j586DjNv/O1DxSqnC5GQsP/7EAU87wSdL8CpSA1iKxgdDiQVbYz3pDz/E/c/OvK6+CiFITh7JuvVNOX9+HwB6feUrs46fK+S5/ybz9a/qyqo7IvwYeEc4DQNlcnPJ1RMXF0dWVhaHDh3i+eef59VXX+Xtt9+uabdcXE5wANhsNnr16oXFYuHrr78mJSWFZcuW0apVKzdRN2/ePAYOHEjXrl3Zvn07e/bsYciQIYwdO5YXXnjhmvxs3Lgx8+fPZ+/evWzatIkGDRrQu3dvzpxRq2MePHgQp9PJBx98wL59+5gzZw4LFy7kpZdeqrTfkpISAgMDefnll2nTpuq5Ut566y3ef/995s+fz4EDB3jrrbeYNWsW8+bNc9kUFBTQrVs33nrrrQr7KCgooHfv3iiKwtq1a9m8eTNWq5X+/fvjLA3+V2VceXl59O7dm8jISHbt2sXbb7/Nq6++yqJFiyodQ0FBAW3atGHBggVVHrdEcjMhhODLL77gA3MBOxx1GLdpLwCKUPVJoFIMT/4Ef9kCmgoml+zFFJcGpcw6HQ1MHmhv08pyQggyzhby+9lCtIodT50FgPDwodSPGEWjhi/WsIeS2xGpoaSGkhrqKhC3IRaLRQDCYrHUtCuS68yTe4+K4LVJrtf/7UsvZ2P5/nsxZ0Qn8Zdn7xXxg/uJd4b+n3h3xD/E1w+8LFZ3GSjEOy1uiK82W55YvSba9dq0qZuw2c5X2ubtHw+KyMkJrteynRk3xFdJ5RQVFYn9+/eLoqKimnblihkxYoQYOHCg27levXqJTp06iZycHDF8+HDh5+cnTCaTiIuLE6mpqS679PR08cADDwg/Pz/h6ekpmjdvLr777juRlpYmALfXiBEjhBBC5OXliaFDhwpPT08REhIi3nnnHdG9e3fxzDPPuPqNjIwUM2bMEMOHDxc+Pj6uths3bhTdunUTRqNR1KtXT0yYMEHk5+cLIYRISkoSgEhPL/+eLyMjI0Po9Xrx3HPPlbs2d+5cAYht27YJIYRrDElJSVf+UEsp++xZvXr1JW1mzZoloqKiqtznH59VZfTr1088+eSTbucefvhhMWzYsHK2lxrvqlWrhEajcfv8zM3NFYqiiMTExEve+4/jeu+994S/v78oKSlxnZs8ebJo0qRJlcYihBCA+Oabb6psXxmVvWelZnBHPo9ro7CwUEye9rqInPw/EfXiSrGjdSsRP7ifmP3YQ2L+mDUi5cW+QuRllW948HshZjUU4lV/sXjhcBG8Nkk8uffojR/ATcQb3+0XkZMTRKtXPhcj5k0u1U+NhNPpqGnXJNeA1FBSQ1WE1FC1W0PJlVKSWk2+XY06/zUymO/vjOGfTeu7rtmysjjafwBb3/uE9XcGY7CpM40aQxP8bME0PbQcrNlguDE5Cex2NQeCoujpfk8yXbqsv2zVvbJte7Etgln4pzt5qG34dfdTcuUIIbCVOGrkJS5aVny1mEwmrFYrI0eO5JdffmHlypVs3boVIQR9+/bFZlO3TowbN46SkhI2bNjA3r17eeutt/D29iYiIoKvvvoKgJSUFLKysnj33XcBeO6559i8eTMrV64kMTGRjRs38uuvv5bzIT4+njZt2pCUlMQrr7zCkSNHiIuL45FHHmHPnj0sW7aMTZs2MX78eAACAwPRaDQsX74ch8NR4biWL1+OzWarcDZvzJgxeHt7s3Tp0mt+fqDOTC5atAiz2VzpzJzFYiEgIKBa7vlHunTpwpo1a0hNVat67t69m02bNtGnTwXJlC9BSUkJiqLg4eHhOmc0GtFoNGzatOmS7f44rq1bt3LPPfdgMFwoPBEbG0tKSgrnzp27kmFJJLcUDocDq9ACCkanA2fZKietmgdSq9grrrp34H9QcAaEgxKtmk7AeJtX3UvKUP9W/KXNpwxv/iWgJjdXlNv7udRGbmUdJTXUtSM1VO3XUDLRuaRWU1D6h7S1j4k7ze7BpYItWylOP86xrj1p9VsaPud9ATuKYkBnL+SUnz/WGAMYPCrouXqx2/MpLEwHQKfzQafzqdT+0KnzrD14muRjuQB0iwkkrmXodfZScrXYrU4WPfNzjdz76Xe7o/e4uvxiQgjWrFnDqlWr6NOnDytWrGDz5s106dIFgCVLlhAREcGKFSsYNGgQGRkZPPLII7Rq1QqA6OgLeU7KPkyDgoLw8/MD4Pz583z66ad8/vnn9OzZE4DFixcTFhZWzpf77ruP559/3nU8evRohg0b5soFEBMTw9y5c+nevTvvv/8+4eHhzJ07lxdffJHXXnuN9u3b06NHD4YNG+byKzU1FbPZTGho+feOwWAgOjraJT6uloSEBIYMGUJhYSGhoaEkJiZSt27FeU4OHz7MvHnziI+Pv6Z7XoopU6aQl5dH06ZN0Wq1OBwO3njjDYYNG1blPjp16oSXlxeTJ0/m73//O0IIpkyZgsPhICsrq8I2FY3r5MmTREVFudkFBwe7rvn7V15xVCK5VbHb7ThRA1HeTrsrKKUo6t9pLTbQVaA77MXqv/e8SEnEUDhuweM2r7qXV1opuXHdPHCA2bct4eFDa9gryfXgVtRRUkNJDfVHpIa6NHIqQVKrKSituuelLf9h4rBYOBMYjOXcAfwsxWidqrhRNGZMzhzujdtHn4a/QuPY6+pjXt4eNmzsQFLycIDLBqQAxn+exJs/HOTgSXV1VaD39Q+cSW4fEhIS8Pb2xmg00qdPHx577DFGjhyJTqfjrrvuctnVqVOHJk2acODAAQAmTpzIzJkz6dq1K9OnT2fPnj2V3ufo0aPYbDY6duzoOmc2m2nSpEk52/bt27sd7969m08++QRvb2/XKzY2FqfTSVpaGqDOOp48eZIlS5bQuXNnvvzyS1q0aEFiYmKVn8XFs1CXYsmSJW5+bNy40XWtR48eJCcns2XLFuLi4hg8eDCnT58u10dmZiZxcXEMGjSIp556ynX+4n7Hjh1bJZ83btzo1m7JkiUA/Pe//2XJkiV8/vnn/Prrr3z66afEx8fz6aefVqlfUGdPv/zyS/73v//h7e2N2WwmNzeXO++8E00FqzYuNa6rHYNEcqvjcDhcQSmT04nTFVhS3z/qSqmKglIlnDTUYb7HHfycr064edymK6V2pOXwr41HOZmnBuoUUQBA8+ZvExr6cE26JpFIDXURUkO5IzXUpZErpSS1ktlpJ1mXk8fRInV7m9dFVffsZ89yfvUadu/awbzeJXRL8kQoHuhN91A37yghh39CSxo8uhia9qt4xrIasViSEMIKKGg0eoKD+1+2TWZuEQD9WoUSHehFj6aB19VHybWhM2h4+t3uNXbvK6VHjx68//77GAwGwsLC0Ol0rFy58rLtRo8eTWxsLN999x0//fQTb775JrNnz2bChAlX47obXl7uKx3z8/MZM2YMEydOLGdbv/6Fbbo+Pj7079+f/v37M3PmTGJjY5k5cya9evUiJiYGi8XCiRMnys0sWq1Wjhw5Qmzs5YPSAwYMcBOa4eEXttF6eXnRqFEjGjVqRKdOnYiJieGjjz5i6tSpLpsTJ07Qo0cPunTpUi5J5cWVW3x9K6jEVQHt27d3a1c2ezZp0iSmTJnCkCFDAGjVqhW///47b775JiNGjKhS3wC9e/fmyJEjZGdno9Pp8PPzIyQkxG1W93LjCgkJcas2A7iOQ0JCaNCgQYVjkEhudcqCUkZHEe1zNrKnfgTgRAh18kyjOEBbgTy3FfF2gydZYg0Haz4A5tuwym5+iZ0/fbQdq91BQ3MaDbwLEE41KKWtwqSe5NbkVtJRUkNJDVUZUkNVjAxKSWodRQ4nb6efdB3rFKhnvBCpP/XWW1jWJ3Okexw2ZTfgiVbxROfRiobHVmHOS8PWSAfeQdc9IAVgs+cBEBY2mGZN/16pbX6JnVN5xeSXqKu6Zj7YEn+vy89CSGoWRVGuegtdTVAmAi6mWbNm2O12tm/f7lp6fvbsWVJSUmjevLnLLiIigrFjxzJ27FimTp3Khx9+yIQJE1yzZRfnJoiOjkav17Nz506XCLJYLKSmpnLPPfdU6uOdd97J/v37y/lZGYqi0LRpU7Zs2QLAo48+yuTJk5k9ezazZ892s124cCGFhYU88cQTl+3Xx8cHH5+qfRlyOp2UlJS4jjMzM+nRowft2rVj8eLF5WbKrmR8ZZhMpgrbFRYWlutfq9W6Kr5cKWVL6NeuXcvp06cZMGCA69rlxtW5c2f+9re/YbPZ0OvVXDqJiYk0adLEtez8asYukdzspG84hBMN0YXphBWnUVj6Ea6g5pA06YsqbmgvIdvoB0AnsxdtfD0ZGV7xNpbazNn8Eqx2Jx1D9jCm9Udu13RaWXm4tnIr6SipoaSGqgpSQ7kjg1KSWkfZlj2AT1pG0dDTg2APveucPeskurZPoDNa0DjLkheqwSf/hjmEmc/iFVgCHlWLqF8tVms2v2f8i5wcdZmqXudXqf3pvGLujV9PoVX9QFIU8DXpK20jkVQXMTExDBw4kKeeeooPPvgAHx8fpkyZQnh4OAMHDgTg2WefpU+fPjRu3Jhz586xbt06mjVrBkBkZCSKopCQkEDfvn0xmUz4+PgwYsQIJk2aREBAAEFBQUyfPh2NRoNymRLnkydPplOnTowfP57Ro0fj5eXF/v37SUxMZP78+SQnJzN9+nSGDx9O8+bNMRgM/Pzzz3z88cdMnjwZUGcDZ82axQsvvIDRaGT48OHo9Xq+/fZbXnrpJWbOnEnLli3d7puSklLOlxYtWrhEQRkFBQW88cYbDBgwgNDQULKzs1mwYAGZmZkMGjQIUEXHvffeS2RkJPHx8a4yx6DOdFVG2QxYfn4+Z86cITk5GYPB4CZu/0j//v154403qF+/Pi1atCApKYl33nmHJ5980mWTk5NDRkYGJ06ccBtvSEiIy6fFixfTrFkzAgMD2bp1K8888wx//etfXVsGqjKuoUOH8tprrzFq1CgmT57Mb7/9xrvvvsucOXMqHXd+fj6HDx92HaelpZGcnExAQIDb7K5EcjOSeygT3a5zOHQKeqdall3RhqDzuIPogL001b9NgHdexY3txZRo1C+mw8LqMCjk+iTzvdkpyyMV7Z8NgF5fB5OpHnUCuqMtTQAvkdxsSA2lIjWU1FCXpFrqAN5iyHLGtZv0wmIRvDZJNFifXOH1gw8NFBvGLhCzhz0q3n6sv4gf3E+8M3S8mD9mjcic2FyIV/2EeL+bELbi6+rn0bT5peWL1dexY/+u1H7dwVMicnKCiJqSIFpO/1FM+Wr3dfVPcvXUtnLGZZSVMzabzcJkMonY2Fi3csbjx48XDRs2FB4eHiIwMFAMHz5cZGdnu67PmDFDhISECEVRKi1n3LFjRzFlyhRXu8jISDFnzpxy/uzYsUP06tVLeHt7Cy8vL9G6dWvxxhtvCCGEOHPmjJg4caJo2bKl8Pb2Fj4+PqJVq1YiPj5eOBzu5cJXrFgh7r77buHl5eUqt7x06VI3m4pKMpe9jh07Vs63oqIi8dBDD4mwsDBhMBhEaGioGDBggNixY4fLZvHixZfs83JU1CYyMrLSNnl5eeKZZ54R9evXF0ajUURHR4u//e1vbiWFL+XT9OnTXTaTJ08WwcHBQq/Xi5iYGDF79mzhdDqveFy7d+8W3bp1Ex4eHiI8PFz84x//uOy4161bV2G/Zb9PV0t1lDO+XZDP4+rJSNwldkz5Vox+ebZ4aMzrqv740yQxf8wakfZWjBD/HSnEb9+4Nzq0WogfpgrxVrR48OuPRfDaJLHiVE6N+F+TnCsoEa//b5944qPtInJygnjzi7Fi9ZpocejQ5f9uSG4tpIaSGkpqqNtPQylCVEO98FuMvLw8zGYzFoulyvtLJbcOB/KL6LEzhTp6Hfu6uUfoS0pKmDN9GsKSjSHnwl5cnbEzvs4GDAh7kTrPfAdhd1x3P1NSX+X48X/j79+ZoKC+hIY8hFZruqT9t8mZPPNFMp2iA/ji6c7X3T/J1VNcXExaWhpRUVEYjXLm9kooKCggPDyc2bNnM2rUqBt+/5ycHHr27Imvry8//PADnp6eN9wHyY2nsves1AzuyOdxdVjOnuXzt9+l2OBNekEuDX7fhlPridbQCr1XLx7u8CahoypIIPxWAyhSS3z3bfsev/q24NNWUcTWNd/YAdQwn21NZ9q3+2hZZz9Pt/4UT10xiiJo1PBFIiPH1LR7kmpEaqirR2ooSU1QHRrq9izbIamVFDmczP/9FPMy1KoMnlr3X2/byZMc37KFk74lHDf9DoDO0BqD7yjuKNyNn2YZdUz5YLgxOQnsNnWJfp0691IvfOglA1J7j1t48/sDfPnLcQDMcsuepBaRlJTE0qVLOXLkCL/++qurtG7ZcvYbTUBAAKtXr6Znz55s3bq1RnyQSCS1j31btpDhoedXYaJR2m6iskvzoihaEHb8KsphKYQrIMVdYynxUxPhGi6zNac2kp2vbne8P/owXvoiFEWgKHrM5nY17JlEUnNIDSWpLcicUpJaw6psCzOPZrmOAw0Xfr2LU1NJG/ggGW0fJKtjFnVEaaJAbQAarZkOD9XF89BSdRGjwYvrhRBOkpP/TK5lF06nKkj1uspnO6d+s4ffMi/kmAg1X3o1lURyKxIfH09KSgoGg4F27dqxceNGVwLImqBOnTpMmzatxu4vkUhqHzarlZ32CA47AmlvFThdgSUtWsWGSVfBZ7vDeuHnHi9h3X0CCkvwqKB0eG3nfLENgDBfVb81aDCeyPqj0cmKe5LbHKmhJLUBGZSS1BqybWryyxhPDx4I9KN/kJ/rmvXwYRSDD16R7bArKXjYSit4KOqqI33Kl6CUJkj3uH4rpYqLM8k5t8l1rNEY8PVtXWmbrNxiAIZ0iCDMz8SQDhHXzT+J5EbTtm1bdu3aVdNuSCQSyXXFYbNRINRE5T5OO86ymJSiQ69YQVtBJV17MQJYEvIAx47ncdqq6hwPze2zUurb5Ey2HT3L9rQcAAxatTqh0SNUBqQktz1SQ0lqCzIoJak1FJVW3bvT14vJ0aFu15xFReT5B3Lo3DbuSi9B6zQB6tJvhBOdFvCLhoY9weP6iRyb3QKAwVCX9u2+Rq/3vaSoSjl5nq1HssktUmcH/9qrMcG+cm+9RCKRSCS3Gg67HadQJ8QC7DbOeYcDBSilK6WoaPue3UqyT1NeaDIJjp11nfbTa2+Q1zVLsc3B8//djcPp4OlWnxHR+DjeqCvHdbobk2pBIpFIJNef22/9r6TWUlgalPpjLimA3VlZfH9ve7LzDqF1grpPT4te+BBctA2l5SMwMQn6xV83/86d28GpUwkA6PX+mEzhlc7yjfh4B6/+bz8Op0CnUfDzlLmkJBKJ5FZkw4YN9O/fn7CwMBRFYcWKFW7XhRBMmzaN0NBQTCYT999/P4cOHXKzycnJYdiwYfj6+uLn58eoUaPIz893s9mzZw933303RqORiIgIZs2aVc6XL7/8kqZNm2I0GmnVqhXff/99tY9XUh5rnh0HGtpakjnq50mOqUC9oGjx1ORecqVUtt4PUFMSPFWvLrMa16Oh5+0xQZVbaMPuFIR5n6Jj6K+Eep1GQV097uUVU8PeSSQSiaS6kEEpSa2hyKkGpUwV5FrIyrdwxngGIdSl73rvQfh59iKi2U46R30MPsHX1bfCwjR+TXqcjIwP1fvrAyq1tzmcnMxThVffViG8+XArPHS3x8yoRCKR1DYKCgpo06YNCxYsqPD6rFmzmDt3LgsXLmT79u14eXkRGxtLcXGxy2bYsGHs27ePxMREEhIS2LBhA08//bTrel5eHr179yYyMpJdu3bx9ttv8+qrr7Jo0SKXzZYtW3j88ccZNWoUSUlJPPjggzz44IP89ttv12/wEpyFNopPOHGi0LDgKMKVT0pDq8hcevnNuURQqoQijRqAamjy4PWYejwRXnO5Ym40eaV5pIK81dxaHh6h3HnnF3TpvA5v7yY16ZpEIpFIqhG5fU9yy7MjN5+PMrNJzisEwKS9kGuh8JdfOPPe++SZG5DcLJlopz8AGm1dDFh4wPE1KOev65Y9gKIitXKeTueDv39XIuqNqNT+fLHd9fPcIW3RVbD6SyKRSCS3Bn369KFPnz4VXhNC8M9//pOXX37ZVTHps88+Izg4mBUrVjBkyBAOHDjAjz/+yM6dO2nfvj0A8+bNo2/fvsTHxxMWFsaSJUuwWq18/PHHGAwGWrRoQXJyMu+8844rePXuu+8SFxfHpEmTAHj99ddJTExk/vz5LFy48AY8iduTorN5OHHiRIO2tNCK3jMOjSGY+5TRqhrXX1Q6/ewRWP8POJ9FsVY9b7qNdMCxnELG/mcXp/KKqeedSeu6KQB4eATh79ehhr2TSCQSSXVz+3zCSWots9NP8e3pXH4vVmfSwj0uzDae/eQTLGcD8fDyR1864waAosdHFEHJefW47vVdBm53qPfx9mpK61YL8PfvWKHd4dP5jPn3Lzz92S+qvYdOBqQkEomkFpOWlsbJkye5//77XefMZjN33XWXq6T21q1b8fPzcwWkAO6//340Gg3bt2932dxzzz0YDBc+A2NjY0lJSeHcuXMum4vvU2ZTWenukpIS8vLy3F6SK+PXhB9wIHCgoHOWTjppvNEoGqjTCBr3gXYXTVb98jHs/S+kb6RYo/5/Gm+jinvrU06z70QeBvE7r3V5i3vCSlMfXKZasUQikUhuTeRKKcktT65dFXijwuvSyc+b2Lq+5J7P5sWfJ3E6eg9BAa1pnJpC/0NBpS00gBa9UgwtHoKuz0DoHdfFtxJrNvnnD3Dq1P8ALlsp5vPtGazad8p13KCuZyXWEolEIrnVOXnyJADBwe7byIODg13XTp48SVBQkNt1nU5HQECAm01UVFS5Psqu+fv7c/LkyUrvUxFvvvkmr7322lWMTALqSjiL5RwlipYH0r+hXtEZCj30KIoWFDt0mQDtRro3spbmCmvSj+LIx6Hk9loplVuoTiLGNS0BQKv1wtu7GRERT9akWxKJRCK5TsiglOSWpyzBeV9/L8LGjmZHRhpJDczU8w6kSWEocOYiax1aQ1MUBAbTMQjvAGFtr4tfTqeV7dv7YLPlXLi73rfSNmcLVAH2cNtwejYLpkOU/3XxTSKRSCSSqjB16lSee+4513FeXh4RERE16NGtxbfz5vFLUS5n8KL72YOc8yrLCaVFq7WDtqKqeyVYFR19Qv+PfSVqlTmjRilvV8twOgW7j+dy8KS6ujzUV5109PPryB1t/lWTrkkkEonkOlKt0y43U3UZye1DQWlQypB1guJ9+/i1fhBWjSdehQUXjBRPwvL13Juaw8mgOuwOSyU0YAcYr18uKastxxWQ8vFpgZ/fXdQLH1ahbeqp87z0zV52pKn2XRrVpV/rUIJ8bo8KO5Kbh5EjR6IoCoqiYDAYaNSoETNmzMBut1++cSWsX78eRVHIzc2tHkerQFpaGkOHDiUsLAyj0Ui9evUYOHAgBw8edLNLSEige/fu+Pj44OnpSYcOHfjkk0/cbNLT01EUheTk5Crf/9VXX6Vp06Z4eXnh7+/P/fff79pqVdbnqFGjiIqKwmQy0bBhQ6ZPn47Vaq2036ysLIYOHUrjxo3RaDQ8++yzVfLn/PnzPPvss0RGRmIymejSpQs7d+50s8nPz2f8+PHUq1cPk8lE8+bNy+UaGjNmDA0bNsRkMhEYGFjhM83IyKBfv354enoSFBTEpEmTLvk7tHnzZnQ6HXfcccdlx/D111/Tu3dv6tSpc8X/HzcrISEhAJw6dcrt/KlTp1zXQkJCOH36tNt1u91OTk6Om01FfVx8j0vZlF2vCA8PD3x9fd1ekqpzLDOT9baGrLI1RecUOMuSnCtafCkBXUVBqWLSTeHsE2pASgPcZfa+cU7XEF/sPMZD721h++HfGNz4G0L0awDQ6+TvnOTWQGooqaGkhro6qjUodbNUl5HcHuy0FPCv42c4Z1PfpJqUFLY2M2ErrVKn9WiHYm6MZ1gs9esNotXRVDyLztBRrGORmEpLze9guH4iz26zAKDX+9Oxw0ra3fk5ZvOdFdrOXXOIz7dnkGVR3wsR/qbr5pdEcjni4uLIysri0KFDPP/887z66qu8/fbbNe2Wi8sJDgCbzUavXr2wWCx8/fXXpKSksGzZMlq1auUm6ubNm8fAgQPp2rUr27dvZ8+ePQwZMoSxY8fywgsvXJOfjRs3Zv78+ezdu5dNmzbRoEEDevfuzZkz6urNgwcP4nQ6+eCDD9i3bx9z5sxh4cKFvPTSS5X2W1JSQmBgIC+//DJt2rSpsj+jR48mMTGRf//73+zdu5fevXtz//33k5mZ6bJ57rnn+PHHH/nPf/7DgQMHePbZZxk/fjwrV6502bRr147Fixdz4MABVq1ahRCC3r1743CoCZwdDgf9+vXDarWyZcsWPv30Uz755BOmTZtWzqfc3FyeeOIJevbsWaUxFBQU0K1bN956660qj/tmJyoqipCQENasWeM6l5eXx/bt2+ncuTMAnTt3Jjc3l127drls1q5di9Pp5K677nLZbNiwAZvtQv7ExMREmjRpgr+/v8vm4vuU2ZTdR1L9OBDkCTXwpHc4cbqUtw4t9ksEpUooKc0lFWjQkXJ3Kx4Lrbxqb23g0Gl1hdTDMWuIbbAOT/YB4OFxfSskSyTVidRQUkNJDXUViOsEIL755hvXsdPpFCEhIeLtt992ncvNzRUeHh5i6dKlQggh9u/fLwCxc+dOl80PP/wgFEURmZmZQggh3nvvPeHv7y9KSkpcNpMnTxZNmjSpsm8Wi0UAwmKxXO3wJDWMxWYXEeuSRfDaJNfrPw8/Kfr9s7eIH9xPxA/uJ+Y9nShWPjRa7OjSTey/o6vY36Sp2N+kqfhuck8h3owQ4r2uQpw/Ve2+lZScFfv2vyh++eUxsXpNtNi8pcdl2wxauEVETk4Qf12WJL5NzhROp7Pa/ZLcOIqKisT+/ftFUVFRTbtyxYwYMUIMHDjQ7VyvXr1Ep06dRE5Ojhg+fLjw8/MTJpNJxMXFidTUVJddenq6eOCBB4Sfn5/w9PQUzZs3F999951IS0sTgNtrxIgRQggh8vLyxNChQ4Wnp6cICQkR77zzjujevbt45plnXP1GRkaKGTNmiOHDhwsfHx9X240bN4pu3boJo9Eo6tWrJyZMmCDy8/OFEEIkJSUJQKSnp19yrBkZGUKv14vnnnuu3LW5c+cKQGzbtk0IIVxjSEpKuvKHWkrZZ8/q1asvaTNr1iwRFRVV5T7/+KwuRWFhodBqtSIhIcHt/J133in+9re/uY5btGghZsyYUanNH9m9e7cAxOHDh4UQQnz//fdCo9GIkydPumzef/994evr6/bZLYQQjz32mHj55ZfF9OnTRZs2bS47jjKq4//jYip7z1aHZjh//rxISkpy/V6+8847IikpSfz+++9CCCH+8Y9/CD8/P/Htt9+KPXv2iIEDB4qoqCg3f+Li4kTbtm3F9u3bxaZNm0RMTIx4/PHHXddzc3NFcHCwGD58uPjtt9/EF198ITw9PcUHH3zgstm8ebPQ6XQiPj5eHDhwQEyfPl3o9Xqxd+/eKo9Faqgr4+1Jk0TLKctFs+eXiaW9O4vZg0o1yuhvxPLx84U4lFi+0WcPiV/iO4ngtUmiw5Z9N97pGuK5ZckicnKCWLFmqFi9Jlok735apKcvFCUlZ2vaNckNRGooqaEqQmqo2q2hbljWxBtZXeaPyMoxtY8zVhtWIdArCr0P7WPcN8vxbNwDTelWPtCiKBq8zlrxPpsNRWcByPSqi5euGMZuhr9sAu+gS9/kKjl9+geyspaTa1GXdJpM9S9pm2UpYvX+U5zILQLg4bb1GNBG3f4qqT0IIbAVF9fISwhxzf6bTCasVisjR47kl19+YeXKlWzduhUhBH379nWtzBg3bhwlJSVs2LCBvXv38tZbb+Ht7U1ERARfffUVACkpKWRlZfHuu+8C6qzS5s2bWblyJYmJiWzcuJFff/21nA/x8fG0adOGpKQkXnnlFY4cOUJcXByPPPIIe/bsYdmyZWzatInx48cDEBgYiEajYfny5a7Zpz+yfPlybDZbhbN5Y8aMwdvbm6VLl17z8wN1ZnLRokWYzeZKZ+YsFgsBAdW/IsJut+NwODAa3bcEm0wmNm3a5Dru0qULK1euJDMzEyEE69atIzU1ld69e1fYb0FBAYsXLyYqKsqVZ2jr1q20atXKLaF2bGwseXl57Nu3z3Vu8eLFHD16lOnTp1fnUG9KfvnlF9q2bUvbtmoOw+eee462bdu6Zj5ffPFFJkyYwNNPP02HDh3Iz8/nxx9/dPv/WrJkCU2bNqVnz5707duXbt26ua0SN5vN/PTTT6SlpdGuXTuef/55pk2b5rbavEuXLnz++ecsWrSINm3asHz5clasWEHLli1v0JO4/XBqFBxCwwOnfiTTLwBR9vGu6NEqNvecUkLA+ZNQcp4SjR4Aj9sgl9Tmw9ks2nCE3zLVFeYGTSEAIcEDiIwcg8FQ+1eJSSrnVtZRUkNdO1JD1X4NdcMSnd/I6jJ/RFaOqX2U5ZGqa9Ax/dulHNNFkOz9Ld2Ploo7Rf23TsRZ/lF/KKdMdbBrtBR5G/hWOw0MXtfNN6tVXVbq79eJkJCHqFPnngrt7A4nD8zdxNmCC8to/b30180vSc1hLylh7ohHa+TeEz9djt54dbnJhBCsWbOGVatW0adPH1asWMHmzZvp0qULoH5JjoiIYMWKFQwaNIiMjAweeeQRWrVqBUB0dLSrrzKREBQUhJ+fH6Duz//000/5/PPPXUuPFy9eTFhYWDlf7rvvPp5//nnX8ejRoxk2bJgrF0BMTAxz586le/fuvP/++4SHhzN37lxefPFFXnvtNdq3b0+PHj0YNmyYy6/U1FTMZjOhoaHl7mcwGIiOjiY1NfWqnl0ZCQkJDBkyhMLCQkJDQ0lMTKRu3boV2h4+fJh58+YRHx9/TfesCB8fHzp37szrr79Os2bNCA4OZunSpWzdupVGjRq57ObNm8fTTz9NvXr10Ol0aDQaPvzwQ+65x/3v2HvvvceLL75IQUEBTZo0ITEx0TVZdKkKb2XXAA4dOsSUKVPYuHEjOl3tr7ly7733VvrFRlEUZsyYwYwZMy5pExAQwOeff17pfVq3bs3GjRsrtRk0aBCDBg2q3GFJtWAvdmDTeeG0K3g71K1pijYEvT6IYMNxWnt+B/puFxosHQKpPwJQ4t8BAA9N7a66d67AyoiPd2B3OnkgehVdW2ajF+nA5SsWS24fbkUdJTWU1FBSQ1Wd2v1JV8rUqVOxWCyu17Fjx2raJck1km9Xg1JeWg3JAWY2RWlx2Itc1w1KCEGnf+FM5/ZM+sdE/vP6QL6d0oGfvZ6jrpJ3XXJJCeEkM3MpZ3M2AGA230lY2KN4eFS8Giu3yOYKSN1Z348hHSJoFiKTeUpqnoSEBLy9vTEajfTp04fHHnuMkSNHotPpXPlrAOrUqUOTJk04cOAAABMnTmTmzJl07dqV6dOns2fPnkrvc/ToUWw2Gx07dnSdM5vNNGnSpJztxStoAXbv3s0nn3yCt7e36xUbG4vT6SQtLQ1QZx1PnjzJkiVL6Ny5M19++SUtWrQgMTGxys/i4lW5l2LJkiVuflwcFOjRowfJycls2bKFuLg4Bg8eXC5hNUBmZiZxcXEMGjSIp556ynX+4n7Hjh1bJZ83btzo1m7JkiUA/Pvf/0YIQXh4OB4eHsydO5fHH38czUVfeufNm8e2bdtYuXIlu3btYvbs2YwbN47Vq1e73WPYsGEkJSXx888/07hxYwYPHuyWH7IyHA4HQ4cO5bXXXqNx48YV2lT2TCWSW4W0D7eg0WpwoqAV6moDvVcczc37GBQ9l+g7giD0oln/39WdAygarD7qF0tDLV8pdep8MXanoHHAcR5q9D1dw3agCHVHg4ex/JddieRmR2qoC0gNJTVUVblhobWLq8tcHFE9deqUK1t8dVWX+SMeHh54eFSQSFJyyyGEYHFmNj+fU2cc9ccy+N3fl6Peh2iBHgPBKOZHqH/iv/zscYaHek+m5flN8MUwQIACaPSgu/wfySvl3LltHEx52XV8ucScuYXqcl1fo46v/69rtfsjuXnQeXgw8dPlNXbvK6VHjx68//77GAwGwsLC0Ol0bkkaL8Xo0aOJjY3lu+++46effuLNN99k9uzZTJgw4Wpcd8PLy311Y35+PmPGjGHixInlbOvXv7Bl1sfHh/79+9O/f39mzpxJbGwsM2fOpFevXsTExGCxWDhx4kS5mUWr1cqRI0eIjY29rG8DBgxwE5rh4eFufjdq1IhGjRrRqVMnYmJi+Oijj5g6darL5sSJE/To0YMuXbqUK9pxcWWUqlY9a9++vVu7shm2hg0b8vPPP1NQUEBeXh6hoaE89thjrlnPoqIiXnrpJb755hv69esHqCtvkpOTiY+PL7f93mw2ExMTQ6dOnfD39+ebb77h8ccfJyQkhB07drj5dPHn9Pnz5/nll19ISkpybRVwOp0IIdDpdPz000+VPlOJ5FYhP+04Dh9naVDqQnoBvWKD/u9CzP3uDcom157dS0mJN+xLx1DLt/NbSrVQlL/6hczoEUa9iCfwNEXi7RVTk65JbiJuJR0lNZTUUFJDXTk3LCh1cXWZsiBUWXWZv/zlL4B7dZl27doBFVeX+dvf/obNZkOvV7c6/bG6jKT28lt+ES8dulDlwHzqLMcCnRTZ8gF/FMWEojFyvn0krXqNpEvDOrB2JyBAawC9J7S6Pst/S0rUJZVGYzghIQ8REjKwQrssSxHPfJFM5jlVfPp5Vn+ATHJzoSjKVW+hqwnKRMDFNGvWDLvdzvbt211Lz8+ePUtKSgrNmzd32UVERDB27FjGjh3L1KlT+fDDD5kwYYJrtuzi3ATR0dHo9Xp27tzpEkEWi4XU1NRyS53/yJ133sn+/fvL+VkZiqLQtGlTtmzZAsCjjz7K5MmTmT17NrNnz3azXbhwIYWFhTzxxBOX7dfHxwcfn6ptM3E6nZSUlLiOMzMz6dGjh6sai+YPW3WuZHxlmEymStt5eXnh5eXFuXPnWLVqFbNmzQLUajs2m62cD1qtFqfTWVFXgDpZIIRwjatz58688cYbnD592rUlPzExEV9fX5o3b45er2fv3r1ufbz33nusXbuW5cuXExUVhZeXV5WfqURyM5K88n/8YjyBHSde+n1ohVopWFE06BUraP+wXd/pBIeVFYE9eOdALrmOXACMtXT7XkGJnT99tJ3Dp/LRa6wEean5pDy9GhJZ/6nLtJbcbtxKOkpqKKmhLkZqqKpRrUGp/Px8Dh8+7DpOS0sjOTmZgIAA6tevz7PPPsvMmTOJiYkhKiqKV155hbCwMB588EFAfcPGxcXx1FNPsXDhQmw2G+PHj2fIkCGuCGzZcrVRo0YxefJkfvvtN959913mzJlTnUOR3KSctamirq4G+q/4L120zdiVn0NgYQhQgkPngw7o3K4V0V1Lc48Vlya27/ZX6FF5mdBrwWZXBZWv7x00jP7rJe1WHzjNjrQc13HTkFvrj4bk9iQmJoaBAwfy1FNP8cEHH+Dj48OUKVMIDw9n4EA1APvss8/Sp08fGjduzLlz51i3bh3NmjUDIDIyEkVRSEhIoG/fvphMJnx8fBgxYgSTJk0iICCAoKAgpk+fjkajuWyy/8mTJ9OpUyfGjx/P6NGj8fLyYv/+/SQmJjJ//nySk5OZPn06w4cPp3nz5hgMBn7++Wc+/vhjJk+eDKizgbNmzeKFF17AaDQyfPhw9Ho93377LS+99BIzZ84slwA6JSWlnC8tWrRwTZKUUVBQwBtvvMGAAQMIDQ0lOzubBQsWkJmZ6crnk5mZyb333ktkZCTx8fGuMsdw6ZW/ZZTN4uXn53PmzBmSk5MxGAxu4vaPlJUebtKkCYcPH2bSpEk0bdqUP//5z4A6i9i9e3cmTZqEyWQiMjKSn3/+mc8++4x33nkHULcLLFu2jN69exMYGMjx48f5xz/+gclkom/fvgD07t2b5s2bM3z4cGbNmsXJkyd5+eWXGTdunGvV8h+fa1BQEEaj8bIJt3NycsjIyODEiRPAhf+PkJCQyz4zieRGkrhlMwVGI3anlQU/LGN7w4alV3R4KlZ1ouxiHOoXks/CBpJaZHedbuhZO1f6Jx/LJSkjl1CvLP7RdTZGnZrOQOaRktRGpIZSkRpKaqhLcu1FAC+wbt26ciUruahspdPpFK+88ooIDg4WHh4eomfPniIlJcWtj7Nnz4rHH39ceHt7C19fX/HnP/9ZnD9/3s1m9+7dolu3bsLDw0OEh4eLf/zjH1fkpyxnfOvy3elzInhtkujz869i7T3dxcI/Py3iB/dzvf454i0x/+lEce5UntogJ12IJYOFmO4rxOZ518Wn02dWiy1be4p161uL1WuixYEDly77KYQQ89ceEpGTE8STi3eIX9LPimKb/br4Jak5als54zLKyhmbzWZhMplEbGysWznj8ePHi4YNGwoPDw8RGBgohg8fLrKzs13XZ8yYIUJCQoSiKJWWM+7YsaOYMmWKq11kZKSYM2dOOX927NghevXqJby9vYWXl5do3bq1eOONN4QQQpw5c0ZMnDhRtGzZUnh7ewsfHx/RqlUrER8fLxwOh1s/K1asEHfffbfw8vJyfW4tXbrUzaaiksxlr2PHjpXzraioSDz00EMiLCxMGAwGERoaKgYMGCB27Njhslm8ePEl+7wcFbWJjIystM2yZctEdHS0MBgMIiQkRIwbN07k5ua62WRlZYmRI0eKsLAwYTQaRZMmTcTs2bOF0+kUQgiRmZkp+vTpI4KCgoRerxf16tUTQ4cOFQcPHnTrJz09XfTp00eYTCZRt25d8fzzzwubzXZJ36pazvhSz2z69OmXbVsZ1VHO+HZBPo+q8cbUqWL69Oni35Nmib1Nm7l0yrynfxAnprQX4tgv7g0Kc4SY7iv6rPiPCF6bJOamnxS7cvOFzeGsmQFcZ77fc0JETk4Qkz6dKVaviRar10SLteuaiqysFTXtmqSGkRpKaiipoW4/DaUIUQ31wm8x8vLyMJvNWCyWKu8vldwcLD+Zw/gDGXTIzqL1vp9RTvyGvwW0hlZ4OH2JOvU7TnsBfdf/G7a9Dz9OudB4wDy48/LLSK+UPXv/wpkzP7mOmzZ5g/DwIeXs7A4nWZZi3lt/mKU7jvHU3VH8rd+lI/KSW5fi4mLS0tKIiooqVz5WUjkFBQWEh4cze/ZsRo0adcPvn5OTQ8+ePfH19eWHH37A09PzhvsgufFU9p6VmsEd+TyqxvS/TeO4xp/WBUZ6/DifxFbq6m0Pv4k8VvdFAsd/BqGtLzQ4fxJmN6Fnu4/Y592IL9pEc29A7Xy+Jy3FfJ10nFk/pvB/HXbSzv/fBAcPoEXzdy67wkNS+5Ea6uqRGkpSE1SHhqodNQQltwXHiq0cOqYuNyQ7l+PeWYSJEsADjaERPiV5+NXdz5E+pVv0Mnep/xq8wb8BNLzvuvhlt+cD0DD6eYKC+uDpGVWh3SPvb2H3cYvr2Meor9BOIrmdSEpK4uDBg3Ts2BGLxcKMGTMAXMvZbzQBAQGsXr2aBQsWsHXrVleZZYlEIrkSdor67LeFctixj7Coe4Cyys9atIrtwvY9WzF8/zxkq+kvrBr1vEctzSX1722/88qK3zDpiugQfIAwk7p9RK8zy4CURHKFSA0lqS3IoJTkluDTzGwmpx53HXt7huBxyoFPkSfgQFEMmPX5dHq8A536xalGJWqwiNi/Q7sR1803R2lQytu76SUDUkVWhysg5e2hw89Tz31Ng66bTxLJrUR8fDwpKSkYDAbatWvHxo0bqVu3bo35U6dOHaZNm1Zj95dIJLc2TqeTfIx42fN54ORGMrzLNiVo8dLl4qM9fSHRecYWSPqPq22xTl1Z4FFLAzRJv58DYGjTr+kStt11Xq/3qyGPJJJbG6mhJLUBGZSS3BIkny8EwCSceJ/LocPqjxDW8xcMFAMmxaJW1yujpPS6h3e1+2Oz5ZGZuQSb3UJRsTr7qdVWfJ8iq4M9x3MBMGg17H21t5wNlEhKadu2Lbt27appNyQSiaTaKMzIwYmCvy0XDQJQQDES3TCCAYb/QysuSnRuLVD/DWgI906lxBIIdoGHtnaulMorVpO4t69XCE7w9m6GyRRJaOjDNeyZRHLrITWUpLYgg1KSW4KC0qp7jyZvQ3NunysgpWh8MTg9iTixmybhidDwn5DyA6T+CGcOqI0N1V/J5UTWMo4cjXc75+ERWM6u2Oag+9vrOH1erarj56mXASmJRCKRSGopwubk5Ie/4UBBL9Qy4BrFH4PfSLrxPFpRrBoavNR/7ao+sPpGUNTsIUq2HQAceGhql1Yotjk4W2DlbIE6Xp2iBuNiGk0lIKBrTbomkUgkkhpGBqUktwR5aengE0Cuw8lpv1SC8AB0eJhHU//kR+Q09cXx4gYINsOb9aHkQu4mfEOr3Z/i4iwAzL5t8fPrgKdXwwq37h0/V+QKSAV4GRh6V/1q90UikUgkEsnNQdaBgwiHA4eiwahRV3mjaAHQePpCwwcg4i7wDFCvOawcNYUTGzGV85t+c/VjqEUTWJYiG/e+vY5zhTa6hm1jZPOjaJwnAdDpqn/iUCKRSCS3FjIoJbklKLDaAPCyOwnP8QBAUdTs/gEhDvrPLq2y57BdCEjd8yIENYOQVtXmhxAOsrPXcT5vDwCBQXFE1h99SfvcQisAkXU8+XlSj2rzQyKRSCQSyc2Fw+Eg4fsEnAYDARbB8JQvOGkOdgWltGEtYMh77o3sxST5NOO85kLFolbeJsI8DDfS9evK4dPnOVdow6QrYmSLpWgUoRYiR8HDI7im3ZNIJBJJDSODUpKbmqS8Qtbl5JFh8sKr4Dz1khNxzR1q1PxRnnrbhQZluRkA7pkEuuoVddln17Nn7xjXscFQcSLBw6fzeXH5brIs6jJ9P5OstCeRSCQSSW0mPTmZE8WFoCmkzZnjhOTCSTOUyW2NrgLZbbdSrFEn23rV8eWjlg3QK0qt2upflkfqznqgUQQajYGoBs/g7d1EBqUkEolEIoNSkpubJ39LI6vEBp7ehJ46hoIAtGj09fEvMRN6+Gs8O+ZfaFAWlNLoqz0gBVBUlAGAh0cIdep0J7BuxaVOv9+bxa8Zua7jpiG+1e6LRCKRSCSSm4eC42qVYG+nEafTibMssKSocltr0JZv5CihSKuukvLUajBoaleC8+PnCjl06jwKTuqYigDQ6wNo0GBsDXsmkUgkkpsFGZSS3LQIIThVbAVFofGJFOpkLgdAq/ii936IxqfeRqvPQXl0NtiKIHUV5BxRGxs8K+n56rHb1QTrdev0oGnTmZe0O1e6be+htuE80TmSVuHm6+KPRCKRSCSSmwOH1coppzc77OHc6TyAKFvsVLZ9T3/RqulT+9WiLGkbKNKEAGCsZQGp/+48xotf7SHSN4O5PRbgqS8NSumkJpJIJBLJBWRQSnLTUuIUrlnGxr//SH7JCcAfFHWZu1+/IJo/+4NqvOFtWHtRkMhYvYInPz+VE1n/5dy57QDodBWvfDqWU8iaA6dcq6SahvjQtr5/tfoikUgkEonk5sNus/GrrR6nhA/thJ1z5mggH1CDTW5Bqa+fglNqYvOiyD8DYNLWrqBU8vFcAFrVPewKSAEE1LmnhjySSCQSyc1I7fr0k9QqCmxqrqgWKUk0232GDgfV4I7QmgAwe15ICsq539V/6zaGxn2g1+vV6svhI29x7Nhi8vP3A+BhDKnQ7q/Lknn1f/vZfSxXdcfbo1r9kEiuNyNHjkQpzWdiMBho1KgRM2bMwG63X1O/69evR1EUcnNzq8fRKpCWlsbQoUMJCwvDaDRSr149Bg4cyMGDB93sEhIS6N69Oz4+Pnh6etKhQwc++eQTN5v09HQURSE5ObnK93/11Vdp2rQpXl5e+Pv7c//997N9+3a3PkeNGkVUVBQmk4mGDRsyffp0rFZrpf1mZWUxdOhQGjdujEaj4dlnn62SPxs2bKB///6EhYWhKAorVqwoZ/P111/Tu3dv6tSpc9nxCiHo06fPJfv65JNPaN26NUajkaCgIMaNG+d2fdWqVXTq1AkfHx8CAwN55JFHSE9Pd7NZsmQJbdq0wdPTk9DQUJ588knOnj17zeOUSK4HDpsNK+qqqHp4cjK4fekVDTpK0BoumgvOP40A5rSbyff1HwTAqKk9eaRArboHcF8TdfV6eNjjdL8nmZhGU2rSLYnkuiE1lNRQUkNdHTIoJblpKShQSymHns4sPaNH0ZjRGlpgKjqNl+9FuRlK1G11dBgNQ7+AFg9Wqy/WkjMAhIQ8SOPG0wkLfbRCu4wc1eceTQIZ3S2K2JYVB68kkpuZuLg4srKyOHToEM8//zyvvvoqb7/9dk275eJyggPAZrPRq1cvLBYLX3/9NSkpKSxbtoxWrVq5ibp58+YxcOBAunbtyvbt29mzZw9Dhgxh7NixvPDCC9fkZ+PGjZk/fz579+5l06ZNNGjQgN69e3PmjPr35ODBgzidTj744AP27dvHnDlzWLhwIS+99FKl/ZaUlBAYGMjLL79MmzZtquxPQUEBbdq0YcGCBZXadOvWjbfeeuuy/f3zn/+8ZDLmd955h7/97W9MmTKFffv2sXr1amJjY13X09LSGDhwIPfddx/JycmsWrWK7OxsHn74YZfN5s2beeKJJxg1ahT79u3jyy+/ZMeOHTz11FPXPE6JpLoRNieFv+twotD0fApO5TwOawoAdfTHifOfhUZ/Ua5LezF7vWN4y/tuDmr8AAg21I6iKN8mZzLqk538mn6C5gEH8VTSAbU4jE7nU7POSSTXGamhpIaSGuoqELchFotFAMJisdS0K5IKWH82TzTesEcEr00Soat+FE+/MEDED+4n/jniTbHoz9+IpFYdxZGuMaJ47VsXGn32kBDTfYVIWnJdfNq0+R6xek20yM39tcLr54tt4vDp8yLmb9+LyMkJ4lhOwXXxQ3JrUFRUJPbv3y+Kiopq2pUrZsSIEWLgwIFu53r16iU6deokcnJyxPDhw4Wfn58wmUwiLi5OpKamuuzS09PFAw88IPz8/ISnp6do3ry5+O6770RaWppALQDueo0YMUIIIUReXp4YOnSo8PT0FCEhIeKdd94R3bt3F88884yr38jISDFjxgwxfPhw4ePj42q7ceNG0a1bN2E0GkW9evXEhAkTRH5+vhBCiKSkJAGI9PT0S441IyND6PV68dxzz5W7NnfuXAGIbdu2CSGEawxJSUlX/lBLKfvsWb169SVtZs2aJaKioqrc5x+fVVUBxDfffHPJ65cbb1JSkggPDxdZWVnl+srJyREmk6nScX755ZdCp9MJh8PhOrdy5UqhKIqwWq1CCCHefvttER0d7dZu7ty5Ijw8/PIDLOVy4yyjsves1AzuyOdRMSUZeWLVS5+Lti9+LmYNfkDED+7neq0b20aImSFCHFl/ocFrdcTGOd1F8Nok0WLjXvHp8TMi32avMf+rk3avJ4rIyQniH58/JFaviXa9fs/4uKZdk9wCSA0lNVRFSA11gdqooeRKKclNxw97DmCxOwAwFm7DUJKnXlA80IoCvGND0L3yEh53PwPfjodX/eDIGtXGo/pm4IQQ/PbbM2za3I3iYnW1VkW5pHILrXR+cw09Z/+M1e4EwM+z+iv/SW5dhBA4rY4aeamfKdeGyWTCarUycuRIfvnlF1auXMnWrVsRQtC3b19spVttx40bR0lJCRs2bGDv3r289dZbeHt7ExERwVdffQVASkoKWVlZvPvuuwA899xzbN68mZUrV5KYmMjGjRv59ddfy/kQHx9PmzZtSEpK4pVXXuHIkSPExcXxyCOPsGfPHpYtW8amTZsYP348AIGBgWg0GpYvX47D4ahwXMuXL8dms1U4mzdmzBi8vb1ZunTpNT8/UGcmFy1ahNlsrnRmzmKxEBAQUC33vF4UFhYydOhQFixYQEhI+dWgiYmJOJ1OMjMzadasGfXq1WPw4MEcO3bMZdOuXTs0Gg2LFy/G4XBgsVj497//zf3334++NO9O586dOXbsGN9//71a+OLUKZYvX07fvn1v2FglkqqSuT8VJ040DgcaBAjQGbugM7ah4xPPwZQMiO6uGjsd4LRhVdTf9VAPPU+E18VLV0F1vlsMIYSr2Evr4FwATKYGBPh3IygwtpKWEsmluZV1lNRQ147UULVfQ8lE55KbDkvWSQiux6hvPsb73O/o7d6AQMGAkUIaPTEcWpVun9v3DeqkAeDhC6F3VJsfJSVZnDqd4DrW6/0xGsPK2R0+nc/5YjsaBXxNeno0CcLbQ761JBcQNicnpm2pkXuHzeiCUlEZ8ioghGDNmjWsWrWKPn36sGLFCjZv3kyXLl0Ada96REQEK1asYNCgQWRkZPDII4/QqlUrAKKjo119lYmEoKAg/Pz8ADh//jyffvopn3/+OT179gRg8eLFhIWVf5/dd999PP/8867j0aNHM2zYMFcugJiYGObOnUv37t15//33CQ8PZ+7cubz44ou89tprtG/fnh49ejBs2DCXX6mpqZjNZkJDQ8vdz2AwEB0dTWpq6lU9uzISEhIYMmQIhYWFhIaGkpiYSN26dSu0PXz4MPPmzSM+Pv6a7nm9+etf/0qXLl0YOHBghdePHj2K0+nk73//O++++y5ms5mXX36ZXr16sWfPHgwGA1FRUfz0008MHjyYMWPG4HA46Ny5M99//72rn65du7JkyRIee+wxiouLsdvt9O/fX27Lk9x0FBUVkZi4Ap0pGEUpy3epoDN1QnGm4elfF7QXbc2zFwNg1ajnDLUkl5Td4SQjpxCHU9Vl3oYSrFZo2WIOvr6ta9g7ya3MraijpIaSGqoipIaqGLlSSnLTUegU+FtyCDidjsEmUIQAFBRdXbyc2WDwVg2dTrDmqz+P2wGTDoNfRLX5YbOrK7T0en86dlhJl87r0JYmWb+Y3EJ1hqNVuJnkab2Z89gd1eaDRFITJCQk4O3tjdFopE+fPjz22GOMHDkSnU7HXXfd5bKrU6cOTZo04cCBAwBMnDiRmTNn0rVrV6ZPn86ePXsqvc/Ro0ex2Wx07NjRdc5sNtOkSZNytu3bt3c73r17N5988gne3t6uV2xsLE6nk7S0NECddTx58iRLliyhc+fOfPnll7Ro0YLExMQqPwuD4fKrHpcsWeLmx8aNG13XevToQXJyMlu2bCEuLo7Bgwdz+vTpcn1kZmYSFxfHoEGD3Pb7X9zv2LFjq+Tzxo0b3dotWbKkSu2qwsqVK1m7di3//Oc/L2njdDqx2WzMnTuX2NhYOnXqxNKlSzl06BDr1q0D4OTJkzz11FOMGDGCnTt38vPPP2MwGHj00Udds9L79+/nmWeeYdq0aezatYsff/yR9PR013O4nuOUSK6E1Z99xglvLRnabGJPfw6AVl04jaLYQXfR35G0DbDu7wCUaNTztSEo5XQK+s/fzH2zfybY8zTNAtJwOFQdJfNISW4npIa6gNRQ7kgNdWnkcg7JTcdpRcErby8ACjr0Po/jd/4EYYdW0aL+JjB0Uw1tBRca+dUHXfVVunM4CikpzgLUoJSPT4tyNr+fLeCfqw9x+LQaGPM11Y4EpZLqR9FrCJvRpcbufaX06NGD999/H4PBQFhYGDqdjpUrV1623ejRo4mNjeW7777jp59+4s0332T27NlMmDDhalx3w8vLy+04Pz+fMWPGMHHixHK29evXd/3s4+ND//796d+/PzNnziQ2NpaZM2fSq1cvYmJisFgsnDhxotzMotVq5ciRI26JJS/FgAED3IRmeHi4m9+NGjWiUaNGdOrUiZiYGD766COmTp3qsjlx4gQ9evSgS5cuLFq0yK3viyu3+PqW3z5cEe3bt3drFxwcXKV2VWHt2rUcOXLENVNbxiOPPMLdd9/N+vXrXbOmzZs3d10PDAykbt26ZGRkALBgwQLMZjOzZs1y2fznP/8hIiKC7du306lTJ9588026du3KpEmTAGjdujVeXl7cfffdzJw587qOUyK5EvKOHwetljpOH0KP5fF7oKdr1tdHWwzaUn0iBCwdCla1OEuJQX1Peyi3/hxxXrGNA1l5NPE/xIsd5gFQtuunotQHEsmVcCvpKKmhpIa6FFJDXRoZlJLcNCz9fjXL0k9yMCqCmH1fAIFo0KPRBeLpuZUurVdi9LeBdxD8+hmcUavaoNGBzlhp31dCRsZHHDr8JmXbAi8lppZsz+CbpEzXcWQdz2rzQVK7UBTlqrfQ1QRlIuBimjVrht1uZ/v27a6l52fPniUlJcXtgzMiIoKxY8cyduxYpk6dyocffsiECRNcs2UX5yaIjo5Gr9ezc+dOlwiyWCykpqZyzz33VOrjnXfeyf79+8v5WRmKotC0aVO2bFG3ADz66KNMnjyZ2bNnM3v2bDfbhQsXUlhYyBNPPHHZfn18fPDxqdpKAKfTSUlJies4MzOTHj160K5dOxYvXoxG4y5+r2R8ZZhMpqtqVxWmTJnC6NGj3c61atWKOXPm0L9/f0BdMg5q7ot69eoBkJOTQ3Z2NpGRkYCaU+GPY9Vq1feI0+l02eh0ugpthBDXdZwSyZVgdzpxanSE2MPQlM5SO4weaAE/fQloS1cL2EtcASna/RlrvYcht3aslDpfrJa8jzKrE3parRcGQyD+/ndhMNSpSdcktYBbSUdJDSU11KWQGurSyKCU5KbhH8JIbnRDhn81H/+8QAA0Ql19FGLMw/Tgs1C3CRTmwMqLZg0868IlSmpeDWfPbsCVpwoNgXV7VWyXryby7NsqhF7Ng7mvqZyll9ReYmJiGDhwIE899RQffPABPj4+TJkyhfDwcNe++GeffZY+ffrQuHFjzp07x7p162jWrBkAkZGRKIpCQkICffv2xWQy4ePjw4gRI5g0aRIBAQEEBQUxffp0NBrNJcvkljF58mQ6derE+PHjGT16NF5eXuzfv5/ExETmz59PcnIy06dPZ/jw4TRv3hyDwcDPP//Mxx9/zOTJkwF1NnDWrFm88MILGI1Ghg8fjl6v59tvv+Wll15i5syZtGzZ0u2+KSkp5Xxp0aKFK7FkGQUFBbzxxhsMGDCA0NBQsrOzWbBgAZmZmQwaNAhQxdS9995LZGQk8fHxrjLHQIXJLy+mbHYrPz+fM2fOkJycjMFgcBO3fyQ/P5/Dhw+7jtPS0khOTiYgIMAlaHNycsjIyODEiRNu4w0JCXF7/ZH69esTFRUFqGWcBw4cyDPPPMOiRYvw9fVl6tSpNG3alB49egDQr18/5syZw4wZM3j88cc5f/48L730EpGRkbRt2xaA/v3789RTT/H+++8TGxtLVlYWzz77LB07dqwwZ8aVjFMiqU4KHA6+crTiMzz4hzECsCMc6kSVFtuF7XuluaQcaMjp+XdyzpyH3KxbOijldAq2HT3LnkwLAP4mdYzBwf1p1vSNmnRNIrlpkBpKRWooqaEuSVVLAtYmZDnjm5OoH7eJjp996VZG+d3hr4n5Y9aIXeOGCeF0qoZ7vxJiuq8Q8U2FSHhOiEOXLpl5NezYqZYwPnXqR+F0OspdtzucIrfAKkZ8vF1ETk4QS7b9Xq33l9z61LZyxmWUlTM2m83CZDKJ2NhYt3LG48ePFw0bNhQeHh4iMDBQDB8+XGRnZ7uuz5gxQ4SEhAhFUSotZ9yxY0cxZcoUV7vIyEgxZ86ccv7s2LFD9OrVS3h7ewsvLy/RunVr8cYbbwghhDhz5oyYOHGiaNmypfD29hY+Pj6iVatWIj4+3q2ErhBCrFixQtx9993Cy8vLVW556dKlbjYVlWQuex07dqycb0VFReKhhx4SYWFhwmAwiNDQUDFgwACxY8cOl83ixYsv2eflqKhNZGRkpW3WrVtXYbuy/4vKfJo+fXqlvvyxZLDFYhFPPvmk8PPzEwEBAeKhhx4SGRkZbjZLly4Vbdu2FV5eXiIwMFAMGDBAHDhwwM1m7ty5onnz5sJkMonQ0FAxbNgwcfz48Wse5x+pjnLGtwvyeZRn5ovTROTkBNHkhS/Fh4+MEfGD+4nZj49U9csLTwhxcp9qmJclHNPNosfK5SJ4bZLr9X/7Ll12/WZn9f6TInJygrhj2r/Fq589Lv77fWexek20OHTorZp2TXKLIjWU1FBSQ91+GkoRohrqhd9i5OXlYTabsVgsVd5fKrm+CCEIX7OLxocT6b9uM4o2GIPPoyiKmoehf8Cb1P97aWK9Xz9TV0o1joOhy6rVBxBs2x5LYeFR7my7BH//Tm42xTYHsf/cwO9nC13n5g9tywOtLx1xltx+FBcXk5aWRlRUFEZj9W0tvR0oKCggPDyc2bNnM2rUqBt+/5ycHHr27Imvry8//PADnp5yW+7tQGXvWakZ3JHPwx3r8fO89d5iltjC+POx/6AT6jY2o87In6N34Km1wIRfoU5DOJdOzoK7ad71f672Jo3CnKb1eTDYv6aGcE38a+NRZn53gMeaJtK7/oVxNW0yk/Dwx2vQM8mtitRQV4/UUJKaoDo0lNy+J6lRhMNB9vsLOXPMhu4eE+acb4G6KIoRrVMhzvk3fLxzqBNUmiTUYYOCbPXnsip81UBJyRl2/vIgJSUnXecqqhaTll3gFpAK9vWgfWRAtfkhkdxuJCUlcfDgQTp27IjFYmHGjBkAlyyVe70JCAhg9erVLFiwgK1bt7rKLEskEklFFCadxq7RY7blqQEpAWh8qGPSqAGpkFZqMRYAWzHFGlXP6BWFY/e2qTnHq4m80lxSzYLVPCZ16txLSMiDBAX2rkm3JJLbAqmhJLUFGZSS1ChFSUmcmT+frIGvo7UfRG8v3QOt6NE6ioiqfwACoqDjGDiRDJ88cCFJqEf1lRi2WHa5BaSMxnp4ekaXs8sttAEQHejF6r92R1G47L5tiURSOfHx8aSkpGAwGGjXrh0bN26kbt26NeZPnTp1mDZtWo3dXyKR3Drkny3GCmiFmoBYhxGd31MEGz+H6bmqkaLA71vh0CqKS5Oee9zCeaQAdh/LZdvRs2w7chYAk64IAH+/joQE969J1ySS2wqpoSS1ARmUktQoR8/m8tL/vYBOb+WJb3dhzvdDKICiRy9KwCcEJiapxtvevxCQ0hmh0f3V5ofVlgNAnYB7aNHin2i1Xmg0F94ep/KK+efqQxw+rd7f39OA5hYXlBLJzUDbtm3ZtWtXTbshkUgkV0xxfj4Zyduxe4PedAQABbW6kV4rLhRhKcyBTx8Ap51iL3XCy6i5sjLzNxNCCEYs3kFuoY2+UT8x4Y50/LRqYl9tBavMJRLJ9UFqKEltQQalJDXKl1bBjlbtiFv3Fb4FNoSiijmNNggdxaC/aC9ySb76b9s/Qf+5oLn20rBOp529e/9CrkX9g27wCEKvN5ez+2LHMZbuyHAdR/ibrvneEolEIpFIbl22Ja7ikMcZCvCgackmwA9Qg00m7UUpWwtzwGkHjZ7iRrEAGLW37sRWkc1BbqENs8HCIzEJbtdMJlnhUiKRSCRXhgxKSWoEp9VK7tKlHLbq0DRQMOcdBUBr7IjW0AJF40eoca17UMpaGpTyMFdLQAogv+Ag2WfXuo59vCsuBZqdXwLAvU0CiW0RQu/mwdVyf4lEIpFIJLcmm3YlYTfpCDt+kq57ivk1CpTSoJTx4grnDlVDnPZpwO6OL0Dq8Vt6pdT50jxSvh6qLtPpfGjUaCoehiAC/LvUpGsSiUQiuQWRQSlJjZC/Zg2n4udR+OLf8cn5GK3tFGBCownAw3acznespuW5pWDoCOdPQdZuOHNQbexRfQnO7TYLACZjfVq3XoiXV2O365YiG7t+zyHllLpt7+6YQB7vKGcBJRKJRCK5nXE6ndh1qoyun6/BWRZj0qk5o3QeF62EsheTo/OlY+v3KE49DoDpFgxK2R1Olu7I4NDpfOqaztImSJ1QNBiCCA97rIa9k0gkEsmtigxKSWoE+9kcHH7hFBh0aBw56BwXEpxHOtJolfs5KIDJHz7sAXmZFxpXU4LzkpIzFBSqOSAMHoF4ezcpZ/PUZ7+wIy3HdRzgpS9nI5FIJBKJ5PbCabPhEAonnL7Uc1ix6krLYBvU7f3aixW23coxYwjFGgNaBRoYPRgZXnOJiK+W9SlneOXbffh7nOOtu19Hq1Er7lWU9kAikUgkkqoig1KSGuFfQsc/X51O3Lqv6HVIi6bsV1ExYKIQ7viTGnxqNRj+1UO9FnoHeNWF5tde5vTkyZXs2/9X17FO51uhXWrpCqkWYb7UD/DkviZy255EIpFIJLc79qIiDjnqss3eAH/ncRwR94HzV+x2HQZAe3GWAXsxJRp1BVWk0YPNnZrViM/XSpZFrbDXJjRPDUgpBry9GhJRb2TNOiaRSCSSWxoZlJLUCKv0njgVhWaH96KhbJWUEY22Lh6O8/DAR6DzULfuqRfh6fUXKtlcI5a8XwHQaDzQ6cyEhLgHutKzC/jl93NYimwAfPpkR+p6e1TLvSUSiUQikdzaFKafo0B4ULfkDMGa3ykQqqQ2KMU09NhCeJ3sC8YOqyso5XGLVu4VQrg0UctQNeJm9m1J+3Zf1qRbEolEIqkFyKCUpEYo0WjQW0+jEerSb4PvnzHZigkr2Ebz+lvUgBRclNzcp9oCUgB2Wx4A0dHPEVl/tNs1IQSDP9jK6fNqYlKdRsHPJLftSSQSiUQiUcn+3+84UGian4pGU4woLbbXyD+N2K4l0OF5tepe6irI/IViV1Dq1ssl9emWdF5P2I/dKdAoDszGYgB02urL8SmRSCSS25db75NRcktj+V8Cx59/HatWR8DJd13nFY0vTb3W0DdmPj7+ChSdg+Wj4OunVAND9Qif8+f3k5Y2n7zzewHQV7Btr9jmdAWk7mkcyKsDWqDTyreK5PZg5MiRKIqCoigYDAYaNWrEjBkzsNvt19Tv+vXrURSF3Nzc6nG0CqSlpTF06FDCwsIwGo3Uq1ePgQMHcvDgQTe7hIQEunfvjo+PD56ennTo0IFPPvnEzSY9PR1FUUhOTq7y/V999VWaNm2Kl5cX/v7+3H///Wzfvt2tz1GjRhEVFYXJZKJhw4ZMnz4dq9Vaab9ZWVkMHTqUxo0bo9FoePbZZ6vkz4YNG+jfvz9hYWEoisKKFSuu2GeAN954gy5duuDp6Ymfn1+F98rIyKBfv354enoSFBTEpEmT3H6HLv49u/jVokULl82bb75Jhw4d8PHxISgoiAcffJCUlJTLjrMq/kkk14JwOrEWlOBEQSfU32uNvil670F06tIGBn8KUffAj1NhxVjY+S/XSinjLbhS6qf9J7E7BY/ErOTDXn8lWj8XAK1OBqUkkouRGkpqKKmhrg75TVtywxBCkDVtGrknPbBptBhKzpZeUFAULV6aIvCrD53GQupP8NtyyNyl2gREVYsPv+17lqNpcygsLKsYE1jO5nyxujxdo8Cnf+7AnzpFVsu9JZJbhbi4OLKysjh06BDPP/88r776Km+//XZNu+XicoIDwGaz0atXLywWC19//TUpKSksW7aMVq1auYm6efPmMXDgQLp27cr27dvZs2cPQ4YMYezYsbzwwgvX5Gfjxo2ZP38+e/fuZdOmTTRo0IDevXtz5swZAA4ePIjT6eSDDz5g3759zJkzh4ULF/LSSy9V2m9JSQmBgYG8/PLLtGnTpsr+FBQU0KZNGxYsWHDVPoP6/AcNGsRf/vKXCvtwOBz069cPq9XKli1b+PTTT/nkk0+YNm2ay+bdd98lKyvL9Tp27BgBAQEMGjTIZfPzzz8zbtw4tm3bRmJiIjabjd69e1NQUFDpOC/nn0RyraTt3oVT2HGgwew8CYBGVxetPgIP40Vb/cuKtITeQUm9TsCtuVLqfLH6ZSiu4cVfRjUE+HepGYckkpsYqaGkhpIa6ioQtyEWi0UAwmKx1LQrtxW2oiLx8Z+Gi2mvvSO6ffi5eGN4RxE/uJ+YPWigmD9mjdj7wuMXjLd9IMR0XyE+7CnE3uVCnD9dLT6sW99SrF4TLX777TmRlrZAOBxW17XTecXi3dWpYspXu0Xk5ATR5rVV1XJPye1HUVGR2L9/vygqKqppV66YESNGiIEDB7qd69Wrl+jUqZPIyckRw4cPF35+fsJkMom4uDiRmprqsktPTxcPPPCA8PPzE56enqJ58+biu+++E2lpaQJwe40YMUIIIUReXp4YOnSo8PT0FCEhIeKdd94R3bt3F88884yr38jISDFjxgwxfPhw4ePj42q7ceNG0a1bN2E0GkW9evXEhAkTRH5+vhBCiKSkJAGI9PT0S441IyND6PV68dxzz5W7NnfuXAGIbdu2CSGEawxJSUlX/lBLKfvsWb169SVtZs2aJaKioqrc5x+fVVUBxDfffHNZu8p8Xrx4sTCbzeXOf//990Kj0YiTJ0+6zr3//vvC19dXlJSUVHifb775RiiKUun/1+nTpwUgfv7558v6XZl/FVHZe1ZqBnfk8xAi6ccEkTz5O/Hoc38Tn/e6R8QP7if+OWKWmD9mjbB+N+2C4Yf3i8P/aC6e3LJF3LP9gAhemySG7z5Sc45fIQ6HU+QVWcU9s9aKyMkJYvW6tmL1mmiRm7tL2Gz5Ne2epJYiNZTUUBUhNVTt1lC33nSN5JYlMy2NOY+OZKfZgwcTl+BRUrpKSaPOKnp4XbSk3apWvaNuE2j5CHiXX9F0pTidNhyOQgAaN36FBg3+D43mQq6oDzce5Z3EVJbuOAZAkI9MbC6pHoQQWK3WGnmJskQn14DJZMJqtTJy5Eh++eUXVq5cydatWxFC0LdvX2w2dXXhuHHjKCkpYcOGDezdu5e33noLb29vIiIi+OqrrwBISUkhKyuLd99Vt+8+99xzbN68mZUrV5KYmMjGjRv59ddfy/kQHx9PmzZtSEpK4pVXXuHIkSPExcXxyCOPsGfPHpYtW8amTZsYP348AIGBgWg0GpYvX47D4ahwXMuXL8dms1U4mzdmzBi8vb1ZunTpNT8/UGeeFi1ahNlsrnRmzmKxEBAQUC33vFaq6vMf2bp1K61atSI4+EK10tjYWPLy8ti3b1+FbT766CPuv/9+IiMvvTLVYrEA3DTPR3J7cnD7dhI2bOFbj534F2XjdOW7VJN/aw0X5aC0F/NFSB++KzaRUqDmYQozGm6wx1eHwykYsGATrV79iUZePzC14zvgVN+DRmMEOp1XDXsouZ24lXWU1FDXjtRQtV9DyUTnkhtGQd55TvsGcEfOcfWE4omi8UJraAWAn1dpUnNbkZpTCsDj2vMVOJ1WDqZMo7AwzXVOW0FyzhO5aqnjLg3r0CrcTFzLkGu+t0QC6jLov//97zVy75deegmD4eq+BAkhWLNmDatWraJPnz6sWLGCzZs306WLumVjyZIlREREsGLFCgYNGkRGRgaPPPIIrVqp7+no6GhXX2UfgkFBQa496ufPn+fTTz/l888/p2fPngAsXryYsLCwcr7cd999PP/8867j0aNHM2zYMFcugJiYGObOnUv37t15//33CQ8PZ+7cubz44ou89tprtG/fnh49ejBs2DCXX6mpqZjNZkJDQ8vdz2AwEB0dTWpq6lU9uzISEhIYMmQIhYWFhIaGkpiYSN26dSu0PXz4MPPmzSM+Pv6a7nmtXInPFXHy5Ek3MQW4jk+ePFnO/sSJE/zwww98/vnnl+zT6XTy7LPP0rVrV1q2bFllXySS6ubArl3Y9XpAoAg7dm1pEErRosGORn/RhJa9hAKtJwBxdX15ODiA+wJ8brzTV0F2fgm/ZapFYR5qlIBJp+ba1OsD0Ov9atAzye3IraijpIaSGkpqqKojV0pJrjtCCM6vX0/Wut1obKfwytsKgM7YHm/jgwyo+z+G1HmGQHMebH4X3giFLfPUxtWQ4DzXsousrC+xWH4BwGSqj0ZzIR6bX2Lnx99Ocvi0GhR7tF09pvZtRtv6/td8b4nkViQhIQFvb2+MRiN9+vThscceY+TIkeh0Ou666y6XXZ06dWjSpAkHDhwAYOLEicycOZOuXbsyffp09uzZU+l9jh49is1mo2PHjq5zZrOZJk2alLNt37692/Hu3bv55JNP8Pb2dr1iY2NxOp2kpakB6HHjxnHy5EmWLFlC586d+fLLL2nRogWJiYlVfhZVEaJLlixx82Pjxo2uaz169CA5OZktW7YQFxfH4MGDOX36dLk+MjMziYuLY9CgQTz11FOu8xf3O3bs2Cr5vHHjRrd2S5YsqVK7K/W5uvj000/x8/PjwQcfvKTNuHHj+O233/jiiy9c58aOHes2TonkRuCw2znl9GZ9cRvsDj3nzOoXNAUtWsUKuov+ZtiLsSpq0Kq1jycDgvzw1mlrwu0rxlKkrt4I8NS4AlLNm8+mQ/sVbqvMJRKJO1JDXUBqKKmhqopcKSW57hRu38HxsX/h3KBp6EqOo3eULnVX9Oht+UR6/4bGywx3DIX936Julwb0XhDd/Zrvb7PlAuDp2YiG0X/F13yH2/XX/7efZb8ccx3X8Zbb9iTVi16vv2zixet57yulR48evP/++xgMBsLCwtDpdKxcufKy7UaPHk1sbCzfffcdP/30E2+++SazZ89mwoQJV+O6G15e7ltF8vPzGTNmDBMnTixnW79+fdfPPj4+9O/fn/79+zNz5kxiY2OZOXMmvXr1IiYmBovFwokTJ8rNLFqtVo4cOUJsbOxlfRswYICb0AwPD3fzu1GjRjRq1IhOnToRExPDRx99xNSpU102J06coEePHnTp0oVFixa59X1xpRpf3/LVQiuiffv2bu3+OON2Oaric2WEhISwY8cOt3OnTp1yXbsYIQQff/wxw4cPv6R4HT9+PAkJCWzYsIF69eq5zs+YMeOaE6lKJFeKw+7gkKMu6RiIcTpxahRwgrc2hzZeu0B74W8B9hJKSgM4t0qCcyEEizens/WoWowmyPtCxafgoL5oNLfG9kNJ7eJW0lFSQ0kNJTXUlSODUpLrTubhw/x0/32c8jxNyLF8orPAoQEFPTpHMUqHkdCvtCpF0n/Ufx/7DzTuA9pr/xW129Xl556m+gQFxZW7npatViFoGuJD63pmOkXfnHttJbcuZaWBbxXKPlAvplmzZtjtdrZv3+5aen727FlSUlJo3ry5yy4iIoKxY8cyduxYpk6dyocffsiECRNc4784N0F0dDR6vZ6dO3e6RJDFYiE1NZV77rmnUh/vvPNO9u/fX87PylAUhaZNm7JlyxYAHn30USZPnszs2bOZPXu2m+3ChQspLCzkiSeeuGy/Pj4++PhUbUuO0+mkpKTEdZyZmUmPHj1o164dixcvRvOHL65XMr4yTCbTVbW7FH/0+XJ07tyZN954g9OnTxMUFARAYmIivr6+br8roFaHOXz4MKNGjSrXjxCCCRMm8M0337B+/XqiotyrsAYFBbn6l0huFHaHA4fQ0PR8Co0LsxFO9Xw3309pHKxAg+dgxTj4fTMUnMbqCkoplfR683DkTD4zEvZTx5jDn1v8QH0/9b2v0XjIgJSkxriVdJTUUFJDXYzUUFVDBqUk152tOTksvv9hog/t4dGNv+DU+AAOUPToKEExXvSHyFqaV8qzzjUHpE6f/pH9B17E4VCDTjp9xRHy3CK1NOorDzSna6Oq7/mVSG4nYmJiGDhwIE899RQffPABPj4+TJkyhfDwcAYOHAjAs88+S58+fWjcuDHnzp1j3bp1NGvWDIDIyEgURSEhIYG+fftiMpnw8fFhxIgRTJo0iYCAAIKCgpg+fToajQZFqfwL3OTJk+nUqRPjx49n9OjReHl5sX//fhITE5k/fz7JyclMnz6d4cOH07x5cwwGAz///DMff/wxkydPBtTZwFmzZvHCCy9gNBoZPnw4er2eb7/9lpdeeomZM2eW23ufkpJSzpcWLVqUm0ktKCjgjTfeYMCAAYSGhpKdnc2CBQvIzMx0lezNzMzk3nvvJTIykvj4eLeSwX+cDfsjZbN4+fn5nDlzhuTkZAwGQznBcjH5+fkcPnzYdZyWlkZycjIBAQHUr1+/Sj4DZGRkkJOTQ0ZGBg6Hw+VLo0aN8Pb2pnfv3jRv3pzhw4cza9YsTp48ycsvv8y4cePw8HBfifrRRx9x1113VZjjYNy4cXz++ed8++23+Pj4uHIpmM1mTCbTJcd5Of8kkqtF2BxYC/Q4Uehybhsax4UvGr6dh8Kg16EgG5L/4zpfolNzShku8zftZuH0eXVMcdHb6Ba+3XXeaAy/VBOJRHIZpIZSkRpKaqhLUqU6f7UMWc74xvLXhR+L4LVJ4vXhj4r4wf1cr7mjl4k14yYJsSFeiCPr1H//Xk+I6b5CnNh9zff97be/itVroktfDUVm5n9d187ml4g+/9wg2ry2SjSYkiAiJyeIvcdzr/meEokQta+ccRll5YzNZrMwmUwiNjbWrZzx+PHjRcOGDYWHh4cIDAwUw4cPF9nZ2a7rM2bMECEhIUJRlErLGXfs2FFMmTLF1S4yMlLMmTOnnD87duwQvXr1Et7e3sLLy0u0bt1avPHGG0IIIc6cOSMmTpwoWrZsKby9vYWPj49o1aqViI+PFw6Hw62fFStWiLvvvlt4eXm5yi0vXbrUzaaiksxlr2PHjpXzraioSDz00EMiLCxMGAwGERoaKgYMGCB27Njhslm8ePEl+7wcFbWJjIystM26desqbFf2f1EVn4VQf0cq6mfdunUum/T0dNGnTx9hMplE3bp1xfPPPy9sNptbP7m5ucJkMolFixZVeYyAWLx4caXjrIp/f6Q6yhnfLtzOz+PQtzvEv16eK7pO/Y/4+2MPivjB/cQ/R7wl5v75Q+HcMFs1Opeh6pgZdYXI2C6G7NovgtcmiaUnsivv/Cbhh70nROTkBDHvq5Fi9Zpokbz7aZFx7DORn3+kpl2T3CZIDSU1lNRQt5+GUkqdvq3Iy8vDbDZjsViqvL9UcuVYjx3j3Jf/4zVjID/WPcBfvtqOBgW91wN4KJn0D15NsD4FbewMWPMaOKwXGv91P5ivbVYuefdozp5dR0yjvxEWNgid7sKKrO/3ZvF/Sy6UTPX31LNx8n14e8jFg5Jrp7i4mLS0NKKiojAajTXtzi1FQUEB4eHhzJ49u8LlyNebnJwcevbsia+vLz/88AOenp433AfJjaey96zUDO7czs/jhynvcEyv4xNHXR488gVanHiYn0KDjv/7czp0HgfZh2F+O3YH3MnBQV8xP+MUhwpLeL95JA8F37wFVDaknmHC0iTOF1sJNJ1mQvtvCTX+RpPGM6hXb1hNuye5jZAa6uqRGkpSE1SHhpLfwCXXjTNz/kl+UhbFQx7BO3c1GtRfRI2+AWbHbsLCHBDQG+p1UANSGj20eQxC77imgJTdnk9+/kFKSrIAMBrD3AJSAOcK1QBY10Z1mDGwJSG+RrxkQEoiueEkJSVx8OBBOnbsiMViYcaMGQCu5ew3moCAAFavXs2CBQvYunWrq8yyRCK5vbFnZ2PLycUZEoDV5ze0lCaTQoOCHbSl+W7sxZzT+fBAi7exHcxwtffS3tyJztccOIWlyMaA6B8Z2OgH1/lLpT6QSCQ1j9RQktqC/BYuuW4cL8hnd6soiux5dDl88RU90Y7z8ND7EN4OskpLnnrWgYELrvm+O395hMLCCzfU6S4IqnMFVmatOsivv+cCEGY20TBQ5hiRSGqS+Ph4UlJSMBgMtGvXjo0bN1K3bs3ld6tTpw7Tpk2rsftLJJKbj6T//pd0X0GhOM/fVv3E0eCynCVatMIK2tKcKPZizhgCsGl06BWFu/29CfXQ082/aol8a4q8YrXK3r3RatU9rdYbT1MkAf5datItiURyGaSGktQGZFBKct34KTiElMAwWm77DqO1NDCkeKAoCkZ9Pui94OwROLpeveZx7YLN6bS5AlKenlF4mqIwm9u5rifszWLpjmOu48g6clmpRFKTtG3bll27dtW0GxKJRFIp67KzKfTWYio8T6PThRwtqxKuaDFgA21pAlp7McWlVerqGnR83qZhzThcRUrsDg6dyicztwgAT10hOKF5s7cqrFgskUhuHqSGktQWZFBKct1Y2+QOjh/X09ZaDICiC8fkEUWEfSuNQ7arlfY+6g2itLyp0XzN97Tbz7t+vqvjj2g07r/iZ/PVqjKdogN4vGN9ejevvDqDRCKRSCQSidWpbtdrYQ2lRH/xhJYWvd4K6OHXz+DYDkpKg1JGzc1fce+Jj3awPS2HVnX38WjMYXTiOOC+ylwikUgkkuuJDEpJqh3r8Uxy1+8j12jEx7FCPSk0ePg8Rmfje9zhl6ieyz+jBqS0HhDcArqMv+p7CuHgxIkvyS9IBUCr9XILSNkdTk7mFZN5Tp0JvLO+PwPvkOWNJRKJRCKRXB67EOy01yfbqnBfxH3AfkBBUTTolWI4sRd2LAKg2O9OADw0N3ceKYB9J/LQKg7+r83HGLQ2tc4S4OERVLOOSSQSieS2QQalJNWKsFpJe+QR7M0ex97PFz/fnUAYGkX9VTNpC1XDBndfaBTUDJ5ed033zcnZxMGUv7mODYbACz4JQf/5mzmQlec6Zzbpr+l+EolEIpFIbg+cTifZwot9jhCCCjeRZVILqaBoaGxcTzPTWrC2Vs8FNKSoobrtzXiTB6XsDif5JXa89MVqQAqoHzEKL69GeHk1qmHvJBKJRHK7IINSkmrFbrFwMDCQc8ECL8sZ7tldWo2m9FfNEHMXPJ0AigK/faVeqoZcUsUlJwEwGiOoW/c+goL6uK6dL7G7AlKeBi3+nga6NwmssB+JRCKRSCSSi8n/7Qx2tGiddloU7aW4NNak0wl6dTgAvu3BMwCAVY2H80PkI3Ay56bdvieE4Iudxzh6Jh8Ak05dRa7RmIiJeakmXZNIJBLJbYgMSkmqlfSjR9nVvh3F9jMMStwNqNUfhFbNv2DwMkJ2KqyZAWcPqY2qIShlt6tBJz9zO5o0vlDxQQjB2XwroAak9s+QSTslEolEIpFUnYwfD+IUCjphpyzMpDPdR2j4bhj2qXrip1fY59WQER494GQOAD46bc04fBmSjuUy9eu9eOkKuLfer0SYcwHQ6W7uCoESiUQiqZ3IoJSkWsnPy2NVVHsCjxxCLUxjQNH6ovVoh4F8AuoI+PVTSPnuQiP/qKu+38mT33Ly1P8oLDwKgE5/QVCV2B08tGAL+0tXSfl7GirsQyKRSCQSiaQirMVFZB9PwWFW0JYVZgF0xjvwMu29YGgv5pShDgB+Oi296voyKvzmXJV9yqIWoBnUdA13h612nTcYAmrKJYlEIpHcxtzcm90ltxSO/ALyD5/h9AkrpvP7ANAaYvDwfYIRYfMZGTwKU906UJSrNmg1GIYshftevup7ph6aydmz6ygq+h0AkynSdS0tu8AVkAK4V27Zk0guy8iRI1EUBUVRMBgMNGrUiBkzZmC326+p3/Xr16MoCrm5udXjaBVIS0tj6NChhIWFYTQaqVevHgMHDuTgwYNudgkJCXTv3h0fHx88PT3p0KEDn3zyiZtNeno6iqKQnJxc5fu/+uqrNG3aFC8vL/z9/bn//vvZvn27W5+jRo0iKioKk8lEw4YNmT59Olar9bJ9L1myhDZt2uDp6UloaChPPvkkZ8+erbTNhg0b6N+/P2FhYSiKwooVKyq0O3DgAAMGDMBsNuPl5UWHDh3IyMhwXR8zZgwNGzbEZDIRGBhY4TPduXMnPXv2xM/PD39/f2JjY9m9e3eF9zt8+DA+Pj74+flddtxVHYNEUl3kHT4ECjjR0Fj339Kz6goonfai7Xm2IlfVvUaeHsxrFskdvp7cjOQVq/mjIv1UjeTr24aQkAeJaSS37kkk14LUUFJDSQ11dciglKRaKExK4kivhyk8DnrP9Rg9S99cig7FacMvugH63q9AmyFQUhooqn8XNO0LhqsTbUI4sdnOAdC48XRat/qAeuHDXNfPFaiiK7quF3te7c0bD7W6+gFKJLcRcXFxZGVlcejQIZ5//nleffVV3n777Zp2y0VVBIfNZqNXr15YLBa+/vprUlJSWLZsGa1atXITdfPmzWPgwIF07dqV7du3s2fPHoYMGcLYsWN54YUXrsnPxo0bM3/+fPbu3cumTZto0KABvXv35syZMwAcPHgQp9PJBx98wL59+5gzZw4LFy7kpZcq/2K4efNmnnjiCUaNGsW+ffv48ssv2bFjB0899VSl7QoKCmjTpg0LFiy4pM2RI0fo1q0bTZs2Zf369ezZs4dXXnkFo9HosmnXrh2LFy/mwIEDrFq1CiEEvXv3xuFQV5Hk5+cTFxdH/fr12b59O5s2bcLHx4fY2FhsNpvb/Ww2G48//jh33303VaEqY5BIqpPN73/APq9zeBXk8bcf1Aq/Sql8DtEqkL4Z3m0De/7rCkrdrFX3Dp06z3PLkvl0izqR56krACCi3khaNJ9NQEDXmnRPIqkVSA0lNZTUUFeBuA2xWCwCEBaLpaZdqTWc/OgjkTB4tPjs5fdEm7f/JGY//rCIH9xPzBk+XXzw5LdCbJgtRF6WEL99LcR7XYSY7ivE7mXXdE+bLU+sXhMtVq+JFnZ7sev8gSyLGDBvo+j4RqKInJwgHn1/8zWOTiK5MoqKisT+/ftFUVFRTbtyxYwYMUIMHDjQ7VyvXr1Ep06dRE5Ojhg+fLjw8/MTJpNJxMXFidTUVJddenq6eOCBB4Sfn5/w9PQUzZs3F999951IS0sTqIXGXa8RI0YIIYTIy8sTQ4cOFZ6eniIkJES88847onv37uKZZ55x9RsZGSlmzJghhg8fLnx8fFxtN27cKLp16yaMRqOoV6+emDBhgsjPzxdCCJGUlCQAkZ6efsmxZmRkCL1eL5577rly1+bOnSsAsW3bNiGEcI0hKSnpyh9qKWWfPatXr76kzaxZs0RUVFSl/bz99tsiOjq6nL/h4eFV9gUQ33zzTbnzjz32mPjTn/5U5X6EEGL37t0CEIcPHxZCCLFz504BiIyMDJfNnj17BCAOHTrk1vbFF18Uf/rTn8TixYuF2Wy+ovteagxXQ2XvWakZ3LmdnkdJSYmYPm2amD59unhx7ItiW5vWIn5wPzH7sUfE/DFrxO+znxLi+xdVTTPdVyx9b7AIXpskHk8+XNOuV8iLX+4WkZMTxKgFz4sfE2NcGio7e31NuyaRuJAaSmqoipAaqnZrqJtzKkdyy7HlzBl2NgsnxZlJXKoWRROmXlB0GBznweAN/34YvhwJp35TrxnNV3Uvm83Cjp0D2bzlXgA0Gg+0Wg/X9YTdWew+buFUXgkAzUJ9r3ZYEokEMJlMWK1WRo4cyS+//MLKlSvZunUrQgj69u3rmrkZN24cJSUlbNiwgb179/LWW2/h7e1NREQEX32lVttMSUkhKyuLd999F4DnnnuOzZs3s3LlShITE9m4cSO//vprOR/i4+Np06YNSUlJvPLKKxw5coS4uDgeeeQR9uzZw7Jly9i0aRPjx48HIDAwEI1Gw/Lly12zT39k+fLl2Gy2CmfzxowZg7e3N0uXLq2WZ2i1Wlm0aBFms5k2bdpc0s5isRAQUHlel86dO3Ps2DG+//57hBCcOnWK5cuX07dv32vy0el08t1339G4cWNiY2MJCgrirrvuqnR5d0FBAYsXLyYqKoqIiAgAmjRpQp06dfjoo4+wWq0UFRXx0Ucf0axZMxo0aOBqu3btWr788subc8ZOIgF1y42ibtELsfuQXv9+9YKiB0Cr04Bdzc9Ex6cp6f13AIw36UqpswXqCone0QfQadS/izqdGW+fFjXplkRSq5Ea6tqRGqr2a6ib81NTcstxzmrl64D2aNMOE2jJxmlLA6COOE53/0Xg4Q3n0lXjeh2gzeMQdc9V3Ss3dyfnz/+G3Z4LgK/vHW7Xy3IlDGpXj2/HdWV6fym2JDWLEAKHo7BGXupkyNX7vXr1alatWkX9+vVZuXIl//rXv7j77rtp06YNS5YsITMz0/WBm5GRQdeuXWnVqhXR0dE88MAD3HPPPWi1WpdICAoKIiQkBLPZzPnz5/n000+Jj4+nZ8+etGzZksWLF1cogO677z6ef/55GjZsSMOGDXnzzTcZNmwYzz77LDExMXTp0oW5c+fy2WefUVxcTHh4OHPnzmXatGn4+/tz33338frrr3P06FFXn6mpqZjNZkJDQ8vdz2AwEB0dTWpq6lU/P1BzLXh7e2M0GpkzZw6JiYnUrVu3QtvDhw8zb948xowZU2mfXbt2ZcmSJTz22GMYDAbX87xWYXL69Gny8/P5xz/+QVxcHD/99BMPPfQQDz/8MD///LOb7XvvvYe3tzfe3t788MMPJCYmYjCoW5d8fHxYv349//nPfzCZTHh7e/Pjjz/yww8/oNOp9VXOnj3LyJEj+eSTT/D1lRMHkpuTsr9FigBfp4HTga1Lr2jRYsXPuwDs6gQY5ghKDGqxFQ+NUkFvNU+ZPvI3qf+2bDmPbl234mGo+G+SRHKzcCvqKKmhpIaSGqrqyOp7kmvGdvocxw11yLeew9eRD4CiDcLgtDKg3teYPewQ1AJsau4ChiwF76tPOm63qzmpzOZ2NGv6piu5uRACpwBLkSq2Ggf70CbC7+oHJpFUE05nEet/rpmcZvd234tWe2V528pEgM1mw+l0MnToUB5++GESEhK46667XHZ16tShSZMmHDhwAICJEyfyl7/8hZ9++on777+fRx55hNatW1/qNhw9ehSbzUbHjh1d58xmM02aNCln2759e7fj3bt3s2fPHpYsWeI6J4TA6XSSlpZGs2bNGDduHE888QTr169n27ZtfPnll/z9739n5cqV9OrVq0rPokwkVMaSJUvcRNAPP/zg2t/fo0cPkpOTyc7O5sMPP2Tw4MFs376doKAgtz4yMzOJi4tj0KBBbnkNvL29XT//6U9/YuHChezfv59nnnmGadOmERsbS1ZWFpMmTWLs2LF89NFHbNy4kT59+rjaffDBBwwbNozL4XQ6ARg4cCB//etfAbjjjjvYsmULCxcupHv37i7bYcOG0atXL7KysoiPj2fw4MFs3rwZo9FIUVERo0aNomvXrixduhSHw0F8fDz9+vVj586dmEwmnnrqKYYOHco991Q8OXG1Y5BIqhOHw0GWw4cDhWb65iegR01W7KvLZljQaEz1R8O5dFYE3se/7W04fjwbuPlySk1evocffssiv0T1X4Oqx4zGcLeV5hLJzcqtpKOkhrqA1FBSQ1UVGZSSXBN5P67i5OwvKIzrho/+B9d5g89QQgs3YY5tA+3/DHrThUZXmdi8jLKglIdHMF5eDQFwOAWPLtxCUkauy87XJH+9JZKroUePHrz//vsYDAbCwsLQ6XSsXLnysu1Gjx5NbGws3333HT/99BNvvvkms2fPZsKECdfsk5eXl9txfn4+Y8aMYeLEieVs69ev7/rZx8eH/v37079/f2bOnElsbCwzZ86kV69exMTEYLFYOHHiBGFhYW59WK1Wjhw5Qmxs7GV9GzBggJvQDA8Pd/O7UaNGNGrUiE6dOhETE8NHH33E1KlTXTYnTpygR48edOnShUWLFrn1fXGlmrLZsDfffJOuXbsyadIkAFq3bo2Xlxd33303M2fOpH379m7tgoODLzsGgLp166LT6WjevLnb+WbNmrFp0ya3c2azGbPZTExMDJ06dcLf359vvvmGxx9/nM8//5z09HS2bt2KpvTL+eeff46/vz/ffvstQ4YMYe3ataxcuZL4+HjgghjW6XQsWrSIxx9//KrGIJFUJ4Vp5/jd6Y9vUbYrIAVQPyIA08T1UKchfDGU+AYjOew0Q7G6Pa6e8fJfxG4UDqdg2S/H8DGcZ2rHRfh55IEjFwCd1qdmnZNIaiFSQ0kNdTFSQ1UN+a1dck1k/LKTXxuHkau14VtcWHpWg6Jo8BZFULcNeNWF/NMXGulMFfZ1OVJSZ3D8+L8BNRKt010QU5nnitwCUt4eOu6s739V95FIqhuNxsS93ffW2L2vlDIRcDHNmjXDbrezfft2unTpAqjLh1NSUtw+gCMiIhg7dixjx45l6tSpfPjhh0yYMME1W3bxsvLo6Gj0ej07d+50iSCLxUJqauolZ3/KuPPOO9m/f385PytDURSaNm3Kli1bAHj00UeZPHkys2fPZvbs2W62CxcupLCwkCeeeOKy/fr4+ODjU7Uvd06nk5KSEtdxZmYmPXr0cFVj0fxhhUVF4yssLHQt4S5Dq1VL1AshMJlMV/RcyjAYDHTo0IGUlBS386mpqURGRl6ynRACIYRrXIWFhWg0GhTlwhamsuOymcStW7e6/S58++23vPXWW2zZsoXw8PCrHoNEUl0IITi74hAONBiE+ruq0TdE79mLnvfthrqlv5/2YvJLV1G8HB1KYy8j9/jfPMGe/GI1mNY8IIVo8++u8zqdH0ZjSE25JZH8P3t3HlZVtT5w/HtmDnAYBRlEFMUBpxxyHiIHUENvmdrVHH6p6b2OWYY2kaZZhnlzyKxb1r1XzTQzQytxzNlSSBMFB3BAHABlHs6wfn8cOXlCERVFdH2e5zwPZ++1137XPgwva6+91m2pSnmUzKFkDnU9mUOVj+yUku7KzqIiLnhpsBTm8nxcALkkg8I6FFyryIfkHbBuAhRZRzehcYQ7HNZ+8eIPlHRIKRQq3N3aAtcSxzzrD7KvqwM/TeyMg1aJTq26u8ZJUgVRKBS3/QjdgyY4OJi+ffsyatQolixZgsFgYOrUqfj7+9O3b18AJk2aRM+ePalXrx5Xrlxh69atNGzYEIDAwEAUCgUxMTH06tULvV6PwWBg2LBhTJkyBQ8PD7y9vYmKiir1x/hGIiMjadu2LePGjWPkyJE4OTmRkJBAbGwsCxcuJD4+nqioKIYMGUJISAharZbt27fzxRdfEBkZCVjvBs6ZM4dXXnkFBwcHhgwZgkaj4fvvv+e1115j5syZNG7c2O68f002ABo1aoRGo7HblpeXx6xZs+jTpw++vr6kp6ezaNEiUlNT6d+/P2BNpp544gkCAwOJjo62LXMM4ONz838WIyIiGDVqFIsXL7YNPZ80aRKtW7cudbfyerm5uZw4ccL2Pjk5mfj4eDw8PGwJ7ZQpUxg4cCCdO3cmNDSUn376iR9++IFt27YB1scFVq5cSY8ePfDy8uLcuXO899576PV62ySh3bt3Z8qUKYwdO5bx48djsVh47733UKvVhIaGAti+L0r89ttvKJXKUtf7TtogSRXhfOJRLMUmLAoFamWOdaNCh0LpiFKjBWMhXDoC+RkUKa3/MPao5ko9J4cyar3/SuaRctEVAODu3p66dV5Fr69Z5f8uSY+Oqp5HyRzKSuZQMoe6qbteA7AKepSWM77X5kybKp6aNE9ED+hte304cKBYPfB9cWl8AyEWtrEtlSyiXIT4b787Oo/FYhabt1iXL87JOSaMxhwhhBDZBcWiy5wtIjAyRgRGxoje83+pyOZJ0h152JYzLlGynLGrq6vQ6/UiLCzMbjnjcePGiTp16gidTie8vLzEkCFDRHp6um3/jBkzhI+Pj1AoFGUuZ9y6dWsxdepU23GBgYFi3rx5peLZv3+/6N69u3B2dhZOTk6iadOmYtasWUIIIS5fviwmTJggGjduLJydnYXBYBBNmjQR0dHRwmw229Wzdu1a0alTJ+Hk5GRbbnnFihV2ZW60JHPJ6+zZs6ViKygoEE8//bTw8/MTWq1W+Pr6ij59+oj9+/fbyixduvSmdd7K/PnzRUhIiNDr9cLX11cMHjxYnDt3rsxjtm7desNzlXwWJT7//HNRt25d4eDgIJo1aybWrl1r25eamip69uwpvL29hUajETVq1BCDBg0Sx44ds6tj48aNokOHDsLV1VW4u7uLJ598UuzZs+emsZV3OePytuF2VcRyxo+KR+V67F35tTgw9QfRYfp74u9vtBfRA3qLec9HioUv/iTEzo+E+HcPW25TK3aPqL4lTpzOL6zssG32nEwXodFbRbtZP4i/Rb8ror8eIDZtDhIJCVNvfbAkVSKZQ8kcSuZQj14OpRDiLpZmqqKys7NxdXUlKyvroZmxvjKYs4sY8N+VFJ04TOj5oyhQg8qDQPfz9PPaA+61QamGjOPwt8VQ50lwrm5bXrm80tLWkJyyiIKCFABCn0hAqbSOxtpzMoO/f7bXVnZsaB2mhDWosDZK0p0oLCwkOTmZ2rVr4+DwYN01f9Dl5eXh7+/P3LlzGTFixH0/f2ZmJl27dsXFxYUff/wRR8eqe2dWKr+yfmZlzmDvUbgeQgh++dd8nC4FMd6wk5aXdlE7zQ2Vrhk6h/b8Y8Q52DILirIQBl98W3wNwOEOjfDSam5R+/0xbc1hVuw/w5CGK3kiYJdte2DgGOrWmVKJkUlS2WQOdedkDiVVhorIoR6s5UGkKkEIwcX33id1xiaSPL1xdNkDgEbpj87leeq65sG0VJgQB8Zr80x5NwSDz213SAGcS/2frUPK0bGOrUMK/hyW3rSGK4ff7iE7pCSpiomLi2PFihWcPHmSgwcP2lYHKRnOfr95eHiwadMmunbtyp49eyolBkmSKlfOtm1c3PYLV5V5vPjLb3SLL7l/q0ItTKDSgqkQgOIXYm3HPUir7mUVWCddb+FvffTQ0bEu1ap1xc/32coMS5KkCiRzKOlhIeeUkm6bMTWVzC+/xLnvEowinTpp1iRMXJtLykdRCAnfQ/xyyL1oPUh353dTS1bbq1//HXyq9wHgYnYh2xIv8WvKFQA8nLQYHB6Mu5OSJN2e6OhoEhMT0Wq1tGzZkh07dlCtWrVKi8fT05O33nqr0s4vSVLl2nP4MAnNmwDHaH81m3S3kpWLlKiURmunlLmImbVf5PuEq7bjHJS3f+Otol3JK2bT0YskXcwFwElTAGYIDp5GNc8nKjc4SZIqnMyhpIeB7JSSblvu5ctsfeIJTNr9tDySjW9uc4ycxKJ2RgVodArYNhuyzloP0DhaH9u7A0IIjEZrp5SrawvUamcAJn8Tz64TGbZyHk4PzvLLkiSVX/PmzTlw4EBlhyFJkmRzudA6CkojVBj1tbjkXR+K4kGhQqsuBLX1kZQlNQZgLLaugFRLr0VzB6PBK9rM9Uf59uA5Wvsc4PmGJ1BZzgOgUT+cj1pK0qNM5lDSw0J2Skm37cTp06RU98eSlkKLrBSM17ZrEASI33DTZ0NhnnVjzznWuaR0zrd1DovFyG8HniUn5w/btusTqpR062OB7YI88XbR8WLnoLtqkyRJkiRJEoDZbEEICDbWw6I+DcK68q+rQy6tW1yBwG6YUGFUWkdof90siFYuTrdc8ep+OHslH62qiJFN/odKYbZOYwtotXd2c1CSJEmS7jXZKSXdtoLcfOJMNWhSfG1JSYUTCqUzA/3+TTWHfHBsCOnXHttr2AdcfG//HAVn7DqknJzqodV6k3q1gOTLeWTkFQHwXr8mBHo63XWbJEmSJEmSAApNglhjPRLTj9DBJR2z0TpVQKPOgdQb/E/IuUiR8s8R2q1dnXFUPRjzSeUWmnBS56NSmFEo1NSqNRZnp3ro9f6VHZokSZIk3ZDslJLKTVgs5O6IIzPRTLLXFVpdSoUCHRqn7qiVnlSrkwyedSGgNax/2XrQbY6QKmEyWSfm1Ol8adM6BrXaQGaeidDobRSbLLZy7vKxPUmSJEmSKkj+2RxEsZ5LZieeyTpIsRoQJgDcqnnCmtGQcYLC6zqlHoS5pA6eucKFrEIu5RThqCkAQK12Iaj2hEqOTJIkSZLKJjulpHLLWvs9Z5d8z4UuYai4gEu+NQlToEUriqBhBGydDYdWXjtCAZrbH8VkNF6hoNA6H5VG44ZG4wZASkY2xSYLWpWSut7OdKpXDRc5ubkkSZIkSRUkJ/EyFoVAICjpatI4/w3hmEywD/Dd1wAUab0A0CoUKCv5sb3D57J45uPduGqzGBqykmp665ybajmPlCRJklQFyE4pqdzOnDjOzhA/UhSXePqPDHQmJwRGUGhxEIVQcBXMRaBQgaMnhPSF21we+VTyfJKTP7K9V6sNtq9Lljeu72Pgh/EdK6RNkiRJkiRJABazmd/WfY3JVYdSmG3bleoA0KaisFhHTOFZl6LOb0Mm6B6AUVKn0q0r7bX3/4PHvK+b+sBRzrcpSZIkPfhkp5RUbr/m55Pi4ojmRDweuZdL5s4EhRZPhxNQcqewRisYsfGOzpGZuevaV0qUSh3e3r2IP3uVyNWHuJRjXQ3HzVGOjpIkSZIkqWIV5uViyi+g2FVLoGHpdXvUKJQmEBbMKPm2ejhHHFtA5mV0t3nz7V7ILrR2ljWobu1I8/TojH+N53F3a12ZYUmSJElSuchOKalchFlQaFayy1yLboWHAVCoquMoTPT2nIuvLgmUL1kLa+984nGTKQuA5o99iYdHBwC+jEkg8WKOrUxjf9c7rl+SJEmSJOlG0k6cJMNJRb7CzMsbT5PgFwgCFAoFPpZCsFjY6d6CCV794dxlAFzVqkqL99TlXP6z5zSHzl2muffvVHc4CYCzIQSval0rLS5JkiRJuh2Vf3tHeuAVHT/O2ciPuODkSYbvL2iV2QBonMLwVeYS0K456gbdIPWA9QDt7U9ufi51OX8ceYmCgnPWuq/NIwVwJd/62N7w9rXY+FJnXg2rf3cNkiTppoYPH45CoUChUKDVaqlbty4zZszAZDLdVb3btm1DoVBw9erVigm0HJKTkxk0aBB+fn44ODhQo0YN+vbty7Fjx+zKxcTE0KVLFwwGA46Ojjz++ON8+eWXdmVSUlJQKBTEx8eX+/xvv/02DRo0wMnJCXd3d7p168a+ffvs6hwxYgS1a9dGr9dTp04doqKiKC4uvmXdy5Yto1mzZjg6OuLr68sLL7xARkZGmccsXryYpk2b4uLigouLC+3atePHH3+07c/MzGT8+PHUr18fvV5PzZo1mTBhAllZWbYyX375pe3746+vS5cu2coVFRXx+uuvExgYiE6no1atWnzxxRd28fzrX/+ynSsgIICXXnqJwsLCMtuwZs0aevTogaen521/HpJUFiEEK7/7jjPukKsw4ppn3a5QWFNlH1EEmLmscbe+12p4zseDd+vVqKSIYeGWE3y5O4Vqih8Y99jneGnjANBqPCotJkl6lMkcSuZQMoe6M3KklHRLmf/9H2cvOXMkxB+l8TRqU8m3jQZvkQsaR0j8758HOHndVv1G4xUSE9+0vVcoVOh01dlzMoMNh9PYn5wJQAMfA/WqG25WjSRJFSQ8PJylS5dSVFTEhg0bGDt2LBqNhmnTplV2aAAUFxej1Za98qbRaKR79+7Ur1+fNWvW4Ovry7lz5/jxxx/tkroFCxYwadIkIiMjWbx4MVqtlu+//54xY8bwxx9/EB0dfcdx1qtXj4ULFxIUFERBQQHz5s2jR48enDhxAi8vL44dO4bFYmHJkiXUrVuXP/74g1GjRpGXl1fmeXft2sXQoUOZN28eERERpKamMmbMGEaNGsWaNWtuelyNGjV47733CA4ORgjBV199Rd++fYmLi6NRo0acP3+e8+fPEx0dTUhICKdPn2bMmDGcP3+e1atXAzBw4EDCw8Pt6h0+fDiFhYV4e3vbtg0YMICLFy/y+eefU7duXdLS0rBY/lw5dfny5UydOpUvvviC9u3bk5SUZEvmP/zww5u2IS8vj44dOzJgwABGjRp1y89AksrLbDZTrLKOevI2e3A6sA/wO0JhnTJApTCD2UTRtVX3mrno+VfDmpUVLgCXcooAaFXDutqeziEQN9emVK8eUZlhSdIjTeZQMoeSOdQdEI+grKwsAYisrKzKDuWBZ7FYxPKpkeL916aLsC9XivdGzhDRA3qL6AG9xYJRP4hjf+8kxKoXhIhyEeLzcCE2vinEldO3dY7c3BNi0+YgsWVrI3HmzFKRmblHCCFEp/e3iMDIGNtre+Kle9FESapwBQUFIiEhQRQUFFR2KLdt2LBhom/fvnbbunfvLtq2bSsyMzPFkCFDhJubm9Dr9SI8PFwkJSXZyqWkpIinnnpKuLm5CUdHRxESEiLWr18vkpOTBWD3GjZsmBBCiOzsbDFo0CDh6OgofHx8xIcffii6dOkiJk6caKs3MDBQzJgxQwwZMkQYDAbbsTt27BAdO3YUDg4OokaNGmL8+PEiNzdXCCFEXFycAERKSspN23rmzBmh0WjE5MmTS+2bP3++AMTevXuFEMLWhri4uNu/qNeU/O3ZtGnTTcvMmTNH1K5du8x6PvjgAxEUFFQqXn9//9uOyd3dXfz73/++6f5vvvlGaLVaYTQab7j/0qVLQqPRiP/85z+2bT/++KNwdXUVGRkZN6137Nix4sknn7TbNnnyZNGhQ4dyxV0Rn8f1yvqZlTmDvYf1ehQUFIioqCjR7/XFok/kd2LR8K+s+c7A/mLR6I3i1H8WCLFrvvj3kmGi+pY4MeqP5EqL1WS2iKNpWaLb3G0iMDJGbNr9T7Fpc5BIOf1ppcUkSRVF5lAyh7oRmUP96WHMoeTje1KZcnNzSdQ5kG0pot22deiyj9j2uWSfo5rjBTDmWzc0GwjdZ4Bb+e8cCmGmqOgiAFqtJwEBw3F3b4sQggvZ1iGIozrV5v1+TehQt1rFNUySpHLT6/UUFxczfPhwfvvtN9atW8eePXsQQtCrVy+MRiMAY8eOpaioiF9++YXDhw/z/vvv4+zsTEBAAN9++y0AiYmJpKWl8dFH1lU2J0+ezK5du1i3bh2xsbHs2LGDgwcPloohOjqaZs2aERcXx5tvvsnJkycJDw+nX79+HDp0iJUrV7Jz507GjRsHgJeXF0qlktWrV2M2m0vVB7B69WqMRiOvvPJKqX2jR4/G2dmZFStWVMg1LC4u5tNPP8XV1ZVmzZrdtFxWVhYeHmU/etOuXTvOnj3Lhg0bEEJw8eJFVq9eTa9evcodj9ls5uuvvyYvL4927dqVGY+Liwtq9Y0HVv/nP//B0dGRZ5991rZt3bp1tGrVijlz5uDv70+9evV45ZVXKCgosJVp3749Bw4cYP/+/QCcOnWKDRs23FYbJKkimc1mjEJJfLEPhow9FBVbvzcd1fmMmNOW2r16Qs4F20ipylx1b+q3hwj/1w5S0jOpps9AzRUA1Krbnz5BkqR7S+ZQd0/mUA9/DiUf35PKlJ+eg1EoSbyqp13+VUp+Lemw8JRqOm4tG0DRtUnIb3MuKZMph737elJUlAaARm2dwPz4xRz2p2RSbLIOU5zYrR7OOvmtKlVdQgjyrxt2ez85KpUoFHf2z5MQgs2bN/Pzzz/Ts2dP1q5dy65du2jfvj1gfSY/ICCAtWvX0r9/f86cOUO/fv1o0qQJAEFBfy5HXpIkeHt74+bmBkBOTg5fffUVy5cvp2tX66S8S5cuxc/Pr1QsTz75JC+//LLt/ciRIxk8eDCTJk0CIDg4mPnz59OlSxcWL16Mv78/8+fP59VXX2X69Om0atWK0NBQBg8ebIsrKSkJV1dXfH19S51Pq9USFBREUlLSHV27EjExMTz33HPk5+fj6+tLbGws1arduIP9xIkTLFiw4JbD3Tt06MCyZcsYOHAghYWFmEwmIiIiWLRo0S3jOXz4MO3ataOwsBBnZ2e+++47QkJCblg2PT2dd955hxdffPGm9X3++ecMGjQIvV5v23bq1Cl27tyJg4MD3333Henp6fzzn/8kIyODpUutK5oNGjSI9PR0OnbsiBACk8nEmDFjeO21127ZBkm6FzIPX8KEksCCMzTPPkLJb2wnnUD37zaQnQpAUc0hADhU4qp7h1Oz0CiLeb/TO7jqsjBd+19FpbrzhWYk6UFWFfMomUPJHErmUOUn/9OXbkoIweUNSZzRu6HWxQOgVtVE6diOzn6L8Gj5LKTF3fEE5zm5x2wdUqCgmld3zBZB/yV7uJpvvWvgoFHipK28lW0kqSLkWyzU+eVwpZz7ZOcmOKlu72coJiYGZ2dnjEYjFouFQYMG8cwzzxATE0ObNm1s5Tw9Palfvz5Hjx4FYMKECfzjH/9g48aNdOvWjX79+tG0adObnufUqVMYjUZat/5z2XJXV1fq1y+9mEGrVq3s3v/+++8cOnSIZcuW2bYJIbBYLCQnJ9OwYUPGjh3L0KFD2bZtG3v37mXVqlW8++67rFu3ju7du5frWtxq3gWwJpajR4+2vf/xxx/p1KkTAKGhocTHx5Oens5nn33GgAED2Ldvn93cAQCpqamEh4fTv39/u+f8nZ3//L36/PPP88knn5CQkMDEiRN56623CAsLIy0tjSlTpjBmzBg+//xzduzYQc+ePW3HLVmyhMGDBwNQv3594uPjycrKYvXq1QwbNozt27eXSqqys7Pp3bs3ISEhvP322zds9549ezh69Cj//e9/7bZbLBYUCgXLli3D1dV6s+HDDz/k2Wef5eOPP0av17Nt2zbeffddPv74Y9q0acOJEyeYOHEi77zzDm+++WaZ11SS7oUrPyRiUSvQWayT5CqUHqh0jenecIutQwqdC0UO1n8OK3OkVFaBES99Bq466wS6SqUenc4bd/c2tzhSkqqmqpRHyRzqTzKHkjlUeclOKemmjo8bzxmnlhxoUkybqycBA6g8UKr9qa4H/lj956N7AJ51bqt+k/EqAC6GprRsuQqlUs2VvGJbh1T3kOqENfK541EekiTdmdDQUNuElX5+fqjVatatW3fL40aOHElYWBjr169n48aNzJ49m7lz5zJ+/Pi7jsnJyX4EQG5uLqNHj2bChAmlytas+ecjxAaDgYiICCIiIpg5cyZhYWHMnDmT7t27ExwcTFZWFufPny91Z7G4uJiTJ08SFhZ2y9j69Oljl2j6+/vbxV23bl3q1q1L27ZtCQ4O5vPPP7eb8PT8+fOEhobSvn17Pv30U7u6r18ZxcXFBYDZeg+ivAABAABJREFUs2fToUMHpkyZAkDTpk1xcnKiU6dOzJw5k1atWtkdV716ddvXJasBAbRs2ZJff/2Vjz76iCVLltjK5OTkEB4ejsFg4LvvvkOj0dyw3f/+97957LHHaNmypd12X19f/P39bckUQMOGDRFCcO7cOYKDg3nzzTcZMmQII0eOBKBJkybk5eXx4osv8vrrr5d5TSWpomWnX0aYTVhUCtRq6wpICpUHaodWeLlsgVxYHvAsbwZPpMBsHa2hq4SRUt/8epYj57PIyC2mpsGaf+n1NWnfbut9j0WSpBuTOZTMoWQOdftkp5R0Q7m5uax0d8OsPo1LjpGmqY9j4RhC6QCAQaOC3GsdUv2/Au+GUC24XHUXFp4n5fQScnOtdwY0WneUSuu3YlaBtUPKWafms6GtblqHJFUljkolJzs3qbRz366SJOB6DRs2xGQysW/fPtvQ84yMDBITE+3uEAUEBDBmzBjGjBnDtGnT+Oyzzxg/frztbtn1cxMEBQWh0Wj49ddfbUlQVlYWSUlJdO7cucwYW7RoQUJCQqk4y6JQKGjQoAG7d+8G4NlnnyUyMpK5c+cyd+5cu7KffPIJ+fn5DB069Jb1GgwGDIbyrQxqsVgoKiqyvU9NTSU0NJSWLVuydOlSlH/5vG7Uvvz8/FLzE6iu3cUVQqDX68t9Xf4aT3Z2NmFhYeh0OtatW4eDg8MNj8vNzeWbb75h9uzZpfZ16NCBVatWkZuba7tLmZSUhFKppEaNGrY2/LWt17fhdq6pJN2tvCuZCIUSo8KCg9seuOAKWL8fSwZIbPDsQN61Dikl0MLF8b7GmJZVwKvfHsJRnU944HZqulhHb6nVrrc4UpKqvqqUR8kcSuZQMoe6fbJTSrqh9LQ0zGo1yqJCnt2RhEVYfxmqhBLfwjj0DkbIvVa4wVOgKv+30tlz/yE19X+29w4ONUhJz2Pwv/dx+dryxq76G/cqS1JVpFAobvsRugdNcHAwffv2ZdSoUSxZsgSDwcDUqVPx9/enb9++AEyaNImePXtSr149rly5wtatW2nYsCEAgYGBKBQKYmJi6NWrF3q9HoPBwLBhw5gyZQoeHh54e3sTFRWFshzzN0RGRtK2bVvGjRvHyJEjcXJyIiEhgdjYWBYuXEh8fDxRUVEMGTKEkJAQtFot27dv54svviAyMhKw3g2cM2cOr7zyCg4ODgwZMgSNRsP333/Pa6+9xsyZM2ncuLHdeRMTE0vF0qhRo1J3wvLy8pg1axZ9+vTB19eX9PR0Fi1aRGpqKv379wesydQTTzxBYGAg0dHRXL582Xa8j4/PTdseERHBqFGjWLx4sW3o+aRJk2jduvUN55IoMW3aNHr27EnNmjXJyclh+fLlbNu2jZ9//hmwJlM9evQgPz+f//3vf2RnZ5OdnQ1YJz1VXfc9vHLlSkwmE88//3yp8wwaNIh33nmH//u//2P69Omkp6czZcoUXnjhBdu8CREREXz44Yc0b97cNvT8zTffJCIiwu48f5WZmcmZM2c4f/488Ofn4ePjU+Y1k6SbEUKw7av/kqnxQGEqICTN+k+fQqFGYTGjuJb4F6l0AMwM9qdfdXfcNfc3hc7ItT5W2C1wH33r/GjbrtNVv9khkvTQqOp5lMyhrGQOZSVzqBuogFUAq5yHdTnjinTs4EHxf2/ME6NGvWpdEvnaa/8zIaJ4ipsQHzYSIspFiJk+t133kSOviE2bg0T876PE2XPLRHFxpvjvnhQRGBlje720Mq7iGyVJ98nDtpxxiZLljF1dXYVerxdhYWF2yxmPGzdO1KlTR+h0OuHl5SWGDBki0tPTbftnzJghfHx8hEKhKHM549atW4upU6fajgsMDBTz5s0rFc/+/ftF9+7dhbOzs3BychJNmzYVs2bNEkIIcfnyZTFhwgTRuHFj4ezsLAwGg2jSpImIjo4WZrPZrp61a9eKTp06CScnJ9tyyytWrLArc6MlmUteZ8+eLRVbQUGBePrpp4Wfn5/QarXC19dX9OnTR+zfv99WZunSpTet81bmz58vQkJChF6vF76+vmLw4MHi3LlzZR7zwgsviMDAQKHVaoWXl5fo2rWr2Lhxo23/1q1bbxpPcnKyXV3t2rUTgwYNuum5jh49Krp16yb0er2oUaOGmDx5ssjPz7ftNxqN4u233xZ16tQRDg4OIiAgQPzzn/8UV65cKbMNN7tmUVFRZR53KxWxnPGj4mG7HunHjomoqCgRFRUllvTvL9Z27iCiB/QW856fJhaPXC/E0t5CRLmIiJhVovqWOBFz6UqlxLn7RLoIjIwRs1aMEZs2B4n9v/YTJ05+KPLyTlVKPJJ0r8gcSuZQMod69HIohRBCVGQnV1WQnZ2Nq6urbZlGyZ4wW9jzYQyTcs/w2NWN1L9gQakJRqvz5R+dd6NM2Q7i2goYrgHw0h+3Vf+hQ2O4nB5L/frvUMN/EAALNh9nbmwSfZr58UbvhngZdHIuKanKKiwsJDk5mdq1a9906K50Y3l5efj7+zN37lxGjBhx38+fmZlJ165dcXFx4ccff8TR8f4+oiNVjrJ+ZmXOYO9hux6pBw/y2bp1qIWKpr+fIcXZB6MxDpWuOc76Vox8fCGc20+PNv/jkEMA/2saRDfP+9fu7EIju46nE3/uKku2n2Jy629p5LadOkEvU6vWP+9bHJJ0v8gc6s7JHEqqDBWRQ8nH9yQ75tw8rny7kcIrRrJ9TqLJygGcUKr9cdC4ogyJgOStoFRDs+cg5Oly152Wtoac3KPk5BwBQK1y5tsD5/gwNonMPOuwdD83Pd4u8g+QJD0q4uLiOHbsGK1btyYrK4sZM2YA2Iaz328eHh5s2rSJRYsWsWfPHtsyy5IkPZxMxdb8Q4MKi6oaFts0HSpqO+6Hc/sBKFJapzFwuM+r7r219g/Wxp+nvd8+prXeRQ1DOgBqddXvEJQk6e7IHEp6WNz/pUOkB1rSv//Nf3/fy0H1KWpmqamdcW2iN4UaN1EAimvfMnp36LsIgruVq96CgnMkHJ3C2bNfUFhkfY5Vp6vOyt/Oknq1gAKjdQ6HxwLkhJ2S9KiJjo6mWbNmdOvWjby8PHbs2EG1atUqLR5PT0/eeustmUxJ99Xbb7+NQqGwezVo0MC2v7CwkLFjx+Lp6YmzszP9+vXj4sWLdnWcOXOG3r174+joiLe3N1OmTMFkMtmV2bZtGy1atECn01G3bl2+/PLL+9G8B5apyNoppcrP4ZTqCOaiOABaBSfT1XUhqHTg+xhFeg/g/q+6l5yeB8AzwbHUdUvBQWWd0NPRsfZ9jUOSpAeTzKGkh4EcKSXZOZxxmSwXPWZzHs8fKCTd0YIAFAoN7soU4NoKEVrn26q3uNi6xLJa7UoN/0HoHPxwc3ucq/k7AHjvmSZ0rueFn5u+4hojSdIDr3nz5hw4cKCyw5CkB0KjRo3YtGmT7f31KwS99NJLrF+/nlWrVuHq6sq4ceN45pln2LVrF2Bdlal37974+Piwe/du0tLSGDp0KBqNhnfffReA5ORkevfuzZgxY1i2bBmbN29m5MiR+Pr6lmvp7odRUW4hKWZ3irIzaaW4NjUBSmpUd4DzcNavPUf6fEV24hkwm9Hd55FSJasSu+sLwQL1603HYGiMi0uz+xqHJEkPHplDSQ8L2Skl2ckpyuOqphr+J+O5rDPBtZVHm2R+S+cmcbDx2rPButvrlDIaswDQO9SgTp1X+OH383xx8BipVwoAaOzvKjukJEmSpEeaWq2+4Qo4WVlZfP755yxfvpwnn3wSgKVLl9KwYUP27t1L27Zt2bhxIwkJCWzatInq1avz2GOP8c477xAZGcnbb7+NVqvlk08+oXbt2rbluxs2bMjOnTuZN2/eI9kplXsmg6ydeaQoPPARGQCotE0Rjp7U8juHMU1Fj8ApXPkj2XaM/j6MlBJCMG5FHAdPXyGv4DKBhitgsY6Q8vLqgU7nfc9jkCRJkqT75b6OQb5fQ9OlOyNMFgqFnt0FfiiFCQQolO6o9TraP+WESmWBYmtShH/LctWZnX2IvfvCOZLwMgBqjQtX84uZ+HUcX+xKJq/YjEIB1eU8UpIkSdIj7vjx4/j5+REUFMTgwYM5c+YMAAcOHMBoNNKt25+PzDdo0ICaNWuyZ88eAPbs2UOTJk2oXr26rUxYWBjZ2dkcOXLEVub6OkrKlNRxI0VFRbalra9f4vphkLonARRgRoGKa7mkQgNKCwhBjsqJKyonAFq6ODLUz5O6jrp7HldaViHrD6WRV3CJ9zu9zVvtogHrKC61Wk5zIEmSJD1c7vtIqXs9NF26M6bLlzm9aC95uho4Oq+GVAVqHFC7/h+u1f6LztsFzv0CjftB6OvgEVSuei9d+pG8vOO29y6GJlzOKcIiQK9RMaJjbRr7u+BluPdJniRJkiQ9qNq0acOXX35J/fr1SUtLY/r06XTq1Ik//viDCxcuoNVqcXNzszumevXqXLhwAYALFy7YdUiV7C/ZV1aZ7OxsCgoK0OtLj1iePXs206dPr6hmPlAsRSbMCIy6izi47oUsR1CoEAoTCIttcnO1Ata3rHff4ip5ZC/YIwOtyohCoUarrUa1ak+iUsl8SZIkSXq43PdOqXs9NF26Mxfnfkh2YTMO1FLT6ah1vgSL0jp6KcCcC5ZriaqLH3jWKXe9RpP1jqq//2Bq+A/hbI43+09ah8hXd9HxSlj9CmyFJEmSJFVNPXv2tH3dtGlT2rRpQ2BgIN98880NO4vul2nTpjF58mTb++zsbAICAiotnopSWFhIQsZpslV5NEo/SMdTRjKdQYEKgyiGK8kUKq0dQA73cXLzs5n57D1lzZOqOVlHbxkMjXi81Zr7FoMkSZIk3U/3ffW9ez00Xbp9RqORlQrB927HSHECv7yOAIhrnVKBIhPM14a1a5xuq27TtU4pJ8cgdqYY6PnRTqLWWT8rdyfZiShJkiRJN+Lm5ka9evU4ceIEPj4+FBcXc/XqVbsyFy9etN3o8/HxKTXlQcn7W5VxcXG5aceXTqfDxcXF7vUw2L9hA4ezUjitukz7kxexqP2sOxQq6ijzIPkXCq+NlLpfK+6lZRXwRPQ2pv9wBH/n8wS6nANArTLcl/NLkiRJUmW4r51SJUPTf/rpJxYvXkxycjKdOnUiJyenwoam38jDPB9CRUhPTydb50COSUWtlBMUW1IBcCSHLk6Lqak7CKd3Wgtrb90pJYSZAwcHsXVbCJcu/QiAWu3CsQvW6+6q1xDi68ILHeRyxpIkSZJ0I7m5uZw8eRJfX19atmyJRqNh8+bNtv2JiYmcOXOGdu3aAdCuXTsOHz7MpUuXbGViY2NxcXEhJCTEVub6OkrKlNTxKMnYvRsAD4szCoeGZBtqXNujxtEhB7TOFNXsAIDDfVpxL/lyHmaLoHvgTma0f482Xt9ZI9I8HB2BkiRJknQj9/Xxvcoamv4wz4dQEYxGI2fMblxJz6XjlYSSqT6ppr1IY0Oc9U22taMKV/9b1ldQcJarV/fZ3iuVDhhcmpBVUAzAoDY1iQxvcLPDJUmSJOmR88orrxAREUFgYCDnz58nKioKlUrF3//+d1xdXRkxYgSTJ0/Gw8MDFxcXxo8fT7t27Wjbti0APXr0ICQkhCFDhjBnzhwuXLjAG2+8wdixY9HprI+hjRkzhoULF/Lqq6/ywgsvsGXLFr755hvWr19fmU2vFCajNSfxs3iQrTgPWOdxqmk4QRPHH6F2Z4rC34e4E/dtpFR2oTUDa1r9MmCd1Fyr9cLXt999Ob8kSZIkVYb7/vje9e7F0PQbmTZtGllZWbbX2bNnK7YhVZg5r4jTX//BRaUKV20CAAqVNypdC1rXc/uzYK9oeHYpNOxzyzpLHtnTaavTof1OLurX8Nq6XDYdtX5WrnpNhbdDkqSKMXz4cNvqqFqtlrp16zJjxoy7XuV027ZtKBSKUr/j76Xk5GQGDRqEn58fDg4O1KhRg759+3Ls2DG7cjExMXTp0gWDwYCjoyOPP/44X375pV2ZlJQUFAoF8fHx5T7/22+/TYMGDXBycsLd3Z1u3bqxb9+fHfYpKSmMGDGC2rVro9frqVOnDlFRURQXF9+y7mXLltGsWTMcHR3x9fXlhRdeICMjo9yxvffeeygUCiZNmmS3/eTJkzz99NN4eXnh4uLCgAEDSv3dnTVrFu3bt8fR0bHU6OYSf11pV6FQ8PXXX9v2r1mzhu7du9vO065dO37++edbxr1mzRp69OiBp6fnbX8eD7pz587x97//nfr16zNgwAA8PT3Zu3cvXl5eAMybN4+nnnqKfv360blzZ3x8fFiz5s95hlQqFTExMahUKtq1a8fzzz/P0KFDmTFjhq1M7dq1Wb9+PbGxsTRr1oy5c+fy73//m7CwsPve3spmNltXs8u8GMcVdRIW4ykA6oboSTW40srrHwz8/SQAuns8UupyThFrDp5je5J1lJuTJh+AoKCXaNf2Z6p5PnFPzy9JUsWQOZTMoWQOdWcqtVPqXgxNv5GHdT6EuyUsFk794y24WsBJ30u4W6yPQKo09dA4PoG3+7WC9cKh9Sho/Ayoyu5QunTpJ1LPW39oNFp3zAovXlt7gnW/n+dsZgEANdwrb8JWSZJuLTw8nLS0NI4fP87LL7/M22+/zQcffFDZYdmUJ+EwGo10796drKws1qxZQ2JiIitXrqRJkyZ2Sd2CBQvo27cvHTp0YN++fRw6dIjnnnuOMWPG8Morr9xVnPXq1WPhwoUcPnyYnTt3UqtWLXr06MHly9ZREMeOHcNisbBkyRKOHDnCvHnz+OSTT3jttdfKrHfXrl0MHTqUESNGcOTIEVatWsX+/fsZNWpUueL69ddfWbJkCU2bNrXbnpeXR48ePVAoFGzZsoVdu3ZRXFxMREQEFovFVq64uJj+/fvzj3/8o8zzLF26lLS0NNvrb3/7m23fL7/8Qvfu3dmwYQMHDhwgNDSUiIgI4uLiyqwzLy+Pjh078v7775errVXJ119/zfnz5ykqKuLcuXN8/fXX1Knz58IiDg4OLFq0iMzMTPLy8lizZk2pG3KBgYFs2LCB/Px8Ll++THR0tN0qxwBPPPEEcXFxFBUVcfLkSYYPH34/mvdAMWYXkefcgEsWJzIL/vxHRKFQ4+/jzA63FpxTuVBoEQC0cHG8p/FM/iaeyd/8zm9J23g2+Hu8HFIA0KhlvipJVY3MoWQOJXOoOyDuo5dfflls27ZNJCcni127dolu3bqJatWqiUuXLgkhhBgzZoyoWbOm2LJli/jtt99Eu3btRLt27WzHm0wm0bhxY9GjRw8RHx8vfvrpJ+Hl5SWmTZt2W3FkZWUJQGRlZVVo+6qatBMnxMKXpom5b74nRr/0svhw0AQRPaC3+NewuWLh6M3CNLuuEFEuQnw7qlz15eQcE5s2B9leBw8OFafT80RgZIwIfn2DWLrzlPg+PlUYTeZ73DJJqlwFBQUiISFBFBQUVHYot23YsGGib9++dtu6d+8u2rZtKzIzM8WQIUOEm5ub0Ov1Ijw8XCQlJdnKpaSkiKeeekq4ubkJR0dHERISItavXy+Sk5MFYPcaNmyYEEKI7OxsMWjQIOHo6Ch8fHzEhx9+KLp06SImTpxoqzcwMFDMmDFDDBkyRBgMBtuxO3bsEB07dhQODg6iRo0aYvz48SI3N1cIIURcXJwAREpKyk3beubMGaHRaMTkyZNL7Zs/f74AxN69e4UQwtaGuLi427+o15T87dm0adNNy8yZM0fUrl27zHo++OADERQUVCpef3//W8aQk5MjgoODRWxsbKnr/PPPPwulUmn3t/Hq1atCoVCI2NjYUnUtXbpUuLq63vA8gPjuu+9uGc/1QkJCxPTp08tVtiI+j+uV9TMrcwZ7D8P1SP3hhPjva5+IupFrxZuDnhPRA3qL+SP+J/79z2lCbJohFn02SlTfEif+79ApcbagSFgslnsaT6f3t4jAyBjx3U+t7PKojMzd9/S8kvQgkjmUzKFuROZQZavqOdR9HSl1P4amS+V38Pc4Lhm0XM1Oo25qIhaTdZi6Uiipmb8LVeG1EWmu5Vv6ubDQOu+URuOBn+8AThY+zwcbEwGo5qRleIfa9Gnmh1pVqQP0JOm+E0KQX2yqlJcQ4q7j1+v1FBcXM3z4cH777TfWrVvHnj17EELQq1cvjEbrXCxjx46lqKiIX375hcOHD/P+++/j7OxMQEAA3377LWAdAZuWlsZHH30EwOTJk9m1axfr1q0jNjaWHTt2cPDgwVIxREdH06xZM+Li4njzzTc5efIk4eHh9OvXj0OHDrFy5Up27tzJuHHjAPDy8kKpVLJ69WrMZvMN27V69WqMRuMN7+aNHj0aZ2dnVqxYcdfXD6x3xj799FNcXV1p1qzZTctlZWXh4eFRZl3t2rXj7NmzbNiwASEEFy9eZPXq1fTq1euWcYwdO5bevXvbrXRboqioCIVCYZt/CKyjc5RKJTt37rxl3Tc6V7Vq1WjdujVffPFFmd+LFouFnJycW7ZdkirC8d2bKVaAETUqUXIHW4VSaQSLmaJrq+55atXUcNCiUNzbx/eyC42AwKCxTn/g7z+I4OA3cHdrc0/PK0lVRVXOo2QOdfdkDvXw51D3daLz65+FvJGSoemLFi26aZmSoenS3cvLy2GvKZDA7Ku4Yv1GV6BkcONv8Mg7Ag6uEDYbQm49jxSA8dpcUgbnhjh6v8ErX20DzgPg5yYf2ZMeXQVGMyFv3fpZ73shYUYYjto7+1UvhGDz5s38/PPP9OzZk7Vr17Jr1y7at28PWJ/JDwgIYO3atfTv358zZ87Qr18/mjRpAkBQUJCtrpI/lN7e3rZn6HNycvjqq69Yvnw5Xbt2BazDlf38/ErF8uSTT/Lyyy/b3o8cOZLBgwfbnucPDg5m/vz5dOnShcWLF+Pv78/8+fN59dVXmT59Oq1atSI0NJTBgwfb4kpKSsLV1RVfX99S59NqtQQFBZGUlHRH165ETEwMzz33HPn5+fj6+hIbG0u1atVuWPbEiRMsWLCA6OjoMuvs0KEDy5YtY+DAgRQWFmIymYiIiCjzbydY/wYfPHiQX3/99Yb727Zti5OTE5GRkbz77rsIIZg6dSpms5m0tLTyNfiaGTNm8OSTT+Lo6MjGjRv55z//SW5uLhMmTLhh+ejoaHJzcxkwYMBtnUeS7kRRdjbFbs5oXfegVuaAWQkKJQqFCS4lUKi03oy7l3NJCSH4ZPspki7mkF1gRKsqhmtLzQTXnYZKdW8fGZSkqqQq5lEyh5I5lMyhyk8OWXlEWfKNFKQWkqYuQOeQDIBa/wR+DrXx6PCctZDBD5oPBp2hzLqysuL57cAATp60Pi+t1rhyMbsIAHdHDZO6BTP7mSb3rjGSJFWomJgYnJ2dcXBwoGfPngwcOJDhw4ejVqtp0+bPO/eenp7Ur1+fo0ePAjBhwgRmzpxJhw4diIqK4tChQ2We59SpUxiNRlq3bm3b5urqSv369UuVbdWqld3733//nS+//BJnZ2fbKywsDIvFQnKy9Xfa2LFjuXDhAsuWLaNdu3asWrWKRo0aERsbW+5rodVqb1lm2bJldnHs2LHDti80NJT4+Hh2795NeHg4AwYMsJsXsURqairh4eH079/fbl6D6+sdM2YMAAkJCUycOJG33nqLAwcO8NNPP5GSkmLbv2PHDrvjli1bxtmzZ5k4cSLLli3DwcHhhu3w8vJi1apV/PDDDzg7O+Pq6srVq1dp0aIFyttcfezNN9+kQ4cONG/enMjISF599dWbzqmxfPlypk+fzjfffIO3t/ctr6kk3Y2CxEQKhZECYWLOzzE4F5bcfVbhShEc/5nCayOl7uWqe6fS83j/p2Osiz/DgHrfMu6xLwHrvFZKpbyRJ0lVlcyh/iRzKJlDldd9HSklPRhMmZkc+2g9FovA5BmHw6UCQItC4YBeUQTXJvZE51yu+s6fX0lW1gHbe6WmNqcu5wIQ6OnEpG71KroJklSl6DUqEmZUzupWeo3qto8JDQ1l8eLFaLVa/Pz8UKvVrFu37pbHjRw5krCwMNavX8/GjRuZPXs2c+fOZfz48XcSuh0nJye797m5uYwePfqGd41q1qxp+9pgMBAREUFERAQzZ84kLCyMmTNn0r17d4KDg8nKyuL8+fOl7iwWFxdz8uTJcq1K1qdPH7tE09/f3y7uunXrUrduXdq2bUtwcDCff/4506ZNs5U5f/48oaGhtG/fnk8//dSu7utXRilZpGP27Nl06NCBKVOmANC0aVOcnJzo1KkTM2fOpFWrVnbHVa9enc2bN3Pp0iVatGhh2242m/nll19YuHAhRUVFqFQqevTowcmTJ0lPT0etVuPm5oaPj4/dHds70aZNG9555x2KiorshrZ//fXXjBw5klWrVtkNhy/rmkrS3fhm2f9I9lKRbzLRNV1JslfJPwtKaqrzIaANRZ7WvOVejpRKz7HevGvtl0z3wO227Q4O/vf8cUFJqmqqUh4lcyiZQ8kc6vbJTqlH0NH58zmQreawfzWGxTmhMdZCcB4UGqpb8mHzdGtBbfk6pYymqwAE1BjOiZzWRHxZjEUcBsBVX/ZqfZL0KFAoFHf8CF1lKEkCrtewYUNMJhP79u2zDT3PyMggMTHRbvXTgIAAxowZw5gxY5g2bRqfffYZ48ePt90tu35ugqCgIDQaDb/++qstCcrKyiIpKYnOnTuXGWOLFi1ISEgoFWdZFAoFDRo0YPfu3QA8++yzREZGMnfuXObOnWtX9pNPPiE/P5+hQ4fesl6DwYDBUPaI0hIWi4WioiLb+9TUVEJDQ2nZsiVLly4tdTftRu3Lz88vtaKaSmVNmoUQ6PX6Usd17dqVw4cP2237v//7Pxo0aEBkZKTt+BIlw+O3bNnCpUuX6NOnfI9x30x8fDzu7u52ydSKFSt44YUX+Prrr+ndu7dd+du5ppJ0Oy5YzKBUoTIq+LXVNCwF/wEECoUK1Gai2n/MnhwT5BXicI9GShUUmzl7xboicU036+8DJ6dgatQYiod7u3tyTkmqyqpSHiVzKJlDyRzq9lWNn26pQm0yFpPlCpcclDyW781lzQkAtMYCarnFgbj2Cy+wfZn1GI1ZZGRsJy/POkG6q2sL9h+rgUWkoFYqcNKp6dOs9HPNkiRVPcHBwfTt25dRo0axZMkSDAYDU6dOxd/fn759+wIwadIkevbsSb169bhy5Qpbt26lYcOGgHU+QIVCQUxMDL169UKv12MwGBg2bBhTpkzBw8MDb29voqKiUCqVtxwpEBkZSdu2bRk3bhwjR47EycmJhIQEYmNjWbhwIfHx8URFRTFkyBBCQkLQarVs376dL774gsjISMB6N3DOnDm88sorODg4MGTIEDQaDd9//z2vvfYaM2fOpHHjxnbnTUxMLBVLo0aN0GjsO+Dz8vKYNWsWffr0wdfXl/T0dBYtWkRqair9+/cHrMnUE088QWBgINHR0bZljgF8fHxu2vaIiAhGjRrF4sWLCQsLIy0tjUmTJtG6desbziUB1gTlr21xcnLC09PTbvvSpUtp2LAhXl5e7Nmzh4kTJ/LSSy/ZPQ5w5swZMjMzOXPmDGaz2XZHsW7dujg7O/PDDz9w8eJF2rZti4ODA7Gxsbz77rt2k6EuX76cYcOG8dFHH9GmTRsuXLgAWCeEdXV1vWnbS857/rx1vsKSz8PHx6fMayZJJUqmNW9bVI+zOncosI4O99Iksza4AZ9dyLWV9dBUfJp8NjOf8H/9Ql6xGT+nNAIMp4FrnVL+gyr8fJIkVT6ZQ1nJHErmUDdVIesAVjEPw3LGd2PWG6+L/3t9rnhl1Djxr/4DRPSAPiJ6QG9xekodIaJchFg/RYicS7es548jk0stXTxhxUERGBkjPt1+8j60RJIeTA/bcsYlSpYzdnV1FXq9XoSFhdktZzxu3DhRp04dodPphJeXlxgyZIhIT0+37Z8xY4bw8fERCoWizOWMW7duLaZOnWo7LjAwUMybN69UPPv37xfdu3cXzs7OwsnJSTRt2lTMmjVLCCHE5cuXxYQJE0Tjxo2Fs7OzMBgMokmTJiI6OlqYzWa7etauXSs6deoknJycbMstr1ixwq7MjZZkLnmdPXu2VGwFBQXi6aefFn5+fkKr1QpfX1/Rp08fsX//fluZpUuX3rTOW5k/f74ICQkRer1e+Pr6isGDB4tz587d8rjr/XU5YyGEiIyMFNWrVxcajUYEBweLuXPnCovFYldm2LBhN4x569atQgghfvzxR/HYY4/ZPpdmzZqJTz75xO66d+nS5YZ1lHxf3MzNrllUVNRttf2vKmI540dFVb8es15/TURFRYk141eIBS/+LKIH9BbRA3qLwjfcRffvvxbVt8SJF/9IFh+fvihyTaYKP/+GQ+dFYGSM6DXnA7sc6uixNyr8XJJUFckcSuZQMod69HIohRAVsF54FZOdnY2rqytZWVm250sfFQUpWbz1xSJ2FxfyTLL9kqEv9vXDkLQSukZBp8m3rOu3A/3JyjqIi6Epydm1mLc/nIxcC8VmC9H9m/Fsyxr3qhmS9EArLCwkOTmZ2rVr33RCROnG8vLy8Pf3Z+7cuYwYMeK+nz8zM5OuXbvi4uLCjz/+iKOjXAHrUVDWz+yjnDPcSFW/Hu+88Qb7TDVolJaAjxksxlMATKi/i66tl5LkVIvVj9Who/u9efRh5a9niPz2MP98fD8t3f+HWm1Ar69F/XpRuLo2vyfnlKSqROZQd07mUFJlqIgcSq6+9wgRQnDik1/IQ4Of1jqppgpnNM7PElLbDYO60FqwnHNJmUw5ANSpM4U5e3qTlmWi2GxBpVTQ2L/qJaqSJN1/cXFxrFixgpMnT3Lw4EEGDx4MYBvOfr95eHiwadMmunbtyp49eyolBkmS7o2rW86QrXSG7Cy8C0/ZOqQ0GlArLBRfW3XvXswlJYTgYnYh569acy1nrXVOKZ/qf6P142tlh5QkSbdN5lDSw0LOKfWIEGYze96bTZLKhQsOLoQf7koO+7Go3dBoalJfkQHJx6yFtU5l1nU+bTVZVw9QWJgKgFrjQnZhFgD/HdGaBj4ueBl0ZVUhSZJkEx0dTWJiIlqtlpYtW7Jjxw7bJJGVwdPTk7feeqvSzi9JUsUTQpAWm4RRrUBjMQKgUPmi1gTTLfATFAooUlk7pe7Fqnv/XHaQH/+4QC2X0/QIPEl1XRIAanXVmoxWkqQHi8yhpIeB7JR6ROTH/87mgkLMGhOYqlGkc4YCUFnAu+gINTQHoeDaSCn3wJvWYzRmcfToNP6cKlTJ1UJXik3WiTofC3DD4CBX3JMkqXyaN2/OgQMHKjsMSZIechdPncBclIVJAzrnP+AKKFXV0Goa4K2+AhYoUukB0N6DkVJ7T2WgwMLklotx0uTbtmu0HhV+LkmSHg0yh5IeFrJT6hFReCWTQpWWS9nQ4sJ2iq8tKRrofIS/+a8Az2B4YioYfMtcdc9ozAQsKJU6cB7Bv7bD7xsPAaBQgFMVWa5VkiRJkqRHR/aJ4wiFkjxVLjXzzgLuoFChsJhwcfCA57+l8LgCLAKHCh4pJYQgu9CETlVk65CqXr0PGo07vj5/q9BzSZIkSVJVI3sQHhHZaXkcNXvjlnsEvbnAtt3X5dqIp5ptoMmzt6ynZB4pjcaDXem9+f3ySQBUSgV9mvmhvAdD3iVJkiRJku6UEIK9K1dh8m1OYNp56p32IM1FACo0wsh2QzPeOK0l31IMgK4CR0odPpfFqfRczBaBi846Il2h0NAo5MNbLtsuSZIkSY8C2Sn1CCi+kkf+ER1Z+mx8Hf+ALCdUulaotE1o7fKidTFInWuZdRQUnOFIwssUFp631mlxIuF8NgCv9KjHuCeD73UzJEmSJEmSbtvFixc5VTMQyMRQ5MElLz8oigOFCp22gE+r9+J0obVDylOjxl2jqpDznrycS8TCnSgVZjr576Om4QJgnUdKdkhJkiRJkpXslHrIma5eZdv0ORQ410dJLnUvBWHhIgqVG2qlAwphshb0blhmPZcubyQr66Dt/e7TbmxPugxANWc5qbkkSZIkSQ+mogLrCHGdUGMQ7uSTB4CrPp8A783scH8ZV7WK5U2DCHLUVdhIqeTL1vO09k1keKOvbdu1Ws8KqV+SJEmSHgayU+ohd3T9ena7aTErUnjiVCEorB1ICjS4F58BrQH+bwP4NCmzHpPxKgDeXj355lgnlh/R4++mp4GPge4h1e91MyRJkiRJku6IqagIAL3QohMK8q/dkAvxO4mDYwoAziolLV3LXn34dmUVWFf5a+Jj7RTTO9TE3aM9PtX7VOh5JEmSJKkqk51SD7krWVkIAYVGM+7FGQis8xm0MK6kdY0E0PuAb9My6zAasykqTgfA0akOKdm1MIt0Xu5Rj2da1LjnbZAkSZIkSbpTRZdzEQLSi0BlPIPl2kgp1ZUTFDk7AhU7j9SlnEImrojnxOVcAFwdrLmXu3tbGjaYVWHnkSRJkqSHgeyUeogJs6DwqortxiC6nP4RYcmx7Qts5Yn2qhGqNyqzjuPH3+XM2c9t7xdsvcDukxkAuDlq7k3gkiRJkiRJFcCSbyTjxzOcUHrieTEBd/NZ2z6tJY8spRsAugpcqGXbscvsOZVBR789vNbyB5w11pFaak3Z83dKkiRJ0qOo4m4LSQ+cgqRMivMcuaA/j7PJOim5UlMHrc4f/ytbrIV0hjLryMj8xfZ1TrEzBy4EYbYIdGolDXxc7lnskiRVjuHDh6NQKFAoFGi1WurWrcuMGTMwmUx3Ve+2bdtQKBRcvXq1YgIth+TkZAYNGoSfnx8ODg7UqFGDvn37cuzYMbtyMTExdOnSBYPBgKOjI48//jhffvmlXZmUlBQUCgXx8fHlPv/bb79NgwYNcHJywt3dnW7durFv3z67OkeMGEHt2rXR6/XUqVOHqKgoiouLb1n3smXLaNasGY6Ojvj6+vLCCy+QkZFxy+NSU1N5/vnn8fT0RK/X06RJE3777Tfb/us//5JXeHi4XR21atUqVea9996z7U9MTCQ0NJTq1avj4OBAUFAQb7zxBkaj0a6eq1evMnbsWHx9fdHpdNSrV48NGzaUGf+aNWvo0aMHnp6et/15SI+mK6fOIbCQIxxwNOcDoFQHolFXp16wL4Xhc4CKHSlV8theeJ3fcdHmolRY37u6NK+wc0iS9OCROZTMoWQOdWfkSKmHlKWwkH3/+4F8pYI+p/egxHoHUOMUjptiD0qVFhzdodHTZdZjMlo7sxo3+5Y2H6QCEDO+IwHujrjKkVKS9FAKDw9n6dKlFBUVsWHDBsaOHYtGo2HatGmVHRoAxcXFaLXaMssYjUa6d+9O/fr1WbNmDb6+vpw7d44ff/zRLqlbsGABkyZNIjIyksWLF6PVavn+++8ZM2YMf/zxB9HR0XccZ7169Vi4cCFBQUEUFBQwb948evTowYkTJ/Dy8uLYsWNYLBaWLFlC3bp1+eOPPxg1ahR5eXllnnfXrl0MHTqUefPmERERQWpqKmPGjGHUqFGsWbPmpsdduXKFDh06EBoayo8//oiXlxfHjx/H3d3drlzJ519Cpyu9mMWMGTMYNWqU7b3B8OcNDo1Gw9ChQ2nRogVubm78/vvvjBo1CovFwrvvvgtYP8Pu3bvj7e3N6tWr8ff35/Tp07i5uZV5TfPy8ujYsSMDBgywO78k3cyF48exIChW5aFWXQVA7dAarThOYjU9u9V+wGUcKmikVKHRTEae9Z8iZ611LqmGDWbj6fkEOp13hZxDkqQHl8yhZA4lc6g7IB5BWVlZAhBZWVmVHco988vzg8WCyW+IMf/6Svz3mbdE9IDeInpAb7HgxVjxyz/GCbHzozKPv3LlV3H23DKxZWsDsWlzkDiRekwERsaIOtPWC4vFcp9aIUlVU0FBgUhISBAFBQWVHcptGzZsmOjbt6/dtu7du4u2bduKzMxMMWTIEOHm5ib0er0IDw8XSUlJtnIpKSniqaeeEm5ubsLR0VGEhISI9evXi+TkZAHYvYYNGyaEECI7O1sMGjRIODo6Ch8fH/Hhhx+KLl26iIkTJ9rqDQwMFDNmzBBDhgwRBoPBduyOHTtEx44dhYODg6hRo4YYP368yM3NFUIIERcXJwCRkpJy07aeOXNGaDQaMXny5FL75s+fLwCxd+9eIYSwtSEuLu72L+o1JX97Nm3adNMyc+bMEbVr1y6zng8++EAEBQWVitff37/M4yIjI0XHjh3LLHOjz/+vAgMDxbx588os81cvvfSS3bkXL14sgoKCRHFx8W3VU6IiPo/rlfUz+yjkDLejql2PQys3iM2vfS2GvjJQfNi/h4ge0FvMH/Ff8e8XXhU91/5PVN8SJ6pviRPPxZ+463Mt2npc1JoaIxq98bV4eu4s8eOmFmLT5iBx9Wrc3TdEkh4RMoeSOdSNyBzq4c6h5ON7DyEhBDtqBHDJWU2qxYxZVTKiScljmu9o4bkOnKrd9PiiosscOPh3EhPfxGIpxiIUPPXxYQAMDmoUioqbd0GSHglCQHFe5byEuOvw9Xo9xcXFDB8+nN9++41169axZ88ehBD06tXLNqR47NixFBUV8csvv3D48GHef/99nJ2dCQgI4NtvvwWsw5LT0tL46KOPAJg8eTK7du1i3bp1xMbGsmPHDg4ePFgqhujoaJo1a0ZcXBxvvvkmJ0+eJDw8nH79+nHo0CFWrlzJzp07GTduHABeXl4olUpWr16N2Wy+YbtWr16N0WjklVdeKbVv9OjRODs7s2LFiru+fmC9q/Xpp5/i6upKs2bNblouKysLDw+PMutq164dZ8+eZcOGDQghuHjxIqtXr6ZXr15lHrdu3TpatWpF//798fb2pnnz5nz22Welym3btg1vb2/q16/PP/7xjxsOaX/vvffw9PSkefPmfPDBB2U+mnDixAl++uknunTpYhdLu3btGDt2LNWrV6dx48a8++67N/2sJOlOWPLzydz+C0bM9I5PQWMqSXtV1KSAQqUOH62Gjm7OjAm4+1FM245dRggY02wpYx/7HI3iKgAaOZeUJN2dKpxHyRzq7skc6uHPoeTjew8hc0EBRVod8Vec6HjsO9IVFgCUSgsda8RA4VXQ3Xw+qMLCVMCCSuXI+YJmbDrpT4FJD8CTDarfhxZI0kPGmA/v+lXOuV87D9o7W+ZcCMHmzZv5+eef6dmzJ2vXrmXXrl20b98esD6THxAQwNq1a+nfvz9nzpyhX79+NGnSBICgoCBbXSVJgre3t214cU5ODl999RXLly+na9euACxduhQ/v9LX6sknn+Tll1+2vR85ciSDBw9m0qRJAAQHBzN//ny6dOnC4sWL8ff3Z/78+bz66qtMnz6dVq1aERoayuDBg21xJSUl4erqiq+vb6nzabVagoKCSEpKuqNrVyImJobnnnuO/Px8fH19iY2NpVq1G98UOHHiBAsWLLjlcPcOHTqwbNkyBg4cSGFhISaTiYiICBYtWlTmcadOnWLx4sVMnjyZ1157jV9//ZUJEyag1WoZNmwYYB12/swzz1C7dm1OnjzJa6+9Rs+ePdmzZw8qlQqACRMm0KJFCzw8PNi9ezfTpk0jLS2NDz/80O587du35+DBgxQVFfHiiy8yY8YMu1i2bNnC4MGD2bBhAydOnOCf//wnRqORqKioW15XSSqP39Z+xzZPLUKZRJBrV4rUSSAKQKGiqJqeY061GVPdnbfqVszv5+xC6z+XDaplgQUMhka4ubVGr69VIfVL0iOrCuZRMoeSOZTMocpPjpR6CKV+cxQjCjwsR1BhsW13c7ZYO6QADKV/gZQwmbIAUGsC+DF1PFvOduaN3g1JmBHG3AE3752WJOnhEBMTg7OzMw4ODvTs2ZOBAwcyfPhw1Go1bdq0sZXz9PSkfv36HD16FLD+oZ05cyYdOnQgKiqKQ4cOlXmeU6dOYTQaad26tW2bq6sr9evXL1W2VatWdu9///13vvzyS5ydnW2vsLAwLBYLycnJgPWu44ULF1i2bBnt2rVj1apVNGrUiNjY2HJfi1vNuwDWxPL6OHbs2GHbFxoaSnx8PLt37yY8PJwBAwZw6dKlUnWkpqYSHh5O//797Z7zv77eMWPGAJCQkMDEiRN56623OHDgAD/99BMpKSm2/Tt27LA7btmyZQBYLBZatGjBu+++S/PmzXnxxRcZNWoUn3zyie18zz33HH369KFJkyb87W9/IyYmhl9//ZVt27bZykyePJknnniCpk2bMmbMGObOncuCBQsoKiqya9PKlSs5ePAgy5cvZ/369XaJosViwdvbm08//ZSWLVsycOBAXn/9dVssZV1TSSqvU+kXEdfmiirW1wJhvYusU5vZX9MLi0JVoavu5RRa73YrRB4AjRt9RL3gN+QIc0l6hMgc6k8yh5I5VHnJkVIPmaLsLHKPXSLDkIVv8SnAgKOqKRaXbjTynA4dJoJXA/BvUerYnNxjHDv2BkVFaQD8ft7MjuPpAPi56XHUym8XSbojGkfrnbbKOvdtCg0NtU1Y6efnh1qtZt26dbc8buTIkYSFhbF+/Xo2btzI7NmzmTt3LuPHj7+TyO04OdnfpczNzWX06NFMmDChVNmaNWvavjYYDERERBAREcHMmTMJCwtj5syZdO/eneDgYLKysjh//nypO4vFxcWcPHmSsLCwW8bWp08fu0TT39/fLu66detSt25d2rZtS3BwMJ9//rndhKfnz58nNDSU9u3b8+mnn9rVff3KKC4u1hGus2fPpkOHDkyZMgWApk2b4uTkRKdOnZg5cyatWrWyO656desIV19fX0JCQuzqb9iwoe2xgBsJCgqiWrVqnDhxwnYn9q/atGmDyWQiJSXFLhkOCAgAICQkBLPZzIsvvsjLL7+MSqXC19cXjUZju3NYEsuFCxcoLi4u85pKUnmVPBLR3FSLdIUArJ1Sz3lMIMptEgB61d3dn72YXchzn+7lYnYhBvV56rjmwbVOKbW67BWOJUkqpyqUR8kcSuZQJWQOVX6yl+EhYiosZNmkCaj92mAqVuCT0xgTpynWVkMN1BT58MRroHG44fEXL/5Adnac7f25HH+ctCoCPZ1oG+R5n1ohSQ8hheKOH6GrDCVJwPUaNmyIyWRi3759tqHnGRkZJCYm2v2RDggIYMyYMYwZM4Zp06bx2WefMX78eNvdsuufdw8KCkKj0fDrr7/akqCsrCySkpLo3LlzmTG2aNGChISEUnGWRaFQ0KBBA3bv3g3As88+S2RkJHPnzmXu3Ll2ZT/55BPy8/MZOnToLes1GAx2K6eUxWKx2N0NS01NJTQ0lJYtW7J06VKUf1mW/kbty8/PR622//NdkpgIIdDr9Tc8rkOHDiQmJtptS0pKIjAw8Kbxnjt3joyMjBsOzy8RHx+PUqnE2/vmc/JYLBaMRiMWiwWVSkWHDh1Yvnw5FovF1uakpCR8fX3RarVotdpyX1NJuhnTtd83xvxMCs1ZlHRKqVQqCnVuAHe96t7eUxkkp+fRtNofTGxh/w+RSiW/hyWpQlShPErmUDKHKiFzqPKTnVIPkeOHDnGmZm0QF3DJ0WC+NsGmQqHFyXIJD/VZUJdelrKEyWh9bM/Xtz9zdzVkywkPvhjegtAGcgljSXrUBQcH07dvX0aNGsWSJUswGAxMnToVf39/+vbtC8CkSZPo2bMn9erV48qVK2zdupWGDRsCEBgYiEKhICYmhl69eqHX6zEYDAwbNowpU6bg4eGBt7c3UVFRKJXKWz7uEhkZSdu2bRk3bhwjR47EycmJhIQEYmNjWbhwIfHx8URFRTFkyBBCQkLQarVs376dL774gsjISMB6N3DOnDm88sorODg4MGTIEDQaDd9//z2vvfYaM2fOpHHjxnbn/WtCAtCoUSM0Go3dtry8PGbNmkWfPn3w9fUlPT2dRYsWkZqaSv/+/QFrMvXEE08QGBhIdHQ0ly9fth3v4+Nz07ZHREQwatQoFi9eTFhYGGlpaUyaNInWrVvfcC6JEi+99BLt27fn3XffZcCAAezfv59PP/3UdmcxNzeX6dOn069fP3x8fDh58iSvvvoqdevWtd3t3LNnD/v27SM0NBSDwcCePXt46aWXeP75523LIi9btgyNRkOTJk3Q6XT89ttvTJs2jYEDB9qu0z/+8Q8WLlzIxIkTGT9+PMePH+fdd9+94V3b62VmZnLmzBnOnz9v93n4+PiUec2kR485z4i5QE2xsYDTqVuxLloFINj8t5WcsvhATgEOyrsbKZVdYJ1HqlNtaw6lUjmh1XjiWS0UlermOZckSY8OmUNZyRxK5lA3VSHrAFYxVW054/L6dWOsmPLWO2L0qCkiekBv22vfK4+J4rfchXg3oMzjDx2eIDZtDhLjP4sUtafGiMDIGHHgdOZ9il6SHh4P23LGJUqWM3Z1dRV6vV6EhYXZLWc8btw4UadOHaHT6YSXl5cYMmSISE9Pt+2fMWOG8PHxEQqFoszljFu3bi2mTp1qO+5my+fu379fdO/eXTg7OwsnJyfRtGlTMWvWLCGEEJcvXxYTJkwQjRs3Fs7OzsJgMIgmTZqI6OhoYTab7epZu3at6NSpk3BycrItt7xixQq7Mjdakrnkdfbs2VKxFRQUiKefflr4+fkJrVYrfH19RZ8+fcT+/fttZZYuXXrTOm9l/vz5IiQkROj1euHr6ysGDx4szp07d8vjfvjhB9G4cWOh0+lEgwYNxKeffmrbl5+fL3r06CG8vLyERqMRgYGBYtSoUeLChQu2MgcOHBBt2rQRrq6uwsHBQTRs2FC8++67orCw0Fbm66+/Fi1atLB9LiEhIeLdd98t9fOwe/du0aZNG6HT6URQUJCYNWuWMJlMZcZ/s2sWFRV1y7aXpSKWM35UVJXrkbwgTnz6+iLR5qXPr+VDEeLDwRPFpy92F9W3xNleq9My7qj+IqNZ7D6RLqasiheBkTHis5jJYtPmIJGUNKuCWyJJjxaZQ8kcSuZQj14OpRCiAtYLr2Kys7NxdXUlKyvL9nxpVWcpMrPxg1X8tzAd93MJ1C44g0LpghoHxgSvQ+tWHVoMgSem2h0nhIVDh0ZzNesgZnMuQpj44o/B7DrfBhcHNTsin8RVr7nJWSVJupHCwkKSk5OpXbs2Dg43flxWurG8vDz8/f2ZO3cuI0aMuO/nz8zMpGvXrri4uPDjjz/i6Hj7c3JJVU9ZP7MPY85wN6rK9Uh6ezvrTUdYyRn6H/8DhcIJndtoqrnOYGL4v6ij19HcxZFZwf64am7/wYHpPxxh6a4U3HVXaFItgacb/oGL8ghBtSdRu/bdzwEjSY8qmUPdOZlDSZWhInIo+fjeQyIjPgVzgZEMxxOEWM4CoNZ3wsWUg9Y3Ef6x64bHFRaeIz1ji+29yaIiLb8mmyZ3wcfVAWed/BaRJOneiYuL49ixY7Ru3ZqsrCzbkrclw9nvNw8PDzZt2sSiRYvYs2fPTSemlCTpwXX14gUKsy5S7AQejn9c22qdM8SgsD5u90KNaoyo4XXH5zhxKReAMY+tpK5rgm27RuNxx3VKkiTdDplDSQ8L2ePwEMg6dYq1a5eRqrMQcrkIvckbwUVQaNCTW+bEgMZr80hZFB4kGd/j418yMDh6Utfb+X6FL0nSIy46OprExES0Wi0tW7Zkx44dVKtWrdLi8fT05K233qq080uSdHeupl9EqVBhVEBYUgdM7AKFNeX1uzbVyl3PJVVoXdmvjkcOmMHNrQ1OjkFUr97rruqVJEm6HTKHkh4GslPqIbBzyWJS9U5gMeOapwFh7WjyLEqms9cGcHnshsfl5Z0kM9M6giotR8cHuwsBJ2o5a+9T5JIkPeqaN2/OgQMHKjsMSZIeIvtjviNb70ZhYQ6eZhdMgMpipvbpGFa0tt65193hqnsp6XkcOZ/NxaxCAJQiFwHUrxeFs3P9sg+WJEmqQDKHkh4WslPqIZCXn0u+zgX3U0fQGgts68s0CorBV5kCrr1LHVNQcI69+8IoWY0mt9iRxv4u1PRwZODjNe9b7JIkSZIkSRXpxNUiinVXMRVYENfyHEdVOt1CfuTT6ksA0N7BSCmj2ULfRbvIKijm6brrCaiTirBYbwSq1Q/u/FqSJEmS9CCTnVJVnPFSPmpDczYVGRhs3GfdqHTBAWji5wFujaHFsFLH5eefAgRKpZ5zuTX4+fQTjAurS3hj3/sZviRJkiRJUoUyqazzR9UyemK+1vek1lnQzkii+GgG5BTgcAcjpa7kFZNVYMTH6RJPBW20bVepnOVcUpIkSZJ0h2SnVBV3bNV2ihVKDOqDtm06lxH4F/6IasC74FHrhseZTNkAJKT788Fv1lViXPXysT1JkiRJkqo2oVSCsOCcn0OGOQcAi0rF0qtwodg6F5T2Djqlsgqsk6T7OBdZ69BWo07QFAwujVGpdBUTvCRJkiQ9YmSnVBWWFbOec3EHKKjuS/+zBqwpkgaFQoEjueBUepK7nJwELl5aT07OEQDyjdalOgM9HWnkL4eeS5IkSZJUdRVfyrN2SmWmczE3xbY9W+vE+0nnbO8N10ZTlcfZzHz+sewAF7KKUCrMeDsVAKDT+eLn92yFxS5JkiRJjyLZKVWFrdm7gzRfB064FNL6jBNFgAIlPrm7eNwn9oar7h079jrZOYds768WufDtP9rRMlAOO5ckSZIkqWpL+fgg+ULNuUI3WgIoXVCqvFAE5OCkUhLqYSBQr+MxF8dy17k18RJ/pGbTyPMoM9r8G53KOmJKI+eRkiRJkqS7JjulqqiioiJOqx3AbMI19RiFpjwAdMpCWjZejptKCYrSQ9OLii4CcDynM8cuO7HtbDtG9JaP7UmSJEmSVLVdTD6JMfcqOY4OKEU+ACpNPTSOnSn2XENNBy3/blz7tuvNvvbYXu96Z2wdUqDAw7NTRYUuSZIkSY8s2SlVRV1NzqRQqDl1RUOby/GYr213Vgtq9f8Y/B4rdYzZXECx0bpKzL/jQ0kv8ESvUVHdxeH+BS5JkiRJknQPZJ47AwoFxRipyWHrRoX1MT2zSonuDlbcA8gptM5D5a4vBKB2rQkEBo5CpSr/aCtJkiRJkm7szv46S5Uu7X/xpFkMmLCOkFIqvdE4htHRVwF1QkHvblf+0OGxbNveGCGsCZVa7cpHzz3G9+M64KSTfZOSJFkNHz4chUKBQqFAq9VSt25dZsyYgclkuqt6t23bhkKh4OrVqxUTaDkkJyczaNAg/Pz8cHBwoEaNGvTt25djx47ZlYuJiaFLly4YDAYcHR15/PHH+fLLL+3KpKSkoFAoiI+PL/f53377bRo0aICTkxPu7u5069aNffv22dU5YsQIateujV6vp06dOkRFRVFcXHzLupctW0azZs1wdHTE19eXF154gYyMjDKPMZvNvPnmm3bne+eddxBC2MqsWbOGHj164OnpedP2njx5kqeffhovLy9cXFwYMGAAFy9evO12HTp0iE6dOuHg4EBAQABz5sy5Zbt/+eUXIiIi8PPzQ6FQsHbt2lseIz06zCYTKBU4FmbiXdgIAAUqEGaKlZrbXnHvP3tSaD5jI1sObWdi80/wUP0GgE7nLTukJEkqReZQMoeSOdSdkZ1SVdCZk4nkWPLAlEroVetHqFBXR6VrhKtL6Yk7hRCkp2+2vT+WWReD3pW+j/lTr7rhvsUtSVLVEB4eTlpaGsePH+fll1/m7bff5oMPPqjssGzKk3AYjUa6d+9OVlYWa9asITExkZUrV9KkSRO7pG7BggX07duXDh06sG/fPg4dOsRzzz3HmDFjeOWVV+4qznr16rFw4UIOHz7Mzp07qVWrFj169ODy5csAHDt2DIvFwpIlSzhy5Ajz5s3jk08+4bXXXiuz3l27djF06FBGjBjBkSNHWLVqFfv372fUqFFlHvf++++zePFiFi5cyNGjR3n//feZM2cOCxYssJXJy8ujY8eOvP/++zesIy8vjx49eqBQKNiyZQu7du2iuLiYiIgILBZLuduVnZ1Njx49CAwM5MCBA3zwwQe8/fbbfPrpp2W2IS8vj2bNmrFo0aIyy0mPHiEEf6QmkKHMx1CgAqz/KOhNGbRSLuewSz0cbnOk1LcHznEl30iXGltp6pWAWmEdbe7oePuPAEqS9GiQOZTMoWQOdQfEIygrK0sAIisrq7JDuW3ZxxLFrGnTRFRUlJj8zzFi3pAoET2gt/ho8FSxbOB8Yfri6VLHmEwFYtPmILFpc5Bo/OYKERj5g+j38a77H7wkPSIKCgpEQkKCKCgoqOxQbtuwYcNE37597bZ1795dtG3bVmRmZoohQ4YINzc3odfrRXh4uEhKSrKVS0lJEU899ZRwc3MTjo6OIiQkRKxfv14kJycLrP8h2l7Dhg0TQgiRnZ0tBg0aJBwdHYWPj4/48MMPRZcuXcTEiRNt9QYGBooZM2aIIUOGCIPBYDt2x44domPHjsLBwUHUqFFDjB8/XuTm5gohhIiLixOASElJuWlbz5w5IzQajZg8eXKpffPnzxeA2Lt3rxBC2NoQFxd3+xf1mpK/PZs2bbppmTlz5ojatWuXWc8HH3wggoKCSsXr7+9f5nG9e/cWL7zwgt22Z555RgwePLhU2Zu19+effxZKpdLu7+fVq1eFQqEQsbGxNz33X9v18ccfC3d3d1FUVGTbFhkZKerXr19mG64HiO+++67c5ctS1s9sVc4Z7oUH9Xrs/eYbERUVJaKiosQbY18VHz7/soge0Fvsnj1ELE08KqpviRNDD528rTo7z9kiAiNjxE+/DBKbNgeJo8feEJmZe4TFYrlHrZAkSeZQMoe6EZlDPdw5lBwpVcWc37WTYq0WhbEI9+wMzMYkAGoZdvBUu+Woes8udYzJlAOARSjILXZCrVQS3tjnvsYtSY8yIQT5xvxKeYnrhhXfKb1eT3FxMcOHD+e3335j3bp17NmzByEEvXr1wmi0Tvw7duxYioqK+OWXXzh8+DDvv/8+zs7OBAQE8O233wKQmJhIWloaH330EQCTJ09m165drFu3jtjYWHbs2MHBgwdLxRAdHU2zZs2Ii4vjzTff5OTJk4SHh9OvXz8OHTrEypUr2blzJ+PGjQPAy8sLpVLJ6tWrMZvNpeoDWL16NUaj8YZ380aPHo2zszMrVqy46+sH1juTn376Ka6urjRr1uym5bKysvDwKHs11Hbt2nH27Fk2bNiAEIKLFy+yevVqevXqVeZx7du3Z/PmzSQlWf9u/P777+zcuZOePXuWux1FRUUoFAp0Op1tm4ODA0qlkp07d5a7XXv27KFz585otX8utBEWFkZiYiJXrlwpdzySVOLC8eMAaIQKrUUJwvpzP9vxcaamWqcuKO+cUlsTLzH5m3jSsqzHOWkKAPBw74i7e1sUN1hIRpKke6cq51Eyh7p7Mod6+HMoOZlQFXM5VQOA85UsKM63bQ+q7Y/LxJV2Za9c2ceRhJcxmbIBKDQ58J8RbekU7HX/ApYkiQJTAW2Wt6mUc+8btA9HzZ3NfSKEYPPmzfz888/07NmTtWvXsmvXLtq3bw9Yn8kPCAhg7dq19O/fnzNnztCvXz+aNGkCQFBQkK2ukj+m3t7euLm5AZCTk8NXX33F8uXL6dq1KwBLly7Fz8+vVCxPPvkkL7/8su39yJEjGTx4MJMmTQIgODiY+fPn06VLFxYvXoy/vz/z58/n1VdfZfr06bRq1YrQ0FAGDx5siyspKQlXV1d8fX1LnU+r1RIUFGRLPu5UTEwMzz33HPn5+fj6+hIbG0u1atVuWPbEiRMsWLCA6OjoMuvs0KEDy5YtY+DAgRQWFmIymYiIiLjlcOypU6eSnZ1NgwYNUKlUmM1mZs2axeDBg8vdnrZt2+Lk5ERkZCTvvvsuQgimTp2K2WwmLS2t3O26cOECtWvbPwJVvXp12z53d/t5ESXpVkrmbAkx1+C85SzFWHOkIpU1+dcpFXTzdClXXVHfH+FMZj5P143hMa8/KC5IB0Ctdr4HkUuSdCtVMY+SOZTMof5K5lA3J0dKVSHmvGLU+QZ+NQZw2GxdMU+pCUKv70zDeqU7mi5d+omiojTMZutk6Ceu1sbdUVuqnCRJ0vViYmJwdnbGwcGBnj17MnDgQIYPH45araZNmz+TQk9PT+rXr8/Ro0cBmDBhAjNnzqRDhw5ERUVx6NChMs9z6tQpjEYjrVu3tm1zdXWlfv36pcq2atXK7v3vv//Ol19+ibOzs+0VFhaGxWIhOTkZsN51vHDhAsuWLaNdu3asWrWKRo0aERsbW+5rcf1dqJtZtmyZXRw7duyw7QsNDSU+Pp7du3cTHh7OgAEDuHTpUqk6UlNTCQ8Pp3///nbzGlxf75gxYwBISEhg4sSJvPXWWxw4cICffvqJlJQU2/4dO3bYHbds2TIAvvnmG5YtW8by5cs5ePAgX331FdHR0Xz11Vflvh5eXl6sWrWKH374AWdnZ1xdXbl69SotWrRAeYNRKDdr163crA2SdCPCIig2WjuMCvMvYypIRZgzATCpNEyr7cvpLs0Y4FP2HfQSGblFKBVmeteOpYbhPEIUo1Co5FxSkiTdksyh/iRzKHsyh7o5OVKqihBCcOCTJZgV/liIp0mu9QdSqfJBo/ZG5ZhT6pjcwqsAbEjuxvZzHTDhzai/Od3PsCVJAvRqPfsG7bt1wXt07tsVGhrK4sWL0Wq1+Pn5oVarWbdu3S2PGzlyJGFhYaxfv56NGzcye/Zs5s6dy/jx4+8kdDtOTva/u3Jzcxk9ejQTJkwoVbZmzZq2rw0GAxEREURERDBz5kzCwsKYOXMm3bt3Jzg4mKysLM6fP1/qzmJxcTEnT54kLCzslrH16dPHLtH09/e3i7tu3brUrVuXtm3bEhwczOeff860adNsZc6fP09oaCjt27cvNUnl9Su3uLhYR3nMnj2bDh06MGXKFACaNm2Kk5MTnTp1YubMmbRq1cruuJK7Z1OmTGHq1Kk899xzADRp0oTTp08ze/Zshg0bdst2lujRowcnT54kPT0dtVqNm5sbPj4+dnd1b9UuHx8fu9VmANt7Hx8fatWqdcM2SNKNZCVmIoQzWcZ8zqXuQMmfj9sUa3XobmPVPZPZQl6xGWdNAQqFtZ7HHvsKR31NHBxKj0CQJOneq0p5lMyhZA5VFplD3ZjslKoiLuzdw+GEI2h8NUScrkmRUoeFY6DQoCcX9H/e/bNYiikuTie/wNpxlWeqzv9G/w0/Nz3OOvmRS9L9plAo7vgRuspQkgRcr2HDhphMJvbt22cbep6RkUFiYiIhISG2cgEBAYwZM4YxY8Ywbdo0PvvsM8aPH2+7W3b93ARBQUFoNBp+/fVXWxKUlZVFUlISnTt3LjPGFi1akJCQUCrOsigUCho0aMDu3bsBePbZZ4mMjGTu3LnMnTvXruwnn3xCfn4+Q4cOvWW9BoMBg6F8K5laLBaKiops71NTUwkNDaVly5YsXbq01J2yG7UvPz8ftdr+d7lKZV15VQiBXq+/6XF/rV+lUtlWfLldJUPot2zZwqVLl+jTp0+529WuXTtef/11jEYjGo31sfTY2Fjq169vG3Z+O5+t9GjLScvBorBwutiFGggEoNY2QmPOJTkgGG05OqVSrxbw7oajXMkrxkFVgK+TNcFXqZzw9Oh4j1sgSVJZqlIeJXMomUOVh8yh7Mkeiiri5317ORvgg8l8Hn/hDML6SJ5KkUHtZgKaWnu6zeYCdu/pRnHxBduxGo2BBj7lm0dBkiTpRoKDg+nbty+jRo1iyZIlGAwGpk6dir+/P3379gVg0qRJ9OzZk3r16nHlyhW2bt1Kw4YNAQgMDEShUBATE0OvXr3Q6/UYDAaGDRvGlClT8PDwwNvbm6ioKJRK5S0nEo6MjKRt27aMGzeOkSNH4uTkREJCArGxsSxcuJD4+HiioqIYMmQIISEhaLVatm/fzhdffEFkZCRgvRs4Z84cXnnlFRwcHBgyZAgajYbvv/+e1157jZkzZ9K4cWO78yYmJpaKpVGjRrakoEReXh6zZs2iT58++Pr6kp6ezqJFi0hNTaV///6ANel44oknCAwMJDo62rbMMVjvdN1MREQEo0aNYvHixYSFhZGWlsakSZNo3br1DeeSuP64WbNmUbNmTRo1akRcXBwffvghL7zwgq1MZmYmZ86c4fz583bt9fHxscW0dOlSGjZsiJeXF3v27GHixIm89NJLtkcGytOuQYMGMX36dEaMGEFkZCR//PEHH330EfPmzbtp/GC9u3vixAnb++TkZOLj4/Hw8LC7uys9WuJ/WolZZ6DYwfrYCQo1GqcwnPIPYFJrcCjHBOffHTzH+kNp1HBO5V9PzEWjss5RpVaX758lSZKkm5E5lJXMoWQOdVMVsg5gFfOgLmdclo/efVdEvfmmiP77MyJ6QG/ba+na7+yWJs7JOSY2bQ4SmzYHiQ0b64v/rWsjXlu1tfICl6RH0MO2nHGJkuWMXV1dhV6vF2FhYXbLGY8bN07UqVNH6HQ64eXlJYYMGSLS09Nt+2fMmCF8fHyEQqEocznj1q1bi6lTp9qOCwwMFPPmzSsVz/79+0X37t2Fs7OzcHJyEk2bNhWzZs0SQghx+fJlMWHCBNG4cWPh7OwsDAaDaNKkiYiOjhZms9munrVr14pOnToJJycn23LLK1assCtzoyWZS15nz54tFVtBQYF4+umnhZ+fn9BqtcLX11f06dNH7N+/31Zm6dKlN63zVubPny9CQkKEXq8Xvr6+YvDgweLcuXNlHpOdnS0mTpwoatasKRwcHERQUJB4/fXX7ZYUvllMUVFRtjKRkZGievXqQqPRiODgYDF37ly7v0Plbdfvv/8uOnbsKHQ6nfD39xfvvffeLdu9devWG9Zb8v10pypiOeNHxYN4PVaOfEV88cYC8er4qdb8aOAAsXD0ZvG/52eJ6lvixKq0jFvWMX3dEREYGSNmrXrvWh5VR2zZ2lAcP/7+fWiBJEklZA4lcyiZQz16OZRCiApYL7yKyc7OxtXVlaysLNvzpQ+yq3+ks/SbL9hWqKfz6Z+tGxVO6FU5DF34P5zd/3x078qV/RyM+zsX8rz56sR7fDy4BUHVnFHexnwKkiTdncLCQpKTk6lduzYODg6VHU6VkpeXh7+/P3PnzmXEiBH3/fyZmZl07doVFxcXfvzxRxwdq8bjAtLdKetntqrlDPfag3Y98s6eZv1b88muUQuRdJ5sDqPEGT9Tawo8LzH178/xWaNaRHi73fB4s0Xw+7mrfLTpONuTLvNe2CG8xL/x8fkbjULm3vAYSZLuHZlD3TmZQ0mVoSJyKLn6XhVwftshcrHQ9NI2ABQKPQ5uo2nulWPrkBJCcDxlFZsPfAZAnlFPdRcH6nobZIeUJEkPrLi4OFasWMHJkyc5ePCgbWndkuHs95uHhwebNm2ia9eu7Nmzp1JikCSp/H5Y8RnJPo5cVF5Fde0+q0oUccLrDPO7PgFQ5kTnn2w/yTMf7+b308fpXnMrrsqDAKjVld/hJkmSVBaZQ0kPCzmn1AMu+T9LOffHZfI98gggnAK+B4V1sjs/V5WtXHbOIc6cmor7tW7G7GIXfF3l3QVJkh580dHRJCYmotVqadmyJTt27LBNAFkZPD09eeuttyrt/JIklV9ygYIinQowI7B2Ppk1sGDgcAD8dBqau9z8bn3SRevqxUMa/cBj1X6Fa/MIa7WV9ztIkiSpvGQOJT0MZKfUA8xsNrMq4Qj5Ps5cNSnxIQsApUKgcE2k5thPbGWLCtMAuFLoSmphO5yrPc2gVvUqJW5JkqTyat68OQcOHKjsMCRJqqLM1yahaFVQg3OKeABK5vj9rV0I/jpNmZP+5hRaJzRv5J0PFnB3b4eTUzB+vgPuZdiSJEl3TeZQ0sNCdko9wK5mXCHfwRmFsZg6Jw5jwpp5GRwzaDxtCAo3Z1tZo/EqAKezA6he61WebxtYGSFLkiRJkiTdFyajGYtFBUo4fXYTheQCoLj2uJ6+jFWoLmUXcvZKAReyCgFQKayrGtcK/CceHu3vQ/SSJEmSJIHslHqgpa0+CkBRsQlnBKBEoTDQ3vMPGl7rkMrJTWbL7r+jV2agUkKeyRFXvaaMWiVJkiRJkqq+cz8ko1QoMVvMFJqvdUipfNG6WjuYHFQ37pC6nFNExzlbKTZZ6OC3l2Ehp1BaLgKg1si5pCRJkiTpfpITnT+gigqKuJJygTNCxxn9CQAUKm8MDhE09C62lUs8sxln9WVUSgsAJ67WpaGvTKgkSZIkSXq4WS7mYUawpbi2bZvW0A+1s/XmnF554zT31OVcik0WXHQFDG+0gs419oIoABTotN73I3RJkiRJkq6RI6UeUBvWf4WzUk+Nc6lUszyJkZ9QKLRoLPlQL8xWLq/gKgBHMlvxZJsPmPt4dbwMukqKWpIkSZIk6d4zm4xcPX8KoRK0MZ+6bo8Si0aBVqFAeZNH97IKjAA091egVAiUSh21a43H2bkBOp3slJIkSZKk+0l2Sj2ALm/dSsKBFIwOWmpm5JLnZh2SrivOxc3zBDw1j7wiE6P/e4DaulM84Q9mRTUaB9Ss5MglSZIkSZLuvbNHDpN35SKWahaqFdYBDl7bo+J39zroVaVHSRnNFhZvO8m+5AwAPBytI881Gg9q1frHfYpckiRJkqTryU6pB9C5g3EYdVrUV9PJ0qVDwU4AjN55pE+dBAoFew/8k/8L2mw7xtXJrXKClSRJkiRJus+SLh5Fr1CSo8rCu8CRIgAU1Di/k2+fbs3oAK9Sx+w4fpkPY5OoaTjLR08swlmbD4BG43pfY5ckSZIk6U+yU+oBI4QgI9MToc5Gk2e8tlUJCjUdGnrQsoYXFosJCv/skEKhoc/jvSolXkmSJEmSpPut4MBB9MqGuGTnANbH9FQWCy6ZsWzp/gYKlarUMZdzrF1XHWsm2zqkANzd5Wp7kiRJklRZ5ETnD5hze0+gEY4cKA4g12j9eNT6zqiqPUmrpvUBOHr+vK38+otLeKJzHNU8O1RKvJIkPVyGDx+OQqFAoVCg1WqpW7cuM2bMwGQy3VW927ZtQ6FQcPXq1YoJtBySk5MZNGgQfn5+ODg4UKNGDfr27cuxY8fsysXExNClSxcMBgOOjo48/vjjfPnll3ZlUlJSUCgUxMfHl/v8b7/9Ng0aNMDJyQl3d3e6devGvn377OocMWIEtWvXRq/XU6dOHaKioiguLi6jVqtly5bRrFkzHB0d8fX15YUXXiAjI6PMY3Jycpg0aRKBgYHo9Xrat2/Pr7/+alcmNzeXcePGUaNGDfR6PSEhIXzyySd2ZUaPHk2dOnXQ6/V4eXnd8JqeOXOG3r174+joiLe3N1OmTLnp99CuXbtQq9U89thjt2z3mjVr6NGjB56enrf9eUgPj6uH/+BoppLN7ufAZEZcmzrKolHyz6gPb9ghBX/OJVXTzbo4jJ/vADp3+o16wa/fl7glSXq4yRxK5lAyh7ozslPqASKKizm8cjlGhZmuaafwMGmtOxRqhCoH9O58tmUTM7/9HIBCkw6dzhuVSl+JUUuS9LAJDw8nLS2N48eP8/LLL/P222/zwQcfVHZYNuVJOIxGI927dycrK4s1a9aQmJjIypUradKkiV1St2DBAvr27UuHDh3Yt28fhw4d4rnnnmPMmDG88sordxVnvXr1WLhwIYcPH2bnzp3UqlWLHj16cPnyZQCOHTuGxWJhyZIlHDlyhHnz5vHJJ5/w2muvlVnvrl27GDp0KCNGjODIkSOsWrWK/fv3M2rUqDKPGzlyJLGxsfz3v//l8OHD9OjRg27dupGammorM3nyZH766Sf+97//cfToUSZNmsS4ceNYt26drUzLli1ZunQpR48e5eeff0YIQY8ePTCbzQCYzWZ69+5NcXExu3fv5quvvuLLL7/krbfeKhXT1atXGTp0KF27di3XNc3Ly6Njx468//775SovPZzSTqdQ6ORkfSMAYf3es6iUoC+dE60/lEaH97bw0abjADhqCgHQ6rzQaNzvS8ySJD0aZA4lcyiZQ90B8QjKysoSgMjKyqrsUOwkrF4lol+ZJqLfnC2+6v+W+HDQP0X0gN7ii2dGidjZXUR28jqxaXOQ7bXmx1Zi36mMyg5bkqS/KCgoEAkJCaKgoKCyQ7ltw4YNE3379rXb1r17d9G2bVuRmZkphgwZItzc3IRerxfh4eEiKSnJVi4lJUU89dRTws3NTTg6OoqQkBCxfv16kZycLLj2r2PJa9iwYUIIIbKzs8WgQYOEo6Oj8PHxER9++KHo0qWLmDhxoq3ewMBAMWPGDDFkyBBhMBhsx+7YsUN07NhRODg4iBo1aojx48eL3NxcIYQQcXFxAhApKSk3beuZM2eERqMRkydPLrVv/vz5AhB79+4VQghbG+Li4m7/ol5T8rdn06ZNNy0zZ84cUbt27TLr+eCDD0RQUFCpeP39/W96TH5+vlCpVCImJsZue4sWLcTrr79ue9+oUSMxY8aMMsv81e+//y4AceLECSGEEBs2bBBKpVJcuHDBVmbx4sXCxcVFFBUV2R07cOBA8cYbb4ioqCjRrFmzm57jryri87heWT+zD2rOUFkehOsR/80qERUVJaIj3xQfDxkiPhw8XkQP6C0+GNpXNN15uFT5F5buF4GRP4gPv35KbNxUx5ZHpZz+tBKilySpLDKHkjnUjcgc6uHOoeRIqQfIgeQT5DhpSdVZMGFECOt8B//r3YVuU7eRo7Xe2cs3OmBW1efxJi/RurZHZYYsSVI5CCGw5OdXyksIcdfx6/V6iouLGT58OL/99hvr1q1jz549CCHo1asXRqP1kZixY8dSVFTEL7/8wuHDh3n//fdxdnYmICCAb7/9FoDExETS0tL46KOPAOtdpV27drFu3TpiY2PZsWMHBw8eLBVDdHQ0zZo1Iy4ujjfffJOTJ08SHh5Ov379OHToECtXrmTnzp2MGzcOAC8vL5RKJatXr7bdffqr1atXYzQab3g3b/To0Tg7O7NixYq7vn5gvTP56aef4urqSrNmzW5aLisrCw+Psn+vt2vXjrNnz7JhwwaEEFy8eJHVq1fTq9fN5xY0mUyYzWYcHBzstuv1enbu3Gl73759e9atW0dqaipCCLZu3UpSUhI9evS4Yb15eXksXbqU2rVrExAQAMCePXto0qQJ1atXt5ULCwsjOzubI0eO2LYtXbqUU6dOERUVVWZ7Jemvzh2x/l5TXrlEflEmFuMpACxaDVpl6dQ2u9CIXl1IU68ElArrsQqFFleX5vcvaEmS7lhVzqNkDnX3ZA718OdQcqLzB4TZaCEjSwPk4pcYzxWFCa79Dhjo78mUVb/jYj5Ee284lN6ITo8vooZ/6ZVlJEl68IiCAhJbtKyUc9c/eACFo+MdHSuEYPPmzfz888/07NmTtWvXsmvXLtq3t04KvGzZMgICAli7di39+/fnzJkz9OvXjyZNmgAQFBRkq6skSfD29sbNzQ2wPp//1VdfsXz5ctvQ46VLl+Ln51cqlieffJKXX37Z9n7kyJEMHjyYSZMmARAcHMz8+fPp0qULixcvxt/fn/nz5/Pqq68yffp0WrVqRWhoKIMHD7bFlZSUhKurK76+vqXOp9VqCQoKIikp6Y6uXYmYmBiee+458vPz8fX1JTY2lmrVqt2w7IkTJ1iwYAHR0dFl1tmhQweWLVvGwIEDKSwsxGQyERERwaJFi256jMFgoF27drzzzjs0bNiQ6tWrs2LFCvbs2UPdunVt5RYsWMCLL75IjRo1UKvVKJVKPvvsMzp37mxX38cff8yrr75KXl4e9evXJzY2Fq3W+sj5hQsX7JIpwPb+woULABw/fpypU6eyY8cO1GqZikjlJywWnIosGLVKUk1qfAGluhZKtT9XWlzBQakodUxOoQlHtfVGn1Kpo3277ahUjqjVTvc5ekmS7kRVzKNkDiVzKJlDlZ8cKfWAOP2/QxjQcTbPGYXFBChQKF1w1qppXCOI42c2oLEkAFBg0lO7mkykJEm6N2JiYnB2dsbBwYGePXsycOBAhg8fjlqtpk2bNrZynp6e1K9fn6NHjwIwYcIEZs6cSYcOHYiKiuLQoUNlnufUqVMYjUZat25t2+bq6kr9+vVLlW3VqpXd+99//50vv/wSZ2dn2yssLAyLxUJycjJgvet44cIFli1bRrt27Vi1ahWNGjUiNja23NeiJEkoy7Jly+zi2LFjh21faGgo8fHx7N69m/DwcAYMGMClS5dK1ZGamkp4eDj9+/e3m9fg+nrHjBkDQEJCAhMnTuStt97iwIED/PTTT6SkpNj279ixw+64ZcuWAfDf//4XIQT+/v7odDrmz5/P3//+d5TXjSxZsGABe/fuZd26dRw4cIC5c+cyduxYNm3aZBfv4MGDiYuLY/v27dSrV48BAwZQWFhYrmtqNpsZNGgQ06dPp169erd9TaVHW8a5MwgFXLA446u4CIBSE4hW25Q8V1f0176fr+QV0+3D7TR88ydc2EZE0M8AaNRu6HReskNKkqR7QuZQf5I5lMyhyuvh6Fqr4oTFQv4fp8jQW/AvvAKAQumBznUYjwVtIivrY8Y3/8FWPuKxBgR43NnIB0mS7j+FXk/9gwcq7dy3KzQ0lMWLF6PVavHz80OtVttN0ngzI0eOJCwsjPXr17Nx40Zmz57N3LlzGT9+/J2EbsfJyf4fyNzcXEaPHs2ECRNKla1Zs6bta4PBQEREBBEREcycOZOwsDBmzpxJ9+7dCQ4OJisri/Pnz5e6s1hcXMzJkycJCwu7ZWx9+vSxSzT9/f3t4q5bty5169albdu2BAcH8/nnnzNt2jRbmfPnzxMaGkr79u359NNP7eq+fmUUFxcXAGbPnk2HDh2YMmUKAE2bNsXJyYlOnToxc+ZMWrVqZXdcyR22OnXqsH37dvLy8sjOzsbX15eBAwfa7noWFBTw2muv8d1339G7d29b3fHx8URHR9OtWzdbna6urri6uhIcHEzbtm1xd3fnu+++4+9//zs+Pj7s37/frh0XL1o7D3x8fMjJyeG3334jLi7O9qiAxWJBCIFarWbjxo1lXlPp0WYsKkIoIFeTgaLQH8EJQIXSksPlwFD+WdMbgAOnr3DiUi7uuiuMbvqV7XitzruSIpck6U5VpTxK5lAyh5I51O2TnVIPgB2z3uSypiY5VxMIuuRBhgpUAvxTt5NcV0FBeiI1neFqcU2C/RtSt86gyg5ZkqTboFAo7vgRuspQkgRcr2HDhphMJvbt22cbep6RkUFiYiIhISG2cgEBAYwZM4YxY8Ywbdo0PvvsM8aPH2+7W3b93ARBQUFoNBp+/fVXWxKUlZVFUlJSqaHOf9WiRQsSEhJKxVkWhUJBgwYN2L17NwDPPvsskZGRzJ07l7lz59qV/eSTT8jPz2fo0KG3rNdgMGAwGMoVg8VioaioyPY+NTWV0NBQ22osyr/Mh3Oj9uXn55carq1Sqf6fvTuPi7LaHzj+mYEZGGAAQVBARBDczcx9KSNTUFPbNK+GS+qVfriVmkslrlmJWpbXpWvoval1tVIzW8gVl1xS0jRxAzXBBVGQfZnz+4OYnFDEjRH9vl8vXjLPc57zfM8DyJczZwGKpgsYDIZSn4ujoyOOjo5cvnyZH374gffffx8o2m0nPz+/RAw2NjaYTKYb1qeUQillblerVq2YPn06Fy5cwNOzqAMgJiYGZ2dn6tWrh06n4+DBgxZ1/Otf/2Ljxo2sWrUKf39/HB0dy/xMxcPl1wXvY2vfgUcST6HBDQVUvvQbbu6n+KxNL3O5tOyidVpa+xe9trFxwsf7JapUecYKUQsh7kRFyqMkh5Ic6u91Sw51c9IpdR/Ylm0izz4ZLueSo00HQF9wlUyvZN5M6c6koK0AnGMwLzSUDikhRPkLCgqie/fuDB48mIULF2I0Ghk3bhw+Pj50794dgJEjR9KpUydq1arF5cuX2bRpE3Xr1gXAz88PjUbDunXr6Ny5MwaDAaPRSL9+/RgzZgxubm54enoSGRmJVqtFoym5Lsy1xo4dS8uWLRk6dCiDBg3C0dGRw4cPExMTw8cff0xcXByRkZGEhYVRr1499Ho9W7Zs4dNPP2Xs2LFA0buB77//PqNHj8be3p6wsDB0Oh1r1qxhwoQJTJs2jQYNGljcNz4+vkQs9evXR6fTWRzLzMxk+vTpdOvWDS8vL1JSUpg3bx5nz56lR48eQFEy9eSTT+Ln50dUVJR5m2MoejfsRrp27crgwYOZP38+ISEhJCcnM3LkSJo3b37dtSSKFW89XLt2bY4fP86YMWOoU6cOAwYMAIreRWzXrh1jxozBYDDg5+fHli1b+M9//sPs2bOBoukCX3zxBR07dsTDw4M//viDd999F4PBYF4ktGPHjtSrV4+wsDDef/99zp07x1tvvUVERAR2dnYAJZ6rp6cn9vb2JY7/XWpqKqdPnyYpKQn46+tRtWrVUp+ZeDDkJydjjD1ERof2uF3NIUdf9AeaLv80Ns+OBKCg0MRPv59n89GinydPp6LOKXt7b4KCSt8qXAgh7gXJoYpIDiU51A3d6RaAFdH9sJ1xMZPJpCInTlST3xitonp2MX/M/L9B6v1NUeqTr55UP8TUUj9tCFAXUvZbO1whRBk8aNsZFyveztjFxUUZDAYVEhJisZ3x0KFDVc2aNZWdnZ3y8PBQYWFhKiUlxXx+ypQpqmrVqkqj0ZS6nXHz5s3VuHHjzNf5+fmpOXPmlIhn9+7dqkOHDsrJyUk5OjqqRx55RE2fPl0ppdTFixfV8OHDVYMGDZSTk5MyGo2qYcOGKioqShUWFlrUs3r1avX4448rR0dH83bLK1assChzvS2Ziz/OnDlTIrbs7Gz13HPPKW9vb6XX65WXl5fq1q2b2r17t7lMdHT0Deu8mblz56p69eopg8GgvLy8VJ8+fdQff/xR6jVffPGFCggIUHq9XlWtWlVFRESoK1euWJRJTk5W/fv3V97e3sre3l7Vrl1bzZo1S5lMJqWUUmfPnlWdOnVSnp6eSqfTqWrVqqnevXurI0eOWNSTmJioOnXqpAwGg6pcubIaNWqUys/Pv2FsZd3O+EbPLDIy8qbXluZubGf8sLDm80g9dFh99tI/1CdvzVULn39Bzeo9REX17KJe+miWWnfhslJKqe8OJim/setU00nRKmLBMLXi+37qpw0Bas/eHuUerxDi1kkOJTmU5FAPXw6lUeou7BdewaSnp+Pi4kJaWpp5fqm1HJi1i6+ufocm7TJOSSfQYIvG1ovH2tWjIPADczmtVk/bNjvQ6SpZL1ghRJnk5OSQkJCAv79/ie1jRekyMzPx8fFh1qxZDBw4sNzvn5qaSvv27XF2dua7777DoYJMFxB3prSf2fspZ7gfWPN5fPfFF+z6c1Fgn19/46qhEqowmdjgTgzrEUZ7d2c+2XqS6et/541m/6Z2pb8WCvbwCOGRhv8q13iFELdOcqjbJzmUsIa7kUPJ7ntWdDU1Be25FP4oNJCfnw2A1sYLvbEHX57KAyC3UE983mRatvhROqSEEA+c/fv3s2LFCk6cOMG+ffvo06cPgHk4e3lzc3Pjp59+on379uzcudMqMQghri8tPROASpczuKrLRRUWbY+dZ6vHTls0XaV4LSkf56sAVK7cnmrV+hEQ8JoVIhZCiHtHcijxoJA1paxEFRby/axIvGyCqXzxMh65dSkgCaUtmiuqcb0CQHaBI03rdMZgcLNitEIIce9ERUURHx+PXq+nSZMmxMbGUrlyZavF4+7uzsSJE612fyFESQX5hSQn5IAe7NOvkKEpHuhvw0W3KhxLvspn645yODkdG00hem0GADVqRODi3Mh6gQshxD0kOZR4EEinlJWc3rCBQzbuHNL9hnMuoIre2TPkXMTm0S/p9tj3AFRzr0pzf+mQEkI8mBo3bswvv1hnm2chRMWRdSINVxtFOgqDOkcGYGt4Els7T7y9qvHttlPsPZlKnzr/46mm28zX6WxlyqUQ4sEkOZR4UMj0PSs5n5wMWi0ak0KXn4MqvALAH4GOVHtsA5n5Dhid6lO9+iDrBiqEEEIIYWV5qVmYMKH0ifyhywJAozWi0diwpkUj0jOLlj1o63vYfI2DQwD29j5WiVcIIYQQZSMjpaygILeAC8d0YAsuZxIpzL9E4Z/nnPNT0JPPb2lP0i1kgTXDFEIIIYSwOqUUe1d/ToFex5lcPXUzPYBM0NhQoNWD1ob07AIA9NosUNC82TqcnGqh0dhYN3ghhBBClEpGSllB4o9H0Ck4omwpyE4vOqhxRKt1oJJ/0RoInR4JtGKEQgghhBD3h4L8fLIuXeKyRstjSR3QYvjzjA252PHE+5vIz0+idqWjoHIAsLf3kQ4pIYQQogKQkVLlTClF3Ja1GOx8eeLEWbKVCQA7594YNTFUr70XExqcHd2tHKkQQgghhPXlZKaj1WjJQ4MGA6ii8eXZJLHS4I4p6w/ebTsFG63pzys02No6Wi9gIYQQQpSZjJQqZ7/8K4rzhdns0p2k6mXgz4l79Q4tJKjxOi7k18DTszNVPLtYNU4hhBBCiPvB+tkfcMjLlhSyUBoboKjzaV3Io6TobKjlnoqN1oRGo8fBoSZ+fuEySkoIIYSoIGSkVDn7NTGZiy7OnHV15xHNBfPx0W+FM9PuNRrUfIf6fi2tGKEQQgghxP3jqEZLoVZDgUkDGluUKlo/SmNjCxRQ2aFokXMXl0dp8tgKK0YqhBBCiFslnVLlKPdcJvm6KmgK0gn6ZQunHLP/PKNhiH4hAP4eVa0XoBBCCCHEfcRUaKJQowGgSo4j+dk7QeUCcDWvkCerxdLA/RQAtrbOVotTCCGEELdHpu+Vo8TP48HWDvusi+jyss3HdQ6OBGqOABp0ukrWC1AI8dDr378/Go0GjUaDXq8nMDCQKVOmUFBQcEf1bt68GY1Gw5UrV+5OoGWQkJBA79698fb2xt7enmrVqtG9e3eOHDliUW7dunW0a9cOo9GIg4MDzZo1Y8mSJRZlEhMT0Wg0xMXFlfn+kyZNok6dOjg6OlKpUiWefvppdu3aZVHnwIED8ff3x2AwULNmTSIjI8nLy7tp3cuWLaNRo0Y4ODjg5eXFK6+8wqVLl0q9ZuvWrXTt2hVvb280Gg2rV68uUearr76iY8eOuLu737S9Sik6dep0w7qWLFnCI488gr29PZ6enkRERFic/+GHH2jZsiVGoxEPDw9eeOEFEhMTy6WdouI4seccaDRgKsTx9PcU5u4Biv4/qpWzn7B6Kwly3g2AXudmxUiFEA87yaEkh5Ic6vZIp1Q5Sbt4ntSTcVxWGgqzvADQ2Hhh5zoUB7+qOLp2pU6d6eh0LlaOVAjxsAsNDSU5OZljx44xatQoJk2axMyZM60dlllZEo78/Hw6dOhAWloaX331FfHx8XzxxRc0bNjQIqn76KOP6N69O23atGHXrl0cOHCAXr16ER4ezujRo+8ozlq1avHxxx9z8OBBtm3bRo0aNejYsSMXL14E4MiRI5hMJhYuXMihQ4eYM2cOCxYsYMKECaXWu337dvr27cvAgQM5dOgQK1euZPfu3QwePLjU6zIzM2nUqBHz5s0rtUzbtm157733btq+Dz74AM2fI1j+bvbs2bz55puMGzeOQ4cO8dNPPxESEmI+n5CQQPfu3XnqqaeIi4vjhx9+ICUlheeff75c2ikqjvw9fwDgbEpD8+fmMDZ2TajkeJUevicBcHRqgLdXT6pXL/17Qwgh7jXJoSSHkhzqNqiHUFpamgJUWlpaud3z23feULuGRasR4+aoD/p9oKJ6dlGze0eohQNWq29W9Su3OIQQ9152drY6fPiwys7OtnYot6xfv36qe/fuFsc6dOigWrZsqVJTU1VYWJhydXVVBoNBhYaGqqNHj5rLJSYmqmeeeUa5uroqBwcHVa9ePfXtt9+qhIQEBVh89OvXTymlVHp6uurdu7dycHBQVatWVbNnz1bt2rVTI0aMMNfr5+enpkyZosLCwpTRaDRfGxsbq9q2bavs7e1VtWrV1LBhw1RGRoZSSqn9+/crQCUmJt6wradPn1Y6nU69/vrrJc7NnTtXAernn39WSilzG/bv33/rD/VPxb97fvrppxuWef/995W/v3+p9cycOVMFBASUiNfHx6fMsQDq66+/vuH5m7V3//79ysfHRyUnJ5eoKzU1VRkMhlLbuXLlSmVra6sKCwvNx9auXas0Go3Ky8tTSpVPO4uV9jNrjZzhflbez2PH6M9UZGSkWvPGcyqqZxcV1bOb+njIBvXv8CfU5p1h6qcNAers2f+VSyxCiHtPcijJoa5Hcqi/PIg5lIyUKgcmk4mzCRc45JhKiq0CitZCcL16FAfjv/Hyz7VugEKIe0opRX5uoVU+in6n3BmDwUBeXh79+/dn7969rF27lp07d6KUonPnzuTn5wMQERFBbm4uW7du5eDBg7z33ns4OTnh6+vLl19+CUB8fDzJycl8+OGHALz++uts376dtWvXEhMTQ2xsLPv27SsRQ1RUFI0aNWL//v28/fbbnDhxgtDQUF544QUOHDjAF198wbZt2xg6dCgAHh4eaLVaVq1aRWFh4XXbtWrVKvLz86/7bt6QIUNwcnJixYq7s2hyXl4eixYtwsXFhUaNGt2wXFpaGm5upU9BatWqFWfOnGH9+vUopTh//jyrVq2ic+fOdyXWm8nKyqJ3797MmzePqlVLroMYExNT9Hvv7Fnq1q1LtWrV6NmzJ2fOnDGXadKkCVqtlujoaAoLC0lLS+O///0vTz/9NDqd7r5op7g/FBbkcdWk41hat6IDGlu0hbnk+BRiyv0NAFudrCUlxIOsIudRkkPdOcmhHvwcShY6LwcJJxM56+2HNuc8jxw7QoEq+uHOC9RS+ZlE3CoNsXKEQoh7qSDPxKIRW6xy739+2A6d3e1tja6UYsOGDfzwww906tSJ1atXs337dlq3bg0UzVX39fVl9erV9OjRg9OnT/PCCy/QsGFDAAICAsx1FScJnp6euLq6AnD16lWWLl3K8uXLad++PQDR0dF4e3uXiOWpp55i1KhR5teDBg2iT58+jBw5EoCgoCDmzp1Lu3btmD9/Pj4+PsydO5c33niDyZMn07RpU4KDg+nTp485rqNHj+Li4oKXl1eJ++n1egICAjh69OhtPbti69ato1evXmRlZeHl5UVMTAyVK1e+btnjx4/z0UcfERUVVWqdbdq0YdmyZbz00kvk5ORQUFBA165dy22o9WuvvUbr1q3p3r37dc+fPHkSk8nEO++8w4cffoiLiwtvvfUWHTp04MCBA+j1evz9/fnxxx/p2bMnQ4YMobCwkFatWrF+/fr7pp3i/qCUIt1kR41CA3mARoF/4npsm53DVFj0x6LB3te6QQoh7qmKmEdJDiU51PVIDnV9MlKqHByPjgOgVtYxbFRxb7Mtdatn0emJHfj7D7VabEII8Xfr1q3DyckJe3t7OnXqxEsvvUT//v2xtbWlRYsW5nLu7u7Url2b33//HYDhw4czbdo02rRpQ2RkJAcOHCj1PidPniQ/P5/mzZubj7m4uFC7du0SZZs2bWrx+tdff2XJkiU4OTmZP0JCQjCZTCQkJABF7zqeO3eOZcuW0apVK1auXEn9+vWJiYkp87PQ6/U3LbNs2TKLOGJjY83ngoODiYuLY8eOHYSGhtKzZ08uXLhQoo6zZ88SGhpKjx49LOb7X1tveHg4AIcPH2bEiBFMnDiRX375he+//57ExETz+djYWIvrli1bVub23szatWvZuHEjH3zwwQ3LmEwm8vPzmTt3LiEhIbRs2ZIVK1Zw7NgxNm3aBMC5c+cYPHgw/fr1Y8+ePWzZsgW9Xs+LL75oflfamu0U94fPDn+G0mhwvZoGf+ZPdnmZ+J35CZ091AqaSONH/4PRWM/KkQohRBHJof4iOZQlyaFuTEZK3WPnThxDrwq4nO9AckYTYCdaXW3s7Nvi1ei/2NoarR2iEOIes9Vr+eeH7ax271sVHBzM/Pnz0ev1eHt7Y2try9q1a2963aBBgwgJCeHbb7/lxx9/ZMaMGcyaNYthw4bdTugWHB0dLV5nZGQwZMgQhg8fXqJs9erVzZ8bjUa6du1K165dmTZtGiEhIUybNo0OHToQFBREWloaSUlJJd5ZzMvL48SJExYLS95It27dLBJNHx8fi7gDAwMJDAykZcuWBAUFsXjxYsaPH28uk5SURHBwMK1bt2bRokUWdV+7c4uzc9EUpRkzZtCmTRvGjBkDwCOPPIKjoyOPP/4406ZNo2nTphbXValS5aZtKKuNGzdy4sQJ8zu1xV544QUef/xxNm/ebH7XtF69vzoKPDw8qFy5MqdPnwZg3rx5uLi48P7775vLfPbZZ/j6+rJr1y5atmxp1XYK6zPl5ZG0+GuU3RM4pmYDRZ1SJlstPz9Vn+re+/Hx6YNWK6msEA+6ipRHSQ4lOdSNSA51Y/Kb/B776uMpBDp0hoxCtIVaTIBGo0OXe4i8Kv7WDk8IUQ40Gs1tT6GzhuIk4Fp169aloKCAXbt2mYeeX7p0ifj4eItfnL6+voSHhxMeHs748eP55JNPGDZsmPndsmvXJggICECn07Fnzx5zEpSWlsbRo0d54oknSo3xscce4/DhwyXiLI1Go6FOnTrs2LEDgBdffJGxY8cya9YsZs2aZVF2wYIFZGVl0bdv35vWazQaMRrL9gaDyWQiN/evdQTPnj1LcHAwTZo0ITo6Gq3WMvm9XvuysrKwtbX89W1jU/T9pZTCYDDc0nO5FePGjWPQoEEWxxo2bMicOXPo2rUrUDRkHIrWvqhWrRoAqamppKSk4OfnZ27D39ta3AaTyWQuY612Cus7sn49WcaGnOAyGmVC/TlSKsvZgd0vNmGgzTHpkBLiIVGR8ijJoSSHuhHJoW5MfpvfQ2d++omcfBeO2iRR49JVlI0BAJ+kHVRqdBknR5m2J4SoGIKCgujevTuDBw9m4cKFGI1Gxo0bh4+Pj3le/MiRI+nUqRO1atXi8uXLbNq0ibp16wLg5+eHRqNh3bp1dO7cGYPBgNFopF+/fowZMwY3Nzc8PT2JjIxEq9XecJvcYmPHjqVly5YMHTqUQYMG4ejoyOHDh4mJieHjjz8mLi6OyMhIwsLCqFevHnq9ni1btvDpp58yduxYoOjdwPfff5/Ro0djb29PWFgYOp2ONWvWMGHCBKZNm0aDBg0s7hsfH18ilvr165sXliyWmZnJ9OnT6datG15eXqSkpDBv3jzOnj1Ljx49gKJk6sknn8TPz4+oqCjzNsfAdRe/LNa1a1cGDx7M/PnzCQkJITk5mZEjR9K8efPrriVRLCMjg+PHj5tfJyQkEBcXh5ubmzmhTU1N5fTp0yQlJVm0t2rVqhYff1e9enX8/YveaKlVqxbdu3dnxIgRLFq0CGdnZ8aPH0+dOnUIDg4GoEuXLsyZM4cpU6bwj3/8g6tXrzJhwgT8/Pxo3LjxPW+nKHqndebMmZw7d45GjRrx0UcfWUwDsba01FQADHkmbDPPU0DRlA5lo8WGAoxOda0ZnhBClJnkUEUkh5Ic6obKtB/gfejjjz9Wfn5+ys7OTjVv3lzt2rWrzNeW13bGn78/U0VGRqrIyEg1r9cENSfsbRXVs4v6cnqEunLlV2Uyme7p/YUQ1vGgbWdcrHg7YxcXF2UwGFRISIjFdsZDhw5VNWvWVHZ2dsrDw0OFhYWplJQU8/kpU6aoqlWrKo1GU+p2xs2bN1fjxo0zX+fn56fmzJlTIp7du3erDh06KCcnJ+Xo6KgeeeQRNX36dKWUUhcvXlTDhw9XDRo0UE5OTspoNKqGDRuqqKgoiy10lVJq9erV6vHHH1eOjo7m7ZZXrFhhUeZ6WzIXf5w5c6ZEbNnZ2eq5555T3t7eSq/XKy8vL9WtWze1e/duc5no6Ogb1nkzc+fOVfXq1VMGg0F5eXmpPn36qD/++KPUazZt2nTdexV/LUqLKTIy8ob1cp0tg9PS0tQrr7yiXF1dlZubm3ruuefU6dOnLcqsWLFCNW7cWDk6OioPDw/VrVs39fvvv5dLO//ubmxnXJF8/vnnSq/Xq08//VQdOnRIDR48WLm6uqrz58/f9Nryeh6rZixSkZGR6qP/G6mienYxf0wZHqYmHNqvCgpy7un9hRDWITmU5FCSQz18OZRGqbuwX3g5++KLL+jbty8LFiygRYsWfPDBB6xcuZL4+Hg8PT1ven16ejouLi6kpaWZ55febflXMlg489+k6C7jl3ycy1cyUSigkBbdu9C296v35L5CCOvLyckhISEBf39/7O3trR1OhZKZmYmPjw+zZs1i4MCB5X7/1NRU2rdvj7OzM9999x0ODg7lHoMof6X9zJZHzlDeWrRoQbNmzfj444+BouH+vr6+DBs2jHHjxpV6bbk8D6X4cMxCLjudw/NcCtmXE9Ha+mGj8yM+uACftv2ZUPPG7/QKISouyaFun+RQwhruRg5VIafvzZ49m8GDBzNgwACgaN7qt99+y6effnrTZOpemzsqHNPZLAAUhRhVFqnkW5SpGtTQGqEJIcR9Z//+/Rw5coTmzZuTlpbGlClTAG64Ve695ubmxk8//cS8efPYuXOneZtlIR4UeXl5/PLLLxYLxWq1Wp5++ml27txZonxubq7FGh7p6en3NL65/xiASRWtieEK5KjMohhtfbDV+ZFrSMZWW/rUFCGEeBhIDiUeFBWuU+pWkyko34SqML8Qk0oteUJjRO/0LA7VNhLYrO09u78QQlQ0UVFRxMfHo9fradKkCbGxsVSuXNlq8bi7uzNx4kSr3V+IeyklJYXCwsISO+1UqVKFI0eOlCg/Y8YMJk+eXF7hUaAyUCq7xHGNjRsaUvjDrgpP2d18m3EhhHgYSA4lHgQVrlPqVpMpKN+EyrfhI5zNLMRkozDptGjsdTh5eOAU0IQ6dYN4rOFL5RKHEEJUBI0bN+aXX36xdhhCiBsYP348r7/+uvl1eno6vr6+9+x+GmcjWlW8E5NCq9Gg1emxdTmF99NNGNeoA20rPRjTKIUQ4k5IDiUeFBWuU+p2lGdC9eLgYTD4nlQthBBCCHFHKleujI2NDefPn7c4fv78+evuCmRnZ4ednV15hcdriz4tt3sJIYQQwvq01g7gVt1qMgVFCZWzs7PFhxBCCCHEw6Z4iseGDRvMx0wmExs2bKBVq1ZWjEwIIYQQD6MK1yklyZQQQgghxO17/fXX+eSTT1i6dCm///47r776KpmZmeYNZIQQQgghykuFnL73+uuv069fP5o2bUrz5s354IMPJJkSQgghhCiDl156iYsXLzJx4kTOnTvHo48+yvfff19ivU4hhBBCiHutQnZKSTIlhBBCCHH7hg4dytChQ60dhhBCCCEechWyUwokmRJCCCGEEEIIIYSoyCrcmlJCCCGEEEIIIYQQouKTTikhhBBm/fv3R6PRoNFo0Ov1BAYGMmXKFAoKCu6o3s2bN6PRaLhy5crdCbQMEhIS6N27N97e3tjb21OtWjW6d+/OkSNHLMqtW7eOdu3aYTQacXBwoFmzZixZssSiTGJiIhqNhri4uDLff9KkSdSpUwdHR0cqVarE008/za5duyzqHDhwIP7+/hgMBmrWrElkZCR5eXk3rXvZsmU0atQIBwcHvLy8eOWVV7h06VKp12zdupWuXbvi7e2NRqNh9erVtxwzwPTp02ndujUODg64urpe916nT5+mS5cuODg44OnpyZgxYyy+h679Prv2o379+uYyM2bMoFmzZhiNRjw9PXn22WeJj4+/6bMpS3xCCCHE3SY5lORQkkPdHumUEkIIYSE0NJTk5GSOHTvGqFGjmDRpEjNnzrR2WGZlSTjy8/Pp0KEDaWlpfPXVV8THx/PFF1/QsGFDi6Tuo48+onv37rRp04Zdu3Zx4MABevXqRXh4OKNHj76jOGvVqsXHH3/MwYMH2bZtGzVq1KBjx45cvHgRgCNHjmAymVi4cCGHDh1izpw5LFiwgAkTJpRa7/bt2+nbty8DBw7k0KFDrFy5kt27dzN48OBSr8vMzKRRo0bMmzfvtmOGouffo0cPXn311evWUVhYSJcuXcjLy2PHjh0sXbqUJUuWMHHiRHOZDz/8kOTkZPPHmTNncHNzo0ePHuYyW7ZsISIigp9//pmYmBjy8/Pp2LEjmZmZpbbzZvEJIYQQ94rkUJJDSQ51G9RDKC0tTQEqLS3N2qEIIR5A2dnZ6vDhwyo7O9vaodyyfv36qe7du1sc69Chg2rZsqVKTU1VYWFhytXVVRkMBhUaGqqOHj1qLpeYmKieeeYZ5erqqhwcHFS9evXUt99+qxISEhRg8dGvXz+llFLp6emqd+/eysHBQVWtWlXNnj1btWvXTo0YMcJcr5+fn5oyZYoKCwtTRqPRfG1sbKxq27atsre3V9WqVVPDhg1TGRkZSiml9u/frwCVmJh4w7aePn1a6XQ69frrr5c4N3fuXAWon3/+WSmlzG3Yv3//rT/UPxX/7vnpp59uWOb9999X/v7+pdYzc+ZMFRAQUCJeHx+fMscCqK+//vqm5UqLOTo6Wrm4uJQ4vn79eqXVatW5c+fMx+bPn6+cnZ1Vbm7ude/z9ddfK41GU+rX68KFCwpQW7ZsuWncpcV3PaX9zErOYEmehxDiXpIcSnKo65Ec6sHOoWSklBBC3GNKKfJzcqzyoZS64/gNBgN5eXn079+fvXv3snbtWnbu3IlSis6dO5Ofnw9AREQEubm5bN26lYMHD/Lee+/h5OSEr68vX375JQDx8fEkJyfz4YcfAvD666+zfft21q5dS0xMDLGxsezbt69EDFFRUTRq1Ij9+/fz9ttvc+LECUJDQ3nhhRc4cOAAX3zxBdu2bTNvgOHh4YFWq2XVqlUUFhZet12rVq0iPz//uu/mDRkyBCcnJ1asWHHHzw+K3nlatGgRLi4uNGrU6Ibl0tLScHNzK7WuVq1acebMGdavX49SivPnz7Nq1So6d+58V2K91Zj/bufOnTRs2NBiR9yQkBDS09M5dOjQda9ZvHgxTz/9NH5+fjesNy0tDeCmz0cIIcSDpSLnUZJD3TnJoR78HKrC7r4nhBAVRUFuLnP7vWiVew9fugqdvf1tXauUYsOGDfzwww906tSJ1atXs337dlq3bg0Uzcn39fVl9erV9OjRg9OnT/PCCy/QsGFDAAICAsx1Ff8S9PT0NM9Rv3r1KkuXLmX58uW0b98egOjoaLy9vUvE8tRTTzFq1Cjz60GDBtGnTx9GjhwJQFBQEHPnzqVdu3bMnz8fHx8f5s6dyxtvvMHkyZNp2rQpwcHB9OnTxxzX0aNHcXFxwcvLq8T99Ho9AQEBHD169LaeXbF169bRq1cvsrKy8PLyIiYmhsqVK1+37PHjx/noo4+Iiooqtc42bdqwbNkyXnrpJXJycigoKKBr166lDim/VzFfz7lz5yySKcD8+ty5cyXKJyUl8d1337F8+fIb1mkymRg5ciRt2rShQYMGZY5FCCFExVcR8yjJoSSHkhyq7GSklBBCCAvr1q3DyckJe3t7OnXqxEsvvUT//v2xtbWlRYsW5nLu7u7Url2b33//HYDhw4czbdo02rRpQ2RkJAcOHCj1PidPniQ/P5/mzZubj7m4uFC7du0SZZs2bWrx+tdff2XJkiU4OTmZP0JCQjCZTCQkJABF7zqeO3eOZcuW0apVK1auXEn9+vWJiYkp87PQ6/U3LbNs2TKLOGJjY83ngoODiYuLY8eOHYSGhtKzZ08uXLhQoo6zZ88SGhpKjx49LNY1uLbe8PBwAA4fPsyIESOYOHEiv/zyC99//z2JiYnm87GxsRbXLVu2rMztvZWY75alS5fi6urKs88+e8MyERER/Pbbb3z++efmY+Hh4RbtFEIIIaxNcqi/SA4lOVRZyUgpIYS4x2zt7Bi+dJXV7n2rgoODmT9/Pnq9Hm9vb2xtbVm7du1Nrxs0aBAhISF8++23/Pjjj8yYMYNZs2YxbNiw2wndgqOjo8XrjIwMhgwZwvDhw0uUrV69uvlzo9FI165d6dq1K9OmTSMkJIRp06bRoUMHgoKCSEtLIykpqcQ7i3l5eZw4cYKQkJCbxtatWzeLRNPHx8ci7sDAQAIDA2nZsiVBQUEsXryY8ePHm8skJSURHBxM69atWbRokUXd1+5U4+zsDBTtqNKmTRvGjBkDwCOPPIKjoyOPP/4406ZNo2nTphbX/f0dt5spS8ylqVq1Krt377Y4dv78efO5ayml+PTTTwkLC7th8jp06FDWrVvH1q1bqVatmvn4lClT7nghVSGEEPe/ipRHSQ4lOZTkULdOOqWEEOIe02g0tz2FzhqKf6Feq27duhQUFLBr1y7z0PNLly4RHx9PvXr1zOV8fX0JDw8nPDyc8ePH88knnzBs2DDzL8tr1yYICAhAp9OxZ88ecxKUlpbG0aNHeeKJJ0qN8bHHHuPw4cMl4iyNRqOhTp067NixA4AXX3yRsWPHMmvWLGbNmmVRdsGCBWRlZdG3b9+b1ms0GjEajWWKwWQykZuba3599uxZgoODadKkCdHR0Wi1lgOYr9e+rKwsbG0tf33b2NgARQmKwWC4pedyqzHfTKtWrZg+fToXLlzA09MTgJiYGJydnS2+V6Bod5jjx48zcODAEvUopRg2bBhff/01mzdvxt/f3+K8p6enuX4hhBAProqUR0kOJTlUaTHfzMOaQ0mnlBBCiJsKCgqie/fuDB48mIULF2I0Ghk3bhw+Pj50794dgJEjR9KpUydq1arF5cuX2bRpE3Xr1gXAz88PjUbDunXr6Ny5MwaDAaPRSL9+/RgzZgxubm54enoSGRmJVqtFo9GUGs/YsWNp2bIlQ4cOZdCgQTg6OnL48GFiYmL4+OOPiYuLIzIykrCwMOrVq4der2fLli18+umnjB07Fih6N/D9999n9OjR2NvbExYWhk6nY82aNUyYMIFp06aVmHsfHx9fIpb69euj0+ksjmVmZjJ9+nS6deuGl5cXKSkpzJs3j7Nnz5q37D179ixPPvkkfn5+REVFWWwZ/Pd3w67VtWtXBg8ezPz58wkJCSE5OZmRI0fSvHnz664lUSwjI4Pjx4+bXyckJBAXF4ebmxvVq1cvU8wAp0+fJjU1ldOnT1NYWGh+RzEwMBAnJyc6duxIvXr1CAsL4/333+fcuXO89dZbREREYPe3d5wXL15MixYtrrvGQUREBMuXL2fNmjUYjUbzWgouLi4YDIYbtvNm8QkhhBDlSXKoIpJDSQ51Q2Xa5+8BI9sZCyHupQdtO+NixdsZu7i4KIPBoEJCQiy2Mx46dKiqWbOmsrOzUx4eHiosLEylpKSYz0+ZMkVVrVpVaTSaUrczbt68uRo3bpz5Oj8/PzVnzpwS8ezevVt16NBBOTk5KUdHR/XII4+o6dOnK6WUunjxoho+fLhq0KCBcnJyUkajUTVs2FBFRUWpwsJCi3pWr16tHn/8ceXo6GjebnnFihUWZa63JXPxx5kzZ0rElp2drZ577jnl7e2t9Hq98vLyUt26dVO7d+82l4mOjr5hnTczd+5cVa9ePWUwGJSXl5fq06eP+uOPP0q9ZtOmTde9V/HXoiwxK1X0PXK9ejZt2mQuk5iYqDp16qQMBoOqXLmyGjVqlMrPz7eo58qVK8pgMKhFixZdN94bPZvo6OhS21mW+P7ubmxn/LCQ5yGEuJckh5IcSnKohy+H0vwZ9EMlPT0dFxcX0tLSzPNLhRDibsnJySEhIQF/f3/sK8hw8/tFZmYmPj4+zJo167rDke+11NRU2rdvj7OzM9999x0ODg7lHoMof6X9zErOYEmehxDiXpIc6vZJDiWs4W7kULL7nhBCCKvZv38/K1as4MSJE+zbt48+ffoAmIezlzc3Nzd++ukn2rdvz86dO60SgxBCCCHEzUgOJR4UsqaUEEIIq4qKiiI+Ph69Xk+TJk2IjY2lcuXKVovH3d2diRMnWu3+QgghhBBlITmUeBBIp5QQQgirady4Mb/88ou1wxBCCCGEqFAkhxIPCpm+J4QQQgghhBBCCCHKnXRKCSGEEEIIIYQQQohyJ51SQghxjzyEm5sKUSHJz6oQQtxf5P9lISqGu/GzKp1SQghxl+l0OgCysrKsHIkQoiyKf1aLf3aFEEJYh+RQQlQsdyOHkoXOhRDiLrOxscHV1ZULFy4A4ODggEajsXJUQoi/U0qRlZXFhQsXcHV1xcbGxtohCSHEQ01yKCEqhruZQ0mnlBBC3ANVq1YFMCdVQoj7l6urq/lnVgghhHVJDiVExXE3cijplBJCiHtAo9Hg5eWFp6cn+fn51g5HCHEDOp1ORkgJIcR9RHIoISqGu5VDSaeUEELcQzY2NvIHrxBCCCHELZIcSoiHgyx0LoQQQgghhBBCCCHKnXRKCSGEEEIIIYQQQohyJ51SQgghhBBCCCGEEKLcPZRrSimlAEhPT7dyJEIIIYS4nxXnCsW5w8NOcighhBBClEVZc6iHslPq6tWrAPj6+lo5EiGEEEJUBFevXsXFxcXaYVid5FBCCCGEuBU3y6E06iF8689kMpGUlITRaESj0dz1+tPT0/H19eXMmTM4Ozvf9frvJ9LWB5O09cEkbX0wSVvvLaUUV69exdvbG61WVj2QHOrukbY+mKStDyZp64NJ2npvlTWHeihHSmm1WqpVq3bP7+Ps7PzAf3MXk7Y+mKStDyZp64NJ2nrvyAipv0gOdfdJWx9M0tYHk7T1wSRtvXfKkkPJW35CCCGEEEIIIYQQotxJp5QQQgghhBBCCCGEKHfSKXUP2NnZERkZiZ2dnbVDueekrQ8maeuDSdr6YJK2igfJw/Q1lrY+mKStDyZp64NJ2np/eCgXOhdCCCGEEEIIIYQQ1iUjpYQQQgghhBBCCCFEuZNOKSGEEEIIIYQQQghR7qRTSgghhBBCCCGEEEKUO+mUEkIIIYQQQgghhBDlTjqlhBBCCCGEEEIIIUS5k04pIYQQQgghhBBCCFHupFNKCCGEEEIIIYQQQpQ76ZQSQgghhBBCCCGEEOVOOqWEEEIIIYQQQgghRLmTTikhhBBCCCGEEEIIUe6kU0oIIYQQQgghhBBClDvplBJCCCGEEEIIIYQQ5U46pYQQQgghhBBCCCFEuZNOKSGEVSUmJqLRaFiyZIm1Q7nvLFmyBI1Gw969e60dihBCCCEeMLebg50/f54XX3wRd3d3NBoNH3zwwT2JzxqKc6/ExERrhyLEQ0M6pYR4yO3YsYNJkyZx5cqV27r+X//61wPRoXSnz+F+lpSUxKRJk4iLi7N2KEIIIYT4U0XNwV577TV++OEHxo8fz3//+19CQ0PLPQYhxINDOqWEeMjt2LGDyZMnV7iE6G670+dwP0tKSmLy5MnSKSWEEELcRypqDrZx40a6d+/O6NGjefnll6lTp065xyCEeHBIp5QQQtxncnJyMJlM1g5DCCGEEKKECxcu4OrqWi73kpxIiAefdEoJ8RCbNGkSY8aMAcDf3x+NRmOeR19QUMDUqVOpWbMmdnZ21KhRgwkTJpCbm2u+vkaNGhw6dIgtW7aYr33yyScBSE1NZfTo0TRs2BAnJyecnZ3p1KkTv/766x3HvXnzZjQaDf/73/+YPn061apVw97envbt23P8+PES5Xft2kVoaCguLi44ODjQrl07tm/fXqbn8Pzzz/PYY49Z1Ne1a1c0Gg1r1661uIdGo+G7774zHzt58iQ9evTAzc0NBwcHWrZsybfffnvdtnz++ee89dZb+Pj44ODgQHp6+nXbfvnyZZo3b061atWIj48v07Nq1qwZAAMGDDC3bcmSJfz+++8YDAb69u1rcc22bduwsbFh7NixN61fCCGEELeuIuZgxestKaWYN2+e+b4A+fn5TJ48maCgIOzt7XF3d6dt27bExMSUuf6b5UQ3y+cATp06xf/93/9Ru3ZtDAYD7u7u9OjR47prRB06dIinnnoKg8FAtWrVmDZtmnSACWEFttYOQAhhPc8//zxHjx5lxYoVzJkzh8qVKwPg4eHBoEGDWLp0KS+++CKjRo1i165dzJgxg99//52vv/4agA8++IBhw4bh5OTEm2++CUCVKlWAog6Z1atX06NHD/z9/Tl//jwLFy6kXbt2HD58GG9v7zuO/91330Wr1TJ69GjS0tJ4//336dOnD7t27TKX2bhxI506daJJkyZERkai1WqJjo7mqaeeIjY2lubNm5f6HB5//HHWrFlDeno6zs7OKKXYvn07Wq2W2NhYunXrBkBsbCxarZY2bdoARYuAtm7dmqysLIYPH467uztLly6lW7durFq1iueee86iLVOnTkWv1zN69Ghyc3PR6/Ul2puSkkKHDh1ITU1ly5Yt1KxZ86bPqG7dukyZMoWJEyfyz3/+k8cffxyA1q1bExAQwNSpUxkzZgwvvvgi3bp1IzMzk/79+1OnTh2mTJlye18YIYQQQpSqIuZgTzzxBP/9738JCwujQ4cOFm9qTZo0iRkzZjBo0CCaN29Oeno6e/fuZd++fXTo0OGW7nO9nKgs+RzAnj172LFjB7169aJatWokJiYyf/58nnzySQ4fPoyDgwMA586dIzg4mIKCAsaNG4ejoyOLFi3CYDDc1rMRQtwBJYR4qM2cOVMBKiEhwXwsLi5OAWrQoEEWZUePHq0AtXHjRvOx+vXrq3bt2pWoNycnRxUWFlocS0hIUHZ2dmrKlCkWxwAVHR1d5pg3bdqkAFW3bl2Vm5trPv7hhx8qQB08eFAppZTJZFJBQUEqJCREmUwmc7msrCzl7++vOnToUOpzUEqpPXv2KECtX79eKaXUgQMHFKB69OihWrRoYS7XrVs31bhxY/PrkSNHKkDFxsaaj129elX5+/urGjVqmJ9NcVsCAgJUVlaWxb2jo6MVoPbs2aOSk5NV/fr1VUBAgEpMTCzzs7q2Ddd7xoWFhapt27aqSpUqKiUlRUVERChbW1u1Z8+eW7qHEEIIIW5NRczBlFIKUBERERbHGjVqpLp06XJL9fzdjXKiW8nn/p5LKaXUzp07FaD+85//mI8V52m7du0yH7tw4YJycXG5bj4ohLh3ZPqeEKKE9evXA/D6669bHB81ahRAiSlo12NnZ4dWW/RfTGFhIZcuXcLJyYnatWuzb9++uxLngAEDLEYUFY8COnnyJABxcXEcO3aM3r17c+nSJVJSUkhJSSEzM5P27duzdevWmw7Tbty4MU5OTmzduhUoGhFVrVo1+vbty759+8jKykIpxbZt28z3h6Jn2Lx5c9q2bWs+5uTkxD//+U8SExM5fPiwxX369et3w3fn/vjjD9q1a0d+fj5bt27Fz8/vFp5S6bRaLUuWLCEjI4NOnTrxr3/9i/Hjx9O0adO7dg8hhBBClE1FycH+ztXVlUOHDnHs2LE7ruvvOdGt5HPXXpefn8+lS5cIDAzE1dXVou3r16+nZcuW5hFWUDRKrU+fPnccvxDi1sj0PSFECadOnUKr1RIYGGhxvGrVqri6unLq1Kmb1mEymfjwww/517/+RUJCAoWFheZz7u7udyXO6tWrW7yuVKkSULTuEmBOjPr163fDOtLS0szXXY+NjQ2tWrUiNjYWKOqUevzxx2nbti2FhYX8/PPPVKlShdTUVItOqVOnTtGiRYsS9dWtW9d8vkGDBubj/v7+N4whLCwMW1tbfv/9d6pWrXrDcrerZs2a5rUtGjRowNtvv33X7yGEEEKIm6soOdjfTZkyhe7du1OrVi0aNGhAaGgoYWFhPPLII7dc199zolvJ57Kzs5kxYwbR0dGcPXsWpZRFmWI3ytNq1659y/EKIe6MdEoJIW6oePHK2/HOO+/w9ttv88orrzB16lTc3NzQarWMHDnyri0iaWNjc93jxQlI8X1mzpzJo48+et2yTk5ON71P27ZtmT59Ojk5OcTGxvLmm2/i6upKgwYNiI2NNa/hcG2n1K0qbQ2D559/nv/85z98+OGHzJgx47bvUZoff/wRgKSkJC5dunRPOr+EEEIIUTb3ew72d0888QQnTpxgzZo1/Pjjj/z73/9mzpw5LFiwgEGDBt1SXX/PiW4lnxs2bBjR0dGMHDmSVq1a4eLigkajoVevXrKIuRD3KemUEuIhd72kx8/PD5PJxLFjx8wje6Bo8e4rV65YTB+7UdK0atUqgoODWbx4scXxK1eumBfzvNeKFwJ3dnbm6aefLrVsacnf448/Tl5eHitWrODs2bPmzqcnnnjC3ClVq1Ytc+cUFD3D6+2Od+TIEfP5sho2bBiBgYFMnDgRFxcXxo0bV+Zr4eaJ7YIFC4iJiWH69OnMmDGDIUOGsGbNmlu6hxBCCCFuzYOWg7m5uTFgwAAGDBhARkYGTzzxBJMmTbrlTqm/u5V8btWqVfTr149Zs2aZj+Xk5HDlyhWLcn5+ftedaliWnY2FEHeXrCklxEPO0dERwOKXdefOnYGinV2uNXv2bAC6dOlicf3ff9FD0Sima4dMA6xcuZKzZ8/ehajLpkmTJtSsWZOoqCgyMjJKnL948aL58+s9h2ItWrRAp9Px3nvv4ebmRv369YGizqqff/6ZLVu2lBgl1blzZ3bv3s3OnTvNxzIzM1m0aBE1atSgXr16t9SWt99+m9GjRzN+/Hjmz59/S9eW1raEhATGjBnDCy+8wIQJE4iKimLt2rX85z//uaV7CCGEEOLWPEg52KVLlyxeOzk5ERgYSG5u7h3XfSv53PXa/tFHH1lMYYSi5/zzzz+ze/dui3qWLVt2x/EKIW6NjJQS4iHXpEkTAN5880169eqFTqeja9eu9OvXj0WLFnHlyhXatWvH7t27Wbp0Kc8++yzBwcEW18+fP59p06YRGBiIp6cnTz31FM888wxTpkxhwIABtG7dmoMHD7Js2TICAgLKrW1arZZ///vfdOrUifr16zNgwAB8fHw4e/YsmzZtwtnZmW+++abU5+Do6IiDgwNNmjTh559/pmvXruZ3Jp944gkyMzPJzMws0Sk1btw4VqxYQadOnRg+fDhubm4sXbqUhIQEvvzyS/MCpLdi5syZpKWlERERgdFo5OWXXy7TdTVr1sTV1ZUFCxZgNBpxdHSkRYsW1KhRg1deeQWDwWDu6BoyZAhffvklI0aM4Omnn77tbaOFEEIIUboHKQerV68eTz75JE2aNMHNzY29e/eyatUqhg4desd130o+98wzz/Df//4XFxcX6tWrx86dO/npp59KrKX1xhtv8N///pfQ0FBGjBiBo6MjixYtws/PjwMHDtxxzEKIW2DNrf+EEPeHqVOnKh8fH6XVas3b4Obn56vJkycrf39/pdPplK+vrxo/frzKycmxuPbcuXOqS5cuymg0KsC8NXFOTo4aNWqU8vLyUgaDQbVp00bt3LlTtWvXzmL74tvZjrh4y+CVK1daHL9RXfv371fPP/+8cnd3V3Z2dsrPz0/17NlTbdiw4abPodiYMWMUoN577z2LawIDAxWgTpw4USLOEydOqBdffFG5uroqe3t71bx5c7Vu3boytUUppaKjoxWg9uzZYz5WWFio/vGPfyhbW1u1evXqUp/TtdasWaPq1aunbG1tzc/oww8/VID68ssvLcqePn1aOTs7q86dO5e5fiGEEELcuoqWgymlFKAiIiIsjk2bNk01b95cubq6KoPBoOrUqaOmT5+u8vLyylxvaTmRUmXL5y5fvqwGDBigKleurJycnFRISIg6cuSI8vPzU/369bOo78CBA6pdu3bK3t5e+fj4qKlTp6rFixeXyAGFEPeWRqm/jW8UQgghhBBCCCGEEOIekzWlhBBCCCGEEEIIIUS5kzWlhBD3jby8PFJTU0st4+LiUmKr4IeVPC8hhBBC3A33MqeQfEUIURrplBJC3Dd27NhhsYDn9URHR9O/f//yCeg+J89LCCGEEHfDvcwpJF8RQpRG1pQSQtw3Ll++zC+//FJqmfr16+Pl5VVOEd3f5HkJIYQQ4m64lzmF5CtCiNJIp5QQQgghhBBCCCGEKHey0LkQQgghhBBCCCGEKHcP5ZpSJpOJpKQkjEYjGo3G2uEIIYQQ4j6llOLq1at4e3uj1cp7eZJDCSGEEKIsyppDPZSdUklJSfj6+lo7DCGEEEJUEGfOnKFatWrWDsPqJIcSQgghxK24WQ71UHZKGY1GoOjhODs7WzkaIYQQQtyv0tPT8fX1NecODzvJoYQQQghRFmXNoR7KTqni4ebOzs6SUAkhhBDipmSqWhHJoYQQQghxK26WQ8niCEIIIYQQQgghhBCi3EmnlBBCCCGEEEIIIYQod9IpJYQQQgghhBBCCCHK3UO5ppQQQgghhBBCiPuTUoqCggIKCwutHYoQ4gZsbGywtbW943U3pVNKCCGEEEIIIcR9IS8vj+TkZLKysqwdihDiJhwcHPDy8kKv1992HdIpJYQQQgghhBDC6kwmEwkJCdjY2ODt7Y1er5fdT4W4DymlyMvL4+LFiyQkJBAUFIRWe3urQ0mnlBBCCCGEEEIIq8vLy8NkMuHr64uDg4O1wxFClMJgMKDT6Th16hR5eXnY29vfVj2y0LkQQgghhBBCiPvG7Y64EEKUr7vxsyo/7UIIIYQQQgghhBCi3EmnlBBCCCGEEEIIIYQod9IpJYQQQgghhBBC3IH+/fuj0WjQaDTo9XoCAwOZMmUKBQUFd1Tv5s2b0Wg0XLly5e4EWgYJCQn07t0bb29v7O3tqVatGt27d+fIkSMW5datW0e7du0wGo04ODjQrFkzlixZYlEmMTERjUZDXFxcme8/adIk6tSpg6OjI5UqVeLpp59m165dFnUOHDgQf39/DAYDNWvWJDIykry8vFLrTU5Opnfv3tSqVQutVsvIkSPLFM/WrVvp2rUr3t7eaDQaVq9efd1yv//+O926dcPFxQVHR0eaNWvG6dOnzeeHDBlCzZo1MRgMeHh4XPeZ7tmzh/bt2+Pq6kqlSpUICQnh119/ve79jh8/jtFoxNXV9a61wRqkU0oIIYQQQgghhLhDoaGhJCcnc+zYMUaNGsWkSZOYOXOmtcMyu1mnDUB+fj4dOnQgLS2Nr776ivj4eL744gsaNmxo0TH20Ucf0b17d9q0acOuXbs4cOAAvXr1Ijw8nNGjR99RnLVq1eLjjz/m4MGDbNu2jRo1atCxY0cuXrwIwJEjRzCZTCxcuJBDhw4xZ84cFixYwIQJE0qtNzc3Fw8PD9566y0aNWpU5ngyMzNp1KgR8+bNu2GZEydO0LZtW+rUqcPmzZs5cOAAb7/9tsXi302aNCE6Oprff/+dH374AaUUHTt2pLCwEICMjAxCQ0OpXr06u3btYtu2bRiNRkJCQsjPz7e4X35+Pv/4xz94/PHH71obrEY9hNLS0hSg0tLSrB2KEEIIIe5jkjNYkuchhLiXsrOz1eHDh1V2dra1Q7ll/fr1U927d7c41qFDB9WyZUuVmpqqwsLClKurqzIYDCo0NFQdPXrUXC4xMVE988wzytXVVTk4OKh69eqpb7/9ViUkJCjA4qNfv35KKaXS09NV7969lYODg6pataqaPXu2ateunRoxYoS5Xj8/PzVlyhQVFhamjEaj+drY2FjVtm1bZW9vr6pVq6aGDRumMjIylFJK7d+/XwEqMTHxhm09ffq00ul06vXXXy9xbu7cuQpQP//8s1JKmduwf//+W3+ofyr+3fPTTz/dsMz777+v/P39y1zn359VWQHq66+/LnH8pZdeUi+//PIt1fXrr78qQB0/flwppdSePXsUoE6fPm0uc+DAAQWoY8eOWVz7xhtvqJdffllFR0crFxeXu9KG21Haz2xZcwYZKSWEEEIIIYQQ4r6klCIrr8AqH0V/v98+g8FAXl4e/fv3Z+/evaxdu5adO3eilKJz587m0S8RERHk5uaydetWDh48yHvvvYeTkxO+vr58+eWXAMTHx5OcnMyHH34IwOuvv8727dtZu3YtMTExxMbGsm/fvhIxREVF0ahRI/bv38/bb7/NiRMnCA0N5YUXXuDAgQN88cUXbNu2jaFDhwLg4eGBVqtl1apV5hE8f7dq1Sry8/OvOyJqyJAhODk5sWLFijt6dsXy8vJYtGgRLi4upY5uSktLw83N7a7c81aZTCa+/fZbatWqRUhICJ6enrRo0aLUKXKZmZlER0fj7++Pr68vALVr18bd3Z3FixeTl5dHdnY2ixcvpm7dutSoUcN87caNG1m5cuX9OerpNthaOwAhhBBCCCGEEOJ6svMLqTfxB6vc+/CUEBz0t/4ns1KKDRs28MMPP9CpUydWr17N9u3bad26NQDLli3D19eX1atX06NHD06fPs0LL7xAw4YNAQgICDDXVdzR4unpaV476OrVqyxdupTly5fTvn17AKKjo/H29i4Ry1NPPcWoUaPMrwcNGkSfPn3M6ykFBQUxd+5c2rVrx/z58/Hx8WHu3Lm88cYbTJ48maZNmxIcHEyfPn3McR09ehQXFxe8vLxK3E+v1xMQEMDRo0dv+blda926dfTq1YusrCy8vLyIiYmhcuXK1y17/PhxPvroI6Kiou7onrfrwoULZGRk8O677zJt2jTee+89vv/+e55//nk2bdpEu3btzGX/9a9/8cYbb5CZmUnt2rWJiYlBr9cDYDQa2bx5M88++yxTp04Fir4+P/zwA7a2Rd+Hly5don///nz22Wc4OzuXf2PvARkpJYQQQgghhBBC3KF169bh5OSEvb09nTp14qWXXqJ///7Y2trSokULczl3d3dq167N77//DsDw4cOZNm0abdq0ITIykgMHDpR6n5MnT5Kfn0/z5s3Nx1xcXKhdu3aJsk2bNrV4/euvv7JkyRKcnJzMHyEhIZhMJhISEoCikVvnzp1j2bJltGrVipUrV1K/fn1iYmLK/CyKO1pKs2zZMos4YmNjzeeCg4OJi4tjx44dhIaG0rNnTy5cuFCijrNnzxIaGkqPHj0YPHiw+fi19YaHh5cp5tjYWIvrli1bVqbrTCYTAN27d+e1117j0UcfZdy4cTzzzDMsWLDAomyfPn3Yv38/W7ZsoVatWvTs2ZOcnBwAsrOzGThwIG3atOHnn39m+/btNGjQgC5dupCdnQ3A4MGD6d27N0888cRdbYM1yUgpIYQQQgghhBD3JYPOhsNTQqx271sRHBzM/Pnz0ev1eHt7Y2try9q1a2963aBBgwgJCeHbb7/lxx9/ZMaMGcyaNYthw4bdbuhmjo6OFq8zMjIYMmQIw4cPL1G2evXq5s+NRiNdu3ala9euTJs2jZCQEKZNm0aHDh0ICgoiLS2NpKSkEqOz8vLyOHHiBCEhN/+adevWzaKzzsfHxyLuwMBAAgMDadmyJUFBQSxevJjx48ebyyQlJREcHEzr1q1ZtGiRRd3X7vZX1hFFTZs2tbiuSpUqZbqucuXK2NraUq9ePYvjdevWZdu2bRbHXFxccHFxISgoiJYtW1KpUiW+/vpr/vGPf7B8+XISExPZuXMnWm3R+KHly5dTqVIl1qxZQ69evdi4cSNr1641jwpTSmEymbC1tWXRokX84x//uK02WJN0SgkhhBBCCCGEuC9pNJrbmkJnDcUdKdeqW7cuBQUF7Nq1yzx979KlS8THx1t0Yvj6+hIeHk54eDjjx4/nk08+YdiwYeYRR9eu7xQQEIBOp2PPnj3mjqS0tDSOHj16wxE0xR577DEOHz5cIs7SaDQa6tSpw44dOwB48cUXGTt2LLNmzWLWrFkWZRcsWEBWVhZ9+/a9ab1GoxGj0VimGEwmE7m5uebXZ8+eJTg42LyjXXEnTrFbaV8xg8FwW9fp9XqaNWtGfHy8xfGjR4/i5+d3w+uUUiilzO3KyspCq9Wi0WjMZYpfF4/G2rlzp8X3wpo1a3jvvffYsWMHPj4+t90Ga6oYP91CCCGEEEIIIUQFExQURPfu3Rk8eDALFy7EaDQybtw4fHx86N69OwAjR46kU6dO1KpVi8uXL7Np0ybq1q0LgJ+fHxqNhnXr1tG5c2cMBgNGo5F+/foxZswY3Nzc8PT0JDIyskSHxvWMHTuWli1bMnToUAYNGoSjoyOHDx8mJiaGjz/+mLi4OCIjIwkLC6NevXro9Xq2bNnCp59+ytixY4GiEVXvv/8+o0ePxt7enrCwMHQ6HWvWrGHChAlMmzaNBg0aWNz37x02APXr10en01kcy8zMZPr06XTr1g0vLy9SUlKYN28eZ8+epUePHkBRh9STTz6Jn58fUVFRXLx40Xx91apVS21/8SiijIwMLl68SFxcHHq9vsQop2tlZGRw/Phx8+uEhATi4uJwc3MzdwqOGTOGl156iSeeeILg4GC+//57vvnmGzZv3gwUTbn84osv6NixIx4eHvzxxx+8++67GAwGOnfuDECHDh0YM2YMERERDBs2DJPJxLvvvoutrS3BwcEA5u+LYnv37kWr1ZZ43rfTBqu5K/sAVjCynbEQQgghykJyBkvyPIQQ91Jp28vf7/r166e6d+9+3XOpqakqLCxMubi4KIPBoEJCQtTRo0fN54cOHapq1qyp7OzslIeHhwoLC1MpKSnm81OmTFFVq1ZVGo1G9evXTymlVHp6uurdu7dycHBQVatWVbNnz1bNmzdX48aNM1/n5+en5syZUyKe3bt3qw4dOignJyfl6OioHnnkETV9+nSllFIXL15Uw4cPVw0aNFBOTk7KaDSqhg0bqqioKFVYWGhRz+rVq9Xjjz+uHB0dFaAAtWLFCosyCQkJ5nN//zhz5kyJ2LKzs9Vzzz2nvL29lV6vV15eXqpbt25q9+7d5jLR0dE3rPNmrneNn59fqdds2rTputcVfy2KLV68WAUGBip7e3vVqFEjtXr1avO5s2fPqk6dOilPT0+l0+lUtWrVVO/evdWRI0cs6vjxxx9VmzZtlIuLi6pUqZJ66qmn1M6dO28YW3R0tHJxcblpu8vahltV2s9sWXMGjVJ3uM9lBZSeno6LiwtpaWkPzIr1QgghhLj7JGewJM9DCHEv5eTkkJCQgL+/P/b29tYOp0LJzMzEx8eHWbNmMXDgwHK/f2pqKu3bt8fZ2ZnvvvsOBweHco9BlL/SfmbLmjPI7ntCCCGEEEIIIUQFsn//flasWMGJEyfYt28fffr0ATBPCSxvbm5u/PTTT7Rv356dO3daJQZRMcmaUkIIIYQQQgghRAUTFRVFfHw8er2eJk2aEBsbS+XKla0Wj7u7OxMnTrTa/UXFJJ1SQgghhBBCCCFEBdK4cWN++eUXa4chxB2T6XtCCCGEEEIIIYQQotxJp5QQQgghhBBCCCGEKHfSKSWEEEIIIYQQQgghyp10SgkhhBBCCCGEEEKIciedUkIIIYQQQgghhBCi3Mnue0II8QBQSl3z+V/HNRrQaDRWiEgIIYQQQgghSiedUkII8Tc5hw+Te/w4GZu3kHv8OCo/H2Uq5GKlVqS5BPC5sYBknZbThosYNOfp+vthql9JQ19owis9E6XRkG9jQ4rRSKFGQ4GNHTk6G0waLWg0KIr+BQ1Ko0VxNzqN7m3Hk9JquKavCw0atH/r7HL27k2vt0NwdLG7p7GIey8tO5+zl7NRpmxMhenw51e/spOOSo5213SCXv/fG5+n1POq+HWJ85R6XqPV4eQYVPYGCiGEEEKI+4J0SgkhxDUKUlM53H8AV+3tOOPrS66HL1eq1uVr+6ukusahMWzATnMZjYLpn9tSI8URk1ZPgk9zMvVZHHUuIFt7vpQ7KKCwvJpz95hKdnuZ/vY6Ky0HZVKIiu1qTj6Pv7cRrbrE1NbTcdDlmM9dsGJcpbG396FN663WDkMIIcRDrH///ixduhQAnU5H9erV6du3LxMmTMDW9vb/7N68eTPBwcFcvnwZV1fXuxRt6RISEnjzzTfZvHkzqampVK5cmSZNmvDee+9Rp04dc7l169Yxc+ZM9u3bR2FhIfXr1yciIoL+/fubyyQmJuLv78/+/ft59NFHy3T/SZMm8fnnn3PmzBn0ej1NmjRh+vTptGjRwlzn1KlT2bhxI+fOncPb25uXX36ZN998E71ef8N6k5OTGTVqFHv37uX48eMMHz6cDz744KbxzJ8/n/nz55OYmAhA/fr1mThxIp06dQIgNTWVyMhIfvzxR06fPo2HhwfPPvssU6dOxcXFBYAlS5YwYMCA69Z//vx5PD09AcjNzWXKlCl89tlnnDt3Di8vLyZOnMgrr7xiLv/BBx8wf/58Tp8+TeXKlXnxxReZMWMG9vb2N2zDV199xYIFC/jll19ITU29pa/HvSadUkIIAfz2/fdsXf8deRoNVzoX/YLJ1GbzvXcs6LYAoC9UDIjREJQaQrqTF0kBdTnltQVMGZgKjpWoU6N1Q2PjgdbWG42NLRpbF9DloMEEttlodIXY2oLGLgeN5pouHo3FP6Cx/LxkOc2fI6+URQGthqLRTFoNGv7eWaRBo/nzmEaDBrDRgLve1rLzydYOjFXA1YhGpyu6F2Bna4ebvZtFHC6e3hiMN04ERMVw6lIW6TkFPOLxh7lDqsBUlC7YaDXYaItG+RWx/PevqaJ//5ebnL/R9ZRy/s9jaNDrK5e5fUIIIcS9EhoaSnR0NLm5uaxfv56IiAh0Oh3jx4+3dmgA5OXlldppA5Cfn0+HDh2oXbs2X331FV5eXvzxxx989913XLlyxVzuo48+YuTIkYwdO5b58+ej1+tZs2YN4eHh/Pbbb0RFRd12nLVq1eLjjz8mICCA7Oxs5syZQ8eOHTl+/DgeHh4cOXIEk8nEwoULCQwM5LfffmPw4MFkZmaWet/c3Fw8PDx46623mDNnTpnjqVatGu+++y5BQUEopVi6dCndu3dn//791K9fn6SkJJKSkoiKiqJevXqcOnWK8PBwkpKSWLVqFQAvvfQSoaGhFvX279+fnJwcc4cUQM+ePTl//jyLFy8mMDCQ5ORkTKa//k5Yvnw548aN49NPP6V169YcPXqU/v37o9FomD179g3bkJmZSdu2benZsyeDBw8uc9vLg0ZduxDJQyI9PR0XFxfS0tJwdna2djhCCCvKzMwk8dgxNqxZQ+qf/x2et81hu+culF2KuVz3XR40O9WS855NyLXJJu/qKqCgRH0eVWticHKgdvswqgRUw95Rh6OrHludTXk1SYjblpiSSezxFN5e/RvP1fmNZ6ovolKlVjzW+DNrh2Y1kjNYkuchhLiXcnJySEhIwN/fv9RRH/ej/v37c+XKFVavXm0+1rFjR65evcr69esZMWIE33zzDbm5ubRr1465c+cSFFQ09fzUqVMMHTqUbdu2kZeXR40aNZg5cyb16tXD39/f4j79+vVjyZIlXL16lfDwcFavXo2zszNvvPEGa9as4dFHHzWP/qlRowYDBw7k2LFjrF69mueff54lS5awbds2xo8fz969e6lcuTLPPfccM2bMwNHRkbi4OBo3bkxiYiJ+fn7XbeuZM2eoWbMmw4YNY9asWRbnPvroI4YPH87PP/9MixYtbmuk1N8V/+756aefaN++/XXLzJw5k/nz53Py5Mky1fnkk09aPKtb5ebmxsyZMxk4cOB1z69cuZKXX36ZzMzM646Uu3jxIj4+PixevJiwsDAAvv/+e3r16sXJkydxc3O7br1Dhw7l999/Z8OGDeZjo0aNYteuXWzbtu2mcd+Nr8e1SvuZLWvOICOlhBAPtRXz5/NHRob5dav8WnzquA9ll4J7uuLFHVWxz6lGfuWXSKj8C4VZ0SXqqBHoS93Hn8K7URtcvbzLM3wh7po1cWcZ8XkcNppCqhuT8DWeA8DWVjoehBBCWJFSkJ9lnXvrHP4cjX57DAYDly5don///hw7doy1a9fi7OzM2LFj6dy5M4cPH0an0xEREUFeXh5bt27F0dGRw4cP4+TkhK+vL19++SUvvPAC8fHxODs7YzAYAHj99dfZvn07a9eupUqVKkycOJF9+/aV6GiIiopi4sSJREZGAnDixAlCQ0OZNm0an376KRcvXmTo0KEMHTqU6OhoPDw80Gq1rFq1ipEjR2JjU/KN1VWrVpGfn8/o0aNLnBsyZAgTJkxgxYoV5ul2dyIvL49Fixbh4uJCo0aNblguLS3thh05d1NhYSErV64kMzOTVq1alRqPs7PzDadu/uc//8HBwYEXX3zRfGzt2rU0bdqU999/n//+9784OjrSrVs3pk6dav66t27dms8++4zdu3fTvHlzTp48yfr1680dWxWRdEoJIR5ql69eBY2GyiYjGyv9xneOW8i2yQSg6466YOzPVe16VOb/UIUXzddpUHQdOpwaj7VE5+hirfCFuGsOJaUDMPyxxTRw/8183NbWaK2QhBBCiKIOqXes9KbfhCTQO97yZUopNmzYwA8//ECnTp1YvXo127dvp3Xr1gAsW7YMX19fVq9eTY8ePTh9+jQvvPACDRs2BCAgIMBcV3FHi6enp3lNqatXr7J06VKWL19uHjkUHR2Nt3fJ5/TUU08xatQo8+tBgwbRp08fRo4cCUBQUBBz586lXbt2zJ8/Hx8fH+bOncsbb7zB5MmTadq0KcHBwfTp08cc19GjR3FxccHLy6vE/fR6PQEBARw9evSWn9u11q1bR69evcjKysLLy4uYmBgqV77+dP3jx4/z0Ucf3dGUwZs5ePAgrVq1IicnBycnJ77++mvq1at33bIpKSlMnTqVf/7znzesb/HixfTu3dvc2QRw8uRJtm3bhr29PV9//TUpKSn83//9H5cuXSI6uuiN8d69e5OSkkLbtm1RSlFQUEB4eDgTJky4uw0uR1prByCEENaSufc8uX/+N9gyvzbH3PaSZZdCyxOVGPV9X1y1T1KYG4ep4JS5Q0qDIrdfGMMX/5egx0OkQ0o8MNKz8wGo7Z4MgE7njsFQg6pVulkzLCGEEKLCWLduHU5OTtjb29OpUydeeukl+vfvj62trcWoIXd3d2rXrs3vv/8OwPDhw5k2bRpt2rQhMjKSAwcOlHqfkydPkp+fT/Pmzc3HXFxcqF27domyTZs2tXj966+/smTJEpycnMwfISEhmEwmEhISAIiIiODcuXMsW7aMVq1asXLlSurXr09MTEyZn8XN1q6Cos65a+OIjY01nwsODiYuLo4dO3YQGhpKz549uXCh5JYrZ8+eJTQ0lB49elislXRtveHh4WWKOTY21uK6ZcuWmc/Vrl2buLg4du3axauvvkq/fv04fPhwiTrS09Pp0qUL9erVY9KkSde9z86dO/n9999LTP0zmUxoNBqWLVtG8+bN6dy5M7Nnz2bp0qVkZ2cDRQvfv/POO/zrX/9i3759fPXVV3z77bdMnTr1ps/0fiUjpYQQDx2lFJs2bOTMlngKbIrWkUqxyf3znJamp54h3aAnP/Mb87JRNY2XaOCeiu1jXfHt1BObOxjKLcT95ExqFrHHUswjpWwoGinYrOkqDIbq1gxNCCGEKJpCNyHJeve+BcHBweZFv729vbG1tWXt2rU3vW7QoEGEhITw7bff8uOPPzJjxgxmzZrFsGHDbjdyM0dHy5FeGRkZDBkyhOHDh5coW736X7/3jUYjXbt2pWvXrkybNo2QkBCmTZtGhw4dCAoKIi0tjaSkpBKjs/Ly8jhx4gQhISE3ja1bt24WnXU+Pj4WcQcGBhIYGEjLli0JCgpi8eLFFovGJyUlERwcTOvWrVm0aJFF3XFxcebPy7oGYtOmTS2uq1KlivlzvV5PYGAgAE2aNGHPnj18+OGHLFy40Fzm6tWrhIaGYjQa+frrr9HpdNe9z7///W8effRRmjRpYnHcy8sLHx8f8459AHXr1kUpxR9//EFQUBBvv/02YWFhDBo0CICGDRuSmZnJP//5T958881Sn+n9SjqlhBAPnXPnzrF1WyzYwFU0bDQm8ZXuME8de5nql+uT56jHlLMdKNrBztk2m4u1/Uke+COPu8lUJvFgGbp8H7/+kUZjz1/pVOMCWop23LO1lVGAQggh7gMazW1NobOG4o6Ua9WtW5eCggJ27dplnr536dIl4uPjLaZ/+fr6Eh4eTnh4OOPHj+eTTz5h2LBh5hFHhYWF5rIBAQHodDr27Nlj7khKS0vj6NGjPPHEE6XG+Nhjj3H48OEScZZGo9FQp04dduzYAcCLL77I2LFjmTVrVomFzhcsWEBWVhZ9+/a9ab1GoxGjsWy5tclkIjc31/z67NmzBAcH06RJE6Kjo9FqLSeB3Ur7ihkMhjJf9/d40tPTCQkJwc7OjrVr195wof6MjAz+97//MWPGjBLn2rRpw8qVK8nIyMDJyQkomiqp1WqpVq0aAFlZWSXaWrzul1Lqlp7p/UI6pYQQDxVVYOLCj0VDoh2UHYl2ORRU3oGuwI5aKeHkZ20lN3evufzjHidp6n6Wid6v8axTxdoFRoiyOHM5m6oO5xn66GLzMa1Wj62tkxWjEkIIIR4MQUFBdO/encGDB7Nw4UKMRiPjxo3Dx8eH7t27AzBy5Eg6depErVq1uHz5Mps2baJu3boA+Pn5odFoWLduHZ07d8ZgMGA0GunXrx9jxozBzc0NT09PIiMj0Wq1aG4ymn/s2LG0bNmSoUOHMmjQIPPC6jExMXz88cfExcURGRlJWFgY9erVQ6/Xs2XLFj799FPGjh0LFI2oev/99xk9ejT29vaEhYWh0+lYs2YNEyZMYNq0aTRo0MDivvHx8SViqV+/fonRRJmZmUyfPp1u3brh5eVFSkoK8+bN4+zZs/To0QMo6pB68skn8fPzIyoqiosX/1r3tWrVqqW2v3gkVEZGBhcvXiQuLg69Xn/D9aEAxo8fT6dOnahevTpXr15l+fLlbN68mR9++AEo6pDq2LEjWVlZfPbZZ6Snp5OeXjQC3cPDw2Kx+C+++IKCggJefvnlEvfp3bs3U6dOZcCAAUyePJmUlBTGjBnDK6+8Yl57qmvXrsyePZvGjRvTokULjh8/zttvv03Xrl2vuyh9sdTUVE6fPk1SUtGow+KvR9WqVW/6zO416ZQSQjxUMg5c5Gp8JujBSdlTSBYtT3XD60rRlrymvL9+YdpSyKaaTxD32NOMbdkNR/31h+AKUVEppUjPzqeW62WgaHSUR+WncXN/HI3mxomNEEIIIcouOjqaESNG8Mwzz5CXl8cTTzzB+vXrzR0yhYWFRERE8Mcff+Ds7ExoaChz5swBiqZfTZ48mXHjxjFgwAD69u3LkiVLmD17NuHh4TzzzDM4OzvzxhtvcObMmRuO0Cn2yCOPsGXLFt58800ef/xxlFLUrFmTl156CYBq1apRo0YNJk+eTGJiIhqNxvz6tddeM9fz2muvERAQwKxZs/jwww/JzCya/r9ixQp69epV4r7XO3bmzBnzCKBiNjY2HDlyhKVLl5KSkoK7uzvNmjUjNjaW+vXrAxATE8Px48c5fvx4ieuVUqW2v3HjxubPf/nlF5YvX46fnx+JiYk3vObChQv07duX5ORkXFxceOSRR/jhhx/o0KEDAPv27WPXrl1AyRFaCQkJ1KhRw/x68eLFPP/88+ZF66/l5ORETEwMw4YNo2nTpri7u9OzZ0+mTZtmLvPWW2+h0Wh46623OHv2LB4eHnTt2pXp06eX2u61a9cyYMAA8+vir0dkZOQN174qLxp1s6/aAyg9PR0XFxfzNo1CiIdDfn4+ez/fxqn44/xucxZNrhO7HU7TJelZTAUXUKbL5Gd+B5joZvM7fjVT6d70X3R59CmG+lW5af1CVBQmk+K9H45w8mImMYfP06TKfv6vUTQuLk1p2uQLa4d3X5GcwZI8DyHEvZSTk0NCQgL+/v437VwRljIzM/Hx8WHWrFklFtAuD6mpqbRv3x5nZ2e+++47HBxubT0uUTGV9jNb1pxBRkoJIR4aP2/bxoYTW8AWdhV6cNL9BFVt0lGmq+RdXQb81UfvF5iKxkbLaXsvDDayUal4sPz6xxUWbjmJj1MSzwXuo6Zr0Y57trYVaw0CIYQQ4mG1f/9+jhw5QvPmzUlLS2PKlCkA5imB5c3NzY2ffvqJefPmsXPnTtq3b2+VOETFI51SQoiHwtUDF0nceAxswNlkIMV4AjvPGAJOBqBM6YDCptBEpdwcavud55J9Jd6tM4pLelfplBIPnEsZeQAMariK6sbj5uN2eg9rhSSEEEKIWxQVFUV8fDx6vZ4mTZoQGxtL5cqVrRaPu7s7EydOtNr9RcUknVJCiIfClQ2nARMAdQurYdKcRKO0+J93QZmKds4w5uXRxT6erxqF8GzgX9vkOmilU0o8OP64nMWxCxkAuNlfAaBKla7Y2/vg4/0PK0YmhBBCiLJq3Lgxv/zyi7XDEOKOSaeUEOKhoHILKaAAgONX9uJh70rojjFock9SWFi0G59L5WwqV89gc6XmADjZaPGx19PaVXYhEw+Gz34+xVurfwNAr83DzqZoUdIA/xE4OPhbMzQhhBBCCPEQkk4pIcQD7+rVqyTmJXFVk8PhAk+OONSheWYSZG6nsOCMuZyjZzXgN/a5FO3s8X3TWgQ6yCKb4sERd+YKAP/XaAlNquwzH7e1lQWrhRBCCCFE+ZM5KUKIB1peUgZLP/qEjaY4UrUZ/F5YhXQbIzUv5aJMRVOYql7JoiHnaBXcEoBcrR4AvUZjtbiFuBfSs/MBeKzKIfMxZ+fG6HSVrBWSEEIIIYR4iMlIKSHEA+3S5/Gk5WaCBiqbjJi8VuLocAbDxRAKVdFaUs2cTlMzIAUb90ooIFejA8Be1pISD4jElEx2J6RyMiUTW00+Goq+99u22YFe74lGOmCFEEIIIYQVSKeUEOKBlpOaTYFNIQB2KWfQBhyi9W9umLIOg8oGoGqDPGzcA+BqEgUaG0yaos4ovVb+UBcPhn7Ruzl1KYu6bvG08z3351ENer2HdEgJIYQQQgirkU4pIcQDzWQqQP35P92ZnHiqp/hQ64wtiqKpe7ZocGjWG/bOhy3vkac1mK+1k5FS4gFgMilOp2ZRw/kUo5vOMx/X6Sqh0cj3uBBCCCGEsB7plBJCPNAKTSYALpsMpBqq0uVAA7LZBBoHdI4daWH6DtuMosXOL1ZuwB+udczX2slIKfEAyMgrQCnwdEgBQKdzw9n5Eap4PmPlyIQQQgghxMNO3iIVQjyQCgsL+eH774nVHSZT6VmTV58jjvXRqKL1onSFGmr9cZD6VY9CQQ4/urXikfof08lnWNF5jQatTGsSFVhOfiFvrT5IxLKiXfZc7LIAcHVtzqONFuPl9Zw1wxNCCCEeKP3790ej0aDRaNDr9QQGBjJlyhQKCgruqN7Nmzej0Wi4cuXK3Qm0DBISEujduzfe3t7Y29tTrVo1unfvzpEjRyzKrVu3jnbt2mE0GnFwcKBZs2YsWbLEokxiYiIajYa4uLgy33/SpEnUqVMHR0dHKlWqxNNPP82uXbss6hw4cCD+/v4YDAZq1qxJZGQkeXl5pdabnJxM7969qVWrFlqtlpEjR5Y5pmLvvvsuGo2mxLUnTpzgueeew8PDA2dnZ3r27Mn58+ctykyfPp3WrVvj4OCAq6vrdesv/h669uPzzz83n//qq6/o0KGD+T6tWrXihx9+uGncX331FR07dsTd3f2Wvx73mnRKCSEeOKasfA6v3MXOn3/mjE0KGUqPY0EmLVN+I7fgVwBc7S/RoelSnKo5QkEuB4y1UGjQaTQYbbS8VNXNyq0Q4s7sOJHCZz+f5tjZQ7zTZiovBK0GQGfrbN3AhBBCiAdUaGgoycnJHDt2jFGjRjFp0iRmzpxp7bDMbtZpA5Cfn0+HDh1IS0vjq6++Ij4+ni+++IKGDRtadIx99NFHdO/enTZt2rBr1y4OHDhAr169CA8PZ/To0XcUZ61atfj44485ePAg27Zto0aNGnTs2JGLFy8CcOTIEUwmEwsXLuTQoUPMmTOHBQsWMGHChFLrzc3NxcPDg7feeotGjRrdclx79uxh4cKFPPLIIxbHMzMz6dixIxqNho0bN7J9+3by8vLo2rUrpj9nbUDR8+/RowevvvpqqfeJjo4mOTnZ/PHss8+az23dupUOHTqwfv16fvnlF4KDg+natSv79+8vtc7MzEzatm3Le++9d8vtvtdk+p4Q4oGTFXeR9APnQA9Gkz02Jhce0aykRmYOhX+WcXbUYFM/BB7rB9tmk6fTA9Dfx52pQdWsF7wQd8mVrHwAnvI/SRXHi+bjLi6NrRWSEEII8UCzs7OjatWqALz66qt8/fXXrF27lvDwcEaMGME333xDbm4u7dq1Y+7cuQQFBQFw6tQphg4dyrZt28jLy6NGjRrMnDmTevXqERwcDEClSpUA6NevH0uWLOHq1auEh4ezevVqnJ2deeONN1izZg2PPvooH3zwAQA1atRg4MCBHDt2jNWrV/P888+zZMkStm3bxvjx49m7dy+VK1fmueeeY8aMGTg6OnLo0CFOnDjBhg0b8PPzA8DPz482bdqY23nmzBlGjRrFyJEjeeedd8zHR40ahV6vZ/jw4fTo0YMWLVrc1nPs3bu3xevZs2ezePFiDhw4QPv27QkNDSU0NNR8PiAggPj4eObPn09UVNQN661RowYffvghAJ9++uktxZSRkUGfPn345JNPmDZtmsW57du3k5iYyP79+3F2Lnrzb+nSpVSqVImNGzfy9NNPAzB58mSAEqPJ/s7V1dX8ffR3xV/bYu+88w5r1qzhm2++oXHjG+d4YWFhQNEos/uNjJQSQjxwCrPyKeTPdyXyc/jNJhYH7QUAtLbVsXVoT5uWdaH3F1CnM+TnkKspmtanl8XNxQPiak7RdAEv56J/q3g+Q5vW2/D27mnNsIQQQohbopQiKz/LKh9KqTuK3WAwkJeXR//+/dm7dy9r165l586dKKXo3Lkz+flFbyBFRESQm5vL1q1bOXjwIO+99x5OTk74+vry5ZdfAhAfH09ycrK5U+X1119n+/btrF27lpiYGGJjY9m3b1+JGKKiomjUqBH79+/n7bff5sSJE4SGhvLCCy9w4MABvvjiC7Zt28bQoUMB8PDwQKvVsmrVKgoLC0vUB7Bq1Sry8/OvOyJqyJAhODk5sWLFijt6dsXy8vJYtGgRLi4upY5uSktLw83t3s10iIiIoEuXLuYOpmvl5uai0Wiws7MzH7O3t0er1bJt27bbulflypVp3rw5n376aanfhyaTiatXr97Ttt9rMlJKCPHAybiUY+6UyspPwz4/g7pni9aH0tpWx9auEc6V/ho5QkEO+do/O6VkHSlRwf1yKpUfD51n/5kr2Nvk4KS7CoC9vQ/29l5Wjk4IIYS4NdkF2bRYfnsjbu7Urt67cNA53PJ1Sik2bNjADz/8QKdOnVi9ejXbt2+ndevWACxbtgxfX19Wr15Njx49OH36NC+88AINGzYEikb+FCvubPD09DSvQ3T16lWWLl3K8uXLad++PVA05cvb27tELE899RSjRo0yvx40aBB9+vQxr4kUFBTE3LlzadeuHfPnz8fHx4e5c+fyxhtvMHnyZJo2bUpwcDB9+vQxx3X06FFcXFzw8iqZV+j1egICAjh69OgtP7drrVu3jl69epGVlYWXlxcxMTFUrlz5umWPHz/ORx99VOooqTvx+eefs2/fPvbs2XPd8y1btsTR0ZGxY8fyzjvvoJRi3LhxFBYWkpycfEv3mjJlCk899RQODg78+OOP/N///R8ZGRkMHz78uuWjoqLIyMigZ8+K+6ajDAkQQjxwVF4hhZqiTimNqZC28RewK6xedFJTNE3P1mAPe/4Ns+pC6gnyzCOlpFNKVGyj/vcrC7eexMfmP8xr/wbV7b8HwFbWkhJCCCHuqXXr1uHk5IS9vT2dOnXipZdeon///tja2lpMZXN3d6d27dr8/vvvAAwfPpxp06bRpk0bIiMjOXDgQKn3OXnyJPn5+TRv3tx8zMXFhdq1a5co27RpU4vXv/76K0uWLMHJycn8ERISgslkIiEhASgaqXPu3DmWLVtGq1atWLlyJfXr1ycmJqbMz0Kv19+0zLJlyyziiI2NNZ8LDg4mLi6OHTt2EBoaSs+ePblw4UKJOs6ePUtoaCg9evRg8ODB5uPX1hseHl6mmGNjYy2uW7ZsGWfOnGHEiBEsW7YMe3v7617n4eHBypUr+eabb3BycsLFxYUrV67w2GOPob3FWRhvv/02bdq0oXHjxowdO5Y33njjhuuSLV++nMmTJ/O///0PT09PoPRner+SkVJCiAeOqcCECRNXTXrU1UIMDq7AZQA0Gj3OmiS0Rg+IWw5XkwDItTUAMn1PVHzn0nMAaOd33HzMxsaJSpVaWiskIYQQ4rYZbA3s6r3r5gXv0b1vRXBwMPPnz0ev1+Pt7Y2trS1r16696XWDBg0iJCSEb7/9lh9//JEZM2Ywa9Yshg0bdruhmzk6Olq8zsjIYMiQIdcdeVO9enXz50ajka5du9K1a1emTZtGSEgI06ZNo0OHDgQFBZGWlkZSUlKJ0Vl5eXmcOHGCkJCQm8bWrVs3i846Hx8fi7gDAwMJDAykZcuWBAUFsXjxYsaPH28uk5SURHBwMK1bt2bRokUWdV+7u1zxOk8307RpU4vrqlSpwoYNG7hw4QKPPfaY+XhhYSFbt27l448/Jjc3FxsbGzp27MiJEydISUnB1tbWvC7UtaPebkeLFi2YOnUqubm5FtMDP//8cwYNGsTKlSstphSW9kzvV9IpJYR4oCilSDt1kgJM7Cjwp2Hhn9P0NI5obV14tu42vJo2R9N4IMR9VnTumQ/I07WB1CzsZKSUqKCUUuTkm8jJLxolWNkhj9xceKzxclxcmqDVyq98IYQQFY9Go7mtKXTWUNyRcq26detSUFDArl27zNP3Ll26RHx8PPXq1TOX8/X1JTw8nPDwcMaPH88nn3zCsGHDzCOOrl3fKSAgAJ1Ox549e8wdSWlpaRw9epQnnnii1Bgfe+wxDh8+XCLO0mg0GurUqcOOHTsAePHFFxk7diyzZs1i1qxZFmUXLFhAVlYWffv2vWm9RqMRo9FYphhMJhO5ubnm12fPniU4OJgmTZoQHR1dYkTSrbSvmMFgKHFd+/btOXjwoMWxAQMGUKdOHcaOHYuNjY3FueIphhs3buTChQt069btluO4VlxcHJUqVbLokFqxYgWvvPIKn3/+OV26dLEofyvP9H4hGaoQ4oGSHBPDkfTjZDrakVVQBRuKfnnZ2rfA3qES1ZsmwVOvFxUuyCVfY8PPjnU4m1V0SNaUEhWRUop+0XvYevQilQ2X8HY8T0FB0ehAvd5dOqSEEEIIKwkKCqJ79+4MHjyYhQsXYjQaGTduHD4+PnTv3h2AkSNH0qlTJ2rVqsXly5fZtGkTdevWBYp2vtNoNKxbt47OnTtjMBgwGo3069ePMWPG4ObmhqenJ5GRkWi1WjQ3yWXHjh1Ly5YtGTp0KIMGDcLR0ZHDhw8TExPDxx9/TFxcHJGRkYSFhVGvXj30ej1btmzh008/ZezYsUDRiKr333+f0aNHY29vT1hYGDqdjjVr1jBhwgSmTZtGgwYNLO4bHx9fIpb69euj0+ksjmVmZjJ9+nS6deuGl5cXKSkpzJs3j7Nnz9KjRw+gqEPqySefxM/Pj6ioKC5e/Gut2BvtWleseCRURkYGFy9eJC4uDr1eb9FBeC2j0ViiLY6Ojri7u1scj46Opm7dunh4eLBz505GjBjBa6+9ZjGl8vTp06SmpnL69GkKCwvNsQQGBuLk5MQ333zD+fPnadmyJfb29sTExPDOO+9YLCi/fPly+vXrx4cffkiLFi04d+4cUNSh5uLicsN2F983Kalolkjx16Nq1ao3fWb3mmSpQogKKf9cJle+OYEppxCUAlPRH+ZfXznIReeihZ1bJu+lUWoimXaOoLFFq8kD3TXDsAtzmVv9ZWaeMwBFvVL2NjJ9T1Q8mXmFbD16EYNtNlNav4OdTT7Fb6ja2t44QRFCCCHEvRcdHc2IESN45plnyMvL44knnmD9+vXmDpnCwkIiIiL4448/cHZ2JjQ0lDlz5gBF068mT57MuHHjGDBgAH379mXJkiXMnj2b8PBwnnnmGZydnXnjjTc4c+bMDdc9KvbII4+wZcsW3nzzTR5//HGUUtSsWZOXXnoJgGrVqlGjRg0mT55MYmIiGo3G/Pq1114z1/Paa68REBDArFmz+PDDD8nMzASKRvH06tWrxH2vd+zMmTNUq1bN4piNjQ1Hjhxh6dKlpKSk4O7uTrNmzYiNjaV+/foAxMTEcPz4cY4fP17i+pvtmNi4cWPz57/88gvLly/Hz8+PxMTEUq+7mfj4eMaPH09qaio1atTgzTfftHheABMnTmTp0qUlYtm0aRNPPvkkOp2OefPm8dprr6GUIjAwkNmzZ1uslbVo0SIKCgqIiIggIiLCfLxfv34sWbLkhvGtXbuWAQMGmF8Xfz0iIyOZNGnSnTT9jmnUne5zWQGlp6fj4uJCWlpameeXCiHuL1fWJ5Cx9Y8Sx5fZxZKtyaOKyYXqG5dx0dmZS0YHdA6dqOxUSO8+Omj5alHhWXUY4d2PL6p2wsdORwOjgVm1q1NZL/31omJJupJN63c34ueczMSWM9BobHFyqoOrS1Nq1Xrb2uFVaJIzWJLnIYS4l3JyckhISMDf3/+mnSvCUmZmJj4+PsyaNYuBAweW+/1TU1Np3749zs7OfPfddzg4VIwpl+LOlPYzW9acQf7yEkJUSCqnAAD7Rypj94gHGk3RgKn8lRuLzp/5Dbv8QkzFQ5g1Nhg1WaC75j/EglzyNUX/Df7T14Mhvp7l2gYh7pTJpNhy9CKHktIA8HDMA8Bg8KV5szXWDE0IIYQQ99D+/fs5cuQIzZs3Jy0tjSlTpgCYpwSWNzc3N3766SfmzZvHzp07ad++vVXiEBWPdEoJISqktKR0bIFd23Zx/Ick8/GCGgql4HxhPvVNWvLM0/VssdXkg/01U5kK88jTFg2b1slaUqIC2nz0Aq8s2YuDbRbPBGylbuXzANjayggWIYQQ4kEXFRVFfHw8er2eJk2aEBsba15o2xrc3d2ZOHGi1e4vKibplBJCVCgq30T+uUwyky7gghO5uUcpyDlQdA7Q5tVnR74f5yvXJMA/iCybo2C6DBobbDxrQNA129NeM1LKTitrSYmK59SlorXQOtXcQ2e/9ebjdnoZ9SeEEEI8yBo3bswvv/xi7TCEuGPSKSWEqFBSon8j92QaTjhQiAmtkxPulWpw6UwiGsDx5CE6cKiorAYwFV1XqYqRui88Bbb2sOIfkHwATPl/jZTSykgpUfFc/XMaa/0q+QA4OzfGrVIrvLyet2ZYQgghhBBClIl0SgkhKpScP66yUXeQBJsLRQfswZhYtBWqjVah0SgK+XPUU6E9SqPB3pBNr8hn0NnZw6UTEP/XiJI8W0cA9DJ9T1QgZ1KzWPtrEluPFm2B7GBbNGLKo3J7atR41ZqhCSGEEEIIUWbSKSWEqDCUUphy80m0v4g2Jwv7c6fQmgrQ5mVjQkvDym446/RcOOkEORpOVe+C0toQ2ODjog4pgILcon/tXaHvavKT7OFqLnoZKSUqkKnrDvPj4fO08d7FhObbcLNNBWQtKSGEEEIIUbHctUVUZsyYQbNmzTAajXh6evLss88SHx9vUebJJ59Eo9FYfISHh1uUOX36NF26dMHBwQFPT0/GjBlDQUGBRZnNmzfz2GOPYWdnR2BgIEuWLLlbzRBC3MeuJJ+jUKNQGoUu7RI22ZlocnMxKS1gy++5vdid1YfEqt1JrNENpbUBVYhru75/VVJYtDsZOgfwbkweNkUvZaSUqEDOpecA0KP2T9R0PYUNVwFwcAywZlhCCCGEEELckrs2UmrLli1ERETQrFkzCgoKmDBhAh07duTw4cM4Ojqayw0ePNi8XSWAg4OD+fPCwkK6dOlC1apV2bFjB8nJyfTt2xedTsc777wDQEJCAl26dCE8PJxly5axYcMGBg0ahJeXFyEh1yxgLIR4oOSevML+Lbs5ozsLgMmkADBUqkdBfj20NpUwKUUKx2icdJ4sO7jQuDrGWg40rf/CXxUV5qOA2d4vcvxQIgnZRSOn9LLQuahA0rP/XEPKLgdlgtq1p+JsbIDR2NDKkQkhhBBCCFF2d61T6vvvv7d4vWTJEjw9Pfnll1944oknzMcdHByoWrXqdev48ccfOXz4MD/99BNVqlTh0UcfZerUqYwdO5ZJkyah1+tZsGAB/v7+zJo1C4C6deuybds25syZI51SQjyg8s9ncnbRfrba7QcbyFQ6MvKdCOQCGXlGHPXVCXRYzuuE0uz8Of5x9HOOesMzo37Gxc7FsrLCPI44BjCz6gtw4Yr5sKdeZjOL+1tuQSEf/nSM8+m5JKflAAplygCK1pKys6ti3QCFEEIIIYS4Rffsr7C0tDQA3NzcLI4vW7aMzz77jKpVq9K1a1fefvtt82ipnTt30rBhQ6pU+SuxDgkJ4dVXX+XQoUM0btyYnTt38vTTT1vUGRISwsiRI28YS25uLrm5uebX6enpd9o8IUQ5yk/JJpd80IBNdhau5y5RNesCaME1K598PRh2XWXVpbfN12TZaXDQOZSsrDCPqzZFx910NrzmV5XqBj11nQzl1RwhbsuW+Iv8a/MJvB2Teav5pzjpsoBCAGxtjdYNTgghhBBCiNtwT+armEwmRo4cSZs2bWjQoIH5eO/evfnss8/YtGkT48eP57///S8vv/yy+fy5c+csOqQA8+tz586VWiY9PZ3s7OzrxjNjxgxcXFzMH76+vnelnUKI8nH5zDkKNEV/fOsuJWGfcx60RdP3Cuy8ALApzDGXL9TAr0G26LS6kpWZCsj787i7zpbBvh6EVHYpWU6I+8ylzKL10Nr7H8Pb6TzOdn+uI+VQE61WOlWFEEIIa+rfv7953WS9Xk9gYCBTpkwpsT7yrdq8eTMajYYrV67cnUDLICEhgd69e+Pt7Y29vT3VqlWje/fuHDlyxKLcunXraNeuHUajEQcHB5o1a1ZivefExEQ0Gg1xcXFlvv+kSZOoU6cOjo6OVKpUiaeffppdu3ZZ1Dlw4ED8/f0xGAzUrFmTyMhI8vLySq03OTmZ3r17U6tWLbRabakDW/7u7NmzvPzyy7i7u2MwGGjYsCF79+41n7/261/8ERoaalFHjRo1SpR59913zefj4+MJDg6mSpUq2NvbExAQwFtvvUV+fr5FPVeuXCEiIgIvLy/s7OyoVasW69evpzRfffUVHTt2xN3d/Za/HvfaPRkpFRERwW+//ca2bdssjv/zn/80f96wYUO8vLxo3749J06coGbNmvciFADGjx/P66+/bn6dnp4uHVNCVCCZF6+Q/+eIEO2fv9htdLXR6mtj0tVEA7wZlskVQ9Gi5UoDXs7e16+sMI88TVGnlJ2sIyUqkOJ1pKq5Fv0sVK3yLH5+/8Rg8EMjC/ULIYQQVhcaGkp0dDS5ubmsX7+eiIgIdDod48ePt3ZoAOTl5aHX60stk5+fT4cOHahduzZfffUVXl5e/PHHH3z33XcWHWMfffQRI0eOZOzYscyfPx+9Xs+aNWsIDw/nt99+Iyoq6rbjrFWrFh9//DEBAQFkZ2czZ84cOnbsyPHjx/Hw8ODIkSOYTCYWLlxIYGAgv/32G4MHDyYzM7PU++bm5uLh4cFbb73FnDlzyhzP5cuXadOmDcHBwXz33Xd4eHhw7NgxKlWqZFGu+OtfzM7OrkRdU6ZMYfDgwebXRuNfo911Oh19+/blsccew9XVlV9//ZXBgwdjMpnMa2zn5eXRoUMHPD09WbVqFT4+Ppw6dQpXV9dS25CZmUnbtm3p2bOnxf3vB3e9U2ro0KGsW7eOrVu3Uq1atVLLtmjRAoDjx49Ts2ZNqlatyu7duy3KnD9/HsC8DlXVqlXNx64t4+zsjMFw/XeK7ezsrvsNIYS4vxVcyubIJzv4NfMYmba5ZCodFNpiBLT6IGz0gaR6xZLklkOWazqFBRraV29PHbc6PO7z+PUrLcwzj5TSa+UPeXH/++1sGou3JXAoKQ29TS6OtkUjpAyG6jg51bZydEIIIYQoZmdnZ/679dVXX+Xrr79m7dq1hIeHM2LECL755htyc3Np164dc+fOJSgoCIBTp04xdOhQtm3bRl5eHjVq1GDmzJnUq1eP4OBgAHMHSL9+/ViyZAlXr14lPDyc1atX4+zszBtvvMGaNWt49NFH+eCDD4CikTkDBw7k2LFjrF69mueff54lS5awbds2xo8fz969e6lcuTLPPfccM2bMwNHRkUOHDnHixAk2bNiAn58fAH5+frRp08bczjNnzjBq1ChGjhxp7iwBGDVqFHq9nuHDh9OjRw/z3/u3qnfv3havZ8+ezeLFizlw4ADt27cnNDTUYhRSQEAA8fHxzJ8/v9ROqRo1avDhhx8C8Omnn5Y5nvfeew9fX1+LDid/f/8S5a79+t+I0Wi8YZmAgAACAv7aSdnPz4/NmzcTGxtrPvbpp5+SmprKjh070Ol05nbdTFhYGFA0yux+c9eGCSilGDp0KF9//TUbN2687hfp74qHjHl5FU2/adWqFQcPHuTChQvmMjExMTg7O1OvXj1zmQ0bNljUExMTQ6tWre5SS4QQ94vsY5fZn3mUYzbnSNKmcizbBW3Bn8NXNXpQhRRWWsI253VkFxRN3+1Ttw/hjcKpX7m+ZWVbZsKCtvDjRHK1Re8Q6WV0iagAPtp4jK/3n6WRy2fMbz8GL/1PANjqnK0cmRBCCHHvKaUwZWVZ5UMpdUexGwwG8vLy6N+/P3v37mXt2rXs3LkTpRSdO3c2T8uKiIggNzeXrVu3cvDgQd577z2cnJzw9fXlyy+/BIqmdiUnJ5s7VV5//XW2b9/O2rVriYmJITY2ln379pWIISoqikaNGrF//37efvttTpw4QWhoKC+88AIHDhzgiy++YNu2bQwdOhQADw8PtFotq1atorCw8LrtWrVqFfn5+YwePbrEuSFDhuDk5MSKFSvu6NkVy8vLY9GiRbi4uNCoUaMblktLSyuxnvXdsnbtWpo2bUqPHj3w9PSkcePGfPLJJyXKbd68GU9PT2rXrs2rr77KpUuXSpR59913cXd3p3HjxsycObPU6Z3Hjx/n+++/p127dhaxtGrVioiICKpUqUKDBg145513bvi1qgju2kipiIgIli9fzpo1/8/enYc1eaUPH/8mJIEAAQRBEBBBca21datbtdQqaFU6tS6jg9pRR+Z117p2QR2djla0bqO1v1adGXWcbtbBthZtVVxq3VDrAmKhbriiIHtIzvtHNGOKAq7Y9v5cVy7Nk/Oc5z6PgOHOOff5HJPJZK8B5enpidFo5OTJk6xevZouXbrg4+PDoUOHGDNmDO3atePJJ58EoFOnTjRo0ICYmBhmz57N+fPneeONNxg2bJh9plNsbCyLFi1iwoQJ/PGPf+Sbb77hP//5Dxs2bHhQQxFCPCbyrxRSiBmUwu3HIzxb/L+6URqNAVQRUfVe4Ymatk9h/Fz9aFat2e072zYbLLZ15sV+9QBZvid+GbJu1JJqG5xqP+bk5I6XV/PKCkkIIYR4ZFRBASlNmlbKtevu34fG9TYb55RDKcXmzZvZuHEjnTt3Zt26dezYsYPWrVsDts2/goODWbduHT179uTUqVP06NGDRo0aATjMlrmZaPHz87Mv0bp+/TorV65k9erVdOjQAYDly5dTvXrp8hXPP/8848aNsz8fPHgw/fr1s9dTCg8PZ8GCBbRv354lS5YQGBjIggULmDBhAtOmTaNZs2ZERETQr18/e1ypqal4enraJ5fcymAwEBYWRmpqaqnX7kZCQgJ9+vQhPz+fgIAAEhMTqVq16m3bpqWlsXDhwvtaMliWH3/8kSVLljB27FimTJnCnj17GDlyJAaDgQEDBgC2pXsvv/wyoaGhnDx5kilTptC5c2d27dqFk5OtxMjIkSNp0qQJ3t7e7Ny5k8mTJ5OZmcncuXMdrte6dWv2799PUVERf/rTn5g+fbpDLN988w39+vXjiy++IC0tjf/3//4fZrOZuLi4hzL+h+2B/Ua2ZMkSsrOzee655wgICLA/1q5dC9i+ODdt2kSnTp2oV68e48aNo0ePHvz3v/+19+Hk5ERCQgJOTk60atWKP/zhD/Tv39/hHyE0NJQNGzaQmJhI48aNiY+P5//+7/+IjIx8UEMRQjwGlNVKyrZNmDUloKxoHRJSnmicqmLWF9LymVG8UucVXqnzCu2C2t2+to7VYk9I0XMlxW1tNeZk+Z54nCmlKC6xci3f9imqu8H2PdCs6Ue0e3YfHqYnyjpdCCGEEI9YQkIC7u7uuLi40LlzZ3r37s3AgQPR6XQOS9l8fHyoW7cux44dA2zJihkzZtCmTRvi4uI4dOhQmdf58ccfMZvNtGjRwn7M09OTunVLL+tv1szxA9uDBw+yYsUK3N3d7Y/IyEisVivp6emAbcLJ+fPnWbVqFa1ateKjjz6iYcOGJCYmVvhelFe7CmzJuVvjuHWZWkREBMnJyezcuZOoqCh69erlsKLqprNnzxIVFUXPnj0daiXd2m9sbGyFYk5KSnI4b9WqVYBtI7cmTZrw17/+laeffpo//elPDBkyhKVLl9rP7dOnD927d6dRo0a89NJLJCQksGfPHrZs2WJvM3bsWJ577jmefPJJYmNjiY+PZ+HChRQVFTnEsXbtWvbv38/q1avZsGGDQ7LNarXi5+fHsmXLaNq0Kb179+b111+3x1LWPX1cPbCZUuVNbQwODmbr1q3l9hMSElJu5fjnnnuOAwcO3FV8QohfDmW2kHXoFJp8KHa2oLk5HVWBc5XRgG23Cv861cCz7Np1AJTYftBf1nvSP78eJwvNgEWSUuKxZbUqei/bxZ6Mq/i7XqCx70Ww5gBgMPii1T6UfUqEEEKIx47GaKTu/n2Vdu27ERERYS/6Xb16dXQ6HevXry/3vMGDBxMZGcmGDRv4+uuvefvtt4mPj2fEiBH3Grqdm5ubw/Pc3FyGDh3KyJEjS7WtUaOG/e8mk4lu3brRrVs3ZsyYQWRkJDNmzKBjx46Eh4eTnZ3NuXPnSs3OKi4u5uTJkxWaNNK9e3eHZF1gYKBD3LVr16Z27dq0bNmS8PBwPvjgA4ei8efOnSMiIoLWrVuzbNkyh75v3V3Ow6NiJQ+aNWvmcF61atUAW7mhm+WEbqpfv759aeXthIWFUbVqVdLS0uyz2X7umWeeoaSkhIyMDIeE4s1N2Ro0aIDFYuFPf/oT48aNw8nJiYCAAPR6vX321c1Yzp8/T3FxcZn39HEl72qFEI+dK5+e4OMjX3He5xpKwY/mKjwFaNCi0Whx4yDdJ/0erxrVKtZhiW2GyXeejdmf+78ZV/Xd7u6NhhCPytX8YvZkXMVdf51prf+GTmuBG5/96HSelRucEEII8QhpNJp7WkJXGW4mUm5Vv359SkpK2L17t3353pUrV0hJSXFIdAQHBxMbG0tsbCyTJ0/m/fffZ8SIEfYZR7fWDAoLC0Ov17Nnzx57Iik7O5vU1FTatWtXZoxNmjTh6NGjpeIsi0ajoV69euzcuROAV155hYkTJxIfH098fLxD26VLl5Kfn0///v3L7ddkMjnsPlcWq9XqMKPo7NmzRERE0LRpU5YvX472Z2U57mZ8NxmNxtue16ZNG1JSUhyOpaam2gvB386ZM2e4cuXKbZc43pScnIxWq8XPz++ObaxWK2azGavVipOTE23atGH16tVYrVb7mFNTUwkICMBgMGAwGCp8Tx8XkpQSQjx2Lh6/xHntNVAKLmQSfs02Q8RJ2X7wGrRZeNfwhYrOdLoxU8qstdWme9rkyrz6wdR1dXngsQvxIFwrsC3ZC/HMRqe1oNEYMJka4l2lJXopcC6EEEL8YoSHhxMdHc2QIUN47733MJlMTJo0icDAQKKjowEYPXo0nTt3pk6dOly9epVvv/2W+vXrA7aVRBqNhoSEBLp06YLRaMRkMjFgwADGjx+Pt7c3fn5+xMXFodVqb1/K4hYTJ06kZcuWDB8+nMGDB+Pm5sbRo0dJTExk0aJFJCcnExcXR0xMDA0aNMBgMLB161Y+/PBDJk6cCNhmVM2ePZvXXnsNFxcXYmJi0Ov1fP7550yZMoUZM2bwxBOOZQZ+ntQBaNiwoX0HuZvy8vKYOXMm3bt3JyAggMuXL7N48WLOnj1Lz549AVtC6rnnniMkJIQ5c+Zw6dIl+/nl7X53cyZUbm4uly5dIjk5GYPBUGom1K3GjBlD69at+etf/0qvXr34/vvvWbZsmX12Vm5uLtOmTaNHjx74+/tz8uRJJkyYQO3ate0zxnbt2sXu3buJiIjAZDKxa9cuxowZwx/+8Af7zoqrVq1Cr9fTqFEjnJ2d2bt3L5MnT6Z37972+/TnP/+ZRYsWMWrUKEaMGMGJEyf461//etuZb7fKysri1KlTnDt3Dvjfv4e/v3+59+xhk6SUEOKxopSiqDAfnEFTXITp6jn7axqtFwB6Zwtone7Qw21YbEmpYp1tZpSX3ol6MktKPIaUUiz8Jo3v07MA8HW31UJzcwujebOPKzM0IYQQQtyj5cuXM2rUKLp27UpxcTHt2rXjiy++sCcaLBYLw4YN48yZM3h4eBAVFcW8efMA2/KradOmMWnSJF599VX69+/PihUrmDt3LrGxsXTt2hUPDw8mTJjA6dOncXEp+0PXJ598kq1bt/L666/z7LPPopSiVq1a9O7dG4CgoCBq1qzJtGnTyMjIQKPR2J+PGTPG3s+YMWMICwsjPj6e+fPnk5eXB8CaNWvo06dPqeve7tjp06cJCnIsxeHk5MTx48dZuXIlly9fxsfHh+bNm5OUlETDhrbdtRMTE0lLSyMtLa3U+eWVFXr66aftf9+3bx+rV68mJCSEjIyMO57TvHlzPvvsMyZPnsz06dMJDQ3l3XffpV+/fvaYDx06xMqVK7l27RrVq1enU6dO/OUvf7Fv2Obs7My///1vpk6dSlFREaGhoYwZM4axY8far6PT6Zg1axapqakopQgJCWH48OEO9z04OJiNGzcyZswYnnzySQIDAxk1apQ9YXgn69ev59VXX7U/v/nvERcXx9SpU8s892HTqPvd5/IXKCcnB09PT7Kzsyu8vlQI8Wik7fmOK//5iS/djqHLy8V46jhapcPJPQqtLhiN1sgTz+to36vsqckOLqXA4hb8q0YvXgsdRmRVD1Y2Civ/PCEesbSL13lh7jbc9dd5ocY2GvtfoIZbMl5eLWja5MFsrSzujrxncCT3QwjxMBUWFpKenk5oaGi5yRXhKC8vj8DAQOLj4xk0aNAjv35WVhYdOnTAw8ODL7/8EtdfyJJLcX/K+p6t6HsG2Q9dCPHYKPwpm++3JLPH5QxKwRmzOwAajQtOhjp4VznNk5HVeebFVhXvdOPrsNhW7M/sZPtBqS9nWrMQleVKrm1m1Iu1vqNbrY3UcEsGwNm5gvXThBBCCPGbcODAAdasWcPJkyfZv3+/fdbOzSWBj5q3tzebNm2iQ4cO7Nq1q1JiEL9MsnxPCPFYsBaVcHLZblL158EJMktM5GVft72osU1tfqZGKrV+V7EtXe2OredmhWizTzggSSnx+LpeWAJAgHsuAF5ez1ClSksC/F+uzLCEEEII8RiaM2cOKSkpGAwGmjZtSlJSElWrVq20eHx8fHjrrbcq7fril0mSUkKIx0LhlUKKrbbizoaCIsJPpeJWcIUCZz0ajW3XEbd7KUxeYpt5Qv/1mJ3qwY+Z6CtaIF2IR+TEhev8ZcMxzmblEuaZTlXjBQD8fCMJDh5QydEJIYQQ4nHz9NNPs2/fvsoOQ4j7JkkpIcRjISs9E7PGNktEc+08WmsOBc62GVJK5wuA3v/ut3bFciMp5V4Nc75txpTMlBKPm4/3nWFb6iV+VzuBrmFf24/r9VUqMSohhBBCCCEeLklKCSEeCyd370SHCQCN1QKAVl8XJ+dGaHXVsTqV4P5c/7vv+GZSSmeg+Ma+DnqtlNMTj5dr+bZZgs0CrwGgN/jh7lYLH59nKzEqIYQQQgghHi5JSgkhKlXJlQL2/2sbR65doVB3npMWb1ysOdQjC61TVXS6arzQ5Rr+bbrhbKzYj6xsc4k9AYXGCHodWPXklNiSXXqZKCUeMzmFtqRUFaMZrFCn9mT8/btXclRCCCGEEEI8XJKUEkJUqtzkS+y/coyL2hwA3H8qoMnFI+S460GjR6PyqVPHFaoaK9Tf/525xBsnzv7vQMuPbX8evmI/pJPle+IxYLZYeWXpLn44m43Fakui6jQFtj91psoMTQghhBBCiEdCklJCiEp1IfUyxZSAUphOHsVkLrAlpAA0BtAUgcG73H62X73Ojqu5rL94rcx27k5anvP2eACRC3F/frqSz8HT1zDqCpjcch6+xis4WWwzppx07pUcnRBCCCGEEA+fJKWEEJXqYup+zKYSNCVmMBfc8ooOrc4frWsBBDYpsw+lFK8eTue6xWo/9kWTcJo4W+BvwbYDr58HfcVmWwnxKNxcstes+jkC3c/bj+t0Hri51qqssIQQQgghhHhkJCklhKgUluwizu1L54KhmEKNmRKLbfmSRmkxeA0BjQGNRs8TbYPBxbPMvvK/ep3rLr0AGHDhS2oXnuPp7xNA/S9JhZPzQxuLEHdDKcXBM9l896NtSamvaxEAnh5P07DhfAwGb5ycJIEqhBBCCCF+/WQLKiFEpcj6KJV1Wzbwg/EiZo2Fg8X+AGhxQqN1w8slmUHxz9KmR3jZHVkt5CX/BwCNsvK3439jSMY/0BRkQeE1W5tqjUB23BOPiU/3n+WlxTtYvGk//6/xBzwb8BkABudqGI2BkpASQgghfoEGDhyIRqNBo9FgMBioXbs206dPp6Sk5L763bJlCxqNhmvXrj2YQCsgPT2dvn37Ur16dVxcXAgKCiI6Oprjx487tEtISKB9+/aYTCZcXV1p3rw5K1ascGiTkZGBRqMhOTm5wtefOnUq9erVw83NjSpVqvDCCy+we/duhz4HDRpEaGgoRqORWrVqERcXR3FxcZn9ZmZm0rdvX+rUqYNWq2X06NEVisdisfDmm286XO8vf/kL6ubGSsCnn35Kp06d8PHxueN4T548ye9+9zt8fX3x8PCgV69eXLhw4a7HdejQIZ599llcXFwIDg5m9uzZ5Y5h27ZtdOvWjerVq6PRaFi3bl2Fxv4oyG9pQohKcf1UDnmaQgC8rxXROfVbALTKCQA3l2Jc3PR37uDUbljQBOLrkqs1ALZ6UZph38PPH0O+ebiDEeIupF64DkDroBSaVjuIh972ZsTNNawywxKPqcWLF1OzZk1cXFx45pln+P7778ts/9FHH1GvXj1cXFxo1KgRX3zxxR3bxsbGotFoePfddx9w1EII8dsUFRVFZmYmJ06cYNy4cUydOpV33nmnssOyKy9pA2A2m+nYsSPZ2dl8+umnpKSksHbtWho1auSQGFu4cCHR0dG0adOG3bt3c+jQIfr06UNsbCyvvfbafcVZp04dFi1axOHDh9m+fTs1a9akU6dOXLp0CYDjx49jtVp57733OHLkCPPmzWPp0qVMmTKlzH6Liorw9fXljTfeoHHjxhWOZ9asWSxZsoRFixZx7NgxZs2axezZs1m4cKG9TV5eHm3btmXWrFm37SMvL49OnTqh0Wj45ptv2LFjB8XFxXTr1g2r1VrhceXk5NCpUydCQkLYt28f77zzDlOnTmXZsmVljiEvL4/GjRuzePHiCo/7kVG/QdnZ2QpQ2dnZlR2KEL9ZaRO+VdPfmqb+MmakmtPrRftjfq8/qEVDN6sNM2eV3cGXk9W5mWHq+fX/UfU2blHVvjmgntrxw6MJXoj7MPHjgypkYoL656bZatPmMLVnby91+fIWZbEUVnZo4jYq8z3Dv//9b2UwGNSHH36ojhw5ooYMGaK8vLzUhQsXbtt+x44dysnJSc2ePVsdPXpUvfHGG0qv16vDhw+Xavvpp5+qxo0bq+rVq6t58+ZVOCZ5DyWEeJgKCgrU0aNHVUFBQWWHctcGDBigoqOjHY517NhRtWzZUmVlZamYmBjl5eWljEajioqKUqmpqfZ2GRkZqmvXrsrLy0u5urqqBg0aqA0bNqj09HQFODwGDBiglFIqJydH9e3bV7m6uip/f381d+5c1b59ezVq1Ch7vyEhIWr69OkqJiZGmUwm+7lJSUmqbdu2ysXFRQUFBakRI0ao3NxcpZRSBw4cUIDKyMi441hPnTql9Hq9Gjt2bKnXFixYoAD13XffKaWUfQwHDhy4+5t6w83/ezZt2nTHNrNnz1ahoaEV7vPn96osL774ovrjH//ocOzll19W/fr1K9X2TuPduHGj0mq1Dv9/Xrt2TWk0GpWYmHjHa/98XH//+99VlSpVVFFRkf3YxIkTVd26dSs0FqWUAtRnn31W4fZlKet7tqLvGWSmlBDikTuXlkoeuVg0VrRFtuLmGqVDo/UG12cA8G8aVXYnRTlsq9KUI+7hXNXbak41cpdlT+LxdfRcDkP/uZfNxy8C4Kq3zRR0c6uFj097tFqpeyYczZ07lyFDhvDqq6/SoEEDli5diqurKx9++OFt28+fP5+oqCjGjx9P/fr1+ctf/kKTJk1YtGiRQ7uzZ88yYsQIVq1ahV5fxoxUIYR4DCilMBdZKuWhblmedS+MRiPFxcUMHDiQvXv3sn79enbt2oVSii5dumA22zY9GTZsGEVFRWzbto3Dhw8za9Ys3N3dCQ4O5pNPPgEgJSWFzMxM5s+fD8DYsWPZsWMH69evJzExkaSkJPbv318qhjlz5tC4cWMOHDjAm2++ycmTJ4mKiqJHjx4cOnSItWvXsn37doYPHw6Ar68vWq2Wjz/+GIvFcttxffzxx5jN5tvOiBo6dCju7u6sWbPmvu7dTcXFxSxbtgxPT88yZzdlZ2fj7V3+jt33onXr1mzevJnU1FQADh48yPbt2+ncuXOF+ygqKkKj0eDs/L/3ey4uLmi1WrZv337H834+rl27dtGuXTsMBoP9WGRkJCkpKVy9evVuhvXYkELnQohHRpVYufz9KVZs+g/FRtv6+ksWI0GAs1Nt8OyCr28uVesG0KBt7bI7K7pOrpMrAM9VMRFXuzrhri4PeQRC3Lt/7Mpg45ELNK12gG4hR/DkMgA6namSIxOPo+LiYvbt28fkyZPtx7RaLS+88AK7du267Tm7du1i7NixDsciIyMd6kZYrVZiYmIYP348DRs2fCixCyHEg1RSbGXZqK2Vcu0/zW+P3tnprs9TSrF582Y2btxI586dWbduHTt27KB169YArFq1iuDgYNatW0fPnj05deoUPXr0oFGjRgCEhf1vSf/NhISfnx9eXl4AXL9+nZUrV7J69Wo6dOgAwPLly6levXqpWJ5//nnGjRtnfz548GD69etnr6cUHh7OggULaN++PUuWLCEwMJAFCxYwYcIEpk2bRrNmzYiIiKBfv372uFJTU/H09CQgIKDU9QwGA2FhYfYEzr1KSEigT58+5OfnExAQQGJiIlWrVr1t27S0NBYuXMicOXPu65p3MmnSJHJycqhXrx5OTk5YLBZmzv5ibPoAAQAASURBVJxJv379KtxHy5YtcXNzY+LEifz1r39FKcWkSZOwWCxkZmbe9pzbjev8+fOEhoY6tKtWrZr9tSpVqtzDCCuXzJQSQjwyBUeukJ5wiGKrLSFVYNbjmZUFgNLaEkpt2hby/B/q37me1Nn9sKYvZCSRdyMpFeCip767EZ1W8/AHIcQ9ysqz1XEY0mgtbap/DyU/AuDiXPoNnRCXL1/GYrHY32jeVK1aNc6fP3/bc86fP19u+1mzZqHT6Rg5cmSF4igqKiInJ8fhIYQQ4vYSEhJwd3fHxcWFzp0707t3bwYOHIhOp+OZZ56xt/Px8aFu3bocO3YMgJEjRzJjxgzatGlDXFwchw4dKvM6P/74I2azmRYtWtiPeXp6Urdu3VJtmzVr5vD84MGDrFixAnd3d/sjMjISq9VKeno6YJu5df78eVatWkWrVq346KOPaNiwIYmJiRW+F7fO5LmTVatWOcSRlJRkfy0iIoLk5GR27txJVFQUvXr14uLFi6X6OHv2LFFRUfTs2ZMhQ4bYj9/ab2xsbIViTkpKcjhv1apVAPznP/9h1apVrF69mv3797Ny5UrmzJnDypUrK9Qv2GagffTRR/z3v//F3d0dT09Prl27RpMmTdDeZkOmO43rXsfwOJOZUkKIR8aSXUQJtmnAppwCqp06DiVZ5DsbUE5GNICbya3sTnYtpij1a/Z4PsExN9unNe5Okl8XjzelFNkFZvTaYvTafABqhY1Dr/fG3797JUcnfiv27dvH/Pnz2b9/PxpNxZL4b7/9NtOmTXvIkQkhxJ3pDFr+NL99pV37bkRERLBkyRIMBgPVq1dHp9Oxfv36cs8bPHgwkZGRbNiwga+//pq3336b+Ph4RowYca+h27m5Ob63zs3NZejQobf9cKJGjRr2v5tMJrp160a3bt2YMWMGkZGRzJgxg44dOxIeHk52djbnzp0rNTuruLiYkydPEhkZWW5s3bt3d0jWBQYGOsRdu3ZtateuTcuWLQkPD+eDDz5wmEF87tw5IiIiaN26dalC37fufufh4VFuLGBL4N163s0PesaPH8+kSZPo06cPAI0aNeKnn37i7bffZsCAARXqG6BTp06cPHmSy5cvo9Pp8PLywt/f32FmXHnj8vf3d9ixD7A/9/f3p2bNmrcdw+NMklJCiEfm6qmzmLHNkrJcOkm+UyE42T5FsTp5oQX0wY3K7qTwGm/WHsE/qkfbD7k73f20aiEelWGr97PhUCZVjZdp4Z8GgEajIyTkzxVODIjfnqpVq+Lk5HTbN57+/v63PedOb1Rvtk9KSuLixYsOv3RYLBbGjRvHu+++S0ZGRqk+J0+e7LAkMCcnh+Dg4HsdlhBC3DWNRnNPS+gqw81Eyq3q169PSUkJu3fvti/fu3LlCikpKTRo0MDeLjg4mNjYWGJjY5k8eTLvv/8+I0aMsM84urW+U1hYGHq9nj179th/pmdnZ5Oamkq7du3KjLFJkyYcPXq0VJxl0Wg01KtXj507dwLwyiuvMHHiROLj44mPj3dou3TpUvLz8+nfv3+5/ZpMJkymipUxsFqtFBUV2Z+fPXuWiIgImjZtyvLly0vNNrqb8d1kNBpve15+fn6p/p2cnOy75t2tm8sQv/nmGy5evEj37v/7gLK8cbVq1YrXX38ds9lsrwuZmJhI3bp17Uv37mXslUmSUkKIh04phfV6MVlppzFrbP+ham78x+pkaIRGVw0nQzgaLeh9S6+Fd1CUS5q37T/fYBcDQS56Xqr2y1s7LX4brFbFF4cz0WuLiWs5217cXK/3koSUKJPBYKBp06Zs3ryZl156CbC9Id+8ebO9GO3PtWrVis2bN9vrhIDtjWqrVq0AiImJ4YUXXnA4JzIykpiYGF599dXb9uns7OxQlFUIIcTdCQ8PJzo6miFDhvDee+9hMpmYNGkSgYGBREfbPmQdPXo0nTt3pk6dOly9epVvv/2W+vXrAxASEoJGoyEhIYEuXbpgNBoxmUwMGDCA8ePH4+3tjZ+fH3FxcWi12nLfX0ycOJGWLVsyfPhwBg8ejJubG0ePHiUxMZFFixaRnJxMXFwcMTExNGjQAIPBwNatW/nwww+ZOHEiYJtRNXv2bF577TVcXFyIiYlBr9fz+eefM2XKFGbMmMETTzzhcN2UlJRSsTRs2LDUhht5eXnMnDmT7t27ExAQwOXLl1m8eDFnz56lZ8+egC1x89xzzxESEsKcOXO4dOmS/fw7fXBz081ZRLm5uVy6dInk5GQMBoNDgvDnunXrxsyZM6lRowYNGzbkwIEDzJ07lz/+8Y/2NllZWZw6dYpz5845jNff398e0/Lly6lfvz6+vr7s2rWLUaNGMWbMGPuyy4qMq2/fvkybNo1BgwYxceJEfvjhB+bPn8+8efPKHHdubi5paWn25+np6SQnJ+Pt7e3wYVWleCD7AP7CyHbGQjxaV/97Un32+nI19a2pKi4uTg1+I17N7POymtPrRbVg0L/Voj99oTYt3KyO7jh7506sVqWKcpVa3FJ1WrdGVfvmgPr60rVHNwgh7kF2QbEKmZigmsStVJs2h6lNm2urPXtfUWfOrK7s0EQFVeZ7hn//+9/K2dlZrVixQh09elT96U9/Ul5eXur8+fNKKaViYmLUpEmT7O137NihdDqdmjNnjjp27JiKi4tTer1eHT58+I7XCAkJUfPmzatwTPIeSgjxMJW1vfzjbsCAASo6Ovq2r2VlZamYmBjl6empjEajioyMVKmpqfbXhw8frmrVqqWcnZ2Vr6+viomJUZcvX7a/Pn36dOXv7680Go0aMGCAUkqpnJwc1bdvX+Xq6qr8/f3V3LlzVYsWLRz+X7jTz/jvv/9edezYUbm7uys3Nzf15JNPqpkzZyqllLp06ZIaOXKkeuKJJ5S7u7symUyqUaNGas6cOcpisTj0s27dOvXss88qNzc3BShArVmzxqFNenq6/bWfP06fPl0qtoKCAvW73/1OVa9eXRkMBhUQEKC6d++uvv/+e3ub5cuX37HP8tzunJCQkDLPycnJUaNGjVI1atRQLi4uKiwsTL3++uuqqKio3Jji4uLsbSZOnKiqVaum9Hq9Cg8PV/Hx8cpqtd71uA4ePKjatm2rnJ2dVWBgoPrb3/5W7ri//fbb2/Z78+vpXpX1PVvR9wwape5zn8tfoJycHDw9PcnOzq7w+lIhxL07G7+X/2R/Q/aNWjppZ400vbYVq1aLweOPaDWFDIurC4FNb9+BUrCyG2TYih8+2+wfnHAL4dOnatO6ivujGoYQdyUzu4BjmTn8ccVeQj0zeeOZtzEYqvJs292VHZq4C5X9nmHRokW88847nD9/nqeeeooFCxbY628899xz1KxZkxUrVtjbf/TRR7zxxhtkZGQQHh7O7Nmz6dKlyx37r1mzJqNHj3aYXVWWyr4fQohft8LCQtLT0wkNDcXFRXZVvht5eXkEBgYSHx/PoEGDHvn1s7Ky6NChAx4eHnz55Ze4uro+8hjEo1fW92xF3zPI8j0hxENXnFNMscZWS8o17TCNiwqx3lgfrdEYsOhzwKvmnTswF0BGEieNQRxxq80VZ9vWuO46KXAuHk9Hz+Xw4sIklFL4uV6itrdt9zMnJ0miirszfPjwOy7X27JlS6ljPXv2tC9vqIjb1ZESQgjx+Dtw4ADHjx+nRYsWZGdnM336dAD7ksBHzdvbm02bNrF48WJ27dpFhw4dKiUO8csjSSkhxENnKcil2FiCprgQJ3MRaG9Z664x4FS1Crj53LkDcz4FWgNRTd7juu5/v9R76H4ZRS/Fb8+xzByUgpfDv+TF0K/sx3W6ihXzFEIIIYQoz5w5c0hJSbHXIUxKSrIX0a4MPj4+vPXWW5V2ffHLJEkpIcRDU/DDZbZ9s5XjLj9i0VjRWmyzpVDgomuMMoag0eio4RNSdkfmfLL0nlzXuaMFnvFyo5G7KyEuhoc+BiHuxfVCMwDNAjIB2wwpJycj1QNeqcywhBBCCPEr8fTTT7Nv377KDkOI+yZJKSHEQ5P135PsLTyKWWtBKThR6M1TgFbjAh4duDlfqmpwOUuaivO57uQGgJfeic+eDn+YYQtxz4pLrJy8lEv65TwAXHS2OmoNG8Tj6/tCWacKIYQQQgjxmyNJKSHEQ2O+XoxZbwHAeP46YZeugR6clG3ZXZBlM+0m/QmvsDtsQ3r9AiT/i5KrP3HB2TYV2eQkS/bE4+sP/7eb7zOyaOG/j5j6abg52bYF1uk9KzkyIYQQQgghHj+SlBJCPDRWqwU0oCkuxOVyCt4lRVzXO+Ok9ACYdBeoElgFNJrbd7DjXa7vWUH7Zis59+QfAakjJR5vB89cQ6c1M+iJf6HTWuzHXZz9KzEqIYQQQgghHk+SlBJCPBQF2dexYgVAf+0yFh1c1zkDUOTiijNQtU44uJSxpXjuBU64hnDOxQ8ADYqOVWULcvF4KjRbKCqx4mnIv5GQ0hIWOhI3t3CMxuDKDk8IIYQQQojHjiSlhBAPxb71n+FLAACaGwXO3cwmij1aoXWuBYBz6wFld1KcR76TCwDhrs5807weeu0dZlUJUYk+2XeGbScuAeBmKABAp/MgNHREZYYlhBBCCCHEY02SUkKIB8paVELae9+Rduk6R/RZtmMWBUCJaz2cXJ4AwEmnrUCB8zzytbaklJuTkySkxGMpv7iECZ8cwk2XzainV+PvdhUAvU5m9QkhhBBCCFEWSUoJIR6o4tO5/HDxBBk626yRrFwdvjlm0IDSuqABItp8T61XXsPZeIcfQUrB5VTIz6LAybZ0z+gkCSnxeLqWb8ZiVTStdpgnfY/aj7u6hVZiVEIIIYQQQjz+tJUdgBDi1+X6hXyKsS3Xc7l2jSeO76Fq8RUAlJMRAF8f7Z0TUgBfTeL8+51JLDGx36MBAK5aKXAuHk/XC21f7z7GIgC8vZ+lceMPeKLh/MoMSwghhBCP0MCBA9FoNGg0GgwGA7Vr12b69OmUlJTcV79btmxBo9Fw7dq1BxNoBaSnp9O3b1+qV6+Oi4sLQUFBREdHc/z4cYd2CQkJtG/fHpPJhKurK82bN2fFihUObTIyMtBoNCQnJ1f4+lOnTqVevXq4ublRpUoVXnjhBXbv3u3Q56BBgwgNDcVoNFKrVi3i4uIoLi4us9/MzEz69u1LnTp10Gq1jB49ukLxXL9+ndGjRxMSEoLRaKR169bs2bPHoU1ubi7Dhw8nKCgIo9FIgwYNWLp0qUOboUOHUqtWLYxGI76+vre9p6dOneLFF1/E1dUVPz8/xo8ff8evoR07dqDT6XjqqafKHcOnn35Kp06d8PHxuet/j4dNklJCiAeq4FohZo1t1zFt1hmuu1nId7bttofWDQA3T+8y+7BkHqZTk/eJaTSL94J62c7RyY8r8Xj5Pj2LXu/tYvjq/ei0ZqoY8wBwd6tDVZ/n0OlMlRyhEEIIIR6lqKgoMjMzOXHiBOPGjWPq1Km88847lR2WXXlJGwCz2UzHjh3Jzs7m008/JSUlhbVr19KoUSOHxNjChQuJjo6mTZs27N69m0OHDtGnTx9iY2N57bXX7ivOOnXqsGjRIg4fPsz27dupWbMmnTp14tIl20qM48ePY7Vaee+99zhy5Ajz5s1j6dKlTJkypcx+i4qK8PX15Y033qBx48YVjmfw4MEkJibyz3/+k8OHD9OpUydeeOEFzp49a28zduxYvvrqK/71r39x7NgxRo8ezfDhw1m/fr29TdOmTVm+fDnHjh1j48aNKKXo1KkTFovtdyeLxcKLL75IcXExO3fuZOXKlaxYsYK33nqrVEzXrl2jf//+dOjQoUJjyMvLo23btsyaNavC435k1G9Qdna2AlR2dnZlhyLEr86+RRvVh28sUnFxcWp235fUnF4vqvm9XlVzB/xFLfxTolo0dLOy5Jf9vZezrKOq9s0BVe2bA6rjnuOq275UtT0r5xGNQIiKGbF6vwqZmKCGvzdMbdocZn+c/HFBZYcmHiB5z+BI7ocQ4mEqKChQR48eVQUFBZUdyl0bMGCAio6OdjjWsWNH1bJlS5WVlaViYmKUl5eXMhqNKioqSqWmptrbZWRkqK5duyovLy/l6uqqGjRooDZs2KDS09MV4PAYMGCAUkqpnJwc1bdvX+Xq6qr8/f3V3LlzVfv27dWoUaPs/YaEhKjp06ermJgYZTKZ7OcmJSWptm3bKhcXFxUUFKRGjBihcnNzlVJKHThwQAEqIyPjjmM9deqU0uv1auzYsaVeW7BggQLUd999p5RS9jEcOHDg7m/qDTf/79m0adMd28yePVuFhoZWuM+f36s7yc/PV05OTiohIcHheJMmTdTrr79uf96wYUM1ffr0Mtv83MGDBxWg0tLSlFJKffHFF0qr1arz58/b2yxZskR5eHiooqIih3N79+6t3njjDRUXF6caN25c7jhuehD/Hrcq63u2ou8ZZOqBEOKBuXDhAjt+2sklbbbtgLIVOMetGQaX1mg0WvR+FrTGsgtA51usAGhRbGxah/VNwmlTRWadiMfLtQIzAC+EptmPabVGqlRpWVkhCSGEEL86SinMhYWV8lA338veI6PRSHFxMQMHDmTv3r2sX7+eXbt2oZSiS5cumM229xLDhg2jqKiIbdu2cfjwYWbNmoW7uzvBwcF88sknAKSkpJCZmcn8+bbyAGPHjmXHjh2sX7+exMREkpKS2L9/f6kY5syZQ+PGjTlw4ABvvvkmJ0+eJCoqih49enDo0CHWrl3L9u3bGT58OAC+vr5otVo+/vhj+wyen/v4448xm823nRE1dOhQ3N3dWbNmzX3du5uKi4tZtmwZnp6eZc5uys7Oxtu77NUY96KkpASLxYKLi4vDcaPRyPbt2+3PW7duzfr16zl79ixKKb799ltSU1Pp1KnTbfvNy8tj+fLlhIaGEhwcDMCuXbto1KgR1apVs7eLjIwkJyeHI0eO2I8tX76cH3/8kbi4uAc51Eojhc6FEA9E8enrfLvuK664AhRz0eqGr8YFD3IBPRqn0/QZ0gDPJ5qW21fBjaSUUQMajRQ4F4+fEouV7BtJKTdDAVjg6af+gZdXc7RaQyVHJ4QQQvx6lBQVsWDAK5Vy7ZErP0b/s2RERSil2Lx5Mxs3bqRz586sW7eOHTt20Lp1awBWrVpFcHAw69ato2fPnpw6dYoePXrQqFEjAMLCwux93Uy0+Pn54eXlBdhqHK1cuZLVq1fbl28tX76c6tWrl4rl+eefZ9y4cfbngwcPpl+/fvZ6SuHh4SxYsID27duzZMkSAgMDWbBgARMmTGDatGk0a9aMiIgI+vXrZ48rNTUVT09PAgICSl3PYDAQFhZGamrqXd+3WyUkJNCnTx/y8/MJCAggMTGRqlWr3rZtWloaCxcuZM6cOfd1zdsxmUy0atWKv/zlL9SvX59q1aqxZs0adu3aRe3ate3tFi5cyJ/+9CeCgoLQ6XRotVref/992rVr59Df3//+dyZMmEBeXh5169YlMTERg8H23vH8+fMOCSnA/vz8+fMAnDhxgkmTJpGUlIRO9+tI58hMKSHEA3Hlk1TyLuYAULPYG/8jGVTNvzFjSqNHq83Fu7oJp7JqQ536Dr5bSr7ZVjDaVXbcE4+hV5d/T+3Xv+TqtcNE19qAxmor5G8w+EpCSgghhPgNS0hIwN3dHRcXFzp37kzv3r0ZOHAgOp2OZ555xt7Ox8eHunXrcuzYMQBGjhzJjBkzaNOmDXFxcRw6dKjM6/z444+YzWZatGhhP+bp6UndunVLtW3WrJnD84MHD7JixQrc3d3tj8jISKxWK+np6YBt5tb58+dZtWoVrVq14qOPPqJhw4YkJiZW+F7cTLSUZdWqVQ5xJCUl2V+LiIggOTmZnTt3EhUVRa9evbh48WKpPs6ePUtUVBQ9e/ZkyJAh9uO39hsbG1uhmJOSkhzOW7VqFQD//Oc/UUoRGBiIs7MzCxYs4Pe//z1a7f9+r1m4cCHfffcd69evZ9++fcTHxzNs2DA2bdrkcI1+/fpx4MABtm7dSp06dejVqxeFhYUVis9isdC3b1+mTZtGnTp1btumrHv6uPp1pNaEEJWuKKuQEiygFNcytuKmK6IY2455Go0edEWgN5bRwXXy/9mTpQEvcSzA9mmYUXbcE4+ZQrOFb1NsRTYHN/onge7nbRUe0GAw+FRqbEIIIcSvkc7ZmZErP660a9+NiIgIlixZgsFgoHr16uh0OodC13cyePBgIiMj2bBhA19//TVvv/028fHxjBgx4l5Dt3Nzc3N4npuby9ChQxk5cmSptjVq1LD/3WQy0a1bN7p168aMGTOIjIxkxowZdOzYkfDwcLKzszl37lyp2VnFxcWcPHmSyMjIcmPr3r27Q7IuMDDQIe7atWtTu3ZtWrZsSXh4OB988AGTJ0+2tzl37hwRERG0bt2aZcuWOfR96+5yHh5llw65qVmzZg7n3ZylVKtWLbZu3UpeXh45OTkEBATQu3dv+8yxgoICpkyZwmeffcaLL74IwJNPPklycjJz5szhhRdesPfp6emJp6cn4eHhtGzZkipVqvDZZ5/x+9//Hn9/f77//nuHmC5cuACAv78/169fZ+/evRw4cMC+3NJqtaKUQqfT8fXXX5d5Tx9XkpQSQjwYZgsleisohcVim+mkt+godqmCxskPJ6dT4OJ55/Pzs9jo1ZzZoYPsh3xd7u6NgBAP2/VC25a8Gg3U8MzDYgF//5fwrtJWklJCCCHEQ6DRaO5pCV1luJlIuVX9+vUpKSlh9+7d9uV7V65cISUlhQYNGtjbBQcHExsbS2xsLJMnT+b9999nxIgR9hlHt9Z3CgsLQ6/Xs2fPHnsiKTs7m9TU1FLLxX6uSZMmHD16tFScZdFoNNSrV4+dO3cC8MorrzBx4kTi4+OJj493aLt06VLy8/Pp379/uf2aTCZMporVjbVarRQVFdmfnz17loiICPuOdrfOWgLuanw3GY3GMs9zc3PDzc2Nq1evsnHjRmbPng3Ydiw0m82lYnBycsJqtd6xP6UUSin7uFq1asXMmTO5ePEifn5+ACQmJuLh4UGDBg3Q6/UcPnzYoY+///3vfPPNN3z88ceEhobi5uZW4Xv6uJCklBDigdBYrTdmSv3vB6/WZxhGjW22k0dgTTB63bkDcwFXDLbX67q50NXXk66+ZbQX4hErKrFwPts2vdpk0GKx5AJQu/ZknA23r3EghBBCiN+28PBwoqOjGTJkCO+99x4mk4lJkyYRGBhIdHQ0AKNHj6Zz587UqVOHq1ev8u2331K/fn0AQkJC0Gg0JCQk0KVLF4xGIyaTiQEDBjB+/Hi8vb3x8/MjLi4OrVZbbj3WiRMn0rJlS4YPH87gwYNxc3Pj6NGjJCYmsmjRIpKTk4mLiyMmJoYGDRpgMBjYunUrH374IRMnTgRsM6pmz57Na6+9houLCzExMej1ej7//HOmTJnCjBkzeOKJJxyum5KSUiqWhg0botfrHY7l5eUxc+ZMunfvTkBAAJcvX2bx4sWcPXuWnj17AraE1HPPPUdISAhz5szh0qVL9vP9/f3LHP/NmVC5ublcunSJ5ORkDAaDQ4Lw5zZu3IhSirp165KWlsb48eOpV68er776KmCbidW+fXvGjx+P0WgkJCSErVu38o9//IO5c+cCtiWXa9eupVOnTvj6+nLmzBn+9re/YTQa6dKlCwCdOnWiQYMGxMTEMHv2bM6fP88bb7zBsGHDcL4xa+/n99XPzw8XF5dSx38uKyuLU6dOce7cOeB//x7+/v7l3rOHTZJSQoj7tnHjRo45HyJHk4/FcmOXEgWgpcR4grAWjWnf6aWyOykpIF9r+xTsaZMr40NLF04UorKcuHCdlxbvQEcWAxp8QVXXAm58kaNz+mV9GiWEEEKIR2v58uWMGjWKrl27UlxcTLt27fjiiy/sCRmLxcKwYcM4c+YMHh4eREVFMW/ePMC2/GratGlMmjSJV199lf79+7NixQrmzp1LbGwsXbt2xcPDgwkTJnD69OlSu8T93JNPPsnWrVt5/fXXefbZZ1FKUatWLXr37g1AUFAQNWvWZNq0aWRkZKDRaOzPx4wZY+9nzJgxhIWFER8fz/z588nLywNgzZo19OnTp9R1b3fs9OnTBAUFORxzcnLi+PHjrFy5ksuXL+Pj40Pz5s1JSkqiYcOGgG32UFpaGmlpaaXOL2/HxKefftr+93379rF69WpCQkLIyMi44znZ2dlMnjyZM2fO4O3tTY8ePZg5c6ZDQu3f//43kydPpl+/fmRlZRESEsLMmTPt9axcXFxISkri3Xff5erVq1SrVo127dqxc+dO+6woJycnEhIS+POf/0yrVq1wc3NjwIABTJ8+vcwxVcT69evtSTT4379HXFwcU6dOve/+74dG3e8+l79AOTk5eHp6kp2dXeH1pUKI27v0eSqLD6y2P886WUBI8RE0Souz92jcq33KgGmLyu/op5387duPeTekP38MrMpf6wSVf44Qj8jq3aeY8tlhompuomed/9WGMBiq8mzb3ZUYmXjY5D2DI7kfQoiHqbCwkPT0dEJDQ8tNrghHeXl5BAYGEh8fz6BBg8o/4QHLysqiQ4cOeHh48OWXX+Lq6vrIYxCPXlnfsxV9zyC77wkh7kv2d2fsf38uvzYvH/0GAM2NIuf68t5PWErg1G4sp/eQ62T7z8vVSX40icfL1fxiAJrcyJV6V2lL3TrTePqpf1RiVEIIIYT4rTpw4ABr1qzh5MmT7N+/n379+gHYlwQ+at7e3mzatIkOHTqwa9euSolB/DLJ8j0hxD1TFisWdaPoolLs++ljmjrZakqpGzvnGVzK+TGT+CZJx79jwBMzyQ+SpJR4vGRczuPNz38g5fx1ANwNtppSXlVaEBT0h8oMTQghhBC/cXPmzCElJQWDwUDTpk1JSkqiatXKq3Pp4+PDW2+9VWnXF79MkpQSQtwzZbZSorElofRZF4AS9t2oBWXV2n68ONdqU3Ynl46zrUpT8m/MknLBSgtPt7LPEeIR+Tz5HEknLhNZczOdmnyLp64AAJ1O6kgJIYQQovI8/fTT7Nu3r7LDEOK+SVJKCHHPzhz+wbbjHuBUkHvjqBbQodPbdoBwrVpObajifAoMtjV+Q4N9mRQagFFmSonHxM1le13CduOuy7lxVIPJ1LDyghJCCCGEEOJXQpJSQoh7UlhYyDc7kyjW3ViuV2L7U+cagV7fgDyPKyjvK7Ru2r3sjorzKDDaklJVdE6SkBKPBatVkXElj3PXbDOjjDrbjjJPNlqKh0djnJ39KjM8IYQQQgghfhUkKSWEuGvWfDO7lyaSkXMFnKDKTxfwvHiBKyYjGvS4FF7kD/0v4dF27J07sZjhwg9QkEV+FVtSShJS4nExYs0BNhzOpKrxCq0CTqLFlpTy8HhSElJCCCGEEEI8IJKUEkLctbzjWRReuQ568La44Xcpm2ydrbA5GgP5BjNGQzk1dz4dgvXIOjKM1bls8AKkwLl4fCSfvgbA+GaLqGq8cuOoBp3Os9JiEkIIIYQQ4tdGklJCiLtWfN1sryVlPnuIs245gMH2osZApncROs+Qsju5cJTBDabzhW87+yGjVpJS4vGQU2hGg9WekKri1RKfqhE4OblUcmRCCCGEEEL8ekhSSghx1yyFJfZd96zF+bbS5hYtOoMJpQvA6pSGJrxj2Z2UFHDAox4Abk5aqjvrae3l/pAjF6Js+cUl5BVZyC0qwUVXZD/+1FMfotU6V2JkQgghhBBC/PpIUkoIcdfO/JBsnymFsiWnNJ7RoA9FA1gMZtA6ld2JuYDCG7/kf9m0DnXcZAaKqFzfp2fxh//bjcVqpn6VE/gYswDQag2SkBJCCCGEEOIhkLUyQoi7kpSUxLfXfuCEUybuOddxLrLNJtGgp1B7jjS/ffi1rkC+21xAgdaWiHLRah5myEJUyJ6MLIotVjrU2Mq4Zn9nYMN/A0gdKSGEEEKUa+DAgWg0GjQaDQaDgdq1azN9+nRKSkruq98tW7ag0Wi4du3agwm0AtLT0+nbty/Vq1fHxcWFoKAgoqOjOX78uEO7hIQE2rdvj8lkwtXVlebNm7NixQqHNhkZGWg0GpKTkyt8/alTp1KvXj3c3NyoUqUKL7zwArt373boc9CgQYSGhmI0GqlVqxZxcXEUFxeX2W9mZiZ9+/alTp06aLVaRo8eXaF4tm3bRrdu3ahevToajYZ169aVavPpp5/SqVMnfHx8yh2vUorOnTvfsa8VK1bw5JNP4uLigp+fH8OGDXN4fePGjbRs2RKTyYSvry89evQgIyPDoc2qVato3Lgxrq6uBAQE8Mc//pErV65QloqM82GQpJQQosLyj1zm283fcN2phEKNmWo/ZOBksc2UQqPH6rKLeZMG8Vrk8Dt3UlIMhdlYzQUUOtlmn8iue+JxkFNgBuC5sAIAXJyr4+nZlLDQUZUZlhBCCCF+IaKiosjMzOTEiROMGzeOqVOn8s4771R2WHblJW0AzGYzHTt2JDs7m08//ZSUlBTWrl1Lo0aNHBJjCxcuJDo6mjZt2rB7924OHTpEnz59iI2N5bXXXruvOOvUqcOiRYs4fPgw27dvp2bNmnTq1IlLly4BcPz4caxWK++99x5Hjhxh3rx5LF26lClTppTZb1FREb6+vrzxxhs0bty4wvHk5eXRuHFjFi9eXGabtm3bMmvWrHL7e/fdd9Fobv+h/Ny5c3n99deZNGkSR44cYdOmTURGRtpfT09PJzo6mueff57k5GQ2btzI5cuXefnll+1tduzYQf/+/Rk0aBBHjhzho48+4vvvv2fIkCH3Pc6HQv0GZWdnK0BlZ2dXdihC/KKcXrpfxcXFqbi33lLvD/yTin/lRTWnl+2xYPDH6q2pg5QyF965g7P7lZoRoFSch8qb5quqfXNAVfvmgLpuLnl0gxDiZy5fL1QLNqWqLvO3qZCJCeqTTQPVps1h6tSp5ZUdmngMyHsGR3I/hBAPU0FBgTp69KgqKCio7FDu2oABA1R0dLTDsY4dO6qWLVuqrKwsFRMTo7y8vJTRaFRRUVEqNTXV3i4jI0N17dpVeXl5KVdXV9WgQQO1YcMGlZ6ergCHx4ABA5RSSuXk5Ki+ffsqV1dX5e/vr+bOnavat2+vRo0aZe83JCRETZ8+XcXExCiTyWQ/NykpSbVt21a5uLiooKAgNWLECJWbm6uUUurAgQMKUBkZGXcc66lTp5Rer1djx44t9dqCBQsUoL777jullLKP4cCBA3d/U2+4+X/Ppk2b7thm9uzZKjQ0tMJ9/vxeVRSgPvvsszu+Xt54Dxw4oAIDA1VmZmapvrKyspTRaCxznB999JHS6XTKYrHYj61fv15pNBpVXFyslFLqnXfeUWFhYQ7nLViwQAUGBpY/wBvKG+dNZX3PVvQ9g0xPEEJUWFbmdQA0JWay889y8yeIRmNAo3XHyd0ddGXU3jn9PeaSQv5c702in1pkP+wiu+6JSvThjnTiE1MpyDvI72on4K5NA0Cn86jkyIQQQgihlMJabKmUh+1383tnNBopLi5m4MCB7N27l/Xr17Nr1y6UUnTp0gWz2TZLe9iwYRQVFbFt2zYOHz7MrFmzcHd3Jzg4mE8++QSAlJQUMjMzmT9/PgBjx45lx44drF+/nsTERJKSkti/f3+pGObMmUPjxo05cOAAb775JidPniQqKooePXpw6NAh1q5dy/bt2xk+3LbSwdfXF61Wy8cff4zFYrntuD7++GPMZvNtZ0QNHToUd3d31qxZc1/37qbi4mKWLVuGp6dnmbObsrOz8fb2fiDXfFjy8/Pp27cvixcvxt/fv9TriYmJWK1Wzp49S/369QkKCqJXr16cPn3a3qZp06ZotVqWL1+OxWIhOzubf/7zn7zwwgvo9XoAWrVqxenTp/niiy9QSnHhwgU+/vhjunTp8sjGejek0LkQokIKcq9TkH8JXAGr7T8orVVR52pVToV3xKr06P3Dy+7EXECyqR6fVXvBfijIRY9OakqJSpSZXQjA8KdX4Wm4aPscEjAYfCsxKiGEEEIAKLOVc2/trJRrV5/eGo2hnM17bkMpxebNm9m4cSOdO3dm3bp17Nixg9atWwO2ej/BwcGsW7eOnj17curUKXr06EGjRo0ACAsLs/d1M9Hi5+eHl5cXANevX2flypWsXr2aDh06ALB8+XKqV69eKpbnn3+ecePG2Z8PHjyYfv362esphYeHs2DBAtq3b8+SJUsIDAxkwYIFTJgwgWnTptGsWTMiIiLo16+fPa7U1FQ8PT0JCAgodT2DwUBYWBipqal3fd9ulZCQQJ8+fcjPzycgIIDExESqVq1627ZpaWksXLiQOXPm3Nc1H7YxY8bQunVroqOjb/v6jz/+iNVq5a9//Svz58/H09OTN954g44dO3Lo0CEMBgOhoaF8/fXX9OrVi6FDh2KxWGjVqhVffPGFvZ82bdqwatUqevfuTWFhISUlJXTr1u3RL8urIJmeIISokJTdO8iz5gLgdPNTE42BjNoDsCrbf4A6l3KSS+YCcp1cAQhxMfDPRqF82bTOQ4tZiIrIKbAVIPUwXAWgekAvateaiLd368oMSwghhBC/MAkJCbi7u+Pi4kLnzp3p3bs3AwcORKfT8cwzz9jb+fj4ULduXY4dOwbAyJEjmTFjBm3atCEuLo5Dhw6VeZ0ff/wRs9lMixYt7Mc8PT2pW7duqbbNmjVzeH7w4EFWrFiBu7u7/REZGYnVaiU9PR2wzdw6f/48q1atolWrVnz00Uc0bNiQxMTECt8Lg8FQbptVq1Y5xJGUlGR/LSIiguTkZHbu3ElUVBS9evXi4sWLpfo4e/YsUVFR9OzZ06Fm0q39xsbGVijmpKQkh/NWrVpVofMqYv369XzzzTe8++67d2xjtVoxm80sWLCAyMhIWrZsyZo1azhx4gTffvstAOfPn2fIkCEMGDCAPXv2sHXrVgwGA6+88op9Zt/Ro0cZNWoUb731Fvv27eOrr74iIyPDfh8e5jjvhcyUEkKUq6SkhI2791PgbiuOWHjJjBFAY/sRkm34iQyfH2leK6Scjv63456fQU/HqrKrmag8Uz47zNo9p7FYFTqtGQ22KfTh4VPQ6UyVHJ0QQgghADR6LdWnV84HRRr93c3hiIiIYMmSJRgMBqpXr45Op2P9+vXlnjd48GAiIyPZsGEDX3/9NW+//Tbx8fGMGDHiXkO3c3Nzc3iem5vL0KFDGTlyZKm2NWrUsP/dZDLRrVs3unXrxowZM4iMjGTGjBl07NiR8PBwsrOzOXfuXKnZWcXFxZw8edKhOPeddO/e3SFZFxgY6BB37dq1qV27Ni1btiQ8PJwPPviAyZMn29ucO3eOiIgIWrduzbJlyxz6vnX3Ow+PipVkaNasmcN51apVq9B5FfHNN99w8uRJ+2y3m3r06MGzzz7Lli1b7DPPGjRoYH/d19eXqlWrcurUKQAWL16Mp6cns2fPtrf517/+RXBwMLt376Zly5a8/fbbtGnThvHjxwPw5JNP4ubmxrPPPsuMGTMe6jjvhSSlhBBlUkpxeuUBCm7s1uFxJZsmR7azLzQA7Y0fIb7e31H3952ICo0quzNzAQX2HfdkyZ6oXOuTz4EyM6DBfwhwv7lFrgYnJ7cyzxNCCCHEo6PRaO5pCV1luJlIuVX9+vUpKSlh9+7d9uV7V65cISUlxSH5EBwcTGxsLLGxsUyePJn333+fESNG2Gcc3VrfKSwsDL1ez549e+yJpOzsbFJTU2nXrl2ZMTZp0oSjR4+WirMsGo2GevXqsXOnbRnlK6+8wsSJE4mPjyc+Pt6h7dKlS8nPz6d///7l9msymTCZKvZBoNVqpaioyP787NmzRERE0LRpU5YvX472ZzVq72Z8NxmNxns6ryImTZrE4MGDHY41atSIefPm0a1bN8C27A5s9cOCgoIAyMrK4vLly4SE2D78z8/PLzVWJyfb94fVarW30el0t22jlHqo47wXkpQSQpRJFVnIT8sCZ3DOK0Bz8ST7Qm1ZfKvWVkzvGT9vnqzT486dnNoNez+E07spcG4IgNFJVg+LymOxKnKLSqjvfZJ2Qd/ZjxuNNdBo5GtTCCGEEA9GeHg40dHRDBkyhPfeew+TycSkSZMIDAy01xYaPXo0nTt3pk6dOly9epVvv/2W+vXrAxASEoJGoyEhIYEuXbpgNBoxmUwMGDCA8ePH4+3tjZ+fH3FxcWi1WjSasj/4nThxIi1btmT48OEMHjwYNzc3jh49SmJiIosWLSI5OZm4uDhiYmJo0KABBoOBrVu38uGHHzJx4kTANqNq9uzZvPbaa7i4uBATE4Ner+fzzz9nypQpzJgxgyeeeMLhuikpKaViadiwob049015eXnMnDmT7t27ExAQwOXLl1m8eDFnz56lZ8+egC0h9dxzzxESEsKcOXO4dOmS/fzbFRC/1c0ZQrm5uVy6dInk5GQMBoNDgvDncnNzSUtLsz9PT08nOTkZb29ve1IwKyuLU6dOce7cOYfx+vv7Ozx+rkaNGoSGhgJQp04doqOjGTVqFMuWLcPDw4PJkydTr149IiIiAHjxxReZN28e06dP5/e//z3Xr19nypQphISE8PTTTwPQrVs3hgwZwpIlS4iMjCQzM5PRo0fTokWL29Ydu5txPgySlBJClKkwO48Sbnwyk5eFFav9tSK3QAyAe4Nypud+8xf+WeTFslpTuaq3TZ81yo57ohLlFtnqSLnr8wBwcwunZsif8fRsVtZpQgghhBB3bfny5YwaNYquXbtSXFxMu3bt+OKLL+wJGYvFwrBhwzhz5gweHh5ERUUxb948wLakbdq0aUyaNIlXX32V/v37s2LFCubOnUtsbCxdu3bFw8ODCRMmcPr0aVxcXMqM5cknn2Tr1q28/vrrPPvssyilqFWrFr179wYgKCiImjVrMm3aNDIyMtBoNPbnY8aMsfczZswYwsLCiI+PZ/78+eTl2d5TrVmzhj59+pS67u2OnT592j4j6CYnJyeOHz/OypUruXz5Mj4+PjRv3pykpCQaNrR9uJ2YmEhaWhppaWmlzi9vx8SbiRuAffv2sXr1akJCQsjIyLjjOXv37rUnhcC28yHAgAEDWLFiBWCrGfXqq6+WGm9cXBxTp04tM6Zb/eMf/2DMmDG8+OKLaLVa2rdvz1dffWX/Wnn++edZvXo1s2fPZvbs2bi6utKqVSu++uorjEYjAAMHDuT69essWrSIcePG4eXlxfPPP8+sWbPKvHZFxvkwaNT97nP5C5STk4OnpyfZ2dkVXl8qxG/V/v+sgwM61jvvxfn8KQxXL+JmDcRSJRpu1IfqMakJ/jW97tzJ0mdpFzSWVLdQ+6HXavrzWmjZn2QI8aAdPH2Nsf9JJrughMu5RTxfYyf96v0b36odefLJpZUdnngMyXsGR3I/hBAPU2FhIenp6YSGhpabXBGO8vLyCAwMJD4+nkGDBj3y62dlZdGhQwc8PDz48ssvcXV1feQxiEevrO/Zir5nkJlSQogyFWZfR4+tILn2xlr2QqM/+hsJqQJ9Lt7V3MvuxFxA3o1d9+LrBtPA3Uhjk/HhBS3EHXxxOJOTl/Jo4b+P6c+swdnJVitNp5NfroUQQgjxy3HgwAGOHz9OixYtyM7OZvr06QD2JYGPmre3N5s2bWLx4sXs2rWLDh06VEoc4pdHklJCiDJZi0oo0VhRCsyWG6XNb+y691nzmXSo1xGDsXvZnZgLyHOyJaGae7pRx00++RKV41q+bYe939VPsyekQINXlRZ3PkkIIYQQ4jE0Z84cUlJSMBgMNG3alKSkJKpWrVpp8fj4+PDWW29V2vXFL5MkpYQQt2W+XMB3//c1uwoyMevPUPvAUfQFFzjrbUKDHqWK+LrFn9E2eqX8zkoKyHeyJaLcpMC5qARZecX89+A5Dp65BoCncwFYoU6dOPyrRaPXe1ZugEIIIYQQd+Hpp59m3759lR2GEPdNklJCiNsqOnGV1LxT5DsVo8u+gqb4MldvznDS6LBoitEavcruJG0TiefOMafe2xRrbdvZSlJKVIb5m1JZuesnann+yOAntmNQJwEwugRLQkoIIYQQQohKIr8dCiFuq+BqHmaNBaxWjOfSueDpSr6zbdcHjdaVIoMZara7cwd5V2BVL5ZfzOegqS4AfnotJp3TowhfCAdnrxUCEPPE17SqvheNygbAxRhU1mlCCCGEEEKIh0hmSgkhbuv4ti2UGCxorBb7MWd9Uyz6Kmj1tbHoroLOcOcO8i6BspCvcwNgjOE8f2zeASeN5mGHLkQpuUW2WlLVPYrAAkGBMfj4tMfdLbySIxNCCCGEEOK3S5JSQojbKskvoMRgmykFoLUqNO7t0QEWTQmZ1VLL7qA4D4B8vS0p1bRea3wN+ocZshClpF28zumsAs5n22ZKOWH7uvT3fwlPz6cqMTIhhBBCCCGEJKWEEKUUFBRwRWemUGPG/9w5cgEnZXst33CFfzSdTk2PmmV3Yrb98l9wo8C5USszpMSjdTorn47ztqHTFBNd60ueD7gO1iwAdDpTJUcnhBBCCCGEkKSUEMJB7neZrN34Cac9roPVSp2jR9kfWg2tsiWVCp1sy6DCPMPu3ElWOpzZA0CB9kZSSgqci0fs5KVclIJmAcfoHLrZdlCBRqPDYKi87ZKFEEIIIYQQNpKUEkI4uP59JjmWfMCC6aQtIQVg1oMB8MTMv7r8iwbeDW7fwdUMChc+w5u1h3Puib9xUecBgFErSSnxaOUUlgBQv5rtT3f3evhXi8Zkaig77gkhhBBCCPEYkN8ShRB25uIirp05R4nGgra4CEqK7K9l+9qKmhs9fGjs2xi90x3qQ105yfYqT/HP6t3Z7NOKYo0OnQb8pJ6UeETOXitg5oajrN79E0ZdAd4uVwHwMD1JSMif8PZuU8kRCiGEEOLXZuDAgWg0GjQaDQaDgdq1azN9+nRKSkruq98tW7ag0Wi4du3agwm0AtLT0+nbty/Vq1fHxcWFoKAgoqOjOX78uEO7hIQE2rdvj8lkwtXVlebNm7NixQqHNhkZGWg0GpKTkyt8/alTp1KvXj3c3NyoUqUKL7zwArt373boc9CgQYSGhmI0GqlVqxZxcXEUFxeX2W9mZiZ9+/alTp06aLVaRo8eXaF4tm3bRrdu3ahevToajYZ169bddcwAM2fOpHXr1ri6uuLl5XXba506dYoXX3wRV1dX/Pz8GD9+vMPX0K1fZ7c+GjZsaG/z9ttv07x5c0wmE35+frz00kukpKSUO86KxPcwSFJKCGF3Ie0EWgtYsNoLnDubIdASgav+dwDojMayOzEXcN3JHYBwV2fm1QtmfZNwfAwyMVM8Gv+X9CPvJ6WTc20n7z43mfqm9QDoZHaUEEIIIR6iqKgoMjMzOXHiBOPGjWPq1Km88847lR2WXXlJGwCz2UzHjh3Jzs7m008/JSUlhbVr19KoUSOHxNjChQuJjo6mTZs27N69m0OHDtGnTx9iY2N57bXX7ivOOnXqsGjRIg4fPsz27dupWbMmnTp14tKlSwAcP34cq9XKe++9x5EjR5g3bx5Lly5lypQpZfZbVFSEr68vb7zxBo0bN65wPHl5eTRu3JjFixffc8xgu/89e/bkz3/+8237sFgsvPjiixQXF7Nz505WrlzJihUreOutt+xt5s+fT2Zmpv1x+vRpvL296dmzp73N1q1bGTZsGN999x2JiYmYzWY6depEXl5emeMsL76HRv0GZWdnK0BlZ2dXdihCPFZ+3L9Hpb32lfrLW9PVjDEj1ZxeL6p3e/VRi4Zutj9WL9lSdicH/6NWLemjqn1zQP3h4MlHE7gQtxi2ap8KmZig5n7ymtq0OUxt2lxLbdnaRGVlfVfZoYlfIHnP4EjuhxDiYSooKFBHjx5VBQUFlR3KXRswYICKjo52ONaxY0fVsmVLlZWVpWJiYpSXl5cyGo0qKipKpaam2ttlZGSorl27Ki8vL+Xq6qoaNGigNmzYoNLT0xXg8BgwYIBSSqmcnBzVt29f5erqqvz9/dXcuXNV+/bt1ahRo+z9hoSEqOnTp6uYmBhlMpns5yYlJam2bdsqFxcXFRQUpEaMGKFyc3OVUkodOHBAASojI+OOYz116pTS6/Vq7NixpV5bsGCBAtR339ned90cw4EDB+7+pt5w8/+eTZs23bHN7NmzVWhoaIX7/Pm9qihAffbZZ+W2Kyvm5cuXK09Pz1LHv/jiC6XVatX58+ftx5YsWaI8PDxUUVHRba/z2WefKY1GU+a/18WLFxWgtm7dWm7cZcV3O2V9z1b0PYPMlBJCoKyKS8sOofu4AIOTEWP2VVrs3HXjVduyu0MBW9hc+x/Ue7FK2Z2VFJAvxc1FJcousBXjr+tne14zJJb27fZRpcozlRiVEEIIIe6FUori4uJKeSil7it2o9FIcXExAwcOZO/evaxfv55du3ahlKJLly6Yzbb3LMOGDaOoqIht27Zx+PBhZs2ahbu7O8HBwXzyyScApKSkkJmZyfz58wEYO3YsO3bsYP369SQmJpKUlMT+/ftLxTBnzhwaN27MgQMHePPNNzl58iRRUVH06NGDQ4cOsXbtWrZv387w4cMB8PX1RavV8vHHH2OxWG47ro8//hiz2XzbGVFDhw7F3d2dNWvW3Ne9u6m4uJhly5bh6elZ5uym7OxsvL29H8g171dFY/65Xbt20ahRI6pVq2Y/FhkZSU5ODkeOHLntOR988AEvvPACISEhd+w3Ozsb4LG5Pz8n62mEEFiuFpL140WS9Mco0BbB6WvkudyoAaWx/WnwyeC51s1oHPTEnTvKyYTsMxQ4OQNS3Fw8Wn/78jjrk8+isZyhU8ghDFZb3QPdjWL7QgghhPjlMZvN/PWvf62Ua0+ZMgWDwXDX5yml2Lx5Mxs3bqRz586sW7eOHTt20Lp1awBWrVpFcHAw69ato2fPnpw6dYoePXrQqFEjAMLC/rfL9c1Egp+fn73Oz/Xr11m5ciWrV6+mQ4cOACxfvpzq1auXiuX5559n3Lhx9ueDBw+mX79+9npK4eHhLFiwgPbt27NkyRICAwNZsGABEyZMYNq0aTRr1oyIiAj69etnjys1NRVPT08CAgJKXc9gMBAWFkZqaupd37dbJSQk0KdPH/Lz8wkICCAxMZGqVW+/e3JaWhoLFy5kzpw593XN+3U3Md/O+fPnHRJSgP35+fPnS7U/d+4cX375JatXr75jn1arldGjR9OmTRueeKKM3+MqkfzGKIRAma385HSJM05XyMlJh5KLnKxmmxFlvlGgvHuVMEY2GYlWc4cfG9+/z5H3XmT4BR0fVYsEZKaUeLQ+3JHOuexCYur/i95116EpsSWlDIaKvxkQQgghhLhXCQkJuLu74+LiQufOnenduzcDBw5Ep9PxzDP/m7Ht4+ND3bp1OXbsGAAjR45kxowZtGnThri4OA4dOlTmdX788UfMZjMtWrSwH/P09KRu3bql2jZr1szh+cGDB1mxYgXu7u72R2RkJFarlfT0dMA2c+v8+fOsWrWKVq1a8dFHH9GwYUMSExMrfC8qksxbtWqVQxxJSUn21yIiIkhOTmbnzp1ERUXRq1cvLl68WKqPs2fPEhUVRc+ePRkyZIj9+K39xsbGVijmpKQkh/NWrVpVofPuNuYHZeXKlXh5efHSSy/dsc2wYcP44Ycf+Pe//20/Fhsb6zDOyiYzpYQQHNmyhRJs03Od8mzTOw1mC+6aIrI8bTs5GOu9UHYnZ/fx9+A+fFKtk/1QgOy4Jx6RQrOF4hJbcf46VXNRFqhatQOurqH4+kZWcnRCCCGEuFd6vb7cAtYP89p3IyIigiVLlmAwGKhevTo6nY7169eXe97gwYOJjIxkw4YNfP3117z99tvEx8czYsSIew3dzs3NzeF5bm4uQ4cOZeTIkaXa1qhRw/53k8lEt27d6NatGzNmzCAyMpIZM2bQsWNHwsPDyc7O5ty5c6VmZxUXF3Py5EkiI8t//9W9e3eHZF1gYKBD3LVr16Z27dq0bNmS8PBwPvjgAyZPnmxvc+7cOSIiImjdujXLli1z6PvW3f48PCo2a75Zs2YO5/181lJ5KhJzWfz9/fn+++8djl24cMH+2q2UUnz44YfExMTcMQE4fPhwEhIS2LZtG0FBQfbj06dPv+9i9A+SJKWEEGRlnKEEWx0oTYktOVXjynUaeuaToK8FFjC6e5XdiTmfbJ0t096jWhWereJON99yzhHiAckptNVk0GhASx4WILz2FFxda1ZqXEIIIYS4PxqN5p6W0FWGm0mJW9WvX5+SkhJ2795tX7535coVUlJSaNCggb1dcHAwsbGxxMbGMnnyZN5//31GjBhhH/ut9Z3CwsLQ6/Xs2bPHnkjKzs4mNTWVdu3alRljkyZNOHr0aKk4y6LRaKhXrx47d+4E4JVXXmHixInEx8cTHx/v0Hbp0qXk5+fTv3//cvs1mUyYTKYKxWC1WikqKrI/P3v2LBERETRt2pTly5ej/VnZkLsZ301Go/GezruTn8dcnlatWjFz5kwuXryIn5+tOGpiYiIeHh4OXytg22EvLS2NQYMGlepHKcWIESP47LPP2LJlC6GhoQ6v+/n52ft/HEhSSgiBtdiCRWPFmJuH17Uccp01nAnqyBnTs+hv/P9ndHYuuxNzAYVGW5sXfDz4XbVyCqIL8QBczCnklaW7OJ9dQO86nxLscRGLxbbdrdSSEkIIIURlCw8PJzo6miFDhvDee+9hMpmYNGkSgYGBREdHAzB69Gg6d+5MnTp1uHr1Kt9++y3169cHICQkBI1GQ0JCAl26dMFoNGIymRgwYADjx4/H29sbPz8/4uLi0Gq1aDSaMuOZOHEiLVu2ZPjw4QwePBg3NzeOHj1KYmIiixYtIjk5mbi4OGJiYmjQoAEGg4GtW7fy4YcfMnHiRMA2o2r27Nm89tpruLi4EBMTg16v5/PPP2fKlCnMmDGjVP2ilJSUUrE0bNiw1Gy0vLw8Zs6cSffu3QkICODy5cssXryYs2fP0rNnT8CWkHruuecICQlhzpw5XLp0yX7+z2cU/dzNmVC5ublcunSJ5ORkDAZDqaTPrXJzc0lLS7M/T09PJzk5GW9vb2rUqFGhmAFOnTpFVlYWp06dwmKx2GOpXbs27u7udOrUiQYNGhATE8Ps2bM5f/48b7zxBsOGDcP5Z7+LffDBBzzzzDO3rRM1bNgwVq9ezeeff47JZLLXo/L09MRoNN5xnOXF97BIUkqI3zDzhTzyvj+PX6E/V7VZ1D54nAKnfHKd3SgxeKIDzNpiLrhnUMWnfjmdFVDoZvth6aIt+z9DIR6U7zOyOJWVT5D7WTrV3GI/rtN5SVJKCCGEEI+F5cuXM2rUKLp27UpxcTHt2rXjiy++sCdkLBYLw4YN48yZM3h4eBAVFcW8efMA25K2adOmMWnSJF599VX69+/PihUrmDt3LrGxsXTt2hUPDw8mTJjA6dOncXFxKTOWJ598kq1bt/L666/z7LPPopSiVq1a9O7dG4CgoCBq1qzJtGnTyMjIQKPR2J+PGTPG3s+YMWMICwsjPj6e+fPnk5dn+1BwzZo19OnTp9R1b3fs9OnTDsvKAJycnDh+/DgrV67k8uXL+Pj40Lx5c5KSkmjY0FZWJDExkbS0NNLS0kqdX96OiU8//bT97/v27WP16tWEhISQkZFxx3P27t1LRESE/fnYsWMBGDBgACtWrKhQzABvvfUWK1euLBXLt99+y3PPPYeTkxMJCQn8+c9/plWrVri5uTFgwACmT5/uEE92djaffPKJfSfGn1uyZAkAzz33nMPx5cuXM3DgwDuOs7z4HhaNut99Ln+BcnJy8PT0JDs7u8LrS4X4Nbr8z6NcP3KBTO01DmQnYTl/HKsGLE5a9K6dMbsG8e1zC3nSvwUz2868/Scv5kK4cgI+/RMvBI3lB1M4/24cxnPe8r0lHr5/ffcTb6z7gV5PXiTSfwbOhmrUqvUaHh6NcXOrVdnhiV8Bec/gSO6HEOJhKiwsJD09ndDQ0HKTK8JRXl4egYGBxMfH33ZJ18OWlZVFhw4d8PDw4Msvv8TV1fWRxyAevbK+Zyv6nkFmSgnxG1aUlcc2/THSnS7idi0dre5/a7E1Tt446a0k9PgatGXsovdhJwrPH+MnY4C9ppRLWe2FeAAuXi/kvwczSTphm67t62qrKeXsUp2AgJcrMzQhhBBCiIfuwIEDHD9+nBYtWpCdnW2fTXNzSeCj5u3tzaZNm1i8eDG7du2iQ4cOlRKH+OWRpJQQv2FZp0+T41oAgMZq27ms8U8XuNDUh2uWapQ455adkFIKdf4wHZuu4IRbiP2wJKXEwxa/MZW1e09Tp8oJ/tRoB3XccwHQ6Sp/W1shhBBCiEdhzpw5pKSkYDAYaNq0KUlJSVStWrXS4vHx8eGtt96qtOuLXyZJSgnxG6WUQmuFEmyVzDXWG3/qqlOoqw0W0OjKWd1rMZOvMdgTUlV0TtRxc6G+u0y3Fg/X2Wu2ZOqAJzbib0y1H3dxCbzTKUIIIYQQvxpPP/00+/btq+wwhLhvkpQS4jfKYjbjpNFh0VjxyTxP8Y3jxxoMRlPkBoBGby27E3M+BU7/2wniSNsn0Jaz44cQD0J2gW25nr97IVggOPiPuLnWws8vspIjE0IIIYQQQlSUJKWE+A0quVJA7o+X0WtdKMHCEwePcSTEZHtRo6NQd43Lrhfxe8qpnI4KKdDaZkW5aDWSkBIP3d+3pLHomzTyi2/M7CMPBQT4v4zJVM4OkUIIIYQQQojHiiSlhPiNUWYrFxYc4GLxVbIMuZhLCtBpioAbSSl0HPfdx3c11/NGvTfK7sxcQKHWNlPKKHWkxCOwPvkcJSUF/K7211R1zQdrNgA6namcM4UQQgghhBCPG0lKCfEbk306k4KiQv7rvBdN7lVcz6RxsIatIKICNBonGlQJJqbDYlpVb3X7Ti6fgG9mQN4l+/I9FydJSomHL7eohKf9DtI17GsAlAKNxoBe71W5gQkhhBBCCCHumiSlhPiNufTjjxRqirFqFIYC245lGqvCyWql0CsIgBoB9WgX1O7OnexbwdcXLjI+fBy5Qa6AzJQSj0ZuUQleHjkAmNwb4uvbCQ/Pp2TXPSGEEEIIIX6BJCklxG9MSb4Zy40d95wstt31vIs8KPHugcbgDgpcnA1ld1J0nfVVn+OC8/+2nG1sMj60mMVv25XcIiZ/epireQUEuBwhzPMnADy9mhEaOrySoxNCCCGEEELcK0lKCfEbYyk0U4JtVz19UQEKyHOrAS7eONlyVFQJdC27E3MB+U62JNRrNf3pUa0KIcZyEllC3KOvj17g66MXaBe4g9hma+3HDfoqlRiVEEIIIYQQ4n7JehshfiMsucVkfZyK6wk9JRoLPucvEnjmjO3FG8XKt9X8J/9qMpXgOj5ld1ZSQN6NpFSI0UCoq7PsvCcemqy8YgCaBF4HQKf3w8cnAn//6MoMSwghhBDCbuDAgWg0GjQaDQaDgdq1azN9+nRKSkruq98tW7ag0Wi4du3agwm0AtLT0+nbty/Vq1fHxcWFoKAgoqOjOX78uEO7hIQE2rdvj8lkwtXVlebNm7NixQqHNhkZGWg0GpKTkyt8/alTp1KvXj3c3NyoUqUKL7zwArt373boc9CgQYSGhmI0GqlVqxZxcXEUFxeX2/eqVato3Lgxrq6uBAQE8Mc//pErV66Uec62bdvo1q0b1atXR6PRsG7dutu2O3bsGN27d8fT0xM3NzeaN2/OqVOn7K8PHTqUWrVqYTQa8fX1ve093bNnDx06dMDLy4sqVaoQGRnJwYMHb3u9tLQ0TCYTXl5e5Y67omOoDJKUEuI3Iv/gJfL3XkB33QkzJZBVhEVrSyQprW2Wk5dPPn9o0Zsg96CyOzMXkO/kAoCrFDgXD0lxiZXEoxfY/9NVAKq5mwGoEfwHnmr8fxiNNSozPCGEEEIIB1FRUWRmZnLixAnGjRvH1KlTeeeddyo7LLuKJG3MZjMdO3YkOzubTz/9lJSUFNauXUujRo0cEmMLFy4kOjqaNm3asHv3bg4dOkSfPn2IjY3ltddeu68469Spw6JFizh8+DDbt2+nZs2adOrUiUuXLgFw/PhxrFYr7733HkeOHGHevHksXbqUKVOmlNnvjh076N+/P4MGDeLIkSN89NFHfP/99wwZMqTM8/Ly8mjcuDGLFy++Y5uTJ0/Stm1b6tWrx5YtWzh06BBvvvkmLi4u9jZNmzZl+fLlHDt2jI0bN6KUolOnTlgsttIqubm5REVFUaNGDXbv3s327dsxmUxERkZiNpsdrmc2m/n973/Ps88+W2bsdzOGSqN+g7KzsxWgsrOzKzsUIR6Zg/M+U7snf66mvzVV/WXUMBX/SrR69+UoNafXiyr+1dlq0dDNau+ejWV3knNe7T3whfp/ny5VdTZuU9W+OaC+vSLfR+LhWLEjXYVMTFDPzliiRi37s9qw+Tm1aXOYOnX6H5UdmvgNkfcMjuR+CCEepoKCAnX06FFVUFBQ2aHctQEDBqjo6GiHYx07dlQtW7ZUWVlZKiYmRnl5eSmj0aiioqJUamqqvV1GRobq2rWr8vLyUq6urqpBgwZqw4YNKj09XWHbINv+GDBggFJKqZycHNW3b1/l6uqq/P391dy5c1X79u3VqFGj7P2GhISo6dOnq5iYGGUymeznJiUlqbZt2yoXFxcVFBSkRowYoXJzc5VSSh04cEABKiMj445jPXXqlNLr9Wrs2LGlXluwYIEC1HfffaeUUvYxHDhw4O5v6g03/+/ZtGnTHdvMnj1bhYaGltnPO++8o8LCwkrFGxgYWOFYAPXZZ5+VOt67d2/1hz/8ocL9KKXUwYMHFaDS0tKUUkrt2bNHAerUqVP2NocOHVKAOnHihMO5EyZMUH/4wx/U8uXLlaen511d905juBdlfc9W9D2DTHEQ4jei8Np1MrVZWDQKw5XzKG0JJTonAJy03gAY/WqW3cm/XmbOyVN84vUM2XoTAAHlFUUX4h6lX84DYGjjNXSrtRFnbNOfnQ2+lRmWEEIIIR4hpRQWS36lPGy/v987o9FIcXExAwcOZO/evaxfv55du3ahlKJLly722S/Dhg2jqKiIbdu2cfjwYWbNmoW7uzvBwcF88sknAKSkpJCZmcn8+fMBGDt2LDt27GD9+vUkJiaSlJTE/v37S8UwZ84cGjduzIEDB3jzzTc5efIkUVFR9OjRg0OHDrF27Vq2b9/O8OG2zWN8fX3RarV8/PHH9hk8P/fxxx9jNptvOyNq6NChuLu7s2bNmvu6dzcVFxezbNkyPD09ady48R3bZWdn4+3tXWZfrVq14vTp03zxxRcopbhw4QIff/wxXbp0ua8YrVYrGzZsoE6dOkRGRuLn58czzzxT5hK5vLw8li9fTmhoKMHBwQDUrVsXHx8fPvjgA4qLiykoKOCDDz6gfv361KxZ037uN998w0cfffR4znq6B1LoXIjfihJlL3CuKy5CAXUzc/D117DHqSYAbi7lFDi/mkF2dXcAYgp/ILJJJHXdXMo+R4h7lFNge6Pm65oNgL//S7i51qZq1YjKDEsIIYQQj5DVWsCWrY0q5drPtT+Mk1M5749vQynF5s2b2bhxI507d2bdunXs2LGD1q1bA7a6RsHBwaxbt46ePXty6tQpevToQaNGtnGGhYXZ+7qZaPHz87PXDrp+/TorV65k9erVdOjQAYDly5dTvXr1UrE8//zzjBs3zv588ODB9OvXj9GjRwMQHh7OggULaN++PUuWLCEwMJAFCxYwYcIEpk2bRrNmzYiIiKBfv372uFJTU/H09CQgIKDU9QwGA2FhYaSmpt71fbtVQkICffr0IT8/n4CAABITE6latept26alpbFw4ULmzJlTZp9t2rRh1apV9O7dm8LCQkpKSujWrdt9J3cuXrxIbm4uf/vb35gxYwazZs3iq6++4uWXX+bbb7+lffv29rZ///vfmTBhAnl5edStW5fExEQMBtuH/CaTiS1btvDSSy/xl7/8BbD9+2zcuBGdzpa6uXLlCgMHDuRf//oXHh4e9xX340JmSgnxW2GBEiz4XryI1mr71ONU7Vj2esehuVGk3OhSRoJJKTDnU3ijKHq3Z6J5oZrMWBEP3ood6XSat5Wvj15AgxUtthlTtWtNoGbNP6O98TUohBBCCPE4SUhIwN3dHRcXFzp37kzv3r0ZOHAgOp2OZ555xt7Ox8eHunXrcuzYMQBGjhzJjBkzaNOmDXFxcRw6dKjM6/z444+YzWZatGhhP+bp6UndunVLtW3WrJnD84MHD7JixQrc3d3tj8jISKxWK+np6YBt5tb58+dZtWoVrVq14qOPPqJhw4YkJiZW+F7cTLSUZdWqVQ5xJCUl2V+LiIggOTmZnTt3EhUVRa9evbh48WKpPs6ePUtUVBQ9e/Z0qA11a7+xsbEAHD16lFGjRvHWW2+xb98+vvrqKzIyMuyvJyUlOZy3atWqCo3VarV98B8dHc2YMWN46qmnmDRpEl27dmXp0qUObfv168eBAwfYunUrderUoVevXhQWFgJQUFDAoEGDaNOmDd999x07duzgiSee4MUXX6SgoACAIUOG0LdvX9q1a3fbWO51DJVJZkoJ8RtgyS1Ga3GiRGel/qEjHAywzXay6twAK/n6HE5VOYq7sWUZnRSDslKgtSWuXLSy2554OJZt+5Fz2YW82nAVzaolo7k5w0/nWcmRCSGEEOJR02qNPNf+cKVd+25ERESwZMkSDAYD1atXR6fTsX79+nLPGzx4MJGRkWzYsIGvv/6at99+m/j4eEaMGHGvodu5ubk5PM/NzWXo0KGMHDmyVNsaNf63iYzJZKJbt25069aNGTNmEBkZyYwZM+jYsSPh4eFkZ2dz7ty5UrOziouLOXnyJJGRkeXG1r17d4dkXWBgoEPctWvXpnbt2rRs2ZLw8HA++OADJk+ebG9z7tw5IiIiaN26NcuWLXPo+9bd/m7OKHr77bdp06YN48ePB+DJJ5/Ezc2NZ599lhkzZtCsWTOH86pVq1buGACqVq2KTqejQYMGDsfr16/P9u3bHY55enri6elJeHg4LVu2pEqVKnz22Wf8/ve/Z/Xq1WRkZLBr1y60Wtv8odWrV1OlShU+//xz+vTpwzfffMP69evts8KUUlitVnQ6HcuWLeP3v//9PY2hMklSSohfuWvrT5K78xz+2hr8oA5RbLFitSeUdFxzucjap9+mvnd9jLoy/uM15wNQ4GSbpWKUXffEQ5JTWIJWY6Ft4P+2/nV3b4CTkywVFUIIIX5rNBrNPS2hqww3Eym3ql+/PiUlJezevdu+fO/KlSukpKQ4JDGCg4OJjY0lNjaWyZMn8/777zNixAj7jKNb6zuFhYWh1+vZs2ePPZGUnZ1NamrqHWfQ3NSkSROOHj1aKs6yaDQa6tWrx86dOwF45ZVXmDhxIvHx8cTHxzu0Xbp0Kfn5+fTv37/cfk0mEyaTqUIxWK1WioqK7M/Pnj1LRESEfUe7m0mcm243vvz8fPsyuJucnGw1dpVSGI3Gu7ovNxkMBpo3b05KSorD8dTUVEJCQu54nlIKpZR9XPn5+Wi1WvsqFsD+/OZsrF27djl8LXz++efMmjWLnTt3EhgYeM9jqEySlBLiV8xqtXBlfzrHnDL5QXcK7akfuFLjltkmGj2ummK+if4v3h7BDj8AHfy4lSOZP/JDtUhydLZZVpKUEg+DxarILSrBTV9oP9aq5SZcXIIqMSohhBBCiHsTHh5OdHQ0Q4YM4b333sNkMjFp0iQCAwOJjo4GYPTo0XTu3Jk6depw9epVvv32W+rXrw9ASEgIGo2GhIQEunTpgtFoxGQyMWDAAMaPH4+3tzd+fn7ExcWVSmjczsSJE2nZsiXDhw9n8ODBuLm5cfToURITE1m0aBHJycnExcURExNDgwYNMBgMbN26lQ8//JCJEycCthlVs2fP5rXXXsPFxYWYmBj0ej2ff/45U6ZMYcaMGTzxxBMO1/15wgagYcOG6PV6h2N5eXnMnDmT7t27ExAQwOXLl1m8eDFnz56lZ8+egC0h9dxzzxESEsKcOXO4dOmS/Xx/f/87jr1bt24MGTKEJUuWEBkZSWZmJqNHj6ZFixa3rcd1U25uLmlpafbn6enpJCcn4+3tbU8Kjh8/nt69e9OuXTsiIiL46quv+O9//8uWLVsA25LLtWvX0qlTJ3x9fTlz5gx/+9vfMBqN9kLrHTt2ZPz48QwbNowRI0ZgtVr529/+hk6nIyLCVlP15tfFTXv37kWr1Za63/cyhsoiSSkhfsXOHT+G+Xo+KW7nKNSYcc/PBUCjFE6uToATTiZPfL1q3rmTzIPkrupN11brKKj3tP2w+41PFYR4EArNFob+cx/pl3OpYTpNDdMZAJyc3HB1Da3k6IQQQggh7t3y5csZNWoUXbt2pbi4mHbt2vHFF1/YEzIWi4Vhw4Zx5swZPDw8iIqKYt68eYBtSdu0adOYNGkSr776Kv3792fFihXMnTuX2NhYunbtioeHBxMmTOD06dO4lFUjFtuSta1bt/L666/z7LPPopSiVq1a9O7dG4CgoCBq1qzJtGnTyMjIQKPR2J+PGTPG3s+YMWMICwsjPj6e+fPnk5dnqwG6Zs0a+vTpU+q6tzt2+vRpgoIcP3h0cnLi+PHjrFy5ksuXL+Pj40Pz5s1JSkqiYcOGACQmJpKWlkZaWlqp88vaMXHgwIFcv36dRYsWMW7cOLy8vHj++eeZNWtWmfds79699qQQ2HY+BBgwYAArVqwA4He/+x1Lly7l7bffZuTIkdStW5dPPvmEtm3bAuDi4kJSUhLvvvsuV69epVq1arRr146dO3fi5+cHQL169fjvf//LtGnTaNWqFVqtlqeffpqvvvrqtkXl70ZFxlBZNOp+97n8BcrJycHT05Ps7OxfTcV6IW7nxJ5daP6TzSeu+ymgENNx2zaxL/yQwbbuTdBeHYg1MIcRb750506OJfDT56/xzDP/xklZaafP5+mgWkwIvb8fjELc6rsfr9Bn2XfU9vqRyS3etR93dg6gbZvtdz5RiIdM3jM4kvshhHiYCgsLSU9PJzQ0tNzkinCUl5dHYGAg8fHxDBo06JFfPysriw4dOuDh4cGXX36Jq+svY8mluD9lfc9W9D2DzJQS4lespLAQF42eEizUSj3Bzf0qktrMQXvVtj5dqy+nYLm5gHwnW62pKgYDa9o2eYgRi9+qa/lmAJ4OyAbAyckDN7dQqgf0qsywhBBCCCEeSwcOHOD48eO0aNGC7Oxspk+fDmBfEvioeXt7s2nTJhYvXsyuXbvo0KFDpcQhfnkkKSXEr9TVz07g/r0TGq0OQ951njh8mG8a1rS9qPnf2m2noKLbd3CTOY/8GzvuuUodKfGAFZotbEu9RNIJWy0AX7di259Vn6dhw/iyThVCCCGE+E2bM2cOKSkpGAwGmjZtSlJSElWrVq20eHx8fHjrrbcq7fril0mSUkL8SuUfvAQKSrCgNxc57Lin0Wj4su77nPM4wZQWk8ruyFxA/o1dz6S4uXjQlm49ybubTuDjcoWuoXupaUoHQKev2E4sQgghhBC/RU8//TT79u2r7DCEuG+SlBLiV6i4IJ+Cgjw+d95PriUb90unSKoTDIDS2L7tG/pUpWvj9nQO7Xz7Tq6c5Kc9q3jNUo/TdcYB4KqVpJR4sDIu24piDnjiCxp677EfNxh8KyskIYQQQgghxCMiSSkhfoWuXbxAtraQ69oCdLm5YDFjuTHLSaO37e4Q3WQgrZ9oeudOdrzLfy+ZSQrrbj8U5ur8UOMWvz05hSUA1PEtBAv4+LTH5N6AwOqld2gRQgghhBBC/LpIUkqIX6GSvCJKNFYAdMW2ZXtVcgupV2xlTy1bksloLCfBlJ9FnpMtgdVJm8XgOvVo7uf/8IIWvylf/ZDJ10cucOjMjcLm5AMQHPxHfLzbVmZoQgghhBBCiEdEklJC/AqV5BdSggW367nUPHGEU14u5LvX5ECVvvZvelcXY9mdmPMp0NoSV7UD69EuoPrDDVr8pkz85DA5BUV0qLEV7+rZOKkLKECnk1pSQgghhBBC/FZIUkqIXxFlVeQmnUEdzaMECzV/ysA1Pxe8XLDoTOiAfH02ZzxP0MOzQdmdFedT4HyzwLmm7LZC3AWLVZFdYKaedxq/r/cZAMo2sQ9nqSUlhBBCCCHEb8YDq1r89ttv07x5c0wmE35+frz00kukpKQ4tCksLGTYsGH4+Pjg7u5Ojx49uHDhgkObU6dO8eKLL+Lq6oqfnx/jx4+npKTEoc2WLVto0qQJzs7O1K5dmxUrVjyoYQjxi1b8Uw7ZX2bATyUUaUrILdZh1dgSSlatAYBPGs1lR73/4OHsUXZn5rz/7bonBc7FA5RbZPuZ7mmwLd1zcQkipMafaNhgLi4uMiNPCCGEEEKI34oHNlNq69atDBs2jObNm1NSUsKUKVPo1KkTR48exc3NDYAxY8awYcMGPvroIzw9PRk+fDgvv/wyO3bsAMBisfDiiy/i7+/Pzp07yczMpH///uj1ev76178CkJ6ezosvvkhsbCyrVq1i8+bNDB48mICAACIjIx/UcIT4RbqUcpJ07QW+1R9Bm30JN30hhd625JNGY0tK9akbTdu6z+Gqd719J5/FsjXzLGND3+SiwRsAVydJSon7V2i2sOnYBTKvFQLg4Wz702R6gtq1J1ZmaEIIIYQQQohK8MB+0/zqq68YOHAgDRs2pHHjxqxYsYJTp06xb98+ALKzs/nggw+YO3cuzz//PE2bNmX58uXs3LmT7777DoCvv/6ao0eP8q9//YunnnqKzp0785e//IXFixdTXFwMwNKlSwkNDSU+Pp769eszfPhwXnnlFebNm/eghiLEL9aFkz9yTnsVq0bhfPEMVl0J+c56ADRaW3Kqd+M/0My/2e07sJTAwTVs8GzGWZdqmLV6tMAT7uXUnxKiAlbszGD46gP8M+lrYp/8kIjg7QDodeXM2hNCCCGEeMwNHDgQjUaDRqPBYDBQu3Ztpk+fXmrVz93asmULGo2Ga9euPZhAKyA9PZ2+fftSvXp1XFxcCAoKIjo6muPHjzu0S0hIoH379phMJlxdXWnevHmpVUwZGRloNBqSk5MrfP2pU6dSr1493NzcqFKlCi+88AK7d+926HPQoEGEhoZiNBqpVasWcXFx9pxBWVatWkXjxo1xdXUlICCAP/7xj1y5cqXMc5YsWcKTTz6Jh4cHHh4etGrVii+//NL+elZWFiNGjKBu3boYjUZq1KjByJEjyc7OtrdZsWKF/evj54+LFy/a2xUVFfH6668TEhKCs7MzNWvW5MMPP3SI591337VfKzg4mDFjxlBYWFjmGD799FM6deqEj4/PXf97PGwPbfrDzX8Ab2/bTIt9+/ZhNpt54YUX7G3q1atHjRo12LVrFwC7du2iUaNGVKtWzd4mMjKSnJwcjhw5Ym9zax8329zsQ4jfMmuhxbbrnlJoLRYAQrK01Nc74+TcGIUVo4vLnTsw23ZAy9fa2vy5uicH2zSkhZf7Q49d/Pr9dCUPgFfqbqO5fzLVXDMBcDEGVWZYQgghhBAPRFRUFJmZmZw4cYJx48YxdepU3nnnncoOy64iSRuz2UzHjh3Jzs7m008/JSUlhbVr19KoUSOHxNjChQuJjo6mTZs27N69m0OHDtGnTx9iY2N57bXX7ivOOnXqsGjRIg4fPsz27dupWbMmnTp14tKlSwAcP34cq9XKe++9x5EjR5g3bx5Lly5lypQpZfa7Y8cO+vfvz6BBgzhy5AgfffQR33//PUOGDCnzvKCgIP72t7+xb98+9u7dy/PPP090dLQ9R3Hu3DnOnTvHnDlz+OGHH1ixYgVfffUVgwYNsvfRu3dvMjMzHR6RkZG0b98ePz8/e7tevXqxefNmPvjgA1JSUlizZg1169a1v7569WomTZpEXFwcx44d44MPPmDt2rXljj0vL4+2bdsya9asMttVhodS6NxqtTJ69GjatGnDE088AcD58+cxGAx4eXk5tK1WrRrnz5+3t7k1IXXz9ZuvldUmJyeHgoICjMbSMzqKioooKiqyP8/Jybm/AQrxmFJmKyVYaP799xz3cALgfOif0Ghd0QDFToV3XrYHYC4AoOBGLalgN3d8DfqHHbb4jcguMANQq2oJWKF6QC+qVGmFr2/HSo5MCCGEEOL+OTs74+/vD8Cf//xnPvvsM9avX09sbCyjRo3iv//9L0VFRbRv354FCxYQHh4OwE8//cTw4cPZvn07xcXF1KxZk3feeYcGDRoQEREBQJUqVQAYMGAAK1as4Pr168TGxrJu3To8PDyYMGECn3/+OU899RTvvvsuADVr1mTQoEGcOHGCdevW8fLLL7NixQq2b9/O5MmT2bt3L1WrVuV3v/sdb7/9Nm5ubhw5coSTJ0+yefNmQkJCAAgJCaFNmzb2cZ4+fZpx48YxevRoe5kdgHHjxmEwGBg5ciQ9e/bkmWeeuaf72LdvX4fnc+fO5YMPPuDQoUN06NCBqKgooqKi7K+HhYWRkpLCkiVLmDNnzh373bVrFzVr1mTkyJEAhIaGMnTo0HITNd26dXN4PnPmTJYsWcJ3331Hw4YNeeKJJ/jkk0/sr9eqVYuZM2fyhz/8gZKSEnQ6HUaj0SFXcenSJb755hs++OAD+7GvvvqKrVu38uOPP9on99SsWdPh2jt37qRNmzb2e1SzZk1+//vfO8wku52YmBjANsvscfNQZkoNGzaMH374gX//+98Po/u79vbbb+Pp6Wl/BAcHV3ZIQjxQ1oIS8vaexzXflRKsVL146X8vavRotVfJNJ1kT40v0GvLSDKZbTNZCnW2H5hGqSUlHoBP9p2h4Vtf8cVh24cLeo3t66yq7wv4+3fHyUmWhwohhBDi9pRS5FkslfJQSt1X7EajkeLiYgYOHMjevXtZv349u3btQilFly5dMJttH9gNGzaMoqIitm3bxuHDh5k1axbu7u4EBwfbkx0pKSlkZmYyf/58AMb+f/buPT6mM3/g+GcmM5NMkkkiIXIVCXGJYl3rUjSUhErtVl3KurSodFG3unYrKLVUWLd16bbY34ZattVsaDW0NC7VIkpdEkEa4i7knsxM5vz+GKamkYS2hPq+X695tXPOc57zPWcyMvPN83yfcePYs2cP8fHxJCYmkpSUxKFDh0rFMH/+fBo3bkxycjJvv/02p0+fJjIykp49e3LkyBE2bNjA7t27GTlyJADVqlVDrVazadMmSm7NvPi5TZs2YTKZ7joiavjw4bi6urJ+/fpfde9uMxqNrFq1Cnd3dxo3blxmu+zsbFsipyytW7fm3LlzbN26FUVRuHz5Mps2baJbt273HE9JSQkfffQR+fn5tG7dutx43Nzc0GjuPg7oX//6F87Ozrz00ku2bfHx8TRv3px58+bh7+9PnTp1ePPNNyksLLS1adOmDQcPHuTbb78F4MyZM2zduvW+ruFR85uPlBo5ciQJCQl8/fXXBAT8NCXDx8cHo9HIzZs37UZLXb582ZZN9vHxsd3cO/ff3nf7vz9fse/y5cu4ubnddZQUwJQpUxg3bpzteU5OjiSmxO9Kzo4M8nZn4oEnZs1ZTHa/PzV85/st39XYikFnQHVrNb5S8q7A5eMAFDpYR1PJqnvit/DZD5fIN5YwoP4GGlc7hkNJLgAaqSUlhBBCiAoUWCzU+vpopZz7dPuGuDg43PdxiqKwY8cOtm3bRteuXdm8eTN79uyhTZs2gLWuUWBgIJs3b6ZXr15kZGTQs2dPGjZsCFhH/tx2O9Hi7e1t+x6dm5vL2rVrWbduHZ06dQJg9erV+PmVXsW4Y8eOjB8/3vZ86NCh9O/fnzFjxgAQGhrK4sWL6dChA8uXL8ff35/FixczceJEZsyYQfPmzQkPD6d///62uFJTU3F3d8fX17fU+XQ6HSEhIaSmpt73fbtTQkICffv2paCgAF9fXxITE6latepd26alpbFkyZJyR0kBtG3blri4OPr06UNRURFms5moqCiWLVtWYTxHjx6ldevWFBUV4erqyieffEJYWNhd2167do133nmH1157rcz+PvjgA/r162eXwzhz5gy7d+/GycmJTz75hGvXrvGXv/yF69evs3r1asA6iuzatWs888wzKIqC2WwmOjq6wul7j7Lf7BunoiiMHDmSTz75hC+//JLg4GC7/c2aNUOr1bJjxw7btpSUFDIyMmwZxtatW3P06FG7Ql+JiYm4ubnZXvDWrVvb9XG7TXlZSkdHR1tRstsPIX5PzDeK2KM5yYe6HdzM/Ib9odYkLio1KpUKZ72eDgEdmNhi4t07uJAMsXXZ+NVaBjWYzXHnmoCsuid+GzlFJrRqI88G7qGK002gBLXaCRfn4IoOFUIIIYR4bCQkJODq6oqTkxNdu3alT58+DB48GI1GYzeVzcvLi7p163LixAkA3njjDWbNmkXbtm2JiYnhyJEj5Z7nzJkzmEwmWrZsadvm7u5uV3votubN7Rc4+v7771mzZg2urq62R0REBBaLhbNnzwLWkVuXLl0iLi6O1q1bs3HjRho0aEBiYuI93wudTldhm7i4OLs4kpKSbPvCw8M5fPgwe/fuJTIykt69e9vlCW7LzMwkMjKSXr162dWGurPf6OhoAI4fP87o0aOZNm0aBw8e5PPPPyc9Pd22Pykpye64uLg4W39169bl8OHD7N+/n9dff51BgwZx/PjxUvHk5OTw/PPPExYWxvTp0+963fv27ePEiRN2NafAWgZJpVIRFxdHy5Yt6datGwsWLGDt2rW20VI7d+7k3Xff5R//+AeHDh3i448/ZsuWLbzzzjsV3tNH1W82UmrEiBGsW7eOTz/9FIPBYKsB5e7ujl6vx93dnSFDhjBu3Dg8PT1xc3Nj1KhRtG7dmlatWgHQpUsXwsLCGDBgAPPmzePSpUv89a9/ZcSIETg6OgIQHR3N0qVLmThxIq+++ipffvkl//nPf9iyZctvdSlCPFZuXr7E2YMHSXO/hMViRlOQZ9uncvQAoF61OozsNL3sTi79AIqFabVHcUP7U9LW11HqSYlfTlEUFAVyi8zoNbdXBFHRosVmnBz90OnKH2IthBBCCOGsVnO6fcNKO/f9CA8PZ/ny5eh0Ovz8/NBoNMTHx1d43NChQ4mIiGDLli188cUXzJkzh9jYWEaNGvVLQ7dxcXGxe56Xl8fw4cNtdZXuVKNGDdv/GwwGoqKiiIqKYtasWURERDBr1iw6d+5MaGgo2dnZXLhwodToLKPRyOnTp4mIiKgwthdeeMEuWefv728Xd+3atalduzatWrUiNDSUDz74gClTptjaXLhwgfDwcNq0acOqVavs+r5zdbnbg1LmzJlD27ZtmTBhAgCNGjXCxcWFdu3aMWvWLJo3b2533J21rG+vqAjWATffffcdixYtYuXKlbY2ubm5REZGYjAY+OSTT9Bq7/5d6p///Cd/+MMfaNasmd12X19f/P39cXd3t22rX78+iqJw/vx5QkNDefvttxkwYABDhw4FoGHDhuTn5/Paa6/x1ltvlXtPH1W/WVJq+fLlADz77LN221evXs3gwYMBWLhwIWq1mp49e1JcXExERAT/+Mc/bG0dHBxISEjg9ddfp3Xr1ri4uDBo0CBmzpxpaxMcHMyWLVsYO3YsixYtIiAggH/+85/39EMvxO/RhZTjqBUwY6H6xYsUACgKTS658f0fOoARdI4VvNVvFTjP01h/af01xJenDHoaGsopii5EObLyjUQt2U3mTevPVnVn6381GlfcDE9VZmhCCCGEeIyoVKpfNIWuMtxOpNypfv36mM1m9u/fb5u+d/36dVJSUuymfwUGBhIdHU10dDRTpkzh/fffZ9SoUbYRR3fWdwoJCUGr1fLdd9/ZEknZ2dmkpqbSvn37cmNs2rQpx48fLxVneVQqFfXq1WPv3r0AvPTSS0yaNInY2FhiY2Pt2q5YsYKCggIGDhxYYb8GgwGDwXBPMVgsFrvFyzIzMwkPD6dZs2asXr0a9c8SiHe7voKCglI1nhxu/WwpioJer7/n+/LzeHJycoiIiMDR0ZH4+HicyljxPC8vj//85z/MmTOn1L62bduyceNG8vLycHW1rn6empqKWq22lUYqKCgoda13XsP93NNHxW+WlLqXInBOTk4sW7as3DmbQUFBbN26tdx+nn32WZKTk+87RiF+j0zFxahUGlxzs2n57bfsrB+ECjUnwoahu7Xqq05fUVIqnxLUmFTWf9Be9vXCS/dAFucUT4jvz90k82YhjaoeY0DYRzhrrL+0pY6UEEIIIZ4koaGh9OjRg2HDhrFy5UoMBgOTJ0/G39+fHj16ADBmzBi6du1KnTp1uHHjBl999RX169cHrN+PVSoVCQkJdOvWDb1ej8FgYNCgQUyYMAFPT0+8vb2JiYlBrVaXXT/2lkmTJtGqVStGjhzJ0KFDcXFx4fjx4yQmJrJ06VIOHz5MTEwMAwYMICwsDJ1Ox65du/jwww+ZNGkSYB1RNW/ePN58802cnJwYMGAAWq2WTz/9lKlTpzJr1iyeesr+j5ApKSmlYmnQoEGp0UT5+fnMnj2bF154AV9fX65du8ayZcvIzMykV69egDUh9eyzzxIUFMT8+fO5evWnRZ5u16K+m6ioKIYNG8by5cuJiIjg4sWLjBkzhpYtW961HtdtU6ZMoWvXrtSoUYPc3FzWrVvHzp072bZtG2BNSHXp0oWCggL+/e9/k5OTQ05ODmAtHO9wR1J1w4YNmM1m/vznP5c6T79+/XjnnXd45ZVXmDFjBteuXWPChAm8+uqrttpTUVFRLFiwgCZNmvD000+TlpbG22+/TVRUlN15fi4rK4uMjAwuXLgA/PR6+Pj4lHvPHgb51inEY85UXIRapUZfWEjJ7V9CKutbO0t/iSuuPxJeu375nRgLKFL/NO/byaH8X2ZCVCSnyLqaTNfax/B0yrZtd3Mre9UUIYQQQojfo9WrVzN69Gi6d++O0Wikffv2bN261ZaQKSkpYcSIEZw/fx43NzciIyNZuHAhYJ1+NWPGDCZPnswrr7zCwIEDWbNmDQsWLCA6Opru3bvj5ubGxIkTOXfuXJkjdG5r1KgRu3bt4q233qJdu3YoikKtWrXo06cPAAEBAdSsWZMZM2aQnp6OSqWyPR87dqytn7FjxxISEkJsbCyLFi0iP9+6uvL69evp27dvqfPebdu5c+fsFkcD66ifkydPsnbtWq5du4aXlxctWrQgKSmJBg0aANaa0mlpaaSlpZU6vrzBMoMHDyY3N5elS5cyfvx4PDw86NixI3Pnzi33nl25coWBAwdy8eJF3N3dadSoEdu2baNz584AHDp0iP379wOlR2idPXuWmjVr2p5/8MEHvPjii3aLv93m6upKYmIio0aNonnz5nh5edG7d29mzZpla/PXv/4VlUrFX//6VzIzM6lWrRpRUVHMnj273GuIj4/nlVdesT2//XrExMSUWfvqYVEpv3ady8dQTk4O7u7utmUahXhc3fg0jewD5yg2mvkqayOND3zL3joBKA6O6N1GsCvkIy7VOMn/dfs/gtyCSndQlA3f/RNObiHr8inC2v4PgPMdGqNRS2JK3D+j2cJ36Vl8/sMl/u+bH3mn/Vr8nA4SEjyW6tWfR68PQqWSAvri8SGfGezJ/RBCPEhFRUWcPXuW4ODgCpMrwl5+fj7+/v7ExsaWKqD9MGRlZdGpUyfc3Nz47LPPcHaWMiBPgvLes/f6mUFGSgnxmDIbTWTvO88ebQo3HW5izr/ODwG3lkm9NVKqa2BbBvVZgbqsJMDh9bDDWrOtWGc9VqNCElLiF1vy5SmWfJmGRm3C3/UqrpqbADi71MJZVtsTQgghhPhNJCcnc/LkSVq2bEl2dratDvPtKYEPm6enJ9u3b2fZsmXs27ePTp06VUoc4vEjSSkhHlMnd+0kV53PKYdLaHOu4lRSTI7zrey0xloYz9HNs+yEFEDBNW5oDHwd/CJX/NuAAo73ucqIEHdKu2Jd/TGm9SL8XDJs2zWax6vgohBCCCHEo27+/PmkpKSg0+lo1qwZSUlJVK1atdLi8fLyYtq0aZV2fvF4kqSUEI+pvKvXMaHBqbAQ73PnuKGFKvmF1LNcZbf/i1AAjo668jsxFfJmnQlsqdYBbk3kdXGQpJT45W4WmHBQldgSUlqtJ3p9EO5uTSo5MiGEEEKI348mTZpw8ODByg5DiF9NklJCPKYsRjNm1NRJSUWbdZUbvl4UutbjB7cxOBdYV2fQOla06l4hPzpZV5po6KrHQ+vAi9WrPOjQxe/Qfw+eZ+H2VC7nFOGsLbBtb/fMN6hUj8cyzkIIIYQQQoiHS5JSQjyGFIuCUmTGrHLAUlRCya0pdyZdFVC7oAJM6mLcvCuYMmUqpEBnnfI3K9Sfpz1cH3Dk4vdqw3fnOH+jgNcbraaOZxoAGo2bJKSEEEIIIYQQZZKklBCPGdO1Qq7+4zBBBbU44vAjxWYH1Krbhck13HC6zOf13qdQm8sz7svv3sntRTfNheTrraOqZNqe+DVyikxUcbxJc5/Dtm1uhoaVF5AQQgghhBDikSdJKSEeM8Yfc7hQeI2D2tPkKLlUV5socLj1VlZpMGoKydZfpYahBvU865XuwGKBNd1QMvZxVetJfsthADg7yIgW8cvlFplx1hYCoNG407TpOlyca1VyVEIIIYQQQohHmSSlhHjMfL8tkdOaXC463MQl7ShXqwBYp92pVFocdVqODjpadgf5VyBjH0PDZrCl2rO2zc4yUkrcp5wiE1P+e5QruUVczimiplsRAFqtOwbXuyREhRBCCCGEEOIOkpQS4jFSlJfH9bNpmHyq4pqTg8pUDIBzsYkSZ0cUbS3QFJTfiTEfgG88/gCACmjl4YK3Tv45EPdnZ8pVthy9iJ/LRWJafYi7Yy4AGk0FtcyEEEIIIYQQAklKCfFYMRUX4aDSYKaEFkn7OBDiBUDoDR8y/euSV+KJSntvSakitSMA+1rVp6be8YHGLX6fsguMAHQLTcPP9bJtu8HwVGWFJIQQQgghhHiMyHwdIR4jpuJiHFRazCoL+uKfkk8n6w0kr6QVACqdpYJOrMcVq7UAOKpV5bUW4q4KjGau5lpH6vkarMkpX58Xefrpz6lXd1ZlhiaEEEII8dANHjwYlUqFSqVCp9NRu3ZtZs6cidls/lX97ty5E5VKxc2bN3+bQO/B2bNn6devH35+fjg5OREQEECPHj04efKkXbuEhAQ6dOiAwWDA2dmZFi1asGbNGrs26enpqFQqDh8+fM/nnz59OvXq1cPFxYUqVarw3HPPsX//frs+hwwZQnBwMHq9nlq1ahETE4PRaKyw77i4OBo3boyzszO+vr68+uqrXL9+/Z5j+9vf/oZKpWLMmDF220+fPs2f/vQnqlWrhpubG7179+by5ct2bWbPnk2bNm1wdnbGw8Pjrv3f/hm68/HRRx/Z9n/88cd07tzZdp7WrVuzbdu2CuP++OOP6dKlC15eXvf9ejxokpQS4jFhzMyjeP81qukDMStmHLiVfLr1j9V1/QVSqx7AqUkZI6UsFkgYC1vexIwDZpV1oKSTWv4ZEPfn/a/P0CBmG/+35zs6BOzGU5cKgN65Jq4uoahU8jMlhBBCiCdPZGQkFy9e5NSpU4wfP57p06fz3nvvVXZYNveStDGZTHTu3Jns7Gw+/vhjUlJS2LBhAw0bNrRLjC1ZsoQePXrQtm1b9u/fz5EjR+jbty/R0dG8+eabvyrOOnXqsHTpUo4ePcru3bupWbMmXbp04erVqwCcPHkSi8XCypUrOXbsGAsXLmTFihVMnTq13H737NnDwIEDGTJkCMeOHWPjxo18++23DBs27J7i+u6771i5ciWNGjWy256fn0+XLl1QqVR8+eWX7NmzB6PRSFRUFBbLTwMGjEYjvXr14vXXXy/3PKtXr+bixYu2xx//+Efbvq+//prOnTuzdetWDh48SHh4OFFRUSQnJ5fbZ35+Ps888wxz5869p2t9qJQnUHZ2tgIo2dnZlR2KEPfswrv7lcSp65V5095V3pn6V2V/o4bK/N7PK7F9eyhLh+9QxswZo+z4cYdSYCooo4PvFSXGTVFi3JTcmdWV6l8mK9W/TFYKzCUP90LEY6//+98oQZMSlMX/iVS27wixPc6fX1/ZoQnxm5PPDPbkfgghHqTCwkLl+PHjSmFhYWWHct8GDRqk9OjRw25b586dlVatWilZWVnKgAEDFA8PD0Wv1yuRkZFKamqqrV16errSvXt3xcPDQ3F2dlbCwsKULVu2KGfPnlUAu8egQYMURVGUnJwcpV+/foqzs7Pi4+OjLFiwQOnQoYMyevRoW79BQUHKzJkzlQEDBigGg8F2bFJSkvLMM88oTk5OSkBAgDJq1CglLy9PURRFSU5OVgAlPT29zGvNyMhQtFqtMm7cuFL7Fi9erADKN998oyiKYruG5OTk+7+pt9z+3bN9+/Yy28ybN08JDg4ut5/33ntPCQkJKRWvv79/hTHk5uYqoaGhSmJiYqn7vG3bNkWtVtv9brx586aiUqmUxMTEUn2tXr1acXd3v+t5AOWTTz6pMJ47hYWFKTNmzLintr/F63Gn8t6z9/qZQf6cLcRjwGwyYrpZSKrDBQpK8nDMPMXBYB/rTpUDAG7VatCxRkf0Gv3dOzHmAXDZox4Hu6+1bZbpe+J+3Sy0/pWtvre1PlmVKq3x9++Ht3fXygxLCCGEEL9DiqJQYDRXykNRlF8Vu16vx2g0MnjwYA4cOEB8fDz79u1DURS6deuGyWQCYMSIERQXF/P1119z9OhR5s6di6urK4GBgfz3v/8FICUlhYsXL7Jo0SIAxo0bx549e4iPjycxMZGkpCQOHTpUKob58+fTuHFjkpOTefvttzl9+jSRkZH07NmTI0eOsGHDBnbv3s3IkSMBqFatGmq1mk2bNlFSUnLX69q0aRMmk+muI6KGDx+Oq6sr69ev/1X37jaj0ciqVatwd3encePGZbbLzs7G09Oz3L5at27NuXPn2Lp1K4qicPnyZTZt2kS3bt0qjGPEiBE8//zzPPfcc6X2FRcXo1KpcHT8qU6vk5MTarWa3bt3V9j33c5VtWpVWrZsyYcffljuz6HFYiE3N7fCa3+USaFzIR4D19J/RK1SY1QsFF/PxbUwjwJHHQAqjQsAGm0FOWZTIRmOPrRu9A9KbloTWU5qFWqVJKXEvdl/5jr/PXSe9GvWKaJqJR8FqBP6Nq6udSs3OCGEEEL8LhWaSgibVnHNnAfh+MwInH/BCtWKorBjxw62bdtG165d2bx5M3v27KFNmzaAta5RYGAgmzdvplevXmRkZNCzZ08aNmwIQEhIiK2v28kGb29vWx2i3Nxc1q5dy7p16+jUqRNgnfLl5+dXKpaOHTsyfvx42/OhQ4fSv39/W02k0NBQFi9eTIcOHVi+fDn+/v4sXryYiRMnMmPGDJo3b054eDj9+/e3xZWamoq7uzu+vr6lzqfT6QgJCSE1NfW+79udEhIS6Nu3LwUFBfj6+pKYmEjVqlXv2jYtLY0lS5Ywf/78cvts27YtcXFx9OnTh6KiIsxmM1FRUSxbtqzc4z766CMOHTrEd999d9f9rVq1wsXFhUmTJvHuu++iKAqTJ0+mpKSEixcv3tsF3zJz5kw6duyIs7MzX3zxBX/5y1/Iy8vjjTfeuGv7+fPnk5eXR+/eve/rPI8SGSklxGPAXFAEQF52Pu2/txb5MxRBVZqidfkTABrHCt7O5iJOuQRRonJAq1IR4KRlaEC1Bxq3+H2ZteUE/zlwHn/nE4QHJqFYrKPvNBpDJUcmhBBCCFH5EhIScHV1xcnJia5du9KnTx8GDx6MRqPh6aeftrXz8vKibt26nDhxAoA33niDWbNm0bZtW2JiYjhy5Ei55zlz5gwmk4mWLVvatrm7u1O3buk/EjZv3tzu+ffff8+aNWtwdXW1PSIiIrBYLJw9exawjtS5dOkScXFxtG7dmo0bN9KgQQMSExPv+V7odLoK28TFxdnFkZSUZNsXHh7O4cOH2bt3L5GRkfTu3ZsrV66U6iMzM5PIyEh69eplVxvqzn6jo6MBOH78OKNHj2batGkcPHiQzz//nPT0dNv+pKQku+Pi4uI4d+4co0ePJi4uDicnp7teR7Vq1di4cSP/+9//cHV1xd3dnZs3b9K0aVPU91m/9+2336Zt27Y0adKESZMmMXHixDLrkq1bt44ZM2bwn//8B29v7wrv6aNKRkoJ8RgwFxrRALqcm1huTbczOfliqvIsqlujOTVuFQwvNhVSoLb+Q9rUzZlPm4Y+uIDF79L1vGI8HG8yoflSVLd/8FCj0bhXalxCCCGE+P3Sax04PjOi0s59P8LDw1m+fDk6nQ4/Pz80Gg3x8fEVHjd06FAiIiLYsmULX3zxBXPmzCE2NpZRo0b90tBtXFxc7J7n5eUxfPjwu468qVGjhu3/DQYDUVFRREVFMWvWLCIiIpg1axadO3cmNDSU7OxsLly4UGp0ltFo5PTp00REVPyavfDCC3bJOn9/f7u4a9euTe3atWnVqhWhoaF88MEHTJkyxdbmwoULhIeH06ZNG1atWmXX952ry7m5uQEwZ84c2rZty4QJEwBo1KgRLi4utGvXjlmzZtG8eXO746pXr86OHTu4cuUKTZs2tW0vKSnh66+/ZunSpRQXF+Pg4ECXLl04ffo0165dQ6PR4OHhgY+Pj92ot1/i6aef5p133qG4uNhueuBHH33E0KFD2bhxo92UwvLu6aNKklJCPOJykzJRvs2nACOqEjMlt5JSha469MBRn12c9jrM897h5XdkLqLAwZqUcnaQQZLi/uUUmanudAOVSsHBwQUvz/ZUqdIajcal4oOFEEIIIX4BlUr1i6bQVYbbiZQ71a9fH7PZzP79+23T965fv05KSgphYWG2doGBgURHRxMdHc2UKVN4//33GTVqlG3E0Z31nUJCQtBqtXz33Xe2RFJ2djapqam0b9++3BibNm3K8ePHS8VZHpVKRb169di7dy8AL730EpMmTSI2NpbY2Fi7titWrKCgoICBAwdW2K/BYMBguLcR9xaLheLiYtvzzMxMwsPDadasGatXry41Iulu11dQUIBGY/+z5OBgTTwqioJery91XKdOnTh69KjdtldeeYV69eoxadIk2/G33Z5i+OWXX3LlyhVeeOGFe7q+shw+fJgqVarYJaTWr1/Pq6++ykcffcTzzz9v1/5+7umj4vF4dwvxhLIUmrm+5RT/1X1DnlMRrmbTTyOlFAf0wHn3VG5WuUBLn5Z37+RUImx6FYpzKPD7IyBJKXHvLBaF6f87RurlXPKKzdQ0FALg7FyThg2XVnJ0QgghhBCPttDQUHr06MGwYcNYuXIlBoOByZMn4+/vT48ePQAYM2YMXbt2pU6dOty4cYOvvvqK+vXrAxAUFIRKpSIhIYFu3bqh1+sxGAwMGjSICRMm4Onpibe3NzExMajValQV1IudNGkSrVq1YuTIkQwdOhQXFxeOHz9OYmIiS5cu5fDhw8TExDBgwADCwsLQ6XTs2rWLDz/8kEmTJgHWEVXz5s3jzTffxMnJiQEDBqDVavn000+ZOnUqs2bN4qmnnrI7b0pKSqlYGjRogFartduWn5/P7NmzeeGFF/D19eXatWssW7aMzMxMevXqBVgTUs8++yxBQUHMnz+fq1ev2o738fEp89qjoqIYNmwYy5cvJyIigosXLzJmzBhatmx513pcYE3y/PxaXFxc8PLystu+evVq6tevT7Vq1di3bx+jR49m7NixdlMqMzIyyMrKIiMjg5KSEtuorNq1a+Pq6sr//vc/Ll++TKtWrXByciIxMZF3333XrqD8unXrGDRoEIsWLeLpp5/m0qVLgLWovrt72bMXbp/3woULwE+vh4+PT7n37GGQpJQQj7DCrBzyVcXkqYtQGYtQl9zgmquzdafK+leT2fVfJqxLV7Rq7d07OZVIVglMqT+NI7eKUevvc26zeHKdvJTLv/b9SFX9dYY+tYUAg/WXvkbjVsmRCSGEEEI8HlavXs3o0aPp3r07RqOR9u3bs3XrVltCpqSkhBEjRnD+/Hnc3NyIjIxk4cKFgHX61YwZM5g8eTKvvPIKAwcOZM2aNSxYsIDo6Gi6d++Om5sbEydO5Ny5c2XWPbqtUaNG7Nq1i7feeot27dqhKAq1atWiT58+AAQEBFCzZk1mzJhBeno6KpXK9nzs2LG2fsaOHUtISAixsbEsWrSI/Hzrqszr16+nb9++pc57t23nzp0jICDAbpuDgwMnT55k7dq1XLt2DS8vL1q0aEFSUhINGjQAIDExkbS0NNLS0kodX95KdYMHDyY3N5elS5cyfvx4PDw86NixI3Pnzi33nt2LlJQUpkyZQlZWFjVr1uStt96yu18A06ZNY+3an1ZBb9KkCQBfffUVzz77LFqtlmXLljF27FgURaF27dosWLDArlbWqlWrMJvNjBgxghEjRti2Dxo0iDVr1pQZX3x8PK+88ort+e3XIyYmhunTp/+aS//VVMqvXefyMZSTk4O7uzvZ2dm2+aVCPIq++/dGdMdcSFCS8Ew9SsEdeSezoSmummd5fmwDatatXnYnn45kw4UrjK431bZpXM3qTAwuvVqGED+3J+0a/f+5n0FPfUZ7v89s2/18e1O//pxKjEyIh0M+M9iT+yGEeJCKioo4e/YswcHBFSZXhL38/Hz8/f2JjY1lyJAhD/38WVlZdOrUCTc3Nz777DOcnZ0fegzi4SvvPXuvnxlkuIQQj7Ci7DzMlKDKyMWx2DptyjO/BH+1Fo3WumSss15ffifmIvIcrL8Umrk586+GwbxRo5wklhBY/8p07EI2yRk3AKjmUmD9b7UuhNWfR+3akyozPCGEEEKIJ1pycjLr16/n9OnTHDp0iP79+wPYpgQ+bJ6enmzfvp1OnTqxb9++SolBPJ4kKSXEI0wpNmNSlWAxKpTcmnKXWz2K6+6jcFK8ANA5VTAL11RI4a0C57WcHelS1R0nqSklKrDu2wyeX7ybpTu+52mfA3jrzwHg6dkOX9+eaLUelRugEE+IZcuWUbNmTZycnHj66af59ttvy22/ceNG6tWrh5OTEw0bNmTr1q22fSaTiUmTJtGwYUNcXFzw8/Nj4MCBtvoSQgghHi/z58+ncePGPPfcc+Tn55OUlGQrtF0ZvLy8mDZtGp06daq0GMTjR76ZCvEIKskp5uq/fkCbVYXrqlw0d6y6p8IVgB89jpFR6xDu1SoeKVWkttafklpS4l6dvJgLQN/6n/Fao3/hpTsDgE7rWZlhCfFE2bBhA+PGjSMmJoZDhw7RuHFjIiIiuHLlyl3b7927l5dffpkhQ4aQnJzMH//4R/74xz/yww8/ANZVhw4dOsTbb7/NoUOH+Pjjj0lJSfnVKwMJIYR4+Jo0acLBgwfJy8sjKyuLxMREGjZsWNlhCXHfpNC5EI+gwqPX+DJ1Hyc0maiKi3BR8jBqbi03qtJidiim+8jGNKraqOwVNtJ3w5UTkHWWQvdaAOhlhJS4RzlFJgCa+ReCAq6u9XAzNMLLq/xlhoUQv53bxU1vFyZdsWIFW7Zs4cMPP2Ty5Mml2i9atIjIyEgmTJgAwDvvvGNbTWnFihW4u7uTmJhod8zSpUtp2bIlGRkZtmXFhRBCCCEeFklKCfEIOnvgMDfU+WCx4JJ+HJWjBRO3k1I60Cq0DygnOZB3BdZG8aVHc77y7Mo+9z8AMlJKVOzI+ZvsOHGFo+ezAdCqC6AEatYcQXXvbpUcnRBPDqPRyMGDB5kyZYptm1qt5rnnniuzVse+ffsYN26c3baIiAg2b95c5nmys7NRqVR4eHj8FmELIYQQQtwXSUoJ8Qi6lJqK2cvCuRwnwiwWALxyCzF7aClSe4CmsPwOci+BYuH1sGlkawy2zV46ecuL8o356DBnruXTsOoxwgOvo+UyABqNrLIlxMN07do1SkpKqF7dfmGK6tWrc/Lkybsec+nSpbu2v3Tp0l3bFxUVMWnSJF5++eUyV8UpLi6muLjY9jwnJ+d+LkMIIYQQolzyDVWIR5BaUVFkMfPyngS+D/HEocSCQdeJc27BaFGh0ijld2AqpAS1LSH1WkA1vHUa+vhIPSBRvovZRfi7XmBM05XWDSXW/+i0VSovKCHEb85kMtG7d28URWH58uVltpszZw4zZsx4iJEJIYQQ4kkiSSkhHjGKogBqjBYzBlM+4IlK7cAln1Zob7Vx866guLkpnyK1o+3ppBAfXBwcHlTI4nfCaLZQaCrByz0LAI3GA0/PNjg7B+PqGlbJ0QnxZKlatSoODg5cvnzZbvvly5fx8fG56zE+Pj731P52QurHH3/kyy+/LHOUFMCUKVPspgTm5OQQGBh4v5cjhBBCCHFXUmBGiEdI8cVcVv79HyR5Z1FoKbStuFfiaJ3CZ9bcoHM/V/r95dnyOzIWUOigsz2VWlKiPOYSCzGf/sDQfx0AwFlrnR7qZmhAw6eWUCtkXNkF9YUQD4ROp6NZs2bs2LHDts1isbBjxw5at25912Nat25t1x4gMTHRrv3thNSpU6fYvn07Xl5e5cbh6OiIm5ub3UMIIYQQ4rciI6WEeEQoFoWMlQe5xFWwlOCUdYn0ah7WfbdySipNPnWerg+OZbx1r5+GbW9B1hnbSCmdSoVaEgqiHN+l32Dtvh9x1ebSJeg7GnufBcDhjnpkQoiHb9y4cQwaNIjmzZvTsmVL/v73v5Ofn29bjW/gwIH4+/szZ84cAEaPHk2HDh2IjY3l+eef56OPPuLAgQOsWrUKsCakXnrpJQ4dOkRCQgIlJSW2elOenp7odLq7ByKEEEII8YDI8AkhHhGKsQTTrWKyuuwbOGVf4qKHq3XfrS8KKoMHOJaTKDiyAVI/g2sptqSU3kHe5qJ8NwuMALwctpM+dTdTr8r3AOh05Y+gEEI8WH369GH+/PlMmzaNP/zhDxw+fJjPP//cVsw8IyODixcv2tq3adOGdevWsWrVKho3bsymTZvYvHkzTz31FACZmZnEx8dz/vx5/vCHP+Dr62t77N27t1KuUQghfi8GDx6MSqVCpVKh0+moXbs2M2fOxGw2/6p+d+7ciUql4ubNm79NoPfg7Nmz9OvXDz8/P5ycnAgICKBHjx6lFtpISEigQ4cOGAwGnJ2dadGiBWvWrLFrk56ejkql4vDhw/d8/unTp1OvXj1cXFyoUqUKzz33HPv377frc8iQIQQHB6PX66lVqxYxMTEYjcYK+46Li6Nx48Y4Ozvj6+vLq6++yvXr1ys8LjMzkz//+c94eXmh1+tp2LAhBw4csO2/8/W//YiMjLTro2bNmqXa/O1vf7PtT0lJITw8nOrVq+Pk5ERISAh//etfMZlMdv3cvHmTESNG4Ovri6OjI3Xq1GHr1q3lxv/xxx/TpUsXvLy87vv1eNBkpJQQj4graacxY8GiQJ5RwREwFBZTtTCf5Ib10Z8HB20FCaaiHM45Vqd7iw+57GBNaDmpZZSUKF9ukfXDkq9rNgDu7s0xGBpQI/CVygxLCAGMHDmSkSNH3nXfzp07S23r1asXvXr1umv7mjVr3qpbKIQQ4kGIjIxk9erVFBcXs3XrVkaMGIFWq2XKlCmVHRoARqOxwlGxJpOJzp07U7duXT7++GN8fX05f/48n332mV1ibMmSJYwZM4ZJkyaxfPlydDodn376KdHR0fzwww/Mnz//F8dZp04dli5dSkhICIWFhSxcuJAuXbqQlpZGtWrVOHnyJBaLhZUrV1K7dm1++OEHhg0bRn5+frnn3bNnDwMHDmThwoVERUWRmZlJdHQ0w4YN4+OPPy7zuBs3btC2bVvCw8P57LPPqFatGqdOnaJKFfuFgG6//rc5Ojr+vCtmzpzJsGHDbM8Nhp8GHGi1WgYOHEjTpk3x8PDg+++/Z9iwYVgsFt59913A+hp27twZb29vNm3ahL+/Pz/++CMeHh7l3tP8/HyeeeYZevfubXf+R4EkpYR4RPyYnIwWV85nO9MxLYXLnk64FSkUuT2Hkl0DALWuggSTMY8Dbk/ZElIAbavIFCxxd8cv5LBoRypnruYQ7J6Ou+4aAAEBf8anelQlRyeEEEII8XhxdHS0LS7x+uuv88knnxAfH090dDSjR4/mf//7H8XFxXTo0IHFixcTGhoKwI8//sjIkSPZvXs3RqORmjVr8t577xEWFkZ4eDiALQEyaNAg1qxZQ25uLtHR0WzevBk3NzcmTpzIp59+yh/+8Af+/ve/A9Y/RgwZMoRTp06xefNmXnzxRdasWcPu3buZMmUKBw4coGrVqvzpT39izpw5uLi4cOzYMU6fPs2OHTsICgoCICgoiLZt29qu89y5c4wfP54xY8bYkiUA48ePR6fT8cYbb9CrVy+efvrpX3Qf+/XrZ/d8wYIFfPDBBxw5coROnToRGRlpNwopJCSElJQUli9fXm5Sat++fdSsWZM33ngDgODgYIYPH87cuXPLjWfu3LkEBgbaJZyCg4NLtbvz9S+LwWAos01ISAghISG250FBQezcuZOkpCTbtg8//JCsrCz27t2LVmtdBqtmzZrlnhNgwIABgHWU2aNG5vUI8YgoKSzGrLLgd/kS+pIiAAqd/blR7Vl8c63/OPl7Vy+/E1MBhQ7WjHyHKgaOtX2KZfVrPNC4xeNrzd6zbDt2mVZea/jr0wvw0J4BQKvxqNzAhBBCCCFuUxQw5lfO41eOLtXr9RiNRgYPHsyBAweIj49n3759KIpCt27dbNOyRowYQXFxMV9//TVHjx5l7ty5uLq6EhgYyH//+1/AOrXr4sWLLFq0CLDWHdyzZw/x8fEkJiaSlJTEoUOHSsUwf/58GjduTHJyMm+//TanT58mMjKSnj17cuTIETZs2MDu3btto3KrVauGWq1m06ZNlJSU3PW6Nm3ahMlk4s033yy1b/jw4bi6urJ+/fpfde9uMxqNrFq1Cnd3dxo3blxmu+zsbDw9Pcvtq3Xr1pw7d46tW7eiKAqXL19m06ZNdOvWrdzj4uPjad68Ob169cLb25smTZrw/vvvl2q3c+dOvL29qVu3Lq+//vpdpwX+7W9/w8vLiyZNmvDee++VO70zLS2Nzz//nA4dOtjF0rp1a0aMGEH16tV56qmnePfdd8t8rR4HMlJKiEfA9cyrHLx8CZPmEtoSk23VvXQfR7yBgAAjNds0ILR5GUmp/GtwdBNcPkaBNgwAd60DXjp5i4uyZeVb59039rH+wtTqvDG41sXDo3llhiWEEEII8RNTAbzrVznnnnoBdC73fZiiKOzYsYNt27bRtWtXNm/ezJ49e2jTpg1grWsUGBjI5s2b6dWrFxkZGfTs2ZOGDRsC2I2WuZ1o8fb2tk3Rys3NZe3ataxbt45OnToBsHr1avz8St+njh07Mn78eNvzoUOH0r9/f8aMGQNAaGgoixcvpkOHDixfvhx/f38WL17MxIkTmTFjBs2bNyc8PJz+/fvb4kpNTcXd3R1fX99S59PpdISEhJCamnrf9+1OCQkJ9O3bl4KCAnx9fUlMTKRq1ap3bZuWlsaSJUsqnDLYtm1b4uLi6NOnD0VFRZjNZqKioli2bFm5x505c4bly5czbtw4pk6dynfffccbb7yBTqdj0KBBgHXq3osvvkhwcDCnT59m6tSpdO3alX379uHg4ADAG2+8QdOmTfH09GTv3r1MmTKFixcvsmDBArvztWnThkOHDlFcXMxrr73GzJkz7WL58ssv6d+/P1u3biUtLY2//OUvmEwmYmJiKryvjyIZKSVEJSv+MYdvl3/B9ZJC8ouu4Mw5Mm9NuTM7WOd8B7aoT+OOgTi7lTEHfNc8+HwSXD1pGymlV8vbW9xdsbmEU5dzuZxjLazv7mRNTj0VNp8mf1iDg4O+MsMTQgghhHgsJSQk4OrqipOTE127dqVPnz4MHjwYjUZjN5XNy8uLunXrcuLECcCarJg1axZt27YlJiaGI0eOlHueM2fOYDKZaNmypW2bu7s7devWLdW2eXP7PzZ+//33rFmzBldXV9sjIiICi8XC2bPWFZhHjBjBpUuXiIuLo3Xr1mzcuJEGDRqQmJh4z/fiXlZ0jYuLs4vjzmlq4eHhHD58mL179xIZGUnv3r25cuVKqT4yMzOJjIykV69edrWS7uw3OjoagOPHjzN69GimTZvGwYMH+fzzz0lPT7ftT0pKsjsuLi4OAIvFQtOmTXn33Xdp0qQJr732GsOGDWPFihW28/Xt25cXXniBhg0b8sc//pGEhAS+++47u/qP48aN49lnn6VRo0ZER0cTGxvLkiVLKL612NVtGzZs4NChQ6xbt44tW7bYJdssFgve3t6sWrWKZs2a0adPH9566y1bLOXd00eVDKMQopIVpGdhUqzDNj2yCzCqzFhU1oSSRecOhaDROZTfSZ51SW8CWlBY81lAVt0TZeu5fC8/ZObgoCrB0cGMmnwAHDSuFRwphBBCCPGQaZ2tI5Yq69z3ITw83Fb028/PD41GQ3x8fIXHDR06lIiICLZs2cIXX3zBnDlziI2NZdSoUb80chsXF/uRXnl5eQwfPtxWV+lONWr8VPbDYDAQFRVFVFQUs2bNIiIiglmzZtG5c2dCQ0PJzs7mwoULpUZnGY1GTp8+TURERIWxvfDCC3bJOn9/f7u4a9euTe3atWnVqhWhoaF88MEHdkXjL1y4QHh4OG3atGHVqlV2fd+5upybmxsAc+bMoW3btkyYMAGARo0a4eLiQrt27Zg1axbNmze3O+72are+vr6EhYXZ9V+/fn3b1Mq7CQkJoWrVqqSlpdlGs/3c008/jdlsJj093S6hGBgYCEBYWBglJSW89tprjB8/HgcHB3x9fdFqtbbRV7djuXTpEkajsdx7+qiSpJQQlezHQwcxqUpQCkyYsy6BGoKuZaOpdoXLjhG3klIVJJhMhWyu1pGZtadyQ6UDi4JeVt0Td2EusfBDZg5V9deJafUeztoCuDUFXeMgRfGFEEII8YhRqX7RFLrKcDuRcqf69etjNpvZv3+/bfre9evXSUlJsUt0BAYGEh0dTXR0NFOmTOH9999n1KhRthFHd9YMCgkJQavV8t1339kSSdnZ2aSmptK+fftyY2zatCnHjx8vFWd5VCoV9erVY+/evQC89NJLTJo0idjYWGJjY+3arlixgoKCAgYOHFhhvwaDwW71ufJYLBa7EUWZmZmEh4fTrFkzVq9ejfpns0Tudn0FBQVoNPYpkNvJHUVR0Ov1dz2ubdu2pKSk2G1LTU21FYK/m/Pnz3P9+vW7TnG87fDhw6jVary9vctsY7FYMJlMWCwWHBwcaNu2LevWrcNisdiuOTU1FV9fX3Q6HTqd7p7v6aNCklJCVDJTfhFmSqhxMBVndRYXPA3kG+pxxeN5quYHAKCtaKSUqZBN1btxQdHaCjI+5SpTsERpuUXWUXm13M9YE1K3uLiEotcHVFZYQgghhBC/S6GhofTo0YNhw4axcuVKDAYDkydPxt/fnx49egAwZswYunbtSp06dbhx4wZfffUV9evXB6wrsKlUKhISEujWrRt6vR6DwcCgQYOYMGECnp6eeHt7ExMTg1qtRqUq/w/TkyZNolWrVowcOZKhQ4fi4uLC8ePHSUxMZOnSpRw+fJiYmBgGDBhAWFgYOp2OXbt28eGHHzJp0iTAOqJq3rx5vPnmmzg5OTFgwAC0Wi2ffvopU6dOZdasWTz11FN25/15UgegQYMGthXkbsvPz2f27Nm88MIL+Pr6cu3aNZYtW0ZmZia9evUCrAmpZ599lqCgIObPn8/Vq1dtx5e3+l1UVBTDhg1j+fLlREREcPHiRcaMGUPLli3vWo/rtrFjx9KmTRveffddevfuzbfffsuqVatso7Py8vKYMWMGPXv2xMfHh9OnTzNx4kRq165tGzG2b98+9u/fT3h4OAaDgX379jF27Fj+/Oc/21ZWjIuLQ6vV0rBhQxwdHTlw4ABTpkyhT58+tvv0+uuvs3TpUkaPHs2oUaM4deoU77777l1Hvt0pKyuLjIwMLly4YPd6+Pj4VLhi4IMmSSkhKtHFixc5Yb5KlspEQGEexQbrL5GbHvVx5g9gXZADZ/cK5mSbCii4VQdoWi0/orw9CHSqeB63eLKkXMrl2IVsADxu1ZGqVrUzDRr8HbVah0olUz6FEEIIIX5rq1evZvTo0XTv3h2j0Uj79u3ZunWrLdFQUlLCiBEjOH/+PG5ubkRGRrJw4ULAOv1qxowZTJ48mVdeeYWBAweyZs0aFixYQHR0NN27d8fNzY2JEydy7tw5nJycyo2lUaNG7Nq1i7feeot27dqhKAq1atWiT58+AAQEBFCzZk1mzJhBeno6KpXK9nzs2LG2fsaOHUtISAixsbEsWrSI/HxrOYj169fTt2/fUue927Zz584REGD/R1EHBwdOnjzJ2rVruXbtGl5eXrRo0YKkpCQaNGgAQGJiImlpaaSlpZU6XilnxcTBgweTm5vL0qVLGT9+PB4eHnTs2JG5c+eWe89atGjBJ598wpQpU5g5cybBwcH8/e9/p3///raYjxw5wtq1a7l58yZ+fn506dKFd955B0dHa71fR0dHPvroI6ZPn05xcTHBwcGMHTuWcePG2c6j0WiYO3cuqampKIpCUFAQI0eOtLvvgYGBbNu2jbFjx9KoUSP8/f0ZPXq0LWFYlvj4eF555RXb89uvR0xMDNOnTy/32AdNpZT3qv1O5eTk4O7uTnZ2tm1+qRAPm2JR+PD9Dzh38TwmRc2znydy0VPDVTcXNM5dUNzdeLaxAZeGz1C7mffd/+px6ShkfANJsUTWjuGwW33+1TCYLlXdH/4FiUdacsYN/vSPvaiwEOR2jojg72hZ/Wv8fHtTv/6cyg5PiEeWfGawJ/dDCPEgFRUVcfbsWYKDgytMrgh7+fn5+Pv7Exsby5AhQx76+bOysujUqRNubm589tlnODvfXz0u8Xgq7z17r58ZZKSUEJXkZvxpcjKzQA3+pqqoVWbbansqlYaSKjn84eU/gVMZCSZFgX/1gILrABQ4WP8RcJYC5+IuTl3OA6Bf/f/RMXCHbbtG83jNORdCCCGEEJCcnMzJkydp2bIl2dnZzJw5E8A2JfBh8/T0ZPv27Sxbtox9+/aVWdxbiJ+TpJQQleT60R8xq0pQSkooOvsVh4O87tirwcHLq+yEFIC5GAquc9bJnyN1+3Ld2ToP2lktSSlRWnahdS5ow+rWOfc6XTUcHb2pXj2qMsMSQgghhBC/0Pz580lJSUGn09GsWTOSkpKoWrVqpcXj5eXFtGnTKu384vEkSSkhKoGiKBTduInZUMKpm640sxTe2qEGBxfUGl8cHIvL78RUgEnlQNemK7ip/Wk4pKumgqLo4onyQ2Y2H+w+a6sl5ehg/VmrV2821arKX7CEEEIIIR5HTZo04eDBg5UdhhC/miSlhKgElhIzGpUWS4mJIfv/x+HgamhLtDhUHWVr06hWcPmdmArIcXC1JaTaeLhS38WJUGfHBxm6eMws+fIU245dprbHaSJrnsXF4QoAGo3UghFCCCGEEEJULklKCfGQmc1mVq1cxVXXq+gLCtBZbi2xp7aOcFKqnuZPA17CN9Sj/I6MBRTdqkGlU6n4uEntBxi1eFxl5RvRqExMbLECB9VPo+90Wq9yjhJCCCGEEEKIB0+SUkI8ZGc3JHPl6lVQgYPZRKHW+jY06h3QAw7+evzrVim7g9xLsL4vZJ+nSG0dFaWX4uaiDDmFZlx1+bcSUmp8ff6Ii2sdXFxCKjs0IYQQQgghxBNOklJCPGQF6TcAcDGCw4WzHK3hDYCito560jq7lN/BmZ1wIRmAQhfr6CgnterBBCseW3M+O8HetOucvZZPNX0BAFqtO2Fh71VyZEIIIYQQQghhJUkpIR4iU3ERBQV5oAVT/jXUlACgUiwUuFTD2QxaxwreliZrgoGa7ShqPwt+BCdZcU/cIbvQxMpdZ6iqv8aUFh/g4ZQDSB0pIYQQQgghxKNFvskK8RClf38Ic0kJWRY935oCAHAvLCGgsBoWx0YAGPSu5XdiKiTdyY9O/mMYeMFah0qm74k75RRa65Q18T5BDbdM3HS5ABgMDSozLCGEEEIIIYSwIyOlhHiIivPyUdQqtJfzGH40keOBVcl1DabY7SW8861twnzqlt+JqYAvPVtyTFMVTNaRVmGu+gccuXic5BRZk1JezkUAVKsWSXDNEbi41KnMsIQQQgghhBDCjgyvEOIhOXfuHJ/tP0CS9gT+1y+iUinWHWodChaqVc+iXisfght5l9+RqZBCtRMAXbzc2NGiLkvq13jA0YvHwd60a7ywdDej1u2jte+31PZIA8BZH4TBEIZaLX+HEEIIIYR4EAYPHoxKpUKlUqHT6ahduzYzZ87EbDb/qn537tyJSqXi5s2bv02g9+Ds2bP069cPPz8/nJycCAgIoEePHpw8edKuXUJCAh06dMBgMODs7EyLFi1Ys2aNXZv09HRUKhWHDx++5/NPnz6devXq4eLiQpUqVXjuuefYv3+/XZ9DhgwhODgYvV5PrVq1iImJwWg0Vth3XFwcjRs3xtnZGV9fX1599VWuX79e7jElJSW8/fbbdud75513UBTF1ubjjz+mS5cueHl5lXm9p0+f5k9/+hPVqlXDzc2N3r17c/ny5fu+riNHjtCuXTucnJwIDAxk3rx5FV73119/TVRUFH5+fqhUKjZv3lzhMQ+LJKWEeAgsxhIOxe0iv7gYk6oEhxITxVrr1DtUWoo1hTw3rAadBofhqC8jcXB0E/y9EexfSaGDddU9H0ctDVz1OKik0LmAuG8zOHI+m9ouiQxt+G+CDScA0Om8KjkyIYQQQojfv8jISC5evMipU6cYP34806dP5733Hp1FZu4laWMymejcuTPZ2dl8/PHHpKSksGHDBho2bGiXGFuyZAk9evSgbdu27N+/nyNHjtC3b1+io6N58803f1WcderUYenSpRw9epTdu3dTs2ZNunTpwtWrVwE4efIkFouFlStXcuzYMRYuXMiKFSuYOnVquf3u2bOHgQMHMmTIEI4dO8bGjRv59ttvGTZsWLnHzZ07l+XLl7N06VJOnDjB3LlzmTdvHkuWLLG1yc/P55lnnmHu3Ll37SM/P58uXbqgUqn48ssv2bNnD0ajkaioKCwWyz1fV05ODl26dCEoKIiDBw/y3nvvMX36dFatWlXuNeTn59O4cWOWLVtWbrtKoTyBsrOzFUDJzs6u7FDEE6LozE1lw1vvKzExMcr7IyYr83s/b3ss/PNk5W+jNimFpsLyO/nXHxUlxk1RYtyUmWsmKNW/TFamnTr/cC5APBb+/M9vlKBJCUrcF28o23eEKHv2dVGOn5iiFBVfrezQhHhsyWcGe3I/hBAPUmFhoXL8+HGlsLCCz8WPoEGDBik9evSw29a5c2elVatWSlZWljJgwADFw8ND0ev1SmRkpJKammprl56ernTv3l3x8PBQnJ2dlbCwMGXLli3K2bNnFcDuMWjQIEVRFCUnJ0fp16+f4uzsrPj4+CgLFixQOnTooIwePdrWb1BQkDJz5kxlwIABisFgsB2blJSkPPPMM4qTk5MSEBCgjBo1SsnLy1MURVGSk5MVQElPTy/zWjMyMhStVquMGzeu1L7FixcrgPLNN98oiqLYriE5Ofn+b+ott3/3bN++vcw28+bNU4KDg8vt57333lNCQkJKxevv71/ucc8//7zy6quv2m178cUXlf79+5dqW9b1btu2TVGr1Xa/P2/evKmoVColMTGxzHP//Lr+8Y9/KFWqVFGKi4tt2yZNmqTUrVu33Gu4E6B88skn99y+POW9Z+/1M4OMlBLiIci/fgPzrZX2snPOAKBSFBRArauForHgeGv0U5lMhdb/dp5JYZNBADjLqnsCUBSFYnMJ2bcKnHu7WP/r7/cS9eu9i6OuamWGJ4QQQgjxiymKQoGpoFIeyh3Ts34JvV6P0Whk8ODBHDhwgPj4ePbt24eiKHTr1g2TyfqZbcSIERQXF/P1119z9OhR5s6di6urK4GBgfz3v/8FICUlhYsXL7Jo0SIAxo0bx549e4iPjycxMZGkpCQOHTpUKob58+fTuHFjkpOTefvttzl9+jSRkZH07NmTI0eOsGHDBnbv3s3IkSMBqFatGmq1mk2bNlFSUnLX69q0aRMmk+muI6KGDx+Oq6sr69ev/1X37jaj0ciqVatwd3encePGZbbLzs7G09Oz3L5at27NuXPn2Lp1K4qicPnyZTZt2kS3bt3KPa5Nmzbs2LGD1NRUAL7//nt2795N165d7/k6iouLUalUODr+9J3PyckJtVrN7t277/m69u3bR/v27dHpdLZtERERpKSkcOPGjXuO51EiBUaEeAiOfbkDs8qCUVGTr6hxAepeyiOlXgMc1CEEVnFCVdEUPFMB27zasJzWnM61/oKUVfeEoigM/PBbkk5do1HVH+gech6HkhQsgMbBUNnhCSGEEEL8KoXmQp5e93SlnHt/v/04a53v+zhFUdixYwfbtm2ja9eubN68mT179tCmTRvAWtcoMDCQzZs306tXLzIyMujZsycNGzYEICQkxNbX7YSEt7c3Hh4eAOTm5rJ27VrWrVtHp06dAFi9ejV+fn6lYunYsSPjx4+3PR86dCj9+/dnzJgxAISGhrJ48WI6dOjA8uXL8ff3Z/HixUycOJEZM2bQvHlzwsPD6d+/vy2u1NRU3N3d8fX1LXU+nU5HSEiILYHzSyUkJNC3b18KCgrw9fUlMTGRqlXv/ofWtLQ0lixZwvz588vts23btsTFxdGnTx+Kioowm81ERUVVOKVt8uTJ5OTkUK9ePRwcHCgpKWH27Nn079//nq+nVatWuLi4MGnSJN59910URWHy5MmUlJRw8eLFe76uS5cuERwcbNeuevXqtn1VqlS555geFfKNVogHTFEUcvNyKcJExmUnnAusK6KdDnkJR/VLADg5VjBKCsBUyLLAl/nGqOOq0VowsYaTroKDxO9doamEpFPXcNXmMqrJ+/yp9lYspnQAdDJCSgghhBDioUlISMDV1RUnJye6du1Knz59GDx4MBqNhqef/imx5uXlRd26dTlxwlr/84033mDWrFm0bduWmJgYjhw5Uu55zpw5g8lkomXLlrZt7u7u1K1behXv5s2b2z3//vvvWbNmDa6urrZHREQEFouFs2fPAtaRW5cuXSIuLo7WrVuzceNGGjRoQGJi4j3fiztH8pQlLi7OLo6kpCTbvvDwcA4fPszevXuJjIykd+/eXLlypVQfmZmZREZG0qtXL7vaUHf2Gx0dDcDx48cZPXo006ZN4+DBg3z++eekp6fb9iclJdkdFxcXB8B//vMf4uLiWLduHYcOHWLt2rXMnz+ftWvX3vP9qFatGhs3buR///sfrq6uuLu7c/PmTZo2bYr6LrNfyrquipR1DY8yGSklxAP2n//8hxPqmwD0OrKHa54KNzVOoHZEwYxnNT1PtS/9V41STIXkO+gBGF+zOm09DLTycHmAkYvHwe0pe1X1OahVCmq1Hl+fP6Jz9MbLq30lRyeEEEII8evoNXr299tfccMHdO77ER4ezvLly9HpdPj5+aHRaIiPj6/wuKFDhxIREcGWLVv44osvmDNnDrGxsYwaNeqXhm7j4mL/fSEvL4/hw4fzxhtvlGpbo8ZPK3obDAaioqKIiopi1qxZREREMGvWLDp37kxoaCjZ2dlcuHCh1Ogso9HI6dOniYiIqDC2F154wS5Z5+/vbxd37dq1qV27Nq1atSI0NJQPPviAKVOm2NpcuHCB8PBw2rRpU6rQ952r37m5uQEwZ84c2rZty4QJEwBo1KgRLi4utGvXjlmzZtG8eXO7426PQJowYQKTJ0+mb9++ADRs2JAff/yROXPmMGjQoAqv87YuXbpw+vRprl27hkajwcPDAx8fH7uRcRVdl4+Pj92KfYDtuY+PDzVr1rzrNTzKJCklxANkvlnMj2npAGgKCynWmynU3RoVpdJS6HyJfjP+DOXVhkoYB+m7IecCBWrrL8b2VQw87eH6gKMXj7qFial8c8a6hK23qzU55eTkR716syozLCGEEEKI34xKpfpFU+gqw+1Eyp3q16+P2Wxm//79tul7169fJyUlhbCwMFu7wMBAoqOjiY6OZsqUKbz//vuMGjXKNuLozvpOISEhaLVavvvuO1siKTs7m9TUVNq3L/+Pkk2bNuX48eOl4iyPSqWiXr167N27F4CXXnqJSZMmERsbS2xsrF3bFStWUFBQwMCBAyvs12AwYDDcW7kJi8VCcXGx7XlmZibh4eE0a9aM1atXlxptdLfrKygoQKOxT4E4OFhXRFcUBb1eX+ZxP+/fwcHBtmre/bo9DfHLL7/kypUrvPDCC/d8Xa1bt+att97CZDKh1WoBSExMpG7durape/fz2j4KJCklxAOUtzsTk9EIKLhlnOZc1Z/+UqFSOYKzpvyEVEEWHPjA9rTQwQkAZ6kl9cQ7f6OARTtO4awpYM4z7+HtbE1OaTVulRyZEEIIIYS4LTQ0lB49ejBs2DBWrlyJwWBg8uTJ+Pv706NHDwDGjBlD165dqVOnDjdu3OCrr76ifv36AAQFBaFSqUhISKBbt27o9XoMBgODBg1iwoQJeHp64u3tTUxMDGq1usI6tZMmTaJVq1aMHDmSoUOH4uLiwvHjx0lMTGTp0qUcPnyYmJgYBgwYQFhYGDqdjl27dvHhhx8yadIkwDqiat68ebz55ps4OTkxYMAAtFotn376KVOnTmXWrFk89dRTdudNSUkpFUuDBg1siZXb8vPzmT17Ni+88AK+vr5cu3aNZcuWkZmZSa9evQBr4ubZZ58lKCiI+fPnc/XqVdvxPj4+ZV57VFQUw4YNY/ny5URERHDx4kXGjBlDy5Yt71qP687jZs+eTY0aNWjQoAHJycksWLCAV1991dYmKyuLjIwMLly4YHe9Pj4+tphWr15N/fr1qVatGvv27WP06NGMHTvWNu3yXq6rX79+zJgxgyFDhjBp0iR++OEHFi1axMKFC8uMH6wj5NLS0mzPz549y+HDh/H09LQbIVcZJCklxAN07vAPt1bdUzBZrLWkfG7mcTLEm+qW6qC7Wn4Hxnzrf9VaGLiZwgwDlChS4Fxws8A6MqpBtQu2hBRAFc82lRWSEEIIIYS4i9WrVzN69Gi6d++O0Wikffv2bN261ZaQKSkpYcSIEZw/fx43NzciIyNtSQZ/f39mzJjB5MmTeeWVVxg4cCBr1qxhwYIFREdH0717d9zc3Jg4cSLnzp3Dycmp3FgaNWrErl27eOutt2jXrh2KolCrVi369OkDQEBAADVr1mTGjBmkp6ejUqlsz8eOHWvrZ+zYsYSEhBAbG8uiRYvIz7d+b1m/fr1tmtud7rbt3LlzBAQE2G1zcHDg5MmTrF27lmvXruHl5UWLFi1ISkqiQYMGgHVkUFpaGmlpaaWOL2/FxMGDB5Obm8vSpUsZP348Hh4edOzYkblz55Z7z5YsWcLbb7/NX/7yF65cuYKfnx/Dhw9n2rRptjbx8fG88sorpa43JiaG6dOnA9ZE1ZQpU8jKyqJmzZq89dZbdvf0Xq7L3d2dL774ghEjRtCsWTOqVq3KtGnTeO2118q9hgMHDhAeHm57Pm7cOAAGDRrEmjVryj32QVMpv3ady8dQTk4O7u7uZGdn2+aXCvFbKy7I57uJ/2Z71YukGw00PP0VAG5OAynWe6JCjRKSzciJfyq7k6upKMtaMDN0NN+HDWTfzTwU4GDrMPylyPkTbd/p67z8/jc8H3qCF4OX4+bWhD80/idarUdlhybE74p8ZrAn90MI8SAVFRVx9uxZgoODK0yuCHv5+fn4+/sTGxvLkCFDHvr5s7Ky6NSpE25ubnz22Wc4Oz8eUy7Fr1Pee/ZePzPISCkhHpBTqamkueQBUHjJaN2oQLGTFyqsw2rbNW9WfifmQs47Vme534tw09qXi4OaKlp56z6p0q7ksvHAec5cy8fD8SY+LtcA0GmrSEJKCCGEEOIJkZyczMmTJ2nZsiXZ2dnMnDkTwDYl8GHz9PRk+/btLFu2jH379tGpU6dKiUM8fuSbrRAPgMVi4dMtWzHpTTgVFvLmgf/ydf0g1IoKlUqFp2saf5rxCk4u2vI7MhWSp7HWoXLTqHmvbiBhLnqpKfUE+9tnKWw/cZnwwCRiO2y0bddo7q1IpBBCCCGE+H2YP38+KSkp6HQ6mjVrRlJSkq2IdmXw8vKym9ImxL2QpJQQD4CpwIjJZAKLhcDrZi67W1fKU9TWEVJ6vVJ+Qir3MvzwX7h6ggK1dRikh0ZDD+8qDzx28Wi7nGOtTda+5iUAVCodWq0b3t7dKjMsIYQQQgjxEDVp0oSDBw9WdhhC/GqSlBLiAbj4z2QAdNcvcSn3Apf8vAAo0jngCOgCG5bfwVez4dBaAAo8mgJIcfMnXHaBiQM/ZnHpVlIqxEuFuQDq1pmGv//LlRydEEIIIYQQQtw/SUoJ8RszG40UXMoBJ1CbrLWknItNgJnzAYG454OTq3v5neRdBqCwxjNc83nO2odaklJPstfjDrL39HVUWNCoS9Co8jAj0/aEEEIIIYQQjy9JSgnxG9uz4d94qvysTyxmAHQO9Siq1oPa1pVS0esdy+/EVMjXHs0YEPwOxViTUVJH6sl2+moeTg5FzH7mPTwcr1J062dJklJCCCGEEEKIx5UkpYT4DRmNRn74MROdJo/TJZ5UNbsSwE0KXAO5nVJy0KjxC62gNpS5iH0ejW0JKTXwnJcsvf0kyy0yE2C4gIfjVds2rdYLg6FBJUYlhBBCCCGEEL+cJKWE+A2lpqZy1VwCDlnU/f4KAcWpXDc4o9wqVv7nnum4PjsYB20Fo55MhRRorcdEB1bjryF+aG4VSRdPlu3HL3PmWh4FxhKc3QoAMLg2oGnTdajVTqjV8s+4EEIIIYQQ4vEk32aE+A0VFVmLUFcxO+F34zQ33BysO1TWlfacfapXnJACMBVS6GBNSrk6OEhC6gl15moeQ/91AIMulx61kgh2zwBAq/NEo3Gt5OiEEEIIIYQQ4teRpJQQvxHFbOHa7h+tTzKOkFFd+9POW0kpTf2I8jv57zA49QUUZVNQ1ZqUklpST64LN61JzudDkuhc43PbdkfH6pUVkhBCCCGEEEL8ZuTbrhC/kVPxBzFftU6vMhvzANAoTlh03qg1flgczKg05eSBjQVw9D9csjiwoXoXTrmGAKCXpNQTK6fIBECgeyEAHh5PE1xzFME136jMsIQQQgghxM8MHjwYlUqFSqVCp9NRu3ZtZs6cidls/lX97ty5E5VKxc2bN3+bQO/B2bNn6devH35+fjg5OREQEECPHj04efKkXbuEhAQ6dOiAwWDA2dmZFi1asGbNGrs26enpqFQqDh8+fM/nnz59OvXq1cPFxYUqVarw3HPPsX//frs+hwwZQnBwMHq9nlq1ahETE4PRaKyw77i4OBo3boyzszO+vr68+uqrXL9+vdxjcnNzGTNmDEFBQej1etq0acN3331n1yYvL4+RI0cSEBCAXq8nLCyMFStW2LUZPnw4tWrVQq/XU61atbve04yMDJ5//nmcnZ3x9vZmwoQJZf4M7dmzB41Gwx/+8IcKr/vjjz+mS5cueHl53ffr8aDJt10hfiNnvtlNiaoEFAUUCwAOHq/g7PJnVCodTp4VvN2M1uXUouvHMLreVL53DQXATZJST5xjF7J5edU3zPnsBAAuWmtSqrp3N0JCxqDX+1dmeEIIIYQQ4i4iIyO5ePEip06dYvz48UyfPp333nuvssOyuZekjclkonPnzmRnZ/Pxxx+TkpLChg0baNiwoV1ibMmSJfTo0YO2bduyf/9+jhw5Qt++fYmOjubNN9/8VXHWqVOHpUuXcvToUXbv3k3NmjXp0qULV69aF/w5efIkFouFlStXcuzYMRYuXMiKFSuYOnVquf3u2bOHgQMHMmTIEI4dO8bGjRv59ttvGTZsWLnHDR06lMTERP7v//6Po0eP0qVLF5577jkyMzNtbcaNG8fnn3/Ov//9b06cOMGYMWMYOXIk8fHxtjbNmjVj9erVnDhxgm3btqEoCl26dKGkpASAkpISnn/+eYxGI3v37mXt2rWsWbOGadOmlYrp5s2bDBw4kE6dOt3TPc3Pz+eZZ55h7ty599T+oVKeQNnZ2QqgZGdnV3Yo4neipKRE+WT035SP3lqljBgzU5nf+3llfu/nlSWvbVP+MWKtkrb7uJJ3s6j8Tq6fUZQYN6XpZ9uU6l8mK1EHU5XRx39Usk3mh3MR4pExbfNRJWhSgvLH+e8qs/7dS9m6vZmyfUeIcvHi5soOTYgnjnxmsCf3QwjxIBUWFirHjx9XCgsLKzuU+zZo0CClR48edts6d+6stGrVSsnKylIGDBigeHh4KHq9XomMjFRSU1Nt7dLT05Xu3bsrHh4eirOzsxIWFqZs2bJFOXv2rALYPQYNGqQoiqLk5OQo/fr1U5ydnRUfHx9lwYIFSocOHZTRo0fb+g0KClJmzpypDBgwQDEYDLZjk5KSlGeeeUZxcnJSAgIClFGjRil5eXmKoihKcnKyAijp6ellXmtGRoai1WqVcePGldq3ePFiBVC++eYbRVEU2zUkJyff/0295fbvnu3bt5fZZt68eUpwcHC5/bz33ntKSEhIqXj9/f3LPKagoEBxcHBQEhIS7LY3bdpUeeutt2zPGzRooMycObPcNj/3/fffK4CSlpamKIqibN26VVGr1cqlS5dsbZYvX664ubkpxcXFdsf26dNH+etf/6rExMQojRs3LvMcP/dbvB53Ku89e6+fGWQIhhC/gX//+98c9ijkhCaTiG+/sm5UABxw0GRRq0l1XNwdy+/EZJ36V3hrpb736gby9/o1cNM4PLjAxSPpZqF12t6wxv+lle9BdKobADg5yQgpIYQQQjxZFEXBUlBQKQ9FUX5V7Hq9HqPRyODBgzlw4ADx8fHs27cPRVHo1q0bJpP1M9+IESMoLi7m66+/5ujRo8ydOxdXV1cCAwP573//C0BKSgoXL15k0aJFgHVkzp49e4iPjycxMZGkpCQOHTpUKob58+fTuHFjkpOTefvttzl9+jSRkZH07NmTI0eOsGHDBnbv3s3IkSMBqFatGmq1mk2bNtlG8Pzcpk2bMJlMdx0RNXz4cFxdXVm/fv2vune3GY1GVq1ahbu7O40bNy6zXXZ2Np6enuX21bp1a86dO8fWrVtRFIXLly+zadMmunXrVuYxZrOZkpISnJyc7Lbr9Xp2795te96mTRvi4+PJzMxEURS++uorUlNT6dKly137zc/PZ/Xq1QQHBxMYGAjAvn37aNiwIdWr/1Q/NiIigpycHI4dO2bbtnr1as6cOUNMTEy51/u4kELnQvwGfvzxR7CU4HTxRy56Wd9WKqxzytUOxaDVl9/Bzrlw9msAChykwPmTylxiISOrgEvZRYCCTp0DQEjwGFxcQnF3b1a5AQohhBBCPGRKYSEpTSvnM1DdQwdROTvf93GKorBjxw62bdtG165d2bx5M3v27KFNmzaAta5RYGAgmzdvplevXmRkZNCzZ08aNmwIQEhIiK2v24kWb29vPDw8AGuNo7Vr17Ju3Trb9K3Vq1fj5+dXKpaOHTsyfvx42/OhQ4fSv39/xowZA0BoaCiLFy+mQ4cOLF++HH9/fxYvXszEiROZMWMGzZs3Jzw8nP79+9viSk1Nxd3dHV9f31Ln0+l0hISEkJqaet/37U4JCQn07duXgoICfH19SUxMpGrVqndtm5aWxpIlS5g/f365fbZt25a4uDj69OlDUVERZrOZqKgoli1bVuYxBoOB1q1b884771C/fn2qV6/O+vXr2bdvH7Vr17a1W7JkCa+99hoBAQFoNBrUajXvv/8+7du3t+vvH//4BxMnTiQ/P5+6deuSmJiITqcD4NKlS3YJKcD2/NKlSwCcOnWKyZMnk5SUhKa8esWPEfnWK8SvVFxkoqSkBIf8XLQ5WeTqrf+oFDrdWnHP06f8pFTWWdj5Lvy4mxLUFKmtxzur5e35pBn44bd0jN3F/rNZ6ByMqLD+dapGjSF4e0eiUqkqOUIhhBBCCFGWhIQEXF1dcXJyomvXrvTp04fBgwej0Wh4+umnbe28vLyoW7cuJ05Y64e+8cYbzJo1i7Zt2xITE8ORI0fKPc+ZM2cwmUy0bNnSts3d3Z26deuWatu8eXO7599//z1r1qzB1dXV9oiIiMBisXD27FnAOnLr0qVLxMXF0bp1azZu3EiDBg1ITEy853txO9FSnri4OLs4kpKSbPvCw8M5fPgwe/fuJTIykt69e3PlypVSfWRmZhIZGUmvXr3sakPd2W90dDQAx48fZ/To0UybNo2DBw/y+eefk56ebtuflJRkd1xcXBwA//d//4eiKPj7++Po6MjixYt5+eWXUd/xfW3JkiV88803xMfHc/DgQWJjYxkxYgTbt2+3i7d///4kJyeza9cu6tSpQ+/evSkqKrqne1pSUkK/fv2YMWMGderUue97+qj6faTWhKhEh//2BQAqizWB4FpoxC/PkaSmjfHIAy/fBuV3UJyDGQfeaDCNVO+WYK2RLqvuPYGSM27i6FDMqCar8XG5BoBK5YBaXcFIOyGEEEKI3ymVXk/dQwcr7dz3Izw8nOXLl6PT6fDz80Oj0dgVui7L0KFDiYiIYMuWLXzxxRfMmTOH2NhYRo0a9UtDt3FxcbF7npeXx/Dhw3njjdKrOdeoUcP2/waDgaioKKKiopg1axYRERHMmjWLzp07ExoaSnZ2NhcuXCg1OstoNHL69GkiIiIqjO2FF16wS9b5+/9UqsLFxYXatWtTu3ZtWrVqRWhoKB988AFTpkyxtblw4QLh4eG0adOGVatW2fV95+pybm5uAMyZM4e2bdsyYcIEABo1aoSLiwvt2rVj1qxZNG/e3O6426OUatWqxa5du8jPzycnJwdfX1/69OljGzlWWFjI1KlT+eSTT3j++edtfR8+fJj58+fz3HPP2fp0d3fH3d2d0NBQWrVqRZUqVfjkk094+eWX8fHx4dtvv7W7jsuXLwPg4+NDbm4uBw4cIDk52Tbd0mKxoCgKGo2GL774otx7+qiSpJQQv0L+zRu45lvABVS3VtxTtF5k1BlGUJ61jYerW/mdGAs4agjl46rP2hJSvo5a9GoZFfMkMZVYKDSV8FTV09T3PG7b7uJSR0ZICSGEEOKJpVKpftEUuspwO5Fyp/r162M2m9m/f79t+t7169dJSUkhLCzM1i4wMJDo6Giio6OZMmUK77//PqNGjbKNOLqzvlNISAharZbvvvvOlkjKzs4mNTW11HSxn2vatCnHjx8vFWd5VCoV9erVY+/evQC89NJLTJo0idjYWGJjY+3arlixgoKCAgYOHFhhvwaDAYPBcE8xWCwWiouLbc8zMzMJDw+3rWin/tksk7tdX0FBQakpbw4O1vq9iqKg1+vLvS8uLi64uLhw48YNtm3bxrx58wDrioUmk6lUDA4ODlgsljL7UxQFRVFs19W6dWtmz57NlStX8Pb2BiAxMRE3NzfCwsLQarUcPXrUro9//OMffPnll2zatIng4GBcXFzu+Z4+KiQpJcSvUJCTDWrr2+icyY1QwHJrVIuTNpsqQTWo16r0XGs7pnzyHazHBDhpmVsnkIaueklEPGHyi80AuGisBe8NhqcIrf0WBkNYeYcJIYQQQohHWGhoKD169GDYsGGsXLkSg8HA5MmT8ff3p0ePHgCMGTOGrl27UqdOHW7cuMFXX31F/fr1AQgKCkKlUpGQkEC3bt3Q6/UYDAYGDRrEhAkT8PT0xNvbm5iYGNRqdYXfISZNmkSrVq0YOXIkQ4cOxcXFhePHj5OYmMjSpUs5fPgwMTExDBgwgLCwMHQ6Hbt27eLDDz9k0qRJgHVE1bx583jzzTdxcnJiwIABaLVaPv30U6ZOncqsWbN46qmn7M6bkpJSKpYGDRqg1WrttuXn5zN79mxeeOEFfH19uXbtGsuWLSMzM5NevXoB1oTUs88+S1BQEPPnz+fq1au24318fMq89qioKIYNG8by5cuJiIjg4sWLjBkzhpYtW961Htdt27ZtQ1EU6tatS1paGhMmTKBevXq88sorgHUkVocOHZgwYQJ6vZ6goCB27drFv/71LxYsWABYp1xu2LCBLl26UK1aNc6fP8/f/vY39Hq9rdB6ly5dCAsLY8CAAcybN49Lly7x17/+lREjRuDoaF006+f31dvbGycnp1Lbfy4rK4uMjAwuXLgA/PR6+Pj4lHvPHgZJSgnxC1ksFjJ+zOCmJgeHYhNtUw5wxcsRlUqDAjQJ2EvTN/9UcUemQgpuJaWqarV08qpgZJX4XTmUcYNxGw6TU2RGhQV3p0LAutJelSotKzhaCCGEEEI86lavXs3o0aPp3r07RqOR9u3bs3XrVltCpqSkhBEjRnD+/Hnc3NyIjIxk4cKFgHX61YwZM5g8eTKvvPIKAwcOZM2aNSxYsIDo6Gi6d++Om5sbEydO5Ny5c6VWifu5Ro0asWvXLt566y3atWuHoijUqlWLPn36ABAQEEDNmjWZMWMG6enpqFQq2/OxY8fa+hk7diwhISHExsayaNEi8vPzAVi/fj19+/Ytdd67bTt37hwBAQF22xwcHDh58iRr167l2rVreHl50aJFC5KSkmjQwFoWJTExkbS0NNLS0kodX96KiYMHDyY3N5elS5cyfvx4PDw86NixI3Pnzi33nmVnZzNlyhTOnz+Pp6cnPXv2ZPbs2XYJtY8++ogpU6bQv39/srKyCAoKYvbs2bZ6VU5OTiQlJfH3v/+dGzduUL16ddq3b8/evXtto6IcHBxISEjg9ddfp3Xr1ri4uDBo0CBmzpxZbnz3Ij4+3pZEg59ej5iYGKZPn/6r+/81VMqvXefyMZSTk4O7uzvZ2dm2+aVC3K9vvvmGzz//HJXZhOuPp3DNuUmekw5ngrBU6UmX+tsJHf1u2R2k74aP+kFRNpurhRMdNp02Hq583OTeh9KKx9/sLcd5P+ksL9fdxHNBX9u2+/r2Iqz+3yoxMiEEyGeGn5P7IYR4kIqKijh79izBwcEVJleEvfz8fPz9/YmNjWXIkCEP/fxZWVl06tQJNzc3PvvsM5wfkymX4tcp7z17r58ZpJKyEL/Qj9+eBkCfkwvGAvKcrPO9bxpcAdAEVzDKJW0HlqIckg31+ME1FABnKW7+xLlRYAKgfeCd88PVVKnSqnICEkIIIYQQj7zk5GTWr1/P6dOnOXToEP379wewTQl82Dw9Pdm+fTudOnVi3759lRKDeDzJ9D0hfoErZ89ivpILGvAxu3IV8MgvQm+5iTFwMPl5oKlTfpFBTIV84P8ib9f+aeULSUo9OU5eymHlrjPsO30dUNCqrZXxW7ZIQK8PRKNxrdwAhRBCCCHEI23+/PmkpKSg0+lo1qwZSUlJVK1atdLi8fLyYtq0aZV2fvF4kqSUEL/A6W/2YVZZV1K4VnQFAJM+BItrG8wFHgBotA7ld2Iq4JRzEABeWg3+jlr+7Ov1wGIWj5ZVu87wSXIm9T1T6NPkK1RYR0w5Owfh4CDDnYUQQgghRNmaNGnCwYMHKzsMIX41SUoJ8QuUFJkwU8J1izNn1NVozCWK9L5oHWuABVRqFW5eFcyDNxVSoLa2+UsNb0bU8H4IkYtHxfV8IwCvNPoKL91xAHS6aqhvrd4ohBBCCCGEEL93kpQS4j4VFRVx6tp1rquL8U4/S7vzJzhX1R1UGjTmS3TtocPt6W64eDiW35GpgEIHa1JKpu09eXKKrCOjPPWFUAJBQa/j5/tShcv4CiGEEEIIIcTvhSSlhLhPP/zwAz/m54AKAm4cw6K2TtNToUHRZFMjxAe8y5l+tX0G7F8J5kIKnrLWndKrJRHxpJj6yVG2H79sGymlJh8F8K4WgbNzzUqNTQghhBBCCCEeJklKCXGfzp/MBMDjylWy9VXIvj3bSqWhmr4IfBuX38GR/3BO7cp/arxE6q0khLNDBfWnxO9CsbmEdfszcNdlM7nF+3g45qKU3ARAo5Gl1YUQQgghhBBPFklKCXEfsr69iPlEFmhBnXeTklvbVYBa44dzaAPwDCm/E1M+c2u+ziafCNsmz4qKoovfhZxCMwANqp4kxD3Dtl2r9cTRsXplhSWEEEIIIYQQlUKSUkLcI4ulhNObtoPOQpGiodCioAH8CoIo8G1MkdoXjZO24o6M+VzXeQDwbBUD7T0NtPZwfaCxi8qXXWAi9XIuAFWcigHw9GxHrZDx6PVBODhUUBhfCCGEEEIIIX5npLqyEPco/+YNzIVFmLGw31SDAsU6Tupa9TYUqWsD4OxeQXHzEjOUGCm8tepefz8v/lLDGwcpbv279kNmNs1nJ9L/n/txciiiqnM+AHqnANzcGqLVytQ9IYQQQojH2eDBg1GpVKhUKnQ6HbVr12bmzJmYzeZf1e/OnTtRqVTcvHnztwn0Hpw9e5Z+/frh5+eHk5MTAQEB9OjRg5MnT9q1S0hIoEOHDhgMBpydnWnRogVr1qyxa5Oeno5KpeLw4cP3fP7p06dTr149XFxcqFKlCs899xz79++363PIkCEEBwej1+upVasWMTExGI3GCvuOi4ujcePGODs74+vry6uvvsr169fLPebrr78mKioKPz8/VCoVmzdvLtXm448/pkuXLnh5eVV4vYqi0LVr1zL7WrNmDY0aNcLJyQlvb29GjBhht3/btm20atUKg8FAtWrV6NmzJ+np6Q/lOh8ESUoJcY9OnjxJiksOl9Q38DFuxVCSfWuPBj0ZtO9di2aRQXc/WFFg90KIHwVAgYM1eaWXVfeeCEczszGVKDwfnMiyThNp7/cZIHWkhBBCCCF+TyIjI7l48SKnTp1i/PjxTJ8+nffee6+yw7K5l6SNyWSic+fOZGdn8/HHH5OSksKGDRto2LChXWJsyZIl9OjRg7Zt27J//36OHDlC3759iY6O5s033/xVcdapU4elS5dy9OhRdu/eTc2aNenSpQtXr14FrN/LLBYLK1eu5NixYyxcuJAVK1YwderUcvvds2cPAwcOZMiQIRw7doyNGzfy7bffMmzYsHKPy8/Pp3HjxixbtqzcNs888wxz586t8Pr+/ve/l7ni9oIFC3jrrbeYPHkyx44dY/v27URE/FT25ezZs/To0YOOHTty+PBhtm3bxrVr13jxxRcfynU+EMoTKDs7WwGU7Ozsyg5FPCZMJpMyY8YMJSYmRomJiVG+aRym/L1npDK/9/PK4qGblP+9Pr38Di4cVpQYN9ujXcKnSvUvk5XdWTkP5wJEpVq167QSNClB+eizF5TtO0KU7TtClK92PqVcv767skMTQlRAPjPYk/shhHiQCgsLlePHjyuFhYWVHcp9GzRokNKjRw+7bZ07d1ZatWqlZGVlKQMGDFA8PDwUvV6vREZGKqmpqbZ26enpSvfu3RUPDw/F2dlZCQsLU7Zs2aKcPXtWAewegwYNUhRFUXJycpR+/fopzs7Oio+Pj7JgwQKlQ4cOyujRo239BgUFKTNnzlQGDBigGAwG27FJSUnKM888ozg5OSkBAQHKqFGjlLy8PEVRFCU5OVkBlPT09DKvNSMjQ9Fqtcq4ceNK7Vu8eLECKN98842iKIrtGpKTk+//pt5y+3fP9u3by2wzb948JTg4uNx+3nvvPSUkJKRUvP7+/vccC6B88sknZe6v6HqTk5MVf39/5eLFi6X6ysrKUvR6fbnXuXHjRkWj0SglJSW2bfHx8YpKpVKMRqOiKA/nOm8r7z17r58ZZJiGEPegsLAIi8UCikK9XANFWidK1Na3j0qlwdVDV0EHNwC44FGPQ+HvkWMIBECvlrfgkyC32Dps29GhEIBGDVfQof1hPD3bVmZYQgghhBDiAdLr9RiNRgYPHsyBAweIj49n3759KIpCt27dMJlMAIwYMYLi4mK+/vprjh49yty5c3F1dSUwMJD//ve/AKSkpHDx4kUWLVoEwLhx49izZw/x8fEkJiaSlJTEoUOHSsUwf/58GjduTHJyMm+//TanT58mMjKSnj17cuTIETZs2MDu3bsZOXIkANWqVUOtVrNp0yZKSkpK9QewadMmTCbTXUdEDR8+HFdXV9avX/+b3EOj0ciqVatwd3enceOyVznPzs7G09Oz3L5at27NuXPn2Lp1K4qicPnyZTZt2kS3bt1+k1grUlBQQL9+/Vi2bBk+Pj6l9icmJmKxWMjMzKR+/foEBATQu3dvzp07Z2vTrFkz1Go1q1evpqSkhOzsbP7v//6P5557Dq1W+0hc5/2SQudC3IO0TScA0ObnkXn+IJkhvnfs1aBp9EL5HZgKOa0PoF2j5VgsPyWiZPre79v0+GPEf3+BImMRek0ROnUeAFptFVQqWXFRCCGEEKIiiqJgNloq5dwanbrMaVblURSFHTt2sG3bNrp27crmzZvZs2cPbdq0Aaz1fgIDA9m8eTO9evUiIyODnj170rBhQwBCQn5azft2osXb2xsPDw8AcnNzWbt2LevWraNTp04ArF69Gj8/v1KxdOzYkfHjx9ueDx06lP79+zNmzBgAQkNDWbx4MR06dGD58uX4+/uzePFiJk6cyIwZM2jevDnh4eH079/fFldqairu7u74+vqWOp9OpyMkJITU1NT7vm93SkhIoG/fvhQUFODr60tiYiJVq1a9a9u0tDSWLFnC/Pnzy+2zbdu2xMXF0adPH4qKijCbzURFRT206Wpjx46lTZs29OjR4677z5w5g8Vi4d1332XRokW4u7vz17/+lc6dO3PkyBF0Oh3BwcF88cUX9O7dm+HDh1NSUkLr1q3ZunXrI3Od90uSUkJUwGwykX8iDUUPBcXgBKgtatRqd1RO/qjUerTO+vI7MRVyyjkIi0qNTqWiuqOW+i5O1HGRFdd+rxRF4d/f/Ii77jp/e2YuLtpC2z6NxlCJkQkhhBBCPD7MRgurRu+qlHO/tqgDWsd7/0NiQkICrq6umEwmLBYL/fr148UXXyQhIYGnn37a1s7Ly4u6dety4oT1D99vvPEGr7/+Ol988QXPPfccPXv2pFGjRmWe58yZM5hMJlq2bGnb5u7uTt26dUu1bd68ud3z77//niNHjhAXF2fbpigKFouFs2fPUr9+fUaMGMHAgQPZuXMn33zzDRs3buTdd98lPj6ezp0739O90OkqmEmCNTk3fPhw2/PPPvuMdu3aARAeHs7hw4e5du0a77//Pr1792b//v14e3vb9ZGZmUlkZCS9evWyq5nk6vrT6uZ//vOfWbFiBcePH2f06NFMmzaNiIgILl68yIQJE4iOjuaDDz4gKSmJrl272o5buXIl/fv3v6frrUh8fDxffvklycnJZbaxWCyYTCYWL15Mly5dAFi/fj0+Pj589dVXREREcOnSJYYNG8agQYN4+eWXyc3NZdq0abz00kskJiaiUqkq9Tp/CUlKCVGBy2dOYbYYuaq4cMGsox2gcgxF4/q8rY27d8VJqdsr7rV0d2FTk9oPMGLxKMg3lmC2KAS7p9slpFxcQnF2rll5gQkhhBBCiAciPDyc5cuXo9Pp8PPzQ6PREB8fX+FxQ4cOJSIigi1btvDFF18wZ84cYmNjGTVq1K+OycXFxe55Xl4ew4cP54033ijVtkaNGrb/NxgMREVFERUVxaxZs4iIiGDWrFl07tyZ0NBQsrOzuXDhQqnRWUajkdOnT9sV5y7LCy+8YJes8/f3t4u7du3a1K5dm1atWhEaGsoHH3zAlClTbG0uXLhAeHg4bdq0YdWqVXZ937n6nZubdXGhOXPm0LZtWyZMmABAo0aNcHFxoV27dsyaNYvmzZvbHVe9evUKr+Feffnll5w+fdo22u22nj170q5dO3bu3GkbeRYWFmbbX61aNapWrUpGRgYAy5Ytw93dnXnz5tna/Pvf/yYwMJD9+/fTqlWrSr3OX0KSUkKUw2w2s3HLZ9x0zSXH7EG3H3eQa9CAypr5b+yznNoD/0n1mmWsolZ4A66dgqsnKXCwJqVkyt7vm6Io7Dt9nZTLuQAYdEUAVK3aiYZPLUOl0vyiYeBCCCGEEE8ijU7Na4s6VNq578ftRMqd6tevj9lsZv/+/bbpe9evXyclJcUu+RAYGEh0dDTR0dFMmTKF999/n1GjRtlGHN1Z3ykkJAStVst3331nSyRlZ2eTmppK+/bty42xadOmHD9+vFSc5VGpVNSrV4+9e/cC8NJLLzFp0iRiY2OJjY21a7tixQoKCgoYOHBghf0aDAYMhnubQWCxWCguLrY9z8zMJDw8nGbNmrF69WrUP6vVe7frKygoQKOxT4E4OFhHwimKgl6vv6/7cj8mT57M0KFD7bY1bNiQhQsXEhUVBVin3YG1flhAQAAAWVlZXLt2jaCgINs1/Pxab1+DxWKxtams6/wlJCklRDmysrK4mWNNLqgs56lWkEuuoQqorEXkgt1O4BPifveDS0ywrBXkXQKg0L8nIEmp37uDP96g3z/3o1MbaVT1FGFe6QBoNe6o1drKDU4IIYQQ4jGjUqnuawrdoyY0NJQePXowbNgwVq5cicFgYPLkyfj7+9tqC40ZM4auXbtSp04dbty4wVdffUX9+vUBCAoKQqVSkZCQQLdu3dDr9RgMBgYNGsSECRPw9PTE29ubmJgY1OqKa2BNmjSJVq1aMXLkSIYOHYqLiwvHjx8nMTGRpUuXcvjwYWJiYhgwYABhYWHodDp27drFhx9+yKRJkwDriKp58+bx5ptv4uTkxIABA9BqtXz66adMnTqVWbNm8dRTT9mdNyUlpVQsDRo0sBXnvi0/P5/Zs2fzwgsv4Ovry7Vr11i2bBmZmZn06tULsCaknn32WYKCgpg/fz5Xr161HX+3AuK3RUVFMWzYMJYvX26b1jZmzBhatmx513pct+Xl5ZGWlmZ7fvbsWQ4fPoynp6ctKZiVlUVGRgYXLlywu14fHx+7x8/VqFGD4OBgAOrUqUOPHj0YPXo0q1atws3NjSlTplCvXj3Cw8MBeP7551m4cCEzZ860Td+bOnUqQUFBNGnS5IFf54MgSSkhynH1rHXVPL3ZgZp5heQ53ZobrdKgYMbPoZxfkIU3Ie8S+WondgZ250CVVgA4y4p7v2vp1wsA6B+2hWf8vrJt12g9KikiIYQQQghRmVavXs3o0aPp3r07RqOR9u3bs3XrVltCpqSkhBEjRnD+/Hnc3NyIjIxk4cKFgHVK24wZM5g8eTKvvPIKAwcOZM2aNSxYsIDo6Gi6d++Om5sbEydO5Ny5czg5lV+ztlGjRuzatYu33nqLdu3aoSgKtWrVok+fPgAEBARQs2ZNZsyYQXp6OiqVyvZ87Nixtn7Gjh1LSEgIsbGxLFq0iPz8fMBaA6lv376lznu3befOnbONCLrNwcGBkydPsnbtWq5du4aXlxctWrQgKSmJBg0aANZV6tLS0khLSyt1vKIoZV774MGDyc3NZenSpYwfPx4PDw86duzI3Llzy71nBw4csCWFwLryIcCgQYNYs2YNYK0Z9corr5S63piYGKZPn15u/3f617/+xdixY3n++edRq9V06NCBzz//3Paz0rFjR9atW8e8efOYN28ezs7OtG7dms8//xy9Xv/Ar/NBUCnlvWq/Uzk5Obi7u5OdnW2bXyrEz+Vfv8GR+TvZ5vg9hswMyLli26dxegZn5wYMa/U+DCpjnviNdFjUmOm1R7HC/yXb5qEBVZkVGnD3Y8Rj759JZ5i15QTvdviQ6o6HcXYOQe8UQO3ak3F1LV18UgjxaJPPDPbkfgghHqSioiLOnj1LcHBwhckVYS8/Px9/f39iY2MZMmTIQz9/VlYWnTp1ws3Njc8++wxnZ+eHHoN4+Mp7z97rZwYZKSVEGY78bysqlQvXLc6Yiy1UAVRqD1RqD9S6Oji6OsFLH5bdgdE6Yuac3lqwL9TZkVrOjvzZz+shRC8ethMXcxi69gBXc4tRYUGvyQMgtPYUqlbtWMnRCSGEEEKI35Pk5GROnjxJy5Ytyc7OZubMmQC2KYEPm6enJ9u3b2fZsmXs27ePTp06VUoc4vEjSSkhymDMzUeDnqNmX1opxwDQOHfEQRNInT8YCG1bG1yqlt2ByZqUKtRY/0owooY3fX0lIfV7tSv1Kpk3C2lU9QeiG6/G0cEEgEZbRs0xIYQQQgghfoX58+eTkpKCTqejWbNmJCUlUbVqOd9PHjAvLy+mTZtWaecXjydJSglRBktxCSVYaHDpMAH5lyjWalGhwaGkkM4v1wOPMv7BVxTY+TdI3w1Aoay690TIKzID0KN+hi0h5airjqtLncoMSwghhBBC/A41adKEgwcPVnYYQvxqkpQS4i6+2fcNu/OuoGiv0Or8AXJcrEXjUGlRq4ygLWeO9NUU2PU329NCrSsAeilw/ruWV2xNSrk5FgEQEjyWoKDhsuKeEEIIIYQQQpRBklJC/Ezxjzkc+mwvJWoFTd4NCnUajJpbCSWVFmddIWj1ZXdQlA3AeY96HH56ElctgWC04CwjpX6X/pl0hqRT1zh/PZMm3idwVmcC4OjoIwkpIYQQQgghhCiHJKWE+JnL35yjBAsWcwn682fIdfkpAaVSOaFVZ4OmnNVATPkowPNhc7lc5AFYACQp9TtUYDQze+sJFAViWi2khlumbZ9WakkJIYQQQgghRLkkKSXEz5zetwujoYQvi2ryJ5JBAQenJqgdqqNSO6OtFgjlTcUzFlCs0nFZ6wFACzcXQl0caWyQZVF/b7LyjSgKaB1UBLpdB8BgaIheH4inZ9tKjk4IIYQQQgghHm2SlBLiZyzGYgpUUGixTr1S44DWORy16iZ+oe407hxU9sHFeZCTSYHDTyOpPm5SG61a9aDDFg/ZVyevkHTqGgBVXdSosNaSavKHtTJKSgghhBBCCCHugSSlhLjDxYsXueJkohALrW9+BoBasY6KctIdoMfYP4GqjART1llY3gZMBRQ6VgNAq1JJQup36FJ2Ea+u/Q4UCx0DdxPmfcO2T6NxrcTIhBBCCCGEEOLxIUkpIW4pKirigw8+wOxmxmzS8NLRFA6G+NmSUm4OprITUgCXjoKpAFBR4GRNSkkdqd+nSzlFKAo8VTWD/vU32bbrdFVRqRwqMTIhhBBCCCGEeHzIN2YhbklLSsdsNqM2mfC++CNnqlcBQNFZc7cBjubyOzAVYlRpWN54CosjPwJAX17tKfHYyiuy/iyEeFmn7Dk6+lKjxjCearCoMsMSQgghhBCVZPDgwahUKlQqFTqdjtq1azNz5kzM5gq+Q1Rg586dqFQqbt68+dsEeg/Onj1Lv3798PPzw8nJiYCAAHr06MHJkyft2iUkJNChQwcMBgPOzs60aNGCNWvW2LVJT09HpVJx+PDhez7/9OnTqVevHi4uLlSpUoXnnnuO/fv32/U5ZMgQgoOD0ev11KpVi5iYGIxGY4V9x8XF0bhxY5ydnfH19eXVV1/l+vXr5R7z9ddfExUVhZ+fHyqVis2bN993zACzZ8+mTZs2ODs74+HhcddzZWRk8Pzzz+Ps7Iy3tzcTJkyw+xm68+fszkeDBg1sbebMmUOLFi0wGAx4e3vzxz/+kZSUlArvzb3E9yDIN2YhbinYew4Ap5ybqPIvcuPWqntarTUppdFXUKjcXMh2z9bM8Ihg4yXrdC4vnYya+T25nlfMxgPn2HbsEgAeTtaklMHQgNDak6lSpVVlhieEEEIIISpRZGQkFy9e5NSpU4wfP57p06fz3nvvVXZYNveStDGZTHTu3Jns7Gw+/vhjUlJS2LBhAw0bNrRLjC1ZsoQePXrQtm1b9u/fz5EjR+jbty/R0dG8+eabvyrOOnXqsHTpUo4ePcru3bupWbMmXbp04erVqwCcPHkSi8XCypUrOXbsGAsXLmTFihVMnTq13H737NnDwIEDGTJkCMeOHWPjxo18++23DBs2rNzj8vPzadz4/9m77/ioqvTx4587LZMyqSSkEFJICEVAmlSBiJCAFFdEWFiaguLSUUFsCGIHVNQviKvA/hbUFRURUYwoGIpIi6BAIJBICyWU9Ey9vz8mzDIGQkBgCDzv1yuvZO4999znToGZZ55zThPefffdK44ZnPd/3759efTRRy/Yh91u55577sFisbBhwwYWLVrEwoULee6551xt3nrrLXJzc10/hw4dIjg4mL59+7rarF27llGjRvHzzz+TlpaG1Wqla9euFBcXV3qdl4rvmlGvorVr16o9evRQIyIiVED94osv3PYPGTJEBdx+UlJS3NqcOnVKHTBggGoymdSAgAD1wQcfVAsLC93a/Prrr2r79u1VLy8vtVatWuqrr756WXHm5+ergJqfn39F1yluPgV5J9X1kz9Vn3xuuvrPh59QZz5wj/pOn37quwOnq+8+8qn6ziOr1YwVOyvvZONc9d/zBqo1f9iutt74uzpt3xF1W37x9bkAcV2M/H9b1JjJK9TOL89R/29pF/XLVS3V71fHq7/9PtHToQkhrhF5z+BO7g8hxLVUWlqq7tq1Sy0tLfV0KJdtyJAhau/evd22denSRW3durV6+vRpddCgQWpgYKDq7e2tpqamqnv37nW1y8nJUXv06KEGBgaqPj4+aoMGDdSvv/5azc7OrvD5eciQIaqqqmpBQYE6YMAA1cfHRw0PD1dnz56tduzYUR03bpyr35iYGHX69OnqoEGDVJPJ5Do2PT1dbd++vWo0GtVatWqpY8aMUYuKilRVVdXt27ergJqTk3PRaz148KCq1+vViRMrvgeeM2eOCqg///yzqqqq6xq2b99++XdquXP/93z//fcXbfPaa6+pcXFxlfbz+uuvq/Hx8RXijYqKqnIsF8pzXEhlMS9YsEANCAiosH3lypWqRqNRjx075to2d+5c1d/fXzWbzRc8zxdffKEqilLp43XixAkVUNeuXXvJuCuL70Iqe81W9T3DVa2UqkoG8Vz2+NzPRx995LZ/4MCB/P7776SlpbFixQp++uknHn74Ydf+goICunbtSkxMDFu3buX111/n+eefZ/78+VfzUsQtZsfqVdhUK3/Ygzhbvuqe1ScJ1a8dKsEABMdFVt6JrZQSjXPVvdtNPjyXEElT/0tUV4lq5eDpEgD+lvQLdYP246tzlvr6+tTxZFhCCCGEEOIG5O3tjcViYejQoWzZsoXly5ezceNGVFWle/fuWK1WAEaNGoXZbOann35i586dvPrqq/j5+REdHc1nn30GQGZmJrm5ubz1lnO6iIkTJ7J+/XqWL19OWloa6enpbNu2rUIMM2fOpEmTJmzfvp1nn32W/fv3k5qaSp8+fdixYweffPIJ69atY/To0QCEhoai0WhYunQpdrv9gte1dOlSrFbrBSuiHnnkEfz8/Cp8zr9SFouF+fPnExAQQJMmTS7aLj8/n+Dg4Er7atOmDYcOHWLlypWoqsrx48dZunQp3bt3vyqxXm7Mf7Zx40YaNWpEzZo1XdtSUlIoKCjg999/v+AxH3zwAXfffTcxMRdfIT4/Px/gkvePp1zVic67detGt27dKm3j5eVFeHj4Bfft3r2bb7/9ls2bN9OiRQvAWRbYvXt3Zs6cSWRkJIsXL8ZisfDhhx9iMBho2LAhGRkZzJ492y15JcTlKMzPR9GYUG0OUg7+Ql6gFyg6UB0kt/qeyHueI7DmRRJMR7bB3lWQs45SbSwgE5zfrArKnG8cbosAWwlERw+jRo3OBAa09HBkQgghhBA3J1VVsZnNHjm3zssLpbKFji5CVVVWr17NqlWr6NatG8uWLWP9+vW0bdsWcM5rFB0dzbJly+jbty8HDx6kT58+NGrUCID4+HhXX+cSCWFhYa55fgoLC1m0aBFLliyhc+fOACxYsIDIyIpfot9111089thjrtvDhw9n4MCBjB8/HoDExETmzJlDx44dmTt3LlFRUcyZM4dJkyYxbdo0WrRoQXJyMgMHDnTFtXfvXgICAoiIiKhwPoPBQHx8PHv37r3s++18K1asoH///pSUlBAREUFaWho1atS4YNusrCzefvttZs6cWWmf7dq1Y/HixfTr14+ysjJsNhs9e/astKjmWsV8IceOHXNLSAGu28eOHavQ/ujRo3zzzTcsWbLkon06HA7Gjx9Pu3btuO2226ocy/V03VffW7NmDWFhYQQFBXHXXXcxY8YMQkJCAGdmMDAw0JWQArj77rvRaDRs2rSJv/3tb2zcuJEOHTpgMBhcbVJSUnj11Vc5c+YMQUFB1/uSRDWXlZXFz0dOgNcJfM+aMdrNgBcKOlTMRIWVEnCxhBTA5w/DqX0AlMTVB8BbklI3lU82H+TXw/mcLCglwJCPRj0LQGBgS4KD2ng2OCGEEEKIm5jNbGbOkPs9cu6xi5aiNxqr3H7FihX4+flhtVpxOBwMGDCA++67jxUrVtCqVStXu5CQEJKSkti9e7fzPGPH8uijj/Ldd99x991306dPHxo3bnzR8xw4cACr1codd9zh2hYQEEBSUlKFtud/tgb49ddf2bFjB4sXL3ZtU1UVh8NBdnY29evXZ9SoUQwePJg1a9bw888/8+mnn/LSSy+xfPlyunTpUqX74vzP6xezePFiHnnkEdftb775hjvvvBOA5ORkMjIyyMvL4/333+eBBx5g06ZNhIWFufVx5MgRUlNT6du3r9vcUH5+fq6///GPfzBv3jx27drFuHHjeO6550hJSSE3N5cnnniCkSNH8sEHH5Cenu5WZPPee+8xcODAKl3v5cR8tSxatIjAwEDuvffei7YZNWoUv/32G+vWrXNtGzlyJP/5z39ct4uKiq5JfFV1XZNSqamp3HfffcTFxbF//36eeuopunXrxsaNG9FqtRw7dqzCA6bT6QgODnZlBo8dO0ZcXJxbm/OzhxdKSpnNZsznZdcLCgqu9qWJamz3NucqEordgbc1h2Kjc/geig6zwYKfV2DlHRSfYENAE+Y2mMhufSggq+7dTE4UljH5s50APNnyTRKDDmApde7T6fw9GJkQQgghhLiRJCcnM3fuXAwGA5GRkeh0OpYvX37J44YPH05KSgpff/013333HS+//DKzZs1izJgxfzkmX19ft9tFRUU88sgjjB07tkLb2rVru/42mUz07NmTnj17MmPGDFJSUpgxYwZdunQhMTGR/Px8jh49WqE6y2KxsH//flJSUi4ZW69evdySdVFRUW5xJyQkkJCQQOvWrUlMTOSDDz5gypQprjZHjx4lOTmZtm3bVpjO5/zV/vz9ne/ZX375Zdq1a8cTTzwBQOPGjfH19eXOO+9kxowZtGjRwu24P1ctXUpVYq5MeHg4v/zyi9u248ePu/adT1VVPvzwQwYNGnTRBODo0aNdUyLVqlXLtX369Ol/eTL6q+m6JqX69+/v+rtRo0Y0btyYOnXqsGbNGlfZ4bXw8ssvM23atGvWv6i+HCVWTm/PxWZQ8MqzEnu60LXqHoqBUI0dbaO+lXdiLeXdhL+z2hDr2hRtvPQ3A6J6yCt0rlLib1RIDDpQvlWDj08s/qYbswRWCCGEEOJmofPyYuyipR479+U4l5Q4X/369bHZbGzatMk1fO/UqVNkZmbSoEEDV7vo6GhGjhzJyJEjmTJlCu+//z5jxoxxJRzOn98pPj4evV7P5s2bXYmk/Px89u7dS4cOHSqNsVmzZuzatatCnJVRFIV69eqxYcMGAO6//34mT57MrFmzmDVrllvbefPmUVJSwuDBgy/Zr8lkwmQyVSkGh8PhVmhy5MgRkpOTad68OQsWLEDzp6KAC11fSUkJOp17CkSrda6Wrqoq3t7el3W/XG7Ml9KmTRtefPFFTpw44SrWSUtLw9/f3+25As4V9rKysnjooYcq9KOqKmPGjOGLL75gzZo1FYp6wsLCrln11pW47sP3zhcfH0+NGjXIysqic+fOhIeHc+LECbc2NpuN06dPuzKD4eHhrmzhORfLHp4zZcoUJk6c6LpdUFBAdHT01bwUUU0d+mYbvloNmfYwTJb9NAQUTQCKNhytvg7eEeEQXkniwW4Du4UinfMbiOG1anBnkInk4Kr94ypubKqqcqbEmZSKDvzfG4HkTrvRaDz6z6cQQgghxC1BUZTLGkJ3o0lMTKR3796MGDGC9957D5PJxJNPPklUVBS9e/cGYPz48XTr1o26dety5swZfvzxR+rXd04LEhMTg6IorFixgu7du+Pt7Y3JZGLIkCE88cQTBAcHExYWxtSpU9FoNJecA2vy5Mm0bt2a0aNHM3z4cHx9fdm1axdpaWm88847ZGRkMHXqVAYNGkSDBg0wGAysXbuWDz/8kMmTJwPOiqrXXnuNxx9/HKPRyKBBg9Dr9Xz55Zc89dRTzJgxo8L8RZmZmRViadiwIXq93m1bcXExL774Ir169SIiIoK8vDzeffddjhw5Qt++zmKBI0eO0KlTJ2JiYpg5cyYnT550HX+xnABAz549GTFiBHPnznUN3xs/fjx33HHHBefjOqeoqIisrCzX7ezsbDIyMggODqZ27dpVihng4MGDnD59moMHD2K3211VWQkJCfj5+dG1a1caNGjAoEGDeO211zh27BjPPPMMo0aNwutPCdIPPviAVq1aXXCeqFGjRrFkyRK+/PJLTCaTa9RZQEAA3t7eF73OS8V3rXj0U9Xhw4c5deqUa4K0Nm3acPbsWbZu3Urz5s0B+OGHH3A4HK6yvjZt2vD0009jtVpdT+C0tDSSkpIuOp+Ul5dXhQdRCIDik2ewYadYNRCk2gDQejXFYGhAvSZe1Eu5RKbc5hzHVapxPr+Sg/3pHCJDum4G+SVWus9J58jZUhQchPk5v+XQan0kISWEEEIIIapswYIFjBs3jh49emCxWOjQoQMrV650fZ612+2MGjWKw4cP4+/vT2pqKm+88QbgHNI2bdo0nnzySYYNG8bgwYNZuHAhs2fPZuTIkfTo0QN/f38mTZrEoUOHMF4igde4cWPWrl3L008/zZ133omqqtSpU4d+/foBUKtWLWJjY5k2bRo5OTkoiuK6PWHCBFc/EyZMID4+nlmzZvHWW29RXFwMwEcffeQ2QuqcC207dOiQ27AycFYu7dmzh0WLFpGXl0dISAgtW7YkPT2dhg0bAs7P/1lZWWRlZVU4XlXVi1770KFDKSws5J133uGxxx4jMDCQu+66i1dffbXS+2zLli0kJye7bp8reBkyZAgLFy6sUswAzz33HIsWLXLdbtq0KQA//vgjnTp1QqvVsmLFCh599FHatGmDr68vQ4YMYfr06W7x5Ofn89lnn7lWYvyzuXPnAtCpUye37QsWLGDo0KEXvc5LxXetKGplj9plOj+D2LRpU2bPnk1ycjLBwcEEBwczbdo0+vTpQ3h4OPv372fSpEkUFhayc+dOV9KoW7duHD9+nHnz5mG1Whk2bBgtWrRwzSifn59PUlISXbt2ZfLkyfz22288+OCDvPHGG1Vefa+goICAgADy8/Nd40vFrem3t1aQkXeYhYqdeid+Iu5MMTqfu/FVwhj+XAzEtrvwgaoKO5fCyd2QPos7W/ybfb4xfH57Am2Drl0WWVw/67PyGPivTTQPy2BEo3+j1zqTlgZDGHe23+jh6IQQ14u8Z3An94cQ4loqKysjOzubuLi4SyZXhLvi4mKioqKYNWvWBYd0XWunT5+mc+fO+Pv788033+DjU8lCUeKmUdlrtqrvGa7q1/2VZRDnzp3Ljh07WLRoEWfPniUyMpKuXbvywgsvuFUxLV68mNGjR9O5c2c0Gg19+vRhzpw5rv0BAQF89913jBo1iubNm1OjRg2ee+65KiekhDhnx49r2P7Hdk77edF/20o0qoYzfj4o6NCoFtBfvLSR3F/h8+GumyU6Z1tZde/mUVhmBaBjbJYrIQUQEnynp0ISQgghhBACgO3bt7Nnzx7uuOMO8vPzXdU054YEXm/BwcF8//33vPvuu2zcuPGazhktbi5XNSnVqVOnSsvlVq1adck+goODXVVRF9O4cWPS09MvOz4hzikrLeOLtWtR/VUUeyEdDp5ie0z56gqKDm/FDMaAi3dQ5Jz77KPafdkc1YVThvJV97SVj+EW1UdBmTMRZTKUAJCY8BQREX3R66UyQAghhBBCeN7MmTPJzMzEYDDQvHlz0tPTqVGjhsfiCQkJ4bnnnvPY+UX1JBOjiFvSH+v/QEVFUSH04EHW1I/5305Fh0+tGhBS5+IdWEso0PoyMfafqIqzOkoDhOjlJVXdvfbtHuat3U+4Ty5/T1pPqJdzxT0vr3BJSAkhhBBCiBtC06ZN2bp1q6fDEOIvk0/Q4pZUeuAUAPvs4fiYM3CmlXQomgA02gj04ZdYndFWRpHWB1XRoFVgclwEDfy8CTXoKz9O3PC+3pmLQ4V7E76mec0dru1GY4QHoxJCCCGEEEKIm48kpcQtp6yoiMOZWyn107HREkkT1Q6AV8AwtHob4bVMNE6uVXkn1hLKtAYAfDQaxp4b+ieqvbMlzrmk7qgNdjPUrNmT4OD2+Ps39XBkQgghhBBCCHFzkaSUuOVk/rqdXG0RVlXL8z/P54SrAEaLj/8P/O3BR6Bm8MU7KD4FRSco0zgn6DfK5OY3hR/2HOf73ScoKJ/gXKcpwQ5ERvQlOPgiqzAKIYQQQoir7iouEC+EuIauxmtVklLilvNt2mpKfcDuMBJb8gcnKJ9PStFiwAo6r4sfvOVDWDEBgDJTPQC8NDK5+c1g4n9/pbC0jJ7xqwj1LsBmyQVApzN5ODIhhBBCiFuDXu+cCqOkpARv70pWwhZC3BBKSpyLQp177V4JSUqJW06Z3Q5aLTUdIWgdjvP2aImxlYK2khfUwU3O34qGMi9nNZW3RiqlqjuLzcHZEisNQ/bSu863ANjtAApeXjI0UwghhBDietBqtQQGBnLihHOlax8fHxRFvgAW4kajqiolJSWcOHGCwMBAtFrtFfclSSlxS1FVFbU8idTQFoPm/JwUWnywgbaSSilbGSrwwd0LWWtqBKcKMEpSqto7N2QvwKsAAB+fOCLC++DnlyRJKSGEEEKI6yg8PBzAlZgSQty4AgMDXa/ZKyVJKXFLcTgcUP5tix0FraP8mxdFg6IoaLFWXillM7PXJ4ZnLDFwypnACNHLy6i6ys0v5d5313O8wAxAkNH528+vAbGxj3oyNCGEEEKIW5KiKERERBAWFobVavV0OEKIi9Dr9X+pQuoc+TQtbim20lLX33aHHXBWOSk4k1MaxVb5nFK2MvLL5xgK0mkZER1K77DAaxWuuMa25JzheIGZ5mEZ9Ev6ggCv8jHROn8PRyaEEEIIcWvTarVX5QOvEOLGJkkpcUv55e0MALRF+Rw6PI+D9WsDoJQnp7TxbcDge/EObGbMGgMANb30TIz9a6WKwrPODdvrkbiDEO8zru0m/0aeCkkIIYQQQgghbhmSlBK3DMvpEsLzzWAEpbgQVbX9b6cuDgBt839U3omtlDKNs5JKVt2rvlRVZe/xIvYdLwLA1+CsoEtIeJKw0FS8vaM9GZ4QQgghhBBC3BIkKSVuGYXHTuDAwVGbH36FOqIAg64him9HULzQ6TXUiPa78MHr34LdX8GJPZgDWwLgJROcV1szv8vk3R/3460roU7AMXy0ziopP98kSUgJIYQQQgghxHUiSSlxy3BY7DgUlVo5h6iX+zuHagSAYkTRGLmn1QYi//4kBuNFXhI/vAh25yTYlvLhe1IpVX39frQABQfT275GsPG0a7tO5pISQgghhBBCiOtGklLilnHmzBnOKMUEFBfgKE8oObR6NECAr/3iCSm7zZWQ4r5/UWaoB7l2qZSqxgpKrRh1ZldCytu7Nr4+CZhMDT0cmRBCCCGEEELcOiQpJW4JW1avZkV6OhggQHcSVSlPSmmcLwGdVyUvhfKE1KdhXZlXdht5hXZAKqWqo5y8YnYcyedYfhk+Ouc8UhqNF23b/OjhyIQQQgghhBDi1iNJKXFLOPjzJgB0qgYNZTjKk1Ia1TkUT6Or5KVgLQPgX1F9+L3Y7Noc7+11jaIV14LN7uBv/7eesyVmmoT+Ru0ahwHQ6UwejkwIIYQQQgghbk2SlBK3BJvVCkAjewwn7IorKYWiBUBrqOSlYHMmpUq1RgCm1omkub8Pzfx9r13A4qorKLNxpsRKk9DfGdP0X67ten2QB6MSQgghhBBCiFuXJKXELcFqt4JWh1bVoDjsrqSUQnlSSn/ppJRZ66yMahngS4sASUhVNwWlzsRkpJ9zpT0vr3D8/RsTGdHXk2EJIYQQQgghxC1LklLipqdaHdjVECCfstI8rIqCzeBMRqE4JyvXBtS88MF7V8G+7wBZda+6OlVk5suMoxw8XQJAoNGZnAoJ7kD9+i97MjQhhBBCCCGEuKVJUkrc9A6k/YGqeIHdxh9HfgCD93l7DYCK0ui+igeWnoWP/g6qc2JzsyspJavuVSdv/5DFwg05BHmdoVnYQWIDDgEyl5QQQgghhBBCeJokpcRN7+ieTOw4KCu2YUIFFTSGRBSNHxp9NN7+Xig6Q8UDy846E1IaHTQfRpneD1SplKpucvOdq+w91/Zt/PV5ru06fYCnQhJCCCGEEEIIgSSlxC3gzKHfcPh50Wj7Do6FadCqWvR+PfEii6adfKnVqvGFD7Q5V9pTvUzYur2O+adfAamUqm4KSm3oNFZXQirAvyl6fRDhNXt5ODIhhBBCCCGEuLVJUkrc1MwHD2ItKcZm0hFgLuAYgajn5pEy7aV5x1YQ4X/hg21lmBU9XRq9zd61v7o2S6VU9bByZy5rMk+w7/hZwn1OAKAoWpo3/xRFkcdQCCGEEEIIITxNklLipvbJ/Pc5EKEFzhKLcxU9i16DAfDWWkBnvPjB1jKyvaPY6x3t2tTYz5sAnfbaBi3+MlVVmfjfDKw2K9PbvkS470kAdLoASUgJIYQQQgghxA1CklLipnb4vKomrcP5W6PRAxBnKwHtBeaSOsdW5prcPNygZ80dSfjrtGgkqXHDKyizUWZ1UMP7rCshBRpq1rzHo3EJIYQQQgghhPgfSUqJm5aqqljLE0j9y9px1PEVAHpVdf7GevFKqbwsOP6bKynlrVUI1MvLpTo4cLKIDftPARBodM4LZjCEcWf7jZ4MSwghhBBCCCHEn8inbHHTslqtqOVJKa2q4Vx9k1L+l9bLC3xCKh64ewV8MhAAc2AzQCY3ry6KzDbumbOOUqsdk6GQxOBzw/ZMHo5MCCGEEEIIIcSfSVJK3DSKiopYOPMlrFZfzpSdITbrJyK0flgNMXzLETQx9YGzqPgBoL1rEuguMHzv5B7nb4MfpQGxABglKVUtHC8oo9Rqp3GNPYxtOhdFcVbFSVJKCCGEEEIIIW48kpQSN41dP/9MHgYMZ7IJyDvKGWOYc4daPqdQeV5gsIMpAAEAAElEQVRJxbnanm+NgAt3ZHMO+aLJ3zG3fAZ+z8EoK+5VC4VlNgAahR1CUVQURY9W60t4eG8PRyaEEEIIIYQQ4s8kKSVuCtYSK8c2OpNPXqePg/K/yiaNoT56jQOt9gxGkw8Nmt9NcP2GxNx2gaF7AHYzp3X+fGhoyrZc59xEMnzvxmZ3qPx84BS/ZJ8GwN/LmVisHf0gCQmTPBmaEEIIIYQQQoiLkKSUuCn8+u/VaMtsoFPh3ETmfn9DowlB5+VP7wnNiahzkcqoP7OZWRzRg5m6hnC6EIAgvfZahS6ugmXbj/DYp78S5nOC1Ngd1DbtA0Cnr+JjLoQQQgghhBDiupOklLgpnMjcic03jNJjFs7NHqTR1cJHyWLwMw3RhV9GcsJWxqnyZEZTkw+dgk30jwi++kGLq2b/ySIAHm78CXH++1zbDfqLVMMJIYQQQgghhPA4GZMkqr1TCxdiP1vASVWl89afztujRaspQeftfXkd2iyYNc4J0DsFm5gcH0GMt9fVC1hcdfmlVgCiTPkA1KjRmZjaDxMWlurJsIQQ4i979913iY2NxWg00qpVK3755ZdK23/66afUq1cPo9FIo0aNWLlypdt+VVV57rnniIiIwNvbm7vvvpt9+/ZdpDchhBBCiGtLklKi2jv1ww8UGbXkKRb87EWu7YqiQWs0g7aKCaWjGbD5Azi5mzKN8xhvrbxEbmQfrsum3Ss/8Nm2wwDolGIAEuo8SULCZHQ6P0+GJ4QQf8knn3zCxIkTmTp1Ktu2baNJkyakpKRw4sSJC7bfsGEDf//733nooYfYvn079957L/feey+//fabq81rr73GnDlzmDdvHps2bcLX15eUlBTKysqu12UJIYQQQrjIJ25R7a2IiiKzJhzS5KNxOOeTcpRPTB7mKANdFZJSNjMsvAe+nghHt7sqpWTVvRvbfzb9wZGzJfSK+5zxzeaiwZmU0un9PRyZEEL8dbNnz2bEiBEMGzaMBg0aMG/ePHx8fPjwww8v2P6tt94iNTWVJ554gvr16/PCCy/QrFkz3nnnHcBZJfXmm2/yzDPP0Lt3bxo3bsy///1vjh49yrJly67jlQkhhBBCOMmcUqJaU1WVAq/yqiYzFPo4/9bhTCbpFSvojJfuyFwElvIqq3o9KAupC8iqeze6glIbUX65pMT+4Nqm0/mj10lSSghRvVksFrZu3cqUKVNc2zQaDXfffTcbN2684DEbN25k4sSJbttSUlJcCafs7GyOHTvG3Xff7dofEBBAq1at2LhxI/3797/6F3KZ3hj9ENg9HYUQ4rpRQK1svxYULrzgkEav51p+fazRgO4yRk0YFUeFig+rwQ+bnxGbn/vnkTCvGm639aYA/KJNGEyIm5SvQUtcDV9Ph3FB/v5NPDrCRJJSolqz2WzOPxwOog7+zI7aNcv3OJ/aOqM3aPVV6Mg5bGG3XyLftZ5N5rHTUGrGKEmpG1pBmZV4f2cy0csrnDrxj2Hyb4SmvNJNCCGqq7y8POx2OzVr1nTbXrNmTfbs2XPBY44dO3bB9seOHXPtP7ftYm3+zGw2YzabXbcLCgou70Iuk5pXgKqWXtNzCCGql4slrRzX4dzmSzdxKb6Mtgf/dFtnbEdU2/0EJf54Gb2I6uQssP2wp6O4sDtaLsdkauix80tSSlRrB1YeAECx23A4nP9tKJpgNF6NATC07AdKFb5DKU9Kjak3hd+yc12bA3QX/mZGeE6Z1U7feRvZd6KQCO8cGgQ7P5wZjVFERNzn4eiEEOLm8vLLLzNt2rTrdj4NPqiKfLEghLh5ODTg+NPHEe2fbmt8rBTjha006voFJq4ro15LeEAVRvB4gEbj2UW9JCklqi2bxULh1kzQQJlDgx+gqFq8Aobi63OQmGaRNOgUW8XOnEmpk/ogAO4JDSDJ10hyiNTQ3mj2HCtk55F8apsO8Vybma7t+vLHTgghbgY1atRAq9Vy/Phxt+3Hjx8nPDz8gseEh4dX2v7c7+PHjxMREeHW5vbbb79gn1OmTHEbElhQUEB0dPRlX09Vjf940TXrWwghhBA3HhmbJKqtfZvWU1J4kgKHF2EZ2QAoirOyKarmJpL/UQ9TcBWz0eVJKYvGOdRvclwEk+IiZE6pG1BhmRWAJuH5AGi1JgIDWxEdPdSDUQkhxNVlMBho3rw5q1evdm1zOBysXr2aNm3aXPCYNm3auLUHSEtLc7WPi4sjPDzcrU1BQQGbNm26aJ9eXl74+/u7/QghhBBCXC3yiVtUS6rVyqGZr4OipcSqpfWx38v3OJ/S+j/XxFbGWgpnDwFQVj4XkZesundDKrPaOVVkASDYx5mcCgpqRfNmSwgOuvAHKiGEqK4mTpzI+++/z6JFi9i9ezePPvooxcXFDBs2DIDBgwe7TYQ+btw4vv32W2bNmsWePXt4/vnn2bJlC6NHjwZAURTGjx/PjBkzWL58OTt37mTw4MFERkZy7733euIShRBCCHGLk+F7olqyHj9OnqqgMxSjOqw4ypNINq0WAxCkq2K+tawA5jSFkjwALIrzJWGQpNQNZ9Z3mbz9QxbBxtO0icgixm8/ADqdDLEUQtyc+vXrx8mTJ3nuuec4duwYt99+O99++61rovKDBw+iOa+it23btixZsoRnnnmGp556isTERJYtW8Ztt93majNp0iSKi4t5+OGHOXv2LO3bt+fbb7/FaLwx57kQQgghxM1NklKiWvrj4CH2NmsJnEQtBkf5ZOa68kqnYF0VVtwDOJPtSkjZ9Cbs5cP/ZNjejef73ScAGHP7+9T2P+LaLnNJCSFuZqNHj3ZVOv3ZmjVrKmzr27cvffv2vWh/iqIwffp0pk+ffrVCFEIIIYS4YvLJW1RLZwuc8wkZ7BqCS0rJ93GuGKDBmVTS6qv41LaVL/QaFIf5yT9cm72qsmKfuK4KSp3D9WoHnAEgMLAVYaHdiIr8uyfDEkIIIYQQQghxhaRSSlRL1jLnxOSmE7l4nT1EZkQIAKpanpSq6jCE8gnO9/rEcuRssWuzQSqlbhi/HjrL6j0nyCsyo1XsoJYA0Oi2dzAYgj0cnRBCCCGEEEKIKyVJKVHt5B0+yPFNeeAFNouz0klRfEDjg8arOQD6FlWsnrGZWVGjA8MTnocdBwBn+aBOCqVuGOM+3k7OqRJ6xH/L7aG/ubbrdLIClBBCCCGEEEJUZ5KUEtXO7tVrMWi8OO7ww2xxUAPQ+XRCa6hH7TgNwQm1CGpQp2qd2crY6xMLgEmroYZBxz2hgSgyfO+GcaygDJ1i5d4636AoKgDe3jFoNPLPlxBCCCGEEEJUZ/KpTlQrqt1O6R+HsClRBOWepE7+Yc76Gjn3VO4x0A+lVkLVO7SZMZdPjt4/IpgXEmtdg6jFlTLb7JRZHfgbSssTUgqNG83D37+Jp0MTQgghhBBCCPEXSVJKVCtnvvqKo3v2Yq9jIrCowLXqHooOFQuKropzSRUchXVvwrEdlOmaArLi3o3EYnPw/Fe/k5PnnOfLW+ec+0ur9SU09G5PhiaEEEIIIYQQ4iqRpJSoVn7fv5+curHAKbSGQzg0zqSUghab1gY6r6p1tHUh/PIeAGUJrQHw0siQvRvFlpzTLNl0kBjTQcY3W0GIt3Nyc53O5OHIhBBCCCGEEEJcLZKUEtVKocUKgK/qhVlTjF1xDr1D0aHHAlpD1Toqy3f+juuAuXYbsINRKqVuGGdKnI9z77o/0yhkj2u7j3eMp0ISQgghhBBCCHGVSVJKVCs2mw2AkFNFnC7xptRwrrpJh0m1VL1SyuYcDkZsB8whSXDirFRK3UAKypxJqRAf5+MUFTWA4KD2BAXd4cmwhBBCCCGEEEJcRZKUEtXGrvQf2XPqNAT6U5Sfg4IGFFDQoGhMaJVTVa+UsplZH3A7TzracjjPWTUllVKet3r3cZ5Z9hv5JWZiTAcx6U8BEBTUhrCwFA9HJ4QQQgghhBDiapKklKg2Nn/0GSbfMEpwgGoHQOdzN1p9AorGiF5nBy//qnVmK2NZWGf24QsOFYC6vlWcJF1cM8t/PUpufhn/qP8JydHrXdv1ugAPRiWEEEIIIYQQ4lqQpJSoNuL1t3HYS8P3NgeNHHswARptKD7qaSLqB9KwUxfQVvEpbTNTqnUmoUbUqsGIWqHU9q7i0D9xzeSXOofttYo+DYBeH4KfX10CApp5MiwhhBBCCCGEENeAJKVEtVD888/oHTocio3SfBUvh6V8j46atjV0Gze46p3ZLGAtodToHOoX72OUhJSHnSm28PvRAo6eLQXAW1sKdrjttrcIDmrj4eiEEEIIIYQQQlwLkpQS1UL+N9/iUGqjlJzl9bRFfN8gFptOC4oWg85e9Y6Wj4Ft/wag7LZUAIwywbnH3ft/6/njVAnhPsdJCspHUZ3zfOl0Jg9HJoQQQgghhBDiWpGklLjhORwOvlAdnAw+SOjxE2hUcLgSSVpq1LyMpFLmN64/y3S+AHjLBOceZbbZ+eNUCTH+B3mu9UznRofzl15XxTnChBBCCCGEEEJUO5KUEje8srIyTpYnjrQOOyrgUJyJKEXREhSgrXpnNgt2NOwc/AOnThqhxCyr7nnYuXmkavnlAqDV+mI0RuJvaoTRGO3J0IQQQgghhBBCXEOSlBI3NFVV+fX7VQAodgexhT7siQgG5Vx1lA6t7jIqpWxlPJswhg//UAAzAN5aSUp5QpnVzqzvMsnOKwYg2LsMgBohydx221ueDE0IIYQQQgghxHUgSSlxQzuRvZ/fln0HtWtiKMznd/t+CAsq36sFRYdOX8WklKqC3cw+n9oA1NDrqO9npEWAz7UJXlRqTeYJ3k/PJsrvKIPq/0T9GkcA0OkDPByZEEIIIYQQQojrQZJS4oZWWlhAYkALjnCIs1YdYYAWP/BKQqcPJdywnxr+BVXrzOasjDJrnKvuvZZUi+6hgdcmcHFJeUXOFRQHNFhNvcDNru1Gr0hPhSSEEEIIIYQQ4jqSpJS4odlKS1E0espULfvtAYQBeqUG+HTk9tCXaWfIgAavVa0zuzMpVVaelPKSuaQ8qrDMBkCobwkA4TV7ExDQjPDwez0YlRBCCCGEEEKI60WSUuKGlvvmmxDdG22plZQ/tlLgr6AqehRAX/cuGJR26U4cDji0CfIPAVCm8QLAS3MZc1GJqybj0Fn+lX6AXbnOCjcvTXlSKvxeQkI6eDI0IYQQQgghhBDXkSSlxA3tsNWG2XCa8MO51Cg7S4F/ECjOp61Br69aJ79+BF/+03XTrDUCyKp7HvLOD1l8v/s4ydE/kdpkHz5a56p7Op3Jw5EJIYQQQgghhLieJCklblinT58ms1ET4DR6/VHs5UmkMoMeb8Cor+LT90y287dvKAREYzYGA1Ip5SlnSiwYtWUMrPcZiqKWb9XgZYzwaFxCCCGEEEIIIa4vSUqJG5LDbuf3n34EQG+xYbDYyfd2DrtTyueEquFdxcoaaykAM5rO4OegZuQVloAqc0p5SmGZFV99MYqioigG6tZ9Fl+fOhi9wj0dmhBCCCGEEEKI60iSUuKGlJ2xlQOrNkNNI8ZjB8Gs46yv8+lqxBsAnZehap3ZzJzRmXhHWw8KnPMXeWkUwgzy9L9eCsusjPzPVnLzyzhdcJwY/6MA6PUB1Ioa4OHorh1VVbHZbNjtdk+HIoS4CK1Wi06nQ1GkelYIIYQQ4nqTT+XihlR87DRJQa3JJgPFZkEFfK1GzF6BKLr6qIDGUMU5pWyllGqc80hpFfigYRyJvl4EVnX4n/jLNuw/xfqsUyQE7uf1DnPQlA/b0+kCPBzZtWOxWMjNzaWkpMTToQghLsHHx4eIiAgMhip+2SGEEEIIIa4K+VQubkhlpy3YcQCgqs7flqAe6PS1UQEFO14+XlXrzGbGonEmsIwaDamhN28i5EaVX2IF4M6YE86ElKJDp/UhIuI+D0d2bTgcDrKzs9FqtURGRmIwGKQKQ4gbkKqqWCwWTp48SXZ2NomJiWhkaLcQQgghxHUjSSlxQ7KbrdhQseWWoS0pwa4DRdFhsJ+gYeBmwiJUvOo/c+mOik5A6RnKyuehksnNry+r3cHKnbms3nMcgDA/Z3IqKrI/9ZKmeTK0a8piseBwOIiOjsbHx8fT4QghKuHt7Y1er+ePP/7AYrFgNBo9HZIQQgghxC1DklLihmM+cIDCTZvRhjXltsyd5AXbsaMDdPgof9C2TSHcN//SHW3+F3z9GAAWv0RAJje/3lbuzGXcxxkEeZ2hc+0dhBv3AKDX+Xs4sutDKi6EqB7ktSqEEEII4RmSlBI3nF8//ZSNEV6omt000pzAodRw7lB0aPzKQFvFuaQOb3X+1ugw+9cGpFLqejty1rny4cNNPqNu4A7Xdr0h2FMhCSGEEEIIIYS4QUhSStxwDpeWoWoUNCVFlBgM2FzfYGsJU8tAW9VV98qcv1Newlx3AGTsx6DIt+HXU1GZDYAo/7MABAe1w8e3DuE1e3swKiGEEEIIIYQQNwL5hC5uKJaSUs6aVbDb8P0jkxMBQajl1U2KYkCvWC4jKWVmm6keQy1JvLD/KABGqZS6Lo6cLeXb346xO7cAAINSDECdhEkk1Z2KQSqlblhDhw5FURQURcFgMJCQkMD06dOx2Wx/qd81a9agKApnz569OoFWQXZ2NgMGDCAyMhKj0UitWrXo3bs3e/bscWu3YsUKOnbsiMlkwsfHh5YtW7Jw4UK3Njk5OSiKQkZGRpXP//zzz1OvXj18fX0JCgri7rvvZtOmTW59PvTQQ8TFxeHt7U2dOnWYOnUqFoul0n5zc3MZMGAAdevWRaPRMH78+CrF89NPP9GzZ08iIyNRFIVly5ZdsN3u3bvp1asXAQEB+Pr60rJlSw4ePOja/8gjj1CnTh28vb0JDQ294H26efNmOnfuTGBgIEFBQaSkpPDrr79e8HxZWVmYTCYCAwOv2jUIIYQQQojqQZJS4oZRVlzEon/+E5vDiMZmBVQUVSW4WMUr5A4UjTe6y0pKlfFerQf41hbIr4XOYWSRxioO/RNXzOFQ6f3Oekb+Zyuh6nz+r/Pj6JVTAOh1svJhdZCamkpubi779u3jscce4/nnn+f111/3dFgul0raAFitVrp06UJ+fj6ff/45mZmZfPLJJzRq1MgtMfb222/Tu3dv2rVrx6ZNm9ixYwf9+/dn5MiRPP74438pzrp16/LOO++wc+dO1q1bR2xsLF27duXkyZMA7NmzB4fDwXvvvcfvv//OG2+8wbx583jqqacq7ddsNhMaGsozzzxDkyZNqhxPcXExTZo04d13371om/3799O+fXvq1avHmjVr2LFjB88++6zb5N/NmzdnwYIF7N69m1WrVqGqKl27dsVutwNQVFREamoqtWvXZtOmTaxbtw6TyURKSgpWq9XtfFarlb///e/ceeedV+0ahBBCCCFE9aGoqqp6OojrraCggICAAPLz8/H3vzUmXK4OjmXtZetrn3CmZigHrAfwzd6F1qFBHzLe1aal78fc0T0aOj976Q4X3MM/TPfwfUhbBkQE0y7Qj07B/oQYZNTqtVRQZqXx898B8PZdT+OjKwTAaIymTevv0GiqmFSsxsrKysjOziYuLq7areQ1dOhQzp4961aB0rVrVwoLC1m5ciXjxo3jq6++wmw207FjR+bMmUNionMhgT/++IPRo0ezbt06LBYLsbGxvP766zRo0IC4uDi38wwZMoSFCxdSWFjIyJEjWbZsGf7+/kyaNIkvv/yS22+/nTfffBOA2NhYHnroIfbt28eyZcu47777WLhwIevWrWPKlCls2bKFGjVq8Le//Y2XX34ZX19fMjIyaNq0KTk5OcTExFzwWg8dOkSdOnUYM2YMs2bNctv39ttvM3bsWH7++WdatWpFTk4OcXFxbN++ndtvv/2K7ttz//d8//33dO7c+YJtXn/9debOncuBAweq1GenTp3c7quqUhSFL774gnvvvddte//+/dHr9fy///f/qtzXjh07aNKkCVlZWdSpU4ctW7a4qquio6MB2LlzJ40bN2bfvn0kJCS4jp08eTJHjx6lc+fOjB8//rIq6S52DVeistesvGdwJ/eHEEIIIaqiqu8ZpFJK3DBsNit6jRd2HIScPAGABq3zt8FBVMhJEr3XVb1Sym7GXJ4AaR9kok94sCSkroOCUmclhEGnwVdvBqBF809p03rVLZGQuhBVVSmx2DzyczW+d/D29sZisTB06FC2bNnC8uXL2bhxI6qq0r17d1f1y6hRozCbzfz000/s3LmTV199FT8/P6Kjo/nss88AyMzMJDc3l7feeguAiRMnsn79epYvX05aWhrp6els27atQgwzZ86kSZMmbN++nWeffZb9+/eTmppKnz592LFjB5988gnr1q1j9OjRAISGhqLRaFi6dKmrgufPli5ditVqvWBF1COPPIKfnx8fffTRX77/wFndNX/+fAICAiqtbsrPzyc42DPDWx0OB19//TV169YlJSWFsLAwWrVqVekQueLiYhYsWEBcXJwrAZWUlERISAgffPABFouF0tJSPvjgA+rXr09sbKzr2B9++IFPP/1Uqp6EEEIIIW5h8gld3DDsZjNaRUepqhKRdZDscB8U1Zk3DfPfzr0h/4b8I6C7RGIjdwecPgBFxzHXcLaVVfeuPYvNwcebD5J5zFkZFewNquocZuXrm4hG4+XJ8Dyq1GqnwXOrPHLuXdNT8LnCZKyqqqxevZpVq1bRrVs3li1bxvr162nbti0AixcvJjo6mmXLltG3b18OHjxInz59aNSoEQDx8fGuvs4lWsLCwlxzBxUWFrJo0SKWLFniqhxasGABkZGRFWK56667eOyxx1y3hw8fzsCBA13zKSUmJjJnzhw6duzI3LlziYqKYs6cOUyaNIlp06bRokULkpOTGThwoCuuvXv3EhAQQERERIXzGQwG4uPj2bt37xXdd+esWLGC/v37U1JSQkREBGlpadSoUeOCbbOysnj77beZOXPmXzrnlTpx4gRFRUW88sorzJgxg1dffZVvv/2W++67jx9//JGOHTu62v7f//0fkyZNori4mKSkJNLS0jAYnP/emkwm1qxZw7333ssLL7wAOB+fVatWodM5n4unTp1i6NCh/Oc//5FqGyGEEEKIW5hUSokbxumlS9EqOrJVLxScc0BZ9M5KKW/zQcgvn2jXL/zinZw9BO91gE+HwNmDmJVzSSl5ql9rq3cf57kvf2ft7xt5vs0rPNnif0MstVofD0YmLteKFSvw8/PDaDTSrVs3+vXrx9ChQ9HpdLRq1crVLiQkhKSkJHbv3g3A2LFjmTFjBu3atWPq1Kns2LGj0vMcOHAAq9XKHXfc4doWEBBAUlJShbYtWrRwu/3rr7+ycOFC/Pz8XD8pKSk4HA6ys7MBZ+XWsWPHWLx4MW3atOHTTz+lYcOGpKWlVfm+OJdoqczixYvd4khPT3ftS05OJiMjgw0bNpCamsoDDzzAiRMnKvRx5MgRUlNT6du3LyNGjHBtP7/fkSNHVinm9PR0t+MWL15cpeMcDgcAvXv3ZsKECdx+++08+eST9OjRg3nz5rm1HThwINu3b2ft2rXUrVuXBx54gLIy54qnpaWlPPTQQ7Rr146ff/6Z9evXc9ttt3HPPfdQWur8t33EiBEMGDCADh06XNVrEEIIIYQQ1YtUSokbxsmTeZw1BmI6vIk/QgMBZ1LKCPipFkh5GUzhUK/HxTspOAKooDNCVHPMvmGArLp3PeTmOz+Q3h23i2jTUdd2P796KIrWU2HdELz1WnZNT/HYuS9XcnIyc+fOxWAwEBkZiU6nY/ny5Zc8bvjw4aSkpPD111/z3Xff8fLLLzNr1izGjBlzJaG78fX1dbtdVFTEI488wtixYyu0rV27tutvk8lEz5496dmzJzNmzCAlJYUZM2bQpUsXEhMTyc/P5+jRoxWqsywWC/v37ycl5dKPW69evdySdVFRUW5xJyQkkJCQQOvWrUlMTOSDDz5gypQprjZHjx4lOTmZtm3bMn/+fLe+z1/tr6oVRS1atHA7rmbNmlU6rkaNGuh0Oho0aOC2vX79+qxbt85tW0BAAAEBASQmJtK6dWuCgoL44osv+Pvf/86SJUvIyclh48aNaMq/EFiyZAlBQUF8+eWX9O/fnx9++IHly5e7qsJUVcXhcKDT6Zg/fz5///vfr+gahBBCCCFE9SJJKXFDKC0tZWPNcDQlx/Apy8eudX6QDvCvjWoDXyzQ8iHQXWIImNX5LbwaXAfLkBWU/bIHSi0YFElKXWv55XNJxQY75zCKiLifWlED8fVN9GRYNwRFUa54CJ0nnEuknK9+/frYbDY2bdrkGr536tQpMjMz3ZIY0dHRjBw5kpEjRzJlyhTef/99xowZ46o4On9+p/j4ePR6PZs3b3YlkvLz89m7d+9FK2jOadasGbt27aoQZ2UURaFevXps2LABgPvvv5/Jkycza9asChOdz5s3j5KSEgYPHnzJfk0mEyaTqUoxOBwOzGaz6/aRI0dITk52rWin+VNV5+Vc3zne3t5XdJzBYKBly5ZkZma6bd+7d+9FJ4sHZ0JJVVXXdZWUlKDRaFDO+3f33O1z1VgbN250ey58+eWXvPrqq2zYsIGoqKgrvgYhhBBCCFG9VJ9PSeKmlrf9EKqiQXF+XsHHbKFF9jHyWk3mwF4rOsVStQnObWZU4P6YCaxf+7+hQ15aGb53rXz7Wy5zVmeRm1+KTrHioysGwNcnHn//xh6OTlwtiYmJ9O7dmxEjRvDee+9hMpl48skniYqKonfv3gCMHz+ebt26UbduXc6cOcOPP/5I/fr1AYiJiUFRFFasWEH37t3x9vbGZDIxZMgQnnjiCYKDgwkLC2Pq1KkVEhoXMnnyZFq3bs3o0aMZPnw4vr6+7Nq1i7S0NN555x0yMjKYOnUqgwYNokGDBhgMBtauXcuHH37I5MmTAWdF1Wuvvcbjjz+O0Whk0KBB6PV6vvzyS5566ilmzJjBbbfd5nbePydsABo2bIher3fbVlxczIsvvkivXr2IiIggLy+Pd999lyNHjtC3b1/AmZDq1KkTMTExzJw5k5MnT7qODw+vZJgy/6ugKioq4uTJk2RkZGAwGCpUOZ2vqKiIrKws1+3s7GwyMjIIDg52JQWfeOIJ+vXrR4cOHUhOTubbb7/lq6++Ys2aNYBzyOUnn3xC165dCQ0N5fDhw7zyyit4e3vTvXt3ALp06cITTzzBqFGjGDNmDA6Hg1deeQWdTkdycjKA63lxzpYtW9BoNBXu7yu5BiGEEEIIUX1IUkp4nOpwcPKH/QB4lU9srlW15NW8izOnnFkqrdYBVal2spVRojGy3ud/1TlRXnoSvG/dSbavtYUbctiVW8Dfkz7j7pi1ru1aXdUqR0T1sWDBAsaNG0ePHj2wWCx06NCBlStXuhIydrudUaNGcfjwYfz9/UlNTeWNN94AnEPapk2bxpNPPsmwYcMYPHgwCxcuZPbs2YwcOZIePXrg7+/PpEmTOHToEEajsdJYGjduzNq1a3n66ae58847UVWVOnXq0K9fPwBq1apFbGws06ZNIycnB0VRXLcnTJjg6mfChAnEx8cza9Ys3nrrLYqLnUnVjz76iP79+1c474W2HTp0iFq1arlt02q17Nmzh0WLFpGXl0dISAgtW7YkPT2dhg0bApCWlkZWVhZZWVkVjr/UqolNmzZ1/b1161aWLFlCTEwMOTk5Fz1my5YtrqQQOFc+BBgyZAgLFy4E4G9/+xvz5s3j5ZdfZuzYsSQlJfHZZ5/Rvn17AIxGI+np6bz55pucOXOGmjVr0qFDBzZs2EBYmHO4dL169fjqq6+YNm0abdq0QaPR0LRpU7799tsLTip/OapyDUIIIYQQovpQ1KuxXng1U1BQQEBAAPn5+bLqzw1g2zdfUfJjEd/7ZOJ95gy6Y/vRE4I2aIirTdeQd0l88bNLd/brJ5z66gkatnPOf7On/W34abXoZE6pa6bbW+nszi1gXtcZ6HFO4KzV+tGi+X/x86s4YfWtoKysjOzsbOLi4i6ZXBHuiouLiYqKYtasWTz00EPX/fynT5+mc+fO+Pv788033+DjI5P03woqe83KewZ3cn8IIYQQoiqq+p5BxjQJj8v7bQcORcFYWkpspnMVL1XjrLyITdTTwve/xJp+v3RHqgq2UsrKh/kZFIVAvU4SUtfImWIL2w6e4VSRcx4ZvVIEwB0tv6LDnZtv2YSUuDzbt2/no48+Yv/+/Wzbto2BAwcCuIYEXm/BwcF8//33dO7cmY0bN3okBiGEEEIIIW4VMnxPeJRqs5G/ejVetydg+uMkQflnORwQxrmnZos7vai58iPQR1beUeY3sPRBsJZg9naufOUlyahrpsxqp/PstZwuttAm4hf6xO8EtQQAozESjaYK838JUW7mzJlkZmZiMBho3rw56enp1KhRw2PxhISE8Nxzz3ns/EIIIYQQQtwqJCklPMpeWkZejTAKdSfI1x9FLZ83yqbVogN0Xz0CWkB3iSRH1mqwOpMiZRrn0AujTG5+zZwsNHO62IKiqAxu8F8MWgsAOl0AOplLSlyGpk2bsnXrVk+HIYQQQgghhPAASUoJjzpy+BDHE+oBp9ArRTjO5ZEU51NTq5Y5b0e3qrwjm7Nd4Z2TOdxgGOw5jlEjSalrpaDMCkCEv8aVkEpMfIagwNYoitaToQkhhBBCCCGEqCYkKSU8qrigAABvhx6tTcGscz4ldYqzMkoTcwf0exlMl1ixyWYmwy+JXppULHuOA2CU4XvXRNaJIrb9cQaAEB9r+VaF6FpDUBRJBAohhBBCCCGEqBpJSgmPKj6aD4DX0QPYbQHsr+ncrqrO5IbW2wf8LzGfFIDdzK+mJCxoUHDOJ9UrLPDaBH0L++73Yzz8/7YS5n2Sh277lih/Z4WaTucnCSkhhBBCCCGEEJdFklLCY2xnyijafBYMoJYVAqBxOFC1OjT6BAC0Bn0VOzNj1vgBcG9YIHMbxl6DiMXuXOfj1DV2A20jN7u2G421PBWSEEIIIYQQQohqSpJSwmPyc3KxKw4A7KodBQjUdKI0sBEqXgBoDVV8itrMmDXBAHjJXFLXzLm5pBpFqgCEhqYQHNye4KB2ngxLCCGEEEIIIUQ1JEkp4RGqqvLrF59jI4IjZb4kWO3oFCgyxaApT0gFag+j01/iKepwQP4hMBdQqosFnEP3xNWVnVfMt78dY3POaQC8tKUABAe3p1bUAE+GJoQQQgghhBCimpKklPCIw2nf83tBHoo/JO35HQNmrDotKFr0OjP3d9qO/87ZKPqRlXe0uA/s/wEAc1wLAIxaqZS62iZ/toNfsk/TLTaNVo2O4qscABV0OpOnQxNCCCGEEEIIUU3Jp3fhEb/s+p1TgV7kaQrx4iAO5Vx1kwYvfTHBR/6LTrGCzlh5R4fK5zXSelHm65wl3SjD9666I2dKCfM+yf11v6J1xFY0qnP1PaOxCpPQi2pl6NChKIqCoigYDAYSEhKYPn06NpvtL/W7Zs0aFEXh7NmzVyfQKsjOzmbAgAFERkZiNBqpVasWvXv3Zs+ePW7tVqxYQceOHTGZTPj4+NCyZUsWLlzo1iYnJwdFUcjIyKjy+Z9//nnq1auHr68vQUFB3H333WzatMmtz4ceeoi4uDi8vb2pU6cOU6dOxWKxVNpvbm4uAwYMoG7dumg0GsaPH1+leObOnUvjxo3x9/fH39+fNm3a8M0337j2nz59mjFjxpCUlIS3tze1a9dm7Nix5Ofnu9osXLjQ9fz488+JEydc7cxmM08//TQxMTF4eXkRGxvLhx9+6BbPm2++6TpXdHQ0EyZMoKysrNJr+Pzzz+natSshISGX/XgIIYQQQogbj1RKCY8wl3/AjbbXwOpwYNU5k1KKosVoPQVnsp0NTeGVd2QrJcMviTHtPuCwRQWHA6MM37tqSi12dh8r4EyJhUgf5yTnen0wsbH/xOgVQYB/Mw9HKK6F1NRUFixYgNlsZuXKlYwaNQq9Xs+UKVM8HRoAFosFg8FQaRur1UqXLl1ISkri888/JyIigsOHD/PNN9+4Jcbefvttxo8fz+TJk5k7dy4Gg4Evv/ySkSNH8ttvvzFz5swrjrNu3bq88847xMfHU1payhtvvEHXrl3JysoiNDSUPXv24HA4eO+990hISOC3335jxIgRFBcXV3pes9lMaGgozzzzDG+88UaV46lVqxavvPIKiYmJqKrKokWL6N27N9u3b6dhw4YcPXqUo0ePMnPmTBo0aMAff/zByJEjOXr0KEuXLgWgX79+pKamuvU7dOhQysrKCAsLc2174IEHOH78OB988AEJCQnk5ubicDhc+5csWcKTTz7Jhx9+SNu2bdm7d68rITp79uyLXkNxcTHt27fngQceYMSIEVW+diGEEEIIcYNSb0H5+fkqoObn53s6lFvWv195VZ06daq66qkl6vxed6ozH7hHnfnAPerbI75SPx39f6r65WhV/fW/qmopvXgnNquqTvVXX14wQa35w3bXz8oTZ67bddzser2drsZMXqE2enaJ+uC7T6jfr45Xf/nlXk+HdcMrLS1Vd+3apZaWVvL8vUENGTJE7d27t9u2Ll26qK1bt1ZPnz6tDho0SA0MDFS9vb3V1NRUde/eva52OTk5ao8ePdTAwEDVx8dHbdCggfr111+r2dnZKuD2M2TIEFVVVbWgoEAdMGCA6uPjo4aHh6uzZ89WO3bsqI4bN87Vb0xMjDp9+nR10KBBqslkch2bnp6utm/fXjUajWqtWrXUMWPGqEVFRaqqqur27dtVQM3JybnotR48eFDV6/XqxIkTK+ybM2eOCqg///yzqqqq6xq2b99++XdquXP/93z//fcXbfPaa6+pcXFxVe7zz/fV5QoKClL/9a9/XXT/f//7X9VgMKhWq/WC+0+cOKHq9Xr13//+t2vbN998owYEBKinTp26aL+jRo1S77rrLrdtEydOVNu1a1eluK/G43G+yl6z8p7BndwfQgghhKiKqr5nkHFOwiMsdufwFC0aNKrjvD0atNigbio07gv6Sobv2ZzDPMo0zoqJvuFBbGpdn26hgdco6lvP7mOFhHmfZGbH5xhQ7zMAdPoAD0dVDakqWIo986Oqfzl8b29vLBYLQ4cOZcuWLSxfvpyNGzeiqirdu3fHanWuyjhq1CjMZjM//fQTO3fu5NVXX8XPz4/o6Gg++8z5/MnMzCQ3N5e33noLgIkTJ7J+/XqWL19OWloa6enpbNu2rUIMM2fOpEmTJmzfvp1nn32W/fv3k5qaSp8+fdixYweffPIJ69atY/To0QCEhoai0WhYunQpdrv9gte1dOlSrFYrjz/+eIV9jzzyCH5+fnz00Ud/+f4DZ3XX/PnzCQgIoEmTJhdtl5+fT3Bw8FU5Z2Xsdjsff/wxxcXFtGnTptJ4/P390ekuXFj973//Gx8fH+6//37XtuXLl9OiRQtee+01oqKiqFu3Lo8//jilpaWuNm3btmXr1q388ssvABw4cICVK1fSvXv3q3SFQgghhBCiOpDhe+K6c5TasFp0gA2btQTH+VObKVq0ihW0XpfuqDwpZSlPStXyMhDjXYXjRJWUWe1YbA5qBR9FqzhQFANeXjWJjLj/0gcLd9YSeMlD8289dRQMvld0qKqqrF69mlWrVtGtWzeWLVvG+vXradu2LQCLFy8mOjqaZcuW0bdvXw4ePEifPn1o1KgRAPHx8a6+ziVawsLCCAwMBKCwsJBFixaxZMkSOnfuDMCCBQuIjKx4X91111089thjrtvDhw9n4MCBrvmUEhMTmTNnDh07dmTu3LlERUUxZ84cJk2axLRp02jRogXJyckMHDjQFdfevXsJCAggIiKiwvkMBgPx8fHs3bv3iu67c1asWEH//v0pKSkhIiKCtLQ0atSoccG2WVlZvP32239pyOCl7Ny5kzZt2lBWVoafnx9ffPEFDRo0uGDbvLw8XnjhBR5++OGL9vfBBx8wYMAAvL29XdsOHDjAunXrMBqNfPHFF+Tl5fHPf/6TU6dOsWDBAgAGDBhAXl4e7du3R1VVbDYbI0eO5Kmnnrq6FyyEEEIIIW5oUiklrrvCdUfAYUSxWfn9jy8o8PY/b68WjWIDXeXzxVCQC1nfA2ApT2AZZC6pq2bX0QJW/X4MAB99CQDBwW1p13YNNWv28GRo4jpYsWIFfn5+GI1GunXrRr9+/Rg6dCg6nY5WrVq52oWEhJCUlMTu3bsBGDt2LDNmzKBdu3ZMnTqVHTt2VHqeAwcOYLVaueOOO1zbAgICSEpKqtC2RYsWbrd//fVXFi5ciJ+fn+snJSUFh8NBdrZzTrpRo0Zx7NgxFi9eTJs2bfj0009p2LAhaWlpVb4vLjV3FTiTc+fHkZ6e7tqXnJxMRkYGGzZsIDU1lQceeMBtQvBzjhw5QmpqKn379nWbK+n8fkeOvMRqpOXS09Pdjlu8eLFrX1JSEhkZGWzatIlHH32UIUOGsGvXrgp9FBQUcM8999CgQQOef/75C55n48aN7N69m4ceeshtu8PhQFEUFi9ezB133EH37t2ZPXs2ixYtclVLrVmzhpdeeon/+7//Y9u2bXz++ed8/fXXvPDCC5e8T4UQQgghxM1DKqXEdWc+XYZFdbCuOJJUfgUVNJpAFEMdFEWDlktUStltMK89lOQ5+9M6v6E3yKp7V8Xu3AK6z0knwJBPt9hfaFhjPwB6nQzbu2J6H2fFkqfOfZmSk5Ndk35HRkai0+lYvnz5JY8bPnw4KSkpfP3113z33Xe8/PLLzJo1izFjxlxJ5G58fd2rvYqKinjkkUcYO3Zshba1a9d2/W0ymejZsyc9e/ZkxowZpKSkMGPGDLp06UJiYiL5+fkcPXq0QnWWxWJh//79pKSkXDK2Xr16uSXroqKi3OJOSEggISGB1q1bk5iYyAcffOA2afzRo0dJTk6mbdu2zJ8/363v81eX8/f3pypatGjhdlzNmjVdf59bURGgefPmbN68mbfeeov33nvP1aawsJDU1FRMJhNffPEFer3+guf517/+xe23307z5s3dtkdERBAVFUVAwP/+zahfvz6qqnL48GESExN59tlnGTRoEMOHDwegUaNGFBcX8/DDD/P0009Xep8KIYQQQoibhySlxHWlqioncw5xGh3FDmcFgkYxYgh80NWmpmEv6CqZV8Rc4EpIEdEES81G4AAvqZS6KrJOFAFwX93vaB/5v+oEg+HCQ45EFSjKFQ+h84RziZTz1a9fH5vNxqZNm1zD906dOkVmZqbb8K/o6GhGjhzJyJEjmTJlCu+//z5jxoxxVRydP79TfHw8er2ezZs3uxJJ+fn57N27lw4dOlQaY7Nmzdi1a1eFOCujKAr16tVjw4YNANx///1MnjyZWbNmMWvWLLe28+bNo6SkhMGDB1+yX5PJhMlkqlIMDocDs9nsun3kyBGSk5Np3rw5CxYsQPOn5PrlXN853t7eVT7uz/EUFBSQkpKCl5cXy5cvx2i88Lx+RUVF/Pe//+Xll1+usK9du3Z8+umnFBUV4efnBziHSmo0GmrVqgVASUlJhWvVarWA8/+Jy7lPhRBCCCFE9SVJKXHd2O12Fr75BqcKSzmjeKEtHz2qlP8OCT9KT8NMfC3ZoJ188Y5s5R+gFC088hOWndmQl49BkaTU1ZBf6py0Oi6oGICgwNaY/G8jutZQD0YlPC0xMZHevXszYsQI3nvvPUwmE08++SRRUVH07t0bgPHjx9OtWzfq1q3LmTNn+PHHH6lfvz4AMTExKIrCihUr6N69O97e3phMJoYMGcITTzxBcHAwYWFhTJ06FY1Gg3KJ1/PkyZNp3bo1o0ePZvjw4fj6+rJr1y7S0tJ45513yMjIYOrUqQwaNIgGDRpgMBhYu3YtH374IZMnO/99qV27Nq+99hqPP/44RqORQYMGodfr+fLLL3nqqaeYMWMGt912m9t5MzMzK8TSsGHDCtVExcXFvPjii/Tq1YuIiAjy8vJ49913OXLkCH379gWcCalOnToRExPDzJkzOXnypOv48PDwSq//XCVUUVERJ0+eJCMjA4PBcNH5oQCmTJlCt27dqF27NoWFhSxZsoQ1a9awatUqwJmQ6tq1KyUlJfznP/+hoKCAgoICwDlx/LmkEcAnn3yCzWbjH//4R4XzDBgwgBdeeIFhw4Yxbdo08vLyeOKJJ3jwwQddc0/17NmT2bNn07RpU1q1akVWVhbPPvssPXv2dDvPn50+fZqDBw9y9Kiz8vDc4xEeHn7J+0wIIYQQQtx4JCklrpvc3FwOFRaBDnzzC3hi+1L2RYShdTg/fBqOr8e3pnMuGHSVDd8z40BhdWh7Thw9RU6pM0nlJcP3/pI9xwqYv/YAu48VAuCjcyalatUaRFhYqidDEzeIBQsWMG7cOHr06IHFYqFDhw6sXLnSlZCx2+2MGjWKw4cP4+/vT2pqKm+88QbgHH41bdo0nnzySYYNG8bgwYNZuHAhs2fPZuTIkfTo0QN/f38mTZrEoUOHLlqhc07jxo1Zu3YtTz/9NHfeeSeqqlKnTh369esHQK1atYiNjWXatGnk5OSgKIrr9oQJE1z9TJgwgfj4eGbNmsVbb71FcbHzef/RRx/Rv3//Cue90LZDhw65KoDO0Wq17Nmzh0WLFpGXl0dISAgtW7YkPT2dhg0bApCWlkZWVhZZWVkVjlcvsWpi06ZNXX9v3bqVJUuWEBMTQ05OzkWPOXHiBIMHDyY3N5eAgAAaN27MqlWr6NKlCwDbtm1j06ZNQMUKrezsbGJjY123P/jgA+677z7XpPXn8/PzIy0tjTFjxtCiRQtCQkJ44IEHmDFjhqvNM888g6IoPPPMMxw5coTQ0FB69uzJiy++WOl1L1++nGHDhrlun3s8pk6detG5r4QQQgghxI1LUS/1zvcmVFBQQEBAgGupa3F95GRns3DRIox2LY32leGTvYptseF4OfxRQoZzu9ci2gUtgxpJMHLdxSc7P5nJusWPcH+TN902/6thLD3CAq/1Zdy0Jn6Swefbj9AhagM963xLkFcBiuKg6e3/j+Dgtp4Or1opKysjOzubuLi4SyZXhLvi4mKioqKYNWtWhQm0r4fTp0/TuXNn/P39+eabb/Dxufw5uUT1U9lrVt4zuJP7QwghhBBVUdX3DFJaIq4ba/m8JXpVg7dDh6N8eI5S/k27yWCBoSvhnz9XvvqerYwjXmEA1NDrSKnhz+DIEJKDZf6Rv+JUsQWAXnW3Emw8i6I40GiM+PomejgycTPbvn07H330Efv372fbtm0MHDgQwDUk8HoLDg7m+++/p3PnzmzcuNEjMQghhBBCCHGrkOF74rqxlyelNCg47FbUc0kprQEV0CpWMPrDpYbh2cyUapzfZN8R4MuHjeKuZdi3jIIy51xSgUYL2KF+vVcIDb0bvT7Iw5GJm93MmTPJzMzEYDDQvHlz0tPTqVHDcxPrh4SE8Nxzz3ns/EIIIYQQQtwqJCklrhtbeVKqSPWiwHEa3/J5jBW0qIAGG2grqZA6ewi2/RtO76dM65xzyqiVYr+/wmp38NyXv3PodAmZ5XNJKTjn1DGZGkhCSlxzTZs2ZevWrZ4OQwghhBBCCOEBkpQS143NYiHbHsTeYl+8dOswRoQAoChaUMsrpbT6i3eQPgu2LgCgrLZzxSdvjay491ds/eMMH/1ykABDPuNu/4AAQyHYTwOg08lwSCGEEEIIIYQQ144kpcR1YbfaOPHjH5x2+JBQvB+txopV41z222YNRNGBVrGBtpJV90rynL/jO1EaeScARllx7y85XT6PVHLcARICc1zb9fogDIYwD0UlhBBCCCGEEOJWIEkpcV1kr92EpkyLHQ061QaAQZcE3neA1jl3jK/mdOXD96xlFGu86R37JJkOH1BVGb53hVRV5ecDp0nf50z01QpwzicVEtyBuLix+PjEotXKqnFCCCGEEEIIIa4dSUqJa660uJjtG9Ip0phw2I3UsOQCoGqD0OpCadUjhhrrh1NTv7fy4Xu2MnaaEvnN7g2oKEBTkyzXfiXWZeUx6INfMGgsdIjaTG3f3QB4+8QSENDUw9EJIYQQQgghhLgVSFJKXHM/LV3K744y0JbRPOcwDU8cJjfQDxRnVVRSYgmmLducjSurlLKVYdY49yf6ePF50wRCDZUkscRF5eQ5JzNPid/MvfGfuLYbDJ5b8UwIIYQQQgghxK1FklLimisqKAAgxGHCVpqPXXFOTq6WJ5i0/7kHtOWNK6uUspZh1jgn3/bTaiUh9RcUlDmHUDaJcK6I6Otbl6CgNkRG9vNkWEIIIYQQQgghbiGSlBLXnN1uByDeHsYfdhVHeVJKKX/6aXUK6P0gqduFk1KHtzhX3Tv7B2WmZgB4yap7VyQnr5jPtx9h3b6TAPjoSwCoGXYPcXGjPRmaEEIIIYQQQohbjMwSLa45u91Ojj2Ix+2BFKo2HOcSSoqzPErb41V46gj0+deFO1g9Dbb/B8wFruF7surelXlp5W7mrN6HyfE109q8TA3dOgB0en8PRyZuFEOHDkVRFBRFwWAwkJCQwPTp07HZbH+p3zVr1qAoCmfPnr06gVZBdnY2AwYMIDIyEqPRSK1atejduzd79uxxa7dixQo6duyIyWTCx8eHli1bsnDhQrc2OTk5KIpCRkZGlc///PPPU69ePXx9fQkKCuLuu+9m06ZNbn0+9NBDxMXF4e3tTZ06dZg6dSoWi6XSfnNzcxkwYAB169ZFo9Ewfvz4Ksd0ziuvvIKiKBWO3b9/P3/7298IDQ3F39+fBx54gOPHj7u1efHFF2nbti0+Pj4EBgZesP9zz6Hzfz7++GPX/s8//5wuXbq4ztOmTRtWrVp1ybg///xzunbtSkhIyGU/HkIIIYQQ4sYjn+zFNWe32zloDyKs5BA6vY2zPl7le8qTUl5eFz8YoMw5/I+mgzC3HgWAl1Yqpa7E8YIyAO5N/Ilaply0OCul/HzrejIscYNJTU0lNzeXffv28dhjj/H888/z+uuvezosl0slbQCsVitdunQhPz+fzz//nMzMTD755BMaNWrklhh7++236d27N+3atWPTpk3s2LGD/v37M3LkSB5//PG/FGfdunV555132LlzJ+vWrSM2NpauXbty8qSzUnHPnj04HA7ee+89fv/9d9544w3mzZvHU089VWm/ZrOZ0NBQnnnmGZo0aXLZcW3evJn33nuPxo0bu20vLi6ma9euKIrCDz/8wPr167FYLPTs2ROHw+FqZ7FY6Nu3L48++mil51mwYAG5ubmun3vvvde176effqJLly6sXLmSrVu3kpycTM+ePdm+fXulfRYXF9O+fXteffXVy75uIYQQQghxA1KvorVr16o9evRQIyIiVED94osv3PY7HA712WefVcPDw1Wj0ah27txZ3bt3r1ubU6dOqQMGDFBNJpMaEBCgPvjgg2phYaFbm19//VVt37696uXlpdaqVUt99dVXLyvO/Px8FVDz8/Ov6DrF5Vnw0stqhyn/Vh8dOlqd+cA9rp85wz9R/++Rb1V199eVd/BOK7VoWk3101/XqY/8lq3W/GG7OuK37OsS+82m0+s/qjGTV6irf2ymfr86Xj1y9FO1sGjvpQ8Ul6W0tFTdtWuXWlpa6ulQLtuQIUPU3r17u23r0qWL2rp1a/X06dPqoEGD1MDAQNXb21tNTU11+zc8JydH7dGjhxoYGKj6+PioDRo0UL/++ms1OztbBdx+hgwZoqqqqhYUFKgDBgxQfXx81PDwcHX27Nlqx44d1XHjxrn6jYmJUadPn64OGjRINZlMrmPT09PV9u3bq0ajUa1Vq5Y6ZswYtaioSFVVVd2+fbsKqDk5ORe91oMHD6p6vV6dOHFihX1z5sxRAfXnn39WVVV1XcP27dsv/04td+7/nu+///6ibV577TU1Li6uyn3++b66lMLCQjUxMVFNS0urcOyqVatUjUbj9n/j2bNnVUVR1LS0tAp9LViwQA0ICLjgeS70HuBSGjRooE6bNq1Kba/G43G+yl6z8p7BndwfQgghhKiKqr5nuKqVUsXFxTRp0oR33333gvtfe+015syZw7x589i0aRO+vr6kpKRQVlbmajNw4EB+//130tLSWLFiBT/99BMPP/ywa39BQQFdu3YlJiaGrVu38vrrr/P8888zf/78q3kp4iqxlVooKVWwoUGnOof/6A1NMfgPQ6OtgZemBHSXqJSym3k3uj+jT/my7MRZAPy0UuR3OZ5f/js93k7nyJlCfHQlqI4iAIKD2+Pnm+jh6G5+qqpSYi3xyI+qqn85fm9vbywWC0OHDmXLli0sX76cjRs3oqoq3bt3x2q1AjBq1CjMZjM//fQTO3fu5NVXX8XPz4/o6Gg+++wzADIzM8nNzeWtt94CYOLEiaxfv57ly5eTlpZGeno627ZtqxDDzJkzadKkCdu3b+fZZ59l//79pKam0qdPH3bs2MEnn3zCunXrGD3aOTdaaGgoGo2GpUuXuua1+7OlS5ditVovWBH1yCOP4Ofnx0cfffSX7z9wVhfNnz+fgICASqub8vPzCQ4OvirnvJBRo0Zxzz33cPfdd1fYZzabURQFr/OqV41GIxqNhnXr1l3RuWrUqMEdd9zBhx9+WOlz0eFwUFhYeE2vXQghhBBC3Hiu6kTn3bp1o1u3bhfcp6oqb775Js888wy9e/cG4N///jc1a9Zk2bJl9O/fn927d/Ptt9+yefNmWrRoATiHVnTv3p2ZM2cSGRnJ4sWLsVgsfPjhhxgMBho2bEhGRgazZ892S16JG0PGnM/Qql7Y0aBRy4d/6CPQaIOoF7iFeL4D3bTKO7GZyfUKBSDRx4uGft6MqBV6jSO/eZwsNLNwQw7eulJebPcSwcZ81z69TuaSuh5KbaW0WtLKI+feNGATPnqfKzpWVVVWr17NqlWr6NatG8uWLWP9+vW0bdsWgMWLFxMdHc2yZcvo27cvBw8epE+fPjRq1AiA+Ph4V1/nkg1hYWGueYgKCwtZtGgRS5YsoXPnzoBzyFdkZGSFWO666y4ee+wx1+3hw4czcOBA15xIiYmJzJkzh44dOzJ37lyioqKYM2cOkyZNYtq0abRo0YLk5GQGDhzoimvv3r0EBAQQERFR4XwGg4H4+Hj27t17RffdOStWrKB///6UlJQQERFBWloaNWrUuGDbrKws3n77bWbOnPmXznkxH3/8Mdu2bWPz5s0X3N+6dWt8fX2ZPHkyL730Eqqq8uSTT2K328nNzb2sc02fPp277roLHx8fvvvuO/75z39SVFTE2LFjL9h+5syZFBUV8cADD1z2dQkhhBBCiOrrupWbZGdnc+zYMbdvZwMCAmjVqhUbN24EYOPGjQQGBroSUgB33303Go3GNTnsxo0b6dChAwaDwdUmJSWFzMxMzpw5c8Fzm81mCgoK3H7EtWc5fpyzR45hVezYVBWtprh8j/Npd1fQe8QZN4POWHlHNrNrgvN/RIYwr2Es9f28r2HkN5f8UmcVS0LQCbeEVHBQezQauR9FRStWrMDPzw+j0Ui3bt3o168fQ4cORafT0arV/5JrISEhJCUlsXv3bgDGjh3LjBkzaNeuHVOnTmXHjh2VnufAgQNYrVbuuOMO17aAgACSkpIqtD3//wWAX3/9lYULF+Ln5+f6SUlJweFwkJ2dDTgrdY4dO8bixYtp06YNn376KQ0bNiQtLa3K98X5/9dczOLFi93iSE9Pd+1LTk4mIyODDRs2kJqaygMPPMCJEycq9HHkyBFSU1Pp27cvI0aMcG0/v9+RI0dWKeb09HS34xYvXsyhQ4cYN24cixcvxmi88L+5oaGhfPrpp3z11Vf4+fkREBDA2bNnadasGZrLXFzi2WefpV27djRt2pTJkyczadKki85LtmTJEqZNm8Z///tfwsLCgMrvUyGEEEIIcfO4qpVSlTl27BgANWvWdNtes2ZN175jx4653pCeo9PpCA4OdmsTFxdXoY9z+4KCgiqc++WXX2batEtU44ir7j8LFvBHUBk2NFhqpKM/dRzwwjnBuQ2lNM/Z0OBbeUfnJaW8ZNW9y1Zkdg6bDPFxJqdMfg1p0WIpiqJHUWTC+OvBW+fNpgGbLt3wGp37ciUnJzN37lwMBgORkZHodDqWL19+yeOGDx9OSkoKX3/9Nd999x0vv/wys2bNYsyYMVcSuhtfX/d/J4qKinjkkUcuWHlTu3Zt198mk4mePXvSs2dPZsyYQUpKCjNmzKBLly4kJiaSn5/P0aNHK1RnWSwW9u/fT0pKyiVj69Wrl1uyLioqyi3uhIQEEhISaN26NYmJiXzwwQdMmTLF1ebo0aMkJyfTtm3bCkPRz19dzt+/apWNLVq0cDuuZs2arF69mhMnTtCsWTPXdrvdzk8//cQ777yD2WxGq9XStWtX9u/fT15eHjqdjsDAQMLDw92q3q5Eq1ateOGFFzCbzW7DAz/++GOGDx/Op59+6valVWX3qRBCCCGEuHlct6SUJ02ZMoWJEye6bhcUFBAdHe3BiG4Nx8xmvrcmkmv357WfvuK0KZBCb0DRolFtENkMYttBaMWqCGxm2PQeFJ8AawllrqSUJFGqas+xAhZtyOHI2VIifXOJDTgEgE7vj0Zz6eoPcfUoinLFQ+g84Vwi5Xz169fHZrOxadMm1/C9U6dOkZmZSYMGDVztoqOjGTlyJCNHjmTKlCm8//77jBkzxlVxdP78TvHx8ej1ejZv3uxKJOXn57N37146dOhQaYzNmjVj165dFeKsjKIo1KtXjw0bNgBw//33M3nyZGbNmsWsWbPc2s6bN4+SkhIGDx58yX5NJhMmk6lKMTgcDsxms+v2kSNHSE5Opnnz5ixYsKBCRdLlXN853t7eFY7r3LkzO3fudNs2bNgw6tWrx+TJk9FqtW77zg0x/OGHHzhx4gS9evW67DjOl5GRQVBQkFtC6qOPPuLBBx/k448/5p577nFrfzn3qRBCCCGEqL6uW1IqPDwcgOPHj7vN33H8+HFuv/12V5s/D2uw2WycPn3adXx4eDjHjx93a3Pu9rk2f+bl5eX2RlhcHzaHyhFHIDVKz9Iwt4if/M9VsWnQKzboOsOZlLqQfd9B2rOum2aN8/EzSqVUlb29Oouvd+bSqVY6L7T71LVdJ/NIiSuQmJhI7969GTFiBO+99x4mk4knn3ySqKgo1zyB48ePp1u3btStW5czZ87w448/Ur9+fQBiYmJQFIUVK1bQvXt3vL29MZlMDBkyhCeeeILg4GDCwsKYOnUqGo3mklV8kydPpnXr1owePZrhw4fj6+vLrl27SEtL45133iEjI4OpU6cyaNAgGjRogMFgYO3atXz44YdMnjwZcFZUvfbaazz++OMYjUYGDRqEXq/nyy+/5KmnnmLGjBncdtttbufNzMysEEvDhg3R6/Vu24qLi3nxxRfp1asXERER5OXl8e6773LkyBH69u0LOBNSnTp1IiYmhpkzZ3Ly5EnX8Rf7/+ycc5VQRUVFnDx5koyMDAwGg1uC8Hwmk6nCtfj6+hISEuK2fcGCBdSvX5/Q0FA2btzIuHHjmDBhgtuQyoMHD3L69GkOHjyI3W53xZKQkICfnx9fffUVx48fp3Xr1hiNRtLS0njppZfcJpRfsmQJQ4YM4a233qJVq1auamhvb28CAgIuet3nznv06FHgf49HeHj4Je8zIYQQQghx47luSam4uDjCw8NZvXq1KwlVUFDApk2bePTRRwFo06YNZ8+eZevWrTRv3hxwfkvrcDhcZfxt2rTh6aefxmq1uj4EpKWlkZSUdMGhe8IzVFXFivNDpcHhHDZmL88nKYoWjcZa+ap7Jaedv4PioH5PzD4NwCqVUpfjZKGzGqND3FkANFoTRq9QIiPu92BUojpbsGAB48aNo0ePHlgsFjp06MDKlStd/xbb7XZGjRrF4cOH8ff3JzU1lTfeeANwDr+aNm0aTz75JMOGDWPw4MEsXLiQ2bNnM3LkSHr06IG/vz+TJk3i0KFDF5336JzGjRuzdu1ann76ae68805UVaVOnTr069cPgFq1ahEbG8u0adPIyclBURTX7QkTJrj6mTBhAvHx8cyaNYu33nqL4mLn3HcfffQR/fv3r3DeC207dOgQtWrVctum1WrZs2cPixYtIi8vj5CQEFq2bEl6ejoNGzYEnP93ZWVlkZWVVeH4S62a2LRpU9ffW7duZcmSJcTExJCTk1PpcZeSmZnJlClTOH36NLGxsTz99NNu9xfAc889x6JFiyrE8uOPP9KpUyf0ej3vvvsuEyZMQFVVEhISmD17tttcWfPnz8dmszFq1ChGjRrl2j5kyBAWLlx40fiWL1/OsGHDXLfPPR5Tp07l+eef/yuXLoQQQgghPEBRr8Z64eWKiorIysoCnG9SZ8+eTXJyMsHBwdSuXZtXX32VV155hUWLFhEXF8ezzz7Ljh072LVrl+sDSLdu3Th+/Djz5s3DarUybNgwWrRowZIlSwDn0I6kpCS6du3K5MmT+e2333jwwQd54403qrz6XkFBAQEBAeTn51d5jg5xeex2O89Of5El5ubE5ucy98dZfN+gNha9HoNpAP4GDUOerQ8RF1kafdN8+OYJprWcxeeBrTlltWFTYXHjeDqHyGNWmdPFFtZl5fHKyt0czS9j4b3LsZd8T93E54iOHuLp8G4JZWVlZGdnExcXd8nkinBXXFxMVFQUs2bN4qGHHrru5z99+jSdO3fG39+fb775Bh+f6jPsUly5yl6z8p7BndwfQgghhKiKqr5nuKqVUlu2bCE5Odl1+9w8Tue++Zw0aRLFxcU8/PDDnD17lvbt2/Ptt9+6vQFcvHgxo0ePpnPnzmg0Gvr06cOcOXNc+wMCAvjuu+8YNWoUzZs3p0aNGjz33HNVTkiJ68Nut+NAg5e9jE5nV/PdbbHYXHOWaNEqVtBWUillKwVgkXcTSizOibp1CiT4yDDMS5n43wzWZJ6ktukQ3eN2o9j2ATJsT9yYtm/fzp49e7jjjjvIz89n+vTpAK4hgddbcHAw33//Pe+++y4bN26kc+fOHolDCCGEEEKIW8FVTUp16tSp0iEHiqIwffp014eOCwkODnZVRV1M48aNZXnoG5z5RBF2FMLNxzE5Cv+XkFKMKFp/NMpx0Oov3oHNjAqU4Tzuv03qUN/PSKihkmMEAAdPlQAwrvkiAg0nsFmc2w2GGh6MSoiLmzlzJpmZmRgMBpo3b056erprom1PCAkJ4bnnnvPY+YUQQgghhLhV3BKr74nrL+/TTByqBq3qXGnL4PCFwAdQNL4oioFw/V7Q3X3xDmxl2BQtDsU5EVVjkzeBenm6VkWh2VlZFuh1BlSoWbMnPt5xBAW18XBkQlTUtGlTtm7d6ukwhBBCCCGEEB4gn/LFVXfm6GEKck9gNyoEmQsAUNCjaIOIbFVIlwP/xFdzCrTjL9xB6VkoPYtZY3Bt8pJV9y7JZndgc6gUldnQaaygOieYr5f0AjqdLK0uhBBCCCGEEOLGIkkpcdVtmz6Ns4F3c0r14R97l3CgZg1QnMPwjPs+ws9wytlQa6h48NrX4ccZAJTp/7csuKy6V7ldRwvo995GbPZC7ozaSIBXQfkeBa3W16OxCSGEEEIIIYQQFyJJKXFVnTp1ii9CE1lh9UNj8eYfFgcAdq0WHRDuKAO/cIjvCN6BFTvI+cn1p9kYAoBBUdAokpSqzM8HTlFottEtdh331/3KtV2vD0ZRpMpMCCGEEEIIIcSNR5JS4qo6efIk+XgD4OUow1GeTNL7+aMCfkZfeDzz4h2UT3D+ba+l7Ay8Df44LlVSVXC21DlU747azvmkTKbG+Ps3JrSGrBwmhBBCCCGEEOLGJEkpcVXZbDYcqjOJ1FJVXUkpRdGhAtpLPeOspWz2v41h+aGQfxwAk057DSOu3nLyinnlmz3sPJIPgJ+hFIDwmj2oXfshT4YmhBBCCCGEEEJUSpJS4qqy2+3YKa+OUs2orionZ2JJq71E1ZOtjGOGSABC9DraBfnROyzwGkVb/X269RDf/n6MO8K38tRdH2HUWADQ6fw9HJkQQgghhBBCCFE5SUqJq8pms6GiEFV6hPhTP5FdIxAA1aEFDWi0l5jfyFaG2eCcAL2RnzfzG8Ze24CruTMlzmF73RP3YtQ5E1IajRF//yaeDEsIIYQQQgghhLgkmQFZXFU2mw07Cg0Kd2O0nsWid1ZIWW2BwCWG71mKwVqKRaMHwOtSVVWCgvK5pGr4OH8nJj7Dne1/wc+vrifDEtXY0KFDURQFRVEwGAwkJCQwffp0bDbbX+p3zZo1KIrC2bNnr06gVZCdnc2AAQOIjIzEaDRSq1YtevfuzZ49e9zarVixgo4dO2IymfDx8aFly5YsXLjQrU1OTg6KopCRkVHl8z///PPUq1cPX19fgoKCuPvuu9m0aZNbnw899BBxcXF4e3tTp04dpk6disViqbTf3NxcBgwYQN26ddFoNIwfP77KMR05coR//OMfhISE4O3tTaNGjdiyZYtr//mP/7mf1NRUtz5iY2MrtHnllVdc+zMzM0lOTqZmzZoYjUbi4+N55plnsFqtbv2cPXuWUaNGERERgZeXF3Xr1mXlypWVxv/555/TtWtXQkJCLvvxEEIIIYQQNx6plBJXjbWwlJNf7cGBgk61A6D1aorWkITeK5wg5QChfqcvfPDKJ+CX+QCUBTgrpbw0kjO9mLdX72PJLwc5Vez88KrXlIIdvI1R6HS+Ho5OVHepqaksWLAAs9nMypUrGTVqFHq9nilTpng6NAAsFguG8orKi7FarXTp0oWkpCQ+//xzIiIiOHz4MN98841bYuztt99m/PjxTJ48mblz52IwGPjyyy8ZOXIkv/32GzNnzrziOOvWrcs777xDfHw8paWlvPHGG3Tt2pWsrCxCQ0PZs2cPDoeD9957j4SEBH777TdGjBhBcXFxpec1m82EhobyzDPP8MYbb1Q5njNnztCuXTuSk5P55ptvCA0NZd++fQQFBbm1O/f4n+Pl5VWhr+nTpzNixAjXbZPJ5Ppbr9czePBgmjVrRmBgIL/++isjRozA4XDw0ksvAc7HsEuXLoSFhbF06VKioqL4448/CAwMrPQaiouLad++PQ888IDb+YUQQgghRPUkSSlx1RzfshdUDQ5Fg4/NOeG2oq2BRhfJsGFn8FrxGHh1uPDB+9Jcf5r9awFgUKRS6mL+389/cLq4iEebfEhN7zx0jjMAaLV+Ho5M3Ay8vLwIDw8H4NFHH+WLL75g+fLljBw5knHjxvHVV19hNpvp2LEjc+bMITExEYA//viD0aNHs27dOiwWC7Gxsbz++us0aNCA5ORkAFcCZMiQISxcuJDCwkJGjhzJsmXL8Pf3Z9KkSXz55ZfcfvvtvPnmm4CzMuehhx5i3759LFu2jPvuu4+FCxeybt06pkyZwpYtW6hRowZ/+9vfePnll/H19eX3339n//79rF69mpiYGABiYmJo166d6zoPHTrEY489xvjx413JEoDHHnsMg8HA2LFj6du3L61atbqi+3HAgAFut2fPns0HH3zAjh076Ny5M6mpqW5VSPHx8WRmZjJ37txKk1KxsbG89dZbAHz44YdVjufVV18lOjraLeEUFxdXod35j//FmEymi7aJj48nPj7edTsmJoY1a9aQnp7u2vbhhx9y+vRpNmzYgF6vd13XpQwaNAhwVpkJIYQQQojqT0pRxFVx9tQp1q1YyiFtHpGnjtH41H4AlHMTnK95wdlQe5HqBnv5cJUHV2FuNQoAo1RKXVRBmZU6ATncHvo7EX7HQbWgKFp8fCp+wBSep6oqjpISj/yoqvqX4/f29sZisTB06FC2bNnC8uXL2bhxI6qq0r17d9ewrFGjRmE2m/npp5/YuXMnr776Kn5+fkRHR/PZZ58BzqFdubm5rqTKxIkTWb9+PcuXLyctLY309HS2bdtWIYaZM2fSpEkTtm/fzrPPPsv+/ftJTU2lT58+7Nixg08++YR169YxevRoAEJDQ9FoNCxduhS73X7B61q6dClWq5XHH3+8wr5HHnkEPz8/Pvroo798/4GzMmj+/PkEBATQpMnF53zLz88nODj4qpzzz5YvX06LFi3o27cvYWFhNG3alPfff79CuzVr1hAWFkZSUhKPPvoop06dqtDmlVdeISQkhKZNm/L6669XOrwzKyuLb7/9lo4dO7rF0qZNG0aNGkXNmjW57bbbeOmlly76WAkhhBBCiJuTVEqJq2LNypXsMWmBfALMOTjOVTkp5UmpwhxQgOD4C3dgK+Ojmt1YmuvNHw7nED8vjVRKXYjV7qDM6sBXXwKAn28Sdes+j7d3LYzGCA9HJy5ELS0ls1lzj5w7adtWFB+fKzpWVVVWr17NqlWr6NatG8uWLWP9+vW0bdsWgMWLFxMdHc2yZcvo27cvBw8epE+fPjRq1AjArVrmXKIlLCzMNUSrsLCQRYsWsWTJEjp37gzAggULiIyMrBDLXXfdxWOPPea6PXz4cAYOHOiaTykxMZE5c+bQsWNH5s6dS1RUFHPmzGHSpElMmzaNFi1akJyczMCBA11x7d27l4CAACIiKr5uDAYD8fHx7N2794ruu3NWrFhB//79KSkpISIigrS0NGrUqHHBtllZWbz99tt/achgZQ4cOMDcuXOZOHEiTz31FJs3b2bs2LEYDAaGDBkCOIfu3XfffcTFxbF//36eeuopunXrxsaNG9Fqnf+ejx07lmbNmhEcHMyGDRuYMmUKubm5zJ492+18bdu2Zdu2bZjNZh5++GGmT5/uFssPP/zAwIEDWblyJVlZWfzzn//EarUyderUa3L9QgghhBDixiOlKOKqKCkt5YTDj5PW2qjY/peUQgvYUO56CoZ+DV1fvHAHNguvxT3I+hKVw2XOqotaxsrnjLnV7DteSO9313PPm6toE/ELt4fuBMDLGElQ0B0YjRU/yAtxJVasWIGfnx9Go5Fu3brRr18/hg4dik6ncxvKFhISQlJSErt37wacyYoZM2bQrl07pk6dyo4dOyo9z4EDB7Bardxxxx2ubQEBASQlJVVo26JFC7fbv/76KwsXLsTPz8/1k5KSgsPhIDs7G3BWbh07dozFixfTpk0bPv30Uxo2bEhaWlqF/i/mUnNXgTM5d34c5w9TS05OJiMjgw0bNpCamsoDDzzAiRMnKvRx5MgRUlNT6du3r9tcSef3O3LkyCrFnJ6e7nbc4sWLAXA4HDRr1oyXXnqJpk2b8vDDDzNixAjmzZvnOrZ///706tWLRo0ace+997JixQo2b97MmjVrXG0mTpxIp06daNy4MSNHjmTWrFm8/fbbmM1mtzg++eQTtm3bxpIlS/j666/dkm0Oh4OwsDDmz59P8+bN6devH08//bQrlsruUyGEEEIIcfOQSilxVZwxw0pLPUChl0PFcS4npWjQKTaIagax7S/egd1MicYbgBcSoojz8aJDkMyPdL6vd+by66Gz/C1hBT3iv3NtNxhCPBiVqArF25ukbVs9du7LlZyc7Jr0OzIyEp1Ox/Llyy953PDhw0lJSeHrr7/mu+++4+WXX2bWrFmMGTPmSkJ34+vrPoF/UVERjzzyCGPHjq3Qtnbt2q6/TSYTPXv2pGfPnsyYMYOUlBRmzJhBly5dSExMJD8/n6NHj1aozrJYLOzfv5+UlJRLxtarVy+3ZF1UVJRb3AkJCSQkJNC6dWsSExP54IMP3CaNP3r0KMnJybRt25b58+e79X3+6nL+/v6XjAWcCbzzj6tZsyYAERERNGjQwK1t/fr1XUMrLyQ+Pp4aNWqQlZXlqmb7s1atWmGz2cjJyXFLKEZHRwPQoEED7HY7Dz/8MI899hharZaIiAj0er2r+upcLMeOHcNisVR6nwohhBBCiJuHJKXEVZFvUQEFPSo17FZUV6WUDi1W0JoufrDDAXYLZeXzTXULDZAqqQs4U77SXtNI5yTy3j5J+JvqUjv6QU+GJapAUZQrHkLnCecSKeerX78+NpuNTZs2uYbvnTp1iszMTLdER3R0NCNHjmTkyJFMmTKF999/nzFjxrgqjs6fMyg+Ph69Xs/mzZtdiaT8/Hz27t1Lhw4XWRShXLNmzdi1a1eFOCujKAr16tVjw4YNANx///1MnjyZWbNmMWvWLLe28+bNo6SkhMGDB1+yX5PJ5Lb6XGUcDodbRdGRI0dITk6mefPmLFiwAM2f5tK7nOs7x9vb+4LHtWvXjszMTLdte/fudU0EfyGHDx/m1KlTFxzieE5GRgYajYawsLCLtnE4HFitVhwOB1qtlnbt2rFkyRIcDofrmvfu3UtERAQGgwGDwVDl+1QIIYQQQlRfkpQSV4XF7pxMOan0EOGWUsr0zqeWggatYgVdxSXFXewWVMCscbaRuaTcZZ0o4t0fs/gl2znXVpC3GVSIrT2MyMi+Ho5O3CoSExPp3bs3I0aM4L333sNkMvHkk08SFRVF7969ARg/fjzdunWjbt26nDlzhh9//JH69esDzhXYFEVhxYoVdO/eHW9vb0wmE0OGDOGJJ54gODiYsLAwpk6dikajQbnE6puTJ0+mdevWjB49muHDh+Pr68uuXbtIS0vjnXfeISMjg6lTpzJo0CAaNGiAwWBg7dq1fPjhh0yePBlwVlS99tprPP744xiNRgYNGoRer+fLL7/kqaeeYsaMGdx2221u5/1zUgegYcOGrhXkzikuLubFF1+kV69eREREkJeXx7vvvsuRI0fo29f5uj1y5AidOnUiJiaGmTNncvLkSdfxl1r97lwlVFFRESdPniQjIwODwVChEup8EyZMoG3btrz00ks88MAD/PLLL8yfP99VnVVUVMS0adPo06cP4eHh7N+/n0mTJpGQkOCqGNu4cSObNm0iOTkZk8nExo0bmTBhAv/4xz9cKysuXrwYvV5Po0aN8PLyYsuWLUyZMoV+/fq57qdHH32Ud955h3HjxjFmzBj27dvHSy+9dMHKt/OdPn2agwcPcvToUeB/j0d4ePgl7zMhhBBCCHHjkaSU+MtUmwNLmQqqSvvj31GICrryIRkaIxpsoNVXPPDUfvjsISg5hVn5X2WUrLrnbsH6bL7YfoRW4Zvp1WQH3vwBgE5XtaE8QlwtCxYsYNy4cfTo0QOLxUKHDh1YuXKlK9Fgt9sZNWoUhw8fxt/fn9TUVN544w3AOfxq2rRpPPnkkwwbNozBgwezcOFCZs+ezciRI+nRowf+/v5MmjSJQ4cOYTQaK42lcePGrF27lqeffpo777wTVVWpU6cO/fr1A6BWrVrExsYybdo0cnJyUBTFdXvChAmufiZMmEB8fDyzZs3irbfeori4GICPPvqI/v37VzjvhbYdOnSIWrVquW3TarXs2bOHRYsWkZeXR0hICC1btiQ9PZ2GDRsCkJaWRlZWFllZWRWOv9SqiU2bNnX9vXXrVpYsWUJMTAw5OTkXPaZly5Z88cUXTJkyhenTpxMXF8ebb77JwIEDXTHv2LGDRYsWcfbsWSIjI+natSsvvPACXl7lXxp4efHxxx/z/PPPYzabiYuLY8KECUycONF1Hp1Ox6uvvsrevXtRVZWYmBhGjx7tdr9HR0ezatUqJkyYQOPGjYmKimLcuHGuhOHFLF++nGHDhrlun3s8pk6dyvPPP1/psUII8f/Zu/O4qqv88eOvu7JeQBBkFUVxTa1cUdPQFDSN+WYu6biUmszPXTOXFtSxcTKXcUurMXUmNUczI7QMKw2XLBXUUjEMUhFzQUH2y73n98fVmzcUMUtc3s/H4xafz+ec83mfDyCXN2cRQghx99GoP2K/8HtMbm4unp6e5OTkVHiNDnFj53el8c/NW9lgDmR4hu0v7jpjYzS6quicmhDuspOoyc9Atd/8BX/XIvj8ZQBydO7UbbsJgBPtG2OUxJTd397fx6ffn2HpE5MwaAvs51s0j8dkaliJkYkbKSoqIj09nZo1a940uSIc5efnExQUxJw5cxg8ePAdv392djYdO3bEw8ODTz/9FNd7aNql+P3K+56V9wyO5HkIIYQQoiIq+p5BfvMXt+3gpk8pAbTKaj+nd22Pm4sPA4PH09lzzvWn75Xa1kbKqfc0qb0/BkADGG4ybedBk1tkRqcptSekwmtPoUnjf0tCStwXkpOTWbNmDcePH2f//v32UTtXpwTead7e3mzdupWOHTuye/fuSolBCCGEEEKIB4VM3xO3pfindArPXqDUzx///PPXXNGhLb2EyfqzLdN0vel75iJOG31p7Tecokzbl6KzVnPTtWQeFBPWHSD+wGlKLFbc9IX288HBA9Fq5VtX3D9mz55NamoqRqORpk2bkpSURNWqVSstHh8fH1577bVKu78QQgghhBAPCvnNVtyW1PXryXKDQo2Vl/ct43CoDygADRpVCMoKemdwqVK2cmkRqW41KNLo0QImvY6nq12n3ANIKcWG5EycdXm82GIpVV1si5zrdO6SkBL3lUceeYR9+/ZVdhhCCCGEEEKISiC/3YrfzWq1Ep+fzz73AE5bPKhSnAf4ALbRTqUmM3SfD/6NwOk6W3uXFlGstS1w/oiHK5ua1rmj8d/NCkosWKyKer7HCPP82X5epuwJIYQQQgghhLhfSFJK/G4Wi4UTVg+SS227RmmvLCmldLalykL1Fmg66MYNXJOUcpKFze2ycgo5euYyAB5G27Q9L6+W1Al/GTe32pUZmhBCCCGEEEII8YeRpJT43SwWCyXoAPBXVmyLR4Fed3V9qBtUPJIA374NZ49Q7P4oAE5aWUcK4EhWLl0XJIGyUtsrnbretlFSzs6BMkpKCCGEEEIIIcR9RZJS4ncrLS3FcmUDx1BrCerKAuUajS1RpdVZr18xaQ6c3g9AscfVkVKSlAI4eiYXpaBlwPe80Ojf9vMGg6y1JYQQQgghhBDi/iJJKfG7WSwWLEqDwWomLHsnB2rUBEqxWm1fVjrdDSqW5Nv+334Sxd6RkC3T9666XFQKQERoAQAGgw8m9/oEBjxTmWEJIYQQQgghhBB/OElKid/tbEIaVjSEFvxM1bxjXHaynVfKDQDXK+shlVFaxEW9iXjfznxtrQLkPvAjpQpLLOw6fp79P18EwM1QBIC//1PUCX+lMkMTQgghhBBCCCH+FJKUEr9b4Q/nsGi1GJQZAI3WB51TEx4NL8Yvdx61/C3Xr1hazPzqf2XpOR2QC4DphsOqHgz//PQIK3f/DCi0GituBltCT6dzq9zAhBBCCCGEEEKIP4nMmRK/y9mf0rBYS7GgweB0AgCNrgp654d5tGgpdV2+Ru/iev3KpYWcNfoA0Njkwl8DfBgS7HunQr8r/XQ+H3fDZeY9PpV3O42lmv5TAPR690qOTDxoBg0ahEajQaPRYDQaqV27NtOnT6e0tPS22t22bRsajYZLly79MYFWQHp6On379iUwMBBnZ2eCg4OJiYnh6NGjDuUSEhJo3749JpMJV1dXmjdvzooVKxzKZGRkoNFoSElJqfD9p06dSr169XBzc6NKlSo88cQT7Nmzx6HNwYMHU7NmTVxcXKhVqxZxcXGUlJSU225WVhZ9+/alTp06aLVaxowZU6F4LBYLr776qsP9/v73v6OUspfZsGEDnTt3xsfH54b9PX78OP/3f/+Hr68vHh4e9OrVi19++eWW+3Xw4EEee+wxnJ2dCQkJYdasWTftw9dff0337t0JDAxEo9GwcePGCvVdCCGEEELcnSQpJW6ZxWLhi9mzOao7g7Ewl/4Hvr1yxTbaSefsAo8OgA4vX7+B0mKKtbYFzvsG+DC7Xgg1XZ3uQOR3r5xCM2GeP+NhvGg/p9U64+XZrBKjEg+q6OhosrKy+PHHHxk/fjxTp07lzTffrOyw7G6WtAEwm8106tSJnJwcNmzYQGpqKmvXrqVRo0YOibGFCxcSExNDmzZt2LNnDwcPHqRPnz7Exsby4osv3lacderUYdGiRRw6dIgdO3ZQo0YNOnfuzLlz5wA4evQoVquVt99+mx9++IF58+axdOlSpkyZUm67xcXF+Pr68sorr9CkSZMKx/PGG2+wZMkSFi1axJEjR3jjjTeYNWsWCxcutJfJz8+nbdu2vPHGG9dtIz8/n86dO6PRaPjyyy/ZuXMnJSUldO/eHavVWuF+5ebm0rlzZ0JDQ9m3bx9vvvkmU6dO5Z133im3D/n5+TRp0oTFixdXuN9CCCGEEOIuph5AOTk5ClA5OTmVHco96ejRo+r/vTpL1Zr4sXp2YJxKaNtKze71pJr71wlq0bAvVMniDteveOZ7pXYuUCrOQ/Vd95aq9mWyWn36/J0N/i6zes/Paviqfarha5+pvvNfVVu/CFP79vdTJSWXVGlpUWWHJ36nwsJCdfjwYVVYWFjZodyygQMHqpiYGIdznTp1Uq1atVLZ2dmqf//+ysvLS7m4uKjo6Gh17Ngxe7mMjAzVrVs35eXlpVxdXVWDBg3Upk2bVHp6ugIcXgMHDlRKKZWbm6v69u2rXF1dlb+/v5o7d65q3769Gj16tL3d0NBQNX36dNW/f39lMpnsdZOSklTbtm2Vs7OzCg4OViNHjlR5eXlKKaWSk5MVoDIyMm7Y1xMnTiiDwaDGjRtX5tqCBQsUoL755hullLL3ITk5+dYf6hVXf/Zs3br1hmVmzZqlatasWeE2f/usyvPkk0+q559/3uHc008/rfr161em7I36u2XLFqXVah1+fl66dElpNBqVmJh4w3v/tl9vvfWWqlKliiouLrafmzhxoqpbt26F+qKUUoD66KOPKly+POV9z8p7BkfyPIQQQghRERV9zyAjpcQty8vL46zVnVJ06JUZ65U1yjVXRkpp9TdYqmztX+Fz26LdxVrbyCiXB3jXvcISCy9/dIhNBzMZUG8pvep8BIDR6IvB4IlO92CPHrufKKUwF1sq5aWumZr1e7m4uFBSUsKgQYPYu3cv8fHx7N69G6UUXbt2xWy2rSs3fPhwiouL+frrrzl06BBvvPEG7u7uhISE8OGHHwKQmppKVlYW8+fPB2DcuHHs3LmT+Ph4EhMTSUpKYv/+/WVimD17Nk2aNCE5OZlXX32V48ePEx0dTY8ePTh48CBr165lx44djBgxAgBfX1+0Wi3r16/HYrn++nbr16/HbDZfd0TUsGHDcHd3Z82aNbf9/MA2uuudd97B09Oz3NFNOTk5eHt7/yH3/K3WrVvzxRdfcOzYMQAOHDjAjh076NKlS4XbKC4uRqPR4OT0679Pzs7OaLVaduzYccN6v+3X7t27adeuHUaj0X4uKiqK1NRULl68eL0mhBBCCCHEfUgWOhe3zGKxYMWWiWqorFg1V7NSOsCK1mC4fsW8s7b/1+tGcdW6YOGB3nUvp9CMVUGw6SxNqx20nzeZGlRiVOLPUFpi5Z3R2yvl3i/Mb4/B6fdtJKCU4osvvmDLli106dKFjRs3snPnTlq3bg3AqlWrCAkJYePGjfTs2ZMTJ07Qo0cPGjVqBEBYWJi9rasJCT8/P7y8vAC4fPkyK1euZPXq1XTs2BGA5cuXExgYWCaWDh06MH78ePvxkCFD6Nevn309pfDwcBYsWED79u1ZsmQJQUFBLFiwgJdeeolp06bRrFkzIiMj6devnz2uY8eO4enpSUBAQJn7GY1GwsLC7Amc3yshIYE+ffpQUFBAQEAAiYmJVK1a9bpl09LSWLhwIbNnz76te97IpEmTyM3NpV69euh0OiwWC6+//jr9+vWrcButWrXCzc2NiRMn8o9//AOlFJMmTcJisZCVlXXdOtfr15kzZ6hZs6ZDuWrVqtmvValS5Xf0UAghhBBC3Gse3GEq4ne7NillsJqx2hNLOnSUotEbr1+xtMj2/65vUuxi+6XM6QEeKZVTaBtd4utm+7+Tkz8tWmyiesiQygxLCBISEnB3d8fZ2ZkuXbrQu3dvBg0ahF6vp2XLlvZyPj4+1K1blyNHjgAwatQoZsyYQZs2bYiLi+PgwYM3ugUAP/30E2azmRYtWtjPeXp6Urdu3TJlmzVzXF/twIEDrFixAnd3d/srKioKq9VKeno6YBu5debMGVatWkVERATr1q2jYcOGJCYmVvhZXDuS50ZWrVrlEEdSUpL9WmRkJCkpKezatYvo6Gh69erF2bNny7SRmZlJdHQ0PXv2ZOjQofbz17YbGxtboZiTkpIc6q1atQqA//3vf6xatYrVq1ezf/9+Vq5cyezZs1m5cmWF2gXbCLR169bxySef4O7ujqenJ5cuXeLRRx9Fe51/z2/Ur9/bByGEEEIIcX+RkVLilpWazViVBo2yorVcpsB4ZRqHRodWUwr660w7s5SCtZQX6sfxyb6zXJ1Q9CCOlPrpXB4Dl3/LucvFAHi72BZtNhi8MbnXq8zQxJ9Eb9Tywvz2lXbvWxUZGcmSJUswGo0EBgai1+uJj4+/ab0hQ4YQFRXFpk2b+Pzzz5k5cyZz5sxh5MiRvyd0B25ubg7HeXl5DBs2jFGjRpUpW716dfvHJpOJ7t270717d2bMmEFUVBQzZsygU6dOhIeHk5OTw+nTp8uMziopKeH48eNERUXdNLannnrKIVkXFBTkEHft2rWpXbs2rVq1Ijw8nGXLljF58mR7mdOnTxMZGUnr1q3LLPR97e53Hh4eN40FbAm8a+tdHYE0YcIEJk2aRJ8+fQBo1KgRP//8MzNnzmTgwIEVahugc+fOHD9+nPPnz6PX6/Hy8sLf399hZNzN+uXv7++wYx9gP/b396dGjRrX7YMQQgghhLi/SFJK3LLc7HysaHksexcWayZnvFwB25pSOm6QlCotQgEJvu3tCakqeh113VzuWNx3ix1p5zmZXcgjfgd4smYi1dxtI8j0elMlRyb+LBqN5ndPoasMVxMp16pfvz6lpaXs2bPHPn3vwoULpKam0qDBr1NOQ0JCiI2NJTY2lsmTJ/Puu+8ycuRI+4ija9d3CgsLw2Aw8N1339kTSTk5ORw7dox27dqVG+Ojjz7K4cOHy8RZHo1GQ7169di1axcAzzzzDBMnTmTOnDnMmTPHoezSpUspKChgwIABN23XZDJhMlXs+9dqtVJcXGw/zszMJDIykqZNm7J8+fIyo41upX9Xubi4XLdeQUFBmfZ1Op1917xbdXUa4pdffsnZs2d56qmn7Ndu1q+IiAhefvllzGYzhitTvhMTE6lbt6596t7v6bsQQgghhLi3SFJK3JJz+9LI+/YEVo0e75Js20mNKxqtOwZDKOEuX8P1FuguLaZUo8Oqsf1ivqNlPUKcjQ/k9L3cK9P2+jTYRVXjCft5N7dalRWSEDcVHh5OTEwMQ4cO5e2338ZkMjFp0iSCgoKIiYkBYMyYMXTp0oU6depw8eJFvvrqK+rXrw9AaGgoGo2GhIQEunbtiouLCyaTiYEDBzJhwgS8vb3x8/MjLi4OrVaLRlP+KMqJEyfSqlUrRowYwZAhQ3Bzc+Pw4cMkJiayaNEiUlJSiIuLo3///jRo0ACj0cj27dt57733mDhxImAbUTVr1ixefPFFnJ2d6d+/PwaDgY8//pgpU6YwY8YMHnroIYf7pqamlomlYcOG9sTKVfn5+bz++us89dRTBAQEcP78eRYvXkxmZiY9e/YEbImbxx9/nNDQUGbPns25c+fs9f39/cvt/9VRRHl5eZw7d46UlBSMRqNDgvC3unfvzuuvv0716tVp2LAhycnJzJ07l+eff95eJjs7mxMnTnD69GmH/vr7+9tjWr58OfXr18fX15fdu3czevRoxo4da592WZF+9e3bl2nTpjF48GAmTpzI999/z/z585k3b165/c7LyyMtLc1+nJ6eTkpKCt7e3g4j5IQQQgghxL1BklLilvzy5RH0WgMWBTplG/FgcO2AUWMlNni4rVDgPx0rlZZA/lmKtb+uzRLk9OAlpJRSZF4qJPNSIQCu+jwAateaiMn0EF5eTSszPCFuavny5YwePZpu3bpRUlJCu3bt2Lx5sz0hY7FYGD58OKdOncLDw4Po6Gh7kiEoKIhp06YxadIknnvuOQYMGMCKFSuYO3cusbGxdOvWDQ8PD1566SVOnjyJs7NzubE0btyY7du38/LLL/PYY4+hlKJWrVr07t0bgODgYGrUqMG0adPIyMhAo9HYj8eOHWtvZ+zYsYSFhTFnzhzmz59Pfn4+AGvWrLFPc7vW9c6dPHmS4OBgh3M6nY6jR4+ycuVKzp8/j4+PD82bNycpKYmGDRsCtpFBaWlppKWllal/s10TH3nkEfvH+/btY/Xq1YSGhpKRkXHDOgsXLuTVV1/l//2//8fZs2cJDAxk2LBhvPbaa/Yy8fHxPPfcc2X6GxcXx9SpUwFbomry5MlkZ2dTo0YNXn75ZYdnWpF+eXp68vnnnzN8+HCaNm1K1apVee2113jhhRfK7ffevXuJjIy0H48bNw6AgQMHsmLFinLrCiGEEEKIu49G/RH7hd9jcnNz8fT0JCcnp8JrdAgozstj+8xVnNSa+Z/FQPOTX1ClpACDWwxGTSGxvc9By2Hgec0vIbmn4a0IKLrEBb0nDdvY1qU5/XgTtDcZCXG/mfbJDyzfmUGweyYP+x3iqVrb0GkKaNE8AZOpfmWHJ/5ARUVFpKenU7NmzZsmV4Sj/Px8goKCmDNnDoMHD77j98/OzqZjx454eHjw6aef4urqesdjEHdeed+z8p7BkTwPIYQQQlRERd8zPFhDVcRt+fidd9hlyOKk7jzPf7ec6jkXbRc0OsAMHoGOCSmArINQdAnAPlLKoNE8cAkpgP0/257XkEbv83+1N6PTFABgNF5/e3ghHgTJycmsWbOG48ePs3//fvr16wdgnxJ4p3l7e7N161Y6duzI7t27KyUGIcCWIO3Xrx8eHh54eXkxePBg8vLyyq1TVFTE8OHD8fHxwd3dnR49ejgsKH/gwAGeffZZQkJCcHFxoX79+syfP//P7ooQQgghxA3J9D1RYZcKCthprsFpixfLzq8npbot26lBh7tzEei8ylYqtS3iTUgrintvgO9+xPgA7rgHcLmoFIAQzzywQjW/bnh7t8HJybeSIxOics2ePZvU1FSMRiNNmzYlKSnJvoh2ZfDx8XGY0iZEZejXrx9ZWVkkJiZiNpt57rnneOGFF1i9evUN64wdO5ZNmzaxbt06PD09GTFiBE8//TQ7d+4EbFM9/fz8eP/99wkJCWHXrl288MIL6HQ6RowYcae6JoQQQghhJ0kpUWElFsWPFlsCRW9RWK+OdtLoCDAWXH/XPUuJra7BjVxlK+/0gCWlLheZyS0qJafQDCiw2tasqV17Is7OgeVXFuI+98gjj7Bv377KDkOIu8qRI0f47LPP+O6772jWrBlgWxOsa9euzJ49m8DAsj87cnJyWLZsGatXr6ZDhw7Ar4vSf/PNN7Rq1cphUXuw7YC5e/duNmzYIEkpIYQQQlQKmb4nKqzkmtXHjBaFxb5QuR4dZtAZy1YqLSKhajtqB08hau8xgAdqgfOjZ3Jp+vetPPZGIkEu+2kTuAewjZjS6yu2hbwQQogHy+7du/Hy8rInpACeeOIJtFote/bsuW6dffv2YTabeeKJJ+zn6tWrR/Xq1cudipqTk4O3t/cfF7wQQgghxC2QkVKiwsxXRjpVz/+ZI8G1KDHogFLQ6NBpbpSUKubrKs0o0fz6pRbp/eAkYw6cvESJxUqbwL08/9Aq+3mNRo9O51aJkQkhhLhbnTlzBj8/P4dzer0eb29vzpw5c8M6RqMRLy8vh/PVqlW7YZ1du3axdu1aNm3adMNYiouLKS4uth/n5uZWsBdCCCGEEDf34AxZEbel5HQeJVYXDFYz3c5+xikvxdURP26GYsKc9lx/+l5pMUVXFjifWNOf4+0aMbde9TsYeeXKLbQ9o7Y1bWtrOTsH4e39GOHhL6PRyLefEEI8SCZNmoRGoyn3dfTo0TsSy/fff09MTAxxcXF07tz5huVmzpyJp6en/RUSEnJH4hNCCCHEg0FGSokKKfzxImbAaC1BhxUU6Jyb4O6ex/P+Y8BqBp3h1wqlxfDLD3AxnSJtEAAeeh1uOl2lxH+nXcgrJvHwL+w6fh4Ad4Ntpz1///+jVtjYygxNCCFEJRk/fjyDBg0qt0xYWBj+/v6cPXvW4XxpaSnZ2dn4+/tft56/vz8lJSVcunTJYbTUL7/8UqbO4cOH6dixIy+88AKvvPJKufFMnjyZcePG2Y9zc3MlMSWEEEKIP4wkpUSFHN62ixI06JQFAA0aDK4d8XDdaktIaXTgU/vXCmv6wPEvASh8aCYALg/QWlKvbzrChuRMwjzTebnlBqoZLgBgMHhVbmBCCCEqja+vL76+N99xNSIigkuXLrFv3z6aNm0KwJdffonVaqVly5bXrdO0aVMMBgNffPEFPXr0ACA1NZUTJ04QERFhL/fDDz/QoUMHBg4cyOuvv37TWJycnHByus5IaCGEEEKIP4AkpUSFXD57klJvDc3O7wVsSSkAvcYMfdeB/0Pgcc1uQGeP2P7v7k+RUxUAnHUPTlLqRLZtZFRMnRTCPH+2n3dzrX2jKkIIIQQA9evXJzo6mqFDh7J06VLMZjMjRoygT58+9p33MjMz6dixI//5z39o0aIFnp6eDB48mHHjxuHt7Y2HhwcjR44kIiKCVq1aAbYpex06dCAqKopx48bZ15rS6XQVSpYJIYQQQvzRJCklbmrnRx/xo3shxVYjz3+/lT21Q9AoW4LJQCmENAeXKo6VSovI07mwsuuHHL+kgWIzzlpNJURfOXIKzQA0DtJiLYDg4AEEBvbG3a1uJUcmhBDiXrBq1SpGjBhBx44d0Wq19OjRgwULFtivm81mUlNTKSgosJ+bN2+evWxxcTFRUVG89dZb9uvr16/n3LlzvP/++7z//vv286GhoWRkZNyRfgkhhBBCXOvBGboifpf8Cxf4POUA8fpg9pj90VltiSWr3rY2VFVrMeiuv8D5er/O/P2XUk4X2xI0VQz3fw50/b5TxCzeyc8XLlPF6SI6dREAD48mmNzrodE8OIk5cW8aNGiQfcFlo9FI7dq1mT59OqWlpbfV7rZt29BoNFy6dOmPCbQC0tPT6du3L4GBgTg7OxMcHExMTEyZhaQTEhJo3749JpMJV1dXmjdvzooVKxzKZGRkoNFoSElJqfD9p06dSr169XBzc6NKlSo88cQT7Nmzx6HNwYMHU7NmTVxcXKhVqxZxcXGUlJSU225WVhZ9+/alTp06aLVaxowZU6F4Ll++zJgxYwgNDcXFxYXWrVvz3XffOZTJy8tjxIgRBAcH4+LiQoMGDVi6dKlDmWHDhlGrVi1cXFzw9fW97jM9ceIETz75JK6urvj5+TFhwoQbfg3t3LkTvV7Pww8/fNM+bNiwgc6dO+Pj43PLn497jbe3N6tXr+by5cvk5OTw3nvv4e7ubr9eo0YNlFI8/vjj9nPOzs4sXryY7Oxs8vPz2bBhg8N6UlOnTkUpVeYlCSkhhBBCVBZJSolyFWZnk6ecSLX4UWDVYL0y2sng7AaATmMuu+ueUlBaRLbBE4D6bs5Mqx1IS0+3Oxp7ZViyLY0DJy8x4uG3mN0+DnPhfgAMeo9KjkyIiouOjiYrK4sff/yR8ePHM3XqVN58883KDsvuZkkbsI0i6dSpEzk5OWzYsIHU1FTWrl1Lo0aNHBJjCxcuJCYmhjZt2rBnzx4OHjxInz59iI2N5cUXX7ytOOvUqcOiRYs4dOgQO3bsoEaNGnTu3Jlz584BcPToUaxWK2+//TY//PAD8+bNY+nSpUyZMqXcdouLi/H19eWVV16hSZMmFY5nyJAhJCYm8t///pdDhw7RuXNnnnjiCTIzM+1lxo0bx2effcb777/PkSNHGDNmDCNGjCA+Pt5epmnTpixfvpwjR46wZcsWlFJ07twZi8W25qDFYuHJJ5+kpKSEXbt2sXLlSlasWMFrr71WJqZLly4xYMAAOnbsWKE+5Ofn07ZtW954440K91sIIYQQQtzF1AMoJydHASonJ6eyQ7nrZR04oEa9OlOFTkxQEePeVdubPqJm93pSLXz+ObVo2Bdq74vPl61UWqJUnIf6x/JxqtqXyWpK6sk7H3glafr3RBU68ROV+EUdtfWLMPXFl3XVzl0dVElJdmWHJu6gwsJCdfjwYVVYWFjZodyygQMHqpiYGIdznTp1Uq1atVLZ2dmqf//+ysvLS7m4uKjo6Gh17Ngxe7mMjAzVrVs35eXlpVxdXVWDBg3Upk2bVHp6ugIcXgMHDlRKKZWbm6v69u2rXF1dlb+/v5o7d65q3769Gj16tL3d0NBQNX36dNW/f39lMpnsdZOSklTbtm2Vs7OzCg4OViNHjlR5eXlKKaWSk5MVoDIyMm7Y1xMnTiiDwaDGjRtX5tqCBQsUoL755hullLL3ITk5+dYf6hVXf/Zs3br1hmVmzZqlatasWeE2f/usbqSgoEDpdDqVkJDgcP7RRx9VL7/8sv24YcOGavr06eWW+a0DBw4oQKWlpSmllNq8ebPSarXqzJkz9jJLlixRHh4eqri42KFu79691SuvvKLi4uJUkyZNbtqPq/6Iz8e1yvuelfcMjuR5CCGEEKIiKvqeQUZKiXKVFhdjRYNWWWh3bgf7a4ZcOW8bMaXTXa9SEQDFWgMATg/Qrnu5RWaMWjMabNNU2j22l9YRX2AwVLlJTXE/U0phLiqqlJdS6rbjd3FxoaSkhEGDBrF3717i4+PZvXs3Sim6du2K2Wybojt8+HCKi4v5+uuvOXToEG+88Qbu7u6EhITw4YcfArbdwLKyspg/fz5gG5mzc+dO4uPjSUxMJCkpif3795eJYfbs2TRp0oTk5GReffVVjh8/TnR0ND169ODgwYOsXbuWHTt2MGLECMC2y5lWq2X9+vX2ETy/tX79esxm83VHRA0bNgx3d3fWrFlz288PbKO73nnnHTw9Pcsd3ZSTk4O3t/cfcs9rlZaWYrFYcHZ2djjv4uLCjh077MetW7cmPj6ezMxMlFJ89dVXHDt2jM6dO1+33fz8fJYvX07NmjUJCbH9fNi9ezeNGjWiWrVq9nJRUVHk5ubyww8/2M8tX76cn376ibi4uD+yq0IIIYQQ4h5y/y/yI25LcUERVrRULbmAb/F5LFfyS0rjA4CH8eKvha1W+PpNOGdbW6REawTA6T5f4Pzw6VwGvLeHiwVmPAzZVHXPvnJFi053/09ZFDdXWlzMgoHPVMq9R61cj+E3iYiKUkrxxRdfsGXLFrp06cLGjRvZuXMnrVu3BmwLMYeEhLBx40Z69uzJiRMn6NGjB40aNQIgLCzM3tbVRIufnx9eXl6AbY2jlStXsnr1avv0reXLl9t3F7tWhw4dGD9+vP14yJAh9OvXz76eUnh4OAsWLKB9+/YsWbKEoKAgFixYwEsvvcS0adNo1qwZkZGR9OvXzx7XsWPH8PT0JCAgoMz9jEYjYWFhHDt27Hc9u6sSEhLo06cPBQUFBAQEkJiYSNWqVa9bNi0tjYULFzJ79uzbuuf1mEwmIiIi+Pvf/079+vWpVq0aa9asYffu3dSu/euuoAsXLuSFF14gODgYvV6PVqvl3XffpV27dg7tvfXWW7z00kvk5+dTt25dEhMTMRpt/+afOXPGISEF2I+v7vb2448/MmnSJJKSktDr5a2IEEIIIcSD6sEZwiJ+l1O7L2FFg05dGWmgMWE09eOpwH309HmRmkHXJKWykmHbP+CHDQCUGEzA/Z+USvrxHOfzSmhRbQ+z28cxqYVtBIhe7y4Lm4t7UkJCAu7u7jg7O9OlSxd69+7NoEGD0Ov1tGzZ0l7Ox8eHunXrcuTIEQBGjRrFjBkzaNOmDXFxcRw8eLDc+/z000+YzWZatGhhP+fp6UndumV3qWzWrJnD8YEDB1ixYgXu7u72V1RUFFarlfT0dMA2cuvMmTOsWrWKiIgI1q1bR8OGDUlMTKzws7iaaCnPqlWrHOJISkqyX4uMjCQlJYVdu3YRHR1Nr169OHv2bJk2MjMziY6OpmfPngwdOtR+/tp2Y2NjKxRzUlKSQ71Vq1YB8N///helFEFBQTg5ObFgwQKeffZZtNeMZl24cCHffPMN8fHx7Nu3jzlz5jB8+HC2bt3qcI9+/fqRnJzM9u3bqVOnDr169aKoqKhC8VksFvr27cu0adOoU6fOdcuU90yFEEIIIcT9Q/48KW7o8rnzuORasep+TUppNEa0+mqEuSSjeXY1hPz6yyRFObb/u/tDxHCKnB+DXDDe59P3cgptU5eiws8DoNU6o9O5EBjQszLDEncRvZMTo1aur7R736rIyEiWLFmC0WgkMDAQvV7vsND1jQwZMoSoqCg2bdrE559/zsyZM5kzZw4jR478PaE7cHNzHHWYl5fHsGHDGDVqVJmy1atXt39sMpno3r073bt3Z8aMGURFRTFjxgw6depEeHg4OTk5nD59uszorJKSEo4fP05UVNRNY3vqqaccknVBQUEOcdeuXZvatWvTqlUrwsPDWbZsGZMnT7aXOX36NJGRkbRu3Zp33nnHoe1rd5fz8KjYhgnNmjVzqHd1lFKtWrXYvn07+fn55ObmEhAQQO/eve0jxwoLC5kyZQofffQRTz75JACNGzcmJSWF2bNn88QTT9jb9PT0xNPTk/DwcFq1akWVKlX46KOPePbZZ/H39+fbb791iOmXX34BwN/fn8uXL7N3716Sk5Pt0y2tVitKKfR6PZ9//nm5z1QIIYQQQtw/JCklbujk9z9wUZN/ZaSULfGCRofGWorG4AR1ox0rlBYDcNi3GSlh/UjLvAAUYLxPR0pdLjITf+A036bbpuu5G22jBGqFjad69ecrMzRxl9FoNL97Cl1luJpIuVb9+vUpLS1lz5499ul7Fy5cIDU1lQYNGtjLhYSEEBsbS2xsLJMnT+bdd99l5MiR9hFH167vFBYWhsFg4LvvvrMnknJycjh27FiZ6WK/9eijj3L48OEycZZHo9FQr149du3aBcAzzzzDxIkTmTNnDnPmzHEou3TpUgoKChgwYMBN2zWZTJhMpgrFYLVaKS4uth9nZmYSGRlp39FO+5sk/q307yoXF5dy67m5ueHm5sbFixfZsmULs2bNAmw7FprN5jIx6HQ6rFbrDdtTSqGUsvcrIiKC119/nbNnz+Ln5wdAYmIiHh4eNGjQAIPBwKFDhxzaeOutt/jyyy9Zv349NWvWxM3NrcLPVAghhBBC3LskKSWuK/f0adZ/+QVWgxZLaSG9T31FocEP0KFRZtAZylYqLaJYY+Cp4JHkHT1pP+2muz9HSi3fmcHcxGMEuJ3hr/W/xqQ7Bgr0hoqNZhDiXhIeHk5MTAxDhw7l7bffxmQyMWnSJIKCgoiJiQFgzJgxdOnShTp16nDx4kW++uor6tevD0BoaCgajYaEhAS6du2Ki4sLJpOJgQMHMmHCBLy9vfHz8yMuLg6tVnvTqa8TJ06kVatWjBgxgiFDhuDm5sbhw4dJTExk0aJFpKSkEBcXR//+/WnQoAFGo5Ht27fz3nvvMXHiRMA2omrWrFm8+OKLODs7079/fwwGAx9//DFTpkxhxowZPPTQQw73TU1NLRNLw4YNMRgc/03Mz8/n9ddf56mnniIgIIDz58+zePFiMjMz6dnTNooyMzOTxx9/nNDQUGbPns25c+fs9f39/cvt/9WRUHl5eZw7d46UlBSMRqNDgvC3tmzZglKKunXrkpaWxoQJE6hXrx7PPfccYBuJ1b59eyZMmICLiwuhoaFs376d//znP8ydOxewTblcu3YtnTt3xtfXl1OnTvHPf/4TFxcXunbtCkDnzp1p0KAB/fv3Z9asWZw5c4ZXXnmF4cOH43Rl5N5vn6ufnx/Ozs5lzv9WdnY2J06c4PTp08Cvnw9/f/+bPjMhhBBCCHH3kaSUuK5fjhzBqtOiURpq/PIj9TKtJNfANlJKlYLuOuuslBaTp3MlT2sbEdLJx4OqRj3RVT3vaOx3yulLhQD0a/gV9b122za6B5ydyi6aLMT9YPny5YwePZpu3bpRUlJCu3bt2Lx5sz0hY7FYGD58OKdOncLDw4Po6GjmzZsH2KZfTZs2jUmTJvHcc88xYMAAVqxYwdy5c4mNjaVbt254eHjw0ksvcfLkyTK7xP1W48aN2b59Oy+//DKPPfYYSilq1apF7969AQgODqZGjRpMmzaNjIwMNBqN/Xjs2LH2dsaOHUtYWBhz5sxh/vz55OfnA7BmzRr69OlT5r7XO3fy5EmCg4Mdzul0Oo4ePcrKlSs5f/48Pj4+NG/enKSkJBo2bAjYRg+lpaWRlpZWpv7Ndk185JFH7B/v27eP1atXExoaSkZGxg3r5OTkMHnyZE6dOoW3tzc9evTg9ddfd0ioffDBB0yePJl+/fqRnZ1NaGgor7/+un09K2dnZ5KSkvjXv/7FxYsXqVatGu3atWPXrl32UVE6nY6EhAT+9re/ERERgZubGwMHDmT69Onl9qki4uPj7Uk0+PXzERcXx9SpU2+7fSGEEEIIcWdp1B+xX/g9Jjc3F09PT3Jyciq8RseD5sjmT1n77R68rK44n0ihduqPHKheDa0+lCoejzMoPA7GHXastHc5pz9/nUcj1mPQaDj5+I23Pb8f/L9V+9h86AyLo1fgbN2Pn9+TVPV5HH//v6DR3J+jw0TFFBUVkZ6eTs2aNW+aXBGO8vPzCQoKYs6cOQwePPiO3z87O5uOHTvi4eHBp59+iqur6x2PQdx55X3PynsGR/I8hBBCCFERFX3PIL85i+sqNZew1xzM8pJwMqwlXDJdWThYo0On/c30PasFTnwDv3xPsdY2gup+3nEv4eBphv13r30tKYOmAIAA/78QEPC0JKSEuAXJycmsWbOG48ePs3//fvr16wdgnxJ4p3l7e7N161Y6duzI7t27KyUGIYQQQgghHhQyfU9cV2lJCYct1fAoycHDXMoJH0+wFgNanDR5jtP3dv4LvrBNyyh2rQGA03284970Tw5z9nIxAxuspnHVw+gstuk+er38xViI32P27NmkpqZiNBpp2rQpSUlJVK1atdLi8fHx4bXXXqu0+wshhBBCCPGgkKSUuC5ziRkrrjTMO4KTtRTFBQB8q5lo5/Qu6K7ZZj77J9v/3atR7PcwAM736UgppRQXC0ow6oppF/yN/bxW64Kra81KjEyIe9MjjzzCvn37KjsMIYQQQgghRCWQpJQoo/RSMeeO2kY66a2lAGgNtTDoQ+jpMRcnlQ+6R6+pcGV789ajKG4wCJLTMN6nSaniUitmi8LLybbIuUajo3mzjTg7B2IweFVucEIIIYQQQgghxD1EklKijEv7fsZqsSWVdMoKgFbnj8EQYktIAQQ5JqWOuwTzb0s4J34+C9x/0/fO5BTxr63HuJBfgsl4mVCPUwDo9Z6YTDfegl0IIYQQQgghhBDXJ0kp4cBqtbLzy81c0HjgZcmmesn3gA40WjSUwhPToOH/gVf1XytZSlgY0o8PSqtBdi4AVQ3315fW//ae5IPvThLmmc7c9v9Cq7FtWqnXmyo5MiGEEEIIIYQQ4t50f2UOxG3buXkzyYZL5KkC/l/yVtxLLWRVMQE6dJpS8AyGKqGOlUqLuORiS850qerJox6uPOnrdcdj/zNl55cA8ETti7aElEaPQe9BYEDPSo5MCCGEEEIIIYS4N0lSSjg4k5wMgMFqxLugkGKnqwuaa3E3FIOuStlKpSUUap0BeNLXk2f8ve9QtHdObqEZgNpVraAgMKAH9ev9o5KjEkIIIYQQQggh7l2SlBIOLKWlFKPHpTQEvdVCoebKguUaHXqtGfTX7LpntYK1FEqLKLqyG5/zfbaWVMLB06zbe4rzlw7Tu04SHppMUGDQe1Z2aEIIIYQQQgghxD1NklLCQaFF8VFpI4owsMhqxaLVAaC5On3valKqJB+WtoXsn2z1/IcB4KK7v5JSsz5L5UR2AaMf+ZDGvofBtu47Tk7VKjcwIYQQQgghhBDiHnd/ZRDEbcuz6ijCAECJa10uVqltu6DRosMMV0ZEcS7VnpD62dmfHIMXAM5azZ0O+U918cpaUnV9bf+v5ted2rUnERDwTGWGJcSfZtCgQWg0GjQaDUajkdq1azN9+nRKS0tvq91t27ah0Wi4dOnSHxNoBaSnp9O3b18CAwNxdnYmODiYmJgYjh496lAuISGB9u3bYzKZcHV1pXnz5qxYscKhTEZGBhqNhpSUlArff+rUqdSrVw83NzeqVKnCE088wZ49exzaHDx4MDVr1sTFxYVatWoRFxdHSUlJue1mZWXRt29f6tSpg1arZcyYMRWK5+uvv6Z79+4EBgai0WjYuHFjmTIbNmygc+fO+Pj43LS/Sim6dOlyw7ZWrFhB48aNcXZ2xs/Pj+HDhztc37JlC61atcJkMuHr60uPHj3IyMhwKLNq1SqaNGmCq6srAQEBPP/881y4cOG2+ymEEEIIIe4OkpQSdtbiUopxBcDDUkCxazWUsq2lpNVYqen8LeiNtsKlRQCsDetPy5Zr+dnZHwCX+2T63snsAnamnedyse0XcZOTrb8hIQMIrT4Uvd69MsMT4k8VHR1NVlYWP/74I+PHj2fq1Km8+eablR2W3c2SNgBms5lOnTqRk5PDhg0bSE1NZe3atTRq1MghMbZw4UJiYmJo06YNe/bs4eDBg/Tp04fY2FhefPHF24qzTp06LFq0iEOHDrFjxw5q1KhB586dOXfuHABHjx7FarXy9ttv88MPPzBv3jyWLl3KlClTym23uLgYX19fXnnlFZo0aVLhePLz82nSpAmLFy8ut0zbtm154403btrev/71LzSa6/8hYu7cubz88stMmjSJH374ga1btxIVFWW/np6eTkxMDB06dCAlJYUtW7Zw/vx5nn76aXuZnTt3MmDAAAYPHswPP/zAunXr+Pbbbxk6dOht91MIIYQQQtwl1AMoJydHASonJ6eyQ7mr5G4/qf7x8hLVYvS/1axe3dTsXk/aX2njaigV56FUdoat8I9blYrzUK+tn6OqfZmsamw7oGL2HVNFFkvlduIPkHmxQIVN3qRCJ36i4lb2Vf/5OEJt/SJcbf0iTOXlpVV2eOIeUFhYqA4fPqwKCwsrO5RbNnDgQBUTE+NwrlOnTqpVq1YqOztb9e/fX3l5eSkXFxcVHR2tjh07Zi+XkZGhunXrpry8vJSrq6tq0KCB2rRpk0pPT1eAw2vgwIFKKaVyc3NV3759laurq/L391dz585V7du3V6NHj7a3GxoaqqZPn6769++vTCaTvW5SUpJq27atcnZ2VsHBwWrkyJEqLy9PKaVUcnKyAlRGRsYN+3rixAllMBjUuHHjylxbsGCBAtQ333yjlFL2PiQnJ9/6Q73i6s+erVu33rDMrFmzVM2aNSvc5m+fVUUB6qOPPrrh9Zv1Nzk5WQUFBamsrKwybWVnZysXF5dy+7lu3Tql1+uV5ZqfGfHx8Uqj0aiSkhKllFJvvvmmCgsLc6i3YMECFRQUdPMOXnGzfl5V3vesvGdwJM9DCCGEEBVR0fcM98ewFvGHyDtzmVIUVUsuoEXZfnXUOKHTGwno+Bz0+i9UCbUVvjJSqlhrm84XG+LLxkfDcboPRkodP5eHxarwd8vlseBvCHT/BbCg07nj5ORf2eGJe5BSCmuJpVJeSqnbjt/FxYWSkhIGDRrE3r17iY+PZ/fu3Sil6Nq1K2azbUTl8OHDKS4u5uuvv+bQoUO88cYbuLu7ExISwocffghAamoqWVlZzJ8/H4Bx48axc+dO4uPjSUxMJCkpif3795eJYfbs2TRp0oTk5GReffVVjh8/TnR0ND169ODgwYOsXbuWHTt2MGLECAB8fX3RarWsX78ei8Vy3X6tX78es9l83RFRw4YNw93dnTVr1tz28wPb6K533nkHT0/Pckc35eTk4O19d+9gWlBQQN++fVm8eDH+/mX/TUxMTMRqtZKZmUn9+vUJDg6mV69enDx50l6madOmaLVali9fjsViIScnh//+97888cQTGAy2KeQRERGcPHmSzZs3o5Til19+Yf369XTt2vWO9VUIIYQQQvy5ZKFzAUDh5VyOfr2VEi89emX7Bc7V6oPVeyCeLh/iGv0KXJtwupKUKrkPd93LKbT9gv1wkO3bQ6/3pHGjJbi61kSvd6vM0MQ9SpmtnH5tV6XcO3B6azRG3e+qq5Tiiy++YMuWLXTp0oWNGzeyc+dOWrduDdjW+wkJCWHjxo307NmTEydO0KNHDxo1agRAWFiYva2riRY/Pz+8vLwAuHz5MitXrmT16tV07NgRgOXLlxMYGFgmlg4dOjB+/Hj78ZAhQ+jXr599PaXw8HAWLFhA+/btWbJkCUFBQSxYsICXXnqJadOm0axZMyIjI+nXr589rmPHjuHp6UlAQECZ+xmNRsLCwjh27NjvenZXJSQk0KdPHwoKCggICCAxMZGqVatet2xaWhoLFy5k9uzZt3XPP9vYsWNp3bo1MTEx173+008/YbVa+cc//sH8+fPx9PTklVdeoVOnThw8eBCj0UjNmjX5/PPP6dWrF8OGDcNisRAREcHmzZvt7bRp04ZVq1bRu3dvioqKKC0tpXv37jItTwghhBDiPnL/ZBLEbVm/fDnbfS5wTptHeMlOADRXvjx0utLfJKSKoSAbgBKdbY0p432wwHlBSSlT43/gna9tC7h7udjWrTEYvKhSpSVOTn6VGZ4Qd0xCQgLu7u44OzvTpUsXevfuzaBBg9Dr9bRs2dJezsfHh7p163LkyBEARo0axYwZM2jTpg1xcXEcPHiw3Pv89NNPmM1mWrRoYT/n6elJ3bp1y5Rt1qyZw/GBAwdYsWIF7u7u9ldUVBRWq5X09HTANnLrzJkzrFq1ioiICNatW0fDhg1JTEys8LMwGo03LbNq1SqHOJKSkuzXIiMjSUlJYdeuXURHR9OrVy/Onj1bpo3MzEyio6Pp2bOnw5pJ17YbGxtboZiTkpIc6q1atapC9SoiPj6eL7/8kn/96183LGO1WjGbzSxYsICoqChatWrFmjVr+PHHH/nqq68AOHPmDEOHDmXgwIF89913bN++HaPRyDPPPGMf3Xf48GFGjx7Na6+9xr59+/jss8/IyMiwP4c/s59CCCGEEOLOkJFSAoCfz54DvR5lzuWxtGzS/L3RXPnyqKK9ZtetixmwtB0U5wBQrL1/klJfHT3Hil0ZNPQ5wqTmnxHkaUtK6fWmSo5M3Os0Bi2B01tX2r1vVWRkJEuWLMFoNBIYGIheryc+Pv6m9YYMGUJUVBSbNm3i888/Z+bMmcyZM4eRI0f+ntAduLk5jlLMy8tj2LBhjBo1qkzZ6tWr2z82mUx0796d7t27M2PGDKKiopgxYwadOnUiPDycnJwcTp8+XWZ0VklJCcePH3dYnPtGnnrqKYdkXVBQkEPctWvXpnbt2rRq1Yrw8HCWLVvG5MmT7WVOnz5NZGQkrVu35p133nFo+9rd7zw8PG4aC9gSeNfWq1atWoXqVcSXX37J8ePH7aPdrurRowePPfYY27Zts488a9Cggf26r68vVatW5cSJEwAsXrwYT09PZs2aZS/z/vvvExISwp49e2jVqhUzZ86kTZs2TJgwAYDGjRvj5ubGY489xowZM/7UfgohhBBCiDtDklICAOuVHZQaF/mhrnys3G2/BAYbrlmP5XSKPSGF1kCxewCUcl+sJZWdXwzAX8J3EeaRbj/v5lqrskIS9wmNRvO7p9BVhquJlGvVr1+f0tJS9uzZY5++d+HCBVJTUx2SDyEhIcTGxhIbG8vkyZN59913GTlypH3E0bXrO4WFhWEwGPjuu+/siaScnByOHTtGu3btyo3x0Ucf5fDhw2XiLI9Go6FevXrs2mWbSvnMM88wceJE5syZw5w5cxzKLl26lIKCAgYMGHDTdk0mEyZTxZLXVquV4uJi+3FmZiaRkZE0bdqU5cuXo/3Nv6W30r+rXFxcfle9ipg0aRJDhgxxONeoUSPmzZtH9+7dAdu0O7CtHxYcHAxAdnY258+fJzTUti5hQUFBmb7qdLbvEavVai+j1+uvW0Yp9af2UwghhBBC3BmSlBIAFGAgxRyMj7pIdyfbX+OVsQoAOt01CyVfWUuKsMfhrxsoOZgBFy/fFyOlcotsI8K8XQsBqFFjBF6ezfDyalZeNSEeCOHh4cTExDB06FDefvttTCYTkyZNIigoyL620JgxY+jSpQt16tTh4sWLfPXVV9SvXx+A0NBQNBoNCQkJdO3aFRcXF0wmEwMHDmTChAl4e3vj5+dHXFwcWq0Wjab8f1MmTpxIq1atGDFiBEOGDMHNzY3Dhw+TmJjIokWLSElJIS4ujv79+9OgQQOMRiPbt2/nvffeY+LEiYBtRNWsWbN48cUXcXZ2pn///hgMBj7++GOmTJnCjBkzeOihhxzum5qaWiaWhg0b2hfnvio/P5/XX3+dp556ioCAAM6fP8/ixYvJzMykZ8+egC0h9fjjjxMaGsrs2bM5d+6cvf71FhC/1tURQnl5eZw7d46UlBSMRqNDgvC38vLySEtLsx+np6eTkpKCt7e3PSmYnZ3NiRMnOH36tEN//f39HV6/Vb16dWrWrAlAnTp1iImJYfTo0bzzzjt4eHgwefJk6tWrR2RkJABPPvkk8+bNY/r06Tz77LNcvnyZKVOmEBoayiOPPAJA9+7dGTp0KEuWLCEqKoqsrCzGjBlDixYtrrvu2K30UwghhBBC3B0kKSWwWCz8pKpy1FKNmtZfuFClLqg0iou1GFzA2VDya+HSIvK1LvzTuzvnjpzk+zxbAsd4k18g72Yfp2TyxqdHySsuoLZXOi7aiwB4V2lNlSotb1JbiAfH8uXLGT16NN26daOkpIR27dqxefNme0LGYrEwfPhwTp06hYeHB9HR0cybNw+wTWmbNm0akyZN4rnnnmPAgAGsWLGCuXPnEhsbS7du3fDw8OCll17i5MmTODs7lxtL48aN2b59Oy+//DKPPfYYSilq1apF7969AQgODqZGjRpMmzaNjIwMNBqN/Xjs2LH2dsaOHUtYWBhz5sxh/vz55OfnA7BmzRr69OlT5r7XO3fy5En7iKCrdDodR48eZeXKlZw/fx4fHx+aN29OUlISDRs2BGy71KWlpZGWllam/s12TbyauAHYt28fq1evJjQ0lIyMjBvW2bt3rz0pBLadDwEGDhzIihUrANuaUc8991yZ/sbFxTF16tRyY7rWf/7zH8aOHcuTTz6JVqulffv2fPbZZ/avlQ4dOrB69WpmzZrFrFmzcHV1JSIigs8++wwXFxcABg0axOXLl1m0aBHjx4/Hy8uLDh068MYbb5R774r0UwghhBBC3B006o/YL/wek5ubi6enJzk5ORVeo+N+VnA6m35vreOnQnf+cvZTPEuKURRSzacODdwu0CT4KLrRe2yFv1nKxn1biG0Q59DGR4/UJsLLvRKiv339l+0h6cfzDG/ybx6t9uvCzC1abMLkXq8SIxP3qqKiItLT06lZs+ZNkyvCUX5+PkFBQcyZM4fBgwff8ftnZ2fTsWNHPDw8+PTTT3F1db3jMYg7r7zvWXnP4EiehxBCCCEqoqLvGWSklOD8/45hVRrq5R3Do+QSV7OU4fpdPOp2BDza/Fq4tIgcvS351MDNmWcDfPB3MtDS061sw/eI3EIzAI2qnQfA2SkQD8+HcXcLr8ywhHggJCcnc/ToUVq0aEFOTg7Tp08HsE8JvNO8vb3ZunUrixcvZvfu3XTs2LFS4hBCCCGEEOJBIEkpQXFOERa06JVtTSWdLhStS3Nq19gArQdCnehfC5cWU6R1AqCumzNDQ3wrI+Q/hNWqKLUq+1pSBm0BWKFJk3/j7l52S3ohxJ9j9uzZpKamYjQaadq0KUlJSVStWrXS4vHx8eG1116rtPsLIYQQQgjxoJCk1AMu/9JFigoKseo16DS29aE0uqroDNUx+IVBq7/ZCmYdgP8+DQXnKar+VwCcdffujntncorotjCJ83nFhJgyqe+dD9Y8APT6iu2iJYS4fY888gj79u2r7DCEEEIIIYQQlUCSUg+4bz7ZgFHjgVmXj5NpP1xyB43ty0JruGYL+/QkKLBNb7s6UspZe+8mpfafuMj5vBIaVz3M6Effdrim18saGUIIIYQQQgghxJ9NklIPsHOnTrEj7QTKWUPjk6doctrKOQ9Aa9sdSae/Zovz0iLb/x96hsKHRkBWLs7ae3fHvctFtnWk2tbIBUCv98TZyR9v77bo9ffmgu1CCCGEEEIIIcS9RJJSD7DT336L0mjQKA0tMjKw6q4mmWwjpHTGa748LCUcdwlmktczHDlfANy7I6Vyi8z8klsMgIeTbcpiQMDT1Al/pTLDEkIIIYQQQgghHiiSlHqAmYttiZlqyhNXC+TqHZNSWsM1Xx6lRWz060iSLgDMtoXBa7g43clw/xDLd6Yz7ZPDVDedZEqLdVR3tU1JNOg9KzkyIYQQQgghhBDiwXJvDnURfwiL2cz3pf7MLwmjyKq46BVmu6CxfVloDcZfC5cWU3hlLakuVT355NFwevpXudMh37adabYkVKuAfdTyysCgsS1u7uZWpzLDEkIIIYQQQgghHjgyUuoBVlpiJs3ig7a0kDxTFUp0VrCABj1VdKfKJKWKtW4AhLs60dzTrZKivj05hba1pDrWdYNiCAjoSUjwANzd61dyZEIIIYQQQgghxINFklIPKEu+mcIMFyxo6Xr2U7Ldi8BiW8w8wmM1D1fJgKBVv1YoLaZYaxsZ5XQPriX12fdZ7Ey7QNpZ28goo64AK2Byr4/J1KBygxNCCCGEEEIIIR5A9152QfwhSn8pwKLAqjS4l+YDoNEHoXGqQZN+sRgmHYGwx+GDfjCjGhz8gCKtbeSU0z22657ZYmXUByn895ufaVRlG/3rr0VjPgwgO+0J8RuDBg1Co9Gg0WgwGo3Url2b6dOnU1paelvtbtu2DY1Gw6VLl/6YQCsgPT2dvn37EhgYiLOzM8HBwcTExHD06FGHcgkJCbRv3x6TyYSrqyvNmzdnxYoVDmUyMjLQaDSkpKRU+P5Tp06lXr16uLm5UaVKFZ544gn27Nnj0ObgwYOpWbMmLi4u1KpVi7i4OEpKSsptNysri759+1KnTh20Wi1jxoypUDxff/013bt3JzAwEI1Gw8aNG285ZoDXX3+d1q1b4+rqipeX13XvdeLECZ588klcXV3x8/NjwoQJDl9D136dXftq2LChvczMmTNp3rw5JpMJPz8//vKXv5CamnrTflYkPiGEEEIIcXeQpNQDKj0lGSsKC1p0ygKAwbUjOs/GGH2CwdkTzIVwNAFKi0BZKdY5A+Csu7e+bHILzZSUWqnidJGBDdfyeMhOLOYsAIxO1So5OiHuPtHR0WRlZfHjjz8yfvx4pk6dyptvvlnZYdndLGkDYDab6dSpEzk5OWzYsIHU1FTWrl1Lo0aNHBJjCxcuJCYmhjZt2rBnzx4OHjxInz59iI2N5cUXX7ytOOvUqcOiRYs4dOgQO3bsoEaNGnTu3Jlz584BcPToUaxWK2+//TY//PAD8+bNY+nSpUyZMqXcdouLi/H19eWVV16hSZMmFY4nPz+fJk2asHjx4t8dM9ief8+ePfnb3/523TYsFgtPPvkkJSUl7Nq1i5UrV7JixQpee+01e5n58+eTlZVlf508eRJvb2969uxpL7N9+3aGDx/ON998Q2JiImazmc6dO5Ofn19uP28WnxBCCCGEuIuoB1BOTo4CVE5OTmWHUmkSp85Xn0z5j4oZOVbNfaaLmt3rSbVgyHr1r5GLlMrYaSuUf0GpOA91aXqg2pJ+THX59gdV7ctk9Z/Mc5Ub/C1KP5enQicmqOhZS9XWL8LUtu0Pq59+WqAyM9cqq7W0ssMT96HCwkJ1+PBhVVhYWNmh3LKBAweqmJgYh3OdOnVSrVq1UtnZ2ap///7Ky8tLubi4qOjoaHXs2DF7uYyMDNWtWzfl5eWlXF1dVYMGDdSmTZtUenq6AhxeAwcOVEoplZubq/r27atcXV2Vv7+/mjt3rmrfvr0aPXq0vd3Q0FA1ffp01b9/f2Uymex1k5KSVNu2bZWzs7MKDg5WI0eOVHl5eUoppZKTkxWgMjIybtjXEydOKIPBoMaNG1fm2oIFCxSgvvnmG6WUsvchOTn51h/qFVd/9mzduvWGZWbNmqVq1qxZ4TZ/+6wqClAfffTRTcuVF/Py5cuVp6dnmfObN29WWq1WnTlzxn5uyZIlysPDQxUXF1/3Ph999JHSaDTlfr7Onj2rALV9+/abxl1efNdT3vesvGdwJM9DCCGEEBVR0fcM99aQF/GH+GnfPo7nneeE7jztMpMB23Q8jUaPq7YEdLZd9ii1rTH1/EMzGJCez/482+gEl3tkTan84lJmJBxmesJhanv9RHP/gwA4OwdRs+ZIAgN7odHoKjlK8SBQSlFSUlIpL6XUbcfv4uJCSUkJgwYNYu/evcTHx7N7926UUnTt2hWz2baBwPDhwykuLubrr7/m0KFDvPHGG7i7uxMSEsKHH34IQGpqKllZWcyfPx+AcePGsXPnTuLj40lMTCQpKYn9+/eXiWH27Nk0adKE5ORkXn31VY4fP050dDQ9evTg4MGDrF27lh07djBixAgAfH190Wq1rF+/HovFct1+rV+/HrPZfN0RUcOGDcPd3Z01a9bc9vMD2+idd955B09Pz3JHN+Xk5ODt7f2H3PN2VTTm39q9ezeNGjWiWrVfR6JGRUWRm5vLDz/8cN06y5Yt44knniA0NPSG7ebk5ADcNc9HCCGEEELcPlno/AEUHx/PJTctSuXgbbFQqr+6RpSWIFUI+iu77l1JSv3sHAhAXTdnaroY6eDjUQlR37otP5zh3zvSCXDLYkabf9nPGw0+lReUeCCZzWb+8Y9/VMq9p0yZgtFovHnB61BK8cUXX7Blyxa6dOnCxo0b2blzJ61btwZg1apVhISEsHHjRnr27MmJEyfo0aMHjRo1AiAsLMze1tVEgp+fn32dn8uXL7Ny5UpWr15Nx44dAVi+fDmBgYFlYunQoQPjx4+3Hw8ZMoR+/frZ11MKDw9nwYIFtG/fniVLlhAUFMSCBQt46aWXmDZtGs2aNSMyMpJ+/frZ4zp27Bienp4EBASUuZ/RaCQsLIxjx479rmd3VUJCAn369KGgoICAgAASExOpWrXqdcumpaWxcOFCZs+efVv3vF23EvP1nDlzxiEhBdiPz5w5U6b86dOn+fTTT1m9evUN27RarYwZM4Y2bdrw0EMPVTgWIYQQQghxd7s3hryIP1SxUuRancg110ancb7mig69xnzNSKliAEquLHC+uH51VjQKw9twb+Qyz+fZ4m8RUgiAVmvCx+dxQmvEVmZYQtz1EhIScHd3x9nZmS5dutC7d28GDRqEXq+nZcuW9nI+Pj7UrVuXI0eOADBq1ChmzJhBmzZtiIuL4+DBg+Xe56effsJsNtOiRQv7OU9PT+rWrVumbLNmzRyODxw4wIoVK3B3d7e/oqKisFqtpKenA7aRW2fOnGHVqlVERESwbt06GjZsSGJiYoWfRUUSeqtWrXKIIykpyX4tMjKSlJQUdu3aRXR0NL169eLs2bNl2sjMzCQ6OpqePXsydOhQ+/lr242Nrdi/XUlJSQ71Vq1adfNK16hozH+UlStX4uXlxV/+8pcblhk+fDjff/89H3zwgf1cbGysQz+FEEIIIcS9597ILog/VCmKreY65CpnJhqqA1f+cq3R4aXLBL3j9L0SrQEAp3tk2h7AyewC0s/bFsOt42cbCebl2ZiHmyyrzLDEA8pgMNx08eo/8963KjIykiVLlmA0GgkMDESv1xMfH3/TekOGDCEqKopNmzbx+eefM3PmTObMmcPIkSN/T+gO3NzcHI7z8vIYNmwYo0aNKlO2evXq9o9NJhPdu3ene/fuzJgxg6ioKGbMmEGnTp0IDw8nJyeH06dPlxmdVVJSwvHjx4mKirppbE899ZRDsi4oKMgh7tq1a1O7dm1atWpFeHg4y5YtY/LkyfYyp0+fJjIyktatW/POO+84tH3tbn8eHhUbpdqsWTOHer8dtXQzFYm5PP7+/nz77bcO53755Rf7tWsppXjvvffo37//DROAI0aMICEhga+//prg4GD7+enTp9/2YvRCCCGEEKJySVLqAWRFQ4Ey4F2SDark6pJS9PCZgr/zSXD6JxxYC5n7ACi+kpQyajU3avKu8smB04xck4xRV0zdKifwMZ4EQKeXv6SLyqHRaH73FLrKcDUpca369etTWlrKnj177NP3Lly4QGpqKg0aNLCXCwkJITY2ltjYWCZPnsy7777LyJEj7f2/dn2nsLAwDAYD3333nT2RlJOTw7Fjx2jXrl25MT766KMcPny4TJzl0Wg01KtXj127dgHwzDPPMHHiRObMmcOcOXMcyi5dupSCggIGDBhw03ZNJhMmk6lCMVitVoqLi+3HmZmZREZG0rRpU5YvX472N8n/W+nfVS4uLr+r3o38NuabiYiI4PXXX+fs2bP4+fkBkJiYiIeHh8PXCth22EtLS2Pw4MFl2lFKMXLkSD766CO2bdtGzZo1Ha77+fnZ2xdCCCGEEPcmSUo9YJTZglWjwdV8mb6Zaymw//6jIaDjX6BuF8jYAR+9YK9TrLm3RkodyrQthjvqkfeo733Efl6vvzfWwhLibhQeHk5MTAxDhw7l7bffxmQyMWnSJIKCgoiJiQFgzJgxdOnShTp16nDx4kW++uor6tevD0BoaCgajYaEhAS6du2Ki4sLJpOJgQMHMmHCBLy9vfHz8yMuLg6tVotGU34SfOLEibRq1YoRI0YwZMgQ3NzcOHz4MImJiSxatIiUlBTi4uLo378/DRo0wGg0sn37dt577z0mTpwI2EZUzZo1ixdffBFnZ2f69++PwWDg448/ZsqUKcyYMaPM+kWpqallYmnYsGGZEWn5+fm8/vrrPPXUUwQEBHD+/HkWL15MZmYmPXv2BGwJqccff5zQ0FBmz57NuXPn7PV/O6Lot66OhMrLy+PcuXOkpKRgNBrLJH2ulZeXR1pamv04PT2dlJQUvL29qV69eoViBjhx4gTZ2dmcOHECi8Vij6V27dq4u7vTuXNnGjRoQP/+/Zk1axZnzpzhlVdeYfjw4Tg5OTnEtGzZMlq2bHnddaKGDx/O6tWr+fjjjzGZTPb1qDw9PXFxcblhP28WnxBCCCGEuHtIUuoBc+J/P2BFg6k03zZASmnQ6KvhZnCGRj3Brx58+66tsGcIpTUew6qxJaPulZFSuYW2ncBqV7GtgeLiUh293pPAgGcqMywh7nnLly9n9OjRdOvWjZKSEtq1a8fmzZvtCRmLxcLw4cM5deoUHh4eREdHM2/ePMA2pW3atGlMmjSJ5557jgEDBrBixQrmzp1LbGws3bp1w8PDg5deeomTJ0/i7OxcXig0btyY7du38/LLL/PYY4+hlKJWrVr07t0bgODgYGrUqMG0adPIyMhAo9HYj8eOHWtvZ+zYsYSFhTFnzhzmz59Pfr5t2u+aNWvo06dPmfte79zJkycdppUB6HQ6jh49ysqVKzl//jw+Pj40b96cpKQkGjZsCNhGD6WlpZGWllam/s12TXzkkUfsH+/bt4/Vq1cTGhpKRkbGDevs3buXyMhI+/G4ceMAGDhwICtWrKhQzACvvfYaK1euLBPLV199xeOPP45OpyMhIYG//e1vRERE4ObmxsCBA5k+fbpDPDk5OXz44Yf2nRh/a8mSJQA8/vjjDueXL1/OoEGDbtjPm8UnhBBCCCHuHhr1R+wXfo/Jzc3F09OTnJycCq/RcT+wlJaSNPbffOH9C9sv+hHzyyb0yojeewRV2EXf158Fn1qwayF8/go07k1+zBJqfX0IgOOPNcJNr6vkXtzYvp+zSTiYxbbUc6Sfz+ffnV9EQwmtI7bj4hJ88waE+IMUFRWRnp5OzZo1b5pcEY7y8/MJCgpizpw5153S9WfLzs6mY8eOeHh48Omnn+Lq6nrHYxB3Xnnfsw/qe4YbkechhBBCiIqo6HuGe2M+lvhDFF26CFiwokHv/DMAmitfAlrMDgucf+9Wm0c8B9Jwx/f2+nf79L3JGw6xfGcG4W6fMLnFXDSUAGAweFZyZEKIG0lOTmbNmjUcP36c/fv3069fPwD7lMA7zdvbm61bt9KxY0d2795dKTEIIYQQQgjxoJDpew+QtNf/QY4+DK25lI5Z2wEftFbblDwjZtBdWYi5tJht3s3J0rqB1TaQrrHJBf1dPn3v3OViQNGzTgJaTSkARqMfOp1b+RWFEJVq9uzZpKamYjQaadq0KUlJSVStWrXS4vHx8eG1116rtPsLIYQQQgjxoJCk1APi0qVLbPTwQGkuEPLTScJ+LOVAKOiUFivgpSkB3ZWFes2FFGttCaoe1aowKSyAAOOtbyt/JymlyC0qxVlXbE9IPfTQQjw9HkajubtHeAnxIHvkkUfYt29fZYchhBBCCCGEqASSlHpAZGdnozQaNArci8F6ZWcrjck2tc3JpcQ2Uqo4D4ovU3QlKeVj0BPifPduZW+2WHlx3QF+OpePUZtPkLttdyaNxoifb5eb7uAlhBBCCCGEEEKIyiFJqQeExWLBqiC/1BuTuYBTQa2BNApLXTECOk0p7PgXfD0LgKJaIwBwvsun7B08dYmPU04T4JbFvMdnYdBaANDrTZKQEkIIIYQQQggh7mKSlHpAlJaWkmrxY48lFFe+p6qzN5gBdOgoIcB4BH5Ks5cv1tvWYbrbFze/VGAGoEXQ2SsJKS06nSuBAT0qNzAhhBBCCCGEEEKUS5JSD4iiM5fJU04EFGXhZThNqfk0ADWd99K92gp01ZtBaSEAJb3XkG+tD2dzcNbdvUmpC3nF/HyhAAA/d9s6Un6+UTRqtKgywxJCCCGEEEIIIUQFSFLqAXFx+wksaPA0X7pyxohG50OjhwPR9V8NJn94K4JNVR/jb2cCKCEHuHun7/1v70leWn8QAKOuGE8nW3JKrzdVZlhCCCGEEEIIIYSoIElKPQCyT5/CUlKCVaPBoKwAaA0hGN1jCAn9CjyDbAXNhST5NqUEWyLKTaelmadbZYVdrr0Z2QDENl5Bc//99vOSlBJCCCGEEEIIIe4NkpR6AKQn70NpwILCzeXHK2d1tv8ar/kSKC2k+Mque+NrVGN0aDWMd+maUpeLbNP1mvr/YD+n1TpRpUpEZYUkhBBCCCGEEEKIW3B3ZhzEH0aZzZxY9QHZmnyCc1Poc8A25Q2NLSmlNTrB6RT48nUoyrUnpTz0ursyIZVTYGbHj+c5ebEAvdaMlmIA2rbZTft2KVStGlnJEQpxbxs0aBAajQaNRoPRaKR27dpMnz6d0tLS22p327ZtaDQaLl269McEWgHp6en07duXwMBAnJ2dCQ4OJiYmhqNHjzqUS0hIoH379phMJlxdXWnevDkrVqxwKJORkYFGoyElJaXC9586dSr16tXDzc2NKlWq8MQTT7Bnzx6HNgcPHkzNmjVxcXGhVq1axMXFUVJSctO2V61aRZMmTXB1dSUgIIDnn3+eCxculFvn66+/pnv37gQGBqLRaNi4ceN1yx05coSnnnoKT09P3NzcaN68OSdOnLBfHzZsGLVq1cLFxQVfX9/rPtPvvvuOjh074uXlRZUqVYiKiuLAgQPXvV9aWhomkwkvL6+b9ruifRBCCCGEEPeGuy/rIP5Qx5OTOVCnLkf1mTQ5/TOuJbapeRp0aDCj0Rvh4+Hw9SywFNuTUnfrrnu939nNX5ftwc3yJQMarL1yVovRWBXtldiFELcnOjqarKwsfvzxR8aPH8/UqVN58803Kzssu4okbcxmM506dSInJ4cNGzaQmprK2rVradSokUNibOHChcTExNCmTRv27NnDwYMH6dOnD7Gxsbz44ou3FWedOnVYtGgRhw4dYseOHdSoUYPOnTtz7tw5AI4ePYrVauXtt9/mhx9+YN68eSxdupQpU6aU2+7OnTsZMGAAgwcP5ocffmDdunV8++23DB06tNx6+fn5NGnShMWLF9+wzPHjx2nbti316tVj27ZtHDx4kFdffRVnZ2d7maZNm7J8+XKOHDnCli1bUErRuXNnLBYLAHl5eURHR1O9enX27NnDjh07MJlMREVFYTabHe5nNpt59tlneeyxx8qN/Vb6IIQQQggh7iHqAZSTk6MAlZOTU9mh/Om+/ewzFRcXp2a8Nl3N/0s39d8ne6nZvZ5U8/pPUe/Exiu1a5FSb9ZRKs5DqXXPq35JSaral8lq9enzlR16GVarVdWavEmFT/lQfb61ttr6RZja+kWY2rGjbWWHJoSDwsJCdfjwYVVYWFjZodyygQMHqpiYGIdznTp1Uq1atVLZ2dmqf//+ysvLS7m4uKjo6Gh17Ngxe7mMjAzVrVs35eXlpVxdXVWDBg3Upk2bVHp6ugIcXgMHDlRKKZWbm6v69u2rXF1dlb+/v5o7d65q3769Gj16tL3d0NBQNX36dNW/f39lMpnsdZOSklTbtm2Vs7OzCg4OViNHjlR5eXlKKaWSk5MVoDIyMm7Y1xMnTiiDwaDGjRtX5tqCBQsUoL755hullLL3ITk5+dYf6hVXf/Zs3br1hmVmzZqlatasWW47b775pgoLCysTb1BQUIVjAdRHH31U5nzv3r3VX//61wq3o5RSBw4cUIBKS0tTSin13XffKUCdOHHCXubgwYMKUD/++KND3Zdeekn99a9/VcuXL1eenp63dN8b9eH3KO979kF6z1AR8jyEEEIIUREVfc9wdw6HEX+Y0it/lQ60euOkC+a8d/0rV/QYNfmgd4LSItupxydR7O4PgPNdOFKq0Gyh1Kpw0xeg1VjRaHSE1RxDo0byF3Nxd1NKYbEUVMpLKXXb8bu4uFBSUsKgQYPYu3cv8fHx7N69G6UUXbt2tY9+GT58OMXFxXz99dccOnSIN954A3d3d0JCQvjwww8BSE1NJSsri/nz5wMwbtw4du7cSXx8PImJiSQlJbF///4yMcyePZsmTZqQnJzMq6++yvHjx4mOjqZHjx4cPHiQtWvXsmPHDkaMGAGAr68vWq2W9evX20fw/Nb69esxm83XHRE1bNgw3N3dWbNmzW0/P7CN7nrnnXfw9PSkSZMmNyyXk5ODt7d3uW1FRERw8uRJNm/ejFKKX375hfXr19O1a9fbitFqtbJp0ybq1KlDVFQUfn5+tGzZstwpcvn5+SxfvpyaNWsSEhICQN26dfHx8WHZsmWUlJRQWFjIsmXLqF+/PjVq1LDX/fLLL1m3bp2MehJCCCGEeIDd0YXOp06dyrRp0xzO1a1b174WRVFREePHj+eDDz6guLiYqKgo3nrrLapVq2Yvf+LECf72t7/x1Vdf4e7uzsCBA5k5cyZ6vazZfj0Ws5nzVleyCqC+NgeruQAAP0MGj3l+Ac5joLSYg+7h/JijOH1lAXEnraYSo3ZksSpW7srgp/N5ALgbbetI6fUe1Kw5sjJDE6JCrNZCtm1vVCn3frz9IXQ6199VVynFF198wZYtW+jSpQsbN25k586dtG7dGrCtaxQSEsLGjRvp2bMnJ06coEePHjRqZOtrWFiYva2riRY/Pz/72kGXL19m5cqVrF69mo4dOwKwfPlyAgMDy8TSoUMHxo8fbz8eMmQI/fr1Y8yYMQCEh4ezYMEC2rdvz5IlSwgKCmLBggW89NJLTJs2jWbNmhEZGUm/fv3scR07dgxPT08CAgLK3M9oNBIWFsaxY8d+17O7KiEhgT59+lBQUEBAQACJiYlUrVr1umXT0tJYuHAhs2fPLrfNNm3asGrVKnr37k1RURGlpaV07979tpM7Z8+eJS8vj3/+85/MmDGDN954g88++4ynn36ar776ivbt29vLvvXWW7z00kvk5+dTt25dEhMTMRptU6hNJhPbtm3jL3/5C3//+98B2+dny5Yt9p/VFy5cYNCgQbz//vt4eHjcVtxCCCGEEOLedceHwzRs2JCsrCz7a8eOHfZrY8eO5ZNPPmHdunVs376d06dP8/TTT9uvWywWnnzySUpKSti1axcrV65kxYoVvPbaa3e6G/eM0mIzSeYwtNlHsWhyUVbbQrh1wwoJ6fIXqNuFcxoXujy6lOEnCjheaEv4uOrunpFSe366wPSEw3yy/xDRNbbSrVYSAHqdqZIjE+L+lJCQgLu7O87OznTp0oXevXszaNAg9Ho9LVu2tJfz8fGhbt26HDlyBIBRo0YxY8YM2rRpQ1xcHAcPHiz3Pj/99BNms5kWLVrYz3l6elK3bt0yZZs1a+ZwfODAAVasWIG7u7v9FRUVhdVqJT09HbCN3Dpz5gyrVq0iIiKCdevW0bBhQxITEyv8LK4mWsqzatUqhziSkpLs1yIjI0lJSWHXrl1ER0fTq1cvzp49W6aNzMxMoqOj6dmzp8PaUNe2GxsbC8Dhw4cZPXo0r732Gvv27eOzzz4jIyPDfj0pKcmh3qpVqyrUV6vVCkBMTAxjx47l4YcfZtKkSXTr1o2lS5c6lO3Xrx/Jycls376dOnXq0KtXL4qKbKNuCwsLGTx4MG3atOGbb75h586dPPTQQzz55JMUFhYCMHToUPr27Uu7du2uG8vv7YMQQgghhLi33PHhRXq9Hn9//zLnc3JyWLZsGatXr6ZDhw6A7S/m9evX55tvvqFVq1Z8/vnnHD58mK1bt1KtWjUefvhh/v73vzNx4kSmTp1aoV8eHiSl5wvJ/6GYYmXCyWpbGFhrqINer6VRn6ehVmsoLeGMkw8WjR4nDbT0cifI2UgrT/dKjv5XZy/bEmXPNkikud/X9vMGo09lhSTELdFqXXi8/aFKu/etioyMZMmSJRiNRgIDA9Hr9cTHx9+03pAhQ4iKimLTpk18/vnnzJw5kzlz5jBy5O2PaHRzc3M4zsvLY9iwYYwaNapM2erVq9s/NplMdO/ene7duzNjxgyioqKYMWMGnTp1Ijw8nJycHE6fPl1mdFZJSQnHjx8nKirqprE99dRTDsm6oKAgh7hr165N7dq1adWqFeHh4SxbtozJkyfby5w+fZrIyEhat27NO++849D2tbv9XR1RNHPmTNq0acOECRMAaNy4MW5ubjz22GPMmDGDZs2aOdS7drRxeapWrYper6dBgwYO5+vXr+/wBySwJQ89PT0JDw+nVatWVKlShY8++ohnn32W1atXk5GRwe7du9FemQq+evVqqlSpwscff0yfPn348ssviY+Pt48KU0phtVrR6/W88847PPvss7+rD0IIIYQQ4t5yx5NSP/74o3177oiICGbOnEn16tXZt28fZrOZJ554wl62Xr16VK9end27d9OqVSt2795No0aNHN6cRkVF8be//Y0ffviBRx555E53566W9d1RLFYrFjRole0v4DpjHYyGAoxuV6ZLWIopurJrXYCTgf89XLuywr2hy0W29WqCPC4DUMWrFa5utQnw/7/KDEuICtNoNL97Cl1luJpIuVb9+vUpLS1lz5499ul7Fy5cIDU11SGJERISQmxsLLGxsUyePJl3332XkSNH2v9ocO36TmFhYRgMBr777jt7IiknJ4djx47dcATNVY8++iiHDx8uE2d5NBoN9erVY9euXQA888wzTJw4kTlz5jBnzhyHskuXLqWgoIABAwbctF2TyYTJVLGRm1arleLiYvtxZmYmkZGR9h3ttL9Zz+96/SsoKCgzZV2n0wG25I6Li8stPZerjEYjzZs3JzU11eH8sWPHCA0NvWE9pRRKKXu/CgoK0Gq1aDS/TgO/enx1NNbu3bsdvhY+/vhj3njjDXbt2kVQUNDv7oMQQgghhLi33NGkVMuWLVmxYgV169YlKyuLadOm8dhjj/H9999z5swZjEajfa2Rq6pVq8aZM2cAOHPmTJm/ll49vlrmeoqLix1+CcjNzf2DenR3O/zVNqzGKuCWhsEpE4q1gA40paDRwAf94PyPFGltIxCcr/xSc7f4PjOHrUd+YW/GRQBcdPkABIcMwM/35qMXhBB/nPDwcGJiYhg6dChvv/02JpOJSZMmERQURExMDABjxoyhS5cu1KlTh4sXL/LVV19Rv75tc4XQ0FA0Gg0JCQl07doVFxcXTCYTAwcOZMKECXh7e+Pn50dcXFyZhMb1TJw4kVatWjFixAiGDBmCm5sbhw8fJjExkUWLFpGSkkJcXBz9+/enQYMGGI1Gtm/fznvvvcfEiRMB24iqWbNm8eKLL+Ls7Ez//v0xGAx8/PHHTJkyhRkzZvDQQw853Pe3CRuwTUs3GAwO5/Lz83n99dd56qmnCAgI4Pz58yxevJjMzEx69uwJ2BJSjz/+OKGhocyePZtz587Z619vRPFV3bt3Z+jQoSxZsoSoqCiysrIYM2YMLVq0uO56XFfl5eWRlpZmP05PTyclJQVvb297UnDChAn07t2bdu3aERkZyWeffcYnn3zCtm3bANuUy7Vr19K5c2d8fX05deoU//znP3FxcbEvtN6pUycmTJjA8OHDGTlyJFarlX/+85/o9XoiIyMB7F8XV+3duxetVlvmef+ePgghhBBCiHvHHU1KdenSxf5x48aNadmyJaGhofzvf//DxeXWp5hU1MyZM8sssP4gsJhLsRit6Dz3o8MMOIFGhxNmOP8jHE0AoMi7FXB3LW4OMOqDZH46l8+Qh/7Dsx0O4aSzTUE06D0rOTIhHkzLly9n9OjRdOvWjZKSEtq1a8fmzZvtCRmLxcLw4cM5deoUHh4eREdHM2/ePMA2pW3atGlMmjSJ5557jgEDBrBixQrmzp1LbGws3bp1w8PDg5deeomTJ0/i7OxcbiyNGzdm+/btvPzyyzz22GMopahVqxa9e/cGIDg4mBo1ajBt2jQyMjLQaDT247Fjx9rbGTt2LGFhYcyZM4f58+eTn29Lfq9Zs4Y+ffqUue/1zp08eZLg4GCHczqdjqNHj7Jy5UrOnz+Pj48PzZs3JykpiYYNGwKQmJhIWloaaWlpZeqXt2vioEGDuHz5MosWLWL8+PF4eXnRoUMH3njjjXKf2d69e+1JIbDtfAgwcOBAVqxYAcD//d//sXTpUmbOnMmoUaOoW7cuH374IW3btgXA2dmZpKQk/vWvf3Hx4kWqVatGu3bt2LVrF35+foBtlPMnn3zCtGnTiIiIQKvV8sgjj/DZZ59dd1H5W1GRPgghhBBCiHuHRv0R+4XfhubNm/PEE0/QqVMnOnbsyMWLFx1GS4WGhjJmzBjGjh3La6+9Rnx8vMM6E+np6YSFhbF///4bTt+73kipkJAQcnJy7ttdf3I+/pikj/eR71+dX44uR4sbxQYjBvdnqKP9iehRjeHDwVClBp90eIuh591o5enGxkfDKzt0u/qvfoa5tIi3O/2645ZO507riC8xynpS4i5WVFREeno6NWvWvGlyRTjKz88nKCiIOXPmMHjw4Dt+/+zsbDp27IiHhweffvoprq73zrRL8fuV9z2bm5uLp6fnff2e4VbI8xBCCCFERVT0PUOlbrGWl5fH8ePHCQgIoGnTphgMBr744gv79dTUVE6cOEFERAQAERERHDp0yGHnosTERDw8PMoszHotJycnPDw8HF73u21fbOWwv5bMouN0OpyNzraMBxqNDr3BDEqhgHXVOhOvsS3K66y9O3bcU0pRWGKh0GzB1VB45ayGiFZf0LbNLklICXEfSU5OZs2aNRw/fpz9+/fTr18/APuUwDvN29ubrVu30rFjR3bv3l0pMQghhBBCCPGguKPT91588UW6d+9OaGgop0+fJi4uDp1Ox7PPPounpyeDBw9m3LhxeHt74+HhwciRI4mIiKBVK9v0ss6dO9OgQQP69+/PrFmzOHPmDK+88grDhw/HycnpTnblrnfQywuLFlwKzJzxa0ahcymoy4AOJ+diUBb2ejRkZLV+cO4SAB6Gyl9TSinFwOXf8fWxc/g4Z1PT82cA9HoTrq41Kjc4IcSfYvbs2aSmpmI0GmnatClJSUlUrVq10uLx8fHhtddeq7T7CyGEEEII8aC4o0mpU6dO8eyzz3LhwgV8fX1p27Yt33zzDb6+vgDMmzcPrVZLjx49KC4uJioqirfeesteX6fTkZCQwN/+9jciIiJwc3Nj4MCBTJ8+/U52466nlMKisY16alJcnXNV/VF8d+WqBr9AHSjFeUMVAHyNerr5ejEoqPJ+Cbyq0Gzh62PnCPNM5+WW8+zn9fr7f3SbEA+iRx55hH379lV2GEIIIYQQQohKcEeTUh988EG5152dnVm8eDGLFy++YZnQ0FA2b978R4d2X7FarVjR8k1JCAWF6dTR5YGyran19PhHCarXB/avpEhrG11W19WZmXWCy2vyjrlcVApAddNpALRaZ4zGqoQE33xbdiGEEEIIIYQQQtw77mhSStwZZ5LPcE65kVdgoVphMjnXLBXlUcUVfvgIMnZSpDUC4HSXrCUFcLnIDICXsy2JVs2vKw0avFmZIQkhhBBCCCGEEOJPIEmp+1DO1ycxKx2uFtsi4VqMYKyFr28mpiPvw/Z/AlAcYFtI2FmnqbRYr/r8hzNM2nAIjfUibQK/p673cUCm7QkhhBBCCCGEEPcrSUrdZwpyLnHpl5+wGDVolQUAPZ5o3bpQLeADyD1lK+hTm+KAR4C7Y9e9z74/Q3Z+CUMbradVwK/ryxiurHslhBBCCCGEEEKI+4skpe4z6Sn7MBcXYDGCs8ceOAdg21XPoANKSwC49OgQsgP+Aj//gpO28kdK5RTapu01CcgHwMPjYVxdaxIQ0KMywxJCCCGEEEIIIcSfRJJS95mSoiKsGg0lmlP89dt0Tvr4gsaWlKqi04Eln2WB/8fLJRHw8y9A5a4plVdcSuqZy5zOKbLFossDC9SuPYkqXs0rLS4hhBBCCCGEEEL8uSQpdR+5dPEim5J2UeppwP9CNu5FV0ZAaWyfZl+9HkpL2OPZwl7HTaelg7epMsIF4Om3dnLslzyeCf+YsU98hdZiBcAga0kJIYQQQgghhBD3tcpfTEj8YU4cPUqp3gCAxmLhgnc9AKx6ZwC0eh1Yiim+suvenLohHG/XmE5VPSslXrPFyrFf8gBoFZiCTmtLSDk7B+HiElopMQnxoBs0aBAajQaNRoPRaKR27dpMnz6d0tLS22p327ZtaDQaLl269McEWgHp6en07duXwMBAnJ2dCQ4OJiYmhqNHjzqUS0hIoH379phMJlxdXWnevDkrVqxwKJORkYFGoyElJaXC9586dSr16tXDzc2NKlWq8MQTT7Bnzx6HNgcPHkzNmjVxcXGhVq1axMXFUVJSctO2V61aRZMmTXB1dSUgIIDnn3+eCxculFtnyZIlNG7cGA8PDzw8PIiIiODTTz+1X8/OzmbkyJHUrVsXFxcXqlevzqhRo8jJybGXWbFihf3r47evs2fP2ssVFxfz8ssvExoaipOTEzVq1OC9995ziOdf//qX/V4hISGMHTuWoqKicvuwYcMGOnfujI+Pzy1/PoQQQgghxN1HRkrdR0qLi1EKikt98bCWkl3FFYrOo7AloVz8AyH7R3tSqrLXkrq6jhSAr5uF0lJ49NEP8PR4GK3WUImRCfFgi46OZvny5RQXF7N582aGDx+OwWBg8uTJlR0aACUlJRiNxnLLmM1mOnXqRN26ddmwYQMBAQGcOnWKTz/91CExtnDhQsaMGcPEiRNZsmQJRqORjz/+mNjYWL7//ntmz579u+OsU6cOixYtIiwsjMLCQubNm0fnzp1JS0vD19eXo0ePYrVaefvtt6lduzbff/89Q4cOJT8/v9z77ty5kwEDBjBv3jy6d+9OZmYmsbGxDB06lA0bNtywXnBwMP/85z8JDw9HKcXKlSuJiYkhOTmZhg0bcvr0aU6fPs3s2bNp0KABP//8M7GxsZw+fZr169cD0Lt3b6Kjox3aHTRoEEVFRfj5+dnP9erVi19++YVly5ZRu3ZtsrKysFqt9uurV69m0qRJvPfee7Ru3Zpjx47ZE6Jz5869YR/y8/Np27YtvXr1YujQoTf9HAghhBBCiLucegDl5OQoQOXk5FR2KH+oPVu2qCGvzFE1XopXLz4/Rs3964tqdq8n1ZqRser4l98pZbUq9W5HFbNhuar2ZbKK/+VipcRptVrVlA0HVYfZX6nQiQnqobhP1Rdf1lFbvwhThYWnKyUmIf5IhYWF6vDhw6qwsLCyQ7llAwcOVDExMQ7nOnXqpFq1aqWys7NV//79lZeXl3JxcVHR0dHq2LFj9nIZGRmqW7duysvLS7m6uqoGDRqoTZs2qfT0dAU4vAYOHKiUUio3N1f17dtXubq6Kn9/fzV37lzVvn17NXr0aHu7oaGhavr06ap///7KZDLZ6yYlJam2bdsqZ2dnFRwcrEaOHKny8vKUUkolJycrQGVkZNywrydOnFAGg0GNGzeuzLUFCxYoQH3zzTdKKWXvQ3Jy8q0/1Cuu/uzZunXrDcvMmjVL1axZs9x23nzzTRUWFlYm3qCgoFuOqUqVKurf//73Da//73//U0ajUZnN5uteP3v2rDIYDOo///mP/dynn36qPD091YULF27Y7vDhw1WHDh0czo0bN061adOmQnH/EZ+Pa5X3PXu/vmf4veR5CCGEEKIiKvqeQabv3UeKcorIV0YiLu7BP+9HrCVHAPD3KyEsazYs6wy/HK70kVJnLxezas8JsnNPMeLhd3mp2XyUsk0N0usrb30rIf4sSinyLZZKeSmlbjt+FxcXSkpKGDRoEHv37iU+Pp7du3ejlKJr166YzbZRj8OHD6e4uJivv/6aQ4cO8cYbb+Du7k5ISAgffvghAKmpqWRlZTF//nwAxo0bx86dO4mPjycxMZGkpCT2799fJobZs2fTpEkTkpOTefXVVzl+/DjR0dH06NGDgwcPsnbtWnbs2MGIESMA8PX1RavVsn79eiwWy3X7tX79esxmMy+++GKZa8OGDcPd3Z01a9bc9vMD2+iud955B09PT5o0aXLDcjk5OXh7e5fbVkREBCdPnmTz5s0opfjll19Yv349Xbt2rXA8FouFDz74gPz8fCIiIsqNx8PDA73++gOr//Of/+Dq6sozzzxjPxcfH0+zZs2YNWsWQUFB1KlThxdffJHCwkJ7mdatW7Nv3z6+/fZbAH766Sc2b958S30QQgghhBD3Ppm+d58ovVhEXkouVo0GH/Ml20mNGzoM1K+aD8d+XTfkalLKuZJ23btYYFsvpW3wQR7xO2Q/bzRWRadzrZSYhPgzFVit1Pr60M0L/gmOt2uEm073u+oqpfjiiy/YsmULXbp0YePGjezcuZPWrVsDtnWNQkJC2LhxIz179uTEiRP06NGDRo0aARAWFmZv62qixc/PDy8vLwAuX77MypUrWb16NR07dgRg+fLlBAYGlomlQ4cOjB8/3n48ZMgQ+vXrx5gxYwAIDw9nwYIFtG/fniVLlhAUFMSCBQt46aWXmDZtGs2aNSMyMpJ+/frZ4zp27Bienp4EBASUuZ/RaCQsLIxjx479rmd3VUJCAn369KGgoICAgAASExOpWrXqdcumpaWxcOHCm04ZbNOmDatWraJ3794UFRVRWlpK9+7dWbx48U3jOXToEBERERQVFeHu7s5HH31EgwYNrlv2/Pnz/P3vf+eFF164YXvLli2jb9++uLi42M/99NNP7NixA2dnZz766CPOnz/P//t//48LFy6wfPlyAPr27cv58+dp27YtSilKS0uJjY1lypQpN+2DEEIIIYS4f8hIqftE5rffo1BY0aK7MurI4NIWD6cIql3ZyC6+wd8YH72JUx61gcoZKZV+Pp/kE5cA8HWz/dXcxyeSRg8tplnTDWg08iUpRGVLSEjA3d0dZ2dnunTpQu/evRk0aBB6vZ6WLVvay/n4+FC3bl2OHLGNyhw1ahQzZsygTZs2xMXFcfDgwXLv89NPP2E2m2nR4tcdQT09Palbt26Zss2aNXM4PnDgACtWrMDd3d3+ioqKwmq1kp6eDthGbp05c4ZVq1YRERHBunXraNiwIYmJiRV+Fjdbuwpsyblr40hKSrJfi4yMJCUlhV27dhEdHU2vXr0cFgS/KjMzk+joaHr27OmwVtK17cbGxgJw+PBhRo8ezWuvvca+ffv47LPPyMjIsF9PSkpyqLdq1Sp7e3Xr1iUlJYU9e/bwt7/9jYEDB3L48OEy8eTm5vLkk0/SoEEDpk6det1+7969myNHjjB48GCH81arFY1Gw6pVq2jRogVdu3Zl7ty5rFy50j5aatu2bfzjH//grbfeYv/+/WzYsIFNmzbx97///abPVAghhBBC3D9kpNR94sLPGViwUmC8gNHlOBQ6gUaHhhJAYUXDqKrPUFT466fc13hnFxNPPPwLQ/+zFw1Wgt2z8HM9D4CH6SH8/KJvUluIe5erVsvxdo0q7d63KjIy0r7od2BgIHq9nvj4+JvWGzJkCFFRUWzatInPP/+cmTNnMmfOHEaOHPl7Qnfg5ubmcJyXl8ewYcMYNWpUmbLVq1e3f2wymejevTvdu3dnxowZREVFMWPGDDp16kR4eDg5OTmcPn26zOiskpISjh8/TlRU1E1je+qppxySdUFBQQ5x165dm9q1a9OqVSvCw8NZtmyZw6Lxp0+fJjIyktatW/POO+84tH3t7nIeHra/MMycOZM2bdowYcIEABo3boybmxuPPfYYM2bMoFmzZg71qlWrZv/46o6KAE2bNuW7775j/vz5vP322/Yyly9fJjo6GpPJxEcffYTBcP2fFf/+9795+OGHadq0qcP5gIAAgoKC8PT8dWfX+vXro5Ti1KlThIeH8+qrr9K/f3+GDBkCQKNGjcjPz+eFF17g5ZdfLveZCiGEEEKI+4ckpe4DlqIiMk/9zHmtE4VOZ3EyX11DRoeTMoOyUqw1UKSxfbrH16hGPTcXwlyd7micR7JyAYht8j7Nqu21n9cbPG9URYj7gkaj+d1T6CrD1UTKterXr09paSl79uyxT9+7cOECqampDtO/QkJCiI2NJTY2lsmTJ/Puu+8ycuRI+4ija9d3CgsLw2Aw8N1339kTSTk5ORw7dox27dqVG+Ojjz7K4cOHy8RZHo1GQ7169di1axcAzzzzDBMnTmTOnDnMmTPHoezSpUspKChgwIABN23XZDJhMlVsPTyr1UpxcbH9ODMzk8jISJo2bcry5cvR/iaJeL3+FRQUlFnjSXfl60sphYuLS4Wfy2/jyc3NJSoqCicnJ+Lj43F2dr5uvby8PP73v/8xc+bMMtfatGnDunXryMvLw93dHbBNldRqtQQHB9v78Nu+XtuHW3mmQgghhBDi3iVJqfvA3jVr2Ke9DFzmr18folSrI9cV0OhwUyVXklK/TkEZE+qPoRKm7uUV26YVNvQ9A4DB4I2TUzWq+kTe8ViEELcmPDycmJgYhg4dyttvv43JZGLSpEkEBQURExMDwJgxY+jSpQt16tTh4sWLfPXVV9SvXx+A0NBQNBoNCQkJdO3aFRcXF0wmEwMHDmTChAl4e3vj5+dHXFwcWq0Wjab8f6MmTpxIq1atGDFiBEOGDMHNzY3Dhw+TmJjIokWLSElJIS4ujv79+9OgQQOMRiPbt2/nvffeY+LEiYBtRNWsWbN48cUXcXZ2pn///hgMBj7++GOmTJnCjBkzeOihhxzum5qaWiaWhg0blhlNlJ+fz+uvv85TTz1FQEAA58+fZ/HixWRmZtKzZ0/AlpB6/PHHCQ0NZfbs2Zw7d85e39/f/4Z97969O0OHDmXJkiVERUWRlZXFmDFjaNGixXXX47pq8uTJdOnSherVq3P58mVWr17Ntm3b2LJlC2BLSHXu3JmCggLef/99cnNzyc21/THB19fXnjQCWLt2LaWlpfz1r38tc5++ffvy97//neeee45p06Zx/vx5JkyYwPPPP29fe6p79+7MnTuXRx55hJYtW5KWlsarr75K9+7dHe7zW9nZ2Zw4cYLTp08Dv34+/P39y31mQgghhBDi7iRJqftAzqVLALgqI0GXXTnq7w7kA3qcXErAarEnpbSAvnI23eNy0ZUd9jT5ADzy8EpMpusvsCuEuPssX76c0aNH061bN0pKSmjXrh2bN2+2J2QsFgvDhw/n1KlTeHh4EB0dzbx58wDb9Ktp06YxadIknnvuOQYMGMCKFSuYO3cusbGxdOvWDQ8PD1566SVOnjx5wxE6VzVu3Jjt27fz8ssv89hjj6GUolatWvTu3RuA4OBgatSowbRp08jIyECj0diPx44da29n7NixhIWFMWfOHObPn09+vu3fpzVr1tCnT58y973euZMnT9pHAF2l0+k4evQoK1eu5Pz58/j4+NC8eXOSkpJo2LAhAImJiaSlpZGWllamfnm7Jg4aNIjLly+zaNEixo8fj5eXFx06dOCNN94o95mdPXuWAQMGkJWVhaenJ40bN2bLli106tQJgP3797Nnzx6g7Ait9PR0atSoYT9etmwZTz/9tH3R+mu5u7uTmJjIyJEjadasGT4+PvTq1YsZM2bYy7zyyitoNBpeeeUVMjMz8fX1pXv37rz++uvl9iE+Pp7nnnvOfnz18xEXF3fDta+EEEIIIcTdS6P+iP3C7zG5ubl4enrat7q+13365pvsyc+nbmkg2sNnyXQ6irJewmjqTfMq39LK9AE/G71p2XItLlot6e0b37HYlFIMWv7d/2fvvsOivNLGj39nYAaGLgrSDIJiL2uJDRs20ATZxFiii5ioq3mtscSSjaircVXQxLKW/BL13ReNq5sY15go1mCJFaNrASUQDXZRkF7m/P6YOOsERWxguT/XNVec5znlPs9AeLg55zzsPXedas4JeDtcpm/tb9BQQKuWuzEYfB7ciBDPmdzcXJKTk/Hz83tgckVYysrKwtvbm+jo6GIbaJeFtLQ0OnbsiJOTE9999x12dvJE0JdBSd+zL9o9w+OS6yGEEEKI0ijtPYM86uwFUPDbHi0F2Te4YZWEMmYC0DzgFE0Ma8GYT57WtH+UbRkv27uZXcDuxGs46G4xruli+tVej4YCQINO9pIS4qUXHx/PmjVrSEpK4ujRo/Tr1w/AvCSwrLm6urJt2zY6duzI/v37yyUGIYQQQgghXhayfO8FUFhUyIUiZzTXj+Og/e+eJLW8rqBLyoNXB5HXZCScvonNIzyJ63Gk5xQA4O2Yjlaj0GrtqFSpPRVcmmNtLZvYCiEgKiqKhIQE9Ho9TZo0IS4ujkqVKpVbPBUrVmTKlCnl1r8QQgghhBAvC0lKPeduHPuVrKwKxBl96GGMxwGwsvkDWtdzONkY+cXWg152b3El4RYANmU0Uyq3oIj/3Z9C4hXTrC03+3wA7OyqUr/ewjKJQQjx7GvUqBFHjhwp7zCEEEIIIYQQ5UCSUs+5818dwlqjJx9rrJRpGZ+VrgZW9ufAmM9+5z/wCwYwmrYOa+RUNvujbD5xiY83n8HHIZUPm3+Ju53pCU46a9l/QgghhBBCCCGEEJKUeu6pgiIKtUa0hl+wtsqAQkBjhVZbAIVa8rSmDVvbV3BkTk0fqtjqyySuyxm5AHStfgJ/51/Mx+0dapZJ/0IIIYQQQgghhHi2SVLqOWY0Gskkl0xNAY3yvsUhT2H6SK1w0ORDkZZcrWkzcVe9Na8YbMostjt7SVWtYATA07Mn3l69cXSsX2YxCCGEEEIIIYQQ4tklT997jn395ZfssDnHeaubjPvuPLoiK9MJjRUtCm5D8i7ytKaZUWW1l9SRX24SFLWLVftSADBY5wDg4FATZ+dGaLWSBxVCCCGEEEIIIYTMlHpuqcJCLhw5Ao6OWBmtueb1BoVWJ4ECwApbTDOVcnX2AGX21L3v/3OJ5OtZBFfdTnufPThrM0EhT9oTQgghhBBCCCGEBUlKPaeMOTkU/bZ5eau8mtx0vArqOABuuhTcdeegy0zyKoVC6s0ymymVkVMIQFj1Pdhob4ApRBzsZS8pIYQQQgghhBBC/JckpZ5TKj8fo5UWlOLKjQPcVlcB0/5N3Rtu52yGN/+rqc+Pt0zL52yf8kwppRT5RUbzXlI6bSYADeovwcGhDgaDz1PtXwghhBBCCCGEEM8X2VPqOZV9LZNCGweK8gtIyzxJAdcA0Fpp0GsLmFP1XVblOpOQZXoKnpv+6eUf8wuNdP00jpp/+Z69Z89S1ekXtOQB4OLSQhJSQjxHBgwYgEajQaPRoNfrqV69OtOnT6ewsPCx2t21axcajYZbt249mUBLITk5mb59++Ll5YWtrS0+Pj6EhYVx5swZi3KbNm2iXbt2ODo6Ymdnx6uvvsrKlSstyqSkpKDRaDh27Fip+586dSq1atXC3t6eChUq0KlTJw4cOGDR5sCBA/Hz88NgMFCtWjUiIyPJz89/YNsxMTE0bNgQOzs7PD09effdd7lx40apY/vb3/6GRqNh9OjRFseTkpJ44403cHNzw8nJiV69enHlyhWLMjNnzqRVq1bY2dnh4uJyz/bvfA3d/fryyy/N57/66is6d+5s7qdly5Zs2bLlgXF/9dVXdOnShYoVKz705yGEEEIIIZ49kpR6Tl3+5iK3tA58n1cDAA06dPbdqNegEtbGPNJ/28PpDXcXZtXw4W0P16cWy4Wb2Zy5fJsKNjeZ23YKH7WI/u2MBmtrh6fWrxDi6QgJCeHSpUucPXuWsWPHMnXqVObOnVveYZmVJmlTUFBA586dSU9P56uvviIhIYG1a9dSv359i8TYwoULCQsLIzAwkAMHDnD8+HH69OnD0KFDGTdu3GPFWaNGDRYtWsSJEyfYs2cPVatWpUuXLly7ZvojwpkzZzAajSxbtoyTJ08yf/58li5dyuTJk0tsd+/evfTv35+BAwdy8uRJ1q1bx8GDBxk8eHCp4jp06BDLli2jQYMGFsezsrLo0qULGo2GHTt2sHfvXvLz8wkNDcVoNJrL5efn07NnT957770S+1mxYgWXLl0yv/74xz+az/3www907tyZzZs3c+TIEYKCgggNDSU+Pr7ENrOysmjdujWzZ88u1ViFEEIIIcQzTr2E0tPTFaDS09PLO5RHUlhQoI6P+1q98+FC1XT0ChXV6zUV3aunWjRkuzq4aKhSi5qr4A2rVeUd8WrLtVtPPZ6jv6Qp3wmbVPjiBWrbdn+1fUcNFbenlTqTMO2p9y3EsygnJ0edOnVK5eTklHcoDy0iIkKFhYVZHOvcubNq0aKFSktLU+Hh4crFxUUZDAYVEhKiEhMTzeVSUlLU66+/rlxcXJSdnZ2qU6eO+vbbb1VycrLCtMOc+RUREaGUUiojI0P17dtX2dnZKQ8PDzVv3jzVrl07NWrUKHO7vr6+avr06So8PFw5Ojqa68bFxanWrVsrW1tb5ePjo0aMGKEyMzOVUkrFx8crQKWkpNx3rOfPn1c6nU6NGTOm2LkFCxYoQP34449KKWUeQ3x8/MNf1N/c+dmzbdu2+5aZM2eO8vPzK7GduXPnKn9//2Lxent7PzCG27dvq4CAABUbG1vsOm/ZskVptVqLn423bt1SGo1GxcbGFmtrxYoVytnZ+Z79AOrrr79+YDx3q1Onjpo2rXQ/N57E53G3kr5nn/d7hidNrocQQgghSqO09wwyU+o5dDU5CWNBHoWA3i4BAI3GCgCdlQaK8sjT6oGnu5eU0ag4nJLGnrPXAXC1M81ecHZuTOvAvdSsMeWp9S3E80QpRXZ+Ybm8lFKPHb/BYCA/P58BAwZw+PBhNm7cyP79+1FK0a1bNwoKTHvJDRs2jLy8PH744QdOnDjB7NmzcXBwoEqVKvzrX/8CICEhgUuXLvHpp58CMGbMGPbu3cvGjRuJjY0lLi6Oo0ePFoshKiqKhg0bEh8fz0cffURSUhIhISH06NGD48ePs3btWvbs2cPw4cMBcHNzQ6vVsn79eoqKiu45rvXr11NQUHDPGVFDhgzBwcGBNWvWPPb1A9PsouXLl+Ps7EzDhg3vWy49PR1X15JntrZs2ZILFy6wefNmlFJcuXKF9evX061btwfGMWzYMF577TU6depU7FxeXh4ajQYbGxvzMVtbW7RaLXv27Hlg2/fqq1KlSjRr1owvvviixK9Fo9HI7du3Hzh2IYQQQgjxYpGNzp9DuZcvodFoMRZl0i9xCznWXtxZiemUug+sksmrZkpKPc2n7n0Vn8q4dT9hrS2godsZqjsnAWBt7fTU+hTieZRTUESdKQ/eL+dpODU9GLtH3FNOKcX27dvZsmULXbt2ZcOGDezdu5dWrVoBpn2NqlSpwoYNG+jZsyfnz5+nR48e1K9fHwB/f39zW3eSDe7u7uZ9iG7fvs2qVatYvXo1HTt2BExLvry8vIrF0qFDB8aOHWt+P2jQIPr162feEykgIIAFCxbQrl07lixZgre3NwsWLOCDDz5g2rRpNG3alKCgIPr162eOKzExEWdnZzw9PYv1p9fr8ff3JzEx8ZGu3R2bNm2iT58+ZGdn4+npSWxsLJUqVbpn2XPnzrFw4UKioqJKbDMwMJCYmBh69+5Nbm4uhYWFhIaGsnjx4hLrffnllxw9epRDhw7d83yLFi2wt7dnwoQJfPzxxyilmDhxIkVFRVy6dKl0A/7N9OnT6dChA3Z2dmzdupX/+Z//ITMzk5EjR96zfFRUFJmZmfTq1euh+hFCCCGEEM83mSn1nFFKsW3tP9np8DO+185T/5ffTvw2U8pFmWYs5FkbALB5ijOlzl01PWGvZ82djGz0GbWddwCgs3Z+an0KIZ6+TZs24eDggK2tLV27dqV3794MGDAAa2trmjdvbi5XsWJFatasyenTpwEYOXIkM2bMIDAwkMjISI4fP15iPz///DMFBQU0a9bMfMzZ2ZmaNWsWK9u0aVOL9z/99BMrV67EwcHB/AoODsZoNJKcnAyYZupcvnyZmJgYWrZsybp166hbty6xsbGlvhZ6vf6BZWJiYiziiIuLM58LCgri2LFj7Nu3j5CQEHr16sXVq1eLtZGamkpISAg9e/a02Bvq7naHDh0KwKlTpxg1ahRTpkzhyJEjfP/996SkpJjPx8XFWdSLiYnhwoULjBo1ipiYGGxtbe85Djc3N9atW8e///1vHBwccHZ25tatWzRu3BjtQ/4s+eijjwgMDKRRo0ZMmDCBDz744L77kq1evZpp06bxz3/+E3d39wdeUyGEEEII8eKQmVLPmevXr5NayR3IwbrIijMBb4FxH0qjA6DQ4MyhgVvJPHsDCo1PdaZUeo4pAdbUx5ScMhiqYmdXFR+f8KfWpxDPI4POilPTg8ut74cVFBTEkiVL0Ov1eHl5YW1tzcaNGx9Yb9CgQQQHB/Ptt9+ydetWZs2aRXR0NCNGjHiU0C3Y29tbvM/MzGTIkCH3nHnzyiuvmP/t6OhIaGgooaGhzJgxg+DgYGbMmEHnzp0JCAggPT2dixcvFpudlZ+fT1JSEsHBD/7cunfvbpGs8/b2toi7evXqVK9enRYtWhAQEMDnn3/OpEmTzGUuXrxIUFAQrVq1Yvny5RZt3/10OScn0yzUWbNmERgYyPjx4wFo0KAB9vb2tGnThhkzZtC0aVOLepUrV2b79u1cvXqVxo0bm48XFRXxww8/sGjRIvLy8rCysqJLly4kJSVx/fp1rK2tcXFxwcPDw2LW26No3rw5f/3rX8nLy7NYHvjll18yaNAg1q1bZ7GksKRrKoQQQgghXhySlHrO3Hksu15Z4ah8yDFUgCwALbaaDMYHRLDl9DVzeYPVk58pdeLXdOZsOcOpixkA2GgzQYFf1f/B07PHE+9PiOedRqN55CV05eFOIuVutWvXprCwkAMHDpiX7924cYOEhATq1KljLlelShWGDh3K0KFDmTRpEp999hkjRowwzzi6e38nf39/dDodhw4dMieS0tPTSUxMpG3btiXG2LhxY06dOlUszpJoNBpq1arFvn37AHjrrbeYMGEC0dHRREdHW5RdunQp2dnZ9O/f/4HtOjo64ujoWKoYjEYjeXl55vepqakEBQXRpEkTVqxYUWxG0r3Gl52djbW15deTlZUp+aiUwmAwFKvXsWNHTpw4YXHsnXfeoVatWkyYMMFc/447Swx37NjB1atX6d69e6nGdz/Hjh2jQoUKFgmpNWvW8O677/Lll1/y2muvWZR/mGsqhBBCCCGeX8/Pb0kC+G9SSqessUZLAaZf8Nyd02nr/SEfusUA4GfQ08DRDl/bBy89eVgxB34h7ux1Wnoe5M0m/8agTDOlrHUuT7wvIcSzISAggLCwMAYPHsyyZctwdHRk4sSJeHt7ExYWBsDo0aPp2rUrNWrU4ObNm+zcuZPatWsD4Ovri0ajYdOmTXTr1g2DwYCjoyMRERGMHz8eV1dX3N3diYyMRKvVotGUPMtzwoQJtGjRguHDhzNo0CDs7e05deoUsbGxLFq0iGPHjhEZGUl4eDh16tRBr9eze/duvvjiCyZMmACYZlTNmTOHcePGYWtrS3h4ODqdjm+++YbJkyczY8YM6tWrZ9FvQkJCsVjq1q2LTqezOJaVlcXMmTPp3r07np6eXL9+ncWLF5OamkrPnj0BU0Kqffv2+Pr6EhUVxbVr//2DgoeHx33HHhoayuDBg1myZAnBwcFcunSJ0aNH06xZs3vuxwWmJM/vx2Jvb0/FihUtjq9YsYLatWvj5ubG/v37GTVqFO+//77Fksrz58+TlpbG+fPnKSoqMs/Kql69Og4ODvz73//mypUrtGjRAltbW2JjY/n4448tNpRfvXo1ERERfPrppzRv3pzLly8Dpk31nZ3vvwT8Tr8XL14E/vt5eHh4lHjNhBBCCCHEs0mSUs+Zovx8CpWGs/kOBBT+gk57CwAbXSHK2pSgsrPSsr9FnRJaeTy3sk3L9t6s9ROuunQANBo9Dva1nlqfQojyt2LFCkaNGsXrr79Ofn4+bdu2ZfPmzeaETFFREcOGDePXX3/FycmJkJAQ5s+fD5iWX02bNo2JEyfyzjvv0L9/f1auXMm8efMYOnQor7/+Ok5OTnzwwQdcuHDhvvse3dGgQQN2797Nhx9+SJs2bVBKUa1aNXr37g2Aj48PVatWZdq0aaSkpKDRaMzv33//fXM777//Pv7+/kRHR/Ppp5+SlZUFmGbx9OnTp1i/9zp24cIFfHx8LI5ZWVlx5swZVq1axfXr16lYsSKvvvoqcXFx1K1bF4DY2FjOnTvHuXPnitUv6Ul1AwYM4Pbt2yxatIixY8fi4uJChw4dmD17donXrDQSEhKYNGkSaWlpVK1alQ8//NDiegFMmTKFVatWmd83atQIgJ07d9K+fXt0Oh2LFy/m/fffRylF9erVmTdvnsVeWcuXL6ewsJBhw4YxbNgw8/GIiAhWrlx53/g2btzIO++8Y35/5/OIjIxk6tSpjzN0IYQQQghRDjTqSTwv/DmTkZGBs7Mz6enp5j06nhf/+WY/sw4dwf5iEjWzzpqPV/OyobbnWdq9+r+46qw41br+U4uh72c/si/pBsu7LsKqKJGaNabj7t4VvV4e5S0EQG5uLsnJyfj5+T0wuSIsZWVl4e3tTXR0NAMHDizz/tPS0ujYsSNOTk5899132NnZlXkMouyV9D37PN8zPA1yPYQQQghRGqW9Z5Cn7z1HCm/nc/vAZXLQ4Vh4GwCNVSWstBVoUvESeVrTUr2n8cS9IqPig/U/0WPJPk5fvEwFm5tYYZol5ehYWxJSQohHEh8fz5o1a0hKSuLo0aP069cPwLwksKy5urqybds2OnbsyP79+8slBiGEEEIIIV4WsnzvOfLTd7EUYaSAIqysTJuMW9u2xkZdpkrhRq5oTUtCnsYT905eTOefh3/F3e4qM1vNxsaqgN+2s8LKWjajFUI8uqioKBISEtDr9TRp0oS4uDjzRtvloWLFikyZMqXc+hdCCCGEEOJlIUmp58jN8xfQUYnbjonotbcAPWis0KpC8KhPbs0I4OnMlLqzj1QTr8umhBQatFodjg51sTNUfeL9CSFeDo0aNeLIkSPlHYYQQgghhBCiHEhS6jmRd/kyl/5zAoNPY9qdPovnTciyBQ1a3Iy5fOXdne/cOsO1W9g84KlVjyIj15SUquxgmh7lVqkTDRosfeL9CCGEEEIIIYQQ4uUgSannxKHt20mq6gZcwC+zBml2V8CYARorXGxz+cCqPuev3QKggu7Jfaw7zlxh+Op4svMLqWS4gZvB9Mhya1myJ4QQQgghhBBCiMcgSannxI1M0x5SdkpPoW11VOElALQaSPa34bzBk1r2tnSs6MRblSs8sX63n75Kdn4Rof7f88fq35mPyz5SQgghhBBCCCGEeBzy9L3nREGhaflcQJEnGo01d3YZf6vGCq655wHQwsWBj6p5UdvB8MT6Tc8x9dupummGlFZrwNbGC3e3kCfWhxBCCCGEEEIIIV4+MlPqOVFYYEoOYVQUqRxQhQDocy6Sp20CPNmn7qXeyuGrI79yIjUdAFurbCiCenXn4+bW+Yn1I4QQQgghhBBCiJeTJKWeA7kp6RRed+CEMqBJ2YpDUab5nFXeDfK0egBsn+BT96K2JPB1fCrNPQ4TVCcRa+MFAKytnZ5YH0IIIYQQQgghhHh5SVLqOfDrrgTQKC7nGWhlTkjp0OsLcKzZirxXWoHxyc6Uupyei7W2gEH1Y9BqikCZjtvaej6xPoQQQgghhBBCCPHykj2lngNXz52mCCOKnN+O6LCtMAI39wJUi+HkuNUFwOYJzpTKyC3AQZdtSkihpZr/OBrUX4LB8MoT60MI8ewZMGAAGo0GjUaDXq+nevXqTJ8+ncLCwsdqd9euXWg0Gm7duvVkAi2F5ORk+vbti5eXF7a2tvj4+BAWFsaZM2csym3atIl27drh6OiInZ0dr776KitXrrQok5KSgkaj4dixY6Xuf+rUqdSqVQt7e3sqVKhAp06dOHDggEWbAwcOxM/PD4PBQLVq1YiMjCQ/P/+BbcfExNCwYUPs7Ozw9PTk3Xff5caNGw+sl5qayp/+9CcqVqyIwWCgfv36HD582Hz+7s//ziskxHIPwapVqxYr87e//c18PiEhgaCgICpXroytrS3+/v785S9/oeDOMvTf3Lp1i2HDhuHp6YmNjQ01atRg8+bNJcb/1Vdf0aVLFypWrPjQn4cQQgghhHj2SFLqOaAKjRhReOo3AaC587FpjXinVmT9lZvAk5kptXR3EuGfH+Dna5nY67IA05K9qlXfw82ty2O3L4R49oWEhHDp0iXOnj3L2LFjmTp1KnPnzi3vsMxKk7QpKCigc+fOpKen89VXX5GQkMDatWupX7++RWJs4cKFhIWFERgYyIEDBzh+/Dh9+vRh6NChjBs37rHirFGjBosWLeLEiRPs2bOHqlWr0qVLF65dMz044syZMxiNRpYtW8bJkyeZP38+S5cuZfLkySW2u3fvXvr378/AgQM5efIk69at4+DBgwwePLjEejdv3iQwMBCdTsd3333HqVOniI6OpkIFyye23vn877zWrFlTrK3p06dblBkxYoT5nE6no3///mzdupWEhAQ++eQTPvvsMyIjI81l8vPz6dy5MykpKaxfv56EhAQ+++wzvL29SxxDVlYWrVu3Zvbs2SWWexGkpaXRr18/nJyccHFxYeDAgWRmZpZYJzc3l2HDhlGxYkUcHBzo0aMHV65cuWfZGzdu4OPjU+bJYiGEEEIIC+ollJ6ergCVnp5e3qE8UGFGhoobtUT9v8nz1Y5XG6qoXq+p6F491aIh29WPYzuoyjviVeUd8arqrmPqSHrmY/WVmVugfCdsUtUmfa1WbghU27b7q23b/dXefe2f0GiEeDnk5OSoU6dOqZycnPIO5aFFRESosLAwi2OdO3dWLVq0UGlpaSo8PFy5uLgog8GgQkJCVGJiorlcSkqKev3115WLi4uys7NTderUUd9++61KTk5WmBYBm18RERFKKaUyMjJU3759lZ2dnfLw8FDz5s1T7dq1U6NGjTK36+vrq6ZPn67Cw8OVo6OjuW5cXJxq3bq1srW1VT4+PmrEiBEqM9P0/8H4+HgFqJSUlPuO9fz580qn06kxY8YUO7dgwQIFqB9//FEppcxjiI+Pf/iL+ps7P3u2bdt23zJz5sxRfn5+JbYzd+5c5e/vXyxeb2/vEutNmDBBtW7dusQy9/r8f8/X11fNnz+/xDK/9/7771v0vWTJEuXv76/y8/Mfqp07nsTncbeSvmfL654hJCRENWzYUP34448qLi5OVa9eXb399tsl1hk6dKiqUqWK2r59uzp8+LBq0aKFatWq1T3LhoWFqa5duypA3bx5s9RxPU/3UEIIIYQoP6W9Z5CZUs+47dF/I972OjeNN7ju3tp0UGvaCuxGpcoA/G99P062rk9jJ/vH6isj17S0wsfhKj6Ol8zHXV3bPFa7Qrz0lIL8rPJ5KfXY4RsMBvLz8xkwYACHDx9m48aN7N+/H6UU3bp1My/LGjZsGHl5efzwww+cOHGC2bNn4+DgQJUqVfjXv/4FmJZ2Xbp0iU8//RSAMWPGsHfvXjZu3EhsbCxxcXEcPXq0WAxRUVE0bNiQ+Ph4PvroI5KSkggJCaFHjx4cP36ctWvXsmfPHoYPHw6Am5sbWq2W9evXU1RUdM9xrV+/noKCgnvOiBoyZAgODg73nCX0KPLz81m+fDnOzs40bNjwvuXS09NxdXUtsa2WLVty4cIFNm/ejFKKK1eusH79erp161ZivY0bN9K0aVN69uyJu7s7jRo14rPPPitWbteuXbi7u1OzZk3ee++9ey4L/Nvf/kbFihVp1KgRc+fOLXF557lz5/j+++9p166dRSwtW7Zk2LBhVK5cmXr16vHxxx/f97N62Zw+fZrvv/+e//f//h/NmzendevWLFy4kC+//JKLFy/es056ejqff/458+bNo0OHDjRp0oQVK1awb98+fvzxR4uyS5Ys4datW489G1AIIYQQ4nHJRufPuPhCIzm2hdjkGLlU+VXITAGs0VLIjJr9AXDX67Czevz84u1c0y8VrnamXzANhld4tekGdDrnx25biJdaQTZ87FU+fU++CPpHS1grpdi+fTtbtmyha9eubNiwgb1799KqVSvAtK9RlSpV2LBhAz179uT8+fP06NGD+vXrA+Dv729u606ixd3dHRcXFwBu377NqlWrWL16NR07dgRgxYoVeHkVv1YdOnRg7Nix5veDBg2iX79+jB49GoCAgAAWLFhAu3btWLJkCd7e3ixYsIAPPviAadOm0bRpU4KCgujXr585rsTERJydnfH0LP4AB71ej7+/P4mJiY907e7YtGkTffr0ITs7G09PT2JjY6lUqdI9y547d46FCxcSFRVVYpuBgYHExMTQu3dvcnNzKSwsJDQ0lMWLF5dY7+eff2bJkiWMGTOGyZMnc+jQIUaOHIleryciIgIwLd1788038fPzIykpicmTJ9O1a1f279+PlZUVACNHjqRx48a4urqyb98+Jk2axKVLl5g3b55Ff61ateLo0aPk5eXx5z//menTp1vEsmPHDvr168fmzZs5d+4c//M/CJfvigABAABJREFU/0NBQYHFMr+X1f79+3FxcaFp06bmY506dUKr1XLgwAHeeOONYnWOHDlCQUEBnTp1Mh+rVasWr7zyCvv376dFixYAnDp1iunTp3PgwAF+/vnnpz8YIYQQQogSyEypZ1zRbx9R/bwqgOkvyLa6m7xdaRS37GyBx99L6tzVTCb+6zgzvz0NQAWDKSllbe0sCSkhXkKbNm3CwcEBW1tbunbtSu/evRkwYADW1tY0b97cXK5ixYrUrFmT06dN/+8YOXIkM2bMIDAwkMjISI4fP15iPz///DMFBQU0a9bMfMzZ2ZmaNWsWK3v3L+cAP/30EytXrsTBwcH8Cg4Oxmg0kpycDJhmbl2+fJmYmBhatmzJunXrqFu3LrGxsaW+Fnq9/oFlYmJiLOKIi4sznwsKCuLYsWPs27ePkJAQevXqxdWrV4u1kZqaSkhICD179rTYG+rudocOHQqYkgqjRo1iypQpHDlyhO+//56UlBTz+bi4OIt6MTExABiNRho3bszHH39Mo0aN+POf/8zgwYNZunSpub8+ffrQvXt36tevzx//+Ec2bdrEoUOH2LVrl7nMmDFjaN++PQ0aNGDo0KFER0ezcOFC8vLyLMa0du1ajh49yurVq/n2228tkm1GoxF3d3eWL19OkyZN6N27Nx9++KE5lpKu6cvg8uXLuLu7WxyztrbG1dWVy5cv37eOXq83J33vqFy5srlOXl4eb7/9NnPnzuWVV0r34JK8vDwyMjIsXkIIIYQQT4rMlHrGGTWmhFOlfAM/G28DYKO9jYv1RfKsTL8sGR5zltSy3UmsO/Irrb33E9V2M/Y60ybC1taOj9WuEOI3OjvTjKXy6vshBQUFsWTJEvR6PV5eXlhbW7Nx48YH1hs0aBDBwcF8++23bN26lVmzZhEdHW2xCfajsre3nO2VmZnJkCFDGDlyZLGyd/+y7ejoSGhoKKGhocyYMYPg4GBmzJhB586dCQgIID09nYsXLxabnZWfn09SUhLBwcEPjK179+4Wybq7N+u2t7enevXqVK9enRYtWhAQEMDnn3/OpEmTzGUuXrxIUFAQrVq1Yvny5RZt3/10OScnJwBmzZpFYGAg48ePB6BBgwbY29vTpk0bZsyYQdOmTS3qVa5sWurt6elJnTp1LNqvXbu2eWnlvfj7+1OpUiXOnTtnns32e82bN6ewsJCUlBSLhGKVKlUAqFOnDkVFRfz5z39m7NixWFlZ4enpiU6nM8++uhPL5cuXyc/PL/GaPs8mTpz4wE3a7yR5n4ZJkyZRu3Zt/vSnP5W6zqxZs5g2bdpTi0kIIYQQLzdJSj3DlFGhNBqssjLYd2M9CtPeMNYaRdbb68m9aPpl01b7eEmp65mmv253DzhKBX26+biTY73HalcI8RuN5pGX0JWHO4mUu9WuXZvCwkIOHDhgXr5348YNEhISLBIdVapUYejQoQwdOpRJkybx2WefMWLECPOMo7v3DPL390en03Ho0CFzIik9PZ3ExETatm1bYoyNGzfm1KlTxeIsiUajoVatWuzbtw+At956iwkTJhAdHU10dLRF2aVLl5KdnU3//v0f2K6joyOOjqVL4huNRosZRampqQQFBZn3/9H+7v/n9xpfdnY21taWP77vJHeUUhgMhnvWCwwMJCEhweJYYmIivr6+9433119/5caNG/dc4njHsWPH0Gq1xWb23M1oNFJQUIDRaMTKyorAwEBWr16N0Wg0jzkxMRFPT0/0ej16vb7U1/R5MnbsWAYMGFBiGX9/fzw8PIrNqCssLCQtLQ0PD4971vPw8CA/P59bt25ZzJa6cuWKuc6OHTs4ceIE69evB0xfLwCVKlXiww8/vGfyadKkSYwZM8b8PiMjw5xwFEIIIYR4XJKUekYpo+KXvx3kFvZcuQ2NuLNZsRaNu55qF93MZR93+V7Gnb2kDHlQBLVr/Q1n5ybY2fk9VrtCiBdHQEAAYWFhDB48mGXLluHo6MjEiRPx9vYmLCwMgNGjR9O1a1dq1KjBzZs32blzJ7Vr1wbA19cXjUbDpk2b6NatGwaDAUdHRyIiIhg/fjyurq64u7sTGRmJVqtFoyn5/2sTJkygRYsWDB8+nEGDBmFvb8+pU6eIjY1l0aJFHDt2jMjISMLDw6lTpw56vZ7du3fzxRdfMGHCBMA0o2rOnDmMGzcOW1tbwsPD0el0fPPNN0yePJkZM2ZQr55lcv73SR2AunXrotPpLI5lZWUxc+ZMunfvjqenJ9evX2fx4sWkpqbSs2dPwJSQat++Pb6+vkRFRXHt2jVz/fslHgBCQ0MZPHgwS5YsITg4mEuXLjF69GiaNWt2z/247nj//fdp1aoVH3/8Mb169eLgwYMsX77cPDsrMzOTadOm0aNHDzw8PEhKSuKDDz6gevXq5hlj+/fv58CBAwQFBeHo6Mj+/ft5//33+dOf/kSFChUA09I7nU5H/fr1sbGx4fDhw0yaNInevXubr9N7773HokWLGDVqFCNGjODs2bN8/PHH95z5dre0tDTOnz9v3uz7zufh4eFR4jV7Vri5ueHm5vbAci1btuTWrVscOXKEJk2aAKaEktFotJhBdrcmTZqg0+nYvn07PXr0AEzX5/z587Rs2RKAf/3rX+Tk5JjrHDp0iHfffZe4uDiqVat2z3ZtbGywsbF5qHEKIYQQQpTa038Q4LPneXiccWFmvjo/Ybfq/eEi1XvYMBXV6zU1P3yyWvbOOrV0aS9VeUe8qrwjXr12OEEVGY2P1MeI1UdVjQ83K/+J36iGU2LUtl2vqm3b/VVGxn+e8GiEeLmU9Hj5Z11ERIQKCwu757m0tDQVHh6unJ2dlcFgUMHBwSoxMdF8fvjw4apatWrKxsZGubm5qfDwcHX9+nXz+enTpysPDw+l0WhURESEUkqpjIwM1bdvX2VnZ6c8PDzUvHnzVLNmzdTEiRPN9Xx9fdX8+fOLxXPw4EHVuXNn5eDgoOzt7VWDBg3UzJkzlVJKXbt2TY0cOVLVq1dPOTg4KEdHR1W/fn0VFRWlioqKLNrZsGGDatOmjbK3t1eAAtSaNWssyiQnJ5vP/f514cKFYrHl5OSoN954Q3l5eSm9Xq88PT1V9+7d1cGDB81lVqxYcd82H2TBggWqTp06ymAwKE9PT9WvXz/166+/PrDev//9b1WvXj1lY2OjatWqpZYvX24+l52drbp06aLc3NyUTqdTvr6+avDgwery5cvmMkeOHFHNmzdXzs7OytbWVtWuXVt9/PHHKjc311zmyy+/VI0bNzZ/LnXq1FEff/xxse+Hffv2qebNmysbGxvl7++vZs6cqQoLC0uM/37XLDIy8oFjL0lJ37Pldc8QEhKiGjVqpA4cOKD27NmjAgIC1Ntvv20+/+uvv6qaNWuqAwcOmI8NHTpUvfLKK2rHjh3q8OHDqmXLlqply5b37WPnzp0KUDdv3ix1XM/DPZQQQgghyl9p7xk0Sj2B54U/ZzIyMnB2diY9Pd28R8ezJmnPj1htymW07SFc8v5N/Z+dsLJpjL22NgWBW5lefRR7mteimsHmgTMK7qWgyEjAh99hrSlgRuDHuNn995HfrVruxGAo3QaoQojicnNzSU5Oxs/PD1tb2/IO57mSlZWFt7c30dHRDBw4sMz7T0tLo2PHjjg5OfHdd99hZ/fwe3KJ509J37Pldc+QlpbG8OHD+fe//41Wq6VHjx4sWLAABwcHAFJSUvDz82Pnzp20b9/ePI6xY8eyZs0a8vLyCA4O5u9///t9Z5Ht2rWLoKAgbt68WWyD9Pt5Hu6hhBBCCFH+SnvPIMv3nlHnT53Al+pgzKFBagsUpwArrFUBt61MN6TO1laPlJACuG1esnfTnJDSaKxxcmqIre2LsaGsEOLZFx8fz5kzZ2jWrBnp6elMnz4dwLwksKy5urqybds2Fi9ezP79+++7ubcQT5urqyurV6++7/mqVavy+78r2trasnjxYhYvXlyqPtq3b1+sDSGEEEKIsiRJqWfUueTTFFo50CA1HS22mLYG1uJ5+ye+cDf9kmTziBucFxkVN37b3LyiwfSkPVsbLwIDX65Hbgshng1RUVEkJCSg1+tp0qQJcXFxVKpUqdziqVixIlOmTCm3/oUQQgghhHhZSFLqGXTx2DFSbZxIJQG7ggJQpo1h62RspPErlzhrHw482gbnP1/L5M0l+7idk0PTysdp4H4BAGudTMEXQpS9Ro0aceTIkfIOQwghhBBCCFEOJCn1DLqVmgqAtbJCZ9SiNKZ5UhVqOaB6RUO6qZz+EZbuHUxO41Z2AW28DzKg7pfm4zpdhccPXAghhBBCCCGEEKKUHm39l3iqigoKAHBWdtgWakGZ3hc5VOJCtdcB0yypR9lPKj3H1FbLqqblewaDL+5uXfHzG/UkQhdCCCGEEEIIIYQoFZkp9QwqyDXt81R05Sz56lcw5ZGI0ddg3dGzwMPPkjp75TZrDl7g8C9pADjqcwHwqByGv78kpIQQQgghhBBCCFG2JCn1jCnKKeD2CS1XrewpysrE5c4JjY40N3e0gE6r4Y3KD7fcbu6WBLaeukIj958Y3Xgv7rqrgOwlJYQQQgghhBBCiPIhSalnzJnv9qOU4nxRBSr+9phmvUNPrDRZ3KrgxEjfykz093zodq/99rS9/nW34qS7YD5uMLzyZAIXQgghhBBCCCGEeAiSlHrGXPjPMfSayuTqbqHTZpgOanRotEUUaHWP9MQ9gNu5hQA42WSCEapV+wBHhzq4ugY+qdCFEEIIIYQQQgghSk02On/GqAIjRRhpeu0C9gWG345aYa0KyNfqsNE+3Ef2fz/+wugv4yH/LJ1f2QnG2wB4VO5OxYpt0GjkS0AI8V8DBgxAozE9SEGv11O9enWmT59OYWHhY7W7a9cuNBoNt27dejKBlkJycjJ9+/bFy8sLW1tbfHx8CAsL48yZMxblNm3aRLt27XB0dMTOzo5XX32VlStXWpRJSUlBo9Fw7NixUvc/depUatWqhb29PRUqVKBTp04cOHDAos2BAwfi5+eHwWCgWrVqREZGkp+f/8C2Y2JiaNiwIXZ2dnh6evLuu+9y48aNEusUFRXx0UcfWfT317/+FfXbrFyAr776ii5dulCxYsX7jjcpKYk33ngDNzc3nJyc6NWrF1euXHnocR0/fpw2bdpga2tLlSpVmDNnzgPH/cMPPxAaGoqXlxcajYYNGzY8sI4QQgghhHh2SUbiGZNXkEsRiipZroDxt6Ma6tnEc0Pn/FAzpdKzC/jom/+w4dhFhjRYQp9aXwOFaDRW6HQPtyeVEOLlERISwqVLlzh79ixjx45l6tSpzJ07t7zDMitN0qagoIDOnTuTnp7OV199RUJCAmvXrqV+/foWibGFCxcSFhZGYGAgBw4c4Pjx4/Tp04ehQ4cybty4x4qzRo0aLFq0iBMnTrBnzx6qVq1Kly5duHbtGgBnzpzBaDSybNkyTp48yfz581m6dCmTJ08usd29e/fSv39/Bg4cyMmTJ1m3bh0HDx5k8ODBJdabPXs2S5YsYdGiRZw+fZrZs2czZ84cFi5caC6TlZVF69atmT179j3byMrKokuXLmg0Gnbs2MHevXvJz88nNDQUo9FY6nFlZGTQpUsXfH19OXLkCHPnzmXq1KksX768xDFkZWXRsGFDFi9eXGI5IYQQQgjxnFAvofT0dAWo9PT08g7FwnefL1fT//KR+uuUaerv/aerqF5/VFG9XlPX/2+Umhm7WlXeEa9iUq+Xur1zV28r3wmbVK2/bFLbtvurbdv91fHjw1Rq6rqnOAohRE5Ojjp16pTKyckp71AeWkREhAoLC7M41rlzZ9WiRQuVlpamwsPDlYuLizIYDCokJEQlJiaay6WkpKjXX39dubi4KDs7O1WnTh317bffquTkZAVYvCIiIpRSSmVkZKi+ffsqOzs75eHhoebNm6fatWunRo0aZW7X19dXTZ8+XYWHhytHR0dz3bi4ONW6dWtla2urfHx81IgRI1RmZqZSSqn4+HgFqJSUlPuO9fz580qn06kxY8YUO7dgwQIFqB9//FEppcxjiI+Pf/iL+ps7P3u2bdt23zJz5sxRfn5+JbYzd+5c5e/vXyxeb2/vEuu99tpr6t1337U49uabb6p+/foVK3u/8W7ZskVptVqLn5+3bt1SGo1GxcbG3rfv34/r73//u6pQoYLKy8szH5swYYKqWbNmiWO4G6C+/vrrUpcvSUnfs8/qPUN5keshhBBCiNIo7T2DzJR6hpxKOEeRlZZCjRENVtyZKTXQ7Y+s0NcFKPVMqf+kpvPdiUsA+Lj8d2lG3brReHm99WQDF0K80AwGA/n5+QwYMIDDhw+zceNG9u83PZShW7duFBQUADBs2DDy8vL44YcfOHHiBLNnz8bBwYEqVarwr3/9C4CEhAQuXbrEp59+CsCYMWPYu3cvGzduJDY2lri4OI4ePVoshqioKBo2bEh8fDwfffQRSUlJhISE0KNHD44fP87atWvZs2cPw4cPB8DNzQ2tVsv69espKiq657jWr19PQUHBPWdEDRkyBAcHB9asWfNErmF+fj7Lly/H2dmZhg0b3rdceno6rq6uJbbVsmVLLly4wObNm1FKceXKFdavX0+3bt1KrNeqVSu2b99OYmIiAD/99BN79uyha9eupR5HXl4eGo0GGxsb8zFbW1u0Wi179uwp9bj2799P27Zt0ev15mPBwcEkJCRw8+bNUscjhBBCCCGeb7LR+TPkzq9NQfl1OaOSzEeOF1qTXWRKUPkabO5d+S4Xb+XQfdEelDLSocoe6lU23eBrtTZotQ+uL4R4spRS5BTmlEvfBmsDGs2jPSBBKcX27dvZsmULXbt2ZcOGDezdu5dWrVoBpn2NqlSpwoYNG+jZsyfnz5+nR48e1K9fHwB/f39zW3cSEu7u7ri4uABw+/ZtVq1axerVq+nYsSMAK1aswMvLq1gsHTp0YOzYseb3gwYNol+/fowePRqAgIAAFixYQLt27ViyZAne3t4sWLCADz74gGnTptG0aVOCgoLo16+fOa7ExEScnZ3x9Cz+RFO9Xo+/v785gfOoNm3aRJ8+fcjOzsbT05PY2FgqVap0z7Lnzp1j4cKFREVFldhmYGAgMTEx9O7dm9zcXAoLCwkNDX3gkraJEyeSkZFBrVq1sLKyoqioiJkzZ9KvX79Sj6dFixbY29szYcIEPv74Y5RSTJw4kaKiIi5dulTqcV2+fBk/Pz+LcpUrVzafq1BBlpgLIYQQQrwMJCn1jFCFRoxWOgBsCxRG9d9fYIu0Vsyq4UNTJzvqORju14TZhbRsjAr+4J5Ev9rrzcf1ercnH7gQ4oFyCnNovrp5ufR9oO8B7HR2D1Vn06ZNODg4UFBQgNFopG/fvrz55pts2rSJ5s3/O46KFStSs2ZNTp8+DcDIkSN577332Lp1K506daJHjx40aNDgvv38/PPPFBQU0KxZM/MxZ2dnatasWaxs06ZNLd7/9NNPHD9+nJiYGPMxpRRGo5Hk5GRq167NsGHD6N+/P7t27eLHH39k3bp1fPzxx2zcuJHOnTuX6lrcPZPnfmJiYhgyZIj5/XfffUebNm0ACAoK4tixY1y/fp3PPvuMXr16ceDAAdzd3S3aSE1NJSQkhJ49e1rsDeXg4GD+95/+9CeWLl3KqVOnGDVqFFOmTCE4OJhLly4xfvx4hg4dyueff05cXJzF7Kdly5bRr18//vnPfxITE8Pq1aupW7cux44dY/To0Xh5eREREVGq6+Hm5sa6det47733WLBgAVqtlrfffpvGjRujvceDOO43rge53xiEEEIIIcSLRZJSz4jUjUkonYHczNvsufC/FueKtFa0q+CIv13pZjll5JqeklXTPRcAW9squLt1oZJb6X4JE0K83IKCgliyZAl6vR4vLy+sra3ZuHHjA+sNGjSI4OBgvv32W7Zu3cqsWbOIjo5mxIgRjx2Tvb29xfvMzEyGDBnCyJEji5V95ZVXzP92dHQkNDSU0NBQZsyYQXBwMDNmzKBz584EBASQnp7OxYsXi83Oys/PJykpieDg4AfG1r17d4tknbe3t0Xc1atXp3r16rRo0YKAgAA+//xzJk2aZC5z8eJFgoKCaNWqVbGNvu9++p2TkxMAs2bNIjAwkPHjxwPQoEED7O3tadOmDTNmzKBp06YW9e7MQBo/fjwTJ06kT58+ANSvX59ffvmFWbNmlTopBdClSxeSkpK4fv061tbWuLi44OHhYTEz7kHj8vDwsHhiH2B+7+HhQdWqVe85BiGEEEII8WKRpNQzIj0lgyKM/JJtwDSfSQsaW3Q6DYU6fan2kvr1ZjbbT1/lpwu3AHCxMSWlnJ0aEhBQ8tOchBBPj8HawIG+B8qt74d1J5Fyt9q1a1NYWMiBAwfMy/du3LhBQkICderUMZerUqUKQ4cOZejQoUyaNInPPvuMESNGmGcc3b2/k7+/PzqdjkOHDpkTSenp6SQmJtK2bdsSY2zcuDGnTp0qFmdJNBoNtWrVYt++fQC89dZbTJgwgejoaKKjoy3KLl26lOzsbPr37//Adh0dHXF0dCxVDEajkby8PPP71NRUgoKCaNKkCStWrCg22+he48vOzsba2vLHt5WVFWCaLWYwGO5b7/ftW1lZmZ+a97DuLEPcsWMHV69epXv37qUeV8uWLfnwww8pKChApzPNEo6NjaVmzZrmpXsP89kKIYQQQojnkySlngEFebnc+vUERkeFRv8LANZWXlg79cLa+isAbO6xLOL3Jn11griz16lb8TQftfg3ng63TW3pnJ5e8EKIB9JoNA+9hO5ZExAQQFhYGIMHD2bZsmU4OjoyceJEvL29CQsLA2D06NF07dqVGjVqcPPmTXbu3Ent2rUB8PX1RaPRsGnTJrp164bBYMDR0ZGIiAjGjx+Pq6sr7u7uREZGotVqH7gP1oQJE2jRogXDhw9n0KBB2Nvbc+rUKWJjY1m0aBHHjh0jMjKS8PBw6tSpg16vZ/fu3XzxxRdMmDABMM2omjNnDuPGjcPW1pbw8HB0Oh3ffPMNkydPZsaMGdSrV8+i34SEhGKx1K1b15xYuSMrK4uZM2fSvXt3PD09uX79OosXLyY1NZWePXsCpsRN+/bt8fX1JSoqimvXrpnre3h43HfsoaGhDB48mCVLlpiX740ePZpmzZrdcz+uu+vNnDmTV155hbp16xIfH8+8efN49913zWXS0tI4f/48Fy9etBivh4eHOaYVK1ZQu3Zt3Nzc2L9/P6NGjeL99983L7sszbj69u3LtGnTGDhwIBMmTOA///kPn376KfPnz79v/GCaIXfu3Dnz++TkZI4dO4arq6vFDDkhhBBCCPF8kKTUM+DyuUQK825T5GikZo5piYqy+u0pRb/9Nbw0M6UupGUD0KPWIXztfzUft7cPeMIRCyFeRitWrGDUqFG8/vrr5Ofn07ZtWzZv3mxOyBQVFTFs2DB+/fVXnJycCAkJMScZvL29mTZtGhMnTuSdd96hf//+rFy5knnz5jF06FBef/11nJyc+OCDD7hw4QK2trYlxtKgQQN2797Nhx9+SJs2bVBKUa1aNXr37g2Aj48PVatWZdq0aaSkpKDRaMzv33//fXM777//Pv7+/kRHR/Ppp5+SlZUFwJo1a8zL3O52r2MXLlzAx8fH4piVlRVnzpxh1apVXL9+nYoVK/Lqq68SFxdH3bqmp6nGxsZy7tw5zp07V6y+Uor7GTBgALdv32bRokWMHTsWFxcXOnTowOzZs0u8ZgsXLuSjjz7if/7nf7h69SpeXl4MGTKEKVOmmMts3LiRd955p9h4IyMjmTp1KmBKVE2aNIm0tDSqVq3Khx9+aHFNSzMuZ2dntm7dyrBhw2jSpAmVKlViypQp/PnPfy5xDIcPHyYoKMj8fsyYMQBERESwcuXKEusKIYQQQohnj0aVdOf7gsrIyMDZ2Zn09HTzHh3lKeG7f3Nl0wV2V7iIS4oiv+AnrGwaYW/ViKPVzvN1YHvOt2uA/gGzpRpN38rN7AL+8cdV5Gcfwa/qCCpV6oCjYz00mgfPtBJCPBm5ubkkJyfj5+f3wOSKsJSVlYW3tzfR0dEMHDiwzPtPS0ujY8eOODk58d1332Fn93zPcBOlU9L37LN2z1De5HoIIYQQojRKe88gmYpnwN6vvyTZPhtDTg4KU47Q4/pBvK+uYkeDxgDoSljK8tGG/1Djw+/Iys3C2+EiGNMAcHZugpNTA0lICSGeWfHx8axZs4akpCSOHj1qfsLanSWBZc3V1ZVt27bRsWNH9u/fXy4xCCGEEEII8bKQ5XvlLC0tjfNeAUAmjreM5qTUpdoujH7d9HSmqgZ9ifurbDiWSkFRITMDZ1PZ/hr5pv3NZS8pIcRzISoqioSEBPR6PU2aNCEuLs68iXZ5qFixosWSNiGEEEIIIcTTIUmpcpadbdoHylpp8M2vyK9kAGC0ssLXVs/MGj40dLz/07OMRkVmXiEG61wq25s2k9XrK2FnVw1Hh1pPfwBCCPEYGjVqxJEjR8o7DCGEEEIIIUQ5kKRUOcvPLQDAJq+IS2nHKVKmR4UbrbW46a3pVLHk2U6Z+YUoBQbrHAC0WlvatC6fR88LIYQQQgghhBBClJYkpcpZ0kbTo62t83LJ/y0hBTqMrnbYlrCx+eGUNEasiScjJ5+aFc5SzeWCqR1rx6cdshBCCCGEEEIIIcRjk6RUObNNy6LQSsPhwoo0BjTW3ugd3iLb9Xtsre6flIo9dYVL6bnUr3SS0Y2XmY/rdC5PP2ghhBBCCCGEEEKIxyRJqXKUn5uD0VjIda0Df+AYABqs0WisKNTqsNXef3PzjN+W/XWvWwSATlcRB/sAvL37PvW4hRBCCCGEEEIIIR6XJKXK0cEN61BKT4EqRJfVgCJ2g8YKjAXEu9ThlXss38stKGL/zzc4eyUTgEp2eVAE7u4h1Ko5vayHIIQQQgghhBBCCPFI7r8+TDx1P/18EKMGtOoGGqPVb0e12GYd46BzAxo52RWr8+n2s7yz4hBZt39kVKOlOKhYAKytS94QXQghhBBCCCGEEOJZIjOlyolSiuwb11C2GmpczADcAah8NR6rylf5qdUYKtvoitVLumqaIdWjxnb8nM6A0XTczuBbVqELIYQQQgghhBBCPDaZKVVOkv/xf1DgxgmrX9AVApj2hkr19uTQ4PfvmZCC/+4l9UoF0399XxlCwwaf4eHxRlmELYR4wQ0YMACNRoNGo0Gv11O9enWmT59OYWHhY7W7a9cuNBoNt27dejKBlkJycjJ9+/bFy8sLW1tbfHx8CAsL48yZMxblNm3aRLt27XB0dMTOzo5XX32VlStXWpRJSUlBo9Fw7NixUvc/depUatWqhb29PRUqVKBTp04cOHDAos2BAwfi5+eHwWCgWrVqREZGkp+f/8C2Y2JiaNiwIXZ2dnh6evLuu+9y48aNEuvcvn2b0aNH4+vri8FgoFWrVhw6dMiiTGZmJsOHD8fHxweDwUCdOnVYunSpRZkhQ4ZQrVo1DAYDbm5u97ym58+f57XXXsPOzg53d3fGjx9/36+hvXv3Ym1tzR/+8IcHjvurr76iS5cuVKxY8aE/DyGEEEII8eyRpFQ5OZ6cTJZrJW5ps7EyakH9lpTy8iTfzb1Y+W+OpTLmn8dIuHwbACuyAHBz60ylSh3QamXSmxDiyQgJCeHSpUucPXuWsWPHMnXqVObOnVveYZmVJmlTUFBA586dSU9P56uvviIhIYG1a9dSv359i8TYwoULCQsLIzAwkAMHDnD8+HH69OnD0KFDGTdu3GPFWaNGDRYtWsSJEyfYs2cPVatWpUuXLly7dg2AM2fOYDQaWbZsGSdPnmT+/PksXbqUyZMnl9ju3r176d+/PwMHDuTkyZOsW7eOgwcPMnjw4BLrDRo0iNjYWP7xj39w4sQJunTpQqdOnUhNTTWXGTNmDN9//z3/93//x+nTpxk9ejTDhw9n48aN5jJNmjRhxYoVnD59mi1btqCUokuXLhQVmX6OFRUV8dprr5Gfn8++fftYtWoVK1euZMqUKcViunXrFv3796djx46luqZZWVm0bt2a2bNnl6q8EEIIIYR4xqmXUHp6ugJUenp6ucWw9qMpKjIyUv2/CVFqYZ931Lx+I1VUr9fU/3w0Xo0/c96ibFGRUdX4cLOqOXm9mva/fdQna7upbTtqqG3b/VVm5rlyGoEQ4n5ycnLUqVOnVE5OTnmH8tAiIiJUWFiYxbHOnTurFi1aqLS0NBUeHq5cXFyUwWBQISEhKjEx0VwuJSVFvf7668rFxUXZ2dmpOnXqqG+//VYlJycrwOIVERGhlFIqIyND9e3bV9nZ2SkPDw81b9481a5dOzVq1Chzu76+vmr69OkqPDxcOTo6muvGxcWp1q1bK1tbW+Xj46NGjBihMjMzlVJKxcfHK0ClpKTcd6znz59XOp1OjRkzpti5BQsWKED9+OOPSillHkN8fPzDX9Tf3PnZs23btvuWmTNnjvLz8yuxnblz5yp/f/9i8Xp7e9+3TnZ2trKyslKbNm2yON64cWP14Ycfmt/XrVtXTZ8+vcQyv/fTTz8pQJ07Z/p5tHnzZqXVatXly5fNZZYsWaKcnJxUXl6eRd3evXurv/zlLyoyMlI1bNjwvn383pP4PO5W0vfss3DP8CyR6yGEEEKI0ijtPYPMlCoHRqORtAI3AHIuxpNnvIqxIAmAfJ0evVZjUT4rv5C8QiP1K50i0Psg9SqdAVWIVmuDjU3xWVVCCPEkGQwG8vPzGTBgAIcPH2bjxo3s378fpRTdunWjoMC0nHjYsGHk5eXxww8/cOLECWbPno2DgwNVqlThX//6FwAJCQlcunSJTz/9FDDNzNm7dy8bN24kNjaWuLg4jh49WiyGqKgoGjZsSHx8PB999BFJSUmEhITQo0cPjh8/ztq1a9mzZw/Dhw8HwM3NDa1Wy/r1680zeH5v/fr1FBQU3HNG1JAhQ3BwcGDNmjVP5Brm5+ezfPlynJ2dadiw4X3Lpaen4+rqWmJbLVu25MKFC2zevBmlFFeuXGH9+vV069btvnUKCwspKirC1tbW4rjBYGDPnj3m961atWLjxo2kpqailGLnzp0kJibSpUuXe7ablZXFihUr8PPzo0qVKgDs37+f+vXrU7lyZXO54OBgMjIyOHnypPnYihUr+Pnnn4mMjCxxvEIIIYQQ4sUla77Kwe3EazhaW/Oz0pFdkIMVoLHyQqfJIzGgPq9oLXOFGbmmfThcbE1L9pyc/oCPTzgO9jWxtnYs6/CFEA9JKYXKySmXvjUGAxqN5sEF70Epxfbt29myZQtdu3Zlw4YN7N27l1atWgGmfY2qVKnChg0b6NmzJ+fPn6dHjx7Ur18fAH9/f3NbdxIt7u7uuLi4AKY9jlatWsXq1avNy7dWrFiBl5dXsVg6dOjA2LFjze8HDRpEv379GD16NAABAQEsWLCAdu3asWTJEry9vVmwYAEffPAB06ZNo2nTpgQFBdGvXz9zXImJiTg7O+Pp6VmsP71ej7+/P4mJiY907e7YtGkTffr0ITs7G09PT2JjY6lUqdI9y547d46FCxcSFRVVYpuBgYHExMTQu3dvcnNzKSwsJDQ0lMWLF9+3jqOjIy1btuSvf/0rtWvXpnLlyqxZs4b9+/dTvXp1c7mFCxfy5z//GR8fH6ytrdFqtXz22We0bdvWor2///3vfPDBB2RlZVGzZk1iY2PR6/UAXL582SIhBZjfX758GYCzZ88yceJE4uLisLaWWxEhhBBCiJeV3AmWg+QfD1KE4nRBRYJUHgrQ2QfjwhluVHBD/9svkOeuZvLp9rNcv52Lr+N5qrmY9v1wcKiJp8cfy28AQoiHonJySGjcpFz6rnn0CBo7u4eqs2nTJhwcHCgoKMBoNNK3b1/efPNNNm3aRPPmzc3lKlasSM2aNTl9+jQAI0eO5L333mPr1q106tSJHj160KBBg/v28/PPP1NQUECzZs3Mx5ydnalZs2axsk2bNrV4/9NPP3H8+HFiYmLMx5RSGI1GkpOTqV27NsOGDaN///7s2rWLH3/8kXXr1vHxxx+zceNGOnfuXKprcSfRUpKYmBiGDBlifv/dd9/Rpk0bAIKCgjh27BjXr1/ns88+o1evXhw4cAB3d8tZrqmpqYSEhNCzZ0+LvaEcHBzM//7Tn/7E0qVLOXXqFKNGjWLKlCkEBwdz6dIlxo8fz9ChQ/n888+Ji4uja9eu5nrLli2jX79+/OMf/+Ddd9/F29sbKysrGjduzNtvv82RI0fMZRcuXMiPP/7Ixo0b8fX15YcffmDYsGF4eXnRqVMnc7l+/frRuXNnLl26RFRUFL169WLv3r3FZmLdS1FREX379mXatGnUqFHjoa+pEEIIIYR4cUhSqhzkZ+VQhBFnm1RMKyiNaDTWFGqKyLZxoaWL6ZeQ/92fwr9/usirlY8ypeVKc32drkL5BC6EeCkEBQWxZMkS9Ho9Xl5eWFtbW2x0fT+DBg0iODiYb7/9lq1btzJr1iyio6MZMWLEY8dkb29v8T4zM5MhQ4YwcuTIYmVfeeUV878dHR0JDQ0lNDSUGTNmEBwczIwZM+jcuTMBAQGkp6dz8eLFYrOz8vPzSUpKIjg4+IGxde/e3SJZ5+3tbRF39erVqV69Oi1atCAgIIDPP/+cSZMmmctcvHiRoKAgWrVqxfLlyy3avvvpck5OTgDMmjWLwMBAxo8fD0CDBg2wt7enTZs2zJgxg6ZNm1rUuzNLqVq1auzevZusrCwyMjLw9PSkd+/e5pljOTk5TJ48ma+//prXXnvN3PaxY8eIioqySEo5Ozvj7OxMQEAALVq0oEKFCnz99de8/fbbeHh4cPDgQYtxXLlyBQAPDw9u377N4cOHiY+PNy+3NBqNKKWwtrZm69atJV5TIYQQQgjx4pCkVBkz5uWR9nMiRjtnmiRlYMQIQIWbifi2f4XTbf+AzW/L925kmp4wFVQ9EwArKxccHKrhUbl7+QQvhHgkGoOBmkePPLjgU+r7Yd1JpNytdu3aFBYWcuDAAfPyvRs3bpCQkECdOnXM5apUqcLQoUMZOnQokyZN4rPPPmPEiBHmGUd37+/k7++PTqfj0KFD5kRSeno6iYmJxZaL/V7jxo05depUsThLotFoqFWrFvv27QPgrbfeYsKECURHRxMdHW1RdunSpWRnZ9O/f/8Htuvo6IijY+mWUhuNRvLy8szvU1NTCQoKMj/RTvu75dv3Gl92dnaxJW9WVlaAabaYwWAo8brY29tjb2/PzZs32bJlC3PmzAFMTywsKCgoFoOVlRVGo/G+7SmlUEqZx9WyZUtmzpzJ1atXzTPCYmNjcXJyok6dOuh0Ok6cOGHRxt///nd27NjB+vXr8fPzw97evtTXVAghhBBCPL8kKVXGfl7/v+h/vUFRDSdeuVFAym8rM2om/h/VIldjo9WilOLXmzlcycgFoKqrgjzw8elD9WrjyzF6IcSj0Gg0D72E7lkTEBBAWFgYgwcPZtmyZTg6OjJx4kS8vb0JCwsDYPTo0XTt2pUaNWpw8+ZNdu7cSe3atQHw9fVFo9GwadMmunXrhsFgwNHRkYiICMaPH4+rqyvu7u5ERkai1WofuA/WhAkTaNGiBcOHD2fQoEHY29tz6tQpYmNjWbRoEceOHSMyMpLw8HDq1KmDXq9n9+7dfPHFF0yYMAEwzaiaM2cO48aNw9bWlvDwcHQ6Hd988w2TJ09mxowZ1KtXz6LfhISEYrHUrVsXnU5ncSwrK4uZM2fSvXt3PD09uX79OosXLyY1NZWePXsCpoRU+/bt8fX1JSoqimvXrpnre3h43HfsoaGhDB48mCVLlpiX740ePZpmzZrdcz+uO7Zs2YJSipo1a3Lu3DnGjx9PrVq1eOeddwDTTKx27doxfvx4DAYDvr6+7N69m//93/9l3rx5gGnJ5dq1a+nSpQtubm78+uuv/O1vf8NgMJg3Wu/SpQt16tQhPDycOXPmcPnyZf7yl78wbNgwbGxsAIpdV3d3d2xtbYsd/720tDTOnz/PxYsXgf9+Hh4eHiVeMyGEEEII8WySpFQZu33tIhl2NuRp8tHc9fDDPjMWcea32QZztyTw911JOOgyqVHhMjaYbr6treSvxkKI8rNixQpGjRrF66+/Tn5+Pm3btmXz5s3mhExRURHDhg3j119/xcnJiZCQEObPnw+Yll9NmzaNiRMn8s4779C/f39WrlzJvHnzGDp0KK+//jpOTk588MEHXLhw4YF7EzVo0IDdu3fz4Ycf0qZNG5RSVKtWjd69ewPg4+ND1apVmTZtGikpKWg0GvP7999/39zO+++/j7+/P9HR0Xz66adkZZkeKLFmzRr69OlTrN97Hbtw4QI+Pj4Wx6ysrDhz5gyrVq3i+vXrVKxYkVdffZW4uDjq1q0LmGYPnTt3jnPnzhWrr5S679gHDBjA7du3WbRoEWPHjsXFxYUOHTowe/bsEq9Zeno6kyZN4tdff8XV1ZUePXowc+ZMi4Tal19+yaRJk+jXrx9paWn4+voyc+ZMhg4dCoCtrS1xcXF88skn3Lx5k8qVK9O2bVv27dtnnhVlZWXFpk2beO+992jZsiX29vZEREQwffr0EuMrjY0bN5qTaPDfzyMyMpKpU6c+dvtCCCGEEKJsaVRJd74vqIyMDJydnUlPTzfv0VFWFkyfQprRlIyqf+gaKQ6/ADBv6HRSgxoD0Gf5fg4lXyOq3RSc9LfNdWvW/Cs+3n3LNF4hxMPLzc0lOTkZPz+/Um38LP4rKysLb29voqOjGThwYJn3n5aWRseOHXFycuK7777D7jmf4SZKp6Tv2fK8Z3gWyfUQQgghRGmU9p5Be98z4qm4bTQtSbFPS+Oq7Z2lGhpsrf47aS0jpxBH/W1zQsrOzh9n56ZUqhhU1uEKIcRTFR8fz5o1a0hKSuLo0aP069cPwLwksKy5urqybds2OnbsyP79+8slBiGEEEIIIV4WsnyvDKVdzKJQWQGFaK8kk21tmqSmsdJjo9VwOCWNn35N51J6Dva6bAB0Oldatogtx6iFEOLpioqKIiEhAb1eT5MmTYiLi6NSpUrlFk/FihWZMmVKufUvhBBCCCHEy0KSUmXoxs7zgEJvzANMCSlrQwd0zlepYbCl3/87QH5hIX+q/U+quaQAoNM5l1u8QgjxtDVq1IgjR8rnyYRCCCGEEEKI8iXL98rS9RyURlFJd8x8yMqmAfYODkT7epJXaOQVp0u0r7KPKo6mzc3t7PzLKVghhBBCCCGEEEKIp0dmSpWRnMzb3Pj1NAV2WnbodLwKoDRoNFqMlWqTm18EgKdjPgA2Np7UrBGJi0vz8gtaCCGEEEIIIYQQ4imRmVJl5Ez8fgrysknNdycw6bfHWWusALiQV5norYkAuBryALC19cTNrTM6nTzZRgghhBBCCCGEEC8emSlVRs5eO4Onxg6N0QZMD+BDAxgLU1mfVpEqVqdY1OELDNampJS1tewlJYQQQgghhBBCiBeXzJQqA0VFRaTtPMV/7G+iFEAhAEadkU1vNyJDq+jgd86ckAKoUEGW7QkhhBBCCCGEEOLFJTOlysD5c+e4XNEDyMIq3xWU0XRCq8FYZPq3t7NpT6mqVYfzSpV30OlcyidYIYQQQgghhBBCiDIgSakykJudDYChyAq9MQ9jYRoASmvF1VtZ+Dqex057DQBbG09JSAkhhBBCCCGEEOKFJ8v3ykDC4SsA2GZlUz11M4U5uwEwWmnpYLOaKS2jsNecAMBaNjYXQpSjAQMGoNFo0Gg06PV6qlevzvTp0yksLHysdnft2oVGo+HWrVtPJtBSSE5Opm/fvnh5eWFra4uPjw9hYWGcOXPGotymTZto164djo6O2NnZ8eqrr7Jy5UqLMikpKWg0Go4dO1bq/qdOnUqtWrWwt7enQoUKdOrUiQMHDli0OXDgQPz8/DAYDFSrVo3IyEjy8/Mf2HZMTAwNGzbEzs4OT09P3n33XW7cuFFinR9++IHQ0FC8vLzQaDRs2LChWJmvvvqKLl26ULFixQeOVylF165d79vWypUradCgAba2tri7uzNs2DCL81u2bKFFixY4Ojri5uZGjx49SElJKZNxCiGEEEKIZ4MkpcqA7S+ZANgXZJgOaGzQKWey7CoQ4rALAJ3eHSenRrhWaFlOUQohhElISAiXLl3i7NmzjB07lqlTpzJ37tzyDsusNEmbgoICOnfuTHp6Ol999RUJCQmsXbuW+vXrWyTGFi5cSFhYGIGBgRw4cIDjx4/Tp08fhg4dyrhx4x4rzho1arBo0SJOnDjBnj17qFq1Kl26dOHaNdPM2DNnzmA0Glm2bBknT55k/vz5LF26lMmTJ5fY7t69e+nfvz8DBw7k5MmTrFu3joMHDzJ48OAS62VlZdGwYUMWL15cYpnWrVsze/bsB47vk08+QaPR3PPcvHnz+PDDD5k4cSInT55k27ZtBAcHm88nJycTFhZGhw4dOHbsGFu2bOH69eu8+eabZTJOIYQQQgjxjFAvofT0dAWo9PT0p95Xfm6O2j5pjYqMjFQ7h7dUUb1eU/P6va9WvzVfjZ86RW3b7q+2bfdXeXnXnnosQoiykZOTo06dOqVycnLKO5SHFhERocLCwiyOde7cWbVo0UKlpaWp8PBw5eLiogwGgwoJCVGJiYnmcikpKer1119XLi4uys7OTtWpU0d9++23Kjk5WQEWr4iICKWUUhkZGapv377Kzs5OeXh4qHnz5ql27dqpUaNGmdv19fVV06dPV+Hh4crR0dFcNy4uTrVu3VrZ2toqHx8fNWLECJWZmamUUio+Pl4BKiUl5b5jPX/+vNLpdGrMmDHFzi1YsEAB6scff1RKKfMY4uPjH/6i/ubOz55t27bdt8ycOXOUn59fie3MnTtX+fv7F4vX29u71LEA6uuvv77v+QeNNz4+Xnl7e6tLly4VaystLU0ZDIYSx7lu3TplbW2tioqKzMc2btyoNBqNys/PV0qVzTjvKOl7tizvGZ4Hcj2EEEIIURqlvWeQmVJP2dXknzFq4FKBM/GZ3UwHNVagCnGommYuZ20ty/aEeFEppSjIKyqXlzI98vOxGAwG8vPzGTBgAIcPH2bjxo3s378fpRTdunWjoKAAgGHDhpGXl8cPP/zAiRMnmD17Ng4ODlSpUoV//etfACQkJHDp0iU+/fRTAMaMGcPevXvZuHEjsbGxxMXFcfTo0WIxREVF0bBhQ+Lj4/noo49ISkoiJCSEHj16cPz4cdauXcuePXsYPnw4AG5ubmi1WtavX09RUdE9x7V+/XoKCgruOSNqyJAhODg4sGbNmse+fmCa3bV8+XKcnZ1p2LDhfculp6fj6upaYlstW7bkwoULbN68GaUUV65cYf369XTr1u2JxPog2dnZ9O3bl8WLF+Ph4VHsfGxsLEajkdTUVGrXro2Pjw+9evXiwoUL5jJNmjRBq9WyYsUKioqKSE9P5x//+AedOnVCp9M9E+MUQgghhBBPn2x0/pQZb9+gCCNZGg1aoxVGQKO0OGWcJrDKLsCUkNJq9eUapxDi6SnMN7J81O5y6fvPn7ZDZ2P1SHWVUmzfvp0tW7bQtWtXNmzYwN69e2nVqhVg2u+nSpUqbNiwgZ49e3L+/Hl69OhB/fr1AfD39ze3dSfR4u7ujouLCwC3b99m1apVrF69mo4dOwKwYsUKvLy8isXSoUMHxo4da34/aNAg+vXrx+jRowEICAhgwYIFtGvXjiVLluDt7c2CBQv44IMPmDZtGk2bNiUoKIh+/fqZ40pMTMTZ2RlPT89i/en1evz9/UlMTHyka3fHpk2b6NOnD9nZ2Xh6ehIbG0ulSpXuWfbcuXMsXLiQqKioEtsMDAwkJiaG3r17k5ubS2FhIaGhoWW2XO3999+nVatWhIWF3fP8zz//jNFo5OOPP+bTTz/F2dmZv/zlL3Tu3Jnjx4+j1+vx8/Nj69at9OrViyFDhlBUVETLli3ZvHnzMzNOIYQQQgjx9MlMqads25l/U4SR6lfSUJg2Cva+tB/PWwfR6Sri4fEGtWv9rZyjFEKI/9q0aRMODg7Y2trStWtXevfuzYABA7C2tqZ58+bmchUrVqRmzZqcPn0agJEjRzJjxgwCAwOJjIzk+PHjJfbz888/U1BQQLNmzczHnJ2dqVmzZrGyTZs2tXj/008/sXLlShwcHMyv4OBgjEYjycnJgGnm1uXLl4mJiaFly5asW7eOunXrEhsbW+prodc/+A8GMTExFnHExcWZzwUFBXHs2DH27dtHSEgIvXr14urVq8XaSE1NJSQkhJ49e1rsmXR3u0OHDgXg1KlTjBo1iilTpnDkyBG+//57UlJSzOfj4uIs6sXExJR6vA+yceNGduzYwSeffHLfMkajkYKCAhYsWEBwcDAtWrRgzZo1nD17lp07dwJw+fJlBg8eTEREBIcOHWL37t3o9Xreeust8+y+8hynEEIIIYQoGzJT6in65UoCZ4+exGAfgFtmLgU6Uw5QaTVcbOGCj1MAdeuU/BdxIcTzz1qv5c+ftiu3vh9WUFAQS5YsQa/X4+XlhbW1NRs3bnxgvUGDBhEcHMy3337L1q1bmTVrFtHR0YwYMeJRQrdgb29v8T4zM5MhQ4YwcuTIYmVfeeUV878dHR0JDQ0lNDSUGTNmEBwczIwZM+jcuTMBAQGkp6dz8eLFYrOz8vPzSUpKstic+366d+9ukazz9va2iLt69epUr16dFi1aEBAQwOeff86kSZPMZS5evEhQUBCtWrVi+fLlFm3f/fQ7JyfTMu9Zs2YRGBjI+PHjAWjQoAH29va0adOGGTNm0LRpU4t6lStXfuAYSmvHjh0kJSWZZ7vd0aNHD9q0acOuXbvMM8/q1KljPu/m5kalSpU4f/48AIsXL8bZ2Zk5c+aYy/zf//0fVapU4cCBA7Ro0aJcxymEEEIIIcqGJKWeooNL/xe986ucIZXKSgOY9jX5vl17GrQ6TlXZR0qIl4JGo3nkJXTl4U4i5W61a9emsLCQAwcOmJfv3bhxg4SEBIvkQ5UqVRg6dChDhw5l0qRJfPbZZ4wYMcI84+ju/Z38/f3R6XQcOnTInEhKT08nMTGRtm3blhhj48aNOXXqVLE4S6LRaKhVqxb79u0D4K233mLChAlER0cTHR1tUXbp0qVkZ2fTv3//B7br6OiIo6NjqWIwGo3k5eWZ36emphIUFESTJk1YsWIFWq1lEvFe48vOzsba2vLHt5WV6etLKYXBYHio6/IwJk6cyKBBgyyO1a9fn/nz5xMaGgqYlt2Baf8wHx8fANLS0rh+/Tq+vr7mMfx+rHfGYDQazWXKa5xCCCGEEKJsPLdJqcWLFzN37lwuX75Mw4YNWbhwocUSkGdBenYeGHTY5hVRZLyOsdD06Ox8ax1ajNjaFN83RQghnkUBAQGEhYUxePBgli1bhqOjIxMnTsTb29u8t9Do0aPp2rUrNWrU4ObNm+zcuZPatWsD4Ovri0ajYdOmTXTr1g2DwYCjoyMRERGMHz8eV1dX3N3diYyMRKvVotFoSoxnwoQJtGjRguHDhzNo0CDs7e05deoUsbGxLFq0iGPHjhEZGUl4eDh16tRBr9eze/duvvjiCyZMmACYZlTNmTOHcePGYWtrS3h4ODqdjm+++YbJkyczY8YM6tWrZ9FvQkJCsVjq1q1r3pz7jqysLGbOnEn37t3x9PTk+vXrLF68mNTUVHr27AmYElLt27fH19eXqKgorl27Zq5/rw3E7wgNDWXw4MEsWbKE4OBgLl26xOjRo2nWrNk99+O6IzMzk3PnzpnfJycnc+zYMVxdXc1JwbS0NM6fP8/Fixctxuvh4WHx+r1XXnkFPz8/AGrUqEFYWBijRo1i+fLlODk5MWnSJGrVqkVQUBAAr732GvPnz2f69Om8/fbb3L59m8mTJ+Pr60ujRo2e+jiFEEIIIcQz4uk+BPDp+PLLL5Ver1dffPGFOnnypBo8eLBycXFRV65cKVX9snqc8fwPpqjIyEj12TtDVFSv18yvN6Oj1b/Pfq3y8+VxykK8iEp6vPyzLiIiQoWFhd3zXFpamgoPD1fOzs7KYDCo4OBglZiYaD4/fPhwVa1aNWVjY6Pc3NxUeHi4un79uvn89OnTlYeHh9JoNCoiIkIppVRGRobq27evsrOzUx4eHmrevHmqWbNmauLEieZ6vr6+av78+cXiOXjwoOrcubNycHBQ9vb2qkGDBmrmzJlKKaWuXbumRo4cqerVq6ccHByUo6Ojql+/voqKilJFRUUW7WzYsEG1adNG2dvbK0ABas2aNRZlkpOTzed+/7pw4UKx2HJyctQbb7yhvLy8lF6vV56enqp79+7q4MGD5jIrVqy4b5sPsmDBAlWnTh1lMBiUp6en6tevn/r1119LrLNz58579nXnsygppsjIyPu2C6ivv/7a4lh6erp69913lYuLi3J1dVVvvPGGOn/+vEWZNWvWqEaNGil7e3vl5uamunfvrk6fPl0m4/y9kr5ny+qe4Xkh10MIIYQQpVHaewaNUk/geeFlrHnz5rz66qssWrQIME31r1KlCiNGjGDixIkPrJ+RkYGzszPp6enmPTqetKy0LOZHLaNQn4F7UhI5+TfR6vyxtsrk7z37EdOmBY2d7R/ckBDiuZObm0tycjJ+fn7Y2tqWdzjPlaysLLy9vYmOjmbgwIFl3n9aWhodO3bEycmJ7777Djs7uzKPQZS9kr5ny+Ke4Xki10MIIYQQpVHae4bnbvlefn4+R44csdgkVqvV0qlTJ/bv31+OkZksnzmJ3NNXAHDCtPwkpyAdAGvbltjY/MRtgzPW2pKXpgghxMsgPj6eM2fO0KxZM9LT05k+fTqAeUlgWXN1dWXbtm0sXryY/fv307Fjx3KJQwghhBBCiJfBc5eUun79OkVFRcWeslO5cmXOnDlzzzp5eXkWG8tmZGQ8tfiyrtzAWFD8cd8AGq0DWqtsCjVWOFk/P5seCyHE0xQVFUVCQgJ6vZ4mTZoQFxdHpUqVyi2eihUrMmXKlHLrXwghhBBCiJfFc5eUehSzZs1i2rRpZdKXraszhdcL7zpiWh1ppbXDin3kdazNnJpVqGqwKZN4hBDiWdaoUSOOHDlS3mEIIYQQQgghysFzl5SqVKkSVlZWXLlyxeL4lStX7vu0okmTJjFmzBjz+4yMDKpUqfJU4ntv6tyn0q4QQgghhBBCCCHEi0Rb3gE8rDvLO7Zv324+ZjQa2b59Oy1btrxnHRsbG5ycnCxeQgghhBBCCCGEEKL8PHczpQDGjBlDREQETZs2pVmzZnzyySdkZWXxzjvvlHdoQgghhBBCCCGEEKIUnsukVO/evbl27RpTpkzh8uXL/OEPf+D7778vtvm5EEIIIYQQQgghhHg2PZdJKYDhw4czfPjw8g5DCCGEEEIIIYQQQjyC525PKSGEEEIIIYQQQgjx/JOklBBCCCGEEEIIIYQoc5KUEkIIYTZgwAA0Gg0ajQa9Xk/16tWZPn06hYWFj9Xurl270Gg03Lp168kEWgrJycn07dsXLy8vbG1t8fHxISwsjDNnzliU27RpE+3atcPR0RE7OzteffVVVq5caVEmJSUFjUbDsWPHSt3/1KlTqVWrFvb29lSoUIFOnTpx4MABizYHDhyIn58fBoOBatWqERkZSX5+/gPbjomJoWHDhtjZ2eHp6cm7777LjRs3Sqzzww8/EBoaipeXFxqNhg0bNjx0zAAzZ86kVatW2NnZ4eLics++zp8/z2uvvYadnR3u7u6MHz/e4mvo7q+zu19169Y1l5k1axavvvoqjo6OuLu788c//pGEhIQHXpvSxCeEEEIIIZ4NkpQSQghhISQkhEuXLnH27FnGjh3L1KlTmTt3bnmHZVaapE1BQQGdO3cmPT2dr776ioSEBNauXUv9+vUtEmMLFy4kLCyMwMBADhw4wPHjx+nTpw9Dhw5l3LhxjxVnjRo1WLRoESdOnGDPnj1UrVqVLl26cO3aNQDOnDmD0Whk2bJlnDx5kvnz57N06VImT55cYrt79+6lf//+DBw4kJMnT7Ju3ToOHjzI4MGDS6yXlZVFw4YNWbx48SPHDKbr37NnT9577717tlFUVMRrr71Gfn4++/btY9WqVaxcuZIpU6aYy3z66adcunTJ/Lpw4QKurq707NnTXGb37t0MGzaMH3/8kdjYWAoKCujSpQtZWVkljvNB8QkhhBBCiGeIegmlp6crQKWnp5d3KEKIF1BOTo46deqUysnJKe9QHlpERIQKCwuzONa5c2fVokULlZaWpsLDw5WLi4syGAwqJCREJSYmmsulpKSo119/Xbm4uCg7OztVp04d9e2336rk5GQFWLwiIiKUUkplZGSovn37Kjs7O+Xh4aHmzZun2rVrp0aNGmVu19fXV02fPl2Fh4crR0dHc924uDjVunVrZWtrq3x8fNSIESNUZmamUkqp+Ph4BaiUlJT7jvX8+fNKp9OpMWPGFDu3YMECBagff/xRKaXMY4iPj3/4i/qbOz97tm3bdt8yc+bMUX5+fiW2M3fuXOXv718sXm9v71LHAqivv/76geVKinnFihXK2dm52PHNmzcrrVarLl++bD62ZMkS5eTkpPLy8u7Zz9dff600Gk2Jn9fVq1cVoHbv3v3AuEuK715K+p6VewZLcj2EEEIIURqlvWeQmVJCCPGUKaUoyM0tl5dS6rHjNxgM5OfnM2DAAA4fPszGjRvZv38/Sim6detGQUEBAMOGDSMvL48ffviBEydOMHv2bBwcHKhSpQr/+te/AEhISODSpUt8+umnAIwZM4a9e/eyceNGYmNjiYuL4+jRo8ViiIqKomHDhsTHx/PRRx+RlJRESEgIPXr04Pjx46xdu5Y9e/aYn8rq5uaGVqtl/fr1FBUV3XNc69evp6Cg4J4zooYMGYKDgwNr1qx57OsHptk7y5cvx9nZmYYNG963XHp6Oq6uriW21bJlSy5cuMDmzZtRSnHlyhXWr19Pt27dnkisDxvz7+3fv5/69etTuXJl87Hg4GAyMjI4efLkPet8/vnndOrUCV9f3/u2m56eDvDA6yOEEEIIIZ4f1uUdgBBCvOgK8/JYEPFWufQ9ctV6dLa2j1RXKcX27dvZsmULXbt2ZcOGDezdu5dWrVoBpn2NqlSpwoYNG+jZsyfnz5+nR48e1K9fHwB/f39zW3cSCe7u7uZ9fm7fvs2qVatYvXo1HTt2BGDFihV4eXkVi6VDhw6MHTvW/H7QoEH069eP0aNHAxAQEMCCBQto164dS5YswdvbmwULFvDBBx8wbdo0mjZtSlBQEP369TPHlZiYiLOzM56ensX60+v1+Pv7k5iY+EjX7o5NmzbRp08fsrOz8fT0JDY2lkqVKt2z7Llz51i4cCFRUVElthkYGEhMTAy9e/cmNzeXwsJCQkNDS1yW97RivpfLly9bJKQA8/vLly8XK3/x4kW+++47Vq9efd82jUYjo0ePJjAwkHr16pU6FiGEEEII8WyTmVJCCCEsbNq0CQcHB2xtbenatSu9e/dmwIABWFtb07x5c3O5ihUrUrNmTU6fPg3AyJEjmTFjBoGBgURGRnL8+PES+/n5558pKCigWbNm5mPOzs7UrFmzWNmmTZtavP/pp59YuXIlDg4O5ldwcDBGo5Hk5GTANHPr8uXLxMTE0LJlS9atW0fdunWJjY0t9bXQ6/UPLBMTE2MRR1xcnPlcUFAQx44dY9++fYSEhNCrVy+uXr1arI3U1FRCQkLo2bOnxd5Qd7c7dOhQAE6dOsWoUaOYMmUKR44c4fvvvyclJcV8Pi4uzqJeTExMqcf7MDE/KatWrcLFxYU//vGP9y0zbNgw/vOf//Dll1+ajw0dOtRinEIIIYQQ4vkjM6WEEOIps7axYeSq9eXW98MKCgpiyZIl6PV6vLy8sLa2ZuPGjQ+sN2jQIIKDg/n222/ZunUrs2bNIjo6mhEjRjxK6Bbs7e0t3mdmZjJkyBBGjhxZrOwrr7xi/rejoyOhoaGEhoYyY8YMgoODmTFjBp07dyYgIID09HQuXrxYbHZWfn4+SUlJBAcHPzC27t27WyTrvL29LeKuXr061atXp0WLFgQEBPD5558zadIkc5mLFy8SFBREq1atWL58uUXbdz/tz8nJCTA9lS4wMJDx48cD0KBBA+zt7WnTpg0zZsygadOmFvV+P2vpQUoTc0k8PDw4ePCgxbErV66Yz91NKcUXX3xBeHj4fROAw4cPZ9OmTfzwww/4+PiYj0+fPv2xN6MXQgghhBDlS5JSQgjxlGk0mkdeQlce7iQl7la7dm0KCws5cOCAefnejRs3SEhIoE6dOuZyVapUYejQoQwdOpRJkybx2WefMWLECHPC4e79nfz9/dHpdBw6dMicSEpPTycxMZG2bduWGGPjxo05depUsThLotFoqFWrFvv27QPgrbfeYsKECURHRxMdHW1RdunSpWRnZ9O/f/8Htuvo6Iijo2OpYjAajeTl5Znfp6amEhQURJMmTVixYgVareUE5nuNLzs7G2tryx/fVlZWgCnJYzAYHuq6PGzMD9KyZUtmzpzJ1atXcXd3ByA2NhYnJyeLrxUwPWHv3LlzDBw4sFg7SilGjBjB119/za5du/Dz87M47+7ubm5fCCGEEEI8nyQpJYQQ4oECAgIICwtj8ODBLFu2DEdHRyZOnIi3tzdhYWEAjB49mq5du1KjRg1u3rzJzp07qV27NgC+vr5oNBo2bdpEt27dMBgMODo6EhERwfjx43F1dcXd3Z3IyEi0Wi0ajabEeCZMmECLFi0YPnw4gwYNwt7enlOnThEbG8uiRYs4duwYkZGRhIeHU6dOHfR6Pbt37+aLL75gwoQJgGlG1Zw5cxg3bhy2traEh4ej0+n45ptvmDx5MjNmzCi2f1FCQkKxWOrWrYtOp7M4lpWVxcyZM+nevTuenp5cv36dxYsXk5qaSs+ePQFTQqp9+/b4+voSFRXFtWvXzPV/P6PobqGhoQwePJglS5YQHBzMpUuXGD16NM2aNbvnflx3ZGZmcu7cOfP75ORkjh07hqurK6+88kqpYgY4f/48aWlpnD9/nqKiIvOsrOrVq+Pg4ECXLl2oU6cO4eHhzJkzh8uXL/OXv/yFYcOGYfO7mXuff/45zZs3v+c+UcOGDWP16tV88803ODo6mvejcnZ2xmAw3HecD4pPCCGEEEI8Q57yUwCfSfI4YyHE01TS4+WfdRERESosLOye59LS0lR4eLhydnZWBoNBBQcHq8TERPP54cOHq2rVqikbGxvl5uamwsPD1fXr183np0+frjw8PJRGo1ERERFKKaUyMjJU3759lZ2dnfLw8FDz5s1TzZo1UxMnTjTX8/X1VfPnzy8Wz8GDB1Xnzp2Vg4ODsre3Vw0aNFAzZ85USil17do1NXLkSFWvXj3l4OCgHB0dVf369VVUVJQqKiqyaGfDhg2qTZs2yt7eXgEKUGvWrLEok5ycbD73+9eFCxeKxZaTk6PeeOMN5eXlpfR6vfL09FTdu3dXBw8eNJdZsWLFfdt8kAULFqg6deoog8GgPD09Vb9+/dSvv/5aYp2dO3fes687n0VpYlbK9DVyr3Z27txpLpOSkqK6du2qDAaDqlSpkho7dqwqKCiwaOfWrVvKYDCo5cuX3zPe+12bFStWlDjO0sT3eyV9z8o9gyW5HkIIIYQojdLeM2iUegLPC3/OZGRk4OzsTHp6unmPDiGEeFJyc3NJTk7Gz88P2+do2d6zICsrC29vb6Kjo++5pOtpS0tLo2PHjjg5OfHdd99hZ2dX5jGIslfS96zcM1iS6yGEEEKI0ijtPYM8fU8IIUS5iY+PZ82aNSQlJXH06FH69esHYF4SWNZcXV3Ztm0bHTt2ZP/+/eUSgxBCCCGEEC8L2VNKCCFEuYqKiiIhIQG9Xk+TJk2Ii4ujUqVK5RZPxYoVmTJlSrn1L4QQQgghxMtCklJCCCHKTaNGjThy5Eh5hyGEEEIIIYQoB7J8TwghhBBCCCGEEEKUOUlKCSGEEEIIIYQQQogyJ0kpIYR4Sl7Ch5sK8VyS71UhhBBCiPIhSSkhhHjCdDodANnZ2eUciRCiNO58r9753hVCCCGEEGVDNjoXQognzMrKChcXF65evQqAnZ0dGo2mnKMSQvyeUors7GyuXr2Ki4sLVlZW5R2SEEIIIcRLRZJSQgjxFHh4eACYE1NCiGeXi4uL+XtWCCGEEEKUHUlKCSHEU6DRaPD09MTd3Z2CgoLyDkcIcR86nU5mSAkhhBBClBNJSgkhxFNkZWUlv/AKIYQQQgghxD3IRudCCCGEEEIIIYQQosxJUkoIIYQQQgghhBBClDlJSgkhhBBCCCGEEEKIMvdS7imllAIgIyOjnCMRQgghxLPszr3CnXuHl53cQwkhhBCiNEp7D/VSJqVu374NQJUqVco5EiGEEEI8D27fvo2zs3N5h1Hu5B5KCCGEEA/jQfdQGvUS/unPaDRy8eJFHB0d0Wg0T7z9jIwMqlSpwoULF3Bycnri7T9LZKwvJhnri0nG+mKSsT5dSilu376Nl5cXWq3seiD3UE+OjPXFJGN9MclYX0wy1qertPdQL+VMKa1Wi4+Pz1Pvx8nJ6YX/4r5DxvpikrG+mGSsLyYZ69MjM6T+S+6hnjwZ64tJxvpikrG+mGSsT09p7qHkT35CCCGEEEIIIYQQosxJUkoIIYQQQgghhBBClDlJSj0FNjY2REZGYmNjU96hPHUy1heTjPXFJGN9MclYxYvkZfqMZawvJhnri0nG+mKSsT4bXsqNzoUQQgghhBBCCCFE+ZKZUkIIIYQQQgghhBCizElSSgghhBBCCCGEEEKUOUlKCSGEEEIIIYQQQogyJ0kpIYQQQgghhBBCCFHmJCklhBBCCCGEEEIIIcqcJKWEEEIIIYQQQgghRJmTpJQQQgghhBBCCCGEKHOSlBJCCCGEEEIIIYQQZU6SUkIIIYQQQgghhBCizElSSgghhBBCCCGEEEKUOUlKCSGEEEIIIYQQQogyJ0kpIYQQQgghhBBCCFHmJCklhBBCCCGEEEIIIcqcJKWEEM+dlJQUNBoNK1eufKh6V65c4a233qJixYpoNBo++eSTpxLfkzBgwACqVq1a3mEIIYQQ4gXyqPdQL7pdu3ah0WjYtWuX+ZjciwlRNiQpJYR4aPv27WPq1KncunXrker//e9/L5eboffff58tW7YwadIk/vGPfxASElLmMTyq7Oxspk6danGzJIQQQojny/N6D/WikOsnxLNHklJCiIe2b98+pk2b9tzdUO3YsYOwsDDGjRvHn/70J2rVqlXmMZTWZ599RkJCgvl9dnY206ZNk6SUEEII8Rx7Xu+hXhT3u35t27YlJyeHtm3bln1QQrzkJCklhHhpXL16FRcXl/IOo0RZWVkA6HQ6bGxsyjkaIYQQQogXn1arxdbWFq1Wfj0WoqzJd50Q4qFMnTqV8ePHA+Dn54dGo0Gj0ZCSkkJhYSF//etfqVatGjY2NlStWpXJkyeTl5dnrl+1alVOnjzJ7t27zXXbt28PQFpaGuPGjaN+/fo4ODjg5ORE165d+emnnx4r5pUrV6LRaFBKsXjxYnO/AAUFBUybNo2AgABsbW2pWLEirVu3JjY2tlRtK6WoVKkSY8aMMR8zGo24uLhgZWVl8ZfQ2bNnY21tTWZmJmDaq8DBwYGkpCS6deuGo6Mj/fr1M5+7s49BSkoKbm5uAEybNs0c/9SpU81tnzlzhrfeegtXV1dsbW1p2rQpGzdufNRLJoQQQogn7Hm8h7rjl19+oXv37tjb2+Pu7m7eEuH3+zC1b9+eevXqceTIEVq1aoXBYMDPz4+lS5datHfn3iwlJcXi+L32dnqQqVOnmu/rSuqjpOv3KP0KIZ4M6/IOQAjxfHnzzTdJTExkzZo1zJ8/n0qVKgHg5ubGoEGDWLVqFW+99RZjx47lwIEDzJo1i9OnT/P1118D8MknnzBixAgcHBz48MMPAahcuTIAP//8Mxs2bKBnz574+flx5coVli1bRrt27Th16hReXl6PFHPbtm35xz/+QXh4OJ07d6Z///7mc1OnTmXWrFkMGjSIZs2akZGRweHDhzl69CidO3d+YNsajYbAwEB++OEH87Hjx4+Tnp6OVqtl7969vPbaawDExcXRqFEjHBwczGULCwsJDg6mdevWREVFYWdnV6wPNzc3lixZwnvvvccbb7zBm2++CUCDBg0AOHnyJIGBgXh7ezNx4kTs7e355z//yR//+Ef+9a9/8cYbbzzSdRNCCCHEk/M83kOBaRZ3hw4duHTpEqNGjcLDw4PVq1ezc+fOe5a/efMm3bp1o1evXrz99tv885//5L333kOv1/Puu+8+chyPq6TrJ4QoR0oIIR7S3LlzFaCSk5PNx44dO6YANWjQIIuy48aNU4DasWOH+VjdunVVu3btirWbm5urioqKLI4lJycrGxsbNX36dItjgFqxYsVDxQ2oYcOGWRxr2LCheu211x6qnd+bO3eusrKyUhkZGUoppRYsWKB8fX1Vs2bN1IQJE5RSShUVFSkXFxf1/vvvm+tFREQoQE2cOLFYmxEREcrX19f8/tq1awpQkZGRxcp27NhR1a9fX+Xm5pqPGY1G1apVKxUQEPBYYxNCCCHEk/M83kNFR0crQG3YsMF8LCcnR9WqVUsBaufOnebj7dq1U4CKjo42H8vLy1N/+MMflLu7u8rPz1dKKbVixYpi10EppXbu3FmszQeJjIxU9/q19l593O/63avf39+LCSGeDlm+J4R4IjZv3gxgsYwNYOzYsQB8++23D2zDxsbGvJa/qKiIGzdu4ODgQM2aNTl69OgTjtjExcWFkydPcvbs2Uduo02bNhQVFbFv3z7ANCOqTZs2tGnThri4OAD+85//cOvWLdq0aVOs/nvvvffIfaelpbFjxw569erF7du3uX79OtevX+fGjRsEBwdz9uxZUlNTH7l9IYQQQjxdz/o91Pfff4+3tzfdu3c3H7O1tWXw4MH3LG9tbc2QIUPM7/V6PUOGDOHq1ascOXLksWIRQrx4JCklhHgifvnlF7RaLdWrV7c47uHhgYuLC7/88ssD2zAajcyfP5+AgABsbGyoVKkSbm5u5uVwT8P06dO5desWNWrUoH79+owfP57jx48/VBuNGzfGzs7OnIC6k5Rq27Ythw8fJjc313yudevWFnWtra3x8fF55PjPnTuHUoqPPvoINzc3i1dkZCRg2uBdCCGEEM+mZ/0e6pdffqFatWrF9m36fbx3eHl5YW9vb3GsRo0aAMX2kBJCCNlTSgjxRN1ro8nS+vjjj/noo4949913+etf/4qrqytarZbRo0djNBqfYJT/1bZtW5KSkvjmm2/YunUr/+///T/mz5/P0qVLGTRoUKna0Ol0NG/enB9++IFz585x+fJl2rRpQ+XKlSkoKODAgQPExcVRq1Yt84bld9z9l81Hcee6jBs3juDg4HuWud9NoxBCCCGeHc/bPdTjuN9Yi4qKyrUtIUTZk6SUEOKh3euHv6+vL0ajkbNnz1K7dm3z8StXrnDr1i18fX1LrA+wfv16goKC+Pzzzy2O37p1y7wZ6NPg6urKO++8wzvvvENmZiZt27Zl6tSppU5KgWkJ3+zZs9m2bRuVKlWiVq1aaDQa6tatS1xcHHFxcbz++uuPHOP9rpm/vz9gSox16tTpkdsXQgghxNP3PN5D+fr6curUKZRSFv2fO3funuUvXrxIVlaWxWypxMREAPOThStUqGCO726lmRX2e3e35eLiUmJbj5P4E0I8HbJ8Twjx0O7cZNx9I9GtWzfA9GSTu82bNw/A/AS6O/V/fxMCYGVlhVLK4ti6deue6p5IN27csHjv4OBA9erVLR7BXBpt2rQhLy+PTz75hNatW5tvetq0acM//vEPLl68eM/9pErrzlP5fn/d3N3dad++PcuWLePSpUvF6l27du2R+xRCCCHEk/U83kMFBweTmprKxo0bzcdyc3P57LPP7lm+sLCQZcuWmd/n5+ezbNky3NzcaNKkCQDVqlUDsHh6cVFREcuXL3/o+O7VVlZWFqtWrSpW9n7XTwhRfmSmlBDiod25ofjwww/p06cPOp2O0NBQIiIiWL58Obdu3aJdu3YcPHiQVatW8cc//pGgoCCL+kuWLGHGjBlUr14dd3d3OnTowOuvv8706dN55513aNWqFSdOnCAmJsY8G+hpqFOnDu3bt6dJkya4urpy+PBh1q9fz/Dhwx+qnZYtW2JtbU1CQgJ//vOfzcfbtm3LkiVLAB4rKWUwGKhTpw5r166lRo0auLq6Uq9ePerVq8fixYtp3bo19evXZ/Dgwfj7+3PlyhX279/Pr7/+yk8//fTI/QohhBDiyXke76GGDBnCokWLePvttxk1ahSenp7ExMRga2sLFJ995OXlxezZs0lJSaFGjRqsXbuWY8eOsXz5cnQ6HQB169alRYv/z969x0VV5/8Dfw3CyADDIApyEQnkIii6XlK8RaTcNKAyL2GIm5r0U9S8hLoZSqhpoOttvbSKfXeRXM2UxVzF8oKKaArihoISLAWYtxwCEZD5/P5gOevIXQXSXs/HYx4P5sznfM77c5Dm1fnMnI87Fi5ciDt37sDU1BRffPEFHjx40Oz6vL290bVrV0yePBnz589Hu3btsH37dpiZmSE/P1+rbX3nj4jaUNsu/kdEz6qPP/5YWFtbCx0dHWm53crKSrF06VJhZ2cn9PT0hI2NjVi4cKG4f/++1r7Xr18Xo0aNEkqlUgCQlua9f/++mDt3rrC0tBQKhUIMGTJEpKSkCA8PD63lex9nOWMhhAAgpk+frrUtKipKDBgwQJiYmAiFQiG6d+8uli1bJi1Z3BwvvviiACBSU1OlbT/99JMAIGxsbGq1DwkJEYaGhnX2VdcyxKdPnxb9+vUTcrlcABARERHSazk5OWLixInCwsJC6OnpCWtra/Hqq6+KPXv2NHscRERE1HKexQz1ww8/iFGjRgmFQiHMzMzE3LlzxZdffikAiDNnzkjtPDw8RI8ePcR3330nBg0aJPT19YWtra3YsGFDrT5zcnLEiBEjRPv27UXnzp3FokWLRFJSkgAgjh492qz6zp8/LwYOHCjkcrno2rWrWL16tYiNjZXOb436zt/Ro0drHbeuLEZET59MiEc+50lERERERETUgD//+c94//338dNPP8Ha2hoA8PLLL+PWrVv497//3cbVEdGzgveUIiIiIiIionqVlZVpPb9//z62bNkCR0dH6YIUEdHj4D2liOiZVlFRgTt37jTYRqVSQaFQ/Kb6JiIiImpLzck5b7zxBrp27Yo//OEPUKvV+Pvf/44rV64gLi6uxeorKyuDWq1usI2pqSnkcnmL1UBELY8XpYjomXb69GmtG4DWJTY2FpMmTfpN9U1ERETUlpqTc3x8fPDXv/4VcXFxqKqqgqurK7744guMGzeuxerbtWsX/vjHPzbY5ujRo3j55ZdbrAYianm8pxQRPdN++eUXnD9/vsE2PXr0gKWl5W+qbyIiIqK29FvPOUVFRfj+++8bbNOvXz906NChlSoiopbAi1JERERERERERNTqeKNzIiIiIiIiIiJqdb/Le0ppNBoUFhZCqVRCJpO1dTlERET0GyWEwK+//gorKyvo6HAujxmKiIiImqKpGep3eVGqsLAQNjY2bV0GERERPSN+/PFHdOnSpa3LaHPMUERERNQcjWWo3+VFKaVSCaD65BgbG7dxNURERPRbVVxcDBsbGyk7/N4xQxEREVFTNDVD/S4vStV83NzY2JiBioiIiBrFr6pVY4YiIiKi5mgsQ/HmCERERERERERE1Op4UYqIiIiIiIiIiFodL0oREREREREREVGr+13eU4qIqLVUVVWhsrKyrcsgonro6emhXbt2bV0GERE9ghmK6LftaWUoXpQiImoBQghcv34dd+/ebetSiKgRJiYmsLCw4M3MiYh+A5ihiJ4dTyND8aIUEVELqAlT5ubmMDAw4P/sEv0GCSFw79493LhxAwBgaWnZxhUREREzFNFv39PMULwoRUT0lFVVVUlhqmPHjm1dDhE1QKFQAABu3LgBc3NzfpWPiKgNMUMRPTueVobijc6JiJ6ymvsfGBgYtHElRNQUNX+rvHcJEVHbYoYierY8jQzFi1JERC2EHzcnejbwb5WI6LeF/10mejY8jb9VXpQiIiIiIiIiIqJWx4tSREQkmTRpEmQyGWQyGeRyORwcHBAZGYkHDx48Ub/Hjh2DTCZr1ZV0cnNzERQUBCsrK+jr66NLly4IDAzElStXtNolJibCw8MDSqUSBgYGePHFF7Fjxw6tNnl5eZDJZEhPT2/y8ZcsWYLu3bvD0NAQHTp0wIgRI5CamqrV5+TJk2FnZweFQoFu3bohIiICFRUVDfZbVFSEoKAgODk5QUdHB7Nnz25SPSdOnIC/vz+srKwgk8mwb9++OttdvnwZAQEBUKlUMDQ0xIsvvoj8/Hzp9WnTpqFbt25QKBQwMzOr85yeO3cOw4cPh4mJCTp06AAfHx9cvHixzuNdu3YNSqUSJiYmT20MRERErY0ZihmKGerx8KIUERFp8fX1RVFREa5evYq5c+diyZIl+PTTT9u6LEljgQOo/l67l5cX1Go19u7di6ysLOzatQtubm5aoW79+vUIDAzEkCFDkJqaioyMDIwfPx6hoaGYN2/eE9Xp5OSEDRs24NKlSzh58iReeOEFeHt74+bNmwCAK1euQKPRYMuWLfj++++xZs0abN68GYsWLWqw3/LycpiZmeHDDz9E7969m1xPaWkpevfujY0bN9bbJicnB0OHDkX37t1x7NgxZGRkYPHixdDX15fa9OvXD7Gxsbh8+TIOHToEIQS8vb1RVVUFACgpKYGvry+6du2K1NRUnDx5EkqlEj4+PrXuN1BZWYm33noLw4YNe2pjICIiaivMUMxQzFCPQfwOqdVqAUCo1eq2LoWInkNlZWUiMzNTlJWVtXUpzRYSEiICAwO1tnl5eQl3d3dx584dERwcLExMTIRCoRC+vr4iOztbapeXlydeffVVYWJiIgwMDISrq6s4cOCAyM3NFQC0HiEhIUIIIYqLi0VQUJAwMDAQFhYWYvXq1cLDw0PMmjVL6tfW1lZERkaK4OBgoVQqpX2Tk5PF0KFDhb6+vujSpYsICwsTJSUlQggh0tLSBACRl5dX71jz8/OFnp6emDNnTq3X1q1bJwCIM2fOCCGENIa0tLTmn9T/qnnvOXLkSL1tVq1aJezs7Jrc56PnqqkAiK+++qrW9nHjxom33367WX1dvHhRABDXrl0TQghx7tw5AUDk5+dLbTIyMgQAcfXqVa19P/jgA/H222+L2NhYoVKpnsoYHkdDf7PMDNp4PoioJTFDMUPVhRnq+c5Q/KQUERE1SKFQoKKiApMmTcJ3332HhIQEpKSkQAiBkSNHSjM306dPR3l5OU6cOIFLly5h5cqVMDIygo2NDb788ksAQFZWFoqKirB27VoAwJw5c3Dq1CkkJCQgKSkJycnJuHDhQq0aoqOj0bt3b6SlpWHx4sXIycmBr68vRo8ejYyMDOzatQsnT57EjBkzAABmZmbQ0dHBnj17pNmnR+3ZsweVlZV1zuZNmzYNRkZGiI+PfyrnsKKiAlu3boVKpWpwZk6tVsPU1PSpHLO5NBoNDhw4ACcnJ/j4+MDc3BwDBw5s8OPdpaWliI2NhZ2dHWxsbAAAzs7O6NixI7Zt24aKigqUlZVh27ZtcHFxwQsvvCDt++2332L37t2/zRk7IiKip4AZ6skxQ/0OMtRTuTz2jOEsHxG1pEdnDDQajSgtr2yTh0ajaVbtD8/yaTQakZSUJNq3by9ee+01AUCcOnVKanvr1i2hUCjEP/7xDyGEEG5ubmLJkiV19nv06FEBQPzyyy/StuLiYqGnpyd2794tbbt7964wMDCoNcv32muvafU3efJk8e6772ptS05OFjo6OtJ537BhgzAwMBBKpVJ4enqKyMhIkZOTI7UPDQ1tcGapV69ews/PTwjx+LN8//znP4WhoaGQyWTCyspKnD17tt62V69eFcbGxmLr1q1N7v9pzvIVFRUJAMLAwECsXr1apKWliRUrVgiZTCaOHTum1Xbjxo3C0NBQABDOzs7SDF+NS5cuiW7dugkdHR2ho6MjnJ2dtWZcb926JWxsbMTx48eFEOK5mOX7veD5IKKWVNd/j5+VHMUM9T/MUMxQQjQ9M+i29kUwIqLfm7LKKrh+dKhNjp0Z6QMDefP+U5+YmAgjIyNUVlZCo9EgKCgIb7zxBhITEzFw4ECpXceOHeHs7IzLly8DAGbOnIn33nsPhw8fxogRIzB69Gj06tWr3uP88MMPqKysxIABA6RtKpUKzs7Otdr2799f6/nFixeRkZGBuLg4aZsQAhqNBrm5uXBxccH06dMxceJEHDt2DGfOnMHu3buxfPlyJCQkwMvLq0nnQi6XN9omLi4O06ZNk54fPHhQ+n6/p6cn0tPTcevWLXz22WcYO3YsUlNTYW5urtVHQUEBfH19MWbMGEydOlXabmRkJP389ttvY/PmzY3Wk5ycDD8/P+n5li1bMGHChEb302g0AIDAwEC8//77AIA//OEPOH36NDZv3gwPDw+p7YQJE+Dl5YWioiJER0dj7NixOHXqFPT19VFWVobJkydjyJAhiI+PR1VVFaKjozFq1CicO3cOCoUCU6dORVBQEF566aWnOgYiInr+PEs5ihnqf5ihmKGaiheliIhIi6enJzZt2gS5XA4rKyvo6uoiISGh0f2mTJkCHx8fHDhwAIcPH8aKFSsQExODsLCwJ67J0NBQ63lJSQmmTZuGmTNn1mrbtWtX6WelUgl/f3/4+/sjKioKPj4+iIqKgpeXFxwdHaFWq1FYWAgrKyutPioqKpCTkwMfH59GawsICNAKmtbW1lp1Ozg4wMHBAe7u7nB0dMS2bduwcOFCqU1hYSE8PT0xePBgbN26Vavvh1eqMTY2brQWoDp8Prxf586dm7Rfp06doKurC1dXV63tLi4uOHnypNY2lUoFlUoFR0dHuLu7o0OHDvjqq6/w1ltvYefOncjLy0NKSgp0dKrvErBz50506NAB+/fvx/jx4/Htt98iISEB0dHRAP4XhnV1dbF161a89dZbjzUGIiKitsQMxQz1MGaopuFFKSKiFqbQa4fMyMbfmFvq2M1VEwIe5uLiggcPHiA1NRWDBw8GANy+fRtZWVlab8A2NjYIDQ1FaGgoFi5ciM8++wxhYWHSbNnD9yawt7eHnp4ezp07J4UgtVqN7Ozsemd/avTt2xeZmZm16myITCZD9+7dcfr0aQDAm2++ifDwcMTExCAmJkar7ebNm3Hv3j1MnDix0X6VSiWUSmWTatBoNCgvL5eeFxQUwNPTU1qNpSaA1GjO+GooFIrH2k8ul+PFF19EVlaW1vbs7GzY2trWu58QAkIIaVz37t2Djo4OZDKZ1Kbmec1MYkpKita/hf3792PlypU4ffo0rK2tH3sMRET0/HmWchQzFDPUw5ihmoYXpYiIWphMJmv2V+h+axwdHREYGIipU6diy5YtUCqVWLBgAaytrREYGAgAmD17Nvz8/ODk5IRffvkFR48ehYuLCwDA1tYWMpkMiYmJGDlyJBQKBZRKJUJCQjB//nyYmprC3NwcERERtd6M6xIeHg53d3fMmDEDU6ZMgaGhITIzM5GUlIQNGzYgPT0dERERCA4OhqurK+RyOY4fP47t27cjPDwcQPVs4KpVqzBv3jzo6+sjODgYenp62L9/PxYtWoSoqCj07NlT67iPhg0A6NGjB/T09LS2lZaWYtmyZQgICIClpSVu3bqFjRs3oqCgAGPGjAFQHaZefvll2NraIjo6WlrmGAAsLCwaHH/NDFhJSQlu3ryJ9PR0yOXyWjN0DyspKcG1a9ek57m5uUhPT4epqakUaOfPn49x48bhpZdegqenJ/71r3/hn//8J44dOwag+usCu3btgre3N8zMzPDTTz/hk08+gUKhwMiRIwEAXl5emD9/PqZPn46wsDBoNBp88skn0NXVhaenJwBI/y5qfPfdd9DR0al1vh9nDERE9Hx51nMUM1Q1ZihmqHo9lbtbPWN4k04iaknP23LGNWqWM1apVEKhUAgfHx+t5YxnzJghunXrJtq3by/MzMxEcHCwuHXrlvR6ZGSksLCwEDKZrMHljAcMGCAWLFgg7WdrayvWrFlTq56zZ88KLy8vYWRkJAwNDUWvXr3EsmXLhBBC3Lx5U8ycOVP07NlTGBkZCaVSKdzc3ER0dLSoqqrS6mffvn1i2LBh0k0nAYj4+HitNnUtyVzz+PHHH2vVVlZWJl5//XVhZWUl5HK5sLS0FAEBAVo36YyNja23z8bUtY+trW2D+9TcKPXRR83vosa2bduEg4OD0NfXF7179xb79u2TXisoKBB+fn7C3Nxc6OnpiS5duoigoCBx5coVrT4OHz4shgwZIlQqlejQoYN45ZVXREpKSr21NfUmnU0dQ3PxRudNx/NBRC2JGYoZihnq95ehZEII8TQubj1LiouLoVKpoFarm/z9UiKiprp//z5yc3NhZ2cHfX39ti7nmVJaWgpra2vExMRg8uTJrX78O3fuYPjw4TA2NsbBgwdhYGDQ6jVQ62vob5aZQRvPBxG1JGaox8cMRW3haWQonXpfISIiamFpaWmIj49HTk4OLly4IK0OUvNx9tZmamqKI0eOYPjw4UhJSWmTGoiIiIgawwxFz4tn98u5RET0XIiOjkZWVhbkcjn69euH5ORkdOrUqc3q6dixIz766KM2Oz4RERFRUzBD0fOAF6WIiKjN9OnTB+fPn2/rMoiIiIieKcxQ9Lzg1/eIiIiIiIiIiKjV8aIUERERERERERG1Ol6UIiIiIiIiIiKiVseLUkRERERERERE1Op4UYqIiIiIiIiIiFodL0oREREREREREVGr40UpIiIiIiIiIiJqdbwoRUREkkmTJkEmk0Emk0Eul8PBwQGRkZF48ODBE/V77NgxyGQy3L179+kU2gS5ubkICgqClZUV9PX10aVLFwQGBuLKlSta7RITE+Hh4QGlUgkDAwO8+OKL2LFjh1abvLw8yGQypKenN/n4S5YsQffu3WFoaIgOHTpgxIgRSE1N1epz8uTJsLOzg0KhQLdu3RAREYGKiooG+y0qKkJQUBCcnJygo6OD2bNnN6meTZs2oVevXjA2NoaxsTEGDRqEgwcPSq/fuXMHYWFhcHZ2hkKhQNeuXTFz5kyo1WqpzY4dO6R/H48+bty4IbUrLy/Hn/70J9ja2qJ9+/Z44YUXsH37dq16/vznP0vHsrGxwfvvv4/79+83OIa9e/fC29sbHTt2bPbvg4iIqCUxQzFDMUM9Ht22LoCIiH5bfH19ERsbi/Lycnz99deYPn069PT0sHDhwrYuDQBQUVEBuVzeYJvKykp4eXnB2dkZe/fuhaWlJX766SccPHhQK9StX78es2fPRnh4ODZt2gS5XI79+/cjNDQU//73vxEdHf3YdTo5OWHDhg2wt7dHWVkZ1qxZA29vb1y7dg1mZma4cuUKNBoNtmzZAgcHB/z73//G1KlTUVpa2uBxy8vLYWZmhg8//BBr1qxpcj1dunTBJ598AkdHRwgh8PnnnyMwMBBpaWno0aMHCgsLUVhYiOjoaLi6uuI///kPQkNDUVhYiD179gAAxo0bB19fX61+J02ahPv378Pc3FzaNnbsWPz888/Ytm0bHBwcUFRUBI1GI72+c+dOLFiwANu3b8fgwYORnZ0thfnVq1fXO4bS0lIMHToUY8eOxdSpU5s8diIiotbADMUMxQz1GMTvkFqtFgCEWq1u61KI6DlUVlYmMjMzRVlZWVuX0mwhISEiMDBQa5uXl5dwd3cXd+7cEcHBwcLExEQoFArh6+srsrOzpXZ5eXni1VdfFSYmJsLAwEC4urqKAwcOiNzcXAFA6xESEiKEEKK4uFgEBQUJAwMDYWFhIVavXi08PDzErFmzpH5tbW1FZGSkCA4OFkqlUto3OTlZDB06VOjr64suXbqIsLAwUVJSIoQQIi0tTQAQeXl59Y41Pz9f6OnpiTlz5tR6bd26dQKAOHPmjBBCSGNIS0tr/kn9r5r3niNHjtTbZtWqVcLOzq7JfT56rpqrQ4cO4q9//Wu9r//jH/8QcrlcVFZW1vn6jRs3hJ6envi///s/advBgweFSqUSt2/frrff6dOni1deeUVr25w5c8SQIUOaVPfT+H08rKG/WWYGbTwfRNSSmKGYoerCDPU/z2OG4tf3iIioQQqFAhUVFZg0aRK+++47JCQkICUlBUIIjBw5EpWVlQCA6dOno7y8HCdOnMClS5ewcuVKGBkZwcbGBl9++SUAICsrC0VFRVi7di0AYM6cOTh16hQSEhKQlJSE5ORkXLhwoVYN0dHR6N27N9LS0rB48WLk5OTA19cXo0ePRkZGBnbt2oWTJ09ixowZAAAzMzPo6Ohgz549qKqqqnNce/bsQWVlJebNm1frtWnTpsHIyAjx8fFP5RxWVFRg69atUKlU6N27d73t1Go1TE1Nn8oxG1JVVYUvvvgCpaWlGDRoUIP1GBsbQ1e37g9W/9///R8MDAzw5ptvStsSEhLQv39/rFq1CtbW1nBycsK8efNQVlYmtRk8eDDOnz+Ps2fPAgB++OEHfP311xg5cuRTGiEREVHbY4Z6csxQv4MM9VQujz1jOMtHRC2p1oyBRiNEeUnbPDSaZtX+8CyfRqMRSUlJon379uK1114TAMSpU6ektrdu3RIKhUL84x//EEII4ebmJpYsWVJnv0ePHhUAxC+//CJtKy4uFnp6emL37t3Strt37woDA4Nas3yvvfaaVn+TJ08W7777rta25ORkoaOjI533DRs2CAMDA6FUKoWnp6eIjIwUOTk5UvvQ0FChUqnqPRe9evUSfn5+QojHn1X65z//KQwNDYVMJhNWVlbi7Nmz9ba9evWqMDY2Flu3bm1y/82d5cvIyBCGhoaiXbt2QqVSiQMHDtTb9ubNm6Jr165i0aJF9bZxcXER7733ntY2Hx8f0b59ezFq1CiRmpoqDhw4IGxtbcWkSZO02q1du1bo6ekJXV1dAUCEhoY2eRy/xVm+3wueDyJqSXX+9/gZyVHMUP/DDMUMJUTTMwPvKUVE1NIq7wHLrdrm2IsKAblhs3ZJTEyEkZERKisrodFoEBQUhDfeeAOJiYkYOHCg1K5jx45wdnbG5cuXAQAzZ87Ee++9h8OHD2PEiBEYPXo0evXqVe9xfvjhB1RWVmLAgAHSNpVKBWdn51pt+/fvr/X84sWLyMjIQFxcnLRNCAGNRoPc3Fy4uLhg+vTpmDhxIo4dO4YzZ85g9+7dWL58ORISEuDl5dWkc9HYfRcAIC4uDtOmTZOeHzx4EMOGDQMAeHp6Ij09Hbdu3cJnn32GsWPHIjU1VeveAQBQUFAAX19fjBkzRut7/kZGRtLPb7/9NjZv3txoPcnJyfDz85Oeb9myBRMmTAAAODs7Iz09HWq1Gnv27EFISAiOHz8OV1dXrT6Ki4sxatQouLq6YsmSJXUeJyUlBZcvX8bf/vY3re0ajQYymQxxcXFQqVQAgNWrV+PNN9/EX/7yFygUChw7dgzLly/HX/7yFwwcOBDXrl3DrFmz8PHHH2Px4sUNnlMiIvqdeYZyFDPU/zBDMUM1FS9KERGRFk9PT+mGlVZWVtDV1UVCQkKj+02ZMgU+Pj44cOAADh8+jBUrViAmJgZhYWFPXJOhoXYgLCkpwbRp0zBz5sxabbt27Sr9rFQq4e/vD39/f0RFRcHHxwdRUVHw8vKCo6Mj1Go1CgsLYWWlHXYrKiqQk5MDHx+fRmsLCAjQCprW1tZadTs4OMDBwQHu7u5wdHTEtm3btG54WlhYCE9PTwwePBhbt27V6vvhlVGMjY0brQWoDp8P79e5c2fp55rVgACgX79+OHfuHNauXYstW7ZIbX799Vf4+vpCqVTiq6++gp6eXp3H+etf/4o//OEP6Nevn9Z2S0tLWFtbS2EKAFxcXCCEwE8//QRHR0csXrwYwcHBmDJlCgDAzc0NpaWlePfdd/GnP/2pwXNKRET0W8UMxQzFDNV8vChFRNTS9AyqZ9ra6tjNVBMCHubi4oIHDx4gNTUVgwcPBgDcvn0bWVlZWjNENjY2CA0NRWhoKBYuXIjPPvsMYWFh0mzZw/cmsLe3h56eHs6dOyeFILVajezsbLz00ksN1ti3b19kZmbWqrMhMpkM3bt3x+nTpwEAb775JsLDwxETE4OYmBittps3b8a9e/cwceLERvtVKpVQKpVNqkGj0aC8vFx6XlBQAE9PT/Tr1w+xsbHQ0dG+1WNzxldDoVA0eb9H6ykuLoaPjw/at2+PhIQE6Ovr17lfSUkJ/vGPf2DFihW1XhsyZAh2796NkpISaZYyOzsbOjo66NKlCwDg3r17tcbarl07ANWztc05p0RE9Jx7hnIUMxQzFDNU8/GiFBFRS5PJmv0Vut8aR0dHBAYGYurUqdiyZQuUSiUWLFgAa2trBAYGAgBmz54NPz8/ODk54ZdffsHRo0fh4uICALC1tYVMJkNiYiJGjhwJhUIBpVKJkJAQzJ8/H6ampjA3N0dERAR0dHQgk8karCc8PBzu7u6YMWMGpkyZAkNDQ2RmZiIpKQkbNmxAeno6IiIiEBwcDFdXV8jlchw/fhzbt29HeHg4gOrZwFWrVmHevHnQ19dHcHAw9PT0sH//fixatAhRUVHo2bOn1nGzsrJq1dKjR49aM2GlpaVYtmwZAgICYGlpiVu3bmHjxo0oKCjAmDFjAFSHqZdffhm2traIjo7GzZs3pf0tLCwaHH/NLF5JSQlu3ryJ9PR0yOXyWh8hf9jChQvh5+eHrl274tdff8XOnTtx7NgxHDp0CEB1mPL29sa9e/fw97//HcXFxSguLgZQfdPTmsADALt27cKDBw/w9ttv1zpOUFAQPv74Y/zxj3/E0qVLcevWLcyfPx/vvPMOFAoFAMDf3x+rV69Gnz59pI+eL168GP7+/lrHedSdO3eQn5+PwsLq/zmp+X1YWFg0es6IiOgZ9YznKGaoasxQ1Zih6vBU7m71jOFNOomoJT1vyxnXqFnOWKVSCYVCIXx8fLSWM54xY4bo1q2baN++vTAzMxPBwcHi1q1b0uuRkZHCwsJCyGSyBpczHjBggFiwYIG0n62trVizZk2tes6ePSu8vLyEkZGRMDQ0FL169RLLli0TQlTfYHLmzJmiZ8+ewsjISCiVSuHm5iaio6NFVVWVVj/79u0Tw4YNE4aGhtJyy/Hx8Vpt6lqSuebx448/1qqtrKxMvP7668LKykrI5XJhaWkpAgICtG7SGRsbW2+fjalrH1tb2wb3eeedd4Stra2Qy+XCzMxMDB8+XBw+fFh6veZGqnU9cnNztfoaNGiQCAoKqvdYly9fFiNGjBAKhUJ06dJFzJkzR9y7d096vbKyUixZskR069ZN6OvrCxsbG/H//t//07qJa13qO2cREREN7tcY3ui86Xg+iKglMUMxQzFD/f4ylEwIIZ780tazpbi4GCqVSlqmkYjoabp//z5yc3NhZ2dX70d3qW6lpaWwtrZGTEwMJk+e3OrHv3PnDoYPHw5jY2McPHgQBgbN//ojPXsa+ptlZtDG80FELYkZ6vExQ1FbeBoZSqfeV4iIiFpYWloa4uPjkZOTgwsXLkgrnNR8nL21mZqa4siRIxg+fDhSUlLapAYiIiKixjBD0fOC95QiIqI2FR0djaysLMjlcvTr1w/Jycno1KlTm9XTsWNHfPTRR212fCIiIqKmYIai5wEvShERUZvp06cPzp8/39ZlEBERET1TmKHoecGv7xERERERERERUavjRSkiIiIiIiIiImp1vChFREREREREREStjheliIiIiIiIiIio1fGiFBERERERERERtTpelCIiIiIiIiIiolbHi1JERERERERERNTqeFGKiIgkkyZNgkwmg0wmg1wuh4ODAyIjI/HgwYMn6vfYsWOQyWS4e/fu0ym0CXJzcxEUFAQrKyvo6+ujS5cuCAwMxJUrV7TaJSYmwsPDA0qlEgYGBnjxxRexY8cOrTZ5eXmQyWRIT09v8vGXLFmC7t27w9DQEB06dMCIESOQmpqq1efkyZNhZ2cHhUKBbt26ISIiAhUVFQ32W1RUhKCgIDg5OUFHRwezZ89uck01PvnkE8hkslr75uTk4PXXX4eZmRmMjY0xduxY/Pzzz1ptli1bhsGDB8PAwAAmJiZ19l/zb+jhxxdffCG9vnfvXnh5eUnHGTRoEA4dOtRo3Xv37oW3tzc6duzY7N8HERFRS2KGYoZihno8vChFRERafH19UVRUhKtXr2Lu3LlYsmQJPv3007YuS9JY4ACAyspKeHl5Qa1WY+/evcjKysKuXbvg5uamFerWr1+PwMBADBkyBKmpqcjIyMD48eMRGhqKefPmPVGdTk5O2LBhAy5duoSTJ0/ihRdegLe3N27evAkAuHLlCjQaDbZs2YLvv/8ea9aswebNm7Fo0aIG+y0vL4eZmRk+/PBD9O7du9l1nTt3Dlu2bEGvXr20tpeWlsLb2xsymQzffvstTp06hYqKCvj7+0Oj0UjtKioqMGbMGLz33nsNHic2NhZFRUXS47XXXpNeO3HiBLy8vPD111/j/Pnz8PT0hL+/P9LS0hrss7S0FEOHDsXKlSubPW4iIqKWxgzFDMUM9RjE75BarRYAhFqtbutSiOg5VFZWJjIzM0VZWVlbl9JsISEhIjAwUGubl5eXcHd3F3fu3BHBwcHCxMREKBQK4evrK7Kzs6V2eXl54tVXXxUmJibCwMBAuLq6igMHDojc3FwBQOsREhIihBCiuLhYBAUFCQMDA2FhYSFWr14tPDw8xKxZs6R+bW1tRWRkpAgODhZKpVLaNzk5WQwdOlTo6+uLLl26iLCwMFFSUiKEECItLU0AEHl5efWONT8/X+jp6Yk5c+bUem3dunUCgDhz5owQQkhjSEtLa/5J/a+a954jR47U22bVqlXCzs6uyX0+eq4a8+uvvwpHR0eRlJRUa99Dhw4JHR0drffGu3fvCplMJpKSkmr1FRsbK1QqVZ3HASC++uqrJtclhBCurq5i6dKlTWr7NH4fD2vob5aZQRvPBxG1JGYoZqi6MEM17FnPUPykFBERNUihUKCiogKTJk3Cd999h4SEBKSkpEAIgZEjR6KyshIAMH36dJSXl+PEiRO4dOkSVq5cCSMjI9jY2ODLL78EAGRlZaGoqAhr164FAMyZMwenTp1CQkICkpKSkJycjAsXLtSqITo6Gr1790ZaWhoWL16MnJwc+Pr6YvTo0cjIyMCuXbtw8uRJzJgxAwBgZmYGHR0d7NmzB1VVVXWOa8+ePaisrKxzNm/atGkwMjJCfHz8UzmHFRUV2Lp1K1QqVYMzc2q1Gqampk/lmHWZPn06Ro0ahREjRtR6rby8HDKZDO3bt5e26evrQ0dHBydPnnysY3Xq1AkDBgzA9u3bIYSot61Go8Gvv/7aomMnIiJqbcxQT44Z6vnPULptXQAR0fNOCIGyB2VtcmyFrgIymeyx9hVC4JtvvsGhQ4fg5+eHffv24dSpUxg8eDAAIC4uDjY2Nti3bx/GjBmD/Px8jB49Gm5ubgAAe3t7qa+aN0pzc3PpO/S//vorPv/8c+zcuRPDhw8HUP1xZSsrq1q1vPLKK5g7d670fMqUKZgwYYL0fX5HR0esW7cOHh4e2LRpE6ytrbFu3Tp88MEHWLp0Kfr37w9PT09MmDBBqis7OxsqlQqWlpa1jieXy2Fvb4/s7OzHOnc1EhMTMX78eNy7dw+WlpZISkpCp06d6mx77do1rF+/HtHR0U90zPp88cUXuHDhAs6dO1fn6+7u7jA0NER4eDiWL18OIQQWLFiAqqoqFBUVNetYkZGReOWVV2BgYIDDhw/j//2//4eSkhLMnDmzzvbR0dEoKSnB2LFjmz0uIiJ6vj2LOYoZihmKGarpeFGKiKiFlT0ow8CdA9vk2KlBqTDQM2jWPomJiTAyMkJlZSU0Gg2CgoLwxhtvIDExEQMH/m8cHTt2hLOzMy5fvgwAmDlzJt577z0cPnwYI0aMwOjRo2t95/5hP/zwAyorKzFgwABpm0qlgrOzc622/fv313p+8eJFZGRkIC4uTtomhIBGo0Fubi5cXFwwffp0TJw4EceOHcOZM2ewe/duLF++HAkJCfDy8mrSuZDL5Y22iYuLw7Rp06TnBw8exLBhwwAAnp6eSE9Px61bt/DZZ59h7NixSE1Nhbm5uVYfBQUF8PX1xZgxYzB16lRpu5GRkfTz22+/jc2bNzdaT3JyMvz8/KTnW7ZswUsvvYRZs2YhKSkJ+vr6de5nZmaG3bt347333sO6deugo6ODt956C3379oWOTvM+WL148WLp5z59+qC0tBSffvppnYFq586dWLp0Kfbv3y+dl4bOKRER/b48SzmKGep/mKGYoZqKF6WIiEiLp6cnNm3aBLlcDisrK+jq6iIhIaHR/aZMmQIfHx8cOHAAhw8fxooVKxATE4OwsLAnrsnQ0FDreUlJCaZNm1bnG3TXrl2ln5VKJfz9/eHv74+oqCj4+PggKioKXl5ecHR0hFqtRmFhYa2ZxYqKCuTk5MDHx6fR2gICArSCprW1tVbdDg4OcHBwgLu7OxwdHbFt2zYsXLhQalNYWAhPT08MHjwYW7du1er74ZVRjI2NG60FqA6fD+/XuXNnfPPNN7hx4wb69u0rba+qqsKJEyewYcMGlJeXo127dvD29kZOTg5u3boFXV1dmJiYwMLCQmvG9nEMHDgQH3/8McrLy7U+2v7FF19gypQp2L17t9bH4Rs6p0RERL9VzFDMUMxQzceLUkRELUyhq0BqUGrjDVvo2M1VEwIe5uLiggcPHiA1NVX66Pnt27eRlZUFV1dXqZ2NjQ1CQ0MRGhqKhQsX4rPPPkNYWJg0W/bwvQns7e2hp6eHc+fOSSFIrVYjOzsbL730UoM19u3bF5mZmbXqbIhMJkP37t1x+vRpAMCbb76J8PBwxMTEICYmRqvt5s2bce/ePUycOLHRfpVKJZRKZZNq0Gg0KC8vl54XFBTA09MT/fr1Q2xsbK3ZtOaMr4ZCoai13/Dhw3Hp0iWtbX/84x/RvXt3hIeHo127dlqv1Xw8/ttvv8WNGzcQEBDQ7Doelp6ejg4dOmiFqfj4eLzzzjv44osvMGrUKK32zTmnRET0fHuWchQzFDMUM1Tz8aIUEVELk8lkzf4K3W+No6MjAgMDMXXqVGzZsgVKpRILFiyAtbU1AgMDAQCzZ8+Gn58fnJyc8Msvv+Do0aNwcXEBANja2kImkyExMREjR46EQqGAUqlESEgI5s+fD1NTU5ibmyMiIgI6OjqN3r8hPDwc7u7umDFjBqZMmQJDQ0NkZmYiKSkJGzZsQHp6OiIiIhAcHAxXV1fI5XIcP34c27dvR3h4OIDq2cBVq1Zh3rx50NfXR3BwMPT09LB//34sWrQIUVFR6Nmzp9Zxs7KyatXSo0cP6OnpaW0rLS3FsmXLEBAQAEtLS9y6dQsbN25EQUEBxowZA6A6TL388suwtbVFdHS0tMwxAFhYWDQ4/ppZvJKSEty8eRPp6emQy+Va4fZhSqWy1lgMDQ3RsWNHre2xsbFwcXGBmZkZUlJSMGvWLLz//vtaXwfIz8/HnTt3kJ+fj6qqKqkWBwcHGBkZ4Z///Cd+/vlnuLu7Q19fH0lJSVi+fLnWzVB37tyJkJAQrF27FgMHDsT169cBVIdBlUpV77hrjltYWAjgf78PCwuLRs8ZERE9m571HMUMVY0ZihmqXk9lHcBnDJczJqKW9LwtZ1yjZjljlUolFAqF8PHx0VrOeMaMGaJbt26iffv2wszMTAQHB4tbt25Jr0dGRgoLCwshk8kaXM54wIABYsGCBdJ+tra2Ys2aNbXqOXv2rPDy8hJGRkbC0NBQ9OrVSyxbtkwIIcTNmzfFzJkzRc+ePYWRkZFQKpXCzc1NREdHi6qqKq1+9u3bJ4YNGyYMDQ2l5Zbj4+O12tS1JHPN48cff6xVW1lZmXj99deFlZWVkMvlwtLSUgQEBIizZ89KbWJjY+vtszF17WNra9vofg+raynk8PBw0blzZ6GnpyccHR1FTEyM0Gg0Wm1CQkLqPP7Ro0eFEEIcPHhQ/OEPf5B+L7179xabN2/WOu8eHh519lHz76I+9Z2ziIiIZo39UU9jOePfC54PImpJzFDMUMxQv78MJROigfUFn1PFxcVQqVRQq9VN/n4pEVFT3b9/H7m5ubCzs6v3hohUt9LSUlhbWyMmJgaTJ09u9ePfuXMHw4cPh7GxMQ4ePAgDg2d3ZpaarqG/WWYGbTwfRNSSmKEeHzMUtYWnkaGadyt4IiKipygtLQ3x8fHIycnBhQsXMGHCBACQPs7e2kxNTXHkyBEMHz4cKSkpbVIDERERUWOYoeh5wXtKERFRm4qOjkZWVhbkcjn69euH5ORk6SaRbaFjx4746KOP2uz4RERERE3BDEXPA16UIiKiNtOnTx+cP3++rcsgIiIieqYwQ9Hzgl/fIyIiIiIiIiKiVseLUkRERERERERE1Op4UYqIiIiIiIiIiFodL0oREREREREREVGr40UpIiIiIiIiIiJqdbwoRURERERERERErY4XpYiIiIiIiIiIqNXxohQREUkmTZoEmUwGmUwGuVwOBwcHREZG4sGDB0/U77FjxyCTyXD37t2nU2gT5ObmIigoCFZWVtDX10eXLl0QGBiIK1euaLVLTEyEh4cHlEolDAwM8OKLL2LHjh1abfLy8iCTyZCent7k4y9ZsgTdu3eHoaEhOnTogBEjRiA1NVWrz8mTJ8POzg4KhQLdunVDREQEKioqGuy3qKgIQUFBcHJygo6ODmbPnt3kmgoKCvD222+jY8eOUCgUcHNzw3fffSe9/vDvv+bh6+ur1ccLL7xQq80nn3wivZ6VlQVPT0907twZ+vr6sLe3x4cffojKykqtfu7evYvp06fD0tIS7du3h5OTE77++usG69+7dy+8vb3RsWPHZv8+iIiIWhIzFDMUM9Tj0W3rAoiI6LfF19cXsbGxKC8vx9dff43p06dDT08PCxcubOvSAAAVFRWQy+UNtqmsrISXlxecnZ2xd+9eWFpa4qeffsLBgwe1Qt369esxe/ZshIeHY9OmTZDL5di/fz9CQ0Px73//G9HR0Y9dp5OTEzZs2AB7e3uUlZVhzZo18Pb2xrVr12BmZoYrV65Ao9Fgy5YtcHBwwL///W9MnToVpaWlDR63vLwcZmZm+PDDD7FmzZom1/PLL79gyJAh8PT0xMGDB2FmZoarV6+iQ4cOWu1qfv812rdvX6uvyMhITJ06VXquVCqln/X09DBx4kT07dsXJiYmuHjxIqZOnQqNRoPly5cDqP4denl5wdzcHHv27IG1tTX+85//wMTEpMExlJaWYujQoRg7dqzW8YmIiH4LmKGYoZihHoP4HVKr1QKAUKvVbV0KET2HysrKRGZmpigrK2vrUpotJCREBAYGam3z8vIS7u7u4s6dOyI4OFiYmJgIhUIhfH19RXZ2ttQuLy9PvPrqq8LExEQYGBgIV1dXceDAAZGbmysAaD1CQkKEEEIUFxeLoKAgYWBgICwsLMTq1auFh4eHmDVrltSvra2tiIyMFMHBwUKpVEr7Jicni6FDhwp9fX3RpUsXERYWJkpKSoQQQqSlpQkAIi8vr96x5ufnCz09PTFnzpxar61bt04AEGfOnBFCCGkMaWlpzT+p/1Xz3nPkyJF626xatUrY2dk1uc9Hz1VDwsPDxdChQxtsU9fv/1G2trZizZo1TSvwv95//32tY2/atEnY29uLioqKZvVT42n8Ph7W0N8sM4M2ng8iaknMUMxQdWGGer4zFL++R0TUwoQQ0Ny71yYPIcQT169QKFBRUYFJkybhu+++Q0JCAlJSUiCEwMiRI6WPFE+fPh3l5eU4ceIELl26hJUrV8LIyAg2Njb48ssvAVR/LLmoqAhr164FAMyZMwenTp1CQkICkpKSkJycjAsXLtSqITo6Gr1790ZaWhoWL16MnJwc+Pr6YvTo0cjIyMCuXbtw8uRJzJgxAwBgZmYGHR0d7NmzB1VVVXWOa8+ePaisrMS8efNqvTZt2jQYGRkhPj7+ic8fUD2rtXXrVqhUKvTu3bvedmq1Gqampk/lmI9KSEhA//79MWbMGJibm6NPnz747LPParU7duwYzM3N4ezsjPfeew+3b9+u1eaTTz5Bx44d0adPH3z66acNfjXh2rVr+Ne//gUPDw+tWgYNGoTp06ejc+fO6NmzJ5YvX17v74qIiH6/nuUcxQz15Jihnv8Mxa/vERG1MFFWhqy+/drk2M4XzkNmYPBY+woh8M033+DQoUPw8/PDvn37cOrUKQwePBgAEBcXBxsbG+zbtw9jxoxBfn4+Ro8eDTc3NwCAvb291FdNSDA3N5c+Xvzrr7/i888/x86dOzF8+HAAQGxsLKysrGrV8sorr2Du3LnS8ylTpmDChAnSvQAcHR2xbt06eHh4YNOmTbC2tsa6devwwQcfYOnSpejfvz88PT0xYcIEqa7s7GyoVCpYWlrWOp5cLoe9vT2ys7Mf69zVSExMxPjx43Hv3j1YWloiKSkJnTp1qrPttWvXsH79+if6uHtDfvjhB2zatAlz5szBokWLcO7cOcycORNyuRwhISEAqj92/sYbb8DOzg45OTlYtGgR/Pz8kJKSgnbt2gEAZs6cib59+8LU1BSnT5/GwoULUVRUhNWrV2sdb/Dgwbhw4QLKy8vx7rvvIjIyUquWb7/9FhMmTMDXX3+Na9eu4f/9v/+HyspKREREtMj4iYjo2fQs5ihmKGYoZqim4yeliIhIS2JiIoyMjKCvrw8/Pz+MGzcOkyZNgq6uLgYOHCi169ixI5ydnXH58mUA1W+0UVFRGDJkCCIiIpCRkdHgcX744QdUVlZiwIAB0jaVSgVnZ+dabfv376/1/OLFi9ixYweMjIykh4+PDzQaDXJzcwFUzzpev34dcXFxGDRoEHbv3o0ePXogKSmpyeeisfsuANXB8uE6kpOTpdc8PT2Rnp6O06dPw9fXF2PHjsWNGzdq9VFQUABfX1+MGTNG63v+D/cbGhrapJqTk5O19ouLiwMAaDQa9O3bF8uXL0efPn3w7rvvYurUqdi8ebO07/jx4xEQEAA3Nze89tprSExMxLlz53Ds2DGpzZw5c/Dyyy+jV69eCA0NRUxMDNavX4/y8nKtOnbt2oULFy5g586dOHDggFZQ1Gg0MDc3x9atW9GvXz+MGzcOf/rTn6RaGjqnREREv1XMUP/DDMUM1VT8pBQRUQuTKRRwvnC+zY7dXJ6entINK62srKCrq4uEhIRG95syZQp8fHxw4MABHD58GCtWrEBMTAzCwsIep3QthoaGWs9LSkowbdo0zJw5s1bbrl27Sj8rlUr4+/vD398fUVFR8PHxQVRUFLy8vODo6Ai1Wo3CwsJaM4sVFRXIycmBj49Po7UFBARoBU1ra2utuh0cHODg4AB3d3c4Ojpi27ZtWjc8LSwshKenJwYPHoytW7dq9f3wyijGxsaN1gJUh8+H9+vcuTMAwNLSEq6urlptXVxcpK8F1MXe3h6dOnXCtWvXpJnYRw0cOBAPHjxAXl6eVhi2sbEBALi6uqKqqgrvvvsu5s6di3bt2sHS0hJ6enrSzGFNLdevX0dFRUWD55SIiH5fnqUcxQzFDFWDGarpeFGKiKiFyWSyx/4KXVuoCQEPc3FxwYMHD5Camip99Pz27dvIysrSepO2sbFBaGgoQkNDsXDhQnz22WcICwuTZsse/r67vb099PT0cO7cOSkEqdVqZGdn46WXXmqwxr59+yIzM7NWnQ2RyWTo3r07Tp8+DQB48803ER4ejpiYGMTExGi13bx5M+7du4eJEyc22q9SqdRaOaUhGo1GazasoKAAnp6e6NevH2JjY6Gjo/0B5uaMr4ZCoahzvyFDhiArK0trW3Z2Nmxtbevt66effsLt27fr/Hh+jfT0dOjo6MDc3LzeNhqNBpWVldBoNGjXrh2GDBmCnTt3QqPRSGPOzs6GpaUl5HI55HJ5k88pERE9356lHMUMxQxVgxmq6XhRioiIGuXo6IjAwEBMnToVW7ZsgVKpxIIFC2BtbY3AwEAAwOzZs+Hn5wcnJyf88ssvOHr0KFxcXAAAtra2kMlkSExMxMiRI6FQKKBUKhESEoL58+fD1NQU5ubmiIiIgI6ODmQyWYP1hIeHw93dHTNmzMCUKVNgaGiIzMxMJCUlYcOGDUhPT0dERASCg4Ph6uoKuVyO48ePY/v27QgPDwdQPRu4atUqzJs3D/r6+ggODoaenh7279+PRYsWISoqCj179tQ67qOBBAB69OgBPT09rW2lpaVYtmwZAgICYGlpiVu3bmHjxo0oKCjAmDFjAFSHqZdffhm2traIjo7GzZs3pf0tLCwaHH/NLF5JSQlu3ryJ9PR0yOXyWrN4D3v//fcxePBgLF++HGPHjsXZs2exdetWaWaxpKQES5cuxejRo2FhYYGcnBx88MEHcHBwkGY7U1JSkJqaCk9PTyiVSqSkpOD999/H22+/LS2LHBcXBz09Pbi5uaF9+/b47rvvsHDhQowbN046T++99x42bNiAWbNmISwsDFevXsXy5cvrnLV92J07d5Cfn4/CwkIA//t9WFhYNHrOiIiI2gIzVDVmKGaoej2VdQCfMVzOmIha0vO2nHGNmuWMVSqVUCgUwsfHR2s54xkzZohu3bqJ9u3bCzMzMxEcHCxu3bolvR4ZGSksLCyETCZrcDnjAQMGiAULFkj71bd87tmzZ4WXl5cwMjIShoaGolevXmLZsmVCCCFu3rwpZs6cKXr27CmMjIyEUqkUbm5uIjo6WlRVVWn1s2/fPjFs2DBhaGgoLbccHx+v1aauJZlrHj/++GOt2srKysTrr78urKyshFwuF5aWliIgIECcPXtWahMbG1tvn42pax9bW9tG9/vnP/8pevbsKdq3by+6d+8utm7dKr1279494e3tLczMzISenp6wtbUVU6dOFdevX5fanD9/XgwcOFCoVCqhr68vXFxcxPLly8X9+/elNl988YXo27ev9HtxdXUVy5cvr/X3cPr0aTFw4EDRvn17YW9vL5YtWyYePHjQYP31nbOIiIhGx96Qp7Gc8e8FzwcRtSRmKGYoZqjfX4aSCfEU1gt/xhQXF0OlUkGtVjf5+6VERE11//595Obmws7ODvr6+m1dzjOltLQU1tbWiImJweTJk1v9+Hfu3MHw4cNhbGyMgwcPwuAZ+boAPZmG/maZGbTxfBBRS2KGenzMUNQWnkaG4up7RETUZtLS0hAfH4+cnBxcuHABEyZMAADp4+ytzdTUFEeOHMHw4cORkpLSJjUQERERNYYZip4XvKcUERG1qejoaGRlZUEul6Nfv35ITk5Gp06d2qyejh074qOPPmqz4xMRERE1BTMUPQ94UYqIiNpMnz59cP582yzzTERERPSsYoai5wW/vkdERERERERERK2OF6WIiIiIiIiIiKjV8aIUERERERERERG1Ol6UIiIiIiIiIiKiVseLUkRERERERERE1Op4UYqIiIiIiIiIiFodL0oREREREREREVGr40UpIiKSTJo0CTKZDDKZDHK5HA4ODoiMjMSDBw+eqN9jx45BJpPh7t27T6fQJsjNzUVQUBCsrKygr6+PLl26IDAwEFeuXNFql5iYCA8PDyiVShgYGODFF1/Ejh07tNrk5eVBJpMhPT29ycdfsmQJunfvDkNDQ3To0AEjRoxAamqqVp+TJ0+GnZ0dFAoFunXrhoiICFRUVDTYb1FREYKCguDk5AQdHR3Mnj27SfVUVVVh8eLFWsf7+OOPIYSQ2uzduxfe3t7o2LFjvePNycnB66+/DjMzMxgbG2Ps2LH4+eefmz2ujIwMDBs2DPr6+rCxscGqVasaHcOJEyfg7+8PKysryGQy7Nu3r0ljJyIiamnMUMxQzFCPp8UvSm3cuBEvvPAC9PX1MXDgQJw9e7bB9rt370b37t2hr68PNzc3fP311/W2DQ0NhUwmw5///OenXDUR0e+Xr68vioqKcPXqVcydOxdLlizBp59+2tZlSRoLHABQWVkJLy8vqNVq7N27F1lZWdi1axfc3Ny0Qt369esRGBiIIUOGIDU1FRkZGRg/fjxCQ0Mxb968J6rTyckJGzZswKVLl3Dy5Em88MIL8Pb2xs2bNwEAV65cgUajwZYtW/D9999jzZo12Lx5MxYtWtRgv+Xl5TAzM8OHH36I3r17N7melStXYtOmTdiwYQMuX76MlStXYtWqVVi/fr3UprS0FEOHDsXKlSvr7KO0tBTe3t6QyWT49ttvcerUKVRUVMDf3x8ajabJ4youLoa3tzdsbW1x/vx5fPrpp1iyZAm2bt3a4BhKS0vRu3dvbNy4scnjftYxRxERPTuYoZihmKEeg2hBX3zxhZDL5WL79u3i+++/F1OnThUmJibi559/rrP9qVOnRLt27cSqVatEZmam+PDDD4Wenp64dOlSrbZ79+4VvXv3FlZWVmLNmjXNqkutVgsAQq1WP86wiIgaVFZWJjIzM0VZWVlbl9JsISEhIjAwUGubl5eXcHd3F3fu3BHBwcHCxMREKBQK4evrK7Kzs6V2eXl54tVXXxUmJibCwMBAuLq6igMHDojc3FwBQOsREhIihBCiuLhYBAUFCQMDA2FhYSFWr14tPDw8xKxZs6R+bW1tRWRkpAgODhZKpVLaNzk5WQwdOlTo6+uLLl26iLCwMFFSUiKEECItLU0AEHl5efWONT8/X+jp6Yk5c+bUem3dunUCgDhz5owQQkhjSEtLa/5J/a+a954jR47U22bVqlXCzs6uyX0+eq4aMmrUKPHOO+9obXvjjTfEhAkTarWtb7yHDh0SOjo6Wu+fd+/eFTKZTCQlJdV77EfH9Ze//EV06NBBlJeXS9vCw8OFs7Nzk8YihBAAxFdffdXk9g1p6G+2LTPDbzFHMUMRUUtihmKGqgsz1POdoVr0k1KrV6/G1KlT8cc//hGurq7YvHkzDAwMsH379jrbr127Fr6+vpg/fz5cXFzw8ccfo2/fvtiwYYNWu4KCAoSFhSEuLg56enotOQQioicmhEBleVWbPMRDHyt+XAqFAhUVFZg0aRK+++47JCQkICUlBUIIjBw5EpWVlQCA6dOno7y8HCdOnMClS5ewcuVKGBkZwcbGBl9++SUAICsrC0VFRVi7di0AYM6cOTh16hQSEhKQlJSE5ORkXLhwoVYN0dHR6N27N9LS0rB48WLk5OTA19cXo0ePRkZGBnbt2oWTJ09ixowZAAAzMzPo6Ohgz549qKqqqnNce/bsQWVlZZ2zedOmTYORkRHi4+Of+PwB1TOTW7duhUqlanBmTq1Ww9TU9Kkc81GDBw/GN998g+zsbADAxYsXcfLkSfj5+TW5j/LycshkMrRv317apq+vDx0dHZw8ebLe/R4dV0pKCl566SXI5XJpm4+PD7KysvDLL780Z1jPNeYoIqJnO0cxQz05ZqjnP0PptlTHFRUVOH/+PBYuXCht09HRwYgRI5CSklLnPikpKZgzZ47WNh8fH63vO2o0GgQHB2P+/Pno0aNHi9RORPQ0PajQYOus421y7HfXekCvfbvH2lcIgW+++QaHDh2Cn58f9u3bh1OnTmHw4MEAgLi4ONjY2GDfvn0YM2YM8vPzMXr0aLi5uQEA7O3tpb5q3kzNzc1hYmICAPj111/x+eefY+fOnRg+fDgAIDY2FlZWVrVqeeWVVzB37lzp+ZQpUzBhwgTpXgCOjo5Yt24dPDw8sGnTJlhbW2PdunX44IMPsHTpUvTv3x+enp6YMGGCVFd2djZUKhUsLS1rHU8ul8Pe3l4KH48rMTER48ePx71792BpaYmkpCR06tSpzrbXrl3D+vXrER0d/UTHrM+CBQtQXFyM7t27o127dqiqqsKyZcswYcKEJvfh7u4OQ0NDhIeHY/ny5RBCYMGCBaiqqkJRUVGd+9Q1ruvXr8POzk6rXefOnaXXOnTo8BgjfL4wRxERVXsWcxQzFDPUo5ih6tdin5S6desWqqqqpBNUo3Pnzrh+/Xqd+1y/fr3R9itXroSuri5mzpzZ5FrKy8tRXFys9SAiorolJibCyMgI+vr68PPzw7hx4zBp0iTo6upi4MCBUruOHTvC2dkZly9fBgDMnDkTUVFRGDJkCCIiIpCRkdHgcX744QdUVlZiwIAB0jaVSgVnZ+dabfv376/1/OLFi9ixYweMjIykh4+PDzQaDXJzcwFUzzpev34dcXFxGDRoEHbv3o0ePXogKSmpyefi4Vmo+sTFxWnVkZycLL3m6emJ9PR0nD59Gr6+vhg7dixu3LhRq4+CggL4+vpizJgxmDp1qrT94X5DQ0ObVHNycrLWfnFxcQCAf/zjH4iLi8POnTtx4cIFfP7554iOjsbnn3/epH6B6tnT3bt345///CeMjIygUqlw9+5d9O3bFzo6tSNFfeN63DH8nvxWchQzFBFR0zFD/Q8zlDZmqPq12CelWsL58+exdu1aXLhwATKZrMn7rVixAkuXLm3ByoiI6qcr18G7az3a7NjN5enpiU2bNkEul8PKygq6urpISEhodL8pU6bAx8cHBw4cwOHDh7FixQrExMQgLCzscUrXYmhoqPW8pKQE06ZNq/N/rLt27Sr9rFQq4e/vD39/f0RFRcHHxwdRUVHw8vKCo6Mj1Go1CgsLa80sVlRUICcnBz4+Po3WFhAQoBU0ra2ttep2cHCAg4MD3N3d4ejoiG3btml9+qWwsBCenp4YPHhwrZtUPrxyi7GxcaO1ANXh8+H9ai5SzJ8/HwsWLMD48eMBAG5ubvjPf/6DFStWICQkpEl9A4C3tzdycnJw69Yt6OrqwsTEBBYWFlqzuo2Ny8LCQmu1GQDScwsLC7zwwgt1joGezOPkKGYoImprz1KOYoZihmoIM1TdWuyTUp06dUK7du3qPGEWFhZ17lPfCa5pn5ycjBs3bqBr167Q1dWFrq4u/vOf/2Du3Ll44YUX6q1l4cKFUKvV0uPHH398ssERETWDTCaDXvt2bfJozgX8GjUhoOa/tQDg4uKCBw8eaC3He/v2bWRlZcHV1VXaZmNjg9DQUOzduxdz587FZ599BuB/s2UP35vA3t4eenp6OHfunLRNrVY36ePeffv2RWZmphRWHn7UNzMnk8nQvXt3lJaWAgDefPNN6OrqIiYmplbbzZs34969e5g4cWKjtSiVSq3jKxSKettqNBqUl5dLzwsKCvDyyy+jX79+iI2NrTVT9nC/5ubmjdYCVN+/4uH9lEolAODevXu1+m/Xrp204ktzderUCSYmJvj2229x48YNBAQENHlcgwYNwokTJ6R7aQBAUlISnJ2d0aFDh3rH8HvyW8lRzFBE1NaepRzFDMUM1RTMUNpa7JNScrkc/fr1wzfffIPXXnsNQPU/pG+++Ua6idqjBg0ahG+++Ub6fitQfYIHDRoEAAgODsaIESO09vHx8UFwcDD++Mc/1ltL+/bttW4oRkREzePo6IjAwEBMnToVW7ZsgVKpxIIFC2BtbY3AwEAAwOzZs+Hn5wcnJyf88ssvOHr0KFxcXAAAtra2kMlkSExMxMiRI6FQKKBUKhESEoL58+fD1NQU5ubmiIiIgI6OTqMhMDw8HO7u7pgxYwamTJkCQ0NDZGZmIikpCRs2bEB6ejoiIiIQHBwMV1dXyOVyHD9+HNu3b0d4eDiA6tnAVatWYd68edDX10dwcDD09PSwf/9+LFq0CFFRUejZs6fWcbOysmrV0qNHj1o3iy4tLcWyZcsQEBAAS0tL3Lp1Cxs3bkRBQQHGjBkD4H+hw9bWFtHR0dIyxwDqvehQo2YGrKSkBDdv3kR6ejrkcrlWuH2Uv78/li1bhq5du6JHjx5IS0vD6tWr8c4770ht7ty5g/z8fBQWFmqN18LCQqopNjYWLi4uMDMzQ0pKCmbNmoX3339f+spAU8YVFBSEpUuXYvLkyQgPD8e///1vrF27FmvWrGlw3CUlJbh27Zr0PDc3F+np6TA1NdWa3X0e/FZyFDMUEdGTYYaqxgzFDFWvp7IOYD2++OIL0b59e7Fjxw6RmZkp3n33XWFiYiKuX78uhBAiODhYLFiwQGp/6tQpoaurK6Kjo8Xly5dFREREvUsZ17C1tW3WUsZCcDljImpZz9tyxjVqljNWqVRCoVAIHx8freWMZ8yYIbp16ybat28vzMzMRHBwsLh165b0emRkpLCwsBAymazB5YwHDBig9d5Q33/nz549K7y8vISRkZEwNDQUvXr1EsuWLRNCCHHz5k0xc+ZM0bNnT2FkZCSUSqVwc3MT0dHRoqqqSqufffv2iWHDhglDQ0NpueX4+HitNnUtyVzz+PHHH2vVVlZWJl5//XVhZWUl5HK5sLS0FAEBAeLs2bNSm9jY2Hr7bExd+9ja2ja4T3FxsZg1a5bo2rWr0NfXF/b29uJPf/qT1pLC9dUUEREhtQkPDxedO3cWenp6wtHRUcTExAiNRtPscV28eFEMHTpUtG/fXlhbW4tPPvmk0XEfPXq0zn5r/j09rqexnHFL+C3mKGYoImpJzFDMUMxQv78M1aIXpYQQYv369aJr165CLpeLAQMGiDNnzkiveXh41DoJ//jHP4STk5OQy+WiR48e4sCBAw32z4tSRPRb8ywHqrZWUlIiVCqV+Otf/9omx799+7b4wx/+IF566SVRWlraJjVQ6/utXpQS4reXo9r6fBDR840Z6vExQ1FbeBoZSiaEEI/zCatnWXFxMVQqFdRqdZNvekZE1FT3799Hbm4u7OzsoK+v39bl/KalpaXhypUrGDBgANRqNSIjI3Hs2DFcu3at3mV/W9rt27exceNGDBkyRFpmmZ5vDf3NMjNo4/kgopbEDNV0zFD0W/A0MtQztfoeERE9f6Kjo5GVlSXdQyc5ObnNwhRQvUzzRx991GbHJyIiImoKZih6HvCiFBERtZk+ffrg/PnzbV0GERER0TOFGYqeFzqNNyEiIiIiIiIiInq6eFGKiIiIiIiIiIhaHS9KERERERERERFRq+NFKSIiIiIiIiIianW8KEVERERERERERK2OF6WIiIiIiIiIiKjV8aIUERERERERERG1Ol6UIiIiyaRJkyCTySCTySCXy+Hg4IDIyEg8ePDgifo9duwYZDIZ7t69+3QKbYLc3FwEBQXBysoK+vr66NKlCwIDA3HlyhWtdomJifDw8IBSqYSBgQFefPFF7NixQ6tNXl4eZDIZ0tPTm3z8JUuWoHv37jA0NESHDh0wYsQIpKamavU5efJk2NnZQaFQoFu3boiIiEBFRUWD/RYVFSEoKAhOTk7Q0dHB7Nmzm1TPr7/+itmzZ8PW1hYKhQKDBw/GuXPntNqUlJRgxowZ6NKlCxQKBVxdXbF582atNtOmTUO3bt2gUChgZmZW5znNz8/HqFGjYGBgAHNzc8yfP7/ef0OnTp2Crq4u/vCHPzQ6hr1798Lb2xsdO3Zs9u+DiIioJTFDMUMxQz0eXpQiIiItvr6+KCoqwtWrVzF37lwsWbIEn376aVuXJWkscABAZWUlvLy8oFarsXfvXmRlZWHXrl1wc3PTCnXr169HYGAghgwZgtTUVGRkZGD8+PEIDQ3FvHnznqhOJycnbNiwAZcuXcLJkyfxwgsvwNvbGzdv3gQAXLlyBRqNBlu2bMH333+PNWvWYPPmzVi0aFGD/ZaXl8PMzAwffvghevfu3eR6pkyZgqSkJPztb3/DpUuX4O3tjREjRqCgoEBqM2fOHPzrX//C3//+d1y+fBmzZ8/GjBkzkJCQILXp168fYmNjcfnyZRw6dAhCCHh7e6OqqgoAUFVVhVGjRqGiogKnT5/G559/jh07duCjjz6qVdPdu3cxceJEDB8+vEljKC0txdChQ7Fy5comj5uIiKi1MEMxQzFDPQbxO6RWqwUAoVar27oUInoOlZWViczMTFFWVtbWpTRbSEiICAwM1Nrm5eUl3N3dxZ07d0RwcLAwMTERCoVC+Pr6iuzsbKldXl6eePXVV4WJiYkwMDAQrq6u4sCBAyI3N1cA0HqEhIQIIYQoLi4WQUFBwsDAQFhYWIjVq1cLDw8PMWvWLKlfW1tbERkZKYKDg4VSqZT2TU5OFkOHDhX6+vqiS5cuIiwsTJSUlAghhEhLSxMARF5eXr1jzc/PF3p6emLOnDm1Xlu3bp0AIM6cOSOEENIY0tLSmn9S/6vmvefIkSP1tlm1apWws7Nrcp+Pnqv63Lt3T7Rr104kJiZqbe/bt6/405/+JD3v0aOHiIyMbLDNoy5evCgAiGvXrgkhhPj666+Fjo6OuH79utRm06ZNwtjYWJSXl2vtO27cOPHhhx+KiIgI0bt370bHUeNp/D4e1tDfLDODNp4PImpJzFDMUHVhhnq+MxQ/KUVE1MKEEKi8f79NHkKIJ65foVCgoqICkyZNwnfffYeEhASkpKRACIGRI0eisrISADB9+nSUl5fjxIkTuHTpElauXAkjIyPY2Njgyy+/BABkZWWhqKgIa9euBVA9q3Tq1CkkJCQgKSkJycnJuHDhQq0aoqOj0bt3b6SlpWHx4sXIycmBr68vRo8ejYyMDOzatQsnT57EjBkzAABmZmbQ0dHBnj17pNmnR+3ZsweVlZV1zuZNmzYNRkZGiI+Pf+LzB1TPTG7duhUqlarBmTm1Wg1TU9OncsyHPXjwAFVVVdDX19farlAocPLkSen54MGDkZCQgIKCAgghcPToUWRnZ8Pb27vOfktLSxEbGws7OzvY2NgAAFJSUuDm5obOnTtL7Xx8fFBcXIzvv/9e2hYbG4sffvgBERERT3OoRET0nHmWcxQz1JNjhnr+M5RuWxdARPS8e1BejnUhb7bJsWd+vgd6j7yJNpUQAt988w0OHToEPz8/7Nu3D6dOncLgwYMBAHFxcbCxscG+ffswZswY5OfnY/To0XBzcwMA2NvbS33VhARzc3OYmJgAqP5+/ueff46dO3dKHz2OjY2FlZVVrVpeeeUVzJ07V3o+ZcoUTJgwQboXgKOjI9atWwcPDw9s2rQJ1tbWWLduHT744AMsXboU/fv3h6enJyZMmCDVlZ2dDZVKBUtLy1rHk8vlsLe3R3Z29mOduxqJiYkYP3487t27B0tLSyQlJaFTp051tr127RrWr1+P6OjoJzpmXZRKJQYNGoSPP/4YLi4u6Ny5M+Lj45GSkgIHBwep3fr16/Huu++iS5cu0NXVhY6ODj777DO89NJLWv395S9/wQcffIDS0lI4OzsjKSkJcrkcAHD9+nWtMAVAen79+nUAwNWrV7FgwQIkJydDV5dRhIiI6vcs5ihmKGYoZqim4yeliIhIS2JiIoyMjKCvrw8/Pz+MGzcOkyZNgq6uLgYOHCi169ixI5ydnXH58mUAwMyZMxEVFYUhQ4YgIiICGRkZDR7nhx9+QGVlJQYMGCBtU6lUcHZ2rtW2f//+Ws8vXryIHTt2wMjISHr4+PhAo9EgNzcXQPWs4/Xr1xEXF4dBgwZh9+7d6NGjB5KSkpp8LmpCQkPi4uK06khOTpZe8/T0RHp6Ok6fPg1fX1+MHTsWN27cqNVHQUEBfH19MWbMGEydOlXa/nC/oaGhTao5OTlZa7+4uDgAwN/+9jcIIWBtbY327dtj3bp1eOutt6Cj878osH79epw5cwYJCQk4f/48YmJiMH36dBw5ckTrGBMmTEBaWhqOHz8OJycnjB07Fvfv329SfVVVVQgKCsLSpUvh5ORUZ5uGzikREdFvFTPU/zBDMUM11fNxaY2I6DdMt317zPx8T5sdu7k8PT2xadMmyOVyWFlZQVdXV+smjfWZMmUKfHx8cODAARw+fBgrVqxATEwMwsLCHqd0LYaGhlrPS0pKMG3aNMycObNW265du0o/K5VK+Pv7w9/fH1FRUfDx8UFUVBS8vLzg6OgItVqNwsLCWjOLFRUVyMnJgY+PT6O1BQQEaAVNa2trrbodHBzg4OAAd3d3ODo6Ytu2bVi4cKHUprCwEJ6enhg8eDC2bt2q1ffDK6MYGxs3WgtQHT4f3q9mhq1bt244fvw4SktLUVxcDEtLS4wbN06a9SwrK8OiRYvw1VdfYdSoUQCAXr16IT09HdHR0RgxYoTUp0qlgkqlgqOjI9zd3dGhQwd89dVXeOutt2BhYYGzZ89q1fTzzz8DACwsLPDrr7/iu+++Q1pamvRVAY1GAyEEdHV1cfjw4QbPKRER/b48SzmKGYoZihmq+XhRioiohclkssf+Cl1bqAkBD3NxccGDBw+QmpoqffT89u3byMrKgqurq9TOxsYGoaGhCA0NxcKFC/HZZ58hLCxMmi17+N4E9vb20NPTw7lz56QQpFarkZ2dXeujzo/q27cvMjMza9XZEJlMhu7du+P06dMAgDfffBPh4eGIiYlBTEyMVtvNmzfj3r17mDhxYqP9KpVKKJXKJtWg0WhQXl4uPS8oKICnp6e0GsvDM24AmjW+GgqFosH9DA0NYWhoiF9++QWHDh3CqlWrAFSvtlNZWVmrhnbt2kGj0dTbnxACQghpXIMGDcKyZctw48YNmJubAwCSkpJgbGwMV1dX6Onp4dKlS1p9/OUvf8G3336LPXv2wM7ODoaGhk0+p0RE9Hx7lnIUMxQz1MOYoZqGF6WIiKhRjo6OCAwMxNSpU7FlyxYolUosWLAA1tbWCAwMBADMnj0bfn5+cHJywi+//IKjR4/CxcUFAGBrawuZTIbExESMHDkSCoUCSqUSISEhmD9/PkxNTWFubo6IiAjo6OhAJpM1WE94eDjc3d0xY8YMTJkyBYaGhsjMzERSUhI2bNiA9PR0REREIDg4GK6urpDL5Th+/Di2b9+O8PBwANWzgatWrcK8efOgr6+P4OBg6OnpYf/+/Vi0aBGioqLQs2dPreNmZWXVqqVHjx7Q09PT2lZaWoply5YhICAAlpaWuHXrFjZu3IiCggKMGTMGQHWYevnll2Fra4vo6GhpmWOgejasITWzeCUlJbh58ybS09Mhl8u1wu2japYednZ2xrVr1zB//nx0794df/zjHwFUzyJ6eHhg/vz5UCgUsLW1xfHjx/F///d/WL16NYDqrwvs2rUL3t7eMDMzw08//YRPPvkECoUCI0eOBAB4e3vD1dUVwcHBWLVqFa5fv44PP/wQ06dPR/v/zjg/el7Nzc2hr69fa/uj7ty5g/z8fBQWFgL43+/DwsKi0XNGRETUFpihqjFDMUPV62ksA/is4XLGRNSSnrfljGvULGesUqmEQqEQPj4+WssZz5gxQ3Tr1k20b99emJmZieDgYHHr1i3p9cjISGFhYSFkMlmDyxkPGDBALFiwQNrP1tZWrFmzplY9Z8+eFV5eXsLIyEgYGhqKXr16iWXLlgkhhLh586aYOXOm6NmzpzAyMhJKpVK4ubmJ6OhoUVVVpdXPvn37xLBhw4ShoaG03HJ8fLxWm7qWZK55/Pjjj7VqKysrE6+//rqwsrIScrlcWFpaioCAAHH27FmpTWxsbL19NqaufWxtbRvcZ9euXcLe3l7I5XJhYWEhpk+fLu7evavVpqioSEyaNElYWVkJfX194ezsLGJiYoRGoxFCCFFQUCD8/PyEubm50NPTE126dBFBQUHiypUrWv3k5eUJPz8/oVAoRKdOncTcuXNFZWVlvbU1dTnj+s5ZREREo/s25GksZ/x7wfNBRC2JGYoZihnq95ehZEI8hfXCnzHFxcVQqVRQq9VN/n4pEVFT3b9/H7m5ubCzs6u1fCw1rLS0FNbW1oiJicHkyZNb/fh37tzB8OHDYWxsjIMHD8LAwKDVa6DW19DfLDODNp4PImpJzFCPjxmK2sLTyFBcfY+IiNpMWloa4uPjkZOTgwsXLmDChAkAIH2cvbWZmpriyJEjGD58OFJSUtqkBiIiIqLGMEPR84L3lCIiojYVHR2NrKwsyOVy9OvXD8nJyejUqVOb1dOxY0d89NFHbXZ8IiIioqZghqLnAS9KERFRm+nTpw/Onz/f1mUQERERPVOYoeh5wa/vERERERERERFRq+NFKSIiIiIiIiIianW8KEVERERERERERK2OF6WIiIiIiIiIiKjV8aIUERERERERERG1Ol6UIiIiIiIiIiKiVseLUkRERERERERE1Op4UYqIiCSTJk2CTCaDTCaDXC6Hg4MDIiMj8eDBgyfq99ixY5DJZLh79+7TKbQJcnNzERQUBCsrK+jr66NLly4IDAzElStXtNolJibCw8MDSqUSBgYGePHFF7Fjxw6tNnl5eZDJZEhPT2/y8ZcsWYLu3bvD0NAQHTp0wIgRI5CamqrV5+TJk2FnZweFQoFu3bohIiICFRUVDfZbVFSEoKAgODk5QUdHB7Nnz25SPSdOnIC/vz+srKwgk8mwb9++Wm327t0Lb29vdOzYsdHxCiHg5+dXb187duxAr169oK+vD3Nzc0yfPl3r9UOHDsHd3R1KpRJmZmYYPXo08vLytNrExcWhd+/eMDAwgKWlJd555x3cvn37icdJRET0tDFDMUMxQz0eXpQiIiItvr6+KCoqwtWrVzF37lwsWbIEn376aVuXJWkscABAZWUlvLy8oFarsXfvXmRlZWHXrl1wc3PTCnXr169HYGAghgwZgtTUVGRkZGD8+PEIDQ3FvHnznqhOJycnbNiwAZcuXcLJkyfxwgsvwNvbGzdv3gQAXLlyBRqNBlu2bMH333+PNWvWYPPmzVi0aFGD/ZaXl8PMzAwffvghevfu3eR6SktL0bt3b2zcuLHBNkOHDsXKlSsb7e/Pf/4zZDJZna+tXr0af/rTn7BgwQJ8//33OHLkCHx8fKTXc3NzERgYiFdeeQXp6ek4dOgQbt26hTfeeENqc+rUKUycOBGTJ0/G999/j927d+Ps2bOYOnXqE4+TiIioJTBDMUMxQz0G8TukVqsFAKFWq9u6FCJ6DpWVlYnMzExRVlbW1qU0W0hIiAgMDNTa5uXlJdzd3cWdO3dEcHCwMDExEQqFQvj6+ors7GypXV5ennj11VeFiYmJMDAwEK6uruLAgQMiNzdXANB6hISECCGEKC4uFkFBQcLAwEBYWFiI1atXCw8PDzFr1iypX1tbWxEZGSmCg4OFUqmU9k1OThZDhw4V+vr6okuXLiIsLEyUlJQIIYRIS0sTAEReXl69Y83Pzxd6enpizpw5tV5bt26dACDOnDkjhBDSGNLS0pp/Uv+r5r3nyJEj9bZZtWqVsLOza3Kfj56rpgIgvvrqq3pfb2y8aWlpwtraWhQVFdXq686dO0KhUDQ4zt27dwtdXV1RVVUlbUtISBAymUxUVFQIIYT49NNPhb29vdZ+69atE9bW1o0P8L8aG2eNhv5mmRm08XwQUUtihmKGqgsz1P88jxmKn5QiImphQghoKqra5FH9nvJkFAoFKioqMGnSJHz33XdISEhASkoKhBAYOXIkKisrAQDTp09HeXk5Tpw4gUuXLmHlypUwMjKCjY0NvvzySwBAVlYWioqKsHbtWgDAnDlzcOrUKSQkJCApKQnJycm4cOFCrRqio6PRu3dvpKWlYfHixcjJyYGvry9Gjx6NjIwM7Nq1CydPnsSMGTMAAGZmZtDR0cGePXtQVVVV57j27NmDysrKOmfzpk2bBiMjI8THxz/x+QOqZya3bt0KlUrV4MycWq2GqanpUzlmS7l37x6CgoKwceNGWFhY1Ho9KSkJGo0GBQUFcHFxQZcuXTB27Fj8+OOPUpt+/fpBR0cHsbGxqKqqglqtxt/+9jeMGDECenp6AIBBgwbhxx9/xNdffw0hBH7++Wfs2bMHI0eObLWxEhFR23uWcxQz1JNjhnr+M5RuWxdARPS8E5UaFH50uk2ObRU5GDJ5u8faVwiBb775BocOHYKfnx/27duHU6dOYfDgwQCqv6tuY2ODffv2YcyYMcjPz8fo0aPh5uYGALC3t5f6qgkJ5ubmMDExAQD8+uuv+Pzzz7Fz504MHz4cABAbGwsrK6tatbzyyiuYO3eu9HzKlCmYMGGCdC8AR0dHrFu3Dh4eHti0aROsra2xbt06fPDBB1i6dCn69+8PT09PTJgwQaorOzsbKpUKlpaWtY4nl8thb2+P7Ozsxzp3NRITEzF+/Hjcu3cPlpaWSEpKQqdOnepse+3aNaxfvx7R0dFPdMyW9v7772Pw4MEIDAys8/UffvgBGo0Gy5cvx9q1a6FSqfDhhx/Cy8sLGRkZkMvlsLOzw+HDhzF27FhMmzYNVVVVGDRoEL7++mupnyFDhiAuLg7jxo3D/fv38eDBA/j7+/NreUREvzPPYo5ihmKGqgszVN34SSkiItKSmJgIIyMj6Ovrw8/PD+PGjcOkSZOgq6uLgQMHSu06duwIZ2dnXL58GQAwc+ZMREVFYciQIYiIiEBGRkaDx/nhhx9QWVmJAQMGSNtUKhWcnZ1rte3fv7/W84sXL2LHjh0wMjKSHj4+PtBoNMjNzQVQPet4/fp1xMXFYdCgQdi9ezd69OiBpKSkJp8LuVzeaJu4uDitOpKTk6XXPD09kZ6ejtOnT8PX1xdjx47FjRs3avVRUFAAX19fjBkzRuv7/g/3Gxoa2qSak5OTtfaLi4tr0n5NkZCQgG+//RZ//vOf622j0WhQWVmJdevWwcfHB+7u7oiPj8fVq1dx9OhRAMD169cxdepUhISE4Ny5czh+/DjkcjnefPNNaVY6MzMTs2bNwkcffYTz58/jX//6F/Ly8qTz0JLjJCIiehzMUP/DDKWNGap+/KQUEVELk+npwCpycJsdu7k8PT2xadMmyOVyWFlZQVdXFwkJCY3uN2XKFPj4+ODAgQM4fPgwVqxYgZiYGISFhT1O6VoMDQ21npeUlGDatGmYOXNmrbZdu3aVflYqlfD394e/vz+ioqLg4+ODqKgoeHl5wdHREWq1GoWFhbVmFisqKpCTk6N1Y8n6BAQEaAVNa2trrbodHBzg4OAAd3d3ODo6Ytu2bVi4cKHUprCwEJ6enhg8eDC2bt2q1ffDK7cYGxs3WgtQHT4f3q9z585N2q8pvv32W+Tk5EgztTVGjx6NYcOG4dixY9Ksqaurq/S6mZkZOnXqhPz8fADAxo0boVKpsGrVKqnN3//+d9jY2CA1NRXu7u5YsWIFhgwZgvnz5wMAevXqBUNDQwwbNgxRUVEtOk4iIvrteJZyFDMUM1R9mKHqx4tSREQtTCaTPfZX6NpCTQh4mIuLCx48eIDU1FTpo+e3b99GVlaW1hunjY0NQkNDERoaioULF+Kzzz5DWFiYNFv28L0J7O3toaenh3PnzkkhSK1WIzs7Gy+99FKDNfbt2xeZmZm16myITCZD9+7dcfp09VcA3nzzTYSHhyMmJgYxMTFabTdv3ox79+5h4sSJjfarVCqhVCqbVINGo0F5ebn0vKCgAJ6enujXrx9iY2Oho6MdfpszvhoKheKx9muKBQsWYMqUKVrb3NzcsGbNGvj7+wOo/sg4UH3viy5dugAA7ty5g1u3bsHW1hZA9T0VHh1ru3bVfyMajUZqo6urW2cbIUSLjpOIiH47nqUcxQzFDFUfZqj68aIUERE1ytHREYGBgZg6dSq2bNkCpVKJBQsWwNraWvpe/OzZs+Hn5wcnJyf88ssvOHr0KFxcXAAAtra2kMlkSExMxMiRI6FQKKBUKhESEoL58+fD1NQU5ubmiIiIgI6OTr3L5NYIDw+Hu7s7ZsyYgSlTpsDQ0BCZmZlISkrChg0bkJ6ejoiICAQHB8PV1RVyuRzHjx/H9u3bER4eDqB6NnDVqlWYN28e9PX1ERwcDD09Pezfvx+LFi1CVFQUevbsqXXcrKysWrX06NFDurFkjdLSUixbtgwBAQGwtLTErVu3sHHjRhQUFGDMmDEAqsPUyy+/DFtbW0RHR0vLHAOo8+aXD6uZ3SopKcHNmzeRnp4OuVyuFW4fVVJSgmvXrknPc3NzkZ6eDlNTUynQ3rlzB/n5+SgsLNQar4WFhdbjUV27doWdnR2A6mWcAwMDMWvWLGzduhXGxsZYuHAhunfvDk9PTwDAqFGjsGbNGkRGRuKtt97Cr7/+ikWLFsHW1hZ9+vQBAPj7+2Pq1KnYtGkTfHx8UFRUhNmzZ2PAgAF13jOjOeMkIiJqLcxQ1ZihmKHq1eQ1AZ8jXM6YiFrS87accY2a5YxVKpVQKBTCx8dHaznjGTNmiG7duon27dsLMzMzERwcLG7duiW9HhkZKSwsLIRMJmtwOeMBAwaIBQsWSPvZ2tqKNWvW1Krn7NmzwsvLSxgZGQlDQ0PRq1cvsWzZMiGEEDdv3hQzZ84UPXv2FEZGRkKpVAo3NzcRHR2ttYSuEELs27dPDBs2TBgaGkrLLcfHx2u1qWtJ5prHjz/+WKu2srIy8frrrwsrKyshl8uFpaWlCAgIEGfPnpXaxMbG1ttnY+rax9bWtsF9jh49Wud+Nb+LhmqKiIhosJZHlwxWq9XinXfeESYmJsLU1FS8/vrrIj8/X6tNfHy86NOnjzA0NBRmZmYiICBAXL58WavNunXrhKurq1AoFMLS0lJMmDBB/PTTT088zkc9jeWMfy94PoioJTFDMUMxQ/3+MpRMiKewXvgzpri4GCqVCmq1usnfLyUiaqr79+8jNzcXdnZ20NfXb+tynimlpaWwtrZGTEwMJk+e3OrHv3PnDoYPHw5jY2McPHgQBgYGrV4Dtb6G/maZGbTxfBBRS2KGenzMUNQWnkaG4up7RETUZtLS0hAfH4+cnBxcuHABEyZMAIB6l8ptaaampjhy5AiGDx+OlJSUNqmBiIiIqDHMUPS84D2liIioTUVHRyMrKwtyuRz9+vVDcnIyOnXq1Gb1dOzYER999FGbHZ+IiIioKZih6HnAi1JERNRm+vTpg/Pnz7d1GURERETPFGYoel7w63tERERERERERNTqeFGKiIiIiIiIiIhaHS9KERERERERERFRq+NFKSIiIiIiIiIianW8KEVERERERERERK2OF6WIiIiIiIiIiKjV8aIUERERERERERG1Ol6UIiIiyaRJkyCTySCTySCXy+Hg4IDIyEg8ePDgifo9duwYZDIZ7t69+3QKbYLc3FwEBQXBysoK+vr66NKlCwIDA3HlyhWtdomJifDw8IBSqYSBgQFefPFF7NixQ6tNXl4eZDIZ0tPTm3z8JUuWoHv37jA0NESHDh0wYsQIpKamavU5efJk2NnZQaFQoFu3boiIiEBFRUWD/RYVFSEoKAhOTk7Q0dHB7Nmzm1TPiRMn4O/vDysrK8hkMuzbt6/ZNQPAsmXLMHjwYBgYGMDExKTOY+Xn52PUqFEwMDCAubk55s+fr/Vv6OF/Zw8/evToIbVZsWIFXnzxRSiVSpibm+O1115DVlZWo+NsSn1ERERPGzMUMxQz1OPhRSkiItLi6+uLoqIiXL16FXPnzsWSJUvw6aeftnVZksYCBwBUVlbCy8sLarUae/fuRVZWFnbt2gU3NzetULd+/XoEBgZiyJAhSE1NRUZGBsaPH4/Q0FDMmzfviep0cnLChg0bcOnSJZw8eRIvvPACvL29cfPmTQDAlStXoNFosGXLFnz//fdYs2YNNm/ejEWLFjXYb3l5OczMzPDhhx+id+/eTa6ntLQUvXv3xsaNGx+7ZqD6/I8ZMwbvvfdenX1UVVVh1KhRqKiowOnTp/H5559jx44d+Oijj6Q2a9euRVFRkfT48ccfYWpqijFjxkhtjh8/junTp+PMmTNISkpCZWUlvL29UVpa2uA4G6uPiIiopTBDMUMxQz0G8TukVqsFAKFWq9u6FCJ6DpWVlYnMzExRVlbW1qU0W0hIiAgMDNTa5uXlJdzd3cWdO3dEcHCwMDExEQqFQvj6+ors7GypXV5ennj11VeFiYmJMDAwEK6uruLAgQMiNzdXANB6hISECCGEKC4uFkFBQcLAwEBYWFiI1atXCw8PDzFr1iypX1tbWxEZGSmCg4OFUqmU9k1OThZDhw4V+vr6okuXLiIsLEyUlJQIIYRIS0sTAEReXl69Y83Pzxd6enpizpw5tV5bt26dACDOnDkjhBDSGNLS0pp/Uv+r5r3nyJEj9bZZtWqVsLOza3Kfj56rpgIgvvrqq0bbNVRzbGysUKlUtbZ//fXXQkdHR1y/fl3atmnTJmFsbCzKy8vrPM5XX30lZDJZg7+vGzduCADi+PHjjdbdUH11aehvlplBG88HEbUkZihmqLowQz3fGYqflCIiamFCCFRUVLTJQwjxxPUrFApUVFRg0qRJ+O6775CQkICUlBQIITBy5EhUVlYCAKZPn47y8nKcOHECly5dwsqVK2FkZAQbGxt8+eWXAICsrCwUFRVh7dq1AIA5c+bg1KlTSEhIQFJSEpKTk3HhwoVaNURHR6N3795IS0vD4sWLkZOTA19fX4wePRoZGRnYtWsXTp48iRkzZgAAzMzMoKOjgz179qCqqqrOce3ZsweVlZV1zuZNmzYNRkZGiI+Pf+LzB1TPPG3duhUqlarBmTm1Wg1TU9Oncswn1dSaH5WSkgI3Nzd07txZ2ubj44Pi4mJ8//33de6zbds2jBgxAra2tvX2q1arAeA3c36IiKh1PMs5ihnqyTFDPf8ZSretCyAiet5VVlZi+fLlbXLsRYsWQS6XP9a+Qgh88803OHToEPz8/LBv3z6cOnUKgwcPBgDExcXBxsYG+/btw5gxY5Cfn4/Ro0fDzc0NAGBvby/1VfMmaG5uLn1H/ddff8Xnn3+OnTt3Yvjw4QCA2NhYWFlZ1arllVdewdy5c6XnU6ZMwYQJE6R7ATg6OmLdunXw8PDApk2bYG1tjXXr1uGDDz7A0qVL0b9/f3h6emLChAlSXdnZ2VCpVLC0tKx1PLlcDnt7e2RnZz/WuauRmJiI8ePH4969e7C0tERSUhI6depUZ9tr165h/fr1iI6OfqJjPqnm1FyX69eva4UpANLz69ev12pfWFiIgwcPYufOnfX2qdFoMHv2bAwZMgQ9e/Zsci1ERPTsexZzFDMUMxQzVNPxk1JERKQlMTERRkZG0NfXh5+fH8aNG4dJkyZBV1cXAwcOlNp17NgRzs7OuHz5MgBg5syZiIqKwpAhQxAREYGMjIwGj/PDDz+gsrISAwYMkLapVCo4OzvXatu/f3+t5xcvXsSOHTtgZGQkPXx8fKDRaJCbmwugetbx+vXriIuLw6BBg7B792706NEDSUlJTT4XTQmicXFxWnUkJydLr3l6eiI9PR2nT5+Gr68vxo4dixs3btTqo6CgAL6+vhgzZgymTp0qbX+439DQ0CbVnJycrLVfXFxck/Zrbs1Py+effw4TExO89tpr9baZPn06/v3vf+OLL76QtoWGhmqNk4iIqK0xQ/0PMxQzVFPxk1JERC1MT0+v0RsvtuSxm8vT0xObNm2CXC6HlZUVdHV1kZCQ0Oh+U6ZMgY+PDw4cOIDDhw9jxYoViImJQVhY2OOUrsXQ0FDreUlJCaZNm4aZM2fWatu1a1fpZ6VSCX9/f/j7+yMqKgo+Pj6IioqCl5cXHB0doVarUVhYWGtmsaKiAjk5OfDx8Wm0toCAAK2gaW1trVW3g4MDHBwc4O7uDkdHR2zbtg0LFy6U2hQWFsLT0xODBw/G1q1btfp+eKUaY2PjRmsBqsPnw/s9OuPWmKbU3BALCwucPXtWa9vPP/8svfYwIQS2b9+O4ODgesPrjBkzkJiYiBMnTqBLly7S9sjIyCe+kSoREf32PUs5ihmKGYoZqvl4UYqIqIXVLA38rKh5Q32Yi4sLHjx4gNTUVOmj57dv30ZWVhZcXV2ldjY2NggNDUVoaCgWLlyIzz77DGFhYdL4H743gb29PfT09HDu3DkpBKnVamRnZ+Oll15qsMa+ffsiMzOzVp0Nkclk6N69O06fPg0AePPNNxEeHo6YmBjExMRotd28eTPu3buHiRMnNtqvUqmEUqlsUg0ajQbl5eXS84KCAnh6eqJfv36IjY2Fjo72B5ibM74aCoXisfarz6M1N2bQoEFYtmwZbty4AXNzcwBAUlISjI2Ntf6tANWrw1y7dg2TJ0+u1Y8QAmFhYfjqq69w7Ngx2NnZab1ubm4u9U9ERM+vZylHMUMxQz2MGappeFGKiIga5ejoiMDAQEydOhVbtmyBUqnEggULYG1tjcDAQADA7Nmz4efnBycnJ/zyyy84evQoXFxcAAC2traQyWRITEzEyJEjoVAooFQqERISgvnz58PU1BTm5uaIiIiAjo4OZDJZg/WEh4fD3d0dM2bMwJQpU2BoaIjMzEwkJSVhw4YNSE9PR0REBIKDg+Hq6gq5XI7jx49j+/btCA8PB1A9G7hq1SrMmzcP+vr6CA4Ohp6eHvbv349FixYhKiqq1nfvs7KyatXSo0ePWjOppaWlWLZsGQICAmBpaYlbt25h48aNKCgokJbsLSgowMsvvwxbW1tER0drLRn86GzYo2pm8UpKSnDz5k2kp6dDLpfXCiwPKykpwbVr16Tnubm5SE9Ph6mpKbp27dqkmgEgPz8fd+7cQX5+PqqqqqRaHBwcYGRkBG9vb7i6uiI4OBirVq3C9evX8eGHH2L69Olo3769Vk3btm3DwIED67zHwfTp07Fz507s378fSqVSupeCSqWCQqGod5yN1UdERNSamKGqMUMxQ9WrSev8PWe4nDERtaTnbTnjGjXLGatUKqFQKISPj4/WcsYzZswQ3bp1E+3btxdmZmYiODhY3Lp1S3o9MjJSWFhYCJlM1uByxgMGDBALFiyQ9rO1tRVr1qypVc/Zs2eFl5eXMDIyEoaGhqJXr15i2bJlQgghbt68KWbOnCl69uwpjIyMhFKpFG5ubiI6OlpUVVVp9bNv3z4xbNgwYWhoKC23HB8fr9WmriWZax4//vhjrdrKysrE66+/LqysrIRcLheWlpYiICBAnD17VmoTGxtbb5+NqWsfW1vbBvc5evRonfvV/C6aUrMQ1f9G6urn6NGjUpu8vDzh5+cnFAqF6NSpk5g7d66orKzU6ufu3btCoVCIrVu3NnmMAERsbGyD42xKfY96GssZ/17wfBBRS2KGYoZihvr9ZSjZf4v+XSkuLoZKpYJarW7y90uJiJrq/v37yM3NhZ2dHfT19du6nGdKaWkprK2tERMTU+fHkVvanTt3MHz4cBgbG+PgwYMwMDBo9Rqo9TX0N8vMoI3ng4haEjPU42OGorbwNDIUV98jIqI2k5aWhvj4eOTk5ODChQuYMGECAEgfZ29tpqamOHLkCIYPH46UlJQ2qYGIiIioMcxQ9LzgPaWIiKhNRUdHIysrC3K5HP369UNycjI6derUZvV07NgRH330UZsdn4iIiKgpmKHoecCLUkRE1Gb69OmD8+fPt3UZRERERM8UZih6XvDre0RERERERERE1Op4UYqIiIiIiIiIiFodL0oREREREREREVGr40UpIiIiIiIiIiJqdbwoRURERERERERErY4XpYiIiIiIiIiIqNXxohQREREREREREbU6XpQiIiLJpEmTIJPJIJPJIJfL4eDggMjISDx48OCJ+j127BhkMhnu3r37dAptgtzcXAQFBcHKygr6+vro0qULAgMDceXKFa12iYmJ8PDwgFKphIGBAV588UXs2LFDq01eXh5kMhnS09ObfPwlS5age/fuMDQ0RIcOHTBixAikpqZq9Tl58mTY2dlBoVCgW7duiIiIQEVFRaN9x8XFoXfv3jAwMIClpSXeeecd3L59u8F9Tpw4AX9/f1hZWUEmk2Hfvn11trt8+TICAgKgUqlgaGiIF198Efn5+dLr06ZNQ7du3aBQKGBmZlbnOT137hyGDx8OExMTdOjQAT4+Prh48WKdx7t27RqUSiVMTEwaHXdTx0BERNTamKGYoZihHg8vShERkRZfX18UFRXh6tWrmDt3LpYsWYJPP/20rcuSNCVwVFZWwsvLC2q1Gnv37kVWVhZ27doFNzc3rVC3fv16BAYGYsiQIUhNTUVGRgbGjx+P0NBQzJs374nqdHJywoYNG3Dp0iWcPHkSL7zwAry9vXHz5k0AwJUrV6DRaLBlyxZ8//33WLNmDTZv3oxFixY12O+pU6cwceJETJ48Gd9//z12796Ns2fPYurUqQ3uV1pait69e2Pjxo31tsnJycHQoUPRvXt3HDt2DBkZGVi8eDH09fWlNv369UNsbCwuX76MQ4cOQQgBb29vVFVVAQBKSkrg6+uLrl27IjU1FSdPnoRSqYSPjw8qKyu1jldZWYm33noLw4YNa7D25oyBiIiorTBDMUMxQz0G8TukVqsFAKFWq9u6FCJ6DpWVlYnMzExRVlbW1qU0W0hIiAgMDNTa5uXlJdzd3cWdO3dEcHCwMDExEQqFQvj6+ors7GypXV5ennj11VeFiYmJMDAwEK6uruLAgQMiNzdXANB6hISECCGEKC4uFkFBQcLAwEBYWFiI1atXCw8PDzFr1iypX1tbWxEZGSmCg4OFUqmU9k1OThZDhw4V+vr6okuXLiIsLEyUlJQIIYRIS0sTAEReXl69Y83Pzxd6enpizpw5tV5bt26dACDOnDkjhBDSGNLS0pp/Uv+r5r3nyJEj9bZZtWqVsLOza7CfTz/9VNjb29eq19rausm1ABBfffVVre3jxo0Tb7/9dpP7EUKIixcvCgDi2rVrQgghzp07JwCI/Px8qU1GRoYAIK5evaq17wcffCDefvttERsbK1QqVbOOW98YHkdDf7PMDNp4PoioJTFDMUPVhRnq+c5Q/KQUEVELE0Kgqupemzyq33eejEKhQEVFBSZNmoTvvvsOCQkJSElJgRACI0eOlGZupk+fjvLycpw4cQKXLl3CypUrYWRkBBsbG3z55ZcAgKysLBQVFWHt2rUAgDlz5uDUqVNISEhAUlISkpOTceHChVo1REdHo3fv3khLS8PixYuRk5MDX19fjB49GhkZGdi1axdOnjyJGTNmAADMzMygo6ODPXv2SLNPj9qzZw8qKyvrnM2bNm0ajIyMEB8f/8TnD6iemdy6dStUKhV69+5dbzu1Wg1TU9MG+xo0aBB+/PFHfP311xBC4Oeff8aePXswcuTIJ6pRo9HgwIEDcHJygo+PD8zNzTFw4MAGP95dWlqK2NhY2NnZwcbGBgDg7OyMjh07Ytu2baioqEBZWRm2bdsGFxcXvPDCC9K+3377LXbv3v3bnLEjIqLfjGc5RzFDPTlmqOc/Q+m2dQFERM87jaYMx467tcmxX/a4hHbtDB5rXyEEvvnmGxw6dAh+fn7Yt28fTp06hcGDBwOo/k6+jY0N9u3bhzFjxiA/Px+jR4+Gm1v1WO3t7aW+akKCubm59L33X3/9FZ9//jl27tyJ4cOHAwBiY2NhZWVVq5ZXXnkFc+fOlZ5PmTIFEyZMwOzZswEAjo6OWLduHTw8PLBp0yZYW1tj3bp1+OCDD7B06VL0798fnp6emDBhglRXdnY2VCoVLC0tax1PLpfD3t4e2dnZj3XuaiQmJmL8+PG4d+8eLC0tkZSUhE6dOtXZ9tq1a1i/fj2io6Mb7HPIkCGIi4vDuHHjcP/+fTx48AD+/v5PHExu3LiBkpISfPLJJ4iKisLKlSvxr3/9C2+88QaOHj0KDw8Pqe1f/vIXfPDBBygtLYWzszOSkpIgl8sBAEqlEseOHcNrr72Gjz/+GED17+fQoUPQ1a2OHbdv38akSZPw97//HcbGxk9UNxERPd+exRzFDMUMxQzVdPykFBERaUlMTISRkRH09fXh5+eHcePGYdKkSdDV1cXAgQOldh07doSzszMuX74MAJg5cyaioqIwZMgQREREICMjo8Hj/PDDD6isrMSAAQOkbSqVCs7OzrXa9u/fX+v5xYsXsWPHDhgZGUkPHx8faDQa5ObmAqiedbx+/Tri4uIwaNAg7N69Gz169EBSUlKTz0VNSGhIXFycVh3JycnSa56enkhPT8fp06fh6+uLsWPH4saNG7X6KCgogK+vL8aMGaN1X4OH+w0NDQUAZGZmYtasWfjoo49w/vx5/Otf/0JeXp70enJystZ+cXFxTRqrRqMBAAQGBuL999/HH/7wByxYsACvvvoqNm/erNV2woQJSEtLw/Hjx+Hk5ISxY8fi/v37AICysjJMnjwZQ4YMwZkzZ3Dq1Cn07NkTo0aNQllZGQBg6tSpCAoKwksvvVRnLY87BiIiorbEDPU/zFDMUE3FT0oREbUwHR0FXva41GbHbi5PT09s2rQJcrkcVlZW0NXVRUJCQqP7TZkyBT4+Pjhw4AAOHz6MFStWICYmBmFhYY9TuhZDQ0Ot5yUlJZg2bRpmzpxZq23Xrl2ln5VKJfz9/eHv74+oqCj4+PggKioKXl5ecHR0hFqtRmFhYa2ZxYqKCuTk5MDHx6fR2gICArSCprW1tVbdDg4OcHBwgLu7OxwdHbFt2zYsXLhQalNYWAhPT08MHjwYW7du1er74ZVqambDVqxYgSFDhmD+/PkAgF69esHQ0BDDhg1DVFQU+vfvr7Vf586dGx0DAHTq1Am6urpwdXXV2u7i4oKTJ09qbVOpVFCpVHB0dIS7uzs6dOiAr776Cm+99RZ27tyJvLw8pKSkQEeneu5r586d6NChA/bv34/x48fj22+/RUJCgjSjKYSARqOBrq4utm7dirfeeuuxxkBERM+fZylHMUMxQz2MGappeFGKiKiFyWSyx/4KXVuoCQEPc3FxwYMHD5Camip99Pz27dvIysrSegO2sbFBaGgoQkNDsXDhQnz22WcICwuTZssevjeBvb099PT0cO7cOSkEqdVqZGdn1zv7U6Nv377IzMysVWdDZLL/z969x0VV5/8Dfw2XYQYYBlGQAYlA8IIieQlBNCPlZiG15iX5Im5KsuuNvITaJsZipkJuqIvar9Dvd9FczYhFzbBMUUlNIU0UkmBRxHsOCcr18/uD5awTV00GL6/n4zGPdc75nM95f84wO+/e5/KRoVevXjh8+DAA4NVXX0V0dDQSEhKQkJCg03bdunWoqKjApEmTWu1XpVJBpVK1KYa6ujpUVlZK70tKSuDr6yvNxtKQgDRoanwVFRXSJdwNDA0NAdQnJkql8p6OSwO5XI5nn30WeXl5Osvz8/Ph6OjY7HZCCAghpHFVVFTAwMAAMplMatPwvuFMYlZWls7fwhdffIHly5fj8OHDsLe3v+8xEBHR4+dRyqOYQzGHuhtzqLZhUYqIiFrl6uqKkJAQREREYP369VCpVFiwYAHs7e0REhICAIiKikJQUBB69OiBX375Bfv27UPv3r0BAI6OjpDJZEhPT8eoUaOgVCqhUqkQHh6O+fPnw8rKCjY2NoiJiWn0Y9yU6OhoeHl5YcaMGZg6dSrMzMyQm5uLjIwMrFmzBjk5OYiJiUFYWBjc3Nwgl8uxf/9+fPLJJ4iOjgZQfzZwxYoVmDdvHhQKBcLCwmBsbIwvvvgCixYtQlxcHPr27auz398mGwDQp08fGBsb6ywrLy/H0qVLMXr0aGg0Gly7dg1r165FSUkJxo4dC6A+mXr++efh6OiI+Ph4aZpjALC1tW127MHBwYiIiEBSUhICAgJQWlqKqKgoeHp6NvksiQa3bt3CuXPnpPeFhYXIycmBlZWVlNDOnz8f48ePx3PPPQdfX198+eWX+Ne//oVvv/0WQP3tAlu3boW/vz+sra1x4cIFvP/++1AqldJDQv38/DB//nxMnz4dM2fORF1dHd5//30YGRnB19cXAKS/iwbff/89DAwMGh3v+xkDERHRw4Q5VD3mUMyhmvVA5gF8xHA6YyJqT4/bdMYNGqYzVqvVQqlUioCAAJ3pjGfMmCG6d+8uTExMhLW1tQgLCxPXrl2T1sfGxgpbW1shk8lanM7Y09NTLFiwQNrO0dFRrFq1qlE8R48eFX5+fsLc3FyYmZmJfv36iaVLlwohhLh69aqYNWuW6Nu3rzA3NxcqlUq4u7uL+Ph4UVtbq9NPamqqGDZsmDAzM5OmW96yZYtOm6amZG54nT9/vlFst2/fFq+88oqws7MTcrlcaDQaMXr0aHH06FGpTXJycrN9tiYxMVG4ubkJpVIpNBqNCA0NFRcuXGhxm3379jW5r4bPosHHH38sXFxchEKhEB4eHiI1NVVaV1JSIoKCgoSNjY0wNjYW3bp1ExMnThRnz57V6eOrr74SPj4+Qq1Wi06dOokXXnhBZGVlNRtbW6czbusY7tWDmM74ScHjQUTtiTkUcyjmUE9eDiUT4gHMF/6IKSsrg1qthlarfWyeWE9ED487d+6gsLAQTk5OUCgUHR3OI6W8vBz29vZISEjAlClT9L7/GzduYMSIEbCwsMDu3bthavpo3C5Av09L31nmDLp4PIioPTGHun/MoagjPIgcirPvERFRh8nOzsaWLVtQUFCAEydOIDQ0FACky9n1zcrKCnv37sWIESOQlZXVITEQERERtYY5FD0u+EwpIiLqUPHx8cjLy4NcLsfAgQORmZmJLl26dFg8nTt3xuLFizts/0RERERtwRyKHgcsShERUYfp378/jh8/3tFhEBERET1SmEPR44K37xERERERERERkd6xKEVERERERERERHrHohQREREREREREekdi1JERERERERERKR3LEoREREREREREZHesShFRERERERERER6x6IUERERERERERHpHYtSREQkmTx5MmQyGWQyGeRyOVxcXBAbG4uamprf1e+3334LmUyGmzdvPphA26CwsBATJ06EnZ0dFAoFunXrhpCQEJw9e1anXXp6OoYPHw6VSgVTU1M8++yz2Lhxo06boqIiyGQy5OTktHn/S5YsQa9evWBmZoZOnTph5MiROHLkiE6fU6ZMgZOTE5RKJbp3746YmBhUVVW12ndKSgo8PDxgamoKjUaD119/HdevX29xm6SkJPTr1w8WFhawsLCAt7c3du/eLa2/ceMGZs6ciZ49e0KpVOKpp57CrFmzoNVqpTYbN26U/j5++7py5YrUrrKyEm+//TYcHR1hYmKCp59+Gp988olOPH/729+kfTk4OODNN9/EnTt3WhzDjh074O/vj86dO9/z50FERNSemEMxh2IOdX+MOjoAIiJ6uAQGBiI5ORmVlZXYtWsXpk+fDmNjYyxcuLCjQwMAVFVVQS6Xt9imuroafn5+6NmzJ3bs2AGNRoMLFy5g9+7dOknd6tWrERUVhejoaCQlJUEul+OLL75AZGQkfvzxR8THx993nD169MCaNWvg7OyM27dvY9WqVfD398e5c+dgbW2Ns2fPoq6uDuvXr4eLiwt+/PFHREREoLy8vMX9Hjp0CJMmTcKqVasQHByMkpISREZGIiIiAjt27Gh2u27duuH999+Hq6srhBDYtGkTQkJCkJ2djT59+uDixYu4ePEi4uPj4ebmhn//+9+IjIzExYsXsX37dgDA+PHjERgYqNPv5MmTcefOHdjY2EjLxo0bh8uXL+Pjjz+Gi4sLSktLUVdXJ63fvHkzFixYgE8++QRDhgxBfn6+lMx/8MEHzY6hvLwcQ4cOxbhx4xAREdHqZ0BERKRPzKGYQzGHug/iCaTVagUAodVqOzoUInoM3b59W+Tm5orbt293dCj3LDw8XISEhOgs8/PzE15eXuLGjRsiLCxMWFpaCqVSKQIDA0V+fr7UrqioSLz00kvC0tJSmJqaCjc3N7Fz505RWFgoAOi8wsPDhRBClJWViYkTJwpTU1Nha2srPvjgAzF8+HAxe/ZsqV9HR0cRGxsrwsLChEqlkrbNzMwUQ4cOFQqFQnTr1k3MnDlT3Lp1SwghRHZ2tgAgioqKmh1rcXGxMDY2FnPmzGm0LjExUQAQ3333nRBCSGPIzs6+94P6Hw2/PXv37m22zYoVK4STk1OL/axcuVI4Ozs3itfe3v6eY+rUqZP4f//v/zW7/p///KeQy+Wiurq6yfVXrlwRxsbG4n//93+lZbt37xZqtVpcv3692X6nT58uXnjhBZ1lc+bMET4+Pm2K+0F8Hndr6TvLnEEXjwcRtSfmUMyhmsIc6r8exxyKt+8REbUzIQTKa2s75CWE+N3xK5VKVFVVYfLkyfj++++RlpaGrKwsCCEwatQoVFdXAwCmT5+OyspKHDhwAKdOncLy5cthbm4OBwcHfPbZZwCAvLw8lJaW4sMPPwQAzJkzB4cOHUJaWhoyMjKQmZmJEydONIohPj4eHh4eyM7OxjvvvIOCggIEBgZizJgxOHnyJLZu3YqDBw9ixowZAABra2sYGBhg+/btqK2tbXJc27dvR3V1NebNm9do3bRp02Bubo4tW7b87uMH1J+Z3LBhA9RqNTw8PJptp9VqYWVl1WJf3t7eOH/+PHbt2gUhBC5fvozt27dj1KhRbY6ntrYWn376KcrLy+Ht7d1iPBYWFjAyavrC6v/93/+FqakpXn31VWlZWloaBg0ahBUrVsDe3h49evTAvHnzcPv2banNkCFDcPz4cRw9ehQA8PPPP2PXrl33NAYiInoyPMp5FHOo34851OOfQ/H2PSKidlZRV4fuB051yL4LnnOHmaHhfW0rhMDXX3+NPXv2ICgoCKmpqTh06BCGDBkCoP6efAcHB6SmpmLs2LEoLi7GmDFj4O7uDgBwdnaW+mpIEmxsbGBpaQkA+PXXX7Fp0yZs3rwZI0aMAAAkJyfDzs6uUSwvvPAC5s6dK72fOnUqQkNDERUVBQBwdXVFYmIihg8fjqSkJNjb2yMxMRFvvfUW3n33XQwaNAi+vr4IDQ2V4srPz4darYZGo2m0P7lcDmdnZ+Tn59/XsWuQnp6OCRMmoKKiAhqNBhkZGejSpUuTbc+dO4fVq1e3erm7j48PUlJSMH78eNy5cwc1NTUIDg7G2rVrW43n1KlT8Pb2xp07d2Bubo7PP/8cbm5uTba9du0a/vrXv+KNN95otr+PP/4YEydOhFKplJb9/PPPOHjwIBQKBT7//HNcu3YNf/7zn3H9+nUkJycDACZOnIhr165h6NChEEKgpqYGkZGRWLRoUatjICKiJ8ujmEcxh2IOxRyq7XilFBER6UhPT4e5uTkUCgWCgoIwfvx4TJ48GUZGRhg8eLDUrnPnzujZsyfOnDkDAJg1axbi4uLg4+ODmJgYnDx5ssX9/Pzzz6iuroanp6e0TK1Wo2fPno3aDho0SOf9Dz/8gI0bN8Lc3Fx6BQQEoK6uDoWFhQDqzzpeunQJKSkp8Pb2xrZt29CnTx9kZGS0+Vi09twFoD6xvDuOzMxMaZ2vry9ycnJw+PBhBAYGYty4cToPs2xQUlKCwMBAjB07Vuc+/7v7jYyMBADk5uZi9uzZWLx4MY4fP44vv/wSRUVF0vrMzEyd7VJSUqT+evbsiZycHBw5cgR/+tOfEB4ejtzc3EbxlJWV4cUXX4SbmxuWLFnS5LizsrJw5swZTJkyRWd5XV0dZDIZUlJS4OnpiVGjRuGDDz7Apk2bpDN93377Ld577z38/e9/x4kTJ7Bjxw7s3LkTf/3rX1s9pkRERA8r5lD/xRyKOVRb8UopIqJ2ZmpggILn3Dts3/fK19dXemClnZ0djIyMkJaW1up2U6dORUBAAHbu3ImvvvoKy5YtQ0JCAmbOnHk/oeswMzPTeX/r1i1MmzYNs2bNatT2qaeekv6tUqkQHByM4OBgxMXFISAgAHFxcfDz84Orqyu0Wi0uXrzY6MxiVVUVCgoKEBAQ0Gpso0eP1kk07e3tdeJ2cXGBi4sLvLy84Orqio8//ljngacXL16Er68vhgwZgg0bNuj0fffMKBYWFgCAZcuWwcfHB/PnzwcA9OvXD2ZmZhg2bBji4uIwaNAgne26du0q/bthNiAAGDhwII4dO4YPP/wQ69evl9r8+uuvCAwMhEqlwueffw5jY+Mmx/3//t//wzPPPIOBAwfqLNdoNLC3t4darZaW9e7dG0IIXLhwAa6urnjnnXcQFhaGqVOnAgDc3d1RXl6ON954A2+//XaLx5SIiJ4sj1IexRyKORRzqHvHohQRUTuTyWT3fQtdR2hIAu7Wu3dv1NTU4MiRI9Kl59evX0deXp7OpcsODg6IjIxEZGQkFi5ciI8++ggzZ86Uzpbd/WwCZ2dnGBsb49ixY1ISpNVqkZ+fj+eee67FGAcMGIDc3NxGcbZEJpOhV69eOHz4MADg1VdfRXR0NBISEpCQkKDTdt26daioqMCkSZNa7VelUkGlUrUphrq6OlRWVkrvS0pK4Ovri4EDByI5ORkGv0l+mxpfRUVFo+cTGP7n70sIAaVS2ebj8tt4ysrKEBAQABMTE6SlpUGhUDS53a1bt/DPf/4Ty5Yta7TOx8cH27Ztw61bt2Bubg6g/jJ/AwMDdOvWTRrDb8d69xju5ZgSEdHj7VHKo5hDMYdiDnXvWJQiIqJWubq6IiQkBBEREVi/fj1UKhUWLFgAe3t7hISEAACioqIQFBSEHj164JdffsG+ffvQu3dvAICjoyNkMhnS09MxatQoKJVKqFQqhIeHY/78+bCysoKNjQ1iYmJgYGAAmUzWYjzR0dHw8vLCjBkzMHXqVJiZmSE3NxcZGRlYs2YNcnJyEBMTg7CwMLi5uUEul2P//v345JNPEB0dDaD+bOCKFSswb948KBQKhIWFwdjYGF988QUWLVqEuLg49O3bV2e/eXl5jWLp06dPozNh5eXlWLp0KUaPHg2NRoNr165h7dq1KCkpwdixYwHUJ1PPP/88HB0dER8fj6tXr0rb29raNjv24OBgREREICkpCQEBASgtLUVUVBQ8PT2bfJZEg4ULFyIoKAhPPfUUfv31V2zevBnffvst9uzZA6A+mfL390dFRQX+8Y9/oKysDGVlZQDqH3pqeNd/EGzduhU1NTX4n//5n0b7mThxIv7617/ij3/8I959911cu3YN8+fPx+uvvy49NyE4OBgffPAB+vfvj8GDB+PcuXN45513EBwcrLOf37px4waKi4tx8eJFAP/9PGxtbVs8ZkRERB2FOVQ95lD1mEM14YHMA/iI4XTGRNSeHrfpjBs0TGesVquFUqkUAQEBOtMZz5gxQ3Tv3l2YmJgIa2trERYWJq5duyatj42NFba2tkImk7U4nbGnp6dYsGCBtJ2jo6NYtWpVo3iOHj0q/Pz8hLm5uTAzMxP9+vUTS5cuFUIIcfXqVTFr1izRt29fYW5uLlQqlXB3dxfx8fGitrZWp5/U1FQxbNgwYWZmJk23vGXLFp02TU3J3PA6f/58o9hu374tXnnlFWFnZyfkcrnQaDRi9OjR4ujRo1Kb5OTkZvtsTWJionBzcxNKpVJoNBoRGhoqLly40OI2r7/+unB0dBRyuVxYW1uLESNGiK+++kpav2/fvmbjKSws1OnL29tbTJw4sdl9nTlzRowcOVIolUrRrVs3MWfOHFFRUSGtr66uFkuWLBHdu3cXCoVCODg4iD//+c/il19+aXEMzR2zmJiYFrdrzYOYzvhJweNBRO2JORRzKOZQT14OJRPiAcwX/ogpKyuDWq2WpmkkInqQ7ty5g8LCQjg5OTV76S41rby8HPb29khISGj08Ed9uHHjBkaMGAELCwvs3r0bpqameo+B9K+l7yxzBl08HkTUnphD3T/mUNQRHkQOxdn3iIiow2RnZ2PLli0oKCjAiRMnEBoaCgDS5ez6ZmVlhb1792LEiBHIysrqkBiIiIiIWsMcih4XfKYUERF1qPj4eOTl5UEul2PgwIHIzMxEly5dOiyezp07Y/HixR22fyIiIqK2YA5FjwMWpYiIqMP0798fx48f7+gwiIiIiB4pzKHoccHb94iIiIiIiIiISO9YlCIiIiIiIiIiIr1jUYqIiIiIiIiIiPSORSkiIiIiIiIiItI7FqWIiIiIiIiIiEjvWJQiIiIiIiIiIiK9Y1GKiIiIiIiIiIj0jkUpIiKSTJ48GTKZDDKZDHK5HC4uLoiNjUVNTc3v6vfbb7+FTCbDzZs3H0ygbVBYWIiJEyfCzs4OCoUC3bp1Q0hICM6ePavTLj09HcOHD4dKpYKpqSmeffZZbNy4UadNUVERZDIZcnJy2rz/JUuWoFevXjAzM0OnTp0wcuRIHDlyRKfPKVOmwMnJCUqlEt27d0dMTAyqqqpa7TslJQUeHh4wNTWFRqPB66+/juvXr7c5tvfffx8ymQxRUVE6ywsKCvDKK6/A2toaFhYWGDduHC5fvqzTZunSpRgyZAhMTU1haWnZZP8Nf0N3vz799FNp/Y4dO+Dn5yftx9vbG3v27Gk17h07dsDf3x+dO3e+58+DiIioPTGHYg7FHOr+sChFREQ6AgMDUVpaip9++glz587FkiVLsHLlyo4OS9KWhKO6uhp+fn7QarXYsWMH8vLysHXrVri7u+skdatXr0ZISAh8fHxw5MgRnDx5EhMmTEBkZCTmzZv3u+Ls0aMH1qxZg1OnTuHgwYN4+umn4e/vj6tXrwIAzp49i7q6Oqxfvx6nT5/GqlWrsG7dOixatKjFfg8dOoRJkyZhypQpOH36NLZt24ajR48iIiKiTXEdO3YM69evR79+/XSWl5eXw9/fHzKZDN988w0OHTqEqqoqBAcHo66uTmpXVVWFsWPH4k9/+lOL+0lOTkZpaan0evnll6V1Bw4cgJ+fH3bt2oXjx4/D19cXwcHByM7ObrHP8vJyDB06FMuXL2/TWImIiPSJORRzKOZQ90E8gbRarQAgtFptR4dCRI+h27dvi9zcXHH79u2ODuWehYeHi5CQEJ1lfn5+wsvLS9y4cUOEhYUJS0tLoVQqRWBgoMjPz5faFRUViZdeeklYWloKU1NT4ebmJnbu3CkKCwsFAJ1XeHi4EEKIsrIyMXHiRGFqaipsbW3FBx98IIYPHy5mz54t9evo6ChiY2NFWFiYUKlU0raZmZli6NChQqFQiG7duomZM2eKW7duCSGEyM7OFgBEUVFRs2MtLi4WxsbGYs6cOY3WJSYmCgDiu+++E0IIaQzZ2dn3flD/o+G3Z+/evc22WbFihXBycmqxn5UrVwpnZ+dG8drb27caw6+//ipcXV1FRkZGo+O8Z88eYWBgoPPbePPmTSGTyURGRkajvpKTk4VarW5yPwDE559/3mo8d3NzcxPvvvtum9o+iM/jbi19Z5kz6OLxIKL2xByKOVRTmEO17FHPoXilFBFROxNCoKKqpkNeQojfHb9SqURVVRUmT56M77//HmlpacjKyoIQAqNGjUJ1dTUAYPr06aisrMSBAwdw6tQpLF++HObm5nBwcMBnn30GAMjLy0NpaSk+/PBDAMCcOXNw6NAhpKWlISMjA5mZmThx4kSjGOLj4+Hh4YHs7Gy88847KCgoQGBgIMaMGYOTJ09i69atOHjwIGbMmAEAsLa2hoGBAbZv347a2tomx7V9+3ZUV1c3eTZv2rRpMDc3x5YtW3738QPqz4xt2LABarUaHh4ezbbTarWwsrJqsS9vb2+cP38eu3btghACly9fxvbt2zFq1KhW45g+fTpefPFFjBw5stG6yspKyGQymJiYSMsUCgUMDAxw8ODBVvtual9dunSBp6cnPvnkkxb/Fuvq6vDrr7+2OnYiInryPMp5FHOo34851OOfQxl1dABERI+729W1cFvc+r3e7SE3NgCm8vv7v3ohBL7++mvs2bMHQUFBSE1NxaFDhzBkyBAA9ffkOzg4IDU1FWPHjkVxcTHGjBkDd3d3AICzs7PUV8MPpY2NjXQP/a+//opNmzZh8+bNGDFiBID6y5Xt7OwaxfLCCy9g7ty50vupU6ciNDRUup/f1dUViYmJGD58OJKSkmBvb4/ExES89dZbePfddzFo0CD4+voiNDRUiis/Px9qtRoajabR/uRyOZydnZGfn39fx65Beno6JkyYgIqKCmg0GmRkZKBLly5Ntj137hxWr16N+Pj4Fvv08fFBSkoKxo8fjzt37qCmpgbBwcFYu3Zti9t9+umnOHHiBI4dO9bkei8vL5iZmSE6OhrvvfcehBBYsGABamtrUVpa2rYB/0dsbCxeeOEFmJqa4quvvsKf//xn3Lp1C7NmzWqyfXx8PG7duoVx48bd036IiOjx9yjmUcyhmEMxh2o7XilFREQ60tPTYW5uDoVCgaCgIIwfPx6TJ0+GkZERBg8eLLXr3LkzevbsiTNnzgAAZs2ahbi4OPj4+CAmJgYnT55scT8///wzqqur4enpKS1Tq9Xo2bNno7aDBg3Sef/DDz9g48aNMDc3l14BAQGoq6tDYWEhgPqzTJcuXUJKSgq8vb2xbds29OnTBxkZGW0+FnK5vNU2KSkpOnFkZmZK63x9fZGTk4PDhw8jMDAQ48aNw5UrVxr1UVJSgsDAQIwdO1bnuQZ39xsZGQkAyM3NxezZs7F48WIcP34cX375JYqKiqT1mZmZOtulpKTg/PnzmD17NlJSUqBQKJoch7W1NbZt24Z//etfMDc3h1qtxs2bNzFgwAAYGNxbuvDOO+/Ax8cH/fv3R3R0NN56661mn6mxefNmvPvuu/jnP/8JGxubVo8pERHRw4o51H8xh2IO1Va8UoqIqJ0pjQ2RGxvQYfu+V76+vkhKSoJcLoednR2MjIyQlpbW6nZTp05FQEAAdu7cia+++grLli1DQkICZs6ceT+h6zAzM9N5f+vWLUybNq3Js0ZPPfWU9G+VSoXg4GAEBwcjLi4OAQEBiIuLg5+fH1xdXaHVanHx4sVGZxarqqpQUFCAgIDWP7fRo0frJJr29vY6cbu4uMDFxQVeXl5wdXXFxx9/jIULF0ptLl68CF9fXwwZMgQbNmzQ6fvumVEsLCwAAMuWLYOPjw/mz58PAOjXrx/MzMwwbNgwxMXFYdCgQTrbde3aFV9//TWuXLmCAQMGSMtra2tx4MABrFmzBpWVlTA0NIS/vz8KCgpw7do1GBkZwdLSEra2tjpnbO/H4MGD8de//hWVlZU6l7Z/+umnmDp1KrZt26ZzOXxLx5SIiJ4sj1IexRyKORRzqHvHohQRUTuTyWT3fQtdR2hIAu7Wu3dv1NTU4MiRI9Kl59evX0deXh7c3Nykdg4ODoiMjERkZCQWLlyIjz76CDNnzpTOlt39bAJnZ2cYGxvj2LFjUhKk1WqRn5+P5557rsUYBwwYgNzc3EZxtkQmk6FXr144fPgwAODVV19FdHQ0EhISkJCQoNN23bp1qKiowKRJk1rtV6VSQaVStSmGuro6VFZWSu9LSkrg6+uLgQMHIjk5udHZtKbGV1FRASMj3b8nQ8P6pFkIAaVS2Wi7ESNG4NSpUzrL/vjHP6JXr6RMwQkAAQAASURBVF6Ijo6Wtm/QcHn8N998gytXrmD06NFtGl9zcnJy0KlTJ51kasuWLXj99dfx6aef4sUXX9Rpfy/HlIiIHm+PUh7FHIo5FHOoe/dofLuJiKhDubq6IiQkBBEREVi/fj1UKhUWLFgAe3t7hISEAACioqIQFBSEHj164JdffsG+ffvQu3dvAICjoyNkMhnS09MxatQoKJVKqFQqhIeHY/78+bCysoKNjQ1iYmJgYGAAmUzWYjzR0dHw8vLCjBkzMHXqVJiZmSE3NxcZGRlYs2YNcnJyEBMTg7CwMLi5uUEul2P//v345JNPEB0dDaD+bOCKFSswb948KBQKhIWFwdjYGF988QUWLVqEuLg49O3bV2e/eXl5jWLp06cPjI2NdZaVl5dj6dKlGD16NDQaDa5du4a1a9eipKQEY8eOBVCfTD3//PNwdHREfHy8NM0xANja2jY79uDgYERERCApKQkBAQEoLS1FVFQUPD09m3yWBFCfoPx2LGZmZujcubPO8uTkZPTu3RvW1tbIysrC7Nmz8eabb+rcDlBcXIwbN26guLgYtbW10hlFFxcXmJub41//+hcuX74MLy8vKBQKZGRk4L333tN5GOrmzZsRHh6ODz/8EIMHD8alS5cA1D8QVq1WNzv2hv1evHgRwH8/D1tb2xaPGRERUUdhDlWPORRzqGY9kHkAHzGczpiI2tPjNp1xg4bpjNVqtVAqlSIgIEBnOuMZM2aI7t27CxMTE2FtbS3CwsLEtWvXpPWxsbHC1tZWyGSyFqcz9vT0FAsWLJC2c3R0FKtWrWoUz9GjR4Wfn58wNzcXZmZmol+/fmLp0qVCCCGuXr0qZs2aJfr27SvMzc2FSqUS7u7uIj4+XtTW1ur0k5qaKoYNGybMzMyk6Za3bNmi06apKZkbXufPn28U2+3bt8Urr7wi7OzshFwuFxqNRowePVocPXpUapOcnNxsn61JTEwUbm5uQqlUCo1GI0JDQ8WFCxda3e5uv53OWAghoqOjRdeuXYWxsbFwdXUVCQkJoq6uTqdNeHh4kzHv27dPCCHE7t27xTPPPCN9Lh4eHmLdunU6x3348OFN9tHwd9Gc5o5ZTEzMPY39tx7EdMZPCh4PImpPzKGYQzGHevJyKJkQD2C+8EdMWVkZ1Go1tFqtdH8pEdGDcufOHRQWFsLJyanZByJS08rLy2Fvb4+EhARMmTJF7/u/ceMGRowYAQsLC+zevRumpqZ6j4H0r6XvLHMGXTweRNSemEPdP+ZQ1BEeRA7F2feIiKjDZGdnY8uWLSgoKMCJEycQGhoKANLl7PpmZWWFvXv3YsSIEcjKyuqQGIiIiIhawxyKHhftXpRau3Ytnn76aSgUCgwePBhHjx5tsf22bdvQq1cvKBQKuLu7Y9euXdK66upqREdHw93dHWZmZrCzs8OkSZOk+yKJiOjREx8fDw8PD4wcORLl5eXIzMyUHhLZETp37ozFixdjxIgRHRYDUQPmUURE1BzmUPQ4aNei1NatWzFnzhzExMTgxIkT8PDwQEBAAK5cudJk+8OHD+O1117DlClTkJ2djZdffhkvv/wyfvzxRwD1T8s/ceIE3nnnHZw4cQI7duxAXl7e736iPRERdYz+/fvj+PHjuHXrFm7cuIGMjAy4u7t3dFhEDwXmUURE1BzmUPS4aNdnSg0ePBjPPvss1qxZA6B+GkcHBwfMnDkTCxYsaNR+/PjxKC8vR3p6urTMy8sLzzzzDNatW9fkPo4dOwZPT0/8+9//lqbDbA2fh0BE7YnPQyB6tDysz5R6GPMo5lBE1J6YQxE9Wh7qZ0pVVVXh+PHjGDly5H93ZmCAkSNHNnuPaVZWlk57AAgICGjxnlStVguZTAZLS8sHEjcRERFRR2MeRURERE8Co/bq+Nq1a6itrUXXrl11lnft2hVnz55tcptLly412f7SpUtNtr9z5w6io6Px2muvtVh5q6ysRGVlpfS+rKysrcMgIiIi0ruHJY9iDkVERETt6ZGdfa+6uhrjxo2DEAJJSUkttl22bBnUarX0cnBw0FOURERERA+ftuZRzKGIiIioPbVbUapLly4wNDTE5cuXdZZfvnwZtra2TW5ja2vbpvYNidS///1vZGRktPpMg4ULF0Kr1Uqv8+fP38eIiIiIiPTjYcmjmEMRERFRe2q3opRcLsfAgQPx9ddfS8vq6urw9ddfw9vbu8ltvL29ddoDQEZGhk77hkTqp59+wt69e9G5c+dWYzExMYGFhYXOi4iIiOhh9bDkUcyhiIiIqD212zOlAGDOnDkIDw/HoEGD4Onpib/97W8oLy/HH//4RwDApEmTYG9vj2XLlgEAZs+ejeHDhyMhIQEvvvgiPv30U3z//ffYsGEDgPpE6tVXX8WJEyeQnp6O2tpa6TkJVlZWkMvl7TkcIiIiIr1hHkVERESPu3Z9ptT48eMRHx+PxYsX45lnnkFOTg6+/PJL6SGcxcXFKC0tldoPGTIEmzdvxoYNG+Dh4YHt27cjNTUVffv2BQCUlJQgLS0NFy5cwDPPPAONRiO9Dh8+3J5DISJ6IkyePBkymQwymQxyuRwuLi6IjY1FTU3N7+r322+/hUwmw82bNx9MoG1QWFiIiRMnws7ODgqFAt26dUNISEijh0Snp6dj+PDhUKlUMDU1xbPPPouNGzfqtCkqKoJMJkNOTk6b979kyRL06tULZmZm6NSpE0aOHIkjR47o9DllyhQ4OTlBqVSie/fuiImJQVVVVat9p6SkwMPDA6amptBoNHj99ddx/fr1VrcrKSnB//zP/6Bz585QKpVwd3fH999/L62/+/NveAUGBur08fTTTzdq8/7770vr8/Ly4Ovri65du0KhUMDZ2Rl/+ctfUF1drdPPzZs3MX36dGg0GpiYmKBHjx7YtWtXi/Hv2LED/v7+6Ny58z1/Ho8i5lFERI8O5lDMoZhD3Z92vVIKAGbMmIEZM2Y0ue7bb79ttGzs2LEYO3Zsk+2ffvppCCEeZHhERPQbgYGBSE5ORmVlJXbt2oXp06fD2NgYCxcu7OjQAABVVVWtXtFRXV0NPz8/9OzZEzt27IBGo8GFCxewe/dunaRu9erViIqKQnR0NJKSkiCXy/HFF18gMjISP/74I+Lj4+87zh49emDNmjVwdnbG7du3sWrVKvj7++PcuXOwtrbG2bNnUVdXh/Xr18PFxQU//vgjIiIiUF5e3uJ+Dx06hEmTJmHVqlUIDg5GSUkJIiMjERERgR07djS73S+//AIfHx/4+vpi9+7dsLa2xk8//YROnTrptGv4/BuYmJg06is2NhYRERHSe5VKJf3b2NgYkyZNwoABA2BpaYkffvgBERERqKurw3vvvQeg/jP08/ODjY0Ntm/fDnt7e/z73/+GpaVli8e0vLwcQ4cOxbhx43T2/zhjHkVE9OhgDsUcijnUfRBPIK1WKwAIrVbb0aEQ0WPo9u3bIjc3V9y+fbujQ7ln4eHhIiQkRGeZn5+f8PLyEjdu3BBhYWHC0tJSKJVKERgYKPLz86V2RUVF4qWXXhKWlpbC1NRUuLm5iZ07d4rCwkIBQOcVHh4uhBCirKxMTJw4UZiamgpbW1vxwQcfiOHDh4vZs2dL/To6OorY2FgRFhYmVCqVtG1mZqYYOnSoUCgUolu3bmLmzJni1q1bQgghsrOzBQBRVFTU7FiLi4uFsbGxmDNnTqN1iYmJAoD47rvvhBBCGkN2dva9H9T/aPjt2bt3b7NtVqxYIZycnFrsZ+XKlcLZ2blRvPb29i1uFx0dLYYOHdpim6Y+/99ydHQUq1atarHNb7355ps6+05KShLOzs6iqqrqnvpp8CA+j7u19J1lzqCLx4OI2hNzKOZQTWEO9XjnUO16+x4REQEQAqgq75jXA7gqQqlUoqqqCpMnT8b333+PtLQ0ZGVlQQiBUaNGSZcUT58+HZWVlThw4ABOnTqF5cuXw9zcHA4ODvjss88A1F+WXFpaig8//BBA/TNzDh06hLS0NGRkZCAzMxMnTpxoFEN8fDw8PDyQnZ2Nd955BwUFBQgMDMSYMWNw8uRJbN26FQcPHpSuKLG2toaBgQG2b9+O2traJse1fft2VFdXY968eY3WTZs2Debm5tiyZcvvPn5A/VmtDRs2QK1Ww8PDo9l2Wq0WVlZWLfbl7e2N8+fPY9euXRBC4PLly9i+fTtGjRrV4nZpaWkYNGgQxo4dCxsbG/Tv3x8fffRRo3bffvstbGxs0LNnT/zpT39q8pL2999/H507d0b//v2xcuXKFm9NOHfuHL788ksMHz5cJxZvb29Mnz4dXbt2Rd++ffHee+81+1kREdET7BHOo5hD/X7MoR7/HKrdb98jInriVVcA79l1zL4XXQTkZve1qRACX3/9Nfbs2YOgoCCkpqbi0KFDGDJkCID6e/IdHByQmpqKsWPHori4GGPGjIG7uzsAwNnZWeqrIUmwsbGRLi/+9ddfsWnTJmzevBkjRowAACQnJ8POrvGxeuGFFzB37lzp/dSpUxEaGoqoqCgAgKurKxITEzF8+HAkJSXB3t4eiYmJeOutt/Duu+9i0KBB8PX1RWhoqBRXfn4+1Go1NBpNo/3J5XI4OzsjPz//vo5dg/T0dEyYMAEVFRXQaDTIyMhAly5dmmx77tw5rF69utXL3X18fJCSkoLx48fjzp07qKmpQXBwMNauXdvidj///DOSkpIwZ84cLFq0CMeOHcOsWbMgl8sRHh4OoP6y8z/84Q9wcnJCQUEBFi1ahKCgIGRlZcHQ0BAAMGvWLAwYMABWVlY4fPgwFi5ciNLSUnzwwQc6+xsyZAhOnDiByspKvPHGG4iNjdWJ5ZtvvkFoaCh27dqFc+fO4c9//jOqq6sRExPT6nElIqInyCOYRzGHYg7FHKrteKUUERHpSE9Ph7m5ORQKBYKCgjB+/HhMnjwZRkZGGDx4sNSuc+fO6NmzJ86cOQOg/oc2Li4OPj4+iImJwcmTJ1vcz88//4zq6mp4enpKy9RqNXr27Nmo7aBBg3Te//DDD9i4cSPMzc2lV0BAAOrq6lBYWAig/qzjpUuXkJKSAm9vb2zbtg19+vRBRkZGm49FW2YjS0lJ0YkjMzNTWufr64ucnBwcPnwYgYGBGDduHK5cudKoj5KSEgQGBmLs2LE69/nf3W9kZCQAIDc3F7Nnz8bixYtx/PhxfPnllygqKpLWZ2Zm6myXkpICAKirq8OAAQPw3nvvoX///njjjTcQERGBdevWSfubMGECRo8eDXd3d7z88stIT0/HsWPHdJ5dNGfOHDz//PPo168fIiMjkZCQgNWrV6OyslJnTFu3bsWJEyewefNm7Ny5UydRrKurg42NDTZs2ICBAwdi/PjxePvtt6VYWjqmREREDyvmUP/FHIo5VFvxSikiovZmbFp/pq2j9n2PfH19pQdW2tnZwcjICGlpaa1uN3XqVAQEBGDnzp346quvsGzZMiQkJGDmzJn3E7kOMzPds5S3bt3CtGnTMGvWrEZtn3rqKenfKpUKwcHBCA4ORlxcHAICAhAXFwc/Pz+4urpCq9Xi4sWLjc4sVlVVoaCgAAEBAa3GNnr0aJ1E097eXiduFxcXuLi4wMvLC66urvj44491Hnh68eJF+Pr6YsiQIdiwYYNO33fPjGJhYQEAWLZsGXx8fDB//nwAQL9+/WBmZoZhw4YhLi4OgwYN0tmuYaY2jUYDNzc3nf579+4t3RbQFGdnZ3Tp0gXnzp2TzsT+1uDBg1FTU4OioiKdZNjBwQEA4ObmhtraWrzxxhuYO3cuDA0NodFoYGxsLJ05bIjl0qVLqKqqavGYEhHRE+YRyqOYQzGHasAcqu1YlCIiam8y2X3fQtcRGpKAu/Xu3Rs1NTU4cuSIdOn59evXkZeXp/Mj7eDggMjISERGRmLhwoX46KOPMHPmTOls2d33uzs7O8PY2BjHjh2TkiCtVov8/Hw899xzLcY4YMAA5ObmNoqzJTKZDL169cLhw4cBAK+++iqio6ORkJCAhIQEnbbr1q1DRUUFJk2a1Gq/KpVKZ+aUltTV1emcDSspKYGvry8GDhyI5ORkGBjoXsDc1PgqKipgZKT7892QmAghoFQqm9zOx8cHeXl5Osvy8/Ph6OjYbLwXLlzA9evXm7w8v0FOTg4MDAxgY2PTbJu6ujpUV1ejrq4OhoaG8PHxwebNm1FXVyeNOT8/HxqNBnK5HHK5vM3HlIiIHnOPUB7FHIo5VAPmUG3HohQREbXK1dUVISEhiIiIwPr166FSqbBgwQLY29sjJCQEABAVFYWgoCD06NEDv/zyC/bt24fevXsDABwdHSGTyZCeno5Ro0ZBqVRCpVIhPDwc8+fPh5WVFWxsbBATEwMDAwPIZLIW44mOjoaXlxdmzJiBqVOnwszMDLm5ucjIyMCaNWuQk5ODmJgYhIWFwc3NDXK5HPv378cnn3yC6OhoAPVnA1esWIF58+ZBoVAgLCwMxsbG+OKLL7Bo0SLExcWhb9++Ovv9bUICAH369IGxsbHOsvLycixduhSjR4+GRqPBtWvXsHbtWpSUlGDs2LEA6pOp559/Ho6OjoiPj8fVq1el7W1tbZsde3BwMCIiIpCUlISAgACUlpYiKioKnp6eTT5LosGbb76JIUOG4L333sO4ceNw9OhRbNiwQTqzeOvWLbz77rsYM2YMbG1tUVBQgLfeegsuLi7S2c6srCwcOXIEvr6+UKlUyMrKwptvvon/+Z//kaZFTklJgbGxMdzd3WFiYoLvv/8eCxcuxPjx46Xj9Kc//Qlr1qzB7NmzMXPmTPz000947733mjxre7cbN26guLgYFy9e1Pk8bG1tWzxmREREHYU5VD3mUMyhmvVA5gF8xHA6YyJqT4/bdMYNGqYzVqvVQqlUioCAAJ3pjGfMmCG6d+8uTExMhLW1tQgLCxPXrl2T1sfGxgpbW1shk8lanM7Y09NTLFiwQNquuelzjx49Kvz8/IS5ubkwMzMT/fr1E0uXLhVCCHH16lUxa9Ys0bdvX2Fubi5UKpVwd3cX8fHxora2Vqef1NRUMWzYMGFmZiZNt7xlyxadNk1NydzwOn/+fKPYbt++LV555RVhZ2cn5HK50Gg0YvTo0eLo0aNSm+Tk5Gb7bE1iYqJwc3MTSqVSaDQaERoaKi5cuNDqdv/6179E3759hYmJiejVq5fYsGGDtK6iokL4+/sLa2trYWxsLBwdHUVERIS4dOmS1Ob48eNi8ODBQq1WC4VCIXr37i3ee+89cefOHanNp59+KgYMGCB9Lm5ubuK9995r9H04fPiwGDx4sDAxMRHOzs5i6dKloqampsX4mztmMTExrY69JQ9iOuMnBY8HEbUn5lDMoZhDPXk5lEyIBzBf+COmrKwMarUaWq1Wur+UiOhBuXPnDgoLC+Hk5ASFQtHR4TxSysvLYW9vj4SEBEyZMkXv+79x4wZGjBgBCwsL7N69G6am9/5MLnr0tPSdZc6gi8eDiNoTc6j7xxyKOsKDyKE4+x4REXWY7OxsbNmyBQUFBThx4gRCQ0MBQLqcXd+srKywd+9ejBgxAllZWR0SAxEREVFrmEPR44LPlCIiog4VHx+PvLw8yOVyDBw4EJmZmejSpUuHxdO5c2csXry4w/ZPRERE1BbMoehxwKIUERF1mP79++P48eMdHQYRERHRI4U5FD0uePseERERERERERHpHYtSRERERERERESkdyxKERERERERERGR3rEoRUREREREREREeseiFBERERERERER6R2LUkREREREREREpHcsShERERERERERkd6xKEVERJLJkydDJpNBJpNBLpfDxcUFsbGxqKmp+V39fvvtt5DJZLh58+aDCbQNCgsLMXHiRNjZ2UGhUKBbt24ICQnB2bNnddqlp6dj+PDhUKlUMDU1xbPPPouNGzfqtCkqKoJMJkNOTk6b979kyRL06tULZmZm6NSpE0aOHIkjR47o9DllyhQ4OTlBqVSie/fuiImJQVVVVat9p6SkwMPDA6amptBoNHj99ddx/fr1Frepra3FO++8o7O/v/71rxBCSG127NgBf39/dO7cudnxFhQU4JVXXoG1tTUsLCwwbtw4XL58+Z7HdfLkSQwbNgwKhQIODg5YsWJFq+M+cOAAgoODYWdnB5lMhtTU1Fa3ISIi0gfmUMyhmEPdHxaliIhIR2BgIEpLS/HTTz9h7ty5WLJkCVauXNnRYUnaknBUV1fDz88PWq0WO3bsQF5eHrZu3Qp3d3edpG716tUICQmBj48Pjhw5gpMnT2LChAmIjIzEvHnzflecPXr0wJo1a3Dq1CkcPHgQTz/9NPz9/XH16lUAwNmzZ1FXV4f169fj9OnTWLVqFdatW4dFixa12O+hQ4cwadIkTJkyBadPn8a2bdtw9OhRREREtLjd8uXLkZSUhDVr1uDMmTNYvnw5VqxYgdWrV0ttysvLMXToUCxfvrzJPsrLy+Hv7w+ZTIZvvvkGhw4dQlVVFYKDg1FXV9fmcZWVlcHf3x+Ojo44fvw4Vq5ciSVLlmDDhg0tjqG8vBweHh5Yu3Zti+2IiIg6AnMo5lDMoe6DeAJptVoBQGi12o4OhYgeQ7dv3xa5ubni9u3bHR3KPQsPDxchISE6y/z8/ISXl5e4ceOGCAsLE5aWlkKpVIrAwECRn58vtSsqKhIvvfSSsLS0FKampsLNzU3s3LlTFBYWCgA6r/DwcCGEEGVlZWLixInC1NRU2Nraig8++EAMHz5czJ49W+rX0dFRxMbGirCwMKFSqaRtMzMzxdChQ4VCoRDdunUTM2fOFLdu3RJCCJGdnS0AiKKiombHWlxcLIyNjcWcOXMarUtMTBQAxHfffSeEENIYsrOz7/2g/kfDb8/evXubbbNixQrh5OTUYj8rV64Uzs7OjeK1t7dvcbsXX3xRvP766zrL/vCHP4jQ0NBGbZsb7549e4SBgYHO7+fNmzeFTCYTGRkZze77t+P6+9//Ljp16iQqKyulZdHR0aJnz54tjuFuAMTnn3/e5vYtaek7y5xBF48HEbUn5lDMoZrCHOrxzqF4pRQRUTsTQqCiuqJDXuKuy4rvl1KpRFVVFSZPnozvv/8eaWlpyMrKghACo0aNQnV1NQBg+vTpqKysxIEDB3Dq1CksX74c5ubmcHBwwGeffQYAyMvLQ2lpKT788EMAwJw5c3Do0CGkpaUhIyMDmZmZOHHiRKMY4uPj4eHhgezsbLzzzjsoKChAYGAgxowZg5MnT2Lr1q04ePAgZsyYAQCwtraGgYEBtm/fjtra2ibHtX37dlRXVzd5Nm/atGkwNzfHli1bfvfxA+rPTG7YsAFqtRoeHh7NttNqtbCysmqxL29vb5w/fx67du2CEAKXL1/G9u3bMWrUqBa3GzJkCL7++mvk5+cDAH744QccPHgQQUFBbR5HZWUlZDIZTExMpGUKhQIGBgY4ePBgm8eVlZWF5557DnK5XFoWEBCAvLw8/PLLL22Oh4iIHn+Pch7FHOr3Yw71+OdQRh0dABHR4+52zW0M3jy4Q/Z9ZOIRmBqb3te2Qgh8/fXX2LNnD4KCgpCamopDhw5hyJAhAOrvyXdwcEBqairGjh2L4uJijBkzBu7u7gAAZ2dnqa+GH1MbGxtYWloCAH799Vds2rQJmzdvxogRIwAAycnJsLOzaxTLCy+8gLlz50rvp06ditDQUERFRQEAXF1dkZiYiOHDhyMpKQn29vZITEzEW2+9hXfffReDBg2Cr68vQkNDpbjy8/OhVquh0Wga7U8ul8PZ2VlKPu5Xeno6JkyYgIqKCmg0GmRkZKBLly5Ntj137hxWr16N+Pj4Fvv08fFBSkoKxo8fjzt37qCmpgbBwcGtXo69YMEClJWVoVevXjA0NERtbS2WLl2K0NDQNo/Hy8sLZmZmiI6OxnvvvQchBBYsWIDa2lqUlpa2eVyXLl2Ck5OTTruuXbtK6zp16tTmmIiI6PH2KOZRzKGYQ/0Wc6jm8UopIiLSkZ6eDnNzcygUCgQFBWH8+PGYPHkyjIyMMHjwf5PCzp07o2fPnjhz5gwAYNasWYiLi4OPjw9iYmJw8uTJFvfz888/o7q6Gp6entIytVqNnj17Nmo7aNAgnfc//PADNm7cCHNzc+kVEBCAuro6FBYWAqg/63jp0iWkpKTA29sb27ZtQ58+fZCRkdHmY3H3WajmpKSk6MSRmZkprfP19UVOTg4OHz6MwMBAjBs3DleuXGnUR0lJCQIDAzF27Fid5xrc3W9kZCQAIDc3F7Nnz8bixYtx/PhxfPnllygqKpLWZ2Zm6myXkpICAPjnP/+JlJQUbN68GSdOnMCmTZsQHx+PTZs2tfl4WFtbY9u2bfjXv/4Fc3NzqNVq3Lx5EwMGDICBQeOUorlxtaa5MRARET3MmEP9F3MoXcyhmscrpYiI2pnSSIkjE4+03rCd9n2vfH19kZSUBLlcDjs7OxgZGSEtLa3V7aZOnYqAgADs3LkTX331FZYtW4aEhATMnDnzfkLXYWZmpvP+1q1bmDZtGmbNmtWo7VNPPSX9W6VSITg4GMHBwYiLi0NAQADi4uLg5+cHV1dXaLVaXLx4sdGZxaqqKhQUFCAgIKDV2EaPHq2TaNrb2+vE7eLiAhcXF3h5ecHV1RUff/wxFi5cKLW5ePEifH19MWTIkEYPqbx75hYLCwsAwLJly+Dj44P58+cDAPr16wczMzMMGzYMcXFxGDRokM52DWfP5s+fjwULFmDChAkAAHd3d/z73//GsmXLEB4e3uo4G/j7+6OgoADXrl2DkZERLC0tYWtrq3NWt7Vx2dra6sw2A0B6b2tri6effrrJMRAR0ZPnUcqjmEMxh2oJc6imsShFRNTOZDLZfd9C1xEakoC79e7dGzU1NThy5Ih06fn169eRl5cHNzc3qZ2DgwMiIyMRGRmJhQsX4qOPPsLMmTOls2V3P5vA2dkZxsbGOHbsmJQEabVa5Ofn47nnnmsxxgEDBiA3N7dRnC2RyWTo1asXDh8+DAB49dVXER0djYSEBCQkJOi0XbduHSoqKjBp0qRW+1WpVFCpVG2Koa6uDpWVldL7kpIS+Pr6YuDAgUhOTm50pqyp8VVUVMDISPfn29DQEED97QJKpbLZ7X7bv6GhoTTjy71quIT+m2++wZUrVzB69Og2j8vb2xtvv/02qqurYWxsDADIyMhAz549pcvO7+WzJSKix9ejlEcxh2IO1RbMoXSxKEVERK1ydXVFSEgIIiIisH79eqhUKixYsAD29vYICQkBAERFRSEoKAg9evTAL7/8gn379qF3794AAEdHR8hkMqSnp2PUqFFQKpVQqVQIDw/H/PnzYWVlBRsbG8TExMDAwAAymazFeKKjo+Hl5YUZM2Zg6tSpMDMzQ25uLjIyMrBmzRrk5OQgJiYGYWFhcHNzg1wux/79+/HJJ58gOjoaQP3ZwBUrVmDevHlQKBQICwuDsbExvvjiCyxatAhxcXHo27evzn7z8vIaxdKnTx8pKWhQXl6OpUuXYvTo0dBoNLh27RrWrl2LkpISjB07FkB90vH888/D0dER8fHx0jTHQP2ZruYEBwcjIiICSUlJCAgIQGlpKaKiouDp6dnksyTu3m7p0qV46qmn0KdPH2RnZ+ODDz7A66+/LrW5ceMGiouLcfHiRZ3x2traSjElJyejd+/esLa2RlZWFmbPno0333xTumWgLeOaOHEi3n33XUyZMgXR0dH48ccf8eGHH2LVqlXNxg/Un909d+6c9L6wsBA5OTmwsrLSObtLRET0sGAOVY85FHOoZj2QeQAfMZzOmIja0+M2nXGDhumM1Wq1UCqVIiAgQGc64xkzZoju3bsLExMTYW1tLcLCwsS1a9ek9bGxscLW1lbIZLIWpzP29PQUCxYskLZzdHQUq1atahTP0aNHhZ+fnzA3NxdmZmaiX79+YunSpUIIIa5evSpmzZol+vbtK8zNzYVKpRLu7u4iPj5e1NbW6vSTmpoqhg0bJszMzKTplrds2aLTpqkpmRte58+fbxTb7du3xSuvvCLs7OyEXC4XGo1GjB49Whw9elRqk5yc3GyfrUlMTBRubm5CqVQKjUYjQkNDxYULF1rcpqysTMyePVs89dRTQqFQCGdnZ/H222/rTCncXEwxMTFSm+joaNG1a1dhbGwsXF1dRUJCgqirq7vncf3www9i6NChwsTERNjb24v333+/1XHv27evyX4b/p7u14OYzvhJweNBRO2JORRzKOZQT14OJRPiAcwX/ogpKyuDWq2GVquV7i8lInpQ7ty5g8LCQjg5OUGhUHR0OI+U8vJy2NvbIyEhAVOmTNH7/m/cuIERI0bAwsICu3fvhqnpo3G7AP0+LX1nmTPo4vEgovbEHOr+MYeijvAgcijOvkdERB0mOzsbW7ZsQUFBAU6cOCFNrdtwObu+WVlZYe/evRgxYgSysrI6JAYiIiKi1jCHoscFnylFREQdKj4+Hnl5eZDL5Rg4cCAyMzOlB0B2hM6dO2Px4sUdtn8iIiKitmAORY8DFqWIiKjD9O/fH8ePH+/oMIiIiIgeKcyh6HHB2/eIiIiIiIiIiEjvWJQiIiIiIiIiIiK9Y1GKiIiIiIiIiIj0jkUpIiIiIiIiIiLSOxaliIiIiIiIiIhI71iUIiIiIiIiIiIivWNRioiIiIiIiIiI9I5FKSIikkyePBkymQwymQxyuRwuLi6IjY1FTU3N7+r322+/hUwmw82bNx9MoG1QWFiIiRMnws7ODgqFAt26dUNISAjOnj2r0y49PR3Dhw+HSqWCqakpnn32WWzcuFGnTVFREWQyGXJyctq8/yVLlqBXr14wMzNDp06dMHLkSBw5ckSnzylTpsDJyQlKpRLdu3dHTEwMqqqqWu07JSUFHh4eMDU1hUajweuvv47r16+3uM2vv/6KqKgoODo6QqlUYsiQITh27JhOm1u3bmHGjBno1q0blEol3NzcsG7dOp0206ZNQ/fu3aFUKmFtbd3kMS0uLsaLL74IU1NT2NjYYP78+c3+DR06dAhGRkZ45plnWh33jh074O/vj86dO9/z50FERNSemEMxh2IOdX9YlCIiIh2BgYEoLS3FTz/9hLlz52LJkiVYuXJlR4claUvCUV1dDT8/P2i1WuzYsQN5eXnYunUr3N3ddZK61atXIyQkBD4+Pjhy5AhOnjyJCRMmIDIyEvPmzftdcfbo0QNr1qzBqVOncPDgQTz99NPw9/fH1atXAQBnz55FXV0d1q9fj9OnT2PVqlVYt24dFi1a1GK/hw4dwqRJkzBlyhScPn0a27Ztw9GjRxEREdHidlOnTkVGRgb+7//+D6dOnYK/vz9GjhyJkpISqc2cOXPw5Zdf4h//+AfOnDmDqKgozJgxA2lpaVKbgQMHIjk5GWfOnMGePXsghIC/vz9qa2sBALW1tXjxxRdRVVWFw4cPY9OmTdi4cSMWL17cKKabN29i0qRJGDFiRJuOaXl5OYYOHYrly5e3qT0REZE+MYdiDsUc6j6IJ5BWqxUAhFar7ehQiOgxdPv2bZGbmytu377d0aHcs/DwcBESEqKzzM/PT3h5eYkbN26IsLAwYWlpKZRKpQgMDBT5+flSu6KiIvHSSy8JS0tLYWpqKtzc3MTOnTtFYWGhAKDzCg8PF0IIUVZWJiZOnChMTU2Fra2t+OCDD8Tw4cPF7NmzpX4dHR1FbGysCAsLEyqVSto2MzNTDB06VCgUCtGtWzcxc+ZMcevWLSGEENnZ2QKAKCoqanasxcXFwtjYWMyZM6fRusTERAFAfPfdd0IIIY0hOzv73g/qfzT89uzdu7fZNitWrBBOTk4t9rNy5Urh7OzcKF57e/tmt6moqBCGhoYiPT1dZ/mAAQPE22+/Lb3v06ePiI2NbbHNb/3www8CgDh37pwQQohdu3YJAwMDcenSJalNUlKSsLCwEJWVlTrbjh8/XvzlL38RMTExwsPDo9l9/NaD+Dzu1tJ3ljmDLh4PImpPzKGYQzWFOdTjnUPxSikionYmhEBdRUWHvIQQvzt+pVKJqqoqTJ48Gd9//z3S0tKQlZUFIQRGjRqF6upqAMD06dNRWVmJAwcO4NSpU1i+fDnMzc3h4OCAzz77DACQl5eH0tJSfPjhhwDqzyodOnQIaWlpyMjIQGZmJk6cONEohvj4eHh4eCA7OxvvvPMOCgoKEBgYiDFjxuDkyZPYunUrDh48iBkzZgAArK2tYWBggO3bt0tnn35r+/btqK6ubvJs3rRp02Bubo4tW7b87uMH1J+Z3LBhA9RqNTw8PJptp9VqYWVl1WJf3t7eOH/+PHbt2gUhBC5fvozt27dj1KhRzW5TU1OD2tpaKBQKneVKpRIHDx6U3g8ZMgRpaWkoKSmBEAL79u1Dfn4+/P39m+y3vLwcycnJcHJygoODAwAgKysL7u7u6Nq1q9QuICAAZWVlOH36tLQsOTkZP//8M2JiYlocLxERPdke5TyKOdTvxxzq8c+hjDo6ACKix524fRt5AwZ2yL57njgOmanpfW0rhMDXX3+NPXv2ICgoCKmpqTh06BCGDBkCoP6efAcHB6SmpmLs2LEoLi7GmDFj4O7uDgBwdnaW+mpIEmxsbGBpaQmg/v78TZs2YfPmzdKlx8nJybCzs2sUywsvvIC5c+dK76dOnYrQ0FBERUUBAFxdXZGYmIjhw4cjKSkJ9vb2SExMxFtvvYV3330XgwYNgq+vL0JDQ6W48vPzoVarodFoGu1PLpfD2dkZ+fn593XsGqSnp2PChAmoqKiARqNBRkYGunTp0mTbc+fOYfXq1YiPj2+xTx8fH6SkpGD8+PG4c+cOampqEBwcjLVr1za7jUqlgre3N/7617+id+/e6Nq1K7Zs2YKsrCy4uLhI7VavXo033ngD3bp1g5GREQwMDPDRRx/hueee0+nv73//O9566y2Ul5ejZ8+eyMjIgFwuBwBcunRJJ5kCIL2/dOkSAOCnn37CggULkJmZCSMjpiJERNS8RzGPYg7FHIo5VNvxSikiItKRnp4Oc3NzKBQKBAUFYfz48Zg8eTKMjIwwePBgqV3nzp3Rs2dPnDlzBgAwa9YsxMXFwcfHBzExMTh58mSL+/n5559RXV0NT09PaZlarUbPnj0btR00aJDO+x9++AEbN26Eubm59AoICEBdXR0KCwsB1J91vHTpElJSUuDt7Y1t27ahT58+yMjIaPOxaEgSWpKSkqITR2ZmprTO19cXOTk5OHz4MAIDAzFu3DhcuXKlUR8lJSUIDAzE2LFjdZ5rcHe/kZGRAIDc3FzMnj0bixcvxvHjx/Hll1+iqKhIWp+ZmamzXUpKCgDg//7v/yCEgL29PUxMTJCYmIjXXnsNBgb/TQVWr16N7777DmlpaTh+/DgSEhIwffp07N27Vyfe0NBQZGdnY//+/ejRowfGjRuHO3futOmY1tbWYuLEiXj33XfRo0ePez6mREREDyvmUP/FHIo5VFs9HqU1IqKHmEypRM8Txzts3/fK19cXSUlJkMvlsLOzg5GRkc5DGpszdepUBAQEYOfOnfjqq6+wbNkyJCQkYObMmfcTug4zMzOd97du3cK0adMwa9asRm2feuop6d8qlQrBwcEIDg5GXFwcAgICEBcXBz8/P7i6ukKr1eLixYuNzixWVVWhoKAAAQEBrcY2evRonUTT3t5eJ24XFxe4uLjAy8sLrq6u+Pjjj7Fw4UKpzcWLF+Hr64shQ4Zgw4YNOn3fPTOKhYUFAGDZsmXw8fHB/PnzAQD9+vWDmZkZhg0bhri4OAwaNEhnu4YzbN27d8f+/ftRXl6OsrIyaDQajB8/Xjrrefv2bSxatAiff/45XnzxRanvnJwcxMfHY+TIkVKfarUaarUarq6u8PLyQqdOnfD555/jtddeg62tLY4ePaozjsuXLwMAbG1t8euvv+L7779Hdna2dKtAXV0dhBAwMjLCV1991eIxJSKiJ8ujlEcxh2IOxRzq3rEoRUTUzmQy2X3fQtcRGpKAu/Xu3Rs1NTU4cuSIdOn59evXkZeXBzc3N6mdg4MDIiMjERkZiYULF+Kjjz7CzJkzpbNldz+bwNnZGcbGxjh27JiUBGm1WuTn5ze61Pm3BgwYgNzc3EZxtkQmk6FXr144fPgwAODVV19FdHQ0EhISkJCQoNN23bp1qKiowKRJk1rtV6VSQaVStSmGuro6VFZWSu9LSkrg6+srzcZy9xk3AE2Or6KiotHl2oaGhgDqbxdQKpUtHhczMzOYmZnhl19+wZ49e7BixQoA9bPtVFdXN4rB0NAQdXV1zfYnhIAQQhqXt7c3li5diitXrsDGxgYAkJGRAQsLC7i5ucHY2BinTp3S6ePvf/87vvnmG2zfvh1OTk4wMzNr8zElIqLH26OURzGHYg71276ZQ7WORSkiImqVq6srQkJCEBERgfXr10OlUmHBggWwt7dHSEgIACAqKgpBQUHo0aMHfvnlF+zbtw+9e/cGADg6OkImkyE9PR2jRo2CUqmESqVCeHg45s+fDysrK9jY2CAmJgYGBgaQyWQtxhMdHQ0vLy/MmDEDU6dOhZmZGXJzc5GRkYE1a9YgJycHMTExCAsLg5ubG+RyOfbv349PPvkE0dHRAOrPBq5YsQLz5s2DQqFAWFgYjI2N8cUXX2DRokWIi4tD3759dfabl5fXKJY+ffrA2NhYZ1l5eTmWLl2K0aNHQ6PR4Nq1a1i7di1KSkowduxYAPXJ1PPPPw9HR0fEx8dL0xwD9WfDmhMcHIyIiAgkJSUhICAApaWliIqKgqenZ5PPkmjQMPVwz549ce7cOcyfPx+9evXCH//4RwD1ZxGHDx+O+fPnQ6lUwtHREfv378f//u//4oMPPgBQf7vA1q1b4e/vD2tra1y4cAHvv/8+lEql9JBQf39/uLm5ISwsDCtWrMClS5fwl7/8BdOnT4eJiQkANDquNjY2UCgUjZb/1o0bN1BcXIyLFy8C+O/nYWtr2+IxIyIi6ijMoeoxh2IO1azfOwXgo4jTGRNRe3rcpjNu0DCdsVqtFkqlUgQEBOhMZzxjxgzRvXt3YWJiIqytrUVYWJi4du2atD42NlbY2toKmUzW4nTGnp6eYsGCBdJ2jo6OYtWqVY3iOXr0qPDz8xPm5ubCzMxM9OvXTyxdulQIIcTVq1fFrFmzRN++fYW5ublQqVTC3d1dxMfHi9raWp1+UlNTxbBhw4SZmZk03fKWLVt02jQ1JXPD6/z5841iu337tnjllVeEnZ2dkMvlQqPRiNGjR4ujR49KbZKTk5vtszWJiYnCzc1NKJVKodFoRGhoqLhw4UKL22zdulU4OzsLuVwubG1txfTp08XNmzd12pSWlorJkycLOzs7oVAoRM+ePUVCQoKoq6sTQghRUlIigoKChI2NjTA2NhbdunUTEydOFGfPntXpp6ioSAQFBQmlUim6dOki5s6dK6qrq5uNra3TGTd3zGJiYlrdtiUPYjrjJwWPBxG1J+ZQzKGYQz15OZRMiAcwX/gjpqysDGq1GlqtVrq/lIjoQblz5w4KCwvh5OTUaPpYall5eTns7e2RkJCAKVOm6H3/N27cwIgRI2BhYYHdu3fD9BG5XYB+n5a+s8wZdPF4EFF7Yg51/5hDUUd4EDkUZ98jIqIOk52djS1btqCgoAAnTpxAaGgoAEiXs+ublZUV9u7dixEjRiArK6tDYiAiIiJqDXMoelzwmVJERNSh4uPjkZeXB7lcjoEDByIzMxNdunTpsHg6d+6MxYsXd9j+iYiIiNqCORQ9DliUIiKiDtO/f38cP94x0zwTERERPaqYQ9HjgrfvERERERERERGR3rEoRUREREREREREeseiFBERERERERER6R2LUkREREREREREpHcsShERERERERERkd6xKEVERERERERERHrHohQREREREREREekdi1JERCSZPHkyZDIZZDIZ5HI5XFxcEBsbi5qamt/V77fffguZTIabN28+mEDboLCwEBMnToSdnR0UCgW6deuGkJAQnD17Vqddeno6hg8fDpVKBVNTUzz77LPYuHGjTpuioiLIZDLk5OS0ef9LlixBr169YGZmhk6dOmHkyJE4cuSITp9TpkyBk5MTlEolunfvjpiYGFRVVbXad0pKCjw8PGBqagqNRoPXX38d169fb3GbAwcOIDg4GHZ2dpDJZEhNTW3UZseOHfD390fnzp1bHa8QAkFBQc32tXHjRvTr1w8KhQI2NjaYPn26zvo9e/bAy8sLKpUK1tbWGDNmDIqKivQyTiIiogeNORRzKOZQ94dFKSIi0hEYGIjS0lL89NNPmDt3LpYsWYKVK1d2dFiStiQc1dXV8PPzg1arxY4dO5CXl4etW7fC3d1dJ6lbvXo1QkJC4OPjgyNHjuDkyZOYMGECIiMjMW/evN8VZ48ePbBmzRqcOnUKBw8exNNPPw1/f39cvXoVAHD27FnU1dVh/fr1OH36NFatWoV169Zh0aJFLfZ76NAhTJo0CVOmTMHp06exbds2HD16FBERES1uV15eDg8PD6xdu7bFNkOHDsXy5ctbHd/f/vY3yGSyJtd98MEHePvtt7FgwQKcPn0ae/fuRUBAgLS+sLAQISEheOGFF5CTk4M9e/bg2rVr+MMf/qCXcRIREbUH5lDMoZhD3QfxBNJqtQKA0Gq1HR0KET2Gbt++LXJzc8Xt27c7OpR7Fh4eLkJCQnSW+fn5CS8vL3Hjxg0RFhYmLC0thVKpFIGBgSI/P19qV1RUJF566SVhaWkpTE1NhZubm9i5c6coLCwUAHRe4eHhQgghysrKxMSJE4WpqamwtbUVH3zwgRg+fLiYPXu21K+jo6OIjY0VYWFhQqVSSdtmZmaKoUOHCoVCIbp16yZmzpwpbt26JYQQIjs7WwAQRUVFzY61uLhYGBsbizlz5jRal5iYKACI7777TgghpDFkZ2ff+0H9j4bfnr179zbbZsWKFcLJyanFflauXCmcnZ0bxWtvb9/mWACIzz//vNn1rY03Oztb2Nvbi9LS0kZ93bhxQyiVyhbHuW3bNmFkZCRqa2ulZWlpaUImk4mqqiohhH7G2aCl7yxzBl08HkTUnphDMYdqCnOo/3occyheKUVE1M6EEKiurO2QV/1vyu+jVCpRVVWFyZMn4/vvv0daWhqysrIghMCoUaNQXV0NAJg+fToqKytx4MABnDp1CsuXL4e5uTkcHBzw2WefAQDy8vJQWlqKDz/8EAAwZ84cHDp0CGlpacjIyEBmZiZOnDjRKIb4+Hh4eHggOzsb77zzDgoKChAYGIgxY8bg5MmT2Lp1Kw4ePIgZM2YAAKytrWFgYIDt27ejtra2yXFt374d1dXVTZ7NmzZtGszNzbFly5bfffyA+jOTGzZsgFqthoeHR7PttFotrKysWuzL29sb58+fx65duyCEwOXLl7F9+3aMGjXqgcTamoqKCkycOBFr166Fra1to/UZGRmoq6tDSUkJevfujW7dumHcuHE4f/681GbgwIEwMDBAcnIyamtrodVq8X//938YOXIkjI2NH4pxEhHRw+FRzqOYQ/1+zKEe/xzKqKMDICJ63NVU1WHD7P0dsu83PhwOYxPD+9pWCIGvv/4ae/bsQVBQEFJTU3Ho0CEMGTIEQP296g4ODkhNTcXYsWNRXFyMMWPGwN3dHQDg7Ows9dWQJNjY2MDS0hIA8Ouvv2LTpk3YvHkzRowYAQBITk6GnZ1do1heeOEFzJ07V3o/depUhIaGIioqCgDg6uqKxMREDB8+HElJSbC3t0diYiLeeustvPvuuxg0aBB8fX0RGhoqxZWfnw+1Wg2NRtNof3K5HM7OzsjPz7+vY9cgPT0dEyZMQEVFBTQaDTIyMtClS5cm2547dw6rV69GfHx8i336+PggJSUF48ePx507d1BTU4Pg4GC9XWr95ptvYsiQIQgJCWly/c8//4y6ujq89957+PDDD6FWq/GXv/wFfn5+OHnyJORyOZycnPDVV19h3LhxmDZtGmpra+Ht7Y1du3Y9NOMkIqKHw6OYRzGHYg7VFOZQTeOVUkREpCM9PR3m5uZQKBQICgrC+PHjMXnyZBgZGWHw4MFSu86dO6Nnz544c+YMAGDWrFmIi4uDj48PYmJicPLkyRb38/PPP6O6uhqenp7SMrVajZ49ezZqO2jQIJ33P/zwAzZu3Ahzc3PpFRAQgLq6OhQWFgKoP+t46dIlpKSkwNvbG9u2bUOfPn2QkZHR5mMhl8tbbZOSkqITR2ZmprTO19cXOTk5OHz4MAIDAzFu3DhcuXKlUR8lJSUIDAzE2LFjde73v7vfyMhIAEBubi5mz56NxYsX4/jx4/jyyy9RVFQkrc/MzNTZLiUlpc3jbU1aWhq++eYb/O1vf2u2TV1dHaqrq5GYmIiAgAB4eXlhy5Yt+Omnn7Bv3z4AwKVLlxAREYHw8HAcO3YM+/fvh1wux6uvviqdle7IcRIREd0P5lD/xRxKF3Oo5vFKKSKidmYkN8AbHw7vsH3fK19fXyQlJUEul8POzg5GRkZIS0trdbupU6ciICAAO3fuxFdffYVly5YhISEBM2fOvJ/QdZiZmem8v3XrFqZNm4ZZs2Y1avvUU09J/1apVAgODkZwcDDi4uIQEBCAuLg4+Pn5wdXVFVqtFhcvXmx0ZrGqqgoFBQU6D5ZszujRo3USTXt7e524XVxc4OLiAi8vL7i6uuLjjz/GwoULpTYXL16Er68vhgwZgg0bNuj0fffMLRYWFgCAZcuWwcfHB/PnzwcA9OvXD2ZmZhg2bBji4uIwaNAgne26du3a6hja6ptvvkFBQYF0prbBmDFjMGzYMHz77bfSWVM3NzdpvbW1Nbp06YLi4mIAwNq1a6FWq7FixQqpzT/+8Q84ODjgyJEj8PLy6tBxEhHRw+NRyqOYQzGHag5zqOaxKEVE1M5kMtl930LXERqSgLv17t0bNTU1OHLkiHTp+fXr15GXl6fzw+ng4IDIyEhERkZi4cKF+OijjzBz5kzpbNndzyZwdnaGsbExjh07JiVBWq0W+fn5eO6551qMccCAAcjNzW0UZ0tkMhl69eqFw4cPAwBeffVVREdHIyEhAQkJCTpt161bh4qKCkyaNKnVflUqFVQqVZtiqKurQ2VlpfS+pKQEvr6+GDhwIJKTk2FgoJv8NjW+iooKGBnp/nwbGtb/fQkhoFQq7+m43IsFCxZg6tSpOsvc3d2xatUqBAcHA6i/ZByof/ZFt27dAAA3btzAtWvX4OjoKI3ht2NtGENdXZ3UpqPGSURED49HKY9iDsUcqjnMoZrHohQREbXK1dUVISEhiIiIwPr166FSqbBgwQLY29tL98VHRUUhKCgIPXr0wC+//IJ9+/ahd+/eAABHR0fIZDKkp6dj1KhRUCqVUKlUCA8Px/z582FlZQUbGxvExMTAwMCg2WlyG0RHR8PLywszZszA1KlTYWZmhtzcXGRkZGDNmjXIyclBTEwMwsLC4ObmBrlcjv379+OTTz5BdHQ0gPqzgStWrMC8efOgUCgQFhYGY2NjfPHFF1i0aBHi4uLQt29fnf3m5eU1iqVPnz7SgyUblJeXY+nSpRg9ejQ0Gg2uXbuGtWvXoqSkBGPHjgVQn0w9//zzcHR0RHx8vDTNMYAmH37ZIDg4GBEREUhKSkJAQABKS0sRFRUFT0/PJp8l0eDWrVs4d+6c9L6wsBA5OTmwsrKSEtobN26guLgYFy9e1Bmvra2tzuu3nnrqKTg5OQGon8Y5JCQEs2fPxoYNG2BhYYGFCxeiV69e8PX1BQC8+OKLWLVqFWJjY/Haa6/h119/xaJFi+Do6Ij+/fu3+ziJiIj0hTlUPeZQzKGa1bYJAR8vnM6YiNrT4zadcYOG6YzVarVQKpUiICBAZzrjGTNmiO7duwsTExNhbW0twsLCxLVr16T1sbGxwtbWVshkshanM/b09BQLFiyQtnN0dBSrVq1qFM/Ro0eFn5+fMDc3F2ZmZqJfv35i6dKlQgghrl69KmbNmiX69u0rzM3NhUqlEu7u7iI+Pl5nCl0hhEhNTRXDhg0TZmZm0nTLW7Zs0WnT1JTMDa/z5883iu327dvilVdeEXZ2dkIulwuNRiNGjx4tjh49KrVJTk5uts/WJCYmCjc3N6FUKoVGoxGhoaHiwoULLW6zb9++JvfV8Fm0FFNMTEyz/aKJKYO1Wq14/fXXhaWlpbCyshKvvPKKKC4u1mmzZcsW0b9/f2FmZiasra3F6NGjxZkzZ/Qyzt96ENMZPyl4PIioPTGHYg7FHOrJy6FkQjyA+cIfMWVlZVCr1dBqtdL9pURED8qdO3dQWFgIJycnKBSKjg7nkVJeXg57e3skJCRgypQpet//jRs3MGLECFhYWGD37t0wNTXVewykfy19Z5kz6OLxIKL2xBzq/jGHoo7wIHIozr5HREQdJjs7G1u2bEFBQQFOnDiB0NBQAGh2qtz2ZmVlhb1792LEiBHIysrqkBiIiIiIWsMcih4XfKYUERF1qPj4eOTl5UEul2PgwIHIzMxEly5dOiyezp07Y/HixR22fyIiIqK2YA5FjwMWpYiIqMP0798fx48f7+gwiIiIiB4pzKHoccHb94iIiIiIiIiISO9YlCIiIiIiIiIiIr1jUYqIiIiIiIiIiPSORSkiIiIiIiIiItI7FqWIiIiIiIiIiEjvWJQiIiIiIiIiIiK9Y1GKiIiIiIiIiIj0jkUpIiKSTJ48GTKZDDKZDHK5HC4uLoiNjUVNTc3v6vfbb7+FTCbDzZs3H0ygbVBYWIiJEyfCzs4OCoUC3bp1Q0hICM6ePavTLj09HcOHD4dKpYKpqSmeffZZbNy4UadNUVERZDIZcnJy2rz/JUuWoFevXjAzM0OnTp0wcuRIHDlyRKfPKVOmwMnJCUqlEt27d0dMTAyqqqpa7TslJQUeHh4wNTWFRqPB66+/juvXr7e4zYEDBxAcHAw7OzvIZDKkpqbec8wAsHTpUgwZMgSmpqawtLRscl/FxcV48cUXYWpqChsbG8yfP1/nb+juv7O7X3369JHaLFu2DM8++yxUKhVsbGzw8ssvIy8vr9Vj05b4iIiIHjTmUMyhmEPdHxaliIhIR2BgIEpLS/HTTz9h7ty5WLJkCVauXNnRYUnaknBUV1fDz88PWq0WO3bsQF5eHrZu3Qp3d3edpG716tUICQmBj48Pjhw5gpMnT2LChAmIjIzEvHnzflecPXr0wJo1a3Dq1CkcPHgQTz/9NPz9/XH16lUAwNmzZ1FXV4f169fj9OnTWLVqFdatW4dFixa12O+hQ4cwadIkTJkyBadPn8a2bdtw9OhRREREtLhdeXk5PDw8sHbt2vuOGag//mPHjsWf/vSnJvuora3Fiy++iKqqKhw+fBibNm3Cxo0bsXjxYqnNhx9+iNLSUul1/vx5WFlZYezYsVKb/fv3Y/r06fjuu++QkZGB6upq+Pv7o7y8vMVxthYfERFRe2EOxRyKOdR9EE8grVYrAAitVtvRoRDRY+j27dsiNzdX3L59u6NDuWfh4eEiJCREZ5mfn5/w8vISN27cEGFhYcLS0lIolUoRGBgo8vPzpXZFRUXipZdeEpaWlsLU1FS4ubmJnTt3isLCQgFA5xUeHi6EEKKsrExMnDhRmJqaCltbW/HBBx+I4cOHi9mzZ0v9Ojo6itjYWBEWFiZUKpW0bWZmphg6dKhQKBSiW7duYubMmeLWrVtCCCGys7MFAFFUVNTsWIuLi4WxsbGYM2dOo3WJiYkCgPjuu++EEEIaQ3Z29r0f1P9o+O3Zu3dvs21WrFghnJycWuxn5cqVwtnZuVG89vb2bY4FgPj8889bbddSzMnJyUKtVjdavmvXLmFgYCAuXbokLUtKShIWFhaisrKyyf18/vnnQiaTtfh5XblyRQAQ+/fvbzXuluJrSkvfWeYMung8iKg9MYdiDtUU5lCPdw7FK6WIiNqZEALVd+50yEsI8bvjVyqVqKqqwuTJk/H9998jLS0NWVlZEEJg1KhRqK6uBgBMnz4dlZWVOHDgAE6dOoXly5fD3NwcDg4O+OyzzwAAeXl5KC0txYcffggAmDNnDg4dOoS0tDRkZGQgMzMTJ06caBRDfHw8PDw8kJ2djXfeeQcFBQUIDAzEmDFjcPLkSWzduhUHDx7EjBkzAADW1tYwMDDA9u3bUVtb2+S4tm/fjurq6ibP5k2bNg3m5ubYsmXL7z5+QP2Zpw0bNkCtVsPDw6PZdlqtFlZWVi325e3tjfPnz2PXrl0QQuDy5cvYvn07Ro0a9UBivdeYfysrKwvu7u7o2rWrtCwgIABlZWU4ffp0k9t8/PHHGDlyJBwdHZvtV6vVAkCrx4eIiB4vj3IexRzq92MO9fjnUEYdHQAR0eOuprISieGvdsi+Z23aDmOF4r62FULg66+/xp49exAUFITU1FQcOnQIQ4YMAVB/T76DgwNSU1MxduxYFBcXY8yYMXB3dwcAODs7S301/Aja2NhI96j/+uuv2LRpEzZv3owRI0YAAJKTk2FnZ9colhdeeAFz586V3k+dOhWhoaGIiooCALi6uiIxMRHDhw9HUlIS7O3tkZiYiLfeegvvvvsuBg0aBF9fX4SGhkpx5efnQ61WQ6PRNNqfXC6Hs7Mz8vPz7+vYNUhPT8eECRNQUVEBjUaDjIwMdOnSpcm2586dw+rVqxEfH99inz4+PkhJScH48eNx584d1NTUIDg4uMVLytsr5qZcunRJJ5kCIL2/dOlSo/YXL17E7t27sXnz5mb7rKurQ1RUFHx8fNC3b982x0JERI++RzGPYg7FHIo5VNvxSikiItKRnp4Oc3NzKBQKBAUFYfz48Zg8eTKMjIwwePBgqV3nzp3Rs2dPnDlzBgAwa9YsxMXFwcfHBzExMTh58mSL+/n5559RXV0NT09PaZlarUbPnj0btR00aJDO+x9++AEbN26Eubm59AoICEBdXR0KCwsB1J91vHTpElJSUuDt7Y1t27ahT58+yMjIaPOxkMvlrbZJSUnRiSMzM1Na5+vri5ycHBw+fBiBgYEYN24crly50qiPkpISBAYGYuzYsTrPNbi738jISABAbm4uZs+ejcWLF+P48eP48ssvUVRUJK3PzMzU2S4lJaXN472XmB+UTZs2wdLSEi+//HKzbaZPn44ff/wRn376qbQsMjJSZ5xEREQdjTnUfzGHYg7VVrxSioionRmZmGDWpu0dtu975evri6SkJMjlctjZ2cHIyAhpaWmtbjd16lQEBARg586d+Oqrr7Bs2TIkJCRg5syZ9xO6DjMzM533t27dwrRp0zBr1qxGbZ966inp3yqVCsHBwQgODkZcXBwCAgIQFxcHPz8/uLq6QqvV4uLFi43OLFZVVaGgoAABAQGtxjZ69GidRNPe3l4nbhcXF7i4uMDLywuurq74+OOPsXDhQqnNxYsX4evriyFDhmDDhg06fd89U42FhQWA+hlVfHx8MH/+fABAv379YGZmhmHDhiEuLg6DBg3S2e63Z9xa05aYW2Jra4ujR4/qLLt8+bK07m5CCHzyyScICwtrNnmdMWMG0tPTceDAAXTr1k1aHhsb+7sfpEpERA+/RymPYg7FHIo51L1jUYqIqJ3JZLL7voWuIzT8oN6td+/eqKmpwZEjR6RLz69fv468vDy4ublJ7RwcHBAZGYnIyEgsXLgQH330EWbOnCn9WN79bAJnZ2cYGxvj2LFjUhKk1WqRn5+P5557rsUYBwwYgNzc3EZxtkQmk6FXr144fPgwAODVV19FdHQ0EhISkJCQoNN23bp1qKiowKRJk1rtV6VSQaVStSmGuro6VFZWSu9LSkrg6+uLgQMHIjk5GQYGuhcwNzW+iooKGBnp/nwbGhoCqE9QlErlPR2Xe425Nd7e3li6dCmuXLkCGxsbAEBGRgYsLCx0/laA+tlhzp07hylTpjTqRwiBmTNn4vPPP8e3334LJycnnfU2NjZS/0RE9Ph6lPIo5lDMoVqKuTVPag7FohQREbXK1dUVISEhiIiIwPr166FSqbBgwQLY29sjJCQEABAVFYWgoCD06NEDv/zyC/bt24fevXsDABwdHSGTyZCeno5Ro0ZBqVRCpVIhPDwc8+fPh5WVFWxsbBATEwMDAwPIZLIW44mOjoaXlxdmzJiBqVOnwszMDLm5ucjIyMCaNWuQk5ODmJgYhIWFwc3NDXK5HPv378cnn3yC6OhoAPVnA1esWIF58+ZBoVAgLCwMxsbG+OKLL7Bo0SLExcU1uvc+Ly+vUSx9+vSBsbGxzrLy8nIsXboUo0ePhkajwbVr17B27VqUlJRIU/aWlJTg+eefh6OjI+Lj43WmDP7t2bC7BQcHIyIiAklJSQgICEBpaSmioqLg6enZ5LMkGty6dQvnzp2T3hcWFiInJwdWVlZ46qmn2hQzABQXF+PGjRsoLi5GbW2tdEbRxcUF5ubm8Pf3h5ubG8LCwrBixQpcunQJf/nLXzB9+nSY/OaM88cff4zBgwc3+YyD6dOnY/Pmzfjiiy+gUqmkZymo1Woolcpmx9lafERERPrEHKoecyjmUM1q0zx/jxlOZ0xE7elxm864QcN0xmq1WiiVShEQEKAznfGMGTNE9+7dhYmJibC2thZhYWHi2rVr0vrY2Fhha2srZDJZi9MZe3p6igULFkjbOTo6ilWrVjWK5+jRo8LPz0+Ym5sLMzMz0a9fP7F06VIhhBBXr14Vs2bNEn379hXm5uZCpVIJd3d3ER8fL2pra3X6SU1NFcOGDRNmZmbSdMtbtmzRadPUlMwNr/PnzzeK7fbt2+KVV14RdnZ2Qi6XC41GI0aPHi2OHj0qtUlOTm62z9YkJiYKNzc3oVQqhUajEaGhoeLChQstbrNv374m99XwWbQlZiHq/0aa6mffvn1Sm6KiIhEUFCSUSqXo0qWLmDt3rqiurtbp5+bNm0KpVIoNGzY0GW9zxyY5ObnFcbYlvt96ENMZPyl4PIioPTGHYg7FHOrJy6Fk/wn6iVJWVga1Wg2tVivdX0pE9KDcuXMHhYWFcHJyguIRudz8YVFeXg57e3skJCQ0eTlye7tx4wZGjBgBCwsL7N69G6ampnqPgfSvpe8scwZdPB5E1J6YQ90/5lDUER5EDsXZ94iIqMNkZ2djy5YtKCgowIkTJxAaGgoA0uXs+mZlZYW9e/dixIgRyMrK6pAYiIiIiFrDHIoeF3ymFBERdaj4+Hjk5eVBLpdj4MCByMzMRJcuXTosns6dO2Px4sUdtn8iIiKitmAORY8DFqWIiKjD9O/fH8ePH+/oMIiIiIgeKcyh6HHB2/eIiIiIiIiIiEjvWJQiImonT+A8EkSPJH5XiYgeLvz/ZaJHw4P4rrIoRUT0gBkbGwMAKioqOjgSImqLhu9qw3eXiIg6BnMookfLg8ih+EwpIqIHzNDQEJaWlrhy5QoAwNTUFDKZrIOjIqLfEkKgoqICV65cgaWlJQwNDTs6JCKiJxpzKKJHw4PMoViUIiJqB7a2tgAgJVVE9PCytLSUvrNERNSxmEMRPToeRA7FohQRUTuQyWTQaDSwsbFBdXV1R4dDRM0wNjbmFVJERA8R5lBEj4YHlUOxKEVE1I4MDQ35H7xERERE94g5FNGTgQ86JyIiIiIiIiIivWNRioiIiIiIiIiI9I5FKSIiIiIiIiIi0jsWpYiIiIiIiIiISO9YlCIiIiIiIiIiIr1jUYqIiIiIiIiIiPSORSkiIiIiIiIiItI7FqWIiIiIiIiIiEjvWJQiIiIiIiIiIiK9Y1GKiIiIiIiIiIj0jkUpIiIiIiIiIiLSOxaliIiIiIiIiIhI71iUIiIiIiIiIiIivWNRioiIiIiIiIiI9I5FKSIiIiIiIiIi0jsWpYiIiIiIiIiISO9YlCIiIiIiIiIiIr1jUYqIiIiIiIiIiPSORSkiIiIiIiIiItI7FqWIiIiIiIiIiEjvWJQiIiIiIiIiIiK9Y1GKiIiIiIiIiIj0jkUpIiIiIiIiIiLSOxaliIiIiIiIiIhI79q9KLV27Vo8/fTTUCgUGDx4MI4ePdpi+23btqFXr15QKBRwd3fHrl27dNYLIbB48WJoNBoolUqMHDkSP/30U3sOgYiIiKhDMI8iIiKix1m7FqW2bt2KOXPmICYmBidOnICHhwcCAgJw5cqVJtsfPnwYr732GqZMmYLs7Gy8/PLLePnll/Hjjz9KbVasWIHExESsW7cOR44cgZmZGQICAnDnzp32HAoRERGRXjGPIiIiosedTAgh2qvzwYMH49lnn8WaNWsAAHV1dXBwcMDMmTOxYMGCRu3Hjx+P8vJypKenS8u8vLzwzDPPYN26dRBCwM7ODnPnzsW8efMAAFqtFl27dsXGjRsxYcKENsVVVlYGtVoNrVYLCwuLBzDS/7p+uRSlJecfaJ9E9JAzMoBMJmtylUwmg5HcBIaGRk2thbGxvF1DMzSQQWbQdGyNowGMmxqHoTFgaAiZwX/PY8hkMhgZ6I7JwMAAhsaGzR4LevQZGshg2Ma/J30zMGif71J75gyteRjzqPY+Hj+eaPlKMCJ6zBgAMkPDZlcbyo1hbGTS9DojYxjI2u8aC5kMMDRse//GMkCG3/xGGhgBBgaQGenmTMaGxrr7MjCAoZEhDB7S31j6/WQywPge/p70SSYzgqwdvkttzRma+q+kB6KqqgrHjx/HwoULpWUGBgYYOXIksrKymtwmKysLc+bM0VkWEBCA1NRUAEBhYSEuXbqEkSNHSuvVajUGDx6MrKysZpOpyspKVFZWSu/Lysrud1it+t+li1F3ubTd+icieljJLSbBNWQFjE1/6ehQ6AmjMLGDj09mR4fxQD0seZQ+cygA+GrFSghxu133QUT0sDFS+MB+SAE6ue7r6FDoCeT5bBpUqj4dtv92K9Vdu3YNtbW16Nq1q87yrl274tKlS01uc+nSpRbbN/zvvfQJAMuWLYNarZZeDg4O9zweIiIiIn15WPIo5lBERETUntrtSqmHycKFC3XOHJaVlbVbUvXyzDn48eihdumbiB5ScuNmS/wyGEBuZtboVjcAkMkMIFcq2zU0E0ODNl8KLpMBSkPdtkJmCBgrABMFZEb/HaShzBAmhgqdtkYmCpgoR7T5dkF69JgYGcDEqPnbLOjxo88cCgB6vjwKdbW17dY/ET1kjAwBo+auk5DB2FQB+W/yjQZyU9PGt8s90NAMYHwPOY2JIWD4m0cYCGNTwFgOmYnu7XqmRmY67w2NjCE3lcOw2WNBjzpDmQxmJg9n+cXQ0LRD999uR6VLly4wNDTE5cuXdZZfvnwZtra2TW5ja2vbYvuG/718+TI0Go1Om2eeeabZWExMTGBi0vS9yA+ak2tvOLn21su+iIiI6PH0sORR+syhAODFCX/U276IiIio47VbKVYul2PgwIH4+uuvpWV1dXX4+uuv4e3t3eQ23t7eOu0BICMjQ2rv5OQEW1tbnTZlZWU4cuRIs30SERERPWqYRxEREdGToF2vH5szZw7Cw8MxaNAgeHp64m9/+xvKy8vxxz/WnwWbNGkS7O3tsWzZMgDA7NmzMXz4cCQkJODFF1/Ep59+iu+//x4bNmwAUD/bU1RUFOLi4uDq6gonJye88847sLOzw8svv9yeQyEiIiLSK+ZRRERE9Lhr16LU+PHjcfXqVSxevBiXLl3CM888gy+//FJ6wGZxcTEM7ppifMiQIdi8eTP+8pe/YNGiRXB1dUVqair69u0rtXnrrbdQXl6ON954Azdv3sTQoUPx5ZdfQqFo+l5jIiIiokcR8ygiIiJ63MmEEKKjg9C3srIyqNVqaLVaWFhYdHQ4RERE9JBizqCLx4OIiIjaoq05Ax/vT0REREREREREeseiFBERERERERER6R2LUkREREREREREpHcsShERERERERERkd6xKEVERERERERERHrHohQREREREREREekdi1JERERERERERKR3LEoREREREREREZHesShFRERERERERER6x6IUERERERERERHpHYtSRERERERERESkdyxKERERERERERGR3rEoRUREREREREREeseiFBERERERERER6R2LUkREREREREREpHcsShERERERERERkd6xKEVERERERERERHrHohQREREREREREekdi1JERERERERERKR3LEoREREREREREZHesShFRERERERERER6x6IUERERERERERHpHYtSRERERERERESkdyxKERERERERERGR3rEoRUREREREREREeseiFBERERERERER6R2LUkREREREREREpHcsShERERERERERkd6xKEVERERERERERHrHohQREREREREREekdi1JERERERERERKR3LEoREREREREREZHesShFRERERERERER6x6IUERERERERERHpHYtSRERERERERESkdyxKERERERERERGR3rEoRUREREREREREeseiFBERERERERER6R2LUkREREREREREpHcsShERERERERERkd6xKEVERERERERERHrHohQREREREREREekdi1JERERERERERKR3LEoREREREREREZHesShFRERERERERER6x6IUERERERERERHpHYtSRERERERERESkdyxKERERERERERGR3rEoRUREREREREREeseiFBERERERERER6R2LUkREREREREREpHcsShERERERERERkd6xKEVERERERERERHrHohQREREREREREekdi1JERERERERERKR3LEoREREREREREZHesShFRERERERERER6x6IUERERERERERHpHYtSRERERERERESkdyxKERERERERERGR3rEoRUREREREREREeseiFBERERERERER6R2LUkREREREREREpHcsShERERERERERkd6xKEVERERERERERHrHohQREREREREREekdi1JERERERERERKR3LEoREREREREREZHesShFRERERERERER6x6IUERERERERERHpHYtSRERERERERESkdyxKERERERERERGR3rEoRUREREREREREeseiFBERERERERER6R2LUkREREREREREpHcsShERERERERERkd6xKEVERERERERERHrHohQREREREREREekdi1JERERERERERKR3LEoREREREREREZHesShFRERERERERER6x6IUERERERERERHpHYtSRERERERERESkdyxKERERERERERGR3rEoRUREREREREREeseiFBERERERERER6R2LUkREREREREREpHcsShERERERERERkd6xKEVERERERERERHrHohQREREREREREekdi1JERERERERERKR3LEoREREREREREZHesShFRERERERERER6x6IUERERERERERHpHYtSRERERERERESkdyxKERERERERERGR3rEoRUREREREREREeseiFBERERERERER6R2LUkREREREREREpHcsShERERERERERkd6xKEVERERERERERHrHohQREREREREREekdi1JERERERERERKR3LEoREREREREREZHesShFRERERERERER6x6IUERERERERERHpHYtSRERERERERESkdyxKERERERERERGR3rEoRUREREREREREeseiFBERERERERER6R2LUkREREREREREpHcsShERERERERERkd6xKEVERERERERERHrHohQREREREREREekdi1JERERERERERKR3LEoREREREREREZHesShFRERERERERER6x6IUERERERERERHpHYtSRERERERERESkdyxKERERERERERGR3rEoRUREREREREREeseiFBERERERERER6R2LUkREREREREREpHcsShERERERERERkd6xKEVERERERERERHrHohQREREREREREelduxWlbty4gdDQUFhYWMDS0hJTpkzBrVu3Wtzmzp07mD59Ojp37gxzc3OMGTMGly9fltb/8MMPeO211+Dg4AClUonevXvjww8/bK8hEBEREXUI5lFERET0JGi3olRoaChOnz6NjIwMpKen48CBA3jjjTda3ObNN9/Ev/71L2zbtg379+/HxYsX8Yc//EFaf/z4cdjY2OAf//gHTp8+jbfffhsLFy7EmjVr2msYRERERHrHPIqIiIieBDIhhHjQnZ45cwZubm44duwYBg0aBAD48ssvMWrUKFy4cAF2dnaNttFqtbC2tsbmzZvx6quvAgDOnj2L3r17IysrC15eXk3ua/r06Thz5gy++eabNsdXVlYGtVoNrVYLCwuL+xghERERPQk6Imd4mPMo5lBERETUFm3NGdrlSqmsrCxYWlpKiRQAjBw5EgYGBjhy5EiT2xw/fhzV1dUYOXKktKxXr1546qmnkJWV1ey+tFotrKysWoynsrISZWVlOi8iIiKih9HDlEcxhyIiIqL21C5FqUuXLsHGxkZnmZGREaysrHDp0qVmt5HL5bC0tNRZ3rVr12a3OXz4MLZu3drq5ezLli2DWq2WXg4ODm0fDBEREZEePUx5FHMoIiIiak/3VJRasGABZDJZi6+zZ8+2V6w6fvzxR4SEhCAmJgb+/v4ttl24cCG0Wq30On/+vF5iJCIiImrwKOZRzKGIiIioPRndS+O5c+di8uTJLbZxdnaGra0trly5orO8pqYGN27cgK2tbZPb2draoqqqCjdv3tQ5y3f58uVG2+Tm5mLEiBF444038Je//KXVuE1MTGBiYtJqOyL6/+zdeVxV1f7/8fdBOTIdwAEEHMgB56HUnMtIEbSUuqYVhlpq2nXIHHJoQE2tDPOmlkO3tPu7aF7NzLQyKi0cUlNIbyqmYZZDziiIgLB+f/jlXE8gosnB4fV8PM7j0dln7bXX2sjlfT97n70AAMXlZsxRZCgAAFCcrqoo5efnJz8/vyu2a9WqlU6fPq2tW7eqadOmkqRvvvlGubm5atGiRYH7NG3aVK6urvr666/VrVs3SVJycrIOHDigVq1a2dv99NNPuv/++9W7d29Nnjz5aoYPAABQYshRAAAAjopl9T1J6tSpk/744w/NmTNH2dnZevLJJ9WsWTMtXLhQknTw4EG1b99e//rXv9S8eXNJ0jPPPKPPPvtMCxYskLe3t4YMGSLp4jMPpIu3mt9///0KDw/XG2+8YT9WqVKlihTy8rByDAAAKIqSygw3ao4iQwEAgKIoama4qjulrkZcXJwGDx6s9u3by8XFRd26ddOMGTPsn2dnZys5OVnnzp2zb5s+fbq9bWZmpsLDw/XOO+/YP1+6dKmOHTumf//73/r3v/9t3x4cHKz9+/cX11QAAACcihwFAABuB8V2p9SNjKt8AACgKMgMjjgfAACgKIqaGa5q9T0AAAAAAADgeqAoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnoygFAAAAAAAAp6MoBQAAAAAAAKejKAUAAAAAAACnK7ai1MmTJ9WzZ095e3vL19dXffv2VVpaWqH7nD9/XoMGDVL58uXl5eWlbt266Y8//iiw7YkTJ1S5cmVZLBadPn26GGYAAABQMshRAADgdlBsRamePXvqp59+Unx8vFauXKnvvvtOTz/9dKH7PPfcc/r000+1ZMkSffvttzp06JD+9re/Fdi2b9++atSoUXEMHQAAoESRowAAwO3AYowx17vTXbt2qV69etqyZYuaNWsmSfriiy/UuXNn/f777woKCsq3T2pqqvz8/LRw4UI98sgjkqTdu3erbt262rhxo1q2bGlvO3v2bC1evFgvv/yy2rdvr1OnTsnX17fI4ztz5ox8fHyUmpoqb2/vvzZZAABwyyqJzHAj5ygyFAAAKIqiZoZiuVNq48aN8vX1tQcpSerQoYNcXFy0adOmAvfZunWrsrOz1aFDB/u2OnXqqGrVqtq4caN9286dOzVx4kT961//kotL0YafmZmpM2fOOLwAAABuRDdSjiJDAQCA4lQsRakjR47I39/fYVvp0qVVrlw5HTly5LL7WK3WfFfqKlasaN8nMzNTjz/+uN544w1VrVq1yON59dVX5ePjY39VqVLl6iYEAADgJDdSjiJDAQCA4nRVRakxY8bIYrEU+tq9e3dxjVVjx45V3bp19cQTT1z1fqmpqfbXb7/9VkwjBAAAKNjNmKPIUAAAoDiVvprGI0aMUJ8+fQptU716dQUEBOjo0aMO2y9cuKCTJ08qICCgwP0CAgKUlZWl06dPO1zl++OPP+z7fPPNN9qxY4eWLl0qScp7HFaFChX0wgsvaMKECQX2XaZMGZUpU6YoUwQAACgWN2OOIkMBAIDidFVFKT8/P/n5+V2xXatWrXT69Glt3bpVTZs2lXQxCOXm5qpFixYF7tO0aVO5urrq66+/Vrdu3SRJycnJOnDggFq1aiVJ+uijj5SRkWHfZ8uWLXrqqaeUkJCgGjVqXM1UAAAAnIocBQAA4OiqilJFVbduXUVERKh///6aM2eOsrOzNXjwYD322GP2FWMOHjyo9u3b61//+peaN28uHx8f9e3bV8OHD1e5cuXk7e2tIUOGqFWrVvYVY/4cmI4fP24/3tWsvgcAAHCjIkcBAIDbRbEUpSQpLi5OgwcPVvv27eXi4qJu3bppxowZ9s+zs7OVnJysc+fO2bdNnz7d3jYzM1Ph4eF65513imuIAAAANyRyFAAAuB1YTN4DBW4jZ86ckY+Pj1JTU+Xt7V3SwwEAADcoMoMjzgcAACiKomaGq1p9DwAAAAAAALgeKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6UqX9ABKgjFGknTmzJkSHgkAALiR5WWFvOxwuyNDAQCAoihqhroti1Jnz56VJFWpUqWERwIAAG4GZ8+elY+PT0kPo8SRoQAAwNW4UoaymNvw0l9ubq4OHTokm80mi8Vy3fs/c+aMqlSpot9++03e3t7Xvf8bCXO9NTHXWxNzvTUx1+JljNHZs2cVFBQkFxeeekCGun6Y662Jud6amOutibkWr6JmqNvyTikXFxdVrly52I/j7e19y//jzsNcb03M9dbEXG9NzLX4cIfU/5Chrj/memtirrcm5nprYq7FpygZikt+AAAAAAAAcDqKUgAAAAAAAHA6ilLFoEyZMoqJiVGZMmVKeijFjrnempjrrYm53pqYK24lt9PPmLnempjrrYm53pqY643htnzQOQAAAAAAAEoWd0oBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAQAAAAAAwOkoSgEAAAAAAMDpKEoBAAAAAADA6ShKAShR+/fvl8Vi0YIFC0p6KAAAADcE8hGA2wVFKeA2t2HDBo0fP16nT5++pv3feecdAhMAALilkI8AwDkoSgG3uQ0bNmjChAmELgAAgP9DPgIA56AoBQDIxxijjIyMkh4GAADATSU9Pb2khwDcVChKAbex8ePHa9SoUZKkatWqyWKxyGKxaP/+/bpw4YJeeeUV1ahRQ2XKlNEdd9yhcePGKTMz077/HXfcoZ9++knffvutfd/77rtPknTy5EmNHDlSDRs2lJeXl7y9vdWpUyf9+OOP12Xsv/76q7p27SpPT0/5+/vrueee0+rVq2WxWLR27Vp7u/vuu08NGjTQ1q1b1bp1a7m7u6tatWqaM2eOQ38LFiywz/1Sa9euzdfnleT19d1332nAgAEqX768vL291atXL506dSpf+3feeUf169dXmTJlFBQUpEGDBjlcmZ0xY4ZKlSrlsG3atGmyWCwaPny4fVtOTo5sNptGjx5t35abm6t//OMfql+/vtzc3FSxYkUNGDAg3zjuuOMOPfjgg1q9erWaNWsmd3d3zZ07t8hzBgDgVkE++p/iyEfr1q3T0KFD5efnJ19fXw0YMEBZWVk6ffq0evXqpbJly6ps2bJ6/vnnZYxx6ONqc83atWvtuaZhw4b28S5btkwNGzaUm5ubmjZtqsTExHzj/eabb3TPPffI09NTvr6+ioyM1K5duxzajB8/XhaLRTt37lRUVJTKli2rtm3bav78+bJYLAX2O2XKFJUqVUoHDx4s8rkDbmWlS3oAAErO3/72N+3Zs0eLFi3S9OnTVaFCBUmSn5+f+vXrpw8++ECPPPKIRowYoU2bNunVV1/Vrl279PHHH0uS/vGPf2jIkCHy8vLSCy+8IEmqWLGiJOmXX37R8uXL1b17d1WrVk1//PGH5s6dq3bt2mnnzp0KCgq65nGnp6fr/vvv1+HDh/Xss88qICBACxcu1Jo1awpsf+rUKXXu3Fk9evTQ448/rv/85z965plnZLVa9dRTT13zOK5k8ODB8vX11fjx45WcnKzZs2fr119/tQc56WKYmTBhgjp06KBnnnnG3m7Lli1av369XF1ddc899yg3N1fr1q3Tgw8+KElKSEiQi4uLEhIS7MdLTExUWlqa7r33Xvu2AQMGaMGCBXryySc1dOhQpaSkaNasWUpMTLT3nyc5OVmPP/64BgwYoP79+6t27drFdm4AALhRkY+KNx8NGTJEAQEBmjBhgr7//nvNmzdPvr6+2rBhg6pWraopU6bos88+0xtvvKEGDRqoV69e9n2vJtfs3btXUVFRGjBggJ544gnFxsaqS5cumjNnjsaNG6e///3vkqRXX31VPXr0UHJyslxcLt6z8dVXX6lTp06qXr26xo8fr4yMDM2cOVNt2rTRtm3bdMcddzjMqXv37goJCdGUKVNkjNEjjzyiQYMGKS4uTnfddZdD27i4ON13332qVKlSMZ1h4CZjANzW3njjDSPJpKSk2LclJSUZSaZfv34ObUeOHGkkmW+++ca+rX79+qZdu3b5+j1//rzJyclx2JaSkmLKlCljJk6c6LBNkpk/f36Rxzxt2jQjySxfvty+LSMjw9SpU8dIMmvWrLFvb9eunZFkpk2bZt+WmZlp7rzzTuPv72+ysrKMMcbMnz8/33kwxpg1a9bk6/NK8vpq2rSpvX9jjJk6daqRZD755BNjjDFHjx41VqvVdOzY0eFczZo1y0gy77//vjHGmJycHOPt7W2ef/55Y4wxubm5pnz58qZ79+6mVKlS5uzZs8YYY958803j4uJiTp06ZYwxJiEhwUgycXFxDuP74osv8m0PDg42kswXX3xR5HkCAHCrIh8VXz4KDw83ubm59u2tWrUyFovFDBw40L7twoULpnLlyg7n8FpyzYYNG+zbVq9ebSQZd3d38+uvv9q3z507N99c8s7DiRMn7Nt+/PFH4+LiYnr16mXfFhMTYySZxx9/PN98H3/8cRMUFOTw8962bdtV/1yBWx1f3wOQz2effSZJDl8Nk6QRI0ZIklatWnXFPsqUKWO/2pSTk6MTJ07Iy8tLtWvX1rZt2/7S+L744gtVqlRJXbt2tW9zc3NT//79C2xfunRpDRgwwP7earVqwIABOnr0qLZu3fqXxlKYp59+2uGK3TPPPKPSpUvbz+9XX32lrKwsDRs2zH6uJKl///7y9va2n2cXFxe1bt1a3333nSRp165dOnHihMaMGSNjjDZu3Cjp4t1TDRo0kK+vryRpyZIl8vHxUVhYmI4fP25/NW3aVF5eXvmunFarVk3h4eHFdj4AALiZkY+uj759+9rvGJekFi1ayBijvn372reVKlVKzZo10y+//GLfdrW5pl69emrVqpXDcSTp/vvvV9WqVfNtzzvW4cOHlZSUpD59+qhcuXL2do0aNVJYWJj938GlBg4cmG9br169dOjQIYdxxcXFyd3dXd26dbvCWQJuHxSlAOTz66+/ysXFRTVr1nTYHhAQIF9fX/36669X7CM3N1fTp09XSEiIypQpowoVKsjPz0/bt29XamrqXx5fjRo1HAKNpHzjzRMUFCRPT0+HbbVq1ZKkfM9IuJ5CQkIc3nt5eSkwMNB+zLzz+OevyVmtVlWvXt3hPN9zzz3aunWrMjIylJCQoMDAQDVp0kSNGze2f4Vv3bp1uueee+z7/Pzzz0pNTZW/v7/8/PwcXmlpaTp69KjDcatVq3bd5g4AwK2GfHR9XFoQkiQfHx9JUpUqVfJtv/RZUVeba67mOJLsx7pcPpOkunXr6vjx4/keZl5QhgoLC1NgYKDi4uIkXfzZL1q0SJGRkbLZbPnaA7crnikF4LL+HGquxpQpU/TSSy/pqaee0iuvvKJy5crJxcVFw4YNU25u7nUc5fVxubnm5OQ4eSQFa9u2rbKzs7Vx40YlJCTYi0/33HOPEhIStHv3bh07dsyhKJWbmyt/f397GPozPz8/h/fu7u7FNwEAAG4R5KO/lo9KlSpV5O3mkgedX22uuZrj/PlYV6ugDFWqVClFRUXp3Xff1TvvvKP169fr0KFDeuKJJ675OMCtiKIUcJsrKGwEBwcrNzdXP//8s+rWrWvf/scff+j06dMKDg4udH9JWrp0qUJDQ/Xee+85bD99+rT9gaHXKjg4WDt37pQxxuH4e/fuLbD9oUOHlJ6e7nA1cM+ePZJkf1Bl2bJl7eO7VFGuel7Ozz//rNDQUPv7tLQ0HT58WJ07d7bPQ7r4gPHq1avb22VlZSklJUUdOnSwb2vevLmsVqsSEhKUkJBgXxXo3nvv1bvvvquvv/7a/j5PjRo19NVXX6lNmzYUnAAAuArkozskFU8+ulbOyjWX5rM/2717typUqJDvDrPL6dWrl6ZNm6ZPP/1Un3/+ufz8/HhUAvAnfH0PuM3l/VG9NGzkFU3+8Y9/OLR98803JUkPPPCAw/5/DirSxatDf77itGTJkuuy/G14eLgOHjyoFStW2LedP39e7777boHtL1y4oLlz59rfZ2Vlae7cufLz81PTpk0lXQw6kuzPbZIuXgWcN2/eNY9z3rx5ys7Otr+fPXu2Lly4oE6dOkmSOnToIKvVqhkzZjicq/fee0+pqakO59nNzU133323Fi1apAMHDjjcKZWRkaEZM2aoRo0aCgwMtO/To0cP5eTk6JVXXinwnBT0cwMAAOSj4sxH18pZuSYwMFB33nmnPvjgA4c+//vf/+rLL7+0/zsoikaNGqlRo0b65z//qY8++kiPPfaYSpfmvhDgUvxGALe5vNDxwgsv6LHHHpOrq6u6dOmi3r17a968eTp9+rTatWunzZs364MPPtBDDz3kcPdP06ZNNXv2bE2aNEk1a9aUv7+/7r//fj344IOaOHGinnzySbVu3Vo7duxQXFycwx1B12rAgAGaNWuWHn/8cT377LP27+u7ublJyn91MigoSK+//rr279+vWrVqafHixUpKStK8efPsDyKvX7++WrZsqbFjx+rkyZMqV66cPvzwQ124cOGax5mVlaX27dvblxl+55131LZtW/sDSP38/DR27FhNmDBBERER6tq1q73d3Xffne/27nvuuUevvfaafHx81LBhQ0mSv7+/ateureTkZPXp08ehfbt27TRgwAC9+uqrSkpKUseOHeXq6qqff/5ZS5Ys0VtvvaVHHnnkmucHAMCtinxUfPnoWjkz17zxxhvq1KmTWrVqpb59+yojI0MzZ86Uj4+Pxo8ff1V99erVSyNHjpQkvroHFKTE1v0DcMN45ZVXTKVKlYyLi4t92d/s7GwzYcIEU61aNePq6mqqVKlixo4da86fP++w75EjR8wDDzxgbDabkWRfuvf8+fNmxIgRJjAw0Li7u5s2bdqYjRs3mnbt2jks73stSx4bY8wvv/xiHnjgAePu7m78/PzMiBEjzEcffWQkme+//97erl27dqZ+/frmhx9+MK1atTJubm4mODjYzJo1K1+f+/btMx06dDBlypQxFStWNOPGjTPx8fHXvOTxt99+a55++mlTtmxZ4+XlZXr27OmwtHCeWbNmmTp16hhXV1dTsWJF88wzz5hTp07la7dq1SojyXTq1Mlhe79+/Ywk89577xU4nnnz5pmmTZsad3d3Y7PZTMOGDc3zzz9vDh06ZG8THBxsHnjggSLPEQCAWx356KLrnY+2bNnisD0mJsZIMseOHXPY3rt3b+Pp6Zmvn7+SaySZQYMGOWzLO9dvvPGGw/avvvrKtGnTxri7uxtvb2/TpUsXs3PnziKN/VKHDx82pUqVMrVq1bpsG+B2ZjHmLzzRDQBuIP/4xz/03HPP6ffff1elSpUkSffdd5+OHz+u//73v04bx4IFC/Tkk09qy5YtatasmdOOCwAA8Gc3Sj66XR0/flyBgYF6+eWX9dJLL5X0cIAbDs+UAnBTysjIcHh//vx5zZ07VyEhIfbABQAAcDshH914FixYoJycHEVHR5f0UIAbEs+UAnDDyMrK0smTJwtt4+PjI3d3d/3tb39T1apVdeeddyo1NVX//ve/tXv37ssuE3w9ZGRkKDU1tdA25cqVK7bjAwCA28+tko+sVmuxjeFG9M0332jnzp2aPHmyHnroIfuKhgAcUZQCcMPYsGGDw0NCCzJ//nz16dNH4eHh+uc//6m4uDjl5OSoXr16+vDDD/Xoo48W2/gWL16sJ598stA2a9asKbbjAwCA28+tko/uu+++YhvDjWjixInasGGD2rRpo5kzZ5b0cIAbFs+UAnDDOHXqlLZu3Vpom/r16yswMNBJI3J0+PBh/fTTT4W2adq0qcqWLeukEQEAgFsd+QjArYyiFAAAAAAAAJyOB50DAAAAAADA6W7LZ0rl5ubq0KFDstlsslgsJT0cAABwgzLG6OzZswoKCpKLC9fyyFAAAKAoipqhbsui1KFDh1SlSpWSHgYAALhJ/Pbbb6pcuXJJD6PEkaEAAMDVuFKGui2LUjabTdLFk+Pt7V3CowEAADeqM2fOqEqVKvbscLsjQwEAgKIoaoa6LYtSebebe3t7E6gAAMAV8VW1i8hQAADgalwpQ/FwBAAAAAAAADgdRSkAAAAAAAA4HUUpAAAAAAAAON1t+UwpAHCWnJwcZWdnl/QwAFyGq6urSpUqVdLDAAD8CRkKuLFdrwxFUQoAioExRkeOHNHp06dLeigArsDX11cBAQE8zBwAbgBkKODmcT0yFEUpACgGeWHK399fHh4e/J9d4AZkjNG5c+d09OhRSVJgYGAJjwgAQIYCbnzXM0NRlAKA6ywnJ8cepsqXL1/SwwFQCHd3d0nS0aNH5e/vz1f5AKAEkaGAm8f1ylA86BwArrO85x94eHiU8EgAFEXe7yrPLgGAkkWGAm4u1yNDUZQCgGLC7ebAzYHfVQC4sfC/y8DN4Xr8rlKUAgAAAAAAgNNRlAIAAAAAAIDTUZQCANj16dNHFotFFotFVqtVNWvW1MSJE3XhwoW/1O/atWtlsVicurxzSkqKoqKiFBQUJDc3N1WuXFmRkZHavXu3Q7uVK1eqXbt2stls8vDw0N13360FCxY4tNm/f78sFouSkpKKfPzx48erTp068vT0VNmyZdWhQwdt2rTJoc++ffuqWrVqcnd3V40aNRQTE6OsrKxC+z18+LCioqJUq1Ytubi4aNiwYUUaz3fffacuXbooKChIFotFy5cvL7Ddrl271LVrV/n4+MjT01N33323Dhw4YP98wIABqlGjhtzd3eXn51fgOd2yZYvat28vX19flS1bVuHh4frxxx8LPN7evXtls9nk6+t73eYAAICzkaHIUGSoa0NRCgDgICIiQocPH9bPP/+sESNGaPz48XrjjTdKelh2Vwoc0sWHLYaFhSk1NVXLli1TcnKyFi9erIYNGzqEupkzZyoyMlJt2rTRpk2btH37dj322GMaOHCgRo4c+ZfGWatWLc2aNUs7duzQunXrdMcdd6hjx446duyYJGn37t3Kzc3V3Llz9dNPP2n69OmaM2eOxo0bV2i/mZmZ8vPz04svvqjGjRsXeTzp6elq3Lix3n777cu22bdvn9q2bas6depo7dq12r59u1566SW5ubnZ2zRt2lTz58/Xrl27tHr1ahlj1LFjR+Xk5EiS0tLSFBERoapVq2rTpk1at26dbDabwsPD8z0EMzs7W48//rjuueee6zYHAABKChmKDEWGugbmNpSammokmdTU1JIeCoBbUEZGhtm5c6fJyMgo6aFctd69e5vIyEiHbWFhYaZly5bm5MmTJjo62vj6+hp3d3cTERFh9uzZY2+3f/9+8+CDDxpfX1/j4eFh6tWrZ1atWmVSUlKMJIdX7969jTHGnDlzxkRFRRkPDw8TEBBg3nzzTdOuXTvz7LPP2vsNDg42EydONNHR0cZms9n3TUhIMG3btjVubm6mcuXKZsiQISYtLc0YY0xiYqKRZPbv33/ZuR44cMC4urqa4cOH5/tsxowZRpL5/vvvjTHGPofExMSrP6n/J+9vz1dffXXZNlOnTjXVqlUrcp9/PldFJcl8/PHH+bY/+uij5oknnriqvn788Ucjyezdu9cYY8yWLVuMJHPgwAF7m+3btxtJ5ueff3bY9/nnnzdPPPGEmT9/vvHx8bkuc7gWhf3OkhkccT4AFCcyFBmqIGSoWztDcacUABQzY4zOZV0okdfFvzt/jbu7u7KystSnTx/98MMPWrFihTZu3ChjjDp37my/cjNo0CBlZmbqu+++044dO/T666/Ly8tLVapU0UcffSRJSk5O1uHDh/XWW29JkoYPH67169drxYoVio+PV0JCgrZt25ZvDLGxsWrcuLESExP10ksvad++fYqIiFC3bt20fft2LV68WOvWrdPgwYMlSX5+fnJxcdHSpUvtV5/+bOnSpcrOzi7wat6AAQPk5eWlRYsW/eXzJ128Mjlv3jz5+PgUemUuNTVV5cqVuy7HvFq5ublatWqVatWqpfDwcPn7+6tFixaF3t6dnp6u+fPnq1q1aqpSpYokqXbt2ipfvrzee+89ZWVlKSMjQ++9957q1q2rO+64w77vN998oyVLltyYV+wAADeMmzlHkaH+OjLUrZ+hSpf0AADgVpeRnaN6L68ukWPvnBguD+u1/U+9MUZff/21Vq9erU6dOmn58uVav369WrduLUmKi4tTlSpVtHz5cnXv3l0HDhxQt27d1LBhQ0lS9erV7X3lhQR/f3/7997Pnj2rDz74QAsXLlT79u0lSfPnz1dQUFC+sdx///0aMWKE/X2/fv3Us2dP+7MAQkJCNGPGDLVr106zZ89WpUqVNGPGDD3//POaMGGCmjVrptDQUPXs2dM+rj179sjHx0eBgYH5jme1WlW9enXt2bPnms5dnpUrV+qxxx7TuXPnFBgYqPj4eFWoUKHAtnv37tXMmTMVGxv7l455rY4ePaq0tDS99tprmjRpkl5//XV98cUX+tvf/qY1a9aoXbt29rbvvPOOnn/+eaWnp6t27dqKj4+X1WqVJNlsNq1du1YPPfSQXnnlFUkXfz6rV69W6dIX/y2eOHFCffr00b///W95e3s7f7IAgJvGzZijyFBkKDJU0XGnFADAwcqVK+Xl5SU3Nzd16tRJjz76qPr06aPSpUurRYsW9nbly5dX7dq1tWvXLknS0KFDNWnSJLVp00YxMTHavn17ocf55ZdflJ2drebNm9u3+fj4qHbt2vnaNmvWzOH9jz/+qAULFsjLy8v+Cg8PV25urlJSUiRdvOp45MgRxcXFqVWrVlqyZInq16+v+Pj4Ip+LvJBQmLi4OIdxJCQk2D8LDQ1VUlKSNmzYoIiICPXo0UNHjx7N18fBgwcVERGh7t27q3///vbtl/Y7cODAIo05ISHBYb+4uLgi7ZebmytJioyM1HPPPac777xTY8aM0YMPPqg5c+Y4tO3Zs6cSExP17bffqlatWurRo4fOnz8vScrIyFDfvn3Vpk0bff/991q/fr0aNGigBx54QBkZGZKk/v37KyoqSvfee+91nQMAACWJDPU/ZCgyVFFxpxQAFDN311LaOTG8xI59tUJDQzV79mxZrVYFBQWpdOnSWrFixRX369evn8LDw7Vq1Sp9+eWXevXVVzVt2jQNGTLkWobuwNPT0+F9WlqaBgwYoKFDh+ZrW7VqVft/22w2denSRV26dNGkSZMUHh6uSZMmKSwsTCEhIUpNTdWhQ4fyXVnMysrSvn37FB5+5Z9b165dHYJmpUqVHMZds2ZN1axZUy1btlRISIjee+89jR071t7m0KFDCg0NVevWrTVv3jyHvi9dqaaoV8OaNWvmsF/FihWLtF+FChVUunRp1atXz2F73bp1tW7dOodtPj4+8vHxUUhIiFq2bKmyZcvq448/1uOPP66FCxdq//792rhxo1xcLl77WrhwocqWLatPPvlEjz32mL755hutWLHCfkXTGKPc3FyVLl1a8+bN0+OPP35NcwAA3HpuphxFhiJDXYoMVTQUpQCgmFkslmv+Cl1JyAsBl6pbt64uXLigTZs22W89P3HihJKTkx3+AFepUkUDBw7UwIEDNXbsWL377rsaMmSI/WrZpc8mqF69ulxdXbVlyxZ7CEpNTdWePXsue/UnT5MmTbRz58584yyMxWJRnTp1tGHDBknSI488otGjR2vatGmaNm2aQ9s5c+bo3Llz6tWr1xX7tdlsstlsRRpDbm6uMjMz7e8PHjyo0NBQ+2oseQEkz9XML4+7u/s17We1WnX33XcrOTnZYfuePXsUHBx82f2MMTLG2Od17tw5ubi4yGKx2Nvkvc+7krhx40aHfwuffPKJXn/9dW3YsEGVKlW65jkAAG49N1OOIkORoS5Fhiqam+O3GwBQokJCQhQZGan+/ftr7ty5stlsGjNmjCpVqqTIyEhJ0rBhw9SpUyfVqlVLp06d0po1a1S3bl1JUnBwsCwWi1auXKnOnTvL3d1dNptNvXv31qhRo1SuXDn5+/srJiYm3x/jgowePVotW7bU4MGD1a9fP3l6emrnzp2Kj4/XrFmzlJSUpJiYGEVHR6tevXqyWq369ttv9f7772v06NGSLl4NnDp1qkaOHCk3NzdFR0fL1dVVn3zyicaNG6dJkyapQYMGDsf9c9iQpPr168vV1dVhW3p6uiZPnqyuXbsqMDBQx48f19tvv62DBw+qe/fuki6Gqfvuu0/BwcGKjY21L3MsSQEBAYXOP+8KWFpamo4dO6akpCRZrdZ8V+gulZaWpr1799rfp6SkKCkpSeXKlbMH2lGjRunRRx/Vvffeq9DQUH3xxRf69NNPtXbtWkkXvy6wePFidezYUX5+fvr999/12muvyd3dXZ07d5YkhYWFadSoURo0aJCGDBmi3NxcvfbaaypdurRCQ0Mlyf7vIs8PP/wgFxeXfOf7WuYAAMCNhAx1ERmKDHVZ12UdwJsMyxkDKE632nLGefKWM/bx8THu7u4mPDzcYTnjwYMHmxo1apgyZcoYPz8/Ex0dbY4fP27/fOLEiSYgIMBYLJZClzNu3ry5GTNmjH2/4OBgM3369Hzj2bx5swkLCzNeXl7G09PTNGrUyEyePNkYY8yxY8fM0KFDTYMGDYyXl5ex2WymYcOGJjY21uTk5Dj0s3z5cnPPPfcYT09P+3LLixYtcmhT0JLMea/ffvst39gyMjLMww8/bIKCgozVajWBgYGma9euZvPmzfY28+fPv2yfV1LQPsHBwYXus2bNmgL3y/tZ5HnvvfdMzZo1jZubm2ncuLFZvny5/bODBw+aTp06GX9/f+Pq6moqV65soqKizO7dux36+PLLL02bNm2Mj4+PKVu2rLn//vvNxo0bLzu2oi5nXNQ5XK3rsZzx7YLzAaA4kaHIUGSo2y9DWYy5DuuF32TOnDkjHx8fpaam3jJPrAdw4zh//rxSUlJUrVo1ubm5lfRwbirp6emqVKmSpk2bpr59+zr9+CdPnlT79u3l7e2tzz//XB4eHk4fA5yvsN9ZMoMjzgeA4kSGunZkKJSE65GhWH0PAFBiEhMTtWjRIu3bt0/btm1Tz549Jcl+O7uzlStXTl999ZXat2+vjRs3lsgYAAAAroQMhVsFz5QCAJSo2NhYJScny2q1qmnTpkpISFCFChVKbDzly5fXyy+/XGLHBwAAKAoyFG4FFKUAACXmrrvu0tatW0t6GAAAADcVMhRuFXx9DwAAAAAAAE5HUQoAAAAAAABOR1EKAAAAAAAATkdRCgAAAAAAAE5HUQoAAAAAAABOR1EKAAAAAAAATkdRCgAAAAAAAE5HUQoAYNenTx9ZLBZZLBZZrVbVrFlTEydO1IULF/5Sv2vXrpXFYtHp06evz0CLICUlRVFRUQoKCpKbm5sqV66syMhI7d6926HdypUr1a5dO9lsNnl4eOjuu+/WggULHNrs379fFotFSUlJRT7++PHjVadOHXl6eqps2bLq0KGDNm3a5NBn3759Va1aNbm7u6tGjRqKiYlRVlZWof0ePnxYUVFRqlWrllxcXDRs2LAijWf27Nlq1KiRvL295e3trVatWunzzz+3f37y5EkNGTJEtWvXlru7u6pWraqhQ4cqNTXV3mbBggX2fx9/fh09etTeLjMzUy+88IKCg4NVpkwZ3XHHHXr//fcdxvOPf/zDfqwqVaroueee0/nz5wudw7Jly9SxY0eVL1/+qn8eAAAUJzIUGYoMdW1Kl/QAAAA3loiICM2fP1+ZmZn67LPPNGjQILm6umrs2LElPTRJUlZWlqxWa6FtsrOzFRYWptq1a2vZsmUKDAzU77//rs8//9wh1M2cOVPDhg3T6NGjNXv2bFmtVn3yyScaOHCg/vvf/yo2Nvaax1mrVi3NmjVL1atXV0ZGhqZPn66OHTtq79698vPz0+7du5Wbm6u5c+eqZs2a+u9//6v+/fsrPT290ONmZmbKz89PL774oqZPn17k8VSuXFmvvfaaQkJCZIzRBx98oMjISCUmJqp+/fo6dOiQDh06pNjYWNWrV0+//vqrBg4cqEOHDmnp0qWSpEcffVQREREO/fbp00fnz5+Xv7+/fVuPHj30xx9/6L333lPNmjV1+PBh5ebm2j9fuHChxowZo/fff1+tW7fWnj177GH+zTffvOwc0tPT1bZtW/Xo0UP9+/cv8twBAHAGMhQZigx1DcxtKDU11UgyqampJT0UALegjIwMs3PnTpORkVHSQ7lqvXv3NpGRkQ7bwsLCTMuWLc3JkydNdHS08fX1Ne7u7iYiIsLs2bPH3m7//v3mwQcfNL6+vsbDw8PUq1fPrFq1yqSkpBhJDq/evXsbY4w5c+aMiYqKMh4eHiYgIMC8+eabpl27dubZZ5+19xscHGwmTpxooqOjjc1ms++bkJBg2rZta9zc3EzlypXNkCFDTFpamjHGmMTERCPJ7N+//7JzPXDggHF1dTXDhw/P99mMGTOMJPP9998bY4x9DomJiVd/Uv9P3t+er7766rJtpk6daqpVq1bkPv98rq5W2bJlzT//+c/Lfv6f//zHWK1Wk52dXeDnR48eNa6uruZf//qXfdvnn39ufHx8zIkTJy7b76BBg8z999/vsG348OGmTZs2RRr39fh5XKqw31kygyPOB4DiRIYiQxWEDPU/t2KG4ut7AFDcjJGy0kvmZcxfHr67u7uysrLUp08f/fDDD1qxYoU2btwoY4w6d+6s7OxsSdKgQYOUmZmp7777Tjt27NDrr78uLy8vValSRR999JEkKTk5WYcPH9Zbb70lSRo+fLjWr1+vFStWKD4+XgkJCdq2bVu+McTGxqpx48ZKTEzUSy+9pH379ikiIkLdunXT9u3btXjxYq1bt06DBw+WJPn5+cnFxUVLly5VTk5OgfNaunSpsrOzNXLkyHyfDRgwQF5eXlq0aNFfPn/SxSuT8+bNk4+Pjxo3bnzZdqmpqSpXrtx1OWZhcnJy9OGHHyo9PV2tWrUqdDze3t4qXbrgG6v/9a9/ycPDQ4888oh924oVK9SsWTNNnTpVlSpVUq1atTRy5EhlZGTY27Ru3Vpbt27V5s2bJUm//PKLPvvsM3Xu3Pk6zRAAcMu4iXMUGeqvI0Pd+hmKr+8BQHHLPidNCSqZY487JFk9r2lXY4y+/vprrV69Wp06ddLy5cu1fv16tW7dWpIUFxenKlWqaPny5erevbsOHDigbt26qWHDhpKk6tWr2/vKCwn+/v7y9fWVJJ09e1YffPCBFi5cqPbt20uS5s+fr6Cg/Ofq/vvv14gRI+zv+/Xrp549e9qfBRASEqIZM2aoXbt2mj17tipVqqQZM2bo+eef14QJE9SsWTOFhoaqZ8+e9nHt2bNHPj4+CgwMzHc8q9Wq6tWra8+ePdd07vKsXLlSjz32mM6dO6fAwEDFx8erQoUKBbbdu3evZs6c+Zdud7+SHTt2qFWrVjp//ry8vLz08ccfq169egW2PX78uF555RU9/fTTl+3vvffeU1RUlNzd3e3bfvnlF61bt05ubm76+OOPdfz4cf3973/XiRMnNH/+fElSVFSUjh8/rrZt28oYowsXLmjgwIEaN27c9Z0wAODmdxPmKDIUGYoMVXTcKQUAcLBy5Up5eXnJzc1NnTp10qOPPqo+ffqodOnSatGihb1d+fLlVbt2be3atUuSNHToUE2aNElt2rRRTEyMtm/fXuhxfvnlF2VnZ6t58+b2bT4+Pqpdu3a+ts2aNXN4/+OPP2rBggXy8vKyv8LDw5Wbm6uUlBRJF686HjlyRHFxcWrVqpWWLFmi+vXrKz4+vsjn4krPXZAuBstLx5GQkGD/LDQ0VElJSdqwYYMiIiLUo0cPh4dZ5jl48KAiIiLUvXt3h+/5X9rvwIEDizTmhIQEh/3i4uLsn9WuXVtJSUnatGmTnnnmGfXu3Vs7d+7M18eZM2f0wAMPqF69eho/fnyBx9m4caN27dqlvn37OmzPzc2VxWJRXFycmjdvrs6dO+vNN9/UBx98YL/St3btWk2ZMkXvvPOOtm3bpmXLlmnVqlV65ZVXrnhOAQC4UZGh/ocMRYYqKu6UAoDi5upx8UpbSR37KoWGhtofWBkUFKTSpUtrxYoVV9yvX79+Cg8P16pVq/Tll1/q1Vdf1bRp0zRkyJBrGbkDT0/Hq5RpaWkaMGCAhg4dmq9t1apV7f9ts9nUpUsXdenSRZMmTVJ4eLgmTZqksLAwhYSEKDU1VYcOHcp3ZTErK0v79u1TeHj4FcfWtWtXh6BZqVIlh3HXrFlTNWvWVMuWLRUSEqL33nvP4YGnhw4dUmhoqFq3bq158+Y59H3pyije3t5XHIt0MXxeul/FihXt/523GpAkNW3aVFu2bNFbb72luXPn2tucPXtWERERstls+vjjj+Xq6lrgcf75z3/qzjvvVNOmTR22BwYGqlKlSvLx8bFvq1u3rowx+v333xUSEqKXXnpJ0dHR6tevnySpYcOGSk9P19NPP60XXnih0HMKALjN3EQ5igxFhiJDXT2KUgBQ3CyWa/4KXUnICwGXqlu3ri5cuKBNmzbZbz0/ceKEkpOTHW5drlKligYOHKiBAwdq7NixevfddzVkyBD71bJLn01QvXp1ubq6asuWLfYQlJqaqj179ujee+8tdIxNmjTRzp07842zMBaLRXXq1NGGDRskSY888ohGjx6tadOmadq0aQ5t58yZo3PnzqlXr15X7Ndms8lmsxVpDLm5ucrMzLS/P3jwoEJDQ9W0aVPNnz9fLi6ONzBfzfzyuLu7F3m/P4/nzJkzCg8PV5kyZbRixQq5ubkVuF9aWpr+85//6NVXX833WZs2bbRkyRKlpaXJy8tL0sXb/F1cXFS5cmVJ0rlz5/LNtVSpUpIufuXhas4pAOAWdxPlKDIUGYoMdfUoSgEArigkJESRkZHq37+/5s6dK5vNpjFjxqhSpUqKjIyUJA0bNkydOnVSrVq1dOrUKa1Zs0Z169aVJAUHB8tisWjlypXq3Lmz3N3dZbPZ1Lt3b40aNUrlypWTv7+/YmJi5OLiIovFUuh4Ro8erZYtW2rw4MHq16+fPD09tXPnTsXHx2vWrFlKSkpSTEyMoqOjVa9ePVmtVn377bd6//33NXr0aEkXrwZOnTpVI0eOlJubm6Kjo+Xq6qpPPvlE48aN06RJk9SgQQOH4yYnJ+cbS/369fNdCUtPT9fkyZPVtWtXBQYG6vjx43r77bd18OBBde/eXdLFMHXfffcpODhYsbGxOnbsmH3/gICAQuefdxUvLS1Nx44dU1JSkqxW62WfbSBJY8eOVadOnVS1alWdPXtWCxcu1Nq1a7V69WpJF8NUx44dde7cOf373//WmTNndObMGUkXH3qaF3gkafHixbpw4YKeeOKJfMeJiorSK6+8oieffFITJkzQ8ePHNWrUKD311FP25yZ06dJFb775pu666y61aNFCe/fu1UsvvaQuXbo4HOfPTp48qQMHDujQoYtXzPN+HgEBAVc8ZwAAlAQy1EVkqIvIUAW4LusA3mRYzhhAcbrVljPOk7ecsY+Pj3F3dzfh4eEOyxkPHjzY1KhRw5QpU8b4+fmZ6Ohoc/z4cfvnEydONAEBAcZisRS6nHHz5s3NmDFj7PsFBweb6dOn5xvP5s2bTVhYmPHy8jKenp6mUaNGZvLkycYYY44dO2aGDh1qGjRoYLy8vIzNZjMNGzY0sbGxJicnx6Gf5cuXm3vuucd4enral1tetGiRQ5uClmTOe/3222/5xpaRkWEefvhhExQUZKxWqwkMDDRdu3Y1mzdvtreZP3/+Zfu8koL2CQ4OLnSfp556ygQHBxur1Wr8/PxM+/btzZdffmn/fM2aNZcdT0pKikNfrVq1MlFRUZc91q5du0yHDh2Mu7u7qVy5shk+fLg5d+6c/fPs7Gwzfvx4U6NGDePm5maqVKli/v73v5tTp04VOofLnbOYmJhC97uS67Gc8e2C8wGgOJGhyFBkqNsvQ1mMuQ7rhd9kzpw5Ix8fH/syjQBwPZ0/f14pKSmqVq3aZW/dRcHS09NVqVIlTZs2Ld/DH53h5MmTat++vby9vfX555/Lw+Pqn8mFm09hv7NkBkecDwDFiQx17chQKAnXI0Ox+h4AoMQkJiZq0aJF2rdvn7Zt26aePXtKkv12dmcrV66cvvrqK7Vv314bN24skTEAAABcCRkKtwqeKQUAKFGxsbFKTk6W1WpV06ZNlZCQoAoVKpTYeMqXL6+XX365xI4PAABQFGQo3AooSgEASsxdd92lrVu3lvQwAAAAbipkKNwq+PoeAAAAAAAAnI6iFAAAAAAAAJyOohQAAAAAAACcjqIUAAAAAAAAnI6iFAAAAAAAAJyOohQAAAAAAACcjqIUAAAAAAAAnI6iFADArk+fPrJYLLJYLLJarapZs6YmTpyoCxcu/KV+165dK4vFotOnT1+fgRZBSkqKoqKiFBQUJDc3N1WuXFmRkZHavXu3Q7uVK1eqXbt2stls8vDw0N13360FCxY4tNm/f78sFouSkpKKfPzx48erTp068vT0VNmyZdWhQwdt2rTJoc++ffuqWrVqcnd3V40aNRQTE6OsrKxC+z18+LCioqJUq1Ytubi4aNiwYUUeU57XXntNFosl37779u3Tww8/LD8/P3l7e6tHjx76448/HNpMnjxZrVu3loeHh3x9fQvsP+/f0KWvDz/80P75smXLFBYWZj9Oq1attHr16iuOe9myZerYsaPKly9/1T8PAACKExmKDEWGujYUpQAADiIiInT48GH9/PPPGjFihMaPH6833nijpIdld6XAIUnZ2dkKCwtTamqqli1bpuTkZC1evFgNGzZ0CHUzZ85UZGSk2rRpo02bNmn79u167LHHNHDgQI0cOfIvjbNWrVqaNWuWduzYoXXr1umOO+5Qx44ddezYMUnS7t27lZubq7lz5+qnn37S9OnTNWfOHI0bN67QfjMzM+Xn56cXX3xRjRs3vupxbdmyRXPnzlWjRo0ctqenp6tjx46yWCz65ptvtH79emVlZalLly7Kzc21t8vKylL37t31zDPPFHqc+fPn6/Dhw/bXQw89ZP/su+++U1hYmD777DNt3bpVoaGh6tKlixITEwvtMz09XW3bttXrr79+1fMGAKC4kaHIUGSoa2BuQ6mpqUaSSU1NLemhALgFZWRkmJ07d5qMjIySHspV6927t4mMjHTYFhYWZlq2bGlOnjxpoqOjja+vr3F3dzcRERFmz5499nb79+83Dz74oPH19TUeHh6mXr16ZtWqVSYlJcVIcnj17t3bGGPMmTNnTFRUlPHw8DABAQHmzTffNO3atTPPPvusvd/g4GAzceJEEx0dbWw2m33fhIQE07ZtW+Pm5mYqV65shgwZYtLS0owxxiQmJhpJZv/+/Zed64EDB4yrq6sZPnx4vs9mzJhhJJnvv//eGGPsc0hMTLz6k/p/8v72fPXVV5dtM3XqVFOtWrUi9/nnc3UlZ8+eNSEhISY+Pj7fvqtXrzYuLi4OfxtPnz5tLBaLiY+Pz9fX/PnzjY+PT4HHkWQ+/vjjIo/LGGPq1atnJkyYUKS21+PncanCfmfJDI44HwCKExmKDFUQMlThbvYMxZ1SAFDMjDE6l32uRF7GmL88fnd3d2VlZalPnz764YcftGLFCm3cuFHGGHXu3FnZ2dmSpEGDBikzM1PfffedduzYoddff11eXl6qUqWKPvroI0lScnKyDh8+rLfeekuSNHz4cK1fv14rVqxQfHy8EhIStG3btnxjiI2NVePGjZWYmKiXXnpJ+/btU0REhLp166bt27dr8eLFWrdunQYPHixJ8vPzk4uLi5YuXaqcnJwC57V06VJlZ2cXeDVvwIAB8vLy0qJFi/7y+ZMuXhmbN2+efHx8Cr0yl5qaqnLlyl2XYxZk0KBBeuCBB9ShQ4d8n2VmZspisahMmTL2bW5ubnJxcdG6deuu6VgVKlRQ8+bN9f777xf6bzE3N1dnz54t1rkDAG5ON3OOIkP9dWSoWz9DlS7pAQDArS7jQoZaLGxRIsfeFLVJHq4e17SvMUZff/21Vq9erU6dOmn58uVav369WrduLUmKi4tTlSpVtHz5cnXv3l0HDhxQt27d1LBhQ0lS9erV7X3l/aH09/e3f4f+7Nmz+uCDD7Rw4UK1b99e0sXblYOCgvKN5f7779eIESPs7/v166eePXvav88fEhKiGTNmqF27dpo9e7YqVaqkGTNm6Pnnn9eECRPUrFkzhYaGqmfPnvZx7dmzRz4+PgoMDMx3PKvVqurVq2vPnj3XdO7yrFy5Uo899pjOnTunwMBAxcfHq0KFCgW23bt3r2bOnKnY2Ni/dMzL+fDDD7Vt2zZt2bKlwM9btmwpT09PjR49WlOmTJExRmPGjFFOTo4OHz58VceaOHGi7r//fnl4eOjLL7/U3//+d6WlpWno0KEFto+NjVVaWpp69Ohx1fMCANzabsYcRYYiQ5Ghio47pQAADlauXCkvLy+5ubmpU6dOevTRR9WnTx+VLl1aLVr8LxSWL19etWvX1q5duyRJQ4cO1aRJk9SmTRvFxMRo+/bthR7nl19+UXZ2tpo3b27f5uPjo9q1a+dr26xZM4f3P/74oxYsWCAvLy/7Kzw8XLm5uUpJSZF08SrTkSNHFBcXp1atWmnJkiWqX7++4uPji3wurFbrFdvExcU5jCMhIcH+WWhoqJKSkrRhwwZFRESoR48eOnr0aL4+Dh48qIiICHXv3l39+/e3b7+034EDBxZpzAkJCQ77xcXF6bffftOzzz6ruLg4ubm5Fbifn5+flixZok8//VReXl7y8fHR6dOn1aRJE7m4XF1ceOmll9SmTRvdddddGj16tJ5//vnLPlNj4cKFmjBhgv7zn//I399fUuHnFACAGxUZ6n/IUGSoouJOKQAoZu6l3bUpatOVGxbTsa9WaGioZs+eLavVqqCgIJUuXVorVqy44n79+vVTeHi4Vq1apS+//FKvvvqqpk2bpiFDhlzL0B14eno6vE9LS9OAAQMKvGpUtWpV+3/bbDZ16dJFXbp00aRJkxQeHq5JkyYpLCxMISEhSk1N1aFDh/JdWczKytK+ffsUHh5+xbF17drVIWhWqlTJYdw1a9ZUzZo11bJlS4WEhOi9997T2LFj7W0OHTqk0NBQtW7dWvPmzXPo+9KVUby9va84Fuli+Lx0v4oVK+rrr7/W0aNH1aRJE/v2nJwcfffdd5o1a5YyMzNVqlQpdezYUfv27dPx48dVunRp+fr6KiAgwOGK7bVo0aKFXnnlFWVmZjrc2v7hhx+qX79+WrJkicPt8IWdUwDA7eVmylFkKDIUGerqUZQCgGJmsViu+St0JSEvBFyqbt26unDhgjZt2mS/9fzEiRNKTk5WvXr17O2qVKmigQMHauDAgRo7dqzeffddDRkyxH617NJnE1SvXl2urq7asmWLPQSlpqZqz549uvfeewsdY5MmTbRz58584yyMxWJRnTp1tGHDBknSI488otGjR2vatGmaNm2aQ9s5c+bo3Llz6tWr1xX7tdlsstlsRRpDbm6uMjMz7e8PHjyo0NBQNW3aVPPnz893Ne1q5pfH3d09337t27fXjh07HLY9+eSTqlOnjkaPHq1SpUo5fJZ3e/w333yjo0ePqmvXrlc9jkslJSWpbNmyDmFq0aJFeuqpp/Thhx/qgQcecGh/NecUAHBru5lyFBmKDEWGunoUpQAAVxQSEqLIyEj1799fc+fOlc1m05gxY1SpUiVFRkZKkoYNG6ZOnTqpVq1aOnXqlNasWaO6detKkoKDg2WxWLRy5Up17txZ7u7ustls6t27t0aNGqVy5crJ399fMTExcnFxkcViKXQ8o0ePVsuWLTV48GD169dPnp6e2rlzp+Lj4zVr1iwlJSUpJiZG0dHRqlevnqxWq7799lu9//77Gj16tKSLVwOnTp2qkSNHys3NTdHR0XJ1ddUnn3yicePGadKkSWrQoIHDcZOTk/ONpX79+nJ1dXXYlp6ersmTJ6tr164KDAzU8ePH9fbbb+vgwYPq3r27pIth6r777lNwcLBiY2PtyxxLUkBAQKHzz7uKl5aWpmPHjikpKUlWq9Uh3F7KZrPlm4unp6fKly/vsH3+/PmqW7eu/Pz8tHHjRj377LN67rnnHL4OcODAAZ08eVIHDhxQTk6OfSw1a9aUl5eXPv30U/3xxx9q2bKl3NzcFB8frylTpjg8DHXhwoXq3bu33nrrLbVo0UJHjhyRdDEM+vj4XHbeecc9dOiQpP/9PAICAq54zgAAKAlkqIvIUGSoy7ou6wDeZFjOGEBxutWWM86Tt5yxj4+PcXd3N+Hh4Q7LGQ8ePNjUqFHDlClTxvj5+Zno6Ghz/Phx++cTJ040AQEBxmKxFLqccfPmzc2YMWPs+wUHB5vp06fnG8/mzZtNWFiY8fLyMp6enqZRo0Zm8uTJxhhjjh07ZoYOHWoaNGhgvLy8jM1mMw0bNjSxsbEmJyfHoZ/ly5ebe+65x3h6etqXW160aJFDm4KWZM57/fbbb/nGlpGRYR5++GETFBRkrFarCQwMNF27djWbN2+2t5k/f/5l+7ySgvYJDg6+4n6XKmgp5NGjR5uKFSsaV1dXExISYqZNm2Zyc3Md2vTu3bvA469Zs8YYY8znn39u7rzzTvvPpXHjxmbOnDkO571du3YF9pH37+JyLnfOYmJirmruf3Y9ljO+XXA+ABQnMhQZigx1+2UoizHXYb3wm8yZM2fk4+Oj1NTUIn+/FACK6vz580pJSVG1atUu+0BEFCw9PV2VKlXStGnT1LdvX6cf/+TJk2rfvr28vb31+eefy8Pj5vi6AP6awn5nyQyOOB8AihMZ6tqRoVASrkeGYvU9AECJSUxM1KJFi7Rv3z5t27ZNPXv2lCT77ezOVq5cOX311Vdq3769Nm7cWCJjAAAAuBIyFG4VPFMKAFCiYmNjlZycLKvVqqZNmyohIcH+kMiSUL58eb388ssldnwAAICiIEPhVkBRCgBQYu666y5t3bq1pIcBAABwUyFD4VbB1/cAAAAAAADgdBSlAAAAAAAA4HQUpQAAAAAAAOB0FKUAAAAAAADgdBSlAAAAAAAA4HQUpQAAAAAAAOB0FKUAAAAAAADgdBSlAAB2ffr0kcVikcVikdVqVc2aNTVx4kRduHDhL/W7du1aWSwWnT59+voMtAhSUlIUFRWloKAgubm5qXLlyoqMjNTu3bsd2q1cuVLt2rWTzWaTh4eH7r77bi1YsMChzf79+2WxWJSUlFTk448fP1516tSRp6enypYtqw4dOmjTpk0Offbt21fVqlWTu7u7atSooZiYGGVlZRXa7+HDhxUVFaVatWrJxcVFw4YNK/KYDh48qCeeeELly5eXu7u7GjZsqB9++MH++aU//7xXRESEQx933HFHvjavvfaa/fPk5GSFhoaqYsWKcnNzU/Xq1fXiiy8qOzvboZ/Tp09r0KBBCgwMVJkyZVSrVi199tlnhY5/2bJl6tixo8qXL3/VPw8AAIoTGYoMRYa6NqVLegAAgBtLRESE5s+fr8zMTH322WcaNGiQXF1dNXbs2JIemiQpKytLVqu10DbZ2dkKCwtT7dq1tWzZMgUGBur333/X559/7hDqZs6cqWHDhmn06NGaPXu2rFarPvnkEw0cOFD//e9/FRsbe83jrFWrlmbNmqXq1asrIyND06dPV8eOHbV37175+flp9+7dys3N1dy5c1WzZk3997//Vf/+/ZWenl7ocTMzM+Xn56cXX3xR06dPL/J4Tp06pTZt2ig0NFSff/65/Pz89PPPP6ts2bIO7fJ+/nnKlCmTr6+JEyeqf//+9vc2m83+366ururVq5eaNGkiX19f/fjjj+rfv79yc3M1ZcoUSRd/hmFhYfL399fSpUtVqVIl/frrr/L19S10Dunp6Wrbtq169OjhcHwAAG4EZCgyFBnqGpjbUGpqqpFkUlNTS3ooAG5BGRkZZufOnSYjI6Okh3LVevfubSIjIx22hYWFmZYtW5qTJ0+a6Oho4+vra9zd3U1ERITZs2ePvd3+/fvNgw8+aHx9fY2Hh4epV6+eWbVqlUlJSTGSHF69e/c2xhhz5swZExUVZTw8PExAQIB58803Tbt27cyzzz5r7zc4ONhMnDjRREdHG5vNZt83ISHBtG3b1ri5uZnKlSubIUOGmLS0NGOMMYmJiUaS2b9//2XneuDAAePq6mqGDx+e77MZM2YYSeb77783xhj7HBITE6/+pP6fvL89X3311WXbTJ061VSrVq3Iff75XBVm9OjRpm3btoW2Kejn/2fBwcFm+vTpRRvg/3nuueccjj179mxTvXp1k5WVdVX95LkeP49LFfY7S2ZwxPkAUJzIUGSogpChbu0Mxdf3AKCYGWOUe+5cibyMMX95/O7u7srKylKfPn30ww8/aMWKFdq4caOMMercubP9luJBgwYpMzNT3333nXbs2KHXX39dXl5eqlKlij766CNJF29LPnz4sN566y1J0vDhw7V+/XqtWLFC8fHxSkhI0LZt2/KNITY2Vo0bN1ZiYqJeeukl7du3TxEREerWrZu2b9+uxYsXa926dRo8eLAkyc/PTy4uLlq6dKlycnIKnNfSpUuVnZ2tkSNH5vtswIAB8vLy0qJFi/7y+ZMuXtWaN2+efHx81Lhx48u2S01NVbly5a7LMf9sxYoVatasmbp37y5/f3/dddddevfdd/O1W7t2rfz9/VW7dm0988wzOnHiRL42r732msqXL6+77rpLb7zxRqFfTdi7d6+++OILtWvXzmEsrVq10qBBg1SxYkU1aNBAU6ZMuezPCgBw+7qZcxQZ6q8jQ936GYqv7wFAMTMZGUpu0rREjl1721ZZPDyuaV9jjL7++mutXr1anTp10vLly7V+/Xq1bt1akhQXF6cqVapo+fLl6t69uw4cOKBu3bqpYcOGkqTq1avb+8oLCf7+/vbbi8+ePasPPvhACxcuVPv27SVJ8+fPV1BQUL6x3H///RoxYoT9fb9+/dSzZ0/7swBCQkI0Y8YMtWvXTrNnz1alSpU0Y8YMPf/885owYYKaNWum0NBQ9ezZ0z6uPXv2yMfHR4GBgfmOZ7VaVb16de3Zs+eazl2elStX6rHHHtO5c+cUGBio+Ph4VahQocC2e/fu1cyZM//S7e6F+eWXXzR79mwNHz5c48aN05YtWzR06FBZrVb17t1b0sXbzv/2t7+pWrVq2rdvn8aNG6dOnTpp48aNKlWqlCRp6NChatKkicqVK6cNGzZo7NixOnz4sN58802H47Vu3Vrbtm1TZmamnn76aU2cONFhLN9884169uypzz77THv37tXf//53ZWdnKyYmpljmDwC4Od2MOYoMRYYiQxUdd0oBABysXLlSXl5ecnNzU6dOnfToo4+qT58+Kl26tFq0aGFvV758edWuXVu7du2SdPEP7aRJk9SmTRvFxMRo+/bthR7nl19+UXZ2tpo3b27f5uPjo9q1a+dr26xZM4f3P/74oxYsWCAvLy/7Kzw8XLm5uUpJSZF08arjkSNHFBcXp1atWmnJkiWqX7++4uPji3wurvTcBelisLx0HAkJCfbPQkNDlZSUpA0bNigiIkI9evTQ0aNH8/Vx8OBBRUREqHv37g7f87+034EDBxZpzAkJCQ77xcXFSZJyc3PVpEkTTZkyRXfddZeefvpp9e/fX3PmzLHv+9hjj6lr165q2LChHnroIa1cuVJbtmzR2rVr7W2GDx+u++67T40aNdLAgQM1bdo0zZw5U5mZmQ7jWLx4sbZt26aFCxdq1apVDkExNzdX/v7+mjdvnpo2bapHH31UL7zwgn0shZ1TAABuVGSo/yFDkaGKijulAKCYWdzdVXvb1hI79tUKDQ21P7AyKChIpUuX1ooVK664X79+/RQeHq5Vq1bpyy+/1Kuvvqpp06ZpyJAh1zJ0B56eng7v09LSNGDAAA0dOjRf26pVq9r/22azqUuXLurSpYsmTZqk8PBwTZo0SWFhYQoJCVFqaqoOHTqU78piVlaW9u3bp/Dw8CuOrWvXrg5Bs1KlSg7jrlmzpmrWrKmWLVsqJCRE7733nsMDTw8dOqTQ0FC1bt1a8+bNc+j70pVRvL29rzgW6WL4vHS/ihUrSpICAwNVr149h7Z169a1fy2gINWrV1eFChW0d+9e+5XYP2vRooUuXLig/fv3O4ThKlWqSJLq1aunnJwcPf300xoxYoRKlSqlwMBAubq62q8c5o3lyJEjysrKKvScAgBuLzdTjiJDkaHykKGKjqIUABQzi8VyzV+hKwl5IeBSdevW1YULF7Rp0yb7recnTpxQcnKywx/pKlWqaODAgRo4cKDGjh2rd999V0OGDLFfLbv0++7Vq1eXq6urtmzZYg9Bqamp2rNnj+69995Cx9ikSRPt3Lkz3zgLY7FYVKdOHW3YsEGS9Mgjj2j06NGaNm2apk2b5tB2zpw5OnfunHr16nXFfm02m8PKKYXJzc11uBp28OBBhYaGqmnTppo/f75cXBxvYL6a+eVxd3cvcL82bdooOTnZYduePXsUHBx82b5+//13nThxosDb8/MkJSXJxcVF/v7+l22Tm5ur7Oxs5ebmqlSpUmrTpo0WLlyo3Nxc+5z37NmjwMBAWa1WWa3WIp9TAMCt7WbKUWQoMlQeMlTRUZQCAFxRSEiIIiMj1b9/f82dO1c2m01jxoxRpUqVFBkZKUkaNmyYOnXqpFq1aunUqVNas2aN6tatK0kKDg6WxWLRypUr1blzZ7m7u8tms6l3794aNWqUypUrJ39/f8XExMjFxUUWi6XQ8YwePVotW7bU4MGD1a9fP3l6emrnzp2Kj4/XrFmzlJSUpJiYGEVHR6tevXqyWq369ttv9f7772v06NGSLl4NnDp1qkaOHCk3NzdFR0fL1dVVn3zyicaNG6dJkyapQYMGDsf9cyCRpPr168vV1dVhW3p6uiZPnqyuXbsqMDBQx48f19tvv62DBw+qe/fuki6Gqfvuu0/BwcGKjY3VsWPH7PsHBAQUOv+8q3hpaWk6duyYkpKSZLVa813Fu9Rzzz2n1q1ba8qUKerRo4c2b96sefPm2a8spqWlacKECerWrZsCAgK0b98+Pf/886pZs6b9aufGjRu1adMmhYaGymazaePGjXruuef0xBNP2JdFjouLk6urqxo2bKgyZcrohx9+0NixY/Xoo4/az9MzzzyjWbNm6dlnn9WQIUP0888/a8qUKQVetb3UyZMndeDAAR06dEjS/34eAQEBVzxnAACUBDLURWQoMtRlXZd1AG8yLGcMoDjdassZ58lbztjHx8e4u7ub8PBwh+WMBw8ebGrUqGHKlClj/Pz8THR0tDl+/Lj984kTJ5qAgABjsVgKXc64efPmZsyYMfb9Lrd87ubNm01YWJjx8vIynp6eplGjRmby5MnGGGOOHTtmhg4daho0aGC8vLyMzWYzDRs2NLGxsSYnJ8ehn+XLl5t77rnHeHp62pdbXrRokUObgpZkznv99ttv+caWkZFhHn74YRMUFGSsVqsJDAw0Xbt2NZs3b7a3mT9//mX7vJKC9gkODr7ifp9++qlp0KCBKVOmjKlTp46ZN2+e/bNz586Zjh07Gj8/P+Pq6mqCg4NN//79zZEjR+xttm7dalq0aGF8fHyMm5ubqVu3rpkyZYo5f/68vc2HH35omjRpYv+51KtXz0yZMiXf78OGDRtMixYtTJkyZUz16tXN5MmTzYULFwod/+XOWUxMzBXnXpjrsZzx7YLzAaA4kaHIUGSo2y9DWYy5DuuF32TOnDkjHx8fpaamFvn7pQBQVOfPn1dKSoqqVasmNze3kh7OTSU9PV2VKlXStGnT1LdvX6cf/+TJk2rfvr28vb31+eefy+Mm+boA/prCfmfJDI44HwCKExnq2pGhUBKuR4Zi9T0AQIlJTEzUokWLtG/fPm3btk09e/aUJPvt7M5Wrlw5ffXVV2rfvr02btxYImMAAAC4EjIUbhU8UwoAUKJiY2OVnJwsq9Wqpk2bKiEhQRUqVCix8ZQvX14vv/xyiR0fAACgKMhQuBVQlAIAlJi77rpLW7eWzDLPAAAANysyFG4VfH0PAAAAAAAATkdRCgAAAAAAAE5HUQoAAAAAAABOR1EKAAAAAAAATkdRCgAAAAAAAE5HUQoAAAAAAABOR1EKAAAAAAAATkdRCgBg16dPH1ksFlksFlmtVtWsWVMTJ07UhQsX/lK/a9eulcVi0enTp6/PQIsgJSVFUVFRCgoKkpubmypXrqzIyEjt3r3bod3KlSvVrl072Ww2eXh46O6779aCBQsc2uzfv18Wi0VJSUlFPv748eNVp04deXp6qmzZsurQoYM2bdrk0Gffvn1VrVo1ubu7q0aNGoqJiVFWVlah/R4+fFhRUVGqVauWXFxcNGzYsCKNJycnRy+99JLD8V555RUZY+xtli1bpo4dO6p8+fKXne++ffv08MMPy8/PT97e3urRo4f++OOPq57X9u3bdc8998jNzU1VqlTR1KlTrziH7777Tl26dFFQUJAsFouWL19epLkDAFDcyFBkKDLUtSn2otTbb7+tO+64Q25ubmrRooU2b95caPslS5aoTp06cnNzU8OGDfXZZ59dtu3AgQNlsVj0j3/84zqPGgBuXxERETp8+LB+/vlnjRgxQuPHj9cbb7xR0sOyu1LgkKTs7GyFhYUpNTVVy5YtU3JyshYvXqyGDRs6hLqZM2cqMjJSbdq00aZNm7R9+3Y99thjGjhwoEaOHPmXxlmrVi3NmjVLO3bs0Lp163THHXeoY8eOOnbsmCRp9+7dys3N1dy5c/XTTz9p+vTpmjNnjsaNG1dov5mZmfLz89OLL76oxo0bF3k8r7/+umbPnq1Zs2Zp165dev311zV16lTNnDnT3iY9PV1t27bV66+/XmAf6enp6tixoywWi7755hutX79eWVlZ6tKli3Jzc4s8rzNnzqhjx44KDg7W1q1b9cYbb2j8+PGaN29eoXNIT09X48aN9fbbbxd53jc7chQA3DzIUGQoMtQ1MMXoww8/NFar1bz//vvmp59+Mv379ze+vr7mjz/+KLD9+vXrTalSpczUqVPNzp07zYsvvmhcXV3Njh078rVdtmyZady4sQkKCjLTp0+/qnGlpqYaSSY1NfVapgUAhcrIyDA7d+40GRkZJT2Uq9a7d28TGRnpsC0sLMy0bNnSnDx50kRHRxtfX1/j7u5uIiIizJ49e+zt9u/fbx588EHj6+trPDw8TL169cyqVatMSkqKkeTw6t27tzHGmDNnzpioqCjj4eFhAgICzJtvvmnatWtnnn32WXu/wcHBZuLEiSY6OtrYbDb7vgkJCaZt27bGzc3NVK5c2QwZMsSkpaUZY4xJTEw0ksz+/fsvO9cDBw4YV1dXM3z48HyfzZgxw0gy33//vTHG2OeQmJh49Sf1/+T97fnqq68u22bq1KmmWrVqRe7zz+eqMA888IB56qmnHLb97W9/Mz179szX9nLzXb16tXFxcXH4+3n69GljsVhMfHz8ZY/953m98847pmzZsiYzM9O+bfTo0aZ27dpFmosxxkgyH3/8cZHbF6aw39mSzAw3Yo4iQwEoTmQoMlRByFC3doYq1jul3nzzTfXv319PPvmk6tWrpzlz5sjDw0Pvv/9+ge3feustRUREaNSoUapbt65eeeUVNWnSRLNmzXJod/DgQQ0ZMkRxcXFydXUtzikAwF9mjFF2Zk6JvMwltxVfK3d3d2VlZalPnz764YcftGLFCm3cuFHGGHXu3FnZ2dmSpEGDBikzM1PfffedduzYoddff11eXl6qUqWKPvroI0lScnKyDh8+rLfeekuSNHz4cK1fv14rVqxQfHy8EhIStG3btnxjiI2NVePGjZWYmKiXXnpJ+/btU0REhLp166bt27dr8eLFWrdunQYPHixJ8vPzk4uLi5YuXaqcnJwC57V06VJlZ2cXeDVvwIAB8vLy0qJFi/7y+ZMuXpmcN2+efHx8Cr0yl5qaqnLlyl2XY/5Z69at9fXXX2vPnj2SpB9//FHr1q1Tp06ditxHZmamLBaLypQpY9/m5uYmFxcXrVu37rL7/XleGzdu1L333iur1WrfFh4eruTkZJ06depqpnVLI0cBwM2do8hQfx0Z6tbPUKWLq+OsrCxt3bpVY8eOtW9zcXFRhw4dtHHjxgL32bhxo4YPH+6wLTw83OH7jrm5uYqOjtaoUaNUv379Io0lMzNTmZmZ9vdnzpy5ipkAwF9zIStX8579tkSO/fRb7eRaptQ17WuM0ddff63Vq1erU6dOWr58udavX6/WrVtLkuLi4lSlShUtX75c3bt314EDB9StWzc1bNhQklS9enV7X3l/TP39/eXr6ytJOnv2rD744AMtXLhQ7du3lyTNnz9fQUFB+cZy//33a8SIEfb3/fr1U8+ePe3PAggJCdGMGTPUrl07zZ49W5UqVdKMGTP0/PPPa8KECWrWrJlCQ0PVs2dP+7j27NkjHx8fBQYG5jue1WpV9erV7eHjWq1cuVKPPfaYzp07p8DAQMXHx6tChQoFtt27d69mzpyp2NjYv3TMyxkzZozOnDmjOnXqqFSpUsrJydHkyZPVs2fPIvfRsmVLeXp6avTo0ZoyZYqMMRozZoxycnJ0+PDhAvcpaF5HjhxRtWrVHNpVrFjR/lnZsmWvYYa3lhslR5GhAJS0mzFHkaHIUH9Ghrq8YrtT6vjx48rJybGfoDwVK1bUkSNHCtznyJEjV2z/+uuvq3Tp0ho6dGiRx/Lqq6/Kx8fH/qpSpcpVzAQAbi8rV66Ul5eX3Nzc1KlTJz366KPq06ePSpcurRYtWtjblS9fXrVr19auXbskSUOHDtWkSZPUpk0bxcTEaPv27YUe55dfflF2draaN29u3+bj46PatWvna9usWTOH9z/++KMWLFggLy8v+ys8PFy5ublKSUmRdPGq45EjRxQXF6dWrVppyZIlql+/vuLj44t8Li69CnU5cXFxDuNISEiwfxYaGqqkpCRt2LBBERER6tGjh44ePZqvj4MHDyoiIkLdu3dX//797dsv7XfgwIFFGnNCQoLDfnFxcZKk//znP4qLi9PChQu1bds2ffDBB4qNjdUHH3xQpH6li1dPlyxZok8//VReXl7y8fHR6dOn1aRJE7m45I8Ul5vXtc7hdnKj5CgyFAAUHRnqf8hQjshQl1dsd0oVh61bt+qtt97Stm3bZLFYirzf2LFjHa4cnjlzhlAFwGlKW1309FvtSuzYVys0NFSzZ8+W1WpVUFCQSpcurRUrVlxxv379+ik8PFyrVq3Sl19+qVdffVXTpk3TkCFDrmXoDjw9PR3ep6WlacCAAQX+H+uqVava/9tms6lLly7q0qWLJk2apPDwcE2aNElhYWEKCQlRamqqDh06lO/KYlZWlvbt26fw8PArjq1r164OQbNSpUoO465Zs6Zq1qypli1bKiQkRO+9957D3S+HDh1SaGioWrdune8hlZeu3OLt7X3FsUgXw+el++UVKUaNGqUxY8bosccekyQ1bNhQv/76q1599VX17t27SH1LUseOHbVv3z4dP35cpUuXlq+vrwICAhyu6l5pXgEBAQ6rzUiyvw8ICNAdd9xR4Bzw11xLjiJDAShpN1OOIkORoQpDhipYsRWlKlSooFKlShV4wgICAgrc53InOK99QkKCjh496vDLkpOToxEjRugf//iH9u/fX2C/ZcqUcfjuJgA4k8Viueav0JWEvBBwqbp16+rChQvatGmT/dbzEydOKDk5WfXq1bO3q1KligYOHKiBAwdq7NixevfddzVkyBD71bJLn01QvXp1ubq6asuWLfb/XU9NTdWePXt07733FjrGJk2aaOfOnfnGWRiLxaI6depow4YNkqRHHnlEo0eP1rRp0zRt2jSHtnPmzNG5c+fUq1evK/Zrs9lks9mKNIbc3FyHr0IdPHhQoaGhatq0qebPn5/vStnVzC+Pu7t7gfudO3cuX/+lSpWyr/hytfJuof/mm2909OhRde3a1f7ZlebVqlUrvfDCC8rOzrY/0yg+Pl61a9e233Z+LXO/ldwoOYoMBaCk3Uw5igxFhioKMpSjYitKWa1WNW3aVF9//bUeeughSRf/IX399df2h6j9WatWrfT111/bv98qXTzBrVq1kiRFR0erQ4cODvuEh4crOjpaTz75ZLHMAwBw8XkDkZGR6t+/v+bOnSubzaYxY8aoUqVKioyMlCQNGzZMnTp1Uq1atXTq1CmtWbNGdevWlSQFBwfLYrFo5cqV6ty5s9zd3WWz2dS7d2+NGjVK5cqVk7+/v2JiYuTi4nLFuzhGjx6tli1bavDgwerXr588PT21c+dOxcfHa9asWUpKSlJMTIyio6NVr149Wa1Wffvtt3r//fc1evRoSRevBk6dOlUjR46Um5uboqOj5erqqk8++UTjxo3TpEmT1KBBA4fjJicn5xtL/fr18z0sOj09XZMnT1bXrl0VGBio48eP6+2339bBgwfVvXt3SRdDx3333afg4GDFxsbalzmWdNmiQ568K2BpaWk6duyYkpKSZLVaHcLtn3Xp0kWTJ09W1apVVb9+fSUmJurNN9/UU089ZW9z8uRJHThwQIcOHXKYb0BAgH1M8+fPV926deXn56eNGzfq2Wef1XPPPWf/ykBR5hUVFaUJEyaob9++Gj16tP773//qrbfe0vTp0wudd1pamvbu3Wt/n5KSoqSkJJUrV86h0HIrIEcBwK2BDHURGYoMdVnXZR3Ay/jwww9NmTJlzIIFC8zOnTvN008/bXx9fc2RI0eMMcZER0ebMWPG2NuvX7/elC5d2sTGxppdu3aZmJiYyy5lnCc4OPiqljI2huWMARSvW2054zx5yxn7+PgYd3d3Ex4e7rCc8eDBg02NGjVMmTJljJ+fn4mOjjbHjx+3fz5x4kQTEBBgLBZLocsZN2/e3OFvw+X+d37z5s0mLCzMeHl5GU9PT9OoUSMzefJkY4wxx44dM0OHDjUNGjQwXl5exmazmYYNG5rY2FiTk5Pj0M/y5cvNPffcYzw9Pe3LLS9atMihTUFLMue9fvvtt3xjy8jIMA8//LAJCgoyVqvVBAYGmq5du5rNmzfb28yfP/+yfV5JQfsEBwcXus+ZM2fMs88+a6pWrWrc3NxM9erVzQsvvOCwpPDlxhQTE2NvM3r0aFOxYkXj6upqQkJCzLRp00xubu5Vz+vHH380bdu2NWXKlDGVKlUyr7322hXnvWbNmgL7zfv3dK2ux3LGxeFGzFFkKADFiQxFhiJD3X4ZqliLUsYYM3PmTFO1alVjtVpN8+bNzffff2//rF27dvlOwn/+8x9Tq1YtY7VaTf369c2qVasK7Z+iFIAbzc0cqEpaWlqa8fHxMf/85z9L5PgnTpwwd955p7n33ntNenp6iYwBznejFqWMufFyVEmfDwC3NjLUtSNDoSRcjwxlMcaYa7nD6mZ25swZ+fj4KDU1tcgPPQOAojp//rxSUlJUrVo1ubm5lfRwbmiJiYnavXu3mjdvrtTUVE2cOFFr167V3r17L7vsb3E7ceKE3n77bbVp08a+zDJubYX9zpIZHHE+ABQnMlTRkaFwI7geGeqmWn0PAHDriY2NVXJysv0ZOgkJCSUWpqSLyzS//PLLJXZ8AACAoiBD4VZAUQoAUGLuuusubd26taSHAQAAcFMhQ+FW4XLlJgAAAAAAAMD1RVEKAAAAAAAATkdRCgAAAAAAAE5HUQoAAAAAAABOR1EKAAAAAAAATkdRCgAAAAAAAE5HUQoAYNenTx9ZLBZZLBZZrVbVrFlTEydO1IULF/5Sv2vXrpXFYtHp06evz0CLICUlRVFRUQoKCpKbm5sqV66syMhI7d6926HdypUr1a5dO9lsNnl4eOjuu+/WggULHNrs379fFotFSUlJRT7++PHjVadOHXl6eqps2bLq0KGDNm3a5NBn3759Va1aNbm7u6tGjRqKiYlRVlZWof0ePnxYUVFRqlWrllxcXDRs2LAijefs2bMaNmyYgoOD5e7urtatW2vLli0ObdLS0jR48GBVrlxZ7u7uqlevnubMmePQZsCAAapRo4bc3d3l5+dX4Dk9cOCAHnjgAXl4eMjf31+jRo267L+h9evXq3Tp0rrzzjuvOIdly5apY8eOKl++/FX/PAAAKE5kKDIUGeraUJQCADiIiIjQ4cOH9fPPP2vEiBEaP3683njjjZIelt2VAockZWdnKywsTKmpqVq2bJmSk5O1ePFiNWzY0CHUzZw5U5GRkWrTpo02bdqk7du367HHHtPAgQM1cuTIvzTOWrVqadasWdqxY4fWrVunO+64Qx07dtSxY8ckSbt371Zubq7mzp2rn376SdOnT9ecOXM0bty4QvvNzMyUn5+fXnzxRTVu3LjI4+nXr5/i4+P1//7f/9OOHTvUsWNHdejQQQcPHrS3GT58uL744gv9+9//1q5duzRs2DANHjxYK1assLdp2rSp5s+fr127dmn16tUyxqhjx47KycmRJOXk5OiBBx5QVlaWNmzYoA8++EALFizQyy+/nG9Mp0+fVq9evdS+ffsizSE9PV1t27bV66+/XuR5AwDgLGQoMhQZ6hqY21BqaqqRZFJTU0t6KABuQRkZGWbnzp0mIyOjpIdy1Xr37m0iIyMdtoWFhZmWLVuakydPmujoaOPr62vc3d1NRESE2bNnj73d/v37zYMPPmh8fX2Nh4eHqVevnlm1apVJSUkxkhxevXv3NsYYc+bMGRMVFWU8PDxMQECAefPNN027du3Ms88+a+83ODjYTJw40URHRxubzWbfNyEhwbRt29a4ubmZypUrmyFDhpi0tDRjjDGJiYlGktm/f/9l53rgwAHj6upqhg8fnu+zGTNmGEnm+++/N8YY+xwSExOv/qT+n7y/PV999dVl20ydOtVUq1atyH3++Vxdzrlz50ypUqXMypUrHbY3adLEvPDCC/b39evXNxMnTiy0zZ/9+OOPRpLZu3evMcaYzz77zLi4uJgjR47Y28yePdt4e3ubzMxMh30fffRR8+KLL5qYmBjTuHHjK84jz/X4eVyqsN9ZMoMjzgeA4kSGIkMVhAx1a2co7pQCABTK3d1dWVlZ6tOnj3744QetWLFCGzdulDFGnTt3VnZ2tiRp0KBByszM1HfffacdO3bo9ddfl5eXl6pUqaKPPvpIkpScnKzDhw/rrbfeknTxqtL69eu1YsUKxcfHKyEhQdu2bcs3htjYWDVu3FiJiYl66aWXtG/fPkVERKhbt27avn27Fi9erHXr1mnw4MGSJD8/P7m4uGjp0qX2q09/tnTpUmVnZxd4NW/AgAHy8vLSokWLrss5zMrK0rx58+Tj41PolbnU1FSVK1fuuhzzUhcuXFBOTo7c3Nwctru7u2vdunX2961bt9aKFSt08OBBGWO0Zs0a7dmzRx07diyw3/T0dM2fP1/VqlVTlSpVJEkbN25Uw4YNVbFiRXu78PBwnTlzRj/99JN92/z58/XLL78oJibmek4VAIAbBhnqryND3QYZ6rqUx24yXOUDUJz+fMUgNzfXZGVklMgrNzf3qsZ+6VW+3NxcEx8fb8qUKWMeeughI8msX7/e3vb48ePG3d3d/Oc//zHGGNOwYUMzfvz4Avtds2aNkWROnTpl33bmzBnj6upqlixZYt92+vRp4+Hhke8q30MPPeTQX9++fc3TTz/tsC0hIcG4uLjYz/usWbOMh4eHsdlsJjQ01EycONHs27fP3n7gwIHGx8fnsueiUaNGplOnTsaYa7+q9OmnnxpPT09jsVhMUFCQ2bx582Xb/vzzz8bb29vMmzevyP0X9SqfMca0atXKtGvXzhw8eNBcuHDB/L//9/+Mi4uLqVWrlr3N+fPnTa9evYwkU7p0aWO1Ws0HH3yQr6+3337beHp6Gkmmdu3a9it8xhjTv39/07FjR4f26enpRpL57LPPjDHG7Nmzx/j7+5vk5GRjjLklrvLdLjgfAIpTQf97fLPkKDLU/5ChyFDGFD0zlHZ2EQwAbjcXMjM1o/cjJXLsoR8sleufruxcycqVK+Xl5aXs7Gzl5uYqKipKf/vb37Ry5Uq1aNHC3q58+fKqXbu2du3adfFYQ4fqmWee0ZdffqkOHTqoW7duatSo0WWP88svvyg7O1vNmze3b/Px8VHt2rXztW3WrJnD+x9//FHbt29XXFycfZsxRrm5uUpJSVHdunU1aNAg9erVS2vXrtX333+vJUuWaMqUKVqxYoXCwsKKdC6sVusV28TFxWnAgAH2959//rnuueceSVJoaKiSkpJ0/Phxvfvuu+rRo4c2bdokf39/hz4OHjyoiIgIde/eXf3797dv9/Lysv/3E088ke+BmQVJSEhQp06d7O/nzp2rnj176v/9v/+np556SpUqVVKpUqXUpEkTPf7449q6dau97cyZM/X9999rxYoVCg4O1nfffadBgwYpKChIHTp0sLfr2bOnwsLCdPjwYcXGxqpHjx5av359vquIBcnJyVFUVJQmTJigWrVqFdimsHMKALi93Ew5igz1P2QoMlRRUZQCADgIDQ3V7NmzZbVaFRQUpNKlSzs8pPFy+vXrp/DwcK1atUpffvmlXn31VU2bNk1Dhgz5y2Py9PR0eJ+WlqYBAwZo6NCh+dpWrVrV/t82m01dunRRly5dNGnSJIWHh2vSpEkKCwtTSEiIUlNTdejQIQUFBTn0kZWVpX379ik8PPyKY+vatatD0KxUqZLDuGvWrKmaNWuqZcuWCgkJ0XvvvaexY8fa2xw6dEihoaFq3bq15s2b59D3pSujeHt7X3Es0sXweel+ebeA16hRQ99++63S09N15swZBQYG6tFHH1X16tUlSRkZGRo3bpw+/vhjPfDAA5KkRo0aKSkpSbGxsQ6BysfHRz4+PgoJCVHLli1VtmxZffzxx3r88ccVEBCgzZs3O4zpjz/+kCQFBATo7Nmz+uGHH5SYmGj/qkBubq6MMSpdurS+/PLLQs8pAAA3KjIUGYoMdfUoSgFAMStdpoyGfrC0xI59tfJCwKXq1q2rCxcuaNOmTWrdurUk6cSJE0pOTla9evXs7apUqaKBAwdq4MCBGjt2rN59910NGTLEfrXs0mcTVK9eXa6urtqyZYs9BKWmpmrPnj269957Cx1jkyZNtHPnznzjLIzFYlGdOnW0YcMGSdIjjzyi0aNHa9q0aZo2bZpD2zlz5ujcuXPq1avXFfu12Wyy2WxFGkNubq4yMzPt7w8ePKjQ0FD7aiwuLo6Perya+eVxd3cvdD9PT095enrq1KlTWr16taZOnSrp4mo72dnZ+cZQqlQp5ebmXrY/Y4yMMfZ5tWrVSpMnT9bRo0ftVzPj4+Pl7e2tevXqydXVVTt27HDo45133tE333yjpUuXqlq1avL09CzyOQUA3NpuphxFhiJDXYoMVTQUpQCgmFkslqv+Ct2NJiQkRJGRkerfv7/mzp0rm82mMWPGqFKlSoqMjJQkDRs2TJ06dVKtWrV06tQprVmzRnXr1pUkBQcHy2KxaOXKlercubPc3d1ls9nUu3dvjRo1SuXKlZO/v79iYmLk4uIii8VS6HhGjx6tli1bavDgwerXr588PT21c+dOxcfHa9asWUpKSlJMTIyio6NVr149Wa1Wffvtt3r//fc1evRoSRevBk6dOlUjR46Um5uboqOj5erqqk8++UTjxo3TpEmT1KBBA4fjJicn5xtL/fr15erq6rAtPT1dkydPVteuXRUYGKjjx4/r7bff1sGDB9W9e3dJF8PUfffdp+DgYMXGxtqXOZYuXg0rTN5VvLS0NB07dkxJSUmyWq0O4fbP8pYerl27tvbu3atRo0apTp06evLJJyVdvIrYrl07jRo1Su7u7goODta3336rf/3rX3rzzTclXfy6wOLFi9WxY0f5+fnp999/12uvvSZ3d3d17txZktSxY0fVq1dP0dHRmjp1qo4cOaIXX3xRgwYNUpn/C/d/Pq/+/v5yc3PLt/3PTp48qQMHDujQoUOS/vfzCAgIuOI5AwDcnG72HEWGuogMRYa6rOvydKubDA/pBFCcbrXljPPkLWfs4+Nj3N3dTXh4uMNyxoMHDzY1atQwZcqUMX5+fiY6OtocP37c/vnEiRNNQECAsVgshS5n3Lx5czNmzBj7fsHBwWb69On5xrN582YTFhZmvLy8jKenp2nUqJGZPHmyMcaYY8eOmaFDh5oGDRoYLy8vY7PZTMOGDU1sbKzJyclx6Gf58uXmnnvusT90UpJZtGiRQ5uClmTOe/3222/5xpaRkWEefvhhExQUZKxWqwkMDDRdu3Z1eEjn/PnzL9vnlRS0T3BwcKH7LF682FSvXt1YrVYTEBBgBg0aZE6fPu3Q5vDhw6ZPnz4mKCjIuLm5mdq1a5tp06bZH/R68OBB06lTJ+Pv729cXV1N5cqVTVRUlNm9e7dDP/v37zedOnUy7u7upkKFCmbEiBEmOzv7smMr6kM6L3fOYmJirrhvYXjQedFxPgAUJzIUGYoMdftlKIsxxlzfMteN78yZM/Lx8VFqamqRv18KAEV1/vx5paSkqFq1akV6aCH+Jz09XZUqVdK0adPUt29fpx//5MmTat++vby9vfX555/Lw8PD6WOA8xX2O0tmcMT5AFCcyFDXjgyFknA9MpTLZT8BAKCYJSYmatGiRdq3b5+2bdumnj17SpL9dnZnK1eunL766iu1b99eGzduLJExAAAAXAkZCrcKnikFAChRsbGxSk5OltVqVdOmTZWQkKAKFSqU2HjKly+vl19+ucSODwAAUBRkKNwKKEoBAErMXXfdpa1bt5b0MAAAAG4qZCjcKvj6HgAAAAAAAJyOohQAAAAAAACcjqIUAAAAAAAAnI6iFAAAAAAAAJyOohQAAAAAAACcjqIUAAAAAAAAnI6iFAAAAAAAAJyOohQAwK5Pnz6yWCyyWCyyWq2qWbOmJk6cqAsXLvylfteuXSuLxaLTp09fn4EWQUpKiqKiohQUFCQ3NzdVrlxZkZGR2r17t0O7lStXql27drLZbPLw8NDdd9+tBQsWOLTZv3+/LBaLkpKSinz88ePHq06dOvL09FTZsmXVoUMHbdq0yaHPvn37qlq1anJ3d1eNGjUUExOjrKysQvs9fPiwoqKiVKtWLbm4uGjYsGFFGs93332nLl26KCgoSBaLRcuXL8/XZtmyZerYsaPKly9/xfkaY9SpU6fL9rVgwQI1atRIbm5u8vf316BBgxw+X716tVq2bCmbzSY/Pz9169ZN+/fvd2gTFxenxo0by8PDQ4GBgXrqqad04sSJvzxPAACuNzIUGYoMdW0oSgHA/2fvzqOiuNK/gX8boe2mu20EQVYJCCIoEpcoi4YQhQYTIBmDGhjEiRDJCEpcApooSlCjgo6og5rXoL8ZJI5EkcEVExdEghuIEQVFGAzggmgji2x93z8YauywugDRPJ9z+hy76tat51ZD+Kaqui5R4urqirKyMty4cQMLFizA8uXLsW7dut4ui9NZ4ACAhoYGODs7Qy6XY9++fcjLy8OePXtgbW2tFOo2bdoET09PODg4IDMzEzk5OZg+fToCAwOxcOHCF6pzyJAh2Lx5M65cuYIzZ87gjTfegIuLC+7fvw8AuH79OhQKBbZt24arV69iw4YN2Lp1K5YsWdJhv3V1ddDW1sZXX30FGxubLtdTXV0NGxsbbNmypcM248ePx5o1azrt729/+xt4PF6b69avX48vv/wSYWFhuHr1Ko4fPw6ZTMatLywshKenJ959911kZ2fj6NGjKC8vx5/+9CeuTXp6OmbMmIFZs2bh6tWr2Lt3L86dO4eAgIAXHichhBDSHShDUYaiDPUc2B+QXC5nAJhcLu/tUgghr6Ha2lqWm5vLamtre7uUZ+bn58c8PT2Vljk7OzNbW1tWUVHBfH19mYaGBhMKhczV1ZXl5+dz7YqKitj777/PNDQ0mLq6OrOysmIHDx5khYWFDIDSy8/PjzHGWGVlJfP29mbq6upMV1eXrV+/njk6OrJ58+Zx/RobG7OIiAjm6+vLJBIJt21aWhobP348EwgEzNDQkAUHB7OqqirGGGNZWVkMACsqKmp3rMXFxUxNTY3Nnz+/1bqYmBgGgP3888+MMcaNISsr69kP6n+1/O05fvx4u23Wrl3LTExMutznb49VVwFg+/fvb3d9Z+PNyspiBgYGrKysrFVfFRUVTCgUdjjOvXv3MlVVVdbU1MQtS05OZjwej9XX1zPGGFu3bh0zNTVV2i4mJoYZGBh0PsD/6mycLTr6naXMoIyOByGkO1GGogzVFspQ//M6Zii6U4oQQkiHhEIh6uvrMXPmTFy4cAHJycnIyMgAYwyTJ09GQ0MDAGDOnDmoq6vD6dOnceXKFaxZswZisRhGRkb44YcfAAB5eXkoKyvDxo0bAQDz589Heno6kpOTkZqairS0NFy6dKlVDVFRUbCxsUFWVhaWLl2KgoICuLq6YsqUKcjJycGePXtw5swZBAUFAQC0tbWhoqKCxMRENDU1tTmuxMRENDQ0tHk1b/bs2RCLxUhISHgpx7C+vh7bt2+HVCrt8MqcXC6HpqbmS9lnd6mpqYG3tze2bNkCXV3dVutTU1OhUChQUlICS0tLGBoaYurUqbh9+zbXZvTo0VBRUUFcXByampogl8vxj3/8A5MmTYKamhoAwM7ODrdv38ahQ4fAGMPdu3eRmJiIyZMn99hYCSGEkBdBGerFUYb6A2SoLp8qe43QVT5CSHf67RUDhULBmuoae+WlUCieqfanr/IpFAqWmprK+vbtyz744AMGgKWnp3Nty8vLmVAoZP/6178YY4xZW1uz5cuXt9nviRMnGAD28OFDblllZSVTU1Nje/fu5ZY9evSIqaurt7rK98EHHyj1N2vWLPbpp58qLUtLS2MqKirccd+8eTNTV1dnEomEOTk5sYiICFZQUMC1DwwMZFKptN1jMWLECObm5sYYe/6rfP/+97+ZSCRiPB6P6evrs3PnzrXb9saNG6xfv35s+/btXe6/N67yffrpp2zWrFnt9rV69WqmpqbGLCws2JEjR1hGRgabOHEis7CwYHV1dVy7kydPMh0dHdanTx8GgNnZ2Sn9fDDG2L/+9S8mFouZqqoqA8Dc3d25q4AvY5wt6E6prqPjQQjpTm399/hVyVGUof6HMhRlKMa6nhlUe/IEGCGE/BGxBgVKl53tlX3rR9iDx+/zTNukpKRALBajoaEBCoUC3t7e+NOf/oSUlBSMGzeOa6elpQULCwtcu3YNADB37lx89tlnOHbsGCZNmoQpU6ZgxIgR7e7n1q1baGhowNixY7llUqkUFhYWrdqOGTNG6f3ly5eRk5OD+Ph4bhljDAqFAoWFhbC0tMScOXMwY8YMnDx5Ej///DP27t2LVatWITk5Gc7Ozl06Fnw+v9M28fHxmD17Nvf+8OHDmDBhAgDAyckJ2dnZKC8vx7fffoupU6ciMzMTOjo6Sn2UlJTA1dUVXl5eSt/3F4vF3L///Oc/Y+vWrZ3Wk5aWBjc3N+79tm3b4OPj0+l2XZGcnIyffvoJWVlZ7bZRKBRoaGhATEwMXFxcAAAJCQnQ1dXFiRMnIJPJcOfOHQQEBMDPzw8ff/wxHj9+jGXLluGjjz5CamoqeDwecnNzMW/ePCxbtgwymQxlZWVYtGgRAgMDsWPHjm4dJyGEkN+PVylHUYb6H8pQyihDtY9OShFCCFHi5OSE2NhY8Pl86OvrQ1VVFcnJyZ1u5+/vD5lMhoMHD+LYsWNYvXo1oqOjERwc/MI1iUQipfdVVVWYPXs25s6d26rtoEGDuH9LJBK4u7vD3d0dkZGRkMlkiIyMhLOzM8zNzSGXy1FaWgp9fX2lPurr61FQUKD0YMn2eHh4KAVNAwMDpbrNzMxgZmYGW1tbmJubY8eOHVi8eDHXprS0FE5OTrC3t8f27duV+n565pZ+/fp1WgvQHD6f3m7gwIFd2q4rfvrpJxQUFEBDQ0Np+ZQpUzBhwgScPHkSenp6AAArKytuvba2NgYMGIDi4mIAwJYtWyCVSrF27VquzT//+U8YGRkhMzMTtra2WL16NRwcHLBo0SIAwIgRIyASiTBhwgRERkZ26zgJIYSQ50EZijJUeyhDtY9OShFCSDfjqalAP8K+1/b9rFpCwNMsLS3R2NiIzMxM2Ns3j+XBgwfIy8tT+sNpZGSEwMBABAYGYvHixfj2228RHBzMXS17+tkEpqamUFNTw/nz57kQJJfLkZ+fj7fffrvDGkeNGoXc3NxWdXaEx+Nh6NChOHu2+WrrRx99hNDQUERHRyM6Olqp7datW1FTU4MZM2Z02q9EIoFEIulSDQqFAnV1ddz7kpISODk5YfTo0YiLi4OKivLn9SzjayEUCp9ru64ICwuDv7+/0jJra2ts2LAB7u7uAAAHBwcAzc++MDQ0BABUVFSgvLwcxsbGAJqfqfDbsfbp03wlWqFQcG1UVVXbbMMY69ZxEkII+f14lXIUZSjKUO2hDNU+OilFCCHdjMfjPfNX6H5vzM3N4enpiYCAAGzbtg0SiQRhYWEwMDCAp6cnACAkJARubm4YMmQIHj58iBMnTsDS0hIAYGxsDB6Ph5SUFEyePBlCoRASiQR+fn5YtGgRNDU1oaOjg/DwcKioqLQ7TW6L0NBQ2NraIigoCP7+/hCJRMjNzUVqaio2b96M7OxshIeHw9fXF1ZWVuDz+Th16hS+++47hIaGAmi+Grh27VosXLgQAoEAvr6+UFNTw4EDB7BkyRJERkZi+PDhSvvNy8trVcuwYcO4B0u2qK6uxsqVK+Hh4QE9PT2Ul5djy5YtKCkpgZeXF4DmMPXOO+/A2NgYUVFR3DTHANp8+OXTWq5uVVVV4f79+8jOzgafz1cKt79VVVWFmzdvcu8LCwuRnZ0NTU1NLtBWVFSguLgYpaWlSuPV1dVVev3WoEGDYGJiAqB5GmdPT0/MmzcP27dvR79+/bB48WIMHToUTk5OAID33nsPGzZsQEREBHfr+ZIlS2BsbIyRI0cCANzd3REQEIDY2Fju1vOQkBCMHTu21VXZZx0nIYSQV8ernqMoQzWjDEUZql1dftLVa4Qe0kkI6U6v23TGLVqmM5ZKpUwoFDKZTKY0nXFQUBAbPHgw69u3L9PW1ma+vr6svLycWx8REcF0dXUZj8frcDrjsWPHsrCwMG47Y2NjtmHDhlb1nDt3jjk7OzOxWMxEIhEbMWIEW7lyJWOMsfv377O5c+ey4cOHM7FYzCQSCbO2tmZRUVFKU+gyxlhSUhKbMGECE4lE3HTLCQkJSm3ampK55XX79u1WtdXW1rIPP/yQ6evrMz6fz/T09JiHh4fSQzrj4uLa7bMzbW1jbGzc4TYtD0r97avls+iopvDw8A5r+e2DMOVyOfvkk0+YhoYG09TUZB9++CErLi5WapOQkMBGjhzJRCIR09bWZh4eHuzatWtKbWJiYpiVlRUTCoVMT0+P+fj4sF9//fWFx/lb9KDzrqPjQQjpTpShKENRhvrjZSgeY4w97wmtV1VlZSWkUinkcnmXv19KCCFd9eTJExQWFsLExAQCgaC3y3mlVFdXw8DAANHR0Zg1a1aP77+iogITJ05Ev379cPjwYairq/d4DaTndfQ7S5lBGR0PQkh3ogz1/ChDkd7wMjLUsz9shBBCCHlJsrKykJCQgIKCAly6dImb+aPldvaepqmpiePHj2PixInIyMjolRoIIYQQQjpDGYq8LuiZUoQQQnpVVFQU8vLywOfzMXr0aKSlpWHAgAG9Vo+WlhaWLVvWa/snhBBCCOkKylDkdUAnpQghhPSakSNH4uLFi71dBiGEEELIK4UyFHld0Nf3CCGEEEIIIYQQQkiPo5NShBBCCCGEEEIIIaTH0UkpQgghhBBCCCGEENLj6KQUIYQQQgghhBBCCOlxdFKKEEIIIYQQQgghhPQ4OilFCCGEEEIIIYQQQnocnZQihBBCCCGEEEIIIT2OTkoRQgjhzJw5EzweDzweD3w+H2ZmZoiIiEBjY+ML9Xvy5EnweDw8evTo5RTaBYWFhfD29oa+vj4EAgEMDQ3h6emJ69evK7VLSUmBo6MjJBIJ1NXV8dZbb2Hnzp1KbYqKisDj8ZCdnd3l/S9fvhxDhw6FSCRC//79MWnSJGRmZir1OWvWLJiYmEAoFGLw4MEIDw9HfX19h/2WlZXB29sbQ4YMgYqKCkJCQrpUz+nTp+Hu7g59fX3weDwkJSU9c80AsHLlStjb20NdXR0aGhpt7qu4uBjvvfce1NXVoaOjg0WLFin9DD39c/b0a9iwYVyb1atX46233oJEIoGOjg4++OAD5OXldTrOrtRHCCGEvGyUoShDUYZ6PnRSihBCiBJXV1eUlZXhxo0bWLBgAZYvX45169b1dlmczgIHADQ0NMDZ2RlyuRz79u1DXl4e9uzZA2tra6VQt2nTJnh6esLBwQGZmZnIycnB9OnTERgYiIULF75QnUOGDMHmzZtx5coVnDlzBm+88QZcXFxw//59AMD169ehUCiwbds2XL16FRs2bMDWrVuxZMmSDvutq6uDtrY2vvrqK9jY2HS5nurqatjY2GDLli3PXTPQfPy9vLzw2WeftdlHU1MT3nvvPdTX1+Ps2bPYtWsXdu7ciWXLlnFtNm7ciLKyMu51+/ZtaGpqwsvLi2tz6tQpzJkzBz///DNSU1PR0NAAFxcXVFdXdzjOzuojhBBCugtlKMpQlKGeA/sDksvlDACTy+W9XQoh5DVUW1vLcnNzWW1tbW+X8sz8/PyYp6en0jJnZ2dma2vLKioqmK+vL9PQ0GBCoZC5urqy/Px8rl1RURF7//33mYaGBlNXV2dWVlbs4MGDrLCwkAFQevn5+THGGKusrGTe3t5MXV2d6erqsvXr1zNHR0c2b948rl9jY2MWERHBfH19mUQi4bZNS0tj48ePZwKBgBkaGrLg4GBWVVXFGGMsKyuLAWBFRUXtjrW4uJipqamx+fPnt1oXExPDALCff/6ZMca4MWRlZT37Qf2vlr89x48fb7fN2rVrmYmJSZf7/O2x6ioAbP/+/Z2266jmuLg4JpVKWy0/dOgQU1FRYXfu3OGWxcbGsn79+rG6uro297N//37G4/E6/Lzu3bvHALBTp051WndH9bWlo99ZygzK6HgQQroTZSjKUG2hDPV6Zyi6U4oQQroZYwz19fW98mKMvXD9QqEQ9fX1mDlzJi5cuIDk5GRkZGSAMYbJkyejoaEBADBnzhzU1dXh9OnTuHLlCtasWQOxWAwjIyP88MMPAIC8vDyUlZVh48aNAID58+cjPT0dycnJSE1NRVpaGi5dutSqhqioKNjY2CArKwtLly5FQUEBXF1dMWXKFOTk5GDPnj04c+YMgoKCAADa2tpQUVFBYmIimpqa2hxXYmIiGhoa2ryaN3v2bIjFYiQkJLzw8QOarzxt374dUqm0wytzcrkcmpqaL2WfL6qrNf9WRkYGrK2tMXDgQG6ZTCZDZWUlrl692uY2O3bswKRJk2BsbNxuv3K5HAB+N8eHEEJIz3iVcxRlqBdHGer1z1CqvV0AIYS87hoaGrBq1ape2feSJUvA5/Ofa1vGGH788UccPXoUbm5uSEpKQnp6Ouzt7QEA8fHxMDIyQlJSEry8vFBcXIwpU6bA2toaAGBqasr11fJHUEdHh/uO+uPHj7Fr1y7s3r0bEydOBADExcVBX1+/VS3vvvsuFixYwL339/eHj48P9ywAc3NzxMTEwNHREbGxsTAwMEBMTAy++OILrFixAmPGjIGTkxN8fHy4uvLz8yGVSqGnp9dqf3w+H6ampsjPz3+uY9ciJSUF06dPR01NDfT09JCamooBAwa02fbmzZvYtGkToqKiXmifL+pZam7LnTt3lMIUAO79nTt3WrUvLS3F4cOHsXv37nb7VCgUCAkJgYODA4YPH97lWgghhLz6XsUcRRmKMhRlqK6jO6UIIYQoSUlJgVgshkAggJubG6ZNm4aZM2dCVVUV48aN49ppaWnBwsIC165dAwDMnTsXkZGRcHBwQHh4OHJycjrcz61bt9DQ0ICxY8dyy6RSKSwsLFq1HTNmjNL7y5cvY+fOnRCLxdxLJpNBoVCgsLAQQPNVxzt37iA+Ph52dnbYu3cvhg0bhtTU1C4fi64E0fj4eKU60tLSuHVOTk7Izs7G2bNn4erqiqlTp+LevXut+igpKYGrqyu8vLwQEBDALX+638DAwC7VnJaWprRdfHx8l7Z71ppfll27dkFDQwMffPBBu23mzJmDX375Bd9//z23LDAwUGmchBBCSG+jDPU/lKEoQ3UV3SlFCCHdTE1NrdMHL3bnvp+Vk5MTYmNjwefzoa+vD1VVVSQnJ3e6nb+/P2QyGQ4ePIhjx45h9erViI6ORnBw8POUrkQkEim9r6qqwuzZszF37txWbQcNGsT9WyKRwN3dHe7u7oiMjIRMJkNkZCScnZ1hbm4OuVyO0tLSVlcW6+vrUVBQAJlM1mltHh4eSkHTwMBAqW4zMzOYmZnB1tYW5ubm2LFjBxYvXsy1KS0thZOTE+zt7bF9+3alvp+eqaZfv36d1gI0h8+nt/vtFbfOdKXmjujq6uLcuXNKy+7evcutexpjDN999x18fX3bDa9BQUFISUnB6dOnYWhoyC2PiIh44QepEkII+f17lXIUZSjKUJShnh2dlCKEkG7WMjXwq6LlD+rTLC0t0djYiMzMTO7W8wcPHiAvLw9WVlZcOyMjIwQGBiIwMBCLFy/Gt99+i+DgYG78Tz+bwNTUFGpqajh//jwXguRyOfLz8/H22293WOOoUaOQm5vbqs6O8Hg8DB06FGfPngUAfPTRRwgNDUV0dDSio6OV2m7duhU1NTWYMWNGp/1KJBJIJJIu1aBQKFBXV8e9LykpgZOTE0aPHo24uDioqCjfwPws42shFAqfa7v2/LbmztjZ2WHlypW4d+8edHR0AACpqano16+f0s8K0Dw7zM2bNzFr1qxW/TDGEBwcjP379+PkyZMwMTFRWq+jo8P1Twgh5PX1KuUoylCUoZ5GGapr6KQUIYSQTpmbm8PT0xMBAQHYtm0bJBIJwsLCYGBgAE9PTwBASEgI3NzcMGTIEDx8+BAnTpyApaUlAMDY2Bg8Hg8pKSmYPHkyhEIhJBIJ/Pz8sGjRImhqakJHRwfh4eFQUVEBj8frsJ7Q0FDY2toiKCgI/v7+EIlEyM3NRWpqKjZv3ozs7GyEh4fD19cXVlZW4PP5OHXqFL777juEhoYCaL4auHbtWixcuBACgQC+vr5QU1PDgQMHsGTJEkRGRrb67n1eXl6rWoYNG9bqSmp1dTVWrlwJDw8P6Onpoby8HFu2bEFJSQk3ZW9JSQneeecdGBsbIyoqSmnK4N9eDfutlqt4VVVVuH//PrKzs8Hn81sFlqdVVVXh5s2b3PvCwkJkZ2dDU1MTgwYN6lLNAFBcXIyKigoUFxejqamJq8XMzAxisRguLi6wsrKCr68v1q5dizt37uCrr77CnDlz0LdvX6WaduzYgXHjxrX5jIM5c+Zg9+7dOHDgACQSCfcsBalUCqFQ2O44O6uPEEII6UmUoZpRhqIM1a4uzfP3mqHpjAkh3el1m864Rct0xlKplAmFQiaTyZSmMw4KCmKDBw9mffv2Zdra2szX15eVl5dz6yMiIpiuri7j8XgdTmc8duxYFhYWxm1nbGzMNmzY0Kqec+fOMWdnZyYWi5lIJGIjRoxgK1euZIwxdv/+fTZ37lw2fPhwJhaLmUQiYdbW1iwqKoo1NTUp9ZOUlMQmTJjARCIRN91yQkKCUpu2pmRued2+fbtVbbW1tezDDz9k+vr6jM/nMz09Pebh4cHOnTvHtYmLi2u3z860tY2xsXGH25w4caLN7Vo+i67UzFjzz0hb/Zw4cYJrU1RUxNzc3JhQKGQDBgxgCxYsYA0NDUr9PHr0iAmFQrZ9+/YujxEAi4uL63CcXanvt17GdMZ/FHQ8CCHdiTIUZSjKUH+8DMX7b9F/KJWVlZBKpZDL5V3+fikhhHTVkydPUFhYCBMTEwgEgt4u55VSXV0NAwMDREdHt3k7cnerqKjAxIkT0a9fPxw+fBjq6uo9XgPpeR39zlJmUEbHgxDSnShDPT/KUKQ3vIwMRbPvEUII6TVZWVlISEhAQUEBLl26BB8fHwDgbmfvaZqamjh+/DgmTpyIjIyMXqmBEEIIIaQzlKHI64KeKUUIIaRXRUVFIS8vD3w+H6NHj0ZaWhoGDBjQa/VoaWlh2bJlvbZ/QgghhJCuoAxFXgd0UooQQkivGTlyJC5evNjbZRBCCCGEvFIoQ5HXBX19jxBCCCGEEEIIIYT0ODopRQghhBBCCCGEEEJ6HJ2UIoQQQgghhBBCCCE9jk5KEUIIIYQQQgghhJAeRyelCCGEEEIIIYQQQkiPo5NShBBCCCGEEEIIIaTH0UkpQgghhBBCCCGEENLj6KQUIYQQzsyZM8Hj8cDj8cDn82FmZoaIiAg0Nja+UL8nT54Ej8fDo0ePXk6hXVBYWAhvb2/o6+tDIBDA0NAQnp6euH79ulK7lJQUODo6QiKRQF1dHW+99RZ27typ1KaoqAg8Hg/Z2dld3v/y5csxdOhQiEQi9O/fH5MmTUJmZqZSn7NmzYKJiQmEQiEGDx6M8PBw1NfXd9p3fHw8bGxsoK6uDj09PXzyySd48OBBh9ucPn0a7u7u0NfXB4/HQ1JSUpvtrl27Bg8PD0ilUohEIrz11lsoLi7m1s+ePRuDBw+GUCiEtrZ2m8f0/PnzmDhxIjQ0NNC/f3/IZDJcvny5zf3dvHkTEokEGhoanY67q2MghBBCehplKMpQlKGeD52UIoQQosTV1RVlZWW4ceMGFixYgOXLl2PdunW9XRanK4GjoaEBzs7OkMvl2LdvH/Ly8rBnzx5YW1srhbpNmzbB09MTDg4OyMzMRE5ODqZPn47AwEAsXLjwheocMmQINm/ejCtXruDMmTN444034OLigvv37wMArl+/DoVCgW3btuHq1avYsGEDtm7diiVLlnTYb3p6OmbMmIFZs2bh6tWr2Lt3L86dO4eAgIAOt6uuroaNjQ22bNnSbpuCggKMHz8eQ4cOxcmTJ5GTk4OlS5dCIBBwbUaPHo24uDhcu3YNR48eBWMMLi4uaGpqAgBUVVXB1dUVgwYNQmZmJs6cOQOJRAKZTIaGhgal/TU0NODjjz/GhAkTOqz9WcZACCGE9BbKUJShKEM9B/YHJJfLGQAml8t7uxRCyGuotraW5ebmstra2t4u5Zn5+fkxT09PpWXOzs7M1taWVVRUMF9fX6ahocGEQiFzdXVl+fn5XLuioiL2/vvvMw0NDaaurs6srKzYwYMHWWFhIQOg9PLz82OMMVZZWcm8vb2Zuro609XVZevXr2eOjo5s3rx5XL/GxsYsIiKC+fr6MolEwm2blpbGxo8fzwQCATM0NGTBwcGsqqqKMcZYVlYWA8CKioraHWtxcTFTU1Nj8+fPb7UuJiaGAWA///wzY4xxY8jKynr2g/pfLX97jh8/3m6btWvXMhMTkw77WbduHTM1NW1Vr4GBQZdrAcD279/favm0adPYn//85y73wxhjly9fZgDYzZs3GWOMnT9/ngFgxcXFXJucnBwGgN24cUNp2y+++IL9+c9/ZnFxcUwqlT7Tftsbw/Po6HeWMoMyOh6EkO5EGYoyVFsoQ73eGYrulCKEkG7GGENTU02vvJr/7rwYoVCI+vp6zJw5ExcuXEBycjIyMjLAGMPkyZO5Kzdz5sxBXV0dTp8+jStXrmDNmjUQi8UwMjLCDz/8AADIy8tDWVkZNm7cCACYP38+0tPTkZycjNTUVKSlpeHSpUutaoiKioKNjQ2ysrKwdOlSFBQUwNXVFVOmTEFOTg727NmDM2fOICgoCACgra0NFRUVJCYmcleffisxMRENDQ1tXs2bPXs2xGIxEhISXvj4Ac1XJrdv3w6pVAobG5t228nlcmhqanbYl52dHW7fvo1Dhw6BMYa7d+8iMTERkydPfqEaFQoFDh48iCFDhkAmk0FHRwfjxo3r8Pbu6upqxMXFwcTEBEZGRgAACwsLaGlpYceOHaivr0dtbS127NgBS0tLvPHGG9y2P/30E/bu3fv7vGJHCCHkd+NVzlGUoV4cZajXP0Op9nYBhBDyulMoanHylHWv7Psdxyvo00f9ubZljOHHH3/E0aNH4ebmhqSkJKSnp8Pe3h5A83fyjYyMkJSUBC8vLxQXF2PKlCmwtm4eq6mpKddXS0jQ0dHhvvf++PFj7Nq1C7t378bEiRMBAHFxcdDX129Vy7vvvosFCxZw7/39/eHj44OQkBAAgLm5OWJiYuDo6IjY2FgYGBggJiYGX3zxBVasWIExY8bAyckJPj4+XF35+fmQSqXQ09NrtT8+nw9TU1Pk5+c/17FrkZKSgunTp6OmpgZ6enpITU3FgAED2mx78+ZNbNq0CVFRUR326eDggPj4eEybNg1PnjxBY2Mj3N3dXziY3Lt3D1VVVfjmm28QGRmJNWvW4MiRI/jTn/6EEydOwNHRkWv797//HV988QWqq6thYWGB1NRU8Pl8AIBEIsHJkyfxwQcf4OuvvwbQ/PkcPXoUqqrNsePBgweYOXMm/vnPf6Jfv34vVDchhJDX26uYoyhDUYaiDNV1dKcUIYQQJSkpKRCLxRAIBHBzc8O0adMwc+ZMqKqqYty4cVw7LS0tWFhY4Nq1awCAuXPnIjIyEg4ODggPD0dOTk6H+7l16xYaGhowduxYbplUKoWFhUWrtmPGjFF6f/nyZezcuRNisZh7yWQyKBQKFBYWAmi+6njnzh3Ex8fDzs4Oe/fuxbBhw5CamtrlY9ESEjoSHx+vVEdaWhq3zsnJCdnZ2Th79ixcXV0xdepU3Lt3r1UfJSUlcHV1hZeXl9JzDZ7uNzAwEACQm5uLefPmYdmyZbh48SKOHDmCoqIibn1aWprSdvHx8V0aq0KhAAB4enri888/x5tvvomwsDC8//772Lp1q1JbHx8fZGVl4dSpUxgyZAimTp2KJ0+eAABqa2sxa9YsODg44Oeff0Z6ejqGDx+O9957D7W1tQCAgIAAeHt74+23326zlucdAyGEENKbKEP9D2UoylBdRXdKEUJIN1NREeIdxyu9tu9n5eTkhNjYWPD5fOjr60NVVRXJycmdbufv7w+ZTIaDBw/i2LFjWL16NaKjoxEcHPw8pSsRiURK76uqqjB79mzMnTu3VdtBgwZx/5ZIJHB3d4e7uzsiIyMhk8kQGRkJZ2dnmJubQy6Xo7S0tNWVxfr6ehQUFEAmk3Vam4eHh1LQNDAwUKrbzMwMZmZmsLW1hbm5OXbs2IHFixdzbUpLS+Hk5AR7e3ts375dqe+nZ6ppuRq2evVqODg4YNGiRQCAESNGQCQSYcKECYiMjMSYMWOUths4cGCnYwCAAQMGQFVVFVZWVkrLLS0tcebMGaVlUqkUUqkU5ubmsLW1Rf/+/bF//358/PHH2L17N4qKipCRkQEVleZrX7t370b//v1x4MABTJ8+HT/99BOSk5O5K5qMMSgUCqiqqmL79u34+OOPn2sMhBBCXj+vUo6iDEUZ6mmUobqGTkoRQkg34/F4z/0Vut7QEgKeZmlpicbGRmRmZnK3nj948AB5eXlKf4CNjIwQGBiIwMBALF68GN9++y2Cg4O5q2VPP5vA1NQUampqOH/+PBeC5HI58vPz273602LUqFHIzc1tVWcmrl6/AACXjElEQVRHeDwehg4dirNnzwIAPvroI4SGhiI6OhrR0dFKbbdu3YqamhrMmDGj034lEgkkEkmXalAoFKirq+Pel5SUwMnJiZuNpSWAtGhrfDU1Ndwt3C369OkDoDmYCIXCZzouLfh8Pt566y3k5eUpLc/Pz4exsXG72zHGwBjjxlVTUwMVFRXweDyuTcv7liuJGRkZSj8LBw4cwJo1a3D27FkYGBg89xgIIYS8fl6lHEUZijLU0yhDdQ2dlCKEENIpc3NzeHp6IiAgANu2bYNEIkFYWBgMDAzg6ekJAAgJCYGbmxuGDBmChw8f4sSJE7C0tAQAGBsbg8fjISUlBZMnT4ZQKIREIoGfnx8WLVoETU1N6OjoIDw8vNUf47aEhobC1tYWQUFB8Pf3h0gkQm5uLlJTU7F582ZkZ2cjPDwcvr6+sLKyAp/Px6lTp/Ddd98hNDQUQPPVwLVr12LhwoUQCATw9fWFmpoaDhw4gCVLliAyMhLDhw9X2u9vwwYADBs2DGpqakrLqqursXLlSnh4eEBPTw/l5eXYsmULSkpK4OXlBaA5TL3zzjswNjZGVFQUN80xAOjq6rY7dnd3dwQEBCA2NhYymQxlZWUICQnB2LFj23yWRIuqqircvHmTe19YWIjs7GxoampygXbRokWYNm0a3n77bTg5OeHIkSP497//jZMnTwJo/rrAnj174OLiAm1tbfz666/45ptvIBQKuYeEOjs7Y9GiRZgzZw6Cg4OhUCjwzTffQFVVFU5OTgDA/Vy0uHDhAlRUVFod7+cZAyGEEPJ7QhmqGWUoylDteinzAL5iaDpjQkh3et2mM27RMp2xVCplQqGQyWQypemMg4KC2ODBg1nfvn2ZtrY28/X1ZeXl5dz6iIgIpqury3g8XofTGY8dO5aFhYVx2xkbG7MNGza0qufcuXPM2dmZicViJhKJ2IgRI9jKlSsZY4zdv3+fzZ07lw0fPpyJxWImkUiYtbU1i4qKYk1NTUr9JCUlsQkTJjCRSMRNt5yQkKDUpq0pmVtet2/fblVbbW0t+/DDD5m+vj7j8/lMT0+PeXh4sHPnznFt4uLi2u2zMzExMczKyooJhUKmp6fHfHx82K+//trhNidOnGhzXy2fRYsdO3YwMzMzJhAImI2NDUtKSuLWlZSUMDc3N6ajo8PU1NSYoaEh8/b2ZtevX1fq49ixY8zBwYFJpVLWv39/9u6777KMjIx2a+vqdMZdHcOzehnTGf9R0PEghHQnylCUoShD/fEyFI+xlzBf+CumsrISUqkUcrn8tXliPSHk9+PJkycoLCyEiYkJBAJBb5fzSqmuroaBgQGio6Mxa9asHt9/RUUFJk6ciH79+uHw4cNQV381vi5AXkxHv7OUGZTR8SCEdCfKUM+PMhTpDS8jQ9Hse4QQQnpNVlYWEhISUFBQgEuXLsHHxwcAuNvZe5qmpiaOHz+OiRMnIiMjo1dqIIQQQgjpDGUo8rqgZ0oRQgjpVVFRUcjLywOfz8fo0aORlpaGAQMG9Fo9WlpaWLZsWa/tnxBCCCGkKyhDkdcBnZQihBDSa0aOHImLFy/2dhmEEEIIIa8UylDkdUFf3yOEEEIIIYQQQgghPY5OShFCCCGEEEIIIYSQHkcnpQghhBBCCCGEEEJIj6OTUoQQQgghhBBCCCGkx9FJKUIIIYQQQgghhBDS4+ikFCGEEEIIIYQQQgjpcXRSihBCCCGEEEIIIYT0ODopRQghhDNz5kzweDzweDzw+XyYmZkhIiICjY2NL9TvyZMnwePx8OjRo5dTaBcUFhbC29sb+vr6EAgEMDQ0hKenJ65fv67ULiUlBY6OjpBIJFBXV8dbb72FnTt3KrUpKioCj8dDdnZ2l/e/fPlyDB06FCKRCP3798ekSZOQmZmp1OesWbNgYmICoVCIwYMHIzw8HPX19Z32HR8fDxsbG6irq0NPTw+ffPIJHjx40OE2sbGxGDFiBPr164d+/frBzs4Ohw8f5tZXVFQgODgYFhYWEAqFGDRoEObOnQu5XM612blzJ/fz8dvXvXv3uHZ1dXX48ssvYWxsjL59++KNN97Ad999p1TP3/72N25fRkZG+Pzzz/HkyZMOx7Bv3z64uLhAS0vrmT8PQgghpDtRhqIMRRnq+aj2dgGEEEJ+X1xdXREXF4e6ujocOnQIc+bMgZqaGhYvXtzbpQEA6uvrwefzO2zT0NAAZ2dnWFhYYN++fdDT08Ovv/6Kw4cPK4W6TZs2ISQkBKGhoYiNjQWfz8eBAwcQGBiIX375BVFRUc9d55AhQ7B582aYmpqitrYWGzZsgIuLC27evAltbW1cv34dCoUC27Ztg5mZGX755RcEBASgurq6w/2mp6djxowZ2LBhA9zd3VFSUoLAwEAEBARg37597W5naGiIb775Bubm5mCMYdeuXfD09ERWVhaGDRuG0tJSlJaWIioqClZWVvjPf/6DwMBAlJaWIjExEQAwbdo0uLq6KvU7c+ZMPHnyBDo6OtyyqVOn4u7du9ixYwfMzMxQVlYGhULBrd+9ezfCwsLw3Xffwd7eHvn5+VyYX79+fbtjqK6uxvjx4zF16lQEBAR0+hkQQgghPYkyFGUoylDPgf0ByeVyBoDJ5fLeLoUQ8hqqra1lubm5rLa2trdLeWZ+fn7M09NTaZmzszOztbVlFRUVzNfXl2loaDChUMhcXV1Zfn4+166oqIi9//77TENDg6mrqzMrKyt28OBBVlhYyAAovfz8/BhjjFVWVjJvb2+mrq7OdHV12fr165mjoyObN28e16+xsTGLiIhgvr6+TCKRcNumpaWx8ePHM4FAwAwNDVlwcDCrqqpijDGWlZXFALCioqJ2x1pcXMzU1NTY/PnzW62LiYlhANjPP//MGGPcGLKysp79oP5Xy9+e48ePt9tm7dq1zMTEpMN+1q1bx0xNTVvVa2Bg8Mw19e/fn/2///f/2l3/r3/9i/H5fNbQ0NDm+nv37jE1NTX2f//3f9yyw4cPM6lUyh48eNBuv3PmzGHvvvuu0rL58+czBweHLtX9Mj6Pp3X0O0uZQRkdD0JId6IMRRmqLZSh/ud1zFD09T1CCOlmjDFUNzX1yosx9sL1C4VC1NfXY+bMmbhw4QKSk5ORkZEBxhgmT56MhoYGAMCcOXNQV1eH06dP48qVK1izZg3EYjGMjIzwww8/AADy8vJQVlaGjRs3AgDmz5+P9PR0JCcnIzU1FWlpabh06VKrGqKiomBjY4OsrCwsXboUBQUFcHV1xZQpU5CTk4M9e/bgzJkzCAoKAgBoa2tDRUUFiYmJaGpqanNciYmJaGhowMKFC1utmz17NsRiMRISEl74+AHNVya3b98OqVQKGxubdtvJ5XJoamp22JednR1u376NQ4cOgTGGu3fvIjExEZMnT+5yPU1NTfj+++9RXV0NOzu7Duvp168fVFXbvrH6//7v/6Curo6PPvqIW5acnIwxY8Zg7dq1MDAwwJAhQ7Bw4ULU1tZybezt7XHx4kWcO3cOAHDr1i0cOnTomcZACCHkj+FVzlGUoV4cZajXP0PR1/cIIaSb1SgUGHz6Sq/su+Bta4j69HmubRlj+PHHH3H06FG4ubkhKSkJ6enpsLe3B9D8nXwjIyMkJSXBy8sLxcXFmDJlCqytrQEApqamXF8tIUFHRwcaGhoAgMePH2PXrl3YvXs3Jk6cCACIi4uDvr5+q1reffddLFiwgHvv7+8PHx8fhISEAADMzc0RExMDR0dHxMbGwsDAADExMfjiiy+wYsUKjBkzBk5OTvDx8eHqys/Ph1QqhZ6eXqv98fl8mJqaIj8//7mOXYuUlBRMnz4dNTU10NPTQ2pqKgYMGNBm25s3b2LTpk2d3u7u4OCA+Ph4TJs2DU+ePEFjYyPc3d2xZcuWTuu5cuUK7Ozs8OTJE4jFYuzfvx9WVlZtti0vL8fXX3+NTz/9tN3+duzYAW9vbwiFQm7ZrVu3cObMGQgEAuzfvx/l5eX461//igcPHiAuLg4A4O3tjfLycowfPx6MMTQ2NiIwMBBLlizpdAyEEEL+WF7FHEUZijIUZaiuozulCCGEKElJSYFYLIZAIICbmxumTZuGmTNnQlVVFePGjePaaWlpwcLCAteuXQMAzJ07F5GRkXBwcEB4eDhycnI63M+tW7fQ0NCAsWPHcsukUiksLCxatR0zZozS+8uXL2Pnzp0Qi8XcSyaTQaFQoLCwEEDzVcc7d+4gPj4ednZ22Lt3L4YNG4bU1NQuH4vOnrsANAfLp+tIS0vj1jk5OSE7Oxtnz56Fq6srpk6dqvQwyxYlJSVwdXWFl5eX0vf8n+43MDAQAJCbm4t58+Zh2bJluHjxIo4cOYKioiJufVpamtJ28fHxXH8WFhbIzs5GZmYmPvvsM/j5+SE3N7dVPZWVlXjvvfdgZWWF5cuXtznujIwMXLt2DbNmzVJarlAowOPxEB8fj7Fjx2Ly5MlYv349du3axV3pO3nyJFatWoW///3vuHTpEvbt24eDBw/i66+/7vSYEkIIIb9XlKH+hzIUZaiuojulCCGkm6mrqKDgbete2/ezcnJy4h5Yqa+vD1VVVSQnJ3e6nb+/P2QyGQ4ePIhjx45h9erViI6ORnBw8POUrkQkEim9r6qqwuzZszF37txWbQcNGsT9WyKRwN3dHe7u7oiMjIRMJkNkZCScnZ1hbm4OuVyO0tLSVlcW6+vrUVBQAJlM1mltHh4eSkHTwMBAqW4zMzOYmZnB1tYW5ubm2LFjh9IDT0tLS+Hk5AR7e3ts375dqe+nZ0bp168fAGD16tVwcHDAokWLAAAjRoyASCTChAkTEBkZiTFjxihtN3DgQO7fLbMBAcDo0aNx/vx5bNy4Edu2bePaPH78GK6urpBIJNi/fz/U1NTaHPf/+3//D2+++SZGjx6ttFxPTw8GBgaQSqXcMktLSzDG8Ouvv8Lc3BxLly6Fr68v/P39AQDW1taorq7Gp59+ii+//LLDY0oIIeSP5VXKUZShKENRhnp2dFKKEEK6GY/He+6v0PWGlhDwNEtLSzQ2NiIzM5O79fzBgwfIy8tTunXZyMgIgYGBCAwMxOLFi/Htt98iODiYu1r29LMJTE1NoaamhvPnz3MhSC6XIz8/H2+//XaHNY4aNQq5ubmt6uwIj8fD0KFDcfbsWQDARx99hNDQUERHRyM6Olqp7datW1FTU4MZM2Z02q9EIoFEIulSDQqFAnV1ddz7kpISODk5YfTo0YiLi4PKb8JvW+Orqalp9XyCPv/9+WKMQSgUdvm4/LaeyspKyGQy9O3bF8nJyRAIBG1uV1VVhX/9619YvXp1q3UODg7Yu3cvqqqqIBaLATTf5q+iogJDQ0NuDL8d69NjeJZjSggh5PX2KuUoylCUoShDPTs6KUUIIaRT5ubm8PT0REBAALZt2waJRIKwsDAYGBjA09MTABASEgI3NzcMGTIEDx8+xIkTJ2BpaQkAMDY2Bo/HQ0pKCiZPngyhUAiJRAI/Pz8sWrQImpqa0NHRQXh4OFRUVMDj8TqsJzQ0FLa2tggKCoK/vz9EIhFyc3ORmpqKzZs3Izs7G+Hh4fD19YWVlRX4fD5OnTqF7777DqGhoQCarwauXbsWCxcuhEAggK+vL9TU1HDgwAEsWbIEkZGRGD58uNJ+8/LyWtUybNiwVlfCqqursXLlSnh4eEBPTw/l5eXYsmULSkpK4OXlBaA5TL3zzjswNjZGVFQU7t+/z22vq6vb7tjd3d0REBCA2NhYyGQylJWVISQkBGPHjm3zWRItFi9eDDc3NwwaNAiPHz/G7t27cfLkSRw9ehRAc5hycXFBTU0N/vnPf6KyshKVlZUAmh962uep/yHYs2cPGhsb8ec//7nVfry9vfH111/jL3/5C1asWIHy8nIsWrQIn3zyCffcBHd3d6xfvx4jR47EuHHjcPPmTSxduhTu7u5K+/mtiooKFBcXo7S0FMD/Pg9dXd0OjxkhhBDSWyhDNaMM1YwyVBteyjyArxiazpgQ0p1et+mMW7RMZyyVSplQKGQymUxpOuOgoCA2ePBg1rdvX6atrc18fX1ZeXk5tz4iIoLp6uoyHo/X4XTGY8eOZWFhYdx2xsbGbMOGDa3qOXfuHHN2dmZisZiJRCI2YsQItnLlSsYYY/fv32dz585lw4cPZ2KxmEkkEmZtbc2ioqJYU1OTUj9JSUlswoQJTCQScdMtJyQkKLVpa0rmltft27db1VZbW8s+/PBDpq+vz/h8PtPT02MeHh7s3LlzXJu4uLh2++xMTEwMs7KyYkKhkOnp6TEfHx/266+/drjNJ598woyNjRmfz2fa2tps4sSJ7NixY9z6EydOtFtPYWGhUl92dnbM29u73X1du3aNTZo0iQmFQmZoaMjmz5/PampquPUNDQ1s+fLlbPDgwUwgEDAjIyP217/+lT18+LDDMbR3zMLDwzvcrjMvYzrjPwo6HoSQ7kQZijIUZag/XobiMfYS5gt/xVRWVkIqlXLTNBJCyMv05MkTFBYWwsTEpN1bd0nbqqurYWBggOjo6FYPf+wJFRUVmDhxIvr164fDhw9DXV29x2sgPa+j31nKDMroeBBCuhNlqOdHGYr0hpeRoWj2PUIIIb0mKysLCQkJKCgowKVLl+Dj4wMA3O3sPU1TUxPHjx/HxIkTkZGR0Ss1EEIIIYR0hjIUeV3QM6UIIYT0qqioKOTl5YHP52P06NFIS0vDgAEDeq0eLS0tLFu2rNf2TwghhBDSFZShyOuATkoRQgjpNSNHjsTFixd7uwxCCCGEkFcKZSjyuqCv7xFCCCGEEEIIIYSQHkcnpQghhBBCCCGEEEJIj6OTUoQQQgghhBBCCCGkx9FJKUIIIYQQQgghhBDS4+ikFCGEEEIIIYQQQgjpcXRSihBCCCGEEEIIIYT0ODopRQghhBBCCCGEEEJ6HJ2UIoQQwpk5cyZ4PB54PB74fD7MzMwQERGBxsbGF+r35MmT4PF4ePTo0csptAsKCwvh7e0NfX19CAQCGBoawtPTE9evX1dql5KSAkdHR0gkEqirq+Ott97Czp07ldoUFRWBx+MhOzu7y/tfvnw5hg4dCpFIhP79+2PSpEnIzMxU6nPWrFkwMTGBUCjE4MGDER4ejvr6+k77jo+Ph42NDdTV1aGnp4dPPvkEDx486HJt33zzDXg8HkJCQpSWFxQU4MMPP4S2tjb69euHqVOn4u7du0ptVq5cCXt7e6irq0NDQ6PN/lt+hp5+ff/999z6ffv2wdnZmduPnZ0djh492mnd+/btg4uLC7S0tJ758yCEEEK6E2UoylCUoZ4PnZQihBCixNXVFWVlZbhx4wYWLFiA5cuXY926db1dFqcrgaOhoQHOzs6Qy+XYt28f8vLysGfPHlhbWyuFuk2bNsHT0xMODg7IzMxETk4Opk+fjsDAQCxcuPCF6hwyZAg2b96MK1eu4MyZM3jjjTfg4uKC+/fvAwCuX78OhUKBbdu24erVq9iwYQO2bt2KJUuWdNhveno6ZsyYgVmzZuHq1avYu3cvzp07h4CAgC7Vdf78eWzbtg0jRoxQWl5dXQ0XFxfweDz89NNPSE9PR319Pdzd3aFQKLh29fX18PLywmeffdbhfuLi4lBWVsa9PvjgA27d6dOn4ezsjEOHDuHixYtwcnKCu7s7srKyOuyzuroa48ePx5o1a7o0VkIIIaQnUYaiDEUZ6jmwPyC5XM4AMLlc3tulEEJeQ7W1tSw3N5fV1tb2dinPzM/Pj3l6eiotc3Z2Zra2tqyiooL5+voyDQ0NJhQKmaurK8vPz+faFRUVsffff59paGgwdXV1ZmVlxQ4ePMgKCwsZAKWXn58fY4yxyspK5u3tzdTV1Zmuri5bv349c3R0ZPPmzeP6NTY2ZhEREczX15dJJBJu27S0NDZ+/HgmEAiYoaEhCw4OZlVVVYwxxrKyshgAVlRU1O5Yi4uLmZqaGps/f36rdTExMQwA+/nnnxljjBtDVlbWsx/U/2r523P8+PF226xdu5aZmJh02M+6deuYqalpq3oNDAw6reHx48fM3NycpaamtjrOR48eZSoqKkp/Gx89esR4PB5LTU1t1VdcXByTSqVt7gcA279/f6f1PM3KyoqtWLGiS21fxufxtI5+ZykzKKPjQQjpTpShKEO1hTJUx171DEV3ShFCSDdjjKGmvrFXXoyxF65fKBSivr4eM2fOxIULF5CcnIyMjAwwxjB58mQ0NDQAAObMmYO6ujqcPn0aV65cwZo1ayAWi2FkZIQffvgBAJCXl4eysjJs3LgRADB//nykp6cjOTkZqampSEtLw6VLl1rVEBUVBRsbG2RlZWHp0qUoKCiAq6srpkyZgpycHOzZswdnzpxBUFAQAEBbWxsqKipITExEU1NTm+NKTExEQ0NDm1fzZs+eDbFYjISEhBc+fkDzlbHt27dDKpXCxsam3XZyuRyampod9mVnZ4fbt2/j0KFDYIzh7t27SExMxOTJkzutY86cOXjvvfcwadKkVuvq6urA4/HQt29fbplAIICKigrOnDnTad9t7WvAgAEYO3Ysvvvuuw5/FhUKBR4/ftzp2AkhhPzxvMo5ijLUi6MM9fpnKNXeLoAQQl53tQ1NsFrW+Xe9u0NuhAzq/Of7Tz1jDD/++COOHj0KNzc3JCUlIT09Hfb29gCav5NvZGSEpKQkeHl5obi4GFOmTIG1tTUAwNTUlOur5Q+ljo4O9x36x48fY9euXdi9ezcmTpwIoPl2ZX19/Va1vPvuu1iwYAH33t/fHz4+Ptz3+c3NzRETEwNHR0fExsbCwMAAMTEx+OKLL7BixQqMGTMGTk5O8PHx4erKz8+HVCqFnp5eq/3x+XyYmpoiPz//uY5di5SUFEyfPh01NTXQ09NDamoqBgwY0GbbmzdvYtOmTYiKiuqwTwcHB8THx2PatGl48uQJGhsb4e7uji1btnS43ffff49Lly7h/Pnzba63tbWFSCRCaGgoVq1aBcYYwsLC0NTUhLKysq4N+L8iIiLw7rvvQl1dHceOHcNf//pXVFVVYe7cuW22j4qKQlVVFaZOnfpM+yGEEPL6exVzFGUoylCUobqO7pQihBCiJCUlBWKxGAKBAG5ubpg2bRpmzpwJVVVVjBs3jmunpaUFCwsLXLt2DQAwd+5cREZGwsHBAeHh4cjJyelwP7du3UJDQwPGjh3LLZNKpbCwsGjVdsyYMUrvL1++jJ07d0IsFnMvmUwGhUKBwsJCAM1Xme7cuYP4+HjY2dlh7969GDZsGFJTU7t8LPh8fqdt4uPjlepIS0vj1jk5OSE7Oxtnz56Fq6srpk6dinv37rXqo6SkBK6urvDy8lJ6rsHT/QYGBgIAcnNzMW/ePCxbtgwXL17EkSNHUFRUxK1PS0tT2i4+Ph63b9/GvHnzEB8fD4FA0OY4tLW1sXfvXvz73/+GWCyGVCrFo0ePMGrUKKioPFtcWLp0KRwcHDBy5EiEhobiiy++aPeZGrt378aKFSvwr3/9Czo6Op0eU0IIIeT3ijLU/1CGogzVVXSnFCGEdDOhWh/kRsh6bd/PysnJCbGxseDz+dDX14eqqiqSk5M73c7f3x8ymQwHDx7EsWPHsHr1akRHRyM4OPh5SlciEomU3ldVVWH27NltXjUaNGgQ92+JRAJ3d3e4u7sjMjISMpkMkZGRcHZ2hrm5OeRyOUpLS1tdWayvr0dBQQFkss4/Nw8PD6WgaWBgoFS3mZkZzMzMYGtrC3Nzc+zYsQOLFy/m2pSWlsLJyQn29vbYvn27Ut9Pz4zSr18/AMDq1avh4OCARYsWAQBGjBgBkUiECRMmIDIyEmPGjFHabuDAgfjxxx9x7949jBo1ilve1NSE06dPY/Pmzairq0OfPn3g4uKCgoIClJeXQ1VVFRoaGtDV1VW6Yvs8xo0bh6+//hp1dXVKt7Z///338Pf3x969e5Vuh+/omBJCCPljeZVyFGUoylCUoZ4dnZQihJBuxuPxnvsrdL2hJQQ8zdLSEo2NjcjMzORuPX/w4AHy8vJgZWXFtTMyMkJgYCACAwOxePFifPvttwgODuaulj39bAJTU1Ooqanh/PnzXAiSy+XIz8/H22+/3WGNo0aNQm5ubqs6O8Lj8TB06FCcPXsWAPDRRx8hNDQU0dHRiI6OVmq7detW1NTUYMaMGZ32K5FIIJFIulSDQqFAXV0d976kpAROTk4YPXo04uLiWl1Na2t8NTU1UFVV/nnq06c5NDPGIBQKW203ceJEXLlyRWnZX/7yFwwdOhShoaHc9i1abo//6aefcO/ePXh4eHRpfO3Jzs5G//79lcJUQkICPvnkE3z//fd47733lNo/yzElhBDyenuVchRlKMpQlKGe3avx200IIaRXmZubw9PTEwEBAdi2bRskEgnCwsJgYGAAT09PAEBISAjc3NwwZMgQPHz4ECdOnIClpSUAwNjYGDweDykpKZg8eTKEQiEkEgn8/PywaNEiaGpqQkdHB+Hh4VBRUQGPx+uwntDQUNja2iIoKAj+/v4QiUTIzc1FamoqNm/ejOzsbISHh8PX1xdWVlbg8/k4deoUvvvuO4SGhgJovhq4du1aLFy4EAKBAL6+vlBTU8OBAwewZMkSREZGYvjw4Ur7zcvLa1XLsGHDoKamprSsuroaK1euhIeHB/T09FBeXo4tW7agpKQEXl5eAJrD1DvvvANjY2NERUVx0xwDgK6ubrtjd3d3R0BAAGJjYyGTyVBWVoaQkBCMHTu2zWdJAM0B5bdjEYlE0NLSUloeFxcHS0tLaGtrIyMjA/PmzcPnn3+u9HWA4uJiVFRUoLi4GE1NTdwVRTMzM4jFYvz73//G3bt3YWtrC4FAgNTUVKxatUrpYai7d++Gn58fNm7ciHHjxuHOnTsAmh8IK5VK2x17y35LS0sB/O/z0NXV7fCYEUIIIb2FMlQzylCUodr1UuYBfMXQdMaEkO70uk1n3KJlOmOpVMqEQiGTyWRK0xkHBQWxwYMHs759+zJtbW3m6+vLysvLufURERFMV1eX8Xi8DqczHjt2LAsLC+O2MzY2Zhs2bGhVz7lz55izszMTi8VMJBKxESNGsJUrVzLGGLt//z6bO3cuGz58OBOLxUwikTBra2sWFRXFmpqalPpJSkpiEyZMYCKRiJtuOSEhQalNW1Myt7xu377dqrba2lr24YcfMn19fcbn85menh7z8PBg586d49rExcW122dnYmJimJWVFRMKhUxPT4/5+PiwX3/9tdPtnvbb6YwZYyw0NJQNHDiQqampMXNzcxYdHc0UCoVSGz8/vzZrPnHiBGOMscOHD7M333yT+1xsbGzY1q1blY67o6Njm320/Fy0p71jFh4e/kxj/62XMZ3xHwUdD0JId6IMRRmKMtQfL0PxGHsJ84W/YiorKyGVSiGXy7nvlxJCyMvy5MkTFBYWwsTEpN0HIpK2VVdXw8DAANHR0Zg1a1aP77+iogITJ05Ev379cPjwYairq/d4DaTndfQ7S5lBGR0PQkh3ogz1/ChDkd7wMjIUzb5HCCGk12RlZSEhIQEFBQW4dOkSfHx8AIC7nb2naWpq4vjx45g4cSIyMjJ6pQZCCCGEkM5QhiKvC3qmFCGEkF4VFRWFvLw88Pl8jB49GmlpadxDInuDlpYWli1b1mv7J4QQQgjpCspQ5HXQ7XdKbdmyBW+88QYEAgHGjRuHc+fOddh+7969GDp0KAQCAaytrXHo0CFuXUNDA0JDQ2FtbQ2RSAR9fX3MmDGDe1gXIYSQV8vIkSNx8eJFVFVVoaKiAqmpqbC2tu7tsgj53aAcRQghpC2UocjroltPSu3Zswfz589HeHg4Ll26BBsbG8hkMty7d6/N9mfPnsXHH3+MWbNmISsrCx988AE++OAD/PLLLwCap3C8dOkSli5dikuXLmHfvn3Iy8t74WkWCSGEEEJ+byhHEUIIIeR1160POh83bhzeeustbN68GQCgUChgZGSE4OBghIWFtWo/bdo0VFdXIyUlhVtma2uLN998E1u3bm1zH+fPn8fYsWPxn//8B4MGDepSXfSQTkJId6KHdBLyavm9Puj895ijKEMRQroTZShCXi2/6wed19fX4+LFi5g0adL/dqaigkmTJrX74LOMjAyl9gAgk8k6fFCaXC4Hj8eDhoZGu23q6upQWVmp9CKEEEII+b36veQoylCEEEII6U7ddlKqvLwcTU1NGDhwoNLygQMH4s6dO21uc+fOnWdq/+TJE4SGhuLjjz/u8Mzb6tWrIZVKuZeRkdEzjoYQQgghpOf8XnIUZShCCCGEdKduf9B5d2loaMDUqVPBGENsbGyHbRcvXgy5XM69bt++3UNVEkIIIYT8/nQ1R1GGIoQQQkh3Uu2ujgcMGIA+ffrg7t27Ssvv3r0LXV3dNrfR1dXtUvuWIPWf//wHP/30U6fPNOjbty/69u37HKMghBBCCOl5v5ccRRmKEEIIId2p2+6U4vP5GD16NH788UdumUKhwI8//gg7O7s2t7Gzs1NqDwCpqalK7VuC1I0bN3D8+HFoaWl1zwAIIYQQQnoJ5ShCCCGE/BF069f35s+fj2+//Ra7du3CtWvX8Nlnn6G6uhp/+ctfAAAzZszA4sWLufbz5s3DkSNHEB0djevXr2P58uW4cOECgoKCADQHqY8++ggXLlxAfHw8mpqacOfOHdy5cwf19fXdORRCCPlDmDlzJng8Hng8Hvh8PszMzBAREYHGxsYX6vfkyZPg8Xh49OjRyym0CwoLC+Ht7Q19fX0IBAIYGhrC09MT169fV2qXkpICR0dHSCQSqKur46233sLOnTuV2hQVFYHH4yE7O7vL+1++fDmGDh0KkUiE/v37Y9KkScjMzFTqc9asWTAxMYFQKMTgwYMRHh7epb9n8fHxsLGxgbq6OvT09PDJJ5/gwYMHnW5XUlKCP//5z9DS0oJQKIS1tTUuXLjArX/68295ubq6KvXxxhtvtGrzzTffcOvz8vLg5OSEgQMHQiAQwNTUFF999RUaGhqU+nn06BHmzJkDPT099O3bF0OGDMGhQ4c6rH/fvn1wcXGBlpbWM38eryLKUYQQ8uqgDEUZijLU8+m2r+8BzVMT379/H8uWLcOdO3fw5ptv4siRI9xDOIuLi6Gi8r/zYvb29ti9eze++uorLFmyBObm5khKSsLw4cMBNP8gJCcnAwDefPNNpX2dOHEC77zzTncOhxBC/hBcXV0RFxeHuro6HDp0CHPmzIGamprS//z2pvr6evD5/A7bNDQ0wNnZGRYWFti3bx/09PTw66+/4vDhw0qhbtOmTQgJCUFoaChiY2PB5/Nx4MABBAYG4pdffkFUVNRz1zlkyBBs3rwZpqamqK2txYYNG+Di4oKbN29CW1sb169fh0KhwLZt22BmZoZffvkFAQEBqK6u7nC/6enpmDFjBjZs2AB3d3eUlJQgMDAQAQEB2LdvX7vbPXz4EA4ODnBycsLhw4ehra2NGzduoH///krtWj7/Fm19dSsiIgIBAQHce4lEwv1bTU0NM2bMwKhRo6ChoYHLly8jICAACoUCq1atAtD8GTo7O0NHRweJiYkwMDDAf/7znw5n0gWA6upqjB8/HlOnTlXa/+uKchQhhLxaKENRhqIM9RzYH5BcLmcAmFwu7+1SCCGvodraWpabm8tqa2t7u5Rn5ufnxzw9PZWWOTs7M1tbW1ZRUcF8fX2ZhoYGEwqFzNXVleXn53PtioqK2Pvvv880NDSYuro6s7KyYgcPHmSFhYUMgNLLz8+PMcZYZWUl8/b2Zurq6kxXV5etX7+eOTo6snnz5nH9Ghsbs4iICObr68skEgm3bVpaGhs/fjwTCATM0NCQBQcHs6qqKsYYY1lZWQwAKyoqanesxcXFTE1Njc2fP7/VupiYGAaA/fzzz4wxxo0hKyvr2Q/qf7X87Tl+/Hi7bdauXctMTEw67GfdunXM1NS0Vb0GBgYdbhcaGsrGjx/fYZu2Pv/fMjY2Zhs2bOiwzW99/vnnSvuOjY1lpqamrL6+/pn6afEyPo+ndfQ7S5lBGR0PQkh3ogxFGaotlKFe7wz1ys6+RwghrwzGgPrq3nkx9sLlC4VC1NfXY+bMmbhw4QKSk5ORkZEBxhgmT57M3VI8Z84c1NXV4fTp07hy5QrWrFkDsVgMIyMj/PDDDwCab0suKyvDxo0bATR/PSk9PR3JyclITU1FWloaLl261KqGqKgo2NjYICsrC0uXLkVBQQFcXV0xZcoU5OTkYM+ePThz5gz3NSVtbW2oqKggMTERTU1NbY4rMTERDQ0NWLhwYat1s2fPhlgsRkJCwgsfP6D5qtb27dshlUphY2PTbju5XA5NTc0O+7Kzs8Pt27dx6NAhMMZw9+5dJCYmYvLkyR1ul5ycjDFjxsDLyws6OjoYOXIkvv3221btTp48CR0dHVhYWOCzzz5r85b2b775BlpaWhg5ciTWrVvX4VcTbt68iSNHjsDR0VGpFjs7O8yZMwcDBw7E8OHDsWrVqnY/K0IIIX9gr3COogz14ihDvf4Zqlu/vkcIIQRAQw2wSr939r2kFOCLnmtTxhh+/PFHHD16FG5ubkhKSkJ6ejrs7e0BNH8n38jICElJSfDy8kJxcTGmTJkCa2trAICpqSnXV0tI0NHR4W4vfvz4MXbt2oXdu3dj4sSJAIC4uDjo67c+Vu+++y4WLFjAvff394ePjw9CQkIAAObm5oiJiYGjoyNiY2NhYGCAmJgYfPHFF1ixYgXGjBkDJycn+Pj4cHXl5+dDKpVCT0+v1f74fD5MTU2Rn5//XMeuRUpKCqZPn46amhro6ekhNTUVAwYMaLPtzZs3sWnTpk5vd3dwcEB8fDymTZuGJ0+eoLGxEe7u7tiyZUuH2926dQuxsbGYP38+lixZgvPnz2Pu3Lng8/nw8/MD0Hzb+Z/+9CeYmJigoKAAS5YsgZubGzIyMtCnTx8AwNy5czFq1Choamri7NmzWLx4McrKyrB+/Xql/dnb2+PSpUuoq6vDp59+ioiICKVafvrpJ/j4+ODQoUO4efMm/vrXv6KhoQHh4eGdHldCCCF/IK9gjqIMRRmKMlTX0Z1ShBBClKSkpEAsFkMgEMDNzQ3Tpk3DzJkzoaqqinHjxnHttLS0YGFhgWvXrgFo/kMbGRkJBwcHhIeHIycnp8P93Lp1Cw0NDRg7diy3TCqVwsLColXbMWPGKL2/fPkydu7cCbFYzL1kMhkUCgUKCwsBNF91vHPnDuLj42FnZ4e9e/di2LBhSE1N7fKx6Oy5C0BzsHy6jrS0NG6dk5MTsrOzcfbsWbi6umLq1Km4d+9eqz5KSkrg6uoKLy8vpe/5P91vYGAgACA3Nxfz5s3DsmXLcPHiRRw5cgRFRUXc+rS0NKXt4uPjATTP3DZq1CisWrUKI0eOxKeffoqAgABs3bqV29/06dPh4eEBa2trfPDBB0hJScH58+dx8uRJrs38+fPxzjvvYMSIEQgMDER0dDQ2bdqEuro6pTHt2bMHly5dwu7du3Hw4EGloKhQKKCjo4Pt27dj9OjRmDZtGr788kuulo6OKSGEEPJ7RRnqfyhDUYbqKrpTihBCupuaevOVtt7a9zNycnLiHlipr68PVVVV7uHIHfH394dMJsPBgwdx7NgxrF69GtHR0QgODn6eypWIRMpXKauqqjB79mzMnTu3VdtBgwZx/5ZIJHB3d4e7uzsiIyMhk8kQGRkJZ2dnmJubQy6Xo7S0tNWVxfr6ehQUFEAmk3Vam4eHh1LQNDAwUKrbzMwMZmZmsLW1hbm5OXbs2KH0wNPS0lI4OTnB3t4e27dvV+r76ZlR+vXrBwBYvXo1HBwcsGjRIgDAiBEjIBKJMGHCBERGRmLMmDFK27U8FFtPTw9WVlZK/VtaWnJfC2iLqakpBgwYgJs3b3JXYn9r3LhxaGxsRFFRkVIYNjIyAgBYWVmhqakJn376KRYsWIA+ffpAT08Pampq3JXDllpaZoHr6JgSQgj5g3mFchRlKMpQLShDdR2dlCKEkO7G4z33V+h6Q0sIeJqlpSUaGxuRmZnJ3Xr+4MED5OXlKf2RNjIyQmBgIAIDA7F48WJ8++23CA4O5q6WPf19d1NTU6ipqeH8+fNcCJLL5cjPz8fbb7/dYY2jRo1Cbm5uqzo7wuPxMHToUJw9exYA8NFHHyE0NBTR0dGIjo5Wart161bU1NRgxowZnfYrkUiUZk7piEKhULoaVlJSAicnJ4wePRpxcXFKM6kBaHN8NTU1UFVV/vPdEkwYYxAKhW1u5+DggLy8PKVl+fn5MDY2brfeX3/9FQ8ePGjz9vwW2dnZUFFRgY6OTrttFAoFGhoaoFAo0KdPHzg4OGD37t1QKBTcmPPz86Gnpwc+nw8+n9/lY0oIIeQ19wrlKMpQlKFaUIbqOjopRQghpFPm5ubw9PREQEAAtm3bBolEgrCwMBgYGMDT0xMAEBISAjc3NwwZMgQPHz7EiRMnYGlpCQAwNjYGj8dDSkoKJk+eDKFQCIlEAj8/PyxatAiamprQ0dFBeHg4VFRUwOPxOqwnNDQUtra2CAoKgr+/P0QiEXJzc5GamorNmzcjOzsb4eHh8PX1hZWVFfh8Pk6dOoXvvvsOoaGhAJqvBq5duxYLFy6EQCCAr68v1NTUcODAASxZsgSRkZEYPny40n5/G0gAYNiwYVBTU1NaVl1djZUrV8LDwwN6enooLy/Hli1bUFJSAi8vLwDNYeqdd96BsbExoqKicP/+fW57XV3ddsfu7u6OgIAAxMbGQiaToaysDCEhIRg7dmybz5Jo8fnnn8Pe3h6rVq3C1KlTce7cOWzfvp27slhVVYUVK1ZgypQp0NXVRUFBAb744guYmZlxVzszMjKQmZkJJycnSCQSZGRk4PPPP8ef//xnblrk+Ph4qKmpwdraGn379sWFCxewePFiTJs2jTtOn332GTZv3ox58+YhODgYN27cwKpVq9q8avu0iooKFBcXo7S0VOnz0NXV7fCYEUIIIb2FMlQzylCUodr1UuYBfMXQdMaEkO70uk1n3KJlOmOpVMqEQiGTyWRK0xkHBQWxwYMHs759+zJtbW3m6+vLysvLufURERFMV1eX8Xi8DqczHjt2LAsLC+O2a2/63HPnzjFnZ2cmFouZSCRiI0aMYCtXrmSMMXb//n02d+5cNnz4cCYWi5lEImHW1tYsKiqKNTU1KfWTlJTEJkyYwEQiETfdckJCglKbtqZkbnndvn27VW21tbXsww8/ZPr6+ozP5zM9PT3m4eHBzp07x7WJi4trt8/OxMTEMCsrKyYUCpmenh7z8fFhv/76a6fb/fvf/2bDhw9nffv2ZUOHDmXbt2/n1tXU1DAXFxemra3N1NTUmLGxMQsICGB37tzh2ly8eJGNGzeOSaVSJhAImKWlJVu1ahV78uQJ1+b7779no0aN4j4XKysrtmrVqla/D2fPnmXjxo1jffv2ZaampmzlypWssbGxw/rbO2bh4eGdjr0jL2M64z8KOh6EkO5EGYoyFGWoP16G4jH2EuYLf8VUVlZCKpVCLpdz3y8lhJCX5cmTJygsLISJiQkEAkFvl/NKqa6uhoGBAaKjozFr1qwe339FRQUmTpyIfv364fDhw1BXf/ZncpFXT0e/s5QZlNHxIIR0J8pQz48yFOkNLyND0ex7hBBCek1WVhYSEhJQUFCAS5cuwcfHBwC429l7mqamJo4fP46JEyciIyOjV2oghBBCCOkMZSjyuqBnShFCCOlVUVFRyMvLA5/Px+jRo5GWloYBAwb0Wj1aWlpYtmxZr+2fEEIIIaQrKEOR1wGdlCKEENJrRo4ciYsXL/Z2GYQQQgghrxTKUOR1QV/fI4QQQgghhBBCCCE9jk5KEUIIIYQQQgghhJAeRyelCCGEEEIIIYQQQkiPo5NShBBCCCGEEEIIIaTH0UkpQgghhBBCCCGEENLj6KQUIYQQQgghhBBCCOlxdFKKEEIIIYQQQgghhPQ4OilFCCGEM3PmTPB4PPB4PPD5fJiZmSEiIgKNjY0v1O/JkyfB4/Hw6NGjl1NoFxQWFsLb2xv6+voQCAQwNDSEp6cnrl+/rtQuJSUFjo6OkEgkUFdXx1tvvYWdO3cqtSkqKgKPx0N2dnaX9798+XIMHToUIpEI/fv3x6RJk5CZmanU56xZs2BiYgKhUIjBgwcjPDwc9fX1nfYdHx8PGxsbqKurQ09PD5988gkePHjQ4TZNTU1YunSp0v6+/vprMMa4Nvv27YOLiwu0tLTaHW9BQQE+/PBDaGtro1+/fpg6dSru3r37zOPKycnBhAkTIBAIYGRkhLVr13Y67tOnT8Pd3R36+vrg8XhISkrqdBtCCCGkJ1CGogxFGer50EkpQgghSlxdXVFWVoYbN25gwYIFWL58OdatW9fbZXG6EjgaGhrg7OwMuVyOffv2IS8vD3v27IG1tbVSqNu0aRM8PT3h4OCAzMxM5OTkYPr06QgMDMTChQtfqM4hQ4Zg8+bNuHLlCs6cOYM33ngDLi4uuH//PgDg+vXrUCgU2LZtG65evYoNGzZg69atWLJkSYf9pqenY8aMGZg1axauXr2KvXv34ty5cwgICOhwuzVr1iA2NhabN2/GtWvXsGbNGqxduxabNm3i2lRXV2P8+PFYs2ZNm31UV1fDxcUFPB4PP/30E9LT01FfXw93d3coFIouj6uyshIuLi4wNjbGxYsXsW7dOixfvhzbt2/vcAzV1dWwsbHBli1bOmxHCCGE9AbKUJShKEM9B/YHJJfLGQAml8t7uxRCyGuotraW5ebmstra2t4u5Zn5+fkxT09PpWXOzs7M1taWVVRUMF9fX6ahocGEQiFzdXVl+fn5XLuioiL2/vvvMw0NDaaurs6srKzYwYMHWWFhIQOg9PLz82OMMVZZWcm8vb2Zuro609XVZevXr2eOjo5s3rx5XL/GxsYsIiKC+fr6MolEwm2blpbGxo8fzwQCATM0NGTBwcGsqqqKMcZYVlYWA8CKioraHWtxcTFTU1Nj8+fPb7UuJiaGAWA///wzY4xxY8jKynr2g/pfLX97jh8/3m6btWvXMhMTkw77WbduHTM1NW1Vr4GBQYfbvffee+yTTz5RWvanP/2J+fj4tGrb3niPHj3KVFRUlP5+Pnr0iPF4PJaamtruvn87rr///e+sf//+rK6ujlsWGhrKLCwsOhzD0wCw/fv3d7l9Rzr6naXMoIyOByGkO1GGogzVFspQr3eGojulCCGkmzHGUNNQ0ysv9tRtxc9LKBSivr4eM2fOxIULF5CcnIyMjAwwxjB58mQ0NDQAAObMmYO6ujqcPn0aV65cwZo1ayAWi2FkZIQffvgBAJCXl4eysjJs3LgRADB//nykp6cjOTkZqampSEtLw6VLl1rVEBUVBRsbG2RlZWHp0qUoKCiAq6srpkyZgpycHOzZswdnzpxBUFAQAEBbWxsqKipITExEU1NTm+NKTExEQ0NDm1fzZs+eDbFYjISEhBc+fkDzlcnt27dDKpXCxsam3XZyuRyampod9mVnZ4fbt2/j0KFDYIzh7t27SExMxOTJkzvczt7eHj/++CPy8/MBAJcvX8aZM2fg5ubW5XHU1dWBx+Ohb9++3DKBQAAVFRWcOXOmy+PKyMjA22+/DT6fzy2TyWTIy8vDw4cPu1wPIYSQ19+rnKMoQ704ylCvf4ZS7e0CCCHkdVfbWItxu8f1yr4zvTOhrqb+XNsyxvDjjz/i6NGjcHNzQ1JSEtLT02Fvbw+g+Tv5RkZGSEpKgpeXF4qLizFlyhRYW1sDAExNTbm+Wv6Y6ujoQENDAwDw+PFj7Nq1C7t378bEiRMBAHFxcdDX129Vy7vvvosFCxZw7/39/eHj44OQkBAAgLm5OWJiYuDo6IjY2FgYGBggJiYGX3zxBVasWIExY8bAyckJPj4+XF35+fmQSqXQ09NrtT8+nw9TU1MufDyvlJQUTJ8+HTU1NdDT00NqaioGDBjQZtubN29i06ZNiIqK6rBPBwcHxMfHY9q0aXjy5AkaGxvh7u7e6e3YYWFhqKysxNChQ9GnTx80NTVh5cqV8PHx6fJ4bG1tIRKJEBoailWrVoExhrCwMDQ1NaGsrKzL47pz5w5MTEyU2g0cOJBb179//y7XRAgh5PX2KuYoylCUoX6LMlT76E4pQgghSlJSUiAWiyEQCODm5oZp06Zh5syZUFVVxbhx/wuFWlpasLCwwLVr1wAAc+fORWRkJBwcHBAeHo6cnJwO93Pr1i00NDRg7Nix3DKpVAoLC4tWbceMGaP0/vLly9i5cyfEYjH3kslkUCgUKCwsBNB81fHOnTuIj4+HnZ0d9u7di2HDhiE1NbXLx+Lpq1DtiY+PV6ojLS2NW+fk5ITs7GycPXsWrq6umDp1Ku7du9eqj5KSEri6usLLy0vpuQZP9xsYGAgAyM3Nxbx587Bs2TJcvHgRR44cQVFREbc+LS1Nabv4+HgAwL/+9S/Ex8dj9+7duHTpEnbt2oWoqCjs2rWry8dDW1sbe/fuxb///W+IxWJIpVI8evQIo0aNgopK60jR3rg6094YCCGEkN8zylD/QxlKGWWo9tGdUoQQ0s2EqkJkemd23rCb9v2snJycEBsbCz6fD319faiqqiI5ObnT7fz9/SGTyXDw4EEcO3YMq1evRnR0NIKDg5+ndCUikUjpfVVVFWbPno25c+e2ajto0CDu3xKJBO7u7nB3d0dkZCRkMhkiIyPh7OwMc3NzyOVylJaWtrqyWF9fj4KCAshksk5r8/DwUAqaBgYGSnWbmZnBzMwMtra2MDc3x44dO7B48WKuTWlpKZycnGBvb9/qIZVPz9zSr18/AMDq1avh4OCARYsWAQBGjBgBkUiECRMmIDIyEmPGjFHaruXq2aJFixAWFobp06cDAKytrfGf//wHq1evhp+fX6fjbOHi4oKCggKUl5dDVVUVGhoa0NXVVbqq29m4dHV1lWabAcC919XVxRtvvNHmGAghhPzxvEo5ijIUZaiOUIZqG52UIoSQbsbj8Z77K3S9oSUEPM3S0hKNjY3IzMzkbj1/8OAB8vLyYGVlxbUzMjJCYGAgAgMDsXjxYnz77bcIDg7mrpY9/WwCU1NTqKmp4fz581wIksvlyM/Px9tvv91hjaNGjUJubm6rOjvC4/EwdOhQnD17FgDw0UcfITQ0FNHR0YiOjlZqu3XrVtTU1GDGjBmd9iuRSCCRSLpUg0KhQF1dHfe+pKQETk5OGD16NOLi4lpdKWtrfDU1NVBVVf7z3adPHwDNXxcQCoXtbvfb/vv06cPN+PKsWm6h/+mnn3Dv3j14eHh0eVx2dnb48ssv0dDQADU1NQBAamoqLCwsuNvOn+WzJYQQ8vp6lXIUZSjKUF1BGUoZnZQihBDSKXNzc3h6eiIgIADbtm2DRCJBWFgYDAwM4OnpCQAICQmBm5sbhgwZgocPH+LEiROwtLQEABgbG4PH4yElJQWTJ0+GUCiERCKBn58fFi1aBE1NTejo6CA8PBwqKirg8Xgd1hMaGgpbW1sEBQXB398fIpEIubm5SE1NxebNm5GdnY3w8HD4+vrCysoKfD4fp06dwnfffYfQ0FAAzVcD165di4ULF0IgEMDX1xdqamo4cOAAlixZgsjISAwfPlxpv3l5ea1qGTZsGBcKWlRXV2PlypXw8PCAnp4eysvLsWXLFpSUlMDLywtAc+h45513YGxsjKioKG6aY6D5Sld73N3dERAQgNjYWMhkMpSVlSEkJARjx45t81kST2+3cuVKDBo0CMOGDUNWVhbWr1+PTz75hGtTUVGB4uJilJaWKo1XV1eXqykuLg6WlpbQ1tZGRkYG5s2bh88//5z7ykBXxuXt7Y0VK1Zg1qxZCA0NxS+//IKNGzdiw4YN7dYPNF/dvXnzJve+sLAQ2dnZ0NTUVLq6SwghhPxeUIZqRhmKMlS7Xso8gK8Yms6YENKdXrfpjFu0TGcslUqZUChkMplMaTrjoKAgNnjwYNa3b1+mra3NfH19WXl5Obc+IiKC6erqMh6P1+F0xmPHjmVhYWHcdsbGxmzDhg2t6jl37hxzdnZmYrGYiUQiNmLECLZy5UrGGGP3799nc+fOZcOHD2disZhJJBJmbW3NoqKiWFNTk1I/SUlJbMKECUwkEnHTLSckJCi1aWtK5pbX7du3W9VWW1vLPvzwQ6avr8/4fD7T09NjHh4e7Ny5c1ybuLi4dvvsTExMDLOysmJCoZDp6ekxHx8f9uuvv3a4TWVlJZs3bx4bNGgQEwgEzNTUlH355ZdKUwq3V1N4eDjXJjQ0lA0cOJCpqakxc3NzFh0dzRQKxTOP6/Lly2z8+PGsb9++zMDAgH3zzTedjvvEiRNt9tvy8/S8XsZ0xn8UdDwIId2JMhRlKMpQf7wMxWPsJcwX/oqprKyEVCqFXC7nvl9KCCEvy5MnT1BYWAgTExMIBILeLueVUl1dDQMDA0RHR2PWrFk9vv+KigpMnDgR/fr1w+HDh6Gu/mp8XYC8mI5+ZykzKKPjQQjpTpShnh9lKNIbXkaGotn3CCGE9JqsrCwkJCSgoKAAly5d4qbWbbmdvadpamri+PHjmDhxIjIyMnqlBkIIIYSQzlCGIq8LeqYUIYSQXhUVFYW8vDzw+XyMHj0aaWlp3AMge4OWlhaWLVvWa/snhBBCCOkKylDkdUAnpQghhPSakSNH4uLFi71dBiGEEELIK4UyFHld0Nf3CCGEEEIIIYQQQkiPo5NShBBCCCGEEEIIIaTH0UkpQgghhBBCCCGEENLj6KQUIYQQQgghhBBCCOlxdFKKEEIIIYQQQgghhPQ4OilFCCGEEEIIIYQQQnocnZQihBBCCCGEEEIIIT2OTkoRQgjhzJw5EzweDzweD3w+H2ZmZoiIiEBjY+ML9Xvy5EnweDw8evTo5RTaBYWFhfD29oa+vj4EAgEMDQ3h6emJ69evK7VLSUmBo6MjJBIJ1NXV8dZbb2Hnzp1KbYqKisDj8ZCdnd3l/S9fvhxDhw6FSCRC//79MWnSJGRmZir1OWvWLJiYmEAoFGLw4MEIDw9HfX19p33Hx8fDxsYG6urq0NPTwyeffIIHDx50uM3jx48REhICY2NjCIVC2Nvb4/z580ptqqqqEBQUBENDQwiFQlhZWWHr1q1KbWbPno3BgwdDKBRCW1u7zWNaXFyM9957D+rq6tDR0cGiRYva/RlKT0+Hqqoq3nzzzU7HvW/fPri4uEBLS+uZPw9CCCGkO1GGogxFGer50EkpQgghSlxdXVFWVoYbN25gwYIFWL58OdatW9fbZXG6EjgaGhrg7OwMuVyOffv2IS8vD3v27IG1tbVSqNu0aRM8PT3h4OCAzMxM5OTkYPr06QgMDMTChQtfqM4hQ4Zg8+bNuHLlCs6cOYM33ngDLi4uuH//PgDg+vXrUCgU2LZtG65evYoNGzZg69atWLJkSYf9pqenY8aMGZg1axauXr2KvXv34ty5cwgICOhwO39/f6SmpuIf//gHrly5AhcXF0yaNAklJSVcm/nz5+PIkSP45z//iWvXriEkJARBQUFITk7m2owePRpxcXG4du0ajh49CsYYXFxc0NTUBABoamrCe++9h/r6epw9exa7du3Czp07sWzZslY1PXr0CDNmzMDEiRO7dEyrq6sxfvx4rFmzpkvtCSGEkJ5EGYoyFGWo58D+gORyOQPA5HJ5b5dCCHkN1dbWstzcXFZbW9vbpTwzPz8/5unpqbTM2dmZ2drasoqKCubr68s0NDSYUChkrq6uLD8/n2tXVFTE3n//faahocHU1dWZlZUVO3jwICssLGQAlF5+fn6MMcYqKyuZt7c3U1dXZ7q6umz9+vXM0dGRzZs3j+vX2NiYRUREMF9fXyaRSLht09LS2Pjx45lAIGCGhoYsODiYVVVVMcYYy8rKYgBYUVFRu2MtLi5mampqbP78+a3WxcTEMADs559/ZowxbgxZWVnPflD/q+Vvz/Hjx9tts3btWmZiYtJhP+vWrWOmpqat6jUwMGh3m5qaGtanTx+WkpKitHzUqFHsyy+/5N4PGzaMRUREdNjmty5fvswAsJs3bzLGGDt06BBTUVFhd+7c4drExsayfv36sbq6OqVtp02bxr766isWHh7ObGxs2t3Hb72Mz+NpHf3OUmZQRseDENKdKENRhmoLZajXO0PRnVKEENLNGGNQ1NT0yosx9sL1C4VC1NfXY+bMmbhw4QKSk5ORkZEBxhgmT56MhoYGAMCcOXNQV1eH06dP48qVK1izZg3EYjGMjIzwww8/AADy8vJQVlaGjRs3Ami+qpSeno7k5GSkpqYiLS0Nly5dalVDVFQUbGxskJWVhaVLl6KgoACurq6YMmUKcnJysGfPHpw5cwZBQUEAAG1tbaioqCAxMZG7+vRbiYmJaGhoaPNq3uzZsyEWi5GQkPDCxw9ovjK5fft2SKVS2NjYtNtOLpdDU1Ozw77s7Oxw+/ZtHDp0CIwx3L17F4mJiZg8eXK72zQ2NqKpqQkCgUBpuVAoxJkzZ7j39vb2SE5ORklJCRhjOHHiBPLz8+Hi4tJmv9XV1YiLi4OJiQmMjIwAABkZGbC2tsbAgQO5djKZDJWVlbh69Sq3LC4uDrdu3UJ4eHiH4yWEEPLH9irnKMpQL44y1OufoVR7uwBCCHndsdpa5I0a3Sv7trh0ETx19efaljGGH3/8EUePHoWbmxuSkpKQnp4Oe3t7AM3fyTcyMkJSUhK8vLxQXFyMKVOmwNraGgBgamrK9dUSEnR0dKChoQGg+fv5u3btwu7du7lbj+Pi4qCvr9+qlnfffRcLFizg3vv7+8PHxwchISEAAHNzc8TExMDR0RGxsbEwMDBATEwMvvjiC6xYsQJjxoyBk5MTfHx8uLry8/MhlUqhp6fXan98Ph+mpqbIz89/rmPXIiUlBdOnT0dNTQ309PSQmpqKAQMGtNn25s2b2LRpE6Kiojrs08HBAfHx8Zg2bRqePHmCxsZGuLu7Y8uWLe1uI5FIYGdnh6+//hqWlpYYOHAgEhISkJGRATMzM67dpk2b8Omnn8LQ0BCqqqpQUVHBt99+i7ffflupv7///e/44osvUF1dDQsLC6SmpoLP5wMA7ty5oxSmAHDv79y5AwC4ceMGwsLCkJaWBlVViiKEEELa9yrmKMpQlKEoQ3Ud3SlFCCFESUpKCsRiMQQCAdzc3DBt2jTMnDkTqqqqGDduHNdOS0sLFhYWuHbtGgBg7ty5iIyMhIODA8LDw5GTk9Phfm7duoWGhgaMHTuWWyaVSmFhYdGq7ZgxY5TeX758GTt37oRYLOZeMpkMCoUChYWFAJqvOt65cwfx8fGws7PD3r17MWzYMKSmpnb5WLSEhI7Ex8cr1ZGWlsatc3JyQnZ2Ns6ePQtXV1dMnToV9+7da9VHSUkJXF1d4eXlpfRcg6f7DQwMBADk5uZi3rx5WLZsGS5evIgjR46gqKiIW5+Wlqa0XXx8PADgH//4BxhjMDAwQN++fRETE4OPP/4YKir/iwKbNm3Czz//jOTkZFy8eBHR0dGYM2cOjh8/rlSvj48PsrKycOrUKQwZMgRTp07FkydPunRMm5qa4O3tjRUrVmDIkCHPfEwJIYSQ3yvKUP9DGYoyVFe9HqfWCCHkd4wnFMLi0sVe2/ezcnJyQmxsLPh8PvT19aGqqqr0kMb2+Pv7QyaT4eDBgzh27BhWr16N6OhoBAcHP0/pSkQikdL7qqoqzJ49G3Pnzm3VdtCgQdy/JRIJ3N3d4e7ujsjISMhkMkRGRsLZ2Rnm5uaQy+UoLS1tdWWxvr4eBQUFkMlkndbm4eGhFDQNDAyU6jYzM4OZmRlsbW1hbm6OHTt2YPHixVyb0tJSODk5wd7eHtu3b1fq++mZUfr16wcAWL16NRwcHLBo0SIAwIgRIyASiTBhwgRERkZizJgxStu1XGEbPHgwTp06herqalRWVkJPTw/Tpk3jrnrW1tZiyZIl2L9/P9577z2u7+zsbERFRWHSpElcn1KpFFKpFObm5rC1tUX//v2xf/9+fPzxx9DV1cW5c+eUxnH37l0AgK6uLh4/fowLFy4gKyuL+6qAQqEAYwyqqqo4duxYh8eUEELIH8urlKMoQ1GGogz17OikFCGEdDMej/fcX6HrDS0h4GmWlpZobGxEZmYmd+v5gwcPkJeXBysrK66dkZERAgMDERgYiMWLF+Pbb79FcHAwd7Xs6WcTmJqaQk1NDefPn+dCkFwuR35+fqtbnX9r1KhRyM3NbVVnR3g8HoYOHYqzZ88CAD766COEhoYiOjoa0dHRSm23bt2KmpoazJgxo9N+JRIJJBJJl2pQKBSoq6vj3peUlMDJyYmbjeXpK24A2hxfTU1Nq9u1+/TpA6D56wJCobDD4yISiSASifDw4UMcPXoUa9euBdA8205DQ0OrGvr06QOFQtFuf4wxMMa4cdnZ2WHlypW4d+8edHR0AACpqano168frKysoKamhitXrij18fe//x0//fQTEhMTYWJiApFI1OVjSggh5PX2KuUoylCUoX7bN2WoztFJKUIIIZ0yNzeHp6cnAgICsG3bNkgkEoSFhcHAwACenp4AgJCQELi5uWHIkCF4+PAhTpw4AUtLSwCAsbExeDweUlJSMHnyZAiFQkgkEvj5+WHRokXQ1NSEjo4OwsPDoaKiAh6P12E9oaGhsLW1RVBQEPz9/SESiZCbm4vU1FRs3rwZ2dnZCA8Ph6+vL6ysrMDn83Hq1Cl89913CA0NBdB8NXDt2rVYuHAhBAIBfH19oaamhgMHDmDJkiWIjIzE8OHDlfabl5fXqpZhw4ZBTU1NaVl1dTVWrlwJDw8P6Onpoby8HFu2bEFJSQm8vLwANIepd955B8bGxoiKiuKmOQaar4a1x93dHQEBAYiNjYVMJkNZWRlCQkIwduzYNp8l0aJl6mELCwvcvHkTixYtwtChQ/GXv/wFQPNVREdHRyxatAhCoRDGxsY4deoU/u///g/r168H0Px1gT179sDFxQXa2tr49ddf8c0330AoFHIPCXVxcYGVlRV8fX2xdu1a3LlzB1999RXmzJmDvn37AkCr46qjowOBQNBq+W9VVFSguLgYpaWlAP73eejq6nZ4zAghhJDeQhmqGWUoylDtetEpAF9FNJ0xIaQ7vW7TGbdomc5YKpUyoVDIZDKZ0nTGQUFBbPDgwaxv375MW1ub+fr6svLycm59REQE09XVZTwer8PpjMeOHcvCwsK47YyNjdmGDRta1XPu3Dnm7OzMxGIxE4lEbMSIEWzlypWMMcbu37/P5s6dy4YPH87EYjGTSCTM2tqaRUVFsaamJqV+kpKS2IQJE5hIJOKmW05ISFBq09aUzC2v27dvt6qttraWffjhh0xfX5/x+Xymp6fHPDw82Llz57g2cXFx7fbZmZiYGGZlZcWEQiHT09NjPj4+7Ndff+1wmz179jBTU1PG5/OZrq4umzNnDnv06JFSm7KyMjZz5kymr6/PBAIBs7CwYNHR0UyhUDDGGCspKWFubm5MR0eHqampMUNDQ+bt7c2uX7+u1E9RURFzc3NjQqGQDRgwgC1YsIA1NDS0W1tXpzNu75iFh4d3um1HXsZ0xn8UdDwIId2JMhRlKMpQf7wMxWPsJcwX/oqprKyEVCqFXC7nvl9KCCEvy5MnT1BYWAgTE5NW08eSjlVXV8PAwADR0dGYNWtWj++/oqICEydORL9+/XD48GGovyJfFyAvpqPfWcoMyuh4EEK6E2Wo50cZivSGl5GhaPY9QgghvSYrKwsJCQkoKCjApUuX4OPjAwDc7ew9TVNTE8ePH8fEiRORkZHRKzUQQgghhHSGMhR5XdAzpQghhPSqqKgo5OXlgc/nY/To0UhLS8OAAQN6rR4tLS0sW7as1/ZPCCGEENIVlKHI64BOShFCCOk1I0eOxMWLvTPNMyGEEELIq4oyFHld0Nf3CCGEEEIIIYQQQkiPo5NShBBCCCGEEEIIIaTH0UkpQgghhBBCCCGEENLj6KQUIYQQQgghhBBCCOlxdFKKEEIIIYQQQgghhPQ4OilFCCGEEEIIIYQQQnocnZQihBBCCCGEEEIIIT2OTkoRQgjhzJw5EzweDzweD3w+H2ZmZoiIiEBjY+ML9Xvy5EnweDw8evTo5RTaBYWFhfD29oa+vj4EAgEMDQ3h6emJ69evK7VLSUmBo6MjJBIJ1NXV8dZbb2Hnzp1KbYqKisDj8ZCdnd3l/S9fvhxDhw6FSCRC//79MWnSJGRmZir1OWvWLJiYmEAoFGLw4MEIDw9HfX19p33Hx8fDxsYG6urq0NPTwyeffIIHDx50uM3p06fh7u4OfX198Hg8JCUltWqzb98+uLi4QEtLq9PxMsbg5ubWbl87d+7EiBEjIBAIoKOjgzlz5iitP3r0KGxtbSGRSKCtrY0pU6agqKioR8ZJCCGEvGyUoShDUYZ6PnRSihBCiBJXV1eUlZXhxo0bWLBgAZYvX45169b1dlmcrgSOhoYGODs7Qy6XY9++fcjLy8OePXtgbW2tFOo2bdoET09PODg4IDMzEzk5OZg+fToCAwOxcOHCF6pzyJAh2Lx5M65cuYIzZ87gjTfegIuLC+7fvw8AuH79OhQKBbZt24arV69iw4YN2Lp1K5YsWdJhv+np6ZgxYwZmzZqFq1evYu/evTh37hwCAgI63K66uho2NjbYsmVLh23Gjx+PNWvWdDq+v/3tb+DxeG2uW79+Pb788kuEhYXh6tWrOH78OGQyGbe+sLAQnp6eePfdd5GdnY2jR4+ivLwcf/rTn3pknIQQQkh3oAxFGYoy1HNgf0ByuZwBYHK5vLdLIYS8hmpra1lubi6rra3t7VKemZ+fH/P09FRa5uzszGxtbVlFRQXz9fVlGhoaTCgUMldXV5afn8+1KyoqYu+//z7T0NBg6urqzMrKih08eJAVFhYyAEovPz8/xhhjlZWVzNvbm6mrqzNdXV22fv165ujoyObNm8f1a2xszCIiIpivry+TSCTctmlpaWz8+PFMIBAwQ0NDFhwczKqqqhhjjGVlZTEArKioqN2xFhcXMzU1NTZ//vxW62JiYhgA9vPPPzPGGDeGrKysZz+o/9Xyt+f48ePttlm7di0zMTHpsJ9169YxU1PTVvUaGBh0uRYAbP/+/e2u72y8WVlZzMDAgJWVlbXqq6KiggmFwg7HuXfvXqaqqsqampq4ZcnJyYzH47H6+nrGWM+Ms0VHv7OUGZTR8SCEdCfKUJSh2kIZ6n9exwxFd0oRQkg3Y4yhoa6pV17Nf1NejFAoRH19PWbOnIkLFy4gOTkZGRkZYIxh8uTJaGhoAADMmTMHdXV1OH36NK5cuYI1a9ZALBbDyMgIP/zwAwAgLy8PZWVl2LhxIwBg/vz5SE9PR3JyMlJTU5GWloZLly61qiEqKgo2NjbIysrC0qVLUVBQAFdXV0yZMgU5OTnYs2cPzpw5g6CgIACAtrY2VFRUkJiYiKampjbHlZiYiIaGhjav5s2ePRtisRgJCQkvfPyA5iuT27dvh1QqhY2NTbvt5HI5NDU1O+zLzs4Ot2/fxqFDh8AYw927d5GYmIjJkye/lFo7U1NTA29vb2zZsgW6urqt1qempkKhUKCkpASWlpYwNDTE1KlTcfv2ba7N6NGjoaKigri4ODQ1NUEul+Mf//gHJk2aBDU1td/FOAkhhPw+vMo5ijLUi6MM9fpnKNXeLoAQQl53jfUKbJ93qlf2/elGR6j17fNc2zLG8OOPP+Lo0aNwc3NDUlIS0tPTYW9vD6D5u+pGRkZISkqCl5cXiouLMWXKFFhbWwMATE1Nub5aQoKOjg40NDQAAI8fP8auXbuwe/duTJw4EQAQFxcHfX39VrW8++67WLBgAffe398fPj4+CAkJAQCYm5sjJiYGjo6OiI2NhYGBAWJiYvDFF19gxYoVGDNmDJycnODj48PVlZ+fD6lUCj09vVb74/P5MDU1RX5+/nMduxYpKSmYPn06ampqoKenh9TUVAwYMKDNtjdv3sSmTZsQFRXVYZ8ODg6Ij4/HtGnT8OTJEzQ2NsLd3b3HbrX+/PPPYW9vD09PzzbX37p1CwqFAqtWrcLGjRshlUrx1VdfwdnZGTk5OeDz+TAxMcGxY8cwdepUzJ49G01NTbCzs8OhQ4d+N+MkhBDy+/Aq5ijKUJSh2kIZqm10pxQhhBAlKSkpEIvFEAgEcHNzw7Rp0zBz5kyoqqpi3LhxXDstLS1YWFjg2rVrAIC5c+ciMjISDg4OCA8PR05OTof7uXXrFhoaGjB27FhumVQqhYWFRau2Y8aMUXp/+fJl7Ny5E2KxmHvJZDIoFAoUFhYCaL7qeOfOHcTHx8POzg579+7FsGHDkJqa2uVjwefzO20THx+vVEdaWhq3zsnJCdnZ2Th79ixcXV0xdepU3Lt3r1UfJSUlcHV1hZeXl9L3/Z/uNzAwEACQm5uLefPmYdmyZbh48SKOHDmCoqIibn1aWprSdvHx8V0eb2eSk5Px008/4W9/+1u7bRQKBRoaGhATEwOZTAZbW1skJCTgxo0bOHHiBADgzp07CAgIgJ+fH86fP49Tp06Bz+fjo48+4q5K9+Y4CSGEkOdBGep/KEMpowzVPrpTihBCupkqXwWfbnTstX0/KycnJ8TGxoLP50NfXx+qqqpITk7udDt/f3/IZDIcPHgQx44dw+rVqxEdHY3g4ODnKV2JSCRSel9VVYXZs2dj7ty5rdoOGjSI+7dEIoG7uzvc3d0RGRkJmUyGyMhIODs7w9zcHHK5HKWlpa2uLNbX16OgoEDpwZLt8fDwUAqaBgYGSnWbmZnBzMwMtra2MDc3x44dO7B48WKuTWlpKZycnGBvb4/t27cr9f30zC39+vUDAKxevRoODg5YtGgRAGDEiBEQiUSYMGECIiMjMWbMGKXtBg4c2OkYuuqnn35CQUEBd6W2xZQpUzBhwgScPHmSu2pqZWXFrdfW1saAAQNQXFwMANiyZQukUinWrl3LtfnnP/8JIyMjZGZmwtbWtlfHSQgh5PfjVcpRlKEoQ7WHMlT76KQUIYR0Mx6P99xfoesNLSHgaZaWlmhsbERmZiZ36/mDBw+Ql5en9IfTyMgIgYGBCAwMxOLFi/Htt98iODiYu1r29LMJTE1NoaamhvPnz3MhSC6XIz8/H2+//XaHNY4aNQq5ubmt6uwIj8fD0KFDcfbsWQDARx99hNDQUERHRyM6Olqp7datW1FTU4MZM2Z02q9EIoFEIulSDQqFAnV1ddz7kpISODk5YfTo0YiLi4OKinL4bWt8NTU1UFVV/vPdp0/zzxdjDEKh8JmOy7MICwuDv7+/0jJra2ts2LAB7u7uAJpvGQean31haGgIAKioqEB5eTmMjY25Mfx2rC1jUCgUXJveGichhJDfj1cpR1GGogzVHspQ7aOTUoQQQjplbm4OT09PBAQEYNu2bZBIJAgLC4OBgQH3vfiQkBC4ublhyJAhePjwIU6cOAFLS0sAgLGxMXg8HlJSUjB58mQIhUJIJBL4+flh0aJF0NTUhI6ODsLDw6GiotLuNLktQkNDYWtri6CgIPj7+0MkEiE3NxepqanYvHkzsrOzER4eDl9fX1hZWYHP5+PUqVP47rvvEBoaCqD5auDatWuxcOFCCAQC+Pr6Qk1NDQcOHMCSJUsQGRmJ4cOHK+03Ly+vVS3Dhg3jHizZorq6GitXroSHhwf09PRQXl6OLVu2oKSkBF5eXgCaw9Q777wDY2NjREVFcdMcA2jz4Zct3N3dERAQgNjYWMhkMpSVlSEkJARjx45t81kSLaqqqnDz5k3ufWFhIbKzs6GpqckF2oqKChQXF6O0tFRpvLq6ukqv3xo0aBBMTEwANE/j7OnpiXnz5mH79v/f3p2HV1nd+wL/JUBCGJKIDAEECmpVFIdiQbTWY0FBvQ4t7VHLdahUaw84VGsV20rroxevQ721tWrvo2gfx6un0h5rPRdnWlNUCrWiUKVYHBhUSuIEBLLuH172cUuYlKyQ8Pk8z27J+6733b+1V5L987t39vvLqKysjEmTJsXuu+8ehx56aEREHHXUUXHttdfGpZdeGieeeGK88847cfHFF8eAAQNiv/32a/Z5AkAueqgP6aH0UBu0eRcEbFtczhhoTm3tcsbrrLuccVVVVaqoqEijR48uupzxxIkT084775zKy8tTjx490kknnZTeeuutwv5LL7001dTUpJKSko1eznjYsGHpoosuKhw3YMCAdO21165Xz9NPP50OO+yw1KVLl9S5c+e09957p8svvzyllNKbb76Zzj777LTXXnulLl26pK5du6YhQ4akq6++uugSuimlNG3atHTwwQenzp07Fy63fNdddxWNaeqSzOtur7766nq1ffDBB+nLX/5y6tOnTyorK0u9e/dOxxxzTHr66acLY6ZOnbrBc27KddddlwYPHpwqKipS796907hx49Jrr7220WMee+yxJu9r3VpsrKbJkydv8LzRxCWD6+rq0mmnnZaqq6tTt27d0pe//OW0aNGiojF33XVX2m+//VLnzp1Tjx490jHHHJNefPHFLPP8uK1xOePthccDaE56KD2UHmr766FKUtoK1wtvZerr66Oqqirq6uoKf18KsLWsXLkyFi5cGAMHDoyOHTu2dDmtynvvvRd9+/aNa665JsaPH5/9/pcvXx4jR46MysrK+P3vfx+dOnXKXgP5bexnVs9QzOMBNCc91Cenh6IlbI0eytX3AGgxs2fPjrvuuisWLFgQf/7zn2PcuHERERu8VG5z69atWzz88MMxcuTIqK2tbZEaAAA2RQ9FW+EzpQBoUVdffXXMnz8/ysrKYujQoTFjxozo3r17i9Wz4447xiWXXNJi9w8AsDn0ULQFQikAWsx+++0Xs2bNaukyAABaFT0UbYU/3wMAAAAgO6EUAAAAANkJpQAAAADITigFAAAAQHZCKQAAAACyE0oBAAAAkJ1QCgAAAIDshFIAFJx66qlRUlISJSUlUVZWFrvssktceumlsWbNmk913scffzxKSkpixYoVW6fQzbBw4cL4+te/Hn369ImOHTvGTjvtFMcee2zMmzevaNwDDzwQhxxySHTt2jU6deoUn//85+PWW28tGvPKK69ESUlJzJkzZ7Pv/0c/+lHsvvvu0blz59hhhx1i1KhRMXPmzKJzjh8/PgYOHBgVFRWx8847x+TJk2P16tWbPPcdd9wR++yzT3Tq1Cl69+4dp512Wrz99tsbPebJJ5+Mo48+Ovr06RMlJSUxbdq0La45IuLyyy+PAw88MDp16hTV1dVN3teiRYviqKOOik6dOkXPnj3jggsuKPoe+uj32Udve+65Z2HMlClT4vOf/3x07do1evbsGccdd1zMnz9/k4/N5tQHAFubHkoPpYf6ZIRSABQZM2ZMLF68OF566aU4//zz40c/+lFcddVVLV1WweY0HA0NDXHYYYdFXV1d/PrXv4758+fHPffcE0OGDClq6n72s5/FscceGwcddFDMnDkznnvuuTjhhBPizDPPjO9+97ufqs7Pfvaz8fOf/zz++te/xh/+8If4zGc+E4cffni8+eabERExb968aGxsjJtuuinmzp0b1157bdx4441x8cUXb/S8f/zjH+Pkk0+O8ePHx9y5c+Pee++Np59+Ok4//fSNHvfee+/FPvvsE9dff/0nrjniw8f/a1/7Wnz7299u8hxr166No446KlavXh1PPfVU3HbbbXHrrbfGJZdcUhjz05/+NBYvXly4vfrqq9GtW7f42te+VhjzxBNPxIQJE+JPf/pTTJ8+PRoaGuLwww+P9957b6Pz3FR9ANBc9FB6KD3UJ5C2Q3V1dSkiUl1dXUuXArRBH3zwQXrhhRfSBx980NKlbLFTTjklHXvssUXbDjvssHTAAQek5cuXp5NOOilVV1enioqKNGbMmPS3v/2tMO6VV15J/+2//bdUXV2dOnXqlAYPHpx+97vfpYULF6aIKLqdcsopKaWU6uvr09e//vXUqVOnVFNTk37yk5+kQw45JJ1zzjmF8w4YMCBdeuml6aSTTkpdu3YtHDtjxoz0hS98IXXs2DHttNNO6ayzzkrvvvtuSiml2bNnp4hIr7zyygbnumjRotShQ4d03nnnrbfvuuuuSxGR/vSnP6WUUmEOs2fP3vIH9f9b99zz8MMPb3DMlVdemQYOHLjR81x11VVp0KBB69Xbt2/fza4lItL999+/yXEbq3nq1Kmpqqpqve0PPvhgKi0tTUuWLClsu+GGG1JlZWVatWpVk/dz//33p5KSko2u17Jly1JEpCeeeGKTdW+svqZs7GdWz1DM4wE0Jz2UHqopeqi23UN5pxRAM0spRcPKlS1ySyl96vorKipi9erVceqpp8azzz4bv/3tb6O2tjZSSnHkkUdGQ0NDRERMmDAhVq1aFU8++WT89a9/jf/5P/9ndOnSJfr16xf//u//HhER8+fPj8WLF8dPf/rTiIg477zz4o9//GP89re/jenTp8eMGTPiz3/+83o1XH311bHPPvvE7Nmz44c//GEsWLAgxowZE2PHjo3nnnsu7rnnnvjDH/4QEydOjIiIHj16RGlpadx3332xdu3aJud13333RUNDQ5Ov5n3rW9+KLl26xF133fWpH7+ID195+uUvfxlVVVWxzz77bHBcXV1ddOvWbaPnGjFiRLz66qvx4IMPRkopli5dGvfdd18ceeSRW6XWLa3542pra2PIkCHRq1evwrbRo0dHfX19zJ07t8ljbr755hg1alQMGDBgg+etq6uLiNjk4wNA29Ka+yg91Kenh2r7PVT7li4AoK1bs2pVXHfKV1vkvs++7b7o0LHjJzo2pRSPPPJI/Od//mccccQRMW3atPjjH/8YBx54YER8+Df5/fr1i2nTpsXXvva1WLRoUYwdOzaGDBkSERGDBg0qnGvdk2DPnj0Lf6P+zjvvxG233RZ33nlnjBw5MiIipk6dGn369Fmvli996Utx/vnnF77+5je/GePGjYtzzz03IiJ23XXXuO666+KQQw6JG264Ifr27RvXXXddfO9734sf//jHsf/++8ehhx4a48aNK9T1t7/9LaqqqqJ3797r3V9ZWVkMGjQo/va3v32ix26dBx54IE444YR4//33o3fv3jF9+vTo3r17k2Nffvnl+NnPfhZXX331Rs950EEHxR133BHHH398rFy5MtasWRNHH330Rt9S3lw1N2XJkiVFzVREFL5esmTJeuPfeOON+P3vfx933nnnBs/Z2NgY5557bhx00EGx1157bXYtALR+rbGP0kPpofRQm887pQAo8sADD0SXLl2iY8eOccQRR8Txxx8fp556arRv3z6GDx9eGLfjjjvGbrvtFi+++GJERJx99tlx2WWXxUEHHRSTJ0+O5557bqP38/e//z0aGhpi2LBhhW1VVVWx2267rTd2//33L/r6L3/5S9x6663RpUuXwm306NHR2NgYCxcujIgPX3VcsmRJ3HHHHTFixIi49957Y88994zp06dv9mNRVla2yTF33HFHUR0zZswo7Dv00ENjzpw58dRTT8WYMWPiX//1X2PZsmXrneP111+PMWPGxNe+9rWizzX46HnPPPPMiIh44YUX4pxzzolLLrkkZs2aFQ899FC88sorhf0zZswoOu6OO+7Y7PluSc1by2233RbV1dVx3HHHbXDMhAkT4vnnn4+77767sO3MM88smicAtDQ91H/RQ+mhNpd3SgE0s/bl5XH2bfe12H1vqUMPPTRuuOGGKCsriz59+kT79u3jt7/97SaP++Y3vxmjR4+O3/3ud/F//+//jSlTpsQ111wTZ5111icpvUjnzp2Lvn733XfjW9/6Vpx99tnrje3fv3/h3127do2jjz46jj766Ljsssti9OjRcdlll8Vhhx0Wu+66a9TV1cUbb7yx3iuLq1evjgULFsTo0aM3WdsxxxxT1Gj27du3qO5ddtkldtlllzjggANi1113jZtvvjkmTZpUGPPGG2/EoYceGgceeGD88pe/LDr3R69UU1lZGREfXlHloIMOigsuuCAiIvbee+/o3LlzHHzwwXHZZZfF/vvvX3Tcx19x25TNqXljampq4umnny7atnTp0sK+j0opxS233BInnXTSBpvXiRMnxgMPPBBPPvlk7LTTToXtl1566af+IFUAtn2tqY/SQ+mh9FBbTigF0MxKSko+8Z/QtYR1T6gftccee8SaNWti5syZhbeev/322zF//vwYPHhwYVy/fv3izDPPjDPPPDMmTZoU//t//+8466yzCk+WH/1sgkGDBkWHDh3imWeeKTRBdXV18be//S2++MUvbrTGz33uc/HCCy+sV+fGlJSUxO677x5PPfVURER89atfjQsvvDCuueaauOaaa4rG3njjjfH+++/HySefvMnzdu3aNbp27bpZNTQ2NsaqVasKX7/++utx6KGHxtChQ2Pq1KlRWlr8Buam5vf+++9H+/bFT9/t2rWLiA8blIqKii16XLa05k0ZMWJEXH755bFs2bLo2bNnRERMnz49Kisri75XIj68OszLL78c48ePX+88KaU466yz4v7774/HH388Bg4cWLS/Z8+ehfMD0Ha1pj5KD6WH2ljNm7K99lBCKQA2adddd41jjz02Tj/99Ljpppuia9eucdFFF0Xfvn3j2GOPjYiIc889N4444oj47Gc/G//85z/jscceiz322CMiIgYMGBAlJSXxwAMPxJFHHhkVFRXRtWvXOOWUU+KCCy6Ibt26Rc+ePWPy5MlRWloaJSUlG63nwgsvjAMOOCAmTpwY3/zmN6Nz587xwgsvxPTp0+PnP/95zJkzJyZPnhwnnXRSDB48OMrKyuKJJ56IW265JS688MKI+PDVwCuvvDK++93vRseOHeOkk06KDh06xG9+85u4+OKL47LLLlvvb+/nz5+/Xi177rlndOjQoWjbe++9F5dffnkcc8wx0bt373jrrbfi+uuvj9dff71wyd7XX389/uVf/iUGDBgQV199ddElgz/+athHHX300XH66afHDTfcEKNHj47FixfHueeeG8OGDWvysyTWeffdd+Pll18ufL1w4cKYM2dOdOvWLfr3779ZNUdELFq0KJYvXx6LFi2KtWvXFl5R3GWXXaJLly5x+OGHx+DBg+Okk06KK6+8MpYsWRI/+MEPYsKECVH+sVecb7755hg+fHiTn3EwYcKEuPPOO+M3v/lNdO3atfBZClVVVVFRUbHBeW6qPgDISQ/1IT2UHmqDNus6f22MyxkDzamtXc54nXWXM66qqkoVFRVp9OjRRZcznjhxYtp5551TeXl56tGjRzrppJPSW2+9Vdh/6aWXppqamlRSUrLRyxkPGzYsXXTRRYXjBgwYkK699tr16nn66afTYYcdlrp06ZI6d+6c9t5773T55ZenlFJ6880309lnn5322muv1KVLl9S1a9c0ZMiQdPXVV6e1a9cWnWfatGnp4IMPTp07dy5cbvmuu+4qGtPUJZnX3V599dX1avvggw/Sl7/85dSnT59UVlaWevfunY455pj09NNPF8ZMnTp1g+fclOuuuy4NHjw4VVRUpN69e6dx48al1157baPHPPbYY03e17q12JyaU/rwe6Sp8zz22GOFMa+88ko64ogjUkVFRerevXs6//zzU0NDQ9F5VqxYkSoqKtIvf/nLJuvd0GMzderUjc5zc+r7uK1xOePthccDaE56KD2UHmr766FK/n/R25X6+vqoqqqKurq6wt+XAmwtK1eujIULF8bAgQOjYyt5u/m24r333ou+ffvGNddc0+TbkZvb8uXLY+TIkVFZWRm///3vo1OnTtlrIL+N/czqGYp5PIDmpIf65PRQtISt0UO5+h4ALWb27Nlx1113xYIFC+LPf/5zjBs3LiKi8Hb23Lp16xYPP/xwjBw5Mmpra1ukBgCATdFD0Vb4TCkAWtTVV18d8+fPj7Kyshg6dGjMmDEjunfv3mL17LjjjnHJJZe02P0DAGwOPRRtgVAKgBaz3377xaxZs1q6DACAVkUPRVvhz/cAAAAAyE4oBQAAAEB2QimAZtLY2NjSJQCbwc8qwLbF72VoHbbGz6rPlALYysrKyqK0tDTeeOON6NGjR5SVlUVJSUlLlwV8TEopVq9eHW+++WaUlpZGWVlZS5cEsF3TQ0HrsDV7KKEUwFZWWloaAwcOjMWLF8cbb7zR0uUAm9CpU6fo379/lJZ6AzlAS9JDQeuyNXoooRRAMygrK4v+/fvHmjVrYu3atS1dDrAB7dq1i/bt23slHmAboYeC1mFr9VBCKYBmUlJSEh06dIgOHTq0dCkAAK2GHgq2H96nDgAAAEB2QikAAAAAshNKAQAAAJCdUAoAAACA7IRSAAAAAGQnlAIAAAAgO6EUAAAAANkJpQAAAADITigFAAAAQHZCKQAAAACyE0oBAAAAkJ1QCgAAAIDshFIAAAAAZCeUAgAAACA7oRQAAAAA2QmlAAAAAMhOKAUAAABAdkIpAAAAALITSgEAAACQnVAKAAAAgOyEUgAAAABkJ5QCAAAAIDuhFAAAAADZCaUAAAAAyK7ZQ6nrr78+PvOZz0THjh1j+PDh8fTTT290/L333hu77757dOzYMYYMGRIPPvhg0f6UUlxyySXRu3fvqKioiFGjRsVLL73UnFMAAGgR+igAoC1r1lDqnnvuifPOOy8mT54cf/7zn2OfffaJ0aNHx7Jly5oc/9RTT8WJJ54Y48ePj9mzZ8dxxx0Xxx13XDz//POFMVdeeWVcd911ceONN8bMmTOjc+fOMXr06Fi5cmVzTgUAICt9FADQ1pWklFJznXz48OHx+c9/Pn7+859HRERjY2P069cvzjrrrLjooovWG3/88cfHe++9Fw888EBh2wEHHBD77rtv3HjjjZFSij59+sT5558f3/3udyMioq6uLnr16hW33nprnHDCCZtVV319fVRVVUVdXV1UVlZuhZkCAG1RS/YM22IfpYcCADbH5vYM7ZurgNWrV8esWbNi0qRJhW2lpaUxatSoqK2tbfKY2traOO+884q2jR49OqZNmxYREQsXLowlS5bEqFGjCvurqqpi+PDhUVtbu8FmatWqVbFq1arC1/X19Z90Wpv00+/+W6TX3mm28wO0hDXtI1LJf31dEiXRrqR4THmPA6PrQb+P0vL38xZHNj27lkd1p7KWLmM9ZWU9Yp+9b2rpMraqbaWPytlDRUT89IRTI8XaZr0PgJzWtoto/NjfJ7UvKW6i2nfdJbrs+2aU9ZmXsTJy6lTWLnbaoVNLl9GkwXtcHZ07D2qx+2+2UOqtt96KtWvXRq9evYq29+rVK+bNa/qHbcmSJU2OX7JkSWH/um0bGtOUKVOmxI9//OMtnsMn0bi6IRrTP7PcF0AuJQ0RH8ugovFjX6+t7xY9yl6PDhV+B7ZZayKaOZP4RDqW92npEra6baWPytlDRUSsjfcipQ+y3R9As1uz/mfmfLyHaizpEF0bP4gdKv6eqypawLbYQ0VENDa27PNus4VS25JJkyYVvXJYX18f/fr1a5b76r/vPrFoplf4gA+lSFFSWhrrRzoRESVR2q5ds95/+3YRJU3ddRNKI6K8pLhNaixtF2s7VMTKHTpHY4f/qrW8tCyqOnQtGlvRszTa9bp4O3lm2T71qa6IHl3LW7qM9ZSWbns1tRU5e6iIiJIdKqOkseumBwLbh9LC/6ynpF37JrurrXbXpRHttuATmMtLGterdE1Z51jduTwaunQs2t6zfMeirztUVkfn/ntEVB75CatlW9e5vH3s0rNLS5fRpIqK/i16/832nw7du3ePdu3axdKlS4u2L126NGpqapo8pqamZqPj1/3/0qVLo3fv3kVj9t133w3WUl5eHuXleRrWsadNjDgty10BAG3UttJH5eyhIiK+c8PN2e4LAGh5zXb1vbKyshg6dGg88sgjhW2NjY3xyCOPxIgRI5o8ZsSIEUXjIyKmT59eGD9w4MCoqakpGlNfXx8zZ87c4DkBAFobfRQAsD1o1j+yOO+88+KUU06J/fffP4YNGxb/63/9r3jvvffiG9/4RkREnHzyydG3b9+YMmVKREScc845ccghh8Q111wTRx11VNx9993x7LPPxi9/+cuIiCgpKYlzzz03Lrvssth1111j4MCB8cMf/jD69OkTxx13XHNOBQAgK30UANDWNWsodfzxx8ebb74Zl1xySSxZsiT23XffeOihhwofsLlo0aIoLf2vN2sdeOCBceedd8YPfvCDuPjii2PXXXeNadOmxV577VUY873vfS/ee++9OOOMM2LFihXxhS98IR566KHo2LHjevcPANBa6aMAgLauJKWUWrqI3Orr66Oqqirq6uqisrKypcsBALZReoZiHg8AYHNsbs/QbJ8pBQAAAAAbIpQCAAAAIDuhFAAAAADZCaUAAAAAyE4oBQAAAEB2QikAAAAAshNKAQAAAJCdUAoAAACA7IRSAAAAAGQnlAIAAAAgO6EUAAAAANkJpQAAAADITigFAAAAQHZCKQAAAACyE0oBAAAAkJ1QCgAAAIDshFIAAAAAZCeUAgAAACA7oRQAAAAA2QmlAAAAAMhOKAUAAABAdkIpAAAAALITSgEAAACQnVAKAAAAgOyEUgAAAABkJ5QCAAAAIDuhFAAAAADZCaUAAAAAyE4oBQAAAEB2QikAAAAAshNKAQAAAJCdUAoAAACA7IRSAAAAAGQnlAIAAAAgO6EUAAAAANkJpQAAAADITigFAAAAQHZCKQAAAACyE0oBAAAAkJ1QCgAAAIDshFIAAAAAZCeUAgAAACA7oRQAAAAA2QmlAAAAAMhOKAUAAABAdkIpAAAAALITSgEAAACQnVAKAAAAgOyEUgAAAABkJ5QCAAAAIDuhFAAAAADZCaUAAAAAyE4oBQAAAEB2QikAAAAAshNKAQAAAJCdUAoAAACA7IRSAAAAAGQnlAIAAAAgO6EUAAAAANkJpQAAAADITigFAAAAQHZCKQAAAACyE0oBAAAAkJ1QCgAAAIDshFIAAAAAZCeUAgAAACA7oRQAAAAA2QmlAAAAAMhOKAUAAABAdkIpAAAAALITSgEAAACQnVAKAAAAgOyEUgAAAABkJ5QCAAAAIDuhFAAAAADZCaUAAAAAyE4oBQAAAEB2QikAAAAAshNKAQAAAJCdUAoAAACA7IRSAAAAAGQnlAIAAAAgO6EUAAAAANkJpQAAAADITigFAAAAQHZCKQAAAACyE0oBAAAAkJ1QCgAAAIDshFIAAAAAZCeUAgAAACA7oRQAAAAA2QmlAAAAAMhOKAUAAABAdkIpAAAAALITSgEAAACQnVAKAAAAgOyEUgAAAABkJ5QCAAAAIDuhFAAAAADZCaUAAAAAyE4oBQAAAEB2QikAAAAAshNKAQAAAJCdUAoAAACA7IRSAAAAAGQnlAIAAAAgO6EUAAAAANkJpQAAAADITigFAAAAQHZCKQAAAACyE0oBAAAAkJ1QCgAAAIDshFIAAAAAZCeUAgAAACA7oRQAAAAA2QmlAAAAAMhOKAUAAABAdkIpAAAAALITSgEAAACQnVAKAAAAgOyEUgAAAABkJ5QCAAAAIDuhFAAAAADZCaUAAAAAyE4oBQAAAEB2QikAAAAAsmu2UGr58uUxbty4qKysjOrq6hg/fny8++67Gz1m5cqVMWHChNhxxx2jS5cuMXbs2Fi6dGlh/1/+8pc48cQTo1+/flFRURF77LFH/PSnP22uKQAAtAh9FACwPWi2UGrcuHExd+7cmD59ejzwwAPx5JNPxhlnnLHRY77zne/Ef/zHf8S9994bTzzxRLzxxhvxla98pbB/1qxZ0bNnz7j99ttj7ty58f3vfz8mTZoUP//5z5trGgAA2emjAIDtQUlKKW3tk7744osxePDgeOaZZ2L//fePiIiHHnoojjzyyHjttdeiT58+6x1TV1cXPXr0iDvvvDO++tWvRkTEvHnzYo899oja2to44IADmryvCRMmxIsvvhiPPvroZtdXX18fVVVVUVdXF5WVlZ9ghgDA9qAleoZtuY/SQwEAm2Nze4ZmeadUbW1tVFdXFxqpiIhRo0ZFaWlpzJw5s8ljZs2aFQ0NDTFq1KjCtt133z369+8ftbW1G7yvurq66Nat20brWbVqVdTX1xfdAAC2RdtSH6WHAgCaU7OEUkuWLImePXsWbWvfvn1069YtlixZssFjysrKorq6umh7r169NnjMU089Fffcc88m384+ZcqUqKqqKtz69eu3+ZMBAMhoW+qj9FAAQHPaolDqoosuipKSko3e5s2b11y1Fnn++efj2GOPjcmTJ8fhhx++0bGTJk2Kurq6wu3VV1/NUiMAwDqtsY/SQwEAzan9lgw+//zz49RTT93omEGDBkVNTU0sW7asaPuaNWti+fLlUVNT0+RxNTU1sXr16lixYkXRq3xLly5d75gXXnghRo4cGWeccUb84Ac/2GTd5eXlUV5evslxAADNpTX2UXooAKA5bVEo1aNHj+jRo8cmx40YMSJWrFgRs2bNiqFDh0ZExKOPPhqNjY0xfPjwJo8ZOnRodOjQIR555JEYO3ZsRETMnz8/Fi1aFCNGjCiMmzt3bnzpS1+KU045JS6//PItKR8AoMXoowAAijXL1fciIo444ohYunRp3HjjjdHQ0BDf+MY3Yv/9948777wzIiJef/31GDlyZPzqV7+KYcOGRUTEt7/97XjwwQfj1ltvjcrKyjjrrLMi4sPPPIj48K3mX/rSl2L06NFx1VVXFe6rXbt2m9XkrePKMQDA5mipnmFb7aP0UADA5tjcnmGL3im1Je64446YOHFijBw5MkpLS2Ps2LFx3XXXFfY3NDTE/Pnz4/333y9su/baawtjV61aFaNHj45f/OIXhf333XdfvPnmm3H77bfH7bffXtg+YMCAeOWVV5prKgAAWemjAIDtQbO9U2pb5lU+AGBz6BmKeTwAgM2xuT3DFl19DwAAAAC2BqEUAAAAANkJpQAAAADITigFAAAAQHZCKQAAAACyE0oBAAAAkJ1QCgAAAIDshFIAAAAAZCeUAgAAACA7oRQAAAAA2QmlAAAAAMhOKAUAAABAdkIpAAAAALITSgEAAACQnVAKAAAAgOyEUgAAAABkJ5QCAAAAIDuhFAAAAADZCaUAAAAAyE4oBQAAAEB2QikAAAAAshNKAQAAAJCdUAoAAACA7IRSAAAAAGQnlAIAAAAgO6EUAAAAANkJpQAAAADITigFAAAAQHZCKQAAAACyE0oBAAAAkJ1QCgAAAIDshFIAAAAAZCeUAgAAACA7oRQAAAAA2QmlAAAAAMhOKAUAAABAdkIpAAAAALITSgEAAACQnVAKAAAAgOyEUgAAAABkJ5QCAAAAIDuhFAAAAADZCaUAAAAAyE4oBQAAAEB2QikAAAAAshNKAQAAAJCdUAoAAACA7IRSAAAAAGQnlAIAAAAgO6EUAAAAANkJpQAAAADITigFAAAAQHZCKQAAAACyE0oBAAAAkJ1QCgAAAIDshFIAAAAAZCeUAgAAACA7oRQAAAAA2QmlAAAAAMhOKAUAAABAdkIpAAAAALITSgEAAACQnVAKAAAAgOyEUgAAAABkJ5QCAAAAIDuhFAAAAADZCaUAAAAAyE4oBQAAAEB2QikAAAAAshNKAQAAAJCdUAoAAACA7IRSAAAAAGQnlAIAAAAgO6EUAAAAANkJpQAAAADITigFAAAAQHZCKQAAAACyE0oBAAAAkJ1QCgAAAIDshFIAAAAAZCeUAgAAACA7oRQAAAAA2QmlAAAAAMhOKAUAAABAdkIpAAAAALITSgEAAACQnVAKAAAAgOyEUgAAAABkJ5QCAAAAIDuhFAAAAADZCaUAAAAAyE4oBQAAAEB2QikAAAAAshNKAQAAAJCdUAoAAACA7IRSAAAAAGQnlAIAAAAgO6EUAAAAANkJpQAAAADITigFAAAAQHZCKQAAAACyE0oBAAAAkJ1QCgAAAIDshFIAAAAAZCeUAgAAACA7oRQAAAAA2QmlAAAAAMhOKAUAAABAdkIpAAAAALITSgEAAACQnVAKAAAAgOyEUgAAAABkJ5QCAAAAIDuhFAAAAADZCaUAAAAAyE4oBQAAAEB2QikAAAAAshNKAQAAAJCdUAoAAACA7IRSAAAAAGQnlAIAAAAgO6EUAAAAANkJpQAAAADITigFAAAAQHZCKQAAAACyE0oBAAAAkF2zhVLLly+PcePGRWVlZVRXV8f48ePj3Xff3egxK1eujAkTJsSOO+4YXbp0ibFjx8bSpUubHPv222/HTjvtFCUlJbFixYpmmAEAQMvQRwEA24NmC6XGjRsXc+fOjenTp8cDDzwQTz75ZJxxxhkbPeY73/lO/Md//Efce++98cQTT8Qbb7wRX/nKV5ocO378+Nh7772bo3QAgBaljwIAtgclKaW0tU/64osvxuDBg+OZZ56J/fffPyIiHnrooTjyyCPjtddeiz59+qx3TF1dXfTo0SPuvPPO+OpXvxoREfPmzYs99tgjamtr44ADDiiMveGGG+Kee+6JSy65JEaOHBn//Oc/o7q6erPrq6+vj6qqqqirq4vKyspPN1kAoM1qiZ5hW+6j9FAAwObY3J6hWd4pVVtbG9XV1YVGKiJi1KhRUVpaGjNnzmzymFmzZkVDQ0OMGjWqsG333XeP/v37R21tbWHbCy+8EJdeemn86le/itLSzSt/1apVUV9fX3QDANgWbUt9lB4KAGhOzRJKLVmyJHr27Fm0rX379tGtW7dYsmTJBo8pKytb75W6Xr16FY5ZtWpVnHjiiXHVVVdF//79N7ueKVOmRFVVVeHWr1+/LZsQAEAm21IfpYcCAJrTFoVSF110UZSUlGz0Nm/evOaqNSZNmhR77LFH/Pf//t+3+Li6urrC7dVXX22mCgEAmtYa+yg9FADQnNpvyeDzzz8/Tj311I2OGTRoUNTU1MSyZcuKtq9ZsyaWL18eNTU1TR5XU1MTq1evjhUrVhS9yrd06dLCMY8++mj89a9/jfvuuy8iItZ9HFb37t3j+9//fvz4xz9u8tzl5eVRXl6+OVMEAGgWrbGP0kMBAM1pi0KpHj16RI8ePTY5bsSIEbFixYqYNWtWDB06NCI+bIQaGxtj+PDhTR4zdOjQ6NChQzzyyCMxduzYiIiYP39+LFq0KEaMGBEREf/+7/8eH3zwQeGYZ555Jk477bSYMWNG7LzzzlsyFQCArPRRAADFtiiU2lx77LFHjBkzJk4//fS48cYbo6GhISZOnBgnnHBC4Yoxr7/+eowcOTJ+9atfxbBhw6KqqirGjx8f5513XnTr1i0qKyvjrLPOihEjRhSuGPPxhumtt94q3N+WXH0PAGBbpY8CALYXzRJKRUTccccdMXHixBg5cmSUlpbG2LFj47rrrivsb2hoiPnz58f7779f2HbttdcWxq5atSpGjx4dv/jFL5qrRACAbZI+CgDYHpSkdR8osB2pr6+PqqqqqKuri8rKypYuBwDYRukZink8AIDNsbk9wxZdfQ8AAAAAtgahFAAAAADZCaUAAAAAyE4oBQAAAEB2QikAAAAAshNKAQAAAJCdUAoAAACA7IRSAAAAAGQnlAIAAAAgO6EUAAAAANkJpQAAAADITigFAAAAQHZCKQAAAACyE0oBAAAAkJ1QCgAAAIDshFIAAAAAZCeUAgAAACA7oRQAAAAA2QmlAAAAAMhOKAUAAABAdkIpAAAAALITSgEAAACQnVAKAAAAgOyEUgAAAABkJ5QCAAAAIDuhFAAAAADZCaUAAAAAyE4oBQAAAEB2QikAAAAAshNKAQAAAJCdUAoAAACA7IRSAAAAAGQnlAIAAAAgO6EUAAAAANkJpQAAAADITigFAAAAQHZCKQAAAACyE0oBAAAAkJ1QCgAAAIDshFIAAAAAZCeUAgAAACA7oRQAAAAA2QmlAAAAAMhOKAUAAABAdkIpAAAAALITSgEAAACQnVAKAAAAgOyEUgAAAABkJ5QCAAAAIDuhFAAAAADZCaUAAAAAyE4oBQAAAEB2QikAAAAAshNKAQAAAJCdUAoAAACA7IRSAAAAAGQnlAIAAAAgO6EUAAAAANkJpQAAAADITigFAAAAQHZCKQAAAACyE0oBAAAAkJ1QCgAAAIDshFIAAAAAZCeUAgAAACA7oRQAAAAA2QmlAAAAAMhOKAUAAABAdkIpAAAAALITSgEAAACQnVAKAAAAgOyEUgAAAABkJ5QCAAAAIDuhFAAAAADZCaUAAAAAyE4oBQAAAEB2QikAAAAAshNKAQAAAJCdUAoAAACA7IRSAAAAAGQnlAIAAAAgO6EUAAAAANkJpQAAAADITigFAAAAQHZCKQAAAACyE0oBAAAAkJ1QCgAAAIDshFIAAAAAZCeUAgAAACA7oRQAAAAA2QmlAAAAAMhOKAUAAABAdkIpAAAAALITSgEAAACQnVAKAAAAgOzat3QBLSGlFBER9fX1LVwJALAtW9crrOsdtnd6KABgc2xuD7VdhlLvvPNORET069evhSsBAFqDd955J6qqqlq6jBanhwIAtsSmeqiStB2+9NfY2BhvvPFGdO3aNUpKSrb6+evr66Nfv37x6quvRmVl5VY//7bEXNsmc22bzLVtMtfmlVKKd955J/r06ROlpT71QA+19Zhr22SubZO5tk3m2rw2t4faLt8pVVpaGjvttFOz309lZWWb/+Zex1zbJnNtm8y1bTLX5uMdUv9FD7X1mWvbZK5tk7m2TebafDanh/KSHwAAAADZCaUAAAAAyE4o1QzKy8tj8uTJUV5e3tKlNDtzbZvMtW0y17bJXGlLtqc1Nte2yVzbJnNtm8x127BdftA5AAAAAC3LO6UAAAAAyE4oBQAAAEB2QikAAAAAshNKAQAAAJCdUGoru/766+Mzn/lMdOzYMYYPHx5PP/10S5e0xaZMmRKf//zno2vXrtGzZ8847rjjYv78+UVj/uVf/iVKSkqKbmeeeWbRmEWLFsVRRx0VnTp1ip49e8YFF1wQa9asyTmVTfrRj3603jx23333wv6VK1fGhAkTYscdd4wuXbrE2LFjY+nSpUXnaA3zjIj4zGc+s95cS0pKYsKECRHRutf0ySefjKOPPjr69OkTJSUlMW3atKL9KaW45JJLonfv3lFRURGjRo2Kl156qWjM8uXLY9y4cVFZWRnV1dUxfvz4ePfdd4vGPPfcc3HwwQdHx44do1+/fnHllVc299TWs7G5NjQ0xIUXXhhDhgyJzp07R58+feLkk0+ON954o+gcTX0vXHHFFUVjtvW5RkSceuqp681jzJgxRWPawrpGRJM/uyUlJXHVVVcVxrSGdd2c55et9Xv38ccfj8997nNRXl4eu+yyS9x6663NPT22gtbeR+mh9FCtbU31UB/SQ+mhtvV1bdM9VGKrufvuu1NZWVm65ZZb0ty5c9Ppp5+eqqur09KlS1u6tC0yevToNHXq1PT888+nOXPmpCOPPDL1798/vfvuu4UxhxxySDr99NPT4sWLC7e6urrC/jVr1qS99torjRo1Ks2ePTs9+OCDqXv37mnSpEktMaUNmjx5ctpzzz2L5vHmm28W9p955pmpX79+6ZFHHknPPvtsOuCAA9KBBx5Y2N9a5plSSsuWLSua5/Tp01NEpMceeyyl1LrX9MEHH0zf//73069//esUEen+++8v2n/FFVekqqqqNG3atPSXv/wlHXPMMWngwIHpgw8+KIwZM2ZM2meffdKf/vSnNGPGjLTLLrukE088sbC/rq4u9erVK40bNy49//zz6a677koVFRXppptuyjXNlNLG57pixYo0atSodM8996R58+al2traNGzYsDR06NCicwwYMCBdeumlRWv90Z/v1jDXlFI65ZRT0pgxY4rmsXz58qIxbWFdU0pFc1y8eHG65ZZbUklJSVqwYEFhTGtY1815ftkav3f//ve/p06dOqXzzjsvvfDCC+lnP/tZateuXXrooYeyzZUt1xb6KD2UHqq1rake6kN6KD3Utr6ubbmHEkptRcOGDUsTJkwofL127drUp0+fNGXKlBas6tNbtmxZioj0xBNPFLYdcsgh6ZxzztngMQ8++GAqLS1NS5YsKWy74YYbUmVlZVq1alVzlrtFJk+enPbZZ58m961YsSJ16NAh3XvvvYVtL774YoqIVFtbm1JqPfNsyjnnnJN23nnn1NjYmFJqO2v68SejxsbGVFNTk6666qrCthUrVqTy8vJ01113pZRSeuGFF1JEpGeeeaYw5ve//30qKSlJr7/+ekoppV/84hdphx12KJrrhRdemHbbbbdmntGGNfXE+3FPP/10ioj0j3/8o7BtwIAB6dprr93gMa1lrqeccko69thjN3hMW17XY489Nn3pS18q2tYa1/Xjzy9b6/fu9773vbTnnnsW3dfxxx+fRo8e3dxT4lNoi32UHkoPlVLrmaseqpgeqm2uqx5q2+uh/PneVrJ69eqYNWtWjBo1qrCttLQ0Ro0aFbW1tS1Y2adXV1cXERHdunUr2n7HHXdE9+7dY6+99opJkybF+++/X9hXW1sbQ4YMiV69ehW2jR49Ourr62Pu3Ll5Ct9ML730UvTp0ycGDRoU48aNi0WLFkVExKxZs6KhoaFoTXfffffo379/YU1b0zw/avXq1XH77bfHaaedFiUlJYXtbWVNP2rhwoWxZMmSonWsqqqK4cOHF61jdXV17L///oUxo0aNitLS0pg5c2ZhzBe/+MUoKysrjBk9enTMnz8//vnPf2aazZarq6uLkpKSqK6uLtp+xRVXxI477hj77bdfXHXVVUVv221Nc3388cejZ8+esdtuu8W3v/3tePvttwv72uq6Ll26NH73u9/F+PHj19vX2tb1488vW+v3bm1tbdE51o1p7c/HbVlb7aP0UHqoiNY7Vz2UHqqtraseatvsodo325m3M2+99VasXbu2aIEjInr16hXz5s1roao+vcbGxjj33HPjoIMOir322quw/etf/3oMGDAg+vTpE88991xceOGFMX/+/Pj1r38dERFLlixp8rFYt29bMXz48Lj11ltjt912i8WLF8ePf/zjOPjgg+P555+PJUuWRFlZ2XpPRL169SrMobXM8+OmTZsWK1asiFNPPbWwra2s6cetq62p2j+6jj179iza3759++jWrVvRmIEDB653jnX7dthhh2ap/9NYuXJlXHjhhXHiiSdGZWVlYfvZZ58dn/vc56Jbt27x1FNPxaRJk2Lx4sXxk5/8JCJaz1zHjBkTX/nKV2LgwIGxYMGCuPjii+OII46I2traaNeuXZtd19tuuy26du0aX/nKV4q2t7Z1ber5ZWv93t3QmPr6+vjggw+ioqKiOabEp9AW+yg9lB6qta3px+mh9FAf1RbWVQ+1bfZQQik2asKECfH888/HH/7wh6LtZ5xxRuHfQ4YMid69e8fIkSNjwYIFsfPOO+cu8xM74ogjCv/ee++9Y/jw4TFgwID4P//n/7Tp/2i5+eab44gjjog+ffoUtrWVNeVDDQ0N8a//+q+RUoobbrihaN95551X+Pfee+8dZWVl8a1vfSumTJkS5eXluUv9xE444YTCv4cMGRJ777137LzzzvH444/HyJEjW7Cy5nXLLbfEuHHjomPHjkXbW9u6buj5BdoKPVTbpIdq+/RQeqhtfV3bWg/lz/e2ku7du0e7du3W+3T7pUuXRk1NTQtV9elMnDgxHnjggXjsscdip5122ujY4cOHR0TEyy+/HBERNTU1TT4W6/Ztq6qrq+Ozn/1svPzyy1FTUxOrV6+OFStWFI356Jq2xnn+4x//iIcffji++c1vbnRcW1nTdbVt7GezpqYmli1bVrR/zZo1sXz58la51uuaqX/84x8xffr0olf4mjJ8+PBYs2ZNvPLKKxHRuub6UYMGDYru3bsXfc+2pXWNiJgxY0bMnz9/kz+/Edv2um7o+WVr/d7d0JjKyso2/R/LrVlb66P0UHqoiNa/pnooPdRHteZ1jdBDrRuzLfZQQqmtpKysLIYOHRqPPPJIYVtjY2M88sgjMWLEiBasbMullGLixIlx//33x6OPPrreWxWbMmfOnIiI6N27d0REjBgxIv76178W/TJb94t98ODBzVL31vDuu+/GggULonfv3jF06NDo0KFD0ZrOnz8/Fi1aVFjT1jjPqVOnRs+ePeOoo47a6Li2sqYDBw6MmpqaonWsr6+PmTNnFq3jihUrYtasWYUxjz76aDQ2NhYayxEjRsSTTz4ZDQ0NhTHTp0+P3XbbbZt6e/K6Zuqll16Khx9+OHbcccdNHjNnzpwoLS0tvE27tcz141577bV4++23i75n28q6rnPzzTfH0KFDY5999tnk2G1xXTf1/LK1fu+OGDGi6BzrxrS25+PtSVvpo/RQeqiItrOmeig9VFtY13X0UNtwD9VsH6G+Hbr77rtTeXl5uvXWW9MLL7yQzjjjjFRdXV306fatwbe//e1UVVWVHn/88aLLYr7//vsppZRefvnldOmll6Znn302LVy4MP3mN79JgwYNSl/84hcL51h3ucnDDz88zZkzJz300EOpR48e28Slbz/q/PPPT48//nhauHBh+uMf/5hGjRqVunfvnpYtW5ZS+vCymv3790+PPvpoevbZZ9OIESPSiBEjCse3lnmus3bt2tS/f/904YUXFm1v7Wv6zjvvpNmzZ6fZs2eniEg/+clP0uzZswtXS7niiitSdXV1+s1vfpOee+65dOyxxzZ5OeP99tsvzZw5M/3hD39Iu+66a9Flb1esWJF69eqVTjrppPT888+nu+++O3Xq1Cn7ZW83NtfVq1enY445Ju20005pzpw5RT+/666o8dRTT6Vrr702zZkzJy1YsCDdfvvtqUePHunkk09uVXN955130ne/+91UW1ubFi5cmB5++OH0uc99Lu26665p5cqVhXO0hXVdp66uLnXq1CndcMMN6x3fWtZ1U88vKW2d37vrLmd8wQUXpBdffDFdf/31zX45Yz69ttBH6aH0UK1tTfVQeig9VOtY17bcQwmltrKf/exnqX///qmsrCwNGzYs/elPf2rpkrZYRDR5mzp1akoppUWLFqUvfvGLqVu3bqm8vDztsssu6YILLkh1dXVF53nllVfSEUcckSoqKlL37t3T+eefnxoaGlpgRht2/PHHp969e6eysrLUt2/fdPzxx6eXX365sP+DDz5I//Zv/5Z22GGH1KlTp/TlL385LV68uOgcrWGe6/znf/5niog0f/78ou2tfU0fe+yxJr9nTznllJTSh5c0/uEPf5h69eqVysvL08iRI9d7DN5+++104oknpi5duqTKysr0jW98I73zzjtFY/7yl7+kL3zhC6m8vDz17ds3XXHFFbmmWLCxuS5cuHCDP7+PPfZYSimlWbNmpeHDh6eqqqrUsWPHtMcee6T/8T/+R1ET0hrm+v7776fDDz889ejRI3Xo0CENGDAgnX766ev9x2tbWNd1brrpplRRUZFWrFix3vGtZV039fyS0tb7vfvYY4+lfffdN5WVlaVBgwYV3QfbrtbeR+mh9FCtbU31UHooPVTrWNe23EOV/P8JAgAAAEA2PlMKAAAAgOyEUgAAAABkJ5QCAAAAIDuhFAAAAADZCaUAAAAAyE4oBQAAAEB2QikAAAAAshNKAQAAAJCdUAoAAACA7IRSAAAAAGQnlAIAAAAgO6EUAAAAANn9P4rd7nw/FJ+BAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "list_metrics = evaluation.get_monitoring_metrics()\n",
+ "row=0\n",
+ "col=0\n",
+ "rows = (len(list_metrics)+1)//2\n",
+ "\n",
+ "fig, axes = plt.subplots(nrows=rows, ncols=2, sharex=True, squeeze=False, figsize=(12,8*rows))\n",
+ "for metric in list_metrics:\n",
+ " df = evaluation.get_monitoring_metric(metric, component='loader')\n",
+ " #if df.sum().sum() > 0:\n",
+ " ax = df.plot(ax=axes[row,col], kind='line', title=metric, layout=(rows,2))\n",
+ " col = col + 1\n",
+ " if col > 1:\n",
+ " row = row + 1\n",
+ " col = 0\n",
+ "plt.legend(loc='best')\n",
+ "plt.tight_layout()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Plot some Aggregations\n",
+ "\n",
+ "#### Compute Time"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 71,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAANsAAADsCAYAAAD9/NNVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvQklEQVR4nO3deVhTZ9o/8G/2EDAEZAloBKyCYlERBbFqbUsFx7E6XdyYKbWOtlbt9NVa6q8q2NZStWOtrdW2b5XaWrfXZabuluI4tYCA4gKIYlFwiVQghJ2Q3L8/AkciKFtIWJ7PdZ2L5DxPzrlPzNckJ+c5h0dEBIZh2h3f2gUwTHfBwsYwFsLCxjAWwsLGMBbCwsYwFsLCxjAWwsLGMBbCwsYwFsLCxjAWwsLGWIWnpyfWr19v7TIsioXNjNRqNRYuXIi+fftCIpFApVJh0qRJiIuLs3ZpzRIbGwuFQtGmZZw8eRI8Hu+R08mTJ5GcnIy5c+eap/BOQmjtArqK69ev44knnoBCocDatWvh5+cHnU6HY8eOYf78+bh8+bK1S7SIUaNG4c6dO9z9f/zjH9Bqtdi6dSs3z9HREWKx2BrlWRcxZjFhwgTq1asXlZaWNmgrKiribt+4cYOee+45srW1pR49etBLL71EarWaa4+KiqIhQ4bQt99+SyqVimxtbWnevHlUU1NDq1evJldXV3J2dqYPP/zQZB0A6Msvv6SwsDCSSqXk5eVFe/bs4drj4+MJgEkt586dIwCUk5PDtdefoqKiiIiosrKSFi9eTO7u7iSTySgwMJDi4+Ob9bxERETQ5MmTG8z38PCgTz/91KT+zZs308SJE8nGxoYGDBhAv/32G129epWefPJJkslkFBwcTNnZ2SbLOXDgAPn7+5NEIiEvLy+Kjo4mnU7XrNosjYXNDAoKCojH49FHH330yH56vZ6GDh1Ko0ePppSUFEpMTKSAgAB68sknuT5RUVFkZ2dHL774IqWnp9O///1vEovFFBoaSgsXLqTLly/Tli1bCAAlJiZyjwNAPXv2pG+++YaysrJo2bJlJBAIKCMjg4iaDltVVRWtX7+e5HI53blzh+7cuUMlJSVERPT3v/+dRo0aRadOnaLs7Gxau3YtSSQSunLlSpPPTUvC1qtXL9q1axdlZWXRlClTyNPTk55++mk6evQoZWRk0MiRIyksLIx7zKlTp0gul1NsbCxdu3aNjh8/Tp6enhQdHd1kXdbAwmYGSUlJBID27dv3yH7Hjx8ngUBAubm53Lz09HQCQGfOnCEiY9hkMhlptVquT2hoKHl6epJer+fm+fj4UExMDHcfAL3++usm6wsKCqJ58+YRUdNhIyLaunUr2dvbmyzjxo0bJBAI6NatWybzn3nmGVq6dOkjt5eoZWFbtmwZdz8hIYEA0LfffsvN27FjB0mlUpMaHvwP7vvvvyc3N7cm67IG9p3NDKiZQwIzMzOhUqmgUqm4eb6+vlAoFMjMzMSIESMAGPfU9ejRg+vj6uoKgUAAPp9vMi8/P99k+cHBwQ3up6WltXRzTFy8eBF6vR7e3t4m86uqqtCzZ882LftBgwcP5m67uroCAPz8/EzmVVZWQqvVQi6X4/z58zh9+jRWrVrF9dHr9aisrER5eTlkMplZ62srFjYz6N+/P3g8ntl2gohEIpP7PB6v0XkGg6HZy6wLav3/GHQ6XZOPKy0thUAgQGpqKgQCgUmbnZ1ds9ffHPW3kcfjPXRe3XaXlpZi5cqVeP755xssSyqVmrU2c2C7/s3A0dERoaGh2LhxI8rKyhq0azQaAMDAgQORl5eHvLw8ri0jIwMajQa+vr5triMxMbHB/YEDBwIAnJ2dAcBkT+GD73pisRh6vd5knr+/P/R6PfLz89GvXz+TSalUtrnmthg2bBiysrIa1NWvXz+TTwEdRcerqJPauHEj9Ho9AgMDsXfvXly9ehWZmZnYsGED9/EuJCQEfn5+CA8Px9mzZ3HmzBm8/PLLePLJJzF8+PA217Bnzx5s2bIFV65cQVRUFM6cOYMFCxYAAPr16weVSoXo6GhcvXoVhw4dwj//+U+Tx3t6eqK0tBRxcXG4d+8eysvL4e3tjfDwcLz88svYt28fcnJycObMGcTExODQoUNtrrktVqxYgW3btmHlypVIT09HZmYmdu7ciWXLllm1rodhYTOTvn374uzZs3jqqaewePFiPP7443j22WcRFxeHTZs2ATB+DPrXv/4FBwcHjB07FiEhIejbty927dpllhpWrlyJnTt3YvDgwdi2bRt27NjBvWOKRCLs2LEDly9fxuDBg7F69Wp8+OGHJo8fNWoUXn/9dUybNg3Ozs5Ys2YNAGDr1q14+eWXsXjxYvj4+GDKlClITk5Gnz59zFJ3a4WGhuLgwYM4fvw4RowYgZEjR+LTTz+Fh4eHVet6GB4199s906HxeDzs378fU6ZMsXYpzEOwdzaGsRAWNoaxELbrv4tg3wY6PvbOxjAWwsLGMBbCwsYwFtJlv7MZDAbcvn0bPXr04A7zYZj2QEQoKSmBu7v7I49c6bJhu337tskBvwzT3vLy8tC7d++HtnfZsNUdNZ+Xlwe5XG7lapiuTKvVQqVSmYzUaEyXDVvdR0e5XM7CxlhEU19X2A4ShrEQFjaGsZDuGbbqckCT13Q/hjGj7he23CTgi+HA3tkAO8SJsaDuFzaFCqjQAHlJwMU91q6G6Ua6X9jk7sDYxcbbJ1YAVaXWrYfpNrpf2ADkes9CpV0foOQO8N9/Nv0AhjGDbhe2/1z5A2M/TUB09UzjjIQvgMLfrVsU0y10u7AFejpCLhVip9YPhconAH01cKxjniCG6Vq6XdhsxAI8P6w3AB7WC18FeAIg6xCQ3TmuNMN0Xt0ubAAQHmQ8K9T232UoHTrbOPPoUkDf9ElLGaa1umXY+rv2QKCXI/QGwveS6YDMCbiXBZz5xtqlMV1YtwwbcP/d7buzGuifqv3OdvJjoOyeFatiurJuG7awx5VwtBVDra3ELzahgHIwUFUMxL1v7dKYLqrbhk0iFOClAONAv+3JN4EJxrP/4uw24PY5K1bGdFXdNmwAMCPQ+FHyP1f+QF6PIYDfSwAIOPIuO26SMbtuHTZPJ1uM7ucEImBnci4QshIQyYC8RODi/1m7PKaL6dZhA+7vKNmVfBM6OzdgzCJjw4kVQHXDyz8xTGt1+7CF+LrCuYcE90qrcCLjLhC8EFB4ACW3gf+us3Z5TBfS7cMmEvAxbbjxLFzbk24AIikQWnvZ2N8+BwpzrFgd05V0+7ABwPRAFXg84HR2AXLulQED/gz0HQfoq4Dj7LhJxjxY2AD0dpBhnLfxMrg7zuQCPB4Qttp43OTlg8C1eCtXyHQFLGy1woOMV6vck5KHSp0ecBkABM4xNh59lx03ybQZC1utcT7OcLOXoqhch2Pp6tqZ7wI2jsAfl4Hkb61bINPpsbDVEgr4mD6idjRAYq5xpo0D8Mxy4+34j9hxk0ybsLDVM22ECgI+D2euF+LK3RLjzGERgNLPeNzkLx9Yt0CmU2Nhq0dpL8UzA1wAAD8m1b678QX3j5tM/Q64c95K1TGdHQvbA8JHGneU7D17ExXVeuNMj1HA4y/AeNxkJDtukmkVFrYHjOnnBJWjDUoqa/DThdv3G559HxDaALkJwKW91iuQ6bRY2B7A5/O40QDcR0kAsO99/7jJ48vZcZNMi7GwNeKlABVEAh7S8jRIv118v2HUQkDRx3jc5K+fWq9AplNqcdhOnTqFSZMmwd3dHTweDwcOHDBpf+WVV8Dj8UymsLAwkz6FhYUIDw+HXC6HQqHA7NmzUVpqembiCxcuYMyYMZBKpVCpVFizZk3Lt66VnHtIEDpICeCBdzeRDTC+9rjJ0xuAousWq4np/FoctrKyMgwZMgQbN258aJ+wsDDcuXOHm3bs2GHSHh4ejvT0dJw4cQIHDx7EqVOnMHfuXK5dq9Vi/Pjx8PDwQGpqKtauXYvo6Gh8/fXXLS231WbWDr05cO4WSqtq7jcMnAR4jWXHTTItR20AgPbv328yLyIigiZPnvzQx2RkZBAASk5O5uYdOXKEeDwe3bp1i4iIvvzyS3JwcKCqqiquT2RkJPn4+DS7tuLiYgJAxcXFzX5MfQaDgZ5aG08ekQfph8Trpo3qdKJoB6IoOdG1+FYtn+k6mvtaa5fvbCdPnoSLiwt8fHwwb948FBQUcG0JCQlQKBQYPnw4Ny8kJAR8Ph9JSUlcn7Fjx0IsFnN9QkNDkZWVhaKiokbXWVVVBa1WazK1BY/H497dfkzKBdXf3e/qC4yoPd/kkXcBfU0jS2AYU2YPW1hYGLZt24a4uDisXr0a//nPfzBhwgTo9cbfrNRqNVxcXEweIxQK4ejoCLVazfVxdXU16VN3v67Pg2JiYmBvb89NKpWqzdvywrDeEAv5SL+txfmbxaaN45bWHjeZCaSw4yaZppk9bNOnT8dzzz0HPz8/TJkyBQcPHkRycjJOnjxp7lWZWLp0KYqLi7kpL6/tVxZ1sBXjz35uAIDtiTdMG2WOwNO139niVwFlBWCYR2n3Xf99+/aFk5MTsrOzAQBKpRL5+fkmfWpqalBYWAilUsn1uXv3rkmfuvt1fR4kkUggl8tNJnOo+yj504XbKK54YJhNwCuAqx9QWQzEf2iW9TFdV7uH7ebNmygoKICbm/EdIjg4GBqNBqmpqVyfX375BQaDAUFBQVyfU6dOQae7/+I+ceIEfHx84ODg0N4lmwjwcICPaw9U6gzYf/amaSNfAExYbbydshXI/tmitTGdS4vDVlpairS0NKSlpQEAcnJykJaWhtzcXJSWlmLJkiVITEzE9evXERcXh8mTJ6Nfv34IDQ0FAAwcOBBhYWGYM2cOzpw5g9OnT2PBggWYPn063N3dAQAzZ86EWCzG7NmzkZ6ejl27duGzzz7DokWLzLflzcTj8RA+snZHyZkHdpQAgOcTwPBXARCwdw6gafvHV6aLauluzvj4eALQYIqIiKDy8nIaP348OTs7k0gkIg8PD5ozZw6p1WqTZRQUFNCMGTPIzs6O5HI5zZo1i0pKSkz6nD9/nkaPHk0SiYR69epFH3/8cYvqbOuuf5NlVVTTgGVHyCPyIJ3JKWjYobqCaPNY408BXz9FpKts8zqZzqO5rzUeUdc8hF2r1cLe3h7FxcVm+f4W+X8XsCslD1OGumP9dP+GHYpuAF+NBSo1wIg5wMRP2rxOpnNo7muNHRvZTHUfJQ9fUqOwrLphBwcP4PnaS04lfwNc2GPB6pjOgIWtmQb3VuDxXnJU1xiwN/Vm4528xwNjlxhv//QmkJ9puQKZDo+FrQXqzsDV6I6SOuOWGs85qSsHdv0NqCqxXIFMh8bC1gLPDXGHnUSInHtlSLj2kB+x+QLghW8BeS+g4Crw74VsZDcDgIWtRWwlQkzxN/48sb3+0JsGHZ2Al2IBvhBI3w8kfWWZApkOjYWthWYGGj9KHktX44+Sqod3VAUCoR8Zbx9/D8hNskB1TEfGwtZCvu5y+PdRoMZA2J3SxA/YgXONJwoy1AB7XgFK/7BIjUzHxMLWCnU7SnacyYXB8IjvYzweMGkD4ORtPJXC3tmAQW+hKpmOhoWtFf482A1yqRA3iypw6moT71YSO2Dq94DIFsj5j/HMyky3xMLWClKRAC8E9AbQxI6SOi4DgOc2GG//9xPgyrF2rI7pqFjYWqnu8sBxmXdxp7ii6Qf4vWj8DgcA++aykwV1QyxsrdTPpQeCvBxhIGBXcjOP9B+/Cug13Hj85O6XAV1lu9bIdCwsbG1QN7B055k81OgNTT9AKAamfmc8ncKd88DRyHaukOlIWNjaIOxxJRxtxVBrKxGf1czd+va9gRe/BcADUmOBtB/bs0SmA2FhawOJUICXhht3lHxz6ndk55c+/JjJ+h572ngMJQAc/B9Afakdq2Q6CjaerY1uFJThybUnufsOMhECPBww3NMRwz0c4NfbHhKhoOEDDQbgx6lA9gnAsS8w9yQgtTd/gWUFwJWjQFGO8TpzvQMBuZv519ONNfe1xsJmBruSc7Hv7C2cv6lBpc70u5tYwMfg3vYI8HTAcA9HBHg4wNG29nyY5YXGAafFecCAPwPTfjD+EN5Whb8Dlw8DWYeNV92hB75PynsDvYcDvUcYDytTDgZE0rav19oqNMbnUpMHaG8ZTxcvcwJkPY1nQ7N1AiRy8zzH9bCwWTBsdaprDEi/XYzUG0VIuV6ElBuFuFfacKDpY862GOFpDN4om1y475sCnr4aePYD4Ik3W75igwG4c+5+wPIzTNuVfsZA3bkA5Kc3DB9fBLgNNoavblL0MfuLsk2IjJdZLs4FNLnGQNUFqzjPOK+qGSfm5Qtrw9fIZFsvmFxIezb5HxELmxXC9iAiwo2CcqTcKELK9UKk3ChCdn5pg36vyeKx1PANDDwBsif8CM9h4yEWNvF1uqYKuP5f4PIhIOsIUHLnfhtPYDwRkc9EwGeCcRR5napS4PY54Gby/amskZ07ti61wat9B+w1DBDbtvKZaAaDHihRG0NTF566v5o8oPgmUNOM3zNlPQF7lXGIk74KKC8wfpQuLwB0rbzMl8gWsO0JOPkAf/2/Bs0sbB0gbI0pKqs2vvPdKELqjUKcv1mM6ho91ok24XnBr8gnBf6i/xhObn3gbCeBk50YPe3E6Gkrgau4Ev2KE+CmjoNd3knwq+sFV2wH9HvGGLD+zxr/d24OIkBzA7iZAuSdMYZPfcF48HR9PD7gOuj+O5/Sz/gOWV1ufBHrKu7fri433udu106PvF3W8B23AR7QQ2kMk6IPoFDdv22vMt5/1H8IugrjR/fye8bwlRfWhrHufiNT/efBZRDwxm8NFsvC1kHD9qCqGj0u3SpG2rXbCEsIRy/ddSQZBmBm9XvQQwA3FOBZQQqe5adiJD8TIt79A5nzSYFT/BE4ZzMKefbDIe9hByc7CXraitHTToKedmI42YnhZCeBnUSIar0BVToDKmv0xr86PSprDKh64G9NZRnkmkw4FZ2Hi/Yi3EsvwV6X/4itMBO+0PiOVD889YMl7wUDX4wKnR5l1TUor6r9W61HWZXxr3Ey3hYJ+JCJBZCJBbARCSATC2FTe18mFtTeFkImEoDPb+QjM5HxBLx1wSQD0CeoQTcWtk4SNhP3roK+fgq86hL8oXwSgvJ8OGpNz2Nyna/CLzQcP1X5I83QF2ShX2+UKIA/P7t2uop+vNuohhDlJEEFpKiAuPa2BOWQoKKR2zqBFCSyBU9kA57EFkKJLURSOwilthBKe6CQJ0dZNbgAmYaoBmVVelTo2mfUhERYF0xjIG3rhdFGLIBMJICbwgaLnvVu8FgWts4YNgBIPwDsiag3gwf0GQn4/AkYMBHo+RgAoEZvQFG5DgVlVSgorca9UtO/BWVVuFf7t6C0GuXVegj5PEhFAkiEfONfER8SoQBSEf/+vNq/UqGx3aS/kA+JSACpkA8Bn4eyqhpoK2tQUlmDkkpd7W3d/fsVxr9l1eYPCI8H2IqFkIkFsJXU/hULIZMY/0pFAuj0BpRX61GhMwa2otr4TlhRG+QKnb5FZ6x4zNkWcYvHNZjf3NeasBXbybSnQVOA0jXGXfb9QgDvMONesgcIBXw495DAuYekWYvVGwiCxj4qWYDeQCitrIG2UgctF8a6QBrvl1bXQCI0vqPIJELjX7EQtpL7f225dx0hpCI+eG3cW0pEqNQZuI+dFbr7H0O5QFbf/6gql7YtLuydjWHaiJ2klWE6GBY2hrGQFoft1KlTmDRpEtzd3cHj8XDgwAGTdiLCihUr4ObmBhsbG4SEhODq1asmfQoLCxEeHg65XA6FQoHZs2ejtNT0x94LFy5gzJgxkEqlUKlUWLNmTcu3jmE6kBaHraysDEOGDMHGjRsbbV+zZg02bNiAzZs3IykpCba2tggNDUVl5f2BkuHh4UhPT8eJEydw8OBBnDp1CnPnzuXatVotxo8fDw8PD6SmpmLt2rWIjo7G119/3YpNZJgOoi2XygFA+/fv5+4bDAZSKpW0du1abp5GoyGJREI7duwgIqKMjAwCQMnJyVyfI0eOEI/Ho1u3bhER0ZdffkkODg5UVVXF9YmMjCQfH59m12bOS0YxzKM097Vm1u9sOTk5UKvVCAkJ4ebZ29sjKCgICQkJAICEhAQoFAoMHz6c6xMSEgI+n4+kpCSuz9ixYyEWi7k+oaGhyMrKQlFRUaPrrqqqglarNZkYpiMxa9jUajUAwNXV1WS+q6sr16ZWq+Hi4mLSLhQK4ejoaNKnsWXUX8eDYmJiYG9vz00qlartG8QwZtRl9kYuXboUxcXF3JSXxy63y3QsZg2bUqkEANy9e9dk/t27d7k2pVKJ/HzTg1prampQWFho0qexZdRfx4MkEgnkcrnJxDAdiVkP1/Ly8oJSqURcXByGDh0KwLhnMSkpCfPmzQMABAcHQ6PRIDU1FQEBAQCAX375BQaDAUFBQVyf9957DzqdDiKRCABw4sQJ+Pj4wMHBwZwlQ6/XQ6fTmXWZXZlIJIJA0MhpHpgmtThspaWlyM7O5u7n5OQgLS0Njo6O6NOnD9566y18+OGH6N+/P7y8vLB8+XK4u7tjypQpAICBAwciLCwMc+bMwebNm6HT6bBgwQJMnz4d7u7GyzHNnDkTK1euxOzZsxEZGYlLly7hs88+w6effmqerYbx90C1Wg2NRmO2ZXYXCoUCSqWyzccmdjctDltKSgqeeuop7v6iRYsAABEREYiNjcU777yDsrIyzJ07FxqNBqNHj8bRo0chld4fWr59+3YsWLAAzzzzDPh8Pl544QVs2LCBa7e3t8fx48cxf/58BAQEwMnJCStWrDD5La6t6oLm4uICmUzGXjjNQEQoLy/nvga4ubETB7VEtzwQWa/X48qVK3BxcUHPnj2tVGHnVVBQgPz8fHh7e7OPlGAHIj9S3Xc0mUxm5Uo6p7rnjX3XbZluGbY67KNj67DnrXW6ddgYxpJY2LqpxkZsMO2LhY1hLISFjWEshIXtAePGjcObb76Jd955B46OjlAqlYiOjubar1+/Dh6Ph7S0NG6eRqMBj8fDyZMnAQAnT54Ej8fDsWPH4O/vDxsbGzz99NPIz8/HkSNHMHDgQMjlcsycORPl5eUPrSU2NhYKhQIHDhxA//79IZVKERoa2uC4z02bNuGxxx6DWCyGj48Pvv/+e5P2q1evYuzYsZBKpfD19cWJEydM2qurq7FgwQK4ublBKpXCw8MDMTExrXsCmYdiYWvEd999B1tbWyQlJWHNmjV4//33G7xAmyM6OhpffPEFfvvtN+Tl5WHq1KlYv349fvzxRxw6dAjHjx/H559//shllJeXY9WqVdi2bRtOnz4NjUaD6dOnc+379+/HP/7xDyxevBiXLl3Ca6+9hlmzZiE+Ph4AYDAY8Pzzz0MsFiMpKQmbN29GZKTpRRg3bNiAf//739i9ezeysrKwfft2eHp6tnh7mSZYYGydVTxqQF9FRQVlZGRQRUVFg7Ynn3ySRo8ebTJvxIgRFBkZSUREOTk5BIDOnTvHtRcVFREAio+PJyKi+Ph4AkA///wz1ycmJoYA0LVr17h5r732GoWGhj50G7Zu3UoAKDExkZuXmZlJACgpKYmIiEaNGkVz5swxedxLL71Ef/rTn4iI6NixYyQUCrmBuUTGwbqoN/B34cKF9PTTT5PBYHhoLfU96vnrjqwyeLSrGDx4sMl9Nze3BiMVWrocV1dXyGQy9O3b12ReU8sVCoUYMWIEd3/AgAFQKBTIzDSeKTkzMxNPPPGEyWOeeOIJk3aVSsUddwoYD/Su75VXXkFaWhp8fHzw5ptv4vjx4y3cUqY5WNgaUTfSoA6Px4PBYLzoA59vfMqo3lFuDzuSov5yeDzeI5drTcOGDUNOTg4++OADVFRUYOrUqXjxxRetXVaXw8LWQs7OzgCAO3fuX6Kp/s4Sc6upqUFKSgp3PysrCxqNBgMHDgRgHEVx+vRpk8ecPn0avr6+XHteXp5JvYmJiQ3WI5fLMW3aNHzzzTfYtWsX9u7di8LCwvbYpG6LnX68hWxsbDBy5Eh8/PHH8PLyQn5+PpYtW9Zu6xOJRFi4cCE2bNgAoVCIBQsWYOTIkQgMDAQALFmyBFOnToW/vz9CQkLw008/Yd++ffj5558BGM/v4u3tjYiICKxduxZarRbvvfeeyTrWrVsHNzc3+Pv7g8/nY8+ePVAqlVAoFO22Xd0Re2drhS1btqCmpgYBAQHc+L32IpPJEBkZiZkzZ+KJJ56AnZ0ddu3axbVPmTIFn332GT755BMMGjQIX331FbZu3Ypx48YBMH7s3b9/PyoqKhAYGIi///3vWLVqlck6evTogTVr1mD48OEYMWIErl+/jsOHD3MfmRnz6JZDbCorK5GTkwMvLy+TcXYdTWxsLN56660ON8C1szx/lsKG2DBMB8PCxjAWwsLWgb3yyisd7iMk03osbAxjISxsDGMhLGwMYyEsbAxjISxsDGMhLGwMYyEsbAxjISxsXVRT1z5nLI+FrYtq6trnjOWxITYtRESo0Omtsm4bkaDZZyOeMGECJkyY0M4VMS1h9rBFR0dj5cqVJvN8fHxw+fJlAMYjxhcvXoydO3eiqqoKoaGh+PLLL00u65ubm4t58+YhPj4ednZ2iIiIQExMDIRC6//fUKHTw3fFMausO+P9UMjE1n8OmNZpl3+5QYMGcYMXAZiE5H/+539w6NAh7NmzB/b29liwYAGef/55brSxXq/HxIkToVQq8dtvv+HOnTt4+eWXIRKJ8NFHH7VHuQxjEe0SNqFQ2OjleIuLi/Htt9/ixx9/xNNPPw0A2Lp1KwYOHIjExESMHDkSx48fR0ZGBn7++We4urpi6NCh+OCDDxAZGYno6GiIxeL2KLnZbEQCZLwfarV1M51Xu+wguXr1Ktzd3dG3b1+Eh4cjNzcXAJCamgqdToeQkBCu74ABA9CnTx8kJCQAABISEuDn52fysTI0NBRarRbp6ekPXWdVVRW0Wq3J1B54PB5kYqFVJnb1mM7N7GELCgpCbGwsjh49ik2bNiEnJwdjxoxBSUkJ1Go1xGJxg3NbuLq6Qq1WAzBeEbR+0Ora69oeJiYmBvb29tykUqnMu2EM00Zm/xhZfw/Y4MGDERQUBA8PD+zevRs2NjbmXh1n6dKl3CWHAeNQ9e4cuKaufc5YXrv/zqZQKODt7Y3s7GwolUpUV1c3GBB59+5d7jueUqnE3bt3G7TXtT2MRCKBXC43mbqzlJQU+Pv7w9/fH4Dx2uf+/v5YsWKFlSvrvto9bKWlpbh27Rrc3NwQEBAAkUiEuLg4rj0rKwu5ubncWXqDg4Nx8eJFkzMFnzhxAnK5nDsXItO0cePGgYgaTLGxsdYurdsy+8fIt99+G5MmTYKHhwdu376NqKgoCAQCzJgxA/b29pg9ezYWLVoER0dHyOVyLFy4EMHBwRg5ciQAYPz48fD19cXf/vY3rFmzBmq1GsuWLcP8+fMhkUjMXS7DWIzZw3bz5k3MmDEDBQUFcHZ2xujRo5GYmMidSfjTTz8Fn8/HCy+8YPKjdh2BQICDBw9i3rx5CA4Ohq2tLSIiIvD++++bu1SGsSh23kh23sMWY8+fKXbeSIbpYFjYGMZCWNgYxkJY2BjGQljYGMZCWNgYxkJY2BjGQljYuii9Xo/ly5fDy8sLNjY2eOyxx/DBBx+gi/6s2imwMfZd1OrVq7Fp0yZ89913GDRoEFJSUjBr1izY29vjzTfftHZ53RILW0sRAbpy66xbJAOaOYD0t99+w+TJkzFx4kQAgKenJ3bs2IEzZ860Z4XMI7CwtZSuHPjI3Trr/n+3AbFts7qOGjUKX3/9Na5cuQJvb2+cP38ev/76K9atW9fORTIPw8LWRb377rvQarUYMGAABAIB9Ho9Vq1ahfDwcGuX1m2xsLWUSGZ8h7HWuptp9+7d2L59O3788UcMGjQIaWlpeOutt+Du7o6IiIh2LJJ5GBa2luLxmv1RzpqWLFmCd999F9OnTwcA+Pn54caNG4iJiWFhsxK267+LKi8vB59v+s8rEAhgMBisVBHD3tm6qEmTJmHVqlXo06cPBg0ahHPnzmHdunV49dVXrV1at8XC1kV9/vnnWL58Od544w3k5+fD3d0dr732GjvhjxWxsHVRPXr0wPr167F+/Xprl8LUYt/ZGMZCWNgYxkJY2BjGQljYGMZCunXY2HCT1mHPW+t0y7CJRCIAxh9+mZare97qnkemebrlrn+BQACFQsFdT0Amk7FrnzUDEaG8vBz5+flQKBQQCNjFGVuiW4YNuH9FnPoX8GCaR6FQPPKKQkzjum3YeDwe3Nzc4OLiAp1OZ+1yOg2RSMTe0Vqp24atjkAgYC8exiI69A6SjRs3wtPTE1KpFEFBQWxIP9Opddiw7dq1C4sWLUJUVBTOnj2LIUOGIDQ0lH3HYjqtDhu2devWYc6cOZg1axZ8fX2xefNmyGQybNmyxdqlMUyrdMjvbNXV1UhNTcXSpUu5eXw+HyEhIUhISGj0MVVVVaiqquLuFxcXAzBeO4th2lPda6ypH/s7ZNju3bsHvV4PV1dXk/murq64fPlyo4+JiYnBypUrG8xXqVTtUiPDPKikpAT29vYPbe+QYWuNpUuXYtGiRdx9g8GAwsJC9OzZs1P+YK3VaqFSqZCXl/fIq1l2NZ1xu4kIJSUlcHd/9CkOO2TYnJycIBAIcPfuXZP5d+/efeiPqRKJpMEF7hUKRXuVaDFyubzTvOjMqbNt96Pe0ep0yB0kYrEYAQEBiIuL4+YZDAbExcUhODjYipUxTOt1yHc2AFi0aBEiIiIwfPhwBAYGYv369SgrK8OsWbOsXRrDtEqHDdu0adPwxx9/YMWKFVCr1Rg6dCiOHj3aYKdJVyWRSBAVFdXgo3FX15W3m0dscBLDWESH/M7GMF0RCxvDWAgLG8NYCAsbw1gIC5uZREdHg8fjmUwDBgzg2isrKzF//nz07NkTdnZ2eOGFFxr8aJ+bm4uJEydCJpPBxcUFS5YsQU1NjUmfkydPYtiwYZBIJOjXrx9iY2Mb1NKeQ5NOnTqFSZMmwd3dHTweDwcOHDBpJyKsWLECbm5usLGxQUhICK5evWrSp7CwEOHh4ZDL5VAoFJg9ezZKS0tN+ly4cAFjxoyBVCqFSqXCmjVrGtSyZ88eDBgwAFKpFH5+fjh8+HCLa7EoYswiKiqKBg0aRHfu3OGmP/74g2t//fXXSaVSUVxcHKWkpNDIkSNp1KhRXHtNTQ09/vjjFBISQufOnaPDhw+Tk5MTLV26lOvz+++/k0wmo0WLFlFGRgZ9/vnnJBAI6OjRo1yfnTt3klgspi1btlB6ejrNmTOHFAoF3b171yzbefjwYXrvvfdo3759BID2799v0v7xxx+Tvb09HThwgM6fP0/PPfcceXl5UUVFBdcnLCyMhgwZQomJifTf//6X+vXrRzNmzODai4uLydXVlcLDw+nSpUu0Y8cOsrGxoa+++orrc/r0aRIIBLRmzRrKyMigZcuWkUgkoosXL7aoFktiYTOTqKgoGjJkSKNtGo2GRCIR7dmzh5uXmZlJACghIYGIjC9iPp9ParWa67Np0yaSy+VUVVVFRETvvPMODRo0yGTZ06ZNo9DQUO5+YGAgzZ8/n7uv1+vJ3d2dYmJi2ryND3owbAaDgZRKJa1du5abp9FoSCKR0I4dO4iIKCMjgwBQcnIy1+fIkSPE4/Ho1q1bRET05ZdfkoODA7fdRESRkZHk4+PD3Z86dSpNnDjRpJ6goCB67bXXml2LpbGPkWZ09epVuLu7o2/fvggPD0dubi4AIDU1FTqdDiEhIVzfAQMGoE+fPtyQoYSEBPj5+Zn8aB8aGgqtVov09HSuT/1l1PWpW0bd0KT6fZoammROOTk5UKvVJuu3t7dHUFCQyXYqFAoMHz6c6xMSEgI+n4+kpCSuz9ixYyEWi7k+oaGhyMrKQlFREdfnUc9Fc2qxNBY2MwkKCkJsbCyOHj2KTZs2IScnB2PGjEFJSQnUajXEYnGDA6NdXV2hVqsBAGq1utEhRXVtj+qj1WpRUVHxyKFJdctoT3XreNT61Wo1XFxcTNqFQiEcHR3N8lzUb2+qFkvrsIdrdTYTJkzgbg8ePBhBQUHw8PDA7t27YWNjY8XKmI6CvbO1E4VCAW9vb2RnZ0OpVKK6uhoajcakT/0hQ0qlstEhRXVtj+ojl8thY2PTqqFJ5lS3jketX6lUNjiPTE1NDQoLC83yXNRvb6oWS2NhayelpaW4du0a3NzcEBAQAJFIZDJkKCsrC7m5udyQoeDgYFy8eNHkhXjixAnI5XL4+vpyfeovo65P3TKsPTTJy8sLSqXSZP1arRZJSUkm26nRaJCamsr1+eWXX2AwGBAUFMT1OXXqlMn5PE+cOAEfHx84ODhwfR71XDSnFouzym6ZLmjx4sV08uRJysnJodOnT1NISAg5OTlRfn4+ERl3/ffp04d++eUXSklJoeDgYAoODuYeX7frf/z48ZSWlkZHjx4lZ2fnRnf9L1myhDIzM2njxo2N7vqXSCQUGxtLGRkZNHfuXFIoFCZ7OduipKSEzp07R+fOnSMAtG7dOjp37hzduHGDiIy72xUKBf3rX/+iCxcu0OTJkxvd9e/v709JSUn066+/Uv/+/U12/Ws0GnJ1daW//e1vdOnSJdq5cyfJZLIGu/6FQiF98sknlJmZSVFRUY3u+m+qFktiYTOTadOmkZubG4nFYurVqxdNmzaNsrOzufaKigp64403yMHBgWQyGf3lL3+hO3fumCzj+vXrNGHCBLKxsSEnJydavHgx6XQ6kz7x8fE0dOhQEovF1LdvX9q6dWuDWj7//HPq06cPicViCgwMpMTERLNtZ3x8PAFoMEVERBCRcZf78uXLydXVlSQSCT3zzDOUlZVlsoyCggKaMWMG2dnZkVwup1mzZlFJSYlJn/Pnz9Po0aNJIpFQr1696OOPP25Qy+7du8nb25vEYjENGjSIDh06ZNLenFosiQ2xYRgLYd/ZGMZCWNgYxkJY2BjGQljYGMZCWNgYxkJY2BjGQljYGMZCWNgYxkJY2BjGQljYOrlx48bhrbfesnYZnI5WT0fCwsagurra2iV0D1Y7KpNps4iIiAYHBGdnZ9Orr75Knp6eJJVKydvbm9avX9/gcZMnT6YPP/yQ3NzcyNPTk4iMR9IPGTKEJBIJBQQE0P79+wkAnTt3jnvsxYsXKSwsjGxtbcnFxYX++te/cic2aqyenJwcSz0dHR4LWyem0WgoODiY5syZw53Rq7KyklasWEHJycn0+++/0w8//EAymYx27drFPS4iIoLs7Oy4ISyXLl2i4uJicnR0pL/+9a+Unp5Ohw8fJm9vb5OwFRUVccN+MjMz6ezZs/Tss8/SU0899dB6ampqrPHUdEjstAidmL29PcRiMWQymcno4/qXO/by8kJCQgJ2796NqVOncvNtbW3xv//7v9xJdTZv3gwej4dvvvkGUqkUvr6+uHXrFubMmcM95osvvoC/vz8++ugjbt6WLVugUqlw5coVeHt7N1oPY8TC1gVt3LgRW7ZsQW5uLioqKlBdXY2hQ4ea9PHz8zM5e1VWVhYGDx4MqVTKzQsMDDR5zPnz5xEfHw87O7sG67x27Rq8vb3NuyFdDAtbF7Nz5068/fbb+Oc//4ng4GD06NEDa9eu5U4TV8fW1rbFyy4tLcWkSZOwevXqBm1ubm6trrm7YGHr5MRiMfR6PXf/9OnTGDVqFN544w1u3rVr15pcjo+PD3744QdUVVVxFyJMTk426TNs2DDs3bsXnp6eEAobf+k8WA9zH9v138l5enoiKSkJ169fx71799C/f3+kpKTg2LFjuHLlCpYvX94gNI2ZOXMmDAYD5s6di8zMTBw7dgyffPIJAIDH4wEA5s+fj8LCQsyYMQPJycm4du0ajh07hlmzZnEBe7Aeg8HQfhvfybCwdXJvv/02BAIBfH194ezsjNDQUDz//POYNm0agoKCUFBQYPIu9zByuRw//fQT0tLSMHToULz33ntYsWIFAHDf49zd3XH69Gno9XqMHz8efn5+eOutt6BQKMDn8xutp+6s0Ay7zC/zCNu3b8esWbNQXFzMTjRrBuw7G8PZtm0b+vbti169euH8+fOIjIzE1KlTWdDMhIWN4ajVaqxYsQJqtRpubm546aWXsGrVKmuX1WWwj5EMYyFsBwnDWAgLG8NYCAsbw1gICxvDWAgLG8NYCAsbw1gICxvDWAgLG8NYyP8HyOndm549lxMAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_monitoring_metric('total_cpu_util_s', component='loader').max() - evaluation.get_monitoring_metric('total_cpu_util_s', component='loader').min()\n",
+ "plot_metric(df, \"Compute Time\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Maxmimum CPU Util"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 72,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAM4AAADsCAYAAAA8e5n5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAuyklEQVR4nO2de1wUVf/HP7vL7sICy4LKzUC8AYIIqImgphaJZqZZSWqJaJaPmPlo3p5SKTO8lD+fzNTqUSo1tRLLSyjeMlFJFEgECRUFlRUV2OW27C57fn8MjKxcd4GF3T3v12tezMw5M+c7w3x2zpxzvufLIYQQUCgUneC2twEUijFChUOh6AEVDoWiB1Q4FIoeUOFQKHpAhUOh6AEVDoWiB1Q4FIoeUOFQKHpAhUOh6AEVjgGYPn06OBwOZs+eXSctKioKHA4H06dPb3M7lEol1q1bB39/f4hEInTu3BlDhgzBjh07oFKptGzlcDgQCATo1asXPv74Y6jVagBAbGwsJBJJvefncDg4cOBAm19HR4AKx0C4ublhz549qKioYPcpFArs3r0b7u7ubV6+UqlEWFgY1qxZg7fffhvnzp3DX3/9haioKGzatAlXr15l844ePRr5+fnIzs7GwoULER0djfXr17e5jcYEFY6B6N+/P9zc3LB//3523/79++Hu7o7AwECtvPHx8Rg6dCgkEgk6deqEF198ETdu3GDTv//+e9jY2CA7O5vdN2fOHHh7e6O8vLze8jdu3IgzZ87gxIkTiIqKQkBAAHr06IEpU6YgKSkJvXv3ZvMKhUI4OzujW7du+Ne//oXQ0FD89ttvrXUrTAIqHAMyY8YM7Nixg93evn07IiMj6+QrKyvDggULkJycjBMnToDL5eLll1+GRqMBAEybNg0vvPACpk6dCrVajcOHD+Pbb7/Frl27IBKJ6i17165dCA0NrSNSAODz+bC2tm7QbisrKyiVSl0v16ShwjEgb7zxBs6ePYvbt2/j9u3bSExMxBtvvFEn3yuvvIKJEyeiV69eCAgIwPbt23HlyhVkZGSwebZt24b8/HzMmzcPM2fORHR0NAYMGNBg2dnZ2fD29tbJXkIIjh8/jqNHj+LZZ5/V6VhTx6K9DTAnunTpgrFjxyI2NhaEEIwdOxadO3euky87OxsrVqxAUlISHj58yL5pcnNz0bdvXwCAvb09/ve//yEsLAwhISFYunRpo2Xr4nZ16NAh2NjYQKVSQaPRYMqUKYiOjm7+hZoBVDgGZsaMGZg7dy4AYPPmzfXmGTduHLp164ZvvvkGrq6u0Gg06Nu3b53q0pkzZ8Dj8ZCfn4+ysjLY2to2WK6npyeuXbvWLBtHjhyJLVu2QCAQwNXVFRYWjx8TsViMsrIyaDQacLmPKyzFxcUAADs7u2aVYezQqpqBGT16NJRKJVQqFcLCwuqkP3r0CFlZWfjwww/x3HPPoU+fPigqKqqT79y5c1i7di0OHjwIGxsbVowNMWXKFBw/fhwpKSl10lQqFcrKythta2tr9OrVC+7u7lqiAQAvLy+o1WqkpqZq7b98+TIARqDmABWOgeHxeMjMzERGRgZ4PF6ddHt7e3Tq1Alff/01rl+/jpMnT2LBggVaeUpKSvDmm29i3rx5GDNmDHbt2oW9e/fi559/brDc+fPnY8iQIXjuueewefNmpKWl4ebNm9i3bx8GDx6s1ULXGL6+vhg1ahRmzJiBEydOICcnB/Hx8ZgzZw7Cw8PRtWtX3W6IsUIobU5ERAQZP358g+njx48nERER7HZCQgLp06cPEQqFpF+/fuT06dMEAImLiyOEEBIZGUn8/PyIQqFgj/n888+Jg4MDuXPnToPlKBQKEhMTQ/z8/IilpSVxcHAgQ4YMIbGxsUSlUjXLVkIIKSoqIvPmzSM9e/YkVlZWpHfv3mTx4sWkpKSkyXthKnAIoZN1UCi6QqtqFIoeUOFQKHpAhUOh6AEVDoWiB1Q4FIoeUOFQKHpgFENuNBoN7t27B1tbW3A4nPY2h2LCEEJQUlICV1dXrSFFT2IUwrl37x7c3Nza2wyKGZGXl4ennnqqwXSjEE7N4MW8vDyIxeJ2toZiysjlcri5uTU6YBaAbkNuPv30UzJw4EBiY2NDunTpQsaPH0+uXbvW5HH79u0jXl5eRCgUkr59+5LDhw/rNLxBJpMRAEQmk+l0HIWiK8191nRqHPjjjz8QFRWFCxcuICEhASqVCqNGjdIaWfsk586dw+TJkzFz5kykpKRgwoQJmDBhAtLT03UpmkLpULRorNqDBw/g6OiIP/74A88880y9ecLDw1FWVoZDhw6x+wYPHoyAgABs3bq1WeXI5XLY2dlBJpPRqhqlTWnus9ai5miZTAYAcHBwaDDP+fPnERoaqrUvLCwM58+fb/CYyspKyOVyrYVC6UjoLRyNRsP6eNS489aHVCqFk5OT1j4nJydIpdIGj4mJiYGdnR27GKxFrbIU2PYMsDscUCkMUybFKNFbOFFRUUhPT8eePXta0x4AwLJlyyCTydglLy+v1cuol3/igfw05u+vc4BqX38K5Un0Es7cuXNx6NAhnDp1qtG2bgBwdnbG/fv3tfbdv38fzs7ODR4jFAohFou1FoOQceDxevovwMlVhinXlMhNAn6KBApvtrclbYpOwiGEYO7cuYiLi8PJkyfRvXv3Jo8JDg7GiRMntPYlJCQgODhYN0vbGmUZkH2cWQ+u9t8/uwG4FNtuJhkdKgXwy1vA1f3AT9MBtenOxaaTcKKiorBz507s3r0btra2kEqlkEqlWtO6Tps2DcuWLWO333vvPcTHx+Pzzz/HtWvXEB0djeTk5CYnlzA42QmAugKQdANGfQKMqL6GQwuA68fb1zZj4fyXgCyXWc9PA86Y7rS5Oglny5YtkMlkGDFiBFxcXNhl7969bJ7c3Fzk5+ez2yEhIdi9eze+/vpr+Pv74+eff8aBAwcabVBoFzJ+Zf76jAc4HGD4EsB/MkCqgH3TASntd2oUeT7w5wZmve+rzN8/PwfuJLefTW2IUcw50Ob9OKoKYF1PQFUGvHUSeKp6Rky1Etg5Ebj1JyDuCrx1HBC7tn75psCBOUDqLqDrQGBmAhD3NnDlJ8ChJzD7T0DQ8BS7HQmD9OOYDDdOMqIRPwV07f94v4UACP8B6OwFyO8CuycBlSXtZ2dH5e5lRjQAMHoNwOUCL6wHbF2BwhtAwsr2ta8NoMIBalXTXmKqabWxsgem/gRYdwGkV5gWoyq14W3sqBACxFd/D/pNAtyeZtat7IEJ1TOVXvwGuH6i/uONFCocdSWQ9Tuz7jO+/jz23YApewELK+B6AvD7IuaBoTAtaHkXAL4ICI3WTuv5LDDobWb91yigou6MpMYKFc7NP4BKOWDjDDw1qOF8XQcAr3wLgAMkbwfOfWEwEzssqorH1bAh8wG7embxDP0I6NQLKMkHDr9vUPPaEiqcmmpan3FM3bwx+rwIjI5h1hNWAFfj2ta2js65TYAsj/k2DHm3/jwCEfDy1wCHB6T/zHQsmwDmLZwqFXCtetR2Q9W0Jxn8LyCoOpbn/neYnnJzRH4POPt/zPrzHzECaYinBgDDFjLrhxYwTddGjnkL59afgKIYEHUGuoU0/7iwTwGvF4CqSmDPZODRjaaPMTWOfwSoygG3IKDvK03nH74YcAlg7vevUUb/jWjewmGraS8C3LqRAxqEy2O+d1wDgfJHwK7XgPLCtrGxI3InGfi7enDv6Ji6LZH1weMDE78GeELgxgnmO9GIMV/hVKmBTB2rabURWAOT9wJ27kxfxZ4p5uGKQAgQXx39zX8y02jSXLp4PW55O/ahUb+pzVc4ueeA8odMf4PHMP3OYesETN0HCO2A3PPm4Ypw5WfgzkWAbw08p0fHZtBs5n6ryoG42UbbJ2a+wsmoDj/uNZapRuiLYx9mdAHXwvRdEZRlwPFqsQz7NyB20f0cXC4wYQsgFAN3/gISN7aqiYbCPIWj0QCZ1cLRp5r2JD2GAy9tYtbPbgAufdfyc3ZEEr9ghh7ZuT92vdAHiRswZh2zfjqGGUltZJincPKSgNL7TBWrx/DWOWfAFGZENQAc+rfJDTGB7A6Q+F9m/fmPAL5Vy87n/zrg/SKgUTPN+kb2fWiewql523iNBiyErXfeEcuAfq9XuyJEmJYrwvFoxl/JPRjwfbnl5+NwgHH/ZcYAPsg0uiqu+QlHo9H2vWlNOBymyuYxDFCWMKOp5fdat4z2IO8vxkUAnOY3PzcH686Pq7jnNwO3zrbOeQ2A+Qnn3mWmni6wYQYhtjasK4KnabgiaDSPm58DpjJ9V62J1xgg8E0ABIj7F6AwjqnAzE84NW8bz7CW19Mb4klXhF2TmF9TY+wtv7IPuHuJ+aF5bnnblBH2KSBxZ9yujy5rOn8HwLyEQ0it0QIvtW1Z9h5MB6mFFdNnFDsW2DwIOP+V8YwyqCxlvm0AYNgCwLbhmYlahKUYmLAVAAdI2QlcO9w25bQi5iWc/DSg+DbzMPd+vu3Le2oA8PZpoH8E02H48B/mF3VDH6bzLzepY7+FEv/LuANIugGDo9q2LI8hQEh1E/dv84DSB21bXgsxL+HUtKb1ft5wPvCO3sBLXwALrwFjPwec+gJqBZD2I7B9FLBlCPDXN4BCZhh7mktx7mOfo1GrAL5l25c58kPA0YcZ0XFofof+UTEf4RACXD3ArLd2a1pzsBQDT78FzD4LzDzOfGhbWAIFV4Ej7wOfewO/zmX89zsCCSsZgXcb2vbV2hr4lsDL2wAun3H3SN1tmHL1wHyEU5DBDMbkCYHeo9rPDg6H8cuf8BXzFhq9FujizYzdSvkB+GYkM3918g7mG6M9yL3AuESDA4z+tPWan5uDSz9gZHUDwe9LmDdfa6PRtPjems/0UKc+Bf5Yy/jRTP6xdQ1sKYQwg0STdzDT8FZVz4ApsAX6vQYMiGQeKEOg0TDizU8F+k973M9iSDRVwI4xzAgPj2HAtN+a9s6tjVoJyO8AxXmMhyr7N5f5K7vLuJK8Flvn0OY+a0YRyrBVqBnUaahqhy5wOIwjXbcQZnqltN2MiApvMH4ryduZ+coGRgK+Exv3tmwpaT8yohHYAs+2UfNzU3B5zEDQrcMYZ8OkLUBwrcaJytJagsitK5ASKYAm3geyuy0y0TzeOA+ymKZgLh9YlM30s3R0CAFyzgCXdjB+QxoVs19oB/i9CniPBTyGtu6QocpSYFN/Zhxf6EfA0Pmtd259SN7OjPvjCZkGnZo3RnNmy7GwBOzcmAGl7F/3x9u2LgCv7nuDvnFqU/O26THCOEQDMG+hHsOZpbSA6d+4FMs0pyf/j1lqRj94jma+22y6tKzMsxsY0dh3Z+ZWaG8GRALXjjBTctXMDVGDpZ22EJ4UiHXnNv020/mNc+bMGaxfvx6XLl1Cfn4+4uLiMGHChAbznz59GiNHjqyzPz8/v9FQH7Vp8Rtn61CmB/+lL4H+b+p+fEdBowFunmJm18k+xjzkLBzgqYHMiAjPMYCTr24PTtEt4MtBzDwK4buYb4COQHkh8+axtNMWiGXbhH5pszdOWVkZ/P39MWPGDEycOLHZx2VlZWkZ4ujoqGvR+vHoBiMaDo+p3hgzXC7Q6zlm0WiA/BTgn6PMhIrSvxnPzDsXgZOfMA+XZxjzNvIY1nQ/TMJKRjQewzrWfRI5AM90vPnYdBbOmDFjMGbMGJ0LcnR0hEQi0fm4FlPT6dl9GPNPMDIIISipVKO4TIXCciWKypXQaAicxJZwFPui0/D+4I38DzMK+5+jTDS5m6eZb4GL3zILXwT0GMm4UfQeVXfozK1EpjWPw2UaJwzZ/GykGOwbJyAgAJWVlejbty+io6MxZMiQBvNWVlaisrKS3W5R8Nya75v26PR8AnWVBsUVKhSXK1FUrkJRGSOEonIVisqVKC5TVW8z+4rLlSguV0Gtabg2zeNy4GgrhKPYEk62fnASP42uQR/CV5mGnkVn0SX/FPhlUiDrMLMAgGt/5k3kNZoZyVAz+rl/BODcMcKvEEIgr1DjQakCj0qVqO8WNKTv+nZznshsZ8WHl7Ot3va1uXBcXFywdetWDBw4EJWVlfj2228xYsQIJCUloX///vUeExMTg48++qjlhRfnMm4E4DDehq1ApboK8go15AoVZBUqyCtUkCvUkFdUbytUTDq7rkJxhQqFZUqUKPSfmMKSz4WDSACJSAAuFyiQV+JhaSWqNAT5MgXyZU96UNoDGAfgRfhybmOURQqe56fCR5PN3JN7l4HTn0LJt4NAJUMV3xY5fedDWFgOkYAHkcAClnxunQeupZRVqvGghLH9QUklHlT/ZbdLaraVUFa13cQnz3h2wfczGpnyuAla1BzN4XCabByoj+HDh8Pd3R0//PBDven1vXHc3Nx0bxw49yVw7ANm2Ehk0yNuCSE4fCUfSTcL2YderlDXEogKClXL/5liSws4WDMisBfxYS+qtW4tgH31ukQkgL01k27Jrzvvm7pKg4elStyXK5ilpBIFcgWkssfr9+UKFJWr2GO6oBgjeKkI5V7GUO4VWHOY+/yJaiq+rdL+tuFwACs+IyJGTDxYVf/V2se3gLWwOo3PgwWPi8IyZS0RPBZIubJK53vVyUYIC662gBt6aOt7nOvL+3Q3B6x9tW6ncodujh40aBDOnm3Y208oFEIobIX+CR09PX9Lu4f39qQ2mY/DAWyFFhBb8WFnxYfYkg+xlQXEltXbVnyILR+n21nxWWHYWfFhwWudkU4WPC6c7SzhbNf4h79CVYUHJZXVAqvEfXkILssVSCiWofPDi+BUPMJRy6FwUBGUK9XsjwMhQLmySueHvSms+Dw4ioXoYiNEZxshutg+Xmpvd7Ku/wejI9AuwklNTYWLix5TC+mC/B4z/RDATKjeBI9KK/HRwQwAwNh+Lgh0k1QLoEYMFtUC4cNWaAEu13g+oC35PLg5iODmUN+Ig8EAgCW19mg0BBWqqmrRqFnxVDyxXa5Uo0JZhTJlFSpq9quqoFJr0MlGwAjDlhFIbWFYC42/+1DnKygtLcX169fZ7ZycHKSmpsLBwQHu7u5YtmwZ7t69i++//x4AsHHjRnTv3h2+vr5QKBT49ttvcfLkSRw7dqz1rqI+Mg8yf92CmjX/V/TBDBSWKeHtbIuN4QHgt9JbwRjhcjmwFlpUP+CtODLBhNBZOMnJyVodmgsWLAAAREREIDY2Fvn5+cjNfTyiValUYuHChbh79y5EIhH69euH48eP19sp2qroUE07dlWKg2n3wONysP5Vf7MWDaV5mOZYtdIC4DNPAASYn870NjeArEKF5zf8gYKSSswe3hNLx3i3nuEUo8O8g+dmHgRAmP6KRkQDAKsPZ6CgpBI9ulhjfmhvw9hHMXpMUzjNrKb9mf0A+5LvgMMB1r3Sr8O24FA6HqYnnLJHjye282nY96asUo2lv1wBAEQEe2Cgh/ENx6G0H6YnnKzDzBS0zn6AQ48Gs62Lv4a7xRV4yt4Ki8K8DGggxRQwPeE0o5p28VYhvjt/GwAQM9HPJPoVKIbFtIRTUcSMDAYAnwn1ZlGoqrDk578BAOED3TCsdwudvyhmiWkJJyueCRvh6AN0rr+FbOPxbNx8WAYnsRD/GdvHwAZSTAXTEk4T09v+facY3/x5EwDwyQQ/2Fm1IBIbxawxHeEo5Ew0Y6De7xulWoPFP/+NKg3BOH9XPO/jZGADKaaE6Qgn+xgzH1mn3kxczifYcvoGrklL4GAtQPQ4n3YwkGJKmI5wMg4wf31equMamCUtwZensgEA0S/5opMNHbhIaRmmIRxlGZB9nFl/opqmrtJg8c9pUFURhPZxwrh+bezOQDELTEM42QlMfEp7D8BZ26tve2IO0u7IYGtpgdUv9211V2CKeWIawqndmlZLGDkPy/D5sX8AAB+O7QMnsQFCVVDMAuMXjqqCmRYJ0Or01GgIlvzyNyrVGgzt1RmTBjY+SppC0QXjF871E4CqDBA/BXR9PGvOrr9y8VdOIUQCHmIm+tEqGqVVMX7h1Ew46DOerabdKSrHmiOZAIDFYV4N+NpTKPpj3MJRVzLTvwKsCwEhBP+JS0eZsgoDu9ljWrBH+9lHMVmMWzg3TwOVcsDGGXiKmVzul8t3ceafBxBYcLH21X5GNRsNxXgw7vH0Nk6A/2RA7ApwuSiQK/DxwasAgH+HeqJnF5t2NpBiqhi3cFwDgJe3AmCqaMt/TYdcoYZfVzvMGta9fW2jmDTGXVWrxZErUhy9eh8WXA7WvtKv1WbLpFDqwySerqIyJVb+lg4AmDOiJ3xc2yboEIVSg0kI5+NDGXhYqkRvRxtEPdurvc2hmAFGL5yT1+4jLuUuuBxg3av9ILSgUzxR2h6jFo5cocJ/9jNVtJlDuyPQ3UgC41KMHp2Fc+bMGYwbNw6urq7gcDg4cOBAk8ecPn0a/fv3h1AoRK9evRAbG6uHqXXZdzEPUrkCHp1EWPA8neKJYjjaPHhuTk4Oxo4di9mzZ2PXrl04ceIE3nrrLbi4uCAsLEwvo2uYObQ7bIQW6N7ZGlYCWkWjGI42j8i2ZMkSHD58GOnp6ey+119/HcXFxYiPj29WOS0O106hNJMOE5Ht/PnzCA0N1doXFhaG+fPnN3iMPsFzNRoNlEql3naaI3w+HzwefVPrQ5sLRyqVwslJe0YZJycnyOVyVFRUwMrKqs4xugbPVSqVyMnJgUbTdsFWTRWJRAJnZ2fqdqEjHXLIzbJly9iAVcDj4Ln1QQhBfn4+eDwe3NzcwOUadUOhwSCEoLy8HAUFBQDQ9qElTYw2F46zszPu37+vte/+/fsQi8X1vm0A3YLnqtVqlJeXw9XVFSIR9bvRhZr7X1BQAEdHR1pt04E2/3kODg7GiRMntPYlJCQgODi4Vc5fVcVERBYIBK1yPnOj5sdGpVI1kZNSG52FU1paitTUVKSmpgJ4HDy3Ju7nsmXLMG3aNDb/7NmzcfPmTSxevBjXrl3DV199hX379uHf//5361xBNbSOrh/0vukJ0ZFTp04RAHWWiIgIQgghERERZPjw4XWOCQgIIAKBgPTo0YPs2LFDpzJlMhkBQGQyWZ20iooKkpGRQSoqKnS9FAqh9+9JGnvWaqPzN86IESNAGun6qW9UwIgRI5CSkqJrUZRm0pz+NErrQpugKBQ9oMKhUPTApIUzYsQIzJs3D4sXL4aDgwOcnZ0RHR3Npt+6dQscDodt6ACA4uJicDgcnD59GgAzQJXD4eDo0aMIDAyElZUVnn32WRQUFOD3339Hnz59IBaLMWXKFJSXlzdoS2xsLCQSCQ4cOIDevXvD0tISYWFhyMvL08q3ZcsW9OzZEwKBAF5eXvjhhx+00rOzs/HMM8/A0tISPj4+SEhI0EpXKpWYO3cuXFxcYGlpiW7duiEmJka/G0hpEJMWDgB89913sLa2RlJSEtatW4ePP/64zsPWHKKjo/Hll1/i3LlzyMvLw6RJk7Bx40bs3r0bhw8fxrFjx7Bp06ZGz1FeXo7Vq1fj+++/R2JiIoqLi/H666+z6XFxcXjvvfewcOFCpKen45133kFkZCROnToFgBlWNHHiRAgEAiQlJWHr1q1YsmSJVhlffPEFfvvtN+zbtw9ZWVnYtWsXPDw8dL5eShMYpq2iZejbqjZ8+HAydOhQrX1PP/00WbJkCSGEkJycHAKApKSksOlFRUUEADl16hQh5HEr4vHjx9k8MTExBAC5ceMGu++dd94hYWFhDV7Djh07CABy4cIFdl9mZiYBQJKSkgghhISEhJBZs2ZpHffaa6+RF154gRBCyNGjR4mFhQW5e/cum/77778TACQuLo4QQsi7775Lnn32WaLRaBq0pTa0VU2b5raqmfwbp18/7egFLi4u7DATfc/j5OQEkUiEHj16aO1r6rwWFhZ4+umn2W1vb29IJBJkZjKzjmZmZmLIkCFaxwwZMkQr3c3NDa6urmz6kx3J06dPR2pqKry8vDBv3jwcO3ZMxyulNAeTFw6frx3nk8PhsINBa8a1kVrN6w31oNc+D4fDafS87Un//v2Rk5ODVatWoaKiApMmTcKrr77a3maZHCYvnMbo0oUJ1Z6fn8/uq91Q0Nqo1WokJyez21lZWSguLkafPkzoxT59+iAxMVHrmMTERPj4+LDpeXl5WvZeuHChTjlisRjh4eH45ptvsHfvXvzyyy8oLCxsi0syWzrk6GhDYWVlhcGDB2PNmjXo3r07CgoK8OGHH7ZZeXw+H++++y6++OILWFhYYO7cuRg8eDAGDWKm7120aBEmTZqEwMBAhIaG4uDBg9i/fz+OH2eizYWGhsLT0xMRERFYv3495HI5PvjgA60yNmzYABcXFwQGBoLL5eKnn36Cs7MzJBJJm12XOWLWbxwA2L59O9RqNQYMGID58+fjk08+abOyRCIRlixZgilTpmDIkCGwsbHB3r172fQJEybgv//9Lz777DP4+vpi27Zt2LFjB0aMGAGAqVrGxcWhoqICgwYNwltvvYXVq1drlWFra4t169Zh4MCBePrpp3Hr1i0cOXKEulu0Mi1ynTYUjbmzKhQK5OTkoHv37rC07LgR12JjYzF//nwUFxe3tylaGMv9MxTNdZ2mP0MUih5Q4VAoekCFYyCmT5/e4appFP2hwqFQ9IAKh0LRAyocCkUPqHAoFD2gwqFQ9IAKh0LRAyocCkUPqHCMAH1iElHaFiocI6AmJtHmzZvb2xRKNWbtVkAIQYWqyuDlWvF5Os2gOWbMGIwZM6YNLaLoilkLp0JVBZ8VRw1ebsbHYRAJzPrWGz20qkah6IFeP3ubN2/G+vXrIZVK4e/vj02bNrFejE8SGxuLyMhIrX1CoRAKhUKfolsVKz4PGR+3LA6pvuVSjBudhbN3714sWLAAW7duRVBQEDZu3IiwsDBkZWXB0dGx3mPEYjGysrLY7Y4yQz6Hw6FVJope6FxV27BhA2bNmoXIyEj4+Phg69atEIlE2L59e4PHcDgcODs7s8uToQ0pFGNDJ+EolUpcunRJKxgul8tFaGgozp8/3+BxpaWl6NatG9zc3DB+/HhcvXq10XIqKyshl8u1FnOmqZhEFMOjk3AePnyIqqqqeoPhSqXSeo/x8vLC9u3b8euvv2Lnzp3QaDQICQnBnTt3GiwnJiYGdnZ27NJQ/E9zITk5GYGBgQgMDAQALFiwAIGBgVixYkU7W2a+tHkFPzg4WGu2yZCQEPTp0wfbtm3DqlWr6j1Gl+C55kBTMYkohkcn4XTu3Bk8Hq/eYLjOzs7NOgefz0dgYCCuX7/eYB5dgudSKO2BTlU1gUCAAQMGaAXD1Wg0OHHiRLOD4VZVVeHKlSs0PDjFqNG5qrZgwQJERERg4MCBGDRoEDZu3IiysjK2r2batGno2rUrG5Pl448/xuDBg9GrVy8UFxdj/fr1uH37Nt56663WvRIKxYDoLJzw8HA8ePAAK1asgFQqRUBAAOLj49kGg9zcXK1ZI4uKijBr1ixIpVLY29tjwIABOHfuHDsfMoVijNCZPM0cev+0oTN5UihtCBUOhaIHVDgUih5Q4VAoekCFQ6HoARWOEVBVVYXly5eje/fusLKyQs+ePbFq1So6DKcdoc4oRsDatWuxZcsWfPfdd/D19UVycjIiIyNhZ2eHefPmtbd5Zol5C4cQQFVu+HL5IkAHZ75z585h/PjxGDt2LADAw8MDP/74I/7666+2spDSBOYtHFU58Kmr4cv9zz1AYN3s7CEhIfj666/xzz//wNPTE2lpaTh79iw2bNjQhkZSGsO8hWMkLF26FHK5HN7e3uDxeKiqqsLq1asxderU9jbNbDFv4fBFzK9/e5SrA/v27cOuXbuwe/du+Pr6IjU1FfPnz4erqysiIiLayEhKY5i3cDgcnapM7cWiRYuwdOlSvP766wAAPz8/3L59GzExMVQ47QRtjjYCysvLtUacAwCPx4NGo2kniyjm/cYxEsaNG4fVq1fD3d0dvr6+SElJwYYNGzBjxoz2Ns1socIxAjZt2oTly5djzpw5KCgogKurK9555x06WUc7QoVjBNja2mLjxo3YuHFje5tCqYZ+41AoekCFQ6HoARUOhaIHVDgUih6YjHDoEHv9oPdNP4xeODweE2tGqVS2syXGSXk5Mzqcz+e3syXGhdE3R1tYWEAkEuHBgwfg8/l1etgp9UMIQXl5OQoKCiCRSNgfIErzMHrhcDgcuLi4ICcnB7dv325vc4wOiUTS7Hm/KY8xeuEAzJzWvXv3ptU1HeHz+fRNoycmIRyACXBFZ6KkGAq9Pgg2b94MDw8PWFpaIigoqEkX3p9++gne3t6wtLSEn58fjhw5opexFEpHQWfh1ATPXblyJS5fvgx/f3+EhYWhoKCg3vznzp3D5MmTMXPmTKSkpGDChAmYMGEC0tPTW2w8hdJuEB0ZNGgQiYqKYrerqqqIq6sriYmJqTf/pEmTyNixY7X2BQUFkXfeeafZZcpkMgKAyGQyXc2lUHSiuc+aTt84NcFzly1bxu5rKnju+fPntcISAkBYWBgOHDjQYDmVlZWorKxkt2UyGQCYfRBdSttT84yRJjqGdRJOY8Fzr127Vu8xUqlUp2C7ABM896OPPqqz35zjgFIMS0lJCezs7BpM75Ctak8Gz9VoNCgsLESnTp3A0WE+so5CTfDfvLy8RmOumBrGeN2EEJSUlMDVtfFpw9o8eK6zs7POwXbrC54rkUh0MbVDIhaLjeYBak2M7bobe9PU0ObBc4ODg7XyA0BCQkKzg+1SKB0SXVsd9uzZQ4RCIYmNjSUZGRnk7bffJhKJhEilUkIIIW+++SZZunQpmz8xMZFYWFiQzz77jGRmZpKVK1cSPp9Prly5omvRRou5tgqa8nXrLBxCCNm0aRNxd3cnAoGADBo0iFy4cIFNGz58OImIiNDKv2/fPuLp6UkEAgHx9fUlhw8fbpHRxoZCoSArV64kCoWivU0xKKZ83UYRPJdC6WjQMfgUih5Q4VAoekCFQ6HoARUOhaIHVDj1EB0dDQ6Ho7V4e3uz6QqFAlFRUejUqRNsbGzwyiuv1Onkzc3NxdixYyESieDo6IhFixZBrVZr5Tl9+jT69+8PoVCIXr16ITY2to4turpw6MKZM2cwbtw4uLq6gsPh1Bk/SAjBihUr4OLiAisrK4SGhiI7O1srT2FhIaZOnQqxWAyJRIKZM2eitLRUK8/ff/+NYcOGwdLSEm5ubli3bl0dW5pyPWmOLQalfRv1OiYrV64kvr6+JD8/n10ePHjAps+ePZu4ubmREydOkOTkZDJ48GASEhLCpqvVatK3b18SGhpKUlJSyJEjR0jnzp3JsmXL2Dw3b94kIpGILFiwgGRkZJBNmzYRHo9H4uPj2Tx79uwhAoGAbN++nVy9epXMmjWLSCQScv/+/Va5ziNHjpAPPviA7N+/nwAgcXFxWulr1qwhdnZ25MCBAyQtLY289NJLpHv37qSiooLNM3r0aOLv708uXLhA/vzzT9KrVy8yefJkNl0mkxEnJycydepUkp6eTn788UdiZWVFtm3bxuZJTEwkPB6PrFu3jmRkZJAPP/ywTl9fc2wxJFQ49bBy5Uri7+9fb1pxcTHh8/nkp59+YvdlZmYSAOT8+fOEEOaB5HK5bKcwIYRs2bKFiMViUllZSQghZPHixcTX11fr3OHh4SQsLIzd1tWFoyU8KRyNRkOcnZ3J+vXr2X3FxcVEKBSSH3/8kRBCSEZGBgFALl68yOb5/fffCYfDIXfv3iWEEPLVV18Re3t79roJIWTJkiXEy8uL3W7K9aQ5thgaWlVrgOzsbLi6uqJHjx6YOnUqcnNzAQCXLl2CSqVCaGgom9fb2xvu7u6sa8X58+fh5+enNSo8LCwMcrkcV69eZfPUPkdNnppz1Lhw1M7TlAtHa5KTkwOpVKpVvp2dHYKCgrSuUyKRYODAgWye0NBQcLlcJCUlsXmeeeYZCAQCNk9YWBiysrJQVFTE5mnsXjTHFkNDhVMPQUFBiI2NRXx8PLZs2YKcnBwMGzYMJSUlkEqlEAgEdQad1naVaMiVoiatsTxyuRwVFRWNunA05pLRWtSU0Vj5UqkUjo6OWukWFhZwcHBolXtRO70pWwxNh3QraG/GjBnDrvfr1w9BQUHo1q0b9u3bBysrq3a0jNJRoG+cZiCRSODp6Ynr16/D2dkZSqUSxcXFWnlqu0o05EpRk9ZYHrFYDCsrK71cOFqTmjIaK9/Z2bnOXBNqtRqFhYWtci9qpzdli6GhwmkGpaWluHHjBlxcXDBgwADw+XwtV4msrCzk5uayrhLBwcG4cuWK1kOVkJAAsVgMHx8fNk9j7hb6uHC0Jt27d4ezs7NW+XK5HElJSVrXWVxcjEuXLrF5Tp48CY1Gg6CgIDbPmTNnoFKp2DwJCQnw8vKCvb09m6exe9EcWwxOuzRJdHAWLlxITp8+TXJyckhiYiIJDQ0lnTt3JgUFBYQQpjna3d2dnDx5kiQnJ5Pg4GASHBzMHl/THD1q1CiSmppK4uPjSZcuXeptjl60aBHJzMwkmzdvrrc5ujEXjpZSUlJCUlJSSEpKCgFANmzYQFJSUsjt27cJIUwTsEQiIb/++iv5+++/yfjx4+ttjg4MDCRJSUnk7NmzpHfv3lrN0cXFxcTJyYm8+eabJD09nezZs4eIRKI6zdFNuZ40xxZDQoVTD+Hh4cTFxYUIBALStWtXEh4eTq5fv86mV1RUkDlz5hB7e3siEonIyy+/TPLz87XOcevWLTJmzBhiZWVFOnfuTBYuXEhUKpVWnlOnTpGAgAAiEAhIjx49yI4dO+rY0pgLR0s5deoUAVBnqXEL0Wg0ZPny5cTJyYkIhULy3HPPkaysLK1zPHr0iEyePJnY2NgQsVhMIiMjSUlJiVaetLQ0MnToUCIUCknXrl3JmjVr6tjSlOtJc2wxJNStgELRA/qNQ6HoARUOhaIHVDgUih5Q4VAoekCFQ6HoARUOhaIHVDgUih5Q4VAoekCFQ6HoARVOB2LEiBGYP39+e5vB0tHs6UhQ4ZgYNPK2gWi3UXIULSIiIuoMtrx+/TqZMWMG8fDwIJaWlsTT05Ns3LixznHjx48nn3zyCXFxcSEeHh6EEGbEsb+/PxEKhWTAgAEkLi6OACApKSnssVeuXCGjR48m1tbWxNHRkbzxxhvspCT12ZOTk2Oo29HhocLpIBQXF5Pg4GAya9YsdmYdhUJBVqxYQS5evEhu3rxJdu7cSUQiEdm7dy97XEREBLGxsWGH7aenpxOZTEYcHBzIG2+8Qa5evUqOHDlCPD09tYRTVFTEujpkZmaSy5cvk+eff56MHDmyQXvUanV73JoOCRVOB2L48OHkvffeazRPVFQUeeWVV9jtiIgI4uTkpDWLzJYtW0inTp20fFW++eYbLeGsWrWKjBo1SuvceXl5BAA7XL859pgrdM6BDs7mzZuxfft25ObmoqKiAkqlEgEBAVp5/Pz8tGaRycrKQr9+/WBpacnuGzRokNYxaWlpOHXqFGxsbOqUeePGDXh6erbuhZgYVDgdmD179uD999/H559/juDgYNja2mL9+vXs1Es1WFtb63zu0tJSjBs3DmvXrq2T5uLiorfN5gIVTgdCIBCgqqqK3U5MTERISAjmzJnD7rtx40aT5/Hy8sLOnTtRWVnJxlK9ePGiVp7+/fvjl19+gYeHByws6n8MnrSH8hjaHN2B8PDwQFJSEm7duoWHDx+id+/eSE5OxtGjR/HPP/9g+fLldQRQH1OmTIFGo8Hbb7+NzMxMHD16FJ999hkAsFG7o6KiUFhYiMmTJ+PixYu4ceMGjh49isjISFYsT9qj0Wja7uKNDCqcDsT7778PHo8HHx8fdOnSBWFhYZg4cSLCw8MRFBSER48eab19GkIsFuPgwYNITU1FQEAAPvjgA6xYsQIA2O8eV1dXJCYmoqqqCqNGjYKfnx/mz58PiUQCLpdbrz01s5lSADrngJmwa9cuREZGQiaT0UkVWwH6jWOifP/99+jRowe6du2KtLQ0LFmyBJMmTaKiaSWocEwUqVSKFStWQCqVwsXFBa+99hpWr17d3maZDLSqRqHoAW0coFD0gAqHQtEDKhwKRQ+ocCgUPaDCoVD0gAqHQtEDKhwKRQ+ocCgUPfh/fCOkwpfC4EYAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_monitoring_metric('total_cpu_util', component='loader').max()\n",
+ "plot_metric(df, \"Max CPU\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Maximum Util of a CPU Core"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 73,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAANcAAADsCAYAAADnwDPbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6zUlEQVR4nO2dd1gU19fHv0vZBaSDNAUsVBFRjCCQWCIRjTGiiRrU2BI1ijHGEuNrwZ8lGltM1BhLFBO7ib0jokRAFAVFRUQEQaWo9L7lvH+MrKwUKbvU+3mefZhy7r1nlvnuzNy59xweEREYDIbcUWpoBxiM5goTF4OhIJi4GAwFwcTFYCgIJi4GQ0EwcTEYCoKJi8FQEExcDIaCYOJiMBQEExejUXP58mXweDzweDx4e3vXqa4lS5ZI69qwYYNc/KsKJq7XjB8/HjweD9988025fb6+vuDxeBg/frzC/SgpKcHq1avh5OQEDQ0NGBoawsPDA7t27YJQKJTxlcfjgc/nw8rKCkuXLoVIJAIA+Pv7Q1dXt8L6eTwejh07VqUPjx49woQJE9C2bVsIBAK0b98ePj4+iIiIkOeh1ojY2Fj4+/tL1/fu3Qtzc3Po6elh1qxZMraJiYmwsbFBTk6OzPY5c+YgJSUFbdu2rQ+XmbjKYm5ujgMHDqCwsFC6raioCPv27YOFhYXC2y8pKYGXlxdWrVqFyZMnIzQ0FNevX4evry82btyIe/fuSW0HDBiAlJQUxMXFYfbs2ViyZAnWrFlTZx8iIiLQvXt3PHz4EFu3bsX9+/dx9OhR2NnZYfbs2XU6trpgZGQk/cF4+fIlvv76a6xduxYXLlzAnj17cOrUKanttGnTsGrVKmhra8vUoampCRMTEygrK9fJl+rCxFUGZ2dnmJub48iRI9JtR44cgYWFBbp16yZje+7cObz//vvQ1dWFgYEBPvnkE8THx0v3//XXX9DU1ERcXJx027Rp02BnZ4eCgoIK29+wYQOCg4MRGBgIX19fdO3aFR06dMCoUaMQHh4Oa2trqa1AIICJiQksLS0xdepUeHp64sSJE3U6fiLC+PHjYW1tjf/++w+DBg1Cx44d0bVrV/j5+eH48eNS2+joaHz44YdQV1eHgYEBJk+ejLy8POn+8ePHw9vbGytWrICZmRlsbW0BAMnJyRgxYgR0dXWhr6+PIUOGIDExsUZ+Pn78GDo6Ohg5ciR69OiBvn37IiYmBgCwf/9+qKqqYtiwYXX6LuQBE9dbTJw4Ebt27ZKu79y5ExMmTChnl5+fj1mzZiEiIgKBgYFQUlLC0KFDIZFIAABjx47Fxx9/jNGjR0MkEuH06dPYsWMH9u7dCw0NjQrb3rt3Lzw9PcsJGQBUVVXRqlWrSv1WV1ev89UhKioK9+7dw+zZs6GkVP7UKL1y5Ofnw8vLC3p6erhx4wYOHz6MixcvYvr06TL2gYGBiI2NRUBAAE6dOgWhUAgvLy9oaWnhv//+Q0hICDQ1NTFgwIAa+W5tbY2CggJERkYiIyMDN27cQJcuXZCZmYlFixZh06ZNdfoe5AYxiIho3LhxNGTIEEpPTyeBQECJiYmUmJhIampq9OLFCxoyZAiNGzeu0vIvXrwgABQdHS3dlpGRQW3btqWpU6eSsbExrVixokof1NXVacaMGdX2lYhIIpFQQEAACQQCmjNnDhER7dq1i3R0dCosC4COHj1a4b6DBw8SALp161aV7W/bto309PQoLy9Puu306dOkpKREqampUh+NjY2puLhYavP333+Tra0tSSQS6bbi4mJSV1en8+fPV9hWUFAQAaDMzEyZ7UeOHKHOnTtTx44dyc/Pj4iIJk6cSL/88gtduXKFunbtSg4ODnT48OFydVpaWtIvv/xS5THKA5WGlXbjo3Xr1hg0aBD8/f1BRBg0aBAMDQ3L2cXFxWHx4sUIDw/Hy5cvpVespKQkdO7cGQCgp6eHP//8E15eXnB3d8ePP/5YZdtUg6l1p06dgqamJoRCISQSCUaNGoUlS5ZU/0Dr0H5MTAycnJxkrqQeHh6QSCSIjY2FsbExAMDR0RF8Pl9qc/v2bTx69AhaWloy9RUVFcncUleHoUOHYujQodL1K1eu4M6dO9i4cSOsrKywf/9+mJiYwMXFBb169YKRkVGN6pcHTFwVMHHiROktzubNmyu0GTx4MCwtLbF9+3aYmZlBIpGgc+fO5W5vgoODoaysjJSUFOTn55c7scpiY2ODBw8eVMvHvn37YsuWLeDz+TAzM4OKypt/pba2NvLz8yGRSGRu77KysgAAOjo6lbYPAA8ePKjw1rSmvH0bm5eXh+7du2Pv3r3lbFu3bl3rdoqLizFt2jT8/fffePToEUQiEXr37g2AO6bw8HAMHjy41vXXFvbMVQGlzwClzwhv8+rVK8TGxmLhwoXo168f7O3tkZmZWc4uNDQUP//8M06ePAlNTc1yzyRvM2rUKFy8eBGRkZHl9gmFQuTn50vXW7VqBSsrK1hYWMgICwBsbW0hEokQFRUls/3WrVsA3ojobbp27YpOnTph3bp10itxWUrFaW9vj9u3b8v4ExISAiUlJWnHRUU4OzsjLi4ORkZGsLKykvlUJvjqsHz5cgwYMADOzs4Qi8XSVxIA972JxeJa110nFH7j2UQo+xxDRJSdnU3Z2dnS9bLPXGKxmAwMDGjMmDEUFxdHgYGB1KNHD5nnmZycHOrQoQPNmjWLiIju3LlDAoGgwmeAUoqKiuiDDz4gPT092rRpE0VFRVF8fDwdPHiQnJ2dKTIyskJfK6J///7k5OREFy9epMePH9PZs2fJ1taWRo4cWWW58PBw0tLSInd3dzp9+jTFx8fT7du3afny5dSrVy8iIsrPzydTU1P67LPPKDo6mi5dukQdOnSQeSatyMf8/HyytramPn36UHBwMD1+/JiCgoLo22+/peTk5Ar9qeyZq5R79+6RtbW19PmvoKCADAwMaMeOHXTq1CkSCAT09OlTmTL19czFxPWad52wb3doBAQEkL29PQkEAurSpQtdvnxZRlwTJkwgR0dHKioqkpZZt24d6evrl/tnl6WoqIhWrlxJjo6OpKamRvr6+uTh4UH+/v4kFAqr5SsRUWZmJs2YMYM6duxI6urqZG1tTT/88APl5ua+87uIjY2lsWPHkpmZGfH5fLK0tCQfHx+Zjo47d+5Q3759pT5OmjRJpu7KfExJSaGxY8eSoaEhCQQC6tChA02aNEnmh6wsVYlLIpGQh4cHnTx5Umb7yZMnycLCgoyNjWn79u3lytWXuHhELEANo/Fy+fJl9O3bF5mZmZWOOqkp7dq1w8yZMzFz5ky51FcZ7JmL0SRo27YtfHx86lTHTz/9BE1NTSQlJcnJq6phVy5Go6awsBDPnj0D8Gb4Um3JyMhARkYGAK53si6dKNWBiYvBUBDstpDBUBBMXAyGgmDiYjAURLMY/iSRSPD8+XNoaWmBx+M1tDuMZgwRITc3F2ZmZhXOHChLsxDX8+fPYW5u3tBuMFoQycnJ75zR3CzEVToYNjk5udzsUwZDnuTk5MDc3LzKAdilNAtxld4KamtrM3Ex6oXqPH6wDg0GQ0EwcTEYCoKJi8FQEExcjKoRC4G/vIE/+wPCwneaM97AxMWommtbgMdBQHI4EFZxyANGxTBxNUNiUnLwLEsOV5nsZ8DlVW/Wr/4C5KbVvd4WAhNXM+PQjWQM/PU/DNwQjNTsorpVdmEBIMwH2roAZs5ASR5w+Sf5ONqIySkSYu35WBQJ6xZ7g4mrGXE86hnmHbkDAMgpEmHB0egahWuTIT4IuHcU4CkBg9YBXq9FdesvIO2+nDxufFyNe4kBvwRjU9AjrLsQW6e6mLiaCefupmLWodsgAj52NAFfWQmBD9JxLOpZzSsTFQNn5nDLPSYBpl0ASzfA/lOAJMCFhfJ1vhGQX8z9GI35MxzPs4tgaaCBjzrVfmImwMTVLAiKTce3+29BLCF85twWm3ycMaOfFQBgyYn7SM+t4e1h2Cbg1SOglRHQ9//ebP/of4CSKhAfCDy6KMcjaFiuPX6FAb8GY284N/1/rJslzn3ZBi7t9etULxNXEyc0/iW++fsmhGLCoC6mWP15Fygp8TCld0c4mGkju1CIRcfuVv/2MCsZuPI6W0r/ZYC67pt9+h0A1ync8vmFgFhUrnhTorBEjCUn7uGLbdeQnFGINrrq2DfxPSzVOgb1ra7Awwt1qp+Jqwlz80kGvt4dgWKRBJ72xtgwsiuUlbgxb6rKSljzuRNUlHg4fy8Np6NTqlfpuR8BUSFg4Q50GVl+f685gLoe8CIGiPxbjkdTv0QkZmDgr8HwD00EAPi4WOD8JDu4h00Cgtdwt79JoXVqg4mriRL9NBvjd95AQYkYH1gbYtOoblBVlv13djLTxrS+3O3h4uP38CqvuOpK4wKAB6cAnjIwaC1Q0eBUdT2g9zxuOWgFUJwrj8OpN4qEYvx0JgbDt4Yh8VUBTLTVsHuiC1a+VwBN/35AwhVAVQMYtgPwXFKntpi4miAPUnPw5c5w5BaL4NJeH9u+fA9qqhUndJve1wp2JlrIyC+B34l7FdoAAIRFwJm53HLPqYCxQ+W2733F3SLmvwCubqj9gdQzUclZGPTbf9gW/BhEwOfd2+L8zA/Q+9UhwP9jIPc5YGgDTAoCugyvc3tMXE2M+Bd5GLMjHFkFQnQ118XO8T2gzq88UyJfhbs9VFbi4dSdFJy7m1qxYehvQGYCoGny5spUGSp84KNl3HLYJiD7aS2Ppn4oFomx5vwDDPs9BPEv8tFaS4AdY9/D2sHtoXPyK+D8/wESEeAwDJh0CTCyk0u7TFxNiKRXBRi9PRwv80rgYKaN3RNdoCl495Q8x7Y6mNKrAwBg4bG7yCp4K9FcZiLw3zpu2WsFoFaNOXF2gwBLD0BUBAQureGR1B93n2Xj040h2BwUDwkBQ7qaIeD7XvA0eAls6wPEnOB6QAeuAT7fCQjePQmyujBx1ZDkjAJ8vTsCvwXGIbdIWG/tPs8qxKgd15CaUwRrI038/ZUrdNRVq11+Rj9rWBlp4mVeMZaefOsl8NkfOZG0+wDo/Fn1KuTxgP7LueU7B4Fnt6rtS30gFEvwS8BDeG8OQWxaLgxa8fHHGGf8+kU36D78B9jeD8iIB7TbAhPPAa6TK37GrANMXDWAiDDv3zu4GJOG9QEP8cHqIPxxJR4FJYrtkk7PLcKYHeF4mlmIdgYa2Pu1K/Rb8d9dsAxqqspcNz0POBL5DJcevB4jGHsWeHgWUFLhRmLU5ARr4wx0+YJbvrAQaCTxZR+k5sB7cwh+DYyDSEL42NEEF77vhQG2esCJGcCxqVyPaMd+wJRgoO17CvGDiasGHI18htD4VxCoKKFD61bIKhBi1dkH6LX6MvxDElAskn8eqIz8Eny54zoev8xHG1117J3UE0baarWqy9lCD1+93x4AMP9INLJzsoGzP3A73XyB1pXn1qqUfosAFTXgSQjX09iAiMQSbA56hMEbr+Le8xzoaqhio083bB7lDIOS58CfHwG3dgPgAX3+Dxj9D9DKQGH+MHFVk6yCEqw4zWWMn9HPGhdm9sLa4U4w11fHy7xiLDl5H33XXMb+60kQissnjqsN2YVCjN0Zjti0XBhrC7Bvkiva6KrXqc7Z/W3R3rAV0nKKcePvRUBWEqDdBuj1Q+0q1GkLuL1O6hewGBDVLel5bXmUnovPtoRizflYCMUET3tjXPi+FwY7mYEXexbY1htIvQNoGABfHgH6zAPeERqtrjSLWPE5OTnQ0dFBdna2wgLUzD9yB/uvJ8PaSBOnZ3wAvgr3jykRSXD4ZjI2XXqElNej0C30NTDT0xpDuraRvtStKXnFInz5Zzgik7Jg0IqPg1PcYGWkKZdjuZ6QgXnbj+Cc6jwIeCJgxF9ApyG1r7A4F/jNGchPBwas4rryqyAjvwSRSZkoEUlQIpZAKCYIxRKUiCTcX7EEQhG3rXS9dJ9QTK/3y9pGPc1CiUgCLTUV/O9TBwzt1gY8iRi4tAwI2cA13NYFGL6L+0GoJTU515i4qkFEYgY+/yMMAHBoiluFY86KhGLsC0/C75cf4WUe9+ttZaSJ7z1tMLCzCZRqILLCEjEm+F/HtccZ0FFXxYHJPWFvKsfjIsKjX7xglROOcKWucPjhIjTVqt85UiE3/YGT3wFqusCMSECj4nF5lx6k4fuDt5FdKP/OoD62rbFqWBeY6Khx887+mQg8ucrtdJ0KfLSUe41QBxQqruDgYKxZswY3b95ESkoKjh49Cm9vb+l+IoKfnx+2b9+OrKwseHh4YMuWLbC2tq6y3s2bN2PNmjVITU2Fk5MTNm7cCBcXl2r5pEhxCcUSfPLbVcSm5WLEe22x+nOnKu0LSkTYHfoEf1yJl55A9qbamP2RDfrZG70zJFexSIxJf91E8MMX0BKoYO8kV3Rpqyuvw+G4fwI49CVKoIL+xT/jfVdXLPd2rFudEjHwx/tA+n2gpy8wQHbel1hCWB8Qi81B8QAAc311mGirga+iBFVl7sNXVoKqMo9bfr2d+8uT2gjK2Ksq86R2rbUEeM9Sj/t+E69ywspLA/iawJBNgMPQuh3fa2pyrtU4bmF+fj6cnJwwceJEDBs2rNz+1atX47fffsPu3bvRvn17LFq0CF5eXrh//z7U1Cp+ED948CBmzZqFP/74A66urtiwYQO8vLwQGxsLIyOjmrooV3b8l4DYtFzoaahi/kD7d9pr8FUwtU9HjO5pgZ1XE7DjvwTEpOTg678i4GSuizn9bfC+lWGFIhOKJfh2XySCH76Auqoydk3oIX9hleQD5+YDANI6T0ZihCkSryXhY0dTuHc0rH29Sspc1/yeYcD1bUCPrwCDjgCAF7nF+O5AJELjXwHgRp0vGGQPgUrlL79rBRE3YiRwKUBioLU9MPJvwLDqH3aFUZecryiTA5iIy1FrYmJCa9askW7LysoigUBA+/fvr7QeFxcX8vX1la6LxWIyMzOjlStXVsuP7OxsAlBpXt3akvQqn2wXniHLeafo0I2kWtWRkVdMq87GkN3Cs2Q57xRZzjtFw/8IpfDHr2TsRGIJTd93iyznnSLrBWfoatwLeRxCeQL8iPy0idZ3JirOp/lH7pDlvFP0wc+XKL9YWPf6/x7G1X9gNBERXU94RS4rAshy3imyX3SWjkVWng+6ThRkEu37gmvbT5vo38lExXlyb6Ym55pcu0sSEhKQmpoKT09P6TYdHR24uroiLCyswjIlJSW4efOmTBklJSV4enpWWqa4uBg5OTkyH3lDRFh8/C6KhBK4ttfH591r9xCs14qPeQPsEPxDX0zwaAe+shKuJ2RgxNYwjN15HbeTsyCRcO/PTt5+DlVlHraO6Q4PqzpcRSrjxUMgdBO3PHAVwNfA/IF2MNNRQ1JGAdacr9vMWwDc1YunBMScxMkT/+CLbdeQllMMKyNNnJjugSFd29S9jbd5Hsn1BsaeAZT5wCcbgKF/APxW8m+rBshVXKmp3Lg1Y2Njme3GxsbSfW/z8uVLiMXiGpVZuXIldHR0pB9FJGE4dzcVQbEvoKrMw4qhjnXOntJaSwC/wQ64PLcPRrlaQEWJh+CHLzBkcwi8NgTjn5tPoazEw29fdENfOwXcChNxs4slQsDaC7D9GACgpaaKlZ91AQD4hyYiIjGjbu0Y2aPEaQwAwDxiBSQSMT51MsNxXw9YGclvaBEArtv/0gputEVmIqBrAXx1AXhvgtxHW9SGJvmea/78+cjOzpZ+kpOT5Vp/bpEQS05yI8i/6d1Rbl3gAGCmq46fhjri0uw++My5LZR4QFx6Hng8YN1wJwx0NJVbWzLcO8pNp1AWAAN/ljn5etu0xoj32oII+OGfO3UKzHL/eQ5GPvwQeaSGrkqP8XePJPz6RVe0qsYYyBqRchvY3hcIXs09X3Xy5kZbmHWTbzt1QK7iKk0GnZYmG34rLS2t0kTRhoaGUFZWrlEZgUAgTbqgiOQL6y48RFpOMSwNNOD7ej6UvLEw0MC6EU648H1vjHdvhy2jneHdTQG3TAD3Hur86+n6H8wC9NuXM1kwqBOMtQV4/DIf6wMe1qqZwxHJGPp7CCIz+Niryo1RfP/J7+CJ6hiFqiyiEiDoJ2D7h0DaXe6l8HB/YMRubq5ZI0Ku4mrfvj1MTEwQGBgo3ZaTk4Pw8HC4ublVWIbP56N79+4yZSQSCQIDAysto0iin2bjr7BEAMCyIZ0rnSclL6yMNLHkUwcM6KygKxbAxR7MTQH02gEeMys00VFXxU9Due74Hf89RmRSZrWrLxKK8eO/dzD3nzsoFkm4K+H0ldyg2JynwLXf5XAQAFLucKK68jM3RaTTEGBauNy62eVNjcWVl5eHqKgoREVFAeA6MaKiopCUlAQej4eZM2di+fLlOHHiBKKjozF27FiYmZnJvAvr168fNm3aJF2fNWsWtm/fjt27dyMmJgZTp05Ffn4+JkyYUOcDrAliCWHBsWhICBjsZIZeNq3rtX2FkHafi5oLcNMqVCsfl9jP3hhDu7WB5PXtYXXGSj55lY/PtoTiwI1k8HjArI9ssGt8D+jp6gCefpzRf+uBvPTaH4NYyP1AbO8LpEUD6vrA57u4kSWajfh/VNOuyKCgIAJQ7jNu3Dgi4rrjFy1aRMbGxiQQCKhfv34UGxsrU4elpSX5+fnJbNu4cSNZWFgQn88nFxcXunbtWrV9kldX/K6rj8ly3inq7HeO0nIK61RXo0AiIdo5kOua3j+qWkUy84up+zKu63z1uZgqbc/fTaHOfufIct4p6rb0AgU/TJc1EIuJtvbm2j/xXe2OISWaaMv7b7rYD4wmyk2rXV1yoCbnGhv+9JrU7CJ4rr+CvGIRlg1xwJdu7eTrZENw5xBwZBKgog5Mv871plWDc3dT8M2eW1BW4uG4rwc6t9GR2S8SS7DmQiy2XnkMAHC20MXm0c4w1algUPGTUGDXQK57fmooYPTuF/EAuKvV1V+AK6u5Hk51PeDjtdx8swbsCazJudYkewsVwbJT95FXLIKTuS5GuVo2tDt1pygbOL+AW+41p9rCAoABnU0xqIspxBLCnMO3USJ6M8o/PacIo3aES4U1waMdDkx2q1hYAGDpDtgPfh1MdFH1HEi7B+zoxwXAkQgBu0+4ZyvHzxtFF3t1YeICF1TzdHQKlJV4+Glo51qPZG9UBK3kRqkbWAHu39a4+NJPHaDfio8Hqbn4/fIjAFzwzI9/u4rrCRloxVfG5lHO8BvsIJ0hUCmer4OJPgoAHgVWbicWcWHNtvbmutrVdLkoTCP3AFrGlZdrpDSLnMh1obBEjEXH7gIAJri3g4OZzjtKNAFSo4HrW7nlj9cAKoIaV2GgKcD/PnXAt/sjsenSI+QWieAfmgixhGBjrIktY7qjY+tqvv8z6Ai4TOJ6DS8sAjr04cYiliXtPjdDOCWKW7cdBHzyS5MUVSkt/sr126U4PM0shKmOGr7/yKah3ak9RMCreOD2Ae4kJQn3YrXjh7Wu8pMupujfyRgiCeHPqwkQSwjDurXBMV+P6gurlF5zuStR+j0gcs+b7WIRELyWG76UEsXZDN0GfLG3SQsLaOFXrodpudgezD07LPnUQf6jCBRJUTbw7CbwNAJ4eoP7W1hm6JJqqzeZSWoJj8fD8qGdcSspEzmFIvh92gmjXCxqNxRMQ58L2XZ+PnBpOdB5GBeS7dhUbmwgANgMBAZvALTqlgChsdCEzib5IpEQFhyNhkjCTQn3cmjE/1CJGHjx4LWIXgvpRSy4tyBlUBYAZl2Btj2ArqMAnbqP+DDSUkPA970hJoKhZs1vL2Xo8TVwYzuQ8RjYN5I7FnEJoKYDDPgZcPqiSXVYvIsWK67DN5NxIzET6qrK+N+QKqLLNgR5L4BnEW/E9OwWl3jubfTac0Jq24OLYGTcuc4zbStCr4aRpipFhc91bhz6kgtoA3CDiAf/CmgrcIRKA9EixfUqrxgrzz4AAHz/kXWdg77UmbR73OzZUjFlJpa34WtxoczKiqmVAqalKBr7wVyer6QwTmhdRzWrq1VZWqS4fjrzAFkFQtiZaGGCR/lBrPVGSQEQsAi4seOtHTygtR0noFIxtbYt38PWFOHxuGFLpcvNmBYnrrD4V/j31lPweMBPwxzLZQapN57dAo5MBl7FcetWnoB5T05QbZy555DmSjMXVSktSlzFIjEWHIsGAIxysYCzRQNMUZCIgavruYGoEhGgZQp4bwE69q1/XxgKpUWJa+uVx3j8Ih+Gmnz84CWfTBY1IiMBODoFSA7n1jt5cy9KKwlDxmjatBhxJb7Mx6YgbhjPok86QUejjnH6agIRELUXODuP6/UTaHMjJ7qMbDG3SC2RFiEuIsKi43dRIpLgfStDfOpkVn+N578CTn0HxJzk1i09uOApNRhIy2iatAhxnbj9HP/FvQRfRQnLvTvXOdhMtYm7CByfxgWnVFIFPlwAuM9oHr1+jHfS7MWVXSjEslNcAoXpfa3QzrAewm2VFAAX/bjgmABgaAt8th0wrTpaL6N50ezFteb8A7zMK0aH1q0wpXcHxTf4PIqboPjydZAX12+4xNWqDfyimlHvNHtx9bU1QtCDF1ju3Vn+4ZPLIhFz2TSCfuK62DVNAO/fAat+imuT0ahp9uLqZ2+MD6xbv3tCX13ITASOfsMN6QG4qESfbGBd7C2cZi8uAIoTFhFwez9w5gegJJcb//fxmmY3uptRO+R+1rVr1w48Hq/cx9fXt0J7f3//craVZUNpVBRkAIfGcvORSnK5oUtTrwJdfZiwGAAUcOW6ceMGxOI38e7u3r2Ljz76CMOHD6+0jLa2NmJj3yQBqLeu8tryKBA4Ng3IS+USdff9Py7YJutiZ5RB7uJq3Vo2SOOqVavQsWNH9O7du9IyPB6v0tDVjY5HF4E9XKhmGNoAw7ZzExQZjLdQ6JDwkpIS7NmzBxMnTqzyapSXlwdLS0uYm5tjyJAhuHfvXpX11kcKoUq5sob76zAMmHyFCYtRKQoV17Fjx5CVlYXx48dXamNra4udO3fi+PHj2LNnDyQSCdzd3fH06dNKy9RHCqEKSb4BJF/jckANWAnwNeqnXUaTRKERd728vMDn83Hy5MlqlxEKhbC3t4ePjw+WLVtWoU1xcTGKi4ul6zk5OTA3N1dYwnEph8YC948DXccA3psV1w6j0aLQnMjV5cmTJ7h48SKOHDlSo3Kqqqro1q0bHj16VKmNQCCAQFDHYCk1JSPhzeBbt4p7PhmMsijstnDXrl0wMjLCoEGDalROLBYjOjoapqaNLGDJtS1cLEArT8C4U0N7w2gCKERcEokEu3btwrhx46CiIntxHDt2LObPny9dX7p0KS5cuIDHjx/j1q1bGDNmDJ48eYKvv/5aEa7VjoIMIPJvbtltesP6wmgyKOS28OLFi0hKSsLEiRPL7UtKSoKS0htNZ2ZmYtKkSUhNTYWenh66d++O0NBQdOrUiK4ON3cBwgIudFmHPg3tDaOJwFIIvQtRMbChC/fCeOhWbmgTo8XCUgjJk+h/OGFpmXLvthiMasLEVRVEQNjr9LKu3ygkmi2j+cLEVRXxgUD6fYCvCXQf39DeMJoYTFxVEfr6quU8FlDXbVBXGE0PJq7KSI0GHgdxuXxdv2lobxhNECauygh7Pbypkzeg1wxyJDPqHSauish5DkQf5pbd2UtjRu1g4qqI8K1ckBkLd6BN94b2htFEYeJ6m+JcbkQGALh/27C+MJo0TFxvE7mHyzdsYAXYDGhobxhNGCausohFwLXfuWU3X0CJfT2M2sPOnrLEnACykgANA8DJp6G9YTRxWkTcwmpBBIRu5JZ7TGo24aclEglKSkoa2o0mhaqqKpSV6x7Ji4mrlKQw4PktQFkA9GhEc8nqQElJCRISEiCRSBralSaHrq4uTExM6hTmj4mrlNKhTk5fAJqtq7ZtAhARUlJSoKysDHNzc5k5dIzKISIUFBQgPT0dAOo0I56JCwBePgJiz3DLzWSmsUgkQkFBAczMzKChwaJU1QR1de6RID09HUZGRrW+RWQ/ZwBwbTMA4rreW9s0tDdyoTTqMZ/PpsnUhtIfJKFQWOs6mLjyXwJR+7jlZvjSuNGHBm+kyON7Y+K68ScgKgJMu3L5ihkMOdGyxSUsepNa1f1blp2kmcHj8XDs2LEGa1/u4lqyZEm5lEB2dnZVljl8+DDs7OygpqYGR0dHnDlzRt5uVcydA0DBS0DHnJtawmDIEYVcuRwcHJCSkiL9XL16tVLb0NBQ+Pj44KuvvkJkZCS8vb3h7e2Nu3fvKsK1N0gkb+Zs9ZwKKLOOU4Z8UYi4VFRUYGJiIv0YGhpWavvrr79iwIABmDt3Luzt7bFs2TI4Oztj06ZNinDtDXEXuKTgAm2g25eKbauR0adPH8yYMQM//PAD9PX1YWJigiVLlkj3JyYmgsfjISoqSrotKysLPB4Ply9fBgBcvnwZPB4P58+fR7du3aCuro4PP/wQ6enpOHv2LOzt7aGtrY1Ro0ahoKCgUl/8/f2hq6uLY8eOwdraGmpqavDy8kJycrKM3ZYtW9CxY0fw+XzY2tri77//ltkfFxeHXr16QU1NDZ06dUJAQIDM/pKSEkyfPh2mpqZQU1ODpaUlVq5cWbsvsJooRFxxcXEwMzNDhw4dMHr0aCQlJVVqGxYWBk9PT5ltXl5eCAsLq7SMXFIIlUZ16j4OUFNg8oZGyu7du9GqVSuEh4dj9erVWLp0abkTsjosWbIEmzZtQmhoKJKTkzFixAhs2LAB+/btw+nTp3HhwgVs3LixyjoKCgqwYsUK/PXXXwgJCUFWVha++OJNfMijR4/iu+++w+zZs3H37l1MmTIFEyZMQFBQEABuiNewYcPA5/MRHh6OP/74A/PmzZNp47fffsOJEydw6NAhxMbGYu/evWjXrl2Nj7dGkJw5c+YMHTp0iG7fvk3nzp0jNzc3srCwoJycnArtVVVVad++fTLbNm/eTEZGRpW24efnRwDKfbKzs6vn5LNbRH7aRP/TJ8pKrvaxNSUKCwvp/v37VFhYWG5f79696f3335fZ1qNHD5o3bx4RESUkJBAAioyMlO7PzMwkABQUFEREREFBQQSALl68KLVZuXIlAaD4+HjptilTppCXl1elfu7atYsA0LVr16TbYmJiCACFh4cTEZG7uztNmjRJptzw4cPp448/JiKi8+fPk4qKCj179ky6/+zZswSAjh49SkRE3377LX344YckkUgq9aUslX1/2dnZ1T7X5H7lGjhwIIYPH44uXbrAy8sLZ86cQVZWFg4dOiS3NubPn4/s7Gzp5+1biHdSOtTJYRig01ZufjUlunTpIrNuamoqHfJT23qMjY2hoaGBDh06yGx7V70qKiro0aOHdN3Ozg66urqIiYkBAMTExMDDQ/Y1iYeHh8x+c3NzmJmZSfe7ubnJ2I8fPx5RUVGwtbXFjBkzcOHChRoeac1ReFe8rq4ubGxsKk0JZGJigrS0NJltaWlpVaZxFQgE0NbWlvlUm6xk4N5RbrkFx8dQVVWVWefxeNIBvqXjEKlMpPPKRiqUrYfH41VZb0Pi7OyMhIQELFu2DIWFhRgxYgQ+//xzhbapcHHl5eUhPj6+0gGQbm5uCAwMlNkWEBBQ7pdHboT/AZAYaN8LMHVSTBtNnNK81ikpKdJtZTs35I1IJEJERIR0PTY2FllZWbC3twcA2NvbIyQkRKZMSEiINFmHvb09kpOTZfy9du1auXa0tbUxcuRIbN++HQcPHsS///6LjIwMRRwSAAUM3J0zZw4GDx4MS0tLPH/+HH5+flBWVoaPDzf5cOzYsWjTpo20p+a7775D7969sW7dOgwaNAgHDhxAREQEtm3bJm/XuOn7N3dzy+4z5F9/M0FdXR09e/bEqlWr0L59e6Snp2PhwoUKa09VVRXffvstfvvtN6ioqGD69Ono2bMnXFxcAABz587FiBEj0K1bN3h6euLkyZM4cuQILl68CADw9PSEjY0Nxo0bhzVr1iAnJwcLFiyQaWP9+vUwNTVFt27doKSkhMOHD8PExAS6uroKOy65X7mePn0KHx8f2NraYsSIETAwMMC1a9ekv4ZJSUkyvzDu7u7Yt28ftm3bBicnJ/zzzz84duwYOnfuLG/XOGGV5AKt7bgkdoxK2blzJ0QiEbp3746ZM2di+fLlCmtLQ0MD8+bNw6hRo+Dh4QFNTU0cPHhQut/b2xu//vor1q5dCwcHB2zduhW7du1Cnz59AHC3sUePHkVhYSFcXFzw9ddfY8WKFTJtaGlpYfXq1XjvvffQo0cPJCYm4syZMwqditNyUgiJhcCvTkDOM+DTjVyI6mZMUVEREhIS0L59e6ipqTW0O5Xi7++PmTNnIisrq6FdkaGy74+lEKqIe0c5YbUyAhxHNLQ3jBZAyxBX2fgYLpMB1cb7S85oPrQMcSUEA6l3ABV1oMdXDe0Nowzjx49vdLeE8qJliKt0qFO30YCGfsP6wmgxNH9xpT/gBumCB/Sc1tDeMFoQzV9cpVctu0GAQceG9YXRomj+k5icxwJFWYBb84uPwWjcNH9xmbsAI/c0tBeMFkjzvy1kMBoIJi4GQ0EwcTGaLMHBwRg8eDDMzMwaPNJTRTBxMZos+fn5cHJywubNmxvalQpp/h0ajBpDRCgUiuu9XXVV5RpFuh04cCAGDhyoQI/qBhMXoxyFQjE6LT5f7+3eX+oFDX7zOSXZbSGDoSCaz88EQ26oqyrj/lKvBmm3OcHExSgHj8drVrdnDQW7LWQwFAT7eWI0WfLy8mRC9iUkJCAqKgr6+vqwsLBoQM84mLgYTZaIiAj07dtXuj5r1iwAwLhx4+Dv799AXr2BiYvRZOnTpw8ac3wluT9zrVy5Ej169ICWlhaMjIzg7e2N2NjYKsv4+/uXy+nVmCMWMRjVQe7iunLlCnx9fXHt2jUEBARAKBSif//+yM/Pr7Kctra2TE6vJ0+eyNs1BqNekftt4blz52TW/f39YWRkhJs3b6JXr16VluPxeFXGh2cwmhoK74rPzs4GAOjrVx0YJi8vD5aWljA3N8eQIUNw7969Sm3lkp+LwVAwChWXRCLBzJkz4eHhUWV4altbW+zcuRPHjx/Hnj17IJFI4O7ujqdPn1Zov3LlSujo6Eg/5ubmijoEBqPWKDSc9dSpU3H27FlcvXoVbdtWPw+WUCiEvb09fHx8sGzZsnL7i4uLUVxcLF3PycmBubl5tUIMtxSaSjjrxoo8wlkrrCt++vTpOHXqFIKDg2skLIDLetGtW7dKc3oJBAIIBAJ5uMlgKAy53xYSEaZPn46jR4/i0qVLaN++fY3rEIvFiI6OrjSnF4PRFJD7lcvX1xf79u3D8ePHoaWlhdTUVACAjo4O1NXVAZTP0bV06VL07NkTVlZWyMrKwpo1a/DkyRN8/fXX8naPwag35C6uLVu2AIA0d1Ipu3btwvjx4wFwObrK5kXKzMzEpEmTkJqaCj09PXTv3h2hoaHSzIEMRlOk5eTnamG0hA4NsViMJUuWYM+ePUhNTYWZmRnGjx+PhQsX1ihcQEU06g4NBkPR/Pzzz9iyZQt2794NBwcHREREYMKECdDR0cGMGQ2flpeJi1EeIkBYUP/tqmoANbjihIaGYsiQIRg0aBAAoF27dti/fz+uX7+uKA9rBBMXozzCAuAns/pv9/+eA/xW1TZ3d3fHtm3b8PDhQ9jY2OD27du4evUq1q9fr0Anqw8TF6PJ8uOPPyInJwd2dnZQVlaGWCzGihUrMHr06IZ2DQATF6MiVDW4q0hDtFsDDh06hL1792Lfvn1wcHBAVFQUZs6cCTMzM4wbN05BTlYfJi5GeXi8Gt2eNRRz587Fjz/+iC+++AIA4OjoiCdPnmDlypWNQlwsQA2jyVJQUCDzvhQAlJWVIZFIGsgjWdiVi9FkGTx4MFasWAELCws4ODggMjIS69evx8SJExvaNQBMXIwmzMaNG7Fo0SJMmzYN6enpMDMzw5QpU7B48eKGdg0AExejCaOlpYUNGzZgw4YNDe1KhbBnLgZDQTBxMRgKgomLwVAQTFwMhoJg4mrmNIMZRQ2CPL43Jq5mirIyl+uqpKSkgT1pmhQUcLMCVFVVa10H64pvpqioqEBDQwMvXryAqqpquZEMjIohIhQUFCA9PR26urrSH6nawMTVTOHxeDA1NUVCQgILDV4LdHV16xwBmomrGcPn82Ftbc1uDWuIqqpqna5YpTBxNXOUlJSabQyNxo7CbsQ3b96Mdu3aQU1NDa6uru+cen348GHY2dlBTU0Njo6OOHPmjKJcYzDqBYWI6+DBg5g1axb8/Pxw69YtODk5wcvLC+np6RXah4aGwsfHB1999RUiIyPh7e0Nb29v3L17VxHuMRj1AykAFxcX8vX1la6LxWIyMzOjlStXVmg/YsQIGjRokMw2V1dXmjJlSrXay87OJgCUnZ1de6cZjGpQk3NN7s9cJSUluHnzJubPny/dpqSkBE9PT4SFhVVYJiwsTJrPthQvLy8cO3asQvu3EzGUpiliqYQYiqb0HKNqvGSWu7hevnwJsVgMY2Njme3GxsZ48OBBhWVSU1MrtC8Nhf02K1euxP/+979y21kqIUZ9kZubCx0dnSptmmRv4fz582WudBKJBBkZGTAwMKhzpNWGojQNUnJycouJGtwUj5mIkJubCzOzd4eek7u4DA0NoaysjLS0NJntaWlplb6UMzExqZF9RSmEdHV1a+90I0JbW7vJnGjyoqkd87uuWKXIvbeQz+eje/fuCAwMlG6TSCQIDAyEm5tbhWXc3Nxk7AEgICCgUnsGo0mgiB6VAwcOkEAgIH9/f7p//z5NnjyZdHV1KTU1lYiIvvzyS/rxxx+l9iEhIaSiokJr166lmJgY8vPzI1VVVYqOjlaEe42Sltjj2dyPWSHiIiLauHEjWVhYEJ/PJxcXF7p27Zp0X+/evWncuHEy9ocOHSIbGxvi8/nk4OBAp0+fVpRrjZKioiLy8/OjoqKihnal3mjux9wsUggxGI0RNg+BwVAQTFwMhoJg4mIwFAQTF4OhIJi4asmSJUvA4/FkPnZ2dtL9RUVF8PX1hYGBATQ1NfHZZ5+Ve1GelJSEQYMGQUNDA0ZGRpg7dy5EIpGMzeXLl+Hs7AyBQAArKyv4+/uX86Wm03tqQnBwMAYPHgwzMzPweLxy4z2JCIsXL4apqSnU1dXh6emJuLg4GZuMjAyMHj0a2tra0NXVxVdffYW8vDwZmzt37uCDDz6AmpoazM3NsXr16nK+vGtaUnV8qVcatrOy6eLn50cODg6UkpIi/bx48UK6/5tvviFzc3MKDAykiIgI6tmzJ7m7u0v3i0Qi6ty5M3l6elJkZCSdOXOGDA0Naf78+VKbx48fk4aGBs2aNYvu379PGzduJGVlZTp37pzU5sCBA8Tn82nnzp107949mjRpEunq6lJaWppcjvPMmTO0YMECOnLkCAGgo0ePyuxftWoV6ejo0LFjx+j27dv06aefUvv27amwsFBqM2DAAHJycqJr167Rf//9R1ZWVuTj4yPdn52dTcbGxjR69Gi6e/cu7d+/n9TV1Wnr1q1Sm5CQEFJWVqbVq1fT/fv3aeHCheXehVbHl/qEiauW+Pn5kZOTU4X7srKySFVVlQ4fPizdFhMTQwAoLCyMiLiTVklJSfpinYhoy5YtpK2tTcXFxURE9MMPP5CDg4NM3SNHjiQvLy/pek2n99SFt8UlkUjIxMSE1qxZI92WlZVFAoGA9u/fT0RE9+/fJwB048YNqc3Zs2eJx+PRs2fPiIjo999/Jz09PelxExHNmzePbG1tpevvmpZUHV/qG3ZbWAfi4uJgZmaGDh06YPTo0UhKSgIA3Lx5E0KhEJ6enlJbOzs7WFhYSKfdhIWFwdHRUWY2gJeXF3JycnDv3j2pTdk6Sm1K6yid3lPW5l3Te+RJQkICUlNTZdrX0dGBq6urzHHq6urivffek9p4enpCSUkJ4eHhUptevXqBz+dLbby8vBAbG4vMzEypTVXfRXV8qW+YuGqJq6sr/P39ce7cOWzZsgUJCQn44IMPkJubi9TUVPD5/HKDictOo6lsmk3pvqpscnJyUFhYWOX0nsqm68iT0jaqaj81NRVGRkYy+1VUVKCvry+X76Ls/nf5Ut80ySknjYGBAwdKl7t06QJXV1dYWlri0KFDUFdXb0DPGI0FduWSE7q6urCxscGjR49gYmKCkpISZGVlydiUnUZT2TSb0n1V2Whra0NdXb1W03vkSWkbVbVvYmJSLnaKSCRCRkaGXL6Lsvvf5Ut9w8QlJ/Ly8hAfHw9TU1N0794dqqqqMtNoYmNjkZSUJJ1G4+bmhujoaJkTLyAgANra2ujUqZPUpqqpOLWZ3iNP2rdvDxMTE5n2c3JyEB4eLnOcWVlZuHnzptTm0qVLkEgkcHV1ldoEBwdDKBRKbQICAmBraws9PT2pTVXfRXV8qXcapBulGTB79my6fPkyJSQkUEhICHl6epKhoSGlp6cTEdcVb2FhQZcuXaKIiAhyc3MjNzc3afnSrvj+/ftTVFQUnTt3jlq3bl1hV/zcuXMpJiaGNm/eXGFXfFXTe+pKbm4uRUZGUmRkJAGg9evXU2RkJD158oSIuO5vXV1dOn78ON25c4eGDBlSYVd8t27dKDw8nK5evUrW1tYyXfFZWVlkbGxMX375Jd29e5cOHDhAGhoa5bri3zUtqTq+1CdMXLVk5MiRZGpqSnw+n9q0aUMjR46kR48eSfcXFhbStGnTSE9PjzQ0NGjo0KGUkpIiU0diYiINHDiQ1NXVydDQkGbPnk1CoVDGJigoiLp27Up8Pp86dOhAu3btKudLVdN76kpQUBABKPcpnTIkkUho0aJFZGxsTAKBgPr160exsbEydbx69Yp8fHxIU1OTtLW1acKECZSbmytjc/v2bXr//fdJIBBQmzZtaNWqVeV8ede0pOr4Up+wKScMhoJgz1wMhoJg4mIwFAQTF4OhIJi4GAwFwcTFYCgIJi4GQ0EwcTEYCoKJi8FQEExcDIaCYOJqYvTp0wczZ85saDekNDZ/GhNMXC2QkpKShnahZdBgoxoZNWbcuHHlBtA+evSIJk6cSO3atSM1NTWysbGhDRs2lCs3ZMgQWr58OZmamlK7du2IiBtp7uTkRAKBgLp3705Hjx4lABQZGSktGx0dTQMGDKBWrVqRkZERjRkzRhqIpyJ/EhIS6uvraPQwcTUhsrKyyM3NjSZNmiSNOFVUVESLFy+mGzdu0OPHj2nPnj2koaFBBw8elJYbN24caWpqSqd03L17l7Kzs0lfX5/GjBlD9+7dozNnzpCNjY2MuDIzM6XTYGJiYujWrVv00UcfUd++fSv1RyQSNcRX0yhh0/ybEDo6OuDz+dDQ0JCZXVs2hW379u0RFhaGQ4cOYcSIEdLtrVq1wo4dO6RBYP744w/weDxs374dampq6NSpE549e4ZJkyZJy2zatAndunXDTz/9JN22c+dOmJub4+HDh7CxsanQHwYHE1czYPPmzdi5cyeSkpJQWFiIkpISdO3aVcbG0dFRJrpSbGwsunTpAjU1Nek2FxcXmTK3b99GUFAQNDU1y7UZHx8PGxsb+R5IM4OJq4lz4MABzJkzB+vWrYObmxu0tLSwZs0aadiyUlq1alXjuvPy8jB48GD8/PPP5faZmprW2ueWAhNXE4PP50MsFkvXQ0JC4O7ujmnTpkm3xcfHv7MeW1tb7NmzB8XFxdL80jdu3JCxcXZ2xr///ot27dpBRaXiU+VtfxhvYF3xTYx27dohPDwciYmJePnyJaytrREREYHz58/j4cOHWLRoUTmRVMSoUaMgkUgwefJkxMTE4Pz581i7di0AgMfjAQB8fX2RkZEBHx8f3LhxA/Hx8Th//jwmTJggFdTb/kgkEsUdfBODiauJMWfOHCgrK6NTp05o3bo1vLy8MGzYMIwcORKurq549eqVzFWsMrS1tXHy5ElERUWha9euWLBgARYvXgwA0ucwMzMzhISEQCwWo3///nB0dMTMmTOhq6sLJSWlCv0pjTrMAFgMDYaUvXv3YsKECcjOzmaBTeUAe+Zqwfz111/o0KED2rRpg9u3b2PevHkYMWIEE5acYOJqwaSmpmLx4sVITU2Fqakphg8fjhUrVjS0W80GdlvIYCgI1qHBYCgIJi4GQ0EwcTEYCoKJi8FQEExcDIaCYOJiMBQEExeDoSCYuBgMBfH/qgU97hDJjQoAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_monitoring_metric('total_cpu_util_max', component='loader').max()*100\n",
+ "plot_metric(df, \"Max CPU Core [%]\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Maximum RAM"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 74,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMEAAADsCAYAAADNcMJ0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgX0lEQVR4nO2de1gV1f7/37M3sAG5bEWBTW28JCIC3gXBUiuCDD1lmZSX8JJZYmaWqT8VKTM0y8dzfMzTqRArDfUk9jVvmWIo5gUFUuGgEoqPgeSFi4hc9v78/kBGhg0IyGZvmc/reebZs9b6rFmfWTPvWWtmr1kjEBGBYWSMwtQOMIypYREwsodFwMgeFgEje1gEjOxhETCyh0XAyB4WASN7WASM7GERyJSoqCgIggBBELB69eom5z948CAEQUBBQcF9bQRBwAsvvNBsX42NbEQwadIkCIKAN9980yAtIiICgiBg0qRJRvUhNjZWPCkUCgU0Gg3CwsKQk5NTp33Pnj2hUqmQl5dnkDZ8+HAIgoDly5cbpIWGhkIQBERFRTXoj7e3N3Jzc/HGG29I4lNSUhAWFgaNRgOVSoXOnTtj5MiR2LFjB5oyyiYwMBC5ubkYO3Zso/OYAtmIAAC0Wi3i4uJQWloqxt25cwebNm2Cu7t7q/jg4OCA3NxcXLlyBT/++CMyMzPx8ssvG9gdPnwYpaWlGDNmDDZs2FDntrRaLWJjYyVxV65cwf79+6HRaO7ri4WFBVxdXWFrayvG/fTTTxg8eDBu3bqFDRs2ICMjA3v27MHo0aOxaNEiFBYWNnpfrays4OrqChsbm0bnMQWyEkH//v2h1Wqxbds2MW7btm1wd3dHv379JLZ79uzB448/DrVaDScnJ4wcORJZWVli+rfffgs7OzucP39ejJsxYwZ69uyJ27dv1+uDIAhwdXWFRqNBYGAgpk6diuPHj6OoqEhi980332DcuHGYOHEiYmJi6tzWyJEjce3aNSQlJYlxGzZsQHBwMJydnRtXKTUoKSnB1KlTERoaip07dyI4OBjdunWDl5cXpk6dirS0NDg6OkryJCUloXfv3rC2tsbgwYNx5syZJpdramQlAgCYMmUK1q9fL4ZjYmIwefJkA7uSkhLMmTMHycnJ2L9/PxQKBUaPHg29Xg8AeO211/Dcc89h/PjxqKysxM6dO/H1119j48aNkitrQ+Tn5yM+Ph5KpRJKpVKMLy4uxtatWzFhwgQ888wzKCwsxKFDhwzyW1lZYfz48ZL9iY2NxZQpUxpdHzX55ZdfcP36dXzwwQf12giCIAnPnTsXn3/+OU6cOIFOnTph1KhRqKioaFb5pkJ2IpgwYQIOHz6MS5cu4dKlS0hKSsKECRMM7F566SW8+OKL6N69O/r27YuYmBicPn0a6enpos2XX36J3NxczJo1C1OnTkVUVBQGDBjQYPmFhYWws7NDu3bt4OLigoSEBERERKBdu3aiTVxcHDw8PODt7Q2lUolXXnkF33zzTZ3bmzJlCrZs2YKSkhIkJiaisLAQI0eObFbdnDt3DgDg6ekpxp04cQJ2dnbi8vPPP0vyLFmyBM888wx8fX2xYcMGXL16FfHx8c0q31RYmNqB1qZTp04IDQ1FbGwsiAihoaHo2LGjgd358+cRGRmJY8eO4dq1a2ILkJOTAx8fHwBA+/bt8c033yAkJASBgYGYP3/+fcu3t7fHqVOnUFFRgd27d2Pjxo1YtmyZxCYmJkYizAkTJmDYsGFYs2YN7O3tJbZ9+vSBh4cH/vvf/yIhIQETJ06EhUXLHdbevXsjNTUVAODh4YHKykpJekBAgLjeoUMHeHp6IiMjo8XKbw1kJwKg6uo5c+ZMAMDatWvrtBk1ahQ6d+6Mr776Cm5ubtDr9fDx8UF5ebnELjExEUqlErm5uSgpKTE4SWujUCjQvXt3AICXlxeysrLw1ltv4bvvvgMApKen4+jRozh+/DjmzZsn5tPpdIiLi8O0adPq3J+1a9ciPT0dx48fb3xF1MLDwwMAkJmZicGDBwMAVCqV6G9bRXbdIQB49tlnUV5ejoqKCoSEhBikX79+HZmZmVi0aBGefvppeHl54ebNmwZ2R44cwYoVK7Bjxw7Y2dmJwmoK8+fPx+bNm3Hq1CkAVTfEQ4cORVpaGlJTU8Vlzpw59XaJxo0bh9OnT8PHxwe9evVqsg/VBAcHo0OHDlixYkWj8xw9elRcv3nzJs6dOwcvL69m+2AKZNkSKJVKscmueUNaTfv27eHk5IT//Oc/0Gg0yMnJMejqFBcXY+LEiZg1axZGjBiBRx99FIMGDcKoUaMwZsyYRvui1WoxevRoREZGIj4+Ht999x0++ugjsctVzeuvv45Vq1bh7Nmz8Pb2NvA3NzcXlpaWjS63Luzs7PD1118jLCwMoaGhmDVrFjw8PHDr1i3s2bMHgGF9ffTRR3BycoKLiwsWLlyIjh07mvUfY3Uhy5YAqHpe7+DgUGeaQqFAXFwcTp48CR8fH7z77rtYuXKlxOadd95Bu3bt8MknnwAAfH198cknn2D69Om4cuVKk3x59913sXPnTqxatQrXr1/H6NGjDWy8vLzg5eVVb2ugVqslN9fNZfTo0Thy5AhsbW3x2muvwdPTE0899RQOHDiAuLg4g5vu5cuX45133sGAAQOQl5eHHTt2wMrK6oH9aE0EftFenkRFRWH79u3iTa8xmTRpEgoKCrB9+3ajl9UcZNsSMMDp06dhZ2eHL774wijbP3ToEOzs7LBx40ajbL+l4JZApty4cQM3btwAUPXYuPY/wS1BaWmp2DW0s7ODq6tri5fRErAIGNnD3SFG9rAIGNnDImBkT6v/WabX6/HXX3/B3t7eYEQiw7QkRITi4mK4ublBoaj/et/qIvjrr7+g1Wpbu1hGxly+fBmPPvpovemtLoLqAWaXL1+u9x9bhmkJioqKoNVq7zuosdVFUN0FamjYAsO0JPfrdvONMSN7WASM7GERMLLHfN4nSP8/IHEloFACguLuUmNdoagnXgkIQv1pRACo6pf0da/jbrh6BIm4Xpct7pWH6nKFu+tCrbT67GqsAwDpqsrQ3/0l3d11qidNf29dTNPd81u0bcSir5FPklYjXmEBKC2r6lNhcXepHbYAlBbSsMFy1x7V9UzSepWs105vII9HCOAvnTupKZiPCEr+BvL+MLUXTF3odICuzNRe1I/jgz1yNx8ReAQD4/9bz1WqoStYQ+k6GF6Ra63XvILXeWWvZQvAsIWo2XJUX1Xv1wLVaHkUynstmKQlVNSfJq7XTBPqiKvZggrSltJgW0KtNGWVr3odoK+s8VshDetqhUWbGuGaNjXrUqj1W7uuax6LOuMAOHk80KlnPiJQa6sWhmll+MaYkT0sAkb2sAgY2cMiYGQPi4CRPSwCRvawCBjZwyJgZA+LgJE9LAJG9rAIGNnDImBkD4uAkT0sAkb2sAgY2cMiYGQPi4CRPSwCRvawCBjZwyJgZA+LgJE9LAJG9rAIGNnDImBkD4uAkT0sAkb2sAgY2cMiYGRPk0QQHR2NQYMGwd7eHs7OznjhhReQmZlpLN8YplVokgh+++03RERE4OjRo9i3bx8qKioQHByMkpISY/nHMEZHIKr5aZCm8ffff8PZ2Rm//fYbhg4d2qg8RUVFcHR0RGFhIX+9kjEqjT3XHuj7BIWFhQCADh061GtTVlaGsrJ7XzkpKip6kCIZpsVptgj0ej1mz56NIUOGwMfHp1676OhofPjhh80tRlbodDpUVFSY2o2HBktLSyiVygfeTrO7Q2+99RZ2796Nw4cP49FHH63Xrq6WQKvVcneoBkSEvLw8FBQUmNqVhw61Wg1XV9c6P9ht1O7QzJkz8fPPPyMxMbFBAQCASqWCSqVqTjGyoVoAzs7OsLW1ve8X2JmqC8ft27eRn58PANBoNM3eVpNEQER4++23ER8fj4MHD6Jr167NLpipQqfTiQJwcnIytTsPFTY2NgCA/Px8ODs7N7tr1CQRREREYNOmTfjpp59gb2+PvLw8AICjo6PoENM0qu8BbG1tTezJw0l1vVVUVDRbBE36n2DdunUoLCzE8OHDodFoxGXz5s3NKpy5B3eBmkdL1FuTu0MM09bgsUOMyREEAdu3bzdZ+SwCRvawCBjZwyIwY4YPH45Zs2bhgw8+QIcOHeDq6oqoqCgx/eLFixAEAampqWJcQUEBBEHAwYMHAQAHDx6EIAjYu3cv+vXrBxsbGzz11FPIz8/H7t274eXlBQcHB4wbNw63b9+u15fY2Fio1Wps374dHh4esLa2RkhICC5fviyxW7duHR577DFYWVnB09MT3333nST9/PnzGDp0KKytrdGrVy/s27dPkl5eXo6ZM2dCo9HA2toanTt3RnR0dPMqsLFQK1NYWEgAqLCwsLWLNktKS0spPT2dSktLDdKGDRtGDg4OFBUVRefOnaMNGzaQIAj0yy+/EBFRdnY2AaCUlBQxz82bNwkAJSQkEBFRQkICAaDBgwfT4cOH6dSpU9S9e3caNmwYBQcH06lTpygxMZGcnJxo+fLl9fq5fv16srS0pIEDB9KRI0coOTmZ/Pz8KDAwULTZtm0bWVpa0tq1aykzM5M+//xzUiqVdODAASIi0ul05OPjQ08//TSlpqbSb7/9Rv369SMAFB8fT0REK1euJK1WS4mJiXTx4kU6dOgQbdq0qVn119hzjUVgYu4ngscff1wSN2jQIJo3bx4RNU0Ev/76q2gTHR1NACgrK0uMmz59OoWEhNTr5/r16wkAHT16VIzLyMggAHTs2DEiIgoMDKRp06ZJ8r388sv03HPPERHR3r17ycLCgq5cuSKm7969WyKCt99+m5566inS6/X1+lKTlhABd4fMnN69e0vCGo1GHCrQ3O24uLjA1tYW3bp1k8Tdb7sWFhYYNGiQGO7ZsyfUajUyMjIAABkZGRgyZIgkz5AhQyTpWq0Wbm5uYnpAQIDEftKkSUhNTYWnpydmzZqFX375pYl72nRYBGaOpaWlJCwIAvR6PQBAoag6fFTj/5v6RqHW3I4gCA1u15T0798f2dnZWLp0KUpLSzF27FiMGTPGqGWyCB5iOnXqBADIzc0V42reJLc0lZWVSE5OFsOZmZkoKCiAl5cXAMDLywtJSUmSPElJSejVq5eYfvnyZYm/R48eNSjHwcEBYWFh+Oqrr7B582b8+OOPuHHjhjF2CcADvlTDmBYbGxsMHjwYy5cvR9euXZGfn49FixYZrTxLS0u8/fbb+Ne//gULCwvMnDkTgwcPhp+fHwBg7ty5GDt2LPr164egoCDs2LED27Ztw6+//goACAoKQo8ePRAeHo6VK1eiqKgICxculJSxatUqaDQa9OvXDwqFAlu3boWrqyvUarXR9otbgoecmJgYVFZWYsCAAZg9ezY+/vhjo5Vla2uLefPmYdy4cRgyZAjs7Owk48ZeeOEF/POf/8Rnn30Gb29vfPnll1i/fj2GDx8OoKr7Fh8fj9LSUvj5+eH111/HsmXLJGXY29vj008/xcCBAzFo0CBcvHgRu3btErt+xuCB3jFuDvyOsZQ7d+4gOzsbXbt2hbW1tandqZfY2FjMnj3b7F78aaj+GnuucUvAyB4WASN7WARMo5g0aZLZdYVaChYBI3tYBIzsYREwsodFwMgeFgEje1gEjOxhETCyh0XAGJ3ExESMGjUKbm5uJp9Zoi5YBIzRKSkpQZ8+fbB27VpTu1InPJSaMTojRozAiBEjTO1GvbAIHmKICKUVOpOUbWOpbDNTR7IIHmJKK3ToFbnXJGWnfxQCW6u2cfrwPQEje9qGlGWKjaUS6R+FmKzstgKL4CFGEIQ20yUxJVyDjNG5desWLly4IIazs7ORmpqKDh06wN3d3YSeVcEiYIxOcnIynnzySTE8Z84cAEB4eDhiY2NN5NU9WASM0Rk+fLhZf+CFnw4xsodFwMgeFgEje1gEjOxhETCyh0XAyB4WASN7WASM7GERMLKHRcDIHhYBY3R0Oh0WL16Mrl27wsbGBo899hiWLl1qNkMpeOwQY3RWrFiBdevWYcOGDfD29kZycjImT54MR0dHzJo1y9TuNb0lMPfpMxjz48iRI3j++ecRGhqKLl26YMyYMQgODsbx48dN7RqAZojA3KfPkBVEQHmJaZYmdGUCAwOxf/9+nDt3DgCQlpaGw4cPm80MFE3uDpn79BmyouI28Inb/e2Mwf/7C7Bq1yjT+fPno6ioCD179oRSqYROp8OyZcswfvx4IzvZOIx+T1BWVoaysjIxXFRUZOwiGTNjy5Yt2LhxIzZt2gRvb2+kpqZi9uzZcHNzQ3h4uKndM74IoqOj8eGHHxq7GHliaVt1RTZV2Y1k7ty5mD9/Pl555RUAgK+vLy5duoTo6Gh5iGDBggXi63RAVUug1WqNXaw8EIRGd0lMye3btw2+Q6xUKqHX603kkRSji0ClUkGlUhm7GMaMGTVqFJYtWwZ3d3d4e3sjJSUFq1atwpQpU0ztGgD+n4BpBdasWYPFixdjxowZyM/Ph5ubG6ZPn47IyEhTuwagGSIw9+kzGPPD3t4eq1evxurVq03tSp00WQTmPn0GwzSVJovA3KfPYJimwgPoGNnDImBkD4vATOAuZvNoiXpjEZgYS0tLAFV/KDFNp7requuxOfD/BCZGqVRCrVYjPz8fAGBra9tmPoNkTIgIt2/fRn5+PtRqNZTK5n8vgUVgBri6ugKAKASm8ajVarH+mguLwAwQBAEajQbOzs6oqKgwtTsPDZaWlg/UAlTDIjAjlEplixxUpmnwjTEje1gEjOxhETCyh0XAyB4WASN7WASM7GERMLKHRcDIHhYBI3tYBIzsYREwsodFwMgeFgEje1gEjOxhETCyh0XAyB4WASN7WASM7GERMLKHRcDIHrN50X5r8mUs/TkdAMR5d6qn36mehUeMF8PVuYU6bKt+iQCq/iW6u07Q1wiDAL2Ydm8dBBBq2eJeOYIgSMoTIIgOCDXjxPV7+yHUcLa+WYYamn+oqVMTNTRRW2NncWvOcanLvrqeAapxfMjgONU+LlTDHjXCr/q5Y+kLPo3ah7owGxGU6/QoulNpajcaTdWBqH3y8FSKpkD3gFMxmo0IRvZ2Q0A3J/E0urdfJAnXTq++GtSOqw5XX40Viqrf6iuyINy7Ilf/KoQaLYpwL1wzHwTcvQoZ+nDPN5Loo/oqdm/93tW3sYev8ceZUF/b0lDrcb+GpTnHRRKuES/Wp2B4TCAJC5IWteaxqZlma/lgp7HZiMDRxhKONs2fT5JhmgvfGDOyh0XAyB4WASN7WASM7GERMLKHRcDIHhYBI3tYBIzsYREwsodFwMgeFgEje1gEjOxhETCyp1kiWLt2Lbp06QJra2v4+/vj+PHjLe0Xw7QaTRbB5s2bMWfOHCxZsgSnTp1Cnz59EBISwh+iZh5amiyCVatWYdq0aZg8eTJ69eqFf//737C1tUVMTIwx/GMYo9Okl2rKy8tx8uRJLFiwQIxTKBQICgrC77//XmeesrIylJWVieHCwkIAQFFRUXP8ZZhGU32O3e8d6iaJ4Nq1a9DpdHBxcZHEu7i44H//+1+deaKjo/Hhhx8axGu12qYUzTDNpri4GI6OjvWmG/31ygULFmDOnDliWK/X48aNG3BycmpwNgVzpaioCFqtFpcvX4aDg4Op3WkVHtZ9JiIUFxfDzc2tQbsmiaBjx45QKpW4evWqJP7q1atwdXWtM49KpYJKpZLEqdXqphRrljg4ODxUJ0RL8DDuc0MtQDVNujG2srLCgAEDsH//fjFOr9dj//79CAgIaLqHDGMGNLk7NGfOHISHh2PgwIHw8/PD6tWrUVJSgsmTJxvDP4YxOk0WQVhYGP7++29ERkYiLy8Pffv2xZ49ewxultsqKpUKS5YsMejitWXa+j4L1Ng5+BimjcJjhxjZwyJgZA+LgJE9LAJG9rR5EURFRVXNYFxj6dmzp5h+584dREREwMnJCXZ2dnjppZcM/gzMyclBaGgobG1t4ezsjLlz56KyUjqN/MGDB9G/f3+oVCp0794dsbGxBr4Ycwh6YmIiRo0aBTc3NwiCgO3bt0vSiQiRkZHQaDSwsbFBUFAQzp8/L7G5ceMGxo8fDwcHB6jVakydOhW3bt2S2Pzxxx944oknYG1tDa1Wi08//dTAl61bt6Jnz56wtraGr68vdu3a1WRfWhVq4yxZsoS8vb0pNzdXXP7++28x/c033yStVkv79++n5ORkGjx4MAUGBorplZWV5OPjQ0FBQZSSkkK7du2ijh070oIFC0SbP//8k2xtbWnOnDmUnp5Oa9asIaVSSXv27BFt4uLiyMrKimJiYujs2bM0bdo0UqvVdPXq1RbZz127dtHChQtp27ZtBIDi4+Ml6cuXLydHR0favn07paWl0T/+8Q/q2rUrlZaWijbPPvss9enTh44ePUqHDh2i7t2706uvviqmFxYWkouLC40fP57OnDlDP/zwA9nY2NCXX34p2iQlJZFSqaRPP/2U0tPTadGiRWRpaUmnT59uki+tiSxE0KdPnzrTCgoKyNLSkrZu3SrGZWRkEAD6/fffiajq5FIoFJSXlyfarFu3jhwcHKisrIyIiD744APy9vaWbDssLIxCQkLEsJ+fH0VERIhhnU5Hbm5uFB0d/cD7WJvaItDr9eTq6korV64U4woKCkilUtEPP/xARETp6ekEgE6cOCHa7N69mwRBoCtXrhAR0RdffEHt27cX95uIaN68eeTp6SmGx44dS6GhoRJ//P39afr06Y32pbVp890hADh//jzc3NzQrVs3jB8/Hjk5OQCAkydPoqKiAkFBQaJtz5494e7uLg4N//333+Hr6yv5MzAkJARFRUU4e/asaFNzG9U21duoHoJe0+Z+Q9BbkuzsbOTl5UnKd3R0hL+/v2Q/1Wo1Bg4cKNoEBQVBoVDg2LFjos3QoUNhZWUl2oSEhCAzMxM3b94UbRqqi8b40tq0eRH4+/sjNjYWe/bswbp165CdnY0nnngCxcXFyMvLg5WVlcGAPhcXF+Tl5QEA8vLy6hw6Xp3WkE1RURFKS0sbHIJevQ1jUl1GQ+Xn5eXB2dlZkm5hYYEOHTq0SF3UTL+fL62N2XypxliMGDFCXO/duzf8/f3RuXNnbNmyBTY2Nib0jDEX2nxLUBu1Wo0ePXrgwoULcHV1RXl5OQoKCiQ2NYeGu7q61jl0vDqtIRsHBwfY2Ng0awh6S1JdRkPlu7q6GrwnXllZiRs3brRIXdRMv58vrY3sRHDr1i1kZWVBo9FgwIABsLS0lAwNz8zMRE5Ojjg0PCAgAKdPn5acIPv27YODgwN69eol2tTcRrVN9TZMPQS9a9eucHV1lZRfVFSEY8eOSfazoKAAJ0+eFG0OHDgAvV4Pf39/0SYxMREVFRWizb59++Dp6Yn27duLNg3VRWN8aXVMcjveirz33nt08OBBys7OpqSkJAoKCqKOHTtSfn4+EVU9InV3d6cDBw5QcnIyBQQEUEBAgJi/+hFpcHAwpaam0p49e6hTp051PiKdO3cuZWRk0Nq1a+t8RKpSqSg2NpbS09PpjTfeILVaLXnq9CAUFxdTSkoKpaSkEABatWoVpaSk0KVLl4io6rGkWq2mn376if744w96/vnn63xE2q9fPzp27BgdPnyYPDw8JI9ICwoKyMXFhSZOnEhnzpyhuLg4srW1NXhEamFhQZ999hllZGTQkiVL6nxEej9fWpM2L4KwsDDSaDRkZWVFjzzyCIWFhdGFCxfE9NLSUpoxYwa1b9+ebG1tafTo0ZSbmyvZxsWLF2nEiBFkY2NDHTt2pPfee48qKiokNgkJCdS3b1+ysrKibt260fr16w18WbNmDbm7u5OVlRX5+fnR0aNHW2w/ExISCHe/DltzCQ8PJ6KqR5OLFy8mFxcXUqlU9PTTT1NmZqZkG9evX6dXX32V7OzsyMHBgSZPnkzFxcUSm7S0NHr88cdJpVLRI488QsuXLzfwZcuWLdSjRw+ysrIib29v2rlzpyS9Mb60JjyUmpE9srsnYJjasAgY2cMiYGQPi4CRPSwCRvawCBjZwyJgZA+LgJE9LAJG9rAIjMTw4cMxe/ZsU7shYm7+mBMsAjOmvLzc1C7IA5ONWmrDhIeHGwxku3DhAk2ZMoW6dOlC1tbW1KNHD1q9erVBvueff54+/vhj0mg01KVLFyKqGpnZp08fUqlUNGDAAIqPjycAlJKSIuY9ffo0Pfvss9SuXTtydnamCRMmiBMK1OVPdnZ2a1WH2cMiMAIFBQUUEBBA06ZNE2e4uHPnDkVGRtKJEyfozz//pO+//55sbW1p8+bNYr7w8HCys7MThyqfOXOGCgsLqUOHDjRhwgQ6e/Ys7dq1i3r06CERwc2bN8Xh3RkZGXTq1Cl65pln6Mknn6zXn8rKSlNUjVnCIjASw4YNo3feeadBm4iICHrppZfEcHh4OLm4uEhmc1i3bh05OTlJxtp/9dVXEhEsXbqUgoODJdu+fPkyARCHKDfGH7nS5t8xNifWrl2LmJgY5OTkoLS0FOXl5ejbt6/ExtfXVzKbQ2ZmJnr37g1ra2sxzs/PT5InLS0NCQkJsLOzMygzKysLPXr0aNkdaWOwCFqJuLg4vP/++/j8888REBAAe3t7rFy5UpzOpJp27do1edu3bt3CqFGjsGLFCoM0jUbTbJ/lAovASFhZWUGn04nhpKQkBAYGYsaMGWJcVlbWfbfj6emJ77//HmVlZeJHMk6cOCGx6d+/P3788Ud06dIFFhZ1H9La/jD34EekRqJLly44duwYLl68iGvXrsHDwwPJycnYu3cvzp07h8WLFxuczHUxbtw46PV6vPHGG8jIyMDevXvx2WefAYD49c+IiAjcuHEDr776Kk6cOIGsrCzs3bsXkydPFk/82v7o9Xrj7fxDBovASLz//vtQKpXo1asXOnXqhJCQELz44osICwuDv78/rl+/LmkV6sPBwQE7duxAamoq+vbti4ULFyIyMhIAxPsENzc3JCUlQafTITg4GL6+vpg9ezbUajUUCkWd/lTPwsfw55oeSjZu3IjJkyejsLCQJxBrAfie4CHg22+/Rbdu3fDII48gLS0N8+bNw9ixY1kALQSL4CEgLy9P/FqoRqPByy+/jGXLlpnarTYDd4cY2cM3xozsYREwsodFwMgeFgEje1gEjOxhETCyh0XAyB4WASN7/j8kTRJP9oHo1gAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_monitoring_metric('total_cpu_memory', component='loader').max()/1000\n",
+ "plot_metric(df, \"Max RAM [Gb]\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Maximum Cache"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 75,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMEAAADsCAYAAADNcMJ0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAen0lEQVR4nO3de1xUdf4/8NdhGIYZYRhBgcFAMEUFEVEEkUpLksxcbStNrUVs7SLmEmXmr0Td8odpue76YK1tV7HS1Faxrbxk3khUEgUyIVKEtJIwkYvcYd7fP3CODAyXQYcZOO/n4zEP5pzP55zP55yZ17kMZ84IRERgTMJsLN0BxiyNQ8Akj0PAJI9DwCSPQ8Akj0PAJI9DwCSPQ8Akj0PAJI9DIHHLly/HiBEjLN0Ni+IQGDFnzhwIgoDnn3++RVlMTAwEQcCcOXPM3o/a2lqsXr0agYGBUKlU6NOnD8LDw7Fp0ybU1dWZvX2p4BC0wtPTE9u2bUNVVZU4rrq6Glu3boWXl5fZ26+trUVkZCRWrVqFZ599FsePH8e3336LmJgYrF+/HufOnTN7H6SCQ9CKkSNHwtPTE7t27RLH7dq1C15eXggKCjKou2/fPtxzzz3QaDRwcXHBI488gry8PLH8ww8/hIODA86fPy+Omz9/PoYMGYLKykqj7a9btw4pKSk4ePAgYmJiMGLECAwYMACzZs1CWloaBg0a1KG2AeDnn3/GzJkz4ezsjF69eiE4OBhpaWkGdT766CN4e3vDyckJTz75JMrLy8UynU6HhIQE+Pj4QKlUIjAwEP/9739NXKPWi0PQhrlz52LTpk3i8MaNGxEdHd2iXkVFBeLi4pCeno6DBw/CxsYGjz76KHQ6HQDgT3/6Ex5++GHMnj0b9fX1+PLLL/Hvf/8bW7ZsgUqlMtr2li1bEBER0SJwACCXy9GrV68OtX3jxg2MGzcOv/zyC/73v/8hKysLr776qlgOAHl5edi9eze++OILfPHFFzh69ChWrVollickJODDDz/Ee++9h3PnzuGll17CU089haNHj3ZirVohYi1ERUXR1KlTqaioiBQKBRUUFFBBQQHZ29vT1atXaerUqRQVFdXq9FevXiUAdPbsWXFccXEx3XXXXfTCCy+Qm5sbrVy5ss0+KJVKWrhwocl9b972+++/T46OjnTt2jWj9ZctW0YqlYrKysrEcYsWLaLQ0FAiIqquriaVSkXHjx83mO6ZZ56hmTNnmtw/a2Rr6RBas759+2Ly5MlISkoCEWHy5Mno06dPi3rnz59HfHw80tLS8Pvvv4tb2UuXLmHYsGEAgN69e+M///kPIiMjMXbsWLz22mtttk0d/JpHe21nZmYiKCgIzs7Orc7D29sbjo6O4rBWq0VRUREA4MKFC6isrMSDDz5oME1tba3RvVR3xCFox9y5c7FgwQIAQGJiotE6U6ZMQf/+/fHBBx/Aw8MDOp0Ow4YNQ21trUG9lJQUyGQyXLlyBRUVFQZvvOZ8fX3xww8/tNu/9tpWKpXtzkMulxsMC4JgcDgFAF9++SX69etnUE+hULQ77+6Azwna8dBDD6G2thZ1dXWIjIxsUX7t2jXk5ubijTfewIQJEzB06FBcv369Rb3jx4/j7bffxueffw4HBwcxWK2ZNWsWvv76a2RkZLQoq6urQ0VFRYfaHj58ODIzM1FcXGzikjfy8/ODQqHApUuXMHDgQIOHp6dnp+ZpbTgE7ZDJZMjJyUF2djZkMlmL8t69e8PFxQX/+te/cOHCBRw6dAhxcXEGdcrLy/H0009j4cKFmDRpErZs2YLt27e3+QlLbGwswsPDMWHCBCQmJiIrKwsXL17Ejh07MGbMGJw/f75Dbc+cORPu7u6YNm0aUlNTcfHiRezcuRMnTpzo0PI7OjrilVdewUsvvYTNmzcjLy8PZ86cwfr167F58+YOzcPqWfqkxBrpT4xb0/zE+MCBAzR06FBSKBQ0fPhwOnLkCAGg5ORkIiKKjo6mgIAAqq6uFqd59913ydnZmX7++edW26murqaEhAQKCAgge3t7cnZ2pvDwcEpKSqK6uroOtU1EVFBQQI899hip1WpSqVQUHBxMaWlpRNR4YhwYGGjQ7t/+9jfq37+/OKzT6WjdunU0ePBgksvl1LdvX4qMjKSjR4+2vSK7CYGIv2jPpI0Ph5jkcQiY5HEImORxCJjkcQiY5HEImOR1+WUTOp0Ov/76KxwdHSEIQlc3zySEiFBeXg4PDw/Y2LS+ve/yEPz666895t/trHu4fPky7rrrrlbLuzwE+ovGLl++DLVa3dXNMwkpKyuDp6dnmxcqAhYIgf4QSK1WcwhYl2jvsJtPjJnkcQiY5HEImORZzzfLvtsBHIgHBJubDwGA0GTYxrDM4G+TR/NpQADpGh+6hlvPSQcQNRtuo1w/rdimDLCR3RyWNY6zkTUps7n1XCzTP29SBgC6+ptt1De2o6tv7IuuodlwPaDTtTGs76OxddZ8fRlbt62tbyMPcVlNLDN4TW7+BZoNU8v1D7o5bKTO0EeA8L90+q1nPSGovQGUX7F0L3oGarB0D7qWm/9tTW49IRg6FegX3HIrjOZb6+ZbaiPl+ml0DW1spVrb6jXdihnb08Bwq9tiL2NiGRFgY9vYLxtZ43Ph5l8bm2bDslt7FP2wfo+knxZCK+ustfVI7dRpuDm+4VadFsvQkTJd415L3FMJzfb2QrM9ubEyGK+rub2boVlPCHq5ND4Y62J8Yswkj0PAJI9DwCSPQ8Akj0PAJI9DwCSPQ8Akj0PAJI9DwCSPQ8Akj0PAJI9DwCSPQ8Akj0PAJI9DwCSPQ8Akj0PAJI9DwCSPQ8Akj0PAJI9DwCSPQ8Akj0PAJI9DwCSPQ8Akj0PAJI9DwCSPQ8Akj0PAJM+kECQkJGD06NFwdHSEq6srpk2bhtzcXHP1jbEuYVIIjh49ipiYGJw8eRIHDhxAXV0dJk6ciIqKCnP1jzGzE4iIOjvx1atX4erqiqNHj+K+++7r0DRlZWVwcnJCaWkp/4QrM6uOvtdu60c6SktLAQDOzs6t1qmpqUFNTY1Bx5hxDQ0NqKurs3Q3ug25XA6ZTHbb8+l0CHQ6HWJjYxEeHo5hw4a1Wi8hIQErVqzobDOSQEQoLCxESUmJpbvS7Wg0Gri7u7f7g91t6fTh0AsvvIC9e/fi2LFjuOuuu1qtZ2xP4OnpyYdDTVy5cgUlJSVwdXWFSqW6rRdUKogIlZWVKCoqgkajgVarbVHHrIdDCxYswBdffIGUlJQ2AwAACoUCCoWiM81IQkNDgxgAFxf+zTZTKJVKAEBRURFcXV07fWhk0qdDRIQFCxYgOTkZhw4dgo+PT6caZbfozwFUKpWFe9I96dfb7ZxLmbQniImJwdatW/HZZ5/B0dERhYWFAAAnJycxlaxz+BCoc+7EejNpT7BhwwaUlpZi/Pjx0Gq14mP79u233RHGLMWkPcFt/EuBsVYJgoDk5GRMmzbNIu3ztUNM8jgETPI4BFZs/PjxWLhwIV599VU4OzvD3d0dy5cvF8sLCgogCAIyMzPFcSUlJRAEAUeOHAEAHDlyBIIgYP/+/QgKCoJSqcQDDzyAoqIi7N27F0OHDoVarcasWbNQWVnZal+SkpKg0Wiwe/duDBo0CPb29oiMjMTly5cN6m3YsAF333037OzsMHjwYHz00UcG5efPn8d9990He3t7+Pn54cCBAwbltbW1WLBgAbRaLezt7dG/f38kJCR0bgV2FHWx0tJSAkClpaVd3bRVqqqqouzsbKqqqmpRNm7cOFKr1bR8+XL68ccfafPmzSQIAn311VdERJSfn08AKCMjQ5zm+vXrBIAOHz5MRESHDx8mADRmzBg6duwYnTlzhgYOHEjjxo2jiRMn0pkzZyglJYVcXFxo1apVrfZz06ZNJJfLKTg4mI4fP07p6ekUEhJCY8eOFevs2rWL5HI5JSYmUm5uLr377rskk8no0KFDRETU0NBAw4YNowkTJlBmZiYdPXqUgoKCCAAlJycTEdGaNWvI09OTUlJSqKCggL755hvaunVrp9ZfR99rHAILay8E99xzj8G40aNH0+LFi4nItBB8/fXXYp2EhAQCQHl5eeK45557jiIjI1vt56ZNmwgAnTx5UhyXk5NDACgtLY2IiMaOHUvz5s0zmO6JJ56ghx9+mIiI9u/fT7a2tvTLL7+I5Xv37jUIwYsvvkgPPPAA6XS6VvvS1J0IAR8OWbnhw4cbDGu1WhQVFd3WfNzc3KBSqTBgwACDce3N19bWFqNHjxaHhwwZAo1Gg5ycHABATk4OwsPDDaYJDw83KPf09ISHh4dYHhYWZlB/zpw5yMzMxODBg7Fw4UJ89dVXJi6p6TgEVk4ulxsMC4IAnU4HALCxaXz5qMlH163957TpfARBaHO+ljRy5Ejk5+fjzTffRFVVFaZPn47HH3/crG1yCLqxvn37Ami8AE+v6UnynVZfX4/09HRxODc3FyUlJRg6dCgAYOjQoUhNTTWYJjU1FX5+fmL55cuXDfp78uTJFu2o1WrMmDEDH3zwAbZv346dO3eiuLjYHIsE4Da/T8AsS6lUYsyYMVi1ahV8fHxQVFSEN954w2ztyeVyvPjii/jHP/4BW1tbLFiwAGPGjEFISAgAYNGiRZg+fTqCgoIQERGBzz//HLt27cLXX38NAIiIiICvry+ioqKwZs0alJWV4fXXXzdoY+3atdBqtQgKCoKNjQ0+/fRTuLu7Q6PRmG25eE/QzW3cuBH19fUYNWoUYmNj8dZbb5mtLZVKhcWLF2PWrFkIDw+Hg4ODwSUz06ZNw9///ne888478Pf3x/vvv49NmzZh/PjxABoP35KTk1FVVYWQkBD8+c9/xsqVKw3acHR0xOrVqxEcHIzRo0ejoKAAe/bsEQ/9zOG2vl7ZGfz1SkPV1dXIz8+Hj48P7O3tLd2dViUlJSE2NtbqvvjT1vrr6HuN9wRM8jgETPI4BKxD5syZY3WHQncKh4BJHoeASR6HgEkeh4BJHoeASR6HgEkeh4BJHoeAmV1KSgqmTJkCDw8PCIKA3bt3W7pLBjgEzOwqKioQGBiIxMRES3fFKL6UmpndpEmTMGnSJEt3o1Ucgm6MiFBV12CRtpVyWY+5dSSHoBurqmuAX/x+i7Sd/ddIqOx6xtuHzwmY5PWMKEuUUi5D9l8jLdZ2T8Eh6MYEQegxhySWxGuQmd2NGzdw4cIFcTg/Px+ZmZlwdnaGl5eXBXvWiEPAzC49PR3333+/OBwXFwcAiIqKQlJSkoV6dQuHgJnd+PHjrfq3LfjTISZ5HAImeRwCJnkcAiZ5HAImeRwCJnkcAiZ5HAImeRwCJnkcAiZ5HAJmdg0NDVi6dCl8fHygVCpx9913480337SaSyn42iFmdm+//TY2bNiAzZs3w9/fH+np6YiOjoaTkxMWLlxo6e6Zview9ttnMOtz/PhxTJ06FZMnT4a3tzcef/xxTJw4Ed9++62luwagEyGw9ttnSAoRUFthmYcJhzJjx47FwYMH8eOPPwIAsrKycOzYMau5A4XJh0PWfvsMSamrBP6/R/v1zOH//QrY9epQ1ddeew1lZWUYMmQIZDIZGhoasHLlSsyePdvMnewYs58T1NTUoKamRhwuKyszd5PMyuzYsQNbtmzB1q1b4e/vj8zMTMTGxsLDwwNRUVGW7p75Q5CQkIAVK1aYuxlpkqsat8iWaruDFi1ahNdeew1PPvkkACAgIAA//fQTEhISpBGCJUuWiF+nAxr3BJ6enuZuVhoEocOHJJZUWVnZ4neIZTIZdDqdhXpkyOwhUCgUUCgU5m6GWbEpU6Zg5cqV8PLygr+/PzIyMrB27VrMnTvX0l0DwP8nYF1g/fr1WLp0KebPn4+ioiJ4eHjgueeeQ3x8vKW7BqATIbD222cw6+Po6Ih169Zh3bp1lu6KUSaHwNpvn8GYqUwOgbXfPoMxU/EFdEzyOARM8jgEVoIPMTvnTqw3DoGFyeVyAI3/UGKm0683/XrsDP4/gYXJZDJoNBoUFRUBAFQqVY/5GSRzIiJUVlaiqKgIGo0GMlnnfy+BQ2AF3N3dAUAMAus4jUYjrr/O4hBYAUEQoNVq4erqirq6Okt3p9uQy+W3tQfQ4xBYEZlMdkdeVGYaPjFmkschYJLHIWCSxyFgkschYJLHIWCSxyFgkschYJLHIWCSxyFgkschYJLHIWCSxyFgkschYJLHIWCSxyFgkschYJLHIWCSxyFgkschYJJnNV+033n6Z6zckwMAEND4IyyNzxqf6+/E0/hcgP7WPI11b92nRxDQpEwAgUCEmw+CjgAdEQiNw9RkWKfTj79Vl3Dz7826aNYPGPTj5rgmfdb3rcniiOObLkNzxu49ZLyekZFGtHWjto7cw63p+m86pvlr01jSctmaL4/u5vrUvz46auxJ47gm5XRrHOlfpybjQMCTIZ7469RhHVgK46wmBNX1DSiuqLV0N0zEt060BvW623sdrCYEjwR4IMTb+daW+OYbTL8VB25tNfRa1MOte1Pq5yMIgI3QuH22ubn1Fcc1KROaDRurq9/CNd2C3Wqr/b4Bt7Zmt+oavoDNt9jNX96W5S2nN7Z3EIzsR4zXa+lW3w3bbP7aNO+fsdeNANg025s3XdcChMbym7vOxueCuKe1EZrsgYTGcpX89t7GVhMCJ5UcTqrO30+Ssc7iE2MmeRwCJnkcAiZ5HAImeRwCJnkcAiZ5HAImeRwCJnkcAiZ5HAImeRwCJnkcAiZ5HAImeZ0KQWJiIry9vWFvb4/Q0FB8++23d7pfjHUZk0Owfft2xMXFYdmyZThz5gwCAwMRGRnJP0TNui2TQ7B27VrMmzcP0dHR8PPzw3vvvQeVSoWNGzeao3+MmZ1JX6qpra3F6dOnsWTJEnGcjY0NIiIicOLECaPT1NTUoKamRhwuLS0FAJSVlXWmv4x1mP49Rs2/jteMSSH4/fff0dDQADc3N4Pxbm5u+OGHH4xOk5CQgBUrVrQY7+npaUrTjHVaeXk5nJycWi03+9crlyxZgri4OHFYp9OhuLgYLi4uRu+oYO3Kysrg6emJy5cvQ61WW7o7XaK7LjMRoby8HB4eHm3WMykEffr0gUwmw2+//WYw/rfffoO7u7vRaRQKBRQKhcE4jUZjSrNWSa1Wd6s3xJ3QHZe5rT2AnkknxnZ2dhg1ahQOHjwojtPpdDh48CDCwsJM7yFjVsDkw6G4uDhERUUhODgYISEhWLduHSoqKhAdHW2O/jFmdiaHYMaMGbh69Sri4+NRWFiIESNGYN++fS1OlnsqhUKBZcuWtTjE68l6+jIL1N7nR4z1cHztEJM8DgGTPA4BkzwOAZO8Hh+C5cuX37zj9K3HkCFDxPLq6mrExMTAxcUFDg4OeOyxx1r8M/DSpUuYPHkyVCoVXF1dsWjRItTX1xvUOXLkCEaOHAmFQoGBAwciKSmpRV/MeQl6SkoKpkyZAg8PDwiCgN27dxuUExHi4+Oh1WqhVCoRERGB8+fPG9QpLi7G7NmzoVarodFo8Mwzz+DGjRsGdb777jvce++9sLe3h6enJ1avXt2iL59++imGDBkCe3t7BAQEYM+ePSb3pUtRD7ds2TLy9/enK1euiI+rV6+K5c8//zx5enrSwYMHKT09ncaMGUNjx44Vy+vr62nYsGEUERFBGRkZtGfPHurTpw8tWbJErHPx4kVSqVQUFxdH2dnZtH79epLJZLRv3z6xzrZt28jOzo42btxI586do3nz5pFGo6Hffvvtjiznnj176PXXX6ddu3YRAEpOTjYoX7VqFTk5OdHu3bspKyuL/vCHP5CPjw9VVVWJdR566CEKDAykkydP0jfffEMDBw6kmTNniuWlpaXk5uZGs2fPpu+//54++eQTUiqV9P7774t1UlNTSSaT0erVqyk7O5veeOMNksvldPbsWZP60pUkEYLAwECjZSUlJSSXy+nTTz8Vx+Xk5BAAOnHiBBE1vrlsbGyosLBQrLNhwwZSq9VUU1NDRESvvvoq+fv7G8x7xowZFBkZKQ6HhIRQTEyMONzQ0EAeHh6UkJBw28vYXPMQ6HQ6cnd3pzVr1ojjSkpKSKFQ0CeffEJERNnZ2QSATp06JdbZu3cvCYJAv/zyCxER/fOf/6TevXuLy01EtHjxYho8eLA4PH36dJo8ebJBf0JDQ+m5557rcF+6Wo8/HAKA8+fPw8PDAwMGDMDs2bNx6dIlAMDp06dRV1eHiIgIse6QIUPg5eUlXhp+4sQJBAQEGPwzMDIyEmVlZTh37pxYp+k89HX089Bfgt60TnuXoN9J+fn5KCwsNGjfyckJoaGhBsup0WgQHBws1omIiICNjQ3S0tLEOvfddx/s7OzEOpGRkcjNzcX169fFOm2ti470pav1+BCEhoYiKSkJ+/btw4YNG5Cfn497770X5eXlKCwshJ2dXYsL+tzc3FBYWAgAKCwsNHrpuL6srTplZWWoqqpq8xJ0/TzMSd9GW+0XFhbC1dXVoNzW1hbOzs53ZF00LW+vL13Nan6pxlwmTZokPh8+fDhCQ0PRv39/7NixA0ql0oI9Y9aix+8JmtNoNPD19cWFCxfg7u6O2tpalJSUGNRpemm4u7u70UvH9WVt1VGr1VAqlZ26BP1O0rfRVvvu7u4tvideX1+P4uLiO7Iumpa315euJrkQ3LhxA3l5edBqtRg1ahTkcrnBpeG5ubm4dOmSeGl4WFgYzp49a/AGOXDgANRqNfz8/MQ6Teehr6Ofh6UvQffx8YG7u7tB+2VlZUhLSzNYzpKSEpw+fVqsc+jQIeh0OoSGhop1UlJSUFdXJ9Y5cOAABg8ejN69e4t12loXHelLl7PI6XgXevnll+nIkSOUn59PqampFBERQX369KGioiIiavyI1MvLiw4dOkTp6ekUFhZGYWFh4vT6j0gnTpxImZmZtG/fPurbt6/Rj0gXLVpEOTk5lJiYaPQjUoVCQUlJSZSdnU3PPvssaTQag0+dbkd5eTllZGRQRkYGAaC1a9dSRkYG/fTTT0TU+LGkRqOhzz77jL777juaOnWq0Y9Ig4KCKC0tjY4dO0aDBg0y+Ii0pKSE3Nzc6Omnn6bvv/+etm3bRiqVqsVHpLa2tvTOO+9QTk4OLVu2zOhHpO31pSv1+BDMmDGDtFot2dnZUb9+/WjGjBl04cIFsbyqqormz59PvXv3JpVKRY8++ihduXLFYB4FBQU0adIkUiqV1KdPH3r55Zeprq7OoM7hw4dpxIgRZGdnRwMGDKBNmza16Mv69evJy8uL7OzsKCQkhE6ePHnHlvPw4cOEm78m2/QRFRVFRI0fTS5dupTc3NxIoVDQhAkTKDc312Ae165do5kzZ5KDgwOp1WqKjo6m8vJygzpZWVl0zz33kEKhoH79+tGqVata9GXHjh3k6+tLdnZ25O/vT19++aVBeUf60pX4UmomeZI7J2CsOQ4BkzwOAZM8DgGTPA4BkzwOAZM8DgGTPA4BkzwOAZM8DoGZjB8/HrGxsZbuhsja+mNNOARWrLa21tJdkAaLXbXUg0VFRbW4kO3ChQs0d+5c8vb2Jnt7e/L19aV169a1mG7q1Kn01ltvkVarJW9vbyJqvDIzMDCQFAoFjRo1ipKTkwkAZWRkiNOePXuWHnroIerVqxe5urrSU089Jd5QwFh/8vPzu2p1WD0OgRmUlJRQWFgYzZs3T7zDRXV1NcXHx9OpU6fo4sWL9PHHH5NKpaLt27eL00VFRZGDg4N4qfL3339PpaWl5OzsTE899RSdO3eO9uzZQ76+vgYhuH79unh5d05ODp05c4YefPBBuv/++1vtT319vSVWjVXiEJjJuHHj6C9/+UubdWJiYuixxx4Th6OiosjNzc3gbg4bNmwgFxcXg2vtP/jgA4MQvPnmmzRx4kSDeV++fJkAiJcod6Q/UtXjv2NsTRITE7Fx40ZcunQJVVVVqK2txYgRIwzqBAQEGNzNITc3F8OHD4e9vb04LiQkxGCarKwsHD58GA4ODi3azMvLg6+v751dkB6GQ9BFtm3bhldeeQXvvvsuwsLC4OjoiDVr1oi3M9Hr1auXyfO+ceMGpkyZgrfffrtFmVar7XSfpYJDYCZ2dnZoaGgQh1NTUzF27FjMnz9fHJeXl9fufAYPHoyPP/4YNTU14o9knDp1yqDOyJEjsXPnTnh7e8PW1vhL2rw/7Bb+iNRMvL29kZaWhoKCAvz+++8YNGgQ0tPTsX//fvz4449YunRpizezMbNmzYJOp8Ozzz6LnJwc7N+/H++88w4AiL/+GRMTg+LiYsycOROnTp1CXl4e9u/fj+joaPGN37w/Op3OfAvfzXAIzOSVV16BTCaDn58f+vbti8jISPzxj3/EjBkzEBoaimvXrhnsFVqjVqvx+eefIzMzEyNGjMDrr7+O+Ph4ABDPEzw8PJCamoqGhgZMnDgRAQEBiI2NhUajgY2NjdH+6O/Cx/jnmrqlLVu2IDo6GqWlpXwDsTuAzwm6gQ8//BADBgxAv379kJWVhcWLF2P69OkcgDuEQ9ANFBYWir8WqtVq8cQTT2DlypWW7laPwYdDTPL4xJhJHoeASR6HgEkeh4BJHoeASR6HgEkeh4BJHoeASd7/Abow64FoN8UlAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_monitoring_metric('total_cpu_memory_cached', component='loader').max()/1000\n",
+ "plot_metric(df, \"Max Cache\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Benchmarking\n",
+ "\n",
+ "### Transform Monitoring Results to DataFrame\n",
+ "\n",
+ "This has to be done only once. Transformed Results are stored in result folder.\n",
+ "\n",
+ "We also show a list of available metrics.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 76,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['total_cpu_memory',\n",
+ " 'total_cpu_memory_cached',\n",
+ " 'total_cpu_util',\n",
+ " 'total_cpu_util_max',\n",
+ " 'total_cpu_throttled',\n",
+ " 'total_cpu_util_others',\n",
+ " 'total_cpu_util_s',\n",
+ " 'total_cpu_util_user_s',\n",
+ " 'total_cpu_util_sys_s',\n",
+ " 'total_cpu_throttled_s',\n",
+ " 'total_cpu_util_others_s',\n",
+ " 'total_network_rx',\n",
+ " 'total_network_tx',\n",
+ " 'total_fs_read',\n",
+ " 'total_fs_write',\n",
+ " 'total_gpu_util',\n",
+ " 'total_gpu_power',\n",
+ " 'total_gpu_memory']"
+ ]
+ },
+ "execution_count": 76,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "evaluation.transform_monitoring_results(component='stream')\n",
+ "\n",
+ "evaluation.get_monitoring_metrics()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Plot all Metrics"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 77,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAABwWCAYAAACx0tk5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZxbdb3/8dc5SSazb+20042uULpBoYVStgICRQqKbKIICAjqZRFwRb1XkfsDRdmuIIgibqiICCo7skuhQCkUWmhL932bfU/O+f7+OMlJMpPZpzOZ9v18iJ2cc3JyMsnkfPM5n8/naxljDCIiIiIiIiIiIv3IHugDEBERERERERGRfY+CUiIiIiIiIiIi0u8UlBIRERERERERkX6noJSIiIiIiIiIiPQ7BaVERERERERERKTfKSglIiIiIiIiIiL9TkEpERERERERERHpdwpKiYiIiIiIiIhIv1NQSkRERERERERE+p2CUiIyYNatW4dlWfz2t78d6EMRERERaUNjFRkIv/3tb7Esi7fffnuPP9YXv/hFxo0bt8cfR6Q9CkqJ7MMWLlzID3/4Q6qqqnp0/1/84hcapImIiMgeo7GKiMjeTUEpkX3YwoULueGGGzTQExERkYyksYqIyN5NQSkREekyYwyNjY0DfRgiIiIiaWmsIjK4KCglso/64Q9/yDe/+U0Axo8fj2VZWJbFunXriEaj3HjjjUycOJFwOMy4ceP47ne/S3Nzs3//cePGsWzZMl5++WX/vscddxwAFRUVfOMb32DGjBnk5+dTWFjIJz/5Sd57770+OfampiZ++MMfcsABB5Cdnc2IESM488wzWb16NZDo//Czn/2M22+/nbFjx5KTk8O8efP44IMPUvZ13HHH+cedrCf19ccddxzTp09n6dKlzJs3j9zcXCZNmsTf/vY3AF5++WXmzJlDTk4OkydP5t///nebfWzevJlLLrmE4cOHEw6HmTZtGr/5zW9StnnppZewLIu//vWv3HDDDYwaNYqCggLOPvtsqquraW5u5pprrmHYsGHk5+dz8cUXp7x2QJdeY/Be59NOO41nnnmG2bNnk5OTwy9/+UvmzZvHwQcfnPb3MHnyZObPn9+t352IiEhrGqt4NFbJjLHKokWLOPXUUykpKSEvL4+DDjqIO++801+/dOlSvvjFLzJhwgSys7MpLy/nkksuYffu3Wl/h5deeikjR44kHA4zfvx4vvrVr9LS0pKyXXNzM9dddx1lZWXk5eXxmc98hp07d7bZ31NPPcUxxxxDXl4eBQUFLFiwgGXLlrXZ7rHHHmP69OlkZ2czffp0Hn300W79DkT2hOBAH4CIDIwzzzyTlStX8uc//5nbb7+doUOHAlBWVsaXvvQlfve733H22Wfz9a9/nUWLFnHzzTfz4Ycf+ievO+64g6uuuor8/Hy+973vATB8+HAA1qxZw2OPPcY555zD+PHj2b59uz84WL58OSNHjuzxcTuOw2mnncbzzz/Peeedx9e+9jVqa2t57rnn+OCDD5g4caK/7e9//3tqa2u54ooraGpq4s477+SEE07g/fff94+1r1VWVnLaaadx3nnncc4553DPPfdw3nnn8eCDD3LNNdfwla98hc9//vP89Kc/5eyzz2bjxo0UFBQAsH37do444ggsy+LKK6+krKyMp556iksvvZSamhquueaalMe6+eabycnJ4Tvf+Q4ff/wxP//5zwmFQti2TWVlJT/84Q954403+O1vf8v48eP5n//5H/++XXmN41asWMHnPvc5vvzlL3PZZZcxefJk8vPzueyyy/jggw+YPn26v+1bb73FypUr+f73v79Hfr8iIrLv0FhFY5VMGas899xznHbaaYwYMYKvfe1rlJeX8+GHH/L444/zta99zd9mzZo1XHzxxZSXl7Ns2TLuu+8+li1bxhtvvIFlWQBs2bKFww8/nKqqKi6//HIOPPBANm/ezN/+9jcaGhrIysryH/eqq66ipKSEH/zgB6xbt4477riDK6+8koceesjf5g9/+AMXXXQR8+fP5yc/+QkNDQ3cc889HH300SxZssQPXD777LOcddZZTJ06lZtvvpndu3dz8cUXM3r06C7/HkT2CCMi+6yf/vSnBjBr1671l7377rsGMF/60pdStv3GN75hAPPCCy/4y6ZNm2bmzZvXZr9NTU3GcZyUZWvXrjXhcNj86Ec/SlkGmAceeKDLx/yb3/zGAOa2225rs8513ZT95uTkmE2bNvnrFy1aZABz7bXX+svmzZuX9jlcdNFFZuzYsV0+rvi+APOnP/3JX/bRRx8ZwNi2bd544w1/+TPPPNPmuV966aVmxIgRZteuXSn7Pe+880xRUZFpaGgwxhjz4osvGsBMnz7dtLS0+Nt97nOfM5ZlmU9+8pMp9587d27Kc+nOazx27FgDmKeffjpl26qqKpOdnW2+/e1vpyy/+uqrTV5enqmrq+voVyUiItIlGqtorJJsIMYq0WjUjB8/3owdO9ZUVlamrIu/nsYY/7kn+/Of/2wA88orr/jLLrzwQmPbtnnrrbfabB/f3wMPPGAAc+KJJ6Y8xrXXXmsCgYCpqqoyxhhTW1triouLzWWXXZayn23btpmioqKU5TNnzjQjRozw72uMMc8++6wBuv0+EulLKt8TkRRPPvkkANddd13K8q9//esAPPHEE53uIxwOY9vex4vjOOzevZv8/HwmT57MO++806vje+SRRxg6dChXXXVVm3XxK1BxZ5xxBqNGjfJvH3744cyZM8d/jntCfn4+5513nn978uTJFBcXM2XKFObMmeMvj/+8Zs0awOt/8Mgjj3D66adjjGHXrl3+f/Pnz6e6urrN7+7CCy8kFAql7NMYwyWXXJKy3Zw5c9i4cSPRaBTo/ms8fvz4NinuRUVFfPrTn+bPf/4zxhjAe60feughzjjjDPLy8rry6xIREek2jVV6R2OV7o1VlixZwtq1a7nmmmsoLi5OWZf8eubk5Pg/NzU1sWvXLo444ggA//fiui6PPfYYp59+OrNnz27zWK3fH5dffnnKsmOOOQbHcVi/fj3gZWdVVVXxuc99LuX1CAQCzJkzhxdffBGArVu38u6773LRRRdRVFTk7++kk05i6tSpXfo9iOwpCkqJSIr169dj2zaTJk1KWV5eXk5xcbF/EuyI67rcfvvt7L///oTDYYYOHUpZWRlLly6lurq6V8e3evVqJk+eTDDYefXx/vvv32bZAQccwLp163p1DB0ZPXp0mwFFUVERY8aMabMMvBR6gJ07d1JVVcV9991HWVlZyn8XX3wxADt27EjZx3777Zd2n+key3Vd/3ff3dd4/PjxaZ/rhRdeyIYNG3j11VcB+Pe//8327du54IIL0m4vIiLSFzRW6R2NVbo3Von3AUsuAUynoqKCr33tawwfPpycnBzKysr844o/r507d1JTU9PpvuJa//5KSkqAxGuyatUqAE444YQ2r8mzzz7rvx7x31e699vkyZO7dCwie4p6SolIWq0HK91x00038d///d9ccskl3HjjjZSWlmLbNtdccw2u6/bhUfaeZVn+1bNkjuP0aH+BQKBby+OPHf+9fOELX+Ciiy5Ku+1BBx3UJ48V19XXOPnKX7L58+czfPhw/vjHP3Lsscfyxz/+kfLyck488cQu7VdERKQ3NFbRWCUuE8Yq5557LgsXLuSb3/wmM2fOJD8/H9d1OeWUU3r8nurqa/KHP/yB8vLyNtt1JTAqMtD0LhXZh6U70Y8dOxbXdVm1ahVTpkzxl2/fvp2qqirGjh3b4f0B/va3v3H88cdz//33pyyvqqrym5T21MSJE1m0aBGRSCQlHTyd+NWjZCtXrkyZqaakpMRPS0/WlausfamsrIyCggIcx9njQZ3uvMYdCQQCfP7zn+e3v/0tP/nJT3jssce47LLL2h1AiYiIdJfGKhqrDPRYJd6Y/oMPPmj3eVdWVvL8889zww03pDRrb/36lpWVUVhY2GaGxZ6KH9uwYcM6fE3iv69077cVK1b0ybGI9JTK90T2YfFa+qqqKn/ZqaeeCngz1iS77bbbAFiwYEHK/ZPvGxcIBNpc6Xr44YfZvHlzr4/5rLPOYteuXdx1111t1rV+zMceeyzlMd98800WLVrEJz/5SX/ZxIkT+eijj1Km133vvfd47bXXen2s3REIBDjrrLN45JFH0g5U0k3/21PdeY07c8EFF1BZWcmXv/xl6urq+MIXvtBnxykiIqKxisYqyQZirHLooYcyfvx47rjjjjbvpfjrGQ9ytX59Wx+/bducccYZ/Otf/+Ltt99u81jpMuI6Mn/+fAoLC7npppuIRCJt1sdfkxEjRjBz5kx+97vfpZSnPvfccyxfvrxbjynS15QpJbIPmzVrFgDf+973OO+88wiFQpx++ulcdNFF3HfffVRVVTFv3jzefPNNfve733HGGWdw/PHHp9z/nnvu4X//93+ZNGkSw4YN44QTTuC0007jRz/6ERdffDFHHnkk77//Pg8++CATJkzo9TFfeOGF/P73v+e6667jzTff5JhjjqG+vp5///vf/Nd//Ref/vSn/W0nTZrE0UcfzVe/+lWam5u54447GDJkCN/61rf8bS655BJuu+025s+fz6WXXsqOHTu49957mTZtGjU1Nb0+3u748Y9/zIsvvsicOXO47LLLmDp1KhUVFbzzzjv8+9//pqKiok8e5+CDD+7ya9yZQw45hOnTp/Pwww8zZcoUDj300D45RhEREdBYBTRWGeixim3b3HPPPZx++unMnDmTiy++mBEjRvDRRx+xbNkynnnmGQoLCzn22GO55ZZbiEQijBo1imeffZa1a9e22d9NN93Es88+y7x587j88suZMmUKW7du5eGHH+Y///lPm2bqHSksLOSee+7hggsu4NBDD+W8886jrKyMDRs28MQTT3DUUUf5wdGbb76ZBQsWcPTRR3PJJZdQUVHBz3/+c6ZNm0ZdXV23ficifao/p/oTkcxz4403mlGjRhnbtv0plyORiLnhhhvM+PHjTSgUMmPGjDHXX3+9aWpqSrnvtm3bzIIFC0xBQYEB/OmKm5qazNe//nUzYsQIk5OTY4466ijz+uuvt5nSuCfTLBvjTbn7ve99zz++8vJyc/bZZ5vVq1en7PenP/2pufXWW82YMWNMOBw2xxxzjHnvvffa7O+Pf/yjmTBhgsnKyjIzZ840zzzzTI+nWZ42bVqb5WPHjjULFixosxwwV1xxRcqy7du3myuuuMKMGTPGf26f+MQnzH333edvE59m+eGHH065b3z64NZTDP/gBz8wgNm5c6e/rKuvcXvHnuyWW24xgLnppps63E5ERKQnNFbRWCUTxir/+c9/zEknnWQKCgpMXl6eOeigg8zPf/5zf/2mTZvMZz7zGVNcXGyKiorMOeecY7Zs2WIA84Mf/CBlX+vXrzcXXnihKSsrM+Fw2EyYMMFcccUVprm52RjT/u8p/nt98cUX2yyfP3++KSoqMtnZ2WbixInmi1/8onn77bdTtnvkkUfMlClTTDgcNlOnTjV///vfe/Q+EulLljHdzBEUEclw69atY/z48fz0pz/lG9/4xkAfzl7vzjvv5Nprr2XdunVtZokRERGRtjRW6V8aq4hkLvWUEhGRHjPGcP/99zNv3jwN8kRERCTjaKwiktnUU0pEMkJLS0unfQiKioranfJ3T6qoqKClpaXd9YFAgLKysn48ooFXX1/PP//5T1588UXef/99/vGPfwz0IYmIiOxRGqsMLl0Zq+j3JjLwFJQSkYywcOHCTptWPvDAA3zxi1/snwNKcuaZZ/Lyyy+3u37s2LGsW7eu/w4oA+zcuZPPf/7zFBcX893vfpdPfepTA31IIiIie5TGKoNLV8Yq+r2JDDz1lBKRjFBZWcnixYs73GbatGmMGDGin44oYfHixVRWVra7Picnh6OOOqofj0hERET6m8Yqex/93kQGnoJSIiIiIiIiIiLS79ToXERERERERERE+p16SnXAdV22bNlCQUEBlmUN9OGIiIhIBjDGUFtby8iRI7FtXd8DjZlEREQkVVfHSwpKdWDLli2MGTNmoA9DREREMtDGjRsZPXr0QB9GRtCYSURERNLpbLykoFQHCgoKAO+XWFhYOMBHIyIiIpmgpqaGMWPG+OME0ZhJREREUnV1vKSgVAfi6eeFhYUaYImIiEgKlaklaMwkIiIi6XQ2XlIjBBERERERERER6XcKSomIiIiIiIiISL9TUEpERERERERERPqdglIiIiIiIiIiItLvFJQSEREREREREZF+p6CUiIiIiIiIiIj0OwWlRERERERERESk3ykoJSIiIiIiIiIi/U5BKRERERERERER6XcKSomIiIiIiIiISL9TUEpERERERERERPqdglIiIiIiIiIiItLvFJQSEREREREREZF+p6CUiIiIiIiIiIj0OwWlRERERERERESk3ykoJSIiIiIiIiIi/U5BKRERERERERER6XcKSomIiIiIiIiISL9TUEpERERERERERPqdglIiIiIiIiIiItLvFJQSEREREREREZF+p6CUiIiIiIiIiIj0OwWlRERERERERESk3ykoJSIiIiIiIiIi/U5BKRERERERERER6XcKSomIiIiIiIiISL9TUEpERERERERERPqdglIiIiIiIiIiItLvFJQSEREREREREZF+p6CUiIiIiIiIiIj0u+BAH4DIvqByWz0blleAATtgMeGQMvKKwgN9WCIiIoOW6zjs2rge47rkFBRSWDYMgJYNG2j88EOqa6txHQfLtrECAcITJxIuKaVwyFB2rF/LppUfYYezsCwLy7KxbIvs/EKCWSHvtmVhWRYFZcMYMmrMAD9bERGRvZOCUiL94JlfL2P3pjr/9tbV1Zx86bQBPCIREZHB5cNXXubjFz5ka20LLU1jaal9EdP8sb/esgqwrGwsY+GaagzN7ezJBtxuPXbAKsLOGsLQpmEc+PGj2CYKsaCVkx0mMmEEBVkR2FqF4zThulHqyMYhQH1xIQ1DSrCsMJgAmCZwXXIDLoFcm63DS6kPZJNbEyDfuIyoqSAYidIMNLtRWgy4WXlEjzySQ/MtqhZ/xNbqJpxgPlkTJ1JaathauZn6FgcwjCjOYXxpNhurGtla0wS2xfDCbMaWFRMIDSFKEBeLHXUtrImEIFjEiKIctlY38WRViGFb1/P5P/6M7OZGjGVhAMu2cQGDhbEs7/dt21gWYFlgAXi/D+zYv4EAjB1NcPbBOM+8QrSu3rs4Z4FtW7g5uaz+9nfZPW0GACXBAPnBAK4xGMA1hgm52RyQG8YYMICJrTPGWw9gWxZZQZsmx+W+jTuoiThYFtg4RCIVWLHtl20P0BQxBKmivDDIyKIcNlY20BJxAMjJCjC6OJulDRZv1llEDbiuIQeXsJV4v2QFbMJBG9cYXNdgWQECgTCFoSCXjB5KVuz3U98cpam5Edet8X5fxvV+Td4zAAzBYDG2nYdxm3Gju/zHyA0HyA2FyM4egWXZYAzv1zbwceVu7JqNBDAELIuABZbl/XKaog5W/PeLwQJyQwFyQja2ccEYssgiy7YJWBC2bPKzAgQti5BlEbQtwGKHGyBqBbADIezYX4tlges2YGNhWwEClo1t2QQs7/5H5QcoLj8Q7EDK381b6yp4c20FQdsiGLAJBSyCts1Rk4aQkxXgiaVbiTje7/bIiUOZNrKQdzZUUtMUJWBZzB5Xgmvg+Q+30xL1tps5ppj9hxfQ2OIQcV1syyI/7H2lNcbgGmiMOLy+ejeOa7z3gmVhAcMLsxlakMVT72+jujFCwLb892PAsshhGXnmHbJDNnYgn3DRORw3eTSuMXy8s46G6uewomsoygkRzh5BVmgIkUgFLZFKLCywbCxsAsE8igpnEgjkUBcp4s11DTjRnZjIeoxbje1swuDiGgtjLFxj0eIYKuujOMaKvXo2URPGNSFif2AcNLqYIycfQqM7nN11TUSiESJOhEYnl+Vbm6htrCOLXRw8ppiZY0r453tbqW6MYFk200YWMbwwh2VbamiMuLG/KQvH5OFaOZjY35O33FCQHWLy8BxsZxPlRVkMKRzF9rosVm2vo8VxiTqGqOu9JvP2LyXgrsN1G6mpXcn7m7bS0Byl2Z5Oi30gYWcRYbOaMaW5DC0cQX5OMYFADiUlR2LbIf/90tS8jZbmHbHPEhuDoblpK67bjMGAMTRHorhATu4BBEMlBAJ5BAJ5uG4zkUgFTrSG5qaN3t+cFSQ7ZywF2fkEg3kYq4CI4xKwLf994f2H95nVRa5rsO3020cdl4bYZ0pcui2THy87aBMM2BhjaHFSz01W0r2DttXu47Y5jmgtkUgVAFlZwwgEMjsZwjLxd6C0UVNTQ1FREdXV1RQWFg704cggdv83XqWpLkLpyDwqttQzZmopn7p65kAfloiI9IDGB23t6d9JS2MDD3/1O7SMOggqAjSYsTRX/w7j7u78zlYOfiDApAaq7NABsZ8M4GLcRoiFXwCMsz1l+2DOMcxZ/hJFNet694QEgL+ceBq/POv8DrexjeN9U44JW82c5v6DrdYIaimiimI2W6OJWll7+nClHbMjb/GNyB005IwADNWNLWBcHONiYbAsg42B2L+WZaiPFLCzoQSDF5TJCkQoy9lFwHJxsXhn+8Es3TWN8tzthAJRynJ2URT2Anz54SB1zVH/8YMBm4iby9a6MmYPe52cUGO7x+q4AT7YNYXalgKqWwqwgNnlS8gONDGxeH2b7esjOdiWS06wvSB351ZXjWNi8boe378rKpuKKMmu7tF9n1r7CQDKcnZjWy627WBjmDpkBUE7EWDZUjccxwTY0TCU+kgeI/K2kR1sZkzBlh49rmOCNLgTybU3YBHBtqKd36kV11jsaixlWG7n54LXt8zm/V1TAcOxo1+nPHeHHzHa1VhKZVMJo/K3Eg5EKMkLs7ZmAku3FXHkyEUELZfsUICmqOsFxI0X2PICiInAVtTxAqMei/pILve9fyG5wUZOHvsiQTv1Oe5qHEJ1cyGnTmlk1bbtlOdtY0TeNmzL0BQNs6F2NMbA6IKthOwIeH9R2JZNxOSzvnoExeEKisO7sS2LJreQuuYwo/IT7+Vw1nDmzn1xQAJTXR0bKFNKpB9Em70P9P1nD2fRP9dgXMWCRUREuioaiRC0gqw3DuWREAQhGKkiEoDJO6NsneyQ5RpWmxFUk0fFkDzqsrOozw/RUh/CDrqUDAM3Wkh2cwu2MQRyLMKNdYALxvtuYiig2ikC44AFAWc8k9atp7hqF7gRjInw0HElLBuxA0wzoew57L99FMFGcC2bXcWlVBQWY8Wu6o+p3cHYbesJ0UzA9vYZxabJzcZuMey3dRs5zU1kWREq8krYlVdKNBBkV3ExIauZLCdCaU0VU1auxYp9N6wsLGL5+EmU795BWU0FLgEsY7CMwXa94JttDJZxsV3jfYUxBsuNLcdgu663vXEJGAcLyK+vJyuS+ML0k698iRVjJ1BtFWMb7/lYxvtKNNzdikMAY2yiJohlDPVWvrc+diwnvL2QITVVYAzGgo/GT+DjseOwcDnjxX9zymuvUujWcKh5E4NNFcVA7CuXcWmqLMAxQYxlsaNkCMb2WuE2EuThwOfbfa9MNssZy7rYl0WIGpuA5cb3DHghx8ZoNvHsLmPiuXNeZliWaeGoyCsEiBINl+LEvjLVtTiABQZcLMKBForCtXzIVFYyBYdEplDisSwcE0ha5j2GHcu+im/nHWvQX2ZbXkAnfh+AHBqYztJYiNXLh3KxMdjEwj/+7fjPUQI4BHFi/3q3k5cFiMZ+jhIkmyaKqG71GFbKz/HfZS0FbLDGsz04DCfYRJi1AAzL6fDPGYDS7CrGFGxsd/2CCc+xYMJzne+oB8rzdna4fnfzfgwJbwAgr1WAqz6Sw/u7pjI0ZzcW4BqbyqZiIm4QyzKEAy2MK9xAXqie7GALQEpAqqplFE1uCfXRYV6wznKxLYNtGcJBi+yQ90lkGRebBsDLgNxYUU9RuNYL3NltMz2TA1INkWwsK5ZvZUEiO4/YY3qvoB37UPnk+Oe79Hsbme8F6dsLQtW25FHbks+2+uEcOnxpyrpmJ4slO2ZQml3FhKJ1BG2HgBWlILCi1e83l6Zo2Hv/W4YWJ0RFUwnG2LFnYTE0u4KhObsJ2N7vLjkgFXED7G4cQl0klyHZleRn1RGKBdbmjnybuSPfTnvsxeEaYF1igQsT87cwcVLqdnk9iJ785Jgfdb6RgVnDUxdlB5s5oGR1u3cJ0ciU0tT3cjjQQFEodbvmlu20tOwkJ2d0Vw+53ykoJbKHGdcQjXgnj1A40MnWIiIi0ppxvaBCskggdm6d8UXOKPoZZfYqvrPf91lYNpVcu4Iv5dxH2MzlW8/NYUxpDg+fUoL96+NwC0ay6Iz/4Liu/1/Ahikj8nFaVvHswhf5j9tMdkGQLNtm6OFFmIUWztItgMupR0/ADlXy7I5NXH7QTM4YeymrdtYRNYZw0GZMaa53v/wssoPpz/uvfbyLzVXel93xw/I5ZL8SAFpcl3c2VPH66l0EsAgGLM6YOYrsUIDfr97OpmgE27KYMyyPk4sqvECRZZObOwHbDlHT2MLCDZVsjUaxLDh0ZBHDwyFW76zHGAiHbEYX52BZELBtCuxGNu/eyuoddTQYh9FuI6WB7USzI9xckEMgmMtKdzT/XPMMTU2byaWBE3iBkBXFskJMmvQdRo86G4CNTS0sqqrDACPCIY763Kl8uLWWLR9/Div6EbNiz33suOuofe99AI51Xma6eY2K6KFETC4Yg2sMo/+xjlEvJwIWjXPHU3ndCbwfKeW1pnKsYCG5oWIm5QTIdR3ClY8yIvIKuVaEvIDDe5UnsXL3cCqaR2OsUs6dsZz8wFpGFeeQnT2SYMFnwbLIDtoMyQ8TcVzeWldBc8QlJyvAQaOLsK2vEQ7aKWU2O2qbeOHDHTjGEArYzJ9Wjm3q+dvbHzG9JYKFy/7Dctl/WC7hEBRkZ5ObO6Hd0qCGhrU4ThOWHSQvdxKWZbG9ponfLVxHUyRC0KpmV12Eebsf5sDG9xjfsgLLiVJ38QvU5uzHix/uwKtqszmgvJCjJpURL30Ci81VjUQcQ9C2yLM+ZNPG+zEmQiBYwKa6seyqbSKLDTRHmnBMgK0txzG9+CnqG7ZR1+LiGhtjbELBIFsaprKk8tOcN3sEr6zaRoH9MdnFL/CL8KVYrsWQjVncFbnKz+L47GFjKckNe38PoSAWNlg2jy3ZwptrtlCUtZMRhUE+PbMc17hU1jcRCBSSm1POzs030xKpwjVgBwrJyx1POBSmLjqSFTu9oGB+OMihY0toibpUN9TgtKwHmgkHg+TmTWVE2VFYrUqdWlp2sXv3yxjj4DpNtES8YIZl2RQUzKAgfypFRTMJh4fT1LSFTRW7aWg2YNmMHZKPIcSvFtbQkBtlAzC6JJcjJw7xS0u9a87ev00Rh/rGnVgt7zGyOMywwhxKig8jK2to2vdCZ3bXNbN0czXGtJAXCjB73BBsOwhY1Dd8jOs2Y1shcnMnsbMugjGQHbIpzm0/g7ChYS0fr/4pjtOAZdnk5e1PTs5YLCvg/UeA3LxJVDaPpK52KQHbpTBUQVOz97cZDOQRtcdS3WQTZRiR5uFkA+PCQY6cUEJLyzbAK3HNyirnJANbq5r4cGs1TfVPsaNqK01Rh0Z3LE1mDFg5ZGWVMnFkHvnhEKOKcyjJC3HHc6uoaPQCfJOHF3DmCZO8LCVjqKtdSiRSgW1nU1R8OJaV+pn79rpKXl+1mrHBu8my6ykvDGPb3t9HOHscQ8rOobl5Kw0NH2GMw8aqEA+9m8vR5Y9SEKoiK2gztCCfdS0XEHELvGMoL2B0cTaOMTiuS9RxqW2OEIkaQgGL8UNzsSyorHyNjRvuTjme0WP+i6ysIbH340627PqYj3fW0uJkUR0ZyUFjypk1aS5Z4dHU1b5LS4tX1hsMlVDvTqKhJcqTS7fgOI0UhdYQDjQza+wQVuwextYayLa3UxC2aIzY3PVaKT//xPcJWk09es/1J5XvdUDp+dIXmipquP+7XlR+7mx4/W0YNbmEM649ZICPTEREekLjg7b29O+kvqqSJ677f3xcPonyHbk0BkfTWHkbFnDa6K+wX84PyQmu4l8jp5A7KXHluDbrcq55fDpjSnN49YIh8MtjoWAEfP2jdh/r73//O0uXLuWkk07iqKOOAuDlP/6Gt//1dwLhWZzxzav4S+OvefDDB7lsxmVcfejVff589yYNDevZXfEyGJfCokMoKjyYnXfdza677qL4c+cx4gc/aHOfdZ/7PI1LlkAoBJEIwfJy9n/pxQE4+gwQaYL/V04804VwEXxjBYS6kI60hy2qquPTSz5mYsMGXlv/Y/ivhQN9SCIZJRKpxnHqAQiFSggE+ufv9p6XVvOTpz/ilyd9i6DVxJFzXyInp/8n7FD5nkgGqN7ZwLq7HgQmA1Dz+9/A1EtSeiOIiIhIx0ysoa6J1FPf9BFR6wM/bypoJxoB5wa97KNGpjFu+AHkZZ0OrPVOu5Yd31mHj5UuqyUQjNdDuLiO8ZvPGnQ+70xu7lhycy9MWWbFM8iiTpp7gNvovY7Dvn4dO378E0xj+z2C9npuFD8g9Zn7YNSsjAhIAQRjfytRKwD6WxBpIxQqIhQqGujDyHgKSonsIZs+quAfd7xLPCBlOy1YsYGwYlIiIiJd53XWsQjWrKclssZf7tgBgnaieattubjAEQdfx9Ahx7F0UxXdDUr5j5l0sg4EY0Nm43hBqdiXcbeL+5JWYrO0GSd9UCoehAoO8cpc3H05KJX8Hpt2BgQzZxYtOzkopcGtSMbwr60YYtdsMvvvU0EpkT2kclsDAAGihBqrGF75nn/CVtWsiIhI1/kThBgviGEHx9Ac3MX6CbMJNAaIZ0rZeEEp2/Iym/yMJuOPzDv98hwPOCWfq+14UAoH13WxsdtsI11nBWKZUk762bbcJq8HSqCkFADT0oJxnMT99inJ77GuT1vfH4Kxw3GsffF1EZG+Yg/0AYjsrVzHG0SUmy0cuegHTK59nUyPUouIiGQmL1PKigWBrOBInHA2jflDYms9dmxWKssKxv71lru9Lt+Lz4rmle/ZsX0pU6pn4uV7xkn/+4tnRgVLS/xlTR99hNvQsOcPLtMkv8eszPrqpvI9kcyUSJRqe5ElE2XWJ5vIXsSJDbQs17sKGCgsTHxAaAwrIiLSZcY1sQhTYmBt0pQk2HgnWNuOZUrFk6Mwe6Z8D53QeyQQC/IlZUo1vvsuH3/iRFbOOQK3psbbrKjIfxHXnXU2H5908r5Xypf8ZTLDglKB+N+BZat8T0R6LLM+2UT2IvFMqeSgVPyE3bJ+PTVPPjlgxyYiIjK4eNd7E197Le9/rb4IB1pnSvlXiUkKSnWtfC9lv36jcyclUyrTrz5nKisQey2SGp3XvvgSkc2bcaqrAQgOH06wrIzic87Bjs3a5OzeTWTLln4/3gGVkimVaeV7yZlSIpIpEh8Vyc2lMpeCUiJ7SOugVGj0aOIfCNGKCrZ+/78H6tBEREQGFa+nVGpYCsDyb8Z6SsUWWLGeUnZspOvdvWuD8456SrmRtbxw/9dxn/4wtqfMHuhnrECaRuexrKmiM85gwpNPMPHpp7CyshjxoxuY/Oai2DgKnFgW1T7DD0pZGReUCsQOR+V7ItIbanQusoe48fK92CCr4KQTGTLhSFgMWDZuc/MAHp2IiMjgEZ99z4p98Y3/ZLUqxfPK9ywsOzVTCkxSLV/3y/eGjhnrZVoZl0hTHSytg1HqKdVTVpryvXh/qcCQUsITJrS5j11QAIBbW9sPR5hB4u+xDCvdg0T5nqPZ90QyitVmUoTM/vvMvE83kb2EG03NlLKzs8k74ggg9rGgk7eIiEiXtM2UslrnTAFg295Su1Wj89Tyve43Oi+fuD9Tj/8+WfnnxvYBxQ3DFZTqqXj5XnKjc9fLmrLs9KVggVhQauOXv8JHhxxK9b8e36OHmDHi48UMy5ICle+JSN9QUEpkD/HL92JXAa1QKLHSssDVQFZERKRrYnMImeQlbXtKWcR7SsXK9/zZ93rX6Bwgv6QYK1Dq3z5iw6fUU6qH0mZKxftLBdMHOHLnHB7b0GAaG6l7+eU9eowZI6Mzpbx/HSuoUlaRDJKY5CPzgtnpZN6nm8hewEQi1K5YhhNZR13TFqpywhAMYsVHx4PkA0JERCQT+LPvWYlMKe//U2/bViwoZQdTlhtvYWxn3e8pBXDoyWOZedIY/3ZWNEuz7/WQFQ88JTU6N51kSpVdcQX7v76QoVdf5S3YVy7uZXRQKjGedTW2FZEeUk8pkT5Us2snz/7y/6jbtIndFTsB2JgFGw4YzfsvvkB1xNBY1kJViWH/j4swxqQtExAREZFkJjm85P0Um33PDTQTKdgCjZ2U79G1nlLtnZfzisPMOmU8i/6WOABlSvVQukbnsQCV1U6mFECwpIRAgTcTn9lXSiczOCgVTPpbiWKjIj6RTJP+IkumUVBKpA+tWfwm65cuSVkWsEJEQjZbamKNOQPgBmDLqJHeKFlBKRERkQ4Z12tgnohJWd7/jKGxeBUFwXpoBAwEg8UEg17/ITt2ju2L8j3vYRPnbAtLPaV6yIoFpZpXrmTDJZeSe/jhfqYU7WRK+QLJUyruAzI4KBVIGsI+WnQ4+1XWMbc4TxdcRaRbMu/TTWQQi0ZaAMjKGkV29icJF32Z4ZPnYGIDrJzsXLKahgCxa74ZHrUWERHJBF6b86QvulZ8mcFYib5ES1fN5Yg5T2Lb4fhmSTvoeaPzxMMmBaWMpT46PRQcXg6AW1dH/cKF7LzjDtzYxbuOMqUALDselNpHAoIZHJQKWYkZMa8Z8yXOfPdj3qquH+CjEpG2MvtclXmfbiKDmBtLQ3cohpwpWHYe2XnZflAqnBXGdmMNzy0UlBIREekC4wcgUsv3cA3Gcvyl1bVlhMPD/W3SZkp1Mjhvr6cUkNQb0juNK1OqZ7KnTWXsH37PyFt+4i9zGxq8HzrLlIq9jvtM+Z4v87KPsmyb75c6HF25mELHe/22tUQ7uZeI7GmDLVtRQSmRPuRG4ydimwM/+gPHlb5DXlkOblY2AKFQmETTVc3AJyIi0lXeIDtNo3MrcS5tHc5IzEBEaqZJFy4Kpe/B0SpTSheXesSyLHIPO4yiT30KYrMTu81N3rpAJ0GpxJSKe/IQM4efKZWZXzKvKHH429LrmNq4AUDZgyIZKbP/LhWUEulDTrxhp2VTWvkRkZxGXl+/leYRYwHICoZSxtOZ/fEgIiKSGUxDJbEU45TlljEYy/VjRQEr/ZnVGFK/1HeQZdNh+V7KKkuz7/UBKxaUMo1eUMrvGdXe9vHyveQm6XuzDC7fA/w/ingZn+K0IgMvfqoyGZhhmU6GfrqJDE7JmVK2G6XCtr1TtHEJ2haTxk8mJVNKZ24REZHObfEmEUkunvNm3yMlU8puFbSy7eTyva4FpfxN0pXvJQUGLKPyvb4QD0q5TfFMqU7mYdrXyvcyPShFalBKRDJPpmcwZuqnm8ig5EQSQSnLOLixq3nBmkoOH17C5InTEwNq9ZQSERHpEuM6WCSXy/l5GV6mVEygdSZV/P7Q5fK9jnpKpfRaN5k/zfZgkMiUavQWdJYppdn3MlI8SXEfeVVEMlqGVvu2K7M/3UQGmWg04v1gBbDdKG68WacxONFo6kVaZUqJiIh0idfovO0o2zKpPaXGDclJXZ8clUoJSvWsfC/5RG5hZ/zV58HAyor3lGr2bneWKaXZ9zJL6/K9gTwWERmUMvTTTWRwSs6Ust0obuxqnoUXlPJO3LEBrTKlREREusQYg5XSUypWvhfLlIovnTO2JOV+KbPvofK9TORnSvnle518Pdnnyvdi78MMT31I9JTS2FZkoPnXY0x8to/M/rtUUEqkj7jNUQINAfKDJQStABaGaDQMwLDwGIrWF7D477/FONUAGMvC7Cup5yIiIr1hTJtEKUM8UyrR8Lpx6VKq//WvWGZVR+V7fdPoXF/Ae691Tyk6yZSy9tnZ9zL1a5uV9P/KlBKR7uskP1ZEusJtjLL1J29xYNN0Dhwz3Vv2iUlE6uoguJviUBnjrQNYvOI5nJwKYGjsnjp1i4iIdMbrKdWqmXIs4zi5p1TD229T88hygmXDyDtijh9g8hqdJ3+p72FPqZRW68qU6gtWVpb3Q2w2vU4zpTT7XmaJFwAYle+JZIrExZXBES7O0E83kcGlZWcDpimasswuKCdeUGDFxltBOwR4gyhjqaeUiIhIV3ilWslpSrHsjFY9pez8fACcqipvfXLlQhczpRKPmaZ8z04KShlwUVCqt+zsVn3A4kGq9vjle/vIGGqwle8N8HGIyOCjoJRILznRKC/e/2sA6iJVPLT2Jyxq+IjS88aTNa0UgJyhhYDXFDVxJUlBKRERkS5xW/eUSpTvGcv141WhYWVJa1PDWKaLPaU6LN9LyZRS+V5fGPKlL5F7xBHkHnYYhQsWkDvniI7v4Jfv7SMBwUzPlPLL9+I9pQbyWEQEMj6G3YbK90R6adeGdexctwpGHIZjvGypaaePI3fmaKxN7wIQsLxZ+FIGump0LiIi0iV+ppR/2kxtdJ6Q2tTVTjrvmuSQUhfOv2kDTinT6Foq3+sDBSccT8EJx3d5eysQm9lYQanMYKWWB2lGShHprgz9dBMZPJxohIDlxXctcjn2ww3sd/DBrF+/nupqr6m5Het/YGOTOGkrU0pERKQrjOvGvvum9pRqXb4Xz6LxG52nxJCSy/d61lMq+eKSZfQFfEB02PNrb5SYcTKTqaeUSOaJZwhn+rlKmVIiveREIrFgExgC5LdE+NNjj7FpyxZ/m2AgOVMq3htgXxpQiYiI9ILfUyrRX8eNXdwxVpqG1/6p1mq9KGl/6XVUvhd/bIzxglI6j/c7K97oXJlSGUKz74lkmswOYbeloJRILznRKHYsUyp+ZXZ3RQUAxcXF5OfnM6F4DFCLhe2frZUpJSIi0jXGeMV3qXPfGa+PjeUmV/XF7+DdTPoe78abnRu3x43OE4/sBbxUvjcAFJTKLFZqTylFpUQySWpJe6ZSUEqkl5xo1O8ZZWIDByc2ULrwwgspLS2l6qm11FGLlTygUE8pERGRLmk7+543i60diOIGG/xlVqv+NqmNzk2XglKdZ0rZYBzNvjdQ4rPvKSiVUTT7nkgGGWSdzjP7001kEHCiEexYUMo1LgQCOI5XShAIpDY4T545SJlSIiIiXWTSzb5nKDtmOZVjn0vaMHVmtpRG5yZpfQdfnTvqKeWtTzzW2uq1/OTNn/BRxUddfirSO5Zm38swsTGuxrQiGSyz/z4z9dNNZFAwroGtUYaER8ZuOxAKtQlKxf/SbJQpJSIi0l1eVkzr2fdsbNsFY4EJxBd728fL95IbncfL9wDWvQbrXwcn2v5jtnuOTlxo2tGwgz9++EduX3x7T56W9IQde633ldLJjA9KeZQpJZI5BluPt8z+dBPJcA3v7ST3DZuJhTMBMMaBrCx/vZ8pFbuqZ1mJAbWxLDVIFRER6QJjXLAgaqcW5FkYStd9kuzd07xFrUbiqY3ODdixzhV//xI8cAq8dFObx+qsfC9+Ts8J5DB/3HwA6iJ13X5O0kP+DIv7yBjK+G/mzORXA3gyfZYvkX1TZv9dKigl0gvLn10PQGO0jq1N29hWuQ2Tl+ev9zOl/BO2TWr5Xr8eroiIyOBkDC2BAA2hUGyBhbEswjSDSTOcTZMp5RrgmOtg+HTIL/cWVm3o4CE7zpTKskOcPuF0ABw3zQyAskfsM7PvLfol3DoF/naJdztjM6VSy/d0vVVk4CXaK2ZqNDtVpn66iWS8usoKKja8C8CWho95bddC8vOrKP3y5YSbmgg3NWHHB06BeKZU6/K9vXxAJSIi0geM69ISCJB8NWeoXc9kPiIlhSQ+Eo+dX1PL9wwc+w346mtw9DXxhW0eq/OeUonZjAJ2Uk9J6R/7SlBqyR+hdgs0VXm3y6YM6OF0RuV7Ipkr0zMYNfueSA+tWPgKRCsAcHHYr3YFs79xEesuvIgzWloA2Fpdw5h7ftGq0blHjc5FRES6xivfS77iazHErsfGxUo6lSYHjLytks+7yVKDVylrOivfSwpa2bGLTY5RplS/if/+9/agVDz7bsFtsN8RUHbgwB5Pe/wxroJSIpkice4bHJlSCkqJ9FBLY5M/GC2paWRExKJx6VKIBaQAGt5+2/vBTmRKWW5SbwAFpURERDpljMFg+SVCFsnp/jatB97xLKfkFlQp8Sc/c7n983C75XtJQalAbPZdle/1n32mfC/+hh0yCYZPG9hj6VBqIFgjW5EMlOHfOVW+J9JD0UgLdmwwmt/URDQ7m3ffeguALcOKAXDjs/rE/tKUKSUiItIDsUwpy//Ka2GsNOfQ1plSVvJ517S7XeouunZlOSUopUyp/hMLSpmWFppXr8ap20ubzMeDUvHZBjOcnymlsa3IgPNPcQN7GF2moJRID0VbotjxPyGnhY1DSqnZthGAHXnVALS0NPLyxpf9mXrsVj2ldN4WERHp2Kq3XmfDxopYUCpZfNSdlCnVZva9hLSTtXVQvtd+T6l4po56Sg2IWFAqunMnaxacxscnfAKntnaAD2oPiAc6M7bBeYzK90SklzL8U04kczmRiJ8phRshEgoxwV0HQHNsciDbhbXVaxPle0mRqMriA1i+uLK/D1tERGRQ+c+ff88HH2zg0JzH2C+6LbbUIt5MykqeXaizRuf+dj0v31NPqYEV3n9/cmbNIlBcDLaNW1NDy7p1A31YfS8e6Mz0oFTr2fcG8lBEBEi+INPqSk2GyvRPOZGMFU0KSlmugxMMEnC9flItSUGplrptWE49AEPCoxiXPwOA5nARbzy3s/8PXEREZBCpGOowdvRuJmS9Tb7b4C20Ys3PfVbS/9NO+V7y5j0v30sOSgUtrz2rglL9x87KYtyDf+SAN14nPHkyAE7lXniRzw9KDa7yPRGR7lJQSqSHnEjET+HfkFfN/017k+dzvXXRYKxcD2h5/RfkvjAPm2pygvmUhocn9hHVCVxERKQjk3I3c0r+agCq7fzYUovqxvjEIsml8W1L7+LNzt2UAFT7Qam4Thuduy7NVS5BJwt3b2+6naGCJcUAbLz8ywN7IHuCO0gypVqX72loKzLg1FNKZB8RjUSw8a5eLRm+m13Z9f74oSC30N8ugo0VraP0xBbW1C5td3JqERHZt2zevJkvfOELDBkyhJycHGbMmMHb8VlbYz788EM+9alPUVRURF5eHocddhgbNmzw1zc1NXHFFVcwZMgQ8vPzOeuss9i+fXvKPjZs2MCCBQvIzc1l2LBhfPOb3yQajaZs89JLL3HooYcSDoeZNGkSv/3tb/fY8+6uUyrWk413vNVWnr/cr9ozFm2mvU76ZhzPbPrOI+9z3UPvsmp7bYfle531lCJpsP/6z3Zy0dv/S6gptztPSfpI9jRvVrpASckAH8ke4GdKDY4p3RPlexrfikj3BAf6AEQGo+rn1jN198EEc72gVDTYDMDoZgewOXG/I6l6/UlvXeEYqK4k+z8Xc/RQi5Xu2SxktD+YNsZ0eaYfERHZO1RWVnLUUUdx/PHH89RTT1FWVsaqVasoSfpyvXr1ao4++mguvfRSbrjhBgoLC1m2bBnZ2dn+Ntdeey1PPPEEDz/8MEVFRVx55ZWceeaZvPbaawA4jsOCBQsoLy9n4cKFbN26lQsvvJBQKMRNN90EwNq1a1mwYAFf+cpXePDBB3n++ef50pe+xIgRI5g/f37//mLSqOAYsiK7+ENpHVuDUUYAyT2lUgJS8R+TupqX5mWxs7aZFz7aAUB2VoCbxva8fM+ONdoOBC2MgZAbJr+utPtPTHqt7NprKTzttERW0d5k0My+l1o6q5CUSCaJXWTJ8L/MPZ4p9eMf/xjLsrjmmmv8Zdu2beOCCy6gvLycvLw8Dj30UB555JGU+1VUVHD++edTWFhIcXExl156KXWtpnxdunQpxxxzDNnZ2YwZM4ZbbrmlzeM//PDDHHjggWRnZzNjxgyefPLJPfI8Zd+xeeUOqv69nhw3l5AdZpW9leDINQDkuNlsG3YYm9xJbBs2i2ggm0jBCP++tmUYbi1J3WFmf0aIiMge8JOf/IQxY8bwwAMPcPjhhzN+/HhOPvlkJk6c6G/zve99j1NPPZVbbrmFQw45hIkTJ/KpT32KYcOGAVBdXc3999/PbbfdxgknnMCsWbN44IEHWLhwIW+88QYAzz77LMuXL+ePf/wjM2fO5JOf/CQ33ngjd999Ny0tXvnbvffey/jx47n11luZMmUKV155JWeffTa33357//9i0hjxo3vIOn4K9w/dhGU1+MuDsWFs+kbniZPrHy+dw42fnsbJU73y+eaISyLdqf1gRmeNzs/+9iwKR2YBrUsDpb9Ytk325MlkT5ky0IfS9wbr7Hv6UxAZcK3nqs10e/RT7q233uKXv/wlBx10UMryCy+8kBUrVvDPf/6T999/nzPPPJNzzz2XJUsSX9bPP/98li1bxnPPPcfjjz/OK6+8wuWXX+6vr6mp4eSTT2bs2LEsXryYn/70p/zwhz/kvvvu87dZuHAhn/vc57j00ktZsmQJZ5xxBmeccQYffPDBnnzaspf7123f9/9wXtj9GC+HPqRw+be54tUfs678dpZP/SJv7pzM8qmXsHrCGURLxsN3NsB5fwYg26pgDFvIognooDxARET2Wv/85z+ZPXs255xzDsOGDeOQQw7hV7/6lb/edV2eeOIJDjjgAObPn8+wYcOYM2cOjz32mL/N4sWLiUQinHjiif6yAw88kP3224/XX38dgNdff50ZM2YwfHiin+H8+fOpqalh2bJl/jbJ+4hvE99HJti1dL33gx+AshhGlv9zfAC+MToqtixxbp1cXsAFc8cxe5yXhWaM6VL5XruS1luDrXGHDB6DZvY9j2bfE8lgGf59c499ytXV1XH++efzq1/9KiUVHbxg0VVXXcXhhx/OhAkT+P73v09xcTGLFy8GvP4JTz/9NL/+9a+ZM2cORx99ND//+c/5y1/+wpYtWwB48MEHaWlp4Te/+Q3Tpk3jvPPO4+qrr+a2227zH+fOO+/klFNO4Zvf/CZTpkzhxhtv5NBDD+Wuu+7aU09b9gENVdv8QWhDwzZC0TyaQ+Nxgjn+NgUF3vrmcBENTXVUW8DQ/QHIsSq4lIf4Yta9gE7eIiL7ojVr1nDPPfew//7788wzz/DVr36Vq6++mt/97ncA7Nixg7q6On784x9zyimn8Oyzz/KZz3yGM888k5dffhnwMs+zsrIoLi5O2ffw4cPZtm2bv01yQCq+Pr6uo21qampobGxMe/zNzc3U1NSk/Lcn7XjGC6AlZ0UFYmV0yT2lKtwSooHs9GV5fhkDHc6+F1dfX8/GjRtxnNSZ9aykRuf+blydzaWPDZqgVGrhnv4SRDKAf4obHBlTe+xT7oorrmDBggVtrrwBHHnkkTz00ENUVFTgui5/+ctfaGpq4rjjjgO8K3bFxcXMnj3bv8+JJ56IbdssWrTI3+bYY48lKyvL32b+/PmsWLGCyti0sIPhyp8MLq7rpKRDTt28jUBsQJvduIv8I17jkhsP5fAzD/S2twL8Z+PLHP2Xo/n1lpdY3zCeRjMEgFJrd2yn/fscRERk4Lmuy6GHHspNN93EIYccwuWXX85ll13Gvffe668H+PSnP821117LzJkz+c53vsNpp53mbzOQbr75ZoqKivz/xowZs8cea8ett9FUVd9qqUX8BGph4ZIIHBnLShskSsShDB2V78V7Rm3YsIH777+fZ555Jv2OkrZV+Z70OT8oleE9pVqX7733Z/j9p2HtqwN5VCKSIrPPUXskKPWXv/yFd955h5tvvjnt+r/+9a9EIhGGDBlCOBzmy1/+Mo8++iiTJk0CvCt28X4JccFgkNLS0j658hdf31p/X/WTwceNOv6Me+ANh0OxLw5BpwkzsZCcsmLsQOwqqh3Ajo0plux8l9d3H89b0esBsC0XMCrfExHZB40YMYKpU6emLJsyZYo/s97QoUMJBoMdblNeXk5LSwtVVVUp22zfvp3y8nJ/m9az8cVvd7ZNYWEhOTk5pHP99ddTXV3t/7dx48auPvVuq332WZzYiDX5wpAfGzJWm8n3OsqA8jKl2i/fmzRpEmPHjiU/Px/Av9jpP24848qYxG50gUn6mjtYMqU8fvnejg9hzUtQv2NgD0hkHzY48qMS+vxTbuPGjXzta1/jwQcfTJkdJtl///d/U1VVxb///W/efvttrrvuOs4991zef//9vj6cbunPq34yODnRKHbS4MC1DCHHGzTYTguBbG/wbge8bYwV4FuHfsP72cTnPUgEtSzcDI9bi4jInnDUUUexYsWKlGUrV65k7NixAGRlZXHYYYd1uM2sWbMIhUI8//zz/voVK1awYcMG5s6dC8DcuXN5//332bEj8QXxueeeo7Cw0A94zZ07N2Uf8W3i+0gnHA5TWFiY8t+eUvqlSyn6xKTYrURPqdTZ91oNwdMEpexYFMs1dFi+V1RUxMUXX+xn27e+eGTZ8aCUmyjlM4aKpgpanJbuPDWR9vmZUoPj66WVXL6XXQSjDxvQ4xGRZJn9jTPY1ztcvHgxO3bs4NBDD/WXOY7DK6+8wl133cWKFSu46667+OCDD5g2bRoABx98MK+++ip333039957L+Xl5SmDJ4BoNEpFRUWfXPmLr2/t+uuv57rrrvNv19TUKDAlKZxoBDuWRu1Y73PXOdvIrfqQubVzsN0IwWxvUB7PlHKtAHashMDFBQuMSQS1LFz1oRAR2Qdde+21HHnkkdx0002ce+65vPnmm9x3330pE7Z885vf5LOf/SzHHnssxx9/PE8//TT/+te/eOmllwAveHLppZdy3XXXUVpaSmFhIVdddRVz587liCOOAODkk09m6tSpXHDBBdxyyy1s27aN73//+1xxxRWEw2EAvvKVr3DXXXfxrW99i0suuYQXXniBv/71rzzxxBP9/ntJp+SccyjIfhkq1qWMq62UoFT8p3hpXs/L9xLbW0nbp6yJ3TdRvmdhMe+heRRkFfD3T/2d8rz0Y02RLou/N+0ML9+LsUj6ezzos1C834Aej8i+zD9/DZKcqT7PlPrEJz7B+++/z7vvvuv/N3v2bM4//3zeffddGhq8qXzjJ/G4QCDg90+YO3cuVVVVfuNzgBdeeAHXdZkzZ46/zSuvvEIkEvG3ee6555g8ebLfWL27V/7686qfDE5uNIoV+7PZnvtXVuUFsKNB3OhOXLeC0aYMY0yr8r34FLkGg/HvD1BduoTXFv6n/5+IiIgMqMMOO4xHH32UP//5z0yfPp0bb7yRO+64g/PPP9/f5jOf+Qz33nsvt9xyCzNmzODXv/41jzzyCEcffbS/ze23385pp53GWWedxbHHHkt5eTl///vf/fWBQIDHH3+cQCDA3Llz+cIXvsCFF17Ij370I3+b8ePH88QTT/Dcc89x8MEHc+utt/LrX/+a+fPn988vowuirtczykrKlIoHpSzTtUyplHbMVsqttNoLSiUHt4KBYOwYvHN7bUstqypXdfZ0RDpnYn3SMr18z+8p5THpMhdFZECZfS1TqqCggOnTp6csy8vLY8iQIUyfPp1IJMKkSZP48pe/zM9+9jOGDBnCY489xnPPPcfjjz8OeP0STjnlFL/hZyQS4corr+S8885j5MiRAHz+85/nhhtu4NJLL+Xb3/42H3zwAXfeeSe33367/7hf+9rXmDdvHrfeeisLFizgL3/5C2+//XbKVUiR7vDK97wrVpUtozht2XkM2fw6LdE/sMOGHf/vdayzdzF6mjeQN1aAUEUloajBNS5YFrkm19+fm1XDq/95heNPOG4gno6IiAyg0047jdNOO63DbS655BIuueSSdtdnZ2dz9913c/fdd7e7zdixY3nyySc7fJzjjjuOJUuWdHzAA+TE215mTc3B5I3/T0rvpkRVk5WILVleFlT6RudJQaYuzL7XflDK9pfHt7nlmFv47x1fY/nu5Rk/+JdBYpDNvuf3lLKsQXDMIns3K81PmazfPzFCoRBPPvkkZWVlnH766Rx00EH8/ve/53e/+x2nnnqqv92DDz7IgQceyCc+8QlOPfVUjj766JRgUlFREc8++yxr165l1qxZfP3rX+d//ud/uPzyy/1tjjzySP70pz9x3333cfDBB/O3v/2Nxx57rE3QTKSrkntKba+dy6jqSVjRCiBxlXT3xvV+TynXCjDyO/dyz10O4boWwGW4KfX3Z+P6GYIiIiKSRv0usBIz7eH/FAv+dDFTyk6JQ/U8KJVICTEpsS0bO/32Ij0xWGbfi7FiEePUTEQRyQgZfl7q80ypdOK9D+L2339/HnnkkQ7vU1payp/+9KcOtznooIN49dWOpxs955xzOOecc7p0nCId2b25jref+NgfdDpuEEwz8cuzU6oaWF6Sjes6BPzyPe9PrLARhm6qw1CMldTo3CZR2mfpBC4iItLG34ruZEn9Bq6mIBFZssCyEz1sktqfezGqdANwP8hEh7PvtdY2U8rbzz9+9r9EWmwIHI4xU5J6eGT24F8GCXeQle/FY8Qq3xMZcP4Fk4E9jC7L8E85kcwQbWnhtXsfJ/eDbcwonUe9W0/Vzhdprr4HgKDjUDDNm8XIdRw/Uyo4agxNMw8A4JgnNjD+w3eJbFjk79e/qpTh0WsREZGBUnzkxeQdelbsVuLLbqJiz0rTzLWjnlLJ5XudNzpvbchor4FzY20N0eYqnJZleBX68dn9lAEtvWQM/ns404NS8fI9f/Y9S5lSItItmf4pJ5IRPnjp35RXNzI+dySjciex0FmC69b768PjJlFyxqcBcF03Mfue4xLdz5uBZ+T6Okp27aBp6Z8wxsuWSs6UEhERkTRmX0zjuDM5591vM7R+aGyhhWW5iZ9b3cWkKY23/aCRdx9vw+6X751+7fVc8JP/Y94XLvH3YYzxj0KZUtJrye+5QTb7ntdTSkEpkYGUmMtjcPwt9kv5nshgV19VQY7tTZ29pWoZdTmxPlJ2MeOrmjj82u9Qs2YlEM+U8j4AGusiLBt1FhtPHEZp+A1OeGITRJsxxsayHGx0NVVERKQz1WuiDGkcSbPxvvqGmyqxrFh5k0m+xuo1Ok87+15yHKoL5XvtBaXsQIBh4yZQs3OHvw/jGr/npC40DX4LV+/iwTc24LiG3KwAV31if8YPzeu/A4jPvAeZH+BpNWlAbE7MgToaERmElCkl0gVuNEog1gsqsOlj7GC8zj9EVtBm1KhRWAFvvXEccguzsGwL1zHUbwhSGj2e5QcdkNif6/3pWcqUEhER6dBTDz3I6jdew2lZRdTyspQPXPmQ317K07rRedv9pBT+daN8r71ztGUnFQSaRL6WyvcGv589s4In3t/K08u28fclm3nwjfX9ewDJ7yGV74lIL2V6Bq8ypUS6wHEc/wpoVqCSAtNEEwABrFhnRzsWlHJdh5yCLM761iwqt9bz0t8+xKkH14T8/RknAEH8TCkFpURERNJb9PSfKGjwujDGC5kCbhRijc6tpNn3EjPytZ8p1dvyvcT6pGyrpAlLMn3wL53bXd8CwKRh+Xy8o47maD8HGgdVUMpjmaSglDKlRAZUopx8cBgcn3IiA8x1othWgAC7aD7iX/yjdJW3wgpAIBaUitX8u46XRTV8XCEHzh1BMJbtbUzA/2BwHe9PL95Tqnndun55HiIiIoNNrpmAFRiJFRhJfd4QcqM2xQ3NSd970wxn02QrpQSZelG+13o9GFwXle/tRaoaIgBMLi8ABiDQmBKUyvCeUlarTCnLGjSBNJF9Roafl5QpJdIFbtTxglLWFt7JDhNtjJffBcnL8QYsfqaUkzoQtmN/ZZZrY2wby3Uxfvmet+2O2+8g/xd398dTERERGVRGjv0c1dubsMM2D83N49t/+jEB03q+vUSACKy0gaHkLfqkfM9KLt9To/PB7qUVO7jyT0uob4n639+Kc7wsd7e/XlJj4PefgnX/SSwbJAEeK/l9r/I9kQGV+BMcHH+LCkqJdIETjWITwLKiRCLlDK0rB6JgBRiaVwqAbXuDBtd1Uu5rBy3AYDkBXNvGdl2M4/3pxTOl3Lq6fnsuIiIig8kXbjgSgDeq6rhhyceJIbYVL9VLlymVrnzPSlrVB+V7/qxoJtamSj2lBrMXP9pBXXPUv33A8HzKCrxJbvot+62hAta+krg94mAIhvvnsXssliml8j2RDJbZF0sUlBLpAq98z6bRsTBrbuagpqVEeQEIEAh6g9LkRufJ4kEp27FxY4Gr7e9kEQqXUHxAJduHlinVX0REpBP+mTJ2zoz3GbdafQk2lpV2/B3f3u1i+V7i4TppdG5SM6UUlBqcapu8gNTVJ0ziC3PHUpqbxb0vrwb6sfIl+b1z3UeQPyzzs45al++h8j2RTDFYvmEqKCXSBa7jle99VLOZ5qqXwXgNMHOaKsgbEsuUCqT2lIrzy/ecAJFwNlktLTRut2kkh/0i61kx7wDcDB9viIiIDDTXpE42b5Lq8dqcRjtodJ66k74o3wPXNX5PKRmcamJBqfKiHIYVZAPJ2W/p3wOOa/hwaw0Rx2XKiEKyQ73s/xR/P1o2FI7o3b76mZ8pZWn2PZHMk9nhKQWlRDrgOC4bl1dQsWozds4hbK7bBKbRX7/fthXY444Bkhqdty7fC3kn5okfzeWtQ2czo34r43ffQc1ai+HOTi7nQbKKS/vpGYmIiAxOptVP8dlvvUbnrWffS9PonHTle+0/Xvdm30tkTilTavBoibrc/eLH7Kht4v3NVQDkZye+Htl+UCr9/f/3ieU88No6AF791vGMKc3t3QGZ2BhyUAU4W2dKJZaJyMBIXDQZHH+LCkqJdODD/2yh7h+rOTb3DAJWgAbXC0jl2TOZ+dE/KQ7nUXDySUD7jc5zhwWoXOYQimbjWtmsLQgzJVhIzdpaQibKSHZjSnb07xMTEREZZOKxoXgsKhGASjPo7iBTytC92ffaZSdStdTofHB6acUO7nx+VcqyEUXZ/s/+e6adl3TNznr/54DdB1/+kjOlBou05XuD44uwyF4vfprM8POSglIiHajZWcd+WYmBQfxqqbHD/Pmbx3PH5+7wB61+UKpVptTIY7O4reIGpjmzmP7BydTZ8JQzn7FDPiKHtYxlt3fuNkYncRERkXbEh9R+MCqlp1TyVu3MvhfPenHpo9n3EoEtk1S+pz6Rmc8Yw8rtdby1rgKAKSMKWTCjnBFFOcweW+Jvl2gblv41jS+99ZyDGVmc0wcHNgiDUnGxY1dPKZGBl7hkMji+W+oTQ6Qd9VWVvP2PG/zbT2z6ddKgxHDIQYekXEW1Yk3M63bv4tbPnsbTv7gdgIAdoDJ3G7tKNwDgOllU5x3P0hlfpTprVOIBNYgVERFpl5u45AuAbSVnSrUaeKc5pSblNSVu9Wb2PSs5UwplSg0iD7y2jvl3vMKvXl0LwNwJQ7jyhP05a9bolLGd3UlPqfh7o8+uKcYvbFq97E3Vr6yk/4/1lBokX4RF9hkZ/j1TQSmRduzcsA4TafZvR5t2k6iUNwTt1ETD4vIR5JUkekN9+J+X2L15I80V1WCgMaeGo86exP6HDccm4u0zkJe0h8z+sBARERlIietCXil9cc6upLWpX4y9dKhUKaVY8UyO3mRKJZXv7VhXQ/HaceS0FKin1CCwakcdAIXZQQ4sL+CMQ0Z2uH1nI7Q+C0oNxkwpv3wvnimFYlIiA2ywFd+ofE+kHa4TxY5dqbJo4NTqj3hi6HR/fcgOpWyflZ3DZXfdT1NdHb+68hKcSITfXvdVAGZOKmL3LJeZJ+4HwP3vrKLJCWGS48IZHsEWEREZSPFQj5V0vow2BMmuGdd24zTnVNsPMpE0Yu9NplSsXA/Duvd3M4JDObYkhHusglKZriXqvUZfPW4SXz1uYrvbddbo3O9z1ldRGH+HgygoFZNSLjQIj19k75bZ3zP1iSHSDieaCEoVBe/m3fkNRPyrQG0zpQACwRB5xSUcfNKphPPyCGaFARhaHU65cppoBpmcnp3ZHxYiIiIDye8pFfvi/vjHF7PqTzMIthSn2SpNTyl/Td+W74VCNsPHFwKQGyno5FlIJojEJqXJCnb8VSieDNdu+R59XL4XHyvag+krWixTKt53FZXviQy0RDn54PhbHEyfeCL9yo1G/aalq8Pb+J+yIUT9rqqGgqz2B57HX3QZV/7mIeZ/9WsABJzUpqv+NNbJoxhlSomIiLQrHhiIX9hxCWHSzLxnrPYancfWd7F8z99fu+V73j6ycgPMPnWct8xYKt8bBOKZUlmBjr+w+f2lOsmU6jMm3lNq8H1FS0xAoNn3RKR7Bt8nnkg/caNR7FgmU6VtKG4chhUb/OaEcpg3Zl6n+4hnSgVcC5fkQWp8FKNMKRERkR7xpq6N34j9v3c7umMnje+9h1NdnXwHiN+jT8r3YutT+ldZanQ+CPRZppQfh+mr8r3B3FMqninl3RKRTDA4/hbVU0qkHU40SiBWvvfxtqs4b+NomrgbiFKQlUc4EO50H8GQ13cq6FiY5PI9K37iVk8pERGRroj39bFM5197a59+mtqnnyZQUsKkl1/CzspqFWDou/I9Y4zf9NxCmVKDQUssKBUKdBz8sTqbfa+vQzB+UGoQz76nnlIiA651nDzTL5boE0OkHfGeUs3RRuprtxBpfBWMN2teebiyS/sIZmUBXqZU+vK95D/BzP6wEBERGQhVkSi7W6LUOF5pU+IUmjzqtvx/siZOIjRqFABOZSVuTY23KqXReV/Mvmf76wfHtWiJ88v3Os2USnrPpGGSKtb6hDuIy/eSe0qpfE9EukGZUiJpGMfF2moYkTuBNXVLiTb+J2mlYXRZ1/YTDMWCUk5q+Z4ypURERLrm9HdWsaqhOWlJIhKQ7urvfr/+FQWl2Xw4dRq4rn9+TSnY60b5Xrvr482oXdffVj2lBoeuZ0p5/7Y7+158uz6bfW9vKN9To3ORgeaf4QbJ18tB9Ikn0n8++NUHlC4vYEbJsTS5jQBYgWHkReoYFshl5Je/0qX9xDOlsltspi0J8c5T//SuqMY/KZQpJSIi0mU2hlwagFZBI9N+kCme6RSPIZmU8r32H6s75XuJ7+AKSmWypojDW+sqqG7wMt+72lOq/U7n3j99N/tebIeDavY9TzwoVRvMZb3JYXVDEyvqm1hW18hH9Y0DfHQi+7gMj04pU0okjYat9ZQADdEa6iJ1ANihsaweuZwRI+cSGjasS/vJLigEyyLo2oxfk8WLa+5jv+kHp8+UEhERkTZeOfxAADZVNvDY6w9QbCoBG9NONolpXVMVv0ly+V58XS/K96x4+Z7r785KMxugZI6v/HExL63Y6d8Od7mnVPr1fd9TavCW78X9tfyT/LUFWPSRv2xcThZvHDF14A5KZB9jJV0oGQwG7yeeyB6yc/1aWmrXAbC+bjnbnU1ALCU/ECAQ6HrzyfySUg6//BLenVRFS8gb+LY0NiZdUFX5noiISEcsy8KyLP74xgYWfpwIKOSFA23OnVZyRkvr9BU/RmX6ZvY9Oz77XmJ/anSe2dbv9rLsRhZlM++AMg7Zr6TD7ePvks5n3+ujAxzE5XvHVr5NidtIlttCLg6FQZvSUICyrCClIeVBiAwEk+anTKRPCJFWXvrD/QxtHApZo3GNSzQYxGoGy9iYQIApU6Z0a3+jZh3MuxurmbS1gKxIfJaeWKZU0uwq29dXM/yA/D59LiIiInuLSF0dwyuqsFq8L8HnzN6Pp9el2dBv9JMaeErtsRG7VbMZfrwfDJ8OF/4TAomhcdczpUzKVelMn+VoXxZ/Lf/vc4cwe1xpp9t32ujc/2kf7ikVM7d6KR/uvAs+ehw+eQvM+fJAH5LIPmxwZEjFKSgl0kpzfR22NRww1BS9ydaGBkbWB7CxGDtxEieffHK39mfHEhLjAxdjXH/qoC3lx/HnXTOYnfcw1ct3M/yAUX34TERERPYOpqWFBT+7htyaCuKD7SEF4aQtOhiAx3tKJZdilYyFcCE010BTNax/DSpWQ9nkNHdvJyLhByxSy/eUKZW5XD+zqWtf2Pxe9u1mSsUCnn2eKdX1rPyBl9zbbfAG1UT2bpl9sUSfGCKtONEolmUTstayddRbfn8Iy1hMGT692/uzYydmJzb73l3v/JyskNfwMRrKpyI6lmWN81W+JyIi0o5oZWUsIAVOocGdmE942rQO75PoUZ0aODDGQE4JXLccrnwbsotjK1KDSfHAheM4rF+/nurq6tT1acv3OghiyYDze0B1MYiU0ocs7f7i2/URdxD2lLLSBKVEZEAlWioOjowpZUqJtOJEo9iWjWN24mw+mOK6bKARy8C8yad3e3+l2aXkBHMwseyoxdve5pDiPGb/+yG2D5/JxtHzMcb2BrUiIiLShmn0LuY0h4Ls/nEDQ4fMJFBQQOuwQEc9pazWg/NwgfefHRsOt4o82LE0mWg0ygMPPIBt21xzzTUUFhbGdp/U6Nx/DFvlexnMjcVM7C5GpRJf7DrrKaXyPSDp+AfHF2GRfUWmn5cG6SeeyJ7jRiPYBHhl+wrc9YacJm8gHDAGKxTq9v7ys/L55xn/ZGSBV5rnNUx3KazdQG79ViA2C5+urIqIiKTlNjUBEAnFyposCyyr42F2IjUq5WabUqx4AKBVlkdxcTHTp0+ntLQU27ZxXTclWyq551Q8awqDyvcGga6GTPySz3Ze0j7PlIq/d+zB9BVN5XsimSaRKTyQR9F1+sQQaSWeKVUX9YJRll1MjjuUyevexsrK6tE+y/PKyQ/leTcMuH7viVjDcy/hv7eHLiIisldyY5lSkWA8yT81DJA8w1CbazxtyvdarW8nKGVZFmeffTZXX301xcXFsfsmtbaOBw6M4aEfXEpL3RNYanSe0dxW/cU6024gM66vLygOxqBOSvlen4fpRKQvZHjywyD6xBPpH15QKuBf6SxkCse/v4jhVSux8/J6vuPY4NUCXCv+weA9hsHK+A8LERGRgWL8oJSXKZUoxUs9dwaSvwu3mjnN7w/UeudW+n2lbtJ2Jr7svHyKhpcDEG1pwo2swDKuekplMLebjcn92ffaWd9mosfeGoxBqWQm3hNLQSmRgeSfswZJgFg9pURacaNRLALeLHmA5cJbU4dy4mevIlBU1OP9xntTWAac2FjDNvGglO0/noiIiCSs+/z5NK9cCXjlexYkAk6tCqj2D9s4uxuhLKdtT6nkRucpK9JnSnXGDgT44q33ULF5I3/49tWxfWR+7469XdSN8vyG56lo8hrjzyybyZQhU4DkHlBd25fd3nuG+PLu7a9Te8vse4Pki7CIZAYFpURiIs1RNj65jvFZB5EfKiaCd7XHxuXfR4zm06fM79X+4xFrCwsnlillxZoUGGOpek9ERCQNp7oat64OgB1lRQxnO2BjWRaucdhQ9yH5JVEglo1c4WVVtc6AsltlTiW0V9eXtEWaTCmAYChEcfmIpD1Z6ik1wF7e9DLfePkb/u3rZl3nB6Xic8p0tXwv/t5oby4afza/vgjCRJsh2hR72EGUKZWufG8wHb/IXm1wBIgVlBKJ+ehfayl5exsHlxyLiyFqvAGu7RqsYIjs7Oxe7d/yr8SCY8cGMeopJSIi0qExv7gb09LCzc+uYr15iS+w0gsCxL4Mv77zn2wet4Rz6iCWqpSqdU+p1g9g2SnbpdNeUCp5XXznKt8bWJVNlQCU5ZRxyLBDGFc4Lmltd8v3YvfqJFOq19/7nr4e3vhF4vZgDer0eeqYiPRE26L0zD4vKSglErP5nZco4UCanAY2NXzs/+1axnDkEUcRDod79wB2PFMqqdE5ifK97pYNiIiI7Auyxo4FoGpxHdbu+Am0gy+9fg+p2I/xoFR8dZvyvfiKnp2HraQAgmWgqrmKTbWbGJU/KjVgJf0inr00feh0bj3u1pR13c2U8mff66TPea9f5VXPpd6eMK+3e+xHKt8Tkd4ZpGF4kb4VaWqieutHANS07OLd7U8mpWQbRg4f2evHiA9aLQOOP/teck+pzI5gi4iIDCTXgGUlUlOSS6ZSzqDtdJ/uNFOqm43O2+w45uGVD/PJv3+SG16/od39yZ5j/CBk28CIaRWg7ExigsV2MqVi//Y6+BgP5lzwKHx3Cxz/3d7tb6AM9kbtInuJ1h9Jmd7rUJ8YIkA00kIg1lSyxF7Om8etJhLLYsK4BO3eJxX6PaWMhWPF9u0mz77X64cQERHZa7nGYLXTwydtSCDR2Tx207td3Rjht6+t5Y01u2Pbdd7ovKvlewFssgNeuf/y3cs7fD6yZ6ULFMUznroaRGp3xsaY7ga52hWftS6rALJ6MdPzQLDSZEopQ1BEukFBKRHAiUSwY0Gp4tyneL8g5Pd7snCZMXRGrx/DSirfi8++F3C9QUi0MajyPRERkQ6YpP/HslKrhtL8lFjkLcsOeuf5qoYIP/zXcs7/9SIq6lvoSqPzjsTP7wBF4SLuOP6O2JHoatNA6FKmVBdjJvHt3E7eG72OwQzqDKPkJ99XTbZEpDcS83z07vzWXwbjJ59In3OiEezYQOD9pmM5fdkVWLE/4uxgmNEFo3v9GLadKN9ryg0Qzcr2r/g6kUD7DQtEREQEYwx2fPba2Ox77W3nbZSa3TRlRAFXnzCJBQeNIGhbOK6hujHSB5lSieG0cU3HpX6yx/ntF9K8P+IvSbd7SrXz1kj0lOplECb+APYg/2oWu9iqTCmRzDBYzkJqdC4CRGOZUnWRGpZU7Mdw00A0Vr6XbRr75kGSZt+LBC3Wzz6VbVk5sUUWO+s2YYxRU1QREZE0UgMD6c+ViZ5TpOkpZXHdyZMBmPHDZ6htinqBo8Ql5XYfu6vle8a4/kUuF2VAD4SOMtS6m8cTf2mrGyM8vnQLcycMYUh+YuKbRACsBweacmCDOFMqbfneIHweInuRtoHyzA5P6RNDhFj5HgEW736GaMMLRBtf8NdNiKzok8fwe0ph8UTkNX52+AusK6sDwFgWq7YuYtu2bX3yWCIiInsbQ6KnlDfebicS0Hpa+nS9yUla1ctMqZTHwmDHhtfKlBoYHZXvxcvwupopFQp4r+Xmqkau/NMSrvrzklaPReyxemlQB3PSle+JiHTdYPzkE+lzXvlegEbHCxJZwVEUNdQxusllv2u/1iePYSWV7zXQxO6cOnbl7IqvxDKGxsY+ysoSERHZyyTPvueV7yXWdfxVuO1a204KMnUhKNUZP2iVVL7nqlfkgOhK+V5XM5sO3a+Ec2aNZtrIQgB21Da3eqyYXmdKxcveAr3c0QBzot6/yvoXGVj+NZnB8beooJQI4DS1ELSz/AFkKHw4u4bsYvsnTiH/2GP75DHig6MrD76CT4e8fQZjA2GDhWWMrqqKiIi0wxgSmVIdDbRbZ6+kK7lLWdV5I9jOMqX89ZhE+Z6CUgOqo0yprsZMsoI2Pz3nYP7ntKlA29e/o6ysbhnMmVLJv8wdy+ILB+RQRKQ9mf0dcxB+8on0nV0b1vHOLx/B/WMFU4vn0miaALBdgxOwCAT67opVfMA6PHc4w+1SAKJW4pKdleEfFiIiIgMpJSBgWSlfhk1qQV5im3Ykgkj0SflevNm514w9fsFJ5/WB0PHse96/Pe3f2foV9UOkvY3BxBuE24MwU8oOwvh5ids5pTDykIE7HhEZdGFhNTqXfdq/77+HYTvKGVY0DIAoXtqxbcCxLQ444IA+e6x4+V5KE1TbGwArU0pERKRjrjEp5XvJcpuSZsBrHSnoLFMqkVLV84PzH8v1gyHKlBoYpk2qXNt1dje/sbUbxOqznlLxHQ3CfAHLggv/AVHvwi52CAL6iimSCeIfLZl+kWQQfvKJ9J3aiio/QPRh7RpMbGofC8jKyeGkk07qs8fyr6K6iRGwG/8LjPWUEhERkfS8s2fiXBm/2AMwZkdu0lat79j+jHluSk+pXpTvJfWoUvnewOq40bn3b1cbnce1N0FjIv7ZV+V7gy2/IcayIJTj/aeAlMiAS3wmDY7PFAWlZJ/mtESwLe/kOaSlAgsvfdp2DYT69qSabsBqrKRMKZQpJSIi0h7XJA2vLYtQVphZCz5NY5FNNJA4f5pEjVbq7SSpSVSJLKf2dBqUIs05Xuf0AdFxo/N4wKqn+25nf2p0LiKZLMNPRwpKyT7Nm3XPJsBG1o58PjFVsDGYUN8ODBL9JhKp/U48KGVZypQSERHpgDEGy4pnNHvn1OMuvIxVnymhMj/ib7e1bqv3Q0c9peL7pGuZUsnHkHZ/SfvwA1SZ/i1gL9dRplR3M5va27oLbfe7ZjA3OheRjKXZ90QGAdeJYhOg2q1i2/brsGOji4ATYUr5wX36WOmmi44HpcDGMrqqKiIi0h7TKlMq7vKDLqcgq8C/3RCpT90mzak1JVOqG43O25WUDZ0oDVT53kBor3wveYzV3cymxPul9ex7PdtfG4O50bmIZJw0eaIDcBRdp6CU7NNcJ4ptBdhcv5NI46uAN4Acv/4Zjh9/Yp8+lt/o3E00OjexKJixLCxcBaVERETa4fV/apubctSooxhbOC52K915tO0y2y/Ho/2GQUk6n30vEeVS+d7Aaq98L/nl6G5Pqc4eq9e5UsqUEpF9mDrRyT7Ndb3Z9pbuWowbC0hZxjC08mOsUKhPHysxoHWTUvvjV1GtxDhbRERE2jCGdmffS92u1ZRoHc2+l1K+14ueUkmBKH/2PZQpNRDaK5tMXtr9EFJ83NZqn32VKaWglIj0odaJwpleTq6glOzTXCeKITFwzDNjOWD9IgLGYIXDffpY8Uyp5S8/T2OgkZzxARwrkSllG2VKiYiItMc1hs4nFDL+KDxdT6E4KzlTiuRavh7yHyopKKXyvQHRXvmem/T69jRTqvVbpHX8s+c7je9I5Xsi0ocGyVdLBaVkn+U6jpdmn7Ss2J2EE15EzoknkjvniD59vNyiYgB2blgHwIRwHmZocqbUIPnUEBERGQBepV3n5VJtrgh3cH71YlJ9lynljStUvjeQulK+190oUmcxrO42Tk+R/L7ro7JCEdm3JYLynZenZwIFpWSftOjRvxJcHOXU0Zf5M7GAjW1cfv+pA7nvilsI5OT06WPO+cy5lI4azfJXXmDT8g8IRS2a8BpbGsvGMkYDWBERkXZ4pXHtlO8l9YVKxK3az4CKr/L6VPVFUCp54K/yvUzQcaZUd/flaR3wTGRl9UK8yTmo0bmI7JNUuCz7nKb6Ohb99SGGR8dQECrF9UevNpgoo0eOITs7u88fNzsvnxnHn8zwCfsDEHCtxODGsvyBtoiIiLTlXUTqvImPfzbtIJDU3UbnnYmX6ANEag0BJ6TyvQHiB4o6eI/0NLOpTfmev78e7S62k+RMKX01E5HeazP5bIYnPuiTT/Y50eZmApaXJGiM4c263d4KKwAmytw5c3uXht2JYKyBesC1cG1vIGKsAJHGI1m9sAbXzewPDRERkYFgkntKtcpNMcm3uxApSKwyHWZUJbbveqbUCzdv4KLF/0tuY1G7+5M9xy/f68tMqXbeS4meUn1VvqdMKRHZ9ygoJfsc13H8fg8u4NZVxNbYQJSQ3bez7rUWiAelHIuI3YTlRgBwnPGsf6uebWuq9+jji4iIDEauIal8rxtBgDRxpNSJ+XoflLLjmVKx7OssJ5vi+uFdP0bpM+29RsmLuxtEam8ix0T/qm7trtVOksr3lCklIn3AavNTZic96JNP9jlONIIduxJV5zg0WWtia2wwzp4PSgUTmVKRQAuHLv85kz5+BMtq8I6vRen+IiIiraU0Om8TBbBi/2/aZkql7Sll+fvsi55S8cc6+1uzKNkvu72HlX7QXqPz5EypvkqI75PXWOV7IrKHDJbTkD75ZJ/jRKNYsaDUsqatkH00AJYVwDKNFIX3bLp9MCsL8IJSzXYjJTWr2G/TC1g0AWlmDRIREZFYo/O41KiClVK9Z9JtknZ7100u3+v5RSHLjgetXP9n9TkfGO2X7yV+7m5Qqr3t+6SnlBqdi0hfa5UglenfLxWUkn2OE40SiF2JajaG+KgxGG1mv+p3mDV81h59/HimVLjFJqceTOuBTGZ/ZoiIiAwI1xis2Dm79ex7JvmnNn1+0mRKJa/xs1N631PKdK1FlexBiRnxWg2wkl4Pu5tRpPi+Wr/+ve4pVbcDNi5KeiB9NRORfU9woA9ApL+5ThQb70qUQwBjvJ5O4ZZahuZmY+/hAUE8U2rk7hxGLszhP+NyOWrFZuKjJY1hRURE2vJmyovdaKd8L7Zlmju22jpl9r3el+9ZsX0Y46Y0PZf+ZRyH5rVeW4aWNWtoKl1J9uQDgNaNzns4+147S3q0u0gj3DUbmmK9RC277+oKRWSf5gfSezMJQz9SUEr2OU40im0FaHLqqat7H8fxejnZxmCF9mw/KYAxU2cQLMijsaGWkGNTnZ2duoHGsCIiIr4l736Rxsb1XLx/E2G7Jra0g4F2V3pK+ZsmRbp6kdrkB6Jck/i5TSq07Gl1L75I9ZNPwdE2DYvepL75NT8olfzqdveVabd8r70WZ13RUJEISA09AA5c0IOdiIh0QYan7ipHVPY5bjSKZdmsrF5Mc9N7uJFVAISiLsEhpXv88QvLhjH608fxt+M2+8uSc6TabaIqIiKyD6qo2Uhj4wZKwjvIDXn9F3NzxqVsY6U2lYovbHefdl9nStlJmVLqKTVgort2+7HArFGjyNpvjL+uN43Oo7G+T5VNVVz9wtXc//79QNJbrSfZCPFZ94LZcOVbcOIPu78PEZEODJZvlcqUkn2OG8uUqnfrALACI8ltWk9++X6U/+hH/XIMtmW3uUxnDZqPDRERkf7zm2UXsa2q2r9942fmMGLEYSnbmDQ/dTz7XtKqLpTbdTr7XnwPBux4UArLa86ukqx+lHh9Co47joI5JwKws7aZNTvr/HXdfU0+rvIuYDY7zby48UVe3Pgin9n/M4n+VT15ieNBUPWREpE+NthOOwpKyT6jZucOlvzjn2RtCDCx4GDeanoLgEBoAhW5qwjNPZqs0aP75Vhs7JSs/pQhrmJTIiIivuGlBxGxGwEYXZLDrEkzuhVU6CiQZDCJoEBLg/dfVm63jzGeKbV5xTIaqwzGlGJhYTA9b4It3WdMm+ylpZuqOOPu1/zZ9+wevBxN0cbYfQMErACOcWhxWpIeqyfHqqCUiAgoKCX7kHee+geRt6uYWHwE5MHrTa97K6wAJmg4/vjj++1YLMtOnZrTwr+Sq5iUiIhIwm2fndmFrdJkO/npUGm2Tinfi233zPXwzHfhkz+BOV9uZ/v0Z2k74E2gsvCvD3q3QxOxjJcppZhU/zHG+Bf94q/Zyu11uAZCAYvC7BCnTC/v9n4jsUlxApZN0A7iOA6ucXvXU8q/c6AHdxYRaZ//kWQ6zwTOBArNyz6juaGBrEAOALtaanBi/QHAJpgdZMKECf12LK2v0qVcR1VPKRERkW5JOa3GU2I6CBT4bZ+MgYkngB2/Tmtg7Stt999JUOqwT53FiAMOpGSkl3Ft3DrAwlVjqf6V3Dcq9gaIOt5rMO+AMhb/90n8v8/M6PZuo27E32t8lmYvKNWLXKn4OHSw1dmIyKAxWL5VKigl+wwnGsWOveV3NUQT/UytACbUvwMCq1X5HoAd9QYnanQuIiLSPSapL1Tb5tMd9JQCmH0JfG8bnPqz2MJ023cclDrwyGP5/I0/4/iLLvMf0za2zun9zbSd9DAaC1IGelK3FxNxWgDvPRUPSpnkUkH1lBKRDNK6xN1keHhKn4Kyz3BiDc5rHcNKk0uopQAAiwBWsH+DUrbVqqeUBdn1Xr+CuoUL+/VYREREBr/2GjWSPsiElbptIATBcGxZz7ObrJSm6RZuL/YlPZASKPJeCycWlAraPf/aE0nOlIp9fXKM479/1FNKRKTn1FNK9hlOJIJt2dS7uzBWMQYvM6mwZgPN+/XvgMAbKCUGyVlFUf8qr7Orol+PRUREZG+RYy/iwO27YNeErs2+l9KDKjYWSBNI6urse5YfYDBYxuLSZy8lP5TPdbOuY3Lp5G49F+mBpB5efvlePCgV6EWmVCwoZWH57wUXt00ArHvHGnuf2eopJSJ9K3GOa/88mEkUmpd9hhuNYBPAYhcAzQFvauD9Nr3IcRNP7tdjaT373rgTdxHN9mLEGf6ZISIiknGioSIAgvY2htW/Bot/22FNVXyNmxx/6oOgVKJi0OsWuXTnUhZuWcg/Vv+j8ychfaBt+aYTe5F7Ur5X2VTJ02ufZlXVSn9ZINaY3Bjjvx96likV7ymlr2Mism9TppTsM5xoFMuyqY1U4zR/iO00AWC7hsnDpvXrsXiz7yUYrETilFL9RUREumX7kHk0fhRkbN5KcgJvgdPSSaZULMiUsrD9oFRXWUkBhrMmnc2oIbk8u/5Zom60x/uUbkgz+17EiZfvdS105LgOf1j+B7Y1bOPBD73ZFJ2m4cBhkJwpZVz1lBKRjDTYZt9TUEr2GU40isGwZMd/cI3jv/kDxmCF+vdPwbKstu0vNPmKiIhIjxg7xO6WgxmZ65DDWymBqHTZTYl4VbryPSfN9t4d1qxZA8C0adMoLi5uu52d+AJwQPEB7CxeAetRb6l+YtLMvuf3lAp0Lfjz9va3uXXxrSnL9iscw0dAOJjdava91Mfq3sHGg1Iq3xORPSPTG5zHKSgl+ww3GsV1HdzYYDPbLWZo5QZK6huxQqF+PRbbslIzpQz+AFoz9YiIiPSWaTXFXqq01447yJTKysoCYPXq1axevZpNmzbx2c9+tu1+k2cBNKbrZX/SN9xEplT8RfZ7SnUxU2p7w3YAxhSM4ZRxpzB96HTGhA/jpPdeIWAFsLBp3nUcP3tyGy2O917pWaZUPKKlq5Ii0rcSHyvKlBLJKPFMKU+A4ZGpTNzxLjmT9ifn4IP79Vhs7FaZUYnMKV1MFRER6SZ/ApGkk2sH3/UTwaLkhfGgVNvB+xFHHAHAjh07WLduHY2Nje3sN9Ho3LiJDBoXndz7hel5T6ldjbtYuGUhr21+DYDpQ6dz9aFXA7Bqe62/XaRpOC07T+G5nXX+fvPDPfhK5aqnlIgIKCgleznjujxy8w/YumoFLU2N7DdsSmxNgKo8h4e/8ylu+vxN/X5c8UGrwWuE6sRuiYiISM+knEWTspTSBZnsDsv32gaQSktLOfXUU1m2bBnr1q1rN/MpuXzPGOOXeilTqr90MPteJ0Gp61+9nje2vuHfHpI9xP85pdzT8bLmCrJt/uu4A5g2spCSvKweHKp6SonInpLaN7GpaSu1tcsxxsHggnEwxvVuG4fc3HFkZ48csKNVUEr2arUVu9iw9D0mFMwguyifgJ3trbBsXMvhmLnHDMhx2fErtBZYBk4bNZIvbIldMdPAVUREpFssP1MqnTQ9pVoN2L2FnTc676wcL7nReXJQSj2l+klyplTstYrGG52n6SnVGG3k5Y0v0xhtZNnuZQDMGj6LIdlDOHfyuW13D/5rWpBj89XjJvbiWGPvCVs9pURkzzCxeuY1a29nzdrb293ugP3/mzFjvthPR9WWglKyV3OiUcpzxjN76CkAbGpZH1sTwLWihOz+7SUVVxQooLg2lIhe2zbYEcDL7hIREZFuMokBeEopX7oAUrpVfRCU8veLwZjk4JcuOPUHkzz7XutG52kypX6/7Pfc9e5dKcv+74T/ozCrsNWWVtJPfZTZZFS+JyJ71rKKw5k+bDvGOFhWAMuyvX8JQPxnyyYYLBrQ41RQSvZqbtQhHMgBYHfE4Z2Wam+FZeNaUbICPUi37gNBO8inXh0Ru9pmwIAdK+LbuWoTjbUt5BQMzLGJiIjsFTpoIJ1UZJe0MBYccNvOvpfYZRczpYwBZUr1vzQvS7SDnlLbGrYBMK5wHGMLx3J4+eFpAlLJ5XupfcN6d6wq3xORPSP+mfX4xwfz1o7DefS/jmJkcc7AHlQHFJSSvZrrRLFjU+0ubarGafYGGhYBDM3kBAfoj9OysFOuuoGJX011HHZuqGW/aUPaubOIiIi0ZlpnR3XYUyrWgLyPM6VSZ99DPaX6W1Km1BPvb+VPTz9PdaOXiR5KU77XHG0G4Kz9z+KL07/Yhd0bb7IaOuyj38VjVVBKRPaMMSW5hIM2zVGX7TXNfsZoplJQSvZqTjRKIBaUitKEiQ0AgtFmRodXMHPYzAE5LttOneHHMpZ/vc0Yg7uHPjh+/vwqHnlnEwBFuVncfu7BTCjL3yOPJSIi0l+sNllRifNouoBQSuNqf2HXg1JuO6X2lp3IonFdo9n3+ltST6m1OxtoqWnyV00a1na80+R468PBcIe7TX53+ZlSvY1KKSglIntIWUGY16//BFurvZlihxdmD/ARdUxBKdmruU4UGy8o5RobYiVy2c1VHDFz3oD1lNpvxkzGzZzFuvfe8WYIMhAfQFuA6cOgVH1zlP98vIuI43L3Sx/TFIkNgnY38MJHOxSUEhGRvZMfeWp/VQq7bzOlSMqUUvlefzFJwSKLkUXZ3HfhbIpyQowpzW2zdVPUC0plBzr+wua/7qQLgPaQq6CUiOw5pXlZlPZkZtABoE9B2as50UT5nmuC/kDTNgYre+DqanMLizjr+hsIhhIfFMnD277MlLr5qQ/58h8Wc+WfltAUcQkHbeYdUAaQ8amcIiIiXdI6UJBcvpdu83jJfNryvfbPjfFM586DUt4Fpk4bo0ufqnVgU/5Q/3ZZQZjpo4rSBqQAmh2vfC872MUsAoN/sdNSTykRkT6hTCnZq7lRB9sKsLVhNbWVT2FMC+AFpYLDywf46BKD1+RMKQDX6bvB68ptdQAcMDyfktwsTjt4JO9uqCL1EUVERAa3lJ5SJP3YQfme28PyvXaDUknle0aZUv3unsoi3i3bnywWARZD8tOX5TU7zby2+TW2N2wHIBzoevmef6uvyvfsQC93JCIyuCkoJXs1x4lgWwE21q/EmHp/eXT4SIrPPWcAjywmHpSCpCmMTa/L9zbsbuBbj7xHVUOENbu85/2/Z8zg8PGlALy3sQro8GKwiIjIoGG1+Sn5BJcuKNVRplTPg1Ikle/t3lxHi5VNdiQ/dZY/2WM2RoPEX+/9hxVwxbxJabf7zfu/4Rfv/cK/nRtKn0kVl1wJanXS6LyiqYL3drwHQCgQ4uhRR6ffUJlSIiKAglKyl4tnSjXgNXkLhA+jOvwihYd/Gjtr4Gts/TR/482/R+z/e1u+99QHW3ljTYV/OytoM7Esz79tp7tCLCIiMqilntOs5Jn4WkkXukoEpZx2H6E7PaXWf7AbPijihKIv0DxxVSfHLn2hxklkHZ1+8EhmjS0BvMwoYwwhO0TADrC+dj0AYwvHcuiwQ5k1bFaX9m+M8bPf2nPZs5exsnIlACXhEl4575V2dhZ7nykoJSL7OAWlZK/UWFfL5neXUf3eRopCZSxt+QAAyy4gkuWSm9vxFbH+YiVlSvnL6H35XlVs+uNPTi/n/DljGTskNyWF3Up6xBUVK6ho8gJYU0qnUJxd3KvHFhER6Xd+MCgpENVRT6lezr7XWVDKtqFsvwJ2bqglL1JEo8r39pio4/LVB99h5fZaNkeyCPgTx3ivxY2v38hfV/4VgGE5w3j4Uw9T01wDwCXTL+HM/c/s9DGslFy8tCFN39b6rQBMLpnM0Nyhabfx7q5MKRERUFBK9lKP3XIjU2oOZXj2KMgFU/ect8IKYIcDnHzyyQN7gDGWncgHT6T29758ryYWlJpcXsDR+7cdEMVbXmyo2cjZ/7raX75fwX48ceYTvXpsERGRgdDmzGm1nyllpy3fi2XZ9Coo5Z1gAyGbI8+cyD/ueBfLWGp0vget2F7Lc8u3x25ZZMVev/hr9crmRKbSjsYdXP/q9X4mU1FWUbcey5DoE9ZZT6mfzfsZ44rGdbAzBaVEREBBKdlL1ezcTm5eIQC7m3eCiQJgESSUF6asrGwgDy9J20wp6Hmm1N8Wb+Knz3xEZYMXlCrMDnX4uBVNlQDkBHNojDaypW5Ljx5XRERkIFmW1SrClPg5XUAoft59ZdVOsoI2Cw4aQahPGp0nAmFWUvaWizKl9pTq2Jhnv9JcfmCv5K9b3mVhaSKjqcXxJrmZNXwWi7cvZuGWhf59y/O7NulNatJdx5lS8cVWe5l6q56DJ78BjZWxDRWUEpF9m4JSsldyHQfbsrGoJy/r95SaBirIAiuACWfOyT8+S49lwFhJs+91M1Mq4rhsqmzk96+vY3uNN72xZcH0UemvAMbHSfGB2qHDDuW1La9p0CwiInsHQ4eZUtkhLyvq8aVbeXzpVrKCNqeW9EX5nu2vjweoLGNp9r09oCXqsmRDJYvWei0IyguzmdHcxGNOBLD91yo+1rnm0Gt4f9f7NDveOGlk3kimlk7t1mMmz6jYXqJUp03tP/g7VK5L3B42pVvHICKyt8mcb+cifciJRrCtILujq3m59kKqWkbH1gQxocx52yd6SiUPbbpfvnfmLxZy/M9eYummagDu/cKhLLr+E/5se63FL+Q2R72ri/lZ+YCmrBYR6U+bN2/mC1/4AkOGDCEnJ4cZM2bw9ttvp932K1/5CpZlcccdd6Qsr6io4Pzzz6ewsJDi4mIuvfRS6urqUrZZunQpxxxzDNnZ2YwZM4Zbbrmlzf4ffvhhDjzwQLKzs5kxYwZPPvlknz3P/mHFggFJ59MOekp99biJnD1rNCOKsgGoqG/pMIiV2GXXZt8zxvV3Z2OrfG8PuOnJD/nsfW9w5/NeE/ni3FCsl1jqdvGgVHleORdMvYAvzfgSX5rxJU6dcGr72UztMBh/9r0dDdu58KkLWbJjSZttoPXYLnmDWIPzuVfCfy2CU37crWMQEdnbZM63c5E+5EYdbGxWNTjU1i3FdWsByG3cjR0e+Fn34qykOYaTr6x1pXzPGMPyLTW8snIn72/2glEF2UGOmFDKJ6YMZ1hhdpv7bKvfxoqKFWyv93ovbG/w/s0P5afsV0RE9qzKykqOOuooQqEQTz31FMuXL+fWW2+lpKSkzbaPPvoob7zxBiNHjmyz7vzzz2fZsmU899xzPP7447zyyitcfvnl/vqamhpOPvlkxo4dy+LFi/npT3/KD3/4Q+677z5/m4ULF/K5z32OSy+9lCVLlnDGGWdwxhln8MEHH+yZJ79HJZVWdVBlNX1UET8752AO2a/Y28SYRBmV2/nse66b/iJOPDvKuCaplE+ZUnvCyu3e2G5UcQ4Hjy7iC0eMBTcxmrLwenm1uF5QKmS319Kgc8mxqyE5QwBocVtYsmMJj338WMq28XFUu0Gp+PurcCQMO7DD4KmIyL5A5XuyV3KdKAEryNbqN3GiVf7yqSv+wtTPf3XgDqyV5Nn3ksfMXSnfe3TJZq7763v+7aH5Wbz9/ZPa3X7R1kV86dkvAdC07VPAkWyu3UI4B0qyE1+CXOMSsALt7EVERPrCT37yE8aMGcMDDzzgLxs/fnyb7TZv3sxVV13FM888w4IFC1LWffjhhzz99NO89dZbzJ49G4Cf//znnHrqqfzsZz9j5MiRPPjgg7S0tPCb3/yGrKwspk2bxrvvvsttt93mB6/uvPNOTjnlFL75zW8CcOONN/Lcc89x1113ce+99+6pX0Gf6vh7feeZT66hj2bfi5fvuSnZ0J2WdEm3xftn3nTmDOYd4PUK3WEMJvZesCzLD0gBZAV6flHSSmqMf84B5/L8ovcoCZfQAkTdaMq2/mvdbn1fvMG5xloiIqBMKdkLGWNwow6WZeHEBiMlTTkcsHU3wyZO4ogTzh/gI0xI7ilF0rW9rpTvvbexCoCS3BATyvL4yryJabfb0bCD59c/z99X/R3wmppnB8MAjC+awJn7n8npE073t9fAWURkz/vnP//J7NmzOeeccxg2bBiHHHIIv/rVr1K2cV2XCy64gG9+85tMmzatzT5ef/11iouL/YAUwIknnoht2yxatMjf5thjjyUrK/GFfP78+axYsYLKykp/mxNPPDFl3/Pnz+f111/vs+fbP5LOYMYkMlU6KseL/esmZ0r1KiiVWO9P0qbZ9/rUbc+u4PifvcSqWKZUSW5yBlTi92xh+aV7AOFAuNePbYCg5T1eONjx/tov39OseyIiyZQpJXsd47rYsatPJta4e1h9Nu/NnspJN92Nnd22rG2gWP6AxEq5otZe+d7uumY+dddrbK5q9Jddd9IBXDB3XMp2rnFZWbmSFqeF859MDcJ9+aAvs7HgCH67cx2f2O9EvnXkgdS21PrrNXAWEdnz1qxZwz333MN1113Hd7/7Xd566y2uvvpqsrKyuOiiiwAvmyoYDHL11Ven3ce2bdsYNmxYyrJgMEhpaSnbtm3zt2mdgTV8+HB/XUlJCdu2bfOXJW8T30c6zc3NNDc3+7dramq6+Mz3nDZnry6URdlJGTDYscyVaDOsXwgl47wSq+Tt7UQj83SspL5UiUwpWxOJ9BFjDPe+soaWqPf7zAkFGFual7yBnym1snIlv3j3F/6qXpXvJR9DmmWtjxE6mH0v3lPKVlBKRAQUlJK9kONEE0Gp2NUo242CnUsgkFmp0vF+E+EWG9dtwQ54rVp3/vp+du+cwJBLL03Z/q11FSkBqeyQzeHjh7TZ721v38bvlv8uZdnUIVMZljOMBRMWcN86b6aa+MDKTrpap4GziMie57ous2fP5qabbgLgkEMO4YMPPuDee+/loosuYvHixdx5552888473W7G3B9uvvlmbrjhhoE+jAT/d5TcU6rzTKl42yfXGLBjw+LmanjgkxDIgmuXQ35Z0sN0rdG5dwSx4IR6SvWZpojrB6T+eOkcDijPpyiWKXX/+/fzt5JH2V3ovQaPr3ncv19hVmGv/o6spLeV/9r7b692ApTtZkrF76+glIgIKCgle6FIRSPDssfSSIufKRVwHIwVyMCglDcgOXHxMFr4D4HsZgKReoZse5fqJz70g1IPLlrPL15cTW2T1z/hpKnDuekzM8gPB8nJavucPqr4CICScAk5wRxOm3gaVx1yVeJxrVhQyh9XJQZOGjiLiOx5I0aMYOrU1Onop0yZwiOPPALAq6++yo4dO9hvv/389Y7j8PWvf5077riDdevWUV5ezo4dO1L2EY1GqaiooLy8HIDy8nK2b9+esk38dmfbxNenc/3113Pdddf5t2tqahgzZkyXnvuekxQcSAoUdJQBnJIpVToRpp4B2z+AirXgtEDNpm4Fpayk7Jd4ICPecFt6p745yoaKBgACtsVRk4akBJr++OEf2RWsgWBiWdAOct7k8zh61NF9cgwG03mmVGdtEOKNztVTSkQEUFBK9jJuU5SKu5dx9PDP8EZwpT8IDLgOoawcP+0+U+w/5yje/MffEj0tIpsJ5OZRULcJ0zDO3+73C9enZEjNnTCEsoL2exnUtHhlFP979P9y7Ohj26y3W13dS86U0sBZRGTPO+qoo1ixYkXKspUrVzJ27FgALrjggrR9ni644AIuvvhiAObOnUtVVRWLFy9m1qxZALzwwgu4rsucOXP8bb73ve8RiUQIhbyMkueee47Jkyf7M/3NnTuX559/nmuuucZ/rOeee465c+e2e/zhcJhwuPc9evqOFYtJJYUKupAplWh0brxyqnNjWca3z4DqDdBqlr2u9pTyePe1jK0LPr302se7+OIDbxKJtTcoygm1yXxyYsGeK/7lsP/sk7hmxAvkBHL49uHf7vXjJ1+88y/o+RMop74XOp19Tz2lRERSKCglexWntgUiLo7rUB1tJD4gDJgoJ500f2APLo1jP/9FKg8v4b5H/h8nvBPrCxIb5TQ2tfD1v77HtppG1u6qB+DeL8xi0rB8Jpblpd1f1I2yfPdydjftBrx09XT8QXXsdkr5ngbOIiJ73LXXXsuRRx7JTTfdxLnnnsubb77Jfffdx3333QfAkCFDGDIktTw7FApRXl7O5MmTAS+z6pRTTuGyyy7j3nvvJRKJcOWVV3LeeecxcqTXC+nzn/88N9xwA5deeinf/va3+eCDD7jzzju5/fbb/f1+7WtfY968edx6660sWLCAv/zlL7z99tv+sQwWqcEBQ1d6SiUCC63EL2K1mlmtq7PvpSzDUml8Ly1eX+kHpCwLFswY0Wab+Os/cathjBMb//RR5WtqfLPji3d+2WanPaWUKSUiAgpKyV6kYssmnv7fWzm28EzebojQGJkCPA145XsHTp0xsAfYDjtlAGtochx2lJWxJmckj7yzyV+THw4y74CytOV6cT9+88c8tOIh/3ZBVkHa7fzMLLftwEkDZxGRPe+www7j0Ucf5frrr+dHP/oR48eP54477uD887s3Q+yDDz7IlVdeySc+8Qls2+ass87i//7v//z1RUVFPPvss1xxxRXMmjWLoUOH8j//8z9cfvnl/jZHHnkkf/rTn/j+97/Pd7/7Xfbff38ee+wxpk+f3mfPd09L+/0/qQ9Qe1J6SqWsiA2R4wEE/3E6K99LHMgbjzxAtLEJ8qYqC7mXGiPe63Dp0eP579Ompt0mJSgZexnsPZCN1KqlVNtMqc7K95QpJSKSQkEp2WtsXPY+TbW1UAhVjkPyKDS/bjOhrMyZdS+Zbdn+TDEArrF4aNxxbA15ZRXTW3bxmZoVjNv2MZtOuhmAET+6gfx58wAvXf2jyo9wXIe3t70NwPDc4cwcNpPxRakzLsW1yZRC5XsiIv3ttNNO47TTTuvy9uvWrWuzrLS0lD/96U8d3u+ggw7i1Vdf7XCbc845h3POOafLx5K50pTsdbWnVMpuYheA3O4FpQLBIMGsMNGWZla+/ry3MKtEWci91NjivQ45ofYvzMV/x7ZJP77pjeT4pmm1sM17IU2/ztQDVU8pEZFkCkrJXsOJJs26ZzUBiSBUVrSZQChrgI6sY4GUQYmhAYsnR83xl0xb+x5HfvgUAPEiArcpMQ33zW/enJIdBXD3J+5mcunkdh+zdZuNlEwpDZxFRGSwSZMqZXUhVcrvKeW2zpSKnZu7mSkVCIY441v/zeaPlrP0+Weor9yN7To6t/ZSUyxTqqNs8dSX2Xud+nrmSmNMm0yptofRWflePFMq82bVFBEZCApKyV7DjUb8AI9jAikDScsYrFiD10yTF8pLGkcZakMRwOXTRc0MD7qc9/ljGVp4CnZuDoHSUizLIjR6tH+PFRVeo9wh2UPIDmYzdchUJhVP6vAxW5crpDTw7CztXEREJAN556+kQFRvekr5mVLpe0o5jsMtt9xCSUkJF154YUrT97EzZjJ2xkzWLllCfeVuwBBxI+xs2ElxdjEhOzPHI5msIZYpld1RphRJmVJWJ83GuytpN4mgU+rtNuvbbXQej2qpfE9EBBSUkr1IPFMq6kZoad6AayL+OgsgQ4NSR4w4ghOajgJWAd6x3pp1NwvO+S7Zk9rOnNdabUstALccewuHjzi8S4/ZeqBkWZY3ZTVGV3NFRGTQSRsA6MLse+33lIoHpVLPibm5ueTn51NXV0dDQwMNDQ1s2bKF8ePblsv7/aUMfFz1MSc8fALjCsfx6KcfJWhrCN6Z5qjDFQ8uYf3uerZWNwGQ20GmlJ+9ZsD0caZU/P1lSPN26u61PDU6FxFJoTOi7DVcx8HGZlnVa7TUL/KX265LIC+vz1O4+4IxhvW7myhtmElVLCgFFp8MvEH2qz+GDoJSjdFG1tesp7K5Emi/qXk66QbhtmXjGEc9pUREZBBrG4iq/ffzRHfuovD00wiWlKRsHe8p1bp6r73yvWAwyFVXXUV1dTV/+ctfqKio6KDpecA/ItuycY3Lupp1VDVXMTRnaM+e3j7kg83V/PvD7SnLJgxNP/swJGco4b8N+qqnlP8YSf2q2i3fM10t31OmlIgIKCglexEvUypIfbQaAMsuJty8g4lDRjHylq8P8NGld/9/1vK/T3zI2IZ6PgXEhzouQKSx3fsZYzj3X+eyrmadvyw/K7/rD5ymsatlWWDUU0pERAYhyyI1ZcVg5Xi9JWueeIKaJ54gsm0bw7/1zZS72e31iGqn0TlAOBxm2LBhhGIZ2J3NxGdj8d6F7zHz9zNxjPpLdVXU8X6vI4uyufXcmZQVZDFpWPsX4PxgkEkqqeur6r3k8j3TtfK9dqnRuYhICgWlZK/hNkfJCmTT5DQAEMiexdaShzj1m7+kIE1afSZYsrEKgJxA4mqZZSwcC9rLB99ct5nVVav9gNSwnGHMKJvBqPxRXX7cdNMYx68mqqeUiIgMRq3PXmVXXU1o2DCali2naflynOqqdu/bfvletO3GMZ01PbfjmTDJmTO6+NNl8ey1vHCQuROHdLq9nyll8CNGdh9lI3UU22pv3NR+TyllSomIJFNQSvYKdW9sYfyHExk7dAKPbL8/tjRA1HYJBDLrSlRTxOHnL6xid10Lb6+rAOCLx05k818gPqR2sBKDliTra9bzqcc+5Q9oh+UO4/lznu/2MaQrV4gP3DRYFhGRwcZLlEpqdG4MOdOnkTP9Rnb/+tc0LV+epkYvOVOq9YrYENm0zZRKPGbHQSkrkLjYY4whYAWIEtV5totaZyR1Jv57tZJK7Pq6fM87Lto9ruT3Qvvle+opJSKSTEEp2Ss0r67GwqLOasQhgg1YBHCDFmVlZQN9eCmeWbaNu19cnbKsvDCHzQCxmYNci5SglDFeA/Jlu5bhGpecYA7Dc4dz3oHn9egY0vV+9afF1mBZRET2JvGMFLft+S3RY7Hr9/E36SwoZSXlJbtGF3+6yQ8sdTEqldxTyp99r68anSftJ6V3Famvf3LWVOeZUpnX6/T/s3fecXLU9f9/zmy53pPcpfdeIZAQIIRAIKGDCCogfgEBFRThJwJ2bKhfFVBURL92EAUUUaSE0EmAFFJJ7+1art9tnfn8/pid2d273b295Pq9n49HcrczszOfLbfz2de83q+3IAhCTyCilNAvUIbCVIo1dTvQDSvjQUMjr6SQrKysHh6dhS9osOVIPe/ttdxRs0cUcN60UkYWZzNGr2RtZDsNLeKUsm4rpbh5+c28dzQa3r545GJ+eNYPj3ssTkOgVkHnrZcJgiAIQt9AszqjxRSoO+iR81siUUpPIiwlCTqPO2J75Xu67dIxUUocyR3FbC8wvBVxmVKR+yQVhjpI7F5av9yxQlScUyrZse33oWRKCYIgAHSBp7UVP/jBD9A0jS9+8Ytxy1etWsU555xDTk4O+fn5nHXWWfh80WDnmpoarr32WvLz8yksLOSmm26iqakpbh8bN25k4cKFZGZmMnLkSH70ox+1Of5TTz3FlClTyMzMZObMmfz3v//tkscp9Bxb3ljB3nWrKQ8pmpiOFvYCVtc9vN4eHl2UG/7wPh99dBVPvHcAgLMmDeb2cyZy2Zzh0QmXigk6VyamMqnyVcUJUrqmc+bwM09oLFqioPPI5MlEJsuCIAhCXyR14Hgi15PmOKXSDzqP3rcdp5QenWYrpZxSMhGl0sN2r+lp6kpxmVIRuqLzsj2uRPtOK5dTMqUEQRDi6FKn1OrVq/n1r3/NrFmz4pavWrWKZcuWcd999/Hzn/8ct9vNhg0bYq4owbXXXsvRo0dZvnw5oVCIG264gVtuuYUnnngCgIaGBs4//3yWLFnCo48+yqZNm7jxxhspLCzklltuAWDlypV84hOf4IEHHuDiiy/miSee4PLLL2fdunXMmDGjKx+60I3sXvs+Q83hhLUqoBiNIAoYcfgtamd7enp4DpsOWV0BRxRlUZLj5ZLZw5x1sRMbO+i8OdTI2Y/Px2/4ASs/6h+X/gOP7iHbk90pY4qzmbczuRYEQRCE3kobgSDuqosdOJ5AlKKdTKkTCDqPilIKZUadUyJKpYctFKZdvmc7pYg6pTot6DxmCGbMcVLfp51MKRGlBEEQgC4UpZqamrj22mv5zW9+w3e/+924dXfeeSdf+MIXuPfee51lkydPdn7funUrL774IqtXr+aUU04B4Oc//zkXXnghP/7xjxk2bBiPP/44wWCQ3/3ud3i9XqZPn8769ev56U9/6ohSDz/8MMuWLePuu632v9/5zndYvnw5jzzyCI8++mhXPXShmwm0BNA1HY++GTiLgO7HY0BJ7Q40z6QeHVt9S4gfvLiNmuYAzUFrEvLiF88iNyP+Ty82dwLARKM52IQ/5gLt4pGLKcgo6JRxpQw6F6eUIAiC0AeJd6kkKt9LFHRu/WyzKo3yPedI7ZXvKZO6yhYyQtlAvYhSaaIcUSrN7WOcUtHcpy7IbbJf7kRB5x1xSknQuSAIAtCF5Xu33XYbF110EUuWLIlbXllZyXvvvceQIUM4/fTTKS0tZdGiRbz99tvONqtWraKwsNARpACWLFmCruu89957zjZnnXUW3pjyrKVLl7J9+3Zqa2udbVoff+nSpaxatarTH6/QcxhhA13TqWg5RrDxn7hDlrNIV4oFY87q0bH9Z9MR/vr+AV7aUgFAaX5GG0EKaBN2aWjgC7UAcM+p9/D2x9/ma6d9rdPGlSjo3C4rEKeUIAiC0OfQ2vwSJUX5XvQiTevyPTvovDPK9xR//95qLlv5JYpaSjHSELqEmJcrDadUXJaTAqXZd+2sTKnoflo7peJe/3RKB6V8TxAEIY4ucUo9+eSTrFu3jtWrV7dZt2fPHgC+9a1v8eMf/5g5c+bwpz/9iXPPPZfNmzczceJEysvLGTJkSPxA3W6Ki4spLy8HoLy8nLFjx8ZtU1pa6qwrKiqivLzcWRa7jb2P1gQCAQKBgHO7oaGhg49c6AnMcBgdF3vrDmGaIWeSkBEyOGnc2T0ypvJ6P//44BBvbK8C4MwJg1g2o4z5Y4sTbq/FBLNqaJFMKatkYFrJtE5zSNkkCjqX7nuCIAhC3ydyLvOH0UyFpmtojuspefe9pEHnwWYIB8Cd0fZI7QWduyzRweXW0DRwKTdFvqHpuWmEmPK9dLaNvraxm+uddf09ZqeOUcp+78QGnSfrvhfywbu/guZq6x9I0LkgCEKETpfoDx48yB133MHjjz9OZmZmm/Vm5LLHrbfeyg033MBJJ53Egw8+yOTJk/nd737X2cPpEA888AAFBQXOv5EjR/boeIT0MI0wuqY7E5Ki0HDG+loYcd0nyZw6tUfG9OOXt/OjF7c7nfbOnTqE604bzcTSvITbB82g83uuTyP0Xh7Zh4t5aPFDnDTkpE4fn5OhEbNMugIJgiAIfRctThDw76yl5q/brBt2h70E5Xu2stBmjZ0p9co34QejYf/KBHdNrZbYTqnTLhvLsImF1jIl59l0sV+TdDKl4sSgLnBKxdLGVZdsHLGi1LbnYcX98O4vIBC56J2Z3+ljEwRB6It0uii1du1aKisrOfnkk3G73bjdbt544w1+9rOf4Xa7HefStGnT4u43depUDhywupKVlZVRWVkZtz4cDlNTU0NZWZmzTUVFRdw29u32trHXt+a+++6jvr7e+Xfw4MHjeQqEbsYIG2iaCzMyEcgw83n3ylMovefLcZ1vupMDx6zSu0WTBnPb4vF85OQRKbf/794XIr8pMkMaakcWta+7OadsYZdMqLQEV4ad8j25gisIgiD0QY4078JvRB3voYpmIKaMLmH5XmRVa6Fh3GLQI81Swj44+H6b+7Zbvhe73jmXayJKpUlHMqVaz12ibqZOKt+LCzqPXxb7+idyoAMQaLR+Fo+HM74Il/0CBkfzdAVBEAYynf6N/dxzz2XTpk2sX7/e+XfKKadw7bXXsn79esaNG8ewYcPYvn173P127NjB6NGjAViwYAF1dXWsXbvWWf/qq69imibz5893tnnzzTcJhULONsuXL2fy5MkUFRU526xYsSLuOMuXL2fBggUJx56RkUF+fn7cP6H3YxphqlzN0YmApvDo3d91zx8yuPwX7zD9Gy+yer/lkLpt8QTuXjqFgqzU4znUfCjym2LbSPuKLqhw8q4/J4KWIOhcyvcEQRCEvoqmadQEj/Jhw5boQkeZSCVKtT0fAnDStfDVozDn2si+2uZApZspZZqmI2BoSpfzbJpExZ+OZUrpKjaLvLMypeIOFn/sdMr37Ne8dDqcdz+cdF2njEsQBKE/0OmZUnl5ecyYMSNuWU5ODiUlJc7yu+++m29+85vMnj2bOXPm8Mc//pFt27bx9NNPA5ZratmyZdx88808+uijhEIhbr/9dj7+8Y8zbNgwAK655hruv/9+brrpJu655x42b97Mww8/zIMPPugc94477mDRokX85Cc/4aKLLuLJJ59kzZo1PPbYY539sIUexDQMmrzBmImAyYSxE7p9HNvKG1l/sM65XZDlYXKScj2AQ42HuPGlGznmO0bhMY0LsRx820a4WKa50JWBSjCB7gzie/1Z2OV7EnQuCIIg9F20yP8Juu91JFMKwOWJlvEluG/7Tim7+56VbWWNS5xS6dI6UDwVcU4pFb2T3gVh4q2dUnHjSDaHknBzQRCEpHRJ0Hl7fPGLX8Tv93PnnXdSU1PD7NmzWb58OePHj3e2efzxx7n99ts599xz0XWdK6+8kp/97GfO+oKCAl5++WVuu+025s6dy6BBg/jGN77BLbfc4mxz+umn88QTT/C1r32Nr3zlK0ycOJFnn322jWgm9E3MgEHT24eZ7JpDXVxYpMm40eO6fTzHmqySgSllefz6k3MZnJdBtjf5n9jKIys52nwUAEW0i+Sco+fz+qLzGbPvv0wyuqZDT6JyBfuKnkyWBUEQhD6HIxC07YSmRU96be9mO6WSnfrswPMEG7QbdO44pQyixXsiSqWL/XKlkykV+5zqCuzZU6c5pWLGEBXL7DyyNC7miSglCIKQlG4RpV5//fU2y+69917uvffepPcpLi7miSeeSLnfWbNm8dZbb6Xc5qqrruKqq65Ka5xC38K3qYqG5fsZ7ZlMrdrjLDc1E7fefXrrff/YyLMfHMGIzJ7KCjIZXZKTdPujTUf53IrPcbjpMACXjb+Mj+VfwMurHoib2NQUT+s6p1S0ZUybZZIpJQiCIPRVVKwX2BaLUmRKJeqgFr+B7XY6DqdUbMB6zHnXSFAKKLTFyZRKQ8dp/RooLSIcdVamVNyxWi1L9taJC6KKvOa6dNwTBEFojcj1Qp/F9BkYSrGiMcD+2tLoCs3otkwp01Q8teYQvpBB0LAmrPPGFqe8z1uH32JX3S58YR8AC0csZFD2IAD8mQ28PMnqQqk0DbrIKZVoEm5b3G9++WaWPr2UTVWbuuTYgiAIgtDZOI6YWKNUq0ypxOV7STKlnB1HRIQTyJRSSjnaloYuZfJpojrglGpes8b5XYvJlNK74KuO45RKVL7XXqaUOKUEQRDa0CPle4LQGZihEM0mNJsuUEFnuSu4H4+ra0UppRT7j7VQ2xIkHJnJvvals8n2uijNz0x4n/ePvs+O2h2sPGK1lb5gzAXcdcpdlOWUUb57p7Nd0GWVASp01pev45RB53f6+BOVK0wpnsLBxoO0hFtoCbfw9uG3mTl4ZqcfWxAEQRC6k1Tle0m770XvHNngOEQpWwwzTWdbTWnilEqTqPjTvihV+8wzEJmyaAqMIUUQ6prue61f7rig82Td90SUEgRBSIqIUkKf5Oiu7Wx46llG5FidFAPuWgA0pXCF9na5U+qBF7bx2JvRksGCLA9jByUv2TvmO8Yty2+Jm4hOLJpIWY4Vbm5PXLy6B4U1cVGaznuHV3HKjC4QpSI/YydSP170Yw40HOCX63/JC/tekDI+QRAEoe/glKDbpFe+pzvCUpL92uVWKXKgkotS9r5juu+hiVMqTczWZXIpiO1WPObPf2JtSQO83pnle9H9OPOjBK7z5E6pyPxPk/I9QRCE1ogoJfRJjmzfhmYqQmaAsH8tnmA5ISxRSrl1RuSO6NLjv7+3BoDcDDdet87HTx2ZcvvDTYcxlEG2O5tFIxaR683liolXtNku35vPA7M/xcqtgKZjhENdMfyE5Qq6pjOmYAz5GfldckxBEARB6FbSKN9zNk3qlLKVhxMo34sTw8QplS62U0pPQ1cyiT7H2XPmoA69ad23S8r3rJ+JQtTbL9/rHJFMEAShPyGilNAnMY0wmqZT7ttB2Pe2s9wbNjnznE9RmFnYJcd9e2c1v35zN9vKGwB4/NPzmT0y+bHWlK/h5x/8nBq/JWJNKJzAjxb9qO2GzqRXUZpdAhxDaRqG0TWilH0401SEDRO3q+2kTZxSgiAIQl+hrSMmNlgoVfmetW7F1krO++kbfOTkEXz27Gg36GimVPLOfellSkXL9+T8mh5O0HlaQk68GKQ6UPqXDonK9xzXeczrn1TctEUpCToXBEFogxQ2C30SIxzGpbkIGn4AXOSju1oYc95FDL/zS1123F+9sYu3dlbjD5l43TqjS7JTbv/EtidYV7mOfQ37AKtkLxFaTNmBM4lFx4ixo3cm9kRqxbZKJn/9RX739t4uOY4gCIIg9Bi2MJGifM8+jzcGwuysbOI3b+2J38AWEY4nUypy3E2vvsSud39KOLARDQ0jwb6EtjiOpDSEJUPFi1JmRARK5GY68XHZA2tHXIw9tCmZUoIgCMkQp5TQJzHCYTR0DCwnkVsroqboIHkzZnfaVbFEVDVaIeRfOGcCF8wcSmG2N+F2m6o2sbdhLztrrQDzW2bdwslDTubk0pMTbu9MbE0TzRX5XdMxwsGE258os0YUkuN10Rw0MEzFmzuruPHMsdZYSD3JFgRBEITeSsJ0nxTle+dOLeWFOxay5UgDX3pqA0ZrN5UtIiS4b3vzjaKyYQAEmpuBZjTXelDZcaVmQnKi3ffS2Tj6nOqa7rz6XTkndOZLSZxv0n1PEAQhPUSUEvokRjCErrnwqUYAdAWGy4XL1fm26P3HmvnOfz6k0R9mX3ULABfMHMrUoYmzlypbKvnkC5+My4xYPHIxMwbNSH6QmEmT45TSdEyja5xS04bls+4b5/H3NYf4+rObkwe8CoIgCEJfJY3yPYCpQ/PJcOuRTVqLUnb5XsedUjMWn0fpuAkc2rqZ1/7wGCiFhsa/d/+b8uZyrp50dZd3C+7LmB0o32vd9S5a+tc5IlB8+Z6KW5a0+15CUUrK9wRBEFojopTQJwmHw7g1F5WaldWkAYbuIiMjo9OP9fTaQ7yytdK5nenRGV6UlXT7Aw0HnFDzk0pPYmz+WKaVTEt5jNhcAt2ePHdhphRAhttFtqft5ChaSihKlSAIgtA3SOSIMUKREq4U5Xs2SbvwpeGUStV9b8iYcQRamiNLLFFqxYEVrDiwghG5I1g0clHSMQ10Wos/qYiW60XuG5nDdG3QeVvigs7jlCy7+544pQRBEFojopTQJwkHQ3g1HRU5yWsKigYPYcaMFG6k46SywSrZu2T2MJZOL2VyaR75mW2vbH547EP+9OGfONx4GIApxVN4dMmj6R0kJujcDkNV6JhdlCnV5rBdehRBEARB6B5UjCxhhOOFgFTd9/RkApMjaHXcKdV6O1DMK51HVc52ypvLaQw1przfQMd0yvfScErZ5XrY3YVtZ1LnjCXW9WS2FstiXv72u++JKCUIgtAaEaWEPkftP3cyac9UjngUWssuFFb5XunIUWRmZnbacf7f3zfw2vZKmvyWMLRgXAkXzxqWdPtfb/g1rx581bk9On902sdKGHTeheV7KccimVKCIAhCXyNyHq3PjDqb0y3fi7l7200cp9Txi1Kx6sWiEWezlXcoby6X82w7tBF/Um4bH2xu3+4sp1Si7nvO7WTle7F3skVNXUQpQRCE1ogoJfQ5WtZXUR7U+MBnooWtMjpdmegZiUPHj4emQJhn1h1ybusazBpRkHDbGn8N5c3l7G/YD8DHJn+MycWTWTJqSfoHdGbDJlokF0tpWvc5pWRiLAiCIPQDDM0WjxRBI0jQCKZVvhcVpZJlSrU9T6bvlIoKEVaZvp1fJYHnqeiIU8rptNjKGtUVQefRssK2+04afSBOKUEQhKSIKCX0OcywSVgdAobiVk0YQGHdHsKe5C6mjrD/WDPrD9YBkO118extZ1CU7WVwXtu8qmO+Yyx7Zhl+w+8s+8jEj7SbIdWa2Bwne7JKTzmlurBTjSAIgiB0JZnuqGNaAxqCDWSlyIWyaTdTKkH5nk37opSzJaho+LaIUqmJhpWnsa1TvmfhOKc6aU4Tu5fWmVJpXdiztxFRShAEoQ0iSgl9imNHGlBhE02rA4biaakn4IbMQAMtnVC6t6uykSU/fdO5XZqfyaTSvOTb1+3Cb/hxa25KskqYWDSRSUWTjuPI0XAnzRXNlDpUv5/bV9zO1ZOv5qwRZx3Hfts7qghQgiAIQt/HPpsNzx0B5ja0mGW2qqFSlO/ZolQbp5RuO6U6HnQe3a6VUypSUiYNRVLj6Dhpdd+Llu/9c+c/WVe5zrndGcSOofXrlqh8r81xnaBz6b4nCILQGhGlhD7FjlVvMVLLp6L5EMGmrYRcdQDsK4WZ00454f1vL28CIMvjYmRxFv9z+tiE29UH6nnn8Dt8UPkBACeVnsTvlv7uuI8bW0YXmynlD7aw9tAbVLZUdokolXAsRF1bgiAIgtA3UYAWd15N3X0vsknS8r0TDzpXKJSK3jYS7FOI0qFMqcicxTDDfGPlN5zlXr3zoh2i46LdcbUR0qR8TxAEISkiSgl9ipa6WiCfgw3bMc2gcxl02k2fZ9GYxSe8/zpfEICFEwfx2PXJRa4fvv9D/r3n387twVmDT+zAMRNbzWWLUhpXDruALbxEjb/mxPaf+rCJojIkZ0oQBEHoOyRoJ6sRucASEaWC+/axfd58iq69hiF33NHq7rZTqvV+k5f+HU/QOUo55Xtynk1Nh7rvtXrhTik9haLMIq6fdn2njCW+fC8+UyrOKUUyp5SIUoIgCMkQUUroUxjBEABm5OrioMBQtkyoZ+GSjx73PpsDYe5+egNH6/1UNgQAKMz2pLzPnvo9AEwvmU5pdinXTz+xSY9j7Y+ZrKLpzPjJ83Cfm7pAHSuPrKSiuYKQaT0HC4YuYGT+yBM6riAIgiD0TyxxQCmFd/Ro9OxszJYWzIYGGv71XBtRKja3SCkVdbroyTOl7G22bt1KbW0t48aNY/bs2Um3Q1lOKcmUSg/zODKlbL5+2tcZVziu08YSp4u1ypSKPXTS8j2n+56U7wmCILRGRCmhT2GGrJO6nR2QF8rDl+/H7U4tIqXirZ3V/HdTedyy8YNz22zXGGzkb9v/RlOwiQONBwD4yvyvMGvwrOM+tk30Am+sU8qFd/o0YAcBI8Cty2+Nu8+PF/2400Sp2Mlcoit/giAIgtCrcc5dMYvQUCjcJSVMePMNmleu5PAX7kjoUIrLDFIxIkQKp1R2djYAFRUVVFRUsGnTJmbMmIHL1Up4iHFKKVOJKNUOW4828NSaQ3xwsBZI0yllv6aRH64uFH8cp1SicbRRrOwVtlNKsjwFQRBaI6KU0KcwQpZLyD7pu0wTXO4T6q5S1Wh1zps7uojPLBpPttfFvLHFbbb7x85/8PC6h+OWleWUHfdx44kJOtej1u6xf/4L1295hJVHVgKQ7clmcNZgNDRKs0s76diCIAiC0P/QiIoVrtxcPMOHWysSZEvFunFMpdDt87KWPOh8wYIF5Obm4vP5eO211zBNE9M024hSrQUvCTpPzQ9f3Mbr26uc2/lZ7V94NIl/ffROLpNr/RpaCyO303kdHVFKnFKCIAitEVFK6FOYISPuCqemTHAdn0tq5a5qvvzMRo41WTlSk8vyOG9acqHnUOMhAGYNnsWsQbOYVjKNIdlDjuvYrYm19ttOKYAP36/i7rPv7pRjpDpu7EVjCToXBEEQ+hoxqU1xSxM5gRMFKcaKDnHxRLa4sed1+NlJUDwOPvY4eDLJyspi3rx5BAIBXnvttciuU+07PotInFKJaQ6EAbhwZhkzhhdw1dzUrvCgEaTOE4pb5ta67ivO9opGILHpKXn3PcmUEgRBSIaIUkKfwgyHCRJ0brtME811fG/jf288wqFan3P7pJGFibfb/W8e2/gYFS0VAFw09iKumXrNcR0zKc482cTtcaETxsTNlqdfYsbwMTDxvM49Xiska1UQBEHoX6ho0LmN3d02gRjU2inlUDLB+hlqgZo91r+jG2DUfGeT9tzacS4bKd9rF1sUvHT2cJbNSO1Ibwm1cOE/LuTYvGNxyzvbKQXgdekEDZO3dlYD4NY1K7s+VdC5rw4Or4GGw9ZtEaUEQRDaIKKU0Kcwm5s5oO1zbuumgScjq0P7UEpR3RTkSJ1VtnfHuRP56NwRjCzOTrj9k9ufZF9D9JjTSqZ1eNztoTmdeMCdW8C5I5/mSHURea5KUKM6/XjOcRMua9vBSBAEQRB6Ncm678VZge3Q8rYnOD1ReRbA6AXw+XXQXA3P3AT1B8EMtzp07H0TOKWcsnwJOk+HjgScH2w8yDG/JUi5DEVxI1QVal2SKfW1i6eyYmslAFkeF6dMreSDLfGvuWrlhuPPV8CRddGdHKe7XxAEoT8jopTQJwj6wwTLq8hprKdS5TnLNWWy8PSzOrSve57ZyN/XHHJuTxuWn1CQCpkh/GE/1S3WFbFvLfgW84bOY2ReF3S8i23houtMuvcXTGqynFlkl3T+8ezDdiQPQRAEQRD6DJHue7Hle7bKkTBTKkZYan1OLBlv/fNGmqB0UJSKLS5USjkXf0SUSoytGaYTcG5T5Hfz6wf9/OhK3RKluiC76foFY7h+wRjn9ov7Xky6rXOBr85qjMOgSZA3FCZf2OnjEgRB6OuIKCX0eta+uI93n90TubUMZbY467zBY5SNGtOh/a3cbV1R0zUYXpTFKaOL2mxT1VLFlc9dSW2g1lnWZYIUMTlO9mTW5YGCEV1yrHbHIt33BEEQhD5G23NXRPyJy4dKlSkV/T2BkcrCdt8oI+GxrV0nckrFilLRznBynk2M/RzqaVS6RcvlIrcjv3RF+V5rEmVwOplSznst8l752F9g8OQuH5MgCEJfREQpoddzaFtt3O18/TBVgKYU+Q1bcOsdexvXt1hhmK/ctYhxg3MTbrOxamOcIDWtZBpDc4Z2bOAdIUHZQXcQFcO697iCIAiC0DVocb8lzpRKXb5nJjspOuV/8Q6n9J1SWA1NxCmVEsNsJeykwH4OtcjTbj/7HZ0bngiJyveiCyTgXBAEoT1ElBJ6PUbIuso0N1tn1K5PceRILm+MH4umFIae3sSjstHP394/SEvIoDHS1aUw29tmO6UUW2u2sr5qPQCLRiziwbMfxK2705ocHS/RLng9P0Ft49oSBEEQhF6P7VqJXaJhxoVMJS/fiz3FJz0V2/ONDmdKRR1akinVPh0p3+sNTqlWA4pfZ4ooJQiC0B4iSgm9nlDQEqVcmkn97ixwWSd2XcG+Uo3T3O0HnT/2xh5++/Ze53aGWyc/s+3b/6kdT/Gdd7/j3B6UNQhPN4RSdqXglfq41k+RnwRBEIT+iGlGS+2cwPHjdUodb/leq0wpEaVSYz+HrnREKbtcznZKRe7i1rr+K06iuZs4pQRBEDqOiFJCryfcYnXJM4wWDufl4vNaIlEgQ+fYfZ9lVF773emqmwIAzBtbzIxhBZw+vgS3q+0EYXvNdgCKM4sZmjOUKyZe0VkPIzWtJrQ9JVJZY4mMQ6QqQRAEoY8QFxelQaKg81ROqdhOb8nL9yKiVCunlLVrDaVUO5lSYBoKzRRRKhUd6b7niFL27cjP7nBKOWOgbfleNFNKRClBEIT2EFFK6LVsevVl3vrrHzG5HM1Vwp761zk6usxZn5mRy+fmfj6tffkiJYCXzh7GdaeNbrO+PlBPXaCOw82HAbh11q1cM/WaTngUHeep73yVpppjGOEwyz57ByOnz+qyY8U2/WuNiFKCIAhCnydW90mRKRXndkq2L6d8z2izKpUoFSuZbH7jMIWcxulD/ZgzRZRKhF2+l84FOmeuYj/tPVy+FxXJWgWd653fDVAQBKG/IKKU0GvZ9s4b+Brq8ea70IBguBGAPF+A3cNdnDb37LT31RIpAcz2tp0U7Kvfx0ee+wghM+QsK84sPqGxdxRvZhaezCxCfh8Ht2x0loeDwW4dByTJSBAEQRCE3kwrAUOL1HPFikRaCqcUWM4cU6Uq37PL/xJlUiXPY4ztvmczqnYaiorExxngdMQpZbvN9MhTa2rg0lzd4jhPlMEZzbgSp5QgCEK6iCgl9FqMcBivnonHlYsB1OsNAIyrqOWpZYVcOnVm2vvypRClthzbQsgM4dJcZLuzGZI9hFPLTu2Ux5Aubq+Xa7/3Eyr37gbAk5VNTkEhRcOGd+lxtQSlehJ0LgiCIPQX4s5lKTKlwMqVMiNh5Ik3SBx0Du2IUhFBwuXWuOQLs/n3zzagKU3K95JgP4V6OqpUAlxaL3AlOTqkiFKCIAjtIaKU0GsxwmFOKjmXrYYbQ0GNq558dJSu8JoZ6Hr7J/hnPzjMxkP17DvWDECmJ36iUh+o52jzUQCWjF7Cjxf9uPMfSJqUjBhFyYj287EEQRAEQYgnekEFYg2/cSJRCuEI7LBzlUamVOLyvaT7dvKuFN4stzNeufiTGMO0nVLti1IJnVLdVSqX4MJenFNKqRhRqhcIZYIgCL0UEaWEXolhmDTVz2aXUUowcq4vaFIozbLkT6qfhMuV+gR/rCnAnX9fH3fFc1BuhvP79979Hk9uf9K5XZRR1KmPoW8QM4m3l/RkyLogCIIgnBDxpXLxolTkYlaS8j37rmZSp1TqoPM2x3PWRbOs7O00NAzVVtwSOhh0Hnmdw/ZronW/UyougzM2DyvRe08QBEFog4hSQq+kcl8j4fAI7GmfbgTIDpg0Z7rIcRkUm8UMGzYs5T4a/GGUAq9b59NnjmVUcTbTh+U7698+/Lbze5Y7i4UjFnbFQ+kTyLVaQRAEoU/jaFHxZzQVozA52U4pMqWs1ckypSLT5gRiUmpRKrrOvu6jKV3K95LglO+lE3Rub6zsboswJn9M1wysFQmDzuMEqpjXNw13vyAIwkBFRCmh16GUoq7CKrdr9tby/pin+fJfDrJ2VA4Ag2cb3H333WRmZqbcTyBsTRrzMz18edmUNuvrAnUAPHvZs4wtGNut7YN7C4nme04JhEhVgiAIQh9Dtfot7lyWRqZUShyn1fGJUsQ6pZSGKefZhESdUul334vk2vO1BV9nwuLLumxssUTDzGPGE9t9L1a8HIBzTEEQhHQRUUrodbz75600ra0EoNnTyPbiTeS1GBh6LgA5J5/WriAF4A9ZV6gyPdGJQHlzOZ9++dNUtVTREm4BYFDWoAEpSEHshWWZGAuCIAh9mCQChop1q8RsE1tKZ2OLIMm779lB5x3NlIo5jq2eIEHnybCf//Y0qRf2vsDftv/N2jbytI4vmkCWO6srh9eG5JlSse+9gTnPFARBSAcRpYReh7avgWwtQNi3Bm+4kss3FrK9TBFyWSd0z3lfT2s/gZA1acxwRycCq8tXs79hv3N7QuEE8rx5nTj6/oMIVYIgCEJfo/WZK1HQOWCV8LXKprRXt5spdZzle3HLkPK9ZJhplu99773vUR+oB2K1vu7LxUz0ujqilKbFi5cSdC4IgpAUEaWE3oepqGjZTNi/ikw/ZDYWsrs0ujojJyet3QTC1mQvwx2dCNiTl0UjFnHPvHsoyykbsC4piJlE9/A4BEEQBOFE0FoFnNvEikRabK5PAvGoXaeUdnxB57FCif2bpjR21u7kyW1PMrl4MicNOSnxMQcg9nPoSpF0HjbDzpwOwK25AKNbHUnRjo8KU5lUtlRS7auObiBOKUEQhLQQUUrodWimImT6AQh589GLDjB+MyhNY+Ld95BXPCit/TiilEdnbcVattVs450j7wBQllPGyLyRXfMA+jhRoUqkKkEQBKGvES9OabFmpFhRKkHYua2BVDcGKM3PJDej1TTZLt97+0HY/Axc/isonW4dJ12nlGZnIGmsq1zHusp1uHU3b3zsDfK9+W3uOxAxzPa77zUGG+Nuu2zRpwcaCCsUty6/lXePvussk/I9QRCE9BFRSuh1+Ot3YERO5IGsQgqGrWXay9bJfMp5F7R7/y1H6vn5il0crLUyo1y64tMvfzraLhgoySrpgpH3PZI0KxIEQRCEvoUTJm4vSBB03jpTqtUubKfUxx57F69L5y+fns+8scXRDQZNsH76aq1/W/+TpigVFSTsY3r1DM4bfR4rDqwgbIZpDDaKKBXBLt9LVB63v2E/X337q9T4awDI0DMImAGnfE/rxi53sePbULUBALfuRkdn2dhlrbrvSfmeIAhCMkSUEnoVSinMYB2msgQkpUGG4cxO0Fztn9T/8M4+XtxS7twuyDEJm2EyXZksHrmYHG8OH5nwkS4Zf38g1o4uCIIgCH2ZvN81UFGwjkE3TEdzt8qUasWyGWX89f0DmAqChsnGQ3XxotQZX4Tx58Kb/wtbn4sr40stSkV/t0WyDFcGPz37p8x/fD4t4RbMBOMZqES777Vdt3z/ckcAAhiWN4y99Xt7JFPKRqGc1/35K55nWO4wa0VzTCmfOKUEQRCSIqKU0KswwwY+cqhXR63bOmQYJuBCc6d3laklaAVLXjpnKFl5ezGzVsNBGJE3gh8t+lFXDb1P0ubCcgxSvicIgiD0FVqfzwxb2PApQr5mAnvryZwc09gkgXj0vStm8r0rZnLX39fzj3WH22ZLaRoMnQX5EdEhJvA8badURD2xN3NFcqqMBOHpAxX7uUkUdN4QbABg2ZhlfHzKx6nx1XDXG3dFN+gJUSqSKQXE55Qm6fwoCIIgxCOyvdCr2LrqCHvVeEJh661p6CrqlErDJQXRLKnCgir+W/0tXjz4DAClOaWp7iZESGSXFwRBEIS+RIOh+Luxl9BQaz6hFHGZUippi72oGGIkMy8lCDxPHXQeeyOy3s5NioxJOvFFMVMEnTcELFFqfOF45pbOJcOdAcRkh/VA0DmAidlmmdN9TzrvCYIgpEScUkKvoqHKB4CpBQGoyDvIfJf1Nk2ndA8gFJlFtoSticuovFEsHLGQKyZc0dnD7fM4+lNsd6KeSAkVBEEQhBPCFoWiS2pVCOWNnNNM1aqOLrkI5GqvC5+dD2R23Cll4wgv4pRqg/3c2C+XL+zj1uW3sr9hP03BJgAnf8t+vjVb7OvGKYzWKqMMkjilpHRPEAQhJSJKCb2KcMialNVnVJIfgIbMGrLCBqCjudN7uwYjTqmQsjr4nVJ2CvfOu7dLxisIgiAIQu9FxTTji3MCp8hN1CMOHTOZm8oWpWKErdROqdjue5GfkbvaIoY4paKYrcr3Nldv5oPKD5z1GhpTS6ZGto04lHog6DwWZxyJhE8JORcEQUiJiFJCr8II25MyS5y6ZGOYCfUGfjxonjRFqYhTym9YV9NyPDmdPs7+ghNqnmiZBJ0LgiAIfQRHFLJvo6zzmaMRqLjyvURB5zZ21ZiR7DyotXVKOUdJ6JSKChXhgA+lDJRyRY4ViSsQp5SDLQbaolRdoA6AqcVT+e6Z36Uwo5Ah2UOAaP5lTwSdR+dQyhlHvFPKLt8Tp5QgCEIqRJQSeg1Bf5jG6gaU2YAemeiVloO/JhMAV8mgtPazt+4gkMubh1fgzoNcT25XDbnfIPqTIAiC0L9QaErDkalaZ0qlOPG50nVKJciUSoQWk430l3tvBS0Db9411q7EKdUGM6Yk77ndz7F8/3LAygadVDQpflvDeg00+/XsgVzMWEFRR8r3BEEQOoqIUkKvQCnF8998lb37H0WpILaMpCvFoOsuQx80gtwly9LaV1PAB+SCbpDtzmb+0PldNu4+T6K5m9PBSJQqQRAEoY+QUIvQnPI9pVS8cJTSKWVnSiXbIDJ97kD3vdGzTmL/xkgJmgqgjAqUUk6m1EAXpcKGyU+X7+BQrc953vc07Oarb3/V2WZI1pA296v6xS9gJhCyXUk94JSKzeV02kCq6HtMgs4FQRBSIqKU0CswwibDfBXsUVbAualp5ASCFDX5Kf7CV3Dl57e7j/J6P3urmzEMLwDfPfNbXD5jBi6p5U9KNGpDBChBEAShH6ERX74XW96lVOpMKbv7XtLyvYjzJe2gc40rv/JtwqEgz3z/WxzeugmUQplKnFIR1h2o45ev73Zue906jaFqAEoyS7h43MV8Yuon2twveOgQzATNpZN9yklkjB3bbWPGKfOMcUppOhzdAH+6DHy1ke2kgYwgCEIqRJQSegVG0ECP5EhprlI2Tcvivr+ssG57ve3ev94X4uwfv4Y/ZAIFABRkZosgdRzEZiQIgiAIQl8goWtFadEzmf2LroNhoFI4pVy25nQcQed79+4lHA4zbtw4XDFdgzVNw+PNwOWyp94KpaT7no0v4nQqy8/klrPGMWtEAeXmSgAmFk3kS6d+KeH9zIjekz11GqPv+3O3jLXNGGLeB7qmw/5VUUEKYMyZPTAqQRCEvoOIUkKvwAiaMSd1HYjJafB42r1/RYMff8jEpWsodzl6RhUzhp3aNYPtR0Sv7PbwQARBEAShE1ARccqRo+wEbPtEFxGl0nFKmR0IOrcFqDfffBOApUuXsmDBgrZ31WPCsZU4pWzs53pwXgZnTg+xvvIV1lasBSDPm5fintFo++7GFkJjXzsNLZo1NvVSuPghyC7u9rEJgiD0JUSUEnoFZtDEJKZLSWxOg6t9t1Mw0rVvUK6XluEPApDj/VznD3QAIN33BEEQhP5BNFPK0ajsX1OJUhHhyEimE9mZUjFB5wsXLuT999+npqaGhoYGGhoaEo/ICb22nFLSfc8ids5x40s3Uh+od24XZhQmvZ/9Emk9IUppbUUpPXYO682BnJJuH5cgCEJfQ9pBCL0Cc+erhMwtAGi40OwTup7eWzQQEaU8ruikJMOV0bmD7Ic4c3XRnwRBEIS+jBMwbS+wu+9FbsU6pYBDt93OwdtvJ3zsWJtdudpzSjnle1Ehadq0afzP//wPs2bNsu6bpDxQd8WIUrGZUinKCQcC0afadASpxSMXc+HYC7lu6nWp7glE3W09QZtMKdtBJwHngiAIaSFOKaHHUUc38p8nq6lqGQfsAlxoKnL1MU1RynZKGQQA64qZR2+/7E9oS6q21oIgCILQF9CAQv8Q6nYZZKM7qoenrIzg/v34t2yBLVtoWnwOhVd+JO6+uh1gnSxTKkHQubMqReC5tT7eKSWZUhb2U60i3ie37ubhxQ+3Oyex8y97Yu6SsHxP06JiZZpzWEEQhIGOfFoKPY5ZX0FteBS2CTvkDlKXaXVg0TMz09pHrb8RgIqWwwBkujNFXEmDNheWY5Cgc0EQBKGv0LrJnkLhUm4M61oVQZ8lFIz6858Y8cjPyZxtOZpUKNRmX3b5XvtOqbbuJl1P7XyyM6XaOKUkUwqAsLJejzxPXlrzuGj5Xvd/pUkkSunoYL/24pQSBEFICxGlhB7HCAatXyJXlg4U7iCsWdZtPTs7rX1UNVtdTjQ9zITCCdw046bOH+gAoSdyGQRBEAShM2nJreHZ6Q87t1XEiuMZMoS8JUvwDCm1V7S5b7vle07QebjNKluUSuaUstejFMQ4pQa6KLW52opw2Fm7HYBcb27K7esrK6jYu5sWt/V89uSFyDaZUvb7QjpAC4IgpIWU7wk9Ss3RZra/sBuYAZGg8/HlJhdssE7w6XTeA/BFrnR6XDr/vOyfXTHUfknCFtrtlB4IgiAIQq8jcu5qqKqEEeAKGZTn74laqFqX4kWaqKgEaebRoPNkTik76Dx5+V5yp5R9PdiU7nsx7KnbCwx1uiWeM/KcpNvu/WAN//jBtwDYNzQXqO01Qefx5XvyNUsQBCEd5NNS6FF2vF9O3ZEGlNmIaTYBMKxGMa7cmpS4h5alvL9pKraVN7Kv2g+ASx/YkzpBEARBGIgUlg1D03VHDPIErHmEU87X6kKLU0aXQDzSHbEhycESBJ07q9pxSmkxOUN/+toq5rg/wu5JByRTKvJ8lWYP4Y1PrkuZC3rs0AHn97xmF1P25ZLZg/M/+7XTW2eNSfmeIAhCWogoJfQoRsikwVdFoP43zjLNVOj5eQy9/36y581Lef+fLt/BI6/tcm7rLhGlOkIqt7tkSgmCIAh9hcLSMm755R+ofOU3sGVz2w1an9JsASFR+Z6tLSQNOo+IDXvegAdGwuQL4COPWavac0pp0UypcMAgM1DA0MbxA94p5TRH1NpvVGO/KsMnT4PtH1LyYQ6VeW2zwboLW4DU7VQUCToXBEHoEPJpKfQopqHwh5sjt1yEXSZl9c3o2TnkX3AB7pKSlPffUWEFnOdmamjeKoYM2d3FI+6fSKWeIAiC0NfJLSomr2QwEBN8bjf0aH2iiyhPCcv3IsKRkezkWDoNdI8lPgQaYOPfHHdMuk6pk5eOZNjEQmuZ0ge8U8oulUwrGsoORY8JqQ/ndf91drtk0HntnFJRCToXBEHoCCJKCT2KaSin/a/KmkH5sEYGN/nQXOmdyIORyeTHTveQO/4nlA4p77Kx9kcSzf0S5UwJgiAIQp9AT6JqtNKetBROqXbL90qnw9074dY3Y/ZvRPbbnlPKOm5GthtvpjXX0ZTGz9b9jOv+ex1rytckOWj/xiR9UcqZn0S23TO0Gf/w9Lo1dwW2y81xSknQuSAIQocQUUroUUzDdCaEStNwG5EZhju9K17BsH01ypoMtmf5FlphX0GWUj1BEAShHxAVm+wfkWypNk6p5EHnLt0WllKcG7OKoHhc9LYtTLTrlIpc+DFN53cNjSPNR9hQtYF/7hqYzVpsbVDvSBc9+zXWeqb7XuugcydTSoLOBUEQOoSIUkKPUFFRwe9//3ve3f43TFcLAKYOHtM6wesZ3rT2ExWlrKtSXld69xOS43TfE6FKEARB6GtEzmFuzWREKIymBa3lrbWnlEHn1s8Gf4h91c2EEwhX1rFiptEqTadUjGhli1KfnHI9V026CoCQ2XPZSD2JHXR+PE4pUFGXUjdiO8ttUcoRxiToXBAEoUOIKCX0CJs2baJu3yaKqKCCHMC60mU7pVztZEnZVLXUAvD3HY8DIkp1lGipXg8PRBAEQRA6AVsYKPH4eOHQEeZm3QaEE3TfszvoJXJKWdPjt3ZWc/aPX+cTv3k3ycFiRId0nVJajFMqomGMzhvD+MLxKe/X3+mIKGVPWuI27QGnlE2b7nsSdC4IgtAh5NNS6BFCoRBTQjUY1VeR6S8GIOwymT5iMgCaJ70yvFqfFXQeVn4AZpTM6ILRDiy0hElTgiAIgtD7CQ+aTpU/m4BpCUaZeiU6jW2vvthldAlcUKeNK2Z0STbZXmsfmw7XJz5YbGZQBzOllDJjSvmUI2gM1C580Q52HbiP/VMDvQfmLq1LBqOZUhJ0LgiC0BGk2FnoEQzDwG1ariZDD6IBE08azJKiWVTyJpo7PVHKiJT7fXTyFXzutPMYmju0q4bcL7HnU4muyw7Uq7WCIAhCHyYjnz/tnUswW+fLo98gkhzVxhBll9ElKt8bNziXN+5ezJE6H6f/4NXkgedx5XvxTqm0yvds15SKlp8NVFHKfo47VL4XM3vpkUypVkJYtHxPgs4FQRA6gohSQrcTDoVoPFpNsX1b9+EBpk2ajl5xDAAtzaBzw7QmcUNyikSQ6iQGvFNKKSjfBL5acHlhxKngko9KQegNBAKVhMKWayU7axS6ntHDIxJ6G7boo8UlI6oETqmIXGXn/yTA6cKXTJVKIUqlE3SuO7+3Dc0eaETL99JSpdg2qpG1rtXMpSj9+3UxEnQuCIJwfMinpdDtvPjIg4Sqc0DZEzfr5O1yu1Eh6+qS5k5+dSkYNrnu/95jZ0Ujfn8WAFlplvsJ8dhTuNjJ80AOOn+qvIZvbt9LKOjDYyq+vfsnfHTsBLjgBz09NEEYcChlYhg+6ureo7LqDarrNhPyrXfW5+RM4rT5L/TcAIVeiRZjAY4VpULhVgHiTtB58nNddJNkopRmCVPK7Hj5nmk6mpZSClek1GvgilLWTz0dTQrF4cE+Cps8zpKTi2d32djSxRGlJOhcEAShQ4goJXQ7LeU1KE8O5TV1BH3P4zasq966240KRyzPKZxSOyoaeX9vTeSWBrqPsoKiLh610F9pDBv8cn859Ttf52V9KDWeYnDnAvCfwYv4aN3KHh6hIAwcQqE6qqpeJhSqZdfuH6Xctrl5RzeNSuhL2KKQpjRHlNJQ7KrdxSiiuZNO0Hkqp5Ruu5dSHTAiStlh1+kGnceU75mxmVJt2gQODFRHuu+Zkctmkad44WbF1eOu7LKxJaO1O0sLtsCDM6C52log5XuCIAhpIaKU0G2okEndf/cwVZ3Cu74tNDQ0AdudUMvsnFxMvw8gZaZUKBJKWpafyeDxT7K3+QMKsx/q2sH3U6KuqLb0d6eUqRQfHDvGDzdv5E1VDBnTnXXXH/kXfxp2GWG5yikIXYZSikCwgpbmPeze/b/4QwGC/u0Jtw0Zbl7afw5BI4v3y2fxg4Xf6ebRCn0Fu3wvy5VpCU+mASiC4WD8hrZ4lNIpFRUdTFM5IlX8AV1A2Cnfa9cpFZspZe8vVqAasE6pSNB5eu334lrvuUx6tPuejR5qgfpD0QWDJvbcYARBEPoQIkoJ3YZ/Tx3Nq45SpJdihDYAoOn51BWVcXpmgKaPXUtzZNtUmVLBsDVhy85w4c6sRvMH8OhSvid0gEAjzx46wucO+CCSbpZl+PjMkX8yaeYyQoOW8adqMDRX2xwSQRCOG9MMU139CuFwE/sPPEZLy+6E2+2uG8MxfxFvHVrAnvpx3LxoKledPYjnNx3Fd2iLs12s20QQAEeccGkua25gO6FafZQ7glAS8QjiS8lMpRJ3eGtVsmU7pWpra3n55ZcZNWoUU6ZMidncFsMMNLctYCHlezHle8FgkGPHrIxRj8dDSUlJ3N+5UtaFM3tJT30CtAk6t+cLH38CSqdD0ZjuH5QgCEIfREQpodtQQWui1Ww20BSqs07lej5NRcMZvfWN6IYeD9nz5iXdT8iwTvpel07IDEV+93bVsPs1zhwvZrJuT7L6Y/e9FsPkUx9sY2/VQerdOeDOZWigkklmPQ95djL04s9A8TieKa+B6gOWKCUIwnGjlAkoKir+w5HKN6mpfhENf5vtfOEM/rNnKQcaRoC7DJ85nG9eMo2lZ3qYMawAr9v6Iv/8pqPd/AiEvoaT2aRMHLlCS3A+SyPoPFYISWqosku0ImJSZmYmAE1NTaxcuZJ3332Xe++9F6/XG7dPZSpctlHKFKeUU74HPPbYY1RXVzvrli5dyoIFC2K3Rmn21uDLLGH/1nrGn969UQ5jC8ZSml1KRUsFAKf7I268sllQOLJbxyIIgtCXEVFK6D4iVyN9RhNB00cGoOHC1Aw0XwAFjPz1o2Sfdhp6RvKOSnb5nq6Z+MPWlxtxSp0Y/U9+iqc5bPDu5tfYuOt93iq5EDJLnXU/O/R/LLzsOzD4KmeZK/LlwECn/z87gtC51Na+T339GurrP6D62GvEtW2P/DSVxubqqRxuGsozOy/hjiWTWTY/h4tnDcXt0hPuN0qsO0HRcz4JoTcS7W6n4q68aK21njSCzl16rCiVLOw8XpQaNWoUF1xwAXV1daxatQrTNAmHw44opSco37MEKpezfCBivwyapjmClMfjIRQKUVVVFb+xiohSkfvUFk1hxZP7GH/6mG4bL0CeN4+XrnyJgBEAIPuBUdYKrb3PMEEQBCEWEaWEbkMZCh9BDrhqnSwHNB1DM8BniUuu4uKUghRAY6AFgG11H5JTaF2dElHq+Ej0Va6/dd8zNv2DO4/Cc55xUHIhAItqVnNvfhPFZ36O0Yv/1uY+jiglTilBaJdwuJEW33727/8tNY1VhH3vJtzOdkMVZJfQ7FrKBTNH8NERBXw710u2N73piFTqCe0RdUqpGHGgrXiZVtB5q/K9JAeM24+u68yfPx/TNFm1alV0LNEDAxD0+dBcTSilUCp67jVU8vH0Z1RM+Z7NaaedxltvvdUmn8veNrqpRk5hzzjmXbqLbD3bumG73CTgXBAEoUOIlC90H6biTc+H7M7eQamrNrLQckrZopSend3ubg43VQKgaVanvvEF4xlTMKYrRtzvcTpn97crs0qhavbxidUbGV49zhKkALcZZoGriS9Nm8ZJi29jdFZiATQS84EhVzsFoQ2mGeTYsbeoqlrOu+9dwBtvzmH16suorPx3nCD15qHTWL5/EV96434e3PRzduvPcsXCe/jh9V/jkWtP5aJZQxlZnJ22IGWj+pEz6vDhw1x33XWUlJSQlZXFzJkzWbNmDQChUIh77rmHmTNnkpOTw7Bhw7j++us5cuRI3D5qamq49tpryc/Pp7CwkJtuuommpqa4bTZu3MjChQvJzMxk5MiR/OhHbTsbPvXUU0yZMoXMzExmzpzJf//736574F1ItLtdTPkeqq3p1cl2SpUp1fHyvejuo+ePWFHFHt+WN15h3fPfINTyEspU6JEp+UAt3zNjyvds3G43oMjxHYGKD61/gUas8j0VV5V5wQ29IFTcFhTlgpYgCEKHEKeU0G0oQ+HTWrgksIFN/lLq8AE6M/aFUU1WxLmeldXufvwhS4zKdHvYcP0GNDQJuu1EnODOPqpTra1vZs2qJwgc/oDXxt3iLB9PMytGtpA56bx292E7pcISdC4IGIYPpcIcOfo09Q07qKx4Fggm3Pbl/WdT0TwYn3YqRfljuP/K6dzr1inM7hwXQ+tg4T77QYUVhH3GGWewePFiXnjhBQYPHszOnTspKrJycVpaWli3bh1f//rXmT17NrW1tdxxxx1ceumljnAFcO2113L06FGWL19OKBTihhtu4JZbbuGJJ54AoKGhgfPPP58lS5bw6KOPsmnTJm688UYKCwu55RbrM3LlypV84hOf4IEHHuDiiy/miSee4PLLL2fdunXMmDGj+5+cE0CLLcuLfJZrCUQpzS4TNdIVpdor32vrcNI0LeKEit531MzZfPDCc/ibLeFQhQ9jKjXgg87bup/A5XKxlDdYsP0DsBtzZpegDb8v/uXUNCdAvseIFTflgpYgCEKHEFFK6DZqDjehqxDLa+8mGNgIvAmai5FVPjAMtIwMXIWF7e4nELLCzV26QpcT/wlil+r1fXy+Jo799ytcVXgtLRmnwrhTARjjP8ILGZvIX/xlR2xqD90p35P3lzAwCQSq8PkPcPTI0xw5+veE24RMFwcaRrK7bgxP77yMT581ngnjs/jeGWPSyIUSfvjDHzJy5Eh+//vfO8vGjh3r/F5QUMDy5cvj7vPII48wb948Dhw4wKhRo9i6dSsvvvgiq1ev5pRTTgHg5z//ORdeeCE//vGPGTZsGI8//jjBYJDf/e53eL1epk+fzvr16/npT3/qiFIPP/wwy5Yt4+677wbgO9/5DsuXL+eRRx7h0Ucf7eqnolNJGHSOYnhjPrX/2kXemcNxl2Q5woFKIQLFle8ls0q16r4Xd39dxzCMOFFqxJTp3Pa7Jzm6aztPfPX/oVDxQecMTFHKJN4ppWkaLpeLMiKB5xn5EGiAlmN4wg2RoPMo+vuPgLYMRs3vvkHHEvs+6mmBTBAEoY8hopTQbdQcbkZTChOvc/LObSqn3rObkvu+TO7MOSnL97aVN/CXd/fz3n4fAC5xR3cJfS5TKhxk/653WHwkj5biGwHICbewrPY9tGmXcNWwhRQVX9ihXUbL91z0D8lOENrHNAMcOPB7DlRuJ9T0XMJtKloG8c7h+WiuwexuXsTdSyczLyeD+z+ZR6anmz6UY/4klVJ9NmfqueeeY+nSpVx11VW88cYbDB8+nM997nPcfPPNSe9TX1+PpmkURi7grFq1isLCQkeQAliyZAm6rvPee+9xxRVXsGrVKs466ywnaBusbmY//OEPqa2tpaioiFWrVnHXXXfFHWvp0qU8++yzSccSCAQIBALO7YaGhg4+A11DtHwvPui8MJBN8yqre2PRZROiwkGKoPMTKd+LHUvrTCRrne7cTymci2z9rpw+TVqX7+m6bglTRMS+y38J//wMBJscW1Xsn76+8Y8welgPilIxoqRc0BIEQegQIkoJ3YYKGeBcAbRO3oUN+5hx9ZUM+dQN7d7/Zyt28t9N5c7tDG/i8hEhfaKZUm3X9QVR6oOGFr66bg3rVJEzO3UpkxsLwnz15EuhZPxx7deF3X1PlE+h/2IYAZQKsmv3j9hzdCsZ5gdttqloHkxtoIBHN97AxNKhnD9jBNefV8j8cSU9MOL+FXS+Z88efvWrX3HXXXfxla98hdWrV/OFL3wBr9fLpz71qTbb+/1+7rnnHj7xiU+Qn58PQHl5OUOGDInbzu12U1xcTHl5ubNNrAMLoLS01FlXVFREeXm5syx2G3sfiXjggQe4//77O/7AuxjNyYqKilLbfQaewTWMaixGBa15iF2+ZzY3EyovtxqteOPLTGPfb8nL92xxKXH5HiQWmqLlZpZTyhalBmzQuWk9V7YQ6HK54kUplxfnRK9MlKaI2qU0GLMIymZ276BjiXXKSaaUIAhChxBRSug2jFAYo6GKYP0fUSqSIaUUw4ZNSuv+DT4rS2rueI3Njf9m/NjeL5oIXcOuYxVUvvwdfp09l3X5JznLv1X3Ep9ZcBGUnXVC+5fue0J/paFxMzX1e9h34AkM/2pneWzkf30gj7cPz6eecxlSPJVbzh7HR893UZqf2f0DTkB/CTo3TZNTTjmF73//+wCcdNJJbN68mUcffbSNKBUKhbj66qtRSvGrX/2qJ4bbhvvuuy/OXdXQ0MDIkSN7cEQWiYLOD4dM3Dn1jGosjlqeIiJQ40sv0fjSS7gGD2LCiy+i5+TE7UvXrLu0L0q1XW+HnSd2SkVdXMpUuMQpBSRyStkd7dwxz7XZpnxPO+seGDWlewabiLjyPZk7CIIgdAQRpYRuob6ygup9bxBqrkSZLc7y7EAI79hxae0jGAkjnT3GYMeRt8nNOr1LxjqQiJkSxyxLfmW3x6ndzwfvPsEFmRdA2aedxf9v3+859+ybmD3my51ipXDFdt/rjc+DIHSAlpa97D/0FIertqEF3ki4zc7asbx5eBGLp45FZc/jO58cR05G75sitP3r7rt/n0OHDmXatGlxy6ZOncozzzwTt8wWpPbv38+rr77quKQAysrKqKysjNs+HA5TU1NDWVmZs01FRUXcNvbt9rax1yciIyODjIzEHUx7lJhzgNKsM5qmqaiYGflMzzltPu7BgzHq6lChEEZVNaGjR8mYMCFud7qmYSpF0iZ9tgCRIFMqlVNKj3FK7Vlfhb4vzGTvfMyiunQfab/AMBVr99fS1GKJgfar53K50HUdPdYppcXPWqKvtAZuT7eNOSFSvicIgnDc9L4Zp9Avqdy7G800nStJ3ozTGTVsJ2d/44dkTZ+e1j6CYeu+SrMcU169c7o5CX0A0+Dtykqe3vAuuwMjIBPyw42Umj6GFZTwmYs+T96QCe3vJ03csd33BKEPYZphgkFLpNi2/RtUHluDi0YgXtDZVjMBnzmEd6uv487zZnD6pBxuGpqPRwLKu40zzjiD7du3xy3bsWMHo0ePdm7bgtTOnTt57bXXKCmJL5tcsGABdXV1rF27lrlz5wLw6quvYpom8+fPd7b56le/SigUwuOxvrgvX76cyZMnO53+FixYwIoVK/jiF7/o7Hv58uUsWLCg0x93VxPXjVeLCj92gLitD2VOm8bEt94EYMeC0zFqaxO7nTTNuv9xlO+ldEo5bhqFrzEEjTA3YynvT3oi5ePrbzz+3n6+8a8twHAAzFrrOfM1hHnryR1cnxt57lze+FB562Vx0Dw9PCeMdUrJ3EEQBKFDiCgldCn+5hAv/98WqvdvY0SM68Sll6CdqqctSAFUNh8DXDy5/c+4c8Hj6uGrYv2A6FXcBMt6iQPhYFMTu566nS+VfZzDmZMhMu/8XFYdXzxlEWTmp97BcRDffa93PA+CkIrKyhepadjH4QP/G7c89qvRO4fngWsw+3zncNaU2dx2RnzOUF9BpbjVl7jzzjs5/fTT+f73v8/VV1/N+++/z2OPPcZjjz0GWILURz/6UdatW8d//vMfDMNwMp6Ki4vxer1MnTqVZcuWcfPNN/Poo48SCoW4/fbb+fjHP86wYcMAuOaaa7j//vu56aabuOeee9i8eTMPP/wwDz74oDOWO+64g0WLFvGTn/yEiy66iCeffJI1a9Y4Y+lLaHEuFS3yv8Js5ZSKIzaHKtEqI1X5XuSvbO9bEPLB2EXgckfGkipTylrnydA546MTeOfpXbhMV+90KXchh2ut5jVerx/DfYTJLSOsFUrDMHAypUwzGgavRXr1adFefWjuHhalTCnfEwRBOF5ElBK6lMPbaynaW8cE10gy8kawpfFdADQFbk/HbP8NgRYgDzRrgjK3dG5nD1foTRxaS2PFNhY3TKZpzBedxfcdfpKC02/lo6NmgrtrJn7R8j2ZWAq9F5/vMDt3/4SK6vfRzaNx60KmC6V0ttZM4m/bL+c7VyziY9OGMLksr4dG2zlo/Sjp/NRTT+Wf//wn9913H9/+9rcZO3YsDz30ENdeey0Ahw8f5rnnrC6Ic+bMibvva6+9xtlnnw3A448/zu233865556LrutceeWV/OxnP3O2LSgo4OWXX+a2225j7ty5DBo0iG984xvccsstzjann346TzzxBF/72tf4yle+wsSJE3n22WeZMWNG1z4JXYAt9lg37F9UVOxJpPnY90nQQU93OuglOaAthrxuZYNxwf/CfOu5tZ1SqYLONU0xYkpxZLi64+gaKNhi39AhB5nUsgVvSzNhwBP2oxEVpYwmX1yHQqUptJhgKc3Tm8r3+s/nlCAIQncgopTQpYSbQ4zNcGFfr7fdN5pSuLwdE6UMw5qM/M+M6/jM/PMpyCjo1LEORJx0hlinVE+HCJsGr+zbyYev/R8V3hKaRkwnwwwwKVTFuRPmcMei70dbeXcR7jinlCD0HoLBatZ9cB2NzYfRsfL5Yt+lq46cwv6W09nXNIdPnT6Gk0dlccPFhRTl9Kdy5/7zhe/iiy/m4osvTrhuzJgxablmiouLeeKJ1CVfs2bN4q233kq5zVVXXcVVV13V7vF6O/HCpeb8727OBhK7oRx3VQLlyRGlkr0WZ94Fq38LNXug8Sg0HGozlkTle7GlffbhNaVjJhDG+jP2y6GHNIa3DCeMH4BMfxiTZEHn8aHooKG7ekn5nlzMEgRB6DAiSgldigpZV44UiteO/jU6kVB0XJSKtAsuzsoXQaqf0uxv5sAfP871E7+FOS56Ff/UUDlPTy6CsSO6ZRz2RfMmVza/zTmV8ccaWFzS+WWCgpAKpRQVFc/h8x/lwMHfEwo3oSnrC1usEPXmodM43DIRT/ZiLp4zia/NGtozA+4RBlapk9A+ceV7zu8mOZVDIBt8DcG2d0pRvmdrXElFqRkfsf4t/wa883Bc4HlKp5Tt+jFN9MhJRx+AopT91GiRn+6gm5ymqUzc8RbbpxAVpTRX9MVQJi7dG++UcvfwVxr7dZfSPUEQhA4jopTQpRgha5ahUOzW95CLFx3QlUq7fM8fMthV2YRpWif6zJ6eePQjEjnMe6T73rHdfLBrDZc3TyAw6TsADA7WcF5GAPfQGVw3bBLkZXfbcLIjXyR8riy+VrgMNu7hvdOmMjqrF3aaEvoddXVr2Pjh/YT8H8Ytj/1zfWHvubx56HTuWjaX0+cO5vxppf2qtE0Qjhu9rVOqMncfIwNjADdGsG0gearyPZduO6XaOa7WtgtfKqeUFiOE2SWHGgNPlAoaIQAM0/qpmy68wSLmTFnH4vxnyMASEZXmcURGTanI8xeTKaX38OefXb4nDmtBEIQOI9/uhS7FjDil3GoHu0/Zz4x3JliiFIqszPSyTa781Uq2HGkALEEgyytv286iRwSoWHa/xpryw7y8az3r8qYSKLIm9R4V5vNTpnHL6OTtyLuSUVkZfDWrki37N/HSoLPw6R5qQwajs3pkOEI/xjTD+Hz7MVWIzZs/T1PLYXQCcdu0hDL5oHIW22onsrN2Al+5aA6fWDKC7wwtIMs78K7Kx35cDbBMaCENtASiwNvjnuIjB06BcGZCc90Jle85G0b+FlVbUSqxUyqyLsYppSmNGn8NX337q0wumsz1069Pfcw+jqlM/rPneWA2TcFGrFmJ1VZvROEGZ7sWIxN3RqEj+CgVCTqPjR7o6c6hUr4nCIJw3Mi3e6FLMUPWSVrTVjO08gpc5hbARDMVM4eelNY+tpdb7czdnhZUxj6GFy3squEKdGP3vboD8OcruGX+3zky6jpn8f1Nr3PrnNNhZM8IUjafz6qBrd9m7hn/4rBeKEVCQqdhmgHq6tbQ6POxZ9fdmEaDsy72a9Uft3yccUNnYbincNnCkXxtVBGa1r/CvjvKAH7oQprE/X1o0UwpZSsYKbrvJVqnt1e+5xyrrVMqNjeqzeZ6VGBxnFJKxxf28dxuK+B+yeglDMsdlvq4fRh/2E9zyMrGy3B5gRCgo8WEvf+OqwnVatzg8rKhdhF7aqfQ1FjK6Z5B1BgvRrbqBU4pKd8TBEE4bkSUEroUFVYc1Ksp9w9nTN1C/GoLAB7DjzejfduJaSrCEc/8xJl/55BvG17XOV065oGEE8/QnQfd/A/2bn+Tz+YsoXbe4xzJHALAzZl1FJRN4ZqRn++yrnodQ779Cp1LTc1K9h95kWOVT6C1+qsLmS584SxWHTmV9ysXc+vZJ3PPlcOYPkzy89oif5tCcmLFicaaGvLdkBXQMSN/cwm1Jce1lEiUaqf7nrNhZEpthmN2m8IpFduwI7LejYe75t7Frzb8Cl/Yhy/sa+eg/YDIU7Nw+Jmw6zVQGjpRYa+cweSpBjBN3q26hLDyQgiGMYiwaw1QD1qr57MncJxS8vkkCILQUUSUEroUM2ywX6/GpTIBUJhowPjd/wb3je3eP2hEZ4F2RxaP3sNtfwcInV7SF/JRU1/Jxjd+x3NFp7G+OBpaPjM3i++cOqdzj9dJOB0KxSslHAd+/1G2bL2Po7UVZLEDiL6n/GEv5c2lfFg7k10tH+P7H5nJtDk6DwzJdXJshHjadgeVv0shHk3TKRkximOHDmBGRKZBDV6c90rC8r3kmVK2KFXnC+ILGslLZh23VZpB57EiihYd2w0zbuAPW/6AL+zr9/lS1uNr/TetoWvR59BEBw3CYdMSpIACTzn1oTJ0pTv36XGnlJTvCYIgHDciSgldihk2MTQD3XBZFvXI8hxfFZqn/fa9saKUYVo5KyJKdT6J9KdOFWGaj8HPT+byGQ+xY9p3ncU3eir5yITpTB3Us6V6gtDZbN9xP4ePPIcy6wCI9YU+v2cJ3ozRVBpL+NYlM7ippPtC/AWhv6NpGtc98BB1FUdx/fYMwI+mwEynfC9hppT185rfvIfXpfP7G07ljAmDEhzYLt+L7iNV0LkeI0ppMeFIylTokeykfi9KERWlYp6NOKeUiYbSNMIxAfV5nqp4UUqpni9rNiXoXBAE4XgRUUroEo4dbuLdf+0heKCBoDuM2dSMyS5nvXfYMPSszHb3EwxHJ2R+sxkQUaqr6dSJXd1B9u7fwN+P+QgM+zg7csYCMN2soah4FLdNncbwzPbFyR5Bi3qkBCEVgUAljY1bqG9Yz/79v0GpQJttXj94Ogdb5jB11DwuP2sKZ00a3AMj7R+oOGeF/H0KbXF7vQwaOZomu1sb6YlSicr3zptWyh9X7QesC2UfHKhNLEolCDq3hae6ujqam5vJyclx1sU6pWKdVKZS6BGJxlAJOgX2I5RSoFqLODpajCil0FGaRshvRNaGcGvWZ6ymoq9vjxEOwo4XoCLSLVUypQRBEDqMiFJCl7DlrSPs21hNsUsjkFVLTfPquPXjn3oKzdX+ifvNAysjv4VpDFlhwB6XiFKdRTRTKjohdjryneiXPaVQv1vGN0d+jpcHnQEjJwIwLMPDitP7Ti6YM9mV775CK6qqXqG6bjdHDv4o4fqKlkE88sHN/M+Z0znr1HGcM2WIlOWdID1thhD6FkrTQIFLxZzTEpXv6cnL9+6/bAbfvGQ6X312M399/wBGMvNSgkwpW5R6/vnneeGFF7j11lspLS21jhnzZo7NmFOmigak93OnlFLKEZmjz0G0fM9UmrXeLGXP9siFSc2PC+s51tsIWj3ApqfgX5+L3nZn9NxYBEEQ+igiSgldgm2zHjm5kOrdVvc8tAzcRpiJly3FW1iY1n521u4BykA3KMooYmrJVEbkjmj3fkIPEg7Cc7dzo+dM/nvS487ijzZvYNDwGSwbO6EHB9cR5Nuv0Jb6+nVU16yhquYDmutfjlt3oGE4ASODv++4jI/OO5l5Mybzj4U5lBW07woV0kf0YSF9op/jphYReBIGnScv3wPQdQ13RLgykuUtJui+N3v2bOrq6mhpacE0Taqrq6OiVKyjJqZ8zzQUrsi++rsoZcZ02Yu+Ujp6ZLmJi0xfKe7wZN5/ox6ADL0ZPSJKaaonurW0oqnc+pk/AobOgllX9+BgBEEQ+iYiSgmdTvneenatO0DY5WfdjgbCvnwAdPdoCkKHmHnZJWnvyx+2JncZLhdvfvzNLhnvQMZxRam2yzo8yVMKGg5Tteddmna8zX/nR68cjsz08qOzPkm2qxdc1ewg9tVb+SI8cGlq2s7W7d+itrEKl7m3zfp3j85ld8N8Zk+8lGUzyrh8iUeEqC6irVQsf5lC++jEOqVSlO+laPBhuxyNZG34EgSdn3rqqZx66qn8/ve/Z//+/XH7T+qUUtHzcL8XpWKCzsNBA8sHr6PZTilc6KblPMrO1SlhB1Nc/+KAMdfa0inf68HPAfv9MOEcuPTnPTcOQRCEPoyIUkKns+b5LYT8HlxKYYaPogUbUICmZYBRk1YmlC9o8NyGw2zYbQUAu1zyxaPX89JXuL/S5FcjPwHznwCgUDN5Z85wCvKHOFeZBaGvcOjwE2ze/is8HAEgtuB41ZFTUGTwTvlS7lh6Dl+dObRnBikIQgoipWEqxpWTaDphn58SZErZREWpZIdqG3TurNLsC0DR/ccGndOqfM8VcVH190wpACJup4NbjjIpD5TZggrVAWAq3cmcGjM+k8X8CSo2cahpFpCoG2cPYL9GunylEgRBOF7kE1ToVBo3VHBsbw2QTcD3DASOOuvKKjfgzziCO40T99NrD/L1f20BigDI8PTvq4U9hZbAFOVMntO58qgUVO9kRW0j7zTk8VTpaQC4lIGu6XxsRCklhaWdPOpuQot+mQHxYwwUautW8+HWr3KssZ4cdzWxEvpzu5dR5Z/AoOKTueikySydLl0jewQV/SKaytkiCEQypfR2uu9FHcLJ5xq2KGUme88lyJSKDqOtKBUXdB5Txjaguu/FOKVU+KC1LHwQ07clsj7syE6b9+1lTlE9RYBLi8+U6lFpyum6JwHngiAIx4uIUkKn8uGLa6g2msgkGxWuQwPyPMVkBQ8zrqKaTWPBrbX/tqtuCgJQkOun2bWFc2YP6+KRD2yO+3vdB38h8O87uemM5/EPvhCwJofrzphFaYYE0gt9A6UU27Z9hf3l7+JRBwDIifmY+tHqz3PjogVcdPpozptW2vOtxwcw8tQLHcEO0bZEqVROKbv7XnIRSNdsp1QyUapt9z2bRKKUtVxHKZNNr76EGQ6iu0dimtHuewNJlLJ/uA2DQZHcUaU0xynlDwfx+f2WKEXI2lj1gg8ExyklopQgCMLxIqKU0Kn4gwEcu7xpTRrOnXUmGe98l0Z/DoauObb0VIQi/vgRQ+o5kPEUE4ff1mVjHsgk+oKXVve9vW+x78AGvl+fQ83MH+J3ZZBlBvgf/2bmnPKRfiVISaZU/8Q0g+zZ8yCHDj+BYTQBxLmi/rjl45QUzeCSuafy9y+MpiCr/7yn+zrytyikj+b8r1LZXm3XUsryPetnUlEqQdB5dPeJM6vcGRmE/D5W/v1xQCOj4DNx3ff6e/me9XzEu5KH1jZx9vlnwO4VmAoym0tAs+YrITTuHDIIVa0xsRH03iBKiVNKEAThhBFRSuhUDNPAG6rDCDaCsuzV/y/3IU4rzeGy7WDopFW+FwxHrg5Gwi7TyaESOk40j6EDX/OCLfD4R/n9qBt5buTHnMWzior55sk3de4ABaGTUEpRW7uSyroKKo/+glBgX5ttDjUO5fFtV/HtKxbxtenjmTgkV1xRvYy2r4dIVEIKIu8XHTCc90qC8j2nlj1V+V5EKOpEp9R5N9/G7rXvs/O9dzANA6UC/ON/13GK+VGOjnu035enKlTU7RRRpXRlgqMRamjK5YhSu706r+RkMLvOZCKQFcqzCh978nlynFJ9r5GLIAhCb0FEKaFTCYeDBI+94AhSCsWeLBezMAGTDG8WGa6MdvdjO6VUJDdARKnup81kuKkS8/3HuMaYw1unP48RKcO8Rh3gtMmnsXBQYfcPshtwnFL9/MtBf6WpaQdNzXsor3yFY1X/bLO+2lfMT9bcxoLxQ7hg9hx+e2Yho0qye2CkgiB0FVqa5XupxA2XXb6XNFMquVMqmSg19cyzmXrm2Txyw8cItDQDisYaPwWUMbJuSr93SpnKxGV6CAPKm4GGn7LMKtzN2631sWlRuiIceR5DmQfj1maGGrp13HHYJZ/ilBIEQThuRJQSOpVgyOcIUo05bo7l1zG3roDzh88BVnDehAudAM+U+zHsiVtElHKJKNUVOBeHE8yxW5fvbV35R7btXMfr0y52lmXpOredej7jszO7cpg9gzhk+izhcBPHat7icPUeast/2mb91pqJHGwaz37/5dx/+Xz+cbqbEUUiRPUVVFyssYjFQgq0aBC2Eyae6ISXRqaUXb5ntle+V7MXln8TRp8Ok5ZaqyLnEzPJ/u3Q8/NumMLWVQGO7KxDV65+nymllKIwWEgFoLyZnMw7nDfiXTjyLgCG0rH/xjUUtkTXlL+NG4fcwAuHz2JvEMqq1vbI+AHJlBIEQegERJQSOg2lFKbTdcbD+ul5XP26YmF4JBkTJnCMFXg86YkX/pCVRxUwm4H0Sv6EzqFNecxrD7C+fB/Lyj4L084DYJxq4p8TC8gbNp1sV/+2rIs01Xc4duxNdh/9kPrKn6ETiFu3s3YcvnAmrxy+hj/d8hFKctt3bAq9D/l7FDpCoqBzj9/g8DfeQc/1MvjGGbgHZUXPeykzpaxzXTjZNpn51s/GI/DOQ/Dur+C+g+DOSOqUstFdlqBRMiKHrLyICKO0fi1KKaWo3LEDt2E9dlfAR1moBbLA9BRS0QgfHCuN/tFrCiPyu44iS2/AE4l46NFrSJIpJQiCcMLIN32h8wirqNVc0zE1A29Yge5CBaxuepo7vbfc6wffAiZwqHkf3gwp3+sqUiVKKRRvH97Pk+U6e7PPAqAoVM/I3HxuHTeN0rLibhtnzxA/yxU/Ru+kvn4923c/RlXdDjLZCzhxJLSEsthVN5ZNdRdywdyLuWzOcO7QNXRdpI0+jfwxCh1EU1Cr+wgphUfTUEETo8ZPYG897kFZMeV7J+CUGn0mLP0+1B2E934FRgDCgbREKS3GqWUPRUPv16JU5d7dvP6/D+IaexUAQ8N5TM4ZDkCzbxHvN4xlV8NaMgqs7TUtWrCnK7sBSTTIvscQp5QgCMIJI6KU0GmYYQPDmUC5MDWDYVWVNO3d6Wyjedp/yymlaAy0AJDjyWRC8VROG3paVwxZSIATfn7gPb4a3MT2sqXOupuHZHPXnJN6aGSCEOXw4b/y4d5/owffAyDWg/ne0ZMpyp9AtXYdn79kIoXZ3p4ZpND5iJ4odAQtKlr49BAv1Yc56axhjPOFCOysQ9kCUxrle3p7mVIuNyy4DYyQJUqBI1ikK0qZhoGm293otH6dKdV4rBqICks5nkFoROeQJd5h7GJtvFMqcqNXyT/ilBIEQThhRJQSThijKUjtMzs5tuMAyplAWU6pPF+zs53m8ZA1d267+wubYZSy3pqfn/s5blgwqSuGLRCbKWW3ylYYvnqa8y9ho5nLoYwhANzZ8h7DTrqSjwwp6qGR9hxO0HkPj0OAhoZN7Dv4BLsqKijgDWILR5/fswRv5hgycs/i7LkTWTxlSI+NUxCE3kK0+16YMAbgcyl0r90pT8Vu1k75nrVR0vI955Ax4oSZniilR1w2yjRjRKn+7ZSyBUD7GXHhASc1SsMVaaaCwum+Z0aeR1evdEr17ygDQRCErkREKeGE8e+oxb+1hoZQNg3+LAA0zUV+UwCXYWVMjf3Xs3jHjEHPSJ3j8v3/buWlLUcxmicAkJlmuZ/QSTzzaTbUNdAy/qvsiSzK0hR3Lrkeb0ZWjw6t25Gg816BYbSwafPtlNfsxaMOAFAQs/7/Nl/L9JEzmTppLp9eOLZtJprQ74gNOpeumEJqoplSDZEObX/f/ndGj7wAD2AbczSt/fI9t26HlbfzntN17Gh1W5TSbSdWUlEq4pSKFaX6efme6YhSEaFJizxngELnWLgQT+4VoEXiG7Ro0LnuSFlaq589gHTfEwRBOGHkG79w4oQVQVPxfnMYM2QLFzp3PtvsTBO8I0a0K0gppXjsTVsKscptJgzO75IhCzb21VuTN/ZsYVNzHqtK5gFQENjPDWNnsmDw4IEnSMWQKndL6DqOHHmK3Xt/QTBwEIDYVLmX9p2Dy13EsNLF/PC6RYwsls55AwVN6veEjhARqXM9Oc51BtM0aQg1UEJGm/K9hJ35sDeJlO+1J0qBlS9khjtcvqcMAy0ibuj9Peg8IthFnVLElO/pHAgV4vLEuLPdoWj5nm3uttf15MeCZEoJgiCcMCJKCSeMMk1CCkDD0Kyued5gExm+gyggY/x49JycdvcTa4nPGvk7XN4aThn9atcMWohD+eq5Zt8gjFH/4ywrc1dy7+RxPTeoHke+/HY3hhHgw+33s2HfdoZmro9bt6V6Mv/Zu5Rbz1nI+acN55wpQySwfMAir7uQJhEx6MxhZzC77GbWHNqHpjQr+RyiIlTks0SlKt+L7MtMx52nuYBw+uV7ke57llPKmpprSu/XmVJOfpemgQI3GrZ1TSndcVCZRh2ztj7NB2NmYzrd9+yd2K6ynnRKSaaUIAjCiSKilHDiGApdqwYKMTSry15GsImDk8NM+NBNwSWXpLebmMmgK3sfGW6kFKcrCQepKd8BQIsrE0Nzkx9uZnp4F+tDFYzOPNzDA+wdaHZ2hViluoxDh/7C7r2/IRw6BMDQmNTyB9d9hollY5gx+mR+eXYpE4bk9tAohd5A21OC/GEKqbBb5hnOfEJDx7TfN63L91IEnduZUnuqmvnl67tYMK6Ek0YlyVnUXVY8UkedUqbpBKpr6P26PLV1+Z4eI0qZKkbgUS3kNB9G0+cQRgdMXE6ZX+QDQZxSgiAIfZouT+X7wQ9+gKZpfPGLX2yzTinFBRdcgKZpPPvss3HrDhw4wEUXXUR2djZDhgzh7rvvJhwOx23z+uuvc/LJJ5ORkcGECRP4wx/+0OYYv/jFLxgzZgyZmZnMnz+f999/vxMfnQAQ8hu4NavDnsJySmlKcZJnNEXXf5LCKz+S1n7iw0NNPC5P0m2FTuDxj/J/a14BIBjJbJg7pIwbJxWTW/tnMvH15OiEfk443MSmTbfz39cvY/uObzqCFMC+hhG8fPhmtMF/4Psfv5kHr7uKmxaOF0FKEISOESMG2YKmpjSUrpzlQEz5XnJRKifDuo67p7qZH724nRv+sDrFcSMCRSunlJlE9HK675nx3fee3/M8j254lJZQS4oH2Tdp3ekw4hWz1sX018vR3bw3/5s0NcFebXhkvZuG0DAMZYmCPXr50nFKSdC5IAjC8dKlTqnVq1fz61//mlmzZiVc/9BDDyV0whiGwUUXXURZWRkrV67k6NGjXH/99Xg8Hr7//e8DsHfvXi666CI+85nP8Pjjj7NixQo+/elPM3ToUJYutVrY/+1vf+Ouu+7i0UcfZf78+Tz00EMsXbqU7du3M2SIdGbqLPZvqqLKdQRlNqHMJjRAV4qcj9xK0ceuTns/hhEjSmkmHl1EqS7BV8czlfU8nXsJH7jGAz7cyuD6Irhm/DB2V24FQA10B4Lz2WRfkR3gz0cncejQX9ix9w+o0F4AYpPmfrT68yyYOI4zJs/j2kmDyfTIlWehLSrFLUFIhFLRAPEJx+biC3gtJaNVplRroSSWxZOH8Lmzx3Oo1sdzG45Q1xKKiF0JJBE9sSiVXvc9a5mmdN4rf4/3yt+jLKeMyydc3oFH3PtJFHSuxQSd28zJLWFVi/VUHmQocJA6fRhray9BYTu6e1CWsoVMcUoJgiAcN10mSjU1NXHttdfym9/8hu9+97tt1q9fv56f/OQnrFmzhqFDh8ate/nll/nwww955ZVXKC0tZc6cOXznO9/hnnvu4Vvf+hZer5dHH32UsWPH8pOf/ASAqVOn8vbbb/Pggw86otRPf/pTbr75Zm644QYAHn30UZ5//nl+97vfce+993bVQx8QKKV47c/bqDrYSG5tDVW+KgL1jznTCF2B5vV2aJ+huMmgiFJdwqpfwkv38c0F/6S6+FS05jAZ+Mh0e/nOnDkA7K7s2SEK/Q+lFJu3foMdB1dR6Nkbt25rzURWHDiLK+ct4osXjmPZjDIp2xWSIu8MoUNEFB5NmRQOsRoieI1MVFCDDAg0R9zdEcGq4YUXMGrrKL7u2jZZmFleF19eNoX6lhDPbTgCWA5vjyuFKJVm+V6i7nsnD5lLdcGH7KnfQ3Oo+bgefm9GtRKl3GigWcs844uhxtquQPnRDTegOReHrFI/rWcvFvkbYM/rUB9x+UqmlCAIwnHTZV7T2267jYsuuoglS5a0WdfS0sI111zDL37xC8rKytqsX7VqFTNnzqS0tNRZtnTpUhoaGtiyZYuzTet9L126lFWrVgEQDAZZu3Zt3Da6rrNkyRJnG+H4aaj2sXXlUaoPNmEYJsGANbFT6LiUoqy+Cc3bMVHpQOTErmmWzV5EqU7ENNhac4y7qr3cPuWrVHuLAbi3+R3AyXgFooGh4gzSYv4XP8bxUFO7ilfeXMorr06msvyJOEHqx2tuY4fxc7yDf86D19/BdWeewQUzh4ogJbSLUvIeEdIl2mF2wtwhHLroDf4540GUEzUVETly8wBoWfUuVQ8+SMOLLyXdoztGhAobSc4MScr3kmZKRYLOlWE4mVKzB81mcvHklPfryyjTxKtnQqwoFSnfyxhf4mynaTqaMtEAFQmo15QWF27eI+eNF+6Bv38Sjq63brtTd5gWBEEQktMlTqknn3ySdevWsXp14nr7O++8k9NPP53LLrss4fry8vI4QQpwbpeXl6fcpqGhAZ/PR21tLYZhJNxm27ZtCY8bCAQIBALO7YaGhhSPcmBjhK2JgSfTxeiZRZS/Y9028k7inOr3yDrWgObpmKj0iw9+BSxGYWWH5XolP6ZTCDTBrxbw06E38u8hiyHytJZ63Vx27qd58IPXEysu/W8OLHQDoVA923fcz7YjBylyrbOuZ0e+L9T4C3jt6E1ccNKZPHLDeMYPlr9xoWNI0LnQISJvmCFNG+DtB8nMrKEib1/0XRMRewbddhueoUNpeOklgrt3YzY1Jt2lK+YqTtg0gQQOmVZOKdsJ1RGnFCboEadXf+zCZ5omE/JPdpxSWmz3Pezny2Rj/Ur8vjq8R5oY7PPBYNspZW3ZYzRESgcHT4HS6TDx/J4biyAIQh+n00WpgwcPcscdd7B8+XIyMzPbrH/uued49dVX+eCDDzr70CfMAw88wP3339/Tw+gT2G2T3V4XWQUepzOZqYEejlwZ7GD5Xo2/HrAmfJ+Y8gkuGHtB5w14oNJSw3+2ruH5sk/xTuFJAFx37DXGn3wlCwcPgkDbCV2PtlYW+iyVlS+yadc/wL8CgKKY72mPb72SJbPOIrtwOj89b5RkRQmC0C0YuuVeGeLbDK9s5pyhM3k6M+q4sTOlvCOGM/gLnyd0+BDB3btR4eQikDtGlDLMJKKIHplem9ZFtvS77xlOppSpFDqpxay+zP5Gk80ZpfiU9VwdC5kECl3k+K0gcwBlVLC7aQMArhYobYGsyS78DfVoaNGuuD3hlLIDzhd9GWZc2f3HFwRB6Ed0uii1du1aKisrOfnkk51lhmHw5ptv8sgjj/DZz36W3bt3U1hYGHe/K6+8koULF/L6669TVlbWpkteRUUFgFPuV1ZW5iyL3SY/P5+srCxcLhculyvhNolKBgHuu+8+7rrrLud2Q0MDI0eO7NgTMECwLe+aZrJ77WrnamNGCNzHLHFJ76AoFTCsEsBMt4evzP9KJ452gLLnDfjzFdy94J/UlkbLWD9/wWcYnZMFwP6glVMRO911Js8D3YHgtOUe4M9DCpQy2LDpy+wrX0+ee1/cun31I1ldtYTL5s7l/k8sYmRxds8MUujX9Mcv60LncWjYlex7t4ayrEaGZTWSv78GJrucT/U2zfacwPHkolSsUyqUtHzPVpasA7SbKRUp36uvrMDfkoFSCmWqfuuUChkmX93goiU7Oh8vD4LKdIEfVKT8USlb1MvGxI+mTNyGZomJmoY9e8maNq3bH4PtgpMsKUEQhBOn00Wpc889l02bNsUtu+GGG5gyZQr33HMPgwYN4tZbb41bP3PmTB588EEuueQSABYsWMD3vvc9KisrnS55y5cvJz8/n2mRE8+CBQv473//G7ef5cuXs2DBAgC8Xi9z585lxYoVXH755YBlFV6xYgW33357wrFnZGSQkSE14elgi1LKqMfva3KW5wTAVWvZ3vW8vA7tMxC2Jh+xEz7h+Gj2N/Pmnm20DF5MracAgG9mlTNl4umOICUIx0tDw0bW7XiBypp1lLjXkBdzJnl865VcetIkTp1wGdcPL8HjkjbZQuchTk6hI4w69xpeP9yMqnuVYaxDD1nldo401MrppLkjAoORXATSNA23rhE2VQqn1PEFnb/95J8AcGeeiTKHO6JUf7tI5A8ZtBjWczJMrydXC3BWhkbBIC/URXPjFNbzV5tTT47fiycMuqkxSPfiDrgJK+tiZsGFPeCst4VL6bonCIJwwnS6KJWXl8eMGTPiluXk5FBSUuIsT+RUGjVqFGPHjgXg/PPPZ9q0aXzyk5/kRz/6EeXl5Xzta1/jtttuc0Sjz3zmMzzyyCN8+ctf5sYbb+TVV1/l73//O88//7yzz7vuuotPfepTnHLKKcybN4+HHnqI5uZmpxufcPyY9kRMC6KiF6vQFATPmMPw084hs9X7oD0CYWtyIaLUCfLktXzDnMrjQy+GqfMBKHC7+Oxpy9ps6oSax0yU7WXVvmpe3PciC4YuoCCjoBsG3tuId0oNdEOGYfj4cNfvefXDncwoeA6AksgZJGB4+Ofe21g880xuOH8ECycO7sGRCv0dJcKUkCaFpWVcfvfXafhXAD5Yh6bFf5C3EYn0aOB4KtwuS5QKGa2tVhE6GHQ+deFiqg8ewN/cRMjvwzSr45xSZhtLV9+muaXF+X2JZye6pjg5x4utCTpOKc16/kxNEdbDeHDhUjBhey7vNv4nZo898JkgTilBEIROo0uCzk8Ul8vFf/7zHz772c+yYMECcnJy+NSnPsW3v/1tZ5uxmBu0pAABAABJREFUY8fy/PPPc+edd/Lwww8zYsQIfvvb37J06VJnm4997GNUVVXxjW98g/LycubMmcOLL77YJvxc6Dh2K1+NIEqL1vVrKIKfuoJBZ13d4X0GI5NAt4hSx02dz0fz3vfZMP1yAKY176Fg0FiuHDUs7X24I1kYe+r3cPcbd3Pe6PP46dk/7Yrh9g0GuBjl9x/hgx1P01D9F9wcY0aMPvn24flMKhtMwHs5D//PQrK9vfKUIvQjJOhcOC4iYpOtSbXOlLKxu+ClckoBuHUdMNt3SqWZKTX1zLOZeubZrHvhOV77w2OgFKbqv0HnBw4cirmlyAoq8hfMhWMbATCxy/eiopShRzolmhqZTdZ6XXPh9eYyYlrHLoJ2Co5TSs57giAIJ0q3fJK+/vrrKdcnOkmPHj26TXlea84+++x2A9Nvv/32pOV6wvET8PmZntHCGH0o/ypdQ2OjQRbWhM/l7liWVNgMU9lSSTBSvufWpdynw2z7L6+teY5rh92CedpTzuKHzjyXWYXJXU72F7zYv8DThp7GpeMvZXvNdrbXbqeiuSLhfQcKvaDHT7ejlGLfwb+xbs9mCs2/AtGTRdDwsLNxMVPGXMhnTzmPIfltG1oIgiD0JrSIuOM4XyPL2xiQXLZTKrUzyXZ0h80k29lCRavyvXA4TDAYxJskc1PTomecWKdUf8tOM2KetysCp/LmkE0ULl0Kj/8WiHbfQ4t049PAjBGl9Eh53yUjP4t/bBklw3sg/9UWCmXOKgiCcMKIvC8cF2/+6X9ZmHEhQfUOdccmkh2oBSrRUJTkpl+6o5TiiqdvYWd5EDNolW+6XeKU6igNq37NK+5ZmJqOrgw8ymRaQQGT8zuW6wWQ683le2d+j7cPv81nX/ksITPUBSPuA2gDT47y+4+w49AaDpSvJiv4BIUx63bWjkXPmM0x7RPcfuFs8jI9PTVMYcATe44YOH+fwglgO6UcUcq2TCVzSoVT7s7jskWpdoLO1/4R9r6F1jIZgNWrV7N69WrmzZvHhRde2PZu9v1QHNhyjNx905mSfVq/K98L1ETL9waTT8hrvx4REcp2ShF93LZTyhOO/v27NHfPdN4DJ8ReyvcEQRBOHBGlhA5hNAU5+s8PGaxPpcLdSFVzEYMCkwiYa1CAN9jM0IIRae/PHw6wecNSlJHrLMvyyJfdtHnjf/nfKoOfjLnfWfStIj+3TJ0BmennQCW6COvRrddhwIpSEQaCNNXUUsPyzR+S3/QpAGKj8F89uIjhg2Yxe/Z1nDFhUM8MUBAiyCUL4bhwnFIWyYLOiTRmSNsplaz7nn3+/fBZAEYPXsYq90zCEUf47t27kwzTFqVMfI0hPI0FnOq5EFMdTDmevoQKm9S/cQjIdETCoCsyz4iUxEVFKet2fouHkMd6bkY1DAes51HX3D33maAk6FwQBKGzEFFK6BC+Lcd4ducKmsjG5W+iMGSF1rd46sgyYMSRt8H1/9LeX1Mw6AhS88cW4XW7uGbeqC4Ze78jHITXvsfykx91FhW7dRZNmguZHSupMpWiriWIpmnoGuiahjLdKNNN0BioolT//vprmiGO1hxkT/kOgpW3kR+zbk/9KLIzctnjv44vX/0RCrJEKBYEoe+Sbvme5rKmxaodp5QdM5DUKbXsAdj4N6g7AB/+iwns5957H+fAgQP86U9/SlqOp0XErrJx+Uw9awLvPL0Ll+nuV06p2oOHCYftXFLFruYD7MmJxAQoW5Syu++ZaEBmyIXXyAD8jK4dAhwBQEfvuVO1KUHngiAInYWIUkKHUAGDZtMkr8Gyogcjy4OuFrLQcRnhaEvlNGgOBJzf/3jjKWR6OpZHNSCpO0jj1hf4qG8SB09/llq3JSe8PDGHmcMnxGRStI+9aSBsMufbyxNs8V2Ccx/uhEH3XdqUe/RxTDNIVWMT2zZdQTh4KG5dUzCbg4ELmDz5/3HeNGkIIfRCWn2+9Y+/SqHLccr3LJSdp1jeTN3ze8g9bSjukizHKUU7Tik7ZuDzf13H4NwMHvjILCaXxZTLl820/u1fCR/+C8wQbrcbT8QJbibJorKdUpk5bsbMHMQ7T+9CQ8ekf4hS4VCIZ777dQpLLwQFmlKsb9hFcV6xtYGyz7dRxxhAtjsfQ2n48eMK+AHQNJc13+mp8j1xSgmCIHQaIkoJHUKFTJRpd0UJMinjbR4beZgp28KAF12paCZDGvjCtgvHIMMtboy0eP4u3jtWz4aZP4LIUzbY62bC0PEdEqQAyvIzmTm8gE2H65NuM9DL9/oLpqnYf+R5du/4f2hEXQAhw01YZfB21S3cfdnNlORm9OAoBUEQugA93ikVtEWe+gBNbx3G9IUp/uiktJ1So0ty2H+shYM1Pg7W+Hh+09F4Uco5bmSaHXEct9eFz3Z0KdN0XFO60pMHqvcxgr4WQj4/Zoyc7PJO41uN/4IfjIZAIxBfvqcBeZ4iTGXiN+rQAz4gJn9LnFKCIAh9HhGlhA6hwiZK2ZOqForVK7iadTKDVn6CBuBO/23VHIh4rTSjw4LKgKO5mo1V5TzhmcfOESUAnBE6zAOjchg+YSHZro53gHG7dJ67/QyUskr4zMhPpWBP3V4+9p+PE1YDtLta5P2o9XEvhj8UZP36T9LUsBZNU3Hz9zcOLaKw7B7uOn8yF/fYCAWh4yiloWkqcSCeILRC0+KDzg8Swt3iYeakAjjUhApGuuSl6ZT69XVz2XCojj+u3McLm8sJJ9veFqUiAoaup+6mFytaOZqL6j9OKWWaaJqOEXkdXNn7eGPwWg41riQzV+d/gi5yAznUBjNRZjMq0n0vZIbw6tZcxOWIUpHXtKemjnZJpXTfEwRBOGFElBI6RO3BRpSyg0AbeKOyhHmVMZ1QTLNjTqlQ5OqhbnTuQPsbx3bDL+bxzZk/ZtXg85zFM8bOYdLE4Se0a03T0DTQW11uzM/MQHMFCBlyFRD63ndfv/8I766+CiNUDkQn7mHTxSMb7+WR6y/j3HNKenCEgtBx5NKFcFzo8UHnhgZ7giazRuWjDjWBHVjuOKVSz0myvC5OG1fCiq1WFpKRLFvKEaXinVLJyvds0co0Ted3DT2piNXXMA0DHR372fUMeZnt2fvZTg4oUOsmUdDsgd0PAxpkTQGgJVzPrMFnETBbqDZrML0Z5GeOtnbSY933xCklCILQWYgoJXSIoztr0YKNBJv+gzJrAQ2/x6C8xMeS9UHyfUG0Djil7PI9TUttlR/QhPzs3rOa5uyx7M0aCcD1vvWMmX4BVw/tOlHB4xro3ffs0JGeHUVH2bvvV6zd9TZF+rtxyz+onInK/zJfWDKb887JRtfl673Ql9Hoc3+cQo+h6fFOKbRWgef2Yscpld6FMld7geeR82i65XuO60aZjlNKVxqG6h8X7iynlCtavqdbuaLzfX5WZ2RaghRW5pemFFr4GACmMhmSNYoF7kt51XyXygIPgWAO27Uj5IR7yKkkmVKCIAidhohSQloEjzbj317DTu8Owsd2Y4aqnHWHB/tYO7Waz70UOUF3QJRqCYpTKiVb/8MTbz7JXZO+BHN/6yz+wjnXMCKza0PhPXpUlDrpTyfFrZtWMo3HL3q8S4/fW2jTQrwXEgo1cKT8v7z54WqGeZ6lKGaOvuLAQsaO+RxfvOoU3MdR4ikIvYm2poje/Jcp9BqSdN9zPuBtUSni9G7PKWUTrfZLJjJFRKlW5XtJg85t0cpUzoUDDT3p9n0NyymlEXZeAetx3VxXz0OhZn6N5X5qKHRTUBsGZc0RVWS7XE8hY13TqGQn1d5m3mIrpwSzuv1xWEMXp5QgCEJnIaKUkBY1f/mQ1UeP0dgyjlz/Jkyq8OUOY+24jRwc4iPP9AB2JkP7J2h/yODrz27mg0OVAOgiSiVm13LW5ln29bxwM7neDOYPGsTwjK4PhS/IKGBswVj21u8lrOKdbP3lqm1fJxCsZsPeLRw9+ANy9R0Mi3lb/HHLx/jE/Mksmb+YMyeOEEFKEIQBi9aq+57jlNI0y3MXEZXs7VTAj1Ffj56fnzLv0nZKJRelIvMhMz2nVKxopcW4WVX/0KQwTQNdczmZUlokM8qtIEOPXmjTjSyg0RGlgqafXc1byda8jM4spUYvo8UMoOsusl3Z3f44AHFKCYIgdCIiSglpYTSHqIsEeZpYk4Rjec1kF9YyM6BYWnI+sMLaOI3Qx5W7q3lqbbQdvdfb1Olj7tOs/SN/PFrHLz0XUjnECpG/f9okrhk+uNuG4NbdPHPpM9T6a9uscw2EK4Otgs57kx/DNBWvb9+DefQKNJrJjfzJBQwvW47NomzoNXz/uvMYUdRDk3VB6GIUtsDQm/4yhV5L6/K91u8bWyRyW9s1Ln+FxuWvkHvOOYz85S+S7tYdEY7SLd9rP+g8uj62xNow+8eFINMw0IgGnaNZj8uFwnRHHU8FvmGYbEdT0fiA/a61VB89zNLhN7BIn45hGrh0F43Zxd36GBxs99pAmA8JgiB0MSJKCelhKmcK15hRQV4Ihh+t5ysHm6j+MA9URJByu9PqolfZYOUIjBykqPL+lVFlQeBzXTP2voavDv59B7895Q/szygFrIn0SQW53T4Uj+5hSPaQbj+ukBilFLsOPMfePd/Hpaqdq/4VLYNwe4Zz1PUtbrl0KgXZXe+kE4SeQJOoc+E4sMUeG+U4pSLiZkRUyj75ZPSCAsz6egBa3nsv5X5duh1c3l75XjgyjtRB55ojWvVTp5RhoGk6pmaLUtYD8yhQrqhTKuwCPQQmAWzJx37OAobVfc9lO5R6rPue7ZQSF7IgCMKJIqKUkBbKVJiRK3taZPLl0nVaqr3WrC5C3uKzU+7n+Y1H+cPKveyurgE0jobWkjV4I5kZE7po5H0IpQg3HOVXew9QMf52DmYNBeD/8o4yZ/o5DM/K6OEBDjTi06R60o9hmiE2b7mD3Uc2ku85Sux12S31F1BQ+iWuOX1MTw1PEHoAEaeEDtDGKWWhYjKcADKnTGHSqpWEDhxg97ILUO1kObnac0rZ3fdQYBrtlu/ZQpQyo0HnsePr6yjTRNd0TEDDxKMFCRNxSsWU79Vl11DsB1fM02+LUoeadzI4cxS6puE3FeHCbp4bHd0AtfvACFq3xSklCIJwwogoJaSHqVBaM5CFO3J16IzgHoKN1lto2NdvJ/+qm9G8qcO3f/3mbjYeqsf+QuHNPEZhRiGXjr+0K0ffN/jXbbx6YA/fm/kDGPFRALyaxtknnU9OGjldQv+jtvZ9Nu94mOaGtXhcIfJjDFC/3nQbX7rwHD6/eHZa7kRB6A+0fqsrKd8T0iCu+56KOqWcsj0zdlsdzWM7nFKLUnb5npFsO1fMNNsIpV++Z6o4p1RSJ1YfY8/+A9QU5VGjNXCdaw1vaE3U4sKtQLkzne0KsouhpiruvmYkfH5X43p8xljcdRVUlJ7KmXndKEod2w2/Pit+mVsuGAqCIJwoIkoJ7aKUolLVE6IOGOQ4pUL7PIRbrElCxuRZ7QpSAIGQNXE7dWoFm5uf49PzFnPXKT/rqqH3GXyGyabyw7xTdDIAk5v3sSxXMW/muSJI9TCOXypZC+8u4MChv/Li+vcZn/0cAJ7IW+BIUymra2/hRx87n3PPGdZt4xEEQejT2N33Ih/oITOIBzBRlvO09ee7LR6l6ZQykp0e9JgrCS98Ga10PpBe+Z6uxZbv9X1RKhgMsvyttzELs6kxmznZLGdF5AzrLpmAmv4peOdZQGPujMs46v0HgZZmzLBBQ3UlppOrpaEi/yI3u4+Gw9ZPdxYMOwlGzIW8sm4cgCAIQv9ERCmhXZpr/FTq9QRbDhAOHMAdsiZHuqlwZRjoeYVkzD0zrX2FIhOx0pIGtrEbr2tJl427T6AU/PMz3OxawCuT73cWnzX5FO6bOKIHByZELRnd82UgGKxhy94X2LJvJUM9LzI+JqP8ud3LmD9pPovPvJBrC0viAnAFYWAS+RvoRrFY6MO4ot33NAWNoUayKWF1xRpOZ1hb0cfpmpemKJXUKeUFTw6EmmHdH9F5Brg5hVMqtnxPw470T7r/PkSg0eeIceOMMjxamHDkz9h17VOoYBbwLKCTO2gE193wEAA731/Jcz/5foyQp2HiijYj6U6nsC2MlYyHG1/ovuMKgiD0c0SUEtplx3vl+EONBBrWAzh5Nl7DYPA3vk/uwoVpTwrC9uVEu+PKQG+lW38QNj7J+gUfA2BkoIqiklFcVdZD3WSENnT1dDccbmbNnj1UHryHHG07Q2MurL9+6DwWz5jP9edfzsmjCqVMTxjwyF+AcDxoWrR8b17pPNxbrelvQ6gBGOYEnTvbuyKBTkbqrndOplQyq5TLDdc8CfvegTd+gEbYWWWaplPOFx1nq/I+HTChKdjMnro9DMkeQq63+5uedAb+PXUAaEpjmjGSOneYcOSc5tE9ca602AsvdumlXb6HpmOiY38adOtp0RalBvrcVRAEoZMRUUpIyptP7mD7e+WYvkpKciOBjnhoLtI5Y/0BsoNhCi+9NK2yPZuwYU06FNaJ3a0N0LegEcKs+JD/2dPImgX/osZbCMCLZ8ylJE8Eqd6B7cSI+9FpBMMmGw/spH7/R0G1kBM5XH0gj0ZzBqGsa/ncZWcztCAr9Y4EQRCElDiZUho8uuRX/Hb1CowGnAYurUWp2I5qSqmkFwTsTCkzlWNv7FnWv7d+jB5znERuKa112WDksGuPruWyf11GrieXF698kYKMguTH66UYYWvepwFra95jSmnYkehcmiumPE+Py9NK1LFQoTsh9d0rSkVGLOHmgiAIncoAVQSEdNi66ijhgIFqXoOZU2ot1DM5d4Of4romtIyMDglSAKHIhMwkBIBbH6BvwSev4cDBzbw8/68QeQonZmdQnFvUs+MSuoWDB//A5u0P4tWbnGX+sBc/4wkWP8yn5o/vwdEJQu+l7RdQKd8T0sARmRRKmY7QYdjdVVtVx2mxDibDAHfiuYqd+5S0+17cTl1x3f8Si1LR8j0Al0vHMBQFnkKaqaMp1MThpsN9UpQyIxclNaAmVIOLsCMsuXU3yrQvfmpxTinbTWYaYWe9GduasDtVKWU7pQbo3FUQBKGLkE9VISlmJJR88HCP87uGjlIGenY2+Zd1vGOeYbYq3xuAV5sO+oO8GShg39CLABgerOaJ4hpGn/xRKc/qTTgZqp3zpdc0w3y4/Ye8uW0zkwvexxszp15+6GrGjfk0t5wlYpQgCEJnE+2+FxGDIp/vpq1GJQk6tzZKnufkdtmZUmmcJ3Q3mhF0biYKO3cypSLjcek6BgZPXvgkV711GeXN5dEx9yEaa6p5759/hzzrsR0YdoAVJXXOepfucjJH0TR0VwKnlBENOve78wnlj7U37z5sp5SU7wmCIHQqIkoJCVGmimlBHMYgaqs+NCaDM59ce1z7DTnle9aJfUBlSh3bDe89yqe957Nh7O3O4lFDRjP5pAEe+N6P8fkO8uGef7Nt3/OUZW1jcswF7l9svIf/u+kizj1neM8NUBD6IErSpYQOoEWcLZqmUKZyhAy77C5p0DmR0PEk+3VFxKuKBj//3nCE4UVZnDwqieNZd6ETU4KW0Cnlco5p3baO/PQP17DUuJ23Rz3TJ0WpI9u34mtqgjwv1VnVbBu2hW2RdR7NRaYrk6BZG1mix12ga5MphYahezEyLJt5Vl7HHPsnhClOKUEQhK5APlWFhBhGdNIzxNhGpbcWyAV00I/fOWKHgZoqUr43kDKl3v4pfPAXdp1xBQCL6j8gd/zZ3DRicA8PTEiF7ZTq6Lu+uXk3b334Dp5Gq6tiWUw01Pr6G1k6ZyF/PuN0cjIG0N+AIJwg4iYVjouIeKQREZmc8r3IXKd10Hlsh9MUTqkMt7XfHRVNfP6vHwDw4hcXMqUsP8EY4sv3UjulrHWDRuRyeEcdgZYwWeQxofrkPilKmYbhWJpCmuUWKwhrXNJczymzb8Dr8sYEnbdySrXqNusJtTD18L8xm5oYfsetjJlZ0i2PAYiKUpqeejtBEAShQ8i3ISEhRsgk5HsHZdSwcspG3gwXc/6eXND0NhOEjhCOTDpMbQA5pcJBqhqP8UX3QqpPWkizOxuA/ztpOrmjx/bw4ITkHN/7vCXQxPYjVdTsvQhPJDsNYEfteDIzxzNu7K3cftZMMtwD4L0vCF2GiFNC+kTL96xMKad8z77oEDBo2VCJe3A23mG54Ip3SiXjjAmDuHzOMCoaAmw8VEdz0KCiIcCUskSDcKG3kyll5yfZ6y65Yw51FS3s+aCK9/+9Fw0dQ6XuCNgbiRWliAiBZUGde2rqoGQmEPt8aPFB5606FLrMMCOq3sWoq2PM+DvQXd0oEDnle/L1SRAEoTORT1UhIVUH9mH438OtZZKx/yssawxi8jygM9QOPe8gSilCEaeUUhFRqr9nSgWb4ZFTeSHnZFZM+pKzeGSml9zRc3puXELa2FPjVM2VAExT8eH2b1Nx9E9xy3fWTSYvfy45w27i2vmjnRbigiCcOIm+2AtCa1pnStlB2uFINIHZEqbmr9tBh6FfmY/uTc8plZvh5qGPnwTAJT9/m02H62OiD1qhu+OcUg8++CBer5dLL72UyZMnR8ZpCSwNVZU8/MkrGTxqDB+7/wfkFmVY65XWJ51SVglkRDzSrPFn2rEQLq+zTWSDuKDztu5IhbJL+br7fCpB54IgCF2CfKoKCQm2BBiUMYI5g6/m7WYwzF2YgKYUI7Ozj2ufsUGgpjYwuu+1lG/jQwpZnzcFgCUNG7h+3vnMKR7UwyMT2iXNMiGlFEfL/80vVqxm3qBnyY2Jt1hZvpQxY7/MtQvGdM0YBUEQhHZxRClNWeJH5OO92t1MzoKhhCtbCOxrAENhNoXQB2c693UEkHaw9REzmVCqu9CAoYMKOFpdTygUIhQKsW3bNkeUKigtIzM3D39TI+FggKO7tlN79Aiabp1YNNVHnVJm1Ck1S/+At4F8fNbKiChlxpTGxTqlPBmZsbvCZUZFqdYuqi5Hgs4FQRC6hP6tCAjHTTgUZlDmMBo1A3DR7KnFCxQ0HiBzypgO7cs0FS9tKedwnc9ZZjul+q0oZRrwj1v4eMb5vH/SL53FJ81ayvlDE/n6hd6KZgfhtkqVMgw/W/YuZ8/Bf5GnXuOcYdZyU2n8cffP+f0NiznXk9l6d4IgdCrilBLSQIvJlFLKcd8UHxzLh8WKGZdPIPTYRszGkBV6Hit2pOnGs909SRvxRYSMT196BvW5E1i7di3vvPNOXLZUZk4ut/zy97TU1/P4V+7E19gQl4GloyfMourtmIYJmsa28GCGEAR0lJHNK4FrKd0/Du3oITKyrTmi1ipTasiYccy/4mpqjxym8cUXGV7bBGFbHBJRShAEoT/QTxUB4URYu3YtL7z8X4yhJp7ANgqYTsjlwwvopkLPymp3H7G8v6+Gzz6+zrnt0jUMAtbv/bV8r/JD1Oan2XjmLQCMNJsoLhjMpUMKe3ZcwgmjlGLz4WMc3P9TMgJ/Iy9m3fb607jolIv58znLJJBZELoA+bMSjouIKJXv8dP88/nM9w/mNfV18qrKWP/KQYK+MFPsN5eKlIxpmiVIpe2UioSnJ1OlIvMdFybFxcVkR1znrUtQPRmZFAzJxOW2puimaUZztZXWJ51SKuKU2m4MYaFmADqhyivZXruQ7c8cBKC4rD6ydavyPV3nzI9fjzIMtj1mlccrt9vZtluxBcH+OncVBEHoIUSUEuKoOtDIK/9aiTK9ZLcMxR22Jk2GZolIGgrN1bGTcXWTdd+SHC+Dio9hZm1jZ/1WoB8GnZsmR498yNP79tE85ib8LisH4o2Fp5LtzejhwQkdQ4v8H+2+d7imgR0fXo0Z3Ensq3moZS57gzdwydzTGD0ySTtwQRA6DSVB50JHKBiBqcCtKwrMSgq8lTyV/2c8WcsorBxB0B8TxG2LRLoOhmE5p9JAd+6ePFMKcDq42aHmyZxPdslhvFNKa+Pa7QuYholmn001a/xDjEIA8koyaTzmp+ZIU2TrJA11Yl1REafUiTTeOS4k6FwQBKFLkE9VIY4DHx4jHDLIaRlDRmCwszzgbgEipUwd7BoWjoSbjxrkZlf296yFkaZkQ3OGnvigexOvfpsHqjL4e9kFMPp6AIo9LhGk+gGrNv+Z1YdWcebwnc4yv5FHZcZvuOHiU3twZIIwcNDaiFF97wu60AMUjKD2yn9xbPNbjNv+IG7NoCJvO9kl0yisHBEp2bM2tUUoTdet7CKzY06p9sr3bGHDFpqSiVh2XpIyTcc5pCkdI83x9CZM00BpuiUma9b4MyKXdiaeUsAHL31IMFAe2Voju8DbZh8J3cc9Vr4nX58EQRA6E/lUFeIIB01AoZvWhKDM1czanOeoNfcymEx0BZq7Y2+bdRXrAdhY/QHZo2BI9hDum3cfZTllTCuZ1smPoIc5tIb9hVcDsLhhI6NKx7J04uweHpRwPCigttBDi25NQnPUSk4d/j4AO2qnkDv0h1x72mR03dODoxQEQRDSoWTW2ZTMOpvQt34GGLiUQmG5lJQixikVuYMteKSZ4RQVpdpxSqn0nFK6K7LeMBxBRlN6n+2+h6ahlEIFdHJ8LrJdliC3890n8NVucLYtGJLL0PEFiXek6/GvR3fX8zrd9/qZy18QBKGHEVFKiCMcMlGaQlPWW6Oq7ilKqmsowQps1pRCc3XsbbOn7gAwCjQDXdO5cuKVLBm9pLOH3nMoRfCdR7ihZTQ7yj5PuacYgC8u+gjzC3N7eHDC8VBee5RNO59Fn1VAiGib6pf2LeET88dy/fyryckZ16NjFISBjf1lVJxSQsdQmg4KXErDjHy+m6aKloLZopIrWj6XDo6GlUyUsoOhWpXvJXdKxZTvRe6q0fcypZRS1DY24fMoFlSvJLB3ElcB8B/CGbPxu6oBGDxqDJm5ecxZelHyTMaeEqXKN/1/9s47Popq/cPPzJb0QkJCKj30XqQpikgH8V4FFVT0YsGLoNiwI4oNAa/tilhAfxfsiogFA4qAINI7QTqGUBPSs2Xm/P6Y3UlCOiQkgfP4iWRnz8yc2Wx59z3f9/vCpvnw9zrPPGRSSiKRSCoTmZSSmAghOLE/nZDcWNB8EEIn250KQFqgkwaOAOqfzkCpaPmeJwBrGtqIJbdtKWN0LeT4DratXcCyTu+Ym/xUaOovO6/VRg4depe9+6ajnlU9YA+9i4n/6EZcHf/qmZhEIpFG55JKwHgSWRC4PaVkQoj8PKfXy1rxeCBVtlLKExN5Ey8lKqUKKKkUtfYqpVavXs2avQchCCKOnwRAVwSqUNDdyWieirhr7rqPmGYtSj2WoqqF0tDKhSrfW/os7F2af9s39MKcVyKRSC4RZFJKYpJ6NJuj+9JRiUB3n0DTjgMgEByOTuamvc2xZOVCBcv3XG4jgLJaLnDt/wVAE4IVJ06xIqI3AK3IZEZdB/HNryTcLl9etQW3O5sNO//Lkm1/0bLORsJ8QRcKPi4NP7cKAdAsrqNMSEkkNQXBBW+8Jbk48Jrkq0JBw5OU0oWZ8RRnK6W0CialShruVdecOQyn/jLHl6SUyk9KaSgWb+ON2qeUSk01FjetOuielJIjuC1+6dsRwoHb4zFqL0dnZ2vduriOHvXcsGIJKaHMr7JxZBr/tv4HRLeHjrdemPNKJBLJJYL81iwxceQYy1W6noYj839mvG/TdB7/UgeMjnmKrWIeOk5PQGezXGTfIJJ+5JsNS7kv+laIvxmARhFxdGrTqJonJikvmpbHhv2bWLfzS1oELaRXAd/9nzbcyMyct5jZ9eJLpkoktZUiNuclqVIkkpIwy/cwy/eMpJTnfs9zyiwhK6cyyVv9p5WllPrxEeP4MbcAEeXqvufdVRFKrVNKaZqGik5H5wm2YTTNCXLF4mY76A40b1LKt+ykVP25H5Kzfj0APs2aYQkNrappF8ZrLt92JLQYfGHOKZFIJJcQMiklAWD/Hyn8veQQAII0FIyFaH8LND5y2tie0JDAqHiC+vat0LHdnoDLcqG7pFQ1a2fzl94UgNi84zSzC+6NT6jmSUnKy/bkdFL23YTq3kOLIGPbztPNiAjrSNsG7Xkxrh4seMvbvVo610gkEslFgFcpVSgpJcj3lPLmfEylVMW675WYKG07Ak79Be48cGahph+m9KRUfve92ly+l7fvDN1Yx8yEg/RKaYjNZQHF25HYaSalbL5lWx7YGzTA3qBB1U22JKTBuUQikVQpMiklAWDfF3sI8/yu4wTAz+6kR72D+G40PoTVOdOpH922wsd2e/oj2y+i8r0dWbmssbVmjZ/hf3BLdB0mte0EFTSBl1x48vJS2LJzGn/sPUibunsASM0Lwc8njISEqVzTtotRanpgRTXPVCKRlISQRueSc8XjGq4K0AuW73k/vr1JJU9SKGvZMlx/JxPY+4pSuw+bHlElPSW7jjV+jvwJH/RDoYCfVTGY5XuaZia8FGpfUsqd68SmppNitaIKT+LOasc/KoKcY4bHVFhsPD4BAdU5zdLxKqUUmZSSSCSSqkB+g5YYAZFboFuNYCHDlkoAILJ10n63EA3k2SDY79z8dNyaEXDZLoakVPIG+PQWbm7zNieiRpqb69VrIhNSNRynM5V5K9eTmfoVHcKX0qausf20I45tzreZOrA1qlpciako8H+JRFKdSKNzyfkiChide5NSui7MJJSZk7Lb0YCTr78BQPTLLxF63XUlHtdSVvc9L57Ehiq8nf9KUEpZCnbfK+CDVYs8pVL+SsLldCJsxmPiTUrZ7QHcPfM9ss+kARAQWge1JquQvEmpi03xL5FIJDUE+S1agtAFqpIfiAlhKKUC83SijXiBExFW2gTVP6fjuzWv0XkNDjjKS9KPZGencsJu6MqGpa4hsvVAhkWEVu+8JKWyft8uzhz6J00UJ4Qb21Yf7Uq9iCu4rc8/GOkbU8xe8tuvRFJzka9PyTniUUpZdNC83ff0Ah5SHqlTxKRJpC9ahCMpCfeJE7hPnCz1sPlG52UlpbyleOVUSum6mYytbUqppR/8F83SCGEz5qx4pq5arVisVoLrRlTj7CqAkEopiUQiqUpkUkqCrhvrht4wR2AU+Ft0QXqgnZAsJ5eNexqbpWIG53+m/MmO0zvIdBrGlrW6fE8Ijmel82NeKKlxhkLKR4E5w8ag2GVHtppKVtYeNm1/guRTh4nwd+LSLeS5/Qnyj6BPlye4rGkb7NbSn5eKqZSSWimJpLpRilqdV8s8JLUYb1JKQKrD6Ay3/8x+Lg/0eEJ6kkQhw4YSMmwoKU8/zZkvvsxXy5SAWlb5njnQq5TyqrTK8pTSCnhK1S6llDMnBxGMmY3yKqUstW2R0lRKya9NEolEUhXId1cJumYkpQ5nrsaRvYcQLQMdsAiBOyqGugOHEjJkSLmP996K/aw7dIrlR35BR0PPMxRWvlZ71VzAheDj4TzhdzXfR1wFjS4HoJ6PXSakaih5eSks3fQlx078TKOgnUR4/kzbzlxLk8YP0LdTXNkHkXVCEolEctHhLd+zYUHzlO9lObJx6A5UY0Bh1PIZnnvLv8tbvqcIr8l6CUopT+JGP8vofN72D/jpwE/c0/4eesb0LP1c1YyuawgEwrPs6W0colprWVJKGp1LJBJJlSKTUhIzKfV3xh8INDMe83e4aDvlRUJ6lj/oOZXl4IUfdnluFTZFbxlRjkRATcSRBQd+Y3/nMQD0St9KRP2O/LN+bDVPTFIcO49mkHLgYfwcf9DI01Vv8f7+tGncn4f+ORRVrZjiT5FKDIlEIrl48CilrozrRc+OY9iyO81Q4HnWIcRZUifFq/LWSi+b81oSamVJpbxKKdxAeZRSupnwUlA4mn2Uo9lH+WTXJzU/KeVJ5GnCRtOTbVFFKqDXvqSUNDqXSCSSKkUmpSTomiBPyUF4VgzD3S1JitvBbdPmEZKQUKFjZeUZQZbdqqCEf4tN9eH+jg/g72Phug61MImzazFvpmSR2OFN9vkbiq9pV/+TlsGB1TwxydlkZu5i0/Yp/HXsBLFBR7GpsPVkK1rXb8Xt/R+gbVxUCUbm5aOsxW+JRFL1SAGj5LzxJKWswkJ0aH22kIYiFIRXxnP2e72niUmZSinPk7PMzwqvUkovr6eUZibMQu11GN1yNPN3zcclXGWcqPoRug6KIC3zSq5JHkCe+A8AVp+KLQ5VO14fL2l0LpFIJFWCTEpJcOS4SdOc5m0/PQRX23jqNm1a4WPluY0gK8Cu4g5bTYhPCHf1blxpc72gHN2M4/PbefGKnxEhRiDip6rE+ftV88QkBXE4T/H16q9IO72Y5nV20jDE2J6n+ZPl/yz9unfKN7CtEN5l80qbqkQiqSSENDqXnCtm8kgrVBYnvE+ps5JEXsVSWZ5S+T7pZZXvGcdTKctTykheHdi0njPHziB0P2xKKK3DW5e6X01C1zQUwK0bsmWBjgI0vryWLVJKpZREIpFUKTIpJWHZvLWcduQnWiy6i6ZNE87pi7zDZQRJNquCG7CrtdhHKv0Ip+yhCEXFKjTerZtDi6ZdCaptsvOLFF0XfLHhCL4ZDxGpbCSyjrF98f7+9GjZh2GdejHE7/wDX1m+J5HUXEpSmUgkJSEwPsNTdu9g28GpuB0NUfzq5a9DnP2Usno9pUpPAlnKbXTuSUqVoZSy+/oC8Nfa1cBqLPY2uP0GkbPTRqCjTq3owid03fCUEgpC5KeSI5qEVue0Ko70lJJIJJIqRepQJWSfziS/9x7EpKwlMDzynI6V5zI+uG2ez227pXYmpdanZ3PZiXpc3XkuAHV9fBnS7gqa+PtW88wkABmZ+/h17b85vPd+7Po2AJJSm+ITPJxJ/5jGyF4j8TvfhJSsE5JIJJKLDovNKB1z5maT+vc+3LlrUYWS32H1bE8pbyJCc5d63Pzue+U0OvcopdLS0pg3bx5HjhwpNOyy60bQru9AohOaAyBELi6Hxqnv7Qzd+e9a0YXPMDr3Khvz40yLtZatiUullEQikVQptexTQVIVWF2ZIELN20GZh7Dbzy354nB7lVLGbVsFTaVrBMkb+W7/cQ7r0WAzkmqdQ2SXvZpAdvZ+PlqxDEfGItpF7KRTPWO7W/gS0/gdLu9U+aWiZkVHpR9ZIpFUlHwFr3xlSs4Nn8BgyIQO/Qdz8Js/AB0FFeFdpj07qeQxOi9LKWVW+ZXT6DxEZACgaRoHDx5k48aNxMfHm8Pqxjeg3933sXXZT6T8lURIhC+hMSGk7EsnwBlSK5RSuqajKgKBSsGklFrbvJmkUkoikUiqlFr2qSCpCnJdTgoGC24LhPiEVOgY6Tkulu06zrqDqUC+UspmqV1JKd3tZO9n93Lg2H4A/n3kE1Y4vmdO64bVO7FLHCEEv+w8wJq119Lc52XaRewE4NcjvXEHPULPyz7nuipISEkkEonk4sKrfIqIr+/ZIgyjc1MpddZ4j9F5WZ5SannL9zxqm1BxhnvvvZcOHToARnKq+PkaoXpoPT+u+VcrY5tQa0VSStM0dATOvHTceX+a2621zQbB698llVISiURSJUillAStgKxa0QVWm42r4q+q0DHu+ng9f3oSUgA2qxGV1Tal1EM79/NJx3fN263Co2jW9VpZylWNOJ2nWPnnOE6eOUyEfy4OzcahjHi6NG7BYz1eJtAvoIrO7G3BbTyXpR5DIpFILgIUUxLl+VcvZHRexOPJq5Ryly8ppZXT6ByhUa9ePerVMyS/JRmXq54kmhDC7CCrUPOTUkuWLCGjWQfQM3Cf2o738XYrltpXvmcqpeRavkQikVQFtexTQVKZnPo7k8UfrkVTLQhPcKMKgY9/MD4Wnwod60haDgCNI3zJ1dPwC98OzlpkdK5r8Pd6NqTpgB/B7mxiQ8Lp3fM+qG2tiy8SNC2POcvXse/wtwxqsIkITwXl0bxu+EY9S9eOjap3ghKJ5IJTdHlAposlFcTb/a5Atz275kfuaQ1fIPOXw+SsP05wvwb4NqtjKqtEmUop49/UbAeHT+cQH+ZXfMOYgiVgQpilbCV24fN2C9R1s1ugKpQa7ym1e/duABRNw/s6PRUWzDpLN2631DLFke7xE5NKKYlEIqkSZFLqEmb/5lMczdlJKOGYSikEiq3iSRiXx2uhc7ut/HT0Q/Y4je2hPqGVNNsq5s/34KfJpPb4Bux+LDw0i1Z3flXds7okSct28v3W/UTk3kozJZVmDYztf6Z0ok2zsfzrqj6oasWSpueE4m0V7lFKyS5fEolEUvsxjca9CHw0P04f06jja0FLd6KlO8lem2IkpbylZmV6ShlH/N8fh/nfH4e5+bJ4Xvpnu2LOX0Bto2tmUqqkzxhv+Z7QdTNBpaCWmMSqKQghiOMoPdwqPwFg4XBcJHszm9Y+8bkuPaUkEomkKpFJqUsYXdNRVTeKWwVPFxhVgH+nThU+ltNjcJ7rzgKgW3Q3Okd2ZnDjwZU236pidVoWE7Nbk9PzW1JtoQDU6Xxz9U7qEiUzcyc/rX6J9MwTRIelogsFp2bD3yeY63tPoll8z+qeokQiqUa8X2a9zeWFVEpJKoonKeQtzdYVN/vDtqCktifVqnL1lbFk/X4U4TWH8iYiylBK9WtZjx+2pZCe6yLPpbMtOb34gYWUUlrZSqkCSSlVLZBKK9O8qnpRXdncpHzJ+2F14GBLQMX7CKq1LStllu/Jr00SiURSFch310sYoUOgBUA1bgCW4FBiZs6o8LFcmhEcaTgA6BPfh9EtR1fWVKuOv9ez+MBp/lbrmbb/8b52ItpfX73zusTIzk1jypdf0jTgGxJCk4gMM7anOLoTHP0KfTrGVtvcpKeURCKRXER41UaK511dEayt/x2NU9tzWgNbtMen0JP0UcrpKdWzaV3WPnENv+05yZgP/yxZWFWwBEzXTPVTyeV7+UmrgiIrrYYrpWyOTNb62fk8MJjrARSVXGE8trUiKeXIgu1fGv8KaXQukUgkVYlMSl2iCCE4unsFuuZAy16PrhvJJKuvT/EeCGXgLd/ThFG3VysMzp058NEwzjR5EOr1Y/zhBYzs0p/4FldjVWtBwHQRoOmCpbuO4zx2O4Ni/zK3Jx7uxx29r+SKuP7Y7eHVNDv5HJBIJJKLDrVw+Z4iQChGDCN0YSatzGo6T/e9sjylvFjMJFMJSxmFlFJ6mUqpguV9SkGlVE0vKdfd5CgKqjlNBUd6J7AU8POqyaz/ABKfKbBBAesFsA6QSCSSSxCZlLpEOb5/L4c2f4MS0RDdsd/c7h8aWuFj6brA7Qm+3B6lVG1ISjnTj3JMDea4T10AmsYk0Lx5b7PTjqRqycjYxpqtb7DlyCk6Ru4F4LSjPvERzZg8YiZ1Aqqqq17FUKRGSiKpMRT5LlvTv5hLah5eo/O80/hbnORodjPBI3SRnzE5SylVlqeUF2+DthK78BWUO4mKeEpphZNSNVsohSJ0dEVB0b1zVtE1f7Do57T4ecHJPmX8W7c5xHSA+G7gG1ytU5JIJJKLFZmUukRxZGejKAq6p6OIYokmIiuZQfc9VOFjuQqs7unCSErZLTW4656u4d74P65Mb8SB7p+Zm0M7jABrDZ73RYKuO/l24x6yjj9LjN9mOhvdsMlxh9O45Vd0aRhWvRP0clbQLL/6SiQSyUWAJylk/+157m0Gvx5rzBdKIAC6EPlv/aKwp5TQKkkpVdHyPTW/+17Bsrea6inldrnY8dlPoAs0KKCUUvFeYa1QSnmVcS0GwzXPVutUJBKJ5GJHSkIuUXRdQy3gJaVao6jr0giPja/wsbx+UgBuT/lejU5K7fuVEz8/zwHVWPHy05009feha0hgNU/s4kYIwYHjKaxYdQXBGcOJ8dsMwI8H+pLj+xBX9/qk5iSkJBJJjUQxS6vMzEH1TUZSO2l5LfgEIzym1VF+mXg7EAsdM2Ni2gh5uu/l/PEH+6/7B39PvB/hdJZ4eItn/xKVUgXL93JOl9/oXIjCjftqqErwwOb1pK85hIKOW1FQvK9VRcUrmqoVnlKeRVtpbi6RSCRVj0xKXaLomoaiqOhmQK8axgrngMudH0i5RR4AdrUGJ6XSD3PGFgRAXZHLgRZWVnVrSV27DDyqCpcrg/lLH+erX+9Fc58yt7vVBlxz2WMM6jaOgIAm1TjDkpFG5xKJpKpITk7mlltuITw8HD8/P9q2bcv69evN+4UQPPPMM0RHR+Pn58c111zDX3/9VegYqampjB49muDgYEJDQxk7dixZWVmFxmzdupUrrrgCX19f4uPjmT59epG5fPHFF7Ro0QJfX1/atm3LDz/8UDUXXd10HgOPH0G7qoBfUMHyvbO22eKMxTo9OxvH7t1k/vwzuTt2lHh4b4c8rUSllIJZiPpWF9R17xnHL4/ReS1QSjmys1FQUdDQyVdKKSimUqo25KRkUkoikUguHDIpdYmia24UVIS5FFjxpFSeS+PtX/fyyk+7AWNx0eUp37NZaqCnlOZm3f5tPJ4WyKsN/wVAnYBQiO1UvfO6iBFC8P7K/Xzw8+tEW76gY+Q2ANYd78bqnO8YcNUvDGzbGGuN9PEye89LJJIaR234Vls6aWlp9OrVC5vNxo8//sjOnTuZOXMmderUMcdMnz6dN954g9mzZ7N27VoCAgIYMGAAeXl55pjRo0ezY8cOEhMTWbx4MStWrODuu+8278/IyKB///40aNCADRs28Oqrr/Lss88yZ84cc8zq1au5+eabGTt2LJs2beK6667juuuuY/v27RfmwagGFNPwXCCU/NK8s0V4Ad0uo9G3C4n/4H2sUVHGRre7xONazjZKL46Ww8xf1ZM7PeNL95RC1wt5SpVYHljNGGWGKgqC3KxutD3a23OPmr8MWhuyUrrL+FeVHfckEomkqpHp/0sUXdNRUAo4ZaqICn7u/rzzOK8uSTJvCzWLPWl7gBpqdP75bTwW+A92BDaDus0AiPWpwYquWk5mzhnWbRhFvZxD2H2M4G77qRZc1XYgk3qNxMenXjXPsLx4VtBrZvwvkVxS1IbvsuXllVdeIT4+nrlz55rbGjVqZP4uhOA///kPTz31FMOHDwfg448/pl69eixcuJCbbrqJXbt28dNPP7Fu3Tq6dOkCwJtvvsngwYOZMWMGMTExzJ8/H6fTyYcffojdbqd169Zs3ryZWbNmmcmr119/nYEDB/LII48A8Pzzz5OYmMhbb73F7NmzL9RDcmHxJHtKfE4VSPr4Nm8OzZujBhoNOEQppueWspRSADf+HyRvgPeuRvF8uJTVfc97v+J1XhA188UgdN1Y9NRVco7/myauv3HxF6CS51n8rBWvY6+nlFRKSSQSSZVTE+UJkguArmucqKNwynYGwJBaV1AplZ5jeCo0jgggLGodvrHzAQjzDSMhNKFS51spHN1Eij0CgH+d/oXJ4TovNour5kldfDgcJ/l10/u89PlDCFcS/rY8rKqGECotmt5P+5YTakdCqlZEzRKJpLayaNEiunTpwogRI4iMjKRjx46899575v0HDhzg2LFjXHPNNea2kJAQunXrxpo1awBYs2YNoaGhZkIK4JprrkFVVdauXWuO6d27N3Z7/iLMgAEDSEpKIi0tzRxT8DzeMd7zXIwoBRQw+YVl+eLY4pRL5j56yabnXhVQiZ5S+QczxmOorkou38s3OvdMttTx1Y3XHkIVKoY6ynissq0Kxy3GY1I7lFKyfE8ikUguFPKd9hLE6XSy/I8dRIg70dKXobEdULFVsB2Kw+Ml1SYmhG2W33DlnmLugLm0j2xf45RSmzJy2BHczfSSmnTtBCLsNWuOFwPbk9M58NfD+Our6Fvf2Lb5ZDsaN5rMkA7NsNtrn5F5fiWHlEpJJNXN2Z9Stfl1uX//ft555x0efPBBnnjiCdatW8fEiROx2+2MGTOGY8eOAVCvXuEkfr169cz7jh07RmRkZKH7rVYrYWFhhcYUVGAVPOaxY8eoU6cOx44dK/U8xeFwOHA4HObtjIyMilx+teMti1MQhaSw5m/FKZ0s3k58ZSulyiyv83ThUz0JrrLK97z3K6qC0ATUzJyU4X1laPGN24qhlM5EAQV8fLKw1ob2ezIpJZFIJBcM+U57CZKcnEzGqRwChQWXZwUrIDuFxraKPR28XfdsFhWXp/Y+zDesZiWkjqwj45eXuS7uMRxNHwDAAoRa5VO/MnE4T3HgwGy+Xb+HtnU3gg12nW5G43r1uXvwgwQFNa/uKUokEkmNQtd1unTpwosvvghAx44d2b59O7Nnz2bMmDHVPLuyeemll5g6dWp1T+OcyfeUAlEww6OU7CeY7+9UslLKa5FYplLKc/4ylVKecV6llHd6NbX7ntB1UNQCCzrGvAP9VfwazKZDbASKcmP1TbC8yKSURCKRXDBk+d4liKZphGNI9p2WbACij/2JzTekQsdxepRSdquKSzOSUjUqIQWw/gOSj+/Dodrw0R0MOLOel5rFVVgVJimZvScyeeu7l0hOnkv36N8JsOWiC5V036e4stvbtTghZTxHvH4fNTP8l0guTYTZiKD2vjKjo6Np1apVoW0tW7bk8OHDAER5TLWPHz9eaMzx48fN+6Kiojhx4kSh+91uN6mpqYXGFHeMgucoaYz3/uJ4/PHHSU9PN3+OHDlS9kXXKJQC/xRVShXb3a4cSimzfK+cSinFk+DSNI28vDzcZ5moe8v38j2lFHP8zwd/ZtfpXaWf5wIjdA1QUXQdzbET4ToIQJaWjtX/IDZbySbxNQrTU0oanUskEklVI5NSlyC6rhf4wxtBjoqAwPAKHcepGR/YPtZ8pVRN6rrn0gW/u/z4JawbAPVtKh/1HcxtsXWreWYXB3kujQ3bZ3JgWyc61FkIwKYTbVl3agQdO7zHk8N6EeAjVxglEkklUhu8aMpJr169SEpKKrRtz549NGjQADBMz6Oioli2bJl5f0ZGBmvXrqVHjx4A9OjRgzNnzrBhwwZzzC+//IKu63Tr1s0cs2LFClwulzkmMTGR5s2bm53+evToUeg83jHe8xSHj48PwcHBhX5qFUrx5XsH0w8avxTrKVUepVQ5y/fOUkqlpaXx8ssvM336dFJSUvKHmeV7+UbnAE63i4d+e4gbF9/I0ayjpZ/rAqLrOooCualpuHJ+gjyju6DL89JtXqeWLFRJpZREIpFcMOQ77SWIrusoZtcWT5AjQA0IqNBxvOV7VotiJqWsNeXDe9uXvLY/mVkRY8DwNic8MBSCY6p1WhcDuu5i3/7/sHjTFpoEbybAZjyHNGGnQ6vH6NK0E6H+F0FXQ3MRvfYqMSQSSc1l0qRJ9OzZkxdffJGRI0fy559/MmfOHObMmQMYCpkHHniAadOmkZCQQKNGjXj66aeJiYnhuuuuAwxl1cCBA7nrrruYPXs2LpeL++67j5tuuomYGOPzbtSoUUydOpWxY8cyefJktm/fzuuvv85rr71mzuX+++/nyiuvZObMmQwZMoRPP/2U9evXm3O5KDGTUmBTrQiMrnEHMw4RRmTxnk0VUUqV0+g8QqQSGhrKmTNnAMP38+jRo0RHR3uGeZJSHqWUVbXgQqd1WGvWu87g0BycyDlBTGDNiG/M7ntuj1eWJZQDwQ4cLTvzwz9fIy6wljSYkUkpiUQiuWBIpdQlyJkT2Watv+JZeVOFQLFUTKLsLd+zFditxpTvLX2W3Q7jKmPzjtHRT2VcfGQZO0nK4lh6Bu8lfsThw7NpF76GAFsubt3KOztepE2nNVzTrvvFkZAqBpmakkiqH6XIb7X3ldm1a1e++eYbPvnkE9q0acPzzz/Pf/7zH0aPHm2OefTRR5kwYQJ33303Xbt2JSsri59++glfX19zzPz582nRogV9+/Zl8ODBXH755YWSSSEhIfz8888cOHCAzp0789BDD/HMM89w9913m2N69uzJggULmDNnDu3bt+fLL79k4cKFtGnT5sI8GNVBAdXd486bcOeuQQgnuicuOn+lVBnn9yilfMlj4sSJPPXUUzRr1sxz6vxzn52U8pbvTenyHDF+RoJHEyXP50IjdB0KWCTofgksbRaJHlWf+KB4sxyxxiOTUhKJRHLBkO+0lxhCF/y5eD8hnqDAP0/DiaGUMt05y4m3+55FzQ+eakJSSgjBaYeL4z5GOeKUBuFc26pdNc+qdiOE4MjRH0ja/SBNPX4Q+9MbkJzbg/sHXcuAa7pV8wwlEomk9jF06FCGDh1a4v2KovDcc8/x3HPPlTgmLCyMBQsWlHqedu3asXLlylLHjBgxghEjRpQ+4YsJr1JKEexetRwAVQ1FF0YXwmKFThXovldepRS6hqqq5o9x7mKSUgW67wF8/eoGrlHvZXHLd/ITaTWAvP37CSIS1ZsoUwRCqKaCrNYgPaUkEonkgiGTUpcYmlvDmXsSh56KI30egjMAWIICCbrmmnIdY9mu4zy/eCfHM4xW0AVzWdXuKXV6H+P2pfFtt8/MTWHRLapxQrWf9IwkHv9yOc0Cv6NtXSMhpQkLauAt3NxjBHXqBFXzDKsKj9G5V4lRewUZEslFR1Fbaomkohjv8XXqRRMu6nP678MI4cDtrdsrxhOqPEqpihqdU0DlVJyKyLstJyOd9+4bi8tpRRf9UC1hWHQb9TIb1aikVPjRRFoGb+KvjC7k4OtpSqCiKrXktZq8Af5eD+ke436plJJIJJIqR77TXmJs+zWRMOUYWZmnEHq2ub3l2+8QlFA+88lvNiVz8HSOeTs0KP93q1KNT6n9v8HH17Ky57dgCwWgsZ+ddkH+1TenWoxL01mbtALHsbFc3zB/+yd77mDKyAn0D6tYt0aJRCI5X2qb2EJSg/EolepERRHp14TTfx8GRH6C5xy771kKlq7pArWkbr9eBY5eNClVUCkVFF4Xm68frrxcMk4aHRKvGKWQeSaK3WuOoQqlxpTv7dmzB1dQNtfHRdHspC9RWSAUQCi1QynldsJH14IzK3+bTcaQEolEUtXIpNQlRvqJY9gsvqYuPVhvSqvbehNdzoQU5HtJ9W6by4acN5m1OxUwTM6r1Svg2DYEkG41lDubtSVEdZ9cffOpxeTmJrN4zSxOpW2jWR3IdvmT7Q6nWUxj3rpjIr4+tazL0rmgFFZKVeYar6ZphTphSSSS8mHHTWyQBataD1X1w+nUycvLq/Tz2Gw2LBX0WZTUMrzxihCoZomWhuvXumADt7No4qlcnlIF4iBNCFRKiIu8Silv978C+xVMSvn4B3Dnm++TfuIYf3z9Gfs3/InQNVSrV6au1AillObW+X3ZOurbBfvtNpob2SiEoqDlNK4dSSlXTn5CqtV1EBIHjXpX65QudWS8JJHUbCorXpJJqUsMXdONxJEn4LGJQMK7NqvQMVyeFcJc5RCqPRWrasWm2hjYcGClz7e8uHXBhlxID+uB5gn0gvs8Um3zqa3oumDxthT0tOmEsZgwo1s4284MokPLSXRuF129E6zlCCE4duyY2WVJIpFUjEY+bp7tE0mY70Oois6xYzqqeqBKzhUaGkpUVFTtMWaWVAyvp5PQUa0W83eRa/UkpYpJPJlKqVLK9wpYGsxZsZ+4On4MaxdTVDFV0KtI18BiLVYpBeAfHIJ/cAiBoWHGcF0zkzyqUGtEUurgtlPkHE5HBBhzt3iSUooIRMtpgqJklX6AmoDX3BzghrmF/5iSC4qMlySS2kNlxEsyKXWJoWsaBZvcK+hYrBXzgXKasnXjw/uxro9xY4sbK22OFeaPd3g5OYu3wvpB28sB8FEV/EqSzEuKRQiNX9eMQc/cip81D1T4I6UzvVr2ZnLvMVitF6t3VOkoovKUUt4AKzIyEn9/f/llVyKpIGnZTmyZeUQH2FEVHT+/+lgsvmXvWAGEEOTk5HDixAkAoqNlMv7iJl8ptStyNT3qN4fkSFQhyPztCKqfDf+OESg2C4rXRLOU1np2q4pVVXDrgleXJAEQFexLt8bhhQcqBRIenqRSSUkpL97kma5p+cIqoaCVoty6UDiy3fhZQCiers66pwuhRylmqQ0xmeZR5CiqTEhVMzJekkhqPpUZL8mk1CWGrumGRNzbxUWA1Wav0DFcbmNfDePDu9rNzX97hV1NjDK9mLwThASEMrx+ffkBVk6EEPy8bRurdm3iqog1BHmeDpqw4Rc2nis69K4dwWSlU7nXrGmaGWCFh4eXvYNEIimC3a2g5OrY7RZUReDra6/0pBSAn58fACdOnCAyMlKW8l2MmEopYSZ7cmzpuELyIBksAtJ/POgZCwFdo0x1U2lKKR+rhVeub8ea/af5dfcJTmc7ScsppvyooFLK4wlVVtyiWoywXXe7USwepRQqOtWvlNJ1gfc/AG9KR3i7HFbTvCqE7vk71YBO0pcyMl6SSGoPlRUvyaTUJYauaUaAUGAVrqLm5F6llMAJgK06P7w1N+SmkWozTLdfbBTOwOadpBtuBdi2fTzWU0u4KsK4nZwVjVJnGjd170B/j2H8pUy+p9T5aaW8ngj+/tI0VSI5Zy7gW7v3tepyuWRS6mLE9JTSUa1GHKQKyLY72ZarEV3Hh3oBVrTTeeiepJKplCrF6Bzg+s5xXN85jhGzV3M624lenPJJOat8j3IopTzPQ03TsFq9868ZnlLCk5TSPV32VM+UhGeaJRq+1yS85XvVvdh6iSPjJYmkdlEZ8ZJMSl1i6JohpDbL94SORa3Yk8frKaV7lVLVkZTSXDh2/8ANp+qwu9f3ZFmMF0NYVHOZkCoHQgh2H9nI84vWcEvzX/GxgFu3oKo26kbewNWdr8Bmu8S/hFXR80gq+CSS2oF8rV7kFFRKeYJoVVfQ0dnv0HGE+FA/LpCc03n563hepVQ5y+W8vk/FJ6UKlu8VPl5JSSmLJ3mma25zdxW1RnTfcztdCEU3F3AUTwZZeDRTtcLoXPMkpVT59agmIN+DJZLaQWW8VuW77iWGrrvZFXKQOkd1c8HZolQs+eDtvqdXp1Jqx0J2/zyddZ3fM5/FwVaVhIDKL+O42Mhzaew48DNn/r6Psa2MbbpQmPPXHL6696pqnVtNxFRKVWb7PYlEck7IryiSSqOA0bl3ZVcVoClGgkfXRP4Tzmt5UE6llBdv6bumF/MBcrbROeVXSuluzRyrCBW9FI+rC4Hb6WT1Z1OwRnfCLXyon9YImxvAbS6CWmpDgsEs35NfjyQSieRCIt91LyHS0tLYlJZLihpIqLCg4EJB4GutWCInXynlSUpVh8w57QBnbMEANHWf5uO6GdRrey0B1ktc3VMGmZk7mb/sJfyUA8QFQaYzANVSlwaxg/m8z5XVPT2JRCKRSC4QZsYJxZMgUoRiGnULHRRvyZk35+MZl7NxI2pAAEF9r8YaEVHiGVQzyVTc6Qt6ShU2Oi/xeJaCSilPUgql2pVSmamnyMtKJUARHD9xJ4MdTXE4FyDIRvcYhtcK1YvX6FyW70kkEskFRbaWuITYtHETocc60zl5AKqnyN+muwjxCSnX/v/74xBPL9zOyUwHAJqoHqVUmsvNp45Qvq/bG4CIuvVp3PEfMiFVCrlOjf8u38tPf7xMQvBq4oJSAFh9/Aaat/2W9q0evkTNzEvD69dRvbOoCdx+++0oioKiKNjtdpo2bcpzzz2H2+0ue+dSWL58OYqiXNCWzwcOHGDUqFHExMTg6+tLXFwcw4cPZ/fu3YXGLV68mCuvvJKgoCD8/f3p2rUr8+bNKzTm4MGDKIrC5s2by33+Z599lhYtWhAQEECdOnW45pprWLt2baFjjh07lkaNGuHn50eTJk2YMmUKTqez1OOmpKQwatQomjVrhqqqPPDAA+Waz4oVKxg2bBgxMTEoisLChQuLHbdr1y6uvfZaQkJCCAgIoGvXrhw+fNi8/5577qFJkyb4+fkRERFR7GO6bt06+vbtS2hoKHXq1GHAgAFs2bKl2PPt3buXoKAgQkNDK+0aJJJCFFRKeT2ldNC9Sim9qFJK9TMW8bKWLePYs89y7IUXSz2FWqpSqkAIXlGllKabFeaKUM7b8/B8EbrXaxTc7jAANNV4zzrknwfUkmZ23rJMaXQuOUdkvCTjJRkvnRu14SNCUkk4nW5UYXzQek3K65/aUK59D5/O4amF2/m/Pw6R7TQ+tIUlC7jASalN/+O5Jf/jAdtlfBwzHIC6Nhk8lIauu/llzZ0EZdxGAH8CsOJoH1q1msXLtz5G86igap5hzSZ/Lf3SZuDAgaSkpPDXX3/x0EMP8eyzz/Lqq69W97RMygpCwDBg7NevH+np6Xz99dckJSXx2Wef0bZt20KB3ptvvsnw4cPp1asXa9euZevWrdx0002MGzeOhx9++Lzm2axZM9566y22bdvGqlWraNiwIf379+fkyZMA7N69G13Xeffdd9mxYwevvfYas2fP5oknnij1uA6Hg4iICJ566inat29f7vlkZ2fTvn173n777RLH7Nu3j8svv5wWLVqwfPlytm7dytNPP42vb77KtnPnzsydO5ddu3axZMkShBD0798fzdOlLCsri4EDB1K/fn3Wrl3LqlWrCAoKYsCAAaaprReXy8XNN9/MFVdcUWnXIJEUwTQ6FyiejIkqFLOTndCFOcabI6pzyy2EXHcdfh06AKCdOlXqKUyhVUn131611MfD4f1rULJPeM5XVlKqgFJKKGjl9LiqKvKTUsL0kHL4pAFw0teYm1obim+95XsWWUgiOXdkvCTjJRkvVRz5rnsJIbT8IEcoLhSh4kvZb0wA6bnGiyDIx0qftqDYj7M++yBwgcv3fnqcAy2eB6Bjxk7qRzTg3w2aXbjz1zJW7z3FJ7//yHXxK4gJNLbpwsqAro8QHdW8eidX06kNpQYXEB8fH6KiogC49957+eabb1i0aBHjxo3j/vvv57vvvsPhcHDllVfyxhtvkJCQAMChQ4e47777WLVqFU6nk4YNG/Lqq6/SqlUr+vTpA0CdOnUAGDNmDPPmzSMzM5Nx48axcOFCgoODefTRR/n222/p0KED//nPfwBo2LAhY8eO5a+//mLhwoX885//ZN68eaxatYrHH3+c9evXU7duXf7xj3/w0ksvERAQwI4dO9i3bx/Lli2jQYMGADRo0IBevXqZ13nkyBEeeughHnjgAV58MV8F8dBDD2G325k4cSIjRoygW7du5/Q4jho1qtDtWbNm8cEHH7B161b69u3LwIEDGThwoHl/48aNSUpK4p133mHGjBklHrdhw4a8/vrrAHz44Yflns+gQYMYNGhQqWOefPJJBg8ezPTp081tTZo0KTTm7rvvLjSXadOm0b59ew4ePEiTJk3YvXs3qampPPfcc8THxwMwZcoU2rVrx6FDh2jatKm5/1NPPUWLFi3o27cvq1evrpRrkEiKUIxSKjLNB3XzTnQtGl0PLKKU8mncmJiXXyIjMZHkCRPNZExJWEozOgeo0xBS98HJXcbt8M6AXylJKWOemqYVKN9Tq737nu75MqUrAovwPq6e+zwPoqU2SKW85XtSKSU5D2S8JOMlGS9VnFrwCSGpDLRsF5kbjpu3FU/5nlLOhJLTE3CE+Fv4Nfthfkl7lQxnBgCBtsBKnm3x6C4Hec48Um1GueETjerxbvfutA+SLWOLY+fOR8k61JNhsc8BcDAjDkfIW1zR61d6NpcJqfJiGp1XwbGFEOQ43Rf8p6QvPBXBz88Pp9PJ7bffzvr161m0aBFr1qxBCMHgwYPN1Zzx48fjcDhYsWIF27Zt45VXXiEwMJD4+Hi++uorAJKSkkhJSTGDhAcffJDff/+dRYsWkZiYyMqVK9m4cWOROcyYMYP27duzadMmnn76afbt28fAgQO5/vrr2bp1K5999hmrVq3ivvvuAyAiIgJVVfnyyy/NFamz+fLLL3G5XMWu8N1zzz0EBgbyySefnPfjB8Zq5Zw5cwgJCSl1tS49PZ2wsLBKOWdF0XWd77//nmbNmjFgwAAiIyPp1q1bqZLv7Oxs5s6dS6NGjcyAqnnz5oSHh/PBBx/gdDrJzc3lgw8+oGXLljRs2NDc95dffuGLL74oZRWvcLL4UlcwSs6HfB2sb6ChGA7OsWHdewR33h8IXeT7IJ31RFM8ySGhlV6So5hJqRIG3LkUbvkaOt9ujPckl0ruvmcopY7s2Mr2Zf9Fdx0xlFLV7CmlFyjf07QMdNffWDwLod6kVI3PSbmdkJdu/C49pWoc1RUvVUbMJOOl80fGS+cSL9UupFLqEsH1dya6Q0PoeQiRg6IDClj9A8q1v8NlBBwW1Xhj9rX4MqTxEBqFNKJxSOOqmrZJplvj6j/3cKR3ormtTqMehbvXSBBCsPPwFmb8tI5RTb/GouR7YjRrcB292g80PS4k1U+uS6PVM0su+Hl3PjcAf/u5vf0LIVi2bBlLlixh0KBBLFy4kN9//52ePXsCMH/+fOLj41m4cCEjRozg8OHDXH/99bRt2xYwVrK8eAOHyMhIsxY+MzOTjz76iAULFtC3b18A5s6dS0xMTJG5XH311Tz00EPm7TvvvJPRo0eb/gAJCQm88cYbXHnllbzzzjvExsbyxhtv8OijjzJ16lS6dOlCnz59GD16tDmvPXv2EBISQnR0dJHz2e12GjduzJ49e87psfOyePFibrrpJnJycoiOjiYxMZG6desWO3bv3r28+eabpa76VSUnTpwgKyuLl19+mWnTpvHKK6/w008/8c9//pNff/2VK6/Mb5Dw3//+l0cffZTs7GyaN29OYmIidrsdgKCgIJYvX851113H888bateEhASWLFmC1aNSOX36NLfffjv/+9//CA4OvvAXK7m0KKCUatbjclYc+JXdG1ZT/4Q/CJenfM8z9qwvpeXtwpc/rIQvtf5h0LQvnEwyjkvpxwsKN0zVczPSyc1IR7U5UKhXKQsN54PQdRRUtJw0tDO/AmD33Kd7EnM1uvvemcMw+/L8pJTsvlfjqK54Cc49ZpLxkoyXZLxUfmr6uoWkknDmuHE6s3Gkv4szY55ZmuRTIONaGg5P4OX1Eg/1DeXZns8ypvWYqu+osudndnx6L0ec+Zn6hn52mvhXrGvgxY6mC/YcWsSxfddzS8LLqIogz23nmTUv0L7zaq7oOEkmpCpEvt8ISEXG4sWLCQwMxNfXl0GDBnHjjTdy++23Y7VaC0mzw8PDad68Obt2GeUoEydOZNq0afTq1YspU6awdevWUs+zf/9+XC4Xl112mbktJCSE5sWo+7p06VLo9pYtW5g3bx6BgYHmz4ABA9B1nQMHDgDGSuSxY8eYP38+PXr04IsvvqB169YkJiYWOX5JeAOH0pg/f36heaxcudK8r0+fPmzevJnVq1czcOBARo4cyYkTJ4ocIzk5mYEDBzJixAjuuusuc3vB444bN65cc165cmWh/ebPn1+u/bwKiOHDhzNp0iQ6dOjAY489xtChQ5k9e3ahsaNHj2bTpk389ttvNGvWjJEjR5KXZ5gc5+bmMnbsWHr16sUff/zB77//Tps2bRgyZAi5ubkA3HXXXYwaNYrevXuXeA3164XRvXkccbGd+fzz7+ULU3LumAknHZvdB/+uCRyul+PZqHuMzkvonmcqpUpXKKllGJfnD/R2/xOljm/UoTM3PDmN9v0Ge+au1QyllKahKiq6y/v4WXH4KzTq0JlTfuFADe++l7IlPyGFAs0GVOt0JLUbGS/lI+Ol6ouXzuUaqhO5FHCJcOZYNi5XJqABCorQaNC8DU2enlau/Z3uwkmpC2pu/sd/SU93QCy0y9zN1yc+xm/s9zV71e0C43Kl8/Rn7xNp+432EZDt8ke1hBIR9Q++n/RPQv3L/lCQXHj8bBZ2Pnfhg18/W8UVhn369OGdd97BbrcTExOD1Wpl0aJFZe535513MmDAAL7//nt+/vlnXnrpJWbOnMmECRPOZeqFCAgorPTMysrinnvuYeLEiUXG1q9f3/w9KCiIYcOGMWzYMKZNm8aAAQOYNm0a/fr1IyEhgfT0dI4ePVpktdHpdLJv3z4GDCj7b3bttdcWCj5jY2MLzbtp06Y0bdqU7t27k5CQwAcffMDjjz9ujjl69Ch9+vShZ8+ezJkzp9CxC3avKe8KWZcuXQrtV69evXLtV7duXaxWK61atSq0vWXLlqxatarQtpCQEEJCQkhISKB79+7UqVOHb775hptvvpkFCxZw8OBB1qxZg+qp41mwYAF16tTh22+/5aabbuKXX35h0aJF5iqnEAJd17FarcyZM4ebb76Z5av/5Fh6HjGBJ6gXGVqua5BIikUp7H1kUSzo3qVaoeN0OfOdyktUSpWRlCqt+15xc6H0pJSiqjRo14GczHS2JP6AURxXMzylNJsPGZZ0ggHV1oADvZN54o6pTH3x/4D8BF2NRPeUYdbvAWO+k+V7NZDqipe8564IMl6S8VJBqiteOpdrqE5kUuoSQejCbBmsqnWp47eb65+fXsZe+TjMpJRxjAuVlHLpgmVqLEvDDMPA8LqNCew3X5pQexBCsD05g5NHJtMvJn/lIvHIddx/7aM0jZSd9c4ZxWsiW/qXhPM7hXLOZXQXGm9gUJCWLVvidrtZu3atKUc/ffo0SUlJhT6U4+PjGTduHOPGjePxxx/nvffeY8KECeYKWkG/gsaNG2Oz2Vi3bp0ZGKWnp7Nnz54SV4S8dOrUiZ07dxaZZ2koikKLFi1Mg8gbbriByZMnM3PmTGbOnFlo7OzZs8nJyeG2224r87hBQUEEBZXv9afrOg6Hw7ydnJxMnz59zA4t6llmLBW5Pi9+fn7ntJ/dbqdr164kJSUV2r5nzx7T/LQ4hBAIIczrysnJQVXVQmoJ723v6uKaNWsKPRe+/fZbXnnlFVavXk1sbCx+fn40btIUe1oO8UF+WJTza7EtucQpUL4HYLfYzTgJBCeyT5Lr9pSJnJ3z8XTBK69SqqyclHcu5f28UT3KKoGOItRqV0r9vHIVe1uHccqxhe7JYYAFm+d9S5hJvxoct3m7F1psMiFVQ5HxkoyXQMZLFYmXzuUaqpPa8eqWnDdCEwhzJU2psOOkszqSUrrGF8nHeTA2X4YZHloP/OpU/blrAbru5KffH+TA8b9oGHwYXyscymhEt4R2zLriIWw2mZCSVC0JCQkMHz6cu+66i3fffZegoCAee+wxYmNjGT58OAAPPPAAgwYNolmzZqSlpfHrr7/SsmVLwOjkoigKixcvZvDgwfj5+REUFMSYMWN45JFHCAsLIzIykilTphT5gC6OyZMn0717d+677z7uvPNOAgIC2LlzJ4mJibz11lts3ryZKVOmcOutt9KqVSvsdju//fYbH374IZMnTwaMFcLp06fz8MMP4+vry6233orNZuPbb7/liSeeYNq0abRp06bQec8OQABat26NzVb4fTI7O5sXXniBa6+9lujoaE6dOsXbb79NcnIyI0aMAIwA66qrrqJBgwbMmDHDbH0MmN18SsK7KpaVlcXJkyfZvHkzdru9yKpdQbKysti7d695+8CBA2zevJmwsDAzyH3kkUe48cYb6d27N3369OGnn37iu+++Y/ny5YBRQvDZZ5/Rv39/IiIi+Pvvv3n55Zfx8/Nj8GCjzKhfv3488sgjjB8/ngkTJqDrOi+//DJWq9XsKuR9XnhZv349qqoWebzP5RokkqLkG50D9Invw6aIJcBxQEcVKjlaLj5QjFLKo5woIyll8ZyixO57XszyvdKNzs3h3hhOCBSh4NJduHU31mryQjp1OpVWtj9YletpPKOoXBdkmBEL0+i8BjuGeJVS0ktKUkXIeMlAxksyXioJ+e57iSA0ge4JvBSUfPfNMvhhWwov/7ibMzlOIH+3Kk9K5aTCOz05FD4EGtxKfG4KbevFck98RNWet5aw90QWy7Z8R1PLj7TwNJlw6TYsdWfSunXJXSkkFacqu+9dDMydO5f777+foUOH4nQ66d27Nz/88IMZYGiaxvjx4/n7778JDg5m4MCBvPbaa4Ah0Z46dSqPPfYYd9xxB7fddhvz5s1j1qxZjBs3jqFDh5otjo8cOYKvb+k+cu3ateO3337jySef5IorrkAIQZMmTbjxxhsBiIuLo2HDhkydOpWDBw+iKIp5e9KkSeZxJk2aROPGjZk5cyavv/462dnZAHzyySfcdNNNRc5b3LYjR44QFxdXaJvFYmH37t189NFHnDp1ivDwcLp27crKlStp3bo1AImJiezdu5e9e/cW2b+sL6odO3Y0f9+wYQMLFiygQYMGHDx4sMR91q9fbwY5YHTygfx20wD/+Mc/mD17Ni+99BITJ06kefPmfPXVV1x++eUA+Pr6snLlSv7zn/+QlpZGvXr16N27N6tXryYyMhKAFi1a8N133zF16lR69OiBqqp07NiRn376qViT1IpQnmuQSIpwllIqwj+CO9r9i++WvoRAoGBBKJ7XXJHuexVVSpVVvudJSpXzk8ZMiqGjoPD6xteZs3UOb/d9m65RXct1jMokSEsl3H4Ci97Is0WlZ4LRdtx76TXa0lImpSQXABkvyXhJxkslo4jqbtlRg8nIyCAkJIT09PRa72y//6u/SFz+CVkn/sSiRhFaZy+3/3d5mfvd+dE6lu7KN5Qb2tnCbzmP0DGyIx8P+rjqJrzvV/i/63is6QPMi/0HD55czKP/fASsPlV3zlrCwYP/ZfXOxQgtjaiAExxIr0907FiubHUZgYHNqnt6Fw/Hd8I7Pbir7Ut8F9aTFxJiGRt37knRvLw8Dhw4QKNGjcoMFiSFyc7OJjY2lpkzZzJ27NgLfv7U1FT69u1LcHAwP/74I/7+/hd8DhKD1Gwnf6flEB+UgkVx4+/fGKu1fF1kK0ppr9mLKT6oLGrdY3JwFcwbAnWbw31/ArB33R98O2MaiiUaS8gNdGsYQFyaIKBHNHWG55dC5G7bxsERI7HFxND0l2UlnuLhL7bw5Ya/mTywBfde1aTkuWyaD9/+myWht7DmTAS9evWiX79+JQ7fv3Ed37wyFcVSj+RGrfm52VwA/t3+39zb4d4KPhDnhxCC2c89SGjg53yf1oSOfwVjsbfh3+9Nw+5rpc20/5GVVYcHhlp54PIaaiC+YR58dz80Hww3V04Le8m5I+Olc0fGS5LqoDLipRqspZVUFrrTifPwETNrrEC5y/dyXcYq4CMDmvPzpN4M6Xxhyvd+z8hjQdRgtod3AiCk+12XfEIqz6UxccEa9u2fST3fJKICjGRhUMjl9Os0SiakqojyrlxLKo9NmzbxySefsG/fPjZu3Mjo0aMBTIn7hSYsLIylS5fSt29f1qxZUy1zkEgklcxZSikAtYACySpsZKV4FDTnrJTyHK2c5XuU0X3PHG7GcDp94q5mZLORALh0V+nnqQI2f7oHVdfRFAWL7pVDqVgsXk8pT/lejfaUkkopSe1ExkuSiwX57nsJkLZgAWlrj6CHe2XoimnSWRa5TiPgSogMpFm9IJL2GR/cVeZb4Mhiz94/uP5MNDSfbG4Os1/axpMuVzorN71PgGMHAA7Nzv92j2H6iK70iby8Zns11FbOCqBlaurCMmPGDJKSkrDb7XTu3JmVK1dSt27daptPeHg4zzzzTLWdXyKRVDaFPaXA6G4HkOOXxq6YZTQ77VErnZ0k8ial9DI8pTxZKb3M7nuFy/fKSkop3iQWAhUVf5uhRqiOpJTraBYKOhqgetsXKiqKRSHXqaHr3qTUBZ9a+fH+HWVSSlILkfGS5GJAvvteAqTsO8TmOs3JcRxGwQjDFGv5/vS5LmMFcdPJP/l66Q8czz4OVKFSavEDHE4+DG2nE+zOpJtIJaJ+RwbUDama89UCPlp9kKS9r9E3bjHXeJo32H3q89KoCcSFV03ZikRSnXTs2JENGzZU9zQkNZCa/L1WUssoTinlSfZoFidbo5cz0kxKnbWrd2HPXXpSyms2rJWplPJ03yuv0bklf+5CF2ZM5tScpZ+nKhAC0NEUsAjvApmFhZv/5pEvt6HpRvxmUWrw4plUSklqKTJeklwsyHffS4CUbB90EYlNO44bsOgu6oRGlmvfPE/53tf7PiXHus3cXs+/XlVMFU7tIcNq+Pa0c5/g/9o1hNhLt3vS7qSn8T+zjJ5RZwDYdboZcZGt6dN+NCEhMiF1IVCk7Z5EIpFcfHjVsIXK97zJIdAV3cxFibOVTqpXKaVTGhbT6LysuXjOW16jc1MdLTj61xksJ5tQP7R1tSil0EFBw3HyBhqe1oH9KIrKnwfS0DwXrljPUL9u7IWfW3mRSSmJRCKpVuS77yWA220EBTm2M9iB4IzD9IgdUeJ4l6bz6+4TpOe6SM02Vt0ceiYAj3R5hAj/CK6IvaLS55mtaayzxLI+IAGAkPhOENuojL0uTk5k5HHrez/xaMcFhBXwi+vX7Tma17/wnXUuTYqWdkgkkpqC1ExJzhNTKVW0fE8RkN+zuKhySbF6lVLuUk9hekqVt3yv3EqpfO8rZ54Gx/xom9sbl55S+nmqAF3TQfdFT72WQOcvaIDN12Y+rHH1N3PG/zOC/N664HMrN2ZSqnzWFhKJRCKpXGRS6hLA7amVd6sO7IAqdKx2vxLHL9p8lIe+2FJom4tMVGBok6GE+YZV7gR1DX6ZxiPuFnzdJN9HKsR66QUHui44kbqJzdufZkzzUwCkO4L49tB43rqlH0GBDat3gpcgZmpK5qYkEonk4sFUSuW/uXuTPYZSqkBp3tmCqHIqpVSvp1R5jc4pX1LKmzzzD7HRYWADNvx0CIturRallBA6iqdsT8c4f8uesRzwXoOioSgCpSYnkqWnlEQikVQr8t33EkDzdIcRGP8qQqD4ltyi8+iZXABiQnxpHhVEQj1/Fpw4DYCvpQpasx5aDatmsafT++ADTXKOEFGvKbdEh1f+uWowmi4Y/vYqOgS/T5/43dTz/Ini6l3G+/3HYrPUYD+Gi5Ga3ClIIpFIJOdJUTWs11NK1UGUUr5XfqVUOT2lvOV75e6+50meKYJ6jYwW2xZhJfcCe0ql7E0i/fhG3EomeWfeQ4gcFMA/2A9vfsxbkqhKTymJRCKRlEAN/oSQnC856WdY/cV8TrqNIEV4VuAUQLGXnFzK9fhIDWgTxdw7LuPeq2PN7+c+Fp/Kn2j2CQDSfAwF1ptNI1jYpSWdLjHPpL9PHyMrcxtRAYaZ/NLDV6OHvU3n9m/IhFQ1YnZDkmV8Ekn1I3PFksrCmyTJPQPLX4ajm/LL91DK8JQyxgmXi6QuXUl+9NFiT+Htvlem0tbsvle68ip/6p7z6zqq1fhdFZYLrpTa/NNiXHmncWVlgchE8Sx+1q3f0EyseT87lZq80COTUhKJRFKtyG+6FzGblnzPqu++IT3Ma0ruSUoJzHbGxeFNSvnZjDEOzQEYHfcslVxvn6Pp3J4aRr9O75FiqwNAWP2OlXqOmo5b05m3KokdW4bwdPeZtAz7C4CJg26gX4eBWKpCnSaRSCQSyaWMPdD415kJy1+Cr+7ML9/TQdEFwuvxpBXOKlnr1MEaEw2AnpVFxqLvEMWoprx5mE/WHmbgf1aw/mBq8XMxk2Hl9JTyjNc1DYvFOImqW9h4fCNjfhzDk6uexKVVfYLK7XQayT3PdHX/dnBvL5p0viw/oacY11Q7lFKXnm2ERCKR1ARq8CeE5Hxx5mQTElDfSEIBEeme8j0EiqXk1SBvxz27VeGun+/ipsU3AeBrreTkyJE/+eOj2/lJq8O2oGboikqI1UI9u61yz1ODEULj103vkfTXy/io6Wi6SqYrnJCQLkSE96zu6V3iGIG+WU5RnVORSCQSSeUS3gQGTYfW/zRu56aZCiRbnuDWn+Nx56407jvb6Nxmo8kPP9Dom6/NbULTOJsmEUbiK9PhZvexTL7bcrT4uVSwfE+x5HtaeZVSFmEhw5nBxhMbWbRvEVtObintEJWCrmtG5s07b4sv1mDDeyDfR8uTlKqJXznWvQ9vdIL184zbUiklkUgk1UIN/ISQVBa6rhEX2ML8I9tcXk8psMXFlbhfrtMYl+U+zR8pf3A6z/CTSghNqNwJ7vyW9NwsAFpn/cUnPkn82rU5fpdIqdrqvadY8NsnqBnTuabBCgCyRQuatV1Kl86fYbUGVfMMJRKD22+/HUVRUBQFu91O06ZNee6553CX4adSFsuXL0dRFM6cOVM5Ey0HBw4cYNSoUcTExODr60tcXBzDhw9n9+7dhcYtXryYK6+8kqCgIPz9/enatSvz5s0rNObgwYMoisLmzZvLff5nn32WFi1aEBAQQJ06dbjmmmtYu3ZtoWOOHTuWRo0a4efnR5MmTZgyZQpOZ+leMSkpKYwaNYpmzZqhqioPPPBAuebzzjvv0K5dO4KDgwkODqZHjx78+OOP5v2pqalMmDCB5s2b4+fnR/369Zk4cSLp6enmmHnz5pnPj7N/Tpw4YY5zOBw8+eSTNGjQAB8fHxo2bMiHH35YaD7/+c9/zHPFx8czadIk8vLySr2Gr7/+mv79+xMeHl7hv4fkEkZRoNs9cNXjxm1dI6ReFKFR0eYQIYz3uCLle4Dq64u9UYEOwcW8H47oHMfPk3ozsosRc5XoLeUp36O83fc8yTPN7SbjVDJCz6SebzSzrppFTEAMAE696v2ldE2j4FcJXVGwKBaSs5L59fByAE7lngRqaPnen+9D6j5weN7PwptW73wktR4ZL8l4ScZL54ZcEriI0TUNVbGjCI/iw6P1CBk0CL82rYuMn/VzEj9sP8axdOMJrajGG2hsYCyzrppF09BK/rB2ZJBhNXyj4mNa0qdzm8o9fg3m4NHf+HjpIpqG7iUqEo5m1cPufxmDut9JcFBwdU9PAmbdhekpdYlLpQYOHMjcuXNxOBz88MMPjB8/HpvNxuOPP17dUwPA6XRit9tLHeNyuejXrx/Nmzfn66+/Jjo6mr///psff/yxUKD35ptv8sADDzB58mTeeecd7HY73377LePGjWP79u3MmDHjnOfZrFkz3nrrLRo3bkxubi6vvfYa/fv3Z+/evURERLB79250Xefdd9+ladOmbN++nbvuuovs7OxSz+twOIiIiOCpp57itddeK/d84uLiePnll0lISEAIwUcffcTw4cPZtGkTrVu35ujRoxw9epQZM2bQqlUrDh06xLhx4zh69ChffvklADfeeCMDBw4sdNzbb7+dvLw8IiMjzW0jR47k+PHjfPDBBzRt2pSUlBT0At3LFixYwGOPPcaHH35Iz5492bNnjxngz5o1q8RryM7O5vLLL2fkyJHcdddd5b52iQTIL9kSOja7D3e8Npt/Lb4dv+VHaJLhef8vJikFoFjzw+jiy/cUmtULIjbUUA9pJVlGqYU9pcpMSnmUUi5HHt+/ZnQttvtcT78Gd/De1vc4mn0UXZTPn+p80DUNlHyFFwpYVKOMMMeVa47zt/rTKKRRCUepRrzG8ENmQf0eENmyeucjuSiQ8ZKMl2S8dA4ISYmkp6cLQKSnp1f3VM6Jn955XXz/6Adi5p33iZk33yFeG3GdmDFyiFj6wTvFjm/6xPeiweTF5s87a5aJNvPaiJHfjaz0ue3PzhNvfveGuPmLd0S9XzaJ+3YerPRz1ESy8lzihUWrxc9LE8TSZY3Nn/d/eEIcT8+t7ulJCnJyjxBTgsW/P39N1Ptlk3jn0PHzOlxubq7YuXOnyM2tfX/nMWPGiOHDhxfa1q9fP9G9e3eRmpoqbr31VhEaGir8/PzEwIEDxZ49e8xxBw8eFEOHDhWhoaHC399ftGrVSnz//ffiwIEDAqMq0vwZM2aMEEKIjIwMMWrUKOHv7y+ioqLErFmzxJVXXinuv/9+87gNGjQQzz33nLj11ltFUFCQue/KlSvF5ZdfLnx9fUVcXJyYMGGCyMrKEkIIsWnTJgGIgwdLfr85fPiwsNls4sEHHyxy3xtvvCEA8ccffwghhHkNmzZtqviD6sH7ObN06dISx0yfPl00atSo3Mc8+7GqKHXq1BHvv/9+ifd//vnnwm63C5fLVez9J06cEDabTXz88cfmth9//FGEhISI06dPl3jc8ePHi6uvvrrQtgcffFD06tXLvJ2W7RBbjqSJ1DO7RHr6VuFyZZn3VcbfoyClvWZre3xQFdTax+T0fiGmBAsxLcrcdNsPt4m7Huotvh77hDgyeYVIeW9rsbvqui52Nm8hdjZvIVylPLffXLZHNJi8WEz+ckvxAw7+LsSUYLHi5RFiypQpYuHChaVOWdc08dVLU8Tbd44Sr402Yru37npZCCHEjd/dKNrMayN+O/JbGRd+fhw+fFi8OuVpMePxqeLN20eKGSOHiBfunirmbJkjFv61UDSZ9qJoMHmxeP3XTSLbmV2lczlnXmtr/O0P/1ndM5EUQMZLMl4qDhkv5VOeeKk0amK8dGnUSV2iCF1HEzoi4wBCO4GmGKaXIRGRRca6NB2Xx8jzgzFdWPpgbxpGGStIfla/yp3Ywd+ZvHED0wKu4Jfw7gDUtV38oj1dd5C4+Xv2H/kKVdHIdftwMPsKYmNv4Zar7ycyWBqaX3IIAc7sC/9TCbIvPz8/nE4nt99+O+vXr2fRokWsWbMGIQSDBw/G5TLeb8aPH4/D4WDFihVs27aNV155hcDAQOLj4/nqq68ASEpKIiUlhddffx2ABx98kN9//51FixaRmJjIypUr2bhxY5E5zJgxg/bt27Np0yaefvpp9u3bx8CBA7n++uvZunUrn332GatWreK+++4DICIiAlVV+fLLL9GK8X8B+PLLL3G5XDz88MNF7rvnnnsIDAzkk08+Oe/HD4zVyjlz5hASEkL79u1LHJeenk5YWFilnLM0NE3j008/JTs7mx49epQ6n+DgYKzW4t+3P/74Y/z9/bnhhhvMbYsWLaJLly5Mnz6d2NhYmjVrxsMPP0xubr6aomfPnmzYsIE///wTgP379/PDDz8wePDgSrpCiaQYvD5Cev57gqqo6Kow3yu1tDyyfk/GmZJdaFdFUczGMcUppczjebrwaSUorvK775XTU0pV+edjz/Lv9+bTrFsfz/SN+Vs8x9L04t/jKos///yTLFRWRm0k2Z7jmZhiPHZCx+vLWMe3Dv42/yqdyznjNTgvxWdVUkOornipEmImGS+dPzJeuvjjJfkufBGjae5Cbewjnc3JbOmi05DhRcZ6O+4BXJ5QlzOOUxw7cQwwZNeVRvIGmDeYo10/Bv8G9Du9mgbx7bgzrlXlnaMG8u3mZDJPvEm09QtubmFsU20JDOk2m6gQmYyqmVwAo3NXDrwYUxVHLp0njoI94Jx2FUKwbNkylixZwqBBg1i4cCG///47PXsaxvzz588nPj6ehQsXMmLECA4fPsz1119P27ZtAWjcuLF5LG/gEBkZSWhoKACZmZl89NFHLFiwgL59+wIwd+5cYmKKPk5XX301Dz30kHn7zjvvZPTo0aY/QEJCAm+88QZXXnkl77zzDrGxsbzxxhs8+uijTJ06lS5dutCnTx9Gjx5tzmvPnj2EhIQQHR1d5Hx2u53GjRuzZ8+ec3rsvCxevJibbrqJnJwcoqOjSUxMpG7dusWO3bt3L2+++eZ5SeDLYtu2bfTo0YO8vDwCAwP55ptvaNWq+PfkU6dO8fzzz3P33XeXeLwPPviAUaNG4eeXv6Cxf/9+Vq1aha+vL9988w2nTp3i3//+N6dPn2bu3LkAjBo1ilOnTnH55ZcjhMDtdjNu3DieeOKJUmZ/idfVSs4fs3wvPw6yKBZ0BTSvp9TpPM58tx812E7ME90K7a5YrYbJeWlJKU85eEk5KXMOTsNnU6RsAcc14BNY9vStxr66W+PHd7fRMOMytkVsq/LyPa9HzjH/ZFqJaEAgELSp24bkrGS8n6FqDbSSMvF2KJQG5zWf6oqX4JxjJhkvyXipZsVLNRuplLqIcTvc6OQHJQFaMOEJUajFtLzN85ibqwq8t20213x5DTM3zAQqWSl1ej8A6VbDN+kxWzLTOnYi1rf02ubaTNLhX1m35QnsrqUAHM+OII9WdG07USakJLWGxYsXExgYiK+vL4MGDeLGG2/k9ttvx2q10q1b/pe08PBwmjdvzq5duwCYOHEi06ZNo1evXkyZMoWtW7eWep79+/fjcrm47LLLzG0hISE0b968yNguXboUur1lyxbmzZtHYGCg+TNgwAB0XefAgQOAsRJ57Ngx5s+fT48ePfjiiy9o3bo1iYmJ5X4syvJiACPYLDiPlStXmvf16dOHzZs3s3r1agYOHMjIkSMLGVx6SU5OZuDAgYwYMaJQ7X/B444bN65cc165cmWh/ebPn2/e17x5czZv3szatWu59957GTNmDDt37ixyjIyMDIYMGUKrVq149tlniz3PmjVr2LVrF2PHji20Xdd1FEVh/vz5XHbZZQwePJhZs2bx0Ucfmat/y5cv58UXX+S///0vGzdu5Ouvv+b777/n+eefNx/TuMgwujePIz62M6tXbyjXtUskpeI1GS+gLFIUBV0VJOfs5a+sw2QGGF2B9cyiBrpmJ7wS1AQAFjMpVUJWyjfUOJbmAMB1PInsLd+WqFAoiM3HmJsQOvs3nSRmX1sisxqgiapVSum6Tlc246Nmo3ouK9ot6BbdzUiImX6mNTgr5VVKqZdO12dJ1SPjpXxkvFR98VJJj2lNRS4NXMRoLjdqgQBIFYKQiOJX3bxKKT+bhS0nNwNgU2342/zp16Bfpc1pY7aLlLpXkG4zOssF9X8G7D6VdvyaRFq2k2nf7+LykMfoE3/K3J7pP5WhPa8m2FcGQTUas1OQ8Rr68thpNp1JN1a0Pe27WwT48mDDqHM/h83fWIG70JxDKUWfPn1ME8uYmBisViuLFi0qc78777yTAQMG8P333/Pzzz/z0ksvMXPmTCZMmHAuMy9EQEDhlcusrCzuueceJk6cWGRs/fr1zd+DgoIYNmwYw4YNY9q0aQwYMIBp06bRr18/EhISSE9P5+jRo0VWG51OJ/v27WPAgAFlzu3aa68tFHzGxsYWmnfTpk1p2rQp3bt3JyEhgQ8++KCQCerRo0fp06cPPXv2ZM6cOYWOXbBbSnBw+RojdOnSpdB+9erVM3/3dggC6Ny5M+vWreP111/n3XffNcdkZmYycOBAgoKC+Oabb7DZin//ev/99+nQoQOdO3cutD06OprY2FhCQkLMbS1btkQIwd9//01CQgJPP/00t956K3feeScAbdu2JTs7m7vvvpsnn3ySa6+9lpbtOnL0TB5RgSeJj6l6ib7kEsBcqBOg66CqRgmaAm7hZEvGbvZq0QwKsYEw1A+FOsl5yjJKK9/zDi+xfK9uU7jhQ5RNu2Cfm500Y+cPfxG86nXuu+++Ur/YeZNS8S1CyMzwIfuMA6tmr3KllK7rNCAZDfIb6gjjsdCFjqgNSikzKSW/DtV4qite8p67Ash4ScZLNSFeKukxranId+GLGGeuC83lTfhYUISOelZNq6YL1h44TdKxTAD87BYcnpW6V3q/UnkJKWcOm7YvY3BeK2g9zdwcepF6SWmag583LWbvkb8YGH4agL05/2B4l970jSr7DVpScwh3GAnFHdkOdmQ7Ct2XGhrIgw3P4+CKcs5ldBcab2BQkJYtW+J2u1m7dq0pRz99+jRJSUmF5Mzx8fGMGzeOcePG8fjjj/Pee+8xYcIE84tWQTVA48aNsdlsrFu3zgyM0tPT2bNnD7179y51jp06dWLnzp1F5lkaiqLQokULVq9eDcANN9zA5MmTmTlzJjNnziw0dvbs2eTk5HDbbbeVedygoCCCgoLKNQdd13E48p9bycnJ9OnTh86dOzN37lyz/buXilyfFz8/v3Lvd/Z8MjIyGDBgAD4+PixatAhf3+IVnllZWXz++ee89NJLRe7r1asXX3zxBVlZWQQGGosje/bsQVVV4uLiAMjJySlyrRavCkUIgoKCaNykKdbUHOKC/LEqLhyOE7hcqQDk5SV7/k0hN9dIWNntdbFYaqifjaRmoBR4zgkNMJJSQjESSBH1A/D1DYAsj0pKBwoIzs0OfKUkpSxqGUopgDbX06BOMn4HZ5OrGSfIyMggLS2t0Jeis/F24guL8UfDTvYZB6pQL4hSSkGgKQqKt/mej/Glr6CnlKrU4KyU9JSqPch4CZDxkoyXyh8vlfcxrSnId+GLkOwzDr6avoG0lHBUa6hnq4KqO1EthbO1X234m0e/ypeH+tut5LnzAPC1VGJp2Zq32b/jD2j5NCGuTFpYHfRq1Jpga9FSwtrOH/tPs3fvNKKti5jY0dgmsDOyzzTqBMhyvVpDcAwERTPp0Ec0yz5IrupJ8Pb4N9RpCECMz6WtdktISGD48OHcddddvPvuuwQFBfHYY48RGxvL8OGGd90DDzzAoEGDaNasGWlpafz666+0bGm03W7QoAGKorB48WIGDx6Mn58fQUFBjBkzhkceeYSwsDAiIyOZMmUKqqoWVicUw+TJk+nevTv33Xcfd955JwEBAezcuZPExETeeustNm/ezJQpU7j11ltp1aoVdrud3377jQ8//JDJk4226vXr12f69Ok8/PDD+Pr6cuutt2Kz2fj222954oknmDZtGm3atCl03qSkpCJzad26dZHVsezsbF544QWuvfZaoqOjOXXqFG+//TbJycmMGDECMAKsq666igYNGjBjxgxOnjxp7h8VVboqz7uyl5WVxcmTJ9m8eTN2u71EvwOAxx9/nEGDBlG/fn0yMzNZsGABy5cvZ8mSJYARYPXv35+cnBz+97//kZGRQUZGBmAYoXqDIIDPPvsMt9vNLbfcUuQ8o0aN4vnnn+eOO+5g6tSpnDp1ikceeYR//etfppfCsGHDmDVrFh07dqRbt27s3buXp59+mmHDhhU6D4BbV7FaQNOyOXkynb//TuHYMeOx2rVrO253FvXq1aVhw1AsF9/HjKQyKaiS0TWw2DxG58amiPoB+PoHw3aP4lnXKfikKk/5nlpW+Z6H2NhYJrdKgW1fMMPnIbIceqE24MWheJReuq6hWjyJIGGpUqWUy6Fx5mQOKrpHKWVst4WHG3MpWL5Xg3NS+Z5Sl/ZnuaTqkfGSgYyXDC5kvFSQ1NRUDh8+zNGjhurQ+/eIiooq8zGramRS6iLk+IEMMlPzUBU/8HhKKQKiU9aQbm1WaOyhVKOTTGSQD/XD/Lnpsvp8fMSTlLJWYgIl7SAZViPbe7k4zgcdOkFYUWO82k5W1h4+XT6PrhFrwArHsiMICwqjVaPrZEKqtmHzg/u3EJqTymiLHSw2sNiNH1Xa8XmZO3cu999/P0OHDsXpdNK7d29++OEHM8DQNI3x48fz999/ExwczMCBA3nttdcA4wvY1KlTeeyxx7jjjju47bbbmDdvHrNmzWLcuHEMHTqU4OBgHn30UY4cOVLiipOXdu3a8dtvv/Hkk09yxRVXIISgSZMm3HjjjQDExcXRsGFDpk6dysGDB1EUxbw9adIk8ziTJk2icePGzJw5k9dff53sbON98pNPPuGmm24qct7ith05csRc0fJisVjYvXs3H330EadOnSI8PJyuXbuycuVKWrduDUBiYiJ79+5l7969RfYvqyNXx44dzd83bNjAggULaNCgAQcPHixxnxMnTnDbbbeRkpJCSEgI7dq1Y8mSJfTrZ6hkN27cyNq1a4GiK44HDhygYcOG5u0PPviAf/7zn6YJa0ECAwNJTExkwoQJdOnShfDwcEaOHMm0afnK2aeeegpFUXjqqadITk4mIiKCYcOG8cILL5hjbBbjtXcqNwx/ax4xob4sXbqcu+7KL0H4178eBeDJpx7huak9S33MJBIK+mx61EUqKron06K7NVRL/nu+0EVhlySzfK+UpJRXKVWePJEnSaZ6z1/GTt656ZpmnkcVlipVSu3fdILsUzmodh0NJb98z/PZaDTZ8SalamhWSgjQpdG55MIh4yUZL3m5EPFScSxatIg77rjDvO39e0yZMqVE76sLhSLK+qtdwmRkZBASEmK2c6wt7F2ZzJEf/mB3ro47G5wZH2F1a/TfcZDj7z3JVVfkZ2WnfreDub8f5N6rmjB5oNEWrv+X/UnJTmHB4AW0jWh73vNx64Kkbx5kfm4QH8b+k5ujw3itRf2yd6xFpOe6WJ50Ar+0G7GIFHP7QeW/3NSzLwE+MuC51MnLy+PAgQM0atSozGBBUpjs7GxiY2OZOXNmEUPIC0Fqaip9+/YlODiYH3/8EX9/WQ5WneS5NFya8UU9qAq9+Up7zdbW+KAqqbWPiSsPXvCUxz12BHyDmfjLRI7/tp7LdofR8vKrCKl3LQ02Hgcg5pnuqP75z7u9/frjOnKEhp9+gl+HDsWeYsHawzzxzTb6tarHe7d1KXaMycLxsPl/vO73IGm5gn/961+FPF7OZu03n7Pq049p06c/OdmXc/SvMyQmzOW2a//BPxP+WaGHorxs++kQK3//miv4hmdDGtN5aw4+jhxiW93GTVNG8vGOj5n69Wm07GbMGtmef3aKK/ugFxpdg+c8vnSPHgB/6VFXU5Dx0rkj4yVJdVAZ8ZJc7r8IUU7nssN2kDRrJnjk26rHrNlqLWyWmVfA4DwpNYmlh5aS5WlJ7GOtBANyZzb3bt1N37AxfBhrBEcXW8meEIKXv1/Hk1+tNBNSm092pHGjB/jXVf1lQkoiqSCbNm3ik08+Yd++fWzcuJHRo0cDmBL3C01YWBhLly6lb9++rFmzplrmIMnH12YhyNdWpQkpySVEMUopi2Ixy/d0TUO15qt9xFlm5d7yPefhw7iOHSv+FJ7dy7UO7JmPd5+ylVKe8sGzyveqUil1YtefCEWwKW0sV++9DV+38cXT4lWNFVBK1VhPKW/pHhR+DkgktQgZL0kuFuS35YsQoQs0dNyKRn75nhEIta3XodDYXKcRtDhFFiO+G+MJJAz8reeZ3T65B97tzfaO74N/HOHONML8g7g2IvT8jluDWLHnJMcP3sc1Yeu5po+xTRM2GjR5jUaN4qt3chJJLWbGjBkkJSVht9vp3LkzK1eupG7dutU2n/DwcJ555plqO79EIqkilAIJCd2IiRRFMY3OTxzcT07mT8SK9kaC5eyklKdhy9FHDZ+VmFdfJWTY0EJjvGV1JXbfKzTYOJ6lgkkpXctPSilCRdOrLimVvGMlekwDHHooAG7FgQVo2sXwJDE8pYyxNTUnZZqcg/SUktRqZLwkuRiocqXUyy+/jKIoPPDAA4Ah65swYQLNmzfHz8+P+vXrM3HiRNLT0wvtd/jwYYYMGYK/vz+RkZE88sgjuM/qbLJ8+XI6deqEj48PTZs2Zd68eUXO//bbb9OwYUN8fX3p1q0bf/75Z1Vdas1BE+gIfIUT8PgjeIIDf1/D18mt6SSfySU1x1gpytMyEAj8rH50iuzELS1vITbwPNtHHt0I7lwyPcmtLw+8yspODekcUju6Z5RFRsZ2vlzxCmHW9YW2x0YN4YYuMiElkZwrHTt2ZMOGDWRlZZGamkpiYiJt255/KbFEIpEUQVXxqnq8SSlVUXHajGRQWkoyR7YvQXgW+c5WSoVcdx2WsDAUH0Nd7kjaXfQUnsyMVh7DjLM8pbRSDNShgNG5lu99VdVKKXQdgUAXxrlz7EYMHxFfsPueMZca5yl1bDt8Mgo+KeBtIz2lJLUUGS9JLhaq9F143bp1vPvuu7Rr187cdvToUY4ePcqMGTNo1aoVhw4dYty4cRw9epQvv/wSMD6AhwwZQlRUFKtXryYlJYXbbrsNm83Giy++CBiGYUOGDGHcuHHMnz+fZcuWceeddxIdHc2AAQMAw9n+wQcfZPbs2XTr1o3//Oc/DBgwgKSkJCIjI6vy0qsVR3YWCi4iSCULI0DwKqWwWBFC8I//rmZbcn4iUFGN5FTjkMZ8NOijSppIJgBZNqMlZcCYb8CvEkoCqxm3prPir5NoKbczvHEaAC4RijP8K4a2i0ZVa/81SiQSiURyyaBaDOVMgfK9w/VyWd88jXqpPsSf9EcXOhbFUiSzFD52LOFjx3L81VdJ/eDDYg3PvT7pFSrf89wst1JK17AVMDqvyu57igAdHeFNPHlVUd5SwkLle1U2jXNj/YeQ9H3+7YAIo5GJRCKRSKqNKlNKZWVlMXr0aN577z3q1Kljbm/Tpg1fffUVw4YNo0mTJlx99dW88MILfPfdd6YS6ueff2bnzp3873//o0OHDgwaNIjnn3+et99+G6fTCcDs2bNp1KgRM2fOpGXLltx3333ccMMNZpcCgFmzZnHXXXdxxx130KpVK2bPno2/vz8ffvhhVV12taO5Xexdswir4gRUhCislFIsKk5NNxNSdqtKfJgfDaOMpFRlddzThGB+XhAzG4whTzE+7IMuEi+pr9dv5/HPf0AVRkJq48ludGn/Ktd2aCgTUhKJRCKR1Da8JXwepdTQxkNpENaI5FYW9sUZ3aRKUkrlH8Ljp1RM2ZyplCpX+Z4xF0uFu+/pBTyl1CpNSoGCJnQ012l091EsnktWPd33NF0DUUM9pTwLprQdAf+YA/9aUoNrDCUSieTSoMqSUuPHj2fIkCFcc801ZY71urFbPQaJa9asoW3bttSrV88cM2DAADIyMtixY4c55uxjDxgwwDRVczqdbNiwodAYVVW55pprLmrjNUdODrrbiRBuHDln0F17gYJKKQt5rvxAZfuzA1j56NX4++YB4Gf1q4RJZPHr/h08pLXg1Yb/AsBHVQi01O6k1InMPJb9+Tzh2f/gxcuNtpwOLYAmCdOpW/fqap6dRCKRSCSSc8JrdO1ZyLsi7gq+ve5bHun6CLo3OeRN8pRQg6d4F96KUUp5EzN6uZRSnvI9yle+p6r5RueKemGMzhUh4PQh8jI/w5n5KX5OT9mgV7VFfpxZ45RS7lzj3/o9oP2NEN6keucjkUgkkqop3/v000/ZuHEj69atK3PsqVOneP7557n77rvNbceOHSuUkALM28c8nU1KGpORkUFubi5paWlomlbsmN27i9b7AzgcDhwOh3k7IyOjzPnXNHS3G0VRITeD7NP7ze0Wz+qcYrHg8HTcs6gKVhX2p+/nSOYRoBKSUq48eLMTKUGXQbOHic9N4SofB1e0vsqUlddGdF3nxnd+4bZmidQPBl0oKIpKkwY30LxZDWx1LJFIJBKJpHx4lVJbv4CAutCoN4Q3QVVUswuft/SuJKUUBZJDZ2PxxD9liJ48x/EanZdXKWWcd/+m9ajqFlR7rypVSum6jmZR0Z2Zxsq24kembxbtWnSjbv2GgPFYCa9PFzUs9nN5klK2SliElUgkEkmlUOlJqSNHjnD//feTmJiIr2/ppWAZGRkMGTKEVq1a8eyzz1b2VCrMSy+9xNSpU6t7GueFrmkoqKB5kmuKL6G5guYnjxNwxRWoQUHkpuYA4GtVmb5+OvN3zTf3P++kVEYyZB0nvY5hqN49dx+vtusBkaHnd9xqZv3GW3mqyx/m7R9SXuap64YRHijL9SQSiUQiqdXY/MCZCb8aKmjCm8KEDVgUC5o3OeRR/2QsOYglzJfgq+tjCbKbhzCVUsUom7xrchVTSumApcykVETDxlhsNjSXC11zIlx/EZnVHNeOAE6HZxEeE1j2OSvAp598woH4MHyPpKICVr9eLL78E54d+6w5pqDReY1bj5RJKYlEIqlxVHr53oYNGzhx4gSdOnXCarVitVr57bffeOONN7BaraYMOTMzk4EDBxIUFMQ333yDzZZvMhgVFcXx48cLHdd7OyoqqtQxwcHB+Pn5UbduXSwWS7FjvMc4m8cff5z09HTz58iRI+f3YFQDmuZGVVRTgq5YwlHjGnL52nXUf28OiqKY5Xt+dgu7Tu8CINAWSHRANAMaDjiv8+9LP8Oc2BtYWbcXACHtroO4zud1zOpk7f7T9HzxOzIz8hNSAQHNmDnqWpmQkkgkEonkYmDgS9BiKDS60ridfRIwuvAJjymnQzOSGXlJaWSvSSFnY+H4Eq/Jt1Y0iZTffa8cSSmPasvbfW/Lli389ttvhZT8BYmo35B758yn3133GRuETuPU9ujL6/F/L63gh/0/ln3OCnDYExsr5qUoqGd9m9CFXvM8pYSAzGOQ56mCsPlX73wkEolEYlLpSam+ffuybds2Nm/ebP506dKF0aNHs3nzZiwWCxkZGfTv3x+73c6iRYuKKKp69OjBtm3bOHHihLktMTGR4OBgWrVqZY5ZtmxZof0SExPp0aMHAHa7nc6dOxcao+s6y5YtM8ecjY+PD8HBwYV+ahu621BKKZ4VPQUFxfNX1nXB+oOprN53CgAfq4VcT2399N7T+fmGn+kd1/vcT35gBf/en8YzTSfwW7DRjjTcVnvb7J46vZzde16hb+wXAOS5ffju+Hy6XfY9qmovY2+JRCKRSCS1grY3wE3zYainWY4neWRRLWieGGrtqaVsz9U47TbiKz2vsCJK8fpSae4ihzc9pSpgdO5vMc5z4MABfv31V9NTtTh8/P3xDzWaCim+bg6H7gTA5vLls12flX3OCiA8ZYH19BDjfKgoauHrMpRSnqRUlbnXVpBv7oGZzeH4NuN2JTX2kUgkEsn5U+kfFUFBQbRp06bQT0BAAOHh4bRp08ZMSGVnZ/PBBx+QkZHBsWPHOHbsmKmi6t+/P61ateLWW29ly5YtLFmyhKeeeorx48fj42OoU8aNG8f+/ft59NFH2b17N//973/5/PPPmTRpkjmXBx98kPfee4+PPvqIXbt2ce+995Kdnc0dd9xR2ZddY9A1N4qigOkloIInTlrw52FumL2Gqd8ZwYq/3YLDU+Z33l33clLh//5Bsid665e7h9tj6zIqOvz8jlsN5Lk0Ji5Yy4ZN44izf8VV8b8DEBLUgNdu6mZ4dkkklxC33347iqKgKAp2u52mTZvy3HPPmR1Tz5Xly5ejKApnzpypnImWgwMHDjBq1ChiYmLw9fUlLi6O4cOHF/EaXLx4MVdeeSVBQUH4+/vTtWtX5s2bV2jMwYMHURSFzZs3l/v8zz77LC1atCAgIIA6depwzTXXsHbt2kLHHDt2LI0aNcLPz48mTZowZcoUs/NsSaSkpDBq1CiaNWuGqqo88MAD5Z6Tl5dffhlFUYrsu2/fPv7xj38QERFBcHAwI0eOLKJCfuGFF+jZsyf+/v6EhoYWe3zvc6jgz6effmre//XXX9OvXz/zPD169GDJkiVlzvvrr7+mf//+hIeHV/jvIZEUizcppVhMo/M8aya0CifV7fGWchdWRHnL90QxRuemp1Q5clLe8r2r/HZzVZsYIurWBShRKWXu5unCV7deMCPH9zK3u8swSq8ouq6Tbc1mv4+3mkA1DdbNMeQnpZSa4il12NPkSFGN8syYDtU6HcnFiYyXZLwk46Vz44J/u964cSNr165l27ZtNG3alOjoaPPHWy5nsVhYvHgxFouFHj16cMstt3Dbbbfx3HPPmcdp1KgR33//PYmJibRv356ZM2fy/vvvM2BAfvnZjTfeyIwZM3jmmWfo0KEDmzdv5qeffipifn4xoWsaoKAo3iBEMYOFQ6eNtsZ1A31oFxfCPVc2Ic9tdN3ztZxnUir7JOhusiwBALzYqgkvN4ujno+tjB1rFrruYtWGZ2lgeQGr6sKp2VhysA+24NG0bW28AUkklyIDBw4kJSWFv/76i4ceeohnn32WV199tbqnZVJWEALgcrno168f6enpfP311yQlJfHZZ5/Rtm3bQoHem2++yfDhw+nVqxdr165l69at3HTTTYwbN46HH374vObZrFkz3nrrLbZt28aqVato2LAh/fv35+RJo1xo9+7d6LrOu+++y44dO3jttdeYPXs2TzzxRKnHdTgcRERE8NRTT9G+ffsKz2vdunW8++67tGvXrtD27Oxs+vfvj6Io/PLLL/z+++84nU6GDRtWyOvG6XQyYsQI7r333lLPM3fuXFJSUsyf6667zrxvxYoV9OvXjx9++IENGzbQp08fhg0bxqZNm0o9ZnZ2NpdffjmvvPJKha9bIimEd9HJs7BXsHzPZoerbmlh9pU7OymFxerZtWgSyBs6aOXJSnkWCUOTf+Wq7Y8Qg/GFpkzDc6/RuqbRLjL/dVzZhue6LrD5bSJP8XqXqtT3jyw0Rghhlu/VmLDJq2C7ezlM2AC+IdU6HcnFi4yXZLwk46VzQEhKJD09XQAiPT29uqdSbpKTdonP754t3rj7CTFj5BAxa9R48dHDDwshhHh64TbRYPJiMXPJbnN87097izbz2oik1KTzOq/78HqR+Vw9Ue+XTaLeL5tEmtN1XserDvafzBLPfvG+WLqssfmTuGK42HAoVei6Xt3Tk9RycnNzxc6dO0Vubm51T6XCjBkzRgwfPrzQtn79+onu3buL1NRUceutt4rQ0FDh5+cnBg4cKPbs2WOOO3jwoBg6dKgIDQ0V/v7+olWrVuL7778XBw4cEEChnzFjxgghhMjIyBCjRo0S/v7+IioqSsyaNUtceeWV4v777zeP26BBA/Hcc8+JW2+9VQQFBZn7rly5Ulx++eXC19dXxMXFiQkTJoisrCwhhBCbNm0SgDh48GCJ13r48GFhs9nEgw8+WOS+N954QwDijz/+EEII8xo2bdpU8QfVg/dzZunSpSWOmT59umjUqFG5j3n2Y1UWmZmZIiEhQSQmJhbZd8mSJUJV1UKfg2fOnBGKoojExMQix5o7d64ICQkp9jyA+Oabb8o9LyGEaNWqlZg6dWq5xlbG36Mgpb1ma2N8UNVcFI9J6gEhpgQLMS1KCCHEqr9XiV5vdhQzRg4Rb429WThyXOLnib+KI5NXiNNfFI6bUhcsEDubtxBH7ptQ5LAr9pwQDSYvFm2e+Un8+38bxPsr95c8h/SjQnx6ixCvdxRiSrBYOOsBMWXKFLFixYpSp35o2xYxY+QQMffBe4XL4RZv3bNMvHXPMnHj1zdX9FEoldemPCj+NzNGTL57gJgxcoh44463RPbxHYXGTP9zumj0zBzRYPJi8VvSiUo9/znzSmPjb3tsR9ljJdWKjJdkvFQcMl4qndoeL8k6pIsMZ56LEzRFd3pWrRQVxWqsDjk8Buc+Ngurk1fzxZ4vyHYZ6ik/y7l3IdmTnUfr/QpNL//J3Bbk7UJTS9B1N9+sXU5q2gYAjmTGcFSMp1eXt+hUv45USEmqBCEEOa6cC/4jymO2WwZ+fn44nU5uv/121q9fz6JFi1izZg1CCAYPHozL5QJg/PjxOBwOVqxYwbZt23jllVcIDAwkPj6er776CoCkpCRSUlJ4/fXXAaP0+vfff2fRokUkJiaycuVKNm7cWGQOM2bMoH379mzatImnn36affv2MXDgQK6//nq2bt3KZ599xqpVq7jvPsMAOCIiAlVV+fLLL81y8bP58ssvcblcxa7w3XPPPQQGBvLJJ5+c9+MHxmrZnDlzCAkJKXW1Lj09nbCwsEo5Z3GMHz+eIUOGcM011xS5z+FwoCiKWToP4Ovri6qqrFq16pzOVbduXS677DI+/PDDUp+Luq6TmZlZpdcukRSiGKWU7lFKOXOyWfLuLFyuvQDoRZRSHqVSMYqmup7GKJkON99vS+H5xTs5k1OCWiE4Gm78P+g5wZgDxvlLes/y4i3f03W9UMyilaGwqgh5h9LxIQ83CqruUUIJBf/IVoXGFfKUqinxk258JmGpXQp+iUF1xUuVETPJeOn8kfHSxR8v1V4XakmxrFq7EZR48AQxQZl/Y/Mz2gE7PD4H6c5T3LP0nkL7BdgDzu2E6X+zdvc2zujR5qYr6wRhqSlBSDk4leVg+44HaO/3M+2bGNtiIrrQu+v9+NpqV3JNUrvIdefSbUG3C37etaPW4n+OnYeEECxbtowlS5YwaNAgFi5cyO+//07Pnj0BmD9/PvHx8SxcuJARI0Zw+PBhrr/+etq2NZofNG7c2DyW98MzMjLSrKvPzMzko48+YsGCBfTt2xcwJMwxMTFF5nL11Vfz0EMPmbfvvPNORo8ebdb4JyQk8MYbb3DllVfyzjvvEBsbyxtvvMGjjz7K1KlT6dKlC3369GH06NHmvPbs2UNISAjR0dFFzme322ncuDF79uw5p8fOy+LFi7npppvIyckhOjqaxMRE6np8Y85m7969vPnmm8yYMeO8zlkSn376KRs3bmTdunXF3t+9e3cCAgKYPHkyL774IkIIHnvsMTRNIyUlpULneu6557j66qvx9/fn559/5t///jdZWVlMnDix2PEzZswgKyuLkSNHVvi6JJJzwxO7FPCUcth0hGLYI+xZs4KE4M5Ac4TrLE8pT1KKYrxjWkYH8+HtXfg7LZdnF+1AF5idkEvEU46negoGyyzf85xf19wUtL4U5TKyKh+OQxkoQic3ZRx1cv8CTkMxnlEFk1I1Jhz0lu/JpFStpLriJTj3mEnGSzJekvFS+ZFKqYuInJwc9h82fLmEMBJQfnmpRAYZHloOz6penp4FQJA9iKvjr2ZS50mE+Z5jZvXTUWRt+xqA4SeW8dfRV/i0feMydqo55DlzGfXOV5w8bRjnpTuC0C3xdG01SiakJJICLF68mMDAQHx9fRk0aBA33ngjt99+O1arlW7d8gPF8PBwmjdvzq5duwCYOHEi06ZNo1evXkyZMoWtW7eWep79+/fjcrm47LLLzG0hISE0b968yNguXboUur1lyxbmzZtHYGCg+TNgwAB0XefAgQOAsfJ07Ngx5s+fT48ePfjiiy9o3bo1iYmJ5X4s7Payu2/Onz+/0DxWrlxp3tenTx82b97M6tWrGThwICNHjizUbdZLcnIyAwcOZMSIEdx1113m9oLHHTduXLnmvHLlykL7zZ8/nyNHjnD//fczf/78Il1wvURERPDFF1/w3XffERgYSEhICGfOnKFTp06oFWyr9fTTT9OrVy86duzI5MmTefTRR0v02ViwYAFTp07l888/JzLSUP6W9phKJJVCMUopp11ny1Vw1W13EdOsJbonvqqIUgrg6hb1uK1HQ6weRZNWlvpCqWBSSvUmpbRCSqmy9isvrrw8Th46iKIFoWX2xKIb5wuoU/TLui70mucp5VVKqTIpJalaZLyUj4yXZLxUXqRS6iIhKy2VVdO/o741hWxAKEYQogAdY4w3Im9SCsVYLUoITeD1q18/vxOnHiQzqhMAdQJCCWozvgZFICWj6YJNh0+RevB6JndONrf/eOxlZt7cl2BfGbRIqh4/qx9rR60te2AVnLei9OnTh3feeQe73U5MTAxWq5VFixaVud+dd97JgAED+P777/n555956aWXmDlzJhMmTDiXqRciIKCwwjMrK4t77rmn2JWk+vXrm78HBQUxbNgwhg0bxrRp0xgwYADTpk2jX79+JCQkkJ6eztGjR4usNjqdTvbt21eooUZJXHvttYWCz9jY2ELzbtq0KU2bNqV79+4kJCTwwQcf8Pjjj5tjjh49Sp8+fejZsydz5swpdOyC3VKCg4PLnAsYAWnB/erVq8eyZcs4ceIEnTp1MrdrmsaKFSt46623cDgcWCwW+vfvz759+zh16hRWq5XQ0FCioqIKreKeC926deP555/H4XAUkrt/+umn3HnnnXzxxReFJPKlPaYSSaVgxi8epZQn0XM6UqfzkOGkHTtKxtHDAGgncsj45TD+7SOwhvuheIzOTUVOCXiV5HpZCqYKKqW8Si2haYXES5WllPpt/lxy/jyB4hEpCIzrvGJUmyJjBYIaVb4nBGieckmplKqVVFe85D13RZDxkoyXZLxUcWRS6iJh4w/fomam4xvqNJJSeOp/heC0E1ZtOUpyWi4AimKsFvlYfEo4WvnIdrnZ7tOAff7xAAS2HAQNi0pGayLvr9zP+8tX8vIVRkLKqfkQU+8K5vQZIP2jJBcMRVHOuYzuQuMNDArSsmVL3G43a9euNeXop0+fJikpiVat8j1G4uPjGTduHOPGjePxxx/nvffeY8KECeYKWkG/gsaNG2Oz2Vi3bp0ZGKWnp7Nnzx569+5d6hw7derEzp07i8yzNBRFoUWLFqxevRqAG264gcmTJzNz5kxmzpxZaOzs2bPJycnhtttuK/O4QUFBBAUFlWsOuq4XaveenJxMnz596Ny5M3Pnzi2ywlaR6/Pi5+dXZL++ffuybdu2QtvuuOMOWrRoweTJk7FYCqtFvZL5X375hRMnTnDttddWeB4F2bx5M3Xq1CkUYH3yySf861//4tNPP2XIkCGFxlfkMZVIzomzlFIWj1rJ28FOtag4daNrsZ7mIOPnQziPZFJ3TGsUjwJKuEv3frJ4OiK7y0xKGSG6xRPPlbt8z+sppQDCrEQ8bzJPn8SCapZYCDQUwMcvP8mT43Tzn6W7+fVALLrb+AJYI5JSBTsiyqRUrUTGSzJeAhkvXczxkkxKXSQ4crJBsRQKFgAUAbN+3c8POwLNsYrFSEr5WouXH5aLI38yen8ef3R809wUZKkd5W4nT/5MQ/f9vHyFsWp2Oi8KW/RntG8XV80zk0hqFwkJCQwfPpy77rqLd999l6CgIB577DFiY2MZPnw4AA888ACDBg2iWbNmpKWl8euvv9KyZUsAGjRogKIoLF68mMGDB+Pn50dQUBBjxozhkUceISwsjMjISKZMmYKqqmUmjCdPnkz37t257777uPPOOwkICGDnzp0kJiby1ltvsXnzZqZMmcKtt95Kq1atsNvt/Pbbb3z44YdMnjwZMFYIp0+fzsMPP4yvry+33norNpuNb7/9lieeeIJp06bRpk1hZUBSUlKRubRu3RqbrfCXn+zsbF544QWuvfZaoqOjOXXqFG+//TbJycmMGDECMAKsq666igYNGjBjxgyz9TFAVFRUqdfvXdnLysri5MmTbN68GbvdXijgLUhQUFCRawkICCA8PLzQ9rlz59KyZUsiIiJYs2YN999/P5MmTSpUInD48GFSU1M5fPgwmqaZc2natCmBgYF89913HD9+nO7du+Pr60tiYiIvvvhiIYPUBQsWMGbMGF5//XW6devGsWPHACNADAkpuX2797xHjx4F8v8eUVFRZT5mEklhinpKAWiekj1VVUnJ3c+OjP20a9cB7WAGeq7Xq8gIqd0nTpD+7bdYo6Lxv6xrkfctb1JKKysp5UmQeY3Oy+8p5Yn/FOMyKksp5chxEqD4oZiHM35RCsR+05f/wLwVFiDS3BbqXwOSQN7SPZDle5JqQcZLBjJekvFSScik1EWCrumoiqWAYttbvifIcBmBQ/fGYUSH+BEfsQ2SwddyjkmprJPw4UB291gINqifd4yIyMYMiSz5RVAT0HTB6Pf/oG3AXLpH53e96ZAwmGYJMiElkZwLc+fO5f7772fo0KE4nU569+7NDz/8YAYYmqYxfvx4/v77b4KDgxk4cCCvvfYaYMiJp06dymOPPcYdd9zBbbfdxrx585g1axbjxo1j6NChBAcH8+ijj3LkyJES6/i9tGvXjt9++40nn3ySK664AiEETZo04cYbbwQgLi6Ohg0bMnXqVA4ePIiiKObtSZMmmceZNGkSjRs3ZubMmbz++utkZxtdSj/55BNuuummIuctbtuRI0eIiyv8vmKxWNi9ezcfffQRp06dIjw8nK5du7Jy5Upat24NQGJiInv37mXv3r1F9i+rA1DHjh3N3zds2MCCBQto0KABBw8eLHW/skhKSuLxxx8nNTWVhg0b8uSTTxZ6vACeeeYZPvrooyJz+fXXX7nqqquw2Wy8/fbbTJo0CSEETZs2ZdasWYW8H+bMmYPb7Wb8+PGMHz/e3D5mzBjmzZtX4vwWLVrEHXfcYd72/j2mTJnCs88+ez6XLrnUUPKX9sDwlIL8hJCiWtCFxq6s/XRu2w/tYIZ3KKqvsYLtPHiQo5MfA6DhF1/g17bwFxlvUkovS8Jklu9VUCnlVVJ4AkKvyut80d2a0dHZjDQ96jE1Pym1+9QBoCmq/QR+dbZyT+fraVavBqzWawU6HUqllKSakPGSjJdAxksloYjK6A1+kZKRkUFISAjp6enlrkOtLn7672tYk3xJD9zAsdOjyHWsQMlZT9zpDL6NGczauHYkTm7BD/t/YNOJTfx57E+ua3odz/d6vuInS9mCeLc3cb1/QVMsbA7ZQ1Snmu32r+tOtu6ezWdrN9M+chsRfql8sWckT9wwkfp1i3aNkEgqm7y8PA4cOECjRo3KDBYkhcnOziY2NpaZM2cyduzYC37+1NRU+vbtS3BwMD/++CP+/rWjhEByfpT2mq1N8cGF4qJ4TLJPw6se748pZ0hK28MN391AuG84y29czooF81j37ZdYfDox6u57cC7ejz0+iMjxHdBzczn2wgu4jx0nd8sW9MxM4t5+iyBPVywvXaYt5VSWgx8mXkGrmFIep93fw6ejWBH8D37JaEinTp1KLQFJP3Gc9yeMxerjw/0ff8U7E35Fdwl+7PEmi8d8c94PzfwnJhNypg4nQ9PISR1ATsZsVC2H0S++RlSTBABGzP8P67Yl0Cwujx/+PRyrWkPWvgv+XZ9JgwqaDksuLDJeOndkvCSpDiojXqohnxaS80XXDaWU92PWousYDXkFmqLiZ7Pwyp+vsProanOfUJ/QczuZI4sc1RfNI2sPanf9ec29qjl8Ooe1u74izPk61zTI3/7sDdcRJRNSEkmNY9OmTezevZvLLruM9PR0nnvuOQBT4n6hCQsLY+nSpbz99tusWbPGbL0skUguMgqWvAi9qKeUmq+k8q7oetd2VT8/YqZNA+DgqNHkbtxomI6fhbW8Silv9z1Rzu57XqWU283BrZsQWipQp/KUUpoGKOSdOY0jYwGKZnhrKQUSPN4pWlS1ZiSkdi2GxQ+Ay/BURbHIhJTkokLGS5KLhRrwiSGpDHTNkFWrmhER2NwaDgxPKYfVjq9NJS0vDYCr46+mSWgTbmpRVEJZFiedLp48ZuF4O6MtpQL4W2r2B/y/F2wgxrqZG5vDkcwYTrm6cHOPy6gXflnZO0skkmphxowZJCUlYbfb6dy5MytXrjSNI6uD8PBwnnnmmWo7v0QiuQAUSkoJMwnl9ZTKT8AUSPQU49lk+iwVk5Qqt6dUBcv3LFYjpNc1ja9eeBoAe/AdVFJOCl3XUBSV3LSTCM0wOUdVCKwTZo7x5tksNcDbHIBdiyA732eGmA7VNhWJpKqQ8ZLkYkAmpS4ShKahqCoWtyf68EQhonEC2+s0op7VgtNTU39Lq1voGtW14idJ3c8PSTtYlBcPIe0AaOhnr7Hd6v48cJKTh+7nzoQd2C3GtTvUTlzZ5WliY8PK2FsikVQXHTt2ZMOGDdU9DYlEcslRvFIqx5XDg8sfJO6Yx9RcCM6cyiUACuWnTKzGfsV14vPmtcrsvmcanRvHyMzM5NChQ0RFRRXqwOTFPySUDgOGkLx7J2lHk3G7nAg9o2xFVjkxFj8VM/OUG9qR8BtDCQitY47RPPfVmLjQbai5uHIytLsRQuuXPl4iqWXIeElysVCzJS6ScqPrOgoqqhn/GL/8FZ2AW7XiZ7fg0IwWmnaL/dxOsuAm0nf+CECvtI3MPvMdX3SoeKvNC8HpLAcPzv8OX30tQfYsfDxJqeu6DaBrQ5mQkkgkEolEchZKwbBYEOoTilWx4hZuEg8lsuGk98ufzualRwBw5LiKHsbTiU9o7iL3WT1ZqbKNzo1jWDwqrQMHDjB37lzmzp1b4i59/3Uvt01/k7C4eHOelWEdm52dTabVxnE/l2ns7vKLwBZRuMFNjVNKaZ6/TXAMhDeRJucSiURSQ5FJqVqOluHk+JubaHv6MgJtYeDW0bWTCGGsDu1MyQIg2NdqKqV8LEVX2MrFmcNkWg3DutY+cF3XwcT5nmOCqwrRtBx2/zWD65p+C0CmO5r0gA/p1XMl9SIHV/PsJBKJRCKR1EjO8pQK8Qnhw4Ef8lS3pwjzDUN47rb5qljsntI+VzFSKa+tgVb0Pk/1XrnL9xJsx4mPjyc0NBQwjITLwusvhdCLLS+sKEuXLiXVP4jDAQ7TTUsoAqtSuODCe02qWkOyUm5jMZZzjXslEolEckGQSalajuPAGVzJWdiFLzo6f506gzPj/3Dq+wEIC/Tlhs5xPDaoJQ79PJRSmpujaiAp9ggAAlsNgrjOlXYdlcU3m/5m7OxXyEv7kI6R2wFoHNWGf3a7El/fmGqenUQikUgkkhpLQaWUR/bTMbIjN7a4kVCfUHRPrqVxh7rUbxNeaFyhw5SilCq3p5SndDBUyWLs2LGMGTMGKNtbCkD1JLRApxzDyyQry1jgVIXTvF5dEVjM83jO5rkktaaU73kWY7HWvAVUiUQikeQjPaVqOUIzIgC38yf8lcW4dUOyreBDml2hRfcejB/RHgDn6nNXSv3nwN+83ONL83agxVLK6OohO3svew8soH3djQDsO9MQ/+A+9Ey4o5pnJpFIJBKJpOZTWClVEFVR81VCup6vBiomt1S60blHYVWmUsoToutGYstrul6upJQZo4lKKd/znvPXmJUM3W2U7Okq2NXCyZ78pNR5n7JyMJVSMiklkUgkNRmZlKrteGKTSL9vqMtJIB5QCPEZyn9bHOWR6Hg+T/qcHFcOeR7DxwolpbJPwdIpbLD1Br/m+OhOIvwD6BMWVOmXcq5ouuCX3SfQT9xFp9DD5vYr2l5Py4R/V+PMJBKJRCKR1BrO8pQqiFW1muV7uqahWEpOSpVmdG5W9pXpKeUZ6EmOeZNS5UkyqZb8LoGiEsr3vEmpTGs2YCSl6ujQt0Hhdu9enyxLTclKabJ8TyKRSGoDMilV2/EEG385urItuwuwBFARaCBUtp5ez4oDL5vDVUXFz+pX/uNv/xo2/Y/s9l3AD17/ey7XjXmncq/hPPlp+zHuW7Ce/2fvPMOjqrYG/J5p6YWSkAIEAqEXKdIRIx0EriKIYIQrIPhRL4gUSxApikEUUIoFvFdEFBUx2ALSQVAgAgKhhRZCDSSkz8zZ348pyZA2gUAC7vd55oE5Z5e1z2TOrLP2Kks7nQcN7L3UmLa1wqgR8nRpiyaRSCQSieR+QSncU0pVcjylbO5ASiHhe6j5GKWsc6hOhu/ZxrBVtBPC4v1UWIU7RZMrpxRKke2LwmaUyr3WmqqGim4Vb2ln+bfshO9ZE53L8D2JRCIp00ij1H2ObQfsUFonrps8rEc1aI3XAA3pphsA1CpXi9rlatOsUjM89B75jpUvGdcBSHOz5JLyeGR8yQheQqSmxqG9EsHijsloNSqqUMj2eoPWTRqUnUSbEolEIpFIyj755JSyoVN0ZNk8pVQVpRAdQ7F6KuXvKWXpZ3Iy0TnpV2FlfzSGCkAl+/zaQtIo2ML3BCqKUHjqh6cI9Ahk7iNzcde7Fz5vPmRdTCVMnMQ3vULOOrR509Laq++Vtv51ZidcPgxpV6wCSaOURCKRlGVkovP7HasGYDTqsMXyac1G9CkrEUKDUCx5pLpV68bs9rPpW6tv8cbPvglAusEbAA/f4JKRuwSYtf4wkV99hF65hl5ryblQoVxLXn28oTRISSQlyJAhQ1AUBUVRMBgM1KxZkxkzZmAy5U3iWxw2b96MoijcuHGjZAR1gvj4eAYOHEhQUBCurq5UrlyZPn36cPToUYd20dHRdOjQAS8vL9zd3Xn44YdZsWKFQ5vTp0+jKAqxsbFOzz99+nTq1KmDh4cH5cqVo1OnTuzevdthzKFDh1K9enXc3NyoUaMGkZGRZGdnFzpuYmIiAwcOpFatWmg0GsaPH++0TAkJCTz77LNUqFABNzc3GjZsyJ9//mk/n/vzt726devmMEa1atXytHnrrRwv3bi4OMLDw6lUqRKurq6Ehoby6quvYjQaHca5ceMGo0aNIjAwEBcXF2rVqsWPP/5YqPzffvstXbp0oUKFCsX+PCQSR4rylLKeErmMUvnZluyJzgs2Sv117gabjl4mJdOYpw0AHv4WI5k5G47/gubvnLyeRYXw5eSUUlFQOHb9GFvOb+HPS38W2q8gzJlGfFKr0Ofvl3LW4eWbp51aFoxSqVdgxeOwfmKOUcrgWXrySP5RSH1J6ktSX7o9pKfUfY4wCw5ozyDQYzNKGXUqn3ZR4aYGRZcO3F5y84tZRl5VmnOj0bucUyzeVe757IyVBteSdpJ65VPqlTsBwG9n29GlxUs0qVuvlCWTSB5MunXrxvLly8nKyuLHH39k1KhR6PV6pk6dWtqiAZCdnY3BUPhuuNFopHPnztSuXZtvv/2WwMBAzp8/z08//eSg6C1cuJDx48czefJkFi9ejMFg4Pvvv2fkyJEcOnSIqKio25azVq1aLFq0iNDQUDIyMpg/fz5dunThxIkT+Pn5cfToUVRVZenSpdSsWZNDhw4xfPhw0tLSCp03KysLPz8/Xn31VebPn++0PNevX6dt27aEh4fz008/4efnx/HjxylXrpxDO9vnb8PFJe9vyowZMxg+fLj9vZdXTu5BvV7Pc889R9OmTfH19eWvv/5i+PDhqKrK7NmzActn2LlzZ/z9/VmzZg3BwcGcOXMGX1/fQteQlpZGu3bt6N+/v8P8EkmxKcRTSqvRInKF7+XklMovfM8x9C43eqse9eHmk8BJWoWW58sXWueVxasSPP8rXI2DvZ+hnN9vP1VUsvOc6nuCl5tPZvGleZy4cYIsW46lYhD93tuoQku6KcDBUFe7Z3ietjajVKlG76VdAWG2eEfV6goVwiCgYSkKJPmnIfUlqS9Jfan4SKPU/Y4QxGkv4EV1y48wkGFQueKrMKB2VW7qt0MyuOpcizfusV/4/tRpol1aQrlqAOgUCHbVl/ACiocQgmVbT1HZOIZOVW/Yjz/bvjN1a0ilQyK5W7i4uBAQEADAiy++yHfffce6desYOXIk48aN44cffiArK4sOHTqwYMECwsLCADhz5gyjR49m+/btZGdnU61aNd555x3q1atHeLjlocb2gz548GBWrFjBzZs3GTlyJGvXrsXb25uXX36Z77//noceeoj33nsPsOw0DR06lOPHj7N27VqefPJJVqxYwfbt25k6dSp//vknFStW5IknnmDOnDl4eHjw999/c/LkSTZu3EhISAgAISEhtG3b1r7Oc+fOMXHiRMaPH2//8QeYOHEiBoOBsWPH0q9fP1q2bHlb13HgwIEO7999910++eQTDhw4QMeOHenWrZvDrlpoaChxcXEsXry4UCWrWrVqvP/++wB8+umnTsvz9ttvU6VKFQcFqnr16nna5f78C8LLy6vANqGhoYSGhtrfh4SEsHnzZrZt22Y/9umnn5KUlMTOnTvR6/X2dRVFREQEYNk1lUjuCAdryi1GKUVrT3R+M+ka192PUpFyKMVMdP582+pkGs2kZJo4cTmVhBsZBctT5WHL6/QONOf32g8XZZSyG8WESoMK9amQXIETnMBoLsArqxBO7fsDUa0lKgr26jpAjWaBedraxLJVGCwVrEV98PCHpz8vPTkk/1ikviT1JakvFZ+y4fYiuW3OHPgLgUBVNNiUBaGAv2sQLz3aiWzVsitWbE+p70aSkngYgA5Jf7DE6yI/N6uFn6F0jVJHEpNYuOFPXDU3ANh5sQs1a0ymVrVihiVKJGUAIQRqevo9f5VEiXA3Nzeys7MZMmQIf/75J+vWrWPXrl0IIejRo4fdzXjUqFFkZWWxdetWDh48yNtvv42npydVqlThm2++ASyuyomJiXYlYcKECezYsYN169YRExPDtm3b2LdvXx4ZoqKiaNy4Mfv37+e1117j5MmTdOvWjb59+3LgwAFWr17N9u3bGT16NAB+fn5oNBrWrFmDOZ+wGoA1a9ZgNBp56aWX8pwbMWIEnp6erFq16o6vH1h2upYtW4aPjw+NGzcusF1ycjLly5cvkTlvZd26dTRv3px+/frh7+9PkyZN+Oijj/K027x5M/7+/tSuXZsXX3yRa9eu5Wnz1ltvUaFCBZo0acI777xTaLjCiRMn+Pnnn+nQoYODLK1bt2bUqFFUqlSJBg0aMHv27AI/K4mkxCkq0bnGcu+8cvoUx3dbwumEyGsgUuzhe3m/A53qVeLb/2vLvH6W73wR9iXr5Fo0uYxkRYbv2Y1CguxMM3osXhHZauFhLfmhqmYEAiE02A11ioKSj+HJJpW2ND2lzNY1yuTmDxSlpS+VhM4k9aU7R+pLD76+JD2l7mPSU5I5+9d+1EAdghyjlMlUntebz+DH+B85d/McUExPKdUMGUmkai3JMOtXqsK/HgoHXemV1DWrgvgLO7lwbDjvh1sMbSouPNFhDiHBvqUml0RyJ4iMDOKaNrvn89betxfFvfjJbsGiGG7cuJFffvmF7t27s3btWnbs2EGbNm0AWLlyJVWqVGHt2rX069ePs2fP0rdvXxo2tHgy5t79sSkO/v7+dpfjmzdv8tlnn/HFF1/QsaOl3Pjy5csJCgrKI8tjjz3GxIkT7e+HDRvGoEGD7PkBwsLCWLBgAR06dGDx4sUEBwezYMECXn75Zd544w2aN29OeHg4gwYNsst17NgxfHx8CAzM6wVgMBgIDQ3l2LFjt3XtbERHRzNgwADS09MJDAwkJiaGihUr5tv2xIkTLFy48I5c4Avj1KlTLF68mAkTJjBt2jT++OMPxo4di8FgYPDgwYDFFf3JJ5+kevXqnDx5kmnTptG9e3d27dplT7Y8duxYmjZtSvny5dm5cydTp04lMTGRd99912G+Nm3asG/fPrKysnjhhReYMWOGgyy//fYbgwYN4scff+TEiRP83//9H0ajkcjIyLuyfokkD4rGYpDKJ3wvwS8Tz4ah+JrcSY6/ZGmeb/iexWBjTEgg8+hRXGrXzlP9zpZ3yVxUwnMAjRYll5dSkeF7uXJKrf/gAPU0T3C2VhLZ5tswSpnNKOCgZ2oK8IQqU55SxY0QkJRpSktfgtvXmaS+JPUlqS85j/SUuo8xZWehKBoEAtDYd/WEomHJX4t4a89bnL15FgAvvVchI91CdioA6Vo3ADyCHypVgxTAM8t+Z8FPX6CQkw8hqFJ3GkiDlERyT4iOjsbT0xNXV1e6d+/O008/zZAhQ9DpdA6u2RUqVKB27docOXIEsPz4zpw5k7Zt2xIZGcmBAwcKnefUqVMYjUZatGhhP+bj40Pt2rXztG3evLnD+7/++osVK1bg6elpf3Xt2hVVVYmPjwcsO5EXL15k5cqVtG7dmq+//pr69esTExPj9LUoKhcDWJTN3HLkdrsODw8nNjaWnTt30q1bN/r378/ly5fzjJGQkEC3bt3o16+fQ+x/7nFHjhzplMzbtm1z6Ldy5UrA8nDbtGlTZs+eTZMmTXjhhRcYPnw4S5YssfcdMGAAvXv3pmHDhvzrX/8iOjqaP/74g82bN9vbTJgwgUcffZRGjRoxcuRI5s2bx8KFC8nKcsxhs3r1avbt28cXX3zB+vXrHZRHVVXx9/dn2bJlNGvWjKeffppXXnnFLkth11QiKTlsuaIcDT9aRUu2XsX/6XCenv4Wbp7lHdvnRmfZ801Z9wPx/3qC6yu/yNNEYzVSqc54YWh0Dgp7cYxSABpVS1ByDYxq8cL3hBCgClSExShllVWx56y6tb11/tJMKmWyGt5kxT1JKSH1pRykviT1JWeRnlL3MapZRUGDRV2w/AtgRsP1bEvFkZaBLalXvh4PBzzs1JhCCJaevcypsAns8G0KgKeudG2Xl67uoIr+v9SrYKn28MuZ7rRpPIGO9UOL6CmRlG0UNzdq79tbdMO7MG9xCQ8PtyexDAoKQqfTsW7duiL7DRs2jK5du7J+/Xp+/fVX5syZw7x58xgzZsztiO6Ah4eHw/vU1FRGjBjB2LFj87StWrWq/f9eXl706tWLXr16MXPmTLp27crMmTPp3LkzYWFhJCcnc+HChTy7jdnZ2Zw8eZKuXbsWKVvv3r0dlM/g4JzKpR4eHtSsWZOaNWvSqlUrwsLC+OSTTxySoF64cIHw8HDatGnDsmXLHMbOXS3F29u7SFnAopDm7lepkqW0fGBgIPXqORaIqFu3rj1UID9CQ0OpWLEiJ06csO/O3krLli0xmUycPn3aQUGuUqUKAPXq1cNsNvPCCy8wceJEtFotgYGB6PV6h1L3devW5eLFi2RnZxd6TSWSEkPRWHN05s0pBWC25u/E6umUn/nFu1t30nf9TnZCAmpyMtlnzuRpY3MmcsooZZ1bo1iSiRcdvmdp/3DPENBWZf+vZ9EIbbFzSgnVUr1PVQSqyNEzNQUUvSkT1fekp9QDSWnpS7a5i4PUl6S+ZEPqS84jjVL3MarZjEZRUFERuXJKqYoGo3oTgHFNxtHQz8kE4NfPcCTmHab7DYOgPvbDlUopj5RZFUxfd4jWHiPpUT3dfvw/3R4jMFAapCT3P4qi3HYY3b3Gphjkpm7duphMJnbv3m13R7927RpxcXEOP9xVqlRh5MiRjBw5kqlTp/LRRx8xZswY+w5a7hj40NBQ9Ho9f/zxh10xSk5O5tixYzzyyCOFyti0aVMOHz6cR87CUBSFOnXqsHPnTgCeeuopJk+ezLx585g3b55D2yVLlpCens5zzz1X5LheXl4O1VQKQ1VVhx2yhIQEwsPDadasGcuXL88TKlOc9dlwc3PLt1/btm2Ji4tzOHbs2DF7YtP8OH/+PNeuXcvXZd9GbGwsGo0Gf3//AtuoqorRaERVVbRaLW3btuWLL75AVVX7mo8dO0ZgYCAGgwGDweD0NZVIbhulYE8pANV6PL+cSjbcGjag+rffcGXBQq5++CHkk1tKqxQnfM+irttMPc4mOo/9NRpF8xvGjCC0QlfsnFKqqqIomhxPKXv4XkGeUhYJtaXpKSVzSj2QSH1J6ksg9aUHWV+SRqn7GKGaUdBY8wzkSnSOhmxhqeZiKI778qFvuHrhMPiBX/Y1htz8gwqth9Hdz6fkhXeCvacT2XhwN4+2tRik9l3rQr+HG+Hv36NU5JFIJI6EhYXRp08fhg8fztKlS/Hy8mLKlCkEBwfTp4/FsD1+/Hi6d+9OrVq1uH79Ops2baJu3bqApaKIoihER0fTo0cP3Nzc8PLyYvDgwUyaNIny5cvj7+9PZGQkGo0mT06WW5k8eTKtWrVi9OjRDBs2DA8PDw4fPkxMTAyLFi0iNjaWyMhIIiIiqFevHgaDgS1btvDpp58yefJkwLJDOHfuXF566SVcXV2JiIhAr9fz/fffM23aNGbOnEmDBg0c5r1VSQGoX7++vSKKjbS0NGbNmkXv3r0JDAzk6tWrfPDBByQkJNCvXz/AomA9+uijhISEEBUVxZUrV+z9i6rmYtvZS01N5cqVK8TGxmIwGPLs7OXmP//5D23atGH27Nn079+fPXv2sGzZMvtuY2pqKm+88QZ9+/YlICCAkydP8vLLL1OzZk37DuiuXbvYvXs34eHheHl5sWvXLv7zn//w7LPP2isFrVy5Er1eT8OGDXFxceHPP/9k6tSpPP300/br9OKLL7Jo0SLGjRvHmDFjOH78OLNnz853Jzc3SUlJnD17lgsXLgA5n0dAQECR10wiyYNifajJJ6cUgEm1GpisDwIaFFJ3JKC46nBrWBGNIZfBxlaFz5zXiKQpVk4p61yKwCyUIj2lfCtZ/u4zUpKBZCARrbkFR5OOsvX8VloHtkavLXrDUZgteqaaeZNrV/ejWo1aijZ/o5TdU6o0Mp1fPwPfDIPrpy3vpaeUpAwh9SULUl+S+lKBCEmBJCcnC0AkJyeXtij5cin+pIgZGSXmTJksop7uL6L69xRR/XuKCRFDRYv/tRcNVjQQp5NPOz/gr6+L6IU9RaXf9ote234X4ubluyd8IaiqKq7fTBQxGxuJDRtDxYaNoeLX35qIxBsZpSKPRFISZGRkiMOHD4uMjPvv73jw4MGiT58++Z5LSkoSERERwsfHR7i5uYmuXbuKY8eO2c+PHj1a1KhRQ7i4uAg/Pz8REREhrl69aj8/Y8YMERAQIBRFEYMHDxZCCJGSkiIGDhwo3N3dRUBAgHj33XdFixYtxJQpU+z9QkJCxPz58/PIs2fPHtG5c2fh6ekpPDw8RKNGjcSsWbOEEEJcuXJFjB07VjRo0EB4enoKLy8v0bBhQxEVFSXMZrPDOGvXrhXt27cXHh4eAkscj1i1apVDm/j4ePu5W1/nzp3LI1tGRoZ44oknRFBQkDAYDCIwMFD07t1b7Nmzx95m+fLlBY5ZFPn1CQkJKbLfDz/8IBo0aCBcXFxEnTp1xLJly+zn0tPTRZcuXYSfn5/Q6/UiJCREDB8+XFy8eNHeZu/evaJly5bCx8dHuLq6irp164rZs2eLzMxMe5svv/xSNG3a1P651KtXT8yePTvP92Hnzp2iZcuWwsXFRYSGhopZs2YJk8lUqPwFXbPIyMgi114YhX1ny7p+UBo8MNfkzUpCRHoLkeSoP03aMkk0WNFA/O/v/wkhhPjfhJfFuclbHV4pWx2/91cWLxGHa9cRF159Nc808VdSRcjkaFH/9Z+LlikmUohIbzF7xusiMjLS4R6aH6rZLBLijoj4v/bZdcNxU2eIBisaiAYrGohPD35a9JxCiB3bt4k3J00Us0aPtI8T1b+nWDPrNUfx/r4oRq3cK8JeXyVCJkeLKd9vcmr8EmXPR5bPzfb6edq9l0FSIkh9SepLUl/65+lLihAlUBv8ASUlJQUfHx+Sk5OdjkO9l1w6dYK/3/mBDYbzVLiYY3ne79uUQ23XYxbZxDwVQ4CHk5bP6Al8eS6B8XWm8lh5L75oXOMuSV44z368mxs3tvKfppZkbWahp3rV5wgLm1Yq8kgkJUFmZibx8fFUr14dV1e5g1sc0tLSCA4OZt68eQwdOvSez5+UlETHjh3x9vbmp59+wv0+CSGQ3BmFfWfLun5QGjww12RWEBjTYNxfUK6a/fDUbVOJPhXNS81fYnD9wfx38sv4Jrni5/Ew5fQ+eGoVPB+pjG+P6vY+Vz/6iCvz3sXnyScJmj3LYZqz19J55J1NuBu0HJ7RrXCZNr4J26J4SzueTLPCqFGj8PPzc2o57w7ojRAqWXUfZ0uD77iQdoFn6jzDtJZF61SzZ88mOzsb/bWLuF4+j0Zfk+2NzrLmpTUO4Ysd3tnEmWs5aRZGdvJiSqfCw4dKnN3L4KdJUK09dH4DAh+CAsIMJWUbqS/dPlJfkpQGJaEvyep79zHqjas09v2SrmwFQKOrwtUqHnQc0h+zsLhYu2idq5q3NzmNBm5PMbH2JAC8dKXzQ34t+QwZKRtoWMFSieLvq3VJ8d0gDVISyT+I/fv3s2rVKk6ePMm+ffsYNGgQgN3F/V5Tvnx5NmzYQMeOHdm1a1epyCCRSO4RReSUWnpgKT2+7UGa/ibHU/aRGJhCotGa0/OWMD1Fa82SkU9OKZtNx7nwPVuic0vb4uwna6y5ler71OaJsCcAyDY7l1vKlr8mxFQBAEVxJcs9bz6tTKOlXcXA/bgGfcmjdR2TKt8TbJ+Xhx8EN5MGKck/AqkvSR4UZE6p+5S0Py5i+G4DFVyO4pseCFQCRc917RnePfaMvZ1TRqk/PmHT0TiuVh5oP9TC594qFEIIPttxCv/Mp/m/h67bj4fXr0PD+pXvqSwSiaT0iYqKIi4uDoPBQLNmzdi2bRsVK1YsNXkqVKjA66+/XmrzSySSe0QBOaVCfS0FVm5m3+Rm9k0uZbriBdRoVpGkaGsXs2MfxVqlLr+cUrYKdU5V37sl0fnatWtxc3OjXbt2VK9eveB+gFanx2zMxGwy2vOMGlXnqvDZEqr7qO5csghCfqlqbHY1z/JHyFIP4KovBYOQzSilyP12yT8LqS9JHgSkUeo+Jet0CgqWnbfLajnrUS0mjeWYXqOnXXA73HROlDE99C2pWkuFvucSf+Dldo9TsbJzbuElxd4z14n65Q/eD7cYpM6l1qJx1UqEVCm6aoNEInmwaNKkCXv3lk7pZ4lE8g/H7inlaCz6d/1/0y64HVvPb+X9fe+jIuztbC1vNUrZvXVUM7dSrOp7VkOLj8FMmkljT1Kr1WqdMkoBmI3ZGDRWo5S5aKOUEMLukWVSrJ5VioKiOMqbbc4mKeM64M7l9EtoXUFTGoYhaZSS/AOR+pLkQUEape5XVAGKRclJFTbDkwazotIuuB2LOy12fqzsVNI9LWNUevhZKlYtXMEpadLTT3P1XCRjm5wHwCi8adb0SxpWLp2qfxKJRCKRSP6p2FyBbvF6UhRqlavF+ZsWXUW1h9KpuYxSt4Tv2arvmfIapWzVsZyxSdk8pZ6pdoMz9V7kzJkz/PHHHw7l4QvsqrcYolIuH0J7WEFrVshWiw7fsxmkrrhe4ftyB2l43RvQ5FweK4lpiTneXoog2DOYGr6lkJNUGqUkEonkvkUape5ThBBosCgjJmHdiVO0mLWq03mk7GSnkaq1JKLzcLm3YXtzfjyCSPmQlv7bqeFrOeZXro40SEkkEolEIrn32MP38obcAeisBiK7UUo1I2zOVQV4Son8PKU0OdYdVRVoNIWUcLeO46Uz0qBBA1RV5Y8//rCH1xWG3sWy6XgjcTt8DY1qViS7atFGKdvYKbpU3E05m58tPB03LlWhIqwX4Nve31Crkrf0lJJIJBJJsZB37vsVVQBmbpxyQ5NgCdlT0GDWqPacAc7w2vHzNAubw08V2wPgeQ8TnN9IT+O7P3ajE5Zdx10XmnNBmUaDBgvvmQwSiUQikUgkdgoI37Nxq1FKNasoVoOSUPPPKUV+OaVyJWcyF5VXyjonqlXfs/Z1JuF5g/An0ehroGh8AQi7XNepnFKqqqJRtbQ49TR1L7WyCcLwSl0c2llksMhj0OpKxyAF0iglkUgk9zHSU+p+xSxIztSwL3k0SYaLwGlQtNx0E855SqVdxbxzAR/pngSXnPxRdT3uTenVXSevcONMP+a0P2c/1vGhXrSoN8hh91AikUgkEonknmEzauxcACFtoMmzDqd1itUoZQ3aU1Wz3ZCVx1PKWn1P5FN9L7ftxKwKCs0Nbq38x5VjsOcjNJr61rmL9pRq1uMRMtODOL57HcmJW9CZdWSbU4vsl5aSTEVzFkJ1xWz1zPfSXsU7oLxDO1Wo2IxSpaq/2Y1SUoeUSCSS+w25nXCfIlTBscxqJAa2Ic3dHwAVlfhKThql9n1G+u8f2d/+EDuGPx8Kotk9qLr317kbjPhsAwYsBqkssxvu7qE0DessDVISiUQikUhKDxcvy7+xK+H7UXDtpMNpm6eU2e4pldsodUtOKSc9pYqswGew6maXDsKPL6Ec/MoynxOeUjq9lg7P1KZKXUs1Lo2Ao0lHifgxggmbJ5CanddAdTp2L8vHvojOaujJ1mYAEHDxD/SBt4TvoYKwrFNTmgYhe14r+WgjkUgk9xvyzn0fcvqvfZw7dACjsChGbukXATju9xdoFOeMUulJpGktOQK0qDTv/gqVy/nfNZltqGoWZy78TJugPQBkmL3RBm2gdasYXFwq3fX5JRKJRCKRSAqkz4fQZgwYrMapzGSH0znhexaDzbFd28nOOALkk4bK2ZxSRdmW6j4Orf4PKrewDJudYunnhKeUfT69NThCCNJN6cReiSXmTAy7L+7O0/ZS/Ekqe4ShWL3BhM1TquuT6PwcqzPnDt8rVSclGb4nkUgk9y3yzn0fcnTHVkxZRq5lxpOd9hPZwlIaOM3lJgCuOidC8LJu2o1SHjodSp1ud01eG3+eTuKbrfPwSHuFfrXWAeDnE0zX+gF3fW6JRHL7DBkyBEVRUBQFg8FAzZo1mTFjBiZT3pCU4rB582YUReHGjRslI6gTxMfHM3DgQIKCgnB1daVy5cr06dOHo0ePOrSLjo6mQ4cOeHl54e7uzsMPP8yKFSsc2pw+fRpFUYiNjXV6/unTp1OnTh08PDwoV64cnTp1YvfunIfC06dPM3ToUKpXr46bmxs1atQgMjKS7OzCExMnJiYycOBAatWqhUajYfz48U7JYzabee211xzme/PNNx08ML799lu6dOlChQoVClzvyZMneeKJJ/Dz88Pb25v+/ftz6dKlYq/rwIEDtG/fHldXV6pUqcLcuXOLXMPWrVvp1asXQUFBKIrC2rVrnVq7RJIvIa2hy0xwL2d5f4ulSWs1NGUaLMcvnz6JMSvB2vSWnFK2PJ35VN/L7VVkLsoq5eoD3ebAw8Ms4wrLvdcZTym73NZQQjetC++Fv0dYuTAAss157y2qasZF647GPrxlrS7V8lZnzh2+V7qeUtIoJSl9pL4k9SWpL90e8s59H6KaTaSSzpW0WNTsI2RrLTe6TBczVb2q0jO0Z6H9b5rMfKypwcfBfQFw19z95Obp2SYGfbybI+cPAnAxzZ8b5qaEVh9/1+eWSCR3Trdu3UhMTOT48eNMnDiR6dOn884775S2WHaKUkIAjEYjnTt3Jjk5mW+//Za4uDhWr15Nw4YNHRS9hQsX0qdPH9q2bcvu3bs5cOAAAwYMYOTIkbz00kt3JGetWrVYtGgRBw8eZPv27VSrVo0uXbpw5coVAI4ePYqqqixdupS///6b+fPns2TJEqZNm1bouFlZWfj5+fHqq6/SuHFjp+V5++23Wbx4MYsWLeLIkSO8/fbbzJ07l4ULcwpOpKWl0a5dO95+++18x0hLS6NLly4oisJvv/3Gjh07yM7OplevXnZPDmfWlZKSQpcuXQgJCWHv3r288847TJ8+nWXLlhW6hrS0NBo3bswHH3zg9LrLAtOnT7c/vNhederUsZ+/ePEiERERBAQE4OHhQdOmTfnmm28cxkhKSmLQoEF4e3vj6+vL0KFDSU11DMdyRnH9+uuvqVOnDq6urjRs2JAff/zx7iz6fsKWx+kWLydbTqkTNTMJHzKC+h06IqwGEXGr55JGk/9xIHe2ArVIVylbJ4tMGvU2jFJWTylFQMeqHfFzs3g8mdS8D8tCVUFR7A8JtvVptHn1RUv4XhkwSiHD9yRlA6kvSX1J6ku3gZAUSHJysgBEcnJyaYviwNcvPi++Gj9PRPXvKaL6Py4+e/wp0XvqU6LLJyPF9YzrhXdOThAfbF8nKv223/4K333krsqbbTKL3w8sFm+tfFKs+fEhsWFjqHh/3XviXFLaXZ1XIilLZGRkiMOHD4uMjIzSFqXYDB48WPTp08fhWOfOnUWrVq1EUlKSiIiIEL6+vsLNzU1069ZNHDt2zN7u9OnT4vHHHxe+vr7C3d1d1KtXT6xfv17Ex8cLLE8R9tfgwYOFEEKkpKSIgQMHCnd3dxEQECDeffdd0aFDBzFu3Dj7uCEhIWLGjBkiIiJCeHl52ftu27ZNtGvXTri6uorKlSuLMWPGiNTUVCGEEPv37xeAOH36dIFrPXv2rNDr9WLChAl5zi1YsEAA4vfffxdCCPsa9u/fX/yLasX2O7Nhw4YC28ydO1dUr17d6TFvvVaF0bNnT/H88887HHvyySfFoEGD8rQtaL2//PKL0Gg0Dr+VN27cEIqiiJiYmALnvnVdH374oShXrpzIysqyH5s8ebKoXbu2U2sRQghAfPfdd063L4zCvrMloR9ERkaK+vXri8TERPvrypUr9vOdO3cWDz/8sNi9e7c4efKkePPNN4VGoxH79u2zt+nWrZto3Lix+P3338W2bdtEzZo1xTPPPOMgZ6VKlcSgQYPEoUOHxKpVq4Sbm5tYunSpvc2OHTuEVqsVc+fOFYcPHxavvvqq0Ov14uDBg8VaT1nVmW6bBU2FiPQW4vQOh8Mnr58UDVY0EG1XtRVCCBEfu1d8N/QVcW7yVnEwcqfY+mWcuJmUKYQQImXDBnG4dh0R//SAPMOrqipCJkeLkMnR4srNTOdkOvSdEJHe4viip0VkZKT48MMPnV7O9tXfiKj+PcX7g/8jhBDixZgXRYMVDcS3x77N03bbqv+KtSNnieVTpohFIzaKOYNfFFH9e4o/o9fmaXvwykERMnmdCJkcLS6llOLv28Y3LZ/X+kmlJ4OkRJD6ktSX8kPqSw+2viS3E+5Dsi9cIBvbrpuOCpl6Duq7UdmtM76uvoV3jp7ApZM7AWhw8zjPud1kdq3Kd03WM9fSaD/nO1KvvEPzgFh8XSx5EAY/0p7K5dzv2rwSieTu4ubmRnZ2NkOGDOHPP/9k3bp17Nq1CyEEPXr0wGi0lBwfNWoUWVlZbN26lYMHD/L222/j6elJlSpV7F4fcXFxJCYm8v777wMwYcIEduzYwbp164iJiWHbtm3s27cvjwxRUVE0btyY/fv389prr3Hy5Em6detG3759OXDgAKtXr2b79u2MHj0aAD8/PzQaDWvWrMFszhtOA7BmzRqMRmO+O3wjRozA09OTVatWlcg1zM7OZtmyZfj4+BS6W5ecnEz58uULPH8ntGnTho0bN3Ls2DEA/vrrL7Zv30737t2dHiMrKwtFUXBxycln6OrqikajYfv27QX2u3Vdu3bt4pFHHsFgMNiPde3albi4OK5fv16cZd036HQ6AgIC7K+KFSvaz+3cuZMxY8bQokULQkNDefXVV/H19WXv3r0AHDlyhJ9//pmPP/6Yli1b0q5dOxYuXMiXX37JhQuWsP6VK1eSnZ3Np59+Sv369RkwYABjx47l3Xfftc/z/vvv061bNyZNmkTdunV58803adq0KYsWLbq3F6OsUZCnlC3RufW4VqdDWL10Mm5mc2DTeQ5vt4TzYfUsEvncbyzecZb/Z5mczA1lnVtzO+F7Or21j9lhHSaR11PKVlFQuSV8T6PN+9hguQ5lIdG5DN+TlE2kvnTnSH3pwdeX5J37PkQFUu0//AoII4ruBo1CnOiccp50ay6pHq6ZzG3ajFa+nndLVPacuoqOawCkG105Z/4/GjVcird3k7s2p0RyvyCEwJhlvuev4jzI5Cfzhg0b+OWXX6hatSrr1q3j448/pn379jRu3JiVK1eSkJBgj1M/e/Ysbdu2pWHDhoSGhvL444/zyCOPoNVq7T+w/v7+BAQE4OPjw82bN/nss8+IioqiY8eONGjQgOXLl+erFD322GNMnDiRGjVqUKNGDebMmcOgQYMYP348YWFhtGnThgULFvDf//6XzMxMgoODWbBgAa+//jrlypXjscce48033+TUqVP2MY8dO4aPjw+BgYF55jMYDISGhtoVktslOjoaT09PXF1dmT9/PjExMQ7GiNycOHGChQsXMmLEiDuasyCmTJnCgAEDqFOnDnq9niZNmjB+/HgGDRrk9BitWrXCw8ODyZMnk56eTlpaGi+99BJms5nExMR8++S3rosXL1KpkmPBC9v7ixcv3sbqyj7Hjx8nKCiI0NBQBg0axNmzZ+3n2rRpw+rVq0lKSkJVVb788ksyMzN59NFHAYtS6uvrS/Pmze19OnXqhEajsefdcEZx3bVrF506dXKQq2vXruzatatQ2bOyskhJSXF4PVDYUhsIx3uPLaeUUTVyOf0yJlR7eJubh8Xwk51p6aNYjVKZR49y/LHHSJj0ssP911aBr+1bv/HKdwedkMkWgmcxJN1OovM8RqlCwveM6Tcxpm9Ek235W8kvfM+cK+eWNEpJ7halpS/dic4k9SWpL92K1JcKRlfaAkiKj1nRYzRZk5krCgIT7lVXEFppdtGds9NzEpzX7QqGu+OtdDPTyN6j3+KTMp032lhilyv6VKVXq4l3ZT6J5H7ElK2ybNyWez7vC+93QO9SvFxyNsXAaDSiqioDBw7kySefJDo6mpYtW9rbVahQgdq1a3PkiKUa1dixY3nxxRf59ddf6dSpE3379qVRo0YFznPq1CmMRiMtWrSwH/Px8aF27dp52uZ+GAfLrtWBAwdYuXKl/ZgQAlVViY+Pp27duowaNYrnnnuOzZs38/vvv/P1118ze/Zs1q1bR+fOnZ26Frkf8Ati5cqVDgrETz/9RPv27QEIDw8nNjaWq1ev8tFHH9G/f392796Nv79jBdSEhAS6detGv379GD58uP24p2fORsKzzz7LkiVLipRn27ZtDrt5S5cuZdCgQXz11VesXLmSL774gvr16xMbG8v48eMJCgpi8ODBRY4Llh3Vr7/+mhdffJEFCxag0Wh45plnaNq0KRpN3gfEgtZ1u2u4X2nZsiUrVqygdu3aJCYm8sYbb9C+fXsOHTqEl5cXX331FU8//TQVKlRAp9Ph7u7Od999R82aNQGL4nnr34xOp6N8+fJ2pfTixYtUr+6YnDq34lquXLkClduiFNs5c+bwxhtv3NE1KNMUkVMqy5xFx687UjXVl+dpA4Cru7Uyn9nyEGsICbF4SxmNmC4kknLhBypNnYLO+oDZLqwim+Ms+VE2Hb1ctExam6eURaZieUrZqu9ZDVm3enzlRjVbvJ9SrpxDqKex/Vq4eOTdxFRzyaApE9X3SlMIyd2itPQlKL7OJPWlHKS+5IjUlwpGGqXuQzJ8n0BkeFjfaUBkAmDQFv3FzzBmk6Kz9PXIZ8erpHjx833Ucl1L26CcZHoVK3a4a/NJJJK7S3h4OIsXL8ZgMBAUFIROp2PdunVF9hs2bBhdu3Zl/fr1/Prrr8yZM4d58+YxZsyYO5bJw8PD4X1qaiojRoxg7NixedpWrVrV/n8vLy969epFr169mDlzJl27dmXmzJl07tyZsLAwkpOTuXDhAkFBQQ5jZGdnc/LkSbp27VqkbL1793ZQPoODgx3krlmzJjVr1qRVq1aEhYXxySefMHXqVHubCxcuEB4eTps2bfIkrsxdzcXb27tIWcCikObuZzNCTJo0yb77B9CwYUPOnDnDnDlznFayALp06cLJkye5evUqOp0OX19fAgICCA0NdWhX2LoCAgIcKtAA9vcBAQFUq1Yt3zXcr+RWGBs1akTLli0JCQnhq6++YujQobz22mvcuHGDDRs2ULFiRdauXUv//v3Ztm0bDRs2LEXJLUydOpUJEybY36ekpFClSpVSlKiEsT0g3FJ9z8/dj2aVmhF7ORazMHNTTbMbh2zmELPZ0sdQtSo1N/2G6dJlTg8YAGYzwhqqA7B8yMP8eeY6/ZbswuyMgcnmKWU1JBXHU0qnu8VTSinYU0o1m1EUxZ6gPcOrOhXa+FCzeas8bU25ZFCkp5REIvUlpL5UGFJfyh9plLrPuHr1KnpXT4xGa3y/asaQdQZQcNG6FNr37VOJzG/6uf29Rz65AUqCrOyrZKTtJaC85cux/fJgnn5kKGFBwUX0lEj+WegMGl54/94ba3WG4n/3bYpBburWrYvJZGL37t20aWPxFLh27RpxcXHUq1fP3q5KlSqMHDmSkSNHMnXqVD766CPGjBlj30HL7WoeGhqKXq/njz/+sCtGycnJHDt2jEceeaRQGZs2bcrhw4fzyFkYtopnO3dacu099dRTTJ48mXnz5jFv3jyHtkuWLCE9PZ3nnnuuyHG9vLzw8vJySgZVVcnKyrK/T0hIIDw8nGbNmrF8+fI8u2fFWZ8NNze3fPulp6fnGV+r1RbrYTc3Nrf63377jcuXL9O7d2/7uaLW1bp1a1555RWMRiN6vSUMKiYmhtq1a1OuXDng9tZ+v+Dr60utWrU4ceIEJ0+eZNGiRRw6dIj69esD0LhxY7Zt28YHH3zAkiVLCAgI4PJlR+8ak8lEUlISAQEBQNGKa2FtbOcLwsXFxSEvxgNHAZ5SGkXDim4rAHhq3VNcTD2JiqNRyuYpBaD390fv74+i0yHMZoQxxwikKAqeLjaPJSdkuiV8r1ieUga9VbZkdny1EldTOpB/Tilb+J6tol2GTyierSqiy8frIbdRqnQ9pWT1vQeZ0tKXbHMXB6kvSX3JGaS+5Ig0St1nrPlqDXqlIrakkwZjOkIxAzoMmgI8pdKT4H9PsDF4DHhY/kDLaRWaepds6F62SWXF9sOEmAfyfw3T7MdHd+5AhQrSICWR3IqiKMUOoytLhIWF0adPH4YPH87SpUvx8vJiypQpBAcH06dPHwDGjx9P9+7dqVWrFtevX2fTpk3UrVsXgJCQEBRFITo6mh49euDm5oaXlxeDBw9m0qRJlC9fHn9/fyIjI9FoNEXuwk+ePJlWrVoxevRohg0bhoeHB4cPHyYmJoZFixYRGxtLZGQkERER1KtXD4PBwJYtW/j000+ZPHkyYNkhnDt3Li+99BKurq5ERESg1+v5/vvvmTZtGjNnzqRBgwYO88bFxeWRpX79+nZFwUZaWhqzZs2id+/eBAYGcvXqVT744AMSEhLo168fYFFEHn30UUJCQoiKirKXPgaKNBLYdsVSU1O5cuUKsbGxGAwGB4X3Vnr16sWsWbOoWrUq9evXZ//+/bz77rs8//zz9jZJSUmcPXvWnjzbtl5bcm6A5cuXU7duXfz8/Ni1axfjxo3jP//5jz2MwJl1DRw4kDfeeIOhQ4cyefJkDh06xPvvv8/8+fMLXXdqaionTpywv4+Pjyc2Npby5cs77PiWdVJTUzl58iQRERGkp1sMBoUpwK1bt+bGjRvs3buXZs2aARblVlVV+66zM4pr69at2bhxI+PHj7fPExMTQ+vWre/qess8BeSUcmiiaFAV7DmltFlmarhocEnNytNW0ekQWVlgMjoc11otOWZnHmzuING5q7vVU0Kk8vs3q3DXKmg7KXk8pc6cOcPhqzcweZrBavM0a1S0Sv6/Vbnl1pamVUp6Sj3QSH1J6ktSX3rA9aUSqQP4gFLWyhubM01i7uuzxYL/+1YsGLpSRPXvKRb9q4tY/0gd0WBFA3H02tH8Ox79UYhIb9Huh7Wi0m/7xcZlA4TRmJV/2ztg/YELovWMj8SGjaHil5ia4vN1rcXefYOFyZRe4nNJJPcbD1qJYxu2Esc+Pj7Czc1NdO3a1aHE8ejRo0WNGjWEi4uL8PPzExEREeLq1av28zNmzBABAQFCUZRCSxy3aNFCTJkyxd4vJCREzJ8/P488e/bsEZ07dxaenp7Cw8NDNGrUSMyaNUsIIcSVK1fE2LFjRYMGDYSnp6fw8vISDRs2FFFRUcJsNjuMs3btWtG+fXvh4eFhL8G8atUqhzb5lWm2vc6dO5dHtoyMDPHEE0+IoKAgYTAYRGBgoOjdu7fYs2ePvc3y5csLHLMo8usTEhJSaJ+UlBQxbtw4UbVqVeHq6ipCQ0PFK6+84lBmuCCZIiMj7W0mT54sKlWqJPR6vQgLCxPz5s0TqqoWe11//fWXaNeunXBxcRHBwcHirbfeKnLdmzZtyndc29/T7VISJY4LY+LEiWLz5s0iPj5e7NixQ3Tq1ElUrFhRXL58WWRnZ4uaNWuK9u3bi927d4sTJ06IqKgooSiKWL9+vX2Mbt26iSZNmojdu3eL7du3i7CwMPHMM8/Yz9+4cUNUqlRJREREiEOHDokvv/xSuLu7i6VLl9rb7NixQ+h0OhEVFSWOHDkiIiMjhV6vFwcPHizWesqaznTHfNxFiEhvIf7+vsAmz0Q/I1osbiw+HzxGnJu81f46PWWrUE2O95S4Fi3F4dp1ROaJEw7HT1y+KUImR4uGkT8XLdO5P4SI9BYJ77QTkZGRIioqyunlZKRmivcGzxHzI6aJqP49RVT/nuKRhY+IhfsWOrT7/PPPRWRkpBgza7S93csvRYnVR1fnO+7G+B0iZHK0CJkcLTKyTU7LU+L8+LLl89owo/RkkJQIUl+S+pLUl/55+pIixB2UYXrASUlJwcfHh+TkZKfjUO8mpqsZRC18F/erDVCybpJ980vcsow0yEjGuGwWHUM65t/x4Br4ZihN26zlgr4cPzeqwkMVKpSobEbjDb7Z8Rl/xcfSKWQrGWplvKquoUMtvxKdRyK5X8nMzCQ+Pp7q1avj6upa2uLcV6SlpREcHMy8efMYOnToPZ8/KSmJjh074u3tzU8//YS7+90pECEpWxT2nS0J/WDAgAFs3bqVa9eu4efnR7t27Zg1axY1atQALJX5pkyZwvbt20lNTaVmzZq89NJLRERE2MdISkpi9OjR/PDDD2g0Gvr27cuCBQsckrseOHCAUaNG8ccff1CxYkXGjBlj3+m28fXXX/Pqq69y+vRpwsLCmDt3Lj169CjWesqaznTHLO8BZ3ZAvxVQ/4l8mzz747PEnT/IwI3VqF+uLRXLheIvLLk7gt5ogyaXZ8exdu0xX71K9e/X4porEfHpq2k8GrUZTxcdh94oIv/Khf2w7FEuetRjSVpXPD098y3Hnh9mk8rHE7ZiylbJvP4eoHK8Vl3q/CuY8c3G29t99tlnXI7/m3XBMfxrg8XL/WJIBzqMrMvjoY/nGXfDqR0MW3YDgLiZ3XDRlZI3y4+TYM8yeORleOyV0pFBUiJIfen2kfqSpDQoCX1Jhu/dRwhVIBCABlucv4Kgim8I1QsySAFkW0Lp0rWWPxJ3V4+C294GO09e5dixmVRx+YFOIZZjwRVCaCINUhKJ5DbYv38/R48epUWLFiQnJzNjxgwAu4v7vaZ8+fJs2LCBDz74gF27dtGxYyH3W4nESb788stCz4eFhfHNN98U2qZ8+fJ88cUXhbZp1KgR27ZtK7RNv3797CEREiu2MLB8qtPZ0CpajDqB0CscvL4VzfXt9Ks+yXLylj1fxZZo3OgYLmcLeTMVI3xPsYbcFSeXiVanodeYxiSeTGbLZzqEmo3BZMgTvqeqKl3YwleanONVhJbHqjyW77hmkTunlAzfk0juJVJfkjwoSKPUfcTRbVtQEShCY//xVQQo2oI/xmxVZUumgTS/cNIUS86pkk5wPu3bg/SqEk8Vfzh5oxqVyofRvMaLJTqHRCL5ZxEVFUVcXBwGg4FmzZqxbds2e1LI0qBChQq8/vrrpTa/RCK5x9hzShVs+NFqtJi1gmpD+xCSXo7fv/vWfk6Y8zdKFZRTyin70h3klAIICitHUFg5tq/UYsoGrarhs8Of8d/D/+XfDf7Nf5r9B1VV8STdwaZWTRuEuz5/jwdTLqOdNEpJJPceqS9JHgSkUeo+ITXpGnvWfo0aWg2ExuoxZTNKFeAqLQSfnjjO9Oy6UG+6/bBnCRqlEhO/o7Xfj1T1PgeAd8V/06nlADxc5J+WRCK5PZo0acLevXtLWwyJRPJPpoDqe7nRWA0gLiH+NAvtyV8xv+WcLMhTypS/p5TZGQOTxpIMWMm8bhEtKxVMWaArXhVExWrc0gmL/ALBb2d/sxulkrJC6RT3KLDR0r4AgxSAqubIXbrV92xGqdIUQiK5t0h9SfKgILcT7hOy0tNR0KAi0KgabNX3FARKPiV6AfhhLGf2rASgcmYibcyXeKlaAD76OzcYnb+ezvu/bOfwkZfoVPU3yrsmA9CzSVNpkJJIJBKJRHJ/40T1PZ1i0XfM1jYarRbV+v+Nyw/z12/n7G0VfRFGKVUU7fnkVQlcvNFYdUCTKvhz0w9cvnzZyUVhldMiSyu/FnzQ8QOHNQghiE9/jMrJtezt3V0KNvTkGNNEkRW/7irSKCWRSCT3LdIodZ9gNhlRFA1Cccwplalzofzz/86/07k/yNBY8kg9d20T34a68FL1wktkOsv7G46zbt9+ANKM7vx2rgu1a8/E07NuiYwvkUgkEolEUmoUw1PKbG2j1evshqVzh5PY/vVxjFnW/jqLl1OenFK5jChqUc5SLl4wNhbdM6ss86Ijesch/vvf/zq1JLvcNg97VVDOpZx9DZdOnSD1ehKq0GPb/AR4qFHByctN9vDGUq6bJMP3JBKJ5L5FurTcJ5hNRhQ0lt98RWt3C7/kUxHPtm3z72RMy0lu/ugkqFwyiceNxhSqaj8ktFY8AEJbhZ5t36RycOnFL0skEolEIpGUGE54Smmthiubl5GrhwFx02Ic0SiACqZsM3oXba7wPcecUppcMW8mVUWrKaJ6nUcFvGu35TH3DzifruMYoaSmpqKqKhqNcwYZm6eU2WSyz2cSJr59azqp5YMQ+JDjka9Qrkv+Sc4hJ3xPUUrbKGWdXxqlJBKJ5L5D3rnvE8xGI4qDsmFRFkRhbsrZ6TlGKScVlaKI+iWO8SvmUc93A7XKnQSgZmBd2tSUBimJRCKRSCQPCM5U37MadFRb8RmNJc0C5BibTEbrOatR6sKklznRsROpO3YAoMtllCpGMT0e8T5LP6Lt741GYyGtHbF5SplNRrthTRUqxpR0PPXlEUJjN/IoWi2aW0p858ZcHKHvJtJTSiKRSO5b5J37PsFsMgFasoVtB83641uAselilpFNHnVIdLF4R7mVUHLzz3aeRhFJAJy8EUpwtdepGTa1RMaWSCQSiUQiKRNocoXvFZDryR6+lyunlLAaR3Q66zmT5b1LndqW4VJTMSYkcPPnX4CcnFKWcYrhbaTRoyPHYFY8o5TFQJZy6S8Sdv2JIizhez4GP1AUBArCqmdqCvHcuplp5MINq9Gt1D2lpFFKIpFI7lfknfs+wWyyeEodMVWyHrH8+Ou0t0RgCkH2yc08tusvnqk3i789wwDwKAGj1KUr22nu/xt1yp0AoE29TtQJHYyLQXpJSSQSiUQieYCw5ZT6eTK8WRF2L8vTxB6+Z/WmUjQauzFHe4tRKuD11wldH035wc8BOQnPNbk83s3mYhh2tHoUQG/V74pjlDK4WqrppV6LZf9/VxFw1RWTarLkLkWg5spdqhSgP6ZlmWj39iYWrpdGKYlEIpHcGfLOfZ9gNhpRFAVdVjrGtA2YsmIBqFbRx7HhuT0kfzmEJGExVjW8eYwu5Txo6+t523OfvprGM4vXceDAEJ6tu4a6FY4B4O3hf9tjSiQSiUQikZRZQloDVoORaoLjv+RpYgvfs3tKabT2ROc6nbWqni18T1FwqVEDXUAgkGOU0t2BpxSAXmvpn5SURHZ2tlNdG3bsj9bQCEVj0Q3rXGqIKlQUNAgFLI8HhXtKJSZnkpxhMYQp2lSCg844L/vdQOaUkkgkkvsWeee+Tzh4/AQXK3hQNfkE5uwDCFMCAH5+FRwbJp/LySOlZhNT8RL/fSgMD10RiTML4dfDF7mSfBqNIsgwuXA85WGCggYQUKn3bY8pkUjuH4YMGYKiKCiKgsFgoGbNmsyYMQPTLaXNi8vmzZtRFIUbN26UjKBOEB8fz8CBAwkKCsLV1ZXKlSvTp08fjh496tAuOjqaDh064OXlhbu7Ow8//DArVqxwaHP69GkURSE2Ntbp+adPn06dOnXw8PCgXLlydOrUid27dzuMOXToUKpXr46bmxs1atQgMjKyyIfNxMREBg4cSK1atdBoNIwfP94peW7evMn48eMJCQnBzc2NNm3a8Mcffzi0SU1NZfTo0VSuXBk3Nzfq1avHkiVLHNqMGDGCGjVq4Obmhp+fX77X9OzZs/Ts2RN3d3f8/f2ZNGlSgX9DO3bsQKfT8dBDDxW5hm+//ZYuXbpQoUKFYn8eEkmBPDwMppyBHlGW9/nklsqdjwms4Xs2TymrschscjQ03ZrwPHeic3OR5fdyT24ZR2/1yPrf//7HvHnzSE1NLbJrlfp10Ht0QtFYUjzUuPoQGqMejWLJiaWKXEapAvVHi6weLgLPWjOpW+uw87KXJD++DLOD4e/vLO+lUUpSikh9SepLUl+6PeSdu4xzM+kqK9+YxoHjp0hz16NTre7e+hpUq1uDR58b6tjBlEm6xmKUcnNxhzZj7liG1PSrVHK/AoCnRy0G91hJ3TqzMBgqFNFTIpE8KHTr1o3ExESOHz/OxIkTmT59Ou+8805pi2XHGQ8Bo9FI586dSU5O5ttvvyUuLo7Vq1fTsGFDB0Vv4cKF9OnTh7Zt27J7924OHDjAgAEDGDlyJC+99NIdyVmrVi0WLVrEwYMH2b59O9WqVaNLly5cuWK5xx49ehRVVVm6dCl///038+fPZ8mSJUybNq3QcbOysvDz8+PVV1+lcePGTsszbNgwYmJi+N///sfBgwfp0qULnTp1IiEhwd5mwoQJ/Pzzz3z++eccOXKE8ePHM3r0aNatW2dv06xZM5YvX86RI0f45ZdfEELQpUsXzGbLg7zZbKZnz55kZ2ezc+dOPvvsM1asWMHrr7+eR6YbN27w3HPP0bFjR6fWkJaWRrt27Xj77bedXrdE4hSuPuDqa/m/yJvQ+9bqe4pGY/eUujV8z4ait6ZdyPWAYfOWKpZRyuop1TDYA601cXlWVpb9XlIYFSt70XvsQ/hV9bUeMaOYNCgolvA9odg9j2xJ0W/FJqot+lAprPDO3eTAashOtVRJVLRQqUHpyCGRWJH6ktSXpL50GwhJgSQnJwtAJCcnl5oMf234Wcx99kkRGRkppr/2unhtyEgR1b+neG/wO2L3qvfydti9TOyNaikq/bZfNN/59x3NvfvUNfH9tlliw8ZQ+2t/7NA7GlMi+aeSkZEhDh8+LDIyMkpblGIzePBg0adPH4djnTt3Fq1atRJJSUkiIiJC+Pr6Cjc3N9GtWzdx7Ngxe7vTp0+Lxx9/XPj6+gp3d3dRr149sX79ehEfHy+wbLXbX4MHDxZCCJGSkiIGDhwo3N3dRUBAgHj33XdFhw4dxLhx4+zjhoSEiBkzZoiIiAjh5eVl77tt2zbRrl074erqKipXrizGjBkjUlNThRBC7N+/XwDi9OnTBa717NmzQq/XiwkTJuQ5t2DBAgGI33//XQgh7GvYv39/8S+qFdvvzIYNGwpsM3fuXFG9enWnx7z1WhVEenq60Gq1Ijo62uF406ZNxSuvvGJ/X79+fTFjxoxC29zKX3/9JQBx4sQJIYQQP/74o9BoNOLixYv2NosXLxbe3t4iKyvLoe/TTz8tXn31VREZGSkaN25c5DpslMTnkZvCvrNlQT8oazyw1+TgGiEivYVY3jPPqcgdkaLBigbiw9gPhclsEusXRonDE74X5yZvFevf2CUWjdgolr+8TXz++i5xcMt5IYQQSV99JQ7XriPOjhhpHyfslR9FyORo0Xr2BtFx3max6eilouX64hmLXH98KoSwfJ8iIyMd7r9F8cN7b9t1ytZL24svhowTcyZNFvOe/peI6t9TRPXvKZa8ODjfvkcSk0XI5GjRYPoPosGKBuLFmBednrdEmV3Fch1ObhIi7VrpyCApUaS+JPWl/JD60oOtL0lPqTKOajZT3iUIxazH50ZDvI2WnTFFKGgMeUv0XjGaiXOvBoBbAZX5nOFcUjr9l+7i3MUtFjmEgoor/v7dbntMiUTy4ODm5kZ2djZDhgzhzz//ZN26dezatQshBD169LAn3R01ahRZWVls3bqVgwcP8vbbb+Pp6UmVKlX45ptvAIiLiyMxMZH3338fsOw07dixg3Xr1hETE8O2bdvYt29fHhmioqJo3Lgx+/fv57XXXuPkyZN069aNvn37cuDAAVavXs327dsZPXo0AH5+fmg0GtasWWPfkbqVNWvWYDQa893hGzFiBJ6enqxatapErmF2djbLli3Dx8en0N265ORkypcvXyJz5sZkMmE2m3G9pdy7m5sb27dvt79v06YN69atIyEhASEEmzZt4tixY3Tp0iXfcdPS0li+fDnVq1enSpUqAOzatYuGDRtSqVIle7uuXbuSkpLC33//bT+2fPlyTp06RWRkZEkuVSK5fWzhYIWE730Y+yFNP2/K8eQT9up7XuUt36u05GxuXErn4ObzluF0Fj1O5PKUquFnye10ITmTE5dTWbs/Z+e9QGyFbqwe9DZvqYLubfmh0+ut/zODsHhKKWnJCJGTNL1ynfr59j114zQAqcabQE4lwnuOzYPNpwq4l/x9UiK5U6S+dOdIfenB15d0RTeRlCZCNRPsUYvLWVr02eURwpKtQG/KQKt3/NIdSc2gU3YLzHVaAeB+BxX3TibsplfoTwR7XgLgz5TpjOzSn3IehtseUyKROCKEwJSVdc/n1bm43HaohRCCjRs38ssvv9C9e3fWrl3Ljh07aNOmDQArV66kSpUqrF27ln79+nH27Fn69u1Lw4YNAQgNDbWPZVMc/P398fX1BSwx+5999hlffPGF3R15+fLlBAUF5ZHlscceY+LEifb3w4YNY9CgQfb8AGFhYSxYsIAOHTqwePFigoODWbBgAS+//DJvvPEGzZs3Jzw8nEGDBtnlOnbsGD4+PgQGBuaZz2AwEBoayrFjx27r2tmIjo5mwIABpKenExgYSExMDBUr5l/F9MSJEyxcuJCoqKg7mjM/vLy8aN26NW+++SZ169alUqVKrFq1il27dlGzZk17u4ULF/LCCy9QuXJldDodGo2Gjz76iEceecRhvA8//JCXX36ZtLQ0ateuTUxMDAaD5Tfj4sWLDgoWYH9/8eJFAI4fP86UKVPYtm0bOp1UTyRlBFsVvnzC95pVasY3x7/BLMyoQuVixkWENddSs64hhPWoztXzqWz5Ig6TLeG5PadUjlHqmxdbc/TiTdYfSOST7fGYnAnjs4bvkXwerp20f2eKY5TS2L5nwoxGaBAaxb5OraE+W5sfZ8KY/ENw4pKOAW7Ycks1r9Tc6XlLllviCCUPJKWlL8Ht60xSX5L6ktSXnOfBWMUDjBACRdFSietkAGZtKooJqp/5BY1+RO6GHE25iRkNetVIOcXE04GViz1fWpaJlbvPEJQ1kX/VTLYfH9e1Pe7u0iAlkZQkpqwsFgx+6p7PO/azNehd83paFkZ0dDSenp4YjUZUVWXgwIE8+eSTREdH07JlS3u7ChUqULt2bY4cOWKZa+xYXnzxRX799Vc6depE3759adSoUYHznDp1CqPRSIsWLezHfHx8qF27dp62zZs7PgT99ddfHDhwgJUrV9qPCSFQVZX4+Hjq1q3LqFGjeO6559i8eTO///47X3/9NbNnz2bdunV07tzZqWthUxwKY+XKlYwYkXOP/umnn2jfvj0A4eHhxMbGcvXqVT766CP69+/P7t278fd3rGiakJBAt27d6NevH8OHD7cf9/TMqab67LPP5kmimR/btm2je/fu9vdLly5l0KBB/O9//+P5558nODgYrVZL06ZNeeaZZ9i7d6+97cKFC/n9999Zt24dISEhbN26lVGjRhEUFESnTp3s7QYNGkTnzp1JTEwkKiqK/v37s2PHjjw7i/lhNpsZOHAgb7zxBrVq1cq3TWHXVCK5a9iqz4m8xp4eoT14tMqjbD2/lUlbJ6FaMjJZuikQEOqDRntLFT69Y6JzAHeDjqZVy3EowaJ3OZVbSmu9D+14D3a8h9ZnHKApVkJlrc1rCzMaoeV4oBu6pBTLw4FiwGRQCnwYtyV3d9Ea+H3g73joPZyet0SxGQtlgvMHmtLSl6D4OpPUl3KQ+pLUl5xFGqXKOEK1lOh1JYsMQGMyIrB4Svl6Wi3Fqhk+7kiGGgi1J/PI9T9Z6ZMIwa2LPd83+84z96eDLO1sUYzOZ3akY6MOuLuHlNyiJBLJfUd4eDiLFy/GYDAQFBSETqdzSNxYEMOGDaNr166sX7+eX3/9lTlz5jBv3jzGjLnzIgweHo4PQampqYwYMYKxY8fmaVu1alX7/728vOjVqxe9evVi5syZdO3alZkzZ9K5c2fCwsJITk7mwoULeXYbs7OzOXnyJF27di1Stt69ezson8HBwQ5y16xZk5o1a9KqVSvCwsL45JNPmDp1qr3NhQsXCA8Pp02bNixbtsxh7NzVUry9vYuUBSwKae5+tl23GjVqsGXLFtLS0khJSSEwMJCnn37avhOakZHBtGnT+O677+jZsycAjRo1IjY2lqioKAcly8fHBx8fH8LCwmjVqhXlypXju+++45lnniEgIIA9e/Y4yHTpksUTNyAggJs3b/Lnn3+yf/9+e/iAqqoIIdDpdPz666+FXlOJ5K5RSPgegLveHW+D5XuoKsKe6Dz559OklbuI8pClwp0t4bnNUwpjXuORtjgJz+v1gfgtkJkM2anoslMA32J5Smlt4XsiE5dsDe1020kWcAovQIOiFCyHTUaNopSeQQqkUUpS5pD6ktSXpL5UfKRRqowjVBVF0aDJtvzo6o0q2RrQCAgIsLoLpl6CC/vJDLIYjlyFEULa3tZ8l29coqq3Je+BEBrCW75L5QqeRfSSSCS3g87FhbGfrSmVeYuLTTHITd26dTGZTOzevdvujn7t2jXi4uKoV6+evV2VKlUYOXIkI0eOZOrUqXz00UeMGTPGvoOW+yEqNDQUvV7PH3/8YVeMkpOTOXbsWB7351tp2rQphw8fziNnYSiKQp06ddi5cycATz31FJMnT2bevHnMmzfPoe2SJUtIT0/nueeeK3JcLy8vvLy8nJJBVVWycoUlJCQkEB4ebq/QorklP2Bx1mfDzc2t0H4eHh54eHhw/fp1fvnlF+bOnQtYKvAYjcY8Mmi1WlQ1bziTDSEsD+e2dbVu3ZpZs2Zx+fJl+w5nTEwM3t7e1KtXD71ez8GDBx3G+PDDD/ntt99Ys2YN1atXx8PDw+lrKpGUGIWE79nQaSzqtIogw5xKOSphPJ+K8XwqehdrrierpxT5hO/Z0Fq9klThhFGqdjfL6++18PVgtORUbnIWW04pc9ZfdNupJ95gpJrHDbAapTSFpIGwy1iI4eqeYL9WMnzvQaa09CXb3MVB6ktSX8qN1JecQxqlyjiqqqIoChqz5UdXWH/8U9p2xMX2hTFmAJCpt1iA3eo+DrVC8w5WBFevbuIhw3CatLTMYTD4UlUapCSSu4aiKMUOoytLhIWF0adPH4YPH87SpUvx8vJiypQpBAcH06dPHwDGjx9P9+7dqVWrFtevX2fTpk3UrVsXgJCQEBRFITo6mh49euDm5oaXlxeDBw9m0qRJlC9fHn9/fyIjI9FoNEXmdJg8eTKtWrVi9OjRDBs2DA8PDw4fPkxMTAyLFi0iNjaWyMhIIiIiqFevHgaDgS1btvDpp58yefJkwLJDOHfuXF566SVcXV2JiIhAr9fz/fffM23aNGbOnEmDBo4lx+Pi4vLIUr9+ffT2JMIW0tLSmDVrFr179yYwMJCrV6/ywQcfkJCQQL9+/QCLgvXoo48SEhJCVFSUQ3n3gICAQtdv29lLTU3lypUrxMbGYjAYHBTeW7GVI65duzYnTpxg0qRJ1KlTh3//+9+AZWexQ4cOTJo0CTc3N0JCQtiyZQv//e9/effddwFLCMHq1avp0qULfn5+nD9/nrfeegs3Nzd69OgBQJcuXahXrx4RERHMnTuXixcv8uqrrzJq1ChcrAr/rdfV398fV1fXPMdvJSkpibNnz3LhwgUg5/MICAgo8ppJJEVie8DIJ3zPhtYa4petU9lz5UcC3KpRxaMOwR5hdptNjqeUNWQuH+ORpjieUvbJLePZjFLFCd+r2uAh9qxdixCWEvE3st351UfgDxbPo0LuubbwvVI3BUlPqX8EUl+S+pLUlx5sfUkapco4QgjLD62w3VysSkDHXO6QdqOUxYDkqnP8YjvDK98dRE35lk5VBCZVi0bjSlBg6cRuSySS+4fly5czbtw4Hn/8cbKzs3nkkUf48ccf7QqG2Wxm1KhRnD9/Hm9vb7p168b8+fMBizvxG2+8wZQpU/j3v//Nc889x4oVK3j33XcZOXIkjz/+ON7e3rz88sucO3euyFj7Ro0asWXLFl555RXat2+PEIIaNWrw9NNPA1C5cmWqVavGG2+8wenTp1EUxf7+P//5j32c//znP4SGhjJv3jzef/990tLSAFi1ahUDBgzIM29+x86dO0flyo55/bRaLUePHuWzzz7j6tWrVKhQgYcffpht27ZRv76lwlVMTAwnTpzgxIkTefqLIrwnmjRpYv//3r17+eKLL7W/uD8AAQAASURBVAgJCeH06dMF9klOTmbq1KmcP3+e8uXL07dvX2bNmuWgIH755ZdMnTqVQYMGkZSUREhICLNmzWLkyJEAuLq6sm3bNt577z2uX79OpUqVeOSRR9i5c6d9l0+r1RIdHc2LL75I69at8fDwYPDgwcyYMaPQNTnDunXr7Eoh5HwekZGRTJ8+/Y7Hl/zDsXlKFbLTbavCd66mSv9aPTlzIJbrSZcsRilrIm7VLFBVYQ/fyzp6lCP16lN+8GAqTX4ZAJ3VKOVUonMbVi8tndUoderUKYQQ+Pr6Urdu3UIfTqs2aIRf2EskX84g7eZ8dGYwqRbjjoKGALf8EwpDjqdUqecXl0YpyX2C1JekviT1pYJRRFGf2j+YlJQUfHx8SE5OdjoOtaT5/dvVpO1IJynrJJdNj2FKWoJJSafu8y/To6vVNfPcH/BJJ+bUmcj7lXozrHJFZoY5n+TcZFap+cpPDKzzNR2rbuOHU12J6DyLZiHl7tKqJJJ/HpmZmcTHx1O9enWnEhlKckhLSyM4OJh58+YxdOjQez5/UlISHTt2xNvbm59++gl3d/d7LoPk3lPYd7Ys6AdljQf2mpzaAv/tDX51YdTv+TY5dPUQz6x/hkCPQH596ld2fr2S5A2naVjuEVyb+rP6twQAmnYNwd1gwmXGvxHJ1wHQV65MzQ0xAHwfm8C4L2NpW7MCK4e1ck6+Exvh8yf5ya0vuzOqOpwaMWJEvpWxcvPF9N+5fjGdjJT3UMwq7q4K6ZkCnWs7+o7rReWm9fPtN+O3z/n013J4eWRw8LVS3MR8o5zFMDUxDrykZ+SDgNSXbh+pL0lKg5LQl+S2QhlHqKplG8pqOrSVGtbprDkKhKDXOYWADlt4v1JvAFw1zn+sQghOnP6M/rW+o255S9nOFzo8JA1SEomk1Ni/fz+rVq3i5MmT7Nu3j0GDBgHYXdzvNeXLl2fDhg107NiRXbt2lYoMEomklCik+p4NW04pszUZukajdQhv0+otetm+X86w/YcEXJd+S5WPP7YMmyuBuka5/fC9lq6naNasGY0aNbI/FNi8FgpDWNelEZacNRnZltLzKAruLgU/UJopI3va0lNK8g9G6kuSBwUZvlfGSV6/Hn2FTly4fgyTOdYevK/T6yAzhUt//8gfWXXs7XUKtPBxrgrKlZtZfLblJ5q4z6RrtZzjFXyqlNwCJBKJ5DaIiooiLi4Og8FAs2bN2LZtGxUrFhxKcrepUKECr7/+eqnNL5FISgl7+F4hOaWsbUzCks9Jo9PZw0cUoMvQ+pyPu0587BVSr2eRnQ26Clbjjyln3GJV37OhsRilyisp9OrVC7CUME9MTCwyhAUg7fo1wBMUPZAJWJLteqUm4F3Vr8B+qloGwvdyr08apST/UKS+JHkQkEapMk72xYuk+GRgMqfbj6Vr9VSqUhW2zydz72po8QUepnR+v7QItwH/w9PqRVUUX/15jh1xR2jSBJIyfThxsy2DWj+EX8XH7tZyJBKJpEiaNGnC3r17S1sMiUQiyTF2FFJ9z5bo3KRajVJaLcKaA1SogtCH/Ah9yI/kS+mkXs+yGHS0lj65E57fnlHKqsqrxhyRbVX8CsmDZUOotsTolnE0IgMz0PDJZui8Ci52Y695V5rV9xyMbqWd3EoiufdIfUnyoCCNUmUYc5oRV7dAbtgUIsUFf1Ndzg5rTP3qgRCbSKbGkoXfTQN+7ceAkwYpgKSb16nglgSAi1tt+jWfQ1V/WW1PIpFIJBKJBHAufE+xhu/ZQuG0OrtRilwGJo3Waiwy5yQ8J1e1PK0tfK84dh6tdRxzzji2kuTOeErZ5URvFdeyBhf/SoX2sxm8StUUlNtQWOoZ1yUSiURyu0ijVBlFzTRxce4f1Kv1AleNx61HNWjQ0qmBNZGlMYNMjSUHgKu7D4Tkn4wyP65e3UQrjxG0qWNRPmpUCqKmNEhJJBKJRCKR5GDbGCzE6+jWnFJaXU5OqdwWJkWTyyhVqKdU0R5Odqzhe6g5RqnieEopim1+yxrsHlDawsPhykT1PQejlAzfk0gkkvsVaZQqo5iTsxBZZoQQZKqZ1qMKQhF25QdTVi5PKed/jD/YdILMa2t5qLxFERG4ULFix5IUXyKRSCQSieT+x5nwPcUxfE/RaO2FaUQ+nlJCFXYPp/yNUsWQL5/wveJ4ShkMcajo0epE7vRWuHp6FdrPZu+SnlISiUQiuVPktkIZJ8t8k2/9v7S+UwAVvW1XzJRhN0q5OGmUyjKZifo1juR0S9jedyd64FltG5X8e5Sw5BKJRCKRSCT3OU6E79lzSgkTQgi0Oh1C5BO+5+ApZdXbcofv2c7fRvW93OF7xfGU0mqvoPM6TUBwEq0qnKV5ZSPhg4dT/aHmhfZTKQOeUshE5xKJRPIgID2lyirW39lEwzVueqQB3liMUoIQ7xDOZWbziXdHjrlbw/c0zmkFNzOy8dCl4m24CcAzLevRsnr5kpdfIpFIJBKJ5H7Hiep7tpxSAL3W9qJ9ci1qWHM05XZW0lgNUQUlOtfYc0rdRqJzUwbsXATlQoqXU0pVQQFXg0Jb/zOY/ALQ9Si6nLwtPFGG70kkEonkTpFGqTKKTY9QUVFySpxQXqPHx8WHucfO84nPI/b2FQxFf5RCCI7+/Qzvhx+0Hwv1D7DvqEkkEolEIpFIcmH3lCrY68jD4EEF1wpcy7zGmZQzcPEKocKqo+XyelLsic7VnETnqooQAkVR0Glvo/qewZoPVDXBr69Y5qnylnXooj2lVNXi86SxJTzXOFcwp8yF78nqexKJRHLfIrcVyipWq5SKisaqmyhoLDtSP75M8pGfAeiQ9Acv+2byRs3gQoe7npbN+r9OkpWeY5AyGCri61u4e7ZEIpFIJBLJPxZ7TqmCPaX0Gj1r+6zl4y4fW5oqwu5JlJ2WTlZ6OpATvifUnETnAFi9peyeUsUxSnlUgO7vQKOnwdXHMo41v5SznlIWo5S1rca5/eqykehchu9JJBLJg4C8g5dxzIpKzu6PgkZRYc9SsjIt4Xddru1gQkglqrm5FDrOy98c4LXvfgfApGqY+9cntGv7O25uVe6i9BKJ5EFgyJAhKIqCoigYDAZq1qzJjBkzMOXKhXI7bN68GUVRuHHjRskI6gTx8fEMHDiQoKAgXF1dqVy5Mn369OHo0aMO7aKjo+nQoQNeXl64u7vz8MMPs2LFCoc2p0+fRlEUYmNjnZ5/+vTp1KlTBw8PD8qVK0enTp3YvXu3w5hDhw6levXquLm5UaNGDSIjI8nOzi503MTERAYOHEitWrXQaDSMHz/eKXm2bt1Kr169CAoKQlEU1q5dm6fNt99+S5cuXahQoUKR6xVC0L179wLHWrFiBY0aNcLV1RV/f39GjRrlcP6XX36hVatWeHl54efnR9++fTl9+rRDm5UrV9K4cWPc3d0JDAzk+eef59q1a3e8TokkX3JX3zObCqzC5+vqS9NKTS1NNSCsnkeX40+xYsJIzCaTQ04pW6JzyAnhs+WUuplpZO3+BA4lJDsnY8sX4Mll4BtiERmbyM54SpkRCih2T6n7ySglw/ckZQupL0l9SepLt4e8g5dVhO2fXOF7KCjWE9k6NwBcHpkI5asXOdyZa2m46zMAMAl3/tO5tgzbk0gkTtOtWzcSExM5fvw4EydOZPr06bzzzjulLZadopQQAKPRSOfOnUlOTubbb78lLi6O1atX07BhQwdFb+HChfTp04e2bduye/duDhw4wIABAxg5ciQvvfTSHclZq1YtFi1axMGDB9m+fTvVqlWjS5cuXLlyBYCjR4+iqipLly7l77//Zv78+SxZsoRp06YVOm5WVhZ+fn68+uqrNG7c2Gl50tLSaNy4MR988EGhbdq1a8fbb79d5Hjvvfdegb8t7777Lq+88gpTpkzh77//ZsOGDXTt2tV+Pj4+nj59+vDYY48RGxvLL7/8wtWrV3nyySftbXbs2MFzzz3H0KFD+fvvv/n666/Zs2cPw4cPv+N1SiT5Ygtny74Jb1aAt6rCmZ35NrVV4btcLhPvwEBLdzSkXb9Oxs0Ue/U9VRUoulyeUtYHVhedRS2/nm5k/OpY+nywg6upWc7Lak16rrEqjkV5Sv30008k+gRwRXuz2J5StqGdTGl6d5DV9yRlEKkvSX1J6ku3gZAUSHJysgBEcnLyPZ8761yKODd5q/h52mLRaV4zEdW/p5g3IEL8OuAVISK9xYDvlotKv+0XqxOvFTlWcspBseL7x8Sq6OZiw8ZQsWPHo/dgBRKJJDcZGRni8OHDIiMjo7RFKTaDBw8Wffr0cTjWuXNn0apVK5GUlCQiIiKEr6+vcHNzE926dRPHjh2ztzt9+rR4/PHHha+vr3B3dxf16tUT69evF/Hx8QKL+d3+Gjx4sBBCiJSUFDFw4EDh7u4uAgICxLvvvis6dOggxo0bZx83JCREzJgxQ0RERAgvLy97323btol27doJV1dXUblyZTFmzBiRmpoqhBBi//79AhCnT58ucK1nz54Ver1eTJgwIc+5BQsWCED8/vvvQghhX8P+/fuLf1Gt2H5nNmzYUGCbuXPniurVqzs95q3XylkA8d133xV4vqj17t+/XwQHB4vExMQ8YyUlJQk3N7dC1/n1118LnU4nzGaz/di6deuEoigiOztbCCHEO++8I0JDQx36LViwQAQHBxe9QCtFrdNGYd/Z0tQPyioP7DUxZgmxoKkQkd45r81zC2zecEVD0WBFA3Hxr3hxbvJW+yvh/T1i21dxYtGIjWLHN8eFmp0tDteuIw7XriNM1mtmNqsi8vtD4tmPfxdh034UIZOjxd8JxbieH3cRItJbfPnRfBEZGSl2795dYFOTySQiIyPtr18iewoR6S1My592aqqR3y0RIZOjRau5XzkvX0mTdi3nMzGbSk8OSYki9SWpL+WH1JdyeBD1JekpVUZRzSrZmDinSwGRE76nWHe/sjSWqnuGInaGjl26yZ9HVlPZ8zR+bkkAeHjWumtySySSfwZubm5kZ2czZMgQ/vzzT9atW8euXbsQQtCjRw+MRktOk1GjRpGVlcXWrVs5ePAgb7/9Np6enlSpUoVvvvkGgLi4OBITE3n//fcBmDBhAjt27GDdunXExMSwbds29u3bl0eGqKgoGjduzP79+3nttdc4efIk3bp1o2/fvhw4cIDVq1ezfft2Ro8eDYCfnx8ajYY1a9ZgNuefH2bNmjUYjcZ8d/hGjBiBp6cnq1atKpFrmJ2dzbJly/Dx8Sl0ty45OZny5ct2ldT09HQGDhzIBx98QEBAQJ7zMTExqKpKQkICdevWpXLlyvTv359z587Z2zRr1gyNRsPy5csxm80kJyfzv//9j06dOqHXWzxAWrduzblz5/jxxx8RQnDp0iXWrFlDjx497tlaJf8wdAYYtQcmn4aHnrUcKyTpudbqWSX8dChuOV5H6oVMdNZuuavvQU74nkajML13ff43tCV+Xpa0DNnmokPwcia3ekpRtKeULbRPQaV3pgfNzR6WE8UM39OUpoeSDN+T3AdIfenOkfrSg68vyTt4GSXh2A326k4RpzlB43hbiZNc4Xtaq1GqEL/pI4kpdJm/lS1H4wHYer4Vter9lwb1F9xd4SUSiVMIIVCzzff8VdiDijMyb9iwgV9++YWqVauybt06Pv74Y9q3b0/jxo1ZuXIlCQkJ9hj0s2fP0rZtWxo2bEhoaCiPP/44jzzyCFqt1q44+Pv7ExAQgI+PDzdv3uSzzz4jKiqKjh070qBBA/uP7q089thjTJw4kRo1alCjRg3mzJnDoEGDGD9+PGFhYbRp04YFCxbw3//+l8zMTIKDg1mwYAGvv/465cqV47HHHuPNN9/k1KlT9jGPHTuGj48PgdbQm9wYDAZCQ0M5duzYbV8/sORf8PT0xNXVlfnz5xMTE0PFihXzbXvixAkWLlzIiBEj7mjOu81//vMf2rRpQ58++ZeSP3XqFKqqMnv2bN577z3WrFlDUlISnTt3tocSVK9enV9//ZVp06bh4uKCr68v58+f56uvvrKP07ZtW1auXMnTTz+NwWCw/93IsDzJXUWjBbdyoHe1vC8k6bkthE94aQl6pSUb077IGcaqdV87n8qJfVcw6yzjXX7rbS7NmUN2rocOWyhflrHgufLKaTEo2XTFwnJK2c715Deaus6kvPZn6wL0Tk1V9nJKyfC9B5nS0pfuRGeS+pLUl/JD6kv549x2iOSek3rtBulKFt1i/8J82ZuDlQE0OakNbJ5SmoLtiievpALgYbD8AVfxb0iVgLZ3U2yJRFIMhFHlwuv55ya5mwTNaINicK7stw2bYmA0GlFVlYEDB/Lkk08SHR1Ny5Yt7e0qVKhA7dq1OXLkCABjx47lxRdf5Ndff6VTp0707duXRo0aFTjPqVOnMBqNtGjRwn7Mx8eH2rVr52nbvLlj9dC//vqLAwcOsHLlSvsxIQSqqhIfH0/dunUZNWoUzz33HJs3b+b333/n66+/Zvbs2axbt47OnTs7dS0MBkORbVauXOmgGP3000+0b98egPDwcGJjY7l69SofffQR/fv3Z/fu3fj7+zuMkZCQQLdu3ejXr59DDgBPT0/7/5999lmWLFlSpDzbtm2je/fu9vdLly5l0KBBRfZzhnXr1vHbb7+xf//+AtuoqorRaGTBggV06dIFgFWrVhEQEMCmTZvo2rUrFy9eZPjw4QwePJhnnnmGmzdv8vrrr/PUU08RExODoigcPnyYcePG8frrr9O1a1cSExOZNGkSI0eO5JNPPrmr65RIcirxFWzs0VjbmIQJRacBFw2qUNEoGtKSTiOE4PzR65w/ep3qYY9T/cgakr//HgA1I5PAGW8AYLAapYrlKWU1SmmKYZTyw+JFbxbeGNPNaEO74cyvQ9kwStmMBdIg9aBTWvoSFF9nkvpSDlJfckTqSwUjjVJlkMzUVGJ/WYoIbsiJiq+QVf4ypK4FFHQNaxGvBpOmseyuuRSiDaRnZuGmyyDIy2KU6tG45j2QXiKRPIiEh4ezePFiDAYDQUFB6HQ61q1bV2S/YcOG0bVrV9avX8+vv/7KnDlzmDdvHmPGjLljmTw8PBzep6amMmLECMaOHZunbdWqVe3/9/LyolevXvTq1YuZM2fStWtXZs6cSefOnQkLCyM5OZkLFy4QFBTkMEZ2djYnT550SDZZEL1793ZQPoODgx3krlmzJjVr1qRVq1aEhYXxySefMHXqVHubCxcuEB4eTps2bVi2bJnD2LmruXh7excpC1gU0tz9KlWq5FQ/Z/jtt984efIkvr6+Dsf79u1L+/bt2bx5s30ntV69evbzfn5+VKxYkbNnzwLwwQcf4OPjw9y5c+1tPv/8c6pUqcLu3btp1aoVc+bMoW3btkyaNAmARo0a4eHhQfv27Zk5c+ZdXadEgtULCrVg7yWdYlGtVavhSu/mhsi2GE+ObFmO3jcIT79+3LiUju6RrlTsGEDGwQOkbdmK+WaKfRybp1S2qfjhe7ZKes6E72msba8bx3J25+80GNfOqansRinnpSt5bMZBGbonKUNIfUnqSwUh9aWCkUapMkhq0lWE2Yxq1mHSeoL5EgCqojCuZn0ulMtxBS8ofC8jIwHf1CdY9NhN+zGd1jPfthKJpHRQ9BqCZrQplXmLi00xyE3dunUxmUzs3r2bNm0s67h27RpxcXEOP6ZVqlRh5MiRjBw5kqlTp/LRRx8xZswY+w5ablfz0NBQ9Ho9f/zxh10xSk5O5tixYzzyyCOFyti0aVMOHz6cR87CUBSFOnXqsHOnZQf2qaeeYvLkycybN4958+Y5tF2yZAnp6ek899xzRY7r5eWFl5eXUzKoqkpWVk6FrYSEBMLDw2nWrBnLly9Hc4tHbHHWZ8PNze22+jnDlClTGDZsmMOxhg0bMn/+fHr16gVY3MjBkg+jcuXKACQlJXH16lVCQixl7NPT0/OsVWvNu2N7gE5PT0en0+XbRghxV9cpkTjlKWX9GzZbQ/yadu8N31vzNykKBpc06rYJZNd3J9GWK4/fkFFc/+or0rZsRWTlVMUy3I5R6jY8pTRCtVqWNCBMKFrnfh9s9q4yEb4njVIPPKWlL9nmLg5SX5L6UkFIfalgpFGqDKKqKgrYivOiNaVjBK7rTVwop0crTLgLE9W9y9HAyy1Pf7MqOHrud7TkGKT0+gp4eztf9lIikdx9FEUpdhhdWSIsLIw+ffowfPhwli5dipeXF1OmTCE4ONgeKz9+/Hi6d+9OrVq1uH79Ops2baJu3boAhISEoCgK0dHR9OjRAzc3N7y8vBg8eDCTJk2ifPny+Pv7ExkZiUajKbB0ro3JkyfTqlUrRo8ezbBhw/Dw8ODw4cPExMSwaNEiYmNjiYyMJCIignr16mEwGNiyZQuffvopkydPBiw7hHPnzuWll17C1dWViIgI9Ho933//PdOmTWPmzJk0aNDAYd64uLg8stSvX9+ebNJGWloas2bNonfv3gQGBnL16lU++OADEhIS6NevH2BRsB599FFCQkKIioqylz4G8k2ImRvbjldqaipXrlwhNjYWg8HgoPDeSmpqKidOnLC/j4+PJzY2lvLly9uV3KSkJM6ePcuFCxcc1hsQEODwupWqVatSvXp1wFLauU+fPowbN45ly5bh7e3N1KlTqVOnDuHh4QD07NmT+fPnM2PGDLs7+rRp0wgJCaFJkyYA9OrVi+HDh7N48WK7O/r48eNp0aJFnp3a4q5TIikS20OAEzmlzFZvqjptHiHh5x2IbBUFDUKoaLSWe5mqWpOFu1iSmotcD1s2o1TWXfaUsuWfEmhRhBmNu7tTU5WJ8D3KgmVMci+Q+pLUl6S+9IDrS84VBPxnUlrljS+eOiFWRIwQH01ZJhaN2CgWRcwXUf17iqmDnxOVftsvhq6eL8RPUwvsP/qLfeKZ918TGzaGivdXdxdv/hArVNVcYHuJRHL3edBKHNuwlTj28fERbm5uomvXrg4ljkePHi1q1KghXFxchJ+fn4iIiBBXr161n58xY4YICAgQiqIUWuK4RYsWYsqUKfZ+ISEhYv78+Xnk2bNnj+jcubPw9PQUHh4eolGjRmLWrFlCCCGuXLkixo4dKxo0aCA8PT2Fl5eXaNiwoYiKinIoqyuEEGvXrhXt27cXHh4e9hLMq1atcmiTX5lm2+vcuXN5ZMvIyBBPPPGECAoKEgaDQQQGBorevXuLPXv22NssX768wDGLIr8+ISEhhfbZtGlTvv1sn0VhMkVGRhYqy61lhJOTk8Xzzz8vfH19Rfny5cUTTzwhzp4969Bm1apVokmTJsLDw0P4+fmJ3r17iyNHjji0WbBggahXr55wc3MTgYGBYtCgQeL8+fN3vM5bKYkSx/8k/hHX5NfXhYj0FuLnaQU2CV8dLhqsaCCOXjtqP3Y+coc4N3mrWDLwWfHR6OdF7MazYtGIjeLnjw4KIYRI/ukncbh2HXF60LP2Pv9evkeETI4W/16+R7z7a5w4l5RWtHzfvCBEpLf44aPZIjIyUnz++efir7/+EllZWXmaJl1LEpGRkeLi6zWEiPQWF6e8L86t/MHpS/HslwtFyORoEf7eGqf7lDjXz1g+jzf9S08GSYkj9SWpL0l96Z+nLylC3EEZpgeclJQUfHx8SE5OdjoOtSS4dOoEv7wRRVZQU7Kv10RJjyUj6zeuuldk+XPjedJHw4dNGha4M/RY1GZC3H7m2bpfc+R6U1o3X0qzkLJdHlMiedDJzMwkPj6e6tWr4+rqWtri3FekpaURHBzMvHnzGDp06D2fPykpiY4dO+Lt7c1PP/2Eu5OeBJL7m8K+s6WlH5Rl/hHXZMMbsP1daPkidH8r3yadvu7EpfRLfPn4l9SvUB+ACzN2oaab+PH8x+CjoXW/N9n65TFqNPWj2wsNufnbJs7/3//h2qgR1b9aDcCE1bF8uz/BPm7fppWZ178Ij/fvR8H+z/ml0ovsupTzN9ulSxd7yJCNxHPnWfrJx4wS/8VPucaWG6/RLHI0nuWc+30a9OVCdsSGUiMwk43j+jrVp8S5fhrebwx6d3glsXRkkJQ4Ul+6faS+JCkNSkJfkkHYZRBVNWNxqLYanawx87b3BjffQl2VU7NMuGgtLuDhdUOkQUoikdxX7N+/n1WrVnHy5En27dtnrwZSUPncu0358uXZsGEDHTt2ZNeuXaUig0QiKQPYSiAXklNKZ83r5JDPyaqzaVAQqopizQeqmq0hcC6WfDG5w/fGdQpjZIcatA+zlD+/np6Tb6pAtJZxml9aRSMOU0FjSeOQkpLi0OzmtausfuMVq0wWOa+asMvlDGpZiJyT1fck/3CkviR5UJA5pcogQhUoKLl+bG2JHK1GqUKUBpPpJlU9YqniZdld02qlhVoikdx/REVFERcXh8FgoFmzZmzbto2KFSuWmjwVKlTg9ddfL7X5JRJJGUApOqeURnFMdG45aO2uKAjVbM8pJW7JKWW6eJHL8+bhUrsOIY/3ZEr3Ony77zzbjl/FaHYit1TDfnBuDxWybvLkjV/YrLZiM60xmUwOza6dO4NqNFpFs8jgG1gRd6+iy7fbsOWU0pSmVUomOpdIpL4keSCQRqkyiC2i0rYLZTNOqdYffn0BCkBicgaHD73Ii41yLNM6rUe+bSUSiaSs0qRJE/bu3VvaYkgkEokjStGeUvZE57mMUrakwwoaVFVFo3FMdK61lgc3Jydz7aOPAXB/+GH0lfyLl/A8pA28uAOy02B2EDosxiij1QBlQxUqilVOm6dU+KC6TnlKbYq7zIlLqSRe8bGurWix7hr2EoDSKCX5ZyL1JcmDgryLl0GEUAGFA8JWHtOmiBTsKZVpNNN1/lYuJVmy5V9IrYSPTysCAv511+WVSCQSiUQieeCxGT/UoqvvqbkNVxqbUcoxfM/mKWWoUYOAN96g/JAhKFavKfWmJeTOoLXM6ZSnlH0+y56zviCjlFlFsa7F5iml6F2KHDYxOYN/L/+DWT8e4WyixRNDX6rb2zajVGnKIJFIJJI7RXpKlUGEqqKgkJ15g+zU38F0DQBXvUW5MGjy2hJvpBtJyTThorPkI0hxeY3mzbrfO6ElEolEIpFIHmRs+lchnlIaTX7he1ajlKJB5OMppSgK5Z7uD0Dy+mjMV7IQVkOS3uople2Mp5R9Pot6b/OUujV8T5jNuYxSlnEVbdGPBNfTLDK56DRU8k8gMf0cHRrWdl6ukkaG70kkEskDgTRKlUGEKkAB/5tHUI2n7Md13pYfXUM+vtIZRovy42pNcP7v9vXugaQSiUQikUgk/xCUoo1SOsWiWk/fOR0vgxcR9SJooQRauqOg5pPo3GEKvd4yhdWQ5KK9HaOUFlDsnlIpKSmcOHECf39/vL29LTJY16LYvPE1RT8SpGVnWGQhies+7+PqA4HlJjsvV0kjjVISiUTyQCDv4mUQISyeUjZFwaCpzlX/VD5+7AXr+3yMUtlmFFQMWkt1Fp1O5pKSSCQSiUQiKTGcyClV2asyAAmpCRxNOsrnhz/P5SmlIMy5E53nM4XOapQyWr3jdbcRvgeg0aHH4tl08eJFPv/8c5YsWUJKSgrrtm4nqbJFTlv4njNGqQtpF61CWmTxMnjRpFKT4slVEmSlwtH1cGKD9YCM35NIJJL7GekpVQbJPHoUUOzaik5TkXRvM9kurrhh4mEfR4OTECpXzgxnSad9aBRr0kyZ4FwikUgkEomk5HAip9TsdrMZUHsAh64dYv7e+ZiEyZ4N3JboXLklfM9hCp1FNbeH792OpxSARkd19Ry1qlchJcPIpUuXSE9P58CBA6RlZNpl0to9pbRFDmky2/RShX0R+9CgQetEvxLn11dh7/Kc91rnqwZKJBKJpOwhPaXKIDc3bUIBFNvulbBU3os8+QFHNZtp5evp0D47+yqmjD/Raaw7V1710Whc77HUEolEIpFIJA8wmqI9pVx1rrQIbEGDCg0ArEYoyzlbonPNLYnOc5MTvmcxStk8pS7fzOLJD3ewfEe8k7LqcCWbgY8/ysiRI/HxsVTL27Jli0XO1HQGZrZDm6t9UZhUW7icQK/Rl45BCiDlguXfCjWhWnsIn1o6ckgkEomkRJBGqTKIektCSgUQioKHOQMXq1u3jYQbGSzceAiALLOeT47N5+Hm39nLD0skEolEIpFISgB7TqmCPaVsaJRcCc+VXInOhWp765SnVCVvV/RaBZMq2Hf2BvNjjjknq81gZPXqqmwN17NV4nPLyMIdl1w5pYo2MGWbTdZ15JX7nmIzCrabAEOioelzpSuPRCKRSO4IaZQqgwghOF3uOibDJfsxVVHQuZWDGh0d2n687RTf7LXsmhnNelxdA1GUUtq5kkgkDyRDhgxBURQURcFgMFCzZk1mzJiRp6JTcdm8eTOKonDjxo2SEdQJ4uPjGThwIEFBQbi6ulK5cmX69OnD0aNHHdpFR0fToUMHvLy8cHd35+GHH2bFihUObU6fPo2iKMTGxjo9//Tp06lTpw4eHh6UK1eOTp06sXv3bocxhw4dSvXq1XFzc6NGjRpERkaSnZ1d6LiJiYkMHDiQWrVqodFoGD9+vFPybN26lV69ehEUFISiKKxdu7bYMgPMmjWLNm3a4O7ujq+vb75znT17lp49e+Lu7o6/vz+TJk1y+BvK/XeW+1W/fn17mzlz5vDwww/j5eWFv78///rXv4iLiytync7IJ5EUiROJzm3orJ5HZmHOySlly31kjwIUmM2qg8eUzVMK63ejvIeBn8c/wpwnGwJgzCc5er7YPJ9UyzhPPPEEI0aM4IUXXuCJMDee9/2KIJcBKIrJsX0hmK1yasqKUUomOJeUMaS+JPUlqS/dHvJuXgYRAmKDLqAolt0sBdBqPNB0ng4BDRzaJmcY0WmsFVoMrrz+uKy6J5FISp5u3bqRmJjI8ePHmThxItOnT+edd94pbbHsFKWEgMVDoHPnziQnJ/Ptt98SFxfH6tWradiwoYOit3DhQvr06UPbtm3ZvXs3Bw4cYMCAAYwcOZKXXnrpjuSsVasWixYt4uDBg2zfvp1q1arRpUsXrly5AsDRo0dRVZWlS5fy999/M3/+fJYsWcK0adMKHTcrKws/Pz9effVVGjdu7LQ8aWlpNG7cmA8++OC2ZQbL9e/Xrx8vvvhivmOYzWZ69uxJdnY2O3fu5LPPPmPFihW8/vrr9jbvv/8+iYmJ9te5c+coX748/fr1s7fZsmULo0aN4vfffycmJgaj0UiXLl1IS0srdJ1FySeROIUTOaVs2DylVKHmMUrZvJOuJ6axZNRmPp20nesXLX/Ddk+pXA8gNfw8ebS2H5BjGCoSrdW4ZTVKabVaAgMDCQoKolL6Ibz06WiUVACMmXpwK1fkkEazZd1lxlNKGqUkZRCpL0l9SepLt4GQFEhycrIARHJy8j2dd+fzg0Xfd8LFlBd6iaj+PcWSAdPF6zMniq8Tr+VpO2rlXhE+e6HYsDFUbN/R4Z7KKZFInCcjI0McPnxYZGRklLYoxWbw4MGiT58+Dsc6d+4sWrVqJZKSkkRERITw9fUVbm5uolu3buLYsWP2dqdPnxaPP/648PX1Fe7u7qJevXpi/fr1Ij4+XgAOr8GDBwshhEhJSREDBw4U7u7uIiAgQLz77ruiQ4cOYty4cfZxQ0JCxIwZM0RERITw8vKy9922bZto166dcHV1FZUrVxZjxowRqampQggh9u/fLwBx+vTpAtd69uxZodfrxYQJE/KcW7BggQDE77//LoQQ9jXs37+/+BfViu13ZsOGDQW2mTt3rqhevbrTY956rZwFEN99912R7QqTefny5cLHxyfP8R9//FFoNBpx8eJF+7HFixcLb29vkZWVle883333nVAUpdDP6/LlywIQW7ZsKVLuwuTLj8K+s6WlH5Rl/hHX5M/lQkR6C/HFM0U2PXTlkGiwooHo9HUncemD/eLc5K3i5Eu/iiMTvhdJ+y6IT17aKhaN2Gh//b09QQghxOkhQ8Th2nXEjXXrHMa7lJIhQiZHi+pTop2T9d36FlnP73U4bLyWIa7NihAi0lukvvKkODXhU3G8Qzunhvxg+1YRMjla1J3xqXMy3C1W9LKs7a+vSlcOyV1B6ktSX8oPqS892PqS3GIogwhh2YGybUQpgNDo0OWTJyrbpKK3ekppNLL6iERyPyGEIDs7+56/bPeYO8HNzY3s7GyGDBnCn3/+ybp169i1axdCCHr06GHPWzJq1CiysrLYunUrBw8e5O2338bT05MqVarwzTffABAXF0diYiLvv/8+ABMmTGDHjh2sW7eOmJgYtm3bxr59+/LIEBUVRePGjdm/fz+vvfYaJ0+epFu3bvTt25cDBw6wevVqtm/fzujRowHw8/NDo9GwZs0azOb8PR3WrFmD0WjMd4dvxIgReHp6smrVqju+fmDZjVq2bBk+Pj6F7tYlJydTvnz5EpnzTnFW5lvZtWsXDRs2pFKlSvZjXbt2JSUlhb///jvfPp988gmdOnUiJCSkwHGTk5MBysz1kTzg2NIjFCOnlKqq6AMsFZENWlc89eUwn7jB4LfaMnRee6o1rGBpZw3Ls4XvJUdHczkqinTrvU9r1QFVgXP3cHtOKcewobS9l9CnW/5vxpd0oz9C0eMMJquHWKk7KNk9pWT+1H8KpaUvlYTOJPWlO0fqSw++vlR0ALnknnI14yrnb54nV+YBS/U9jcaukOQm26zaw/c0Gpd7JqdEIrlzjEYjs2fPvufzTps2DYPh9ozYQgg2btzIL7/8Qvfu3Vm7di07duygTZs2AKxcuZIqVaqwdu1a+vXrx9mzZ+nbty8NG1ryoYSGhtrHsv0w+vv72+PWb968yWeffcYXX3xBx46WHHrLly8nKCgojyyPPfYYEydOtL8fNmwYgwYNsucHCAsLY8GCBXTo0IHFixcTHBzMggULePnll3njjTdo3rw54eHhDBo0yC7XsWPH8PHxITAwMM98BoOB0NBQjh1zMtFwAURHRzNgwADS09MJDAwkJiaGihUr5tv2xIkTLFy4kKioqDua804pjsz5cfHiRQcFC7C/v3jxYp72Fy5c4KeffuKLL74ocExVVRk/fjxt27alQYMGBbaTSEqMYuSUslWmMwkTvv+qiVsrf3a8+Qm1fR5GmFS0Wg1aDw06F0s7s8kyptbbUiUvbctW0rZsJeWXX6kZ8ys6TY4lyKwKdNoiDDK35JSyIYxmsIYPJmZc5UTiceprnLMymcpMTinbrm1pW8ck94rS0pfg9nUmqS9JfUnqS84j7+ZljN/O/kZKVorljbDlHgCzonCr/pGScoDGPp/zaOUdgDRKSSSSu0d0dDSenp64urrSvXt3nn76aYYMGYJOp6Nly5b2dhUqVKB27docOXIEgLFjxzJz5kzatm1LZGQkBw4cKHSeU6dOYTQaadGihf2Yj48PtWvXztO2efPmDu//+usvVqxYgaenp/3VtWtXVFUlPt5SEGLUqFFcvHiRlStX0rp1a77++mvq169PTEyM09fCGeV05cqVDnJs27bNfi48PJzY2Fh27txJt27d6N+/P5cvX84zRkJCAt26daNfv34MHz7cfjz3uCNHjnRK5m3btjn0W7lypVP9iitzSfHZZ5/h6+vLv/71rwLbjBo1ikOHDvHll1/aj40cOdJhnRJJiWLzProSBxumw8lNBTbVWr2qVKGiaBQMAZ6kmyz63Zn9+9n46WKEEGh11ip9VqOU39gxVHjhBXyefNLSP8XSR5tLCTQ5k1fKZpT6bgR83BkSrfdeFRQsng/XjTcxGjNB51yBHJPMKSWRFInUl3KQ+pLUl5xFekqVMYyqEQUFoQhy26BUjTZP+N6Ro6/QyPew/b1e73OPpJRIJCWBXq8vMiHj3Zq3uISHh7N48WIMBgNBQUHodDrWrVtXZL9hw4bRtWtX1q9fz6+//sqcOXOYN28eY8aMuR3RHfDw8HB4n5qayogRIxg7dmyetlWrVrX/38vLi169etGrVy9mzpxJ165dmTlzJp07dyYsLIzk5GQuXLiQZ7cxOzubkydP0rVr1yJl6927t4PyGRwc7CB3zZo1qVmzJq1atSIsLIxPPvmEqVOn2ttcuHCB8PBw2rRpw7JlyxzGzl29xtvbu0hZwKKQ5u536y5cUTgjc2EEBASwZ88eh2OXLl2yn8uNEIJPP/2UiIiIAhXa0aNHEx0dzdatW+2l7gFmzJhxx8lVJZICcfGy/HvjDGyfD3s+hmnn821qC98zC5shR4Pe3Q0AY0Ymsb+sp+UTT9uNTarJYugxVK2K/4T/kBUfT/K33yKshiCdJkcHdCrZeflQuHIUbpy1vA59A4GNLPF/VqOUKrQoqCgaJ41Sqmpdm1PN7x7SKPWPo7T0JdvcxUHqS1JfkvpS8ZFGqTKGav2hFTjmlLJ4SjlqAUbjdQB2XniYNrXqElbz2XsoqUQiuVNsJYPvB2w/srmpW7cuJpOJ3bt3293Rr127RlxcHPXq5VQCrVKlCiNHjmTkyJFMnTqVjz76iDFjxtjXnjtfQWhoKHq9nj/++MOuGCUnJ3Ps2DEeeeSRQmVs2rQphw8fziNnYSiKQp06ddi5cycATz31FJMnT2bevHnMmzfPoe2SJUtIT0/nueeeK3JcLy8vvLy8nJJBVVWysrLs7xMSEggPD6dZs2YsX74czS2hNcVZnw03N7fb6lcQt8pcFK1bt2bWrFlcvnwZf39/AGJiYvD29nb4WwFLxZgTJ04wdOjQPOMIIRgzZgzfffcdmzdvpnr16g7n/f397eNLJCVOzU7QeQZcPw1/fgrZNy2hZPmkV8jtKQWWe03Lvv1I+zEBncbykGvKykJj85QyO4YE2qvw2Q1BxfSUeupTOP8n7PsMDn4NZktunPTkZHys4XsqWhShonFyl9w2r/SUktxrpL4k9SWQ+tKDrC9Jo1QZQwhhtUiRK6eUcPCUyjSa+XjbKWqo6Rg08PPpjoS3fAIPD+fjVSUSieROCQsLo0+fPgwfPpylS5fi5eXFlClTCA4Opk+fPgCMHz+e7t27U6tWLa5fv86mTZuoW7cuACEhISiKQnR0ND169MDNzQ0vLy8GDx7MpEmTKF++PP7+/kRGRqLRaFCKSGo7efJkWrVqxejRoxk2bBgeHh4cPnyYmJgYFi1aRGxsLJGRkURERFCvXj0MBgNbtmzh008/ZfLkyYBlh3Du3Lm89NJLuLq6EhERgV6v5/vvv2fatGnMnDkzTzx+XFxcHlnq16+fZ3c1LS2NWbNm0bt3bwIDA7l69SoffPABCQkJ9jK+CQkJPProo4SEhBAVFeVQRvjWHbJbse3spaamcuXKFWJjYzEYDHmUmNykpqZy4sQJ+/v4+HhiY2MpX748VatWdUpmgLNnz5KUlMTZs2cxm812WWrWrImnpyddunShXr16REREMHfuXC5evMirr77KqFGjcHFxDD3/5JNPaNmyZb55D0aNGsUXX3zB999/j5eXlz2/go+PD25ubgWusyj5JBKn0LlA23GQnmQxSgGoZtDmVaftnlJqzkOkwcuTNECrtdwbzCYjWq01IbrJ0dCj2B6u8vGUUp0xSundoHp7OG0NhTFnc/C3X0jadYyHK1g9pdDiGlaTgMF9ih6PnETn0lNKIikeUl+yIPUlqS8ViFN1/v6hlEZ54xWHVohPHm8h/jUvXLz2fG8R1b+n+Kj/dDF2/ptiW1KKEEKI9QcuiJDJ0WLdz/XEho2h4uE3PhWHEm7cMxklEknxedBKHNuwlTj28fERbm5uomvXrg4ljkePHi1q1KghXFxchJ+fn4iIiBBXr161n58xY4YICAgQiqIUWuK4RYsWYsqUKfZ+ISEhYv78+Xnk2bNnj+jcubPw9PQUHh4eolGjRmLWrFlCCCGuXLkixo4dKxo0aCA8PT2Fl5eXaNiwoYiKihJms9lhnLVr14r27dsLDw8PewnmVatWObTJr0yz7XXu3Lk8smVkZIgnnnhCBAUFCYPBIAIDA0Xv3r3Fnj177G2WL19e4JhFkV+fkJCQQvts2rQp3362z8IZmYWw/I3kN86mTZvsbU6fPi26d+8u3NzcRMWKFcXEiROF0Wh0GOfGjRvCzc1NLFu2zOk1AmL58uWFrtMZ+W6lJEoc/5P4R12T9OtCRHpbXsbMfJskpiaKBisaiCb/bWI/lvbXZXFu8lYRO3G1iOrfU1w8eVzs/Pa4WDRio9j21TGH/tkXL4rDteuIw/Ub2I9VmxItQiZHi8sp+c+ZL1vmWuT8fozY/L9PxOb/WyjSXu0lRKS32Dru32LzyqNODzU12jJ/83fy/37eM5aFW9Z09KfSlUNyV5D6ktSXpL70z9OXFKvQd4233nqLqVOnMm7cON577z0AMjMzmThxIl9++SVZWVl07dqVDz/80CFm8+zZs7z44ots2rQJT09PBg8ezJw5c9DpcnajNm/ezIQJE/j777+pUqUKr776KkOGDHGY/4MPPuCdd97h4sWLNG7cmIULFzokhCuMlJQUfHx8SE5OdjoO9U5ZcWgF6tTF/BDuTqND3ninmfGlObFtDQx8biytfT35YvdZpn13kKWdJqDTmLjuuZq+Dzcr0ioukUhKj8zMTOLj46levTqurq6lLc59RVpaGsHBwcybNy9fF+W7TVJSEh07dsTb25uffvoJd3f3ey6D5N5T2He2NPSDss4/6ppk3YQ51twcr1y0eCXdwuX0y3T8uiNaRUvsc7EAZPw/e2ceX9O59fHfPlNyMhOJDCKEGCKkhppCNYgEjbRXDZWb0qLc1lSqQVtBDUVwTTX0Ku57Q5Wqamg1lApSYwwVEiIaQ8wkMp9hvX/sc3ZyZCaSiPX9fDbZez/DevZJzllnPWs4fx/3/y8ej3R3sSflWwyetRDXE8xwYvdVtOzmitfeyU9QrL17F5e6vgYIAppfEPOHen62Gxod4c+pPeBkW8bPkUP/BvaGAz5D8HtaGyiO56Fd7V9gIY/BwfQRUHT5Fzr/o+RQFa1Oj30X7+A/sSdw/LIAR4ebODZpZIl9nitrXwduxgFDtgJNelWdHMxzgfWlp4f1JaYqqAh96bn6vR4/fhxr1qxBq1atTK5//PHH+Pnnn7F161b88ccfuHnzJv5hqDICiPGyffv2RV5eHo4cOYKNGzdiw4YNmD59utQmOTkZffv2lTLcT5gwASNGjMCePXukNlu2bMHEiRMRHh6OU6dOwcfHBwEBAc81A/6zoodeDNsrGL4HQCfIpPC9PK0OAEEhE8v89nulARukGIapMcTFxWHz5s1ISkrCqVOnEBISAgCSi3tlU7t2bezduxc9evRAbGxslcjAMEw1QiiQGLxAeF5BCiY6N+7/CgpRV1PKzFBLVRe6zFzIDdcux93FT/+Ow60raeIAcsMcRFJeKbkhbs6YcLxMyA15ePQa6HU6CGKmUgCAvTYVrfzcSh1i17lUjPq/kzh+WZxfIS/H/M8DDt9jGACsLzE1h+f2bp6RkYGQkBB88803qFWrlnQ9LS0N69atw+LFi9G9e3cpMdmRI0fw559/AgB+++03xMfH43//+x9eeeUV9O7dG19++SVWrlyJvLw8AGICtYYNG2LRokVo3rw5xowZg7fffhtLliyR5lq8eDFGjhyJ9957D15eXli9ejUsLCzw7bffPq9lPxP3r6cg59hl5CjUkGsJxs98AYBeJoOxGnCeTi8ZpABAJjMrPBjDMMwLTEREBHx8fNCzZ09kZmYiJiYGdepUXd48e3t7TJ8+HT169KgyGRiGqSYUNIZQ0UYpeQHDlTHZOQxJzS0FG/RyHQZhx2NY24k6XHZ6Hq5ffIi/Dt4Qp5AXMHwZ8koZC96UqfqeJIghV4suD3qdHoIgg2AwSjnpb8CqVuk65N3HYpJeWwuCwvocGrmnlH3+54FklOINWYZhfYmpCTw3o9RHH32Evn37omfPnibXT548CY1GY3K9WbNmqF+/vmRRjY2NRcuWLU3C+QICApCeno7z589LbZ4cOyAgQBojLy8PJ0+eNGkjk8nQs2fPamu53bHgS2TvOYtslQ0+3XQX9umGGwToBZmkjORp9VCaGKVejGoUDMMwZaF169Y4efIkMjIy8ODBA0RHR6Nly5ZVLRbDMIyIrIDBiIr2GpLLChulVG7WUDW0QQ6yAABCHpB16yR6f9AYXl3EkuraPMN4BYxST3pKPZ1RSgu9TmviKQWhbPWO9AZPr8YuOqjrRaK2bUbZ538eGDOPsKcU85LD+hJTU3gu7+bfffcdTp06hXnz5hW6d+vWLahUKtjZ2Zlcr1u3rpQV/tatWyYGKeN9472S2qSnpyM7Oxv37t2DTqcrso1xjCfJzc1Fenq6yVGZZKWnQWthDcHJA9bZ+UqOXE7Q1XNCY7UZcnJuogF9iDm+s6X7gsBGKYZhGIZhmErBJHyvGKNUgTY6gzeVTCWH4ygfnLWLhUYveh8d+2ELUv76DY7uYkl0nVZvmKLAHFpxI1IhN1b0K4dRSmbqKSUr4ClFBY1rJXDjcSoA4Gr6FXFtZez33ODwPYZhmBpFhb+bX7t2DePHj0dkZOQLl5xu3rx5sLW1lQ43t9Lj7CsWgt5MLSWT0hn+N7fRYG2bZrBUyPHg4RGohSuwNXsMALCyasb5pBiGYRiGYSqLgnpXMeF7sgIGE/9t/ui/sz/uZd8DAPgO/CcEhdwwlBxZaY8gV4rt9drSPaWGbzwB/8V/YOneS6XLapJTSm/wlDIYvspoXDpx6yQAID1XzHdVR111oUEA2CjFMAxTw6jwd/OTJ0/izp07aNOmDRQKBRQKBf744w8sW7YMCoUCdevWRV5eHh49emTS7/bt23BycgIAODk54fbt24XuG++V1MbGxgZqtRp16tSBXC4vso1xjCeZOnUq0tLSpOPatWtP/RyemoKKjpB/SW744CW9BgBw4YEnLmhWoF3b7ZUtIcMwDMMwzMuLIOQbRIoJ3zOTm6GBTQMAwKPcR0h8mIhTt08BAOp6NIbKQqzYJ4MMWk0e5IZ8U0V5SpHBU6qBvVjJKuVBFi7dycCqPy6XLqsxfC/7ESjzPizktyATMsVxhbIZpYyJ1d1t3TC3y1yMbT22TP2eG2yUYhiGqVFU+Lt5jx49cO7cOZw+fVo62rVrh5CQEOlnpVKJffv2SX0SEhKQkpKCTp06AQA6deqEc+fOmVTJi46Oho2NDby8vKQ2BccwtjGOoVKp0LZtW5M2er0e+/btk9o8iZmZGWxsbEyOykQKkSdTt2xBIECQ4dCle1jx+wUAwOM8K+gVjSGXc5JzhmEYhmGYSsVoECmh+t62ftuwI3gHWjmIVag1ho1FABAM1Wtkghw6jQZyY2ie1qADygqo6Aaj0Ib32mPzyI74OqSNOJ6uDGF8Rk+p1NPweRiJVnYLoZIZjFmy8uWUcrRwQFCjIFirrMvU77nBRimGYZgaRdk+jcqBtbU1vL29Ta5ZWlrC3t5euj58+HBMnDgRtWvXho2NDcaOHYtOnTqhY8eOAIBevXrBy8sLoaGhWLBgAW7duoXPP/8cH330EczMRCPM6NGjsWLFCnz66ad4//338fvvv+P777/Hrl27pHknTpyIoUOHol27dmjfvj3+/e9/IzMzE++9915FL7tiIAIJApTQQC/IQAZXKQGiUWp73HU8fiwmx9Tp5WjkYFWV0jIMwzAMw7ycCHIA2mLD9wDRW6qRXSPYqMRNTq0+v0gNDEYomSCDNi8PMoUhibnRU0oQRMOUXg/SinNYminQqZE97meI+ah0egIRlZzGoX5HwKU1kHYD1nli6gcd2UCTIYcGrmVaql6yk1WTdBFslGIYhqlRVLhRqiwsWbIEMpkM/fv3R25uLgICAvD1119L9+VyOaKiovCvf/0LnTp1gqWlJYYOHYpZs2ZJbRo2bIhdu3bh448/xtKlS1GvXj385z//QUBAgNRm0KBBuHv3LqZPn45bt27hlVdewa+//loo+Xl1gUAABNTR2uKPrv+G9vFGQP9IvGluA43uIRSGqns9vVzRsZVzlcnKMAzDMAzz0iKTi0XsignfK4jSkGy8aE8pGbQajZRTymiUEtvIxXxST3hjGROeA6K3lEpRgrHIojbwwQFAr4fwuVjh74HmEzw6EweLNpalyg7ke/LLq0sOU8koVU3kYRiGYZ6JSjFKHThwwOTc3NwcK1euxMqVK4vt4+7ujt27d5c47uuvv464uLgS24wZMwZjxowps6xVCgHmCkvkaOobKqKIWoDS3Q2o1QBa3X3IZaJiYmvIRcAwDMMwDMNUMqWE7xVEYQiTK2iUgszoDS+HrkBOKU2ODg9vZcLMQikmO9doQDr9E+PlG2O0ej1UZcnGIZOJnvfiCUB6CPKyhu8ZRa4mRiD2lGIYhqlR8Lt5dYIIbpbNpFO5NgMAYNHxVQDibphcMJQVNpb4ZRiGec4MGzYMgiBAEASoVCo0btwYs2bNglarLb1zCRw4cACCIBQqfPE8SU5OxpAhQ+Di4gJzc3PUq1cPwcHBuHjxokm7qKgodOvWDdbW1rCwsMCrr76KDRs2mLS5evUqBEHA6dOnyzz/jBkz0KxZM1haWqJWrVro2bMnjh49ajLm8OHD0bBhQ6jVajRq1Ajh4eHIy8srdezIyEj4+PjAwsICzs7OeP/993H//v0S+xw8eBBBQUFwcXGBIAjYsWNHke0uXLiAfv36wdbWFpaWlnj11VeRkpIi3R81ahQaNWoEtVoNBweHIp/p8ePH0aNHD9jZ2aFWrVoICAjAmTNnipzv8uXLsLa2hp2dXanrLusaGKZCMSYJp9LzOhk9pQqG7xXMKZWT8Rj3UhJA+kw8fpCDTTOOYkPYIaTZNhIb60zfaxXygkapMuSVMs4pGEWWi0YpRdkSnZNklCrzVM8XKQlrdRGIYURYX2J9ifWlp4ONUtUMmaCAVHbPgDFXgFavh8LgKSUIbJRiGKbyCAwMRGpqKi5duoRJkyZhxowZWLhwYVWLJVEWJUSj0cDf3x9paWnYvn07EhISsGXLFrRs2dJE0Vu+fDmCg4Ph6+uLo0eP4uzZsxg8eDBGjx6NTz755JnkbNKkCVasWIFz587h0KFDaNCgAXr16oW7d+8CAC5evAi9Xo81a9bg/PnzWLJkCVavXo1p06aVOO7hw4fx7rvvYvjw4Th//jy2bt2KY8eOYeTIkSX2y8zMhI+PT4mey0lJSejSpQuaNWuGAwcO4OzZs/jiiy9gbm4utWnbti3Wr1+PCxcuYM+ePSAi9OrVCzqd+JmVkZGBwMBA1K9fH0ePHsWhQ4dgbW2NgIAAaDQak/k0Gg3eeecddO3atUTZy7MGhqlwjInIS8gpZaQoTymhQE6ptDu3Eb3mS+Q9/hYqcx1kcgFEwGNLMefTncVLcCciArr0dACAskASdG0Zkp2TTo+06L+hkhnD9USjFORlM0pxTimGKTusL7G+xPrSU0BMsaSlpREASktLq5T5loS8SVunfUMbRq+iFaP20ZK3gyhiYF/aF3OCiIhCvvmTJq8bTnv3edClS/MrRSaGYSqG7Oxsio+Pp+zs7KoWpdwMHTqUgoODTa75+/tTx44d6cGDBxQaGkp2dnakVqspMDCQEhMTpXZXr16lN954g+zs7MjCwoK8vLxo165dlJycTBBjlKVj6NChRESUnp5OQ4YMIQsLC3JycqLFixdTt27daPz48dK47u7uNGvWLAoNDSVra2upb0xMDHXp0oXMzc2pXr16NHbsWMrIyCAiori4OAJAV69eLXatKSkppFQqaeLEiYXuLVu2jADQn3/+SUQkrSEuLq78D9WA8XNm7969xbZZsGABNWzYsMRxFi5cSB4eHoXkdXV1LbMsAOjHH38sdH3QoEH0z3/+s8zjEBGdOXOGANDly5eJiOj48eMEgFJSUqQ2Z8+eJQB06dIlk76ffvop/fOf/6T169eTra1tueYtbg1PQ0l/s5WtH7wIvHTPZH5DonAbolvnS20afjicvDd405oza6Rrt1edpmthB2n/l1/TtxNGUcSgNyhiYF96kHqD9nxzjlaM2kd7+0+l+KbNpOPBd1uk/g2nRJF7WBTdTiv9MyX70gO6FnaQNF94EoXb0O0p31BC536UOuvLMi3Vd/kicg+Log827y5T++dORFPx2d88XdWSMM8B1pdYXyoK1pdqtr7EWwzVCSJDsnNTZIbdNBNPqTKW8WUYpvpCRNDpsir9oDKEm5SGWq1GXl4ehg0bhhMnTmDnzp2IjY0FEaFPnz7Sbs5HH32E3NxcHDx4EOfOncP8+fNhZWUFNzc3/PDDDwCAhIQEpKamYunSpQDEyqmHDx/Gzp07ER0djZiYGJw6daqQDBEREfDx8UFcXBy++OILJCUlITAwEP3798fZs2exZcsWHDp0SMor6ODgAJlMhm3btkk7Uk+ybds2aDSaInf4Ro0aBSsrK2zevPmZnx8g7lauXbsWtra28PHxKbZdWloaateuXeJYnTp1wrVr17B7924QEW7fvo1t27ahT58+zySjXq/Hrl270KRJEwQEBMDR0REdOnQo0eU7MzMT69evR8OGDeHm5gYAaNq0Kezt7bFu3Trk5eUhOzsb69atQ/PmzdGgQQOp7++//46tW7dWz108himIFL73lInODV5HjTO84W/5TzSq9QoAQK/TSXqfzZtvweHjj2Hm1Vy8l5kp9VcYvKU0ZQjfo1xRRoIYQnQh/Tp09y9BVeBvr8T+1TbROX+NeVmoKn2pInQm1peeHdaXar6+xJaNaoTxPS8n9wby8i6ABGNZYBl0umw4qC6itvkDAICMw/cY5oVHr8/GgT9aVvq8r3c7B7nc4qn6EhH27duHPXv2oHfv3tixYwcOHz6Mzp07AxDj9N3c3LBjxw4MGDAAKSkp6N+/P1q2FNfp4eEhjWVUHBwdHaVY+MePH2Pjxo3YtGkTevToAQBYv349XFxcCsnSvXt3TJo0STofMWIEQkJCMGHCBACAp6cnli1bhm7dumHVqlVwdXXFsmXL8Omnn2LmzJlo164d/Pz8EBISIsmVmJgIW1tbODsXrm6qUqng4eGBxMTEp3p2RqKiojB48GBkZWXB2dkZ0dHRqFOnTpFtL1++jOXLlyMiIqLEMX19fREZGYlBgwYhJycHWq0WQUFBz6ys3LlzBxkZGfjqq68we/ZszJ8/H7/++iv+8Y9/YP/+/ejWrZvU9uuvv8ann36KzMxMNG3aFNHR0VCpVAAAa2trHDhwAG+++Sa+/PJLAOLrs2fPHigUoipy//59DBs2DP/73/9gY2PzTHIzzHNHZjRKlSN8T5dvlDJrZIfcK2niiZZQ18wdSYgD6XT5+abqOKDOPz9A3t9/Izf+AqhAbimFXECeDtDqSjeKkWS4Evvfoxx0+GkHzJp4ltoX4PA9puqpKn0JeHqdifUl1pdYXyo7/G5erSDoAWRlxUOvSQIJoo+mmaU1Tp95H2/Wn43Wjn8BAGQyVZVKyjDMy0VUVBSsrKxgbm6O3r17Y9CgQRg2bBgUCgU6dOggtbO3t0fTpk1x4cIFAMC4ceMwe/Zs+Pr6Ijw8HGfPni1xnitXrkCj0aB9+/bSNVtbWzRt2rRQ23bt2pmcnzlzBhs2bICVlZV0BAQEQK/XIzk5GYC4E3nr1i1ERkaiU6dO2Lp1K1q0aIHo6OgyPwuj4lASkZGRJnLExMRI9/z8/HD69GkcOXIEgYGBGDhwIO7cuVNojBs3biAwMBADBgwwyXVQcNzRo0cDAOLj4zF+/HhMnz4dJ0+exK+//oqrV69K92NiYkz6RUZGlmmter345S84OBgff/wxXnnlFUyZMgVvvPEGVq9ebdI2JCQEcXFx+OOPP9CkSRMMHDgQOTk5AIDs7GwMHz4cvr6++PPPP3H48GF4e3ujb9++yM7OBgCMHDkSQ4YMwWuvvVakLE+7BoZ5LpSj+p5SLm4knrl7BhvPb8TxW8dh06M+XGZ0go2/u2E4cTy9Xg+ZwSilN+SLEoy5nwokSzZW4CtTonPJ08PgMSVTwrxpEylnaVm7c/U9hikd1pfyYX2J9aWywp5S1QhDeKfBNAXY5Vrg22ZN4W9XG+l/XwUA3MuujTo2LqhTx7/qBGUYpkKQydR4vdu5Kpm3vPj5+WHVqlVQqVRwcXGBQqHAzp07S+03YsQIBAQEYNeuXfjtt98wb948LFq0CGPHjn0a0U2wtLQ0Oc/IyMCoUaMwbty4Qm3r168v/WxtbY2goCAEBQVh9uzZCAgIwOzZs+Hv7w9PT0+kpaXh5s2bhXYb8/LykJSUhICAgFJl69evn4ny6erqaiJ348aN0bhxY3Ts2BGenp5Yt24dpk6dKrW5efMm/Pz80LlzZ6xdu9Zk7ILVa4w7ZPPmzYOvry8mT54MAGjVqhUsLS3RtWtXzJ49G+3atTPpV7du3VLXAAB16tSBQqGAl5eXyfXmzZvj0KFDJtdsbW1ha2sLT09PdOzYEbVq1cKPP/6Id955B5s2bcLVq1cRGxsLmeHL96ZNm1CrVi389NNPGDx4MH7//Xfs3LlT2uUkIuj1eigUCqxduxbvvPPOU62BYZ4L5ai+Z6kQ36tO3D6BE7dPQClTImZwDCzNLSGYi+PIDOPpdTrIZU8YpZSiuk7afAOYwpjaoQyJzo2uTgIM/ctpzJHC96qNp5Sx+h4bpV4WqkpfMs5dHlhfYn2pIKwvlQ02SlUnCKACn/cWWhVuWdaCIABE4u7YsrgPsGDwW7C0LNp1kWGYFwdBEJ46jK6yMSoGBWnevDm0Wi2OHj0quaPfv38fCQkJJh/Kbm5uGD16NEaPHo2pU6fim2++wdixY6UdtIL5Cjw8PKBUKnH8+HFJMUpLS0NiYmKxO0JG2rRpg/j4+EJyloQgCGjWrBmOHDkCAHj77bcRFhaGRYsWYdGiRSZtV69ejaysLLz77ruljmttbQ1ra+syyaDX65Gbmyud37hxA35+flKFFpnM9ItXUevLysqS3LqNyA3eFUQEtVpdrudiRKVS4dVXX0VCQoLJ9cTERLi7uxfbj4hARNK6srKyIJPJTDwzjOfG3cXY2FiT34WffvoJ8+fPx5EjR+Dq6vrUa2CY50I5qu+95fkW7mbfRaYmE7uu7IJGr0GmJhOWSkspt5TMYGARc0oZDVRGa5DRKFXYU+rw5XtIy9agnXutIsPrdFoNzkb/jnpwhdFTSjKolRE9e0oxVQzrS6wvAawv1WR9iY1S1QyT/S7D76JMEEAGpUenl0uKCMMwTFXi6emJ4OBgjBw5EmvWrIG1tTWmTJkCV1dXBAcHAwAmTJiA3r17o0mTJnj48CH279+P5s3FpL3u7u4QBAFRUVHo06cP1Go1rK2tMXToUEyePBm1a9eGo6MjwsPDC31AF0VYWBg6duyIMWPGYMSIEbC0tER8fDyio6OxYsUKnD59GuHh4QgNDYWXlxdUKhX++OMPfPvttwgLCwMg7hAuWLAAn3zyCczNzREaGgqlUomffvoJ06ZNw+zZs+Ht7W0y75MKCAC0aNECSqVp7r/MzEzMmTMH/fr1g7OzM+7du4eVK1fixo0bGDBgAABRwXr99dfh7u6OiIgIqfQxADg5ORW79qCgIIwcORKrVq1CQEAAUlNTMWHCBLRv377I/BJGMjIycPnyZek8OTkZp0+fRu3atSUld/LkyRg0aBBee+01+Pn54ddff8XPP/+MAwcOABBDCLZs2YJevXrBwcEB169fx1dffQW1Wi0lDvX398fkyZPx0UcfYezYsdDr9fjqq6+gUCjg5+cHANLvhZETJ05AJpMVet5PswaGqXCMBhFNthjCJyve0ONo4YjPO34OAIj+Oxq5ulzojGF/Bp1OMBql9DrIDEYovSFflKAwGqUK5KRSiu1nRcUDABYN8EH/tvUKzX3t/DncuHga9RxcIRhylcqV5feWBapBovM7F4GrMYBWDHNhoxTzosD6kgjrS6wvFUuF1AGsoVR2eeOIQW9Q5GeradGgYIoY2Jc29R1CHrMW04+nrlH0Pm/au8+DXp2xnk5cvV8p8jAMU3HUtBLHRowljm1tbUmtVlNAQIBJieMxY8ZQo0aNyMzMjBwcHCg0NJTu3bsn3Z81axY5OTmRIAglljhu3749TZkyRern7u5OS5YsKSTPsWPHyN/fn6ysrMjS0pJatWpFc+bMISKiu3fv0rhx48jb25usrKzI2tqaWrZsSREREaTT6UzG2bFjB3Xt2pUsLS2lEsybN282aVNUmWbjce3atUKyZWdn01tvvUUuLi6kUqnI2dmZ+vXrR8eOHZParF+/vtgxS2PZsmXk5eVFarWanJ2dKSQkhK5fv15in/379xc5l/G1MLJu3Tpq3LgxmZubk4+PD+3YsUO6d+PGDerduzc5OjqSUqmkevXq0ZAhQ+jixYsmY/z222/k6+tLtra2VKtWLerevTvFxsYWK1tZSxyXdQ3lpSJKHL9MvHTPZFlbonAb8VjYhCjjbpm6tf9fe/Le4E0p6WK574xjqXQt7CCdmryZIgb2pZS/zlDsj5dpxah9dPC7BCIiuh0RQfFNm9GtufOkcb479jcFrzhEbb/8jdzDomhJdEKR8yUePUw/vD+VroUdJN302kThNnRj47JyLbXNosXkHhZFYT/tK1e/CmeRV/4zD7chelT4fZZ58WF9ifUl1pdePn1JIKqA2uA1lPT0dNja2iItLa1SMtsvGvQG6jQOwr3LvwDQwjnLFl+0fxXI8sTy7pNgJtfg04Ph+O8HwWjhYvvc5WEYpuLIyclBcnIyGjZsCHNz86oW54UiMzMTrq6uWLRoEYYPH17p8z948AA9evSAjY0NfvnlF1hYvBghBMyzUdLfbGXrBy8CL90z2T0ZOFYgf0noj0Cj7qV267y5Mx7nPcbON3eioW1DZJ68jYdbE3GPbmLf1f/D25/Nxq2/bXBi11V4d3NFt3ea4s7Spbi/ajVqhYTA6YvPTcab+fN5rD98FR++3gifBjYrNF/in4cQ/59f0K5OIFzN+kEQ9MhuPQvq4PFlXmqbRUvw4G4TDPG1wNwgvzL3q3Bm1QH0GsAzAKjfAeg6qfQ+zAsH60tPD+tLTFVQEfoS+71WM/5CQZdqAgjQESA3uFwPaNcAzZ1eAmWPYZiXlri4OGzevBlJSUk4deoUQkJCAEByca9sateujb1796JHjx6IjY2tEhkYhqlm9FkITL0O1DWESxhyfZSGQhBD8Z4M35PBkEdKr4O8UPU9Q/ieTosnUSlEVT5PW/T8ep0OAmQASArfgz4P0OSUSV4gP6+4QlbFXxv0hvX3W84GKYYB60tMzYFzSlUTiAgCBGQWzHQuEKzq2yDtIiAzKBIf+zcvMpElwzBMTSIiIgIJCQlQqVRo27YtYmJiUKdO1RV4sLe3x/Tp06tsfoZhqiFm1oDckAulDAnPAUBuyD2lM7Q3pkUy5oARE50bk54/mVOqsFHKzNA2T1e0UYr0esgFHeS4L10T/pgHnJsP9P8P0OLNUmWWit1Vpfqp10PKvCrjry8MY4T1JaYmwO/q1QUiAILh49bwoUuAjZs10i/qIRMMu2XlrJjCMAzzotG6dWucPHmyqsVgGIYpHaOBRF/YYFQUcoMepzVUVS460bl47Vr8A0StOAOnTFtYAoC2sOGrNE8peeYtBDqvhUK20vSGXgP8fbhsRilD5Z0q9ZQq+HxLSCrPMC8TrC8xNQUO36smPHj4ALkOLsgQ8qRrJAACBMlLCgAEge2IDMMwDMMw1QLjZqG+bJ5SCplp+J7RQ0pmUMlJr4elnRkAIDMtD3//dR+nr9uL94rwlCrNKKV6fAUKmVi1j0hAxi0zCO3eF2/qNEX2eRKjp5SsKl2lCnqisacUwzBMjYKNUtWEAwf+QG4dJ+QUMEqJHlOClE8KYE8phmEYhmGYasNTekoZw/cKeUrpdGjU2gF9/tUSnf7RCACg1Yltci9dwv1165ATHy+NpzKE7+UWE74HQx6qXL0XLl2bh2sH7AEzQ/5SffmMUvKqTB/BnlIMwzA1Ft5qqCbk5uYCAGz0FoAUxEfsKcUwDMMwDFNdMYa0UdkSnRtzSmn1T4TvGULkyJBTqqGPAxwf5SJ2exL0hnyjuQkJuLMwAQpnZ3ju/x0AoFKI4xXnKWU05hDJIRh+FuQqw72Svbtup+fg5zM3kZtd2yB7dQnfY12YYRimJsGeUtUEMmxD1SKr/IsCAcKTRineHWIYhmEYhqkWPKOnlCAZpUSVPPqblVgz+l1cOnoEcqUhpI8E2L33Pqx79RL7PnggjWcM34uOv43G03bjo8hTJvPlV+yTg4xGKEPi9NLC9+b/chGzd11AXo4YPmiurEqjVAEDGuvCDMMwNQo2SlUzjMkkAUAggkCATMj/IGajFMMwDMMwTDXhGXNKGT2llCoxj5QmNwcZDx/gYmwM5Ip8Nb3OhImo+9k0AKa5pbxdbWBmaKfVE3adS4VeT/kT6vONUsafBYXRU6pko9SDLDGlhLnlDajsD6Czp1WJ7Z8rxnUIsnzvNIZhGKZGwO/q1QWigicAANE/SibllBIEuZQQk2EYhmEYhqlintlTSrxuYW2L4Uu/QecBIeJ9jQZyRb7Op9PoIUgeTjrJw76Zkw1OfeGP6I9fk9pqTYxShiTnkAE6gyFMqTTcK9mQZhzGqs4ZmDn+CiuzKgybk8IdOXSPYRimpsFGqWqMYPCbkhUwSjEMwzAMwzDVBGPSbSqbp1RxOaX0OVqY3VfB1tYRAKDT5EEml0FmuK8taJQCgALeUpZmCrjYqaVzncGaRHqCLMdooCqQU0phMEqVEr5nNHwRjHpoNUh0zkYphmGYGgcbpaoJJCU3z/9XLwDQXsHU9v8GwEnOGYapGoYNGwZBECAIAlQqFRo3boxZs2ZBW0R58vJw4MABCIKAR48eVYygZSA5ORlDhgyBi4sLzM3NUa9ePQQHB+PixYsm7aKiotCtWzdYW1vDwsICr776KjZs2GDS5urVqxAEAadPny7z/DNmzECzZs1gaWmJWrVqoWfPnjh69KjJmMOHD0fDhg2hVqvRqFEjhIeHIy8vr4RRRSIjI+Hj4wMLCws4Ozvj/fffx/3790vss2rVKrRq1Qo2NjawsbFBp06d8Msvv0j3Hzx4gLFjx6Jp06ZQq9WoX78+xo0bh7S0NKnNhg0bpN+PJ487d+5I7XJzc/HZZ5/B3d0dZmZmaNCgAb799lsTef79739Lc7m5ueHjjz9GTk5OiWvYvn07evXqBXt7+3K/HlXJjBkzCj2vZs2ambSJjY1F9+7dYWlpCRsbG7z22mvIzs6W7j948AAhISGwsbGBnZ0dhg8fjoyMDJMxzp49i65du8Lc3Bxubm5YsGBBIVm2bt2KZs2awdzcHC1btsTu3bufz6JrIrJyhu8ZdLldV3bh+4TvoZOJBh/9Yw3u/188LE+JBiOdRjQYGfNK/f3XPaSmZEtpHkhnOl/ByngavTjmw+8TYHNdNFYR5PkyyssWvqeXvPjF8eRVuTkqhTuyLsxUX1hfYn2J9aWng41S1QWt+GFLJhcJgj4T9uqHAAALdcNKF4thGAYAAgMDkZqaikuXLmHSpEmYMWMGFi5cWNViSZRFCdFoNPD390daWhq2b9+OhIQEbNmyBS1btjRR9JYvX47g4GD4+vri6NGjOHv2LAYPHozRo0fjk08+eSY5mzRpghUrVuDcuXM4dOgQGjRogF69euHu3bsAgIsXL0Kv12PNmjU4f/48lixZgtWrV2PatGkljnv48GG8++67GD58OM6fP4+tW7fi2LFjGDlyZIn96tWrh6+++gonT57EiRMn0L17dwQHB+P8+fMAgJs3b+LmzZuIiIjAX3/9hQ0bNuDXX3/F8OHDpTEGDRqE1NRUkyMgIADdunWDo6Oj1G7gwIHYt28f1q1bh4SEBGzevBlNmzaV7m/atAlTpkxBeHg4Lly4gHXr1mHLli2lrj0zMxNdunTB/PnzS2xXHWnRooXJczt06JB0LzY2FoGBgejVqxeOHTuG48ePY8yYMZAVyKcTEhKC8+fPIzo6GlFRUTh48CA++OAD6X56ejp69eoFd3d3nDx5EgsXLsSMGTOwdu1aqc2RI0fwzjvvYPjw4YiLi8Obb76JN998E3/99VflPIQXnXLmlLJUWgIAfvv7N3z555c4Rmdg0bYulM7idVmW0TNKfE9TqMTX+0BkAn5aGY+7Dq8AMM0rBQBKef7vhVYnapOaW5kQIMql0euhuXVOFFlpNEqV/EXZYNuqJp5SRqMURw0w1RvWl1hfYn3pKSCmWNLS0ggApaWlPfe5Nnz9NYWHh9OEKT9QxMC+FDGwL23o9w/q8cuXtHxrAH347XrSajOfuxwMwzwfsrOzKT4+nrKzs6talHIzdOhQCg4ONrnm7+9PHTt2pAcPHlBoaCjZ2dmRWq2mwMBASkxMlNpdvXqV3njjDbKzsyMLCwvy8vKiXbt2UXJyMkG0w0vH0KFDiYgoPT2dhgwZQhYWFuTk5ESLFy+mbt260fjx46Vx3d3dadasWRQaGkrW1tZS35iYGOrSpQuZm5tTvXr1aOzYsZSRkUFERHFxcQSArl69WuxaU1JSSKlU0sSJEwvdW7ZsGQGgP//8k4hIWkNcXFz5H6oB4+fM3r17i22zYMECatiwYYnjLFy4kDw8PArJ6+rqWm6ZatWqRf/5z3+Kvf/999+TSqUijUZT5P07d+6QUqmk//73v9K1X375hWxtben+/fvFjvvRRx9R9+7dTa5NnDiRfH19yyR3RbweBSnpb7Yi9IPw8HDy8fEp9n6HDh3o888/L/Z+fHw8AaDjx49L13755RcSBIFu3LhBRERff/011apVi3Jzc6U2YWFh1LRpU+l84MCB1Ldv30Jzjxo1qlzrqUydqVqxbThRuA3R4eVlan7x/kWad3Qe+W/1J+8N3vTjpR+JiEhzN4uuhR2klM8OUsTAvvTfT8cREdHZ/ddo61fH6T+TDtKKUfvol55jKb5pM9I+fFho7AZTosg9LIpup4u/s6mLTtDDaROJwm0ofuKrdNbrFbHv8e9EmdcFFitnnjaPWn+1kdzDoqjZsnfIe4M3JT9KLtejqVBunRdlXtCo6mRgKgXWl1hfKgrWl/KpifoSe0pVM6hAwnNBEJ2003OtcS+vKeRyi6oTjGGYCoeIkKnTVfpBRKULVwpqtRp5eXkYNmwYTpw4gZ07dyI2NhZEhD59+kBjCD356KOPkJubi4MHD+LcuXOYP38+rKys4Obmhh9++AEAkJCQgNTUVCxduhQAMHHiRBw+fBg7d+5EdHQ0YmJicOrUqUIyREREwMfHB3Fxcfjiiy+QlJSEwMBA9O/fH2fPnsWWLVtw6NAhjBkzBgDg4OAAmUyGbdu2Qacr2qth27Zt0Gg0Re7wjRo1ClZWVti8efMzPz9A3K1cu3YtbG1t4ePjU2y7tLQ01K5du8SxOnXqhGvXrmH37t0gIty+fRvbtm1Dnz59yiyPTqfDd999h8zMTHTq1KlEeWxsbKBQFB1G89///hcWFhZ4++23pWs7d+5Eu3btsGDBAri6uqJJkyb45JNPTELROnfujJMnT+LYsWMAgCtXrmD37t3lWsOLxqVLl+Di4gIPDw+EhIQgJSUFAHDnzh0cPXoUjo6O6Ny5M+rWrYtu3boV8qSys7NDu3btpGs9e/aETCaTQhxiY2Px2muvQaVSSW0CAgKQkJCAhw8fSm169uxpIldAQABiY2Of27prFMZwsjLmlGpauymmtJ+CprXFXW9jbinBEKZncGySPKVavl4Pb4e1Q6M24i66XiaG9z3pKQUASoMXndFTKistVxqQIIPC0QG2b70FuaXolVVS+F7iw0Sk5aQb+hIsFBaoo65TpjU+Fzin1EtNVelLFaEzsb707LC+VPP1JX5nryYYc0o9MFPA7Yk7epKZ5ApgGKZmkKXXo9HBc5U+b9JrLWEpf7oQCCLCvn37sGfPHvTu3Rs7duzA4cOH0blzZwBinL6bmxt27NiBAQMGICUlBf3790fLli0BAB4eHtJYRsXB0dERdnZ2AIDHjx9j48aN2LRpE3r06AEAWL9+PVxcXArJ0r17d0yaNEk6HzFiBEJCQjBhwgQAgKenJ5YtW4Zu3bph1apVcHV1xbJly/Dpp59i5syZaNeuHfz8/BASEiLJlZiYCFtbWzg7OxeaT6VSwcPDA4mJiU/17IxERUVh8ODByMrKgrOzM6Kjo1GnTtFf9i5fvozly5cjIiKixDF9fX0RGRmJQYMGIScnB1qtFkFBQVi5cmWp8pw7dw6dOnVCTk4OrKys8OOPP8LLy6vItvfu3cOXX35pEiL2JOvWrcOQIUOgVucnXr5y5QoOHToEc3Nz/Pjjj7h37x4+/PBD3L9/H+vXrwcADBkyBPfu3UOXLl1ARNBqtRg9enSp7ugvKh06dMCGDRvQtGlTpKamYubMmejatSv++usvXLlyBYCYUyMiIgKvvPIK/vvf/6JHjx7466+/4OnpiVu3bpm4+wOAQqFA7dq1cevWLQDArVu30LChaeh/3bp1pXu1atXCrVu3pGsF2xjHKI7c3Fzk5uZK5+np6U/3IF50pPC98uWMURqMSxqDYcholBIIECAgNysTV8+cQi1nF9g6OkFhuK9TmgEonFMKMOSV0omJznOyNMjLyoGgMhilSECzfXvExOmJe8QOeZnA/STAxgVQqk3GEqsDirrnhDbjMKBNE1iprMq1xgrh3DbgwFeirAAbpV5SqkpfAp5eZ2J9ifUl1pfKDntKVRcMRvhEW/MClwhWyIAebJRiGKZqiYqKgpWVFczNzdG7d28MGjQIw4YNg0KhQIcOHaR29vb2aNq0KS5cuAAAGDduHGbPng1fX1+Eh4fj7NmzJc5z5coVaDQatG/fXrpma2trEktvpKCHCACcOXMGGzZsgJWVlXQEBARAr9cjOTkZgLgTeevWLURGRqJTp07YunUrWrRogejo6DI/i4JeJ8URGRlpIkdMTIx0z8/PD6dPn8aRI0cQGBiIgQMHmiS4NHLjxg0EBgZiwIABJrkOCo47evRoAEB8fDzGjx+P6dOn4+TJk/j1119x9epV6X5MTIxJv8jISGm8pk2b4vTp0zh69Cj+9a9/YejQoYiPjy8kT3p6Ovr27QsvLy/MmDGjyHXHxsbiwoULJjkUAECv10MQBERGRqJ9+/bo06cPFi9ejI0bN0q7fwcOHMDcuXPx9ddf49SpU9i+fTt27dqFL7/8stRn+iLSu3dvDBgwAK1atUJAQAB2796NR48e4fvvv4fekMxn1KhReO+999C6dWssWbIETZs2LZTstKqYN28ebG1tpcPNza30TjURKdG5vlzdFAbjilSFT5GvkssFJTIfPsAPc6dj/cejkZWeJiU81xuSlJOmsBFMIRd1RY1Oj9tJlwB9JoyeUhb6x1IlP8mwcyceWN4GWPFqoUp8etJLSdU97BrCXm1frvVVGHH/B9y/BDy+KZ7bN6oaORimjLC+lA/rS6wvlRXebqgukLHiXr7xiUAIxG7copZslGKYGoiFTIak11pWybzlxc/PD6tWrYJKpYKLiwsUCgV27txZar8RI0YgICAAu3btwm+//YZ58+Zh0aJFGDt27NOIboKlMQTFQEZGBkaNGoVx48YValu/fn3pZ2trawQFBSEoKAizZ89GQEAAZs+eDX9/f3h6eiItLQ03b94stNuYl5eHpKQkBAQElCpbv379TJRPV1dXE7kbN26Mxo0bo2PHjvD09MS6deswdepUqc3Nmzfh5+eHzp07mySlBmBSLcXGxgaAaCDw9fXF5MmTAQCtWrWCpaUlunbtitmzZ6Ndu3Ym/Qp6xhgrBAFA27Ztcfz4cSxduhRr1qyR2jx+/BiBgYGwtrbGjz/+CKVSWeS6//Of/+CVV15B27ZtTa47OzvD1dUVtra20rXmzZuDiHD9+nV4enriiy++QGhoKEaMGAEAaNmyJTIzM/HBBx/gs88+K/GZ1gTs7OzQpEkTXL58Gd27dweAQjuwzZs3l0L8nJycCinnWq0WDx48gJOTk9Tm9u3bJm2M56W1Md4vjqlTp2LixInSeXp6+stpmDIapVKOAEeWA24dAbdXS+1m9JSSwvcKGKWadeiK27eScf/a39Bptch4cF/ylCKF6CkFbeHQO2Oyc62ekHH3DswEAYIgGstsCnoYubYF6rYEHqUAuWlA2jUg+yFgle95RyCARN1TVpUJznUG45vf54DH64BT5X9mMlVPVelLxrnLA+tLrC+xvlR+2FOqmnA1/W8AAFFm/kWBYIFsMXyvKhUChmGeC4IgwFIur/TjaSooGRWD+vXrS7HxzZs3h1arNSnRe//+fSQkJJh8mXZzc8Po0aOxfft2TJo0Cd988w2A/B20gvkKPDw8oFQqcfz4celaWlpamVzA27Rpg/j4eEmBKXgUt1snCAKaNWuGzEzxvfftt9+GQqHAokWLCrVdvXo1srKy8O6775Yqi7W1tcn8BV2zn0Sv15uEQd24cQOvv/462rZti/Xr15tUWwNgMq4xfCsrK6tQO7kh3ICIoFarTfpZW1uXWR5jBTeVSoWdO3fC3Ny8yH4ZGRn4/vvvC+36AaK7/M2bN5GRkSFdS0xMhEwmQ7169cq0hvI80xeRjIwMJCUlwdnZGQ0aNICLiwsSEhJM2iQmJsLd3R2AmBfj0aNHOHnypHT/999/h16vl5TRTp064eDBg1LOEgCIjo5G06ZNUatWLanNvn37TOaJjo4uMU8GAJiZmUmlsY3HS4nK8GUv6Xfgt8+B/3sr35BSAkZPKSl8TyYABk+nlpmd4F/7n2hUtw0AQJuXW9hTqojwPYVhA1OrI+h1egiQwegppSxolFLbAf86BExNAQzGsSfDD/WkhzF87yn2MSoOo1yOzURjn7Lo9x+mZlNV+tLT6EysL7G+xPpS+WFPqWpCpiYDWeaZyLObARiyShnzTOlJBidb/hBmGKZ64enpieDgYIwcORJr1qyBtbU1pkyZAldXVwQHBwMAJkyYgN69e6NJkyZ4+PAh9u/fj+bNmwMA3N3dIQgCoqKi0KdPH6jValhbW2Po0KGYPHkyateuDUdHR4SHh0Mmk5WqGIaFhaFjx44YM2YMRowYAUtLS8THxyM6OhorVqzA6dOnER4ejtDQUHh5eUGlUuGPP/7At99+i7CwMADiDuGCBQvwySefwNzcHKGhoVAqlfjpp58wbdo0zJ49G97e3ibzPmk4AIAWLVoU2h3LzMzEnDlz0K9fPzg7O+PevXtYuXIlbty4gQEDBgDIV7Dc3d0REREhlT4GUKLnSlBQEEaOHIlVq1YhICAAqampmDBhAtq3b19kfgkjU6dORe/evVG/fn08fvwYmzZtwoEDB7Bnj5hzxqhgZWVl4X//+x/S09Ol3EEODg6SEgQAW7ZsgVarxT//+c9C8wwZMgRffvkl3nvvPcycORP37t3D5MmT8f7770vKUlBQEBYvXozWrVujQ4cOuHz5Mr744gsEBQWZzPMkDx48QEpKCm7eFMN7jK+Hk5NTqd4+Vcknn3yCoKAguLu74+bNmwgPD4dcLsc777wDQRAwefJkhIeHw8fHB6+88go2btyIixcvYtu2bQDELzmBgYEYOXIkVq9eDY1GgzFjxmDw4MHSaz5kyBDMnDkTw4cPR1hYGP766y8sXboUS5YskeQYP348unXrhkWLFqFv37747rvvcOLEiUI7zkwxvDpCzHeUkw78tQ3IewxocwB5yfmXnvSUAgClsyU01zOgzxANVa7KxriE49DmaaBQin8Dd22bI/3Vz3BrdQx8XvkTdm+9BZmFWAhHMkrp9aC8TFjIE6AQUgEAglDM35BMISY8LyJ8z2iUepqNjAqDE5wzNQDWl0RYXxJhfakIKqQOYA2lMssbfzLjQxqyaAi1WudNEQP7UsTAvhQZ/Ab9uteD9hz5hDJyii4lyTDMi0FNK3FsxFji2NbWltRqNQUEBJiUOB4zZgw1atSIzMzMyMHBgUJDQ+nevXvS/VmzZpGTkxMJglBiieP27dvTlClTpH7u7u60ZMmSQvIcO3aM/P39ycrKiiwtLalVq1Y0Z84cIiK6e/cujRs3jry9vcnKyoqsra2pZcuWFBERQTqdzmScHTt2UNeuXcnS0lIqwbx582aTNkWVaTYe165dKyRbdnY2vfXWW+Ti4kIqlYqcnZ2pX79+dOzYManN+vXrix2zNJYtW0ZeXl6kVqvJ2dmZQkJC6Pr16yX2ef/998nd3Z1UKhU5ODhQjx496LfffpPu79+/v1h5kpOTTcbq1KkTDRkypNi5Lly4QD179iS1Wk316tWjiRMnUlZWlnRfo9HQjBkzqFGjRmRubk5ubm704Ycf0sOHD0tcQ3HPLDw8vMR+pVERJY5LYtCgQeTs7EwqlYpcXV1p0KBBdPnyZZM28+bNo3r16pGFhQV16tSJYmJiTO7fv3+f3nnnHbKysiIbGxt677336PHjxyZtzpw5Q126dCEzMzNydXWlr776qpAs33//PTVp0oRUKhW1aNGCdu3aVe71VKbOVC3R5BKF24hH1sNSm887Oo+8N3jT0pNLpWv6PB3l3nhMaXv/pmthB+l02PcUMbAvJZ06Rinn79OKUfuk4+sRv1B802b0oMD7Utf5v5N7WBRtOJxMNxf65csTbkNpn3YuWpA5rmKbe6a/e0dvHqWG09eSe1gUHUi481SPpEJY/ZooX+JvpbdlagSsL7G+xPrSy6cvCUQVUBu8hpKeng5bW1upnOPzZPLMD3HTOg3n7c4idI/omt82S4Du43jUq/cumjYJf67zMwzzfMnJyUFycjIaNmxYrDsvUzSZmZlwdXXFokWLinR1ft48ePAAPXr0gI2NDX755RdYGLwSmJpNSX+zlakfvCi89M9ErwdmiSGRmJwEWBZdIcpIxPEIbIzfiGEthmFSu0km97LO3cWDyItIE+7j1yv/Qb+J0+DZoTPu38jA7UOnsX9/HgDA78AYOE4YhzqGBL09F/+By3fEkI89qk/RVHYdWn1daB5lIF3ZE3UX/bewIF+5AzmPgI+OAw5NpMt/pv6JIav/gj7XGf83vD26ejo85YN5RlZ1AW6fA0J/BBp1rxoZmEqF9aWnh/UlpiqoCH2Jc0pVO/LdLXWC0W366Uq3MwzDvIjExcVh8+bNSEpKwqlTpxASEgIAkot7ZVO7dm3s3bsXPXr0QGxsbJXIwDBMNUcmAwSDWq0vPaeUUl44fM+IoBL1PrlgaJMn5iyxd7VC4+COUju9TGFShW94l4Zo5mQNM4UMCkMuqQeaj/H3YU9okZ/E3AR5GXJKcfgew1RLWF9iagr8Dl9tEEAgCEX4rQlsO2QY5iUjIiICCQkJUKlUaNu2LWJiYlCnTsmeB88Te3t7TJ8+vcrmZxjmBUCmBHS5hfIzFYUx0XnCwwT8kPgDOrl0gouVi2EY0SilgBJquTWO7/wBiUePoH3w26jbKN+bSS9TgbT5xqR32tfHO+3rI3jFIcjv6I1CAUQQFCXklALEvFIFIMqvvleltXbYKMUwJcL6ElMT4Hf4akLRn/eihYo9pRiGeZlo3bq1SUUxhmGYFwKZQjRKlcFTSq0QE9Yev3Ucx28dh7e9Nza/sRkAIKjEzUhzvRr96n+Im1lJiDm+DTKZDEETp0KmEKDXEnRyJUhb2ACmlMsgh9EoJQegB+TFqPySUap4T6kqrQBtNJaxUYphCsH6ElNTYBecaoAuUwMHfWG3asHoNsVGKYZhGIZhmOqNvGgDT1H0bdgX/Rr1w6tOrwIA7mTfke4p61pC6WoFGKrpOVqJuUbzcnMAQKrEp5epAK0OT6KUyyAXxOsEOUB6CMVVZJIZrutNxyHRf19sIqtKo5RBLhnrwgzDMDUVNkpVA7LP3YWt3g4AUCctP37PqAIIAr9MDMMwDMMw1ZpivI6Koq5lXczpMgdT208FYJpbSlDKUHdsa9Sd2BYAIDcYZHQa0WtIoRT1wqOvfo49N7yRl2M6n1JR0FNKBpAeKDZ8r4ScUmTMKVXqcp4fHL7HMAxT42FrRzWA8kTFoevJVCz6jz7/hmD8j3eHGIZhGIZhqjXFGHhKwphbqsiE50ZjkME4ZDRKOTe2FS/L5HistcDdlMcm/VRyQTJKkcEoJZQzfE8szm3MKcWJzhmGYZjnBxulqhFO97NNzvNcjMoAv0wMwzAMwzDVGqPhpAyJzo0oDYYsjb6IPkYXJYMTvc6QPypgpDeCvK7AKuO62DfHNPROKc+vvgfIxUTnxYbvFS2zHnoYvyZUj+p7yqqTgWEYhnmusLWjWkEmGc/z3EQFghOdMwzDMAzDVHOknFKF8zwVR4meUoWMUmIbQRBgaSlAqckEgMLhezIBsgLhe1Ri+F4xOaUKVN+r2vA9zinFMAxT02GjVDVAp9WDAAgk6R0ACrhts1GKYRiGYRimeiOFwpXdU8polNLoNYaQuYLjGTzmjUYpTYFx5XLItaKH/d1rGbh56SFysww5p3QaKKTwPTkEpQIW7dqVInPx1feqh6cUh+8xDMPUVPgdvhpw9ey9Iq8LBoWCw/cYhmEYhmGqOcYQs/tJQJ0mgGWdUrsoC4Sl6UgHhVBANX/CFmQM3wMAQaGEQidW4zsdnYLT0SmwcVAj9MtOUAok5ZQ6Q4Qu+/bBqpZV0QLIDfMfWgJcOQD0DAdUlobwPWMaiVKXUbHcjAO2fwDkpAOaLPEaG6UYhmFqLGztqAbkZWth6iMlYqEUd8A40TnDMFXJsGHDIAgCBEGASqVC48aNMWvWLGi1ZU/mWxQHDhyAIAh49OhRxQhaBpKTkzFkyBC4uLjA3Nwc9erVQ3BwMC5evGjSLioqCt26dYO1tTUsLCzw6quvYsOGDSZtrl69CkEQcPr06TLPP2PGDDRr1gyWlpaoVasWevbsiaNHj5qMOXz4cDRs2BBqtRqNGjVCeHg48vLySh07MjISPj4+sLCwgLOzM95//33cv3+/zLJ99dVXEAQBEyZMMLmelJSEt956Cw4ODrCxscHAgQNx+/ZtkzZz5sxB586dYWFhATs7uyLHN/4OFTy+++476f727dvh7+8vzdOpUyfs2bOnVLm3b9+OXr16wd7evtyvB8NUKMbwvZ1jgEVNgXuXS+1S0Cj1ZF4poUDcnAAZcrMyceHwH7iVdAmCQgHnW3/CBo9g66AGAKTfzcaDv28g59J9yA05paYjD2G7EooXwNJB/P/6MeDYGuDyXgBPhu9VslUq4RfgXiKQcUs8t6gDWNhXrgwM8xSwvsT6EutLTwcbpaoJJAAggAp88NuYpwMAZHLzKpKKYRhGJDAwEKmpqbh06RImTZqEGTNmYOHChVUtlkRZlBCNRgN/f3+kpaVh+/btSEhIwJYtW9CyZUsTRW/58uUIDg6Gr68vjh49irNnz2Lw4MEYPXo0Pvnkk2eSs0mTJlixYgXOnTuHQ4cOoUGDBujVqxfu3r0LALh48SL0ej3WrFmD8+fPY8mSJVi9ejWmTZtW4riHDx/Gu+++i+HDh+P8+fPYunUrjh07hpEjR5ZJruPHj2PNmjVo1aqVyfXMzEz06tULgiDg999/x+HDh5GXl4egoCDo9fnVYvPy8jBgwAD861//KnGe9evXIzU1VTrefPNN6d7Bgwfh7++P3bt34+TJk/Dz80NQUBDi4uJKHDMzMxNdunTB/Pnzy7RWhnluvPJPwKqu6NWj1wL3SjAGGSholCqUV6qgUUoQkJuZid3LFiLys4nIzMtBrUeX0CFuATrfWC+1O7F2C4JyLaAQxL9PPWS49si0kI4JfRYCfRcDDs3E8zwxT1WVhu/pDO/nLQcCo2KAcXGAknVh5sWA9SXWl1hfegqIKZa0tDQCQGlpac91nqNzjtKqL5bQj/7tKa5FC4oY2JciBvalA0v86Hz8FMrNvfdc52cY5vmTnZ1N8fHxlJ2dXdWilJuhQ4dScHCwyTV/f3/q2LEjPXjwgEJDQ8nOzo7UajUFBgZSYmKi1O7q1av0xhtvkJ2dHVlYWJCXlxft2rWLkpOTCaKLqHQMHTqUiIjS09NpyJAhZGFhQU5OTrR48WLq1q0bjR8/XhrX3d2dZs2aRaGhoWRtbS31jYmJoS5dupC5uTnVq1ePxo4dSxkZGUREFBcXRwDo6tWrxa41JSWFlEolTZw4sdC9ZcuWEQD6888/iYikNcTFxZX/oRowfs7s3bu32DYLFiyghg0bljjOwoULycPDo5C8rq6upcrw+PFj8vT0pOjo6ELPec+ePSSTyUw+Bx89ekSCIFB0dHShsdavX0+2trZFzgOAfvzxx1LlKYiXlxfNnDmzTG0r4vUoSEl/s5WlH7xI8DMpwLoAonAbor9+LLWpXq8n7w3e5L3Bm+5n3ze5p8vV0rWwg3Qt7CAdWP8f+n7WVPp3yFsUMbAvXd62heKbNqP4ps3or2betGLUPloxah9FjZ9N18L2i/OH25BP2Gbq/e+Dpcu86R2xz4n1RES08/JOcp+2hdzDoijxVnr5n8Gz8Os0UZY9n1fuvEy1gPUl1peKgvWlknnR9SX2lKpGCE+E8F3LcEHzZnOhUrHLMsPURIgIWXnaSj/oyWS6T4FarUZeXh6GDRuGEydOYOfOnYiNjQURoU+fPtAYEvJ+9NFHyM3NxcGDB3Hu3DnMnz8fVlZWcHNzww8//AAASEhIQGpqKpYuXQoAmDhxIg4fPoydO3ciOjoaMTExOHXqVCEZIiIi4OPjg7i4OHzxxRdISkpCYGAg+vfvj7Nnz2LLli04dOgQxowZAwBwcHCATCbDtm3boNMVXR1r27Zt0Gg0Re7wjRo1ClZWVti8efMzPz9A3C1bu3YtbG1t4ePjU2y7tLQ01K5du8SxOnXqhGvXrmH37t0gIty+fRvbtm1Dnz59SpXjo48+Qt++fdGzZ89C93JzcyEIAszMzKRr5ubmkMlkOHToUKljFzVXnTp10L59e3z77bcl/i7q9Xo8fvy41LUzTLWjmOThRSEIgpRH6uvTX2Pj+Y3I1eVK94x0HTwUA76YC+s6Yp4qVXMv1P/vRtT58F8QKP/9TJenA5C/K6+DHNoCu/TFYswtpRPfuwkEGL4mCJXuKaUxlYl56akqfakidCbWl54d1pdqvr7EWQOrEWm1AnDUpSmQLcaMEqpAEWAYptLI1ujgNb30GPCKJn5WACxUT/f2T0TYt28f9uzZg969e2PHjh04fPgwOnfuDECM03dzc8OOHTswYMAApKSkoH///mjZsiUAwMPDQxrL+OHp6OgoxdU/fvwYGzduxKZNm9CjRw8Aoguzi4tLIVm6d++OSZMmSecjRoxASEiIFOPv6emJZcuWoVu3bli1ahVcXV2xbNkyfPrpp5g5cybatWsHPz8/hISESHIlJibC1tYWzs7OheZTqVTw8PBAYmLiUz07I1FRURg8eDCysrLg7OyM6Oho1KlTdELky5cvY/ny5YiIiChxTF9fX0RGRmLQoEHIycmBVqtFUFAQVq5cWWK/7777DqdOncLx48eLvN+xY0dYWloiLCwMc+fOBRFhypQp0Ol0SE1NLduCDcyaNQvdu3eHhYUFfvvtN3z44YfIyMjAuHHjimwfERGBjIwMDBw4sFzzMEyV84SBpzRszGzwIOcBtiRsAQA4Wjiid8PeJuF70ItfSGSGvFWk18GyfXvILCxx7+tVEPRakEwB6PQQUMBIBRm0+jJ8qZarDB3yDNMVDN8r0zIqDmNuLaNMzEtPVelLwNPrTKwvsb7E+lLZYU+paoGoLGTYdIRGZWO4JkCmyKw6kRiGYQoQFRUFKysrmJubo3fv3hg0aBCGDRsGhUKBDh06SO3s7e3RtGlTXLhwAQAwbtw4zJ49G76+vggPD8fZs2dLnOfKlSvQaDRo3769dM3W1hZNmzYt1LbdEyXOz5w5gw0bNsDKyko6AgICoNfrkZycDEDcebp16xYiIyPRqVMnbN26FS1atEB0dHSZn4VKVfoXpcjISBM5YmJipHt+fn44ffo0jhw5gsDAQAwcOBB37twpNMaNGzcQGBiIAQMGmOQ6KDju6NGjAQDx8fEYP348pk+fjpMnT+LXX3/F1atXpfsxMTEm/SIjI3Ht2jWMHz8ekZGRMDcvOl+Lg4MDtm7dip9//hlWVlawtbXFo0eP0KZNG8hk5VMhvvjiC/j6+qJ169YICwvDp59+WmyejU2bNmHmzJn4/vvv4ejoWOozZZhqhTFPlL5sRqmvun6Fd73ehbuNOwAgLTfNME5+GzIapRTil2O9IXGy3M5WvE46CNChtvwazGT5nhI6yKDVld0odTdLhy92/IX/7pcBenEd8sq2ShmNeVxxj3kBYX0pH9aXWF8qK/xuX60wZDsHIEAPQV42ZYZhmBcTtVKO+FkBVTJvefHz88OqVaugUqng4uIChUKBnTt3ltpvxIgRCAgIwK5du/Dbb79h3rx5WLRoEcaOHfs0optgaWlpcp6RkYFRo0YVuZNUv3596Wdra2sEBQUhKCgIs2fPRkBAAGbPng1/f394enoiLS0NN2/eLLTbmJeXh6SkJAQElP6a9evXz0T5dHV1NZG7cePGaNy4MTp27AhPT0+sW7cOU6dOldrcvHkTfn5+6Ny5M9auXWsydsFqKTY24kbGvHnz4Ovri8mTJwMAWrVqBUtLS3Tt2hWzZ89Gu3btTPrVrVsX+/btw507d9CmTRvpuk6nw8GDB7FixQrk5uZCLpejV69eSEpKwr1796BQKGBnZwcnJyeTXdynoUOHDvjyyy+Rm5tr4u7+3XffYcSIEdi6dauJi3xJz5RhqhXl9JTq5NIJnVw64W72Xfyd/jfyDN5KgiDkq4YGu5JcLr5/63SiUUrp4gLrXr0gy9ahlUUUOttsMxlbCzm0urKH7/10zRL/d/FvwFD5WRD0sDav5DA6Y9gjh+8xBqpKXzLOXR5YX2J9ifWl8sNGqeoAGWL3C2xEifml2JGNYWoygiA8dRhdZWNUDArSvHlzaLVaHD16VHJHv3//PhISEuDl5SW1c3Nzw+jRozF69GhMnToV33zzDcaOHSvtoBXMV+Dh4QGlUonjx49LilFaWhoSExPx2muvlShjmzZtEB8fX0jOkhAEAc2aNcORI0cAAG+//TbCwsKwaNEiLFq0yKTt6tWrkZWVhXfffbfUca2trWFtbV0mGfR6PXJzc6XzGzduwM/PD23btsX69esL7bAVtb6srCwoFKa/S8Yvr0QEtVpdqF+PHj1w7tw5k2vvvfcemjVrhrCwMKm/EaPL/O+//447d+6gX79+ZVpfcZw+fRq1atUyUbA2b96M999/H9999x369u1r0r48z5RhqhSjMaUMOaUKopKJ74l5+gLVsWQCoKMCnlJKw9Di+6Ygk6HesqVQfnoINnQLAKCjWsjVWuGOzsmQU6rsnlIZGrGtu6MOt4TdaOvmhNqWQeVaxzNjrL4nY6MUI8L6EutLAOtLNVlfejH+ul9WBDZKMQxTffH09ERwcDBGjhyJNWvWwNraGlOmTIGrqyuCg4MBABMmTEDv3r3RpEkTPHz4EPv370fz5s0BAO7u7hAEAVFRUejTpw/UajWsra0xdOhQTJ48GbVr14ajoyPCw8Mhk8lKzbEXFhaGjh07YsyYMRgxYgQsLS0RHx+P6OhorFixAqdPn0Z4eDhCQ0Ph5eUFlUqFP/74A99++y3CwsIAiDuECxYswCeffAJzc3OEhoZCqVTip59+wrRp0zB79mx4e3ubzJuQULjse4sWLaBUmn6hyszMxJw5c9CvXz84Ozvj3r17WLlyJW7cuIEBAwYAEBWs119/He7u7oiIiJBKHwOAk5NTsWsPCgrCyJEjsWrVKgQEBCA1NRUTJkxA+/bti8wvAYhKy5NrsbS0hL29vcn19evXo3nz5nBwcEBsbCzGjx+Pjz/+2CREICUlBQ8ePEBKSgp0Op20y9i4cWNYWVnh559/xu3bt9GxY0eYm5sjOjoac+fONUmQumnTJgwdOhRLly5Fhw4dcOuW+AVbrVbD1ta22LUb57158yaA/NfDycmpxGfGMM8NWfk8pYyoDIYhTcGwP8HgKmUwLEmeUtr8Nn+fO420m2tBdS4CADK0QUhRvAXF+82Bb06V0Sglymz0qnK11+MBDsPRvke51lAhcKJzpobB+pII60usLxVLhdQBrKFUVnnjo7P/pK+/WEwrR+6m5SN/pIiBfWnJoN4UubDfc52XYZjKo6aVODZiLHFsa2tLarWaAgICTEocjxkzhho1akRmZmbk4OBAoaGhdO/ePen+rFmzyMnJiQRBKLHEcfv27WnKlClSP3d3d1qyZEkheY4dO0b+/v5kZWVFlpaW1KpVK5ozZw4REd29e5fGjRtH3t7eZGVlRdbW1tSyZUuKiIggnU5nMs6OHTuoa9euZGlpKZVg3rx5s0mboso0G49r164Vki07O5veeustcnFxIZVKRc7OztSvXz86duyY1Gb9+vXFjlkay5YtIy8vL1Kr1eTs7EwhISF0/fr1UvsV5MkSx0REYWFhVLduXVIqleTp6UmLFi0ivV5v0mbo0KFFyrx//34iIvrll1/olVdekV4XHx8fWr16tclz79atW5FjGH8viqO4ZxYeHl6utT9JRZQ4fpngZ1KAH/9FFG5DFLO4XN3m/jmXvDd409KTS6Vr1784RNfCDpLmXhYREW2d/TlFDOxL5//YJ7X5ddVSihjYl86Nb0wUbkMPp42ji/8+SZfvPCb3sCjyDv+19MmjZxCF29DcFavJPSyKQjZuJ+8N3vTx/o/LtYYKYdNg8fmdWF/5czNVDutLrC+xvvTy6UsCUQXUBq+hpKenw9bWFmlpaVIc6vPg2OyjOJl3BHSrGfSUi9z0/0Ah6FDnVXOETPrxuc3LMEzlkZOTg+TkZDRs2LDYJIlM0WRmZsLV1RWLFi3C8OHDK33+Bw8eoEePHrCxscEvv/wCCwuLSpeBqXxK+putLP3gRYKfSQF2jgNObQT8Pge6TS5zt0UnFmHD+Q0Y1mIYJrUTK2XdCD8CytWh7qS2UDpY4Mf5M3Hl1HH0Gj0OLf16AQB2L4/AhUMH8KbnAzRSnMcjzXBo2v4L2d1c8drC/bBQyRE/K7DkyffPA/74Cl/SCKzL7Y7X6p5DXO1I9HLvhUWvLyq5b0Xzv/7A5b1A8NdA65DKnZupclhfenpYX2KqgorQlzg+rBqQn79SEHNLGVCr2G2ZYZiXj7i4OGzevBlJSUk4deoUQkLELyVGF/fKpnbt2ti7dy969OiB2NjYKpGBYZgXCHn5qu8ZURrC/oyJzgFAkIthOJl/piLjz5uQy4w5pfLzVek0GigEFepIYRsyqCwUUBj6lqn6Xq0GYltDWKDs8d/i/5WZSuLEt8B3IcDN0+I5h+8xTImwvsTUFDinVHWAADUykFOwvAqArs04FwbDMC8nERERSEhIgEqlQtu2bRETEyMljqwK7O3tMX369Cqbn2GYFwhjTqkbJ4GTGwDPXoBN0blKCqI0GGEK5pQSVHIgS4uMw2IOEHsbZ1wCcCPhAhQqM7g29YJWk4dmdh2gTP8DkAMEGWRKORQywTBeGarv+QwG7BtDs+8ecFEPmSD2KS03TYWh0wK7J5smh7eqWzlzM8wLDOtLTE2AjVLVAAGAJR4ju0D5PRIEwKNd1QnFMAxTRbRu3RonT56sajEYhmGeDpUhZOXyXvHweB1496dSuxk9pQ7dOIQJ+yegd8Pe6PaP9sj+6x5yk9OgvZsNM0ENALgQsx8XYvbD2t4BtV3rwUJuDQGiIUlVvxbM2taF1uApRQRsOZ4CFzs1ujSuU7ShSRAAt1ehtToD4DoEiFW+Ks1TSpeXb5AKnA/UcgcadK2cuRnmBYX1JaamwEapakDBkD2jp1SeoIDeyr5qBGIYhmEYhmGejjbvAuk3gYdXgZRYIONOmbrVtRA9g1IzU5GamYrz988j4O1omDephYc7LkN7NxsujZqikaIjNDnZSPnrDB7fvwur2rUhE+SAwZBk2c4ZsDODWa4WgiAapcJ+EMuZ//SRL3zc7IqV4U7mfQDANaVouBJQSZ5SBUMd270HKMyKb8swDMPUKNgoVW0g4MkP/sqM42cYhmEYhmGenVoNgLdWA8kxwMY3TEPSSiCwYSBUchUuP7qM1WdWm+aWUoo6oYWVLd6c/Dn0Oh2WDBHzxmSlp0EuKACDpxRkonpvaabAtN7N8eeV+zjx90OkZWtwOz2nRBmOpZ4E4IW/zeRQAbBQVFKiYl2BZyTjXFIMwzAvE2z1qA6QmOLcBKESd6cYhmEYhmGYisVgHIJeV6bmSpkSAQ0C0LtBbwCAjvL7GY1SpBENTzK5HEpzMZQv89FDyAWFFL4HQS71G/maB9YNexXNnKwBAJpSkp7n6cQxWuVm4V03f7zn/V6ZZH9mjAY4QQbI+OsJwzDMywR7SlULCgbwFVAWKiu5JMMwDMMwDFOxSEapsnlKGTHmfNJTfoLyJ41SAGBmaQlNTja0ubkGTymd6bwFUMrF/toSkp4TEUBiu15ZjzHS4wPAul65ZH9qjOF7clXlzMcwDMNUG9goVU24r1eKRqiCNil2ZGMYhmEYhnkxMXr8UBmq3xVAbvB0IspXCgWFeE17JwuZJ27DrIEN2gQG4Uz0bhABaksb5IfvFdYfFYak53naomWZvPUMfvnrFrS5TQEAZtDley9VBjqDUYpD9xiGYV462ChVTbgLc9hDgNEqJciKyDHFMAzDMAzDvBg8o6dUwfA9mblolMpLeYy8lMeQ25mh7cfBaKxrBV2GBrlJjyDoy+IpVTh8j4iw7dR1iDYwMWF6UyHFNM/T88b4jOT81YRhGOZlg9/5qwP0ZAU+QCYQBE50zjAMwzAM82LylEYpmUH/K+gpZe5lD4vkNOge5yH30iPoHuUi+9w9ZB69ld9RVTinlBGlwVNKqyvsKaXTE4xTWTRYDpnyIVpev1rJnlKGudhTimEY5qWDrR7VhPxE52S8APaUYhimOjBs2DAIggBBEKBSqdC4cWPMmjULWu2z7aIfOHAAgiDg0aNHFSNoGUhOTsaQIUPg4uICc3Nz1KtXD8HBwbh48aJJu6ioKHTr1g3W1tawsLDAq6++ig0bNpi0uXr1KgRBwOnTp8s8/4wZM9CsWTNYWlqiVq1a6NmzJ44ePWoy5vDhw9GwYUOo1Wo0atQI4eHhyMsr/cthZGQkfHx8YGFhAWdnZ7z//vu4f/9+qf1u3LiBf/7zn7C3t4darUbLli1x4sQJ6X7B1994BAYGmozRoEGDQm2++uor6X5CQgL8/PxQt25dmJubw8PDA59//jk0Go3JOI8ePcJHH30EZ2dnmJmZoUmTJti9e3eJ8m/fvh29evWCvb19uV8PhnmuGI1DZUx0bsQYvlfQU0puqUTtgU1R5z1v6ZrmdhYAQOVuA7u3GkPpYCbekBVllBJV/rwiEp0X9J6Sqe5CUGRBDsrP81QZ6DinFPPiw/oS60usLz0d7ClVTVCk30dO2hqACrxpcaJzhmGqCYGBgVi/fj1yc3Oxe/dufPTRR1AqlZg6dWpViwYAyMvLg0pV8pcZjUYDf39/NG3aFNu3b4ezszOuX7+OX375xUTRW758OSZMmICwsDCsWrUKKpUKP/30E0aPHo2//voLERERTy1nkyZNsGLFCnh4eCA7OxtLlixBr169cPnyZTg4OODixYvQ6/VYs2YNGjdujL/++gsjR45EZmZmifMePnwY7777LpYsWYKgoCDcuHEDo0ePxsiRI7F9+/Zi+z18+BC+vr7w8/PDL7/8AgcHB1y6dAm1atUyaWd8/Y2YmZkVGmvWrFkYOXKkdG5tbS39rFQq8e6776JNmzaws7PDmTNnMHLkSOj1esydOxeA+Br6+/vD0dER27Ztg6urK/7++2/Y2dmV+EwzMzPRpUsXDBw40GR+hqlyyll9z4ix+nJBTynpnkyAYC4H5eiQdfI2ANEoZdXBGTj9xLwFUBjyTBXlKaUpeE0Qf5YTgH2zgOPrgO5fAPU7lGsN5YbD95gaAutLrC+xvvQUEFMsaWlpBIDS0tKe6zx/zjhCX703hCIG9pWORRP70r17fzzXeRmGqTyys7MpPj6esrOzq1qUcjN06FAKDg42uebv708dO3akBw8eUGhoKNnZ2ZFarabAwEBKTEyU2l29epXeeOMNsrOzIwsLC/Ly8qJdu3ZRcnIyQXQNlY6hQ4cSEVF6ejoNGTKELCwsyMnJiRYvXkzdunWj8ePHS+O6u7vTrFmzKDQ0lKytraW+MTEx1KVLFzI3N6d69erR2LFjKSMjg4iI4uLiCABdvXq12LWmpKSQUqmkiRMnFrq3bNkyAkB//vknEZG0hri4uPI/VAPGz5m9e/cW22bBggXUsGHDEsdZuHAheXh4FJLX1dW1xH5hYWHUpUuXEtsU9fo/ibu7Oy1ZsqTENk/y8ccfm8y9atUq8vDwoLy8vHKNY6QiXo+ClPQ3W1n6wYsEP5MiuH+FKNyGaLZzubrdybxD3hu8qdXGVkXev70yjq6FHZSOjBO3xBtfdxbnu1T4/SRs2xlyD4ui5fsSC917kJFL7mFR5B4WRS3WtyTvDd6kD7cRxwq3Ido+qlzyl5vsNKLj68S5lrV9vnMx1R7Wl1hfKgrWl2q2vsThe9UATc5D6WeFeRckejhA1Rvg8D2GqeEQAXmZlX8UsfteXtRqNfLy8jBs2DCcOHECO3fuRGxsLIgIffr0kdyMP/roI+Tm5uLgwYM4d+4c5s+fDysrK7i5ueGHH34AILoqp6amYunSpQCAiRMn4vDhw9i5cyeio6MRExODU6dOFZIhIiICPj4+iIuLwxdffIGkpCQEBgaif//+OHv2LLZs2YJDhw5hzJgxAAAHBwfIZDJs27YNOl3Rngvbtm2DRqPBJ598UujeqFGjYGVlhc2bNz/z8wPEna61a9fC1tYWPj4+xbZLS0tD7dq1SxyrU6dOuHbtGnbv3g0iwu3bt7Ft2zb06dOnxH47d+5Eu3btMGDAADg6OqJ169b45ptvCrU7cOAAHB0d0bRpU/zrX/8q0s39q6++gr29PVq3bo2FCxeWGK5w+fJl/Prrr+jWrZuJLJ06dcJHH32EunXrwtvbG3Pnzi32tWKYao8xjI7K9ztszCmlJ32R3lL2Q1vAPtQL9qHNUWdkS1g4pAC/TgPSbxoGKD7RuaaI8D2jp5QAQBAIMkEGIWQb0PY9Q4PscslfLvR6YJUvEPWxeM7he0xRVJW+VAE6E+tLzw7rSzVfX2If2Som7c5tZD38C1IuKZkaeSoFZDJOdM4wNR5NFjDXpfLnnXYTUFk+VVciwr59+7Bnzx707t0bO3bswOHDh9G5c2cAYpy+m5sbduzYgQEDBiAlJQX9+/dHy5YtAQAeHh7SWEbFwdHRUXI5fvz4MTZu3IhNmzahR48eAID169fDxaXwc+revTsmTZoknY8YMQIhISGYMGECAMDT0xPLli1Dt27dsGrVKri6umLZsmX49NNPMXPmTLRr1w5+fn4ICQmR5EpMTIStrS2cnZ0LzadSqeDh4YHExMSnenZGoqKiMHjwYGRlZcHZ2RnR0dGoU6dOkW0vX76M5cuXl+oC7+vri8jISAwaNAg5OTnQarUICgrCypUrS+x35coVrFq1ChMnTsS0adNw/PhxjBs3DiqVCkOHDgUguqL/4x//QMOGDZGUlIRp06ahd+/eiI2NhVwufukeN24c2rRpg9q1a+PIkSOYOnUqUlNTsXjxYpP5OnfujFOnTiE3NxcffPABZs2aZSLL77//jpCQEOzevRuXL1/Ghx9+CI1Gg/Dw8FKfK8NUO54x0TkgFsIRntiklFsqoW5hn39h9cfArXP55+a2hcZUGBKdn/j7Af4TcwX+XnXhbi9+DmgMOaWMbWSCDPD0B9JvACfxfBOeazKBtBTxZ7v6QLv3nt9czItLVelLwFPrTKwvsb7E+lLZYatHFZOdnib+IBnhBUMuqWf3ZGAYhqkooqKiYGVlBXNzc/Tu3RuDBg3CsGHDoFAo0KFDfq4Re3t7NG3aFBcuXAAgfvjOnj0bvr6+CA8Px9mzZ0uc58qVK9BoNGjfvr10zdbWFk2bNi3Utl27dibnZ86cwYYNG2BlZSUdAQEB0Ov1SE5OBiDuRN66dQuRkZHo1KkTtm7dihYtWiA6OrrMz6K0XAyAqGwWlCMmJka65+fnh9OnT+PIkSMIDAzEwIEDcefOnUJj3LhxA4GBgRgwYIBJ7H/BcUePHg0AiI+Px/jx4zF9+nScPHkSv/76K65evSrdj4mJMekXGRkJANDr9WjTpg3mzp2L1q1b44MPPsDIkSOxevVqab7BgwejX79+aNmyJd58801ERUXh+PHjOHDggNRm4sSJeP3119GqVSuMHj0aixYtwvLly5Gbm2uypi1btuDUqVPYtGkTdu3aZaI86vV6ODo6Yu3atWjbti0GDRqEzz77TJKlpGfKMNUSKdH50xul9FQ4B1Qhsg265CshQNAywLmwJ4GVmWggO3z5PmbvuoCwH/Lfi415phQy0SilEAzGNLkhF4rW9O+4Qik49rjTQPtqlueEYcoJ60v5sL7E+lJZYU+pKoaKMD6RAMhAAHtKMUzNRmkh7sBVxbzlxM/PT0pi6eLiAoVCgZ07d5bab8SIEQgICMCuXbvw22+/Yd68eVi0aBHGjh37NJKbYGlpunOZkZGBUaNGYdy4cYXa1q9fX/rZ2toaQUFBCAoKwuzZsxEQEIDZs2fD398fnp6eSEtLw82bNwvtNubl5SEpKQkBAQGlytavXz8T5dPV1dVE7saNG6Nx48bo2LEjPD09sW7dOpMkqDdv3oSfnx86d+6MtWvXmoxdsFqKjY0NAGDevHnw9fXF5MmTAQCtWrWCpaUlunbtitmzZ6Ndu3Ym/erWrQsAcHZ2hpeXl8n4zZs3l0IFisLDwwN16tTB5cuXpd3ZJ+nQoQO0Wi2uXr1qoiC7ubkBALy8vKDT6fDBBx9g0qRJkMvlcHZ2hlKplHYTjbLcunULeXl5JT5ThqmWFAyj0+sBWdn0unIbpXSGLzMdPwScvIts8k77+niYlYe/72ch5tI93H2c/wXIGNInL+gpBQAKwxfK5+kpZTRKyRRFVg1kGABVpy8Z5y4HrC+xvmSE9aWyw0apqobEKiuCZJwSDIYqgsCObAxTsxGEpw6jq2yMikFBmjdvDq1Wi6NHj0ru6Pfv30dCQoLJB7ebmxtGjx6N0aNHY+rUqfjmm28wduxYaQetYAy8h4cHlEoljh8/LilGaWlpSExMxGuvvVaijG3atEF8fHwhOUtCEAQ0a9YMR44cAQC8/fbbCAsLw6JFi7Bo0SKTtqtXr0ZWVhbefffdUse1trY2qaZSEnq93mSH7MaNG/Dz80Pbtm2xfv16yJ74IlvU+rKysqBQmH6kG5UVIoJarS6yn6+vLxISEkyuJSYmwt3dvVh5r1+/jvv37xfpsm/k9OnTkMlkcHR0LLaNXq+HRqOBXq+HXC6Hr68vNm3aBL1eL605MTERzs7OUKlUUKlUZX6mDFMtKGhk0WsBWdnyJZXfKGUwGpWQj8nFTo3Zb7ZEXMpDxFy6h1xt/rhavfizUgZoAciNcssrwyiVI/6vMH9+czAvPqwvAWB9ifWlmqsvsVGqmiEG7hmzB3Cic4Zhqi+enp4IDg7GyJEjsWbNGlhbW2PKlClwdXVFcHAwAGDChAno3bs3mjRpgocPH2L//v1o3rw5AMDd3R2CICAqKgp9+vSBWq2GtbU1hg4dismTJ6N27dpwdHREeHg4ZDIZBKHk98SwsDB07NgRY8aMwYgRI2BpaYn4+HhER0djxYoVOH36NMLDwxEaGgovLy+oVCr88ccf+PbbbxEWFgZA3CFcsGABPvnkE5ibmyM0NBRKpRI//fQTpk2bhtmzZ8Pb29QT4UklBQBatGgBpVJpci0zMxNz5sxBv3794OzsjHv37mHlypW4ceMGBgwYAEBUsF5//XW4u7sjIiICd+/elfo7OTkVu/agoCCMHDkSq1atQkBAAFJTUzFhwgS0b9++yPwSRj7++GN07twZc+fOxcCBA3Hs2DGsXbtW2m3MyMjAzJkz0b9/fzg5OSEpKQmffvopGjduLO2AxsbG4ujRo/Dz84O1tTViY2Px8ccf45///KdUKjkyMhJKpRItW7aEmZkZTpw4galTp2LQoEHSc/rXv/6FFStWYPz48Rg7diwuXbqEuXPnFrmTW5AHDx4gJSUFN2/eNHk9nJycSnxmDPPcedIohedklNIajVLKktsBMFOIMpkYpQp4SmkByI1hh6WF7z2+Bfx9BAABMiXg8TpgblO6vAUxGrwUhcumM0xNgfUlEdaXWF8qlgqpA1hDqYzyxjcSLtBvoxbQ/GGDKWJgX1o6bDn9c+YHtGZfL3r48Phzm5dhmMqlppU4NmIscWxra0tqtZoCAgJMShyPGTOGGjVqRGZmZuTg4EChoaF079496f6sWbPIycmJBEEoscRx+/btacqUKVK/4krqHjt2jPz9/cnKyoosLS2pVatWNGfOHCIiunv3Lo0bN468vb3JysqKrK2tqWXLlhQREUE6nc5knB07dlDXrl3J0tJSKsG8efNmkzZFlWk2HteuXSskW3Z2Nr311lvk4uJCKpWKnJ2dqV+/fnTs2DGpzfr164sdszSWLVtGXl5epFarydnZmUJCQuj69eul9vv555/J29ubzMzMqFmzZrR27VrpXlZWFvXq1YscHBxIqVSSu7s7jRw5km7duiW1OXnyJHXo0IFsbW3J3NycmjdvTnPnzqWcnBypzXfffUdt2rSRXhcvLy+aO3duob+HI0eOUIcOHcjMzIw8PDxozpw5pNVqS5S/uGcWHh5e6tpLoiJKHL9M8DMpgrwsonAb8dj0DtGuT4hyM0vtlqPNIe8N3uS9wZse5z4ufZ6Z9uIcaTdKbZp05zG5h0VRy/BfiYjofkYu7fkrldzDoqj93F/Je4M3dfuum6HxfnHclZ2KHmxVl/z1hdsQ7fiwdFmf5MYpsW9Es/L3ZWokrC+xvsT60sunLwlEFVAbvIaSnp4OW1tbpKWlSXGoFc3NxAs4v3gX4nJOQp79GEqLQBxveA5duyRjYJu5sLNrV/ogDMNUe3JycpCcnIyGDRvC3JzDFMpDZmYmXF1dsWjRIgwfPrzS53/w4AF69OgBGxsb/PLLL7CwKH9OLubFo6S/2crQD140+JkUgV4HLGgI5KTlXxsUCTR/o8RuGp0Gbf7XBgBw+J3DsFGV8Dz1emCWuMOOyUmAZdGVqYzceJQN369+h5lChqWDX8G/Ik9JFe9daymR7jQJjmpH7Bu4T/SCWt8bqNUQGB4tjl3QA2OuK5CXAdg3Bu5fBuq1B0aUPQkyACDlKPBtL3GO8afL15epkbC+9PSwvsRUBRWhL3HSoiom3yRYwDYoEAQAAic6ZxjmJSQuLg6bN29GUlISTp06hZCQEACQXNwrm9q1a2Pv3r3o0aMHYmNjq0QGhmFeQGRyYGgU0HcR4NBMvJaXUXq3AvpfqXvHek3+zyXklDJiphDHztXq8eeVByASq+5ZqOTo2lT8ApmfU8oQUvcwGYhoDGwdmj+QTpu/lp4zDO2uAic3AHfLUAY+7Qaw+1Pg4ALxnMP3GKbcsL7E1BQ4p1RVQ1QofxQJxsTnbJRiGOblJCIiAgkJCVCpVGjbti1iYmJQp07JHgDPE3t7e0yfPr3K5mcY5gXFuZV4XN4H3L2Yn9i7BAoapXSkK6ElTJOQl8MoBQCxSfcBAJMCPPDbo6n4Lf1v0/kdmwH2nsD9S+J5sqGseG4G8Dg1f9A6hopRmXeAn8cDNq7AxPiSBTnxLXBsTf65pUOpsjMMUxjWl5iaABulqhgCGVyh86vv6QXxDkpJUscwDFMTad26NU6ePFnVYjAMw1QcilKShhegYJLiYhOda/NEw07atfxrZTBKmSvlUMllyNPpkXD7MQBAJ7+Hy48uS21a1Wkl/qCyBMaeAB6lAP9uCWiygGvHgA1vADrDOhTmgEMT4PVpwPVjwOW9QPoNMRSgJD3WGNLY8DWgcU+gWckhjQzDFIb1JaamwEapquZJt2wh/z+Bq+8xDMMwDMO8+JRWye7J5oIcOtIVH76X+Avwa1j+uZkNICvdw14plyFioA+OXL4HAHC0NkMr93tAEtDApgHW+q+Fk+UTVZiUhrww2hwxz5TRIAUB8O4v/vh6mGho+qp+/jqVJeQDMo7R4DXAd3ypcjMMwzA1FzZKVTWEJ0xPAsSAPsKTdxiGYRiGYZgXkHJ4SgEGbykqIXzv8W3x/9qNRE+jxj3LLEo/Hxf088kvfX7wujiWWqGGs5Vz4Q7KAsmKMwzztv8A6LPQtJ1Cnf+zNqdko5TWEHaoKN27i2EYhqnZsFGqiiGj8anARhgJgAzEic4ZhmEYhmFqAgqDgaYMOaUAQGbIK1qsp1Ruuvi/e2egz4JnEk2nFw1fSpmy6AaKAsYlYy4pc9vC7eRKwLixWprxrWD4H8MwDPNSw0apqkZSNvJzSuWfs1GKYRiGYRjmhcfoKZUSC/wSBuQYjEpKc6DTGMC+kUlzuUwO6EvwlMoV80HBrPgS22VFS9r8OYtCJhO9pTRZwPkfi59XEAClWmynzS5lUoOnVBnyYDEMwzA1GzZKVTFFb4AZqu9xonOGYRiGYZgXH3ODEefvw+JREEEG9F1kesmwSWniKaXXA1tCgNQzQPYj8ZqZ9TOLptWLRimFrISvBfU7AUn7xJ9lSsCtfdHtFGYGo1RZPaXMyiktwzAMU9Ngo1Q1QSjwEwmc6JxhGIZhGKbG0DoUyLwnekjJlYCdG3DtOHBpD5CXWai5zJDC4cjNI/DM9sQrjq9A9jAZSNht2tDJ+5lFk4xSQglfC0K2ARm3xJ9VVvlGtidRqAE8BDYNAqwcgaBlgGOzIiY1GKXYU4phGOalh41SVQ6JxidBX+CK8V82SjEMwzAMw7zwWDsBveebXotdKRql9IVD9Iz5nWYfnQ0AWPL6EvS0cBNvmtkAQ38W8zrVbvjMopXJU0omA2xcir9vxL4R8Pgm8DBZPM5sBvxn5t+/cQq4eQpIuyaes6cUwzDMSw8nLapiiMRU51p5/ktBAqCQW8PcvIgKKAzDMJXMsGHDIAgCBEGASqVC48aNMWvWLGi12mca98CBAxAEAY8ePaoYQctAcnIyhgwZAhcXF5ibm6NevXoIDg7GxYsXTdpFRUWhW7dusLa2hoWFBV599VVs2LDBpM3Vq1chCAJOnz5d5vlnzJiBZs2awdLSErVq1ULPnj1x9OhRkzGHDx+Ohg0bQq1Wo1GjRggPD0deXl6pY0dGRsLHxwcWFhZwdnbG+++/j/v375fYR6fT4YsvvjCZ78svvzQJGdq+fTt69eoFe3v7YteblJSEt956Cw4ODrCxscHAgQNx+/btcq/r7Nmz6Nq1K8zNzeHm5oYFC0pP4Hzw4EEEBQXBxcUFgiBgx44dpfZhmGqB0QikL/xeOtpnNFo5tEJt89oAgJTHKfntFGaAyysVYpAC8nNKlWiUKitDtogGs/ajxPM/vwbmNwDWdAMy7gIb+gK7JgEPr4r3VVbPPifDVBNYX2J9ifWlp4ONUlUNATdsLKARlAUuCej+aiQUimfPE8AwDFMRBAYGIjU1FZcuXcKkSZMwY8YMLFy4sPSOlURZlBCNRgN/f3+kpaVh+/btSEhIwJYtW9CyZUsTRW/58uUIDg6Gr68vjh49irNnz2Lw4MEYPXo0Pvnkk2eSs0mTJlixYgXOnTuHQ4cOoUGDBujVqxfu3r0LALh48SL0ej3WrFmD8+fPY8mSJVi9ejWmTZtW4riHDx/Gu+++i+HDh+P8+fPYunUrjh07hpEjR5bYb/78+Vi1ahVWrFiBCxcuYP78+ViwYAGWL18utcnMzESXLl0wf/78IsfIzMxEr169IAgCfv/9dxw+fBh5eXkICgqCXq8v87rS09PRq1cvuLu74+TJk1i4cCFmzJiBtWvXlriGzMxM+Pj4YOXKlSW2Y5hqhzGxeBFGqSHNhyCyTyR6ufcCAGRqMvPbVYTxqABl8pQqKypLoOFrwCtDxFxZujwg+yGQehq4ckDMNwUAzfsBHT8E3H2ffU6GqUawvsT6EutLTwExxZKWlkYAKC0t7bnNkXzmFH0zdS3NfH8IRQzsS0vfW02jZox+bvMxDFM1ZGdnU3x8PGVnZ1e1KOVm6NChFBwcbHLN39+fOnbsSA8ePKDQ0FCys7MjtVpNgYGBlJiYKLW7evUqvfHGG2RnZ0cWFhbk5eVFu3btouTkZIIYpywdQ4cOJSKi9PR0GjJkCFlYWJCTkxMtXryYunXrRuPHj5fGdXd3p1mzZlFoaChZW1tLfWNiYqhLly5kbm5O9erVo7Fjx1JGRgYREcXFxREAunr1arFrTUlJIaVSSRMnTix0b9myZQSA/vzzTyIiaQ1xcXHlf6gGjJ8ze/fuLbbNggULqGHDhiWOs3DhQvLw8Cgkr6ura4n9+vbtS++//77JtX/84x8UEhJSqG1x692zZw/JZDKTz8pHjx6RIAgUHR1d7NxPruvrr7+mWrVqUW5urnQtLCyMmjZtWuIaCgKAfvzxxzK3L4mS/mYrQz940eBn8hQc/5Yo3IZo85Bimyw5sYS8N3jTV0e/Irp+Qmy/uEWFivHf8/8l7w3eNPmPyRU6LmXcJbqTQLSyoyj3sW/E/2c5VOw8TI2C9SXWl4qC9aWarS+xp1RVQ4QnHdbM9EU3ZRimZkFEyNJkVfpBRZf9LBdqtRp5eXkYNmwYTpw4gZ07dyI2NhZEhD59+kCj0QAAPvroI+Tm5uLgwYM4d+4c5s+fDysrK7i5ueGHH34AACQkJCA1NRVLly4FAEycOBGHDx/Gzp07ER0djZiYGJw6daqQDBEREfDx8UFcXBy++OILJCUlITAwEP3798fZs2exZcsWHDp0CGPGjAEAODg4QCaTYdu2bdDpii6zvm3bNmg0miJ3+EaNGgUrKyts3rz5mZ8fIO5Wrl27Fra2tvDx8Sm2XVpaGmrXrl3iWJ06dcK1a9ewe/duEBFu376Nbdu2oU+fPiX269y5M/bt24fExEQAwJkzZ3Do0CH07t27zOvIzc2FIAgwM8vPDWNubg6ZTIZDhw6VeV2xsbF47bXXoFLlJz4OCAhAQkICHj58WGZ5GOaFoYTwPSMWSgsAQGpmKq4+uiJeFCpWfdcZclqVmOj8abCsAzg0EXNgAUDuY/F/ziPFlJOq0pcqQmdifenZYX2p5utLnOi8qiEyVNszvuEJEDi/OcO8FGRrs9FhU4dKn/fokKPSF53yQkTYt28f9uzZg969e2PHjh04fPgwOnfuDECM03dzc8OOHTswYMAApKSkoH///mjZsiUAwMPDQxrL+AHr6OgIOzs7AMDjx4+xceNGbNq0CT169AAArF+/Hi4uhRPsdu/eHZMmTZLOR4wYgZCQEEyYMAEA4OnpiWXLlqFbt25YtWoVXF1dsWzZMnz66aeYOXMm2rVrBz8/P4SEhEhyJSYmwtbWFs7OhXP6qVQqeHh4SArJ0xIVFYXBgwcjKysLzs7OiI6ORp06dYpse/nyZSxfvhwREREljunr64vIyEgMGjQIOTk50Gq1CAoKKtVFe8qUKUhPT0ezZs0gl8uh0+kwZ84chISElHk9HTt2hKWlJcLCwjB37lwQEaZMmQKdTofU1NQyr+vWrVto2NA0R07dunWle7Vq1SqzTAzzQlAGo5Sl0hIAsC9lHx4k7sJ/C/Z7Ri49vISfk37GmbtnAFRQ+F5RGI1QOeni/1xxjyknVaUvAU+vM7G+xPrSk7C+VDzsKVXFECAW2StohGerFMMw1YyoqChYWVnB3NwcvXv3xqBBgzBs2DAoFAp06JCvKNrb26Np06a4cOECAGDcuHGYPXs2fH19ER4ejrNnz5Y4z5UrV6DRaNC+fXvpmq2tLZo2bVqobbt27UzOz5w5gw0bNsDKyko6AgICoNfrkZycDEDcibx16xYiIyPRqVMnbN26FS1atEB0dHSZn0XBnaniiIyMNJEjJiZGuufn54fTp0/jyJEjCAwMxMCBA3Hnzp1CY9y4cQOBgYEYMGCASa6DguOOHj0aABAfH4/x48dj+vTpOHnyJH799VdcvXpVuh8TE2PSLzIyEgDw/fffIzIyEps2bcKpU6ewceNGREREYOPGjWV+Hg4ODti6dSt+/vlnWFlZwdbWFo8ePUKbNm0gkxVWM4pbV2kUtwaGeWEpIaeUka6uXdGkVhPUNq8NuVFXrCDj0eKTi7H+/HqcuiN6Vtia2VbIuIUwGqXYU4p5CWB9KR/Wl0xhfal42FOqqiECoaARSgCxTYphXgrUCjWODjlaesPnMG958fPzw6pVq6BSqeDi4gKFQoGdO3eW2m/EiBEICAjArl278Ntvv2HevHlYtGgRxo4d+zSim2BpaWlynpGRgVGjRmHcuHGF2tavX1/62draGkFBQQgKCsLs2bMREBCA2bNnw9/fH56enkhLS8PNmzcL7Tbm5eUhKSkJAQEBpcrWr18/E+XT1dXVRO7GjRujcePG6NixIzw9PbFu3TpMnTpVanPz5k34+fmhc+fOhRJXFqzmYmMjhsXMmzcPvr6+mDx5MgCgVatWsLS0RNeuXTF79my0a9fOpJ9xR23y5MmYMmUKBg8eDABo2bIl/v77b8ybNw9Dhw4tdZ1GevXqhaSkJNy7dw8KhQJ2dnZwcnIy2ektbV1OTk4mFWgASOdOTk5o0KBBkWtgmBcWyShVdHgMANS3qY8f+v2A25m38fn/dTH0qxj1PT1P9Fzyd/dHk1pN8HaTtytk3EJIRin2lGKejqrSl4xzlwfWl1hfKgnWl4qGjVJVDEE0SgkFXKUEsFWKYV4GBEF46jC6ysaoGBSkefPm0Gq1OHr0qOSOfv/+fSQkJMDLy0tq5+bmhtGjR2P06NGYOnUqvvnmG4wdO1baQSuYr8DDwwNKpRLHjx+XFKO0tDQkJibitddeK1HGNm3aID4+vpCcJSEIApo1a4YjR44AAN5++22EhYVh0aJFWLRokUnb1atXIysrC++++26p41pbW8PaumwVVPV6PXJzc6XzGzduwM/PD23btsX69esL7Z4Vtb6srCwoFKYf6XK5+IWXiKBWq4vt9+T4crlcqgJTXoxu9b///jvu3LmDfv36lXldnTp1wmeffQaNRgOlUqxIGx0djaZNm0qu6OV5bRmm2iOF7xVvlDKilCshN+S2IZm8QjRFY9W9Nxu/idfqlfz++kzI2VOKeTZYX2J9CWB9yUhN1JfYKFXVEGCqWQhgmxTDMC8Cnp6eCA4OxsiRI7FmzRpYW1tjypQpcHV1RXBwMABgwoQJ6N27N5o0aYKHDx9i//79aN68OQDA3d0dgiAgKioKffr0gVqthrW1NYYOHYrJkyejdu3acHR0RHh4OGQyGYRSQpvDwsLQsWNHjBkzBiNGjIClpSXi4+MRHR2NFStW4PTp0wgPD0doaCi8vLygUqnwxx9/4Ntvv0VYWBgAcYdwwYIF+OSTT2Bubo7Q0FAolUr89NNPmDZtGmbPng1vb2+TeRMSEgrJ0qJFC0lRMJKZmYk5c+agX79+cHZ2xr1797By5UrcuHEDAwYMACAqIq+//jrc3d0REREhlT4GxN2v4ggKCsLIkSOxatUqBAQEIDU1FRMmTED79u2LzC9RsN+cOXNQv359tGjRAnFxcVi8eDHef/99qc2DBw+QkpKCmzdvmqzXyclJkmn9+vVo3rw5HBwcEBsbi/Hjx+Pjjz+WwgjKsq4hQ4Zg5syZGD58OMLCwvDXX39h6dKlWLJkSbHyA+KO7+XLl6Xz5ORknD59GrVr1zbZ8WWYaodQevieEYVMAUPrCjdKPbdcUkaMRqhH18T/2VOKeclgfUmE9SXWl4qlQuoA1lAqo7zx5RNHadXn39KX7w2miIF9ael731DYvLHPbT6GYaqGmlbi2IixxLGtrS2p1WoKCAgwKXE8ZswYatSoEZmZmZGDgwOFhobSvXv3pPuzZs0iJycnEgShxBLH7du3pylTpkj93N3dacmSJYXkOXbsGPn7+5OVlRVZWlpSq1ataM6cOUREdPfuXRo3bhx5e3uTlZUVWVtbU8uWLSkiIoJ0Op3JODt27KCuXbuSpaWlVIJ58+bNJm2KKtNsPK5du1ZItuzsbHrrrbfIxcWFVCoVOTs7U79+/ejYsWNSm/Xr1xc7ZmksW7aMvLy8SK1Wk7OzM4WEhND169dL7JOenk7jx4+n+vXrk7m5OXl4eNBnn31mUma4OJnCw8OlNmFhYVS3bl1SKpXk6elJixYtIr1eX+51nTlzhrp06UJmZmbk6upKX331Vanr3r9/f5HjGn+fnpaKKHH8MsHP5Cm4+AtRuA3RWr9Sm2ZpsmjcSg+icBvSru1eIdP3+7EfeW/wpmOpx0pv/CxETRTXaTz+4/9852NeaFhfYn2J9aWXT18SiCqgNngNJT09Hba2tkhLS5PiUCuapBNH8dvOC3hwbQ/Msx5DafUm7P1SEPLPWc9lPoZhqoacnBwkJyejYcOGMDc3r2pxXigyMzPh6uqKRYsWYfjw4ZU+/4MHD9CjRw/Y2Njgl19+gYXFixFCwDwbJf3NVoZ+8KLBz+QpuLQXiOwPOPsAow6W2FSr1+LT1U2x+M49aN3aQzG87MmGi6Pv9r5IeZyC//b+L1o7tn7m8Yrl+gng1ylAXhYgkwG+E4CWzyl/FfPCw/rS08P6ElMVVIS+xNX3qpprx/Bk+T2lgl8WhmFeXuLi4rB582YkJSXh1KlTUrldo4t7ZVO7dm3s3bsXPXr0QGxsbJXIwDBMDaQMic6NyAU5FAZVUS9UjJ4ohe8Jzzl8r147YMRe4MMjwOhDbJBimAqC9SWmpsA5paoYyrgFvVDQaigAFaRsMAzDvKhEREQgISEBKpUKbdu2RUxMjJQUsiqwt7fH9OnTq2x+hmFqIOUwSgmCAKVBPyRjLqpnxGiUkssqZjyGYSof1peYmgAbpaoaKpTpnGEY5qWmdevWOHnyZFWLwTAM83wxJhjX5gBZDwB1LaCoBMU6DRD/E7pk5wCoQE8pqqRE5wzDPBdYX2JqCuySU8UYU3oJUvSeAJmMjVQMwzAMwzA1GqMx6GEysKAhsP2Dottd3AX8MBy9H6cDALJlQK4ut+i25UCj1wBgoxTDMAxTtbBRqqohAgmmOaWK3CVjGIZhGIZhag6OzYHaHvnnfx8pul2mWBL8jkKJnVYWGJ1zCT229kBabtozTW8M31MKylJaMgzDMMzzg41SVQ3pDUYp4zlBYKMUwzAMwzBMzcbMGhh7CvjgD/Gc9EW3M+Scuu/QGDPqOuOCmQppuWlITkt+pumlROfsKcUwDMNUIWyUqmKISMxtLnlKsUGKYRiGYRjmpUAQ8hOeF2uUEo1Hzet441ToKXjYit5VxvC78vJ7yu+Yf2w+h+8xDMMw1QL+FKpqiERzVIHoPQ7fYxiGYRiGeUkwJi4vzihFhup8BuORSq4CAOTp8so9lVavxacHP5VyUikEBSyUFuUeh2EYhmEqCjZKVTH0RPU9wcQ6xTAMwzAMw9RoSjNKGcL3IIgeVUqZmAPqaYxSebo8ySD1Xov30KZuG1gqLcs9DsMwDMNUFGyUqmqIQCaOUQKECir1yzAMwzAMw1RzymqUkpkapZ4mfE9n9LoCMLb1WCjlnOScYRiGqVrY+lHlEAiCqYcUR+8xDFONGDZsGARBgCAIUKlUaNy4MWbNmgWtVvtM4x44cACCIODRo0cVI2gZSE5OxpAhQ+Di4gJzc3PUq1cPwcHBuHjxokm7qKgodOvWDdbW1rCwsMCrr76KDRs2mLS5evUqBEHA6dOnyzz/jBkz0KxZM1haWqJWrVro2bMnjh49ajLm8OHD0bBhQ6jVajRq1Ajh4eHIyyvdIyIyMhI+Pj6wsLCAs7Mz3n//fdy/f7/EPo8fP8aECRPg7u4OtVqNzp074/jx4yZtMjIyMGbMGNSrVw9qtRpeXl5YvXq1SZtRo0ahUaNGUKvVcHBwKPKZpqSkoG/fvrCwsICjoyMmT55c7O/Q4cOHoVAo8Morr5S67u3bt6NXr16wt7cv9+vBMNWCMofviUYpKXxP/3The0bkxlxWDMNUCKwvsb7E+tLTwUapKkZMdP6EFYpzSjEMU80IDAxEamoqLl26hEmTJmHGjBlYuHBhVYslURYlRKPRwN/fH2lpadi+fTsSEhKwZcsWtGzZ0kTRW758OYKDg+Hr64ujR4/i7NmzGDx4MEaPHo1PPvnkmeRs0qQJVqxYgXPnzuHQoUNo0KABevXqhbt3xZLvFy9ehF6vx5o1a3D+/HksWbIEq1evxrRp00oc9/Dhw3j33XcxfPhwnD9/Hlu3bsWxY8cwcuTIEvuNGDEC0dHR+L//+z+cO3cOvXr1Qs+ePXHjxg2pzcSJE/Hrr7/if//7Hy5cuIAJEyZgzJgx2Llzp9Smbdu2WL9+PS5cuIA9e/aAiNCrVy/odOKXaZ1Oh759+yIvLw9HjhzBxo0bsWHDBkyfPr2QTI8ePcK7776LHj16lOmZZmZmokuXLpg/f36Z2jNMtUMyShWTwkFfdE4pja78nlJGo5RMkEHGnvkMU+GwvsT6EutLTwExxZKWlkYAKC0t7bnNcWH1WFr85SaaF/o2RQzsS8veW0fbd8x/bvMxDFM1ZGdnU3x8PGVnZ1e1KOVm6NChFBwcbHLN39+fOnbsSA8ePKDQ0FCys7MjtVpNgYGBlJiYKLW7evUqvfHGG2RnZ0cWFhbk5eVFu3btouTkZIJY4kE6hg4dSkRE6enpNGTIELKwsCAnJydavHgxdevWjcaPHy+N6+7uTrNmzaLQ0FCytraW+sbExFCXLl3I3Nyc6tWrR2PHjqWMjAwiIoqLiyMAdPXq1WLXmpKSQkqlkiZOnFjo3rJlywgA/fnnn0RE0hri4uLK/1ANGD9n9u7dW2ybBQsWUMOGDUscZ+HCheTh4VFIXldX12L7ZGVlkVwup6ioKJPrbdq0oc8++0w6b9GiBc2aNavENk9y5swZAkCXL18mIqLdu3eTTCajW7duSW1WrVpFNjY2lJuba9J30KBB9Pnnn1N4eDj5+PgUO8eTVMTrUZCS/mYrQz940eBn8gzcTyIKtyGaU8zfa/QM8f7uMCIimvD7BPLe4E3fXfiu3FOlZqSS9wZvav3f1s8iMcM8N1hfYn2pKFhfqtn6Em+RVDFkrL5nQADYU4phXhKICPqsrEo/qLjd+HKgVquRl5eHYcOG4cSJE9i5cydiY2NBROjTpw80GnEH/6OPPkJubi4OHjyIc+fOYf78+bCysoKbmxt++OEHAEBCQgJSU1OxdOlSAOJO0+HDh7Fz505ER0cjJiYGp06dKiRDREQEfHx8EBcXhy+++AJJSUkIDAxE//79cfbsWWzZsgWHDh3CmDFjAAAODg6QyWTYtm2btCP1JNu2bYNGoylyh2/UqFGwsrLC5s2bn/n5AeJu5dq1a2FrawsfH59i26WlpaF27doljtWpUydcu3YNu3fvBhHh9u3b2LZtG/r06VNsH61WC51OB3Nzc5PrarUahw4dks47d+6MnTt34saNGyAi7N+/H4mJiejVq1eR42ZmZmL9+vVo2LAh3NzcAACxsbFo2bIl6tatK7ULCAhAeno6zp8/L11bv349rly5gvDw8BLXyzA1inKG7xnzQH3717cI2R2Cb//6tsxTGfNQKWScVpZ5cagqfakidCbWl54d1pdqvr7En0hVDRFIEADOKcUwLx2UnY2ENm0rfd6mp05CsHi6EuBEhH379mHPnj3o3bs3duzYgcOHD6Nz584AxDh9Nzc37NixAwMGDEBKSgr69++Pli1bAgA8PDyksYyKg6OjI+zs7ACIMfsbN27Epk2bJHfk9evXw8XFpZAs3bt3x6RJk6TzESNGICQkBBMmTAAAeHp6YtmyZejWrRtWrVoFV1dXLFu2DJ9++ilmzpyJdu3awc/PDyEhIZJciYmJsLW1hbOzc6H5VCoVPDw8kJiY+FTPzkhUVBQGDx6MrKwsODs7Izo6GnXq1Cmy7eXLl7F8+XJERESUOKavry8iIyMxaNAg5OTkQKvVIigoCCtXriy2j7W1NTp16oQvv/wSzZs3R926dbF582b8P3t3HhdV9f4B/DMsAwMMg2yxiiCLgmguKYpGqAhoSGWoSQglCn1xyw2xEiXMMtDccumnYN/QTFPki5qiueCSK6i5gCKEsqiIgiyyzfn9gdwYZxgWkUF83q/XvPTee+65z7mAPJ577jmnT5+GtbU1V2716tWYMmUKzMzMoKKiAiUlJfz00094++23Jer78ccfMW/ePJSWlsLOzg5JSUng82tfM8rPz5dIsABw2/n5+QCAmzdvYv78+UhOToaKCqUn5DXCdUrJ/s/f8xOdm2mZAQByS3ORW5qLGw9v4NMenzbpUnWv71GnFHmVKCpfAlqeM1G+RPkS5UtNRyOlFO3ZSCmuH4oB1CtFCGlvEhMToaWlBXV1dXh6emLcuHEICAiAiooKBgwYwJXT09ODnZ0drl+/DgCYPn06IiMj4ezsjPDwcFy+fFnudW7fvo2qqir079+f2ycSiWBnZydVtl+/fhLbly5dQmxsLLS0tLiPu7s7xGIxMjMzAdQ+iczPz0dcXBwGDhyIHTt2wMHBAUlJSU2+F3WJgzxxcXEScSQnJ3PHXF1dkZqailOnTsHDwwNjx47F/fv3perIycmBh4cHfHx8JOY6qF9vcHAwAODatWuYMWMGFi5ciAsXLuCPP/5AVlYWdzw5OVnivLi4OADAf//7XzDGYGpqCjU1NaxatQofffQRlJT+TQ9Wr16Nv/76CwkJCbhw4QKio6MREhKCQ4cOScTr6+uLlJQUHDt2DLa2thg7diyePn3apHtaU1ODCRMmYPHixbC1tW32PSXkldbU1fd4tZ1Sn/X6DBvcNuCbwd8AqJ3wvKmjOWqe1aXC6xj/kSGkvaF86V+UL1G+1FT0G0nBapMIXr2BUrUrNhBCOj6eQAC7ixcUct3mcnV1xbp168Dn82FiYgIVFRWJiRsbEhgYCHd3d+zduxcHDx7E0qVLER0djWnTprUkdAmampoS2yUlJQgKCsL06dOlynbu3Jn7u1AohJeXF7y8vBAZGQl3d3dERkbCzc0NNjY2KCoqQm5urtTTxsrKSmRkZMDd3b3R2EaPHi2RfJqamkrEbW1tDWtrazg5OcHGxgabNm1CWFgYVyY3Nxeurq4YNGgQNm7cKFF3/dVStLW1AQBLly6Fs7Mz5s6dCwDo2bMnNDU1MWTIEERGRqJfv34S59U9devatSuOHTuG0tJSFBcXw9jYGOPGjeOehJaXl2PBggXYvXs3Ro0axdWdmpqKqKgoDB8+nKtTJBJBJBLBxsYGTk5O6NSpE3bv3o2PPvoIRkZGOHv2rEQ77t27BwAwMjLCkydPcP78eaSkpHCvD4jFYjDGoKKigoMHD8q9p4S80pr8+l5t2q6qrIpBJoNQVFHEFakWV3Ov9clTzWikFHn1KCpfqrt2c1C+RPkS5UvN1+ojpdatW4eePXtCW1sb2traGDhwIPbv388dz8/Ph5+fH4yMjKCpqYk+ffpw78nWKSwshK+vL7S1taGjo4NJkyahpKREoszly5cxZMgQqKurw9zcHMuWLZOKZceOHejWrRvU1dXh6OiIffv2tXZzXxxjzw2MkrEaHyGkQ+LxeFDS0GjzT0s6vusSg86dO3NDhbt3747q6mqJJXofPnyItLQ02Nvbc/vMzc0RHByMXbt2Yfbs2fjpp58A/PsErf58BVZWVlBVVZVYZreoqKhJQ8D79OmDa9eucQlM/U9DT+t4PB66deuG0tJSAMCHH34IFRUVREdHS5Vdv349ysrKMHHixEZjEQqFEtcXyElqxWIxKioquO2cnBy888473Aot9Z/CAZCo19DQEABQVlYmVU5ZuXZUBWMMAoFA4jyhUChRVlNTE8bGxnj06BEOHDgAb29vALUr8FRVVcmsWyxu4D/Qz67JGOPaNXDgQFy5ckXiCWdSUhK0tbVhb28PbW1tXLlyBampqdwnODgYdnZ2SE1NxYABA5p1Twl5pTR1pNSz1/fqqCr92wlVN1dUY+pe31N+ri5C2jNF5UstyZkoX6J86fm6KV9qXKs/JjEzM8O3334LGxsbMMawZcsWeHt7IyUlBQ4ODpg4cSIeP36MhIQE6OvrY+vWrRg7dizOnz+P3r17A6gd0paXl4ekpCRUVVXhk08+wZQpU7B161YAQHFxMbcM4/r163HlyhV8+umn0NHRwZQpUwAAp06dwkcffYSlS5fi3XffxdatW/Hee+/h4sWL6NGjR2s3u8UYGMS82r/V4dHre4SQV4CNjQ28vb0xefJkbNiwAUKhEPPnz4epqSn3S3rmzJnw9PSEra0tHj16hCNHjqB79+4AAAsLC/B4PCQmJmLkyJEQCAQQCoXw9/fH3LlzoaurC0NDQ4SHh0NJSanRxDA0NBROTk6YOnUqAgMDoampiWvXriEpKQlr1qxBamoqwsPD4efnB3t7e/D5fBw7dgybN29GaGgogNonhMuWLcOcOXOgrq4OPz8/qKqqYs+ePViwYAEiIyOlfoekpaVJxeLg4ABVVclRC6WlpViyZAlGjx4NY2NjFBQUYO3atcjJyYGPjw+AfxMsCwsLREVFcUsfA7VPyBri5eWFyZMnY926dXB3d0deXh5mzpyJ/v37y5xfok7dcsR2dna4desW5s6di27duuGTTz4BUPtk0cXFBXPnzoVAIICFhQWOHTuGn3/+GcuXLwdQ+wrB9u3bMWLECBgYGODu3bv49ttvIRAIuIlDR4wYAXt7e/j5+WHZsmXIz8/Hl19+iZCQEKipqQGA1H01NDSEurp6o7+zCwsLkZ2djdzcXAD/fj2MjIzk3jNC2o1GO6Wqn5VruFOqbgRUY7g5pej1PULaDOVLtShfonypQS+y/F9TderUif3f//0fY4wxTU1N9vPPP0sc19XVZT/99BNjjLFr164xAOzcuXPc8f379zMej8dycnIYY4z9+OOPrFOnThLLIoaGhjI7Oztue+zYsWzUqFES1xkwYAALCgpqctxtsbzx36umsO++2c6+/fgDFjV2FFsTsJnF713x0q5HCFGMjrbEcZ26JY5FIhETCATM3d1dYonjqVOnsq5duzI1NTVmYGDA/Pz8WEFBAXc8IiKCGRkZMR6PJ3eJ4/79+7P58+dz51lYWLAVK1ZIxXP27Fnm5ubGtLS0mKamJuvZsydbsmQJY4yxBw8esOnTp7MePXowLS0tJhQKmaOjI4uKimI1NTUS9cTHx7MhQ4YwTU1Nbgnmbdu2SZSRtUxz3efOnTtSsZWXl7P333+fmZiYMD6fz4yNjdno0aPZ2bNnuTIxMTEN1tmYVatWMXt7eyYQCJixsTHz9fVld+/elXvO9u3bmZWVFePz+czIyIiFhISwx48fS5TJy8tjAQEBzMTEhKmrqzM7OzsWHR3NxGIxY4yxnJwc5unpyQwNDZmqqiozMzNjEyZMYDdu3JCoJysri3l6ejKBQMD09fXZ7NmzWVVVVYOxNXWJ44buWXh4eKPnytMaSxy/TuievICSB4yFa9d+nv1cSYj/T+2x49ESu8ViMesR24P1iO3BCsoKpM+T4VzeOdYjtgd7d9e7rRE5Ia2O8iXKlyhfev3yJR5jrbA2eANqamqwY8cO+Pv7IyUlBfb29hgxYgT4fD5+/vln6Ojo4LfffsOkSZNw6dIlWFtbY/PmzZg9ezYePXrE1VNdXQ11dXXs2LED77//PiZOnIji4mLEx8dzZY4cOYKhQ4eisLAQnTp1QufOnTFr1ixuVQEACA8PR3x8PC5duiQz3oqKCokhgcXFxTA3N0dRURH3Hmpr+3vVFOwrcwOu/grlygqoa3wA87FPMNpzxku5HiFEMZ4+fYrMzExYWlpKLSlL5CstLYWpqSmio6MxadKkNr9+YWEhhg0bBm1tbezfvx8aLVy5kLxa5P3MFhcXQyQSvdT84FVD9+QFlBUCyyxr/76wUOo1Pez+DLi0FXCLAJwl88M3f34TNawGhz48hDc0JVdsqi+3JBcbLm/AnSd3cC7/HKx1rLHbe3drt4SQF0b5UstRvkQUoTXypZey+t6VK1egpaUFNTU1BAcHY/fu3dz7sr/99huqqqqgp6cHNTU1BAUFYffu3dxyivn5+dw7n3VUVFSgq6vLLYPYlKUSGypTd1yWpUuXchOPiUQimJubv8BdaCImRrrgIqp59eYCoDmlCCGvsZSUFGzbtg0ZGRm4ePEifH19AYAb4t7WdHV1cejQIQwbNgynT59WSAyEkA6sft5X/xW+nAvAkaVA3rOHqTImJ697ha+x1/d+v/k7dt3chXP5tfPP6KnrvVjMhBCFo3yJdBQv5YXyuom2ioqKsHPnTvj7++PYsWOwt7fHV199hcePH+PQoUPQ19dHfHw8xo4di+TkZDg6Or6McJosLCwMs2bN4rbrRkq9TDlK5TijnYjOPHOoPesjFKi0/8nICCHkZYqKikJaWhr4fD769u2L5ORk6OvrKywePT09LFy4UGHXJ4R0YLx6z4jrd0rt/BR4lPXvNl9L6lQVJRWg5t+5ohpSXl0OAHAydsLQzkPxjtk7LxAwIaS9oHyJdAQvpVOKz+dzI5/69u2Lc+fOYeXKlZg3bx7WrFmDv//+Gw4ODgCAXr16ITk5GWvXrsX69ethZGQkMds8UPv6XmFhITcBl5GREbc0Yp36SyXKKyNvEi81NTVuArG2UobaEVI8VveUjIcBxgMaPoEQQjq43r1748IFxSz9TAghba6hTqnyZ1NZ9PgQ0LUEHN6XOlXl2eipqhr5q+/VPFvBr6dBT3zU7aMXi5cQ0i5QvkQ6ipfy+t7z6pZvLCsrq72onKUSBw4ciMePH0v8gP35558Qi8UYMGAAV+b48eOoqvr3F3BSUhLs7OzQqVMnrszhw4clrpOUlISBAwe2fgNfgPjZqnv/dkkx8FXo/WlCCCGEkNdCQ51SdcuIuy4Ahn4JqEvPx9HU1/dqWG2nFK26RwghpL1p9U6psLAwHD9+HFlZWbhy5QrCwsJw9OhR+Pr6olu3brC2tkZQUBDOnj2LjIwMREdHIykpCe+99x4AoHv37vDw8MDkyZNx9uxZnDx5ElOnTsX48eO5ZRonTJgAPp+PSZMm4erVq9i+fTtWrlwp8erdjBkz8McffyA6Oho3btzAokWLcP78eUydOrW1m/xCauqSj7qRUozmkyKEEEIIeW3w6k1sLtEp9ayj6fmJz+upGym15eoWbLi0AUUVRTLL1b3epyynLkIIIUQRWv1xyf379zFx4kTk5eVBJBKhZ8+eOHDgANzc3AAA+/btw/z58+Hl5YWSkhJYW1tjy5YtGDlyJFdHXFwcpk6dimHDhkFJSQljxozBqlWruOMikQgHDx5ESEgI+vbtC319fSxcuBBTpkzhygwaNAhbt27Fl19+iQULFsDGxgbx8fHo0aNHazf5hdQ8N1JKeoMQQgghhHRY9UdKPXvNDgDwbHSTrAnO62jztZFXmofE24kAAHUVdfg7+EuVqxsppcyjTilCCCHtS6t3Sm3atEnucRsbG/z+++9yy+jq6mLr1q1yy/Ts2RPJyclyy/j4+MDHx0duGUVjEEvt4dHqe4QQQgghr4cGX9971iklpyNp0aBFOPjPQfyV+xeuF15vcKRU3ZxSKnI6uAghhBBFaJM5pUjDapiMkVKEEEIIIeT1INEpxf79kxsp1XCnVA/9HpjVdxb6G/UHAFSJZU94zr2+RyOlCCGEtDPUKaVg3POwZzkIDwBopBQhhBBCyOuhft7HzTVab8RUEzqS+Mp8AHI6pRjNKUUIIaR9ok4pBathz72+x0CdUoQQQgghrwseD9yY+bq8sP7cUk3oSKpbha+qRnanVN3rezRSihBCSHtDnVIKJn5+onMeqFOKENKuBAQEgMfjgcfjgc/nw9raGhEREaiulr8EeWOOHj0KHo+Hx48ft06gTZCZmYkJEybAxMQE6urqMDMzg7e3N27cuCFRLjExES4uLhAKhdDQ0MBbb72F2NhYiTJZWVng8XhITU1t8vUXLVqEbt26QVNTE506dcLw4cNx5swZiTonTZoES0tLCAQCdO3aFeHh4aisrGy07ri4OPTq1QsaGhowNjbGp59+iocPH8o95/jx4/Dy8oKJiQl4PB7i4+OlyuzatQsjRoyAnp5eo+1ljMHT07PBumJjY9GzZ0+oq6vD0NAQISEhEscPHDgAJycnCIVCGBgYYMyYMcjKymqTdra1RYsWcT9XdZ9u3bpJlZN3T7OzszFq1ChoaGjA0NAQc+fOlfq5PHr0KPr06QM1NTVYW1tLfR8DwNq1a9GlSxeoq6tjwIABOHv2bGs2lTRF3St83EipZnZKKdd2SlWKZf9bUTfROc0pRcjLQ/kS5UuUL7UMdUopWF2n1L+oQ4oQ0v54eHggLy8PN2/exOzZs7Fo0SJ8//33ig6L05QkpKqqCm5ubigqKsKuXbuQlpaG7du3w9HRUSLRW716Nby9veHs7IwzZ87g8uXLGD9+PIKDgzFnzpwXitPW1hZr1qzBlStXcOLECXTp0gUjRozAgwcPAAA3btyAWCzGhg0bcPXqVaxYsQLr16/HggUL5NZ78uRJTJw4EZMmTcLVq1exY8cOnD17FpMnT5Z7XmlpKXr16oW1a9fKLTN48GB89913jbbvhx9+aHCxjuXLl+OLL77A/PnzcfXqVRw6dAju7u7c8czMTHh7e2Po0KFITU3FgQMHUFBQgA8++KBN2qkIDg4OyMvL4z4nTpyQKtPQPa2pqcGoUaNQWVmJU6dOYcuWLYiNjcXChQu5MpmZmRg1ahRcXV2RmpqKmTNnIjAwEAcOHODKbN++HbNmzUJ4eDguXryIXr16wd3dHffv3385jSayPd8pVX+kVBNGN3EjpRp7fY9GShHyUlG+RPkS5UstwEiDioqKGABWVFT00q7x4wpP1iO2B/tmwigWNXYU+9F/E3uacfulXY8Qohjl5eXs2rVrrLy8XNGhNJu/vz/z9vaW2Ofm5sacnJxYYWEh8/PzYzo6OkwgEDAPDw+Wnp7OlcvKymLvvvsu09HRYRoaGsze3p7t3buXZWZmMtS+sMx9/P39GWOMFRcXswkTJjANDQ1mZGTEli9fzlxcXNiMGTO4ei0sLFhERATz8/NjQqGQOzc5OZkNHjyYqaurMzMzMzZt2jRWUlLCGGMsJSWFAWBZWVkNtjU7O5upqqqyWbNmSR1btWoVA8D++usvxhjj2pCSktL8m/pM3e+ZQ4cONVhm2bJlzNLSUm4933//PbOyspKK19TUtMmxAGC7d+9u8Hhj7U1JSWGmpqYsLy9Pqq7CwkImEAjktnPHjh1MRUWF1dTUcPsSEhIYj8djlZWVjLG2aWcdeT+zrZEfhIeHs169esktI++e7tu3jykpKbH8/Hxu37p165i2tjarqKhgjDE2b9485uDgIFHnuHHjmLu7O7fdv39/FhISwm3X1NQwExMTtnTp0ma1py1ypg4twoCxcG3GHmXXbpc9qt0O12asqqLR0+OuxbEesT3YrCPS/3YxxljggUDWI7YH+1/G/1oxaEJaH+VLlC/JQvnSvzpivkQjpRSM1dRgYVwNNCrqXuPj0WApQl4TjDFUVdS0+Yex50doNp9AIEBlZSUCAgJw/vx5JCQk4PTp02CMYeTIkaiqqn1aHxISgoqKChw/fhxXrlzBd999By0tLZibm+P3338HAKSlpSEvLw8rV64EAMyaNQsnT55EQkICkpKSkJycjIsXL0rFEBUVhV69eiElJQVfffUVMjIy4OHhgTFjxuDy5cvYvn07Tpw4galTpwIADAwMoKSkhJ07d6KmpkaqPgDYuXMnqqqqZD7hCwoKgpaWFrZt2/bC9w+ofVq5ceNGiEQi9OrVq8FyRUVF0NXVlVvXwIEDcefOHezbtw+MMdy7dw87d+7EyJEjWyXWxpSVlWHChAlYu3YtjIyMpI4nJSVBLBYjJycH3bt3h5mZGcaOHYs7d+5wZfr27QslJSXExMSgpqYGRUVF+O9//4vhw4dDVVW1XbSztd28eRMmJiawsrKCr68vsrOzuWON3dPTp0/D0dERb7zxBrfP3d0dxcXFuHr1Kldm+PDhEue5u7vj9OnTAGq/By9cuCBRRklJCcOHD+fKNKSiogLFxcUSH/IC6kZK/fIBsGU0UJzz77EmvL5XN9E5vb5HOiJF5UutkTNRvvTiKF/q+PkS/WZSMM2CCvTIZsjt8e8+FQNDxQVECGkz1ZVibJxxrM2vO2WlC1TVWvYKB2MMhw8fxoEDB+Dp6Yn4+HicPHkSgwYNAlD7/rq5uTni4+Ph4+OD7OxsjBkzBo6OjgAAKysrrq66xMHQ0BA6OjoAgCdPnmDLli3YunUrhg0bBgCIiYmBiYmJVCxDhw7F7Nmzue3AwED4+vpi5syZAAAbGxusWrUKLi4uWLduHUxNTbFq1SrMmzcPixcvRr9+/eDq6gpfX18urvT0dIhEIhgbG0tdj8/nw8rKCunp6S26d3USExMxfvx4lJWVwdjYGElJSdDX15dZ9tatW1i9ejWioqLk1uns7Iy4uDiMGzcOT58+RXV1Nby8vNps+PXnn3+OQYMGwdvbW+bx27dvQywW45tvvsHKlSshEonw5Zdfws3NDZcvXwafz4elpSUOHjyIsWPHIigoCDU1NRg4cCD27dvXbtrZmgYMGIDY2FjY2dkhLy8PixcvxpAhQ/D3339DKBQ2ek/z8/MlOqQAcNv5+flyyxQXF6O8vByPHj1CTU2NzDLPzxvyvKVLl2Lx4sXNajORo1MX4MF1oCC99nPj3+97rsNKjrrX9+4+uYsd6TtgqmmKQaaDuON1E52r8Cj1J68eReVLQMtzJsqXKF+ShfIl2WiklILxqsWoUhGA1b1TygeUtTQVGxQhhDwnMTERWlpaUFdXh6enJ8aNG4eAgACoqKhgwIABXDk9PT3Y2dnh+vXrAIDp06cjMjISzs7OCA8Px+XLl+Ve5/bt26iqqkL//v25fSKRCHZ2dlJl+/XrJ7F96dIlxMbGQktLi/u4u7tDLBYjMzMTQO2TyPz8fMTFxWHgwIHYsWMHHBwckJSU1OR7wefzGy0TFxcnEUdycjJ3rG5+n1OnTsHDwwNjx46VOX9PTk4OPDw84OPjIzEHQP16g4ODAQDXrl3DjBkzsHDhQly4cAF//PEHsrKyuOPJyckS58XFxTW5vY1JSEjAn3/+iR9++KHBMmKxGFVVVVi1ahXc3d3h5OSEbdu24ebNmzhy5AiA2g6UyZMnw9/fH+fOncOxY8fA5/Px4Ycfck+qFdnO1ubp6QkfHx/07NkT7u7u2LdvHx4/fozffvutSfdU0cLCwlBUVMR96j/FJS3w6X7ALx6wdKndrng28oyn1KQFcDRUNQAAtx7fQsTpCAQdCkJaYRp239yNL058gcyi2n8DaU4pQl4uypf+RfmSJMqXGkaPSxSspqILTjj7oaZoPcAqFB0OIaQNqfCVMGWli0Ku21yurq5Yt24d+Hw+TExMoKKigoSEhEbPCwwMhLu7O/bu3YuDBw9i6dKliI6OxrRp01oSugRNTckO/JKSEgQFBWH69OlSZTt37sz9XSgUwsvLC15eXoiMjIS7uzsiIyPh5uYGGxsbFBUVITc3V+ppY2VlJTIyMiQmm2zI6NGjJZJPU1NTibitra1hbW0NJycn2NjYYNOmTQgLC+PK5ObmwtXVFYMGDcLGjRsl6q6/mou2tjaA2lErzs7OmDt3LgCgZ8+e0NTUxJAhQxAZGYl+/fpJnPf8yJgX8eeffyIjI4N7eltnzJgxGDJkCI4ePco9SbW3t+eOGxgYQF9fn3tlbe3atRCJRFi2bBlX5pdffoG5uTnOnDkDJycnhbbzZdPR0YGtrS1u3bqFK1euNHpPjYyMpFbJu3fvHgBwrwQYGRlx++qX0dbWhkAggLKyMpSVlWWWkfVaQX1qampQU1NrSVOJLIJOQFdX4O/a13RQWVL7ZxNft3M2ccY4u3F4UPYA5++dR3FlMW4X3cai04sgrps8HUAn9U6tHTkhL52i8qW6azcH5UuULzWE8qWGUaeUglVXmILVe2qlpy5/uDwhpOPg8Xgtfo2urdUlBvV1794d1dXVOHPmDDcc/eHDh0hLS5P4ZWpubo7g4GAEBwcjLCwMP/30E6ZNm8Y9Qas/X4GVlRVUVVVx7tw5LjEqKipCeno63n77bbkx9unTB9euXZOKUx4ej4du3brh1KlTAIAPP/wQoaGhiI6ORnR0tETZ9evXo6ysDBMnTmy0XqFQCKFQ2KQYxGIxKir+fSiRk5MDV1dX9O3bFzExMVBSkkyIZbWvrKwMKiqSv9KVlWu/txhjEAgEzbovzTF//nwEBgZK7HN0dMSKFSvg5eUFoHYYOVA7H4aZmRkAoLCwEAUFBbCwsODa8Hxb69ogFou5Mopq58tWUlKCjIwM+Pn5YezYsY3e04EDB2LJkiW4f/8+DA1rX/tPSkqCtrY29/P3/HD+ujIDBw4EUPsUu2/fvjh8+DDee+89ALX3+vDhw9zcIqSNPRvxhMrS2j+bOLJJQ1UDXzp9CQD45I9PcP7eeTwoewAxE0OZp4yZfWbCSNMIvQwano+FkPaK8iXKlwDKlzpyvkSdUgomfqoMCAAeqwID0FlbMe9LE0JIc9nY2MDb2xuTJ0/Ghg0bIBQKMX/+fJiamnLvys+cOROenp6wtbXFo0ePcOTIEXTv3h0AYGFhAR6Ph8TERIwcORICgQBCoRD+/v6YO3cudHV1YWhoiPDwcCgpKTW4dG6d0NBQODk5YerUqQgMDISmpiauXbuGpKQkrFmzBqmpqQgPD4efnx/s7e3B5/Nx7NgxbN68GaGhoQBqnxAuW7YMc+bMgbq6Ovz8/KCqqoo9e/ZgwYIFiIyMRI8ePSSum5aWJhWLg4MDN9lkndLSUixZsgSjR4+GsbExCgoKsHbtWuTk5MDHxwdAbYL1zjvvwMLCAlFRUdzSxwDkjlzx8vLC5MmTsW7dOri7uyMvLw8zZ85E//79Zc4vUaekpAS3bt3itjMzM5GamgpdXV0uyS0sLER2djZyc3Ml2mtkZCTxeV7nzp1haWkJoHZpZ29vb8yYMQMbN26EtrY2wsLC0K1bN7i6ugIARo0ahRUrViAiIgIfffQRnjx5ggULFsDCwgK9e/d+6e1sa3PmzIGXlxcsLCyQm5uL8PBwKCsr46OPPoKBgUGj93TEiBGwt7eHn58fli1bhvz8fHz55ZcICQnhRjAFBwdjzZo1mDdvHj799FP8+eef+O2337B3716uzlmzZsHf3x/9+vVD//798cMPP6C0tBSffPJJ29wIIklVvfbPirqRUs3/j7iaSu3X/1HFIwCAhooGAnoEtEZ0hJAWoHypFuVLlC81qGkLAr6eXvbyxv+kXGDrJs5iKz+NYdFj32VRY0exI996v5RrEUIUq6MtcVynboljkUjEBAIBc3d3l1jieOrUqaxr165MTU2NGRgYMD8/P1ZQUMAdj4iIYEZGRozH48ld4rh///5s/vz53HkWFhZsxYoVUvGcPXuWubm5MS0tLaapqcl69uzJlixZwhhj7MGDB2z69OmsR48eTEtLiwmFQubo6MiioqIkltVljLH4+Hg2ZMgQpqmpyS3BvG3bNokyspZprvvcuXNHKrby8nL2/vvvMxMTE8bn85mxsTEbPXo0O3v2LFcmJiamwTobs2rVKmZvb88EAgEzNjZmvr6+7O7du3LPOXLkiMxr1X0t5MUUHh7eYL2QsYxwUVER+/TTT5mOjg7T1dVl77//PsvOzpYos23bNta7d2+mqanJDAwM2OjRo9n169fbpJ3Pa40ljuUZN24cMzY2Znw+n5mamrJx48axW7duNVhe1j3Nyspinp6eTCAQMH19fTZ79mxWVVUlUebIkSPszTffZHw+n1lZWbGYmBipulevXs06d+7M+Hw+69+/P7eMd3O87JzptfHnN4yFazMW+27tn9+YN7uKmX/OZD1ie7Dwk+GsR2wPNnT70JcQKCEvB+VLlC9RvvT65Us8xlphbfAOqri4GCKRCEVFRdx7qK0pepw3AMllNpW9RmLmx/9p9WsRQhTr6dOnyMzMhKWlJdTV1RUdziultLQUpqamiI6OxqRJk9r8+oWFhRg2bBi0tbWxf/9+aGhotHkMpO3J+5l92fnBq4juSSs5sQI4tKj2Nb6qMkCgC4RmNquKsOQwJN5OxDvm7+DonaPoot0F/3v/fy8lXEJaG+VLLUf5ElGE1siXaPU9BVJS0gVPSQ88JT0oQQk3tGzBKJEjhLzmUlJSsG3bNmRkZODixYvw9fUFgAaXz33ZdHV1cejQIQwbNgynT59WSAyEkNeE3rM5PqrKav/sZNHsKtRVav9TkHy3dhUrgYqgVUIjhLQvlC+RjoLmlFIgZYEYYEoQ857gkKE1rvNc8Gm3rooOixBCFC4qKgppaWncRMzJycnQ19dXWDx6enpYuHChwq5PCHlNdHsXmHIUKCus3TbrJ7e4LI76jtiZvhM1rHY0fg/9Ho2cQQh5VVG+RDoC6pRSoP5fLEfdu5NeQjUYaKtBW11V7jmEENLR9e7dGxcuXFB0GIQQ0vZ4PMCk9wtV8YHNB3A2ccbTmqdQ4inBTMuslYIjhLQnlC+RjoI6pRTIqaueokMghBBCCCEdzBuabyg6BEIIIaRJaE4pQgghhBBCCCGEENLmqFOKEEIIIYQQQgghhLQ56pQihBBCCCGEEEIIIW2OOqUIIYQQQgghhBBCSJujTilCCCGEEEIIIYQQ0uaoU4oQQgghhBBCCCGEtDnqlCKEECJXQEAAeDweeDwe+Hw+rK2tERERgerq6heq9+jRo+DxeHj8+HHrBNoEmZmZmDBhAkxMTKCurg4zMzN4e3vjxo0bEuUSExPh4uICoVAIDQ0NvPXWW4iNjZUok5WVBR6Ph9TU1CZff9GiRejWrRs0NTXRqVMnDB8+HGfOnJGoc9KkSbC0tIRAIEDXrl0RHh6OysrKRuuOi4tDr169oKGhAWNjY3z66ad4+PCh3HOOHz8OLy8vmJiYgMfjIT4+vtkxA8CSJUswaNAgaGhoQEdHR+a1srOzMWrUKGhoaMDQ0BBz586V+B6q/31W/+Pg4MCVWbp0Kd566y0IhUIYGhrivffeQ1paWqP3pinxEUIIIS+C8iXKlyhfahnqlCKEENIoDw8P5OXl4ebNm5g9ezYWLVqE77//XtFhcZqShFRVVcHNzQ1FRUXYtWsX0tLSsH37djg6OkokeqtXr4a3tzecnZ1x5swZXL58GePHj0dwcDDmzJnzQnHa2tpizZo1uHLlCk6cOIEuXbpgxIgRePDgAQDgxo0bEIvF2LBhA65evYoVK1Zg/fr1WLBggdx6T548iYkTJ2LSpEm4evUqduzYgbNnz2Ly5MlyzystLUWvXr2wdu3aFscM1N5/Hx8ffPbZZzLrqKmpwahRo1BZWYlTp05hy5YtiI2NxcKFC7kyK1euRF5eHve5c+cOdHV14ePjw5U5duwYQkJC8NdffyEpKQlVVVUYMWIESktL5bazsfgIIYSQ1kD5EuVLlC+1ACMNKioqYgBYUVGRokMhhLziysvL2bVr11h5ebmiQ2k2f39/5u3tLbHPzc2NOTk5scLCQubn58d0dHSYQCBgHh4eLD09nSuXlZXF3n33Xaajo8M0NDSYvb0927t3L8vMzGQAJD7+/v6MMcaKi4vZhAkTmIaGBjMyMmLLly9nLi4ubMaMGVy9FhYWLCIigvn5+TGhUMidm5yczAYPHszU1dWZmZkZmzZtGispKWGMMZaSksIAsKysrAbbmp2dzVRVVdmsWbOkjq1atYoBYH/99RdjjHFtSElJaf5Nfabu98yhQ4caLLNs2TJmaWkpt57vv/+eWVlZScVramra5FgAsN27dzdaTl7MMTExTCQSSe3ft28fU1JSYvn5+dy+devWMW1tbVZRUSHzOrt372Y8Hk/u1+v+/fsMADt27FijccuLTxZ5P7OUH0ije0IIaQ2UL1G+JAvlSx07X6KRUoQQoiCMMVQ9fdrmH8bYC8cuEAhQWVmJgIAAnD9/HgkJCTh9+jQYYxg5ciSqqqoAACEhIaioqMDx48dx5coVfPfdd9DS0oK5uTl+//13AEBaWhry8vKwcuVKAMCsWbNw8uRJJCQkICkpCcnJybh48aJUDFFRUejVqxdSUlLw1VdfISMjAx4eHhgzZgwuX76M7du348SJE5g6dSoAwMDAAEpKSti5cydqampktmvnzp2oqqqS+YQvKCgIWlpa2LZt2wvfP6D2adTGjRshEonQq1evBssVFRVBV1dXbl0DBw7EnTt3sG/fPjDGcO/ePezcuRMjR45slVibG/PzTp8+DUdHR7zxxhvcPnd3dxQXF+Pq1asyz9m0aROGDx8OCwuLBustKioCgEbvDyGEkFeXovKl1siZKF96cZQvdfx8SUXRARBCyOuquqICq/w/bPPrTt+yE6rq6i06lzGGw4cP48CBA/D09ER8fDxOnjyJQYMGAah9T9/c3Bzx8fHw8fFBdnY2xowZA0dHRwCAlZUVV1fdL0ZDQ0PuvfUnT55gy5Yt2Lp1K4YNGwYAiImJgYmJiVQsQ4cOxezZs7ntwMBA+Pr6YubMmQAAGxsbrFq1Ci4uLli3bh1MTU2xatUqzJs3D4sXL0a/fv3g6uoKX19fLq709HSIRCIYGxtLXY/P58PKygrp6ektund1EhMTMX78eJSVlcHY2BhJSUnQ19eXWfbWrVtYvXo1oqKi5Nbp7OyMuLg4jBs3Dk+fPkV1dTW8vLzkDjN/WTHLkp+fL5FgAeC28/Pzpcrn5uZi//792Lp1a4N1isVizJw5E87OzujRo0eTYyGEEPJqUVS+BLQ8Z6J8ifIlypeajkZKEUIIaVRiYiK0tLSgrq4OT09PjBs3DgEBAVBRUcGAAQO4cnp6erCzs8P169cBANOnT0dkZCScnZ0RHh6Oy5cvy73O7du3UVVVhf79+3P7RCIR7OzspMr269dPYvvSpUuIjY2FlpYW93F3d4dYLEZmZiaA2ieR+fn5iIuLw8CBA7Fjxw44ODggKSmpyfeCz+c3WiYuLk4ijuTkZO6Yq6srUlNTcerUKXh4eGDs2LG4f/++VB05OTnw8PCAj4+PxFwH9esNDg4GAFy7dg0zZszAwoULceHCBfzxxx/IysrijicnJ0ucFxcX1+T2Nifm1rJlyxbo6Ojgvffea7BMSEgI/v77b/z666/cvuDgYIl2EkIIIW2J8qV/Ub5E+VJT0UgpQghREBU1NUzfslMh120uV1dXrFu3Dnw+HyYmJlBRUUFCQkKj5wUGBsLd3R179+7FwYMHsXTpUkRHR2PatGktCV2CpqamxHZJSQmCgoIwffp0qbKdO3fm/i4UCuHl5QUvLy9ERkbC3d0dkZGRcHNzg42NDYqKipCbmyv1tLGyshIZGRlwd3dvNLbRo0dLJJ+mpqYScVtbW8Pa2hpOTk6wsbHBpk2bEBYWxpXJzc2Fq6srBg0ahI0bN0rUXX/1Gm1tbQC1q6w4Oztj7ty5AICePXtCU1MTQ4YMQWRkJPr16ydx3vNP4RrTlJjlMTIywtmzZyX23bt3jztWH2MMmzdvhp+fX4MJ7dSpU5GYmIjjx4/DzMyM2x8REfHCk6sSQghpXxSVL9VduzkoX6J8ifKl5qNOKUIIURAej9fi1+jaWt0v2fq6d++O6upqnDlzhhuO/vDhQ6SlpcHe3p4rZ25ujuDgYAQHByMsLAw//fQTpk2bxv0CrT9fgZWVFVRVVXHu3DkuMSoqKkJ6ejrefvttuTH26dMH165dk4pTHh6Ph27duuHUqVMAgA8//BChoaGIjo5GdHS0RNn169ejrKwMEydObLReoVAIoVDYpBjEYjEqKiq47ZycHLi6uqJv376IiYmBkpLkoGZZ7SsrK4OKiuSvdGVlZQC1SYtAIGjWfWluzI0ZOHAglixZgvv378PQ0BAAkJSUBG1tbYnvFaB2xZhbt25h0qRJUvUwxjBt2jTs3r0bR48ehaWlpcRxQ0NDrn5CCCEdA+VLlC8BlC915HyJOqUIIYS0iI2NDby9vTF58mRs2LABQqEQ8+fPh6mpKby9vQEAM2fOhKenJ2xtbfHo0SMcOXIE3bt3BwBYWFiAx+MhMTERI0eOhEAggFAohL+/P+bOnQtdXV0YGhoiPDwcSkpK4PF4cuMJDQ2Fk5MTpk6disDAQGhqauLatWtISkrCmjVrkJqaivDwcPj5+cHe3h58Ph/Hjh3D5s2bERoaCqD2CeGyZcswZ84cqKurw8/PD6qqqtizZw8WLFiAyMhIqffx09LSpGJxcHCAqqqqxL7S0lIsWbIEo0ePhrGxMQoKCrB27Vrk5ORwy/jm5OTgnXfegYWFBaKioiSWEX7+CVl9Xl5emDx5MtatWwd3d3fk5eVh5syZ6N+/v8z5JeqUlJTg1q1b3HZmZiZSU1Ohq6uLzp07NylmAMjOzkZhYSGys7NRU1PDPWW0traGlpYWRowYAXt7e/j5+WHZsmXIz8/Hl19+iZCQEKg99xR606ZNGDBggMx5D0JCQrB161bs2bMHQqGQm19BJBJBIBA02M7G4iOEEEJeFsqXalG+RPlSg5q0zt9ripY3JoS0lo62xHGduiWORSIREwgEzN3dXWKJ46lTp7KuXbsyNTU1ZmBgwPz8/FhBQQF3PCIighkZGTEejyd3ieP+/fuz+fPnc+dZWFiwFStWSMVz9uxZ5ubmxrS0tJimpibr2bMnW7JkCWOMsQcPHrDp06ezHj16MC0tLSYUCpmjoyOLiopiNTU1EvXEx8ezIUOGME1NTW4J5m3btkmUkbVMc93nzp07UrGVl5ez999/n5mYmDA+n8+MjY3Z6NGj2dmzZ7kyMTExDdbZmFWrVjF7e3smEAiYsbEx8/X1ZXfv3pV7zpEjR2Req+5r0ZSYGav9HpFVz5EjR7gyWVlZzNPTkwkEAqavr89mz57NqqqqJOp5/PgxEwgEbOPGjTLjbejexMTEyG1nU+J7Xmsscfw6oXtCCGkNlC9RvkT50uuXL/GeBU1kKC4uhkgkQlFREfceKiGEtMTTp0+RmZkJS0tLqL8iQ9Dbi9LSUpiamiI6OlrmEOWXrbCwEMOGDYO2tjb2798PDQ2NNo+BtD15P7OUH0ije0IIaQ2UL7Uc5UtEEVojX6LV9wghhLQrKSkp2LZtGzIyMnDx4kX4+voCADfEva3p6uri0KFDGDZsGE6fPq2QGAghhBBC6qN8iXQUNKcUIYSQdicqKgppaWng8/no27cvkpOToa+vr7B49PT0sHDhQoVdnxBCCCHkeZQvkY6AOqUIIYS0K71798aFCxcUHQYhhBBCSLtF+RLpKOj1PUIIIYQQQgghhBDS5qhTihBCCCGEEEIIIYS0OeqUIoSQNiQWixUdAiGkCehnlRBCFIf+DSbk1dAaP6s0pxQhhLQBPp8PJSUl5ObmwsDAAHw+HzweT9FhEUKewxhDZWUlHjx4ACUlJfD5fEWHRAghrw3Klwh5NbRmvkSdUoQQ0gaUlJRgaWmJvLw85ObmKjocQkgjNDQ00LlzZygp0aByQghpK5QvEfJqaY18iTqlCCGkjfD5fHTu3BnV1dWoqalRdDiEkAYoKytDRUWFns4TQogCUL5EyKuhtfIl6pQihJA2xOPxoKqqClVVVUWHQgghhBDSLlG+RMjrg8akE0IIIYQQQgghhJA2R51ShBBCCCGEEEIIIaTNUacUIYQQQgghhBBCCGlzNKeUHIwxAEBxcbGCIyGEEEJIe1GXF9TlCYRyJkIIIYRIamq+RJ1Scjx58gQAYG5uruBICCGEENLePHnyBCKRSNFhtAuUMxFCCCFElsbyJR6jx3wNEovFyM3NhVAofCnLQhcXF8Pc3Bx37tyBtrZ2q9ffnlHbqe3U9tcHtZ3a3tHazhjDkydPYGJiAiUlmgkBeLk5U0f+XmoMtZ3aTm1/fVDbqe0dre1NzZdopJQcSkpKMDMze+nX0dbW7nDfgE1Fbae2v26o7dT2101HbTuNkJLUFjlTR/1eagpqO7X9dUNtp7a/bjpq25uSL9HjPUIIIYQQQgghhBDS5qhTihBCCCGEEEIIIYS0OeqUUiA1NTWEh4dDTU1N0aG0OWo7tf11Q22ntr9uXue2k9b1On8vUdup7a8baju1/XXzOre9Dk10TgghhBBCCCGEEELaHI2UIoQQQgghhBBCCCFtjjqlCCGEEEIIIYQQQkibo04pQgghhBBCCCGEENLmqFOKEEIIIYQQQgghhLQ56pQihBBCCCGEEEIIIW2OOqUIIYQQQgghhBBCSJujTilCCCGEEEIIIYQQ0uaoU4oQQgghhBBCCCGEtDnqlCKEEEIIIYQQQgghbY46pQghhBBCCCGEEEJIm6NOKUIIIYQQQgghhBDS5qhTihBCCCGEEEIIIYS0OeqUIoQQQgghhBBCCCFtjjqlCCGEEEIIIYQQQkibo04pQkiHk5WVBR6Ph9jYWEWH0m4EBASgS5cuEvt4PB4WLVqkkHgIIYQQ0jSU10ijvIaQjoM6pQghre7UqVNYtGgRHj9+3KLzf/zxR0q8WiA3NxeLFi1CamqqokMhhBBCOgzKaxSD8hpCXg/UKUUIaXWnTp3C4sWLKXlrY7m5uVi8eLHM5O2nn35CWlpa2wdFCCGEvOIor1EMymsIeT2oKDoAQgghL5+qqqqiQyCEEEIIaRWU1xDScdBIKUJIq1q0aBHmzp0LALC0tASPxwOPx0NWVhaqq6vx9ddfo2vXrlBTU0OXLl2wYMECVFRUcOd36dIFV69exbFjx7hz33nnHQBAYWEh5syZA0dHR2hpaUFbWxuenp64dOlSq8T+9OlTLFq0CLa2tlBXV4exsTE++OADZGRkAPh3ToeoqCisWLECFhYWEAgEcHFxwd9//y1R1zvvvMPFXZ+sORAa06VLFwQEBEjtr3+No0eP4q233gIAfPLJJ9y9q3sy25LrEkIIIa87ymtqdcS8pn77165dCysrK2hoaGDEiBG4c+cOGGP4+uuvYWZmBoFAAG9vbxQWFkrUsWfPHowaNQomJiZQU1ND165d8fXXX6OmpoYrc/36dQgEAkycOFHi3BMnTkBZWRmhoaEv1A5CXnU0UooQ0qo++OADpKenY9u2bVixYgX09fUBAAYGBggMDMSWLVvw4YcfYvbs2Thz5gyWLl2K69evY/fu3QCAH374AdOmTYOWlha++OILAMAbb7wBALh9+zbi4+Ph4+MDS0tL3Lt3Dxs2bICLiwuuXbsGExOTFsddU1ODd999F4cPH8b48eMxY8YMPHnyBElJSfj777/RtWtXruzPP/+MJ0+eICQkBE+fPsXKlSsxdOhQXLlyhYu1rXXv3h0RERFYuHAhpkyZgiFDhgAABg0apJB4CCGEkI6A8pqOn9fExcWhsrIS06ZNQ2FhIZYtW4axY8di6NChOHr0KEJDQ3Hr1i2sXr0ac+bMwebNm7lzY2NjoaWlhVmzZkFLSwt//vknFi5ciOLiYnz//fdcW77++mvMnTsXH374IUaPHo3S0lIEBASgW7duiIiIaPU2EfJKYYQQ0sq+//57BoBlZmZy+1JTUxkAFhgYKFF2zpw5DAD7888/uX0ODg7MxcVFqt6nT5+ympoaiX2ZmZlMTU2NRURESOwDwGJiYpoc8+bNmxkAtnz5cqljYrFYol6BQMDu3r3LHT9z5gwDwD7//HNun4uLi8w2+Pv7MwsLiybHxRhjFhYWzN/fX2r/89c4d+5cg+2WdV0ALDw8vFmxEEIIIa8byms6Zl5T134DAwP2+PFjbn9YWBgDwHr16sWqqqq4/R999BHj8/ns6dOn3L6ysjKpeoOCgpiGhoZEuZqaGjZ48GD2xhtvsIKCAhYSEsJUVFTYuXPnmhwvIR0Vvb5HCGkT+/btAwDMmjVLYv/s2bMBAHv37m20DjU1NSgp1f6zVVNTg4cPH0JLSwt2dna4ePHiC8X3+++/Q19fH9OmTZM6xuPxJLbfe+89mJqactv9+/fHgAEDuDYSQgghpGOjvKbj8PHxgUgk4rYHDBgAAPj444+hoqIisb+yshI5OTncPoFAwP39yZMnKCgowJAhQ1BWVoYbN25wx5SUlBAbG4uSkhJ4enrixx9/RFhYGPr16/cym0bIK4E6pQghbeKff/6BkpISrK2tJfYbGRlBR0cH//zzT6N1iMVirFixAjY2NlBTU4O+vj4MDAxw+fJlFBUVvVB8GRkZsLOzk0g+GmJjYyO1z9bWFllZWS8UAyGEEEJeDZTXdBydO3eW2K7roDI3N5e5/9GjR9y+q1ev4v3334dIJIK2tjYMDAzw8ccfA4DU17Br165YtGgRzp07BwcHB3z11Vet3hZCXkXUKUUIaVPPP51rjm+++QazZs3C22+/jV9++QUHDhxAUlISHBwcIBaLWzHKF9dQO+tPfKmIugghhBDSeiivefXzGmVl5WbtZ4wBAB4/fgwXFxdcunQJERER+N///oekpCR89913ACDza3jw4EEAQG5uLh4+fNga4RPyyqOJzgkhrU5WsmFhYQGxWIybN2+ie/fu3P579+7h8ePHsLCwkHs+AOzcuROurq7YtGmTxP7Hjx9zE4+2VNeuXXHmzBlUVVU1uszwzZs3pfalp6dLrALTqVMn3L59W6pcU56cPq9Tp054/PixzLqsrKy47RdJjAkhhBAiG+U1lNfIcvToUTx8+BC7du3C22+/ze3PzMyUWX79+vVISkrCkiVLsHTpUgQFBWHPnj1tFS4h7RaNlCKEtDpNTU0AkEg4Ro4cCaB2FZr6li9fDgAYNWqUxPmykhVlZWXu6VSdHTt2SLzb31JjxoxBQUEB1qxZI3Xs+WvGx8dLXPPs2bM4c+YMPD09uX1du3bFjRs38ODBA27fpUuXcPLkyWbH1rVrV/z111+orKzk9iUmJuLOnTsS5WTdd0IIIYS8GMprKK+RpW4kVf37WVlZiR9//FGqbGZmJubOnYsxY8ZgwYIFiIqKQkJCAn7++ec2i5eQ9opGShFCWl3fvn0BAF988QXGjx8PVVVVeHl5wd/fHxs3buSGO589exZbtmzBe++9B1dXV4nz161bh8jISFhbW8PQ0BBDhw7Fu+++i4iICHzyyScYNGgQrly5gri4OImnai01ceJE/Pzzz5g1axbOnj2LIUOGoLS0FIcOHcJ//vMfeHt7c2Wtra0xePBgfPbZZ6ioqMAPP/wAPT09zJs3jyvz6aefYvny5XB3d8dDNilhAAEAAElEQVSkSZNw//59rF+/Hg4ODiguLm5WbIGBgdi5cyc8PDwwduxYZGRk4JdffpFYzhmoTfJ0dHSwfv16CIVCaGpqYsCAAbC0tHyxm0MIIYS8xiivobxGlkGDBqFTp07w9/fH9OnTwePx8N///leq048xhk8//RQCgQDr1q0DAAQFBeH333/HjBkzMHz4cJiYmCiiCYS0D4pb+I8Q0pF9/fXXzNTUlCkpKXHLKFdVVbHFixczS0tLpqqqyszNzVlYWJjEkrmMMZafn89GjRrFhEIhA8AtD/z06VM2e/ZsZmxszAQCAXN2dmanT5+WWkK4JUsnM1a7rO8XX3zBxWdkZMQ+/PBDlpGRIVHv999/z6Kjo5m5uTlTU1NjQ4YMYZcuXZKq75dffmFWVlaMz+ezN998kx04cKBFSyczxlh0dDQzNTVlampqzNnZmZ0/f17m8sx79uxh9vb2TEVFReIetMbSyYQQQsjrivKajpfX1G9/fUeOHGEA2I4dOyT2x8TEMADs3Llz3L6TJ08yJycnJhAImImJCZs3bx47cOAAA8COHDnCGGNs5cqVDAD7/fffJerLzs5m2trabOTIkU2OmZCOiMfYc125hBBCZMrKyoKlpSW+//57zJkzR9HhEEIIIYS0GOU1hJD2gOaUIoQQQgghhBBCCCFtjuaUIoR0aJWVlSgsLJRbRiQSQSAQtFFE/yosLJSY5PN5ysrKMDAwaMOICCGEENKeUV7TuJqaGokJ2WXR0tKClpbWS4+FENI46pQihHRop06dkphsVJaYmBgEBAS0TUD1fPDBBzh27FiDxy0sLJCVldV2ARFCCCGkXaO8pnF37txpdDL08PBwLFq06KXHQghpHM0pRQjp0B49eoQLFy7ILePg4ABjY+M2iuhfFy5cwKNHjxo8LhAI4Ozs3IYREUIIIaQ9o7ymcU+fPsWJEyfklrGysmqVVQ4JIS+OOqUIIYQQQgghhBBCSJujic4JIYQQQgghhBBCSJujOaXkEIvFyM3NhVAoBI/HU3Q4hBBCCGkHGGN48uQJTExMoKREz/cAypkIIYQQIqmp+RJ1SsmRm5sLc3NzRYdBCCGEkHbozp07MDMzU3QY7QLlTIQQQgiRpbF8iTql5BAKhQBqb6K2traCoyGEEEJIe1BcXAxzc3MuTyCUMxFCCCFEUlPzpXbTKXX8+HF8//33uHDhAvLy8rB7926899573PGGhoIvW7YMc+fOlXls0aJFWLx4scQ+Ozs73Lhxo0kx1V1TW1ubEixCCCGESKDX1P5FORMhhBBCZGksX2o3EyGUlpaiV69eWLt2rczjeXl5Ep/NmzeDx+NhzJgxcut1cHCQOK+x5UEJIYQQQgghhBBCyMvXbkZKeXp6wtPTs8HjRkZGEtt79uyBq6srrKys5NaroqIidS4hhBBCCCGEEEIIUax2M1KqOe7du4e9e/di0qRJjZa9efMmTExMYGVlBV9fX2RnZzdYtqKiAsXFxRIfQgghhBBCCCGEENL62s1IqebYsmULhEIhPvjgA7nlBgwYgNjYWNjZ2SEvLw+LFy/GkCFD8Pfff8ucbGvp0qVSc1ARQkhrYoyhuroaNTU1ig6FENIAZWVlqKio0JxRhBCiIJQvEdL+tVa+9Ep2Sm3evBm+vr5QV1eXW67+64A9e/bEgAEDYGFhgd9++03mKKuwsDDMmjWL266bLZ4QQlpDZWUl8vLyUFZWpuhQCCGN0NDQgLGxMfh8vqJDIYSQ1wrlS4S8OlojX3rlOqWSk5ORlpaG7du3N/tcHR0d2Nra4tatWzKPq6mpQU1N7UVDJIQQKWKxGJmZmVBWVoaJiQn4fD6NwiCkHWKMobKyEg8ePEBmZiZsbGygpPRKznZACCGvHMqXCHk1tGa+9Mp1Sm3atAl9+/ZFr169mn1uSUkJMjIy4Ofn9xIiI4SQhlVWVkIsFsPc3BwaGhqKDocQIodAIICqqir++ecfVFZWNjoymxBCSOugfImQV0dr5Uvt5tFfSUkJUlNTkZqaCgDIzMxEamqqxMTkxcXF2LFjBwIDA2XWMWzYMKxZs4bbnjNnDo4dO4asrCycOnUK77//PpSVlfHRRx+91LYQQkhDaMQFIa8G+lklhBDFoX+DCXk1tMbParsZKXX+/Hm4urpy23VzO/n7+yM2NhYA8Ouvv4Ix1mCnUkZGBgoKCrjtu3fv4qOPPsLDhw9hYGCAwYMH46+//oKBgcHLawghhBBCCCGEEEIIaVS76ZR65513wBiTW2bKlCmYMmVKg8ezsrIktn/99dfWCI0QQgghhBBCCCGEtDIaF0kIIUSugIAA8Hg88Hg88Pl8WFtbIyIiAtXV1S9U79GjR8Hj8fD48ePWCbQJMjMzMWHCBJiYmEBdXR1mZmbw9vbGjRs3JMolJibCxcUFQqEQGhoaeOutt7hRu3WysrLA4/G4186bYtGiRejWrRs0NTXRqVMnDB8+HGfOnJGoc9KkSbC0tIRAIEDXrl0RHh6OyspKufXm5eVhwoQJsLW1hZKSEmbOnNmkeI4fPw4vLy+YmJiAx+MhPj5eZrnr169j9OjREIlE0NTUxFtvvSXxen1QUBC6du0KgUAAAwMDmff03LlzGDZsGHR0dNCpUye4u7vj0qVLMq9369YtCIVC6OjotFobCCGEkJeJ8iXKlyhfahnqlCKEENIoDw8P5OXl4ebNm5g9ezYWLVqE77//XtFhcRpLQgCgqqoKbm5uKCoqwq5du7iVXB0dHSUSvdWrV8Pb2xvOzs44c+YMLl++jPHjxyM4OBhz5sx5oThtbW2xZs0aXLlyBSdOnECXLl0wYsQIPHjwAABw48YNiMVibNiwAVevXsWKFSuwfv16LFiwQG69FRUVMDAwwJdfftmshUBKS0vRq1cvrF27tsEyGRkZGDx4MLp164ajR4/i8uXL+OqrryQms+zbty9iYmJw/fp1HDhwAIwxjBgxAjU1NQBq54308PBA586dcebMGZw4cQJCoRDu7u6oqqqSuF5VVRU++ugjDBkypNXaQAghhLQFypcoX6J8qQUYaVBRUREDwIqKihQdCiHkFVdeXs6uXbvGysvLFR1Ks/n7+zNvb2+JfW5ubszJyYkVFhYyPz8/pqOjwwQCAfPw8GDp6elcuaysLPbuu+8yHR0dpqGhwezt7dnevXtZZmYmAyDx8ff3Z4wxVlxczCZMmMA0NDSYkZERW758OXNxcWEzZszg6rWwsGARERHMz8+PCYVC7tzk5GQ2ePBgpq6uzszMzNi0adNYSUkJY4yxlJQUBoBlZWU12Nbs7GymqqrKZs2aJXVs1apVDAD766+/GGOMa0NKSkrzb+ozdb9nDh061GCZZcuWMUtLyybX+fy9aioAbPfu3VL7x40bxz7++ONm1XXp0iUGgN26dYsxxti5c+cYAJadnc2VuXz5MgPAbt68KXHuvHnz2Mcff8xiYmKYSCRqlTa0hLyfWcoPpNE9IYS0BsqXKF+ShfKljp0v0UgpQghREMYYyiqr2/zDGpm/rykEAgEqKysREBCA8+fPIyEhAadPnwZjDCNHjuSe5oSEhKCiogLHjx/HlStX8N1330FLSwvm5ub4/fffAQBpaWnIy8vDypUrAdQudHHy5EkkJCQgKSkJycnJuHjxolQMUVFR6NWrF1JSUvDVV18hIyMDHh4eGDNmDC5fvozt27fjxIkTmDp1KgDAwMAASkpK2LlzJ/dE6nk7d+5EVVWVzCd8QUFB0NLSwrZt2174/gG1Tys3btwIkUgk92ldUVERdHV1W+WazSUWi7F3717Y2trC3d0dhoaGGDBggNwh36WlpYiJiYGlpSXMzc0BAHZ2dtDT08OmTZtQWVmJ8vJybNq0Cd27d0eXLl24c//880/s2LGjfT7FI4QQohCKypdaI2eifOnFUb7U8fOldjPROSGEvG7Kq2pgv/BAm1/3WoQ7NPgt++efMYbDhw/jwIED8PT0RHx8PE6ePIlBgwYBAOLi4mBubo74+Hj4+PggOzsbY8aMgaOjIwDAysqKq6sucTA0NOTehX/y5Am2bNmCrVu3YtiwYQCAmJgYmJiYSMUydOhQzJ49m9sODAyEr68vNz+AjY0NVq1aBRcXF6xbtw6mpqZYtWoV5s2bh8WLF6Nfv35wdXWFr68vF1d6ejpEIhGMjY2lrsfn82FlZYX09PQW3bs6iYmJGD9+PMrKymBsbIykpCTo6+vLLHvr1i2sXr0aUVFRL3TNlrp//z5KSkrw7bffIjIyEt999x3++OMPfPDBBzhy5AhcXFy4sj/++CPmzZuH0tJS2NnZISkpCXw+HwAgFApx9OhRvPfee/j6668B1H59Dhw4ABWV2u/Fhw8fIiAgAL/88gu0tbXbvrGEEELaJUXlS0DLcybKlyhfonyp6WikFCGEkEYlJiZCS0sL6urq8PT0xLhx4xAQEAAVFRUMGDCAK6enpwc7Oztcv34dADB9+nRERkbC2dkZ4eHhuHz5stzr3L59G1VVVejfvz+3TyQSwc7OTqpsv379JLYvXbqE2NhYaGlpcR93d3eIxWJkZmYCqH0SmZ+fj7i4OAwcOBA7duyAg4MDkpKSmnwv6hIHeeLi4iTiSE5O5o65uroiNTUVp06dgoeHB8aOHYv79+9L1ZGTkwMPDw/4+Phg8uTJ3P769QYHBzcp5uTkZInz4uLimnSeWCwGAHh7e+Pzzz/Hm2++ifnz5+Pdd9/F+vXrJcr6+voiJSUFx44dg62tLcaOHYunT58CAMrLyzFp0iQ4Ozvjr7/+wsmTJ9GjRw+MGjUK5eXlAIDJkydjwoQJePvtt1u1DYQQQkhboXzpX5QvUb7UVDRSihBCFESgqoxrEe4KuW5zubq6Yt26deDz+TAxMYGKigoSEhIaPS8wMBDu7u7Yu3cvDh48iKVLlyI6OhrTpk1rSegSNDU1JbZLSkoQFBSE6dOnS5Xt3Lkz93ehUAgvLy94eXkhMjIS7u7uiIyMhJubG2xsbFBUVITc3Fypp42VlZXIyMiAu3vjX7PRo0dLJJ+mpqYScVtbW8Pa2hpOTk6wsbHBpk2bEBYWxpXJzc2Fq6srBg0ahI0bN0rUXX/1mqY+IevXr5/EeW+88UaTztPX14eKigrs7e0l9nfv3h0nTpyQ2CcSiSASiWBjYwMnJyd06tQJu3fvxkcffYStW7ciKysLp0+fhpJS7fOwrVu3olOnTtizZw/Gjx+PP//8EwkJCdxTTsYYxGIxVFRUsHHjRnz00UctagMhhJBXm6LypbprNwflS5Qv1Uf5UtNQpxQhhCgIj8dr8Wt0ba0uMaive/fuqK6uxpkzZ7jh6A8fPkRaWprEL2Vzc3MEBwcjODgYYWFh+OmnnzBt2jTuCVr9+QqsrKygqqqKc+fOcYlRUVER0tPTG3wiVKdPnz64du2aVJzy8Hg8dOvWDadOnQIAfPjhhwgNDUV0dDSio6Mlyq5fvx5lZWWYOHFio/UKhUIIhcImxSAWi1FRUcFt5+TkwNXVlVuhpS4pqdOc9tURCAQtOo/P5+Ott95CWlqaxP709HRYWFg0eB5jDIwxrl1lZWVQUlICj8fjytRt1z1dPH36tMT3wp49e/Ddd9/h1KlTMDU1bXEbCCGEvNooX6J8CaB8qSPnS6/GTzchhJB2x8bGBt7e3pg8eTI2bNgAoVCI+fPnw9TUFN7e3gCAmTNnwtPTE7a2tnj06BGOHDmC7t27AwAsLCzA4/GQmJiIkSNHQiAQQCgUwt/fH3PnzoWuri4MDQ0RHh4u9QtaltDQUDg5OWHq1KkIDAyEpqYmrl27hqSkJKxZswapqakIDw+Hn58f7O3twefzcezYMWzevBmhoaEAap8QLlu2DHPmzIG6ujr8/PygqqqKPXv2YMGCBYiMjESPHj0krvt8AgIADg4OUFVVldhXWlqKJUuWYPTo0TA2NkZBQQHWrl2LnJwc+Pj4AKhNsN555x1YWFggKiqKW/oYAIyMjOS2v+6pWElJCR48eIDU1FTw+Xypp3b1lZSU4NatW9x2ZmYmUlNToauryyW5c+fOxbhx4/D222/D1dUVf/zxB/73v//h6NGjAGpfIdi+fTtGjBgBAwMD3L17F99++y0EAgFGjhwJAHBzc8PcuXMREhKCadOmQSwW49tvv4WKigpcXV0BgPu+qHP+/HkoKSlJ3e+WtIEQQghRFMqXalG+RPlSg1plHcAOipY3JoS0lo62xHGduiWORSIREwgEzN3dXWKJ46lTp7KuXbsyNTU1ZmBgwPz8/FhBQQF3PCIighkZGTEejyd3ieP+/fuz+fPnc+dZWFiwFStWSMVz9uxZ5ubmxrS0tJimpibr2bMnW7JkCWOMsQcPHrDp06ezHj16MC0tLSYUCpmjoyOLiopiNTU1EvXEx8ezIUOGME1NTW4J5m3btkmUkbVMc93nzp07UrGVl5ez999/n5mYmDA+n8+MjY3Z6NGj2dmzZ7kyMTExDdbZGFnnWFhYyD3nyJEjMs+r+1rU2bRpE7O2tmbq6uqsV69eLD4+njuWk5PDPD09maGhIVNVVWVmZmZswoQJ7MaNGxJ1HDx4kDk7OzORSMQ6derEhg4dyk6fPt1gbE1d4ripbWiu1lji+HVC94QQ0hooX6J8ifKl1y9f4jHWCmuDd1DFxcUQiUQoKirqMDPbE0IU4+nTp8jMzISlpSXU1dUVHc4rpbS0FKampoiOjsakSZPa/PqFhYUYNmwYtLW1sX//fmhoaLR5DKTtyfuZpfxAGt0TQkhroHyp5ShfIorQGvkSrb5HCCGkXUlJScG2bduQkZGBixcvwtfXFwC4Ie5tTVdXF4cOHcKwYcNw+vRphcRACCGEEFIf5Uuko6A5pQghhLQ7UVFRSEtLA5/PR9++fZGcnAx9fX2FxaOnp4eFCxcq7PqEEEIIIc+jfIl0BNQpRQghpF3p3bs3Lly4oOgwCCGEEELaLcqXSEdBr+8RQgghhBBCCCGEkDZHnVKEEEIIIYQQQgghpM1RpxQhhBBCCCGEEEIIaXPUKUUIIYQQQgghhBBC2hx1ShFCCCGEEEIIIYSQNker75F2o6qyBo/zywAA2gYCqAno25MQQgghr4fykkqUFFYAANS1VCHUVVdwRIQQQsjLR//rJ+0CYwy/LTmHx/dqO6UEQlX4f+MMZVUazEcIIYSQjq28pBI/h51CdZWY2/fe571hatdJgVERQgghLx/9j5+0G3UdUgBQ/qQKT8uqFBgNIaROQEAAeDweeDwe+Hw+rK2tERERgerq6heq9+jRo+DxeHj8+HHrBNoEmZmZmDBhAkxMTKCurg4zMzN4e3vjxo0bEuUSExPh4uICoVAIDQ0NvPXWW4iNjZUok5WVBR6Ph9TU1CZff9GiRejWrRs0NTXRqVMnDB8+HGfOnJGoc9KkSbC0tIRAIEDXrl0RHh6OyspKufXm5eVhwoQJsLW1hZKSEmbOnNmkeNatW4eePXtCW1sb2traGDhwIPbv388dLywsxLRp02BnZweBQIDOnTtj+vTpKCoq4srExsZy3x/Pf+7fv8+Vq6iowBdffAELCwuoqamhS5cu2Lx5s0Q8P/zwA3ctc3NzfP7553j69KncNuzatQsjRoyAnp5es78ehLQXTx4+RXWVGDweuAdyj+rlRYSQ9o/yJcqXKF9qGRopRdoHpugACCHyeHh4ICYmBhUVFdi3bx9CQkKgqqqKsLAwRYcGAKisrASfz5dbpqqqCm5ubrCzs8OuXbtgbGyMu3fvYv/+/RKJ3urVqzFz5kyEhoZi3bp14PP52LNnD4KDg/H3338jKiqqxXHa2tpizZo1sLKyQnl5OVasWIERI0bg1q1bMDAwwI0bNyAWi7FhwwZYW1vj77//xuTJk1FaWir3uhUVFTAwMMCXX36JFStWNDkeMzMzfPvtt7CxsQFjDFu2bIG3tzdSUlLg4OCA3Nxc5ObmIioqCvb29vjnn38QHByM3Nxc7Ny5EwAwbtw4eHh4SNQbEBCAp0+fwtDQkNs3duxY3Lt3D5s2bYK1tTXy8vIgFv87KmTr1q2YP38+Nm/ejEGDBiE9PZ1L8JcvX95gG0pLSzF48GCMHTsWkydPbnLbCWmPNDupwbCzNm6nPlB0KISQFqB8ifIlypdagJEGFRUVMQCsqKhI0aF0eDU1YrYm6LDEp+TxU0WHRUirKS8vZ9euXWPl5eWKDqXZ/P39mbe3t8Q+Nzc35uTkxAoLC5mfnx/T0dFhAoGAeXh4sPT0dK5cVlYWe/fdd5mOjg7T0NBg9vb2bO/evSwzM5Ohtjua+/j7+zPGGCsuLmYTJkxgGhoazMjIiC1fvpy5uLiwGTNmcPVaWFiwiIgI5ufnx4RCIXducnIyGzx4MFNXV2dmZmZs2rRprKSkhDHGWEpKCgPAsrKyGmxrdnY2U1VVZbNmzZI6tmrVKgaA/fXXX4wxxrUhJSWl+Tf1mbrfM4cOHWqwzLJly5ilpWWT63z+XjVXp06d2P/93/81ePy3335jfD6fVVVVyTx+//59pqqqyn7++Wdu3/79+5lIJGIPHz5ssN6QkBA2dOhQiX2zZs1izs7OTYq7Nb4e9cn7maX8QBrdkxeTn1nE1gQdZrFhJ9i+dZfZmqDD7Mqxu4oOi5A2R/kS5UuyUL70r46YL9Hre4QQoiiMAZWlbf9hLz40USAQoLKyEgEBATh//jwSEhJw+vRpMMYwcuRIVFXVvn4bEhKCiooKHD9+HFeuXMF3330HLS0tmJub4/fffwcApKWlIS8vDytXrgQAzJo1CydPnkRCQgKSkpKQnJyMixcvSsUQFRWFXr16ISUlBV999RUyMjLg4eGBMWPG4PLly9i+fTtOnDiBqVOnAgAMDAygpKSEnTt3oqamRma7du7ciaqqKsyZM0fqWFBQELS0tLBt27YXvn9A7dPKjRs3QiQSoVevXg2WKyoqgq6ubqtcU56amhr8+uuvKC0txcCBA+XGo62tDRUV2YOtf/75Z2hoaODDDz/k9iUkJKBfv35YtmwZTE1NYWtrizlz5qC8vJwrM2jQIFy4cAFnz54FANy+fRv79u3DyJEjW6mFhLRjz/5Z5oGn2DgIaY8UlS+1Qs5E+dKLo3yp4+dL9PoeaR9a4T/JhLxyqsqAb0za/roLcgG+ZotOZYzh8OHDOHDgADw9PREfH4+TJ09i0KBBAIC4uDiYm5sjPj4ePj4+yM7OxpgxY+Do6AgAsLKy4uqqSxwMDQ2ho6MDAHjy5Am2bNmCrVu3YtiwYQCAmJgYmJhI36ehQ4di9uzZ3HZgYCB8fX25+QFsbGywatUquLi4YN26dTA1NcWqVaswb948LF68GP369YOrqyt8fX25uNLT0yESiWBsbCx1PT6fDysrK6Snp7fo3tVJTEzE+PHjUVZWBmNjYyQlJUFfX19m2Vu3bmH16tUvNAS+MVeuXMHAgQPx9OlTaGlpYffu3bC3t5dZtqCgAF9//TWmTJnSYH2bNm3ChAkTIBAIuH23b9/GiRMnoK6ujt27d6OgoAD/+c9/8PDhQ8TExAAAJkyYgIKCAgwePBiMMVRXVyM4OBgLFixo3QYT0g6xf3ulCCHPU1S+BLQ4Z6J8ifIlypeajkZKkXZBZpcU9VMR0m4kJiZCS0sL6urq8PT0xLhx4xAQEAAVFRUMGDCAK6enpwc7Oztcv34dADB9+nRERkbC2dkZ4eHhuHz5stzr3L59G1VVVejfvz+3TyQSwc7OTqpsv379JLYvXbqE2NhYaGlpcR93d3eIxWJkZmYCqH0SmZ+fj7i4OAwcOBA7duyAg4MDkpKSmnwvGpuLAahNNuvHkZyczB1zdXVFamoqTp06BQ8PD4wdO1Zigss6OTk58PDwgI+Pj8S7//XrDQ4OblLMycnJEufFxcVxx+zs7JCamoozZ87gs88+g7+/P65duyZVR3FxMUaNGgV7e3ssWrRI5nVOnz6N69evY9KkSRL7xWIxeDwe4uLi0L9/f4wcORLLly/Hli1buKd/R48exTfffIMff/wRFy9exK5du7B37158/fXXjd5TQl55dX1S1ClFyCuN8qV/Ub5E+VJT0UgpQghRFFWN2idwirhuM7m6unKTWJqYmEBFRQUJCQmNnhcYGAh3d3fs3bsXBw8exNKlSxEdHY1p06a1JHIJmpqSTy5LSkoQFBSE6dOnS5Xt3Lkz93ehUAgvLy94eXkhMjIS7u7uiIyMhJubG2xsbFBUVITc3Fypp42VlZXIyMiAu7t7o7GNHj1aIvk0NTWViNva2hrW1tZwcnKCjY0NNm3aJDEJam5uLlxdXTFo0CBs3LhRou76q6Voa2s3GgtQm5DWP++NN97g/l63QhAA9O3bF+fOncPKlSuxYcMGrsyTJ0/g4eEBoVCI3bt3Q1VVVeZ1/u///g9vvvkm+vbtK7Hf2NgYpqamEIlE3L7u3buDMYa7d+/CxsYGX331Ffz8/BAYGAgAcHR0RGlpKaZMmYIvvvhC7j0l5HVSWlSB3JuPAQaIDAUwtGjavwOEvLIUlS/VXbsZKF+ifInypeajTinSPtCoKPI64vFa/BpdW6tLDOrr3r07qqurcebMGW44+sOHD5GWliYxnNnc3BzBwcEIDg5GWFgYfvrpJ0ybNo17glZ/vgIrKyuoqqri3LlzXGJUVFSE9PR0vP3223Jj7NOnD65duyYVpzw8Hg/dunXDqVOnAAAffvghQkNDER0djejoaImy69evR1lZGSZOnNhovUKhEEKhsEkxiMViVFRUcNs5OTlwdXVF3759ERMTAyUlyUHNzWlfHYFA0OTzno+nuLgY7u7uUFNTQ0JCAtTV1WWeV1JSgt9++w1Lly6VOubs7IwdO3agpKQEWlpaAGqH/ispKcHMzAwAUFZWJtVWZWVlALWvQTTnnhLyquFmMeDxGn2Fb//6K7iXWcxt+0UOhLa+QM4ZhLziKF8CQPkS5UsdN1+iTinSbtE0U4S0bzY2NvD29sbkyZOxYcMGCIVCzJ8/H6ampvD29gYAzJw5E56enrC1tcWjR49w5MgRdO/eHQBgYWEBHo+HxMREjBw5EgKBAEKhEP7+/pg7dy50dXVhaGiI8PBwKCkpgdfIey2hoaFwcnLC1KlTERgYCE1NTVy7dg1JSUlYs2YNUlNTER4eDj8/P9jb24PP5+PYsWPYvHkzQkNDAdQ+IVy2bBnmzJkDdXV1+Pn5QVVVFXv27MGCBQsQGRmJHj16SFw3LS1NKhYHBwepp2OlpaVYsmQJRo8eDWNjYxQUFGDt2rXIycmBj48PgNoE65133oGFhQWioqLw4MG/y8IbGRnJbX/dk72SkhI8ePAAqamp4PP5Dc53AABhYWHw9PRE586d8eTJE2zduhVHjx7FgQMHANQmWCNGjEBZWRl++eUXFBcXo7i49j/DBgYGXBIEANu3b0d1dTU+/vhjqetMmDABX3/9NT755BMsXrwYBQUFmDt3Lj799FNuLgUvLy8sX74cvXv3xoABA3Dr1i189dVX8PLykrjO8woLC5GdnY3c3Nqn6HVfDyMjo0bvGSHtTVPe3it9XCGxXVZcSZ1ShLRjlC/VonypFuVLMrTKOoAdFC1v3HaqK2vYmqDDEp8nhU8VHRYhraajLXFcp26JY5FIxAQCAXN3d5dY4njq1Kmsa9euTE1NjRkYGDA/Pz9WUFDAHY+IiGBGRkaMx+PJXeK4f//+bP78+dx5FhYWbMWKFVLxnD17lrm5uTEtLS2mqanJevbsyZYsWcIYY+zBgwds+vTprEePHkxLS4sJhULm6OjIoqKiWE1NjUQ98fHxbMiQIUxTU5Nbgnnbtm0SZWQt01z3uXPnjlRs5eXl7P3332cmJiaMz+czY2NjNnr0aHb27FmuTExMTIN1NkbWORYWFnLP+fTTT5mFhQXj8/nMwMCADRs2jB08eJA7fuTIkQbjyczMlKhr4MCBbMKECQ1e6/r162z48OFMIBAwMzMzNmvWLFZWVsYdr6qqYosWLWJdu3Zl6urqzNzcnP3nP/9hjx49ktuGhu5ZeHi43PMa0xpLHL9O6J68mNybj9iaoMPsv1+eYvvWX2Zrgg6zK8fuyiwbO/+ERL6Ul/G4jaMl5OWhfInyJcqXXr98iccYjUdpSHFxMUQiEbecI2m+yvJq/Pnf6yh9XAkAEOqpY6hfN6jwJXtxq6tqsGHaMYl9/kudodVJrc1iJeRlevr0KTIzM2FpadngcF4iW2lpKUxNTREdHS01IWRbKCwsxLBhw6CtrY39+/dDQ6P5c3KRV4+8n1nKD6TRPXkxubceY3fURYgMBdAz1cLtlAdw+cgWPVzMpMrGzj8pMVrqg7l9YdxVJFWOkFcR5UstR/kSUYTWyJdo9T3yUt1Ne4SMiw+Qf7sI+beLcPPcPeRlFDXxbOovJeR1lJKSgm3btiEjIwMXL16Er68vAHBD3Nuarq4uDh06hGHDhuH06dMKiYEQ0sFxq+814QW+558n0/NlQl5LlC+RjoLmlCIvlbimNlHqZKSBmmoxiguegollJE+UTxFC6omKikJaWhr4fD769u2L5ORk6OvrKywePT09LFy4UGHXJ4R0dP8mQo11S1HKRAipQ/kS6QioU4q0CYGQj8qn1Q0el5Vg0YM/Ql5PvXv3xoULFxQdBiGEtBnGjZRqSmG5my/dX7//ir+PHQIA6Jmaw3vOl1CSM7kuIeTloHyJdBTUKUUIIYQQQogiNaNnSapoG/dKpRxIRFnRYwBA0b18FNz5B4ZdrNo2CEIIIR0GzSlFXqomz6NPo6IIIYQQ8rqrN1SqwRRKwUPJmVgsuU1D2wkhhLwA6pQibaKx4eiU0BBCCCHkdfViWVDb5lDSI7UohyOEENJy1ClF2ka9TilKXQghhBBC6nnWscPjodGZzhW++B51QhFCCGlF1ClFXi7KWwghhBBC5GpWukS5FSGEkA6EOqVIG+GBJ+8dPhkJFr3SRwghhJDXQjNW32NcYclz28xz+Rnla4QQQl4EdUqRl4q1IFNq0nLIhBBCCCEdBZcuNalXqrbks4Spzfuknr8idUoRQgh5AdQpRdpEoxOdN6cwIaRNBQQEgMerHe3I5/NhbW2NiIgIVFdXv1C9R48eBY/Hw+PHj1sn0CbIzMzEhAkTYGJiAnV1dZiZmcHb2xs3btyQKJeYmAgXFxcIhUJoaGjgrbfeQmxsrESZrKws8Hg8pKamNvn6ixYtQrdu3aCpqYlOnTph+PDhOHPmjESdkyZNgqWlJQQCAbp27Yrw8HBUVlbKrTcvLw8TJkyAra0tlJSUMHPmzCbHVOfbb78Fj8eTOjcjIwPvv/8+DAwMoK2tjbFjx+LevXsSZZYsWYJBgwZBQ0MDOjo6Muuv+x6q//n111+547t27YKbmxt3nYEDB+LAgQONxr1r1y6MGDECenp6zf56ENJeSI1+agIuXWrrTiHqgyJEJsqXKF+ifKllqFOKvFyyEheZ+2S9v9fawRBCWsrDwwN5eXm4efMmZs+ejUWLFuH7779XdFicxpIQAKiqqoKbmxuKioqwa9cupKWlYfv27XB0dJRI9FavXg1vb284OzvjzJkzuHz5MsaPH4/g4GDMmTPnheK0tbXFmjVrcOXKFZw4cQJdunTBiBEj8ODBAwDAjRs3IBaLsWHDBly9ehUrVqzA+vXrsWDBArn1VlRUwMDAAF9++SV69erV7LjOnTuHDRs2oGfPnhL7S0tLMWLECPB4PPz55584efIkKisr4eXlBXG9ZeErKyvh4+ODzz77TO51YmJikJeXx33ee+897tjx48fh5uaGffv24cKFC3B1dYWXlxdSUlLk1llaWorBgwfju+++a3a7CWk3JJ/OyS/KmlTspXn+db2WjIonpKOifInyJcqXWoCRBhUVFTEArKioSNGhvLJu/JXH1gQdZvErLrLtS86yNUGHWdaVAqlyT0sr2Zqgw2xN0GH243/+ZGuCDrOiB2UKiJiQl6O8vJxdu3aNlZeXKzqUZvP392fe3t4S+9zc3JiTkxMrLCxkfn5+TEdHhwkEAubh4cHS09O5cllZWezdd99lOjo6TENDg9nb27O9e/eyzMxMhtr/hnEff39/xhhjxcXFbMKECUxDQ4MZGRmx5cuXMxcXFzZjxgyuXgsLCxYREcH8/PyYUCjkzk1OTmaDBw9m6urqzMzMjE2bNo2VlJQwxhhLSUlhAFhWVlaDbc3Ozmaqqqps1qxZUsdWrVrFALC//vqLMca4NqSkpDT/pj5T93vm0KFDDZZZtmwZs7S0bHKdz9+rxjx58oTZ2NiwpKQkqXMPHDjAlJSUJH4PPn78mPF4PJaUlCRVV0xMDBOJRDKvA4Dt3r27yXExxpi9vT1bvHhxk8q2xtejPnk/s5QfSKN78mL++buArQk6zH6NPMP2b7jC1gQdZpeP3JFZduOMo2xN0GG2buoRtiboMMu+/rBNY13l78Oixo7iPrnpN9r0+qRjo3yJ8iVZKF+S71XPl2ikFGkTjb6+V/8hG729R14TjDGUVZW1+Ye1wqseAoEAlZWVCAgIwPnz55GQkIDTp0+DMYaRI0eiqqoKABASEoKKigocP34cV65cwXfffQctLS2Ym5vj999/BwCkpaUhLy8PK1euBADMmjULJ0+eREJCApKSkpCcnIyLFy9KxRAVFYVevXohJSUFX331FTIyMuDh4YExY8bg8uXL2L59O06cOIGpU6cCAAwMDKCkpISdO3eipqZGZrt27tyJqqoqmU/4goKCoKWlhW3btr3w/QNqn5Zt3LgRIpFI7tO6oqIi6Orqtso1ZQkJCcGoUaMwfPhwqWMVFRXg8XhQU1Pj9qmrq0NJSQknTpxo0bX09fXRv39/bN68We73olgsxpMnT15q2wlpL5rzrzI3UEpRE50/d8HW+J1CiDyKypdaI2eifOnFUb7U8fMlFUUHQF4TNE8UIVLKq8sxYOuANr/umQlnoKGq0aJzGWM4fPgwDhw4AE9PT8THx+PkyZMYNGgQACAuLg7m5uaIj4+Hj48PsrOzMWbMGDg6OgIArKysuLrqfnkaGhpy79U/efIEW7ZswdatWzFs2DAAtUOYTUxMpGIZOnQoZs+ezW0HBgbC19eXe8ffxsYGq1atgouLC9atWwdTU1OsWrUK8+bNw+LFi9GvXz+4urrC19eXiys9PR0ikQjGxsZS1+Pz+bCyskJ6enqL7l2dxMREjB8/HmVlZTA2NkZSUhL09fVllr116xZWr16NqKioF7pmQ3799VdcvHgR586dk3ncyckJmpqaCA0NxTfffAPGGObPn4+amhrk5eU161oREREYOnQoNDQ0cPDgQfznP/9BSUkJpk+fLrN8VFQUSkpKMHbs2Ga3i5BXznOTlwNypoqS6pVqW9QHRdqaovIloOU5E+VLlC9RvtR0NFKKvFwtyFx41IFFSLuTmJgILS0tqKurw9PTE+PGjUNAQABUVFQwYMC/iaKenh7s7Oxw/fp1AMD06dMRGRkJZ2dnhIeH4/Lly3Kvc/v2bVRVVaF///7cPpFIBDs7O6my/fr1k9i+dOkSYmNjoaWlxX3c3d0hFouRmZkJoPbJU35+PuLi4jBw4EDs2LEDDg4OSEpKavK94PP5jZaJi4uTiCM5OZk75urqitTUVJw6dQoeHh4YO3Ys7t+/L1VHTk4OPDw84OPjg8mTJ3P769cbHBzcpJiTk5MlzouLi8OdO3cwY8YMxMXFQV1dXeZ5BgYG2LFjB/73v/9BS0sLIpEIjx8/Rp8+faCk1LwU4quvvoKzszN69+6N0NBQzJs3r8F5NrZu3YrFixfjt99+g6GhIQD595SQV11zRmMofKQU43rQFBQAIe0X5Uv/onyJ8qWmopFSpE002s1UL59R1GIyhLQ1gYoAZyacabzgS7huc7m6umLdunXg8/kwMTGBiooKEhISGj0vMDAQ7u7u2Lt3Lw4ePIilS5ciOjoa06ZNa0noEjQ1NSW2S0pKEBQUJPNJUufOnbm/C4VCeHl5wcvLC5GRkXB3d0dkZCTc3NxgY2ODoqIi5ObmSj1trKysREZGBtzd3RuNbfTo0RLJp6mpqUTc1tbWsLa2hpOTE2xsbLBp0yaEhYVxZXJzc+Hq6opBgwZh48aNEnXXXy1FW1u70ViA2oS0/nlvvPEGDh8+jPv376NPnz7c/pqaGhw/fhxr1qxBRUUFlJWVMWLECGRkZKCgoAAqKirQ0dGBkZGRxFPclhgwYAC+/vprVFRUSAx3//XXXxEYGIgdO3ZIDJGXd08J6Sh4vCYMgHqWINU9xFPUROM88MDAKF8jL52i8qW6azcH5UuUL1G+1HzUKUVeKi5PqZdgyXoaSCu3kNcRj8dr8Wt0ba0uMaive/fuqK6uxpkzZ7jh6A8fPkRaWhrs7e25cubm5ggODkZwcDDCwsLw008/Ydq0adwTtPrzFVhZWUFVVRXnzp3jEqOioiKkp6fj7bfflhtjnz59cO3aNak45eHxeOjWrRtOnToFAPjwww8RGhqK6OhoREdHS5Rdv349ysrKMHHixEbrFQqFEAqFTYpBLBajoqKC287JyYGrqyv69u2LmJgYqSdszWlfHYFAIHXesGHDcOXKFYl9n3zyCbp164bQ0FAoKytLHKsbMv/nn3/i/v37GD16dLPjqC81NRWdOnWSSLC2bduGTz/9FL/++itGjRolUb4595SQV04LJpVS1EAlLmfjPbs29UqRl4zyJcqXAMqXOnK+RJ1S5OVqSZ6iRK/vEfIqsLGxgbe3NyZPnowNGzZAKBRi/vz5MDU1hbe3NwBg5syZ8PT0hK2tLR49eoQjR46ge/fuAAALCwvweDwkJiZi5MiREAgEEAqF8Pf3x9y5c6GrqwtDQ0OEh4dDSUmp0Vd7Q0ND4eTkhKlTpyIwMBCampq4du0akpKSsGbNGqSmpiI8PBx+fn6wt7cHn8/HsWPHsHnzZoSGhgKofUK4bNkyzJkzB+rq6vDz84Oqqir27NmDBQsWIDIyEj169JC4blpamlQsDg4OUFVVldhXWlqKJUuWYPTo0TA2NkZBQQHWrl2LnJwc+Pj4AKhNsN555x1YWFggKiqKW/oYAIyMjOS2v+7JXklJCR48eIDU1FTw+XyJhLc+oVAo1RZNTU3o6elJ7I+JiUH37t1hYGCA06dPY8aMGfj8888lXhHIzs5GYWEhsrOzUVNTw8VibW0NLS0t/O9//8O9e/fg5OQEdXV1JCUl4ZtvvpGYIHXr1q3w9/fHypUrMWDAAOTn5wOoTRBFIlGD7a67bm5uLoB/vx5GRkaN3jNC2ouWTHSusIVhuE4xJTCI5ZclhFC+9AzlS5QvNahV1gHsoGh5Y0kVd+6we9HLWf7Sb9mDdetZ9ZOSRs+5fiqXrQk6zBJWpbLfvjnL1gQdZpmXH0iVKyuuYGuCDrM1QYfZhum1Sx0/vl/6MppBiEJ0tCWO69QtcSwSiZhAIGDu7u4SSxxPnTqVde3alampqTEDAwPm5+fHCgoKuOMRERHMyMiI8Xg8uUsc9+/fn82fP587z8LCgq1YsUIqnrNnzzI3NzempaXFNDU1Wc+ePdmSJUsYY4w9ePCATZ8+nfXo0YNpaWkxoVDIHB0dWVRUFKupqZGoJz4+ng0ZMoRpampySzBv27ZNooysZZrrPnfuSC/lXl5ezt5//31mYmLC+Hw+MzY2ZqNHj2Znz57lysTExDRYZ2NknWNhYdHoefXJWh45NDSUvfHGG0xVVZXZ2Niw6OhoJhaLJcr4+/vLvP6RI0cYY4zt37+fvfnmm9zXpVevXmz9+vUS993FxUVmHXXfFw1p6J6Fh4c3q+3Pa40ljl8ndE9ezO1LD9iaoMPst6Xn2B8br7A1QYfZpT+zZZZdF3KErQk6zP5v9nG2Jugwy/q7QGa5l+UH3/dZ1NhRbIXveyxq7Ch25/rfbXp90rFRvkT5EuVLr1++xGOMxtw2pLi4GCKRCEVFRU1+D7Ujy/3iCxT9vovbNo78Gjoffij3nOun8vDnz9fR2UEPT0sqcf+fJxgV0hNdHCVXTigrrkTMvNrlMlXVlFFVUYOPv3aCyODVGKpLSGOePn2KzMxMWFpaNjhJIpGttLQUpqamiI6OxqRJk9r8+oWFhRg2bBi0tbWxf/9+aGjQv0uvA3k/s5QfSKN78mIyLz3AvnVX8IalNoS66rh14T6GjLNBT1dzqbLrph6BuJpBIFRF+ZMqvDu1Fyx66LVZrD98/D5qqqqgospHdVUlxi36FmbdezR+IiFNQPlSy1G+RBShNfIlWn2PNJm4tExyu6ysgZL11U3G2YwL0dt7hLzWUlJSsG3bNmRkZODixYvw9fUFAG6Ie1vT1dXFoUOHMGzYMJw+fVohMRBCOrZmPSKWWn6vEY/vAHfO1X7KHzczMjnqrk+PtwlRCMqXSEdBc0qRttGCjiYaw0fI6ysqKgppaWng8/no27cvkpOTuYkjFUFPTw8LFy5U2PUJIa8HHg+N50zPTXQu96WH+zeAH53+PUloAsy8Aii/wH8B2snqf4QQypdIx0AjpchL1eyOJRolRchrr3fv3rhw4QJKSkpQWFiIpKQkODo6KjosQl4pa9euRZcuXaCuro4BAwbg7NmzDZaNjY0Fj8eT+NBrM22sGbOX/ztQqglJU+Ht2jOUnk0k/CQXqGrKSHc516/rFKOFaQhRKMqXSEdBI6VI073A0KVGH/rVPXVrQllCCCGENGz79u2YNWsW1q9fjwEDBuCHH36Au7s70tLSYGhoKPMcbW1tiZWRmtThQWSqvJuDgrVrIS4thZKGBvT/8xn4z5ZsbwiTMd1Bg2kXa87UCM8qMewO5F+W3NdiXLeYRDyEEEJIS1CnFGkbLUluKcchhBBCmm358uWYPHkyPvnkEwDA+vXrsXfvXmzevBnz58+XeQ6Px1P8ktAdxOPfd6Jo925uW8VAH4azZ8s/qRk5j9Sgqqacy6v3csQLdiJxDxKfjZSiPilCCCEvgl7fIy9Xs1/foyezhBBCSEtVVlbiwoULGD58OLdPSUkJw4cPlzvxbElJCSwsLGBubg5vb29cvXq1LcLtkFhlpdxtmec8N/hIfuFnRbk5nZpQsUSnlLgJF2kcr1m9YoQQQohs1ClFXiq5k29KFKz9gwdQxxQhhBDSQgUFBaipqcEbb7whsf+NN95Afn6+zHPs7OywefNm7NmzB7/88gvEYjEGDRqEu3fvNnidiooKFBcXS3xI62hqFsSlS03JtXitmPLXXU6J/htBCCHkxdFvE9ImGutnoqHfhBBCiGIMHDgQEydOxJtvvgkXFxfs2rULBgYG2LBhQ4PnLF26FCKRiPuYm5u3YcQdV2NzeUk87GvSQ7znluqrraT5gUnU+Nzqe5TEEUIIeQHUKUWarrWSDnnV0CApQgghpMX09fWhrKyMe/fuSey/d+9ek+eMUlVVRe/evXHr1q0Gy4SFhaGoqIj73Llz54Xi7lBakC7J7NiRVY+MPqkmpWcSI6VeMJ9jkp1S9PYeIYSQF0GdUqTlWvXJ2L/v79Hbe4QQQkjL8Pl89O3bF4cPH+b2icViHD58GAMHDmxSHTU1Nbhy5QqMjY0bLKOmpgZtbW2JD3lxjY4slyjbnISp/kip1plTiquOeqUIIYS8AOqUIi8Vqz8Zp5zkSeYDQhoOTki7EBAQAB6PBx6PBz6fD2tra0RERKC6uvqF6j169Ch4PB4eP37cOoE2QWZmJiZMmAATExOoq6vDzMwM3t7euHHjhkS5xMREuLi4QCgUQkNDA2+99RZiY2MlymRlZYHH4yE1NbXJ11+0aBG6desGTU1NdOrUCcOHD8eZM2ck6pw0aRIsLS0hEAjQtWtXhIeHo7KRiZLz8vIwYcIE2NraQklJCTNnzmxyTDk5Ofj444+hp6cHgUAAR0dHnD9/njte/+tf9/Hw8JCoo0uXLlJlvv32W+54WloaXF1d8cYbb0BdXR1WVlb48ssvUVVVJVHP48ePERISAmNjY6ipqcHW1hb79u2TG/+uXbswYsQI6OnpNfvr0VHNmjULP/30E7Zs2YLr16/js88+Q2lpKbca38SJExEWFsaVj4iIwMGDB3H79m1cvHgRH3/8Mf755x8EBgYqqgmvn6ZOdF4vN2ra23sS3Vgy9rUcj+aUIkQC5UuUL1G+1DIqig6AkPp49P4eIe2Sh4cHYmJiUFFRgX379iEkJASqqqoS/7FVpMrKSvD5fLllqqqq4ObmBjs7O+zatQvGxsa4e/cu9u/fL5HorV69GjNnzkRoaCjWrVsHPp+PPXv2IDg4GH///TeioqJaHKetrS3WrFkDKysrlJeXY8WKFRgxYgRu3boFAwMD3LhxA2KxGBs2bIC1tTX+/vtvTJ48GaWlpXKvW1FRAQMDA3z55ZdYsWJFk+N59OgRnJ2d4erqiv3798PAwAA3b95Ep06dJMrVff3rqKmpSdUVERGByZMnc9tCoZD7u6qqKiZOnIg+ffpAR0cHly5dwuTJkyEWi/HNN98AqP0aurm5wdDQEDt37oSpqSn++ecf6OjoyG1DaWkpBg8ejLFjx0pc/3U2btw4PHjwAAsXLkR+fj7efPNN/PHHH9zk59nZ2VCq16Hw6NEjTJ48Gfn5+ejUqRP69u2LU6dOwd7eXlFNeO0wWe/lARCLaxD/XQQe/JMJAFDTEkJc8w6UlPXqvb/XhAvUPRxkrIknNBCnRKdY63ZyEdIRUL5E+RLlS81HnVKk6V4k6WjyUjItvwQh5OVRU1Pj5qP57LPPsHv3biQkJCA4OBgzZszA//73P1RUVMDFxQWrVq2CjY0NAOCff/7B1KlTceLECVRWVqJLly74/vvvYW9vD1dXVwDgfqH7+/sjNjYWT548QXBwMOLj46GtrY158+Zhz549ePPNN/HDDz8AqH3SNGnSJNy8eRPx8fH44IMPEBsbixMnTiAsLAznz5+Hvr4+3n//fSxduhSampq4evUqMjIycPjwYVhYWAAALCws4OzszLXzzp07mD17NmbOnMn98geA2bNng8/nY/r06fDx8cGAAQNadB8nTJggsb18+XJs2rQJly9fxrBhw+Dh4SHxVM3KygppaWlYt26d3CSrS5cuWLlyJQBg8+bNTY7nu+++g7m5uUQCZWlpKVWu/te/IUKhsMEyVlZWsLKy4rYtLCxw9OhRJCcnc/s2b96MwsJCnDp1Cqqqqly7GuPn5weg9qkp+dfUqVMxdepUmceOHj0qsb1ixYpmJeekES3Jl7hTJBOhR3m5yEy9wG2XPCqEiiALSsp69fqk5F1P1kipF3h9T9ZE69QpRQiH8iXKlyhfaj4ad0teriYmKvSqHnkdMcYgLitr809r/LwJBAJUVlYiICAA58+fR0JCAk6fPg3GGEaOHMkNMw4JCUFFRQWOHz+OK1eu4LvvvoOWlhbMzc3x+++/A6gdqpyXl8clCbNmzcLJkyeRkJCApKQkJCcn4+LFi1IxREVFoVevXkhJScFXX32FjIwMeHh4YMyYMbh8+TK2b9+OEydOcP8xNzAwgJKSEnbu3ImamhqZ7dq5cyeqqqowZ84cqWNBQUHQ0tLCtm3bXvj+AbVPujZu3AiRSIRevXo1WK6oqAi6urqtcs3nJSQkoF+/fvDx8YGhoSF69+6Nn376Sarc0aNHYWhoCDs7O3z22Wd4+PChVJlvv/0Wenp66N27N77//nu5ryvcunULf/zxB1xcXCRiGThwIEJCQvDGG2+gR48e+Oabbxr8WhHyqmjOv7lSr+Q9O5Uv0IBVn7ee7RTLLtto5Up1ATXzxPrhSI+UogyOvGyKypdaI2eifOnFUb7U8fMlGilFXipuTqn6++SU5z1fmJAOjJWXI61P3za/rt3FC+BpaLToXMYYDh8+jAMHDsDT0xPx8fE4efIkBg0aBACIi4uDubk54uPj4ePjg+zsbIwZMwaOjo4AIPH0py5xMDQ05IYcP3nyBFu2bMHWrVsxbNgwAEBMTAxMTEykYhk6dChmz57NbQcGBsLX15ebH8DGxgarVq2Ci4sL1q1bB1NTU6xatQrz5s3D4sWL0a9fP7i6usLX15eLKz09HSKRSOYEz3w+H1ZWVkhPT2/RvauTmJiI8ePHo6ysDMbGxkhKSoK+vr7Msrdu3cLq1atfaAi8PLdv38a6deswa9YsLFiwAOfOncP06dPB5/Ph7+8PoHYo+gcffABLS0tkZGRgwYIF8PT0xOnTp6GsrAwAmD59Ovr06QNdXV2cOnUKYWFhyMvLw/LlyyWuN2jQIFy8eBEVFRWYMmUKIiIiJGL5888/4evri3379uHWrVv4z3/+g6qqKoSHh7+U9hPSXjT2/14lFRUIhKK60rV/NOX1Pa7i+nN7vsB/siUGSlHCRtqGovIloOU5E+VLlC9RvtR0NFKKtI1GJ+6ULkeDpwhpPxITE6GlpQV1dXV4enpi3LhxCAgIgIqKisTQbD09PdjZ2eH69esAan/5RkZGwtnZGeHh4bh8+bLc69y+fRtVVVXo378/t08kEsHOzk6qbL9+/SS2L126hNjYWGhpaXEfd3d3iMViZGbWzscSEhKC/Px8xMXFYeDAgdixYwccHByQlJTU5HvR2FwMQG2yWT+O+sOuXV1dkZqailOnTsHDwwNjx47F/fv3perIycmBh4cHfHx8JN79r19vcHBwk2JOTk6WOC8uLg5A7apsffr0wTfffIPevXtjypQpmDx5MtavX8+dO378eIwePRqOjo547733kJiYiHPnzkm8AjZr1iy888476NmzJ4KDgxEdHY3Vq1ejoqJCIo7t27fj4sWL2Lp1K/bu3SuRPIrFYhgaGmLjxo3o27cvxo0bhy+++IKLRd49JaSjkO7nqTcyqW4esOf7pJqcL7XyROf0+h4hUihf+hflS5QvNRWNlCLN8GJJBz1QI0QSTyCA3cULjRd8CddtLldXV24SSxMTE6ioqCAhIaHR8wIDA+Hu7o69e/fi4MGDWLp0KaKjozFt2rSWhC5BU1NTYrukpARBQUGYPn26VNnOnTtzfxcKhfDy8oKXlxciIyPh7u6OyMhIuLm5wcbGBkVFRcjNzZV62lhZWYmMjAy4u7s3Gtvo0aMlkk9TU1OJuK2trWFtbQ0nJyfY2Nhg06ZNEpOg5ubmwtXVFYMGDcLGjRsl6q6/Woq2tnajsQC1CWn98+omvDY2NpaazLp79+7cqwKyWFlZQV9fH7du3eKezj5vwIABqK6uRlZWlkSCbG5uDgCwt7dHTU0NpkyZgtmzZ0NZWRnGxsZQVVXlnibWxZKfn4/Kykq595SQdqVFc0o919MkA09JcqRT00Yq1auXe32v5XNKMRlzSsmf04qQF6eofKnu2s1B+RLlS3UoX2o66pQiL9W/uUsTe6R4PFqBj7w2eDxei1+ja2t1iUF93bt3R3V1Nc6cOcMNR3/48CHS0tIkfnGbm5sjODgYwcHBCAsLw08//YRp06ZxT9DqvwNvZWUFVVVVnDt3jkuMioqKkJ6ejrfffltujH369MG1a9ek4pSHx+OhW7duOHXqFADgww8/RGhoKKKjoxEdHS1Rdv369SgrK8PEiRMbrVcoFEqspiKPWCyWeEKWk5MDV1dX9O3bFzExMRKrpAFoVvvqCAQCmec5OzsjLS1NYl96ejo3saksd+/excOHD2UO2a+TmpoKJSUlGBoaNlhGLBajqqoKYrEYysrKcHZ2xtatWyEWi7k2p6enw9jYGHw+H3w+v8n3lJBXTWPdOjzU74Sq65Rq5kWa8PoeYwz3MzPwtLQEPB4PRta24KvX/0+5rNX3mhkHIc1E+RLlSwDlSx05X6JOKdImGkucZM091dZJTvmTYhTc+QcAoGfWGRraokbOIOT1ZmNjA29vb0yePBkbNmyAUCjE/PnzYWpqCm9vbwDAzJkz4enpCVtbWzx69AhHjhxB9+7dAdSuKMLj8ZCYmIiRI0dCIBBAKBTC398fc+fOha6uLgwNDREeHg4lJaVGRwWEhobCyckJU6dORWBgIDQ1NXHt2jUkJSVhzZo1SE1NRXh4OPz8/GBvbw8+n49jx45h8+bNCA0NBVD7hHDZsmWYM2cO1NXV4efnB1VVVezZswcLFixAZGQkevToIXHd55MUAHBwcOBWRKlTWlqKJUuWYPTo0TA2NkZBQQHWrl2LnJwc+Pj4AKhNsN555x1YWFggKioKDx484M5vbDWXuid7JSUlePDgAVJTU8Hn86We7NX3+eefY9CgQfjmm28wduxYnD17Fhs3buSeNpaUlGDx4sUYM2YMjIyMkJGRgXnz5sHa2pp7Anr69GmcOXMGrq6uEAqFOH36ND7//HN8/PHH3EpBcXFxUFVVhaOjI9TU1HD+/HmEhYVh3Lhx3H367LPPsGbNGsyYMQPTpk3DzZs38c0338h8kltfYWEhsrOzkZubC+Dfr4eRkVGj94yQdkPWHJyMSYxM4j0b6cSeTXTOjVSSNzKr/pxSTXh9L+3Ucexd9T23bda9B8Yt+la6OtCcUoQ0FeVLtShfonypIdQpRVqsaatRyCgj8zzFPmYTi2vw89ypKHlUCADQEOlgyo+xUFahHxFC5ImJicGMGTPw7rvvorKyEm+//Tb27dvH/eKsqalBSEgI7t69C21tbXh4eHBLz5uammLx4sWYP38+PvnkE0ycOBGxsbFYvnw5goOD8e6773JLHN+5cwfq6upyY+nZsyeOHTuGL774AkOGDAFjDF27dsW4ceMAAGZmZujSpQsWL16MrKws8Hg8bvvzzz/n6vn8889hZWWF6OhorFy5EqWlpQCAbdu2Yfz48VLXlbXvzp07MDMzk9inrKyMGzduYMuWLSgoKICenh7eeustJCcnw8HBAQCQlJSEW7du4datW1LnN/Zvbu/evbm/X7hwAVu3boWFhYXcpX/feust7N69G2FhYYiIiIClpSV++OEH+Pr6cjFfvnwZW7ZswePHj2FiYoIRI0bg66+/hpqaGoDa5Y9//fVXLFq0CBUVFbC0tMTnn3+OWbNmcddRUVHBd999h/T0dDDGYGFhgalTp0rcd3Nzcxw4cACff/45evbsCVNTU8yYMYNLgBuSkJCATz75hNuu+3qEh4dj0aJFcs8lpL2Q6DtqgPTre828SBNGShXdvwcAUFZVRU1VFYoe3GsgUHCvA9IKyoQ0jvIlypcoX2oYj9FvkgYVFxdDJBKhqKioye+hdmR3p03Dk6RD3Lbh/FDoBQTIPefSn3dw4rebsO5n+P/svXl4FGXWv39Xd9LZE7IQdhL2TcAFZFMwsiSowDgOwsCXRQGJL4gwoICKgKKOCiggA+oPCb4DDK+IiMgoERXZRFkiyBJIJBAgLCEQsnenu35/dHd1VW/phD0+93WFdFU9y6kiSX/6POc5h4JLpZw/cZVHnm1Lo/Y1Ne3yLxbz7xk/4x+oR++no7TQxN9f7URU3RAPI19fTGWlLBz+N825cZ/8h8CQ0Jsyv6D6U1payokTJ2jUqFGFYkGgpaioiHr16jFv3jxGjRp10+fPy8ujZ8+ehIeH89///pfgO2QLgeDa8PY7K/SBK+KZODj/1j/JW7FCOY4cPozaL73ktc+RnTl8/+kRGraJJiDYj+O/nqfb35pSv4XMiinjCAqPoGW37uz/71foAzvhH9SN2o3DOffHVfqMbkOzDrXcD/z757D2aYh/EHJ+g7Kr8Nw+iG7itvnuL/6P7f/5lJpxjbh48gRhMTV5ZvFy5Xq50ciCYX8FIKpeA/LOZPOXF2fQ5L5ObscTCCqL0EtVR+glwa3geuglUX1P4DPX4r+ssPieu7D1mxk9dfsFbwkEf1r279/P6tWryczMZN++fcoqlD3E/WYTFRXFd999R8+ePdm1a9ctsUEgEFR3HNFPniKg7Nv3XBKd38jqe7LzoWtOKbG8LRDcGoReElQXxN4kwY3FV6FyGwoaUU1GILh1zJ07l/T0dAwGA/fddx/btm0jJibmltkTHR3Nq6++esvmFwgE1RuP2/dkVyeQUj1P8Un5klNKPbb3ROe2ySocT+SUEghuPUIvCaoDwikluDn4KlwkqfI5Eq4DbgWdWPoTCG4J99xzD3v33prSzwKBQHDdqYSc8CaBJN31ipSy+NDSFgXlGiqlalSFyCuBQHDdEHpJUF0QTinBbYWk3b8nEAgEAoFAcFshyzJfLfqNnIwrAIRFB/HEC/cSEGyvIFUFAVNBF0mSXCKTpMok4ZAkRwcfqvVZioutxyaTV5tARJYLBAKB4NoQTimB71RFY7kRPu600O2Yb/92tEkgEAgEAsGtpaTARPbhPOX4ck4RF04V0KBlVJXH9LRtThOY5CFSyme5Ym9vMZP3//1/GM+cQZJ0hPd7jGBVNSoAY9YJCA6kPPcSRbt2EdKli21m2WU8ESklEAgEgmtBOKUEN4XbPu2AEFQCgUAgEAgqSY1awVw5X3x9B/Ux0blPaJJVWQcuPXqUC3PnKU1KDh6k0Wf/ZxtZdjHBdPasm/FETimBQCAQXB9E9T2BwBPCUSUQCAQCgcATEuj9XB0zVYm0rii/OICks1+0VNjWwwDWuUpKNKeVrXoVGad9WYWcVgKBQCAQuCIipQQ3FPUCnU/iSeKWhFUJ/5NAIBAIBAJfuKnb+71FJvm0fU7l7bK1//3sGY7dey+SLNPw1CnqummudjRp79fVHpFTSiAQCATXgnBKCXzHWfRUqpqMd0eTskKoanerHUUip5RAIBAIBIKbidrx5CxDJHWicsmxxc53tWLtsS/7JOeaNwMgt2YMdTMyPfaQJTeGOAxyb6hAIBAIBJVAOKUENxZfdcot1zO33ACBQCAQCAR3ENc1rtuxOud+LknSJDr3eW4PIeuSxYKs01EcHOy0Pc81p5R2uMrnlDKdP0/R9h0gW0CnJ7RHd/yio329A4FAIBBUc0ROKcENRQnp9lU9SddZ5F0DIlJKILAycuRIpRy5wWCgadOmvPbaa5SXl1/TuD/++COSJHHlypXrY6gPnDhxgiFDhlC3bl0CAwOpX78+AwYM4OjRo5p2GzdupEePHoSFhREcHEzHjh1JSUnRtMnKykKSJNLS0nyef9asWbRs2ZKQkBAiIyPp1asXu3fv1ow5atQoGjVqRFBQEE2aNGHmzJkYjUav4+bk5DBkyBCaN2+OTqdj4sSJPtljNpuZMWOGZr7XX39d8/dv3bp19OnTh+joaI/3m5mZyeOPP07NmjUJDw/nySef5Pz585W+rwMHDvDggw8SGBhIgwYNeOeddyq8h59++ol+/fpRt25dJEli/fr1Pt27QHBdcb/DzffuHvq4dwLJtu14lZzPFmklIRNQVgaA0WDg9zq1SUtLw2KxeDDC/Wt75FZFcunsi1PJefllcl6ZQc5LL5Ezc6aPBgsEdxZCLwm9JPRS1RBOKcFNoSJHk1LtRdKevVkIB5RA4J2kpCRycnI4fvw4kydPZtasWbz77ru32iyFikQIgMlkonfv3uTn57Nu3TrS09NZs2YNbdu21Qi9RYsWMWDAALp168bu3bs5cOAAgwcPJjk5mSlTplyTnc2bN+eDDz7g4MGDbN++nfj4ePr06cPFixcBOHr0KBaLhQ8//JBDhw7x3nvvsXTpUl566SWv45aVlVGzZk1eeeUV2rdv77M9b7/9NkuWLOGDDz7gyJEjvP3227zzzjssWrRIaVNUVMQDDzzA22+/7XaMoqIi+vTpgyRJfP/99+zYsQOj0Ui/fv2UD7m+3NfVq1fp06cPcXFx7N27l3fffZdZs2bx0Ucfeb2HoqIi2rdvz+LFi32+b4HgplIJjWGtkedeNblGSkk+DK/OoG7vZXVK6cxmZJ2O/Q0bsn79ev744w/3ekgdSaX1Smnn8EB5bi4A/vXrA2C+lOe1vUBwJyP0ktBLQi9VHrF9T3BjuWO277lBOKoEAoWAgABq164NwLPPPssXX3zBhg0bSE5O5vnnn+err76irKyMHj16sHDhQpo1s+YrOXnyJOPHj2f79u0YjUbi4+N59913ad26NQkJCQBERkYCMGLECFJSUigoKCA5OZn169cTHh7Oiy++yJdffsndd9/N+++/D0B8fDyjRo3i+PHjrF+/nr/+9a+kpKSwfft2pk+fzp49e4iJieHxxx/nrbfeIiQkhEOHDpGZmcmWLVuIi4sDIC4ujm7duin3mZ2dzeTJk5k4cSJvvvmmcn7y5MkYDAYmTJjAwIED6dSpU5We45AhQzTH8+fPZ9myZRw4cICePXuSlJREUlKScr1x48akp6ezZMkS5s6d63Hc+Ph4FixYAMAnn3zisz07d+5kwIABPProo8o4q1ev5pdfflHaDBs2DLCu3rljx44dZGVlsX//fsLDwwFYsWIFkZGRfP/99/Tq1cun+1q5ciVGo5FPPvkEg8FAmzZtSEtLY/78+TzzzDMe76Fv37707dvX53sWCK4bKkfPtaLeZed5OlVicc1uPB/1imrlT2e20Gn3bs7Vrs25+vUpMRgoyi+gcMcZAPRRTaDsjBJd5Wqoyp6K9JLteljPnuStWCH0laBaI/SS0EtCL1UeESkl8J1rERGS8o+PbW8y7hYGb0tPmaA6IcsypjLzTf+6HpGBQUFBGI1GRo4cyZ49e9iwYQO7du1ClmUeeeQRTCYTAOPGjaOsrIyffvqJgwcP8vbbbxMaGkqDBg34/PPPAUhPTycnJ0cRCf/4xz/YsWMHGzZsIDU1lW3btrFv3z4XG+bOnUv79u3Zv38/M2bMIDMzk6SkJJ544gkOHDjAmjVr2L59O+PHjwegZs2a6HQ61q5di9lsdntfa9euxWQyuV3hGzt2LKGhoaxevfqanx9YVys/+ugjIiIivK7W5efnExUVdV3mdKZr165s2bKFY8eOAfDbb7+xffv2SomWsrIyJEkiICBAORcYGIhOp2P79u0e+znf165du+jevTsGg0E5l5iYSHp6OpcvX67MbQkEdyBuvFLqP9VOOaV81kpuckpJyEjINDyVzf2//EqN4mIATJdLkUvLtVbo/PDk9PI1p5Rig06nPRYIfORW6aXroZmEXrp2hF6q/npJREoJNJSVlFOcb80zEFIjAEPgdfoR8VW4eKk6c9O51fMLqj3lRgsfPb/1ps/7zIIe+Afoq9RXlmW2bNnCt99+S9++fVm/fj07duyga9eugHX1pkGDBqxfv56BAwdy6tQpnnjiCdq2bQtYV3zs2N9gY2NjqVGjBgAFBQWsWLGCVatW0bNnTwCWL19O3bqaouUAPPzww0yePFk5Hj16NEOHDlXyAzRr1oyFCxfSo0cPlixZQr169Vi4cCEvvvgis2fPpkOHDiQkJDB06FDFrmPHjhEREUGdOnVc5jMYDDRu3FgRJFVl48aNDB48mOLiYurUqUNqaioxMTFu22ZkZLBo0SKvq37XwrRp07h69SotW7ZEr9djNpt54403GDp0qM9jdO7cmZCQEKZOncqbb76JLMtMmzYNs9lMTk6O2z7u7uvcuXM0atRI065WrVrKNfsKsUBwy6lIH1yDgHGWS3l51q1uBQUFpKamYrAZIKmScPo+nXrTnwOdxTqA2ezIKSWbShwN3CRCt9rqowGKU+p2yRoquNO4VXoJqq6ZhF4SeskZoZc8IyKlBAolBUZSpu1g1azdrJq1m/99ZRcmo3vvuK/4urpwox1Q5zKO8X+zp7Py5X+wesYLZPz6s3Z+tzkSBAKBnY0bNxIaGkpgYCB9+/Zl0KBBjBw5Ej8/P01odnR0NC1atODIkSMATJgwgTlz5tCtWzdmzpzJgQMHvM7zxx9/YDKZuP/++5VzERERtGjRwqVthw4dNMe//fYbKSkphIaGKl+JiYlYLBZOnDgBWFciz507x8qVK+nSpQufffYZbdq0ITU11ednoV6Z8sTKlSs1dmzbtk25lpCQQFpaGjt37iQpKYknn3ySCxcuuIxx5swZkpKSGDhwIGPGjFHOq8dNTk72yeZt27Zp+q1cuRKA//u//2PlypWsWrWKffv2sWLFCubOncuKFSt8GhesK6qfffYZX331FaGhoURERHDlyhXuvfdedDpXmeHpvqp6DwJBdcDT9j31BxWLvZEsV6IwjCqnlDoHlFr22A5ks0UVr+XeEaVB2U5YkQn2vKGq7YcCQTVF6CUHQi9pEXrJMyJSSqCQn1tCeZnZqnJkKC00UZxfRkTN4Gse29f85dcvO4OW33/8juzDB5Xjff/dQNOOnd3bIEnIsiySnwtuOH4GHc8s6HFL5q0sCQkJLFmyBIPBQN26dfHz82PDhg0V9hs9ejSJiYl8/fXXbN68mbfeeot58+bx3HPPVcV0DSEhIZrjwsJCxo4dy4QJE1zaNmzYUHkdFhZGv3796NevH3PmzCExMZE5c+bQu3dvmjVrRn5+PmfPnnVZbTQajWRmZpKYmFihbf3799eIz3r16mnsbtq0KU2bNqVz5840a9aMZcuWMX36dKXN2bNnSUhIoGvXri6JK9XVXOw5CSqiQ4cOmn72FbUXXniBadOmMXjwYADatm3LyZMneeuttxgxYoRPYwP06dOHzMxMcnNz8fPzo0aNGtSuXVuz0lvRfdWuXVtTgQZQjmvXrk18fLzbexAIbhXXVa+oixWrd/DZtIj1A4vDqVS1uR2RUmqnk2SbQ1N9z5MEchMpdeJMDrtTUpBlmejoaB577DHNByxHJWb79r0qGS/4E3Or9JJ97sog9JLQS94Qesk9t02kVEUlCtUlNu1f6iRgnli8eDHx8fEEBgbSqVMnTTIygXvCowPxD3QTpnpDnTRqNaY9dV1Gtwmt8Jq1NMeOBh5KLgsENxBJkvAP0N/0L5/zgKiwC4OGDRvi52ddz2jVqhXl5eWaEr2XLl0iPT2d1q1bK+caNGhAcnIy69atY/LkyXz88ceAYwVNna+gcePG+Pv78+uvvyrn8vPzfQoBv/feezl8+LAiYNRfnlbrJEmiZcuWFBUVAfC3v/0NPz8/5s2b59J26dKlFBcXM3z48AptCQsL08wfFBTksa3FYqHMVp4drCtjDz30EPfddx/Lly93WT1TjxsbG1uhLWDNaaHuFxYWBkBxcbHL+Hq93nNp+AqIiYmhRo0afP/991y4cIH+/fv7fF9dunThp59+UvJrAKSmptKiRQsiIyM93oNAcLNxK4dukGSQZevvovavti2nlLJ9zusAtheS4hSS7JFStt9BybZ9z2I2ux/Mw/Y9+/y//3GCrKwsTp48yb59+zh37pxTf217gaCy3Cq9VBXNJPSS0Eu+IPSSltsmUspeovDpp5/mr3/9q9s2SUlJLF++XDlWJwlzx5o1a/jHP/7B0qVL6dSpE++//76SBMzXH0yBF3xwUvlSTcbHoa4LAcG+RH35IPIEAgHNmjVjwIABjBkzhg8//JCwsDCmTZtGvXr1GDBgAAATJ06kb9++NG/enMuXL/PDDz/QqlUrwFrJRZIkNm7cyCOPPEJQUBBhYWGMGDGCF154gaioKGJjY5k5cyY6na5CYTh16lQ6d+7M+PHjGT16NCEhIRw+fJjU1FQ++OAD0tLSmDlzJsOGDaN169YYDAa2bt3KJ598wtSpUwHrCuE777zDlClTCAwMZNiwYfj7+/Pll1/y0ksvMWfOHO666y7NvOnp6S62tGnTBn9/f825oqIi3njjDfr370+dOnXIzc1l8eLFnDlzhoEDBwIOIRIXF8fcuXOV0seAUs3HE/ZVscLCQi5evEhaWhoGg0EjeJ3p168fb7zxBg0bNqRNmzbs37+f+fPn8/TTTytt8vLyOHXqFGfPntXcb+3atRWbli9fTqtWrahZsya7du3i+eefZ9KkSco2Al/ua8iQIcyePZtRo0YxdepUfv/9dxYsWMB7773n9b4LCwvJyMhQjk+cOEFaWhpRUVGaFV+B4KZRBVGjOHvUuTU1W+jU12R0ep1r34qQ1JFWstUpZbEoUVMWs4UCqRSAPEM5lIFZJ1Woh9S5qKzHTqkfnHNKiUh0wZ8MoZesCL0k9JInbhunlC8lCtUlNn1h/vz5jBkzhqeeegqwem2//vprPvnkE6ZNm3ZN9lZLboRGUAVA+bLQYA1bv/4rac75C5wFnDZxp/s2AoHAleXLl/P888/z2GOPYTQa6d69O5s2bVIEhtlsZty4cZw+fZrw8HCSkpKUN8169eoxe/Zspk2bxlNPPcXw4cNJSUlh/vz5JCcn89hjjykljrOzswkMDPRqS7t27di6dSsvv/wyDz74ILIs06RJEwYNGgRA/fr1iY+PZ/bs2WRlZSFJknI8adIkZZxJkybRuHFj5s2bx4IFC5RVwdWrVyth22rcncvOzqZ+/fqac3q9nqNHj7JixQpyc3OJjo6mY8eObNu2jTZt2gDWla6MjAwyMjJc+lf0N+mee+5RXu/du5dVq1YRFxfnsTQxwKJFi5gxYwb/8z//w4ULF6hbty5jx47l1VdfVdps2LBBeR9V3+/MmTOZNWsWYBVe06dPJy8vj/j4eF5++WXNM/XlviIiIti8eTPjxo3jvvvuIyYmhldffdVreWOAPXv2KOWywVqNCBwlswWCG8aNyjmgwt2vvWw+ibnkfynIfRioaFuG2tnl2L5XElST4s4vEh0QiF/4GeAKssXCBSkfAKPe+iHB5Ck5uW3XAoDZFingMf2BPaeUm5wpAsGfBaGXhF4CoZc8Icm34SdvSZL44osv+Mtf/qKcGzlyJOvXr8dgMBAZGcnDDz/MnDlziI6OdjuG0WgkODiYtWvXasYZMWIEV65c4csvv3TpU1ZWpgkJvHr1Kg0aNCA/P9/nfah3Muf+yOfzd/YSHhNISaEJU6mZ//d6ZyWnVHbysxT++KPSPvbFF4l++ikPo1nZsymL3Rv+oHW3Olw+V0xOZj59x7al8T01Ne0unirg/978lZAa1ui3oitlPPlSR2o2vD7hhps/WsTBLd9SM74xF7P+oF7LNgye/bZyvfhqPkvGWKsn+PkbKDcZGb1oGRGxt/8eXMGdQWlpKSdOnKBRo0YVigWBlqKiIurVq8e8efMYNWrUTZ8/Ly+Pnj17Eh4ezn//+1+CfYq4FNzpePudvXr1KhEREX8afeALf6ZnUni5lBXTd6LTS0TWCeHS6UL6T7ibBq2tFbLOvT6Hy6rEspH/7/9R+5WXPY539VIJB344zW/fZdP8/lpIOon0n8/R5a9NyCvZx2+rloF/AMV14gg+5diaExLVArP8KA8NbUGbB+u5H3z/v+HLcdCsD3JeFtKlY6TwN84Y2zDC0hGArf6HOa7P4cHGHTm067+Y8rLwCwinvOwqst6Pp/v+jahh/89273l8mDwcSdLRsG17Th7YT1HrjlhkGX9/f0wmEyNHjiQ+Pl4xIaNnL0xnzhDzP/9D7r/+ReBdd9Fo7WdVffyCao7QS1VH6CXBreB66KU7ZskiKSmJTz/9lC1btvD222+zdetW+vbt6xoibCM3Nxez2eyS2KtWrVque91tvPXWW0RERChfDRo0uO738efDNRz9VmLKOgmA8cQJLEaj+0Yip5RAcEvZv38/q1evJjMzk3379inldu0h7jebqKgovvvuO3r27MmuXbtuiQ0CgeAOxsv674kDufzvy7v47btswLowq02v6ehrDgmnpEl7Oj0+SLlawfAqJGSVFvMvL7P1teBfdJWwq1fR5eSALerJ36LJtu72tSRZN/7ZqwLaIz48RUrZc1iJ7XsCwfVB6CVBdeG22b5XEepwv7Zt29KuXTuaNGnCjz/+SM+ePa/LHNOnT1fC2MARKSWwUaUcCbYXam3jxdkjaTTQ9cx0bsuXUFwMwQGUX7pE6W+/EdyxoxsjNF0EAsEtYO7cuaSnp2MwGLjvvvvYtm0bMTExt8ye6OhoTYi2QCAQeNy6VwkBcTnHut1F768jJMJA0w6xZO51LXluF0hyQBCRder6Po+mjX37nkygZHU+lZ3eQ9u9n9AWgP9yqX4tTkaHuiZWV145F6ZxtLQndXZJkWDv42kroEAgqDJCLwmqA3eMU8qZxo0bExMTQ0ZGhlunVExMDHq93m25RE95qQICAipMnv5n42Y5Zm7FLlJZHWWnXvkTXimB4JZyzz33sHfv3ltthkAgENw0mnWsRc/h1qTGilNKdi9FHLmZKqFTJG0CrABDKJigPP8UAGadDr3Fgl+5tZqTVEGyLEmSrGOqHE2eI6VUfawNfLdbIBB4ROglQXXhjtm+58zp06e5dOkSderUcXvd7i3esmWLcs5isbBlyxa6dOlys8y8M7kBW+1un7Ux1QqfJ1F0m2w1FAgEAoFAcPvhNvn4DdryL8sW+wT4GcPQG0Mxl1ucG3kbQfXaKvslZGTZzEWThYIia2LzP5o0RtbplNaSupsSbW6iZMt5OsU8yn1RiQSbQzSayR4p5VIiXaksqLNZJJxSAoFAIHBw20RKeStRGBUVxezZs3niiSeoXbs2mZmZvPjiizRt2pTExESlT8+ePXn88ccZP348YM0oP2LECDp06MD999/P+++/T1FRkSYrvsCBWtNcL7eMY/ue5NugEjcklVNFi3Juq+8J0SQQCAQCgeB2wOxHZJ61YtSeTVm2k5XMKaW8ArOpjJ1FZtoaiwl101odi2XXSMUHczHuzSM+zFrm/WzZGSx+v1jHlCT0er3NngpySgkEAoFAoOK2cUp5K1G4ZMkSDhw4wIoVK7hy5Qp169alT58+vP7665rtdpmZmeTm5irHgwYN4uLFi7z66qucO3eOu+++m2+++cYl+bnAN26kk0ZZRLOu392weXxztonwcoFAIBAIBN6RkDwEV1+jftBmOrd9d5wszvdQqMWtKa45pWyuJs05WZKQcSwgqiOlLBZ7pFS5cu53/Sl+1h+HxlYHlZ+fn7I9z6NTStSREQgEAoEbbhun1EMPPeQ1r9C3335b4RhZWVku58aPH69ETgluAbb/U41mc/ff7E4zVRLjqVNkP/s/mC9dAn8/ak2ZQoS36hNuEzVIXi8LBAKBQCAQ3CzcaWPZzasKseeAwovMUmkgiy4AbKk3LfaILJP1hFku54zusqZrq1atyMvLc2+zXQuK6nsCgUAgcIOIoxW44LNPyAdRUWnZ4aECsS8U/fwzxsxMzFeuYL6YS/6mTVWyRBI5pQQCgUAgENwEKir04u26/ZL3IdQuLEf1PcnZb+Rcb09vUNpaLDJFO3eS/8VXAJRbTJRJ1mitwOwMnujelb/+9a+KfnLOKSU7RWUJBAKBQKDmtomUEtwG3MiVqwp0iF2wSNI1mGHxEC6unUh1WXZ5LalC10V8uUAgEAgEAo/cTB+Luy19jr19Pg7gZf+cpNkhqKm+Z5FlLv9nDeV5sRyJyiLdcIZCqczazlyuaCidLRLKU/U9RKSUQCAQCNwgnFIC77ipvlKV/pXRbRWVIa5wMq9j21t6nsM+f0WrlwKBQCAQCP58VDq6yQc94UmVuJ+rEjrJTU6p/nzH1YB9/FdqoziiZCRt0ReVh8pUGITevwN+sSEc9DtCqWQCQCdL6Iyljj4V5JSSdCJnp0AgEAhcEdv3BK7ciujqivJM+TKESwli1csKoqZ8tkkg+BMycuRIJElCkiQMBgNNmzbltddeo7y8vOLOXvjxxx+RJIkrV65cH0N94MSJEwwZMoS6desSGBhI/fr1GTBgAEePHtW027hxIz169CAsLIzg4GA6duxISkqKpk1WVhaSJJGWlubz/LNmzaJly5aEhIQQGRlJr1692L17t2bMUaNG0ahRI4KCgmjSpAkzZ87EaPSe2DgnJ4chQ4bQvHlzdDodEydO9MmegoICJk6cSFxcHEFBQXTt2pVff/1V06awsJDx48dTv359goKCaN26NUuXLtW0GTt2LE2aNCEoKIiaNWu6faanTp3i0UcfJTg4mNjYWF544QWPP0M7duzAz8+Pu+++u8J7WLduHX369CE6OrrS/x8CwXXDg2Y4WyOUrzMOkDL5f1gxZRwHtnxT8ViSr7kMtNX3Sg4d4tTTT5P19yGc/H/DKPj+B82Y5eGNAAijiHr6bOoaDivhUWHh4Zp5r/oXKFMU5tZA9o9DF1JTyS/Vw9iaJEsrdOZyxY6KE52L7XuC6o3QS0IvCb1UNYRTSqCgkRDXWzjcDCFyLStv6sowQjQJBC4kJSWRk5PD8ePHmTx5MrNmzeLdd9+91WYpVCRCAEwmE7179yY/P59169aRnp7OmjVraNu2rUboLVq0iAEDBtCtWzd2797NgQMHGDx4MMnJyUyZMuWa7GzevDkffPABBw8eZPv27cTHx9OnTx8uXrwIwNGjR7FYLHz44YccOnSI9957j6VLl/LSSy95HbesrIyaNWvyyiuv0L59e5/tGT16NKmpqfzv//4vBw8epE+fPvTq1YszZ84obf7xj3/wzTff8O9//5sjR44wceJExo8fz4YNG5Q29913H8uXL+fIkSN8++23yLJMnz59MJttiZHNZh599FGMRiM7d+5kxYoVpKSk8Oqrr7rYdOXKFYYPH07Pnj19uoeioiIeeOAB3n77bZ/vWyC4HviiFk7GhHOlrIRLp0+Rm32S/f/96ppnc1E7thP5676gaOcuSvbvp3jPHvKWL9e0vvrAPFJLp3KeGEdH27Dt2rfDIslKJHl28Gml31r/X1lr2EXxsU1YLNa/tbFyBMEYNPN7yinl0Fhi+56g+iP0ktBLQi9VHuGUEtxQZLWzRznnpYMkVT1Sy5ecUr4gOTb5CQQCKwEBAdSuXZu4uDieffZZevXqxYYNG7h8+TLDhw8nMjKS4OBg+vbty/Hjx5V+J0+epF+/fkRGRhISEkKbNm3YtGkTWVlZJCQkABAZGYkkSYwcORKwrkYNHTqUkJAQ6tSpw3vvvcdDDz2kWc2Kj4/n9ddfZ/jw4YSHh/PMM88AsH37dh588EGCgoJo0KABEyZMoKioCIBDhw6RmZnJv/71Lzp37kxcXBzdunVjzpw5dO7cGYDs7GwmT57MxIkTefPNN2ndujVNmzZl8uTJvPvuu8ybN0+zUldZhgwZQq9evWjcuDFt2rRh/vz5XL16lQMHDgBWMbt8+XL69OlD48aN6d+/P1OmTGHdunVex42Pj2fBggUMHz6ciIgIn2wpKSnh888/55133qF79+40bdqUWbNm0bRpU5YsWaK027lzJyNGjOChhx4iPj6eZ555hvbt2/PLL78obZ555hm6d+9OfHw89957L3PmzCE7O1upirt582YOHz7Mv//9b+6++2769u3L66+/zuLFi10EcnJyMkOGDKFLly4+3cewYcN49dVX6dWrl0/tBYKbid3J0+z+rtbjSmgTWZZVScJVKHpHe022raT716tnPbZ9yHHY4s8lSzxlOJKYK0gSsir7ufOsV3UlXLm4F1m22Po6ki1UnFPKdqwTi36C6o/QS0IvCb1UeYRTSuDCzao+d/6PDI7/uovjv+4iNzsTWZad8nhWdv+el/ZutweqxZcj9NxZZAkENwpZljGVlt70r+vxsx0UFITRaGTkyJHs2bOHDRs2sGvXLmRZ5pFHHsFksuYcGTduHGVlZfz0008cPHiQt99+m9DQUBo0aMDnn38OQHp6Ojk5OSxYsACwrjTt2LGDDRs2kJqayrZt29i3b5+LDXPnzqV9+/bs37+fGTNmkJmZSVJSEk888QQHDhxgzZo1bN++nfHjxwNQs2ZNdDoda9euVVaknFm7di0mk8ntCt/YsWMJDQ1l9erV1/z8wLpa+dFHHxEREeF1tS4/P5+oqKjrMqea8vJyzGYzgYGBmvNBQUFs375dOe7atSsbNmzgzJkzyLLMDz/8wLFjx+jTp4/bcYuKili+fDmNGjWiQYMGAOzatYu2bdtSq1YtpV1iYiJXr17l0KFDyrnly5fzxx9/MHPmzOt5qwLB9aXC7f+uDcKiY9w0rOJczotwTvPqwsPd2mLx1A9A0rmdyt8MAbKfYops04hW/5VWL/q+fU/oK0HluFV66XpoJqGXrh2hl6q/XhKJzgW+U5W/yR4SnV88lcW/p0/UnDOE/R1oXIVJnCZTDl0NlipzE8IpJbjBlJeVsXDE3276vBNWrMXf6Y3VV2RZZsuWLXz77bf07duX9evXs2PHDrp2tUYBrFy5kgYNGrB+/XoGDhzIqVOneOKJJ2jbti0AjRs7fsftwiE2NpYaNWoA1lW/FStWsGrVKiUcefny5dStW9fFlocffpjJkycrx6NHj2bo0KHKCmGzZs1YuHAhPXr0YMmSJdSrV4+FCxfy4osvMnv2bDp06EBCQgJDhw5V7Dp27BgRERHUqVPHZT6DwUDjxo05duxYlZ6dnY0bNzJ48GCKi4upU6cOqampxMS4/8CakZHBokWLmDt37jXN6Y6wsDC6dOnC66+/TqtWrahVqxarV69m165dNG3aVGm3aNEinnnmGerXr4+fnx86nY6PP/6Y7t27a8b717/+xYsvvkhRUREtWrQgNTUVg8EakXHu3DmNwAKU43PnzgFw/Phxpk2bxrZt2/DzE/JEcPtiLrJ+iLwZKsFbonNZtm6/U9o4R6er+0oSskXGVQlJynV3p60vbfMhO5xSbsoBenJK2Y8kT5FUAkEF3Cq9BFXXTEIvCb0k9JLviEgpgYMboBGUISVtBFbhpVwA/AICMAQFWdtaCmztqmaPS6Jz361zNrSS4wgE1Z+NGzcSGhpKYGAgffv2ZdCgQYwcORI/Pz86deqktIuOjqZFixYcOXIEgAkTJjBnzhy6devGzJkzlbBrT/zxxx+YTCbuv/9+5VxERAQtWrRwaduhQwfN8W+//UZKSgqhoaHKV2JiIhaLhRMnTgDWlchz586xcuVKunTpwmeffUabNm1ITU31+VnYhYM3Vq5cqbFj27ZtyrWEhATS0tLYuXMnSUlJPPnkk1y4cMFljDNnzpCUlMTAgQMZM2aMcl49bnJysk82b9u2TdNv5cqVAPzv//4vsixTr149AgICWLhwIX//+9+VbThgFVk///wzGzZsYO/evcybN49x48bx3XffaeYYOnQo+/fvZ+vWrTRv3pwnn3yS0tJSfMFsNjNkyBBmz55N8+bN3bbx9kwFgpuF8UwhFxenWQ9MFsz5Zdd1/KKff6Zo608AXFq9ivSTOwGnxT2PQsnuHNK5nANbpJRqi552+567keyXJLfnHNWK7WZVECl1SyrpCAQ3F6GXHAi9JPSSr1QP15rgjiW6XgMCgoM59fsBwIIkSZXftmfHRZtVbRxFVFXNCoHAZ/wCApiwYu0tmbeyJCQksGTJEgwGA3Xr1sXPz0+TuNETo0ePJjExka+//prNmzfz1ltvMW/ePJ577rmqmK4hJCREc1xYWMjYsWOZMGGCS9uGDRsqr8PCwujXrx/9+vVjzpw5JCYmMmfOHHr37k2zZs3Iz8/n7NmzLquNRqORzMxMEhMTK7Stf//+GvFZz5bjxW5306ZNadq0KZ07d6ZZs2YsW7aM6dOnK23Onj1LQkICXbt25aOPPtKMra6WEq7epuOFDh06aPrZV92aNGnC1q1bKSoq4urVq9SpU4dBgwYpK6ElJSW89NJLfPHFFzz66KMAtGvXjrS0NObOnavJSxAREUFERATNmjWjc+fOREZG8sUXX/D3v/+d2rVra3IqAJw/fx6A2rVrU1BQwJ49e9i/f7+yfcBisSDLMn5+fmzevNnrMxUIbhblF4s18kI2VW5BzGOUkM1fc3nlKspzY6FOM9L8DvDfwOM8hjYSQXZy7iw7uIysgn0MPpnHveB2ce3yhVKO/3JOO5ltNIDjey4S5MFmxfkkyci2D2CaGZxySnlMdG7PKSUElqCS3Cq9ZJ+7Mgi9JPSS0EuVRzilBNeAD6pCiSSXnE47+ur0th9DubKRTk7YRZAkuXFIyZpv1teqnFKyfXXR/XWB4EYgSVKVt9HdbOzCQE2rVq0oLy9n9+7dSjj6pUuXSE9Pp3Xr1kq7Bg0akJycTHJyMtOnT+fjjz/mueeeU1bQ1PkKGjdujL+/P7/++qsijPLz8zl27JhL+LMz9957L4cPH3ax0xuSJNGyZUt27rRGI/ztb39j6tSpzJs3j3nz5mnaLl26lOLiYoYPH17huGFhYYSFhflkg8VioazMEW1x5swZEhISlAot6lU4oFL3ZycoKMhrv5CQEEJCQrh8+TLffvst77zzDmCtwGMymVxs0Ov1rh88VciyjCzLyn116dKFN954gwsXLhAbGwtAamoq4eHhtG7dGn9/fw4ePKgZ41//+hfff/89a9eupVGjRoSEhPj8TAWCG4andE4+tPFpeNXfw4Igk0/GXCm6hN/hi+SWwsnocGpLMgFg1TE2LXPpTCGHD+UQHaE2z7qdDyD/YgmBEsiK30il0xSnlGNmdaSUcq6CSClJZ81btSfmcTaP+wGABq2jePR/2t20fKaCOxOhl4ReAqGXqrNeEk4pgQpVSLc7bVAlJ42HpFIqdHq9reU1OqXsc+l0YDbjTRV6LwDoQVQJBAINzZo1Y8CAAYwZM4YPP/yQsLAwpk2bRr169RgwYAAAEydOpG/fvjRv3pzLly/zww8/0KpVKwDi4uKQJImNGzfyyCOPEBQURFhYGCNGjOCFF14gKiqK2NhYZs6ciU6nq/BDy9SpU+ncuTPjx49n9OjRhISEcPjwYVJTU/nggw9IS0tj5syZDBs2jNatW2MwGNi6dSuffPIJU6dOBawrhO+88w5TpkwhMDCQYcOG4e/vz5dffslLL73EnDlzuOuuuzTzpqenu9jSpk0b/P39NeeKiop444036N+/P3Xq1CE3N5fFixdz5swZBg4cCFgF1kMPPURcXBxz585VSh+DdYXMG/aVvcLCQi5evEhaWhoGg0EjeJ2xlyNu0aIFGRkZvPDCC7Rs2ZKnnnoKsK4s9ujRgxdeeIGgoCDi4uLYunUrn376KfPnzwesWwjWrFlDnz59qFmzJqdPn+af//wnQUFBPPLIIwD06dOH1q1bM2zYMN555x3OnTvHK6+8wrhx4wiwrUI7P9fY2FgCAwNdzjuTl5fHqVOnOHv2LOD4/6hdu3aFz0wguGlUweniNveT+rWtQe0LV6h9PoZyCQ7Vh+OU4lwgXLYUEVnrAgE62YMIktz/jZVsO/4kMDvnmXJyYPmS6NysDyQ3qBGYredOHrxEudGCf4DenVECQbVA6CUrQi8JveQJ4ZQSVB63kUhVHkxxSlm371V9JCWnlM0pVTmnknNlGIFA4AvLly/n+eef57HHHsNoNNK9e3c2bdqkCAyz2cy4ceM4ffo04eHhJCUl8d577wHWcOLZs2czbdo0nnrqKYYPH05KSgrz588nOTmZxx57jPDwcF588UWys7Ndqp44065dO7Zu3crLL7/Mgw8+iCzLNGnShEGDBgFQv3594uPjmT17NllZWUiSpBxPmjRJGWfSpEk0btyYefPmsWDBAqVE8urVqxk8eLDLvO7OZWdnU79+fc05vV7P0aNHWbFiBbm5uURHR9OxY0e2bdtGmzZtAOtqWEZGBhkZGS79K/qbds899yiv9+7dy6pVq4iLi1PKDLsjPz+f6dOnc/r0aaKionjiiSd44403NALxP//5D9OnT2fo0KHk5eURFxfHG2+8oeRnCAwMZNu2bbz//vtcvnyZWrVq0b17d3bu3Kms8un1ejZu3Mizzz5Lly5dCAkJYcSIEbz22mte78kXNmzYoIhCcPx/zJw5k1mzZl3z+ALBrUSVAgoZCxI6l5xSfiazra0JWfJHXTS84FIuYYCl/Cw5R/9N3foJEGZLVq6SPLIkufV7WV9aDyw6SXvZbpvsq1NKpyRK114Wi4CC6o/QS0IvCb3kGeGUErhwPf0yvuS21OlsTilZtf2uSpPZuutcyxor2/PcGueEcEwJBBpSUlI8XouMjOTTTz/1eH3RokVex54xYwYzZszQnAsLC1MSS4J1xWz27Nk888wzyjlPwqFjx45s3rzZ7bWYmBiljHJFDBgwQFm9zMvLo2fPnixZsoT+/fsTHBwMQHx8fKU+TAUGBrJu3TqvbUaOHMnIkSN9HlNNVT7YPfnkkzz55JNe29SuXZvly5d7vF63bl02bdpU4VxxcXE+tbMza9Ysn0TStTwzgaCyVOq3TKUnPEkL12wDmjwDLnPba9+5Q08x5URozpUWFRJm6+PnH6DZggdg1tvz5Ugu1xTbbfOV6vXac4oTynrOU04pRy0Zoa8E1Ruhl4ReEnqpaojqewIFn38/KyMqPI2pLviiipSqkj12LE5OLa979Nzbo86QIFbuBIJbw/79+1m9ejWZmZns27ePoUOHAiii52YTFRXFd999R8+ePdm1a9ctsUEgENxBqLarebzmfQAfzzstuLmLUFJsCSCidkMkzSgysn1hUKe1VVtpz8rBhrGqc5ImigsckVJ79uzh008/Zffu3Vq7JI21nm9LIBD4hNBLguqCiJQS+M41OGm8ubH0aqeUpJVLlUOVU8qX1hVFSgmnlEBwy5g7dy7p6ekYDAbuu+8+tm3bRkxMzC2zJzo6mldfffWWzS8QCG4TbpA2cJvK08mpJUv2fFBOi28+miRJErIqHCq+KI38q/kAtOxSh8vrNXv2VC/tic6dtu85bSO0J9bNy8tTcpd06tSJMp3Er83qYVq/CkuzWMrLDuAX0M5xX76ZLxAI3CD0kqA6IJxSAq9ca7RQhSHbEhjL7K0s9lNVnMyR00BWHeP82m3XyueUOvfa6+R//TUAOoOBWjNeIbxPn8pYLBAI3HDPPfewd+/eW22GQCAQXEeu/9Y12cmd43YGlf6RdBKS2dEysvw8lqI8ACJiQ7jsdg5V9T3VeR2ScuLo9q3knTlNm4f7UK9ePQoKCti0aZNSKSwvyEB+cCCUFINBj1R2WOOUEouAAkHVEHpJUF0QTinBjcWN0JBlWRFSpYUmcrMv2S44JTqvpEjRJDqvom2Az46pK+vXIxcXA1Z3WsHmVOGUEggEAoGgOuNBOhz/eQcX/ygnLCaWsCosdPkymaNKsXbcYFMYUAC6cKf2qo16soQk6bUjqrfs6bSJzrXb9+yRUmjO2gvV5GSkk5ORTknBVfpNmqY4pewLfhaXx+B0X8InJRAIBH9qRE4pgYMbkVPK3sXDebPJApL1xzAgRMdd3etVemwFu/12p5QbleOc/8Cls6QSXxWpJJsTLOIW7dsWCAQCgUBw61Brm4Pfb2brvz9h4/v/5FJJUdUH9aI9nBORSzZRE2K0Jje3BNzj3AW1uJN0kiOa3HpGNZb1vLvZ7ZFS2i19EBZdkx7DRtHs/q4AmMpKlbF8vCWBQCAQCESklODG4ti+56GBJGH3jd7VvS5tH6rPb99nV20ym5PIWQxp7PDF8+bIdO7TtPoaEZVqLxAIBAKB4NZx9Occdn6egblcRu+vo/ug5jS9L7bijjY8vdsHhIRQVlSE0VLuUWD7pBRk9TfJ9YLtXGCIP4dj9hGelUeIEcAfb2gdUmiXpiUJi8XsmMlNeilZciz6SUjo9Xo6PPY4h8LCOf7LTkelY5UOs0bHe7hBgUAgEAgQkVICd/hat9gXJ4y6yp7keqG00IT9x/DCySueuvqIU6Jzb6uNThM4CsNUprKgVhwKBAKBQCC4/cnce4GSAhPGknJKrhr5I+3idRk3PMaLY8ujtvJ9fGf3jk4vcbBlKhdDTtkncTO2Ki5K0sp+zSKepLOO75S83DqqPVLK+l2JOncpBuh6M3k5RYqDS3IztttxBAKBQPCnQjilBAo3UhN40mLmcgv2H8PTR35n52crMZcXVmmOSueU8oBdNLlb2/PQwWaAUFUCgUAgENzu2N+tI2sHW48r8/5dmbd6Sbs97tpQ53zSphlwqonnsb+kk7Rt1E4qL11dnFK2h6AszUlaew7+cFrpu/q13VwJbQiAzoM+81lvCQQCgaBaIrbvCSpPZYRVhfv3QNIFAGAqOcuutasJieoCdKm8l0zJK+rGSeRWcLoLlVIJtormv26JTAUCgUAgEFwL5SYT3/1/iynIvQCSjva9+9K8Uzf3jW1v33p/neb4luJGu8iSNhem3XmjqA574Riv9msjpaw9XHNEeconBSDJ9kTnzpFS2u16dqdU/sVSzfxG/1CgyBapZbb1Ud3q7fD8BQKBQHDLEE6pasSJ3y5yaNtZZFnGP8CPLo83JqJm8PWf6Do4YdQ+Ir2hLchmJCkbU8lpLBZj1XbEOUVKeV958+IkU3RhJSOlhKoSCAQCgeCWcDb9CId+/E45Lrma79kpZcPuTCkpOMfH4+dTcvUqej8/Ep4aS+sHEzz08ui6cW1z3RettGkD3JRzcWmpPpZ0Om30lsZmSZNHyl1OKcf2PafRnR1qTtdlmxfLESklW/Nb2dqJQHOBQCD4cyO271Ujftl4gpO/X+LUoTwy913g6M/nKjeAsuLlsYHyKis6nK9+/pH/nfY8q16ezIn9ezz0cFS184SkC8IvqAsBoY1d5qkcTjml3M3lsafq3n0UkWU6iQP1a7I18xD7G8Zy2VRWCVsFgjuHkSNHIknWqk0Gg4GmTZvy2muvUV5efk3j/vjjj0iSxJUrV66PoT5w4sQJhgwZQt26dQkMDKR+/foMGDCAo0ePatpt3LiRHj16EBYWRnBwMB07diQlJUXTJisrC0mSSEtL83n+WbNm0bJlS0JCQoiMjKRXr17s3r1bM+aoUaNo1KgRQUFBNGnShJkzZ2I0Gr2Om5OTw5AhQ2jevDk6nY6JEyf6ZM9PP/1Ev379qFu3LpIksX79epc269ato0+fPkRHR1d4v7Is07dvX49jpaSk0K5dOwIDA4mNjWXcuHGa699++y2dO3cmLCyMmjVr8sQTT5CVlaVps3LlStq3b09wcDB16tTh6aef5tKlS9d8n4I7G4u53OnY7KGlA/vbfVFeJlcvXsBUVkppUSEZv+y6ESb6jORBB7kstrls33PuIGs8Pi5bCHWujjR3M7tu39N0cYmUkp3KBDqKI/u2XVAguFMReknoJaGXqoZwSlUjLGbr235opHU7nKX8GpaeKhALf8RGcqngChdOZJKTkU5a6ib3DSs0wdtElbTfueqLZneem7EqXJrzfv1sRDCno8PJvpJLTmQYxwouV8JYgeDOIikpiZycHI4fP87kyZOZNWsW77777q02S6EiEQJgMpno3bs3+fn5rFu3jvT0dNasWUPbtm01Qm/RokUMGDCAbt26sXv3bg4cOMDgwYNJTk5mypQp12Rn8+bN+eCDDzh48CDbt28nPj6ePn36cPGiNdHy0aNHsVgsfPjhhxw6dIj33nuPpUuX8tJLL3kdt6ysjJo1a/LKK6/Qvn17n+0pKiqiffv2LF682GubBx54gLfffrvC8d5//32PuXPmz5/Pyy+/zLRp0zh06BDfffcdiYmJyvUTJ04wYMAAHn74YdLS0vj222/Jzc3lr3/9q9Jmx44dDB8+nFGjRnHo0CE+++wzfvnlF8aMGXPN9yn48+CoU1IFz4hzkJDmQPJ8zWXyKkwtKV4gxRj19r2K8lZJOp3WKnWVPElStudp5kQdUeVbpJRWczkcY+pIKc3WQREqJahGCL0k9JLQS5VHbN+rhgSG+lN4uYwbuZ3MvgjWpENnMvf87Egy7gFJ+cc+gDsn0TXaZKk4UspzZ0dIvF18VaSRzE5/SMx4fwYCwZ1MQEAAtWvXBuDZZ5/liy++YMOGDSQnJ/P888/z1VdfUVZWRo8ePVi4cCHNmjUD4OTJk4wfP57t27djNBqJj4/n3XffpXXr1iQkWLfHREZGAjBixAhSUlIoKCggOTmZ9evXEx4ezosvvsiXX37J3Xffzfvvvw9AfHw8o0aN4vjx46xfv56//vWvpKSksH37dqZPn86ePXuIiYnh8ccf56233iIkJIRDhw6RmZnJli1biIuLAyAuLo5u3RxbfLKzs5k8eTITJ07kzTffVM5PnjwZg8HAhAkTGDhwIJ06darScxwyZIjmeP78+SxbtowDBw7Qs2dPkpKSSEpKUq43btyY9PR0lixZwty5cz2OGx8fz4IFCwD45JNPfLanb9++9O3b12ubYcOGAbiswDmTlpbGvHnz2LNnD3Xq1NFcu3z5Mq+88gpfffUVPXv2VM63a9dOeb13717MZjNz5sxRPrxOmTKFAQMGYDKZ8Pf3Z9euXcTHxzNhwgQAGjVqxNixYysUgL7cp+DPR6W36/uIJqVlZfuqesgV+Mwcic61TiP3xkiqQi6uOaVc7bC/MNP2+y9oLpkoMxjY27EGst4fAHN+PqbzF1wipZwNtx/qdHrlnIQtYZbwRwmqGUIvCb0k9FLlEZFStzkWi5nMvb/w+w+pHNn2A6WFnivTOWuqG7XwpJYaETW9lD/GpzznLiN7CluvENnJKVWR48vTA5IquO5uLHfHAkEFyLKMxWi+6V/X4wNYUFAQRqORkSNHsmfPHjZs2MCuXbuQZZlHHnkEk8kEwLhx4ygrK+Onn37i4MGDvP3224SGhtKgQQM+//xzANLT08nJyVFEwj/+8Q927NjBhg0bSE1NZdu2bezbt8/Fhrlz59K+fXv279/PjBkzyMzMJCkpiSeeeIIDBw6wZs0atm/fzvjx4wGoWbMmOp2OtWvXYvawtWft2rWYTCa3K3xjx44lNDSU1atXX/PzA+tq5UcffURERITX1br8/HyioqKuy5w3iuLiYoYMGcLixYsVMa4mNTUVi8XCmTNnaNWqFfXr1+fJJ58kOztbaXPfffeh0+lYvnw5ZrOZ/Px8/vd//5devXrh72/9ENylSxeys7PZtGkTsixz/vx51q5dyyOPPHLT7lVQfbj2inhO4/kgdnSYYfUQ+FcX+FcXWh0aQh3/wz7OoM0p5ao7nOZXJ00Ha/U9TaCUKlLKJfrJfsFC+KUcaubmUv/sWeqczSG0xBppYTpzllOjnnbdvmeRNeO4bt+TtcUEBYIKuFV66XpoJqGXrh2hl6q/XhKRUrc5f+z9lS/nzlGO70roTWLy8177VFVkVVxszvc/ymaThVNH8sg/X1z5iZT5vFwsN8Lh9VBs2xfbOEFJdO7t/iWXF07XJcn35+es/XzrJRAoyCYLZ1/dedPnrftaVySDvuKGbpBlmS1btvDtt9/St29f1q9fz44dO+jatStg3b/eoEED1q9fz8CBAzl16hRPPPEEbdu2BawrWXbswiE2NpYaNWoAUFBQwIoVK1i1apWyQrR8+XLq1q3rYsvDDz/M5MmTlePRo0czdOhQJT9As2bNWLhwIT169GDJkiXUq1ePhQsX8uKLLzJ79mw6dOhAQkICQ4cOVew6duwYERERLitXAAaDgcaNG3Ps2LEqPTs7GzduZPDgwRQXF1OnTh1SU1OJiYlx2zYjI4NFixZ5XfW7HZg0aRJdu3ZlwIABbq//8ccfWCwW3nzzTRYsWEBERASvvPIKvXv35sCBAxgMBho1asTmzZt58sknGTt2LGazmS5durBpk2N7eLdu3Vi5ciWDBg2itLSU8vJy+vXrJ7blCSq5EmeLMPKyhuULlZFbdm0Ro8+D9C3K+RCgRdAPXKCXByuVEVwip2RkqzZTLng3SB2pZDPKMZbklOhc3c4QQnlINH6XT1HbXIsecrhyqfzceZVucn2QsmqrnjqnlGSfXxbRUoKKuVV6CaqumYReEnrJHUIvuUdESt3mFOdf8XrslVv4Jr9v80k2/esApw7nAaDTa3/U3FbG87Tw547DX8K6MfDNNOvXf4Y4enqLlFKHxatXEN0GVVUyUkogqMZs3LiR0NBQAgMD6du3L4MGDWLkyJH4+flpQrOjo6Np0aIFR44cAWDChAnMmTOHbt26MXPmTA4cOOB1nj/++AOTycT999+vnIuIiKBFixYubTt06KA5/u2330hJSSE0NFT5SkxMxGKxcOLECcC6Ennu3DlWrlxJly5d+Oyzz2jTpg2pqak+PwuDwVBhm5UrV2rs2LZtm3ItISGBtLQ0du7cSVJSEk8++SQXLlxwGePMmTMkJSUxcOBATQ4A9bjJyck+2bxt2zZNv5UrV/rUzxc2bNjA999/r2wVcIfFYsFkMrFw4UISExPp3Lkzq1ev5vjx4/zwww8AnDt3jjFjxjBixAh+/fVXtm7disFg4G9/+5vy9/rw4cM8//zzvPrqq+zdu5dvvvmGrKws5TncyPsUVD88OVO8LsJV4EPxkwwE6OrgV+du9DEtXaKnlGjw8HpwzzDHOR8cXLJzmgC7nfZcU24HcU107mn7nqxpreqnD8A/MBqAQL8QaisJdyVki8UxrsWeU8q9BTq93mG3KlJKpJQSVCeEXnIg9JIWoZc8IyKlqiFu8nxXqT9UQig4NSzKt4Z2h0UHElM/lOb31+Ls8QoSgcsuLzxjj5AKrAGlV6Ao99pySmlwKm0sENwgJH8ddV/rekvmrSwJCQksWbIEg8FA3bp18fPzY8OGDRX2Gz16NImJiXz99dds3ryZt956i3nz5vHcc89VxXQNISEhmuPCwkLGjh2r7J9X07BhQ+V1WFgY/fr1o1+/fsyZM4fExETmzJlD7969adasGfn5+Zw9e9ZltdFoNJKZmalJNumJ/v37a8RnvXr1NHY3bdqUpk2b0rlzZ5o1a8ayZcuYPn260ubs2bMkJCTQtWtXPvroI83Y6mou4eHh+EKHDh00/WrVquVTP1/4/vvvyczMVFZv7TzxxBM8+OCD/Pjjj8pKauvWrZXrNWvWJCYmhlOnTgGwePFiIiIieOedd5Q2//73v2nQoAG7d++mc+fOvPXWW3Tr1o0XXngBsOZYCAkJ4cEHH2TOnDk39D4F1Q8vAT5VplPNR4n0bw6dHgAgLudbrpSmOea0T2YIgajG2nMuBnoyzGq4sdxIWXEJx5rpOVffQqeT5VCqauasY3ROXihNqJesjcSSnNupxKU67NxsVsaxL+bJzr4znBOd28ZU7k/oLYF3bpVess9dGYReEnrJE0IveUY4paoT15pUytfmlYhXb9W1Dh0fbeRtMA+vK7LHdjGqMZzdB7JZuV9J5+pUcl71dBdgrpjgo1fPOZJKVI8RVBZJkqq8je5mYxcGalq1akV5eTm7d+9WwtEvXbpEenq65s20QYMGJCcnk5yczPTp0/n444957rnnlBU0db6Cxo0b4+/vz6+//qoIo/z8fI4dO0b37t292njvvfdy+PBhFzu9IUkSLVu2ZOdO67aAv/3tb0ydOpV58+Yxb948TdulS5dSXFzM8OHDKxw3LCyMsLAwn2ywWCyUlZUpx2fOnCEhIYH77ruP5cuXaz/IQaXuz05QUFCV+vnCtGnTGD16tOZc27Ztee+99+jXrx+Akhw1PT2d+vXrA5CXl0dubq6SRLW4uNjlXvW2yAqLbXt2cXExfn5+btvIsnxD71NQjagoNZPXrl5aSxDsZ/3gI5cbkfwMBPqHQylkHcgFoKykHLz9abBpiXZBOoqiGwOOPCKyU0RUUVkhV7jKlQggAsL8MrjnagQlpnyXMCRZltBJXqrvOUVPqeKkkJEptsgEK+cdbWWLxVYiRodk1kwJgEVfyuW6kZT6BXMpOBjz1av4mSqufSMQqBF6SeglEHqpOusl4ZSqhtidMtfyHu81WafkXtD4MqpPaFbhKkBn+xG2mJWcUj4nifBw3ec7EiJK8CenWbNmDBgwgDFjxvDhhx8SFhbGtGnTqFevnrJXfuLEifTt25fmzZtz+fJlfvjhB1q1agVYK7lIksTGjRt55JFHCAoKIiwsjBEjRvDCCy8QFRVFbGwsM2fORKfTVZjvberUqXTu3Jnx48czevRoQkJCOHz4MKmpqXzwwQekpaUxc+ZMhg0bRuvWrTEYDGzdupVPPvmEqVOnAtYVwnfeeYcpU6YQGBjIsGHD8Pf358svv+Sll15izpw53HXXXZp509PTXWxp06aNkmzSTlFREW+88Qb9+/enTp065ObmsnjxYs6cOcPAgQMBq8B66KGHiIuLY+7cuUrpY8BtQkw19hWvwsJCLl68SFpaGgaDQSN4nSksLCQjI0M5PnHiBGlpaURFRSkiNy8vj1OnTnH27FnN/dauXVvz5UzDhg1p1Mi6KNG8eXMGDBjA888/z0cffUR4eDjTp0+nZcuWSlWhRx99lPfee4/XXnuNv//97xQUFPDSSy8RFxfHPffcA0C/fv0YM2YMS5YsITExkZycHCZOnMj999/vNo9GZe5T8OdD+ZtyA7wilqLz6CMaKMd5OdYcm6bScuv3c+cpPvkVESGufQMNwTQK0LPHEKx13lSwGJavL0YfUguu5Lu1yTnRua8arqi8gCILBFuN0ERK6YJjCdhg4slGL4AFLv37sEYfFQUewxgaAYAJ0MfWx+/MJdsioE/TCwR3PEIvWRF6SeglTwinVHXmemus6zRejvEMm4+lEOmpgS8iRam0Z3dKleOSU8rd0B7uwbWssg85pVxHqWR7geDOZ/ny5Tz//PM89thjGI1GunfvzqZNmxSBYTabGTduHKdPnyY8PJykpCTee+89wBqiPXv2bKZNm8ZTTz3F8OHDSUlJYf78+SQnJ/PYY48pJY6zs7MJDAz0aku7du3YunUrL7/8Mg8++CCyLNOkSRMGDRoEQP369YmPj2f27NlkZWUhSZJyPGnSJGWcSZMm0bhxY+bNm8eCBQsoKioCYPXq1QwePNhlXnfnsrOzlRUuO3q9nqNHj7JixQpyc3OJjo6mY8eObNu2jTZt2gDWqisZGRlkZGS49K8oGtMuRMBaLnjVqlXExcV5LU28Z88eReSAtZIPOMpNgzUHwlNPPeVyvzNnzmTWrFlebVLz6aefMmnSJB599FF0Oh09evTgm2++UX5WHn74YVatWsU777zDO++8Q3BwMF26dOGbb74hKCgIgJEjR1JQUMAHH3zA5MmTqVGjBg8//HCFJY59uU/BnU1V3oGrlO6g0hO5FzWWoiLKThyHu93Z5UkIecsd5Um3qGKedHpb3ihr/yMl+eiCA4gsLrMmTfc6tv2Fag5JQl+jEZLJcarkcB5y7VDl2GLJBiKRTEZkfwOyTq9YYNVcsog0F/wpEHpJ6CVf+TPqJeGUus1x2Xbmwxt3lSscK0P7PkBV5tpy5Rv2X9jPw8T6Zo437JVkZLNDjCmRYqoR3Gcyd4/PK6cVbQkUCKoH3t6EIiMj+fTTTz1eX7RokdexZ8yYwYwZMzTnwsLCNAkXi4qKmD17Ns8884xyzpNw6NixI5s3b3Z7LSYmRimjXBEDBgxQVi/z8vLo2bMnS5YsoX///gQHBwMQHx9fqQ9TgYGBrFu3zmubkSNHMnLkSJ/HVFOVD3YPPfRQhf2qYpO7McPDw1m2bBnLli3z2G/w4MFuRaua5557rtI5Nny5T0H1QvP/Lcvw22q4lAlAbWMEp7jr2pNw+oBRJ2PR+6HzmB/KM9pqe5LrypqzRpScQs2VrXsQZAql+GQh+f6O64VmE0G27RzG0lKX6n6g3q7nSMDlcJpJIFn7XyjNJjawAVhkR+Q6jm7+ZaUY/VVJjyUJgyTTMFBH6ffZWIL8CIgPJ+gu95W1BII7AaGXhF4SeqlqCKdUdeY21d/lcnkFLXwx3O6AsjulLEpmTUmqQqJzZfFRclSREYFSAsEtYf/+/Rw9epT777+f/Px8XnvtNQCP5XNvNFFRUXz33XcsXryYXbt2KaWXBQLBHcLFo7D+WeWwAxIHpOVIUpSHDlV7Q3eOcNrtd5yDdYuBu8ECIX8EAA4N5FgLVDvQPJuizvMEIJlLnZrKbtrK5PwaQdkfebRlFWadDjlJD+EQpNMjydYwp/JyrTbTJj13OKVkld/LojdQHFKLQMBoLlGa61Q+KXtUVnhJGbmh9rFkJAni/SWaG3QY957HCBTuOkvdmV3Q3SG5gwSCW43QS4LqgnBKVUMcJX9vkJfETXiUy0xV8rA6Jzr3YQyd6kfYXu7Fvn2vwkCnykVCVcQNe94CwZ+QuXPnkp6ejsFg4L777mPbtm3ExNy6FfTo6GheffXVWza/QCC4BkqvWr8HhIOpGMlSjkFXolqEul7v39qMnOd1VxwHOjAHBiFZijz0dIdzRLZ3O2UP0Vhllx35WvQWC/5XdBAO/jo9ZqxOKYvF7LavNUgqSB0oxfmsq+iAsoBIztRLIAowy+VYZAs6SYdkkR25p2zPWKeOnrJhD9rS1wnBnFMEZtn6JRAIfEboJUF1QDilqiPXWuLYYyqD6yQUPIxTuZwOTjmlAOwRWM4lj30b0PpNFSlVcQ+RoVMguBHcc8897N2791abIRAIqg229/iQGCjKhbKrSFgca2zXQ984SwKfxqysjvBQNtDmAHJJhI4MsqsrSy6zRjXpJLDY7DSXlyNL2iEVdAEazVN4pYxwsD5DLIAeGRkz5egwYDCrt+/Zorrsz0OyjS6BznZNHxdudUqBKMUnEFQCoZcE1YUq7HMS3K44v49XfvdZJfIuKVRCUJmtTiNZHSKudgBVRYe4iZSS3FTfq8rQ3lZO1deEa0ogEAgEgluMr84Mu5MEuWqJMdV5vivf2+FP0ozjabHOXc4oV3Q2OS97Kl/slCxKWddTtS07fVo7m2YuVREYWUa2WK/pzSb8y0ts5y1YbFsTW10udani7IiUsj9/yfEhRC+UlEAgEPyZEZFStz2Vd6f4GulzMzn3xpsUH6gBkS0p2rEDKcabjbLqX+9tUOePsjht33ODkyxzvFKq7+Fb4lNZdgwmSWJlTyAQCASC2xVZpiTPn+KT5WAyoNcHIQWbfK9r4jzcdW7njFrGudUtkvaqJEvWSCm3jiRXKyw2p5JOJ6Gz3XzJ0SMevWyy04HjecmqWWQuyKdpIDVXZpdVNyNZnOyQVIHtVYpwFwgEAkF1QURKVWeuxU9SgT6o7NDFv/ziZSyL8wnf0URK2fIh6LQqM/VkKnvP7wHgWN2Kp1ALLF+4ntH/AoFAIBAIrgNOb8rZP0VxYVc5F/b4k7M7kohLGapFvMq8gV/rm72XpOZgtVuuaCbJ6ciRS9TZgaQ+YXFadNPpHAnFzRaLpq92bm31PYvybCUlykuWLaSb91LvzQco0ksqm2w5pex5P1WJzh2RUuLjiEAgEPyZEZFSdxo+eD6qnCPBkVbJ+9zuGlRiLneFZTQRSrZve8/t5UigTHRQNPfG3quNAHOTU0ryUH1v8f7F1C/OJ4wQroRKRBQ5jaF+LUm+hfNr4u5FpJRAIBAIBLcvMmajVRvoDDIWo4S/qQSLh0ipyrylW2zaw6Lzt215u9bEnp7WBe3uH01pO+sV2/Y8t9v7VE4ui06HzmwGi8SZXTUIPJtLoMlmvz2SSYkCV08tabYdqqPL7YpLRkaWZSSdhFnd2TmnlMNspa8ktu8JBALBnxrhlKqO+LD77NrGdxUbzlS2bp22k/XF0t+WcubkMQA+7vMxnet0dmOLygGlREppc0qZLKZKWeMYz6cNhOpMC1WbRyAQCAQCwU3BPwzKLgFYrjmnlBkLueZC/AmnrG48p/wv0q6kilrAjS0Wj7rCc6SUSyFj9Wt7tUEzXD0ZbEtSDkgy8fGn2HO6M0X+pUAxwWUR9hGRkRwb9WQZVaCUOn5K0U0WtYW2F/acUrJ9Y58kobNHWam274k1PoFAIPjzIeJlqyGSLzmRrvdc14DsZYggvyAALhRfcO5lNwDZFi1lvpxnPee0fU8dzC67cSWpRrPejy9JJjSJzu1iUCAQCAQCwa3A65Z79fu5LSIo3iBhKDfbO1cJZ6eRUdI77HCrIbzHQKnPHNWfYZ/fH06nnTWMKqcUnp6B45zFtmgXHhqpnAt5oJjmfzlHfo27OdtwJFfDGwHQOK+9W1tBqSujsV1WVfmzRqA52aiOxJK1UVbqSKnSwgJyT2WReyoLY2mJRxsEAoFAUH0QkVLVmMpqrBvhVNFsJfTo5HESWaro94ZhDUm/nO7Soyj/CiHAkR1baRZsxk8HRXt/AfyQVDkSFDvcTuvenko7mW6iE1AgEAgEAkEVsL9H2xw4AToLIaXlmks3A0+V9hRs2uS07pJ1O55Lc9f+SvU9SdZWvbNt3bPLHbtTSrI42viHlaMPkLmcHwOAvrwEM6hr4xHhd55IQy7l2JxPqu172kgp21ZA1Xl7SgUlpxQS8SHNqS/JhNonUDmlVkwZR4mxAICQyCjGfLAMvZ+/mwclEAgEguqCiJS6zalMGLMiEq7j1nx3q27XOrynyCjnudTCSnZ6EFdyzgJgLi9XQsrLatcisH07Qh96SDOepm9F+bK8tfHQXmRCEFR3Ro4ciSRJSJKEwWCgadOmvPbaa5SXl1/TuD/++COSJHHlypXrY6gPnDhxgiFDhlC3bl0CAwOpX78+AwYM4OjRo5p2GzdupEePHoSFhREcHEzHjh1JSUnRtMnKykKSJNLS0nyef9asWbRs2ZKQkBAiIyPp1asXu3fv1ow5atQoGjVqRFBQEE2aNGHmzJkYjUav4+bk5DBkyBCaN2+OTqdj4sSJPtnz008/0a9fP+rWrYskSaxfv77SNgO88cYbdO3aleDgYGrUqOF2rlOnTvHoo48SHBxMbGwsL7zwguZnSP1zpv5q06aN0uatt96iY8eOhIWFERsby1/+8hfS010XLpzxxT5B9UL2dGRPXymrHDi3fM+Yu2yb9pfOSQJUK3dK8JGXSCl1LiebQLSYrOdKA/z57XId/nu2ORl5lykv+42AsssuQ/jrignRW88bKFAlOkfZgmdROavMqr6h/lFWG5VIKYmOMQ9TT4IAu2ANcjidzOXlSDbnWdHlPEoLC13vSSC4TRF6SegloZeqhnBKVUeqWuO4Im6QaLOLKKlS7h1rn7CoGCw2wVbzuf+h0Zo1GOLjKu4uWZ1VluJiCrfvoHjfPjdTVLAVwLEMaLPoVotageDGkZSURE5ODsePH2fy5MnMmjWLd99991abpVCRCAEwmUz07t2b/Px81q1bR3p6OmvWrKFt27Yaobdo0SIGDBhAt27d2L17NwcOHGDw4MEkJyczZcqUa7KzefPmfPDBBxw8eJDt27cTHx9Pnz59uHjxIgBHjx7FYrHw4YcfcujQId577z2WLl3KSy+95HXcsrIyatasySuvvEL79p633ThTVFRE+/btWbx4cZVtBuvzHzhwIM8++6zbMcxmM48++ihGo5GdO3eyYsUKUlJSePXVV5U2CxYsICcnR/nKzs4mKiqKgQMHKm22bt3KuHHj+Pnnn0lNTcVkMtGnTx+KiorcTeuzfYI/EeqKe1VRwdfrrf46SgZ1onP1sJf9a3HlQrFybI+Uksutrc5EhXGopDaH82uRV1pAefEWLJL9g496YVCPxfawJNmspPCUVMpNxqI4pS7rHFfsWxx16uTotuipY2bYW1SOrk6I416AmAZx13eFVSC4iQi9JPSS0EuVRzil7jB80TDXWvfF6m2tXB/nSKZKzIanROd2W7yh8/NDtq8iWuxrc9oVRG/OojMvvEj26NGcm/2a9YTZrMzpq5NJ6CbBn4GAgABq165NXFwczz77LL169WLDhg1cvnyZ4cOHExkZSXBwMH379uX48eNKv5MnT9KvXz8iIyMJCQmhTZs2bNq0iaysLBISEgCIjIxEkiRGjhwJQEFBAUOHDiUkJIQ6derw3nvv8dBDD2lWs+Lj43n99dcZPnw44eHhPPPMMwBs376dBx98kKCgIBo0aMCECROUN+BDhw6RmZnJv/71Lzp37kxcXBzdunVjzpw5dO5sLaSQnZ3N5MmTmThxIm+++SatW7emadOmTJ48mXfffZd58+a5rHpVhiFDhtCrVy8aN25MmzZtmD9/PlevXuXAgQOAVcwuX76cPn360LhxY/r378+UKVNYt26d13Hj4+NZsGABw4cPJyIiwmd7+vbty5w5c3j88cerbDPA7NmzmTRpEm3btnU7xubNmzl8+DD//ve/ufvuu+nbty+vv/46ixcvVgRyREQEtWvXVr727NnD5cuXeeqpp5RxvvnmG0aOHEmbNm1o3749KSkpnDp1ir1793q9z4rsE1Rz3GoU2ctS2E1aZKr0NLLb7X/uIqXMOj9+jXycS6cLHL1tOTftTimznzXdQd2gfEcbdcIoAEnCIumRVXX2lFxamkTnjn2CF3Q6THYNZsuDZa++p37qWTKcNsmukfKS+HgiuHMReknoJaGXKo/4q18dqapX6kZqMCdBqBaC3hKdK208hLbLOMyO3fMP+LAHmD2vAMhOB6azZ7XXLapMCN4CpXAIK5HoXFBVZFnGaDTe9K+qO5EdBAUFYTQaGTlyJHv27GHDhg3s2rULWZZ55JFHMJmsVS/HjRtHWVkZP/30EwcPHuTtt98mNDSUBg0a8PnnnwOQnp5OTk4OCxYsAOAf//gHO3bsYMOGDaSmprJt2zb2uYlmnDt3Lu3bt2f//v3MmDGDzMxMkpKSeOKJJzhw4ABr1qxh+/btjB8/HoCaNWui0+lYu3YtZrPZZTyAtWvXYjKZ3K7wjR07ltDQUFavXn3Nzw+sq1EfffQRERERXlfr8vPziYqKui5zXiu+2uzMrl27aNu2LbVq1VLOJSYmcvXqVQ4dOuS2z7Jly+jVqxdxcZ6jX/PzrR+mb5fnI7gDUDSHhcK8DCzmy5X7m6hpe33e+T3JoIAyM+2ynJ1Equ17yilXp5RF549Z568x02Jz9ihFiW2RU7WDClUxT07zOSODbHHMo0l0LsuYTRYsqut2m/QBgfYOjr4SlASd499rPmGNYSefG3ZjCgxG0onVPoGWW6WXrodmEnrp2hF6qfrrJZHovDqh/M28wTkSVKFBHiOZKjW1qiKL81SepJrq3s6XhBEfdhmdxQg5aeganHZpoxrQ4zhg1XqVjnwSoVKCKmIymXjzzTdv+rwvvfQSBoOhSn1lWWbLli18++239O3bl/Xr17Njxw66du0KwMqVK2nQoAHr169n4MCBnDp1iieeeEJZcWncuLEylv2NMTY2Vtm3XlBQwIoVK1i1ahU9e/YEYPny5dStW9fFlocffpjJkycrx6NHj2bo0KHKCmGzZs1YuHAhPXr0YMmSJdSrV4+FCxfy4osvMnv2bDp06EBCQgJDhw5V7Dp27BgRERHUqVPHZT6DwUDjxo05duxYlZ6dnY0bNzJ48GCKi4upU6cOqampxMTEuG2bkZHBokWLmDt37jXNea1UxmZ3nDt3TiOwAOX43LlzLu3Pnj3Lf//7X1atWuVxTIvFwsSJE+nWrRt33XWXz7YIqiledYfs5qXM5TP7MZXkEBh8z00zSK0YzHqbk0gyO86rdEnPX87R+KTML02sx8FlzprFaXFM8vQQbFvplO17NseTzt7fnaNNbalK9yFrq+8p0eUWCi6VsPS5H60XYrXb92r0fQSO/K4ZSwZKg3Iov1qgLJMHhoVj3xgo0iII7NwqvQRV10xCLwm9JPSS74hIqWrIDSsGdwOcXO7dOZWZR+LrrFZ8nNERs38Nz808DelyT6rVvYpySikWeBpLIKg+bNy4kdDQUAIDA+nbty+DBg1i5MiR+Pn50alTJ6VddHQ0LVq04MiRIwBMmDCBOXPm0K1bN2bOnKkJYXbHH3/8gclk4v7771fORURE0KJFC5e2HTp00Bz/9ttvpKSkEBoaqnwlJiZisVg4ceIEYF2JPHfuHCtXrqRLly589tlntGnThtTUVJ+fhS/idOXKlRo7tm3bplxLSEggLS2NnTt3kpSUxJNPPsmFCxdcxjhz5gxJSUkMHDiQMWPGKOfV4yYnJ/tk87Zt2zT9Vq5c6VO/ytp8vVixYgU1atTgL3/5i8c248aN4/fff+c///mPci45OVlznwKBC+qcUkjIlhKcRYIxO5u8Tz+l1M0Hqore6dWZCLw5VSySjt/bWD8cmAJzOX3ZMZckWccJKTFp+ugUZ5A9bYFE4u5adP4thJASPeVSOQWGUkx699FO9u175hLbdb3dKeX2DlRntIVnFLeVJKkipSxua8bYW/tXkDA33BKkdFRHSl2PyF6B4GYi9JIDoZeEXvIVESl1u1OVN+MqBu7cmDf+io1xVMlzbuurKJG4agpEtucgsK8U2vMXeOqrqUijHq5y+x8dq4QCQeXw9/evMCHjjZq3siQkJLBkyRIMBgN169bFz8+PDRs2VNhv9OjRJCYm8vXXX7N582beeust5s2bx3PPPVcV0zWEhIRojgsLCxk7diwTJkxwaduwYUPldVhYGP369aNfv37MmTOHxMRE5syZQ+/evWnWrBn5+fmcPXvWZbXRaDSSmZlJYmJihbb1799fIz7r1aunsbtp06Y0bdqUzp0706xZM5YtW8b06dOVNmfPniUhIYGuXbvy0UcfacZWV68JDw+v0BawClJ1P+dVuIrwxWZv1K5dm19++UVz7vz588o1NbIs88knnzBs2DCPgnb8+PFs3LiRn376ifr16yvnX3vttWtOriqoJqjf+93pAHW4j9PlsmPHOb95G/7169P0O8cHMNlkwngi67qYZ9HpsNhyOgEUlOV576DSJpIuECQZSZaoc8m6La7R2RB+b5LLp/fl4m+SuP8Pq8SXkJXbt0dKlV20pjmQbceSsiVQnbPKIYz8dBZ09m19sqxs35MCAvDz06kccDKN2sfQa2Rr3pu7gxKzKtG5otGc9u/Z8Fd9JKkon6jgz8et0kv2uSuD0EtCLwm9VHmEU6oa4ojcuQ6DuRvDjVgwyMWwahAUWn9p2l/244x+BGAPPXVyAKnH9aI9PAuTqt2c7PRdUWp+KjFkD4P3NoVYuRNcB+wlg+8E7G+yalq1akV5eTm7d+9WwtEvXbpEeno6rVu3Vto1aNCA5ORkkpOTmT59Oh9//DHPPfeccu/qfAWNGzfG39+fX3/9VRFG+fn5HDt2jO7du3u18d577+Xw4cMudnpDkiRatmzJzp07Afjb3/7G1KlTmTdvHvPmzdO0Xbp0KcXFxQwfPrzCccPCwggLC/PJBovFQllZmXJ85swZEhISuO+++1i+fDk6nTaouTL3ZycoKKhK/TzhbHNFdOnShTfeeIMLFy4QGxsLQGpqKuHh4ZqfFbBWjMnIyGDUqFEu48iyzHPPPccXX3zBjz/+SKNGjTTXY2NjlfEFAm+4SxiuXLNpArNT+fXcjz4i/+vDyG0GXcPMsptXHuxwaWDLaCkFUqv5eY5J5RRdjKbupSACyg3oLDr67S7nsV8shJSa4MinoNqZeLp+fWrkXSYgUEKSjRjqRsPlIs2zcLeQp87fCTIWWxt9uUy07aOEtZ+Mf4AeQ5CfS6SUziJjKCtDMpuRJQuSpLO2cblJyaoznbWi4E+N0EtCL4HQS9VZLwmn1J2GF2eII6XUzY/cqSWfgmObleMooGlgc+DBCvt6SmIuyd5ySjleKmLKdt+OxUR7MnTZwziy0kbSq34VfFmgcwpfFwj+jDRr1owBAwYwZswYPvzwQ8LCwpg2bRr16tVjwIABAEycOJG+ffvSvHlzLl++zA8//ECrVq0AiIuLQ5IkNm7cyCOPPEJQUBBhYWGMGDGCF154gaioKGJjY5k5cyY6na7C37WpU6fSuXNnxo8fz+jRowkJCeHw4cOkpqbywQcfkJaWxsyZMxk2bBitW7fGYDCwdetWPvnkE6ZOnQpYVwjfeecdpkyZQmBgIMOGDcPf358vv/ySl156iTlz5rjsx09PT3expU2bNi6rq0VFRbzxxhv079+fOnXqkJuby+LFizlz5oxSxvfMmTM89NBDxMXFMXfuXE0ZYecVMmfsK3uFhYVcvHiRtLQ0DAaDi4hRU1hYSEZGhnJ84sQJ0tLSiIqKomHDhj7ZDHDq1Cny8vI4deoUZrNZsaVp06aEhobSp08fWrduzbBhw3jnnXc4d+4cr7zyCuPGjSMgIEBj07Jly+jUqZPbvAfjxo1j1apVfPnll4SFhSn5FSIiIggKCvJ4nxXZJ6juqEWD3dvh2REjBQW6HcWUk1PhTBI+Rlt7/HPmm3rzDzJRFl7A1eII6l6C5vnNiD9ZlwcPfEZEsbVNnfO7ybe0VPrkxsRwJTKSLkPC8Lu4k1OGGLhcRIklQjHIoakcc+2Jexa9n4VAKYcI+RJGvY4yi0yATkKH9fldMVoXJfV+Ok13CzKSxULkO2/x+NkzABRHHiKo+1RtjlLVC031PbEIKKgGCL1kRegloZc8IZxS1RBnp0yV+/vSQHISMXXaQ0hNyPgOqaIKLrae1+Y+82JsJe7fviqK7Mh0/kPKR/z65VoSRoyhdtPmFU4tZJPgz8jy5ct5/vnneeyxxzAajXTv3p1NmzYpAsNsNjNu3DhOnz5NeHg4SUlJvPfee4A1RHv27NlMmzaNp556iuHDh5OSksL8+fNJTk7mscceIzw8nBdffJHs7GwCA91/ULTTrl07tm7dyssvv8yDDz6ILMs0adKEQYOsUQ3169cnPj6e2bNnk5WVhSRJyvGkSZOUcSZNmkTjxo2ZN28eCxYsUEokr169msGDB7vM6+5cdna2JkwaQK/Xc/ToUVasWEFubi7R0dF07NiRbdu20aZNG8C6GpaRkUFGRoZL/4q2WN9zjyMkYu/evaxatYq4uDiysrI89tmzZ49SahqslXwARowYQUpKik82A7z66qusWLHCxZYffviBhx56CL1ez8aNG3n22Wfp0qULISEhjBgxgtdee01jT35+Pp9//rlSWciZJUuWAPDQQw9pzi9fvlwpke2OiuwT3Pn4moJAm2a7Cvi8EOU90XnVfS3WjubyGsT+kUxU3jHgOH6mIIyo8055NsWeI8r+zA6X9EFmP2BWLRQ67vNiWBvrh9y4drQ4/yXlJgupV8vp+kgc509c5Y/fMygsPQlSsOKUcswl428y4WdzSAFYLv8BslnrfFIh1voE1RGhl4ReAqGXPCGcUncwsixz7tWZlNg9mIUhpDUdoWpwnefzZc9dSE2IaFDhWO57V0GFSB4PFNR2a3JHyaqVUr0jr0NEzVrkHDvK1YvnuXrxPIe3/eDqlFInOhfqSVDNSUlJ8XgtMjKSTz/91OP1RYsWeR17xowZzJgxQ3MuLCxMk1iyqKiI2bNn88wzzyjnPAmHjh07snnzZrfXYmJiPL55OzNgwABl9TIvL4+ePXuyZMkS+vfvT3BwMADx8fGVysUXGBjIunXrvLYZOXKkV7HgjarkBXzooYe89vPFZrD+jHj7OQHrSu+mTZu8tomIiKC4uNjj9armPvTFPkE1RpND0hHD4zjp3MFDFePrHrXjrvqdAz/Z7FHKGYvbEljUApP5DGZAX25dwdY5dfC2TdFxO44FQj9zKaCNWvAvL0LW+2HWBVJu1pG53xqRIIcaMBn0GFXP0jlSSkZG8vTcNJFSqteSNdJDLPYJ7jSEXhJ6qSKEXnKPqL53m+Otcos5N5crn31G2fHjlB0/To2cNMILTqr63ngkp+9atKHxnuSFco9uRKHH7XuqlTyXFpVIVC4r2/ccTqnE5OcZOOMNWj1o9YZbVPu33aE4pUSIuUBwXdi/fz+rV68mMzOTffv2MXToUABF9NxsoqKi+O677+jZsye7du26JTYIBILK4j1SSV1TzpNPyj3XuhDlu1YIp9BjX1m2ryvbHFv2XXfe0jzY9Yo9zYNdA6HDT7JV+pPtmkeV6NxSil42ak4HhvpTr3kNW6U8x5PU+zvV8vOUhUGWPURESZrFPm86WCD4syP0kqC6ICKl7mDs1U/Q6fCvXRvT2bNIskVTSveW48YUj+LP2048D3mn3A+oPaH1FHsQqfYKODL4GQw0vKs9Z44etvV3EwuvGVNU3xMIrjdz584lPT0dg8HAfffdx7Zt24iJibll9kRHR/Pqq6/esvkFAsG1IKsTb9pOOd7bXVeUK85n6YprH7fNVcmT3F232mKPoFLrD7tDyX4vVt1ilmxOJJv3xzlSSnvvWqeVOlLKTXYnzRiS7XnFNQkkaf7DjtaS1imls2/fq+RCnTbw/TbSsQLBbY7QS4LqgHBKVQd0OnQhwcqh8lZeWS+Jr+3diAWHoJMqLSbsDid1ZRfHVN7H8rYOWmHYouwQarKfo3Sy0zBuJ1EPLbSTQHB9ueeee9i7d++tNkMgEFRHfBRJJYFRXIlph3n7WXR6ifi2bj7kuXv/9z1Yuwqo0g7IVqeURWdGp5rW1SnlzhS7TrKojm3OMA+axu4gk50aaItdyS7b97wiqa1Tb9+T8HEEgeBPjdBLguqCcEpVG1QqyL4IWElFVGH7SgqsyssJyenI2/Y9d73cb6OTXSSUmzFs1fc08U+2BJxuI6VwCDORU0ogEAgEgluNzytrru2dutYJv4f9ne6lVArlyL+PAtCyc21a2fWFpv0NjJP2MrRsy8Bh1lmsr5Tte76P4cYfpF4WVDWUVE4pLVH1QjVtY+r5Vp2phDLAUUlKM5va0yXC0AUCgaDaI3JK3WH4lrRM8Ur5TNnJq+Stsgov45lC5HJfKufhGibkyUHj0RZHck0XIaXu7lyuWXZVUo4odM/3b89tIEu2MZ1ySkmyKseCU84Fp5Gc7sHDhAKBQCAQCG4tbt7HdRQQ4ncF5+1tQfowAmLbUaS3VcTSlwBQXGCq7KRuzzovv1n/da9x3AdiKSHeVvts2/ckWSIy9z7+aPoMZp3TmrNN/MiSZBvbOe2A5F3JyO51F8B9SXEkPVETsCZJj28X49LKXZ6rzwJ2UKQ758EJJhAIBII/E8IpdUfjZg+ZrHpZGafUH1eQTRbHsObK5gJw56TxgnqB0lvzqqR1cK197KWp7aLNKWUuLOBo6zZcXLhQWalTcnd5MlFyFncCgUAgEAhuL7RJvgP1e+hTZyX3R/2hiRT30/lTIhmV47KAS44hZNnz4puPXLtWsKc8sOoWk75MueJXHsKVyHYUhMUp5yQP0d6gXnRTfRyQ7I4ydRy67IiUcroBSZKIiAm2D8ixbg+QNWQoIT6I0DKpQDWH45Wk04nUCAKBQPAnQjilbncqXdFNrtpiU2WmkTznHNC283VQz7HmkrKaV4l4dGW5z1sydC0BrVo4usoyBd//4H0u1dhi+55AIBAIBLcXsixTnpfHlc/XUfDTVuW8mUjbdWskVHSAc4U7OGu4gEWyb1ezv9+7y3xZeSL8rfPjF+RclsXxTZ1rSXLTBkC2b9+zRkoZA3Ix60qtl6QK5L1LJLhEmc7bApujgrLsZiXRLyYagHKdxI4aAWzLO8vdx48RlH2cwOwMmoZ29WaGm/OqKHhR2VggEAiqPSKnVHVA0iYXr5KLxJf3fC/h5CpjKh7GqYlrovPKILm+dpNTyr0hjrYhnTrB8YPoo6KAUyDLSqRUebmZo0ePYrHYKs/ExRHo9j4EAoFAIBDcLpyfM4erm/5LSO1SIBAAsxQFnKfUfB+wxZpEQBURfSrqKl/Gf8yw3NfwNweRG3iRkOIGlZ7bnSYI8gulfeQ9wGZ0gRFVG0S5Zo2Ukm0LgLKuDFlnBi/ZFxzb92zHqtdGHQSY1a2dNhrK7hOdAwTXjEXv54+53EReaJC1fdlV/EzW8YP8wrzciH02eySbWOwTCASCPxvCKVVdUMKtHa8rH2WFYwyfp3Uzl9pB5i5qCW1YeFVmVosql1wMXu7f5YxT0lIluaYsK+OcKCxlz3/+o3SJi4tj+BNPuJnPZ/MFAoFAIBBcR9xJnvJLeQBIgYHueijfTWUOb0x+sHXrnl2nmM0FmIp/5HyGH7+V5HCkyRXO1FxP48LHKNOVIkvOXiC1ltEa5a8LwDcqLutn377nWCBTR3I52eBpbc6RjNPxNNxMrdm+52acwJBQhr29gNzsUxx6fy4nKOe8UgZQV+mUEM6LrQKBQCCo3ojte9UFm7II1l0iwGLNf1CFjX/XFWdnUYUzK4rIEU7uefueYxZH9Rjn0CW7cJM1zZ2ve+prr75XZouQCguzrvRdvXpVbN8TCAQCgeAOwa9mTdWRdiFJpwM/g151Xas3wi+fwVy2j/xzv3A4P5efIy+wN+wwAEZdOWW6MtzicWFQHR3uPtG5N8rwtw1jtdkiOWkoN9N5vGS3UdKp9JEbTWMuBw85pexE129Iiy4PcFdAODWvFhFhLCfYqMcvsAvGMrP7TirDNXHvmu2HYsVPIBAIqjvCKXUno1YGV08D0DPiA3qc6UeTgB2Vex/3oDIqDrbysfqel/7eEp17dvi4y/Pk3iRP81q7OG8ddKxEOgdctW/f3pORvkwoENyxjBw5EkmSkCQJg8FA06ZNee211ygvL7+mcX/88UckSeLKlSvXx1AfOHHiBEOGDKFu3boEBgZSv359BgwYwNGjRzXtNm7cSI8ePQgLCyM4OJiOHTuSkpKiaZOVlYUkSaSlpfk8/6xZs2jZsiUhISFERkbSq1cvdu/erRlz1KhRNGrUiKCgIJo0acLMmTMxGo1eRrWycuVK2rdvT3BwMHXq1OHpp5/m0qVLXvv89NNP9OvXj7p16yJJEuvXr3fb7siRI/Tv35+IiAhCQkLo2LEjp06dUq6PHTuWJk2aEBQURM2aNd0+019//ZWePXtSo0YNIiMjSUxM5LfffnM7X0ZGBmFhYdSoUaPC+/b1HgQCwMX5ovPT0ebBOsplZz0gWbQOFT+zhE52yGdPGqZUZyLXkMcVwxUK/ArcN3KHrIpzcg3vVvnU9G6auAohtXlX5UCOh9XlilGZyqWVqx4CZIsjYbrO36v5QUHBdDxxjgeyLtAqNxS/oE5cyna9f0l2zoHqJspeILjDEHpJ6CWhl6qGcErd5vi8A89YZGtvfSeP8c+q6u69iqlQLXgqmed91dC5uyR72uan6ilJbhb3tN4kdc4EzUyyt5B22bpyiMNxpbdV6JNlWRspVWE0l0Bw55OUlEROTg7Hjx9n8uTJzJo1i3ffffdWm6XgiwgxmUz07t2b/Px81q1bR3p6OmvWrKFt27Yaobdo0SIGDBhAt27d2L17NwcOHGDw4MEkJyczZcqUa7KzefPmfPDBBxw8eJDt27cTHx9Pnz59uHjxIoCSv+7DDz/k0KFDvPfeeyxdupSXXnrJ67g7duxg+PDhjBo1ikOHDvHZZ5/xyy+/MGbMGK/9ioqKaN++PYsXL/bYJjMzkwceeICWLVvy448/cuDAAWbMmEGgakvUfffdx/Llyzly5AjffvstsizTp08fzGbrB/rCwkKSkpJo2LAhu3fvZvv27YSFhZGYmIjJZNLMZzKZ+Pvf/86DDz7o1fbK3IPgT4jHt+SKKubanFFKA9eWugq0iQULz937v6xr8BVb6m1hc4PN/BH2h8s81xTR7pRTymMRZJXW+d7UlJn3Pc22XLPtkmProRv/lGM4f3909vP+3p1S9q2SckkJNfIziAwsITDMex/ttBKSpKtQ/wkEtytCLwm9JPRS5RE5paoB1iItZkDPeVNTwvgdWxbv6ztRVSoBVqWVu1xQPsztW10c7+Oo80NJ9ko0ti52p5RrpwpNEwjueAICAqhduzYAzz77LF988QUbNmwgOTmZ559/nq+++oqysjJ69OjBwoULadasGQAnT55k/PjxbN++HaPRSHx8PO+++y6tW7cmISEBgMhIazWqESNGkJKSQkFBAcnJyaxfv57w8HBefPFFvvzyS+6++27ef/99AOLj4xk1ahTHjx9n/fr1/PWvfyUlJYXt27czffp09uzZQ0xMDI8//jhvvfUWISEhHDp0iMzMTLZs2UJcXBxgzRHXrVs35T6zs7OZPHkyEydO5M0331TOT548GYPBwIQJExg4cCCdOnWq0nMcMmSI5nj+/PksW7aMAwcO0LNnT5KSkkhKSlKuN27cmPT0dJYsWcLcuXM9jrtr1y7i4+OZMGECAI0aNWLs2LG8/fbbXu3p27cvffv29drm5Zdf5pFHHuGdd95RzjVp0kTT5plnnlFex8fHM2fOHNq3b09WVhZNmjTh6NGj5OXl8dprr9GggTVp9MyZM2nXrh0nT56kadOmSv9XXnmFli1b0rNnT3bu3OnVNl/vQfBnx/N2fclJX8g+VA4OLZQoL9mFzlgCOgsWSZsryiiVcy4oHwC9RY9ZZ+aq/1UgCl+0kQWLUoTPObG4EuFti9ay2yt58Eo5n9erIr80kVIu6TFVYxj8kcylTn3co1N9+AowXqV385OE9utPVqr3fhonlOe0XALBbY/QS0IvCb1UeUSk1J1MmS0c2lKOJFtFhskSDFTeT6IWGSbKKTNbvejffPNfDh065MsItu+VjZICXJKE+j6b+/Gct+a5qxXjZJdzA4tFyWmgpOq0JUGXZVnjJBOreYKqIssyZnPxTf+6HiW2g4KCMBqNjBw5kj179rBhwwZ27dqFLMs88sgjymrOuHHjKCsr46effuLgwYO8/fbbhIaG0qBBAz7//HMA0tPTycnJYcGCBQD84x//YMeOHWzYsIHU1FS2bdvGvn37XGyYO3cu7du3Z//+/cyYMYPMzEySkpJ44oknOHDgAGvWrGH79u2MHz8egJo1a6LT6Vi7dq2yIuXM2rVrMZlMblf4xo4dS2hoKKtXr77m5wfW1cqPPvqIiIgIz9uDgfz8fKKioryO1aVLF7Kzs9m0aROyLHP+/HnWrl3LI488ck02WiwWvv76a5o3b05iYiKxsbF06tTJa8h3UVERy5cvp1GjRoqgatGiBdHR0Sxbtgyj0UhJSQnLli2jVatWxMfHK32///57Pvvss9tyFU9wm+Pu75qbc6WYbN+tuaD8dQGEXQkhPvQuogx1VC1tWsLJSSUBbY9DeekudEVp+BUcoLxkq0ezGhU08mQwZaZYll9YxtZzb2I+Xp+dn2dglC2cCzzhtofGwSQ7JzpXj+xhRgnqF11UpfBUJSNXzaL+Zn8pKc4wD4PbCH/0Efzr1kUfHY0hPp7QHj3QVyYVg+ScU0oguHV66XpoJqGXrh2hl6q/XhKRUncyJ20eUVX4tUlWrdZV8W9osVRGuUWPHj9OnMjiYsFp2rRpo2njnFtcmxagoi13TseOjm6P3aGtvuf0yqsDzGlmp+p7jpRS6pxS2u17znZLkrPdAoFvWCwl/Li17U2f96EeB9Hrg6vUV5ZltmzZwrfffkvfvn1Zv349O3bsoGvXroB1n36DBg1Yv349AwcO5NSpUzzxxBO0bWu9z8aNGytj2YVDbGysshe+oKCAFStWsGrVKnr27AnA8uXLqVu3rostDz/8MJMnT1aOR48ezdChQ5k4cSIAzZo1Y+HChfTo0YMlS5ZQr149Fi5cyIsvvsjs2bPp0KEDCQkJDB06VLHr2LFjREREUKdOHZf5DAYDjRs35tixY1V6dnY2btzI4MGDKS4upk6dOqSmphITE+O2bUZGBosWLfK66gfQrVs3Vq5cyaBBgygtLaW8vJx+/fpds1i5cOEChYWF/POf/2TOnDm8/fbbfPPNN/z1r3/lhx9+oEePHkrbf/3rX7z44osUFRXRokULUlNTMRgMgLVQxI8//shf/vIXXn/9dcD6//Ptt9/i52eVIpcuXWLkyJH8+9//Jjw8/JrsFgjUqN+fL1JAPeCC7irNgJr+9dCfiaZWzUexyBbSdPM8dwZAwt+WHkb2i0Qqv4wsl6muuu3kBonSsgYUW6KUeY7vPU+IbEHWufsQqNVEkeU1uICz08xdTil1HLmETn0s26OsHPk93efIUlff835vod270/T7LZpzprNn3TeWHKaqpaMkqu8JnLhVegmqrpmEXhJ6Segl3xFLEXcy5fZ9pRJExjleA5XOcKTKOeDcz8VDrlUOlZnF0+Qer1Rc2c5djLdLDHrFMynzOBxbzpFSmpxSqj6i+p7gz8DGjRsJDQ0lMDCQvn37MmjQIEaOHImfn58mNDs6OpoWLVpw5MgRACZMmMCcOXPo1q0bM2fO5MCBA17n+eOPPzCZTNx///3KuYiICFq0aOHStkOHDprj3377jZSUFEJDQ5WvxMRELBYLJ05YIw/GjRvHuXPnWLlyJV26dOGzzz6jTZs2pKZWsLdEhV04eGPlypUaO7Zt26ZcS0hIIC0tjZ07d5KUlMSTTz7JhQsXXMY4c+YMSUlJDBw4UJPrQD1ucnIyAIcPH+b555/n1VdfZe/evXzzzTdkZWUp17dt26bpt3LlSp/u1WKrPjpgwAAmTZrE3XffzbRp03jsscdYunSppu3QoUPZv38/W7dupXnz5jz55JOUllq3/JSUlDBq1Ci6devGzz//zI4dO7jrrrt49NFHKSkpAWDMmDEMGTKE7t27u7WlqvcgEGhLuzm/kLFIMmbZjE7SodcZPPd1wmJw/TBmHdFXBWYdPFh/XtVZxpOOkVWpGSxo8156XJBzm83B5jqzeLNTu+TniJSqgubxGmniJtJepauuR2SvQHAzEXrJgdBLQi/5ioiUusPQvjmrnCNBUUCO9tr1fh93csY4XfRyrYJhnb5LPsk52c1LyfWam+bKoVPCcnCYLyOrtgFa0URKqft5mVYg8IZOF8RDPQ7eknkrS0JCAkuWLMFgMFC3bl38/PzYsGFDhf1Gjx5NYmIiX3/9NZs3b+att95i3rx5PPfcc1UxXUNISIjmuLCwkLFjxyp5AtQ0bNhQeR0WFka/fv3o168fc+bMITExkTlz5tC7d2+aNWtGfn4+Z8+edVltNBqNZGZmkpiYWKFt/fv314jPevXqaexu2rQpTZs2pXPnzjRr1oxly5Yxffp0pc3Zs2dJSEiga9eufPTRR5qx1dVr7Ctkb731Ft26deOFF14AoF27doSEhPDggw8yZ84cOnTooOlXq1atCu8BICYmBj8/P1q3bq0536pVK7Zv3645FxERQUREBM2aNaNz585ERkbyxRdf8Pe//51Vq1aRlZXFrl27lK3Qq1atIjIyki+//JLBgwfz/fffs2HDBmWVU5ZlLBYLfn5+fPTRR/z973+v0j0IBNrlK3u+SMebtkVvprzcqImG8Lg1v4KUnTJwujCdLgetkQ2BkoXMMM9tAXSS++0x3igyhwJgkdzoIRctZt+KKDmq6KGWT+6q72ktdURKVUHnaXSaLTrLWX+pXonFPoEzt0ov2eeuDEIvCb2kRugl3xBOqdseHz0dzok7uZWrS+4SHHiTMe7ttK7MVUGYqLbgWb95U4+eVxY9JTp3Hk9yymElEPiKJElV3kZ3s7ELAzWtWrWivLyc3bt3K+Holy5dIj09XfOm3KBBA5KTk0lOTmb69Ol8/PHHPPfcc8oKmjoas3Hjxvj7+/Prr78qwig/P59jx455XBGyc++993L48GEXO70hSRItW7ZUEkT+7W9/Y+rUqcybN49587TbeJYuXUpxcTHDhw+vcNywsDDCwjx8EnXCYrFQVubY/nPmzBkSEhKUCi12UWLH3f0VFxcrYd121H+zgoKCKvVc7BgMBjp27Eh6errm/LFjx5Tkp+6w596z31dxcTE6nU7zYdN+bF9d3LVrl+Zn4csvv+Ttt99m586d1KtXr8r3IPhzUtX3ZNd+vkUT2bHIZvZf2EwL7L//ZmrXCgQlYEBW/VvBHE6nJcCsM4EZSmTrh8xynXUvodXJ4zpOTUMIJcpwkiZ5ukPPOLbvuV1clHzPKeUVSfJpAEmnE0VkBBqEXhJ6CYReqs56STil7mQ00Tp2x0gV38Wvmz/FU8UX7VSaFAg+RBq5OJa85ZRyaqMz+yG52akqu4t28rJ9T/OHTlbLVqGcBH9OmjVrxoABAxgzZgwffvghYWFhTJs2jXr16jFgwAAAJk6cSN++fWnevDmXL1/mhx9+oFWrVoC1koskSWzcuJFHHnmEoKAgwsLCGDFiBC+88AJRUVHExsYyc+ZMlzdod0ydOpXOnTszfvx4Ro8eTUhICIcPHyY1NZUPPviAtLQ0Zs6cybBhw2jdujUGg4GtW7fyySefMHXqVMC6QvjOO+8wZcoUAgMDGTZsGP7+/nz55Ze89NJLzJkzh7vuukszr7MAAWjTpg3+TqXTi4qKeOONN+jfvz916tQhNzeXxYsXc+bMGQYOHAhYBdZDDz1EXFwcc+fOVUofA0o1H3f069ePMWPGsGTJEhITE8nJyWHixIncf//9bvNL2CksLCQjI0M5PnHiBGlpaURFRSki94UXXmDQoEF0796dhIQEvvnmG7766it+/PFHwLqFYM2aNfTp04eaNWty+vRp/vnPfxIUFKQkDu3duzcvvPAC48aN47nnnsNisfDPf/4TPz8/paqQ/efCzp49e9DpdC7Puyr3IKj+eHdCuXu/tx+68fyou7i57O0vkSxbkG1RRSUGM0FGPX6WSmQjr4ATsTt5NKcngYZj7Ag/wQXdSeLR5hRRa8EwfQAlmvQMMsWFMv+53I6L5VdtrXSqvnact+/ZIqVUdpvKzFw8dRVZBr2fjti4MHR6d5lBfHBEeVRzYsFPcOcj9JIVoZeEXvKEcEpVC2TM+VbvarDkOFf5UdxTVlzE/m83Elkl23yZV5tPQOPukSR0Fpng9GyKC/cgBQQQqE66LjlCwdGMYiX95xye2D6d8qsbsHCChpdbA9ke51Y6WyxOEVCSD5FSAsGfj+XLl/P888/z2GOPYTQa6d69O5s2bVIEhtlsZty4cZw+fZrw8HCSkpJ47733AGuI9uzZs5k2bRpPPfUUw4cPJyUlhfnz55OcnMxjjz2mlDjOzs4mUFVq3B3t2rVj69atvPzyyzz44IPIskyTJk0YNGgQAPXr1yc+Pp7Zs2eTlZWFJEnK8aRJk5RxJk2aROPGjZk3bx4LFiygqKgIgNWrVzN48GCXed2dy87Opn79+ppzer2eo0ePsmLFCnJzc4mOjqZjx45s27ZNKSaRmppKRkYGGRkZLv29RX2OHDmSgoICPvjgAyZPnkyNGjV4+OGHKyxxvGfPHkXkgLWSDzjKTQM8/vjjLF26lLfeeosJEybQokULPv/8cx544AEAAgMD2bZtG++//z6XL1+mVq1adO/enZ07dxIbGwtAy5Yt+eqrr5g9ezZdunRBp9Nxzz338M0337hNkloZfLkHwZ8UN78zisNGdpzRXrdS9cq6jn4lAVanlOT2V9fh3tJW1fP8ey4jczXoPHf5lREVupOvau/BdMn6OxZUVIifrgyzLdOABfeJY3WyTH4eGEsjAOtKu6QLxeZz8qhl3OWU+mphGjmZ+cpx24T6dB/U3KP9zu4mS3mB+1Y6kfJWUP0QeknoJaGXPCOcUnc0jqUvc4ERgAjbCpUkydcWYq2ivKyM7z9ZSl+CrXKior3+lcoF4OpUUl+TkBjxnYWme5dxkmUAxPzP/4C/a2uXUWSZ08euoJMduaBCjDWwqJxSjkcoKzPa+zo7mzzllBK5DwTVHW9vVJGRkXz66acery9atMjr2DNmzGDGjBmac2FhYZqkjEVFRcyePZtnnnlGOZeVleV2vI4dO7J582a312JiYpQyyhUxYMAAZfUyLy+Pnj17smTJEvr3709wsHULQXx8fKW2SQcGBrJu3TqvbUaOHMnIkSN9HlPNc889V+ncEw899JBP9/D000/z9NNPu71Wt25dNm3aVOEYvXv3pnfv3j7b5uuz8PUeBH9ifHqbtufGdO57PX+2vGkedStJmdplM6GzPTZ7I65cRtYVURBeE7NOckzlFFUvgVK0ucv9jfj9eCuMch27f8pNInhtovO00ns4MnU7Dz7ZnCsXrRsDA4L9KCsu5+rFEtyizkmqMqfk6hHksNqae3bYKbSV4M5D6CWhl4ReqhpiKaKaICnh0lX8QfOaMsEqDMrdX3QZRlaSaDocO24Tg/tInTxbN9tKgjE7WxFHxlIz5fogx+TO49vmLQiwDmLfkudik8t9yBQUl2CKiPZcfU8gENwQ9u/fz+rVq8nMzGTfvn0MHToUQBE9N5uoqCi+++47evbsya5du26JDQKBwEfcLBRpHR4uLzS4bF+7hvd874XqZMxmE2bTH5SVncVizselRo3H/g43kd1JJUtQbsuT8t3d6tgrx6DKjkTbi4b1aqD3r6lZXJP8XD8alJpLKbAt6JnxozjfSMbe88pALbtWsHrvNbenxemEhFxaqlgrJJdA4BmhlwTVBREpdbvja5JuydUjU1Z4nnX/nIWxpARDYCDd/9/TxDTwlGhN9vDat0gg2WgEfyjcsgVTiR9RzSrs4ujrsgrpNL/tMKBZM0oPH9a0KLxcRnFAPJjPYyyzEKAZxhEtJktOoscpGbrjvCO5+fd70yir20i5pNnv7CZSSugmgeD6MXfuXNLT0zEYDNx3331s27aNmJiYW2ZPdHQ0r7766i2bXyAQXB9cc2+6z0blSflI6nziVQzmydPpWFrDgt+J39CbfsUEwM9YopwqYbmJlHJG7UQrDrZGtKc10TF4i7u2kkYb+fnpHTdhvxedZIuactxcaXkx56SN9P15Jz/f9wCyfx9NAWNJpZ28o3J+ybLVHsn5ChR8vQlLjVBwm59KIBCoEXpJUB0QTqk7DQ/v+JbSUs2xhEz++X3knd6jnItpGE/3oU95GLdq5iiBUGVlji11Fk+DuT/vIZcoyBKaAG6da5STDOhkC2b7tK5a0zPOYe2aSzJlJqtMDMFCp4d7ERQUZJvaWiXBrksvBoVRXL8pRqzVD3r37q2EqwoEgspzzz33sHfv3ltthkAguJPwUhDFe3vnhThtXLi7aCeXU5UK55H5KjSE1ZEWRpiMqvPlyGYP299Ufa8EXGFHjUM8LJs19l0MD4bLn+IX1F1roVNQuITDKaXXSy5OOms0uOtNByMRVHoJ2XLF2s4iK5HjjrVLD89B8V55uze1d8q3HFsCwZ8doZcE1QXhlLqj8ZLAE1m1jc6KRVU68prwEjnl6y49t5VVnCO4bQ119jHtTikngeJfXoxZp+1jHdUhmCpE0n5Xd6uHNRnhhQsXXPpYAoPJCwiBAOvC4v79+2nQoAH33nuvb/MKBAKBQCC4bkhWt4vzSTevncvsWYkPTQf8lShtyauOcFU62rnd9y3Vea3fh5uagMpcJ8NO8mbYSX7Pr4EM5IUb0VksWHQ6wILFlGnNG6Wkr3JYJCNZI5SUSCmdJnG5N5vCZev4qKvw2Z+RThFeHrp7CC1zt6vS2zgCgUAgqJaIuNhqgmORqvLv5AXffceVL9ZX2M7ncssV9PWoWcza1UkJ0JdasKCjzE/vQbF4TxrqeBzaNrL9oj3iSlnEqziHhCyr8jPorX5dyViGX0kxYK2eIRAIBAKB4PbDdfueFn+d0ev1ys11rWht1cs6Qo2hAOT6WTXTlTAT9584S5vTF932UzuPAswlhJfnK2mc/PSuXiGH/HGaWzOg9btsi4zX6XxNY+D52Tv7DUWac4FAIPjzICKl7mQsHkKL7LhRB2Ul5eSdtZbr9DPoiKkfyuXV/8F8pTaEep/uDOUU141GFxSIWYmWcrdKWBkcK5qSkwMp7nQp8bvzOV0jntM1oIFkpK27ERR9JGl9VKrteS6JS53HcDpt0YSOW2xtHI3Ky8sprBGFOTgMAJ2pDL3ZTHmQ2LYnEAgEAsEtQ6UDTvi15OgDg5H1egyd8rnnN0c1qYoTDbiPpLoeVDSiZjecSp8ElgfS4koL9sZqt+v4yRb81Qtiqugnf+kUAIUGfx67tBGdavYtJScppY1mhdqdbTIyOqfCNar1OYeG8pQSwYfte7LZ4vZTifcFUYFAIBBUB0SkVDXF6urRvpFbzuXzn1e2s+7dvax7dy//98av/LYlG9lScWRPkD6MI5g4WbMGJ0IDsPiUfNJbknaNsdpTthcRBVq7Lsm2SCpZvc7p7IVymsZDpJRrA3suA/tqn2qV0SlHlizLbN6xnVN33YMxxlpxRiov11wXCAQCgeBWsnjxYuLj4wkMDKRTp0788ssvPvX7z3/+gyRJ/OUvf7mxBt4EzunjMPsFYpH8KQ2KIT+8iRtfk93Jol3Eklw8KJLyr+R0riIkn7bIuelXYRS6Z3R661WD7iggURzgjw4ZCxJ6PwiMyWNGwc+U2nSPt2TlJj8ZPXZ95Ni+p/iadJ77ag31kv5B9eT1Kt2Vue8iR3bmcPFUgZe7FQgEAsGdjHBK3eb45N+QKg50DvGrQZPceykssooJP1vz/AslPi0C3hvdGwC95Ief5KhCd2THWQBKy3wTXDIy5XrJ5RzgMVdVRMkV2yv3UVku4lC1Yuf9+bk67hyXZE0rq3mOmfILrOJIMpYRbDbhf9kp35RAIBAIBLeINWvW8I9//IOZM2eyb98+2rdvT2JiomtuRCeysrKYMmUKDz744E2y9MYhy+6TlMsq55L9jOa6axbz62qX2tHkTvX4mipBs7bnLoWWbXCjpbkmb1ShPpxajfwwNz8NEuht16L1AbZxXSPhL0aAQ7o5tu/ZC9v4UqXZeUzljM14uxMw0FRO3KV8ZZ5dX2Tw/adH+PydvRhLyl36CwQCgeDORzil7jh8DfrWtgvzj0SSlIwANDQ4/9d7yjZpJUBnrTznJ/njpzMAYNHpKbhsrfpnMnvfNmhPtlkYnsHFWiFOczknwNQOIDlf9jiJ85yqZTyXOZyaOp3WiD03kVL2cQMunqFRaQF+JYW+2SQQCAQCwQ1m/vz5jBkzhqeeeorWrVuzdOlSgoOD+eSTTzz2MZvNDB06lNmzZ9O4ceObaO11QlnfcpvV3FPzShTttYd1Sx4a+VKmr6I5nOeqsKG1tUs7RxR5gakfFlnSuLNkHLVl7MuMITp/vKF32b4nqyKlKrLQdfFRslX500sWTZOwUiPBbrJTmMstGEuFU0ogEAiqI8IpdSejiuYx2UrUlckmwPcEkUrCb2/7/DUHFoxYRUFJXAvyG5Yj6/QedJP2rF6nJyDAh/Bre8CTvdSwmzLPal+T5BRy7y6tllv71AkR7CunbvIiyG5ySqm36DmvEIrtewKBQCC4VRiNRvbu3UuvXr2Uczqdjl69erFr1y6P/V577TViY2MZNWqUT/OUlZVx9epVzdfthtuk5hUIJM/b93wbxHu/ylCxlnDY6rSY5+XIfs5i1z2ydvueo4l6sdKibN9Ds33PptMq2r7nBXddJL3erd1CXgkEAkH1RDil7hTchEbbQ7xlZC4ZrI6is/rLylXtu7dMkeQI28/W5TpP4LMpZsmxhCXrwWII8Kl3eGAIfu7uw3mJz10YutNpZwFmNgRilKzP4P9++omMJk1QV4ZxlT3OZWa0a6ayxinlGimlsUWUiBFUc0aOHIkkSUiShMFgoGnTprz22muUl1/bqvWPP/6IJElcuXLl+hjqAydOnGDIkCHUrVuXwMBA6tevz4ABAzh69Kim3caNG+nRowdhYWEEBwfTsWNHUlJSNG2ysrKQJIm0tDSf5581axYtW7YkJCSEyMhIevXqxe7duzVjjho1ikaNGhEUFESTJk2YOXMmRmPFFcFWrlxJ+/btCQ4Opk6dOjz99NNcunTJa58lS5bQrl07wsPDCQ8Pp0uXLvz3v/9Vrufl5fHcc8/RokULgoKCaNiwIRMmTCA/P19pk5KSovx8OH+pt4uVlZXx8ssvExcXR0BAAPHx8S6RO++//74yV4MGDZg0aRKlpaVe72HdunX06dOH6OjoSv9/VEdyc3Mxm83UqlVLc75WrVqcO3fObZ/t27ezbNkyPv74Y5/neeutt4iIiFC+GjRocE123xicHS0qR5V9F5q76rzuX/iEunW0zU/X9KzFtYX71TLFTlfs2w7dVLpzOZBUEeA67Zgu01csYmRk/Jx0k7oSsb36nsdn5Zy/0w1qZ57VKSUQ3HkIvST0ktBLVUM4pe5ofE2AKZNY5780DxirnLkqFakaOkUaqXCfraqqCTvtQkrrXnJnr+aK1wSZEhIy5pBwJX7dIsucrVfX2tVtSLt766zfrN8t6mgr+0qgh0gpJW5drOAJqjFJSUnk5ORw/PhxJk+ezKxZs3j33XdvtVkKvogQk8lE7969yc/PZ926daSnp7NmzRratm2rEXqLFi1iwIABdOvWjd27d3PgwAEGDx5McnIyU6ZMuSY7mzdvzgcffMDBgwfZvn078fHx9OnTh4sXreXcjx49isVi4cMPP+TQoUO89957LF26lJdeesnruDt27GD48OGMGjWKQ4cO8dlnn/HLL78wZswYr/3q16/PP//5T/bu3cuePXt4+OGHGTBgAIcOHQLg7NmznD17lrlz5/L777+TkpLCN998o4mmGTRoEDk5OZqvxMREevToQWxsrNLuySefZMuWLSxbtoz09HRWr15NixYtlOurVq1i2rRpzJw5kyNHjrBs2TLWrFlT4b0XFRXxwAMP8Pbbb3ttJ3BPQUEBw4YN4+OPPyYmJsbnftOnTyc/P1/5ys7OvoFWVgZP2aJcLntr5eaqOtH5/8/ee8dHUe3//8/ZTTY9IQkBQksIhCqgUqQIGFEIaOBrQbxwKSpIvHQREb00RbAAKuDF8lPgfi6iV0SMyFWwgDRRmqBIgEgJnVBCCsm2+f2xu7Mzu7MlgELwPB8PZWfmtJmUeeXdjks3+TfGVClxnL/nR5lQi96OyX4n1BlWfx6vkuyy+6SsU1hLRlLpHB+RUppR3bvvKYXO7apI8g2zHc1KfPxRF1SIkyrFL0RsDi6ovAi9JPSS0EsVR/zWv8FwB/5cUs4ZJZmqYQVYZXe9ACM2jw5XGu7j7fnTloDyLUjUO67oDWnQcRxqDFuyjGwMwS0YZewGg3ZOvWKnqtpQXp5SWfVBJ1JKOSd7JweI9D3BjUhYWBg1atQA4IknnuDTTz8lJyeH7OxsRo8ezeeff055eTldunRh7ty5pKenA3D48GFGjBjBhg0bMJvNpKam8uqrr9K0aVMyMjIAiI+PB2DQoEEsWrSIoqIisrOzWbFiBbGxsTz99NN89tln3Hzzzbz++usApKam8thjj7F//35WrFjB/fffz6JFi9iwYQMTJ05k69atVK1alfvuu4+ZM2cSFRXFr7/+Sl5eHt988w0pKSkApKSk0LFjR+U+8/PzGTduHGPGjGHGjBnK+XHjxmEymRg1ahR9+vThtttuu6zn2K9fP83xnDlzeO+999i1axddu3YlMzOTzMxM5XpaWhq5ubksWLCAWbNm+Rx38+bNpKamMmrUKADq1avHsGHDAgqPrKwszfGLL77IggUL+OGHH2jWrBk33XQTn3zyiXK9fv36vPjii/z973/HarUSEhJCREQEERERSpszZ87w7bff8t577ynnvvzyS9atW8fvv/9OQkIC4Pgaqtm0aRMdO3ZUnlFqaip/+9vfNJ5RPQYMGAA4vKYCqFq1KkajkVOnTmnOnzp1SvkZVpOXl8ehQ4c03wt2u3NTlJAQcnNzqV+/vle/sLAwwsLCrvLqry566Xs6b23NUXCmI3fNJn/YnD4ro4xmRznXCL5H10ZF6aFx78myTl0pFwaPa07nm8dA/oqVy7g3yHF1cNSUcp4scfyRKBed8uqrmdmzHJeqZEJY0QVijYUYzWYkg77PXOgrQWVA6CWhl0DopYoiIqWue/y8gP28nO3WY8FH7gSoKVURrCFGfncWSL0UeZxzxfo7/egLLV9VEDytUu6QcbtRojgpCVtUjKavzRn67RYwgULKfWO3WrlUdBGbKvRWBgw2G51+/o2GX3zDXb8cpPn+wwCU512gLPdcwHEFAlmWKbHZ/vT/roawj4iIwGw2M3jwYLZu3UpOTg6bN29GlmV69uyJxeKobzd8+HDKy8v5/vvv2b17Ny+//DLR0dHUqVNHeXnn5uZy4sQJ3njjDQCefPJJNm7cSE5ODmvWrGH9+vVs377daw2zZs2iZcuW7Nixg0mTJpGXl0dmZiYPPPAAu3bt4qOPPmLDhg2MGDECgKSkJAwGA8uWLcNms+ne17Jly7BYLLoevmHDhhEdHc3SpUuv+PmBw1v5zjvvEBcXR8uWLX22KywsVISJL9q3b09+fj6rVq1ClmVOnTrFsmXL6NmzZ9DrsdlsfPjhh5SUlNC+fXu/64mNjSXERzTDv//9byIjI3nwwQeVczk5ObRu3ZpXXnmFWrVq0bBhQ5566ikuXXI7UDp06MC2bdv48ccfAfj9999ZtWpVhe5BACaTiVatWvHNN98o5+x2O998843u17Vx48bs3r2bnTt3Kv/16tWLjIwMdu7ceZ2m5XnjvWudKlwoQE/Nvx4RRG4qVnwc3EYprzH+cNQKytuAJqM2zkmeXbyID48nDYcB0lXHs9hcrFwvjYp3D6xHAAdo661bab76P/T435e0+WGjd8EFw5/13ATXK9dKL10NzST00pUj9NKNr5eum0ip77//nldffZVt27Zx4sQJPv30U/7f//t/gCOE8J///CerVq3i999/Jy4ujrvuuouXXnqJmjVr+hxz6tSpTJs2TXOuUaNGXrmwlYngfy/q/QJRF630TNmT2H/+S8pK9zqvhUDkXfhFZzHlpjAsJkdElmywcebCMaBNgLXqCUn3P5Ks08o5tyXKQFFsstd12RTpEKj+aifI3mclJTzdLVLPHj3Cv4b0wxgTC7UbOr2DMnGFhSQUOdIgjUCdo8fY2voWLu05S8Evv5L8TFuMcde3F1lwbSm126n//e4/fd68zs2JusyaHbIs88033/DVV1/Ro0cPVqxYwcaNG+nQoQPgyNOvU6cOK1asoE+fPhw5coQHHniA5s2bA2h29XIJh2rVqlGlShXAkUq0ePFiPvjgA7p27QrAwoULdX/X33nnnYwbN045HjJkCP3792fMmDEApKenM3fuXLp06cKCBQuoVasWc+fO5emnn2batGm0bt2ajIwM+vfvr6xr3759xMXFkZyc7DWfyWQiLS2Nffv2Xdazc7Fy5UoefvhhSktLSU5OZs2aNT7Tpg4cOMC8efP8ev0AOnbsyJIlS+jbty9lZWVYrVaysrJ48803A65n9+7dtG/fnrKyMqKjo/n0009p2rSpbtuCggJeeOEFHn/8cZ/jvffee/Tr10/jDfz999/ZsGED4eHhfPrppxQUFPCPf/yDs2fPsnDhQsDhFS0oKOD2229HlmWsVivZ2dkBw9EF3jz55JMMGjSI1q1b07ZtW15//XVKSkp45JFHABg4cCC1atVi5syZhIeHc9NNN2n6u34ePc9XBtQBP34lky9flWuc4EYJmkD1M6EiGk+LbpSUEoVk0J3O7tHQX/pe48RGRJ42UKQaaf+5A9SgHgD/CbfTVGcOF9o/6h1GMvcmNRJVVOlABlkGu7YGl2RwpAuKMgl/Xa6VXoLL10xCLwm9JPRS8Fw3kVIlJSW0bNlS9xuitLSU7du3M2nSJLZv367ktvbq1SvguM2aNdPkbW7YsOGPWP4fjm5kkboYt27YtZ+UOVs51vJfKTi8hRN2M2fCSjhV+itgAdkKchk2S14F1qdfJwq9s55Zer5jzgF3+p4ervtOKg8jXDYp5+3hsY7rPhSeUmJBljFE1yD0l0juqNGXlqY7METXUD1a92Itl9zF42RZ9t4VUD22DPZLYutiwY3DypUriY6OJjw8nB49etC3b18GDx5MSEiIJjQ7MTGRRo0a8dtvvwEwatQopk+fTseOHZkyZQq7du3yO8/vv/+OxWKhbdu2yrm4uDhNLr2L1q1ba45//vlnFi1aRHR0tPJf9+7dsdvtHDx4EHB4Ik+ePMmSJUto3749H3/8Mc2aNWPNmjVBPwuTyRSwzZIlSzTrWL9+vXLNFYGyadMmMjMzeeihhzQFLl0cO3aMzMxM+vTpo6l1oB43OzsbgD179jB69GgmT57Mtm3b+PLLLzl06JByff369Zp+S5YsUcZr1KgRO3fuZMuWLTzxxBMMGjSIPXv2eK3n4sWL3HPPPTRt2pSpU6fq3vfmzZv57bffvHZws9vtSJLEkiVLaNu2LT179mTOnDksXrxY8f6tXbuWGTNm8K9//Ut513/xxRe88MILAZ+pQEvfvn2ZNWsWkydP5uabb2bnzp18+eWXSvHzI0eOcOLEiWu8yj8DV3STsw4Sko5e8o4i0h/KXVPKV9UBX8iS2nAk66YV6nf0b4dR7sWjkVYzeitIdU0pyadRSjOE23nn1D4G2f1HeqGkH0mhO5DHOnQzIY3aP08M/tYmEFxnCL3kRugloZeC5bqJlOrRowc9evTQvRYXF+f1AzB//nzatm3LkSNHqFu3rs9xQ0JCdGsoVDqCK1+gae7+7BkVBfKFnVgvHefIz3AEWNNmLV23VscgQ3lUHcJKLrdgqWr3FNWMlyQ4L/0GVNPp4903KUQiioZEyHZCyw7giPxyRjHJag+bg8alVYgMDVOEk92AKz7ddcfe08mALBOa0hHj2VCqR6QCUF63A/KpdQCEhIYydulnfPLiZA7t/U2ZX9+d6YzespVzSrrAr5vXYYgOJSIigjZt2lz3tTcEfz6RBgN5nZtfk3krSkZGBgsWLMBkMlGzZk1CQkLIyckJ2G/IkCF0796dL774gtWrVzNz5kxmz57NyJEjL2fpGqKiojTHxcXFDBs2TKkToEb9noiJiSErK4usrCymT59O9+7dmT59OnfffTfp6ekUFhZy/PhxL2+j2WwmLy+P7t27B1xbr169NOKzVq1amnU3aNCABg0a0K5dO9LT03nvvfeYOHGi0ub48eNkZGTQoUMH3nnnHc3Y6t1SYmMdBviZM2fSsWNHxo8fD0CLFi2IioqiU6dOTJ8+ndatW2v6qXdmc+0QBNCqVSt++ukn3njjDd5++22lTVFREZmZmcTExPDpp58SGuquUajm//v//j9uvvlmWrVqpTmfnJxMrVq1iIuLU841adIEWZY5evQo6enpTJo0iQEDBjBkyBAAmjdvTklJCY8//jjPPfec32cq8GbEiBFKKoYna9eu9dvXc+ekSoV6UxJVrUm9t3a5BJ/FlHPU+DVGs8xdxR11Iqu9LVBXw0TicwzndBdkfYmut/ue547EDiuY86NsUFrpTKPy0vleoSSD5NrUBZdRyv0eseuGtOtMFqT/VDKoolIkQKTv/eW5VnrJNXdFEHpJ6CWhlyrOdWOUqiiFhYVIkqSEMPpi//79ylaW7du3Z+bMmT6NWOXl5ZSXlyvHFy9evJpLvmqUbPmRi198QWjxVscJTQVwt4jyGwZuK9ccmizuX7iyQfttEWxVBn9cMErYJYvuNZdUdM0RapfpEB0COCLhbElm8o+8ibb8qFKZEwCjpA2rtStiLAhLnjEUGRkzzsgmg9GtnyQJg8HoLLqpikwLMOS60D1c/Nmd+xsREeH1S0cgkCTpstPo/mxcwkBNkyZNsFqtbNmyRQlHP3v2LLm5uZpw5jp16pCdnU12djYTJ07k3XffZeTIkYoHTV2vIC0tjdDQUH766Sfld3VhYSH79u2jc+fOftd46623smfPHq91+kOSJBo3bsymTZsAePDBB5kwYQKzZ89m9uzZmrZvvfUWpaWlDBw4MOC4MTExxMTEBGwHDq+Y+t1z7NgxMjIyaNWqFQsXLsTgIYj17q+0tNSrZoFRVVsvIiIi6OfiuZ6LFy/SvXt3wsLCyMnJITw8XLdfcXEx//3vf5k5c6bXtY4dO/Lxxx9TXFxMdHQ04Aj9NxgM1K5dW7kHz3tV30NFnqlAAD6MUipb01dRUbyYdAlw/MF44vx5PBND/BUbD9rKor84v+N+b4unnddK9DupA84Vzabcp3fNKBnJq6C7wZ/hx7lluaOzU7OpjFK2gOXh/dyszrTqQufqZYk6539dhF4SegmEXrqR9VKlNEqVlZUxYcIE/va3vylWTz1uu+02Fi1aRKNGjThx4gTTpk2jU6dO/PLLL7pfqJkzZ3rVoLrW6BlVTk1/gfL9B4ipWwpEatv7HcyP4JB1P3I55ihfawiQ1OcWj857LrEVEWWMwWgwYTKEIeM28ng+FoNkRK00bZKjkbudj1Q7QJYM5Ji2csbgMEIm1pdo58xq0Atn9x0p5RpTxiw5DFyRkZGUlpYGtf2qQFDZSE9Pp3fv3gwdOpS3336bmJgYnnnmGWrVqkXv3r0BGDNmDD169KBhw4acP3+e7777jiZNmgCOnVwkSWLlypX07NmTiIgIYmJiGDRoEOPHjychIYFq1aoxZcoUDAaD//QSYMKECbRr144RI0YwZMgQoqKi2LNnD2vWrGH+/Pns3LmTKVOmMGDAAJo2bYrJZGLdunW8//77TJgwAXB4CF955RWeeuopwsPDGTBgAKGhoXz22Wc8++yzTJ8+3avOTm5urtdamjVr5uUdKykp4cUXX6RXr14kJydTUFDAm2++ybFjx+jTpw/gEFh33HEHKSkpzJo1S9n6GPAb9ZuVlcXQoUNZsGAB3bt358SJE4wZM4a2bdv6rb04ceJEevToQd26dSkqKuKDDz5g7dq1fPXVV4BDYHXr1o3S0lL+85//cPHiRcVhk5SUpIgggI8++gir1crf//53r3n69evHCy+8wCOPPMK0adMoKChg/PjxPProo0othaysLObMmcMtt9zCbbfdxoEDB5g0aRJZWVmaeTw5d+4cR44c4fjx44D761GjRo0bI1JaEBx6O+W6j3S7nPcQ9ReNJSTYXMYXVbreFaPxHgZltirHgL8VyJ472Xm3cP7fV39tofP09DoUnTmGXTJhtsdDiLvAvSSpA9BcjkR1pJRddcUfzoFkT6XpKercY0uSf7OgQFAZEHrJgdBLDoRe8qbSGaUsFgsPPfQQsiyzYMECv23V6YAtWrTgtttuIyUlhf/+979e+Zvg+GZ78sknleOLFy9el7vO2J21jQyRkT7bOGoeeNZJ0Ioirz46dZSuFJ+2G03cuWfYueP4wKU93BTZCqNH5JaeAc3oEeZuk2RKTSbFo+Cz0LksYzEaFIMUwNkICYvTgu76pe75y123pqgrel1107GxsZSWloptjAU3LAsXLmT06NHce++9mM1mOnfuzKpVqxSBYbPZGD58OEePHiU2NpbMzExee+01wBFOPG3aNJ555hkeeeQRBg4cyKJFi5gzZw7Z2dnce++9yhbH+fn5Pj1OLlq0aMG6det47rnn6NSpE7IsU79+ffr27QtA7dq1SU1NZdq0aRw6dAhJkpTjsWPHKuOMHTuWtLQ0Zs+ezRtvvEFJiWNDg6VLl/Lwww97zat3Lj8/X/FouTAajezdu5fFixdTUFBAYmIibdq0Yf369TRr1gyANWvWcODAAQ4cOODV39/vkcGDB1NUVMT8+fMZN24cVapU4c477wy4xfHp06cZOHAgJ06cIC4ujhYtWvDVV19x9913A7B9+3Zli2FPz+HBgwc12xS/99573H///boRzNHR0axZs4aRI0fSunVrEhMTeeihh5g+fbrS5p///CeSJPHPf/6TY8eOkZSURFZWFi+++KLfe8jJyVEKeIP76zFlyhSftRwENy6SnrNLHemsSe/TYpfseoFF+DpT8bUFGs0dOa7erCXguF6/G9RaxzvdT8a70HmjhnVpdXoeVL+J5Xt7cbwsRtPD4Ezfc0WdqdP3bIqO8/GM/DrydFAbpQzqYYWWElRehF4SesmF0EveVCqjlMsgdfjwYb799lu/UVJ6VKlShYYNG3LgwAHd62FhYddt3R9Jckoq1Q+ZISoKcPzw6xc6r8D4AcRWsDJABorNdfnw4t8pkmOxXogid8tJZRa9kTwNRq6VWGX9dD9HG+04RlWklASUG+ys6NKZ+CNHCSHA94nBCGjnsnsYo9RGKdfuewLBXwV/9WXi4+P597//7fP6vHnz/I49adIkJk2apDkXExOjKSxZUlLCtGnTNDuYHDp0SHe8Nm3asHr1at1rVatWVbZRDkTv3r0V7+W5c+fo2rUrCxYsoFevXkQ6HQKpqakV+l0QHh7O8uXL/bYZPHgwgwcPDnpMNSNHjqxw7Yn33nvP7/U77rgj6Ht0hfT7onHjxn4LpIaEhDBlyhSmTJkS1HwuruSZCW5wJG+jlBq7h/SxY9eJY/KI6tEcXo72unwDjrq7rO9uw/9JN4pRyhUR5sqTkzUFOR3XVBpIkr2NUkqkVEVqn6obe/ZTFzrX6K/gxxcIrgVCLwm9FAxCL3lz3ey+FwiXQWr//v18/fXXJCYmVniM4uJi8vLydLeuvP4JUvg4fxaSI2pye0Rrutd6lBbxXf7wmdVtzl9qxllrKmZbAvYyI3s2HMe/WctVH0p71iardq+TJE0D5WdeqSnl/laOs0ciOUWWXdlWWCdqzBkpJUveYY6eRik8I6X87b6nkoqBwmcFAoE3O3bsYOnSpeTl5bF9+3b69+8PoIieP5uEhAS+/vprunbtyubNm6/JGgQCQZDoFDrX1oSUlFN2r+Lf2vLh2p466fzK1SuzluhGX+tpI68IeP0BNNFiOqUbZI2ZzlPnyF5GPFmSVTvgOXSVuqZUwPt3rTtITSSpwqMMBpG+JxD4QuglwY3CdRMpVVxcrIlgOnjwIDt37iQhIYHk5GQefPBBtm/fzsqVK7HZbJw86Yi+SUhIUIq/de3alfvuu0/Zbeapp54iKyuLlJQUjh8/zpQpUzAajfztb3/782/wD0FfxgBEGCOJkaPBFE28qYKFzvy+/fWjnfQGMBnPYbYlBJxCZcLRXDNa/H17ekRK4TYstbem06C8Ph+HrHePpkzocXOyjKzKvZVkCVmSsXkIJ89IKf9rcnsZhVFKILg8Zs2aRW5uLiaTiVatWrF+/XqqVvUsQfznkZiYyOTJk6/Z/AKBoOLope+pZYDLbRUiG7FKNkf6XhAmEMnDMeZvBb7OelYu0G2u00Z39z29foqNSX+Ndk+d40qZ042Uwn2vrkLnmppSrvpVPtDoJtW8Pp6fpKkppZ7b1wQCwV8XoZcENwLXjVFq69atZGRkKMeu2k6DBg1i6tSpylaaN998s6bfd999xx133AFAXl4eBQUFyrWjR4/yt7/9jbNnz5KUlMTtt9/ODz/8QFJS0h97M9cQtXmnxH6JKEOE6qr/mlJXB/ccRklb3DtYA43R7libFbN+OVDZXWfBJR4NHt/KBsmAJKt8oLrR8k4R5dx6WJLBgIQN2TtSyjWv8tG3QVBXZ4qYc4EgaG655Ra2bdt2rZchEAgqEf5es3rpe7LsTt8zOo1SNux+igxcvpMpsAIIwuHnpaFUKXVeW9SozugMa7ebSMp7hgGWqihJE4oRy+7sra2AJSU1BI4rZ9Xpe7Izfc/vhjoea9ae9Vik2llYaXI6BII/H6GXBDcK141RKlAeZjB/1HvmzH744YdXuqxrj959K14qvx2x2q1XJUEzKHOKyk2n52X0m7yn4+I7ZyzkiH0freikmsP3iCEeu+8ZMIJdtUWxrksSx7NUak5ITqOUTk0pjx169L8fXZ5CVVC8iJQSCAQCgeDPR/ZR6Bz3O991NkQ2Uo5Dj7gLnXsIKMVudHnv9eB6eRvAgih+4CFxtGl/rvtV24vs1uqElTbAVUU10nAOd0lVnUgpgDq3AWvRS9+TVWXTddfp1ExmyYpRAoOMVt963qTB4J5Hkq7EHigQCASCSoDwP1RqVKJFx/jhaTgJJiTd0c77k/68FYj+UUcZ+YxPd4wbUiuK/g0nUmQtDHr46NAqmuMQQyjhhgi8lYx3+p5d2VHGHRZvN3hGSnnWnfCNrHOHAoFAIBAI/gQkvQOVzlCFULviqV3xUeelEj/v78uxjOj38Z5DLypb1vGnybqfvWdRj6e3BofuORdxkuh6L9C/6giMIUbV/F5FqlSP0nFNGynlX/WUWRy7Rl8MKcYmOXZFPhx9BFDX/lQvTxUFpvosos4FAoHgxuS6iZQSBM+BhNs5knILUqiB8FtPc8svc90XVfHaBoM/AeXvxX6lLilf/fX3v6mwxHAWKFf3NSBhk93CJtQQRvXQ2py75H8cGbAbQ5yrk9xGKZehSpKwnr1EQnk1akemk6t09V3oXFO6QkRKCQQCgUDwp6Ep8q2c04s6l7BpyyRRYijTifnxiBoKWFbTX6kEd5qev3GCqd7pnkK/pdXqKmzg7VyTnQYls/ESpoh8TJcuuddtLddJB1R9VoxSDiOWOkpKBmSbjUs/70IuL+OcpZB/nHwD6fd8Xva4p7KQS/jSi5LBCDiMV5LkPzVTIBAIBJUfYZSqJLhrPMocj22OJdRRvNwcW4+iqNpAqVefEJPR9U4PPL4cRH1zvc9+CUZFSLrKLMYcgxxdlX3GE1QlTmdkbZ9PD71B39SzRBjhxKWTwCkiQkw+27vuYVe1OJKjwpVTBiVSym2UOv3Wz6QVN6Fm1frkst4xnqwTd6aKo3fN5zJKCe+eQCAQCAR/Nq5UPbXhxNtoZXBGDsnIfixCf66TSd+N58YVz6S3KkmWsFuNgJ2dxt9p5NXCcb92yeZIpQNw7URceARkD/EoufVMQpGd0wlgkF11NFXx4TIUvP02BXPdW9tntpBYfatjvkhjBAapHLCDDA3atONg3gFvI5hXoXO/j0IgEAgElRyRvldZ0N3i2F97/RDvPxp/Rb61nja93m4DTqeTnZCTUtkUtp+Vpm1OI5E6HF3bxyqblUeUV3qYr4//Hy2tqUTZw3XnALCWhFEl+XbCjFHONakipVRGKXuRxauv3/pnInlPIBAIBII/Gb0S5d41pdSb8rpMVZLKwOIZKeX/ja5KMws+tAnZs0zSlRhdfAVtO8c8JZ33ai87dyyWJbv72SS3hLodILoGktGk6SJJIDl3uq5b4GhvtDkNeZI73U9GwpJ/1NHHWaSqWiE0qtIQgNiIOI2eDTGZkHQqme/iVmxGx0Y92vQ9/XsVCAQCQeVGGKWuc/TfvzrqRYmkUve9vJpS/pr5TszTOxecevAy4sgyYTal4iZ2SUY2GHwWOncLQZfxy4AdG2F2IxFohZV6deb8ZJpWv5vwkGgAjCEhSqSU7FVTynOJwRmlRPqeQCAQCATXBrfu0X9nK0YrTdQP6Nd4QrkSvAFKM5kfJKWJI1rL6SLzCvKWFeeZEuWlM66kWb92ese4rkgpOwbX/YVGwKP/g6dyod7tXvolpls3NrQ0sT/ZNZA7ukxTtspZIyosPV2Z2OQycqnGlJDdWsrjHsyYlFqpsVXDtfcjEAgEghsOYZS6QfA2OF07d1LQxq8KoBZhe62NKDpXphx71N5UhJJFLtesCs8jpyg7VnoAAIPRoISjK5FSai+our8s64pFz6mEUUogEAgEgj8RyW1gUk65PkuSolGq2KOUmlKRssMRJkuyz5S4Kwpn0u3qnUao5mqpuJonjuuM7aqfaXP/IaDSK9FVwjTtI+NMhCQm8u/7YvmosyvUzNVTHSkFsqu+p9Glo9yGNL16X74w2hwarmOfdPXCBQKBQHADIoxSlRI/wkj2+uCjn+8ilt69ghBissYH52cNOl21/junINTf7a40sga59sZYLlnd63PZgpQ1OL6tiy0X/IR6u8fffcFRJ0qS9NP3dNcsyz4jwfR23xM1pQSVmcGDBzt+PiQJk8lEgwYNeP7557FarYE7+2Ht2rVIksSFCxeuzkKD4ODBg/Tr14+aNWsSHh5O7dq16d27N3v37tW0W7lyJV26dCEmJobIyEjatGnDokWLNG0OHTqEJEns3Lkz6PmnTp1K48aNiYqKIj4+nrvuuostW7ZoxnzssceoV68eERER1K9fnylTpmA2mwOOvWTJElq2bElkZCTJyck8+uijnD17Nui1R4YSBQABAABJREFUvfTSS0iSxJgxYzTn8/LyuO+++0hKSiI2NpaHHnqIU6dOadq8+OKLdOjQgcjISKpUqaI7vut7SP3fhx9+qFxfvnw5d999tzJP+/bt+eqrrwKue/ny5XTr1o3ExMQKfz0ENzauaBu99L0oOUxJ1YuRHali/tPvfUepe8ap+0O3i247/y4+f5FSAHZn5wYH8pzH6tHckVIS3vrt9ofS6ZHdXDm+5a66AAxpPoQakVW061CHjckS2J2xZq5NZGR3vU7tNAGek9O4ZTR45joKBNcvQi8JvST00uUhjFKVEK/XuEZo6L25dV78XlYT//Mp0Ug2C6HOH/bYwkJ/y/QqAeXTuOUVB+9jMQYDdoNT5Cg1BvRGdXxbbzi1nFK76yXgIbpc6Y4qY5G+UUq1KtXufna/6Xvu/4tIKcGNQmZmJidOnGD//v2MGzeOqVOn8uqrr17rZSkEI0IsFgt33303hYWFLF++nNzcXD766COaN2+uEXrz5s2jd+/edOzYkS1btrBr1y4efvhhsrOzeeqpp65onQ0bNmT+/Pns3r2bDRs2kJqaSrdu3Thz5gwAe/fuxW638/bbb/Prr7/y2muv8dZbb/Hss8/6HXfjxo0MHDiQxx57jF9//ZWPP/6YH3/8kaFDhwa1rp9++om3336bFi1aaM6XlJTQrVs3JEni22+/ZePGjZjNZrKysjRbuZvNZvr06cMTTzzhd56FCxdy4sQJ5b//9//+n3Lt+++/5+6772bVqlVs27aNjIwMsrKy2LFjh98xS0pKuP3223n55ZeDulfBjY32tettlDIbE9jX4AF+SeiC6cTfqVnYAKOzxhK4CwHgceay1uI5gp5tRoN6rsB6TvY+pfQ9WD2M0po3kV+7Nsdq1mRnitvIJMs6hc5VmMJDSLs5STk2hhqwWa30a9CX59N6+12TK33PVaxcUotID00ky65URf+aSr3Zj0BwvSP0ktBLQi9VHLH7XiVBMb2o387aBkGNcsXYyjHZZaxhobTYtZvva9S68jFd+C/9oCAjI4foFTR1DuN8PuX2UrDbkAwhXkPaja6tjN1qySAZMDhb6kVK2VVGKf+RT6KmlODGIywsjBo1agDwxBNP8Omnn5KTk0N2djajR4/m888/p7y8nC5dujB37lzSnfVEDh8+zIgRI9iwYQNms5nU1FReffVVmjZtSkZGBgDx8fEADBo0iEWLFlFUVER2djYrVqwgNjaWp59+ms8++4ybb76Z119/HYDU1FQee+wx9u/fz4oVK7j//vtZtGgRGzZsYOLEiWzdupWqVaty3333MXPmTKKiovj111/Jy8vjm2++ISUlBYCUlBQ6duyo3Gd+fj7jxo1jzJgxzJgxQzk/btw4TCYTo0aNok+fPtx2222X9Rz79eunOZ4zZw7vvfceu3btomvXrmRmZpKZmalcT0tLIzc3lwULFjBr1iyf427evJnU1FRGjRoFQL169Rg2bFhQwqO4uJj+/fvz7rvvMn36dM21jRs3cujQIXbs2EFsbCwAixcvJj4+nm+//Za77roLgGnTpgF4eUc9qVKlivJ95Inra+tixowZfPbZZ3z++efccsstPsccMGAA4PCaCv666L2X9WpKFcfcRkGS4/eT6Tx0udSCnY2XOFpJHvWRdCfSG1/3sgb/dTYd49gsFueRpDOSh0HH2US3pqcscT46hPPpD7MpfDdhZWYOXwon/aTLY+8qUm5XdI+utnRyMm8fX8ydhaXskqO3qTGmqJ7Oudzx4dr0PaOyarXhS5Y8viZGY/B2P2GTElQChF4SeknopYojIqUqCxXdfU/nza3jX3MPrxnT//guQWF0hqIapBBqRjiMU1JUEoEVnXZm74Ls/lVHefgZzOE2Z1swes1n9OrjiesZysiEOe9DHSlV7tw1Rlv/IFijlNBNguCQZZlSs/VP/+9qpJNGRERgNpsZPHgwW7duJScnh82bNyPLMj179sTi/ONq+PDhlJeX8/3337N7925efvlloqOjqVOnDp988gkAubm5nDhxgjfeeAOAJ598ko0bN5KTk8OaNWtYv34927dv91rDrFmzaNmyJTt27GDSpEnk5eWRmZnJAw88wK5du/joo4/YsGEDI0aMACApKQmDwcCyZcuw2Wxe4wEsW7YMi8Wi6+EbNmwY0dHRLF269IqfHzi8Ze+88w5xcXG0bNnSZ7vCwkISEhL8jtW+fXvy8/NZtWoVsixz6tQpli1bRs+ePQOuY/jw4dxzzz2KYFJTXl6OJEmEhblrzISHh2MwGNiwYUPAsfXmqlq1Km3btuX999/3+71ot9spKioKeO8CgS/0dt+TpVAAqpSdACDEZiKqLJ7/t3sM9/4ymmr7p5Jyvpn3YFfNyaRbmRyA8tJSyhSt4V27Ug9/Rdd9FWqQZYdOsks2VX89h6fj3LG9exSDFIDdclj5HG6RaXhMtWehzRkp5awp5ajbbtCMFwzCpSdQc6300tXQTEIvXTlCL934eklESl3vBPmL0G1kcRDsznf6YylFmlyDaUaze4iKpPDaVAt3evfCYqAcfa5E0EnuRdgNFuV0nD2SRoUmDjoW7lquO+fQo3aBZ7KfwW6nRf4Z1qU7jFIuK21egwZea1an75VdshGpqmvumNPlKXS3c0VKiZpSAj0uWWw0nRw4B/xqs+f57kSaLu/XvyzLfPPNN3z11Vf06NGDFStWsHHjRjp06AA48vTr1KnDihUr6NOnD0eOHOGBBx6geXNH6khaWpoyluvlWa1aNSWvvqioiMWLF/PBBx/QtWtXwBHCXLNmTa+13HnnnYwbN045HjJkCP3791dy/NPT05k7dy5dunRhwYIF1KpVi7lz5/L0008zbdo0WrduTUZGBv3791fWtW/fPuLi4khOTvaaz2QykZaWxr59+y7r2blYuXIlDz/8MKWlpSQnJ7NmzRqqVq2q2/bAgQPMmzfPr9cPoGPHjixZsoS+fftSVlaG1WolKyuLN99802+/Dz/8kO3bt/PTTz/pXm/Xrh1RUVFMmDCBGTNmIMsyzzzzDDabjRMnTgR3w06ef/557rzzTiIjI1m9ejX/+Mc/KC4uVryVnsyaNYvi4mIeeuihCs0jEAAa/eTSRO6S3BBffoIL4clIGEi8WI8axfWU9o1Puz37dlcENTIG8LP7nv/qnK75lX99yAL9P//UI6l0iaS/Fgm9OkzeqYH2ICOlXKknSalpnDn0O5JqlVXP/ExCqGoKJVLK8Y4xyCi7G2prIjjeJ2p9pM70c58U+klw7fQSXL5mEnpJ6CWhl4JHRErdCKhrFPh9dwdTID1AO52rBkkbmaTnmdRe94iMUhatFHoKevYGtmRSirTfxpIhSjVWgGFkuyLwDJJEmq06oTZHFJgpNJRmjZq41+mrppRnjQT1NCJ9T3CDsHLlSqKjowkPD6dHjx707duXwYMHExISognNTkxMpFGjRvz2228AjBo1iunTp9OxY0emTJnCrl27/M7z+++/Y7FYaNu2rXIuLi6ORo0aebVt3bq15vjnn39m0aJFREdHK/91794du93OwYMHAYfn6eTJkyxZsoT27dvz8ccf06xZM9asWRP0szCZTAHbLFmyRLOO9evXK9cyMjLYuXMnmzZtIjMzk4ceeojTp097jXHs2DEyMzPp06ePptaBetzs7GwA9uzZw+jRo5k8eTLbtm3jyy+/5NChQ8r19evXa/otWbKE/Px8Ro8ezZIlSwgPD9e9j6SkJD7++GM+//xzoqOjiYuL48KFC9x6660YDBWTEJMmTaJjx47ccsstTJgwgaefftpnnY0PPviAadOm8d///pdq1aoFfKYCgRvvyHI9PeI6J8kSRrtWx0iyQd3QMZZ/gVUBvKtW6eFp/FIcbp7tLmtZ6ppSvgdwl45wFh0PcfxhHm4oYfhts7ivYDxNc/+jjCEjIbtqSpkvesymRXd3ROWix7HQUoJKhNBLboReEnopWESkVCXEX/pexbWJFGDEyxlPZzWyrFshwatd0LO4+8RfKqf9/qMk3FYTLuYiGWuAdCiocWXAEhrpGFOSaG6rS+NDxynb9j6Ntm1Ftody4pstjjpWXoHwPsYXTj1BkESEGtnzfPdrMm9FycjIYMGCBZhMJmrWrElISAg5OTkB+w0ZMoTu3bvzxRdfsHr1ambOnMns2bMZOXLk5SxdQ1RUlOa4uLiYYcOG6XqS6tatq3yOiYkhKyuLrKwspk+fTvfu3Zk+fTp333036enpFBYWcvz4cS9vo9lsJi8vj+7dA3/NevXqpRGftWq56+9FRUXRoEEDGjRoQLt27UhPT+e9995j4sSJSpvjx4+TkZFBhw4deOeddzRjq3dLcdUtmDlzJh07dmT8+PEAtGjRgqioKDp16sT06dNp3bq1pl/16tX55ptvOH36NLfeeqty3maz8f333zN//nzKy8sxGo1069aNvLw8CgoKCAkJUeocqL24l8Ntt93GCy+8QHl5uSbc/cMPP2TIkCF8/PHHmhB5f89UIHAhSRKSMQm7XEtllLKrWzj+kd0R1AaPMgDqaKTqlijKuIC+GSnYc8GjjqbyX70ygHHLxwWTZMJmTXJoMsmuMkoFjpRyFS93RHrZFcebZJfBAKews/PoJhoA54//RCgmrdFMkhQDk24Zd0lC0jGSKX5Eoa/+slwrveSauyIIvST0ktBLFUcYpSoLmpJPnq/yQGHazjOyD4PRn4Z7fs0Owp7NZO80O99iSQLZTnxpOabwOLjoEKQh4e0xhrUAydNCL2n+tRlN/NLsMeAXXMl75WHxFCQ0o+b5cqJjXD8i3pWvfKE2YIlIKYE/JEm67DS6PxuXMFDTpEkTrFYrW7ZsUcLRz549S25uLk2bNlXa1alTh+zsbLKzs5k4cSLvvvsuI0eOVDxo6noFaWlphIaG8tNPPynCqLCwkH379tG5c2e/a7z11lvZs2eP1zr9IUkSjRs3ZtOmTQA8+OCDTJgwgdmzZzN79mxN27feeovS0lIGDhwYcNyYmBhiYmKCWoPdbqe83J33fOzYMTIyMmjVqhULFy708rDp3V9paSkhIdrvJaNrQwdZJiIiwqtf165d2b17t+bcI488QuPGjZkwYYLS34UrZP7bb7/l9OnT9OrVK6j788XOnTuJj4/XCKylS5fy6KOP8uGHH3LPPfdo2lfkmQr+wkhxhMU+7DBDubLGNEYp1zl3pJRB9vijU6WXwuxGynxcqwgB09TUF50qSPKazluJ6EZKyRIWo/4f0hGGKCSzo3CxxWB2O9j86BVX9JPmd5EsKxXMDXbAACWSTKHV8bvscFgIDZz3YHB/IbTjutL3dO/B3cbrpOAvh9BLQi+B0Es3sl6qHD/dAoWrX5vIGSl1Td/zwRU697lEJa3OWYA9BIymJkiGCAAshnKssgUI1XTbY8xnl/EIJSbHL3ib2THOhSrp7GqRxm/TNtO1aDlhqYOdwk8tKD3S99TXdB6mqCkluBFJT0+nd+/eDB06lLfffpuYmBieeeYZatWqRe/evQEYM2YMPXr0oGHDhpw/f57vvvuOJk0cabEpKSlIksTKlSvp2bMnERERxMTEMGjQIMaPH09CQgLVqlVjypQpGAyGgEbeCRMm0K5dO0aMGMGQIUOIiopiz549rFmzhvnz57Nz506mTJnCgAEDaNq0KSaTiXXr1vH+++8zYcIEwOEhfOWVV3jqqacIDw9nwIABhIaG8tlnn/Hss88yffp0brrpJs28ubm5Xmtp1qwZoaHa3zklJSW8+OKL9OrVi+TkZAoKCnjzzTc5duwYffr0ARwC64477iAlJYVZs2YpWx8DPndhAcjKymLo0KEsWLCA7t27c+LECcaMGUPbtm1160uAQ7R43ktUVBSJiYma8wsXLqRJkyYkJSWxefNmRo8ezdixYzUpAkeOHOHcuXMcOXIEm82meBkbNGhAdHQ0n3/+OadOnaJdu3aEh4ezZs0aZsyYoSmQ+sEHHzBo0CDeeOMNbrvtNk6ePAk4isTGxcX5vHfXvMePHwfcX48aNWr4fWaCGwzlPRvt/NdKvLWAmOO7sdRJcZ6TdNpLGDwSzLwdYx59/Zzyh+/mPq74tV45I450a0rBLzc3o25hmUdrB4fif8FsvMTx5J9oVmDRaaE6JbuNUpLGKGXHVb/c6NJhsoTJ2clmDAHsSJ6ORo9an0Eh/HuCSo7QSw6EXhJ6yRfCKFVJ0O4C513DyDsBzzvd7I9FVv1f0pzzj+Tjc7CoDELO7nf0qsH+/zg+Vz3yH155YDd3/hSH2iglAb8Zj1FscAu2KMkR2mqQrYCExRjBpbwjhKU6p9EYovC6PbfOcrcUkVKCG52FCxcyevRo7r33XsxmM507d2bVqlWKwLDZbAwfPpyjR48SGxtLZmYmr732GuAIJ542bRrPPPMMjzzyCAMHDmTRokXMmTOH7Oxs7r33XmWL4/z8fJ95/C5atGjBunXreO655+jUqROyLFO/fn369u0LQO3atUlNTWXatGkcOnQISZKU47FjxyrjjB07lrS0NGbPns0bb7xBSUkJ4PBKPfzww17z6p3Lz8+ndu3amnNGo5G9e/eyePFiCgoKSExMpE2bNqxfv55mzRy7fa1Zs4YDBw5w4MABr/7+jNuDBw+mqKiI+fPnM27cOKpUqcKdd94Z1BbHgcjNzWXixImcO3eO1NRUnnvuOc3zApg8eTKLFy9Wjl1bEn/33XfccccdhIaG8uabbzJ27FhkWaZBgwbMmTNHU/vhnXfewWq1Mnz4cIYPH66cd2197YucnBweeeQR5dj19ZgyZQpTp069klsXVGou0qH4cy79vpPf6ox2n1aCdpxRPrIBoxyMUUrT3Q/eoeC6P7lKCJT3iNqy6PozeybdeSYgygYDxYZSnWVJ/FznI744/QvGusMxnNzmPB04fc/gaZRydukYksguoJZspL4UAZRgd224p/m//6cnO518vloJ/56gMiP0ktBLIPSSL4RR6jqnwhE2+sqHH8PDmBifzP1OI7JjxxW4Gp6/4NblW1x5RRb5uWd3KU31SW2klCk+TvlstJ7HHFKGRJymDYDNGc4fXZhOo8a1qGOOg8Ji4qpHw6ES59pc9RNkza56eEZK6V8RRinBDYG/F1x8fDz//ve/fV6fN2+e37EnTZrEpEmTNOdiYmJYsmSJclxSUsK0adN4/PHHlXOHDh3SHa9NmzasXr1a91rVqlWVbZQD0bt3b8V7ee7cObp27cqCBQvo1asXkZGOOnSpqakV+h0dHh7O8uXL/bYZPHgwgwcPDnpMNSNHjrzi2hNr1671OvfSSy/x0ksv+e23aNEiv98nmZmZZGZmVnjuYLiSZya4AQn2tauKlAq1O/4otGPDgNG9W5yjobPZ1SuBoBNP7XXFVVPKEhLps6eM5Hv3PV9IjpTFUHDeUxD1N5VIKaNqGbLyrOOdpRJCVeuxGySlrafJTxnXmb4XaMfoywmuEgiuBUIvCb0k9NLlIXbfq5S4XvTeNRI0UUoqTbIpIpwip5iQdWorqLnSd76vkpmBPGQubFZL4EYqCoyhnIxMwGJziqaQECXEPO7BB33PIznah1iiiTLGKfrUoM4LltReQW1/dx0Gz5GFahIIroQdO3awdOlS8vLy2L59O/379wdQRM+fTUJCAl9//TVdu3Zl8+bN12QNAoEgODRaQ/Y29rijdtw1pWKsjj+cXE6y6lYbnoQ4TzU9oi55EEDXqMKYlJaSZ4Fyr0JLyl0cSHuCfQ29Iwscd+S/0LnX5ix6vjRZ1hjnvJbvbOg7fc9lgVLP4zhn15SRch2oo/4DGaIc10++NBN7aanftgLBXxWhlwQ3CiJSqhKi3uLYUxf5esV7nVfHe8s+CmVWcFVBt/PUXx5mrIunT0O8dpcAb6nk6LMTG4PqtYF6bfjv6Wm0NbiuOSOcjL7trq5IKQmDQ5fZnQJPqS4KstHhPZVlz3RInftVtkR2/79833mlv0AgCJ5Zs2aRm5uLyWSiVatWrF+/XikceS1ITExk8uTJ12x+gUBwdXC9je0Xz0ICGGUJ2akZXAW561jsnPDoZ7CDDahdIHMkEZ/WoKDjozVZfvq9SqLSwH7U2chOmPmgz3H8uxu1K3Qb7lzxWFQofc8RKCW7/XZ2u0N2qYZT0vfUkVKS2zqnjXh3/qOzhtItP2K/ORPC4oO4N4Hgr4fQS4IbAWGUqiyoX9RBxTHLXoLHJUJcYkI72JXWdlLjUVMqoD1G28Alfjxb6K3qNDItyo1Us0kcLu+FbDjKzeUoz0u2e3o7vdP3kCXsNu0jcQW0n066lQTAZrNrw8s1i9GurMxW4m5pAyq2k6xA8JfnlltuYdu2bdd6GQKBoBIRrOvH5oqGtjmisiVZAtmdqu94o7sdWu6IJLeGcmmEIBLfdM/5rpqkjp/S9o2/sJ+IyLNIJCgjp/0ukX7K7t030A6Buo4yvT7+I6X05J7kdPC50ve8Cp1rliH7cNrJGGJi4FKxI2Jd+PUEAl2EXhLcKAijVKXEHQztDkz3fOEHiOrxy+W//X0LLbhyt6J3F5stku6XHLUMTtOB00D0vktKiwtnTkAt3SGwK6H7Bux2GbvdLTwlSUKWZSxhscqEPkPNPdZfUH4UYvR3bxAIBAKBQPAno3pPl4WHYbLA9oYhxNkcFyUP60rFVdCVWE18GGwCnAwvk+n9uQGD06hjNfiX9OqodOV+1el7QURKSUpolKSJlHJFmjvFkqOPXkSUJLmjoQI8MoPJBJcAVcS7iDoXCASCGxNRU6qS4NYKatOISzyp6yeoPqpqTnmWxvQa389RUOvTPReMeJDwTN8LegLALjs8nlbsRBgdwfZms7tx/i+7fI7jqikl4TRKqXWZorucHlWDjhgKoqaEKHMuEAgEAsGfSIANRqwGRwT18Tirs71BqSnlqmUg68pjt5UlaNOIH/+gepVGp74w2GXVdf+zmMwyBlnCLsH/GqazIe125zzu2HJtJS1fkVRBxHs5o841u+8hK49aUulNz5pSjkLn3jWl1PO6+uil73nfiUAgEAhuNIRRqlISnKnDfumS8tl3JLeOx0qjGSSvU5eLW5/4j6fy2VuW1dU5nf93HNuwExl6XBk/xBQGQNWU1MBDywbsdlTeQlWYvuIV1DPkOUWkwfPHSKcClvDuCQQCgUDwx+PTsKEl3O7OrU+0VAHcbj+tSvF8fwe7bUvwMVAGp00nRLYjWS3uAuNBzGE1wr/ateNofN0A8+pw8ajf1SpBTR7pe44yEHZwFjp3SRxZVkVKOaWRwVf6nhSkNhK7GAsEAsENjzBKVUrchc6VQ8mzhSokG2eev+wytPga8XJXo61H5dPk5ENY+N2BJWA0ko5wlMHgLFB+7+jxur2sktpDJyFr0vfUS3ULMJ+7Fhq0hjLt6oSYEggEAoHgWuBPXxhUr2evt3uAmkxuaXL573j1Dn6aCCGXAch7Nu1hhadWR2E5+e1z92WD7wKYdl+77ym1FFRjO7WUTb2RsW51c+cwPmpKqXu72/pcokAgEAgqMcIoVQlx65EAhc59HmlHuTrIHv9eHYIxRbmndcx94bsdSpSYbLX67ZloiwVn+p5m9z2XWjWoIqV8VjXVjmkMu9nHqgUCgUAgEPwheFksdF7YktrUo1PiIJj0vYDoREsHaKdvlqmAPpM9ZvU0qnnolzNyPD/TEJKaOP5r/ShEJugsUVvoXBMZLstIzud16VABADazexK7pC507hpOUsaUZG+DlKy3qY8kBVkOQiAQCASVFVHovNKgflF7R+boiZcLdiM/XbRglU1ElLxEcuqXXv1UA+jgX0YFNEOpopHUYjGJc1ySDfrtdGfTXg+TPK87P1kdoqn8WAFyXRuEhJJ/by9mxVj5ubZ21BBZYkBZZ8psBtZix26HM4YCPk7+lNJIK6fr2Wh0oh31iozKPbrSDr1W6+kplUJ1VicQCAQCgeDa4FmN06NCp6y9Gsit9+fgS4Ppp/YZNG10OyofiuRIHguZwdbhdwe3EleklNGtiZDthMY611Lu2MnQZnZLOlf6nqRas2ZMnZpSuqg1lrBNCQQCwQ2JiJSq1HhHO8kq71iBzUSJHcplCYOlOqnnmuuMUbGaUZLsXxPIOrmEaq1hxEINTnv00a4FZMJOHMJ05pgSxq4mxWRATzgqoiYkBFkV4VT3DCQUe681jFC3eLLJbIxYz9dVfmCTaSsH4nfwY90vcG0tI9tsTq+qtzjSsRGqV+W4JGLOBZWYwYMHI0mOXSlNJhMNGjTg+eefx+oViVgx1q5diyRJXLhw4eosNAgOHjxIv379qFmzJuHh4dSuXZvevXuzd+9eTbuVK1fSpUsXYmJiiIyMpE2bNixatEjT5tChQ0iSxM6dO4Oef+rUqTRu3JioqCji4+O566672LJli2bMxx57jHr16hEREUH9+vWZMmUKZrM54NhLliyhZcuWREZGkpyczKOPPsrZs2cD9jt27Bh///vfSUxMJCIigubNm7N161bluvrr7/ovMzNTM0ZqaqpXm5deekm5npubS0ZGBtWrVyc8PJy0tDT++c9/YrFYNONcuHCB4cOHk5ycTFhYGA0bNmTVqlV+1798+XK6detGYmJihb8egr8KeirH27HnrinlO1LKT+1yxzkf73u12pI9r6jLe8qqzxWoqi75OfJeZMVcZnbdSCk7UXUMpHY7Q1KvW5znwLVrjE0pgq5xH3ovxefzUqX8uQqhC6uU4DpH6CWhl4ReujxEpNR1jutlrRS9lCGQIWl9RDhPJ52ghfFHWpy8Qzkv+SompRoTfOkff5LCVy8v2YXBTztJClPOmC44QsHlsCgssVU0oxlVC7AZbe5rKqOUFBYOFjtJ/3yW4n8+pandoMeZoyWU1CmDOKhqT6DAcA6jwUpSTKJjfKsFWZaJlsMoksoA9S45XgW99D4KBJWazMxMFi5cSHl5OatWrWL48OGEhoYyceLEa700AMxmMyaTyW8bi8XC3XffTaNGjVi+fDnJyckcPXqU//3vfxqhN2/ePMaMGcOECRNYsGABJpOJzz77jOzsbH755RdmzZp12ets2LAh8+fPJy0tjUuXLvHaa6/RrVs3Dhw4QFJSEnv37sVut/P222/ToEEDfvnlF4YOHUpJSYnfeTdu3MjAgQN57bXXyMrK4tixY2RnZzN06FCWL1/us9/58+fp2LEjGRkZ/O9//yMpKYn9+/cTHx+vaef6+rsICwvzHIrnn3+eoUOHKscxMTHK59DQUAYOHMitt95KlSpV+Pnnnxk6dCh2u50ZM2YAjq/h3XffTbVq1Vi2bBm1atXi8OHDVKlSxe8zLSkp4fbbb+ehhx7SzC/4q6K28Ljwr1H8pu+pNkG5OjYRWT2VDwKnrGmj1T1jkfwb4cAQVH0mJSrLs6aU7HgYEhCRYCGyQXU45uzhrC+lRErJHqtTp1D6WoTmtFBSgsqF0EtCLwm9VHGEUaoSIitGKdVbW/XO3hQRTrHRs8CAu5HsuzjSVcKX0Uxf0bk8X5IxidZV72X72f9hDQnBYCkH5zbE+jO4jVIa36PBoHwMa94MnSAp9zh2C2DEapGxO7c0rkIsBZwj3ADJcUmOeWQrMjJZ5tb8XLaDIss56p50DeJ5p94FOstKLOz6Lh9ZBqNRot7NSUTFef+SEgiuV8LCwqhRowYATzzxBJ9++ik5OTlkZ2czevRoPv/8c8rLy+nSpQtz584lPT0dgMOHDzNixAg2bNiA2WwmNTWVV199laZNm5KRkQGgvNAHDRrEokWLKCoqIjs7mxUrVhAbG8vTTz/NZ599xs0338zrr78OODxNjz32GPv372fFihXcf//9LFq0iA0bNjBx4kS2bt1K1apVue+++5g5cyZRUVH8+uuv5OXl8c0335CSkgJASkoKHTt2VO4zPz+fcePGMWbMGOXlDzBu3DhMJhOjRo2iT58+3HbbbZf1HPv166c5njNnDu+99x67du2ia9euZGZmarxqaWlp5ObmsmDBAr8ia/PmzaSmpjJq1CgA6tWrx7Bhw3j55Zf9rufll1+mTp06GgFVr149r3bqr78vYmJifLZJS0sjLS1NOU5JSWHt2rWsX79eOff+++9z7tw5Nm3aRGioIw06NTXV75wAAwYMABxeU4EgWGRJp6aUXgS68umPMo5otZGksoF5tvJnqAqUIqcZqYK34jZKGdUnlWhyKdToHtqijZQCMChRT+qJdfSgbk0pv10EgusOoZeEXhJ6qeKI9L3KiP98MTcel/V3gnMXnLz6qGWeEoiOjIcektzRYHWimmKQQrCbwpztfUR36aCk7xkMbu/bmT0+V1dsucDuc18Rc/hlqtVYT3KUY2CjU2TZJZlLIQYOl9vZd3YrdtlGJGG0D29Ht5iepNRtFXBZrnN5O86w/qP9bPjvftYt3cfGZQd8rksgqAxERERgNpsZPHgwW7duJScnh82bNyPLMj179lTCjIcPH055eTnff/89u3fv5uWXXyY6Opo6derwySefAI5Q5RMnTvDGG28A8OSTT7Jx40ZycnJYs2YN69evZ/v27V5rmDVrFi1btmTHjh1MmjSJvLw8MjMzeeCBB9i1axcfffQRGzZsYMSIEQAkJSVhMBhYtmwZNpu+wXvZsmVYLBaeeuopr2vDhg0jOjqapUuXXpVnaDabeeedd4iLi6Nly5Y+2xUWFpKQoFOEWEX79u3Jz89n1apVyLLMqVOnWLZsGT179vTbLycnh9atW9OnTx+qVavGLbfcwrvvvuvVbu3atVSrVo1GjRrxxBNP6Ia5v/TSSyQmJnLLLbfw6quv+k1XOHDgAF9++SVdunTRrKV9+/YMHz6c6tWrc9NNNzFjxgyfXyuBQINe1I3s91DBrlx3RkpVML0tMB5lDQIMrzVT+Yhf99J4vmbTGUYOsnS4U296pu+5akq5nrkUEuo8L4HF0dYVKWXQ+OlUBjFXmmLA9L2rFqImEFwThF66coReuvH1koiUqizo2ma86yF4fta0l4M0ZgVwodmxA0ZkZGxov/ll9HWh+nrAc7LKbKVKX9S2c4XYS5ojR2MDss0GGJA+HwGoI5LcrrfVls+xXDoOsaHw209EVIuG1qpwdWQKQw3svGQjynyaosLzhNnt2EPCqRpeG6PZjtWxON837MRqtmECqlSP5MKpUspLLAH7CP4CyDJYSv/8eUMjg/q+1UOWZb755hu++uorevTowYoVK9i4cSMdOnQAHHn6derUYcWKFfTp04cjR47wwAMP0Ly5o6ad2vvjEg7VqlVTQo6LiopYvHgxH3zwAV27dgVg4cKF1KxZ02std955J+PGjVOOhwwZQv/+/RkzZgwA6enpzJ07ly5durBgwQJq1arF3Llzefrpp5k2bRqtW7cmIyOD/v37K+vat28fcXFxJCcne81nMplIS0tj3759l/XsXKxcuZKHH36Y0tJSkpOTWbNmDVWrVtVte+DAAebNmxcwBL5jx44sWbKEvn37UlZWhtVqJSsrizfffNNvv99//50FCxbw5JNP8uyzz/LTTz8xatQoTCYTgwYNAhyh6Pfffz/16tUjLy+PZ599lh49erB582aMzsLHo0aN4tZbbyUhIYFNmzYxceJETpw4wZw5czTzdejQge3bt1NeXs7jjz/O888/r1nLt99+S//+/Vm1ahUHDhzgH//4BxaLhSlTpgR8rgKBlgDFCFRWHU/dotVRHtFTASw+gRWWXsS4d7UpyduF53NOr2V5Wb0876hiv/9lZ9S6pKkpBS5znmR0n1cipQzuOXRnk1QlKmTPe1FnAoj0PQHXTi/BZWsmoZeEXhJ6KXiEUaqSEbAGgCajL/hfoIFaqj1ZsqvmgmTnaPRRGp7y/mUU1ALBtwcsCC+icxHuc65CmAZV5SqDfjCgVbLyW8RemhJLSbiVqLIQsDk9gbiLpNsVO5eB02VH+LVgH4VVqnNvnWylvfe9qUWl9kZSbkrkwqlS4fMTOLCUwgxv8fCH8+xxMEVVqMvKlSuJjo7GYrFgt9vp168f999/PytXrtSEZicmJtKoUSN+++03wPHyfeKJJ1i9ejV33XUXDzzwAC1atPA5z++//47FYqFt27bKubi4OBo1auTVtnXr1prjn3/+mV27drFkyRLlnCzL2O12Dh48SJMmTRg+fDgDBw5k7dq1/PDDD3z88cfMmDGDnJwc7r47uJ2oAtViAIfYHDZsmHL8v//9j06dOgGQkZHBzp07KSgo4N133+Whhx5iy5YtVKtWTTPGsWPHyMzMpE+fPprc/+joaOXz3//+d9566y327NnD6NGjmTx5Mt27d+fEiROMHz+e7Oxs3nvvPdavX0+PHj2Ufm+//Tb9+/fHbrfTunVrJfT+lltu4ZdffuGtt95SRNbDDz+s9GvevDktWrSgfv36rF27VhHCTz75pNKmRYsWmEwmhg0bxsyZMzX1FD766COKior4+eefGT9+PLNmzeLpp58GHNEY1apV45133sFoNNKqVSuOHTvGq6++ypQpU/w+U4HATXDaR7P7nmJw0qkp5dWv4nPpodjEvHRQsArBacZyLiHQ7nuaNES5YokSXjWlHCfd6XvKH+wSWP3UlJIk1eoCpO+p1qv0EOLpr8u10ktQYc0k9JIboZeEXgoWYZS63vH7Bta/5q/iADgEjOzp+fMugxQUZoNrhwP1ePqCw5eRTN1qR6kNQ0RnZLY6+8g04BBdq3+PQbYQlWDnoOF7HfOP6kgyoMizxDQgX3delyC8ZLI5jFJODLIjvFxdeUsyGMAOstWK1W52tnN10Io7WefAXbDedV4oK0HlIiMjQyliWbNmTUJCQsjJyQnYb8iQIXTv3p0vvviC1atXM3PmTGbPns3IkSOveE1RUVqRWFxczLBhw5Q6AWrq1q2rfI6JiSErK4usrCymT59O9+7dmT59OnfffTfp6ekUFhZy/PhxL2+j2WwmLy+P7t27B1xbr169NOKzVq1amnU3aNCABg0a0K5dO9LT03nvvfc0RVCPHz9ORkYGHTp04J133tGMrd4tJTY2FoCZM2fSsWNHxo8fDziETlRUFJ06dWL69Om0bt1a06969eoAJCcn07RpU834TZo0UVIF9EhLS6Nq1aocOHBAEVme3HbbbVitVg4dOqQRyHXq1AGgadOm2Gw2Hn/8ccaNG4fRaCQ5OZnQ0FDFm+hay8mTJzGbzX6fqUDgwjuy2ldZIlkxrHjGOWkiiWQPveRrYD9cTjagr4AsdTS37/b6VT3VR0HtCqwErTvaGoweNaVcxi3JVVNKUrSVsvsevmpKacf2nlvVR2gmQSVC6CWhl1wIvRQ8wihV2dBEQmkOdPCUIGqRdVVXFRiXvUjvmmTHJpVjlMM4aZUxhLXAWPaL6yJt2UlymDMfNxwayKvZT3X1sLjFJRojkeQlgFzHVu9TyqGrZoKsiCVjlSpQkI8dsMhOQ5xPkaTxR2rHNlyGMhXcuIRGOjxw12LeCuISBmqaNGmC1Wply5YtSjj62bNnyc3N1by469SpQ3Z2NtnZ2UycOJF3332XkSNHKh40dQ58WloaoaGh/PTTT4owKiwsZN++fXTu3NnvGm+99Vb27NnjtU5/SJJE48aN2bRpEwAPPvggEyZMYPbs2cyePVvT9q233qK0tJSBAwcGHDcmJkazm4o/7HY75eXlyvGxY8fIyMigVatWLFy4ULsNO+jeX2lpKSEh2le6S6zIskxERIRuv44dO5Kbm6s5t2/fPqWwqR5Hjx7l7NmzuiH7Lnbu3InBYPDyZqqx2+2KJ9loNNKxY0c++OAD7Ha7cs/79u0jOTkZk8mEyWQK+pkKBMEgyTKy5F1TKvhw7YpO6JrH1xCS25lVwYErsqSKpu+dPvQ7gMfvIrfrzqVt1GsudwZISLLHBZXfMpBhTAYO1a7DucRT2EIusi8vguT67Su0dsENwrXSS665K4DQS0IvuRB6KXiEUaqSoCc3fJWpVCSVZ6acbk0pHa9VBVYV3NVAokPmVNWv6Fl8O8cskZyxhhNijcYOhJijkZAxFxs5dDSR6uFFGJNs4DL4SyoDlHMeu6Ty5PmJUHc9D8+oK4Nq5a70PVPNZCjYTfSdGZza/pOyUx+AXOahIHXj5rWRUsLpJwAc3xAVTKO7nkhPT6d3794MHTqUt99+m5iYGJ555hlq1apF7969ARgzZgw9evSgYcOGnD9/nu+++44mTZoAjh1FJEli5cqV9OzZk4iICGJiYhg0aBDjx48nISGBatWqMWXKFAwGg46RWcuECRNo164dI0aMYMiQIURFRbFnzx7WrFnD/Pnz2blzJ1OmTGHAgAE0bdoUk8nEunXreP/995kwYQLg8BC+8sorPPXUU4SHhzNgwABCQ0P57LPPePbZZ5k+fTo33XSTZl5PkQLQrFkzZUcUFyUlJbz44ov06tWL5ORkCgoKePPNNzl27Bh9+vQBHALrjjvuICUlhVmzZnHmzBmlv7/dXLKyshg6dCgLFixQwtHHjBlD27ZtdetLuBg7diwdOnRgxowZPPTQQ/z444+88847irexuLiYadOm8cADD1CjRg3y8vJ4+umnadCggeIB3bx5M1u2bCEjI4OYmBg2b97M2LFj+fvf/67sFLRkyRJCQ0Np3rw5YWFhbN26lYkTJ9K3b1/lOT3xxBPMnz+f0aNHM3LkSPbv38+MGTN0Pblqzp07x5EjRzh+/Ljm61GjRo2AO+AIbhz0XqslITa+aCsREWbDWA7aF7QErhqZHsJJlj2NLxU1+1QEjyLoylwVNUv5R1OtKshC50l1UjlxINeRvidJJNaqoxrQ7vgPcIktgxFszaJYlnCJo9WdqX2a9L0Aa/TYfc8eFsFvaY2A88B5vtt0nNYdW3hFfQj+Agi9JPSS0Es3tF4SRqlKjXc9BH8iw5+gCpxYF/xafJ9TiSyPS5lRH9LRuJCj5Tex6sJEzM4VGayO3Noj3yViKwnhOPGExVuRuuvMJ8vO7EGVocqo2inGF+4CVc5DV5qjrAhV1znXDjQHLv5MijqM3efQnmFYIlJKcGOxcOFCRo8ezb333ovZbKZz586sWrVKeXHabDaGDx/O0aNHiY2NJTMzk9deew1whBNPmzaNZ555hkceeYSBAweyaNEi5syZQ3Z2Nvfee6+yxXF+fj7h4eF+19KiRQvWrVvHc889R6dOnZBlmfr169O3b18AateuTWpqKtOmTePQoUNIkqQcjx07Vhln7NixpKWlMXv2bN544w1KSkoAWLp0qaZegAu9c/n5+dSuXVtzzmg0snfvXhYvXkxBQQGJiYm0adOG9evX06xZMwDWrFnDgQMHOHDggFd/f1EFgwcPpqioiPnz5zNu3DiqVKnCnXfeGXCL4zZt2vDpp58yceJEnn/+eerVq8frr79O//79lTXv2rWLxYsXc+HCBWrWrEm3bt144YUXlNoHYWFhfPjhh0ydOpXy8nLq1avH2LFjNXUTQkJCePnll9m3bx+yLJOSksKIESM0z71OnTp89dVXjB07lhYtWlCrVi1Gjx6tCGBf5OTk8MgjjyjHrq/HlClTmDp1qt++ghuXcIOZDemH+E+akZ57bNR1OtdllcdOkmVNqr5e+p6rnpJ+DLSew9BHDJQyQAWKgwZx2nslMpIseaf3yfqt/dF32kucO34MgIjoGOzOgucyzpQ6Zddjp2YzSdh7JfIJx2lzWj2b5P5XZwdpz0LnrrayU2cZbEbsBhtIKDuVCQSVDaGXhF4Sesk3wihVWVAXkfS+6P4oq2sXVMQAcnWMJS6zTqAWnhgkGVkOoZZpL49X78+8S/dhduoOWZaxlrgNQNYyt9FJW7/JKSYN7rb+PAWSYh/Trsno9PjZVYXOXYLLFTa74/w6Ylo8QPQmdAxNOsU7nVt9lu/9Dah46pRAcC1ZtGiRz2vx8fH8+9//9nl93rx5fseeNGkSkyZN0pyLiYnRFN8sKSlh2rRpPP7448q5Q4cO6Y7Xpk0bVq9erXutatWqyjbKgejdu7fivTx37hxdu3ZlwYIF9OrVi8hIx89wampqcHVZnISHh7N8+XK/bQYPHszgwYODHlPNyJEjL6v2xL333su9996rey0iIoKvvvrKb/9bb72VH374wW+bvn37KmLXH+3btw84lidX8swENx4xxlIuyhBrLKEg/hRQhUib2mSjrifgMkI5r7mrjyvt7WWXwEetXtkjJL0WJ6gRtlPdwnteHHKlZoGPMZUVBE5tU6NWIo1Pt0eSLJQbjBB33LuHLAUVsW0MCSWpbqpyfLFAZWm6dM49q+RyjEpKgLorhkqSffvjAv/+dHQ02ozYJRkke4V+5woEfzZCLwm95A+hl3xTse03BNcVeoIlRg5XXfeoKaVXaVPJJws0lz9Dk9oo5scIpDuV5Cy8DuX2myi3N9UMKQHYPOfQX6zie5OCqSmlEqgeTjuDErbvrinlGkdWcrkNOsVP9Tx9DuxOo1TJ2rX+bkEgEAA7duxg6dKl5OXlsX37dsUL5RI9fzYJCQl8/fXXdO3alc2bN1+TNQgEguAIMzjet3bVez7W5t1ORlYidC55aBe9mks2YwCnIBLd+J6E0PW6V9XctD6Up5bbArSqGOrSAzHmeKLLq1F+KcFHaYHLlf+qQexWsFtAMiJFVVW1cJVScEZHadL33JFSniUmwDt9zy0cJXcUuxBQAoGC0EuCGwURKVWpUXn7nO/tavYqXqYRGdn5MpeUY2/T0OWuwLMiE5SVncRSdoZi81lsUhjgyieWkJAxlUPdM2qPnVPAEImBYu16ZBnJ6luAyGoh6axtIKtqSsmuwuJ69jgfxUTdO9u4a0q5jFKu0HWtUcofnoZB7+clEAi8mTVrFrm5uZhMJlq1asX69eupWrVq4I5/EImJiUyePPmazS8QCILE9b6WDVqNoIPRVoYtJByz0xklSw6DltooJYWEAFasRgmj1a/vDRNWTgdM7ZeJPm/QhA/ZDWBUG850ouPdZ3ykBzr/vRR+gg0N/o+uBwYoZy+aiinhBJxBYxi6XGRDKDz8geMgsQEcuwCUIMuSQ+dIjmhz17r0ZlNvJuNJzfQ4zpd53zsIo5RA4InQS4IbAWGUqmRoS5TruZnQtHCflHwIGT1rzeWuDsw2KLqwDZBxZBUfwW2UctBpTQi2Ypm9zlpyMZdAjgJZjgKpWDugLEOZ3hIVa5H7nJK+p64p5Xut3oU3PWpKIWP3iIayW1WeTdl7DepxNEP7iaYSCARabrnlFrZt23atlyEQCCoTXk4f9ftWN1yIZr8t4my15kh1O3PRWMyh8ALCy6oj46NMQABWRxuYF5fM3/Z6LM1rZo/C46qzkiyTuvNbZpZ+zoaOrwa5ArfCsxkvcTj+V83V36vkE3qhENcuMXZL7GUZdyS1sazxPe7zx35UPhucN+sy3nlFSrmX7P7osRY57jxmSyhITgGo8WMKHSUQuBB6SXCjINL3KgsBvFp6oeZeNZNkTyOMd1sfk2tm8ofN7tnGrLlulyGyRLuAcIujvUVO9ZoyrvAC1i+t2kl8LcFllFJboiTPb3HJ3dTjsbgwqIxVit3JGXFVevGC84TkRxjpnPcwfAnblEAgEAgEV4cLn+cR9X0ImbUeo3Zoo6D7xV/YT6PDy2gXs5w6Eb8hS85C3i5hoNpp1x1trofj7O8mg6ZBaVQLAM4mNNXrpIux3ExUSTFG3eLfspeM8CPtFOySrCnhYDnfMej16OOxNlUtUyV9T31ZsQl6pEl6GqOc1/ft38f5qHiVtlVF+wujlEAgENxwCKNUZUP1Lna9+PV8gZoukr/y495n9QxcPhcRxBWHAchx5VtbTV0D2FfmOyi29fJalbqpJdb97Wpwyh1Z73moa0oZ9O/FaIdmRxzta5yzayaTXGH8yNid+XtGoyOosPD0KedcRmSlCrqfOlpe6Xve6xYIBAKBQHB5yBY7xRuPYyyWiDNVJcoY67yiCtfRxa00qoZ9yC2mxTrX8OsUNNoC6CWnHimOru2/nQ4XIsGsKbDuXzh4J/z5aSmHXJ5vzMfgSt1N3FFPNqfYM8jaelfuOlHe6XthsjuBQzYY3PVFRaSUQCAQ3NCI9L1Kgo/Met22blOJ1rSjTku7ggVcNhISF+VQh7jwGK+QWO1JpbalRMi9IdQPz2dTfhqJWy4BYPC4hxhzKWEnyiBVa5TCoG93lWRIKoRjCZB0EQpi3M/NJZ7Uu+9Vb9Aa5NOUlxZTeKaM0uIG2G1ao5T/elEifU8gEAgEgquP+71abDmvss7IKpuU3rvX6YCSHduxh0qXlHayjs9Wz2EXX+wqVaCP0V6uiRjSR19g2Q0OkW7x0cu7HmaQXIEMCVxsXMKgRK1rTjv/9b/KUJzGMtn1vEWklEAgEPwVEEap6xyv0GbVZ01NKd2UPA9DiObYw6ByWYsL6pTmHlxiQx3qrRs2JKs+hIAhRHbvpCO7I6VcAxlkO5LTSCSFhzt37AM8I6VUguhihP6iDSoDkmvtUVWS6DXuWQB+WJHHti8PI9sOq5fgvXS8TVGedRMEAoFAIBBcPurXqsVuBlUGv54hyfMtLBPmdcVmM4DBqbM8QpAOV5MwOS1FhgCvdM07P5iNTmS4aL5IvP9h1cvxeex1xfvGrx4qreVyGioqzVNySm7d6W1g0tdsmjEEAoFAcMMh0vcqNfrGHM9IqQCbz+DdqGJvfnWVhUA9JUUiBgp5d61E0hqwnP8adHyP5moOG2toTdWOEwZXKp4WuyGEktibASiJqqm5ZpDdfVyFzjXOPednu11rGFMuG3Qau46EUUogEAgEgj8ePUOGpI4a10EpJaU25GitUscS9WPXA+LpwPLR2b3Lrw6yd1kA12CBBP1VCHhXpd7pjy6rrrkeoYRH+h6uIdyOP0UbqZrJHlFVgaO0BAKBQFBZEUapSoeeGJJ0vYGecTpB777nQzwE1dUvkqZIp3Z8N1bAbHAWG1VFb9tlt+hRakqpFiGHuQSL6sn4SN9zDOowYpWHx3tccRnzZFx2J0m9y59ru2mbD2HknYWo+uCqKSVElUAgEAgEVx93RJK/N62+JnIZR5zaQZKRQrTb+PqTPr7mC1gNSk83BMAz7koKygNZkRmCx6WLrPYwtuwdQPMTXbC76pmqDGmSx70GHyml0npCPwkEAsENh0jfqyyoCkO6kbXXtGe9dt/TCDDnNYNsxw7UOqubeFeB5TkjpXyIIrV40t/pz31yemICJQWXqOE83hcmky6rvGayXqFzGdkZR68EMGFH9mN2LQ8pJdQCnsa76ofb0L8wEwMSxyxOj6VepJQtcKUIbRyZiJQSCAQCgeCPRPuWrZgJya1VnMYQlWDRL091OQYefeecr6bBmrr836nGhafTOzjcBc21vcMjDRgxY8PEueJU2pYm802j9Y4+mvS94J6X5Fyxbvql0FECgUBwwyEipSoJ7kgdb8OSzz6utop1yltMGJyGlba5gRPvLh+XUcz1n6cnTFuFKT80xL1GSeKkyTWKat14p865DWOuKzKSQevhVLe3S1avcwa7kSpnGhBjjifKXAWrsgw/kVKS1qil/sJ4x7UJMSWofAwePBhJkpAkCZPJRIMGDXj++eexWq2BO/th7dq1SJLEhQsXrs5Cg+DgwYP069ePmjVrEh4eTu3atenduzd79+7VtFu5ciVdunQhJiaGyMhI2rRpw6JFizRtDh06hCRJ7Ny5M+j5p06dSuPGjYmKiiI+Pp677rqLLVu2aMZ87LHHqFevHhEREdSvX58pU6ZgNpsDjr1kyRJatmxJZGQkycnJPProo5w9e9ZvH5vNxqRJkzTzvfDCC5o//JYvX063bt1ITEz0eb95eXncd999JCUlERsby0MPPcSpU6cqfF+7du2iU6dOhIeHU6dOHV555ZWA9/3999+TlZVFzZo1kSSJFStWBOwjqNxYyso4tGsHh3ZuI/+XXaor+u9YdQ3OoN7CusYTVbSPv65XcFVNoMCnUo8bCXrkIA1DFSEswshDVcdxR9J/ADDaQ5T0PceU3p49SdYxMKnbqSLl1WmUwigluJ4ReknoJaGXLg9hlKrE+Cp0LnsIJ88aU2jOeve/EgJLBanCTkI9Yea5+x6qdna76/7toBil/ITpq4qASqrQqkMJO5XPprIjsO4V+G4GySffJ8JwAdlHTSl/z1KJlBKaSlDJyMzM5MSJE+zfv59x48YxdepUXn311Wu9LIVgRIjFYuHuu++msLCQ5cuXk5uby0cffUTz5s01Qm/evHn07t2bjh07smXLFnbt2sXDDz9MdnY2Tz311BWts2HDhsyfP5/du3ezYcMGUlNT6datG2fOnAFg79692O123n77bX799Vdee+013nrrLZ599lm/427cuJGBAwfy2GOP8euvv/Lxxx/z448/MnToUL/9Xn75ZRYsWMD8+fP57bffePnll3nllVeYN2+e0qakpITbb7+dl19+WXeMkpISunXrhiRJfPvtt2zcuBGz2UxWVpZSey+Y+7p48SLdunUjJSWFbdu28eqrrzJ16lTeeecdv/dQUlJCy5YtefPNN/22E9w4fDHvVT55cRKfzJzCp688r5zXuri8D2Q89yVW4w7p8V8SwTf+Wnhec89xGbl7aB11UZKZtECdPcTUFRl3ZJmy4mJ2f7eanV99wc71P1BUXky9qJ8BMGB0OwhldSkDVbyWOgpN9tBjuJ6PtyFQGKUE1ztCLwm9JPRSxRHpe9c7fl++esWZJJ3PFTRAXYEXLWDdBGSd9D3Z60gdc2TzVnIkct75UXXRlb6nUaUGjbdOf15J+Ufd9FJokfK5Wu4rcOprAOoAt0Zlcaakva+B3dPryFAI8GUVCK5DwsLCqFHDkVT7xBNP8Omnn5KTk0N2djajR4/m888/p7y8nC5dujB37lzS09MBOHz4MCNGjGDDhg2YzWZSU1N59dVXadq0KRkZGQDExzvqug0aNIhFixZRVFREdnY2K1asIDY2lqeffprPPvuMm2++mddffx2A1NRUHnvsMfbv38+KFSu4//77WbRoERs2bGDixIls3bqVqlWrct999zFz5kyioqL49ddfycvL45tvviElJQWAlJQUOnbsqNxnfn4+48aNY8yYMcyYMUM5P27cOEwmE6NGjaJPnz7cdtttl/Uc+/XrpzmeM2cO7733Hrt27aJr165kZmaSmZmpXE9LSyM3N5cFCxYwa9Ysn+Nu3ryZ1NRURo0aBUC9evUYNmyYT2HkYtOmTfTu3Zt77rkHcDzXpUuX8uOPPyptBgwYADi8d3ps3LiRQ4cOsWPHDmJjYwFYvHgx8fHxfPvtt9x1111B3deSJUswm828//77mEwmmjVrxs6dO5kzZw6PP/64z3vo0aMHPXr08HufghuLi2dOAxARE4ul+JLPdkpJAdU7N4AEceIyhnhHWOkWTAj0Utd08q/JKpTZ5+x/W+gRkkjkXLBLuAps/O9/2PnVStWZ5gyIPqEcWYGysHguxCRjLkyiJLI6EaCqExWEgUmz+56IlBJUDoReEnpJ6KWKIyKlKh0ugWXXjY5SN/H0B+oVwbwyv5+rSRBtZLerTG2UknxFTqka2Z3fpeqdWCIox1JqIPJUsXsK5+XyMoNzbDuyJHmM7VlVQXXOIGmuW1U7/BktF50TJwBgkkqRlUApb9HrheQtcAWCykxERARms5nBgwezdetWcnJy2Lx5M7Is07NnTywWx57pw4cPp7y8nO+//57du3fz8ssvEx0dTZ06dfjkk08AyM3N5cSJE7zxxhsAPPnkk2zcuJGcnBzWrFnD+vXr2b59u9caZs2aRcuWLdmxYweTJk0iLy+PzMxMHnjgAXbt2sVHH33Ehg0bGDFiBABJSUkYDAaWLVuGzaa/w9WyZcuwWCy6Hr5hw4YRHR3N0qVLr8ozNJvNvPPOO8TFxdGyZUuf7QoLC0lISPA7Vvv27cnPz2fVqlXIssypU6dYtmwZPXv29NuvQ4cOfPPNN+zbtw+An3/+mQ0bNlRItJSXlyNJEmFhYcq58PBwDAYDGzZsCPq+Nm/eTOfOnTGZTMq57t27k5uby/nz54Nej+CvQ5NOGR5nLv8dq4kl96drrrimlL+ZK3LtylpeSU0pgNKLhQAkpdQjJDQUgDLVr1VZNrGlzXPsuWk4F/NuY0vbyZQYYjXjlZWV+ZvsD0k1FAj+bIReunKEXrrx9ZKIlPoL4A6R1itQqVNE8g81nAQeW12CU5bcxiaXc8wmh7CKDGp+d5Cm7GFrqyxn/Sg72KDwouPb2iDZQTL6qMugjsdynfKI2NKryB5XCy6dQ0Lm4plSwBX/pUK/krvHHMI4JXB4fC9ZfXv5/ygiQiI8anwEjyzLfPPNN3z11Vf06NGDFStWsHHjRjp06AA4vDd16tRhxYoV9OnThyNHjvDAAw/QvHlzwOHxceF6wVarVo0qVaoAUFRUxOLFi/nggw/o2rUrAAsXLqRmzZpea7nzzjsZN26ccjxkyBD69+/PmDFjAEhPT2fu3Ll06dKFBQsWUKtWLebOncvTTz/NtGnTaN26NRkZGfTv319Z1759+4iLiyM5OdlrPpPJRFpamiJILpeVK1fy8MMPU1paSnJyMmvWrKFq1aq6bQ8cOMC8efP8ev0AOnbsyJIlS+jbty9lZWVYrVaysrIChmg/88wzXLx4kcaNG2M0GrHZbLz44ov0798/6Ptp164dUVFRTJgwgRkzZiDLMs888ww2m40TJ07o9tG7r5MnT1KvXj1Nu+rVqyvXXB5igSAoNO9inXeuX1uQy2cre20W469bsG927wpLgZfluh3fNa38lGj4A2l+Zze2fvZfLp47jyS7/3gNs8ZgC4lwrMxgR7YbuGSMwfUnlIzsVR9H8nAkuje4UblZRaTUX5JrpZfg8jWT0EtCL3ki9JJvhFGqsuGMzvEdceM2KUkeRih/xTn16ye40a2uoFlC4LQ0pXqCpy0IOBZzkq9CNtH7kkdjwO61u6CRH7mZ+8p+h3DHtXJDKOFxeaSUbOVSbAu4cIT64RuRJRO+8Q7G12w7rCdoJXdwoftefT87L7Epe+4aKPgrc8l6ids+uLyw5ithS78tRIZGVqjPypUriY6OxmKxYLfb6devH/fffz8rV67UhGYnJibSqFEjfvvtNwBGjRrFE088werVq7nrrrt44IEHaNGihc95fv/9dywWC23btlXOxcXF0ahRI6+2rVu31hz//PPP7Nq1iyVLlijnZFnGbrdz8OBBmjRpwvDhwxk4cCBr167lhx9+4OOPP2bGjBnk5ORw9913B/Us1J4pXyxZsoRhw4Ypx//73//o1KkTABkZGezcuZOCggLeffddHnroIbZs2UK1atU0Yxw7dozMzEz69OmjqXUQHR2tfP773//OW2+9xZ49exg9ejSTJ0+me/funDhxgvHjx5Odnc17773H+vXrNd68t99+m/79+/Pf//6XJUuW8MEHHyjh32PGjKFmzZoMGjQoqOeRlJTExx9/zBNPPMHcuXMxGAz87W9/49Zbb8Vg8A7I9nVfgfB1D4K/Ov60TUV6yV4CxcvpFGhQf3imEAYqAaXz6YqirQNVTg8GtR5TikZJSAanwU5yR5jPT8zgiwNgtJUTHQ6FZc7IAOcQkRER1K5aG4AQoxEsFrweimRQdRHpe39lrpVegoprJqGX3Ai9pEXoJd8Io1QlwWv3PVU6nOa0roFFr/ZURVegVxK04gJHQj+QKC/+MK/HH6bkXLgzhskdL+VVE0opFu4e6FJoGCHGUjLjX4Re87B89ix2u50Llvs9alLpeBLVO+tp0vvc4spdL93xC6P+rVWJaZ5G0R51f/+RV7ptBIJKQkZGBgsWLMBkMlGzZk1CQkLIyckJ2G/IkCF0796dL774gtWrVzNz5kxmz57NyJEjr3hNUVFRmuPi4mKGDRum1AlQU7duXeVzTEwMWVlZZGVlMX36dLp378706dO5++67SU9Pp7CwkOPHj3t5G81mM3l5eXTv3j3g2nr16qURn7Vq1dKsu0GDBjRo0IB27dqRnp7Oe++9x8SJE5U2x48fJyMjgw4dOngVrlTv5uKqSTBz5kw6duzI+PHjAWjRogVRUVF06tSJ6dOn07p1a00/l0dt/PjxPPPMMzz88MMANG/enMOHDzNz5sygRRZAt27dyMvLo6CggJCQEKpUqUKNGjU0nt5A91WjRg3NDjSAclyjRg1SU1N170Eg8IWeTtE1RgXF1S2B4FVCoKJUKDBKR8NdoRyRZbdGklwOO7v7XAjOKCm7DWvBeYiu5dRLjoUnJiYyZMgQAHIXvKVSXO7lWuISvZYvjFKC6x2hl4Re8ofQS/oIo1SlxS21ZA9h4npdG7BqrqujgNzetqubr68VWZ6RRqpzqmkjrOHElcVQGF7EBYPLGOVupwgVD+OPYzSX58z9edfOPL7ee5vjeN9JElOSfdym9hkYS8JJKFWFoDoNUbUaVSEs3Pmj4hReprAQYmLCcZdCV+EnfU8SYkqgIiIkgi39tgRu+AfMW1FcwkBNkyZNsFqtbNmyRQlHP3v2LLm5uTRt2lRpV6dOHbKzs8nOzmbixIm8++67jBw5UvGgqesVpKWlERoayk8//aQIo8LCQvbt20fnzp39rvHWW29lz549Xuv0hyRJNG7cmE2bNgHw4IMPMmHCBGbPns3s2bM1bd966y1KS0sZOHBgwHFjYmKIiYkJag12u53y8nLl+NixY2RkZNCqVSsWLlzo5T3Tu7/S0lJCQrSvdKPR8UtMlmUiIiJ89vMc32g0KrvAVBRXWP23337L6dOn6dWrV9D31b59e5577jksFguhzho1a9asoVGjRkooekW+toIbGOe71DOjRtZLzecKEtsk7/G0UedeXjOPtjqRV7KdC6ZIiI700atia624Se3q6D7Z7o7CdztOVb83IhzvGQM2pFDH76aoTp2wHHLVTdFLqXSMEx7uiKqSTY5/Q6xGZWxhlPprcq30kmvuiiD0ktBLwSD0khZhlLrOcUcMmQiJ7EZJiWM3B88ylS6DjJ1YZbcZ75LeviOngo3qDuTz05MKZcVa042nzaaKuQp1i2qyOzzXIScl7XieP+p6pcrVHDl8WuMdPRcVQUy53van2udisITQ8Iw7BNa1m19s1Qgks84z9EjfC+4RBk5zFPx1kCSpwml01xPp6en07t2boUOH8vbbbxMTE8MzzzxDrVq16N27NwBjxoyhR48eNGzYkPPnz/Pdd9/RpEkTwLGTiyRJrFy5kp49exIREUFMTAyDBg1i/PjxJCQkUK1aNaZMmYLBYAhY02HChAm0a9eOESNGMGTIEKKiotizZw9r1qxh/vz57Ny5kylTpjBgwACaNm2KyWRi3bp1vP/++0yYMAFweAhfeeUVnnrqKcLDwxkwYAChoaF89tlnPPvss0yfPp2bbrpJM29ubq7XWpo1a6YIBRclJSW8+OKL9OrVi+TkZAoKCnjzzTc5duwYffr0ARxC5I477iAlJYVZs2YpWx8Dym4+emRlZTF06FAWLFighKOPGTOGtm3b6taXUPd78cUXqVu3Ls2aNWPHjh3MmTOHRx99VGlz7tw5jhw5wvHjxzX3W6NGDWVNCxcupEmTJiQlJbF582ZGjx7N2LFjlTSCYO6rX79+TJs2jccee4wJEybwyy+/8MYbb/Daa6/5XD84PL4HDhxQjg8ePMjOnTtJSEjQeHwFfwEq8G7Vi//2O8Bl1eHz7rP/4gX2x9WGONcZVVmAgL0vZ0b981deP1SVvqeJOLchY8QqO/7ECI2wE55cn+L8YqLad+DC/zl7q4WQhyi6/fbbOf3rDkrOn6PpJRtn6UpRbIF3P8FfBqGXhF4SeunG1kvCKFVJkKlDSNhNWB0bNBBqLoIwVUqf86NdjqPAfAuwz8t4o7f7XqBZ/eJ3OHdU1IWTJ6jlMtzIUBSdzvnYeFBtXuzPS+grfc87IMnR0Gp1eBFuSzzClrN1PdbpveiE87kUOKNaDbJROS+7aiPIqhW6QtRlWVVPQTteVJyJshLP+VxrFmJKcGOxcOFCRo8ezb333ovZbKZz586sWrVKERg2m43hw4dz9OhRYmNjyczMVF6atWrVYtq0aTzzzDM88sgjDBw4kEWLFjFnzhyys7O59957lS2O8/PzCQ8P97uWFi1asG7dOp577jk6deqELMvUr1+fvn37AlC7dm1SU1OZNm0ahw4dQpIk5Xjs2LHKOGPHjiUtLY3Zs2fzxhtvUFLi+IFeunSpEratRu9cfn4+tWvX1pwzGo3s3buXxYsXU1BQQGJiIm3atGH9+vU0a9YMcHi6Dhw4wIEDB7z6+/tjbPDgwRQVFTF//nzGjRtHlSpVuPPOOwNucTxv3jwmTZrEP/7xD06fPk3NmjUZNmwYkydPVtrk5OTwyCOPeN3vlClTmDp1KuAQXhMnTuTcuXOkpqby3HPPaZ5pMPcVFxfH6tWrGT58OK1ataJq1apMnjzZ7/bGAFu3blW2ywbHbkTg3jJbcCMTqDCTEioe1Gj6hiqPGSv0Gtc67GSg1OaIYg+zWDFHVCck7DbM5WsqMpzXZ030lq+KDVdBfqj/0FWVlFLOy7JjkxmbbMRmc+gpg+SO7JBdHdQDaJbmuBYVFUWUpQzzxXNUL4ULsQblmjBKCSorQi8JvQRCL/lCGKUqDQ5jiNF4kUaHvyX22E72ttX/xrN7fFk9C53LAYw0+gRXSFSvRoLrB0hCAhn2NvwHZvPPULbBed7qbqvY2Rx9zPZDGLal80NCDZAuBrUsq9Up+IxWZU16QtO1rvCy8xAV65zWu6aUQ8x5GKX8LCI+OYqzB7Qt7PYLyLINJe5LiCpBJcLfiyo+Pp5///vfPq/PmzfP79iTJk1i0qRJmnMxMTGa4pslJSVMmzZN87I9dOiQ7nht2rRh9erVuteqVq2qbKMciN69eyvey3PnztG1a1cWLFhAr169iIx0eGtTU1Mr9AdSeHg4y5cv99tm8ODBDB48OOgx1YwcObLCtSdiYmJ4/fXXef31169oTS+99BIvvfTSFY0BDqG8fv36gO3U3HHHHeIP1b8qkv8tXCryXaE3jiPdzl+Lyx+/emEJx6u3wSg3BpVRKpDRy6VT/DX7w3ZR1kRfuCPIJWdqiYyspCxa7U6jFDa3MUv27q0d33lN/fMsaVuLn3XB9YzQS0IvCb10eej9hS24HnG+0CVDKbXObyfy0hkfDd0mGLcRyvObz983o3RVNmjxhREJuzFMOY4sOYHRvt+rXWmYy1BlBYuZH87fgg1X2K5z/ZofKrcEszkjpUJdkU6asHIVOs/FoAmjV8+jcgkqa/BM6XM19zbNyZZD2M25IlJKIAiCHTt2sHTpUvLy8ti+fbuyY4hL9PzZJCQk8PXXX9O1a1c2b958TdYgEAgC48sYI5svYi37idMRxRhKcpHtvraW96+PwL/RSCeuys94Aa5L7tIM/rhczXbFhc516qjIsqRERulGSskyKsuTzmK89ZpLdrmOf/7mCMtnbWP5rG387+3dlF7UK88gEPw1EHpJcKMgIqUqCZ5lwx14n7EXnSDt0EV2xMgq4aQ1UulxtUwlFRU5cRcPURSf7rW2Q9XzuefnjpyIsVBsPI2jSoFzW1H9rDkFV/peqMGmc1Ud4i57nkGSVUYpSUcwqdP3fKAYpWTP88VeRU8FAoE+s2bNIjc3F5PJRKtWrVi/fr1SFPJakJiYqAnRFggE145g36Quo47t7G6wWzgZDSEXt2ENk3VEhN6oMpJUrnM+2IVcjXe+vwIHavxbp9yR4JfvedTTkZLkESnldAha7Y5zBsmmW45Ls3odo5R6VmfeHwCHfz1HmMoOldo8kSYdfNeBEQhudIReEtwICKPU9U6QesZuMGA1hmE9+Qs9T8ok5ds50MQjxFsJ+Za9fVGXVcBTa7gpl2B3eBkQjk9hoams4GNMHDXG0w9/j6VmFYqTEj16qCOY1Ol22ppSoQa3F0/2d3+ayCbXM7J7GJd00vfUBRU0w3kbAR1D2JU+ImBKIPDNLbfcwrZt2671MgQCwXWO5Cho5OOq7BYOdmdavzWE8hAryD4MTSpNY7fkY7afcEYEBZdYoGOy0f57mVor2NkqwpXKECVSSlVTCjsYnGUKrDa3UQpVzSnlUQS7As9nJslExIQSkxDO6cNF2G1CUAn+ugi9JLhREEapG4TDtXtxtGaachx99n9uuSLpREr59UoFhzaEXebduDiWGc6TtS/Za1xltiCnc42tKXLuSmF0HQIWA1hK1oC9mINHTbxvbUWhtRjQRkr5COjXjOeY16BcsevVlAowot8IKmwiUkogEAgEgj8M/9WUYsxhlIdYPVqpXV7O9769FHPxMuc1hy4IJQQ7UN2qF4XtRl/meLnVfLT2vXrPln9gpQXf6NZTd+++J4MSKWVT1ZRy1zJwW6X0I6VUx5Ja7cmaPMXQ8BCiqoTB4SLh5BMIBIIbAGGUukGQpeqa4/LIRkicd1yrUPpeoJ1sdD8CcCbECIpW8xhHlnUNUnpyTEbC4ApS0gggb0/luUiwmXcjASVWIyVEOlvaiQst838vXkYpWRXe7nmjOul7PpSQrIqg0vhIVZFSAoFAIBAIri5e7iPJ1xV97CFlND71CSelqpwMdRikkiOrctpejwiDgWIg1WIl/7JXFGgtwZuaPM1vFa5edcWhUirl6DJKWS5hsDty604VhGO3nsFsOYNccgxZjtIGuNv1SiR434Us6Rjk1NFZAoFAIKj0CKPUDUaK5SyHQx3pbl4GFh0BEtQrXW0YMhiRJaNOo+ArPASDwfeSnRdkJFlWIqlkQxI1qx7nNtM+wto/StyOuYQb1bv6+fFGatL3nJFSkqwIPhmVASqI3feU9D2DQWWkA7AhubywwjglEAgEAsEVoW+YUDmcPKuAa9rrJ9vVL/gfkcWxnGxYG8kYQquqLfm6qDlYNqtG9z1GcNcCt/GO5faPZl263a7ciKN+3orWkSSkkDDnGiSMkgWAvAN7sV5az4kioGADRtNNQEvVevV0kJ730rMWliwMUgKBQHCDIXbfu06RZZnzKw5QbW8Sdyb3o46pLgDVpJPUaZ1HQiP9otkGndpH7rpP3lFAfmst6VAeVgWryVFQ8lT1tppRNZ91x/Uxl0dQkgwo5aA0XbT9NUfGWBKq2Kgfc47aNeOJCdXuxqIfCaaXvqeOm9KrKeV+hrIfz573KiXAJiKlBAKBQCD4w9DWmtS76v4ka85Jqne+3eAqfGRQ6Sl/hcK1YwVLxRRY4Kj3QH0vZ1afIyoaCDA6nJVyj1e47f6m1G0cQ2RUIQCuR2m3X3Dl97kGUA/mNb5ieJI81w+SQRU+JXSVQCAQVHqEUeo6xXq2jJIfThBWHEZSeB2qhTi2Lw6TyomILyXppiIfPb2Ldvs6dpy7HBxzlIXF+5jZN8HMF1cI9U84BZ4Pp6bkKhiu9topH+zO5qoV6WpJHREku3eQUSKlZPCKlJJlnzfsLnTuecEuakoJBAKBQHCl6GxQoofVFurRT28szxMSNlcNS8mg2RrGY2p/rjIfZ3wQbL1NHzUUJM1GMj76epZtuiw94l2bVEJCcmojObYW6V1vJWtMG1LqO559YoSrqLyMnLcWLJe8RlVWohis1DN6R7pLwiYlEAgENxQife96xZlrbzfYsVjKFTVhxZk6Z3C/hR2CyVUE3Nv64q4p5TzWyc+vyDtdki067Z1zuJVFhWZwRShFFNkZ/n8GJc3Nrm3lY1aPa06j1NkQVbSYH8WnFmoGVfqeds3Bpe9Jso8IKglA7L4nEAgEAsFVw3P3W9SGG5lLRQmQfMHdPOCAskeklMTV8t8qWkP21G9/LldrRk39TGV3PW0smud88tb3oKwQMCLLWoXnEwlHyQa11pJ0hKxAIBAIKi0iUup6RYkEkrHJ7tpIdmckjyT5MvO4ZYA7lc4Vku7HoCJ5HAdFBVL0lBV5pxCqiSpyCA+rAY5WNbK3jrp+gdb444msGrtEkuhdO9l9Tff+XMY6t4BV1+FS0h41blGDu686dD0IZGz4um+BQCAQCAQVwzsi2fMdW3HLhQzYldQxg1JrUn29wlSkVEIFJ5C9PnhNrlsH63KcY5rbUEerOY14st17UE2fyCT3V0Q3fc+PrnRJMknW9w8KBAKBoNIifq1XGoIzgEiaT06RoLPLnLcPS6eW0mWs0HeklG/0UtpOxsO0gVXYX0u1Lp30Pe8CmIBs51SIkRJDgG9vnduUdAx3MnDpuIVjm6tw7JMjHN9ShfLTpZo70LRXCzX185BV21AL25SgEjF48GBHMVtJwmQy0aBBA55//nmsVmvgzn5Yu3YtkiRx4cKFq7PQIDh48CD9+vWjZs2ahIeHU7t2bXr37s3evXs17VauXEmXLl2IiYkhMjKSNm3asGjRIk2bQ4cOIUkSO3fuDHr+qVOn0rhxY6KiooiPj+euu+5iy5YtmjEfe+wx6tWrR0REBPXr12fKlCmYzWY/ozpYsmQJLVu2JDIykuTkZB599FHOnj3rt09RURFjxowhJSWFiIgIOnTowE8//aRpU1xczIgRI6hduzYRERE0bdqUt956S9Nm2LBh1K9fn4iICJKSknSf6ZEjR7jnnnuIjIykWrVqjB8/3uf30MaNGwkJCeHmm28OeN/Lly+nW7duJCYmVvjrIfirop/HZyy+yI4qNTiSGAv4SN/zUFrew+jXnPJX2DsoSXCF9jbP9L0rRdGWkip9TxP9JHv8C3Kt1srjKSwvZPn+5ew7v8+vk0/W0XmOyKzLN64JBH8UQi8JvST00uUhjFLXESUXzrP/x03s/3ET+b/94jjpnV7vOG1QBzfpe5aUQB8ltU5tuLncVaqjnQK18z72NkD5XohnHQFZ9e2qHynl+mCn2GDQLEE/RN4z5RCVR1QmzOwUV3Y7Z7Zc4uLhSC7+eoHCg5Gc++GUT8+erKqzoMZuOcCPda2Yiz9HWKUElY3MzExOnDjB/v37GTduHFOnTuXVV1+91stSCEaEWCwW7r77bgoLC1m+fDm5ubl89NFHNG/eXCP05s2bR+/evenYsSNbtmxh165dPPzww2RnZ/PUU09d0TobNmzI/Pnz2b17Nxs2bCA1NZVu3bpx5swZAPbu3Yvdbuftt9/m119/5bXXXuOtt97i2Wef9Tvuxo0bGThwII899hi//vorH3/8MT/++CNDhw7122/IkCGsWbOG//u//2P37t1069aNu+66i2PHjiltnnzySb788kv+85//8NtvvzFmzBhGjBhBTk6O0qZVq1YsXLiQ3377ja+++gpZlunWrRs2m2MLUpvNxj333IPZbGbTpk0sXryYRYsWMXnyZK81XbhwgYEDB9K1a9egnmlJSQm33347L7/8clDtBX8dKvqmDTt5hIPR8ZyNiQRAMoRyNaTy5bzx3ZJNv46UN4Gci96pjhVGXcdTFRWlm77naWeSHcmVruMzlwqYsmkKg/832HuNmgh1yTvWS1IvRegpwfWF0EtCLwm9VHGEUeo64uMXniNn9gxyZs/gm/9vgeqK+oXr3yCkNlS5Xv2eu+8FVeczKPz18mEo89FHt7WHt/HLlHLVNdljBdrim8WSu2A5+Erf8z1nuFnmb+scRqlL2zYjW5wzVYnmhzb/5NPIf/LB13FsvWUcRGgLqcq6Hj/3j5rd8rvfNQgE1yNhYWHUqFGDlJQUnnjiCe666y5ycnI4f/48AwcOJD4+nsjISHr06MH+/fuVfocPHyYrK4v4+HiioqJo1qwZq1at4tChQ2RkZAAQHx+PJEkMHjwYcHij+vfvT1RUFMnJybz22mvccccdjBkzRhk3NTWVF154gYEDBxIbG8vjjz8OwIYNG+jUqRMRERHUqVOHUaNGUVJSAsCvv/5KXl4e//rXv2jXrh0pKSl07NiR6dOn065dOwDy8/MZN24cY8aMYcaMGTRt2pQGDRowbtw4Xn31VWbPnq3x1FWUfv36cdddd5GWlkazZs2YM2cOFy9eZNeuXYBDzC5cuJBu3bqRlpZGr169eOqpp1i+fLnfcTdv3kxqaiqjRo2iXr163H777QwbNowff/zRZ59Lly7xySef8Morr9C5c2caNGjA1KlTadCgAQsWuN9BmzZtYtCgQdxxxx2kpqby+OOP07JlS83Yjz/+OJ07dyY1NZVbb72V6dOnk5+fz6FDhwBYvXo1e/bs4T//+Q8333wzPXr04IUXXuDNN9/0EsjZ2dn069eP9u3bB/VMBwwYwOTJk7nrrruCai+o/Pja/VZGDhA5E0AD2B1/FKQUFBIRFoWpSh13H5eQ8DW+7D/O/GqVQLq83ff+CNyRUsrXwa6OlNKpAyoZiHB+gZonNAOgyFKk6+TT7r7nxhZSgpkSUVNKcN0i9JLQS0IvVRxhlLqOKD7nCBuMqhLvdU2beqf32dXObazx974O7l3uU3n5HMXnuF5GJF/t3CPEWmJVM8rkxfoviikj8ZsplLGn1/JGQlyABblX4466chfSlFSxVdaiS4oAvlS1DqVRyciSEVmWuBiXhq1GtUB3hdHUhLDYAe6ZhWNPgOMPK3tp6Z/+n3wVvgEjIiIwm80MHjyYrVu3kpOTw+bNm5FlmZ49e2KxWAAYPnw45eXlfP/99+zevZuXX36Z6Oho6tSpwyeffAJAbm4uJ06c4I033gAcnqaNGzeSk5PDmjVrWL9+Pdu3b/daw6xZs2jZsiU7duxg0qRJ5OXlkZmZyQMPPMCuXbv46KOP2LBhAyNGjAAgKSkJg8HAsmXLFI+UJ8uWLcNiseh6+IYNG0Z0dDRLly694ucHDm/lO++8Q1xcHC1btvTZrrCwkISEBL9jtW/fnvz8fFatWoUsy5w6dYply5bRs2dPn32sVis2m43w8HDN+YiICDZs2KAcd+jQgZycHI4dO4Ysy3z33Xfs27ePbt266Y5bUlLCwoULqVevHnXq1AEcIrB58+ZUr15dade9e3cuXrzIr7/+qpxbuHAhv//+O1OmTPF7vwKBm8uwTvj6Heg8nXKmkPDwSKSQMFU9Tj0dI/k5CoYAOko3FfAyuEp1wdUGMSVSSl3oXNPas26nawTH8YgWw1RNfafvuZP3HJ9Ko/PZX76WwrLTmq6CG5trpZeuhmYSeunKEXrpxtdLYve965BGHTqTt2ajj6tBRkqp7Y2S3XlNK6w0PXwM6ykGfDWWXDFJfn5vS+ik3XnUoFLrr5olNal3oSZw3NlE5UHz8YL4IDaGr0vzISzM3UfW13Vh5eVe55SaUjKcjlXVf1LscI7rkbbzlIdWwWaX8Ky4qfvykiQkKdT7vOAvjXzpErm3tvrT5220fRtSZORl9ZVlmW+++YavvvqKHj16sGLFCjZu3EiHDh0AR55+nTp1WLFiBX369OHIkSM88MADNG/eHIC0tDRlLJdwqFatGlWqVAEcXr/FixfzwQcfKOHICxcupGbNml5rufPOOxk3bpxyPGTIEPr37694CNPT05k7dy5dunRhwYIF1KpVi7lz5/L0008zbdo0WrduTUZGBv3791fWtW/fPuLi4khOTvaaz2QykZaWxr59+y7r2blYuXIlDz/8MKWlpSQnJ7NmzRqqVq2q2/bAgQPMmzePWbNm+R2zY8eOLFmyhL59+1JWVobVaiUrK4s333zTZ5+YmBjat2/PCy+8QJMmTahevTpLly5l8+bNNGjQQGk3b948Hn/8cWrXrk1ISAgGg4F3332Xzp07a8b717/+xdNPP01JSQmNGjVizZo1mEwmAE6ePKkRWIByfPLkSQD279/PM888w/r16wkJEfJEEBhJt3yB85rm5e0Pb2efhKwy5OiXIwhyhRVoq8UO2CxHkW0edU48ZdRlTnFZf2hryiKoC507o9P9RkrJmjIMFYibB1kmvDSZkGgbpeXFYLBTbisBokT23l+Ea6WX4PI1k9BLQi8JvRQ8IlKqklGRIuSuVDTFnuL8EGGWvQqSa9LgAu4S45kSp5pT55N2Td6FL30hIRFui9AfXTfySqLcufYexSXMPF1AiJLG5zK+hYHkGNMgyyDLRJotyggGxSNqx25Q10ZwClWjS6LalMcke6YPqGpKXT9h9gLBlbFy5Uqio6MJDw+nR48e9O3bl8GDBxMSEsJtt92mtEtMTKRRo0b89ttvAIwaNYrp06fTsWNHpkyZooRd++L333/HYrHQtm1b5VxcXByNGjXyatu6dWvN8c8//8yiRYuIjo5W/uvevTt2u52DBw8CDk/kyZMnWbJkCe3bt+fjjz+mWbNmrFmzJuhn4RIO/liyZIlmHevXr1euZWRksHPnTjZt2kRmZiYPPfQQp0+f9hrj2LFjZGZm0qdPH02tA/W42dnZAOzZs4fRo0czefJktm3bxpdffsmhQ4eU6+vXr9f0W7JkCQD/93//hyzL1KpVi7CwMObOncvf/vY3DKqNIubNm8cPP/xATk4O27ZtY/bs2QwfPpyvv/5as97+/fuzY8cO1q1bR8OGDXnooYcoKysL6pnabDb69evHtGnTaNiwYYWfqeCvytV7y0qqXXUlWV2L0qC0AA/doTrQc3R5z+HuVBhbD4Oc6LPtsfhELMWfYivfqfT1XQLBrTf+NNWhaB39mlLu9D7VKZUTT3MvXgYy2d3R+W9YeVVurt4Nk9k7m0AguJ4QesmN0EtCLwXLjWFau8HR+vqClBvqYpQe6XbRZXDRLmM3gN2hvIJYg16qoN8F6J4zECgFL7g5vCOlHC1do7csL+feklLe8DAYNTywnC86hGKqU5ed5T/y9KZyosqNmhW6RrO5g6bcA0tG1fzOJEnVFJp1eSxeE/YuPHsCQIqIoNH2bddk3oqSkZHBggULMJlM1KxZk5CQEE3hRl8MGTKE7t2788UXX7B69WpmzpzJ7NmzGTly5OUsXUNUVJTmuLi4mGHDhjFq1CivtnXr1lU+x8TEkJWVRVZWFtOnT6d79+5Mnz6du+++m/T0dAoLCzl+/LiXt9FsNpOXl0f37t0Drq1Xr14a8VmrVi3Nuhs0aECDBg1o164d6enpvPfee0ycOFFpc/z4cTIyMujQoQPvvPOOZmz1bimxsY4055kzZ9KxY0fGjx8PQIsWLYiKiqJTp05Mnz6d1q1ba/q5vG7169dn3bp1lJSUcPHiRZKTk+nbt6/iCb106RLPPvssn376Kffcc48y9s6dO5k1a5amLkFcXBxxcXGkp6fTrl074uPj+fTTT/nb3/5GjRo1vOo1nDp1CoAaNWpQVFTE1q1b2bFjh5I+YLfbkWWZkJAQVq9e7feZCgQOZJ1PagJoKCWLTHaXkgrKfytTtaCA8/V9r8dzQcUxdQgl3uOiu1G5y/stRWO3Wal79jhna8W5hwtSSEjmcmqekIm+6BHVHVRvz8E0oVLKObdRyq3xZPWzVM6pjVI6UffOccoPXcTo/BNFdka8g7Zk1eXuFC2onFwrveSauyIIvST0ktBLFUcYpSoxelFJksoA5X7huyN3HIeyEuVUZoKQcu0YgaWKnqhzyAOlOLlKRChj+oqsClJXaLZh1qk/IAN2p6Axyo6L7mgmx7/Rxce4ECUTWj+e0yfLCZPsgMooJbufkV31+BS5aNR76lqh5wqt9BJcmkcsxJTAIcAvN43uz8YlDNQ0adIEq9XKli1blHD0s2fPkpubS9OmTZV2derUITs7m+zsbCZOnMi7777LyJEjFQ+aul5BWloaoaGh/PTTT4owKiwsZN++fV7hz57ceuut7Nmzx2ud/pAkicaNG7Np0yYAHnzwQSZMmMDs2bOZPXu2pu1bb71FaWkpAwcODDhuTEwMMTExQa3BbrdTroqyOHbsGBkZGcoOLWovHKB7f6WlpV4h3Eaj43ebLMtERET4fS5RUVFERUVx/vx5vvrqK1555RXAsQOPxWLxWoPRaMRu9+1kkGUZWZaV+2rfvj0vvvgip0+fplo1Rx2+NWvWEBsbS9OmTQkNDWX37t2aMf71r3/x7bffsmzZMurVq0dUVFTQz1Tw18ThKnJH8Ph/03qnl7lrTepFSrlbuTgbC4aLztH03usBXvUWw1bykw9TZb8Fkw+DWUjEbVw8d5Sqxb/if8NyfUJOHqZeqYRb61wd6a8YoCRJlb7n2zGniX5yNNYZ1Vk3asdpUlIac4oDzrPO6HjnDn7adQg99VdA6CWhl0DopRtZLwmj1HWEkvblz5HnK27cidZk4qrTJHs1lzAgY8dmkAJ+E9ThGFHGgwFaea9D7a90fTb4EA+eBjTdNjoRSWoTHLgDmgzODu7im+7OJWEScT6KakoqL55dvWuhS3spv2hURjbVwgxGo7KGagk1wL1LKKEGO5d83p1AUPlIT0+nd+/eDB06lLfffpuYmBieeeYZatWqRe/evQEYM2YMPXr0oGHDhpw/f57vvvuOJk2aAJCSkoIkSaxcuZKePXsSERFBTEwMgwYNYvz48SQkJFCtWjWmTJmCwWDwWz8GYMKECbRr144RI0YwZMgQoqKi2LNnD2vWrGH+/Pns3LmTKVOmMGDAAJo2bYrJZGLdunW8//77TJgwAXB4CF955RWeeuopwsPDGTBgAKGhoXz22Wc8++yzTJ8+nZtuukkzb25urtdamjVrRmioto5cSUkJL774Ir169SI5OZmCggLefPNNjh07Rp8+fQCHwLrjjjtISUlh1qxZytbH4PCQ+SIrK4uhQ4eyYMECunfvzokTJxgzZgxt27bVrS/hwrUdcaNGjThw4ADjx4+ncePGPPLII4DDs9ilSxfGjx9PREQEKSkprFu3jn//+9/MmTMHcKQQfPTRR3Tr1o2kpCSOHj3KSy+9REREhFI4tFu3bjRt2pQBAwbwyiuvcPLkSf75z38yfPhwwpw1AD2fa7Vq1QgPD/c678m5c+c4cuQIx4876g+6vh41atTw+8wElR/Hr4TgE9bUMeSeH2X1a13T2NMI4j4uDofYi6prFcyds4Ss5Vj1A8QdaKDMYwgwhqRdpXNi3+2LrUbCgdPxNpJLb8UY6tj17vJKSnlHfKvT9zSD6kVKoRMppepjiArFUUJLJpwo9wSur5Ha6CUipQSVCKGXHAi9JPSSL4RR6rrlSqsCSLhtUR6RUoCqqJSzje957+crSkMAbg68RtnHNRkiTx+k/RkgqSmXhUrteXokHf5NCZf/wOD0lyq/lJ066LN2Bg5Xl2mOD6OU3YzNvBesJSCVYrcVOAu4O9sbXOl9+mJo/FNP4apQZcLEVzM/BCChZhS3XjrL2nMVumOB4Lpn4cKFjB49mnvvvRez2Uznzp1ZtWqVIjBsNhvDhw/n6NGjxMbGkpmZyWuvvQY4womnTZvGM888wyOPPMLAgQNZtGgRc+bMITs7m3vvvZfY2Fiefvpp8vPzvXY98aRFixasW7eO5557jk6dOiHLMvXr16dv374A1K5dm9TUVKZNm8ahQ4eQJEk5Hjt2rDLO2LFjSUtLY/bs2bzxxhvKFslLly7l4Ycf9ppX71x+fj61a9fWnDMajezdu5fFixdTUFBAYmIibdq0Yf369TRr5vhDcc2aNRw4cIADBw549fcXETB48GCKioqYP38+48aNo0qVKtx55528/PLLfp9ZYWEhEydO5OjRoyQkJPDAAw/w4osvagTihx9+yMSJE+nfvz/nzp0jJSWFF198Uam/EB4ezvr163n99dc5f/481atXp3PnzmzatEnx8hmNRlauXMkTTzxB+/btiYqKYtCgQTz//PN+1xcMOTk5iigE99djypQpTJ069YrHF1RW/BstPNO/1EdajeEUEAHrbXqN4iOu3NcBIEG1OAnvkCi9ewnOKONyyu2vY6NufleMltKg+gUzsgvJVb9Tnb7nuuZxRnmMOssPrR6F5Yjjc4hzcxhJZZWS7bI7ot01jLBNCSoJQi8JvST0km+EUeq6RC+kvGLIugYoP4LKz6UwzJQSuFCdv2FMFitV96zjrpAI1ic95N3AI5hLz9uoKSiuqmWg1HZStTHKgGRwp+85r++oLyFLskcxcvegEed+wGLJVwxLXFyKTCe3R9Cg9vKp1+Ag1GQizBliK1vc4qxaSgxJxwuVeYSIElQmFi1a5PNafHw8//73v31enzdvnt+xJ02axKRJkzTnYmJilMKS4PCYTZs2jccff1w5d+jQId3x2rRpw+rVq3WvVa1aVdlGORC9e/dWvJfnzp2ja9euLFiwgF69ehHpTCFITU2tUOpIeHg4y5cv99tm8ODBDB48OOgx1YwcObLCtSceeughHnpI53eyiho1arBw4UKf12vWrMmqVasCzpWSkhJUOxdTp04NSiRdyTMTVHJ0DEVB/0R6+c7Uji+wK0W5tQ0tdiP6+BZSsp9WnsdJ8ekU4r/AsV8CPgDvFLigUdcrVYSRKird7j25Rrppdit2p1nqNQ4nksSwWmArUc2pbiyElOD6Q+gloZeEXro8xO571yOSqhaS85Tr5zhQaLik+exKXfOMlNJs5BtoMQGXG0w/g81hoCkJDddZgb+UPu0dKZ90frGpI6UcofdSwPDVkjoGrKqfAsnmSLAzSAnOMxZs2NxGM5dRSu0NVIssj0Ln7vB0v8sQCAQqduzYwdKlS8nLy2P79u30798fQBE9fzYJCQl8/fXXdO3alc2bN1+TNQgEAj38v+NldVHIAKjT8ty6RMZz970LlgjNcbB4ax0f/XVrZl5p9PyVx9974i45ISlR5OpIKfftqlP6dP7s8PH1iZHiuavm30momqmbvqc3vEDwV0PoJcGNgoiUqoTISq1Ib+GiiB7J4B0yXdFiB4HWoXMUaIaz0XEVGdTneErRSx/djZ7pe17tHC2LG4QwJxl6bNFeDw+9hVLzN+72TiEkOYs9aMxlQYX0A5KwAQsEwTJr1ixyc3MxmUy0atWK9evXU7Vq1Wu2nsTERCZPnnzN5hcIBBXFn7XCuzaRxlmmKY3keHeHhlYnOcLKJauFEjkGu/HmK1+i5FVNQb/RlUxxFUOzNXJHGVe9+57aaKTjPFTpIN11OccJSYqgTC4lXIrEGBIHFAFgt6ujvLy/bgLBXxGhlwQ3AsIodd3ifOlKWi+f5PL6qawivl/HrpQ2WeesRxvd/t4FK31e9zp1eSLKovp8yBZPI8rcJ1RqyFvMOMxUNlcJKRlNxJmqGTLa9D3b/8/eecfbUZXr/1mzy+ktvTcSCAmEIKGEgLRAEjAELiAolyYgIEgVEZUSjKJIEQQBvUBQUfmJCMjlIgEpASIlEIEEQhIS0ntyTk7bbdbvj9kzs2ZmTdvt7J28Xz+YvWdWm33Kes673vWsiDl02ajTnJvjMjKluM0R1RtuRhIJgvDhwAMPxMKFPXP0M0EQ5Y8Y/DAPNMkvOMEtC3fctAzgmlRWlFp8c4S28v9s93lYu/OrAGwrWsF6krwKXdW8FFJaWIzHOffNKHcdinA4j7l9T3W06bY9T2rtmb1ff/ggzF+0AAex46xVLNrP5vtAEHsgpJeI3QVK3Sgrgsys7rlD9vf21TdpppTjUghxYhMykSTDiE0B/KvsCOPsFDKglmX6YjsXTmOQGJ3be1P102uyV/0ypRRZ1MpxhSFlbN+TeElYFZO0P2cxUlEEQRAEUVj85laXYAlM/QBks5eYfr0l23Ic3ZkDsLxrKNZAfkKTY3ErgBTKdbnK6lOVvxdpMOR6R9dar/3+f/DAt87C+s8/k+yv47ZtiHoWv0vzZjq6cblj4SLjBqkogiCI3QcKSpUhfqtW3GNZTCa3uD10U8iACDfFxtEvxHDW6/KglL8XllxkpMVvUUmmlGh+Pj8zARk9KMU5sM8MeXYS52ZQyrpm6Do+w+Ihooe7VKGmy48Rs34VTJP04B4XBEEQBEHIyT0BWbK1jFsVlN3HSUUjtqZ+ihd2HIEOZH2lmKmBwH0CTHkk9ogaStdL4R+9wBYOgtH5kH33M74Yic4OrP30E8npewCgmBsBZCOUfEFZ1NzUwTMZi64iCIIgdg8oKFVxeBuEGzvtmXmuHGdq9p5UAmT/yUesZNOt25iH5slFPDDryqWn0TnD39SvYnFsHAAgcsbjwBmPOQSOfeHObXWRcW65Z3h3Kvl/TgRBEARBFILCzauqETXSwlHcSxcVzKNTplFyC7bINZ7gwSlfowvXh+T0PQaGCVOn44pHn8TYKUdZ7ml15JlSnppUXDysq0fNxAOyLZjeFUarlHlOEARR8ZCnVAXg8ElwxGM8JnYACSVluydZIfS8Wzz8ZJ1wxp2RYORM/jYv6v5ZLKJ9a8tW3TiE7XuRGKCf2Zf1oZKNsQtAFYBNPJVdQhWNvlxO3xODWra2SUIRBEEQRPEJGj7SM6X8N/XncNdnEDJNILsmW4x0X560XTWjON6DCYrtlMCq2lpEYjGfPsyx7fjr0/h6IoNV/cU0MEnQigNKTQ2Abutpx6SkCIIgdhsoKFWGMCHLSUZ2Dc9ax/jXTJiuyUZ0jECNdGXPdk1iQuk+Dvd37plXRi6XcMW9I79MKXMlM7tylk1pijDN+6mqSvCkApCKqtly2c9k/KnAO3+WPgVjDJxr4atI9rPcmrU8Z0KevudqqkhA7ymCIAiCIPyxLDwx6xkkftbndkmkZ/HI7AHsJZ2vcqVntUDo3mXemGIgyZJJpVcRPy8FSkwTVO3/eg2n20ehKEJZyeiYmSlFEARB7D7Q9r0ywitOwV3fuFOdbXBwVy8Amn8SoHslFEcIiaEmiK8DdsetMSZLUAqSoJQDphuYa9/a0048BIf0Xo1DRqQxedBy7GhIZceplYv0GyfVN2L7HECNnkylb9/jQhK6JXVLzKAyb3KH+ylBEARBEDnhkpWcvelazStfWeX2MrK2ASAKcMmhJ54nEutv7dv1vJYgvcdRLB3nPQpprrqlhDuaEBpwUCt677sLLWedjs8HARtagMjQIWg+80wodXXSanqsq6N2oKN/WuMjCIKofChTqhzxy7wJYnQutBFTdfEkGG3bm5Q2Ir+fTyp7OJiwfc/HU8p4q9XQg1L9B/RG/35fAoP7YOvGTQAbAg7TqyCqRGWN2EzKASUblFIVBsuggOB+XHn5dhEEQRAEYSHItOoXtDBO85VkStkWlFYnVCjsVNS3ydd07UEn+VDNAXWjCp26abptPPmoLfkjOzPVeR4rZqKnlNEDE+/p94U6jKG6OY3q5l3AD76HH498BgDw6tf/jD41fbD26mvMIer7DTnQ0KsaAKBG4rIUN4IgCKLCoUypMsRbHohrY14zsZDizPzK+Y3HZ8aXJjP5rabZm5CPwyLwxJiRTUSaxpfWTClTIVkjSbqYqonW4Mx9zpSMX6gLDmZshdRP3wsWphNFKBPao5U9opI4//zztW3FjCEej2P06NG47bbbkE6n82r3tddeA2MMO3fuLMxAA7By5Up885vfxKBBg1BdXY0hQ4Zg1qxZ+Oyzzyzlnn/+eRx11FFoaGhAbW0tDj74YMydO9dSZtWqVWCMYdGiRYH7v/XWWzF27FjU1dWhpaUFU6dOxTvvvGNp88ILL8TIkSNRU1ODvfbaC7fccguSyaRv20888QQOOOAA1NbWYuDAgfjWt76Fbdu2edZ54403MHPmTAwaNAiMMTzzzDOOMk8//TROOOEE9O7d2/d5OeeYMWOGa1tz587FhAkTUF1djX79+uHyyy+33P/nP/+Jww47DA0NDejbty9OO+00rFq1qiTPSVQeXnlGDO5b9PT7AJBhwBMrD8AfV060XLfDAWzLqGCGr1EGmxpWygsGhEPBdrQEKqkjt2JwxzA6D1XLrTGJJnM55djev4bVg9PbqsJ8deRZe2P6qb0w4aPfoF/bkuxV1VGSIHoa0kukl0gv5UbZBKX8PgDOOW6++WYMHDgQNTU1mDp1KpYtW+bb7gMPPIARI0aguroahx56KN59990iPUEJ8UgHN8WHx777sBnXHgXt6ePy7XshsDmub+JVQouCtNEX0BzdWDOlzH2AabOO5VQYhv8a81/eA2GmbFJl2/esJguStsx2CKJSmT59OjZs2IBly5bhuuuuw6233opf/vKXPT0sgyAiJJVK4fjjj0drayuefvppLF26FE8++ST2339/i9D79a9/jVmzZmHKlCl455138NFHH+Gss87CpZdeiu9973t5jXPvvffG/fffj48//hhvvvkmRowYgRNOOAFbtmwBAHz22WdQVRUPP/wwFi9ejHvuuQcPPfQQfvjDH3q2+9Zbb+Hcc8/FhRdeiMWLF+Ovf/0r3n33XVx88cWe9To6OnDAAQfggQce8CxzxBFH4Be/+IXv8/3qV7+SHjABAHfffTd+9KMf4Qc/+AEWL16Ml19+GdOmTTPur1y5ErNmzcKxxx6LRYsW4Z///Ce2bt2K//ov83d0MZ+TqEycqiTIQpGpnTqqYtjY3Yh0dkteU2fCcl9GZ/0X6DP6Aizr+0GgMcpPiGPSl/n4PAUpViglont4Wn7cmXWB0NIh54aZvFlctziQ7Z00M6WisQgGj6jBmoat2FClfX02rXgDasb7jyuC6AlIL5FeIr0UnrLZvqd/AN/61rcsH6jOHXfcgfvuuw+PP/44Ro4ciZtuugnTpk3DkiVLUF1dLW3zySefxLXXXouHHnoIhx56KH71q19h2rRpWLp0Kfr161fsR8oTD9ngqVgE2WGP4PiVD9eRTYkEk1GOIBI3RYeMpCVu6u8ppa+c6Ubnxhg3fiw10HQ9QplD+ovC8JSCmZpuOX3P0ohQz74iSAt7RIVRVVWFAQMGAAAuu+wy/P3vf8dzzz2HSy+9FFdddRX+8Y9/IJFI4KijjsJ9992HMWPGAAC+/PJLXHHFFXjzzTeRTCYxYsQI/PKXv8S4ceNwzDHHAABaWrRMgfPOOw9z587Frl27cOmll+KZZ55BY2Mjvv/97+PZZ5/FxIkT8atf/QoAMGLECFx44YVYtmwZnnnmGfzXf/0X5s6dizfffBM33ngj3n//ffTp0wennnoqbr/9dtTV1WHx4sVYsWIFXnnlFQwfPhwAMHz4cEyZMsV4zjVr1uC6667D1VdfjZ/97GfG9euuuw7xeBxXXnklzjjjDBx66KE5fY7f/OY3Le/vvvtuPPLII/joo49w3HHHYfr06Zg+fbpxf9SoUVi6dCkefPBB3Hnnna7tLliwACNGjMCVV14JABg5ciQuueQSX2E0Y8YMzJgxw7PMOeecAwCOFTg7ixYtwl133YX3338fAwcOtNzbsWMHfvzjH+Mf//gHjjvuOOP6hAkTjNcLFy5EJpPBnDlzoGR/X3/ve9/DrFmzkEqlEIvFivqcxG5IiLTkeDqDw5etRU0yDRZV0Vlbiybb4cWmZOFQmH0vvx1rGrncAyqgdvLtSbpM5j6cUL0LTUiMzC3azDgBBlKjc7fFOQ6rFvzZOz/DPycp6JV6FXdt+B6GZlva1FhrbrdU01DT6ynznCg7SC+RXiK9FJ6yyZSaMWMG5syZg1NPPdVxj3OOX/3qV/jxj3+MWbNmYcKECfj973+P9evXe6aU3X333bj44otxwQUXYNy4cXjooYdQW1uLRx99tIhPUgzs2UjapN7atRjJXX/F501dSLe9CDWzE+Lpe+6rfF6eUm7CSd6O+85As2+FRVBTPzRgm+Z4DoquwSjWabbIYQgaa0aY2J9t+97AiUC83jYimxcCcwaalKYmsOwPuSV5y9a/eM0XUcxRVIqA9n2YSmRK/p981T4cNTU1SCaTOP/88/H+++/jueeew4IFC8A5x4knnohUSvtr7vLLL0cikcAbb7yBjz/+GL/4xS9QX1+PoUOH4m9/+xsAYOnSpdiwYQPuvfdeAMC1116Lt956C8899xzmzZuH+fPn44MPnBkJd955Jw444AB8+OGHuOmmm7BixQpMnz4dp512Gj766CM8+eSTePPNN3HFFVcAAPr27QtFUfDUU08hk8lIn+upp55CKpWSrvBdcsklqK+vx5///GdJzfAkk0n89re/RVNTEw444ADXcq2trejVq5dnW5MnT8aaNWvwwgsvgHOOTZs24amnnsKJJ55YkLH60dnZiW9+85t44IEHDDEuMm/ePKiqinXr1mHffffFkCFD8PWvfx1r1qwxyhx00EFQFAWPPfYYMpkMWltb8Yc//AFTp05FLHvUfE8/J1FmeJ7Gxj0sOJ2/Axnn2NXSCyNP2ILRMzcjVRWXltMKB74YqO+cyDmlqlD6Q9KOJNPJunypWN7pQSzOOf5v5f9h+c7lljrbY634rGql0XZgvUXsdvSUXiqEZiK9lD+kl3Z/vVQ2mVJerFy5Ehs3bsTUqVONa01NTTj00EOxYMECnHXWWY46yWQSCxcuxI033mhcUxQFU6dOxYIFC0oy7tAIx+tKcnQsLzvTMbR3fw4A2BUHkFwJVRkERIdK2vDaUuY3Jq+bklFK2muI9ULvwUehe92n8u649CX6sE60+GVKOaJitu17/cYC168AUp1A9w7gH6eAg2PFzhVujwAAiNTXA7usN7c2AskqBeiGtn3P20bBmWlFWoqwkU6q+O1Vr5e832/fexRiVbLTo/zhnOOVV17BP//5T8yYMQPPPPMM3nrrLRx++OEAtP3rQ4cOxTPPPIMzzjgDq1evxmmnnYb9998fgLaSpaMLh379+qG5uRkAsGvXLjz++OP405/+ZKwQPfbYYxg0aJBjLMceeyyuu+464/1FF12Es88+G1dffTUAYMyYMbjvvvtw1FFH4cEHH8TgwYNx33334fvf/z5mz56NSZMm4ZhjjsHZZ59tjOvzzz9HU1OTY+UKAOLxOEaNGoXPP/88p89O5/nnn8dZZ52Fzs5ODBw4EPPmzUOfPn2kZZcvX45f//rXnqt+ADBlyhQ88cQTOPPMM9Hd3Y10Oo2ZM2eWLP36mmuuweGHH45Zs2ZJ73/xxRdQVRU/+9nPcO+996KpqQk//vGPcfzxx+Ojjz5CPB7HyJEj8dJLL+HrX/86LrnkEmQyGUyePBkvvPBC2TwnUR54SZNd2cUszhS0VVUDaPNsRGwrWRVHTS9repQ8J9w+gmB/tDJYdYI8aObRVl5/G0sWJPNoz1jcE7SOdTuefxBMV6qfbPsE33/j+7i6NYP+AHpV98Lwzgi+rN1mdVIVF/eMvnJ/BqJy6Cm9BOSumUgvkV6SQXpJTtlkSnmxceNGAED//v0t1/v372/cs7N161ZkMplQdRKJBNra2iz/lR8crzRU42vGLxyGuqT+ZVSDJHDbKJi7gK09STq3pD9778738nYcRudGxrgtUwoAYtVAbS80Ng1DnxrtF1mapxFlUQxrGCbdpseYOZaqflX48L9VXPXtCNSI5Ecml9P3SEQRFcbzzz+P+vp6VFdXY8aMGTjzzDNx/vnnIxqNWlKze/fujX322QeffvopAODKK6/EnDlzMGXKFNxyyy346KOPPPv54osvkEqlcMghhxjXmpqasM8++zjKTpo0yfL+P//5D+bOnYv6+nrjv2nTpkFVVaxcqa22X3755di4cSOeeOIJTJ48GX/9618xfvx4zJs3L/BnEY/Hfcs88cQTlnHMnz/fuHfMMcdg0aJFePvttzF9+nR8/etfx+bNmx1trFu3DtOnT8cZZ5xh8QAQ27300ksBAEuWLMFVV12Fm2++GQsXLsSLL76IVatWGffnz59vqffEE08Efl4/nnvuOfzrX/8ytgrIUFUVqVQK9913H6ZNm4bDDjsMf/7zn7Fs2TK8+uqrALS5/uKLL8Z5552H9957D6+//jri8ThOP/104w/gnnxOovzh4FinbNfeMIZ1TY22EnIfp/D9uFW3Tu7M8cK3Sk5jcXTidcBNoRK1pD5QZiDKzEg3O7YeXmMOpDXRCgCIKtoK/4yR0xFRFUs/Rqa6JQpFYoooP0gvmZBeskJ6yZ2KyJQqFbfffjtmz57d08OQexkJE/n8+mp0GMERhqiqAFAlW8L0gE12QuccmcR7aGPbPftv6Ao2TrG37YkMPu3bH0lF/+VjewbHUpZduDHJVSeZiAIlnXEU5AyI1KwEZ5p5n+EpJRCLxPCPU/6B1btWAwD61fZDn5o+2LztC8k4zW19LMKQaAZSMfNaiqvoTncDqEdSTSHm91ycu5rZEXsu0biCb997VI/0G5ZjjjkGDz74IOLxOAYNGoRoNIrnnnvOt95FF12EadOm4X//93/x0ksv4fbbb8ddd92F7373u7kM3UJdXZ3lfXt7Oy655BJj/7zIsGHDjNcNDQ2YOXMmZs6ciTlz5mDatGmYM2cOjj/+eIwZMwatra1Yv369Y7UxmUxixYoVFrNJN04++WSL+Bw8eLBl3KNHj8bo0aNx2GGHYcyYMXjkkUcsmb3r16/HMcccg8MPPxy//e1vLW2Lp7k0Nmp/dN9+++2YMmUKrr/+egCa90BdXR2OPPJIzJkzB5MmTbLUsy/Y5MO//vUvrFixwli91TnttNNw5JFH4rXXXjNWUseNG2fc79u3L/r06YPVq7XfyQ888ACamppwxx13GGX++Mc/YujQoXjnnXdw2GGH9ehzEuWHfV7lAFTmEhhylLQvpvnjZX6QK/69e9kx+LfjdfpeTlYCjGlaSbRBsLdraVZ8Y5t7mHZbzZqm10RrACQxrH4Y2C7rGDm3e3jpq5EUmNoT6Cm9pPcdBtJLpJfcIL3kTkUEpfT9lps2bbKkCG7atAkTJ06U1unTpw8ikQg2bdpkub5p0ybp/k0AuPHGG3Httdca79va2jB0aDgvpMJg9UiwT7fprhgg93YX1qicCec8sx7prjeF6wp4NngjppD3aeX2nWvwk02Ldyawtb7BLK3Ugsu3IAeCZzOVGnkt9DMiGDednA5c9KFlWKlYErUjHjYOCJYFpQCgPl6Pcb3HSe9ZYEIaOsyVORUMCoAUOLozXYihHus7NmJMkIdyM0Qn9lgYYzlvoys1ujAQ2XfffZFOp/HOO+8Y6ejbtm3D0qVLLZPp0KFDcemll+LSSy/FjTfeiN/97nf47ne/a6ygiX4Fo0aNQiwWw3vvvWcIo9bWVnz++ef46le/6jnGr3zlK1iyZIljnF4wxjB27Fi8/fbbAIDTTz8dN9xwA+666y7cddddlrIPPfQQOjs7ce655/q229DQgIaGBt9ygLYqlkgkjPfr1q3DMcccg4MOOgiPPfaYYWKpI3u+zs5ORKPWKT0Syf5+5xw1NTWhPpcw/OAHP8BFF11kubb//vvjnnvuwcyZMwHAMEddunQphgwZAgDYvn07tm7dapiodnZ2Op5VfwZVVY0yPfWcxO4FExQT4J1cBNi3pMnaKxA+4wi6iOeox63Pmy9csJwwO3H2YVWj9mx57b3qCDiJz5nVX6repjVDi0JSewakl0gvAaSXdme9VBFBqZEjR2LAgAF45ZVXjCBUW1sb3nnnHVx22WXSOvF4HAcddBBeeeUVnHLKKQC0L9Irr7ximLjZqaqqQlVVVTEeoWAwAF2t1UCLX0HmMCvgPJG9VYeRDb2wRp2ELqalhn4+mKFll9aD4q27pOi/IgfsbMeuPsciXXsAEq3L9Z7NMUificvVIAeaeB22CCXb62rQq7UdDbvaAQDJSAxASmslE0cMLThyxDiMaQkUJnKltj6Odn0YnFsM5AGACQIqmbEdzyPiogGTmzZj409/hgE/8j62lCDKmTFjxmDWrFm4+OKL8fDDD6OhoQE/+MEPMHjwYGOv/NVXX40ZM2Zg7733xo4dO/Dqq69i3333BaCd5MIYw/PPP48TTzwRNTU1aGhowHnnnYfrr78evXr1Qr9+/XDLLbdAURTfbMMbbrgBhx12GK644gpcdNFFqKurw5IlSzBv3jzcf//9WLRoEW655Racc845GDduHOLxOF5//XU8+uijuOGGGwBoK4R33HEHvve976G6uhrnnHMOYrEYnn32Wfzwhz/EnDlzsN9++1n6Xbp0qWMs48ePN8wmdTo6OvDTn/4UJ598MgYOHIitW7figQcewLp163DGGWcA0ATW0UcfjeHDh+POO+80jj4G4LqgAgAzZ87ExRdfjAcffBDTpk3Dhg0bcPXVV+OQQw6R+kvotLe3Y/ny5cb7lStXYtGiRejVq5chcrdv347Vq1dj/fr1lucdMGCA5T87w4YNw8iRIwFoRzvPmjULV111FX7729+isbERN954I8aOHWucKnTSSSfhnnvuwW233YZvfOMb2LVrF374wx9i+PDhOPDAA4v+nESFE0S3SOZkNzN0R3YSt6oZvyCWtSOOKFcxqeY9tKc5gDqX4m56Sc9Kcu+0VAeoMP1AHEmGksWlwIgdicEkeVBKVt9ox2jP5bRDikoRFQDpJQ3SS6SX3CiboJTfB3D11Vdjzpw5GDNmDEaOHImbbroJgwYNMgJOAHDcccfh1FNPNYJO1157Lc477zxMmjQJhxxyCH71q1+ho6MDF1xwQakfLzz6ChCTyRJJwexdq6eUTX3pqdaReuzVNBTr20cCaS0o1VGtB6XyGCyAps4EEpHhSLOaXBuzws0XDMD/nnAIDl9Xj/WR7Yh1tGNlzWD0bv8MYEC6Y28MyVyG+471Xh1wo6Y+hmhVFXZtBQ6aMQIvLnf+QlcZM5LPFcYADiR50izgkUZeNXKEWUxVseMvf6GgFFHxPPbYY7jqqqvwta99DclkEl/96lfxwgsvGAIjk8ng8ssvx9q1a9HY2Ijp06fjnnvuAaClaM+ePRs/+MEPcMEFF+Dcc8/F3Llzcffdd+PSSy/F1772NeOI4zVr1qC62iVFNMuECRPw+uuv40c/+hGOPPJIcM6x11574cwzzwQADBkyBCNGjMDs2bOxatUqMMaM99dcc43RzjXXXINRo0bhrrvuwr333ouOjg4AwJ///GfpwRqya2vWrDFWuHQikQg+++wzPP7449i6dSt69+6Ngw8+GPPnz8f48eMBaKeuLF++HMuXL3fU9zoB6Pzzz8euXbtw//3347rrrkNzczOOPfZY36N/33//fUPkADCyhfXjpgHNA0GcN/XnveWWW3Drrbd6ti/y+9//Htdccw1OOukkKIqCo446Ci+++KLxvXLsscfiT3/6E+644w7ccccdqK2txeTJk/Hiiy+ipqam6M9JVBDCz4I4U6vW83It/2iv3bPQA6QoBS0prdyENkyq/Rzz20fAGpTKMccqWFTMsUvRcnpwIYzOrYPybNhtG6KeKWVVsdksKvv2Q26WIIhKgvQS6aWg7Il6qWyCUn4fwPe//310dHTg29/+Nnbu3IkjjjgCL774ouWHbsWKFdi6davx/swzz8SWLVtw8803Y+PGjZg4cSJefPHFHt8z6Yb7KpeZqeO1SqaXRbakk4xwr5gp6Dm0oAtF2+PZxU53dRVaB43C+mgNqnZuR7ojIlTLbeT6agJTgHi19iMRq4pat+9ZRBwHV1VjrB1p04RrydYl2L/B3BfNhDrVttUCqC6rfgRRZnhNQi0tLfj973/vev/Xv/61Z9s33XQTbrrpJsu1hoYGi+FiR0cHZs+ejW9/+9vGtVWrVknbO/jgg/HSSy9J7/Xp08c4RtmPWbNmGauX27dvx3HHHYcHH3wQJ598MmprawEAI0aMCHVUdHV1NZ5++mnPMueffz7OP//8wG2KfPe73w3tPXH00Uf7PkMuY5K12djYiEceeQSPPPKIa72zzjpLKlpFivWcRAXiyAawZjB56SrZS5/OLPGQYIrDLKVkDQYy3JnqLg+xSZtxXDTjbCUK0mR9oGTb98zT98Ti3FY5i+C1yR0qTghP6fYJRqPW7XsEUU6QXiK9RHopN8omKOX3ATDGcNttt+G2225zLSP7obviiitct+uVK9rJb3bzzmBBJFObyPyL9M/XeU8UcfbFt2AZ8RYFYu01k0Rw7L2JAsY5kkJrEvOIY/Gi+ZlkdrYivfNXSIADOyJA3TTL12rpjqXYf+ShIAgidz788EN89tlnOOSQQ9Da2mr83nc7PrfY9OrVCy+//DIeeOABLFiwwDh6mSCInoUxJt/zFYjCi257i9ataxoZ3gtAGF3k3xuz2zVYwly2xcpCPbbMU8oyArue4g4tKx4GY0d/JlU4rEe7bttBQMFmYg+G9BKxu1A2QSlCoGCntOm52noKezZTiimGEHCemmKLxvj1ILOCso1f7dgCzajKUsrWqyzg5OI9YEmhF8VWrinwEhMEiCt+QpZURyfMsWeQSa3CwQMPAT5e7qhvRXL6HgkpgnDlzjvvxNKlSw1/wPnz56NPnz49Np7evXvj5ptv7rH+CYIIiVMySO9b3vrIiLCztgIzIzr4slrIbXklhjEtzCUNBhm790T/KHHRUlwUFf2zZAEuq/WEbt7r2L5HUorYwyG9ROwOUFCqYgg260r39hv78fX0aO9T4ILaFIiI2qS7WrF5OIiN+yg+j6OcZTUt1wopTJgQ5OLOlbkI6pBBh1A2W5QCTQSRNwceeCAWLlzY08MgCGK3RbaiFqaaV/56OIIEzQqjLJxBotwki9U3SlxAtCwmGplNZmAukwHSPI4o0zLF9MU6r9P39Ewp/fQ9I/OLtu8RBOklYreBglJlifdM664hbCnNavYkwWgrqpPb0Z71lGIs41ho8j0K2fu2BVVhYJliqAVJm5asdJaTwJLlhjEwIbNJPH0ve5/rhhLiaqD7SqhjXIxRphRBEARBFJBcZlW30/dyRWwuDdkR9pIOfcdQfhEYLgsOMSFgJfH7WvhvYCGexKS6J3GomIVu10PSe3qQS3/HxFEQBEEQFYx3ygxRWgLNrN6W3hYxlBqs1YgkcMynN2Dvz/8CAIhGkkJJ7d8Bu0ZJ2/AeST4iKbzJqBk4c3oleH8qAUdkF0ViZnj2lqo4tz0qzaZpqac8ou17BEEQBFEAQqU1uRBsAVBualDIYIifNnDxYQrYumIL5uQb3hLW67LvmeMeB4BIXLvW4jxCfG1yguW97NM0LRt0o3PVKA0AmboGtPfpwLa2DaGfgSAIgigvKChVhjCJsQF3kUWwFY0hgz5bFkHJdIIpHWiJrAViO2zlxPNNNKJq1LhXldjpNTrb+yChqRzT5B29efVUoFVEbqo20YBTb12NaK8SMbNK06mnmNXtGVUuw6JwFEEQBEHkh8OrUbvq896lLZ+adlcCxoNnWYmLW12eJucFTFvPUs8SWlVpsnnuaoQbQSJZw9w0Jt/rWABAY58anHDReEsdY4ue3pYY4Mr+q4JnTz3W2lNSKa2LWBVSdWl0Jnfl/AwEQRBEeUBBqbLEOcEnoE3CKhhS0ZjjvsiExb/DiKXXY9CoS3By758ASrauvujEZLbiGvHULvTatth21d28O+DwjWCPW0t2pwPOnFsK5auDFsOq3ASWmG5uMeR0376XNn5yOFhM+HoE7r78UvEJgiAIoqJgzJK5bNEAMh9uSRDLzQJThmh9EGRJTlaiIxsk0rGcA+OyksUlgwwfepMYj+eCcQiMex+cc8sin95vJKpkX2lb74wDZWT57ly4x7XgFABU79yKEdURVG38EjXbqtFS1ze/5yEIgiB6HApKVQDdSGGT0gpA2z62oa/tRAXZtjZuy4fiTBBQ5nqgPWeKcVXqgBAK6dKhXAT5eVnJBIp7v963Q8GYIJYEY01ZPr84BJe0ey3bigJRBEEQBFEOyMJTftnZXPJK/t6JLmHEkg07tiOedinv26KcMIfV5OMioGdKWeJokqAaE4JYbtnjqi3rSsxQ5+D4+JV/4sNXXwIAKCpHr1gE8R1bUN1ehbqq5twfgiAIgigLyOi8TBHn7STLWO5llDCxREFCGTEpi4KwlfIaif2Wx5ZCFzqqgGT7M1AzW4UeBLNwMVFJMhL3TCgt0JaT0bkQfOKS02TkXYrhPJdV2gBwzl22HxAEQRAEERhjvS0fv6ngc7g9gzqXKFI8kQBQHb6i2C1DuEWvPP0smV2vWTylnPYQYIJmNfQWA3wW68S8rpf/5zfg0AJX0Yzqvq+SIAiCqEgoKFXx2IInjv34DLwrgS/qm7EjVp29wryzuENM8GHTx7fXAWrqC+N9PJ3xKO3XGwpvFm7ZvaenmXMwt37EFHXJeCTyTG/cLE9BKYIgCIIIjLmA5FPOnjYkTtdSOyq7n6ebYUBA8RRAooRRAI5AWMi+CopsEc+4ZWoj8yMVl/CsnlLcsdXPfMOZFryK19Ri0JfrMaC1HcayJqfT9wiCIHYHaPteOWFM4PYlIL8p1z3ClOFAevU6/Kf3AGxprNNKKxE4ZVARp3Vx5Sz7Uqk6EI1tSYzY2iqtIhtNPF0DJRO3xH3sqfa5PYVEEjJmuezVcm42UiSjiMrh/PPP17zoGEM8Hsfo0aNx2223IZ122XcSkNdeew2MMezcubMwAw3AypUr8c1vfhODBg1CdXU1hgwZglmzZuGzzz6zlHv++edx1FFHoaGhAbW1tTj44IMxd+5cS5lVq1aBMYZFixYF7v/WW2/F2LFjUVdXh5aWFkydOhXvvPOOpc0LL7wQI0eORE1NDfbaay/ccsstSCa9zJE1nnjiCRxwwAGora3FwIED8a1vfQvbtm3zrPPGG29g5syZGDRoEBhjeOaZZ0KPGQB++tOf4vDDD0dtbS2am5ulfa1evRonnXQSamtr0a9fP1x//fWW7yHx+0z8b/z48UaZ22+/HQcffDAaGhrQr18/nHLKKVi6dKnvZxNkfLsbDzzwAEaMGIHq6moceuihePfdd13LPv3005g0aRKam5tRV1eHiRMn4g9/+EMJR1sYrCEK2TzrMt/Due3NUdtxIdyCkkxHtFfpnpTe45aGXkLKCGb7N4cmsg1YfaC8fETFApxzVx1k374nvuLQ6tU1NWPfDdvQ0mn15CKIcoL0Eukl0ku5QUGpCkAqqwJ4MTFwpFQFyJ5YMmBnOyLxWtTWDXJpNYexMWHrnaV3b5TYcFQlVUR8M53Mto5cdTpGrZ+Grl0DxBEYxYKYjnrCuWm2yUQfBO74uKwrrELQzdVTylZf6JMgKoHp06djw4YNWLZsGa677jrceuut+OUvf9nTwzIIIkJSqRSOP/54tLa24umnn8bSpUvx5JNPYv/997cIvV//+teYNWsWpkyZgnfeeQcfffQRzjrrLFx66aX43ve+l9c49957b9x///34+OOP8eabb2LEiBE44YQTsGXLFgDAZ599BlVV8fDDD2Px4sW455578NBDD+GHP/yhZ7tvvfUWzj33XFx44YVYvHgx/vrXv+Ldd9/FxRdf7Fmvo6MDBxxwAB544IGcxwxon/8ZZ5yByy67TNpGJpPBSSedhGQyibfffhuPP/445s6di5tvvtkoc++992LDhg3Gf2vWrEGvXr1wxhlnGGVef/11XH755fj3v/+NefPmIZVK4YQTTkBHR4fnc/qNb3fjySefxLXXXotbbrkFH3zwAQ444ABMmzYNmzdvlpbv1asXfvSjH2HBggX46KOPcMEFF+CCCy7AP//5zxKPPCTM9Mg0l/Bsy1XSadYtw7nAc7IsEiSQUZw3Nsgd2oUmczMsL7Ta0E/DEzEXVYXT9/RnlH3M2VtqdmuekFQlHG6jZUoxi3WFuEuAdBRRXpBeIr1Eeik8FJQqR5jxfxJfbftKk62qbW7OqPoKIMdXvtyEqrpeiMZqzRaZv3hz785LCNhqOUSDbZsbl10VV8pU41o6VRNqJKEQximmpOeagyVizYCjLXtEZVFVVYUBAwZg+PDhuOyyyzB16lQ899xz2LFjB84991y0tLSgtrYWM2bMwLJly4x6X375JWbOnImWlhbU1dVh/PjxeOGFF7Bq1Socc8wxAICWlhYwxnD++ecDAHbt2oWzzz4bdXV1GDhwIO655x4cffTRuPrqq412R4wYgZ/85Cc499xz0djYiG9/+9sAgDfffBNHHnkkampqMHToUFx55ZXGBLx48WKsWLECv/nNb3DYYYdh+PDhmDJlCubMmYPDDjsMALBmzRpcd911uPrqq/Gzn/0M48aNw+jRo3Hdddfhl7/8Je666y7HqlcYvvnNb2Lq1KkYNWoUxo8fj7vvvhttbW346KOPAGhi9rHHHsMJJ5yAUaNG4eSTT8b3vvc9PP30057tLliwACNGjMCVV16JkSNH4ogjjsAll1zimR0DADNmzMCcOXNw6qmn5jxmAJg9ezauueYa7L///tI2XnrpJSxZsgR//OMfMXHiRMyYMQM/+clP8MADDxgCuampCQMGDDD+e//997Fjxw5ccMEFRjsvvvgizj//fIwfPx4HHHAA5s6di9WrV2PhwoWez+k3vt2Nu+++GxdffDEuuOACjBs3Dg899BBqa2vx6KOPSssfffTROPXUU7Hvvvtir732wlVXXYUJEybgzTffLPHIwyHzZAw7u7ptupddMSWCbFufXSn4jYShIZFAhEct9VYgY9wPglydeGkWYRNiTkactnbEr4H06yHZ3mfbvue9K1ESlBLGTSEpotwgvUR6ifRSeCgoVYbIJ/Ac4EA6m9IT4arlun/QKEjz+n7/XAZnrefX+5peH+CvE+5wjMBuEJGXwLKnmzNTLLl6SsHmKWWXpNK2xeIkp/ZkOOdIdXeX/L+cfk5s1NTUIJlM4vzzz8f777+P5557DgsWLADnHCeeeCJSqRQA4PLLL0cikcAbb7yBjz/+GL/4xS9QX1+PoUOH4m9/+xsAYOnSpdiwYQPuvfdeAMC1116Lt956C8899xzmzZuH+fPn44MPPnCM4c4778QBBxyADz/8EDfddBNWrFiB6dOn47TTTsNHH32EJ598Em+++SauuOIKAEDfvn2hKAqeeuopZDJyP7unnnoKqVRKusJ3ySWXoL6+Hn/+85/z/vwAbTXqt7/9LZqamnDAAQe4lmttbUWvXr0825o8eTLWrFmDF154AZxzbNq0CU899RROPPHEgow17JjtLFiwAPvvvz/69+9vXJs2bRra2tqwePFiaZ1HHnkEU6dOxfDhw13bbW3VtoD7fT57EslkEgsXLsTUqVONa4qiYOrUqViwYIFvfc45XnnlFSxduhRf/epXXcslEgm0tbVZ/utpPmtYjc9qtXFsiblse8sSxI3IbasbZ4VZWoqlVTBBinN7R1708NqWnillXcDL3rPIKSHjyRBFzFJIz5TiYkaYvliZzch3PRSGZNQeQU/ppUJoJtJL+UN6affXS2R0Xu7IvL1dCzvvpLkmdpTsL1TxkN1CEOzo4dz78l1nNFLJzBT+fDC8NhkzUs4zGY5Moh/A0y4+pkIemySdXY5gdE7ssaQTCdx33ukl7/fKx59CrDq3E5/0P1j/+c9/YsaMGXjmmWfw1ltv4fDDDweg7dMfOnQonnnmGZxxxhlYvXo1TjvtNGPFZdSoUUZb+sTYr18/Y9/6rl278Pjjj+NPf/oTjjvuOADAY489hkGDBjnGcuyxx+K6664z3l900UU4++yzjRXCMWPG4L777sNRRx2FBx98EIMHD8Z9992H73//+5g9ezYmTZqEY445BmeffbYxrs8//xxNTU0YOHCgo794PI5Ro0bh888/z+mz03n++edx1llnobOzEwMHDsS8efPQp08fadnly5fj17/+Ne68807PNqdMmYInnngCZ555Jrq7u5FOpzFz5kzPNPNijVnGxo0bLQILgPF+48aNjvLr16/H//3f/+FPf/qTa5uqquLqq6/GlClTsN9++wUey+7O1q1bkclkpJ+33QtEpLW1FYMHD0YikUAkEsFvfvMbHH/88a7lb7/9dsyePbtg484VfQbO8Awe3ut5jNo6CQMBrIwDW2q2uNRyWg8w+GdN2ZegfGdwLvybs14KmqvtrYFk2/5yUSDitjrtgiRTigvb9ywHu1j71e/pnlLOr4ieKQUoSsR2h9iT6Cm9BOSumUgvkV4ivRQcypQqU8Q5Xi4afKbk7NyfySZIOb2b7PULFRyReUwFqGKHASxQCpYshT4cjIkCS2hB0QxIO9QWbF19J45fdh4MkRTyxDyHzwUpKqLCeP7551FfX4/q6mrMmDEDZ555Js4//3xEo1EceuihRrnevXtjn332waeffgoAuPLKKzFnzhxMmTIFt9xyiyWFWcYXX3yBVCqFQw45xLjW1NSEffbZx1F20qRJlvf/+c9/MHfuXNTX1xv/TZs2DaqqYuXKlQC0lciNGzfiiSeewOTJk/HXv/4V48ePx7x58wJ/FvF43LfME088YRnH/PnzjXvHHHMMFi1ahLfffhvTp0/H17/+danXz7p16zB9+nScccYZFq8Dsd1LL70UALBkyRJcddVVuPnmm7Fw4UK8+OKLWLVqlXF//vz5lnpPPPFE4OcNM+ZC8fjjj6O5uRmnnHKKa5nLL78cn3zyCf7yl78Y1y699FLLcxLBaWhowKJFi/Dee+/hpz/9Ka699lq89tprruVvvPFGtLa2Gv+tWbOmdIM1pmpzMk1l0khEUpZiKcX6XkSmMYJPzYVbUHK6cgZrW/UvUhzEIBPsMSlbwMpWwPqKmwEuh/GmudynggPM7illFKRMKaLsIL1kQnqJ9FJQKFOqjHBPJc9txk10VWNDVy0AYfuekXLu5r5Zmtndbkou27IYjsJkSonNxes076poRAUH0Ld9GMDetxW0B8Xctum5XKBMqT2aaFUVrnz8qR7pNyzHHHMMHnzwQcTjcQwaNAjRaBTPPfecb72LLroI06ZNw//+7//ipZdewu2334677roL3/3ud3MZuoW6ujrL+/b2dlxyySW48sorHWWHDRtmvG5oaMDMmTMxc+ZMzJkzB9OmTcOcOXNw/PHHY8yYMWhtbcX69esdq43JZBIrVqzAtGnTfMd28sknW8Tn4MGDLeMePXo0Ro8ejcMOOwxjxozBI488ghtvvNEos379ehxzzDE4/PDD8dvf/tbStnh6TWNjIwAta2XKlCm4/vrrAQATJkxAXV0djjzySMyZMweTJk2y1LOvwvkRZMxeDBgwwOHXsGnTJuOeCOccjz76KM455xxXQXvFFVfg+eefxxtvvIEhQ4YY12+77ba8zVUrnT59+iASiRifr86mTZscn7WIoigYPXo0AGDixIn49NNPcfvtt+Poo4+Wlq+qqkJVDr9LioV9/p20TMV5z3ZgawPDByOyF42giVAvRAK5bZO/FL8M8nxn/QjXMoZUoaMIj3hsb7NmygfLcM8TDiFo5cyU0nFkXcmaYk5PKWvGGumoPYGe0kt632EgvUR6ifRSeChTqhyxbUXznm7lIqQrGseqxePx7y3aD1JU2FYmn8CNZGrLNaaqviPIFb/T8sRPwS/cxHPJ0LL0hKw9lOmRoGQF0OTT9wYAxDJVwkchellZR2JtWa528z4pkNgtYIwhVl1d8v9c/3jxQJ9khw0bhmhUW8/Yd999kU6nLUaW27Ztw9KlSzFu3Djj2tChQ3HppZfi6aefxnXXXYff/e53AMwVNNGvYNSoUYjFYnjvvfeMa62trYFSwL/yla9gyZIlhhgQ/3ObrBljGDt2rGHuefrppyMajeKuu+5ylH3ooYfQ2dmJc88913csDQ0Nlv5rapwHNOioqopEwjzmfN26dTj66KNx0EEH4bHHHjN+F+mI7fbr1w8A0NnZ6SgXiWh/vHLOUVNTY6nX0NDg+wxe2Mfsx+TJk/Hxxx9bVgvnzZuHxsZGy/cKoJ0Ys3z5clx44YWOdjjnuOKKK/D3v/8d//rXvzBy5EjL/X79+lmec08kHo/joIMOwiuvvGJcU1UVr7zyCiZPnhy4nbBf455A+1XGxDdG0IUBiKpAn13yulJlE9jr0n7XTyd53HfJCpfW4EBNpgbnbDwRgzu1n+FqztCUbPLpX86MX83HaQ++jW3twb/OzumDuby2BqWsgSSbp5SxcGrWV4yyWrvi7zfLECgmtUfQU3opF81Eeon0kteY/dhT9RJlSpUhzl9+4UMY6ewvwShTkamqwejN6wLVs2uj3tu2AYPlZWWoLAJ5cCiYash9Mx4L4dkQcABZT6lIRPs3lokjIwmTWYSWR+aTbE7LJ5RGED3NmDFjMGvWLFx88cV4+OGH0dDQgB/84AcYPHgwZs2aBQC4+uqrMWPGDOy9997YsWMHXn31Vey7774AgOHDh4Mxhueffx4nnngiampq0NDQgPPOOw/XX389evXqhX79+uGWW26Boii+wvCGG27AYYcdhiuuuAIXXXQR6urqsGTJEsybNw/3338/Fi1ahFtuuQXnnHMOxo0bh3g8jtdffx2PPvoobrjhBgDaCuEdd9yB733ve6iursY555yDWCyGZ599Fj/84Q8xZ84cx378pUuXOsYyfvx4xGIxy7WOjg789Kc/xcknn4yBAwdi69ateOCBB7Bu3TrjGF9dYA0fPhx33nmn5RhhryyXmTNn4uKLL8aDDz6IadOmYcOGDbj66qtxyCGHSP0ldNrb27F8+XLj/cqVK7Fo0SL06tULw4YNCzRmAFi9ejW2b9+O1atXI5PJGKuMo0ePRn19PU444QSMGzcO55xzDu644w5s3LgRP/7xj3H55Zc7sm0eeeQRHHrooVLfg8svvxx/+tOf8Oyzz6KhocHwV2hqavIUsn7j29249tprcd5552HSpEk45JBD8Ktf/QodHR3GyTznnnsuBg8ejNtvvx2AtnI8adIk7LXXXkgkEnjhhRfwhz/8AQ8++GBPPoY/TJyLnfPv2t4MA3bIKoq6Slw8CheKsgwFrvElhJnpd8a9j+sGgNO3TsXrHasA7EStyhzZ5t7uBxxDGmJYuyuFdTu7sG5nF95duR0z9nf6wgRB/L1sJkVJtu9x7hinEbCSbt/Tg1mqtkgZEf+IpEgUUVmQXtIgvUR6yQ0KSlUg7mLDOUn3rurGjpGjMeTT/yAJ8wfeuV1Oq9tVFcESM2sT0VTaVk6+IqZ7G3wxahaiah/wEG4HzC0046E5oq3bEN2+EQ1ptxW6PGGmyOtq2wauxhBVzNRXi02oKKYcY9YFl0s/tH2PqHAee+wxXHXVVfja176GZDKJr371q3jhhRcMgZHJZHD55Zdj7dq1aGxsxPTp03HPPfcA0FK0Z8+ejR/84Ae44IILcO6552Lu3Lm4++67cemll+JrX/saGhsb8f3vfx9r1qxBtY/R6IQJE/D666/jRz/6EY488khwzrHXXnvhzDPPBAAMGTIEI0aMwOzZs7Fq1Sowxoz311xzjdHONddcg1GjRuGuu+7Cvffea6wK/vnPf8ZZZ53l6Fd2bc2aNZY0aUBbifvss8/w+OOPY+vWrejduzcOPvhgzJ8/H+PHjwegrYYtX74cy5cvd9T3Cnqff/752LVrF+6//35cd911aG5uxrHHHotf/OIXnp/Z+++/bxw1DWjBDAA477zzMHfu3EBjBoCbb74Zjz/+uPH+wAMPBAC8+uqrOProoxGJRPD888/jsssuw+TJk1FXV4fzzjsPt912m2U8ra2t+Nvf/macLGRHD5LYt5Q99thjxhHZMvzGt7tx5plnYsuWLbj55puxceNGTJw4ES+++KKxDWH16tWWleKOjg585zvfwdq1a1FTU4OxY8fij3/8o/GzU5FwjnQkQDGn62PhhwKOTjUOMGC7WgfA9Loa3NEXgPnH1M6qTktd3X3JTj654c/+1wisqe+HH/39Yyxe34bAZ7TIerbIMDPAJx4c4yxrC6IZXwPnU3EAY5sORXWmCayqATyxyz1ZnSDKGNJLpJcA0ktuUFCqAvDPHvIOzNg25Fnv2SJc6aiC+fsrOOo/4UaW4REAZgCrK9bqvTfUx9TAuZnQWr5q0xoomTT0BFMeqZaUCoa4sieutOqn7735l0cBMMQb/hvR7loAbdYUf4/te3KxZr9BEOXN3LlzXe+1tLTg97//vev9X//6155t33TTTbjpppss1xoaGizGkh0dHZg9eza+/e1vG9dWrVolbe/ggw/GSy+9JL3Xp08f18nbzqxZs4zVy+3bt+O4447Dgw8+iJNPPhm1tZpX34gRI0IdFV1dXY2nn37as8z555/vKRa8+O53vxvae+Loo4/2fIYgYwa07xGv7xNAW+l94YUXPMs0NTWhs7PT9X6uR3MHGd/uxhVXXGEc723HbmA+Z84czJkzpwSjKgyyrCgjsCEGLEJPtbZ5mlunbvPEuaB5zkZkBpmsKrL4UnGOY9ZNwpfpV6EHqoIOOZ9gTH08golDm1Ffpf0ZoOaxQMYkGpRLPKW45fQ9LdSmo/9ci18vI1OKcYxtPhRIA8kx05H45K+yXYIEURaQXiK95AfpJTnkKVVOeH7zhFNWRkslin10s+yqH8+gq/mn+NuBt1jHI3k2/x8V5pp+yrLtrW0+BLG6k5GqGYhCPixjDOO+eizqWnpBiUQAcHB1O1jWYDSj6AE4b6NzfURrN67D//vrU0jX1FvrUaYUQTj48MMP8ec//xkrVqzABx98gLPPPhsADNFTanr16oWXX34Zxx13HBYsWNAjYyAIQob39j3Hhjxfp3IPw23b6yCKQ+YrGRFef9BnH/w71hD4sBcmBLm8Ryipy5xjUSR+T75jCOKvw+UftP2V/txqNrveGt7S3rVHWrGte712LVYL64A56Shij4b0ErG7QJlSZYqbQbZx32cOdr1vWaUSV6W4tLcgRxOnIoCCNAAl66mQAncMwEcs5RhQ2lE3CqM7BwHKF1ovuYgTUagJ9SccNx0TjpuO/3fbD7Fm8UdYNPAVjNnCEG8F2qq2or69xqzGsp+5rf+abC5XZ1cnlq9YgUjvAYiuXe4iKAmC0LnzzjuxdOlSw7R5/vz56NOnT4+Np3fv3rj55pt7rH+CIJwwJmTi2HSH3ONJMveGmI5dd+uHkB5RZtobtMfqsCjejG/KClrGlcvCnge6KbzMAyrHtmwvzcw1hUnLgnOJp5Spx/RXO6Nbsbbzc/Sudvd6IYg9GdJLxO4ABaXKEUnAIrxNOHO/Zbnvr8bcSnAwMO5sun7nDmcdbvknT1xGFD5PX9KG+wi31q/ByNZ+iNu6Eldn7dWHoS+mJydiy0EMCz/+EFBs6fu0wkcQDg488EAsXLiwp4dBEERF4fQlsssCcx3OOffaFUQwkwEZ3lqkDgm0CR6fQY6y4QVYyDIeWRh6Ts3aP1OpNYEoDu2BJ+enZwSwJNv3tK2FwTLYCGJPg/QSsbtA2/fKEHtqNPeULB6Gk0ILvkXEm5ICPETAR1EzARce3UvZU+Ptn4jxqgA+TYZvgSWmJ1/5kyJoL8f2PcYwRO2NEYOHZ8dLP3IEQRAEUTSEaVhlLqLGp16QIoFtpWzYNYWjW9dFRHu5/MMxUv2TT3uS0/TMZHRBy3LNU8oMPGnZY/IzEX2iaBSVIgiCqHjoL+SKIB8DSusrfcLPNRdLVofBeRyxtZTsnry8PR3eLRjlVi9fbWIkkPtEoiyZUgFy+CORiN6w3oOsMkEQBEEQQRHmavsGMLnLlBOLRino1vpgbelKKkThnArKbCGM7Xsh1JND78lO1+NmYIoxIUOcWQuaQTFJ/1y/p3puXiQVRRAEUflQUGq3QlxN8itbAOElbSIrNMKYLbjcDj/CHJ+JuUaYrO0KGeRcDIN99BffMUUdQSkyOt9Tycu7gyCIkkE/q2WM9PAUSVjKkZXkl13t7YfpGQrx+HbhajuqO6NIq/5LgjJb8GJT6G91LgomSczPdfueMCC9rMqdWwFL+dkQPQf9DiaIyqAQP6sUlCojrF9PPbMpLD6uCM6FMu1tZrtsRKF7d1c2AQNTIbu0b0zM62ci18pL/88YidsPpZ4pRdv39lxiMc1DxOv4VoIgygf9Z1X/2SXKD4t/lP5C5eDqLqTRjYw984mJpb0DUJ6BDzfjTBcy6RUYsroRz6/bV5rDlAtBvKj0ks7edKPzHLbv2T5TMbNcljVvXOPifkemvTcCT6o4OEs97WQ+PcAlyTKnwMVuB+klgqgsCqGXyOi8ArAelOs9+dpL+bkp8GhD9lUGAJCMhwmaiC3bzBV8BBsHD+BL7n8mn0SO5oWZbu5c2mPS5+PgLSMBrNQuu2jaiJL9UcueQqMqUSyceA06X92Ag742uiBjJ8qbSCSC5uZmbN68GQBQW1sb7GhtgiBKCuccnZ2d2Lx5M5qbm83t10T5IXhG8azB49hlm5Ho+h02RAHWaxgGbV9vFrfUtTXl1oXw2pop5f/7uwZ90RFJAWoHON+F1lQ1YnFrmVzViyz8I7/u30bBwjpC0EiPFbHsAS9yc3nha2cZkTkorsq27zmKEbsRpJcIojIopF6ioFQZwph/MMa3DXsmlItxZrpmKNBrEOLJGD4e9AoS9d16FEwo5z3ly0w6WSh/Au6cbJi0ZfGm43UYM3ZLazl4KlhK9h0H4F+ebZjb9xTj39bm0XjvxTUUlNqDGDBgAAAYQosgiPKlubnZ+Jklyh/ONO1T15USrinYVR33qBU8qKECSBlb+N3UkfVKnNWhqvGb4MkvkOh4xlaWSU/VCzqe3O2lJJ5SYbKNvDKlxMwrWZuG3rJ+erL+FT1TSlUd9ywjoKjUbgnpJYKoHAqhlygoVY7kvBoQbGa27hJkQKwXFN6EjoYYIixhC0pJhidt0x4oKphRlAvOzCstvFUgdSIRWdb7wjBYxHhku7BiTCuiB6V4JIKuwaNQ0zEPaWUqmFpVmPESFQFjDAMHDkS/fv2QSqX8KxAE0SPEYjHKkKoQ3GRFjNcjxdpd7gb34FQEH6SkkdCT8Ws1MI4E67CNMMcLeT+S20oO2/dGTTwIS+a/CgBoHjAQzQMGynoTxmdmQ9mHwIR7QtGsltLedLW3Ce1JLCpo+95uCeklgqgMCqWXKChVtjDLP+5JQyyUguGyLKwcM4wAjhp04bCaV7G4IwqgxhxWoNoewR7JW9lTFkaLmIrT2L7nVlSy4sgV/x/EmppaKIoCVQXSjb2wuRGoa9uMaNfQXAdNVDCRSIT+4CUIgsgRY2uYZ8qMLJDhsenfRU9UKwzjO7/Arua9AAArOxciHe0IOlJJ034KyVknuH+U2IIVq7eTdSRhFvRmXHEdjr/kSgDaXGZszxP751wINAlRPSMIpXlKOU/fM5+z14BBQPey7NqfmWXu+oDEbgnpJYLYMyDX5QqA24JO4Y7u1WoUB4Yh2IBx1YsQR9LSo4Mc8tHF8BkLFDjL0+gcCBzlsmabRQSfdnn92qpqnHP22aja+CUinbu0sswnJY0gCIIgiEA459+sAnKVD8zjnZVhqS04sDaCA2ujUNVPcs76li6u+ZYIRqgh6eueEt/wIERjMURjMWdASnKasXV7n20AWWRG54P3GQcAGHbUYRh0+tHIIGPxSTe6CTd0giAIogyhoFRZEWBqzQaoQqd3u3hKacEeXbgFadQqJJTsXr8O1BrXUlFFIo582u5BVSHfnieXd7LgE2dRwffcPdA0dOhQxHdsgdLdle2jYJsNCYIgCGIPRDQ6z83kW3YxJ49KiW4w/TUL410g+nWGzZ6SC47CLl1asqLMi9qlQEbnJko2K+qlL+fhvHWX4ydDfgvhC2QWJCFFEARR8VBQqgxhxv/p+M24HsLENdDEJK90X6aACN12CFv3UoosKBUMLvzLuDVbylEI9ifPU/Rx4fwXiaeU9lHqewaEwTDhx0i+UKs3ZCtESoogCIIgCkOYOZVLXuWiIvKbx3lgzVUcvZBrppQ/3CmXHAE185AbI1NKsFM4ashRGNU0Cs1VzQCA1VUbpV8gUlIEQRCVDwWlypGQRudG3Inz4IrKEqzSXo/BSnwltsBaLPBanFmqKi03APWoIg8+eWEM35rDXXS/S6lRQyScKOIyjwmCIAiCIMIgLiCJ60aAKXP859pw+qO6oVF6XYWX9nHvw6KyXE5fDpW45frA2QU28fQ9o0phFAmTZEXpW/wE73IHhv+UcG3f3vvi2VOexa+P/bVQRiuxa97LBRkvQRAEUR5QUKpMYaJU4NoVN+RSQpYJJb+vN6Agg6jf0XuunZujqEukvM7fE7r3SnV3jFLaohmbCpu47+yEW6JaVpHo6Ff8+JhpwOhMT5ekshu3OEWmCIIgCCIPDLXkyAyXpdUw50vjXBl59pSdGd+5BgAQsxXaFZOd9Mc93+aqAQq33S7bXqEbhBBoEjPPDU3ELJ2anlJeOo4j2qu34xqdvkcQBFH5UFCqDJF6HOXalu09Z0xyR3udQMxe2rNtuQ5wq+PRVh7WAFzyHHmRi7gRtu95rTbqHz0z+iAhRRAEQRDh8VuOKyyy/KVDupI4rqPLGI9+eElYz0+H0blXfUsmWMCCErrT3VobxToOhwvBIjHyZVunc56+58TIvgJQM+kgjHn7LbCYoFdJShEEQVQ8FJQqI2STcoB1v2AluHspc5WxEHJOmngeupWwHqP5aRLJUiFzvnSzPk+mY0hHqz2bttfR/p+UFEEQBEHkjCXp22VO9dETkoRvz850qVTDgUtaW/0qOQdhMwH31zv5ajPng53+/Bn45Xu/FKwuC7R9T9qjaWZuP33PDDjZM8rELYZCfQDRXr2c2zYJgiCIioaCUhWA5aQ3n5J2ggWxbCfX5GkkySBbKXSG1/zaNEcWVJIxz9W2IMjSzeXlTOa/1Yi3Jt+JtYOO9OnfvkRIUoogCIIgckecq3MzOndtLkCT3krBX7l4Lk5Z4li2tliIQ2mEOlpjWs1/b/g3FMNoPGxj/n0YiVKK7HOwXlM9Ti6WumxJ2yQIgiAqFQpKlSX+2UZhp+Mg4argmTuyjC6XVUAAYAwRbAYAxJCWjCScGnItnaOosgSgpN5PTl8oc2XTUF1obdrL9TO0xKps2/fyDaQRBEEQxJ6O6raq5uIRmXNAyfWWbEXPerCJzHKg2ArAbbgqV4VE8WIYnevm5RINZYzNGWxza9NqVuqj2wiCIIiKgoJSZQizCSvxTBK/AI4s1CSDG+0xp9un3/gs7XBpN/aWqpRlAAAF1oCMWT639Czrp5TfyplVk/ltg9ReDI5/jCOOTJi1Aokj8pQiCIIgiHzRAhYuW8CyBJ1pi5J7I5U29ovWAEvRfLFs+kXlqst2u7x6kVwys6esi4Bcelqffs8OF7/CEkN1giAIonKJ9vQAiHxhYEwMcvhsO5OtQumCjqm2gJNLG56j0f+1l9LepxGxXQmO1HfB8jw5pLPb++D69j2xCx+JqHicvif4Nejt6OakYX2zCIIgCIJwyexxO/1W3kIevbtnOPk6F0jasiRSB6oTsGkfVK4KQaE8G5Ng6ilZ0JChbfsO9FkLqF01YM2J7FUPjSqYwJu6jOf/QRAEQRA9DgWlyhTrtFz4GVcu1YJmK5mp1P5OARqLkcYgyFPXvXAvId1n59uedydmurl7WS1/3EwuY0BVLYCkZPXTDyHLjAJUBEEQBBEOMfEmx3m0FAtEbotbst1ozsoIKAOZ9KXZFzNucQAZnil4ppSZFCULIJnjUjnHH37+S+zfAQD9kFm8Fuxo+bglu/+k2/wIgiCIyoWCUuWEscnez2Sb294HmJwdqsuc5Q17SelOvNwmfnutLmkpJ9z1jUt525gLttrnmlFmU4cDJwLRGgDJ7EPLV2pbX1iJSHMVqpRaJG2eUgRBEARBhIeBWTObuXgveCv+RYIuwdkx3ZPsV9zeB4dZ/gmLlimVHUOhxJPNTF27BuOa+TFm0N3RaRSJdKuIqAyyh5HaO1h3ARIEQRAVDnlKlT3WEJTf3OsIPTG3TW1ayRgAhWvfBgd2hd0Axzw9lOS9Bm8/tM7KcbnTSA0XT4tx7d1mWhqvsx1NbH2+SF0MAJBYvhOd72/CsPp9zTaYtS2CIAiCIHKDuwgSVysCu8d2wMm40Dk6MvekgvaUba4mXWe5IHpKFQ5za6N5mrGmMcXgkSyQZP38zTemHuMQjvQrzHAJgiCIsoB+q5cldpnAXe84ygVauDO3qQ1PKqjJBqX2TkSkxd38ocLgZ6Uuu88EKeIrFlmBrC6lSsljlc5ujm47V7n3f++L5lP2QnxYAwAgwiKwn75HEARBEESRkAoPb0cocaubsz13T6lAXQe6mf/Cnp1D1sy0vM/wTME9pSxyyVzlE0tActFxV4bFkSpbMBoBYlVy7UoQBEFUDhSU2s1xn+CdRgzy1brQduQIuKHQWqUgsNxOYTHSzSXX7Mi2OHo8bLRPDeoPG4Rov1qzsFFZb4yCUwRBEAQRmgCn79kqOK5Y53O7PYJ7vWB4Zz3JVJaP+5Qr7gEr/fNRwXk3+m3+QHvPubC+VmAdwsVPzuzFy52CAXLrBD1wxgRT8+y1AyZEccx/j81/vARBEESPQp5SZYg213psH2MAVD+B5CJrmHOVyszbCSe6uIuMSadkq1Y+gscWGNPT6q3b6IofvDHTzc1rTBa00rfgcfFTcw+KGSfvgRnCMRNJoLt6E7Zv344+ffsU5gEIgiAIYndHMtU6L/ll5eS7eY1ZAkGB/cht+GsvJj052dmON9trN6C5bS6Gr+kGWAQZnhGMxwMN1R/RU8rIlDItEoKO1dKk1FMq+2mrmdzGSRAEQZQVlClVRrgFNLJhEtd6vlv6hH+82i7MCTQMya4ounmj58B4wfqz9p1L0pHlZJig9Y0q3Hgjeii4lWeMAVyzls/EOrCreSnmPj433IAJgiAIgrARJJtILxoyE1xyglwulFNeNOccSqG37wlZa2ZSk7CwJ/FBt9b2LODwlCqYQTtBEATRo1BQqkyx5AflY0oQADFTKlhrAVbsuO1bS7qqKUnTdjG6lFR2tpFnlMsaUGKO1+IqaNDte84yDNH2NgxesxaxZBMAoL29PYfREgRBEMSeDQuZQeSVlSQ/+y1Yu/kQqh0ufWnBS8mJGivDM4XfvifJLBe/RoJTqLOu25oeMwNd9m6gqpIaBEEQRKVBQalyRCKyklzbEtfFY+jkMank8BIV7mnt5uvg57CE822wCkJZSff2/EbE4+uz7RZIUIVcdeNcEFyMeahEYfuemsGBH36Mxp375jFQgiAIgiB0VPDAJ+gBQoCqIFnbbh3LVU++HXP7swbWLmY5lauW3XaFQG50LvP8kixKyi+bzVkiXdlMqYLtOyQIgiB6EgpKlSGWVS4G7ALDTrUGgBaU2qzWh2jLmw61GSq0gFfoqd3jRBvXfl1umKt15r9B8rYyjR8IXUfzC02Jxpziyp5EZBlJWXYl56bspB5ZBEEQBEHkg7FlLMfp1Tpr+zfCJN6cwWvb+pasZckXHe1jkMl3twNa5LpE5WrRNAnn3Nhax8TIl5FIFVytmVsCHXEuww6BIAiCqGzI6LxcESIhXULsMJfjgMU6nGnTexXTzCFTvBoAoCAFxlIe9urBhYtspdJRO0hzjnbcn72mK4Z0dDxQ61okEIZQCvi4dmHl5m9gGJ2LWVUEQRAEQYRGHtRwCVD4Treyw0zslXKYsxkDC5zJIyyEFSn5x561bs2UKpjTuaM310U+Cd0YijemXIbMf2rAvvMqJp4wDH2PcrapZ0rR6cUEQRC7BxSUKkdsszYX3CFlQSkuEwE+XTRFE5jZMhvbU+OgohmD4i9jlRI2ouPVSzgBJ/Nqcm4wdKfXzmrw2oYCGJ27p9ozLpNbznLet9y/jgRBEARBBEecv50ZR0x63Swty5GyZz+79y27ldPpe9Z07GB1HBeC1RMDXsXZvicxThee79lf/gCprn6IVe/jrMyBLgxDOqZpUa5yrFy0Bf2O7iuUsS4ccvKUIgiC2C2g7XvlhEQVeJ7oFqpt+0uGYVWLMK72bYyt/QAD4p+DB/l2YH5WoPllAAVfmyx2UEfes9Grruw0UynhvqtTZ7ZVMQAmvKTVPoIgCIIIh23+9VYgVv3izNrhgSRMQfOcvfYc+nTkpxr8tKPKVbiE4nLHGLO5fa+qtg5VtXUAgG1rVyLT/Y50bJqnlNZAY1VCuC4ZYzZTKr15C9rfeAOZ1tZCPQFBEATRA1BQqlJg4uqQhwMCs07e7hk5Yi01+//MmTYurZ71VfIIpIQVbYXzNcgpVcqsbfgViMJVHkjS34uHzbiKQMUWlKLdewRBEATR43hnPNlNjHIk7y37hREN4rNmeKbgmVKycUZjMZz7y/vxtatvcBmJWFurrzBdZ5pNckGgMkX786Xzg4VY8+1LsPqii/MfOkEQBNFj0Pa9MsSqXbJ5Tdm5uM/nO/CXlz7Cqn4xrOgHaLO1OVGnkMralgfsCxwsG5QK4xvl2aZHIEt856mBAhuDF3o7XMDUedmwGANz9ZTS/5VvSuScBzramiAIgiAIDSb8PxyvXSv4X8uFANrHH9mzhHwmj7VI60ZBU/WpBYpKmdv3uMWVvLFPX8Sra4S+/XLaXEKF2ctVe40ClnyESK/ewOadSG3YUIjhEwRBED0EZUqVJcwSjOEAIqlM9g5HVYZj0A5ZPY5fDn7c3pRrH2breqaU5NuBMc+Aj7GLzbWEtZx0DI6thT0Ht/kVOF7by9vS/V11nRFw0j9jCkARBEEQRKEIZ3UQ0INJ8srMSJcvm1n0TuBDU4KNTddjTv+s4K0D5sKat09mHsjEUIDYmhGsEj9uWfZV/wEAgMYTT8xxgARBEEQ5QUGpcie7MGQIBwZsqY/5CgjFzRPJdpRxhG1CFVsKQAtKMVhTpL1IqJ8jvqI31nY22odsSSXK2RMruN+oWSZfZWXEpOSfn8pVsZjdzdO9XSNTCrYXBEEQBEGEQubB6ZhWzeCRvA3rdav08ZrPCzd/y2y6ZRIsiLTxH5WshOCPWQgkbgd+Ge+GRuSm55ehebkZ+uPCOB1fAvLlJAiCqGgoKFWBZBR3O/Chif4AgPpMdfaOfKLO8N4AAIUloLAOAEArGhzlZPUZiwEAVL4LkbYaLNw+2DKGoHJNtgWup0M1nDsloi6IGAcyatpW3rol76ibnsPyqccjsXy5vRFLW85+SVARBEEQRCiYLa/cMpVKMp/9mrO9DzczSxSTLMAUsFHu8rqg6N5NhWpODyCJ2/f0exL/TnvfcmcEPSjl7f5FEARBVC7kKVWGWCduDg4ONdONTGo1OpVdqIpGUJvMOCtyeTI5cwg1IM0HY92X30L1wP5QGceLO9/C9r5DUIt3HPW3KQr+VWN6AVRFBwPVB4N1f4ZkZjlUSXTJ6nQlQ8z/khMuQJW7sJJ6OUmuTex3ILB+HYAMRjSNALDdUSaaSCO1di3aX3sNVaNHO9pjehy4p6NvBEEQBFHpWE7fC4PDyjz7OtcgR271eFGzpm06i3GH76X+vAVbF5PqKccL531uLWOE97gQ6AKkH7MK4LdHdmLzC2cDAE4aeRK+ue83Qw+dIAiC6DkoU6ps0Sbh7o40VDWF7h0LkGp/CutrVmLxkIFIxMLYmZvtiSQTA9GlTkEXPxzrkr2cpbIq5f5eTfhzk5lFpbAIIvG9EWV9Q/XnXpKDcUF0ZP8NtovQzGIqJJZAVfb1iSNnYHD9YADAV4celb1pir6Phyv44ti9AQA7//4M1l3/fbTNmyc2AYpGEQRBEEThEY27NdyzykNjOZFX7y9Ie7YgkGURL4fxFFjrvLH29WyzhTU6X/3Jf7Bz0wb9orOgi+WU/2Km0ZHxcn1v4OV9U/hoy0f4aMtHePijh8MOmyAIguhhKChVjgjzt5pRoWYSMJwHOADG0B2TJ7n5STDuMe27CaydEeu3SV0mYgwlyBi0dS6tdLpAwZmAZ9IEbCx8K5YTZrLVE3Fgx15aoC65YgXa/vEPbLrtJ5Y+jGAXxaYIgiAIogCEtfnOXrdVY4CHHvDI8skL++hcR2t7l18QqTGueYFu7NgIAOhOJ/NqT6dl4GCAMWRSKXBVRSQaRVM/zVZC/Gi57V/zDbOU1Zb95Nv+dFI2OZzhkp0EBEEQRFlD2/fKHCXKwFP6hBxHlHOkWUoo4b+2BFuJfDVUVGYGZcOthOjYxLnz2y/fsRXFm8kIQImXBMVkZGsxrDlsOL426mtIfrEC2373P1CTWaFn7Npjwr/WbZoEQRAEQQRAN7y2XsyxMcNWO28N4qwvG5P/oSiOVpjkSXN53Kx+u/voe/BJfBOu+9sCAIBaoEDOoL3H4uL7H0VXWysAoKF3H9Q2NbtXYNbHiEXigH0outxigOyhM7S8ThAEUfHQr/KyxFwXYgqD7HwWrwODPe9bMsftIqdQ6TuSU3Fs7yNqFMjUBqipwVz283FBTBYSqc8UhOCRJJUfANSIguZTT0HTf/2XXsFSyK1dgiAIgiByR3aSnROnZvBaZ5PfymUeD56BlbNKcJVBzhtDGoZg5qiZxj21gBKqsU9f9B81Gv1HjbYGpCT6R4GCaERboPzNcb9BS1WLVlQ4FdD0lDL9UcXsKdXWLC3yEQRBVB4UlCoTij6JlniOVrj1W2t9dZf1vs+3niYSw0uznIzOAxuuc8c1HsCwHRCDUbR9jyAIgiAKAmNCJo31UBfZNCsGoBxzv5B+5FikkwRUZAt59gBXjJdIZgtWAq5FbJn19kN1ig2TqSkGKEz7jMa0jJY+gzlO+RhV+kuGIAii4qFf5WWLbPL2i2RwiUeCf9aSIegE7ydHedkxy25riBw4bOtBlrsJxb6GyQqUmVWk6I7fZ21s3xMDVczweWD2+3osyh6cIgiCIAgiJwJlH7sEonL2ZQoxfVcjnlsfPh1yFGqtUdNmpU8uknTIzUBfQG90AEBG0QrrwS2CIAii8qDf4GVIsC1e3qng7laZlv17/t2EFSrZ8vvvHAslbzNzeRaSPM08j2ON/YYpBpi4LeiEALFCoZBbVhalmxMEQRBEeMztXaplhuXGdWExyGOqLeSmvEJjX8RL24yXgo5Dd0Gwn7milkKDMOcbxpiLLrIu+Dkui7YJ2dd6UKpQJwkSBEEQpYOCUuWILKPchrsHgq10AKWiRCJo7Ns/4HCE9G8jVhNg+5qXRuCC6KgYLSEEqmSP75YpRdv3CIIgCKLg5Jp9HVZ2hLOG9Gtdkj0dYEDdSFnej12yxLea9L4hvUoRlHIxQxBPM7YOKyuxBE8pGxym0XmU0dlNBEEQlQoFpSoMb/8juSSzbMmT7ddXFBxx1jngPq17kbecyTNI4xn08qsrUZjWTChdMAmLdJYYmr8vg9mcdyYbQRAEQRDeOMMX1qv2O476aid6rd2GrfU1AXt0ZplbewseEhPrcea85tWOzGKBqRmMW7IkQIeSujD1TWmR6VIuXeQ0NBggHajuKRVVKChFEARRqVBQqiIIutLmLCkPUukv/CVUIpII1K8nLGtAaiPHnYE28WYdQ8m2weneBZybHyM3PaUcmVKKbfueLWWdtu8RBEEQRD74z6PmISspNGzbhY+H9LV5TrmQ48m5dukTbKYPrweCjY6B2bQGY7qxe6mNzp3eUdwSp9JP39P+aejkOOCLNJKrFiG5dq1l4dC+fY9W/QiCICoPWlYoF2yG2eKEu7Z2LZr1Yj7NMMcqk3Vi9xwCgD4ZqyF5W2yXf0Wxf+kuvOAKwRJwCrAtsGhIBajoKSWpAg9hZzM6z1HfEgRBEASRxRLUCFA+xquQbDoaNd3tyCTeR3c8agZIIFojBPX2dKqdfKb3oPXtWdr5UhpPKXlWmzRH33Zpzu8zGLgD2IVfoH3efWAX/rdxL0OZUgRBEBUPZUqVOa2RXXh10MvZdy4m2TnrEruXAcOJ7R24eGer3jJkYRZZ+rgvnuai3FdN2vKhXDvIqByL17diR0cyxOAk6eL+7udar5y7RKjsnlLeRucEQRAEQYTE4lMk30JnVwyZ6r0QrZmi3WMMywb0yhaUZXRL9EZBPaVygwv/nxPMDMQBPbF9z8waF/WS3cecZ40l+u006/GuLkQNnWpu34uwSHGHTBAEQRQNCkqVI4LI6oh02QSQU4rINu8FO31P7FILNUUBjE+mnPe9R2zvxFE+8MkwOfapl+1IZnDSfW9i8s9fwbZ2r62HIdq2mHA6T98TR+G6Dc+eKVWQkREEQRDEng7DLnThk+gat9sGPLt1nrEIEjVxAEA6oknh+kQq1NzsmO0dF/xbCx0LClHBXxGipEbnLolSQoa9uMgnZFIxhojuhFDfAgBofO1N7LNZQeeaFFJVYxDLVCGiUFCKIAiiUqGgVBkiD3gYd73fu1Tlrm9kPRRPnFgNPgUzcRfj0KDtVaUTOHafvujfWAWFAd0pFWt3dAUak0t8yaeST2FmfR79a9oU64uJvY5FpLaf5fHIU4ogCIIgcuPz6Aasi2wXUsf9A0KbxgzEEUvX4Iila3BixzKM3rTDuGdfwMs1y9lXT8mMvaWuCz6BpUAWDTKjc42/L9yK/W/5J+59eZl/QznjjEpZPlfhNBkmFlPNcSstgwEAbd198eU+V2P5lglIt1yFk5ZcZmRKleQkQYIgCKKgUFCqzOHg+ezPc8ooz6bCnh1TvHwf+SO7nxzDADxy3iS888OpGNhU41I6OJbAoH0rntAvF4zOpaI1W0ep0bwO6qJN2KfpYNQNPz6P0REEQRDEHoxlPgYyUMMHIxSGxu4kGruTaFKTPgfDiNeCB758jpsJDLetnnk9qWfrtoqxmo0AVGRUYFcijWcXrQs9trxgDPIRC19fIShV99XzMGD2bLQOGw8AULiW2d+Y6E2eUgRBEBUMBaXKFh/R4hK0ca0lUzBmNMW1SC4EPQXG93LYAdlMxANnH4VwHec2jyjYPKWcjgga1WN7oXnWXljftVy7G4kH7pMgCIIgCCdBMpjclVEpNtJ76xBZJpU13FZcqpo+Q92Yn+HWU4bZ+i48zGX/nmmR4NK/mjFeKnXNaDj+ZPCaAQCApu4NeivkKUUQBFHBUFCqTPBa4WOSV66m5466HoGqgM5PriMrcDALgOO4Yjk+Iq8g43J+6hYfL9v2PGNk9vHrp/VFFdRPHoS1XcsKMDaCIAiCIMLFbdztDrxCQ45WctIY8oGq+cSdQmfRCyE84fAVJdqOfo1allFRT+FzSxoT9+rJTihWxVOhFbT+cxVYRsuIj2bSxh3dU4q27xEEQVQeFJQqU/T5WGUBJlcuBlCs2U+OomCuE3bxMqVYwGBTOO8rt5rm1rpgNWNV1Rj1lYOhRKJQIlGMnHgQ4jU13t3IsqvEr4OvVrSmrJOnFEEQBEEUCo9JWDrd+i3SMfdbIbAuEzKppijlQSjMnjFfMikit0Owf204B5AxL37ZlsEb/9mKLbHeAIDtkY3GvSij7XsEQRCVCv0GL0O8jc41AuuGAOpGO5HXbV+/e+9uOVieK47e1gHCJfexyO5FhJU08+ML9ikxxnDqDbd4Fcg250w3B+eWE/UcAT8XhVdK0UkQBEEQuyXi9nnmpRycWOZrX6tMP28oLi/je7CMRptahSZ0Wit5ZnLJ2rL3z+0FXOvo2wiLmSkl22qppjl41FpKHA8AMG7qu0Wbk0irACJV2r30tmwZ4OihR+PT7Z8WfNwEQRBE8aFMqd0OLvy/ZBNasaIheeoYmVhRXDYuWrvS7lRlko6yxdBWziwz2/k4ds8pN0L4WBEEQRAEYWLPLs5ly9YSqJKr3nO8htf8HW4cTcmObC3TKCBQgnyoXixH/Vru2LVXqTOl1AwH143MZZ5SnIMJmVJ60b07V2H/T36LaPcnAIDGLoaZo2Zmq1DmOUEQRKVBQalyxLbyZ87SuZ7iIgvjwBEYKfQ07jeycGuaYj2ffl38nnLFNOEUVu4URSygv3BWDrptkUQUQRAEQfiyceNG7Og9CB3Dx+Jf77yPZExItZFlXjuspPznW283TlNj+KkY+/pTt9oIzk39cNS69/HNjs22vp09mq8K5ZZpvcCykbCiahHhw/hK3d8ko3KxeBdO39OHNyi5BX23/gcMGRAEQRCVDwWlygUXHRBo9U+2XS3IYp8vpQmUMDch4opzOyADLNvogOKu+Jl9uKzWumRCmeKYMqUIgiAIIiz/+c9/kKyqhVpbjw1bt6G93sUD0oVoNgATSgAHyG6WBYwYVxFN7TLep3g1UpkG432Eq+irpkJLAuehNgEQU7AEo3PxX7WoMSlzlCOr3tWvGmPR9JQ1QMUBIKMFnjIyWy/LCTSFHS9BEARROigoVab4HXMc5Ky+sATLXGK+K3VBUs/dxxAOJjt9xrB7KoJ1u+N0PWkp9/KehQmCIAiC8EJVbdvujNPwAkQo3IJLThsnd7KFFqr7o503WC7LPDUnfH4HRq583uiG5yS9nSMrhMIxjc71IFBpFiP9PEkZAK52IZPaie62NgCAqngF44QdBnT6HkEQRMVBRudliN8ZMIEqu5h9Bwk8Wc6G8ZzbRRHgfXKMrB3P04yZ1qoM7vLa3n8xZYm+fY+DC6bn4jKem/AlsUQQBEEQpSf8apDXlP0un4hlOATAO5491iS2oHd7B9BniOuIipnw46XOnEbnBe7cBWk3wofd3rkaidZXkGgF/vITYL9ejeifDU4BAGOKR0MEQRBEpUGZUuUIC7DiI7UxCnvSm7n3jTGWs8eTFG62Lx2VPWgTQlhwaTTLeTJeoROlOOdCm7I8coBz6wquc1XPEvIT6pGyIgiCIIh8CGMBwCULa5EgHkW+hpkOE6sAozELexbnln+8G/SWSgAARQ/uFDzD3AXJgh2TaMVEapulTGttFTKWv1i00sw4XKaAYyQIgiBKDgWlypxA6ege9RyrcJaYiH973rlKJVQBIXSS+cxFPNrYxbiKOwrAdr8HPjuCIAiC2G3Rgxq5ZVeL7IMvJC17ddszczkHz9v03N4iULpkbmNxkTGLEahwzp61PABV0FVmhhcc1wiCIIjKg4JSuwHGal+RxAT3CV5ZMqxyVDS6mOhQTCFi94vS5UrUx7SKOSJx+WFuz+Nmo0I2FvP6fOyfh+HfUJixEQRBEMSehOyAkY3xLWiLt8krOOZo5wSc4r0st9bw/Xzr+BMgVSmgUPG0OwiIpSe70Xm2fbXIUSn/wJG7nrUEpaxWWLSLjyAIosIhT6kywSKyGLOIKPkU7m3WCfsqUgBvKNn2PekuQU/CKCezbHWmCgCQUfSUbCCaiUjbi4AjnX09uG2MpFWPbYMFggmRL33LHgMTtu8FFF4EQRAEQeTM573X4q1h/wQA1HVFfErLtVVnZjQULMJ8HILP1QMxhPcFsFGo5szSyZV0wab//Be57ItqRQ/uZN3g7VsWAasOdmS9MUAVvrRx9gm6tYKWNgiCIIjKhDKlypgk0tjAdviUEidiNznhfmJcbvjs4Ze075dm3pRsxPe/vAoH7dROshmSjCPG/WOmI3bsDwBQ1JTZl5jYVBAkD5rtpG3LZjx77zVIdb4CgJl9umzvc2uRPKUIgiAIIjxtVZ0AgFgmhvqEfhqe6BclR81VDIWMf9h7WVWVzDbDAO5YQiwoftrCzJTKGp2XyuncB7tm5AAyzPyTZQM+wnsjB6A1XoVkx4vgapd31jpBEARR1lBQqgxh2f8WRldgSXyjRdGE35lmm9g9VvvCG50XSABkh7h35xgM764BAFSpXmuRwgktsR1g3W9j+Op5klKFF1e6wGsZOBh1zS3G9UxyhfYvT6M73e3VQsHHRBAEQRB7KvpcP3LXSEz/8kSPkvZQhxC4UjPZtvLVNY4lJ8/Sg7c5rzkdCvwy40PgSECyhsSK73PuzMw3D6fhxnWnfmNQhb9YFqb7Y0tjHZKRKNTkEqQzXxr3aJGPIAii8qiYoNSIESPAGHP8d/nll0vLz50711G2urq6xKPOkewE3cWSjluhp1qJlsl3uo5w728bR5dhBILPYYN2Njd8CaX9T6jvWG9cU7KfX6EW/MzMK7PB6to6XPzAYzjjpp9lr2hS6p9fvoSDnzgYP3v3dr2StE0/ny6CIAiCIAIg2loGUTiSIv6BDP85O9CsLpxMDADNHcHsBuzBsoBOVP5FbB4PxQ/n+Pt7aQNxHgojekqls3++KGrWMsF28jFBEARRWVSMp9R7772HTMY8qveTTz7B8ccfjzPOOMO1TmNjI5YuXWq8r6zUXiZ5Lfd8siSpB3hGRwnm9tnI1wzreZVvH0EIvSIpNTiXfCaSIFLBMHQSQyQaRVVdnXFLEbp7b8N7+LpvW6aIopU9giAIgsgFQQXlOJXGq6sl57359+d3Vw1R1k4xVIHdUcvMSc9u3yuRFrF2I/NcEINSWqgxEzEXRDPZkUc4h+nkWUkanyAIghCpmKBU3759Le9//vOfY6+99sJRRx3lWocxhgEDBhR7aEVDO+stZOqQUFcr5nE0ia0NN/ejIBIlI/VdgmNVMHAPTBtRkL4ZYDUhdT+8JTc8TKrEYN7+iSTOmP5HfOPF/4ZqHAnjNgpGAoogCIIg8iTXrfriiXaxqiokvApLp2tm6Vs2inZw9PEZh7sSkC1Euj9rndoquep3WrHuKaW9L/rpe7KHtWS62U0qTDP3pYMlB99whpTtWjGsGwiCIIjiUjHb90SSyST++Mc/4lvf+pZn9lN7ezuGDx+OoUOHYtasWVi8eHEJRxkWcxINktEVZsoNLnj0lbOgrZv12/2yp3yadA/dhMcI9hQlUSp7OqCLsqqJVsgWUYIgCILYzbBmAgXbGhe8kFd9eQNqdijBdVXwjXn2bPMa3hGwDxPztOLs9r0SxXPMsQtfJ2mmlPZnyr/3YXhkWsQop4+7OmsnQWEogiCIyqYig1LPPPMMdu7cifPPP9+1zD777INHH30Uzz77LP74xz9CVVUcfvjhWLt2rWudRCKBtrY2y3/lgGwjn3tZtxLZSd8j4OU5qXPXNznCLKuU4fBb+dNLFUam2EVbqL7tCo9Z/iEIgiAIogAw6Zlt8Jhw5RneHEAado8iIdylhJnBw+sQmVOB/ZLdASrIiDgAZjPbtJ++V/SgVGAbDWumVDrCAOP0PfNrI35WlH1OEARRuVRkUOqRRx7BjBkzMGjQINcykydPxrnnnouJEyfiqKOOwtNPP42+ffvi4Ycfdq1z++23o6mpyfhv6NChxRh+AJj0JSCTN1ZXKbnvUoB+pO8RSKE4S3B5W2EJ5FfKJafJZO+VYOnMzJjitn98OrftMSRPKYIgCILwJ/x8yWzvnPpEnLOTSgZfRrZYC0QiAVoOIlsKmReeP/as72JvfTMX+cRreufCVkib0TkDwIyVTCEoJemD9BRBEETlUXFBqS+//BIvv/wyLrroolD1YrEYDjzwQCxfvty1zI033ojW1lbjvzVr1uQ73JyxiCYuveq8bUnmzm4zC9FnsGncbovpfBPa1tPD9ionjOOFC9Ve9l/u3ajz0/drloQTQRAEQZSEAFk6NTyu741DnEdQl9ACILUHHRSwkwAZ1Q678RBthJANnkUdHetG58Hbzwcupsrrmg3c1FFMt0qQ/ZkSLkOMIAiCKH8qxuhc57HHHkO/fv1w0kknhaqXyWTw8ccf48QTT3QtU1VVhaqqwpwslw/MEo8qhELwy9rRV8uCyaOekgPeAssp8kqirWwilwniyqdikQZEEARBEHsO3PVkXtn2PPFQFKeH0djMEAxr2w8tVf2xMb0Va1MLs2VznbP9M9Bdt515dlkYjyq9b31HYtFP33N8jrIFWAifkZlVbvqFyrfvEQRBEJVLRWVKqaqKxx57DOeddx6iUWs87dxzz8WNN95ovL/tttvw0ksv4YsvvsAHH3yA//7v/8aXX34ZOsOqVATSAQE0kb7KpP/LwCWN6z4LuQghoX4I5B4JfjlV/uEvWRvmYXkF8pQyMq+Ez9Lx2elbFiWbGaXmndKiBEEQBEHkiGy2DWt03lLV33m7WPN10IYd2+zCndrn3qzuN1oqTyntH9duuP2FYlRjXLEXMp+U5RM4JAiCIHqaisqUevnll7F69Wp861vfctxbvXo1FMWMse3YsQMXX3wxNm7ciJaWFhx00EF4++23MW7cuFIOufTkMSfLRYIk6ONT0RGACjgmHjgvzL7KKO+uFDEfZ9/eD+s2JvJAIAiCIIjcYbpLufHeG79Zd6cqHnYTYFue9PQWr3pytVKYHCiX7lyytMSRc86LHuCxLiiaC3/Oj9A5DhVp8y53hueK7YtFEARBFJ6KCkqdcMIJrn+8v/baa5b399xzD+65554SjKoI2LeESV7Js4wCWGxKhQaz/SvrW0ZoN4QcCC+MWKE9pQThaCSU65+jda+lEZBTLRlR3ChnBK1YtgJBEARBEEUgzByrlV3W1YYvVj8AzuoQ6zUK/WRFmesbR0Hvxb7cNUDQRUQ/FN2zSVhNVDkQKVJMytyCZ14xEQNMNqNzzoRFPzV7jTQUQRDE7kJFbd/bU2BZLwQuyR2SzuOyAkKcyX3PfRmlOufqyC6zjJAWLDYcVqNz15yo7L/ugUCCIAiCIMIxaPt4VHVLTmV2sy2yFNLeZThHV6YdCbUbkttac8xdZeSvOnjePknOjX7mDUN52BcopSffFQHJwqhlIVE/+MawSjD/TNEz0TgFpQiCIHY7KChVQbhZkfttGQuDbI6XuCSZA3KMJdeOcxdzdgFnekrlOhh7B+6ZV3Zhx2SxpgAD2fH3v+c4OIIgCILYc+EAFDWCMZuOQCTToF1kDIynjfuB27JM6f6HxIhlc5EcQTVTkE2AuWBmfVszpYqNmwkDt72ybi+0Z0rJ26PtewRBEJUHBaXKkLaX5+UkMjhUMNVYZgIQUKxYVhGDhLi0EmpEO6lwQ2qs9YhjWfDGszWtQlLwCZAja9hpPK6PpSiyxBFgcvoiOIqJK5C6/quugTjCjtdeL9gQCYIgCGJPQtvcZUraSCaJePd6n0ouKVRGm36dulkteOHUEPIjUgK0UgCRI/WUKmJQx1g0dD2V0Lp9zyjHRW2X0dqi4BNBEMRuAwWlygUhcJH6crV/cdm19Do0L9uO5f2afUpmsRyNHDwMVpNuQ3XXFuN9hsfBuI89mZ92YMBO1mkp12fL1twkR4EzpcyPJojRabCSsUEDwWJx4z1JK4IgCILIAQYhxSm7IKemwbIZNQXZJu+yfa9wBGuzKpFAny1boHS1OuuoSf8G7JnlUqPzQEPJEffnFINh3FhYlW3fywaluHULXyF3DRAEQRClhYJSZQ5nor+AfMKN8SjAqowSWxprbbZLqvFabnQejgjP4JD3ZmOfz55wLeNYaZOkT3mNRUklMOm998XCgcfntCUvHIZQMlLejTtab/pWP7vRuWN0NmFL3ggEQRAE4Yvd8yj4XG/LbLJUs/s92q+HIGSVINM/z3or9duyBce98i/0nfdzVCcS2k19Ia5zmW879qeTb98rvh6x9CB4Lti375lG5+ZrI/DoZ91JEARBVAwUlCpLzNPa/GGI8ihiTRcjVnditrZPXcdKmXjLfhKK2xkvKqIuq3JeB8sF1wociqsw8m6l4J5SgVOvhCR8vy+f1y5AgiAIgiAC4wi2BC5ZXJjCHQfOBLVIEHm/3z74rGUodjXUQ2UMTM2gpithLcRlFgguJ8PYNaYwwOL6nOt6yjTglH8e+iCUbCmgtpsh3f0+1MTi7DWKPhEEQewuUFCqHAm4BcyAAYxFAMSEa0JKdp7zdpDqXiLLt77XDkPjXxdHS2mdInpKGZ1kP1+Hp4SbT4LxRiwsvUwQBEEQRH6oph1RSZDqIJnKFjO/uXtATRz3ltoWzD78Arxw0knoqqnJaXyyjDImWcUraqaU5GvCHS/E8uans9/yKqS73gC6PwYARFS1BNsqCYIgiFJAQandCX3rWOB52VnQTYr479W3naXivgjn2ncuG+6MzC6LP1b2XoGEleW4Yuddy1iMs2EC900iiiAIgiDywzqXqgrwxQD7Nnt7WdkWepc5OVc9Ia2WW1uO4JXvmOzbHJ1dG6qlxKfvycbAwQ1NZ+q3bKYUB+Kp7FijA5Fp6MD4tVsh+yzp9D2CIIjKg4JS5YglKUg8jURAqpv0iV08ic5jM59HG574rEb9Y+ThWM6qfNuyy4ZcZYQ94FX47Xsm3O1UQ70z4x+nM4KdUp12QxAEQRB7Btpcmo5zbGsKX8/3qveBfc76PpIq2LJUwMWrQJlCtgVEidF5MeWIc4GTCalhsvwpyTa/mn2h9tuBvu1dRRolQRAEUWooKFUmWIMSvq5QLiXMVcFQQQ4WNu3ZmW8ubq9b3TAQr7H6EO0VFkVmNp4Pgpm545b9c7DbJbjBPd8SBEEQBBEAt7lednVXrX89r/rhKZxRur8yDN9lzxmdi88iz5zXMDOlxNONZZqVTt8jCIKoXCgoVSZs2bIV3f2HoXvAcHze2IRMqCwmayq6KCfa11Vh/CsfG++tJ94529vJGy3vFU91Y96rYhnLnS4WkZYrDMHaK6quMoSc9fM041diupvMR4qiUgRBEASRN8w7IPH+aPPee2OssleVmRxlL7hlD1kDIrlM3mVgKGn4jjodrErhxynbLWnVbLbT9wAwbuou+uOFIAhi9yLa0wMgNN58602kevUDAHwBYFg6bYaafBSCedsZlEp3RVC/fYd2N86RiYjBIid/SJ6OFr4ZwPYQo3eegtIdaMXKWia4ELIKOkcyuKcHVHgMvwPOAzeqBlm5ZdkLtLhHEARBEDnhF6LojgtHphRtvrUrsVxri7icS8fcAmn++OlJAFizvRMRhaGpJuZfOPQA3GzdAcg8pbLlqzmHapQC+vBItjZ5ShEEQewO0GJDmZBKWY/yVZkesfBDkvlkm/S3DemNIUduQ58TkuCK4iwvtJFANTajf9BhZ3GOcxciyOQkzfJfQZSdXFMsxFVG0ejcghDIYnmISYIgCIIgrNREG3yOcLMisTk36nEXK4NA/lGQbd2XbTPzJqhyCtAV/EbOBLsDJVt/1gNv4eA5L2Px+taAIwmPbPse5xzJ1DakE/9BMtOZvaNp1v26kxhRrS3c1sXrMTVZlW2HIAiC2B2goFSZE3zFhwknmIj6jKO7oRoNgxOI1DmqyJrJm4iqIs2sFuteq3PMa4VREIg8yBKfUKVQp++JzulGQrlUuDLoT6C6jtWyB0B+nSAIgiCIQJg5NHIC2X9L9UKAedmz8QLZmMujaAIuB7AE6tsMCJ1y4GDUxiNQGJDMqFi6cVcOLfr1pyFuzmNcNcawZev/It35ChKp9mwJbUOHAqBa0TK3okrEzI5z3VZJEARBVBIUlCobrOKnPtYSonQWfcXLdV7OI4dIZovkwsyVb2Ki2inpt0hwa/CulJlSzlR0Sa8BgmOBDUwJgiAIYg/GHkDqTO9y5imH9QT3PZxE304WrN1AY9GblHopBSCHhTfn5jkzU+rur0/Ektum44gxfXNtPsAAnB8GV1MAgEwqBZUnAADNtYMQqZqISHRYdnzilj7FM02sYAuSBEEQRMmgoFS5YJtDe1UN1C5ZJl4mfelcRjMzdpizsBPmtsLkk/btcntI+2aM5d2+bXl6O3gOOVg6esEO3xObs7lzmh8bz9pD+fRtC+6Z5UlEEQRBEER4AhtvwjU3O8cpOMiSU9gaAZPCQyNrVmHanwGyQE4xVQmf8cvsKzPLX02bNhaj+x2KWO2xAIsZ5biazQhjjLw4CYIgdjPI6LxMaUttRSLW6V8QYnDHaXSuXXaTFrl4J/grgdAJ69zyj6WE5IAWC7LtjczjXtHJCjtL37KAE8WgCIIgCCJ3LAeFSDJwmPxOEOUjWiDYKfQ2MS4YfDtHInacDSC59S9cZyqgptYAatK7rLGOJsk2L8JimfHZRaoc99LplFBO0V8AAHZleiPZqY9HEUeZLUeiiiAIopKhoFSZsqZjKRL11Tap4oe4fS+PCdrWoXyroM/9HNDSs93u+osw+6XC6SlJgzIhzJlpGuoyXNdAGWVKEQRBEERo5OEk2ZwaRE0VyoY8BL47D7NXorXWqx6rduNXNiKz6xlkvBu2bN8zrpXgPBZZwOvV3y82RqXYxtqW6Q+ktQBbtCri+WUo5YIk5xx/W/Y3fNn2JRgYjh12LCb2m1iy/gmCIHYXKChV7nCGeLomYGE3N0ztfabH0nPkgbVC+Si5CbiiPK1NSJkrppbNe66ZUpbylH5OEARBEPmR81zKtQgM5/6CIdCCmSRbS1ajBFKsrjuS7awOPFaFmLIPwCKOAcksB0ojTcwOdYmUSuqZUgoaYjYLCM4RiQDpDDDxuOHAq9rlnk6Q+qL1C8xeMNt4//ra1/HsKc/24IgIgiAqE/KUKlM45wBXsM+aEzHjs4uyV4Ot4HEmF0L66XUx1fcoF7NF6YTv79/AbKWKrRs4gFTWLLPgmVJ69lOgBrUyqlB2R2IndiV3yYoJ7ylTiiAIgiDyIsdD9AqhUsJmtbsTdCz+5SJV+0HtdwyiNZOlgs7I7rZkShUvVcroT/p10vK6IpkUGg37CnMhLxrTKvUeXA/7Z8i5uCxYOjpSHZ7vCYIgiGBQplSZIAt4KGot4pk6qNieLaSCqd2AoghZRt6rdAAwSO0FAKjlVThgZy/UpbIrUEU/Pjf/PX6+3g/ZAhmewcF/PBg3HHIDGMZkSxVeUeltMpsfgz4qmSia/tQ0dFcxXP2Vq9Eot1j1Nn0nCIIgCMKCvvjFwcECTqJ+gQtLBresaOi52ruCvAv/w2mktXPQdHpfr699Ha2JVpww4gTjXlG2wTlWDRnM59CCUopFD1uUUrYJF2XYA4t7PeJdShAEsRtCQamyRpvskhEtiFTXtRnpiAqg2lGSgRnml/ZtcbXQDCXjPIreyTgSSNgrh8RewRpoyTW+kuvUri/+ZXgGb697G4xlg1IFO30v/BNxyYrkh5s/xFGsXl4+dA8EQRAEQbhhhj3sRpkSU3GXA0k870t7C4+7onLrKfd0cDOepb2qyhqOP7P8GTyz/Bmsa18Hhsm5Nh8YzlXhjf5CC0oxaVCKGwNiTIFpOlVe6omCVARBELlBQandCsFkOys4rLERZ5q2cccj8CJbgHQ/8y77LsCqZSGn7gjT/BNSPCUYdxYBo9HgmWpSnykg+zWiFCmCIAiCyJXChYMK02qpKIR6+M7E76B3TW98tv0zLN+5HDsTO4tqdG6e7GdeM19qgSqFA0xy9rKhoRRBO2XM4BbvCHZidSHpiewsgiCI3RHylCpTsutBIWsFKO9jZpmz+bjYrmSOLnroJaui0mrazGAvsFiQiQ/RuJyDeQbEOBc+XYenVIEGSRAEQRB7BEx4JcmcYT5KKsz2PLHZnLbJBb3LC2ze7d3zxH4TcfuRt2PaiGnZ3rlvncIgiUoxLcDEOJfoLWumVKQljureSXM7IGNQN2ws7pAJgiCIokFBqXJGYkDpU0Erz7RaZjNuAkMelvIrISeftcoAT+hawCo6M2qmJMcZu32k0s+a6/9w4w3FoAiCIAgiPHrAIt/QkOVdjotYsvUlP9cq7/cB7gR58ByNKjnnhT8sRkTqKaV33gXA5inFrAE77RIDizKMPH4rqgf1Me8ap/f1YAYTiTuCIIicoKBU2SKf2fSrVr2hZ+jIPaV8Cbnq571JzQX7zjVpEe/Z3Hnf2UpaTZvZSoX2lJKt3jnMILJBJ2lsyhbwy98HniAIgiD2cHzSsz0mWG+9ZC4kBSP3DCMu02F+64a5eEq5VBF9t1wtBwqB9PS9bKZ713+0dy6eUkYwUty+J5JMOK8VGfKQIgiCKAwUlKoIuOUfx13JSSyBpklf/VTAydbRl7efkt2YNKjUS6tpo3ApVsrsWwY8dwNw0aDUVoh8CQiCIAgiNDnPnlwWufJRG2HjTkWY2h2nLxdgt50sy7tURueNzSOhWdxGEGEKBrZ2mOUkD6coEXmjr99V4FESBEEQpYKMzssVl+wl51WnpwJnsAqhHPwPRELpEh6whkQLamuSWYN2Zn+IYKR52mhaLZSgYmLgiduumfhlqInb95x95Dw6giAIgtjDkc3Jbnf0+8FFgtqdDj8kS2eCpULoynKvShZ4/GGMGHiRjc6d2/d695uInZ1TUNMQw9cGLcS2hx+Wj4yb+otbdFn21ZfvA4P66aWdpy4WAfviJ2VOEQRB5AZlSpUt4tTGJdckMGH1zFhA86ohBLTEutZh5IRdCuRq3ClfqbNtgxPeptU0FCYXcEXBEpySSyB9fFbxYhsd6RiCIAiCCA9zzq0ZROyXwpE1h9JVV2aHtjVMzChyNCvphwOuMSGG3LWRtD1hbGEtEphkgbMoSAJe+gF6jIna1VZBqMWYfITqiOMKNkyCIAiitFCmVJlQmNUV0eg8iKFCcOHhV1Lag0ucy6jjlcHlcUsa2slmVomn7xVq+56xHmce/iIRbaZYAjw8pcRnFr5OFJMiCIIgiOBYloRsk26Cx6Q6ggmn5BqNcLjuVdvQ+QU6mzrR1NgfAFC7X2+olhK5zN42ewK7VaVfk7YkIRYiZ8q1ScPriQvJ4cVTJlw1P0U1o3WoRHz8vQxPKXM93RJMGzwFUD8u7EB9oMwogiCIwkBBqTLFEnhhogOT1+ltbgEOe4CquJNo8dbYghqdlw6HD4OHiLOIF/KUIgiCIIi88VwUC431BJKE2okte23F3l+fZlxua2sLNxafQvlqlmgkgpQtVGa2Ha71om/fcyxGMsNqQTMw10itWQ1EDgJYNuONc0NDMcYEuwRhJ0EqBRjFeY/YIlCQiiAIIjdo+1654AhS5NKInvfMkIgqjsuum/ksE7fflFo4Y00puZwmI7zO8IwhepZtasf8ZVvQncrkNybZ+ciunlLOwKDCPRQe6ReCIAiCKAxcHpwJUFH4/yy56hyhkQz38KLK0e/T8N7UO0okQ7chMzZ39FMUfWJmZOmoWYnGFAYWjQEAOv/9juuAGFOkX5tdj/y1sEMNQCkO1CEIgtgToKBUOcPtK0ECUkFhXlvfXCdU9TA0CHaxhDCPd161tJJpNY1IdrXtyffX4JxH3sWtzy0u3PB8BIj0q2J4XNm8sCwrsiRsCIIgCCI4wRSCPVtIaoDuMQV7x2+8x5BUU573nYTQAsKDRPr2Qd0RR0qLWbc5yptiQrCISQJHBUcMSmXjiIrC0DTza6g/9ljUTJwoqaJv3zMXAMVnU7ftKNJgCYIgiGJDQalyxphtAxoMsGokG6tRlUqjKpVGQ6Yb/ds6POpLxJQw2Zu95xqoEq0qnWMIInfkfbsbhren2lHV8j7GDY5jSEsNAGDdzq4APbnjFlQS72kF7H5RGhHZj5n/TkSCIAiCIGzITjzLzZyb5aFvgrXvmQbPOWKZXDO7hF6iUew9fz4ajj0m77Y078u8m3FFFuAzglIRhvjw4Rj6mwcw5IH79RrGyKzenc6G6s87zXhdqm109n4oc4ogCCI3KChVAQQ+9JcxdA1uxnFLvsRxS9fja+3L0NKZgJ/CyPVuoXSLHrDKeSrnMJROV7oLz637FRIDfo7rTti7IOOzdqWLouwF8SQezuUbJMWglmXJUmyXIAiCIIigyPPFzSCPkUhknogCt5iLGVxwBkGKiS7CxZ7spu0OQroodEe6fcvITu4rzu49ZxbWth3V2i3BU4pJntHMlBJOVhSoP/uUwo2TIAiCKCkUlCpbrKtpHndhzUiSwPSgj7ZqJxMaVn+BkFLEZ2XIy5Q9P0QBw3DTYTfhxJEnAgB2JXcJKegF6senHe0EaXdPKU1QUfiJIAiCIMoKqVAIo1PyPeU4QDkf+aDrOIVbt+ltqd7i2wuz6SmguK4CXPD+yqjanyJNfWukI9PKJ8F5Rhif5EkY/UlDEARRqdBv8HKmYIIgxwBQjkEURZaNHvB4HKnXg7Skk6/v83Vc9ZWrAAAqV42VNrWQykpccXUgS911CpoAAQAASURBVNUHlKxQ4uCuXukUqiIIgiAKyQMPPIARI0aguroahx56KN59913Xsr/73e9w5JFHoqWlBS0tLZg6dapn+bJCsqYWzB5Altns10FuyFuQXOXG/7libDl00TZ1nGNYosF4r8qMpFyMsrSMb2EoBYbZFvmaohsx67hlOPW6A3H8t8YBO1YBT30L+NuF2QrZP1N4O3jWEV2JRISxWXLMijBib2RbSQmCIIjwUFCqTAhy+J7bdGvJ9PY5UYXFYsZrpbExUJ1cyKXFQkzlFrPOAq32mYfv+TUk+FqIqfBCffuJN3aBRhAEQRD58uSTT+Laa6/FLbfcgg8++AAHHHAApk2bhs2bN0vLv/baa/jGN76BV199FQsWLMDQoUNxwgknYN26dSUeeXg4Amx586gLhNMsbifX+TlgepXz6dGlLXlLCucYkqg3y+iBOjeXczjN4IEi+SPZ9FSMJTCkXxsGjWlBNBYB/vMk8MnfgC9e1YpH+qG5phEs0ge1Df2w3zEnoL5Xb4ls5ZZMKQoOEQRBVBYUlCoX7JM/M/4POR0Lw4WsHKHIrohp+h0fNizkIIuEZGUz6IZAbcuciS4WVajCp1fITCnRaNMuTpk0AqZYUspJKBEEQRDF5e6778bFF1+MCy64AOPGjcNDDz2E2tpaPProo9LyTzzxBL7zne9g4sSJGDt2LP7nf/4HqqrilVdeKfHI80XQB/oakWPadZ7c5teWFMbQzZKyGz7tFmohMJie8ApG6YgHuhRhnVKCaFEhpNenNf8r1jQkO64oxvQbgarGc3HgsZdi2qVXWrbvWT2nijxkCRT8IgiCKAwUlKokXOc+bwWxplNb6WxLtWJdeq3ZTr4zeBnOxcZWOc6h6AGqfMfJPIKD9swniZqLcHP7noHjsy/DD5MgCIKoOJLJJBYuXIipU6ca1xRFwdSpU7FgwYJAbXR2diKVSqFXr17FGmYBCT5/up3S5zQ6dycajRpzfYKlLa0XFpf2XINtAfD1xizyeYSyDHYxKKW/ru9vXjKii8LBMvLGCzNIgiAIouRQUKoScLMdCEg6aw6Zy4pOoC2DbmX87gdoI3CSvJ65BMlqX4niPa42p5bTZrTX6WQSqe5VQl0SUwRBEET+bN26FZlMBv3797dc79+/PzZu3BiojRtuuAGDBg2yBLbsJBIJtLW1Wf4rJdYAk2zCt8/KHm6VHot09sWmmpoanHrqqWhJceydGRhwtCJuR9XI3/vdscdi8tUTpTA6lwaixNeRGOzYzQ+cF0tv1EmZUgJqBti1Sfsv2dnToyEIosKgoFSZ4ioGmO3fALguHllMt93PZAlLTlN0HofcMMlzqLyQ2/dMgWa0Zeghc+AqYti+MYl4WjveWA+6KTAzpfQjj7vb29G++UlwnoLROEEQBEH0MD//+c/xl7/8BX//+99RXV3tWu72229HU1OT8d/QoUNLOEqTfLJmeI7ZNRMmTMDANHBQeq8AfQQ3JwiioHIPOrmctAKbH6dRujhW51o/4rBkQam4eSmbbS7/mnLpy1LjloG3x8A58MjxwF17a//9cjSwdVlPj4ogiAqCglJlQlAPJT+Yz0pRsadN19BWAcSC1BfBdk2RHAlc1HiP8MBdaiOevW89zv7gFiMwpRUxs7f2P/YEbZyKPk4KRhEEQRCFo0+fPohEIti0aZPl+qZNmzBgwADPunfeeSd+/vOf46WXXsKECRM8y954441obW01/luzZk3eY88N7hkUCBMwCBPwqaqJOUo7ZvRgxwBasEsd9yXDwusHMRBVFO0kS2G3BKWy14VMKfmhx85PhfXAnzTc5jNaFHP4SkBNA+sWmu9THcCmT3puPARBVBwUlCobwk5kcpmy1OJvYG2ZQxcc4frSTrZxuyMZWY5zsmc1LnsjEyXOU+/UPEWCqaE4pO7xWWqUnQADqjK1qEs2G2VEDTZi4kEAgGhVlbXynipkCIIgiIISj8dx0EEHWUzKddPyyZMnu9a744478JOf/AQvvvgiJk2a5NtPVVUVGhsbLf+VAu8//Lnw/5ZL3qtyOczBSiTXZT5bYIblmP2Uw4mDrgEuMQupBIcCc1U1u1o4F/jNZODDJ+Tb97jkYBmfRy/1tjrKlBI+7wH7O68RBEH4QEGpcoM7XgiTq9s0a06GGy0lAk6SPTSXFsNHSZEcCVzURClBJJ3X92LU1Gn9M87M7XtM2L5nlN/DBQxBEARRNK699lr87ne/w+OPP45PP/0Ul112GTo6OnDBBRcAAM4991zceOONRvlf/OIXuOmmm/Doo49ixIgR2LhxIzZu3Ij29vaeegRfpLNoqD+Ey10jucB8S1gKBwnQMCESVcwAiyNPinGgazuweQnw7sNGUIrJMqUkLflYnxcd/bPd44NSFkps6EoQxG5BtKcHQFhhEH+NyzKBnFdy/bWfaU1Ir3u3x9AFDqvLhNO003lYr3jXfsU0AM/5YSReAyybspX/Yo1uTp4w2nLz4GI2w3VAOH0vwOouQRAEQeTLmWeeiS1btuDmm2/Gxo0bMXHiRLz44ouG+fnq1auFbeTAgw8+iGQyidNPP93Szi233IJbb721lEMPjVvCkHFom2s9L6+nsHOyl3LLs+kckMmNYDsJzUNiirp9T2+8zz7A8acB827SjLL1UUbMbHIj0c3PU6oM1tn3XONziV8ZZUoRBBECCkqVK5a5lzsuBbHCNAMo1jspVQtGqZ3aVj9WHe7bYBs4WkLVCIblKbkz0BUEMVPK3HVXmIlx8euvSK7azEJ1EcwVwZTeP7hIp+8RBEEQheSKK67AFVdcIb332muvWd6vWrWq+AMqIizfrWwhLArCoKDGu98QcABfZHqhldegF3bk1AYzIzzW68L74hqdZ9vWvZjitcDArHcZV4Xte4IuNaKL4vY9yado8Twv2fF7GtYV5T0bibcrQRCEH/Sbo1wIOJnJT5kR7/tnJ32x6z/o3DuFhmOHouG4YWj5rzEep+8FHIN4N6DTp7eHlG4eGW40UqNzvyZ8GLbfBFTV1hnvB47eB3UtLY7xcTDpqXwR3QBTy4snCIIgCCJvhLnVQHttUQI2p2xP38vQp/F5lS/8hP9BeggSiIRrPcQwip0pJTUEZ9rzQM1Afvqeta6lPcu70keFaPteFss3C2VKEQQRHsqUKjsCLreEERn6hJ+NiaR4EokRaTQdO8IstNKjfv5DCD9dM6D3pZdg57YqYLvbiJybBEVhwKGJm3znxSH77ocrHnsyUFlF0UWvvonRPBXIe+WOJm+CIAiCCI9TYVQLE7+r/uDiQp77HBzu9L7g6O2GWR3OCGNpQHfBB1Wy0+PEQ2P0xUQhU4pFY86ychMx4xXrwQydYDpvD4HR6dIEQYSHMqUqAr9f7C5pzPo8rjjTx4P2FFSK+co/xyMwj3vaili/q6+GUhVz3vRAtpKW7+l7Ph3a3jtemGJFtpJEEARBEERoZCbX+jXFVd4Wbu4NpSxCFXYfIxdcO2tYylZNXi+YHbpTsxQXYVSKvnDqkillpKBblyA9WiwZRqZU6Ay73Q3ylCIIIj8oKFVmWPfy2yY5/6NYwnfkg6zLHEJkZt0izduGfZMorEowL9rFm+EpBefpe1K45R+CIAiCIEJjzXiqycRxyK79AACNndWWEvYaOfdoD0QUIq08DNak8RAVnDDBZsDUToVXJub2Pf09pJlSkJy+x6RBKfliX8kyvoye9/CgFC26EgSRJ7R9r0xwTqCyNUB4XgMAVXq6Xe62mkWdWmyCzvJMIYJmoj+ENQCkOtstMsbpe9wch75iq3lK2YJYsCS1EQRBEAThAU+lre8lbxgYhicH4TOsQVU6AiDj02jPzsJcNBr3yCzX9EJI8wSp1ah7G6U4fW/N4o/M94anlGp2GhGz5AOsn/OiK1Z5t4b/qSwjfg+Ftu8RRFnQncrg3EfexRdbOwAAz10xBYOag++eKjUUlNqD4GD++93zORZGb8KxeFg6oSBLoS6qSLDtQjRP32OOIp7joLmbIAiCIAJgnzC5ZBmPmQtyrkEeZgkGuRJ2a1ae87l3byyHjHP/AVkXL/WsqcJTVVsLANjypWZkGq+pFaJgQqaUImZKZRf7ouaWPr0OE7ductr80XPQ9j2CKDc+3dCGd1eZxswZtbx/JikoVWYwPXfG8stcP93DfC3WkMNznw+YLdJib9m0NAjeZAB5Iy8hSk3/Zy/19j0LnFm27+ko4ul7+thKNCSCIAiC2J1wLPBYJlTPo/W8Ws3+v3NBKQz2OvqBK144Q2zBywYhyMYqmfdlMbTT1Au/g6X/fhNc5WCKgrFTvgoo2T+aRE8pQYfyvuOBNQBi5gq/dLGTeenF4kCn70mgTCmCKAvEGNSLVx+J/o3VPTeYAFBQqmIRJkCfVbyB1V86ajm9kJithEnocBKXtOLTSKEEhLh9TxdXRRUn9u142e4ZFGMFllm277m0QytKBEEQBBEYI5DCWOC/fxkHuLE/znsBzr8x+XZ86wXV2pPvXO9937J9L5iDeShET6li0GfYCPQZNsJ6cePObOfC6XuiFUOfvYE1W+Rm4s69jj3KHnv6nsxTinQtQZQFw3vXYuyAxp4ehi+U61qmiLlRYdQSt0zQ2pe3T2wDACCpBotB5japhlMxdvFmpqOHde60jtUSbMt+FqUyOnfbvqdIT99zNEQQBEEQREjUeCRw2Zp0tTE/17RN8CwbTgu5lC3E3F4CfSAGfEzlWaKgguEp5ZIpJZGFzgAV79FsJTp9T4CF/9uFIIhiUFk/g5QpVa74zG8eZ6gYr9I14wEsx6ruffDZlq34vHM/oK5A4wuF9w+FuLUviP+UVCjpWUkWYaCVU0u4WqOLIsZNc1FFJlbsphCV9XuDIAiCIMoDJsn+Fv5fZEj7AMRUza8onhgk3Al9lB1ynbhlY7Uvr7n1ZtVItlqhAiMufXBeeusD2el7ijPr3e/xLM5idPpeiSFPKYIoVyrltxMFpSqAxk6OLo/7rifxRVoAAF907YdVW1eBRZvQEDIoJf1G9pxnCj0Jhf9RUpgClavmvFjgEVnw2L5njEffvucxQdPUTRAEQRDhsfo1Fn429Qr2FCNDRra7UMSwBsjhUf3qcCHjqGS6RMlmSlk8pcSglLOK+REJN3sgCGIEzMJsqdwdkW3f22M/DIIoDyotLkzb98oMmQZRhG+q7rhHQcCSgWN6Ksk6yk9IBfk+93dO8Dcd1ZGWdBFmDsPOEllKcct7MRU+gP9Xpf3mIAiCIIieIOB8KZ9tfebgENIonIrikpfO5+C8A6qHNM9HKXCPiJRl+54RUyjV9j09U4oLnlKSg2ws1ySBjx7YQmcERCslFaEUMPrTkiDKASN4XyHbi+k3RyWQ/a7a1I9jQ4vsG8vvm62AASjGwJVM/r1JfkA4CuNZyWz72UsZ7mFGoEziKUWrRgRBEARREGQb9rjMgCgABZmdpVv1PSs4yqS73sTW6v74om+zax1HkwX8e6NHdIoexFAzQnDQuX3Plx6UWLR9j7bvEUS5Uim/nSgoVSbIJl27+Xc6Csl3lteqn6RNl/5DRVE9I0eh1iY1jIQmpxzy9RCQ3Ne3y+l1i+spZV25M43OFWNs+omAnqfaVMpvDIIgCIIoB2QCQCTAvBrExzIMfkNyY03dcIDVAtC2srXVxKXlCqJmFAUsajWHZ5bs7gL2FQSZp5Q9DV0cmAXZtrHSYfpd0eKjgRFQpM+CIHqSSosLU1Cq7NAmts31bfiw36eupYIYnedPjiae8nhYTkSaqiRXJVv7LKnnVnFQqh9Ky+l7ku170tU+bvuXIAiCIIjAcKvFtfZPACkkK1LYIBUL3N7K+tGobr4U0ZojLfWt/9quB9IN1rq1kyZhwM03Q6mutpUy2zQ0VKl0ia+nlMToPHvf8nQ9uG1sj8+UknlKVdpfxASxm8Fz2Jbek5DReZmhf9983n8jErHG7DsxciHb9ibIMcnBLNx3b36OA/Wdb/Jfxayd2BeYH3BMWRTbKk0xV67sn6NXUMpSznilfU1p6iYIgiAIf0xz6WAEKZfZuib8QHrEw8hfL3jd733xRWgZ8lWPulz6uqhIMqWYcPqeOQx5GNFWqKgs2rwIa9vXAgD2btnb+Iz2+KCUCGVKEQSRAxSUKlOsp8nkVk82IYSfNoN4WDnHGqYfucTSozuygI536+Z9rV1VDTGYsNiCgMbpe5w5inBwjw+GJm+CIAiCyAlunfc1HeCSYSS8W9PQD2N3rNb8jAB01vS2tBNuDC7XmXch2RpfvorArf6gukHS6zKj85IlurBsppQaPFNKfoCPUKcImmpl60qc83/nGO+rI9W45fBbLGX23O175ClFEOVGbg6LPQcFpcoU2SkpGUQASCIsLqbhsm/HXCZMzqxBlkCU7CeAO9SJYTZeqiGYIxH6ZkaGmu5x5WXWuapPH7R8+inGjh1bMackEARBEEQ5EXb2/P4Rl+HOXTtxyIhemLcyjdZMCtj1Vk5tySngH+Zcy3zntsNc/BjUoQWiJg+ajNEto6VlDJuBnjQ6BzeCg9aglKSKobVK5ym1tWsrAKAmWoOudBe6M91oT7ZbxrPHIn6RKFOKIMqKSvn9RJ5SZYNs9cwqPLq54K8UxDG7IKsUhZlUZN7oobwbuCxQJ69vBIGY7ilVxO179pXXzUu0f7n5oyU3wMwKquylzwcMwJNPPolNmzYVbawEQRAEsftg7Jf3yel21w6pSAydzcMQG7gXErV9XBoqrKDPuTVHOlWwlmoytQCAulidfxecCwGqEqEIputqWvtXEpTy+zKwEmXmDKobhKiiremrvJip+JUKZUoRRDlQaT+ClClVSTB/DVKK779i9SG2qwQ5rs8NYz7UxIJa1MP3bKfvJXbqr4yriofRefV2jqbMNmwZ0IxUNIrOzs4iDpYgCIIgdi+4x7tioi04WcWK3PnTj2Bj5hEOcDE3KFi9sOMp/fY9YYSSTCl5VEpctJXsFijC4MU27Zllngfa7GlUSFYGQezu6L+f+lavxdKlt0LlKTAw9Os3A716Tenh0TmhoFSZYcm88Zjb/KY9JmxrkxmdO8qHmURCmvn7jXXAho2IJ5JQWzLGtZpYPFQf4iSoG50bwqpUInXmvcCfN2t9czEopZjjsH3OsS5gwmdf4N8t47EzSj+OBEEQBOGFfEaX+Ud5n1LntwmuINqBWf5x9OB85W7mzWMqkIy4thZwKPJ7Qka3xQezFDBZppSQ5xZwGGoJA0KOLHkKxJjQZ0EQZcURA57D2nXvG++373gbh0/+Vw+OSA5t39utycXizH+dz1OocC7dqueEYVdcSylvamvDyFWrMOrDvyOSzp68EmJSs5dUYDt9r4g6xTLOsSdBieh9MyOrjcQKQRAEQRQWcXtecxtDou0P6E68KtzXt8mrQo3Czcf+i4Ph73i1z22p8kG1Vhg4OEJaVuWPmBWVDUqJp+95GZ0zwWe1VCfgMUvAjE7fA2AT2rR9jyDKguyPYFzpBgA0NR4IAFAz3T01Ik8oKFUm2H93a6GhoMqASV/KJgT/w4SLgyyQ9b8jJuOPE0/FRxP2B6CNjWXyHx+zKapSPTHn5ul6lkwpfQVSOkHbNh7QJE4QBEEQoRi4NQKe2QLOuwAAtdEGDKnbGy3x/uCKAh5tRKT6K9K6RoDDJa4QdGGpoPO3R5++2e9hD6ZBDwdVRE+p9R9q/zK/P0/s47UeelOMLC/LqdjZr4HdU2rPPX1PgIzOCaIsaWya2NND8ISCUhWE66935vomB2z1cxA3sqZkrXTFqvHaqMPx6b77+o5DbrspHxszI0NarZKmdGtE1TjSLGYdD0EQBEEQ+SFbcMteikZG4XhEsF/zFDTF++LwfqciXdsIdeBURKsOKPFA/f4sN9Kpg7UVRsqElD3M9DsQtvKViEgV0FfXgRyIxIG+Y43betxHDA72dAa6w1Nqj8+IF0/fo0wpgigHzAWXXHZOlR4ysSkzpKfFeP5el6wW2a9IJgi3CdS6eS+XCYVJE+SDpZlbmvHA2pi9bWZ73qLPi4wZnehdH7HqNLxz8KkYs/wpKNDSJDVPKWf1UKcQEgRBEARhWfDRdQBjdegNBVtEnyLX+t5Xg8zMuZiaRzPWK1YNIwsI6dnWkNwzNY97YMTT2Mo2OsFTqlRBBUUBLnkDaFurva/pBVbVBGCdMSoAlvFLzd5LGBhitgx4WnwUoEwpgigLuO1Xpz2YXm5QplSZ4pagpH8jBTyrRXIt/4lTFkTp8W9v0ehcNxb39jgtOJxzDG1YARXm6TE7WvYxT98TU7+NL7CLyiQIgiAIIhTagXg5eEcVIKDh1kL7iBRSQozMCEoFXXt0lCm8uLEEVXoi0SUaB3qN0v6rabbcko/DO9BW7O17OipUSck9EPKUIogyRnaCaflBQamyJpinlBgksswBkmpuE3U+xuL2HoKWFDo3X4acxGTPoz/Ls8ufBgBk1OKKBlHM7df3A/zx4O/hjZH/Lzs+xbGilq1k0FE3ADy7qkueUgRBEAQRHO4T3fHz0izcrCvXPDsnJHHNt8WNCbn1aDc6D9xOiO4458Jqeg8iZkXJ/p4yYlLcWbAEGJ+RkSVf3n/sFR9/z1SCIEqLsb3YuFLev6coKFUmmMGIQn7DhG9TVfxXfnynGUnyT85TUw4TfUO8AQDw+to3AADJTDLX3oNh5roDSgSqkkZGSWXvKUZqvrZ9z77CybF0n7PRHu9d3DESBEEQxG6EJEYhfZcbAVSLTZ908a2o2V5bgL7l6CPKx+rTvw9efovpUn0s80Io3el7pu8Wbd9zQJ5SBFFeMPvvqfL82aSgVEUgXfpzKSkuL6lutR1iKhrVVvEyCgO3mTQV4lu3UHlYQcr+ZMpPcPH+F2Nk03AAJf7RU6JgAFSmffYqU8xfApKBxOIMkXQ3yRmCIAiCyBW7t2QA7ww/ee6vHTgUZmZAJbAdAz8ZDEU1HTyCmChYz6pxVwOmp1SY7XvB1IUs06cnYwrieKSZUtnnslwq8oDFTHZHppTt/R6HJXBIipYgygG7p5T/qaY9S3mPbg/Eug7k9Ys9/+CNSP/+/XHEEUegKcUxUG3xLJvMJP0XpLjtjc88bSYO2VMNfRt3sF+f/XDlV67EmOYxYpNFQ1wxe291HId81AejV7Yhk1wBMAVK9pcAh9ONa/Te1Riw6Z3iDpAgCIIgdjtkmTP2Wba42/djShx9q8cgEp8AAFBUp6zWQlPhDKTy2QzFAbBqmdG7u7ISg3hmsK48AizmFjnp3ez/2xZTSxQcotP3JDDzO4ggiJ7DeSBEef+eoqBURSCEOv0WyCT78IOgKAqmTp2KkV0cB6X3CjIazytBcR1j4J8brmUlSgRBqTOId25Yjzc+j2Dk+gb035pAqvNlcKZ4Cjxu+0Wxx66yEQRBEEQA7POkY8GHMVSl9UyaKCKRkd7t+fTnF3Coi/VBtPZIs7xPe/IS1muJqhZwpdpyze30PWkP0RzlPS+9dvIjk8oGFqVfh9IPkmX/B5BmMxHT2crsG4gg9nDclmzKjah/EaIn4LAfE+yGV6psbm77Prv2Pa/n1gu0MQaYwDhXg090Jfvp0zpKdHXZrqfBxUwpzp1j4uHN3QmCIAhiT8drio9lt9AprBrR+L5IIlGE/gskMiQSoK1xOHhmG6Amg0s4cctbyLGJz1Ju/kg7NnYGK6gWefue+IXKfkR2D9ZyyS4rNdetasUrhz0FAOgX4Xgi9k/03UM/C4IoF4ygObMmQJRrFiMFpSoIWwK4ed1NsXgEO/KTHPl/MzPbC66/9Gh69JpqJHbeG7h/PUep2D96+sevZtLWG5yDMwYF5vY9giAIgiAKCLO/ZJJDRdyrcfsFgxzn7LymenEQGQBAbXUy26x+5Fz2KQM8W+BeBRuCctmJts9hA/DFoi0AgLqmKgwc3WTe1D+DYKu3BcfuFVpugbxSklRVPLG1C6jqCwDYCOD1lkk4nRZcCaJHcWzaK3NPKQpKlRnGxMY4cnPJF77huL7XPvhkKfcxcNpy+gVYPI08/Tp0YeDWuKWCEh3qXSErVko1L6ppLSilbSVg2isW8fz0acomCIIgiPzoodiEFOkmM+NicGcopqbAAcTj9mycAB1KCgQJNonarqe3pk09f5zHXcnDFHu8QgBKD+LpmVJ7sqeUmKB2SOvHeLdpf+yINYIULkGUC5VxSmh5h8yIAuOWayXi9w3LAFRlX8mNOwv5LS+b6KM1RyMz6GTE6k707E8plUjI9pPJBqUyiv5hZDOlxO17Dqxfk54WgQRBEARR1njOk8wivJ1HpxRQF0hOgwtdrQjlc8G6fU+jnNVIbVOz41op40L656VmT7nekz2mxCce1r0RAPC3fsfjxvQYvLuzvWcGRRCExZJafFWuv6coKFU2BLKulF5VXYVRbp5S/mMqgqQKdFqH/jxxQImDMeZ/CiCAdEbBjHvn49I/LEQinfGvEBJDnGS0tlVLUCoCRXz+PXg1jSAIgiAKjexkW5FcXTXNLQ/e7pr5zurhhXgYI+mAozOaNJ3Oy/TvFgBAr0FDsq/ERT0Ir4s3eMacRud7cqaU+EkPTWwCACxq3BeP8SH48bJ1PTMogiAMjG3OZf57ioJSZYJ9/vSbTrcKW+uXDAvvKZXXN6akakck7Xk/cNM56ghZl9XxDKBo5qafbmjDi4s34uO1rbkPzgfdU8o8EZoDTLEctSynjJUfQRAEQZQ74jTqo0GYLZjEA9QpKJIpP5wxefE0gxjgK2sfTMdCJi/66r/4eYgeXED5b4spJuLnct6Gf+DW7n/jzI3/BwDoVFW3agRBFBku/H7UKO/fUxSUKjOY7J1kov2yr1lyR72YiWNZKirIKIKQFvptyiFbN69NhS6V41GOulF34etHb8agJu1o5XQxTmcxtu9lM6Ui5sA4Yzji4Xfw3ecygGRy5pyXlRcGQRAEQVQC3ifGhd+yV7jT9Gyn4IWa4/3HECSAJe3So5rlswyTiFVG9ERgyB4IK+tAXgloyHTi0uQn+MbGF3p6KASxx2Mcvgfrv+UKBaXKDt8lvuw/wb/FuOubYL2HFTd9d9lvc9d+OYAtah1Uv+dw7NMLeAJfrA0jBnShtkrz9C+myJJlSnEWQdOGXThyMcfgTWnz62d/Hl7e+3wJgiAIovxhIbOOcs87KqTA9xyDW7yNexcLg7gdrTKyfrwtH4oZHLJ6ltH2PaunrLn9E6i8wCZB7J7YM6XK8weTglJlg/MbxMygyZ4i5zLnuQoIrholch6HwyRNXieIPbpbby8l9zZbCJhhuLV6m3WAsj6F9GpF9EsoNNm2TaNz89aOWobuRs0YXslIc/ZRrr8cCIIgCKKSMDbmCRoitxlW2KoVomdn+QC9S4v0vC7o+RF4wCR+XkU/fE/8nqDtezrOnbN77mdBEOWEkSmlJ0Sw8g77lPfo9iDUrm7Le7cAlN+c6xseKsRcwYPuEffvTAWQQtR4rmqWtpXQ2uibyaBKjRpXU0rKWsJnlcoUEIXHNDrXxs4Vs5d0VEE6m6WlqLBkSh0/6DyM7JiIqnhtEUZFEARBELsfQbZMBQkS9Nyacbg/3VOKVXMFygQL+VBipk9lbd8TLStKFwwxFj1p+57ziRkDq4xvHoLYQ6gMT6mofxGiNNgmNgXGsXqyb6FAPkRFMDr3C+2EXS2yh7caWEJarlnNYHB3MxLYBfsnEundCy1fO9N1LJxz43HVIk6U5ul7whg4A9dX9FQOpSYGFlfAkyp6VQ0A0kBL0wAAO4s2LoIgCILYnWHOdA0A4WIz0SrrOq3forJrDCQHmSHPy9KuLh24Btg03FGnkH/4i5k/4ua08kUbpcLaANRnr+WYE8c5Ptv+GbrSXQCAvZr3QlNVk2cdx+l7Zf7HXjEJccYAQRAlxBmKKu+fUApKlRn6t0uyVkG8Lb+2Mm3bs42G+CYs0L54hmDyQNdUnPmFuxw1jVdD7rkHfQcc7FGSC6tagTsITrZtNW33lAIUriAZb0ZG6QY4h1IVQf9rD8LiZ15C4oNtGFQ72rb/vpxFIEEQBEH0PEkliecHvoFd0XZ0R7oBNAh3GZxG57JsKuvrY/97X3wyP4Ml/wKisQh6D67Hzg1eowieaxX+D3ezRmdVt0e5wA0GKiYu4pW1HBl8EDir0jyMJITJWPrTZ3/Cz9/9ufG+X20/vHTaS4goEUs5UZ8ZGfLZpdU92VPK+rmY/w+Ud1iTIHZ3zJ9N2z6+MoW275ULjt/cotmk9691cYUmFVGQzi7v8Y5WAEA6EheaDTdFeAaXgjbl8UPg2AhotOmsw0PKOjG9Wi9djEwp/fG+/HiR1oegY6rTtfjP6Bvx9uSfQklF8dyK5/BJ8jMkWpLoSGtRx/L+FUEQBEEQ5cXW6q3YXL0FXdEucMYdaUvx+j6h2xw6rhcOOWkkACBaFUG8Jrtu6yvkmes7+Va7cDqktiqBaMNHGBjlaGLdaFDkGeW5ta5hPX2vAlTJ8MlonfgqOjLT825qddtqAEBDXAtsbu7cjJSa8qpifJEdC4l7YBTGocwr4fuHIPYg9OB9uWd0VkxQ6tZbbwVjzPLf2LFjPev89a9/xdixY1FdXY39998fL7xQOUeU5vqNk4pEcfvB5yCx11TUHHEKPt/rNOxsGJTzOLhkcslpzvU4fS8nAlQUP0NFybM/D+I1mifUpi+Wa33VVBn3MlmPrFSsHvFEM3705o9wzv+dgy2ZHUKAsLx/SRAEQRBEOdKYbMSxu45DbWKv7BXrUtr27i7fNkrvAxTSE4oBNUP+hHuGcJweX4wmZs2cYuBA23qb32fI3CzjrBmz3ouLN+Kk++bjB3/7qDyzuCM14DAXXQPZWkjQn3nWXrMClWeMOY3OKRADQI9HMdcMNoIgSocjz6PMf09VTFAKAMaPH48NGzYY/7355puuZd9++2184xvfwIUXXogPP/wQp5xyCk455RR88sknJRxxgQjzu51xvD1ofyT2Px0NJ12ItUOPFYwR/E+TsU+s0jU+yTe1nxhwTFD6ljdjZPY27Q2G3xFrMe60n+5XQE767vU4eNbpOHjW6TjstG/g29/5mXFv8r4/Rk1ay1gb3TgG1ZFqAMAudAinthAEQRAEEQSe4cb8GVWjaFFbwLjuRsHBlE34cv6v8fzOFD5v3Wapy3g0kA5IdXdh44plIUblbjAVbo4PsPXJlkSvIAHcvS/w7HeEMrkpCw6OIS01AICdnSksXt+Gv7y3But2+gf3yokwQTRZWVmg0nL6ns3ovNwzEIqJJfzJudWSgoJTBNHjmH+D99zxHkGoKE+paDSKAQMGBCp77733Yvr06bj++usBAD/5yU8wb9483H///XjooYeKOcycML9dvFK9mRnIMC7ZvRMEpA7p3hOn6wRiu9zaXwXbYr6PqC4FXa9Z7xiBLo/texZCzP8cHEoRjc6HjNsPQ8btZ7zPpM207wOSGSzJht5OH3063mBfYPWu1a7uFmW5GkkQBEEQZUBqSycSK9pNb2sHWpYGV1PIwBkSiif7O2qIs268VgvIZFIp7Fi/VrtWIz8hN4gMyTjc0t08kPwW5pxXEoijFp3m9Q0fAzjQfZQe+k/UnicfMAjDe9ehtSuFb//+fSTSKjJquWsTnnMARK+nhDgu3ZEpZXu/J2HNyfP4m4QgiJJi/5OSlXkuUkUFpZYtW4ZBgwahuroakydPxu23345hw4ZJyy5YsADXXnut5dq0adPwzDPPlGCkBYAZ/+ePZA5094HynzCDrPgsPiGBV9qbcHjAxDO3XrlbiewQgiz2uY3XcjpKMY3O7f0KwoaraSNCraZVsLhkBYnmb4IgCILwJb2p0zKRM7DsKp2QeSwRDsmqHajtGADwGMAYmtO7kFCcwaaGXn1w0lXfx9bVqwAA1fUNGDvlq/LBBFgPdAalvJE2qT9vdjVSD2ClsxI+icEAtsGio0JqHTGbnDGGiUObAQBRhSGB0min0PjH8UI2F+zQGbGcysno3PFRMdq+RxDlgT4vVobRecUEpQ499FDMnTsX++yzDzZs2IDZs2fjyCOPxCeffIKGhgZH+Y0bN6J/f+uKWP/+/bFx40bXPhKJBBIJ00CyrS3P4+8Khi5EeCETiMJ0betBG8eumvzTAFXOwgXgjDHoPQfru5iZUnZEccK7WsEyCSAKqBnTvJ4Lq3p7cto3QRBEGDjn+HhdKza3aXP11HHOzBdiT8N+jp7Tejwda0ey+l/orK1GOhbDV79Q8Q92OICsghEqjD38q8DhLoEoae/uZtcNGW9Tcu92taZMywT7U9n1TP76xq6pjG1qebdcWnLJWAoTWLLrtj1Zx1kypZj7PYIgeorK+EmsmKDUjBkzjNcTJkzAoYceiuHDh+P//b//hwsvvLAgfdx+++2YPXt2QdoKDzf/0bOEHDrHcVadBJ8U4h4yO3PrTc0+r7hBsWB9MvOzKOkuWjEolU5AUTVRqrZthVKrrZqqjAurn6UYFEEQROWz8MsdOP2hBcb7VT8/qQdHQ/QEsnnc0EtcEFFAieZXty1LDPVpSVDK8QBBTcndg1/54haQMbRTWaZK2eBBNLKkWg6+UPrnpdr63DO374mZi7afP4Igegz7eVqWHURlSHlvLvSgubkZe++9N5YvXy69P2DAAGzatMlybdOmTZ6eVDfeeCNaW1uN/9asWVPQMXtS4PhEYb7d3LwPCgeP5CiyhHJ+q1uap1TpfhAZY+Z2wcMuB8uKFjWVEESPxB+sROMjCIKoVNa3mieP6VuMiD0HtymSW17bNYGwUCQ7AKWouDlICu/le/ac9gbyhClZi553Zbj+sVK8M2LyR/Jg+XxNg2ZKWbb5lecn02No22n35Lwxgigf7PbmCLmdvNSU9+g8aG9vx4oVKzBw4EDp/cmTJ+OVV16xXJs3bx4mT57s2mZVVRUaGxst/5UePfVcXHmTiZoAwkrqmV6ICTTcdOO1bsIjwdsMO3SrR0JubeSKomg/WvzwK6FkM9zUDLdkb5meUjR9EwRBBEH/o/nwvXrjmcun9PBoiHIhyFa2UoUPpJosp2meS99xQycGXM0M8eCO7Xv69QqIvfx/9s47znKrPvvfI+mWudPb9t69695xwcbGYHozxbRAgACB0EJCQniBvHkpoQSSQELo1fTeDMbYBveyLutde4u3zeyUnd5ulXTeP9R1dcvMzu6Os3r88c69utLRkXQknd9znt9z5lrHKCuFyNn3wl5mvmWnsqdUANUmX4oRI8ZJQhk9tSDxpEnfe+9738vznvc8Vq9eTV9fHx/60IdQVZXrr78egNe+9rUsX76cj33sYwC8853v5IorruDTn/40z3nOc/je977H/fffzxe/+MWTeRh1I3o62kpf5hnz1WYD08JGw7SVz9Llj6J3LiV1JS8Gdu8n7lyp9SwLmSP80wULl5Qy3dldgnLnGDFixIgxG8QxYIxoiNBLtUJams+i85i7BfPQFiv1fWZTgWMqoVL6npi3s3T8MUdWyiWlZuMp5RtghIWfFnM84fnw2710f9//1DsdMWLUhGHk6On5BsXSCABdnVfS0TH/g2xhlxgxf2+944InDSnV29vL9ddfz8jICN3d3Vx22WXcfffddHd3A3D48GFXnQJwySWXcMMNN/CBD3yA97///WzcuJGf/exnnH766SfrEGYFERqzKf9UHdFjXb4lFf0DomXf5eLwoOm6l4JWm4jyr1X2wpqtz1KV9aI9pU7MjejMwCel6ZJS0vSMzi0frYX5UIgRI0aMGDEWJirl79XR46jWr5gLy1nnJrVXq+6mWXGm3rq6ELNVtoeNzu3lC7K7IsqCLCHErImhKE+pqrPvCW+/7ux7p/DwYtATNlZKxYhRC0NDN/HE/k+63wcGfs5TL7/3OO7ReYcs7AS5Jw0p9b3vfa/q77feemvZspe+9KW89KUvPU41ml/MVlhXeb35fRlIjp1PNY0hiiSR6L6lQeVSxVHCOjqKtToDUnqeUidKKeVM9ydNiYIBgGFIn1IK30X3dasWZs8vRowYMRYUTuUgMIYHEWoJwl5WT8flWMeMy/d8jAXOI+od9JJS0tv7DYyhe3hBW5ExMR34fWGPq59YBBTuIZ/SUzl9r6xtCIGI+7IxYlSEYcwAkEh0UiqNuN/nG56S88lxPz5pSKlTDgIaZwyKM79Bl/01Vi1/Gc5H8zuWMvxi8kLpXgZTS+npOBqxj5Ayaz5nk3Hk1EjfaN8JVkqZpitplj5GzPR7SsWIESNGjLoQxzoxoAbpUp+z9wmFX+9efdfV5N/Bv/UHGnaPLKLoycmH2LP3XwB4WjMMGYcDv3uTxNS5q5MI/0R4c+nrzSp9z9e/DNThFOzXBQJfEf4tRowYYTj3TDq9hFJphON1p1SafW+hYmHruE4plDfIlf0lzOLj6EwAkE9Qwbzc/1mULaq2j1o4FpLoaMs6hLoIQRqAXDIx98II1X6Wnc4T3bHyRtG89D3Tp5Sy4LzIvX9jxIgRI0ZtnMLChFMbUe9wIY5pJPhYuwXl9gaVf6u/sMq1cmmtCNuE2aJQDA4WJoQRrI67qwVIL8zTM2C2RudRaX6ntFLK9ZQ6ufWIEeNJA/dZotpfj+/N470fF7b2NSalFjAUW1mTYjmm1sKDq30/VuyMzG7krHzxseaDe/sfbVpBquXVaNr62luFXug1ayC9Uapa/lgBpdSJ8pRy0vekl743mU/TMr4YIRWk8CulTm5nZiw/xsGJgxycOEjJLJ3UusSIESNGNSzI4DjGyYPtMVB96pBK7pgnCRFNuJ5WXcXlqM5l5dD1KeuD0lBhqyeJUko6/qFzv8bKHPxWogitUxWup9QxksQxYvzvh8PkqsHvx2cvLkTsKRWjLkS2R+sllxQd5DSdYmIy9EulLeagKqpekepr1OytzPfLepbGndIjrszZTuE3RwjFZr99nlK7R5Zx1u0vQFvciWyDIg2M6SYzJNyTeqI9pXYO7+RVv3kVhrTqeHrn6Xz3ud89oXWIESNGjBgx5g1CUI9Tp/PLdyhy36FBPj61ju7m1Gx2VOHzbLar/m0uqKcXYZo609OPMTO9x1qgNIKZKyMTFrbReWXMhryOVEDVSA/1ZnQ+QZ3KecLw8C3se+JfMc0CiUQ727Z+hkxmde0NqyBodG59ihEjRmVIO4PmRM1u+mS5N2NSaoEhONricyEQgpRZqLjV8YScY/FzmuK47vuy9or+c3miBYvOg+Y3n/sUpcIBkoaK2rGVnJ5mxdhKlAcL9IpN9E4boC2iIatSSk2coNp52Du+F0MaKELBlCaPjz1+wusQI0aMGDFizAqh7kVVY+UKXZFu+4ceTHomZ/jj44O8/IJV81TBavCn7ldfJ/BJhGiw2TJFvo0ff/z99A/82PtJzSD1ypv8b1YoVpzdsNJ6lHtKPVmUUv39P2ZmZi8AudxhRkZuIZN53TGVGSClhAjkVv/vbTUxYhwD3Ge3o1w6Xp5STrkxKRXjGCF8PZFnZ/dxSykLNAbXCW9U6nA/KqogmVbJ+TKyFHU2DbLSTTK3m8e/VXnS4dxvlEqdAX9an51Nh3mChvuaO7rITU5w9MATIGDx6K+5aGuJ3/deRFt+Bfk+HVRQTR1D0VCN2YzOzj82tW/i8dHH4x5EjBgxFjSebIqNGAsH4abzNtJchMa3KbITg6I+S9VLhW5LutQY/cN8oczEKmrYrRj6LYiZ7BOANftTMtlBMXMBpaEbjk0pdefnoP8h6/PmZ8HpL6ljo7kj6McpQc4tfa+aV1TlfVeffU9Kk7HxeyiVxlBEgo6OS1HVzKzrNt+QBD3DpDQqrDmbMi1YMUvQAsQwZnj4kTcDkEx2sXHDP6Bpzce8zxgxntxwnhuOp9TxVVy6j6c6PAtPJmJS6kmCjNTxC9L9WDmzwv0sJs4DYa0nhOBF7z2XHbfk2P4raOlqoLEtxcTgsdXlWAgkB2ngajSe6CyQHc2ihcw1a88UUH8dAr5TJ+g+fPE/fpgju3dx5LGdbP/tL9AVQf6730d7yhnoWgaJijAN1g/czp5lV85djnaMONHpgjFixIgxHziVjYVjeBAh+ZDAahv1eNo0ILicBDdRYidgzvF1qMigF+O2gUuBh+xv89FjCqKeEjW1F2irXIYti9p62r/S1fU0bt9/AwxFmbbXWfvJPvj9P3nf9/z+uJNS1TCXvk29nlIC4U1mE2WSLiVDQ79nx6Nvc5etWPEaNm/68KzrNN8IB7/zQkqFz7UvfbZUGmN4+A/uT+3tF7Nk8fPmvJ/HHv9HJiYeBKChYQVnnP55VDU9p/JixDhZcJ8b4vgqpfx7hIWv6FzYjlenEKKbY31ESoPujb4ood5Z14pmVm/rBCDdmECxJUPV+vPVm2wNWW4Vb6xg1QT/TIa3X53n2anHUWdzQ9Z5T/lHsk60UqqxrZ1NF13K8tO2WftVBAXVoP3gpxFDn0JVv835932QhtwwAGmRZzNPkBrbc0LqF0al6Y1jxIgRYyEh5tFPcTj+i2XW5v50N6+TkG1chnS6upXmd7H/zr5/YG25zLiXZQN3uUsTs1Q+WyF8bTP2qmNXIUKlFnHlkBPCNdp1dEdzVEqVcqHv2RobzD/m+myoNwUvqn9UyVMqX+gPfC8UjnE0eN4QPIb5UGiUpe8FCDrrbzq1zPpuFue8n0JxkP7+H5LN7iOb3cfIyK1MTj485/JixDhpCM2+d5x386TxlIpJqQWD8pddVSvMGi/fuRudnxy4na2qx3Us0Ui423pioCWSACQ7dEZefg09nY3kNIWZ4aMMN0oUYwSAdsa4nl+w8ebXw9DJIaYgJqVixIjx5MCT4LUW40ShbIohyGQHkeSDiysE4Krdmow5SqUaGOO03d+J+CWqlcoKy6PWq76sdcL2oRSijJSCZERtfPu1FTIOKeUER+VKKWfPNc6NGVLczIMCpybKfCDkMT0YZqO+DK9btm24rdXBmBlGgVzuMLncYYrF4brrMhuEychwOt8xll7xl2Sq296/t87AwC/48+0Xc9ufzuO2P53H3n0fr1q6aVjEp6I0kE6vtMuLMEKLEWPBw2GL6k8ZntteIl6Ox2lf84E4fW8BQOqml/4f/MX7WPaujB5Vq8Xt1GyIES/luTTd2q/24x9S+OXVJ1op5UBNJAAwUMgXgyNEhiIQhtVpNv1s+eQR6N50wuoIcSpMjBgxnhxYmF2pGCcSZR1tgRf02742qeIkUnyCC+8pMNnWxu1PvahieW6/6Tg0Ls8aNKJwv4N51TKC2060tcIhUOwKq62tEaSUqPDZghkmpZToNBJvlrmqVSwnoaSJlJJc7iCG3c/JZNbOe6pVpTN3PAfYhP0fRPepJdKdXave+phmibvvuYZ8/oi7lzNO/xyLFl07L3X27ckqXWhIacyrl41wCFdRrjnzFHne/gaP/ppiccj93t//IzZu+IeK5Zu2ykpVM2ia5dsWD6RWxtTULp544pMYpnX/dXZcwZo1bznJtZo9stmD7N37EXR9CoDW1nPYsOF9J7lWxwZv9j2/UsqE46SccpRSos4U5ZOFmJRaAMg+PIScwdat+UeynA8niTCQRUqGJD2dpJYQu9J4YO19VCuhUlmzOx9SypM2rbGjlNJNhWLBeqGWVJOEoSCFQJasik2U2higiyUMczLCrmodrBgxYsRYaIh59FMVUe+oSpOd6KSK4yRL1bu6ThhgzPL9ZwoDU5pIJegpJebBI1IG/g3W6/EtW1i6+Aq2K3vIzMzw/NVrgDuC29esg00ilaXvVahPrXNj+sqzCaqenq+zd9//c1fJZDbwlIt/V6Nec8fQkXztlSJQt9F55KLo1L9ysqf6+SuVRl1CyiKMdKamds47KeUppRJAYV4UbUGjcwjafDiWIZr93Zdma5NMy5a+jL7+H9QkyBxyRVVSuIk+x9kg+smMI33fY2T0T+738fH7Wb36TSEiZOFjcPCXDI/80f0+PnEfK1e9gVSy66TU59ChLzIychsAitrA+nV/S3PzabMrxJ0gQfUtkvPer3EfY265C7vjtLAps1MEZtbr0JTMgvtZuJ0EWdYDP+ZmVaXlq/bLA1mgaEyz/tGlgd+r+l/Vua+Ka1cjqap0CKJr5CmlThbpoiVtUkoqlIrWdS4mTLtegGF1CBK5ovfwOAnE0EI3v4sRI0YMiInzGDXg62+EJ6WTQiCdhSFzdJi9kloqJnce/TnF1EhgP8eGOgw/hcBo7mSirY2ZpiZbzTTLwTrTUUopdtGKU3Rwl/VZm3rkhppwF81M7wasdCuAbHbfPN+/wcre+qujc+rLeKbDs0jfw1GQOSRPOH3PcNe0vlc/bukq15IsX/4qt2bzDjcY1gL7nYcivVglqs/vBN8+Esm0U+9SqSXOkqr7MQ0rPlLUtNtuw4q0GB4Mw5ITdHc7xKZ53Gd5Ox4w7YkkOjue6rXbY/AmOxZIabDviU8yNn43Y+N3MzJyC0f6vjeXkuy/ImLZ8cCTo98UK6UWCJzmkjOmQGsI/SqsFWRt76XqP9fXKFsSXWQSG8mjY5YOoJUqsOq1jK3K9j4H4qOOTSp1JPzLHWX6ib4tnfS9nJFAH7H8H4qaSSPQtDxPcmqtvaawLq44sbUMd8ZiKXSMGDGeDIhp9Bge/DbhnmdTuI1MN0dPRe8mrs3h9Xcku4dNDfNhFl1mkFS+UqVGL8A6CjO8sOJGjpeQE+R55NQcjc4dpZSSANvLyyE8Vqx4FYcPf9nd87HcvblcD7lcj12xNreCmj7DomWzM5h3EDmDXrUBT+Gbfa+CyspTJGlIWapJnnjrKz7C5Xh4zFj7URQt8P3YyrTg3XsCIcPtKEIpZZNSipK0v9cgpexBe0VJuSRqrJSqDOd8tTRvY2joRmfpyavQHOG0i0xmHWPj9yClPm/k9tGjN9LX9323XXZ1XsnKla+rUhcD5xx2d13D0PBNmEbtSR3y+T5KpXEA0ull3nMjkE53HO73Mkuphd1zikmphQBZ/lkifcvrb6i19VS1PKWsF25Tch26sohi6UDkZmUlh19AEUX3L7kIzL1EPRRlXTfK7G4mfyfBHdWa65zPc0RDcwsCMKSCkbeY/ZkGg/ZpSLXppBddCHmQQjmps0rFSqkKKGZhyp5Fp2kRpKKDmhgxYpwYxLT5KY6KDaD8B+e91joxQXMyyZTt69g6Nk5Gb3HXc8KCuRqdV399+hPxvNXn3o4r7ExUIqWiF7nKHPfolfAq9vdaTqXOz/a+VX9Y4REz3n7NOfua5AsD3HX31W7dm7TTgfMAWNZ/F8/96Nv42J/nVDQASo16BWd8DA7klaXv+TxjpCxR6/w5BI0Q6vElXGTwmsyLUqosQKimlJobKZXL9ZLNHbTX98jHE6X8OXTof+jr/6E1m7eSYN26d7Oo+5m2z5VFxjnHsVDgkniqJ3R4UiqNnWssFLyn9fxc9/0HPsvMzF73+9jYnaxY8dqKzyh/e2tu3maRUrIUua6DkZE/89DDr3O/q2ojK2w1pH/2vXqvjZQGPT3fcGf4TKUWs3LF61yiObCu/df1lFrgCXIxKbWAEZjCUXivwBobla0174RDHcVJhJdLbi8rJZqgYH3LVLwvqhzfHA8j4Ck1tyLmjMa2dl58ocLRg0/AtpfwA+0wE3v3s2KoARPhdoKkUDwZ3Ml4Z8ScVDmKWfj3M2HGNuJMtcA7H4ZMx8mtV4wYMeLJGU5ReH7mYZrH91k4fQ9LZZ7US7zhjDPpfZ9ljquYJsq515VtPTR8G3v2fp9Eop2VK17HgQP/Tu+RGwBJQmvlzLO+yOjIn5iwp6FPrDxE4hFbxl6hNlHfw1BrxFcy9LehYRKZOUiLdhRlWrXvhdkFG1662PFQSoX2wfyoAfK53gCJUhD9cy7Lj0pm5fXAdAPmcJlBI/na6Xs+42NXuT7/hIunjrev0zyQOoHAVwhY9zTYeUtgHY+Y9HtKOaSUQzJF1+Vwz9fYu9fzJlOUlC9968SQUj0936BQHHS/9/X9gLGxu+jt/Za9RLB+3XsXlJG4k+6oKv7JBZ6ESin8KkJ71sh5mt3TOUerVr6Bwz1fscutdq96588h+8waqYTTM04acwrTLGIYM+ScCQ3moJQaH7+Pvfs+EljW3HQaHR2X1t54gfebYlJqQaNy46mq4q6r5PlumNVNMj1YN/QWm7gXZvhNXmVTGdUJlRWPJeAp5Uqta1Zw3rFmkcaaqV64+DS+MTKC3Ce9ujgPWKHMSRlXDdlS1u0wNSWbIteJ7IxJGQd8YCmkZryZYShMwtiBmJSKEeNk4kk40Btj/nB450jZMivrXYYWhNTSQqCaFQIyNQeGxvjEQ/T0/BaAVHIRA4O/xDStaegLxTyDA7/gcM9X3M20dmjf2I3snfvxHFl6CQr1v1Na2vrZdpZlFn4WkFvXDI+9vDzYqGF07pEmdlAkKiml7PVrVcxVSiXLlgWNled+AzvKGq+k8ut5TJ5SdW4r8KXvVUr9Cx17LZLLS6f0K6WOh6dUKH1vnoJ78Dl6rH4KvPbn8MAe7zf3PJR7StVSSk1P7bLXS6NpTSxd8kL6+n9sb3NiXgjO9Vm8+HkMDv4SKQ2Gh28NrDEy+qeFRUrZSilVzbjL5ktZtn//vzMw+DPAIhw7Oi4lnVpKpnED3V1Xz8s+XDj3EoovNpmf6+5c146Oy91nu5RGRTN4//lzyL5apJRzHZYsfgHDI7dSLB4tf/7atakHziyEqeRiEIJCYQBdn65QX+f5FPawWpgdqZiUehKg+mtSoJXKCYdjbm5VdlqX90GNwhT7wXLGj9vZkY5YN3L/szSE862u2J9na2Q6LxCeFFtB8QmiBIojofan781DHb+161t88r5Puh2hZ619Fp946icqrq8scEnnSYFzHVKtkG6FicMntz4xYsRwEdPmpyayU8EAQCDq6xpUaTBCMcDQQKRobNzIzMxedGPaSxNrOo3p6cdc42AhErS1nc/Y2F0omiwrezZ2mwfWPIdkqg2YqL2ygHTaCkgwNFB10k12MBIipWp5eIaVUv5g5ad7f8pTlj2FJY1L6h/Qc43Og6l61j5mn6ISBdOX4uZ4uwQufSA1bPb7cY71Ze0Fdj7wfBShkkot4awz/4dEoi06fS/CUwr86g5n4qA60x9RcK7F8fSU8jyegqTU9PQeisVhhJKgteWsulLSAkbnzgB1+J6ITN8r2b856rpowsRpR+vWvZvVq94IQP/ATyPrf7zg1CGdXm4vMN0276lsqqdxnWg4sxUqqj/Imp821dP7dXR90v2eze53P1/ylNtoaFgxL/sBH5HpS9+bL3LNeQ4qAYVn5XPk369ik1K1TNe9NMqUR0K5KtLZE/bOc7ChYZVLStW+D+L0vRjzibJRMO9jstQGgFJDlpmdmEDRqk8FGnixOvxQ6D6p57aJ7pR5Cwcax2gttHu/zIr9rn80yypxThbr8wcfKSWEx1dLBESRUvOAe/vvDXRo7um/p3oVfe3LP1vhqY2IC7IwBxdixDhlEE/GEKMWnPeZ/71Wrv71e046UXWK5qZtzMzsRUrDDVgcpYGn7EjQ1LSFsbG7EMqx9S9Uo0DrxD5o7C6rlwPp71A5nydXQvsBhCKte8I/4l7hFgkSOMGR+oSactf54J0f5Ozus/nWs7/lUVW1OigR6XuEU9iqVa4OSNMK+hUlhWFk5y+9zSVVBEkhuaTJoGj7teTzvYyP30d39zWBTco8pcKkYNmx1+8p5e8zTk/vZmrqUQBSqaW0tz/l2JTsLlGYsPfrncOxsXvZ/uD17vdly17OaVs+WrtI+2849dP6zUktLU9JdD2l7LZXiWjwq8g8OKO7JyodzbnOXvqYcyyq1mxXRY/e9ARCSskjO97MxMSD6LpFdKuK31Nq9ucrmz3EwODPkWaJ5uZtLFp0rVvO5s3/wtTkDqTUGTz6W0wzR6k0WhcpVSpNsnPXeygUrLTIzo7L2LDhfRHH5CilxLyn7/knJPBQ7Rz5lFJqnUopwyYHlTRl94E/9qrz2gSeFc6yCm0vrI9a6KFdTEotOPhGYupgKSQ58umjAFxcMBB4RI/T+JwZ4KZGvFQkZ9lcYIrZ6mrKhzF/fsad3Df5X/zXyIdhpuznCqjkIVEdUkpXmXVylVIGAuEppaTHkkuhImtNrTgLOB2l67dcz3cf/27N9WJUwQJ/iMeIcSoizjA+RRF6ZbXkFtHcezql0kDZqvU2ERUnpd4385k0wA6GFTeAdzr+nrfJbGchDiNZnGTl4J9g2XXBHyJ9jnyBv+H14UzFCHmTQK2jD5MmW9pP4y7fVkO5oUAxtdP3HKWUp6wpJ2bgWDxtPGPslK1aC5Ulo8jHOsr1EUv+rTOZDWSz+6oGwBX9qMrS92rNvudP37P7q2aB+x94GYbhpeZccP5PaWk5s/ZBVdqPfaxKhNF5LncosG42e7DOMi24nlIh+GcU9MN0PKWE02ZkpH1EVDvyyIkTQ0rJMJmH9EhrW01mypNPShUKAwwP3+x+V5QkjY0b3O9zIXP27vsow8N/sL8JLr/sHpx7r7PjMlYsfyUAY+P3ks/3lqXZVsLY+F2MjHjeY9PTu1i79l2oangWTYfAUZnv9DO3bUV44UWvX66UMmUtpVTRXj/le7+UE0v1HpNDQAUmkKj0fHFvztmlKJ8sxKTUQkDFdhg1YhZeZYqptscBWDG0GGxSyl/k8i1bOe85L2By2OpkNHV0svL0el5q0Y03YejHLpgVMK1mkbXYrTo6GLU8pZz9QW0F9XGB4siWTRShuKOe0sf64/eUmsdKqhXyosMIT2e8wJ9bJwbS62rF5yNGjIWBJ+PkQTHmF/4msHJsG4mZVqQUmEBCz+KmENWrqnbfyYov3crwAlElSEpZQbZtEK7MgSD1H4CU1A5GHCmP9Egw0xdEqQaghI62VqWC6XuanXbnWR046gRfNavB8etS/Kl6/mDSWXbs6XuOMbaloIk+zv0HP8+YYqXNdHU9nUWLnlmxXP/gnL9Lmki02HXW7b++QeMqnlLW8iCJMTujc6sWhpF1CSlVbcIwpikUhyqWURfcNq0Fvlt1CHl21VCAuOs550+Cd+95EEIhakZBJ90tmCJoAsF+q4xIdfLSkE7UC8H24vKRed7zwfHEOjHpe1JKcrmDmGYRRUnS0LCmzGtJiAQXXvBzUqlFaFqbb+v6SbzxiQfI5XpcpZ5TvmHM+O4F745xUuDMOhVjjsm4Q/5ax6YDQVLKU0r5Bw3mi4x0rqtfqFElfc9vdG4/h3K5Xp544lN0L7qWlubTy/fgeHspKcLph3NJp/OINM27n+omG2NPqRhzQHnuugi89CpZLkU1N1VLcOVr3zTrGgSL9va4vDRJT10lVPaeqqnQqbeTV80nwtdT9JRSdZY7n3CnrzGDaXLSN9ojFN+7Yv6UUscyahgj6jzE5yZGjIWBmCk+FRG+6oq03qF51SSpw/K+26G9w163PlrKnWRcCpcQ8KfvuUops1wpJZTZvxNSOuRD9pn1luKRRArSVFAU01JK1RzhC8IjjJztgoa7LikVIl8qF2h45QkFv+fOvCmlzCCJUU191Nf3PfKaVeeh4T9WJaX88HeZvBS38oAv7CkVbmjh9Mj6jc4VTynlI4kaG9czOfkwx5quFibL/Mfm+es0YJq5mgoQb7tq+wun7/k9pcKz71ntMmwyHWkK7XqdnShPqWD6HranGfhI0hOklDp48HPsP/BZ9/vq1W9lw/r32nXwyM2mps2+rQSOEq0eZLMHeOCBl0X+Zu3DmxHP3YNL2NVHzjnnK5Xs8pFSEdfT96zylIfzlb4X9tarQXj5vN8SiVYASqURDh76b0ZG/8SFF/zCXbVQOMrExINkcwetLZSUz6PP97x091unUkp6SinnPFROfXVIc+c5FXtKxZgj/C4/BaO+l8Mxd9PrKkD6/j0R+5tr0eWeUieFcHHT92QwfQ+BcwuaQmVX/oVMiv1snUehUlnHKYRjIa9OGcTnJkaMBYOYFj614QqKnXQE+4XanJugoIBqRgdEDww+wJLIksJKKS8tKKyUMl1jZp9SSkQondyvNVLohEDXGkJLy2mqC9MPckFHDiP7B8g7qhSBaaooiolUTDAqe2ZFLfIHNs4x+VcLK6Vq3niup5TqklIeAVKfYrsWykmMYCA29Jl/g/MMt9Kp1FIKhX4MY4Zq8JuV+2lMJUTcBPpLbj8uQiklcZkaL9itQUqZPgIvkEKKt5x5UIjIUPoeflLKOr+qapNSFe6lShBIShoIfQq/2sk6Jrsvauo8uvNdZGf2UyqNWXVR/CmfEccXYZjvkX0nylMqpJoMpO/ZpJR5YgiyqenHrLoIDSl1pu3v2DWzENJNCgXpI9JqwfF5UpQG2trOp6X5DHqPfMue+c1Pbvl9+8JpztXhPE+DRuzl51AGCLD59RJz2ptSb/qery7NzWewaeMHGZ+4n6NHf+POiudg+4OvJpt9wv2uqA14Sqm5E/bhZ3etOjs1h/rVwycLC5syO2VQ4WXl69gczYUluzU6O3PsutfeStTcd/Q2NfbrqolmWTS1CRW/p9RJSf3wz74n/LPvgSaE9XAVCvtK13Lr5F9ztNwaY9aoNCNMxSoGKNA47AN8jWUubT5GjBjHEzFXHANAsfvxqi9lRG20gkTN12n/1PD3KTZ7wU9ihWfEq0R5SuF5SnkKAH/6nqOUouz1EHzvSluj4GHSnqHdUNNIEU67K0ejkmdRQmI23eaNeNukFMDI4kfQzRDxEiDGvD2Mjd1Lf/9PfXUtV0opeKSUU9Dg0d9y+PBXmJ7ZG11Jd+RfxU3XizARPhZSJUxKhQmJqZv+gNRLbq0bGlba25WqqhAqeUo5KW7VlFIeeRdO3wsFnbXS93xtzRtMdNq0cFPXjlUh4gbV7rH50+lCxv51pu850BOCP51R5LY/nc2hQ19wl/vVX1PTuxgc/CVT0zuR0kBRkqRSi32llLePKP8dN5VPSkqlccYnHrDTzY7Mqs71ImyI7U/fc9qjeYLS95zr0tZ6vlUXH3no1TMc3s+O1HTaQkPDSs45++usX/+3BFPPHOWNn8S1B9nrJKUc5WlQKRellHLiGf/zeb7ilCjivLZSynoHCFau/AtWrfxLu5rBOuXzfQA0N59Bd/cz6O66xjf7XtR1mq1SSg15IEata/2tkWe1YBArpRYaIjOG7NvP91stb03JfDQ9Efpbe83q8B/A7Lacy978snPnuTkwkefRIxOs726iITk/o3e1K+KbfS837j5MpRQkhMq23d9komk5R1dcQJFmCoV53HWd0vtYKRWFiHMWG9rEiHFSEd+CMfxQzOCAVvcZkyQ6GwE4Z9HZKKIXkEyn4aeffDYfOOM9IATZHTNM/vYg4PUoTOkRRNXS9wSqR7TMIX3PdLtWwiWZqs3hNyMbyJAHYbqqLhDoepJkMs/o4l2UDk4R9GIJU2FQKo2z/cHXBJY5CoHATIV4ZIthTAEKvUduoCW/h8b+H3LxRTdGHFRIKYUvQKaOwMs0IT9uBbkN7dGrhJVSwgseG84/D3Hz7YDXgQoHu8EZtmzMDMNEr/V5cJfrqQVBAiKMMlKqojm3o0iq1Wn3nasyM2Ql0I88JpTNvucRCH6llLVqvZ5S5Z8mJx8GrrK/+Y/JIlASiU62bf0kmcw6EgnvekeRJlHeZE55plnk7nueSbE47PzAxRf9jsbG9XXVvX6EyAtp+tIdHU+pE5O+55BQqtZk1SxAhjnnL6yUEva7s17io5Y6rfzedonOej2l7PRQRSQQQg08c4N18VLdPDJyftP3LNKudoqj1z79qaRuAnhobavsM8/4L9LpZYHtPHJ59ul77nNQaJju+6MCKRXxaTb7OtGISakFgLraRp3t51iphRNNTZQZt9sod6OKXrFetlyxexrfuvsQ37r7EOu6Grn5b684MWSM88D6wz8j2jNIsRSwOsAgWDyyg8UDdzO5cgNF2YycB+OrSuabZetFKaoW5rPqxMMdYogJuxgxFhriu/IURej95L27rB+SjZ759ZLMEkaFhsQK2koaaJ2d9nZZtwwlYvIRv/ogbHSO8NYTIirfvtZLtFrrDaqsAEpuKpSvXCnYt/cilrXsYU2HCWI0sFW5PgsMI0cCyzS7teVs2tsvQrOns/cHR0KA4QRr0jJRVxQrAC4WR4lEQCkVVgPUmGFKSvjKNXDkfuv7hX8Fz/5k+Wqup5SffLPKazjjdJQ7H0BIj5RSFU8ZZ127iJDnx2+A6UehMYO4/6uIRQ5B4k/lDKXvIcr6jmVq87AHUZ2z7yFUN9D3B8zzZfAcTqmcGH+ARx55C5nG9aiKRUa5Sqk6PKVKpXGO9P0SOAMBpIpQSBJI/RO+WdOcY9LURjo7r7D2Y/pHYiNIKUdF5m+jdnklfdwlpBQliWkWyWb3UygMMj7xAADp1GKWLn3JMaWROt1Bl6Am2lMql+vh0OEvYhg5NK2J1avfQjq1JKrIOcO5Lppqke9RaZblsc3s2k/07HDOAICM8KTzE53RijHTLFAoWFk/qdQSbx+KhkUKVSClXAJMuP3x+TI6lwHlk4qUeg01YoSXFtF1ivKrCntKzU0p5VNVOs+metP3Yk+pGPUgilwJjFuFni8J/QQ2rLJO4PFjLeqfXdl/dqI7eH4/peecsZS7nhhhpqBzdKrA/uEZTAnqiYhsOtZZf/UcChmXiBvMt7CiMGCl8OGd13klsOs8vjh9rxq8F2HM2MWIcXIRP59i+FF/n8GfkhYqwx1tVtygwa8+cGeVcoIoFDdVJbqPP4uORcXZ97xlpo948yulJiaWwKE052+RSB6uvSs7oGpuOo1zzvlGsMYhTynP2Nn6m3ID60pTjztRu+LOwBflKRUZTJZyHiEFcPCOwM+TkzsYG7+H8fH77F34FFABBX7wvPu9aqxAOU0ZpgbcPpnAR835iMeoILVm+l44IK05+54/SA2m71lphcFzOlc419VJmSsUBxkavgmGb6K72zKDd8ipaul7hlHAMGY4dOgLHO69GcSnAUljQaGQNEPEhKAsJTFw4/jVIpWVUiJSKeUQWgqtLecyNn43uj7NozvfjWnm3NXT6eV0dFxa8XhqI5y+5/ecS9p1KXG456scOXKDu1Ui0cm6tX9zDPuNqIl9XVSt0a6Ld50ilTz47+86SanItDZ/P1gGlkD19D3TLHLXXU8nX7BT2pq2sWjRtfZ2SZsQqkCu+AjeqPS9mZn97Nz1LkqlCRQlxcYN/0hX19PqO86At1NtNWJ1pZRPlyRlJPEUJpz9RGu9fZtg+l4wVbp8XXu/x5SddOIQk1JPEigYpHXVlX0355xLFx6tmX9ULNP9IYpQk16aWrVahX4KlzQfpmwSyaUburjlvVcyni1y9v+9yVou5yfJsSau+AfY+EzQ84jHv448uhOA1NpzONS8mxVm3hbdO1N7Hvsuw0qpeZvt8JRCHPzGiLFQEQsYT1UEn8uKjBow8Jb5lxoVRpMdTylT+tKMAkqPsFLKS98TankwUIeLpv3XRCBrDvS5fSjh83LxycwVM4GuBYNQKRTcQNreZMqQ3M8VNOobyI1NcWlbk0vChUmpsnMVUg2VwfQrpRxFRZ1KqXC6T2gfDz38l5RKnkLLU3d5pFlUdy6YvlchpUiaFGQD2UNv4pOFRsYnVD7dP8LbzvlGmVLK26fwLoPrrRMqNhTU15x9z69+KJtZzvPSOfa0Jate3V3X0N5+MaXiKE/s/wyl0gh6acLam52+p+vTbN/+KlStiY0b3k8msxqAXK6Xe+59DoYxbZe5FgDNMFk9qDHaXET61E9Bo/OIQD1AUFXzlPIrTqzz6hA0ipJAUa3rXSyNuIRUKrmYQnGQoq/9zAVhYkxWSN8rFAbcZaZZrGmyXw8sJZSJpVhMeOl7kUopvxeqH7NUGEWQJtH+RfWl7xWLwy4hBTA1vZOOjsvc7Srda+AjhYUCEel7w8M3MTW10/0+MPCzukgpKwYMekRZxFjt9L1oosl/br3PgbThSMWjrWqtd/Y9J41cSYBN/lb0lHLbQ7hdLMz4JialFhwcIqecnkkbGntXTtGS1VANQbPeQqPW4lvDGY2Yh7HkuRI2VXdcKbsVz+h8fnYERMlXg8vmIUuuPigKrDjP2n/vb0BYD0+ttYm1p51JUXzf+s1VSs0LK2WXWaf/VqyUKkdgiCGOgGPEWAhYoFYIMU4aygfmpDAprjOZaeyjuNIgsd9qNIZ/dqyAd5D1V0rhBht+lYgSmupc+FQ0ihqVjla9mq6llGJWWDlcnC+QEOVBZ89QiaPnNJE+JGA/GKqgpKaAYHD456kGfiLeAVngoSf49bkbOa+10TlKdz0F/8CWgwpBY2EKjmwHe7ANn/+RF3g5GiSTbClLMhksooxoCc1i5szStqj7WWiJVlYsfxWDg87U65XPn0UWWH1is5LPjTQZKWzAyK5nGMCAXaPdPDG+ljXLQ8cceanLF1rpe2FCrhbx6CNryjyl/D5dx/oAtLZXlCSLOixlVE/vNymVRjAMK6U1lexGUdKYZp6x8bsBaGrcyPr17wUsQsEjpEBLtIMOmiFpKDr3j27vTdhG58FjCip5/EqpKE+hKFNoW6lm36dCJFDsdE3/rH6NTZsojA4GSGY/hodvYXjkFnv9FCuWv9ol34IIzr5HRPqeaeYZHb0dgFRyCbn84aqqm3rQ0/MN9u77iO2JprJp04fd9D2PlCpXSoXTtESEmqcazKjUs7JrGCYXvfQ9w8hjmnkANK3VU3epjRhGDjAplkbc7aoZdkufGlFEpO/pRja0fr3ErZ848qmOqqrJopRo5URP8Bz5DfpD59BVRlZSzJYjSikVp+/FOP7wDcB0pDsAGGovcuPF1lSdT+3fxOYj0Q1s7q8tZ0SuchAuYVaS+Xp2Fyx9voqOIqX8ezrx0Y1/9r3bem5l+8oBXnoc0/e8B3j1Qhf6NKEnF/5GE0fEMWIsBMTPrFMZnhJbhI0phWR08WMMv1dnmJ/Be6HlJypSVE7f8yulnDQpf/qe6yll+oMBRynlTaRS7uIUtSD6d494Km/XpnuMXiKfXyl1374pzr5cY3i5rdioMJBSspdlRJGsTHK06FeDBT2ldFfR4nREK5h+f+vF0Huv911NgFCRwLRuERffeuw7nCVNVAHP+cmzuf70t/D2c97uO0CvzOmMysCiGeS+j5FKLmbFile7J2nz5n8mmewMeBBJX2c0/EywDOkTSFms6HODNDHta75U7WFYTVEqLsJE9VLmoozOQzNGV0rfU2qk75lmkbGxu5iYeNCrc9m08dVTCWcDzwvIp7SzSRUnuNcSrVxwwc+Ymd7N8PAfGRj8OZNTjzI8civNTVvd+6Ct7ULOPecGHpnKwgN7EVYCrHVcsuiFEyieUioqpcltrxVMpgMpVs42wfQ9ITT3OEq275miZFwVU6WZ8Xbu+lt0fcL9bujTnHbax0LnzKuTS1D72mwy0YmmNaPrUy6x19S8lVz+8CwIkmgMj9zieZpJg+Hhm91jdjylgm27klJqlp5k0q9OcoqMUlv5rFTsc7P/wGd5fPcH3OUdHZezccP7rVooKYTQ0PUJCnlbVSY0qk0q4N1kHrnpf7CahqWKU9UmDGO6sioyXGrgOLz0vWrXLFIpFaF+8pcRTDsNnkOHaKvHhH509A527novpdI4YPmbmTVIqfLZ9xY2YlJqQcNroO3pdoTMVVk3AiexFdYMGCr8PBdPqVq7Cr5QfIqgk8AvXL3qanqSd9sVgAN6n3eV5fyRUrM2Og+cl5h4sVCWjB0jRoyTjPjpdIoj1ADCk98JQE9YfSVhqkjFQO+2lVJucGdSlEcppUZRi801jc4dc2MzkE5lG51HKaXCFZrNAUUsdz+JCKWUhOxEiu6uaxiYecT6RfFLkcorsFIdZ7e+KKQHCKbvlRF4vrSlAMYOWH871kGqGc57PRzZzgPpFI9N7GdDGh4eeoQzO+3VNJOJoz+np8dKwWttPYcWscgtbveGJsbbinD4ywA0+FQrXiBYwbDa34/BCgYVRcMwim6K0209t/HBOz9IXrdUHMubdIpjVrkNStaxwwLpXeOwksvLSqjiKVWWvhdNBhw8+N8cOPgf7ndFSZYppaxrE0yJrATDyPHgg68hmztkHd+yl7sKJ7tQu74+ZZxN5jipZkJoNDVupKlxI6ZZYmDw54yO/pnR0T+TSi5m/Ya/t7YTCavv6AysSlAczst/vEKBkEIkSskjpcHQ8E0cPvwlTLOIEAk2rH9vKH3LKT9ISimK5hrbl/RxwJpF0FXvRCilpJQuIdXedjFj43dT0icjzmp5Kpaf5FLVDBdddCMzM/sASKeWMTD4c4aGZqPaiYZzTZYueTH9Az9hZnoPuq1Sczyl/Ol7bt8/bMQfmDmvNmQUEVg2c1zwOiaTXQC+mRAtjI3d6RJnikgg1EZ0fYLRMUtVJpRE1fp5BI5KVBqxYadqappNStV9jP7r6p+8oEr6XoTRebRSKpqU8u47w11i3RtGTcJwaPgmisWj7vfm5m2MT9wfqFdlVCIrFxZiUmohoEL7D77kIlQ/EVPXzW+2aKXGK33/HusuKh78sRcd4afkn+7XPAnky5Urr6TtvCw3P/RfCGmP9zoPwqKEJJj6/Ex16kctVVicvhcBf/uIiakYMRYU4lsyBvje88JP4lif07lOco1HXb7FIRAefPA1jBl3wxWg5dthu6XaeWhwFe/4ueDs9ku5rstLiRFl6XuKu6xx0SwHC60K2nWP8JOKaNdmwNfF8Z70DyQJzjzzv1nRdYQd334zqhph6O3tFs1Vhvl267uhzmrQmTJMjAO3+fRbdmBlluAPH4ZMJ5z/Bs8P6vrvQfdme2WFPk1z79FVzasR4gnA5JUdRRYl9rNn7/8FrHSeczd+mj1ntWKogpmMai+3AkzdVgVYcGY89CsPHKmZLHso+BVtDhnyx54/Mpr3/IX2qqBoFnGh+AI7iXA9chwyUiIpjl7CgwMXIYFcaSvTqf3u+UsKybsX57n9ttMJG2NX6jE7Pjvp9HLS6RWsXPWXZLMH7Dp7xICoRAqGMDW9i4nJB93vh3u+jqKkSCQ7Wbb0JV7w6guq1TJSyju/XV1X0dn5NAqFQaand1EoDrpqINdDyNeelai4RCjefep6FYWJRWv2tYH+n5DLHXaX9vX/KOC35RUaTLO10ves4xgbs5R7qlpdKeVXGHV1XcXY+N2hmQCd9YJpXuFthVBIp5YEZtmbL2WboVvXpKl5Kwz8JODLlEi0AaDr4zz++AfIZNbS3n6x/Ws4i6Y+UtNBFCkV9gULlAusW/tOmpo2Y5oFVKWBzq4rueOOS5HScFV4QkmyePFzOHz4S0hpomlNdHRcxsDAz+z9RqicXNWWL33Pd6867VHTmikUBmZBBIaJozrusQij81pKqQCJ7noW+onW+iJ3w7CI9FUr38CqVW8klVrkKiwre0rZuykbZF+YcV5MSj0pIMpetg6qmoifZDh1i/J2Klv3OEQYkZ5SfvLlJN2TrrEoAhOJ6TxkZ0xIwvTD++DFx7aPKAVU9Uod2/7+d8N/chbmgzxGjFMGsZIzhg/u4Jy/WThpQ9IOAOz4QbcDHn/QrqfH6EiPwXQ3U8UGdgzAwZFn8+KzbnQL8wJRb/a9xqZNSKnYvlAOJI6Opj5Iqz3XaNL+/pGI8JQyEUGFsyRAWoXhzDpshO4lgYrE4GUdVsB94LZXIvis/atNQAiJ/PNnrL1nurzUO8UXTigqj2e28b3kW4EE6dalDBd+zcvlN2mxlWVtbRcxPn6fNYPbwA1MtCbczTUdGlu3MDFxf0AF4gR/Vr/GMXIPDh6JwFePlCoWR0gmu9BtEu31p7+eWw7fwsHJg0g7wBQBXxffjHe+QLkw+GwKbui0mMEBBdpvRyBYkTRZmvDKUJQkzS1nMDzyx4rX2Cl7xYrXsHrVmwDoyR6yf/PUFFEqlcjy7POVTq90faL2H/gsYBvERyi7PKWUTRz4yJ9EopWzz/oyplngllu32us55JWtQvL2jiItQtGrpkDTWj1Cw0cw+OGkMOl22Vb7uAdDn/YRWRHm0o7RuUiQTi8FLJIGoCG93FM5Rswk6F/mmOc7PkihNX31tInKgPKq3EbFU1zWl0oWhpQmxeKQq9xqbTmHdWvfzUzWUmM1Nm6ktfU8QGCaRY70fReArad90t5/tKdU/TO8RU1SUO4p5X8OJZMdrFj+Sve7YXgEn24fh6Ik2LD+79iw/u+C9asy852X+eEp7pCSfU98iqNHf+0qs1Q3nbE+UipMHFXztfLqEqWUKp/ZsLKnlEOqOW3auhWcR3E+3+96bTVm1qPakw6Al6aYSi8llbLVpbUmQCh7xi/sYC8mpRYynMZUrRMetlM4xl2KKFOE+YoB6gkmqqxS6aeaKWq+Lf3vwZOhlAIQit0BkmBisn9JF6tzCsLOQzCmo16Kc9wXER12HyJNOuOgz0acvhcjRowYCwnht5P7jgv4Ojl9J3uho5QyraAhPBJ+cWaIvz//Rkb0c/nKQ5dRNBM+BYYvWHECTKHQ3LSF4p7Xsf/BW7kot5+Uv8B6X6FCkl7zOMZ49cDV5yQVqZSCWhO3BNdVK3QLNnAB/eN/5mBTki5NUkjiUyn4gtOmRTB9FPLjLik1Mv0gR49+2Tr3K3XuST6dPmWdtX4BDvA8XsY33ZosXflXjE7uRDGn6Zt4CA1Y3peje6RIIx08fkXGPi4/KaUGPktpVuPeQKiuUmb7g9cDsFrZBkBXuouE6hgzOwOFfkt5gSjaM6fZ58DqM1phU2fHACOjS5CmZQvfwiQbUta1aWo+k7PP/CKqmmFiYrtdXqUp232pSW69I1LdROWg3Q+HLNG0JjZt/ADDI7cwNnY3udxBioWhSKWUQ0o5+1NEWMUEQngpoY56R3FJKYc0kAihcNZZX6YwuAP6rBSzraf9K0f6vm+vW04w2bWwyraJsUxmDePj96Ab09EESdhTStFYseJ1NDSstkkzhY7Oy9m//zP2aatOSqkuKRWllPLHEEHlXVm9nGUOoVlnKlkYDz70WsbG7vLVr5G1a99ett6ZZ3yB6enHONzzNXR9wiX1yutTX/txED3jYYhYpJz88sM/0YCuT/mWRVWwnAD2KuNdf7+x9+HDXw4o1poaNzE5+dAsSCk/2VinYsm9X8OeaGGllL/OfruZ8Dl0/NRgYvIhHn30He7+Gxs3cvFFN7qbGjZhqioeUVXN6FzXp+jOv4nPX9WLpjhtfWHHMzEptSAQfQOIiE+1cPKFebPcc61Dq0AIuIrtOvZX0VOq5pbHB0Lx8u9NJINtLWQvuIqGnuPgKVUnoaJEjPSc8ghcCBGxLEaMGCcaro5hYfetYhxHBJ7MZayEdIkKRynlPL5NaVIwCpjSCHQ9Gra1stnYR0nr5isPgW5qDBspJBop38xnpi99DwAjTWEihVTD709Z4XMQQtXpuOanjK1vh72VjzdgK+yQUoRJKVnXPSGk4Y3rh95nqziN1kd/zXdOX8IL2kqW7stdxwu8Zcd65MxRMPIgdRRgd+9/kCscsVboBCEtwuIp8nbuEpchUZAIVLvz9ofDNyPyMyxLgiYtFUX7eInOsRI0Si9IraBIsTyIQKpWsCWJTt/r7n4Gvb3fdJe1mpYni6Zoni+U/VfxK6+KOcSD34EVDcispVwwfcxfU9MkI6NLMKTkrAaDp8pbodX6LZlaTCrV7VTCOWtEIcpjyVMB+dP36jOq9lJMNbq7n05399N5/PEPcCR30CIsIjylEsmOQBma1lpWruW5k0TKYln6njt+Z/9tb7uAldrp0LcbVc3Q1LS5XIUSInKc4NopO5m0zl+hMIRi7ydKcWL4jM5VNcWiRdcGylUUxw+uPH3PmcVOCNVVpESRUv470KlLlIIvcDxKNMnS0/MNd4a+1rbzWbP6zRH7g/Hx+926NTVtJdOwOnI95xr3D/wUXZ8IqDmDFSonlKqhmiIoqNarHDsIIexZHHOuUspR15WvWzl1zvMU83m5mQW3rZ991tdpaFjB1NRO+vp/EDhGKSX79n2M6enHAcvEf+PGfyKdWlLm+1RPiqw3UUD07JHees51DxOW4fvAU3/NTO8FJEJoSKkzMxN8KXiG7uWkVKk0Ti53hHR6GUII8oUBxkbvJCH3k7Bv01RysaewWqBZHzEptUAgyz6A0+kQMOv0Nue1M/t6SPfTHHZYARH1qFl81eGvumoX5SkVmH3v2GZqnTNcCToC0y8LPg4PiXqlmnWn+Z2SiM9NjBgxYixE6E7wF+j12J9D6XuGNPjlE7+kPaReSK5qhANwgCX2ehp/MfUOWvgLPsvfE54NDTfd69ggpVV3vVn391KcX731AmRMUAUmbBLOKJNK+dNqslCwlilIVOGQMSGYBoovm9AU4BpW+wiB3rYp9q3uRBY+h3hKExv3CVehsWzZy+nr+z7SXn8RA17xKCh2gDlZnObh6QRPb7EMfou65KnjdqAvDTfYMmV08O/8Prn8T3C0y0rhEcFrIoTK5k0fYvOmD3H06O/Y8ehfo2AFi5qiobgpTdZfBY/Yk3ipgD1DP2XwzjuRTS8CNtplS/s4pujWrM85E4Z1wdalL/NdheoDWp6iwu+XJELH7kslxATThOHdlkpNKJaXlxI8Xw4ZA5a3Elhpd1FKqbVr3kYquQjTLKAlWlmy5AWRdVWUJIZRdK+1EiIYhJ2+Gjg+36/W8TokXHn6nlNHwPVnclLxnP176zukpZe+F1lnW+FVLI4Egnb/tkIkXZN0f8qZewwBRU3QX85fl8DxRPgTmWaRPXv/H86dNzzyRxZ1P5OHHno9ubzlo5VMdnHuOd91y7/8sntIJNojjy2wv7A5fjh9L2LWumqI8v4SEWq9WqGDqlqklOMT5m+XgfpVUfxIvzrJroNj9g7Q3n4xipJgenp3WRm53EEO93wlUF5r67m0tpzjmoQ7x+alOFYj7iorpYLpexGeXPivk3N+fT5Z9jVvbj6dycmHrBLNAocOfZFC8SjTM3sAUHyegU75ff0/oK//ByxZ8iJSyW4OHf6iu84jQ1s5Iv+af33pVZTs1MCFipiUWqCQgdx2AFHXzHQnKnyu9Nqpjoj1ZlPhCrupRLxEES1+pdTJSt9T7PS97rEkzX8Wvhl9joNSKoKYi1ovRhTi9L0YMRYaPFPd+L48JRFSSUs7GFci3mViatRSrzip8dJgKHsUJ8TTJWjCC+QOS28WOCRMKm0MqaspT6dSKeomB4tpBpKL0GVwRDtK5R71pjVLdpCtVH8Tmz41WJRSai0DsO8maNwQuX1DZpL8lLOVRHXNn0MrSgMV7x6TQiDyY0AbIjcBdjw50jDjDpRKIRjtSLpkyPJlr6Cv7/uuObuGpxQxUdCE1d8xTJO7ZzT0pou5f/B+1hRLvFa3d2waZaSDdexegNfd9QwGBn/mfi8WRwLPBMv33FvfITSEHXCqQvX1j2yCT3hKKSkFTQ3rgT5MSuTzvSjiYRxSal3bGg4eslTmDWoCKLE9q/HDsSQva7sYD84+KoyCBhQTzhZBVYs/YEYa8Kt3wnZP/cXWF8LLvmGfL0cp5SOltCYApqZ2YthqC/+5SqUWR6aGhWGRUuXeU8Gx9Ar9ceeYzHKywy4d8JRKjY0bWbP6r5ma3glAQ8Mampu3+Qq01p+c2mF/rUB22Ne9r+979PV9j8WLn8/p2z5j78smtJSUm8KYyx3mvvtexJKlL2LlitfapfgHthNly6I9pcr9l6zPfqNsk5HRP7uEFFgz1zmz0jl1qw/O/eJPC/NXqD6lXbCuYVIlylOqepaFYpN9PT1fs76L6PS9sG9fqDL2St6MmE4KqRBJl+gK3CM2SqUxABKJThob1zM+fi/F4ggPbL8eKZ3r75A8DoE8N6VUMH0v6vx5+/DWFb5l5Yb+o6N3uJ5wDpxZDgE6O6+kv/8n6PoEpllgcnIHyWSnXU4CQ6a5ve8ilixajKqmKJULBhcUYlJqIaAS2VI1Wd7ZNHqdOVMNQvg2dkbi5tr5F6G/5XB1Wd7w1Lwhyk/JX5OTRcc0dVgPlJSukhoFEwOkNwuPWcd1rxt1FhXPvheByNn34nMTI0aMGAsFCT04qJNNtJPP2Ck9+SlAceMmQxoUfUoIwyalzAh1wSKR5SiNrF7zLgSWubCbGoXgrd9+gJuProHla7hs6HHaGfPVapbv8Bqr+/t5Diklff2EZ2v3kP7+H8itf1nZtiAQwgvSNEUjk14GuSxm2ITZNGwHGGe/IJwAb2oQWqyPhn2a2ljCOAOYChh2gP+rg39kMVQkpbzPFtKaFRCWQjJ2Tynl9+7xtt+27dOs6P8bfjf9HqBoBXQhQqSn1Mh/7+6hYErMYhNns4Z2aZsiK57Xi0tK4fXDJILmwlK2PnCYvkuezWjhD5g9dwHXAXCmSPNHJM9b/3zecHoDBw/9N3pU96DGoFb0LGdhNYXqWyZh0CJqSGSglIXBR91NTdcXymccb/sljY3d6S6r6O1TBc42rtG5EjQ696v9y47aVYNUUPKIYDiqqhnWr//binVpbNwYKE+qa5FSlg1Gd3VeSX//j92gfWL8fnR9iiNHvuvOcqgoSdLp5bZPWZHJqUfI5g67pFTU7Hu+mkcOgHuKqugZ2TStBV0fJ5+3Ul5bW88lkehgePgPlHwzTooKJE75/moo0SLMuB3kcj08sf/TFtEjFJYtfSlE+HhFeSdV85QCWLb0Onp6vwl2WtriJc+vUH9rPw8/8kY0rYVtW/+Njo5Lrf0F1EnCrrNF5PlT2dyUX98xOl5WqdQiMg1rGB+/l1Jp1CakFLq6rqK76+pAHfwx0NjYPa4vXCq1iHR6Rdlxe5+jPaWCxxmlaHOUkc69690Lum4pwtLpFSxdeh3p9FJaW851f29vu4DLL7uLsbF7bd880712p2/7LL/Zu5kHBnfxHN94y0JGTEotOJR7EQj3nwgskMHiWVejppdUnb/XseOFZnS+ctsZnPnO1/H5Wz7F5Y84jLf0ZPLzUa2QmqAW0RQcYYyJFwteVytGjBgLA9KTSsWIgcO3OE/r7ZvfzcaEPQOVEWwrpmlSNLyJRHQJKXyBnOJLeVNboFiipJzG6PRBa7DIJnGKJLn3yLhddHnKUq2XeFnTVaqrF4JG5+XvpaK0u/KT/dH788nsFdNA3XsTdF2K/PXfwmUvha12oGgaqNJn4rDuqXCgEXJgGr4p2O3yNFMDBQ4kEzSbJRQBn3/4y/zf5WDayg0/KeUn1ww7cEqrDinlq7A0vZRJV/mj8qv9v6JnqgeAznQn18gL8GbjMjFTZkC48Z2JZfx8yklXSXCAl/FG/hMQAU8pL33PU0o9ITayednL0VeoUIRVPJN/5P1u2drI48BmJNJViRkRl91TPUn2ZfOMFK3zsa2pgSZNdVOFgn5J4cA1NPueYavHLn0X3PpR77v/fPlmQ1y86DlMTj7skh1NTZtpaFgTqOfvdg7wTz99lIJukFAV3nftZl5+warAOo7KxVOpBJVSkel77i1Ynrbkx5o1b2Vg4KcANGY20tS0mWpYueI13NW7nv+8eQemVOibXsL1Bx/loy86I7BeW9v5XH7ZXczM7Ofue66hpE9ypO/77HviX911EolWUqlFXHThjUxN72Tnzneh6+OYZslW4fg9pUIpixGpe9YP5aodPymVSFik1IydkpVMdKJpFuvrqHuE0FwPq1ooT38Le0pVVkodOfJdBgd/6X7PZvezbOl1weOwvthl1K+UWrfuXaxb965a1ael5Uympx/DNIsUi8MMj9xCKrWUwcFfkMsdsvbuU0r1HvkWEO2vJKXO9MxexkbvYGr6McAmZkXwmaKqGc468398Rxe8ZqZZ4KGH/zIwI+Pq1W+NOG7vHndQSSkVJgcFPrLPvXe9NuaU09CwknVr/6b8xLnH7t1ffg+uUBV95VYs6qQiJqWeFLBaT6owUWWVubpIzS9qjAnVLsBeRTFm4PbPQmFl9Kb1pDKKckLGMmu0TtfJuimFELStW82hx7Jc/oi9ULr/zBMnFUzfq7heHODVhvDktTFixIgR4ySibIprqyPuPKFXtiZwvA7ciep8SqmSTynlhGeu2kJR3LDaHC2Qum+QN93cD7SxtfOt/O15/wXAdmMDkwUdAeidaRiqWmGfWXgFiKgvfk8p368OgeVTSg3SzgrGbHIiab3XAwpx74tqlmzyxZ6NcP8tHillm6A7a5eSGUakFZDdZkyx1l5u2HU4WiqipGAyodBqn/Ok1khJ5jBFdaWUYZ+TlGalJ5WEADVpHYMvfW/nkWGaAMOEf/zzPwZO28amf/d8w6TJ4CsHrNnw7API2Wbry1MJjhRK5Enbx66iCY+U8vtzOQReD6vQfQHlYbGGqWSz+11x0gqlZ3rtD9V/f/D3/P7Q72mXw1wMPGKs5UP3PO7+vrUxzR8v3FJh9r3y9L3A7HuGvadko30yvZwc11PKp5RKpRZx+rbPUg2/e3SA4Wnv3vjVI/1lpJSTCjc+cZ+1D0cp5cQfVZt5UA0SDtZXrXw9q1a+vmodw9gx0ELP1AoUO8FjV99kxXUTCYvwMYxpxset+re2nENLy1ksWvQsABob15HJrGbnzncDku0Pvopksot1a9/pK6cDx/AdPEP2MBRXKVWBlNLayHGYkZHbAMuA25lVzSGl6k/dg3BqXblnl0NqehfJMCyvJ8dQu6P9MkbHbief7yfrEkFaeRkBg/D56Rtv2fwR1q55O4cOf5He3m8hpc7evf/CyOif3HVUtZElS15ANrsf0ywhhGD5sld4dfH5eO3Y8VZXCQfOdQv6rpWpvEJKMF2fdgmpTGYt2ewBjhy5oWxbv1Iql+tl954PUygM2L+FSMuyc+jFF54fnKeO80jc6uSffyIE/zPlyTa0HpNSCwEV0svCSxWpU5WV1j3SSgJaV7ryuseAeeVyQoonV0ZtTsEfPgSJC4DqxzHbh6IjTz+ZiiBFKEj/G1yanmx8PlMY3YfsLJRScYqahajTsFCHF2LEOEXwZOtkxZhfhK97cmovhZkb3d6sIjwKRpj22na3yZQmBT3nbqtLqzcgbQWU6aT6mVAczrmkFsCesfXu5xmZ8gyZtIg+WSAFv0pLdfouiqxgxeClkpkSFIGbvvdIw2puuOBqJIKvlZ7Lh/q+wNOKY0AyWDaeUkoKy3tLsd9jphBQzHq7M4Ok1GRh3FU0SSwlkCpgRObJADnDpBFo9vVlljWvRJfDdZNSnlJKgJqySClpuMHbPQcGuXoV6HY9ljYuRREKR6aPkNcL7rmW0qTUUYJhK5BvaTkbNbkYKLIyneRIoYSB6pJSqqLSIAze3p3nUV3nl4OgZQTY/E7RVgX9/YGv8Jm1r6OEip72VBmKHaxafUm7/fi6Bx+/9+MM5YZYlzS4eDH0SYu8SCmCgil5Ilew611O0njqKodsCs0M5iijHFJK98ikKLVFPdDtym9d2sKu/kn0CNlXc/NWstl9bqDc1HSaew6sesugOsOPstn3qgfZ9cDJdjhjeSsP905UzX7wzyg4PPwHAJYuvY7ly18RWE8IlUxmPdnsPiYmHgCgqdFTbSUSrZx//g+ZsU21W1vPi95hhGm230do6bKXUjgwiCl1VLWBxYue66ZX5nK9wOxIqXIPq/D5DZqUS2lyz73PdtPgABYtfjajY7djmjn6+r5vbRVIq4wiVOYHQgjS6WUkEh3uPhxlX1fX1bS2nkdHx6UoStJTcZWV4dWvUBh0t9W0FlatfD19/T8EPBK5Ymqd3aINW1WrKClWLH81e/b+C7odZ6fTy31beqm1R4d+y8jILe4v6fSy4D7K/KO89D1vWblSqub94h6LWdFk3anBQkZMSi1QSKQ36iBt2WKNeFjO7CSx/iIYmaH9JRtpPH/JrPcbVNZYn1UjyaKpVUA2cpswxlrW17yBKhEfUzSSJoeptgMTiOI0Dikl3AGw+m4qv2zaD0UITHlyqRdVqJi+U2TVZv7S9+pVSjmITYOjEIe/MWLEiLEgYT+W1YInU8on0zQvXkZ+zFFu2C9ZxSFVDEq+VCcntHJGqKVQ7KBaUpqw1rs0vZM78tvQzYRtng0GCTdXS2p1zptb5TVi1jGLjWkdhktK3dm0mcmMbWBNI98zn8XTDvjMr+1jF75/ARRpulYBJgoUp33b2KSUXZ2iUXS37JbeqLti10G3uywZ4aVtJbVGdOkRUGolUsquQ8OQlb5URFASGooU5A2VybyClJBIWEGg06d51tpn0TPVw5HpI9bsxT6llNS887ht26f54SETKJK2J5cxUEmgc3kTqNldLFMn2ZA0OWCnbWppiVKyyihJi5RqMWZIIykBRd0LFgfSRwHI5ftdIkj3kZF5O6B93obnw9QP0e16ntOc4e6JGUqmMwgZ5T0TSnUrS9+zySqfUqpUGmdyahf9I5YaK1ucXb/Fmb2xpUELfPdj29ZPs3bN25GYaGqjG3AH0/ei4UvctI/p2EkpZ2+q4ihNKu9fURKsWvUmhodvBiyz6C7bSyiMc875BhMT2+nt/Tbj4/e4HlrOdWlpPp2W5tOr1s1NbTT9pJRHQK5Y/kpWLH9lYBtnxrXJyQftOs+ClKpBGDkD1Hv3fYzm5q1sWP93LiGVSHSQSi2mu+tqsqvexPCwRaqoapolS15YVobXZsuv4Zf/vJ8f3t+LRNLakOCT153Fmq7Guo/DVZiZunssK5a/ms7Op9bcVvjUaQ6htGXz/yOVsgyVRP9P7N8dsjdcf+sefPTRvyGTWcfGDf9graWkWbHiNTQ1bcUwZhBCobX1fN9+nXNtuub5He2XsmLFqwPrWStXVkrJiJkzK6W7lh174Pp718dNhnmSTNgUk1L/y6AkrIb57hsfY+39h/nq6y+gJT27EROAjNHLuOJJd7unVwLWyEC1mQkAHjr7bzCFX0YbJUcPpqo5o4SG/VAwUiuBgwFlipZQKLqDnPXfYGH6ybk3T5anFDhKKZt8xMonPB5G57UeRC555VsvVkqFYCV9n+xaxIgRw4cnSycrxvyi0ttpVbaN973ur3lBa4tLSlkjPya2IIqh3BCqWeBqWzRxgPXsZilt2RUsocPyQVIFGJLCsBXUtKseaaObGglVpyRVb5AwETHzVoQ3aDUcUVdU/d30q7/sHRftAGzJ2BAD7d3Wd9NL45IyA7b5ej7vBYUKZlApVQoqpZwjABjKDrr7O00m0ExLKpWwbz3HY94TiymktQy6KVwCSsFESIkUwvVuAjBt0iN18HZoa6Uk4JFsB28ufYRh2uAHsLp5HVet/ZW1PoLk8F/ylrPewgfv+KC1zOc9dTQ7QKsWPNduiqDq9S81IXlJewnZ/x90KZbaYUxX3HPrnV+r39yoZ0lhMgVMP2EfpTDIJS110uTko5h2Kpdnue+lT1627HKO7P6h6wvWoCr28Vj1i1I1lE8bH0rfM8OkVJH77ntRYBa34V13sPu+17J53Vp46t9BqolqcEiopGbVQzfL+/lCKDQ2ri9b7v4e5Snl/hgOxusjpQ6PZNk3ZJlVr+poZMMi7zicAWfNIR1rTCy3ccM/uERDNaRTS0gvejZjo3dapJRpz1g4CyItQCK69Y02v3bQ3f0MhoZuoqRPIhAsX3593fsjNDFA+P2YSi5iZmYvU1M7mJraQWfHFe5vl116h5syVv0chdVY5e/gL//5AAOTngfTTbsGedNT19V/GD5fKC/Nzlr2UM84h0et59WWJc1sWtwcua2Vcmed6yjPKYc4Cl+Hxsxastl9FItDFItDDNuplaragBAq7e0XVqi11y4c1W1DZjXd3c8oPz53XY/KddqVp+DyqJl6lVJ+JaWnyFN8ewljYcZ5MSn1JEC1rnc2k3E/q52drF/UxOMDU4zMFBmZKbL90BhXbp697f6ywm9Y8ujd3L2+1a5DUEFVrU6KUUQxiq6PQ3X5euhrGVEUfeP4KZRKtakUtAh7JDRiIOiEQXUejgqoJgGibz7SCsNlxEbnc4CMepzH5yZGjJOJ+PEUIwC7QahSoGsJhBBu9pw7g7ECGDBRmEAvjUMrjNDBv2sfs9RRE7CaxVwiB9HXNNHcP0VJCkqaxkWJ3fxq5iIASkaKVCJBIn0abmqdFtXPqEGYhtrwhGiL2NY3iGcYVn/Fl75XsgOX5nyWAaCoJAKklL8OMzPtOJoLRZqep5RQYfwwPPw9WHKmS0ol7f7JWGHMLUMxTVQpMRDYHA9FQ9I3vZj+mcUAbGzvoyHdwJ5JBbPJMfIyUFUTHTWolLKDt7R0UgsF7008i+GSdy4OTa2kZDq+RQKZPZ0GrQFVcQIw6arhxvMj+CGlRHdSBG3SIpFezt6pNlao4zQo0CQsYilvOqoySUG10uwOCstBq9HIkbKJhYKTGomka9Ta1tSzSFt95894c/tcdj9Ul1adGxTvHJTu+gKyYBm3i+wo3PZJuOe/oV3Cel8ipVDdwFU3smS1IlNdSWTxUVKtGm0TRZeQ6ptezEazj3OPHqR9ch/0A4tPhzNfSjU4BF5SdQie+h+09a3pqEEc0qQ2wTOVL/GMz95GvuSQOXD7+65ieZtFNDi8mWY3SHOeO/WOUskwnNHwWZBSSrmnFBGm9n40NW3mwgt/Met6WmWGUsBCdd267d8YHb2d/fs/Sz7f41N/BUmQqvsIpZlFnQ8nDXRddyP7h2YoRZCb1Y/DO29eW0mwf2iaF37+Dne9dELh/g9cQ1Oq3PNK171jC6jNwobioTZ4+un/yfT0Y+zZ+y9MTGynkO8rLyOyzt6zNkykla8c3GdAEBAxc2a9nlJ+0jeYGvjkQkxKLRjUeJiKcupFICimrJslrWks+eD/4d9b23jrFev52x88zO7Bqci88Or78T6mC+NAa+UVKqBtYj9CmYT22acPersp75jNuogKdXUm2DnZnlKAZz0hvdn35rNWdafvxaqDCMTRb4wYCxXxE+sUhS1C8VLULQhhK3+clXDS9wxQ4B2n/zUHUtNoZg5mvsk47RYhZWOMTmb0Qxhrmyl03UUpuR49tR515zQKJiYKyydewft2XUrPRA5XFxPlKTVLzCgNVX+XUwPIxc5xBpVSyZIVBJVEwp0dMIjgnaJKn1IKASP74KdvhkQjbLgKgBe2bAEeZHnjUhpVz8w6oUsMX9QwlG3k8w+8C92e/W9Z0xjPuvoA3x1LMZnQIA2TPUXUNRKdYPqePrgTgIyPSOhvfwKyl7BZfYK9xlpMFHes35SCki2FcQf1pOkeX1oNhjO39dyGIS+z6jlzBGgkTwM/m+7mZZlJVqdMEvY1dFLrhJAUFbvPK6FB6pw5vYeUNECArnikVJstoDOFwCiOA9GklBNMOlb8jlIKQL/5n+GMJLQkEA98Cw4dhuwIR9pWcRhrZuYlDATS93p7v0HvGQJogeEvwlltnPvwuFvmx+59F7u0NwEwqi2mQx8MpmhWgKtcs9uzPhtSyuHOJG7fPdylLJ99r/Z9MzpTJF8yUQRoqkJRN+kfz3mklKOUcoi0ee7TO2SEaaeCzaaf7JhuT0xs509/vpDOjstZu/btdjkVCItjgGfy7c3Y6Ecq2cXSJS/kSO+3yed7ME3Ph6xu8iLkkxV1Ppy4qq3Bem7Mlih0SClTllzVkaJorvqqIaFS0A3yJZOxmWKIlLJTT33pln5/JuccVSKOFCVBS8uZNDSsYmJiO8MjfwSCaqto+JVSjgorml6JiuQJkX0iwui8plLKp8DyK/LcSQj8L8oFjJiUWgiQgTeZi1pN57HWx7iq4youX345a9asQeuwDOJOX95Kc9q6tFES3HrhVyNFiv+E/3f/D3N4MVQ6WGcULby4riKjPaW85bOo3zzDIaVMRYIhwDcVMfOQvheVlhdjjvDPvhfLNGLEOKmI78AYQXgtwnQHe/yklGU79EKaSSy7iELXSm6/45uYUgn0O3RUinYA1ZzIMG6XMaElUISOKZP8bW+OA0O+AL9R2KNcIf8Wf+3cd0Z5y5UIbuYadirbKhide1t66XtBpVSqZAVBRUXzZmUrQ9BTylVKrbgQ0qPwxC1QmoHsKACnpRfxWAk2tm+gxTYixzQ5/bEp7l/cyG8bMySzBmSbXUIKYLTQyetOv4KkmuR72UX0S7gwn+WnDrHkV0qVLPVJRpqcNbySBxo0MOzgTxQt8k3Co+nz+Rrvx9BUzMsVPrzvCJqtQjEx3WvcpDUEjvRLO75E5yZL4bZ94G5ovpqeqT5mpo+g2wkGCWEFfIbd51KEibT7TM9Sb+M/ilka832uUspJ6RNCoF79YfjVbiQwPGEZVOu+PqcbDLqklPXXr5QqigRSSwEmjB6A6WG+vvQF/MPG97jrLJVH+IL8Eh0dl3Kk77sYhpW+lCoYGA0t6OYM+bQv9c/XRxlKLLNIqYBaJxp6iJQyTIkpJa96ZD/3TVhBfrOm8j9bV3NhWzAV0FPiR6XvBRVjszE6d9RajSmN7uYU+4dmAhkOzueE4yllSvIlg/f/dAd941b7unhdJ+96+qaa+4qCq5QyZ6+Uamxcb5MCOqXSCAODP2Plyr+wf51/Uqre9EiX9KlBnkRuW6aUKn9mlRGFswxB/UopjzzS3LawujPDkfEcU3ndJam9jZ1zYG1npd15dXTTYh2lVIXrkGlYA0CxOAxAKrW0Rp19ackVZpcM19G3sU/lVttTqmc0y+f+uI+Zok5jUuPtV21gZUfGl75n4A6YVCU/F2ZPKialFij8OemVGJvBxkHUdSqXX3h52W+OnHU2ox3zhVnRIE6s79hxyuALrBJhNxuEU9eUBcAvhJVS0ucpdVKUUrHuoByR6XsxYsRYCIj59hgWvIDYVBSLDLDbRjbv9CeAX74DGkzk6nNgNRYpBQhpIIWKieoqLVa3rCKbNSkCg1oCXSmBkaQnb7EZi1doHF7dQYM5ipzyaiKY3fu7pCp8VbwFFJMMR3ylhJDIYEpHreGQUlbAkbaVUkWR9Aywq0Bgotgj6ea2F8GqN8NHV0BxCooz9j7sYEaaXnWkpHVKJ2ka/G5RgtMKkpU5e30MJCqGKVnZvJL3Xfg+/vzAHvons7QYhqXMEgSIN8O0ylYlbBlbwwtf/H6+8vDXeGwAVFFCESaGVDmkbaYknBkF4VdD4zzfr5Syr2NaCZ75/j2voP+xA6QEiJWN0AwaCssNSWOiFRgj6Sql7P6nS6pImsjRaMePqak+aGnl10uuh15rFcU9R9a2qtrI4aLPPyg0MGjY9VTMGbed6EJDNrQA44iZYTBLPNq00dqnzFMQafrFcnSRpLPzCq546iNW4f/SBabOQ8+5kNGpBzAU77z6T4MzgyA+s23yE/CnT0J2DNQEXPRmWHSaSyYkfUqpoaLOLaNeA582TP4wMhlBSjmXp3LrD/cx61ELOXVSFYHqnEdfTON6SjmeYVJy9/4RfrL9iLvO3ftHecNla2meg7duOH1vNulQjY0buOzSOykUhrj3vufa5WRnXU69CM++V3FA2vUvKsy+LmGvs4htvUlJbaJwloGWn1zx9uORUqoi3BTTUigTKKG1Bb4nE52hwoNKqUrE6KpVbySTWYth5BBCoaPzilq1dj9JWe4LFVxTifhev6fUDfce5vv397i/dzUn+btnbgn40LlKKV+9nizdpZiUelJA4k4fE0LJjO6EOMZ/s07fmxdKxIy8AQLkUN13SHR9PJF+lZegyz7LyOUn0+jc85RyRnQl3lStx16+N0oXfQ7CCOY1L0wG/cQjPg8xYiw0xM+nGAGEBu/8SfCRooGBh2G1bWoOJNApomKgMlGagQQ0qCkUe7bhSSWBELpFIkydaZXRUEQ2JUhMmuR9hIAs++CvWfl3Z1BqvdxDP6EZqnztfKRhNRJLxWSoMEoHOXs0Pan7lFJufzDYM/J/VkzDlxLnRJApi5RyTM/tAGeqUKJgu5mXdDvYtc9pUUDB/pwQJYpSDQyCOl1PDQMVE4oGo3obGkVaUxPoWKl3ClBCY0lLmoRiqbJUUXLTFB1z9CuN33Kr+ix0E1TVnhBHGq5SSi9N8vN9z6KQuBOUEqbRhCxafVEx1ALrYYkhufFwLw+ddx0jI7e4SimHoFSExJl9UUXCigtAKKzMD/BQy2kMpleQ4ijSp27oGi5yxdYfonduov+GpxCGS0rZV/3owA/ReCYlkWSgowGpJsAEsWgrtGQoLL8AJDxP/pQfCcvoOpWxiCqx/xY4fI+bpumk+fhnclZ9/qQFYXvh+NM6d/wI7vxP73thCq77is/o3FNKFR2jeEXwvI5WfjQ8zoHRLPtbplnXXW6cLnDOX6U0JQ+yjowARwijCoES0Z8Pq3JMKSnYU0Ku7WrkwLBFmhb1crlOUTf5m+9u5+BwFiHg5Res5PWXrg2so6jW+ZuefizyGGohmewimeyyFVOGj9ya/9C71ux7DpRjUkrVVmM56Xr+azIbeF5cJR/BpgUISqeNhpVSDQ0rOH3bfzAzsw+Azq4rg2WLYIpjJWJUVRtYvPi59dfZr5Qyq3tKhVMBp4ua+9ws2c9yJUBKBdNdZwpBNWyu6Jma2zUIpe85dax0Xy4sxKTUkxx6pIfAsSilohtskHGtUaaThea5PVTeW837I2pf5XL52cAVYc25hGOHm77nV0qFVGPzgZqz70W8MOLZ90IQwtdQ43MTI8ZCwMLuWsU43kgVdK693/JH8icNfXrKoEl7Cc/nh0j7BSsV+MSGb/FPax9AlgaB31Gyu78JihRJ2dSJFUgsbVzMjukDAOQUFa3pcUrjVioYokAhMwqsRJMGMqVWf2dH/hRURT+Xn/ElXlWxiCnSSCyj7Q80fYQx0YnjuZ1ylFJKwiWVZCnPE2qKZfb2ve2L2DBg2MObnlLKfZtpdope0dp+LGf5cD14eJSso/6xYx9hn9Ni02KKiW0wDMmkSrFg8WiGKVEVwWTBTkWRBkZPjvTjI3yKtwGwrLGPc5f/B6igSElBJChgIqUVsCmiZJOFSbeuzXLC2q806Ru3grfe8WmWzCwFBiixjF/sfxZNm+5FYO27aXUj04dm3APVhQZIBqbauOXQlehSZXHDkKtiEphIFISlm4Otz4e/38+ncjO8cKrIBx/rZ8S+pk6XQEiBJlKYfh8YJFOZK8ipi/i3gSY2cya63bYs+tOgBAy3pkk707c/65PQfhGFnQfh6DinHR6FNVZ56zZ+EEo5+O71oFuKOSlUxvNWJSY2vQCMm63yfaRUkQil1ESvd831vOs35cQKjgpFN01KzjIh+O32I7Cqkd/sGuCmH+/m9+9+qjv7WcBTqgLCqppfPjLA9/bt4KMvOqPiNg5RpigCRfHUUA6cT64qx/S26W5KcWjESveLMm1/tG+C3+0cdL//161PlJFSqZTli6vrk/b37soHWAVCJJEyN6dZ/OrfSUgpVTF9z1ELRc9AV88+qqWDOuSRk1I5G8N8qz62L5SpuwQPaC5BqQhBwm6jxYjcwMWLn1O5bFeR5Bz7fF0Hv6dUdaXU6tVvQVHTmGaRkWyal34jw4efUqQjDY/0jrCuFVvRpWARTEGPsDAR55xv/+x7uAqz45AmepwRk1ILBJWol+gvHiqSUq5Sau6eUoFazeK5IuqgVRwyJJyhWJ6+V6n+9VeoPH1vASmlHN+K3ruZkgKFNDI9//urRTQps8iVP2UQp+/FiBEjxgKE5Pydgzz1AZMbz7LfbvYr7Hd5Cdp1rJeP8RTDVjgoMEUjPP1DyOwhuPt36NJSGiWw+lCmUFlWMiFhkVIKFik1o6ikl/6UTR0/5uxCkZ83Z5hofKW1rWki25PYAp9Zp+85r5Ykxaqr7VYvoU9fzkuUexhTrJQU1TRpyU2zdHwIgJJIMmNXJIdKwffeMhXb8B3b6NxVStkraLaixiYofrdriDNPtyYUdwYhFTttULMVLuNSR7f7McmkANs3ebKk05bUODKeh4yKKk3kmBOomUip0DezjL49Hwd0vtb+CHdf8Sy++eB+1ImtqORA0UmLIjNk3AHRlL2DgiH5w64hkp0WKbXc9qFqbr0Ecrjv7fTSH5Bc9H/g0Ax21d36/ttd57BnpM09P8vbH7WPUeLM5+xOpt7QTmtDO8/pgH/f04szx9+PBsYA+G3npZy5u8RH8dLcDuVKjLVZJONPxqCDt/EUrNQ7FQPN7vf1LmliuXnEPjdW3Yq2D2xLMeeWt/3Rx7ggPUqrngc1hTzn1XzowWaaDu/gvMXwkz05LltvHbtmk1wlqaJbei8+WVzGvl9+AwpTdBQE/6A10da6FEb2Wimfu3/L5wbfgUgVyDyssly7gC8Zb6bkqFOEIJe37hMtYdXze/f28LQt3Vy8zkuREgF6OIxypdQfdg3WRUpZSqngMvCninnqLt2X5uWYo5ciiJGCPaNfJqmSLRqMzRTtwWGvnou6n8GZZ36RUtG61u3tF1asazUoShLTzGG6SqnjYHQeIqUqpaaFPaXm4m9l1pG+l5ij+bxzbu4/MMzK5gIpFd70rYd47WWWClFVBAlbdBGlgKunbFlDzTRbBGffq072NTauZ8vmfwHg23cfYqb0KM69kVad9E4NIRSkNMuUUkXdVi9qCgXd9JFSzvU3kc4IAqJsQhAPC3OAPSalFhzKG4r1/ooW3RkVGGtn5CDqYTwXRL9mapXtEEz1rh+xxzo2qaQGctP3QoV4dlUn76ZU7JfoSFuJ5qwG0rSszkt7IL3umMv3HkR1Eiq+1WKllAP/eYiJqRgxFhLiSRxOUTikg5075ryv9CUJLty/k4eWbaSYTlIg7ap7jC7Jucan2PfEAyxb+hJrfWkFDRqeBYJuB2wPHhqz0lBUyCoJito2phu7uLfx6Uxr7RTt2fJaTJMBIaiWAdO7eClbqN6VSVKs+ooZVtbyWPoSzt/TBZugKZ/l87cf5K7EHiha9Z9MNPP087/Cm/Z+BiMcEPl2bs2+Z3tKOT84SilbaeUoh9IJQSapwoynglFIkmu6hhmlCZlrB2DGFxye9qcdPLW5EXOqiNA1pvQ0wlbqPPe0mxgdb+WOvovttTUemj6bxO1DiIJXxqjSRMk+H6YUaDvHuGfmbBJiGCMhOVf28Dgg8Hs4OekpdsmZHm/OGB8p9bPup7F7sAOB6bKIM4U2a1sh3RkZ1YgrlnTYLQEPTM6QwGozRw34zfCku96EnfJoeXIpTNGCjlOuSVJRwYS7uJwt7OKChnGamjYDUHDUSWYRzdTRFY2tN15Ha9EiH2lbRfaaT/DN23/Hm+VO+6I4NhCQEBYpUUJDR+GxxnX8GxugCet/4Mypx3nlsi6LlDJL8OiPWWQetc5HCV6p/pH/Nv+Kkk2Qab5zuKIjwxFG+eodB/jqHQf44HO3smFrV9m5CjfnxsYNge99M0tqqmgMX8qWqjjpe97vbvqeT0VlOHVWBZoiKAJGhI2JMwnUkpY0+4dn0E3JK790D5mkyt9cvZGzV7YhhEp319VV61gPFFtFZ7iz+B3P2feqp++Ve0rVXxdRppSKIqWc9D1HvTa7eEKxJxMwZQnFTq99fCDL8IxF9qhCkNSsOpcZnddZf9dAfd4M530p3DWUUn44qabphHXMy5os5Z7iKqV811MEUxbTCZWCbrr3kHcd/V5cKicxzJ0TYlJqASCq0ST0NMKfcz1bpZRj/HdMSikHwdGPmlTUbGKFiilrod7EHFCJkPFy0+dc9DHDUSbdfvYIDdkuujKbUPsOg5R15drXi5rpezEBVRlh1Z5/WYwYMU4K4lswhgVbbW0TCyID5/bsZUfbakgnkQjSOY0sBWQKOnmcQ4cep6PdGnF3ZoJL+EgpJ93pjn3DiMUlSMD+lguYaL6QiYgabBh8jD2da4JVEsHumq5VDnycfk+CUtU3sYYVzI4mLd8pzTTc9TPFPGpJx0h43XlVGrRNeySJvz4Ckyk7Ta5MKWUU7eXWuTlnVSu/PaAG6np/55VMd7wWACWbJckYOdLujH7KeJF7bu5HAVLAO3grTj8unSjw+m038IKNv+E9xc+i3jWJWbLS5RwYXSmOtj2CPLwSgMK4htabZYguVFst1dFq1b9LGQUygWPxq9XM7FFAczulhlC5setyOGKnL6ZURN6gaFjXfZQO7xxG9D0T9jJDaG6/YGP2ELvoJOeb6brgqBfMaaTaQkkkKdrKPBWdjKoyasJPxUsBeN/SJUyPm5zZXHJJqZRZRJM6OholRaUgEyRTKcTZ15Mr2bMGmta1EYqdAighiUNKqehSZTxhpdh1F0dYXhrnocb1TF79L1DcAdu/Yc3YaF/3G/SreKX2R1QMDFNScjhLIdwH7/LODOs2drHv6DT9E3kOjcywni773MuKnhzd3dfwvYOfYXd/H6+4cCO/OZCjtaEGKeWm73l92WpG56YpXR9dTRG+wfnya+msl0mprGhvoHcsx137LR1ca0OCs19+dtW6zQYuKWU6SpjjOftedaPz8tn3ZkFKEd5HOSnlvJ8Tc559z57AQS2g2SSwIVUKdptXFEiq0alstQsPGorXMwNkfSiffU+pg5TK28fUW3gmi7XfohsmnS2ddHVdzYGDn0PKck8pj5RSmMj5nuEBg3jPU8qFKPuwIBGTUgsQDTPLedn9H6BQ+hqSMZtciW5IldP3js1TynrYzK33L6QkU/Q/LCL8eCo8C8r8qiqmUNW+sYTHeEVueRImJnSRUK0Oio7Bby8ZZNXAJFf1LQLgIFv4yace4OyrV7HunLnlsM/W6Dxq2xgOFvZDPEaMUxHxXXlqw/OvcawAgi3CRNCRb0B8sojZYXL0dRoJtYCuW2lWhmt07ldKWe/ltKbgCHdG0qsBSMlpLuxYwuYnfslrnvgazZuu4Wc9h/nN1me56pq5IumrQ1R/SbXTfiYTthG44SmEUnqJ53/vF6x+5xtY3JpgFGgw8xjFfOS+xlIr+LVhkQiOUiqbaEYqDSRlkYQ03HMjpYmw+5K7E+t596bzuLfpdLS9kzRM6xRydr1Vy/8EQJ0qWcSQgps256C5YcayaEwp6Olm5FZBx9EBinqKa9eu4DeLDPJoKP1T5O3yJnINqJRQVBO9OY0yXqRoWkRUizIFtkG8MTMSPm0YtiLdMe/M5jXu0be49ZJJBZE3yJqtANwnnoIQ9nTyEf3fdiWoWgBIGxZRlvepcYoOmWJOY6gtAEzpmuWhhcF7l+b5/c4n+E3zWQD864EBAJalEixNWW0wZZbQTANUS431utLf84X3vZvWTIL8mGNIHyalJA02cVdEw0CQVa02s7QwzFb9KA81rqeQaALDno3OLLmzNvZKq7+pCRPdMNEd0kcI17k+nVL55hsu4r9vfYKP37Sb7YrO1FErvS0qfc/fnZwodXN4SkVqq4HdZUqpiVyJh3rGAWhrSPiUUAqqq5zzpe/Z19GfKual7ymu2XaUIssJ7jVF4btvupjth8f4895hfvRAr6tgmS8I+7niKKXmkjJXex82YWRWVjFZ69nWIXNQSuFLEauEsHpt9rPvWbTEqhZvBkVDqu410RSFhGqV6aSy1V22+1yb7/Q971wXS/bzoPZEqO4x9Rsv5caD1/Bw7wRf+YvzaWpaTLlSKpiymE4417E8K8avrvIi6PB9uTDjvJiUWoBIFFvsT1ajaZk6AO0i0kSwslLKm9Z1NiiIHIYzs0fFTWun7bUVajzUK0UUZRxU7frXSlErT9+LTus7kehMd/KSjS/h/p57GJjs8/0iyYsm+vdNIM3DcyalHNSb4rLQZ2Q4OfAppWKj8xgxFgRidWeMIIKdBqffYhlWC5IHFcQBQek1DUFSKiJ9r4gVPC5qStFjq2sKmqWeWc1Bfnj2ZXDPTyF7CIrDAYXPXKrsiKITjiFTBZRsc+vJhEXGaGbQtqF9dIIvfPdRWkoT/AXOmYi4TwSgJDGltT9TwicP9PPpNf8X1lgKq47iBJNKA1/lDZiTSdKGNevfz3NPp5DLYGZSpPYPUcILe2VKRU7rCCAjBQXA7G6gdForZxzI8ZjUMVsSLGoeBiDrqJuWST7X/za+OvlO3njpU7mn5whT+SLZgesRJdtEW9eAEqaiYTZpKONFdhnrMdQDHE0102DHlWb/o9D8FPe4DaUFU0sCOgINMVZAuXeMMf9lSKlACUwrFEpSQJVFSgjXm8mPM9NZ/ohGkhzXL1vD93aNu4oqv1LKIaWEmSdpFikqSY4IS/mlYtI9PcFXev6LewsJPnbxZ8knW3h4KktfocSMTZYkZQnNDi5LQsOUipty5igshB3CqaqnlLpaeRDAUlhJlaJqneuMkSNtpzvmTRPsWc4wSq5SKodn1o40XH8rTQiEfUwjJZ392QJNKRVjdRP3NcF9/VYbaTCqt2MngE5VmD3ttV+5h4d7PU3i6y5ZA4AicNP3AqRUOH3P5ynlV0pFzULurJdQBSs7MqzsyDBd0PnRA72zV+DUgKOUGh7+g308x8OAOmx0XilT5FiUUs75nLa3rZ2+N1uj89bWs5HqGgqFfhQh2D22kZlSxiVjFMUzOn/X9x8k8SOFV1+8mvddu6WsLCklj/ROMGqn/i1LWHVxlFKGKfj1I/1IJM3pBJeu73Rj59nBO9f3HTzKlg742I17uercg7zmKWsqbuXMbJrSFPeYnLYX9ghzPaUcpZTmGNaH0/dqm90vZDz5anxKwGrguYTVeeoafrTimjuGd/CuW97FJ+77RICg8h7Gs3u4lkSBX/b8N7rhH2WTwVTCOlHPLHJusWWrOh3MuQcglcgnxzAxQtF7wiCE4MOXfJjPbf5/rDviTQXdmO1nk/kAcGxMdviYKwVy/n24qqo46LOwQEcSYsSIQSyVimGh7DkdrZwqmVaKmhNQmdKbDc2B0K1lbQ0JzJydymWrHJ629EzruxPM64WyWexc36VA36J6Q10me2n3USVRaws7iOrNWHUKk1LhY5V4KS5hOME9WNqmW0Y9g25DqAylOigkGpgSrczQwKTtn2WO6CT2TpJ41Kprc1qjtL6Z0ultGCsybsXPa7TWF4aJMlLg6eu6MFY3YS5vBCEwsTyWAITMsYNt3GNuQQhotMmK4vrNmKm0fezWSV3Smgb795H0WYwnPs4ntr2Y76yxAn7TCCoKJha/n4lUu31CBC9psAyVNMWgo0XjwnOWgGb3eQyr3I1iD1uF1d9ONFT29tREibNaLLLHaQO5ko/cdJVsOhndUjX1K9ZciGny7P/dlymO93PR5A5+trzEjedvYn3Gap+OH1VbaQrNDi51YflDOURK3jbpFnZbVGwFl5DwnsSPrHVkAh2FrG1+nzHypGwCzU9KTaJxa2Ilt7RfwBMdaxhOWKqxfKHA675+n328uKkFD0xmueSexzg8/iDJtLXf081xXjG9nf+z/wvu+Y9qfY5HVFKLVjAdHLHOVSZp3YcHhmcAq806/Xn/Jq7RueoE8J5liar6SKmIzr5fKeUgocxtML8Wkgnrvp2astqWZp/j+YTnl1TL6PzYlVJHjnzHWVC2Spn5/Cz70YlEO6WOb/O2P36Srz7xJb66662AcFVFqoAzV9pttGQyldf54f09kWXdsvsoL/j8Hbz+6/fx+q/fx1fvOASAtM3I9x3N8rYbtvP2Gx7kL756Lz+4v3dWdXVgtU3rXGiKdf4NU2H74fGq2zlm+ylN9c0oGBxkqeQplUoEz2+QlPJmFyx3IVnYHadYKbXQIMNSbk8S25ItX30kP8LNh62pYM/qPosbD9zIaH6UvUfOBTbM6eFaMLM+9/45wEqEjV5eAyI06llprXpQaaTAuTlP5ux7LoRVS4ec0/Q87UY/KPPDicQKqPlAfA5jxFgoWAiP7RgnH+EBK+nKdqw/JgrC9AKzku0bVChYZrJOitqR6Q3QKEERiJK17MrN3Vx8JEP/4I0gi9xb2sLfXHqtVZBLSuUdf2mMpLUfRUoMBAmdwHx6ld4gDQXJx833YNZ4x7QkTQaAg01Win/CCCrk333NJj76189mYnCAr7zzBgAakxrZiL0nhXDP0X/fug+5uAEyGt8+cx3LUgle/dV76NB28potP+RflX9hbGMLlzTcwV2jF6FMlBDT1r7bM0mGF6WRLUnEeNHqWEnJSs0i8ZThAsnhAu3PXgy2vdW3eD1PiE1uXZqVJF8r/T15DFRFsKYhxc7pPLIlCQkF8oabNra4JUWPagVo+qhKctRS52hjFqlWlEHvK6R0CUdpKDTOWJ9fIf7I/7tkCV/peBp3HnUIFDugzGxi96hFHGTanlJ2HZwmJ6Xkq7cfsI7TJqWGRnvJZy5GK/VRvPt/oOPFCKlz3YEfsmuzZWLexBQXcQfPMA+TsgNS0laA/enNK/nZ0XEksKpwlHOmHvOUUoqGiUKhZPKfN+911UROqlNCtWIGXWrcY25hbVcT71RfziObznJTGDNmnrTikFISbHPlV674a+7PrAerafH87GbuvO/VqJhkHYIHgTJapHVyCjMjmNKamBp5iDOTq7mbdl6x/5u88ciPATDbLuWJwSkOFYr29fAQVkrppgzMeOeoYc5d1c7t+4ZdRZgiBGqEp5RTekWlVJWMEdd7ykfeanP1KqqBzZv/mcHBX2M9HRQWLXr2vJYPfr8nR0VX4ZnizkA3e6VUV+dVjI7eaZMeAqXhSsZmirQ3Ju19e+d5rkbn4POHE54qymkbqiL4h2u38JqLVzMwkee6L9zFWLZUNnMiwGGb5GxIqORKBqPZIJmfs9P/mtMaU3mdvvEcc4VFABkszgzZx6BUjL+n8iUe6Z3g8KhVv5SmuOdLd5VSDillPW9zJZPb9gwxMm1dN1cp5e7D52tlD2Ls6p+m1y8NfRIgJqUWIBrJkSWYPmfIBl5yh8lpWy9n9M4/sXRSpfu//p3h3DA/3vtjdo3s4r23vdddP59bDmzghnsPcfveYf7ikjU876xltXfuTk0XWjyL+tezrlu8u7sKW1XJXba2kzWJl7DiSKkzpe1Ewa9Ck75/jwXu7Hs1UhX96wkhFmye8cmBf4jB6+jGiBHj5CMm3E9NOO/IVMPp3H7JM2DmG/aSsFoo6MXpKKUOH/4SAIbdiRdgP9cFBTvNpu3ef+evzr4E46GvoI4f5MWFD9OZeI5VUEApZQX24ysa+drTFRYNza5VCkAxBKbir395qvgyczcHck2sL7YzY6Q4s/cJ8JlyK46SRPj7Et72DcUCYPknvW5xB584NIkB1v/2Jh0Jla1NDYiJEpmGGVbQQ7PIMppp5rSNB/hz/9Ukd4y5tWttSHjz0KjCiolMyJaCgd9FazvRto9SggAhBXBZ4zIelIfAJqX+bfNKntnWwrv+tNs7DXbQldZUzMVJjLECSV2iT5cQPk+ZEbMxUHYqdy9/e/hPfJK/wzCSfN9WU3QwCbd+jYYlDyOb3hbYprNN4QlbLBF+1d/5xDA7D3uB496jluJOtfuofenFkH4byBIDvTdYl0fqrBk4yDv0HzDdqMK6K2h8tI/+7GKOLrqEp1xwESw6zTpPbU1c1GZPj3fkKCB9SikVHZU7nxjmk/ccwFiWgdNauaPlMtbzEGqmmYc5mxmlmV3nvIvXb13G/Y/sx3QM7IELJh4l32mRY5O6wVQiQTNwMGH5i22cOcTextXsz6xkRmngR391Ac/82V7rGAFRMnnRI7ewcfF+/mnju3isab2rwmrRp9lprkY7++V8dP86bvvMnzAbNbhscYBEcj46SilnmcMLOalJjlIq7yMiXHswWV6emyompbs/TVFqpO9ZZSd86Vqqj9z69SP9/GZHPwBtmQTvfcZml3yZLRobN7Bu3TvntG29EK7RtaOUqjQo75AZsyelVqx4FQ1t13HJx//oKpeaUrdw5z9eRUs6EVCxJar4edWCc41V4c266KS6KXassqI9Q1dTyt3H227Yzpkr2njLFevdchxS6PTlLdx3cAzDDJ4T3f5+/up2btk95La/uUDTWimVRmlOWuq+6VIjzRXKe/VX7uVh2zsNLH+oZCh9L+wp9dsdg3x5x73uNg1JJ33P+h68jtbCN3/rIUby1ntCKWsOCzOWiUmphYDw289uk81ZSdG+QpIkjQW4Nr+Bke23QUJw2qqrAMtXatfILnfzq1ZexR/Hs5SAo5NFjk4WebB/H/90x+/Rpp7O+tZNKEJw/YWreOE5y+fpGCIOwEX5w1FW+i3MVs0jQRMuecEopWTwsF0ych7qN5su8lxM0f9XIz4PMWIsOMR3ZYwkeabSF1JMtMCM1SKOKlaA4iioJCLQWPaPnsXy1sOYpg4I9k+sgUUOKWWts73FIgiUmSG4498RJWsk27BTpxKqAMXu/Ot5hLQ6aFIR/PYChetvglTAs1yweGqwypEIsrc/hZblj1Q93mZ5lLahT/CBnvO5t7SeotDxk1KR8L2/Fk2NAx0oQ3muX9XNgCr54pFhlram6bUD+kbVOq6iYbrKrYw969/veRbmkgaUlIp5v+ULde6qNu7XrQBMasLtWA1OBg3WNyxq4sartvGTnseYntlNUpiM7ZvmlztW8aKXn839jim4ELQmNJ7T3cp7JkpuFCWKPmPfjEbpvC4QgpJpsulAFvmwVe8eGfLfNEtkkhNozY+gldbRnemmhSzP6dRgqI1GI4exuhGzM2WpsTTBORuy3Gu7ZTj9xnsPjPJft+zj1j1DuAbVwiPemvUZXjrwB/pS7dzRug2UNNsbN1qryRIzpFk0UmTRCLB0LQwXudk8jf/Tdx3pXys8r3cH73/OaXz45zsZmi6gKoJ3bM1yLpCw0zTHtBZ0RWNkpkhpcyuyw2rr93Mm9/NFsLksktb/wyMjLinxkb2f5XkT97Nopof/6Xo/AD8eHOPHNPB/l1+HbgezX935AZ52zlfREwk2XvZr5KFR5Dmd1rWxi09g0l20pBf3tJ7pnoM2fYrfGBexZf3rue3eBwEr5a9IkJRwPidVL4AuGSaqomKYHqHUmLLuK2fGNVUR7mBylKeUQ4CYZUqpaul7QZWVvxzdkHzoFzsZnvY8sk5b2sKrL15dVs6CgX1+crmD1teKRueOp9Qc0vewUiwLuomqCEwpmS7o9I/naVmSCFwbz+h8VsXb29jPBMW7JgUfQekgnVBZ3JJicLLAb3YM8JsdAzz3zKWsaLdSa51r7JCgRcfc30ZBt85FS4O1vHgMBvdnnflFPvub7zI4WWBl53J2DG+hu7v84KWUPN5vSUfXdzfS1ZTimduW8MChMbuOjlAgmI6Z1yWKsNrhsrYGzl3Vzm17hnzpe1GplILu5hSdjcn5i/WPM2JSaoHA33RFiNU32jtRm5oCy/zN75WnvZIrV15J3siT0TIsaVzCK2ZeycOJLyFLreT7X4ZR7GTy8PUAjI5ZjX/v0QkySZXOpiTnrQ51cIR/H9Jn/uT8XOVJM5uHkAh/DSXARhEDdfIslVRCniyy7loeV4QPZ148nZzT6EnRYswZsSIjRoyFhgUmeI1xguApyJ33u4EAdmtL6MRLazNRyB+edkmqm3ZfyGTTq2jPJHj2GUu5+9EHYZEVcIvJErIjhSE0kJIt2QMw/qAb1uloFHXTCpAC6XsZf1V8lfQ+NkxYJE0lW87io6fRdeskXFrP0UfZIlD9Zgj9lNAUd1R+rFlzeZav/2k/9+w8ylReRzZaG3UJK01sv9gIApataKHXJqXA8nuSYM2+JwQguffAaHB/qsK25gzbtp4HnAfAqx66G2GMoBvSTT9xgk1VsdIAnXordrpgKqGQURVmDJOSlCAELTrIlHUsedukWzinRBYoKYKGFTdwwZIL+Oozv2rX6LnwnZdy5f47WVHYwUDS8sBS9WE2pzeWiaI/9fvdvmMyUJt209h8lIn+K91j/Mi+z5Exxlh70X9TSm/lDx2XWHWROnlSGEJFlQZkbaN30YBhSmaKBj/e3sulG7r4yYPebGNLcuOcC65S6rVnfBy2mawsFay0RmBjJsXebNBYfLkY5IhczKChu+msS4rDdGetyXS6juxGaboG0w7S72o7m6IzC6XUaRsdZXjxYswQUXHJ8F0kRJ6kYvC0sXt5Vu5x+ttPg1KW5UqJB+TT+bqxjo/6gvqzVrZzF6H0vZCnFHhElT9lrjFl7d8hIhThkVJ+8YnnX+QppRxVlKoKVKWyWsdJk4pSSpVMk+mCxS6v7sxwaCTrphIeL3z33sP8YZdFYJ+1so13XL1xVtsnk5bizZnIIZGMJq0dEmpyakfge73IFa3zsHFRE2PZIoOTBffaBUgphyicQ6DlklIBpZRndO7HN/7yQu56YoR/+/0epgo6kzkd2q3fnGucslPdHh7aypIlL6RYHEEIjd/cdzoALWmblPI1rql8iV8+3E+2aN2D67obWd/dRFsmaalEQ2htPYc7B6bYPTjFC1qXYci+snaXLxmMZYvusfzi7Ze5BGzCvieyBZ1fP9KPVjTRBBwanqIBkFKwtLWBX7/jcgC+dddBwC8iKL+OEoVPv/QsnrrJR9gv8I5TTEotAEyNhKbutXsvTidm4t3vQ/zxRmtZhRt8WVMwNe+Dl3yA3+z/DYY0+f09M/QNNVPQ85gYJDtvozh0LaMzBn/1LctUe3mn5LTlCuuMRlJRO3AR1aCDwnOHWCpXQ1V5OFXs1FVIaKvDeL3i7BMRMuCTBYE9q6KfO5pHk8XZzL4XG52H4SNI49n3YsRYEFgAj+0YJxmyyjdcpZRCYaiAikAXCsMlwY8esHKzvvTnA8hlFqEkgOT9wzz7ohX8escAZ3RnuGzJclAmkMAfhtrYLVd4QbNNSk1NTyNku7uvYE28T/lkiuaqx1KtQR9LYy/fNp1QaUiodCWsY5hJWO81Dbjh9oPugGiD/fvrk79lq5JjYnoP3V1P53mrn8rzf7YfsINE5xWZENFdQ6zZzcLQfIbShhuAWr+pigBToq9sJJHTkUKApnDNmUt5WnuSG4ctouz0xgYeenAP2a40HIbTkofZvlpgJlSEBGEWKDiFSoWfPthLvmTSkk5wbbqDVmOayw78Mzc3Ztx6pZTPEu5zTud9/l1KnszKb5Ionu47y4IGcxoBpKf/hKEtpVUKJoRJKns3JalhiBSqzMKAJcN69eVbueC0S3nB5++gZEg30Hfg7PKKkXvZ27TG3rfCft1wc90+s2UVQ0M38eDhHwGSzTyObL6Ct0+9Ft1HVCakgbBTgBoGe0j09mMsz6Cf3k5RaOi28k+TOi8Y6uXtB9+BYhZhwzNQ9/6WhGnQakxzq3YW94jLaDayfG38p/DsV7j1feVjSQqMBIJ6JwXP376dID3lI6UcZVNB95NSVvvL+5RSUbPvOfGQ85uUnipKU4Tb9u47OIYqBBeu7SjzmfJ7SiVcXx/p1md1ZyOHRrLzbn4exod/sdPd582PH+UVF6xkUUu67u3XrH4bjZkNGGYeRWh0dV8TuV5Tk5XC6aT5NTbOjvzK2dcknVDLZozzv5sTvlTIapBS8lDPuKuwXNra4BKPivDUbkU7fU8LkVJblrSwZUkLX73jAFMF3a2fv15Oe5suZdi29dOA1bb2fNeKqx2SqeRrg1+9/SCf+cOesvomVYXfvPNyNixqKvutZLe9hoQa2D/Ag4fHuP5Ld7uTFCQ1xb1HwDtfH/vt4wD82xUmrSl4rH+ccxdb75jOJi99VIjg+RVCJZ1eTj5vkds5PcN0KRPYx5MBMSm1ADB4cDK0xCEHbPhmh6gXWzu3srVzKwDvu9BaNpwb5vYjt7NzeAnfuP0m9JlNmDlLjnpkRHBkRNImN/Ea7oso0fcgsCs2hwn5KhYrA6yM/4eobl5w+0rEi7P8gYEHeMHPXsBbz34r16651ke+LBBI4XtxC4/UO4YKHguxFKfv2YjPQ4wYCxYLe7wvxnFH6L3fps1w2tY7Wde2hh2cjYmg89JlaBtfwqMty3nHqjO4ZfdRT/XiKHGw1FcNRYkyo9PQpcIr7NmlpOSv3v8bJL5RdFtZMDUz7ZpchxtjyRfoTrQ0E0osCx5GxePy931k2coh/Xd5wRHvr2efsQRVEbx2eRedSY1v3HuYh3rGefmmxfzYJqRueNNFLE1n2L8bOsUE1zXs4Oj0b9nUcTbLmj0CxyKl7L6KEBjdabTe4Gw8CVVE9s8SPlNfw5e+B1bQua4jw56lKUoJBbPVMj0/Z007GzJprl/a6ZbzWnOPy2ZNtrZxdMsyOnutgT7VOMp3NXvWwrEi7771YXe7r192OVc2/wlFCZ0jP7cmHbLECPwOwf6VBBKyhAGks3eQzt7Bnw/1cvnqFQCUuJCi1kiymIWhxwBIt3SypsvzwHIC6aSqUDRMirbR13sOfIP3936bLy99Lh9d91fkTBNpn7uMqnDt+udxcedSdH0KIRSOJs6E7b1IAc2ZBJNAwvTySQskWNKSYiqhMgqUlISbvpeQOh956UXw5QnQc8jpQ4jSBD1mN63KNC1ihoSTtqgEQ0eHFCrq5WonfzMMz74HXlDt3zaTCJFSPqWU3zg7nL4H8PjAlFsnRxH4Hzfv5T+Av792M0lV4WO/fTzgPeXA+ZwrGW69m+zjmIs3Ur0wTRkg5YCy77WQSLSwbNlLa663fNnLaW+7GMPIIoRCY+OGWe3HUQ5lkn4fJOvc+M+R6vP5+sSNj/ONOw8isa7L316ziddduhaAh3sneNF/3RnYx+svXQNYt7YzI6I3+170m98hggp+UipEgkoJ0wWd/7h5b8DUvKXBam9+UvXolEWSbVnSTFNKY8/gFDNFg6JhsuPIeDQpZfhSjUPn44FDYy4hBfDs05cEno2XbOjiFw/3ueSnk77X2iDsv0lef9Yad33P/wx7fcGFF/yCqWnrGfOSL/WhmwkyyUo0z8KMb2JSaiHA99QWfj8mW6du5QYfexe8q6GLF254IZcvv5xbel7OYPZmpJFCm7qaJB0c7T+dcZr56ZLnc+bR/YHRveDeazVmWWGd8mU1b4sKRuemqP3AXtW8CoC8kWf/xH5+tPtHXLvmWndEbkGQL5EDjMder/Cx1SKphFORBXBKFh4EcQgcI8bCQKzkPLVhTW5SrsPeuGiQrq5eGpw55wxYfPlqlOvextklnXt7hti0fCUri8t4alMjBwpFPn7kqJuiF+VZ4sz+VNRNN/ByPKXSFMttDETor13jMII/O0NytXsCk2TK1omEFFAqn0mqwQ5QMqrCS5d0sF0/wqM9M6SWWYGmpgiesq6TsbGUvX8TZyZmgRIwyy3oBsIXxOnb2vm7azZx42+fYHSmiBCCZ5+xNLJ6XpqUdLu/zjIhBO+5eiNv2XWY89Z2sGsmz4xpokUEo5rvBBWFpXZIFwsUNUgWHmfK3kQzFgW2e6ThIra88UF6//humLw9fPKsf+2y/YGk81tAreMOcorQWhZKUuOODe/hmeYd1oKGNjj9JW5ADzDjBPoplWLWxLbRQsUkIU1a7ZSsHNJVSmVUBSFU2tsvcsuZzlnpfEUpWdnewORMnsdZR4s5ztLONr4zcDXN6QQlO0gfbljtpuppF70FFm9zCSdRsIzcd8sVrGSIBDqaE5+owfQl93r6U/CSGqBjSskfdg1y/pp2l1DSFIEtiHNTrBxCIKkpJDQROPeK4inp/NyQYxXlJ7luslPgkprCGy9fiyklR8ZzDE4W6BvPse/otE9dAhesaXe3dVQ4fnWcE9RHmaXPF0oRnlfHU5mVyaye03aT+ZI7+1tDhFLKf184ZJJpSn70QC8zPjXgj7b3uqRUjz0DXXNaw7RTWnvHrGeXXyFXrJC+58AhpfxKqXD6HsBNuwb44p/2u987G5MuieRvv8774AVnL+etV1rm6e/47oP84uE+Rmf8xoEeSvbEC44Juf8aOgTry85fwUdfdIar2HNw3XkreO6ZSzFMiSIED9z3UQqFCS5c08rIKLzo3JVs2rjCXT8qjk0k2vjzoVX8ee8wvRMNgIyVUjFmD79YeExm6JDBGR4CN+E8PKc6Gzq56bqbMKWTr62wfXA7133ucaTeRm/DckxRRZ1VIyVMyPA8OBHrh9LzvMW+lKnqO3GLaUm2RK5y9qKz+dWLfsVNh27i37f/O3kjbxftyICr7+JEwZ++B8yrQkepdh0JPtDi9L0wItriQiAyY8SIEeMUh5Sh95dwRtKtlJfVPXke61hEz9AE/3ZwgEemPZLm3uksb1jRbW9nPd8LdgCshdLNUg4p5SgX7KA9RQkVK9CQ4f6K7zWRqjJhV72abeedfJ92Js3F4cBvAhndXzJ1dw3KPtl1s4P5sRkr0GxMafZMvI6ywDfAaM96pSoCw5QUdRPtiUmuWN7OBes7aEtovHxJB+98V21DXScgMwzTVc/4ycCUE9AKMO39R/Vk/AFMyTZwVg0DNPj40WFWdGwh8cLP8/kbs+zCM5zXTck7vvcgjxQnSPi6j37Lh+mCdf6iFCt+DuE+czP/tPSLrF+1Ao6+BQhe0aO00bP0Wrj8rwNlJHwBcLZgtaPGpMZ4tuSSUsImYJsNK3Af0fBIqYgMiqTwyD5HJfKVxGv41+ILeMdpG7i/fx/bNIWEvd5wapFb28QV77XakWPkX7SIsEksRVcCg2QlpZRdnl9p0pSySKmSIXnjN+/norUdAVNmTbFUYT/efoRv3XXQJRNSqud5ltfL0/eMACFofW5Oa7zz6o3ctX/EPo8q1527go2Lm7n29KX85817+fRNewJm6p94yZlce8YS108IvHbpkITgkR1GBHE0X/ATXumEQr5k1r0/KSXv/+mjPHrESmttadD4yAvPCCjx6sVDPeP0jmVRhODidZ10+GYb/Pwt+/jk73a73xuSqkseFl1SyivLnRHRlIznLBLnE9edyd//6BEePTLJWf/8e95zzSaXwDlvdTtTeZ0HDo25BJQ1KGA/n2sopVIRpJQzkJBKePeKQzhuWNTEy85fwVPWdbGzzzp3frWeQyL5U02d8/Evv9rFR369izdevo73P/s093cndTQToZRy6pVJamWElAOHHLPgpKQa9rfgNq7Hmu9+KOgG7/3hwwET//CMkQt9eD0mpRYY+pQO1oW6Kl2NvlGJeQqKhRCoPoO7cxafw+uecSeHfvYwifEiKVkE/I15Nk25/k5W5VmQnQXlo1QAbQVrdOO5655Hd6ayOH51y2q2dGwBoGg4U6DapS0AfkEIgZAicNjzoeByzm9MNB0DFkIDiREjRgDSi5FjnPIoJ6WEUEHCweRKPtT6Ynj0gLuOKqyJ1gaLJc/LyP7NCazUULCf0BQowMGRGZrTGp12QJ6mGJzpD+c9G2yYmla99zSbZtx9gUb2T9Znc/qoa+jrluUUpqUg3QTZ8arlOQHX/fbMT43uqLpzDkykdJRSVuEOKVXQTUTR5DI1yV+vWTKLo/AUKbqPJPDfzw4p1ZMvUnDUNRE3fFtCY0i3ls+olmG5c002FUtsVDLQuRVTWt6pCVVQMiSGaXJ0Mg+pYJn37B9128HX7jjAtsUrAul75X6pkCPNYa2LLq3VXfZx81XAbQDcYp7DFVp5EKoqAiGs59mMLyUKoGCn76mYKKbBssJRa7lNAqgSmrVyBYTjS1OUkqJ9HtJ2UD9pB+MpHylV8BnKu+fXIZyK1syKU9I6r0lKvvS9aKWUq2YR8PSti/nSnkPuoLqjfnHWVxUBBvzrjY8HytqytNlV4DjPer/ReTB9z/v93dds4t1lZ8T+3edv5LS31kwiQEj5j2Om4J0rbwa/49cfDJJSKvmSWff+esdyfPfew4Flv97Rz9ueNru0vL2DU7zw83e43y/d0Ml33nix+/1um/ADK830aZsX8e17DgGeF1NAtWNfw92DU267ePppi1nWmqZvIs9ErsTPHjrCi+1Z4RoSquut5iiWVJ/R+fbD1jOqllLq7Tc8yN9890Fefv5K99r5VYnO7Hbruhr5q6daCqi9Ry0CdlffJB/42Q4uXd/lkmB+oujidZ186+5DGKbElPDtuw8xOlMkpSm86fJ17nE62+g+kjZnM80NdSqXwrPvhTs8ik9ccWQ8x2du2sPwdIGSIUknFN719E2csbw10pR9IWP2ZkUx5h8y+FGEnkUNSbW8Bz7PPXJFKHzoqX/DM5oFm2b2oZpGKK2wQoXLvlVD1JpzO47mkpVcuLy59qhcSrWk6A4pFTW17MlEQCSFd/3ng5yq2+hcCCoZw5+6cM6/P8dyYbSZGDFixDgl4T6WBYFBK8UOiO2vPWmLKGlQBOe1ZHhmVwu3XmANUE3qJrqj2rDXd7xIEqGgxxmpf93X7uOCj/yBAXs2OFVIFJchrVzdmu/Vsvd82Qidi67FSbS0RRqUDtzq2yS0D0WDhD/VL7oO3c1W32hoykr7WtKatotzSAHTq4e9zFEquMqyCkFiNTjePX5ljV8B0WYTLkeLOqZd+0yEuuAl2zwyrKBYg6jONenTVJ6vH+GK7z6de42/JdF2j5vGo5vSDvqDdT84EvTEunv/SEgpZafvhQgD3ZABlcXiy1/nfr5gbTdXn7a4rO5Oaih4JEjGNvh2MgYVJEKaXDTxCB2P9KDtmUDbM8HzchoNEecj6TuHWScdzj7Xk7ZaJaWpJB0SybdtIkxK2el7jlIqKXQStjIQtbqnlKYorGy32p/r9aN7/mGqEKzrDip5vvmXF/Lbd17Od954cSAdDyyCwyEjoozOazVBv/+Ovw5hOPe6c3nTCdWb2e84klL+9D2HKK43XdC5hzJJlWdus9rZlN+cv070TQQn3OoPfXeu7X9cfw6P/8u1vOS8Fb70PSet1Vu/xSZDDtn3VFNKoz2T4I/vvZLPvvxswFItOSma6YTqMzX30jbPXmkx785lP2uFR/76cdE6b7ZBKeGXD/e56XR+pZRDePkVsY6aqG8iz7fvPsw7v/cQU3nnfvG2vfb0JTz0wWu4+x+vJpNUyRYNfvRAL9+55zBXfupWpuz7OB2VvmeT2w2JetPpqiulXON/U/L9+3r40QO93Lp7CICtS1t4yxXruXRDV537WjiIlVILDoKyDsQCTB+q+g4IjR5W62S5qqVqx1xl7/V0hxL2qE7BKAS2efsND7Kuq5GvvO58mtMni00WZSTkvHhKhZVSFdpNlIJqQXhtLSTEXF2MGAsOMYleG5///Of55Cc/ycDAAGeddRb/+Z//yYUXXhi57s6dO/ngBz/IAw88wKFDh/jMZz7Du971rhNb4TohpYlhTFQd5irZHkMbMml+fd4ma5kvSPjcYUt94nT1x7JWiK6GItwXnbOC79x9iFzJQDclY3kThwpJGI63SOW2WFul7PPIquChGYlazb+O2+OVF62iOa0xlddRhOCqLbb3kkM8FfoolUbt4qxlTpC+f9hS0oSVZfUgEQo+rXK8Cp/dkuGD65dxOG9dk3NbMrQlysOVrckklw5ZgeDGwgBn/PIr/HyDRWP9vjHDgaQBRTttT8mTTihMF8AwpB30h4Zb/emKwC8f6QvU0YFhhr9Lz3MMeO1TVvP1H1qf/+c159Oaaog8D0k7NdTx23HSfjyllOH6zG4pmoyVLI+Yt5y5Iro837VwSClPKWUH2QmFpN3pLPmUfZpzKhxSSreUTY5SKoGO5ni5hpRSSlgpFdEkCrqBYh+fosAP3vwUdvVbkzytbM+4hCjAlZu7uXBtByPTBRKqwisuWMmvd/QDQXLI+Vhr8NUjlnzpohGzQq5oz5DSFJeI3LioqWy2vuMB3Zdu5RC29ZJgDkGa0hQ2LW7mdzsHXTPy2SBMtJYRr779ONc7WcVT6prTFvPup29ieNqKu67c3I0QgnRCZX23ZRI+7ZstL51Q3WeJQ7QpQvB/nnsab3rqWnRDkk6oLpEexl9fuYFXXriKsWyJp33qVmaKBtNFR/HmEUEl1zvQa6SXb+jiYy8+g8HJPJ/74z6Khukq+9IhEqk5naA5neBbb7iQew+MsffoFD/Zbs14JyU0pzSW2LMmGqbk6GSeXz3Sz47eCbu8+p6XLgllk1KErFicJm+Y0iXQrtjUzTO3LeGpm6qRUQu73xSTUgsBMvKji3rVLvONwF5l1MLK25UZgNaJTDZbe6VZwlVKmVYHZ313E3uPTjM8XWB4usA9+0d5+lZvJKtvuo9sKUtaS7OiOfrlP18QwlJGBc7WPJBCup6gMPR0fnKXSn7geaipwZrbnKx2tmARSCWNiboYMWI8efD973+f97znPXzhC1/goosu4rOf/SzPfOYz2b17N4sWLSpbP5vNsm7dOl760pfy7ndXSoRZGMhNDDCdvSOwzEnfU+xndckOrv2KiIQiWN+Q4olcgSE7YGkyBGPAnkFLGZIIKVD+4Vlb+IdnbeH//OxRvnX3IQYb1uO4iDSWslx1x69pTk1ANO9QE3N96wYG8uotJLReJqnx8gtWla2WSi4BBKZZxLT7TamUZVre0pBgqqC7weZc0kMcAsrv/+JPy1GE4K9XlbfRKJwxbvIocNHabWz8yQ/4uZ219ItmK/DtMC+jy7yC7ZOSZKNHMESRDGGyyVFxtKQ1K/3NN4KoKcItQzfNACnlJyKr9asccs5RSjkz1jnkqevhBPzkbZdDpoNqSPrOYc5W36RUq8xH7KA4pSkk7XvF5r4sH1innlrQg2Yc6zwm0Ulgkx0VPKVcFUoEK1XQTVd1oiqCxpTGBWuij2dpawM/ePNTAstufHQACHaPTVcpVf0G8Px3vGscpZTqaExyxz9c5RISW/4/e+cdIFdV/v3PvdN3tveSZNN7JSSEEAhFQEAQEQEV6aBSBdFXRBGw8FNRsHfsKBaKSpeOlEBCSYf0upts79Puff+4M3fq7s7uzu7c3X0+Gnbmzi3nnlvOc77neZ5TmcdPnttmbDucnlIx3juRZyNdESw2J5s37GnX6Qv1tUlKEo+XePhIGWND4SL376vbG1FVhXnVRoI2VTEifG74wIyUx8oNe3s2d/lZGw4ddjtUUzyMhoEaeeyqCtJ7uRbmOCnwOMww3ac2GvdMrLeTGaYdc/ntNpWPLzfegw+8sZeDrT3mPeBKEXoLsLS2mKW1xv37uZNmUtdmeJZNKfWy/bDRlgQ1nbse38JDb+03t0v7fakkekrF36+2GM/ByHvqiElFfOKo5Pf5aEJEKcthhFElRa6PkGCQGWEiUWXpH7/TaAhd/nCInSfNWWbSIDF870efWMKWg+3c/u+NrN3dbI6QAvxr+7+49eVb0XXoOXAB9p5FOFUHpXku/nT5UVQXDtLy7ANz5jvC1TZAUeq5Pc/xq/W/IhhObDq3ZC6NhybjbzialxoAjiGAEXdc00f5Jf9UIrH1oCQvEgRhxIl4coqG3jff//73ufLKK7n00ksB+PnPf86jjz7Kfffdx5e+9KWk9ZctW8ayZcsAUv5uGXQI+SODV040JcjuoqlU2cKeT+ExhEjia3vCffLvpTNY3x7ucKgKrfs7+N7OdgIhHadN5dylqQeiIuEeayou4Bvv12IL9fDZmY0sXfMqkybsgfKop0f8QFOKRiNmkcvfmsYpD6LhGUJb5fHUcNTyR+nu3g2A01lKfv4SwLCfnt1s1HWR18kZvcyw1xcR4e8XL0RnweotgXHfxG+jOD3M293EK3PDnkaaQl5gBS5lMnqw0UyGHNL0cFLiFIkpwsLTJ1fUcu7iuQBs2N/KVx7ewIQiDy3AnKo8Tpw7k7uf2mruLzYUUYvxeOvLozNSDxGBLzLTmy+kJCdXUfsP+7Ephn9FrLZWkmN0gg+FQzRLcl00dxsd6EiC/jhv/eO+AOv+ALrOEwc9vOmbZZSVYDSnVMLse6aYYHq4xKSLDX/wB6N5kgZzrSOiZWOnn71NXVQVuKOeUv1sGxvqFEkg3lvYaWmui9JcV9K2QU1j++EOXnrvMDqGuHD6gqokT5pYuv0hbn14PXXhULiV00q49sRkoSZSLw5VHXC4YGQ9VVHMnHBrdzdx+782cuyM0pSho6n3ExWd/CEt6fhmaGaMmhO5Xx94cy8PvLmXk8OD+/2JhIVhYaYnoPHCe0bIWZ7bEQ0DNfP7Dfw+URSFxRMLeWNXM4GQjqLAnKrobAa95Q6MsGhCIQdb68zjTy/P7feYk0pymFQS7bPubjS8SP1BjW2HDIHqmOklzKnM57Q035eREOr2jnDOtQRPqcgzpOm6GXrucQ7Ma1WPFaMtgohSFiTo20Yw8BJaZBQj9uHJUmhV37et3ufXdHa87ogj8BbPZY9aT257B0cfcxTs+kdGHA0d4Qa0I9DBj976EXWddXQFuqj3zwOq+NbTL/CrNzu568yTWFu3Dn/jseiBUoJtiwkCPQRp6wnyyNv7OHtJDSVed1zM+562Pexr3wfApPxJA/OuUhLD9xSz/tK91PdvuZ/1DevN75ubNqN2nQ7AhBKdfU0B0J10+ZJdekWASoNINlJBEIRRgN/vZ+3atdxyyy3mMlVV+cAHPsCrr76aseP4fD58Pp/5va2tLWP7Tgebewmdyg7WTjqapdojQEyOqHCIUWKC7GKHndXFedEFhbmcOq//RN2xoSq7tAqCuo7i8sWvNECDxemxU7vvv1A4Oa31U3YgFAXPggVxizLRrufmziI3d1bS8iMmFXHEpKIh7Xv5lGL+9NpuszO+aEJBZqYu9xRxwyN7+drU09ldXc1Vr5ThnDiFoBoNPYJwgvWQDnp8fcZOeJbjtLF4YiGA2bHMcdpoAWqK4juh/qBGc6efkK8c1RlNCA19i1IRO3LDfuO5iXhKdQf1+HmGIMk7qTdOLS3g8QZD6JyX6+a2JZNYVp5PIKThtKucvaSGWx7bHF+OWBVr8SeMf8DaRzfR9dKbAHjwcZy+LmVZIoKROUNaL2JCJA9Zb8mq+yKyyc9f2M7PX9jO/Jp8U/zoL4I0VlgyRZw0yxArEl39p3VsrW83f+sJaH16pry6o8EM7QJ4ZXsjH18+idse2ci+FkMYL89z8ZnVU41jxXlKRS/Khv2t3PfyTlNQOXVeJWcuqgai96xNVczQtl2NXfzulV38/c29bLjj1LSEB1MYsyn4Q8k5d6O/Ryv78mOn4Atq7GvuYktdO3ubjMGC/kSpIq+Tr5wxhzd3GV5SuW475x05gW8+atyXEa+sweolf75iBTsajGe20OOkIj8qMkbyTPUmSv7oE0t4r74dXYfyfBflee6U6/VF5BruaYpG/vy/D85m4YTCtPfh8Uymq2snum44TeR4auN+j51FPjYEcrQjopTF0AF/z7ug95j6hDsvP2GNbBD7ACf5ccX9PpDQvYjx1JXrpWPWEWx2bKVm3z7UnDQ9pdJ4a+U58lBQCGpBfvnuL83lPr8KVNHcWkRzaxEX/PH35BXU4zv0YXMd1VWH6t5HsPVIvv3Ee3z7ifeoyHfw/M0n4XHaqOus46wHP4q/x5gB0KEqPHPhH9jSvJntLdsBKHdP4ogywxW5NNfF/uZuLrrvdZo6/WhaCEf+YkoJdxSU3vM8RTyhjOl0o49uZ8BQ5a9edDW/Xv9r/JqfkGa8nKZW6uxv8aGHnEnuuMlVKZ5ScZiNsoTvCYJVkNn3+qehoYFQKERFRfwoeUVFBVu2bOllq4Fz1113cccdd2Rsf+kT44ekQEi30R1u8yJdpkhOqcF54CQT6YzFenwMddc2h4pNCyQMekR22nebU3rdtfDyy7jnzcO7YkUfa1rvQTl9QRXHzyozO4h5bvvQR+x1HRQVBcidego9kxbR/r83wmF14VA201NKi0suHSF2evW4MDFTyIguiy1tfZuPzXXtwE14p307Li9nX+f1iaMm8cdXd6PrkO+x86GF1fxlzV56tBQqS5qi1G8XTMEfPjdHOPzp06unxa1z9Ypa9ry2g1a7Ic5cNTu198atZ8zllpMmon/389hCfoq7wp5t3vicNdHwvUgoWWqVKNJ5HswzefLcSp7eVE93IERPQGPD/jZmVRjicn/3Tmyi84gdnK4XTuRcAiGdA2EhqTLfTV1bj/m9NyIzrk0r87KzoRNNh2e3HDLzY0WI5Fiy29QYr67o7z97fnvcNv959yC3PrSe0jwXVx9vxKsaOeEquOOseRxo7eYXL+yg0x/CF9TSEisiYp3DroI/lOQpFRGKYkWpIyYV8euLj+Sx9Qe5+s/rzATr6VzeK46dyhXHxi+zx7xjI+c0GJx2ldmV+XHLVMW49v6QcQ/2Jko6bCrzqgsGddwIMyrymFScY4pS08tzmVmR189W8SyY/xPa29ejo2O355HrjR8gsMWIpT0RUSrFjJzJWK89iEVEKUtiPJCFPhtbFlTjyctHG+bZ9zKG2RjrfSc67zdHVYpGbZC6QKG7kG+u+qbpTeRUnVTnVuMP2Fm7zc87e9vYc7CUQMsKmlqMbaaU2fEW7sRTsIWD7a3s65gDITdgo74twJzbnqDIq6LpOq1dt8cd75ZHXuWV9u/jbz4KzVdNqKsLeMY4KyU5Vtvhzac0xl3KHzRcfRu7G3l428OcNe0srnzqStbUrTHXmV8ynyrnUjZsXsieltPxayfxdPdE/IFlhOx7UTTj0Ta8a4199zXbYOxoniQ6j5AqfFbqRhAEAeCWW27hpptuMr+3tbUxceLEES2DjkKe0skkt+HB4LDbwR/NKZXoKTVYIp2x2NnYIp0mc8bcXkqY3rKBoXqMUPw4T/p+OhxWshpznPZkb6BBEHd5zZlzdNOzzR/UUMOhL7GeUsGQjj0xfE+LDqrGXqFo7qLwYVDijhubGwtFR4sJoOvLU+rq46ebokKEK4+dwhu7mnm0/UMs0TZSWeBGnXEy2FMneE6Fsx/XoaW1xTxd23d+qgiqOw8ufBAOvGUscOXBgo/FrWMzE9eHRac0PZcGwslzK3jrtlMIaTrTvvwYAK3hGQX7Ey9iQ50iHkjpliHiURMMaWbi7NUzy3jgzb10pIg+iCUi5FQVeKhv89HhC1Ifzj00uzKPAo+D13c2mcscqmKGx8V6SkVmdfvIkhozP1FbjxHB8dzWQ+b5OO0qF6+cTEjTzdDYLn/IFKU0TTfPweOwxQlMEREq8twk5ZQKJueUiuAJezl2hvc9WDEpUtemuJnBfq6qKGi63q+nVCbIddl5/ubj47zPBiq622wuCguP7PX3SPHfq28372X3gL1NdazVKogoZRmiUk40fMsVUgh44huiYRcMEnWk1F9ToPfyOd0DJmyV0k19ALtN4MxpZ3LmtDOTll+yEA619XDWT1+gsT08nadD5bYzlnDC7FPN9Tr8Hfxq/a/46dPNBFqOAqC5M36kzeHoJhDw8OzGHkLBz6csR+yL/tPHV/HA66/TqcfXQXO34Xrd0NHJjx79D+tmOXlpQy6a/3zQVVB01jXtJdQVINgeAAxX+nW7AsCZQAhX/vsAuOyYFnMqUUoEqDSQ8D1BsAwxPghZLIW1KS0txWazUV8fP8FFfX09lZX9h6qli8vlwuVKv7OcKRIzAZXTwJLcw2wB1La94J6P3/SUyswxHeHkVF3+qABhdjR6PYbS9899IC1OGiRWbHQ655jp6rVopy3cOQ+GjETntoQdGPZZWJSKafNDMYOt0UNHtzXDZ6r/iupoGZJddesZc8Ofjhn0PjLOlGONf70QEQ/MvEOqGmfC15bksLvR8BrxOGwUeQevRtpUhVyXnQ5f0JxRsD99ITZ5uBnulqZIENm2vSdomoGRmQKbu/w0dfrZ2dBhzLzmdjCzItd8L/hN7yIFj9NGhy9o5vaaUOShptDD6zubeD4sLBmeUsmz70VyBp00p5xvf3Qhuxs7+c6TW3l6U70ZEhkrstlUxZxFsMsfpNjrJKTpnPXjl9l4wAgVLcpx8PgNx5nnEhFQIiGlif0Ff2SGwBQvVG84t1RHT0SUSqtqkzBzSvUxi+NgUcMeAUPJVzXQ4zmH8RiR/Max7dGk4szlYs4WIkpZknCjqICiZ8/wjjuy3sdvidv12iAPoKFOSOrWW6hgJijPd/Pal07tc51cZy4XzrmQ5p6fsL9xDa8efC1cKg0UnU8vPZudjS08/OxiQsFoMvFT5hURcu6kovJ9/rXzIZxaFVPyp+JxKtxf/yJO2wlAYfyoXNBw89QDhfQc/Bh/OKgDp8SVJ9i2OFq28lfxBTSWlZ7Kq9sb0TUXgW4jbMMZ84T3ZyhJovME4sL3lIRlgiAI1sTpdLJ06VKeeeYZzj77bAA0TeOZZ57h2muvzW7hMoA/wS4yAqzDXhqa8TfTnlIRD4G4GePS2LcW7gUPxZSTwaM0iZ1p0RYVBiICVcRTyh9MDt2D+I54nE2WKnwvfCinTTE77NHUFumF740VEhNUx6XBBR66+hjW7zcGW6eX55LrGlrXMyJKRTrk/XpKxSQ6H7CnVPg+en1nU/hYRq4hgEfePsAjbx+IW//75y3inCOMvLKxIW9ep43DwIEWwyvK67KbSbSbuwxxrbLAbYpRsbPh+WK8lJx2lRkVeRTnGMJebHL5WHKctrAoZdRRU6ffFKQix9x4oNUUpRI9pRLD9yL1ljg7aeRYsWUeqqfUUMP3UmFLEAqHW5QabuZU5fOf61axPyakdOGE/sMOrf4+ElHKYsTbHjrra6byk8Md1NZMZlW2ChVHihs6zgPQMA/jJ+Dr4yHoZ4Qx6ThZpCynjDuPuR0wZvLb3LSZkBbCZXMxp2QOzT3NVLufpa5Vx67YOG3mkZwwsxZYSUtPC0/t/Q++0H7e69wPRhooCnJeYU5dOXUpQvoddg2bN5r/ozhX4ZLFZ/Hie4fpDgTZ0LABxd4BhU/htnXz3Y9ew/Hf30SgaxJawPCecjpUouF7vZ+b1V9U2UE6AoJgNSSnVHrcdNNNXHzxxRx55JEsX76ce++9l87OTnM2vosuuoiamhruuusuwEiOvmnTJvPz/v37efvtt8nNzWX69Om9HmfE0XW6sJmRXxowwd2I3rwTSnJRw6FTfm8lBLWMiVKRDlNPnCgVLlLCurGTl3R1dfa946TyJYeKD6olGmdCVtzp6nqcp1SkQx0RpXzhMDP0+A523IR8sTmlIu8cIn+jflILJhRiVxVDtFCSvaz6Ct8bK0Q6+JHQqEQvpGKvk9UzyzJ2vEklOdSFQ97ASBbeF5H8QSFNJzJJYrqiRGTG6kio3uRSL8smF5Pnspthdfluoyvd1hNk++EOc9tgKJqnyRMeIf7vZsN7Nddl54Llk6gp8tDeE0RVFI6eVsLVf15nljVCRKRxxeSGiohlES+qxPPJcdpp7gpw5o9epsDj4P99cHZ4uY05Vfms3d1simaxx3PYop5SG/a3cs3962jrDtASFs5She/VluRQ4HGY4ZRzqvOT1kmHJHEzo+F7xt+A6c03+p/L+TUFzK8ZWv4rqyGilMWIjWbXFY3NVZPZ0NgJi1byp7K/4VrzxsgVJDalTqb2mS5Kf36bYbf4LL1XnDYni8oWxS0r8ZTwxeM+lnL9Qnchfzvzb+xs3Qk6HO4+TE+wB9vBDv63/x9xVVOR62APMKnYy6dOaqcr2IWqqJwz/RyWV03nmhOMDsIXX/w3z+15DoAFZcuozKkkp2gDrT0VoKsotk5mVReahlIoRWLPlCN648uW7R9FkToRBGFUcf7553P48GFuu+026urqWLx4MU888YSZ/HzPnj2oMS4NBw4cYMmSJeb3u+++m7vvvpvVq1fz/PPPj3Tx+yHGizXHztz8w+hhnUENz7YbCK+RsUTnYUGjuctvLktOlpsc5mWzJ5vZSopP6TAeBI6Bo6T4qJsCVFt30PQ0iYTv9QR685QytjX+GxO+lyKxfeoME8mGwngY8IuICY2dPvP7cJ71jz+xhFe2NaLpOhOKcpjRTxLp2Bn0It5w6YpSJ84u55+fXUlTp/HcL55YSFmei3W3nWyKRTlOG99+Yis/f2F73L1lekqpCifNLmfzQcNTyWlXOXZGKQ6byomz4yejiJT1QEs3B1q6qS70mCKqK2bWb3s/As4RtUXsb+nGF9Q41O7j3+8eCJfVHs23Fkq+x83wPU3n2S2HzLBLgNJcp+klFkue28H/vnQida2GUDi5ZHBhZIlCUSa9mdSE+hrtnlKZwXodGxGlrED4JelTfdTVvAR7w4sVwxXdpSp0aTodHi++8Mw5am7usBTFbEqG8Lwa4XuxN3uKoafEn5KWj70XxtSCqUwtmBq3bJ99I6/o/zC/6wooWiQRn53bV97e6/6+c9x3kpZ5S99Cy38Rh+ogoAWoKvoOkcT542zgdOjEhu9JonNBsASRzuLYayEyz7XXXttruF6i0DR58uTRGSamgHLyneCbD3t/iFI4CbohEGlHM5VTKtyR27Df6FjGdmqSW4fob8eu+gAHG/428AP2cyn6vFa9/TQG7apYTPtV18kNe690B0JmyGWBxxAsW7oD5haxxHqTx82+pyeLUpFtdV2P2S5Z0BoPREIltx/uDH+PiifDURPleW7OXlKT9voRwSak6wQHKEooisLS2qKk5Q6bGneebofxOdaT0h8TvnfzqbO49sToTHlOe+qB90i5vvHoZr7x6Ga+dNpscz+x20RmqkuVUwrghxcs5ounzuIPr+7iVy/tNGcKzHHaTIE9EBPGmphTKqTrpqj24cXVXHfidKoKPL3O5JcbE444WOwJXliZfF2Z3nwiSlkaEaUsg85+737ait8DwsKFruPQXBTaVLq0ELkXnE9JqxHXnLtqhJMg6ik/Dp6+3gd6fyvEu8ePZhSUpHPpbg/AID2dE/NCxc2q18eVU2Ic0sebQdU7Ug+CIAiWI9YeURQUmwPdaYTZRDqg/ohHRIZ6NiunlTCjPJeGDsMb5LQFVdCwI36lQR6q9zycBnofBk//njgxORHHOjGz71UVePj62fPZdMDIZTSl1EtpruHlEfFYSRalogOqetJyUJWIOKXE5lRPEqU0Pb3Z98YKZy6q5o1dzXT0BFFVuGTllGwXKQ5bnKdUeFmGBVqXPdkLLxLOGBGBehN0YjlzYTUb9rfSHQjRE9B4cmOdmUC8L0+pRJFFURQmFueYya/3NUdFKactXqCBaCRFRGDUtOgseCVeF9PL+/ZGywSR5zNCyRAS4icSaRfMENNxK0pZ+7xFlLIQISUU9z0fF6qST+Q1lH/OOZQXDo+HVP/0qyLFrJp+ovNeTa0xPqJnohhiUDQJaoyINAhNJGKgxo+iRsL30tuhiFJhYpPXSJUIgiWQnFJC/KXXwxOkxoexhDLc+ZxQlMPTN62OW/b0r16IFKGP8g2UWL+rgYWDjYdQsTjiTldPeil8akVt3PeDrd3Mrco3Z0CbWFHONn/MClp0kppYEyrSd4/txyox62mRQUA12VNqPIhSsyvz+dunj45btrvbl6XSJBNxwAkNItF5upieUsFoPy4i+qTKw9Qb5y2byHnLJvLq9kY+/qvXeGtPS8wxoqJWpPyR0L7e8i+VhIWeSMLzfI/D9IaKF6WMv7E5pYKheKFquLno6FpKc510+oLkuOycsSBFst1BEqmfSH2NhZxSYxERpSxJ2O0cG4qum+7nwZHoGMe92PoRl1LG1KfnxWR68gwqfG9svUyUmDwGAD41OPh9JXo7xVyQ/kSu8WA8DY6YkebRGN4iCIIwhogGVivheVYUc/a9xO5fpsL3UpGOCNTXKulqSKMyrDKL9FZfVQUeHrvhWPN7Y/cS7ny+iMc37WFG8UQcoVpge9I+UoXvmQOAxJoFetwfY8UhnIiQEWxqdEa5SGrVzItShmDkC2j8Y+0+/rpmD3ubjXxMgxF1ltYW8YE5FexsMBKnz60uYEqJ1/w9EuoWyWvV2/mcMKuci4+u5VC7D1VV+NSKWv6yZo+xbVxOqfjJAEK6bob02UdIlPK67HzsyInDsu+ILvjOPsNzMjkf4PhD13XLDe6JKGVlVB1V102FVxtRdw2lj2/9oadM+JhyzcSRrsjxlASX86HMp2xhFAXsodgQOzjs6A5/Gfj1jghLEffxsB8WOhCKcSlPLocSo7uIAWwgLhmCYFVERB+/xNkXZrsV9pRKuC8yHaaTEczi91E2vYtIPsiMYcGqyCgDnKylxFPC8ZUX8MgL71BcWEq3FjI3jgvfS0h0Hjv7HilySo238L2+sII5GXkHbK5rM8szXJ5S/91cb86wF2FC0cATfzvtKr+++Mhef7ebnlJhUaqX95zHaeOOD8+PW/aPtfsAw1OqvSfAm7uaea++wzwuGNct4kllV9P39LIqq6aX8c91xnm7HSpLJyXnCROyj4hSFkFP8U0HVF0zL1JwhN/uvb+y9SRvqGjDmyqZeR+/xe01cbvR/yJMh+oGD1ppFWAo+ENJmJU4cmtcl949pUSA6gOpG0GwHLFPZTDYHh7tU7HbsxXaLowovc2XEp5+b7azBVuXEb6nAEvzvckbZJhQWsJXL+2JEp/5UVHzMEpudAiDqkbArUDnEMLzxmxTFpvuICZ8bwBttxnuqUU9Q8z9hQlFPKVijxyXUyoiWo3P8D2rM708F4/DZia8ryn0UJSTuXxFAAtqCuKOAfDzC48g3+1g+ZTijB4Lot5LEU+pgehGkRC9QFDj8397h6c2RUU0tz0aIhjZ90iF7w0n3ztvEXd8eB66ruO0q2YOsPGHta+liFJWINx+FbT1cN7GmLxSCmFPKeNrKIuGxcB0kvBoUTprprgDlUhuAE8RSnswshDd4g/T4FCwaQpL2ufRxCvGTEIZFEMMD6jI6F3f+5VE572hyOx7gmAxZrh/wQsvPmZ+n1z7WaZNuzmLJRJGgsQ3sBE+FULTjRnVjsupZ9O8+XRrOi5VocgxfGauOzcfAC0SyhV1n+lzO5vee4dIUXMo4xhaciuxdb/GH457jVrXTOjMRInHHnGiT5r1H0vEY2bjgTbDI8oVHRR+bUcjf359D1vCidFVNdabP3wkPTnReZwoZUVPvRHASmddWeDmja98gKYOI4FYeb6r19nvBsv08jzWfvUDZlLyklzXsCbTTvKUGsCxIonOX9/ZxIbwRACzK/MoynHysSMn8uBb+4FoEvXEWfFGK7kukTzisV5/Rq6QhThubR2L3td5bFE4MbXDhqprONRojO9w01v7mdcN/tQ/hYlphJPK2fvLsmV6EDYbn0PNu6A85seP/xVeeBD2roeiKegdySUYO+19ND+BKzxbsa4N3HU/cVRORSXqUt77/ZPuLH3jCwnfEwTLEX6PFdrejVvc3PJ6NkojZIFYPxQUeO+9r1GlP2UsUWwUOOwUjEA5lp11DvmlZYT+fe2AtlN0Gzpgd0Y6e/FtrlPzYHNMIhR6hy5PKGn7fhmnXr6DEYAq890AtHYbhpfd+Iqu63z/qfdYs6vJXNfr1sEXnn0vZhBPM1Up3dzWLJOl5JlsYI17MddlH3ZRIsdpJ8c5Mt1qe0yeLOg90XkqvOF6eHlbA2CYuH+9agWFOU46fNGctr5AJHxvvN/DwkghopSFcAXijY8DcyspLS7GabcD/hERpSJ0VYToLox+t6Vw0+q9NMnhfb1tEfRGlwX2vgblRxhfFAUmLoP5Kvx7Pbjyob0hZsux8ZKMGFGxZ1PZDAcng3/fPnRNQxmAX26SUWbENQCxo3lRZESvD+KeN0l0LghWIpJXaMKEi9m37/fybI4r9PhPYS8pRXFSWLhsxErhyvGy8AMfZNvDfa2V3K52uJrxdsG8Y2vg8eRVDxUp2ICNtX0kURhUzsmxzsDb6aW1Rfzp8qOoa+sB4PZn36ID475qD3fQLz66lvk1BXS5/sfr65IPlZgIXewqYbhJTD4+EE+pT66opbU7YM7It3xKMYXhcMbY3FQyU91YxNrXUkQpC6Ho8bKNL99FvjeaD2FEZt8L4y/Uue1yOxc+ZZau7w2kPzA0wvUXsCm0RC55MIgeCKC4XGnvpq9Ruf6MWHNbuZYJWPslLgjjiWiO6MgIsZgx44ne3saTJl7O1Kmfx2ZLv73MFIllivM2TlHgLkcrXlx4C10pVzlcpFDZCj3OFPtLm3HQkMdWXOzpDkCUUhSFVTNKze9ffyFqB/nDnfLTFlSxYmoJf92SfOhYUSqVp9R4RcS44aXEG/+eKx5AjqyaQg/f/MiClL/FjoFHQgPHSvieYH3EmrMC4QZMUxw0F0yLLlYUHKpi5pIaSU8p4/i9/dD3dkb4XlxKyKQNdSWSOHIwDdcYauyU+A9tXvjJSoXT3wsvG+A1T6xPBQUUo2GRROcDRcL3BMGqmDOwhSfEkDfZ+EZVXVkRpGJJFo/iZ9ZNpNeWZQA3c1znv9cdjpM2LJLba0h2TTSnVCSnTqr8Q5F6N3KaRZZF8qlGZz8WhOHg5LkVfOfchTR1+nHYVD60sCoj+40NAxxLic6FVFjPahJRykI0VF3FgdoqaLkXMEQhu6KYxvfIiFJWefnEl0NHt07RRpKBXvOk6L3o7Hshve8cVZLoPIHYupdE54JgCaKPZWRgQ0Zxxy8KGoZAqShWnU1p4IZLopgxNJFl7BpOnrkl5CytgP+GF8ROiTdIoh5QuplTx2mLCN96yvVM2zw8ABgdzxq7dZ8uYjEND067ynlHTsz4fmPD99bvN5Kg2wcytZ8gDAERpSxE0F5M7Cs85OmKe0EMIt3lMJCcA8koc+wSDUg2EIfcOKU0zEZ3o28anzGahx5rVw1RiDSMoohLeX/rGYT0EE/sfIJDXYewqTZOmnQSld7KIZVjdBKpsNF9jwnCmEYE4/FFiobMmLHXSh2n+DL21YJ45s7Fv68rYTsl7lsGijAmsRe7cZTnhL/pGfVqjvWUcqX0lIp+TgrfMwVzsR2E0YWqKkwo8rCvudsM35tcmtPPVsJowepCuYhSViJGQIBw+N7BtyGvCvAQtFyoVeryKDppJzqP3zD2sxL/d6yScH5JZ5uJ8L0wqWbfS5WQc83BNXz7jW+by18/+Do/PPGHAyrHmGKs34OCMIqIdvgkRGb8kpyzKasec6anTPJPqppKRItS++c/0fnmDnj4/QEecgB5k1IdeCwSm+hpiOh6NHwpMXxPIWb2PR3MiZIVySkVYazfamOZ/1y3ik0H2wAoz3MxvTwvyyUShgfrvaesNLQkJKChsHTfU9jq1hvfR/D+MUIGB3vA3vMqpDiQQIJ4NAQPnUQVXFEU01BKJUqloqmnKe57q691wOUYE8jse4JgfUwPGXk2xwOJftk6ejh8L5vmbHzoe4fLaENVh05FSSh2leQt7XYcFRW9/Cj39KAYQjutxDT1EVHKZbeFl+nJ66FHZ98jusz4Lgau3MGjj8IcJyunlbJyWqkIUsKIIqKU5Yi+wq9Wd3Ht3r9gDxpT1Y6Ip1RM8sbe6eNXPY11+iPR6hzDKAn1rehK3LkPPKVUcsVFcpL1JUrFbhfS4wNFJceUIAhWIfoai3hKqYk/CGOd6BSM4f/qYKGcUu+VvgmAI0fH3lc8QppeuD2hngEdf9y22RkJ5TW2feX9LoLhkeCUic4ja6eafc9MKjWEYgiCIIwzRJSyFPEtmHfScgDUsEjQHgzRFeo7WXUmST8rQjzKSHYOxnKjnxDOmdYmKcP3IqJU8vrxiTuV8Hrx99i4d0VX4sflBUHIPtGQJDFjxhux7ZYebiez6ykVKcvgt+1r091tu8PrjGWDZ3CYA3u6Hq2fIdgsdkc3AAdbggDkuux4XWFPqYgHlBIdPNSJsa3MmY7FU2r8nrkgCIMl+614mtx1110sW7aMvLw8ysvLOfvss9m6dWuf2/zud79DUZS4f263e4RKPAD0Xr44XICCPSxKfXPHQWa/tJ6Xm9tHsnThUqVo5JXevujh/ycm8Y4xJFMKJNKMKYAeyUsAA88p1Uf4XrriUqKn1LjFrC9F8koJgkXQEz7JrKHjDD0+R1L0LW1Bc1ZRUt+VaabX1IFCVyGlnlKmF05nZfXK/g7Yz69jvB3LQDtdVPEO7pr7ufbkIv7vnAX87dNHm+F7cYciKoZpmoTv9cZ4H9MUBKtixWdz1CQ6f+GFF7jmmmtYtmwZwWCQL3/5y5xyyils2rQJr9fb63b5+flx4pXVM8/HoigKOHM5oXkNj5atxq868Os6/2vuYFXRcMf5xoeR9d+26r187m2dfo6eeJ2Snp7Rcx3TQYkZdsvkeyLeU6rv8L1InSd5So3Tzl6PDg2ucrAVUBwKIfOPCIJ1MLv7FvCQEUaOVC2/Alm9DxLNlVTTlwyoFY1xufrVKb9idvHs5FXS7lGMLVupT2K8pgaLqoZw5L/LyQu9LCqblPowKDE5pVKE70U8pUZRf0MQBCHbjBpR6oknnoj7/rvf/Y7y8nLWrl3Lcccd1+t2iqJQWWn96eyjHf/YWWVsUDKN8w4+ybn1T3FP7UV8d/JlvNjcTt4eGxPdTs4sL8xoOSKNaKrMREPY6wDX1lHz8odwvFFEuL7t4VFexfxP+ENGZt/rPXwvlaUc0sRTqjMUYmXzFOpX/B2AwlAXrx44jyIrDi0Iwjgi6sAY8UaQROfjGsWwGSzpKZUuvZpI/d/TvQsf4+x5iG2bR6CdNmtdj9pWijmpjMwMOn7PXBCsjLWfzFEjSiXS2mrMCFZcXNzneh0dHdTW1qJpGkcccQTf+ta3mDdv3kgUcRAoEOOloigKXPgg7FuD+s5fmdBYB8Dati7WtnUZK22EGpeDz0+p5BNVJRktzWCadYX0ckqlWsN77Cro7MQ9fz7eo1eEd9jruOiYYlqwjLpUPwwxfC98QQBMF/Net03IKaUqKpqujUtPqX09Aer16OuxxZbDDs9ElmaxTIIgxCKeUuORxNYoEuyuZDPRuR73J4l0LBYl/C8+ECzFQJN438QTWx+x7kuD3V1MWF7fh416wJmz75mpF8RTShAEYaCMSlFK0zQ+97nPccwxxzB//vxe15s1axb33XcfCxcupLW1lbvvvpuVK1eyceNGJkyYkLS+z+fD5/OZ39va2oal/InEd/pjEk+rKnhLYNZp0LSTD225ky3eKTQ4iniy9Bja7EYI335fgD8daOT8ymJ+t7+Bw/4gCjDB7cRjU6l0OlhZlJvREveFt/MgPbmTY5ak1zDnrloFTz6JY8IElD6nrInZ8yhv8yNGiyNiUOugKYMf8evLU6ovcUlRFHPbSE6piCg1DjUpc6bLcl8jhWqI9xzldNtcWS6VIAjRfC2JeVvG4Ytq3BPj2W0lcTLNnFEjbsCMcnupX0xRanjfBbHhe0FNI2QO+Mk7KBGpEUGwKtZ7OkelKHXNNdewYcMGXn755T7XO/roozn66KPN7ytXrmTOnDn84he/4Otf/3rS+nfddRd33HFHxss7aGKNrMmr8NptfG3HzwHQDk1hu7uK9aEcrp7zVfa0t/LpdRv4T1vq0KvHjpjBEQVG7i2/pvFsYzsdoRAKsKoojwqXw1xXU1S0NAy8lLezAmWN77Kvoja9LWKMpHE9y5uZQyLeahxonaRMdG7mOUhx2BTXJOIpZVNsBAkO6PhjBX/YyHToAdzh+uhRnVjxJS4I4xPxlBq/xM6+l/3wvaR2d6j7Mz8Nsr0Zr7ZUBkS3vrybYu2xyFp7m7pjNpbwPUEQhMEy6kSpa6+9lv/85z+8+OKLKb2d+sLhcLBkyRK2bduW8vdbbrmFm266yfze1tbGxIkTh1TetDDbuQTDRo0xsqoWwhd3QrAHVBuq08uMR67Bu/FJABp0R5wg9dH6pzjsLGaTdyoNzmIeeOwe9s85htk1M3lu+3pu647m2VqW7+XfS2cA0Gl38PMLv8AtO/8fMIRZ/mJn30s+USGJqNN+ZPa9wYyi9p1TKr3h21hPKaNk4++6RTylHHoQjylKiaeUIGQdPf5D7CQRwjhA01Iuzmb4np5wT8aTHWEivrkfu+JIrJ9kRFAKtbRw4Eu3EGxuAqDwox8l/5RTMnrcWZV5TCn1srOhE4CFEwo44GgnqEn4Hoz+KAZBGJtY+8EcNaKUrutcd911PPTQQzz//PNMmTJlwPsIhUKsX7+e008/PeXvLpcLlyvbHc+YkZjEEWC70/gXYeUNVIeC3ND5Gm9quRD0kxvq4rbd9zEtxw2dh7i18uP8ZsJH+X3lh/h9M9B8mPygF+wwqfsAezzVbOjo5m91TeSoKm+WTqLTm5eQcDvR1Bqo9Z/8EOhK7/voryEfjkeqIxjCF/aOybOrONWRGXWNnuvwvCgUlJjRu/SuW0SUsoWN/PHoweYPd3wcWhCXIqKUIFiNxNn3xqN4Pt7QQiEa974Uv1AB0EdZL7jvqWQGGww2nkWQWNqfeoqeTZvM796jVmT2AArkuR08d/PxcYuX/cmwFczZ9yzeARwJ5L0sCFbFes/mqBGlrrnmGu6//34eeeQR8vLyqKsz0kIXFBTg8XgAuOiii6ipqeGuu+4C4M4772TFihVMnz6dlpYWvvvd77J7926uuOKKrJ1Hb9gJhD/Fzr7XT4NWNhPO+QW3QMKw2DXmtp9qqGPnpq10Ne7itcJFAGYuqru23cunFnybbk3j+s17jE2nLgbA5e/p9bDbJk2liNdT/6jDL8++gNO3dvZd9jBpN9q6Pmwu6f861MJnN+0iFN69TQGnolDmdPDQkunUuJ197yAjRDOlRg3SQcy+lzJ8zyBVnvNYg8FMdB4WZGxqFhPHZplguFocejAmfM81fsMiBMEi6AmfpOM3fujp7CAU6IpZYkiTRpLw7LdXepq3Yh9jcsbvGb2nx9PzEfaUCk+E5DniCArPPRf3/PQnNzITnafosKUrsOjybhIEQRgwo0aU+tnPfgbA8ccfH7f8t7/9LZdccgkAe/bsQY3xcGlububKK6+krq6OoqIili5dyiuvvMLcuXNHqthpU0QT7Qpmp1dBh+ol6e+gFwFrdmkl9y8Kwc8voSEY4uXCpWiFtZQXVXNM0+t8fftP+W/RkYQUG/tcFTTpuRAM4enpRCe1GNPjdicsiZiFBn859cOcvO3+9MueZV5r6TAFKYCQDt26zp4ePzdt2ctMr4uzy4tYGs7JlVGUSKLW2IStcYm2Bra7lCOwkZxS6c0mk+QpZUE1fbiJ9ZRyq0Z9fG/yxfyxqYDPN7RySmlBNosnCEJSTqnx954av8Rea8XIKZXN3GKD1B6GIln078Hcdw7PMYce9ZYLdXQA4J4zh8JzPjJiRTAHAeVVJIKcIFgQq3vTjhpRKp0Qoueffz7u+z333MM999wzTCXKNHpcQ6YpKkw4MjO7LqiBm9+nNNjD2QCOHNj8CKyBy/f9jcv3/c1c9Z975rGrsxjXbB/EilIJ93F/t/XlF3+MI17a2OvaOhCyFVHf0c1L0xfitzvYHHDSWTuLiYqN1kCQAoe9l4ZNocFbQI0PHq5vwd7exaK8nP5qAYCH6pv544FGNF3Hpih8emIZnSFDgLhlShXX1pZz2B/kZ3sP8Yu9h3mhuZ0Xmtt5pbmdZ5bP4ZAvQFDXURSocDrY2+PnC1v30hoMYVMU5njdzM31MD3HzerivJRl+Mr7+/jD/kZ0QEWn+COfxrc3iOtgbO0MjsHmlIrdLpKkUx3HCYRjc0pNCzYDcNBVzsEg/G5/g4hSgpAl9NiBG6zhISOMELpOTJNmLFJ0Y0EW26ukdjdeM4v/2ycRj2klxY4GXqpxQWwnK/xZC4tSqnfgA4mRTltffY7+BBdzIG+cXIK+EH1OEIR0GTWi1FjH9JDRE0d/M4TNDrbc6Pd5H4GJR4HPaLzJqwC7B756Lew40Oeu5u5qoKWm/0Omcn6OsNm/kKaaG/lyKxDe1/saMHkObwK3vryB78ycwOrIBsEe0KMJTrtcHiDAxs5ufvXme0zxOJme4+Y38yf3mQ/quzvr2NHtM793axo1LkN88+5+Htv2rVQqKjfOPpvSCfnsW/cPfl9+CgdaDnHnX//OTyvOMre16SHsegifGhXv1rVFQwvumF7NRLeTgK6zob2bX+47bOatiuVgxUR+72niqjch0eJ+samNE0tKej2fRFKG74UN20ffPcTOw35OnlvBsTPKAAiFdLp2fZr7ttai6fPRbT3szduGpub26in1TnsXb4fPs8Lp4NTS/JTq+/auHt5sNdab6XWzJD9eONzb46c1YMzuNy3HjceW+rp1hkIc8hnr1bgdSde3NRCkR9NxqQqFDjv7e/xs7TTCTxVgSX4OhY6Bver8pigV4POdL7G6czNPB3L5yaRPpAyDFAQhS5jvHnkwxw0Jl1ohu4nOeyfsAT2Mt6bVR75HlEhdhMKTteTm9rHywEk3v6bMvicIgvWxns0kotR4Jr86eVleJXCgz6bUSaqGPjKyp/DQF67i4PST+PWkWb3uo867DAC7FkDRoLq1ESXHxh5XCVpYdPjie/s4YtdbnAT4m3aD1rs31M5uPzu7/Ty/5iGmam3s0D3o5XOZVDWDObkeAppOU083dT2GIHVViYNfNgZo9AcpshuPgXfTQ1D/OACF25/jumNvovH9H/P78lNodhTwl+LVcccMKTZCYUP4xMbXKA00050/kX/nzAfga9t6F/dqfYd4iNf5ScW5vLR2LfVl0WsRFYEUbtywnVc23oP39LvAOYhRPxQU1Ziy+M1drby5q5WnN9Xz6i0nAdDebSfUHZlhUoVgLq82HUdo6mnkdvwJrWcN9bY5PFjfjFtVOKYwl4+8tY2uUFQg/Pr0Go4vzmNqjgtbZKRS1/nIW9s45A+a6z23bBbVLgd2ReGF5nYu27DL/M1rU7ln9iS+u/MgId3I6zUzx82CPA//t7POXG+W180/Fk/jig27OOwP0h4KcTjmGBPcDvb1BEjkovY1LJy+jAsn1xqegg9cCE3bjR89RXDub6Go1lw/GFaenFoQO7DCt4u93cMQvikIwoCI9gul4zfeSBYFooKkglU9ewd/fw62yzBeUx+6pk2LmzPaPbt3G7Q3Iu+TnmAPN79wMwc7DRf2IyuOpMSd3gChzL4nTmKCIAwcEaWsgG78R4/zksnSKz3iupxQhFDszGMpG9qoFVTY0U6XL1kYiF0npHpA8/GDnLWsf/IQACfzIk9zHBXuOr617HICqoPGcFL29721OIIBivyNcXu8fs+f+FLP29wx7WrW5s/jou5p0R/3aaj7tvLckkl8atMB9vii4sVHn7qEXy79FYe6OrD52gA3OVoPVC6Eunfh8FbY9C+Kgm3kaz20qW6aHQXY0XlrYgev+Zw8320HRaE40MrnNn0Nr2Z45zxXtIzvzrwOzZWHQwtgbz+AQw+RE+rm+j1/psZXT5m/GRWdG490Ufz0i9TMvoj9JI+oBhQbVwXnMPWBb/GV1mdwnfEdmHJcirqNXJro9dNspRzwK4SmBNCbmqj1TGXP1hY6YuohYrzabBr+Mi+2um4UNFBU6j2n0JN3EY3A1Zt2xx3Ho6p0h/MufXXbfgDOKCvg9NICfrD7EAFd45A/iE3BzNd1whtbey13Z0jjqo274pa93+Xj0YbWuGVbO3tY8L+N9EasIDWjczfvew2h6Q95y6EevrZ/C9VOlaOURaywgzfUzdTmvRT/9DjKKmZwePVX+ZdnLm+0Gon67XowfL8r0dxcvR5dEIQRJ+JVPF574uOMGAvF+GSOh1lJlOrbfivocAxh63RJfh7GslCg6zql111D/mkfRPf7UfMLcE5Iw6W/F9YeWsuTu540v797+F0+s+gzQPpikwjmgiBYC2u/k0SUsgjmeF/YsNatNsJiJnDUsYcM8SVlFyDNjsGswHPsb30Z99JPA4YoRUEttEKp3c2bh39OnbOYJ22GyKToOlpMnajh4+QX13JE6Ek+deBfbPROx6caxt6EnnqXoaBXAAEAAElEQVRaHHm023P5+n//yp6SlQDY9CCnNL7KpB5j9KtbdbIjXOTCYDusuAL+fQP42+Hdv6ICD/if5bV5xoyNC/I8lBXlcSZwZuwJTXgMmnbAw5/hhOY3OOH1i5JPOn8CuHLgw7+GR66F9gPwv3uApcxs6TFEqdj1FeO8nyk5mmeAMn8z21/7Hy9v9RGyu3F5S7grp47j9/6HzXouPk2no9tOwDmNzsKPEXDP44ptQMXHoALe7wzi2grBYABe/QkAu9sMQz6k2NDtxtFrtG3sZik99kqzKGVOe5xH0vHFeVw1sYzrNu2mI+CnRVN4pqGFRw/Hi0hH0cJplSXcWa8RSLg33KrC3xdP57+Nbfyjril8XUN8duP32OKdSqvd8Miz6yEuPvAId0++lBeLonnWzql/mksOPEyV7zA1vkP8uepD1DuLUXWd0xpeYk73bl6+6BVe3/gcd+esQFdUOu05vK/B+9Vn8qfq6BVUdI0H37mBB97bzV9zovmickOxMz0ZjMfE74JgFaLDNhFPKSuJEUI2UMIZGrNGL6mg4uYsAbo9ATzdDmzhFQsrq5NXTPeQqWwti5mNI0GsQKQoCq7p0zOy34BmDHBNzJvI3va9AIS0UFrbSvheFBkrEARrkm448kgiopQlSNHNzXJbpicUoKJ+DfsLoLhlK3bHlAHuLTy2GYp6OU0MbeCQf2d8o738Cnj6aZTJq6g491wqgMJ33+Yfj/yH6Tlumlqao+VpawLyYdH5cOoXuUALcUHkWKoKPzyC68s+xt8qT+O/YUHq6Ja3eKjtIbjoEdi5kG8crue1ve+DFqTGd4ijQ/Uw4xQ4/buw43njQI4cliz7GEtKy/s+xQlLjX+1R8Pbf4FAF4T8EAoAOiy9BCpipiU+64fw7gMozd2wo5VYg1qPcZf68pQq/ukP8EqnxremXhV/zB4/n+gpBm+MAJafova1TtRQC+WuapoBn6Zz3kEX2z0TOaAV4+JQnAjq7dxGbuNbFDoraAr1MM3Vw9MnfI+t7Z00HtyMGvKz6KXP43lyL2921ONX7Mxf+TBt9mhi919v/Cpl/mYWdLxHjgJXfuZltPeeJOhrJ4iC5i3Hrmu477+aZUEft6h2UO0Q7IbGbeAth8WfgBknQ8kM+OeL/HbXD3j30FQ0Vz7ewhoWentQj7kINvwT9tbzqYP/Ng6eVwWLz4UJy1g1ZQ6rpszhWk1j4/9+R+e6P/Ob6rPptuXgL5vDLrWApoAfHyq/qvkYm1Qj19YxgX1MdCpcuefPUDMzfGdZ7wUuCOOX+J6/iMVjHzPJvRoRBxRz7l9r5pSKQYG3lx2k02+jR1U5KXAaldNmxP4cvzIwFL/c6EQlSlQtE9JGC3uCF7oKTVFKi8lrmoqIPWvep1YbXBYEQbAwIkpZhohpld3wvdwiI2ZeM2e21VFQyOk+BAXF2EI+6NvzPAlVjXieGA16hzuInq79GC6HQ1Vw6joRU9QZDMavpybs8KO/4votL+DQd+Oze7GVTOPixR+BwkuMTszU1VwxFa446tSYjb5l/Fl+pfFvMBRMgNVf6H+9GScb//bthac/GxOCEl1FR+G8qmLmevL44ta9dAYDoIWoaNzIZXv+ypXz7ozbZQ09NIS6COhGLdn9e3lw/a1cWlUKwIKyu3gRhRA20+NIaTdGA51aF86ujXQyB93XjqfzBSY2+/E5nRRqdvjebGa1HyQVTj3IP7bdxRv2StA15k9ZxFENL4LdDVo4qfxPlqFizOfoTLmXBGaeAiffEf1+yX/wAkenWnf5VUa4ZaALHB4om5008uxSVY449jI49jKOTdj8J3sO8fXtB3isLBoWeec7tzGvM5xzSpkFipKBboIgCEMlcXBPPKXGEUmilOFV7nAUkpe/IFulQg+lZ0prdo3mnBCdqgrt7rS2Gayw4c310nXY+Jyfn0d306B2M27RSJ6FWEszj93bh98etnKNFkSOEwQrYu0nU0QpixC9TVL4fY8gJ1xyJVMWLmbPvz+ZeoX+ZrqNc1c3vqi2Ugptq+jKmYA/8CT/OvZd5isVgy9kOnVTs5TpNUv53uCPMsL0InXoOkvyc3h6WUzCzl9+DhrWsfF/Z3HYWQTeciZ+5gm8Nhvn/fs8NjdtNld16lHx7sq37+BFbseuB7mmVGGW18MTa//O4yzGoffgCBqeaJGxQDUSkhDogvZosnHya8CVD1NXw5JPgaeQhQUTWPjzVVC3Hg48ZKw363Rw5sDmsAeTYjO8xYpqoSNsLas2mLQCqpeAFgQtBCiGx1m6KAqUz05//QTOqyzivc4eWtsOg7+DWS0bmBsRpAAKJ0F9NI+VBT1eBWHcEQnfi85UKw/m+EBJeAnrzJvzXVzOgl63GG5a6yuAhv5XHEGzzhYzS21eXh7dTe1ZsyuHl8yek2JO1mK8X2yKLZxRUu833MUWHhy9b8N9ANhV6WLJW1kQhHSRN6ZlyY7x4HR7mL70KA4+Eu+mHNewJBUtRbOT0HjbFA+qvRp0JwFH6maq//jWMdi8mR5pcV+jpKqTZVfAi9+hRAtRggaLzwRbatczZc6HofV1ACqmHwPrQEXli/MXgqKwZofhGac4XOAwRm61XCOXlM0W9mmyOYzwwyMvg5wSwxssFfM/CvWbQA8ZXlJzPmQs+/BP0qiI7FHmdPCDOZOAScYC/ThYegz0tIDNCROWwR8/giJqlCBkncQwPfGUGj/0FqKZ7TApLRTf/ibmhkyH+ATuGTyfsahDjQCR/FGKoqAqKiE91G/43rWLr41Ljn7WtLOGtYyCIAiDx3p9GhGlrIAOQfTwiG92PaUGdOy+JuHTYhpvJdYPzHoPgRWIdwfvxzBd8knjX6r9JFw7ZdXn4NGPA6CeeCusW4OmqOY10fSIN5sNxWbEZerh0T5bxXxo3IBeNgvO/EH/J7HqRuPfaEdRoHpx8mKZfU8QLIQF2kphZEk1/mWB659Ygrm78hN+j5ktMEPH7HsQL/43GU9Jn4gtlugpBVH7tbfwvU/M+QSfmPOJESil9bHAYykIwihDhhgtwj49N35Btl/oCbPJDAR7eTgpuBJrCWX7hKxJREQKEUy9whCtyVjjSQ1/1GL2qZv9uthlxmc17P4vQmI8UhuCkD0S31kRTykrziQjDA89tvjMhNm2LiLtbF1JT9xyb2UNvZWur7xEStjw0pX+7+nevMTG2+OQ6ec/pEc9pSJ1LO+YgSM1JghWItutZd+Ip5QF0AE/tphvYLeNTr1QUWDaE4/T/uhmeHN95nbcmzFg7ecrbbZ2vgEYOp55pkpi7oz+STJ0U9SPrhvGlaIopqeUokRXbfG1ouYaI4RCGCV2EgJBELJLzLOojM62Uhg4uq7TY7fRas/BSyMRH6RCuzXaqjVzm9k5SafV2cZRh45iwbJjAX9Gj9FXqGJ/CbjHIpn2yEn0lFJRk5YJgiAImUesOQugAGowQND3LiG/kaRaJ8TuPb/mwIF/oEVmMLMIxbmBPn9Xc3JwFJeYic4TifW8UdToOv2OQo1JTcA4/+ZAXcpf97TtHeDeEieWTvaUgqjWpemR33TcdiOnVEAzrm+Zpyy87pis+AETnX1P6kMQsklsOJTMizme0AmqKrGjLS5/iCPyc7JXpAQCDvA7NTT7wMzrkZCTxrJktfWVF2ncNzB7qS9MUUpVzRn4IsuyncNMEARh6FjPZhJPKYvgbDhAsGuD+V1TfGzbdhdgNIBVVR8dsbIopDBeYhaU5mV25K/PsvTa+I81oyDssUTUI0cHntn9X6bNWZH+XhJzSsXUU+xPmq6josSEwsCqCcfwtwOHOH7CCZy/8gxcNhdP7X5qUGczlhGNThCyS2y4sSQvGW8ocaKkI2gFkSD94w+0+Ri899P4aKhUu8P8vHfTekomTBzS/hJn31NRo+F746ROBUEQsoF4SlkEJWTkFFJsFbTkudFXOszQql889ypPbkztSTNcJDa98V5PfZhJ/bbZg8+REHv8sULkVGO9ka48dJz5Oaj1kmuqt/0lekopvYlSkb+R8D2dHLsx2jyzaCYnTToJhxo19gRFZt8TBAug64mtUcSMkedzzKMn/GVweS+HkyThYlCCWWZPaix7O888aiXzVp/E1COWkV9WlrH9RnJKqYqE7wmCMDbI+vhNP4inlEWI3Cc210L21rzL/KltdPpzyHN20tXTwrcf38KvX9rBuj3NzCzcSmlON58+bipLZ6zC4zFGhupae9jR0EGnL8T+5i40HbwuG2csrCbXle1LbfEnwUIs66zlvwAo6AM1gpJSSsWG70U/R5Kda2F1Ki60L2GGmbFs0A4ERTq9gmAJFGJnd5WxtfGEHpffL6Vft2XptwUJn1pmQ8VHT/0MhpyCQj54deZn/TU9pRQ1yXtKEARByDzZVioECFsqMUaWYsgB+d5y9MBOphfuoNX3L7Y0zmBucTufO+IXAPga4KmDhfxt74+ZVJzLX9bsSbn7+jYf1580I+VvmhY1e2zq4I0XmwahmO9KnMgxfIz6xJ5K1PyM0OxrRNeMKaUHKkr1OaNP3Ax7kb9RTymrK+hWQaQpQcgySuxH8ZQaL6QaIElnhrpsUVRUBK2HUv42nCGHvQ4kSRufNrGeUioyE/FAGfW2uSAII46IUpZFpyi3mqbmnUwr3M20wt0AtISWA9DUU0Cxu5VcRwtv7drH/7ZFE33OrMilPM9Ne0+Ad/a18sjb+2nu8lOe56aqwI2iwNFTS3j/UAdX/uFNuvxG43vx0bXc8eH5/fr3HWzrSVgSk3TW6UixNOWqAqkb7v/VG35Sds95Q559r/fwvbCnlJ78WzTPlORRMFGUeO8MQRCygk6C16JM1z6O0NEVUKz2Ko5pQHM72ml1wemnn86R84+k45nH+u+eDyIfQn/3uzwPQyNSf6qimtfHTHQugsuAiMz2LAhCtrH2cyiilAXRVR0VnYrKs/DmzsLvb6C+/l8AFNrWADBpwoV0NP0RtDa+d8L/oelO9gbOY9XCy5hfUwDACxte5juPbwYNnn4nn30dNXHHWTKp0BSkAP7z7kE+ftQkbvzTWm6JlCXsTt4a1rw6XR5e9TsoTChz0AZKCJqLqzjUnihaJRMKN+7d/qh1+dTGOmzAa9sb8W44yAfnV0XrRNcZ24qWwsQuP415pXSHOtDR0LS2AQtCfSU6D8Xkp/rTpvs5vvaouNn3zHC9hH2KKGUQ6QhLbQhCdon1+lQkNeY4I9Gozr6RHVsCezAEKBQXFw+hIz7I7Xo5nuhT6RO5ZnGeUgmz7wmCIAiZR0QpyxHJkaDjcBQxc8atAJSXfZD6Q48COnZ7PlOnXsTmzRtpbHwep9ICCiwqehyv38E7775LZ+c2gt27uWlpdM+PHryTnS1VbD7QxPzSLVw6/X7sM4Ooqoufv3M+21um8I//XsnJE7oIJlgxzy5SWbgDDlSWMrmkCYjvnGsK2ICG7hCPvvYzCroPAvOSzi6SlHTt7mbsOfDlB9dzQfi3t/e2sNQBde09fOuxLXGiVJc/RCCkJ3U/nt16iNxFRVzy2zdo7jJmBZxa5uVvnz6aQ20+th/uAGBicQ6luS5sioKqgl1VcdrVXkMWu/xBWrsDaLqRqysQ0lCABRMKyHFm8LGJZjpnSauP4LSL+F/j/bT6m0BR6OoJDGx3fRizz+97DjAEyx+99SMe3P5nptrPNYsRUxShD6R+BCF76HpCl12R8L3xgvHujZl9T1Fw2LMvSvWFMsScZ/155YgHyvAQN/ue5NccMHJXCoK1seL7TEQpi6EAGoZXhqpEL095+amUl58at+7CBT+ns/M9enx1vPvuVXR1bWfHznt63fcZVbdBFTAn8Zcujp3wDhNyD3J09ZsAaA3J5QKYWLybeSt289721Mdw2nxMsv2YOqWceFEqmjvpiJwgLmcTiiPAelc7BJNnedvf0s2ND7zNoa0bOALY19xFHjrOhPXW7GyiY80e9rd0m8s27G/jxfcOc+MD79AdCKKgh2cPjG8my/JcPHr9KjYdaGPdnhYAXDaFGQVv8vfX16Kj8M7heRzujs7osmp6Kb+/bDmv72ykvSeIogdZPLEQp8PJM5sPEdQMQ+aoKSVMLvWmrqRe0JJeEDq7Gw6iaUFUtfdHtScQwh8WzRKJNWhbfM1ERClQaPG1oNmM3wOhEC9vOwzA/7Y10NDhG1ZDbFdDJ2/sMsTNwhwnJ8wqw26zsseDgoVTlwjCuCI2lFZCacYRerLf7tSy3KwUpTcCaVrVDke83ZPqLh5Sk5NiY9Gv+ifyPol4SimKYnpKmZPASEUKgiBkHBGlLIiuhP2llL4vj6o6yMubR27uHMrLT6e1dR0ADnsBEydegqq6KSs7hYaG/7Jh4+dItFJsthwmTriYXbt/xoKSdSwoCR/fdSLwaKQ0JJpL9lAu0JqyTFVeI6lnjy+/13J/tNCP11YPwHnFf6WhwZg9sFr3UEAPtTiZr3khpFBVYHQ+3HYfSijaEcnNbcLfVERI0/nt/3YBcMWqKbyzr4UN+w6wbv0tXD6vhfklm3HYjLC1oKai6TY0XcWvOXj70AJef+c5vvfSZHa1VgMwvXA7tyz/ARfMNo5zVNU6fvzu/6Mwx8Huxi42HGjln2v38cV/vsvVi37N0op3WX8I3m08hh+sPd8s36TiHP54+XK+9dhm/IEOytx7qCpw4XRVg60Kh03B7bBxTHlkVhednqCOEx3N3g1+o+bzeZNNmz7P/Pk/SFmXL753mCt+/yb+cN0UT2+DsK07wxXi70/fwdmFfjQd3D1bgckA6JqTjkNH8nKHIfM1dPZwuNnwKtvbsJsLfvwWXbZOKIcdDR3M+srjXHfidK490UiY7/Mdxh9o5OCBv9PY9ALBUBCbvYyaqfficBSjKorhfQVsrmvnYEs3OtDU6acnEOJHz26LO497z1/M2Utq0HWd7u5daJofRbGRkzM1aaRZ03QOtfvQ0fE4bBTmxEuVjR0+GjoMr7nqQjd57mTREwyxLRSOX7SpSr+GZjR8L/ocdfiCbDrQhq7r2FSFBRMKcNltfe5ntOALhnj03YN0+kOoCoaXoaJQmOPgA3MqUIcwMcKhth5eer8BTddRFYVjZ5RSnu/OYOmHTl1rD4fbfSgKzKrMw2ER0bS1K0BPMISiQFmua9x1kHQSJmUQT6lxhZ5wu9tt2b//Y0NID5T0Xh6bZgw5Aqxevbr3/cmtnHUinlI2xWYKVRK+NziSexGCIGQHaz+JIkpZgth8SVGPov5EqQiKorJg/o96/b2i4kOUlKxG14Moih1FcaKqdhTFht/fwP4DfyMQaAQMoWrpvBt44+XHIC95X6oykWlNH2QzP+mtNKiqm1rvmb38rnMwoJCj5FOtGsJWaele42/MWpPCf9tDOWynlhJPG0Gfg6ChNWC3B/ADs4r3M2fKWvJcAY6fUEaFo5xSdnJUxUtJR7arGoRH2N34OG7Cq+B/la8eBW/WL2NW8R4UOo3j+vPJc7YxvegAfznvWQJBnf/3eCVbmmbyvae3YlcCLK1419z3nKLXOGd6Dm6Hij8YAnS+cv9/eWn/0Xx5+ffNRPVBTeVLz3+NZl8RAGdMdjIVw9uptSdAKaCr8SF7m/as43tvrKHA4+D9Qx20dhu/57kdTCpSyLE3k2OHjkAO3f4Q9rAGc1GJjzzbK9Ed9TwKGN52to65tNWfbP7ksfXQowTRdDsrqt7kYzP/haYrfKvOxSEf+IIadz/1Hk9vWE+lZwfnTftZ8qX17eVL9/+SVw8uJ9fRgapohHQbnQEv5Z7DXDLvfnLsPTh1O3OKP8TmpllUF7g50NrD23vqmZC7m5ZDP0fx/c/c5caWU/jDpo8COm6HjSmlXl7f2YQ/GDUOf3DBYj68uIbmTj/vH+rgvF+8GlesT6+eSr7bgaooqAqU5Lpo6w7w9Uc3maF408tz+dknj+Br/9po1u+UUi93f2wRLrsa1/HXgV+/tIN397Xyr3cOxB3rrEXV/PDjS8zv/3n3AG/uagYMz7yrjps67OLG7t2/5GDDG3T6gqDk4C35LMumz+Of6/axZqfhneZ2qHx8+SRe3d7InqYuNF1H18NvovBsoA+u248vmNoI9zhsHDO9lNPmV3LKvAq+//R7NHT4CYY0AiGNQMiQ7q48dgrLJhez7VAHug45LhtTS73c8Ne3eXVHo7m/mkIPv710mbnt7sZO8zoU5Tg5Y0EVn/nTWp7aZIjZdlXhxNnldPiCNHUaL4WZFXncc/7iPmcR7QmEeHV7o3le82vymVCUk7Tee/XtfPDeF82ca6cvqOSnn1yatN5I0eELsqO+nmc3vMlDbx/AH3JysLOCjx4xke+dt2jYj69pOv9Zf5BD4UkultYWsWRS0YD3o+s6uxu7CGoaTpuNicWeQYpqklNqPJIkSAJWMLK9AYXlWzU2TbGjh0JU2otZULogaT01pKFjDFpUV1f3uj/zjPpQp9L3YM5+/YwmUnlKmZO+WDDcRRAEYXBY730mopQVSMrhbeRMUPoI2RoodnsKhQlwOktZdcz/0DSjs6GqThTNhr0BqExeX1FiFqYwmPLy5nHC8RvZ+OwudF6M3dL89OPDHpaUz+dw81punPMRdqzZAcCsWbN4b+sWampqWLx4MQD1ykG28wLoQVRVg3AAX8Q2WFS2hpKapwFob4KpDpg6M3xE90qmTPggZcXLcDqL0fUQuh6ip+cAL234F5v2buDIincAOLLijbjzWDL3anbu/CGhUBcHD/4dgC8cCesb5lDlrceuGN5Xmu7EF7LhsXdzxtSnk+rjknl/jftuVzU+u3wjezsmsWFfCz09PvImdNB8MJ/Qpa3Uz/gS2sNVRB5NHQWb0sFzWw+H96Bz9aLfsKB0MwBOW4DzJkT3v6PbS5vu46EWB3lhh50X2+3M94Sw6w4UNHRUjvE4eRyoyDnEkRVvsbJ6DW913M4/3gkBKorqQdW6OSU/QEuej4d3+1heuTbpfFp8+bT58mjz5zG/dAuF7k7On/UIp9Q+Y67T3FNIkbslvl4Wr6Fq8qfYdLCN/3t8CxXBL9G6d3uS+Tw19wUumbWLnpCLv279CK9tzyff2Q526A556Ark8I1HN/ONRzdzuN2XVP8KGk+9/Swum59AyM7Otlo0PdmTaduhDk6+58W4ZTsO1XPnn39ErqOLY+zb6HbXArD5YBt71mxDRaPIpWFTQyyp3E8o2ILSZeePL+xnS9MkDrf7eGpT/HTgM8pzqW/3cSAcblpd6GFedT4KhqjidRnXvScQ4rLfvcH2wx147e0UeVTuOncJde0eHt9QB0Ce287Vx0+L8xTz+RvYtv3bccfs3PcED+09ifvWzmVL0wzynW04bQFe3/IcpR5DGApqdt5pmIemqZTlGLG7eQ4HvmAJDpvKCbPK0XR44b1DBEI63YEQ/91cz38318Pfk6rT5MX3DictWz65mM0H2wCozHdT19bD/pZuTkmo/1iu+8tbAOQ721hctgGbGsLfBtuaZnGoqxyALXXtfGrJAQ43b2FLXTsdwUoOB4/ismMm86uXdrC/pYd39rbE7dftUHnpiyeS47Thddn5zcs7+fVLOzjYGj9Zw1t74rcbSQIhjQ9+/1muX/hlFniaWbDCWP7nzefyz3XHsflgIxX5Du4+dwnFuV7afUGaOvz85uWd+IIhFBQ+uKASBfjxM5s5teaHFLv243XaqSyZjVr8fwQ0G4fbfWZevjy3nVPmVuK0G4LPy9sauD58DQDyXQr/va4IFaOecnNn4Xb33smO8I1HN/Obl3ea3z993FSuP2kGboetTzExFl0HNW72vbAoZT37Ssg0ejgUX48O4ikWcCtSULj5QQ33/Jn0bNhAyRVnUeAqSFov1ssrUYxdhI2AbsMOBMmst23T/o6M7m88EBGgbIoNNSx8a8jse+kyzhx4BUHIACJKWYAkkyr8MleV1GFHmUZVHahq9Fh6zCxtqc293lub1A1R6vX3BVT0vGOpO2jchnPnnMDBgzplZQuZMOEcALSWd4EXQIk10hR6uo3wQI+nlpKSE/B6p3Ho0JP4fGFPCnsei+bfTEF+sheB213NmauO5Ki2HvbsvJPuzrU4bAouVyVTp9yAzZaD1zuTgvwltLS8SSjUya7dPwUwxaAIJcVHUjvpShoanzNG7BUFBZX6Q0/g8+031ysqXIHDWcyhQ48xzfM3pnng+EiqqoUQ6LGhuUOAP0bsM1xXClw93HXaIRzaezjVTryhd+mNqR7D02txTnhWRcXOQy1OHmyBc6d9CkUxPGLQjTqflL+Xc2YYoZrt+54CTsLhKKW68mz2H/gLy70hoJ5TTvoC2MogBChuVFs++RW3M6P0WFQVWurupv7gFs6d8VBSmWIFqby8+bS3b6DMsQ7qT2OeawrVBZcyOX8PAG3+IloDVTx78Ao+OfX/4bH7mFPyHgBLytcn7Xt32wS6g26aewp5v2Uqx9a8hl3VmFDkwekspqtzAw6l01z//a5zeP3Qh5iY8yYONcAx00r5306Fl7Z30BXwsK+jmvOXqFQ7n2JG7hO4bIa3ThCoz3EBUOrew13H39rrNSD0ANUFoOUreP0n89C2DzGnKp/NB9v42oOPUuw2PKfqu8po6C6N23TV9FIKcxxsPNDGzoZOTp/yFB+d8R8A9m6GJ3Z/mL9vPclc/5cv7uCsRdXMrc7nyNoivvfYY1wxGzoDHna0TmVB6UbjGijP8IUjn2FPey2T8nb3XvYE2hxXcebKL2BT9XC4Izy16TBtPQFueTD+ehw3TefM2Q3YVGj1Ofn607kpBcA14VxiigJP3XQcNz3wDq/vaMRhV7GrCl6Hn0KPj4XlB3Bpa+n2Bwlodv6753guX/gYMwuiAnKPPhG97H5+/Ow2Drfsou3AHbiARTH9wX2bPXQ0fZh39q80l508ZRNzC19EUXRu+eOz/HfP8cyvyWfDfkMsc6h+bEqIz6yexg+e3UdLZzP/7/e3kOsKUOp18eT2mWxqKMeuBshzdrN4QhHHz5nFB+eX4et4mY379tET1NjaNIW3DuQS0nTy3HZuP2seVQWeuPro8dXR0mzMqqqjUlS0Erer2Py9rrWH9u4GSjzGfdMT8uK2dTKndC+Huzdyzdzf4LAFWbfGxv1bL+K5PUtI5IE3DW/UqQU7mTr7bXN5Y+NB7nr8L2xrmZq0zdc/PI9PHmXM2Lq70ejU1hR6qGvr4eiq/7L+3UfMde32Qo5d9Qqq6orbRzDYzs7df+LBte/hUvZS4zjMbSugM5DDbzZcyC9e3MEvXtzBxGIPj11/rBlq+/c39/LVRzbgD2rYVIVzlkzgslVTmFAUrrvYzr10EMcVieF7uhV6vxkow/fI4V8YorA6VO8/PT7MPKLhFVdbK/+WFUk1+17kFSPhe4Mj+7KxIAgGFmgv+0BEKYsQe5voEU+pNMP3Ml+YPm7aNO9nY/7A3hmoG7Q3ZxrNjY0QDq/z+XNwAhMnfJLFi4xgvxnTbxnQPsvz3ZQv+lavvxcWHklh4ZEA5ObNoanRCAl0OIspL/sgiqLi9c5AVZ2UlBwXt+2MGV8mEGhB0w2Bz+koprV1HX7fYTTdDyi0dQcgYIgGDrdhANlbJuDoLgNaiGQxUvBTHvqGseOw1uT1zmTRwl+jqg5crnICgVaaml/huXdvpUyN5vtyuKpQlGZ0XSPPbUcLX5W9PsO7psM5hRfb7Rybp5nGWI53OrW1R9HQ3cD+w/+l1B6+ViHD6+XII/5IQcERcefrCh3Dobo/oYcNObd7AiuOepKW1jfp6THEOYejkMKCpbzy6kmEQh0EAs0QaOYXZ1Zx6JAh/px18kvYbB4uAdo7ZtHZ8R6HDj/O4cNPpbxGtfn7zM+RJP0ABCEQBEfC/Toj50FmTH7Q/K63wspi4x9AyD4fW3BDymN1ewyBxaFGRFsVRbGhKDbs9lwafRNxaVtw2gwvKFXR+eDUNVy06ijW7NNoaavnzpX/hxozst8ZyCOo2dnTXsmhrjJsSghbMMSx5SozvOUcP3EtAJquoCo6tbmbsakfYGqpl/cPGULBv945wGvvv82Byc9ydKnh+dTcU8he7mRV1Xv89ZX/ctoUw3MtVpCy2XLJ8dSCotLeHi8w2Wy5hEIdlCoPsXbtS3R2vo+uB1FVD2XeqZQBfzjjMIGQDooNd/7pBNoeIBQwns8C4DfnXsPO9vnk609Tkeeg2OvmwS0L2dlqCB2rppfidWj85OOT0bUadD1IV9cO3n7n0ynr/+TaF1BVN5oGRUVH09z8Km5lLzSs5qYFDp7fuxyAdr8XHYV8p1E/OY5uVlSvw5l/Nh9fPonKAjetu+6mu8cQQueVbOHFfSuZ7PobHzhiJyXuJqpz683j/vDEHN5rnsLiso3mMtfkCWxv+izfWPlNcp1dAKzdsYjrXp/LpfP/AoAbWOSC2ZOcdPi9/PCtqzj6LmO/M0uaOW/OK9S3trKi6rWkc93acRY13l109PjpCTmZUWQ8bw5HEfPmfpWNm27iyIr1HFH2urmNqoSYXvAuzxEVpa5YdoDu9pfJd7VT7a0jx2Hcm3vaJhLSFaYU7OHqRb+hK+ihLVANajFtPpXdzR4quz7Hc88bnbCSUA41udfzyQVNNLVuY3Ke8Yy0+kspcDYTDLbw/X9+jun5b2JTNGyqjcPameS7HeQHf8WR8dorAN9bfRtBTSWgOXjlwFF88Xf/Yl3jyUwrL6K+YS1T8gJMKdhNoasVOuALf5rDuw3zmVXWzuSY5z7SXiWnwBbGGkmz7zF2REklfCY6mT2nEy6cRc2sxTjcNvKKrZW3z8pEBKi4ROcSvicIgjBsiChlARRAMTu6CrqiG7PvJYw6Z4WwbdS3h3waDXXi6GZkFpOYHwbU4I+wbVBRfjoV5acPaBuHozDue2HhkSxdmhD+Vr+Xx/78UZw5GhM6A7jbz0PVIuKKjsc9Ca9XDe+viPy8+djseZSXnYLHUxNzrAIqyk/jWe1vhFpew6MYNXzdMV+DbZ8DIkaWUXFbuw1RSlFVHmxxkl9zCbW1p8OuHeTlzsPjmURuzWf4xrsvs6qohNuW3QCAy1WRJEgBlJWexHHHriUU6jbLqqoOSopXJa276piX8fnq2bbt2zQ0PsuhQ4+GtynBZot6keTlziYvdzYVFWdw8OBD+AONKIpKedmpuFwVNDa+hKb7qat7mI6OLei6hqLYmTLlWhz2Anp8daBrOBxFFBUdzetrzjBzpwEU5C9BVV34/Ifp6jKmk4wVpIqKVlJSvIrS0pN47fVTCdkjnV+F4uJjWbL4d0nnpus6gUAzwWArr772Aey00HTg60xX4baVFaiKTkj3Ygt7b3kd7QAscDUDm5P2F+GFg+dzQvVfmVywj28e/yCLJtWwswm6/Qp/WT+HRUXPsLI6mktrWtVMPrl0IXbbYioqPsS+/Q8Q6nmbghwHHncFU6fcgKpGw/78/iYCgRYURcHjqaWzcxuvrzkNv/8wfn80BE/Tumlv30giPc33JS3TWn9CbWT/bVDXBisL4ENTjsXtrsZm8/L8C8nbRVAUJzabh8LCZTQ0/Dd8/B5sthwWzP8J69dfTXPLa4CGTfFx0iRDNC4pWsoRi3+JjUZamtewcdONLKkJcfmSyRw48ACh7m56fNFcYKqi89MP3IJCIFUxyLF3xQlSABPymrj3IzZo7jKXLa14hyXlhhfjgY4KU9hy2fy4PH4Wl21gX4fxzB5T+RhTcl5nSkw6qxZfPoUuw1NrVu6/AMgNPw6fXWTs1+EoJC9vXrguosfe1HI8cwufZ1bxXr576hoWTchF0zrZv/+PkCL1U07+CrbWdTKlYA8FrnYKXO1UEQ01XVYWv77L1sWdK//P+BLj6PWrd8/n47P/SU1uHUtK4oXjotAD1DWUk18I7zdPJaDOZOXspbjYS/3BPwBGOLNd9XHSJCN081z+bWw8LbnMx1S/zj3rruaLS+6NWx7NKSUdxrGPxa9xGjbMQM9gIDnXUq2bV+yhuHpgMwELqROdy+x76SM1JAhWx3rtqYhSWSYUDODr2BYd+VOM/5SXnkJOTnJIRfYYYBOToRZprLf9qs3FwdfLsTkcLDrQSmDBFCDq8eP1zmTFUb0nsU9Ex86azuhjfbNncnTmGKKilK4bYTKq2t+Is8LuoJeqqnP6Pbbdntdr7rJU682c+TVyD85B1wwxoKTk+JTrK4qN6upzk5aXlX0AIG2xMDF3WqzoGwi0sWvXjwkGDZEoxzuNSRMvN43PuU2T2BvqgXJwucqZOeMrvZRVweksxuksZsaMr9Dc/JopqDgVQ6SYNuUSpky+jq6uHWian4aGZ9E0H4pqR1EcKIpKV9cOAoEWAHK9M/nKyk/xv1cewGPvwsNzHDgALox/n50HdnsBwSBUVZ5Dbt5cystOxR5OqD6xOIeJxZf2WTeRMkfIzZ3JksV/oKvb8KzyemeQ651Oe/smgiHDA8nlNJSLjZu+YJa1ovw0Jky4iLXrzicYbDP3V1Z6MocbjJxrTU3JkxAY521HVe3YbF7mzL4rzvuwo+M9fL6DxrXJmYrDUcCSJX/E72+kueU16uoeQtdCKKqDyZM/i9flACrJzZ0FQFfXdl7+34q4Y6qqm8LCZTQ1vWQKUqrqYfasO8NC5kr27fs9e/f9Hl3XcDnLmDfvXl57/WRsShc0f8k4t7JT6OnZT3v7xrAXnMK8Od9k8bRj8Pnq2Lvvj+zdex/nzHyac2e/hN++jI4uow4bQquZWrWY0uLl5OYtpv7AL3jjvZfp8AUJ6nYCehFLS6P52XJz5+D1TufoFc/g8xm5xRzOEpYGWlm77nmKXIdA/xN798bX75TJ1+F0lZObOwtVdZGXOwdQ6Oj4LJrmp6NzK37fYXQ02jp2sWFfPT0B2Nl5NBXeTuZ4f4OqhAAFj2cyIdcJ7Gr20qUs5I3D7bjtT+CyK+Q4Xez0X8IU2zfxOrrNCR5erz+e84+7jKVzqgCYNf1GQloXXZ3baWx6kYamdXR1rIu/J+yTyfV4yfXOoq7+X7jtfr549L/CIcQ5uFzFlJd+AOn+jC+SZvKy0uXPsCfNkLz/xKtnUCTOtKcQ9ZSS8L3Bocv0e4IgpIGIUlmmYc9uQsHYJJSGPDVp0qVZHY3pI2tUP0qRkvKzLRT5JIZSPOE60vWoKBRZFJfQNd299X5tdF03XN50IJzrJ1Vu4cQjDpfLusczgWlTbxqWfaciMXdaLA5HPjNmfLnXbat6iqlu6oRycLoq8Xqn93u8SRMvZdLES/H5DtPU9DKgodo8lJacgKo6TMEkPz95lqZULF70Gzo63wcg4G+iq3s3hw8/AUAwaIRs1tZ+Fq83M2J2cfExFHNM0rJEVh79TNKy44590wzlNGb8VGlv30xH51a6u3YZ56GHUG1upk65gZycKX2WJTd3Jrm5M+OWKYqKy1VGZcWZVFaknu0zJ2cyud5ZdHRujZ5D0TF4c2dRXLSSoqKVtHdsMJ4/RSU3dx42W1SsrK29itraq8zvuq5TUHAkra0R4VihpOR4qio/Qne3EVLmcOTjdBrxah7PJMpKT2Lv3t+i635CIT+20DMUhFNtnbz0CoqLo7muymbdwPxZN8SdQ1fXLvz+BhTFZnpJ5eRMJidncky5NKZOuZGenv0oqgNVcaCodlTFQWnZySlz6wHk5c0FoKBgcdzyxQm3pK5/0fwcaZeOBT51EsCJwNfi1q+rL6apyZhF0+ks5derr4urV4cjHwf5uF2VFBcfwwwgEGglFOoM/14St357xyY6OrZgCxmTYsyY9jkmTbocgNa2dyKlTHmOwtjBaMMSGi0rdHYHUYbYtloZxIysEko2vMTllAojdS4IwmjG6l6eIkplGV3TkuwZvU9pYQRQlCT7fsAT3CScQESUCtqs/UBkFUUJGz2ROtIHPDKX+MJRzEwV8eF7JHhKKSimrR+xuxTJ1RJHxJtxoLXhcpVRVfWRIR+/pGQ1JSWr45a1t282Qw/dnokZE6SGSiTXVix5eXPIy5szouVQVRfLlz+KHs7tpihqUrkKC5amvT9FUVh6xF9MEVBRHNjtRvLg3uq+qGgFq1a9RjDQypYtt9LSaiRq97gnpSVIJgpQqculMmXKtWmfx0AZqCHTl1DYGw5HAQ5H8oxlAAvm/5iGxucBsNtyqRjgvoUxQnhMJXb2PUsS+7yk8ew4qrzkrqyGx3eGB416b2WS2vj+9m/xTohVaew2Qv1VRY16Ssnse2kjNSQIwkARUSrLpOrwGzmlxg66Ah1e44w2TerHkyctxk7tmMJPTPRmfJ6tAYpSfdRNrCila8ajryrR/Y+dWh0eFAuKc9kQekYbiqKgZHAmU0VRcThSJGrqA5ezFJezlKVL/4qmRQQym+VHraxCTs4UJvXiTWe+88SLYewTSpH3zULP0GAHcBRVofCsaWiPb4/JkSZkA6fNyLVY3xXJCehKCukTBEEY/VjPZhJRKtsk3RNG42eVzkombtmQCs0lKkUd0OGO7Nd6D0PWURJlDx20AdZTYmSDophTIeroEBGhIuF7KezfVEnohZjakFtXGAKqKs2uIAyKfWvCOaVG00s4ZpCJcFj+MKOji0g7SK5dci3/eO8faLqGx+7h3Jnn8sweI0RdwvcGh9SaIAjpINZxltFTZgAca2NlkYmOY+ijlUolyBn1FLvRGBFMUiodivl3oOJdfzmlzD2Gw/dsqm5mjk0K3xsrdZxhxMASBOshAx1jH93fhaLEW0dWGL8zbZYB3ILptK+G17wFTnAcsaJqBSuqVqT8TTylBEEY3Vi7PRlb2seoJNGKUdCVLN82SowZFP7g7bElrda3RNTLGSQmpxriiVrFoywjKIZ4FzuuOuCcUgkVGvs9dvY9zV9i/K5qvW5rlkJGB41nQupBEAQhe+iJ0qMyIp5HadNLGzHwEmbunETUGjqJOaWE/pG7ThCsjRX7diJKZZnU90S2VakokeJNrvMCMeFgvRDRiBQSz22QJzSWRKcURAxG8+WgG0vDPw5YCFlZvdI0oKYWTKXKWxV/DFuP8TmUB4DbaU6LmDypkSQ6j2Owic4FQRhOohNDCGOdFK2RJa3Y7Nst8jRkjiQ7TRgQYkMKgpAOEr6XbeLEiMhH67hs75rUTnWdh5Ci4Al5KZ+7EHr2D8uxBtLgW6N2MkyvYYvpc+HcCzl/1vloaDhUR9x0xpqu4al+gEm2M9jRsgPF1s2MiVNZ+55hdEWOFDmmVe5BqyEGliAIwsij63p4sCbbJUkk/bZST2NVVzAnsvbgiiNklMgAXcRzfUx56AuCMI6w9rtLRKksE+3gJjqlW4PtU9vYPr2BerudE/efyPFTpsPm/YM2CnXT2yRmurnxTGwuCiXuAzqDy2HgsMXPNBY7c4zNs48Fk3ezf9fTANhtk2PWixYlFhFhIF62EwTBMkgHcXwzli6/ooEOOYFCAEJKsNdV0x6wGkv1kyUSRSmhf0S4EwRhoIgolW2SDAsFTVWzamdbvzGxevkGTqzwE3d2GXQXN2fV6+36RsL1Ioc0E5+LGAMxop1UhyBYBiX6ospuQYThR9PCOaQSGimLEGxsSF7YS3ubqh221WxlW6eGPaTQ5ehgV/GGTBdRGARqQoyoeJEPDHkzC4IVsd6TKaJUttFTNHAWSCk1YE+opPzlGT6DMdrhiDVMo744ManOtaGPzCWO8tmUaNJ6U6gSP6C0kXoSBEEYefRwcoM4LDCIprjdAIQON4S/u2J+TL98R1ywlJ++/FlKlAJ68OPXu/s/dqr96zodqQQyYVCYic7FU0oQBGHYEFEqy/QWGpV9M6sv+ipdNEl3xHhUYpN3hxmU981YVgN0nYN2hQKCMUasjp7B2V4iBlVinqkIsUc1vkuicxOZfU8QLIq8p8YNkZxS4a8K1rCVyr9wM60PPQyahpqbS+G55w5qP96CQgCcOTkEg4Cve0An6HC5UG12tFCQns4OANze3EGVRUhGZt8TBGE0Y/VIKBGlso2e6BujoFvAU0rv5XPqlWPWGOAN359H1Vh3k1ZtUa+l13NtHKe0x6+gDb2jlThzTGydmstiZlWMXM6xXvcDRWbfEwRByB66rvHYhGeY9F4X4Mx2cUy8y5fjXb68199jW9JMtR+pBvacnhw+8qWvUb/9fQDyy8opnzItQ0ccv0QG8mQSmPSRGhIEq2O93oyIUlnGtCsSw98srmamR6obPiHReQrGxrmnhycvn6Uf+ggHtmzi0PtbIHbmRT2zo/+RUb5YT6n4XFa91Lv13ltZRapDEKxEb1M0CGON1lAPWwu3M4ny8BKFMm95n9uMJjIhdkxeuITJC5dkoDRChNjJYoSBI07mgiCkg9r/KsLIosTKEpYisVR9TW2cpCulMQ9y/yF9KX63YkUNkOM/dTmf+Ob38CbaOwro9Rth96sZOU6q8L1UdW6mkI0kPpfOHpJ1SxAEIbukCp86ouKILJREGE9ITilBEIThRzylsk4KUUBJSuU54vSW6DwiVCSWT9VtySsLAyJap2FXcUAPdIOvbWj7TVAIU3lKKUj4XrrIqJ8gWAhFPKXGDSlEAXWMelbLrLcWIim3/ti85zKJ1JAgCANFPKWyjN5b/J6VSdEgR5bk5Dn63DQNh6k+Dhu5Xa2S3jTzGCKRan6jaBpUZ2YkOKWnVFz4XnRpcpnGOUps7Uh9CILVkE782Me8xrGXegwKBNLGWAs1bJPVd9VnuSSjE7mbBcF6WPG5FFEq25h3RXQ+GR3FAnaWUQA1jdlGgjY/nQ7Dm2fxybXm8lh/r6RovgE+DjrgdkUTm5aUlAxo+9FAxDMpLum9Ow9yyzKy/3TD9xKRzp6BzL4nCNZDPDrHD9HwqfFzzeX+zj5epxeApp4mAHIcOdksjiAIwphEwveyjB7OIKUTNrPC9odqEUPEoQQI9VMWTdEI2kKAA5s9vXIPRuiIdZn2eDy0ERjwPkYH0XAUPYM5DCJ13qunVEL4nhCP5JQSBCsjz+dYR0+arZhR6yk1VLFJBotGjpuX3sysolmEtBAeh4fzZp6X7SJZntH5VArCeEDBqvaSiFLZRtfpcNjwKU7c+I1FSvYlqfYDLlgEIWyEBrG9kvRtkHk/+qmIUWqPpiSSVjz2nHVt6C8Oc+aYVLPv6bGiVLgEesJ3i768RpbeghsFQRCEkSBZiFFGlRHQb/qCNE4lMZ+R5DcafqYXTefGpTdmuxiCIAhjGgnfyza6Tr3XHbcoT1WY7HFlqUAGPQ3G8Vv1PDoZPlfl2NFCGfkj6jEXtyQzmOF7MY99qtlk4pKfCybiKSUIVkTeU+MFHQ10HTXmVWz9qx/fkkorIow35J4XBAtiwT63eEplGZ3E0TOFD1eX4FCtb2pF6G2mvlQM5RGI3daCz9KQUSDhxIYpfE9N1qJltLV/TF+/MXjvCYIgWB0tpPGNP4Rodus05hF2wrZ622X18gmCIAhC9hFPqWyjG+FaCbpU9unT0Evvt8H23UUgiZ5/h7+Tl/a9RFega/B7C9dnKk+pvnJKRcZ3xYONhNn3BEGwDOazKU/mWEfv8jHzQOyVVnBNn5bFEg2evuychq4GOgIdI1gaQcgw492MFwTLYt2HU0SpLKOjo6EkzMJnoRuml6L0mxphWE9B6eXz6EZ1GyGT0S6WQn1nHVc/czVfeulLQ95/vzmlolmtjO/jXhyMR2bfEwRByB66npzh0l5amoWSDA/lnnJsio2gHkTTNZyqk2J3cbaLJQhDQvKSCoIVsd5zKeF72UYnrOCEb44MhmsNB0MXKuIfgrRzSun6mI+bck2dht4cm1VKpzKngs0coq6zbtD7TfR4SjX7Xl/5o8SgMIjklJL6EATrIB6d44fIxB+xKQ/G0thJWU4Zj5z9CHva9gAwuWAyBa6CLJdKEARBEIYfEaWyjK4ndnEVS3ioDCRPVJp7jPs25I79GOyAKLZkx8ULZ3+S5xruSZmQfKBE9mFTbOaytML3RISJQ2pDEKyIPJljHV2z9qBdOvR3l9bm11KbXzsiZRGE4UImyhEEa6IoimW70BK+l3X05GmCrfAuNxWKPn4Lo2oKLv8w3UoWEOhGCkVRiZ9/TzcFyqEIQxHjICJKxYqesWJX9Kh6/AIBkNn3BMGayItqvBD1hlOif8eRjRDL+++/n+0iCEJ6iOkkCEIaiCiVZQwbSzE7vIZ5NTouS9Ae9rzRFVxBw/vG4XYnrZdqOmRdH7jwMdbDMxQlXpJCUZIEpaEQEZtiPaVM/UlRes0XPNbrPS2U6LifVIcgWAlJdD5e0Ealp1TqSTIG60ni8XgAaGxsBCAnJ2fQJRMEQRDGK9azmSR8L9tEwvdi7g0rjfvpfcTxdbs0ds8+RFe3IUQt9R5L6cSo27k2AmcypgZJlWQxMiNhlGZYXlj4jJtJrvcDiPt1aqz3GhcEQRgHhAdn4nJKZakoAyGTZfzYxz7Gtm3b0HUdm83G3LlzM7h3QcgMo+G5FATBWogolWX0lOF71nydK0kFhaaqdt7xdAOwihn958PKhMpizeoZMmbdxSR3ipxqRnJKpZh9Lz58L372vQiSU8pAZt8TBOuh9ObiKYw5IgMrcVfa6vZAgk001Lu0rKyMsrKyIe5FEARBGJ9Yt9EcHXFiYxw94QaxQqLz/m7aVL/GedYknUNmz2ns6gMJd0P4PDMSvheZfY/Us+8piR5VpovVkA89BoiG2Ep1CIIgjDzJYf9WsJUEQegLsZkEwXpY0eFARKlso+voiSNpo8jOymRZU4WXxfyauQNZFEVVzRxj5rIMPKJ9JTpPhZlK1hLiqPWw4otcEMY7kvtu7KProWwXIWNI+yoIgiAIUUSUyjZ6JLl1fArM0U7v9pZxngc6D4xYWUYLyVWW4fA9ve/wvd4QESaC1IMgCEK2SBm+Z3VEfBLGIXLXC4JVse7TKaJUljFzSlk00TnEixLG6F56JYwLREuwItv97QAUugv73EfqZNtWq6HMoKgqvYXvDUUYiozItvpaje9EZ/WLDdWLrBeNkIjkmBpVXYDhQWbfEwSLMjbbAyEFWvLLVzyOBMHaiMkkCEI6SKLzbJPQw1VQrDGylsEiJIagXb/kepw2JxXeChaWLuTf/Dut/cSGZ4ztUI1o4t5IzQ3FU8quGI95xDvNoTpQFAVd1+MFR/Ooke8WuA8FQRDSYiy3CQKApoXbQSvYSIMkMV2DIAiCIIw4FuxHiyiVZXRdR48Jp0LXLTHyl+4keQO9pXXgk3M+SY4jB4BgMDjAPYxdFFVN8kpK9GgaDNctuY7Hdj4GQKGrkBMnnchda+4y9pvGFRzbAmD6yOx7gmBFst9eCiODHh6cGVWz7wnCOMQC3RhBEEYZIkplm31voFNDrH+K5a2sXlqbWDFNTToHJeV6w1SUUYoS89/wkh/+Hi4cWgjdR2d+lI/O/GjCkRJm1otx0Eue4UiQ2fcEwZpE2xN5Msc8SQMDo6SRkltTGMfI7S8IVsK67abklMoyesdhwMq3SGqSypuBVqcvj5zx4K0T7VzFdLLU+JnzMncw44+GlrgoKXxPckrFI7UhCIIw8uipckploRyCIAiCIGQWEaWyja6hJVhVipp9M0vp9Us86XbQo7sYQpd+jAtThiiVEL539cVA5oWhVInOTcZ2NQ8OJeopJQiClRh6iLMwOtDDgyhxeZmyby71ib2sLNtFEIQRx+KPpSAIFuzTiCiVZQxDWom7N8ZKIszB3u5x4X291MVY7H8oiiF7xJ6/snIpkPkOVyovqMSwSivkNrMSMvueIAhC9tC1DHsMjwDuGTPMz4rDkcWSCIIgCIJ1EVEq2+gaugIRCcfqMkBvQkXvGaQMIv14PSMnaPVaGiRJnlI6ij48IXSR6xgrdpk5pRKOJR4I8Ug4oyBYCckpNV6ItEWxc8aOqllibVGTe1SVWxCGgNiQgmAdrOxvIKJUttF19PjU1pYyVhyaZs46VlJSwtSpU+N+Tz98T0n5eSCkPJaVn66Bohgec7H1o4ZnZsx0TqlET6nYuy6a51xySkVRZPY9QRCEbCKvYEEQBEEYk4golWV0XU/wHrKI1RUWe5yhEC6fD4Dzzz+fkpKSNLcf+CHH+2hKsheanpT7KdPH6mu/VhJHrYDMvicIVkQ8pcYLwaCdd+Z/hh5PVXThKGqmAloo20UQhBFB7EdBEAaKiFLZRteSTGkrJDqPJbOmfmb25usMZGQ/VsLIKRVfP1sfbQGGz1spdvY9TKEqfp3xLhYmIrUhCFZEnsyxTmdXFY2lC9BUJwAOtRPVYvZSEopq/AN22i1eVkEYBuTNLAhWwrrtkIhSWUbXtPDMXrFY/bKke0MrvXweBDpxaklHs+G9pdqs+3ANlIj3UkwgHS17jfMcrvC9iLWgKLFH1ePKIyCz7wmCRZH31PhB0w3bSNWMdnFu/t8sN4iXhM3OvNW3UosTOwp2FI6qOJJid3G2SyYIgiAIlsGe7QKMe/SwBDAKvFFSueP2Vurh7CdUTsnHmVOEJ8/J5AWlw3egkSYiSoXrrrzxXaZ+5kzYOnyeUqn2m+QpJWIMILPvCYKVkedyHBDOdaDoRhicQ+3OZmnSpmDFtfxnxbXZLoYgjBgWl4oFYdxjxSgYEaWyjG7OvhfFCiO/hgDVq+Q0tH0P4PxSrXrixXMpqZk4pDJYkURPqbyufVTOzTVEqeHKKRU7j1Evl0VEqXikNgRBEEYePTPT9wqCIAiCYDGsHic29kmYfU/BGqLUQMlEUkMrqrYjSVJOKV1HZZhn39NjZ9+LCFXx6wgAiumKISKdIFgJSXQ+XoiaCNFWShAEayNvZkGwEtZtN0WUyjZJs+9hsfslRfnifo2SjpiWToe+1/2MddHKPO9Ivic9pUdTRg5F755SkWo2r8MYr/Z0kZxSgiAI2UM8pQRBEAQhE1ivTyOiVJYJ6CGeLbwfv2Ik7kRX4jynss1gb9mkM+jFmByNXmHDhVEX0RrXiQmzy7QgZwpQqfarJ3yz3otrxJH7VBCsiSKeUuMG02FYrrUgWBkxmQRBGCgiSmWZPWoH+93vxag4OlW5ldkskkGKFiWVgNS3F9XwtEpjVcgywvfibgUzfG+4PaViZ99LXEcwiHhKjXWHPUEQBCuiSZskCKMOMZkEwUpYtx0VUSrLBMO5gpSYt/bCskVZKk2UTNyyqYUUfVBihx7+35gmIrbFhOxFBLiM55RK4YGVGL4XYczXe5pY9zUuCOMXRXJKjRt0LWKyyrUWBEEQhLGEiFJZRhulCTsHml9HvG76R4lJpg0YOaUYnvC9yH41ksUu844cox5pg0NBMROdC4JgNcb7RBnjgoRE59JCCYI1kWdTEKyO9WwmEaWyTEgPAfEv8LEhBmTqHFLtZyzUTzKKapxXKgFvuML3Ynfbm3Aonb14pDYEwUqMzfZASEZPMFnlXSwI1kdMSEEQ0kFEqSwTiphVkRnPLGZgD7otSTiNyH6GNHnOmG/YlCTxSQ1/HbbwvXhVyliWYEFI+J6BzL4nCFZEwvfGC9HZ9+RaC4IgCMJAsbLji4hSWSZJbND1UTBtRbR86ZqGgTROqaGhYXDFGSNEPKUi9asDWlNL+PPwGOGx91+iuW81gTSrKEo00bl0iARBEEYcfUijWoIgjBTypAqCMFBElMoyISWc6DyyQMEiolSK2fciywZRPlu4H7+qaDZOmzN+v+H9bdu2DQBV7fu2tET1DAvJJ7brw2ebnzMZRpc0+16s0Bjx2hu7FT0kxBVdECyEIt4z4wVFM9IdxDRS2SuMIAiCIIxarGcz2bNdgPGOlnRPjC4jy/Sq6efervDl4Qc+Vb06brnNZuOkk04yBSmHw8ERRxyR+YKOAoqra2hlR3x+sZjPmq5hU2wZOVbq2fd6v/d0XR/3IpWE7wmCIGQPRYv3LN/CRFZmqSyCIKSHWE6CIKSDiFJZJpRi9jNLjP6lWYTeGhsFCCkAGqDi1woAsKfQVFatWsWqVav6OZA+5hNuLz71QxxseJs3nn8IgNKrP4vynW+bv2cybCzRU8pYFjlO/DoCGLPvGZ/G9l0oCKMLeUuNH/SET5vV2mwVRRAEQRBGIda1mkSUyjJmTp+EqY6tgk7q5OTp3NIBRee4/F9x0D+HVt3LBPsuKms+kukijhkURcGTlxeTcBxUhxMIhL9nXpSKPXaEVMf57cbfYlNsnDTpJCbkTchYOUYj1npCBUEQxge6LhknBGE0MN496wXB6ljR0UNEqSwT8ZSKprhWsLKK2TtKQiNkfF6Q8wQLcp5gszaJOeoeUAcmSqVs2MZ4Y6fE+CypLhemKDUMcsjWpq3R4yZUq9PmRFVUNF3jnrX3APDy/pf51Sm/yng5LE9MonNBEKxEvKAunaGxyd1X3Iit24/qWIcMDQjC6EEmhxEEIR1k2CnLhNBZsFPDHopZaAGbOmWOqAGWS0+5wVBObnw1bLquY3O6zO9JMzUOgXml84xjoKMqKrOLZieJUl6Hl9tW3MZZ085i9QQjF9je9r0ZK8Now5x9L4PXQRCETDK+2ojxhNpRhxbcTbD7edCNgZoqe1N2CyUIgiAIowoLiAy9IJ5SWcbdFuCrf9V4ar5O0KaADqrT2f+Gw8xQb1kZrB4ciaP8wyVK3XvCvRzsPIiu6+Q6cil0F/Lwof0AbDzQxhW/f4OgphPSJvDHyz/K3ra9vLDvBeq76rnp+ZuYmDeRG5femLHyWB5nrvnRii6vgjB+kcZmPFDd2s7+fONzUDXawvn28TtIIgiCIAhjCRGlsoy9PYDPmY8eESPs4KipyW6hBsFIdgvGSwLuNQ//naM8UVHqQz87ykj4roBaVMjXTvgWx004blD7VhWVmtz4+6zYa4ihTZ1+/rv5kLlc03TKcsrw2D10B7t5evfTzCuZN6jjjlpWfQ7clcZnUVwFwTLEC/kiGI9V/jXrFFbVP013eMrikMuG1x3qZytBEARBEJKxnr006sL3fvKTnzB58mTcbjdHHXUUa9as6XP9v//978yePRu3282CBQt47LHHRqik6aH5pvG/lXcRsoXFB7u1Orxd9hC+DEiXBUrH0HcyHlAg31FqfnWWV1HSarw4DhfA4UKFhgKFQ1or3cHujB561fRSfvGppXzzI/P5v3MW8N1zF/L98xYB4La7ue/U+7j1qFu59ahbuXT+pRk9tuUpmICy8rrwF2s9o4IgCKkYS/bSgQkL8U0t45qZr3DOksMs+dQG3E7rGdWCIAiCIAycUeUp9cADD3DTTTfx85//nKOOOop7772XU089la1bt1JeXp60/iuvvMLHP/5x7rrrLj70oQ9x//33c/bZZ7Nu3Trmz5+fhTNIRguEvVXCIUFl7g1ZLE0UNw4gSLdTJ9IJ99g8AKgej7nedqfN/Oz1euP2EST6W7USzv1gcwyqPK2HD5l1NJbJPXYCRy+5hLkdpxGyhygsKedvOzaxo2sfNrcHR1ExiqJgy/EysXhKRo+tqgqnzqvs9ff5pfOZX2qN5yabjP27UBBGE4mJzrNYFAsx1uyle89fjPOPd+L2h/A6NFRb/9sIgpA9FMReEgQhfUaVp9T3v/99rrzySi699FLmzp3Lz3/+c3JycrjvvvtSrv+DH/yAD37wg3zhC19gzpw5fP3rX+eII47gxz/+8QiXPDU739+OEjJCphSCANTkvpzNIpksvvKLXLljMh+sK+f05kncsuBGqnKrAPCefDbTAio2XUcL9wCmeGs59dRTze3LavKYSD7fDlzAs6HFvKAt5uCMT8LEFQMqR0FFJQ63xxSkPPkFeIuKMnSW1sNe6MI1IY/y2dOpmj4LT1ER5UuPYcWx57Ns2Vksnr6KRdOOYX7VYgpcBdku7rhCZvUSBGG0MJbsJV/Ix7ZbrySv1cglpamRrq68kwVhNPD44RY6gxJuKwhWobPzfdrbN9PRsZWOzvfp7NxOINCa1TKNGk8pv9/P2rVrueWWW8xlqqrygQ98gFdffTXlNq+++io33XRT3LJTTz2Vhx9+OOX6Pp8Pn89nfm9raxt6wXuhoauBh77y/9DRQHkHMIytzfYZDEy2GR6Kzj2X6889N+VvamEZS27czLOHNtEa6ABvGRPK5uBQo15Q7gl5PPz/jifQvhJUBVelF5t94BpoTn4Bn/7Z7+lsMTyt8opLcbjcgzspQRgCke6PT9P55Ds7AJiX6+bL06qzVyhBGPdEhYl3370SlPh2ZsrkaykoWDLShcoqI2EvjST2gMrqI16jrMWwyXry9wFe7Ck8vgRBsBYXvLOdjR09lDntvLR8NoWOUdP1FIQxR2SA/d31n0n6bcaMrzBpYvbSs4yaN0NDQwOhUIiKioq45RUVFWzZsiXlNnV1dSnXr6urS7n+XXfdxR133JGZAveDrVVDJwCETP/WHtVF8aJVI3L8IePKo3jiURT3sYqjyI2jaOgCkisnB1dOzpD3IwhDocBuw6Uq+DSdZ5qMzpFPy9yMiIIgDBybzY3Nlkso1EFj04tJv9dUX5CFUmWXkbCXYOQG8mxuB57u6HG63TY0zcHEMz4/LMcTBGHolDntHPIH2djRA8DRhbkiSAlClplQcyEH6x4yJs5CQ9dDgI6uh1BVV7/bDyfydojhlltuiRspbGtrY+LEicNyrKKqckonutE1naAdDk+dxarlMzluySeG5XiCIAyNPLuNfx8xg00d0QTz5c7B5UgTBCEzqKqLI5f+jbb29Sl/z8sbZzOFjiAjOZDnPfd+Qo3N6I5CZkxdxexCt4RUC4KFeXDJdNa0dgLgVBROLZWUE4KQbaZNu5lp027OdjFSMmpEqdLSUmw2G/X19XHL6+vrqaxMnZy5srJyQOu7XC5crpFTCS+++4ERO5YgCENnYV4OC/PEa08QrERu7ixyc2dluxiWYSTsJRjZgTxlxgewzRiWXQuCMAxMz3EzPUfSbQiCkB6jJtG50+lk6dKlPPPMM+YyTdN45plnOProo1Nuc/TRR8etD/D000/3ur4gCIIgCMJoZqTsJZfLRX5+ftw/QRAEQRCEgTJqPKUAbrrpJi6++GKOPPJIli9fzr333ktnZyeXXmok5brooouoqanhrrvuAuCGG25g9erVfO973+OMM87gr3/9K2+++Sa//OUvs3kagiAIgiAIw4bYS4IgCIIgjBZGlSh1/vnnc/jwYW677Tbq6upYvHgxTzzxhJmcc8+ePahq1Plr5cqV3H///XzlK1/hy1/+MjNmzODhhx9m/vz52ToFQRAEQRCEYUXsJUEQBEEQRguKrut6tgthVdra2igoKKC1tVXc0gVBEARBAMQ+SIXUiSAIgiAIsaRrG4yanFKCIAiCIAiCIAiCIAjC2EFEKUEQBEEQBEEQBEEQBGHEEVFKEARBEARBEARBEARBGHFElBIEQRAEQRAEQRAEQRBGHBGlBEEQBEEQBEEQBEEQhBFHRClBEARBEARBEARBEARhxBFRShAEQRAEQRAEQRAEQRhxRJQSBEEQBEEQBEEQBEEQRhwRpQRBEARBEARBEARBEIQRR0QpQRAEQRAEQRAEQRAEYcQRUUoQBEEQBEEQBEEQBEEYcUSUEgRBEARBEARBEARBEEYcEaUEQRAEQRAEQRAEQRCEEUdEKUEQBEEQBEEQBEEQBGHEEVFKEARBEARBEARBEARBGHFElBIEQRAEQRAEQRAEQRBGHBGlBEEQBEEQBEEQBEEQhBFHRClBEARBEARBEARBEARhxBFRShAEQRAEQRAEQRAEQRhxRJQSBEEQBEEQBEEQBEEQRhwRpQRBEARBEARBEARBEIQRR0QpQRAEQRAEQRAEQRAEYcQRUUoQBEEQBEEQBEEQBEEYcUSUEgRBEARBEARBEARBEEYcEaUEQRAEQRAEQRAEQRCEEUdEKUEQBEEQBEEQBEEQBGHEEVFKEARBEARBEARBEARBGHHs2S6AldF1HYC2trYsl0QQBEEQBKsQsQsidoIgNpMgCIIgCPGkay+JKNUH7e3tAEycODHLJREEQRAEwWq0t7dTUFCQ7WJYArGZBEEQBEFIRX/2kqLLMF+vaJrGgQMHyMvLQ1GUjO+/ra2NiRMnsnfvXvLz8zO+fysj5y7nLuc+fpBzl3Mfa+eu6zrt7e1UV1ejqpIJAYbXZhrL91J/yLnLucu5jx/k3OXcx9q5p2sviadUH6iqyoQJE4b9OPn5+WPuBkwXOXc59/GGnLuc+3hjrJ67eEjFMxI201i9l9JBzl3Ofbwh5y7nPt4Yq+eejr0kw3uCIAiCIAiCIAiCIAjCiCOilCAIgiAIgiAIgiAIgjDiiCiVRVwuF1/72tdwuVzZLsqII+cu5z7ekHOXcx9vjOdzFzLLeL6X5Nzl3Mcbcu5y7uON8XzuESTRuSAIgiAIgiAIgiAIgjDiiKeUIAiCIAiCIAiCIAiCMOKIKCUIgiAIgiAIgiAIgiCMOCJKCYIgCIIgCIIgCIIgCCOOiFKCIAiCIAiCIAiCIAjCiCOilCAIgiAIgiAIgiAIgjDiiCglCIIgCIIgCIIgCIIgjDgiSgmCIAiCIAiCIAiCIAgjjohSgiAIgiAIgiAIgiAIwogjopQgCIIgCIIgCIIgCIIw4ogoJQiCIAiCIAiCIAiCIIw4IkoJgiAIgiAIgiAIgiAII46IUoIgCIIgCIIgCIIgCMKII6KUIAiCIAiCIAiCIAiCMOKIKCUIQlbYtWsXiqLwu9/9LttFGVaef/55FEXhH//4R7aL0iuKonD77bdnbH+Rc37++ecztk9BEARBGKuMF5toIFxyySVMnjw5blmm7ZV0uP3221EUhYaGhhE9riCMJ0SUEoRxyiuvvMLtt99OS0vLoLb/6U9/KsZTDPfffz/33ntvVsvQ1dXF7bffnlIMeuyxx0bckBMEQRCE0YDYRNnhwIED3H777bz99tvZLgrf+ta3ePjhh7NdDEEYl4goJQjjlFdeeYU77rhDDLAMYRVR6o477uhVlLrjjjtGvlCCIAiCYHHEJsoOBw4c4I477kgpSv3qV79i69atI1YWEaUEIXuIKCUIgmBhurq6sl0EQRAEQRCEEcXhcOByubJdjBFD7D1hPCOilCCMQ26//Xa+8IUvADBlyhQURUFRFHbt2kUwGOTrX/8606ZNw+VyMXnyZL785S/j8/nM7SdPnszGjRt54YUXzG2PP/54AJqamrj55ptZsGABubm55Ofnc9ppp/HOO+9kpOw9PT3cfvvtzJw5E7fbTVVVFeeccw7bt28HonkZ7r77bu655x5qa2vxeDysXr2aDRs2xO3r+OOPN8sdS6o8Bn1x/PHH8+ijj7J7926zPhK31zSNb37zm0yYMAG3281JJ53Etm3bkvYzf/581q5dy3HHHUdOTg5f/vKXATh06BCXX345FRUVuN1uFi1axO9//3tz2127dlFWVgbAHXfcYZbj9ttv55JLLuEnP/kJgLlcUZQ+z2n//v1cdtllVFRU4HK5mDdvHvfdd1/Sevv27ePss8/G6/VSXl7OjTfeGHevCIIgCIKVEZvIIFM2ERh1cskllyQtjz3G888/z7JlywC49NJLzbqLeJwN5rip6Ozs5POf/zwTJ07E5XIxa9Ys7r77bnRdN9dRFIXOzk5+//vfm+VILH9LSwuXXHIJhYWFFBQUcOmll6YUkv70pz+xdOlSPB4PxcXFXHDBBezduzepHnqz9958801OPfVUSktL8Xg8TJkyhcsuu2zI9SAIVsae7QIIgjDynHPOObz33nv85S9/4Z577qG0tBSAsrIyrrjiCn7/+99z7rnn8vnPf57XX3+du+66i82bN/PQQw8BcO+993LdddeRm5vLrbfeCkBFRQUAO3bs4OGHH+ZjH/sYU6ZMob6+nl/84hesXr2aTZs2UV1dPehyh0IhPvShD/HMM89wwQUXcMMNN9De3s7TTz/Nhg0bmDZtmrnuH/7wB9rb27nmmmvo6enhBz/4ASeeeCLr1683y5opbr31VlpbW9m3bx/33HMPALm5uXHr/N///R+qqnLzzTfT2trKd77zHT75yU/y+uuvx63X2NjIaaedxgUXXMCFF15IRUUF3d3dHH/88Wzbto1rr72WKVOm8Pe//51LLrmElpYWbrjhBsrKyvjZz37GZz/7WT7ykY9wzjnnALBw4UI6Ozs5cOAATz/9NH/84x/7PZ/6+npWrFiBoihce+21lJWV8fjjj3P55ZfT1tbG5z73OQC6u7s56aST2LNnD9dffz3V1dX88Y9/5Nlnn81ArQqCIAjC8CM2UWZtonSZM2cOd955J7fddhtXXXUVxx57LAArV67M2DF0Xeess87iueee4/LLL2fx4sU8+eSTfOELX2D//v2mzfbHP/6RK664guXLl3PVVVcBxNUfwHnnnceUKVO46667WLduHb/+9a8pLy/n29/+trnON7/5Tb761a9y3nnnccUVV3D48GF+9KMfcdxxx/HWW29RWFhorpvK3jt06BCnnHIKZWVlfOlLX6KwsJBdu3bx4IMPZqxOBMGS6IIgjEu++93v6oC+c+dOc9nbb7+tA/oVV1wRt+7NN9+sA/qzzz5rLps3b56+evXqpP329PTooVAobtnOnTt1l8ul33nnnXHLAP23v/1t2mW+7777dED//ve/n/Sbpmlx+/V4PPq+ffvM319//XUd0G+88UZz2erVq1Oew8UXX6zX1tamXS5d1/Uzzjgj5TbPPfecDuhz5szRfT6fufwHP/iBDujr16+PKw+g//znP4/bx7333qsD+p/+9Cdzmd/v148++mg9NzdXb2tr03Vd1w8fPqwD+te+9rWkclxzzTV6b6/8xG0uv/xyvaqqSm9oaIhb74ILLtALCgr0rq6uuHL97W9/M9fp7OzUp0+frgP6c889l/J4giAIgmAlxCbKrE1UW1urX3zxxUnLE4/xxhtv9HreqY7bm43TGw8//LAO6N/4xjfilp977rm6oij6tm3bzGVerzdlmb/2ta/pgH7ZZZfFLf/IRz6il5SUmN937dql22w2/Zvf/GbceuvXr9ftdnvc8t7svYceekgH9DfeeCPtcxSEsYCE7wmCYPLYY48BcNNNN8Ut//znPw/Ao48+2u8+XC4Xqmq8WkKhEI2NjeTm5jJr1izWrVs3pPL985//pLS0lOuuuy7pt8RwtLPPPpuamhrz+/LlyznqqKPMcxxpLr30UpxOp/k9MiK4Y8eOuPVcLheXXnpp3LLHHnuMyspKPv7xj5vLHA4H119/PR0dHbzwwgsZK6eu6/zzn//kzDPPRNd1GhoazH+nnnoqra2t5nV87LHHqKqq4txzzzW3z8nJMUcZBUEQBGG0IjbR6Oexxx7DZrNx/fXXxy3//Oc/j67rPP7442nv6zOf+Uzc92OPPZbGxkba2toAePDBB9E0jfPOOy/OdqqsrGTGjBk899xzcdunsvcinlT/+c9/CAQCaZdNEEY7IkoJgmCye/duVFVl+vTpccsrKyspLCxk9+7d/e5D0zTuueceZsyYgcvlorS0lLKyMt59911aW1uHVL7t27cza9Ys7Pb+I49nzJiRtGzmzJns2rVrSGUYLJMmTYr7XlRUBEBzc3Pc8pqamjjxCozrMmPGDNOwjTBnzhzz90xx+PBhWlpa+OUvf0lZWVncv4jxdOjQIfO406dPTzJ+Z82albHyCIIgCEI2EJto9LN7926qq6vJy8uLWz4Y+6k/O+79999H13VmzJiRZD9t3rzZtJ0ipLL3Vq9ezUc/+lHuuOMOSktL+fCHP8xvf/tbydUpjHkkp5QgCEn0lwS7L771rW/x1a9+lcsuu4yvf/3rFBcXo6oqn/vc59A0LYOlHDqKosQluowQCoUyfiybzZZyeeLxPR5Pxo89ECLX6MILL+Tiiy9Ouc7ChQtHskiCIAiCkDXEJhq4TdRbnYVCoV7tIavTnx2naRqKovD444+nXDcx12gqe09RFP7xj3/w2muv8e9//5snn3ySyy67jO9973u89tprSfsQhLGCiFKCME5JZTDU1taiaRrvv/++OYoERuLrlpYWamtr+9we4B//+AcnnHACv/nNb+KWt7S0mMlDB8u0adN4/fX/z959x0VxrX0A/83CLiywgCBIERGkKLZYoggaQhQBFUliLMGLmIiRXGtsqNGgBDUa0NiuJa+C9waNV2OUoF5FY0ElVlATFBQhGkosKEiRsnveP5YdWJYm0n2+n88m7MyZM8/MCjycOeUSSkpKIBQKayx79+5dlW3JyclKK7m0a9dOZfgcUL+eR6+TtNbG0tISN2/ehEwmU+otdefOHX5/bTHUNT4jIyNIJBJIpVIMGzas1rh+//13MMaU6k9KSqrTuQghhJCWgHKihs2J2rVrh+fPn1dZl7W1Nf++MXMnQP4Znjx5Ei9evFDqLVU5f2qIWLp06QLGGKysrGBnZ/dadTk6OsLR0RErV67Enj17MHHiRPz444/w9/d/rXoJaalo+B4hbyhtbW0AUEoaRowYAUC+kkxF69atAwCMHDlS6fiqEg41NTWVJ2379+9Henr6a8c8ZswYPHnyBJs3b1bZV/mchw4dUjrn5cuXcenSJXh6evLbunTpgjt37uDx48f8ths3buDChQuvHJu2tvZrd8WvzogRI5CVlYV9+/bx20pLS7Fp0ybo6OjAxcUFgHw+JwBVfi5Vfd5VUVNTw5gxY/DTTz+pLBcNQOlejRgxAhkZGThw4AC/raCgADt27KjztRFCCCHNjXKihs2JunTpgt9++w3FxcX8tujoaDx8+FCpXF1zk/oaMWIEpFKpyj1av349OI5Tuv7qPsO6+vDDD6GmpoYVK1ao3H/GGJ4+fVprHc+ePVM59q233gIAGsJH2jTqKUXIG6pfv34AgC+//BITJkyAUCiEl5cX/Pz8sGPHDjx//hwuLi64fPkydu/ejffffx+urq5Kx2/duhUhISGwsbGBsbEx3nvvPYwaNQrBwcH45JNP4OTkhFu3biEyMlLpyVh9TZo0Cf/+978xd+5cXL58GUOGDEF+fj5OnjyJf/7zn/D29ubL2tjYYPDgwfj8889RVFSE7777DoaGhli4cCFf5tNPP8W6devg7u6OKVOm4NGjR9i2bRu6d+/OT1xZV/369cO+ffswd+5cvP3229DR0YGXl9drXzMAfPbZZ9i+fTsmT56Ma9euoXPnzjhw4AAuXLiA7777jn/6JxaL4eDggH379sHOzg4GBgbo0aMHevTowX/es2bNgru7O9TU1DBhwoQqz/fNN9/g9OnTGDhwIKZOnQoHBwdkZ2fj+vXrOHnyJLKzswEAU6dOxebNmzFp0iRcu3YNpqam+M9//sM3jhFCCCGtAeVEDZsT+fv748CBA/Dw8MC4ceOQkpKCH374AV26dFEq16VLF+jr62Pbtm2QSCTQ1tbGwIEDYWVl9Xo3p4yXlxdcXV3x5ZdfIi0tDb1798aJEydw+PBhzJkzRymefv364eTJk1i3bh3MzMxgZWWFgQMH1vlcXbp0QUhICBYvXoy0tDS8//77kEgkSE1Nxc8//4zPPvsM8+fPr7GO3bt341//+hc++OADdOnSBS9evMD3338PXV1dvpGUkDapydf7I4S0GF9//TUzNzdnAoGAXwq5pKSErVixgllZWTGhUMgsLCzY4sWL2cuXL5WOzcrKYiNHjmQSiYQB4Jf4ffnyJZs3bx4zNTVlYrGYOTs7s7i4OJVlgOuz/DFjjBUUFLAvv/ySj8/ExIR99NFHLCUlRaneb7/9loWFhTELCwumoaHBhgwZwm7cuKFS3w8//MCsra2ZSCRib731Fjt+/Hi9lj/Oy8tjPj4+TF9fnwHgjz99+jQDwPbv369Uvqrrd3FxYd27d6+y/r///pt98sknrH379kwkErGePXtWee8uXrzI+vXrx0QikdLSyaWlpWzmzJnMyMiIcRzHKv74RxVLLP/9999s+vTpzMLCgr/PQ4cOZTt27FAq9+eff7LRo0czLS0t1r59ezZ79mz2v//9jwFgp0+frtO9I4QQQpob5UQNlxMxxlhYWBgzNzdnGhoazNnZmV29elXluhlj7PDhw8zBwYGpq6sr3YOqzltVvlKbFy9esC+++IKZmZkxoVDIbG1t2bfffstkMplSuTt37rB33nmHicViBoD5+fkxxhgLCgpiANjjx4+VyoeHh/P/Tir66aef2ODBg5m2tjbT1tZmXbt2ZdOnT2dJSUl8meryvevXr7OPP/6YderUiWloaDBjY2M2atQodvXq1Ve6ZkJaG46xKma0I4SQViotLQ1WVlb49ttva30iRQghhBDSVlFORAhpDWhOKUIIIYQQQgghhBDS5GhOKUJIsysuLubnKaqOnp5elcvnNrbs7GyliTorU1NTg5GRURNGRAghhJC2inKi2kmlUqUJ2auio6MDHR2dRo+FEPL6qFGKENLsLl68qDRhaFXCw8MxefLkpgmogg8//BBnz56tdr+lpSXS0tKaLiBCCCGEtFmUE9Xu4cOHtU6GHhQUhOXLlzd6LISQ10dzShFCmt2zZ89w7dq1Gst0794dpqamTRRRuWvXruHZs2fV7heLxXB2dm7CiAghhBDSVlFOVLuXL1/i/PnzNZaxtrZukFUOCSGNjxqlCCGEEEIIIYQQQkiTo4nOCSGEEEIIIYQQQkiTozmlaiCTyZCRkQGJRAKO45o7HEIIIYS0AIwxvHjxAmZmZhAI6PkeQDkTIYQQQpTVNV+iRqkaZGRkwMLCornDIIQQQkgL9PDhQ3Ts2LG5w2gRKGcihBBCSFVqy5eoUaoGEokEgPwm6urqNnM0hBBCCGkJcnNzYWFhwecJhHImQgghhCira75EjVI1UHQ/19XVpQSLEEIIIUpomFo5ypkIIYQQUpXa8iWaCIEQQgghhBBCCCGENDlqlCKEEEIIIYQQQgghTY4apQghhBBCCCGEEEJIk6M5pQghpIlJpVKUlJQ0dxiEkGoIhUKoqak1dxiEEPJGo3yJkJatofIlapQihJAmwhhDVlYWnj9/3tyhEEJqoa+vDxMTE5rMnBBCmhjlS4S0Hg2RL1GjFCGENBFFgmVsbAwtLS36Y5eQFogxhoKCAjx69AgAYGpq2swREULIm4XyJUJavobMl6hRihBCmoBUKuUTLENDw+YOhxBSA7FYDAB49OgRjI2NaSgfIYQ0EcqXCGk9GipfoonOCSGkCSjmRNDS0mrmSAghdaH4XqX5TAghpOlQvkRI69IQ+RI1ShFCSBOiLuiEtA70vUoIIc2HfgYT0jo0xPcqNUoRQgghhBBCCCGEkCZHjVKEEEJqNHnyZHAcB47jIBKJYGNjg+DgYJSWlr5WvWfOnAHHcU26uk5qaip8fHxgZmYGTU1NdOzYEd7e3rhz545SuejoaLi4uEAikUBLSwtvv/02IiIilMqkpaWB4zgkJCTU+fzLly9H165doa2tjXbt2mHYsGG4dOmSUp1TpkyBlZUVxGIxunTpgqCgIBQXF9dYb2ZmJnx8fGBnZweBQIA5c+bUKZ5z587By8sLZmZm4DgOhw4dqrLc7du3MXr0aOjp6UFbWxtvv/02Hjx4wO+fNm0aunTpArFYDCMjoyrv6ZUrVzB06FDo6+ujXbt2cHd3x40bN6o837179yCRSKCvr99g10AIIYQ0JsqXKF+ifKl+qFGKEEJIrTw8PJCZmYm7d+9i3rx5WL58Ob799tvmDotXWxICyMe6u7m5IScnBwcPHkRSUhL27duHnj17KiV6mzZtgre3N5ydnXHp0iXcvHkTEyZMQEBAAObPn/9acdrZ2WHz5s24desWzp8/j86dO2P48OF4/PgxAODOnTuQyWTYvn07/vjjD6xfvx7btm3DkiVLaqy3qKgIRkZGWLp0KXr37l3nePLz89G7d29s2bKl2jIpKSkYPHgwunbtijNnzuDmzZtYtmwZNDU1+TL9+vVDeHg4bt++jePHj4MxhuHDh0MqlQIA8vLy4OHhgU6dOuHSpUs4f/48JBIJ3N3dVeYgKCkpwccff4whQ4Y02DUQQgghTYHyJcqXKF+qB0aqlZOTwwCwnJyc5g6FENLKFRYWssTERFZYWNjcobwyPz8/5u3trbTNzc2NOTo6suzsbObr68v09fWZWCxmHh4eLDk5mS+XlpbGRo0axfT19ZmWlhZzcHBgR44cYampqQyA0svPz48xxlhubi7z8fFhWlpazMTEhK1bt465uLiw2bNn8/VaWlqy4OBg5uvryyQSCX9sbGwsGzx4MNPU1GQdO3ZkM2fOZHl5eYwxxuLj4xkAlpaWVu21PnjwgAmFQjZ37lyVfRs3bmQA2G+//cYYY/w1xMfHv/pNLaP4PXPy5Mlqy6xdu5ZZWVnVuc7K96quALCff/5ZZfv48ePZP/7xj1eq68aNGwwAu3fvHmOMsStXrjAA7MGDB3yZmzdvMgDs7t27SscuXLiQ/eMf/2Dh4eFMT0+vQa6hPmr6nqX8QBXdE0JIQ6B8ifKlqlC+1LbzJeopRQghzYQxhoLi0iZ/yX8XvR6xWIzi4mJMnjwZV69eRVRUFOLi4sAYw4gRI/inOdOnT0dRURHOnTuHW7duYc2aNdDR0YGFhQV++uknAEBSUhIyMzOxYcMGAMDcuXNx4cIFREVFISYmBrGxsbh+/bpKDKGhoejduzfi4+OxbNkypKSkwMPDA2PGjMHNmzexb98+nD9/HjNmzAAAGBkZQSAQ4MCBA/wTqcoOHDiAkpKSKp/wTZs2DTo6Oti7d+9r3z9A/rRyx44d0NPTq/FpXU5ODgwMDBrknK9KJpPhyJEjsLOzg7u7O4yNjTFw4MAau3zn5+cjPDwcVlZWsLCwAADY29vD0NAQO3fuRHFxMQoLC7Fz505069YNnTt35o/99ddfsX///pb5FI8QQkizaK58qSFyJsqXXh/lS20/X1Jv7gAIIeRNVVgihcNXx5v8vInB7tAS1e/HP2MMp06dwvHjx+Hp6YlDhw7hwoULcHJyAgBERkbCwsIChw4dwtixY/HgwQOMGTMGPXv2BABYW1vzdSkSB2NjY34s/IsXL7B7927s2bMHQ4cOBQCEh4fDzMxMJZb33nsP8+bN49/7+/tj4sSJ/PwAtra22LhxI1xcXLB161aYm5tj48aNWLhwIVasWIH+/fvD1dUVEydO5ONKTk6Gnp4eTE1NVc4nEolgbW2N5OTket07hejoaEyYMAEFBQUwNTVFTEwM2rdvX2XZe/fuYdOmTQgNDX2tc9bXo0ePkJeXh2+++QYhISFYs2YN/ve//+HDDz/E6dOn4eLiwpf917/+hYULFyI/Px/29vaIiYmBSCQCAEgkEpw5cwbvv/8+vv76awDyz+f48eNQV5f/W3z69CkmT56MH374Abq6uk1/sYQQQlqk5sqXgPrnTJQvUb5E+VLdUU8pQgghtYqOjoaOjg40NTXh6emJ8ePHY/LkyVBXV8fAgQP5coaGhrC3t8ft27cBALNmzUJISAicnZ0RFBSEmzdv1nie+/fvo6SkBAMGDOC36enpwd7eXqVs//79ld7fuHEDERER0NHR4V/u7u6QyWRITU0FIH8SmZWVhcjISAwaNAj79+9H9+7dERMTU+d7oUgcahIZGakUR2xsLL/P1dUVCQkJuHjxIjw8PDBu3Dg8evRIpY709HR4eHhg7NixmDp1Kr+9Yr0BAQF1ijk2NlbpuMjIyDodJ5PJAADe3t744osv8NZbb2HRokUYNWoUtm3bplR24sSJiI+Px9mzZ2FnZ4dx48bh5cuXAIDCwkJMmTIFzs7O+O2333DhwgX06NEDI0eORGFhIQBg6tSp8PHxwTvvvNOg10AIIYQ0FcqXylG+RPlSXVFPKUIIaSZioRoSg92b5byvytXVFVu3boVIJIKZmRnU1dURFRVV63H+/v5wd3fHkSNHcOLECaxevRphYWGYOXNmfUJXoq2trfQ+Ly8P06ZNw6xZs1TKdurUif9aIpHAy8sLXl5eCAkJgbu7O0JCQuDm5gZbW1vk5OQgIyND5WljcXExUlJS4O5e+2c2evRopeTT3NxcKW4bGxvY2NjA0dERtra22LlzJxYvXsyXycjIgKurK5ycnLBjxw6luiuuXlPXJ2T9+/dXOq5Dhw51Oq59+/ZQV1eHg4OD0vZu3brh/PnzStv09PSgp6cHW1tbODo6ol27dvj555/x8ccfY8+ePUhLS0NcXBwEAvnzsD179qBdu3Y4fPgwJkyYgF9//RVRUVH8U07GGGQyGdTV1bFjxw58/PHH9boGQgghrVtz5UuKc78KypcoX6qI8qW6oUYpQghpJhzH1XsYXVNTJAYVdevWDaWlpbh06RLfHf3p06dISkpS+qVsYWGBgIAABAQEYPHixfj+++8xc+ZM/glaxfkKrK2tIRQKceXKFT4xysnJQXJycrVPhBT69u2LxMRElThrwnEcunbtiosXLwIAPvroIwQGBiIsLAxhYWFKZbdt24aCggJMmjSp1nolEgkkEkmdYpDJZCgqKuLfp6enw9XVlV+hRZGUKLzK9SmIxeJ6HScSifD2228jKSlJaXtycjIsLS2rPY4xBsYYf10FBQUQCATgOI4vo3iveLoYFxen9G/h8OHDWLNmDS5evAhzc/N6XwMhhJDWjfIlypcAypfacr7UOr67CSGEtDi2trbw9vbG1KlTsX37dkgkEixatAjm5ubw9vYGAMyZMweenp6ws7PDs2fPcPr0aXTr1g0AYGlpCY7jEB0djREjRkAsFkMikcDPzw8LFiyAgYEBjI2NERQUpPILuiqBgYFwdHTEjBkz4O/vD21tbSQmJiImJgabN29GQkICgoKC4OvrCwcHB4hEIpw9exa7du1CYGAgAPkTwrVr12L+/PnQ1NSEr68vhEIhDh8+jCVLliAkJAQ9evRQOm/lBAQAunfvDqFQqLQtPz8fK1euxOjRo2FqaoonT55gy5YtSE9Px9ixYwHIE6x3330XlpaWCA0N5Zc+BgATE5Mar1/xVCwvLw+PHz9GQkICRCKRylO7ivLy8nDv3j3+fWpqKhISEmBgYMAnuQsWLMD48ePxzjvvwNXVFf/73//wyy+/4MyZMwDkQwj27duH4cOHw8jICH/99Re++eYbiMVijBgxAgDg5uaGBQsWYPr06Zg5cyZkMhm++eYbqKurw9XVFQD4fxcKV69ehUAgULnf9bkGQgghpLlQviRH+RLlS9VqkHUA2yha3pgQ0lDa2hLHCooljvX09JhYLGbu7u5KSxzPmDGDdenShWloaDAjIyPm6+vLnjx5wu8PDg5mJiYmjOO4Gpc4HjBgAFu0aBF/nKWlJVu/fr1KPJcvX2Zubm5MR0eHaWtrs169erGVK1cyxhh7/PgxmzVrFuvRowfT0dFhEomE9ezZk4WGhjKpVKpUz6FDh9iQIUOYtrY2vwTz3r17lcpUtUyz4vXw4UOV2AoLC9kHH3zAzMzMmEgkYqampmz06NHs8uXLfJnw8PBq66xNVcdYWlrWeMzp06erPE7xWSjs3LmT2djYME1NTda7d2926NAhfl96ejrz9PRkxsbGTCgUso4dOzIfHx92584dpTpOnDjBnJ2dmZ6eHmvXrh177733WFxcXLWx1XWJ47pew6tqiCWO3yR0TwghDYHyJcqXKF968/IljrEGWBu8jcrNzYWenh5ycnLazMz2hJDm8fLlS6SmpsLKygqamprNHU6rkp+fD3Nzc4SFhWHKlClNfv7s7GwMHToUurq6OHbsGLS0tJo8BtL0avqepfxAFd0TQkhDoHyp/ihfIs2hIfIlWn2PEEJIixIfH4+9e/ciJSUF169fx8SJEwGA7+Le1AwMDHDy5EkMHToUcXFxzRIDIYQQQkhFlC+RtoLmlCKEENLihIaGIikpCSKRCP369UNsbCzat2/fbPEYGhriq6++arbzE0IIIYRURvkSaQuoUYoQQkiL0qdPH1y7dq25wyCEEEIIabEoXyJtBQ3fI4QQQgghhBBCCCFNjhqlCCGEEEIIIYQQQkiTo0YpQgghhBBCCCGEENLkqFGKEEIIIYQQQgghhDQ5apQihBBCCCGEEEIIIU2OGqUIIYQQQgghhBBCSJNTb+4ACCGEEEIIqav/u/V/+P7m92BgcDJzwvp314PjuOYOixBCCCH1QD2lCCGE1Gjy5MngOA4cx0EkEsHGxgbBwcEoLS19rXrPnDkDjuPw/Pnzhgm0DlJTU+Hj4wMzMzNoamqiY8eO8Pb2xp07d5TKRUdHw8XFBRKJBFpaWnj77bcRERGhVCYtLQ0cxyEhIaHO51++fDm6du0KbW1ttGvXDsOGDcOlS5eU6pwyZQqsrKwgFovRpUsXBAUFobi4uMZ6MzMz4ePjAzs7OwgEAsyZM6dO8WzduhW9evWCrq4udHV1MWjQIBw7dozfn52djZkzZ8Le3h5isRidOnXCrFmzkJOTw5eJiIjg/31Ufj169IgvV1RUhC+//BKWlpbQ0NBA586dsWvXLqV4vvvuO/5cFhYW+OKLL/Dy5csar+HgwYMYPnw4DA0NX/nzIK3T/1L/h4LSAhSWFuLUg1MoLC1s7pAIIYTyJcqXKF+qJ+opRQghpFYeHh4IDw9HUVERjh49iunTp0MoFGLx4sXNHRoAoLi4GCKRqMYyJSUlcHNzg729PQ4ePAhTU1P89ddfOHbsmFKit2nTJsyZMweBgYHYunUrRCIRDh8+jICAAPz+++8IDQ2td5x2dnbYvHkzrK2tUVhYiPXr12P48OG4d+8ejIyMcOfOHchkMmzfvh02Njb4/fffMXXqVOTn59d43qKiIhgZGWHp0qVYv359nePp2LEjvvnmG9ja2oIxht27d8Pb2xvx8fHo3r07MjIykJGRgdDQUDg4OODPP/9EQEAAMjIycODAAQDA+PHj4eHhoVTv5MmT8fLlSxgbG/Pbxo0bh7///hs7d+6EjY0NMjMzIZPJ+P179uzBokWLsGvXLjg5OSE5OZlP8NetW1ftNeTn52Pw4MEYN24cpk6dWudrJ4QQQhoa5UuUL1G+VA+MVCsnJ4cBYDk5Oc0dCiGklSssLGSJiYmssLCwuUN5ZX5+fszb21tpm5ubG3N0dGTZ2dnM19eX6evrM7FYzDw8PFhycjJfLi0tjY0aNYrp6+szLS0t5uDgwI4cOcJSU1MZAKWXn58fY4yx3Nxc5uPjw7S0tJiJiQlbt24dc3FxYbNnz+brtbS0ZMHBwczX15dJJBL+2NjYWDZ48GCmqanJOnbsyGbOnMny8vIYY4zFx8czACwtLa3aa33w4AETCoVs7ty5Kvs2btzIALDffvuNMcb4a4iPj3/1m1pG8Xvm5MmT1ZZZu3Yts7KyqnOdle/Vq2rXrh37v//7v2r3//e//2UikYiVlJRUuf/Ro0dMKBSyf//73/y2Y8eOMT09Pfb06dNq650+fTp77733lLbNnTuXOTs71ynuhvg8Kqrpe5byA1VNeU8+PPwh6xHRg389iYtlf4etY7KiokY/NyGkcVG+RPlSVShfKtcW8yUavkcIIc2FMaA4v+lfjL126GKxGMXFxZg8eTKuXr2KqKgoxMXFgTGGESNGoKSkBAAwffp0FBUV4dy5c7h16xbWrFkDHR0dWFhY4KeffgIAJCUlITMzExs2bAAAzJ07FxcuXEBUVBRiYmIQGxuL69evq8QQGhqK3r17Iz4+HsuWLUNKSgo8PDwwZswY3Lx5E/v27cP58+cxY8YMAICRkREEAgEOHDgAqVRa5XUdOHAAJSUlmD9/vsq+adOmQUdHB3v37n3t+wfIn1bu2LEDenp66N27d7XlcnJyYGBg0CDnrIlUKsWPP/6I/Px8DBo0qMZ4dHV1oa5edWfrf//739DS0sJHH33Eb4uKikL//v2xdu1amJubw87ODvPnz0dhYfmwKycnJ1y7dg2XL18GANy/fx9Hjx7FiBEjGugKSVv1aPJUPN2xA9k/RDZ3KISQxtBc+VID5EyUL70+ypfafr5Ew/cIIaS5lBQAq8ya/rxLMgCRdr0OZYzh1KlTOH78ODw9PXHo0CFcuHABTk5OAIDIyEhYWFjg0KFDGDt2LB48eIAxY8agZ8+eAABra2u+LkXiYGxsDH19fQDAixcvsHv3buzZswdDhw4FAISHh8PMTPU+vffee5g3bx7/3t/fHxMnTuTnB7C1tcXGjRvh4uKCrVu3wtzcHBs3bsTChQuxYsUK9O/fH66urpg4cSIfV3JyMvT09GBqaqpyPpFIBGtrayQnJ9fr3ilER0djwoQJKCgogKmpKWJiYtC+ffsqy967dw+bNm16rS7wtbl16xYGDRqEly9fQkdHBz///DMcHByqLPvkyRN8/fXX+Oyzz6qtb+fOnfDx8YFYLOa33b9/H+fPn4empiZ+/vlnPHnyBP/85z/x9OlThIeHAwB8fHzw5MkTDB48GIwxlJaWIiAgAEuWLGnYCyZtVvGffzZ3CISQxtBc+RJQ75yJ8iXKlyhfqjvqKUUIIaRW0dHR0NHRgaamJjw9PTF+/HhMnjwZ6urqGDhwIF/O0NAQ9vb2uH37NgBg1qxZCAkJgbOzM4KCgnDz5s0az3P//n2UlJRgwIAB/DY9PT3Y29urlO3fv7/S+xs3biAiIgI6Ojr8y93dHTKZDKmpqQDkTyKzsrIQGRmJQYMGYf/+/ejevTtiYmLqfC9qm4sBkCebFeOIjY3l97m6uiIhIQEXL16Eh4cHxo0bpzTBpUJ6ejo8PDwwduxYpbH/FesNCAioU8yxsbFKx0VGlvcosbe3R0JCAi5duoTPP/8cfn5+SExMVKkjNzcXI0eOhIODA5YvX17leeLi4nD79m1MmTJFabtMJgPHcYiMjMSAAQMwYsQIrFu3Drt37+af/p05cwarVq3Cv/71L1y/fh0HDx7EkSNH8PXXX9d6T8mbheH1e3sSQkhjoHypHOVLlC/VFfWUIoSQ5iLUkj+Ba47zviJXV1d+EkszMzOoq6sjKiqq1uP8/f3h7u6OI0eO4MSJE1i9ejXCwsIwc+bM+kSuRFtb+cllXl4epk2bhlmzZqmU7dSpE/+1RCKBl5cXvLy8EBISAnd3d4SEhMDNzQ22trbIyclBRkaGytPG4uJipKSkwN3dvdbYRo8erZR8mpubK8VtY2MDGxsbODo6wtbWFjt37lSaBDUjIwOurq5wcnLCjh07lOquuFqKrq5urbEA8oS04nEdOnTgv1asEAQA/fr1w5UrV7BhwwZs376dL/PixQt4eHhAIpHg559/hlAorPI8//d//4e33noL/fr1U9puamoKc3Nz6Onp8du6desGxhj++usv2NraYtmyZfD19YW/vz8AoGfPnsjPz8dnn32GL7/8ssZ7SgghpA1rrnxJce5XQPkS5UuUL706apQihJDmwnH1HkbX1BSJQUXdunVDaWkpLl26xHdHf/r0KZKSkpS6M1tYWCAgIAABAQFYvHgxvv/+e8ycOZN/glZxvgJra2sIhUJcuXKFT4xycnKQnJyMd955p8YY+/bti8TERJU4a8JxHLp27YqLFy8CAD766CMEBgYiLCwMYWFhSmW3bduGgoICTJo0qdZ6JRIJJBJJnWKQyWQoKiri36enp8PV1RX9+vVDeHg4BALlTs2vcn0KYrG4zsdVjic3Nxfu7u7Q0NBAVFQUNDU1qzwuLy8P//3vf7F69WqVfc7Ozti/fz/y8vKgo6MDQN71XyAQoGPHjgCAgoIClWtVU1MDIB8G8Sr3lLRtrLo5XrimjYMQ0kQoXwJA+RLlS203X6JGKUIIIfVia2sLb29vTJ06Fdu3b4dEIsGiRYtgbm4Ob29vAMCcOXPg6ekJOzs7PHv2DKdPn0a3bt0AAJaWluA4DtHR0RgxYgTEYjEkEgn8/PywYMECGBgYwNjYGEFBQRAIBOC4mv/iDAwMhKOjI2bMmAF/f39oa2sjMTERMTEx2Lx5MxISEhAUFARfX184ODhAJBLh7Nmz2LVrFwIDAwHInxCuXbsW8+fPh6amJnx9fSEUCnH48GEsWbIEISEh6NGjh9J5k5KSVGLp3r27ytOx/Px8rFy5EqNHj4apqSmePHmCLVu2ID09HWPHjgUgT7DeffddWFpaIjQ0FI8fP+aPNzExqfH6FU/28vLy8PjxYyQkJEAkElU73wEALF68GJ6enujUqRNevHiBPXv24MyZMzh+/DgAeYI1fPhwFBQU4IcffkBubi5yc3MByCdCVSRBALBv3z6UlpbiH//4h8p5fHx88PXXX+OTTz7BihUr8OTJEyxYsACffvopP5eCl5cX1q1bhz59+mDgwIG4d+8eli1bBi8vL6XzVJadnY0HDx4gI0P+FF3xeZiYmNR6z0gbU8vPCEIIaQ6UL8lRviRH+VIVGmQdwDaKlnwmhDSUtrbEsYJiiWM9PT0mFouZu7u70hLHM2bMYF26dGEaGhrMyMiI+fr6sidPnvD7g4ODmYmJCeM4rsYljgcMGMAWLVrEH2dpacnWr1+vEs/ly5eZm5sb09HRYdra2qxXr15s5cqVjDHGHj9+zGbNmsV69OjBdHR0mEQiYT179mShoaFMKpUq1XPo0CE2ZMgQpq2tzS/BvHfvXqUyVS3TrHg9fPhQJbbCwkL2wQcfMDMzMyYSiZipqSkbPXo0u3z5Ml8mPDy82jprU9UxlpaWNR7z6aefMktLSyYSiZiRkREbOnQoO3HiBL//9OnT1caTmpqqVNegQYOYj49Ptee6ffs2GzZsGBOLxaxjx45s7ty5rKCggN9fUlLCli9fzrp06cI0NTWZhYUF++c//8mePXtW4zVUd8+CgoJqPK42DbHE8ZukKe/J+4feZz0ievCvRPuuLNG+K8tYvrzRz00IaVyUL1G+RPnSm5cvcYw1wNrgbVRubi709PT45RwJIaS+Xr58idTUVFhZWVXbnZdULT8/H+bm5ggLC1OZELIpZGdnY+jQodDV1cWxY8egpfXqc3KR1qem71nKD1Q15T354PAHuPf8Hv/+v6tLAQDtfD6GyVdfNeq5CSGNi/Kl+qN8iTSHhsiXaPU9QgghLUp8fDz27t2LlJQUXL9+HRMnTgQAvot7UzMwMMDJkycxdOhQxMXFNUsMhJC6oOF7hJA3B+VLpK2gOaUIIYS0OKGhoUhKSoJIJEK/fv0QGxuL9u3bN1s8hoaG+Ip6YBDSIlAnf0IIkaN8ibQF1ChFCCGkRenTpw+uXbvW3GEQQgghhLRYlC+RtoKG7xFCCCGEkNaPVt8jhBBCWh1qlCKEEEIIIa0GQzXD96hRihBCCGl1qFGKEEIIIYS0ftQoRQghhLQ61ChFCCGEEEJajWp7ShFCCCGk1aFGKUIIIYQQQgghhBDS5KhRihBCCCGEtH40eo8QQghpdahRihBCCCGEtBqMVT18j6M5pQghhJBWhxqlCCGE1Gjy5MngOA4cx0EkEsHGxgbBwcEoLS19rXrPnDkDjuPw/Pnzhgm0DlJTU+Hj4wMzMzNoamqiY8eO8Pb2xp07d5TKRUdHw8XFBRKJBFpaWnj77bcRERGhVCYtLQ0cxyEhIaHO51++fDm6du0KbW1ttGvXDsOGDcOlS5eU6pwyZQqsrKwgFovRpUsXBAUFobi4uMZ6MzMz4ePjAzs7OwgEAsyZM6fOMSl888034DhO5diUlBR88MEHMDIygq6uLsaNG4e///5bqczKlSvh5OQELS0t6OvrV1m/4t9QxdePP/7I7z948CDc3Nz48wwaNAjHjx+vNe6DBw9i+PDhMDQ0fOXPgxBCCGkolC9RvkT5Uv1QoxQhhJBaeXh4IDMzE3fv3sW8efOwfPlyfPvtt80dFq+2JAQASkpK4ObmhpycHBw8eBBJSUnYt28fevbsqZTobdq0Cd7e3nB2dsalS5dw8+ZNTJgwAQEBAZg/f/5rxWlnZ4fNmzfj1q1bOH/+PDp37ozhw4fj8ePHAIA7d+5AJpNh+/bt+OOPP7B+/Xps27YNS5YsqbHeoqIiGBkZYenSpejdu/crx3XlyhVs374dvXr1Utqen5+P4cOHg+M4/Prrr7hw4QKKi4vh5eUFmUzGlysuLsbYsWPx+eef13ie8PBwZGZm8q/333+f33fu3Dm4ubnh6NGjuHbtGlxdXeHl5YX4+Pga68zPz8fgwYOxZs2aV75u0tZQTylCSPOifInyJcqX6oGRauXk5DAALCcnp7lDIYS0coWFhSwxMZEVFhY2dyivzM/Pj3l7eyttc3NzY46Ojiw7O5v5+voyfX19JhaLmYeHB0tOTubLpaWlsVGjRjF9fX2mpaXFHBwc2JEjR1hqaioDoPTy8/NjjDGWm5vLfHx8mJaWFjMxMWHr1q1jLi4ubPbs2Xy9lpaWLDg4mPn6+jKJRMIfGxsbywYPHsw0NTVZx44d2cyZM1leXh5jjLH4+HgGgKWlpVV7rQ8ePGBCoZDNnTtXZd/GjRsZAPbbb78xxhh/DfHx8a9+U8sofs+cPHmy2jJr165lVlZWda6z8r2qzYsXL5itrS2LiYlROfb48eNMIBAo/R58/vw54ziOxcTEqNQVHh7O9PT0qjwPAPbzzz/XOS7GGHNwcGArVqyoU9mG+Dwqqul7lvIDVU15T0YdHMV6RPTgX4n2XVmifVeWtWp1o5+bENK4KF+ifKkqlC/VrLXnS9RTihBCmgljDAUlBU3+YtXMx/IqxGIxiouLMXnyZFy9ehVRUVGIi4sDYwwjRoxASUkJAGD69OkoKirCuXPncOvWLaxZswY6OjqwsLDATz/9BABISkpCZmYmNmzYAACYO3cuLly4gKioKMTExCA2NhbXr19XiSE0NBS9e/dGfHw8li1bhpSUFHh4eGDMmDG4efMm9u3bh/Pnz2PGjBkAACMjIwgEAhw4cABSqbTK6zpw4ABKSkqqfMI3bdo06OjoYO/eva99/wD507IdO3ZAT0+vxqd1OTk5MDAwaJBzVmX69OkYOXIkhg0bprKvqKgIHMdBQ0OD36apqQmBQIDz58/X61zt27fHgAEDsGvXrhr/LcpkMrx48aJRr50QQkjL11z5UkPkTJQvvT7Kl9p+vqTe3AEQQsibqrC0EAP3DGzy817yuQQtoVa9jmWM4dSpUzh+/Dg8PT1x6NAhXLhwAU5OTgCAyMhIWFhY4NChQxg7diwePHiAMWPGoGfPngAAa2trvi7FL09jY2N+XP2LFy+we/du7NmzB0OHDgUg78JsZmamEst7772HefPm8e/9/f0xceJEfoy/ra0tNm7cCBcXF2zduhXm5ubYuHEjFi5ciBUrVqB///5wdXXFxIkT+biSk5Ohp6cHU1NTlfOJRCJYW1sjOTm5XvdOITo6GhMmTEBBQQFMTU0RExOD9u3bV1n23r172LRpE0JDQ1/rnNX58ccfcf36dVy5cqXK/Y6OjtDW1kZgYCBWrVoFxhgWLVoEqVSKzMzMVzpXcHAw3nvvPWhpaeHEiRP45z//iby8PMyaNavK8qGhocjLy8O4ceNe+bpI28ZQTXJOE50T0iY1V74E1D9nonyJ8iXKl+qOekoRQgipVXR0NHR0dKCpqQlPT0+MHz8ekydPhrq6OgYOLE8UDQ0NYW9vj9u3bwMAZs2ahZCQEDg7OyMoKAg3b96s8Tz3799HSUkJBgwYwG/T09ODvb29Stn+/fsrvb9x4wYiIiKgo6PDv9zd3SGTyZCamgpA/uQpKysLkZGRGDRoEPbv34/u3bsjJiamzvdCJBLVWiYyMlIpjtjYWH6fq6srEhIScPHiRXh4eGDcuHF49OiRSh3p6enw8PDA2LFjMXXqVH57xXoDAgLqFHNsbKzScZGRkXj48CFmz56NyMhIaGpqVnmckZER9u/fj19++QU6OjrQ09PD8+fP0bdvXwgEr5ZCLFu2DM7OzujTpw8CAwOxcOHCaufZ2LNnD1asWIH//ve/MDY2BlDzPSUEADVKEUKaHeVL5ShfonyprqinFCGENBOxuhiXfC7VXrARzvuqXF1dsXXrVohEIpiZmUFdXR1RUVG1Hufv7w93d3ccOXIEJ06cwOrVqxEWFoaZM2fWJ3Ql2traSu/z8vIwbdq0Kp8kderUif9aIpHAy8sLXl5eCAkJgbu7O0JCQuDm5gZbW1vk5OQgIyND5WljcXExUlJS4O7uXmtso0ePVko+zc3NleK2sbGBjY0NHB0dYWtri507d2Lx4sV8mYyMDLi6usLJyQk7duxQqrviaim6urq1xgLIE9KKx3Xo0AGnTp3Co0eP0LdvX367VCrFuXPnsHnzZhQVFUFNTQ3Dhw9HSkoKnjx5AnV1dejr68PExETpKW59DBw4EF9//TWKioqUurv/+OOP8Pf3x/79+5W6yNd0TwkBQI1ShLRRzZUvKc79KihfonyJ8qVXR41ShBDSTDiOq/cwuqamSAwq6tatG0pLS3Hp0iW+O/rTp0+RlJQEBwcHvpyFhQUCAgIQEBCAxYsX4/vvv8fMmTP5J2gV5yuwtraGUCjElStX+MQoJycHycnJeOedd2qMsW/fvkhMTFSJsyYcx6Fr1664ePEiAOCjjz5CYGAgwsLCEBYWplR227ZtKCgowKRJk2qtVyKRQCKR1CkGmUyGoqIi/n16ejpcXV3Rr18/hIeHqzxhe5XrUxCLxSrHDR06FLdu3VLa9sknn6Br164IDAyEmpqa0j5Fl/lff/0Vjx49wujRo185jooSEhLQrl07pQRr7969+PTTT/Hjjz9i5MiRSuVf5Z6Stq0h5sUjhLQelC9RvgRQvtSW8yVqlCKEEFIvtra28Pb2xtSpU7F9+3ZIJBIsWrQI5ubm8Pb2BgDMmTMHnp6esLOzw7Nnz3D69Gl069YNAGBpaQmO4xAdHY0RI0ZALBZDIpHAz88PCxYsgIGBAYyNjREUFASBQACull4QgYGBcHR0xIwZM+Dv7w9tbW0kJiYiJiYGmzdvRkJCAoKCguDr6wsHBweIRCKcPXsWu3btQmBgIAD5E8K1a9di/vz50NTUhK+vL4RCIQ4fPowlS5YgJCQEPXr0UDpvUlKSSizdu3eHUChU2pafn4+VK1di9OjRMDU1xZMnT7Blyxakp6dj7NixAOQJ1rvvvgtLS0uEhobySx8DgImJSY3Xr3iyl5eXh8ePHyMhIQEikUgp4a1IIpGoXIu2tjYMDQ2VtoeHh6Nbt24wMjJCXFwcZs+ejS+++EJpiMCDBw+QnZ2NBw8eQCqV8rHY2NhAR0cHv/zyC/7++284OjpCU1MTMTExWLVqldIEqXv27IGfnx82bNiAgQMHIisrC4A8QdTT06v2uhXnzcjIAFD+eZiYmNR6z0gbQx2lCCEtEOVLcpQvUb5UrQZZB7CNoiWfCSENpa0tcaygWOJYT0+PicVi5u7urrTE8YwZM1iXLl2YhoYGMzIyYr6+vuzJkyf8/uDgYGZiYsI4jqtxieMBAwawRYsW8cdZWlqy9evXq8Rz+fJl5ubmxnR0dJi2tjbr1asXW7lyJWOMscePH7NZs2axHj16MB0dHSaRSFjPnj1ZaGgok0qlSvUcOnSIDRkyhGlra/NLMO/du1epTFXLNCteDx8+VImtsLCQffDBB8zMzIyJRCJmamrKRo8ezS5fvsyXCQ8Pr7bO2lR1jKWlZa3HVVTV8siBgYGsQ4cOTCgUMltbWxYWFsZkMplSGT8/vyrPf/r0acYYY8eOHWNvvfUW/7n07t2bbdu2Tem+u7i4VFmH4t9Fdaq7Z0FBQa907ZU1xBLHb5KmvCeeP3myHhE9+FdCj/7swkAvlrlmbaOfmxDSuChfonyJ8qU3L1/iGKM+0NXJzc2Fnp4ecnJy6jwOlRBCqvLy5UukpqbCysqq2kkSSdXy8/Nhbm6OsLAwTJkypcnPn52djaFDh0JXVxfHjh2DllbrGEJAXk9N37OUH6hqynsy4uAIPHzxkH8/PXYNpOqacDZNwVtBU2s4khDS0lG+VH+UL5Hm0BD5Eq2+RwghpEWJj4/H3r17kZKSguvXr2PixIkAwHdxb2oGBgY4efIkhg4diri4uGaJgRBSPam6PAnOyqcGQkLIm4PyJdJW0JxShBBCWpzQ0FAkJSVBJBKhX79+iI2N5SeObA6Ghob46quvmu38hJBy1XXyFwio8z8h5M1C+RJpC6hRihBCSIvSp08fXLt2rbnDIIS0MjTPOSHkTUL5EmkraPgeIYQQQghpNRjkPaKEJRzcLhmjtOh3ANRTihBCCGmNqFGKEEIIIYS0Or1S9GD+VIzSghMAAAGoUYoQQghpbahRihBCCCGEtCrahWowyVZe5YfjqFGKEEIIaW1oTilCCCGEENJqaOcAw06bg6s0i5SAJpUihBBCWh3qKUUIIYQQQloNrTxOpUEKoDmlCCGEkNaIGqUIIYQQQkirwZi88UmzuLRsixoAQCASNlNEhBBCCKkvGr5HCCGEEEJaBcYYXrwsAaAOqboOgJcApGBMBgHNKdVqPC18in1J+1BQUoAO2h3g09UHagK15g6LEEJIM6CeUoQQQmo0efJkcBwHjuMgEolgY2OD4OBglJaW1n5wDc6cOQOO4/D8+fOGCbQOUlNT4ePjAzMzM2hqaqJjx47w9vbGnTt3lMpFR0fDxcUFEokEWlpaePvttxEREaFUJi0tDRzHISEhoc7nX758Obp27QptbW20a9cOw4YNw6VLl5TqnDJlCqysrCAWi9GlSxcEBQWhuLi4xnozMzPh4+MDOzs7CAQCzJkzp84xpaen4x//+AcMDQ0hFovRs2dPXL16ld9f8fNXvDw8PJTq6Ny5s0qZb775ht+flJQEV1dXdOjQAZqamrC2tsbSpUtRUlKiVM/z588xffp0mJqaQkNDA3Z2djh69GiN8R88eBDDhw+HoaHhK38epPXJfVmK4lIZAKBUqFthTwnUOVnzBEVe2b6kfdh6Yyt2J+7G2itrceXvK80dEiGvjfIlypcoX6of6ilFCCGkVh4eHggPD0dRURGOHj2K6dOnQygUYvHixc0dGgCguLgYIpGoxjIlJSVwc3ODvb09Dh48CFNTU/z11184duyYUqK3adMmzJkzB4GBgdi6dStEIhEOHz6MgIAA/P777wgNDa13nHZ2dti8eTOsra1RWFiI9evXY/jw4bh37x6MjIxw584dyGQybN++HTY2Nvj9998xdepU5Ofn13jeoqIiGBkZYenSpVi/fn2d43n27BmcnZ3h6uqKY8eOwcjICHfv3kW7du2Uyik+fwUNDQ2VuoKDgzF16lT+vUQi4b8WCoWYNGkS+vbtC319fdy4cQNTp06FTCbDqlWrAMg/Qzc3NxgbG+PAgQMwNzfHn3/+CX19/RqvIT8/H4MHD8a4ceOUzv+m2rp1K7Zu3Yq0tDQAQPfu3fHVV1/B09OzyvIRERH45JNPlLZpaGjg5cuXjR1q/fHTSVXoWcNKwIEapVqL50XPld+/fI7jacdRLC2GVxev5gmKkAZA+RLlS5Qv1QMj1crJyWEAWE5OTnOHQghp5QoLC1liYiIrLCxs7lBemZ+fH/P29lba5ubmxhwdHVl2djbz9fVl+vr6TCwWMw8PD5acnMyXS0tLY6NGjWL6+vpMS0uLOTg4sCNHjrDU1FQGQOnl5+fHGGMsNzeX+fj4MC0tLWZiYsLWrVvHXFxc2OzZs/l6LS0tWXBwMPP19WUSiYQ/NjY2lg0ePJhpamqyjh07spkzZ7K8vDzGGGPx8fEMAEtLS6v2Wh88eMCEQiGbO3euyr6NGzcyAOy3335jjDH+GuLj41/9ppZR/J45efJktWXWrl3LrKys6lxn5XtVk8DAQDZ48OAay1T1+VdmaWnJ1q9fX7cAy3zxxRdK5966dSuztrZmxcXFr1SPQkN8HhXV9D3bkvODqKgoduTIEZacnMySkpLYkiVLmFAoZL///nuV5cPDw5muri7LzMzkX1lZWa983qa6J88LipnnyndZ6LiRLOzjqSx03PssdNxIttH/J3Yl5D+Nem7ScJZfXM56RPTgXweSDvBfPyl40tzhkWZE+RLlS1WhfKlt50s0fI8QQpoJYwyygoImfzH2+vOuiMViFBcXY/Lkybh69SqioqIQFxcHxhhGjBjBdzOePn06ioqKcO7cOdy6dQtr1qyBjo4OLCws8NNPPwGQd1XOzMzEhg0bAABz587FhQsXEBUVhZiYGMTGxuL69esqMYSGhqJ3796Ij4/HsmXLkJKSAg8PD4wZMwY3b97Evn37cP78ecyYMQMAYGRkBIFAgAMHDkAqlVZ5XQcOHEBJSQnmz5+vsm/atGnQ0dHB3r17X/v+AfInXTt27ICenh569+5dbbmcnBwYGBg0yDkri4qKQv/+/TF27FgYGxujT58++P7771XKnTlzBsbGxrC3t8fnn3+Op0+fqpT55ptvYGhoiD59+uDbb7+tcbjCvXv38L///Q8uLi5KsQwaNAjTp09Hhw4d0KNHD6xataraz4pUzcvLCyNGjICtrS3s7OywcuVK6Ojo4Lfffqv2GI7jYGJiwr86dOjQhBG/Jq5scnNWAjTAzzbSNIqlykNs8kry+K8LSgqaOhzSwjVXvtQQORPlS6+P8qW2ny/R8D1CCGkmrLAQSX37Nfl57a9fA6elVa9jGWM4deoUjh8/Dk9PTxw6dAgXLlyAk5MTACAyMhIWFhY4dOgQxo4diwcPHmDMmDHo2bMnAMDa2pqvS5E4GBsb812OX7x4gd27d2PPnj0YOnQoACA8PBxmZmYqsbz33nuYN28e/97f3x8TJ07k5wewtbXFxo0b4eLigq1bt8Lc3BwbN27EwoULsWLFCvTv3x+urq6YOHEiH1dycjL09PRgamqqcj6RSARra2skJyfX694pREdHY8KECSgoKICpqSliYmLQvn37Ksveu3cPmzZteq0u8DW5f/8+tm7dirlz52LJkiW4cuUKZs2aBZFIBD8/PwDyrugffvghrKyskJKSgiVLlsDT0xNxcXFQU5MPn5o1axb69u0LAwMDXLx4EYsXL0ZmZibWrVundD4nJydcv34dRUVF+OyzzxAcHKwUy6+//oqJEyfi6NGjuHfvHv75z3+ipKQEQUFBjXL9bZ1UKsX+/fuRn5+PQYMGVVsuLy8PlpaWkMlk6Nu3L1atWoXu3bvXWHdRURGKior497m5uQ0W96vgOGFZW1RJbUVJC1IiVf68CksLy99wIERJc+VLQP1zJsqXKF+ifKnuqKcUIYSQWkVHR0NHRweamprw9PTE+PHjMXnyZKirq2PgwIF8OUNDQ9jb2+P27dsA5L98Q0JC4OzsjKCgINy8ebPG89y/fx8lJSUYMGAAv01PTw/29vYqZfv376/0/saNG4iIiICOjg7/cnd3h0wmQ2pqKgD5k8isrCxERkZi0KBB2L9/P7p3746YmJg634va5mIA5MlmxThiY2P5fa6urkhISMDFixfh4eGBcePG4dGjRyp1pKenw8PDA2PHjlUa+1+x3oCAgDrFHBsbq3RcZGQkACg1QvTp0wefffYZpk6dim3btvHHTpgwAaNHj0bPnj3x/vvvIzo6GleuXMGZM2f4MnPnzsW7776LXr16ISAgAGFhYdi0aZNSowUA7Nu3D9evX8eePXtw5MgRpeRRJpPB2NgYO3bsQL9+/TB+/Hh8+eWXfCw13VOi7NatW9DR0YGGhgYCAgLw888/w8HBocqy9vb22LVrFw4fPowffvgBMpkMTk5O+Ouvv2o8x+rVq6Gnp8e/LCwsGuNSVCkGsPDkz1dLCn7Fn38nNk0MpN4ykm/j34GzYBB5F6POm8DwufznaUEp9Y4ibQPlS+UoX6J8qa6opxQhhDQTTiyG/fVrzXLeV+Xq6spPYmlmZgZ1dXVERUXVepy/vz/c3d1x5MgRnDhxAqtXr0ZYWBhmzpxZn9CVaGtrK73Py8vDtGnTMGvWLJWynTp14r+WSCTw8vKCl5cXQkJC4O7ujpCQELi5ucHW1hY5OTnIyMhQedpYXFyMlJQUuLu71xrb6NGjlZJPc3NzpbhtbGxgY2MDR0dH2NraYufOnUqToGZkZMDV1RVOTk7YsWOHUt0VV0vR1dVFXfTv31/pOMXwLFNTU5XGim7duvFDBapibW2N9u3b4969e/zT2coGDhyI0tJSpKWlKSXIioYLBwcHSKVSfPbZZ5g3bx7U1NRgamoKoVDIP01UxJKVlYXi4uIa7ylRZm9vj4SEBOTk5ODAgQPw8/PD2bNnq2yYGjRokFIvKicnJ3Tr1g3bt2/H119/Xe05Fi9ejLlz5/Lvc3Nzm65hqgJOTQ9M9hRM+ghpjx6h+GUhRJqv/jOONI3fz5zE47T7EAJoDw3YPdJHnP4jGrJHatRc+ZLi3K+C8iXKlxQoX6o7apQihJBmwnFcvYfRNTVFYlBRt27dUFpaikuXLvHd0Z8+fYqkpCSlX9wWFhYICAhAQEAAFi9ejO+//x4zZ87kn6BVHANvbW0NoVCIK1eu8IlRTk4OkpOT8c4779QYY9++fZGYmKgSZ004jkPXrl1x8eJFAMBHH32EwMBAhIWFISwsTKnstm3bUFBQgEmTJtVar0QiUVpNpSYymUzpCVl6ejpcXV3Rr18/hIeHQyBQ7tT8KtenIBaLqzzO2dkZSUlJStuSk5NhaWlZbV1//fUXnj59WmWXfYWEhAQIBAIYGxtXW0Ymk6GkpAQymQxqampwdnbGnj17IJPJ+GtOTk6GqakpRCIRRCJRne/pm06xFDkA9OvXD1euXMGGDRuwffv2Wo8VCoXo06cP7t27V2M5DQ2NKlcValIcB6GWO1Acj6JC+ZxZ0tdcep00rhdPHgMApBoc1IoYRGVzgr0sbcGrPZJmR/kS5UsA5UttOV+iRilCCCH1YmtrC29vb0ydOhXbt2+HRCLBokWLYG5uDm9vbwDAnDlz4OnpCTs7Ozx79gynT59Gt27dAACWlpbgOA7R0dEYMWIExGIxJBIJ/Pz8sGDBAhgYGMDY2BhBQUEQCATguJonGgkMDISjoyNmzJgBf39/aGtrIzExETExMdi8eTMSEhIQFBQEX19fODg4QCQS4ezZs9i1axcCAwMByJ8Qrl27FvPnz4empiZ8fX0hFApx+PBhLFmyBCEhIejRo4fSeSsnKQDQvXt3CIVCpW35+flYuXIlRo8eDVNTUzx58gRbtmxBeno6xo4dC0CeYL377ruwtLREaGgoHj9+zB9vYmJS4/Urnuzl5eXh8ePHSEhIgEgkqnbYFgB88cUXcHJywqpVqzBu3DhcvnwZO3bs4J825uXlYcWKFRgzZgxMTEyQkpKChQsXwsbGhn8CGhcXh0uXLsHV1RUSiQRxcXH44osv8I9//INfKjkyMhJCoRA9e/aEhoYGrl69isWLF2P8+PH8ffr888+xefNmzJ49GzNnzsTdu3exatWqKp/kVpSdnY0HDx4gIyMDQPnnoZi0m6gm8jWRSqW4desWRowY0chRvY7y8XucQAyB0BIoa5RiMllzBUXqIP9ZNgCgWFsAcZEU6lzZ8EtZ+RxTHE0qRdoYypfkKF+ifKlaDbIOYBvVkpd8JoS0Lm1tiWMFxRLHenp6TCwWM3d3d6UljmfMmMG6dOnCNDQ0mJGREfP19WVPnpQv9x0cHMxMTEwYx3E1LnE8YMAAtmjRIv646pbUvXz5MnNzc2M6OjpMW1ub9erVi61cuZIxxtjjx4/ZrFmzWI8ePZiOjg6TSCSsZ8+eLDQ0lEmlUqV6Dh06xIYMGcK0tbX5JZj37t2rVKaqZZoVr4cPH6rEVlhYyD744ANmZmbGRCIRMzU1ZaNHj2aXL1/my4SHh1dbZ22qOsbS0rLW43755RfWo0cPpqGhwbp27cp27NjB7ysoKGDDhw9nRkZGTCgUMktLSzZ16lSWlZXFl7l27RobOHAg09PTY5qamqxbt25s1apV7OXLl3yZH3/8kfXt25f/XBwcHNiqVatUvh8uXrzIBg4cyDQ0NJi1tTVbuXIlKy0trTH+6u5ZUFBQrddek4ZY4rg5LFq0iJ09e5alpqaymzdvskWLFjGO49iJEycYY4z5+voqfS+tWLGCHT9+nKWkpLBr166xCRMmME1NTfbHH3+80nmb6p48zy9mniEuLHTcSBbm8xnbPO0U+9fU/7DQcSNZ6LiRLO9ZdqOen7ye/5vlz0LHjWRBM0ez0HEj2fxl3qxHRA82/1ggc9/wIesR3oM9yH3Q3GGSZkT5EuVLlC+9efkSxxitn1ud3Nxc6OnpIScnp87jUAkhpCovX75EamoqrKysoKmp2dzhtCr5+fkwNzdHWFgYpkyZ0uTnz87OxtChQ6Grq4tjx45Bq5UMISCvp6bv2ZacH0yZMgWnTp1CZmYm9PT00KtXLwQGBsLNzQ0A8O6776Jz586IiIgAIH/6e/DgQWRlZaFdu3bo168fQkJC0KdPn1c6b1Pdk+cFxfBZPxxDb+qAUzeHhmQ8BLJ0FOT8FwDDtK27oWNg2GjnJ69n++d+yMt+imfmArRLl0HWToa3bqXinkMoZGpinLbagfWffwsL3aafn4y0DJQv1R/lS6Q5NES+RMP3CCGEtCjx8fG4c+cOBgwYgJycHH4ZXEUX96ZmYGCAkydPYsuWLYiLi6t2skpCWoKdO3fWuL/iKkAAsH79eqxfv74RI2p4VQ9M4QAw0LPWlklaWor858+Ql/0UACBTl3+K2s8t8MxkKGRq8smke/1lCymTVlsPIaQc5UukraBGKUIIIS1OaGgokpKSIBKJ0K9fP8TGxqJ9+/bNFo+hoSG++uqrZjs/IaR6arJiKJqqaE6plkcmlWL3/Ol4lpnObytVlzceFgsN8Fi/vFeeRtELyECfISF1RfkSaQuoUYoQQkiL0qdPH1y71jxLPxNCWgPl3lBa0jy8KGuUklGjVIvzMu+FUoMUAEj5v0CUP0uNohzq7UZIHVG+RNoKQe1FCCGEEEIIaakYFCktY9Qo1dLIpKrD8aRqiq+UG6AErBQy+gwJIeSNQo1ShBBCCCGkVai2E03ZEujs1s+AjOYkakmqapRSDN9jYBAV5YBj9wAAAsZRoxQhhLxhqFGKEEIIIYS0Qoopzxn/dda6DSi+8FOzRURUKRqlhJpijJy1AF5fLIKswmenJiuGjJM3UnEyapQihJA3DTVKEUIIIYSQVoOrtP4eUytvlMrLFOPZLyebISpSHVlZzzWBmgBdnV1gYtMPtilO8p1MBjVpET+5uRoT0ETnhBDyhqFGKUIIIYQQ0mqV6kjBr74HgBUVN2s8RJmip5RAIJ9I6snDPAhk8pnOOchg9DgBMk7eEMUxjiY6J4SQNww1ShFCCCGEkFaBVfgv319KUN5TinEAq2IOI9J8+EYpdXlDVGmpFIo/QYwex8Pqz2OQlX2mNKcUIYS8eahRihBCCCGEtFqs4up74MCkpc0bEFFSuaeUtERWPjG9okyFnlLUKEUIIW8WapQihBBSo8mTJ4PjOHAcB5FIBBsbGwQHB6O09PX+8Dtz5gw4jsPz588bJtA6SE1NhY+PD8zMzKCpqYmOHTvC29sbd+7cUSoXHR0NFxcXSCQSaGlp4e2330ZERIRSmbS0NHAch4SEhDqff/ny5ejatSu0tbXRrl07DBs2DJcuXVKqc8qUKbCysoJYLEaXLl0QFBSE4uKahyNlZmbCx8cHdnZ2EAgEmDNnTp3ikUqlWLZsmdL5vv76a6XhMwcPHsTw4cNhaGhY7fWmpKTggw8+gJGREXR1dTFu3Dj8/fffr3xdN2/exJAhQ6CpqQkLCwusXbu21ms4d+4cvLy8YGZmBo7jcOjQoTpdO2ljyho5wAGQUqNGS8I3SqnJ/+woLZaB7+dW9j8pyspQoxRpxShfonyJ8qX6aVGNUlu2bEHnzp2hqamJgQMH4vLlyzWW379/P7p27QpNTU307NkTR48erbZsQEAAOI7Dd99918BRE0JI2+fh4YHMzEzcvXsX8+bNw/Lly/Htt982d1i82pIQACgpKYGbmxtycnJw8OBBJCUlYd++fejZs6dSordp0yZ4e3vD2dkZly5dws2bNzFhwgQEBARg/vz5rxWnnZ0dNm/ejFu3buH8+fPo3Lkzhg8fjsePHwMA7ty5A5lMhu3bt+OPP/7A+vXrsW3bNixZsqTGeouKimBkZISlS5eid+/edY5nzZo12Lp1KzZv3ozbt29jzZo1WLt2LTZt2sSXyc/Px+DBg7FmzZoq68jPz8fw4cPBcRx+/fVXXLhwAcXFxfDy8oJMJqvzdeXm5mL48OGwtLTEtWvX8O2332L58uXYsWNHjdeQn5+P3r17Y8uWLXW+btJWlK/gxlWcU4qG77Uo5ROdl/WUKi1vlGJl/1f0lKqqUSrzbhIuHdqPS4f2Iy3hWhNFTUj9UL5E+RLlS/XAWogff/yRiUQitmvXLvbHH3+wqVOnMn19ffb3339XWf7ChQtMTU2NrV27liUmJrKlS5cyoVDIbt26pVL24MGDrHfv3szMzIytX7++zjHl5OQwACwnJ6e+l0UIIYwxxgoLC1liYiIrLCxs7lBemZ+fH/P29lba5ubmxhwdHVl2djbz9fVl+vr6TCwWMw8PD5acnMyXS0tLY6NGjWL6+vpMS0uLOTg4sCNHjrDU1FSGsr8fFS8/Pz/GGGO5ubnMx8eHaWlpMRMTE7Zu3Trm4uLCZs+ezddraWnJgoODma+vL5NIJPyxsbGxbPDgwUxTU5N17NiRzZw5k+Xl5THGGIuPj2cAWFpaWrXX+uDBAyYUCtncuXNV9m3cuJEBYL/99htjjPHXEB8f/+o3tYzi98zJkyerLbN27VpmZWVV5zor36uajBw5kn366adK2z788EM2ceJElbLVXe/x48eZQCBQ+l35/PlzxnEci4mJqfbcla/rX//6F2vXrh0rKiritwUGBjJ7e/s6XQtjjAFgP//8c53L16Sm71nKD1Q11T15mlfERn79DgsdN5Kt8wlgm6edYv83dzULmzCRhY4byc73fYv95fd+o8ZAXs2D32+w0HEj2a4vAhhjjF05msq+m7yBhY4byXZ7vMsS7buyldO/ZZunnWIRY6axy5mX2e0LZ9l/g5ew/JznbPOUj1nouJEsdNxIFjbBixXk0vddW0b5EuVLVaF8qW3nSy2mp9S6deswdepUfPLJJ3BwcMC2bdugpaWFXbt2VVl+w4YN8PDwwIIFC9CtWzd8/fXX6Nu3LzZv3qxULj09HTNnzkRkZCSEQmFTXAohhNQJYwwlRdImf7EGWNlILBajuLgYkydPxtWrVxEVFYW4uDgwxjBixAiUlJQAAKZPn46ioiKcO3cOt27dwpo1a6CjowMLCwv89NNPAICkpCRkZmZiw4YNAIC5c+fiwoULiIqKQkxMDGJjY3H9+nWVGEJDQ9G7d2/Ex8dj2bJlSElJgYeHB8aMGYObN29i3759OH/+PGbMmAEAMDIygkAgwIEDByCtpifFgQMHUFJSUuUTvmnTpkFHRwd79+597fsHyJ9W7tixA3p6ejU+rcvJyYGBgUGDnLMyJycnnDp1CsnJyQCAGzdu4Pz58/D09KxzHUVFReA4DhoaGvw2TU1NCAQCnD9/vtrjKl9XXFwc3nnnHYhEIn6bu7s7kpKS8OzZs1e5LNKGleXSyttQPtE5QD2lWhqptFJPqRIZ37MNfE8pxeT1HKRMiiMb1uLB7zfw665tePkit6woByaTobiwoEnjJ82vufKlhsiZKF96fZQvtf18Sb25AwDk/9CuXbuGxYsX89sEAgGGDRuGuLi4Ko+Ji4vD3Llzlba5u7srjY2UyWTw9fXFggUL0L1790aJnRBC6qu0WIYds882+Xk/2+ACoYZavY5ljOHUqVM4fvw4PD09cejQIVy4cAFOTk4AgMjISFhYWODQoUMYO3YsHjx4gDFjxqBnz54AAGtra74uxS9YY2Nj6OvrAwBevHiB3bt3Y8+ePRg6dCgAIDw8HGZmZiqxvPfee5g3bx7/3t/fHxMnTuTnB7C1tcXGjRvh4uKCrVu3wtzcHBs3bsTChQuxYsUK9O/fH66urpg4cSIfV3JyMvT09GBqaqpyPpFIBGtraz4hqa/o6GhMmDABBQUFMDU1RUxMDNq3b19l2Xv37mHTpk0IDQ19rXNWZ9GiRcjNzUXXrl2hpqYGqVSKlStXYuLEiXWuw9HREdra2ggMDMSqVavAGMOiRYsglUqRmZlZ5TFVXVdWVhasrKyUynXo0IHf165du3pcIXkzVJzoHGA0p1SLwqpolKq4WiJQ3iglkCkP33uUlsJ/LRRpoKToJZjs9R+skNalufIloP45E+VLlC9VRvlS9VpET6knT55AKpXyN1OhQ4cOyMrKqvKYrKysWsuvWbMG6urqmDVrVp3iKCoqQm5urtKLEEKIPDHQ0dGBpqYmPD09MX78eEyePBnq6uoYOHAgX87Q0BD29va4ffs2AGDWrFkICQmBs7MzgoKCcPPmzRrPc//+fZSUlGDAgAH8Nj09Pdjb26uU7d+/v9L7GzduICIiAjo6OvzL3d0dMpkMqampAORPIrOyshAZGYlBgwZh//796N69O2JiYup8Lyo+mapOZGSkUhyxsbH8PldXVyQkJODixYvw8PDAuHHj8OjRI5U60tPT4eHhgbFjx2Lq1Kn89or1BgQE1Cnm2NhYpeMiIyMBAP/9738RGRmJPXv24Pr169i9ezdCQ0Oxe/fuOtULyJ+o7t+/H7/88gt0dHSgp6eH58+fo2/fvhAIVNOM6q6rvtdA3jxcDRsYx9FE5y1M5TmlSktVV99jZY1S6jIO6hfi+WOfZWbwX3NlP08YTYROWjDKl8pRvqSM8qXqtYieUo3h2rVr2LBhA65fvw6OU0lfqrR69WqsWLGikSMjhBA5dZEAn21waZbzvipXV1ds3boVIpEIZmZmUFdXR1RUVK3H+fv7w93dHUeOHMGJEyewevVqhIWFYebMmfUJXYm2trbS+7y8PEybNq3KBxGdOnXiv5ZIJPDy8oKXlxdCQkLg7u6OkJAQuLm5wdbWFjk5OcjIyFB52lhcXIyUlBS4u7vXGtvo0aOVkk9zc3OluG1sbGBjYwNHR0fY2tpi586dSr2FMzIy4OrqCicnJ5WJKyuu5qKrq1trLIA8Ia14nOKhzoIFC7Bo0SJMmDABANCzZ0/8+eefWL16Nfz8/OpUNwAMHz4cKSkpePLkCdTV1aGvrw8TExOlJ721XZeJiYnSCjQA+PcmJibo3LlzlddA3mSKhg0GcBV6Sslo+F5Lwq++J1DtKQVwkKG8UapdPgfJss1A7y4q9XCCss+7AYagk9alufIlxblfBeVLlC/VhPKlqrWInlLt27eHmppalTfXxMSkymOq+zAU5WNjY/Ho0SN06tQJ6urqUFdXx59//ol58+ahc+fOVda5ePFi5OTk8K+HDx++/sURQkg1OI6DUEOtyV91baivSJEYKH6mAkC3bt1QWlqqtETv06dPkZSUBAcHB36bhYUFAgICcPDgQcybNw/ff/89gPInaBXnK7C2toZQKMSVK1f4bTk5OXXqAt63b18kJibyCUzFV3VP6ziOQ9euXZGfnw8A+Oijj6Curo6wsDCVstu2bUNBQQEmTZpUaywSiUTp/GKxuNqyMpkMRUVF/Pv09HS8++676NevH8LDw1WenlWs19jYuNZYAPmcFhWPk0gkAICCggKV+tXU1PhVYF5V+/btoa+vj19//RWPHj3C6NGj63xdgwYNwrlz5/j5NQAgJiYG9vb2aNeuXbXXQN5Eyj/DKs4pRT2lWh5Z2eeh6Okkb5Qqa0Tk5NuNTOVDUUoEVf9+6jfSG5yi4ZGG771xmitfqk/ORPkS5Ut1QfmSshbRU0okEqFfv344deoU3n//fQDyf3SnTp3iJ1yrbNCgQTh16hQ/FhaQfxiDBg0CAPj6+mLYsGFKx7i7u8PX1xeffPJJlXVqaGgoTTxGCCGkera2tvD29sbUqVOxfft2SCQSLFq0CObm5vD29gYAzJkzB56enrCzs8OzZ89w+vRpdOvWDQBgaWkJjuMQHR2NESNGQCwWQyKRwM/PDwsWLICBgQGMjY0RFBQEgUBQa2IYGBgIR0dHzJgxA/7+/tDW1kZiYiJiYmKwefNmJCQkICgoCL6+vnBwcIBIJMLZs2exa9cuBAYGApA/IVy7di3mz58PTU1N+Pr6QigU4vDhw1iyZAlCQkLQo0cPpfMmJSWpxNK9e3eVxTXy8/OxcuVKjB49Gqampnjy5Am2bNmC9PR0jB07FkB5ImJpaYnQ0FB+6WMA1T6kUVA8FcvLy8Pjx4+RkJAAkUiklPBW5uXlhZUrV6JTp07o3r074uPjsW7dOnz66ad8mezsbDx48AAZGRlK12tiYsLHFB4ejm7dusHIyAhxcXGYPXs2vvjiC34YQV2uy8fHBytWrMCUKVMQGBiI33//HRs2bMD69etrvO68vDzcu3ePf5+amoqEhAQYGBgoPfElbQOr8F9lNNF5dQpLC/Gi+AU01DSgp6HXDBGUTWJe9jO8tESmtIcTCNDNtBdup2Zin4s6Fu9V/fNETV3ID/n79T+JKMh9AACwdzSBo7dqrypCWhLKl+QoX6J8qVoNsg5gA/jxxx+ZhoYGi4iIYImJieyzzz5j+vr6LCsrizHGmK+vL1u0aBFf/sKFC0xdXZ2Fhoay27dvs6CgICYUCtmtW7eqPYelpSVbv359nWOiJZ8JIQ2lrS1xrKBY4lhPT4+JxWLm7u6utMTxjBkzWJcuXZiGhgYzMjJivr6+7MmTJ/z+4OBgZmJiwjiOq3GJ4wEDBij9Dqju5/nly5eZm5sb09HRYdra2qxXr15s5cqVjDHGHj9+zGbNmsV69OjBdHR0mEQiYT179mShoaFMKpUq1XPo0CE2ZMgQpq2tzS/BvHfvXqUyVS3TrHg9fPhQJbbCwkL2wQcfMDMzMyYSiZipqSkbPXo0u3z5Ml8mPDy82jprU9UxlpaWNR6Tm5vLZs+ezTp16sQ0NTWZtbU1+/LLL5WWGa4upqCgIL5MYGAg69ChAxMKhczW1paFhYUxmUz2ytd148YNNnjwYKahocHMzc3ZN998U+t1nz59usp6Ff+e6qshljh+kzTVPXn84iUb9fUQFjpuJFvn8znbPO0U2zY/mIV9PIWFjhvJTr/dl6WOdGnUGFqTh7kP2YAfBrAeET1Yr9292LH7x5o8htsXzrLQcSPZj8sDGWOMRW+5wTZ8sp2FjhvJdo58jyX26Ml+/Xci2zztFPMN+YL9/lZvFjpupNLr/L4f2BZ/HxY6biTb6L+PbZ52in99P/cs27Pitya/LtI4KF+ifInypTcvX+IYazkDszdv3oxvv/0WWVlZeOutt7Bx40Z+jOm7776Lzp07IyIigi+/f/9+LF26FGlpabC1tcXatWsxYsSIauvv3Lkz5syZo9S7qia5ubnQ09NDTk5OncehEkJIVV6+fInU1FRYWVlBU1OzucNpVfLz82Fubo6wsDBMmTKlyc+fnZ2NoUOHQldXF8eOHYOWllaTx0CaXk3fs5QfqGqqe/IkrwiffucGl1u6EKh3gkjyEdQl55Gf/heYNAN9U7Ng1V4LnY+ea7QYWpNfH/yK2adn8+99uvpg8cDFNRzR8O5cOIsjG7+FhUNPjAtajagN8Ui7cRUl+Yehn/8SNtkv8PSD+chMMcRliyNY8PMZHO+ivKLX4AmTcP1YFApynkMk8YWOoTlKiqQoeSnvFSeWCPHpt0Oa9LpI46B8qf4oXyLNoSHypRYxfE9hxowZ1Q7XO3PmjMq2sWPH8l346iItLa2ekRFCCGkq8fHxuHPnDgYMGICcnBwEBwcDAN/FvakZGBjg5MmT2LJlC+Li4villwkhLUMJh/LV3DiA0ZxSPFZpqGNhaWEzxFCG4/Ai+yWKCkr5ielL1AS4amEEXN0NDf3p4JgAUFOd8lZNXZ2fkwpgUBepwTdkEJ7/Lb8erkXMkktI06J8ibQVLapRihBCCAGA0NBQJCUl8XMOxsbGon379s0Wj6GhIb766qtmOz8hpCryhqi7IiEsK84pVc+JZ2v0dyJw+J9AbiYgUAfe+xJ4y6fhz9PQKo2HaI5GKZQNynj2dwH+veQiAIAr+xOkSKhWoZwMHDgw9SoapYTCCvPkMHAcoC5UQ/uOOo0aOiEtHeVLpC2gRilCCCEtSp8+fXDt2rXmDoMQ0gLJ2zeUW1oYx+SNGWjE1fcubQMy4svf3/ixVTRKtYSeUopGqeJCKQQiQKDOIUctDxp5QKmamlJRjnGQVdlTSsivvgcwCKpZpY+QNwnlS6StoM6uhBBCCCGk1Spb263868aYLfVFlvz/BtZlJ22dQwSbc/geV/YZec3ojZju/1YpJyv9CzbJd/FErLokvZpQCK5iQ1Qtq4sRQghpPahRihBCCCGEtHLlc0o1SqtUwVP5/836NHzdjagl9JRSDKesOLdUsbpUpVxJ/i/QKC5Ggr5Eabu6hgY6WHUBUD58T0B/wRBCSJtBw/cIIYQQQkirUbmPjLzhhSvf2xgLSxdmy/+vZdjwdTcixhgk+eoo0JRCqsZQKitttlj4T4gDSgQ19zTjBAZgsmyMmrMI1n37Q6ihWaGnFFPuNUUIIaRVo0YpQgghhBDSenGMX36NNVKbFErKehgJW8cS5wW5OTj07dfITL6DMTDHfdN8nOvzpFliYWUfCCsbwMdxQJF6KQpFpRAXV/eniPwY7XbtINSQLzGuPNE5NUoRQkhbQY1ShBBCCCGkVag8HK18W4U5pRpj+F5pkfz/6pplJ22Mlq+Gk56UiMzkO/x760xtnOvzBLJGmguruLAAKdcuo7S4GNeOHIKaUAiBmhoGvj9O9V5xHGQcw8We6Vi2Vw0X7TpWUaNipjCuwmFlY/YYoymlCCGkDaFGKUIIIYQQ0npU2R6kmFOKa5xJyPlGKY2Gr7sxVGoIeqIrj1+GxmmUivvpR1z95aDK9vjj0ejq/E7l4OSxqDHoFxZVURvHlzkTchjvztGEeX9r5Z5SNHyPEELaDJomkBBCCCGEtCLKDS7mpaVo9NX3pJV6SjXKSRofa6QeXnnZT6vcLi0pLr9VTPEZlfWCqiYUgXp5z6lszU449H9p8vJls5szgIbvEUJIG0KNUoQQQmo0efJkcBwHjuMgEolgY2OD4OBglJa+3oS5Z86cAcdxeP78ecMEWgepqanw8fGBmZkZNDU10bFjR3h7e+POnTtK5aKjo+Hi4gKJRAItLS28/fbbiIiIUCqTlpYGjuOQkJBQ5/MvX74cXbt2hba2Ntq1a4dhw4bh0qVLSnVOmTIFVlZWEIvF6NKlC4KCglBcXFxjvZmZmfDx8YGdnR0EAgHmzJlTp3hevHiBOXPmwNLSEmKxGE5OTrhy5YpSmby8PMyYMQMdO3aEWCyGg4MDtm3bplRm2rRp6NKlC8RiMYyMjKq8pw8ePMDIkSOhpaUFY2NjLFiwoNp/QxcuXIC6ujreeuutWq/h4MGDGD58OAwNDV/58yCtnbxhIkdkAz6lbYzV92RSQDFBeKvpKaX8VjEMrrEapWSyqntgSUtLy89Z1o7EOFbxbRXUKgzTrKoUU0whRkiLQvkS5UuUL9UP/UgnhBBSKw8PD2RmZuLu3buYN28eli9fjm+//ba5w+LVloQAQElJCdzc3JCTk4ODBw8iKSkJ+/btQ8+ePZUSvU2bNsHb2xvOzs64dOkSbt68iQkTJiAgIADz589/rTjt7OywefNm3Lp1C+fPn0fnzp0xfPhwPH78GABw584dyGQybN++HX/88QfWr1+Pbdu2YcmSJTXWW1RUBCMjIyxduhS9e/euczz+/v6IiYnBf/7zH9y6dQvDhw/HsGHDkJ6ezpeZO3cu/ve//+GHH37A7du3MWfOHMyYMQNRUVF8mX79+iE8PBy3b9/G8ePHwRjD8OHDIZXKl32XSqUYOXIkiouLcfHiRezevRsRERH46quvVGJ6/vw5Jk2ahKFDh9bpGvLz8zF48GCsWbOmztdNWrfKzRSPhfr816yGpo56K60wxEzRKNXC55SqTHFXGmv4Hiv7Xq9MWloKvoWsrKcUP09UtbdQVuH+ysvevfI3igoUf5TRROek5aJ8ifIlypfqgZFq5eTkMAAsJyenuUMhhLRyhYWFLDExkRUWFjZ3KK/Mz8+PeXt7K21zc3Njjo6OLDs7m/n6+jJ9fX0mFouZh4cHS05O5sulpaWxUaNGMX19faalpcUcHBzYkSNHWGpqKoP8TxL+5efnxxhjLDc3l/n4+DAtLS1mYmLC1q1bx1xcXNjs2bP5ei0tLVlwcDDz9fVlEomEPzY2NpYNHjyYaWpqso4dO7KZM2eyvLw8xhhj8fHxDABLS0ur9lofPHjAhEIhmzt3rsq+jRs3MgDst99+Y4wx/hri4+Nf/aaWUfyeOXnyZLVl1q5dy6ysrOpcZ+V7VZ2CggKmpqbGoqOjlbb37duXffnll/z77t27s+Dg4BrLVHbjxg0GgN27d48xxtjRo0eZQCBgWVlZfJmtW7cyXV1dVlRUpHTs+PHj2dKlS1lQUBDr3bt3rdeh0BCfR0U1fc9SfqCqqe7J3zmFzDvYmYWOG8nW+Uxnm6edYp+ERLF1/5jPQseNZNGDB7J7zn0b9qQF2YwF6cpfN/fL/7/TvWHP0cCSf7vAQseN5F9L/IezHhE92KiDoxrlfAfXrFA6n+IVPvdzdiPmGAsdN5JtnDyHbZ52ij1Mecx6RPRgI9d0Z4n2XVWOCfP5jIWOHy8/ZspetnnaKbZ52ikW9vFkFjpuJNvw6U7287rrjXIdpPlRvkT5UlUoX2rb+RL1lCKEkGbCGEPJy5dN/mIN8IRfLBajuLgYkydPxtWrVxEVFYW4uDgwxjBixAiUlJQAAKZPn46ioiKcO3cOt27dwpo1a6CjowMLCwv89NNPAICkpCRkZmZiw4YNAORPmi5cuICoqCjExMQgNjYW169fV4khNDQUvXv3Rnx8PJYtW4aUlBR4eHhgzJgxuHnzJvbt24fz589jxowZAAAjIyMIBAIcOHCAfyJV2YEDB1BSUlLlE75p06ZBR0cHe/fufe37B8ifVu7YsQN6eno1Pq3LycmBgYFBg5yzotLSUkilUmhqaiptF4vFOH/+PP/eyckJUVFRSE9PB2MMp0+fRnJyMoYPH15lvfn5+QgPD4eVlRUsLCwAAHFxcejZsyc6dOjAl3N3d0dubi7++OMPflt4eDju37+PoKCghrxU0uZxKO8LxNX7Z1x+XByygr9GVvDXyN6zR74x/gfgh4/Kz6MmfN1gm0X5FOGN08Orup5SMmmpyudRfQyKHlQyVN2NqvwqBPQXzBulufKlhsiZKF96fZQvtf18iVbfI4SQZlJaVISNfh/VXrCBzdp9AMJKv1jrijGGU6dO4fjx4/D09MShQ4dw4cIFODk5AQAiIyNhYWGBQ4cOYezYsXjw4AHGjBmDnj17AgCsra35uhSJg7GxMfT19QHIx+zv3r0be/bs4bsjh4eHw8zMTCWW9957D/PmzePf+/v7Y+LEifz8ALa2tti4cSNcXFywdetWmJubY+PGjVi4cCFWrFiB/v37w9XVFRMnTuTjSk5Ohp6eHkxNTVXOJxKJYG1tjeTk5HrdO4Xo6GhMmDABBQUFMDU1RUxMDNq3b19l2Xv37mHTpk0IDQ19rXNWRSKRYNCgQfj666/RrVs3dOjQAXv37kVcXBxsbGz4cps2bcJnn32Gjh07Ql1dHQKBAN9//z3eeUd5Ra1//etfWLhwIfLz82Fvb4+YmBiIRCIAQFZWllKCBYB/n5WVBQC4e/cuFi1ahNjYWKirU3pC6o5xFeZMeo1RXZlLl6GkwlAMHScniM6uBZ7/Kd/QzhLlDScte/he5YYfxf2RNcbKhAD/h2unHr2ReTcJAz8cj/N7dysN32MVJ6NHVROdqwEoBVDxj2Cuyq9p+N6bpbnyJaD+ORPlS5QvUb5Ud/ScgRBCSK2io6Oho6MDTU1NeHp6Yvz48Zg8eTLU1dUxcOBAvpyhoSHs7e1x+/ZtAMCsWbMQEhICZ2dnBAUF4ebNmzWe5/79+ygpKcGAAQP4bXp6erC3t1cp279/f6X3N27cQEREBHR0dPiXu7s7ZDIZUlNTAcifRGZlZSEyMhKDBg3C/v370b17d8TExNT5XigSh5pERkYqxREbG8vvc3V1RUJCAi5evAgPDw+MGzcOjx49UqkjPT0dHh4eGDt2LKZOncpvr1hvQEBAnWKOjY1VOi4yMhIA8J///AeMMZibm0NDQwMbN27Exx9/DEGFbgibNm3Cb7/9hqioKFy7dg1hYWGYPn06Tp48qXSOiRMnIj4+HmfPnoWdnR3GjRuHly9f1ik+qVQKHx8frFixAnZ2dlWWqemeEqK8+l7dGoz+uv07flr1Ff4bvAS/rP8GhQX5SvtlBQXl80m5rwLzOwqpFJC1woEG/JxSjdQopegp1XOoO2ZE7IPVW/0AKCY6V44BZfNaqTQrcWoV9isOqm6ic2qUIi0T5UvlKF+ifKmu2kbTGiGEtELqGhqYtftAs5z3Vbm6umLr1q0QiUQwMzODurq60sSN1fH394e7uzuOHDmCEydOYPXq1QgLC8PMmTPrE7oSbW1tpfd5eXmYNm0aZs2apVK2U6dO/NcSiQReXl7w8vJCSEgI3N3dERISAjc3N9ja2iInJwcZGRkqTxuLi4uRkpICd3f3WmMbPXq0UvJpbm6uFLeNjQ1sbGzg6OgIW1tb7Ny5E4sXL+bLZGRkwNXVFU5OTtixY4dS3RVXS9HV1a01FkCekFY8TvHUrUuXLjh79izy8/ORm5sLU1NTjB8/nn8SWlhYiCVLluDnn3/GyJEjAQC9evVCQkICQkNDMWzYML5OPT096OnpwdbWFo6OjmjXrh1+/vlnfPzxxzAxMcHly5eVYvr7778BACYmJnjx4gWuXr2K+Ph4fviATCYDYwzq6uo4ceJEjfeUvKkq9rxRfK3cWMFkMn5lOLVKT5SvH4tC2o3yoS4aYiEsnlU8lgEy+dCa53ou+Onr+3iZrwMO/8Ug4Vn0adiLaWSN24ij6CklUFODQKDG32tpaSnfSKhoKlRMtl65p5RYUIBCqRrApBVKV9FTilGj1JumufIlxblfBeVLlC9RvvTqqFGKEEKaCcdx9R5G19QUiUFF3bp1Q2lpKS5dusR3R3/69CmSkpLg4ODAl7OwsEBAQAACAgKwePFifP/995g5cyb/BK3ifAXW1tYQCoW4cuUKnxjl5OQgOTlZpftzZX379kViYqJKnDXhOA5du3bFxYsXAQAfffQRAgMDERYWhrCwMKWy27ZtQ0FBASZNmlRrvRKJBBKJpE4xyGQyFBWVr+6Vnp4OV1dXfoUWQaXJU17l+hTEYnGNx2lra0NbWxvPnj3D8ePHsXbtWgDyFXhKSkpUYlBTU6t2CXhAPmyBMcZf16BBg7By5Uo8evQIxsbGAICYmBjo6urCwcEBQqEQt27dUqrjX//6F3799VccOHAAVlZW0NbWrvM9JW1XVX2gGMcBnKDs6/JCL/Py8O/AmXjxRL5aUx8PL7z3yTT+OFmluVKklWtnDJDJV3zLfFiKl/klZTGo4c8c65bdKMUqD9+Ta+yeUgI1+Z8WgrJGKVlpSYWhhGVDCAuz5e8q3W6hoETeKCUuASuQgqtwDJS+ZlV3oCJtFuVLlC8BlC+15XyJGqUIIYTUi62tLby9vTF16lRs374dEokEixYtgrm5Oby9vQEAc+bMgaenJ+zs7PDs2TOcPn0a3bp1AwBYWlqC4zhER0djxIgREIvFkEgk8PPzw4IFC2BgYABjY2MEBQVBIBDUOodIYGAgHB0dMWPGDPj7+0NbWxuJiYmIiYnB5s2bkZCQgKCgIPj6+sLBwQEikQhnz57Frl27EBgYCED+hHDt2rWYP38+NDU14evrC6FQiMOHD2PJkiUICQlBjx49lM6blJSkEkv37t0hFCpPiJyfn4+VK1di9OjRMDU1xZMnT7Blyxakp6dj7NixAOQJ1rvvvgtLS0uEhobySx8D8idkNVE82cvLy8Pjx4+RkJAAkUiklPBWpliO2N7eHvfu3cOCBQvQtWtXfPLJJwDkTxZdXFywYMECiMViWFpa4uzZs/j3v/+NdevWAZAPIdi3bx+GDx8OIyMj/PXXX/jmm28gFosxYsQIAMDw4cPh4OAAX19frF27FllZWVi6dCmmT58OjbKn0JXvq7GxMTQ1NVW2V5adnY0HDx4gIyMDQPnnYWJiUus9I20Ex/+njLy148mDNL5BCgDux19RapSqPIGxTGXYHwOk8kap0kpz/bKq5/5tsRQNQI03p5T8PgnU5H+QqfGNUlKVBjKWeq7KOtS4stgEUhSrFUKjVK1SiQqNUtRTirQilC/JUb5E+VJ1qFGKEEJIvYWHh2P27NkYNWoUiouL8c477+Do0aN8giGVSjF9+nT89ddf0NXVhYeHB9avXw9A3p14xYoVWLRoET755BNMmjQJERERWLduHQICAjBq1Cjo6upi4cKFePjwocqqJ5X16tULZ8+exZdffokhQ4aAMYYuXbpg/PjxAICOHTuic+fOWLFiBdLS0sBxHP/+iy++4Ov54osvYG1tjbCwMGzYsAH5+fJ5Zvbu3YsJEyaonLeqbQ8fPkTHjh2VtqmpqeHOnTvYvXs3njx5AkNDQ7z99tuIjY1F9+7dAcifht27dw/37t1TOb62FYD69Cnvt3Ht2jXs2bMHlpaWSEtLq/aYnJwcLF68GH/99RcMDAwwZswYrFy5UilB/PHHH7F48WJMnDgR2dnZsLS0xMqVK/n5GTQ1NREbG4vvvvsOz549Q4cOHfDOO+/g4sWL/FM+NTU1REdH4/PPP8egQYOgra0NPz8/BAcH13hNdREVFcUnhUD55xEUFITly5e/dv2kBVOM5qrQKMU4ju8ppbLKWzXfQxwnAGMyyBS7hUKgpASQyfieUoWpGQA05SvDcQIUPytt0EtpfIrhjY27+h7fU0qtfPgef9vLZqFnL+R/EKlVCkVd0Sglk/ETs/e+tQ3sbW/8XtK9wvxS1FOKtD6UL1G+RPlS9TjWEGuDt1G5ubnQ09NDTk5OncehEkJIVV6+fInU1FRYWVnVmiwQZfn5+TA3N0dYWBimTJnS5OfPzs7G0KFDoauri2PHjkFLS6vJYyBNr6bvWcoPVDXVPfk79yUCNgzF4N/bQSC0gkjnA/xmVYh+f1yCtOg6LLJL8Fbu37C7lICHf9zEf4OX8MfqGnXA1M07+fc/r1mB+9evQF2kgdLiItj8/Qx2WdngxGKwwkJ0/nEvxIddASbDBa1wJNzXh0BaDJmaCIaFdzFh97SqQmwRkn87j1/Wf8O/z5PIcGDIQxiJjfDruF8b/Hzhcz9HdvpDjF22Cp169EL+82fYNs0X4Di4+k3F6YgdEIq7Qk1zBNyGHMeY0qPo9hew4j+lONq7CwDARDMXWS91wWkKUVRaBFGpAC63/4TJ0GE4Insf+U/2gJWmQ6g9CvZOg+HuX3OvANI6Ub5Uf5QvkebQEPlS61s+hBBCSJsWHx+PvXv3IiUlBdevX8fEiRMBgO/i3tQMDAxw8uRJDB06FHFxcc0SAyGkJhwUPYEyTAchtYN8efQ72ZWHilT9HJYfalbW+4ZTkw8bYzKZvGcUAJlUnjILZIp5pVp2V53Kj5wVPY8abU4pWVlPKXX5veMU86owpjp8r+weqlXq7qRWNsaQSWX8cEMOABigoanGX4O8p1TLvv+ENAXKl0hbQcP3CCGEtDihoaFISkqCSCRCv379EBsbi/bt2zdbPIaGhvjqq6+a7fyEEDnl9g3FkL3yrwGGe2Yj4Q7g6P0jqDioQyqreiIotbLhF7Kyhg5OsUpfaUn5sWVDzxSNUq1GhYnfgcYbvictm3RLIChrlKrQaKSY5FfRkCcru4cCVqlRSqAYvsfKG6UY5MP5BOUNj9U1LhLyJqJ8ibQF1ChFCCGkRenTpw+uXbvW3GEQQlos5caMRxIpv/oewKCflwLgPZTKlOd9YtWsgKRYKY4pGlKEZelxheOlMkWjVKniNK2EvFVK0cuosWbtUNxbfuWpCo1S/DkVk63LigEBoJirXK+UIUedQy/9LDzIbwdIZRUmMmcAk5U1cpVvUxfSYA9CKF8ibQX9RCeEEEIIIa3WH+al+L1DbNk7GXQKMuVfVRqqVrmXkKKxRF29Uk8ptaoapZSH77V8Fce/lb+VoZGG7/HnK7uHFRulKjUGMlkxAECNye/pOwUMU9y00Un7OV9GIKtYnpW1OSpmtmcwt2/XoPETQghpPtQoRQghhBBCWhHV3j5FwsLyfVyF+YxqPgxAeU8pfk4pRc+pCsP3ZLLKw/da15xGimgba04pxb3m+Eap8j8xyhulFL215I19amXv1TgO+tpqUOPKY1P07FIM36u83B5Hf8EQQkibQT/SCSGEEEJI61GpcclRXwJ+eiJW/axJKkPXyt5XO6cU31OKUxm+13pG71VqPGuswCvd24qnlVWay0smlfeUEqDCUD+O4yc6V6pHXkFZffLyDDKa6JwQQtoQapQihBBCCCGtgnKTk7xhYkFn0/JGKTCUN16oHl0VUdkS1qVqZWlx2QpykJY1SgnUIS3rxKPGWsvwvTKK3l+KScYbbfie4nw19ZSSk1XqKSVfPJGDAAwGBjrlBdUAdakMTLHaHicqq7AYAjVqlCKEkLaCGqUIIYQQQkirJRAIKjRWsfIJy2XybbKyfUxWaU6psv9r6ekDAIrU1VGirlbezUda1gBVoVFKUKH3VEtW3itMMQ+T/H9NNXyPn8UcFRqlyloOZWX3lWMVGrA4ATgO+Mc/XNDuMzccdcyCVjdtqDEmX42PAziBZtmpCqmnFCGEtCHUKEUIIYQQQlqNys0RAo5T6imlaI7hewVxlfco09LVBwDkamkgpntnXNZQrBanOF5QPqcUK62ihrqT5efjxa+/IvfECRTdvftaddUFV6EzUmOqPDSSq3BGxT6+2ZCVTXTOVVypT15eqK4GkakhHhkUQSAq2y8rW42PkzdKSYsScOr/liE1gVYdI4SQtkC9uQMghBBCCCGkXph8viHGNzzJoHjmqpiiiHGQt4hUM6dU+06dodfeGDlPHgEAHleeJ53jKgzfe71GqcwVK5Ab9Yv8jVCILr9EQdS582vVWTPl5qhG6ymlOJti+F6FnlKyysP3Cp8BEkDAqSkOqjA5ffl8UYqJ58Fk4PIfQaBmBCkAsCLkPv4LcQf2gDEZDEw7Qt/EtBGvihBCSGOinlKEEEJqNHnyZHAcB47jIBKJYGNjg+DgYJSWvt4fZ2fOnAHHcXj+/HnDBFoHqamp8PHxgZmZGTQ1NdGxY0d4e3vjzp07SuWio6Ph4uICiUQCLS0tvP3224iIiFAqk5aWBo7jkJCQUOfzL1++HF27doW2tjbatWuHYcOG4dKlS0p1TpkyBVZWVhCLxejSpQuCgoJQXFxcY72ZmZnw8fGBnZ0dBAIB5syZU6d4zp07By8vL5iZmYHjOBw6dEilzMGDBzF8+HAYGhrWer2MMXh6elZbV0REBHr16gVNTU0YGxtj+vTpSvuPHz8OR0dHSCQSGBkZYcyYMUhLS1MqExkZid69e0NLSwumpqb49NNP8fTp09e+TtJ6cRCAcRWG7ylWeVMM21P00almkm+hhgZ8F3yFIXceKBerMEF35Z5SrJ59j0qz/i5/U1KCwps361VPnVXqKdVYjVJ8T6ma5pRSfAwvswEAalzZs3GBQKlRij9O0dAoY0D+I6iJ7CDS9YO61lAAQObdJPz8zQpEzPschXkvGuGqCHk1lC9RvkT5Uv1QoxQhhJBaeXh4IDMzE3fv3sW8efOwfPlyfPvtt80dFq+2JAQASkpK4ObmhpycHBw8eBBJSUnYt28fevbsqZTobdq0Cd7e3nB2dsalS5dw8+ZNTJgwAQEBAZg/f/5rxWlnZ4fNmzfj1q1bOH/+PDp37ozhw4fj8ePHAIA7d+5AJpNh+/bt+OOPP7B+/Xps27YNS5YsqbHeoqIiGBkZYenSpejdu3ed48nPz0fv3r2xZcuWGssMHjwYa9asqbW+7777rtq5XtatW4cvv/wSixYtwh9//IGTJ0/C3d2d35+amgpvb2+89957SEhIwPHjx/HkyRN8+OGHfJkLFy5g0qRJmDJlCv744w/s378fly9fxtSpU1/7OknrULmzE1A2fK9CAcWcUqxiTykArJoGGY7jABmTz1+kdDK+RPmcUkx5JbnXVXkS8IaruPK1KDfUNdb5+O/+Cj8GKl+jlJ92Sq28LP9zg/FD//ghmTIZBGVDMQVqhlAT9USnnoPQwdoGnEAAaWkpCnKeN+TVEFJvlC9RvkT50quj4XuEEEJqpaGhARMTEwDA559/jp9//hlRUVEICAjA7Nmz8csvv6CoqAguLi7YuHEjbG1tAQB//vknZsyYgfPnz6O4uBidO3fGt99+CwcHB7i6ugIA2rVrBwDw8/NDREQEXrx4gYCAABw6dAi6urpYuHAhDh8+jLfeegvfffcdAKBz586YMmUK7t69i0OHDuHDDz9EREQEzp8/j8WLF+Pq1ato3749PvjgA6xevRra2tr4448/kJKSglOnTsHS0hIAYGlpCWdnZ/46Hz58iHnz5mHOnDlYtWoVv33evHkQiUSYNWsWxo4di4EDB9brPvr4+Ci9X7duHXbu3ImbN29i6NCh8PDwgIeHB7/f2toaSUlJ2Lp1K0JDQ6utt3PnztiwYQMAYNeuXXWOx9PTE56enjWW8fX1BQCVJ3CVJSQkICwsDFevXoWpqfJQmmfPnmHp0qX45ZdfMHToUH57r169+K+vXbsGqVSKkJAQCATyZ2bz58+Ht7c3SkpKIBQKERcXh86dO2PWrFkAACsrK0ybNq3WBLAu10laL67SnFLlLSLVNTKVva3QcMNKSqDSoYox/FHghtvZw/GiRJ4yC9CwjVJ8a1djUfRcKntbee6nhlK31ffk+x4O+Ayf7QpH18fZZVtrG77HwFVYNZDjBHAe/0+Y2bbDFn8fvHyRW20vOEKaGuVLlC9RvvTqqKcUIYQ0E8YYZMXSJn81xB8lYrEYxcXFmDx5Mq5evYqoqCjExcWBMYYRI0agpES+utL06dNRVFSEc+fO4datW1izZg10dHRgYWGBn376CQCQlJSEzMxMPkmYO3cuLly4gKioKMTExCA2NhbXr19XiSE0NBS9e/dGfHw8li1bhpSUFHh4eGDMmDG4efMm9u3bh/Pnz2PGjBkAACMjIwgEAhw4cABSadV/WB44cAAlJSVVPuGbNm0adHR0sHfv3te+f4D8aeWOHTugp6dX49O6nJwcGBgYNMg5G0tBQQF8fHywZcsWPhmvKCYmBjKZDOnp6ejWrRs6duyIcePG4eHDh3yZfv36QSAQIDw8HFKpFDk5OfjPf/6DYcOGQSgUAgAGDRqEhw8f4ujRo2CM4e+//8aBAwcwYsSIJrtW0vyqnuhcdfU9xWp75fNNVf+zT/osW6Upi8lkuJ7/If4utoGUCQAmg1bJs7IyDTR1eCPP8VQ5zKZafa9iDwBZpUapY+cOYFgCQ8f0IgCAmlH78kBZxZ5Sih5vsvIJwhQ10ep7b5TmypcaImeifOn1Ub7U9vMl6ilFCCHNhJXIkPHVxSY/r1mwEziRWr2OZYzh1KlTOH78ODw9PXHo0CFcuHABTk5OAOTj1y0sLHDo0CGMHTsWDx48wJgxY9CzZ08A8idZCorEwdjYGPr6+gCAFy9eYPfu3dizZw//hCg8PBxmZmYqsbz33nuYN28e/97f3x8TJ07k5wewtbXFxo0b4eLigq1bt8Lc3BwbN27EwoULsWLFCvTv3x+urq6YOHEiH1dycjL09PRUnlwBgEgkgrW1NZKTk+t17xSio6MxYcIEFBQUwNTUFDExMWjfvn2VZe/du4dNmzbV+NSvJfjiiy/g5OQEb2/vKvffv38fMpkMq1atwoYNG6Cnp4elS5fCzc0NN2/ehEgkgpWVFU6cOIFx48Zh2rRpkEqlGDRoEI4ePcrX4+zsjMjISIwfPx4vX75EaWkpvLy8aFjeG0f5j0QBJ6jQU6p8ovPy0oouUFX/cfn8p58gznoCrtIqcWAMMib/WdnH4ilEP/0LRR06v3b0SrE1Uk8plZ5L/PbXfyghk0qRkXQbpaUlEOtIYGzVpeKs8OUFOU4+nLJSo5R62TU/NRShZ+DX0HZ2Bs4tLQtQVsXwPQauUtyKidQrrPH32tdFWq7mypeA+udMlC9RvlQVypeqRj2lCCGE1Co6Oho6OjrQ1NSEp6cnxo8fj8mTJ0NdXV2pa7ahoSHs7e1x+/ZtAMCsWbMQEhICZ2dnBAUF4WYtk/rev38fJSUlGDBgAL9NT08P9vb2KmX79++v9P7GjRuIiIiAjo4O/3J3d4dMJkNqaioA+ZPIrKwsREZGYtCgQdi/fz+6d++OmJiYOt8LkUhUa5nIyEilOGJjY/l9rq6uSEhIwMWLF+Hh4YFx48bh0aNHKnWkp6fDw8MDY8eOVZoDoGK9AQEBdYo5NjZW6bjIyMg6HVcXUVFR+PXXX/mhAlWRyWQoKSnBxo0b4e7uDkdHR+zduxd3797F6dOnAQBZWVmYOnUq/Pz8cOXKFZw9exYikQgfffQR/6Q6MTERs2fPxldffYVr167hf//7H9LS0vj70JjXSVqissnHlYbvlfdi4ic653tKVa3g0mW8vFHFz6YKvYqMdAqhXZAFTvCaqbPKXE9N1FOqwmlvPb6FrPyselcZu3c39q1YhJ9WLsMPi+fg3pW48sYupTapCj2dqggpX0cdeqNHQ93QsHz4XoVA+eF7MpnS8D0AEKhRTynSMlG+VI7yJWWUL1WPekoRQkgz4YQCmAU7Nct5X5Wrqyu2bt0KkUgEMzMzqKurIyoqqtbj/P394e7ujiNHjuDEiRNYvXo1wsLCMHPmzPqErkRbW1vpfV5eHqZNm8aPn6+oU6dO/NcSiQReXl7w8vJCSEgI3N3dERISAjc3N9ja2iInJwcZGRkqTxuLi4uRkpKiNNlkdUaPHq2UfJqbmyvFbWNjAxsbGzg6OsLW1hY7d+7E4sWL+TIZGRlwdXWFk5MTduzYoVR3xdVcdHV1a40FkCekFY/r0KFDnY6ri19//RUpKSn801uFMWPGYMiQIThz5gz/JNXBwYHfb2RkhPbt2+PBA/mKZ1u2bIGenh7Wrl3Ll/nhhx9gYWGBS5cuwdHREatXr4azszMWLFgAQD7Hgra2NoYMGYKQkJBGvU7SMlTVsCQAV6EHkKx8aB2r1FAiUz664rAcze7dof+BN/DLPqUeOoqDWeW6Gmj4HqtmaEzDUY3T56gPOHA4MPoA7NrZvXKNOY+yKr3/m/9gKg6r4zgBGGTlPaUUvbZU7mWFryvMKcU3Ksqkqj2lFOfhKn0+pE1qrnxJce5XQfkS5UvVoXypetQoRQghzYTjuHoPo2tqisSgom7duqG0tBSXLl3iu6M/ffoUSUlJSr9MLSwsEBAQgICAACxevBjff/89Zs6cyT9BqzhfgbW1NYRCIa5cucInRjk5OUhOTsY777xTY4x9+/ZFYmKiSpw14TgOXbt2xcWL8mEBH330EQIDAxEWFoawsDClstu2bUNBQQEmTZpUa70SiQQSiaROMchkMhQVFfHv09PT4erqin79+iE8PJyfxFLhVa5PQSwW1+u4uli0aBH8/f2VtvXs2RPr16+Hl5cXAPCToyYlJaFjx44AgOzsbDx58oSfRLWgoEDlWtXU5N8fijlpCgoKoK6uXmUZxlijXidpwSr2lGKsvKFC0aih2FXDEC9R587QGz0a+GVf+TEVe/iUNWgpho01RMxgTKWhrMFxSv/jMTA8zH1Yr0YpWaUhh4yxCo1CFRqlBBwgrTinVPnZAUBLpFMhzvKJzvlSioYnmaza4XvkzUD5EuVLAOVLbTlfokYpQggh9WJrawtvb29MnToV27dvh0QiwaJFi2Bubs6PlZ8zZw48PT1hZ2eHZ8+e4fTp0+jWrRsA+UouHMchOjoaI0aMgFgshkQigZ+fHxYsWAADAwMYGxsjKCgIAoGg1oltAwMD4ejoiBkzZsDf3x/a2tpITExETEwMNm/ejISEBAQFBcHX1xcODg4QiUQ4e/Ysdu3ahcDAQADyJ4Rr167F/PnzoampCV9fXwiFQhw+fBhLlixBSEgIevTooXTepKQklVi6d+/OTzapkJ+fj5UrV2L06NEwNTXFkydPsGXLFqSnp2Ps2LEA5AnWu+++C0tLS4SGhvJLHwOockLMihRPvPLy8vD48WMkJCRAJBIpJbyV5eXl4d69e/z71NRUJCQkwMDAgE9ys7Oz8eDBA2RkZChdr4mJidKrsk6dOsHKygqAfGlnb29vzJ49Gzt27ICuri4WL16Mrl278qsKjRw5EuvXr0dwcDA+/vhjvHjxAkuWLIGlpSX69OkDAPDy8sLUqVOxdetWuLu7IzMzE3PmzMGAAQOqnEfjVa6TtF4CgfLqe6xS7yZ+EvTK7T+sckNHpbmoWHkzFlfeFajKquoRNCCVArJG6imlMkywiiL1vApWKWZ5TyjFROfl27nKPdbKmGuZALgPC4kFKpZWxMn3lOI/NwaOqzR8TzGnFFf1OQhpSShfkqN8ifKl6lCjFCGEkHoLDw/H7NmzMWrUKBQXF+Odd97B0aNH+QRDKpVi+vTp+Ouvv6CrqwsPDw+sX78egLyL9ooVK7Bo0SJ88sknmDRpEiIiIrBu3ToEBARg1KhR/BLHDx8+hKamZo2x9OrVC2fPnsWXX36JIUOGgDGGLl26YPz48QCAjh07onPnzlix4v/ZO+/AKMqt/39mN9n0hBAIhCIhEKqANClRIVISkID3KkW5QFDQ+NJFQFRAFEUUUAQvii8S/F1AXxABEcFYQJooTVAkSAm9lxASkk125vfH7szObEvBK8Xnc2/MzsxTzjMbkrPfOec8k8nKykKSJO141KhR2jijRo0iLi6OGTNmMGvWLHJzcwFYsmQJffr0cZvX07njx49rT7hUzGYz+/fvZ+HChVy4cIGoqChatmzJxo0badiwIWDfdeXgwYMcPHjQrX9x6SmqIwL27YIXL15MjRo1fG5NvH37ds3JAftOPuDcbhrsNRAGDhzott5Jkybx8ssv+7RJz8cff8yoUaN46KGHMJlMtGvXjrVr12o/Kw8++CCLFy/mzTff5M033yQ4OJg2bdqwdu1agoKCAEhNTSUnJ4c5c+YwevRoypUrx4MPPljsFsclWafgNsLln4IxfU9BUUumumlRPv4NSZLhg5wCoIvwUesiSZJx7LIimUwoNpu2Q+B/DW1NzrX5m/wplAvLLErJjmgNk9kP2VaEIsu6Oue6D8MO4ch1973ygeWBw8YPzrpIKVXM0teUcr3hkqiKK7jNEP6S8JdKyt/RX5IUkYTtlatXrxIREUF2dnaJ81AFAoHAE/n5+Rw5coSaNWsW6ywIjOTm5lK1alVmzJjBk08++ZfPf+nSJTp06EB4eDhfffUVwcHBf7kNgr8eX/9mhX/gzl91T05euc7wWR1ou688Jv/aWEK60eWNBox4/x+0310Rk191Ktsa8dgn/8OTc7rTYKNMbmARIfl+SGYzzy5eqY219NUXOPbrHu45epZ697WnwiuTmTOwFwBJew5z1+TRLF8fTq4cRafah7H97wyyG7RjR3QvwnOP0e//pZba/qP9+pP3889IAQEoBQVEj3mOqP/C77XfN61nzezpSGGBKDn52ALN/L8HDwMQERBBdkE2M9vPpFONTqUee+mrL3Ls11/wDwyiMP86Cb3+xU8rl1FYkM+Tsz6kXGV7TZR3B/SkMP869RLasX/zBswB9+Af/CDUWsiD838iuGVLavy/j+2Drh4F2z+C9uP5rEo8L299mX45jUiZs4uAunXYW6MdJ6z3aDb0faU15aKDmfvUv8jLvkL/t+ZQ8a7YG71tglsA4S+VHeEvCW4Gf4a/JJ4zCAQCgeCWYteuXSxZsoRDhw6xc+dO+vbtC+B1+9z/NuXLl+ebb76hQ4cObN269abYIBAI7BifpUpIKJgk/Q57si59z3FOl9rnC7c6RbIzFVCr/eQeeFQ6VKPU2h5u9Zb+JFxTE3XHQX5BjiZljJRypO+ZHfVK7GmOxvRG/UvFJVLK5NoAjJFSkkuklOJeUyogSCR7CATCXxLcKYjf6AKBQCC45Zg+fTqZmZlYLBaaN2/Oxo0bqVChwk2zJyoqiokTJ960+QUCgRNXPejK5SuG+kNqgWw15U6TM1zLLBn0LclQU0qRMBTdlrSaSc7aRzeCZDLZh7D9l0QpbSJ3Fa1iUEXO5J65gfQ9u81mRyqJLMt40KS0VEdX4c2sylL6Gl6aKOW0SVbfU1mmRsAOTlgbo2CmbuvKBIVZHHOImlKCvzfCXxLcCQhRSiAQCAS3FE2bNmXHjh032wyBQHCbcCDzgEs0lFG2UgWr4kQYSVeoSEEy1HtSo4rUaCqlmELCxWJSBZuyFTpXFMVeKB2Q/Ip35yXg+17fA/DchufKNKc2t80lUkqWdaKQPlLKc00psxqRZriFWliVVlNKqxImyzQJ+ZJGwV9Br/+HqaH3YsQCwd8J4S8J7hSEKCUQCAQCgUAguC24cvkKSEZxKSI8wlDMXPGWW+d19z0FJFwKb7t0cLS1YvM4VGnRorLKUOhcKSriSM9eFPz+OwBhnTpSbfZsLxOpnaBCUAXHKVX0udH0PXuklKLI2ljGe2jcBVHFhOShrSoI6t5JzXb7OZMkg8sufN7mEAgEAsHtg6gpJRAIBAKBQCC4Lbhw8YKrJkW5sBBn+p4jUionv1ATKlzFDW+Y9Ol7ALKzPpVak+lYvn3bcRtwNvds2ReiiVKlj5QqPHNWE6QAcr5f79amRBJNGXUc2VeklEGTcghG2hpdakrhLmDpa0qp75v16HEOfhHNtVMBoJQtskwgEAgEty5ClBIIBAKBQCAQ3LaYTSZnoXPbWc7Kqzm0fRuq6qK4qlgOtOgexSGg6CJ3FHAILfZzJ3KOAyCrggkSx3KOldpWLTrJ7Lnekoo1v4hDO89x4KcznD+W43tQX8XSJV2olHbqxlIPNVHKX42UUnR6ny59zyG82Y5t084Vmqz4mcwutmEsdO4Y43LFQKSAAJBlCnP9uHo8yE3Eu8EkSoFAIBDcAoj0PYFAIBAIBALBbYjkyLyTuBxWSJEZ/GwANk78ttsZKaXroSiKV1FGE6YUxfFd1vr+fHobKaClDt6oGCKpwoyXQuc/fn6IvRtOOtpKDJjalpCIAHUVxsYl2cFP16Us6XtFhYV8OmksF04co6igAACTFill0ybwdG+3K/lUxL41fJHJiklVEA2Fzp0Fy9Ux8sIDqL3+ey6+9w6X/vN/9rrzX42FH+dCr4UQUa3E9gsEAoHg1kVESgkEAoFAIBAIbiPchY/rgTZ21w/CHNAccNQY8qS56FP4PFzXUscARVaQ1fQ9h8tcMbCcbqgbqGNkdkYGeSL3qtU5j6xwPafQ53ButnhIpyu2jw8unzrBmUN/aIIU6NP3FOdYuvnyZXvbQu2kRJHJilk9LrbQuYJfZCT+lSo6LkmQdxFObofD6x3dRE0pgUAguN0RopRAIBAIBAKB4LbAk/ig7fJmBkmy2NvJiibMKJLv/o5RAGddKUUCFGcskUWyCzAVAspp7ctaKNxus2MeL5FSrhjs9rSG4qKlPERKlQZ1frNupz/1XsmyrI2vjn3h+gVyCu1ph5LuDSg0WzGpHz88Fjp3n1PSBDygemv1YqnXIBAIBIJbEyFKCQQCgUAgEAhuW7TIGslZA0qWnal3eBGlPAtcqmssOaKY7J3NjvOSSV936kYipRzpeyVJvcMhsvnC2zieUhXVoKRS2K/WvgoICdXOFVnt0VuKojjHcsx3ad14bfTIvGht4iKTFX+Tn+PIc6FzbU41JdBxrxTFD4LKaVeN/YRIJRAIBLcrQpQSCAQCgU9SU1ORJAlJkrBYLNSuXZtXXnmFoqKiGxp3/fr1SJLElStX/hxDS8CRI0d4/PHHqVKlCoGBgVSrVo0ePXqwf/9+Q7vVq1fTrl07wsLCCA4OpmXLlqSnpxvaZGVlIUkSu3fvLvH8L7/8MvXq1SMkJITIyEg6duzItm3OIsBZWVk8+eST1KxZk6CgIGrVqsWkSZOwWq0+RoXTp0/z+OOPU6dOHUwmEyNHjiyRPT/88AMpKSlUqVIFSZJYsWJFqW0GeO2112jbti3BwcGUK1fO41zHjh3joYceIjg4mOjoaMaMGWP4GdL/nOm/GjZsqLWZOnUqLVu2JCwsjOjoaB5++GEyMzOLXWdJ7BPcHnjSHjyJUnYRRY2U0gszXsQLSbKLVGrUlSSB7JRtzFodJOdYspfUu5JQINv/TRfZvPzb9pKN5w1vEWDOnQc9TVEKUUqNlHIUNwcotNrT8xTZphmoRq1dPfGT1i6o0CFkSRI5ARfxc0SdeS10rqVQOuzzc0SVKaWP8BII/kqEvyT8JeEvlQ0hSgkEAoGgWJKTkzl9+jR//PEHo0eP5uWXX+att9662WZpFOeEABQWFtKpUyeys7NZvnw5mZmZfPrppzRq1Mjg6M2ePZsePXqQkJDAtm3b2LNnD3369CEtLY3nnnvuhuysU6cOc+bMYe/evWzatInY2Fg6d+7M+fP2beb379+PLMt88MEH/Pbbb7z99tu8//77vPDCCz7HLSgooGLFirz00ks0adKkxPbk5ubSpEkT3nvvvTLbDPb737NnT5555hmPY9hsNh566CGsVitbtmxh4cKFpKenM3HiRK3NrFmzOH36tPZ1/PhxypcvT8+ePbU2GzZsYMiQIfz4449kZGRQWFhI586dyc3N9bnO4uwT3D54ElKcxbWdopJ9RzhVKNH196HDfPX+XoqsdqFpf92+BqHHU6RUmQKlHH1OXT8DwA/HNhguf7nnNPdN+47vM88ZuxWXvmcz7krnLlLpdt8rS/qeI1JKkkzc1egegsLCiW3SzMtccFVSdGmT9utXog+yodan+Esedt8zO4q426xO+9RgKDVSSpZwhnmJyCjBrYnwl4S/JPyl0iNEKYFAIBAUS0BAAJUrV6ZGjRo888wzdOzYkVWrVnH58mX69+9PZGQkwcHBdOnShT/++EPrd/ToUVJSUoiMjCQkJISGDRuyZs0asrKySExMBCAyMhJJkkhNTQUgJyeHvn37EhISQkxMDG+//Tbt27c3PM2KjY3l1VdfpX///oSHh/PUU08BsGnTJu6//36CgoKoXr06w4cP1/4A//bbbxw6dIh///vftG7dmho1apCQkMCUKVNo3dpep+T48eOMHj2akSNH8vrrr9OgQQNq167N6NGjeeutt5gxY4bbU6/S8Pjjj9OxY0fi4uJo2LAhM2fO5OrVq+zZswewO7MLFiygc+fOxMXF0b17d5577jmWL1/uc9zY2FhmzZpF//79iYiIKLE9Xbp0YcqUKfzjH/8os80AkydPZtSoUTRq1MjjGF9//TX79u3jP//5D/fccw9dunTh1Vdf5b333tMc5IiICCpXrqx9bd++ncuXLzNw4EBtnLVr15KamkrDhg1p0qQJ6enpHDt2jB07dvhcZ3H2CW4fjAKIhF5ssYsgzvS9YguduzQ4czhbi9i5GlYNuwTmqDXlVgfpxmpKyY5hsq9fNpxfsfskJy5fp6DIGIXlMShLTQEEH+l7nk6Vvji44jBAMkk8+uKrPP3+QgKCgh22OefWds6TFEfkGoD9+tXwq1j9rjsjpfS77/k5RKnCfLfdAdWaUp7uQVkENoHgv4nwl4S/JPyl0iNEKYFAILhJKIqC1Wr9y7/+jF2KgoKCsFqtpKamsn37dlatWsXWrVtRFIWuXbtSWGivNTJkyBAKCgr44Ycf2Lt3L9OmTSM0NJTq1avz2WefAZCZmcnp06eZNWsWAM8++yybN29m1apVZGRksHHjRnbu3Olmw/Tp02nSpAm7du1iwoQJHDp0iOTkZB555BH27NnDp59+yqZNmxg6dCgAFStWxGQysWzZMmwuUQUqy5Yto7Cw0OMTvqeffprQ0FCWLFlyw/cP7E+j5s2bR0REhM+nddnZ2ZQvX/5PmfNGKanNrmzdupVGjRpRqVIl7VxSUhJXr17lt99+89hn/vz5dOzYkRo1angdNzs7G+CWuT+CvwY3GUJRv+nS93R1jsLynL/zzr/3b8/jSZLLxnwmg9Cj7hgnmZw1p8omStn7yI5hrEUFhjRAb7+ePUVKSTpRp7gC7jdS/gqcNa3UNBGzn782v6z/feoQpWwe7LHK9r8Lak0pwxvpF2j/XpSvi3xzNDOp76mkEwWN44vd9+5sbpa/9Gf4TMJfunGEv3Tn+0t+xTcRCAQCwX+DwsJCXn/99b983hdeeAGLxVKmvoqi8O2337Ju3Tq6dOnCihUr2Lx5M23btgVg0aJFVK9enRUrVtCzZ0+OHTvGI488oj1xiYuL08ZS/zBGR0drees5OTksXLiQxYsX06FDBwAWLFhAlSpV3Gx58MEHGT16tHY8aNAg+vbtqz0hjI+P591336Vdu3bMnTuXqlWr8u677zJ27FgmT55MixYtSExMpG/fvppdBw4cICIigpiYGLf5LBYLcXFxHDhwoEz3TmX16tX06dOHvLw8YmJiyMjIoEKFCh7bHjx4kNmzZzN9+vQbmvNGKY3Nnjhz5ozBwQK04zNnzri1P3XqFF999RWLFy/2OqYsy4wcOZKEhATuvvvuEtsiuPMwRsvoIqUcwkWFKzay7UE9XPhwHhX6Po5/dLS7AKQ4+ysmybH7nhoppasp5dCQyvRhVRXQ1OFkheyCbCIDI31381ToXB9pVJpIKU/Fz4tBi5TS7ZLnUZRyYNNJdortIgB5RXkA+DnS9wx2+OtEKddIKUdNKTwtUQRK/S24Wf4SlN1nEv6S8JeEv1RyRKSUQCAQCIpl9erVhIaGEhgYSJcuXejduzepqan4+fnRqlUrrV1UVBR169bl999/B2D48OFMmTKFhIQEJk2aZAhh9sThw4cpLCzk3nvv1c5FRERQt25dt7YtWrQwHP/yyy+kp6cTGhqqfSUlJSHLMkeOHAHsTyLPnDnDokWLaNOmDUuXLqVhw4ZkZGSU+F6UxDldtGiRwY6NGzdq1xITE9m9ezdbtmwhOTmZXr16ce7cObcxTp48SXJyMj179mTw4MHaef24aWlpJbJ548aNhn6LFi0qUb/S2vxnsXDhQsqVK8fDDz/stc2QIUP49ddf+eSTT7RzaWlphnUK7jw8ykBqMJChnrmzppTJtZMjMsE4hhr55EgVk0wGIcjsOK8XUsoSKaX20dtaYCtwN8e1n6epSiJKeRjAVfQpCc76XE7LCh2RT+fznPVS1OtFKOQHqGKVvUBvgeKIlFLT9/Sr1EVKOctGOexzpO8V5vqoKSUipQS3CMJfciL8JeEvlRQRKSUQCAQ3CX9//2ILMv635i0tiYmJzJ07F4vFQpUqVfDz82PVqlXF9hs0aBBJSUl8+eWXfP3110ydOpUZM2YwbNiwsphuICQkxHB87do1nn76aYYPH+7W9q677tJeh4WFkZKSQkpKClOmTCEpKYkpU6bQqVMn4uPjyc7O5tSpU25PG61WK4cOHSIpKalY27p3725wPqtWrWqwu3bt2tSuXZvWrVsTHx/P/PnzGT9+vNbm1KlTJCYm0rZtW+bNm2cYW797TXh4eLG2gN0h1fdzfQpXHCWx2ReVK1fmp59+Mpw7e/asdk2Poih89NFH9OvXz6tDO3ToUFavXs0PP/xAtWrVtPOvvPLKDRdXFdzaKChuypRa70mfvifLilPz8KZfqC8UfTtV9JCx2dBFSqmTmcBmb1eWSCnXPpLbEF520fOSvqd4um6YoOS2+EJL39MJYUv/WEY1YMfpn4nF8ftYS9+T2V7vMkmZ9bFcDSPPUsCRKidpXqk51c5X47KuLeCsKVVU4B4p5Ujfs+VLyFab4Yl6WaK+BLcfN8tfUucuDcJfEv6S8JdKjxClBAKB4Cahbhl8O6D+kdVTv359ioqK2LZtmxaOfvHiRTIzM2nQoIHWrnr16qSlpZGWlsb48eP58MMPGTZsmLZ2fb2CuLg4/P39+fnnnzXHKDs7mwMHDvDAAw/4tLFZs2bs27fPzU5fSJJEvXr12LJlCwCPPvoo48aNY8aMGcyYMcPQ9v333ycvL4/+/fsXO25YWBhhYWElskGWZQoKnJESJ0+eJDExkebNm7NgwQJMJmNQc2nWpxIUFFSmft5wtbk42rRpw2uvvca5c+eIjo4GICMjg/DwcMPPCth3jDl48CBPPvmk2ziKojBs2DA+//xz1q9fT82aNQ3Xo6OjtfEFfx9MkhrdBM6aUp4jhxQkbxWzHd/NDl3IZhe2HGiRUqYbi5RSUS2Q8CwOuUVKeUrf0wsyXuq+OAfwMXgJcBY6d/4+umy9QjUCkHRhX6qgZEPhfKSVgiaNCN3dkpORe+jYpBqvJLzCpf84Ig8Mhc4dkVLnfocdCx1zOupv5eZpzYquFWFxW9CNvReCWx/hLwl/CYS/dCf7S0KUEggEAkGZiI+Pp0ePHgwePJgPPviAsLAwnn/+eapWrUqPHj0AGDlyJF26dKFOnTpcvnyZ77//nvr16wNQo0YNJEli9erVdO3alaCgIMLCwhgwYABjxoyhfPnyREdHM2nSJEwmU7FPxMeNG0fr1q0ZOnQogwYNIiQkhH379pGRkcGcOXPYvXs3kyZNol+/fjRo0ACLxcKGDRv46KOPGDduHGB/Qvjmm2/y3HPPERgYSL9+/fD392flypW88MILTJkyxS0fPzMz082Whg0buj1dzc3N5bXXXqN79+7ExMRw4cIF3nvvPU6ePKlt43vy5Enat29PjRo1mD59umEbYdcnZK6oT/auXbvG+fPn2b17NxaLxc2J0XPt2jUOHjyoHR85coTdu3dTvnx57rrrrhLZDHDs2DEuXbrEsWPHsNlsmi21a9cmNDSUzp0706BBA/r168ebb77JmTNneOmllxgyZAgBAQEGm+bPn0+rVq081j0YMmQIixcvZuXKlYSFhWn1FSIiIggKCvK6zuLsu5OYO3cuc+fOJSsrC7D/LE6cOJEuXbp47bN06VImTJhAVlYW8fHxTJs2ja5du/5FFpcW90JQJmPsjP2sLKOYHZE2XlK9FGOIFIoCEmb7kWJD0QVlmSXXQudlLa6t6M10scNtGa4mG+eVJLuwI8uGHfCMbdyH+7PS99T+AZLzd50W1eS45hQMFSxmi3ExeqNCHdEI1y8hHfoOKlXULoU0a6gz3vXvgIiUEtz6CH/JjvCXhL/kDSFKCQQCgaDMLFiwgBEjRtCtWzesVisPPPAAa9as0RwMm83GkCFDOHHiBOHh4SQnJ/P2228D9hDtyZMn8/zzzzNw4ED69+9Peno6M2fOJC0tjW7duhEeHs7YsWM5fvw4gYGBPm1p3LgxGzZs4MUXX+T+++9HURRq1apF7969AahWrRqxsbFMnjyZrKwsJEnSjkeNGqWNM2rUKOLi4pgxYwazZs3StkhesmQJb4/zpgABAABJREFUffr0cZvX07njx48bwqQBzGYz+/fvZ+HChVy4cIGoqChatmzJxo0badjQ/qErIyODgwcPcvDgQbf+xX0Abtq0qfZ6x44dLF68mBo1amjihCe2b9+ubTUN9p18AAYMGEB6enqJbAaYOHEiCxcudLPl+++/p3379pjNZlavXs0zzzxDmzZtCAkJYcCAAbzyyisGe7Kzs/nss8+0nYVcmTt3LgDt27c3nF+wYIG2RbYnirPvTqJatWq88cYbxMfHoygKCxcupEePHuzatcvwnqls2bKFxx57jKlTp9KtWzcWL17Mww8/zM6dO2/ZgqhusoSk1hpSNNFCkRUwe2hvD03yPLCi2COlAAUbsuysYWRSTOpkzuZlqilV3Ak7JpdVeoyUAk2U8rYmxaUMfJmR3QudqwFSFsmCcyFqTSmHeaj3U8Hf5Pjg6UHgokpT6LkQdv0H6dQmrQ+AKcCCyV9GLtTV+XITGm9seQLBfxvhLwl/CYS/5A0hSgkEAoHAJ+np6V6vRUZG8vHHH3u9Pnv2bJ9jT5gwgQkTJhjOhYWFGQpL5ubmMnnyZJ566intnDfHoWXLlnz99dcer1WoUMHrH29XevTooT29vHTpEh06dGDu3Ll0796d4GD7Nl6xsbGlipQIDAxk+fLlPtukpqb6dBZ8UZaojfbt2/vsVxKbwf4z4uvnBOxPetesWeOzTUREBHl5eV6vl3Vr7pLYd6eQkpJiOH7ttdeYO3cuP/74o0dRatasWSQnJzNmzBgAXn31Ve1p+fvvv/+X2FxmDNEAErKuppSiyM6UM10rexSUUdiQHGPZjxxKFjZsNufPm5q150zfkzyKUkWFNjYvPci1y/kgSdzdrio1GkbpDFCjtNRRPItbroEOXktGqXWlSrD7nqIoSJLkjJQqxb8nq80KQE7RNQ5nHyYuIk6z257aaDPYrUVKacqgLlLKRcDSOjZ8GLKPO0Up7X2SnffDtSaXCJQS3EIIf0n4S8Uh/CXPiN33BAKBQHBLsWvXLpYsWcKhQ4fYuXMnffv2BdCcnr+a8uXL880339ChQwe2bt16U2wQCMqCzWbjk08+ITc3lzZt2nhss3XrVjp27Gg4l5SUdMv+rHt1syWTQeOQZdmlgLluDK+RUqCJUorNofO4REoVk7536o8r/PrDSbL2XiRrzwV+Xn3Eo/1qlJGkGMfRZ+YZ+ukjpTRNR3Lak38NvhgJi/vAJ33hvHuajMcIpRKy/ID9w9axnGM8suoRLudfRpbU9EhdQ63QuZq+54yUuq/qfb4XCWAOcNanzz0HJ3faa4BJaoql5+r1Zf0AJhDczgh/SXCnICKlBAKBQHDLMX36dDIzM7FYLDRv3pyNGzdSoUKFm2ZPVFQUEydOvGnzCwSlYe/evbRp04b8/HxCQ0P5/PPPvdbKOHPmjNvuQpUqVdLqT3ijoKDAULz16tWrN274DSCh7kSnS9/TrulEH+0/GHQNVaiRJEdNKWzINud+fu6RUp4jnOQi4zlbkUsEkwfxxGOklGv6njfRxSFKKVmbYccC53m/bHUgwzxlDSy6fP0S0Y7xiuQiLl6/qAlrJg+FzrX0PYeY16pKK1pWbmlciydRyk9XzPrSEfgoGXr/P+c6XNMYRaiU4G+O8JcEdwJClBIIBALBLUXTpk3ZsWPHzTZDILhtqVu3Lrt37yY7O5tly5YxYMAANmzY4LOIa2mZOnUqkydP/tPGKzHe89hQJJf0PbxF8nirvwSGSCmd2OIUXnTpeyWIznEvfeSI+PFhBzhFMK2fQdtyijqSmnZYZDV2KLwOBBlFG62+eNkLnat9ZGRHuqTr/bV/cy10HhVU3tlGFZZcFwlgtmCIhbIVwKUj2jK0++l270WklODvh/CXBHcKIn1PIBAIBAKB4A7CYrFQu3ZtmjdvztSpU2nSpInX+iCVK1fm7NmzhnNnz54tdvei8ePHk52drX0dP378T7O/NNjrliseIqVk7zqFo/6SUZSRDIXObUXHOHH5vFaXyrn7ntrcc02pUhmOQ9DxuPleKSOl1JpSqoG2Qrem2g56ZagppYlSkvNY0dL3XGpD4V5TypAy6CuN0GbVVn7VEki2ScKWfQJJVb5cIqX+pDLuAoFAILiJCFFKIBAIBAKB4A5GlmVDqp2eNm3a8O233xrOZWRkeK1BpRIQEEB4eLjh669A8SLiqGKMU3DB2FDx8towOCDZ08dk6+9sP3EAm9W+BbgWKaXffa4kopSXSCl9Xp1+HH25KEO/YkQpbU1+9q2+FUdhcqNmU3YRTRXn1BFkRdZem/RpkF5235MMnzg8FDpXKbyuvcwyKdxXozr/PJehE8M8i1CipJRAIBDcvoj0PYFAIBAIBII7hPHjx9OlSxfuuusucnJyWLx4MevXr2fdunUA9O/fn6pVqzJ16lQARowYQbt27ZgxYwYPPfQQn3zyCdu3b2fevHk3cxlecYtu0jAZ8sgUxRkp5br7nnNXN8V50vHNL6A5RYoNuegUKNfAdh38wYRac8rDOC7j+zzjoseUePc9ffqey66BgDOCyD8ICnNBLjTMo+umnStVpJdsvJkKzkgp41tijJSSHM+/PUVKeawHVei+m9RhOQ9ZFbVc77kIlBIIBILbHiFKCQQCgUAgENwhnDt3jv79+3P69GkiIiJo3Lgx69ato1OnTgAcO3YMk24HubZt27J48WJeeuklXnjhBeLj41mxYgV33333zVpCsXjSISTJkb6nE2n0opGhgpPHSCsJFDD5RWMJ7YY1dy2ydZ/WWBWlMOsipWTZw0BGvNWU0qk7HnFdo9dIKbPZeN3fvgW7W40pnTE3VFNKl76n7r5n0t0G9fbbVPMcheONmpQPUapCHTzeVXVe9aLbjRWhUgKBQHC7IkQpgUAgEAgEgjuE+fPn+7y+fv16t3M9e/akZ8+e/yWL/lx8lAZ3CCbOQueGXo4a6PY2DoHFJZJKL9JIurP20dVIKV2h87Kkw7mIO2pNLFckl0Lo+t0EDZFGJsl4zj/Q/t1RU0qRdCtRihfRvJrtUodLVpyFzo23wT6bVd2ZD7NdoNIXNZd9iFL1umE72R9OfmU8b3w7nKfF7nsCgUBw2yNqSgkEAoFAIBAIbmskl933ZFlGUWNuFNfSSp4qi0suoVRGsUOrm6SvKVUGkUebQiemeEzfc+3nLaJKtUcVeswBjitq4XPdPDdS6ByjmCYja+l7hppSkr1g/FVHNF6AKcB53nUxnnbfkyRstRI9nDcKia7q1A0VnRcIBALBTUWIUgKBQCAQCASC2wK7kOK5UJKiF5MUxamg2E9o7Zx9nELGvov7XGpQeYuU0o0oFy+EuOs+unpQ2LUWQ6Fz1/Ct4uZSd9/ThB6z8brBXrtQVZboItdURUVRPEdKSVBoK+CKWRWlAh1zGnr7tMOm2LTXfm7hbK73QURKCQQCwe2OEKUEAoFA4JPU1FQkSUKSJG2r+VdeeYWioqLiO/tg/fr1SJLElStX/hxDS8CRI0d4/PHHqVKlCoGBgVSrVo0ePXqwf/9+Q7vVq1fTrl07wsLCCA4OpmXLlqSnpxvaZGVlIUkSu3fvLvH8L7/8MvXq1SMkJITIyEg6duzItm3bDGM++eST1KxZk6CgIGrVqsWkSZOwWj3Uh3Fh0aJFNGnShODgYGJiYnjiiSe4ePGizz4//PADKSkpVKlSBUmSWLFihcd2v//+O927dyciIoKQkBBatmzJsWPHtOtPP/00tWrVIigoiIoVK3q8pz///DMdOnSgXLlyREZGkpSUxC+//OJxvoMHDxIWFka5cuWKXXdJ1yC4M/AaEaNFMOnS9xSjAGTv77kW1G8Xf3UZ2bMopUX3eBN2iqt15Gl7PU+BW76G9ZS+p67J5FKZQxeNVBIRzSsuaYf23fcc91d3O1/78TWaLWrJzkC7GGXxFSnlRVCSdRForqKUqCkluJUR/pLwl4S/VDaEKCUQCASCYklOTub06dP88ccfjB49mpdffpm33nrrZpulURInpLCwkE6dOpGdnc3y5cvJzMzk008/pVGjRgZHb/bs2fTo0YOEhAS2bdvGnj176NOnD2lpaTz33HM3ZGedOnWYM2cOe/fuZdOmTcTGxtK5c2fOnz8PwP79+5FlmQ8++IDffvuNt99+m/fff58XXnjB57ibN2+mf//+PPnkk/z2228sXbqUn376icGDB/vsl5ubS5MmTXjvvfe8tjl06BD33Xcf9erVY/369ezZs4cJEyYQ6PjQCdC8eXMWLFjA77//zrp161AUhc6dO2Oz2SMerl27RnJyMnfddRfbtm1j06ZNhIWFkZSURGFhoWG+wsJCHnvsMe6//36ftpdmDYI7FUn3yqWmlIsAI+l1EA/6hWsymCoaqRFImsOsnkdC1kX0lBQFz5FQxfbzIihp6XtapJSf4VAvfsmyzTF1GdL3HPMbako5bqpu00PWHf1ae13eZqNCYHl7G90nDp+FzgGb7LyvWgs1R9D1PoiaUoJbDOEvCX9J+EulRxQ6FwgEAkGxBAQEULlyZQCeeeYZPv/8c1atWkVaWhojRozgiy++oKCggHbt2vHuu+8SHx8PwNGjRxk6dCibNm3CarUSGxvLW2+9RYMGDUhMtNcNiYyMBGDAgAGkp6eTk5NDWloaK1asIDw8nLFjx7Jy5Uruuece3nnnHQBiY2N58skn+eOPP1ixYgX//Oc/SU9PZ9OmTYwfP57t27dToUIF/vGPfzB16lRCQkL47bffOHToEN9++y01atQAoEaNGiQkJGjrPH78OKNHj2bkyJG8/vrr2vnRo0djsVgYPnw4PXv2pFWrVmW6j48//rjheObMmcyfP589e/bQoUMHkpOTSU5O1q7HxcWRmZnJ3LlzmT59utdxt27dSmxsLMOHDwegZs2aPP3000ybNs2nPV26dKFLly4+27z44ot07dqVN998UztXq1YtQ5unnnpKex0bG8uUKVNo0qQJWVlZ1KpVi/3793Pp0iVeeeUVqlevDsCkSZNo3LgxR48epXbt2lr/l156iXr16tGhQwe2bNni07aSrkFw5+AzUkpXUwpF9i66qFE/XqJtJJ24paWaqTqKbufCGyl0rk8SLMk4elsNoo6avqeKNa7pex7mljRhrew1pRTH//TjAmRbswFYd/wkFYtsbL9bTd/zECnlIihlZWWxe/duthdsdzfAbbNCLxFoAsFNRvhLwl8S/lLpEZFSAoFAcJNQFAWbLe8v/yrN03FvBAUFYbVaSU1NZfv27axatYqtW7eiKApdu3bVnuYMGTKEgoICfvjhB/bu3cu0adMIDQ2levXqfPbZZwBkZmZy+vRpZs2aBcCzzz7L5s2bWbVqFRkZGWzcuJGdO3e62TB9+nSaNGnCrl27mDBhAocOHSI5OZlHHnmEPXv28Omnn7Jp0yaGDh0KQMWKFTGZTCxbtkx7IuXKsmXLKCws9PiE7+mnnyY0NJQlS5bc8P0D+9PKefPmERERQZMmTby2y87Opnz58j7HatOmDcePH2fNmjUoisLZs2dZtmwZXbt2vSEbZVnmyy+/pE6dOiQlJREdHU2rVq18hnzn5uayYMECatasqTlUdevWJSoqivnz52O1Wrl+/Trz58+nfv36xMbGan2/++47li5deks+xRPc2kiYDLqEpxQ90Pbdc+lrl1c0rUSx4bWmlF6UKkNNKa2alZoFqLgITppNJUOzRzPexbWX0Go/yV7uSYnQdsxTp1O0SClchvU3+RNTZMMfUBT3WlzaWPrUQkVh2bJl7N69m2MnnKkukusLl7lEnNTfg5vlL/0ZPpPwl24c4S/d+f6SiJQSCASCm4QsX2f9hkZ/+bzt2+3FbA4uU19FUfj2229Zt24dXbp0YcWKFWzevJm2bdsC9jz96tWrs2LFCnr27MmxY8d45JFHaNTIvs64uDhtLNVxiI6O1nLhc3JyWLhwIYsXL6ZDhw4ALFiwgCpVqrjZ8uCDDzJ69GjteNCgQfTt25eRI0cCEB8fz7vvvku7du2YO3cuVatW5d1332Xs2LFMnjyZFi1akJiYSN++fTW7Dhw4QEREBDExMW7zWSwW4uLiOHDgQJnuncrq1avp06cPeXl5xMTEkJGRQYUKFTy2PXjwILNnz/b51A8gISGBRYsW0bt3b/Lz8ykqKiIlJeWGnZVz585x7do13njjDaZMmcK0adNYu3Yt//znP/n+++9p166d1vbf//43Y8eOJTc3l7p165KRkYHFYgEgLCyM9evX8/DDD/Pqq68C9vdn3bp1+PnZXZGLFy+SmprKf/7zH8LDw2/IbsHfC0VRQDKhSDad+uH8IClhTPRDUbDJNk5dO+nREbaLUiaXc+oLT7WRSmWtYxjfu++55hl6nUoVpVTBSTLhKtUojqFcdwssVaSUYpTzZGeZcySXa2bJhOu74ClSSjKkFspcu3YNgLDwMO28myjlUue+LGsR3H7cLH8Jyu4zCX9J+EvCXyo5IlJKIBAIBMWyevVqQkNDCQwMpEuXLvTu3ZvU1FT8/PwModlRUVHUrVuX33//HYDhw4czZcoUEhISmDRpEnv27PE5z+HDhyksLOTee+/VzkVERFC3bl23ti1atDAc//LLL6SnpxMaGqp9JSUlIcsyR44cAexPIs+cOcOiRYto06YNS5cupWHDhmRkZJT4XqiOgy8WLVpksGPjxo3atcTERHbv3s2WLVtITk6mV69enDt3zm2MkydPkpycTM+ePQ21DvTjpqWlAbBv3z5GjBjBxIkT2bFjB2vXriUrK0u7vnHjRkO/RYsWlWitamRFjx49GDVqFPfccw/PP/883bp14/333ze07du3L7t27WLDhg3UqVOHXr16kZ+fD8D169d58sknSUhI4Mcff2Tz5s3cfffdPPTQQ1y/fh2AwYMH8/jjj/PAAw94tKWsaxDceUge9Ad7pJRTsVAUxaldKAqGGClF4cDlA2QXZOsH0KG4vQ42B2rtFMWGoiglEkJcoyy0o9LWQnI3yZi+p5/HZMawIC2j0bH7XllqSjkELUVyrynlGkUl6aK15AJHgWebvtCzezyY3pbIqEhX07UXecdyyDtncUbCiZpSglsM4S85Ef6S8JdKioiUEggEgpuEyRRE+3Z7b8q8pSUxMZG5c+disVioUqUKfn5+rFq1qth+gwYNIikpiS+//JKvv/6aqVOnMmPGDIYNG1YW0w2EhIQYjq9du8bTTz+t1QnQc9ddd2mvw8LCSElJISUlhSlTppCUlMSUKVPo1KkT8fHxZGdnc+rUKbenjVarlUOHDpGUlFSsbd27dzc4n1WrVjXYXbt2bWrXrk3r1q2Jj49n/vz5jB8/Xmtz6tQpEhMTadu2LfPmzTOMrd+9Rn1CNnXqVBISEhgzZgwAjRs3JiQkhPvvv58pU6bQokULQ79KlSoVuwaAChUq4OfnR4MGDQzn69evz6ZNmwznIiIiiIiIID4+ntatWxMZGcnnn3/OY489xuLFi8nKymLr1q2YHB+iFy9eTGRkJCtXrqRPnz589913rFq1SnvKqSgKsizj5+fHvHnzeOyxx8q0BsHfBJfd9/xPnaBOvk500ekgiiyTb8tHL4r4mfydQylOcUuNAjJJJoqADfu2UpC3jgIkzJvugQa9DGa46Tzeylppc91YlI+k7b6nrzNldO9Vse7Gdt8zfDOm77kMa9Ld15wfNoKpHrlbt0CvelpfzVZP6PU0LfzK/uLy1tNcpgLV7zlGaFu9fSJS6k7mZvlL6tylQfhLwl/SI/ylkiFEKYFAILhJSJJU5jS6vxrVMdBTv359ioqK2LZtmxaOfvHiRTIzMw1/lKtXr05aWhppaWmMHz+eDz/8kGHDhmlP0PT1CuLi4vD39+fnn3/WHKPs7GwOHDjg9YmQSrNmzdi3b5+bnb6QJIl69eppBSIfffRRxo0bx4wZM5gxY4ah7fvvv09eXh79+/cvdtywsDDCwsKKbQf2p2sFBQXa8cmTJ0lMTNR2aDGZjEHNntaXl5enhXWrmM32gseKohAUFFSq+6JisVho2bIlmZmZhvMHDhzQip96QlEUFEXR1pWXl4fJZDKk66jH6tPFrVu3Gn4WVq5cybRp09iyZQtVq1Yt8xoEdxZ6AUfSqRcSJmwm+ysACq3UP6Zwppx63TAI+UX5LuMa4nZ0Ipcj1UyWKfD3IzvvqnY+7+DJMizAmLomUbqIJb1NSJLTTr3gJOmLnUvO4uRqpFRZCp1rQpI6nezs77rToe5OFp46A9XqUbD/d/1gTvs9IOsKR0mOOcz18wj0j6TgrBXb9SIKL+UY1iK4sxH+kvCXQPhLd7K/JEQpgUAgEJSJ+Ph4evToweDBg/nggw8ICwvj+eefp2rVqvTo0QOAkSNH0qVLF+rUqcPly5f5/vvvqV+/PmDfyUWSJFavXk3Xrl0JCgoiLCyMAQMGMGbMGMqXL090dDSTJk1y+wPtiXHjxtG6dWuGDh3KoEGDCAkJYd++fWRkZDBnzhx2797NpEmT6NevHw0aNMBisbBhwwY++ugjxo0bB9ifEL755ps899xzBAYG0q9fP/z9/Vm5ciUvvPACU6ZM4e677zbM6+qAADRs2BB/f3/DudzcXF577TW6d+9OTEwMFy5c4L333uPkyZP07NkTsDtY7du3p0aNGkyfPl3b+hjQdvPxREpKCoMHD2bu3LkkJSVx+vRpRo4cyb333uuxvoTKtWvXOHjwoHZ85MgRdu/eTfny5TUnd8yYMfTu3ZsHHniAxMRE1q5dyxdffMH69esBewrBp59+SufOnalYsSInTpzgjTfeICgoSCsc2qlTJ8aMGcOQIUMYNmwYsizzxhtv4Ofnp+0qpP5cqGzfvh2TyeR2v8uyBsGdj59/eZDycKke5QUFq83qjMJx0WYkZA+9FWSXU4rNU+Fwl3Q9lyLBWm0mL7/PXLQft36f7TjBie2H6AwUFsn4eU3f0/XVipMb0/dKhePDkPOWKVpVKa2mlJa+p5P3VPFNb5/sW5QyCo92TDGF1GhdkxOfnyHnt4tuQpgIlBLcygh/yY7wl4S/5A0hSgkEAoGgzCxYsIARI0bQrVs3rFYrDzzwAGvWrNEcDJvNxpAhQzhx4gTh4eEkJyfz9ttvA/YQ7cmTJ/P8888zcOBA+vfvT3p6OjNnziQtLY1u3bppWxwfP36cwMBAn7Y0btyYDRs28OKLL3L//fejKAq1atWid+/eAFSrVo3Y2FgmT55MVlYWkiRpx6NGjdLGGTVqFHFxccyYMYNZs2aRm5sLwJIlS+jTp4/bvJ7OHT9+nGrVqhnOmc1m9u/fz8KFC7lw4QJRUVG0bNmSjRs30rBhQwAyMjI4ePAgBw8edOvvK5oiNTWVnJwc5syZw+jRoylXrhwPPvhgsVscb9++XXNywL6TDzi3mwb4xz/+wfvvv8/UqVMZPnw4devW5bPPPuO+++4DIDAwkI0bN/LOO+9w+fJlKlWqxAMPPMCWLVuIjo4GoF69enzxxRdMnjyZNm3aYDKZaNq0KWvXrvVYJLU0lGQNgjsHb/8MKlcbwsm8Hc52SJropC90rtaUKrAVGPp7/9flEFxkxV1I8pAOZz1+3HBcdPGS15GLmdiNc1fzGb30F2KzT9EZuJpfSJBJU5ycDQ2ilOKsA3Uju++pmXq6mlKKZLymTW/YAdApSmV/sZqgpk2d0WKmkotSMo6oMEcfV7FPILjVEf6S8JeEv+QdIUoJBAKBwCe+/lBFRkby8ccfe70+e/Zsn2NPmDCBCRMmGM6FhYUZijLm5uYyefJknnrqKe1cVlaWx/FatmzJ119/7fFahQoVtG2Ui6NHjx7a08tLly7RoUMH5s6dS/fu3QkOtqcQxMbGlirtJjAwkOXLl/tsk5qaSmpqaonH1DNs2LBS155o3759idbwxBNP8MQTT3i8VqVKFdasWVPsGJ06daJTp04ltq2k96KkaxDcIXh5q81+YRQENkJiv/2E5FIQXV8c3IMoJaOgSjnGSClVjZGRXUQpT8KILTtba49kKlY8sW+M574oT3JNntVmuCYDkipAeU3f090yVQwqU6FzYzSUXZTy3F+rKSWZdEKezKkxYzBHRFCuV0/VULfxAe4NvZc1V9dwT2EQR03XnGuQTE4hy1bC4l0CwV+I8JeEvyT8pbIhdt8TCAQCwS3Frl27WLJkCYcOHWLnzp307dsXQHN6/mrKly/PN998Q4cOHdi6detNsUEgEDhxkYacrySTdlXx0s5bpJT7HA4XWXXgFcUZGaSO6KlweAn9fS3VTfEiDrnO5WlcBd3ue7ooKH2hc0knJGk71qndS/HhxMUAe00plybqmrS5ne+Hmr5ny84utqZUBUsFemT1YEJeVaM0qBOlFNkh0ImaUoK/McJfEtwpiEgpgUAgENxyTJ8+nczMTCwWC82bN2fjxo1UqFDhptkTFRXFxIkTb9r8AoHAN5Lk+I9axFuvVbioJ4qLKGWPVtLXonKPlJI8RErhIx1OKoXko29Zkj7OGk6SU5RxSd9TcEZoqRFNyg2k79lFL5N2W2yKzU2k0+6Vmr4nmVC0VELdGosRpSRJwk/xQ//sXFHba+l7rjWlbs2n/wLBfxvhLwnuBIQoJRAIBIJbiqZNm7Jjx47iGwoEgr8d+detXq+pyWk4vnuqKQWArFAkFxn76rPfDHFWDkFHca8p5bnQua6b5F1k8lbo3Nd4HoOlTK6770mOmlJ6UcrxXTYWOi9V+p5LcXJZkQnPM/Y32+zX9Ol7fhXtdVJUIc1Ss6YxldID6g5a+rpg9jdRn76nRn2JSCnB3xfhLwnuFET6nkAgEAgEAoHgtuDaZWspyge5CxZ2gUaNfjJccfYyKe5ih6J4iJTyZYhXOcpgmqSULI3Oaxs1MsxrTSnJuWOeWlNK7VOq9D3HaA7ByG/PAV5Pt2LyEH3lvE3OuQPr1QHAFBamRZjpC53rBTKnfZJb+p4WKeU6rwiUEggEgtsWESklEAgEAoFAILhN0KsPzogfSTv0VFNK0QSoM9H3UrjDSkFwGCbFKd7oI5dMJlk3jqOjLHuoKeUrHU4f4uN7FZ4EFV/xP1rGHjjqNlHM7ntqE2OkVOkwRkr5Hz1DgCzTbv8xcgID+OWucuxtZHKMr0vfU7uZ1YguudiaUqooJSNpspazppQjikqL+hIIBALB7Y4QpQQCgUAgEAgEtwneQ2IUXaKe4rr7noPj1R/k5N4ioByBhaHAdbc2kk7csu9xh0uklD9Q6LmmlGKXwyTVUm8pcrqi4CWKWNIVRDfrlBjFpClOzpMmo3v/Z9SUUqPCtCgmR6HxoEIbQYV5VLh+nf31oqAATOp9kkzO6CyzXjzzLdg5I6Vwi5RSNbiLq3dS5DeeokuXHNdFqJRAIBDcroj0PYFAIBAIBALBbYm7rOFeU8qO4vJdV/sIl0Lnkk4O0e2+p4lSkl30cS22bUDxLby4maV1K15c0UQfJOfue17T93QrV4WlMtSUcq0D5SpwmWSwqTviAef2hHFpv0UXKWV2zCkXW+hcqyml6N8fQDJRcN4pImavWEHR+fMAnH5pQsnXIhAIBIJbChEpJRAIBAKBQCC4rZGQjOl7kv6aMZXPra9Hcca9ppSW4if5g3LdZ6SU99ngUnAgx/yiOdrEhEkuIvfcefCyWZZxNDtm3SNlzSa9LZL+mbPk1NfUlLcyFAd3q0flsnazAkWKvXh8hUs2Lu4Ls7dr5ZhTi5TCY6FzTzWlZGcioGMdJuQCZ4F6c/ny2mtbTk6p1yQQCASCWwMRKSUQCAQCgUAguC0ovrS4B8FFL4R4RR8ppT+2iyqKrQhZS7lzREqVpdC5AuciwlEcwpFs8uPyoaM+rHF004k2Zr3w5qmmlCQZIr+09D3FKCSVrtC54+66FBp3bLiHSVa0SCmTTmyS8wvs5/wc0VuGmlKepzLsvqfZij0dsMi5hvhNGwmIqwVApXFjS74WgUAgENxSiEgpgUAgEAgEAsFtg884H309Io+ai+LxpT5qR5L0x45GRYXGSCnwGCmlRRR5Me9IaFuORQD5W7VzsmLz0tqz5fpAJ9UmQ0qcZPLYT5b/BFFKUtMF7TbbzGAuApMCNsc6/Gw6QazIHtmkpu8hy7rd9zw/G1cjpQpMwdp76BSl9LskmpACLAD4V65c8rUIBAKB4JZCREoJBAKBwCepqalIkoQkSVgsFmrXrs0rr7xCUVFR8Z19sH79eiRJ4sqVK3+OoSXgyJEjPP7441SpUoXAwECqVatGjx492L9/v6Hd6tWradeuHWFhYQQHB9OyZUvS09MNbbKyspAkid27d5d4/pdffpl69eoREhJCZGQkHTt2ZNu2bYYxn3zySWrWrElQUBC1atVi0qRJWK3WYsdetGgRTZo0ITg4mJiYGJ544gkuXrzos8/cuXNp3Lgx4eHhhIeH06ZNG7766ivt+qVLlxg2bBh169YlKCiIu+66i+HDh5Odna21SU9P134+XL/OnTuntSsoKODFF1+kRo0aBAQEEBsby0cffWSw55133tHmql69OqNGjSI/P9/nGpYvX07nzp2Jiooq9fshuN2RvL9ySVHzUlK7BGM7ooyshbpC52b9JZ+4Nsn2r+omBik27wXIXXf8czdTt6ud6znsUVLO3feMNaVKhap5qVFMufZaTkWOqUyyU5Qy6yPIAgIBsFStqhuoZIXOs4KbIDl2ElTM/lAr0e1elW0nQYHgv4Pwl4S/JPylsiEipQQCgUBQLMnJySxYsICCggLWrFnDkCFD8Pf3Z/z48TfbNACsVisWi8Vnm8LCQjp16kTdunVZvnw5MTExnDhxgq+++srg6M2ePZuRI0cybtw45s6di8ViYeXKlaSlpfHrr78yffr0MttZp04d5syZQ1xcHNevX+ftt9+mc+fOHDx4kIoVK7J//35kWeaDDz6gdu3a/PrrrwwePJjc3Fyf827evJn+/fvz9ttvk5KSwsmTJ0lLS2Pw4MEsX77ca79q1arxxhtvEB8fj6IoLFy4kB49erBr1y4aNmzIqVOnOHXqFNOnT6dBgwYcPXqUtLQ0Tp06xbJlywDo3bs3ycnJhnFTU1PJz88nOjpaO9erVy/Onj3L/PnzqV27NqdPnzZEbixevJjnn3+ejz76iLZt23LgwAHNwZ85c6bXNeTm5nLffffRq1cvBg8eXOx7ILi98Zkwp48gQl/y3PMIksezXnbfK3RGSkmS2Vk8XFGMNZoU1xeeRBMXUcrjrnguVus319NGkZyRUoZC5y6RUo5woxXTJhNesRJS13Ka7SXGJeVOObYNCERWRSndUH6OPEe/YIWQ++7n/J4LmAIDNDuLK3Su3s88cziEVYNrJ1FSv4RKTZGLpng2r+QrEQj+qwh/SfhLwl8qPUKUEggEAkGxBAQEUNmRHvHMM8/w+eefs2rVKtLS0hgxYgRffPEFBQUFtGvXjnfffZf4+HgAjh49ytChQ9m0aRNWq5XY2FjeeustGjRoQGJiIgCRkZEADBgwgPT0dHJyckhLS2PFihWEh4czduxYVq5cyT333MM777wDQGxsLE8++SR//PEHK1as4J///Cfp6els2rSJ8ePHs337dipUqMA//vEPpk6dSkhICL/99huHDh3i22+/pUaNGgDUqFGDhIQEbZ3Hjx9n9OjRjBw5ktdff107P3r0aCwWC8OHD6dnz560atWqTPfx8ccfNxzPnDmT+fPns2fPHjp06EBycrLBYYmLiyMzM5O5c+f6dLK2bt1KbGwsw4cPB6BmzZo8/fTTTJs2zac9KSkphuPXXnuNuXPn8uOPP9KwYUPuvvtuPvvsM+16rVq1eO211/jXv/5FUVERfn5+BAUFERQUpLU5f/483333HfPnz9fOrV27lg0bNnD48GHKO4oTx8bGGubesmULCQkJ2j2KjY3lscceMzwZ9US/fv0A+1NTwd8Fb3KSyzWPu++VYEwJJMke4aPI9ifPSmGhVlNK7z4riozkstudq4XuFC9KufX3VqJK0sKgnCdNZkP7CxFWoq4GYCsq4vLpk/ifsTiGLL2Uo6XvOSws8iBK+TuyESWT5IzOMuns9CBK6QUy5+57zqpS6jrDGlTk8pYTWKLDHWOUegkCwX8V4S8JfwmEv1RaRPqeQCAQ3CQURSHXZvvLv0r1dNwLQUFBWK1WUlNT2b59O6tWrWLr1q0oikLXrl0pLCwEYMiQIRQUFPDDDz+wd+9epk2bRmhoKNWrV9f+eGdmZnL69GlmzZoFwLPPPsvmzZtZtWoVGRkZbNy4kZ07d7rZMH36dJo0acKuXbuYMGEChw4dIjk5mUceeYQ9e/bw6aefsmnTJoYOHQpAxYoVMZlMLFu2DJvNcw2XZcuWUVhYyHPPPed27emnnyY0NJQlS5bc8P0D+9PKefPmERERQZMmTby2y87O1hwTb7Rp04bjx4+zZs0aFEXh7NmzLFu2jK5du5bYHpvNxieffEJubi5t2rTxaU94eDh+fp6fa3388ccEBwfz6KOPaudWrVpFixYtePPNN6latSp16tThueee4/p15/bubdu2ZceOHfz0008AHD58mDVr1pRqDYK/L059w1kEXF8mW3KGNrkF6Ei47tanIJmC7c3lyxTl/0SeUqSrKeUUodyKnbtFSnkwVClJpJQ7isvYCqCYPBU6N7r3W+++hOV/2lG5dh37iZJNZ0DSdCS1hpX92Oa4FSbdmGabQ4gyg1pbXROlZLm47D3dHM4oNFVAi+5Si5iWV6gxtpux05/wd01w63Kz/KU/w2cS/tKNI/ylO99fEpFSAoFAcJPIk2Vq/bD3L5/30AONCDG7P9kvCYqi8O2337Ju3Tq6dOnCihUr2Lx5M23btgXsefrVq1dnxYoV9OzZk2PHjvHII4/QqFEjwP4kS0V1HKKjoylXrhwAOTk5LFy4kMWLF9OhQwcAFixYQJUqVdxsefDBBxk9erR2PGjQIPr27cvIkSMBiI+P591336Vdu3bMnTuXqlWr8u677zJ27FgmT55MixYtSExMpG/fvppdBw4cICIigpiYGLf5LBYLcXFxHDhwoEz3TmX16tX06dOHvLw8YmJiyMjIoEIFz/vBHzx4kNmzZxcbAp+QkMCiRYvo3bs3+fn5FBUVkZKSwnvvvVesPXv37qVNmzbk5+cTGhrK559/ToMGDTy2vXDhAq+++ipPPfWU1/Hmz5/P448/bngaePjwYTZt2kRgYCCff/45Fy5c4H/+53+4ePEiCxYsAOxPRS9cuMB9992HoigUFRWRlpbGCy+8UOwaBH8nvH9ANJYYl3RClLGdpgsZzhsLnUtSmKNvPkXXN5EZ5kfYNZeaUpQyBU6zxagKyZ4+9JUwVErRCo97E6Uk+//Dg7AE2v9NSrKiX0LJcBGl1GObh0gps/rahK5Auio0OQudF5e+Z4iUcoxjsvhRrlYehAcZ7RHc0dwsfwnK7jMJf0n4S8JfKjkiUkogEAgExbJ69WpCQ0MJDAykS5cu9O7dm9TUVPz8/Ayh2VFRUdStW5fff/8dgOHDhzNlyhQSEhKYNGkSe/bs8TnP4cOHKSws5N5779XORUREULduXbe2LVq0MBz/8ssvpKenExoaqn0lJSUhyzJHjhwB7E8iz5w5w6JFi2jTpg1Lly6lYcOGZGRklPheFFeLAezOpt6OjRs3atcSExPZvXs3W7ZsITk5mV69ehkKXKqcPHmS5ORkevbsacj914+blpYGwL59+xgxYgQTJ05kx44drF27lqysLO36xo0bDf0WLVqkjVe3bl12797Ntm3beOaZZxgwYAD79u1zs+fq1as89NBDNGjQgJdfftnjurdu3crvv//Ok08+aTgvyzKSJLFo0SLuvfdeunbtysyZM1m4cKH29G/9+vW8/vrr/Pvf/2bnzp0sX76cL7/8kldffbXYeyr4m+EanGSodyR5amLobPK4LZ9T3JAlkMzhHKgZiMnPnrpSYHJGU0mSMX3Pl3FKCfLL9JFS3jQuQyCUfkhP6XuSyeP6TY6n9ZJDwCpdTSl1EOP91Rc6V/HT0vd0xdWdhbC03t523zOk77lESnk3T0RKCW4NhL/kRPhLwl8qKSJSSiAQCG4SwSYThx5odFPmLS2JiYlaEcsqVarg5+fHqlWriu03aNAgkpKS+PLLL/n666+ZOnUqM2bMYNiwYWUx3UBISIjh+Nq1azz99NNanQA9d911l/Y6LCyMlJQUUlJSmDJlCklJSUyZMoVOnToRHx9PdnY2p06dcnvaaLVaOXToEElJScXa1r17d4PzWVXbecpud+3atalduzatW7cmPj6e+fPnG4qgnjp1isTERNq2bcu8efMMY+t3SwkPt9dVmTp1KgkJCYwZMwaAxo0bExISwv3338+UKVNo0aKFoV+lSpW01+oOQQDNmzfn559/ZtasWXzwwQdam5ycHJKTkwkLC+Pzzz/H39/f47r/93//l3vuuYfmzZsbzsfExFC1alUiIiK0c/Xr10dRFE6cOEF8fDwTJkygX79+DBo0CIBGjRqRm5vLU089xYsvvujzngr+rriXMJcM6XvOVs5EPmf6nje5yOYQrS5HB2I+1xS56Cg2Cffd9wBc0vdKpvOUoKaUo4kiuTV3RoDpCp07J5ZcVCtnZ7MmSpXERpc5XXLuFIdCp6XveaopZZZ05aOc6XuqULVt208cUxQiIiJ46KGHnHPpIqWsBfadtFauXMn+kP30CrLhb1iXiJT6O3Cz/CV17tIg/CXhLwl/qfQIUUogEAhuEpIklTmN7q9GdQz01K9fn6KiIrZt26aFo1+8eJHMzExDOHP16tVJS0sjLS2N8ePH8+GHHzJs2DDtCZq+XkFcXBz+/v78/PPPmmOUnZ3NgQMHeOCBB3za2KxZM/bt2+dmpy8kSaJevXps2bIFgEcffZRx48YxY8YMZsyYYWj7/vvvk5eXR//+/YsdNywsjLCwsBLZIMsyBQUF2vHJkydJTEykefPmLFiwQIsaUPG0vry8PLeaBWbHz5aiKAQFBZX4vrjac/XqVZKSkggICGDVqlUEBgZ67Hft2jX+7//+j6lTp7pdS0hIYOnSpVy7do3Q0FDAHvpvMpmoVq2atgbXterXUJp7KrhzKTYixls6l7dII+dZ7ZX6GykUEziiomyS5BSl9DWlvERKST7tdE3f86ASebTRfUxFsstwBmHLNX0P++86k/r3xqbWpCpNpJRjHJdIKZuHSCmTvtC57BIVpShauuK13GucPXuWs2fPcvfddzst1olSubm54AcXL13kj1N/cDX2KlEe7Sv5UgS3H8JfEv4SCH/pTvaXhCglEAgEgjIRHx9Pjx49GDx4MB988AFhYWE8//zzVK1alR49egAwcuRIunTpQp06dbh8+TLff/899evXB+w7uUiSxOrVq+natStBQUGEhYUxYMAAxowZQ/ny5YmOjmbSpEmYTKZia4eMGzeO1q1bM3ToUAYNGkRISAj79u0jIyODOXPmsHv3biZNmkS/fv1o0KABFouFDRs28NFHHzFu3DjA/oTwzTff5LnnniMwMJB+/frh7+/PypUreeGFF5gyZYrhwxPYC4+60rBhQ7enY7m5ubz22mt0796dmJgYLly4wHvvvcfJkyfp2bMnYHew2rdvT40aNZg+fTrnz5/X+qu7+XgiJSWFwYMHM3fuXJKSkjh9+jQjR47k3nvv9VhfQmX8+PF06dKFu+66i5ycHBYvXsz69etZt24dYHewOnfuTF5eHv/5z3+4evUqV69eBeyFUM26DwmffvopRUVF/Otf/3Kb5/HHH+fVV19l4MCBTJ48mQsXLjBmzBieeOIJrZZCSkoKM2fOpGnTprRq1YqDBw8yYcIEUlJSDPO4cunSJY4dO8apU6cA5/tRuXJln/dMcHuiKC56jZfQJPe0OWc7j79KdOeuYsMMhGLWUvVsJl1U0o3UlHKxxT5G8aFLxmkcopJkryklgTFiy8NugAAms30tphx/GmW3wyZFcDr4CjG1yxU7vxZ15lLo3NPue35acXPdRnuqmKXImlClIBEZGcnly5cN252rcxQVFaE4wsJCQ0MhX3cf3DfwEwhuWYS/ZEf4S3aEv+SOEKUEAoFAUGYWLFjAiBEj6NatG1arlQceeIA1a9ZoDobNZmPIkCGcOHGC8PBwkpOTefvttwF7OPHkyZN5/vnnGThwIP379yc9PZ2ZM2eSlpZGt27dtC2Ojx8/7vWJk0rjxo3ZsGEDL774Ivfffz+KolCrVi169+4NQLVq1YiNjWXy5MlkZWUhSZJ2PGrUKG2cUaNGERcXx4wZM5g1a5b9ST2wZMkS+vTp4zavp3PHjx/XnmipmM1m9u/fz8KFC7lw4QJRUVG0bNmSjRs30rBhQwAyMjI4ePAgBw8edOvv68NvamoqOTk5zJkzh9GjR1OuXDkefPDBYrc4PnfuHP379+f06dNERETQuHFj1q1bR6dOnQDYuXOntsWw65PDI0eOGLYpnj9/Pv/85z+1Iqx6QkNDycjIYNiwYbRo0YKoqCh69erFlClTtDYvvfQSkiTx0ksvcfLkSSpWrEhKSgqvvfaazzWsWrWKgQMHasfq+zFp0iSvtRwEdyaKrqaUqyblPHTffc8ucDhPXqSIaCBUMYFk/12Wb/Fzxjf52n1Pm88pvLgb6iJK6SKlShK9ZEjOk5wRSM4GntON1PS9oP2VSbC0Qs6ClT/v5skZ9+NvKSYKRcuWc9R7clghexClAqyO6Cg/yVlTSkvfU3RKFQQEBLhNpUYA5Ofn48jVIywsjKILRd7NE7vvCW5xhL8k/CUV4S+5I0QpgUAgEPgkPT3d67XIyEg+/vhjr9dnz57tc+wJEyYwYcIEw7mwsDBDYcnc3FwmT55s2MEkKyvL43gtW7bk66+/9nitQoUK2jbKxdGjRw/t6eWlS5fo0KEDc+fOpXv37gQH27eKj42NLdUHocDAQJYvX+6zTWpqKqmpqSUeU8+wYcNKXXti/vz5Pq+3b9++xGtUQ/q9Ua9ePZ8FUv38/Jg0aRKTJk0q0XwqN3LPBHcOkssrt8319G096UTad1kbLNEWwH6cT/BzHKkUku6cFuV05AfY+TEcCAe64aaKGeYpQU0pt46Kx6CwIuxxW9bTF7nu509gnOKjgLhdeJJ0m/3ZCmWKCmzFilJqHSuTycvuezIEX4f+GxtS9Wo5TlWuRVxEJurtkcwOmU5RtPUqSIZUPW0ux7n8/HykMGPaoPPNE6FSglsP4S8Jf6kkCH/JHbH7nkAgEAhuKXbt2sWSJUs4dOgQO3fupG/fvgCa0/NXU758eb755hs6dOjA1q1bb4oNAoGgpLiKF4azGGOXvAlH9g8WsbKEZHIWm811fMBCcu4opX0I+WYy7F0KF/7QRlHncBedihelXFvqezhlGQmbw5W/8t0usr6uyNVfrxojpdTGm6PJ/Om8o59OlaKExdldI6VUUcqhZZW/Bl1/qQdhT3Gyai/21/sXv0X9U7f7nrPQuT5SylOakXrOarV6t6PkFwSCOxbhLwnuFESklEAgEAhuOaZPn05mZiYWi4XmzZuzceNGKlSocNPsiYqKYuLEiTdtfoFA4AEXQUMtMe4RxflCq1euCiaOffvUZqoopdhsSJKEZK6CYjtFoVzgmFYnSqmCUlG+0TT9C1kGQ/SSfuc4xVBPqbRcvr8j5c8cxXr4D+TcfKxXCg2ilJYOuDcK2aZaVfr5JNc0PAc23bLu/z2U3+s5j63Bke41pVAMKpinSCm1bopnQxzftfdOREoJ/t4If0lwJyBEKYFAIBDcUjRt2pQdO3bcbDMEAsEtiKI4U8n0SEhuepTiJbVLklQRStKfVHs5+8uFjksWYxyO5I8qKGliiuKamKfr4SI6OetGmYEit+tGY92H00d6XarZgI5L/4/Tw/pxJWO74wZJnmtZqQkSihopZb8PJUs5ce7ipzdHL0q5jlKk+LuLWbLznunT9/RUrlyZ7t27c/nyZbae3crVwqvF1toSJaUEf0eEvyS4UxDpewKBQCAQCASC24Ti1AcP6WCGfvpC5+5jKfruNkdhbV1klPPYuZucL7sUX+l7joLp+kgpX+KKp0sLtmTx2pf7jNdMXupDaRFUCjI2j4KXNyTXNDxHn4BCQyv7fx0RZUWKv1uklGv6noprTalmzZrRoUMHwkKN25orrkaLQCmBQCC47RGilEAgEAgEAoHgtkexFylyHusDoZyNPNaUMogdaiiWQ5SSzJGGeex1phyilLr7ni81yWtNKUd9JpsNV0qqF/1++iofbjzCpTyr0wzD7nuSh9cysuQs6F6aKCNJqyll75xVWYKKhXzbxHnvzbLdFpvsjyyrYpZul0Dd/fC2db1itXL166+Rs7PtFhc51C9vtopQKYFAILhtEel7AoFAIBAIBILbFkXRRz95LmlurClVTCqY+t0hFvkFtqZtRA0CGkRg23+Rrfnl9JO79LKLL3p7NOHKrY8q8BQvqOjbmBxzlQ8NwM8kUSQr5BXaCFPNkLw9c3ZKXYqkF8qM8x+7mMeOY5cAiI8O4+6qEc6USQ/pe/7JV/igWgxvpzvsc4hSRbI//i4RVoqiS9/TC4gu9+DK8s858/LLFA00Q2UJ69Es/KjpHhkldt8TCASC2x4hSgkEAoFAIBAIbg+K1W+81JHSv5Y8tdQV4lan0mpKmakUFEvEXdW4eHgP5OvaazWlfOywZ7gm6a5Jbk294qFNaKAfPVtUY8lPx42rKU6UUhRkyWYX85Dcgowe+/BHTl65DoDFbOLHFzogOSKjTFrEk+ObpGgimSqymRz3La8oFH+r7DBJF5blodC5wUpJoujCBUc/E6CgFBUaP7W4GF1czSmBQCAQ3LqI9D2BQCAQCAQCwW2BL+nBrpt4Tt/Tj+Cqg0iGtopzFre0O0k3v6sopX53XHWJLHK1wX7JZDjWD+NpDW5BWfr16nel04tShhRGXU0pXfqeK2eu2ncSNJskrDaZoxdzdXOqnTwkQTpemG0F2rXs83Zxy2R2zC3LzgX4iJRSF2uyBBiOXQu4i933BAKB4PZHiFICgUAgEAgEgtsaz3WiimvrflaRnFE3nnewM4oyXgud64Og3NLzik/fkwBFsaLkbqUw7zuO7l1DYX6eezu3tEWp1Ol7+vltsoLNkW54V/lgAM5eLcDkaGIymw1LUCQwa3qcfXyL9TLxgRsI9MsjIMSP6BphRFUOtDeSZV06o7fdESXtnqmik3sklIiMEggEgjsFkb4nEAgEAoFAILgt0ccuuckUqmKjKLp2uppSrpFHbgceQqpcDoovdO49Usot2sqlm816ACVvKzbgxK8QubM64G8IvtJkJkOklHP3PanATP2zbRwHTlHKECmlm77Q5hSrosMCOHIhl8t5VkyO05LtuqGLIkmEyLIjMsyx+x4Kncu9AzXug4FfAmA9ccLZT9t9z7mQq98f017brlm1GSTde+iR4q4LBAKB4JZHREoJBAKBwCepqalIkoQkSVgsFmrXrs0rr7xCUVHRDY27fv16JEniypUrf46hJeDIkSM8/vjjVKlShcDAQKpVq0aPHj3Yv3+/od3q1atp164dYWFhBAcH07JlS9LT0w1tsrKykCSJ3bt3l3j+l19+mXr16hESEkJkZCQdO3Zk27ZthjGffPJJatasSVBQELVq1WLSpElYrdZix160aBFNmjQhODiYmJgYnnjiCS5evFhi29544w0kSWLkyJGG84cOHeIf//gHFStWJDw8nF69enH27FlDm9dee422bdsSHBxMuXLlPI6v/gzpvz755BPt+vLly+nUqZM2T5s2bVi3bl2xdi9fvpzOnTsTFRVV6vdDcPthlB58RTJ505o8xz/p+9WMiLW3rNvNcNX+pabLFRMpZagp5TtSCtdC6FozY2RUUf51hy3OKCLX7EBFZxuA/+lytDvcR7cKe9SRItk0OxQvolRYoD8A+YU2JNkx5qWDhiUoEkTJMm+fO6/N66euy2Cc47UsO2tsOX4PANiynSl/l5cfRHGkTkqSu3L2UoXyPH5mHYW2QgSCWwnhLwl/SfhLZUOIUgKBQCAoluTkZE6fPs0ff/zB6NGjefnll3nrrbdutlkaJXFCCgsL6dSpE9nZ2SxfvpzMzEw+/fRTGjVqZHD0Zs+eTY8ePUhISGDbtm3s2bOHPn36kJaWxnPPPXdDdtapU4c5c+awd+9eNm3aRGxsLJ07d+b8+fMA7N+/H1mW+eCDD/jtt994++23ef/993nhhRd8jrt582b69+/Pk08+yW+//cbSpUv56aefGDx4cIns+vnnn/nggw9o3Lix4Xxubi6dO3dGkiS+++47Nm/ejNVqJSUlBVlXb8dqtdKzZ0+eeeYZn/MsWLCA06dPa18PP/ywdu2HH36gU6dOrFmzhh07dpCYmEhKSgq7du3yOWZubi733Xcf06ZNK9FaBbc/XqUo15pS3vp72n1PN2iQvz1tTYnv7GNilwgdF+FJ8hW5o0UKOdL3PFoqoShG0cVW5C7CaOltWsSQc1wAZA/CkFtNKef8RTbn6/BAe0JFfqGspe9JitXYxTFGh7zrzlNykWF99pdOUcq5+57TMv0dsF3Kd5adcokmU5BYGRbKXuslmv2nGXsv7HUfQCC4iQh/SfhLwl8qPUKUEggEAkGxBAQEULlyZWrUqMEzzzxDx44dWbVqFZcvX6Z///5ERkYSHBxMly5d+OOPP7R+R48eJSUlhcjISEJCQmjYsCFr1qwhKyuLxMREACIjI5EkidTUVABycnLo27cvISEhxMTE8Pbbb9O+fXvDE6nY2FheffVV+vfvT3h4OE899RQAmzZt4v777ycoKIjq1aszfPhwcnNzAfjtt984dOgQ//73v2ndujU1atQgISGBKVOm0Lp1awCOHz/O6NGjGTlyJK+//joNGjSgdu3ajB49mrfeeosZM2YYntSVlscff5yOHTsSFxdHw4YNmTlzJlevXmXPnj2A3ZldsGABnTt3Ji4uju7du/Pcc8+xfPlyn+Nu3bqV2NhYhg8fTs2aNbnvvvt4+umn+emnn4q16dq1a/Tt25cPP/yQyMhIw7XNmzeTlZVFeno6jRo1olGjRixcuJDt27fz3Xffae0mT57MqFGjaNSokc+5ypUrR+XKlbWvwMBA7do777zD2LFjadmyJfHx8bz++uvEx8fzxRdf+ByzX79+TJw4kY4dOxa7VsGdja8EOk/SjHsr+ygBZksJR0KL6PE6u49C55obrhOwFC0KClCM0RWKa7SFJGFyHd4hSrlZUydbN5+MLNm0S1fynGKXGillkiDIYk8DzC+0YXKIW+pyiswxbG4zhQjT2yw4N5/zhTVVq5FwjB1c3jm/SbdWLXvPg4CoOAQotaaUT+EOimQRLSW4tRD+kvCXhL9UeoQoJRAIBDcJRVHIsxb95V8e65eUkqCgIKxWK6mpqWzfvp1Vq1axdetWFEWha9euFBbaPygMGTKEgoICfvjhB/bu3cu0adMIDQ2levXqfPbZZwBkZmZy+vRpZs2aBcCzzz7L5s2bWbVqFRkZGWzcuJGdO3e62TB9+nSaNGnCrl27mDBhAocOHSI5OZlHHnmEPXv28Omnn7Jp0yaGDh0KQMWKFTGZTCxbtgybzeY2HsCyZcsoLCz0+ITv6aefJjQ0lCVLltzw/QP707J58+YRERFBkyZNvLbLzs6mfPnyXq8DtGnThuPHj7NmzRoUReHs2bMsW7aMrl27FmvHkCFDeOihhzw6KQUFBUiSREBAgHYuMDAQk8nEpk2bih3b01wVKlTg3nvv5aOPPvL5syjLMjk5OcWuXSAoHc6aUno9p2PUPQAEAX5mR8lV159PQySWl933tFnUyB7XaxK4hBl5/XfgEikl29xTgCRPopenQucm4xwysmZjz7lbOXs1n4IiG1aHKOVvNhHo7xClimzOQueOAukFfvEUBEQiSf7kyeU5YW1MRJw9vTC4WiB0eROSpuoNda7Vkb6nIHlMz7NvgOi5ppTrb25nWTARKnUnc7P8pT/DZxL+0o0j/KU7318Shc4FAoHgJnG90EaDicXngP/Z7HsliWBL2X79K4rCt99+y7p16+jSpQsrVqxg8+bNtG3bFrDn6VevXp0VK1bQs2dPjh07xiOPPKI9EYqLi9PGUv94RkdHa3n1OTk5LFy4kMWLF9OhQwfAHsJcpUoVN1sefPBBRo8erR0PGjSIvn37ak8I4+Pjeffdd2nXrh1z586latWqvPvuu4wdO5bJkyfTokULEhMT6du3r2bXgQMHiIiIICYmxm0+i8VCXFwcBw4cKNO9U1m9ejV9+vQhLy+PmJgYMjIyqFChgse2Bw8eZPbs2UyfPt3nmAkJCSxatIjevXuTn59PUVERKSkpvPfeez77ffLJJ+zcuZOff/7Z4/XWrVsTEhLCuHHjeP3111EUheeffx6bzcbp06dLtmAHr7zyCg8++CDBwcF8/fXX/M///A/Xrl1j+PDhHttPnz6da9eu0atXr1LNI/gboLgLMR4DkvQFwYupKVXeEg6oT2tVAcXT5F5EKRdRxCpbwWxvd/jKEeLLNdUvwPHdPltRroLNJmM2O8UkRbGhUKhrJ2MrdEnnsxVRkGePbFD04o1elFLPm5zzgYzNVISsKJgAJfQnWr1uIyYikA/7twBUUcrePt+qi5RCNs6njqiYCShXCDngV7EStHrMcN1QkNy9zrmzmXZ/jI3U21you8/+Jn/3AQR3JDfLX4Ky+0zCXxL+kvCXSo6IlBIIBAJBsaxevZrQ0FACAwPp0qULvXv3JjU1FT8/P1q1aqW1i4qKom7duvz+++8ADB8+nClTppCQkMCkSZO0sGtvHD58mMLCQu69917tXEREBHXr1nVr26JFC8PxL7/8Qnp6OqGhodpXUlISsixz5MgRwP7k6cyZMyxatIg2bdqwdOlSGjZsSEZGRonvhcXiLbXHyaJFiwx2bNy4UbuWmJjI7t272bJlC8nJyfTq1Ytz5865jXHy5EmSk5Pp2bOnodaBfty0tDQA9u3bx4gRI5g4cSI7duxg7dq1ZGVladc3btxo6Ldo0SKOHz/OiBEjWLRokSEsXE/FihVZunQpX3zxBaGhoURERHDlyhWaNWuGyVQ6F2LChAkkJCTQtGlTxo0bx9ixY73W2Vi8eDGTJ0/m//7v/4iOji72ngr+rrik0kmukUP6104xw7WmlGQQlBSdfqLr4/iPZDzjTN/zsaHfiWvHXewwCi65RxW2f5llsEmm0Jm+J9l/5yhqpJQjciH73Fn2bfjW0E9Bgtj7DDvwAfZIKV1UUp4lW1tMYIUNSP6XOJ2dz/pM++8if7NEoJ99jG/2n8XkEALVSClXYdCGn07u8yQaeqgp5asovRoppbWxz1uIszbLiGYjdFmXIlJKcGsg/CUnwl8S/lJJEZFSAoFAcJMI8jez75WkmzJvaUlMTGTu3LlYLBaqVKmCn58fq1atKrbfoEGDSEpK4ssvv+Trr79m6tSpzJgxg2HDhpXFdAMhISGG42vXrvH00097fJJ01113aa/DwsJISUkhJSWFKVOmkJSUxJQpU+jUqRPx8fFkZ2dz6tQpt6eNVquVQ4cOkZRU/HvWvXt3g/NZtWpVg921a9emdu3atG7dmvj4eObPn8/48eO1NqdOnSIxMZG2bdsyb948w9j63VLCw+3RHVOnTiUhIYExY8YA0LhxY0JCQrj//vuZMmUKLVq0MPSrVKkS3377LefOnaNZs2baeZvNxg8//MCcOXMoKCjAbDbTuXNnDh06xIULF/Dz89PqHOif4paFVq1a8eqrr1JQUGAId//kk08YNGgQS5cuNYTI+7qngr8PN56m5W33PTt6TcuTzqFoz3M9R0qpozuFLsmrzRbrNQpM9l7XLud7mFM9sLvrsqOmlCw702kkbV6d0Q0fhg6FsGihcyg/BZ2CwzXLZYpkxT6yItEiLoCfM+Firr0Isp/ZREy5IABOXs7DpG2Yp47jGinlp908jymF+ppSqpDnVhDLviIUsFlDCEl6E0maD1xGCrLXb9FHSoU7otu88b8bD7PtyCXee7wZFj/xHP525mb5S+rcpUH4S8JfEv5S6RGilEAgENwkJEkqcxrdX43qGOipX78+RUVFbNu2TQtHv3jxIpmZmTRo0EBrV716ddLS0khLS2P8+PF8+OGHDBs2THuCpq9XEBcXh7+/Pz///LPmGGVnZ3PgwAEeeOABnzY2a9aMffv2udnpC0mSqFevHlu2bAHg0UcfZdy4ccyYMYMZM2YY2r7//vvk5eXRv3//YscNCwsjLCysRDbIskxBgXM79JMnT5KYmEjz5s1ZsGCB2xM2T+vLy8vDz8/4s2Q22x1pRVEICgpy69ehQwf27t1rODdw4EDq1avHuHHjtP4qasj8d999x7lz5+jevXuJ1ueN3bt3ExkZaXCwlixZwhNPPMEnn3zCQw89ZGhfmnsquHPxJO8oim+hydBWzkFRrECA8bynGXzoX5Ik2TPRFDVyyHNNKUMJKYySWEjeGQpCg3zMpdZV8rNrOY5IKTXQy88SoGvpMoDZmNom1c0m+kw4p34HqyWfXytvotaFVpqJZpN97LwC++9ji9lE9yZVCPI3sz7zDKbVquAkAyY3aU/G7BTkfIlSoNWUQldTytV+xRqBKaicFpElWULBClZHOwsmTJI+3dF9yilf2iNQvtt/juS7K7s3ENw2CH9J+Esg/KU72V+6Pf51CwQCgeCWIz4+nh49ejB48GA++OADwsLCeP7556latSo9evQAYOTIkXTp0oU6depw+fJlvv/+e+rXrw9AjRo1kCSJ1atX07VrV4KCgggLC2PAgAGMGTOG8uXLEx0dzaRJkzCZTJ4/6OgYN24crVu3ZujQoQwaNIiQkBD27dtHRkYGc+bMYffu3UyaNIl+/frRoEEDLBYLGzZs4KOPPmLcuHGA/Qnhm2++yXPPPUdgYCD9+vXD39+flStX8sILLzBlyhTuvvtuw7yZmZlutjRs2BB/f+OHwtzcXF577TW6d+9OTEwMFy5c4L333uPkyZP07NkTsDtY7du3p0aNGkyfPl3b+higcmXvH6pSUlIYPHgwc+fOJSkpidOnTzNy5Ejuvfdej/UlwO60uK4lJCSEqKgow/kFCxZQv359KlasyNatWxkxYgSjRo0ypAgcO3aMS5cucezYMWw2m/aUsXbt2oSGhvLFF19w9uxZWrduTWBgIBkZGbz++uuGAqmLFy9mwIABzJo1i1atWnHmzBnAXiQ2IiLC69rVeU+dOgU43w91xxrB3wdXXcKTzlN0fRPHjm7HL2ywpmQcqN2LEJs+vc/LBJIErpFSsueaUk4bJCQv4paki7JybeKsrQRIdnfd5rL7niRJukgpNefQi+0RVhq1q82p3+Fa2FWuBJ/VBSpJmM32D7s5Bfa6VRY/ExY/E10bVaa6KZsvVhprSrlWAJEVP2dKXzFBSVrKo7cbbag7pRZFt59QI6UsklGUcnZVeP6zvfx2Ols7Z/YYkSUQ/HUIf8mO8JeEv+QNIUoJBAKBoMwsWLCAESNG0K1bN6xWKw888ABr1qzRHAybzcaQIUM4ceIE4eHhJCcn8/bbbwP2cOLJkyfz/PPPM3DgQPr37096ejozZ84kLS2Nbt26ER4eztixYzl+/LjXPH6Vxo0bs2HDBl588UXuv/9+FEWhVq1a9O7dG4Bq1aoRGxvL5MmTycrKQpIk7XjUqFHaOKNGjSIuLo4ZM2Ywa9YsbYvkJUuW0KdPH7d5PZ07fvw41apVM5wzm83s37+fhQsXcuHCBaKiomjZsiUbN26kYcOGAGRkZHDw4EEOHjzo1t/Xziupqank5OQwZ84cRo8eTbly5XjwwQeZNm2az3tWEjIzMxk/fjyXLl0iNjaWF1980XC/ACZOnMjChc5UoaZN7UWdv//+e9q3b4+/vz/vvfceo0aNQlEUateuzcyZMw21H+bNm0dRURFDhgxhyJAh2vkBAwaQnp7u1b5Vq1YxcOBA7Vh9PyZNmsTLL798I0sX3G74+BxW5co1roSXw6ZYsdnyMct5WofsiFrsyNGlt+h3iitmMrfd9zSdSR97VQK5zGMImCoAqel7VjcTTC62Os1x3zlQ0qfQOZcASGTJS7FExZN93f6BT915b9MnH/PTiqUE2qu2Y1YVNrMx0kwfKeWxppQ+gsER7eHtg7M+IdGkG+tCwAU2cAkAf8mEWTK7RbhlXczj0+36Gl7gJ0QpwS2A8JeEvwTCX/KGEKUEAoFA4BNff+AiIyP5+OOPvV6fPXu2z7EnTJjAhAkTDOfCwsJYtGiRdpybm8vkyZN56qmntHNZWVkex2vZsiVff/21x2sVKlTQtlEujh49emhPLy9dukSHDh2YO3cu3bt3Jzg4GIDY2NhSbRUdGBjI8uXLfbZJTU0lNTW1xGPqGTZs2A3Xnli/fr3buTfeeIM33njDZ7/09HSfPyfJyckkJyeXeu6ScCP3THAbUopUPT1VLueQ3bA1x65uBQoxFBwHcm12UUor5I0xJUySJCQJJLeaUmp7778LnG2MeCnzrbto3KVP/X1j0kKvJExa2onnOZzDSZowpN+J0H4scVU5QkD0ES7l2HfxCnLsvHf+qL3osdVP5ny5AqoGFgABSC7TyZWaopz/zj6eJ7HJ7PzIoTgivvSF6T2W0sJZ6DzbksOmijvY4DgfLPl5LB583WoXvMID/biab5/neqHnLe0Fgj8b4S8Jf0n4S2VDVP0TCAQCwS3Frl27WLJkCYcOHWLnzp307dsXQHN6/mrKly/PN998Q4cOHdi6detNsUEgEHjCWbDJmcjmctn3CTf8TVbdhm4l+BClpu/p6iQ5TjgOTW71jhS3F85oKuM14y59sgfhSROltH6eEwHtpqiRUo5vkqK1UMW2q/n2gutBFse4jlS7bQ0ukXHvOS1SSnLReeSY5tpcnkQpyVxcpJTTFk/LyDVfByBAMdEu7zojwxthlsxaB/W9strs9oYF+nN/vL2uS74QpQR3KMJfEtwp3FKi1HvvvUdsbCyBgYG0atWKn376yWf7pUuXUq9ePQIDA2nUqBFr1qzRrhUWFjJu3DgaNWpESEgIVapUoX///loOpUAgEAhuXaZPn06TJk3o2LEjubm5bNy4USsceTOIiopi4sSJdOjQ4abZIBAIbnD3PUn7D94imyQKOOvYcvxazjWXi5Jbilr2dSs/Z12i0FZ64UOT0XQ1lJwXnZFckhYpJTsvOUwwu4lS3udTI4tcI7QCzUFIjvS8q/n2IsLqjmNaWqBLuSjXSKkj55z36vezOXSbvZF//nszX+09zeHz11D0RcnVSCkk8m0SvxVVIk/RCVQ6RUqNlJIdE5a3Ksw5e57koKoea0pZi+ztLH4mbQ1nrxZ4FKay8wqxyTfw8yQQ3AIIf0lwJ3DLpO99+umnPPvss7z//vu0atWKd955h6SkJDIzM4mOjnZrv2XLFh577DGmTp1Kt27dWLx4MQ8//DA7d+7k7rvvJi8vj507dzJhwgSaNGnC5cuXGTFiBN27d2f79u03YYUCgUAgKAlNmzZlx44dN9sMgUBwq1JCHUHfTDEIUt4xKflcvXqVAMpz+PBhIMS1heO7faynPt7OyaDT/BxgpaJheOfs7hFOJSnJrhfgiq9x5XbFQ1stMkkVmhznzZIZk2RCViDXaheM1JpSimwz2GJWg7dclrTr6GUaB9jvTZ7Vxq8nrwLwzKKdADzeohr91MYOAW99XhW+ySwPlOdnwJLflLvNZ0GBzTY/TlLAedluh80RmmVyRG6t23eGD08doYZe2EMnSplNWrTXtLX7+ff3B1k8uDUFRTZeX/M7u45f0W5Rh3rR+JtNTO/VhNCAW+ajkUBQLMJfEtwp3DKRUmoBr4EDB9KgQQPef/99goOD+eijjzy2nzVrFsnJyYwZM4b69evz6quv0qxZM+bMmQNAREQEGRkZ9OrVi7p169K6dWvmzJnDjh07OHbs2F+5NIFAIBAIBALBfxEJULwUzlYjixSvmpTzglmy4ufnEEJsPuo0SepudAoBfibNoVY8RGIZo7t06XT69D0XDclfturGcERK4W6Pc/c9z+MY2nqpKeVn8tMiktRorIgge/Fl2SECOSOlHHWtXEwx69InzxPBpJQGVAgNIDzQLvJ8l+ncGevkxTwACjFuo27Fj0xbRQ7aihhrC2UWBRxR7Daf1SLC7MdHzuey65hzh72dxy5z9mo+VofgZfEz0alBJU1kyikoYsGWI7y5NpOdx64Y7tO3+8+x9rcz/HTkovebJxAIBIL/GreEKGW1WtmxYwcdO3bUzplMJjp27Og1H3Xr1q2G9gBJSUk+81ezs7ORJIly5cr9KXYLBAKBQCAQCG41fEREFbNVulmyYvYziiW6Teo08UY9+95jTcmc0oUAP7Vgt4fxvQhFHgudO16GFV3S7ZLnGinljKDSlqNFQXmey95EFaVUIcshSuGHxc8u3nS5uxL9WtfgqQfi7G3cRCnHdxnDGCYF/p+SAoA1oDwDE2qy/aWObB3fAUmCMzkF2BzzF1oLHdYrDKmVzT8sexhrugJALhYOO9L7IpBAttt1ynG3CkwWbT3VI51RbAs2Z9F//k+G9L1ujavw6+Qk0ge2BGD5zpP8lGXfva9upTAAOjeopI1x8ZrL7oYCgUAg+Eu4JWJUL1y4gM1mo1KlSobzlSpVYv/+/R77nDlzxmP7M2fOeGyfn5/PuHHjeOyxxwgPD/fYpqCggIKCAu346tWrpVmGQCAQCAQCgeC/jDdZyUPCmo9j4+57KsHmC0BNAI7mmqmka1WoKBxGRi0NDhARaBew/EwS2ED2FI7lNeDKe6iUhKzraBdzPBU691Yhy61ElSR5LXTuJ/nhZ7Kv47mkOsSVi4PC6zAvEflStKGtSYYK2Qp+smNmSQbF3vdSUQAAFcICtHlDAvyoVzmc309fRZYkzAoEOca6P/QMlsBYck0FVMOGGRs2zGTJdlGqLiYskplfgCCTlSL0oqDCkMQ6/LjPucYjF3Mp0KXvqbSOi6JBTDj7Ttv9+vvjK/DxE/dq6YyjPt3N57tO8p8fj7L3ZDbPtK9FTESQ270WCAQCwX+HW0KU+m9TWFhIr169UBSFuXPnem03depUJk+e/BdaJhAIBAKBQCAoKa7SjSrmFBMAZY/08dEmwvY791VYhmy5RNb1lijAHzn+VAJkFKwovLD7KD9xnWEEa4Op0Uv+JtdIKb3g5EWVKrY6uWtNKVl35KWXj/w9yWFjcPZ1/rm+CpLfb2BujclkRk1AtCmOguD7VsKpnXC1CRCuRUrd/VUg/z5u43Csul4ZCTPN7iqHqbyFK9sv0iquvGHeWX3u4dvfz2Fa4wdWGxUDTSg5EGDGmQYpQZBUxDXFzAqrfQfAMCTK48cvQGVzHieA8EL7LnzNa0Qilw/hR+0OKViLZK4V2AUti59TlAr0N/Pl8Pu0W2MyGX8QqkfaBahfTmTzy4lsygVbeLZTHa/3USAQCAR/LrdE+l6FChUwm82cPXvWcP7s2bNUrlzZY5/KlSuXqL0qSB09epSMjAyvUVIA48ePJzs7W/s6fvx4GVckEAgEAoFAIPgr0NLaiq1jrlemFMNp6fpBYgN2YqLQo9jzGzb2Xb3ulp6nzm12RP+Yzc7qUm72ebBGbeut1Lm+pdpKb4G2Gsn1jDuRlasgSSZMskJ4nj/k/Q7YI6XUney0aCz1WJ3bMWy5s47zDjHJ5qh4Xi7In1oVQwGwuKQ/1qkUxjPta+Hv73gW7iieLknGOxCMPX3usuN+VcKEn+P5eaFUZFhdyxrlMEvOedShTl+xC1rqznvO6xImk+QmSAEMeiCOV3s05N6adjGtwMNOfQKBQCD473FLiFIWi4XmzZvz7bffaudkWebbb7+lTZs2Hvu0adPG0B4gIyPD0F4VpP744w+++eYboqKifNoREBBAeHi44UsgEAgEAoFAcIvgo2ZScSlsvjbty3fUOTqjhPNHnj1yRi3qrQAHsJHj2JnOjjF6SR1dKi5ky95JN4LRuNDcbOpdOorJqk8vtLvr5vzLjDB/5nMl7gKYc5bImKoMfu8jrt+tlr+w296wfENN4NFEKf8gx3iqKOWw2TF8RjNVnLJp9ruUwHLHUaxc3X3P1dJ7/E5yl+kKCWZ/ulLAY1iwOFIDzwbYC6WfDtQNZzJrYpkqQs35/iAAd0UFezHCnfBAf/q1ieWe6uU82iUQCASC/y63hCgF8Oyzz/Lhhx+ycOFCfv/9d5555hlyc3MZOHAgAP3792f8+PFa+xEjRrB27VpmzJjB/v37efnll9m+fTtDhw4F7ILUo48+yvbt21m0aBE2m40zZ85w5swZrFZRyFAgEAgEAoHgdsNbTFHx/VScaWfGSCS7GKOvCVUpwJl2dxKZAsPUjnFktUCT8XxJIqXQFRxXFCi6dImRH43l7R9mE3ih0DmGQ+UJuPwHo/w/o4FyWJvKqwTmZc6wcuX4V873APg52gxoOEAT09xEKUc/7U5oyzWKVYqiOM31YpVa00pxFDI3REpJUMWcQyf/Q7wVHM6LplwiMeHnskNfnp9a0F3RorsA7qlWztCuTZzvB9ECgUAguHW4ZUSp3r17M336dCZOnMg999zD7t27Wbt2rVbM/NixY5w+fVpr37ZtWxYvXsy8efNo0qQJy5YtY8WKFdx9990AnDx5klWrVnHixAnuueceYmJitK8tW7bclDUKBALB7Uhqaqq9SK4kYbFYqF27Nq+88gpFRUXFd/bB+vXrkSSJK1eu/DmGloAjR47w+OOPU6VKFQIDA6lWrRo9evRw21Rj9erVtGvXjrCwMIKDg2nZsiXp6emGNllZWUiSxO7du0s8/8svv0y9evUICQkhMjKSjh07sm3bNsOYTz75JDVr1iQoKIhatWoxadKkEj1MWbRoEU2aNCE4OJiYmBieeOIJLl4sfovzkydP8q9//YuoqCiCgoJo1KgR27dv167r33/1Kzk52TBGbGysW5s33nhDu56ZmUliYiKVKlUiMDCQuLg4XnrpJQoLCw3jXLlyhSFDhhATE0NAQAB16tRhzZo1Pu1fvnw5nTt3JioqqtTvh+AOx63OufeEuftq21O3QiQrdwXZN72pH+b8+VyO/bVrmpxrpJQnmUg/l8fd+RzXC0+fxt+m+zehGCOlVMqR41ySGs1Vgt337Ndt+DnWImm2S+6RUmYLObYobIrJsCxFNtbOUhxyld3UYtIoHTv8aZFSjt8VesMlx0t16f6K9/K3+vS9R5tX45tnH2DtyPvZ8vyDJNaL9trPGyWIcRMIfCL8JeEvCX+pbNxShc6HDh2qRTq5sn79erdzPXv2pGfPnh7bx8bGen8yJRAIBIJSkZyczIIFCygoKGDNmjUMGTIEf39/QwTrzcRqtWKxWHy2KSwspFOnTtStW5fly5cTExPDiRMn+OqrrwyO3uzZsxk5ciTjxo1j7ty5WCwWVq5cSVpaGr/++ivTp08vs5116tRhzpw5xMXFcf36dd5++206d+7MwYMHqVixIvv370eWZT744ANq167Nr7/+yuDBg8nNzfU57+bNm+nfvz9vv/02KSkpnDx5krS0NAYPHszy5cu99rt8+TIJCQkkJiby1VdfUbFiRf744w8iIyMN7dT3XyUgIMB1KF555RUGDx6sHYeFhWmv/f396d+/P82aNaNcuXL88ssvDB48GFmWef311wH7e9ipUyeio6NZtmwZVatW5ejRo5QrV87nPc3NzeW+++6jV69ehvkFfx9UIcUoGLn4gBJYberOebhdVwWaMFMBgWZZl7hnbNlKdZ0lY6FzZ+6ah5pSsn4E15gt/XlXWUQVaoxCkKQTwNxW461+laSLMNJaO6Oc1KgjtdB59iUb/zn/v1iLPgKuaBFRateqYdXgIvj5+UGRfVqtHJUXdUfb/c9TpJTnLkTaQr1cwRAptfPcdhrXL889le/x2r6kiM8PghtB+EvCXxL+Uum5pUQpgUAgENyaBAQEaBtJPPPMM3z++eesWrWKtLQ0RowYwRdffEFBQQHt2rXj3XffJT4+HoCjR48ydOhQNm3ahNVqJTY2lrfeeosGDRqQmJgIoP1BHzBgAOnp6eTk5JCWlsaKFSsIDw9n7NixrFy5knvuuYd33nkHsD94ePLJJ/njjz9YsWIF//znP0lPT2fTpk2MHz+e7du3U6FCBf7xj38wdepUQkJC+O233zh06BDffvstNWrUAKBGjRokJCRo6zx+/DijR49m5MiR2h9/gNGjR2OxWBg+fDg9e/akVatWZbqPjz/+uOF45syZzJ8/nz179tChQweSk5MNT9Xi4uLIzMxk7ty5Pp2srVu3Ehsby/DhwwGoWbMmTz/9NNOmTfNpz7Rp06hevbrBgapZs6ZbO/37742wsDCvbeLi4oiLi9OOa9Sowfr169m4caN27qOPPuLSpUts2bIFf39/wP4+F0e/fv0A+1NTwd8PCSiSi5DMvtrYRYbLebonzZJReDCpaWhISFoPu2jiDywjFOX8VqIqtOErbNo1p+DkvYKV10LnWlfFiyrjOVKqLDj1HwVJW6tTaFIFHvXc8Szn/QCQXdSvlpXvJTPrGuGBYVzPt6tSzgxGL6qUn2tNKU+JfpJ9DsdgnfKaI1mDmR2zxK1loNlZYOqzP5Yz4/oivnn0GyoGV/Q8v0DwFyD8JeEvCX+p9Nwy6XsCgUDwt0NRwJr713/9CU+Bg4KCsFqtpKamsn37dlatWsXWrVtRFIWuXbtqYcZDhgyhoKCAH374gb179zJt2jRCQ0OpXr06n332GWAPVT59+jSzZs0C7DUGN2/ezKpVq8jIyGDjxo3s3LnTzYbp06fTpEkTdu3axYQJEzh06BDJyck88sgj7Nmzh08//ZRNmzZpEbgVK1bEZDKxbNkybDbPuystW7aMwsJCnnvuObdrTz/9NKGhoSxZ4v7hqCxYrVbmzZtHREQETZo08douOzub8uXLe70O9s0/jh8/zpo1a1AUhbNnz7Js2TK6du3qs9+qVato0aIFPXv2JDo6mqZNm/Lhhx+6tVu/fj3R0dHUrVuXZ555xmOY+xtvvEFUVBRNmzblrbfe8pmucPDgQdauXUu7du0MtrRp04YhQ4ZQqVIl7r77bl5//XWv75VAoFLc3nXG18a0M/WcSU1D08skuoLklTERYgrRZBQtekkND9J+rxaXBKaP4nKxW9G/dNa5ctqsHrlHWyla5JZqjvc6Vu7xSbpIKXVnPG1uZxSapDijuQL87YXE/cx+znnV++U1UsohSsmy41jCc2F4p+1BWOh65X6P66gZUdMesQX4SWZkReZS/iXPk5cEZzCZ4FbjZvlLf4LPJPylG0f4S3e+vyQipQQCgeBmUZgHr1f56+d94RRYQsrUVVEUvv32W9atW0eXLl1YsWIFmzdvpm3btoA9T7969eqsWLGCnj17cuzYMR555BEaNWoEYHj6ozoO0dHRWshxTk4OCxcuZPHixXTo0AGABQsWUKWK+3168MEHGT16tHY8aNAg+vbty8iRIwGIj4/n3XffpV27dsydO5eqVavy7rvvMnbsWCZPnkyLFi1ITEykb9++ml0HDhwgIiKCmJgYt/ksFgtxcXEcOHCgTPdOZfXq1fTp04e8vDxiYmLIyMigQoUKHtsePHiQ2bNnFxsCn5CQwKJFi+jduzf5+fkUFRWRkpLCe++957Pf4cOHmTt3Ls8++ywvvPACP//8M8OHD8disTBgwADAHor+z3/+k5o1a3Lo0CFeeOEFunTpwtatWzE7dtMaPnw4zZo1o3z58mzZsoXx48dz+vRpZs6caZivbdu27Ny5k4KCAp566ileeeUVgy3fffcdffv2Zc2aNRw8eJD/+Z//obCwkEmTJhV7XwV/D2yy7BrkpFFsOSWdHHM89DRVrtp7BOeeISTmmrOh5LnfseBG1HVp5BR/XLee00dKFWNYceXbXepFKUTye93HqXp5I8Wv2tNwxj6KgltNKclFOFMkBZOMG5LJeR+K333P+Cxcn7BokPQUl4uApEjOFEJtHRKxEbFkcZFgv2DgapkL4QtucW6WvwRl9pmEvyT8JeEvlRwRKSUQCASCYlm9ejWhoaEEBgbSpUsXevfuTWpqKn5+fobQ7KioKOrWrcvvv/8O2P/4TpkyhYSEBCZNmsSePXt8znP48GEKCwu59957tXMRERHUrVvXrW2LFi0Mx7/88gvp6emEhoZqX0lJSciyzJEjRwD7k8gzZ86waNEi2rRpw9KlS2nYsCEZGRklvhfF1WIAu7Opt0Mfdp2YmMju3bvZsmULycnJ9OrVi3PnzrmNcfLkSZKTk+nZs6ch918/blpaGgD79u1jxIgRTJw4kR07drB27VqysrK06xs3bjT0W7RoEQCyLNOsWTNef/11mjZtylNPPcXgwYN5//33tfn69OlD9+7dadSoEQ8//DCrV6/m559/NtR6fPbZZ2nfvj2NGzcmLS2NGTNmMHv2bAoKCgxr+vTTT9m5cyeLFy/myy+/NDiPsiwTHR3NvHnzaN68Ob179+bFF1/UbPF1TwV/Hy4X6CNhJN0rX1vR2TGbnQ1+rLCDfL9cABr/9iFmyVOklK+qT45XshopZYxqcuvoAafG4jl9zxnNZTKYUyT14HRMAgerP+I+m1spLfc6VVpNKS3Ky1nfSXaNkNJ2CASTWyQXmEw6wcyZv+e+GEAyG5+FG6OkvIh43rcX9DiWWhNLILhZCH/JifCXhL9UUkSklEAgENws/IPtT+BuxrylJDExUStiWaVKFfz8/Fi1alWx/QYNGkRSUhJffvklX3/9NVOnTmXGjBkMGzasLJYbCAkxPrm8du0aTz/9tFYnQM9dd92lvQ4LCyMlJYWUlBSmTJlCUlISU6ZMoVOnTsTHx5Odnc2pU6fcnjZarVYOHTpEUlJSsbZ1797d4HxWrVrVYHft2rWpXbs2rVu3Jj4+nvnz5xuKoJ46dYrExETatm3LvHnzDGPrd0sJDw8HYOrUqSQkJDBmzBgAGjduTEhICPfffz9TpkyhRYsWhn7qzrYxMTE0aNDAMH79+vW1VAFPxMXFUaFCBQ4ePKg9nXWlVatWFBUVkZWVZXCQq1evDkCDBg2w2Ww89dRTjB49GrPZTExMDP7+/trTRNWWM2fOYLVafd5Twd8HuRSpNNcDowD7TkyKpIoddvEirmIokO1s7KHOeEmiblwLnSu4Fzr3Wnzc0zjGwV1aGg3MC4hGkuw78SmuIUcubMg8jyn7MANbVnRL31PQRUo5RDaTppip6XsukVIOEcgQKaVW4vKWvmd2fRbupdC5hzXY63y5X1BHMKnC3Q2kWjkLygtuOW6Wv6TOXQqEvyT8JRXhL5UcIUoJBALBzUKSypxG91ejOgZ66tevT1FREdu2bdPC0S9evEhmZqbhD3f16tVJS0sjLS2N8ePH8+GHHzJs2DDtCZo+Bz4uLg5/f39+/vlnzTHKzs7mwIEDPPDAAz5tbNasGfv27XOz0xeSJFGvXj22bNkCwKOPPsq4ceOYMWMGM2bMMLR9//33ycvLo3///sWOGxYWZthNxReyLBuekJ08eZLExESaN2/OggULMJmMH+Q8rS8vL8++C5YO1VlRFIWgoCCP/RISEsjMzDScO3DggFbY1BMnTpzg4sWLHkP2VXbv3o3JZCI62vu27LIsU1hYiCzLmM1mEhISWLx4MbIsa2s+cOAAMTExWCwWLBZLie+p4O+JLEGhybkd+NXwGlD4h3Yc4G9G3S28erkgY2ct4EfylIHnAW/pexiP8SRuudaUMgpb7u2M6XtOC2Rd+pvvMLGfsy6zecfvVAoopK3kFKPUNZgkExHX/CjIzXWcNObqKRIu6XtqpJTT9OLKagXUqUvBHwcBsJlM5EWWI9RbTSlVJHRclhTfkXAiUuoOR/hLgPCXhL905/pLQpQSCAQCQZmIj4+nR48eDB48mA8++ICwsDCef/55qlatSo8ePQAYOXIkXbp0oU6dOly+fJnvv/+e+vXrA/YdRSRJYvXq1XTt2pWgoCDCwsIYMGAAY8aMoXz58kRHRzNp0iRMJpOXgrhOxo0bR+vWrRk6dCiDBg0iJCSEffv2kZGRwZw5c9i9ezeTJk2iX79+NGjQAIvFwoYNG/joo48YN24cYH9C+Oabb/Lcc88RGBhIv3798Pf3Z+XKlbzwwgtMmTKFu+++2zCvq5MC0LBhQ21HFJXc3Fxee+01unfvTkxMDBcuXOC9997j5MmT9OzZE7A7WO3bt6dGjRpMnz6d8+fPa/197eaSkpLC4MGDmTt3LklJSZw+fZqRI0dy7733eqwvoTJq1Cjatm3L66+/Tq9evfjpp5+YN2+e9rTx2rVrTJ48mUceeYTKlStz6NAhxo4dS+3atbUnoFu3bmXbtm0kJiYSFhbG1q1bGTVqFP/617+0nYIWLVqEv78/jRo1IiAggO3btzN+/Hh69+6t3adnnnmGOXPmMGLECIYNG8Yff/zB66+/7vFJrp5Lly5x7NgxTp06ZXg/KleuXOwOOII7AQVFUexCkiTxbf1VPLBZcaSaGX9n2H+HqNEwLjKOomgbvzlHdvRzPaE76xop5VFAKm73PReuBfiTpxwB1N0C1Z3xXPu7F3kqLlJo/5mrOPfP0opUEXJF4R8/VOWXn98nMb2Tx0LnJg/rd0ZKOYfz9ru6ypvTqJD2NKdOnuSTtWsJLVeOUM0SQ26g6zQe0hSNBaxMbiJh6SnmT4xAUGaEv2RH+EvCX/KGEKUEAoFAUGYWLFjAiBEj6NatG1arlQceeIA1a9ZofzhtNhtDhgzhxIkThIeHk5yczNtvvw3Yw4knT57M888/z8CBA+nfvz/p6enMnDmTtLQ0unXrpm1xfPz4cQIDA32ZQuPGjdmwYQMvvvgi999/P4qiUKtWLXr37g1AtWrViI2NZfLkyWRlZdmL5DqOR40apY0zatQo4uLimDFjBrNmzSLXETmwZMkS+vTp4zavp3PHjx+nWrVqhnNms5n9+/ezcOFCLly4QFRUFC1btmTjxo00bNgQgIyMDA4ePMjBgwfd+vv6sJWamkpOTg5z5sxh9OjRlCtXjgcffLDYLY5btmzJ559/zvjx43nllVeoWbMm77zzDn379tVs3rNnDwsXLuTKlStUqVKFzp078+qrrxIQEADYtz/+5JNPePnllykoKKBmzZqMGjWKZ599VpvHz8+PadOmceDAARRFoUaNGgwdOtRw36tXr866desYNWoUjRs3pmrVqowYMUJzgL2xatUqBg4cqB2r78ekSZN4+eWXffYV3K54/8B1NuIUiiS71YMydNXtFOdzbF/6hrbbnSreeK/yrcjFl2C3XbsG2NNLtteMIY+9uqk8u+uSImsFyX2l7+l3GlRkRVfo3ClKlTtjf227XuCY07guRVIw6zQw95pSulApr+l7ZgLi45H8/SkIDNQEqZLgXhvLiJq+92dESond9wT/DYS/JPwl4S95R4hSAoFAIPBJenq612uRkZF8/PHHXq/Pnj3b59gTJkxgwoQJhnNhYWFaYUmwPzGbPHkyTz31lHYuKyvL43gtW7bk66+/9nitQoUK2jbKxdGjRw/t6eWlS5fo0KEDc+fOpXv37gQH2+tLxMbGluqpfGBgIMuXL/fZJjU1ldTU1BKPqWfYsGFlqj3RrVs3unXr5vFaUFAQ69at89m/WbNm/Pjjjz7b9O7dW3N2fdGmTZtix3LlRu6Z4HbHk1DhoXi2Yhdt7HqRLqJG98/36K+7qdDYcUobovhC55rg5Ja75vl3gyI7RRP96Pm/74dke8Fiq6P2kskvFmtQCP5yOS8jytgks9tZuznG1rXPXyFtw9vEbCzihBQJVZ02KygoZuNaJZe0xGBrBAG2QHKDCwi+fsYZRaaLlCpGk3JDkiSPER22wkIu5OcRHQwXsi8RSbjHgu3qGI4XgHP3QIHgZiD8JeEv+UL4S94Ru+8JBAKB4JZi165dLFmyhEOHDrFz507tKZTq9PzVlC9fnm+++YYOHTqwdevWm2KDQCAoGb4EEUUnbbimi1mv57m1KVHIjIt4o3jIN9u1/gSfvbmDs1lX0W9TdzDepvVVrFbtvCqw+AUnIofX974qxcZVi7021nVroec2DtoeOU189klCL56lMNtfndVpup/zI8GKt6awd9dmFMWqrS9l3zCSD45l270TyIrtqp2XJKfI59x8z7cs5enDqVPSk7AVFXHNZl/PxauXfY6loqbv3Ygo5fFnQyC4hRH+kuBOQURKCQQCgeCWY/r06WRmZmKxWGjevDkbN26kQoUKN82eqKgoJk6ceNPmFwgEdhQUt1pMhvpQvgQRXaQUijElzNMrNSfO84gu6XtuNaWc4siZa/lUPJPNgW1nDCPkB4P/ZYcxXneicx4VyaF8cmGm7pqsRTSpYozHTfwAk+GCq5AG6HbGO7Td/vTdPyQWvVykkhsSQ5DjtMmsrynle/c9V4xRUk77JMAsqXW0HGO6pmO6LFQSkVKCvynCXxLcCQhRSiAQCAS3FE2bNmXHjh032wyBQHCr41H8cD+plpEyiCCKUQQJcKSZ2NP3JNcmum5GkcZZL0qXu+bST1Z3u3Mbr3QROVZbOS4W1dSOLdZsAmVVjNLVdvIwmf6uOEU9h12yglkn+gQXFJIX4I+i2NCLUjbJilmxoEgm7T44tCMunrjGxRPX7OeKEaWKT+ORMGNcT6AcQIHZ6qOHKHQu+Psh/CXBnYJI3xMIBAKBQCAQ3LZ4FyLc9qvTXXG9pjv2ti0e7hFVimtkjocC67LXyt9qHx9F133Y4leUi+LYHr24lDPJRYRTURQFZBk/xV6bqlx4CCEFqvij7yNRaLpuPyuZfe60d+XsdZ+2aGPqakq5vVPaefuVf57uSpg1jLH7PdfsEoXOBQKB4PZFiFICgUAgEAgEdwhTp06lZcuWhIWFER0dzcMPP+xxG2496enpmkCgfhW3e9NNw4tgYEwE89BIUhv5jqix15Rypvi5ju06o6Kv8A26cBvnOU22cotech4rHq67zqXZo6jikAlsRfbXRUWu0+r6Kob0Pcl1HlnGIpvdbDJOCoVmR90tkzNSymR2vzvZ5/O8rMMxosd1Kpq1ku49UN/LytaKdD7ZmRaXXeaT1BRLY3uBQCAQ3D4IUUogEAgEAoHgDmHDhg0MGTKEH3/8kYyMDAoLC+ncubO2Vbc3wsPDOX36tPZ19OjRv8jiG+EGUraMhZt0kTnO6CTFQ9STc2pd+p6iF5fc+7hFU3kyRhdxZJzW09ocKXuSyTmb703/jOl7his2fvnmE0L35zhG1kcaKYZe+kgpbac9k/t68656T7MD5/ulj7IymG3IsvRy71zec5Mjj9Amlz1Syn2HP4FAIBD8FYiaUgKBQCAQCAR3CGvXrjUcp6enEx0dzY4dO3jggQe89pMkicqVK/+3zfuLcYlE0kVKZRdkU95rP2Nkkucx9el7RvHG3sp5zibJbtdBr0N5i++RDEM7BS+H8CKZkNyeL3seSY2UUpAMgo5cdIqD27/RPhBcKrhAjKIf0972TOhhrgQdpnx+nD1Cy0P6XmRMCJdP59I4sbpHG9xWp0vfc7niHvmk6ERDlzHsPRzrQRQ6FwgEgtsNESklEAgEAoFAcIeSnZ0N2Lfq9sW1a9eoUaMG1atXp0ePHvz2229/hXl/GpL23Xu0i/7a4exDHss16SOlnMKL9xnd0vc8zC+b7JFDtvwCx6AuxdG9jO1s4yLE6CKlIoOqOF57L84OzpQ9xeRyhxRH+l+IhR+aXCDf74LL3PZ+GXUXku93SZvXU/pe0qCGPPp8CxonVvOyLseoxUS2FZuKqdnmRI2UupHd90Shc4FAILg5CFFKIBAIBAKB4A5ElmVGjhxJQkICd999t9d2devW5aOPPmLlypX85z//QZZl2rZty4kTJ7z2KSgo4OrVq4avv4IbqhgkaYWlqBhYAbPJ7LyEM5JIi97xkL7nKn4psgx6IcRTTSnHqbztPxvrqesipXCJYPKNQ5TChEnyM87mSWiTdNl9kuQixtmjrkzWUK6HVsbk5Q4rgKSoYpgufU+n5PhZzFSKDfeY0ucJSZKQbTbH+PoINF1dL12tKeML1xP27zciSqncyA5+AoFAICg9QpQSCAQCgUAguAMZMmQIv/76K5988onPdm3atKF///7cc889tGvXjuXLl1OxYkU++OADr32mTp1KRESE9lW9eslStv58FIOIYPZQeBvswoxeauhR+2ECTAGAu86h1jEqKix0H0dxPdZHPnkazbn7XkUpzHBZKiZiSnIUKXc7rzgjpVQRSXFECmnZbq5F1bVIKbNLMXOHiCObqX2xmbMevHOB6gAouggt9byk+yQhlfBThd62rF92emyjiX5eA6Vcd9/780QpgeD/s3fecVKUWdu+qrsnJ2aGNAxhyElAxUAQEUGSIros6sIL4gKCCwqKqJgQRflEkFVxQfdVwBVZXxOyyKqYkCQKgiDIEATJeZgcOtT3R3dXV1VXhwEkea7fb5juqiecqgHm6bvOuR9BEM4uIkoJgiAIYRkyZIjm/REbG0ujRo14+umncfl3ezpFvvnmGxRF4eTJk2cm0CjYtWsXAwYMoFatWsTHx1O7dm369u3L1q1bDe0WL15M586dSUlJITExkSuvvJK5c+ca2uzevRtFUdiwYUPU8z/11FM0a9aMpKQk0tPT6datG2vWrDGMOXToUOrXr09CQgINGzZk4sSJVFSENw4GmD9/Pm3atCExMZGsrCz++te/cvz48bB93G43TzzxhGG+Z555xvCh8cMPP6R79+5kZmaGvN6dO3dy6623Uq1aNVJTU7nttts4fPhwpa9r48aNdOrUifj4eOrUqcPUqVMjXve3335Lnz59qFWrFoqisHDhwoh9/giMHj2axYsX8/XXX1O7dvhyKjMxMTFcdtll7NixI2SbCRMmkJ+fr33t3bv3dEOOiuBiNi/+jJ3kxFhTa30btN7m0j1/UpQKVJR4TeFd5RW+tm7tnG40Xwdz+Z5+UL9A4v2elVQzRPQYjoeXuALjeT2lFGP8nhCeUpp4ZcqU0mJUqBZfDZuaSHFC9UAkenstxXcfFBse3zx2R+CjhM1WuY8VqseNq6I8MD66PCltXpPIZLo8fzv/z/+0yvespxCEqJH1kqyXZL10aogoJQiCIESkZ8+eHDx4kO3btzNu3DieeuopXnjhhXMdlkY0ixCn08kNN9xAfn4+H374Ibm5ubz77ru0atXKsNB75ZVX6Nu3Lx07dmTNmjVs3LiRO+64g5EjR/Lggw+eVpxNmjRh5syZbNq0iRUrVpCTk0P37t05evQoAFu3bsXj8fDaa6+xefNmZsyYwezZs3n00UfDjrty5UoGDx7M0KFD2bx5M++99x7ff/89w4cPD9vv+eefZ9asWcycOZNffvmF559/nqlTp/LKK69obYqLi7nmmmt4/vnnLccoLi6me/fuKIrCV199xcqVK6moqKBPnz54PJ6or6ugoIDu3btTr1491q1bxwsvvMBTTz3F66+/HvYaiouLadOmDa+++mrYdn8UVFVl9OjRfPTRR3z11VfUr1+/0mO43W42bdpEVlZWyDZxcXGkpqYavs4HFEUJqrpTDJKH1tDgV6SzH7cQNqxkCp8YVHjYcF61SBfSCswsSvtCj+/vGMZTSreMD2RKWY2lBmyygoyTAvfmutrXcWWNYZQkhfi5+8U5xY7HHewpFSlTqqKigoULF/Lll18C4HF7LC9d0ZVZRu0pxel7SgnCmUDWS7JekvVS5ZHd9wRBEISIxMXFaTtz3XPPPXz00UcsWrSIkSNHMmbMGP7zn/9QXl5O586defnll2ncuDEAv/32G6NHj2bFihVUVFSQk5PDCy+8QIsWLejSpQsA6enpANx5553MnTuXwsJCRo4cycKFC0lNTeWhhx7i448/5tJLL+Xvf/87ADk5OQwdOpTt27ezcOFC/vSnPzF37lxWrFjBhAkTWLt2LVWrVuXWW29lypQpJCUlsXnzZnbu3MmXX35JvXr1AKhXrx4dO3bUrnPv3r2MGzeOsWPH8txzz2nHx40bR2xsLPfddx/9+/fn6quvPqX7OGDAAMP7F198kTfeeIONGzfStWtXevbsSc+ePbXzDRo0IDc3l1mzZjFt2rSQ465evZqcnBzuu+8+AOrXr8+IESNCLoz8rFq1ir59+3LjjTcC3vu6YMECvv/+e63NoEGDAO/TOytWrlzJ7t27Wb9+vSZMzJs3j/T0dL766iu6desW1XXNnz+fiooK3nzzTWJjY2nZsiUbNmzgxRdf5O677w55Db169aJXr15hr/OPxKhRo3jnnXf4+OOPSUlJ4dChQwCkpaWRkJAAwODBg8nOzmbKlCkAPP3007Rr145GjRpx8uRJXnjhBX777TeGDRt2zq7jVAmb5aITZMyZUoHMnEDJnM1mtUw2Cly/ff0uyakptFTNRtn6nf+s850URdVahtx9L8SI4Mt6MjUN1mT8mWGmMj8fbZI+Zm2Jt4yRw5twu3XXrBpn1Hy3dJlSNrs+Uyq8l9SuXbsMmQMndukz8Yx3oJx4XwhGT6nge6kYvp2WKCVO58IZQNZLsl6S9VLlkUwpQRCEc4SqqpQ4S87615kwcU1ISKCiooIhQ4awdu1aFi1axOrVq1FVld69e+P0ebGMGjWK8vJyvv32WzZt2sTzzz9PcnIyderU4YMPPgAgNzeXgwcP8tJLLwHwwAMPsHLlShYtWsTSpUtZvnw5P/4Y7Dsybdo02rRpw/r163niiSfYuXMnPXv2pF+/fmzcuJF3332XFStWMHr0aACqVauGzWbj/fffx+0z1zXz/vvv43Q6LZ/wjRgxguTkZBYsWHDa9w+8Tytff/110tLSaNOmTch2+fn5EXdOa9++PXv37mXJkiWoqsrhw4d5//336d27d9h+HTp04Msvv2Tbtm0A/PTTT6xYsaJSi5by8nIURSEuLk47Fh8fj81mY8WKFVFf1+rVq7n22muJjQ2UX/Xo0YPc3Fzy8vKijuePzqxZs8jPz+e6664jKytL+3r33Xe1Nnv27OHgwYPa+7y8PIYPH07z5s3p3bs3BQUFrFq1ihYtWpyLS4hA8P9fakjZx9jLW73nE2nQmUypxnYBFN2fviNavVgMAPtKqvDZgvc5XJZs6BM6VvPouqOVNDr3lu/5jmiqjfVYdp8YZd59L92+JxBNWSFmCchPcqmKSiBTSvVnSumTzyKIUv7/dxNi7MTv20n8gV3aHOYrV7SPKKFKI3+/TCnxOT//OFfrpTOxZpL10ukj66WLf70kmVKCIAjniFJXKVe/c2pPkE6HNQPWkBiTeEp9VVXlyy+/5LPPPqNXr14sXLiQlStX0qFDB8D79KZOnTosXLiQ/v37s2fPHvr160erVq0A7xMfP/5fsNWrV6dKlSoAFBYWMm/ePN555x26du0KwJw5c6hVq1ZQLNdffz3jxo3T3g8bNoyBAwcyduxYABo3bszLL79M586dmTVrFtnZ2bz88ss89NBDTJo0iSuuuIIuXbowcOBALa5t27aRlpZmWbYUGxtLgwYNtAXJqbJ48WLuuOMOSkpKyMrKYunSpVStWtWy7Y4dO3jllVfCPvUD6NixI/Pnz+f222+nrKwMl8tFnz59IqZoP/LIIxQUFNCsWTPsdjtut5tnn32WgQMHRn097dq1IykpiYcffpjnnnsOVVV55JFHcLvdBuEj0nUdOnQoqNSsRo0a2jn/E2IhPNF8gPrmm28M72fMmMGMGTN+p4jOLpa5RVYlYsH25kEjhBNGHPGXU5S0gvR8B2XuGMo9wUtqRTVv4BeibM/8M4ugsOnLEfW76kEgU0p1GcUZuy8Qj2IPzKkoqNc/Ae/82zuqxw2qXdcrENeYj918ck2gbNDtE6X0qlSkTCk/MTY7amEel/a4ka3H7RwtPhAsSvmvx/xzMZdm+tqJ0fnFzblaL8Gpr5lkvSTrJTOyXgqNZEoJgiAIEVm8eDHJycnEx8fTq1cvbr/9doYMGYLD4TCkZmdmZtK0aVN++eUXAO677z4mT55Mx44dmThxIhs3bgw7z6+//orT6eSqq67SjqWlpdG0adOgtldccYXh/U8//cTcuXNJTk7Wvnr06IHH42HXrl2A90nkoUOHmD9/Pu3bt+e9996jZcuWLF26NOp7oX8yFYr58+cb4li+fLl2rkuXLmzYsIFVq1bRs2dPbrvtNo4cORI0xv79++nZsyf9+/c3eB3oxx05ciQAW7ZsYcyYMTz55JOsW7eOTz/9lN27d2vnly9fbug3f/58AP7v//6P+fPn88477/Djjz8yb948pk2bxrx586K+H9WqVeO9997jP//5D8nJyaSlpXHy5Ekuv/xyS+PjUNcViVDXIPzBCNpVLjohzttYLzhheG3MDbLwoAJUT0mgjy2F4uqlJDvM/ix68cSfd2ROyVLN4QTNpZs1cE67zIA4ZBalAplSllGh2ozZX564NP8FeRUt1dBa659ZqPOyUmyaobpNf09D7HxofU0Ql5iE3RETNJc+4kieUl3uupu7ZsymuJE3U82tWmd1REPgqiVVSjh1ZL0UQNZLRmS9FBrJlBIEQThHJDgSWDNgTeSGv8O8laVLly7MmjWL2NhYatWqhcPhYNGiRRH7DRs2jB49evDJJ5/w+eefM2XKFKZPn8699957KqEbSEpKMrwvKipixIgRmk+Anrp162qvU1JS6NOnD3369GHy5Mn06NGDyZMnc8MNN9C4cWPy8/M5cOBA0NPGiooKdu7cSY8ePSLGdvPNNxsWn9nZ2Ya4GzVqRKNGjWjXrh2NGzfmjTfeYMKECVqbAwcO0KVLFzp06BBkXKn3ZPF7EkyZMoWOHTsyfvx4AFq3bk1SUhKdOnVi8uTJXHHFFYZ+/idq48eP55FHHuGOO+4AoFWrVvz2229MmTKFO++8M+J1+unevTs7d+7k2LFjOBwOqlSpQs2aNQ1PeiNdV82aNQ070ADa+5o1a5KTk2N5DcIfi1BygaUcoi/LU/CpQLqWFmKWiqJTJ4zijKtsFWpiN694oyudixRJSE8pXQvDhnghrkHrp/rFIUW3+54xU8qMze8pZRCcFK/ZuB+PG1W13r3QpgI6UcqjZUrp5ojgyRQsHpp+HgRyv7TrMvUxD5GS4c2asOV64z5YfJADRQeolRycLSJcuJyr9ZJ/7sog6yVZL4VD1kvWiCglCIJwjlAU5ZTL6M42/oWBnubNm+NyuVizZo2Wjn78+HFyc3MNXjR16tRh5MiRjBw5kgkTJvDPf/6Te++9V3uCpvcraNCgATExMfzwww/awig/P59t27Zx7bXXho3x8ssvZ8uWLUFxhkNRFJo1a8aqVasA+POf/8zDDz/M9OnTmT59uqHt7NmzKSkpYfDgwRHHTUlJISUlJaoYPB4P5eXl2vv9+/fTpUsX2rZty5w5c4KenlldX0lJCQ6H8Ve63e4tw1FVlYSEhJD9zOPb7XZtF5jK4k+r/+qrrzhy5Ag333xz1NfVvn17HnvsMZxOJzEx3uyJpUuX0rRpUy0VvTI/W+GPgFU2TXhPp0CroC36dC/9mUy2oBHNduOa+bfvsMdqfk1JMe+kZ4zbWrQJ3n1Pn8ml+JqYM6XM2T6BTKnANamAx+P2j4Tq8YT0lLJ5wL/7nkdxaGKWos+UqmT9hV7DCr7yUDsV+g+bPKV8k//vpv/lfzf9L7O6zeKa7GtOOR7h/ELWS7JeAlkv+bkY10siSgmCIAinROPGjenbty/Dhw/ntddeIyUlhUceeYTs7Gz69u0LwNixY+nVqxdNmjQhLy+Pr7/+mubNmwPenVwURWHx4sX07t2bhIQEUlJSuPPOOxk/fjwZGRlUr16diRMnYrPZDB9+rHj44Ydp164do0ePZtiwYSQlJbFlyxaWLl3KzJkz2bBhAxMnTmTQoEG0aNGC2NhYli1bxptvvsnDDz8MeJ8QTp06lQcffJD4+HgGDRpETEwMH3/8MY8++iiTJ0/mkksuMcybm5sbFEvLli21hYKf4uJinn32WW6++WaysrI4duwYr776Kvv376d///6AdyFy3XXXUa9ePaZNm6ZtfQxou/lY0adPH4YPH86sWbPo0aMHBw8eZOzYsVx11VWW/hL6fs8++yx169alZcuWrF+/nhdffJG//vWvWpsTJ06wZ88eDhw4YLjemjVrajHNmTOH5s2bU61aNVavXs2YMWO4//77tTKCaK5rwIABTJo0iaFDh/Lwww/z888/89JLL0X0OioqKmLHjsAuXv4dvjIyMgxPfAXBSyATx6pMyyqrSVGsS1D6L3Szrr4D4vSNtYEsDlpFEtQ4ZEt/q0wlj4PUx4OT2OIjNPAk4vaLURafj1RUbbdB1fT/qEf7kKv4yvesRTNvppXXkNltiwnsvmfTi1KVVHUUgxJoeU4Nksms5+jdoDebj2/mWOkxyt3l/Hry10qLUn7E6Fw408h6yYusl2S9FAoRpQRBEIRTZs6cOYwZM4abbrqJiooKrr32WpYsWaItMNxuN6NGjWLfvn2kpqbSs2dP7ZdmdnY2kyZN4pFHHuGuu+5i8ODBzJ07lxdffJGRI0dy0003aVsc7927l/j4+LCxtG7dmmXLlvHYY4/RqVMnVFWlYcOG3H777QDUrl2bnJwcJk2axO7du1EURXt///33a+Pcf//9NGjQgOnTp/PSSy9RXFwMwIIFC7S0bT1Wx/bu3Uvt2rUNx+x2O1u3bmXevHkcO3aMzMxMrrzySpYvX07Lli0B75OuHTt2sGPHjqD+4XxzhgwZQmFhITNnzmTcuHFUqVKF66+/PuIWx6+88gpPPPEEf/vb3zhy5Ai1atVixIgRPPnkk1qbRYsWcddddwVd78SJE3nqqacA78JrwoQJnDhxgpycHB577DHDPY3mutLS0vj8888ZNWoUbdu2pWrVqjz55JNhtzcGWLt2rbZdNnh3I4LAltmC4Mf4Oc1YMGdd/hf+g51NVVA9xjZaTpQCihrKU8oqHmtSiv173gWIxetjVeRcSfKhY9wIFPkFIctsK7D55vbYjNlfqvaUX/GV71mnL9lUUBWvKOXNlAr2xYr0Qdg6E8xiMkKX74Vq37VuV7rW7cojyx/hk18/EV8o4bxD1kuyXgJZL4VCUc/E3uAXKQUFBaSlpZGfn6/VoQqCIJwKZWVl7Nq1i/r160dcLAhGiouLyc7OZvr06QwdOvSsz3/ixAm6du1Kamoq//3vf0lMvDBKCITTI9y/WVkfBHO27snDs1/n2K63abE7FXv81STZW9FsZCbvJtfl/cN5XFrwIte9e4wYtw2box4e1280OnSCGoV5bO4wivwT61Hdh1EuqYnyyzE8bhddtuwmtkUClzTfxg+05rviYdgK6+CJKcXmTCBBge5pMaw99hmXpl/PJ4Xekrrmmx9lZ3oKBQlx9KuziZzkk6w+PowfnTdCxWZs9sZ47LEsT/sPnfL70LeKwtKD+8ir+ALVcxx3/QPYd9UCJYGsmN7c8sCl/PaXASxp3QAUhbi0EWSc3MOx5FicxR9jj0klJnkYOZ5V7LZ1oDz/f1E9BYA3o+jGn37FkRpD4+83smrB26xe+G/ssa1RkjuT/tsLXPnrfvIyq5N+/Aifta6PW7HR/s8DWP3+O9gc9WhdJ4ey0mpsO/Eznoqt7KodS/19XgGs8y+/MvuWJC474v3gllo1noJjZVzRO4e1S3YDMGr29SF/bhUHi/n5x59Y9MPnpDvicG1aSXNbHDuqteJEBjRy12SH/RCJaiwDyjtxuOwoNeKrsfbYZ1xRtQcrHVv5xbGffof/Q6saO+DywXDzK0HzTFg+gcW/LubBKx7kzpbR+7wAvPTFdmZ8sY0BV9fluVtbVaqvcOaQ9dKpI+sl4VxwJtZLsvueIAiCcF6xfv16FixYwM6dO/nxxx+17Xb9Ke5nm4yMDL744gu6du3K6tWrz0kMgiB4sSq4CzLDDpGwU1Fepr2+7D/rUd2uwEltg7tgo3OzFbcft9Vuc2Gzq0JlSlnvmOedLdhTKl9N8jVXde18+VgqlJe62PGjcYcqf9aWv3xPe68GMqVUVTVkShXEB4x07R7wl+8BVJS5TdcQGldeGUdeXU/hSm9JS3x5AmkxVXEdOKib34hiKt8LIsQz9cgZVoJw8SDrJeFiQcr3BEEQhPOOadOmkZubS2xsLG3btmX58uWaKeS5IDMz05CiLQjCOSSc3hBGJSlNsEOxr5mKyUM8GoN01XRO0elJiuF75ED1ZX1mC6rAGEWJilmTwr8LnlmYUQHVo7I/N4/8o6WGM/6n0KrJjdzgKaXdEOMOeKAzOvftPOj0iVLJGZEzWSr2FoJL9W/hB0CCI8VwO0MZndscdmMsEbSmiGJW2L6V7iII5xxZLwkXAyJKCYIgCOcVl112GevWrTvXYQiCcF4SIkMmjKDgl1tKk2JIOKYEDvrPq9ZG2oo/U+qUxAp9FlPwsaDjlnMoller+EUp09mShExSKET1BPfyG517/JlS/hH8nlKKgqoaR7TpRC+76i2vsHmceOxxuF3eftXqpNBlUDOSq+jd3k34hompkQh5/tm9uV3Bu+wphu9Vc3rBSV1Gm3lQ83X6+nlCZGBFgyRZCRcKsl4SLhZElBIEQRAEQRD+4Ki6P/1EMO62qt4L8y54TDXouFV5YqRZ/Ky56gmqFPxGszJn0DlN3gq3+x74yvd8WUqmnfhsKsRWFFKWEBCg4hIdtOgYescq36CGqAMzEPIW+8Wl4wfKqJcY+LgSavc9rd9pZEoJgiAI5wYRpQRBEARBEIQLAkuJJpod2vzpUkGikFnk0BpGLBWLXi4yZwP5jvqr/7T4w08YuEzrTCnwkJ/WiEU7jlBN30+xypTyCUX63fdU1ZAlpC/0UwCHBy7Z8iYn619G+qDhZNRKJrVqQtiYDWEaBDFjRpT5SuISHeC2OGEe04QSQbQKR6iMNkEQBOH3RUQpQRAEQRAE4YKmslJEkDuU3rJI8ZuAK4asHqMDlOLrZMwCMmTyaNqW6ovRKD4p2plQIoje50l3VA0hSqkeUMCtV5YUf9aT0ejcj8cTyJRSVUBVNGFH0VfAqWBzq6QW/kaNkyfI6TMlRMzBqBaiWyBTyn+NxmtJTEmGkxZ3JsIPWsuUkho8QRCECwbZfU8QBEEQBEG4YImmVCtYDgmlbig6QSO4jX4uU3WbaZ6ACGVspvOsCnE8MqEyq7zvXR41yBjJP7rH5l36a5lT5vI9XR+7qb9dS6qq5McH/71RdPdeUbC4fdqx+MTkoHgsBzWh7b4nRueCIAgXDCJKCYIgCIIgCBcF1lJH4KzVS/1bVbejnv9YDE7LthbDmIhWGKlsu/CilDsoSyggeZkzpczle3qP9Gout6Gtw9/UVkn1xnQ/va999zkKJUhVo5fs/JlSYnQuCIJw4SCilCAIgiAIgnDBYCVQhPUSUnUvlOCMIO8AukI6RUvtAcBmbq2V+uldiEIZlXvH2R7jZgzFhsM2xSQuqVb5PfryPb8fVCjBxXu8z1sTSTu53TiXZjZuNjo31ujpjc7tpmDsPsVKqXSmlFGVMu7/Z/1zcx4ptR4qwkeX08mUEgRBEM4NIkoJgiAIgiAIFwanYD4OPrPvEOdCy1khzkThg66qKqrq0b7Wxrn4BZdhAMUwgrXUFtZO3ZzS43tf/dCvpJ3cYTjlX/AHG537sqEUxSdI6WY3+cTbtUq/U8uUMl+tohtLE5H8mVsu7/cSjz/7ySeUZTbyDRa+fO9UNKmAH1Xl+wqCIAinjohSgiAIQliGDBmCoigoikJsbCyNGjXi6aefxuVyRe4chm+++QZFUTh58uSZCTQKdu3axYABA6hVqxbx8fHUrl2bvn37snXrVkO7xYsX07lzZ1JSUkhMTOTKK69k7ty5hja7d+9GURQ2bNgQ9fxPPfUUzZo1IykpifT0dLp168aaNWsMYw4dOpT69euTkJBAw4YNmThxIhUVFRHHnj9/Pm3atCExMZGsrCz++te/cvz48bB9CgsLGTt2LPXq1SMhIYEOHTrwww8/GNoUFRUxevRoateuTUJCAi1atGD27NmGNiNGjKBhw4YkJCRQrVo1y3u6Z88ebrzxRhITE6levTrjx48P+Xdo5cqVOBwOLr300ojX/eGHH9K9e3cyMzMr/fMQLjwi6QVeGce6vC1BLYxifL0Q5BNwQm3YZ6UZ2WyoqoqzbB0lRa9TfvLvNDu8nwrV4xWCLGv/os3r8YlZIYzOVTxBbbWwgnydvHj05Xv4d9/zC1fGtpqnlK1yHx9UU6aUfj6zvKWWF1Cy6u9U/eslxP2lGXluc5aanXAoZpFLEM4isl6S9ZKsl04NEaUEQRCEiPTs2ZODBw+yfft2xo0bx1NPPcULL7xwrsPSiGYR4nQ6ueGGG8jPz+fDDz8kNzeXd999l1atWhkWeq+88gp9+/alY8eOrFmzho0bN3LHHXcwcuRIHnzwwdOKs0mTJsycOZNNmzaxYsUKcnJy6N69O0ePHgVg69ateDweXnvtNTZv3syMGTOYPXs2jz76aNhxV65cyeDBgxk6dCibN2/mvffe4/vvv2f48OFh+w0bNoylS5fyr3/9i02bNtG9e3e6devG/v37tTYPPPAAn376KW+//Ta//PILY8eOZfTo0SxatEhr07ZtW+bMmcMvv/zCZ599hqqqdO/eHbfPRNntdnPjjTdSUVHBqlWrmDdvHnPnzuXJJ58MiunkyZMMHjyYrl27RnVPi4uLueaaa3j++eejai9cfETyHPJnBcVShtFXKth03GhEbmV0bv3aj8cWC7jweE5ox1LKS1EI/j/K5O5kddDCKh0gxO57YYQYrSIxnNG56r9+/459/mG9L/zle6eaKaUv31MUo6dUoMLSg/vYVuKbpGOvlhiIP+SgoaYUUUo4N8h6SdZLsl6qPCJKCYIgCBGJi4ujZs2a1KtXj3vuuYdu3bqxaNEi8vLyGDx4MOnp6SQmJtKrVy+2bw94mfz222/06dOH9PR0kpKSaNmyJUuWLGH37t106dIFgPT0dBRFYciQIYD3adTAgQNJSkoiKyuLGTNmcN111zF27Fht3JycHJ555hkGDx5Mamoqd999NwArVqygU6dOJCQkUKdOHe677z6Ki70+Lps3b2bnzp384x//oF27dtSrV4+OHTsyefJk2rVrB8DevXsZN24cY8eO5bnnnqNFixY0atSIcePG8cILLzB9+nTDk7rKMmDAALp160aDBg1o2bIlL774IgUFBWzcuBHwLmbnzJlD9+7dadCgATfffDMPPvggH374YdhxV69eTU5ODvfddx/169fnmmuuYcSIEXz//fch+5SWlvLBBx8wdepUrr32Who1asRTTz1Fo0aNmDVrltZu1apV3HnnnVx33XXk5ORw991306ZNG8PYd999N9deey05OTlcfvnlTJ48mb1797J7924APv/8c7Zs2cLbb7/NpZdeSq9evXjmmWd49dVXgxbII0eOZMCAAbRv3z6qezpo0CCefPJJunXrFlV74WKjMvuzBWQm1axyhNFZLMUj0zlNv7HHWo7hsigfDJTvqXhUDy630zi6Yl1zqIQUpTy+uYKX935fLE+Qp5TbN6aCqmVK+eYx6WT+TCmlkplSwfVwCtrPQjHfQbRMLP9lrCo9xv7i7eZWlth8nU7L6FwELeE0kPWSrJdkvVR5RJQSBEE4R6iqiqek5Kx/qWfAMCMhIYGKigqGDBnC2rVrWbRoEatXr0ZVVXr37o3T6d2tatSoUZSXl/Ptt9+yadMmnn/+eZKTk6lTpw4ffPABALm5uRw8eJCXXnoJ8D5pWrlyJYsWLWLp0qUsX76cH3/8MSiGadOm0aZNG9avX88TTzzBzp076dmzJ/369WPjxo28++67rFixgtGjRwNQrVo1bDYb77//vvZEysz777+P0+m0fMI3YsQIkpOTWbBgwWnfP/A+rXz99ddJS0ujTZs2Idvl5+eTkZERdqz27duzd+9elixZgqqqHD58mPfff5/evXuH7ONyuXC73cTHxxuOJyQksGLFCu19hw4dWLRoEfv370dVVb7++mu2bdtG9+7dLcctLi5mzpw51K9fnzp16gDeRWCrVq2oUaOG1q5Hjx4UFBSwefNm7dicOXP49ddfmThxYtjrFQQ9RhFBL+QEjgdEqPAG2yoKihJdBpJqIf6ocamW7V2qavKQgl1qI218D/DT0Z8sJgkey+kuxu38DTD/P+ZtW2GPCepjLt/zx+LxmDKl1IAZvPkOOfxNKy1KBaYg6KWV6uYvm/R+P+GuoMh10jRmeE+pM/F7Tjh/OFfrpTOxZpL10ukj66WLf73kONcBCIIg/FFRS0vJvbztWZ+36Y/rUBITIze0QFVVvvzySz777DN69erFwoULWblyJR06dAC8dfp16tRh4cKF9O/fnz179tCvXz9atWoFQIMGDbSx/AuH6tWrU6VKFcD71G/evHm88847WjrynDlzqFWrVlAs119/PePGjdPeDxs2jIEDB2pPCBs3bszLL79M586dmTVrFtnZ2bz88ss89NBDTJo0iSuuuIIuXbowcOBALa5t27aRlpZGVlZW0HyxsbE0aNCAbdu2ndK987N48WLuuOMOSkpKyMrKYunSpVStWtWy7Y4dO3jllVeYNm1a2DE7duzI/Pnzuf322ykrK8PlctGnTx9effXVkH1SUlJo3749zzzzDM2bN6dGjRosWLCA1atX06hRI63dK6+8wt13303t2rVxOBzYbDb++c9/cu211xrG+8c//sFDDz1EcXExTZs2ZenSpcTGerNGDh06ZFhgAdr7Q4cOAbB9+3YeeeQRli9fjsMhyxPBmlBZLNFVlIVuZFf9ZWQKSe4U9Hu/BTSuKD6c2mOxEqWcin/RHTCiSi2rBezxzQvFzmLSQxqee3E793CwdAewI7iZPzvIYRSlVF1RojlDTDV5SuEqD8xqugyb1vR0M6V0OWum8j1FVTUxSvMs9wA+KyndlVhOpVS2tNDQN2S4wjnmXK2X4NTXTLJekvWSrJeiRzKlBEEQhIgsXryY5ORk4uPj6dWrF7fffjtDhgzB4XBw9dVXa+0yMzNp2rQpv/zyCwD33XcfkydPpmPHjkycOFFLuw7Fr7/+itPp5KqrrtKOpaWl0bRp06C2V1xxheH9Tz/9xNy5c0lOTta+evTogcfjYdeuXYD3SeShQ4eYP38+7du357333qNly5YsXbo06nvhXziEY/78+YY4li9frp3r0qULGzZsYNWqVfTs2ZPbbruNI0eOBI2xf/9+evbsSf/+/Q1eB/pxR44cCcCWLVsYM2YMTz75JOvWrePTTz9l9+7d2vnly5cb+s2fPx+Af/3rX6iqSnZ2NnFxcbz88sv85S9/wabLhHjllVf47rvvWLRoEevWrWP69OmMGjWKL774whDvwIEDWb9+PcuWLaNJkybcdtttlJWVRXVP3W43AwYMYNKkSTRp0qTS91T4o3IqptYmDyMAVSVFraK9tanhl8dWsogaIUPHrQTNikPViUeW/RTTHKB68i3a2XQtwGXIlPL7Q/kyo5QInlK6OJTkmvphifGbjlfa6Nz33aQXxWRlYU9LC+7gL98z+01ZDWpCOaW/E4Jw5pD1UgBZL8l6KVouDmlNEAThAkRJSKDpj+vOybyVpUuXLsyaNYvY2Fhq1aqFw+EwGDeGYtiwYfTo0YNPPvmEzz//nClTpjB9+nTuvffeUwndQFJSkuF9UVERI0aM4L777gtqW7duXe11SkoKffr0oU+fPkyePJkePXowefJkbrjhBho3bkx+fj4HDhwIetpYUVHBzp076dGjR8TYbr75ZsPiMzs72xB3o0aNaNSoEe3ataNx48a88cYbTJgwQWtz4MABunTpQocOHXj99dcNY+t3S0lNTQVgypQpdOzYkfHjxwPQunVrkpKS6NSpE5MnT+aKK64w9PM/dWvYsCHLli2juLiYgoICsrKyuP3227UnoaWlpTz66KN89NFH3HjjjdrYGzZsYNq0aQZfgrS0NNLS0mjcuDHt2rUjPT2djz76iL/85S/UrFkzyK/h8OHDANSsWZPCwkLWrl3L+vXrtfIBj8eDqqo4HA4+//zzsPdUEDRCZMqoYGEkZd3OXL4Xqpd5J7vAPFaCSLAZu95IXUWxFrR0sbjQEoZM2PD6Sfk8pRwOX2v9XF48NpNDlr98T1G8Eep334tNA45qMaQW+ZqeYvmevnBSURQy//pXfv0lDwpMwpNWvucPWtVdePhMKW3KU0h3sjK2F84PztV6yT93ZZD1kqyXZL1UeUSUEgRBOEcoinLKZXRnG//CQE/z5s1xuVysWbNGS0c/fvw4ubm5tGjRQmtXp04dRo4cyciRI5kwYQL//Oc/uffee7UnaHq/ggYNGhATE8MPP/ygLYzy8/PZtm1bUPqzmcsvv5wtW7YExRkORVFo1qwZq1atAuDPf/4zDz/8MNOnT2f69OmGtrNnz6akpITBgwdHHDclJYWUlJSoYvB4PJSXB0pm9u/fT5cuXbQdWmymD4BW11dSUhKUwm23ez/FqapKQkJC2PuSlJREUlISeXl5fPbZZ0ydOhXw7sDjdDqDYrDb7bqt5INRVRVVVbXrat++Pc8++yxHjhyhevXqACxdupTU1FRatGhBTEwMmzZtMozxj3/8g6+++or333+f+vXrk5SUFPU9FS5irPUeg5wQXo4wloYFXgbK2GJiSnHGFOBwx5ESm0gdyoBki7GVQC6T9k0NGUF80HFzLZ1FP6NaYzluUKaUzQGKUZTSPKVMY7i1bcZtYBLGzLOlFPmbWktjIfGNadQEFfwb8Oljh0CGlGLzZ58R3CqE6KQZnXM6RufC+Yasl2S9BLJeupjXSyJKCYIgCKdE48aN6du3L8OHD+e1114jJSWFRx55hOzsbPr27QvA2LFj6dWrF02aNCEvL4+vv/6a5s2bA1CvXj0URWHx4sX07t2bhIQEUlJSuPPOOxk/fjwZGRlUr16diRMnYrPZInqFPPzww7Rr147Ro0czbNgwkpKS2LJlC0uXLmXmzJls2LCBiRMnMmjQIFq0aEFsbCzLli3jzTff5OGHHwa8TwinTp3Kgw8+SHx8PIMGDSImJoaPP/6YRx99lMmTJ3PJJZcY5s3NzQ2KpWXLlsTEGH1diouLefbZZ7n55pvJysri2LFjvPrqq+zfv5/+/fsD3gXWddddR7169Zg2bZq29TF4n5CFok+fPgwfPpxZs2bRo0cPDh48yNixY7nqqqss/SX8+Lcjbtq0KTt27GD8+PE0a9aMu+66C/A+WezcuTPjx48nISGBevXqsWzZMt566y1efPFFwFtC8O6779K9e3eqVavGvn37+H//7/+RkJCgGYd2796dFi1aMGjQIKZOncqhQ4d4/PHHGTVqFHFxcQBB97V69erEx8cHHTdz4sQJ9uzZw4EDB4DAz6NmzZph75lwcWA2DzfgEy7yqjQhybXVeCpoII/vuILD7uZk5gaSPfHc0aAPpT8f1PVRsSwBDDmwP05IMmf5mDUpgoUbNbiFxeA2f4qW771pYCUwkmoyMTeKUv4hvGfLXGUk6mZM9httpQZ7yITFKmQUFMWGYpW9Zirfi3pQdNlOoiwJ5xGyXvIi6yVZL4VCRClBEAThlJkzZw5jxozhpptuoqKigmuvvZYlS5ZoCwy3282oUaPYt28fqamp9OzZkxkzZgDedOJJkybxyCOPcNdddzF48GDmzp3Liy++yMiRI7nppptITU3loYceYu/evUG7nphp3bo1y5Yt47HHHqNTp06oqkrDhg25/fbbAahduzY5OTlMmjSJ3bt3oyiK9v7+++/Xxrn//vtp0KAB06dP56WXXtK2SF6wYAF33HFH0LxWx/bu3Uvt2rUNx+x2O1u3bmXevHkcO3aMzMxMrrzySpYvX07Lli0B79OwHTt2sGPHjqD+4cpRhgwZQmFhITNnzmTcuHFUqVKF66+/nueffz7sPcvPz2fChAns27ePjIwM+vXrx7PPPmtYIP773/9mwoQJDBw4kBMnTlCvXj2effZZzX8hPj6e5cuX8/e//528vDxq1KjBtddey6pVq7SnfHa7ncWLF3PPPffQvn17kpKSuPPOO3n66afDxhcNixYt0haFEPh5TJw4kaeeeuq0xxfOf4J23zORl96cOHtt01HF9M7tGyvsUKZ5Q8Vi/W810nNrKx8kh92GM2JZmdGh22pXQP/QLrvd0FYvSpUXOryHfcOVu8rR56ZUKfOdjImLEI9patUslimm9yHK9/w6mSFTKrwbecCH6hTK98ToXPgdkfWSrJdkvRQaRZU9U0NSUFBAWloa+fn5Wh2qIAjCqVBWVsauXbuoX79+xMWCYKS4uJjs7GymT5/O0KFDz/r8J06coGvXrqSmpvLf//6XxAukhEA4PcL9m5X1QTBn656M+8ds8nctoPmeFOzx7Ui2NydnWBr/zWjC/IMnaHliOtd/dIx4p50EVzyljjIc8ddQrdjJiQYqzv1H8Lh202rPETbV9X4I6PbzLmq2yaBGk418RQeOu/qx2bGPZDWeIfX7ULppE0pMNt8f/S9t0rvwebGCR7WR/evTnIi1k5eUwM3ZW2icepzPKp5l+7EcyvNnG+JekjWUu+Oh+FApJ8s/QfXkU1G7CbH7vLtTVYnpR81bj1L3ibl83srrURJX5V4S3LmUqGlUFL2Hx5FCbOzVuEqMprkoiaCWEJt8G7aY2rT8eQr5jmJ21MjAHncpakoHLt30HDWPHOfHVm25fNM6ljerTWFcHJm163J83x7s8VeTVZyMKy6Jo/Z9uMt/JK9eDOm/OQEPvX/ahS1exVOmkHJDN2q/8krUP7OCr/dS8Nlufm1QyFcHvqeuuyrpBw7Q4I5rWL3xOIcKd1LbncE++wmSCwvps2IlTdd8R0lBBXMeWoHHfZiC+GU4M2tyi3s3l9o/gpa3Qv+5QXO9uPZF5myew50t7uTBK4O3qg/H7GU7+X//3Uq/y2sz/bbQ284Lvy+yXjp1ZL0knAvOxHpJdt8TBEEQzivWr1/PggUL2LlzJz/++CMDBw4E0FLczzYZGRl88cUXdO3aldWrV5+TGARBCIPu8WphYaH2Oq78pKlhkJGU7q1FplQItCI8nSmSv59qeBfgTyWxdMIROoaQdlHmpbp3bEUNnR2m+k3LtR6Bd05HjCFgt8vpG8HrKaUPXVU9+qaoTv90lTU698WsLylSFPTW4oarMRudV35zRdl9T/hDIOsl4WJByvcEQRCE845p06aRm5tLbGwsbdu2Zfny5VStWvWcxZOZmcmTTz55zuYXBOE0UPx/6GrTgtr45SRFaxMsbJiOWA6lL99TiF5R8ZrdBu/7F4jZrgQMxhVV7z9lEqUsAvMYduZDJ0oZPaVUVXf9pmIK1e0b9xR339Pj34HPEgtPqYAIF77Gzua7Do9aeaPzgAYmgpZw4SDrJeFiQEQpQRAE4bzisssuY926c7P1syAIFx56EcEeQjDxG3xb+WB7D7lN7/0doxUo9EJOiC0Cw+y+p6JEJ4Zo8egENi1jy8ro3Pu6Am+aU5nJ6NzjF6V82U+GDCuP36PKGJctqZIlOapxHC0CXZhWnlJWop9qmVul7xrJf0sQLh5kvSRcLIgoJQiCIAiCIFwQhJJt/IVgis0ewaDcZLZtGtmYKRUhllBG3Ya5zPvnBY6Z85sMLuOWE+pG1r/GZpS8LIQZf/sKf7aV3/i8vMzXwoaKQkySGyr883kbOe1Q9ZIC3I5q2K74H6r4zJCjxUrXU3T32RAQgM173GYLvg6tVSij85BZbpERPUsQBOHcIKKUIAiCIAiCcJFjFIhUkx6iKCEypczohCNrCSn07ntBx00ZTcFCiuKzXrIQmcK8s5rXX/7mjHH4FCrve1dxsa9czoYtVsWW4IEKf9aXB7ChKlDtkiLo8FfoXjnzcN9ApjB9flKKWZjC97Owhbms6IymTmsfJ6neEwRBOKuIKCUIgiAIgiBcMATlOIUQICrnj+03Og8v8BiEKKvyMmPKUiUiUKPI7tEPbmV07i+TCz2v22ajZtt8lNLavh7+UjkbSlwyKi6treG+9p4Gl/1PxKsIGbYhTq/OpoTKNPOXGFpkSumCszzsH1N8oQRBEC4cZPc9QRAEQRAE4QIhIDYoJpHDe8xaE1IVm6FoLjgnyUqUipCNY5UnperFpVAlgmHGilLHMto8Be++F9Redy69UQm2ZO8AHk34saHaYvBnMQFUj68GgN1mh6uGQ0xCdMGZ8e9QqJiENCX4XiuoOqNzc/SRhUabcjpG59GVbQqCIAhnFhGlBEEQBEEQhIuC0N5O+u9WBDKEohcnVItXoXpalPXpRRlFRfVY7L6n7RxoHDusKGVxnYrBID0YBVvAMN3XvU6yN5sqJTbVsk/UmHbO8xXvebOaNMFKF4s/U8oy4yv87ntKtKqeIAiCcN4gopQgCIIgCIJwQWAt90ST22ISK0xZOori8r8yNHN7VA7bS9hvO0FRnIIbfQaOse2kzHS2ndwW8rw53yf4bPQ5OkqYtqqFLuMXsfy77QU38YpSeqN3LYcqxI6G0RLIXLMqObRAE6WiGtXY1bALYuUQo3NBEIRzg4hSgiAIgiAIwgWKWeCxLvUKCDWhyvec2nG9NvH9oXUsTtzDf2PX82v1WNbG7zKM79dZylB4PzUFp7vCYnRrPnM2NFxHZXQUJWxbJei11t7jFdVsNnPWliMoK0v1+O7t6ao1pkwp/6uQ42rle5XffU9LpDqNIrzTMkkXBEEQKo2IUoIgCEJYhgwZgqJ4Sy1iY2Np1KgRTz/9NC6XK3LnMHzzzTcoisLJkyfPTKBRsGvXLgYMGECtWrWIj4+ndu3a9O3bl61btxraLV68mM6dO5OSkkJiYiJXXnklc+fONbTZvXs3iqKwYcOGqOd/6qmnaNasGUlJSaSnp9OtWzfWrFljGHPo0KHUr1+fhIQEGjZsyMSJE6moqAgzqpf58+fTpk0bEhMTycrK4q9//SvHjx8P2+fbb7+lT58+1KpVC0VRWLhwYVCbDz/8kO7du5OZmRnxelVVpVevXiHHmjt3Lq1btyY+Pp7q1aszatQow/nPPvuMdu3akZKSQrVq1ejXrx+7d+8+K9cpXCBYCAanlCkVhP//M72opZJ38hAAdtW7ZC5SygPndUN6wu4Up5PCdCVrRcQZWofcfU/XwtroHMOxGIfNKMjp+vmPN8k4SbXiCqoVFFMzLQdbTD0C+VembKPTFaVM9k6K309KMd5rLUBbOKPz8LvvBUovRVgSzj6yXpL1kqyXTg0RpQRBEISI9OzZk4MHD7J9+3bGjRvHU089xQsvvHCuw9KIZhHidDq54YYbyM/P58MPPyQ3N5d3332XVq1aGRZ6r7zyCn379qVjx46sWbOGjRs3cscddzBy5EgefPAUtkPX0aRJE2bOnMmmTZtYsWIFOTk5dO/enaNHjwKwdetWPB4Pr732Gps3b2bGjBnMnj2bRx99NOy4K1euZPDgwQwdOpTNmzfz3nvv8f333zN8+PCw/YqLi2nTpg2vvvpq2DbXXHMNzz//fMTr+/vf/x4y++HFF1/kscce45FHHmHz5s188cUX9OjRQzu/a9cu+vbty/XXX8+GDRv47LPPOHbsGH/605/OynUKFzAh9YfQooa5kExR3LrjgX5u35FMNcV3RjUZcJuzgALHwuT5+N6Zs7oiCCm60w637o3p31zVBKPYZYjF17ZqUhmXnijlyl2HaFS1NYoS6zuni8lnFn6qkpTqclHy4484Dx40jOcf01gkqL8cm+61Npruz9D4jc5PJ9tJ5CzhdJD1kqyXZL1UeRxndTZBEAThgiQuLo6aNWsCcM899/DRRx+xaNEiRo4cyZgxY/jPf/5DeXk5nTt35uWXX6Zx48YA/Pbbb4wePZoVK1ZQUVFBTk4OL7zwAi1atKBLly4ApKenA3DnnXcyd+5cCgsLGTlyJAsXLiQ1NZWHHnqIjz/+mEsvvZS///3vAOTk5DB06FC2b9/OwoUL+dOf/sTcuXNZsWIFEyZMYO3atVStWpVbb72VKVOmkJSUxObNm9m5cydffvkl9erVA6BevXp07NhRu869e/cybtw4xo4dy3PPPacdHzduHLGxsdx3333079+fq6+++pTu44ABAwzvX3zxRd544w02btxI165d6dmzJz179tTON2jQgNzcXGbNmsW0adNCjrt69WpycnK47777AKhfvz4jRoyIuDDq1asXvXr1Cttm0KBBAEFP4Mxs2LCB6dOns3btWrKysgzn8vLyePzxx/nPf/5D165dteOtW7fWXq9btw63283kyZM1D5sHH3yQvn374nQ6iYmJ+V2vU7jYMQouQVqITmjSn/L46t5sWl1YQFjRixceg5KhF6r8IpVqcd6EGsmoPUBqaTlV1Ar2ZXWAogOGcza7ldG5bwqtvA2w2b1vXE5fI5+nlOoV6PZv3aIdPxUO/7/nyXv7beJa3U5sw66U79gBsbprUgICXuCOqYb5ktPjyT9iMXgEo3PJlBLOFbJekvWSrJcqj2RKCYIgnCNUVcVZ7j7rX2fCLyMhIYGKigqGDBnC2rVrWbRoEatXr0ZVVXr37o3T6f2QM2rUKMrLy/n222/ZtGkTzz//PMnJydSpU4cPPvgAgNzcXA4ePMhLL70EwAMPPMDKlStZtGgRS5cuZfny5fz4449BMUybNo02bdqwfv16nnjiCXbu3EnPnj3p168fGzdu5N1332XFihWMHj0agGrVqmGz2Xj//fdxu92W1/X+++/jdDotn/CNGDGC5ORkFixYcNr3D7xPK19//XXS0tJo06ZNyHb5+flkZGSEHat9+/bs3buXJUuWoKoqhw8f5v3336d3795nJNZIlJSUMGDAAF599VVtMa5n6dKleDwe9u/fT/Pmzalduza33XYbe/fu1dq0bdsWm83GnDlzcLvd5Ofn869//Ytu3boRExNzXlyncO45tf+9FFRN6Ai9E59btXGQaoYCMbfvjb98z7DjnqH8TD/qqUSpeoUU3ZiKYhTI9GV4CtC0KB9PlYYEYyFKBWV0gerwilKqy1i6qLqPGvpmZNeJ+ipOnDjBDz/8wPfff8+mrduwt7gFe7Xm3nHLynTxKBE9pQD+NL4tHf/cOBBzpPI95XSMzsXp/HzlXK2XzsSaSdZLp4+sly7+9ZJkSgmCIJwjXBUeXh+z7KzPe/dLnYmJs59SX1VV+fLLL/nss8/o1asXCxcuZOXKlXTo0AHw1q/XqVOHhQsX0r9/f/bs2UO/fv1o1aoV4H2S5ce/cKhevTpVqlQBoLCwkHnz5vHOO+9oT4jmzJlDrVq1gmK5/vrrGTdunPZ+2LBhDBw4kLFjxwLQuHFjXn75ZTp37sysWbPIzs7m5Zdf5qGHHmLSpElcccUVdOnShYEDB2pxbdu2jbS0tKAnVwCxsbE0aNCAbdu2BZ2rDIsXL+aOO+6gpKSErKwsli5dStWqVS3b7tixg1deeSXsUz+Ajh07Mn/+fG6//XbKyspwuVz06dPnrKVf33///XTo0IG+fftanv/111/xeDw899xzvPTSS6SlpfH4449zww03sHHjRmJjY6lfvz6ff/45t912GyNGjMDtdtO+fXuWLFly3lyncKFjbYIOkO8czr9dNg7FKFTVtfN7Rdktn+Pqxwvnf+R/G+bDraJYZ/fohrD6cFycvhPH4UIS3N4oKmxloNiCvM4VkyaloqDafB8D/KKUoqCmN4S8H7Su//P/XqJqnbqh4zbxwQcfsH//fu+bRvVRnU1o4a7li9+pC8GfKRUsMum9pJLT46jdLB0WmyaKIBScntH5KXcVfifO1XoJTn3NJOslWS9ZIeslayRTShAEQYjI4sWLSU5OJj4+nl69enH77bczZMgQHA6HITU7MzOTpk2b8ssvvwBw3333MXnyZDp27MjEiRPZuHFj2Hl+/fVXnE4nV111lXYsLS2Npk2bBrW94oorDO9/+ukn5s6dS3JysvbVo0cPPB4Pu3Z5d8waNWoUhw4dYv78+bRv35733nuPli1bsnTp0qjvRWxsbMQ28+fPN8SxfPly7VyXLl3YsGEDq1atomfPntx2220cORJcn7J//3569uxJ//79DR4A+nFHjhwJwJYtWxgzZgxPPvkk69at49NPP2X37t3a+eXLlxv6zZ8/P+rrjcSiRYv46quvtFIBKzweD06nk5dffpkePXrQrl07FixYwPbt2/n6668BOHToEMOHD+fOO+/khx9+YNmyZcTGxvLnP/9Z+zB+Lq9TOE9RvQKE1e57Rk3IlCFl0os8pFBBfNDgQeV7xqkDr/3DqoQwYzf38Bf1eTtWuHZSdrQgqJ8HD0bhxjiG21FGaUyh9r7CUWowYA8O1h+JAnbfxwC3K3AsJsHg/VSjfkPsjhiLAa0pLi4GICkpCYACpRRsZZRteBu1/JDWzutzHjB911+VLSU1ZPwRM6XMJu2CcJaR9VIAWS8ZkfVSaCRTShAE4RzhiLVx90udz8m8laVLly7MmjWL2NhYatWqhcPhYNGiRRH7DRs2jB49evDJJ5/w+eefM2XKFKZPn8699957KqEb8H/o8VNUVMSIESO0+nk9desGnvSnpKTQp08f+vTpw+TJk+nRoweTJ0/mhhtuoHHjxuTn53PgwIGgp40VFRXs3LnTYDYZiptvvtmw+MzOzjbE3ahRIxo1akS7du1o3Lgxb7zxBhMmTNDaHDhwgC5dutChQwdef/11w9j63VxSU70f3qZMmULHjh0ZP3484PUeSEpKolOnTkyePJkrrrjC0K9GjRoRryFavvrqK3bu3Kk9vfXTr18/OnXqxDfffKM9SW3RooV2vlq1alStWpU9e/YA8Oqrr5KWlsbUqVO1Nm+//TZ16tRhzZo1tGvX7pxep3AeY9IfVCVYAlJNB6KVLNwWmVKmJCTjeIrVWTMmk3JVpdz1E4dXQRO7LVRLyzFUVJMIZW2WlUQpgewkn7xl934MUF0uv9u7T08zbZdnwlNSQvGqVagVFRATQ1L7DtiTjf8f16tXjy1btnDYlk+ubT8ZB9dA/fa6mEweXz4cGRlkmXaZsrqeUOlMmtH5KWRKhZe7hHPJuVov+eeuDLJekvVSKGS9FBoRpQRBEM4RiqKcchnd2ca/MNDTvHlzXC4Xa9as0dLRjx8/Tm5uruGXaZ06dRg5ciQjR45kwoQJ/POf/+Tee+/VnqDp/QoaNGhATEwMP/zwg7Ywys/PZ9u2bVx77bVhY7z88svZsmVLUJzhUBSFZs2asWrVKgD+/Oc/8/DDDzN9+nSmT59uaDt79mxKSkoYPHhwxHFTUlJISUmJKgaPx0N5eWCb+f3799OlSxfatm3LnDlzNBNLP1bXV1JSgsNh/JVut/v8YlSVhISESt2XyvDII48wbNgww7FWrVoxY8YM+vTpA6CZo+bm5lK7dm3A6z1z7NgxzUS1pKQk6Fr91+DxeLQ25+o6hfMHcxVcdAJEaL8gRcXo5aTL3vH4xrapwR9MLT2lVHOARqNz1SRpqUnZ2MsT8Di3g6riMolSxtb63f68eBS9gKT65jcLWyo2VUXvLAUK2HWeUjH+UL1XHY4jf/87eW/9S3ufeNVV1HtrnqGN//+/o7YCjlJA7bZtyVID1+T1lDLGCGDPyCAuqn/Dkin1R0LWS7JeAlkvXczrJRGlBEEQhFOicePG9O3bl+HDh/Paa6+RkpLCI488QnZ2tlYrP3bsWHr16kWTJk3Iy8vj66+/pnlzr+ltvXr1UBSFxYsX07t3bxISEkhJSeHOO+9k/PjxZGRkUL16dSZOnIjNZotoQvvwww/Trl07Ro8ezbBhw0hKSmLLli0sXbqUmTNnsmHDBiZOnMigQYNo0aIFsbGxLFu2jDfffJOHH34Y8D4hnDp1Kg8++CDx8fEMGjSImJgYPv74Yx599FEmT57MJZdcYpg3Nzc3KJaWLVtqZpN+iouLefbZZ7n55pvJysri2LFjvPrqq+zfv5/+/fsD3gXWddddR7169Zg2bZq29TFgaYjpp0+fPgwfPpxZs2bRo0cPDh48yNixY7nqqqss/SX8FBUVsWPHDu39rl272LBhAxkZGdoi98SJE+zZs4cDBw4YrrdmzZqGLzN169alfv36gHdr5759+zJmzBhef/11UlNTmTBhAs2aNdN2FbrxxhuZMWMGTz/9NH/5y18oLCzk0UcfpV69elx22WW/+3UKFyJGU/ComoZspy8ADOzgZs6UCrWHnmpIVwoliFiU9cWnExvTjbK8lwFXBG8q1fKIgkkEsxjCbO+uoqDa/bvv+UQpLQvJ2tjYj+uI9/8lJTYWtaKC0p9/DlyPTwxq2rQpeYuXkZdZnaO2Asrj48CjF7sUy59F1GbjoXbfUwI/u8oiPufC74Wsl7zIeknWS6EQUUoQBEE4ZebMmcOYMWO46aabqKio4Nprr2XJkiXaAsPtdjNq1Cj27dtHamoqPXv2ZMaMGYA3RXvSpEk88sgj3HXXXQwePJi5c+fy4osvMnLkSG666SZti+O9e/cSH2/2ezHSunVrli1bxmOPPUanTp1QVZWGDRty++23A1C7dm1ycnKYNGkSu3fvRlEU7f3999+vjXP//ffToEEDpk+fzksvvaR5pCxYsIA77rgjaF6rY3v37tWecPmx2+1s3bqVefPmcezYMTIzM7nyyitZvnw5LVu2BLy7ruzYsYMdO3YE9Q/35H/IkCEUFhYyc+ZMxo0bR5UqVbj++usjbv27du1abZED3p18ILDdNHg9EO66666g6504cSJPPfVU2PH1vPXWW9x///3ceOON2Gw2OnfuzKeffqr9Xbn++ut55513mDp1KlOnTiUxMZH27dvz6aefkpCQ8Ltfp3BhYCU2lOUXcKhoGyRkoHqssny8uTl6wUeNQoFwKm6cvs9KNp1gY+VfFdCkwpXvqRbHLELVv7AaQvddDcq9UoIypQztbSHK9yDq8j2/IJRx52CO//N/wbd7mJ7Y2Fiu3lfEgbQr+DL2Z9+cxjun31swnISkWGSkRSqyOz2jc8myEs48sl6S9VK0/BHXS4oq//OGpKCggLS0NPLz87U6VEEQhFOhrKyMXbt2Ub9+/YiLBcFIcXEx2dnZTJ8+naFDh571+U+cOEHXrl1JTU3lv//9L4mJiWc9BuHsE+7frKwPgjlb9+S+V1+lbNf/0XRvCo74DiTZmlBW7wcWZ9ZnwyXtqLv7afp8XUJiuYOU0nIKE+JwJHQmrSKGguwy3IeO46n4hcaHTrC9pndHqx4bfyXp8r/ynxwnJ2LK6VzRgh/tOyi0VwCQ7ImhjbsBK2NySc8rIK68F27spB2YittZwbHURK6uvZ17Wsdy17IOxNg6U1H4DjYS8VAGeIhPG86fMsv45JBCfukHoBazoFZ/bqvYSpL7Bi1Tqt2O/XzXKBtQiE+/nwT7JorLq1NROB9sSThiL8VVtpLaxwto6i5kwU0dsW3NpWpBHDHJt1CeWI2eRz9gx+Gd/Fo9HXtcW1ypben23Xjiimz8u3NXJmX9i589OZRvaUniz+s50fpGNmT0pqojD1dmNoe3vYLqyQdg3Lvmbe9g35ixFH72GVX/dg/H/jELFIXmv2wBYMaMGeTn5zN8+HDK7nmOA5dcz5exm6h69Cg5bjdra9akobsm1Y/m0+Cvnfhq2S4OFm8n05PCcVsh1atX529/+5thvqO/7eKfU6dQUa0WPd2HaWd/B+p3hjuDfXre2vwWL6x9gd71e/P8teE/fJmZs3IXk/6zhZtaZzFzwOWV6iucOWS9dOrIekk4F5yJ9ZLsvicIgiCcV6xfv54FCxawc+dOfvzxRwYOHAgQcvvc35uMjAy++OILunbtyurVq89JDIIgWKOg4q5wWuYfqUEto8vMsWHjuoK63FXWhUH7anFbUQNiVW9WkcdTgTvk7nom3ydTNpZikSnlCSqsMxKp2NCcEWT2xzIcJ5AhpkLAU8rvU6N4MwzUCOV7Wumc369EVQNjGJrp98pTDDc9O6ER9oNg05KyIj0jt9q/MBgxOhf+SMh6SbhYkPI9QRAE4bxj2rRp5ObmEhsbS9u2bVm+fDlVq1Y9Z/FkZmby5JNPnrP5BUE4FcL5M5kPBxfl2bGhqsYyMwBFVVAVyHIp7PcdMxbRmY3OrbEqIQxyjVL0Y1iIYWbX9xCeUoGzugI4v6eUsyLQN0z53ol/vU1sTk5gLJ0PjOpyodjtxrIZj06EUwLxK0CVuOqw2k16TAX7K+FfrUaQjjRPKSkEEf4gyHpJuBgQUUoQBEE4r7jssstYt27duQ5DEIQLEMVk+60/Y/SAisaYnLDu1w5d39Bz6jEZQhHRvQl3hdmvSTeTAh6vambAE9Qn0C0QgQI23xX4PaEUGypgi8nBU7GFlKrVtO7Fq1Zx+NlnAUi54QZvc4dOlHK6IC4uaE5/aCWJNdhXngzkU1aRz/HyA2TG18LmC+i4UuQd0+p+Wx2LIDqdmtG5OJ0LFxayXhIuFqR8TxAEQRAEQbgwsNAaQsoPOo1BVfzFc2dCeAhXvhc2ouB+EcJxlpaGj0GfKeXL6qr47begtlozrXxPQXX4yvcqKnyxKKCqxCR2oe2N/8Nfnn4BT0UFxd99R97/vRcUgT5TCpdRCFN8Y2nX4Uik0O718DpeupevDs4HINOT7Ovg/RZu1yx/3OHQdk48nUwpSbISBEE4q0imlCAIgiAIgnBhE1aECFcm5z8bnVhlEJEUJSgDydTANGNktcPg+eSfw6o00PfNY84JUr0eUWqEJb7BU8onSvkzhRQljmbX9CIlM41DTz9D3jvvWPVGsdtQEqthS6lJaW4etlp2yku8O/ktmj6L2lk1yNBkOqeut4LHlyPW0FOT5JIqxNs9pPdpQFb7RmHjDgwSoXxPlCVBEIQLBhGlBEEQBEEQhIsCNcRrv9G5EnhrJKh0S7V8GWler3VSdIKISuTyPZstvAG60VNKDVO+6Guh1UgoYPOZOam+KBQlELpvgor9+0KP5baR1PUpFHsMJz/ah8o+nI4ycEDBsVzcMU0DjT1lxLiOAuCyqehyrEhQ40hVFaokpYUuoQu6KOurtJ1GEYh/ahG0BEEQzi5SvicIgiAIgiBcoFhkIIVMejJnHemGCB7Fom/oY4GyMt3ue0FzBHtKhZ7TO16sWyffqGqQYBIsoJivUVNafO/05XsOw1Woii2oHW6vYJU5zLu9vD0jQyuNU112FHsMquoBu+KbOZARpdhSDXeoxLnNGLvvZODDSCVKKyNkSnnUSHKfIAiCcL4gopQgCIIgCIJwQRBKxIkoZyjGDCIrbyJL63PVdCLETFqCkarPmoq0+1/wa1OiEjY19G56Cj6RStEfU4J8qlQlYD1lkMX8u+9pSpQSELn8Wpbb5QvEaos8XyNnKY50h+FYbEI97LGNdVeighIQihRFQbFFVzhp/LmE333Pz7J9yyKMGn4eQRAE4ewhopQgCIIgCIJw4WLQJ8KJRiEypUz9jBpUOKlCCRJ7gt+F3+UvknF36Jm9f3pM5XuRXN/9gpWKohOl/E0UvT7lxZcppTj8pX561S0Qu6e8RDcLpNXshs1WRVcuGQisarGNv/T4U0CU0ieZRSAgFobPlDqdCrzT8UgXBEEQKo+IUoIgCEJYhgwZ4n2qrSjExsbSqFEjnn76aVwu12mN+80336AoCidPnjwzgUbBrl27GDBgALVq1SI+Pp7atWvTt29ftm7dami3ePFiOnfuTEpKComJiVx55ZXMnTvX0Gb37t0oisKGDRuinv+pp56iWbNmJCUlkZ6eTrdu3VizZo1hzKFDh1K/fn0SEhJo2LAhEydOpMJnRByO+fPn06ZNGxITE8nKyuKvf/0rx48fD9vn22+/pU+fPtSqVQtFUVi4cGGlYwZ49tln6dChA4mJiVSpUsVyrj179nDjjTeSmJhI9erVGT9+vOHvkP7vmf6rZcuWWpspU6Zw5ZVXkpKSQvXq1bnlllvIzc2NeG+iiU+4EKmMoGNsG2nXu0DDgJwVdEq/u1/EOYPLDC2tz80CjaJP1bIaQzVJYOE9mQwR2R2Gc1YCnOpxe1+YBSzT4BXbtxrGCPJnN8UYFxcHUWZKmYI0vTfStnpbAOIccVGNKghnElkvyXpJ1kunhohSgiAIQkR69uzJwYMH2b59O+PGjeOpp57ihRdeONdhaUSzCHE6ndxwww3k5+fz4Ycfkpuby7vvvkurVq0MC71XXnmFvn370rFjR9asWcPGjRu54447GDlyJA8++OBpxdmkSRNmzpzJpk2bWLFiBTk5OXTv3p2jR70GwFu3bsXj8fDaa6+xefNmZsyYwezZs3n00UfDjrty5UoGDx7M0KFD2bx5M++99x7ff/89w4cPD9uvuLiYNm3a8Oqrr55yzOC9//379+eee+6xHMPtdnPjjTdSUVHBqlWrmDdvHnPnzuXJJ5/U2rz00kscPHhQ+9q7dy8ZGRn0799fa7Ns2TJGjRrFd999x9KlS3E6nXTv3p3i4uKw1xkpPuHCRtX9GRrFl5UUumwvdLZTpKNmySS4VcC3yXg+tKm2t0cM4cUVq/7BglvwfCoKilX5nscnwvkFKn+mlCZgqcGpRDYbqqvMG68SC0C6J3wOmKIoAQErTLvK4rA5fGGeQrqTf+c+yZQSTgNZL8l6SdZLlUdEKUEQBCEicXFx1KxZk3r16nHPPffQrVs3Fi1aRF5eHoMHDyY9PZ3ExER69erF9u3btX6//fYbffr0IT09naSkJFq2bMmSJUvYvXs3Xbp0ASA9PR1FURgyZAgAhYWFDBw4kKSkJLKyspgxYwbXXXcdY8eO1cbNycnhmWeeYfDgwaSmpnL33XcDsGLFCjp16kRCQgJ16tThvvvu034Bb968mZ07d/KPf/yDdu3aUa9ePTp27MjkyZNp164dAHv37mXcuHGMHTuW5557jhYtWtCoUSPGjRvHCy+8wPTp04OeelWGAQMG0K1bNxo0aEDLli158cUXKSgoYOPGjYB3MTtnzhy6d+9OgwYNuPnmm3nwwQf58MMPw467evVqcnJyuO+++6hfvz7XXHMNI0aM4Pvvvw/br1evXkyePJlbb731lGMGmDRpEvfffz+tWrWyHOPzzz9ny5YtvP3221x66aX06tWLZ555hldffVVbIKelpVGzZk3ta+3ateTl5XHXXXdp43z66acMGTKEli1b0qZNG+bOncuePXtYt25d2OuMFJ9w4VAZvSDqbCirvtpESphJrYzObUQfpYJZujG/TyQ5bIDe3ff0TlEhhDdTNpQKoBmdByQ1c+SBTKnQHxlsycl4CvYbxk8vKvWNGCzTKb52ik333vDCHLzFfQ5VvqfNJ8qScG6Q9ZKsl2S9VHlElBIEQRAqTUJCAhUVFQwZMoS1a9eyaNEiVq9ejaqq9O7dG6fTuwPTqFGjKC8v59tvv2XTpk08//zzJCcnU6dOHT744AMAcnNzOXjwIC+99BIADzzwACtXrmTRokUsXbqU5cuX8+OPPwbFMG3aNNq0acP69et54okn2LlzJz179qRfv35s3LiRd999lxUrVjB69GgAqlWrhs1m4/3338ftdlte1/vvv4/T6bR8wjdixAiSk5NZsGDBGbmHFRUVvP7666SlpdGmTZuQ7fLz88nIyAg7Vvv27dm7dy9LlixBVVUOHz7M+++/T+/evc9IrJWN2czq1atp1aoVNWrU0I716NGDgoICNm/ebNnnjTfeoFu3btSrVy/kuPn5+QAR749wMRFZbLDMU/IbnftFGXOpmuF9dGqWy5aotbXOsjKOEyz5REuwL5UC/JJQzooq6wzimxLlFJaeUjYlOHSX9/9Ky0wp3T2r2LaEL/bOw+XxfmiyqR6TPKbP1vJvu6fov0UZd/ArA6chRIrRufB7IOul00fWSxf/eskRuYkgCILwe6CqKq7y8rM+ryMuLlCaUUlUVeXLL7/ks88+o1evXixcuJCVK1fSoUMHwFunX6dOHRYuXEj//v3Zs2cP/fr10564NGjQQBvL/4uxevXqWt16YWEh8+bN45133qFr164AzJkzh1q1agXFcv311zNu3Djt/bBhwxg4cKD2hLBx48a8/PLLdO7cmVmzZpGdnc3LL7/MQw89xKRJk7jiiivo0qULAwcO1OLatm0baWlpZGVlBc0XGxtLgwYN2LZtW9C5yrB48WLuuOMOSkpKyMrKYunSpVStWtWy7Y4dO3jllVeYNm1a2DE7duzI/Pnzuf322ykrK8PlctGnT5+waea/V8xWHDp0yLDAArT3hw4dCmp/4MAB/vvf//LOO++EHNPj8TB27Fg6duzIJZdcEnUswsVJJDEmVOmeboSgHtbNFO1cbq0ROAs+BPduwyjGnuGNzj0RXL7DRez0nVR0qpSCzXp+1fxWwdWsFcTEaC1t8QmoJb5m/nYeo9G55V3xNT5ZcRQPtQj9zFtfKKlYeEpF/3vJ7XZhvR+gvwTv1DOlJMvq/ONcrZfg1NdMsl6S9ZKsl6JHRClBEIRzhKu8nJfv/PNZn/e+ee8TEx9fqT6LFy8mOTkZp9OJx+NhwIAB/OlPf2Lx4sVcffXVWrvMzEyaNm3KL7/84p3rvvu45557+Pzzz+nWrRv9+vWjdevWIef59ddfcTqdXHXVVdqxtLQ0mjZtGtT2iiuuMLz/6aef2LhxI/Pnz9eOqaqKx+Nh165dNG/enFGjRjF48GC++eYbvvvuO9577z2ee+45Fi1axA033BDVvYiNjY3YZv78+YwYMUJ7/9///pdOnToB0KVLFzZs2MCxY8f45z//yW233caaNWuoXr26YYz9+/fTs2dP+vfvb/A6SE4OlPP8z//8D7Nnz2bLli2MGTOGJ598kh49enDw4EHGjx/PyJEjeeONN1i+fDm9evXS+r322msMHDgwquutTMxninnz5lGlShVuueWWkG1GjRrFzz//zIoVK7RjI0eO5O2339beFxUV/S7xCeeWMJZJprOhs5+ilh0sPos6XGU4Y71ijmqzgxs8huZWo1tnTwWVy4UNINjovGlxfdLL44ESQxejCbtqKdpVXNmOpt+tJvanI2x8axdKXBwUe72hAp5SFkbnqvW1GKP2y0NWpYTezDXllDylvK0PHjxI1bIy4k2/yxStPFGEpYuJc7VegsqvmWS9FEDWS7JeihYRpQRBEISIdOnShVmzZhEbG0utWrVwOBwsWrQoYr9hw4bRo0cPPvnkEz7//HOmTJnC9OnTuffee087pqSkJMP7oqIiRowYwX333RfUtm7dutrrlJQU+vTpQ58+fZg8eTI9evRg8uTJ3HDDDTRu3Jj8/HwOHDgQ9LSxoqKCnTt30qNHj4ix3XzzzYbFZ3Z2tiHuRo0a0ahRI9q1a0fjxo154403mDBhgtbmwIEDdOnShQ4dOvD6668bxtbvXpOamgp4d1np2LEj48ePB6B169YkJSXRqVMnJk+ezBVXXGHoZ34KF4loYg5HzZo1g/waDh8+rJ3To6oqb775JoMGDQq5oB09ejSLFy/m22+/pXbt2trxp59++rTNVYWLl8jZUqHR94qrKKBpWhq/nvwNv2WwwQtK9WUXhZwrTBGa2WDJsPtecIcY1YGiZSaF9pQKjO8XbRRsioItKQl7Sor3mIWO4/eU0kzRfY0q7DZ27/uNGmRSUlTA7sxUy8uwEsNUfwOTp1SoZBR9lkqB4veqUsnLywvK0jidTCktO0z0LOE0kPWSrJdkvVR5RJQSBEE4Rzji4rhv3vvnZN7K4v8lq6d58+a4XC7WrFmjpaMfP36c3NxcWrRoobWrU6cOI0eOZOTIkUyYMIF//vOf3HvvvdovUL1fQYMGDYiJieGHH37QFkb5+fls27aNa6+9NmyMl19+OVu2bAmKMxyKotCsWTNWrVoFwJ///Gcefvhhpk+fzvTp0w1tZ8+eTUlJCYMHD444bkpKCim+D3qR8Hg8lOvKEvbv30+XLl1o27Ytc+bMwWYzlsJYXV9JSQkOh/FXut33IVJVVRISEip1XyobcyTat2/Ps88+y5EjR7SnhUuXLiU1NdXwdwW8O8bs2LGDoUOHBo2jqir33nsvH330Ed988w3169c3nK9evfrv9jRSON8JrySoitHRKVgMMmcwhRvP5+ukeizO6Qv4zGVsYfb3C6778x22LisMiD0m3yo1ROKY76CqCS/WkllQEpRv9z1zptT2mhnk//ITPbIvB1XlaGqi0dtKUYzymKIGdDbNE97vKRVZKFR8ZYSFtjLtWJzF7zIxOr84OVfrJf/clUHWS7JeChdzJP6o6yURpQRBEM4RiqJUuozufKJx48b07duX4cOH89prr5GSksIjjzxCdnY2ffv2BWDs2LH06tWLJk2akJeXx9dff03z5s0BqFevHoqisHjxYnr37k1CQgIpKSnceeedjB8/noyMDKpXr87EiROx2WwRPR0efvhh2rVrx+jRoxk2bBhJSUls2bKFpUuXMnPmTDZs2MDEiRMZNGgQLVq0IDY2lmXLlvHmm2/y8MMPA94nhFOnTuXBBx8kPj6eQYMGERMTw8cff8yjjz7K5MmTg+rxc3Nzg2Jp2bIlMTqvFvBuJ/zss89y8803k5WVxbFjx3j11VfZv3+/to3v/v37ue6666hXrx7Tpk0zbCNsfkKmp0+fPgwfPpxZs2Zp6ehjx47lqquusvSX8FNUVMSOHTu097t27WLDhg1kZGRQt27dqGIG2LNnDydOnGDPnj243W7tKWOjRo1ITk6me/futGjRgkGDBjF16lQOHTrE448/zqhRo4I+WL7xxhtcffXVlr4Ho0aN4p133uHjjz8mJSVF81dIS0sjISEh5HVGik+40Ana2y3oaOCcYm4WIXfK4qzqNxv3aOeN8pSxmC9wxJT1ZBmj9VyhWlsUx4XddVCvUfnFIMP/rX4Pc7+447EwOsebKRUurnARem+DglIJh3NHwQlqpLUgKzYD7KFN40+nfC90ZptwrpH1kqyXZL10ca+XRJQSBEEQTpk5c+YwZswYbrrpJioqKrj22mtZsmSJtsBwu92MGjWKffv2kZqaSs+ePZkxYwbgTdGeNGkSjzzyCHfddReDBw9m7ty5vPjii4wcOZKbbrqJ1NRUHnroIfbu3RvkHWKmdevWLFu2jMcee4xOnTqhqioNGzbk9ttvB6B27drk5OQwadIkdu/ejaIo2vv7779fG+f++++nQYMGTJ8+nZdeeknbInnBggXccccdQfNaHdu7d68hTRq8T+K2bt3KvHnzOHbsGJmZmVx55ZUsX76cli1bAt6nYTt27GDHjh1B/cOVowwZMoTCwkJmzpzJuHHjqFKlCtdffz3PP/982Hu2du1abatp8O7kA3DnnXcyd+7cqGIGePLJJ5k3b572/rLLLgPg66+/5rrrrsNut7N48WLuuece2rdvT1JSEnfeeSdPP/20IZ78/Hw++OADbWchM7NmzQLguuuuMxyfM2eOtkW2FZHiEy4gwhtKhelk7qiEeRd6CiUhQStlM2ZK6UfwHrepAdFKBZxmtciQvRUoq7OO3yIsxWhyDmDDxramI1AKlgJ5gRF8E9mUQMyaJqRlT6kBMcd/zr/7niOQKaWiekWlIAetwCtb2OJFn59UJcyjbW4XTYur0NRuw9LhPHiSU0ZyrITfA1kvyXoJZL0UChGlBEEQhLDMnTs35Ln09HTeeuutkOdfeeWVsGM/8cQTPPHEE4ZjKSkpBvPN4uJiJk2axN13360d2717t+V4V155JZ9//rnluapVq4b85W2mb9++2tPLEydO0LVrV2bNmsXNN99MYmIiADk5OZXyLYmPj+fDDz8M22bIkCFhFwvhuPfeeyvtPXHdddeFvYZoYgbv35Fwf0/A+6R3yZIlYdukpaVRUlIS8vyp7qgVTXzCBY51slTIJpH/JplbeAd1VK1KXEoTOFbiy5QytlZUtGyihLJDuGLj8Ni8LTwWKUzWIlRgPqsexlaK1shlq8AOlCbVxqnkQHleUG//3nxeYUg/k3F48+57mDylQl2HoapQsc4+Uvyilrm6MSqNKnBfrP4/kPI94Vwi6yVZL0VC1kvWhNqzVRAEQRDOCevXr2fBggXs3LmTH3/8Udv1xL/oOdtkZGTwxRdf0LVrV1avXn1OYhAEQUe0a229yKFl5YQXgcK1COqhBotSXsnFe9yuOlFUt65HsKdUkHgSlNBlbXLuz7HSN19X9yOWNp5rGkjBpqo6sSlQSBiNl5N/9z3F5CllnN3rF6W/EhtW+Wn6n4FVplTkn01oEc/X8nTK98ToXLjAkPWScLEgmVKCIAjCece0adPIzc0lNjaWtm3bsnz5cqpWrXrO4snMzOTJJ588Z/MLguDFKBiEFyjMOUUGcUPTU0ypQRZ9Q9uTG8vzzG0UVTV4H2lCSRjVo7J6iKJ7vlzhKGZfmt+zJTBSnDOQQRSD23dWl8OkE2MCt8PvKRU6U0rvT+V0JBDp5xEUe4zp2bijMv1DeEqdxu57gnAhIusl4WJARClBEAThvOKyyy5j3bp15zoMQRAuIALiTwj/JbDILQpDGFHDL9gYy/f8xxT8nlKRZwr2lIoQFFZSm/Y6RMj64/G2Ct9ICjabPmb/8KZBLDOlzLOrFKbURXUdDMypGAv3rHY7TO1Wj+3zf6G8yElmk3TiG6RZX4BhlFBljYF5vS1PxehcEC4sZL0kXCyIKCUIgiAIgiBcsJjlh1A5NCYJJ8rRFcOImmajYizNMygwPlEqimydiOVoFjv2+ef3frcycQ9NPE7d2OYXgWEPPvYYx/fn4s7z+lIppkwp1aqThcSmSVMWZYnxTdLZWSWB/YfLuOHy6igx0TiY6/Ozfi8ky0oQBOFsIqKUIAiCIAiCcEESSdLxflOCdAYri+zQo1rPoheMPIbsoXDleXp/pOCMHjVIKTLPrYY8G0rA0otjcUogUyp42/iA91TJ2rVQdixwyq77yKCquO1xgbI/VBzOIlxqQPDyxxbqzgVORCEAWQwS2n1Kd39V1eIaBUEQhPMNEaUEQRDOIuJzIQgXBvJv9XzF4ueiM/IOiWKyBg+RwBOYJXSZnHZMlyllLB70l++FyuHS+0ydno+SXoSJZqR4xanNa/Z+199GBRVHjRqoZWXE1q9PTHYt4xUoimHupOID5CcGtqG32nXPMkC/h1UU0asG0S1EPpyiGNpHM26gr6+f/NM/L5D/gwXhwuBM/FuV3fcEQRDOAjExMQBht28VBOH8wf9v1f9vVzg/iM4XymqBbDI6tzhtuaxWFEuVwiuPeILbG6LUi2VWLkdWWVWW8leIeYLFHNXCWErfIk4p1yK0ad5YOgIpXyRd05Ema74j598LUPT/DlTVZAzvK+lTzOJc6NiDMpgqmdAUbaaUcOEh6yVBuLA4E+slyZQSBEE4C9jtdqpUqcKRI0cASExMlLICQTgPUVWVkpISjhw5QpUqVbDbo/G5Ec4JlfgvNJCRFEbOiGK8irJSykt/A6qCwehcN7rmKRV5PE+oXf9CxmLO4AoIW9bzKYbjCVTozvhfWIh1QcKT7rjWW7fzYJDGpIQp3wvMWXndKJApZSU6GUSpSnpDVSarSvj9kPWSIFwYnMn1kohSgiAIZ4maNWsCaAstQRDOX6pUqaL9mxUuJHSiRNDnWJ2XUZgPuTqpJehoaWEhR36bS52ao1BUT0BcUfzikH73PYvivNAqjeX7EJIVCmrQ9YXa7y7GFThqVzy+s4qWKeXHWe7G7QxVeqg3NvcWxgXKLbzv9T3sqpO6LTMo/LVEa2NwwqqEyGAUJKzui3XbU9mBz9tPONfIekkQLhzOxHpJRClBEISzhKIoZGVlUb16dZxOZ+QOgiCcE2JiYiRD6gJDL4kEi1H6FtaSUxhLbks8rv2G8j39rnxaCZ3ZXF21OBZifGMMFmKT75tNVcIIXcHYlMDueX79xt+98HiZYR7L7BT/7ntW53THFBQyaiZR9KtVhlqwIfvvkgkj6tIFi6yXBOHC4Eytl0SUEgRBOMvY7Xb5wCsIgnAmiKr+KzrBI5qRElJTfW09YTylTsPoPChhKnzs0RqdF2VA3epF7HMEIvAPXVHuDmqvqB7MQpJHsaEoNgKiUpisNMVmvKGG86fm+6SoblRrxTHQ5nQypaRC7LxD1kuC8MdARClBEARBEAThwsBq8z2gWnwdAJ9oYoHiF1FCZEqZBIlQxWvxScmaK5OiqoZ+2UfjKSrfSUCUMo6oanEE5gglaxnK1CKKJdZle34KE1XW9rNzZWEBdnegfM/lcfHZ7s84klsBJAHQ/taG5K9cQ1xFgRars9zN//1jF/mdXwGgtnsnKP/R7VanBolriqKgqmH2FjyFzCjF8GeI3fdOw1NK6ycG6YIgCGcV2X1PEARBEARBuCAIlj+gpq0OmXG1ALMoocdkux212VM48cQ4Q62jCQRkJoXUitKw7b3CSiUzvVTj/oN6Z6dQxurljsC1B8Qcha/2fsGDyx7klZNTqLCXkVdzD5f3qMclNY/5mnj7nDxcQv6JQAnVIVsdVGyGuCz9uwwO6CZfKHOCWBQaVWVLHUVcEgRBuDAQUUoQBEEQBOEiYcqUKVx55ZWkpKRQvXp1brnlFnJzcyP2e++992jWrBnx8fG0atWKJUuWnIVozwAKVLXVithMxVjppxrybqLoHOqEEiy62OMupUZ8Z6qVFkUYONgKPbzXlfGsSnQ7/Omx48+UgryyPAAcSTCv7eOsbvWeb2DjoB6PTwjzeIUpFzFBIlTQroGKHXd+eWRDcsO2haEIPhkyU+o0yvcC+/oJgiAIZxMRpQRBEARBEC4Sli1bxqhRo/juu+9YunQpTqeT7t27U1xcHLLPqlWr+Mtf/sLQoUNZv349t9xyC7fccgs///zzWYz8zBBaUDCW753OSFanDW+VGGxKsEOGanqlnHKBWWAwo6eUGmJEVaf9BIzO/VldDao0wG134sZtDNSvG/lEqRinbyc9RUFVHNrcqkGc8zWx2Sn75USgTYjbXvlkpug9tiRTShAE4cJAPKUEQRAEQRAuEj799FPD+7lz51K9enXWrVvHtddea9nnpZdeomfPnowfPx6AZ555hqVLlzJz5kxmz579u8d8uqhAuasYiI2+jzktxiSqqAZhxiwnRReT9dFQJW9WZW5Wu9IFBC1za0VVwkTobWkzXIv3dWKJjSZ7kilq4CvR81+8b26/KGV3l6N43Kg2O+VxacTro1IUw5ie8jwctaviLitCM+HSX4JZxIpKLFTxP08/LUEvBL/LDoCCIAhCRCRTShAEQRAE4SIlPz8fgIyMjJBtVq9eTbdu3QzHevTowerVq0P2KS8vp6CgwPB1TgirTOg9pLxZUtGJH6HHMTojhReATBKUZZKPO0I8JZTr3gXPl5e/I0So1rHZdJlS6ve76b6mOk3fO0GHnzNp8IsdV0UFB/KOciQlkcPFhbhdrkD5nuoh1lkIgDMmWTdZsEDk/u19aj7QltLLAx5bfuEKRdGJUlrKV5SEz4Q6rd33tHFPqZsgCIJwiogoJQiCIAiCcBHi8XgYO3YsHTt25JJLLgnZ7tChQ9SoUcNwrEaNGhw6dChknylTppCWlqZ91alT54zFfWr4M4fCqRtKiNdwSDlpOV5YTFvjmWcOjsRiT78I0xyx55tGMneITkFRfGlZNiXgKcXGA9Q6nqC1ST9u48s3Z/PF5nWsbZDFl79tZfX7C7RMKQUPzbe/Qz3XVuJLjxkiUM1ZRjabb77wBvLRCEBWQ0S1+56oS4IgCBcEIkoJgiAIgiBchIwaNYqff/6Zf//732d87AkTJpCfn6997d2794zPYYWq/WHEUvoIUx5nHmK7I5QApxiUk4DQoRoHMQ2oqL7yPNXYRN8sqoK1cCVlitHo3Lqlt5HbF7dNMzpXgoSdgmQ3BceOeNt5vO0Kjx1B9SU7KaqHjJO5tKpYQ3LxAUMWWJBnlD9uuy04OIvyvWgILlgMRozOBUEQLjzEU0oQBEEQBOEiY/To0SxevJhvv/2W2rVrh21bs2ZNDh8+bDh2+PBhatasGbJPXFwccXFxZyTWU8ciF0l3SNW1U80m56au5bh0p86AGbrVEH51R9e7cnlPwT0UVX+VkYUY/e57CuBwuWlw9CTbsjJputuJs+p+AFLKKshPjMfj8Wjle+Xu3/i2YRat3X6TqMAOeuZdBAOVepZpTsGHKlm+Fzr/6vTL9wRBEISzi4hSgiAIgiAIFwmqqnLvvffy0Ucf8c0331C/fv2Ifdq3b8+XX37J2LFjtWNLly6lffv2v2OkZxLjrnOhCrv0wpRpgzlUxdjLLGiEFqpCqymhy/cCY3tsplaRU74MR2weD7EuFU9QC2v0nlKgEuP2aNlW1U56KC3ZA8kJ2jFVVdmzaTVlJ9+mTC2C+Fi2uku9HyA0TSrYL8t/v2Lj47UjerbvVjjx5mbyj5T6TkenSul/KrG7voRVKwIHWvVHqdch0LaS5Xvicy4IgnBuEFFKEARBEAThImHUqFG88847fPzxx6SkpGi+UGlpaSQkeP2DBg8eTHZ2NlOmTAFgzJgxdO7cmenTp3PjjTfy73//m7Vr1/L666+fs+sISZAtUzRFXb4GQTVm0RDZKSpUH1X3p3VelK+ATo1WUtLh9wdXIdalUhYmMu/M/t33AsbjClCY6GR3sxzYVUhhch2cNidQAord21dV2bP5O1CLtPHseG+lzWjjro3rnchbtle7WUtY+jUKKnFqKk5AVeysWW9DJZCdF58UE/paDWqRP1NKJeWLB6GiMHAqqw3kdOB0ES8qQRCEs4uIUoIgCIIgCBcJs2bNAuC6664zHJ8zZw5DhgwBYM+ePdhsAVvRDh068M477/D444/z6KOP0rhxYxYuXBjWHP18QUEFR6mmirhsoZa2Sojv5vOR0ElNij47K7JpubV8FuztZDhrSt8JV5KmhJnff86mi/+SvUfZ0OII1GmOY1chRcm1UD0F4CqhPC4dKEL1uFHdHl/fODyUE4di2BPQ6yllNjr3vrc7YrT540ilCBeqYtNEsg79GpGSEU/NBqmhg9fN4yeVQpQKQLFBl8e8wlXtK8ToXBAE4QJERClBEARBEISLhGg+iH/zzTdBx/r370///v1/h4jOAopHE3YKEhL1Vkf6Rt4v/7mIGtTpCRrWvc0RqVaHTW1shCrfUwkvRBnaq77d8HTle1XKKiiPUbFrQp6KzePCDaj4MqU8Kqovk8tOPB7Kg7KivLvvhZjXJ1YZRauAIHpptzrWvlMhcKs1cKl2HIrbe6D2lXDtg4H5PG7tdaWNzqV8TxAE4ZwgopQgCIIgCIJwwWClHVxzoJCNNdKx3gNQc2A6M5P5T6mqITMnuMhMh8W2garmc+UJOVEk0/Wy2EDpnxJqa0KdPKPo3KdsqkpFDNhtDu9RVUXxOA3zqqqKxxMo+TPGph/fbHRuca99gqnqO6fYlEoJUqoKHtJ4RR1BspJHv379yGh2jWleMToXBEG40DiF386CIAiCIAiCcPaxFhpUGuWX8dZ3JVQvyA8cNuzEp4Au6yho1zvFWEQXWc4wC0wWmPSWQOzGsj/F0MbYOZJZ+tY6pWGj1Eb3pTIFdt/zZo2Vx4DdZrcY3/sRQfW4Uf2ilG+MUldZyKi0eX3ikF4k0kzl/f5WZpP3iHhnKSaJ/dTEVaMNxCQY59XdsZ0nd/L57s/5fPfn7C20litD9RUEQRDOHpIpJQiCIAiCIFy46OycbKHKF81G50GCkZnAkXJXOeAVP4qdxcRWLrRQUwZmCVNy6RV1rGUrAJupq/Y2xJh6TylFVSlMALvdgVM76ndQ986ZeyIXe0mMoYiwzFVKkmEnQzVwa33fS91l3P353TjLnNSjHqrNhkcxjh0UvAm3x82L617k0L5d1DKc8fbffGwz8VXiSY0N+FEdKj6kvf7rZ3819Hr3pndpkdki7JwQ9schCIIg/A6IKCUIgiAIgiBcFCghFYVQBueRWiiG4rQTZSeoqTujEYWQYZXlZS57MxOvxlJu0KSMPlSKx7p8MBQ2U6bUwQxFlymly9PyqUyHiw+TWp5GKmDH384rSIWWyuBY2XFWH/yFGHcM9agHwImqPm8qlx2XA0rcxdz71b30yulFt3rdmLFuBg6bgxqJNehUuxMHig7w1pa3SCl20I/soGt5bOVjFP5QyDu93+HRFY9SWFHI8bLjhjb10+qzK38XAF/89kVUopQgCIJwdhFRShAEQRAEQbhACOWZ5D1uzJQKLdP4xaCAUXiolKPQTkqVjdJcehcoGQwtVmWQQr7pjD8KVfEmG0WS2/Sj643Of7oslWOpJ3X+T8GZUrWTsiksKSTGFkeP2gM4Xn6ADfveBjyBjCc10N5PXkUeAM1rNufIoX1Ur6jtHdbjIKXATl4GeBQP3+z9hm/2fgPLjTE//8PzOHwG7E0ymgJFIa4OBiwZYHn83RvfpUXVFry64VVm/zSb5fuX4/Q4aZfVjo7ZHYPaBy5HUqUEQRDOJuIpJQiCIAiCIFzY+MQom05QCN59T//dRJCnVOBdjD1QsJcZnxEYWzGNZ6hhC3KtIljuMJfmBccX7HNkLt8znQ+1HV+QpxR807kKKAo2m/7jgF/08h5rktiMzmk9uKZGP+LsCdRKbEjzajdQI72N9TzadN75Hr3qUTp1uow/vf8BLX+ykXmkHTGuGACS4hK5tNqlIcdweVwA9M7pZXl+YPOBhvcPXvEgr3Z9VbtnVROrAlA/tT4AW09sZe7muTzwzQNR7VIpCIIgnB0kU0oQBEEQBEG4KFBUqzwXBbMAVBlJwqZ7hpsYk+jzX4piEEuj80iiWfhBgmStkBldIUbTOii4PW7fsYAFOapqENtqFORQK66OYYz66R0gHX468Y1FTD4TcxSGtRpGy6otadK0GjtcM3F4FBRseHyZWYmxCbzV6y2Olh7Fo3qIs8eRHp/OQ98+xOoDq+nTsA8tM1vSPvEy5vBe0LX0b9Kf29veTlFFEcmxyVRN8IpQNsWGW3VrwlPXel35W+HfOF56nHdz36XEVYLT4yTWXhl3MEEQBOH3QkQpQRAEQRAE4YLASshRQ5bvhSGi0Xmk+c2774XPeAp0Me68F7T7njnxyZyNpSvfA2/5niYzqaF3J9R2vNN5Srk9Tt8cOlHKtPue4rJBDOwv3k6skkipp5Aa8dnEOVJIjcm0mMvLpTUvo9nlY4zj+342qs/DSrEpKIpC9cTqhr5Tr51qeH/y8CFCUTWhqiZG+VF0fy8A4uxx3NPmHpweJ+/mvgtAqas0pCglSVSCIAhnFxGlBEEQBEEQhAuXcI7bWhtj+V4ocalyRJfrFKq9qkSV2xR2LMWsYoXo729l9/VLpAKP4gQVFJuFp5TWz/t9X0kuxQd+5GhqHNdXv5VqjhQSHCmGWCzC8w3l9+/yHvQo3o8fNlt0/lyVxqp6EoixxeBQHLhUF2WuMtLi0n6f+QVBEIRKIZ5SgiAIgiAIwgVMQExRUIN8law1CnNZXGivKav2gSPhhRVDKKa4DHOGmj6ip1SortZimz+nKMtegEf1lu/Z/Ebnukwuv6eUP8tJVVUcvswq1d/P18ZqpriWul3uDJlYgUwpm/30RKlQvlBappTF+ThHHADl7vLgftq1nlZYgiAIQiU5r0SpV199lZycHOLj47n66qv5/vvvw7Z/7733aNasGfHx8bRq1YolS5YYzquqypNPPklWVhYJCQl069aN7du3/56XIAiCIAiCIJwlzPvXhfL5DjIVVwzfQvg/WRDF5n4KCkpQf3+JoXEAVVHCqyAKpp3tVMM3xaNrGmaYwCl/B52nlCFTyo9PlPJdpMfvN0VA7DHu2mek6rBhusBMopQSKN+LBnNCWeTcMGP5np54ezwAJ8pOaEbqgiAIwrnlvBGl3n33XR544AEmTpzIjz/+SJs2bejRowdHjhyxbL9q1Sr+8pe/MHToUNavX88tt9zCLbfcws8//6y1mTp1Ki+//DKzZ89mzZo1JCUl0aNHD8rKys7WZQmCIAiCIAhnCb0YZKxsU/Rb5kUo2lOMr0OKRqeSUlPJwkGTIhMktERdAWgShoBapVV9py08pfwld/4zqgebpof5dzr0foxIr1WbtjfdStubbg1WkABbQgI4Ao4hbrs3W6mymVLR3m0t48lKlHJ4RalB/x1Ej/d7sCNvR6BfpaIRBEEQzhTnjSj14osvMnz4cO666y5atGjB7NmzSUxM5M0337Rs/9JLL9GzZ0/Gjx9P8+bNeeaZZ7j88suZOXMm4H2K8/e//53HH3+cvn370rp1a9566y0OHDjAwoULz+KVCYIgCIIgCGcESw8lXfmepXJhypKyHCF6mSrQSbV6GThm6uQqLjbMY/SUim73PbPReRSJW6bR3NqrCXuG0qykPjZfOZ2xDNJUvodHl5XmMZxLTEvjukFDuW7Q0MA8umuzJSRQ9W/3YI/3CkJFybW9x38nT6lw5Xtd6nTRXh8pPcIXe74IahPp74IgCIJwZjkvjM4rKipYt24dEyZM0I7ZbDa6devG6tWrLfusXr2aBx54wHCsR48emuC0a9cuDh06RLdu3bTzaWlpXH311axevZo77rjjzF9IJfn72BGgeiI3FP54KKDYwZNoZ19OEhW+p4p+1IRYEmIziLXF/+6h1EyrCHrwGaPEkBHzxzQIdSbWQPV5UiQoKnViZPEqCOeKJjVSwp5PTMgh5g/6f9UfCl0yUwiPa2NjyzahvZvMTlBaD9POeGZB7GgTJ54Tgfee0hLTNMFFfpGiCvLCCqpIDOn07o1B8WDDLz+pZLrSdOV7unFNRucqqpYp5V+7Ktqz7cjiUrW//Y3W1x7n8JubcZa5UWwKDS+vHrHfqRAuU+rhqx7mgbYP8OyaZ/lg+we4VXdQG0EQBOHscl6IUseOHcPtdlOjRg3D8Ro1arB161bLPocOHbJsf+jQIe28/1ioNmbKy8spLw8YHxYUFFTuQiqJ++BhQOrZhdAkxHTg80YLgk+UQemOAbgKG/7uMZR1r2WZjs8fdR2nq/5tqW7kUSadu1gE4Q/O2r3hz7duNZtq1W44O8EIZ4eQxknhMqXw/R5TTO9Dc7qPG1TgSAsnJzZAcpn/mGp4GKkGOWKFEst0sZoaRNx8T5vX395jsKVSULAZPJ/8E/g9pXxm5qonyFPKb5Ae1SaCQL1LMhn24rXRNQ5xJWeieYw9hhhbTNBx/3WI0bkgCMLZ5bwQpc4XpkyZwqRJZ+8Dpk1J1FKgBcEKhTJinEmUExt80hGL8vsnSpGhHrbY/YfAE9M/GN5nzN77kaCWkufMPLcBCcIfmKy0hLDnbfbw54WLBTXEa+PvLm9iU4i96iJvhBdh3qCZgtuq5lPhfpH6MpUUxdQsIL6piikbSLUSqYz5UwEZTPH9qWiZUqpmxh4wMdeEGt1egVr53llzAalcmZ/VmkUQBEE4fzkvRKmqVatit9s5fPiw4fjhw4epWbOmZZ+aNWuGbe//fvjwYbKysgxtLr30UssxJ0yYYCgJLCgooE6dOpW+nmi5/9/v/G5jCxcP9/D0uQ5BCEk3YMS5DkIQBOEPjF9kiZApZco4UoNemIe1PhF0VBO5ohNCVP13RdGVyVmHEmMDxRVITbZ7KnyJyv6d7HShhJ3Zf1afqQU2VaHYWRI4ogln/rj8mVIqSqjd97QMI31p47kThsKV74XtJ2KWIAjCOeG8MDqPjY2lbdu2fPnll9oxj8fDl19+Sfv27S37tG/f3tAeYOnSpVr7+vXrU7NmTUObgoIC1qxZE3LMuLg4UlNTDV+CIAiCIAjC+UFkD6ZQpXDG3feselofDpFZdQoFfqqhPC66MGLiUzl+fLn2PrnIWLMaunzPeh5NWELxxaOQlex7eKuqOlXPX76nNzrXX0dg972o6/fOMFZG5mD0wTqVMf6gieCCIAjnjPNClAJ44IEH+Oc//8m8efP45ZdfuOeeeyguLuauu+4CYPDgwQYj9DFjxvDpp58yffp0tm7dylNPPcXatWsZPXo04H1KMnbsWCZPnsyiRYvYtGkTgwcPplatWtxyyy3n4hIFQRAEQRCE08JKMgix+15oK6YgMSdyIV3lowolZ1VmXBSFtxq1C7z1mL1IzeOFuD+aEbzRNuKuFkNolN7YYjiL8j2z0bli/BgRSiQ624TbfU9rcw4zuQRBEAQj50X5HsDtt9/O0aNHefLJJzl06BCXXnopn376qWZUvmfPHmy63UE6dOjAO++8w+OPP86jjz5K48aNWbhwIZdcconW5qGHHqK4uJi7776bkydPcs011/Dpp58SH38WjHgEQRAEQRCEM465RE9VAjkxoaUGk2G4Vp4WqkzP6NV0ygQJY+ayO3P5X3Riib9V030KKUkplBYURXA9956zmTLJmmU256DrV92R0EbngSwrnwDoj+J31ncC5XjakQgd8LWvZPme3u9dEARBOGucN6IUwOjRo7VMJzPffPNN0LH+/fvTv3//kOMpisLTTz/N00+LJ48gCIIgCMLFhU5F8PscRczWCWV0robUdCxHVEMLWiGNzkOMFrrk0Cv8qLrxVF2GT3aFjSFfxZB3eSIUhPalshrXb3SOR0WxBasximIzXKOV0blNCV1w8ftkIkWnFlWmfE8QBEE495xXopQgCIIgCIIgVIbg/CcvhswaRQlxzqrnKaCa4whVZnjmyHbaKS1XyNPmDBma5VkV2Lx3GwdK91JeNQt7eSxxBSqq3Y4zxo5bTcCp+GzVVQ/xTpfvtX/E87R8L1BzWLl+Zz4UQRAEIQrOG08pQRAEQRAEQQiHGsIMKlBSFskdyrrkLJLddeid2cIUDKphxo1SN4nKxzysmhLK2UrhmK2AJRu+ZEPuNiqqZVOaXRVXbBxFjdpwpL5CSYOW/CfpZ5y4ue5/huLweDOkArvv+e/l+SXnVMro3PIndH6Ia4IgCH8URJQSBEEQBEEQLmCMIoJ1GZ5iaKYGvQhFOJcqs7mV/qV1ZpL+tYKxHC/U7Po2Vt5ZxrPRCyplOAGIi4nx7byn4I6PB5tNG6ZCcVGilFOrUSPd0D6j8zAfI85o+V4lh4rK6FzyogRBEM4bRJQSBEEQBEEQLlwUsJZr9IcUDJlS5naV2I0v0ELvBRW+eC7syJaThRgvlOAWdEo3qNkZ3nfW4zuenJSoeXL5R3E4bdg8XpcPNx6wBUb3mHbfO88SpXTG6KdmdH6eVCEKgiD8YRBRShAEQRAEQbiACSE/KMZ8Ir0k5c+mCl3uF60yYaXIWItEduVQ0Lihxaxw46ONo+jNrFQlZPPgeRQ8/ownRWeRrikzCorq/ZjgMYlS/ra2c+QpFa0GJmV4giAIFwZidC4IgiAIgiBcIJyO0KCXpcyjKrpWoazTI2XRhJdL7EpeQLipzE5/EQiR+2U8aDGwx52DSP4AAQAASURBVC9sKYFyPX+poMNmQ1FslPra7di3m+0tW1GWksBe1U1Dzr2nVCgRLJryPWvOs5QvQRCEPwgiSgmCIAiCIAgXLoqulC5UKZxii7D7nomo9Iwoivx0k7rVdENPWxTGVmaZJEyRYlhJpdSdZHh/jHQtU8pmC86USrDF4kGlFG/53pIVX1Jcpy4AO4DLyktIUxNDx/07CFXRikyVmdtqTMmvEgRBOLuIKCUIgiAIgiBcoHgFqaj0CmsHdN8o5rI68+57wbOaUYJeGHGpmQF/J0XBpiq6DC3rTl65SDEeCBVACFTgUEU280/OpMpl+eQVHWXHSYXm/jI8i0wpRVHwy3i2q2tQunGDr4EHFBvlOPHgoRwXqqccl8sVfUCVpnIClz9TaszXY+hVvxf3XXZfkFD1e4hmgiAIwqkhnlKCIAiCIAjCBU40Kk2gfC9o17tQIkXQYdV0qjLihi4jyTRW6PkqQbhboMJJdzZ58Q3Jj6kOgNvXwREbo3lraaIUCnZfMO5qsXg8Pv8pn/hUpjh5N24V8+OX88aeRcyYMYOSkpLTCP7MUSelDgD7i/bzv5v+l135u6LqFzA6l1wpQRCEs4mIUoIgCIIgCMKFi2IWikI0I7QR+KmhFy+iG/h0zbetjdHNlurBcygWr1TFKzTFJSSi2OIBSHUm+FopmpF5RUV5oLfbK0odUwooVgLHi4uL2bt3b2Uu5XdjVrdZzOkxR3tf4jo/xDJBEATBGhGlBEEQBEEQhAuIYGEmGrFHUXWZUtoxDO8tiVZHUkO+8R1RNKd0/0Z5aqgJfGk76zJiLIUoJbhpGFnMVIro6+A3OrfZbCiK19Ej3h3nPaaC3VfuWF5R5u3n8Wii1IHy3QCkO5Jp1rApACdOnAia41yQGJPIFTWvICspC6iEF9XvGZQgCIIQEhGlBEEQBEEQhAsCo75QOYMlw656irFvaLupUCdUQ/leWI+pMDEGC07G92szo7d/DS+q+HbaUxVNMHL7jM4VRQlS6byeUt6PCVu3bwHA5naDr4zvcIJXnIpNiyUu2Ztl5S/xO9OcqsClnKLMJMV7giAIZxcRpQRBEARBEIQLgtCCQWBfumCByScfWWVKhRwtgveTubNqXSKnx6WqqJ78EDNaz1RhM3tf6Vuqvg7hbNhNBt8oOMvdQCBTyuMOtPPfOwWFeGIAOHrsCABxZWXYy0u97ex2ADJSUwKz/s5eTKda+mhdzih5UYIgCOcLsvueIAiCIAiCcIFgsSueEkmuCN7hTjUmSmnnjiansdqRSMuTZkvzyooYwRlU68v2UKHu0I4bo7Ie32nDYMJuLjs0zKg7FnRHdNdZWuAEAqJUwZEyTaRxuIqAFBRV4UpnI5wpVWnSPguHTeHYE4+ytVoKVY8fxeX2UBQfw2W9u7PlgFe0OtsG4ZHm82dYRStmae0lVUoQBOGsIqKUIAiCIAiCcMGi92UKa3RuyJQySkH7qlTlWPU6fN7sEu+BNtdTu8TDvM9sJDvNc/nfVEK9UFVK1ApfIIkUpjnDt/fhMmdK6alEWZshqcsXtl+U0l+GqgTuYzLxDLnvVmzxDtSKCr4uLkaplkJsWSl2p5NSJR5FCZQD6sv3zqWnlCAIgnBhIeV7giAIgiAIwgWMak6gMuEXoCwypXwdP299dUCQ8rEv0cbPmV6/pKPxdk4mJFNu0z/PDTep2S0q0DYu9U4KMmPCBaxRYVqpm0c9lFGVElv0y3lFDfhHeXy776Eq2g1RFdO9UkzfzeOh6DKMfqcUoxDlmNFytjO4BEEQhMohmVKCIAiCIAjCBUNQ6ZqiRuUBpag68cYnpBQmJvPckL9xrEoGAHWPH2LQXhufVLexoVZVNmYm8N+6KXyaUwXIxuFxc/uuXGo7YogvijQjmn4S6rxHsYXNuKrQStACpYp+SmLjGP7A/6PHNx/SGuuSvkAYwSc9fqNzXXmix2YWpYLHCrr9OlFKBVw2e+hAziLR+Ebp/95UzjZfEARBOFOIKCUIgiAIgiBcxOiFFqNQUZicyreXX02N/BP8Zf0PlCmlXF1xGcvTvJlMb7Ssamjvstn5sNcgFtpimbpgS4ht+xTKHLHEGo4ZzceLY2OgLGSo2ovDieYsqMB8AfEnnNG52VNJ8WpgChQopVpzj2Lj66aX0TRuN7XK8wJ+V1aZUnoRTe93pap82awtO6rXptOJQnrWzLS4wHPP7tJyfnZmk1/1Pj4pqc1Ij4e4SmSbnSp7SstZfbKYl387jE2BDy9rRLXY8BlzeU4Xe8sqsAFNkxKICVfOWQk8qsresgrqxnv/lp5wuvGgkhnjwCall4IgnGVElBIEQRAEQRAuYMyZUmb0u+8ZqV3i4a5VS0CFGE8cZT6dJyevkG/rB9q1O1xC1UM/srjNNZQmJIWcw0+Fw2ESpYwcTkqGQqsrCX7lfaeg6K7SL69l5J+kitttEYGR/1zVBmdiFTqWldNKtYMCZYrf18rG/irp5NasR27NelqfqRUeEr7fwlONsumbmYLLHsiAKolPpCgxkQoV8m12vqvfgs/s6eyq4RVZhvyylzvzSxhYK5PWKYlB8ZR7PNy2YSfrCooBaJeWzP9d2tAgiBS73ZS4PewsqTil7CW/oLavrJzkkjLqxsfi9KjctG47x5yXQCJsdMKyE4V0r5oWlUXXL0WlHHe6aJGcAEBGjIPPj+Uza+8RHIpCw8R4JjasRYLdKHKVuT1c9d0vhmPP7DxA/xoZXJaaSLIjOLssz+mi05qtHHO6ALgsJZFP2jbW7pHTo/Ll8QLKVQ/JdjsdqySz6mQRcTaFjukpQeP9VlpOvw07KHWrHPeNeVd2VebsP6a1aZeWxMLLG4e9BztKynhg616OVbhIsCs817g2l6cmcajC+/cp3qZEFNsEQRD0iCglCIIgCIIgXBAEi0/BckUoAcOhOnCbjoUqU7t+5z5Sk3O4bucB6hSWcKRKCp/EHaPH7i0cLTxJ9Zi6xLsJ485qLh4zZhepioJbsYWM1V+KZ5mIpRvO4XaSaN5oT9EH5RMwHA7KYm18GZvA15074fC4aLtvD/HlTj6v3ZCTannQFPmxNvIrXDyybR9P2hSOPPsaV63/lj11GnOoahYAs4qAxFpQNzjEeQeOM+/AcXpVTSMrLoZHGmTx3cki/nXgOMcqXKwvLNHarjhZxHO/HiQnIY6/ZGUwbdchZvx2WDt/aac+pB10UBvw4N0lcWlhGSs372ZDQQlJdhvJdjvTm9WhSZLXB6zI5S1PHLnlN1xxcbRMjufu2tU1kcfPnZt2oQL1Crx/O/aUlvP5sXze2HeMPJeLB3Nq8snRfOwKvHPwhNbPrsCHlzbiqR0H+LXUe/+W5xWx/EQhnTNSGFgrk4YJcczdf4y/667Fz/8dyuP/DuVxRWoiH1/emLt912JTFP4nKxM3qiHW9YUlPLljP1ekJtG3ehWm7jrIK3uOBN944ObqVWibmshd2VUpdnvYVVLOs78eZF+Z0WBfL0gBfJdfzPcni/jgcB45CXFUi3XwydF8Cl1uEuw2nmhYi8k7D/B9frHWZ8K2fewrr6DAFTC6n9qkNoOzjVmGgiAIoRBRShAEQRAEQbhwUTz6NxbnQ5fvWecXKdg9KkN2VeAuNgoYbY7tR127jJbpPdA5PXl76cSh5PJS05jB8lNRrAMqwsURjNmgvebxY1RzuQ2RWAldaUUlNDtSxsb6cXhsChW2GFbnNNS18Ga2ZBTmcyIlDYBeB5ysrZfAUZ0w8v1l11rGZfO46egpJ3HrJorj4qnVsTP/d+QkAP89lg9AisPOoiN57CrVLpoXmtbmrf3H2VRUykyfwPKvA8f4qdB4/za0vJoNLf1z9cBjs/HBgYKgOK79fiuDamVyrMLFUafL+0HHV264uaiMMVv3AFDPfowTRz6gMHOEdr/2llUQCxyvcDF40y5tTP1rPW7VK3gdLPcKPbdUr8LCIyfZWVrOzv3lvGkSfAA6Vknm3TYNuT93DxsKStheUs7aghIe376fT47ma+2m7DqovX6sQRYLj+SxuaiM/913jP/lGEcrXMzee9QyLoBFR06y6MhJVp0s4rNjxvv05xrpFLrdhuPPNc5mzv5jbC8p5+b1O0KOu/R4gfb37NEGWTz360G2FAfqUB0KuFRYfPQkl6QkkBUXQ5zNhg2oEiMfOwVBsEb+dxAEQRAEQRAuECKkDoXBqkVU9jnR7N5mamJTPaghowptIm7mqmNOloYYweF2MeDzRaTXzWaH4ZxpZgVq5uXTZ2MJd8SUcvgXO59dnsi2DDtuBWI90DP3F8o8BVx5uJgtVewcq9qYx7al4ri1FT8WlrKnpJxXtuzE4SonPzWDevt+pe9n88m59xGSTxzjxzVruOqqq/j+uFdMebzpQFqnJbG7tJzD5S7+c/Qks/YcocJ3L59vUps68bFcn5lKy6QE/n3oBBsKSthYVKoJUil2G6vaNee5rbtZtOcQxUnekjSPz/8p024jPS6GApebodnVNCHnXweOA5Duu8H/aFGPmUcT2KgTuq6M2cWy4hX0q9uWnJo389TOA1ySksg2ThBvs1EvMY7tJcbssWZJ8fSomsZfsjLYX1ZBvw07NUEqwWZjVot63FI9nc1Fpbz42yHcuh9BRoydwbWq8re61XHYFF5p7i2TbPTtRorcHi1j6ebqVThY5uQHX1ljjKJwV3ZVLk1J5O2Dx/nYJ/Q9sWM/AK2SE1jStgmTdu7nYLmTCo+KTUETnMyCVPOkeJ5vWpv1BSXauQSbwk3VqpAR4+DeX/bg9P2M4mwK5R7v61urV+Ej39wq0DUjlXvrVmdnSTlLj+fjUWF47Wq0Sklg8KZdfJtXxLfrtmvz1ouPZU37FgiCIFghopQgCIIgCIJwARPeUSqg/kTKlAqxg1845crylD8zK/SOgDWLCtjrVFFDKlPe46O2l7PUEXwcINFZTsuD2zlYN9t3RjG1CND4gLd8LEm1kVbo4alVRTSIs3PC5SHDYeM/sYc5bMvHYatC9aKTtM/fQ7ynJbUT48lJjEf1eGhz+438WD+LGFss8cWFFCbEcbVDZZv/Ck3i3bDa1QA46XTx9YkCitzejLYOVZK5U1fadXlaEpeneX261uUXs6HQW8LWLTOVarExPFM7g9rP3k/eFf/DgayGFJTuJK3kBE//uS/Z2dnaOA0T49he4s3aSXHY+dcxBydckB0fw/+2zGFNfjFuVaV2fCyrdnzu/TnYixhZtzoj6lTjq61HGPrtPpolx7Po6ubauHlOF78UldEhPVk7lpMQx1ut6rP6ZBEbCksYml0NRVHoWS2NntXSuKVGFb47WazF0rtqGg4Lk/Kx9Wrw8ZGTZMXFkOyw80j9mtSIi2GJr2TO7zfVKSOFThkpXJl2lMe379f631StCjE2hcmNaxvG3VNazqPb93PS6cID/KlGuvbzALgmPYV17VuQ53SRFRdLZqyDW2qkc31mKvkuNxkOO0kOO7+WlFPsdtMqJZHnm7rJLS5DAVomJ6AoCi81N9ZtFrvcdKySzN6yCorcbk44zQWzgiAIwYgoJQiCIAiCIFy4KGjZTNYST2hRyez8FGpo6yK/ULbk+kaqRQuFhPISbK5yi3PWeMWrCOKbNlVwqziXtwQvvjgVtzsPYrzZRjbflXl8dYFuPL4ITVesE+aSS4rx+O+3omiG4mZRyk+VGAdfXtmUbcVl2BSFK9OsjOK9tE1Lom2I89f/epAmx7P5V+wuym3BHlg3Va9ieP+xw4HfAapuQhx1E+K0c6tMfRVFCbnrXHqMwyBI+eleNY3uVdMs+zRMjKdhYrzlOT2j69VgdL0aQcdvrZFu2f7W6um8feA4NWJjGJdTg8tTre9V3YQ43m7dIOzc2fGxZMcb7fhTHXZSdabrDRLjDOfC/ewAkhx2PriskfbeE02WoSAIf3hElBIEQRAEQRAuYCrzwTdyzZwSZrhgGSo6LyhziKrHhdtTYd1WR1ByjZVllmkSs3Sl8v/Zu+84uep6f/yvz5m6vbckm2x6AmmQkBB6R0AsYAFRAVGvV/GqsaJeit/r5XevBbmKYgVRUcSCBQsYDCCEAIEESO91d7Ml23fq+fz+ODNnzpk558zM7uzszu7r6SNk5tTPmQ24+8r78/5ICDXWxPu1k6bhJK6vvRgUwcS75FzKZozpQikAmFXkwyxDKJSVjOZY2nMal/Xxo7rdmKrxurFh9aLxHkbG7II+IiIj2zVDiIiIiIgmNgkBqQcxjj2ckl5qb5MjnfjrkSQTTj+AW1/PfvpeGqbCK/tpe3FFgQ6U+UPw+F3w+F0ory0CkPhBoETV3g/FQykpTDcRwvw56XuEdSglGEYQEVGGWClFRERERAXBsopFAMmNvS0OsJQ2PNH3J46L+oqwu2IA8wbS98tJG5Lp7zJcfS/pCmF3Ebr6nL6d1450R0K46vSjqPngBwEAPX/ej4F/HYMrdqHmcCNaXZ1QRRSuaASz1LqMi8AyqZQaT04Bo7T4czOyQJKIiEaKoRQRERERFQirwGA00/eyreiRCFfWYagohKhQba5jdc3MxphcORWv5EpsN+/vrZiHQEirdxIyvi/5Xhb3jh0ar5SqjFbgwoGzMcOrILRvPbxz6wBFTT0v6QKmSrMJFko5BY7peokREVH+cPoeERERERUM68jHKRDJLJxI7sRkf5KxtilxvlMvquRG54mtGTZuih+ftH/P/HdmcD8L8VAq9rsqAT2CUrL7O+uJWimVbfDEmIqIaHwwlCIiIiKiAmSoDIrlIUKKlDjGarKc/fvMuaRdoGUl9YhM7ixSXsTfJpYEHNETxIKk+A8CWiAVW1EvHkrZToM0P8tY95TSrz/CaXWTqdE5EdFkxFCKiIiIiApX2vzDPmWwy06yziWsZsjZXiTppo4pSObhTtojDQ8bf+mKvSirK0J9cb+20aZSKh73mUYrxLhVSqW7H6foEREVBoZSRERERFSwpGH1vfScKqWk5UunO49sX2Jv8vQ9Q61R0vZY8GOZs4wkfDGf0zivEsXesPZGr5RKegZjgmd8Gduuqk49qMZPpo3OE+HamA+JiIgMGEoRERER0eRlSHLC3l7TLlNPKcvpcNmsjZd6nmEQFvvSpx+21T5ZBifpFiQUbgEhzNP3sppeiDxUSmX7zDmcQkhERGOHoRQRERERFQTLSiFXCBL2VTo13dvhiobgERIhb49pn/0UL5sERCIprREWrxLvE+O1vp7FhLiUa5iPT7pfop2WXtgkLQMws6JTauCuLYJS6oGr2o+ipbWJnWl7SiVFbGPcUyplFNblYrasKqWsvu6MsIiIxkd2y2sQEREREU0gvmW/BqbXQ25eZRkstBz+O6p6d0NZ8zH8OtoHr2GfXSiV3Ddp9JICG5EcWmXHeJowrQZocWeRssYfvM1laPzMKuuLplt9z5xI5a+n1Ag/q6wbnY/sNkRENEKslCIiIiKiwlZzAqoraLnLMctIF3TogZRFZY1tJ3OLiyYfmrJEoPNAnHtKWZ2QdANpMy7TGOLT91yx99ZDTB16viqlsouLOH2PiKgwMJQiIiIiosIXD4ls2zllNo0rVsNkeQuJ1ObksNyWLoWyO88whDTn5lzs83PVzMvinPFbfS9Tjk3wDbv00G2CPgcR0WTFUIqIiIiICpIwBQ4pDZ8MB9pVPI28mkZAOvSkSl0/L2WrVfiRZjjxEEuYzrUpYcqWYu7LpfijSQekqeYaozBnpBVPTl8bIiKaONhTioiIiIgKn810OlNwlWHzbvujHEjjS+tIKnXlvcyCE/38pMNrOl/DQHE2V7LnLu3F0ItbITxFgBpF5dtPS3uOwMSvlLL6wloFXQyxiIjGB0MpIiIiIip40mmilsdjudmuCMf+Sg6r8hmvm+F5qeFVNqvCSczf9zscP+8SDAxndIIjpdiD0Pbf6+/dN6+2GUfS+n55CqVSJkSmuR9DJiKiwsBQioiIiIgKhLQvaYqtMpfSiFsCQrHuWGEOLrJspG34p9Urp+l7xol/IqP7xs8zU2QUXk9m/avSNVOveMvVCB89imhfH9y1tSg9/3zL48wrE6aGUhOtwbhjTykiIhp3DKWIiIiIqCBIi15KUsbzFtXqlMS5llvTTd9zCljShx0Zr5aXaa8rkRp42a8PGBsDZEbBl7u2Fo23/2eGQzREcBN0+p4+rgxDqUSj87EaERERWWGjcyIiIiIqXPHkx6anlOnQpOgmZ1O8Ui6TpnopR73JHYeQY1Yfr7EqasxCqRGmRZl8bVlFRUQ0/hhKEREREVEBS57aJi322p1pX19kewWL6WmpeUlyQ3Pra0mrQ6xG4zAlLm/T5Yz3Mb6coJVScVbjsvq6T6xJh0REUwdDKSIiIiIqYPE4wWb6npSJY1LyJetwQs8xHJMK6XiA3fp7aS+bCav8R1r1ncph1GIZfqWuvjfRekpli9VTRET5xVCKiIiIiApXFtP3HC+T5fHm7EUYeplbhDKWKZe0WH0vs5EJSIe8yeL4nOQs0vLq47X6XubnMWQiIprIGEoRERERUcGwm3glhVa5lNxc3GotvMS+TKbvGbZmmW/YHm6XEtkMx/G2ehGY8SjLBlBOV8lAakt1YbH63kSRdcUWG50TEY0LhlJEREREVBAs8wLpuNdwmNV0O+spaebXdkmR0/Q9u0bnVv2pRpeCHOo7bH3tMWQ5e7AA05xCHDMR0WTDUIqIiIiICphdU/HE5nA4CgBQfUWI+kvgFh54hBfTS+abD7S9Q/rAx/mY1Ibn5gqudL2p7Cq9JPpCvWmukKPgReglWaZt8YokVVVjm8YqHDM/R7pAKf4JWx5nMcScrcRIRERZcY/3AIiIiIiIRkaaekpZ1z1JqJFYDyZFQbDlVFzaOx/DoROYVrIAwPH4lQxXTR/kCP0fWchRYGPuTJX8YmzYjXzCTt8bYcg0sZ6CiGjyY6UUERERERWwNJVSDuelDy4yq34yx2FW51hN58sw+LI60vHUsYlVbNbe00Opzs7OsblvUpCXbdjERudERBMbK6WIiIiIqIAZG53b7c32ahrF74P0ubK+ooRwXCEvPtLMi4vs2rsbr2Z9noxXkOVodlry3SorKwEAkUjE9H68ZTuNMH74RKv4IiKa7BhKEREREVHhkmkqpZI2ZxZVaCe5qqoh/C7gRFvKxYTlHDq7DcmNzoXNUSNPjsalI5IA5syZg4985CMYHBwEADQ1NY3HSGw5hUysoiIiGn8MpYiIiIioQBhCBCFib+M9pVTLM0T82ORtyVe2THWcmmSbV99znrSX1KTbED8Jy2DEfF01afxK2mqe/IYtjY2Neb1fJpym+VntY5tzIqLxwZ5SRERERFS4pLHqKPM16ITD0VbHjk5ypVR8a/rV9wDg1fIVqBgKoGIogKqoRFkgNLLbj4YhGNMDvDFbaS93sq2GYu0UEVF+MZQiIiIiooKlhwg2lVKARK9rGGFE4gdmcVHz62x6QOUyrtledgrO3nMMZ+85hlnhpGIt/Y4pm3Jq3OKn+Op+2T5ZvEcUYyYiogmN0/eIiIiIqCBYhkJpekoJCQy6guhXuo1brS6UfpMwvjRP33PMPhLJWeKfSac7yShWkSkvTLJt/G1xBe3qps9g/Cql0jUkz3Zs+ufDDIuIKK9YKUVEREREBSzeU0oC0j5TiCLqeJXkrk+jY9foPHmrcCy/so5VZNLvTseS05eSVVREROOPoRQRERERFY6UvMd5epcwH5bUQtw59sl8h9UdYTHPznHJPptm60nnJR/klEYJkbvgRVi8mcA9pbJudD5xH4WIaFJjKEVEREQ0STzzzDO4+uqrMW3aNAgh8Nhjjzkev2HDBgghUn61tbXlZ8CjZpgDJ7TwJeI2N4FSVOvKokyvbjeHz7hqnrRIk4TptGzvnXlCkmbWXsEb7RRBNjonIprY2FOKiIiIaJIYHBzE8uXL8YEPfADXXHNNxuft2rUL5eXl+vv6+vqxGN7YMPSUEhB4eeFJtHRJzGgPoWIoCI+qAsI6bMhurT4rIw1MrOMu26NNt5EZ3Dp5at/oo5ZET6rCKCkafQ8tIiLKB4ZSRERERJPEFVdcgSuuuCLr8+rr61FZWZn7AY0xQ9twxDo0oac8DLd7EKcc7zMdO6JYRjq8zWAWXaJGK3X6ngAg0wQn1nvTbBVjU+ujlJSm3rMAcp9MK6X0P0WZL7FIREQ5wOl7RERERFPcihUr0NTUhEsvvRTPPffceA8nO/GeUsJ+OTstrnIOGzKJIoT+j3RnJE86G3kbda0rlLGnlN3ZaRKiUSZI9Z/6JABAqayAq7Z2VNcamezCovhXwClkYgBFRDT+WClFRERENEU1NTXh/vvvx6pVqxAMBvGjH/0IF1xwATZt2oTTTz/d9rxgMIhgMKi/7+vrsz02lxwjBCEhHJqeZxo/CKQ2B09XsSSlYriBMQBzngaYCMuyD4zszrCcppiD7MU3ezYAwFVWpm3o73UYRQ5l0dc940sWQokXEdEUwVCKiIiIaIpauHAhFi5cqL8/66yzsG/fPtxzzz342c9+Znve3XffjbvuuisfQ0yR2vg6/l41rLRnFUpJwxnC9Hv8iFTStNl8jUSYNDywBpX+YwAGbEYd7wNlnHCYeVKUvsZrtO3As1NIBUYZT98T8eOJiCifOH2PiIiIiHSrV6/G3r17HY+57bbb0Nvbq/86cuRInkZnFE8RjH2a0sc9ifhmdDFOWfQIXNFEtZg/XOJwtLS8Y/I4jZGX1fF22+yJ3PWYin/chsvls+Io5bNKk4yxGoqIqDCwUoqIiIiIdFu2bEFTU5PjMT6fDz6fL08jSsOip9RIpu9l2vUp3t+pWJ7EnIN/wo7pVv2VRKyRefLlkhqdp+0DFf89g3UCU1+MkcKqJcq0UqpQVhUkIppsGEoRERERTRIDAwOmKqcDBw5gy5YtqK6uxsyZM3Hbbbfh2LFjeOihhwAA3/rWtzB79myceuqpCAQC+NGPfoSnnnoKTzzxxHg9QpaMTcBVvShIJucLQjs246vatYRKep95jJEceSXXRMXf2FdI2Y3B+qksO0s5XTUtywmC45LjZHbTkU5oLKSpiUREkwFDKSIiIqJJ4uWXX8aFF16ov1+3bh0A4MYbb8SDDz6I1tZWHD58WN8fCoXw6U9/GseOHUNxcTGWLVuGf/zjH6ZrTCwOYYupUsrqTJu0YWR9xpPOkUk70qRZI72Nw7XGPB8S6VezG5vbjrLZk8V5+e3ARUREThhKEREREU0SF1xwgWNo8OCDD5ref+5zn8PnPve5MR5VLllMyzOUNek9pURyZZLIMtPI9OhskxKr1fdSt5uPNo89CjWxX0okp2pSmCcFSuSurVTq+CZuuBMPs7JvdM5SKSKifGKjcyIiIiIqCFZxQVANaPtEYqW8kQQL8XPGJmZx6FiVpvJIkclBlrX4URFFtTlidEwVSwWQ20zkwIyIiBIYShERERFR4TI0+E7pK246zBA6jTCvkIZz7dpUOV/aeSqa9eREkb4hOoAZ4QiaQmP/rb0p8MvrCncjS8IynW7ICIuIaHwwlCIiIiKigiX11feiELFvbZOn7wHpK4zMx0rjm4zOSDPKpEuI2KS8EUQhNreqi0bxX8cq4FaTv72X+j1zJb9T3EY27kwqpSxXaSyAKjAiosmEoRQRERERFSypxkIpJZrYlsF5IpOQJp7nZLTynDTtMLc7N++zb5Juc3HDWFNuazuOHNOn7xlWDsxrpZRZphVQ7BFFRDSxMZQiIiIiooKlxiqDpBKG0KumzEGEkDJtOJF9dJFN16LU8QCATHMBgczrhGS6i+VSIZQTZflx6I3RC+DRiIgmE4ZSRERERFSwpB5KRfQcIpi0vnRjW5vpffo4KdtkItPj7VbfG8G9LE61up6EzEnxlLColMqnkd6VlVJERBMbQykiIiIiKghSpmYxqiGUiu99dqkbf1qdOLIoEDCEEzZBkOVm+0AjozjJ5iCluHgkV9NklbHEpxLmLpiRQF6DqeQZgpl+UvHgkY3OiYgmNoZSRERERFSw9J5SIlEp1Vci8LOLXebjsrnmCPaYjpJJNUvJwYii6NuMxzl1l1JtRzSOlUDj2FMqnYwanXOuHhHRuGMoRUREREQFyzx9TwsiVKugJqnH+ChroJwPs1j9z4r99D1h+Kf92Zm+0y42ugDJOH2vsCbwpRrPBu1ERGTGUIqIiIiICpKANIVS8RhHitS6IrsoxTGesG/flHqgY2aSYaDieKOJF6RM5HAn27ElMjdWTxER5RNDKSIiIiIqEKmBgbGnVLxAKV4p9cISrXdTe319ypmO07uMwYThtfYyfp5wLIiyvLqIV0AZ7268yAhCnnzlQvrqdLKglqhjo3MioonNnf4QIiIiIqKJSa+UEonpe/Eg4ncXVqCm+Gy8PqMUM23DCYEMJr+ZD4dTFmQdN1nJZvU9GR+mbfVW4tlT9uUwl1EjEQQGB3J3wXRGWI2VSU+p0RxPRES5wUopIiIiIiocSQFLvNE5lCjiwYwaK2EKewROzpiHsNebcS6TXTSRuGo2/Z9SttkELzmJSTLsb5WOomg/NuQ1kHKQ6TQ7p+OsqqhYV0VElF8MpYiIiIioACVXOCUqhFSLnlLZTZPLIJrIJDFKc4zdinrWl4hP/bOu6krbMWuUCVdV03TMWbka5XX1+rZoJDy6i46leI8oi0+GVVFERBMHp+8RERERUYFKmion7Sa1jbwCJtN19Ezz6mRyeJQcJEnLXRO5SkdxufD2z90OKSW+ed3VAIBwIJi3+2fbGyrr6XuJxQWJiCiPGEoRERERUcFKhAjSJohwDiec9kqZqE9Kf252pVPZ1uokHjO5qVWaqYE5JoTA+e+7BW379mDGKaeO2X30+6V8UllOsGTKREQ0oTGUIiIiIqKC4DhFTViHUolKKRl7n76Gxr4qx9hDKvkqUt+T/jrxpuQjD8xSRmYI55JHlevJaqve/PYcXzH3OEWPiKgwsKcUERERERWo5K7n9kFE7uplchd2SJG68p/pHiJ100iehPGMNasqqmynCRIR0egwlCIiIiKiwmCRF5in75lp1TJ2XaUyiGoMbaKyGZhM2pQcdNheL4v0KH7onMq5+pZ4LZh1zjW1oikxxZ6XiKhQMZQiIiIiogLhUMUirKds+RR/ujOd72N8melFbI8Tpt+TD3OomTIcYw7ZppdOT3MVObE7qKcjHN+mZbn6nkVgxUbnRETjg6EUERERERUIi0hCxgOe1J5Sne6TicPSXcd4yWxHkrYIyyIYSdQ1ZUTqQZa59Xo8YHHstzUJpWtgHv+zwEbnREQTG0MpIiIiIipQ0vTaE/WY9gZcIRwZ3AkAOBE4kv4Smew0FjtZNhd3Wq/P7rr2q/s5dckSUypwye5Zs210zsboRETjg6EUERERERWmpJlpVaEqrOxYCY+aWGA6EB0EAERkFIAh5MlBBpH5JZLrtDJbfc/qCvEcKl5phRPb095vKnNqXG61j58cEVF+MZQiIiIiogIWX6lOBSDQMtCC1f1LE7ul+TCbs81yVIGUuhhgYqphFqOxPEY/sudI7Jo2Y4ifNdUaf0+xxyUiKlTu9IcQEREREU0ESdGLSN0EAH7psz8nTVphmsaVTTbldKxMrpQyn2jzGCkjs76hajuQSZHLxHtmjTAntGx0bvhkwmoYXcNd6AoMjeo+REQ0MgyliIiIiKhgCJvXxjCmKOpDLhlDjMSUO+PdrYIPe9bXsLqv/bmpV7DvQCWm4KS0THpEqVLFO/74Duzv3Y9ooBHAJ6HGpnkm+9K/voT1h9cDAJbULMH9l94Pt8IfpYiIRovT94iIiIioIFjVG8UrW4xT5cqjJRZnJ4cUTi3EMwhxRPKI0swTTDk5o7skrh67bEpPqbS3mpyBVKar6jkdNxAewP7e/fEjAQBRm1Dqj/v+iMHwIAbDg9jUtglPH306q/ESEZE1hlJEREREVLj00CERPryp+xw0nSzB+a8WJ44bwVw2GVGhDoVHNz4LpqEYQhOr+CR12NYPYp29TIoJfCOS0Wp6hs+spXy2tilN1lXkLgIAPHv02ZEOjYiIDBhKEREREVHhkikv4Jc+XPPSPJy5sxjCImVIF1hEZCyIikrIgHXljP1kucR+i0HGdkoImfk0PtMx2VZKWdy+kCS+VtlUoo2d1Y2rx/X+RESTDSdCExEREVFhkhKJ1fcSm4XeOjy7Xk9xgcgAlPMrUBzRpgHKohDwr42OU8EcQ6hM7y4c38auHO8p5dhZ3eLaU6tqSugN0u1DSeMEyvjnmS6/ay5rzs0AiYgIAEMpIiIiIioUVrmKiBf+Z1cOlKhRMq99F3+nLChC5dy5AIBoVxfwr5QTLau0rI28VCk+vhHGXJNXmo80o+l7phMceowZgi097Crk8jMiogmEoRQRERERFQYpU8II545MBsJUSqWbPVSCrmJAlVFUqEWolFZN0kdG2uQcMh5s2AYhTk3YY5VSegNzhiNOMg2PRIaVZFmHXURE5IihFBEREREVLKnGfrfcabtHNytQivPcp2Ao0g8hAOGKhz6jCR+So4ukdQNHkiPpFTrJ4tPOMp2AVmCSvg6ZflUy+fpZBlYSCEdVPL+vC4PBCKqKvVgzu8pwf4ZSRES5xFCKiIiIiAqX3v862zAmuYF2dueNLpywWUEvk6NkJj2ljNecZCFVjFN/L9NxDs9vd42HNx3GHX/cpr9/16oZ2Q2OiIgyxtX3iIiIiKgwCeMKdjbhg3Tca7M9qbLJqurGtMk4rdC6PXnyPgEJCRELlzKp6rG+febRWGFX+OQ0XLP6choWN2ztDZj2bTnSYzjOvoE6ERFlj5VSRERERFQQnGMAmfROwmril1bhlH0vJ+2i0cSRijBVK3migKofl2kVT/YS8Vby89pTcpWfDJwA/vp5YPgk0HsEmHWW1mi+chZw9icAxZWjG6WX6SNlHx5JPQA7pakc21v7THvzNn1PVbU/by5Pfu5nvG/bViASBBQ30LgMcHvzOwYimlIYShERERFR4Yp3E7fuYw49vkjOEtSIeT+QaFAFAA9cCZSGY6FAFYArgEhI3+1q8GDLYAiIWl/eec28zKXWgZm3pJ/GN8IxDJwANn4HGOoGXv2Z9TFdexOvn/0GUDUbKGsAVrwHqJgJNJ8xsnvnQDw8cpy+Z/GpxnYAAJTYnBIZHs7x6NKIhoHvnQ107gIWvwUorQfO/7z2+1gJ9gN9rcAzXwNe/3Vi+/LrgbffP3b3JaIpj6EUERERERWI5KX3pGGbzEEIZDg/NAAMD8beBFKOFG6Bp5cqOH9L4u42o0wVGY4d51x1I4RInRYYD0wgUVo7jABKMrtpoBdoex04+jLwwve0UE4oQO187drhQcDtB7ylwDmfAp7/P+C1R9I9CdByLnDwWe3zan9d+7X3H9q+f98INJwSu38fsP0PQCT2WZZPA6IhYPsftbF4S4DpK7XKnPImoHJm7DOwue9AO3DkpBamAEDTcqCkFtj3T6BjF8SRTdr2Lb8Cdv4LWPYu7dh/fhVwDQNFAA49r19Oj/okIPc/DaAZonM3gEbg5EGgIXbAG7/Vpo0efRHY9ANADQNLrk18vgBQMxdoWgH86x6gY6f2OStuYPHVWrBUf2qi+khVgcc+Ahx9Sfsc1CjQdyzxnDv+qP3u9gNnf1L7rKUKuLxAxQytOk2NaIHpzj8D4SHteH8FsOAKLVR1ebVfZQ3a9rj+Nu1rHA8grez9B/DM17Wvs9sL/PQtWmgGaH+OF16pPZtQtLGUT9e+Fs1rgMpmmy8eEVECQykiIiIiKkDmrkrpAimp2LRSNRVSGRKQxqXAe/9PC05OngQeeQrS7QegVUuZ+6on3TslSEnqKWWouDKf5xBSxXapsRcKVMw/tw09R0uBoN2NDe//cQdwcCj1ul17Ure98RvAU6y9bjkX6G8F6hZpv3cfAN7+faBzNzBrrRYkHdushTI7H9e2H3hGO/d7a4HqOdq5u/5i/2xxW3+ZeO3yakFMJArg9NRj/3ArIA6Yt9Ut0kIgAKirAUpLgNZXgL5ngK0PJ46rLAeKKoHBDqAk9pzdB7Xfw0OQrVsBNEMJaaGkMTwUvUeAygqgYxew47Paxr9/MXV8VS1amGVkrDhzF2nPOP10YP8/U8+Pm7EaOPqiFhrZBUd2/nVP6ram5UB4GBjuAQZPpO5XPNrX/sY/Aj84X/uMnvp/9vew+7q+4ycMpYgoIwyliIiIiKhgOfUXF4YDpNcHAPBIt7ZdWIRZwhBcvfU7QN187bW3G8BTMLejEoYaLXML87Q83oxXz0u+WghahU0w9rtSVgr0I7M6reJarapFcQOXfQUIB4CeQ1o1TVmTVn20/ivaseEhLTh550+BkprUay24LPF6+krt97kXab9v/RXw+3/TXnfv137FlTYAtQu0cEuq2liWvUsLcFq3amMI9mlhYDSUmJ5pp6hK63EFJAIpAKKkDsAQMO8y4JXfJY6vnAWx/E3A4b9CTjsN6N2lHR+JBXZSQsbDwZJaYABaFVfcvEuAzpeAimYg6Af6jyf2GYMoYyC15iPA7r9rlVpDndq2yLD2Kx5I1czXwj7FpX0mLi9QMw/oPQx87xwg1J+43qxztGqq0GDi66ko2jmNy7T3ba9r1W/RsPYrHkC1bk39DOdfrlVdrbxROz8aAtw+4Or/0yq4jm/RKuDi3vUz7TPp3K0dJ1Wt4qvnEHBih1Y9VlJn/fUiIkrCUIqIiIiICpdMeWHYJ+Ee7EM4Og1SAYSUWBqNVW8I+6bcEtIUUJlX37NtXuWwOWk1P1cRgFjVk7RafS/dFYBjaMQsdELxxL+dF5ZH66+uvhd497usB2y08mYtiAC0UMQqkEpn+XVA82qtH1XnHqDvqDYtrXwacNr7nCvCAKD3KBAc0MIyFcCtn0g95vL/BubPA+oWAF37gMMvaNtdHi04eulu4ODfIOddDLz5x4lpg54i4LXvA4ehBUuxUArl07Tf3X7IRW8DXg9DVM0CBnq0KWkxonEZ0PkS5OzzgPf9lxbG6HMqXdpYXnlIm1Ln8mjPWzMXuOJ/tGO69mmBX387sP0x7XPxFAHnfVabtpisqgX47N7ENMWiypE1Pw8NAgf/FZu26QLKGrXrlDZo4ZuRWwtwsfJG7Vd83MF+oGqWFgQCwLyLsx8HEVEShlJEREREVBBSY6f01UauwCAqDgHR0DbU++qxoGkaetGRPhjJbAD6DstIKLVLedKODC9vPDO2mpx+R5F8lsW1s2m1VVwNLLg8ixNsVM/Rfs1Ylf25FTMSryMWDekBLTCrWxB7PVf7ZWBaJU9RAG+x4y1FUXXsWBdk+QwAB6DobbwMdXDJf26Sp4XWzAUuvcv+RvFxNi4F5l/iOCadx6/9Gg1vyei+rkmfLxFRrthMriciIiIiKiRWTdCzkV1IJZLvmFGiFJsyOII8LFny7Syn7+XgPhNNbPIlQkf70xypybb5vTSckxJAISnsIiKiUWMoRUREREQFIzkUkNKqYihdcJA+WLAKJLIhpP16fIkCqmzuYTPFL134llJJVZhCUW36Xbx6qX/9YYQ7LBq3x+kfj/3zS5sAL35KolKKiIjGCkMpIiIiIioMDkVAmVTEZFs1k52kFfYyIVLqrTK4enLAlf78TJuqT2SHBrej7/VfIaAmnqX3rwdtj3eqaIrvMwZWelAoU4+zMrZ/loiIpg6GUkRERERUkIThn8kVQVbtw1PPNYcL6aZmjTyGGPmZKSNyuFTqrvRN2Se6eMVaVEYwfOQFBONVTGVeuKt8ac8fSXikh1VWKzqOsoKOiIjM2OiciIiIiAqEVSCQSUggkUkwJKWqv/b40gceTjIbVdJUxGzOF0m/TzEVb5+HykX2zbczCY/sAsn4ViWDKYBERDQ6rJQiIiIiooKVyAtSp2JlUyRjDDGqmqahqmm65T7DGVaDyOxeSEypyzRTkiJeFxZffc88Cmnqnp7c9D2r4U1cYxnAGSrtEoVSbHRORDTWWClFRERERJNCcvaSWXygneX3+gCvFxhWcdV/fM7hWENFTbom4inpWPads23am1MamYRH+ip7KRVr2nZFib83XJfT94iIcoqVUkRERERUoIxdqbMtBxLmKwgBxe3SXioO3yIL02/2B4xgLBmR5oArpYk5MxMTq6l36YIlVkoREeUPQykiIiIiKhAWXZdk/LfU8MG3YL7lVUS69ehyUA3jOOHPbtE9kfIiA8kN3lOrfsr6+3PyTOPCbthppkzqK+xl2Bk+sSKfoa7NoqeU1cp9REQ0cgyliIiIiGgSkig69dSUbaO85AgPdzoxs/bmTk3R093BE4067C0cIosgaDTT7BxvU6DZHhHRRMWeUkRERERUEKyygkRYk2nwYxaOBrQXERfU/vBIh5aQUWih1WolB02jv/zk7kBl+rzS5FNnNp2JUk8pFtcsTntdY4BlbCPP/lFERGOPoRQRERERFS59rpXjfDjbPUPRfkSGOuAurtN3uEo85mMtwgnFdLt0FTxJjc5HkHUkFtdL7imVycnZ36/QXT33alw992rHY4xT+4xf4nillOLQl95xWiAREWWMoRQRERERTQLJvZXgnNi4E98Gnzz4COZ89D/hrquDp74YrnKv5SmqVCHdntj1M69ZcowvDAv6ZRKr2fVzl5nfsaCkNBaXSQ3qR3FNu2Ap0eg8vsFhPERENCoMpYiIiIioYCSHMlIaqo+c8gIpTb2ChMulv57x7f8PFbNm257q9XohhNCaW7u0b5+VUTQjT4Qi2VzDbppiZvEMp6LZE0nTAuNhlSJSAzCGUkREuTUhGp13d3fjhhtuQHl5OSorK3HLLbdgYGDA8ZxAIICPfexjqKmpQWlpKa699lq0t7fr+7du3Yrrr78ezc3NKCoqwuLFi3HvvfeO9aMQERERUR4lKpdSwxnnIMawL01gU1RUhOuuuw6nLzkV3o5jmNMdhTeDv9vNfIpX9kFHYhLf5KmKyk5un9sYNumVUhZfFoZ7RES5NSFCqRtuuAHbtm3Dk08+iT//+c945pln8OEPf9jxnE996lP405/+hEcffRRPP/00jh8/jmuuuUbfv3nzZtTX1+PnP/85tm3bhi996Uu47bbb8J3vfGesH4eIiIiIxkRyxZFE1F8CABgUw4btAqZ5cVlc087ChQuxcsmp8HW2onY41g7bdPlMej3FKm8y6Eclkn5PF0LZrfQn7eb7kVb5lrwNxk/QaTVEfq5ERLkw7tP3duzYgb/97W946aWXsGrVKgDAt7/9bVx55ZX4+te/jmnTpqWc09vbix//+Md4+OGHcdFFFwEAHnjgASxevBgvvPACzjzzTHzgAx8wnTNnzhxs3LgRv/vd73DrrbeO/YMRERER0diLaCvmhUTE4aDcBggWWYY1PVFKDtOgx2Y5GE3KPRmXZCZdTynF4uvH6XtERLk17pVSGzduRGVlpR5IAcAll1wCRVGwadMmy3M2b96McDiMSy65RN+2aNEizJw5Exs3brS9V29vL6qrq3M3eCIiIiIaP0LA29MNAFChWu1OMkHjmpRu5lbBR6wCS5orsuK/9YX8ON7lBqKDYzHC8WMzXS7jYNDykuZrCggIYaw1k7a35vQ9IqLcGvdKqba2NtTX15u2ud1uVFdXo62tzfYcr9eLyspK0/aGhgbbc55//nk88sgjePzxx23HEgwGEQwG9fd9fX0ZPgURERERjYf4FCzLqheHAGG00YL5/CwSEqnGxmUxdcxhUHbtzd2xMKUnXISeEwC8xr/U1e4zeWKUxKdw8uGH0aoAVe97H3wtLTj6H59AcM8eAIBSVobpX/tf+ObPT3M16+l70Cul7Ff6s5r6R0RE2RuzSqkvfOELEEI4/tq5c+dY3d7kjTfewFvf+lbccccduOyyy2yPu/vuu1FRUaH/am5uzsv4iIiIiCi95BhAQBq6Umd+HWO1i5RZnGoKuUay+l5ylJXFJL6Uairtt5byYayoKkJzcU/soiHra06yCp/BFzah59Hf4MBb3oq9l12OgQ0bED52DOFjxxDcuRP7r34LTj7y6xFdW/9qWVVKTaKIj4hoIhizSqlPf/rTuOmmmxyPmTNnDhobG3HixAnT9kgkgu7ubjQ2Nlqe19jYiFAohJ6eHlO1VHt7e8o527dvx8UXX4wPf/jD+PKXv+w4nttuuw3r1q3T3/f19TGYIiIiIprIZMoLnVOAMLo6F6ezR9ItauRBh1uRWF1bitahVhwZqhzBvQtH/ec/C2w7DgAoWX0G8PsjAIBIbKaEt6UFFW97Kzq+pa24rQ5mOJVRGIJKmaiCYgBFRDT2xiyUqqurQ11dXdrj1q5di56eHmzevBkrV64EADz11FNQVRVr1qyxPGflypXweDxYv349rr32WgDArl27cPjwYaxdu1Y/btu2bbjoootw44034qtf/Wrasfh8Pvh8vkwej4iIiIgmAr1Syqo6yHRgPkYTu1PytC+7FfPShx6pBVJ2q/VNzjDKWNVWfullwLYHAQBVN9yA5isuR+jAAW2nx4Pyyy6Du7YW5VddhWhPLzyNDc4Xt/nIkiuljDP1hD6lb3J+3kRE+TbuPaUWL16MN73pTfjQhz6E+++/H+FwGLfeeiuuu+46feW9Y8eO4eKLL8ZDDz2E1atXo6KiArfccgvWrVuH6upqlJeX4+Mf/zjWrl2LM888E4A2Ze+iiy7C5ZdfjnXr1um9plwuV0ZhGRERERFNMI49l6TpMKG44NH/stGqimqUQ5GjibkSHTQyHYceYOk3tTtTOrybXErPOw8477yU7d7mZiCD2Q7mYMkQIcZzTj0Qm8yfIhHR+Br31fcA4Be/+AUWLVqEiy++GFdeeSXOOecc/OAHP9D3h8Nh7Nq1C0NDQ/q2e+65B29+85tx7bXX4rzzzkNjYyN+97vf6ft/85vfoKOjAz//+c/R1NSk/zrjjDPy+mxERERENIbUeGBgDg6u/Pin4fEXZXABOQb9lpJroDINNVLHkT56SuqpNYnzE5m29mxkROx/8evGr60k54DglD4iolwb90opAKiursbDDz9su7+lpSVlhQu/34/77rsP9913n+U5d955J+68885cDpOIiIiIxpPlMmjWhzafshTHDu3M5NCM2WdXNle2OV5Am25nt6Ke4xiSmqYLvf+RdTinHeMwGEqR6CmViqEUEVFuTYhKKSIiIiKiEZE2YcwYZgfS8vLGsMju5sKi95Ndj6gMiXTHT87SqVw8VfJfescvnOgpFauesugpNUk/ViKivGMoRUREREQFSDi8zUc1i/M9nPamNjjX3gf8VbbXkXZlWinByuRNS0SOp1naNivXe0rl9HZERGSBoRQRERERFSiphzL+oj6ccuo/UVV9VN9rHyqMddrgHBQl2j+ZxzFU3Ki/Vuym/sWeN7m7krBafXCyse5LPmoCwhR4xcMqTtUjIhp7DKWIiIiIqECkJhHhIQ8AwO0Oo6bmKGbN2ppyzLT5lXC5FcvzgZFU4CQ1F8/y1HR5SsQdRL07u1bpxkjFaislJJqap36qEoniM6dG57ZVVkRElBWGUkRERERUEKxigOEuP7ZuvQxHDp8KAFCUaMox1U0lEK7cjiWTyXt2a8UJJCqerB4q4gnAb1cqlTIC43pxNhcEJtFctLF/DukwfS/XUwiJiKY6hlJEREREVLCElOjrbcDJk9Os9qY9P7uKl0zaiQsAEtaz6ax7SVldJfX6sdX2bBujG7ZbNfAuZJZBUO6eUQgBY//y+J8JRW90Psk+TyKiCYShFBEREREVjJSwRw8MYqGNsCpzse7pNFLZRxSpZ5REB+0Pz2qAUygwyXWRkl2fc6dKKU7fIyLKKYZSRERERFR49NlrKqBGE0ECAHfW3+KOLO3IOpgQ2lkQwHld/8IdUa2qKqORGWfrWZwVD1CSK6nkJGqAbqxYykXxkkyqb0tst9oa28Lpe0REOcVQioiIiIgKlgBQdGQvli1ZCgAoll644YJI7smUEmKMbdmN3TS7+F6vjGCtzGQ6YPKZFiv7VfkS2ydPBjVmrIIlfaW9xIKOiUbn/EyJiMYMQykiIiIiKgh22YB7qB9LlywBAHj9HpRfNgtKkduhqiU/88D0zClpimG219H2xHtKWeyZUZbmuoVNWH1uOUyKUq+vXZtFUUREY8893gMgIiIiIhoJY9WQENrftSolHpSfNdN0XHza12j7ACVCrtFcx6qiyr4BulUIFRuMzRnScutkSFhyHyWmrlooYayUSl5F0dBTiuVTREQ5wUopIiIiIpoE4gGCmtnhxlBhBGlHZqfYT8Jz3u9wpZRZetp8M+HQO6rw46i43AZB0ubPQGpdmzH8nDyfJhHRRMBQioiIiIgKX6xSCtIQSpm6V6e0Bh/b4Zje5XKqWbreVTKn95sKkoOmeFgV386iKCKiscNQioiIiIgKUNL0tVgoZTlFzzFUGEXiYJlrObU4j/eFsgvEHMZiV6GTcsokTFCsWkqN6nIOgaQ0VEo5HjYJP2cionHAUIqIiIhoknjmmWdw9dVXY9q0aRBC4LHHHkt7zoYNG3D66afD5/Nh3rx5ePDBB8d8nGMjgylx45YjGKZ/mbZbpx5Z1XCJ+G82zdYZntiSpq+LYbKeTN1mdRwREY0eQykiIiKiSWJwcBDLly/Hfffdl9HxBw4cwFVXXYULL7wQW7ZswSc/+Ul88IMfxN///vcxHmnuJRpQqynbcniTsbs2kqIrab1P6E3bY/ePTzVLd/FJkKWYArZcZ23xj9NwacWwTTtkEnyIREQTDFffIyIiIpokrrjiClxxxRUZH3///fdj9uzZ+MY3vgEAWLx4Mf71r3/hnnvuweWXXz5WwxwTQrhir1LTih3/2oBIOAR47c4dbdhgXQklRep+01F2zYqE5UtntvciO3Yr6CV6SuVzNEREUxMrpYiIiIimqI0bN+KSSy4xbbv88suxceNGx/OCwSD6+vpMv/LDKXBJrZQqq60DAISDAQBA1fTpsSOt1lXLfhQjin9k8oQ6iZGsxmc+Xyam71n0mHJYmK+A5fahrPInPayclJ8fEdHEwEopIiIioimqra0NDQ0Npm0NDQ3o6+vD8PAwioqKLM+7++67cdddd+VjiI6E6XVqsHPKeRehsnEagkMDEBCoLZ6B3gf25ODO0iLESEzySpdijKwAJ94kPT59z3xf65htcpT6CCFi0V1unifddfSeUkmHCSE4hY+IKMdYKUVEREREWbntttvQ29ur/zpy5Ehe7usY9ShKylFCCExfuBhzTjsDs09bBV9xib4vGg6Zjsut5OjCGFhleaXYHEDbZ7dcfY+lPdlI/WpJy+1ERJR7rJQiIiIimqIaGxvR3t5u2tbe3o7y8nLbKikA8Pl88Pl8Yz28LKVO37NT4qlAiacCAKDKKCobmsZ0ZHZGFx2ZK8PsVt/Tj54MDZLGvs+5du3YxRONzlNDKrt+VERElB1WShERERFNUWvXrsX69etN25588kmsXbt2nEaULWF4FX9tH0q5Kn2AO3FOVEZQf+YCCCWzb4kzr5xJN30v3XWyCZDic81ycKkpRiZV1cWpDo3OJ0W4R0Q0gbBSioiIiGiSGBgYwN69e/X3Bw4cwJYtW1BdXY2ZM2fitttuw7Fjx/DQQw8BAD7ykY/gO9/5Dj73uc/hAx/4AJ566in8+te/xuOPPz5ej5AdYwdvoQVLThUsrjIvGj97BrpfO4CB7m6ISj/OXHvDCG+ezd/tSse3ie3JnaIMu2JhiJDxnlLmcGR0rdsnOpH6KgePab/6XvxewvI9ERHlDkMpIiIiokni5ZdfxoUXXqi/X7duHQDgxhtvxIMPPojW1lYcPnxY3z979mw8/vjj+NSnPoV7770XM2bMwI9+9CNcfvnleR97Jny+Htt9QqT2lLLirvCh/txFqM/BeCwjJCEgk+KL9PnJ6MOOxPS9yRhKxeQoE0qudkp+H/8EFYf7Ja+hSEREI8NQioiIiGiSuOCCCxwrhR588EHLc1599dUxHFXuuN2DprhHCFfidRY9pfIlNbSKjdEYglh8vayykMQVUmqo0oxh8oQn5j/bo38u0/Q9q35RnKpHRDTm2FOKiIiIiAqQgDB+K5thpVQu2Ez6yvjsdFGH8Uq2x+p9zqX5OJnR2ZTMMBU0tdF5/Ji8joiIaEpgKEVEREREk0D6Ruejv0VSKpFpv/Kc5GTJCUnSXtNYLA4q4Kof89DNfZ5Gw2pVPcDQ6NzhC8zV94iIcoOhFBEREREVvHjV1EQJC6y7FGV2nFN8FJ++J1MSr4nx3GMqT7lack8pNjonIho7DKWIiIiIqPDlcfqeM+dIKdtYQ4+ebE906DHFDMWZzUzH1JZSht5TBVxxRkQ0ETGUIiIiIqKCl99G57GKpnh6YVOdZbk6H6yiqeRpgVkEH3oVj/W9AFO7pAI3Ng+S/PWIV9vFA6hJ8/EREU1ADKWIiIiIqCBI/R8aY5SQqGDJX4TgdCenWElaVOCku2J8ul48CEuevicmT/KUkVxP01QsYr3UFmLGY6bW501ENFYYShERERFRgXAIAgzT98aqr1TmU7fS9HmStm9SeGKPZTfxT0AmBVLm6+nhSSFPO4uNPddPYBcsOfWQYl8pIqLcYihFRERERAUpEgnrr81hwXhXsSQHFzKxXUqL/am6oypUU1mY87ftjEqyZxdehqPaFFCPy7zSH/tJERHlHkMpIiIiIipIajQKAHB7vFDcXsOesQ2lrKZ3Gatu9Fc2GYZ9tJEIr3qjwE88LyOQ1CJL2Dyb3fbJZONvfwmpDo76OinVTsL8NYmo2mfpVpy+UpP/8yYiygf3eA+AiIiIiCgz5pBAUQTOvPZ6TF+4GG6PT98upQohXPkenJlDZlEaLY29EpYHxp+yQwwioveQMl/Xrom6XdP1QuYrLsFQbw+2bfgH5MyFAMrG9H7xSim3y/z39yL2PyIiyh2GUkRERERUkISi4Ox33QAAiET6DXvysQKfMwV2fZ4k6sM1CCGTahunACS2T18pzupeY9OLKd+u/uQXcPC1V/DKX/6IXFbBmT5/w4cUiWrbvS5OKiEiGmv8Ly0RERERFQz7gMWwMlpeioXsRpIIguyHMZKYKH5du6uOJuCa2GacsgTnXPd+FJWXj8n1kyugEpVSDp/Z5CtIIyIaFwyliIiIiKgAmQMDYWoEPtaVUukTCfPoko7PomF2+iNl0nEy9X6ThMfnT7zJwSPaVarFe0p5YpVSUq9GK9xgj4hoomIoRURERESFyZQpGCulxn/6nmV8IeKruaVJVETqtLvkHlKm91Lah1di8gRUxlAqODSI3hPtI7qOsPo6GD7A5NX3rM4lIqLcYChFRERERAXBOV4xflub7yAm3f0yC6Hi3FZN2mOHpGRMyR3QJ2mVFGAOpTb87Hv45e2fzdm1LafvKbFKqZzdhYiIkjGUIiIiIqKCZMxyzBUsYxsj9ITaIWU0kzbkWdLG7VK0tYjeMvet9kfqz5vc6HzyKq2pMb0f6unJyXWFEKZeXfFG5x63/Y9K6ZvUExFRJhhKEREREdEkkEhlVDWIQOD4mN1pKNKLjt5dSVvjIYXW4lzJOLOwP9CtuA1HmUMoE2Hfw0rG/zEJUqvzb/gAhKsaALDkwivwyYd/Pyb30XtKKRbT9wq4YTwR0UTEUIqIiIiIClQifBHCDSE8AIBXXn0vnnv+XPT2bc3t7bKoxjKtkmfoXWS/ep4FmU2jc5myLXHPyaG4ohJClAAAmhYshqJYTHPMoXilVPzLx0CKiCj3GEoRERERUYFKhARCCPh8jQCAwcE9AIDW44+O6b3tpnDJ2MhkSobhUO3kuN1ch5X8CgAUY7MpvdF7rGH6pJppFnvuUTxTPFySeqAnLAMnt0WlVByn7xER5QZDKSIiIiKaFEpLF5reFxXPGqeRODPGGVaxh2NFTvLKfVJbfc8USmH8Vx8cE2NYqCQskjuv29zonCvvERHlnjv9IUREREREE4FzdcriRXeju/sqbNv+KQCAIrz5GFQqhx5PtifYSSQipiONXaMEhEMoJSdZpVTuSEPA53Kp8Nb9DTPdl6KuqB5r59ag1McflYiIxhr/S0tEREREBcqctni91WhsfAu6u59Fa9vvoKqBsb29niWl1j7ZxkyOAZF0eGdHRSC0F0XGmEqaK6UmZX1ProM2AfhqN+Df116AaxecCQA43DVkupexgk0mV6wREdGIcPoeEREREU0qiuIDAETVIAAtQIj/Go3k6VtOYY959b3kjlAZNkyX0uIo87UkVAwGXooVUsX3JU3fk5ikydToGHtKJW8jIqL8YKUUERERERWODDIDxeUHAEQifdi8+Tr09L4EACgpmY/TT/sFvN6aMR+YSNmSBWHXztwiWzLcRIh4jqUadkvmUUni4WK6AMqqhRT7ShER5RYrpYiIiIhoUlEULZQ6cuQBPZACtFX5OjqeHPX1ZdLvzkfZv84ktErcK77qnLQ9V89LkqfvTZKpZmMZCDk1l2dFFRHR2GEoRUREREQFIdMYoLjIvOpeVeWZqKu9FAAQCnXkYSyO6+c5XDR5Zb30p2j30b6lTzQ7j5r2Tka5zNmMYRfDJiKi/OL0PSIiIiKaVJqa3oGSkrkIhU9CEV5UVa3GgQPfQUfnkwiFunJ2H+tV7URiypxIntJnFRLZN3wy7pFJq+8ZX2mrDA4ZppslV0pZXr6g5TM80gMwMeK4kYiIbDCUIiIiIqJJRQiBiorTTdu83loAQCjUOQZ3TA1InKOLdHVWmd9RABDCq70WFhMLRfwYhinJjI3vGTaZ9fW9hv0HvoVodBhuVynmz/8iiotnj/ewiGgSYihFRERERJOe11cHABga2o/ukxtRWXG6vkrfiNnmGCKpOimpp1SmRT6Wx1kEYCmhVCbXISumoCrp6zuVekrt2v0V9PW9qr8vLV2EuXM/PY4jIipMqhrGoUP3Y2j4IAQU1NVdhrq6S8d7WBMKQykiIiIiKkgii2DA69VCqYHBXXj11feisnINTj/tFxgY2IHi4rlwuRIBlaqGoCheBALH0dn5FBSXHx53BaRsSbqq9f2FdF7xTiY6klsfIIJQPEPWu5Km5gHx6XvGnlLJ59BoGD/VqVJxFgy2AgBcrlJEowMIR/rGeURjr39gJ4aHDgIA/P5pKC9fNr4DGmNSRjE8fASqGoLHWw1frJo0TlWDow/uLUQi/Th+/NcIBtshZRSNjW9DefnSDM8dxN59/4NA4ChUNYyGhjdjWtO70N39LIaHD0MIF+rqLhujFVZH5sSJv2L/gW/p7zs61+P8WCglpcT+A/cgEunD/HlfhqLkNp5pa/sjhoYPAgBKSxeivu7ynF4/VxhKEREREVHBGGkkUFG+AvX1V6K7+1lEIv3o6dmEp/45T9/v9daipGQBqirXYP+Be6AoRVDV4ZTrLL1ZwcDhMvgHUvfZjzO7qhrFexBzL/0C0PaTxBVigZNQwgCAktJufZ/HVQtgPxQlNbAyrNtHScxVUamf0lQJoKxEIgMAgMbGt+DYsYcRyVMoFY0O4cDB7yIS7gGEC8XFLWiecdOYfy2CwXa89NJbIGVU37Z8+Y9RW3NBTq4fifTrU4f9/hlQFI++r63tD+jv3wafrxGlpQtRXX22zTUG0de3BQDg8VSjtHSRuUm/lFl9Tq+/cSs6Op6IvVOw+ozHUFZ2KgBg3/57cPDgd9HUdC2aGq9BaekieDzlpnv19GxCKNQJRfGiuvp8U7DvZO++r+PYsZ/r7/v7t2Hlyl9ZPO8A9u+/B4ODexEKd0FAwcDgTtPX6OTJ57F//zdN07JPdPwdp614ENFoEOFwN1yuYng8FRl/LukEAscRjQ7B52tEIHAMxcVzTWFSJNKPwcG9UNUwPN4qPRRSFD9UNYBIpBeRSD86Op7E4NA+HDp0PwBACDfqai9FZeUqCOEa9Tj7+7dj2/ZPmbadfdaz8PunjfraucZQioiIiIgKkEBUzTzsURQPli75NgBg62v/hs7Of5j2h0KdCIU6cfLk8wBgCqRKSuZjcHAPAMDlVVExrxfKDhUIGq+Q3NTcOooSAMoqDwPzeqGGg0l7Y2dIAZd3GKrnCITiBaAAwhw4FZf06K9dSikAoMgfxuBw4gdDEds+kWaahcN9GA4cRlnpqaMLGvL4TFKN4K5pQzgRicLdtwHzfVFAaj80Dw8fBgD4fA0p1RlDQwcQCLRCCBfKy5cDELFQQUAIBeXlS20rUQKB4wiHe3Ds+CNwKT7U1l4Mr7cOJSVzRvUs/f3b0NX1NKJqEG5XMWbMeB9crmJIqcbGJSClRDQ6FHuuRgDaD9ra+TsQCBxF98nnUFd3OSrKT0MkOoDhoYN4dctNqKw4HfUNV6G0ZCEqKlYkPkMpMTCwE4rigaL4AagYDhzD3r3/g8HBXZBSorHhapRXnIZDh75nGnNFxekoL1sGVQ1AVYNwu8tG/UP70WMPo6trAwCBhvqr4PM1QMqoKYzu73sD0cgghoePAFBRVbUWFRWnZXUfVQ2i/cRfsWPH5yFlBADg9zdj1swPoah4FsrLTsW27etM55y1dgP8/ukQQkFPz8s4dvyXiEaH0dHxd9NxXm8tvN5aCOGBlGEMDx9FefkyDA0dQDjcA7e7FD5fPZacei+Ghg5g1+6vQKohuNxlmDHjBkMgBQAqjhz5KSorV2Hvvq8hHNZC79bWR9Ha+ij8vmlYs+ZvcLtLAAAHD96H/QfuMY3H52uCx12OpqZ3wO0uQ23thXC7y3H02C+08biKMX36e3Dy5EYAQFHRLAwPH0Iw2G7zNfoFjhx90HJfff1VOHHicQCJPoFebz1CoRPo6dmE/v7teOnlayBlGIDA8mU/RG3thc5fLAttbX/E4NA+CAgcb30UPl+jHgzGNTW9AzObPwBF8cPvb8RLL78dQ0MH9P1FRS0AgJkzb8HRow8hEunHv547S/93LO7IkQdw5MgDKCs7FcPDx+D3N6GyYhVc7hLMbL4ZHk8V+vq2IhLph1C8tlPQBwf3Y9eu/0QgeBwA4PdNQ1QNIBzuxr59X0dJ6UI0z7gRLpc/689jrDCUIiIiIqICYU4isgmljJYtvR/BYBtUNYS29j8iEunDyZMvIBhsg8dThaGhfZjd8h+orFyFyso1UBQ3wuGTaD+4A+t/9RmUNQQh1X6bqwvUNBxOmlpoHmfL4r8Di4GO8B3AA/9m0WRb+2FB1HwHvqp3AL0tidIrVfth3OtNBFpCaD+YrFxyCH99/d/gC1dgwB+GX60BsBf9b4ugzf1PlMkr9CAoEDiO/fvvQSQ6CECgseEtqK9PTO04eXITAoFjqKu7FIrihaL4oKphDAzsgKqG4PM1oahoumnUJ0++gIGBXYBQUFd7Cfz+Jn3fwOAeHD36c71CYuGCuzBjxnttPkN7JeXtKK7dj2BYwcBAKUpLF2R9jThtlUSJIiFRIXsww6MCaghSSkgZweHDDwCYBQkVFS6gwhUETv4BH6sHgCfx9DPL9Wu5XKU4c81f9SqEzq4N2Lr1Fn2/z9uAcKTPFHY2Nb0Dpyz+H/19V9ezOHDw2+jt3Zwy1sNHfgwAWLrkPkTVAE6c+CsikX4Eho/A558Gj6cS5eXLMGvmB9HR+RQ87goMDO5CJNIPv28aJKIoLpqFLVtvhqqG9OseOPhdeL01CASOQcoIhHCjqmot4is4+v3TY2P7J55+ZiUikR793KNHf5Yyzu6Tz6H75HMAEiGBRkHyqpDJWtt+h9a23wEAqqrWIhA4juHhQ9i69YN6SBLX2Pg2FPmb0dDwFgQCxyCEAp+vASdPvgCfrwGBYBtKSxagsnI1Bga2IxIdgqoGEQn3oqPjCbSf+HNizN3PYMGCOwEAZWWLUVm5GocO3Z8SugBAU9M74XaVoLb2Yvj9Tegf2AGpRmJ7pfY1jg5r1zj8g5QgCQACgSPYtfv2lO0eTzXC4W48v/ECAFrIE59GaVRcPBdDQ/v1IN0oHqoDQCg0jFCoA/v2fxN9fa8jEDgS29GO3bvvAqAFZC2zPoKdu76E1rbforXtt6brxccQCB7H088sg8/XBEV4MBw4rI85EumHlGEEg60IBluxZ+9XAQDV1efC5SpBR8ffEs8ebNP/TMyfdxtee/0jGA4cRl/fawiFulBTcz5CoQ6cPPkCDh78jn4dr7cWblcpPJ4q+PyNaGq8FosW/he6up8GAHg91aisPAP/3HAKVDWEF1+62vAU2hS56upzcbz11wgMH0UkOghF8aC4qAUuVxFKS0+By+WHlFEEgm3Ys+erUKMB/TnjgsG2lK9Ha+tv0Nr6m5TtccOxSimfrxGNjW/H0aMPpQRSQOLfl/7+bQCAgYEeDAzsAAAcOfJTuFxFpn8P6uoux5JT70Vb2+8RCnWif2Anhgb3YmBwl+m6DY1vxdDQPnR0PIG29j8A7cC+ff8Ln68RbncZSksWYtq0d9lW6OUDQykiIiIiKgw5msIjhNADkzmzP57ROR5PFXzeJnS+UY2BHW4M13RBOCxGJvR/pGxFNOKByx2G9AzDsuRHalN7hDfxA5E+CU8qFvfSji/yB+GvroJycj7gawOGtauH5gNH3L9D/6vHUFw0C42Nb0Nn1z/1AAAAurufhddbg66uDaiuPhevbnmfNk1mB6AoPpx+2s/R1vZHHD2mBRFCuNDScitqqs9BWdmpCAY78eqW9+tTa44f+yVWr34cUoYQCnXhta0fNv2At2v3Hdiz924AAvPnfQEuVwm83moACsrLl5mm24RC3VDVAILBdiw541EIRSIYfhmvvfZPnHXWP+2/CGkISHymIYDp3mMAjuG8RgCtd+Cp1ju0zyRQCeArEFCwZciFIpcbC33J1W2aaHQA27Z/GjXV56Gv/42UMCIYSq0GaW39DVQ1BJfih1C8pilNdl5/42Mp2+IVEZ2d/8D+/d9Mew0AqKxcg56eTYhGBzA8PKBvlzKC7u5nAQCKUoTaGq3aJRLpMwVS9hI1golACkgOpIRwQ1H8KC2Zj/nzv4QtW2/Wq7Hc7kosmH87jrc+iiNHfpISSAFAW9tjAIADB7+d0fNaqat7Ezo6/gZVDWHnzi8C0EIWb1JvJaPW1kcBwLaCx05x8Rycser3GBzcjaNHf47BoX3o739D319ZuQZ1dZdi79679X+HjIHUgvm3IxhsR0XlStTVXoxQqBPDw4cRDHYgFOqAovgRCnXA7S4DhIIi/wwMDR/C7t134sSJv+jXWbTwv/RAE0LBjBnvQ0P9m9HZ9U/09LyoV6ItXXIfyspOgctVjN17/gtHjjyQMiZF8WHN6r/A46lAIHAMJ0++gK7uZxAMtqOvb6v+58jo6NGH9NelpQv11y+9/Hbbz2727I+jsmJlynZFKUdjw9WmbUX+ZtN/Z5acei/e2PYJ9Pdvwz83LEy+RMbq6i5DR8cT8HkbUFwyBw0NV6Om5ny88soNCAaPm4JeIdxYsOAO1NddhsNHHkQk3AOPpxKNDVdDCA/8vkat2kl40Nj4NhQXzwIA9Pa+ipc3vwN+//TYFE8vpBrGyZ4XoKrDeqBdVDQTw8OH0dHxd/xzwyLbMc9svgU1NRegsnKVNs2wqAVd3c/qQVcw2IZgsA2Dg3tQXrGCoRQRERERUaGRFq8AYLC/CqI8+eiE7S/dCM+R9Vi98ExYTVyR0Vp0774YVY0eRIa1cEaqbtOthodLgSrth35FxEIsRYXXG0Ak6XregwAWAj09m9DTswnHW3+t72tsfDva2n6PaHQQm195NwDgYNL0KVUN4uXN7zSPUUZx4MC9OHDgXgBaFYCx18vA4C5s2XITevu2IBpNhB7l5Sv06S+qGgCgBVTJTj3lm9i1+w5Eo8P6tCftGYFIxAO3O4zhwGG8+NJbIIQHdbWXoLr6bBQVzYSi+GP3fhVCeFBSPAennfYz7QewoX3wD2/DYn8UfiWI6d4Mqu2EGw92+VDpq8TnTv8I/vza/0N1xQrctuZLKCqaiba2x7B7z1fQ0/MienpeNJ16+mm/RDQ6gM7OpwAARcWz0Dzj/dj04lUYGjqA9vY/mm8l3Fi65DtQ1ZBepQYAff1vYOfOL2JgQOupU1V1Fpoar0EgcAx+/3R0dD5pWZUDADU156Or62n9fUvLxzB3zjoMDx/F8PBhSBmBx1MFv78JPT0vo7f3FUgZRXX1OfB4KrBq5aM4ceKviKoBuBQ/WlpuBSARCnVBCBd6el5CTc35+nSgcLgHvb2vQggXgsE2SBlFaekiuN3lKCmZi3C4D4riM/UgWrH8AQwM7ERd3aVwu8uhKF7Mmf0fKCs7VWu4LTyoq7sUgcBxdHU/g0i4Dyc6/o5A4IgeCMSnsRX5ZyIU7jRVo2ihcj1c7jK4XcUoKZmPefM+j66uZ/Da6x+FlCEI4UJNzfmorbkAnZ3rY1PgynHK4v8PoVAnOrs2QEoVHR1/06dn+f3TUeRvjgXmAtHIAPr6X4PXWwe3uxSzZ38CtTUXwOUqgRAKKipOR0XF6QCAaDQAQCAYPK4fP2P6DVDVIAKBVi08EAoqK1am9AGKT91zUi2j6O56Br19rwIQmDXzQ5g+/XpMn359yrHLl31ffy2lCiES4ff8eV/C9GnvgaoGIGUEUkagyiiK/NPhi61qWlw8G8XFs/Vrb9v+6VhwKNDS8jHMmf0JbH3tg/qfw/Ly5fD7mzFj+vtwvPVR/b8Fia9XDcrLTkVZ+TJUlJ/u+JxGc+Z8Cvv2fxNShtFQfxUaGrTALR5iAkBZ2VIMDR1ANDqAqsozEQgeRyjUHasidUEIBeFwN2Y234LS0sWorj4bPl+95f3OWrtefx0O90DKKNzuCr3H1Ly5n0k5Z9asf7O8VkXFaThr7dPw+RpNPaq6up5FR+c/ABlFRcVKNDW9HTt23Kb/d1zE/t3weKpRWbkq9me9zhT6FRfPxrx5n8c8fB5DQwcRiQ5AVYPo73sDkUi//mdyvAhp7PBHJn19faioqEBvby/Kyx2+syAiIqIpg98fpMrXZ3Lddz+Ema8dQMNJPzwlV6M2OIT3/OJT6U/MkY5DB/DQ5z4Ov+LGlbVb8O+zq3HppmkQSgUgQ5ByGN6y98EfOYBL5n0N/9V/Kk45mPg8XN4lKPasxdDc7Yi+9hzeNOMj2Hb4DRz3n0Q0tA1CqYJUT8JbPwNK+F1YsLoBd24/hGNuiXuf+TYWdB9Cv78MZYF+7Dp1Ad62dAMAYHjBe1C0+2G8XjMNG459EkrPfPT4T6AyUI+ddZtw2XMP4dTPXwc5vwwHD96nj0cIN9ae+Q8cOHifXgGibXfB663HvLmfg8dTia2vfVAPnCorzsDy5T/Etm3r0Nf/OkKhDtNntGTJt3Ho0PdNVSAA4Ir1k5k/7za0tz+OgYEd6O5+DuFIL0pK5iEaGUQk0o/+gW1pvw47dpyLJaf2IapuzfpraKUr6sYLrjfhySPr8Z9nfBZnV3hRUroA/ZFZOPdrm+BxCfgXfF4Lpc74HL74ry/irGln4fuXaj/IR6NBHDj4bT2oKC2ZD5+vEUVFM1FdfZblPUOhbi3oiQ5iOHAUUg1DKG5Ma3qn46pvqhqClBG4XMWm7VJGcfLkC4hGB+F2V6Ky8gxTzy5VDWJ4+BgUxQO/f8aUaOIeDvcgGh2C210Ot7vU9jhVDUPKKIRQ9BAwnfiP0FPhcxwpVQ0CEPpnKqVEOHwSgITHU2UKvgCt31w43AUgtRn8aEgpMTR0AFKG4XaXwe+fFuuhJnPSUHw8aJ9lNyQk3K7ilP8eTBSZfm/ASikiIiIiKghyInXsRtLsvKShCaehGvbNOfoY+utb0OMHfMEeBAw/hzn91bF5TT3twK6uZgSGy1CcNDZFBWrV1SifcwXq696Evr7XAAClpYtQVNSMRQv/CzOm3wApo/AXzUhZGv7887bqlQxudyWEEFi+/IcAtN5T/QPb4XFXorh4NioqVqC8bLnWzFgAblcZamouMFXFNDRchYaGqzDXooqgtfW3OHT4h5BShSLcmDnzFpSVLUFf3+uQiOKPv3oOnX1VKPJehXmLQgiFOnHkyIMIh3sSPXPin+2cdRDCjX37/te0PeKqgTvapb8/GvZBuhUAAlLxY/p0rWJsuHc49nWIBRA26xi6XD7LiggnXm81Zsy4IatzAMR+wE8NToRwOU6/URTfqJukFxqPpxIeT2Xa47TwI7sAhGFUeslNuIUQsSm61jyectMKf7kihEj5s58ciBUa7bOsSX9ggWAoRUREREQFaUL+XOg4ptSdvlAPSoeOo8dfDlc0CHi8lsfZTRXUNlnslSKxxXBKWdkpKCs7xXS6orhRXr7UdtQuVxFcriLLfVVVa1BVtca0rahoOoqK3mF7PSdNTdeiqenalO3xqSgnO9oA30kIoaCm+hztnMa3AdDCo/6BbYhGh+FyFekr/NXVXopIpA9CKCgtXYhf7fotvrf5q5hXNg1HB48j6q7GiuKJ+IeJiGjyYyhFRERERAVh3JtOOKVgif7OVm+tSaQJseyvZFUp5XSFiZng5ZYQAuVlS1K2W1UI9UQVdKp+tIUV1LoTn42xGi9eGRXfYqyOYQcUIqLcKOy6NSIiIiKicWAVE2mE4Z/ZXUw6nRQLRBynBdrcOO05BWg0j5Q89cpuWl4m5xIR0egwlCIiIiKiwjROYUveeltZVuOkbhMO45mEeVTeMH8iIhp7DKWIiIiIqEAkRyzjFbkI028AUhudO52XPM/P5jjj7D7pVIElVf08kfJqclZK5YJVuGi5zaqNF+M+IqKcYChFRERERIVpAlWyyKR39kGQTN8bK4PnkjYHWV16An1MuZODTCjdqnqT8nMjIppgGEoRERERUYEQNq/HQ5r7yzQ9omA9Ec/uypmuvpd8rcQp4/15TWyZ9JUSsf8REVHucPU9IiIiIioM45wH2N9ewtzoPEfRhUXWZF2B5VA2JOxqqgrdyEulEqvqWU3Vk+gY6sDTR59Gz6AEUGxzd07fIyLKBYZSRERERFSY0s6DGyMOfaCcD7GuhMokNEpESxk2P5fWrym9r2z8CjYc3QA1Ugrgy3oAxZX3iIhyj9P3iIiIiIiykcGqeMJim6XkWXbGsx1Ol8aAJN30PXImzIFTd6DbtNv48XL6HhFRbjGUIiIiIiLKkkz5p5lTdDGSwqV4f6p07c0Fko9zarpeuHJRJCctLiJj/7PCQIrGk5QSJ/oDaO0dxmOvHkNHf3C8h0SUE5y+R0REREQFQcpCmYqWbpCZPkSGx8nUcMz4WgD61EFKsAufUsMqi8+uIP4c0ngKhKPYeqQHUSnRWO7HnLpS7O8YwNajPQAAn9uFCxbWodib2Y/kH3poM/6xo11/f81p0/HNd69wPOeHz+zHK4dPAgDOnleL9545y7RfysRqoIrC/0bQ+GAoRURERESUiYyCHfsV9AABkRR4ZJ5txK5oEUBNrYRk9D84J1c8ZbOqHvtKUZyUEs/v69IrlpY3V2J2bYm+f92vt+Avr7fp7//88XPw/p+8iO7BkL6t2OvCRYvq0dEfxPyGUhzoHETPUBgAMLu2BHdfsxR+jwsel4Ln93Wa7v/n11pxzvxa/HHrcQgAh7qG0NYXAADMqCrCPe9ega/+ZYd+/BPb2/HOVTPgc7sAAM/u6cC//WwzhkJReFwCX337UrxrVXNuPySiDDCUIiIiIiLKSvpgwrqiK03nDIvL2t/JuEemvDKGLIVRXTZxJCqokvuEMZCihI37unDDjzbp72tLvXjxi5foFUd72gdMx79xrFcPpPweBYGwiqFQFH9+rRUAsOmAuZfZtuN9+PNrrSj2uvDTD6zGUCgKAPjZLavxvh+/iFBUxbpfb7Uc2+72AXzjid0AgJnVxTjcPYSoKhEIqYZQqlO/Zjgq8cBzBxlK0bhgTykiIiIioqzEV2Mzvjd1w9a2pmQYFt96i8T19E0W1TiJsMm+j5XdSCdnlDJ2SZvdtL5sj6HJKRJVEVUlDnQNAgCqS7wAgM6BEAKRqH7cQDACAKgt9QEATsQqqjwuge13vQmfvnQB3rlyhn78zWe34LOXL8R3bzgd5y2o07cPhaL48u/fAAAoAljRXImqYo9pTP977TLce90K/OU/zsXlpzYAAJ7aeQIAcO78WrhjQdlwOGq4rja+tXNqAAC9QyEQjQdWShERERFRQRAFFQRYlT3F06r4hjST8GRm0UvylMAUhfSxZSjXjc4zqoKanOkeZeBw1xBufOBFdA4EMRCM4LTmSly8WAt/LlxYj9++chSAFiDFe0QNBLTQp77Mh86BoD7Nr9TnhqIIfPzi+QCA/75mKaQEvO5EaH3l0iYEwlH8+uUjuP0P27CrvR8AMK2yCGV+D579/EVo69Wm6jVXF+nVTwDwoXPnoK03gEBYRYnPhRvWzMIfthzHQDCCgCmUiurnb9yfCNHieoZCKPG54XGxjoXGFkMpIiIiIioIlmulSTkh+/wolklQdj/cGaucZEqgZT19T199z1CmNfE+nYnF+OdHa/xs8ScttolT+Kam5/d14kDnoP7+lcM96BjQQqaqYg+KvS4MhaLoHgzhG0/swsnBMAZilUj15T5sbwVeP9YLACjxmX8Etwt9/B4X3n1GMzwuBb3DWp+pc+fXAtCCrXn1pZbnrWqpxh9uPSflWgPBiKlSajgWStWVaZVcg6EoHnjuAL71jz0YDkcRiqi4aFE9fnLTGRl8QkQjx1CKiIiIiAqD0P+hUyXgylNOkBJ+Wbce0o61Oj8WSg31dcJvPDCLqh/LajGpJi6WEtBJrafUZMlScvAcuQgxOX1vaomHORctqsfLB7vRF4jgSPcwAGBWbQmKvW4MhaL47eaj+OWLR/TzijwuNJZr/7ZvOdIDAPC5Mw+nfW4Xrl89c9Tj93u0ewbCUX3FvXilVF1semFUlbjrT9tN58WnABKNJYZSRERERFSAtHimcyCIEp8bpb6J8m1tLGXKqNF58nuR9HuC1eWkjGdQqY3OJ08KNXbSBUuKKbzKfIU+mnzioVRNiRd/++R5eH5fF6SUKPN7cNGievzwmf0AgO/Hfve5Fay7dAGWN1fiub3mVfOuWNKU38FDC8cA4N71e3Ds5DD2nEg0Ya8p9aG6xGtaFfB/r12Gz/32Nb1fFtFYmij/701ERERE5MwiQ1jz3+sBAIubynHu/FpcvWwals6oyPPALFjlHUILrKQajb31Wxxkdw2LQCTDCqjJuPqe1RS7kRIQps8xHlYpwq4xPU01gVhVUZHXhWmVRXiHoUE5AMypK8Hh7iH9/cMfWoOVs6oBaKvf7e8YRNdgEHVlfnzkgrn5G3jMzOpi7DkxgA27Okzby3xuLJ9RiUc+fCZeOXwSgPbf0ooirZG6sQcV0VhhKEVEREREBcmYD+xo7cOO1j68dLAbv//o2WN6X6veVsmsswst5CipaoSrZxEgXA7HZhG8mI6LrQwYu6oUzFHsWFVKSSR6SilJn9xE7F1G+RGIaFNk/R6X5f773nM6Xjl8EqrUGpsvbirX902rLMJ9N5yel3Hauf3qU1Bf7kcwEkWRx4W3rpiO+fWlKPa59Cbp8xvK9OPb+7Qm6sGIank9olxiKEVEREREBcnndmHPV6/AzzYewmtHe/DYluPoHQqP97BirLo/aaFUee0MBI7NSNmbODMRc8WrnBLvLSfyJc513l3wchkL2YV+jpVSac6lyScQjupT2+xCqRKfG+fOr8vnsLIyq6YEd1+zNOPj432voqpEOKpyBT4aUwyliIiIiKgwWCQSHpeCD5wzG1uOaKHU+P3NvjmksP4RLrbVWHFjnDaWZeIipXa6dVCVdAtW+Tiy6heVHEoJ9pWacj7z6Fb8ZvNR/X28YfhkZwzfghGGUjS2+KeLiIiIiAqGXSTgjf3QFIqOZSglHN+aWS3Jp5j32WZJFo3OY6GSVf1V2PDMMnFC4mos6nFkDJqklIZKKXOjc5p6jKvPlfndOGde7TiOJn+8hhDq9sfewIPPHWB1II0ZVkoRERERUYFK/JDkjU03CeWpUkrrMW7/Q5rQ/5GyNb1MqpoMhwyHIyiBOeMyxCyZ3ZN08R++nXpIpVu5jyaHoVAEAPDEp87DnNoSuKdIxZCiCNSUeNE1GMLvXj2G3716DKdOr8AZLdXjPTSahBhKEREREVFhMmQGvjyHUvZiFU1WhVKWkxQcgg/DNWTKC8M+Nb5ClrC8sTKp8pPcVSwZgyWrAMpq+h5NHaoqEQhr/z2pKfFOmUAq7oc3rsJzezrxjSd3AwD2tA+MKpT6xaZDeOVQDwCg1OfCRy+ch4byNCuQ0pTAUIqIiIiICoLT7BG9UmpMp+9lzgUBv0wei4KcVi7FZwGqqvFtjEg5jpLEPhdjIGUMqpJX3wMYTE0lw+Go/rrYO/V+bD59ZhVOn1mFPScG8Metx/WqMQBo6w3gy4+9jpOxhSXesnwa3n1GM37+wiG9Kfy58+uwdm4NAODkYAhf+v0bputXlXjxyUsW5OlpaCKbev92EREREdGkE++BElUloqqESxn78ECaXqU2Or+6fxC7UJXYKJTUQzMeplVPKW2dPqmHX8JwnPkop6loheiJ9X/FtOYGtLS0ZH1uus/CbvqeKbwa4/46wUgU7b1BAEBDhQ8+t/WqbzQ6J/oD+PsbbQhHta/nufNrMbeuFHs7BtDRr33+QkydBudWir3an72AIaT76xut+MeORL+t3e39qCz24L8e36Fve/jFw9hy+2UAgJND8dULFaycVYXn9nahZ8KslErjjaEUERERERUI21ogvVIKAB547gAayv1487Km3IYx2fQ5B1CPMHaZTvDFHsH6zPjTCWRX3GSulDJeJfZqBPlJR38QO1r7AGgrHJ4+q3LcghFVldjXMYCIKiHUxI8vXV1dIwql4kzT9yy+Jr3DUcM7geFQNOWYsRCOqrjsnmdwqGsIANBSU4x/rDs/L9PHnt/biT+9dhxSAkVeFz56wTzUlfnG/L5WXjzQjf/+yw4EIyrcisBHL5iLK5Y2ZX2dv7zeimf3dOLVwyexv3MQX75qMebVleLUaRX4yp+248+vtZqOv3hRPdYbGpwXeVyTLtTNRnwlviHDn/94oLRyVhU2HzqJgWAErb0BAMCc2hLs7xxEz1AYgXAUfo8LA0Gtyqq62Iuz5tbiub1dGAxGMJb2dwxgWmURHn+tFRt2d+DfzpuD6hIvplUWZX2tQDiKzzy6FZ0DQbgUgRXNlfjMZQsd/1w8v68T39uwD+GotnrhrRfOw5o5NaN5pEmLoRQRERERFQ6bgMXnVuBxCYSjUv/b+hf2d2FVSxW6B8OIqtoPBm9ZPg01pYkfso/1DKN3KAyXIuBStGqYYq8LTRVFGApF8JfX2zAcjsKtCKyqzOJv9iWwtKoNx07OwyH36XBJL4R7JkSwJ/3DWF0u9rOPkPHoSejTGWXKNEGba0iJp3aewMuHTkKVEiVeN8r9bgghcMHCOsyqKQEA9A6HccZX/2E6VwhoFSQnBrCiuRJ+j4Ib1syCx6Vge2sfls+oQKnPjTNaqhFRJQaCEVSXeDN+Pid3/mkbHtp4CADwH30tcIVKcPqbZmL69OkZP/dQKIpn93Rgzez0PxTGw6pI1Pz16RwIYTCY+ME8ElWxs60fqpQQEHp/+sYKPyqKPHjkpSNY0FCGhnIfplUWwZMmVBoIRvCX11txoi+gB1IAcLBrCAe7hjCvvjTlnO7BEEp9blMoC2gVg//9lx1o6w2guboYfo+Cd65qxnSLH8hVVeLv29pwciiML/7+ddO+B547iNpSH86ZV4N73r0i5+FMW28Ax3qGMRTSQg3t32MF58yvxcObDmHLkR792G88uRvFPjemVfgxv6Eso+uHoyo++cgWU6+52/+wTX8d/9zOaKnCSwdPAoApkGoo9+Htp80YzSMWvHil1KHuIfzyxcO47JQG9Ae0QGnZjApsPnQSUgKtPcMAgPMW1OFw9xAiqkRHfxD15T59ml+p340SbyLkCkdV7G7vxx1/2IbjPcNwu7T/jt989mzcsGYmHttyDMd7tLDr1GnluGBhvWlsQ6EIIqqEWxEo9rrxyEuHUeb3YDAYwWd/8xpuXDsLP439t+NPW48DAO5/70q8aUkjAmHt/ooQKPGlxiKRqIpQVMVQKIr1O9pN4eVze7vwrz2dWNhYhneuasbs2hJUFHngcSn42t934vHXWnHQ8O8woK3mma9Q6i+vt5r+G3LDmTNR7vfk5d4jwVCKiIiIiAqCcHjndin46tuX4pndHfoPD7/YdBi/2HTYdNxdf9oOv0eBIgSCERVR1ToYWtxUjt3t/ab9VaGTeC+0H3Tt8yQtLJIAil0RtLjdOF50LlyRIURjjbOPnhxCLaxqmjSDoSiKABw7OYRMdA8EkFI/YhifAPDhhzbjxadCts8LAGvn1GDj/i7TtmKvC0OhKKQE9p4YAAA9KHhhf7fjuG46qwVz60sxo7IIu9v7sffEACQARQC1pT6EoyoOdQ1poY4QmFdfiuaqYlSXeHH5qQ34xK+2YP2OdgwaKjQU1Qvf0AwUNS7Gdzd1IBw9oX3eUguTKoo8qC314WDXEPZ3DKB3OIz9HYOmXmNVDTuA6sTKasGwis4BbarWiwe60D0YNHxy5s+zJzYNCQD+8w9v4JcvHnH8DOJKvC78+KYzUFHkgSK0AFQRAqoEntrZjq1He/F4UsXOkunlcCsKthzpwV9eb8Xy5kpEoioeffkothzpQTASxcmhMIo8Ltx4Vgv2nuhH/Mt7sGsQ+zsGTdd79OWj+No7lmFf5yCGghEMh6No7wtg/Y4TONEfNB27enY1XjygfX07B4J4bMtxtPcF0VxdhBvPasGMqmIoQgtxD3YOoqM/iH/uOoGugRCE0KqL5jeUorLYi7VzalDkdeGbT+7Ww4wZVUV4y/JpuPrb/0LE4s/kNadPR+eA9lm/Y+UM/GbzUew9MYAbf/IihACe+OR5EELgnztPQJUSp8+qMjXh7guE8fLBbnQOhBCKqPC4BC4/tRF/fq0VCxpKsbtd+7Mciqgo9rrww/evwr3r9+APW7TgYl5dKR66ZbVeJTSVFcU+g8dfa8Xjr7Xitt8lgsu6Mh/cikBElXhmTycAoLzIg8piDzoHQjj3f/9pulapz43iWAC0v3MQy+58wtS7K+7Lj72BJ7e34+ndHebtVy3GzOpi1JT6cN8/9+Kfu07o4XxlsSdlSmA8kDL69lN78ItNh/D8vi79v4cN5T6c0lSOjoEg5tSW4uWD3Tgeq/wycilCP2fr0V5sPdqLX798VN//HxfNw/1P7zf9d/ams1rw4PMH8fTuDvxp63FMq/SjpaYEmw5048UD3fC4BMr9HsyrL8X21j4c6hpCW28Ah7oHMbu2BDWl2tiuO6MZRV4Xir1uDIUi2Ha8D6oq4XUrWDajEi5FoHswhDeO9eKjv3jFNO43L2tiKEVERERENFoyzYS5d61qxrtWNeP2qwP44u/eQPdgEMVeNyqKPRgKRvDPXdoPOPEVteLK/G54XQqiUkJVJfoCEX3qGgDMrSvBPsMP+Jm0E3I6pGsghFqH/b1DYRT5gZ2t/YAvfj37Zw9FIoDLfEx8OpqE1KfvxX9Qml1bgubqYnT0BzGjqgjP7ulAIKymBFJfvmoxPnjuHPx281HsOTGA+5/eBwC49cJ5+OGz+xE0VJ/El483evD5gw5PmerJ7e22++rKfPjHp87HA+ueAQB85Oeb0TfCZQUHghH4AfQHI1DcwIn+IFrbO+GpBJ7Y3g5PZQguHxLlaQb/+/ddcDcBLx7sxvChRCDVVOGHlEBbX+oPsoAWNF73gxcyGt+Zc6pRU+LDDWtm4g9bjmPLkR58M7YCmpXhcFT/2lh587Im/Pm1VhzrGcZ7frTJ8d6XndKACxfV4/rVM7GvYwADgQiu/+ELGApFsXF/Fzbuh+mH8NH43obUMccDjng4BABXL58Gn1sL5450D6EvEMFND7yEY7HKnLhVs6pQV+ZDQ7k/5c9eY4Uf33nP6fjOe7T3XQNB7ImFrC01Jags9uKOq0/FHVefmpNnm0xOmVZuu296ZRHK/G6cHArjQKf238imCj/OX1CP376S+ufkvAV1qCjSwhHjf2OLPC5cubQJbz9tOt77Y+3PaDyQ8roVvdLN2LMqmVOPqrl1JfjEJQvwH798FduO96Xsb+8Lor1Pu98bx8z7hdB6FhZ5XfjGO5djUVM5nohVFv5281HTn8P/e2ovAKC6xIsfvG8lZlQVo8zvxsObDiMUVfHxX75qO0Yr7X1aWPz4a6342t93QRFAZbEXvcNhU/DlcQk0VxenBNHvWKlV+VlVgk0kE3t0RERERERZqi/z40c3rkrZPhSK4ORQGKoqISWgSokyv9s0nQ8AjnQP4bWjvQCANXOqUVvqw89fOISdO/cAx6A3UbeNiYRhX8pBAvXlPiBWZGTOPbQ3/tj0ltpSLxB26LsS+5lkRmUR0G9/GABcvLgeV1+0FIuaynD6zCrTvsNdQ3j89VYEwlF0DQZx4cJ6LJtRqfcSujb2g82K5goc6hrCh8+bg09ftkCvyol/Hke6h6AoAoc6B/Ho5qMIRVV09AfRFatCqiz24qJF9Th6cgiRqNaMvr7cj6YKP3a39+PoyWE8vbvDNNVqWoUfv/rwWtSX++D3uOBWBKAC5X43vF6BixbVY2Z1sT6t7HjPsF550VJTgnn1pWgo92F2bSkiURWdAyF856VDeLYH8CgCUQBul0CR340ggAUNpeiAG8MAKoq9SK5VC0el6Qeo1bOr8ciHz9TvHwhHseVID6Kq9mdr6fQK/H1bG/77LzsRCEehxv7cqVJryC+ldv+LFtZjZk0xrjtjJhor/Pr1i7wubGvtRSiiwq0o8LgVeBSBxgo//v2Cufj5C4dxMBYGlPhcuHhxA4ZDUZzoD8LrVvDuM5pRU+JFR38Qx3qG4VYE/B4X5tWXwud2oa7MhxKvC6V+N959RrNplbm5ddp0wb/8x7lYv/MEDnUN6tMojVyKwMzqYpT73ZheVYSVs6qx/Xgf2vsC+NfeTtOxq2ZVIRRV8fqxXkipNb7+yU1nwCUEDncP4U1LGnH+1zboK7gVe11Y3FSG8xfUAQC+vX4PvvHkbj0IWNBQCr/HhdeO9uLlQydTxjazuhi1pV7csGaWaXtNqS/l33uydvHiBvzr8xeibzgCn0dBVJXY1aZVkV65tAn7TgzgkZePQEpgVk0xrlrWhOtXz8QdbzkFUmqhjoD25yRe5fOuVTPQFgtczpxTjY9eME+/309uWoVNsSrMaZVFuG51M17Y340fPbsfkahEXyCs96h687ImfOzCebjzj9twqGsIXreCj104D6tbqnGsZxiHu7V/g0+dVo4Snxtfeeup6IpV4K1q0arrXj54Evs6BtAfCKN3OIyGcj8UIbCqpQrz68vgdSspC2fcfPZsAMC6S7XVA7cc6cHPXziEqKr91cBVy5qwylC5959Xn4LHXzuOnqFE5aZLETh1WjlWzarGrvY+vYqwqtiL8xbU4djJYcyuLcZPNx7Sq1RVCf3fjTKfG6qUGAxFEY5KPZDyuhWU+tz477cvwZuWZN+DbTwwlCIiIiKiwjDKdjbFXndGS7s3VxejubrYtO29Z85C90wXHvhrLIQRztVQKfv0XjwSTRVFsK6n0VSXeKEOA8uaK/H3/UOm6wmLu1YWu4F++2oqIYF3r56JsjUzLffPrCnGv18w12FEmuQfcFxJt4t/ZtMri3DWPKdaMHtRVWLTgS4Mh6IQQluWvrI40ZvK41IQUVX85T/ORXlt9g2L68v9uGhxPZ7dqE336QoA0yqKcFp9I/60H3jnymb8do8PB/uAiiIvEhPqBBrK/bhkfgt+eQiYX1+K+959IZoq/KY+S36PC2cm9Y1505KmEf9weNrMKvz54+fa7r/7mqUZXeeRf1s7ovsDQEttCW45R/sh/M6rT0VElZCQ+rRJRYFtE/w3jvViy5EeeF0KKoo9uHRxAxRFIBxVISVivdy0zy/eb+fZz12oV5zVlflM044+csFcrJ5djeFwFKU+N06bWQVFAM/s6URrzzC6BkN6A+3lzZW4/NTGET83JcyoKoZxIdEFhp5e6y5biHWXLUw5x266WLHXjf99x3Lbe120qAEXLWowbTt/QZ0eTFqxup7Vf8ffv7Yl5bhz5tfinPkj++9V3IrmSqxorrTd/74zZ+F9Z86y3e/kfWtb9NU+W3sD6A9EoAjt30uPS8HGfV1o7wtACOCMluoRNXIfbwyliIiIiIhyamTTylIyJavLWG6zanSeCMEKad0wlyJw1lyHHxDH6GGsGngrMDcP93tcWD27Br88pAVayT/wTgWKIuBVMv8iLJlegSXTK1K2OzV9L/G59Sotq/OsmkU7BRZEhS7+3yerwGnt3MJf0W/s1xUlIiIiIsqJEYY9Y8T8o7mMbRNJe7NYYS/5TGncF58yaHE9w4p8jhcmE2nxwcRqgAAAIovwhYiIRoahFBEREREVBFOEIGwCmnyOwyGzsB9Z0h6BzDqnW11Jxi+RWiklDINjtOIsuUoqPlUmuVIKMH+uREQ0egyliIiIiIiyZepQnj5Uym4SXeqx8dtZXiU2fc90D8OQBCulTDINlpSkSinjeXKEQSIREZkxlCIiIiIiyhWBHJYmpQs+Yjcy9JRKaUulzyacJBU+OXwOu2ApPn3PXCk1ST4/IqIJhqEUEREREVFGkitnbEirN/ahhlPcYduuXBgurfeUMu42TN9jUU/GtFXlYqGUMP+oJOJr2xMRUc4wlCIiIiIiGgFzo2yZvDMzFiGHHihleg29Uso6MZmMOUouZ8/ZTeezWpGPiIhyi6EUERERERWMiR8TCAjILHtIaUaes8R7ShmvYaixYqWUJWn6tETKdldypZTFMURENDoMpYiIiIiIspR9JJFFSBWr0DHXYTlM/5POUwQ90cxvPdHlIpQU+ueb+lU09pmyqpTi6ntERLnFUIqIiIhokrnvvvvQ0tICv9+PNWvW4MUXX7Q99sEHH4QQwvTL7/fncbSTgX1EZbGOnv0R2eYdek8p1fDWfP1pA94RXnzqsJumx0bnRERjj6EUERER0STyyCOPYN26dbjjjjvwyiuvYPny5bj88stx4sQJ23PKy8vR2tqq/zp06FAeRzwa+Z1ClXmLoTQHjmDYMumSEsJwmUSlVLySJz5lz6syTMmEMZiya3RuxOl7RES5wVCKiIiIaBL55je/iQ996EO4+eabccopp+D+++9HcXExfvKTn9ieI4RAY2Oj/quhoSGPI56cUiILu2zIKTOSGXamMlRKCT290n4vDbsyuULB+eVXNmH9T7eP6hrSolu6jP0PABRjCskMiohoTDCUIiIiIpokQqEQNm/ejEsuuUTfpigKLrnkEmzcuNH2vIGBAcyaNQvNzc1461vfim3btuVjuJOYVdiRSbwkDP9MXmHO4vyk6XvaUdpxLql9mz+rf3JNxaxvKQMARMMqopHRJUXpqp2SK6WEEOwpRUSUY+7xHgARERER5UZnZyei0WhKpVNDQwN27txpec7ChQvxk5/8BMuWLUNvby++/vWv46yzzsK2bdswY8YMy3OCwSCCwaD+vq+vL3cPkU66oGbcWAccQqjm9yPMURxPk2rKJiEFICbf30C/5ROnYaA7AADw+EZWBZYcLAmYw6Z4WGXuNZUyf5KIiHJgsv3/FBERERFlYe3atXj/+9+PFStW4Pzzz8fvfvc71NXV4fvf/77tOXfffTcqKir0X83NzXkccZzAxEwG4iu7jSIwy7x5VeyO8el7VtVUE/EzGjlFESivLUJ5bRGKyrzpTxgBvadU0o9KrJIiIso9hlJEREREk0RtbS1cLhfa29tN29vb29HY2JjRNTweD0477TTs3bvX9pjbbrsNvb29+q8jR46MatyZG+eAJR4WKbkJJyRgKsDJ+uni/aMyCZ6Yp6RK87G5lNQflexW6iMiopFhKEVEREQ0SXi9XqxcuRLr16/Xt6mqivXr12Pt2rUZXSMajeL1119HU1OT7TE+nw/l5eWmX1OJ8HihVFSYJnwZydRNMHSKGtE9ZXIYIgxXkg6VUpQR0+p7sU+22l9tOsb4nqvvERHlBkMpIiIioklk3bp1+OEPf4if/vSn2LFjB/793/8dg4ODuPnmmwEA73//+3Hbbbfpx3/lK1/BE088gf379+OVV17Be9/7Xhw6dAgf/OAHx+sRbGW8ol0eCJdTP6PsIovUPlOxKYAy00eUFq8ZUKVj9VWSUuof4bXzr9W3f2H1bbj73LvzNTQioimDjc6JiIiIJpF3v/vd6OjowO233462tjasWLECf/vb3/Tm54cPH4ZimJZ08uRJfOhDH0JbWxuqqqqwcuVKPP/88zjllFPG6xFsJUcI4xe7jG2VjNVzOVZBsVJqRNJFhz63T3999dy3oKLIg13du8Z6WEREUwpDKSIiIqJJ5tZbb8Wtt95quW/Dhg2m9/fccw/uueeePIxq8hE5qFBKmZaX1cnx3w2r76VcjtPMMpF+9T0iIhoLnL5HRERERAWhsCOC9KOXDoGSc7Sk7S0NzkR1qU1DewYstpL7ScVDKcXhayYn2aqGRETjhaEUERERERWI8Q0CRFaxWB5DoFhA4lZL4feUxG7PECqnmEEREY0JhlJEREREVBAmUi4gYVXZFCcMk/m0V/bHWpwdD5QMD2w5zS+2X8iofjdmUZmzq3ZyqoLilD4iotxiKEVERERElIV4ZmGc9JV0hNPZWd3LKQKRST2l2Og8O3rvqKTPTZ++p6T2mbJ7T0REI8NQioiIiIgoZ+yCIes19ZwYC3asA6d4RVXUYl/sCPY+SuFU7cReUURE+cVQioiIiIgKgpyMtUCjeaB4fqLGV9+zvxinnWXProeYVN0IBovR2juMYMQ+ECQiovTc4z0AIiIiIqLsjUPIkkWwkyi4yabyRiT9brheynvjMbHpe9k0riKdgDCvwCdTp/Wt/up6VBR7ABHCQN9/4VUAa196CtMq/HjqMxfA73Hle9hERJMCK6WIiIiIiLKVYdZkOWlPJh8zsilj+nXUaDZDohirqXrGXlGKAJZOrwAAhKIqOvqD6Ogzn3O8N4CO/uDYDpSIaBJjpRQRERER0VgTib8Ltqtnkkn7pUwzXVFvuJ58ZkKkqzPzMRIAY6NzBb//6Flo7w9CSomugRBebnsV33jl/8OSaZXY/vIHMBCMIKoyDiQiGimGUkRERERUICbID//JFTaWFTexgMhx+bx0BxgOZU+onIlPyzNWRRmn6hlX5XO7FEyvLAIAzKgqRp9ww+U/DiEq9dmcUTZHJyIaMU7fIyIiIqKCNNJpb2NLwCk8SxmzsHqdPoBSFSWlh5RVXZXw+uCqqYFv0eK015yqTP2kMvwzJaWESxH6ayIiGpkJEUp1d3fjhhtuQHl5OSorK3HLLbdgYGDA8ZxAIICPfexjqKmpQWlpKa699lq0t7dbHtvV1YUZM2ZACIGenp4xeAIiIiIiGmtaBmOZ4uSddHg3ahk81mBJSUYnVt/wHsx/5ml4GupHP64pQg+Z0nwdXLEwK6o6H0dERPYmRCh1ww03YNu2bXjyySfx5z//Gc888ww+/OEPO57zqU99Cn/605/w6KOP4umnn8bx48dxzTXXWB57yy23YNmyZWMxdCIiIiLKl+TsJ8+ZVDYz6HJdO9NaXKO/VoVAT1Wl1ZJ8qYSAcHFlOCvGCie76XvJjFVVQg+lWClFRDRS495TaseOHfjb3/6Gl156CatWrQIAfPvb38aVV16Jr3/965g2bVrKOb29vfjxj3+Mhx9+GBdddBEA4IEHHsDixYvxwgsv4Mwzz9SP/d73voeenh7cfvvt+Otf/5qfhyIiIiKinMt0atVEZ3oKp9l+hu2/WHwZXm5YhNWyC6WVfRgqKQGGHa5LaVn+eTJssgqljFyxv95XOX2PiGjExr1SauPGjaisrNQDKQC45JJLoCgKNm3aZHnO5s2bEQ6Hcckll+jbFi1ahJkzZ2Ljxo36tu3bt+MrX/kKHnroIShK+kcNBoPo6+sz/SIiIiKiiSElIhinLCBRSZPJQJKboptfSlfqVUxhSGyjKhTsqGnB4foWDJaW2tzVorLHYWRTlUhX8pbhn6v49D2GUkREIzfuoVRbWxvq681z3N1uN6qrq9HW1mZ7jtfrRWVlpWl7Q0ODfk4wGMT111+Pr33ta5g5c2ZGY7n77rtRUVGh/2pubs7+gYiIiIhobEy0hEWMLIwwhk4Dy73Y3xBrmJ3t81k1OucqfSNi1ezcKrwyfu2EHkqN8eCIiCaxMQulvvCFL0AI4fhr586dY3V73HbbbVi8eDHe+973ZnVOb2+v/uvIkSNjNj4iIiIiGqUJnL8kr4xnJ1rlwmuztWP1wEPEV3VLdxOLtwxIMmY1fU/G/gc4T9+TSKy+x55SREQjN2Y9pT796U/jpptucjxmzpw5aGxsxIkTJ0zbI5EIuru70djYaHleY2MjQqEQenp6TNVS7e3t+jlPPfUUXn/9dfzmN78BkGhkWFtbiy996Uu46667Uq7r8/ng8/kyfUQiIiIiyiOJERcn5YiweSdtj7HKNdL1xkqEIdIxd8tk+h45iC+yN8Lqsngoxel7REQjN2ahVF1dHerq6tIet3btWvT09GDz5s1YuXIlAC1QUlUVa9assTxn5cqV8Hg8WL9+Pa699loAwK5du3D48GGsXbsWAPDb3/4Ww8OJ7o8vvfQSPvCBD+DZZ5/F3LlzR/t4RERERDSuxj+AySSKSB2lTLPfbmPyZaRFpZTFieP/MRWc+F9mW66+Z5q+p/2uslKKiGjExn31vcWLF+NNb3oTPvShD+H+++9HOBzGrbfeiuuuu05fee/YsWO4+OKL8dBDD2H16tWoqKjALbfcgnXr1qG6uhrl5eX4+Mc/jrVr1+or7yUHT52dnfr9kntREREREVEhKJwf/u1HmrxHWARHI0ySCufjGVfxYCnd9L10X4Z4o/MoK6WIiEZs3EMpAPjFL36BW2+9FRdffDEURcG1116L//u//9P3h8Nh7Nq1C0NDQ/q2e+65Rz82GAzi8ssvx3e/+93xGD4RERER5YF5+t44lgBJpAmApM3rzAiHnlLGp07dL9jnfAScekfZkTLRU0pVcz0iIqKpY0KEUtXV1Xj44Ydt97e0tOhltHF+vx/33Xcf7rvvvozuccEFF6Rcg4iIiIhopBIBmUX1k+05mR+bltXqe8lXZ0iVkXRT9SzPEewpRUQ0WmO2+h4RERER0WSSUUNs/RiHYCqpRfqIG5ZbVEoxHsmcXcN5vaeU1dfbsMkV+0mK0/eIiEaOoRQRERERFQhjLVBhlAClxkTmqX1WTxHPQqTM7imZjWTHahZFpjMrJKTeU4qNzomIRo6hFBEREREVjtiUtfGOpKRpDFYNsx3ONQUfVtU49k8XkSHDdVJOdLgr2UmephevoMp8+t7YjIuIaCpgKEVEREREBWNCVErF0iBpOwT7lGK0E+yC4X6HvdadkSg941Q9ffpemj5T8UbnUaZSREQjxlCKiIiIiArShG7ibZdTJJU3SemyOMj+wVTFsC+l0Tllw6qnlF2fKavjXGx0TkQ0agyliIiIiKggSMhE8jKhEqnU6XiZxhRd6lmpG+OPZhF2GJ+aWUhuJDc016fvpfkzFt/NUIqIaOQYShERERFRwRjXKConNzcHGAE5w+I29jcqCkVshyIhUnZ4fFaVWJTMvCKiw/RLwel7RES5xFCKiIiIiArQRKqUSpYupEgau0g6Xhg7Z4mkQw3HWjU6T9rmLXKnGcvU41QBlenqe0AilGKhFBHRyDGUIiIiIiLKQqZ9hwCk5k9j2PnJKhzxFrFSKmuxz9GpYk1KqYdbn3xkC473DOdjZEREkw5DKSIiIiIqGMlFRROVTDSGStqR/gHiYUi6Q6X98n86r5+VUukICPPqexn2lJpXV6q/5hQ+IqKR4f9LEREREVFB0MKCeFAw/tP3clX1ZDULb6Qn+ordxreobioZ8bgolbF66stXLcY1p09HRJWoL/eN46iIiAoXQykiIiIiKhjjG0VlcncB5wImCWOaZH3oyJ5SQqC2uRTHdvdg/uoGnPnWOSivKRrRtaYyvVIqzddBUQSWTK/Ix5CIiCYtTt8jIiIiosKh5znjXSnlXCVltzejUaeZNqbfw+Im8SlnpZU+BlI2rMIm0+p7MrPpe0RENHoMpYiIiIioIBRi156UKX5JSZJ1QBI/VKbsdZoymEmPKXKWrol9uuopIiLKDkMpIiIiIioMwhjSjGM4kEGzcudsI93Y7feHhaH7hkVPqUIM7iaaTFZXlJn8GSAiorQYShERERER5dj2vnoEon6oSG6ALS1eJTFkUlWqOaBqcyV6GMmkfSpciUuwoGfUWBVFRDT22OiciIiIiAqHoadUvoMXY48hCeFY8LT15DR0Bs/HTHmq/XfcErC+SGLb2QE3TnV58drMCF5qDWJl6CAQC596DxSj/Iw5gFvBgcOl6IjMQ22Wz0RJX1dDBZRVTyn2mSIiyi1WShERERFRwZgwkYBFv6eUQyxqoTKZYBfPPaTUqnUapQvr1pThBt9mzIx26ccNd3kRPPteDF73BP7e+1mo8GTzBFOWUwVUJlP3iIgodxhKEREREVEBEphAEZVBmjFl1ItIWL51C8O5FtdhnDJy8QooYyjF8IqIaOwxlCIiIiKiAiEhJsAKc4k8aITBRPKCfMkZVJZTxDilbHRM4ZO02U5ERGOCoRQRERERFQTThDmhbRlPtpGFYzWUxEjGzeApP1gBRUSUXwyliIiIiKhAGAODApm+ZxkmpRl37JyhvlD2t2emMirpGp3rx/GDJiLKCYZSRERERFQwxjWGyujmzgdl0uhcUbRrDMdCKY/Xpe+TThVTpktPxMBuYkgOm0Tsf0RElH92C9QSEREREU0oEtIQvIxviCBt46V0jc7TX7u8thizlsxCYCAMAJhzWh3aBvZmO0QagXQVUAyviIhyi6EUEREREdEIiAwCptQQw3ySVeN2l1vB2rfNNW1r22QTSrHXVE6pUtVfO07fy2gVRSIiSofT94iIiIioYAiLV/lnH0iYggzL4EKmvE45KoNHYxSVW1YVUKyKIiIaewyliIiIiKhwJPc6HzfS4v5WA0o3Hcxqo1ODbQYluWYMEp84+ETGxxIR0egxlCIiIiKigpGoXsl/OJC+cmYEK+3l5AwNV4QbudqiWgDAieET+jaXcNkdTkREOcKeUkRERERUIAoldHGY3pdJLyKLahynCh3TrkL5iMaRVbh4/eLrMaNsBjqHO/F65+uYVzkPxZ7icRgdEdHUwlCKiIiIiArCxM9bzFVcErAImCyeIumQnEwR4yyzjAkI+Fw+XDLrEgDAdbhunEdERDR1cPoeERERERWMxIp345e6SCltErL4mJziM2nxyu462e2iscfm50REucVQioiIiIhoBDKJJ5KPsVrjLWVLNrkHG2+PC/bvIiLKDYZSRERERFSQ8h7HJAVAqbFEJiOyqrJK2jDSoIk5CRERFRj2lCIiIiKigjERpu/Zy6B/lGGT3RNkP0VsIn4WE1j68jX7U5ODSUPj+pz0AiMimmIYShERERFRgUiuKBqfUdixDpOSg6kMeko5PJdM89CcVpYfA6EBXPjrC9E53AkAKHIX4expZ6PIXYTZFbNR6a+Ez+XDW+a+ZZxHSkQ0sTGUIiIiIqKCIJEIfsa74bSqqhn1h7LaJpP2jmwaII0Ht9B+fOoKdJm2D0eG8Y/D/zBtq/JVMZQiIkqDoRQRERERFQaR/Hp8whupqggNDyEX30pbxlgW08AymhqWwdRASpVNwLm4ZjHeteBdONR/CAIC50w/B2unrcWr7a8iIiPYc3IPugPdAIBST+lYDZmIaNJgKEVEREREBSj/sUtRWTkqG5rQ095qPUkuo55CnF5XyNyKG/+59j9Tti+oWjAOoyEiKnwMpYiIiIioIEj9H+PD5Xbjpm9+F0O9vfD98z8h2p5OOiL9hL6MojSncCtllxjxYn1T1XhP/SQiogSGUkRERERUEETaNt9jz+X2oKymFvD7LQOitKSa9hCGTERENFUo4z0AIiIiIqJMmIukJmJyEx9TcivzLK8i+C16PrFyioho/PD/8YiIiIiocIwu7xlj5gFZzzRMrvYSOXuO8Z7eWKh2n9w93kMgIpqyGEoRERERUcEQFq8mDmH6ze6ItLlRtvP3LJfwy+4SU0lDcYPp/cLqheM0EiIiYk8pIiIiIioIEhN9qlX6RueATJtKOT3h+HfVKnzL65bjF1f+Aof6DmF713Zc3nL5eA+JiGjKYihFRERERAVovOMpi7uPcEApGRU7nY8pIQSW1S3DsrpluHru1eM9HCKiKY3T94iIiIioMMiJ3jApOUySqQFTJs9gEUoJkX5qIBERUaFhKEVEREREBWHirb6XHDBl/631qNtBGQ+e8KEdERGRGUMpIiIiIioQyaHLRAimjHI0ngym7wnmT0RENAkwlCIiIiKigjDRghi/TWWS0zBF+rX3RtUta4J9RERERI4YShERERFRARLjXij10Z4+84asG5TbREg5eC7BZulERFQAGEoREREREY3AikAwaUs8CJKGLcmNzlXD69hvKfnRyAIlVkkREVGhYShFRERERIVnvCuBLO9vtc05KipS/alXUeyfTVoEX0RERIWKoRQRERERFYakHGbcJ6iNoMLJ2FNKApgWqseMgelJxzhcx2IXp+oREVGhYihFRERERAVoIgYx2pgUl/a7hHSs6GoLBKAG+1EVqra6jHmTzXUYSBERUSFjKEVEREREBUI6vMu/1DhIpGxXkkapqGH9devwMIZf+HZGVyYiIpqM3OM9ACIiIiKi7AmMd3jjUyKYV9qJfQNNkMIFl3dRyjHVviLM2v9XBPy1UKIhlAxtwUnM1fcrqppyjlNPKUcSiIbV0V2DiIgoj1gpRURERESFYYL1lBICeGvzDtT4r4G/8qNw+08DABRFE9VQrrIG7FkYRlftPnjrA3hpzSmGK0hU9PaiIRgxXXTmwsVZjcNf4oYSC6EOb+8CAJRW+kb2UERERHnESikiIiIiKkhur3f8bi4Sf7crktIyt4xVP8U291ZWoreyEuXRZkRcR0zHKlLiohNd6Nt7EJWfXof6a65BcUVl+vvLxD0Vl4KK+iKcbBvCQHcQAFBeV5T9MxEREeUZQykiIiIimtA2t2/G9q7tWHR8KYBXY1vF+E5RW/pO4MiLQHgIOOg0jszG6ItEUVlekT6Qcpm/fY90dgIALnzvIux5qR1SAmU1fkyfn+Y6REREEwCn7xERERFNMvfddx9aWlrg9/uxZs0avPjii47HP/roo1i0aBH8fj+WLl2Kv/zlL3kaaXpHTxzBh//6Ibz8vZ9gzt6d+nYho6hvGseBNa8G/u1p4NaXUKIETbsUMWB5Slho0/SiEXNlVaSjI+PbKi2zYi8UCJ8PRStWAACa5lXivOsX4vz3LMTpl89iTykiIioIDKWIiIiIJpFHHnkE69atwx133IFXXnkFy5cvx+WXX44TJ05YHv/888/j+uuvxy233IJXX30Vb3vb2/C2t70Nb7zxRp5Hbu3Rj6/De/46DTNPlEBiGADgj6i44tA6LH3nKWnOzo9Lb1mCc4tewMrQ3zFt99dxdOAQAG1andF+pRUA0NM+pG1QtP3RLq0PlFJkP+VOCC1k6u7u1o71+TD/2Wfgrq3N3YMQERHlmZBSjvdquhNWX18fKioq0Nvbi/Ly8vEeDhEREU0AE/37gzVr1uCMM87Ad77zHQCAqqpobm7Gxz/+cXzhC19IOf7d7343BgcH8ec//1nfduaZZ2LFihW4//77M7rnWH0mqhrFve95H1TZBwBQ3LPg9a/GKS0PYpWrBmWf/yXg8uTsfqPVtnc3fvGldfr7mQuX47y6d+DvXS/gIE4AQkBGFVQOLII/UovF8yUWnPwXAMBVW4Oam2+2DaZ6e3vx6KOPYnBwEACwZMkSXHzxxWP/UERERCOQ6fcG7ClFRERENEmEQiFs3rwZt912m75NURRccskl2Lhxo+U5GzduxLp160zbLr/8cjz22GO29wkGgwgGE1PW+vr6RjdwG1JVEWn0o7S/BBVhP/yiCK1Vu9C47MsoveLcCRVIAUDD3Pm45ra70N/VASEUtCw/HWU1tXg/TnM468KMrl1RUYEPfvCDuRkoERHRBMFQioiIiGiS6OzsRDQaRUNDg2l7Q0MDdu7caXlOW1ub5fFtbW2297n77rtx1113jX7AabjcHnz2Wz8Z8/vkihACs1esHO9hEBERFQz2lCIiIiKirNx2223o7e3Vfx05cmS8h0REREQFiJVSRERERJNEbW0tXC4X2tvbTdvb29vR2NhoeU5jY2NWxwOAz+eDz+cb/YCJiIhoSmOlFBEREdEk4fV6sXLlSqxfv17fpqoq1q9fj7Vr11qes3btWtPxAPDkk0/aHk9ERESUK6yUIiIiIppE1q1bhxtvvBGrVq3C6tWr8a1vfQuDg4O4+eabAQDvf//7MX36dNx9990AgE984hM4//zz8Y1vfANXXXUVfvWrX+Hll1/GD37wg/F8DCIiIpoCGEoRERERTSLvfve70dHRgdtvvx1tbW1YsWIF/va3v+nNzA8fPgxFSRTLn3XWWXj44Yfx5S9/GV/84hcxf/58PPbYY1iyZMl4PQIRERFNEUJKKcd7EBNVX18fKioq0Nvbi/Ly8vEeDhEREU0A/P4gFT8TIiIiMsr0ewP2lCIiIiIiIiIiorxjKEVERERERERERHnHUIqIiIiIiIiIiPKOoRQREREREREREeUdQykiIiIiIiIiIso7hlJERERERERERJR3DKWIiIiIiIiIiCjvGEoREREREREREVHeMZQiIiIiIiIiIqK8YyhFRERERERERER5x1CKiIiIiIiIiIjyjqEUERERERERERHlHUMpIiIiIiIiIiLKO4ZSRERERERERESUdwyliIiIiIiIiIgo7xhKERERERERERFR3jGUIiIiIiIiIiKivGMoRUREREREREREecdQioiIiIiIiIiI8o6hFBERERERERER5R1DKSIiIiIiIiIiyjuGUkRERERERERElHcMpYiIiIiIiIiIKO8YShERERERERERUd4xlCIiIiIiIiIiorxzj/cAJjIpJQCgr69vnEdCREREE0X8+4L49wnE75mIiIjILNPvlxhKOejv7wcANDc3j/NIiIiIaKLp7+9HRUXFeA9jQuD3TERERGQl3fdLQvKv+Wypqorjx4+jrKwMQoicX7+vrw/Nzc04cuQIysvLc379iYzPzmfns08dfHY++2R7dikl+vv7MW3aNCgKOyEAY/s902T+s5QOn53PzmefOvjsfPbJ9uyZfr/ESikHiqJgxowZY36f8vLySfcHMFN8dj77VMNn57NPNZP12VkhZZaP75km65+lTPDZ+exTDZ+dzz7VTNZnz+T7Jf71HhERERERERER5R1DKSIiIiIiIiIiyjuGUuPI5/PhjjvugM/nG++h5B2fnc8+1fDZ+exTzVR+dsqtqfxnic/OZ59q+Ox89qlmKj97HBudExERERERERFR3rFSioiIiIiIiIiI8o6hFBERERERERER5R1DKSIiIiIiIiIiyjuGUkRERERERERElHcMpYiIiIiIiIiIKO8YShERERERERERUd4xlCIiIiIiIiIiorxjKEVERERERERERHnHUIqIiIiIiIiIiPKOoRQREREREREREeUdQykiIiIiIiIiIso7hlJERERERERERJR3DKWIiIiIiIiIiCjvGEoRUcE5ePAghBB48MEHx3soE8ZNN92ElpYW0zYhBO68885xGQ8RERGlx+9pUvF7GqKphaEUEWXt+eefx5133omenp4Rnf/d736X33yNwPHjx3HnnXdiy5Yt4z0UIiKiSYHf04wPfk9DRHEMpYgoa88//zzuuusufgOXZ8ePH8ddd91l+Q3cD3/4Q+zatSv/gyIiIipg/J5mfPB7GiKKc4/3AIiIaPQ8Hs94D4GIiIho1Cbb9zSDg4MoKSkZ72EQTVislCKirNx555347Gc/CwCYPXs2hBAQQuDgwYOIRCL4f//v/2Hu3Lnw+XxoaWnBF7/4RQSDQf38lpYWbNu2DU8//bR+7gUXXAAA6O7uxmc+8xksXboUpaWlKC8vxxVXXIGtW7fmZOyBQAB33nknFixYAL/fj6amJlxzzTXYt28fgERfh69//eu45557MGvWLBQVFeH888/HG2+8YbrWBRdcoI/byKoPQjotLS246aabUrYb77FhwwacccYZAICbb75Z/+zifzs7kvta+dWvfoWVK1eirKwM5eXlWLp0Ke69995RX5eIiGii4fc0msn4Pc2GDRsghMCGDRtM2616eLW1teHmm2/GjBkz4PP50NTUhLe+9a04ePCg6dy//vWvOPfcc1FSUoKysjJcddVV2LZtm+mYm266CaWlpdi3bx+uvPJKlJWV4YYbbshozOFwGHfddRfmz58Pv9+PmpoanHPOOXjyySdH8hEQFQxWShFRVq655hrs3r0bv/zlL3HPPfegtrYWAFBXV4cPfvCD+OlPf4p3vOMd+PSnP41Nmzbh7rvvxo4dO/D73/8eAPCtb30LH//4x1FaWoovfelLAICGhgYAwP79+/HYY4/hne98J2bPno329nZ8//vfx/nnn4/t27dj2rRpIx53NBrFm9/8Zqxfvx7XXXcdPvGJT6C/vx9PPvkk3njjDcydO1c/9qGHHkJ/fz8+9rGPIRAI4N5778VFF12E119/XR9rvi1evBhf+cpXcPvtt+PDH/4wzj33XADAWWedlbN7PPnkk7j++utx8cUX43/+538AADt27MBzzz2HT3ziEzm7DxER0UTA72km7/c02bj22mux7f9n777je7r3B46/vhnf5JtJIpEhEpEYUdTeNFaC4nerVCnRoqL2psuoUSpcq0Yv4d6iWm3JNS7RokGqaGJWYiRFxIiQyB7f8/vjK4evEDFjvJ+PRx5yzvmcz3mfE0k+eZ/POH6cIUOG4OXlxZUrVwgPD+fcuXNqcuw///kPQUFBBAQEMHPmTDIyMli8eDFNmzYlKirKKImWl5dHQEAATZs2Zfbs2VhZWRUrjkmTJjFjxgz69etH/fr1SU1N5eDBg/z555+0adPmKdy5EM8JRQghHtJXX32lAEpcXJy6Lzo6WgGUfv36GZUdPXq0Aii//vqruq9atWpKixYtCtWblZWl5OfnG+2Li4tTLCwslClTphjtA5TQ0NBix7xixQoFUObMmVPomF6vN6pXp9MpFy5cUI/v379fAZQRI0ao+1q0aHHPewgKClI8PT2LHZeiKIqnp6cSFBRUaP/d1zhw4MB97/te1wWUiRMnFjuOYcOGKXZ2dkpeXl6xzxFCCCFeZNKmeTnbNDt37lQAZefOnUb7737e169fVwDlq6++um9dN2/eVEqVKqX079/faP+lS5cUe3t7o/1BQUEKoIwfP77YsRaoWbOm0qFDh4c+T4gXnQzfE0I8EVu2bAFg5MiRRvtHjRoFwObNmx9Yh4WFBSYmhh9L+fn5XLt2DRsbGypXrsyff/75WPH9+OOPlClThiFDhhQ6ptFojLb/7//+D3d3d3W7fv36NGjQQL3Hl1WpUqVIT0+XbuJCCCFeadKmeXXodDq0Wi27du3i+vXr9ywTHh7OjRs3ePfdd0lKSlI/TE1NadCgATt37ix0zsCBAx86llKlSnH8+HFOnTr10OcK8SKTpJQQ4on4+++/MTExwcfHx2i/i4sLpUqV4u+//35gHXq9nrlz5+Lr64uFhQVlypTBycmJI0eOkJKS8ljxnTlzhsqVK2Nm9uBRy76+voX2VapUqdDcAi+bjz76iEqVKtGuXTvKlSvHBx98wP/+97+SDksIIYR4pqRN8+qwsLBg5syZbN26lbJly9K8eXNmzZrFpUuX1DIFSaKWLVvi5ORk9LF9+3auXLliVKeZmRnlypV76FimTJnCjRs3qFSpEtWrV2fMmDEcOXLk8W5QiBeAJKWEEE/U3W/oHsb06dMZOXIkzZs359tvv2Xbtm2Eh4dTrVo19Hr9E4zy8d3vPvPz80u0rsfh7OxMdHQ0YWFhdOrUiZ07d9KuXTuCgoKeaRxCCCHE80DaNC9um+Zh4hg+fDixsbHMmDEDS0tLPvvsM6pWrUpUVBSA+vX6z3/+Q3h4eKGPjRs3GtV3Zy+5h9G8eXPOnDnDihUreO211/jXv/5F7dq1+de//vXQdQnxIpGJzoUQD+1ev+g9PT3R6/WcOnWKqlWrqvsvX77MjRs38PT0LPJ8gPXr1+Pv78/y5cuN9t+4cUOdfPRRVaxYkf3795Obm/vApYbv1W06NjbWaBLL0qVLc/bs2ULlivP29G6lS5fmxo0b96zL29tb3X6cxnFxabVaOnbsSMeOHdHr9Xz00UcsXbqUzz77rNAbYyGEEOJFJ22al7NNU7p0aYBCsdzvnipWrMioUaMYNWoUp06d4vXXXyckJIRvv/1WnTje2dmZ1q1bP9W4HRwceP/993n//fdJS0ujefPmTJo0iX79+j3V6wpRkqSnlBDioVlbWwPGv+jbt28PGFaiudOcOXMA6NChg9H592qwmJqaoiiK0b4ffviBhISEx465S5cuJCUlsXDhwkLH7r7mhg0bjK75xx9/sH//ftq1a6fuq1ixIidPnuTq1avqvsOHD7N3796Hjq1ixYr8/vvv5OTkqPs2bdrE+fPnjcrd67k/SdeuXTPaNjExoUaNGgBGS2ALIYQQLwtp07ycbRpPT09MTU357bffjPZ//fXXRtsZGRlkZWUZ7atYsSK2trZq2ycgIAA7OzumT59Obm5uoWvd+dwex93tMBsbG3x8fKQNJl560lNKCPHQ6tSpA8Ann3xC9+7dMTc3p2PHjgQFBbFs2TJu3LhBixYt+OOPP1i1ahX/93//h7+/v9H5ixcvZurUqfj4+ODs7EzLli158803mTJlCu+//z6NGzfm6NGjrF692ujN2qPq3bs3//73vxk5ciR//PEHzZo1Iz09nR07dvDRRx/RuXNntayPjw9NmzZl4MCBZGdn889//hNHR0fGjh2rlvnggw+YM2cOAQEB9O3blytXrrBkyRKqVatGamrqQ8XWr18/1q9fT2BgIN26dePMmTNGb+YKVKxYkVKlSrFkyRJsbW2xtramQYMGVKhQ4fEezh1xJCcn07JlS8qVK8fff//NggULeP31143eFAshhBAvC2nTvJxtGnt7e7p27cqCBQvQaDRUrFiRTZs2FZr/KTY2llatWtGtWzf8/PwwMzPj559/5vLly3Tv3h0AOzs7Fi9eTK9evahduzbdu3fHycmJc+fOsXnzZpo0aXLPBOHD8vPz44033qBOnTo4ODhw8OBB1q9fz+DBgx+7biGeayW7+J8Q4kX1xRdfKO7u7oqJiYm6lHJubq4yefJkpUKFCoq5ubni4eGhTJgwQcnKyjI699KlS0qHDh0UW1tbBVCXCM7KylJGjRqluLq6KjqdTmnSpIkSGRlZaBnhR1k+WVEUJSMjQ/nkk0/U+FxcXJS3335bOXPmjFG9X331lRISEqJ4eHgoFhYWSrNmzZTDhw8Xqu/bb79VvL29Fa1Wq7z++uvKtm3bHmn5ZEVRlJCQEMXd3V2xsLBQmjRpohw8ePCeSzRv3LhR8fPzU8zMzIyewZNYPnn9+vVK27ZtFWdnZ0Wr1Srly5dXBgwYoCQmJj70/QghhBAvCmnTvHxtGkVRlKtXrypdunRRrKyslNKlSysDBgxQjh07ZnStpKQkZdCgQUqVKlUUa2trxd7eXmnQoIHy/fffF6pv586dSkBAgGJvb69YWloqFStWVPr06aMcPHhQLRMUFKRYW1s/VJwFpk6dqtSvX18pVaqUotPplCpVqijTpk1TcnJyHqk+IV4UGkW5q4+nEEK8ouLj46lQoQJfffUVo0ePLulwhBBCCCEeibRphBAvCplTSgghhBBCCCGEEEI8czKnlBDihZaTk0NycnKRZezt7dHpdM8ootuSk5ONJvq8m6mpKU5OTk89jvz8/AdOwmljY4ONjc1Tj0UIIYQQ9yZtmgd7Eds0mZmZpKSkFFnGwcEBrVb7jCIS4vkiSSkhxAtt3759RhOO3ktoaCh9+vR5NgHd4a233mL37t33Pe7p6Ul8fPxTj+P8+fMPnDh04sSJTJo06anHIoQQQoh7kzbNg72IbZp169bx/vvvF1lm586dvPHGG88mICGeMzKnlBDihXb9+nUOHTpUZJlq1arh6ur6jCK67dChQ1y/fv2+x3U6HU2aNHnqcWRlZbFnz54iy3h7ez+RFYGEEEII8WikTfNgL2KbJjExkePHjxdZpk6dOpQuXfoZRSTE80WSUkIIIYQQQgghhBDimZOJzoUQQgghhBBCCCHEMydzShVBr9dz8eJFbG1t0Wg0JR2OEEIIIZ4DiqJw8+ZN3NzcMDGR93sgbSYhhBBCGCtue0mSUkW4ePEiHh4eJR2GEEIIIZ5D58+fp1y5ciUdxnNB2kxCCCGEuJcHtZckKVUEW1tbwPAQ7ezsSjgaIYQQQjwPUlNT8fDwUNsJQtpMQgghhDBW3PaSJKWKUND93M7OThpYQgghhDAiw9RukzaTEEIIIe7lQe0lmQhBCCGEEEIIIYQQQjxzkpQSQgghhBBCCCGEEM+cJKWEEEIIIYQQQgghxDMnc0oJIYQQQgghhHiu5Ofnk5ubW9JhCCHuw9zcHFNT08euR5JSQgghhBBCCCGeC4qicOnSJW7cuFHSoQghHqBUqVK4uLg81uIvkpQSQgghhBBCCPFcKEhIOTs7Y2VlJSudCvEcUhSFjIwMrly5AoCrq+sj1yVJKSGEEEIIIYQQJS4/P19NSDk6OpZ0OEKIIuh0OgCuXLmCs7PzIw/lk4nOhRBCCCGEEEKUuII5pKysrEo4EiFEcRR8rz7O/G+SlBJCCCGEEEII8dyQIXtCvBiexPeqJKWEEEIIIYQQQgghxDMnSSkhhBBCCCGEEEII8cxJUkoIIYQQQgghhHgMffr0QaPRoNFo0Gq1+Pj4MGXKFPLy8h6r3l27dqHRaLhx48aTCbQY4uLi6NGjB25ublhaWlKuXDk6d+7MyZMnjcpt2rSJFi1aYGtri5WVFfXq1WPlypVGZeLj49FoNERHRxf7+pMmTaJKlSpYW1tTunRpWrduzf79+43q7Nu3LxUqVECn01GxYkUmTpxITk5OkfUmJibSo0cPKlWqhImJCcOHDy9WPL/99hsdO3bEzc0NjUbDhg0b7lnur7/+olOnTtjb22NtbU29evU4d+6cenzAgAFUrFgRnU6Hk5PTPZ/pgQMHaNWqFaVKlaJ06dIEBARw+PDhe17v9OnT2NraUqpUqSd2DyVBklJCCCGEEEIIIcRjCgwMJDExkVOnTjFq1CgmTZrEV199VdJhqR6UtAHDhNVt2rQhJSWFn376iZiYGNatW0f16tWNEmMLFiygc+fONGnShP3793PkyBG6d+9OcHAwo0ePfqw4K1WqxMKFCzl69Ch79uzBy8uLtm3bcvXqVQBOnjyJXq9n6dKlHD9+nLlz57JkyRI+/vjjIuvNzs7GycmJTz/9lJo1axY7nvT0dGrWrMmiRYvuW+bMmTM0bdqUKlWqsGvXLo4cOcJnn32GpaWlWqZOnTqEhoby119/sW3bNhRFoW3btuTn5wOQlpZGYGAg5cuXZ//+/ezZswdbW1sCAgIKTSSem5vLu+++S7NmzZ7YPZQYRdxXSkqKAigpKSklHYoQQgghnhPSPihMnokQ4knIzMxUTpw4oWRmZpZ0KA8tKChI6dy5s9G+Nm3aKA0bNlSSk5OVXr16KaVKlVJ0Op0SGBioxMbGquXi4+OVN998UylVqpRiZWWl+Pn5KZs3b1bi4uIUwOgjKChIURRFSU1NVXr06KFYWVkpLi4uypw5c5QWLVoow4YNU+v19PRUpkyZovTq1UuxtbVVz42IiFCaNm2qWFpaKuXKlVOGDBmipKWlKYqiKFFRUQqgxMfH3/dez507p5ibmysjR44sdGz+/PkKoPz++++KoijqPURFRT38Q72l4HfMjh077ltm1qxZSoUKFYpd593PqrgA5eeffy60/5133lHee++9h6rr8OHDCqCcPn1aURRFOXDggAIo586dU8scOXJEAZRTp04ZnTt27FjlvffeU0JDQxV7e/sncg+Poqjv2eK2DaSnlBBCCCGEEEKI55KiKGTk5JXIh+Hv90en0+nIycmhT58+HDx4kLCwMCIjI1EUhfbt26u9XwYNGkR2dja//fYbR48eZebMmdjY2ODh4cGPP/4IQExMDImJicybNw+AkSNHsnfvXsLCwggPDyciIoI///yzUAyzZ8+mZs2aREVF8dlnn3HmzBkCAwPp0qULR44cYd26dezZs4fBgwcD4OTkhImJCevXr1d78Nxt/fr15Obm3rNH1IABA7CxsWHt2rWP9ewK5OTksGzZMuzt7Yvs3ZSSkoKDg8MTuebD0uv1bN68mUqVKhEQEICzszMNGjQocohceno6oaGhVKhQAQ8PDwAqV66Mo6Mjy5cvJycnh8zMTJYvX07VqlXx8vJSz/3111/54Ycfns9eT4/ArKQDEEIIIYQQQggh7iUzNx+/z7eVyLVPTAnASvvwfzIrisIvv/zCtm3baNeuHRs2bGDv3r00btwYgNWrV+Ph4cGGDRvo2rUr586do0uXLlSvXh0Ab29vta6CRIuzs7M6d9DNmzdZtWoVa9asoVWrVgCEhobi5uZWKJaWLVsyatQodbtfv3707NlTnU/J19eX+fPn06JFCxYvXoy7uzvz589n7NixTJ48mbp16+Lv70/Pnj3VuGJjY7G3t8fV1bXQ9bRaLd7e3sTGxj70c7vTpk2b6N69OxkZGbi6uhIeHk6ZMmXuWfb06dMsWLCA2bNnP9Y1H9WVK1dIS0vjyy+/ZOrUqcycOZP//e9/vPXWW+zcuZMWLVqoZb/++mvGjh1Leno6lStXJjw8HK1WC4CtrS27du3i//7v//jiiy8Aw9dn27ZtmJkZ/h9eu3aNPn368O2332JnZ/fsb/YpkJ5SQgghhBBCCCHEY9q0aRM2NjZYWlrSrl073nnnHfr06YOZmRkNGjRQyzk6OlK5cmX++usvAIYOHcrUqVNp0qQJEydO5MiRI0Ve5+zZs+Tm5lK/fn11n729PZUrVy5Utm7dukbbhw8fZuXKldjY2KgfAQEB6PV64uLiAEPPrUuXLrF69WoaNWrEDz/8QLVq1QgPDy/2syhItBRl9erVRnFERESox/z9/YmOjmbfvn0EBgbSrVs3rly5UqiOhIQEAgMD6dq1K/3791f331lvcHBwsWKOiIgwOm/16tXFOk+v1wPQuXNnRowYweuvv8748eN58803WbJkiVHZnj17EhUVxe7du6lUqRLdunUjKysLgMzMTPr27UuTJk34/fff2bt3L6+99hodOnQgMzMTgP79+9OjRw+aN2/+RO+hJElPKSGEEEIIIYQQzyWduSknpgSU2LUfhr+/P4sXL0ar1eLm5oaZmRlhYWEPPK9fv34EBASwefNmtm/fzowZMwgJCWHIkCGPGrrK2traaDstLY0BAwYwdOjQQmXLly+vfm5ra0vHjh3p2LEjU6dOJSAggKlTp9KmTRt8fX1JSUnh4sWLhXpn5eTkcObMGQICHvw169Spk1Gyzt3d3ShuHx8ffHx8aNiwIb6+vixfvpwJEyaoZS5evIi/vz+NGzdm2bJlRnXfudpfcXsU1a1b1+i8smXLFuu8MmXKYGZmhp+fn9H+qlWrsmfPHqN99vb22Nvb4+vrS8OGDSldujQ///wz7777LmvWrCE+Pp7IyEhMTAz9h9asWUPp0qXZuHEj3bt359dffyUsLEztFaYoCnq9HjMzM5YtW8a77777SPdQkiQpJYQQQgghhBDiuaTRaB5pCF1JKEik3Klq1ark5eWxf/9+dfjetWvXiImJMUpieHh4EBwcTHBwMBMmTOCbb75hyJAhao+jO+d38vb2xtzcnAMHDqiJpJSUFGJjY+/bg6ZA7dq1OXHiRKE4i6LRaKhSpQr79u0D4O2332bcuHGEhIQQEhJiVHbJkiVkZGTQu3fvB9Zra2uLra1tsWLQ6/VkZ2er2wkJCfj7+6sr2hUkcQo8zP0V0Ol0j3SeVqulXr16xMTEGO2PjY3F09PzvucpioKiKOp9ZWRkYGJigkajUcsUbBf0xoqMjDT6v7Bx40ZmzpzJvn37cHd3f+R7KEkvxne3EEIIIYQQQgjxgvH19aVz587079+fpUuXYmtry/jx43F3d6dz584ADB8+nHbt2lGpUiWuX7/Ozp07qVq1KgCenp5oNBo2bdpE+/bt0el02NraEhQUxJgxY3BwcMDZ2ZmJEycWSmjcy7hx42jYsCGDBw+mX79+WFtbc+LECcLDw1m4cCHR0dFMnDiRXr164efnh1arZffu3axYsYJx48YBhh5Vs2bNYvTo0VhaWtKrVy/Mzc3ZuHEjH3/8MVOnTuW1114zuu7dCRuAatWqYW5ubrQvPT2dadOm0alTJ1xdXUlKSmLRokUkJCTQtWtXwJCQeuONN/D09GT27NlcvXpVPd/FxaXI+y/oRZSWlsbVq1eJjo5Gq9UW6uV0p7S0NE6fPq1ux8XFER0djYODg5oUHDNmDO+88w7NmzfH39+f//3vf/z3v/9l165dgGHI5bp162jbti1OTk5cuHCBL7/8Ep1OR/v27QFo06YNY8aMYdCgQQwZMgS9Xs+XX36JmZkZ/v7+AOr/iwIHDx7ExMSk0PN+lHsoMU9kHcCXlCxvLIQQQoi7SfugMHkmQognoajl5Z93QUFBSufOne95LDk5WenVq5dib2+v6HQ6JSAgQImNjVWPDx48WKlYsaJiYWGhODk5Kb169VKSkpLU41OmTFFcXFwUjUajBAUFKYqiKKmpqUqPHj0UKysrxcXFRZkzZ45Sv359Zfz48ep5np6eyty5cwvF88cffyht2rRRbGxsFGtra6VGjRrKtGnTFEVRlKtXrypDhw5VXnvtNcXGxkaxtbVVqlevrsyePVvJz883qmfDhg1Ks2bNFGtrawVQAGXt2rVGZeLi4tRjd3+cP3++UGyZmZnKP/7xD8XNzU3RarWKq6ur0qlTJ+WPP/5Qy4SGht63zge51zmenp5FnrNz5857nlfwtSiwfPlyxcfHR7G0tFRq1qypbNiwQT2WkJCgtGvXTnF2dlbMzc2VcuXKKT169FBOnjxpVMf27duVJk2aKPb29krp0qWVli1bKpGRkfeNLTQ0VLG3t3/gfRf3Hh5WUd+zxW0baBTlMde5fImlpqZib29PSkrKSzOzvRBCCCEej7QPCpNnIoR4ErKysoiLi6NChQpYWlqWdDgvlPT0dNzd3QkJCaFv377P/PrJycm0atUKOzs7tm7dipWV1TOPQTx7RX3PFrdtIKvvCSGEEEIIIYQQL5CoqCjWrl3LmTNn+PPPP+nZsyeAOiTwWXNwcGDHjh20atWKyMjIEolBvJhkTikhhBBCCCGEEOIFM3v2bGJiYtBqtdSpU4eIiAjKlClTYvE4Ojry+eefl9j1xYtJklJCCCGEEEIIIcQLpFatWhw6dKikwxDiscnwPSGEEEIIIYQQQgjxzElSSgghhBBCCCGEEEI8c5KUEkIIIYQQQgghhBDPnCSlhBBCCCGEEEIIIcQzJ0kpIYQQQgghxAtF0SslHYIQQognQFbfE+I5cjIykb/2JVKlkStVG7uWdDhCCCGEEM+N9JRsbiZncT0xncgNZ2nQsQJ+Td3QaDQlHZoQQohHJD2lhChhuTn5/LY2hq1Lj/LLqr+4eOoGqUmZJR2WEEIIIcRzIz0lm39/so8fZx7i13+fJDM1h3PHkyUhJZ4bffr0QaPRoNFo0Gq1+Pj4MGXKFPLy8h6r3l27dqHRaLhx48aTCbQY4uLi6NGjB25ublhaWlKuXDk6d+7MyZMnjcpt2rSJFi1aYGtri5WVFfXq1WPlypVGZeLj49FoNERHRxf7+pMmTaJKlSpYW1tTunRpWrduzf79+43q7Nu3LxUqVECn01GxYkUmTpxITk5OkfUmJibSo0cPKlWqhImJCcOHDy9WPIsXL6ZGjRrY2dlhZ2dHo0aN2Lp1q3o8OTmZIUOGULlyZXQ6HeXLl2fo0KGkpKSoZVauXKn+/7j748qVK2q57OxsPvnkEzw9PbGwsMDLy4sVK1YYxfPPf/5TvZaHhwcjRowgKyuryHv46aefaNu2LY6Ojg/99XjapKeUECXs3LFrHN2dYLTPo6pDCUUjhBBCCPH8uZaQhj5PwcRMg00pC7Q6Mxr9o2JJhyWEkcDAQEJDQ8nOzmbLli0MGjQIc3NzJkyYUNKhAZCTk4NWqy2yTG5uLm3atKFy5cr89NNPuLq6cuHCBbZu3WqUGFuwYAHDhw9n3LhxLF68GK1Wy8aNGwkODubYsWPMnj37keOsVKkSCxcuxNvbm8zMTObOnUvbtm05ffo0Tk5OnDx5Er1ez9KlS/Hx8eHYsWP079+f9PT0Iq+bnZ2Nk5MTn376KXPnzi12POXKlePLL7/E19cXRVFYtWoVnTt3JioqimrVqnHx4kUuXrzI7Nmz8fPz4++//yY4OJiLFy+yfv16AN555x0CAwON6u3Tpw9ZWVk4Ozur+7p168bly5dZvnw5Pj4+JCYmotfr1eNr1qxh/PjxrFixgsaNGxMbG6smROfMmXPfe0hPT6dp06Z069aN/v37F/venwlF3FdKSooCKCkpKSUdiniJHd19QVk44Bflu6n7laO7Lyhxh6+WdEhCCCGKIO2DwuSZiKflZnKWEv3LOWX78mPKwgG/KBvm/lnSIYmnKDMzUzlx4oSSmZlZ0qE8tKCgIKVz585G+9q0aaM0bNhQSU5OVnr16qWUKlVK0el0SmBgoBIbG6uWi4+PV958802lVKlSipWVleLn56ds3rxZiYuLUwCjj6CgIEVRFCU1NVXp0aOHYmVlpbi4uChz5sxRWrRooQwbNkyt19PTU5kyZYrSq1cvxdbWVj03IiJCadq0qWJpaamUK1dOGTJkiJKWlqYoiqJERUUpgBIfH3/fez137pxibm6ujBw5stCx+fPnK4Dy+++/K4qiqPcQFRX18A/1loLfMTt27LhvmVmzZikVKlQodp13P6uHVbp0aeVf//rXfY9///33ilarVXJzc+95/MqVK4q5ubny73//W923detWxd7eXrl27dp96x00aJDSsmVLo30jR45UmjRpUqy4n8TX405Ffc8Wt21QIsP3vLy87tltbdCgQQBkZWUxaNAgHB0dsbGxoUuXLly+fNmojnPnztGhQwesrKxwdnZmzJgxhbpG7tq1i9q1a2NhYYGPj0+hroRCPA9yMg3/bx3dbXituTteNcqUcERCCCGEEM+HvetPsef7U8T+YfhbwKa0RQlHJETx6XQ6cnJy6NOnDwcPHiQsLIzIyEgURaF9+/bk5uYCMGjQILKzs/ntt984evQoM2fOxMbGBg8PD3788UcAYmJiSExMZN68eQCMHDmSvXv3EhYWRnh4OBEREfz555+FYpg9ezY1a9YkKiqKzz77jDNnzhAYGEiXLl04cuQI69atY8+ePQwePBgAJycnTExMWL9+Pfn5+fe8r/Xr15Obm8vo0aMLHRswYAA2NjasXbv2iTzDnJwcli1bhr29PTVr1rxvuZSUFBwcnv5ok/z8fL777jvS09Np1KhRkfHY2dlhZnbvwWn//ve/sbKy4u2331b3hYWFUbduXWbNmoW7uzuVKlVi9OjRZGbentqlcePGHDp0iD/++AOAs2fPsmXLFtq3b/+E7vDZK5HhewcOHDD6D37s2DHatGlD165dARgxYgSbN2/mhx9+wN7ensGDB/PWW2+xd+9ewPAfoUOHDri4uLBv3z4SExPp3bs35ubmTJ8+HTCMg+3QoQPBwcGsXr2aX375hX79+uHq6kpAQMCzv2kh7nIzOYtzx69x8dQNALQ6GU0rhBBCCHGntOvZALhXKoW9sxWvt/Yo4YjEM6cokJtRMtc2t4JHmLdMURR++eUXtm3bRrt27diwYQN79+6lcePGAKxevRoPDw82bNhA165dOXfuHF26dKF69eoAeHt7q3UVJFqcnZ0pVaoUADdv3mTVqlWsWbOGVq1aARAaGoqbm1uhWFq2bMmoUaPU7X79+tGzZ091PiVfX1/mz59PixYtWLx4Me7u7syfP5+xY8cyefJk6tati7+/Pz179lTjio2Nxd7eHlfXwgszabVavL29iY2NfejndqdNmzbRvXt3MjIycHV1JTw8nDJl7v3y/vTp0yxYsOCxhgw+yNGjR2nUqBFZWVnY2Njw888/4+fnd8+ySUlJfPHFF3z44Yf3rW/58uX06NEDnU6n7jt79ix79uzB0tKSn3/+maSkJD766COuXbtGaGgoAD169CApKYmmTZuiKAp5eXkEBwfz8ccfP9kbfoZK5K9gJycno+0vv/ySihUr0qJFC1JSUli+fDlr1qyhZcuWgOEbrGrVqvz+++80bNiQ7du3c+LECXbs2EHZsmV5/fXX+eKLLxg3bhyTJk1Cq9WyZMkSKlSoQEhICABVq1Zlz549zJ07V5JS4rmw/V/HuXT29uR3ltbmJRiNEEIIIcTzJzfb0KO8TqAXHn4y5+YrKTcDphdOtjwTH18ErXWxi2/atAkbGxtyc3PR6/X06NGDt956i02bNtGgQQO1nKOjI5UrV+avv/4CYOjQoQwcOJDt27fTunVrunTpQo0aNe57nbNnz5Kbm0v9+vXVffb29lSuXLlQ2bp16xptHz58mCNHjrB69Wp1n6Io6PV64uLiqFq1KoMGDaJ3797s2rWL33//nR9++IHp06cTFhZGmzZtivUsHjR3FRiScwMGDFC3t27dSrNmzQDw9/cnOjqapKQkvvnmG7p168b+/fuN5l8CSEhIIDAwkK5duxrNlWRjY6N+/t5777FkyZIHxhMREUG7du3U7aVLl9KzZ08AKleuTHR0NCkpKaxfv56goCB2795dKDGVmppKhw4d8PPzY9KkSfe8TmRkJH/99Rf/+c9/jPbr9Xo0Gg2rV6/G3t4egDlz5vD222/z9ddfo9Pp2LVrF9OnT+frr7+mQYMGnD59mmHDhvHFF1/w2WefFflMn1cl3jUjJyeHb7/9lpEjR6LRaDh06BC5ubm0bt1aLVOlShXKly9PZGQkDRs2JDIykurVq1O2bFm1TEBAAAMHDuT48ePUqlWLyMhIozoKyhR3hn0hnra0G4YVEtwrl8K2tCVVGxd+0yCEEEII8SrLyTKMrjC3NC3hSIR4MH9/f3XSbzc3N8zMzAgLC3vgef369SMgIIDNmzezfft2ZsyYQUhICEOGDHnsmKytjZNqaWlpDBgwgKFDhxYqW758efVzW1tbOnbsSMeOHZk6dSoBAQFMnTqVNm3a4OvrS0pKChcvXizUOysnJ4czZ84UqyNIp06djJJ17u7uRnH7+Pjg4+NDw4YN8fX1Zfny5UaTxl+8eBF/f38aN27MsmXLjOq+c3U5Ozu7B8YChgTenefdmW8oWFERoE6dOhw4cIB58+axdOlStczNmzcJDAzE1taWn3/+GXPze3c6+Ne//sXrr79OnTp1jPa7urri7u6uJqTA0LlGURQuXLiAr68vn332Gb169aJfv34AVK9enfT0dD788EM++eSTIp/p86rEk1IbNmzgxo0b9OnTB4BLly6h1WrVrokFypYty6VLl9Qyd/4HKThecKyoMqmpqWRmZhp1kyuQnZ1Ndna2up2amvpY9yZEUfJyDKsoNH+nMg5uxX8DI4QQQgjxsrt67iYJsdfJSjPMuSNJqVeYuZWhx1JJXfshFCRS7lS1alXy8vLYv3+/Onzv2rVrxMTEGPWy8fDwIDg4mODgYCZMmMA333zDkCFD1B5Hd05/4+3tjbm5OQcOHFATSSkpKcTGxtK8efMiY6xduzYnTpwoFGdRNBoNVapUYd++fQC8/fbbjBs3jpCQEHVkUoElS5aQkZFB7969H1ivra0ttra2xYpBr9cb/a2ekJCAv78/derUITQ0FBMT4+myH+b+Cuh0umKfd3c8qampBAQEYGFhQVhYGJaWlvc8Ly0tje+//54ZM2YUOtakSRN++OEH0tLS1J5esbGxmJiYUK5cOQAyMjIK3aupqeHno6IoD/VMnxclnpRavnw57dq1u+f412dtxowZTJ48uaTDEK+IvBzDLxYzbYmsNyCEEEII8dwKmx+tJqRApjl4pWk0DzWE7nnj6+tL586d6d+/P0uXLsXW1pbx48fj7u5O586dARg+fDjt2rWjUqVKXL9+nZ07d1K1alUAPD090Wg0bNq0ifbt26PT6bC1tSUoKIgxY8bg4OCAs7MzEydOxMTEBM0D5sAaN24cDRs2ZPDgwfTr1w9ra2tOnDhBeHg4CxcuJDo6mokTJ9KrVy/8/PzQarXs3r2bFStWMG7cOMDQo2rWrFmMHj0aS0tLevXqhbm5ORs3buTjjz9m6tSpvPbaa0bXjYmJKRRLtWrVCvUmSk9PZ9q0aXTq1AlXV1eSkpJYtGgRCQkJ6hzUCQkJvPHGG3h6ejJ79myuXr2qnu/i4lLk/Rf0hEpLS+Pq1atER0ej1WrvOz8UwIQJE2jXrh3ly5fn5s2brFmzhl27drFt2zbAkJBq27YtGRkZfPvtt6SmpqodXJycnNSkEcC6devIy8vjvffeK3SdHj168MUXX/D+++8zefJkkpKSGDNmDB988IHaqaZjx47MmTOHWrVqqcP3PvvsMzp27Gh0nbslJydz7tw5Ll40JHgLvh4uLi4PfGZPW4kmpf7++2927NjBTz/9pO5zcXEhJyeHGzduGPWWunz5svqwXFxc1Nnm7zxecKzg37tX7Lt8+TJ2dnb37CUFhv9sI0eOVLdTU1Px8JDJFMWTpyiK2lPKTFu8N3/5qakot7LxJnZ2mFjI6jNCCCGEePkoekVNSFWs5YSrTyms7aXdI15coaGhDBs2jDfffJOcnByaN2/Oli1b1IRMfn4+gwYN4sKFC9jZ2REYGMjcuXMBw/CryZMnM378eN5//3169+7NypUrmTNnDsHBwbz55pvY2dkxduxYzp8/f98eOgVq1KjB7t27+eSTT2jWrBmKolCxYkXeeecdAMqVK4eXlxeTJ08mPj4ejUajbo8YMUKtZ8SIEXh7exMSEsK8efNIT08HYO3atXTv3r3Qde+17/z582oPoAKmpqacPHmSVatWkZSUhKOjI/Xq1SMiIoJq1aoBEB4ezunTpzl9+nSh8xVFKfL+a9WqpX5+6NAh1qxZg6enJ/Hx8fc958qVK/Tu3ZvExETs7e2pUaMG27ZtU+fX+vPPP9m/fz9QuIdWXFwcXl5e6vby5ct56623Co0MA8M8WOHh4QwZMoS6devi6OhIt27dmDp1qlrm008/RaPR8Omnn5KQkICTkxMdO3Zk2rRpRd53WFgY77//vrpd8PWYOHHifee+elY0yoO+ak/RpEmTWLp0KefPn1eXSkxJScHJyYm1a9fSpUsXwJDFq1Klijqn1NatW3nzzTdJTExUJzpbtmwZY8aM4cqVK1hYWDBu3Di2bNnC0aNH1ev16NGD5ORk/ve//xUrvtTUVOzt7dXlHIV4UvJy8lk6dDcA/f/ZHK2lGbkXL5K2dy/k55Py8wby09JQcnPJu3oV8vNRcnLU893nzcMuoG1JhS+EEK80aR8UJs9EPEn5uXqWDNkFQP+5zWWF4ldIVlYWcXFxVKhQ4YHJFWEsPT0dd3d3QkJC6Nu37zO/fnJyMq1atcLOzo6tW7diZfVwQx/Fi6mo79nitg1K7Ce8Xq8nNDSUoKAgNSEFhlUD+vbty8iRI3FwcMDOzo4hQ4bQqFEjGjZsCEDbtm3x8/OjV69ezJo1i0uXLvHpp58yaNAgLG71HgkODmbhwoWMHTuWDz74gF9//ZXvv/+ezZs3l8j9CgGGzP2OlSe4dOb2qnumSj65l5L4+71e5F58wHh5jeaRlqUVQgghhHhR5Ofr1c9NTKXdI8S9REVFcfLkSerXr09KSgpTpkwBUIcEPmsODg7s2LGDRYsWERkZSatWrUokDvHiKbGk1I4dOzh37hwffPBBoWNz587FxMSELl26kJ2dTUBAAF9//bV63NTUlE2bNjFw4EAaNWqEtbU1QUFB6jciQIUKFdi8eTMjRoxg3rx5lCtXjn/961/FWgVAiKcl7Xo2sftvDyu1d9IR93+dyP37nLrPslo1zN3csKhSGau69TAtXQpTa2tMbGwwvWMlBiGEEEKIl5E+//ZADhMz47k3cxMTSd2yFSU/H/3NVHITL4FeDygoegUURd22/8c/sG3Z8tkGL8QzNHv2bGJiYtBqtdSpU4eIiAjKlClTYvE4Ojry+eefl9j1xYupxJJSbdu2ve94T0tLSxYtWsSiRYvue76npydbtmwp8hpvvPEGUVFRjxWnEE9Sft6teaTMTeg47HXsTdM494MhIaUxN8e6aVPKfb3ogRMUCiGEEEK8rAraS2jAxMTQJrq+7ntu7thBekREsevR1ar9NMIT4rlQq1YtDh06VNJhCPHYZIC2EM9QwZs/U60Jbj6lyD6bDICJvT2V9/9ekqEJIYQQQjwX1PaSqaGXlKIoXJ4xAyUrSy1j1agh5m5umLu6YWpny60MFmhAY2ICGg26118vgeiFEEI8DElKCfEMFTSyTG41svTpGYZtmQhQCCGEEAIA/a05pQrmk1IyM9WElMuUyVhWqYKuRo0Si08IIcSTI0kpIZ6hgkaW6a1Glj7zVlJKpyuxmIQQQgghnifqSzwzQ3spPzXVcMDUlFJdu8o0B0II8RKRpJQQz1BBI0uTn8fV+fPJuTXBufSUEkIIIYQwyM+71V7KzeF0y1bos7MBMLWzk4SUEEK8ZCQpJcQzVJCU0icnkRS2WN1vWrp0SYUkhBBCCPFcKehZTnYmuRcvqvstq1UroYiEEEI8LZKUEuIZUhtZ+bkA2LYLxNzZGfu3upRgVEIIIYQQJS/xTArHf0sgI9XQM8pEnw+A8/hxWDdsiEXFiiUZnhBCiKdAklJCPEP5BXMk3GpklQkOxrJyZfV4RmoK+Xm5mJqZY2VnXyIxCiGEEEKUhD/+e5YLJ6+r21p9OgAWFStiWaVKSYUlhBDiKTIp6QCEeJWoc0rp8wz/mmvZ+/23/DD1U5Z99D6L+/dk2cA+bPjqi5IMUwghhBDimcvLMby0q9rElWbv+FLj6hYANBYWJRmWEMXSp08fNBoNGo0GrVaLj48PU6ZMIS8v77Hq3bVrFxqNhhs3bjyZQIshLi6OHj164ObmhqWlJeXKlaNz586cPHnSqNymTZto0aIFtra2WFlZUa9ePVauXGlUJj4+Ho1GQ3R0dLGvP2nSJKpUqYK1tTWlS5emdevW7N+/36jOvn37UqFCBXQ6HRUrVmTixInk5OQUWW9iYiI9evSgUqVKmJiYMHz48GLHVODLL79Eo9EUOvfMmTP84x//wMnJCTs7O7p168bly5eNykybNo3GjRtjZWVFqVKl7ll/wf+hOz++++479fhPP/1EmzZt1Os0atSIbdu2PTDun376ibZt2+Lo6PjQX4+nTZJSQjxDBcP3CpJSaek3+f3H7zh3NJqb166q5UxM5FtTCCGEEK+Wgpd33q87UcPfA13GFQBMJCklXhCBgYEkJiZy6tQpRo0axaRJk/jqq69KOizVg5I2ALm5ubRp04aUlBR++uknYmJiWLduHdWrVzdKjC1YsIDOnTvTpEkT9u/fz5EjR+jevTvBwcGMHj36seKsVKkSCxcu5OjRo+zZswcvLy/atm3L1auGv5dOnjyJXq9n6dKlHD9+nLlz57JkyRI+/vjjIuvNzs7GycmJTz/9lJo1az50XAcOHGDp0qXUqFHDaH96ejpt27ZFo9Hw66+/snfvXnJycujYsSN6vV4tl5OTQ9euXRk4cGCR1wkNDSUxMVH9+L//+z/12G+//UabNm3YsmULhw4dwt/fn44dOxIVFVVknenp6TRt2pSZM2c+9H0/dYq4r5SUFAVQUlJSSjoU8YLT6/VKekq2cuy3C8rCAb8oq7rNVZZ2bK0s7NNNmd2tg7JkYJByImKncu7Y4ZIOVQghxANI+6AweSbiSfhu6n5l4YBflL+PJSmKoigxTZsqJypXUTL/+quEIxPPSmZmpnLixAklMzOzpEN5aEFBQUrnzp2N9rVp00Zp2LChkpycrPTq1UspVaqUotPplMDAQCU2NlYtFx8fr7z55ptKqVKlFCsrK8XPz0/ZvHmzEhcXpwBGH0FBQYqiKEpqaqrSo0cPxcrKSnFxcVHmzJmjtGjRQhk2bJhar6enpzJlyhSlV69eiq2trXpuRESE0rRpU8XS0lIpV66cMmTIECUtLU1RFEWJiopSACU+Pv6+93ru3DnF3NxcGTlyZKFj8+fPVwDl999/VxRFUe8hKirq4R/qLQW/Y3bs2HHfMrNmzVIqVKhQ7DrvflYPcvPmTcXX11cJDw8vdO62bdsUExMTo9+BN27cUDQajRIeHl6ortDQUMXe3v6e1wGUn3/+udhxKYqi+Pn5KZMnTy5W2Sfx9bhTUd+zxW0bSHcMIZ6B8BUnCB27h12rYwDIUS5zU2dBVoZhrgTv1+tStekbeFSrUVQ1QgghhBAvLUV/a5oDDSg5OSjZhl4dGq30lBIvJp1OR05ODn369OHgwYOEhYURGRmJoii0b9+e3FzD4keDBg0iOzub3377jaNHjzJz5kxsbGzw8PDgxx9/BCAmJobExETmzZsHwMiRI9m7dy9hYWGEh4cTERHBn3/+WSiG2bNnU7NmTaKiovjss884c+YMgYGBdOnShSNHjrBu3Tr27NnD4MGDAXBycsLExIT169eTn59/z/tav349ubm59+wRNWDAAGxsbFi7du0TeYY5OTksW7YMe3v7Ins3paSk4ODg8ESueS+DBg2iQ4cOtG7dutCx7OxsNBoNFnf06rS0tMTExIQ9e/Y80rXKlClD/fr1WbFiBYqi3LesXq/n5s2bT/XenzaZ6FyIZ+DiqRvq5yamGqzTz5NiA+X9atCybzAObuXIyMhQx5zrdDrMzc1LKFohhBBCiGevYPjexVEjSYv7Q91vYmnBwf/+xOmDv6MokH4jmfzcXKzsS9Hry3klFa54RhRFITMvs0SurTPTodFoHvo8RVH45Zdf2LZtG+3atWPDhg3s3buXxo0bA7B69Wo8PDzYsGEDXbt25dy5c3Tp0oXq1asD4O3trdZVkGxwdnZW5yG6efMmq1atYs2aNbRq1QowDPlyc3MrFEvLli0ZNWqUut2vXz969uypzonk6+vL/PnzadGiBYsXL8bd3Z358+czduxYJk+eTN26dfH396dnz55qXLGxsdjb2+Pq6lroelqtFm9vb2JjYx/6ud1p06ZNdO/enYyMDFxdXQkPD6dMmTL3LHv69GkWLFjA7NmzH+ua9/Pdd9/x559/cuDAgXseb9iwIdbW1owbN47p06ejKArjx48nPz+fxMTEh7rWlClTaNmyJVZWVmzfvp2PPvqItLQ0hg4des/ys2fPJi0tjW7duj30fT0vJCklxDOgv/Xm751P61PaXmFr+4/BxhHbMmVwLFeeqKgoNm7cqJbv1asXFWXZYyGEEEK8QgraS/prSeq+S1UqcmXHFg5u3lCofFG9B8TLIzMvkwZrGpTItff32I+VuVWxy2/atAkbGxtyc3PR6/X06NGDt956i02bNtGgwe17cHR0pHLlyvz1118ADB06lIEDB7J9+3Zat25Nly5dCs1bdKezZ8+Sm5tL/fr11X329vZUvmNV7wJ169Y12j58+DBHjhxh9erV6j5FUdDr9cTFxVG1alUGDRpE79692bVrF7///js//PAD06dPJywsjDZt2hTrWWi12geWWb16NQMGDFC3t27dSrNmzQDw9/cnOjqapKQkvvnmG7p168b+/ftxdnY2qiMhIYHAwEC6du1K//791f02Njbq5++99x5Llix5YDwRERG0a9dO3V66dCnNmzdn2LBhhIeHY2lpec/znJyc+OGHHxg4cCDz58/HxMSEd999l9q1az/0XMGfffaZ+nmtWrVIT0/nq6++umdSas2aNUyePJmNGzeqz6WoZ/q8kqSUEM+AcuvN340135JzLY48U8MPJ3Mrwy+5+Ph4taxMci6EEEKIV5E6fE/RY1GpElZfTmPL5PFwR0Kq08iPMdNqsbIvhYmZ/Ckjni/+/v4sXrwYrVaLm5sbZmZmhIWFPfC8fv36ERAQwObNm9m+fTszZswgJCSEIUOGPHZM1tbWRttpaWkMGDDgnkmO8uXLq5/b2trSsWNHOnbsyNSpUwkICGDq1Km0adMGX19fUlJSuHjxYqHeWTk5OZw5c4aAgIAHxtapUyejZJ27u7tR3D4+Pvj4+NCwYUN8fX1Zvnw5EyZMUMtcvHgRf39/GjduzLJly4zqvnN1OTs7uwfGAoYE3p3nlS1bll9++YUrV65Qu3ZtdX9+fj6//fYbCxcuJDs7G1NTU9q2bcuZM2dISkrCzMyMUqVK4eLiYtTr7VE0aNCAL774guzsbKPhgd999x39+vXjhx9+MBpSWNQzfV7JT3IhnoGCN3+n//sDSdZ6bpYyZO61ljqysrK4efMmYPghcucPPCGEEEKIV0XB8D2Nko/G0pK0W3NvWtmXwrdBEyo1aEL512T+zVeNzkzH/h77S+zaD6MgkXKnqlWrkpeXx/79+9Xhe9euXSMmJgY/Pz+1nIeHB8HBwQQHBzNhwgS++eYbhgwZovY4unN+J29vb8zNzTlw4ICaSEpJSSE2NpbmzZsXGWPt2rU5ceJEoTiLotFoqFKlCvv27QPg7bffZty4cYSEhBASEmJUdsmSJWRkZNC7d+8H1mtra4utrW2xYtDr9WRnZ6vbCQkJ+Pv7U6dOHUJDQwu92H+Y+yug0+kKndeqVSuOHj1qtO/999+nSpUqjBs3DlNTU6NjBUMMf/31V65cuUKnTp0eOo47RUdHU7p0aaOE1Nq1a/nggw/47rvv6NChg1H5h3mmzwtJSgnxDBQkpc6W0ZKpvf2D62xKOr98+aW6ffebDCGEEEKIV0VBewlFT6apCemJCQA4V6hI675FL6EuXl4ajeahhtA9b3x9fencuTP9+/dn6dKl2NraMn78eNzd3encuTMAw4cPp127dlSqVInr16+zc+dOqlatCoCnpycajYZNmzbRvn17dDodtra2BAUFMWbMGBwcHHB2dmbixImYmJg8cA6scePG0bBhQwYPHky/fv2wtrbmxIkThIeHs3DhQqKjo5k4cSK9evXCz88PrVbL7t27WbFiBePGjQMMPapmzZrF6NGjsbS0pFevXpibm7Nx40Y+/vhjpk6dymuvvWZ03ZiYmEKxVKtWrdA8uunp6UybNo1OnTrh6upKUlISixYtIiEhga5duwKGhNQbb7yBp6cns2fP5urVq+r5Li4uRd5/QU+otLQ0rl69SnR0NFqt1ihBeCdbW9tC92JtbY2jo6PR/tDQUKpWrYqTkxORkZEMGzaMESNGGA2pPHfuHMnJyZw7d478/Hw1Fh8fH2xsbPjvf//L5cuXadiwIZaWloSHhzN9+nSjCeXXrFlDUFAQ8+bNo0GDBly6dAkwJNTs7e3ve98F17148SJw++vh4uLywGf2tElSSohnoGD4Xr6J4ZdEo7ffpYyHJ1v3H1LL2NravhDdK4UQQgghnoaC4XvxjqZc0N+Eb1cAoLN5sd76C3G30NBQhg0bxptvvklOTg7Nmzdny5YtakImPz+fQYMGceHCBezs7AgMDGTu3LmAYfjV5MmTGT9+PO+//z69e/dm5cqVzJkzh+DgYN58803s7OwYO3Ys58+fv++8RwVq1KjB7t27+eSTT2jWrBmKolCxYkXeeecdAMqVK4eXlxeTJ08mPj4ejUajbo8YMUKtZ8SIEXh7exMSEsK8efNITzf0bFy7di3du3cvdN177Tt//jzlypUz2mdqasrJkydZtWoVSUlJODo6Uq9ePSIiIqhWrRoA4eHhnD59mtOnTxc6/0FzzdWqVUv9/NChQ6xZswZPT0+j6VQeRUxMDBMmTCA5ORkvLy8++eQTo+cF8Pnnn7Nq1apCsezcuZM33ngDc3NzFi1axIgRI1AUBR8fH+bMmWM0V9ayZcvIy8tj0KBBDBo0SN0fFBTEypUr7xtfWFgY77//vrpd8PWYOHEikyZNepxbf2waRWYIvK/U1FTs7e1JSUkp9jhUIe7l6492ougV8pJmk2dqQp85i3F09yAkJISbN2/Sr18/3NzcZD4pIYR4AUj7oDB5JuJJ+NfI38jOyEN78StSdaaYmpujtdTRZsAQfOs1KunwxDOQlZVFXFwcFSpUeGByRRhLT0/H3d2dkJAQ+vbt+8yvn5ycTKtWrbCzs2Pr1q1YWb24vdtE8RX1PVvctoH0lBLiKVMURX3zp7/VndbM3DA2PDc3FwALCwtJSAkhhBDilVYwp5T+1uijzqM+oUKt2yuHZWdnc+jQIbKysgCoXLmy9DIXr6yoqChOnjxJ/fr1SUlJYcqUKQDqkMBnzcHBgR07drBo0SIiIyNp1apVicQhXjySlBLiKStISCmKojayTG911c3LywPATFaPEUIIIcQrTq83TkqZ3bWkfFRUFNu3b1e37e3tJSklXmmzZ88mJiYGrVZLnTp1iIiIUCfaLgmOjo58/vnnJXZ98WKSv4SFeMrUSTvRw62eUqbm5iiKIkkpIYQQQohbCubg1N/qPG6mNaw2debMGfbs2UNSUhJgmPPGzc0NJyenEolTiOdBrVq1OHTo0IMLCvGck7+EhXjKCrqiw+1lXM3MzY2WdZWklBBCCCFeRYpe4fiei9y8lqW+yMsvmO7gVk+pyMhI4uLi1HOaNWtmtKKVEEKIF5f8JSzEU6aoyxsbklAKGo4cO0ZKSqpa5u6lUIUQQgghXgWX4lLZvcawNLmi5KFRsgsN38vOzgagcePGVKpUCU9PzxKJVQghxJMnSSkhnrIbly+RnbIKRTEsk5pvY8d//7tJPW5mZoapqWlJhSeEEEIIUWKyMwoWfcnk5qVv0JMHpobxewXD9woWhvH29sbLy6tE4hRCCPF0SFJKiKfs/PEjKPpr6raVlQ2ZgJ2dHT4+Pvj4+KC51U1dCCGEEOJVUjDNgWnOOUNC6hZnewesS5cGICcnB5Ce5UII8TKSpJQQT1n+rcnMTcw8aHJ8H2l1mvNbRgaurq506tSphKMTQgghhCg5BUkpza1pDkqbWfDu2M+xrF4djYmhx1RBTylJSgkhxMtHklJCPCWpSZls++YYSX+fBUCjscA2K4e0W0P1ZMieEEIIIV51BXNvam4tCGNqoUVXsyZ6vZ7/bd1KcnIy6emGKRC0t+aYEkII8fKQpJQQT8m5E8lc+fsmeVmGnlJmeYZJOhVLS7h5E5Nbb/+EEEIIIV5V+ny94ZNbPaU0GkP7KCEhgf3796vlTE1Nsba2fubxCSGEeLrkr2IhnpKC7ujWmpsAlNVcxWn4cLRVqwLSU0oIIYQQQq83Hr5ncteQPVtbWzp16sQHH3yATqcrmSCFKIY+ffqg0WjQaDRotVp8fHyYMmUKeXl5Dz65CLt27UKj0XDjxo0nE2gxxMXF0aNHD9zc3LC0tKRcuXJ07tyZkydPGpXbtGkTLVq0wNbWFisrK+rVq8fKlSuNysTHx6PRaIiOji729SdNmkSVKlWwtramdOnStG7d2ihJHR8fT9++falQoQI6nY6KFSsyceJEdf65+0lMTKRHjx5UqlQJExMThg8fXuyYEhISeO+993B0dESn01G9enUOHjyoHr/z61/wERgYaFSHl5dXoTJffvmlejwmJgZ/f3/Kli2LpaUl3t7efPrpp+rPwwI3btxg0KBBuLq6YmFhQaVKldiyZUuR8f/000+0bdsWR0fHh/56PG2SlBLiKSl482eqGH44WpRzo0zwABQzQwdF6SklhBCiKJMmTSrUeK1SpYp6PCsri0GDBuHo6IiNjQ1dunTh8uXLRnWcO3eODh06YGVlhbOzM2PGjCn0B9KuXbuoXbs2FhYW+Pj4FPqDQoinqeAlHhgnpfLzDds2NjbUrl0bd3f3kghPiIcSGBhIYmIip06dYtSoUUyaNImvvvqqpMNSPShpA4aEcJs2bUhJSeGnn34iJiaGdevWUb16daPE2IIFC+jcuTNNmjRh//79HDlyhO7duxMcHMzo0aMfK85KlSqxcOFCjh49yp49e/Dy8qJt27ZcvXoVgJMnT6LX61m6dCnHjx9n7ty5LFmyhI8//rjIerOzs3FycuLTTz+lZs2axY7n+vXrNGnSBHNzc7Zu3cqJEycICQmh9K3FGAoUfP0LPtauXVuorilTphiVGTJkiHrM3Nyc3r17s337dmJiYvjnP//JN998w8SJE9UyOTk5tGnThvj4eNavX09MTAzffPPNA39Gpqen07RpU2bOnFns+35WZPieEE9JwZs/MCSnTExMb+2/laySnlJCCCEeoFq1auzYsUPdNjO73XQbMWIEmzdv5ocffsDe3p7Bgwfz1ltvsXfvXsDwR32HDh1wcXFh3759JCYm0rt3b8zNzZk+fTpgeBveoUMHgoODWb16Nb/88gv9+vXD1dWVgICAZ3uz4pWkJqWUeyelpL0kXiQWFha4uLgAMHDgQH7++WfCwsIIDg5m2LBh/Pe//yU7O5sWLVowf/58fH19Afj7778ZPHgwe/bsIScnBy8vL7766iv8/Pzw9/cHUBMgQUFBrFy5kps3bxIcHMyGDRuws7Nj7NixbNy4kddff51//vOfgKFnTt++fTl16hQbNmzgrbfeYuXKlezZs4cJEyZw8OBBypQpwz/+8Q9mzJiBtbU1x48f58yZM/zyyy94enoC4OnpSZMmTdT7PH/+PKNGjWL48OHq7xOAUaNGodVqGTp0KF27dqVBgwaP9Bx79OhhtD1nzhyWL1/OkSNHaNWqFYGBgUa9kLy9vYmJiWHx4sXMnj37vvV6eXkxb948AFasWFHseGbOnImHhwehoaHqvgoVKhQqd+fX/35sbW3vW8bb2xtvb29129PTk127dhEREaHuW7FiBcnJyezbt09d/MHLy+uB99CrVy/A0MvseSNdNYR4Sgom7kR/q5FlZmhUFTSypKeUEEKIBzEzM8PFxUX9KFOmDAApKSksX76cOXPm0LJlS+rUqUNoaCj79u3j999/B2D79u2cOHGCb7/9ltdff5127drxxRdfsGjRIvVt+ZIlS6hQoQIhISFUrVqVwYMH8/bbbzN37twSu2fxaimclJL2knh56HQ6cnJy6NOnDwcPHiQsLIzIyEgURaF9+/bqsKxBgwaRnZ3Nb7/9xtGjR5k5cyY2NjZ4eHjw448/AoahXYmJiWpSZeTIkezdu5ewsDDCw8OJiIjgzz//LBTD7NmzqVmzJlFRUXz22WecOXOGwMBAunTpwpEjR1i3bh179uxh8ODBADg5OWFiYsL69evV78O7rV+/ntzc3Hv2iBowYAA2Njb37CX0KHJycli2bBn29vZF9m5KSUnBwcHhiVzzbmFhYdStW5euXbvi7OxMrVq1+OabbwqV27VrF87OzlSuXJmBAwdy7dq1QmW+/PJLHB0dqVWrFl999VWRwztPnz7N//73P1q0aGEUS6NGjRg0aBBly5bltddeY/r06ff9Wr0IpKeUEE9Joe7opoZvt3v1lFL0CvnJWSh6heyzN7Cq4YSJlSx7LIQQ93L+wn84fz4UFKXIcpWrfIGjQ9NnFNXTcerUKXVOj0aNGjFjxgzKly/PoUOHyM3NpXXr1mrZKlWqUL58eSIjI2nYsCGRkZFUr16dsmXLqmUCAgIYOHAgx48fp1atWkRGRhrVUVDmQfNsZGdnk52drW6npqY+mRsWrxy1Z3nBROem0lNKGFMUBSUzs0SurdHp0Gg0D32eoij88ssvbNu2jXbt2rFhwwb27t1L48aNAVi9ejUeHh5s2LCBrl27cu7cObp06UL16tUBjHrLFCRanJ2dKVWqFAA3b95k1apVrFmzhlatWgEQGhqKm5tboVhatmzJqFGj1O1+/frRs2dP9ee8r68v8+fPp0WLFixevBh3d3fmz5/P2LFjmTx5MnXr1sXf35+ePXuqccXGxmJvb4+rq2uh62m1Wry9vYmNjX3o53anTZs20b17dzIyMnB1dSU8PFx9MXO306dPs2DBgiJ7ST2Os2fPsnjxYkaOHMnHH3/MgQMHGDp0KFqtlqCgIMAwdO+tt96iQoUKnDlzho8//ph27doRGRmp/hwbOnQotWvXxsHBgX379jFhwgQSExOZM2eO0fUaN27Mn3/+SXZ2Nh9++CFTpkwxiuXXX3+lZ8+ebNmyhdOnT/PRRx+Rm5trNMzvRSJJKSGekoKklFKMN3/J62LIPHxV3c5PzcG+rdczilQIIV4s58+vJDPz7weW0+eXzB8xT0qDBg1YuXIllStXJjExkcmTJ9OsWTOOHTvGpUuX0Gq16h8oBcqWLculS5cAuHTpklFCquB4wbGiyqSmppKZmXnfiaVnzJjB5MmTn8Rtilec2rNcMZ7uQJJSooCSmUlM7Tolcu3Kfx5CY2VV7PKbNm3CxsaG3Nxc9Ho9PXr04K233mLTpk1GQ9kcHR2pXLkyf/31F2BIVgwcOJDt27fTunVrunTpQo0aNe57nbNnz5Kbm0v9+vXVffb29lSuXLlQ2bp16xptHz58mCNHjrB69Wp1n6Io6PV64uLiqFq1KoMGDaJ3797s2rWL33//nR9++IHp06cTFhZGmzZtivUstFrtA8usXr2aAQMGqNtbt26lWbNmAPj7+xMdHU1SUhLffPMN3bp1Y//+/Tg7OxvVkZCQQGBgIF27dqV///7qfhsbG/Xz9957jyVLljwwnoiICNq1a6duL126lJ49e6LX66lbt646VLFWrVocO3aMJUuWqEmp7t27q+dVr16dGjVqULFiRXbt2qUmDkeOHKmWqVGjBlqtlgEDBjBjxgwsLCzUY+vWrePmzZscPnyYMWPGMHv2bMaOHQsYOjg4OzuzbNkyTE1NqVOnDgkJCXz11VdMnDixyGf6vJKklBBPye3VZG41sszuP6dUTnyKoazWFFNbc8xKWz7LUIUQ4oWSl2folVPNby46Xbn7lrOy8r7vsRfBnQ3jGjVq0KBBAzw9Pfn+++9LfBWyCRMmGDWuU1NT8fDwKMGIxIuqYGEYFMMQFhPpKSVeYP7+/ixevBitVoubmxtmZmaEhYU98Lx+/foREBDA5s2b2b59OzNmzCAkJMRoEuxHZW1tbbSdlpbGgAEDGDp0aKGy5cuXVz+3tbWlY8eOdOzYkalTpxIQEMDUqVNp06YNvr6+pKSkcPHixUK9s3Jycjhz5kyx5iXs1KmTUbLuzsm6ra2t8fHxwcfHh4YNG+Lr68vy5cuZMGGCWubixYv4+/vTuHFjli1bZlT3navL2dnZPTAWMCTw7jyv4KWNq6srfn5+RmWrVq2qDq28F29vb8qUKcPp06fVpNTdGjRoQF5eHvHx8UYJxYLfp35+fuTn5/Phhx8yatQoTE1NcXV1xdzc3OhnY9WqVbl06RI5OTlFPtPnlSSlhHhK7uwppQCn9SacXrKElBRDAsrExITs+BTyb+aSn2YYT152ZG3MSklCSggh7kdRFPLyDD9HS5Wuj6VF0ROKvkxKlSpFpUqVOH36NG3atCEnJ4cbN24Y9Za6fPmyOoGqi4sLf/zxh1EdBavz3Vnm7hX7Ll++jJ2dXZGJLwsLC6O3ukI8qttzSklPKXFvGp2Oyn8eKrFrP4yCRMqdqlatSl5eHvv371eH7127do2YmBijRIeHhwfBwcEEBwczYcIEvvnmG4YMGaL2OLpzziBvb2/Mzc05cOCAmkhKSUkhNjaW5s2bFxlj7dq1OXHiRKE4i1Kw+uu+ffsAePvttxk3bhwhISGEhIQYlV2yZAkZGRn07t37gfXa2tpia2tbrBj0er3RsPGEhAT8/f3VORXvnn/uYe6vgE6nu+d5TZo0ISYmxmhfbGysOhH8vVy4cIFr167dc4hjgejoaExMTAr1/rqTXq9Xe96ZmprSpEkT1qxZg16vV+85NjYWV1dXtFotWq222M/0eSFJKSGeEuWORpZiruWSHrg1XALANs+Cq0uO3D5BA6bWD+7mKoQQr6Ls7MscPtKfnOwkdVi0uVnx3ny+LNLS0jhz5gy9evWiTp06mJub88svv9ClSxfAMAnuuXPnaNSoEQCNGjVi2rRpXLlyRW3whoeHY2dnp/4h1KhRI7Zs2WJ0nfDwcLUOIZ6WqO3nOLg1nrycW39oF0x3YCpJKWFMo9E81BC6542vry+dO3emf//+LF26FFtbW8aPH4+7uzudO3cGYPjw4bRr145KlSpx/fp1du7cSdWqVQHDCmwajYZNmzbRvn17dDodtra2BAUFMWbMGBwcHHB2dmbixImYmJg8cA6scePG0bBhQwYPHky/fv2wtrbmxIkThIeHs3DhQqKjo5k4cSK9evXCz88PrVbL7t27WbFiBePGjQMMPapmzZrF6NGjsbS0pFevXpibm7Nx40Y+/vhjpk6dymuvvWZ03buTOmBYYbZgBbkC6enpTJs2jU6dOuHq6kpSUhKLFi0iISGBrl27AoaE1BtvvIGnpyezZ8/m6tXb06A8aPW7gp5QaWlpXL16lejoaLRabaGeUHcaMWIEjRs3Zvr06XTr1o0//viDZcuWqb2z0tLSmDx5Ml26dMHFxYUzZ84wduxYfHx81B5jkZGR7N+/H39/f2xtbYmMjGTEiBG899576sqKq1evxtzcnOrVq2NhYcHBgweZMGEC77zzjvqcBg4cyMKFCxk2bBhDhgzh1KlTTJ8+/Z493+6UnJzMuXPnuHjxInD761GwkEpJkqSUEE+J/o45EhSNIYut1Wrp1q0blpaWlEo05QanMbEyw8zZCssqDmjMZYUZIYS4l6Rru7h587i6bWVVAROTkh3C9rSNHj2ajh074unpycWLF5k4cSKmpqa8++672Nvb07dvX0aOHImDgwN2dnYMGTKERo0a0bBhQwDatm2Ln58fvXr1YtasWVy6dIlPP/2UQYMGqb2cgoODWbhwIWPHjuWDDz7g119/5fvvv2fz5s0leeviFXDq4GVyMvNQlFz0eYko+YZVqpLMLVi7dq26apXRdAfnb3JzTwJKnh4UsKhgh22z+w/hFeJ5ERoayrBhw3jzzTfJycmhefPmbNmyRU005OfnM2jQIC5cuICdnR2BgYHqKqju7u5MnjyZ8ePH8/7779O7d29WrlzJnDlzCA4O5s0338TOzo6xY8dy/vx5LC2LHnVRo0YNdu/ezSeffEKzZs1QFIWKFSvyzjvvAFCuXDm8vLyYPHky8fHxaDQadXvEiBFqPSNGjMDb25uQkBDmzZtHeno6AGvXrjWaX6nAvfadP3+ecuWMv4dNTU05efIkq1atIikpCUdHR+rVq0dERATVqlUDDC9PTp8+zenTpwudrzxgEZRatWqpnx86dIg1a9bg6elJfHz8fc+pV68eP//8MxMmTGDKlClUqFCBf/7zn/Ts2VON+ciRI6xatYobN27g5uZG27Zt+eKLL9TftxYWFnz33XdMmjSJ7OxsKlSowIgRI4yGwpuZmTFz5kxiY2NRFAVPT08GDx5s9Nw9PDzYtm0bI0aMoEaNGri7uzNs2DA1YXg/YWFhvP/+++p2wddj4sSJTJo0qchznzaN8qCv2issNTUVe3t7UlJSij0OVYgC675YRsKJvWj0N8i10JLhXQ1ra2vGjBkDQNq+i9wIO4Ouehkce1Yt4WiFEOL5lHrzGElXf+FGygGuX4/EySmQCl4fYWXljalpySSlnlX7oHv37vz2229cu3YNJycnmjZtyrRp06hYsSIAWVlZjBo1irVr15KdnU1AQABff/210RvPv//+m4EDB7Jr1y6sra0JCgriyy+/xMzs9nvJXbt2MWLECE6cOEG5cuX47LPP6NOnz0PFKm0m8bC++2I/1xLScXCO4GLMAQAUIL1KHZQ7eno0a9aMli1bgh6SVh4j+9QN9ZiuphOO71Z5xpGLpykrK4u4uDgqVKjwwOSKMJaeno67uzshISH07dv3mV8/OTmZVq1aYWdnx9atW7F6gXu3ieIr6nu2uG0D6SklxFNy6dQuFH0qCsCtxtWdY52V3FtLH0vvKCGEuK/jx0eSkXFG3bazfQ1b22olGNGz89133xV53NLSkkWLFrFo0aL7lvH09Cw0PO9ub7zxBlFRUY8UoxCPqmAuqfSLZwGwytdjnp1L2q02U7t27dDpdFTy8uHSVwfJT85Sz7X198C0lAVmji93b0khihIVFcXJkyepX78+KSkpTJkyBUAdEvisOTg4sGPHDhYtWkRkZOR9J/cW4m6SlBLiKVH0hlVkyuGJ/fnj/F7Bz6gLuj7HMKGnRitzJQghxN0SE3/iZtpfZGbGA+Dm2g2t1hF398Ld/4UQL56CpFReUhJYaKj29yVKZeZyoY7heO3atTE3Nyf77A2jhJSpgyW2/h6YSPtJCGbPnk1MTAxarZY6deoQERFBmTJlSiweR0dHPv/88xK7vngxSVJKiCfsj01x/LXvIvl5hqSUjd4KXa4hAWVqaoqSpyf/Zg76tBxAekoJIcTdsrIucuKvMeq2qakNVapMQ6ORn5dCvCzUVYpvjdSzb9MGBy8fuJgA3J5LSp91a2EDdxuc+r6GxsIMjWnREzkL8SqoVasWhw6VzKqEQjxJkpQS4gk7uusCWWm56tLGltfOo5gYGk+mJqaGLugpt5czlaSUEELclpmZQEqKoZFtbu6Am1s3HByaSkJKiJeMPt/QTlJQAA2OvXphX84TQkLQaDTqlAdK9q1V+XRmmFiZ3686IYQQLyhJSgnxhOXn3RqWp+ShaMDhyjGuOzkBYILmdkLKzAQTnSmWlR1KKlQhhHiuxMcv5szZ2eq2tbUvPhXHFHGGEOJFVbBKcUFPKRNTM/LzDQkoU1NTcq9kkPN3KtlxKYbjFjJcTwghXkaSlBLiCVPyFRRFURtZziNGoHFwgMOHMbn1pt/Exhy3TxuWYJRCCPH8uX5jPwAmJjpMTXW4urxVwhEJIZ4WdfjerW1TM+Ok1NVlR9Cn5arlNTr5s0UIIV5G8tNdiCfM0MhS1G3Hd97hxt9/GyWlZHJzIYQwyM6+QkzsRHJzb3Dz5nEAalRfjKNjsxKOTAjxNBUkpfRqTylTo6SUPsWQkLKoVBoTC1Nsm7qXSJxCCCGeLklKCfEEKYpyqzt6/u2dGsjJMUxqblqQlJJ5pIQQAoDLl//L1avb1W2NxhRAyg+dAAEAAElEQVRr64olGJEQ4lm4e6JzE1MzcgqSUia3X96V6VMNjYlMbC6EEC8rSUoJ8QQVzI8Ahnml8i10zJ2/gOxswzxSJhgaVZKUEkK86jIy4ki4uI7r1yMBcHJqS9myHbHSeWFp6VbC0QkhnrbbE50bmJiZkp9XkJS6/RJPElJCCPFyk6SUEE9QwVu/gpX38nU2akIKoOxVKwBMZPieEOIVd+bsHK5c2aJuOzq+QVnn9iUYkRDiWVH0CkpBk0mjQTExYd3PG0hJvQmAJs9wTCOTmwshxEtPumsI8QSpSalbPaXQGN7u+bpUoE/WG7yWbpgPwcxJVwLRCSFEydPrc8jPzyAz8xwAzs4d8PX5GJeynUs4MiHEs3Biz0XCQ0+o24rG8BLv0uUrZGZmAlDqpgUAJpby/ly8OPr06YNGo0Gj0aDVavHx8WHKlCnk5eU9Vr27du1Co9Fw48aNJxNoMcTFxdGjRw/c3NywtLSkXLlydO7cmZMnTxqV27RpEy1atMDW1hYrKyvq1avHypUrjcrEx8ej0WiIjo4u9vUnTZpElSpVsLa2pnTp0rRu3Zr9+/cb1dm3b18qVKiATqejYsWKTJw4UZ0y5X4SExPp0aMHlSpVwsTEhOHDhxcrnvz8fD777DOj633xxRcoyu15hH/66Sfatm2Lo6Pjfe/3zJkz/OMf/8DJyQk7Ozu6devG5cuXH/q+jhw5QrNmzbC0tMTDw4NZs2Y98B5+++03OnbsiJubGxqNhg0bNhTr3p8FSUoJ8QQVdEUvSEppbiWlzDSmmGGK1ssOp+AalOok86UIIV49N24cZPdvtdm1uzo3bx4DwLN8P8qX74upqWWx6jh95Sb7Tiex73TS0wxVCPEU5Gbns2v1SU4dMPwRZqrJR9Fo1Jd4ZewdeSu7AS2pgdbTDtuWHiUZrhAPLTAwkMTERE6dOsWoUaOYNGkSX331VUmHpXpQ0gYgNzeXNm3akJKSwk8//URMTAzr1q2jevXqRomxBQsW0LlzZ5o0acL+/fs5cuQI3bt3Jzg4mNGjRz9WnJUqVWLhwoUcPXqUPXv24OXlRdu2bbl69SoAJ0+eRK/Xs3TpUo4fP87cuXNZsmQJH3/8cZH1Zmdn4+TkxKeffkrNmjWLHc/MmTNZvHgxCxcu5K+//mLmzJnMmjWLBQsWqGXS09Np2rQpM2fOvGcd6enptG3bFo1Gw6+//srevXvJycmhY8eO6PX6Yt9Xamoqbdu2xdPTk0OHDvHVV18xadIkli1bVuQ9pKenU7NmTRYtWlTs+35W5PWDEE+QOmmncmui81tzIhSsumdqb4GFl32JxCaEECXtWvJv6PWZ6rZO54m1tW+xz//z3HXe+nqfuh3/ZYcnGp8Q4unKz9WjKKDoMzHTbCA7xfAHpnIrKWVhrsVBscG8rDXOA4v/B6MQzwsLCwtcXFwAGDhwID///DNhYWEEBwczbNgw/vvf/5KdnU2LFi2YP38+vr6G34F///03gwcPZs+ePeTk5ODl5cVXX32Fn58f/v7+AJQuXRqAoKAgVq5cyc2bNwkODmbDhg3Y2dkxduxYNm7cyOuvv84///lPALy8vOjbty+nTp1iw4YNvPXWW6xcuZI9e/YwYcIEDh48SJkyZfjHP/7BjBkzsLa25vjx45w5c4ZffvkFT09PADw9PWnSpIl6n+fPn2fUqFEMHz6c6dOnq/tHjRqFVqtl6NChdO3alQYNGjzSc+zRo4fR9pw5c1i+fDlHjhyhVatWBAYGEhgYqB739vYmJiaGxYsXM3v27PvW6+Xlxbx58wBYsWJFsePZt28fnTt3pkOHDmo9a9eu5Y8//lDL9OrVCzD0drqXvXv3Eh8fT1RUFHZ2dgCsWrWK0qVL8+uvv9K6deti3dfq1avJyclhxYoVaLVaqlWrRnR0NHPmzOHDDz+87z20a9eOdu3aFfuenyXpKSXEE3T17ziybiwhJzUUuN1TSp3gXCbrFEK8gv4+9y8OHurGxYvfA1ChwjDeaHGURg13YGpa/OHMZ6+mq59XKmvzxOMUQjxdBQvC6PMukn4jkTy9YViTpZkWuGOVYlP5E0XcpigKudn5JfJx5/CsR6HT6cjJyaFPnz4cPHiQsLAwIiMjURSF9u3bk5ubC8CgQYPIzs7mt99+4+jRo8ycORMbGxs8PDz48ccfAYiJiSExMVFNqowcOZK9e/cSFhZGeHg4ERER/Pnnn4VimD17NjVr1iQqKorPPvuMM2fOEBgYSJcuXThy5Ajr1q1jz549DB48GAAnJydMTExYv349+fn5heoDWL9+Pbm5uffsETVgwABsbGxYu3btYz27Ajk5OSxbtgx7e/siezelpKTg4ODwRK55t8aNG/PLL78QGxsLwOHDh9mzZ89DJXmys7PRaDRYWFio+ywtLTExMWHPnj33Pe/u+4qMjKR58+ZotVp1X0BAADExMVy/fv1hbuu5IT2lhHiCLsacACVD3baytCITMCnI/5pKUkoI8WrR6/M4c+YrFOX2nBp2ttUxNbV66Loycw2N48BqLizpVeeJxSiEeDaUW0kpjcYwVKW0VkeNwydJe6seu1DUnuUaaS+JO+Tl6Fk2bHeJXPvDeS0wf4QJ9xVF4ZdffmHbtm20a9eODRs2sHfvXho3bgwYert4eHiwYcMGunbtyrlz5+jSpQvVq1cHDD1kChQkJJydnSlVqhQAN2/eZNWqVaxZs4ZWrVoBEBoaiptb4dVrW7ZsyahRo9Ttfv360bNnT3U+JV9fX+bPn0+LFi1YvHgx7u7uzJ8/n7FjxzJ58mTq1q2Lv78/PXv2VOOKjY3F3t4eV1fXQtfTarV4e3urCZxHtWnTJrp3705GRgaurq6Eh4dTpkyZe5Y9ffo0CxYsKLKX1OMYP348qampVKlSBVNTU/Lz85k2bRo9e/Ysdh0NGzbE2tqacePGMX36dBRFYfz48eTn55OYmHjPc+51X5cuXaJChQpG5cqWLaseK+hR9yKR1xBCPAGKorDnh1PE/J4AgJm5Ny2Px+PpbPjFYFrQU8pMvuWEEK8GvT6P5OS9XLq0AUXJQ6MxpfprX1On9jocHd94pDozcwyJLStZwVSIF1JBTykKpjlITsY6Jw/MDO/J1Zd40l4SL6hNmzZhY2ODpaUl7dq145133qFPnz6YmZkZDWVzdHSkcuXK/PXXXwAMHTqUqVOn0qRJEyZOnMiRI0eKvM7Zs2fJzc2lfv366j57e3sqV65cqGzdunWNtg8fPszKlSuxsbFRPwICAtDr9cTFxQGGnluXLl1i9erVNGrUiB9++IFq1aoRHh5e7GdxZ0+e+1m9erVRHBEREeoxf39/oqOj2bdvH4GBgXTr1o0rV64UqiMhIYHAwEC6du1K//791f131hscHFysmCMiIozOW716NQDff/89q1evZs2aNfz555+sWrWK2bNns2rVqmLVC4YeaD/88AP//e9/sbGxwd7enhs3blC7dm1MTAr/zLvffT3qPTzPpKeUEE9AcmI6h385T16WoZeUmYkplnn56Ave+CFv/oQQr5bExPWcjPlE3dZqnXB2DnisOjNzDL0rLCUpJcQLSbkrKWVibo5F5cpoq/nB4cOY3pr2QNpL4k5mWhM+nNeixK79MPz9/Vm8eDFarRY3NzfMzMwICwt74Hn9+vUjICCAzZs3s337dmbMmEFISAhDhgx51NBV1tbWRttpaWkMGDCAoUOHFipbvnx59XNbW1s6duxIx44dmTp1KgEBAUydOpU2bdrg6+tLSkoKFy9eLNQ7KycnhzNnzhAQ8ODf+Z06dTJK1rm7uxvF7ePjg4+PDw0bNsTX15fly5czYcIEtczFixfx9/encePGhSb6vnP1u4I5nB6kbt26RucV9EAaM2YM48ePp3v37gBUr16dv//+mxkzZhAUFFSsugHatm3LmTNnSEpKwszMjFKlSuHi4mLUM+5B9+Xi4mK0Yh+gbru4uODl5XXPe3ieSVJKiCcgP9fwh5KpuYa8THDSGE/caaLcalxJI0sI8YpISzcsG21p4YalpTtubl0fu86C4Xs6c0lKCfEiKugppbmVlNL5+uL91QKu/P47HD58e/ie9JQSd9BoNI80hK4kFCRS7lS1alXy8vLYv3+/Onzv2rVrxMTE4Ofnp5bz8PAgODiY4OBgJkyYwDfffMOQIUPUHkd3zu/k7e2Nubk5Bw4cUBNJKSkpxMbG0rx58yJjrF27NidOnCgUZ1E0Gg1VqlRh3z7DYiNvv/0248aNIyQkhJCQEKOyS5YsISMjg969ez+wXltbW2xtbYsVg16vJzs7W91OSEjA39+fOnXqEBoaWqi30cPcXwGdTnfP8zIyMgrVb2pqqq6a97AKhiH++uuvXLlyhU6dOqnHHnRfjRo14pNPPiE3Nxdzc3MAwsPDqVy5sjp071HuvSRJUkqIJ0BtZOXcmk8q4Zxh/60cVEFSSibuFEK87I4cHUhS0q/qHFKengMoV+69x6ozZHsMq/bFk3XrBYAkpYR4Md3uKWX4XjYxNXwvF/yxbSI9y8VLyNfXl86dO9O/f3+WLl2Kra0t48ePx93dnc6dOwMwfPhw2rVrR6VKlbh+/To7d+6katWqgGHlO41Gw6ZNm2jfvj06nQ5bW1uCgoIYM2YMDg4OODs7M3HiRExMTNSFlu5n3LhxNGzYkMGDB9OvXz+sra05ceIE4eHhLFy4kOjoaCZOnEivXr3w8/NDq9Wye/duVqxYwbhx4wBDj6pZs2YxevRoLC0t6dWrF+bm5mzcuJGPP/6YqVOn8tprrxldNyYmplAs1apVUxMrBdLT05k2bRqdOnXC1dWVpKQkFi1aREJCAl27Gl5wJSQk8MYbb+Dp6cns2bO5evWqen7B6of3U9CLKC0tjatXrxIdHY1WqzVKEN6tY8eOTJs2jfLly1OtWjWioqKYM2cOH3zwgVomOTmZc+fOcfHiRaP7dXFxUWMKDQ2latWqODk5ERkZybBhwxgxYoQ67LI499WjRw8mT55M3759GTduHMeOHWPevHnMnTu3yPtOS0vj9OnT6nZcXBzR0dE4ODgY9ZArCZKUEuIJUAqS5HmGFTQ0Gg1mzs5onJzg5s3bq+9JI0sI8RLLy7vJ1avb1W0TEy32peoWcUbxrNl/jtSs2xOlv+Zu/9h1CiGePXVOKQxJKM2tpFRBb4PbC8PISzzxcgkNDWXYsGG8+eab5OTk0Lx5c7Zs2aImZPLz8xk0aBAXLlzAzs6OwMBANcng7u7O5MmTGT9+PO+//z69e/dm5cqVzJkzh+DgYN58803s7OwYO3Ys58+fx9LSsshYatSowe7du/nkk09o1qwZiqJQsWJF3nnnHQDKlSuHl5cXkydPJj4+Ho1Go26PGDFCrWfEiBF4e3sTEhLCvHnzSE83rJC7du1adZjbne617/z585QrV85on6mpKSdPnmTVqlUkJSXh6OhIvXr1iIiIoFq1aoChZ9Dp06c5ffp0ofMftGJirVq11M8PHTrEmjVr8PT0JD4+/r7nLFiwgM8++4yPPvqIK1eu4ObmxoABA/j888/VMmFhYbz//vuF7nfixIlMmjQJMCSqJkyYQHJyMl5eXnzyySdGz7Q492Vvb8/27dsZNGgQderUoUyZMnz++ed8+OGHRd73wYMH8ff3V7dHjhwJQFBQECtXrizy3KdNozzuOpcvsdTUVOzt7UlJSSn2OFTxarp46jo/h0RB6nay8o/hWrcJuHuSeOEiNzPSaGhRlddS3LAL8MLO36OkwxVCiCcqIyOOU6e/JCfnGqmpUZiZ2dGwwf8wNbXBzMz6wRXcg6IofL7xOMcuphB17gYAYYOb4GJvibNt0Q3up03aB4XJMxHFkXQhjXVT/4CMP8jK3kP5yn5U7/EB0bsPcDLxDFUoR9Osylg3cKH0P3xLOlxRArKysoiLi6NChQoPTK4IY+np6bi7uxMSEkLfvn2f+fWTk5Np1aoVdnZ2bN26FSurh19lV7x4ivqeLW7bQHpKCfEE6PON3/zFZ+aQc8cyqJY3DW/8TKzkW04I8fJJSFhLUtIOddvGpioWFo83sebZpHT+8/vf6rZ7KR3V3e0fOCxBCPH8unv43gUTC45/95163CzP8P1t5ix/zArxIFFRUZw8eZL69euTkpLClClTANQhgc+ag4MDO3bsYNGiRURGRtKqVasSiUO8eOQvZCGegNsTdxoaWQVtrroaH0plW1GlTjUsnK2xet25pEIUQognLjX1CBcTfyQ5eQ8Arq5v4+jQnNKlGzzgzPu7kZHDlqOXiL18EzAkoyZ1qkaNcpKQEuJFp7aXbr3Ey701XK+0qS3WOebUblKPsrUrSlJKiGKaPXs2MTExaLVa6tSpQ0REhDqJdklwdHQ0GtImRHFIUkqIJ0CdU+rWJwX9pryVstjpLbFv7oG5kzSwhBAvl9hTX5CS8qe6Xda5PY6Oj7dsd8j2WKMeUr5lbWjj9/wvZyyEeLDbPaUMSSlFowEFmlj64ZJuQxkfD8zLPtqQXyFeNbVq1eLQoUMlHYYQj02SUkI8Abcn7jReFlSTL6vuCSFePoqiBxSyMhMAcHfvia1tNRwcmj123WeT0gCoXb4Uno7W9Gns9dh1CiGeD/q7hu8V0OhlQRghhHhVSVJKiCdAyb/rzd+tvlKagjaXNLKEEC+Jq1d3cOz4MPT6LHWfl9dHWFoUvQRzUc4nZzBiXTTXM3I4fz0TgJFtKtPUt+SGIAghnrxC7SWNBhTl9js9eYknhBCvHElKCfEE3O4pZfi3YE1LTf6tf00kKSWEeDlcTdphlJCysfHDQuv0WHVuPZbIwb+vq9vmphoqlbV5rDqFEM8fvWK8MEwBk1tJKekpJYQQrx5JSgnxBKhzJJCPwu05pUyQ7uhCiJfDmTOzuX7jAOnppwGoVGkSLmXfxMzMHo3m0Xo3HEtIYdlvZzmWkALAP2q5072eBx4OVjjbyVLgQrxsbveUMp6DU+0pJS/xhBDilSNJKSGegNtzJChwR3tKU7AhSSkhxAssO/sq8X8vNtpXyr425ualH6ve+b+cYvuJy+p2M98yNPB2fKw6hRDPp/x8Pfl5huyTRinoKaUBFOkpJYQQrzBJSgnxBOjz75jo/I4ly9WeUiYyR4IQ4sWTl5fG1avhZGScBcDc3IEqlb/AwsIFW9tqj1zvqcs3+ftaBqeuGCY1793Ik7peDrR77dHnpRJCPL/2/XiaqPBz5GX9iT4vAY2SCBTuKSULwwghxKtHklJCPAGpSQnk55xCQyZ3dpV65J5SO2fA33sNn7eaCB71nkygQgjxEOL/XsLfd/SQstJ54uwc+Fh1XryRSeC8CPLVYc/wTj0PqrnZP1a9QojnV/zRJBQlh7zMXcYHTDSG93kFHaekp5QQQrxy5HWEEI8p7Xoye9dMITf9v+RobhTuKaV5iInOs1Lhagypvywn/mQGF2OTIDP56QQuhBD3oSj55ObeIC3tLwBsbarh5BSId8VRj1Xv9fQcDsQnk69XsNaa8rpHKbrX86Cqi92TCFsI8ZzS6xVQ8tTt6ilZNCxbHlNzLXB7tWIZvideZH369EGj0aDRaNBqtfj4+DBlyhTy8vIefHIRdu3ahUaj4caNG08m0GKIi4ujR48euLm5YWlpSbly5ejcuTMnT540Krdp0yZatGiBra0tVlZW1KtXj5UrVxqViY+PR6PREB0dXezrT5o0iSpVqmBtbU3p0qVp3bo1+/fvN6qzb9++VKhQAZ1OR8WKFZk4cSI5OTlF1puYmEiPHj2oVKkSJiYmDB8+vFjx3Lx5k+HDh+Pp6YlOp6Nx48YcOHDAqExaWhqDBw+mXLly6HQ6/Pz8WLJkiVGZAQMGULFiRXQ6HU5OTvd8pufOnaNDhw5YWVnh7OzMmDFj7vt/aO/evZiZmfH6668/8B5++ukn2rZti6Oj40N/PZ426SklxGPIycwj7nAciqIHTNEq1thlXift1nENFHvSzozff+DE+m2k55fmWOYyAJyd8+jqUv1phC6EEPek12ez/48OZGTEqfsqVBiKk1Prx6r3nzti+eeOU+p2o4qO/CtIeoEK8SowLAhzK/OkKLTZGk7+9Wx2LwwBwES51VaSic7FCy4wMJDQ0FCys7PZsmULgwYNwtzcnAkTJpR0aADk5OSg1WqLLJObm0ubNm2oXLkyP/30E66urly4cIGtW7caJcYWLFjA8OHDGTduHIsXL0ar1bJx40aCg4M5duwYs2fPfuQ4K1WqxMKFC/H29iYzM5O5c+fStm1bTp8+jZOTEydPnkSv17N06VJ8fHw4duwY/fv3Jz09vcjrZmdn4+TkxKeffsrcuXOLHU+/fv04duwY//nPf3Bzc+Pbb7+ldevWnDhxAnd3dwBGjhzJr7/+yrfffouXlxfbt2/no48+ws3NjU6dOgFQp04devbsSfny5UlOTmbSpEm0bduWuLg4TE1Nyc/Pp0OHDri4uLBv3z4SExPp3bs35ubmTJ8+3SimGzdu0Lt3b1q1asXly5cLxXy39PR0mjZtSrdu3ejfv3+x7/1ZkJ5SQjyGn2b/ya5vDT0JNCY2uOS+Tp38MupxDZpiv/U7/NtV9qf14FhmO3Wfg3c5sHN9skELIUQRMjLijRJSFhau2NvXfux6I04lAYbOpJbmJrR7TX62CfGqMMy9aRiya6KARqMh/cAl9Pm3Jj5Hg8bcBBMLeV8uXmwWFha4uLjg6enJwIEDad26NWFhYVy/fp3evXtTunRprKysaNeuHadO3X5R8/fff9OxY0dKly6NtbU11apVY8uWLcTHx+Pv7w9A6dKl0Wg09OnTBzD03unZsyfW1ta4uroyd+5c3njjDaPeP15eXnzxxRf07t0bOzs7PvzwQwD27NlDs2bN0Ol0eHh4MHToUNLT0wE4fvw4Z86c4euvv6Zhw4Z4enrSpEkTpk6dSsOGDQE4f/48o0aNYvjw4UyfPh0/Pz98fHwYNWoUX331FSEhIUY9mx5Wjx49aN26Nd7e3lSrVo05c+aQmprKkSNHgNvJv7Zt2+Lt7U2nTp0YPXo0P/30U5H1enl5MW/ePHr37o29ffGmDcjMzOTHH39k1qxZNG/eHB8fHyZNmoSPjw+LF9+e4mDfvn0EBQXxxhtv4OXlxYcffkjNmjX5448/1DIffvghzZs3x8vLi9q1azN16lTOnz9PfHw8ANu3b+fEiRN8++23vP7667Rr144vvviCRYsWFeoFFhwcTI8ePWjUqFGx7qNXr158/vnntG79eC8ZnwZJSgnxGG5cyUBtZOn1lDe/gGXDtwHQKBo0aDC1tyhWXRnphm9H17JZ1GztQbeP69Gqj99TiVsIIe6WmXmeyN9bc/BQVwBsbKrS0j+WJo0j0GodHqlORVH45rezfLrhKLGXbwKwPrgxJ79oR5c65Z5Y7EKI55ter9zqVQ6aW+0mJScf5dbn9m08cfqwBhpz+dNEFKYoCrlZWSXyoSjKgwMsgk6nIycnhz59+nDw4EHCwsKIjIxEURTat29Pbm4uAIMGDSI7O5vffvuNo0ePMnPmTGxsbPDw8ODHH38EICYmhsTERObNmwcYeubs3buXsLAwwsPDiYiI4M8//ywUw+zZs6lZsyZRUVF89tlnnDlzhsDAQLp06cKRI0dYt24de/bsYfDgwQA4OTlhYmLC+vXryc/PL1QfwPr168nNzWX06NGFjg0YMAAbGxvWrl37WM+uQE5ODsuWLcPe3p6aNWvet1xKSgoODo/WXilKXl4e+fn5WFpaGu3X6XTs2bNH3W7cuDFhYWEkJCSgKAo7d+4kNjaWtm3b3rPe9PR0QkNDqVChAh4eHgBERkZSvXp1ypYtq5YLCAggNTWV48ePq/tCQ0M5e/YsEydOfJK3WmLkdYQQj0HJv93IsspLocGPa4lbcRDORaEx0eDQvTJarwdk4Q+vg4PLybnZCgDfqlD9bd+nHboQQhi5dm23UQ+p0qUbotGYPlad0edvMG3LX+q2RgMepXWPVacQ4sVz5/A9jXJ7n/5WUsq2ritaO9sSik487/Kys5kf9HaJXHvoqvWY35WMKA5FUfjll1/Ytm0b7dq1Y8OGDezdu5fGjRsDsHr1ajw8PNiwYQNdu3bl3LlzdOnSherVDdN2eHt7q3UVJFqcnZ0pVaoUYOgltWrVKtasWUOrVoa/IUJDQ3FzcysUS8uWLRk16vackP369aNnz55qjypfX1/mz59PixYtWLx4Me7u7syfP5+xY8cyefJk6tati7+/Pz179lTjio2Nxd7eHlfXwr2etVot3t7exMbGPvRzu9OmTZvo3r07GRkZuLq6Eh4eTpkyZe5Z9vTp0yxYsOCxhgzej62tLY0aNeKLL76gatWqlC1blrVr1xIZGYmPj49absGCBXz44YeUK1cOMzMzTExM+Oabb2jevLlRfV9//TVjx44lPT2dypUrEx4erg6pvHTpklFCClC3L126BMCpU6cYP348ERERmJm9HOkceR0hxCNSFMUwcWdBI+vWBOfKra7opiYmWL3ujFmpB/SUigiB8/vJzTMHQOsgS6ILIZ6dGzcOciFhDdeu7QbApWxnGjX8FV+fTx65zny9wl+JqeyPMyzUUN7BiuGtfVn6Xh2c7R6+cS+EeLEZhu8V9JQq2KmoPaU0GplLSrwcNm3ahI2NDZaWlrRr14533nmHPn36YGZmRoMGDdRyjo6OVK5cmb/+Mry4GTp0KFOnTqVJkyZMnDhRHaZ2P2fPniU3N5f69eur++zt7alcuXKhsnXr1jXaPnz4MCtXrsTGxkb9CAgIQK/XExdneDk1aNAgLl26xOrVq2nUqBE//PAD1apVIzw8vNjP4kFzV4EhOXdnHBEREeoxf39/oqOj2bdvH4GBgXTr1o0rV64UqiMhIYHAwEC6du1qNFfSnfUGBwcXK+aIiAij81avXg3Af/7zHxRFwd3dHQsLC+bPn8+7776LicntdMqCBQv4/fffCQsL49ChQ4SEhDBo0CB27NhhdI2ePXsSFRXF7t27qVSpEt26dSMrK6tY8eXn59OjRw8mT55MpUqV7lmmqGf6vHo5UmtClIDbvXn16r5z587xd0YiABpN8XK+R6/U5lJqIEkmrwFg7uzxJMMUQoj7ys5J4s+oHijK7e751ta+WFl5Pla9n244xto/zqnbr3uUYnjrezeehBAvP6OXeLf2KfmKunHnH3YPpChw6Shk3YD/TYArt3pjtpsJ9Z+vyXvFk2FmYcHQVetL7NoPw9/fX530283NDTMzM8LCwh54Xr9+/QgICGDz5s1s376dGTNmEBISwpAhQx41dJW1tbXRdlpaGgMGDGDo0KGFypYvX1793NbWlo4dO9KxY0emTp1KQEAAU6dOpU2bNvj6+pKSksLFixcL9c7KycnhzJkzBAQEPDC2Tp06GSXrCiYNL4jbx8cHHx8fGjZsiK+vL8uXLzeaNP7ixYv4+/vTuHFjli1bZlT3navL2dkVb5XfunXrGp1X0EupYsWK7N69m/T0dFJTU3F1deWdd95Re45lZmby8ccf8/PPP9OhQwcAatSoQXR0NLNnzzaax8ne3h57e3t8fX1p2LAhpUuX5ueff+bdd9/FxcXFaA4qQJ3E3MXFhZs3b3Lw4EGioqLU4ZZ6vR5FUTAzM2P79u1FPtPnlSSlhHhESn5B/3PDv9l2pVmxYoV63LQYDaystFx+u9LNaJ9N6Yf75SeEEI8iPz+b9LQYFCUfU1MbHBwaY2Zmh6trl8euO+rcdQAcrbXY6cxl/ighXnFKvqK2lzTAgQMHuJR4Vj3+UEmpExvhh6AnHKF4nmk0mkcaQlcSChIpd6patSp5eXns379fHb537do1YmJi8PO7PX+sh4cHwcHBBAcHM2HCBL755huGDBmi9ji6c34nb29vzM3NOXDggJpISklJITY2ttBwsbvVrl2bEydOFIqzKBqNhipVqrBv3z4A3n77bcaNG0dISAghISFGZZcsWUJGRga9e/d+YL22trbY2hZv6K5eryc7O1vdTkhIwN/fnzp16hAaGlro58jD3F8BnU5X5HnW1tZYW1tz/fp1tm3bxqxZswDDioW5ubmFYjA1NUWv19+rKsAw8kZRFPW+GjVqxLRp07hy5QrOzs4AhIeHY2dnh5+fH+bm5hw9etSojq+//ppff/2V9evXU6FCBaytrYv9TJ8XkpQS4hEZ3vpBwZu/fK0hmWSp0WKXb0mNqq8/sI7sTMPkhqbk0LB9WWzLueNU/sX6ISKEePFcuPAtMbGTKfj5ZWvrR43qi4s+6QHOXE1jyn9PkJ6dx9mrhhV8VvdvQBWX4r2dFEK8vO7sKZVnbcvmzZvVYyYak4ebFyUx2vCvzgFsnMHbH5oOBwtpP4nnk6+vL507d6Z///4sXboUW1tbxo8fj7u7O507dwZg+PDhtGvXjkqVKnH9+nV27txJ1apVAfD09ESj0bBp0ybat2+PTqfD1taWoKAgxowZg4ODA87OzkycOBETE5MHDocdN24cDRs2ZPDgwfTr1w9ra2tOnDhBeHg4CxcuJDo6mokTJ9KrVy/8/PzQarXs3r2bFStWMG7cOMDQo2rWrFmMHj0aS0tLevXqhbm5ORs3buTjjz9m6tSpvPbaa0bXjYmJKRRLtWrVMDc3N9qXnp7OtGnT6NSpE66uriQlJbFo0SISEhLo2tWwGEtCQgJvvPEGnp6ezJ49m6tXr6rnu7gUPRVKQU+otLQ0rl69SnR0NFqt1ihBeLdt27ahKAqVK1fm9OnTjBkzhipVqvD+++8Dhp5YLVq0YMyYMeh0Ojw9Pdm9ezf//ve/mTNnDmAYcrlu3Tratm2Lk5MTFy5c4Msvv0Sn09G+fXsA2rZti5+fH7169WLWrFlcunSJTz/9lEGDBmFxq9fe3c/V2dkZS0vLQvvvlpyczLlz57h48SJw++vh4uLywGf2tElSSohHVLCMsTp879ZwPU+LsjS7UQlH36oPrCM3y/DGQ2uSzutvuICd89MIVQghjFxN2sHtoccaypRp9dh1fn/gPLtjbzcKrbWmeJS2eux6hRAvvjuTUoqp4c8Pa1NLvLKdqFi7cqE/Su/p8HcQPhEyDT0xaTLMkIwS4gUQGhrKsGHDePPNN8nJyaF58+Zs2bJF/b+fn5/PoEGDuHDhAnZ2dgQGBjJ37lzAMPxq8uTJjB8/nvfff5/evXuzcuVK5syZQ3BwMG+++SZ2dnaMHTuW8+fPF1ol7m41atRg9+7dfPLJJzRr1gxFUahYsSLvvPMOAOXKlcPLy4vJkycTHx+PRqNRt0eMGKHWM2LECLy9vQkJCWHevHmkpxteSK1du5bu3bsXuu699p0/f55y5Yx7U5uamnLy5ElWrVpFUlISjo6O1KtXj4iICKpVqwYYeg+dPn2a06dPFzr/QSsm1qpVS/380KFDrFmzBk9PT+Lj4+97TkpKChMmTODChQs4ODjQpUsXpk2bZvSz67vvvmPChAn07NmT5ORkPD09mTZtmjqflaWlJREREfzzn//k+vXrlC1blubNm7Nv3z61V5SpqSmbNm1i4MCBNGrUCGtra4KCgpgyZUqR91QcYWFhahINbn89Jk6cyKRJkx67/sehUR53ncuXWGpqKvb29qSkpBR7HKp4dWSm5bBi9B7yc06Sm74FM0c3rju7UdXSkyY3fHDs7YfOz7HIOhJjk/hpzhHsTBPpNbs96Eo/o+iFEK8aRVE4dXo66emnSEmJIj8/jRo1luFQuimmpo8+bDjq3HX+PHeDjdEJHLmQwjt1PfCv4kxlF1sqlLF+cAUvIGkfFCbPRNyPolf4+qOd6HMvkJP2PSbWpUkpXxF3nTPtrlenVOeK2DQqvGJYIf/uDGd33drQwPtbwLPx0wxdlICsrCzi4uKoUKHCA5Mrwlh6ejru7u6EhITQt2/fZ3795ORkWrVqhZ2dHVu3bsXKSl5MvQqK+p4tbttAekoJ8Yj06pxSBT2lDF1lNUrBrJ1FdJ098gP5B78l+3o5oAvmmiwwk2XShRBPT1raX5w/v+KOPSbY2lR9rIRUdl4+7/1rP+k5t+e5eKOyE4GvySqiQgiDgukOlLtWKzahGO2lO2XfBCCrZQiHLtQle7cFqdeiSLmagaW1Oe98Uv8BFQjxcomKiuLkyZPUr1+flJQUtTdNwZDAZ83BwYEdO3awaNEiIiMjadXq8Xthi1eDJKWEeESKvmAZ44JGlmH4XkEjS1NEIytm4//4NeEj9Bi6fJqb6cFMJjgXQjx5ef/P3n3HR1GtDRz/ze5m03uBhARCCb13iICRkoAiKlKEi6DAJV66KIiKCKKIUgThBfQi4WrwckUpoqIRpSMCEkBKaAmEEFpCetk27x+zO8lCCIEAoZyvn3zMzM6cPbMkm7PPPOc5phzSr+4gK0tZXtrZuRrVq4/BxaU6Tk5lyE64AYtFJjWjgFyDGQetRI9GgQS4OxJRV0xDFgShSFENTuu4SWMflCptvGSnMAeAhIu1iN+abveQ2XjjQsKC8DCbPXs2CQkJ6PV6WrRowbZt2/Dz86uw/vj6+vLOO+9U2PMLDyYRlBKE26RmSlmDUrY7fZJt7FXKIOtcVnU1IAVQ9bGWaqaVIAjCnXTixPucT/2fuu3mWpvAys+Uq81fj1xk1Nd/UWD9IBjo6cz8/s1ucpYgCI+ajIt5ZF7Ot27Z1+CUypopVZAJFjMUZgGQl+8AFBJYy5PQRn54VXLB3VdM8xIePc2aNWPfvn0V3Q1BKDcRlBKE22QLSknXDLI08s3v/BlNyrHte/jQKKoROr3W7nHTlSvk7t6N1sMDtw4d7nTXBUF4BBiNmWRnHyYj8y8A3Nzq4aj3p2rVYeVuO+7IRTUgBRBRx7/cbQqC8HC5mJjF6ll7kWUTpoLdyKZU5YFrpu9J2lKCUps/hM0zAcgwBZJqeIILysJRVK3vS/PIanet/4IgCMK9IYJSgnCbCvJyMeX/iWw+o+yw1ZSy3fm70SDLYsFsUYJQjm7OakBKlmXy//oL06VLpIx/FQCnhg1FUEoQhNuyd19f8vJOqtv1632Eu/uNlzsui8+3nmbp1tNk5RsBeO+ZhjzdJAhP5zKsnCUIwiMl41Ke8o0xEXPBbnW/Tr2Jp/y/1EwptbA5rEufRo7FH7IKAXB2F+87giAIDwMRlBKE23Rq73ZMBdvVbUljHWRZSsmUyr8KlxMwykr9KJ1zUXHz/Ph4zgz8h93husqV7nS3BUF4BJjNhWpAysWlFu7u9XFzq1vudr/afYYrOcoHQp1Gon1NXxGQEgShRLaMclfDBQoBF4OJaln5yK0f53J2jnoTr9SaUgXKlD3zC9+RM085LqS+D64eemo2F/XrBEEQHgYiKCUIt+jqhVw2rTjK5aRTAGi0vtRIOUFW9QakUcpqMoZcWNAM8q9ikj8EQOdcVAPBkKRkXGk9PXGsUweXNq3xHznyrl+PIAgPj8uXfyUtfSsWs1LDRZL0tG2zUV3t6nbkFJp487tDXMou4NxVpd3YYW2oW9kdXzexQIMgCCWzLQiDxQSAT1hteny0gLh/r4fsv5DyrKt2lhaUsq64Z5Q8AOX7J0c2xpxyDkP8n1w5eJC8+Hg0Li4Ez5t3ty5FEARBuItEUEoQblHigStcTMzClG8AwNHsQu3L2ezXBQNpUGBdje/a6XtZ5zmRXo8rpppkWQIBcNAX/QpasjIBcA0Pp8rcOXf/QgRBeKjIspm/D4/DYslX9zk7h5QrIAWw6ehF1h84r257uzjQuroPDlpNudoVBOHhZjHb6s7ZxkVaLAUmChIzwKFonRidTwlFyg+thpO/Qs5F8i3uXM10ArLR6TVYrlzmVI8nwWRSD9d4et7VaxEEQRDuHhGUEoRbZDYpoyiX/AtkSeCXdQJd1XpYJGUKiwYJjYsOrZd9BkHe1Wx+yZwAFH2Qc3JzwJiSQs62beTu+kM538P93lyIIAgPBVmWuXBhDbm5J7BY8pEkHaHV/gWShL9f59tut9Bk5sj5LPafzQCgdXUfBrWtRqMqniIgJQjCTZltC8LISkaURqNBNstYrMsUu9T1pVLX5jhUcrU/0WKBtf8CcyFJBS34MeNN5GWXAdA76yg8cRJMJiQnJ/ShoWgcHfF6of+9uzBBEAThjhJBKUG4RbYaCVpTPjiA95M9qPbMcP5Y+hUAnk9UpXKH1miuWVGvICsP0KCVjDTsXAMvf2f8Qtw4MzCa/L/+Uo/Tenvfs2sRBOHBl519iCNHX1e3nZyCqVFjbLnbHfHlPjYnXFa3m4Z40bNJULnbFQTh0aBO37MGpSSNFiwyFpT9el+X6wNSAIYcMCu16y4GD0PO0CBpJLQamaCcw1z+5FcAXJo3o+oXX9z9CxEEQRDuKnGrUxBukZqOLpuRgeT8QtZs+p4LmgwAdG6O1wWkAEz5BQA46/J47PkwGnYKRpIkjKnKEsku7dri2fs5vPv0uReXIQjCA85iMXLlyu+kXlgDgJNjEFWq/IN6dWfekfbjkzMACPR0ol6gB0+LgJQgCLfAdhPPFpTK0Drw/c8/kKy5AiiZUyUy5Cj/l7QYK7UEoFnXELobV1F10ycU/P03APrqNe5e5wXhNgwZMgRJkpAkCb1eT61atZg+fTqmYlNNb8fmzZuRJImMjIw709EySExMZMCAAQQFBeHk5ERwcDC9evXi2LFjdsdt2LCBTp064e7ujouLC61atSImJsbumKSkJCRJIj4+vszP/+6771K3bl1cXV3x9vamS5cu7N5dtIpnUlISQ4cOpXr16jg7O1OzZk2mTp2KwWAotd3U1FQGDBhA7dq10Wg0jBs3rkz92bp1Kz179iQoKAhJkli7du11x3z33Xd069YNX1/fm16vLMt07979hm3FxMTQuHFjnJycCAgIYOQ1dYZ//vln2rZti7u7O/7+/vTu3ZukpCS7Y2JjY2nSpAkuLi4EBgby8ssvk5aWVu7rvBtEUEoQblHRIMuCRe/E2dxCjiYeJ1dS7uq5ubnZn1CYDYdWY0rcA4BOa7ZvLzcXgMpTphD0/vs4BIkPfoIg3FzK+f9y4OAwzp37DwDePu2pW2ca3t6tb7vNM2m5hH/4G3Wn/ERGnhGAn8d35KexHWhYRdRsEQSh7Gw38SSLBVmjIRkd8X8fIF2jBJ1cXFxKPrHQGpRydMdoUNrQ6bWY09IB8P7HPwia9SH+48qfESoId1pUVBSpqamcOHGCCRMm8O677/Lxxx9XdLdUNwvaABiNRrp27UpmZibfffcdCQkJrFq1ikaNGtkFxj799FN69epFeHg4u3fv5uDBg/Tv35/o6Ghee+21cvWzdu3aLFy4kEOHDrF9+3ZCQ0Pp1q0bly8rGdzHjh3DYrGwdOlSDh8+zLx581iyZAlvvvlmqe0WFhbi7+/P22+/TZMmTcrcn9zcXJo0acKiRYtKPeaxxx5j1qxZN23vk08+uWHNz7lz5/LWW2/xxhtvcPjwYX799VciIyPVxxMTE+nVqxdPPPEE8fHx/Pzzz1y5coXnnntOPWbHjh28+OKLDB06lMOHD/PNN9/w559/Mnz48HJf590gpu8Jwi1Sg1JYQKNkRDnpnWiWWxVXDzfq1r1m2fXNH8KuhZgKmwJt0Gkt6kOyLKtBKY1rCSnsgiAIN5CbexwAZ6equLjWJCR4cLnb3HriCikZRYXSG1XxxMPJodztCoLw6Cm6iWdCljRgXZ24pbEmep0DrVq1sj/h8nHY+AbkXFS2Hd0xFig38hwctZizsgDw6B6FS4sW9+ISBOGWOTo6UrlyZQBeeeUV1qxZw/r164mOjmbs2LF8//33FBYW0qlTJxYsWEBYWBgAZ86cYdSoUWzfvh2DwUBoaCgff/wx9evXJyIiAgBva4mPwYMHExMTQ3Z2NtHR0axduxYPDw8mTpzIunXraNq0KZ988gkAoaGhDB06lBMnTrB27Vqee+45YmJi2L59O5MnT2bv3r34+fnx7LPPMnPmTFxdXTl8+DCnTp1i06ZNVKtWDYBq1aoRHh6uXmdycjITJkxg3LhxfPDBB+r+CRMmoNfrGTNmDH369KFNmza39ToOGDDAbnvu3LksW7aMgwcP0rlzZ6KiooiKilIfr1GjBgkJCSxevJjZs2ffsN3Q0FDmz58PwBe3MP23e/fudO/evdRjBg0aBHBdxtK14uPjmTNnDnv37iUwMNDusatXr/L222/z/fff07lzUV3Qxo0bq9/v27cPs9nMjBkz1IzT1157jV69emE0GnFwcGDXrl2EhoYyZswYAKpXr86IESNuGjAry3XeDSJTShBuUVFQSraNr3DSO9LAHEKYYzBa7TVT9zLOkm/xIMelEQA6L38AcnbsIG3JEjBbC4CKoJQgCDdhNudz8NAr/LnnGS5e/AGAqtWG07TJv3F3r3/b7e5NSid29xm2JFwC4LlmVdg+KYI1/2p/R/otCMKjx+4mnjUjQJIkmppDaaCphpPTNavuHVwFpzbBxb85kteFny6PIeX4VQCuLpyP8dw5ALQeHvfqEoT7hCzLWAzmCvmSZfnmHSyFs7MzBoOBIUOGsHfvXtavX8+uXbuQZZkePXpgNCpZySNHjqSwsJCtW7dy6NAhZs2ahZubGyEhIXz77bcAJCQkkJqaqgZVXn31VXbs2MH69euJi4tj27Zt/FWsTq3N7NmzadKkCfv372fKlCmcOnWKqKgoevfuzcGDB1m1ahXbt29n1KhRAPj7+6PRaFi9ejVms/m69gBWr16N0WgsMSNqxIgRuLm58fXXX5frtbMxGAx89tlneHp6lprdlJmZiY+Pzx15zrslLy+PAQMGsGjRIjV4WVxcXBwWi4WUlBTq1atHcHAwffv2JTk5WT2mRYsWaDQali9fjtlsJjMzky+//JIuXbrg4KDcSGzXrh3Jycn8+OOPyLLMxYsXWb16NT169Lhn13orRKaUINwii6VokCVbo1IayRrf1V6fhnngTC22X3pJ3da5e2HOyiJ5RLS6nLGk16O5URq7IAiCVfrVnVy+/IvdPne3ujc4umyu5BTS/7M/MFmKBt41A9wI9hbvSYIg3D41KGUp+lBru6svaUqYtlKoZELJ9Z9ly+ZBWCwSoEw1criUBBYLGk9PUebgESQbLZx/Z2eFPHfQ9PZIJdSKvRlZltm0aRM///wz3bt3Z+3atezYsYP27ZWbPbGxsYSEhLB27Vr69OnD2bNn6d27N40aKTexa9QoqplmC7QEBATg5eUFQHZ2NitWrGDlypVqRs3y5csJKuH344knnmDChAnq9rBhwxg4cKBaTyksLIwFCxbQqVMnFi9eTJUqVViwYAETJ05k2rRptGzZkoiICAYOHKj26/jx43h6el6X6QOg1+upUaMGx48fv+XXrbgNGzbQv39/8vLyCAwMJC4uDj8/vxKPPXnyJJ9++mmpWVL3g/Hjx9O+fXt69epV4uOnT5/GYrHwwQcfMH/+fDw9PXn77bfp2rUrBw8eRK/XU716dX755Rf69u3LiBEjMJvNtGvXjh9//FFtJzw8nNjYWPr160dBQQEmk4mePXve82l5ZSUypQThFhUVOpfVO38a25zgEgZZFzKUzChJktHpNdRsHoA5I0MJSOl0ePZ+jqBZHyLdqOCnIAiPvILCC6SlbeFqujIo9/RsTpPG/6ZVq3V4eja/7XZzCk38nZKJySLjqtcS2aASfVoE06dF8J3quiAIjyhL8dX3yjBestWSMvo3swak4LHnQml0aCk+6UepFvsVtX75WWSWC/e1DRs24ObmhpOTE927d6dfv34MGTIEnU5nN5XN19eXOnXqcPToUQDGjBnDjBkzCA8PZ+rUqRw8eLDU5zl9+jRGo5HWrYvqSHp6elKnTp3rjm3ZsqXd9oEDB4iJicHNzU39ioyMxGKxkJiYCCiZWxcuXCA2NpZ27drxzTff0KBBA+Li4sr8Wuj1+pseExsba9ePbdu2qY9FREQQHx/Pzp07iYqKom/fvly6dOm6NlJSUoiKiqJPnz52NZOKtxsdHV2mPm/bts3uvNjY2DKdVxbr16/nt99+U6dWlsRisWA0GlmwYAGRkZG0bduWr7/+mhMnTvD7778DcOHCBYYPH87gwYPZs2cPW7ZsQa/X8/zzz6uZfUeOHGHs2LG888477Nu3j40bN5KUlKS+DnfzOm+HyJQShFtkn46uBJJsmVIl3fkzmZR9j3e1UP855U5GgfXOgdbDg6D337/LPRYE4UFmsRj488+eGI3p6j43t3r4+UWUq90VO5N49/vD2GYmNAjyZOmglqWfJAiCcBNmk4WU41fJuJSn7JAtcE1meYmZUtZV94ySu7ItQf3mHpxMUz6cOzdrJm7gPaIkBw1B0ytmOrnkcGs/cxERESxevBi9Xk9QUBA6nY7169ff9Lxhw4YRGRnJDz/8wC+//MLMmTOZM2cOo0ePvt2uq1yvCeTm5OQwYsQItd5QcVWrVlW/d3d3p2fPnvTs2ZMZM2YQGRnJjBkz6Nq1K2FhYWRmZnL+/PnrsrMMBgOnTp2yK859I08//bRdsK5KlSp2/a5Vqxa1atWibdu2hIWFsWzZMiZPnqwec/78eSIiImjfvj2fffaZXdvFV7/zKOO035YtW9qdV6lSpTKdVxa//fYbp06dUrPdbHr37k2HDh3YvHmzmnlWv35RSQZ/f3/8/Pw4e/YsAIsWLcLT05OPPvpIPearr74iJCSE3bt307ZtW2bOnEl4eDivv/46oNSkcnV1pUOHDsyYMeOuXuftEEEpQbhFRdP3iqa6qKsnFP+7lXYK0k5inSqOg2PR3QK5oEA5z8nxhs9z4uoJLuddJteUy9WCq1hkC5fyLmGyKFP+nqzxJHV8rr8bIgjCw8NkyiYnJwGjMR1J0uLmVhetxoWgwD7lbnvTsUtqQEqrkYhqeH1tA0EQhFu176ck9vyQVLRDNiPbakppSih3sC8GTm+B5D8BMErKKsYOjlrkfGXhBcnFRQSkHmGSJN3WFLqKYAukFFevXj1MJhO7d+9Wp++lpaWRkJBgF3wICQkhOjqa6OhoJk+ezOeff87o0aPVjKPi9Z1q1KiBg4MDe/bsUQNJmZmZHD9+nI4dO5bax+bNm3PkyJHr+lkaSZKoW7cuO3cqGdvPP/88kyZNYs6cOcyZM8fu2CVLlpCXl8eLL75403bd3d1xd3cvUx8sFguFhYXqdkpKChEREbRo0YLly5er04NtbuX6bJydnW/rvLJ44403GDZsmN2+Ro0aMW/ePHr27AmgFpNPSEggOFjJWk9PT+fKlStq0fm8vLzrrtVW09hisajH6HS6Eo+RZfmuXuftEEEpQbhF9plSyq+QRh1sWQdZeenwf23BbMBk+hAAnUtRQU+LNSilcXIu8TkOpx2m/4b+pfajgV8DEZQShIdYXl4iu//sgcWi1FRxdq5K61Y3v9t6M+9tOMI3e5PJKVQC3P95uTXhtfzQlpS5IAiCcIuy05UxjpuPIz6VXSk8eR48PYESxkvGAtjwqjLFD8gwVeZyTgBgQWss4Mqi/1POE3U3hQdYWFgYvXr1Yvjw4SxduhR3d3feeOMNqlSpotYWGjduHN27d6d27dpcvXqV33//nXr16gHKyneSJLFhwwZ69OiBs7Mz7u7uDB48mNdffx0fHx8CAgKYOnUqGo2m6Gb5DUyaNIm2bdsyatQohg0bhqurK0eOHCEuLo6FCxcSHx/P1KlTGTRoEPXr10ev17Nlyxa++OILJk2aBCgZVR999BGvvfYaTk5ODBo0CAcHB9atW8ebb77JjBkzaNiwod3zJiQkXNeXBg0aqMW5bXJzc3n//fd5+umnCQwM5MqVKyxatIiUlBT69FFuyqWkpPD4449TrVo1Zs+ezeXLl9XzSyogXpwtQygnJ4fLly8THx+PXq+3CxBeKycnh5MnT6rbiYmJxMfH4+PjowYF09PTOXv2LOfPn7e73sqVK9t9Xatq1apUr14dgNq1a9OrVy/Gjh3LZ599hoeHB5MnT6Zu3brqKoxPPvkk8+bNY/r06bzwwgtkZ2fz5ptvUq1aNZo1awZAz549GT58OIsXLyYyMpLU1FTGjRtH69atS6w7divXeTeIoJQg3IKCXCOmQmXgJCOrhc4lW6Fz2yArKwXMBtA4YNJ6gRF0lWqq7dwoU+rb49/y1dGvyCzMBMDT0ZMg1yD8nP3Qa/U465zxdfJFkiRCPULv3oUKglDhMjL2WQNSGrRaZwIr9y53m7Iss3L3WfKNyvuYu6OOhlU8RUBKEIQ7RraW3mz8eAhNnwhi3Xd5gBdQbGEY201+Q44akEoI+z9+3RYI3ysNSNnpZG5aC4DuPl9RSxBuZvny5YwdO5annnoKg8FAx44d+fHHH9WAjNlsZuTIkZw7dw4PDw+ioqKYN28eoExpmzZtGm+88QYvvfQSL774IjExMcydO5fo6GieeuopPDw8mDhxIsnJydevbHmNxo0bs2XLFt566y06dOiALMvUrFmTfv36ARAcHExoaCjTpk0jKSlJ+dxh3R4/frzazvjx46lRowZz5sxh/vz55ObmAvD111/Tv//1N9dL2pecnKxmBNlotVqOHTvGihUruHLlCr6+vrRq1Ypt27bRoEEDQFml7uTJk5w8efK682+2YqItcAOwb98+Vq5cSbVq1UhKSrrhOXv37lWDQqCsfAgwePBgYmJiAKVm1EsvFS1uZbveqVOn8u6775bap+L+85//MH78eJ588kk0Gg2dOnVi48aN6s/KE088wcqVK/noo4/46KOPcHFxoV27dmzcuBFnZyXhYciQIWRnZ7Nw4UImTJiAl5cXTzzxBLNmzSr1uctynXeDJJd3ncuHWFZWFp6enmRmZpZ5Hqrw8Prz+9N26ehOqYu47O9CQXBNgn0CiTpfH6c63vi91BD57G52fLKSNOpxwVgXk9HCc6+3wO3MX2SuX4/pwgXy4+Nxbt6c0JVFheV6rulJUlbRc7zR+g0G1ht4D69SEISKlpa2laPHJmM0ZmCxFBAU1I96dT8oV5uZeUY2HbtIrsHMlLV/A/DT2A4Eezvj7uRwk7OFa4nxwfXEayLY/LLsMCf2XOSxPmE06lCJdZERnKhahbzq9fFwcaNvehscKrtQaVwLuJoE85uAzpkd9bYTH3cWB0ct2rwMghN/oUEDB/RVQ3DvFolzo4Y3fW7hwVdQUEBiYiLVq1e/aXBFsJebm0uVKlWYM2cOQ4cOvefPn56eTufOnfHw8OCnn37CRWQ4PhJK+50t69hAZEoJQhmdP5mhfu/sqkVnzAFJebO9djWZzEt5HMizLfVpAQncvB25+K8PMZ45q7ajqxRg9xxpBWkAfPDYB9TwrEE933p352IEQbhvXby4gcLCC+q2l1frUo4um/d/PML/9p5Ttz2dHagXKAIHgiDcebK19qakAcxma1b5NZnltnGTQcmsQO+K0ZqJ3rRrVXwXf4zh3Cm831+Ba5vyvwcKwsNo//79HDt2jNatW5OZmcn06dMB1CmB95qPjw+//vorixYtYteuXXTu3LlC+iE8eERQShDKyJaOHjm8IVV98/jfiELUQRb2q8kY8goBPY7aPDoObolXJRfcfZxIzVZWlvF9JRqHwEDcn3iC1JxUBv00iCv5VzBbU9g7VOmAl5PXvbw8QRAqWGrqGrKyDnA14w8AatWcRKXKT+PkePsFyAtNZk5fzuXgOWVKcJMQL/xc9TzVJPCO9FkQBOFatgVhNBoJ2WxBligWhLIOprQS5F6BdGX5efQuGK117hwctVjylJX7NC4l194UBEExe/ZsEhIS0Ov1tGjRgm3btuHn51dh/fH19eWdd96psOcXHkwiKCUIZWQrcF6Qk0bCmUPk63W4OHhRAJgvKavD2FaTMRUUAHqcHAqp3broA6WtwLnXc8+hDwkBYO+p77mYd1E9pp5PPTwdPe/+BQmCcN8wGNI4cvR1iq/q6enVolwBKYA+S3apASmA93o1oHGwV7naFARBKI1tvGQoyObYrr/JcdTj7ViZPIBCJSjlbPkNPp5edJKDK8YC5cacgwPIalBKTP8RhBtp1qwZ+/btq+huCEK5iaCUIJSR7c7fttgPyctMAxcnfPS+pCOjsWZMubgegKUjMF30BUaj0xYt3SrLslrgXFNsvm22IRuATsGdeKfdO2ohc0EQHn6yLGMwXCYn5xggo9O5ExI8BCenKnh6NC9X2waTRQ1I+bk5Ui/QXUzZEwThrrOVq9331QdkGa6Chws+GmVhF41Wg9tjVXDNPwfpgEbHvtznSb7Ug8tXrwBweerbVM5U3rtEUEoQBOHhJ4JSglBGthoJ+VlXAfDOycfZGnPSeToSNLIdmvVDIPUApgKl/oFOX1RAWDYawWJdUaaEoJSfsx8BLvY1pgRBeLgdPjKeixe/V7ednUOpUWNcudq8nF3I3LgELmcXAuCgldjzVmcR7BYE4Z6QbZnleZmgA8+8Atw8rVP6dFq8nqoB6wwAmDq8xR+rmkJRQifO+UpwyjGsFjp//1KfyyJbWBS/iNMZp7HIFmVlZFnGgkXZlmWeC3uObqHd7vyFCoIgCHeECEoJQhlZzMpAR7YWl2qedIHUatZBllaLxlkHBiXd3FznWdgNOr+qynZGBqb0q2pbkqMjk7ZO4sDlA2QVZgHgrne/l5cjCMJ9ID19u/U7DRqNjkqVnip3m//bm8zXfyar29X9XEVAShCEe8aWWW7T6bkXyHWuxuFj29HYCp0blbIHBtzU41p7HcX0+09U7/MEfv8cjsbNDUmrLfE5tp7byqL4RRxNO4pM6QuJtwlsU46rEQRBEO42EZQShDJS0tGVgY+s0XKualXS3R0Ao7r63vk0X/5Mn0ZOQRgAOkcd6bGxXHxvRlFDWi2XjOn8mPijXfu1vWvfi8sQBKGCFRScJ+X8f7GYCzAalWB1h8d2o9f7lKvdv1My+TMxnS0JlwHoXDeAx+v481hY6ZkGgiAId5Its1yWlP97dOpE3mHlfUldrdh6E8+EMj1P56AhyHKGrMxT6HyeQ+tZem3NL498yZG0I+q2j5MPI5uORCNp0EgaJCT1+3o+YiVjQRCE+5kISglCGSmFO5UsqYJKIeyt4wcYAdBplV+lgxeakGKoD0pWOh5+zuTt3lvUiCTh0b07uUZlCWR3B3cWd12Mu4M7Nbxq3KtLEQShAiUmfsr51P+p21qtGw4O3uVqU5ZlBi3bzdU8o7ovqmFl+rQMKVe7giAIt6p4ppTJzZPlq77BYFDem9SglFEJShmtQSkHJy2WXGtxc1fXEts1W8y8v/t9zmSd4dCVQwBMajWJer71aOTXCL1Wf1euRxAEQbi7RFBKEMpIGWQpQSlZp9SK8nP2xi1HR9PKdQEwmpQ080YtJKq2bURwHW9Sf1dS1APfn4FX794AHLqsDKbc9e408W8CgMloJPdqGhazmZz0NMwmEwHVa+LiIVbiE4SHQX7+Oa5e/YPMrP0A+Pl1wcUlFB+fDuWaXme2yKTlFKoBqaebBOHrpqdHo8A70m9BEIRboWZKIWNy88RYWKg+1pFd8N50MBswyXryjM7KsVcukbNnC3DjoNThtMN8c/wbdVun0RFVPQo/Z7+7dSmCIAjCPSCCUoJQRrJZBms9KawfIFtVakCVq464uyvTY8wWpVZCYFVHQhspgyRLvhKUKl7cPM+k3A10cVDuEJpNJmImvELmxQt2z/ncG+9SvVnLu3RFgiDcSwcODic397i6HVptBJ6e5Vthb/uJKwz/z17yjcqqC35ueha80KxcbQqCIJSHxWybvoc6XmpZtRFhxz2o6bgezAZOF7Th54zXsHynfBTRmvLBZAKdDqd6dUtsNy0/DYBqHtUY2XQkNTxriICUIAjCQ0BT0R0QhAdF8ZpStkGWhPJ/59NTYZo3JqMStNI5OqrnWQoKANA4u5Cak8q8ffP46shXALjolKBUTnqaGpDSOTri4umFf9VQHJyd7/p1CYJwd+XlJZKRuY+8vFMA+Ph0ICTkZTw8mpa77d+OXVIDUgBP1BUreAqCULEsaqYUyLZxks4JV5yQZKW+QUroa1iK3Rv3u3KIoI8/ImzbVhxr1bJrb+u5rczcPZOvj30NQFX3qnSv3p06PnXuwdUIQtkNGTIESZKQJAm9Xk+tWrWYPn06JpOpXO1u3rwZSZLIyMi4Mx0tg8TERAYMGEBQUBBOTk4EBwfTq1cvjh07Znfchg0b6NSpE+7u7ri4uNCqVStiYmLsjklKSkKSJOLj48v8/O+++y5169bF1dUVb29vunTpwu7du+3aHDp0KNWrV8fZ2ZmaNWsydepUDAZDqe2mpqYyYMAAateujUajYdy4cWXqz9atW+nZsydBQUFIksTatWtvuc8A77//Pu3bt8fFxQUvL68Sn+vs2bM8+eSTuLi4EBAQwOuvv273M1T856z4V4MGDdRjZs6cSatWrXB3dycgIIBnnnmGhISEm15nWfp3N4iglCCUUfGaUrZBliQr/3dI+wVkCyZZqWeg866MLMuYMzOx5Cr1ozQuziz7exlf/P0Fm89tBsBH703qyQSSDx8EwN3Pn7H/+ZZXPvuKFz9eSHDdBgiC8OBKS9vKrj+6sG9fX2TZjCQ50LTJMmqHvYUk3f6f4O/+Oser/4vn16MXAXg9sg4H3+3GR883uVNdF+5DH374IZIk2Q2iH3/88esGptHR0Xbn3WyAC8qHnubNm+Po6EitWrWu+1AhCGVlSyoHim7i2e7pycpUPpOkTNFr9VR1uhx5j5qJ63GsWROdt319PVmWmbh1IiuPrWRX6i4AAl3F1GTh/hUVFUVqaionTpxgwoQJvPvuu3z88ccV3S3VzYI2AEajka5du5KZmcl3331HQkICq1atolGjRnaBsU8//ZRevXoRHh7O7t27OXjwIP379yc6OprXXnutXP2sXbs2Cxcu5NChQ2zfvp3Q0FC6devG5cvKognHjh3DYrGwdOlSDh8+zLx581iyZAlvvvlmqe0WFhbi7+/P22+/TZMmZR8z5ebm0qRJExYtWnTbfQbl9e/Tpw+vvPJKiW2YzWaefPJJDAYDO3fuZMWKFcTExPDOO++ox8yfP5/U1FT1Kzk5GR8fH/r06aMes2XLFkaOHMkff/xBXFwcRqORbt26kWv9XHojN+vf3SKm7wlCGRWvKSVdM8jCorzBmz1rQpoFrYsr5ye8RtaPRSvsaZydSb+aDkB4lXAa+zXGa8NZVv57gnqMi4fXXb8OQRDunawsJeCs1bqh1/tQKeApJKnkJc7LqsBoZuLqg5iKFROuH+SBh5NDudoV7m979uxh6dKlNG7c+LrHhg8fzvTp09VtFxcX9XvbALdy5crs3LmT1NRUXnzxRRwcHPjggw8A5Y74k08+SXR0NLGxsWzatIlhw4YRGBhIZGTk3b844aGiZkoVK5VnyyzHYg1KmZWgvN5JCzlZQMm1pPJN+eriMEMbDsXFwYVnaj1zl3ouCOXn6OhI5cqVAXjllVdYs2YN69evJzo6mrFjx/L9999TWFhIp06dWLBgAWFhyordZ86cYdSoUWzfvh2DwUBoaCgff/wx9evXJyIiAgBva9B28ODBxMTEkJ2dTXR0NGvXrsXDw4OJEyeybt06mjZtyieffAJAaGgoQ4cO5cSJE6xdu5bnnnuOmJgYtm/fzuTJk9m7dy9+fn48++yzzJw5E1dXVw4fPsypU6fYtGkT1apVA6BatWqEh4er15mcnMyECRMYN26c+rcEYMKECej1esaMGUOfPn1o06bNbb2OAwYMsNueO3cuy5Yt4+DBg3Tu3JmoqCiioqLUx2vUqEFCQgKLFy9m9uzZN2w3NDSU+fPnA/DFF1+UuT/du3ene/fu5eozwLRp0wBueOPnl19+4ciRI/z6669UqlSJpk2b8t577zFp0iTeffdd9Ho9np6eeBZboXTt2rVcvXqVl156Sd23ceNGu3ZjYmIICAhg3759dOzY8YbXcLP+3S0iU0oQyki2yMjX1JTSyBJgJtfkwXlDPQoNyq+UTq8hd+dO9VyHqlVxrFWLPOtqMz2q9+BfTf9Fznkly8HN2wevyoE0jXzy3l2QIAh3zZmzn/Pnn0+TfG4FACEhQ2jf7ndq1pxwkzNvzGKR+evsVTb+fQGTRcZRp+HNHnWZ168JncL871TXhftQTk4OAwcO5PPPP1c/lBTn4uJC5cqV1S8PDw/1MdsA96uvvqJp06Z0796d9957j0WLFql3zJcsWUL16tWZM2cO9erVY9SoUTz//PPMmzfvnl2j8GCzmC2c3HeJg7+foyBH+bmSoWi8pGaYK48ZC5Rpx+mffoIl78ar7mUbsgHQSlrGNh/LPxv/kwAXMU35USPLMgaDoUK+lPIdt8/Z2RmDwcCQIUPYu3cv69evZ9euXciyTI8ePTAalUVKRo4cSWFhIVu3buXQoUPMmjULNzc3QkJC+PbbbwFISEggNTVVDaq8+uqr7Nixg/Xr1xMXF8e2bdv466+/ruvD7NmzadKkCfv372fKlCmcOnWKqKgoevfuzcGDB1m1ahXbt29n1KhRAPj7+6PRaFi9ejVms/m69gBWr16N0WgsMSNqxIgRuLm58fXXX5frtbMxGAx89tlneHp6lprdlJmZiY+Pzx15zvIqa5+vtWvXLho1akSlSpXUfZGRkWRlZXH48OESz1m2bBldunRRA4glyczMBLhvXp9riUwpQSij4tP31HR0CxgsRr68vAQLDoAyHULroMFiXW2m5safcKhWDUmSigqcW2tJGQqU7eenvI9vFbF0uyA8DGRZ5vTpT7BYCtR97u71y93uV7vP8M66ogFJkJcz/+xYs9ztCve/kSNH8uSTT9KlSxdmzJhx3eOxsbF89dVXVK5cmZ49ezJlyhQ1W+pGA9xXXnmFw4cP06xZM3bt2kWXLl3s2oyMjCxzrQ1BOHM4nZ8//1vdlmUZJQ5lX+7AllleeDUXcIAMpXi5LjAQbbH6JTmGHL498S3J2cmAslpxeVYpFR5sRqPRLhvnXnrzzTfR6/W3fJ4sy2zatImff/6Z7t27s3btWnbs2EH79u0B5X07JCSEtWvX0qdPH86ePUvv3r1p1KgRoGT+2NgCCQEBAWqdn+zsbFasWMHKlSvVLJzly5cTFBR0XV+eeOIJJkwouik2bNgwBg4cqL7Hh4WFsWDBAjp16sTixYupUqUKCxYsYOLEiUybNo2WLVsSERHBwIED1X4dP34cT09PAgOvn06r1+upUaMGx48fv+6xW7Fhwwb69+9PXl4egYGBxMXF4edX8uIGJ0+e5NNPPy01S+peuJU+l+TChQt2f68BdfvChQvXHX/+/Hl++uknVq5cecM2LRYL48aNIzw8nIYNG5a5L/eSyJQShDJSlji23S0pypTKs5iw4IAGE14BztRs7o9XJRdk66p7GldX/rr0F18f+5rzOecBZdU9WZYxWI9xdHa59ukEQXjAGI1XSTg+jcOHx6kBqSaN/02rlmvw9+tW7vYPpyhTXPzdHakX6MErnURA6lHw3//+l7/++ouZM2eW+PiAAQP46quv+P3335k8eTJffvkl//jHP9THyzLAvdExWVlZ5Fv/Tl2rsLCQrKwsuy/h0ZWfpQSbXDz11GoRQF0vZbyj1yoLtsgXMtCQSbbJl9MFbcjNVz6COAYGUH3Nd9Tc8D2Sruhe+bcnvmX23tmsSlgFgK+T7728HEG4bRs2bMDNzQ0nJye6d+9Ov379GDJkCDqdzm4qm6+vL3Xq1OHo0aMAjBkzhhkzZhAeHs7UqVM5ePBgqc9z+vRpjEYjrVu3Vvd5enpSp871CwC0bGm/kveBAweIiYnBzc1N/YqMjMRisZCYmAgoN0MuXLhAbGws7dq145tvvqFBgwbExcWV+bUoSzAvNjbWrh/btm1TH4uIiCA+Pp6dO3cSFRVF3759uXTp0nVtpKSkEBUVRZ8+fRg+fLi6v3i719ZavJFt27bZnRcbG1um8261z3fKihUr8PLy4plnnrnhMSNHjuTvv//mv//9r7ovOjra7jormsiUEoRSXDqTRdwXRyjMN1lX1lMypRy1LuRhwXg22xqecsRDe5GB05UPnrYsKYAMqYChPw/FLCvpr5IFMncfZafhFLJFaU8vVtkThAdeauoazp37j7rt7FwVP7+Icre78LcT7DqdxrFUZRrLa91q069V1XK3K9z/kpOTGTt2LHFxcTg5OZV4zD//+U/1+0aNGhEYGEjnzp05deoUNWvevcDlzJkz1doTgmCrI1W5uieRwxuS8v5aDgDuej9qsJcO+fORHTUsv7ScQrnoA5DeRY9TvXrXtXcxTylvUN+3Pk38mxAVGnXdMcKjw8HB4aYFrO/mc9+KiIgIFi9ejF6vJygoCJ1Ox/r162963rBhw4iMjOSHH37gl19+YebMmcyZM4fRo0ffbtdVrtdMjc3JyWHEiBGMGTPmumOrVi0aX7i7u9OzZ0969uzJjBkziIyMZMaMGXTt2pWwsDAyMzM5f/78ddlZBoOBU6dOlakm4dNPP20XrKtSpYpdv2vVqkWtWrVo27YtYWFhLFu2jMmTJ6vHnD9/noiICNq3b89nn31m13bx1f6KT2svTcuWLe3Ou/aGzc2Upc+lqVy5Mn/++afdvosXL6qPFSfLMl988QWDBg26YQBw1KhRbNiwga1btxIcHKzunz59ermL0d9JIiglCKVIPHCFjIt56rZeLsAAaDV6oADJLCHbpuxpiuZcywVF03bS5RzMshm9Rk+nkE6EXHTmyH/XqI/r9I44OJb8YUMQhPtfQUEqWVkHuZrxBwA+3uH4+HbE16dDudvOyDMw+xf79PewSu7lbld4MOzbt49Lly7RvHlzdZ/ZbGbr1q0sXLiQwsJCtFr7wvm2wf3JkyepWbNmmQa4lStXVvcVP8bDwwPnG9w0mTx5Mq+++qq6nZWVRUiImIb+qFJKHICkUW7VWYzWG3GSRCjn0EgW8szuakDKz8uE5ng8vj5pJbaXY8gBoEvVLgxvPLzEY4RHhyRJtzWFriLYghLF1atXD5PJxO7du9Xpe2lpaSQkJFC/ftH0/pCQEKKjo4mOjmby5Ml8/vnnjB49Wr324vWdatSogYODA3v27FEDSZmZmRw/frzUQtYAzZs358iRI9f1szSSJFG3bl12WmvmPv/880yaNIk5c+YwZ84cu2OXLFlCXl4eL7744k3bdXd3x929bOMai8VCYbEb/ykpKURERNCiRQuWL1+ORmM/CexWrs/G2dn5ts67kWv7fDPt2rXj/fff59KlSwQEKPXz4uLi8PDwsPtZAWWFvZMnTzJ06NDr2pFlmdGjR7NmzRo2b95M9erV7R4PCAhQ278fiKCUIJTCducvrHUAIXWMpPz7PxxAmcTnTQY1GvzG1Vxf2N8OraT8oZBlGYstKKXVUmgNWvk5+zH38bnE//IjmziAZ6XKhDZuTrUmzZA0YiatIDyo9v3Vn4KCc+q2v383goP/UcoZN1dgNHMkNYuzaUpQ3N1Rx4xnG1LZw4nmVa8vdC08nDp37syhQ4fs9r300kvUrVuXSZMmXReQgqI7w7Y6H2UZ4LZr144fi60WazumXbt2N+ybo6Mjjo6Ot31twsNFto6XLOlXOBXVnbwrl6FmZSyA1pplbmo/AdYpdTe7tcjkwtrlOETYZ5Oeyz7H32l/cyrzFKDUkhKEB11YWBi9evVi+PDhLF26FHd3d9544w2qVKlCr169ABg3bhzdu3endu3aXL16ld9//5161izCatbatBs2bKBHjx44Ozvj7u7O4MGDef311/Hx8SEgIICpU6ei0WhuWn9t0qRJtG3bllGjRjFs2DBcXV05cuQIcXFxLFy4kPj4eKZOncqgQYOoX78+er2eLVu28MUXXzBp0iRAyaj66KOPeO2113BycmLQoEE4ODiwbt063nzzTWbMmHFd/aKEhITr+tKgQYPrstFyc3N5//33efrppwkMDOTKlSssWrSIlJQU+vTpAygBqccff5xq1aoxe/ZsLl++rJ5/bUbRtWx/J3Nycrh8+TLx8fHo9frrgj7F5eTkcPLkSXU7MTGR+Ph4fHx8qFq1apn6DHD27FnS09M5e/YsZrNZ7UutWrVwc3OjW7du1K9fn0GDBvHRRx9x4cIF3n77bUaOHHnd39xly5bRpk2bEutEjRw5kpUrV7Ju3Trc3d3V6fqenp43vNlUlv7dLSIoJQilkK13/nIv7+fHn1ep+y2STGd24H3yOOkFbYF2aLUyBUePcnbIS5itKxxoHB0pMCsBKiedkg1lyFc+ZFapU58uw/51D69GEIQ7yWwuoKDgvBqQ8vRsjoODDwEB5Z9mMmrlfn49WpS5EuTlTK+mVUo5Q3gYubu7XzfYdHV1xdfXl4YNG3Lq1ClWrlxJjx498PX15eDBg4wfP56OHTvSuHFjgDINcKOjo1m4cCETJ07k5Zdf5rfffuN///sfP/zwwz2/ZuHBZMuUMqac5UR2OnnuyphHlkCDctPOjPJBSOegQbauOCYV+zBqkS3848d/kFZQlD3l6Vi07LkgPMiWL1/O2LFjeeqppzAYDHTs2JEff/xRDciYzWZGjhzJuXPn8PDwICoqSl0BtUqVKkybNo033niDl156iRdffJGYmBjmzp1LdHQ0Tz31FB4eHkycOJHk5OQbTve2ady4MVu2bOGtt96iQ4cOyLJMzZo16devHwDBwcGEhoYybdo0kpKSlIxH6/b48ePVdsaPH0+NGjWYM2cO8+fPJzc3F4Cvv/6a/v37X/e8Je1LTk62m1YGoNVqOXbsGCtWrODKlSv4+vrSqlUrtm3bRoMGDQDlxsnJkyc5efLkdeffbMXEZs2aqd/v27ePlStXUq1aNZKSkm54zt69e4koFkS3ZQoPHjyYmJiYMvUZ4J133mHFihXX9eX333/n8ccfR6vVsmHDBl555RXatWuHq6srgwcPZvr06Xb9yczM5Ntvv1VXYrzW4sWLAXj88cft9i9fvpwhQ4bc8Dpv1r+7RQSlBKEUtkypnIR4ABxMZlwMZtKQcUYJNpkDmkEGaAJqkbdnrxqQAnBp04ZLJvuglLFAKRor6kgJwoPLYLjCrj+6YjIpxZ11Ok9atvjmjrV/4FwGAFW8nHF00DD0seqlnyA8kvR6Pb/++iuffPIJubm5hISE0Lt3b95++231mLIMcKtXr84PP/zA+PHjmT9/PsHBwfz73/8uUz0QQQBligpAXmEKJ4P9iz0iq5lSZpQP31qdBmxBqWLFzfNN+WpAqkWlFgQ4B/BYlcfuQe8F4c6IiYm54WPe3t785z//ueHjn376aaltT5kyhSlTptjtc3d3tyvEnZuby7Rp0+xqDd4o0NKqVSt++eWXEh/z8/O7YbDjWr169VKzvdLT0+ncuTOLFy/m6aefVleBDQ0NvWmgqDgnJye+++67Uo8ZMmRIqcGV0txKX2wef/zxUs8rS59B+Rkp7ecElMy4a7OXr+Xp6UleXt4NH7+da4Sy9e9uEEEpQSiFLSglG5TAUoispVVYA74sPsgKfgyOg87dG9l4GgD3qCgqvzMFrbc3x87+CoBboZ7da/7HmUPxAOidRFBKEB5UWVmH1ICUJDkQWPnZcrdptsj0W7qLvWeuqvvWjwrH101MkRKKbN68Wf0+JCSELVu23PScsgxwH3/8cfbv31/e7gmPKHX6nlmpneLm7EKtjhEcO5OP1popZZKtQSkHDbJJKW1QPFMq16hkWWglLcsjl990CpIgPOr279/PsWPHaN26NZmZmerNBluQ6F7z8fHh119/ZdGiRezatYvOnTtXSD+EB48ISglCKWzT95CVAJRLs2YETXoX+f2ZSLLMeWM90q4W3fmzpaNrXF04o7nK0P89p971C/rbwPYjRXdIXDy97t2FCIJwR6SmriEtfSsF+ckA+PpG0LTJv+9I2+eu5tkFpBpV8cTH9cEo7CoIwqPNNn0PawDK28Obzi+/wtF35xbdxJOV9zO76Xv6oqBUjlEpbu7i4HLTgJTZZEKWZWTZArKMRqtDqxMfa4RHz+zZs0lISECv19OiRQu2bduGn59fhfXH19eXd955p8KeX3gwVdi7d0pKCpMmTeKnn34iLy+PWrVqsXz5clq2bAkoKWdTp07l888/JyMjg/DwcBYvXkxYWJjaRnp6OqNHj+b7779Ho9HQu3dv5s+fb1eE6+DBg4wcOZI9e/bg7+/P6NGjmThx4j2/XuHBpGZKWYNSl9Cy8r8rMWLmcPbzJOY9DunKsVoHDXJ+0Z2/PRf22NVF8LN4YCKX4PoNCa7bgPqdxN0DQXiQWCxGjh6bjCwb1X0uLuWfVrc54RJr9qeQnmsAoKqPC9++0h4fV73IFBAE4YGgzhSRlaCURqux7peRkEkxNOD8BSVDXOugQTZY30d1OmRZ5vfk39l/ScnUc3WwX77+WuvnfsCJ3Tvt9nUZ9i+adO1xh65GEB4MzZo1Y9++fRXdDUEotwoJSl29epXw8HAiIiL46aef8Pf358SJE3h7F60o9NFHH7FgwQJWrFhB9erVmTJlCpGRkRw5ckQt3jZw4EBSU1OJi4vDaDTy0ksv8c9//pOVK1cCyvLE3bp1o0uXLixZsoRDhw7x8ssv4+XlZTfXVhBuxGJWglG2QVaiGSynT4EEuSalZoKrG7j4uFMvPBD5J1uNBAcMZuUDZueqnXm33bv8Nm8eiaTSoGNnGkZ0vfcXIwjCbbFYCrly5XcKClORZSOSpKdWzdfRaJ2oFFD+D0Hvrj9MUlpRXYCwADf83cWUPUEQHhxqppRFGS/lOTixdu1assnnTG4ECTlPwx7rwZnp5J+KB5SbeEfSjjD297FqW57664ub52VlcvqvPZiNxusCUlA0fVAQBEF48FRIUGrWrFmEhISwfPlydV/16kV3m2VZ5pNPPuHtt99W58T+5z//oVKlSqxdu5b+/ftz9OhRNm7cyJ49e9Tsqk8//ZQePXowe/ZsgoKCiI2NxWAw8MUXX6DX62nQoAHx8fHMnTtXBKWEMrFlSiFbkMGagA5tjbXJk5WC5uERWsKebAXAxe+LVpMxWJSglJuDG15OXhgLlToLDjdZEUMQhPvLuZSVnDgxQ912cgqkatWXy9WmLMvsT84gPcfA+QylZt34LrXxdnWga/1K5WpbEAThXivKLFeCUued3DgdHw8SFJiVm86ubhYcstKovHMtuVfiAdC4uHAp7xKgrLTXPqg9z9a6vkbf7zGfcWxHUf00Z3cPhi74HEmSkCQNGjF1TxAE4YGlqYgnXb9+PS1btqRPnz4EBATQrFkzPv/8c/XxxMRELly4QJcuXdR9np6etGnThl27dgGwa9cuvLy81IAUQJcuXdBoNOzevVs9pmPHjuj1RTU5IiMjSUhI4OrVorodNoWFhWRlZdl9CY82W00p2yDLppa5MjJaADQORQOh4kscG83K93qt8vNnC0rp9CIDQhAeFEZjBtlZfwPg4lITP98nqFVrUrnb3X7yCs/9306G/WcvBrMFjQSvPF6TF9uFEugpFkEQBOHBUlSDUxkvWVCmHtc3B6Oz1pJq1FSmbcqXBFyJx6VNG7z6PI93nz7qTbxaXrX4qONHtAtqd137GRdTAQgMq0OtVm3pPPQVHF1c0Tu74ODkJOpJCYIgPMAq5B389OnTLF68mFdffZU333yTPXv2MGbMGPR6PYMHD+bChQsAVKpkf7e4UqVK6mMXLlwgICDA7nGdToePj4/dMcUzsIq3eeHCBbvpggAzZ85k2rRpd+5ChQde8UwpitV2kQCLXEpQSqdTB1mOJzPZlrSCrMsXAXBwFJlSgvAgOHHiA84mL1O3q1X9J0FBz9+Rto+cV256+LrqCfFxoWv9Suh1FXKfSBAEodzsxkuALEEEO2ku5bCLKAC0Oq06TvIfNxaXZs0AMJz6CwC95sYLOxRkZwPQceBLBNdreFeuQRAEQagYFRKUslgstGzZkg8++ABQirT9/fffLFmyhMGDB1dElwCYPHkyr776qrqdlZVFSEhIhfVHqHgWc7FC55qioJQGCYs10dAuZdy2xLHeAYM5G+cCLbrfEviTBPUQZw+Pe9BzQRDK60pa0VQRvd4Pb++25W5zzi8JfP1nMrmFynvF8y2CmdyjXrnbFQRBqEhFQSklU8qFfDqxGzRgoTsAGlfPYhnlRQEoWw1OR619JnlhXh6rpk4k4+IFjIXKNGdndzGGEgRBeNhUSFAqMDCQ+vXr2+2rV68e3377LQCVK1cG4OLFiwQGBqrHXLx4kaZNm6rHXLp0ya4Nk8lEenq6en7lypW5ePGi3TG2bdsxxTk6OuLoKKZWCUVku0wp5VsdJnSkYy5p+p6h2PQ9ixEngxK40jk60rhzFN6BVfALqXbvLkAQhFtSWHiRs8lfYDbnUVCQDEDbNj/j4lLzjqyEt2JnElkFJnW7eTXvUo4WBEG4/+VmFmLIs66mZ82U0knK+5xF1lJgrguAxrMyskEJQEkODur5tsxyB23RPoALp45z+WySuu3m7YNHgKi5JwiC8LCpkKBUeHg4CQkJdvuOHz9OtWrKh/Xq1atTuXJlNm3apAahsrKy2L17N6+88goA7dq1IyMjg3379tGiRQsAfvvtNywWC23atFGPeeuttzAajThY//jFxcVRp06d66buCUJJigp3WgAJF/IZzXKcnQqRsxcCoHXQkf/3YXJ37KDg2DHAOn3PbEBnVj7Eunp6ETF4eIVcgyAIZZecHMPZs/9WtyVJj6NjYLkCUvkGM//edpq0XIMakFrzr/ZU8nAiyEvUjxIE4cF1YFMy2785oW7banBqrEvDyOgxyX6AjEYrFWVK6YsFpW6YKZULQKUatXhq3Bu4envjIOpyCoIgPHQqpIDF+PHj+eOPP/jggw84efIkK1eu5LPPPmPkyJEASJLEuHHjmDFjBuvXr+fQoUO8+OKLBAUF8cwzzwBKZlVUVBTDhw/nzz//ZMeOHYwaNYr+/fsTFBQEwIABA9Dr9QwdOpTDhw+zatUq5s+fbzdFTxBKIssyOVcLMBYogysZC7Ik4Uc6zigFyy3WmK7GM5CUMWO4PG8ehdZg6//ObWDX+V1oLcoHWVHcXBDubzk5CaSmruFqhrJmuZ/vE1SvPo4mjT9Dp3MtV9vrD6QwJ+44MTuTAPBx1dM0xEsEpARBeOBdTFRWItZoJFw99TibrNtqUEqnrlys1WmKZUpdP33PtjCMjS0o5erljVelyiIgJdz3hgwZYl0RUkKv11OrVi2mT5+OyWS6+cml2Lx5M5IkkZGRcWc6WgaJiYkMGDCAoKAgnJycCA4OplevXhyz3oC32bBhA506dcLd3R0XFxdatWpFTEyM3TFJSUlIkkR8fHyZn//dd9+lbt26uLq64u3tTZcuXdTFzGxtDh06lOrVq+Ps7EzNmjWZOnUqBut7TGliY2Np0qQJLi4uBAYG8vLLL5OWllbqOVu3bqVnz54EBQUhSRJr164t8bijR4/y9NNP4+npiaurK61ateLs2bPq4yNGjKBmzZo4Ozvj7+9f4mu6Z88eOnfujJeXF97e3kRGRnLgwIESn+/kyZO4u7vj5eV10+su6zVUhAoJSrVq1Yo1a9bw9ddf07BhQ9577z0++eQTBg4cqB4zceJERo8ezT//+U9atWpFTk4OGzduxMmpqEh0bGwsdevWpXPnzvTo0YPHHnuMzz77TH3c09OTX375hcTERFq0aMGECRN45513+Oc//3lPr1d48Gz/5gQrJu8k9ZQyuEKWQZLUQZbRUhUDyhRQjYMOU3o6AB49uvPzY6584X+U87nn0ZmVXzEHMS1UEO5bZnM+e/f14cjR18jK2g9AUFBfalQfja9vh9tuNzPPyLf7zvHLYWXaeJMQL/71eE0WD2x+R6YCCoIgVDRbRvljfcMYMusxHMy5aCUd2qJQFLZKCHaZUg4OrD25lmfWPsN/jvwHKCp0fvlMIl9NHs+2lSsAcHQp340BQbiXoqKiSE1N5cSJE0yYMIF3332Xjz/+uKK7pSpL0MZoNNK1a1cyMzP57rvvSEhIYNWqVTRq1MguMPbpp5/Sq1cvwsPD2b17NwcPHqR///5ER0fz2muvlauftWvXZuHChRw6dIjt27cTGhpKt27duHz5MgDHjh3DYrGwdOlSDh8+zLx581iyZAlvvvlmqe3u2LGDF198UU1a+eabb/jzzz8ZPrz0GS25ubk0adKERYsW3fCYU6dO8dhjj1G3bl02b97MwYMHmTJlil38okWLFixfvpyjR4/y888/I8sy3bp1w2xWEiFycnKIioqiatWq7N69m+3bt+Pu7k5kZCRG6/unjdFo5IUXXqBDh7KNVctyDRWlwtZPfeqpp3jqqadu+LgkSUyfPp3p06ff8BgfHx9WrlxZ6vM0btyYbdu23XY/hUfTxURlZSyNTsLN2wnz+Vxqubcjh0QAZLTI1kGWVqdRB1kBk94gNm4bBWaJkU1H4p1k4tzejSJTShDuY4WFFzCbc5EkB7y92+LkGIiPT8dyt/vhxmN8/WfR3bGejQMZ1qFGudsVBEG4X9gWhNFolUC7RZap59mOZPkMSEqmlGyNwWskwPrBS9I7sPLoSk5lnlLbCvUMBSBh13Yuni6aEugranEKDxBHR0e1dvErr7zCmjVrWL9+PdHR0YwdO5bvv/+ewsJCOnXqxIIFCwgLCwPgzJkzjBo1iu3bt2MwGAgNDeXjjz+mfv36REREAKjlZwYPHkxMTAzZ2dlER0ezdu1aPDw8mDhxIuvWraNp06Z88sknAISGhjJ06FBOnDjB2rVree6554iJiWH79u1MnjyZvXv34ufnx7PPPsvMmTNxdXXl8OHDnDp1ik2bNqnldapVq0Z4eLh6ncnJyUyYMIFx48api5cBTJgwAb1ez5gxY+jTp49aVudWDRgwwG577ty5LFu2jIMHD9K5c2eioqKIiopSH69RowYJCQksXryY2bNn37DdXbt2ERoaypgxYwClbNCIESOYNWtWqf3p3r073bt3L/WYt956ix49evDRRx+p+2rWrGl3TPHkmNDQUGbMmEGTJk1ISkqiZs2aHDt2jPT0dKZPn64uuDZ16lQaN27MmTNnqFWrlnr+22+/rSbo7Ny5s9S+lfUaKopYf1oQSmArcN72aXfaPiVj1Fjwcw5Bi5kskz/nDXWwlotCQlYHWTjoKDAX0PqwNwUf/8z5VXGAUuhcEIT7y/nzq9mz51kOHBwBgLNzMM2axlCv3ky02vL/zp66lANAk2BPejcP5plmVcrdpiAIwv3ENl6yZGWSs207FoMBF507EtZxkU6P5KG8n+bt3K6eJznoyTflA/Bmmzf531P/Y0Bd5UOobdpeg06d+cfMT2jd6/l7dTnCfUqWZczmvAr5km13oW+Ts7MzBoOBIUOGsHfvXtavX8+uXbuQZZkePXqo2S8jR46ksLCQrVu3cujQIWbNmoWbmxshISHqYmAJCQmkpqYyf/58AF599VV27NjB+vXriYuLY9u2bfz111/X9WH27Nk0adKE/fv3M2XKFE6dOkVUVBS9e/fm4MGDrFq1iu3btzNq1CgA/P390Wg0rF69Ws3gudbq1asxGo0lZkSNGDECNzc3vv7663K9djYGg4HPPvsMT09PmjRpcsPjMjMz8fHxKbWtdu3akZyczI8//ogsy1y8eJHVq1fTo0ePcvXRYrHwww8/ULt2bSIjIwkICKBNmzalTpHLzc1l+fLlVK9eXQ1A1alTB19fX5YtW4bBYCA/P59ly5ZRr149QkND1XN/++03vvnmm/sy6+l2VFimlCDcz8xmGYs5nd+WzVV2ODogSxKy2YmvrixGRgtY7w5S9GZt1Cr7ap53xVwsxTKodt171ndBEMomMelTCgrOqdtubvXK3WZyeh6Tvj1IRp6RU5eVoNSbPerRpoZvudsWBEG439gypc58+iHns46R6e1OgAQayczhvK5c0LQkx6DU08lc+RW+AFotGr0DeaY8ABr7N6aeb9H7r7FACVb5VAmhUo1aCILFks/mLY0q5Lkf73QIrdblls+TZZlNmzbx888/0717d9auXcuOHTto3749oJShCQkJYe3atfTp04ezZ8/Su3dvGjVSrrNGjaLMalugJSAgQK0dlJ2dzYoVK1i5ciWdO3cGYPny5Wpt5eKeeOIJJkyYoG4PGzaMgQMHMm7cOADCwsJYsGABnTp1YvHixVSpUoUFCxYwceJEpk2bRsuWLYmIiGDgwIFqv44fP46npyeBgYHXPZ9er6dGjRocP378ll+34jZs2ED//v3Jy8sjMDCQuLg4/Pz8Sjz25MmTfPrpp6VmSYGy4FpsbCz9+vWjoKAAk8lEz549yx3cuXTpEjk5OXz44YfMmDGDWbNmsXHjRp577jl+//13OnXqpB77f//3f0ycOJHc3Fzq1KlDXFwcer0yfdnd3Z3NmzfzzDPP8N577wHKv8/PP/+MTqeEbtLS0hgyZAhfffUVHh4e5er3/UJkSglCCWSLjGzJBkBrtuCdk4/eLIPZBRktGsmMT5ArddpWxs296NfIoLEuhWytJfXCe7OJXvol7Xq/cO8vQhCEEqWcX8Wfe3pRUJACQIP682jaJIb69UpP3S6L7w+eZ+epNI6kZlFosqDXaqgZ4FbudgVBEO5HFouMbMknwSOdv0MCuOrmjIQGjUXL5qx/cSyjNYV5SlBKb8zBrXNnKr31JpJeT4GpAABnnbLog7GwgEtJp8lOuwKAo8utBwIEoaJt2LABNzc3nJyc6N69O/369WPIkCHodDq7qWy+vr7UqVOHo0ePAjBmzBhmzJhBeHg4U6dO5eDBg6U+z+nTpzEajbRu3Vrd5+npSZ06da47tmXLlnbbBw4cICYmBjc3N/UrMjISi8VCYqJSqmTkyJFcuHCB2NhY2rVrxzfffEODBg2Ii4sr82thC7SUJjY21q4fxcvuREREEB8fz86dO4mKiqJv375cunTpujZSUlKIioqiT58+drWhircbHR0NwJEjRxg7dizvvPMO+/btY+PGjSQlJamPb9u2ze682NjYMl2rxaJ8BuzVqxfjx4+nadOmvPHGGzz11FMsWbLE7tiBAweyf/9+tmzZQu3atenbty8FBcr7YX5+PkOHDiU8PJw//viDHTt20LBhQ5588kny85WA/fDhwxkwYAAdO5ZcauJ2r6EiiUwpQSiBcudPeXNxNRjpkGOmwMkFyZrB6+mUwQvvdAVQi5wD5GNEklFX3fMODMLZ/eGIYAvCwyIpaZEakHLUV6JSpaeQpPLdo9l35ipn0nL547TyftCraRC9mwcT6uuKn5uYvisIwsPJYpaR5QKQQJJlarRqh0duZSTrzTkJM626BJE7/wPc8lMJWVT0gdY2fc9Z64wsy3w5aQxXU8+rj+udxAqlgkKjcebxTocq7LlvRUREBIsXL0av1xMUFIROp2P9+vU3PW/YsGFERkbyww8/8MsvvzBz5kzmzJnD6NGjb7frKldX+8UCcnJyGDFihFpXqbiqVauq37u7u9OzZ0969uzJjBkziIyMZMaMGXTt2pWwsDAyMzM5f/78ddlZBoOBU6dOERkZedO+Pf3003bBuipVikoduLq6UqtWLWrVqkXbtm0JCwtj2bJlTJ48WT3m/PnzRERE0L59e7sFzwC71f5sGUUzZ84kPDyc119/HVDqT7u6utKhQwdmzJhBy5Yt7c6rVKnSTa8BwM/PD51OR/369e3216tXj+3bt9vt8/T0xNPTk7CwMNq2bYu3tzdr1qzhhRdeYOXKlSQlJbFr1y40GuV9dOXKlXh7e7Nu3Tr69+/Pb7/9xvr169WsMFmWsVgs6HQ6PvvsM1544YXbuoaKJIJSglACi0XGVslc6+hE2JY4Ds/5HY1y804p1mllW97YpJX4x0+D0JqLHhS1pATh/mCxGDmf+g0GQxqFhcpqeA3qz8Pbu225A1JJV3J5fslOipedaBnqQ8fa/uVqVxAE4X6n1JRS3vx0sswzr79NasxBNCeVx7UaM03DfTj59l9IDg7kGnOZsmMKl/IuYbQoZQ6cdc4YCwvUgJSLpxdu3r5UbdS0Aq5IuB9JknRbU+gqgi2QUly9evUwmUzs3r1bnb6XlpZGQkKCXRAjJCSE6OhooqOjmTx5Mp9//jmjR49WM46K13eqUaMGDg4O7NmzRw0kZWZmcvz48Rtm0Ng0b96cI0eOXNfP0kiSRN26ddWC2s8//zyTJk1izpw5zJkzx+7YJUuWkJeXx4svvnjTdt3d3XF3dy9THywWC4WFhep2SkoKERER6op2tiCOTUnXl5eXp06Ds9FqtYAS3HF2dr6l18VGr9fTqlUrEhIS7PYfP35cLRZfElmWkWVZva68vDw0Go3dKs22bVs21q5du+x+FtatW8esWbPYuXMnVapUue1rqEgiKCUIJbCYLdgypWxvChbZgoTyvUZT9OnTtvKeSSNzKf8STta7g0gSOoebp60KgnD3XbmyiYSEKeq2RuNIQEAPNJry/Rk8eC6DHw9dQJbB09mBxsGe+LjqebLR9TUWBEEQHjYWS1FmuSQD+Rk4Z62jOueIBzSSBdmsPI5Wy54Le4g7U5Qt5eXohaveFUOWUoMPSSJ66Zd2H8gE4UEXFhZGr169GD58OEuXLsXd3Z033niDKlWq0KtXLwDGjRtH9+7dqV27NlevXuX333+nXj2l1lq1atWQJIkNGzbQo0cPnJ2dcXd3Z/Dgwbz++uv4+PgQEBDA1KlTrwtolGTSpEm0bduWUaNGMWzYMFxdXTly5AhxcXEsXLiQ+Ph4pk6dyqBBg6hfvz56vZ4tW7bwxRdfMGnSJEDJqProo4947bXXcHJyYtCgQTg4OLBu3TrefPNNZsyYQcOGDe2e99qADUCDBg1wcHCw25ebm8v777/P008/TWBgIFeuXGHRokWkpKTQp08fQAlIPf7441SrVo3Zs2dz+fJl9Xzb6ocl6dmzJ8OHD2fx4sVERkaSmprKuHHjaN26dYn1uGxycnI4efKkup2YmEh8fDw+Pj5qUPD111+nX79+dOzYkYiICDZu3Mj333/P5s2bAWXK5apVq+jWrRv+/v6cO3eODz/8EGdnZ7XQeteuXXn99dcZOXIko0ePxmKx8OGHH6LT6dRVGG0/FzZ79+5Fo9Fc93rfzjVUFBGUEoQSyMWm76HVcuTIEZINl7DFoiTrN4UnTpD7558AGLXwXGIDQvK8yOQcDnpHMagShAqm3IEykJunLDvu4lITb6/W+Ph0KHdA6kxaLr0W7VAzpDqE+bFwQPPydlkQBOGBYTHLIFuDUgDb5uCVvoB6BFuDUjJYlDv6kkZDgVmpm1LLqxajm42mrk9dHDQO5FrrqTg4Oomxk/BQWr58OWPHjuWpp57CYDDQsWNHfvzxRzUgYzabGTlyJOfOncPDw4OoqCjmzZsHKFPapk2bxhtvvMFLL73Eiy++SExMDHPnziU6OpqnnnoKDw8PJk6cSHJyMk5OTqX2pXHjxmzZsoW33nqLDh06IMsyNWvWpF+/fgAEBwcTGhrKtGnTSEpKQpIkdXv8+PFqO+PHj6dGjRrMmTOH+fPnk5urrJz59ddf079//+uet6R9ycnJBAcH2+3TarUcO3aMFStWcOXKFXx9fWnVqhXbtm2jQYMGAMTFxXHy5ElOnjx53fmlrZg4ZMgQsrOzWbhwIRMmTMDLy4snnniCWbNKryu6d+9eNSgEysqHAIMHDyYmJgaAZ599liVLljBz5kzGjBlDnTp1+Pbbb3nssccAcHJyYtu2bXzyySdcvXqVSpUq0bFjR3bu3ElAQAAAdevW5fvvv2fatGm0a9cOjUZDs2bN2LhxY4lF5W9FWa6hokhyede5fIhlZWXh6elJZmbmQ1PZXiibL17fRk7a3xhzf0AOqkGOp7LqRcOCTC5m9KSy52WefvVxTkY8AdZUynPeDhwsFmX2qxrK4I8XVkj/BUEAi6WQP/f0Ijf3hLqvWtUR1Ko18Y60/+uRiwz7z17cHXU0q+bN+C5hNKvqfUfaFu5vYnxwPfGaPJr+O+NPLiedwpAdi5NZ5p/9AnE4/A0Jxqb8mjYVZ1eJgaNCOd29Bxp3d47/dwpvbn+T9kHtWdp1qdrOpaTTfDlpDK5e3kQv/bICr0ioaAUFBSQmJlK9evWbBlcEe7m5uVSpUoU5c+YwdOjQe/786enpdO7cGQ8PD3766SdcxGIFj4TSfmfLOjYQmVKCUAKlppQSbDI56AklmU4cIEuuzkVAowHTxYtgsSA5OHC1hh9xwVepdEWphdBl6L8IqlP+5eUFQbh9ubkn7QJSGo0jPj7h5W73yz/O8PuxS6RmKnf2W1f3YdmQVuVuVxAE4UEjF5u+V+Dtz9HDh2gMHEOpZ6LV68FclCllsigr8TlolOyQlGNHOPTbL+RlXlX2O4oghCCU1f79+zl27BitW7cmMzOT6dOnA6hTAu81Hx8ffv31VxYtWsSuXbvo3LlzhfRDePCIoJQglMBu+p4k8Rh7qM4ZjqOsXqBxcEA2KYMsXWAgf7wTxV9bY+l+BZxc3Qhr076Cei4IwtWrf3I68RMMhjQA3N0b0LxZLBqNHo2mfIsPGEwW3l1/GLOlKMm4VoBbudoUBEF4UBVfrdjo6oYWZWxkkZWPGJJGKqoppdOpxc1tQamtK2M4n3BEbc/Nx/ce9VwQHg6zZ88mISEBvV5PixYt2LZtG35+fhXWH19fX955550Ke37hwSSCUoJQAotZRrYOsmRJwgFlEJVvbgmAxqeaXY0Eo8Worrqn1Yvi5oJQkZLPxZCRsVvddndrgE5XtpVdbqTQZOa3o5dIycjHbJFx0Eq8/2wjnBy0dK4bUN4uC4IgPJAsZgtFS49KaKwr8TUwVec8oNFIduMlg1lZsdgWlCrIzgKgSbcn8a4cSM0WbRAEoWyaNWvGvn37KrobglBuIiglCCWwFFviGKlokFUoK0t6Sg46ZLN1SVKtFpPFhNaiBKV016wgIQjCvZGWtpXc3JNkZyt33UNDR+Lp2Rxvr/J/yIn94yzTNxTdzQ/ycqZvy5BytysIgvCgMRaaObApmYIcI/k5RvUmnjJeUr63WD9iaLSS3ep7aqaUVhkrGQryAWgU0ZVKNR6sJcwFQRCEO0MEpQShBMVrSil3/qxZU7IWsN75Myt1ESTrIKsoKCUypQThXsvPTyH+wMuowWQgwD8Kd/f65WvXYCYpLZc9SekA1PR3pZqvK31bBt/kTEEQhIfT6f2X2L3+dLE91tX37IJSynhJuiZT6trpe4Z8JSjl4OR8L7ouCIIg3IdEUEoQrFJPZvBrzBEMBWbr59qi6XtFgywNoASl7O78mcX0PUGoKAZDGllZ+wEZnc4TP9/HcXGtiZtb+RYbsFhkouZv5UxanrpvRKeaIkNKEIRHWmG+EmTyruxC9Sb+5B5P5MBf14yXLNabeFoJ2VrovHimlD4xm62JyzEWKAtG6J1FUEoQBOFRJYJSgmCVeOAKWVcK1G0HrQkToNe6X3fnTxlkKZlSyVoZlw2nqJ+mLHOp1Ynpe4JwryQlLebU6dnqtodHYxo0mHtH2r6cU6gGpPzdHfF3c+Tx2v53pG1BEIQHlWxd6MEvxJ12z9bk0L9/BcDVwVctd6COlzSSuvqerJHINeaiNUvofz7OHnOCcoxWh6NYOl4QBOGRJYJSgmBlsQ6y6oUH0qRzCAcWxbH/JCBp0GLBImvAzQnyQCoWlNqvKcQx0YgjSoaUWDlGEO6dtPRt1u8kNBpHKgX0KHebV3IK6bNkFylXlWklQZ5O7JwsljUWBEGAovGSRqNkiFus4yG9zrWo3IH1Bp1GK2E2KdlRSTln+fLIlziZNEhmpY0WTz1Llbr1cXB0uqfXIAiCINw/RFBKEKxsd/5cPPT4BrkhYUaDBqMks/3qaFIKm6nHajQS57NSkAEzyqBsT910ejd5gcciB1VE9wXhkXLmzFIuXvqB3NyTADRv/jXeXq3uSNt/nE4j8Uquut2+VsUtrSwIgnC/sY2XJI1122TNhAIMZjdOGB4jM7QaZCg1pbILMgGwWI93RQlA6fSOPD5o6L3suiAIgnAfEkEpQbCy3fmTJMhOu0JBYQGSpEGWZbuAlCRBUJgXhuR8NJKk7ABeHvg2nWtFotVoK6T/gvCokGULp05/giwrS4trNHpcXWqUu92/UzJZF5/C4fPKEuVd6lXivWcaUNlD3MEXBEGwuVGmlCzJ7M0YTrqxJhxQjtU5aNRMKYskse8f+7iaksJXm0ajc3S8950XBEEQ7juaiu6AINwvbIOsUzti+exfQziSfLrYunuKQWO8GDavI/XaB2E2GTFbB2QAXWqKgJQg3E0GwxVSzq/ibPIX1oCURJPG/6ZN65/Q68s/bfbttX/z+bZEdp5KA6BOZTcCPZ2RJOkmZwqCIDw6bJlSBUcOc6LT41xdsxZQlofJN3sDEFBJpmp9H5p1q4bZFrTSSOi1emSjsq0TC8MID5khQ4YgSRKSJKHX66lVqxbTp0/HZDKVq93NmzcjSRIZGRl3pqNlkJiYyIABAwgKCsLJyYng4GB69erFsWPH7I7bsGEDnTp1wt3dHRcXF1q1akVMTIzdMUlJSUiSRHx8fJmf/91336Vu3bq4urri7e1Nly5d2L17t12bQ4cOpXr16jg7O1OzZk2mTp2KwWC4aduxsbE0adIEFxcXAgMDefnll0lLSyv1nMWLF9O4cWM8PDzw8PCgXbt2/PTTT+rj6enpjB49mjp16uDs7EzVqlUZM2YMmZmZ6jExMTHqz8e1X5cuXVKPKyws5K233qJatWo4OjoSGhrKF198YdefTz75RH2ukJAQxo8fT0FBAaX57rvv6NatG76+vrf873G3iUwpQbCyDbIyTh0CLWgsMo7I5BY7xtldj4OT8mtjNhuRNUpcV6vTodGKgJQg3E3Hj7/HxUsb1G1HfQB+fhHlbtdskTGaLZy7qhQ1798qhCpezgxoU7XcbQuCIDxsbDfxck8e4IDOTLaTElySKSpwHtFdg1/bpgCcPq1kSsnWG3kmQyEADnqRKSU8fKKioli+fDmFhYX8+OOPjBw5EgcHByZPnlzRXQPAYDCgv0lA2Gg00rVrV+rUqcN3331HYGAg586d46effrILjH366aeMGzeOSZMmsXjxYvR6PevWrSM6Opq///6b2bNn3/hJbqJ27dosXLiQGjVqkJ+fz7x58+jWrRsnT57E39+fY8eOYbFYWLp0KbVq1eLvv/9m+PDh5Obmlvq8O3bs4MUXX2TevHn07NmTlJQUoqOjGT58ON99990NzwsODubDDz8kLCwMWZZZsWIFvXr1Yv/+/TRo0IDz589z/vx5Zs+eTf369Tlz5gzR0dGcP3+e1atXA9CvXz+ioqLs2h0yZAgFBQUEBASo+/r27cvFixdZtmwZtWrVIjU1FYulKE1i5cqVvPHGG3zxxRe0b9+e48ePqwHRuXNvvNhPbm4ujz32GH379mX48OE3/Te4l0RQShCsZGvRTVlWaiOEewQQ5FuFFXLRMRpd0a/M+aRk8ispdwRFCrog3D0WiwGTKYecXGWlJi/PVjjofalc6elyt302LY+nF20nI8+o7ns9sg6+buJ3WhAEoSS2m3hXOUeWn2fRfklGlq2r7ul0yLKMbDBgLlAWjUh3dmfZ2OEYrXfzRaaU8DBydHSkcuXKALzyyiusWbOG9evXEx0dzdixY/n+++8pLCykU6dOLFiwgLCwMADOnDnDqFGj2L59OwaDgdDQUD7++GPq169PRIRyA87bW/ncMXjwYGJiYsjOziY6Opq1a9fi4eHBxIkTWbduHU2bNuWTTz4BIDQ0lKFDh3LixAnWrl3Lc889R0xMDNu3b2fy5Mns3bsXPz8/nn32WWbOnImrqyuHDx/m1KlTbNq0iWrVqgFQrVo1wsPD1etMTk5mwoQJjBs3jg8++EDdP2HCBPR6PWPGjKFPnz60adPmtl7HAQMG2G3PnTuXZcuWcfDgQTp37kxUVJRdgKdGjRokJCSwePHiUoNSu3btIjQ0lDFjxgBQvXp1RowYwaxZs0rtT8+ePe2233//fRYvXswff/xBgwYNaNiwId9++636eM2aNXn//ff5xz/+gclkQqfT4ezsjLOzs3rM5cuX+e2331i2bJm6b+PGjWzZsoXTp0/j4+MDKP+Gxe3cuZPw8HD1NQoNDeWFF16wyyQryaBBSt3jpKSkUo+rCGL6niBY2e78YV3O2P9frxD49jvIFE3d0TgoQam0c2c5cfgE53w9AHDx8LqXXRWER4bBcIXtO8LZtr0VubknAKhTZxqNGy0iICCy3O3/cTrNLiDVvKoXPq7ig5IgCMKN2IJSFlmZklS9XgMGh5sZIC1GtmZKaTQSib17k9CkKaa3PgQgw9mdjAup5GZcBcA3WGSjCmUjyzK5ZnOFfMmyfPMOlsLZ2RmDwcCQIUPYu3cv69evZ9euXciyTI8ePTAalTHIyJEjKSwsZOvWrRw6dIhZs2bh5uZGSEiIGuxISEggNTWV+fPnA/Dqq6+yY8cO1q9fT1xcHNu2beOvv/66rg+zZ8+mSZMm7N+/nylTpnDq1CmioqLo3bs3Bw8eZNWqVWzfvp1Ro0YB4O/vj0ajYfXq1ZjN5hKva/Xq1RiNRl577bXrHhsxYgRubm58/fXX5XrtbAwGA5999hmenp40adLkhsdlZmaqgZwbadeuHcnJyfz444/IsszFixdZvXo1PXqUffVms9nMf//7X3Jzc2nXrl2p/fHw8ECnKzkP6D//+Q8uLi48//zz6r7169fTsmVLPvroI6pUqULt2rV57bXXyM/PV49p3749+/bt488//wTg9OnT/Pjjj7d0DfcbkSklCFa2QZbtT8/h04n8/tffWKx7NJiQtMqvTH5ONgAOJjNuGgNR/xp3r7srCI+ErKyDGI3p6ra7WwNcXKqXu9118Sl8/edZUjKUP/K9mwczrVcDXPVaUUNKEAShFEWzSJTxUVitIPxOLgEJLNZMKRkXCo8ctTvP4KAFC0S+Mg6/4Kr4h5Z/gQrh0ZBnsVBz66EKee5THRvhehslOmRZZtOmTfz88890796dtWvXsmPHDtq3bw8odY1CQkJYu3Ytffr04ezZs/Tu3ZtGjRoBSuaPjS3QEhAQgJeXFwDZ2dmsWLGClStX0rlzZwCWL19OUFDQdX154oknmDBhgro9bNgwBg4cyLhx4wAICwtjwYIFdOrUicWLF1OlShUWLFjAxIkTmTZtGi1btiQiIoKBAweq/Tp+/Dienp4EBgZe93x6vZ4aNWpw/PjxW37dituwYQP9+/cnLy+PwMBA4uLi8PMreUXkkydP8umnn950ymB4eDixsbH069ePgoICTCYTPXv2ZNGiRTftz6FDh2jXrh0FBQW4ubmxZs0a6tevX+KxV65c4b333uOf//znDdtbtmwZAwYMsMueOn36NNu3b8fJyYk1a9Zw5coV/vWvf5GWlsby5csBJYvsypUrPPbYY8iyjMlkIjo6mjfffPOm13C/EplSgmBVPFNKBvYdPoJzyu80lY8AoJFMoHFQjrUWLHQ0mvGVCgiqXa8CeiwID6+0tG3Ex7/EyVMfAeDn+wRPRJygVat1aDTlz2SaG3ecP06nk5yuBKUaVfHAzVEnAlKCIAg3YSt3gKxEp7QaZbtQ1mO23u+WnJXFJyRHRwo3fsGgCVqMWuVjR2BYHSrXqo32BtkDgvAg27BhA25ubjg5OdG9e3f69evHkCFD0Ol0dlPZfH19qVOnDkePKsHbMWPGMGPGDMLDw5k6dSoHDx4s9XlOnz6N0WikdevW6j5PT0/q1Klz3bEtW7a02z5w4AAxMTG4ubmpX5GRkVgsFhITEwElc+vChQvExsbSrl07vvnmGxo0aEBcXFyZX4ub1a4CJThXvB/btm1TH4uIiCA+Pp6dO3cSFRVF37597QqC26SkpBAVFUWfPn3saiUVbzc6OhqAI0eOMHbsWN555x327dvHxo0bSUpKUh/ftm2b3XmxsbFqe3Xq1CE+Pp7du3fzyiuvMHjwYI4cOXJdf7KysnjyySepX78+7777bonXvWvXLo4ePcrQoUPt9lssFiRJIjY2ltatW9OjRw/mzp3LihUr1GypzZs388EHH/B///d//PXXX3z33Xf88MMPvPfeezd9Te9X4q+BIFhZbDWlkEGSCOAKL7CeqwSxkpfRYAYHJZJttqbaamQZtCK2Kwh3WmLSAjIzi1LQXd3qIEnl+12zWGSOpGZRaDJzIVOpaTLjmYaE+LjQvmb5V+8TBEF4FFhk23hJCUolX02nPlAoO2C7361BuXknOThgcnKg0EFCa1KC/non5+vaFITSuGg0nOrYqMKe+1ZERESoRb+DgoLQ6XSsX7/+pucNGzaMyMhIfvjhB3755RdmzpzJnDlzGD169O12XeXq6mq3nZOTw4gRI9S6SsVVrVo0rdbd3Z2ePXvSs2dPZsyYQWRkJDNmzKBr166EhYWRmZnJ+fPnr8vOMhgMnDp1isjIm5dZePrpp+2CdVWqVLHrd61atahVqxZt27YlLCyMZcuW2RWNP3/+PBEREbRv357PPvvMru3iq8t5eCglV2bOnEl4eDivv/46AI0bN8bV1ZUOHTowY8YMWrZsaXdepUqV1O9tKyoCtGjRgj179jB//nyWLl2qHpOdnU1UVBTu7u6sWbMGBweHEq/73//+N02bNqVFixZ2+wMDA6lSpQqenkX1+urVq4csy5w7d46wsDCmTJnCoEGDGDZsGACNGjUiNzeXf/7zn7z11lulvqb3KxGUEgSroinjMiDhZl13zyS7A6B1dAQXH2STCWO2Mn1PI8twi3+sBEG4sczMvygoOE9e3hkAalQfj6trGL6+Hcvd9uItp/j45wS7fc+3CMbJQaycKQiCUFZFmVLK/1OvKjWiTFJRVoRkUerQSDodyVv/oFO8H9aEKvTOIigl3BpJkm5rCl1FsAVSiqtXrx4mk4ndu3er0/fS0tJISEiwm/4VEhJCdHQ00dHRTJ48mc8//5zRo0erGUfF6zvVqFEDBwcH9uzZowaSMjMzOX78OB07lj5mat68OUeOHLmun6WRJIm6deuyc+dOAJ5//nkmTZrEnDlzmDNnjt2xS5YsIS8vjxdffPGm7bq7u+Pu7l6mPlgsFgoLC9XtlJQUIiIiaNGiBcuXL0dzzWeykq4vLy/vuhpPWuvPlizLODs7l/l1ubY/WVlZREZG4ujoyPr163FycirxvJycHP73v/8xc+bM6x4LDw/nm2++IScnBzc3N0CZKqnRaAgODlav4dprLX4Nt/Ka3i9EUEoQrNRMKQmQQGu9A2iwKBFyjaML5sxMTj/Vk3OGPAitbA1KPRh/JAXhfpedfZS9+/rY7QsMeh4nx8p3pP2D5zIA8HPT4+aoo0u9SiIgJQiCcIss6l08ZZyksU3jsxRlY0i2MZRex+lvN1Id5TFHF1ccbvBBTRAeVmFhYfTq1Yvhw4ezdOlS3N3deeONN6hSpQq9evUCYNy4cXTv3p3atWtz9epVfv/9d+rVU8qDVKtWDUmS2LBhAz169MDZ2Rl3d3cGDx7M66+/jo+PDwEBAUydOhWNRnPTUgSTJk2ibdu2jBo1imHDhuHq6sqRI0eIi4tj4cKFxMfHM3XqVAYNGkT9+vXR6/Vs2bKFL774gkmTJgFKRtVHH33Ea6+9hpOTE4MGDcLBwYF169bx5ptvMmPGDBo2bGj3vAkJCdf1pUGDBtdlE+Xm5vL+++/z9NNPExgYyJUrV1i0aBEpKSn06aOME1NSUnj88cepVq0as2fP5vLly+r5ttUPS9KzZ0+GDx/O4sWLiYyMJDU1lXHjxtG6desS63HZTJ48me7du1O1alWys7NZuXIlmzdv5ueffwaUgFS3bt3Iy8vjq6++Iisri6ysLEApHK8tFlRdtWoVJpOJf/zjH9c9z4ABA3jvvfd46aWXmDZtGleuXOH111/n5ZdfVmtP9ezZk7lz59KsWTPatGnDyZMnmTJlCj179rR7nmulp6dz9uxZzp8/DxT9e1SuXLnU1+xeEEEpQbAqWl1DBjRosFBocSHLHACARqeh8ORJTJcvY/Fys53E+Qb+FdJfQXiYWCxGsnMOA6DTeeHmVgcvzxblDkjJssyHG49xOCVLDUq9/2wjIhtU7B9fQRCEB5VcvNwBIGHN3pCLgk2SWZm+Z7FmJFgkmZSWTrzx7Aw04mae8Ahavnw5Y8eO5amnnsJgMNCxY0d+/PFHNSBjNpsZOXIk586dw8PDg6ioKObNmwco06+mTZvGG2+8wUsvvcSLL75ITEwMc+fOJTo6mqeeegoPDw8mTpxIcnLyDTN0bBo3bsyWLVt466236NChA7IsU7NmTfr16wdAcHAwoaGhTJs2jaSkJCRJUrfHjx+vtjN+/Hhq1KjBnDlzmD9/Prm5yiyTr7/+mv79+1/3vCXtS05OVjOAbLRaLceOHWPFihVcuXIFX19fWrVqxbZt22jQoAEAcXFxnDx5kpMnT153fmkrJg4ZMoTs7GwWLlzIhAkT8PLy4oknnmDWrFmlvmaXLl3ixRdfJDU1FU9PTxo3bszPP/9M165dAfjrr7/YvXs3cH2GVmJiIqGhoer2smXLeO6559Si9cW5ubkRFxfH6NGjadmyJb6+vvTt25cZM2aox7z99ttIksTbb79NSkoK/v7+9OzZk/fff7/Ua1i/fj0vvfSSum3795g6deoNa1/dK5Jc3nUuH2JZWVl4enqqyzkKD7e18/aTknAV05V5GPRaQmr6kXm5NyYcAfAMcObZJ7WcHTyYv6t6cNbbn3P+eej7tmJWx9LfyARBuLFTp+eSlFS06knlys/SoH7pq6eUVeKVXCJmb7bbt2lCJ2r6u92R9oVHkxgfXE+8Jo+OTTFHOPbHBTSXFpHnUEjlBoF0yD/O2cI2HMiLAgleHuFDUv8XSPbTc6hKCEathcP/8OXLHl9WdPeF+1xBQQGJiYlUr179psEVwV5ubi5VqlRhzpw51xXQvhfS09Pp3LkzHh4e/PTTT7i4uNzzPgj3Xmm/s2UdG4hMKUGwki328VmLyQMTjkhYcNBoqNu2MrJJSXc0WKfxmjXQPKD5ve6qIDxULl36Sf1eknT4+nYqd5t5BhOLfj9JwgWl/lsVL2cmRtUhxMdFBKQEQRDKwXLt/Wyzjg1X30ZGyYDSO+mQrasUG62FpMwamfZB7e9pPwXhYbd//36OHTtG69atyczMZPr06QDqlMB7zcfHh19//ZVFixaxa9cuOnfuXCH9EB48IiglPPIKcozk5xgwFirp57Ik4+LgiQZlPraP7gKPh9alco/qZP6WSLqrEwUOSsHBiNAneLZuvwrruyA8qMzmfI4de5vCwgvk558FoHWr9bi41ECrLX8R3A0HU1n0+yl1u1EVT3o1vf9XHxEEQbgfWSwyccsOk56aS066snqpbfoesg4ZLRpMBOv11H+xLnKhsqy8UWsdS7n68UrTVyqk74LwMJs9ezYJCQno9XpatGjBtm3b8PPzq7D++Pr68s4771TY8wsPJhGUEh5pGRfz+Hr6brXIOSgVpYJd61AgpwGgQUbjrgShtm+J41itog+2zk72S6wKglA2aWlbuXBxrbqt07nj4lILrdaxXO3mG8wcSc1iX5KyGlSzql50q1+Zp5veuHilIAiCULqrqbmc3HfJbp8kG/FzrIJkLSnlIBXQzMOV4GYB5Gw/AYBZowSldA56BEG4s5o1a8a+ffsquhuCUG4iKCU80tLP52Ixy0gaCb2TFhcnCxfTZDSSFsmaKaV11OD7Qh0AsjKVD7pasxFTFR8aPN6lwvouCA8io/EqV6/+SVraZgA8PZsTEjwYd/cG5Q5IAQz89x/8dTZD3X6iTgCvPF6z3O0KgiA8yswmZTU9Z3cHug1tgK4gi+/fKcBD70eBnAmARrLg1i4QANlkBMBkDUppr1ldSxAEQRBsRFBKeKSZzcogK7CmJ89OaE7un3+y9GNA0iBZk6e0egmth/Jh2WJWbgd6FaSTPiiSkPqNKqLbgvDA+vvvsaRf3aFue3g0oVKlp+5I27IscyhF+XAU7O2Mj6ueHo0D70jbgiAIjzJbRrmDo5bguj4YzuUjI+Orv0geBtIBrQ68nqyhnGCtKWW2Tt/T6sRHDkEQBKFk4i+E8EhTp+0ZCkgeEY0xNRXZCSTrfwAaTdHUPotFCUpZJBmtWNJYEMqs0HCFvNzTZGX/DYC7eyP0eh+Cgspfk+1oahZfbE8k32jGaP2d/m3C4+h1mnK3LQiCIBSNlyQsnBs9BuOFC7QMSqF5wB4uGOpwCtBIMuacHLLjfiX/r7+Aoul7Wp3IlBIEQRBKJoJSwiPNtuKe5fIlsrZsoUCvg3rVkCUJSbYFpYqOt2VKyZKMTiN+fQShLMzmAv74IxKTKUPd16zpf3BwuDPLxi/YdIKf/r6gbgd7O4uAlCAIwh1ksWaWk5dHdlwcAB6RSsHzHJT6mpKzG2lLlpD272WkuzhxNKwK2U7KWElkSgmCIAg3Iv5CCI80NVPKYmJ77RBynPU08kqlg9cnHC9szwWuCUpZlEGZRQNaSWRKCUJZ5BckYzJlIElanJ1D8fXteEcCUgVGM1fzDJxJywPghdYh1PR347Gwilt1RhAE4WGkZkpJ1tpSzZohOyoFlvfLDQHQOLtjunwZgAuhVcgslhzlHSgWmxAEQRBKJoJSwiNNvfNnMZDjrKwM09D7Ms7aLDS2TCln96LjbUEpkSklCDd15cpvHD32FmZzLgAuLjVp2+anO9J2Rp6BiNmbuZpnVPf1b1WVJiFed6R9QRAEoYjFmlmuwVpbKjgYo1aZomexfpzQaCRkk5JRrgutBilnSAjJJqRtK7o+M6oCei0IgiA8CMT8BuGRZlZrJJjUfYGhoQD8TV0ANP5FK3fZglJmDegkEZQShNJcuPg9BsMlNSjl7dXmjrX9d0qWGpBy0Eo0rOJBncruNzlLEARBuB1FNaVkTvt78lPqaWRTofKYrGSOa7QSsrXAufWWH5luRjTB3qKmlCAIgnBDIiglPNLUQZZsKdopK3f5cq01EjRaidw/dpM8IhpTVpZynkZkSglCSSwWE+fP/4+kpMVkZR0AIKzWW7Rv9zu1a08td/tHzmfR6ePfGfHlXgA61vbnxPs92DC6A04OYkqtIAjC3WAbL2mwcNrfi0xjgTp2smANSuk0yGYlKGVbIsYiIcZLwiNjyJAhSJKEJEno9Xpq1arF9OnTMZlMNz+5FJs3b0aSJDIyMu5MR8sgMTGRAQMGEBQUhJOTE8HBwfTq1Ytjx47ZHbdhwwY6deqEu7s7Li4utGrVipiYGLtjkpKSkCSJ+Pj4Mj//u+++S926dXF1dcXb25suXbqwe/duuzaHDh1K9erVcXZ2pmbNmkydOhWDwXDTtmNjY2nSpAkuLi4EBgby8ssvk5aWVua+ffjhh0iSxLhx4+z2nzp1imeffRZ/f388PDzo27cvFy9etDvm/fffp3379ri4uODl5VVi+7afoeJf//3vf9XHv/vuO7p27ao+T7t27fj5559v2u/vvvuObt264evre8v/HnebCEoJjzR1+p5c7I+FxXqXr9idv7TPPiNnyxYs1sFWlotYfU8QSnLlyq8cPTaZU6dnk59/BgAPzyY4O1dFkqRyt7/x8AXOpOWRa1CCx61DvcvdpiAIglA623hJkmRk63u5X3Cw8phcNH0Po31QSpZkUYNTeKRERUWRmprKiRMnmDBhAu+++y4ff/xxRXdLVZagjdFopGvXrmRmZvLdd9+RkJDAqlWraNSokV1g7NNPP6VXr16Eh4eze/duDh48SP/+/YmOjua1114rVz9r167NwoULOXToENu3byc0NJRu3bpx2Vq37tixY1gsFpYuXcrhw4eZN28eS5Ys4c033yy13R07dvDiiy8ydOhQDh8+zDfffMOff/7J8OHDy9SvPXv2sHTpUho3bmy3Pzc3l27duiFJEr/99hs7duzAYDDQs2dPdaYNKK9/nz59eOWVV0p9nuXLl5Oamqp+PfPMM+pjW7dupWvXrvz444/s27ePiIgIevbsyf79+0ttMzc3l8cee4xZs2aV6VrvJXHrQnik2Vbf01iUD7gGb39+P12PS4UjMFoqK49pNVgKlRR1ycUFTEZ+a6JhhLjzJwgqi8VEfv4ZMjKVwrcuLjXx8myBs3MInh7Ny93+xr8vsOX4JfYmXQXgpfBQhrQPpaqPS7nbFgRBEEqn1pSSLVhLbuLopNTitGVKabUaZOsqxRZrWMqiEZlSwqPF0dGRypWVzxCvvPIKa9asYf369URHRzN27Fi+//57CgsL6dSpEwsWLCAsLAyAM2fOMGrUKLZv347BYCA0NJSPP/6Y+vXrExERAYC3t3IjbvDgwcTExJCdnU10dDRr167Fw8ODiRMnsm7dOpo2bconn3wCQGhoKEOHDuXEiROsXbuW5557jpiYGLZv387kyZPZu3cvfn5+PPvss8ycORNXV1cOHz7MqVOn2LRpE9WqVQOgWrVqhIeHq9eZnJzMhAkTGDduHB988IG6f8KECej1esaMGUOfPn1o0+b2SjcMGDDAbnvu3LksW7aMgwcP0rlzZ6KiooiKilIfr1GjBgkJCSxevJjZs2ffsN1du3YRGhrKmDFjAKhevTojRowoU6AmJyeHgQMH8vnnnzNjxgy7x3bs2EFSUhL79+/Hw0NZzGfFihV4e3vz22+/0aVLFwCmTZsGcF022bW8vLzUn6Nr2f5tbT744APWrVvH999/T7NmzW7Y5qBBgwAly+x+IzKlhEearaaUbcqe0SOAo7ndSTOFgsUJAE8/Z2SjUrsm31p7qlAvakoJQnEHDg7jj93dSE7+AoAA/0jq1ZtJaOi/yp0hZbHIjF8Vz9d/JnPiUg4ALap5U83X9Y5kXwmCIAilK15TSkZ53z10qRVfX/mE3OxWAGh0kjp9L71AuYFgkURmuVB+siyTZzBVyJcsyzfvYCmcnZ0xGAwMGTKEvXv3sn79enbt2oUsy/To0QOj9TPGyJEjKSwsZOvWrRw6dIhZs2bh5uZGSEgI3377LQAJCQmkpqYyf/58AF599VV27NjB+vXriYuLY9u2bfz111/X9WH27Nk0adKE/fv3M2XKFE6dOkVUVBS9e/fm4MGDrFq1iu3btzNqlLIggb+/PxqNhtWrV2O2BpqvtXr1aoxGY4kZUSNGjMDNzY2vv/66XK+djcFg4LPPPsPT05MmTZrc8LjMzEx8fHxKbatdu3YkJyfz448/IssyFy9eZPXq1fTo0eOm/Rg5ciRPPvmkGmAqrrCwEEmScHR0VPc5OTmh0WjYvn37Tdsu6bn8/Pxo3bo1X3zxRak/hxaLhezs7Jte+/1MfKoWHmlFNaWs0/ekojhtM7ezVH68A9W7hHB0YTYSYLKY0KHFIsl4OXrd+w4Lwn1G+SMpk5HxJwA6nQcOOi/8AyLvSPunLudw7mo++UYzkgSvdqmNr5sjkQ1KvnskCIIg3FmyRcZknTItUZQpdeBSe/JMHupxnn7OmAxKZvnF3Eu44owsgbPO+Z73WXi45BvN1H/n5jVz7oYj0yNx0d/6R2ZZltm0aRM///wz3bt3Z+3atezYsYP27dsDSl2jkJAQ1q5dS58+fTh79iy9e/emUaNGgJL5Y2MLNgQEBKh1iLKzs1mxYgUrV66kc+fOgDLlKygo6Lq+PPHEE0yYMEHdHjZsGAMHDlRrIoWFhbFgwQI6derE4sWLqVKlCgsWLGDixIlMmzaNli1bEhERwcCBA9V+HT9+HE9PTwIDA697Pr1eT40aNTh+/Pgtv27Fbdiwgf79+5OXl0dgYCBxcXH4+fmVeOzJkyf59NNPS82SAggPDyc2NpZ+/fpRUFCAyWSiZ8+eLFq0qNTz/vvf//LXX3+xZ8+eEh9v27Ytrq6uTJo0iQ8++ABZlnnjjTcwm82kpqaW7YKtpk+fzhNPPIGLiwu//PIL//rXv8jJyVGzu641e/ZscnJy6Nu37y09z/1EZEoJjySjwcxvXx7l5F5r8TnZNtgq+pWorpOoFOiGpJEwmowYNRIa6+NjW47jseDH7nm/BeF+YjYXsvvPHvz2exgWSyEg0eGxP2jf/nc83BuWu/118Sl0nrOFwV8oAS8/N0dGdw5jQJuqOGjFny9BEIS7zVBg4qt3drFt1QlAKXQOYHZ0wmxR3oedPHaS5XuQ8L5hmIyF1jOVyFXLwFb0rNHznvdbECrKhg0bcHNzw8nJie7du9OvXz+GDBmCTqezm8rm6+tLnTp1OHr0KABjxoxhxowZhIeHM3XqVA4ePFjq85w+fRqj0Ujr1q3VfZ6entSpU+e6Y1u2bGm3feDAAWJiYnBzc1O/IiMjsVgsJCYmAkqmzoULF4iNjaVdu3Z88803NGjQgLi4uDK/Fnq9/qbHxMbG2vVj27Zt6mMRERHEx8ezc+dOoqKi6Nu3L5cuXbqujZSUFKKioujTp49dbaji7UZHRwNw5MgRxo4dyzvvvMO+ffvYuHEjSUlJ6uPbtm2zOy82Npbk5GTGjh1LbGwsTk5OJV6Hv78/33zzDd9//z1ubm54enqSkZFB8+bN0Whubcw6ZcoUwsPDadasGZMmTWLixIk3rEu2cuVKpk2bxv/+9z8CAgJu+prer0SmlPBIOnfsKkd3FEWt9XKe9bvibxo6JK1E0sH9/Oamx9KoBhprnbqomt1x0IjljYVHW27ucXJzi+6C+fg8hkbjWMoZtyY+OQMAdycdns4ODGpb7Y61LQiCINxcxsW8/2fvvuOjqNbHj39md7Mpm95IJYWE3jtESmhJwMBVRBC+NAGJly7S9EpRiiABaaL4U+Dei+gVFRFRjCgdkSpICSS00CG9b3Z3fn9sdmAJhBYIhPN+vXjpzM6cObOQ7NlnnvMcsq4XACBJ4G2bSbIkoXf3wVhoHjNJ2utodbbmmlLFq4ypijPPe9V8hUq6SuXTeaHCsLdRc/TdssnAfpBr34/IyEiWLl2KVqvFz88PjUbDunXr7nre4MGDiYqK4scff+SXX35h1qxZxMfHM2LEiAftukKn01lt5+TkMHTo0Ntm3lSuXFn5fycnJ2JjY4mNjWX69OlERUUxffp0OnbsSHh4OJmZmVy8eLFEdpZeryc5OZmoqLv/nXXt2tUqWOfv72/V77CwMMLCwmjevDnh4eF89tlnTJo0STnm4sWLREZG0rJlS5YtW2bV9s2ry1nqPM2aNYuIiAjGjRsHQN26ddHpdLRq1Yrp06fTuHFjq/MqVarEpk2buHr1Kg0b3qiRajQa2bp1K4sXL6awsBC1Wk2nTp1ITk7m+vXraDQapS7UzVlvD6JZs2a89957FBYWWk0P/PLLLxk8eDBff/211ZTC0t7TJ5UISgnPJEsaupuPA826hZK75AuOAGqVOaIvYUSS1KCSuHDsb0w31a3xCg7F0c2jPLotCE+EgoKLZGTsISfHvCywo2MNGtT/NzY2D78SntEks/i3JC5k5LH7dBoAoztUZdBzIQ/dtiAIgnB/LAXOHd1t6TO1Odfn7GIngEqFXFzgvIrRh4DanQCUoJQl81ylEfWkhIcnSdIDTaErD5ZAys1q1KiBwWBg9+7dyvS91NRUEhMTqVmzpnJcYGAgcXFxxMXFMWnSJD799FNGjBihZBzdXN8pNDQUGxsb9uzZowSSMjMzOXHiBK1bty61jw0bNuTo0aMl+lkaSZKoXr06O3fuBOCll15iwoQJxMfHEx8fb3Xsxx9/TF5eHv369btru05OTjg5Od1TH0wmE4WFhcr2hQsXiIyMpFGjRixfvrxERtLt7i8vLw+Nxvrfklpt/j0lyzL29vYlzmvfvj2HDx+22jdw4ECqV6/OhAkTlPMtLFMMf/vtN65evUrXrl3v6f7u5ODBg7i5uVkFpFavXs2rr77Kl19+SZcuXayOv5/39EnxdPx0C0IZs6y6p3O1pUoDb/42GnDVepOhcgRAhQEZNZJGhaG4AGHwtQz29/DhjbgForiy8Ew7cHAAeXnJyradrS9abdkUV9x9OpX5v1rXIAj2ECvsCYIglAe5uPamWq1Co1VjMhSBJGGvcUaWzV/EgkzeeDibPwNkQxESIBVP31OJIueCQHh4ON26dWPIkCF88sknODk5MXHiRPz9/enWrRsAo0ePJiYmhqpVq5Kens7vv/9OjRo1APPKd5IksX79ejp37oy9vT1OTk7079+fcePG4e7ujre3N1OmTEGlUt31e8qECRNo3rw5w4cPZ/Dgweh0Oo4ePUpCQgKLFy/m4MGDTJkyhb59+1KzZk20Wi1btmzh888/Z8KECYA5o2rOnDm8+eab2NnZ0bdvX2xsbPj+++956623mD59OrVrW5dySExMLNGXWrVqYWNjPfskNzeXGTNm0LVrV3x9fbl+/TpLlizhwoUL9OjRAzAHpNq2bUtQUBBz587l2rVryvl3WrUOIDY2liFDhrB06VKioqK4dOkSo0ePpmnTpretxwXmIM+t96LT6fDw8LDav3z5cmrUqIGXlxe7du1i1KhRjBkzxmpK5blz50hLS+PcuXMYjUYlKyssLAxHR0d++OEHrly5QvPmzbGzsyMhIYGZM2daFZT/4osv6N+/PwsWLKBZs2ZcvnwZMBfVd3FxueO9W6578eJF4Mbfh4+PT6nv2eMgglLCM0lZ2lgtFW8bcVC7kFH8ukoyYV+nErZhrhj+0AOgMZmQbLUiICU8s4zGAgzGHCUg5ebaHJXanqCgoQ/dtskkc+hCJltPXAegipeO7o0C8HK0pW0174duXxAEQbh/t46XZKMJP3vwtr3O8eJsKAk12EgUJiUh5xdYB6XU4quGIIA5YDFq1Cief/559Ho9rVu3ZsOGDUpAxmg0MmzYMM6fP4+zszPR0dHMnz8fME+/mjZtGhMnTmTgwIH069ePFStWMG/ePOLi4nj++edxdnZm/PjxpKSk3LHukUXdunXZsmULb7/9Nq1atUKWZapUqULPnj0BCAgIIDg4mGnTpnHmzBkkSVK2x4wZo7QzZswYQkNDiY+PZ8GCBeTm5gLmLJ5evXqVuO7t9qWkpBAQEGC1T61Wc/z4cVauXMn169fx8PCgSZMmbNu2jVq1agGQkJBAUlISSUlJJc4vbaW6AQMGkJ2dzeLFixk7diyurq60a9eO2bNnl/qe3YvExEQmTZpEWloawcHBvP3221bvF8DkyZNZuXKlst2gQQMAfv/9d9q2bYuNjQ1LlixhzJgxyLJMWFgY8+bNs6qVtWzZMgwGA8OGDWPYsGHK/v79+7NixYo79m/dunUMHDhQ2bb8fUyZMoWpU6c+zK0/NEl+2HUuK7CsrCxcXFzIzMxU5qEKFcPRHRf5/T/HCa7jQZdh9firT2+OaX1I8QvEIbUetlI2g+c0B6dK/LJsEYc3baTqpVT2Dq7KtH4r734BQahgMjL2cuBgX0wmc5BWkrREtj1aZkHa//xxlnfW/q1s92wcyOyX6pZJ24JQ1sT4oCTxnlRMKcfTWPfhQdz9dLwyuRkX3hqFr81KJOCjK98C0LODibyN/yNzx3aSKrlRqFGT4uWEyijx8uSZBNYSv8uFe1dQUMDp06cJCQm5a3BFsJabm4u/vz/x8fEMGjTosV8/LS2N9u3b4+zszE8//YSDg8h0fxaU9jN7r2MDsXyR8EyyTN+TVDcypfztU6gmm1fAUEkmUJmf7hn15i/hKllGbVN2RZwF4WmSmrZNCUgBVKrUuUyzBv8+nwmYV9irF+hKz6aBZda2IAiC8GAs0/csmVIqYy4qSaZIvrGqllNMawoTE7nqrOOUtxsX3J1RGc3H2zvfeSqJIAgP58CBA6xevZrk5GT2799Pnz59AJQpgY+bu7s7v/76K+3bt2fXrl3l0gfh6SRyaoVnkql4kEVhPqmffY628CytvI9xrSiEFHqhwgAacwDKUlNKZZKRbMSKe8Kz5fyFL0hKmoXRaF59KTT0DYIqD0WleviPD1mWGf3VQXYkXScr31wcd3xUNV5uIgJSgiAITwJl+l7xQzxM5jFRLjeK6Ko0amSDgSK1+Vl3uqOevGrOxLUZg2egWDVVEB6luXPnkpiYiFarpVGjRmzbtk0ptF0ePDw8mDx5crldX3g6iaCU8EyyDLIK//6bq9vnogo1fyHOk4vTTO2cwNaRLH0Wp1KTAFDLMhob7W3bE4SK6sqVHzAa8wCQJA3ubi3KJCAFkJar5/uDF5VttUqifmXXMmlbEARBeHjKQzyTkfQvv6Lo4nkIB6N84yGdSi0hG4owac1BqTTnIvLrOlG1WUR5dFkQnhkNGjRg37595d0NQXhoIiglPJMs0/fQm7M/bIODgKuky+Yl7SU7Rw5u/JEtny/FKMsgSahMMjo7USdDqPhkWebs2U/Izz9LTs5xAOrU/gh395ZoNA+/xGxBkZHDFzI5l2oOdrk62PDVay3wcNTi6SimyAqCIDwpLKVnjZcucvk/U7HxLoJwMHBTUEolYdAXYrQzP9gzqkw4ah3Lpb+CIAjC00cEpYRnkuXJnyQbAbBvWB/O71EGWSq1imPbN2MAkCQkWcbGwYaXm71WPh0WhMcoO/swyac+uGmPhItL/TIJSAGMWH2AhKNXlO1KTnZU8ymbtgVBEISyo2RKGcw1BbUhlYFrVplSkkoCgxFT8RS/UI8w/lF/+OPuqiAIgvCUEkEp4Zlkmb4nmUwAGE2wLWsQKUU1AHMquqnQXDeh1vlrnBrZltYvvIekFdP3hIpLlk0UFaWTk3MCADu7QPz9XsbRsQa2tpXK7DqHi4uaB7rbY2+jZlCrkDJrWxAEQSg7ysIwsnm8pItoCRf3YSz+CiGpzcdJRiNGyTx9r3nlCKq5V3v8nRUEQRCeSiIoJTyTbgyyzJlS17NdOZTXUnndwdmG7EvmOlP2egNFlT1FQEqo8Pbtf4XMzL3KtrNzHYKD/1kmbafl6vnnqn1czS7kSrZ52uyauJZUchbLPQuCIDyplId4xdP4kEwUmBxJNZgXpFCpJEwGA7laGwpszBEqjVgURhAEQbgPIiglPJMs6egGYx5n3Z0ouJ4BgL36Old1abR6pRfrPzAHrFSyjEojBlhCxWYwZFsFpFQqW7w8O5ZZ+5sTr/LHqTRl28fZTtSPEgRBeMIp5Q4wj4n0BhXfXFtGkWxv3q+S+HPt1+yoXlk5R6MVv9sFQRCEeyeCUsIzyfLk7wqJ5Ab5UNlkroOgVWVi65qLeyVnTAZzppQky2g0IktKqJgMhhwO/jWQvLyzAGg0rrRpXXYruZy+nsumY1f441QqAG2refF6mypUreSE2rLEuCAIgvBEunX6Xp5eWxyQMmFUFRHWsBLXz+0CQGM0UujpQGijpuXVXUEQBOEpJIJSwjNJtmRKyXpAKv4D9qj5v+rPo1KpMBnNQSmTCtRq8aMiVEwZGXvIzNyvbLu6NCzT9keuPsDhC5nKdl1/F5qFepTpNQRBEIRH49aglEk2j5fsVFmkeB+iZrtBHPjCXIOz6qU0/hzZBK/KweXSV0EQBOHppCrvDgjC43Tq4DXWL/6LpH1Xi/eYsNXokIoHWWrARmMOQJmM5lR1GRmNSgSlhIolPf1Pzpz5iIuX1gDg6tqMpk1+oE6dj8qk/ZS0PH4/fpWkqzkARNfyoW/zIPo0DyqT9gVBEIRHJzezkEO/nyflWDpwc1DKejrfzQ/xVDKoNGK8JDy7BgwYgCRJSJKEVqslLCyMd999F0Px7IsHtXnzZiRJIiMjo2w6eg9Onz5N79698fPzw87OjoCAALp168bx48etjlu/fj1t2rTByckJBwcHmjRpwooVK6yOOXPmDJIkcfDgwXu+/tSpU6levTo6nQ43Nzc6dOjA7t27rdocNGgQISEh2NvbU6VKFaZMmYJer79r26tWraJevXo4ODjg6+vLq6++Smpq6l3Pu3DhAv/3f/+Hh4cH9vb21KlTh717b5S+uPnv3/InOjraqo3g4OASx7z//vvK64mJiURGRlKpUiXs7OwIDQ3lX//6F0VFRVbtZGRkMGzYMHx9fbG1taVq1aps2LCh1P5/++23dOrUCQ8Pj/v++3jUxCeH8Ez584fTpF7IubFDNhLsWIcCzJkcKklG5WAdlDKqZNSW5WUEoQIwmfT8dWgQRmOess/RsSpOTjXLpP3sgiKiPtxKnt6o7PuwV33sbMTPkSAIwtNg57dJnNh9RdlWm/QYVBJpWebPDUkygixjOpmE/tp1AEySLDLLhWdedHQ0y5cvp7CwkA0bNjBs2DBsbGyYNGlSeXcNAL1ej/YuizcVFRXRsWNHqlWrxrfffouvry/nz5/np59+sgqMLVq0iNGjRzNhwgSWLl2KVqvl+++/Jy4ujr///pu5c+c+cD+rVq3K4sWLCQ0NJT8/n/nz59OpUyeSkpLw8vLi+PHjmEwmPvnkE8LCwvj7778ZMmQIubm5pV53x44d9OvXj/nz5xMbG8uFCxeIi4tjyJAhfPvtt3c8Lz09nYiICCIjI/npp5/w8vLi5MmTuLm5WR1n+fu3sLUtWWPv3XffZciQIcq2k5OT8v82Njb069ePhg0b4urqyl9//cWQIUMwmUzMnDkTMP8dduzYEW9vb9asWYO/vz9nz57F1dW11Pc0NzeX5557jpdfftnq+k8CkSklPFMMReYvyY1igoiJq4PaVIBGpUUqnr6ntlfj2NIPuClTSkJkSgkVhsGQTU7OcYzGPCTJBj/flwkI6E/lwLL7cDqbmkee3ohWraJugAtjOlQVASlBKAPvv/8+kiQxevRoZV9BQQHDhg3Dw8MDR0dHunfvzpUrV6zOO3fuHF26dMHBwQFvb2/GjRtX4sn95s2badiwIba2toSFhZV40i08W/KzzU/lfUKdqdHSF3XeDv5u2pHrBebVUyXJhO/lK+TExZGfaM6ckFUis1wQbG1t8fHxISgoiNdff50OHTqwbt060tPT6devH25ubjg4OBATE8PJkyeV886ePUtsbCxubm7odDpq1arFhg0bOHPmDJGRkQC4ubkhSRIDBgwAIDs7mz59+qDT6fD19WX+/Pm0bdvW6jMiODiY9957j379+uHs7Mxrr70GwPbt22nVqhX29vYEBgYycuRIcnNzAThy5AjJycl89NFHNG/enKCgICIiIpg+fTrNmzcHICUlhbFjxzJ69GhmzpxJzZo1CQsLY+zYsXzwwQfEx8dbZTbdr969e9OhQwdCQ0OpVasW8+bNIysri0OHDgE3gj+dOnUiNDSUrl278uabb5YaWALYtWsXwcHBjBw5kpCQEJ577jmGDh3Kn3/+Wep5s2fPJjAwkOXLl9O0aVNCQkLo1KkTVapUsTrO8vdv+XNr0ArMQaibj9HpdMproaGhDBw4kHr16hEUFETXrl3p06cP27ZtU475/PPPSUtLY+3atURERBAcHEybNm2oV69eqffQt29fJk+eTIcOHUo9rjyIoJTwTLHURgiu60lofS9kAAll+p5Gp0HlYF5p70ZQSkYjiUGW8PS7cuVHtmxtyJ69LwBga+tDjRqzqFZ1Mvb2/g/dfsLRK7SYtYlXlv0BQDUfJ9YNf45RHcIfum1BeNbt2bOHTz75hLp161rtHzNmDD/88ANff/01W7Zs4eLFi7z44ovK60ajkS5duqDX69m5cycrV65kxYoVTJ48WTnm9OnTdOnShcjISA4ePMjo0aMZPHgwGzdufGz3JzxZLKvu1YkMoF2/GugczhDj9yO15aMAaJCJrlIHALl4yt6ecEmMl4RHQ5ZBn1s+f4qnrD4oe3t79Ho9AwYMYO/evaxbt45du3YhyzKdO3dWpmUNGzaMwsJCtm7dyuHDh5k9ezaOjo4EBgbyzTffAOapXZcuXWLBggUAvPHGG+zYsYN169aRkJDAtm3b2L9/f4k+zJ07l3r16nHgwAHeeecdkpOTiY6Opnv37hw6dIivvvqK7du3M3z4cAC8vLxQqVSsWbMGo9FYoj2ANWvWUFRUxJtvvlnitaFDh+Lo6Mjq1asf6r2z0Ov1LFu2DBcXl1IDL5mZmbi7u5faVosWLUhJSWHDhg3IssyVK1dYs2YNnTt3LvW8devW0bhxY3r06IG3tzcNGjTg008/LXHc5s2b8fb2plq1arz++uu3nRb4/vvv4+HhQYMGDfjggw9Knd6ZlJTEzz//TJs2baz60qJFC4YNG0alSpWoXbs2M2fOvOPf1dNAfHIIzxTLIEtVvOqXhAlnzSWMxZlSqpvCtCbTTdP3VCLLQ3j6paVtB8x1QSRJjU+l2DJt/9v957mUWaBsNw4u+XRIEIT7l5OTQ58+ffj000+ZPn26sj8zM5PPPvuML774gnbt2gGwfPlyatSowR9//EHz5s355ZdfOHr0KL/++iuVKlWifv36vPfee0yYMIGpU6ei1Wr5+OOPCQkJIT4+HoAaNWqwfft25s+fT1RUVLncs1C+LA/xVMUDoypul3DVppJRUBkAjYMDTr4yeYDKxRn0BeypKtFRjJeER6EoD2b6lc+137oIWt3dj7uFLMts2rSJjRs3EhMTw9q1a9mxYwctW7YEzHWNAgMDWbt2LT169ODcuXN0796dOnXMwd7Q0FClLUugxdvbW5milZ2dzcqVK/niiy9o3749YP797+dX8n1q164dY8eOVbYHDx5Mnz59lIyq8PBwFi5cSJs2bVi6dCn+/v4sXLiQ8ePHM23aNBo3bkxkZCR9+vRR+nXixAlcXFzw9fUtcT2tVktoaCgnTpy47/ftZuvXr6dXr17k5eXh6+tLQkICnp6etz02KSmJRYsW3XXKYEREBKtWraJnz54UFBRgMBiIjY1lyZIlpZ536tQpli5dyhtvvMFbb73Fnj17GDlyJFqtlv79+wPm7K0XX3yRkJAQkpOTeeutt4iJiWHXrl2o1ebfjSNHjqRhw4a4u7uzc+dOJk2axKVLl5g3b57V9Vq2bMn+/fspLCzktdde491337Xqy2+//UafPn3YsGEDSUlJ/POf/6SoqIgpU6bc9X19EolMKeGZYrKsIlMclOoQeJII10/xlc31EFQq84dI4cmTmAxi+p5QMZw5s5QDBwdw7fomAGpUn0W7yBNUqTL2LmfenSzL/Hk6jZ//vqwUNZ/8fE1+f7Mtk58vmxpVgvCsGzZsGF26dCmRcr9v3z6Kioqs9levXp3KlSuza9cuwDxVoU6dOlSqVEk5JioqiqysLI4cOaIcc2vbUVFRShvCs+dGUKr4oZ1kfqBxVK4GgOTii2xZpbj4wZ4siel7grB+/XocHR2xs7MjJiaGnj17MmDAADQaDc2aNVOO8/DwoFq1ahw7dgwwByumT59OREQEU6ZMUaap3cmpU6coKiqiadOmyj4XFxeqVatW4tjGjRtbbf/111+sWLECR0dH5U9UVBQmk4nTp08D5s+dy5cvs2rVKlq0aMHXX39NrVq1SEhIuOf34m61q8AcnLu5HzdPU7Nk7+7cuZPo6Ghefvllrl69WqKNCxcuEB0dTY8ePaxqJd3cblxcHABHjx5l1KhRTJ48mX379vHzzz9z5swZ5fVt27ZZnbdq1SoATCYTDRs2ZObMmTRo0IDXXnuNIUOG8PHHHyvX69WrF127dqVOnTr84x//YP369ezZs4fNmzcrx7zxxhu0bduWunXrEhcXR3x8PIsWLaKwsNDqnr766iv279/PF198wY8//mgVbDOZTHh7e7Ns2TIaNWpEz549efvtt5W+lPaePqnEJ4fwTLl1kOVulw9AAfbm/R5BZH77HZfefhtT3VCQJFHoXHiq6fVpJJ+yfmqk05XddLpNx64y+N97rfbVDXAhxPP+nyoKglDSl19+yf79+9mzZ0+J1y5fvoxWqy1R3LRSpUpcvnxZOebmgJTldctrpR2TlZVFfn4+9vb2Ja5dWFhoNYjOysq6/5sTnljKQzx1cVDKXPCADFzN2xoVFE85sUxuMqkQ4yXh0bBxMGcslde170NkZKRS9NvPzw+NRsO6devuet7gwYOJiorixx9/5JdffmHWrFnEx8czYsSIB+254uaaRWDOvh06dCgjR44scWzlypWV/3dyciI2NpbY2FimT59OVFQU06dPp2PHjoSHh5OZmcnFixdLZGfp9XqSk5PvKdO2a9euVsE6f/8b5SR0Oh1hYWGEhYXRvHlzwsPD+eyzz6yKxl+8eJHIyEhatmzJsmXLrNq+eXU5Z2dnAGbNmkVERATjxo0DoG7duuh0Olq1asX06dNp3Lix1XmWz0ZfX19q1rR+2FqjRg1lauXthIaG4unpSVJSkpLNdqtmzZphMBg4c+aMVUAxMDAQgJo1a2I0GnnttdcYO3YsarUaX19fbGxslOwrS18uX76MXq8v9T19UomglPBMsQyyVLcMsv6WqwOQnpnCN7u+x1AtEFkyH7O5rkR7lU059FYQHpwsG7l48WtycswFaDUaF6pWnYytbSVcXBqU2XUSr2QD4OVkS5C7AyGeOuoHupZZ+4LwLEtJSWHUqFEkJCRgZ2dX3t2xMmvWLKZNm1be3RAeEUu5g+KhEJJk3jbK5i9BKrWEXJxRnmPIAyRMIlNKeFQk6YGm0JUHSyDlZjVq1MBgMLB7925l+l5qaiqJiYlWgY7AwEDi4uKIi4tj0qRJfPrpp4wYMULJOLq5ZlBoaCg2Njbs2bNHCSRlZmZy4sQJWrduXWofGzZsyNGjR0v0szSSJFG9enV27twJwEsvvcSECROIj49Xpn5bfPzxx+Tl5dGvX7+7tuvk5GS1+lxpTCaT1cOQCxcuEBkZSaNGjVi+fLky3djidveXl5eHRmP9e8oS3JFlGXt7+9ueFxERQWJiotW+EydOEBQUdMf+nj9/ntTU1NtOcbQ4ePAgKpUKb2/vOx5jMpkoKirCZDKhVquJiIjgiy++wGQyKfd84sQJfH190Wq1aLXae35PnxTik0N4psjGG9P3ZFnmtP45fsmJwWA0/7K4enoHufm5YGf+5V9gY+T3xjYMdb33X9qC8CRIS9vO8cS3lW2dQyi+Pv8os/Y/2ZLMN/vPcy3bPDjo2TiQN6NKpowLgvDg9u3bx9WrV2nYsKGyz2g0snXrVhYvXszGjRvR6/VkZGRYZUtduXIFHx8fAHx8fEqsKmRZne/mY25dse/KlSs4OzvfNksKYNKkSbzxxhvKdlZWlvJkV3j63foQzxKUkiVV8X6VMn1PbyoCtJgkcLcrvciwIDyLwsPD6datG0OGDOGTTz7BycmJiRMn4u/vT7du3QAYPXo0MTExVK1alfT0dH7//Xdq1KgBQFBQEJIksX79ejp37oy9vT1OTk7079+fcePG4e7ujre3N1OmTEGlUiFZosl3MGHCBJo3b87w4cMZPHgwOp2Oo0ePkpCQwOLFizl48CBTpkyhb9++1KxZE61Wy5YtW/j888+ZMGECYM6omjNnDm+++SZ2dnb07dsXGxsbvv/+e9566y2mT59O7dq1ra57a1AHoFatWtjYWD/8z83NZcaMGXTt2hVfX1+uX7/OkiVLuHDhAj169ADMAam2bdsSFBTE3LlzuXbtmnK+5bPtdmJjYxkyZAhLly4lKiqKS5cuMXr0aJo2bXrbelwWY8aMoWXLlsycOZOXX36ZP//8k2XLlinZWTk5OUybNo3u3bvj4+NDcnIy48ePJywsTMkY27VrF7t37yYyMhInJyd27drFmDFj+L//+z9llb5Vq1ZhY2NDnTp1sLW1Ze/evUyaNImePXsq79Prr7/O4sWLGTVqFCNGjODkyZPMnDnztplvN0tLS+PcuXNcvHjR6u/DsgpgeRJBKeGZYrp5+p7JRGJhDOnGEOV1lcpcM6HaxVQOhRbS7d3/xwjfMJy1zuXSX0F4UHn55wCwtw/Cw701vr4v3uWM+7PotyRyCm+sFlLLT/yMCEJZa9++PYcPH7baN3DgQKpXr86ECRMIDAzExsaGTZs20b17d8A8yDx37hwtWrQAzCsNzZgxg6tXrypPYhMSEnB2dlae0Ldo0YINGzZYXSchIUFp43ZsbW2xtbUts3sVniwlakoVZ5abZPNXB7VahXzLilGD6g2iS2iXx9hLQXh6LF++nFGjRvH888+j1+tp3bo1GzZsUAINRqORYcOGcf78eZydnYmOjmb+/PmAefrVtGnTmDhxIgMHDqRfv36sWLGCefPmERcXx/PPP4+zszPjx48nJSXlrpm1devWZcuWLbz99tu0atUKWZapUqUKPXv2BCAgIIDg4GCmTZvGmTNnkCRJ2R4zZozSzpgxYwgNDSU+Pp4FCxaQm5sLwOrVq+nVq1eJ695uX0pKCgEBAVb71Go1x48fZ+XKlVy/fh0PDw+aNGnCtm3bqFWrFmD+jEpKSiIpKanE+XIpKyYOGDCA7OxsFi9ezNixY3F1daVdu3bMnj271PesSZMmfPfdd0yaNIl3332XkJAQPvzwQ/r06aP0+dChQ6xcuZKMjAz8/Pzo1KkT7733nvJZaWtry5dffsnUqVMpLCwkJCSEMWPGWD3g0Wg0zJ49mxMnTiDLMkFBQQwfPtzqfQ8MDGTjxo2MGTOGunXr4u/vz6hRo5SA4Z2sW7eOgQMHKtuWv48pU6YwderUUs991CS5tL+1Z1xWVhYuLi5kZmYq81CFp9vS4b9jMsj0n9USeweJL9/4kgxjIJLTXxQ52eGSeZjU8+domnyR3+sXMGnZX9iIqXvCU0KWTfx1aAiZmfsxmQowmfQE+PelWrWpZdJ+QZGRb/afJzVHz7wE84oqKwY2wcvJlpq+znd9MicIFUV5jg/atm1L/fr1+fDDDwHzE9MNGzawYsUKnJ2dlfojlikWRqOR+vXr4+fnx5w5c7h8+TJ9+/Zl8ODBzJw5E4DTp09Tu3Zthg0bxquvvspvv/3GyJEj+fHHH+959T0xZqpYvpj6B+mX8/jHGw3wr+rGgTFd+VvfiyyTO8haKtd2pvK1tWRs+Ik9oV5IaHjlvQ/wq1qjvLsuPOUKCgo4ffo0ISEhT9y05Sddbm4u/v7+xMfHM2jQoMd+/bS0NNq3b4+zszM//fQTDg73V49LeDqV9jN7r2MDkSklPFOspu8VFSEXL0Ap22SAvSumNPNcbZUsY1RJaCTxIyI8PQoKzpOautlqn4trozJrf93Bi7z93d/KtodOS9tqd54DLwjCozd//nxUKhXdu3ensLCQqKgoPvroI+V1tVrN+vXref3112nRogU6nY7+/ftbLS8dEhLCjz/+yJgxY1iwYAEBAQH8v//3/+45ICVUPJaaUpZMqbNFEWQZb0zvyLm2hV+PH4RQXyyPI9Qa8RBPEB6nAwcOcPz4cZo2bUpmZqbye90yJfBxc3d359dff2XJkiXs2rXrjsW9BeFW4hu38MyQZRlLXuCF0aNQ5aRi8nrB/BqgklSYiusjSLKMSS2JzA/hqWAw5HD9+iZyc08CYGfrR4MG/0atdsDWttJdzr53Z1LNadnVKjlRP9CVqNpl17YgCPfm5qWlAezs7FiyZAlLliy54zlBQUElpufdqm3bthw4cKAsuihUALeuvidjLgRsozvEFXs9/k5FANjpi8izMxHatDVewSG3b0wQhEdm7ty5JCYmotVqadSoEdu2bcPT07Pc+uPh4cHkyZPL7frC00kEpYRnhqU+gizL/HnpJOkOWpyLB1lGSUKjUimrWkgyoBbLGgtPhzNnlnD23I1lcO3sA3BwKLsvBx9sPM76Q5dIy9ED0LW+H8MiRfF/QRCEiurWmlKWoBSaHIwaA7LJnGkediWdP2vk0HpoHCqVGDcJwuPUoEED9u3bV97dEISHJoJSwjPD8tQPuYArLvaYNFocLdP3MC91aiou2qkqzpQShCeZLBsxGHLJzjkGgJNjLezs/QkM6F9m1zCaZD7ZcgqD6Ub5wTr+LmXWviAIgvDksYyZLowYQca1k8iNzAWQ5eLJeqabHuIZVRJqEZASBEEQHpAISgnPDEt9BDCvsFfgF4ycqy7eI2GjsUFvvFFTCrX48RCeXEZjIbv/7Ex+/hllX2iVN/D0aFsm7afl6ln8WxLXcwoxmGRUEnwd1wI3By2hXo5lcg1BEAThyWTJlDJcSMGYm36jBqckIyEp5Q5UsoxJBRqVGDMJgiAID0Z8ggjPBJNJxmgwWbYAkDUaTLI5KFXJ5Eaj2s1I2PcrYK4pJabvCU+yvLxkq4CUra0vLs71y6z9r/em8PmO08p2sKeORkHuZda+IAiC8OSyPMiTZBNOnTohm256iGc0YsjJML+OjEGFWBhGEARBeGDiE0So8E7uvcKmFceUoJQsm/9rp7bFVFwjobEhnMo+gZgMlkwpRFBKeCKlp/9BUvJciorSAPOUvcaN1yBJGiRJ9dDtG00yl7MKOHk1B4Dnwjx5LtyTttW8HrptQRAE4cmWl6VHn2/AZJSRMBJc7wzO7pchtQZgLnfQ6vffOemqBZ09KhmMIlNKEARBeAjiE0So8FKOpd2UJQVu0lVcnDLRqY5yUm4JgIQatbMtxptW3xNBKeFJlHL+P2Rl3Vghy8mpFiqVtsza7750JwdTMpTtTrUq0a9FcJm1LwiCIDyZzhy6zo9LD5kjT4Cn5hyePukAyLL5oUe+pMU5KwuTm/lBxSVXmX1hkghKCYIgCA9MfIIIFZ5cnILe5PkQ6kYGcGn8AkK8DgGQyGsAuL1UjTxNDrLJHLySZBk0IiglPDkuXlxDTm4iWVkHAQgJGY2rSyNcXBqV2TVyCw1KQEqrVuHpqKVVuMiQEgRBeBZcS8kGGVRqCY1Wjac6A4B8gy3ZRvP07UJskGRZKXj+744qrrqrUJVBpq4gCILwbBJBKaHCs6wgo7VTY6ezQU0uAHmyPSbUyLLMD6vfJ/1SinKOSgY0YoAlPBny8s5w7PgEq33eXlE4OlYtk/avZhWw+PckrmYVAqDTqjnybnSZtC0IgiA8HSzjpZrP+dHmlWqkzfgfFEGR2pEctS0aA4CMymTCVLxAsUkSU/cEQRCEhyO+dQsVnmWQpVKbR1CybK4bdVmuhPlHQK8EpFQmE15ZuWhMJvKd7cqju4KgMBoLSE3dypUr6wHQar0ICoqjRo3ZZRaQAlj9Zwr/3nWWn49cBiDES1dmbQuCIAhPB8uKe5KqeLxkLALAiApk8z5XeydUsowsmbdNKlkEpQSh2IABA5AkCUmS0Gq1hIWF8e6772IwGB6q3c2bNyNJEhkZGWXT0Xtw+vRpevfujZ+fH3Z2dgQEBNCtWzeOHz9uddz69etp06YNTk5OODg40KRJE1asWGF1zJkzZ5AkiYMHD97z9adOnUr16tXR6XS4ubnRoUMHdu/ebdXmoEGDCAkJwd7enipVqjBlyhT0ev1d2161ahX16tXDwcEBX19fXn31VVJTU0s9x2g08s4771hd77333kOWZeWYb7/9lk6dOuHh4XHH+01OTuaFF17Ay8sLZ2dnXn75Za5cuXLf93Xo0CFatWqFnZ0dgYGBzJkz5673vXXrVmJjY/Hz80OSJNauXXvXcx4XEZQSKjzL9D2VyvJYz/zBYLQkChYHqQCiDp/mVPUcVg8Iom2XuMfaT0G4VVLy+xz8ayCnTs8HzPWjwqqMw8/3pTJpv6DISOLlbI5fzgKgXXVv/tWlBgt6NSiT9gVBEISnhyUopYyXioNSJlRIxdP1XuzzEpLJdCMoJcn46nwff2cF4QkVHR3NpUuXOHnyJGPHjmXq1Kl88MEH5d0txb0EbYqKiujYsSOZmZl8++23JCYm8tVXX1GnTh2rwNiiRYvo1q0bERER7N69m0OHDtGrVy/i4uJ48803H6qfVatWZfHixRw+fJjt27cTHBxMp06duHbtGgDHjx/HZDLxySefcOTIEebPn8/HH3/MW2+9VWq7O3bsoF+/fgwaNIgjR47w9ddf8+effzJkyJBSz5s9ezZLly5l8eLFHDt2jNmzZzNnzhwWLVqkHJObm8tzzz3H7Nmzb9tGbm4unTp1QpIkfvvtN3bs2IFeryc2NhZTcQmZe7mvrKwsOnXqRFBQEPv27eODDz5g6tSpLFu2rNR7yM3NpV69eixZsqTU48qDeLQhVHimW578mUwy+3P/wXlDFcsR5tdlc4UEtz59GNV49OPvqCDcIjv7GAD29sFotZ5UDny1zNo2mWQ6L9jGqeu5yr7oWj683CSwzK4hCIIgPD1MtzzEkw16sDEHpSyZUrnp1zjv5kSR2vxce3TjN2jZKKp8OiwITyBbW1t8fHwAeP311/nuu+9Yt24dcXFxjBo1ih9++IHCwkLatGnDwoULCQ8PB+Ds2bMMHz6c7du3o9frCQ4O5oMPPqBmzZpERkYC4ObmBkD//v1ZsWIF2dnZxMXFsXbtWpydnRk/fjzff/899evX58MPPwQgODiYQYMGcfLkSdauXcuLL77IihUr2L59O5MmTWLv3r14enrywgsvMGvWLHQ6HUeOHCE5OZlNmzYRFBQEQFBQEBEREcp9pqSkMHbsWEaPHs3MmTOV/WPHjkWr1TJy5Eh69OhBs2bNHuh97N27t9X2vHnz+Oyzzzh06BDt27cnOjqa6OgbpSZCQ0NJTExk6dKlzJ07947t7tq1i+DgYEaOHAlASEgIQ4cOvWMgyWLnzp1069aNLl26AOb3dfXq1fz555/KMX379gXM2U63s2PHDs6cOcOBAwdwdnYGYOXKlbi5ufHbb7/RoUOHe7qvVatWodfr+fzzz9FqtdSqVYuDBw8yb948XnvttTveQ0xMDDExMaXeZ3kRmVJChXfr9L1rcjC7svuTkv+ceb/mRlDKJIFaLWK1QvkxGvP488+u/L65FpmZewGoWWM2jRt9hbt7xF3OvnepuXolIOXpqKW6jxNtqomi5oIgCM8q5SGe2nr6nowKijOlNq/8gEOVvSkqXgwmIrgVnvaej7+zwjNFlmXyivLK5c/N07MehL29PXq9ngEDBrB3717WrVvHrl27kGWZzp07U1Rk/jkbNmwYhYWFbN26lcOHDzN79mwcHR0JDAzkm2++ASAxMZFLly6xYMECAN544w127NjBunXrSEhIYNu2bezfv79EH+bOnUu9evU4cOAA77zzDsnJyURHR9O9e3cOHTrEV199xfbt2xk+fDgAXl5eqFQq1qxZg9FoLNEewJo1aygqKrptRtTQoUNxdHRk9erVD/XeWej1epYtW4aLiwv16tW743GZmZm4u7uX2laLFi1ISUlhw4YNyLLMlStXWLNmDZ07dy71vJYtW7Jp0yZOnDgBwF9//cX27dvvK8hTWFiIJEnY2toq++zs7FCpVGzfvv2e72vXrl20bt0arfbG6ttRUVEkJiaSnp5+z/15kohv30KFZ5m+V3j0COeWT6Uo3wSOYKtKJ90+m3ZRddj8GahkGaNKFOwUyldW1mGyc44o2zY27jg6Viuz9vecSWPs//4iq8A8CKrkbMvutzqUWfuCIAjC00k2P6O7KVPKMn1PUqbv5WWav/C45+RzqWUg7v4iu1Z49PIN+TT74sEybh7W7t67cbBxuO/zZFlm06ZNbNy4kZiYGNauXcuOHTto2bIlYM52CQwMZO3atfTo0YNz587RvXt36tSpA5gzZCwsAQlvb29cXV0ByM7OZuXKlXzxxRe0b98egOXLl+Pn51eiL+3atWPs2LHK9uDBg+nTpw+jR48GIDw8nIULF9KmTRuWLl2Kv78/CxcuZPz48UybNo3GjRsTGRlJnz59lH6dOHECFxcXfH1LTt/VarWEhoYqAZwHtX79enr16kVeXh6+vr4kJCTg6Xn7IHhSUhKLFi0qNUsKICIiglWrVtGzZ08KCgowGAzExsbedUrbxIkTycrKonr16qjVaoxGIzNmzKBPnz73fD/NmzdHp9MxYcIEZs6ciSzLTJw4EaPRyKVLl+75vi5fvkxISIjVcZUqVVJes2TUPU1EppRQ4Vme/OX88gu527ZhKn7iYa+5Tq7TGbyCzB80KhkRlBLKTUbGXg4dfp2TSeYUaBeXhrRssZWIltvQaJzK7Drr/7rIubQ8MvLMXzYaB5X+REkQBEF4Ntxa7sBokvkh7R1+ujYVyWRTfIw5a6LeuavoWwUiFdeWEgTBbP369Tg6OmJnZ0dMTAw9e/ZkwIABaDQaq6lsHh4eVKtWjWPHzKUaRo4cyfTp04mIiGDKlCkcOnSo1OucOnWKoqIimjZtquxzcXGhWrWSDzIbN25stf3XX3+xYsUKHB0dlT9RUVGYTCZOnz4NmDO3Ll++zKpVq2jRogVff/01tWrVIiEh4Z7fi5szee5k1apVVv3Ytm2b8lpkZCQHDx5k586dREdH8/LLL3P16tUSbVy4cIHo6Gh69OhhVRvq5nbj4sy1go8ePcqoUaOYPHky+/bt4+eff+bMmTPK69u2bbM6b9WqVQD873//Y9WqVXzxxRfs37+flStXMnfuXFauXHnP74eXlxdff/01P/zwA46Ojri4uJCRkUHDhg1RqUqGZe50X3dzp3t4kolv30KFZ6mRQJF5uXtNQCBkglRcS0o23Zi+Z1CDWlKXSz+FZ9vpM4tJS7vxQezkVAt7e/8ya3/vmTQOpmSw54z5KfeIdmF0redHqJdjmV1DEARBeHrJRvN4yJByjrP/N5nMwjzOeTQEzJP31DYShUbzYjGSLKPSiK8RwuNhr7Fnd+/ddz/wEV37fkRGRrJ06VK0Wi1+fn5oNBrWrVt31/MGDx5MVFQUP/74I7/88guzZs0iPj6eESNGPGjXFTqd9arKOTk5DB06VKmrdLPKlSsr/+/k5ERsbCyxsbFMnz6dqKgopk+fTseOHQkPDyczM5OLFy+WyM7S6/UkJycTFXX3enNdu3a1Ctb5+98Y++p0OsLCwggLC6N58+aEh4fz2WefMWnSJOWYixcvEhkZScuWLUsU+r559TtLDadZs2YRERHBuHHjAKhbty46nY5WrVoxffp0GjdubHWeJQNp3LhxTJw4kV69egFQp04dzp49y6xZs+jfv/9d79OiU6dOJCcnc/36dTQaDa6urvj4+Fhlxt3tvnx8fKxW7AOUbR8fH4KDg297D08y8WkiVHiWoJRU/HRP5eQCmYBUnKdeHJRSWWpKiaCU8Bjl5iaRX3CevDzzk6mgykNxdKyGp2e7MrtGvt7I/322m4Iik7KvXoAr4ZXKLgNLEARBeLpZMqUKDu4nb+9eTNXMXzTtVJlcckvmhe6d+Xl28QM9ZNQis1x4TCRJeqApdOXBEki5WY0aNTAYDOzevVuZvpeamkpiYiI1a9ZUjgsMDCQuLo64uDgmTZrEp59+yogRI5SMo5vrO4WGhmJjY8OePXuUQFJmZiYnTpygdevWpfaxYcOGHD16tEQ/SyNJEtWrV2fnzp0AvPTSS0yYMIH4+Hji4+Otjv3444/Jy8ujX79+d23XyckJJ6d7G4+aTCYKCwuV7QsXLhAZGUmjRo1Yvnx5iWyj291fXl4emlsC6mq1+bufLMvY29vf8bxb21er1cqqeffLMg3xt99+4+rVq3Tt2vWe76tFixa8/fbbFBUVYWNjzmJNSEigWrVqytS9+/m7fRKITxOhwrMMskwmA5dcdBhycopfKc6gkm/JlFKJoJTweOTnn+OP3TFYVoAE8PXtjk5X5c4n3afD5zM5dCGDgiITthoVMbV9qORiR+uqoqi5IAiCcIOlppRUnA2lrV0bUkEt6THY5KC1v/HFSFbJotyBINyj8PBwunXrxpAhQ/jkk09wcnJi4sSJ+Pv7061bNwBGjx5NTEwMVatWJT09nd9//50aNWoA5pXvJEli/fr1dO7cGXt7e5ycnOjfvz/jxo3D3d0db29vpkyZgkqluuu02gkTJtC8eXOGDx/O4MGD0el0HD16lISEBBYvXszBgweZMmUKffv2pWbNmmi1WrZs2cLnn3/OhAkTAHNG1Zw5c3jzzTexs7Ojb9++2NjY8P333/PWW28xffp0ateubXXdxMTEEn2pVauWElixyM3NZcaMGXTt2hVfX1+uX7/OkiVLuHDhAj169ADMgZu2bdsSFBTE3LlzuXbtmnK+ZfXD24mNjWXIkCEsXbqUqKgoLl26xOjRo2natOlt63HdfN6MGTOoXLkytWrV4sCBA8ybN49XX72xMnZaWhrnzp3j4sWLVvfr4+Oj9Gn58uXUqFEDLy8vdu3axahRoxgzZowy7fJe7qt3795MmzaNQYMGMWHCBP7++28WLFjA/Pnz79h/MGfIJSUlKdunT5/m4MGDuLu7W2XIlQfxaSJUeHJxUOqiOpOUED9CDMWZU5IJFZIyfU8lg0kFGkn8WAiPR07OccCEWq3DwSEYJ6faODiE3vW8e3UwJYN/LNmhbId46viwV4Mya18QBEGoOCwP8SzRKZWbO6SC8uDkpu+5IrNcEO7P8uXLGTVqFM8//zx6vZ7WrVuzYcMGJSBjNBoZNmwY58+fx9nZmejoaCXI4O/vz7Rp05g4cSIDBw6kX79+rFixgnnz5hEXF8fzzz+Ps7Mz48ePJyUlBTs7u1L7UrduXbZs2cLbb79Nq1atkGWZKlWq0LNnTwACAgIIDg5m2rRpnDlzBkmSlO0xY8Yo7YwZM4bQ0FDi4+NZsGABubnmVZ1Xr16tTHO72e32paSkEBAQYLVPrVZz/PhxVq5cyfXr1/Hw8KBJkyZs27aNWrVqAebMoKSkJJKSkkqcX9qKiQMGDCA7O5vFixczduxYXF1dadeuHbNnzy71PVu0aBHvvPMO//znP7l69Sp+fn4MHTqUyZMnK8esW7eOgQMHlrjfKVOmMHXqVMAcqJo0aRJpaWkEBwfz9ttvW72n93JfLi4u/PLLLwwbNoxGjRrh6enJ5MmTee2110q9h7179xIZGalsv/HGGwD079+fFStWlHruoybJD7vOZQWWlZWFi4sLmZmZyjxU4enz5Xt/knohB5crS7hkbyTUvyaXszvgqTmArMlCF+zAiV3bcM4vJOzqeVL//R4vVX2pvLstVGBnzy4j+VQ8smx+Gu3lFUXdOh+V+XVW/3mOSd8exsXehipeOl59LoTn6975KZAgCPdGjA9KEu/J0+/nZX+TvP8qtQv/wHvXf2BwT35Lao2j5hLp6j9pt3cvCQHmqSGtEpPZ8dlrjGk05i6tCsL9KSgo4PTp04SEhNw1uCJYy83Nxd/fn/j4eAYNGvTYr5+Wlkb79u1xdnbmp59+wsHh6ZhyKTyc0n5m73VsIFJChApNlmXlyZ8syyBJyoO+grwLXM89AcUrcGqMJowq8eRPePSuXP1RCUiBhId7qzJt/+Mtyew7m86Z6+YnVjG1fXi/e90yvYYgCIJQschKppS5bo1JSZAy4X31KsbMTAhwQ5JlTvhLYrwkCOXswIEDHD9+nKZNm5KZmcm7774LoEwJfNzc3d359ddfWbJkCbt27aJ9+/bl0g/h6SOCUkKFte1/Jzj023llW8YEkgpJNoelTLIeAN/wang7u+H0xddkOCJqJAiPhCybOHv2EwoKLihFzRvU/zfOznXRaMqu4PjVrALe/+m41b5QL90djhYEQRAEM8tDPMlkROtcRKHBUoPThCTLyMV1akwaFbN7qHhdjJcEodzNnTuXxMREtFotjRo1Ytu2bUoR7fLg4eFhNaVNEO6F+DQRKqzTB68r/2/naIOX7XWqe2STSwAXuTEv1+3kaYKvHaSoQE+qiwhKCY9GRsafJJ+aq2xLkhonp5plFpAymWTWH77E3xcyAXDXaRkXVQ2drYZONZ/8pWAFQRCE8iHLMtlpBRQVmDN4Q91/J6DzNU5l/QV0BowUmYq45mRvPkGtAklkSglCeWvQoAH79u0r724IwkMT376FCsvyxK/r6Pr4VXEl461kPHR5/JnT1Oo446VLFF3NAOCKq4S/GGQJZUivTyMtbTsZGX8C4OBQBZ9KsTg51cbGxq3MrrP5xFVGrj6gbId5OfJK0/JdSUMQBEF48u38JomDv6Yo2w425od6emwByC68RoFUyLVAbwBktTljSqxWLAiCIJQFEZQSKixLUMreUYvaRoVWba6RcEUuHlRpzFOaJFkmrW0dvgi7yi6363wgBllCGTp2bALXU39Ttt1cmxISMqLM2jeaZM6l5bHnTDoAge72NA5y5/+ai4CUIAiCcHdXz2YDoLZR4ehmi5yXB8AeUx0ACk0FANgYjDg7OXOuiSuQLFYrFgRBEMqE+DQRKizZaA5KqVTmJ3qSZN4+j3n1MbWrHWSDJEOC8QhbvVSAhL3avlz6K1QsBkM2eXmnyc4+AoCLcwO0Wk8CAvqV6XWG/mcfvx67omx3ruPLpJgaZXoNQRAEoeIyFY+XOr5akyoNvEkbV1zovPhrgq2spgDwzsrFJ9iTDZXTIU1kSgmCIAhlQwSlhArLkimlKk4zV0mWVfhU5gNk87IykixjVEHHoI746fxo4tPk8XdWqFBMJgN/7I6msPCysq92ncXY2fqU+bV2n04FwMlWg7O9DdG1yv4agiAIQsVlqbGpPMSjeLxU/DVBK6soAFQy/HltH8fSzMEoe414iCcIgiA8PBGUEiosZRWZ4kFWhjGAozmNkIvMK1LImINSKhmMKohvE49UvLKMIDwMvf5qcUBKws7OD1fXpthqy67Y+NWsAkZ/dZDUHD3ZxYVpd05qh5OdTZldQxAEQXg2WDKlJCWz3Dw+MmHetoyXJFnGpIK2AW3xd/KnY1DHcuitIAiCUNGIoJRQYSnT94ozpbbnvs41Q7jyumXQJSEjq1UiICU8tMuX13H+/L8xGs31OOzs/IhoubXMr7PxyGV2Jqcq20EeDiIgJQiCIDyQWzPLUTKlzBlRNh62kGcOShlUMLHZRPwd/cujq4IgCEIFJIJSQoUlm26ko8uyTKHJ0bzf9hKyvRoHnQ2pKeZBlqxWlWdXhQri9Jkl5OUlKduOjtXLtP30XD0HUzKUouadalaif8tgavo6l+l1BEEQhGeHbLo1U8o6KGUJUqlkMKkQBc4FQRCEMiW+iQsVkizL1tP3jEZMxYMroy4JPK8g3TR9DxGUEh6QLMukpe3g0qXvKCy8CED1atOpV/f/UatmfJleq9/nfzJwxR7W/WW+Tt0AFyLCPHHTacv0OoIgCMKz4+aHeGCuwZlvcsJksgWsM8uNKkkUOBeEOxgwYACSJCFJElqtlrCwMN59910MBsNDtbt582YkSSIjI6NsOnoPTp8+Te/evfHz88POzo6AgAC6devG8ePHrY5bv349bdq0wcnJCQcHB5o0acKKFSusjjlz5gySJHHw4MF7vv7UqVOpXr06Op0ONzc3OnTowO7du63aHDRoECEhIdjb21OlShWmTJmCXq+/a9urVq2iXr16ODg44Ovry6uvvkpqamqp52RnZzN69GiCgoKwt7enZcuW7Nmzx+qYnJwchg8fTkBAAPb29tSsWZOPP/7Y6pihQ4dSpUoV7O3t8fLyuu17eu7cObp06YKDgwPe3t6MGzfujv+GduzYgUajoX79+ne972+//ZZOnTrh4eFx338fj5r4Ji5USMU1O4HiQZbJpDzxM0mgUqkwmcyry0iyDBoxwBIeTEbGbg4c7MfRY28WT9uTqFSpK56ekWg0TmV2HZNJ5tilLABq+TnTKtyTbvXF9AlBEATh4ZhuWa34r4IX+fzqvynKqVd8RPFDvuIanDYqMV1cEO4kOjqaS5cucfLkScaOHcvUqVP54IMPyrtbinsJ2hQVFdGxY0cyMzP59ttvSUxM5KuvvqJOnTpWgbFFixbRrVs3IiIi2L17N4cOHaJXr17ExcXx5ptvPlQ/q1atyuLFizl8+DDbt28nODiYTp06ce3aNQCOHz+OyWTik08+4ciRI8yfP5+PP/6Yt956q9R2d+zYQb9+/Rg0aBBHjhzh66+/5s8//2TIkCGlnjd48GASEhL4z3/+w+HDh+nUqRMdOnTgwoULyjFvvPEGP//8M//97385duwYo0ePZvjw4axbt045plGjRixfvpxjx46xceNGZFmmU6dOGI3m76VGo5EuXbqg1+vZuXMnK1euZMWKFUyePLlEnzIyMujXrx/t27e/p/c0NzeX5557jtmzZ9/T8Y+TCEoJFZKlnhTAvg1rWDtvJqbif+5GQCWpMBkthTsR0/eEB1JQcIn09D8A0Gq9cXdvRVjYRDQaXZld49S1HDrN30LTmZswmGQkCdYOi+A/g5oR6O5QZtcRBEEQnk2W1fcs0/euGapaXkGWjDi6mYNQlkLnakk8yBOEO7G1tcXHx4egoCBef/11OnTowLp160hPT6dfv364ubnh4OBATEwMJ0+eVM47e/YssbGxuLm5odPpqFWrFhs2bODMmTNERkYC4ObmhiRJDBgwADBn7/Tp0wedToevry/z58+nbdu2jB49Wmk3ODiY9957j379+uHs7Mxrr70GwPbt22nVqhX29vYEBgYycuRIcnNzAThy5AjJycl89NFHNG/enKCgICIiIpg+fTrNmzcHICUlhbFjxzJ69GhmzpxJzZo1CQsLY+zYsXzwwQfEx8dbZTbdr969e9OhQwdCQ0OpVasW8+bNIysri0OHDgHm4N/y5cvp1KkToaGhdO3alTfffJNvv/221HZ37dpFcHAwI0eOJCQkhOeee46hQ4fy559/3vGc/Px8vvnmG+bMmUPr1q0JCwtj6tSphIWFsXTpUuW4nTt30r9/f9q2bUtwcDCvvfYa9erVs2r7tddeo3Xr1gQHB9OwYUOmT59OSkoKZ86cAeCXX37h6NGj/Pe//6V+/frExMTw3nvvsWTJkhIBxbi4OHr37k2LFi3u6T3t27cvkydPpkOHDvd0/OMkvokLFZJl6p5syuWPb1Zx+sAeTLK5BoJJksyZUkZzGqQky6AWAyzh/pw//1927HyO02cWAVCpUhca1F9BUOXBZXqdX45e4cSVHK7nFAJQL8AVGxFEFQRBEMqI6ZaFYSwP8VQuf3C90g6cPc3T+FSyjFECjUrUlBIeL1mWMeXllcsf+ebpFw/A3t4evV7PgAED2Lt3L+vWrWPXrl3Iskznzp0pKioCYNiwYRQWFrJ161YOHz7M7NmzcXR0JDAwkG+++QaAxMRELl26xIIFCwBzZs6OHTtYt24dCQkJbNu2jf3795fow9y5c6lXrx4HDhzgnXfeITk5mejoaLp3786hQ4f46quv2L59O8OHDwfAy8sLlUrFmjVrlAyeW61Zs4aioqLbZkQNHToUR0dHVq9e/VDvnYVer2fZsmW4uLhQr169Ox6XmZmJu7t7qW21aNGClJQUNmzYgCzLXLlyhTVr1tC5c+c7nmMwGDAajdjZ2Vntt7e3Z/v27cp2y5YtWbduHRcuXECWZX7//XdOnDhBp06dbttubm4uy5cvJyQkhMDAQMAcNKtTpw6VKt1YtTsqKoqsrCyOHDmi7Fu+fDmnTp1iypQppd7v00J8qggVkhKUkosDTw4OyMWDLOnaWfIuHqegyPwlX4WMpBE/CsL9Sc8wP/1RqWyxsXHH2yu6TNtf99dFkq7msP2kOU25Z+NABkQEE+pVdllYgiAIgnBroXPLeEmWwK6gkKLr5lorEubpe6KmlPC4yfn5JDZsVC7XrrZ/H5LD/Wemy7LMpk2b2LhxIzExMaxdu5YdO3bQsmVLwFzXKDAwkLVr19KjRw/OnTtH9+7dqVOnDgChoaFKW5ZAi7e3N66uroA5S2rlypV88cUXyvSt5cuX4+fnV6Iv7dq1Y+zYscr24MGD6dOnj5JRFR4ezsKFC2nTpg1Lly7F39+fhQsXMn78eKZNm0bjxo2JjIykT58+Sr9OnDiBi4sLvr6+Ja6n1WoJDQ3lxIkT9/2+3Wz9+vX06tWLvLw8fH19SUhIwNPT87bHJiUlsWjRIubOnVtqmxEREaxatYqePXtSUFCAwWAgNjaWJUuW3PEcJycnWrRowXvvvUeNGjWoVKkSq1evZteuXYSFhSnHLVq0iNdee42AgAA0Gg0qlYpPP/2U1q1bW7X30UcfMX78eHJzc6lWrRoJCQloteb6sJcvX7YKSAHK9uXLlwE4efIkEydOZNu2bWgqyHdY8bhdqJAsAyxLHYTCSgGYUCOb8lFlXMGUm4VBbw5K2esNyGKAJdwDWZZJPDGNPXu7k5q6FYCaNefyXMR2XF0bl9l1Tl3LYeTqAyzcdJL95zIAqBPgQg1fZ2xF/TNBEAShDJluKXRuqcGpKjLw/A8/kP3778CN6Xti9T1BuLP169fj6OiInZ0dMTEx9OzZkwEDBqDRaGjWrJlynIeHB9WqVePYsWMAjBw5kunTpxMREcGUKVOUaWp3curUKYqKimjatKmyz8XFhWrVqpU4tnFj6zHqX3/9xYoVK3B0dFT+REVFYTKZOH36NGDO3Lp8+TKrVq2iRYsWfP3119SqVYuEhIR7fi8sgZbSrFq1yqof27ZtU16LjIzk4MGD7Ny5k+joaF5++WWuXr1aoo0LFy4QHR1Njx49rGpD3dxuXFwcAEePHmXUqFFMnjyZffv28fPPP3PmzBnl9W3btlmdt2rVKgD+85//IMsy/v7+2NrasnDhQl555RVUqhvhlEWLFvHHH3+wbt069u3bR3x8PMOGDePXX3+16m+fPn04cOAAW7ZsoWrVqrz88ssUFBTc03tqNBrp3bs306ZNo2rVqrc9prT39EklPlWECsmk1JQqrhulljDJasAciEKS6D5xKpenTcGxsAhJfNEX7kFBwXnOn/+31T5HXfUyv87ZtDwAPB21xNT2xc3Bhn80EEXNBUEQhLJnuiVTyrJasU1BIWqjEVPx/jRHOFxFgyRJ5dNR4Zkl2dtTbf++crv2/YiMjGTp0qVotVr8/PzQaDRWha7vZPDgwURFRfHjjz/yyy+/MGvWLOLj4xkxYsSDdl2h01ln2efk5DB06FBGjhxZ4tjKlSsr/+/k5ERsbCyxsbFMnz6dqKgopk+fTseOHQkPDyczM5OLFy+WyM7S6/UkJycTFRV117517drVKljn739jvKvT6QgLCyMsLIzmzZsTHh7OZ599xqRJk5RjLl68SGRkJC1btmTZsmVWbd+8upyzszMAs2bNIiIignHjxgFQt25ddDodrVq1Yvr06TRu3NjqPEuWUpUqVdiyZQu5ublkZWXh6+tLz549lcyx/Px83nrrLb777ju6dOmitH3w4EHmzp1rVcfJxcUFFxcXwsPDad68OW5ubnz33Xe88sor+Pj4lKhvdeXKFQB8fHzIzs5m7969HDhwQJluaTKZkGUZjUbDL7/8Uup7+qQSQSmhQjGZZM78dZ2Mq+Yv9RoKqO+RgoMqlT/oDLI5SKUyyRSNfAPn4uU/JVFTSrgHhXrz0xmt1ovq1WdgZ+ePThd6l7Pu3ardZ5nx4zEKDeZ/p7X9XXjvH7XLrH1BEARBuFXx0Aib1MOQdkmZvmcyyejVKuTiqUvrmkuku4uV94THT5KkB5pCVx4sgZSb1ahRA4PBwO7du5Xpe6mpqSQmJlKzZk3luMDAQOLi4oiLi2PSpEl8+umnjBgxQsk4urm+U2hoKDY2NuzZs0cJJGVmZnLixIkS08Vu1bBhQ44ePVqin6WRJInq1auzc+dOAF566SUmTJhAfHw88fHxVsd+/PHH5OXl0a9fv7u26+TkhJPTva1WbTKZKCwsVLYvXLhAZGSksqLdzVlLwG3vLy8vr8SUN3Xx90BZlrG3ty/1fdHpdOh0OtLT09m4cSNz5swBzCsWFhUVleiDWq3GZDLdsT1ZlpFlWbmvFi1aMGPGDK5evYq3tzcACQkJODs7U7NmTWxsbDh8+LBVGx999BG//fYba9asISQkBJ1Od8/v6ZNCBKWECuXs4ev89MmNH9Rg7UFaeZ1BliX+QIVsyZwymTBcvWqujyBBmvf9PQURnh0mk559+3uTnX0ES+adnZ0/Xp73tvzq/Vh74AJ5+hsDjpZVPMr8GoIgCIJwM5NJxll9Cac1/wRA5kMA8rLP8GvtkBvHiZX3BOGBhIeH061bN4YMGcInn3yCk5MTEydOxN/fn27dugEwevRoYmJiqFq1Kunp6fz+++/UqFEDgKCgICRJYv369XTu3Bl7e3ucnJzo378/48aNw93dHW9vb6ZMmYJKpbprNuOECRNo3rw5w4cPZ/Dgweh0Oo4ePUpCQgKLFy/m4MGDTJkyhb59+1KzZk20Wi1btmzh888/Z8KECYA5o2rOnDm8+eab2NnZ0bdvX2xsbPj+++956623mD59OrVrWz9YTUxMLNGXWrVqYWNjHezOzc1lxowZdO3aFV9fX65fv86SJUu4cOECPXr0AMwBqbZt2xIUFMTcuXO5du2acr6Pj88d7z02NpYhQ4awdOlSoqKiuHTpEqNHj6Zp06a3rcdlsXHjRmRZplq1aiQlJTFu3DiqV6/OwIEDAXMmVps2bRg3bhz29vYEBQWxZcsW/v3vfzNv3jzAPOXyq6++olOnTnh5eXH+/Hnef/997O3tlULrnTp1ombNmvTt25c5c+Zw+fJl/vWvfzFs2DBsbc2LTtz6vnp7e2NnZ1di/63S0tI4d+4cFy9eBG78ffj4+JT6nj0OIiglVCh5WealMh1ctPiEuOC/2zwf+7psWYmhOFNKljnpC8ti1GQ4QlU/8eVfuL3c3CSysg5Y7XNzu7elV+/VlO//5sfDl0nPM//7/X/9GlO/siuejrZleh1BEARBuJVslHFUmTPHi0wq9CbzF0RDUY5yjNrBjqtuhWhU4iGeIDyI5cuXM2rUKJ5//nn0ej2tW7dmw4YNSkDGaDQybNgwzp8/j7OzM9HR0cyfPx8wT7+aNm0aEydOZODAgfTr148VK1Ywb9484uLieP7553F2dmb8+PGkpKSUWCXuVnXr1mXLli28/fbbtGrVClmWqVKlCj179gQgICCA4OBgpk2bxpkzZ5AkSdkeM2aM0s6YMWMIDQ0lPj6eBQsWkJubC8Dq1avp1atXievebl9KSgoBAQFW+9RqNcePH2flypVcv34dDw8PmjRpwrZt26hVqxZgzh5KSkoiKSmpxPmlrZg4YMAAsrOzWbx4MWPHjsXV1ZV27doxe/bsUt+zzMxMJk2axPnz53F3d6d79+7MmDHDKqD25ZdfMmnSJPr06UNaWhpBQUHMmDFDqVdlZ2fHtm3b+PDDD0lPT6dSpUq0bt2anTt3KllRarWa9evX8/rrr9OiRQt0Oh39+/fn3XffLbV/92LdunVKEA1u/H1MmTKFqVOnPnT7D0OSH3adywosKysLFxcXMjMzlXmowpPt8ObzbP3yBFUaeBE9tA6ne9cmpGoKx0w1+O3qTEzG6+iz/o22yIhn/lnWDqtDXc+6/CP8H9TyqFXe3ReeIAWFlzl6dBwF+efJLziHo2N16tX9f0iSBltbrzK7TpHRRNV//YTlN7Grgw3bxkfiZCemSAjCk0qMD0oS78nTxWg0se2rk2Sn5nPuSBoB2r/o5j6VawUOrLm2CJONOwXp5qf74VfO8vYAQAJ3O3e29NxSksfVmAABAABJREFUnl0XKriCggJOnz5NSEjIXYMrgrXc3Fz8/f2Jj49n0KBBj/36aWlptG/fHmdnZ3766SccnpIpl8LDKe1n9l7HBiJTSqhQlGKd6uK0Vdk8FcooF3/BLy6cICFjVEG7wHYMrTf0sfdTePJdu/oz6ek7lW1n5/rY2ZVc9vZBXc0u4NejV8nI1yPLoFFJ/DDiOfzd7EVAShAEQXikrpzK5MjWC8q2GnOmrlFtQ5GtPSrjjWfWJknGVmOHk9aJF8NffOx9FQTh9g4cOMDx48dp2rQpmZmZSjaNZUrg4+bu7s6vv/7KkiVL2LVrF+3bl32pC6FiEkEpoUKRb1nW2ISKc4X1uGKsUXxEcVBKljGqQaMSPwKCtaysQ5w5+wk5OeYler29O+Pv3xtXl4Zlep0p3x/hp78vK9s+LnbU8BXZBYIgCMKjZ9Cbx0OO7rY0iw3FduUiAIwqG0AF3BSUUsl0DunMuxEPP31EEISyNXfuXBITE9FqtTRq1Iht27bh6elZbv3x8PBg8uTJ5XZ94ekkvpELFYrplqBUkl0USenP3zhAstSUAqNKBKWEks6eXca1az8r254ebXEv4xpSAMnXzLU6moW44+Go5YUGAXc5QxAEQRDKhmW85OCkpXoLXy5/ngmAJGmRkLA8xAOQVTJqlShwLghPmgYNGrBv377y7oYgPDTxjVyoUCyZUlJxUKpAMhc416oyyFVLVG/kzpFfzZlSJhVoxSoyQjGDIRejKZ/8gvMABAT0w82tOZ4e7crsGrmFBgat3MP59HwuZuQD8G632lTzebqWbRUEQRCebreOl2TZYH5BsgHZOihlkCSx6p4gCILwyIiglFChmIzWNaVMqADwcdjFPkcdIfWji4NSYBDT94Ri6Rl7OHCgH7KsV/b5VIrFpYyn7P1xKpU/TqUp264ONlR2F0UgBUEQhMdLySy31OA0FdfgRAVISk1OMGdKifGSIAiC8KiITxihQrm5ppQsy8hS8WBLshxQHLQqLnQu0tEFgPT0XVYBKZ0uHEfHGqWccX/Op+cxL+EEJ65kA9A81J2JMTUI9nDAXiv+DQqCIAiPl/IQr3iclC/bsTVrMGkmHyRZDdz4TDSqEJlSgiAIwiMjglJChWJVU8pgQC4eRMnFtaRkk6WmlDkopZHEj8Cz7OTJmVy5sp4iQxYAoSFjCAkZXubXWbX7HN/uv7HKUaMgN+oHupb5dQRBEAThXsiydabUOVV9juR1AYqf46luLAwjixqcgiAIwiMkPmGECuXmGgmy0YhcPH0PQNIXkHXVvNqZJINREoOsZ5ksm0g5v/JGHQ3AxaVBmV7jr5QMDpxLZ2dyKgBd6vrSvro3nWr5lOl1BEEQBOF+yEbrmlJGbABwtTnDeTsjzZ+rwd4vilcrFplSgiAIwiMkvpELFYolHV2lkpANRmTJHJRKz0rDMf0a25L/BooHWWoxyHoWGY2FXLnyA4X6K8UBKYkmjb/DxsYde3v/MrtOocFI70//IFd/oy7H83V8ianjW2bXEARBEIQHcetqxabiOgdOmovk6wy4+9cDih/iiUwpQRCEp4rRWIDJpMdgzMZkzEO+y/G2Wi9sbFwfR9duS3zCCBWKZZAlqSUw3pi+V1hUCICNnR02JpmA9Ktc9xA1pZ5Fly6tIfHEZGXb1rYSzs51yvw617ILydUbUaskYmr74O1kR2R17zK/jiAIgiDcL7l4cT1l9T3LC5L5/0yXLhVvypgk8RBPEAThaWE0FpKbe/K+zjHdNHOkPKjufoggPD0sg6ysgx+z553WoLX8EzcPspq98DIv1m5GYFo2JvHk75mUl38aAJ2uKj6V/kH1au+Vafu7T6Xy5td/MeX7IwB4O9myuHdDJsfWxM5GDOoFQRCE8ndrptSNcgcy/innKfzXO+bXMa9WLB7iCcLdDRgwAEmSkCQJrVZLWFgY7777LgbDw33h37x5M5IkkZGRUTYdvQenT5+md+/e+Pn5YWdnR0BAAN26deP48eNWx61fv542bdrg5OSEg4MDTZo0YcWKFVbHnDlzBkmSOHjw4D1ff+rUqVSvXh2dToebmxsdOnRg9+7dVm0OGjSIkJAQ7O3tqVKlClOmTEGv15fSqtmqVauoV68eDg4O+Pr68uqrr5KamlrqOVu3biU2NhY/Pz8kSWLt2rUljvn222/p1KkTHh4ed71fWZaJiYm5Y1srVqygbt262NnZ4e3tzbBhw6xe37hxI82bN8fJyQkvLy+6d+9OcnIiBQWXKCw0P1T43/82EBHxMj4+TalWrSMjR84hP98JB4fgEn9sNM73fJ+PQrkEpaZOnar8wFr+VK9eXXm9oKCAYcOG4eHhgaOjI927d+fKlStWbZw7d44uXbrg4OCAt7c348aNK/EDv3nzZho2bIitrS1hYWElfkCEiscyyGpU+AXN3c9gY3niV5yWnvbxMtL/+18ADKLQ+TPDYMjmj93R/L65BikpKwHw83uZWrXi8fRsV6bXenf9UdbsO8+m41cBqOzuUKbtC4IgCMLDspQ78CtIgEWNsXPKt7yCQ1YG2fa2AMgSbKslifGSINyj6OhoLl26xMmTJxk7dixTp07lgw8+KO9uKe4laFNUVETHjh3JzMzk22+/JTExka+++oo6depYBcYWLVpEt27diIiIYPfu3Rw6dIhevXoRFxfHm2+++VD9rFq1KosXL+bw4cNs376d4OBgOnXqxLVr1wA4fvw4JpOJTz75hCNHjjB//nw+/vhj3nrrrVLb3bFjB/369WPQoEEcOXKEr7/+mj///JMhQ4aUel5ubi716tVjyZIlpR7z3HPPMXv27Lve34cffqisfnqrefPm8fbbbzNx4kSOHDnCr7/+SlRUlPL66dOn6datG+3atePgwYP8/PNPXL9+je7dX0Svv27+3vPHAYYOfYshQ17nyJGjfP31GvbuPcDrr7+BRuNU4o9Kpb3n+3wUyu0TplatWvz66683OqK50ZUxY8bw448/8vXXX+Pi4sLw4cN58cUX2bFjBwBGo5EuXbrg4+PDzp07uXTpEv369cPGxoaZM2cC5r+sLl26EBcXx6pVq9i0aRODBw/G19fX6i9VqFhkozlVylZVBEAOjgAUyo5AFnJODnKR+bUzlSTaiid/z4SMjL1WaaySZIOrS6MyvUbC0SvsP5fOqWu5ALzetgoeOi0da1Yq0+sIgiAIwsOyLAwTmLcO9CeRVG0BSCvIIVVVwOUg82dXgYsth0JVRIvxkiDcE1tbW3x8zAvavP7663z33XesW7eOuLg4Ro0axQ8//EBhYSFt2rRh4cKFhIeHA3D27FmGDx/O9u3b0ev1BAcH88EHH1CzZk0iIyMBcHNzA6B///6sWLGC7Oxs4uLiWLt2Lc7OzowfP57vv/+e+vXr8+GHHwIQHBzMoEGDOHnyJGvXruXFF19kxYoVbN++nUmTJrF37148PT154YUXmDVrFjqdjiNHjpCcnMymTZsICgoCICgoiIiICOU+U1JSGDt2LKNHj1a+fwOMHTsWrVbLyJEj6dGjB82aNXug97F3795W2/PmzeOzzz7j0KFDtG/fnujoaKKjo5XXQ0NDSUxMZOnSpcydO/eO7e7atYvg4GBGjhwJQEhICEOHDr1rICkmJoaYmJhSj+nbty9gzuIqzcGDB4mPj2fv3r34+lrXmk1PT+df//oXP/zwA+3bt1f2161bV/n/ffv2YTQamT59OpIkkZuXxD//2YNXXhlFUVERDrpK7N9/6pHd56NQbtP3NBoNPj4+yh9PT08AMjMz+eyzz5g3bx7t2rWjUaNGLF++nJ07d/LHH38A8Msvv3D06FH++9//Ur9+fWJiYnjvvfdYsmSJEv39+OOPCQkJIT4+nho1ajB8+HBeeukl5s+fX163LDxCmdfyOHP4OlmpBQCoiqfrZWFORXQzOQEgIfNDU4khI9Tsrq7Czc6tfDosPBZ5eac5cHAAJ06+C4C7WwQRLbfRutUenJ3r3uXse5dVUMTr/93H0s3J5BcZsVFLjGgXxuBWoQR56MrsOoIgCIJQFpTpe5J5lkFWhvmzKq3I/JBYbTThYKMlt5areVvUlBLKkSzLFBUay+WPLN+tRHTp7O3t0ev1DBgwgL1797Ju3Tp27dqFLMt07tyZouKH5cOGDaOwsJCtW7dy+PBhZs+ejaOjI4GBgXzzzTcAJCYmcunSJRYsWADAG2+8wY4dO1i3bh0JCQls27aN/fv3l+jD3LlzqVevHgcOHOCdd94hOTmZ6OhounfvzqFDh/jqq6/Yvn07w4cPB8DLywuVSsWaNWswGo0l2gNYs2YNRUVFt82IGjp0KI6Ojqxevfqh3jsLvV7PsmXLcHFxoV69enc8LjMzE3d391LbatGiBSkpKWzYsAFZlrly5Qpr1qyhc+fOZdLXu8nLy6N3794sWbJECV7eLCEhAZPJxIULF6hRowYBAQG8/PLLpKSkKMc0atQIlUrF//t/SygouEp62jW+/HI9bds2x87OFTtbP1q16liu93m/yi1T6uTJk8oc1RYtWjBr1iwqV67Mvn37KCoqokOHDsqx1atXp3LlyuzatYvmzZuza9cu6tSpQ6VKNzIQoqKieP311zly5AgNGjRg165dVm1Yjhk9evQd+1RYWEhhYaGynZWVVXY3LDwyBblFrJ72J0aDSdknFU/bQ7bUSjC/JsmQ4aRiYOsx+Dv6U9O95mPvr/D4XLy0hrS0bcq2s0sD7Oz8yvw6lzIKMJhk7G3UvNK0Ms1C3XHQiqkOgiAIwpPJkiklFRfjNBRpQHtjvOSXno2mpppvK1+AXFGDUyhfBr2JZaO2lMu1X1vQBhvb+w/KyrLMpk2b2LhxIzExMaxdu5YdO3bQsmVLwFzXKDAwkLVr19KjRw/OnTtH9+7dqVPHvPhOaGio0pYl0OLt7Y2rqysA2dnZrFy5ki+++ELJqFm+fDl+fiXHue3atWPs2LHK9uDBg+nTp4/yvTg8PJyFCxfSpk0bli5dir+/PwsXLmT8+PFMmzaNxo0bExkZSZ8+fZR+nThxAhcXlxKZPgBarZbQ0FBOnDhx3+/bzdavX0+vXr3Iy8vD19eXhIQEJZHlVklJSSxatKjULCmAiIgIVq1aRc+ePSkoKMBgMBAbG/vYpquNGTOGli1b0q1bt9u+furUKUwmEzNnzmTBggW4uLjwr3/9i44dO3Lo0CG0Wi0hISGsX/8/+vR5lX/+cwxGo5GmTeuzcePv6HSuT8R93q9yyZRq1qwZK1as4Oeff2bp0qWcPn2aVq1akZ2dzeXLl9FqtcoPnEWlSpW4fPkyAJcvX7YKSFlet7xW2jFZWVnk5+dzO7NmzcLFxUX5ExgYWBa3KzxieZl6jAYTkkrCq7ITfpVtUUnmQZVSuFO2DL5kJLWaQXUGER0Sfce5vMLTLScnkZNJs7h+fRMAvr49qF9vBSHBw+5y5v1Z/NtJGr2XwEtLdwIQ4GbP5NiaRNUq+eRDEARBEJ4UymrFxSsumWTLV4Lih3jAiaxkLueax9Uis1wQ7s369etxdHTEzs6OmJgYevbsyYABA9BoNFZT2Tw8PKhWrRrHjh0DYOTIkUyfPp2IiAimTJnCoUOHSr3OqVOnKCoqomnTpso+FxcXqlWrVuLYxo0bW23/9ddfrFixAkdHR+VPVFQUJpOJ06fNCwINGzaMy5cvs2rVKlq0aMHXX39NrVq1SEhIuOf3QqvV3vWYVatWWfVj27YbD5MjIyM5ePAgO3fuJDo6mpdffpmrV6+WaOPChQtER0fTo0cPq9pQN7cbFxcHwNGjRxk1ahSTJ09m3759/Pzzz5w5c0Z5fdu2bVbnrVq16p7v927WrVvHb7/9pkytvB2TyURRURELFy4kKiqK5s2bs3r1ak6ePMlvv22ioOAip07t5fXXR/HKK13ZsmUNGzd+iZ2dIy+99JKS2Vee9/kgyuWxx83zFOvWrUuzZs0ICgrif//7H/b29uXRJQAmTZrEG2+8oWxnZWWJwNRTwDKwsnO04eW3mpB/5AiqLy2ptuagk9pdCxfNWya1WHSyojtxcjrp6TuVbS/Pdnh4tCrz6/z3j3Ok5t4oGNk4WAzaBUEQhCefJVNKzs4AuxtBKVmWkQCVLGNUw2t1X6OyU2XaBrYtt74Kgkar4rUFbcrt2vcjMjKSpUuXotVq8fPzQ6PRsG7durueN3jwYKKiovjxxx/55ZdfmDVrFvHx8YwYMeJBu67Q6axLSeTk5DB06FCl3tDNKleurPy/k5MTsbGxxMbGMn36dKKiopg+fTodO3YkPDyczMxMLl68WCI7S6/Xk5ycfE91nLt27WoVrPP397fqd1hYGGFhYTRv3pzw8HA+++wzJk2apBxz8eJFIiMjadmyJcuWLbNq++bV75ydzSVdZs2aRUREBOPGjQPMsQidTkerVq2YPn06jRs3tjrv1iSXh/Hbb7+RnJxcIvmme/futGrVis2bNyuZZzVr3pjN4+XlhaenJ6dPJ9KyZQAff/wpzs6OvPfeGzg4hKDROFKzZgSBgYHs3r2b5s2bl+t9PognIhfX1dWVqlWrkpSURMeOHdHr9WRkZFj9hV25ckWZd+nj48Off/5p1YZldb6bj7l1xb4rV67g7Ox8x8CXra0ttra2ZXVbwmMiK3URincYDFwsqsupnJZgNP9dSzpz2q0kAxpRF6GiK8g/D4CPzws4OdXCw6PsVtiTZZlpPxzlQEoGV7LNNcy+jmuBh05LiKeoHyUIgiA8mWRZZsNHhzh7JO1GnRzZXM+mwDI2lm6UQjBK0Lt6bzzsPR53VwXBiiRJDzSFrjxYAik3q1GjBgaDgd27dyvT91JTU0lMTLQKPgQGBhIXF0dcXByTJk3i008/ZcSIEUrG0c31nUJDQ7GxsWHPnj1KICkzM5MTJ07QunXrUvvYsGFDjh49WqKfpZEkierVq7Nzp/mh70svvcSECROIj48nPj7e6tiPP/6YvLw8+vXrd9d2nZyccHJyuqc+mEwmq1I7Fy5cIDIyUqlBrVJZBxBvd395eXlWC6wBqNXmf1uyLGNvb39f78v9mDhxIoMHD7baV6dOHebPn09sbCyAUkw+MTGRgIAAAC5fTub69ev4+Jh/TxcUGNBobLG3r4xarbO6B5PJ/Du8PO/zQTwRQamcnBySk5Pp27cvjRo1wsbGhk2bNtG9e3fA/Jdy7tw5WrRoAZgLlM2YMYOrV6/i7e0NmIuCOTs7Kz/YLVq0YMOGDVbXSUhIUNoQKg4lBV1dXD/KaGRH9iAyjAFY4lSWgJUky8giU6pCSk//k6NHx2Iw5mEwZAAQEjwCB4egMr3O+fR8Vuw8o2xXcralUWU3VCoxFVQQBEF4chmLTJw5nHpjhwSyZH64kmunAwOYZBNqzA/xjGpJ1JIShDIQHh5Ot27dGDJkCJ988glOTk5MnDgRf39/pbbQ6NGjiYmJoWrVqqSnp/P7779To0YNwLzynSRJrF+/ns6dO2Nvb4+TkxP9+/dn3LhxuLu74+3tzZQpU1CpVHctTzJhwgSaN2/O8OHDGTx4MDqdjqNHj5KQkMDixYs5ePAgU6ZMoW/fvtSsWROtVsuWLVv4/PPPmTBhAmDOqJozZw5vvvkmdnZ29O3bFxsbG77//nveeustpk+fTu3ata2um5iYWKIvtWrVwsbGxmpfbm4uM2bMoGvXrvj6+nL9+nWWLFnChQsX6NGjB2AOSLVt25agoCDmzp3LtWvXlPNvV0DcIjY2liFDhrB06VKioqK4dOkSo0ePpmnTpretx2WRk5NDUlKSsn369GkOHjyIu7u7EhRMS0vj3LlzXLx40ep+b17c7XZ9q1y5MiEhIQBUrVqVbt26MWrUKD76aAFOTg68/fa/qFo1hNatmyJJamJjX2Dx4uXMmrWAV155hezsbN566y2CgoJo0KDBI7/PR6FcPmnefPNNYmNjCQoK4uLFi0yZMgW1Ws0rr7yCi4sLgwYN4o033sDd3R1nZ2dGjBhBixYtaN68OQCdOnWiZs2a9O3blzlz5nD58mX+9a9/MWzYMCXTKS4ujsWLFzN+/HheffVVfvvtN/73v//x448/lsctC4+QkilVHBQw6fUUyXYAFDmcpVbj6qSfNB8rIYNaDLDuxmA0cTYtD1mGKl66p6L21pWrP1JQeFHZtrX1xc6uZPHFB5WvN7L15DUSL2cD5mDUzBfqUMvPRQSkBEEQhCee5SEewP+91wItevTx5swLk1oLBrhRU0rGqBKr7glCWVm+fDmjRo3i+eefR6/X07p1azZs2KAEZIxGI8OGDeP8+fM4OzsTHR2trBrv7+/PtGnTmDhxIgMHDqRfv36sWLGCefPmERcXx/PPP4+zszPjx48nJSUFOzu7UvtSt25dtmzZwttvv02rVq2QZZkqVarQs2dPAAICAggODmbatGmcOXMGSZKU7TFjxijtjBkzhtDQUOLj41mwYAG5ubkArF69ml69epW47u32paSkKBlBFmq1muPHj7Ny5UquX7+Oh4cHTZo0Ydu2bdSqVQswJ5skJSWRlJRU4vzSVkwcMGAA2dnZLF68mLFjx+Lq6kq7du2YPXt2qe/Z3r17iYyMVLYtJX/69+/PihUrAHPNqIEDB5a43ylTpjB16tRS27/Zv//9b0aNGk7Xri+gUqmIiGjMN98sxdk5FBsbFzp2rMkXX3zBnDlzmDNnDg4ODrRo0YKff/5ZmRH2KO/zUZDkh13n8gH06tWLrVu3kpqaipeXF8899xwzZsygSpUqABQUFDB27FhWr15NYWEhUVFRfPTRR1aRxbNnz/L666+zefNmdDod/fv35/3337dKU9u8eTNjxozh6NGjBAQE8M477zBgwIB77mdWVhYuLi5kZmYq81CFJ8/FpAy+m7sfF297/u/dFmRt28Ka1dfJN7mR57GTqNjOHP3pKy4cP0KDM5f5JdqO96dtL+9uPxFkWWbiN4c5dCETWZY5n55Pnt7ATeNWTs/q/EQHpS5d+oZzKcvJz0/BaMwhNGQM3t4x2Nn5oVaXXY26WT8d45Mtp5TtZiHufDVUZF4KwrNIjA9KEu/Jk68wr4j/94a5iHDc4raQl0PerCo42er5KH0xcqE/2qKNZOUcocqVdHbXzGDKwn3YaUr/gisIZamgoIDTp08TEhJy1+CKYC03Nxd/f3/i4+MZNGjQY79+Wloa7du3x9nZmZ9++gkHB4fH3oennV6fTlFRGrJswGTSI0kaVCotKpUWOzt/JOneZ/zcGuZ5VN/nSvuZvdexQbmkjHz55Zelvm5nZ8eSJUtKXbIwKCioxPS8W7Vt25YDBw48UB+Fp4dstM6UMhYWIhcX7DRJoNKoMZnMTwLN0/fEUz+LM6l5fLU35bavqVUSjrZPflbZ2XOfkpt7Utn28GyLTlelzK9jyZAK93bEx8WO11qH3uUMQRAEQXhyyDfKRSGpJExGI5JkqS1lHjc56nRk5ZjHS0YVqFVizCQIT6oDBw5w/PhxmjZtSmZmJu+++y6AMiXwcXN3d+fXX39lyZIl7Nq1i/bt25dLP55mhforyKYiZdvW1gut1vO+2zEYTSRdy0FvMP/ir+7jhPYJrqv85H/jFIS7MBVHgSVl+l4eMsXF3gCVWo1cXBhQAhBBKcW1bHOxQB9nOz7oURdbjZrK7g6oVOChs0X9hE5LM5kKSUvbidGUT0HBJQBq1piDs3P9Mg1IFRlN9Fr2B0cuZlJY/Ev97S41aFvNu8yuIQiCIAiPw83T9yQJMBg4p2/Ckex/IBvMX3o0lezhinm8JKbvCcKTb+7cuSQmJqLVamnUqBHbtm3D0/P+gxhlxcPDg8mTJ5fb9Z9GRmMheXmnkGWDss/ePhBJ0iiFzO/VtexCrmQVKN+PnxYiKCU89ZRMKUuhc70eE+YfYBMSKrVKWYlArL5ndjY1l8Er93I501zg1N/NnlbhXuXcq3t37txnJJ+yXunD07MjNjZlO2Xk5JUc9p1NV7adbDXU9ncp02sIgiAIwuNgqcEpqSQkSUI2GDheEMNVQ7hyjKXesDmzXEJ1H1NFBEF4vBo0aMC+ffvKuxvCAzKZDJhM+RgM2VYBKbXaHo3G5b6m2xUUGcnTG0nNLbQKSHk72eHpqH1iEw0sRFBKeOopq+8V/+CaigoxyealRU2ShCo7G0NGhvkYWUbSiH/2m45d5eTVHGW7YWXX8uvMA8jOOQ6AvX0wtraVcHdrUaYBqcuZBXx74DxJxe9R1UqOfNa/CR6OWhy04t+PIAiC8PRRxkvFcSbZaMRUnFku645TTZVN+tZNoNMiySCLqXuCIAiPTH7+WYzGPGVbq/VAq/VCkjT3FZCSZZnkazkYb8qGreLliK1GheYpWXVefLsSnnrK6nvFmVImQ6EyfU+WZXLjZ1NozAE7LRJgeoaDCgfOpbPp2FV2nzYvCf1iQ3+GR4YR4nl/qaHlQZaN7Nv/CpmZN54IVQl9g0qVupT5teYlJPK/veeV7WAPHYHuolijIAiC8PS6dbViDIYb5Q5sMvE8vItUfSHotMjIXPR5dsdLgiAIj4LJZKCw8DKybFACUiq1HRJqbGw8UKls7rktvcHIlaxCDCYZo0lGkiScbDXYa9XonoK6wDd7unorCLdhefJnzL/Kd3HRaAwZmDQzAdBePsFvNnqw0QKwvwpcDn52VwUasfoA59Pzle06/i6EejmWY4/uXX5+ilVASqNxwsWlwSO51plU84dEm6pehHjq6NOs8iO5jiAIgiA8LiaTdQ1O2WhExvwUXZZAMpmQi+NVa1qpSPG3LZd+CoIgVDSyLCPLRRQVpVNUdKM0iCRp0DmEPdDKeKm5etLz9Mq2vY2a4Kcg0eB2RFBKeOpZVpOplreU+j67kGWJj66Y96kLzNOvVCaZXJ2Rb58zUOcZm75nMskcv5xNgcGoBKR6N6uMp6Mt3RsFlHPv7q6oKJNjxyaQl38WAHv7IBo3+h9qtRNqddkNmP++kEnfz3aTkV+EZSr2sMgwmoa4l9k1BEEQBKG83JopJRuMmIqDUiaK60gVfzHKswWN6tkaLwmCIDwqev1VCguvKtsajTMajRNqte6+AlImk8z59HyKjCZlESZXBy06WzVOT1l21M2e3p4LQjFLEXNn1XUAsrgp86c4utAi6TzTXzFSZCMR5hr22PtYnuZsTOTjLcnKtlatYsY/aj9QRL48XL++iWvXE5RtJ6faD7Q06t1sTrxKet6NJVg9HW2p7utU5tcRBEEQhPJgyZSyU2XB77PQXDqDTHMAZCQkoxHZUm9KklGLmlKCIAgPTJZljMY8ZNlIkSELAElSIUkabG29Uavt76stvcFEVoGBjHy91WseOu1TN13vVk937wWBG5lSKowAbKGF8pqdrEGPHkmG4Y1HElK/DeFu4bdrpsI6cjETADcHGxy0Gv7RwK/UgJTBZOB/if/jev51UrJTuJpnjuqnFqRyLe8aADU8arAiesUj7bfBkENBwUWyc44B4O4WQWDgQFxdm5TpdXYmX2fxb0kkXzNn1Q1pFcJrravgYm+DVvN0FAcUBEEQhLuxjJeqa3+BLSvRALLcEoAiSUWRqRC5OA4lS6CWRFBKEAThQRkMmeTnp1jts7cPQaO5/zq1abl6LmTcKMHiaKvBQ6dFo1Y99QEpEEEpoQIwGYvT0SVzUMok3zSIKs6UkmSZym6hVHOv9tj7V97Scs3R9Hk96xNZzfuux++4sINZf84q9ZgCQ0GZ9O1OjMY8du6KpKgoTdnn5FQbT8/IMr/Wsq2n2Jmcqmw3rOyGl5OooyEIgiBULJbpe7Yq80MYo2sN8i+bP++K0JBtyES2cTEfK4GLrUv5dFQQBOEpptenYTBkYzKZvy9JkgaVygaVyva+sqMAsvKLyCsykpVvns2hVkloVCq8ne1wrADBKAuRBiA8tWSTTE56AQU55h9SS6aU8eZYa/G/cEkGlebeVzN42h25mEnzmZuo/s5PHLloThd1c9De07mXcy8DUNmpMv1q9uOd5u8wr+08Poz8kDWxa9jwwgY+jPzwUXUdgLy808UBKRU2Nu7Y2wfh7R1dptfYcyaNr/emcPKKeXA+qn04X77WnKhaPmV6HUEQBEF4Elim71nGS1nHssk3mscGUlEelx105NiZx0ptAtvwXsR75dNRQXhKDRgwAEmSkCQJrVZLWFgY7777LgaD4aHa3bx5M5IkkZGRUTYdvQenT5+md+/e+Pn5YWdnR0BAAN26deP48eNWx61fv542bdrg5OSEg4MDTZo0YcWKFVbHnDlzBkmSOHjw4D1ff+rUqVSvXh2dToebmxsdOnRg9+7dVm0OGjSIkJAQ7O3tqVKlClOmTEGv15fSqtmqVauoV68eDg4O+Pr68uqrr5KamlrqOVu3biU2NhY/P/OMk7Vr196xz25uAfj51eH55/uzd+8h7Ox80enCsLcPZObMmbRs2RIHBwdcXV1ve61z587RpUsXHBwcCA70Y+L4ceTkFwJQ2d2BWRNH4GRno/xbs/ypVauW0sasWbNo0qQJTk5OeHt7849//IPExMS7vjczZsy4a/8ehYoTXhOeOT9+dIizf9/4BSJZglI3ZUrJahkMoEJG/QwFpbacuMblrBvZTB46LVW87m01hky9ebpfE58mjGsy7pH0705SU7dyMmkmRUXmPjg51aBpk3Vlfp1zqXn0+HiX1b7Yer6EeYsaUoIgCELFpBQ6N5m/tBnTMsDV/PTOJjWJC843MqNiqj1PVY+aj72PgvC0i46OZvny5RQWFrJhwwaGDRuGjY0NkyZNKu+uAaDX69FqS39QXVRURMeOHalWrRrffvstvr6+nD9/np9++skqMLZo0SJGjx7NhAkTWLp0KVqtlu+//564uDj+/vtv5s6d+8D9rFq1KosXLyY0NJT8/Hzmz59Pp06dSEpKwsvLi+PHj2Mymfjkk08ICwvj77//ZsiQIeTm5pZ63R07dtCvXz/mz59PbGwsFy5cIC4ujiFDhvDtt9/e8bzc3Fzq1avHq6++yosvvljidaMxn8qVHZkzZxxBQX4UFBTyySff8MIL/+TkyZN4F09W0ev19OjRgxYtWvDZZ5/dph0jMZ074+Luxb/XbuTqlcv8a/TrODnY8c6093C01bBgwQLef/995RyDwUC9evXo0aOHsm/Lli0MGzaMJk2aYDAYeOutt+jUqRNHjx5Fp7vzd8K79e9REUEp4al1+ZQ5cKFSS6htVGhV5qcQpuJ/1pJKwmQyB6okGVR3+QVckWTlm9+Lno0DGdE+DE9HW+xsSq8NMfvP2fz32H+VbWdb50fax9u5cPErcnNP3uiDc71Hch1L/ShnOw2Ngtyo4etMFS/Hu5wlCIIgCE8vS6aUWjKPEYzOriAVp5QbzVnnHtl52LZqQEiDxuXRRUF46tna2uLjY866f/311/nuu+9Yt24dcXFxjBo1ih9++IHCwkLatGnDwoULCQ8317o9e/Ysw4cPZ/v27ej1eoKDg/nggw+oWbMmkZHm8hVubm4A9O/fnxUrVpCdnU1cXBxr167F2dmZ8ePH8/3331O/fn0+/PBDAIKDgxk0aBAnT55k7dq1vPjii6xYsYLt27czadIk9u7di6enJy+88AKzZs1Cp9Nx5MgRkpOT2bRpE0FBQQAEBQURERGh3GdKSgpjx45l9OjRzJw5U9k/duxYtFotI0eOpEePHjRr1uyB3sfevXtbbc+bN4/PPvuMQ4cO0b59e6Kjo4mOvjGLIjQ0lMTERJYuXVpqUGrXrl0EBwczcuRIAEJCQhg6dCizZ88utT8xMTHExMSU2C/LJkymQvT6VF56KUrZr9E48uGH7Vi+/L8cPnyY9u3bAzBt2jSAEtlkAEVGE+t//Injx47x695v8fDypmrNOox7ezLvT3uH+PdnIEkSLi4uuLjceIiwdu1a0tPTGThwoLLv559/tmp7xYoVeHt7s2/fPlq3bn3H+yytf4+SmL4nPLUstaR6T23Oax+2wYSWTZnDycw0/+JWqSRMRktQSkajeXaCUtkF5sGlr6sdAW4Odw1IAfx85sYvL42koXGlxzcgvZ66maPHJpKZuReAsCoTaNL4O6qGTynT63y8JZkXP9rBtB+OANAoyI3lA5syPrr6U7MaoSAIz46lS5dSt25dnJ2dcXZ2pkWLFvz000/K623bti2Rvh8XF2fVxs3TALy9vRk3blyJqSSbN2+mYcOG2NraEhYW9tgHo8LjYcmUQjZPAzlhqwYsn33m14KuZxHQpA42tnaPv4OCcAeyLFNUUFAuf+Ti+rQPyt7eHr1ez4ABA9i7dy/r1q1j165dyLJM586dKSoyj9mHDRtGYWEhW7du5fDhw8yePRtHR0cCAwP55ptvAEhMTOTSpUssWLAAgDfeeIMdO3awbt06EhIS2LZtG/v37y/Rh7lz51KvXj0OHDjAO++8Q3JyMtHR0XTv3p1Dhw7x1VdfsX37doYPHw6Al5cXKpWKNWvWYCz+LnWrNWvWUFRUxJtvvlnitaFDh+Lo6Mjq1asf6r2z0Ov1LFu2DBcXF+rVu/MD68zMTNzd3Uttq0WLFqSkpLBhwwZkWebKlSusWbOGzp0733e/ZFkmNzeJ3NwkiorSAdBqvdDpwlGr/e6pzxZGk8yJK9n8/NtWwqvXxMPLG383e6r7ONHzH8+TlZXFkSNHbnvuZ599RocOHZQA4u1kZpqTOe72/pQXkSklPLWU2ghq84Dqgr4Ox/PbK6/bO9uQe8281IzEs1FT6pcjl5n/60nOp+cB4GR393vOKMggU59JeoH5l+k3Xb8hwDEAB5v7XxniQR0//jaFhZeVbU/Pduh0YWV6DYPRxAcbEzGabgwuqvqI6XqCIDy5AgICeP/99wkPD0eWZVauXEm3bt04cOCAUjtiyJAhvPvuu8o5Dg43fncbjUa6dOmCj48PO3fu5NKlS/Tr1w8bGxvlyfbp06fp0qULcXFxrFq1ik2bNjF48GB8fX2JiopCqDgs4ybJlGveRg3KCnvFryE/E+Ml4eliKCxkYf+XyuXaI1euwcbu/oO0siyzadMmNm7cSExMDGvXrmXHjh20bGle8XLVqlUEBgaydu1aevTowblz5+jevTt16tQBzJk/FpZAgre3t1LnJzs7m5UrV/LFF18oWTjLly/Hz8+vRF/atWvH2LFjle3BgwfTp08fRo8eDUB4eDgLFy6kTZs2LF26FH9/fxYuXMj48eOZNm0ajRs3JjIykj59+ij9OnHiBC4uLvj6+pa4nlarJTQ0lBMnTtz3+3az9evX06tXL/Ly8vD19SUhIQFPT8/bHpuUlMSiRYvuOmUwIiKCVatW0bNnTwoKCjAYDMTGxrJkyZL76ltRUQYFBSmYTOYgvyRpkCQNv/yyi969+95Tn8H8/SQjrwi90YTRJJN67SqeXt442mpwtdeiVklK5t3ly5dLnH/x4kV++uknvvjiiztew2QyMXr0aCIiIqhdu/Z93efjIjKlhKeWbFl1T2UOShlkcyaUWnMdk8tZYkfUVY5VyTIam4q/otp//jjLsUtZZBeYn4JXrVT6lLQj148Q+b9Inv/ueYyy+UlIiHPIYwtIGY0FFBVlUlh4xXzt4JHUqfNRmQekdp9K5b9/nMVoklGrJD7p24iVrzZlTIeqZXodQRD+P3vnHR5Ftf7xz2zfZHfTewUSem/SFBGVooiKWPAq1ite7N2rXq+9XLFjR+Fn74ooKhYQpAhI7y2Q3nuydeb3x+xOCDUJCSThfJ7Hh5wzM+e8u+7unPmetwiakwkTJjB+/HjS09Pp3LkzTzzxBDabjeXLl2vnBAUFERsbq/3ncNSFXv/8889s3ryZDz74gL59+zJu3Dgee+wxZs6cqSWDfeONN+jQoQMzZsygW7du3HTTTVx00UW88MILx/31ClqGjX9k8/6DS1kwS91lD1Qr9kQkoej8opRWrZiTKgenQNDczJs3D5vNhsViYdy4cVxyySVcddVVGAyGeqFsERERdOnShS1btgBwyy238PjjjzN8+HAefvhh1q9ff8R5du/ejcfjYfDgwVpfSEgIXbocXGl84MD60Q/r1q1j9uzZ2Gw27b8xY8YgyzJ79uwBVM+tvLw8PvzwQ4YOHcrnn39Ojx49WLBgQYPfi6PlrgJVnNvfjsWLF2vHRo0axdq1a1m6dCljx47l4osvpqCg4KAxsrOzGTt2LJMnT+b666/X+vcfN+BFvHnzZm699Vb+85//sHr1an788UcyMjK044sXL6533YcffnhIuz2eci0Hrk5nwW7vhs2WzujRZzfI5gD5FS5yymspqlLFLYNeIthsoGOUDb3u6FEcc+bMITQ0lPPPP/+w50yfPp2NGzfyySefaH3Tpk2r9zpPNMJTStAmURSlbscv8IX1O8BIhip0weU4IupEKElR0Bnb/yKrrEZ1Ab5nbBfO7BZD55gjewJtLtmMV/Gil/RYDBbOTD4To/74vE+ZmXPYvuMxtN1ZSU+HDjcjSc2rle/Ir+SSt+oe4GIdFlFhTyAQtDl8Ph+ff/451dXVDB06VOv/8MMP+eCDD4iNjWXChAk89NBDmrfUsmXL6NWrFzExMdr5Y8aM4cYbb2TTpk3069ePZcuWceaZZ9aba8yYMdoO+uFwuVy4XC6tXVFR0QyvUtASbF6SQ0VRXfETo17duHLrdQTC94yKhIy6XpIM4vFA0LowmM3cMueLEzZ3Yxg1apSW9Ds+Ph6DwcDcuUcv2nPdddcxZswYvv/+e37++WeeeuopZsyYwc0339xU0zUOTGxdVVXFDTfcoOVV2p/k5GTtb7vdzoQJE5gwYQKPP/44Y8aM4fHHH+ess84iPT2d8vJycnJyDvLOcrvd7Nq1q0Hetuedd149sS4hIaGe3WlpaaSlpTFkyBDS09OZNWtWvaTxOTk5jBo1imHDhvHWW2/VG3v/an+BDZunnnqK4cOHc/fdajGn3r17ExwczKmnnsrjjz/OwIED6123//3T6czF663U2jqdBaMxFIOh7nmrITZ7fTIlVS5kBcpr1Wc3m9mAyaCjQ1ICW9evqfc68vPVzfuAx1QARVF49913ueKKKw4rAN50003MmzePP/74g8TERK3/0UcfPWTo5YlC3HUEbRJlvxCsQPie4nf8U1CQpLok5xDY+Wu/OaUURaHW46OsVt35HpwaflRBCsDlVR8ozk45m2dHPtuiNh5IUdFvaEoiEBV5drMLUgDb89Wk5qFBRvomhTJ5QFKzzyEQCAQtxYYNGxg6dChOpxObzcbXX39N9+5qVbQpU6aQkpJCfHw869ev595772Xbtm1aBaG8vLx6C2qoW2AHwgAOd05FRQW1tbVYrdZD2vXUU09pCVEFrRvZp6YyOO3SzsR0cGD60Atu8KFDUtQ1lCM0hLKCSnSKCN8TtD4kSWpSCN2JICBK7E+3bt3wer2sWLFCC98rLi5m27Zt2u85QFJSEtOmTWPatGncf//9vP3229x8882a4LB/fqeOHTtiNBpZuXKlJiSVl5ezffv2IyayBujfvz+bN28+yM4jIUkSXbt2ZenSpQBcdNFF3HvvvcyYMYMZM2bUO/eNN96gpqaGK6+88qjj2u127PaGpdOQZbneZkh2djajRo1iwIABvPfee+h09Z8jDvX6ampqMBwgvOv1qseooihYrdZ61ymKgs/nQlG8uN1F9a4zGkMwm6MaZbMsK5TVeKh2+wAFr6z+PseHWrEY9Zw2YjjPPv0UBQUFRPtL9i1YsACHw1HvswJqhb2dO3dy7bXXHjSvoijcfPPNfP311yxcuJAOHTrUOx4dHa2N3xoQopSgTSLvL0rpAqKU32NKUjC63ZR+/Y12jtTOw/eumb2S37cVau0Qa8MWlE6funNqMRyfG72iKOza/RzV1TupqFwHQJ/e7xAWNgy9vnn//7yxaBczft6Gxx/mOTwtkplT+jfrHAKBQNDSdOnShbVr11JeXs4XX3zB1KlTWbRoEd27d+ef//yndl6vXr2Ii4tj9OjR7Nq1i06dOrWoXffffz933HGH1q6oqCApSYj+rZFAYZjwuGCiUxyU+8P1Zeo8peRadQNHQoTvCQTNTXp6OhMnTuT666/nzTffxG63c99995GQkMDEiRMBuO222xg3bhydO3emtLSU33//nW7dugFq5TtJkpg3bx7jx4/HarVit9uZOnUqd999N+Hh4URHR/Pwww+j0+mOWrzn3nvvZciQIdx0001cd911BAcHs3nzZhYsWMCrr77K2rVrefjhh7niiivo3r07JpOJRYsW8e6773LvvfcCqkfVs88+y1133YXFYuGKK67AaDTy7bff8u9//5vHH3/8oPxF27ZtO8iWHj16YDwgmqW6uponnniC8847j7i4OIqKipg5cybZ2dlMnjwZUAWp008/nZSUFJ577jkKC+uegw70KNqfCRMmcP311/P6668zZswYcnNzue222xg8ePAh83F5PKU4ndlUVdWwe/c+JH8evpxcJ5s3ZxMR4SQ5OblBNu8rqWHLjl2Ul5WRm5OF7JMpzdyOUafDG9oVjDbOPvtsunfvzhVXXMGzzz5LXl4eDz74INOnT8d8gNferFmzOOWUUw6ZJ2r69Ol89NFHfPvtt9jtdm0jKiQk5LCbTaAWRykpKWHfvn34fD7NaywtLa1Fw/yEKCVokwQWWAC6jF9h+1x0fq8bGei0cQ15X82Bnqoq7DKCXnf0CnRtEZ+s1BOk0qJtJEc0LCdUrbcWOH6iVGXVJvbufWO/Hh02W5dmF6QA5q7N0QQpSYLT0g+fZFAgEAhaKyaTSdu1HTBgACtXruSll17izTffPOjcQAjEzp076dSpE7Gxsfz111/1zjkwDCA2Nlbr2/8ch8NxxIWr2Ww+aIEsaJ1o6Q78nuVeWeLH0rvJ96Uh+b3MPcVFYDKo6Q5E5T2BoNl57733uPXWWzn33HNxu92cdtpp/PDDD5og4/P5mD59OllZWTgcDsaOHavl9ktISOCRRx7hvvvu4+qrr+bKK69k9uzZPP/880ybNo1zzz0Xh8PBPffcQ2ZmJpajeJX17t2bRYsW8cADD3DqqaeiKAqdOnXikksuAdQiG6mpqTzyyCNkZGQgSZLWvv3227Vxbr/9djp27MiMGTN46aWXqK5Wiyh8/PHHXHrppQfNe6i+zMzMemFloHoubd26lTlz5lBUVERERASDBg1i8eLFWpGPBQsWsHPnTnbu3HnQ9UeqmHjVVVdRWVnJq6++yp133kloaChnnHEGzzzzTL3zPJ4KfL5qvD5VsF+7dgvnnHO1dvzuu+4D7mPq1KnMnj37sDb/8ccfdEzvQpXTQ3mth9eee4q5X9RVJTx9mHrf/v333zn99NPR6/XMmzePG2+8kaFDhxIcHMzUqVPrFTQB1Svuyy+/1CoxHsjrr7+ujn/66fX633vvPa666qrDvj//+c9/mDNnjtbu169fPftaCkk51jqX7ZiKigpCQkIoLy+vlzhUcOJx1Xh45w41Ed6/utyCVJ7JX1UXs7LqMrymrcTsnY+5ooTd0WGgKOxOzuB/T608rhXljhflNR76PPozAOsePhu72aB5jx2N51Y+x5zNc7i6x9XcMfCOo1/QRGTZTUHBj5SVryI7+0Os1hRSkv9JUHAnwkIHNds8PlnhrT92k1NWy5d/Z1Hj9vHRdafQIz6EkCCx8ysQCJqHE7k+OOOMM0hOTmb27NkHHfvzzz8ZMWIE69ato3fv3syfP59zzz2X3NxczU3/rbfe4u6776agoACz2cy9997LDz/8wIYNG7RxpkyZQklJCT/++GOD7RJrptbL+w8upaLIyaR7BhDbMYRtD0zil+Lp2nGDtwZf2WvU6nV4zNmMnzGH3lG9jzCiQNByOJ1O9uzZQ4cOHY4qrgjqU11dTUJCAjNmzDhkSFdLU1JSwujRo3E4HMyfP79eNdi2hKL4qKzcwv5pRqzWFIzGxt/byms97C2u1tqSJNE9zo4kSeiO4tHWVjjSd7ahawPhKSVok+wfvifXlKEHsl2qJ4ynajvZFgUsYQC4jQp/9NK1W0+pCqeaIM9s0B0xbE9WZNYUrKHMVUZxbTFZlVmsyFsBtLynVF7eN2zZWpfgz27vQULCwbslx8qK3cU88+NWrW3QSUKQEggEbZb777+fcePGkZycTGVlJR999BELFy7kp59+YteuXXz00UeMHz+eiIgI1q9fz+23385pp51G796qoNCQMIBp06bx6quvcs8993DNNdfw22+/8dlnn/H999+fyJcuaEYC3uXmopWw7gsMsvqApNeX4yhaRLetK1jeKw48buYPlJjQTtdLAkF7Y82aNWzdupXBgwdTXl6uedMEQgKPN+Hh4fzyyy/MnDmTZcuWMXr06BNiR1Px+WpwOnNRFDXfkyTpMBrDkSRjvWTmDaHa5aWw0oXTq4ZLG3Q6DHqJUKsRva75c+i2dYQoJWiTyPuFZckeN3ogy5SCzgPIajK50Gonkd268kaUGrqgl9rXImtTTjm3fbKW0ho1ubnjKHmkFmYu5Nbfbz3ksTC/gNdSVNfsBiAoqCN2e09Skv95lCsah6Io5JQ72ZCtlmbtGBXMhN7x9E0KFYKUQCBosxQUFHDllVeSm5tLSEgIvXv35qeffuKss84iMzOTX375hRdffJHq6mqSkpKYNGkSDz74oHZ9Q8IAOnTowPfff8/tt9/OSy+9RGJiIu+8806DqiYJ2gaB4jDBfz8LeSvQKaqHsqLzYHXtxeIqQ1bUcE5Zan/rJYGgPfPcc8+xbds2TCYTAwYMYPHixURGnriUFREREfznP/85YfM3BUWR8fmcuN2F+Hw1Wr9eb8NiiWvUWG6vjMcnk1vupMbt1frjQy2EBrXfolvHihClBG0SZb/8CGoRY1AUVXU2Kjq8QHxpJb36DCDLtwhof4usnzbmsaOgSmv3iD+yS+n20u0ARFojSbQlkmBPINoajcPsYELHCc1unyy72LDxFmpr9+JyqflK4uMmk5LSvIIUwL+/3sDHf2Vq7UEp4dx+Vudmn0cgEAiOJ7NmzTrssaSkJBYtWnTUMVJSUvjhhx+OeM7pp5/OmjVrjniOoO0S8C7XedWHrRL8+TYxovcfC/ifKzoFXQtUwhUIBM1Pv379WL169Yk2o81TW7sPr7dSa5vN0ej1wej1h8+reCjcXplt+ZX1clrFOixYjHrsFiG7HAnx7gjaJAFPKZ2uTpTCn6wzSDFSAegUmLPtfUgDnXT0ShRtjUqXqr5PHpDI1GGpdIk9tFvpZ9s+4+eMn9lbuReAC9Mv5OZ+N7e4feXlaygq+qVen83e/TBnHxtLdxUDagij3WJgXK/DV90QCAQCgeBkQkt54K+6V466869ICpL/kOx/iJIlMEji8UAgELRvZNmreUX5fGpIs6QzopNMmEyRWpW9huDxyZTXenB6fCiKgk6SMOp1WIw6ouzmdvcM2hKIu46gTaLt+ukkJEUGCRS/KKWgLrokFHJq8wEd8cEHl/hs61Q5VVGqQ1QwPRNC6h3Lqcrhu13fUeutZdbG+jvtaaFpLWqXy1VAYdEvVFSsA8Bu70l62v0YjeHYbM3nvVTl8nL35+vIq3CSVapWEVxw+8gGVx4UCAQCgeBkQAmkPFACnuWBByQFnV+MCuzsKxLCU0rQKhC1uAQtSW3t3nqhegC24PRGiVEBcspqKa/1aG2H1Uhy+MnzPNIc31UhSgnaHNv/yiNnp5o7SNKDTgosqPyLKP+iS6co6A1GXj/zVbpHtIyHzokgs6SGnLJaMkvVH1K7+eCv8Ut/v8QPe+qHazxz6jOEmkM5Je6UFrVv2/ZHKCysq9hkC+5CWNiQZp9n4bYC5m/M09qhQUZiQ0SVFoFAIBAI9udATymf7N/Ek12UGmS2x4Thk9W1kywp7S7dgaBtYTSquUBramqwWhsXPiUQHAlFUXC6cpB9tfh86oa2GqInYTDYGiVIybLCvpIa3F4Zl0/9/bRbjBh0ElF2c0uY32qpqVGfSQPf3aYgRClBm6K8sIYF727W2mbL/rt56t9SsB7cICmgMxgZkTDiOFvZcmQUVTNqxkL2F6Rth4hRLqotAmB4/HCS7EmckXwGQ+OHHhcba2p2ARAWOgSzJY7klOubdfxdhVX8vCmf1XtLABjSMZxrR3SkW5wdk0Hs7goEAoFAsD8BUUryi1Ky31NKcW4n36yQHxsOKCgoePVKu61W3JwoioKsqGGPsqKgKGDS69DpRJjOsaLX6wkNDaWgoACAoKAgEf4kOCYURcHncyLLTtzuYq1fkgwYjQlIkoSigNPpbPCYVU4P5VW1WlsnSUQHmdTKej4PTp/nCFe3DxRFoaamhoKCAkJDQ9Hrm37vEKKUoE3hqlFD1oxmPV2HxtGxl4PsD3pQ4k1G8toAkEzqjUtSFDiGL0drZEdBFYqi5k5KDLMSbbdwWnrUQefVeFTF+rKulzEyaWSL21VevpZNm27H66vC4ykFoHPnh5s1XC/AnZ+tY21mmdbunxzGWd1jmn0egUAgEAjaA4HwPWR1DeWT/Q/4svoAZq91URjqYmUXN26TLDyl9kOWFd79cw9ZpbV8vyGX4ioX8mEiVRbfM4qkkyhkpyWJjVVzgwaEKYHgWPD5nHg8+4tRRgwGBzqdDknKaNRYxVUunB5ZKw5hNuhwWAxIeh37aoqaz+g2RGhoqPadbSpClBK0KQIJzq12I6dd2pnqwjLmlD6Cgr7uw7xf+B7tbLev0qmq7oM7hPP+tYcPw6v2qgn7gozHZ3FUUPADtc59WttkisRqTW7WOTw+GbdXJqNYfW3n9IojxmFh6rDUZp1HIBAIBIL2giIrdd7VsuopVeV0BQ4CEFlZy+6kUsrSojgzeijRQdEnwNLWRXmthxW7i1m4vZCPVuw7+gWASIHUfEiSRFxcHNHR0Xg87d/jRNAyFBT8TE3NHlyubVRUbsBoDMNiiSMh/jLCwro1eBxFUUP1Sqrc3PvzunrHbj+rM4M7t7/cxQ3FaDQek4dUACFKCdoUmgu63z26ttKJgh49bmrNZYSFONDVBjylQDK0n494lctLYaW6kDxcWdFyVzl/ZP1BiVMNbWtpUaqiYgO5uV9SUroEgJSUG4mNnYjFHI9e33z5nXYXVjFx5p9U+pO7Azx5QS9CgpoeuywQCAQCQXtH3k8p8TirMQOVLg8YAUkVpSRFQZZg7gVzcZgcJ8bQVsadn63jly359fqmj+pE/+QweieGopPUcB2dJKHTqX9bje1rI7Q1oNfrm+WBV3DyUVOzlx07b6/Xl5x8DclJVzd6rE/+2sd9X23Q2rEOC3NvHo5ZrxfPIs1E+3liF5wUBFzQAzH7ilfd9bPoKigI20xah76UbKxbZKFvHzmGnp6/lTcW7dLaDsuhfwCf/utp5u2eV3eesWUXlzt2PklZ2V9aOzRkALbg9GafZ/nuknqC1JCO4Tis4udLIBAIBILDsXN1AdnbS+s6/DlO3GGxUEU9z3KfDgzSyX1fdXtl/txVRI3Lx9pM9X3rEe8gPNjEvWO7HlTpWCAQtD6ysz8mP38eHm8FAGZTDLGxEzEYHMTHTW7UWEt3FfHpykwtbUiI1YjdYuDq4R2ItoviSs3JyX33EbQ5Ap5SOr0qSsk+VZTSISMjodPr6voUBdqJp9Qf2wu1v00GHSM7188j5fQ6kRWZnWU7Aegd2ZtT4k4h0Z7YIvZUVW3H5cqjuloVyhISLsdu60ZExGnNOs+fO4v4Zk02W/LUG8slA5N4ZGIPzAadSHopEAgEAsFh8Lh8LJi1SVs3GYw68LjBAAoBzxP/Jh7g03HSJzh/7889PDV/a72+OdcMJtJ2clXSEgjaIh5PKU5nLjt2PonPV6P1R0SMJC3t3iaN+cT3W9iUU6G1Z07pz4j0yGO2VXAw7eOJXXDScGD4ns/tBkAneUEBb20VXrca4iYpILUTl98Kfy6pz6cNpX9yGPr9qru8s+EdXv77ZRTqXPQfGvoQXcO7togtlZVb+GvlufX6OqTehNnc/DkoHvpmI7uLqrV2WrQNi3CPFwgEAoHgiHjdPm3N1H9sCgnpoUgfq20FHRIQIlsoxx++Jzyl2FlQBUByeBBxIRZO6RghBCmBoA3gdhexdNkoTYySJBPduz+LTmciPGx4o8Zas6+U/87dRK3Hx65C9Rnk1tHpdI6xMzwtotltF6ic3HcfQZvjwPA92a2KNRIy1qyd7Ny6WjtXpyhI+vbxEQ+EroUFmeoJUgCLsxbXE6Q6hHSgQ0iHFrFDUXxUVqox1QaDHaslmdDQQS0iSCmKQnaZWmr1X6d3Ii7UyoX9Epp9HoFAIBAI2hsBQQoJhp7fCQAnesq9ESiyGQnQBenBqa6XZAl0UvtIedBYNudUkF/pZGehKkrdeHonLhvcvMVaBAJB8+P1VpOd/SFVVVvx+WqQJCNGYxhxsecTGzOhUWM5PT42ZJfz5qJdrMsq1/ojbSamj0rDZDg5fx+PF+3jiV1w0nBQ+J5flNJJMvpaVc3W+2RsLjd2pxsMbderpqjKxeQ3lpFTVovLq7rYOw6R4LzCrbqVzhw9k0GxgzDrzS2ysCws/IWNm25BllVPtKiosXTv9nSzzzN3XQ73fbkep8enlV2+ZXS68JASCAQCgaCBKPIBOThlha9K/0epL4nACkEK0kGJ6lmOXn9ShsWvyyxj4sw/6/VFBJtOkDUCgaAx5OZ+zs5dz2jt6Oix9OzxYpPG+teHf/Pb1gKtffuZnRnUIYz0aLsQpI4DQpQStClk3wHhe56Ap5QPZFW4Gb4zG0tECGs7QWGi7cQY2gysyihlz36hax0jgwnfb6FU46lhT8UerdJepDUSq8HaYvYUFf2qCVKSZGj2/FEBflifS43bp7UHpoQJQUogEAgEgkYgH+BZ7nH7KPUlAaDgxeh1wfa1ENS+CsM0lu35lQDYzQZSIoOIC7EyPE3kjBEIWjMZGa9RUPgzLlcuACEhAwgNGUBCwmWNGscnK3yxOpOiKjcrdhcDkBIRRFJYENeMSMV+mMJSguZHiFKCNkVg5y+MXfDMRUilHYEH0OEjsL+nt9vJmfUAzyy6iwGmtrvbFcgjNaRjOM9N7kO03YLBv2hUFIVL5l1CRkWGdr7dZG92GxRFJjfvK9yuAsor1gDQOf0h4uMvQa9vXgHs6zVZbMmtZF1WGQDPTurNyC5RRIl8DgKBQCAQNAotB6e+zlMqgDvqJ0Z//gOrU2MAG149ZMWdnA9fZTXqWuuMbtG8dGm/E2yNQCA4GrLsZtfuFwgUagBITbmRyMhRjR7r1y353PvlBq1t0En8eOtpWE1iM/x4I0QpQZsisMgKc60ATwky6QB4JQP48yopEmRXZQNtO2lnRa26UIq2W0gMC6p3zOVzaYJUTFAMvaN6k2Br/nxLJSVL2LKlfsWKoKBOzS5IZZXWcPun6+r19UwIIcYhyq0KBAKBQNBYDgzfk73yQcdkf7jenNEShVFtdxOvKSzZUcR9X62nuEotmBMWdHK9foGgrZGZOZtdu59HUTyAjE5npVfPVzCawnHYezdqrLf+2MWHK/Zpz1rp0TYGpIQxLC1SCFIniLb7xC44KQm4o3tr88AAme4oAAoJA0U9VuYu44XVLwBg0LW9j/j7y/fyzuLdlFarCyWH9eDXUOlW3c11ko6fL/q52XNIKYpCdfV2SkqXAmC1JhMWOgSzJY6wsKHNOs/G7AqW7S4C1DwOkwYk0iEymO7xjmabRyAQCASCkwktfC+Qg9OnhsVL+FD8vuWBfz3GtrleOha+W5dDVmmt1u6bFHrijBEIBIfF46lAlmvJyf0cn68urUlExKmN9o7KKKqmuNrN6wt3Uer3kgSYNrITkwYkNpvNgsZzct2BBG2ewO6ehLq48hiCAZCl/XYAdRBkCMJmsnFOx3OOv5HHyP8tzWBvcY3W7hpbX5wpcZawoUh1NbUZbS2S1Dwz81127HxSa0dGjqZz+oPNPs9vWwu4ds4qrd0tzsG/x3dr9nkEAoFAIDiZ0ArD6Hzw62PI+cXAeUjISG4XO6NDqTGrIXuKpLRpz/KmUFKjbvzdOjqdyQMTD/JIFwgEJ56Cwp/YsOEm9g/V69f3fYKCUjGb4xo11vLdxVz61vJ6fZ/+cwjhwSbSottuDuL2wsl1BxK0eeQDRCmffxEV6jVREjhHUrhtwG1c1rVxye5aC+V+V9IXLulDj/gQ0vf7ocypyuGcr8/BK3uBlskjBVBesRYAgyEUszma2JjzWmSeTTlq5cCwICPJ4UFcO6JDi8wjEAgEAsHJRGATL16/ERY/h+KNBs5DJ/mQCwvZHhehnesxKOh1J0fIyh/bC/ny7yzW7CsFoGusXQhSAkEro6ZmD/n531NU/DuqICUhSXocjj6Ehg5G1wjPzrWZZfy6JZ+//d95u9lAWLCJMT1iOKVjxFGuFhwvhCglaBPIskL21lLyM1QRQ+cXpWRFXUSZlboyxrIEeqntLa4URcHjUzRRamBKOEnh9RdKO8t24pW9GCQDYZYwJnee3Kzzb936b8or1uJ0ZgHQtetjxESPb7Y5Arzy6w6+XpNNUZVaze+KoanccVbnZp9HIBAIBIKTkcAmnknvVNv2JCjyr5t8qtdBVGUNpovOJkf6kHjp5Hg4e3TeZnYWVGntA9dZjWVd4ToyKzNRFAVZkZEVGYW6v016E+ennX+MVgsEJxdbtj5AWdkKrd2zx0vExDQt+uWmj/6uF6p70xlp3DCy0zHbKGhehCglaBPsWJnPL+9t1toe2cQvZbeQ61VDvSTqqsooOgWjrm1VkfHJCpNeX8razDKtz2E9+DVUudWF1ICYAbwz5p1mtcHpzCQn97P9eiTstuYPpVMUhdcW7qLW49P6eiWENPs8AoFAIBCcrCj+nFKS5E9qblNDXRQkbc2UWFzGrfoPgZMnp1RgM+xfp3eiT1IoPZuw/qj2VPNX7l9sK93GzLUzj3huuCVciFICQQPweMpZu+5aXK5c3O5CAGJiziMoqANRUWc1aqy9xdVM/+hvSqs9ZJepgtSVQ1MItRq5dHBys9suOHZOjjuQoM1TUaT+oASHmIhItFGRkcw2Z11yO5O+zlPKJ7U9N/TCSlc9Qap/cigOy8FfzyqPKkoFGZvP1dzrraSiYj3V1TsAMJtj6d7tf1gs8QQFpTbbPIqisLOgikqXVxOkPrzuFKLsZjrHtEwYokAgEAgEJyMBTym9TvWKkgNLfknRCsMEnMwlJEYlN76celui2uWl0unVvNGvHt6BKLu5SWM9tvwxvt/9fb2+4fHDkSQJnaRDh077O9gYfMy2CwTtGUWRqanJoLh4IRUVa7R+kymKbl2fRq9v+PdUURQKK118sTqLjdkVWn+3OAePTuzZrHYLmhchSgnaBB6nKmKkD45l+KQ0frnjEwCCjZnkBlUxzJdMhv9cWaLNJeyscKqLpBCrkcX3jsJuNiBJdULbX7l/8XfB36wtXAuoCc6bi3XrrqesfKXWtlgSCQ8f1mzjB3h6/lbe/GO31g426RmeFtns8wgEAoFAcLKjJTqXFFBA0Zb8+4lSKEztPpW7Bt11gqw8PmzOqeCC1/7E5a1LlhxyCG/0o5FRnkFOVQ5rC9YC0DmsM+GWcKb3nU7f6L7NZK1AcHKxafOd5OfP1dpRUWeTmjqdIGtKowQpgKnvreSP7YVae8opyVwyMElsfrcB2taTu+Ckxe1SRSmjWfWAUvzrCouhCJe1ksizR8FLgKKg6GhznlKV+4lSDkv9hZJH9nDTbzdR662Lhw6zhDXf3FVqWGRQUBp6vZnkpGuabez9CSQYDLEaMRt0TB4oSq8KBAKBQNASBML3dDoZfODzL/klFCS/KIV0coTtrcks1QQpvU5iTI8YTIbGVS7OrMjkvG/OQ9kvXcQLp79AskOEAgkEjUVRfGRlfYDLXUhx8e8AGAwODHobiQlX4LA33KvJ5fXx994y3D6ZJTtUQUonQViQiSmDk5sUois4/rT/O5GgTSP7ZCpLXNSUqzkAAqKUTGAxoYpVlhQHoHql+3RtZ5G1YncxD8/dREm1WprYYT3Y7gpXhSZITe48GavByhXdrzimeZ3OXDZtuh23pxifrxqAwYO+Rq9v3go0Plnhv3M3kVFcrVXamzV1IANTw5t1HoFAIBAIBCo+n4zb72GOrK4fsnfuUtsSQCB8r+2lO2gKFbVqxeJJ/ROZcXGfJo2xt3IvCgpmvZlURyq9onqRZE9qTjMFgpOGoqLf2b7jUa0tSUaGD1uMwdD4SJBHv9vMhyv2ae0gk55Nj4ypF3EiaP20jSd3wUnL1zP+Jm93XUxwnaeU+kMjSTKS10NFYb7aRsGnk9pM+N7Xa7LZmleptbvEOA46p8Ktvn670c5/hv6nWeYtLPy5XsheUFDHZhekANbsK+X95Xu1tlEvkRop8isIBAKBQNASlBfW8NmTq3D7hRjZXQzGumrF/lg+9RhKm9nEawpOj4+CChfZZTXAoTf+GjyWV61i2C28G++Pf79Z7BMITjZ273mFzMzZyLL6fbIFdyEsbCihYYMbLUj9tCmP37cW8MsW9RkwJSIIq1HPpP6JQpBqg7TfO5GgXZC/RxVkDCYdQQ4TiV3VsDVZUT2lXO4ygrM38s1T6wDQKSC3IU+pSqe6aLx2RAcm9ImnR3ydKFXuKueL7V+wr1JV/+2mY4+Hrq7eSWbWHMrL1USC0dHnkJjwD+z25q2y5/T4mL8xl+W7SgDoHGPjX6enkRZtI9LWtMSiAoFAIBAIjkze7gpNkEICe7gRKkEx28AJbsmHpkq1wRycDaXW7eO0//1OYaVL6zswPUKjxvN7rFsN1mO2TSA42aiu3klV9Q6ysubg9ZZp/SkpNxAbO7HR48mywu2frqXGrXqEShJ8dP0QEkLF97Ot0j7vRIJ2geyTA7k4mfrUcCzBdYsJGXXHz+OpQgIknQ6DTk98URFuc9vJKVXpUheO3eIc9E0KrXfsoy0f8dq617R2ZNCxJwXfk/Eq+fnfae2wsCGEhQ0+5nEP5LNVmfzn201au2dCCOf3S2j2eQQCgUAgENQREKQ69IlkzHU92ffu93y850XKvbEAKJK8X/W99hu+t7ekWhOkgk16HFYjZ3SNbvJ4Tp/q2WExWJrFPoHgZMHjqeCvlecjy3W5cQcPmofRFIbFHNuosX7alMfM33fi9srUuH0Y9RK3ndmZLjF2IUi1cYQoJWi1eD11VVL0Bp1a5nPGDFy7diMTBYCCek58lZO+mYUoTier01p3+J6iKGzOraCoyk1umfoDbbccbG9+jeqO2juqN70ie3Fux3ObPKfTmUttbSbVVdsBiIu9kJCQ/sTGXtDkMQ+FLCuU1XrY7M8f1TnGRs/4EKaN7NSs8wgEAoFAIDgYl1+UsgQb0Rt1FOaaKPGmaMcjdAql6PEgt8lqxQ2lrEYtINMxKpjf7jz9mMcLhO8JUUogaBilZSspLPgRt6cYWa5Fp7PgcPQmIuL0RkdoeHwytR4fry3cxfqscq2/V0II00elNbfpghNA+7wTCdoFsreuwoneIOHavp3id2apx06/VD2g+BN5Ol0oTnXBsDsGerbi8L2/9pRwyVvL6/UdSpSq8lQBML7DeC7vdnmT53O7i1m2fDSyXOfCnpAwhZCQfk0e83Bc8tYyVmaUau0rhqRwxdDUZp9HIBAIBAJBHbvXFLJ5aQ6leWr+JJM/f5Lsr8LnMOxjT2gegyy9WZav9snt0FNqV2EV7y7Zw95i9X0ICzI1eoxKdyW3/X4bedV5uGU3hTWF+PzrTRG+JxA0jC2b76HWWZeAPCzsFPr2ebfR4xRWuhj74h8U+4tCATx1YS8Sw6z0TgxtDlMFrYDW++QuOOnx+cv3ShLo9DrkGnWBoQ8PB1MQuNFK80qKwu9jYvkmvZRcu48LW7EotaNAFZscFgNJ4UEkhQUxICVMO17rrSWnKofCGrWsqc3Y+EoU+1NdsxtZdiFJJqzWJIKDO2FvRKnVhlLl8tYTpMKDTQxPO/aQQ4FAIBAIBEdm+dzdlOZWa21HpCqe+PyilEHnIrimAOvit5GjPaCTUNqhp9TM33by1Zpsrd2UkJ7lucv5K++vg/olJPpH9z8m+wSC9ozTmcOGjbfg8ZRoglRK8j/R6SzExp7XqLFq3F7+3lvGyoySeoJUtzgHk/onYjLojnC1oK3Rvu5EgnZFQJTS+390FLeHrNhB7Es5BTwx/rPUc3SKwlZ9Abl2HXpJT3RQ0/MGtDSB5OZn94jlucn1SxN7ZS/nf3M+OdU5Wp/N1DRRqqR0GcVFv1NTq1a/czh6M3DAp020+vBUOD18tjKTnDLVUy3YpGfDf8cgSYjqFwKBQCAQHAc8/hyVA89JJTLRRmpPdVNI9mdCkPCRuicDQ/5WlOiOAJTZIKgVb+I1hQJ/HqkJfeLpkxjCub3jG3zt0uylfLXzK/ZVqA/TQ+KGML3vdELNodhMNkx6Ew7TwVWSBYKTHUXxUVm5mbz8b6moWKP1BwV1Ii3t3iaNec8X65m3PldrT+wbz/8u6oNRL4nni3ZI+7oTCdoVAVEKCT557C9c5VVUdb1K7dMi+9yBU0gKTWXm6HtJsie1SlFKURQKK13kV6jizaFC9kqdpZogFWYOIzY4lgHRA5o030b/TkUAqyWxSeMcjfeX7eV/P23T2olhQeh04mYhEAgEAsHxIpDyoFO/KCIT66r1yv4sB5Iko5d9KIDiv0e/M0bi9nYSvlfp9JBf4aSgUl1jXdgvgVENSGyeVZnFrI2zqPXW8v3u7+sd6x/dn77RfVvCXIGgXbFr9wvs3fu61o6Pu5i4+IuwBXdu1DiyrPB/yzLILXeyZGcRoOaFC7UamTosVXhHtWOEKCVolbhqPNRUqIKT7FMozq6qd7yb/WsSdXv4s0L9cZIUBUdQOKclnnbcbW0oN328hu/3U/zthyhNXOmpVI+Z7Pxx6R9NmsfrrcTtLtIEqeSka9HprcTHTW7SeIfD45PJK3eyOVdNat4/OZQe8SGc17fhu5ICgUAgEAiOncBGnk7v9y5XFBSPB59flJIVN/kGH8VpdZVwq60Seqnti1LltR5OfeY3Kvye6AAhQQevsQ7FJ1s/4YvtX9Tru7X/rURaIzk75exmtVMgaE8oikJFxVo8njKKixcBYDJFYTbHkJx8HcHBjS9y9OeuIv773WatrZPgy2nDCAtufG44QdtCiFKCVsdf3+1m5fcZWjvgodmri0zEridJC9+CWafml1pSMRJQw/ckY+v+OK/YXQyAXicRYjUysnPUQedUuVXxzW60H3SsIRSXLGHdumtQ/Ak59Xob6en/bqLFh0eWFc55eTHb8+vEwssGJzN5YFKzzyUQCAQCgeDIBHJH6Q06FFlm72VTqF23Ds+w08EEbk8xVQbAXz3OawKPQcaoa5h405rZXVhFhdOLToIQq5G0aBs94hsWZlfqUnNhnp54OoNiB9E7qrfwjhIIGkBh4U9s2Di9Xl/vXq8REtL4vGuLdxRy+6drKa9Vq2Z2jrExsnMU/ZLDhCB1ktC6n+IFJyXZ28vqtc3BRmrK3YQGe+gStgaDTkZGohYbBjkGyEVSQDK07o9zIJfUortPJzEsqN6x1fmreXz545Q61cVRU/NIlZYu8wtSEpJkIDb2/GMx+bAUVbs0Qcpq1BPtMDMiXSQ1FwgEAoHgRCB76vJw+srKqF23DgAlsNRX1DVIsNNNQXgp8wd7kXVgaAc5pcpq1AfZ7vEO5t18aqOurfaoyeFHJIzgkq6XNLttAkF7I79gPoWFP1NVtRUAkykaszmG4OBOOBx9jnJ1fTw+GZdX5ps1ORRV1SUzv+7UjlwsNrpPKtr+nUjQ7lBkdbdv7D970rFvFF/+bzU15W4kxYckqcde5FoSQ3rjyNpJIblIioLO0Hp3+9xe9UcXwG4+2M55u+exs2yn1u4c1rgY7Ly8ueze8xJut1qxL63T3aSk3HAMFh+azJIaXv51B/n+RKLRdjN/PXBms88jEAgEAoGgYSiyguxfO+mNEkq1KtKg16NPSIJCANWD2uT14bU6CYtJoktQNANjBp4Yo5uBZbuKefX3HeSVq3mkwoIa71EREKWCjEFHOVMgECiKwpYt9+Hz1UVKpHW6i7i4SY0ea19xDee+srhe2O1D53ZnYt94Im3mZrFX0HYQopSg1RFYWOkMOiSdhOx3SZd8Hk2UkpFQamWU/arv6YytT5Qqr/Hw9I9byK9waX22QyQ4D4TtXdn9SsZ3GE+X8C6Nmicr+0NqazO0dmN3KhrKnKUZfL46S2t3jApukXkEAoFAIBA0DJ9P1v7W63UoHg+VtiQK4wZSXhUocqKKUjoFIm2x/HDhDyfA0uZl1pLd/LmzWGt3imq4l/mm4k28sOoFNhRtACDYKNYzAsHhKCz6lYw9ryLLLr8gpSM97T6MxjBiYiY0aqyCCic7C6tYtL2wniAVEWxiXM9YIUidpAhRStDqCIhQgQpu3lp1B8y56i90yf5z0EGNF9mfO6m1hu/9uCmXj//K1NrxIRb0h6hMF0hwnh6WTo/IHg0aW1EUsrM/pLZ2H9XVOwDo1vVpwsJOwWpNbgbr69hXXMPm3ArWZpYBcG7vOE7pGMGoLgfnxRIIBAKBQHB88Lp9OKvrHuw+fmwFXqcH58D71I7awBHVe0pCQdK3/eTmgBbuc+PpnRiYEsawTg1PI/DZts9YkbdCa6c4UprdPoGgreNyFVJYtIDMzPeoqdmt9dvtPUhOvrbR49W4vZz1wh9a7iiAfwxJ5sFzumPU6w75jCQ4OWh9T/GCkx7NU8r/w+QpKgHsuDdvhP1EKX2oGZ3HBFXqIqs1hu8FFkwDU8K4oH8Cp3SI0I65fW7mbJpDUW0RO0pUUakxCc4rKtezbfvD+/VIRESMxGw+egnkxuD0+A5yrz23dzxje8Y26zwCgUAgEAgaztblufz2f1u1tAcAVSWueuf0tM7Hoqsky5NFEWq1YgxtW5RatquYhdsLyChWQ+9Gd41mYGr4Ua/Lq87j460f4/K5WJGrClJXdr+SCZ0m0Cm08ZXCBIL2zrbt/6Ww8Eet3a3bM5hNMTgcvRs91oyft/HnziLKaz2Y9DpSIoIINhu4dFAyFmPb/k0SHDtClBK0OrRwPb0qSskyIIG5d3fgDwB02VnsrdioXaNTQG9sfdUZKvw7AX2TQrn8lPq7cIuzFvPympfr9UUFNdzzyFmremBZLAlER4/Hbu/R7IIUQE5ZLRVOLwadRJ+kUGJDLIesHCgQCAQCgeD4kb21tJ4gFRxqprrMRfc+QXTdegORIbnoJDde2cKaijOACnQK0Ao9yxvDzR//XS8pcozD0qDr3t34Lh9v/bhe31kpZ9E1vGuz2icQtGVk2cPWbQ9RW7uPyko1vDU8bDhhYUOJj7uoSWNmltTwym91uXNP7xLFW1e23Xx2guanbd+VBO0S5QBPKUWRQII/a/IZ4D9HV1Whna+TZUKrnZS1Ik+p79fn8ui8TZT6K8KEWA+2raC2AICOIR0ZnTyaBFsCvSJ7HXFcRVFYt/56iot/1/ocjr6kp93XjNarLNpeyD1frKPK7yGVHBHElzcOa/Z5BAKBQCAQNJ6AZ/mQ8zvSZ3QSv3+wle0r8gmyKjiM2Rh1Hj7J6E2w6UyKLflYqEBSFCR9213+u72yJkhNHZpCr8RQksIblqQ8vzofgFMTTqVreFcSbAn0iWqZHJwCQVultGwFubmfa22dzkzPni9jNIY2eqy3/tjFRyv24fRXB40PsXD/+G6MSBMVuwX1abt3JUG7RfYn7NQFPKXQqW1//igA/BuDI7ZlEuxyo1dA14o8peauy9aSm0sS9E4KPeicclc5AP2i+3FL/1saNK7PV1VPkAKJiPDGlT9uKPPW5dRL0H5Kh6O7xgsEAoFAIDg+BEQpg1GPwahHCXiaKz4kf2oWR0w83fuOYf2yOf5jSqvMwdlQArloJAkentBD28A8Em6fmx2lO8itzgXgvLTzGJs6tkXtFAjaGps330NR8UJkWV37Oxx9SU66huDgtEYJUoqisDm3gtJqDzN/31Uvf9SI9Egm9IlvbtMF7YC2e1cStFu0nFJ+UUpB/VeS9hel1HOMPh+SAhnR4EtqPTmOKmpV76IHxndjYt94ovdzLc+szOS6n64jv0bdsQs1hx51PK+3irz8uThr1cp3er2NYUN/Q6czYTA0PA9Vg2x3eqio9ZBdpmZHvXtMF87tHUdyA3ciBQKBQCAQtDwBEUrbxAu0FRlJp/7tsYWxw1morZt0CkhtMKfUhqxypn2wmrIa1UvKYTE2SJACuPm3m1mas1RrN2TdJRCcDMiyl/LyVbjdxeTmfVnvWEz0eGJizmn0mIt3FHHlu39pbUmCT64fgsWop0e845htFrRPhCglaHUEFlmyrFBT4a7zlPKXM/bJOiTqFleP3hpNUIeOPN7pzBNj8CGocKq7AmkxtnqCFMDKvJXkVOcAoJN09I3ue9TxsrL+j127Z2htiyUekyniCFc0ja15FZz3yp+49ysv3TXWTkrEyVsq+Yu8Eu7clolrv7wdAUaE2viiX9oJsEogEAgEJzsHbuIFPM19eTmap1SuT0fe3tVYPftV32uDnlK/bs3XNssABqSENfjazcWbAYi2RtMhpIMI2RMI/GRnf8D2HY9pbbM5lr593kWnM2O1Nq4i5fwNuXy3PofdhWoBgvBgE9F2M2f3iOWUjs3/zCJoX7S9u5Kg3RNYZH338jrctV7QmYE6USogUoHqhn5F76s4d/jVx9/QA1AUhcfmbWFHQaX2g+ywHPwVq3RXAnBG0hk8OvxRQswhhx3T5Sqkuno7pWXqjoPD3ptgW2fiYi9ogVcAKzNKcftkdBIY9ToSw6yNWvi1R+YXlR9SkBIIBAKB4EQSWC9Jfo8h595MIIiqn39CGurf4EPH4DXr8JbmsyMu3B++13pycDaUQAjQlFOSueG0jiSFNcx7W1ZkKtxqHtJPzv2kUQVlBIL2yt5971Baupyqqq2AWjTJZIoiMWEKNluXRo2lKAo+WeGBbzZSUl1XgOCOszrzjyGNE7YEJy9ClBK0OgKLLLc/BA5FQfbloaMMAK9S53auUxT0xtaxuNqWX8m7f+7R2joJEkIPXjRVeaoAtdLekQQpWfaw4q9z8HiKtb6kpKuJjT2vGa1Wmb8hly//zmJ3kSqmXX5KCo+d37PZ52lL+BSFKq+PfJe6EH6+SxJnR9b//2VsWOSAQCAQCATNzoHhe74aJxCEwWqpq2CMRFRhETn+pZLTCOVpbUeYqXZ5Kal2k1fuBCApLKhB3tuyInPXorvYXLwZWVE9yETYnuBkR1F8uD2l7Nz5VL3+7t2eJSxsSKPHq3F7OfeVJdpmPMAj5/UgNMjI2J6tJ62KoPUjRClBqyOQEwEgPD6Ynisf4+cgsKkOU/j2E6UkBQwG8/E28ZCU+yvtRdvN3D++Kx0jbcSG1IXuvbnuTTYXb2ZnmVoS1Wa0HXE8t7vQL0jpsNk6YzZFExFxeovY/sQPW8gqrXOLT485sm3tnRqfzOl/bWWfs27HJ9VqJtIkfjIFAoFA0DqQD6hWLCvqv/aRp6Jzfw2yF2+tmx0hZqoN6rFFvSU6hjZvLsqWoqDCyajnFlLtrsspeqhqxodib8VeFuxdoLU7hXTCqG8dm5gCwYmgoPAnNm26DVlW17ZGYzhpne7FbI4iNPSURo3l8clsyC5nU05FPUFqVJcopg5LbU6zBScJ4glL0OpQ9hOldHrJnyNBBzZ1EeU+IHzP0Eqq7lW7Vc+u2BALF/RLrHcspyqHV9e+Wq8vwZ5wyHEqKjeyfftjeDylAFgscZwy+PsWsBhyy2sprqrbgXzwnG4khFoZ3S2mReZrK+yucdYTpJItJnrZrSfQIoFAIBAI6hPYxAuE7/lzmaPTS0j+isW+/GJy98tt6TTKWI1t4362ObeCardaSdBq1BNpMze4lHwgZC/KGsULo14gPTS9JU0VCFotTmcuJSVLyMn9XBOkAGJiJhAff1GTxnzyhy2892eG1h7WKYLXLx+AwyqkBUHTEJ8cQath15oCMreU4vPWJdnW6SSM5kpGxxZicageUd79RSnAYDzxnlKKolDpVEUpm/ngr1WZqwwAu8nO7QNux26yc0bSGYccKyfnc8rLV2ltm61b8xsMrMwoYfIby7S2JMHUYakY9bojXHVyUOZVF/PpQWZ+HdQFgyShk0SsnkAgEAhaD8qBic79nlKrd2ygZ5xXXSTJ6poqoaSSDX0tJJ02hIvSm/Ygerwp83ugD+0YwUfXNy60KJC/M8IaIRKbC05qNm66rd5zRY/uLxAZOapJ1bsX7ygko6ia37YWABAfYsFhNXLtiA6EBAlPREHTEaKUoFWgKAq/vLsZr0ddPEmSuuOXt28PvXpW0Fefq53rk9VyopKsIAH6E5yw87ZP1vDN2hytHXwIUarKreaRirRGMrnz5EOO43TmUFW1jaoqtUpMUuJVREaeQUhIvxawGv7e6/fEMupwWIyM7xV30gtShW4P3+SXsb6qBoBwowGT7uR+TwQCgUDQOjk4fE/tr6iuQIe6nlIUVZtKKqnAN2gkl5/96IkwtVGs2F3M/y3fyx5/WFBYUMM94t/f/D5zd82lwqV6StlNbSNUUSBoTmpq9rJ331vIspPKyvUAhIeNICioA9HRY9HpGh9lsquwiitm/VWv772rB9MlVnzHBMeOEKUErQJFVjRBqv+YFEDh75/24ZPApFe9VjaRToEullj3GOAndH4/daPRcphRjw8/bMir1x66X9lTr+xlY9FG1hauBcBuPPQPt89Xy4q/zsHrrdD6wsKGEh4+vNntfXPRLj5fnUVRlQtQvaPuH9cy3lhtjSd35/JxbonWFjmkBAKBQNBaCYTvlebVUF64D6cSWA/50AWce/1rJUlR0LWRqnsv/LKd5bvr7sVJ4Q2rtAfw9vq3KXWVau2OIR2b1TaBoC2wd9+b5OR8qrX1+mD69Hm7SWLUou2FvL5wJ8VVauhfpM3M4A5hdIlx0Pkkz0EraD7EE5egVaDURezRf2wKezcUqQ1JQYe6oArpfj6xA6+jYOYK9RABUerEhe85PT7cPtX4xfeMIiTIiMNSt+h7be1rvL3hba19qB07t7uEiop1eL0VSJIBm60rFnMc4eHDWsTmmb/vpMIfagjQK+HwFQBPNvbVqjfcYaE2OgWZuSahYbkrBAKBQCA43gQ8pZZ/u9sfyucXpRRP3Ul+7ylJOfGe5Q0l8PB77YgOdItzMKZHw/Jc+mSfli7hfyP/R4Qlgr5RfVvISoGgdaEoPtZv+BeVFRvweFVhNi72QoJtXQgNGdAkQQrgtd93smJPnUh8ft94Hjy3e7PYLBAEEKKUoFUgK3XJzSWpbvdPQUGH6imllOlZ8f4cKkvy1fP8lxhPYPW9Kpcq7kgSJIRaNRf6ADvKdgAQbY0m3BrOJV0uqXe8snILK1dNRPEnJA0OTmfwoG+b3U6vT+a3rQUUV7s1Qeq9qwcR67DQ9SR3u1UUhbWVtZR5vGT5k5vfmhLDyPCT+30RCAQCQesmkFNKkRUkCeKVvWRVZyPJOfud5A/xa0WFYY5Gea0qql3QL4GeDdg488peFmUtIr86H8Wvwo1OGi2q7QlOChRFoaZmF9XVuygq+kXrlyQjHTrcitWaeISrD82K3cVcN2cVla66TewHz+lGpygbQztFHOFKgaBpCFFK0CoILKxAzY0QEKX295RasXw7e6sLtfNMXh+yBAbD8V9krcssY/bSDCr8CyebyXCQIAV1iTbvHnw3Y1PHHnS8vGINiuJDkowYDHbi4y9uEXt/2JjHLR+v0drBJj2nd45CEsm7mVdYzvWbMur1RRj1J8YYgUAgEAiOgtfjoyirCvd+Xs8Gk57+tcso8e7AaN7P/Zy2Eb5XXOXi/Nf+JLu0VsuNFWJtmL0L9i7gnj/u0dp2k10IUoKThoyMmeze84LWtgV3oXv35zCbozGZGufxX+n0sLOgio//2ldPkEoMs/KPISlYxPpY0EIIUUrQKthflJJ0kuaSrqCg9yfrdMmqN9GeuGpqTW7++XMVPh3EWI+/Yv/Srzu0yhMACWH1yyvnVuWyr3IfBTXqOQ6To97xfZnvUVGxjupq1ZMqPn4yXbs81iK2yrLCjnxVHEsKt9I52s64XnFCkPKzuaoWgAijgXizkS7BFrrZ2ka5bIFAIBCcfHw/cz1ZW0vr9en0EjbLDq6J/7v+yZqn1InZxGsoq/eWkllSq7U7RgYTG9KwnKGZlZkAxAfH0zmsM2elntUiNgoErYnCwl+oqt5GXr4aYWEwhGIwBJOcfC12e+PD62RZYfzLi+t9D+8f15VJAxIJsRpP+mJIgpZFiFKCVsH+OaUknYQ73+8RJSlaBRmf/6Q9cdUEhVpxON0oFjOR1uOf96fYnyT88lOS6Rxj59T0OhvKnGWc+/W5uGW31re/KOV05rJjx+P1xguydmgROz9Yvpf/zt2E1y/yXTIwiZvOSG+RudoaJR4vL2bk81uJmlz+2sRI7kiNPcFWCQQCgUBwZMry1QqxwaFm7OFm8nZXoNNLGFHzvnhkHYagEDJr0/fLKaWgP4E5OI9GSbW6ZhqRFsnzl/QhPMiEoYEPweWucgDGpI7hjoF3tJiNAkFrobY2m/UbpqF9wYG+fWYREtK30WO5vD7+/dVG9hZXk1lSq6UkibCZOb9fApG21vu7IWg/CFFK0CqQ5fo5pbyV1f7GfqKU7P9XpxBjiQQK0OtPzEe4zB+2d36/BAalhtc7ll2VjVt2Y9AZSHWk0jGkI13Du6IoMpWVG6mo3AiA0RhOauq/MOjtxMSc0yJ2/rgxTxOkTAadiAPfjy/ySngrqy4cNNUqbroCgUAgaP0EvMvPmd4bFPjsyZVqCgGv6lG+vCiZQc/+yapnvwDlS0DNKdUaE52v2VfKvV+uJ6/cCUCMw0K0vWEeUh9t+YifMn5iX+U+ABxmx1GuEAjaNsXFi9m1ewZebzmgYDRGEBV1JkHWVByOPo0er9LpYeG2Qr78O0vrG5gSxufTWqbYkkBwOIQoJWgVKPslOv91zhbyt6s7Zmr4ng8FcKLGNkeVKyQHIs8Mx/cj/OXqLGb8vI3cCnXxdKh8B5UeNVQu1ZHK1xO/1vp373mZPXte0tpBQR1ITrq62W10enx89Xc25bUetvvD9t74R39Gdo7GahKx4AFyXaqwOCzUxuTYMM6NElUIBQKBQND6Cezj6XQSXre6YafT61D8m3hevZn3P/6YIvIwBXJK0TrD975bl8v2/Cqt3Tux4ffiV9a8QpWn7tpUR2pzmiYQtBrc7hJcrlwy9r5GZeUGrT86ekyT03888f1m3l68R2sP7hDO1KGpnNIx/AhXCQQtgxClBK2CwK6fJMG25Xl1/XoPOhReDAuhXF+OHSM3/uAlrGazer7++Iosn63KJMe/mxcWZCQx7ODcQ9Vu1cvLZrRpfbLspqJcTTRuMkVhNIaSlHhli9j45d9ZPPD1xnp9nWPsQpBCFT/fzS5iT62LxaXqQnZUuJ3L4oQHmUAgEAjaBloeTglknypEVZYUkBvkwQG4gx1kZWfxW/yvnL8tFGi91ffKatVNyKuGpfKPIcl0irId5QoVj8+jCVJPjniSuOA4+sf0bzE7BYIThdtdzNJlp+Pz1Wh9ndMfwmbr1qRwvYIKJ7UeH/M31j1vmQw6rhqWyvhecc1hskDQaIQoJWgVyPstsFAgNhrytn+HJzISSfGxxRhEkqy6R+llBV+4A7MpiNBJk46rnVX+ShSPTezBxH4JBJnqvkKLMhfx0pqXKHOWARBsCgZgy5b7ycn9TDuve7dniYg4rdltUxQFl1dmZ4G6SOsaa6dnQghdY+10bOAir72zsaqWB3Zk1+tLsLS+RbpAIBAIBIcj4F2+f7VinyLjcziAAlxGG1JpNqmeumskRaFrZOOTH7cU+4pr2Jxbzi7/mqVbnJ20aHuDrnX5XORV1z1Qj+8wHr1ObLwJ2hcuVwEFBT9QXbMbn68GSTJiMkUQHNSJhITL0Okan3bi81WZ3P3F+np9i+8ZRXyoFf0hqogLBMcLIUoJWgVaonNJVaVM+hyc8naMO3bwDv3psrXuXJ2i0OXruRhjYo67nQFRqlucA4elfuje59s/Z0fpDq2dHqomFC8onK/1mUxROBy9W8S26/9vFb9sqasIeNGARK47tWOLzNVWCYTsxZqMXBIXToRRzzkibE8gEAgEbYjAmkmS6qoVo5PQ+UP1iksU7EV59CVUPU9W0MkKEbboE2Dtwbi9MhNeXUJ5bZ1qFhbUsA2i1fmruWHBDbh8asEZu8kuBClBu2THjifIL5intSMjR9O718ymjZVfyebcCj5freaOMhl0mPQ6hnQMJzHMKipyC044QpQStAoCu35+Rykqy/eCJHHgT2Sw043V7UE6jrmknB4fP2/Op9LpobhKdTO3Ww6RS8qt5m+6qe9NDIkdQLy+moLCn/B61f7hwxZjMkWj0zW/7S6vr54gFWzSi6Tm++GRFdZX1vB3her63M1m4f6OwkVZIBAIBG0PLeWBDs1TSqGuMEyUJZQSiqm2uFCMCiM2lqMDOEHFYQ6ktMZNea0HSVKTKseGWBmR3rBKyivzVmqCFMDo5NEtZaZAcELYseNJCgrm43KrxXgiIkZiNsWQlHRVk8ardnk5f+afVLt9Wt/Ll/ZjbE9RcVrQemgddyfBSc/+OaUAajzqgiPW4eK8mLVcEx9JhsHAnOe9SIBkPH4VZD5dmcnDczfV6wsNOnj+CncFAH2i+2Atn8/6rNnaMZ3OjNkc1+w7EcVVLt5YtIuCSvX9Mhl0/P3QWZgNOowNLKV8MnDf9kw+zC3R2uFG8dMnEAgEgraJtpEnSXir/NWKkdHjY0GQlZ/K9pFKMAN3VdKhqFy7TjK0Do+igIdUiNXY6CpfgbXW1O5TubX/rRj1ra+ioEDQFGpq9uDxlLEv813wez3q9TZ6dH8Bo7HxXv2FlS5ueH8VeeVOqt0+rEY9/VNCiXVYOb1LVDNbLxAcG+LJTNAq0ML3/L5SZbU1SECcvgi7wU2NSV2EBSSd4+kplVmietd0iAwmPdpG3+RQYhxquWKP7OHeP+5lT/keMioykFCwKlWUV6wF1Ap7BkMIMdHjW8Q19pOVmfUqZ6RGBGEzi6/1gWyorAUg3mwkzKjnsjhRWUQgEAgEbRMtfE8n4auu9TcUdCgstVqQ9svBWR1hJzwmEdvwEegslhNksUpeuZM/dhSSUaQKaYeqYHw4thRvIasqi+0l2wEIs4QJQUrQbsjP/56Nm27R2nq9jf793sdiSWy0IFVe4+HvfaUs2VnE3/vKtP6ze8Tw0qX9mstkgaBZEU+vglZBYNcvoDpJqLmbdJJClncSLut2DJVl2vnH01Oq0qnaMql/AjedkV7v2NbirSzYu0Br3xTtoWjrDVq7W7dnCA0Z0Ow2+WSFbXmVbMxWd0BPTY9kSMcIRndrHfkiWgt/lVWxrKyavU417PK9Xh3oYw86wVYJBAKBQNB0At7lW5fmUrCjTO1DQYcPtyRh8PlFKUWm+6tvEtS/dVSlu/3TtSzbXay1G5pHKrMyk0vmXYLi9x4BCDWHNrd5AsFxp6h4Ic7aLAoKfwTAYLBjMDiIj7+kyTlor39/FX/tqYsOOL9vPFcP70D3eEez2CwQtARClBK0CrREnX4kxYcC7DMa2GlLp1LZhFHe74Tj4Cnl8cnkljkpqHQCh8kj5VHzRSXaEnl46H+o3jYVFNDrgwkOTsdu69kitj3w9QY+WZmptcf3iuOywcktMldbxacoXL5+N5W+ug9OnKl17Kr6fD48Hs/RTxQIBCcEo9GIXt86Qp0EggOR/Rt5f82r85RWJA86lHqilE5Wjqtn+dHY5/c8H9whnFCrkSuGpjTouj3le1BQCDYG0yWsC+GWcEYlj2pJUwWCFqeychPr1l1bry897UHi4y9q9FhOj4/Xft9JUbWbtX7vqO5xDsKCjdx0RlqDK1sKBCeK1nOnEpzUBHb9DJILH0bCKaEY+MVmZU3cR+CDiEB+PqOxxatEKIrChFeWsDWvUuuzWw7+ulR7qok0yAy1KSTKu9imqEaeduoqdLqG7QA2hb/3lQIQEWwiPtTKGV2Fh9SBVHh9miA1JS6c/o5gos0nVpRSFIW8vDzKyspOqB0CgeDohIaGEhsbK6oSCVoViqKwn8MQQcEeKrI+wmty8nt1PKE5oK9S1x/6ViZKBXJJPTOpNx0igxt0zbaSbSzLWQZA36i+vHHWGy1mn0BwPCgs/IV9me/idhcBYDbF4Ajph8kUQXT0uCaN+cOGXF7+bafWtpkNzL1pOAaRX1bQRmg9dyrBSU0gP4JdysVFMhZU7yRFUoh2h9M1qQcDY5OBOccldK/a7dMEKatRT4zDzJCOddXsqj3VLM9dzorcFfwrykW4YQfbtj8MgNEY3iKCVFmNm0vfWk52aS2VLjWk8NMbhojdj8NQ5lEFwmC9jue7tg4vsoAgFR0dTVBQkHjYFQhaIYqiUFNTQ0GBWtE0Lk5U6hS0HpT6juWYTPvwUozODYUEYamtO2Z1e46LZ/mR2F1Yxau/78Tp8VHlX7uENjCX1L6KfVz0XZ3XSIRVVBUWtF08njKqq3eyc9f/qKmpE5Di4ifTqePtjR5PURRe+GUHm3MqyChW87T1Tw7l9C7RDO0UIQQpQZtCiFKCVkEgp5QOVUhwKgbAhayDIbW9eWzUi3iy97KbOcdl1y+wm2fS69j86JiDxIOn/3qaJRlfkW6WGRqu2h4RcTogERszoUVsWrGnpJ7nVnyIhaRwkR/pQG7Zspffiivx+j9Toa2k2pDP59MEqYgIsbAWCFozVqsVgIKCAqKjo0Uon6DVoByY7kBWhZ5ocxWnRO5jZmgIu0wm7v9Gwe7yIBlOrIfwu3/u4au/s7W2w2LA0UBRKqMiAwCrwUqvyF5c0uWSljBRIGhxFMXHir/OweXK0/q6dHkMizmOsLDGVaBUx1PYUVDFy7/uqNd/Yf9E/jGkYWGxAkFrQohSglZBXU4p1WXKhbpgkSUFe/94qpctpvybb4GWT3KeWVKjJQh0WA8dKrivYp/fQ8pfllnvoG+fWS1iz67CKn5Yn8u6rLqk5o9N7ElsiAVzKxFcWguVXh+f5ZXW6+vraB3CXSCHVFBQ67BHIBAcmcB31ePxCFFK0GpQDnSV8q+bbEYXSY4qCuJs7DXVEFqreklIxhO71C+sdAFwXp94BqWG0T8lDL2uYV7CFe4KAHpH9eads99pMRsFgpbC6cyhqHghXk+5X5DSYbUmERoykIT4y5rkMb85p4LL3l6ubaCnRgQxbWQnHFYjZ3aLaeZXIBAcH4QoJTihOKs9bP4zh5Js1e1U8i+2AqmpFUnBZDWTe9O/8ZWqYoM+LLTF7NlVWMWZzy/S3OMd1kN/RWo9ZYSb6zykYmMmtphND369sV61mvRoO6kNzMVwslHkVneMg/Q6vu+fjk6SSAsyn2Cr6iNC9gSCtoH4rgpaI4p86I5tZiNvxXSn2FQNOJF8quf58axWvD9FVS6+XJ3F5lxVWBrTI5ZzejcsFPanjJ9YlrOM3eW7AQgxhbSYnQJBS7J5yz2Uli7T2sHBnRhyyo9NGiuv3MnqvaX8siVfE6QALhqQyKWi2JGgjSNEKcEJZdPibJZ/sxs9bqy6GvAnCg/sBMoSGCQDclUVAOHXXEPIhHNbzJ4d+VUoCpgNOhLCrFwzvEO94yUly9iX+S5jzf5YcMlMn97vtOjDy15/nPj4XrEkhFq5ZkSHo1xx8lHo9nDu6h1kudwARBkNdLNZT7BVAoFAIBA0L4HwPT1OfFiQKlXhJsuoJyuoyH+SguT1i1InKKfU6wt3MWtJXXXA2JCGbRD5ZB//Xvxv3LK77trg2Ga3TyBoKTyeCjZtvh23q5Cq6u0ARISfhl4fTHz8xU0e94pZK9hRUKW1bzkjjetO64jjENXBBYK2hsiAJjihuGq8BOlKuCb2Wq6JvhqzpAow+3tKGXVGFFntCb9qKpZu3VrMnmp/Es7BHcL57c7T68Vlr85fzRcrrqa4+DdSjGoidpM1uUUEqaIqF2c+v4heD/9ETrk61wPndOeBc7oTFyLElgNZXlbNXqcbn9/DbUSY7cQa1M646qqrkCQJSZIwmUykpaXx6KOP4vV6j2nchQsXIknSca1GuGfPHqZMmUJ8fDwWi4XExEQmTpzI1q1b6503b948Ro4cid1uJygoiEGDBjF79ux652RkZCBJEmvXrm3w/P/973/p2rUrwcHBhIWFceaZZ7JixYp6Y1577bV06NABq9VKp06dePjhh3G73UcYFXJzc5kyZQqdO3dGp9Nx2223NcieP/74gwkTJhAfH48kSXzzzTeHPG/Lli2cd955hISEEBwczKBBg9i3b592/IYbbqBTp05YrVaioqIO+Z6uXLmS0aNHExoaSlhYGGPGjGHdunWHnG/nzp3Y7XZCQ0Ob7TUIBO2BwKZdmEHN0yR51XWTIoHD7WCa41rePbMu1O1EiVK55WrG9cGp4dw3riv9k8MadF2lu1ITpKb3nc5dA+/i2l7XtpidAkFzIctuikuWkJHxKsXFC6ms2oSieDAaw+nd+0169XqViIjTGjVmUZWLD5bv5d0lezRBanBqOGd3j2HKKSlCkBK0G4QoJTihKLJChGEfu2sH8XPZ7RR6VS8gdyCnlA4Mkh4CbugtnNej2h/+ZTPXX8QVlyxh585niTWo7rI/lhuYXx1H315vtogdS3cVs7OgSquylxIRRIy9dYWhtQYURWFnjZN1lTUAjA53sG5YD57rknSCLWt/jB07ltzcXHbs2MGdd97Jf//7X/73v/+daLM0jibagJob6KyzzqK8vJyvvvqKbdu28emnn9KrV696wtgrr7zCxIkTGT58OCtWrGD9+vVceumlTJs2jbvuuuuY7OzcuTOvvvoqGzZsYMmSJaSmpnL22WdTWFgIwNatW5FlmTfffJNNmzbxwgsv8MYbb/Dvf//7iOO6XC6ioqJ48MEH6dOnT4Ptqa6upk+fPsycOfOw5+zatYsRI0bQtWtXFi5cyPr163nooYewWCzaOQMGDOC9995jy5Yt/PTTTyiKwtlnn43P/9tdVVXF2LFjSU5OZsWKFSxZsgS73c6YMWO0fGsBPB4Pl112GaeeemqzvYa2yuuvv07v3r1xOBw4HA6GDh3K/PnzteNOp5Pp06cTERGBzWZj0qRJ5Ofn1xtj3759nHPOOQQFBREdHc3dd999kKC8cOFC+vfvj9lsJi0t7SABVtB6CITv6ST1u+WVAuslhWBPMKPtIxkQ2bfughOU6DwQXnTZKUlMG9mpwRt4gTxSQYYgpvWZxtQeUwm3hLeYnQJBc7F371usXTuVfZlqjtmoqDH07fMegwd/1+Sq3E98v4UHv9nIo/M2AxBiNfLpDUN468qBxIZYjnK1QNB2EOF7ghOKLCtIePm9/EZk6hZOXkCPmujcQJ0Q1VKi1MbscnLLnazLVJOJB+8nSimKjw0bbiTSVwN6UIB7Rs8jzNYBg655v0IrM0pYl1nGygw10fqZ3aJ58JzuxIVaRGnXQ/B+TjH3bM/S2okWIzFmsWvUEpjNZmJj1RCKG2+8ka+//pq5c+cybdo0br31Vr777jtcLhcjR47k5ZdfJj09HYC9e/dy0003sWTJEtxuN6mpqfzvf/+je/fujBo1CoCwMHUHferUqcyePZvKykqmTZvGN998g8Ph4J577uHbb7+lb9++vPjiiwCkpqZy7bXXsmPHDr755hsuvPBCZs+ezZIlS7j//vtZtWoVkZGRXHDBBTz11FMEBwezadMmdu3axa+//kpKiuoFmZKSwvDhw7XXmZmZyZ133sltt93Gk08+qfXfeeedmEwmbrnlFiZPnswpp5zSpPdxypQp9drPP/88s2bNYv369YwePZqxY8cyduxY7XjHjh3Ztm0br7/+Os8999xhx01NTeWll14C4N13322wPePGjWPcuHFHPOeBBx5g/PjxPPvss1pfp06d6p3zz3/+s54tjz/+OH369CEjI4NOnTqxdetWSkpKePTRR0lKUkXjhx9+mN69e7N3717S0tK06x988EG6du3K6NGjWbp0abO8hrZKYmIiTz/9NOnp6SiKwpw5c5g4cSJr1qyhR48e3H777Xz//fd8/vnnhISEcNNNN3HhhRfy559/AmrVz3POOYfY2FiWLl1Kbm4uV155JUajUft879mzh3POOYdp06bx4Ycf8uuvv3LdddcRFxfHmDFjTuTLFxyCQGGYQLVit99zSpFAjw7bhr/Z+9rj2vnHM9F5hdPDUz9soajKzQZ/cZaQBlba2166nceXP06J019oxuxoMTsFguYkL+9byivWUVy8CACrNQWrJYmOHW/HFpze6PG8PpkHvt7InqJqLSfb8LQIwoJMjO8VJ/IdCtol4ilXcEJRZJCQkTGiKAqR8q+YXPORPJXqcQmM+39MW8ANfWN2Oee+soTr/28VX/6tChx2S908Hk8ZPp/qibOw0kCJ43yiHOnNLkhVubxc/s4KHv9+Cz9tUne6O0XbSI0MFlX2DkPAQ8qu15EeZGZSTMPCAwTHjtVqxe12c9VVV7Fq1Srmzp3LsmXLUBSF8ePHa94v06dPx+Vy8ccff7BhwwaeeeYZbDYbSUlJfPnllwBs27aN3NxcTVS54447+PPPP5k7dy4LFixg8eLF/P333wfZ8Nxzz9GnTx/WrFnDQw89xK5duxg7diyTJk1i/fr1fPrppyxZsoSbbroJgKioKHQ6HV988YXmwXMgX3zxBR6P55AeUTfccAM2m42PP/64Wd5Dt9vNW2+9RUhIyBG9m8rLywkPPzGeArIs8/3339O5c2fGjBlDdHQ0p5xyyhFD5Kqrq3nvvffo0KGDJkB16dKFiIgIZs2ahdvtpra2llmzZtGtWzdSU1O1a3/77Tc+//zzdun11BQmTJjA+PHjSU9Pp3PnzjzxxBPYbDaWL19OeXk5s2bN4vnnn+eMM87QvNWWLl3K8uXLAfj555/ZvHkzH3zwAX379mXcuHE89thjzJw5U/MufOONN+jQoQMzZsygW7du3HTTTVx00UW88MILJ/KlCw5DIHwvIErV5eBUSPVF45z/Fc7NqleFITr6uCY6X7Apn4//ymTB5nwqnKo3XnJ4wyrOzts1jzUFa9hbsReATqGdjnKFQHDicbkK2bT5TrKy5lBbmwFAt27P0K/fnCYJUpVOD4t3FPHpqkz+yiihyuXFpNfxwiV9eXVKf8b3alixAIGgrSE8pQQnFEVWkPDv8vkKyapU84sEZCiPQcao1IlSkq75ddRdhWqMtt1soFO0jWCznskDksjK+oDiksVkVezCAlT54JsyE/26Dz/ygE3A6fGxLa8Ct1fGbNAxrmcsQWYDU4emNvtc7YlSj7oo/3eneK5OiGzewRUFfrgb8taDuwZK94DPDVf/CIkDmmkKhVrPocWRlsRq1Dd5p01RFH799Vd++uknxo0bxzfffMOff/7JsGHDAPjwww9JSkrim2++YfLkyezbt49JkybRq1cvQPX8CRAQWqKjo7XcQZWVlcyZM4ePPvqI0aNHA/Dee+8RHx9/kC1nnHEGd955p9a+7rrruPzyy7V8Sunp6bz88suMHDmS119/nYSEBF5++WXuueceHnnkEQYOHMioUaO4/PLLNbu2b99OSEgIcXEHL/xMJhMdO3Zk+/btTXrvAsybN49LL72Umpoa4uLiWLBgAZGRh/787ty5k1deeeWIXlItSUFBAVVVVTz99NM8/vjjPPPMM/z4449ceOGF/P7774wcOVI797XXXuOee+6hurqaLl26sGDBAkwmNWTBbrezcOFCzj//fB577DFA/f/z008/YfBvNhQXF3PVVVfxwQcf4HAIL4kD8fl8fP7551RXVzN06FBWr16Nx+PhzDPP1M7p2rUrycnJLFu2jCFDhrBs2TJ69epFTExdmfAxY8Zw4403smnTJvr168eyZcvqjRE4p6F5yQTHl0D4niT5106BfgmMigF8qhgUfffdhJw3oUXWTYejuNoFQP/kUCYPTCI5PIi0aHuDrg14SF2YfiHjOoyjd2TvFrNTIDhWsrM/JifnM7y+GkDBaAwnIf4SLJYEQkMGNmnMl37ZwQu/1K0v+iSGMG1kJzpG2Yi2i1A9QftGiFKCE4qsKEiSusJSFDUpJjoDbkcYWWH5ZEfVYmhhT6nAbt6wtAjevEK9kfh8tSxc9AggE7gNFHp1WPQWekb2bNb5dxVWcd4rS6h2q+JEakQwL17ar1nnaE+UebxM27SXPLeHfU51pz+sJTzJSnbDyrcPcUA5RF/TqPX46P6fn5ptvIay+dExBJka912aN28eNpsNj8eDLMtMmTKFCy+8kHnz5tULZYuIiKBLly5s2bIFgFtuuYUbb7yRn3/+mTPPPJNJkybRu/fhHzZ2796Nx+Nh8ODBWl9ISAhdunQ56NyBA+sv/NatW8f69ev58MMPtT5FUZBlmT179tCtWzemT5/OlVdeycKFC1m+fDmff/45Tz75JHPnzuWss85q0HsREFqOxIcffsgNN9ygtefPn6/lSBo1ahRr166lqKiIt99+m4svvpgVK1YQHR1db4zs7GzGjh3L5MmTuf7667V+m60ukf8//vEP3njjjaPas3jx4nohbm+++SaXX375Ua+T/UUmJk6cyO233w5A3759Wbp0KW+88UY9Ueryyy/nrLPOIjc3l+eee46LL76YP//8E4vFQm1tLddeey3Dhw/n448/xufz8dxzz3HOOeewcuVKrFYr119/PVOmTOG00w6dCLapr6Gts2HDBoYOHYrT6cRms/H111/TvXt31q5di8lkOigZfExMDHl5eQDk5eXVE6QCxwPHjnRORUUFtbW1WK2HLq7hcrlwuVxau6Ki4phep+DouGs96OffxuSIFWypGU02vbQ7kiwpGBQ9iqyuJaz9+2GIijoudnl9MntLasgoVr2X+ySFclkDS9SvK1zHuoJ1bC5Rvbt6RvZkSNyQFrNVIDgW3O5iamsz2bX7eTyeEq0/PHwEnTo1LefkyowSlu0q5pOVdcVDjHqJy4ekME54RglOEoQoJTihKD4FSau1p/7rNulZ3b2SXHs5Pj0Y5JbxlJJlhbVZZWzKVvMeOCxGFMXH3n3vUF29A5DR64P4uSqUgtoiLu33CIuSzyXI2DBX9IayKqNEE6R0EpzTW9yAjsTCkkoWllbW6+tqa4EdJKf6uSAoAia8DEHhEJoMwcdnkd/aGDVqFK+//jomk4n4+HgMBgNz58496nXXXXcdY8aM4fvvv+fnn3/mqaeeYsaMGdx8883HbFNwcHC9dlVVFTfccAO33HLLQecmJ9c9INntdiZMmMCECRN4/PHHGTNmDI8//jhnnXUW6enplJeXk5OTc5B3ltvtZteuXQ3Ks3PeeefVE+sSEhLq2Z2WlkZaWhpDhgwhPT2dWbNmcf/992vn5OTkMGrUKIYNG8Zbb71Vb+z9q/011KNo4MCB9a47UIQ4HJGRkRgMBrp3716vv1u3bixZsqReX0hICCEhIaSnpzNkyBDCwsL4+uuvueyyy/joo4/IyMhg2bJl6Py/4x999BFhYWF8++23XHrppfz222/MnTtX8woLCIoGg4G33nqLyy67rEmvoa3TpUsX1q5dS3l5OV988QVTp05l0aJFJ9osnnrqKR555JETbcZJQ8HeChbM+IHLwz/CaoRtkioIe/ze5IoEQSlhIO0Gjm/VvWvnrGLR9kKt3dA8Um6fm3/+/E9qvDVaX6Slmb2eBYJmwuutZOmyM/D5qrS+3r1eR6ezEBraNO8or0/m6vdWUuWqKz6x8K7TSQyzilyygpMKIUoJTiiKrGgu6JKiCjO1xlq2hWZq5zgM+z14NmOi83f/3MPj32/R2iFWI6WlK9i1qy6Zb1BQJ1bkV1JQa+DO0F7NKkgt2l7Ixuxy/tqj7rRcPDCRpy7sjV4nEhgeiSKPeuMeHmrj9tQY4sxGOgW1gCjlVstsExQB3c5t/vFRw+g2P3r8EwlbjY3/HgWElP3p1q0bXq+XFStWaOF7xcXFbNu2rZ6IkZSUxLRp05g2bRr3338/b7/9NjfffLPmcbR/fqeOHTtiNBpZuXKlJiSVl5ezffv2w3rQBOjfvz+bN28+yM4jIUkSXbt21RJqX3TRRdx7773MmDGDGTNm1Dv3jTfeoKamhiuvvPKo49rtduz2hoWtyLJcz+MkOzubUaNGaTmCdAeI8Y15fQGsVmuTrjOZTAwaNIht27bV69++fbuWLP5QKIqCoija66qpqUGn09ULGw20A95Yy5Ytq/dZ+Pbbb3nmmWdYunQpCQkJTX4NbR2TyaS97gEDBrBy5UpeeuklLrnkEtxuN2VlZfW8pfLz87WiBLGxsfz111/1xgtU59v/nAMr9uXn5+NwOA7rJQVw//33c8cdd2jtiooKLYeYoPkp2FuJ5FO/T27ZQh6DAKhFrcwr6xQssQ6QA+X5jt8D7d97SwE1DUJYsIkzuzVMMC5zlVHjrUEn6RjXYRzR1miGJzR/igSB4FioqNxIcdFCXK48fL4qJMmI2RxLdNTZREWd3aQxdxdW8di8zZTWeLS8UZMGJNIrIYTUyOCjDyAQtDOEKCU4ociKgi6QIAFVbJD9ItWpwUM4pdsITokYxF6AAx5ojpXt+aq3TZTdTHJ4EOf3S8Dp3ASAxZrK2loj6/I9FDmLALCZbIcdq7GUVLu5ZvZKfHJdKFhCaJAQpI7AF3klvJ9TTJY/ZC892MKIsIY99DcJj3/n1tRyiwNJkhodRteaSE9PZ+LEiVx//fW8+eab2O127rvvPhISEpg4cSIAt912G+PGjaNz586Ulpby+++/061bN0CtfCdJEvPmzWP8+PFYrVbsdjtTp07l7rvvJjw8nOjoaB5++OGDBI1Dce+99zJkyBBuuukmrrvuOoKDg9m8eTMLFizg1VdfZe3atTz88MNcccUVdO/eHZPJxKJFi3j33Xe59957AdWj6tlnn+Wuu+7CYrFwxRVXYDQa+fbbb/n3v//N448/Ts+e9UN4DxRsAHr06IHxgATD1dXVPPHEE5x33nnExcVRVFTEzJkzyc7OZvLkyYAqSJ1++umkpKTw3HPPUVhY530QEBEOR8CLqKqqisLCQi2860Avp/2pqqpi586dWnvPnj2sXbuW8PBwTRS8++67ueSSSzjttNMYNWoUP/74I9999x0LFy4E1JDLTz/9lLPPPpuoqCiysrJ4+umnsVqtjB8/HoCzzjqLu+++m+nTp3PzzTcjyzJPP/00BoNBq8IY+FwEWLVqFTqd7qD3uymvoT0REDEHDBiA0Wjk119/ZdKkSYD6Wdy3bx9Dhw4FYOjQoTzxxBMUFBRo4aELFizA4XBon4uhQ4fyww8/1JtjwYIF2hiHw2w2Yzabm/vlCQ6DuomnrpdMdjsOyUZBDSjISKieUgadAcWfU6qlqhUfiNsrU+n38vjjnlGEBR89vDlAhUsN+XSYHDx96tMtYp9AcKxs2HATTmfdZnl4+HD69pl1TGN+uiqT37fV3d97J4bw1IW9jmlMgaAt03afhgTtAlWP8ntKaaKUemx86Nmc22Myntxc9XgzL7DKa9XqYLeMTmdEzFwydlxLvqz2eUzJvLF9lXau3Wgn0nrsLuWKorA5t4LVe0vxyQp2s4HxveKwWQxMOaX9PTw1J89n5LO7ts6bpHNQCz0MyT7Y/hPsXKC2m1GMbI+899573HrrrZx77rm43W5OO+00fvjhB02Q8fl8TJ8+naysLBwOB2PHjtWqeiUkJPDII49w3333cfXVV3PllVcye/Zsnn/+eaZNm8a5556Lw+HgnnvuITMzE4vlyB5xvXv3ZtGiRTzwwAOceuqpKIpCp06duOSSSwBITEwkNTWVRx55hIyMDCRJ0tqBfEkAt99+Ox07dmTGjBm89NJLVFerXnMff/wxl1566UHzHqovMzOTxMTEen16vZ6tW7cyZ84cioqKiIiIYNCgQSxevJgePXoAqhiwc+dOdu7cedD1gSpbh6Nfv7pcdKtXr+ajjz4iJSWFjIyMw16zatUqTRQCNM+XqVOnMnv2bAAuuOAC3njjDZ566iluueUWunTpwpdffsmIESMAsFgsLF68mBdffJHS0lJiYmI47bTTWLp0qSaEdO3ale+++45HHnmEoUOHotPp6NevHz/++OMhk8o3hoa8hrbK/fffz7hx40hOTqayspKPPvqIhQsX8tNPPxESEsK1117LHXfcQXh4OA6Hg5tvvpmhQ4cyZIiak+fss8+me/fuXHHFFTz77LPk5eXx4IMPMn36dE1QmjZtGq+++ir33HMP11xzDb/99hufffYZ33///Yl86YIDkGUFHT72uvqzo/os8tzq/7+AKCVLCgbJAD5VuGppUcrtlbn0rWVayXqdBI4Ghu3tKN3BC6tfoLBWfSh3mERhA0HrwuUqYOu2h/B4yjRBKj7uYnR6MwnxlzVpzAqnh+tmryK7rJbSGnWD9bLBSYzsHM3gDiemwq5A0FqQlKOtck9iKioqCAkJoby8XFQCagGcW7bww/+WYHfsY7tzFIp7Ha7qXykK8zJvaDbPJT3GmDPOx52Vza4zz0SyWOi6ds0xz5tZUsPCbQW8tzSD3YXVvHRpX6KdU6mp2eM/Q8IbdSV3/f05XcO7cnv/2+kY2pHY4CN7KTSEpbuKmPL2Cq09ICWML28cdszjngx0+mM91T6ZZzsn0sFqZmioDUNLeJZt+ho+v6qu3fVcuPTDw57eUJxOJ3v27KFDhw5HFVcE9amuriYhIYEZM2Zw7bXXHvf5S0pKGD16NA6Hg/nz5xMU1Lx55QStkyN9Z4/X+uDaa6/l119/JTc3l5CQEHr37s29996rJeV3Op3ceeedfPzxx7hcLsaMGcNrr71Wz6tu79693HjjjSxcuJDg4GCmTp2qeakFWLhwIbfffjubN28mMTGRhx56iKuuuqpRtoo1U8uy9pd97PhmPi4lmHJfPLK3EEUuwuVbic5ZxJr0MgZecBHj/vUJcnk5HX/4HvN+1U6bmy25FYx7abHWHpwazmfTjuxdF+CZv57hgy0faO3TEk9j5uiZzW6jQNBY1FyGtWRmzmHX7rqqt1ZrKsOG/trkMbPLavl9WyEPfbOx3rG5Nw2nd2LosZgsELRqGro2EJ5SghNGxQ/z8ZYrSI6Ap5SaS0Tx6wx6nX+Xr5ld0e/8bB1/ZdRVzKgoeB27MQuAgQM+JyioE1/vViuiJdgSGJbQfKLRllw1ZDDEaiQlIojrT225BWN7QFYUrli/h78rqqn27/5eEBOGvSWq7QUo9ocBhSRDfB8YdmvLzSU4JGvWrGHr1q0MHjyY8vJyHn30UQAtJPB4Ex4ezi+//MLMmTNZtmwZo0ePPiF2CE4+Zs06coiIxWJh5syZzJx5+Af6lJSUg8LzDuT0009nzZpj3/QRtByKDJLkwyNbUBQXnqoPURRZq0/s0ykYdAbw52VrzsIwh6LC722eFG7lo+uGEB96+PxjB1LiVNdgEztNZFTSKAbGNi1JtEDQ3GzYOJ3CwrqqyDHR5xIdPQ5HSN8mj3nflxv4dFVd+N/ortHcMjqdSLuZhEZ8bwSC9owQpQQnDMXrRZHqXL0DVfgC4XsGnfrxVPxiRHMlOc8uqwVgWKcQ7N6viNF9h6LI6PU28r1mnvntDvZW7AXAbmqenEVfrM5ic04Ff+9Tk4Fe2D+Bhyf0aJax2zOZTje/ltSVGe8SbMHWUtVIKvOhbB8UbFXbPS+Es0RlqRPFc889x7Zt2zCZTAwYMIDFixcTGXniqjJFRETwn//854TNLxAITm4URQ3fkxUDilyLosgoQG5ELW6jzJ74akbpTSiBROctXH2v0qluGIYHm0kKb5j3aG5VLjvKdmhrrIGxAxmdIkR+wYmnpGQpNbUZFBb+rPXp9UEkJV1NSBMEKVlW+GDFXvIrnPy4KQ8Ai1FHsMnAP4am0CcptJksFwjaB0KUEpwwFJ8XBbMmRmmilE71nDLH+AWhZvaUqnapu3vXD9iAXPYtBoODtE734HD05u3tP/FXXl2log4hHY55vqzSGu76fF29vsQwEf7TEEo96o5vtMnAl33TSLaamjXZvUZ1MbzUB7y1dX1BEc0/j6BB9OvXj9WrV59oMwQCgaDVIPsUdJIPGT2BwjA+Pfx8SgEWr4Vucb05M+VM3F7Va64lPKW8PpnpH/3NjvwqLbm5w9KwRwmXz8Wk7yZR6a7U+sLMYc1uo0DQWGpq9rBm7RVa22AIYcTwJUiSEZ2uYXnSDuSPHYX859tNWluvk1jx7zMJaWDeNYHgZEOIUoITh9dNgmMfQQanv8MfvufXnsyhqnCjBEqEN0PIlqIoVDo9gERR3juEWyDImkpCgpq0sML1OQATOk7ggvQL6Bfd7wijHRlZVvhjRyGr/aWSI20mLh6YhMNq5OKBiUe5+uRmWVkVm6tq2VWjJjaPNBpID27BPEyFW1VBSmeEkASwhkPXc1puPoFAIBAIGoHqKSWjBuypm3iBdAfp5em8O/VdDAYDW+Tm9S7fn615lfy0Kb9eX+eYhnmUF9UWUemuRCfp6BbejdjgWAbFDmp2GwWChlJU9DvFxYtwOrMBMBrDCQ0ZQEzMuej1Tds8/m1rPp+uzGRvsVrBOS3axoi0SAalhgtBSiA4AkKUEpwwTPLfDEpcxV6XmktA8YtSgfA9489/krX6feSKcgAkXdMXWDlltcxZlkGNy4fPv4qLdCQR4RhEYmLd7ki1R62y1SOyxzEvln7enM+0D+q8PbrHh3DP2K7HNObJQJHby+S1O/HuV4IhytRCN3KvCzZ+BXuXqO3EgXDNjy0zl0AgEAgETSRQfU9R9OCvUaRI6r86dOgCnlHe5vUu359AxbDk8CBmXNwHo15Hr4SQBl1b4VJD8cMt4Xxy7ifNbptA0BgUxcfGTbfg89VofZGRo+ne7ekmjVfj9lLl8vLod5vJKK4b88L+Cfzr9LRjtlcgaO8IUUpwQti8eTP5Xj3bit7FhwkAN6pYpPjD9/TPv0tlrVO7xhDR9HCqtxZtY/aybK1t1rvo0uk64uPOBWBbyTbya/LJrFQTEQYbg5s8V4Ad+aqLenyIha5xDqaN7HTMY54MZDndeBUI0us4M8KBQZK4JqGFcgmt/wzm3lTXdsS3zDwCgUAgEBwDstuDpIXvBdIdqMd0iipKafmkoFk9pRRFYV1WOct3FwMQG2JhUGrDStiXOkv5due37C7fDYDDJCozCk4cNTUZbNv+X7yecny+GiTJSGrKNHQ6E3Fxk5o05vb8Sia8sgSXt+7799C53Ym0mRjT49grdwsEJwNClBKcELKyslB8EX5BSkaWvJj0HmoBRS+BoiD5BamoO+5AZwvGNmJEk+fLKckEdHSP2ErHkAy6hu3Abn8RgK0lW5n83eR659uNTU9w/s7i3XyzNpu8ctX+SQMSufPsLk0e72Sh1ifzTlYhayv9Ls9WM2/1SG3ZSUsz1H8j0iHpFBg6vWXnEwgEAoGgkdRu2Ejx7I/RdQhC2V+U8nuWmwJ5bwLpDmjenFLzN+bxrw//1tphQQ33Xn5v43u8t+k9rR1pPXEFKwQnL7LsweXKJTNzNiUli7V+u70nHTve1qQxCytdrMwoYfGOQk2Q0kkwsnMU1wxPbZkcqAJBO0WIUoITQn5GOTH+8Cyrso+qsh+Is3VhNyBLCrr9QrfCLp6MPjS0SfMoigLIVLtcgJVTU8q46tQzsFiuwG5TQ+n2lO8BVO+oDo4ORAdFMyR+SJNf20u/7NASgAJ0ixO7gg3h+8Iyntidq7UTLaaWm8zjhNpSqPB7z/W8EEb9u+XmEwgEAoGgidRuWI/ik9FJgcVRIKeU2h4Qq1bzVfYTpdA33xJ/W57q+R0RbCIlIogrh6Y2+NrcavW+3i+6H13CunBB+gXNZpdA0BAURWHlyolUVW/T+hISphARPpKQkP5NHveG91fx974yrT1tZCfuGyfSdAgETUGIUoLjjsftI2dnKTH+TTy3OwOP4mR3pVqhzqeT0e+3rsLQtHxCsuxm1aqLqKzaRGnFv4CuhNoTiIurvyAKVIIZHDuYl894uUlzKYrCnqJqql0+TZB684oBxDgs9ElsWL6Fk51sp1oVsYfNwlkRIVwc27DQgEZTUwKvDIDakro+awvNJRAIBALBseKTUSQdkj/3Jkr9ROdh1lD/eft5Sumbz1OqzJ9L6rLBydw1pnGe3+UuNS/oRZ0v4rxO5zWbTQLB0fB6K8nJ/QK3u1gTpPT6YEzGCFKS/4nVmtToMWvdPmb+vpPiajcbstXPdv/kUMKCTFw6qPHjCQQCFSFKCY47XpcPBYWAU6usqMnFjTozwcZQMuK3ot8vLYJkbNrHtKZmD5VVajlWl88MQGRo+kHnVXmqALAZbU2aB+DZn7bx+sJdWtti1HF29xjhutsAfi+uYF5hGX9XqGF7Z4Q7uK9jXMtNmLehTpCS9BAcCR1Pb7n5BAKBQCA4FnxeQoILCDZ62ek6FYVAonP1sF5S80cp9USpY88p9cHyvTw2b7MWmhTawLC9gpoCbvv9NopriymsLQQgxCQ26ATHl8zM2eze86LWDgrqxNAhPx/TmPPW5/Dq7zu1tt1s4PNpw9DrxHpfIDgWmm8bRSBoIF6PDPuJUpJ/cdXB1puxqddQEO6qL0o1cmHl9VazY8eTbN/xFO9tuoz/Lv8PWdVqkvHYyN7aebM2zGL4x8OZuWYmADZT40UpRVGodftY4U/+abcYiLSZmDpUxJI3lDu3ZfJhbglbqtUcXMnWFgzbUxSoVhfIpIyAh0vgru0QLdytj8RVV12FJElIkoTJZCItLY1HH30Ur9d79IuPwMKFC5EkibKysuYxtAHs2bOHKVOmEB8fj8ViITExkYkTJ7J169Z6582bN4+RI0dit9sJCgpi0KBBzJ49u945GRkZSJLE2rVrGzz/f//7X7p27UpwcDBhYWGceeaZrFixot6Y1157LR06dMBqtdKpUycefvhh3G73EcfNzc1lypQpdO7cGZ1Ox2233dYge15//XV69+6Nw+HA4XAwdOhQ5s+frx0vKSnh5ptvpkuXLlitVpKTk7nlllsoLy/Xzpk9e7b2+Tjwv4KCAu08l8vFAw88QEpKCmazmdTUVN5999169rz44ovaXElJSdx+++04nU6OxFdffcXZZ59NREREo/9/CARtAUPVRkZ2/4yeQT/5e+rnlIr68292nj2GPefv5wneDKLU/I25miBl0usYkBLWoOv+zP6TDUUbyKnOwSN7MEgG0sJEBTLB8WHHjidZsWI8+zLVXGahIYNISLicrl2faPKYz/+8jVOe/IX/zlU3uwelhnHHWZ157+pBQpASCJoB4SklOO543T5AQUuN4F9cLXWs5Y2kP3H5XFj2E6Uau7AqKJjPvsxZFNeGsSQ7kMBcRpIgNaKuqt63u76lwl2htXtF9mr0a7nh/dX8vDlfa//fNYPpl9ywRZsAZEUh362G7d2SHE28xcRFMS0USrf0VVjwH1D8O8lBImSvMYwdO5b33nsPl8vFDz/8wPTp0zEajdx///0n2jQA3G43JtORBU2Px8NZZ51Fly5d+Oqrr4iLiyMrK4v58+fXE8ZeeeUVbrvtNu69915ef/11TCYT3377LdOmTWPjxo0899xzTbazc+fOvPrqq3Ts2JHa2lpeeOEFzj77bHbu3ElUVBRbt25FlmXefPNN0tLS2LhxI9dffz3V1dVHnNflchEVFcWDDz7ICy+80GB7EhMTefrpp0lPT0dRFObMmcPEiRNZs2YNPXr0ICcnh5ycHJ577jm6d+/O3r17mTZtGjk5OXzxxRcAXHLJJYwdO7beuFdddRVOp5Po6Git7+KLLyY/P59Zs2aRlpZGbm4u8n7Vwj766CPuu+8+3n33XYYNG8b27ds1QfT5558/7Guorq5mxIgRXHzxxVx//fUNfu0CQVtB5ykCoFYO5Kg8IHxv6So8RXUh6cbkZGiGROcVterGw/MX92FMj1iCzQ17bCh1lQJwWuJp3NjnRmKCYogKijpmewSCw6EoCrW1GbhcBezLnFXvWFrafYSE9G30mD5Z4dct+ZTVeHh78R5qPXWeiNeO6MDYni3o1S8QnGQIUUpw3PG6ZRRJQdJ8pVR1KsdUxD5TGQAhehtQDkZjgz2OamuzKC1bTlHRLwCYgvoBYDPreOuKQSSEWUkKD9LOr3KrYXsvj3qZHpE9iA6KPnjQI70On8yCLXWCVGpEEF1jRVLzhuBTFH4rriDX5cHnFyfv7BCLuRmrBR3E5m/rBCkkEbLXSMxmM7GxamnjG2+8ka+//pq5c+cybdo0br31Vr777jtcLhcjR47k5ZdfJj1dDZXdu3cvN910E0uWLMHtdpOamsr//vc/unfvzqhRowAIC1OF3KlTpzJ79mwqKyuZNm0a33zzDQ6Hg3vuuYdvv/2Wvn378uKLLwKQmprKtddey44dO/jmm2+48MILmT17NkuWLOH+++9n1apVREZGcsEFF/DUU08RHBzMpk2b2LVrF7/++ispKSkApKSkMHz4cO11ZmZmcuedd3Lbbbfx5JNPav133nknJpOJW265hcmTJ3PKKac06X2cMmVKvfbzzz/PrFmzWL9+PaNHj2bs2LH1BJ6OHTuybds2Xn/99SOKUqmpqbz00ksAB3kfHYkJEybUaz/xxBO8/vrrLF++nB49etCzZ0++/PJL7XinTp144okn+Mc//oHX68VgMGC1WrFardo5hYWF/Pbbb8yaVfdg8OOPP7Jo0SJ2795NeHi4ZvP+LF26lOHDh2vvUWpqKpdddlk9T7JDccUVVwCql5lA0C6R1XtXpsvv7R3IKeWvChNIgB73xOOYO3XClJbeLN7aFf5cj8nhQQ0SpPKr8/lyx5cszVmqXmdPpmdkz2O2QyA4Gtk5H7Nt20Na22yOpXu3ZzGZorDZOjdpzO835HLLx2u0tsmg46sbhxFiNdZ7nhAIBMeOCN8THHcC4XvUZZUC1MVVoieGd8e8y7tnvg2AZGi4brp+/T/ZsuVeCosWABBkUx8abWYTw9IiSdnPSwrqckmlhaU1SpCqdfv4aMU+Xv5tJ4qiln/d+MgYfrvzdKymY3eXPxn4rqCMKzbs4Z7tWQCEGPQtJ0hV5MK2+VC2T21P+Rzu2wuDrm2Z+U4SrFYrbrebq666ilWrVjF37lyWLVuGoiiMHz8ej0d9mJk+fToul4s//viDDRs28Mwzz2Cz2UhKStLEjm3btpGbm6uJKnfccQd//vknc+fOZcGCBSxevJi///77IBuee+45+vTpw5o1a3jooYfYtWsXY8eOZdKkSaxfv55PP/2UJUuWcNNNNwEQFRWFTqfjiy++wLd/lar9+OKLL/B4PNx1110HHbvhhhuw2Wx8/PHHzfIeut1u3nrrLUJCQujTp89hzysvL9eEnJbE5/PxySefUF1dzdChQ49oj8PhwHCY3+f/+7//IygoiIsuukjrmzt3LgMHDuTZZ58lISGBzp07c9ddd1FbW6udM2zYMFavXs1ff/0FwO7du/nhhx8YP358M71CgaCNInvId6eT61Gr7Enaukk9LMmqKGXp1g1r377obcGHHKYhrM8qY9hTv9Lz4Z/YW6zmenRYG5ZL6u0Nb/P6utdZV6gWrokNjm2yHQJBQygrW8W+zPfIzVU9dw0GO2ZzLMnJ1xEePrxJgtSi7YU89M1GZi3eDUBKRBBndI3m8Yk96ZkQIgQpgaAFEJ5SguNG4b5K/vhkOzUVLhRkJEWpd1wB7LKNQbGDcGdkUELD80kpikx1jZpoPDxsBCZTBOWm04Ft9YSiGk8N/1v1PwprCqn1qg9DdqO9Ua/js1WZPOyPKQeIC7Fia6BLu0BlV40LgASzkc7BFs6LDm2ZiRQF3hkNFdl1fVGdwdJKEq4qCnhqjv+8xiBo4i66oij8+uuv/PTTT4wbN45vvvmGP//8k2HDhgHw4YcfkpSUxDfffMPkyZPZt28fkyZNolcvNTy2Y8eO2lgBoSU6OprQ0FAAKisrmTNnDh999BGjR48G4L333iM+Pv4gW8444wzuvPNOrX3ddddx+eWXa/mU0tPTefnllxk5ciSvv/46CQkJvPzyy9xzzz088sgjDBw4kFGjRnH55Zdrdm3fvp2QkBDi4g52yzeZTHTs2JHt27c36b0LMG/ePC699FJqamqIi4tjwYIFREZGHvLcnTt38sorrxxTyODR2LBhA0OHDsXpdGKz2fj666/p3r37Ic8tKiriscce45///Odhx5s1axZTpkyp5z21e/dulixZgsVi4euvv6aoqIh//etfFBcX8957at6PKVOmUFRUxIgRI1AUBa/Xy7Rp0/j3v//dvC9YIGhjOD0Gvix5CoXAekYV1QM5paSAyN6IjbzD8fvWQnLK6/K4RdrMJIU17CE8rzoPgOHxw+kb3ZcL0i84yhUCQdPxeitZs/YKZLku52L37jOIihzdpPF8skKtx8etn6yhrMaj9f/ztI5cfkrKMdsrEAgOj3iSFhw3tq3II293OZ7aJcgRxWCoH74nS2D0fyQVfwLlo3lKVVXvYN266/B4SlEULyDRp8876HRGFu9QE1qbDXUeOH/m/MkX27/Q2g6To8EJzmVZoaTGzZZcNQ9V9zgHPeIdnNNbxJQ3lAKXh78ralhbqQoxF8WGc39LVtpzVdYJUvH9IXEQhLaihYWnBp48WGxpcf6dA6bG7aTPmzcPm82Gx+NBlmWmTJnChRdeyLx58+qFskVERNClSxe2bNkCwC233MKNN97Izz//zJlnnsmkSZPo3bv34aZh9+7deDweBg8erPWFhITQpcvBZcgHDhxYr71u3TrWr1/Phx9+qPUpioIsy+zZs4du3boxffp0rrzyShYuXMjy5cv5/PPPefLJJ5k7dy5nnXVWg96Lo+WuAlWcu+GGG7T2/PnzOfXUUwEYNWoUa9eupaioiLfffpuLL76YFStW1Mu/BJCdnc3YsWOZPHlyvVxJNlvdb9Y//vEP3njjjaPas3jxYsaNG6e133zzTS6//HIAunTpwtq1aykvL+eLL75g6tSpLFq06CBhqqKignPOOYfu3bvz3//+95DzLFu2jC1btvD+++/X65dlGUmS+PDDDwkJUUXh559/nosuuojXXnsNq9XKwoULefLJJ3nttdc45ZRT2LlzJ7feeiuPPfYYDz300BHfU4GgvbJtdRY5lSZVkFJcOJX1+NiFnrqcUvhUz6nGeJcfjhq3uv66ZGAS/xrViWi75ahe4B6fh1JXKUW1au6rizpfxJkpZx6zLQLBoSgtXcG27f/F661Alt3o9TYiI0dhNscSEX5ak8ascHoY9+JissvUDWu9TmL6qDTCgoxM6p/YnOYLBIJDIEQpwXHD5/FXcDFlg2QhEL6n81etUCSlTpQK7PoZj/wRLS76DaczS2uHhgxEp1PdzJ3++SzGusVUuUutGNU1vCuXdb2MXpG9MOga9jW45K1lrMwo1dqXDk7iyqGpDbpWoDJp7U52+L2kAKJMLfwTVOtP/GqwwD9/b9m52jmjRo3Skn7Hx8djMBiYO3fuUa+77rrrGDNmDN9//z0///wzTz31FDNmzODmm28+ZpuCgw8Iya2q4oYbbuCWW2456Nzk5GTtb7vdzoQJE5gwYQKPP/44Y8aM4fHHH+ess84iPT2d8vJycnJyDvLOcrvd7Nq1izFjxhzVtvPOO6+eWJeQkFDP7rS0NNLS0hgyZAjp6enMmjWrXtL4nJwcRo0axbBhw3jrrbfqjb1/dTmHo2F57AYOHFjvupiYGO3vQEVFgAEDBrBy5Upeeukl3nzzTe2cyspKxo79f/bOOzyqKv/D753JTGbSK+mkkNB7k6Ig0lVgBUEXpAkoCFIsFBuCCLtKseACugrsb0VdXQREWEWQjvReAoSEVCCFtEky9f7+uJMJIyWNiMB5nydPcs6ce8pkZu6Zz/mWXnh6evL999+j0dzYneef//wnzZs3p1WrVk71ISEhhIWFOQQpgAYNGiDLMqmpqcTFxfHmm28ydOhQRo8eDUCTJk0wGAw899xzvP7667d8TgWCe5VNq3cRq7LfNy1noXCHw17KZn8bllpK3Q5RqtCoiFLB3rrrwh7ciGJLMX2+78PlorIYm96ufxJrZME9hdVagtF4iZSU5RgMZRbLAQGP0LhRxRN8XIvJYuNitoEjKbkOQQqgd+NgXupetVhUAoGg8ghRSvCHYbWnFZasRmRJ7wh0rrLHEpKvtZQy2y2l1Dd+ieblHSE7Zzs5OTsBCAv9K7Vrj0anC2dPQjbzNp4mq0DZxOk0ZZZSBrMBgFifWPrH9a/w3A1Gi5MgFeChpWPsjd1tBDfGKsuctwtSzT3dCNS68HigT80MdmA5bPs7WOwbef2fNCOixk2xWroT41aSUiHlWho0aIDFYmHv3r0O973s7Gzi4+OdrGwiIiIYO3YsY8eOZcaMGXz22We8+OKLDouja+M7xcTEoNFo2L9/v0NIysvL4+zZs3TqdOsT0JYtW3Lq1Knr5nkrJEmifv367N6tBOZ98sknmTZtGgsWLGDBggVObZcuXUpRURHDhg0rt19PT088PSvmGmyz2TAay8TatLQ0unTpQqtWrVi+fLnjM7KUyqyvFL1eX+Hrfj+f/Px8evbsiaurK+vWrUOn093wusLCQv7zn/8wb9686x7r2LEj3377LYWFhQ5Lr7Nnz6JSqQgPV06hi4qKrlur2u7CLctypZ5TgeBewWQyI9mNM2WbYmUsazQU+qo4Gqe4y2Gxi1KVzFZ8I4pMSl/urhXrKzk/2SFIqSU1kV6RNPS/sfuvQFBVrNYS9ux5BKOpTPyMrTMVH992eHo0qHK/A5bs5nhanqPcuW4gS59pJWLECgR/MHdclPrb3/7GjBkzmDRpkiOrUklJCS+//DJff/01RqORnj178o9//MPpZDc5OZlx48bx66+/4uHhwfDhw5k3b55T4NWtW7fy0ksvcfLkSSIiInjjjTcYMWLEH7xCQSlWu3l5O7cDhOoLSStRMl7JdrdtWQK9CRL7D8Bkz6J0s1O/4yfGYzRecpQ9PBvi5hYFwLcHUjiWWnaDiQ4oc3UpDW7urqmY61JukYl/7blIhj2+gptWzanZvcq5SvB7bLLMVbOV0ihiP7SMQ6Oqfmagm3JoJRRklJXDWt287Z1EkirtRvdnIi4ujn79+jFmzBiWLVuGp6cn06dPJywsjH79+gEwefJkevfuTd26dbl69Sq//vorDRooG8jIyEgkSWL9+vU8+uij6PV6PD09GT58OK+++ip+fn7UqlWLmTNnolKpys0mNW3aNNq1a8eECRMYPXo07u7unDp1ik2bNrF48WKOHDnCzJkzGTp0KA0bNkSr1bJt2za++OILpk2bBigWVe+99x6vvPIKOp2OoUOHotFoWLt2La+99hpz5syhcWPnbFLx8fHXzaVRo0bXWRMZDAbeffdd+vbtS0hICFlZWXzyySekpaUxcOBAQBGkHn74YSIjI5k/fz6ZmZmO60uzH96MUkuowsJCMjMzOXLkCFqt9qbxoQBmzJhB7969qV27NgUFBaxatYqtW7fy008/AYog1aNHD4qKivj3v/9Nfn4++fmKC3NgYKBDNAL45ptvsFgsPPPMM9eNM3jwYN555x1GjhzJrFmzyMrK4tVXX+XZZ591xJ7q06cPCxcupEWLFg73vTfffJM+ffo4jfN7cnJySE5OJj1dEXhL/x/BwcHlPmcCwZ8ZWZax2myOtDCSPeveRf9ctrbMcrST7PsrXCoWkPxG/N9vF9l8+jIn0pT3d0Wy7QFcNSoHdnW867DmL2uqPL5AcCPM5nwyM3+iuCTFLkhJqNXu6HVhhIY+jUZTeas8WZb57mAqiVkGhyDl66ZB66LiqTYRQpASCO4Ad1SU2r9/P8uWLbsuvsiUKVP48ccf+fbbb/H29mbChAn079+fXbt2Acqp+mOPPUZwcDC7d+8mIyODYcOGodFoHCm8ExMTeeyxxxg7dixffvklmzdvZvTo0YSEhFTI9UJw+7FZZFykEloEpABQKinJcpn7Xli+lZJTpxzX6H73ZcpiMWCx5DkEqdDQp9BqAwgO6utoU2I/MRzRIYpHm4TQOMyDIT8O4VjWMUebiopSX+5NZuGmMhPhigb7FJTxz9RMZp5Pw2pXpDzVqpoVpAAM9s16/39CUCMIECbYNcXy5cuZNGkSjz/+OCaTiU6dOrFhwwaHIGO1Whk/fjypqal4eXnRq1cvFi1SzOzDwsKYNWsW06dPZ+TIkQwbNowVK1awcOFCxo4dy+OPP46XlxdTp04lJSXlphY6pTRt2pRt27bx+uuv89BDDyHLMnXq1OGpp54CIDw8nKioKGbNmkVSUhKSJDnKU6ZMcfQzZcoUYmJiWLBgAR9++CEGg2Jh+dVXX/H0009fN+6N6lJSUhwWQKWo1WrOnDnDypUrycrKwt/fnzZt2rBjxw4aNVKyam3atInz589z/vz5666Xf5cc4ve0aNHC8ffBgwdZtWoVkZGRJNlF/htx5coVhg0bRkZGBt7e3jRt2pSffvrJEV/r0KFD7N27F7jeQisxMZGoqChH+fPPP6d///6OoPXX4uHhwaZNm3jxxRdp3bo1/v7+DBo0iDlz5jjavPHGG0iSxBtvvEFaWhqBgYH06dOHd99995brXrduHSNHjnSUS/8fM2fOvGnsK4HgbsBqsYEsIzmOdOxZ9wBXm5aJzV8kKiAa5o0FQCon5MHNkGWZ2T+cxGwt+4wJ89Hf4grIKs5i9p7ZJOUnAeCj86nS2ALBrUhM/JCU1BWOso9PG1q1rF4G3ONpebz6Xdl3gjAfPbumP1KtPgUCQfWQ5PJ2uTVEYWEhLVu25B//+Adz5syhefPmfPDBB+Tl5REYGMiqVasc6aTPnDlDgwYN2LNnD+3atWPjxo08/vjjpKenO6ynli5dyrRp08jMzESr1TJt2jR+/PFHTpw44Rjz6aefJjc3l//9738VmmN+fj7e3t6O9NeC6rFhyTHSjyUxOmgoAJ8bXqOkoA0uRespNJ7lt4Y5PBTckO6LdqGNiiJi6RI0tWsj2d05cq7u4ciRkch20yqVSs/DnY9fZz0xeuV+fjl9hb/1b8LTbWuTWpBK79VlAX5dJBc+fORDOoWXHwxxxupjfLUvhbbRfrSo7cOjjUNoFuFzm56R+4O/HDrHb3kGR7lPoA+fNY66/QMV58KXA5XA5vnpgAwTj4Bf9O0fqwqUlJSQmJhIdHR0ueKKwBmDwUBYWBgLFixg1KhRf/j4OTk5dO3aFS8vLzZu3IibmxCn7wdu9Z4V+4PrEc/J7afEYObjt76khevPxOeMBuNOSor2cSHEwPEmJn59eisqLZxpohzu1t37G2rvyluOlJit1H9T2RvP+Utjwnz1dI4LdMT8vBFfn/mad/eWCcZP1n2Sme1nVnpsgeBGpKT+i8KC02TnbMdovIS3VwtcdaFEhA/Dx6d1+R3cgP8eTGXxr+cpKDGTVWiitp8bj9SvRe/GwTwQ43+bVyAQCKDie4M7Zik1fvx4HnvsMbp16+Z0Unrw4EHMZjPdupVl7ahfvz61a9d2iFJ79uyhSZMmTu58PXv2ZNy4cZw8eZIWLVqwZ88epz5K25SmChf88VgtMmBxlLNlf9wBs6SITEqgc0WAktz0aK85gQe4enWPQ5ACCA7qc0N3HqM9dpXWnnUv36SYogfoA/hv3/+iU+twu0VMnbxiMyOW7yM9t9iREvaJFmH8tW3tm14juJ5Ci5UzhhLSjMpzuKJxNG193PF1qSGz6KSdkLqvrOwRBF53ILOdoNocPnyYM2fO0LZtW/Ly8pg9ezaAwyXwj8bPz49ffvmFTz75hD179tC1a9XSTQsEAkFFMeQZyb1UhIzsiMGJ3X1PlmRcZDWSSkK2lu2rqhrovMRcFtfvqTYRaNSqW7RWyDXmAtAhtANDGgyhdVDVhAKB4PcUFSVy9uwsp7p69d7B07NqsaNSrxZxKa+EJdsSSMwqOyQd2CqcF7vGVWuuAoHg9nBHRKmvv/6aQ4cOsX///useu3TpElqt9jrz/6CgIC5duuRoc60gVfp46WO3apOfn09xcbEjhsW1GI3G64K7Cm4fVouNYs/zANiQkO2brBx1Hu7YA53LdlHqmgDn6enfkpn1C4WFZwCIiXmJ6KjxNx3HdI0oZbaZHSmKfVx98NP5lTvP3y5kczg511GWJGgSJjLJVJZHD57jbFGJoxzj5opfFV0LKkSR3WUv8kHo+a5iIeXiWnPjCWqU+fPnEx8fj1arpVWrVuzYsYOAgDuXXMDf35+33nrrjo0vEAjuH1LP5LD2wyOKn547qH7vvieBi+wCKsmRGAaAKotSSr8atVSuIGWxWSi2FDv2VvX86lXI8lwgKI9Ll9YSf3Y2NpuSBU/nGkpY2GD0bpFVFqQSswx0XbAV2zV+QUuGtCTS3536wSJxhkDwZ+EPF6VSUlKYNGkSmzZt+tO5sMybN49Zs2aV31BQJWxWG7JGEfpssgqdbE8nY99sBbkH0SawJbDNcdonyzbiz76FzWZy9OPudusMUiZ7wM+ckit0/vpJCswFAHhqb33zuZJfwqfbLziCpD8UF8D03vUJ8HAlyOvP9Vr9s2Oy2RyCVIROSzNPPbFuNSQQJe2E78eViVJ+0RDavGbGEvwhtGjRgoMHD97paQgEAsEdISu1EGRQuUiotRKSPfam5CRK2S2lLNW3lCq2W0rpyrFkLjIX8cTaJ0g3lGWN9daKQztB9SgxXiIv7xDJKZ9jseQ66oOC+xEVNa5KfabkFPHTyUucTM/HJiuJioK8dDSP8KFX4+ByE6cIBII/lj9clDp48CBXrlyhZcuWjjqr1cr27dtZvHgxP/30EyaTidzcXCdrqcuXLzuy6AQHB7Nv3z6nfi9fvux4rPR3ad21bby8vG5oJQVKFqKXXnrJUc7PzyciIqLqixVgLLawecUpDLlGci4VIXkoGyoJNY1sEcRjo/Tk74UW46lttJKGktY4L+8QBYVn7IKUivr1ZqPR+hEY0O2m40GZpVRKYaJDkJKQeCjsoVtet2J3Ev/cmegoNw7zplGo2GxVhav2Da4K2NuuAaqavPmfXAN5yWXliLY1N5ZAIBAIBDWM1b6PCYvJpyB3D67m0tAFyiFeqfte5kcfUHT4UNmFqvLd7m5EsckuSpWTdSwhN8FJkPLQeNA2WNxzBdXjyJERGAznHOUmTf6Bl2dTdLqQKvc5ffUxdp3PdpT7twxjzl+aVGueAoGg5vjDRamuXbty/Phxp7qRI0dSv359pk2bRkREBBqNhs2bNzNgwABASe+cnJxM+/btAWjfvj3vvvsuV65coVatWoCSscjLy8uR+rp9+/Zs2LDBaZxNmzY5+rgRrq6uuLoKd5/bSVr8VRKPlqUtVnmWZo5RIzsCaCqbLEmlQrYoFlFWycyBgwMd17m61iIs7K8VGrNUlDLLivlvr6hezHlwDq7qG/9vZVnGYpNJvaq0f7heIA/GBvBkq/AbthfcnM3Z+XySfIVCq7LB9dGoa1aQAijOUX4/+BK0fhZ8hJAsEAgEgrsXmz0LXutLrxDqdoVkmnEIQLKLUoBvgUz2Pz9zXOMSXHnrjwNJOYz78hB5xYropdPcWtQqjdEZ5xvHN499g0pSoVbVUJxIwT1NoeEcaWlfYrOZHIKUj09b3N3qEBjQDUmq/OvKaLEy+4dTXM4v4eDFqwD0aBhELS9Xnu9U57bOXyAQ3F7+cFHK09OTxo0bO9W5u7vj7+/vqB81ahQvvfQSfn5+eHl58eKLL9K+fXvatWsHQI8ePWjYsCFDhw7lvffe49KlS7zxxhuMHz/eISqNHTuWxYsXM3XqVJ599lm2bNnCf/7zH3788cc/dsH3OaWnff5h7rT7Sx22rf+JPVlDSTY2p8CmCBeSPQGkSqUCe8BOG0psLxcXL7y8mhES3P+W48iyzN//F8+pjHxSrhYBZaKUl9brpoKUzSYzaNkeDthvXgB/aR7GX1qEVXXJ9zUfX7zslGkv1q2G3B4tJtj+HhRkQPJvSl1gPSFICQQCgeCup3Tv5KdV9iYlKPdStaseihT3Pb3ZHoNTqyXk3XfRt2he6XF+jb9CZkFZLNUWEb43bFdkLmL/pf3su6R4Kfi4+qBRayo9nuDep9hqw3yDxO4qwOMa99ALCQvIzNrkKLu6BtOq5VfVGvvXM5l8ubfMct5Nq2bRU81xd71jeb0EAkEF+VO+SxctWoRKpWLAgAEYjUZ69uzJP/7xD8fjarWa9evXM27cONq3b4+7uzvDhw93ZGgCiI6O5scff2TKlCl8+OGHhIeH889//pOePXveiSXdt8j2yIJ6Ty2Rjf3he5lDBmeByapSTugktZrc7AMAFJvTAPDxaUOzpp+WO05KTjFLtyU4yhKQUXIaAHet+02vu1JgdBKkvHQutIq88aZMUD5XTIqoOD06mDh3HQ94e9TMQAmbYfv7znXeQpASCAQCwd2Pkq0YVHbLqP/JD6MGVC6KECRLMhpZ+YIv6XR493m8SuOUWpb/tW1txnepQ5jPjcNbLDiwgP+c/Y+j7OPqU6XxBPcmr8ansCU7H4ssc9lkuWGbSJ2WPQ/EcfrMDIqKkjAY4gEIDRmETheGv3/VguXLsszz/3eQfUk5GO0B+1tH+jKwdTiNQr2FICUQ3CX8Kd6pW7dudSrrdDo++eQTPvnkk5teExkZeZ173u95+OGHOXz48O2YoqCKlIpSkgQlZy6D2W56LpvxtP1EsnwBXbESMwrJRnrqd/gAZpsSbFyvr12hcYrs2Wc8XV0IitxOuukw+7NTAMVS6vdczi9h5e4k0nMVa6ogL1d+ntIZvUaN1qVqMRnuZ6bGp7A5O58MoyIwPl7Lp+aspADyUpXfQY2h8QDwCoPIDjU3nkAgEAgEfxA2u1gkScpvG2rUQGGR4j4nS6C1lWYrrrr7XKkoFeChJdzX7abtEvOVeJvR3tHUcqvFkAZDqjym4N4iz2zh/9Kzy20nyxYuX17HpUvfO+okSUtMnZdx1VYts+6lvBKSc4r4+ZRzDOFBrSMY1EYcVAoEdxN/ClFKcO9iU/Y7mBITSX3hPeQHFbc4myWNrMKzKFsgZWNllk7Z3fdc8PCqS2DckwQH963QOGb7qaKHzgWz+07U6hwa+zemllstHo1+9Lr2n22/4BTUPMrfHW+9MEWvCkVWG/+6ZkPir3EhzFV7iyuqwen1sHoMmBUXTWq3h4deuvU1AoFAIBDcRVjtMaVUlLpBKbGiilRF6ACbBJ7uSkbhqmbcAzDaRSmt+taHcXlG5aBwepvpdAgTB0ACsMkyRwuKOW/PtOypVvGf5rH4atSEujrvpzOvbOLEqYmcOq0cIHt5tSAqcixubtFVFqT+/dtF3lhzwlGO9Hfj8+FtcNOqCb2JxZ9AIPjzIkQpQY0i2/3Kbbk52CS1I36UJCsWNYUeNnY3yGRQmIErRQtwt5/8uXvVJSxieIXHMdkDa2tdVBRbFOun9zq/R4Sn80lJsclKel4x8ZeVrHxd6gXSJMybPs1Cq7HK+5tsu5Waq0piXcs4onRa9OVscKtM/MYyQUpSQ0znmhlHIBAIBII7RKmlVKn7no1Sayil3NC/IX9p9xcsyw5BNUSpUkupG1mI22Qb7+9/n8T8RJLzlTg93q4iI7FAYXlaFq+fS3OUg101tPBytrbLyz9K7tW9ZGVvxQULarUbGhcfoiKfIzDw1pm0b8bOc1msPpzK/iQlyY2riwqdRs0zD0QSW6uGQkYIBIIaR/gpCWqUUvc9q62QkxFBSI5TP0VEMmll0gNLcPU1oXMNRaexi0gulTNHN9ktpTRqFUarErRTp3Z2HzNarDyyYCtdF2xjxzklI+Bf29bmpR71iAvyrMry7msO5RvovO8Mjx08CygWUs083fDW1KDWXWS3yOoxB6YlQYM+NTeWwMGIESOQJAlJktBqtcTGxjJ79mwslhvHjqgoW7duRZIkcnNzb89EK0BiYiKDBw8mNDQUnU5HeHg4/fr148yZM07t1q9fT+fOnfH09MTNzY02bdqwYsUKpzZJSUlIksSRI0cqPP7bb79N/fr1cXd3x9fXl27durF3716nPkeNGkV0dDR6vZ46deowc+ZMTCbTLfvNyMhg8ODB1K1bF5VKxeTJkys8p1L+9re/IUnSddcmJCTwxBNPEBgYiJeXF4MGDeLyZWd3iXfffZcOHTrg5uaGj4/PDfsvfQ1d+/P11187Hl+9ejXdu3d3jNO+fXt++umncue9evVqevTogb+/f6X/HwLBnxGr1QbYKE2mJ8ul23VFRGoX1o5wfTBQPfc9o/XmotSp7FP8+/S/2ZW2ixJrCS6SC8HuwVUeS3BvcbxAOQAO1LrQwF3HuNq1nB6XZRtHjozkfMLfyc1V7nF1686kY8cdBAb2qPK4b649wepDaaTkKOOvGvMAR2f2YEynmCr3KRAI7jzCUkpQo5Qm4DBbr6JxVYOsfIlVSYooZaW0DFFRL+AaUkgmC5HUlXtpmu0bKxeVcroHoHNxFqXSrhaTkaeYGXvrNYT56Hkg2r9qCxOw9kou8YYSR7mZ583jUVQLWYaNUyFlH2SfV+p8o0B3fawwQc3Rq1cvli9fjtFoZMOGDYwfPx6NRsOMGTPu9NQAMJlMaLW3dhs1m810796devXqsXr1akJCQkhNTWXjxo1OwtjHH3/M5MmTmTZtGkuWLEGr1bJ27VrGjh3LiRMnmD9/fpXnWbduXRYvXkxMTAzFxcUsWrSIHj16cP78eQIDAzlz5gw2m41ly5YRGxvLiRMnGDNmDAaD4ZbjGo1GAgMDeeONN1i0aFGl57V//36WLVtG06ZNneoNBgM9evSgWbNmbNmyBYA333yTPn368NtvvylZU1Ge/4EDB9K+fXs+//zzm46zfPlyevXq5ShfK2Bt376d7t27M3fuXHx8fFi+fDl9+vRh7969tGjR4qZ9GgwGHnzwQQYNGsSYMWMqvXaB4M+ALMvsXXeB3EtFXE7KR2UXoABku/uebD/Yk1RqZLuF+O2IKXUjUepqiZIEJswjjHHNxlHHpw7+erFnup8psdqYnZDOZZOZA/ZMyzNiQhgcUva6KCpKIr/gOFZLIRZLHqAiJPgvaLR+BNW6PpxGRdh+NpO3153EaLGRZo8F+1L3utQJ9KBlbZGcSCC4FxCilKBGKbWUkmUbkqRCsm+ySn/b7L/dL0pYNu/AeP6S8nglLaVKRalr92alllJHUnLZeDyDS/mKgBIT4M6WVx6u2oIEDrLtGVbGhAcwMNiPBu415MOfnw77fpeBMaBezYwluCmurq4EByun5OPGjeP7779n3bp1jB07lkmTJvHDDz9gNBrp3LkzH330EXFxcQBcvHiRCRMmsHPnTkwmE1FRUbz//vs0bNiQLl26AODrq2wqhw8fzooVKygoKGDs2LGsWbMGLy8vpk6dytq1a2nevDkffPABAFFRUYwaNYpz586xZs0a+vfvz4oVK9i5cyczZszgwIEDBAQE8MQTTzBv3jzc3d05efIkCQkJbN68mcjISEBJmtGxY0fHOlNSUnj55ZeZPHkyc+fOddS//PLLaLVaJk6cyMCBA3nggQeq9DwOHjzYqbxw4UI+//xzjh07RteuXenVq5eTaBMTE0N8fDxLliy5pSgVFRXFhx9+CMAXX3xRqTkVFhYyZMgQPvvsM+bMmeP02K5du0hKSuLw4cN4eSlC8MqVK/H19WXLli1066a4YMyaNQvgOmuy3+Pj4+N4Hf2e0v9tKXPnzmXt2rX88MMPtxSlhg4dCihWZgLB3UpOuoGDGy86yhbdJcffMs6WUpJKhWxRRKnb4b7neoM9V4FJCXMQ5hFGv9h+VR5DcO+wOSefL9KynOrirklqY7NZOHBwIGZzjqNOpwuhYcPfZUuuIGarjbxiM//ac5ELWQZHfZS/Gy8+EotUakooEAjueoQoJahRbHZRyl+bToda2ynAj/X0RbJbSNns95O6WxtRdOhXx3VqX79KjWO0b87SCpPAC9SSGheV8vJ+9dujnLtS6Ggb7ldDFj33CdPPprIjp4AMkxIXrLGHG01rykoKoMi+AdL7Qf9PwTscAuvW3Hh/ILIsO2Kg/ZHoXfTV3szp9Xqys7MZMWIE586dY926dXh5eTFt2jQeffRRTp06hUajYfz48ZhMJrZv3467uzunTp3Cw8ODiIgI/vvf/zJgwADi4+Px8vJCr1eEzZdeeoldu3axbt06goKCeOuttzh06BDNmzd3msP8+fN56623mDlzJqC4mfXq1Ys5c+bwxRdfkJmZyYQJE5gwYQLLly8nMDAQlUrFd999x+TJk1HfwMLgu+++w2w288orr1z32PPPP89rr73GV199VWVR6lpMJhOffvop3t7eNGvW7Kbt8vLy8POr3GdiZRg/fjyPPfYY3bp1u06UMhqNSJKEq6uro06n06FSqdi5c6dDlKrMWKNHjyYmJoaxY8cycuTIm74WbTYbBQUFNbp2geDPgsVkF4jcXWjXN4aDR0+B/bt9mfteaUZjyZ4YpmqBzsf9+yBbzlzBdAP3vX8e/ydbkreQU6IMfqMMxoL7C5ss893lq/yYmQtASy83ngr2I8RVQ2svN6xWI2fOzKCoOBmzOQdJ0uDj3QokidCQQVUas9hkpdvCbQ7LKICZfRrSKtKXOoEeQpASCO4xhCglqFFKLaVivOLxc72C1WwXLyRlMyXb7ynqfDNWwGfQIFzr1cX78ccrNc5lgyJcFJhzcQOC3YNJyy3mQqaBi9lKYOwhD9TGS69hQMuwaq/rfuWq2cKK352SNfLQ3aR1NUk7CJdPQtY5pewRBHHda2asO0SxpZgHVlVf3KgsewfvxU1TNSFRlmU2b97MTz/9RO/evVmzZg27du2iQwclI9OXX35JREQEa9asYeDAgSQnJzNgwACaNGkCKJY/pZSKDbVq1XK4cRUUFLBy5UpWrVpF165dAcXlKzT0+mQEjzzyCC+//LKjPHr0aIYMGeKIiRQXF8dHH31E586dWbJkCWFhYXz00UdMnTqVWbNm0bp1a7p06cKQIUMc8zp79ize3t6EhIRcN55WqyUmJoazZ89W6bkrZf369Tz99NMUFRUREhLCpk2bCAi4cQai8+fP8/HHH1fLZfBWfP311xw6dIj9+/ff8PF27drh7u7OtGnTmDt3LrIsM336dKxWKxkZGZUaa/bs2TzyyCO4ubnx888/88ILL1BYWMjEiRNv2H7+/PkUFhYyaFDVvtQIBHcTpYlhXPUuNO4czulzOESpNua6nEKxOgdQqVTI9ph+lXXfKzFb2XiizArL1UVFwxAlrqZNtrH48GKsstXxeLR3dBVXJLhX2JZTwMTTyY7yQ76eDA8LQJZt5OcfIefqbi5dXut43Nu7JS1bflmlscxWG98dTOVMRr6TIBXp70b/FuF4u4lM2QLBvYgQpQQ1in3/hNouQqW4B0A22NT2jDKlQTwNinDk8+QA9L+LaXIrcotM/HzyMrvO5QJKfPR3Or5DXZ+m9Fi0nSKTPeaCBDP7NLph3ARBxcm0u+x5qFV82TSGIFcNUXrXcq6qAkU58EUvsF4T3Nm9ammDBbeH9evX4+HhgdlsxmazMXjwYPr378/69eudrIb8/f2pV68ep0+fBmDixImMGzeOn3/+mW7dujFgwIDr4hZdy4ULFzCbzbRt29ZR5+3tTb1617tstm7d2ql89OhRjh07xpdflm2GZVnGZrORmJhIgwYNGD9+PMOGDWPr1q389ttvfPvtt8ydO5d169bRvXvFRM/yYleBIs49//zzjvLGjRt56KGHAOjSpQtHjhwhKyuLzz77jEGDBrF3715q1XIOFJuWlkavXr0YOHCgU6wkD4+yDEPPPPMMS5cuLXc+O3bsoHfv3o7ysmXL6NSpE5MmTWLTpk3odDcWlwMDA/n2228ZN24cH330ESqVir/+9a+0bNnSEU+qorz55puOv1u0aIHBYOD999+/oSi1atUqZs2axdq1ax3Py62eU4Hgbqf0EA+blczFn2DOSuaKuQ5JxlbkmDUoVlKlMaWq7r5XGu4AYMvLnQn0dMVTp3zRzzfmOwSpj7p8hM5FR+ug1jfsR3D/cKFYSSAUqdPSPcCLkWHKfiw19f84e262o52vbwfCw4bg49OmymOtP5bOjNXHHeXOdQNZ+WzbW1whEAjuBYQoJahRlJM/GV1wJhjB6q6IGkbJ0QD3Yhm5UPEVV3lULp3rgp/P8n+/lcVg0LjI/CX2LxxPzaPIZEWjloit5UmPhkFCkKoGl41m/nL4HGklistekFbDAz41mHr3apIiSLnoIeZhUKmh3biaG+8OoXfRs3fw3vIb1sC4laVLly6OoN+hoaG4uLiwbt26cq8bPXo0PXv25Mcff+Tnn39m3rx5LFiwgBdffLEqU3fC3d3dqVxYWMjzzz9/Q5Gjdu3ajr89PT3p06cPffr0Yc6cOfTs2ZM5c+bQvXt34uLiyMvLIz09/TrrLJPJREJCAj179ix3bn379nUS68LCyiw03d3diY2NJTY2lnbt2hEXF8fnn3/uFDQ+PT2dLl260KFDBz791Dmm2rXZ5UrjPJVH69atna4LCgpi8+bNXLlyhZYtWzrqrVYr27dvZ/HixRiNRtRqNT169CAhIYGsrCxcXFwccaGutXqrCg888ADvvPMORqPRyT3w66+/ZvTo0Xz77bdO7oG3ek4FgrudUkspW+5VslYvxvr4o/xU/Ar51mBk2YRsM4CsiAOSSoVsrZqllNkqO/6O8ndHpZKQZZnvzn3H6WzlMMFT40mX2l1ux7IEdylWWWbgkQQO5Bmw2F+b3fy9eCc2jKysTaQar3D58g8AuGqDcNWFUqfOK3h73dwV/Vas3J3E6sNpXLYnJKof7EnLSF+eeSDy9ixIIBD8qRGilKBGsdlkXHR5aL0L4ArIKkWNMllNaICWCTae22xFRgmoqXKvnNCRWaBs0KIDXUgxHsC31llGrdjP5YLSm5oXP7z44O1b0H3K7txCEovLrJY6+NaQICXLsH4KJO1QyoH1YPDXt77mLkaSpCq70f3RlAop19KgQQMsFgt79+51uO9lZ2cTHx9Pw4YNHe0iIiIYO3YsY8eOZcaMGXz22We8+OKLDosjq7XMVSQmJgaNRsP+/fsdQlJeXh5nz56lU6dOt5xjy5YtOXXq1HXzvBWSJFG/fn12794NwJNPPsm0adNYsGABCxYscGq7dOlSioqKGDZsWLn9enp64unpWaE52Gw2jEajo5yWlkaXLl1o1aoVy5cvv84iqTLrK0Wv1193XdeuXTl+/LhT3ciRI6lfvz7Tpk27LuZWqYvhli1buHLlCn379q30PK7lyJEj+Pr6OglSX331Fc8++yxff/01jz32mFP7yjynAsHdhs1uwCRZrag8glHpvSkyeCLLJsz5n2OzFVN6t1CpVFCafa+KllIuKgmVfU92KucUs/eUWbwEuQdVbzGCu56UEhO7c8visUooe7+rub9x7LjzIWHdejOpFVj+Yc3NkGWZ93+Kp9BocdSNe7gO/ZqLgweB4H5BiFKCGsNiKcAorce37ikk+8HclawoAGTJHheh7MAOffPmuARULt2wxW7u3q2Jlq8zvsYsRbD51BXH43FBNWjNcx+RbVY2Ct38vXivbjghrjXk059zAQ4uLysHN66ZcQS3hbi4OPr168eYMWNYtmwZnp6eTJ8+nbCwMPr1U7I1TZ48md69e1O3bl2uXr3Kr7/+SoMGDQAl850kSaxfv55HH30UvV6Pp6cnw4cP59VXX8XPz49atWoxc+ZMVCpVuYFNp02bRrt27ZgwYQKjR492BFbftGkTixcv5siRI8ycOZOhQ4fSsGFDtFot27Zt44svvmDatGmAYlH13nvv8corr6DT6Rg6dCgajYa1a9fy2muvMWfOHBo3dn5dxsfHXzeXRo0aodE4v08MBgPvvvsuffv2JSQkhKysLD755BPS0tIYOHAgoAhSDz/8MJGRkcyfP5/MzEzH9TfLWldKqSVUYWEhmZmZHDlyBK1W6yQQXounp+d1a3F3d8ff39+pfvny5TRo0IDAwED27NnDpEmTmDJlipNLZXJyMjk5OSQnJ2O1Wh1ziY2NxcPDgx9++IHLly/Trl07dDodmzZtYu7cuU4B5VetWsXw4cP58MMPeeCBB7h0SYl7o9fr8fb2vum6S8dNT08Hyv4fwcHB5T5nAsGfBYf7HjKotSBZsaFCtuVjsymxdcxqG+5ePgR7+WI6dUZpXslsxaUZ9zTqMrE7s0j5nAnUB9I7ujc9onpUbzGCuxabLHPaUMLRfCWsRpirhnUt4yjI+pGCpFmcNilxRXW6cLw8m+DqGkSA/8NVGmt3QhYfbz6P0WJ1CFKfDm2Fn7uWlrV9b8t6BALB3YEQpQQ1RtLFpZRol+JfH6RTMvmWQApNyqmHbM++J8ky/uPGEjh+PKjVlc6mYXUcLSq/rVZlkzWiQxRtovx4qK6IQ1QdPrp4mSXJVyiyP89hrhpCdeXH06kyBvsXcM8Q+Ms/oHb7mhtLcFtYvnw5kyZN4vHHH8dkMtGpUyc2bNjgEGSsVivjx48nNTUVLy8vevXqxaJFiwDF/WrWrFlMnz6dkSNHMmzYMFasWMHChQsZO3Ysjz/+OF5eXkydOpWUlJSbxj0qpWnTpmzbto3XX3+dhx56CFmWqVOnDk899RQA4eHhREVFMWvWLJKSkpAkyVGeMmWKo58pU6YQExPDggUL+PDDDzEYFPfir776iqeffvq6cW9Ul5KSQnh4uFOdWq3mzJkzrFy5kqysLPz9/WnTpg07duygUaNGAGzatInz589z/vz5664vde+5GS1atHD8ffDgQVatWkVkZCRJSUm3vK484uPjmTFjBjk5OURFRfH66687PV8Ab731FitXrrxuLr/++isPP/wwGo2GTz75hClTpiDLMrGxsSxcuNApVtann36KxWJh/PjxjB8/3lE/fPhwVqxYcdP5rVu3jpEjRzrKpf+PmTNn8vbbb1dn6QLBH0bp+1uSbVzxdgesyLJasSAGTDpY9UgKKzOaUfD8C3b7cpBcKndIVJpxT6Mu228VmJTe4nzjeLXNq9VbiOCu5uOLV5iXWJbEIthVQ5hOy+7kjyguKQt2HhExgtoRI2/URbkUm6ycvVzAgp/PcvDiVUd9bC0PejQSBwkCwf2IJJe3y72Pyc/Px9vbm7y8vArH7RCUcez4C2Rm/oQhNwT/w9EcySy7eeXafkGXd4zQqwV0f/IZAp4bc4uebs7Qz/ey41wWHp4ZSOEfYimKpPjiOL4a0472dSpndSW4nna/nSLpGre9xQ1q82RwDaRnv7gbzvyoxJI6sx7CWsGYLbd/nDtISUkJiYmJREdHlyuuCJwxGAyEhYWxYMECRo0a9YePn5OTQ9euXfHy8mLjxo24ud0dLpeC6nGr96zYH1yPeE6qx8UT2axffBQ/63FaeKxE7yXx4+W/YbVkYyr4N0Y9fNXlIqt2Ncdl+wHUPj6ovb0JnDQRr0cfrfA4Zy7l0+uDHQR4aFk9sR4bEzdyNPMoO9J20DOqJ/M710ymT8GfG1mWyTJbmHg6mV9zCvDXuOCllulj/px21g3I9gD4jRouwtU1GB+fVkhS5az0Snnsox2cTM93lF97tD61/dxpWduHWl5ifyQQ3EtUdG8gLKUEtxVZtnLk6Cjy8g47zM3TE9siFypmuCosmDQWMl2SicgDSQZVNb6gW+3m7kUWI+4Asgs+bhoahIi4I7eDbHu2va+axtDAQ09wTbntff885JadwOEl4gjczxw+fJgzZ87Qtm1b8vLymD1biXVS6hL4R+Pn58cvv/zCJ598wp49e+jatesdmYdAILh3KXXfi9IfoL53ArIsIaMGFMsm2W7YJBUqe6ug11/Hu8/jlR7HbFHG0ahV/G3f39iRtsPxmL9OHObdr4w9dZG1V3Id5UVxftQ3/o9z53+g1HrB06MRQUF9Ku3VAFBQYmZ3QjYlZqtDkAr11lE/xIuRHaOd3EkFAsH9hxClBLeV4uJkcnLKNjjIrhTmB2KTlZtNU30K69oe5/LpRCLwBWQkneuNOyuH5OwiknKyAdB4HgOgfUwQ/xjTFZ2maqc3AsgxW3jh5EWumMwU2M38m3m54aepoY8Lmw3y0pS/HxgLrl7Q/K81M5bgrmH+/PnEx8ej1Wpp1aoVO3bscATavhP4+/vz1ltv3bHxBQLBvU2p44KLpCQ9yJBL3XfLYk3558tIuYqrndqraodvZe57KrJLlD1U5/DORHtHM7j+4KpNXnDXsz2nwPF3iJRJycmhnEOJKxUaMoiYmMlotQFVEqQAZq49yerDaY6yj5uG3TPEAY9AIFAQopTgtmA253L5ygaKDAkA6HQRtGi+gkMbczGatmGVlU2QWpKxYnUEOFdVw1Jq+PJ9ZBRmAoFI2lwAYnwihCBVTbZk57P16jWbE1cNPpUMpFohZBm2/g0uHQO7WTjd3wGXGoxZJbgraNGiBQcPHrzT0xAIBII/DPs2CbU95mYmpbF1lA2T71ULSz6xAopVsaqSmShLzFa2nLnCsdQ8QIkpVWJRMhUPbzScNsFtqrcAwV1HkdXG6cJirLLMVYuyD/shZBP56UsdbdRqN4KCHsfVtWoZGWeuPcFPJy+TbVDE1sZhXrhrXejfUljECwSCMoQoJbgtJCZ+TErqCkdZr4vg7Nlcki4nIbkUY5OVLHhqCZpuT+DB0zIJQYAsI7lWTpQqNlm5nF9CYpYBye5NFqBqwrQOz9EtusNtWtH9S449096DPh5MjAyioYceVRVPxm5J1lnY9reysk9tIUgJBAKB4L7EZnffkyTlHmyR7Vt0uTRbsYwNUGlccI2pg65+/Ur1/397LvLuhtOOspvWhWKL4gqoU4s4PvcjTx9NYF+ewVFWyVZy05ehAnx92tGixb8ACUmqvGvdpbwScgwmVu656Kjz1mv4akw7PHU1FApCIBDctQhRSnBbKCq6AIC3Vwv0bpFcTWvH1h3rcLHocLW4U2RV4hRoJIiKz+SqrNyQVC4u6Bo2qPA4eUVmOs//ldwiMwASEjLQp2Ez+sQJM+Dq8GNmLscKitmbWwhAXXcdnfxqMDZX4WXlt0cwdJ4KUQ/V3FgCgUAgEPyJKXXfK7WUstq36LLdUkoCsjo3pNPS76rkQnU5X7GKqu3nRlwtD55pF8nMI0qd3kVf3ekL7jJsssyRfMU9r5Z0FUm20JYdeLrH4u3VgrCwwVUOZP7jsQzGrzrkKHvrNXw5+gEifN2EICUQCG6IEKUEVcZmM3Ho0GAKCk9isykZ2qKjJ5J52Idj/72CLw862paewxg987GqJCwopy6+A59EGxFR4TFPZeQ7BCmdRoVVpcIGuLqIl3J1yDJZGHMiyR5OVSGkpoKaZ52DxO1w6bhS9ouGNn98RjWBQCAQCP4slIpSqlJRqtRSqjSmlCxTN6hxlWP6WOyWWH2ahTC6cxBnr56lyKKIEjoXYSl1v2C02XjqSAKnCosxyTISMu/bxuJif91FRS4iOLhvlfo+lprLwYtX+d+JS4CyT9dr1AxtH0XjMO/btgaBQHDvIb7JC6qMwZBAXv5hR9nFxRNPz4YcOrILGcXCRsKKn0syXuoruEo5nDcUccm/luMalaZi7lqHkq+y61wWZ68oVjxto/34z/PtaTBrFWbAVS1OXqpDhtGEDXBXqxgc4oeni5pnQmsoC8+XT8LVpLKye2DNjCMQCAQCwV1CaUypUlHKbN+i2+zufBIguVYtMQwoljEAKkniyR+e5ErRFcdjbhq3KvcruLs4WVjMb9e47MXK8bhgITZ2Or6+7fH0aFSlfk0WG0M+20uB0eKo+1v/pvylhYgdJRAIykeIUoJKY7UWk5z8OQWFJwFwd69L82afo9H4olLpKMjLBTyJ8/iBk2YTD+oHYLVGsD/5H5jCQpROZBmV1oWoZi3LHU+WZUavPECOweSoC/dRTM3tB3+4ughRqirkW6xszMzjlD3FdG2dlnfiwsu5qhpYTGWCVN3eoHWDDi/W3HgCgUAgENwFyKUxpVACTttK3ffsiUAkGVRVzFYMZZZSYHUIUnW869A6uDV+Or8q9yu4O7hqtvDuuXOcyL0E+BIlX2ACC6nFZbTaAEJDBqLR+FS634y8Yj759TzZhSYKjBa0ahU9GgUR4OFKz0bB5XcgEAgECFFKUAUuX/mRC4mLHGU3txh0ulAAkpKSyCuwn8BI4FniDXoNLm6uDPhqNStfnQDAAwnpFM0eTXTzVrccy2SxOYIlAvy1bQSuLmqGtY8EQJYVM3adEKWqxILESyxLzXSUa2lr6Hm02eB/0+GyImSicoGnV4Gq8sEzBQKBQCC413C470mKCFUa6FxW2UUpZCRt1UUpq9UuSklljvrf9f0OF5X4KnA/sPryVf592Qj4AhBJIg/VGUpIyEBcXDxQqaqWaGbFriT+/Vuyo9ww1IvFg8s/cBYIBIJrEXciQaUpKU4DwNOzMQH+jxAS8oTjsby8PBQjc8BmJTQL8AXJRY2kUmGzXmOGXk4cqByDiW4LtzkEKW+9hnn9mzq1sdlFKa2IKVUlzhcpKXqbeuqJ0rsyJryGXOkyjsC+ZWXlgLpCkBIIBAKBwI5sAxkbJo2K/YUDybA0A0CyWpFRLKWq475ntYtest0SSyWphCB1H1BSks6Z+Lc4XNgS6EAj+RhdPQvo7edJePgzqNWVd90sKDEz6esjXMorIfWqEpfssSYhtKjtQ9cGQbd5BQKB4H5AfCsUVAibzczhw8PZsbM9F5M/AyDA/xFiYiah19e+pp0NyS5KqcxWPEo97tRKndVi3wzJMirNrTdDx9PynFz2+jYLdfz99+2rGf7Np1gtimWPsJSqHJuz85l0OpkjBcpm4pWoYD5tFEUbb/eaGdBgt8byjYL+n8GQb2tmHEGNMGLECCRJQpIktFotsbGxzJ49G4vFUv7Ft2Dr1q1IkkRubu7tmWgFSExMZPDgwYSGhqLT6QgPD6dfv36cOXPGqd369evp3Lkznp6euLm50aZNG1asWOHUJikpCUmSOHLkSIXHf/vtt6lfvz7u7u74+vrSrVs39u7d69TnqFGjiI6ORq/XU6dOHWbOnInJZLpFr5CRkcHgwYOpW7cuKpWKyZMnV3hOaWlpPPPMM/j7+6PX62nSpAkHDhxwPH7t/7/0p1evXk59REVFXdfmb3/7m+Px+Ph4unTpQlBQEDqdjpiYGN544w3MZrNTP7m5uYwfP56QkBBcXV2pW7cuGzZsuOX8V69eTY8ePfD396/0/0Mg+LNgs8mU6C+TTjP2FQ4mv0SJ7aMzKRnyJGRU7lWP/WS1OVtKaatoGSO4O5BlG7lFl+h98BxPZI/ke2MbAJpIJ3i56UBa1Hmu0oKUzSZzIi2PL3YmseXMFU5l5JNfouwDnu8cw+iHYogOqKF9pEAguKcRRySCClFYeJqcqzud6ry8m13Xzmazgd16ScZhM4WkUv5yWErJMmqXG2+Ijqbksi8xhxPpeQA8FBfAv55t68g4cyA1gSUbNEBZ8MQAN5HVozJMjU8hzVj2ZTBKX/XT11tyYRskbIbMeKXsVweaDqqZsQQ1Sq9evVi+fDlGo5ENGzYwfvx4NBoNM2bMuNNTA8BkMqHV3vpLltlspnv37tSrV4/Vq1cTEhJCamoqGzdudBLGPv74YyZPnsy0adNYsmQJWq2WtWvXMnbsWE6cOMH8+fOrPM+6deuyePFiYmJiKC4uZtGiRfTo0YPz588TGBjImTNnsNlsLFu2jNjYWE6cOMGYMWMwGAy3HNdoNBIYGMgbb7zBokWLbtru91y9epWOHTvSpUsXNm7cSGBgIOfOncPX19epXen/vxTXG1hszJ49mzFjxjjKnp6ejr81Gg3Dhg2jZcuW+Pj4cPToUcaMGYPNZmPu3LmA8j/s3r07tWrV4rvvviMsLIyLFy/i4+NzyzUYDAYefPBBBg0a5DS+QHBXkHEMchLwupxNXe1R1FZla+7mko0m5xQ+6XuJD1Lh4ueP1+/E4MpwbUwpAK1aiFL3MocODWZPnoHT0juOzbgKmb71R+LqWuvWF9+EL3YlMufH045ytwa1GNY+ilpertQP9rod0xYIBPcpQpQS3BKbzUx+/lFyc/cDSlDzRg0X4OLijV5/fUYNm81GmRRVZoonqSUu5F3AYCxQyvKN3fdsNpmhn+91nLwAhPnonVIgJ1+9qvQsmakTaqRukAcP1I6u/mLvE2RZ5rJJEaSmRAbR1FNPXfcaSActy/CfoVCSV1bnLbKw3K24uroSHKwELR03bhzff/8969atY+zYsUyaNIkffvgBo9FI586d+eijj4iLiwPg4sWLTJgwgZ07d2IymYiKiuL999+nYcOGdOnSBcAhgAwfPpwVK1ZQUFDA2LFjWbNmDV5eXkydOpW1a9fSvHlzPvjgA0CxzBk1ahTnzp1jzZo19O/fnxUrVrBz505mzJjBgQMHCAgI4IknnmDevHm4u7tz8uRJEhIS2Lx5M5GRSly6yMhIOnbs6FhnSkoKL7/8MpMnT3aIJQAvv/wyWq2WiRMnMnDgQB544IEqPY+DBw92Ki9cuJDPP/+cY8eO0bVrV3r16uVkhRQTE0N8fDxLliy5pSgVFRXFhx9+CMAXX3xR4fn8/e9/JyIiwklwio6+/vP02v//zfD09Lxpm5iYGGJiYhzlyMhItm7dyo4dOxx1X3zxBTk5OezevRuNRuNYV3kMHToUUKzMBIK7itxkWNYJkKkN1NbD7oJhAES4GJDyt0JJIRCELjYWF/+qZ8W12hQLKVmIUvcssiyTnvEfTuZdYVVeY9Lth7dx0gWWNG5IiFcs/trKf/VbeySNw8m5bD+nWL0HeroS5OXKhEfiaB7hozTaOB0u/Ao2C9isIFvh0flQt+ftWp5AILiHEe57glty7vxcDh56ioQLypchvT4CT8+GNxSkoDRQZ6mAJJeJSWqJd/a8Q4lJyfKmkmX0rh5O1+aXmDmSmkt+iQWVBE+0COOvbSN4vnMdp3YldpchrbaIzS8+xZJBjzmJVoIbk1Ji4r3EDN5OSMdiPzCdFBlE70CfmhmwJK9MkGo3Hh56GTq9WjNj3aXIsoytqOgP/ykNqFsd9Ho9JpOJESNGcODAAdatW8eePXuQZZlHH33U4ZY1fvx4jEYj27dv5/jx4/z973/Hw8ODiIgI/vvf/wKKa1dGRoZDVHnppZfYtWsX69atY9OmTezYsYNDhw5dN4f58+fTrFkzDh8+zJtvvklCQgK9evViwIABHDt2jG+++YadO3cyYYKSYCEwMBCVSsV3332H1Wq94bq+++47zGYzr7zyynWPPf/883h4ePDVV19V+/kDxTLo008/xdvbm2bNrrc8LSUvLw8/v5rJjrVu3Tpat27NwIEDqVWrFi1atOCzzz67rt3WrVupVasW9erVY9y4cWRnZ1/X5m9/+xv+/v60aNGC999//5bunefPn+d///sfnTt3dppL+/btGT9+PEFBQTRu3Ji5c+fe9H8lENz15KcDMrjoKPRuTYo1hmxbAACSHIIk2yj9tJaqGYex1H3PIUoJ9717joKC45w58xqLMvT8T3qcY1ILANoGt6ZxQP0qCVLZhUYmf3OEFbuTuJCpJDL68OnmrH/xIZr7GGFhQ3jbG/YugcwzkH0eriYqgqv9IFogEAjKQ1hKCW6IzWaiqPgiublKXBGdaygarS/hYc+Uc50NZPvGSZYp1YoklYpcYy4qm1IhyTKNg1s4rkvPLeaRBVspMSsnebU8dSx6qvkNxyi2KF92VSrbDR8X3Jj3EzP4z6WrjrKfRo1OXQO6tLkEvhsJWWeVsqs39Jp762vuU+TiYuJb3joDZU1Q79BBJLeqxSaRZZnNmzfz008/0bt3b9asWcOuXbvo0KEDAF9++SURERGsWbOGgQMHkpyczIABA2jSpAmAk7VMqdBSq1Yth4tWQUEBK1euZNWqVXTt2hWA5cuXExoayu955JFHePnllx3l0aNHM2TIEEc8pbi4OD766CM6d+7MkiVLCAsL46OPPmLq1KnMmjWL1q1b06VLF4YMGeKY19mzZ/H29iYkJOS68bRaLTExMZw9e7ZKz10p69ev5+mnn6aoqIiQkBA2bdpEQEDADdueP3+ejz/+uFoug7fiwoULLFmyhJdeeonXXnuN/fv3M3HiRLRaLcOHDwcU173+/fsTHR1NQkICr732Gr1792bPnj2o1WoAJk6cSMuWLfHz82P37t3MmDGDjIwMFi5c6DRehw4dOHToEEajkeeee47Zs2c7zWXLli0MGTKEDRs2cP78eV544QXMZjMzZ86skfULBHcUq5limxeXjbX5T/4g1LIatSUADaCWXJFtNmT7RkpVTVHKZBd3z+Uq7vTCUureIS3tK7Kzt5FWUsxR2pIqKfezJ/xsNPQJY2Bw5Q81fjyWwTcHUigsMSPL4OOm4ZkHIgnx0dE+xm6xl7wb8tPKLgpqDI++D5IaVGrwi7lx5wKBQPA7hCgluCEHDz1Nfv5RR7lJk0/w8mp6iysUrnXfk5HKTPHUEmabGZU93pRKBhdN2YboWGoeJWYbKgncXV14qk3ETccwmktFqepbe9xPpJQogZJ7+HsR7eZKd/8a8v9P3Qfx1wQmDm5SM+MI/lDWr1+Ph4cHZrMZm83G4MGD6d+/P+vXr3dyZfP396devXqcPq3EnZg4cSLjxo3j559/plu3bgwYMICmTW/+WXLhwgXMZjNt27Z11Hl7e1OvXr3r2rZu3dqpfPToUY4dO8aXX37pqJNlGZvNRmJiIg0aNGD8+PEMGzaMrVu38ttvv/Htt98yd+5c1q1bR/fu3Sv0XJQXuwoUce755593lDdu3MhDDz0EQJcuXThy5AhZWVl89tlnDBo0iL1791KrlnOcj7S0NHr16sXAgQOdYiV5eJRZmT7zzDMsXbq03Pns2LGD3r17O8rLli1jyJAh2Gw2Wrdu7XBVbNGiBSdOnGDp0qUOUerpp592XNekSROaNm1KnTp12Lp1q0M4fOmllxxtmjZtilar5fnnn2fevHlO8ae++eYbCgoKOHr0KK+++irz589n6tSpgHL/qFWrFp9++ilqtZpWrVqRlpbG+++/z8yZM2/5nAoEdyMXzhSz8cpyQMXvw0MXa3Nw06hKw3SisgvAVSU1Px3QsiNtKxof0Lvoq9Wf4M5jtRZjsRQSf3YmNtnKKywlWyrLovxKXEPquFUuPIMsy8gyzN1wmrTcYkd92yg/Xulpvw9fPgnpRyBxu1Ku9yj0+wT0viA8FwQCQRUQopTgOmw2k0OQ0mh88fCoj4dHgwpda84pdgQ693LxxDekMaAEOrfYLEg2ZVMlyTKSiwvpucWcSs9nT0IWAI/UD+Kfw1vfuHM7pe57QpSqGGsuX+WHzFxOFiqbi+ciAnnQ17Ocq6pB4RXld3AT6DkPQlvcuv19jKTXU+/QwTsybmXp0qWLI+h3aGgoLi4urFu3rtzrRo8eTc+ePfnxxx/5+eefmTdvHgsWLODFF1+sytSdcHd3/hpXWFjI888/z8SJE69rW7t2WZZQT09P+vTpQ58+fZgzZw49e/Zkzpw5dO/enbi4OPLy8khPT7/OOstkMpGQkEDPnuXHyOjbt6+TWBcWVuby7O7uTmxsLLGxsbRr1464uDg+//xzp6Dx6enpdOnShQ4dOvDpp5869X1tdjkvr4qJy61bt3a6LihISdsdEhJCw4YNndo2aNDA4Vp5I2JiYggICOD8+fMOUer3PPDAA1gsFpKSkpwExYgI5cChYcOGWK1WnnvuOV5++WXUajUhISFoNBqH9VXpXC5duoTJZLrlcyoQ3I2kXsgH/JCwYpVsuKkk9CootqZQ9+nWXJwpY7ZbNFfXfa/YYgK0+Ol8aB72EE/Ve6r6CxDcMTKzNnP8+HhkWTmoNakCyJYVQaq1l47mXh7EVDKJjclio/+SXZxIy3fUzevfBDetmk5xdrHLXAyf9wTTNa55PpHgVjMu5gKB4P5AiFICByZTNolJizGZFIFIkjQ89OD+SsVrMhy7TKmllIeLHjefcABUHhrMFjMq+0tOkmWsSPRdvJOswrJU54Ge5d9AjRbFBF0tRKkK8dq5VHLMynMmAZE1lWnv6Dew/T0otrsI+tWBaGHFcCskSaqyG90fTamQci0NGjTAYrGwd+9eh/tednY28fHxTkJHREQEY8eOZezYscyYMYPPPvuMF1980WFxdG3MoJiYGDQaDfv373cISXl5eZw9e5ZOnTrdco4tW7bk1KlT183zVkiSRP369dm9ezcATz75JNOmTWPBggUsWLDAqe3SpUspKipi2LBh5fbr6enplH3uVthsNoxGo6OclpZGly5daNWqFcuXL7/Obacy6ytFr9ff8LqOHTsSHx/vVHf27FlHIPgbkZqaSnZ29g1dHEs5cuQIKpXqOuuva7HZbA7LO7VaTceOHVm1ahU2m82x5rNnzxISEoJWq0Wr1Vb4ORUI7gZkqxKGIFK/i5MqG09oFGvNkDeHcWjLDxx28wL7LUKSqhtTShmrVXBLPu42vFp9Ce4chYZzXL60juycHciymZ104hjNUbnGQQl4qFWsb1W/Un2arTaOpOSScKXQSZBqHenL020iyr4HGAvh0nFFkFJpoE4X0LpDm9G3c4kCgeA+RIhSAgcZGd+RmvovR9nNLapSgpScdgxf0wmyUbJu5VsMaP2KCH6gLkUeuYx7M5+LPoqFhkqGlAIzWYUmVBI0DfdBr1Ez5IHatxoCAKPFAqioiXBI9xpmm+wQpGbWCaWJp54IXQ3Fkdj/TyXAZSkhNw/cLLg3iIuLo1+/fowZM4Zly5bh6enJ9OnTCQsLo1+/fgBMnjyZ3r17U7duXa5evcqvv/5KgwaK5WVkZCSSJLF+/XoeffRR9Ho9np6eDB8+nFdffRU/Pz9q1arFzJkzUalU5X4eTZs2jXbt2jFhwgRGjx6Nu7s7p06dYtOmTSxevJgjR44wc+ZMhg4dSsOGDdFqtWzbto0vvviCadOmAYpF1Xvvvccrr7yCTqdj6NChaDQa1q5dy2uvvcacOXNo3Lix07i/F3UAGjVq5MggV4rBYODdd9+lb9++hISEkJWVxSeffEJaWhoDBw4EFEHq4YcfJjIykvnz55OZmem4vrzsd6WWUIWFhWRmZnLkyBG0Wu11llDXMmXKFDp06MDcuXMZNGgQ+/bt49NPP3VYZxUWFjJr1iwGDBhAcHAwCQkJTJ06ldjYWIfF2J49e9i7dy9dunTB09OTPXv2MGXKFJ555hlHZsUvv/wSjUZDkyZNcHV15U9tcuIAAQAASURBVMCBA8yYMYOnnnrK8TyNGzeOxYsXM2nSJF588UXOnTvH3Llzb2j5di05OTkkJyeTnp4OlP0/goODy33OBII7icGgWDDLkozGqgL7R4aklkg7c8rRTlJJxLRqU62x7PoXWpfquQEK7izx8W+Rm7sPAAsufCZNxIIEJcrj0VU4eFy06Sz/2JrgKDeL8GH5iDb46DVl992s87D0QbDYXfr8YmDIt9Vai0AgEJQiRCmBPROXTElJBgB+fg/h7/cQfv63tkq4FtPub9H+PJr2QIr8PgB55iKCe7ek2CuPL2e8CT5BjvZZ7r6M+sdekFSE+uhZM77jTXq+HkWU0gpLqVtgsFjZcbWQHLuro4TitqeuSV//Ins2rscXQXgbJeCl4J5n+fLlTJo0iccffxyTyUSnTp3YsGGDQ2iwWq2MHz+e1NRUvLy86NWrF4sWLQIU96tZs2Yxffp0Ro4cybBhw1ixYgULFy5k7NixPP7443h5eTF16lRSUlLQ6W4dG6Np06Zs27aN119/nYceeghZlqlTpw5PPaW4qYSHhxMVFcWsWbNISkpCkiRHecqUKY5+pkyZQkxMDAsWLODDDz/EYFAyDn311VdO8ZVKuVFdSkoK4eHhTnVqtZozZ86wcuVKsrKy8Pf3p02bNuzYsYNGjRoBsGnTJs6fP8/58+evu768rIktWpS5yh48eJBVq1YRGRlJUlLSTa9p06YN33//PTNmzGD27NlER0fzwQcfMGTIEMecjx07xsqVK8nNzSU0NJQePXrwzjvvOGJFubq68vXXX/P2229jNBqJjo5mypQpTnGmXFxc+Pvf/87Zs2eRZZnIyEgmTJjg9LxHRETw008/MWXKFJo2bUpYWBiTJk1yCIY3Y926dYwcOdJRLv1/zJw5k7fffvuW1woEd4qsrCwuZ2UBEUjIuFjK7s+SWsJmVe7fTZKvYJjwKE269KjWeFb754dWJUSpu43i4lQSkz7Gai0iP/84APn+o0hW1ceSJaGVJF6LCUGSoGsl4oV+dzCVMxn5/O/kJQDCfPT4umsY17kOfu6/O8BM3VcmSLnooOmg27I2gUAgAJDk25Eb/B4lPz8fb29v8vLyKhy3427DbM5l3/6+lJSUZc+oW3cmEeHlu6dcS9E/X8It9XPMspZvst8nz1IbnXUPj7z4PIXZh/h56UeorTbUsgVtg5YsLHkAo4tywxv9YDRvPH7zk/xSVp9bzXv73yMvsxHFGf0JDszkt5dHVGqe9wuvnEnh3xllKdv9NGpOPVgDAcfz0mD7+2AqhFPrwGqE8fsg8Pqg1Pc7JSUlJCYmEh0dXa64InDGYDAQFhbGggULGDVq1B8+fk5ODl27dsXLy4uNGzfidpe4XAqqx63es/fD/qCyiOekcly8eJFfP/ovBkNzonSbKU7X0C5GidHmP6s1/57zKvlnk2h28TKGKf3o99QblR5DlmUGf7aXPRfK9gPDuhYxu/vA27YOQc1z9ty7pKR84SinSbFM5e+OcqROy9725e+jr+VitoHO7291qlv/4oM0DvN2bnj5FFw+Aed+huPfQrO/whPlJ9cQCAQCqPjeQFhK3efk5R12EqRUKj0+3lUwEbcpJ3qZcizZ+OMCFJrduHzhGHmXlCxcwXmFSOos9rZ4HeP+Qno3DmbRU83RaSp2arfu9C5y0jtgLVYC5frqxab3ZpwrUuy467nr8NOoGRBUQwEoDy5XfkpRa8Hz5nFmBIKKcPjwYc6cOUPbtm3Jy8tj9uzZAA6XwD8aPz8/fvnlFz755BP27Nlz0+DeAoFAUFFsNhuS/VhYslpxLylz9110eBE5WWcIQYeEjNpFc5Nebk1+scVJkEJVQmSAsJS6G5BlmZOnXiI3dx9msxKrMzjoL3h5NSXD0gSSwNtFTQN3Hc+E+le4370Xsvlw8zlyDEo81yAvV55oEU50gNv1gpSxAP7ZFcxFZXWewiVaIBDcfoQodZ9SUpJOwoWFGAxnAfD360SjRgtRqdxQqyvvj26zWNiSN55UUxPUViVulNV0hl1fbXa0cbVYKdbA94cuAR4EeekqLEgBnD5fF1NWmTtL01qVD/Z7r5NcbCTfYiXDqGRjmRsXRseazLRXoLh8UrcXRHeG0OagE2KhoPrMnz+f+Ph4tFotrVq1YseOHQQEBNyx+fj7+/PWW2/dsfEFAsG9hc1mozQxDMg4vOvVEumGdNzsgpVKhhahVYsnZSoNJAV0fnADBzN3E+T9TpXnLPhjKC5OobAwnsuXr81wq+IX11H8I8lKic0GyHTz9+KThjdPSnEtRSYL2YUmPtpyjt0JZULlI/VrMb33TQKj5yYrgpTaFSI7gKsHtBha9YUJBALBTRCi1H1Kevp/uHTpe0fZw6M+Go1vlfsrMmo5XdwNULZYMjLIhQD4hoZDkZGwM8mcjYAGwb54aj0Z1DqiUmOYzMrLtVGExMOxMTzdpvyg6PcT/8vMY8SJRKc6P00NvcUP/QsSt8PFPUq5Xm9oNaJmxhLcd7Ro0YKDBw/e6WkIBAJBjWGz2ZDsopSETGnuFkktYbaZUdnsj8kyfh6BVRrDbBelNGoosGUgqSxoVTWU7ERwW8jPP87+A39xlPX62jRpvBitNpB3juaQZynLWN3ex6NCfeYWmej8/lbyis2Ould71qNekCcdYm9gZXX2Z1g/RbGUAgiIg2FrqrIcgUAgqBBClLrPkGUZm62Y4pJUAAIDexAY0J3AwO7V6tdq3/ioMJPjewqTLKEvMKCxwfLap2l9oYD2RjMWlcR/xz2E3kVf+THsG7SH6rvwatfKpbu9HziUrwRjdlOr8FSraOShp657DcQuMhngh8kgW8vqfKNv/zgCgUAgENyjyLIMjqiuZaIUKpUiSsnKnkcly0jqqrncFZkVAcMsl3Du6jkAdC4ipuGfkYKCkxQWnuHq1d8AUKvdcXWtRWTt57hANBn5ZocV/L+bxtDYQ0+w663dOpOzi/jvoVQuZhvIKzYjSaBzUVM3yINRD0bf3Fvh6FeQn1pWjnjgtqxRIBAIboYQpe4jZFnm0KG/kpu331EX4N+FkJD+1e47o1iJYaSSzJhd89gVtoeuKWpAhdU1HxeUjZFKrcO1Cu6BADa7KOVaCZe/+4F8i5XtOQUcLlB8/ifWrsXkqBr0+TdkKoKUWgvdZinxBaIrnqlRIBAIBIL7muKrqLPOokE53HGRXPBwt8d+VMGDay6Qf1WLVY0Sd0pdte16XolisY5kpZ5vPULcQ2gV1Oo2LEBwOzGb8zlwcCA2m9FRFx42hNjYaRwtKKLngbNO7Vt4uuGvLf818e6GU/x08rKj3KdpKB/9tcXNLzjwBRxcCdkJSrnX3yC2G/iLcBkCgaBmEaLUfYTFkuskSLm4eOPj07ba/RYUFJBeotxIJUmxmLLoTLhYlQxVxQUtiZTcgF94OOZhVJLqZl3dEqtNuc7VRbxsr+W1s6l8d/mqo1yrnJOzKmPIhkMrIMfuIugeCO1fqJmxBAKBQCC4F8nPgI+aU8dSQhITyAE8XDwIr62IBXJhBu1/vcy2ehEY1KACXPyqFl6h2KxY1kiSje/6fnebFiC4XRQUniEpcTEmczY2mxG12h0fn9ao1e6Ehf0VgJOFxQD4uKip4+ZKRx+PWwpSJWYro1ceICnbwOV85cD48aYhhPnqGdK2nPhT294rixWKBHV7gl9MtdcpEAgE5SG+3d8HmExZpKT+C2OJcqNxcfHhwY47kSQNKlX1XwImkwnJbniuRuZhUyN+MG1xmJ4bsh4jTBdvH7vqsQxku6WUTohSTpy1Z9pr5KEj1k1H7wDvcq6oIr/9A3bMLyt7hdXMOAKBQCAQ3KPYLp1GZSlBliXMsrInKrIGY/bQ4OalxcXfTME6sKqUPU/orFm4BFYtplSJ3X1PkqzltBTcCZIvfsaVzI2Osp9fR5o2WQLAkuQrLEk5QaE9PMajgd4srH/zWKqyLJOSU8y+pBx2ns9y1Hu4uvDuX5rg7XaTA0tZhqxzYCmGQrtV1YDPIbiJEKQEAsEfhvh2fx+QkvovkpI+cZTd9LVRqysf0+lmFBtMjrgIatnGpYzd9E8uC774RJsomqWnYwSoRuBtm01x2xOWUgonC4tJKTaRXqKchL5fN4KW3u41N2BusvI7siOEtoAmA2tuLIFAIBAI7kFMCefQAQZrLU5SDx1wIr8I38dCiO4RSdGhw0CZKOXWoEGVxyq2lFlKCf4cGAznOXjor5jNVyndPEeEj8DTsxH+/p0d7f4vPZsrJouj3Kac/d0760/zxa6yZDftY/yZ1rs+Eb76mwtSANvnw69zrqmQoOFfquwyKhAIBFVBfOLcw8iycrMrKVaCFfr5dsTLqxm1gh67reMc25rsyCCDzUBa0Tl0dssp9+Ag/jawBVmf7MEISNW4ydnslld6bQ25p91FnC8qoev+eKe6gArEF6gSR1ZB8h64uFsptxgKzf9aM2MJBAKBQHAvYxeKZMk5PqbKLkKdOryX5BB/rCplH6WqYpBzgGK7pZRKJUSpO43FUkBW1q9kZW/BbM5x1Lu4+BAZNQ5XbQBWWWZ/noFiq41LprKg5nXdXKmtvz4eqyzLnM4ooNBo4df4KwC4a9W4ubowvEMUzSN8yp9Yyl7lt84bNG7QsJ8QpAQCwR+O+NS5RykpyWD/gf6YTFccdSEhAwgO7nfbxzJfKUJrF4wkSTnVsahk1nfM4F9//RBJkpCtSr1UDSsn2W4ppRM3S84ZFJc9D7WK+u46Wnq5E6GrgTTPxbmwdjzI12xofcuJSSAQCAQCgeCGyFZFbLCiQrLvnQAklURWykW2/bweavk46l3dPX7fRYUwW20YjPa9lySX01pQ05xPmE9a2r8d5cjazxNR+1k0Lp6oVIrg9I/kK7x7IcPpunbe7ni43FiY/PZgKlO/O+ZUt+7FB6kTWM5rxmaDHybC5ZOQaT/gHPAFxHWr5KoEAoHg9lC1iNOCPz25ufudBCm12gNv75a3dQxZlrGabciFJY5kxhKKeCGrZHI9zehclWDnWEpFqcqd+F0tucr4dUvoseRzrFblpn0/W0oVW23syCngtzwDAO19PFjfqi6z48KQJKmcq6tA4WVFkNK4wSNvwF+WQu32t38cwZ+aESNGIEkSkiSh1WqJjY1l9uzZWCyW8i++BVu3bkWSJHJzc2/PRCtAYmIigwcPJjQ0FJ1OR3h4OP369ePMmTNO7davX0/nzp3x9PTEzc2NNm3asGLFCqc2SUlJSJLEkSNHKjz+22+/Tf369XF3d8fX15du3bqxd+9epz5HjRpFdHQ0er2eOnXqMHPmTEwm0y37zcjIYPDgwdStWxeVSsXkyZMrNB+r1cqbb77pNN4777zjsLQFWL16NT169MDf3/+m601ISOCJJ54gMDAQLy8vBg0axOXLZVmfKrquY8eO8dBDD6HT6YiIiOC9994rdw3bt2+nT58+hIaGIkkSa9asqdDaBYI7gv2QTtk3KfdtWaXFaMrn6CnFItnVbMG/8CrNRw7GK6Dy8aT+dyKDRjN/Ytb3yj5QLSyl7giybOXUqVfZt78vly6tAcDLqxlBQX0JjxiGqzbAIUgBHLVnUQ511dDQXccLEbVuKEjtS8zhk1/P89U+JayCn7uWmAB3+rcIIyagAmEcrpyCw/8H6YfAbABJDbXqV3/BAoFAUEWEyck9hsViID//CLl5BwAIDOxB/Xrvola7o1Zfb/pbVawWG/+Zu5+cdAN+rlm46pWNlclaAIDNfionHz1Fxk9LKS79ElNJS6n1F9bz415/sJbeZG2EevnchhXcnbwcn8LqazLt1ZjLXm4K/LYEci8qZa9Q6PRqzYwluCvo1asXy5cvx2g0smHDBsaPH49Go2HGjBl3emqAknBBq721taDZbKZ79+7Uq1eP1atXExISQmpqKhs3bnQSxj7++GMmT57MtGnTWLJkCVqtlrVr1zJ27FhOnDjB/Pnzbz5IOdStW5fFixcTExNDcXExixYtokePHpw/f57AwEDOnDmDzWZj2bJlxMbGcuLECcaMGYPBYLjluEajkcDAQN544w0WLVpU4fn8/e9/Z8mSJaxcuZJGjRpx4MABRo4cibe3NxMnTgTAYDDw4IMPMmjQIMaMGXNdHwaDgR49etCsWTO2bNkCwJtvvkmfPn347bffUKlUFVpXfn4+PXr0oFu3bixdupTjx4/z7LPP4uPjw3PPPXfTNRgMBpo1a8azzz5L//79K7x2geCOYDUjy2CSXZFk5UAv0Wsr1uU/OJp4FxnxKckhtkPHKg2x83wWJkuZEOXlnV69OQsqjcmUTV7eITIurXbUSZILTRovRqcLdWr7TkI6n6ZkYrYfBsyJC+PRQJ8b9ltitjL8i30Um8uC18/q24g+zUJv2N4JqwXO/VQWjsEvBnrOA79o8A6v3AIFAoHgNiJEqXuMEydfJDt7m6Os04Wh1frd9nEKskvISTcg24qxWs5RetoHyk3SnigPw98WYTmX4LjOxbdyaY0NZgNYfQBo18BAu+hA6gWGVHP2dy+n7amBo/VaAjQangnxr5mBdn8M+5aVlX1unvFFcH/g6upKcHAwAOPGjeP7779n3bp1jB07lkmTJvHDDz9gNBrp3LkzH330EXFxcQBcvHiRCRMmsHPnTkwmE1FRUbz//vs0bNiQLl26AOBr/1wYPnw4K1asoKCggLFjx7JmzRq8vLyYOnUqa9eupXnz5nzwwQcAREVFMWrUKM6dO8eaNWvo378/K1asYOfOncyYMYMDBw4QEBDAE088wbx583B3d+fkyZMkJCSwefNmIiMVN9TIyEg6diz74peSksLLL7/M5MmTmTt3rqP+5ZdfRqvVMnHiRAYOHMgDDzxQpedx8ODBTuWFCxfy+eefc+zYMbp27UqvXr3o1auX4/GYmBji4+NZsmTJLUWpqKgoPvzwQwC++OKLCs9n9+7d9OvXj8cee8zRz1dffcW+ffscbYYOHQoo1k43YteuXSQlJXH48GG8vLwAWLlyJb6+vmzZsoVu3bpVaF1ffvklJpOJL774Aq1WS6NGjThy5AgLFy68pSjVu3dvevfuXeE1303MmzeP1atXc+bMGfR6PR06dODvf/879erVc7R5+OGH2bZtm9N1zz//PEuXLnWUk5OTGTduHL/++iseHh4MHz6cefPm4XLNQdHWrVt56aWXOHnyJBEREbzxxhuMGDGixtd4vyFbzfyY+zoXja0pldG9CkrKHpdkgvMMuPkHUtuzavdeg8kIQNO6qVyQlhEZEFvdaQsqQU7OLg4fGU5pIHNPj0bE1HkJva72dYIUwOrLVx2ClKdaRQsvt+vaZBUaeWrZHtJzSyg2W3HTqnm8aQiBnq70aBRUsYmdWgP/HVVWDqgH9XrdtLlAIBD8UQj3vXsEWbZhtRaRn38CADe3Onh7tyYkeECNjHf2Uj4AFqkYJMlx2qdVK2qU2ibT8pwNa6pyOuf37LMEvfEGPk8/XalxTBYLpS/TJU/+hcmdutymFdxdlFhtFFisZJsVs/9PG0XxQ6s4WtVUtr08JTg+9R6DR96ER6tuGSK4ObIsYzZa//Cfa12zqoper8dkMjFixAgOHDjAunXr2LNnD7Is8+ijj2I2K3FTxo8fj9FoZPv27Rw/fpy///3veHh4EBERwX//+18A4uPjycjIcIgqL730Ert27WLdunVs2rSJHTt2cOjQoevmMH/+fJo1a8bhw4d58803SUhIoFevXgwYMIBjx47xzTffsHPnTiZMmABAYGAgKpWK7777Dqv1xinSv/vuO8xmM6+88sp1jz3//PN4eHjw1VdfVfv5A8W669NPP8Xb25tmzZrdtF1eXh5+frf/cAGgQ4cObN68mbNnzwJw9OhRdu7cWSmRx2g0IkkSrq5l1rg6nQ6VSsXOnTtvet3v17Vnzx46derkZPHWs2dP4uPjuXr16o26uOfZtm0b48eP57fffmPTpk2YzWZ69OiBwWBwajdmzBgyMjIcP9e6PVqtVh577DFMJhO7d+9m5cqVrFixgrfeesvRJjExkccee4wuXbpw5MgRJk+ezOjRo/npp5/+sLXeL8gWCxeNrR1ls6oEq6SISD0nvsSY4RMIv1pAmE/tKrvlx2crh4HxuUeRVGY8tFWLSyWoHIWFZ8nM2kx6xreAjCRp0Wj8iIgYSYD/w7i7xzi1Tykxcc5QQpY9y95PretyrGNjQlzLPgMNRgs7z2WxfFciCZkGh4VU94ZBvPdkM17tWR/XiobGKI0f5VMb6j8Ona6/zwkEAsGdQFhK3QPYbBb2H3iCwsJTjrpWLb+uEQupUr7Zl0IMYLWpKLS0oTBfEY40dpnTq0hm+nc2ZBTLnsAJ41G5XX/yUx6ma744alzuTw31f5l5jDmZ5DhFA/DT1NBbd/di2P8Z5NsDbTb/KzToUzNjCbCYbHw6aVv5DW8zz33YGY1r1TI6ybLM5s2b+emnn+jduzdr1qxh165ddOjQAVCsXSIiIlizZg0DBw4kOTmZAQMG0KRJE0CxkCmlVJCoVasWPj4+ABQUFLBy5UpWrVpF165dAVi+fDmhodefLj/yyCO8/PLLjvLo0aMZMmSII55SXFwcH330EZ07d2bJkiWEhYXx0UcfMXXqVGbNmkXr1q3p0qULQ4YMcczr7NmzeHt7ExJyvUWmVqslJibGIeBUlfXr1/P0009TVFRESEgImzZtIiAg4IZtz58/z8cff1wtl8FbMX36dPLz86lfvz5qtRqr1cq7777LkCFDKtxHu3btcHd3Z9q0acydOxdZlpk+fTpWq5WMjIwbXnOjdV26dIno6GindkFBQY7HfCtpaXsv8L///c+pvGLFCmrVqsXBgwfp1KmTo97Nzc1hyfh7fv75Z06dOsUvv/xCUFAQzZs355133mHatGm8/fbbaLVali5dSnR0NAsWLACgQYMG7Ny5k0WLFtGzZ8+aW+B9iHxNLL7swL1sD9lK28M2wBV3d2+4egkAyaXq8TNLs+4FuQfwSNwA+scJt9aaprg4jX37H0eWy/atdeq8TGTt0TdsvzT5Cm8nOLtV1nfX4apy3utO+vowv5wuixHbt1kor/asR7ivvmITs5rhu5GQdQ4KlNcWLYZC56kVu14gEAj+AO7Pb/n3GCUlaU6ClI9PWzSamtm8X8w28NW+ZC5eUmJH+WtKsOKGVdYBkOCu3GBVMmR7gmuTxgRMmFAlQQrAaLlGlFLXQCDvu4CtVwucBKkWnm4Eu9ZQsPe9S+FqEliNSuDLoMY1M47grmP9+vV4eHig0+no3bs3Tz31FCNGjMDFxcXJlc3f35969epx+vRpACZOnMicOXPo2LEjM2fO5NixYzcbAoALFy5gNptp27ato87b29vJXamU1q1bO5WPHj3KihUr8PDwcPz07NkTm81GYmIioFhuXbp0iS+//JL27dvz7bff0qhRIzZt2lTh56K82FWgiHPXzmPHjh2Ox0qtUXbv3k2vXr0YNGgQV65cua6PtLQ0evXqxcCBA51iOV3b79ixYys05x07djhd9+WXXwLwn//8hy+//JJVq1Zx6NAhVq5cyfz581m5cmWF+gXFAu3bb7/lhx9+wMPDA29vb3Jzc2nZsiUq1fXbjJutq6pruJ/Iy8sDuM5y7ssvvyQgIIDGjRszY8YMioqKHI/t2bOHJk2aOAQ+UCzQ8vPzOXnypKNNt27Ombd69uzJnj17bjoXo9FIfn6+04+gfPKNRsffsmRBpZdxsSrvExetFtmiWJlK6qodHACUhpNqFFiftzu8TdPAplWfsOCWGE1ZnD49g1OnXkaWrajVHnh5Ncff/2GCg25+qPdbXiEAepUKHxc1fw3xcwhSBSVmvtqXzBc7E9mXmANAbC0PWkf6MuahGCL83CpuRZd2CE7/AJlnoCRXqQsWrweBQPDnQlhK3cWUuusZDOcAJX5Uuwf+h0qlr5lMbMCzK/aTfMXAC3k6QMJgU05mO3v9g+8CL7NTXUzv5GAkWWZbe09e/+jbao3nZCl1gy839zL5Fiu/5RZyyh5HanZsKMPDAtDas6DddmQZDJnK30+vgtAWSoBzQY3holXx3Ied78i4laVLly6OoN+hoaG4uLiwbt26cq8bPXo0PXv25Mcff+Tnn39m3rx5LFiwgBdffLEqU3fC3d3ZfbWwsJDnn3/eEaD7WmrXLovN4unpSZ8+fejTpw9z5syhZ8+ezJkzh+7duxMXF0deXh7p6enXWWeZTCYSEhIqZDnSt29fJ7EuLCzMad6xsbHExsbSrl074uLi+Pzzz52Cxqenp9OlSxc6dOjAp59+6tT3tdnvSmM4lUfr1q2drisVKF599VWmT5/O03bX6iZNmnDx4kXmzZvH8OHDK9Q3QI8ePUhISCArKwsXFxd8fHwIDg52sowrb13BwcFOGfsARzk4OJioqKgbruF+wWazMXnyZDp27EjjxmUHBoMHDyYyMpLQ0FCOHTvGtGnTiI+PZ/VqJcDypUuXrnuurrVAu1Wb/Px8iouL0euvt8qYN28es2bNuq1rvB84fKlMgJYlG6hl1HZRSqN1Bfu+R6pkYphrKT3Pc71PLcz/SNLTvyE94z+OcnBwX+rXe+em7RcmXeLf6dkOl71ljSLpEeDt1GbptgQ++bUsHqtKgtUvdMBLV4kDybxU+N90sLtyEtIMerwLbn5Qq2HF+xEIBII/ACFK3cUcPfY8V6/udpS12kDU6qpZJFUEq00mMcuAr01Ci4SMjE4qwN8lmSS9zAmtF5JFCdYpyfB044q7f9wMk31npZJkVKr7y1JqwqmL/JxddvIc6qq9zqz7tpCXBt88owhS9v8fMQ+DtobiVQkcSJJUZTe6P5pSIeVaGjRogMViYe/evQ73vezsbOLj42nYsGzTGxERwdixYxk7diwzZszgs88+48UXX3RYHF0b3ykmJgaNRsP+/fsdQlJeXh5nz551cle6ES1btuTUqVPXzfNWSJJE/fr12b1b+Sx98sknmTZtGgsWLHC4MpWydOlSioqKGDZsWLn9enp64unpWaE52Gw2jNdYT6SlpdGlSxdatWrF8uXLr7M2qsz6StHr9Te8rqio6Lr+1Wo1NlvVUsiXuiFu2bKFK1eu0LdvX8dj5a2rffv2vP7665jNZjQa5cvXpk2bqFevnsN1ryprv1cYP348J06cuC5O17VB4Js0aUJISAhdu3YlISGBOnXq1Nh8ZsyYwUsvveQo5+fnExERUWPj3QuUGExYbGWfdxHFbkRcdkVrN21ycXVFtseOrGy24mux2t++WrUQpWqKY8fHkZn5s6McGNgLf/9O1Aq89aHFP1MzybHHhXJVSTTxLBN8V+xK5FByLgeSFOuolrV9CPd1o30d/8oJUgDHvlEspEqp3QGiH6pcHwKBQPAHIUSpu5iCguMA6PW1Uav0RESMqJFxkrIMvPjVYXIMJmwyNHfJAKKxqUw8WGs29UngB7qCzhWV4tWHChlfj8Bqj22y76zUquoHZr7bOFukCEQN3XXUcdPRxa9iX3ArzbmfIf2aINL+cUKQElSIuLg4+vXrx5gxY1i2bBmenp5Mnz6dsLAw+vXrB8DkyZPp3bs3devW5erVq/z66680aNAAUDLfSZLE+vXrefTRR9Hr9Xh6ejJ8+HBeffVV/Pz8qFWrFjNnzkSlUpVrITht2jTatWvHhAkTGD16NO7u7pw6dYpNmzaxePFijhw5wsyZMxk6dCgNGzZEq9Wybds2vvjiC6ZNmwYoFlXvvfcer7zyCjqdjqFDh6LRaFi7di2vvfYac+bMcbJSASVQ++9p1KiRQ1gpxWAw8O6779K3b19CQkLIysrik08+IS0tjYEDBwKKcPPwww8TGRnJ/PnzyczMdFx/s5hBpZRaERUWFpKZmcmRI0fQarVOAuHv6dOnD++++y61a9emUaNGHD58mIULF/Lss8862uTk5JCcnEx6errTeoODgx1zWr58OQ0aNCAwMJA9e/YwadIkpkyZ4nC7rMi6Bg8ezKxZsxg1ahTTpk3jxIkTfPjhhyxatOiW6y4sLOT8+fOOcmJiIkeOHMHPz8/JQu5uZsKECaxfv57t27cTHn7r1O2lFnrnz5+nTp06BAcHO2VTBGcLtNLfN7JS8/LyuqGVFCgZOa8Nbi8onxM7UkFWPsckbJhSD9HwIpRG0yj5dSvSEcXFuTqWUlarMoa2ogGwBRXCai0hP/8IVmuxkyClUrkSFTUOL88bhzywyjK/ZOeTZbI4BKnVzWOp664jQOuC1SaTnlvM2z+ccrrujccb0rJ2JcNxmEsg+zxcUVzoadAXmj4Fde7PREECgeDuQIhSdxklJRkcPzEBkykbi0VRgNq2WYeLSw0JFsBPJy9xPC3PUY5QlWb9kVGhiEY2WY1e64KhdLMly9XaUJVSailVjdAKdx3ZJgvZZovDtPvTxlHEuulqbkBDlvK7/uPw0EtKimCBoIIsX76cSZMm8fjjj2MymejUqRMbNmxwCDJWq5Xx48eTmpqKl5cXvXr1cogMYWFhzJo1i+nTpzNy5EiGDRvGihUrWLhwIWPHjuXxxx/Hy8uLqVOnkpKSgk536/dB06ZN2bZtG6+//joPPfQQsixTp04dnnrqKQDCw8OJiopi1qxZJCUlIUmSozxlyhRHP1OmTCEmJoYFCxbw4YcfOjKdffXVVw43t2u5UV1KSsp14oFarebMmTOsXLmSrKws/P39adOmDTt27KBRo0aAYhl0/vx5zp8/f9315WVNbNGihePvgwcPsmrVKiIjI0lKSrrpNR9//DFvvvkmL7zwAleuXCE0NJTnn3/eKTPbunXrGDly5HXrnTlzJm+//TagCFUzZswgJyeHqKgoXn/9dafntCLr8vb25ueff2b8+PG0atWKgIAA3nrrLSdLoBtx4MABunQp+8JVar0zfPhwVqxYcctr/+zIssyLL77I999/z9atW68LBH8jSsXJ0mD97du359133+XKlSvUqlULUP4fXl5eDsGyffv2bNiwwamfTZs20b59+9u4GkHxpQJUlIlSxVYlrlCGfwkdi/0pmPs3R1tVOZ93t8JqU8aocFY2QYU4c+Z1Ll1e4yhrNP60e2ADarU7avXNA49vzMxj9MkkR1mvkmjv444kSSRkFtL/H7vJK1ZiiQV76XiuUwyhPvrKC1IA/+wGl4+XlaMeggaPV74fgUAg+AOR5NuRG/weJT8/H29vb/Ly8ioct6OmSU1bRXz8m46ym1sM7dtVPEBvVZi74TSfbr/AX5qHMrxDFL8sX4VbRgNstlz6eE8hyj2XLNPLvNkkmYspx+h6sBY+hhIGPDsen/5PVGvs53+cxU87WuOus3Hy7Xs/C1y8oYSu+89gueZdeerBxjWTbW/zO3BwBZgKFbe9B1+CbjNv/zgCAEpKSkhMTCQ6OrpccUXgjMFgICwsjAULFjBq1Kg/fPycnBy6du2Kl5cXGzduxK2KiRsEdxe3es/+UfuDF154gVWrVrF27VqnYP/e3t7o9XoSEhJYtWoVjz76KP7+/hw7dowpU6YQHh7Otm1KZk+r1Urz5s0JDQ3lvffe49KlSwwdOpTRo0czd+5cQLEua9y4MePHj+fZZ59ly5YtTJw4kR9//LHC2ff+jHumPxu/LPiVkqufczHrWdRyCYbcfwCQ43ORIae9ka5ko2/dCk1QMP5jRqOrX79S/f9zxwW+2JlIRn4RsqzihV42pj587++dahJZlklL/4qSknTS07/BbM5Br49ErdYTGvo0EeFDy+1jQeIl3k+6RLhOQ313PY8GeNPZzY09CdnsTshi9aE0R9sJXWJ5pWcVDwfNxfCu3aLWPVD5+etX4BtVtf4EAoGgmlR0byAspe4SrFYjBkM8BQUnAMV3PbL2GNzd42pkPIPRQr9PdpGQWUipbFk/xIsWtX3ZVBoOQbZSegYn4YLNYsHVrJigS7KMVA0hJfVqEXM3nGZ/srK++yVW59GCIiwyaCQJTxcVnXw98a2pk86Dy6Eou6wc3vrmbQWCP5DDhw9z5swZ2rZtS15eHrNnzwZwuAT+0fj5+fHLL7/wySefsGfPHrp27XpH5iG4/1iyZAkADz/8sFP98uXLGTFiBFqtll9++YUPPvgAg8FAREQEAwYM4I033nC0VavVrF+/nnHjxtG+fXvc3d0ZPny4430FEB0dzY8//siUKVP48MMPCQ8P55///GeFBSnBrdn+zVmSjmUiX9pAQEipG7LJ8fhTO2xINuV+HDp3Ltoqup2u2pdMel4JijuglVC/GsrUex+Rm7vP6TAYJFq1/AZX1/JDVLx1Lo2vL2VTYlU20oOC/ZgarVgwPv7xDk6klcUNfa5TDJO6xuHuWoW9c+ZZSN0HxblKWa2FV85BDSU9EggEgtuNEKXuEo4cHUlu7l5H2cOjHt7ezWtsvKOpuZy/Uugoa11UtIlSUlDL9gCaMla0Kk8gl7P5mcStz6IuSpBblVy9eAg/HM1gw/FLgJKRxNv93jboK7HaOFFYzJF8JY13v1o+LG4YWXMD2qxQfFX5e+RG5RRNZNoT/ImYP38+8fHxaLVaWrVqxY4dOxxBtO8E/v7+Ti5tAsEfQXnG7BEREQ6LqFsRGRl5nXve73n44Yc5fPhwpeYnKB+r1cbxX1NxoYCm7sdxlSEJUEllAc8v+chEtutKYLM2VRakAEz2gOlx9faQbttMiPecas7+/iU//xhnzryB0aTEWnNzi8bf/2G8PJtWSJCSZZl/pWdRYlPewxLQwl3Ph7+c42qRiTMZSgiOh+IC8HHTMrxDVNUEKZsNlveGoqyyOs9gIUgJBIK7CiFK3QXIskx+vhL40tU1GI3Gl1qBvWpkrIy8Yub8eJoLmUoMlbZRfnwypCVuWnXZzVIuvdFZUaFsqi6XFFBaK8kygQWGamWOic++AICbVzI2j10827l/lfu6G3juZJJTpj1/bQ29NRO3K2575uIydTG8DajFaargz0OLFi04ePDgnZ6GQCAQVBvZbiXT0G0T7b32kGmOYQ9gUlkcbU5ESjR4exp+XtXLXmi2J4fR6DJRmQrRiHt7pZFlKybzVVLTVlFQeNJRHxr6FJG1x1TgepklKZmcNhQ7BKltbevjp1Hz69FLLPrlrKOtp86FlSPbVj27dH46JO1UBClJBbHdFTGq2V+r1p9AIBDcIYQo9SfGai0iOflzTKZsbLZiANq324RaXXPxTL4/nMaPxzIc5UZhXgR6OmfXKdUytCot7hrFtcx+32V//RymH/bENTMPSVP1zdCmi1uABzGrk9F5HyXCZ2S519zNHC9U/r9hrhr8NS4MCKpCcMuKsO8zxcS7FP84IUgJBAKBQFBD2OwbJB35nC9pT7JZyT5aoDajLW2jBvdqZr1NzEsk05ADuJOUn4BaBy6S2OZXBlm2sm9fHwoNZRlVo6LGUyuwJx4eDSrUxxlDCbMT0h3lcJ2G1dsT+fZAKkX2BDatIn1pH+PPg3EBVRekbDb47BEosO/ZvcJgyH+q1pdAIBDcYcTd6k/M5cvruZD4gaOs0fjVqCAFcCXfCECPhkH8pUUYneuWmSjbiorI27YD2Z5q2MvFG4091lOpKGVVgcpuPi65VE3skGXZkXWvYUB9BrVtTKfwTlXq689OjtlCYpGRbPtGZU3LOCJ02nKuqgYGexr2Tq9CRDsIbV5zYwkEAoFAcJ8j2zdIly312Fc0wlFvkUocolSH2g/hp/Or1jinsk9hk+1xPSUrwe7BNPCvmJByv2O1GikoPIHJmHWNICXh6hpEWOjT6HTlhzeQZZnkEhMH7WEYQl019PH2pL5ay9s/HsZo3xsDvPBwHbo2CKrepIuvlglSYa2h9bPV608gEAjuIEKU+pNSUpJOQcEpALy8muHn2wE//841Nt6krw/zvxOXHKbf7ev482iTEKc2e2d/yeGrUXhJSlYQraoIlaS4+akD3cAAPQ5ZcUlXhI+qxpSyyTawh1BvGdSMIQ2aV6mfPzvFVhsP7j1NjrksroR/TWTZs1lh7QS4cgoyzyh10Z0h+qHbP5ZAIBAIBAIHW/6l3HeTTW0B0LlcIU1XxNHAX+hwWQl5EBtYuSx7N8Jis4Cs7J02DFhHbT8PJBFXqEKcODmRrKxfHGU3tzq0b/dzpfqYdyGDj5KvOMpBqFj5f8cdZY1aYv2LD+Gt1xDsXY0MvMl74dC/oCTXPll/GLO56v0JBALBnwAhSv0JSUxczIXERY5yYEA3oqJeqLHxSsxW1h4pMzXWqCVaRV7vPpZVWIIslWaCsxGr+w61lKMU3RSrqMhMGalEsbZyCapVpfnYZBvYT/u06ns37V6a0USO2YoKiNBp6R7ghVtNrPfyCTi6qqyscoGAmsnaKBAIBAKBQMFitnLhiHJQJ6NGhYVQ7x/ZFGwiTRMPhCvZiqsRg9Mxls0CsrIXc3XRCEGqHGTZSlra15hMmVy9+hsAOl04KpUrkbVHV7q/vXnKIa1OklDZZIoTlTih3noNfu5a+jYLpV6wZ/Un/vMbzmEY/GKq36dAIBDcYYQo9SckN+8AACqVFq0mAP+AR2pknKxCI0u3JnClQBGRdBoVv7zUGS+9Bi/d9a53sqRYUbXx/Bfh+t/QmgvJVdXB1qAxmceUmEiSLGMc8QR1uw/ANTq6SvOyylaHKOWiVpfT+u7lqt1CKkKnZW/7hjU3UKH95M4vBnr9XfntGVxz4wkEAoFAIMBmKcue2Fb/OU08t7JT1QxZ8kBlU0QjlQzSbbCSNlktgGKBo1ELQao8srK2EH+2LKOqJGlo98DGSoXJUDLsZXOh2MhZQwkA7kevYsgwkGRv80rPegxtdxuyKecmw6UTkJOglNtPAM8QqNe7+n0LBALBHUaIUn9CzGbF+qhJ438QENClxsb5el8y/9yZ6ChH+bsT7nvzm7FsF4rOS2FsUD2NR+JB4tq9zrfuiwnKjicUPZIMqk7tcGvVqsrzUiylFDHqXrSUmpuQzudpWVjsqb59a8JlD+DySfh6cJko5RsNdXvUzFgCgUAgEAic2PtbmUWLxjMBnaoQK2pkyYbKrldJsgy34QBOEaXsY7nce3un20V29g7iz76FyaTstd3d6+Lj0xZf33aVjtt6srCYaWdTneoKr5agkmBEhyh83bQMaBlW/UlbzbCsMxTnlNV1nAQeVfNIEAgEgj8bQpT6k5Cff4zDR0ZgseQ56jTa6gW9LI+0XOVU58HYANrX8adbOUEXbSgnb7bSAzhZJqppIGlZaYTYRSSVLFPHv3quYRbZgkypKHXvvUT/c+kqBmtZwMsHfKqXceemnP0fXE0qK9duVzPjCAQCgUAguI7Tp84AUcjYcFEp1tFWVOhcXJHMymZKkqueGOZajJay+JQalRClfo/ZnE9JSQopKV9QXJzsqI+s/RwhIU9Uqc+UEhMAnrJEUVI+qnwzUomVJuHezOzT6LbMG4DCy4ogJakgrBVEdhSClEAguKcQd60/CVlZvzoJUq7aINzd6tTIWNO+O0abd3/hv4eU053eTYIZ3yW2XF/3UqFIvqauYccwjBYjkuPED1w0rtWan81WFlNKc49ZSsmyTI5ZOc1c1yKWg+0b8nad8rO6VHIQMGRBbopSbjUCJh+HzlNv7ziC+4YRI0YgSRKSJKHVaomNjWX27NlYLJbyL74FW7duRZIkcnNzb89EK0BiYiKDBw8mNDQUnU5HeHg4/fr148yZM07t1q9fT+fOnfH09MTNzY02bdqwYsUKpzZJSUlIksSRI0cqPP7bb79N/fr1cXd3x9fXl27durF3716nPkeNGkV0dDR6vZ46deowc+ZMTCbTLfvNyMhg8ODB1K1bF5VKxeTJkys0n4KCAiZPnkxkZCR6vZ4OHTqwf/9+pzaFhYVMmDCB8PBw9Ho9DRs2ZOnSpU5tnn/+eerUqYNerycwMPCGz2lycjKPPfYYbm5u1KpVi1dfffWmr6Fdu3bh4uJC8+bNy13D6tWr6dGjB/7+/pX+fwgENYnNat8cyVZcDcp7uKW5LsFufmWWUlQvplSxycq8DadZs6fMyke47zljsRjYvacL+/b3JTtnOwB1686kfbstVRKkZp1Po92eUzx/VPE2MGYXozmbz+DwAP496gH+b9QDt2fiF7bCf0fDD5OUsmcojP4Fus+6Pf0LBALBn4R7zwzlLuLgocHYbMompaREERAiI8dSO2IkLi5eqFTaW11eJQxGC98cSHGUJQmahftU6NrSVMOyJIMMEiCp1JRYS1DZFGuf2xGw89qYUveKKGWwWvkw6TJXTBZMdre9Rp563GsiZta/+0PClrJyQF3wqX37xxHcV/Tq1Yvly5djNBrZsGED48ePR6PRMGPGjDs9NQBMJhNa7a0/M81mM927d6devXqsXr2akJAQUlNT2bhxo5Mw9vHHHzN58mSmTZvGkiVL0Gq1rF27lrFjx3LixAnmz59f5XnWrVuXxYsXExMTQ3FxMYsWLaJHjx6cP3+ewMBAzpw5g81mY9myZcTGxnLixAnGjBmDwWC45bhGo5HAwEDeeOMNFi1adNN2v2f06NGcOHGC//u//yM0NJR///vfdOvWjVOnThEWpridvPTSS2zZsoV///vfREVF8fPPP/PCCy8QGhpK3759AWjVqhVDhgyhdu3a5OTk8Pbbb9OjRw8SExNRq9VYrVYee+wxgoOD2b17NxkZGQwbNgyNRsPcuXOd5pSbm8uwYcPo2rUrly9fLncNBoOBBx98kEGDBjFmzJgKr10gqGkcohQ2NJJyYKdFj1yUh0+B8nklyXK1Ykptjb/Csu0XAL3Sv8aCWiVEKQCj8Qq5eQcoKU7BYslFktRoNQHo9OGEBPfHxcWj0n2abDaWpCjB67GLf7ZcEyqgb/NQOsYG3L4F/PQGXC7L4Ie/CGouEAjuTYQodQfJzz+KzVbiVOfj3Qqt9jbe0OzIskzq1WJSryoByfUaNatf6IC/u5ZaXhVLTWuzG9bZkHBsd1RgtpkdJ34qZKRqCi2KKKX0oblHAp1vyMxzShXsp1HjVhPm9TarcrJWit4PYh6+/eMI7jtcXV0JDlYC5I8bN47vv/+edevWMXbsWCZNmsQPP/yA0Wikc+fOfPTRR8TFKW68Fy9eZMKECezcuROTyURUVBTvv/8+DRs2pEsXJWaer6+S7XP48OGsWLGCgoICxo4dy5o1a/Dy8mLq1KmsXbuW5s2b88EHHwAQFRXFqFGjOHfuHGvWrKF///6sWLGCnTt3MmPGDA4cOEBAQABPPPEE8+bNw93dnZMnT5KQkMDmzZuJjFQCz0ZGRtKxY0fHOlNSUnj55ZeZPHmyk1jy8ssvo9VqmThxIgMHDuSBB6p2Ej548GCn8sKFC/n88885duwYXbt2pVevXvTq1cvxeExMDPHx8SxZsuSWolRUVBQffvghAF988UWF5lJcXMx///tf1q5dS6dOnQDFkuuHH35gyZIlzJkzB4Ddu3czfPhwHn74YQCee+45li1bxr59+xyi1HPPPec0lzlz5tCsWTOSkpKoU6cOP//8M6dOneKXX34hKCiI5s2b88477zBt2jTefvttJ0Fx7NixDB48GLVazZo1a8pdx9ChQwHFykwg+DNgKyqi4IevcctNxUAMEhZ0KiWpTGJBPsFb0glG2eupZKp1mFdoVKwN/bzMGHQ/06tBrMi8Z+fosTEUFJxwlL29WtKq1ddV6kuWZU4WFvPBnkTQADYZ7f4sGgd78lbXRgT00xJb6zZk1wO4sA3SDpYFNe80VXHXq9vz9vQvEAgEfzKEKHUHadJ4MbJ8TQwArS/eXi1rZKzXvj/BV/vKfOgDPLU0CPGq8PX5W1P4f/bOOz6qKv3Dz9RkkkxCeicFQpVepAgYKQkIoiJFWIoCS/zRRUBcFUEURYqgLJal7QqsKyogCggoHVF6TWiBhBRSSU+m3d8fdzIh0kIykXaezyck586955w7TCZnvud9v6+kkD80WBSSLV3PYDEC2KrIKCSgipFSFsmCRGn1vYdjYZVaIj9PjfU6eni50cFdXz2LxqJrIFn9qt7KAFXVfSoE1YckSZhKSv7ycdUODlV+/el0OjIzMxk2bBjnzp1jw4YNuLq6MnXqVHr06MHp06fRaDSMHj0ag8HArl27cHZ25vTp07i4uBAcHMy3335Lnz59iIuLw9XVFZ1O3ul/9dVX2bt3Lxs2bMDX15e3336bw4cP35DKNXfuXN5++22mT58OwIULF4iOjmbWrFksW7aM9PR0xowZw5gxY1i+fDne3t4olUrWrl3LhAkTUN1E9F67di1Go5HXXnvthsdGjRrFG2+8wZo1ayotSl2PwWDgiy++wM3NjSZNmtzyvJycHDw87O8xaDKZMJvNODqW35jQ6XTs2bPH1m7Xrh0bNmzg5ZdfJiAggB07dnD27NlbRmQVFBSwfPlywsLCCA4OBmD//v00atQIX98y78KoqCheeeUVTp06RbNmzQBYvnw5Fy9e5KuvvrKJYgLBg0bBvybhlrWaHqZwvqEjLqoi/BwvAZBtkDcjVWYLGrOF4MxcFHeI8rwdZou1aIqLAaPbbvw9H+3IaLO5mMQrKzEas8nPPwOAm1sLlEoHQmr+/Q5X35r3TyTwSWa2LEgBCoMZ5wIzMc1q0ibc0x5TlynOhVUvgNmasq1QwRMTQFtN/qMCgUBwHyBEqXtIdVbW+zMH4jMBOUJKrVLQr0XwXV2fuus8Rmt8lIRC/lepxGD9o6m4ropMVSKlRq8+zJaTqZgt9QFQP+Ah6Gfyi9iemcsvWbkAtK/hwoRQP/sPdHQ1/DILTNbIO0c3IUg9AJhKSlg09IW/fNxxK9eicaxYhOSfkSSJ7du3s2XLFrp37866devYu3cv7dq1A2DVqlUEBwezbt06+vbtS0JCAn369KFRo0aAHPlTSqnQ4uPjQ40aNQDZ42jlypWsXr2azp07A7JQERBwo/faU089xaRJk2ztESNGMGjQIJufUkREBIsWLaJTp04sWbKEwMBAFi1axJQpU5gxYwYtW7YkMjKSQYMG2eZ19uxZ3Nzc8Pf3v2E8rVZLeHg4Z8+erdRzV8rGjRsZMGAAhYWF+Pv7s3XrVry8bh4he/78eT755JMqpQzeCr1eT9u2bXn33XepX78+vr6+rFmzhv3791O7dm3beZ988gl///vfCQoKQq1Wo1Qq+fLLL23RVaX885//ZMqUKRQUFFC3bl22bt1qi4BKTU0tJ0gBtnZqaioA586d4/XXX2f37t2oq7i5IRDcS5S5coSLwSKn7CkVZiySM2bJA6PSG7hCcFYutU1m3Os3wvmJJyo9ltFSugCTN6TUikf7d+fq1Q1cuDDH1lar9bRo/l8UispHp59KzuGfRxKhpgsYzCgMFibVCeC17i3tMeXy5CbLgpRaB436QGhHIUgJBIKHnofDsEdwU0pMZqavP8nf/32QK1ly2t6P457gxDtRjO1c8Qp5BTklXDSk2DylfvA5yw81f+Trjgl8NH4AQzbVpEaB/MFDWYXSxhaLxI/HUzDZFlhGGgRUPJrrfmTkqUvMupjC/msFAPg5VJNQdPg/kJsEhbL4SGCL6hlH8MiyceNGXFxccHR0pHv37vTv359hw4ahVqvLRQ15enpSt25dzpyRd6jHjRvHrFmzaN++PdOnT+f48eO3HefixYsYjUZat25tO+bm5kbdunVvOLdly/IfCI4dO8aKFStwcXGxfUVFRWGxWIiPlw1pR48eTWpqKqtWraJt27Z88803NGzYkK1bt1b4ubiTdxXI4tz189i9e7ftscjISI4ePcq+ffuIjo6mX79+pKWl3dBHUlIS0dHR9O3bt5xX0vX9xsTEVGjOu3fvLnfdqlWrAPjPf/6DJEkEBgbi4ODAokWLePHFF1Fel178ySef8Ntvv7FhwwYOHTrEvHnzGD16NNu2bSs3xqBBgzhy5Ag7d+6kTp069OvXj+Li8inqt8JsNjNw4EBmzJhBnTp1bnrO7Z5TgeB+wmyGuKJO7C95HgCj5E1i8X9RTTuKqrUseCskSB/xNDW/+AJ1FSIhzdZqvopSUUr5aIpSZ8+9x85dLYg7+w4Abq7NqFlzBI0eW1xpQWr/hUw6rz9Ml9iLmGvK/lMNciWmOLrxWt1Ae03dOthi+Lgx/FtOicY9BHovhib97TuOQCAQ3Ic8mn+5HhF2n81g5f7LtraTVoW/m+6u+zl/MA2TZMGosIpNhmKaxTrjVKLC41rZS0hjMuNcYkShqZzwYpbK6vo5hc/H1clMPb9nK9XX/YAkSbZywb19auDnoKGvn51TcEwGuJYgC1IAvf8JAU1lc3PBfY/awYFxK9fek3HvlsjISJvpd0BAAGq1mg0bNtzxuhEjRhAVFcWPP/7Izz//zOzZs5k3bx5jx46tzNTL4excfvc4Pz+fUaNGMW7cuBvOrVmzLKVFr9fTq1cvevXqxaxZs4iKimLWrFl07dqViIgIcnJySE5OviE6y2AwcOHCBaKi7uzr8cwzz5QT60pNw0vnXbt2bWrXrk2bNm2IiIhg6dKl5Uzjk5OTiYyMpF27dnzxxRfl+r6+upyra8WE+5YtW5a7rjRKqVatWuzcuZOCggJyc3Px9/enf//+tsixoqIi3njjDb7//nuefvppABo3bszRo0eZO3cuXbp0sfXp5uaGm5sbERERtGnTBnd3d77//ntefPFF/Pz8+P3338vNqdTE3M/Pj7y8PA4ePMiRI0cYM2YMIFdilSQJtVrNzz//fNvnVCC4nzhT0IKDuV1tbYOlgEPmAtadWcyxM9/SEFcUkoRSU/WCNlfyUwDILskEPaiUD4cXZ0UxGLIwmfK4cuUrJKmsSmlY2Fg8PTtVqe/Zm85wuqYDkkJe16ol+KzHY9Rxrlyk8W3Zv7hsLQcQUD12HgKBQHA/IkSph5jUXHmH+rFAVwa2DqFxkBs67d0vVizpZwlW7iJVklNpaiVKBKSXmTn6N2lE9OBRJHfrgaoK6XulvggASs01NGqn25x9/yJJErEFxeSZzJRY72l+veDqqbT3r6cg9brKLMGtwaviUXCCe4tCoah0Gt1fTamQcj3169fHZDJx4MABW/peZmYmcXFxNGjQwHZecHAwMTExxMTEMG3aNL788kvGjh1rizgym8u89cLDw9FoNPzxxx82ISknJ4ezZ8/ekC72Z5o3b87p06dvmOftUCgU1KtXj3379gHwwgsvMHXqVObNm8e8efPKnfvZZ59RWFjIkCFD7tivXq9Hr6+Y6a3FYqHkOm+xpKQkIiMjadGiBcuXLy8XtQTc1f2VotPpbnuds7Mzzs7OZGdns2XLFubMkdNfjEYjRqPxhjmoVCosFsst+5MkCUmSbPfVtm1b3nvvPdLS0vDx8QFg69atuLq60qBBAzQaDSdOnCjXxz//+U9++eUX1q5dS1hYGM7OzhV+TgWCe0mRWRbMtaos8tRmpJzfyHXtwMHUgziUFoaRJMLca1V5rC0XtwItyTFkoQNctQ92hPndkJW1lyNHhwGl0WIaWrf+AY3aDQcHn0r1mZZXzPNf/kaiXonJESSdvHYbp3NlZOMgvJ3sXBn7l/dkU/M8WVxk0Lfg7Am+jew7jkAgENzHCFHqIWT+z3F8tvMiRusHhsZBNRj4+N0bXx7ecplzB6/yZNEUVJKRA5JcEUptlgAF7v4BNI3qSZ3H26PTaLlqjXSqrChluk6UAgvKKuT/30s+iE9l4eWyMuaOSkX1VNozFJYJUg5uENgcPES5YMFfR0REBL1792bkyJF8/vnn6PV6Xn/9dQIDA+nduzcAEyZMoHv37tSpU4fs7Gx+/fVX6teXPeNCQkJQKBRs3LiRHj16oNPp0Ov1DB06lMmTJ+Ph4YGPjw/Tp09HqVTe0Zx96tSptGnThjFjxjBixAibsfrWrVv59NNPOXr0KNOnT2fw4ME0aNAArVbLzp07WbZsGVOnTgXkiKo5c+bw2muv4ejoyODBg9FoNKxfv5433niDWbNm8dhjj5UbNy4u7oa5NGzYEM2fokYLCgp47733eOaZZ/D39ycjI4PFixeTlJRE3759AVmQevLJJwkJCWHu3Lmkp6fbri+tfngrSiOh8vPzSU9P5+jRo2i12nIC4Z/ZsmULkiRRt25dzp8/z+TJk6lXrx4vvfQSIEdiderUicmTJ6PT6QgJCWHnzp38+9//Zv78+YCccvn111/TrVs3vL29uXLlCh988AE6nY4ePXoA0K1bNxo0aMDgwYOZM2cOqampvPnmm4wePRoHa+Ten59XHx8fHB0dbzj+Z7KyskhISCA5ORko+//w8/O743MmEFQHFkl+r9I7niNJX4JT9hWUKiXF5mJ01xWG8dZX/fVZZJILqQTrA+nX5P94tvazVe7zfqe4JJXc3GNcvboRsKBQaFAqtfj5PYeLc+U25swWiaOJ2fwSm0a8Xom5dpm4pwL+r0VNamjs/LHpWgLsKvO/wskLaj0F1bFmFAgEgvsYIUo9hHx/NAmDzWOASlcFObTpEoZiM+sVMzFKZWl/Kutiq1XvF2gU2Q0AU3Z22YWVNKg1m68TpRQWVIoHMwT9WG4hAO5qFU4qJc/7uldTpb0s+btSA69flv+zBYK/mOXLlzN+/Hh69uyJwWCgY8eO/PTTTzZBxmw2M3r0aK5cuYKrqyvR0dG2qm2BgYHMmDGD119/nZdeeokhQ4awYsUK5s+fT0xMDD179sTV1ZUpU6aQmJh4Q5W4P9O4cWN27tzJP/7xDzp06IAkSdSqVYv+/WVPjqCgIEJDQ5kxYwaXLl1CoVDY2hMnTrT1M3HiRMLDw5k3bx4LFy6koED2hFuzZg0DBgy4YdybHUtMTCQoKKjcMZVKRWxsLCtXriQjIwNPT09atWrF7t27adiwISBHD50/f57z58/fcL0kSdyO0gp2AIcOHWL16tWEhIRw6dKlW16Tk5PDtGnTuHLlCh4eHvTp04f33nuvnKD23//+l2nTpjFo0CCysrIICQnhvffes/lZOTo6snv3bj7++GOys7Px9fWlY8eO7Nu3zxYVpVKp2LhxI6+88gpt27bF2dmZoUOHMnPmzNveU0XYsGGDTUSDsv+P6dOn884771S5f4HgbikVpcD6OytJ1PB1odhUjNL6mAIJharqy/DS/bz6nnV4pento0kfBiRJ4vChFykqLqsoXbvWFGrWfLlK/S7bE8+sn84g6VRIdd0AaO6io4mrE4/XcLGvIGUshku74epJue3iC11nQmBLIUgJBIJHEoV0p1XuI0xubi5ubm7k5ORU2LfjXrJsTzyHLmez5VQqJovE+tHtCfV0xs2pch5PS8b8isVkjX7CjElVQopLIlLeOrwzNXQfM4l6rdtR+PvvmNIzSHnjDVAoqH/mdKXGy8gvoeUs2TjXpd7r+Lv4sfWFipsP32uKzRayTSYGHrvImYJivmocThfPanjd/PYZ7Hhf9pMyFYGLH7x2Y6SG4P6iuLiY+Ph4wsLC7iiuCMpTUFBAYGAg8+bNY/jw4X/5+FlZWXTu3BlXV1c2bdqEk9ODmVosuDtu9zv7oK0P/grEc1LG1gmzOVv8OB4uvxHnYsD5/Aleen8+L/4+gtr7jNROcqFecgaRCz7FqWXVKrg1+/gtslPb8ExzVxb162CnO7j/sFhMxJ19m8LCS1y7dgBQ4ObWHI3GnXp1361Uup7ZIvH1H4mk5RWz+WQqJzxVmIPKvAqXNAjhOV93O96FlW3vwJ4FZe2Q9vDST/YfRyAQCO4xFV0biEiph4TM/BJmbiwTg/QOaur7u6JVV37HpVSQAvDVnONA4B9s8j/IMwfk3XuVWk3GJ5+Q+a+ltvMUFahKdStKPaWUCjno50GKlMoxmmh3IJZMo8l2zNPeYd6lHP8ainPK2jXbVM84AsE94siRI8TGxtK6dWtycnJs0TSlKYF/NR4eHmzbto3Fixezf/9+OnfufE/mIRAIHgws1uLWltJIKSSUajUlphKUFnlto5BAUcnI8usxW9MB1Q95hE1OzkGSk7+2tV1c6tOyxf+q1OeOuDTe+L7My84SIReAcFIpCXTQ8IS7S5X6vyVpcnVaPGqBawC0n1A94wgEAsEDghClHhJKTc31jmpe61aX5jXdqyRIHdx0qVzbUZmLGXnho5LkfpUoKD4TC4A2NBSVuzv6bt0qPeaq02sAHyzI/ggPkqfUmYJimyClVkA9Zx31q6M6C0BBhvy9/1fg1wjc7t4vTCC435k7dy5xcXFotVpatGjB7t278fLyumfz8fT05O23375n4wsEggcDU04JFkleXmdoiklzzMTRvZDD2ccoNBWilGSzfoUkgR3S9yRrOqBG9eCsme6G02deJz19q62ynl7/GCE1/06NGpWPMPvfH4msOnCZ9LwSJJUCrzo1CPZ25qBOwgRsb1mXMKe7r1J7W4pz4ZdZUJgJV/6Qj0W9B3W723ccgUAgeAARotQDzuaTqUz+5hgFBlkQCXJ3Ymi70Cr3mxRX5hGlxEi4wwG2KuQQZpW14FLyuPH45Mn+SX5vv4WztfpWZdmXdADoRWkVldZ+ravU31+BWZLYm53Pr1m5ALR2c2ZD82qofleQAUu7Qs4VMFtLHvs+Bu6h9h9LILjHNGvWjEOHDt3raQgEAsFdk/3tOSzItgn73TI55b8b/GHrQbmYglJytX6XUKirHhFe6l+lVj08vpKSJFFYGI/RmEVKyjflHvP1eRpf36cr1W9OkZHcIiPztsZxNVeuDGqqrSepphNJ1qg2JeCjrYaPR6e+h98/L3/Mo+rVFwUCgeBhQIhSDzhbTqWSV1KWMvZE7cqZmv8ZY4lcot2symO0t1z+3EwfABTWBZDSakem9vbG8TbVnSpKiVm+D53GgT0D9uDm4FblPqub9WnX+L/Tl23talnIACTsh6yLZW33MHALuvX5AoFAIBAI/nJMOSWYStP3lGb0Bj2qkhI8AgJRqlQE6pyBaygkoJLVigEsFonE7ELMJjkqW/MQpe+lpq7j9JnXbG2NxoMWzf+LUumATle5tc/JpByeXby3XKXnJYOas7Qwjz2FhTTR6wjXOfCEux5nO4iFNiwWyEmANKvFRs12UL8XeNYC7zr2G0cgEAgeYIQo9YCTWSBHzbzVswHPNAnAW1/1cOOcnBxyrJE/Ra7nbcfN1k04pTVSSilJhH33LQ516tjFF8Fosqa/KRUPhCAFcK5ATpv0d9BQ18mRUcF3b7R5R7IvQ6q1Qkutp+CZT8HZG1SVM7AXCAQCgUBgfwq3LcYzewESowCwKMx0SeqC/uxxeo2eSHrCJeIKd5EDKJFQqCv/d/yVVYfYcuoq0AgA9UOQvpebe5yk5K/JyZEjZdVqV9RqPUGBg3B2rlxUUWZ+CeuOJrP/QgYmi4RKqUCtU6Ns7c0beVlkWjMN/q+mD719qsHUfNULcGF7WbtWJLT9P/uPIxAIBA8wQpR6ALmUUcDAL38jo8CAwSQrROFeznYRpAC2bdtGQb4jKnQoFEbb8SCz7OeitCgACYUkofL0sosgBWWRUirlgxOCnm2SI8oG+HkwNdzf/gMcWQXrr1u8uAWDW6D9xxEIBAKBQFAllMe/QqtMx4LVzNxiQnstE4XFzI+LPip3rtpsqVL63okr1oInyhIUykLa1qpb6b7uF86em2UTpAAa1P8Ib+8uVepz/tazrDqQYGtP6ByBVwMPJsYmQom8xlUpoLFLNVRVlSS4tFv+WeMEOneoE2X/cQQCgeABR4hSDyA7z6aTnFNsa7s4qGkYUPXyy5JFYv+6C2QcckRplgUudUE6aMEsKXA5e4WBJ4PRWqvyKSUJpaP9jCCNZlngeRBEqWlnr7Ah7Rr51jl7VFelvaSD8neNEzh7wWN9qmccgUAgEAgElcJsspCekIe+RPYpSpc8APBNK0SXklHu3GZdulO0ag3eeYUoqpC+V5qGpg/7ErRXaBi4tdJ93UuKihK4eHEhZnMBeXmnAAgOGoaLS128vCIr1afJbGHkvw9yOiWX7AJZeOoQ4UWQjwvGEGc2pF0DoLuXG6+G+uKr1eDjYMfo85J8OPAZFKSX+YBOiQdNNRXAEQgEggccIUo9QBy/co2F285xLi0fgH4tgxjfpQ7uThqc7OBllHElnyM/JwA6FIAkWXDIOA/ukF2iw1iYi9bqk6A2mXEqMaFwtN8fWIO5NH3v/g5Bt0gSK5MyrHbsoACa6HXVM1hhpvy9yzvw+KjqGUMgEAgEAkGl+XnpKS4eSedFr2Kc1WBEiwLQGOWNK7WDA6EhtfDYugOveZ+WXViFSHOzVZSSJBMKQKWwow/SX4AkSRQXX+HSpSWkXl1nO65UOhIePhG12qVSfSZmFXE6JZdf49Jtx7VqJXNeaMxnaVnMSUyzHX/MRUcjfTVESJ34H/zyblnbxU8IUgKBQHAbhCj1ALFsTzzbY8v+mDav6U5gDfuJISaDvHhCbSbP6QLKrLO4WRc5Zkn+Xqw1k92xBkMXHEMtgUKrrfK4ZrOF9IIiSgzyLpXmPq8gk2My2wSpbS3r4K3V4GvPHTZJgjUDIH4XmKwRcU72MbAXCAQCgUBgX7JTCgA4U9SFTGMIGOVIKaW1oluzp6KofT6BnGt5tmscGzZE7eVV6TFLI6UkZFFKqbi/N/T+zJnY10lJWWtrB/j3w9W1MXp9w0oJUgCLtp9nwbaztnajQDdmP98IPzdHvFwcuHhZjmRr4+ZME70TQwLtvLYylUDmBUg6LLcDW0Joe4gQKXsCgUBwO4Qo9QCRlif/MR3aNoROdb3pGOFt1/4lazU9SWmm2CkVx6w0Sn0zJas/gr5Qovtnp1BbJBSOjigUVROQLBYLzT9cRU6uBzAIANV9Gil1Mq+Qr1KyyDHKEV0uKiWPVccOW0EGnN1c1lY5QEAz+48jEAgEAoGgyljM8vrpaMGzgBxBDWBWyKlb15avIOdqNgB+09/GrU8fFBpNldZQpZFSKORtsgchUkqSLBQXX0GSLGRlyl5LSqUOR0d/wsMn4uBQuWIxxxKvEZ9RwE8nUgBw1qrQadUMbRdKXX9Xeh4+y7G8Itv5Y0J86eJZdduLG1jeo8x2AaBBb2g/zv7jCAQCwUPG/fnpX2DDZLYwZNnvtJy1jd/jswDo2sCPp+r52r3SisUa/mOx+iRpFFoau7UiUa1ijYu8a6W2SOis+fmO9etXecy8khKrIFWKRFTDajAMtwPvXUxhRVIG31u9CIIcqx4ldlNKU/Yc3WD8MZh8Xi4dLBDcI4YNG4ZCoUChUKDVaqlduzYzZ87EZK2YWVl27NiBQqHg2rVr9ploBYiPj2fgwIEEBATg6OhIUFAQvXv3JjY2ttx5GzdupFOnTuj1epycnGjVqhUrVqwod86lS5dQKBQcPXq0wuO/88471KtXD2dnZ9zd3enSpQsHDhwo1+fw4cMJCwtDp9NRq1Ytpk+fjsFguG2/KSkpDBw4kDp16qBUKpkwYUKF5rNr1y569epFQEAACoWCdevW3XDOd999R7du3fD09Lzj/UqSRPfu3W/Z14oVK2jcuDGOjo74+PgwevToco9v2bKFNm3aoNfr8fb2pk+fPly6dKncOatWraJJkyY4OTnh7+/Pyy+/TGZmZpXvUyCoLGaTxfazVlFAkftu1jdYhEldCMgenABqb2+cO3REqdVWeVPPVLpos4pSyvt0Q+96Tp2exL79kez/rTMlhqsAtGv7K23bbK20IJV8rYjn/rmXCV8fJe6qHIm2emQbDr7ZhRdaBHGhqLicIOWuVlWP5YLZWCZIOXmBV12o28P+4wgEAsFDiIiUus85ezWfXWfL8uJ1GhV1/fTVMpZkLg0Fl/F2CKKmSxiLatTgN5OOpwGFBEmP+fLE+1/gEBpa5TELrvugtfcfLfB38blvQ9CTrVVaXvT3IMRRSzcvN/sOcHYLHFoJRbL4iLM3uIfadwyBoJJER0ezfPlySkpK+Omnnxg9ejQajYZp06bd66kBYDAY0N4hndhoNNK1a1fq1q3Ld999h7+/P1euXGHTpk3lhLFPPvmECRMmMHXqVJYsWYJWq2X9+vXExMRw8uRJ5s6dW+l51qlTh08//ZTw8HCKiopYsGAB3bp14/z583h7exMbG4vFYuHzzz+ndu3anDx5kpEjR1JQUHDbcUtKSvD29ubNN99kwYIFFZ5PQUEBTZo04eWXX+b555+/5TlPPPEE/fr1Y+TIkbft7+OPP77lh+358+czb948PvroIx5//HEKCgrKCU7x8fH07t2bV199lVWrVpGTk8PEiRN5/vnnOXxYTofZu3cvQ4YMYcGCBfTq1YukpCRiYmIYOXIk3333XZXuUyCoDGd/TyU/u8TWdlFlcNXlEiluF6gv+QKgsEjUXL4M57Zt7TauLVKK+z9SKjNzNymp35Ge/jMAKpUzoMDDoz1abeVSGHeeTefX2DSSrxVhkUDvqKZpcA1q+7jQKNCN5GIDq1OyuFgk/99EODnwXbPauKpVONhTwMtPhx2zocBqr6FUw2vn4AEQCQUCgeB+QYhS9ylmi0TytSLiruYCEO7lzD//1hw/V0dqOFVPhI5FKl3gSASTxFOuh3FXbydHpUQh6zEoJInQ4EY41qljlzELDNaOMeHt5HFfClLfX83m16xcEopkAW1kkDcNXKphl23rdEg/U9b2CLf/GAJBJXFwcMDPzw+AV155he+//54NGzYQExPD+PHj+eGHHygpKaFTp04sWrSIiIgIAC5fvsyYMWPYs2cPBoOB0NBQPvroIxo0aEBkpFxZyd3dHYChQ4eyYsUK8vLyiImJYd26dbi6ujJlyhTWr19P06ZN+fjjjwEIDQ1l+PDhnDt3jnXr1vH888+zYsUK9uzZw7Rp0zh48CBeXl4899xzzJ49G2dnZ06dOsWFCxfYvn07ISEhAISEhNC+fXvbfSYmJjJp0iQmTJjA+++/bzs+adIktFot48aNo2/fvjz++OOVeh4HDhxYrj1//nyWLl3K8ePH6dy5M9HR0URHR9seDw8PJy4ujiVLltxWlAoNDWXhwoUALFu2rMLz6d69O927d7/tOYMHDwa4IWLpzxw9epR58+Zx8OBB/P3LR7xmZ2fz5ptv8sMPP9C5c2fb8caNG9t+PnToEGazmVmzZtmiPl577TV69+6N0WhEo9Gwf/9+QkNDGTdOTokJCwtj1KhRfPjhh1W+T4GgMiSdvWb7WYGF2o77KHU1UllkgVaJhMLBftWKJUnCaC6fvnc/rp9KOXvuXQoLLwCgUrnQscPvKJWVfz4kSWLs6sPkFpdF63au58PHA8qsDuZdSmVVSpatHaZzwFtrR//PUo6ugoNLy9oetYQgJRAIBHeJeNe8Txm2/Hc6zPmViV8fAyCgho56fq7VJkgBSNZdN62imGh2EqQ9j4PyJCZAWbr2AZwc7RepVWiNPkJpui93+UwWifFnEvhfajZFFgtqBfjb09T8evJT5e9PvQm9/wm9F1fPOIL7BkmSsBjMf/mXZBOgK49Op8NgMDBs2DAOHjzIhg0b2L9/P5Ik0aNHD4xG+Xd79OjRlJSUsGvXLk6cOMGHH36Ii4sLwcHBfPvttwDExcWRkpJiE1VeffVV9u7dy4YNG9i6dSu7d++2Rcpcz9y5c2nSpAlHjhzhrbfe4sKFC0RHR9OnTx+OHz/O119/zZ49exgzZgwA3t7eKJVK1q5di9mapvxn1q5di9Fo5LXXXrvhsVGjRuHi4sKaNWuq/PyBHN31xRdf4ObmRpMmTW55Xk5ODh4eHrd8/H6gsLCQgQMHsnjxYpt4eT1bt27FYrGQlJRE/fr1CQoKol+/fiQmJtrOadGiBUqlkuXLl2M2m8nJyeE///kPXbp0QaOR33fbtm1LYmIiP/30E5IkcfXqVdauXUuPHiJNRnBvMJaUvZeM8H2RVi7/w2yNFrSJUhbsKkpZrnsLV9ynkVKFhZeJjXub06enUFSUAEB42ASaN/tPpQWpEpOZ4Sv+IHLuDnKLTaiUCkZH1uLVrnWYHF2v3LkJxfJGYmcPV0bX9OGtWgFVu6E/U5ABh/8DF7bL7dpdIfoD6P8f+44jEAgEjwAiUuo+xGKR+O2i7I/hqFGiVSl5pqmd/5jebFzrrpu3Ip1A5Fz/HOPfKDD8gcL6IVYhSSjU9lv4FBjlRYNCYbwvd/myjCYMkoQCeCPcnyZ6J9w1dvy1kST48VVIOABFsgkqLV4GZ1Ft71FAMlpIfnvfXz5uwMx2KLSV+z2WJInt27ezZcsWunfvzrp169i7dy/t2rUDZL+f4OBg1q1bR9++fUlISKBPnz40atQIkCN/SikVWnx8fKhRowYAeXl5rFy5ktWrV9siapYvX05AwI3vgU899RSTJk2ytUeMGMGgQYNsfkoREREsWrSITp06sWTJEgIDA1m0aBFTpkxhxowZtGzZksjISAYNGmSb19mzZ3Fzc7sh0gdAq9USHh7O2bNnb3jsbti4cSMDBgygsLAQf39/tm7ditctqnCdP3+eTz75pEopg38FEydOpF27dvTu3fumj1+8eBGLxcL777/PwoULcXNz480336Rr164cP34crVZLWFgYP//8M/369WPUqFGYzWbatm3LTz/9ZOunffv2rFq1iv79+1NcXIzJZKJXr14sXixEfMG9oVSUMqmKbAJRqUyllGRRSiFJKO0oStn8pAAU8mj32xrq0uUlpKR8Y2urVC6EhLyCUln5NdShS9nlqlA3CXJjclSZGBVfWMLLJ+PJNprJsG6MjAr2pqNHNdhe/DQZTl2XMtzgGWg+xP7jCAQCwSPA/fUX7BFHkiQ+2BTLyyv/wGiWUCjgxDtRHH8nin4tg/+S8QGUWMjAncSSRuSZ+2IwOZRFSkmAyj6ilNkikVMkLxoUSlOVTT/tyZViA2PPXGbMmcsAeGjUjA3xtf/CJjcZDi6DtFNyWx8AOnf7jiEQ2IGNGzfi4uKCo6Mj3bt3p3///gwbNgy1Wl0ulc3T05O6dety5oycijpu3DhmzZpF+/btmT59OsePH7/tOBcvXsRoNNK6dWvbMTc3N+rWrXvDuS1btizXPnbsGCtWrMDFxcX2FRUVhcViIT4+HpAjt1JTU1m1ahVt27blm2++oWHDhmzdurXCz8WdvKtAFueun8fu3bttj0VGRnL06FH27dtHdHQ0/fr1Iy0t7YY+kpKSiI6Opm/fvuW8nK7vNyYmpkJz3r17d7nrVq1aVaHrKsKGDRv45ZdfbKmVN8NisWA0Glm0aBFRUVG0adOGNWvWcO7cOX799VcAUlNTGTlyJEOHDuWPP/5g586daLVaXnjhBdvfp9OnTzN+/HjefvttDh06xObNm7l06ZLteajO+xQI/sy1a9dITZY38QpdLqFQyK9Tky1SSl5mKyW5YrG9MJcLlbq/IqXizs5k+y8RNkHK368PtWtNoVnT5ZUWpP7+74OEvv4jA/8lF4VoEeLONzFt+c/w8mnUmzNyOFNQTKrBiEkCnVJBfRf7Pe/lyDgnf6/ZFloMkyvtCQQCgaBSiEip+4gzKXl8tvOCrR3m6YzGzhX2bodklhc2Ciwsoz8NCwNoolNhVJpRmKy7fUgoVFV/2VzNLabHwt1kFlgjpZRVq+Jlb75KzuSb1GxbO1xnvx3OcpRW2tO5wwvLwfcx4UXwCKHQKAmY2e6ejHu3REZG2ky/AwICUKvVbNiw4Y7XjRgxgqioKH788Ud+/vlnZs+ezbx58xg7dmxlpl4OZ2fncu38/HxGjRpl8xu6npo1a9p+1uv19OrVi169ejFr1iyioqKYNWsWXbt2JSIigpycHJKTk2+IzjIYDFy4cIGoqKg7zu2ZZ54pJ9YFBgaWm3ft2rWpXbs2bdq0ISIigqVLl5YzjU9OTiYyMpJ27drxxRdflOv7+up3rq4VK2vesmXLctf5+vpW6LqK8Msvv3DhwgVbtFspffr0oUOHDuzYscMWedagQQPb497e3nh5eZGQIKf2LF68GDc3N+bMmWM756uvviI4OJgDBw7Qpk0bZs+eTfv27Zk8eTIge1I5OzvToUMHZs2aVa33KRBcz5GtCRzbf5bCTAtKVEgKM0prpFRInitP73fGM8e62SdJKCogZlcU0/WiFBYUKO6bjb3U1HWUmq+r1W7UqjUZBwfvSvW1/cxV4jMK+Pn01XLHn20aQKvQspTmC4XFrEzKZP+1fAD6+3kwMsgLfwctnlo7ftQpyYfV/SD7MuQly8d6zAW/x+w3hkAgEDyCCFHqPuJqbjEAwR46xkTWpk34X5fC9fsPF4nbJ38wUCgsmFHio5M/xJkUFhTlIqWqLpocv5JjE6QAHPTnq9ynPblqNWDv4eXGU56uPGnvCKnMC3B+m/wdwNkHakXadwzBfY9Coah0Gt1fTamQcj3169fHZDJx4MABW/peZmYmcXFx5cSH4OBgYmJiiImJYdq0aXz55ZeMHTvWFnF0vb9TeHg4Go2GP/74wyYk5eTkcPbsWTp27HjbOTZv3pzTp0/fMM/boVAoqFevHvv2yWmUL7zwAlOnTmXevHnMmzev3LmfffYZhYWFDBly5xQNvV6PXl+x9w2LxUJJSVn1rqSkJCIjI2nRogXLly+/odT73dxfKTqdrlLXVYTXX3+dESNGlDvWqFEjW4U8wGYmHxcXR1BQEABZWVlkZGTYTOcLCwtvuFeVNTLXYk1XKiwsRK1W3/QcSZKq9T4FglKKC4zs+/Y8oERpTTpQ5iSgdJQwSwpKLl7AWypLyVWhQOnkfIve7p41p78GrFHVCss9j5KKjXuL5OSvrRGN8u9qu7Y70Gp9UKkqt6l3KjmH4SsP2toBbo78MPYJNGolro7lvT0/ik9lXdo1W7ulmxOP6Z0qNe5tSfgNLu8ta+vcwSPM/uMIBALBI4YQpe4D/vt7ArM3xVJklD+Y1fJ2oX+rmne4yr4c2nIZhakIcESJGRMqNAoHkMCEEaUkL3jsFSlVaJAjoxoHO3HRaRJujtVQza4S7MvO56uUTH6z7rZFeur5W0A1iINrX4aUo2VtFx/7jyEQVDMRERH07t2bkSNH8vnnn6PX63n99dcJDAy0eQtNmDCB7t27U6dOHbKzs/n111+pX78+IFe+UygUbNy4kR49eqDT6dDr9QwdOpTJkyfj4eGBj48P06dPR6lU3jESYOrUqbRp04YxY8YwYsQInJ2dOX36NFu3buXTTz/l6NGjTJ8+ncGDB9OgQQO0Wi07d+5k2bJlTJ06FZAjqubMmcNrr72Go6MjgwcPRqPRsH79et544w1mzZrFY4+V3xWPi4u7YS4NGza0mXOXUlBQwHvvvcczzzyDv78/GRkZLF68mKSkJPr27QvIgtSTTz5JSEgIc+fOJT093Xb9zQzEr6c0Qig/P5/09HSOHj2KVqstJxD+mfz8fM6fL9sUiI+P5+jRo3h4eNhEwaysLBISEkhOTi53v35+fuW+/kzNmjUJC5M/sNWpU4fevXszfvx4vvjiC1xdXZk2bRr16tWzVWF8+umnWbBgATNnzuTFF18kLy+PN954g5CQEJo1k6tq9erVi5EjR7JkyRKioqJISUlhwoQJtG7d+qa+Y3dznwJBRTEZSj2dJPJcz6PMu4JD1hny/RRsdNJjkeTHPfIL8AoK5bGpL6FysZ8odSrzDNAOsKDXOhMVeufozergatpP5OfHkZKyFkkq21xwc2uJTlc524lDl7M5dDmLMyl5APjoHXg83JPnmgXg6VJe4LJIEkZJspmaP+tTgxauzrzga+fCENcSIXYjXLGKZDXbQvRscA8Frf3+XwUCgeBRRYhS95Ctp69itkgs2xtv81YCaB3211ZZkiQJi0lCozBjluT0PQsqDqb/hKfFhMm3BEdJ/qOrkLCL0XmxVYBz0ipQKI2oldVgQlkJ3r+YzMHcQls7rLrS9rIvyd/rRIOjG7QacdvTBYL7leXLlzN+/Hh69uyJwWCgY8eO/PTTTzZBxmw2M3r0aK5cuYKrqyvR0dEsWLAAkFPaZsyYweuvv85LL73EkCFDWLFiBfPnzycmJoaePXvi6urKlClTSExMxPEOniyNGzdm586d/OMf/6BDhw5IkkStWrXo378/AEFBQYSGhjJjxgwuXbqEQqGwtSdOnGjrZ+LEiYSHhzNv3jwWLlxIQUEBAGvWrGHAgAE3jHuzY4mJibaIoFJUKhWxsbGsXLmSjIwMPD09adWqFbt376Zhw4aAXKXu/PnznD9//obr71Q1sVS4ATh06BCrV68mJCSES5cu3fKagwcP2kQhkCsfAgwdOpQVK1YAsmfUSy+9dMP9Tp8+nXfeeee2c7qef//730ycOJGnn34apVJJp06d2Lx5s+218tRTT7F69WrmzJnDnDlzcHJyom3btmzevBmdTt64GDZsGHl5eXz66adMmjSJGjVq8NRTT/Hhhx/eduyK3KdAUFFsv4sK0Dido41lN86aAr5y0/OliwcDrecFmPKI+ny53cZNzCpk/4VMLl6Ro7BUSgX7B+63W/93Q1FRAidPlqVhq1QutG2zFVCg1VZuM6/EZGbI0gMUGMoErs71fZn9fKMbzs03men8RxyXi8ui7kcGedPCrRpEoh8nwbktZW2f+hDQ7NbnCwQCgeCuUEj2qA3+kJKbm4ubmxs5OTkV9u24G+q9tYliY1kFlRUvtaKenyt+btVkyngLLBaJJf/3Kw6KPEokPTW1BznkUYjThZP4Z2WzLOoq+gJnOh31xjOvkB7dnsHHWt2qsizfG8+MH07Tsa4LR5Rj8NZ580u/X+xzQ1Wg9f7TJBQbiAn2poWrMz293ezn02AqgfjdYCqCr/8mH5t8UVTae0QoLi4mPj6esLCwO4orgvIUFBQQGBjIvHnzGD58+F8+flZWFp07d8bV1ZVNmzbh5FQNaSGC+47b/c5W9/rgQeRRek5yM4r4z5v7UWDiZb9BOCILI+97uPOdzo0Xt8lRQt0kFY3+t95u43ZfuJszKbm2tqNGIvbdnnbrvyLk5Z0iIWEZxSUpXLt2AK3WCx+f7nh6PomX55OV6jOnyMiw5b9zJbuI9LwSHDVKejTyx1GjYlTHcEI8bxSa9mXn8/zRsujHIEcNO1vVw9mOFaJtLGoOWRegVmdwC4L248Gzlv3HEQgEgoeMiq4NRKTUPaR5TXcMJlmUahDgSqc63vfEqNJiNThXq0ooMemRFBIGpQGV2ki+xohRDYrSssaAQln1P/ilqYoOGsAMKjv0WVkKzRY2Z+RQYDaTbvWSGhLgRbiTnaOkdnwAe+aXtRUq0NWw7xgCwUPAkSNHiI2NpXXr1uTk5DBz5kwAW0rgX42Hhwfbtm1j8eLF7N+/n86dO9+TeQgEgvsDi9VoXK0w2AQpoyWYQskHpWQtYCJJuNq5mm5KThEA7jXSyTWl80KLW6fm2htJkjCbC7hwcQGZmb/ajnt4dKBunXcq3a/JbGHn2XSOJFyzHesQ4c38fk1vev6xvEKWXkknoUh+3h93c+Y/jcNxVilR2XMNnXwEfhgPhgLIlqu30n0OeAnPOoFAILA3QpS6h6we2eZeTwEAi1nC06GETO0VyPNit5OGzSE/QEjpGQq8rYXoFJIEVdiFWrjtHJ/8cs5WOUarRhal7qFJ55eJ6cyOTyl3zFNTDfNJj5W/e4SDszfU7QH3UIwTCO5n5s6dS1xcHFqtlhYtWrB79268vLzufGE14enpydtvv33PxhcIBPcPknUNo8RCAgHkFXvixkzyi/6JwjELsG7iqez7N77ImtYWUfc3zuTu5ckGC+za/+04fiKGjIxttnbN4OE4OYXh7d2t0n1+tCWWxb+WVZ3uXM+HV7vVoY7vrS0dPopPZVtmWbRYXWdHXKsjOurY15ByrKyt85CjpAQCgUBgd4QoJUAqKSBCtxkns5ZEmmJWlmV0KiUFGrWWYOdgoEj2lKqC0fnPp1NtgpRSAXUD1OyKB7Xy3r0U44vkqld1nR0J1znQroYLbho7zqcwS/aQupYot7vMgAbP2K9/geAho1mzZhw6dOheT0MgEAhuSmmklAILm+mEqsiHKJ0GE6brqhVXbRPvZmOWWKPrTcjel1qV1m7933xME1lZuzAar5GRsd12XKerSVjYeNTqyvk35RQZKTGZWX802XZMpVTQu1kgDQPcbnpNhsHEyfxCzhXIlapfCvSirrMjvbxrVGoOt+RaAqSeLBOk2vwf1H8GvCJAI1LvBQKBoDoQopQAxfE1tHBcgbqgJ4mABQt1Elxoe9KDJl26U7tpW+KPHOQIP8jV96qwyDKZ5dXapwOb4uGRxtlrxyD+3kRKSZJEocVChlGuBDgiyIvBAXaOxCjOgYVNoKRsVw/nexftIRAIBAKBoGpYi+uhUFgwoUaDvIYxKoxldgeSfewOSim1PQAwS3+NKJWauo4zsVNtbbXalSfa70OpdEChUFaqz+8OX2HSN8e43tF268SOBLk7odPe+vnqefgsl4rKTM2HWUUpu2IywOedoCir7Fhwawhpa99xBAKBQFAOIUoJsOSnk24M56pZLostKSz4BocR3eFlfl+/luPbNtvOVUpAFcLRTRZ5JXc8ax9rjsy0HdcoNbe6pFowSxI9Dp3lWF6R7Zi7uhp+HTLPy4KUQgV6f9kYM6C5/ccRCAQCgUDwlyBdFyllRonKKtCYMZdFSmG/SClJkigwmGzt5MIEABxU1VMhOCPjFwqLLpORLqfr6RxrotPVxM/vGVQqXaX63BGXxjcHr3A08ZpNkFIqoF0tL2p5u6BU3toPKt9ktglSDV0caeTiRB17+34C5CXLgpRCJVfX0/tB7S72H0cgEAgE5RCilIC9R0KIzZxna1sUFnxd/NDpXclOvgKAa2EJSkkiODO3Sjt/ZutCLrM4HQAPRw98nXz5W4O/VeEO7p6rJcZygpSnRk0LNztX1IrbDGd+kH/2bwx/32Hf/gUCgUAgEPylSJJEfracQqbEjBkVHlo/AEwKE0pb+l7V7A5KKTaaeebTPZy9mm/t2ECxWV6/eOnsH3mdnx/HseMjyx0LCRlFYOCAKvU7c+NpLqYX2NrfvtKWFiEet71mR1YuSxLSKTDLUWLOKiXbW9Wr0jxuSkEmrO4np+4B1AiGkdtvf41AIBAI7IYQpQRkZMo7fGpFAbmaEhL0fxCy1sA6SY5kUpstPHFOFqcUDg7oGjeq9FilflIS8o7f8xHPM775+KpMv1JkWVP2vLVqDrRpgINSYd+qLTlXYE3/srZroP36FggEAoFAcE/YuvQU5w6mAXL6nhkVerU7WMCIsXy1YjsYncdnFJQJUoDK+QIxTWJo5duKYH1wlfsvJStrL1nZ+ykslCvNabXeuLu3QaPxwNf36Ur1mZFfwuhVh8nILyE+QxakpkbXI8LH5Y6CFMDHl67yW06ZkGX3dL1SLvwCSQfL2oEtq2ccgUAgENwUIUoJsFh9ngLdNrHTJ5l8xRUUkh9KpRJ3Zz2+sXJllNo7d6LSu6B0qnxEUWmkFAp51+uv9pL6KjmT5Unp5FvNQj01apxUlfNFuC2lu20ObvDY89B65O3PFwgEAoFAcN9z9XIeYAZUKLBgQkVSQRxG4zmMLtkodPLSWiFJVbI7KKXY6iUVWEOHJWg2eaZUuoetJ9wtvMp9l2KxmDh+IgazudB2zMvrKerXe79S/UmSRGaBgXVHkjgQX+bP5O/myKiO4bdN1QMoNlvIM5tJKTECMCXMj1pODrR1c6nUfG5J5gWI+wku75PbEd3gqbfAp4F9xxEIBALBbRGi1CPOzp07KTGXRi+B0mJGhbxYcC4o4vEj5wBQe3uj8fWp8ni2SCnJKkrZ0QS0InyacLWcUWY9e++6XUuAI19B2hm57VMPen1s3zEEAoFAIBDcEySzhMqatpenhD88YjmoycVRspDibkFpvs7o3A6iVKnBuZNWRb4yH4UC1Ar7LN/N5hLOnJlCYdFlzOZClEotgYGDUCodCAocVOl+J3x9tFxlvacb+zO4TQh1ffV3FKRSS4x0/P0MudbNQ4BnfdwJrw4Pqe9HwZU/ytp+jWS7BYFAIBD8pQhR6hEnPj4epLJFk6PRjFolLxiUFglteDi6Ro+hj4q2y3ilkVKSQk6fs9fCqqJkWI1CP6lfkwAHDS1cK1fO+Jb8MguOf13WFml7AoFAIBA8HFgsBPAbBodi4kvakKlWEOd2EdxKT1Dgda30Z/sYnZdGSum0KnLstKEnSRIlJalkZe/latpG23FX16bUiXiz0n2eTsklq8DA9jNptuN6BzV/ezyENuGeFernSG6BTZBSAM1dnajpWE1VBjPlTADq9QTXAGg1onrGEQgEAsFtqYa8JcGDhNlsRrK+DGqb/XB2ckZt3eVTSRL6qG4EfPgh+qci7TKe0SwvNCySLA79VZFSH15Mod/R8+Rbx+/q6Up7dz2O9k7du5Yof6/THdqPh6cqt7gTCO4nhg0bhkKhQKFQoNVqqV27NjNnzsRkMt354tuwY8cOFAoF165ds89EK0B8fDwDBw4kICAAR0dHgoKC6N27N7GxseXO27hxI506dUKv1+Pk5ESrVq1YsWJFuXMuXbqEQqHg6NGjFR7/nXfeoV69ejg7O+Pu7k6XLl04cOBAuT6HDx9OWFgYOp2OWrVqMX36dAwGw216hZSUFAYOHEidOnVQKpVMmDChQvPZtWsXvXr1IiAgAIVCwbp16+56zgDvvfce7dq1w8nJiRo1atx0rISEBJ5++mmcnJzw8fFh8uTJ5V5D17/Orv9q2LCh7ZzZs2fTqlUr9Ho9Pj4+PPvss8TFxd3xPisyP4HgjsTvoIt2Bo2cNgEgYcHJ6ETDBG9axjrz7G8w2PkpQK5WbB+jc3nd4qhWYbJY105VtD6IO/sOe/c9wZkzUwGoUeNxGjf6nMaN/lnpPvecz+DpRXsYvPR38ktMKBQQ+240J2ZE0bbWnQWpswXFzIlPYVWKnO7X3cuNlMim/NiiDuo7RFfdFfG7YHEbWNhErrQH0GsR9PhIFqYEAoFA8JcjRKlHGIvZQnGBAckaKaVUKGhyoZi+u+RoJpXFgsrN7XZd3DV/jpT6KzylkosNLLh8lV3ZslGol0aNq53KNNs48hX8/BZkWD8ctR0NXWeCZy37jiMQ3COio6NJSUnh3LlzTJo0iXfeeYePPvroXk/Lxp1EGwCj0UjXrl3Jycnhu+++Iy4ujq+//ppGjRqVE8Y++eQTevfuTfv27Tlw4ADHjx9nwIABxMTE8Nprr1VpnnXq1OHTTz/lxIkT7Nmzh9DQULp160Z6ulyRNDY2FovFwueff86pU6dYsGABn332GW+88cZt+y0pKcHb25s333yTJk2aVHg+BQUFNGnShMWLF1d6ziA//3379uWVV165aR9ms5mnn34ag8HAvn37WLlyJStWrODtt9+2nbNw4UJSUlJsX4mJiXh4eNC3b1/bOTt37mT06NH89ttvbN26FaPRSLdu3SgoKLjZsBWen0BQIfJSATBIsreRpLCgN+ppdtGXzuZWvPPRb3R7Ypj1ZAlFFTa+sgoMrD6QwLYzVwFw1KowS1Xz48zJPUZa2hYyMrYBoFRq0WjcqRn8Mt7eXdBo3O+6z3NX89h8MpXvjyQB4O6koZ6fnnFPReCoqfg83zh7hfmXrrItMxeA4OqKjjqyCtLPQPYluV2jJuju/r4FAoFAYD9E+t4jzJl9KWRfLUCHXAHlWkkBHieyyHOQU9pUFgmHcPsZaUKZp5TFurBSK6v/JZhmTdnz0Kh4t3YgzV2dUdqz0l76WVg/uvwxN5G2J3i4cHBwwM9PLnv+yiuv8P3337NhwwZiYmIYP348P/zwAyUlJXTq1IlFixYREREBwOXLlxkzZgx79uzBYDAQGhrKRx99RIMGDYiMlCMw3d3lDwRDhw5lxYoV5OXlERMTw7p163B1dWXKlCmsX7+epk2b8vHHHwMQGhrK8OHDOXfuHOvWreP5559nxYoV7Nmzh2nTpnHw4EG8vLx47rnnmD17Ns7Ozpw6dYoLFy6wfft2QkJCAAgJCaF9+/a2+0xMTGTSpElMmDCB998vM/mdNGkSWq2WcePG0bdvXx5//PFKPY8DBw4s154/fz5Lly7l+PHjdO7cmejoaKKjy9Klw8PDiYuLY8mSJcydO/eW/YaGhrJw4UIAli1bVuH5dO/ene7du1dpzgAzZswAuCGarJSff/6Z06dPs23bNnx9fWnatCnvvvsuU6dO5Z133kGr1eLm5obbdRsh69atIzs7m5deesl2bPPmzeX6XbFiBT4+Phw6dIiOHTve8h7uND+BoEKYZfE7Ffk9y6KwoJSUKCxmlA4OKJ10lFyRxRmFBFQhUuqjLXGs+T3B1tY7qLFY09oqE2Wem3ucgwefL3esXdsdODj4VnqO6XklPL1oDwZzmf/TsHZhjO8Scdd9JRTLz21vnxrUdNTycpBXped1U5KPQuxGSPxNbkf+A8IjwbsuKMUevUAgENxLhCj1CJOfXYKEhAV5cbMj4xRqn7LdIo8nn8S5Qwe7jlkaKWVBrqhSnZFSZ/KLWHD5KsnWhU6Ag5Y+fncuQXzX5FhT9py9ockAuWqLh33FPMHDiSRJGI3Gv3xcjUaDoorCrE6nIzMzk2HDhnHu3Dk2bNiAq6srU6dOpUePHpw+fRqNRsPo0aMxGAzs2rULZ2dnTp8+jYuLC8HBwXz77bf06dOHuLg4XF1d0el0ALz66qvs3buXDRs24Ovry9tvv83hw4dp2rRpuTnMnTuXt99+m+nTpwNw4cIFoqOjmTVrFsuWLSM9PZ0xY8YwZswYli9fjre3N0qlkrVr1zJhwgRUNzEhXrt2LUaj8aYRUaNGjeKNN95gzZo1lRalrsdgMPDFF1/g5uZ22+imnJwcPDyq4b2rElR0zn9m//79NGrUCF/fsg/AUVFRvPLKK5w6dYpmzZrdcM3SpUvp0qWLTUC8GTk5OQD3zfMjeMgxy+/XZuu6SVJYUBcXoywuxDesNsmvv07yL9ugVgAKSaqS0XlGfgkAjYPcqOXtwkvta7Jru/zY3ayd8gvOkZ62mby8UwBoNB44OYVTo0arSgtSWQUGZv14msuZhRjMFpy1Kur7u+Kq0/B884pvyh3PK+SNs1coMFu4Yl2rvRHuT4iuGkzN170CaafL2uFPQnAr+48jEAgEgrtGiFKPMBaLBEiYrNX2lCYLoCAgOw8pugNtBv69yh9cr0eSpLL0ParfU+qzxHQ2pF2zte1euaUwC85uhkSrt4pPfeg2y75jCB5qjEZjuWicv4o33ngDrbZyqRGSJLF9+3a2bNlC9+7dWbduHXv37qVdu3YArFq1iuDgYNatW0ffvn1JSEigT58+NGrUCJAjf0opFRJ8fHxsPj95eXmsXLmS1atX26Jwli9fTkDAjV4fTz31FJMmTbK1R4wYwaBBg2x+ShERESxatIhOnTqxZMkSAgMDWbRoEVOmTGHGjBm0bNmSyMhIBg0aZJvX2bNncXNzw9/f/4bxtFot4eHhnD17tlLPXSkbN25kwIABFBYW4u/vz9atW/HyunlUwPnz5/nkk09uGyX1V3A3c74Zqamp5QQpwNZOTU294fzk5GQ2bdrE6tWrb9mnxWJhwoQJtG/fnscee6zCcxEIKo3V08lsXT5LSPj7BTJi3oe4uLhyofezWKzrJqVGg77zU5UeqnS99Lc2IfRrGUyJucT22N1EmZ85M43c3CO2tr//80TUnlbpeQGsO5LEd4eTbO3ox/yZ16/iInUpX6dkcTC30Nb20Kjwc9BUaW63JPuy/L3p38C3IQQJQUogEAjuF0S86iOMtiiJmopLICmRJAmlVZyqn5xJv5FTcfezr+Fj6QILwEL1e0qllsg7moP8Pfi4XjDvRwTZd4Atb8g7b4dWyG2XyofACwT3Oxs3bsTFxQVHR0e6d+9O//79GTZsGGq1ulzUkKenJ3Xr1uXMmTMAjBs3jlmzZtG+fXumT5/O8ePHbzvOxYsXMRqNtG7d2nbMzc2NunXr3nBuy5Yty7WPHTvGihUrcHFxsX1FRUVhsVjkSqPA6NGjSU1NZdWqVbRt25ZvvvmGhg0bsnXr1go/FxUR9FatWlVuHrt377Y9FhkZydGjR9m3bx/R0dH069ePtLS0G/pISkoiOjqavn37MnLkSNvx6/uNiYmp0Jx3795d7rpVq1ZV6Lq7nbO9WLlyJTVq1ODZZ5+95TmjR4/m5MmT/Pe//7Udi4mJKXefAoE9yctII6mkIblGeT0hKSz4Fau5+mwffnjuaTb6uXAwXBa0HSMicGpVeeGj1O6g1OTbbDHbHrvT2slkyufkqYkcPjyIvLyTAPj5PkvN4OHUDH650nOaszmW9h/8wvytsjDfpb4v8/s14a2e9e+qn6RiA9szczmVXwTAiCAvvmlSi19b1cPBnql0l/fB0m7wWQcwWn3nun8Ibf8P7GnjIBAIBIIqISKlHlWyL9E87hlaqCU+oxtQJhgpJAmlxn47VRaLxMYTKSRlF5Udq8b0vfcvJPPv5ExyTfICrqd3DSI9Xe0+jq2UcGBLcAuCdmPtP4bgoUaj0dzRwLq6xr1bIiMjWbJkCVqtloCAANRqNRs2bLjjdSNGjCAqKooff/yRn3/+mdmzZzNv3jzGjq3674uzs3O5dn5+PqNGjWLcuHE3nFuzZk3bz3q9nl69etGrVy9mzZpFVFQUs2bNomvXrkRERJCTk0NycvIN0VkGg4ELFy4QFRV1x7k988wz5cS6wMCylBZnZ2dq165N7dq1adOmDRERESxdupRp08qiF5KTk4mMjKRdu3Z88cUX5fq+vtqfq2vF3ttatmxZ7ro/Ry3diYrM+Xb4+fnx+++/lzt29epV22PXI0kSy5YtY/DgwbcUAMeMGcPGjRvZtWsXQUFlGw4zZ86sshm9QHArDh714HR2WUS0WWEmJNHEFbXEFffyv4s1H7v7yKHrMVtK/aNk8cQklVWqvFWUuSRJmEzXuJq2iatXy96f1Wo36tefjVJZuQjZghITBSUm/rU7vpx/1KDHaxJZz+eu+iqxWOjyRxzZpjKRrY2bCx089JWa2235/cuyaHaAGiHgIMRqgUAguN8QotQjipR5EQUSJkmFRdIAZYsMhSShUNvvpXEgPotxa8pCx9VKRbWm761KyeKadbHjpFLS0EVn3wEKs8BQAPnyByq6vQsh7ew7huCRQKFQVDqN7q+mVJS4nvr162MymThw4IAtfS8zM5O4uDgaNGhgOy84OJiYmBhiYmKYNm0aX375JWPHjrXdu9lc9uEkPDwcjUbDH3/8YROScnJyOHv27G2NrAGaN2/O6dOnb5jn7VAoFNSrV499+/YB8MILLzB16lTmzZvHvHnzyp372WefUVhYyJAhQ+7Yr16vR6+v2Icsi8VCSUlZak5SUhKRkZG0aNGC5cuXo/xT5MDd3F8pOp2uUtfdij/P+U60bduW9957j7S0NHx85A+xW7duxdXVtdxrBeQKe+fPn2f48OE39CNJEmPHjuX7779nx44dhIWFlXvcx8fH1r9AYG8KiuX1hEaZQ7ammNO+O/A+mM/RkDJhdfiif6HT63Fwcr5VNxXCZC6NlJJ//ysSKXUm9nVSUtba2h4eHfD374Or/rFKC1L7LmQwdNnvGK3z0aqUfBPTFncnLTU9ne66v6RiI9kmMyoFNHTR4e+gIdLeglR6HGScg/RYud3hNajZBvyb2nccgUAgENgFIUo9omRfuYSTRc8lczhmNCiuE6WUElAFc84/U2rW6eWipUOEN+1qebIpU140qRX2fQlaJIlrJlnw2tCsNvVcdLiq7Sh8ndsKq/uBVPZ8oRMGu4JHk4iICHr37s3IkSP5/PPP0ev1vP766wQGBtK7d28AJkyYQPfu3alTpw7Z2dn8+uuv1K8vp3qEhISgUCjYuHEjPXr0QKfTodfrGTp0KJMnT8bDwwMfHx+mT5+OUqm8o8fd1KlTadOmDWPGjGHEiBE2Y/WtW7fy6aefcvToUaZPn87gwYNp0KABWq2WnTt3smzZMqZOnQrIEVVz5szhtddew9HRkcGDB6PRaFi/fj1vvPEGs2bNusG/KC4u7oa5NGzY8IaItIKCAt577z2eeeYZ/P39ycjIYPHixSQlJdG3b19AFqSefPJJQkJCmDt3Lunp6bbr/xxR9GdKI6Hy8/NJT0/n6NGjaLXaG0Sf68nPz+f8+fO2dnx8PEePHsXDw4OaNWtWaM4ACQkJZGVlkZCQgNlsts2ldu3auLi40K1bNxo0aMDgwYOZM2cOqampvPnmm4wePRoHh/J+f0uXLuXxxx+/qU/U6NGjWb16NevXr0ev19v8qNzc3GxG+TfjTvMTCO7ElStXyCssBsDX+QAH3c/hlX4OyVITJAlfZ1cinnmOGr63/z2tKKWWB6WRUmZr1WKlQolSUV6ozs09Tn5+HGlpZdUpVSonagYPx9OzcgVrLmcWcDghm59OpNoEKYUCnmsWSJPgGnfdX3KxgWePnCfFaq0QpnPg55Y3pmVXmYIM+OwJW6VEACK6Qc2qF6cQCAQCQfUgRKlHlNzsYv6X9i/MaFECklRse0yhVtvV4NxkDUGv5+fKgv5NAdi4SV5c2StSKqGohFUpWRSYzVjXTjRxdbKvNwHI/gSSBRQqUGnkXTfPWvYdQyB4gFi+fDnjx4+nZ8+eGAwGOnbsyE8//WQTZMxmM6NHj+bKlSu4uroSHR3NggULADmlbcaMGbz++uu89NJLDBkyhBUrVjB//nxiYmLo2bMnrq6uTJkyhcTERBwdHW87l8aNG7Nz507+8Y9/0KFDByRJolatWvTv3x+AoKAgQkNDmTFjBpcuXUKhUNjaEydOtPUzceJEwsPDmTdvHgsXLqSgQPYiWbNmDQMGDLhh3JsdS0xMLJdWBqBSqYiNjWXlypVkZGTg6elJq1at2L17Nw0bNgTk6KHz589z/vz5G66XJInbcX0Fu0OHDrF69WpCQkK4dOnSLa85ePAgkZGRtvarr74KwNChQ1mxYkWF5gzw9ttvs3Llyhvm8uuvv/Lkk0+iUqnYuHEjr7zyCm3btsXZ2ZmhQ4cyc+bMcvPJycnh22+/ZeHChTed75IlSwB48sknyx1fvnw5w4YNu+V93ml+AsGdOHz4MGWZaxae23YZ7wzYWR/UFolujVrj81w/u433Z08pk+XmXpxG4zUOHe6PxVIqwih5stMxlEpdpddykiQx4IvfSMkpWxvOeKYhQ9uFVqo/gD3X8kkoLhOKnnCvhnQ9sxFST8iClFoH/o3BoxYEtrD/WAKBQCCwGwrpTqvcR5jc3Fzc3NzIycmpsG/Hg8LxFZ+z+7cIFJgxKI0kuZzC7/JOAHqcS6H+4UN2G+t/BxOZsvY4T9b1xrnmSg6mHqTIVISExMLIhTxVs/LVaUoZfyaBr1OzbG0PjYrTTzSqcr83sGEcHF4Jkf+ATlPs37/goaW4uJj4+HjCwsLuKK4IylNQUEBgYCDz5s27aUpXdZOVlUXnzp1xdXVl06ZNODndfcqK4MHjdr+zD/P6oLI87M/Jd999R+HOVHJK6tHEZQ+a3d9DiYU9dYNxUCgZ+d4CHGrZb5Oq5ye7OZmUy/JhLXH3SOFizkWm75uOTq3j90G/U1BwnszMXRSXpJCYuAyVygn3Gm3w9OxEUNDfKjVmWm4xP5++SqHBxPs/yalvHSK88HDWMr1XQzyc7z4F0GiRiC0o4pvUbL64ks7T3m7MigjET6ux6wYoyUdgRS8w5MntkCfgpR/t179AIBAI7pqKrg1EpNQjisXquaRXJ7MjZBfH3Q4y4HIwSBJKO/pJAVzNl9NPDqf9jqTcZTvuoHKgdg37eJxcse6+RXm5UkvnyFOedt6B2zAOYn+Ekly57SRS9gSC6uLIkSPExsbSunVrcnJybNE0pSmBfzUeHh5s27aNxYsXs3//fjp37nxP5iEQCO4NkkUiN6sItbVK8X88U/kbJaisPk0OXt52FaSgzFPqVNZJPj8wwXZcrZTXaCdOjqGg4JztuKtrE5o0+bJKY761/iRbTl21tQPcHPnP8KqlvY04Fc+WjFxbO9hRi79DNXgpXtxZJkihgLrd7T+GQCAQCKoFIUo9gkiSRHZWDgAKhQUJCaUkL7QUEnY1OQf4I/Uw4E+hKQ8dUFNfk8+6fkYNhxrotVUTj75MTCe2oIgzBXJlv+GB3nS0t2GmsViOjipFoYSAZrc+XyAQVJm5c+cSFxeHVqulRYsW7N69Gy8vr3s2H09PT95+++17Nr5AILhHWMwUf/YM/a8e4kcmkwNkqItRmiUs1kgfzZ980exBqadUdnEGAG4ObtTT+/NcjXz+ONiHggLZC87XpydKpUOlo6MAPtl+jl/i0jiTIotHHSK8cNVpeLZp4B2uvDOHcwsB8NaqcVer6e3jXuU+y3EtERJ+k+0VAB5/BbpMB42di9wIBAKBoNoQotQjSHJyMmlZpaluZiQsNDtnNbHEvpX3AEqsxuO+zl681m4m7QPb4+NU9epI5wuLeet8UrljwY523n0zFkP6GflnlRb+vgOcvEB/d+XUBQJBxWnWrBmHDtkvhVggEAgqzbUEdGl7QAEWZD8npyIjGTV8KLTaVqqroYpqqSiFQjayahfQjrFhDTh77l1yrYUvHR2DaNjw4yqlwRUaTMzbetbWdtKq+HRgc9x0mttcdXvSSoz8NzWLIrOFTIO8Btzesi4+DpXv85b85znILIsYo0ZNIUgJBALBA4YQpR5BioqKUFjXOhoUtMhyps3PFnbWlyOllHauRGS0OoN66tx5LuI5u/Wbaq3g4q1VMyLQm9rODoQ52XG3MjcFFj8OJXJUGc7e4Nvw9tcIBAKBQCB4eLBWcSuWHEmWfNEAtS/lcf46mwBHF/ubdpcanYOZp90MdDT9yIWLmwDw8emBn9+zuOobVVqQ2nc+g1dWHSa/RBaNXB3VzOvXlNo+LlUSpAA+vnyVZUkZtrajUoGHpho+cpiNkGmtHhryBLh4w2N97D+OQCAQCKoVIUo9glgsFhRWXwQtSryKVEjWRY1So8Hvzal2Hc9YWkFGZR9Dy+RiA9+nXeNknhwSXkvnwPjQaohcSjlaJkgpVGKhIxAIBALBo4ZVlDKhxowGDaA2yZttvtfy8e3Zkya9nrf/sNa1k9JyjU4uJrSYMMt2oPj7PYeXV+WKxFgsEmZJ4qeTKeQUGW3HO9f3pWuDqq2lJEki02jmXKFcta+Tu55wJwc6uettVQTtQsoxOPA5GPIBSV6jDd0AdqroLBAIBIK/FiFKPWpYLKizz6OT5EWWEguSxUTpfpza2Rnndu3sOqTJGillrwXJ+xdTWHs129b2q45wcIBCa4pj7S7wt2+rZwyBQCAQCAT3L1ZRyowKJDlfrzTavFbaNVq+MAiNv7/dhzWYZGHHP+8btK4goeDxVhvQaGrg6BhQqT6v5hbT85M9pOeV2I690aMezzYLxNul6pHm/3f6Mt+nXbO1Y4K9ifSshkqMv86Gs5vK2u6hQpASCASCBxghSj1q/DiR8EMrKCSKy4BSARaLqSxSSmX/P+qlO3satdIu/SVYK+09ad2BeynQzubHvy2BC7/CtQS5rROV9gQCgUAgeBQxFRegBkySBJQVhYHq8eE8cO40pxPPUFCiAjQoFRYMFsjWRKDXN6hUnyazhXNp+fwal1ZOkNI7qOnawA8fvaNd5v5LVp7t51CdlmauTnbp10ZhFqQeh4w4ud1yOHjWglqVixoTCAQCwf2BfVSCu2TJkiU0btwYV1dXXF1dadu2LZs2le14FBcXM3r0aDw9PXFxcaFPnz5cvXq1XB8JCQk8/fTTODk54ePjw+TJkzFZDbVL2bFjB82bN8fBwYHatWuzYsWKv+L27mukq6cA2RsBQMIDSTJhLb6HohpEqVJfBI2yai+3P3IK+Doli4QiWZQaF+LL+3WCiHC2z2IKAEMhbJ4G57aUGZx7hNuvf4FAIBAIBA8MxdcyATlSqtT6QGGNL1dIgB1FqZScIgYsvciMnx0pNMpR4Nd0TZmS5MRlx46V7nfi/47RfeFu5myWxZznmwVybHo3Dr3VlTAv5yrNOddkZmpcIiNOxpNjknchz3VoxG9tGlDD3j5SS7vCv3tD1kW53WoEtB0NPvXtO45AIBAI/lLuSaRUUFAQH3zwAREREUiSxMqVK+nduzdHjhyhYcOGTJw4kR9//JFvvvkGNzc3xowZw/PPP8/evXsBMJvNPP300/j5+bFv3z5SUlIYMmQIGo2G999/H4D4+HiefvppYmJiWLVqFdu3b2fEiBH4+/sTFRV1L277/sAs+wccQzbs/kN9ApeMFNJry2V/lXYIf57xwykOXc7GbJEwWyQSM4IB0KgqL0pdLirhmcPnbGmGAD4O1fDyLcwEJFBqoNfHcgWXOt3tP45AIBAIBIL7HnNJMT9kvUWqsQ5aSRZwbJFSkoRCU3ULgZKSdC5cnMfpFJDogEZpoIFPNrU8DChq+EMKqCqxPvvfwUQOXsrilzPyxq6Xixa9o4b+rYKrbGZeyoa0a6xMzrS1fbRqXKqw3rslxqIyU3Pv+uDfBLzr2X8cgUAgEPzl3BNRqlevXuXa7733HkuWLOG3334jKCiIpUuXsnr1ap56Sg7HXb58OfXr1+e3336jTZs2/Pzzz5w+fZpt27bh6+tL06ZNeffdd5k6dSrvvPMOWq2Wzz77jLCwMObNmwdA/fr12bNnDwsWLHikRSmLyUSR2QOLRS6XKxWnoDarsFjXD37htavUf1peMcv3XvrTUblUsr975QWvi4UlSIBepaSlmzMNXXTU0tmx0l5xLpz4pmz3zdkLmv3Nfv0LBAKBQCB44Mi/ZiLB0ByQk/eMyhKQLGCNm7KHKJWc8j9SUr4hIzsc6ICnrpD1E14GYO4fcwFQK+5uyZ5dYGDqt8eRrAKag1rJrimROGntt/RPNxg5WyB7X7Wt4Uwv7xq0reFS6YqANyX7Mpz8FoqsXqIqLfzffrDnGAKBQCC4p9yT9L3rMZvN/Pe//6WgoIC2bdty6NAhjEYjXbp0sZ1Tr149atasyf79+wHYv38/jRo1wte3rEpIVFQUubm5nDp1ynbO9X2UnlPax80oKSkhNze33NfDhCRJfHtuFCvTl2IoeMx6UA61DszKo7uDBz0nVK3yXrFBNjXXqpWsfLk1q0Y8TqPG23AKW0jH+ne/cCs2W/hfahbfpcmLkWauTqxpUos3awXYd9Fz4DP48VXY/6ncdqmGan4CwQPKsGHDUCgUKBQKtFottWvXZubMmTekTN8tO3bsQKFQcO3aNftMtALEx8czcOBAAgICcHR0JCgoiN69exMbG1vuvI0bN9KpUyf0ej1OTk60atXqhhTwS5cuoVAoOHr0aIXHf+edd6hXrx7Ozs64u7vTpUsXDhw4UK7P4cOHExYWhk6no1atWkyfPh2DwXDHvletWkWTJk1wcnLC39+fl19+mczMzNtes2vXLnr16kVAgPyeum7dupued+bMGZ555hnc3NxwdnamVatWJCQk2B4fNWoUtWrVQqfT4e3tfdPn9I8//qBz587UqFEDd3d3oqKiOHbs2E3HO3/+PHq9nho1atzxvit6DwJBZTCb5AhztaKI8wE/k21+C42pNH2vap5SsXHT2b2nLZcuLQHAxbUNAM5OZWsQs3WdVtFIqa2nrzLy3wd5ZdUhJAncdBomR9Vl5cut7SpI/TMhjUZ7T/HFlXQAOrjreTnIm/ouOruNAciWCttnwL5Fcts1UAhSAoFA8JBxz0SpEydO4OLigoODAzExMXz//fc0aNCA1NRUtFrtDQtRX19fUlNTAUhNTS0nSJU+XvrY7c7Jzc2lqKjopnOaPXs2bm5utq/g4GB73Op9g8UkkV4cVNrCoCwiz0FeTGhNZly0Diiq6PtksFba02lU6N0SuWjYRLH2JCrHFLQq7V3393VqFuPOJPBNqixK+VZXpb2sePm7f1NoMhCi3quecQSCB5To6GhSUlI4d+4ckyZN4p133uGjjz6619OyURHRxmg00rVrV3Jycvjuu++Ii4vj66+/plGjRuWEsU8++YTevXvTvn17Dhw4wPHjxxkwYAAxMTG89tprVZpnnTp1+PTTTzlx4gR79uwhNDSUbt26kZ4uvxfHxsZisVj4/PPPOXXqFAsWLOCzzz7jjTfeuG2/e/fuZciQIQwfPpxTp07xzTff8PvvvzNy5MjbXldQUECTJk1YvHjxLc+5cOECTzzxBPXq1WPHjh0cP36ct956C0fHMj+/Fi1asHz5cs6cOcOWLVuQJIlu3bphtla6yM/PJzo6mpo1a3LgwAH27NmDXq8nKioKo9FYbjyj0ciLL75Ihw4dbjv3u7kHgeCuubQXlnZDe+wrAFQKIwpzOgN2FtjS99Q1alTKi9NozKawMJ6kpK8wGNKwWOR1qYeXHMmvVZdFgpssJuv4FRtn1o+n2Xr6Kr9dlCsIN69Zg9GRtWkT7nnX87wdu7PzrPMCb62aztVRZQ/KItjrdIcWL0GvhdUzjkAgEAjuGfes+l7dunU5evQoOTk5rF27lqFDh7Jz5857NR0Apk2bxquvvmpr5+bmPlTClMVS5sik8fmetYEnCL8I4Frl3b5SDCZZlFKrFIz8eSQGS9kHRSf13VdhuWw1NY9wcqC5qzOv1PSu8hzLcXYLJB6Qv0A2zWw+2L5jCAQPAQ4ODvj5+QHwyiuv8P3337NhwwZiYmIYP348P/zwAyUlJXTq1IlFixYREREBwOXLlxkzZgx79uzBYDAQGhrKRx99RIMGDYiMjATA3d0dgKFDh7JixQry8vKIiYlh3bp1uLq6MmXKFNavX0/Tpk35+OOPAQgNDWX48OGcO3eOdevW8fzzz7NixQr27NnDtGnTOHjwIF5eXjz33HPMnj0bZ2dnTp06xYULF9i+fTshISEAhISE0L59e9t9JiYmMmnSJCZMmGDzKASYNGkSWq2WcePG0bdvXx5//PFKPY8DBw4s154/fz5Lly7l+PHjdO7cmejoaKKjo22Ph4eHExcXx5IlS5g7d+4t+92/fz+hoaGMGzcOgLCwMEaNGsWHH3542/l0796d7t1v75v3j3/8gx49ejBnzhzbsVq1apU75+9//7vt59DQUGbNmkWTJk24dOkStWrVIjY2lqysLGbOnGn7uzp9+nQaN27M5cuXqV27LHX8zTffpF69enTu3Jl9+/bddm4VvQeB4K45vBISD6A0yq91CQsqq8haWrE42Pp+dDekp2/l+IlXwOqSqVa70rzZajSaGuyNVwIH0arKIoEqEillMlsYvPR3jiRmU2yU12HTezXAxUFNp7r2WzcZLRI/pl/jmsnMuUI5be/fjcLtL0hd3gdfD4aSPDBbqwV2eQd8hIeUQCAQPIzcs0ip0hSQFi1aMHv2bJo0acLChQvx8/PDYDDckM5x9epV2wciPz+/G6rxlbbvdI6rqys63c1Dix0cHGwVAUu/HiauF6XMCgWSEhQWeeGjlCRQV93k3GiNlNKowGAxoEBB97DujGg0gqY+TSvcz+WiEvZm5xFn9Sro5+fBwvo1qedsx7Dwkjz47yDYPQ+yLsjH3ALt179AcAckScJsLvzLvyRJuvPk7oBOp8NgMDBs2DAOHjzIhg0b2L9/P5Ik0aNHD1v0y+jRoykpKWHXrl2cOHGCDz/8EBcXF4KDg/n2228BiIuLIyUlhYUL5R3wV199lb1797Jhwwa2bt3K7t27OXz48A1zmDt3Lk2aNOHIkSO89dZbXLhwgejoaPr06cPx48f5+uuv2bNnD2PGjAHA29sbpVLJ2rVrbRE8f2bt2rUYjcabRkSNGjUKFxcX1qxZU+XnD+Tori+++AI3NzeaNGlyy/NycnLw8PC4bV9t27YlMTGRn376CUmSuHr1KmvXrqVHjx5VmqPFYuHHH3+kTp06REVF4ePjw+OPP37bFLmCggKWL19OWFiYTYCqW7cunp6eLF26FIPBQFFREUuXLqV+/fqEhobarv3ll1/45ptvRNSTldmzZ9OqVSv0ej0+Pj48++yzxMXFlTtHVCyuJkzy+uOkJAshJQpHPM1WP06rKOUYXvHqvAUFF0lJXceVpFWAhEKhQql0JDBgAHp9fRwd/TGarULVdUbhpaLUzTylJEkip9DI8aQc9l/MtAlS9f1dGdYulL4tg/HR269C8fq0bGJOX+b1s1e4Uiy/x/tVRwR77I9QmFEmSLnVBPdQ+48jEAgEgvuCexYp9WcsFgslJSW0aNECjUbD9u3b6dOnDyB/YElISKBt27aAvPh+7733SEtLw8fHB4CtW7fi6upKgwYNbOf89NNP5cbYunWrrY9HEek6UcoCmCUjKklOqVNKEgp11RcWpaKU2rqeclQ7MqfjnNtccSMJRSW0/e0MluuOedi7rDBAXipYjKB2hBbDwDUAwjrZfxyB4BZYLEXs2NnoLx/3yU4nUKnuPnIR5A9B27dvZ8uWLXTv3p1169axd+9e2rVrB8i+RsHBwaxbt46+ffuSkJBAnz59aNRIvs/w6z7ElQotPj4+tpTtvLw8Vq5cyerVq+ncuTMgF7sICAi4YS5PPfUUkyZNsrVHjBjBoEGDmDBhAgAREREsWrSITp06sWTJEgIDA1m0aBFTpkxhxowZtGzZksjISAYNGmSb19mzZ3Fzc8Pf3/+G8bRaLeHh4Zw9e7ZSz10pGzduZMCAARQWFuLv78/WrVvx8vK66bnnz5/nk08+uW2UFED79u1ZtWoV/fv3p7i4GJPJRK9evaos7qSlpZGfn88HH3zArFmz+PDDD9m8eTPPP/88v/76K506lb1n/vOf/2TKlCkUFBRQt25dtm7dilYr/43R6/Xs2LGDZ599lnfffReQ/3+2bNmC2hqlm5mZybBhw/jqq68euk2hyrJz505Gjx5Nq1atMJlMvPHGG3Tr1o3Tp0/j7CxXghMVi6sJsyzaZSCnveklR4JNfuWqACsrmLpnsZg4dLgfRmO27Vi9eu8T4P9CufNMltKNPcV1x6zpezeJlHr1f8f4/kiSrV3XV8/SYS3xc3W0r++mlQuFskgUptPSwEVHHSdHGjjbT/TiyiE5cv2yNUKy4xRoMRScvUFtx+I2AoFAILivuCeRUtOmTWPXrl1cunSJEydOMG3aNHbs2MGgQYNwc3Nj+PDhvPrqq/z6668cOnSIl156ibZt29KmjWwA2a1bNxo0aMDgwYM5duwYW7Zs4c0332T06NE4OMh/tGJiYrh48SJTpkwhNjaWf/7zn/zvf/9j4sSJ9+KW7wss5utFKRUWzCitkVIKiUr5IvyZ69P3ADTKuxe64gqKsQCOSgURTg60reFMV3uGhpfkwdrh8O1wue0aCN0/hPbjoRIllwWCR4GNGzfi4uKCo6Mj3bt3p3///gwbNgy1Wl0ulc3T05O6dety5swZAMaNG8esWbNo374906dP5/jx47cd5+LFixiNRlq3bm075ubmRt26dW84t2XLluXax44dY8WKFbi4uNi+oqKisFgsxMfLvnGjR48mNTWVVatW0bZtW7755hsaNmzI1q1bK/xclAott2PVqlXl5rF7927bY5GRkRw9epR9+/YRHR1Nv379SEtLu6GPpKQkoqOj6du3bzlvqOv7jYmJAeD06dOMHz+et99+m0OHDrF582YuXbpke3z37t3lrlu1alWF7tVi/ZDcu3dvJk6cSNOmTXn99dfp2bMnn332WblzBw0axJEjR9i5cyd16tShX79+FBfL0SZFRUUMHz6c9u3b89tvv7F3714ee+wxnn76aZvP48iRIxk4cCAdO3a86Vwqew8PMps3b2bYsGE0bNiQJk2asGLFChISEjh06BAgR9EtXbqU+fPn89RTT9m8vfbt28dvv/0GYKtY/NVXX9G0aVO6d+/Ou+++y+LFi21ebNdXLK5fvz5jxozhhRdeYMGCBffs3u85FjkSyCLJoqkSsEhmpOu0njuJUhaLiYsXP+b06UkYjdkoFGo8PDrg5/csPt43in1l0eZKik3FxGbFkl0sC1nXe0odupzF6gMJbD6ZWjYXBfRuFkCQu1O5SCt78EPaNf7v9GU2pF0DoI+vB0sfC2NquL/9xC+zEf7dG7ZMg2RrZKxvA3ALEoKUQCAQPOTck0iptLQ0hgwZQkpKCm5ubjRu3JgtW7bQtWtXABYsWIBSqaRPnz6UlJQQFRXFP//5T9v1KpWKjRs38sorr9C2bVucnZ0ZOnQoM2fOtJ0TFhbGjz/+yMSJE1m4cCFBQUH861//enR3/ICkK/JumhITRoUSi2TG0Wr5pLSXp9SfIqUqI0plGeVQ9TZuLvy3aa07nF0Jzm2Fk2vL2j717T+GQFABlEodT3Y6cU/GvVsiIyNZsmQJWq2WgIAA1Go1GzZsuON1I0aMICoqih9//JGff/6Z2bNnM2/ePMaOHVuZqZejNFKklPz8fEaNGmXzVbqemjVr2n7W6/X06tWLXr16MWvWLKKiopg1axZdu3YlIiKCnJwckpOTb4jOMhgMXLhwoUJ/R5555plyYl1gYFlqsLOzM7Vr16Z27dq0adOGiIgIli5dyrRp02znJCcnExkZSbt27fjiiy/K9X19tb/SiKLZs2fTvn17Jk+eDEDjxo1xdnamQ4cOzJo1i5YtW5a77s+FQG6Fl5cXarXaFoVcSv369dmzZ0+5Y6VFQiIiImjTpg3u7u58//33vPjii6xevZpLly6xf/9+lNaCGqtXr8bd3Z3169czYMAAfvnlFzZs2GCLCpMkCYvFglqt5osvvuDFF1+s1D08TOTk5ABlUYZ3qljcpk2bW1YsfuWVVzh16hTNmjW7ZcXi0qjDm1FSUkJJSYmt/bBVLMYsi1JmqyiV7JDGObdfiaBMhFHeYSMrO3sf8Zc+sbX1Lg1o1nTFLc8vTd8rMRfS+ZvO5BrKnlO1Up5Hel4J/T//DZM1+l2jUnDinSg0KiUqpf2joyRJYlJcArmmsvj1MN3dF665LUXX5OgoQx4o1dDgWbkKcp3oO10pEAgEgoeAeyJKLV269LaPOzo6snjx4tumHYSEhNyQnvdnnnzySY4cOVKpOT6MnD9/AVCiwIwFJf/4bxE5Wj2pNeSyxvbxlJIXSSpV6WKp4qLUv66kMyc+hWJrHx52LF1cjoIM+XtQa2g3BsJuvisvEFQ3CoWi0ml0fzWlQsr11K9fH5PJxIEDB2zpe5mZmcTFxZUTMYKDg4mJiSEmJoZp06bx5ZdfMnbsWFvE0fX+TuHh4Wg0Gv744w+bkJSTk8PZs2dvGUFTSvPmzTl9+vQN87wdCoWCevXq2Qy1X3jhBaZOncq8efOYN29euXM/++wzCgsLGTJkyB371ev16PX6Cs2hNH29lKSkJCIjI21RL8o/VUW92f0VFhba0uBKUVmjOCRJQqfT3dXzUopWq6VVq1Y3+BidPXvWZhZ/MyRJQpIk230VFhaiVCrLRVWUtkujsfbv31/utbB+/Xo+/PBD9u3bR2BgYKXv4WHBYrEwYcIE2rdvz2OPPQbwl1UsvpkX5+zZs5kxY4Zd7u2+xCpKSdalcr46n0xVNpbrdJ9bRZhfvPgxWdn7MRjk9YaLS338fJ/By6vLTc8vJTbzHACH0/5A5yALUjUcauDj5EOAtin/2n2RK9lFmCwSegc1bWp50rW+L46a6onyLjZbyDObbYLUW7UC8Naq6eVTw36DWMywpD3kXpHbbkHwwu0/JwgEAoHg4eK+8ZQSVDOZF/BIO8BF2qJUWHi6uBWWlJ84GCqvrlQODrg8+WSlu//5VCrfHU4iJVdO1ahMpNQ3qVnlduJauznf5uxKkHQYTq+DxN/ltt9j0KC3fccQCB4hIiIi6N27NyNHjuTzzz9Hr9fz+uuvExgYSO/e8u/WhAkT6N69O3Xq1CE7O5tff/2V+vXl6MSQkBAUCgUbN26kR48e6HQ69Ho9Q4cOZfLkyXh4eODj48P06dNvEDRuxtSpU2nTpg1jxoxhxIgRODs7c/r0abZu3cqnn37K0aNHmT59OoMHD6ZBgwZotVp27tzJsmXLmDp1KiBHVM2ZM4fXXnsNR0dHBg8ejEajYf369bzxxhvMmjXLJgiU8mfBBqBhw4ZoNOXf/woKCnjvvfd45pln8Pf3JyMjg8WLF5OUlETfvn0BWZB68sknCQkJYe7cuaSnp9uuLy3kcTN69erFyJEjWbJkCVFRUaSkpDBhwgRat259Uz+uUvLz8zl//rytHR8fz9GjR/Hw8LCJgpMnT6Z///507NiRyMhINm/ezA8//MCOHTsAOeXy66+/plu3bnh7e3PlyhU++OADdDqdzWi9a9euTJ48mdGjRzN27FgsFgsffPABarXaVoWx9HVRysGDB1EqlTc835W5h4eB0aNHc/LkyRsi1O4VD3vF4tL0vdJIKbPCTNvchkiKk7ZT/iwYAxgMmeWiowB8fZ4mJOTvN5x7/Mo19l/ItLX3nb8GOKBUSng6etKrVi8mtZR98zp99CuXMwtt57YIdefLIS2pLhYnpDHrQrLNQ8tFpWR0TR/7D5R/tUyQcg+DNv9n/zEEAoFAcF8jRKlHAYsZ/tWFunmOHKQtSsxojBouuTlTbI1GCnj7bVyfvP0O3u2YvSmW+IwCW9vNWf7wqFXeOcTbIkmYJcgwyGaeyx8LpYWrMz72rujywzhIvS5VylVU2hMIqsry5csZP348PXv2xGAw0LFjR3766SebIGM2mxk9ejRXrlzB1dWV6Ohom09NYGAgM2bM4PXXX+ell15iyJAhrFixgvnz5xMTE0PPnj1xdXVlypQpJCYm4uh4e0Pdxo0bs3PnTv7xj3/QoUMHJEmiVq1a9O/fH4CgoCBCQ0OZMWMGly5dQqFQ2NrX+w1OnDiR8PBw5s2bx8KFCykokN/b1qxZw4ABA24Y92bHEhMTCQoKKndMpVIRGxvLypUrycjIwNPTk1atWrF7924aNmwIyAU5zp8/z/nz52+4/nZVE4cNG0ZeXh6ffvopkyZNokaNGjz11FN8+OGHt33ODh48aBOFAJvIMHToUFv1teeee47PPvuM2bNnM27cOOrWrcu3337LE088AcjRzbt37+bjjz8mOzsbX19fOnbsyL59+2zFSOrVq8cPP/zAjBkzaNu2LUqlkmbNmrF58+abmsrfDRW5hwedMWPGsHHjRnbt2lXudXF9xeLro6X+XLH4999/L9efvSoWl/p4PowcTmrJ6fQhFEjuAEiWYlyuwqGwMnFYcZ0olZW1jzOx0zCZ8gHQaDypV3cmKpUOd/ebF9l5ecUfZOQbrjsiP581a/iyrf8OzBaJcWuOcPZqnk2Q6t00AK1KydB2oXa82xvZkpFTztQ92svNvgNcOQQ/ToQiq/m7axCMP2rfMQQCgUDwQKCQ7FEb/CElNzcXNzc3cnJyHuxKQIYCeD+ALFMQazI+oURVQIJyAcFpZWlDT4+fQr12lU9ja/3eNtLyShgTWZtgDx2uNRKYsu8V6nnU45te39zyunSDka5/nCXVYLQdO9CmPiG6aljofhgGRVnQbDDUCIFWw8Hp9mXWBQJ7UVxcTHx8PGFhYXcUVwTlKSgoIDAwkHnz5jF8+PC/fPysrCw6d+6Mq6srmzZtwsnpwUi5FFSN2/3O/lXrA0mSGDt2LN9//z07duwgIiKi3OM5OTl4e3uzZs2achWL69WrZ/OU2rRpEz179iQlJcUmEn7xxRdMnjyZtLQ0HBwcmDp1Kj/99BMnTpRt3AwcOJCsrCw2b95cobk+NGsmK8vHfE+hqUyIuaT7Hr/keFvbxcOTUUtWUlgYT3rGNtLSNpGbe8z2uJ/vszRsWD4F+HokSSJsmmxD8XRjfxzUSuKy4jh77RS9W+iZ23UyRxOv8ezivbZr6vi68PPE6q0SvDk9h1+yclmfdo0ck5m1TWvR3NUZJzubp/PjJPjjX2Xtej1hwMNfvEAgEAgeJSq6NhCRUo8CFtmjwyLJngNmpRnHEnlx4VJUQsBTTxHWtEWVhig1OO/dNIAIXz07Ei8Cd07fO5hTUE6QqufsSKCDHQ00DYVw4RcwFpXtxnWeDi7e9htDIBDYlSNHjhAbG0vr1q3JycmxFbEoTQn8q/Hw8GDbtm0sXryY/fv307lz53syD8Gjx+jRo1m9ejXr169Hr9fbPKDc3NzQ6XTlKhZ7eHjg6urK2LFjb1mxeM6cOaSmpt60YvGnn37KlClTePnll/nll1/43//+x48//njP7v1eY7HI6ySt2z5+8TmPoTAOv2RPXAuLqad1ocnMjwA4depVcvPKqorWrfsuNWq0wtkp/Lb9lxqVA7z/XCPcdBoWHt5JwonvScp9muiPd5FXLEeQ1/PT8+bTDXgssHrFPosk8crpyxRZfd4UQISTo30FqZTjkHIUrhyU2+3GyoKUf1P7jSEQCASCBwohSj0KSLIoJSEvKiwKCzqzLPzUTc2i07ip5ULQK4PR6gUVm32SqQc+IqsoC7izKJVtrbTXyV3P5w1D0KtVqOxVXhhg10ewZ35ZW6ECnbv9+hcIBNXC3LlziYuLQ6vV0qJFC3bv3o2Xl9c9m4+npydvv/32PRtf8GiyZMkSQC7ccj3Lly9n2LBhgKhYXF1IpVX2NNlkOyXhYnUocDKYCNJpSEz/EENSJnn5ZwDw8emBk1MYAf79UCrvvLw2mss8NLVW0Se7SPblPJqQR9HVPNvj7Wp58URE9b7/5ZnMJJcYbYLUa6F+NNLr8LWnlYKhEJZFg7HM7oGQJ6BmG/uNIRAIBIIHDiFKPQpYFxgWrJWYFGaUkrzYUkCVBSkoq7q3M+kXzmWfsx0Pcwu76fk7snL5d1ImF4rkykzeWjU1NNXwcky3GhB71QW9L9TpDirxshcI7meaNWvGoUOH7vU0BIJ7TkUcFkTFYjtzcQec3oAkPQXI4pQZE0pr2T2FJGG05JKaus52iUbjTsMGCyokRpViNJX936pVClJzivn6j3jU7mC2KNFpVHw5pCUalYJmNat3M21rRg7DTsZjXcrhpVHzWtitCytUmtxkWZBSaqB2F3ANgFqRd75OIBAIBA814tP5o4BFDv+2WGRRyoKF0mAkpbLqZYQlSbKl75kkeZfvxXov0iu8F/U969/0mg8upnI0r6yKTJi9PaQSDsCZDZBsXWB3fgvq97LvGAKBQCAQCB4uNoyDa5exIBd/KUJLREIxdS6CGVBKEsXGZAA83Nvj5/88rvrGdyVIQZntAcB3h69wJiUPC3L0uLuTjqEtald7dFQpu7PzbYKUEnje184i2NVT8MssyJPTT6lREwb+175jCAQCgeCBRYhSjwLW9D2z9b/borCURUrZMUoKwCTJkU+hrqE08m50y2vSrD5SE0N8qePsSDcvO/skrP8/yCwrEU6Nh6csuEAgEAgEgmrCIFfPs1jXTDkKPX135JGv0XPWH5QSmJzkink+Pj3w93u2UsOUpu8pFTD1W9lg3sFf3kQc3r42f29cuyp3USG2ZOSwJCGNc4Xy2m1WRCAjgqrBc/P3LyHuukg973r2H0MgEAgEDyxClHoEsBhNHMrvS6pBXgRICguK0h0xu4hSZbt9FqsopVXdaFZeYrEw83wyqQYjV62i1MAAT4Id7WhsXkquvItJy5fBr7H8JRAIBAKBQHA7rNHlZkmFAtA5ZeFoMpOrlTfzLLU0BI59n7CgmtRwa165ISwSn+24IP9sXY89HuZBppMDVy139uO0F4suX+VQblnUegNnXfUMVBoh1XwohHeCcJGyJxAIBIIyhCj1CBC/9Si/5w+0tYvVBbiWilKqqqfvGUxlopSZW4tSO7PyWJqUYWs7q5R429NHymKG2B8h/yoYrYusrjPBQW+/MQQCgUAgEDy8WCxIEiisRufJnmdQWMBi9T3QPdYA38f6VGmIPy5l8e/fLtvaKqWCTwY2Y+7h79l0CdR3mQpYWUo3CN+qFcDjbs60cHWyX+dZF2FZdyhIA8m6TqwTBfWett8YAoFAIHgoEKLUI8DVoyeBNjgrM4l1v8Se4M08c9UJkFBUwVMqu8DA9A2nSM2RfaRUSgVGSQ5p1ypvFKXSDPLuY0MXR4YEeNHU1QlHe5YZjt0I/xtS1tY4gdbFfv0LBAKBQCB4uJHMtmrFALuV6bxoBskqSrl7VC46CuD7I1f49Jfz5BSZbMdcHFTM6OPDrpSNXMq9BFRvpNSurDxGnrpEgdlMqdd6T283Quzt7XlxJ+SnlrUd3CCg8s+dQCAQCB5ehCj1CFBs3QnTq9K44nmMHF0aSkUYIFUpUmrbmatsOJZsa/u7OWIwy6LU9QuqhKIStmXmsitbLm/cyMWJoYHVYN6ZdVH+7lYT/BvLu3Glju4CgUAgEAgEt0GSLGA22KoVAygUZhwksCjl9YRKXfml89I98VxILyh3zE2n5fOzr5NSkGI7plNXUxod8FNGDjkms60drnMgwMGONgrZl+UKhue3ye3G/aHru+DoBhpH+40jEAgEgocGIUo9ApithgUKhRkL1hBqO3hKFRrkRU3T4Bq81D6U5jXdmbT3MwA0qjJRatyZBH7LKVuE+Wjt/LIryIDE3yHJWkK+wTMQ9Z59xxAIBAKBQPBQk5a+BW+LCYtUJp4EZ7hyMMSdAqvdgPIuRak95zL4v1WHKDSYMVmkGx73ctGSUJgOQPuA9vg5+/Fk8JOVv4lbsDY1i/3X8tmTLRu5/yPcn75+Hnhq1GiUdtzA+99gSDlW1vaoBXpf+/UvEAgEgocOO+ZOCe5XSkUpJRbUJhOdj1hQWQUlRRXS50q9pEI9nWgcZuCXlG9IL5IXVtd7Sl0qkqOnIj30DPL3YIi9o6T+8yz890U484PcdvGxb/8CwSPOsGHDUCgUKBQKtFottWvXZubMmZhMpjtffBt27NiBQqHg2rVr9ploBYiPj2fgwIEEBATg6OhIUFAQvXv3JjY2ttx5GzdupFOnTuj1epycnGjVqhUrVqwod86lS5dQKBQcPXq0wuO/88471KtXD2dnZ9zd3enSpQsHDhwo1+fw4cMJCwtDp9NRq1Ytpk+fjsFguGPfq1atokmTJjg5OeHv78/LL79MZmbmba9ZsmQJjRs3xtXVFVdXV9q2bcumTZtsj2dlZTF27Fjq1q2LTqejZs2ajBs3jpycHNs5K1assL0+/vyVlpZmO6+kpIR//OMfhISE4ODgQGhoKMuWLSs3n48//tg2VnBwMBMnTqS4uPi29/Ddd9/RrVs3PD097/r/QyAASLzyb2Lj3ibh0ucooVz6XnCymms6B4xqOXqqhq9/hfrMLjDw04kUvth9kdxik02QclDLffdvGcw7vRrw8YAmmCT5vfT9Du/zTrt3cHNws+PdQYHJzPjYBFalZHG5WH4vaaJ3ws9BYz9BymySNwnT4+R2raeg8QBoNsg+/QsEAoHgoUVESj0CmG07c2aanUkner+FrQ0tWNQqVI6VN7U0WKvuadVKpu6aypmsM7bHXDQuxBUUk24wkmWUF1tz6gbbv9KeJEGa9cOkf1NZkGr4vH3HEAgEREdHs3z5ckpKSvjpp58YPXo0Go2GadOm3eupAWAwGNBqb//+YjQa6dq1K3Xr1uW7777D39+fK1eusGnTpnLC2CeffMKECROYOnUqS5YsQavVsn79emJiYjh58iRz586t9Dzr1KnDp59+Snh4OEVFRSxYsIBu3bpx/vx5vL29iY2NxWKx8Pnnn1O7dm1OnjzJyJEjKSgouO24e/fuZciQISxYsIBevXqRlJRETEwMI0eO5LvvvrvldUFBQXzwwQdEREQgSRIrV66kd+/eHDlyhIYNG5KcnExycjJz586lQYMGXL58mZiYGJKTk1m7di0A/fv3Jzo6uly/w4YNo7i4GB+fsk2Cfv36cfXqVZYuXUrt2rVJSUnBYikrlLF69Wpef/11li1bRrt27Th79qxNEJ0/f/4t76GgoIAnnniCfv36MXLkyDv+HwgE15OfH8fZszPkhiSvl6Tr0veU1tDymhk5tJszn4DmLSvU76v/O8qvcem29szeDenWwI8RK//gZHIu0Y/5EVnPx2Z7ANXjJWWWJBJLDJgl0CkVjA/xxddBwxPudvTcNBbB4sfhWpl5OwPWiHQ9gUAgEFQIIUo9xCTFnmbLZx+jLNKDBvY6K/DIvQqUeSN4j6r8Ar7EVCZKZRbJu/EdAjvwmNdjFKlD6PJ7+cgDD03VK/3ZkCQ5ZS8vGSyyZxYvbwZN9fkwCASPMg4ODvj5+QHwyiuv8P3337NhwwZiYmIYP348P/zwAyUlJXTq1IlFixYREREBwOXLlxkzZgx79uzBYDAQGhrKRx99RIMGDYiMlMuCu7u7AzB06FBWrFhBXl4eMTExrFu3DldXV6ZMmcL69etp2rQpH3/8MQChoaEMHz6cc+fOsW7dOp5//nlWrFjBnj17mDZtGgcPHsTLy4vnnnuO2bNn4+zszKlTp7hw4QLbt28nJCQEgJCQENq3b2+7z8TERCZNmsSECRN4//33bccnTZqEVqtl3Lhx9O3bl8cff7xSz+PAgQPLtefPn8/SpUs5fvw4nTt3Jjo6upzAEx4eTlxcHEuWLLmtKLV//35CQ0MZN24cAGFhYYwaNYoPP/zwtvPp1atXufZ7773HkiVL+O2332jYsCGPPfYY3377re3xWrVq8d577/G3v/0Nk8mEWq1Gp9Oh05W996anp/PLL7+wdOlS27HNmzezc+dOLl68iIeHByD/H17Pvn37aN++ve05Cg0N5cUXXywXSXYzBg8eDMhRZgJBRcnJOUpC4lJKimUvJ0fHIPx9esPuGVgkOZpJwoLKWoXPpdiAX60IFLfxqrRYJNb8kcDVnGIOXs4GZIuDEE8n+jQPwtlBjdEsi1xaa8SUyVIWcWpvUWpT+jVeOX2ZYuvmZICDlgmhfnYdA4DM8+UFqfrPCEFKIBAIBBVGpO89xJz7fR9ZKcmYrEKNSWnh/9m787gqqv6B45+5Fy7LZd9kEVkE19RcU8kFV7TQykzT3FKT0lwy157cIs1SK5c0e0r9PQ9Wj2ZGZiktGiqZa5oLCooigors693m98fAxRsKarh23r144cydOXPmXqXDd77ne9TlJaXKCpw7tLy5J37XUz59T6NWozMpT/pea/karzz6CicKSwFwVKuor7XlFX8vtH+jqHolJ2Lhsx6wYbiyrXEUASnhgSPLMoVG413/kuXKdU1ulZ2dHTqdjuHDh7N//35iY2NJSEhAlmV69+6NXq8Ei8eOHUtpaSm//vorR48eZeHChTg4OODv728OdiQmJpKens6HH34IwGuvvcbu3buJjY0lLi6O+Ph4Dh48WKkPixYtolmzZhw6dIg333yT5ORkIiIi6NevH0eOHOHLL79k165djBs3DgBPT09UKhUbN27EaDRWag9g48aN6PV6Xn/99UqvjRkzBgcHBz7//PO//f6Bkt21evVqnJ2dadas2Q2Py83NNQdybqRdu3akpqaydetWZFnm0qVLbNy4kd69e990f4xGI1988QWFhYW0a9euyv44OTlhdYPaOv/3f/+Hvb09zz77rHlfbGwsrVq14t1338XPz4969erx+uuvU1xcbD6mffv2HDhwgN9//x2AM2fOsHXr1lu6B0GojslUSkHhaZKS3uHy5a3k5h0CwM3tcYIDXlaOKcuUMkkm1GUBKgmgmnpSu5MzeePrP1n6cxL5JQbUKon/G9mGDwc2R2ujnKsvyzK3LiufoC9/sEbNB6W2X80zB6QAunk41Wj7lBZAym5lpT0Ar0YwKxsG/KdmryMIgiA81ESm1EPMZDRisrXH6OgK+WCUDLgXuwDZ5mNqoqaUxkplHlTpsOaXq3nsz1MKm/fxcmFxgzq3fY0bKq9ZoPUElzrQpH/NX0MQ7rAik4m6vx6969dN7tjktoPEsizz008/sW3bNnr16sXmzZvZvXs37du3B5S6Rv7+/mzevJn+/ftz/vx5+vXrR5MmTQAl86dceaDFy8sLFxcXAPLz81m3bh3r16+na9euAKxZswZfX99KfenSpQuTJ082b48aNYrBgwczceJEAEJDQ1m6dCmdOnVi5cqV+Pn5sXTpUqZOncrcuXNp1aoV4eHhDB482NyvU6dO4ezsjI9P5boxGo2G4OBgTp06dVvvXbktW7YwcOBAioqK8PHxIS4uDg+P69faS0pKYtmyZdVOGQwLCyMmJoYBAwZQUlKCwWAgMjKSFStWVNufo0eP0q5dO0pKSnBwcODrr7+mUaNG1z02MzOTt956i5deeumG7X366acMGjTIInvqzJkz7Nq1C1tbW77++msyMzN55ZVXuHr1KmvWrAGULLLMzEwef/xxZFnGYDAQFRXFzJkzq70HQbhZ+w/0Jz//mHk7MHAsdnZ18PTojjEvB5UMRlmZCixjQm1SMqNUsox0g5+bh85n82daLvtSlPFVsIeWDqEetA5yw8nWMtB0bekDqAhKqSQValXNPLzbcjmHA3mFJOQoRc3nh/rR39sNR6safDgISk3PC/sqtrWe8DcW0BEEQRD+mcT/OR5iJoMBk5UGSVYGVLKsp0RyYleoH6ayTAnV3xgA6coyDTRWKnNNhGnJBTx/5Az/y1AGZh6aGq6PYDJBXjrknFe2mw+B0T9D25dr9jqCIFjYsmULDg4O2Nra0qtXLwYMGMDw4cOxsrKymMrm7u5O/fr1OXFCqTE3fvx4oqOjCQsLY/bs2Rw5cqTK65w5cwa9Xk+bNm3M+5ydnalfv36lY1u1ssz0/OOPP1i7di0ODg7mr549e2IymTh79iygZG5lZGQQExNDu3bt2LBhA40bNyYuLu6m34vqaleBEpy7th/x8fHm18LDwzl8+DB79uwhIiKC5557zqIgeLm0tDQiIiLo37+/Ra2ka9uNiooC4Pjx40yYMIFZs2Zx4MABfvjhB1JSUsyvx8fHW5wXExNjbq9+/focPnyYvXv38vLLLzNs2DCOHz9eqT95eXk88cQTNGrUiDlz5lz3vhMSEjhx4gQjR4602G8ymZAkiZiYGNq0aUPv3r1ZsmQJ69atM2dL7dixg/nz5/PRRx9x8OBBNm3axHfffcdbb71V7XsqCFWRZZmiorPk5x8zB6SsrV1xdW1PUOA4fH2exdramctbvufzzKX8N3MloGRKqcrGUMggXSdTKr9Ez8DVv/HmN8eI/eMiAN0a1WJu30d4smnlYHr5Az1rtdKu3qgEpWoqSypbb2DM8RRWpl4xLzRTX2tb8wEpWa5YZc8tGLwaQ5sbB6sFQRAE4UZEptRDTK8zgCQhldVD0JTmUiJZUWKvfOw29lps7LW33O7pS/l8uussv51R6khp1JL5SV9SsRKoqmdvi6fGimdrudbErVT479NwZkfFtr17zbYvCHeRvUpFcscm9+S6tyo8PNxc9NvX1xcrKytiY2OrPW/UqFH07NmT7777ju3bt7NgwQIWL17Mq6++ejtdt6DVWv78KigoYMyYMea6SteqU6ciY9PR0ZHIyEgiIyOJjo6mZ8+eREdH0717d0JDQ8nNzeXixYuVsrN0Oh3Jycn07Nmz2r716dPHIljn5+dn0e+QkBBCQkJo27YtoaGhfPrppxZF4y9evEh4eDjt27dn9erVFm1fu7qck5MyHWfBggWEhYUxZcoUAJo2bYpWq6VDhw5ER0fTqlUri/Nq1apYor18RUWAli1bsm/fPj788EM+/vhj8zH5+flERETg6OjI119/jbX19X+B/ve//82jjz5Ky5YtLfb7+Pjg5+eHs3PFqmINGzZElmUuXLhAaGgob775JkOGDGHUqFEANGnShMLCQl566SXeeOONKt9TQajKqdNvceHCOvO2lZUzHTvsr3TcpUv5ZBsrfianOZ/GMV+Nsh6fbDF9L7dYz5QNf5CaXUypwYRWo6ZTfU/sNVYMaRtww76UT9/T/GX6Xk0EpfINRg7nFWGUwUGtYqivB7621rRzqeGi5vs/g4JLUF6k/eU9ooSCIAiCcNtEUOohFpT9Mw5OtUgvteUKIKMU07Qv1dHusY4Ejx6D1U088f+rVTvP8NXBC+ZtN601JskeWaUlt+wJ4MZH6+JlcweypM6WPRmXVGDvAXXDa/YagnAXSZJUs7XW7qDyQMq1GjZsiMFgYO/evebpe1evXiUxMdFi+pe/vz9RUVFERUUxY8YMPvnkE1599VVzxtG19Z2Cg4OxtrZm37595kBSbm4up06domPHjlX2sUWLFhw/frxSP6siSRINGjRgz549ADz77LNMmzaNxYsXs3jxYotjV61aRVFREUOHDq22XUdHRxwdHW+qDyaTidLSUvN2Wloa4eHhtGzZkjVr1qD6SxDxevdXVFRUqcaTuuzvlizL2NnZ3fT78tf+5OXl0bNnT2xsbIiNjcXW9voFjAsKCvjf//7HggULKr0WFhbGhg0bKCgowMFB+QX51KlTqFQqateubb6Hv97rtfdwK++pIMiyTMalbygpvsCVyz8AoFY7oFJp8PMdeN1z9DolyGKvyuK3Oj9x0DWeZw4HAzKSpLIoch53/BLbj18yb3cI9eSjwS3/2mTla/yl0HlNBaVOFBTTc/8pdGWZ8EF2NswKqZyp9bcd3QDbrplSa+8hAlKCIAjC3yKCUg+rkjzyc7w4UlQx8DJKyi8ZGoMJf+/aOHl43lbT+SXKAKp3E2861/fCu44dVwtXgFTx18nV+g781SrNBbnsl9c3MsDKpuavIQjCTQsNDaVv376MHj2ajz/+GEdHR6ZPn46fnx99+/YFYOLEifTq1Yt69eqRnZ3NL7/8QsOGDQFl5TtJktiyZQu9e/fGzs4OR0dHhg0bxpQpU3Bzc8PLy4vZs2ejUqmqXPUKYNq0abRt25Zx48YxatQotFotx48fJy4ujuXLl3P48GFmz57NkCFDaNSoERqNhp07d/LZZ58xbdo0QMmoevfdd3n99dextbVlyJAhWFtb88033zBz5kyio6N55JFHLK6bmJhYqS+NGzeulE1UWFjI22+/TZ8+ffDx8SEzM5MVK1aQlpZG//5KXby0tDQ6d+5MQEAAixYt4sqViiXly1c/vJ7IyEhGjx7NypUr6dmzJ+np6UycOJE2bdpctx5XuRkzZtCrVy/q1KlDfn4+69evZ8eOHWzbtg1QAlI9evSgqKiI//73v+Tl5ZGXlwcohePV1wRVv/zySwwGAy+88EKl6wwaNIi33nqLESNGMHfuXDIzM5kyZQovvviiufZUZGQkS5YsoXnz5jz22GMkJSXx5ptvEhkZaXGdv8rKyuL8+fNcvKhMnSr/PLy9vat8z4SHW17eHxw/PtliX9vHvsfW9sb/HvQGZXyjxoBb1lX+/R8jBwMLyXKwQ1X282fVzmT+k3COvLKxUHh9T4a0C6B14I0XIzCaZBZtT+RCdjFFuvLV9oxsPbOVpJwk4O8HpfblFqKTZVSArVpFv5rOVDfolFX2ymtI+TSDOu2gXkTV5wmCIAhCNURQ6mGlL6bEpDxRVlld5aLzKVLtTlAHB6QqinXejNKybKjw+l70b+XP8rPnlYCUbMRebc0TXs5Yq6r+5fGWHNsMv8xXUsZBWWlPBKQE4b6wZs0aJkyYwJNPPolOp6Njx45s3brVHJAxGo2MHTuWCxcu4OTkREREBO+//z6gTL+aO3cu06dPZ8SIEQwdOpS1a9eyZMkSoqKiePLJJ3FycmLq1KmkpqbeMEOnXNOmTdm5cydvvPEGHTp0QJZl6taty4ABAwCoXbs2gYGBzJ07l5SUFCRJMm9PmjTJ3M6kSZMIDg5m8eLFfPjhhxQWKgs3fP755wwcWDnD4nr7UlNTzRlA5dRqNSdPnmTdunVkZmbi7u5O69atiY+Pp3HjxgDExcWRlJREUlJSpfOrWjVx+PDh5Ofns3z5ciZPnoyLiwtdunRh4cKFVb5nly9fZujQoaSnp+Ps7EzTpk3Ztm0b3bt3B+DgwYPs3bsXqJyhdfbsWQIDA83bn376Kc8884y5aP21HBwciIuL49VXX6VVq1a4u7vz3HPPER0dbT7mX//6F5Ik8a9//Yu0tDQ8PT2JjIzk7bffrvIeYmNjGTFihHm7/POYPXv2DWtfCQ+v7OzfSUuLobhEyei2tfXDze1xnBybVhmQyslIJ7+gCIAr1jLG4lNojGAuKdW4KbtOZ7JqZzI5RRUr5kU286VLg1rXa9LswLlsVu5INm9rrFTsTP+B9w68Zd5nd5vZRruy8zmaX0x8dj4Ag33dea++/221VaW1T8CF3yu2Gz8Nj0+68fGCIAiCcJMkuSbWBn9I5eXl4ezsbF7++kEhm2RSdh3g/OYv+bOoF4XacxzwXk+RIY/Ohz1xKyjmqRdG4fr887fV/vOrfyPhzFUm93blj+LP+JNmpGg6YFfwC2cj78AAZV0knP21YrtOe3jx+5q/jiDcQSUlJZw9e5agoKBqgyuCpcLCQvz8/Fi8eHGlAtp3Q1ZWFl27dsXJyYnvv/8ee3v7u94H4e6r6t/sgzo+uJPul/dk3/5nycs7ZN4OqPMSISHTqjwn5fABvlowGwfbWhjsBpNll06ucT4jt5vY8WgwRbLEt7V6kWIfaD7nq5fb4WqvIdiz+npNP5+8xItr9+PrbMvojsE08XNmb87nrPpjFbUdatPQvSGRwZGE17m1kgRXdQaa7fkTwzUj+alB3rwWWMMZggYdRHsBsjJdz94dBsaAR2jNXkcQBEF4qNzs2EBkSj2E0pNzSPjyGD6astockoyM0byCjCRbFuu8VaUGZQrdpowznHbqhdFKKTbudKdK4xQqBdWJWAh+LcD77heGFgTh7jl06BAnT56kTZs25ObmMm/ePADzlMC7zc3NjR9//JEVK1aQkJBA165d70k/BEG4PoOhgD+Pjae0JIPCojMABAaOw862Nl5e1U8vy0v5kxDHTCQrJ1IBk2TEucQByEOSNCDrkZFwsbfG28mWbg1r0TLgxtP1/qp8xT0fFztGhAUBsOuAkm3V2b8z09pUHTS7kQulOgwy2KtV9PZwxslKzQs+NbgAjK4QPouAzNOADGobmJIE1UylFgRBEIRbIYJSD6HifD1Wkg6ZsgKxZf+pyp6kqWQZSf13glLK4Oos/hhsKlZSmvjI07ff6b8yGSFuFmSdhSxlgElAO6WGgSAID71FixaRmJiIRqOhZcuWxMfH4+Hhcc/64+7uzqxZs+7Z9QVBqEyWTeTn/8nVq79y9epO834rKxcCA15Grb65rNSQkwtpWjuNlBItqTlgVBmwMypjqCKdCazAhIoXw4IY3/XWs4PKx03lK+4B6ExKUXVr9a3XktqfW8jCs+lcLqtPFWJnw/JGN17x77ZdPAQZRyq2gzqKgJQgCIJQ40RQ6iFkMsmYbDIwlQ2okGRkyYRkzpQC6W8UIi9/4qdTKStnjXC7zDOBYbR0qsEpLRf2QcLyim2VNTjfgRoJgiDcd5o3b86BAwfudTcEQbjPXbjwH06dnmfedncPp47/CLTakJsOSAHY6JQFBa7ISpaRSTKhLltXpbymVLtQT/q3qn2906tVPm4qX3EPQGdUglIa1a2vgvzvC1eIzy4wb9d3qOEp4aX5ymrH53Yr236t4NnPxDhMEARBuCNEUOphYzKhPf8N9bQ/kZnXqWynTKjBCb/DlylVK9P3pNuYvncpr4Tjl/O5UFCitFr2xK+tg57WztqaugNFfoby3T0E2r8KXo3B/uZT5QVBEARBeDiVlFxEp8vkalY8ABqNBzY2PgQFjsPZ+dFba0yWUZdlLcXTFhvAJBmwMVqOk8Z3rY+P8+0VI9cZKwelDCYly0mjvvmgVFJRCclFpZwsVMZhr/h70dZFS5hL9XWtbsnWqfDH+opt1wDlSxAEQRDuABGUetic243vkSn4qmAbXQBobKiNbfwV9DlwvDaoALXbrdUcyCnS0fHdX8wp6ACoJFSGTLQ1uRLehQOw/zPIPKVsezaAlsNrrn1BEARBEB4oRmMRsqyMP/Lzj3Hw0CCL1+uFvkmtWk/eXuPlK/sCxrJhsUkyYmuywwTYaNSUGo1/a9VifQ1kSmXpDXTdl0ipqaKqeYSHE21qOiAFcPm48t2rETjUgsdervlrCIIgCEIZEZR62BRlAlAga8mSXQFwxg5jqRGdpAyo7Fu0wL51q1tqNjWrmFKDCZUKDLZWuLra4Gj9M1cv/4Km4Rs11/+f5liutOcaWHNtC4IgCILwwPl939MUFSVV2m9r44uNrTdubh1uv3F9MUbZiqSSMNSlngAYJT2FRit+aFYXyoJHKpWqqlaqVJ4pZfM3akqdKSql1CRjq5Jo5GBHsJ0NLZxqMEs9Nw1+fgtK8ioeDPZdoSwwIwiCIAh3kAhKPWxMShGEq3iSTi1sABUSstGELCkft03t2ki3OLhKzleeJKrtrSkK82JQQC1+O/ohuYaL2KhrMFMqL1353no0eNaHR/rVXNuCIAiCIDzwVCoNjzyyHE+Pv7cS5g9/pPLltl+YUdKOH3MnUj6akY25GOSKgt5aVzfc/G69nlSxzsgPx9L5/Ww2YJkppTcqq+9Zq6oOSp0oKOaTC1c4V6wEsRo72PFdy3q33JdqHfov/PF5xbbKWjwYFARBEO4KEZR62JTVKDAhAcqAyuSgQ2WSMZWNr1S3kYIec0HJwCota+Ps1b1kFiv7/nZQyqCDra9DbirknFP2tSkLSgmCIAiC8I/2WJtY5IpZa0iSClU1wZyqXM4r4c+zabTY3IMIOZM/TMrUP6OqhKv2ZzjptQef89ZoDEaebtcF30mv3dbY6b+/nePtrSfM21obK7albGP1kdVcyL8AVF9T6oNzl/jmco55O8iuBh8EglLU/FwCpO5Vths8CSHdoNYjopanIAiCcFeIoNRDxqgrQQ0YUZlX2zP56rAympBVyvbtDKyuFitP9Fxs1BRl/5ddqb8gycpTOwfrv1nPICUeDq6r2La2Byffv9emIAiCIAgPBZWqZgMx/T9OwDHrT7bYKA/XTCjjIr0ml7NeceTbXgF8kWQZG1v72xo3AWTkKQXJgz21POrvwpC2Acw7sIhT2afMxwQ4Xb+AeKHRSKbOwNmiUgCe93GjsYMdfTxdbqsvN/TtRPhzY8V2/d7QfHDNXkMQBEEQqiCCUg8ZQ0mhOSgll2VK/XL2a3zcPTColEHVrQyuZFkmNauYnLKBlZedxKX8bdiqbYkIeoog5yDqutT9e50uuKx8r/UItB8P3o+AjePfa1MQBEEQBKFMid5I7OGLZBXpOHe1iEclpc5TntGTPVntwRpkSUaWjUhlqeW3u1pxOV1ZgfPIpr5M6q5MuSs1KkGmV5u/SreAbgQ7B1c6L0dvoO1vJ8gxGM37XvBxp2VNr3QMcOmY8t2zIbgFQ/1eNX8NQRAEQajC7VdtFO5LJoOSvWRCQq/SI8t6HM9lUGBrS4lGSXV3dPe8qbb+yC8i9LNddHzvF7L+zALA1krJn3e3c+etsLd48ZEXkSSpqmZu7Eoi/PdZ2PmOsu3VCJoNgFqNb689QRDuiOHDhyNJEpIkodFoCAkJYd68eRgMhr/V7o4dO5AkiZycnJrp6E04e/YsgwYNwtfXF1tbW2rXrk3fvn05efKkxXFbtmyhU6dOODo6Ym9vT+vWrVm7dq3FMSkpKUiSxOHDh2/6+nPmzKFBgwZotVpcXV3p1q0be/futWhz5MiRBAUFYWdnR926dZk9ezY6na7atmNiYmjWrBn29vb4+Pjw4osvcvXq1Zvu2zvvvIMkSUycONFif3JyMk8//TSenp44OTnx3HPPcenSJYtj3n77bdq3b4+9vT0uLi7Xbb/879C1X1988YX59U2bNtG9e3fzddq1a8e2bduq7femTZvo0aMH7u7ut/x5CP8cX+5LZepXR3jne+Xfei2t8oDOiIoix/LAk4z/5RJG/6AEg1QySFa3v+peaVlQyca6ci2pRu6NrhuQAjhZWEKOwYgEaNUqWjjZ09jB7rb7UYlBB99NhpjnIOuMsq//Gnh+vZiyJwiCINx1Iij1kJH1yhM4IyqQJZArnrI1T8ngySGjafnEUzfV1o6r+ZRmKe3JagnJRk3H+krtgxopbn7oP5AUB9kpyraoISUI962IiAjS09M5ffo0kydPZs6cObz33nv3ultmNxO00ev1dO/endzcXDZt2kRiYiJffvklTZo0sQiMLVu2jL59+xIWFsbevXs5cuQIAwcOJCoqitdff/1v9bNevXosX76co0ePsmvXLgIDA+nRowdXrlwB4OTJk5hMJj7++GOOHTvG+++/z6pVq5g5c2aV7e7evZuhQ4cycuRIjh07xoYNG/j9998ZPXr0TfVr3759fPzxxzRt2tRif2FhIT169ECSJH7++Wd2796NTqcjMjISk8lkPk6n09G/f39efrnqpePXrFlDenq6+eupp54yv/brr7/SvXt3tm7dyoEDBwgPDycyMpJDhw5V2WZhYSGPP/44CxcuvKl7Ff5Z9p65ylcHLvDjCSWQ2tDHiaeb+zGmQx0AjJIJuTyDXJJpnaIj8HJFppS1n99tX7u0LFNKc+2qe2Wr+V2vwHlaiY5l5y6xLk2ZVviYs5bkjk3Z2rIetuoaHLKn/Ar7/g2nt4GxFKzswPnWC7kLgiAIQk0Q0/ceMrK+lL35Azmla4OdwQWo+EXNO7eQwIaPoL7JVPQsgwHJqGRGvdu/KU839WVfegL/OVdDQanCsif4zZ6HJs9CYMe/36YgCHeEjY0N3t7eALz88st8/fXXxMbGEhUVxYQJE/j2228pLS2lU6dOLF26lNDQUADOnTvHuHHj2LVrFzqdjsDAQN577z0aNWpEeHg4AK6urgAMGzaMtWvXkp+fT1RUFJs3b8bJyYmpU6fyzTff8Oijj/LBBx8AEBgYyMiRIzl9+jSbN2/mmWeeYe3atezatYsZM2awf/9+PDw8ePrpp1mwYAFarZZjx46RnJzMTz/9RECAUsclICCAsLAw832mpqYyefJkJk6cyPz58837J0+ejEajYfz48fTv35/HHnvstt7HQYMGWWwvWbKETz/9lCNHjtC1a1ciIiKIiIgwvx4cHExiYiIrV65k0aJFN2w3ISGBwMBAxo8fD0BQUBBjxoy5qUBNQUEBgwcP5pNPPiE6Otritd27d5OSksKhQ4dwcnICYN26dbi6uvLzzz/TrVs3AObOnQtQKZvsr1xcXMx/j/6q/LMtN3/+fL755hu+/fZbmjdvfsM2hwwZAihZZoJwrZMZeQxY/ZvFvhHtA3mutT8kKyvimVBRvjBMoNETB7U1prIMcJvatXHs2fO2r1+qV4JSNtYV2VZ6k5Ipdb0C528lX2TzNUXNfW2rLoJ+y4wGuHICUvcp295N4LEo5bsomyAIgiDcIyJT6iFTUmJif+EA8vRBqGVrQBkQqWSlwlR1tRFkWeb9lAzGHT/H9sxcKHvK56e1RaNSmWshVLdaTBUXgMOfw6+LIO2Asq9OO2WlF6saHnwJwn1OlmWKdIa7/iVfu4zVbbKzs0On0zF8+HD2799PbGwsCQkJyLJM79690euVX7zGjh1LaWkpv/76K0ePHmXhwoU4ODjg7+/PV199BUBiYiLp6el8+OGHALz22mvs3r2b2NhY4uLiiI+P5+DBg5X6sGjRIpo1a8ahQ4d48803SU5OJiIign79+nHkyBG+/PJLdu3axbhx4wDw9PREpVKxceNGjEZjpfYANm7ciF6vv25G1JgxY3BwcODzzz+/zpm3TqfTsXr1apydnWnWrNkNj8vNzcXNreopNe3atSM1NZWtW7ciyzKXLl1i48aN9O7du9p+jB07lieeeMIcYLpWaWkpkiRhY1PxIMLW1haVSsWuXbuqbft61/Lw8KBNmzZ89tlnVf5dNJlM5OfnV3vvgvBXSZcLGPLpXl7+r/Jzw8NBQ6d6njzTwo+ej5QFRU3KzwBJUiGVBaUcsEEymShbJwa1gwOS6vaHyjpjWVDK6ppMKZPysFCjqjzmSSlWXuvi5shIPw8mB9a67Wtf1zevwKrHK8om+DwKzV8Anxv//BEEQRCEO01kSj1kDKUVNV6SvHdwWnuQ8P0gmcoG/uqqP/IjBcUsTE5HdaUESW/CqlQZUDnYKueVB6VuO1Pq3G7YHGW5z9Hn9toShAdcsd5Io1nV18ypacfn9cRec3s//mVZ5qeffmLbtm306tWLzZs3s3v3btq3bw8odY38/f3ZvHkz/fv35/z58/Tr148mTZoASuZPufJgg5eXl7kOUX5+PuvWrWP9+vV07doVUKZ8+fpWXpGzS5cuTJ482bw9atQoBg8ebK6JFBoaytKlS+nUqRMrV67Ez8+PpUuXMnXqVObOnUurVq0IDw9n8ODB5n6dOnUKZ2dnfHwq/1zSaDQEBwdz6tSpSq/dii1btjBw4ECKiorw8fEhLi4ODw+P6x6blJTEsmXLqsySAggLCyMmJoYBAwZQUlKCwWAgMjKSFStWVHneF198wcGDB9m3b991X2/bti1arZZp06Yxf/58ZFlm+vTpGI1G0tPTb+6Gy8ybN48uXbpgb2/P9u3beeWVVygoKDBnd/3VokWLKCgo4Lnnnrul6wjChv2pxJ/ONG8PeiyA18oKjZuVZSyZyssdAHqrfKzBvFCMSnV79aRK9EZSs4rILlKCTNcGpcprSlmplJ/BJUYTw4+e5UxxKRdLleOnBPnQ3Mn+tq5dpdTfle/2HmDnAs0G1vw1BEEQBOEWiUyph4xRX/bkDyNXHVPIsU8DlEwpAMm66l9EM0r1qNOL0BzOwvpYDlJZ6nlGcTLLDy1n69mtwN/IlCqvH+XsDy2GQqfpUDf89toSBOGu2bJlCw4ODtja2tKrVy8GDBjA8OHDsbKyspjK5u7uTv369Tlx4gQA48ePJzo6mrCwMGbPns2RI0eqvM6ZM2fQ6/W0adPGvM/Z2Zn69SvXnGvVqpXF9h9//MHatWtxcHAwf/Xs2ROTycTZs2cBJVMnIyODmJgY2rVrx4YNG2jcuDFxcXE3/V5oNNX//IuJibHoR3x8vPm18PBwDh8+zJ49e4iIiOC5557j8uXLldpIS0sjIiKC/v37W9SGurbdqCglyH/8+HEmTJjArFmzOHDgAD/88AMpKSnm1+Pj4y3Oi4mJITU1lQkTJhATE4Otre1178PT05MNGzbw7bff4uDggLOzMzk5ObRo0QLVLWaQvPnmm4SFhdG8eXOmTZvG1KlTb1iXbP369cydO5f//e9/eHl5VfueCgLA7G/+JHzRDmL2ngdg8GN1+M/INowLD6l8sEl5iHft9D2dbR6S0UjZ4nuobqPIudEk0/ODX+n+/q8cOp8D3CBTqmwcdSCvkB3Z+Zwv0WGQwUGtoq59DZRIMF+wEDaOhDW9IUd5XxgVB68egMDHa+46giAIgnCbRKbUQ0I2mfj92wQKTyWX7TFhkkyorlnWGG48fS+9VMfbyemcLCxBKlYCW7Vd7Wjg7UhDHyeW/DGe9KKL5uOdNE631sHSAjjxLZwqywoJCIM+y26tDUF4yNhZqzk+7/brlfyd696q8PBwVq5ciUajwdfXFysrK2JjY6s9b9SoUfTs2ZPvvvuO7du3s2DBAhYvXsyrr756O123oNVaLo9eUFDAmDFjrpt5U6dOHfOfHR0diYyMJDIykujoaHr27El0dDTdu3cnNDSU3NxcLl68WCk7S6fTkZycTM+bqDHTp08fi2Cd3zXFkrVaLSEhIYSEhNC2bVtCQ0P59NNPmTFjhvmYixcvEh4eTvv27Vm9erVF29euLlde52nBggWEhYUxZcoUAJo2bYpWq6VDhw5ER0fTqlUri/Nq1arFTz/9xOXLl2nRooV5v9Fo5Ndff2X58uWUlpaiVqvp0aMHycnJZGZmYmVlZa4LdW3W2+147LHHeOuttygtLbWYHvjFF18watQoNmzYYDGlsKr3VBByinSsSzhnse+5Vv4083e5/gkWQSnFPrsU2hfl4CApAaPbyZTKL9Fz7moRAK721ng729E60I0rRVco1BeaC51nGdRsT73MkfxiAB51tGd+qB917Gxw+hsr/lWS9BP8ubFi29YZnMS/HUEQBOH+IYJSD4n9W77m1y//Q4tg5SOVJCPeV0voctREtt01mVLq6w90/peezcZLStFPq7I6Uk829WV6rwbIssx//6s8xe9bty9ONk48V+8Wp1MkrIAdFUWDcazhOgmC8ACSJOm2p9HdbeWBlGs1bNgQg8HA3r17zdP3rl69SmJiIo0aNTIf5+/vT1RUFFFRUcyYMYNPPvmEV1991ZxxdG19p+DgYKytrdm3b585kJSbm8upU6fo2LHqxRBatGjB8ePHK/WzKpIk0aBBA/bs2QPAs88+y7Rp01i8eDGLFy+2OHbVqlUUFRUxdOjQatt1dHTE0fHmCgebTCZKS0vN22lpaYSHh9OyZUvWrFlTKSPpevdXVFSE1V8eOqjLft7LsoydnV2l87p27crRo0ct9o0YMYIGDRowbdo08/nlyqcY/vzzz1y+fJk+ffrc1P3dyOHDh3F1dbUISH3++ee8+OKLfPHFFzzxxBMWx9/Keyr8c/znt3Os/jXZXFTcTath9ZCWeDjYEOihvfGJxoqglF5S/pwuZWEy6JEl5e+k+jaCQ4U65eeZxkrFoVk9ANiesp3JOydbHLcktYifsrPM2/W1trRwrqK/t0qWIe8iXDmpbNduA+1eAe+mYFWDmViCIAiC8Dc9GL8NCdUyXThAR49knHDjJMoH2+nIFdzTICEUVDKonJxQ2V+/RsFlnVLjoJu7EzoHPb9TiIONMhgrNZZiKHuiOL3NdBw0DrfewawzyvdajygDolYv3nobgiDcV0JDQ+nbty+jR4/m448/xtHRkenTp+Pn50ffvn0BmDhxIr169aJevXpkZ2fzyy+/0LBhQ0BZ+U6SJLZs2ULv3r2xs7PD0dGRYcOGMWXKFNzc3PDy8mL27NmoVCqkshWxbmTatGm0bduWcePGMWrUKLRaLcePHycuLo7ly5dz+PBhZs+ezZAhQ2jUqBEajYadO3fy2WefMW3aNEDJqHr33Xd5/fXXsbW1ZciQIVhbW/PNN98wc+ZMoqOjeeSRRyyum5iYWKkvjRs3xtracsn3wsJC3n77bfr06YOPjw+ZmZmsWLGCtLQ0+vfvDygBqc6dOxMQEMCiRYu4cuWK+fwbrVoHEBkZyejRo1m5ciU9e/YkPT2diRMn0qZNm+vW4wIlyPPXe9Fqtbi7u1vsX7NmDQ0bNsTT05OEhAQmTJjApEmTLKZUnj9/nqysLM6fP4/RaDRnZYWEhODg4MC3337LpUuXaNu2Lba2tsTFxTF//nyLgvLr169n2LBhfPjhhzz22GNkZGQASlF9Z2fnG957+XUvXlSyecs/D29v7yrfM+HBVqwzciG7iNW/JpOaVWze3ybQjVaB1RfHNxl0qADjNZlSGpWaAK0/V4uUh3TSbWRKFZXV9tRqKs49dvUYANYqa2zVtjzq9SjHyxZH7uzqiL+dhih/z1u+VpW+GQuHYyq2fZpB46dr9hqCIAiCUANEUOoh0SD7G5zdLpCpVwZXKkCtUpmXNdZ4eRH4/iqkv9RC2Z2dz67sAhJyClCnFnLxRAEF2SUAONgofz0K9AUASEjYW99i4c3MJCjIgKyyaYVtX1ZWehEE4aGwZs0aJkyYwJNPPolOp6Njx45s3brVHJAxGo2MHTuWCxcu4OTkREREBO+//z6gTL+aO3cu06dPZ8SIEQwdOpS1a9eyZMkSoqKiePLJJ3FycmLq1KmkpqbesO5RuaZNm7Jz507eeOMNOnTogCzL1K1blwEDBgBQu3ZtAgMDmTt3LikpKUiSZN6eNGmSuZ1JkyYRHBzM4sWL+fDDDyksLASULJ6BAysXBr7evtTUVGrXrm2xT61Wc/LkSdatW0dmZibu7u60bt2a+Ph4GjduDEBcXBxJSUkkJSVVOr+qleqGDx9Ofn4+y5cvZ/Lkybi4uNClSxcWLlxY5Xt2MxITE5kxYwZZWVkEBgbyxhtvWLxfALNmzWLdunXm7ebNmwPwyy+/0LlzZ6ytrVmxYgWTJk1ClmVCQkJYsmSJRa2s1atXYzAYGDt2LGPHjjXvHzZsGGvXrr1h/2JjYxkxYoR5u/zzmD17NnPmzPk7ty7cp/RGE92W7CQtpyIYtXZEazwcbKjvfZMZivoSVIBJWZsYAPeruRy2saGklhLUUlezYvH1FJVlSl2bBVs+Ze/5RiP4TdWLfSU6LhYpY63ZIb40dLC75etU6+yvyne1BmwcoeGTNX8NQRAEQagBklwTa4M/pPLy8nB2diY3N9dct+N+VfhWMFrjVfbou3Do6qvYokPKWY6xsIQ8e1s8A4IY+q5lDSeTLFMv/igFRhPIMjY/XkQyVbz+0QtN+ezMJJJzkzGYDDhYO5AwKOHmO5V2AD7pYrnv+S+hfsTfuFNBeDCVlJRw9uxZgoKCqg2uCJYKCwvx8/Nj8eLFjBw58q5fPysri65du+Lk5MT333+P/Q0yToWHS1X/Zh+k8cHdcjfeE53BxN6zV7mQXcyMTUeRJHCxs6Z9XQ+WD2pebTalRVu7V6KJm06SXI//FYzFubAOBflLsTJUrGLcrMcTdBv58k21dymvhM92neVsZiHbj18i1MuBuNc6ATAvYR4bTm2gR6OZxBQ0NJ/jaqVmf/tGaG9QWuGWleTCsa9BXwxxs8CogwlHwDWgZtoXBEEQhFtws2MDkSn1sJCVaNKfcgMAck2nkWXAXhlIO7pXXm48z2BUAlLAEG93NpiUqQ/zn26Cj4strq7pJB6omJbSolaLSm1U6ZKSro7GQSmq6VxbrPQiCEK1Dh06xMmTJ2nTpg25ubnMmzcPwDwl8G5zc3Pjxx9/ZMWKFSQkJNC1a9d70g9B+Kf6/WwWRToDy35O4sC5bPP++rUc+WFi1bXmbsSkK+FIYS+OlPRAa1TqXKrKxlKNL1whYMJEQp565qbbW7M7hY9/PWPe9nSsqNtUYtCjtw4gw6RMQ23lZM+8ED8C7W1qLiAFsOt95aucpAYHUcNTEARBuL+JoNRDQkIZSMmU1YGSitAA2hIdLg186fnyRIvjzxaVcqosdVyrVjHVvxYbUJ46Dmztj0olsTvtNAB1neuyqvsqvOy9bq1TRWUFPBtGwtOrbvveBEH451m0aBGJiYloNBpatmxJfHy8udD2veDu7s6sWbPu2fUF4Z9s5tdHSbpcYLGvZYArIx8PuvXGEn+AHQvQ5Kbxe8FiSmXHisFw2eQBr7wiAus1xFpz8wXBL+crY6oOoR60DnSjdxMf82s7DY+S49OPn5RF+Qi2t6nZoublMpVxG34twTUI6oaDtcjMFQRBEO5vIij1kJDKnu6ZZKWmlCwpNQ1sDEa6NOuGvVNFkdivMrIYe+K8edvFJHH6cj4ADhorVCol/T1fr+xztXXFW3uTxWJlGb4ZBxf2QWFZgV4719u/MUEQ/nGaN2/OgQMH7nU3BEG4T4R4OmBjpYxvfJzt+HDgo2htbm8Iq9+zEuv0w6gAg6zU2bzg/jt5+t0EZZsASVmxWH1r7ecVK9P+ejfx4fk2dSxeuyK7gwSOKgPetlqe866+EPtNk2WIfVUpmZCdouwLmwiN/t7qmIIgCIJwt4ig1EOiIlPKquy7EpRSyTIaW8uncYfzlUd1DmoVdpmlXP09jUEoQSqtjRU7Unfw0eGPuFpyVTnuVlbby06Bw/+13Fer8S3ejSAIgiAIgmLVkJY11lZR9hWcgV3G5hhRFmRwu3qUF3Yk8UOzugBIsozKrvoMoxK9kYU/nORyXimHU5VphU62Spt6k0z0mYtcLNFTgDKOer3WZcY06F1j9wIo465D/7lmhyTGXYIgCMIDRQSlHhImk8QlfSiyQSkgVh6UkmQZ6ZplybP1Bi6W6gF4PdCb3KIsVnIZK5WEjZWKZ1r48UXiB5zIOmE+p65z3ZvrRGmB8qQOwNEH+v1bWfHFu2kN3KEgCIIgCMLfZFIymtKphbJWMfjl6pCvKZLuPvgFNHWrH/vsSLzCmt0pFvtquyor6e3MyuPj1LKMcckKTDq8NDVYP8pogAu/Q/oRZdvJD55aqdTvdL/JcZsgCIIg3AdEUOohoEsv5OecCZwrbVWxU1YGXZIMkkZJT5+blMbK8gES4KaxIq1EOe6VznV5rUd9AF7YqtRteOXRV2jr05YmHk2q74S+GJY2h8LLyrYoai4IgiAIwn3GXO5AqhgCu2CF6ZqglM/U129qJb+sQh0ADbwdeb5NHXxd7Gji58TJwmJ2Z+cCoNadw65gB1rjRZq3WlhzN7LzHfj1vYptlzoQ3Knm2hcEQRCEu0QEpR5wpefyuLLyD3INvgDIqmI0xQWEpp/mgnNZppRGyZTamZVvPs9LY0VbZy17SpSsKSe7imyqQn0hAM29mtPcq/nNdSTnfFlASgKtJzR/oQbuThAEQRAEoQaZLMsdABi1KkyqiiCU6ibrSeWVjaEa+zozrH0gAOvSMpl26oL5GOvSJHZFTMNJ44S9tf3f7X2F9D+U787+YO8O7cbWXNuCIAiCcBeJoNQDzpilrPZiKktBl+wT6PDzV6R4OIOzB2obDbaNldoC2QZlSt+2VvWI3ZnC0OV7uJxfCoCjbcVfhfKglNbqFlaGKS5botk1ECYc/ht3JAiCIAiCcIfIyljIeM0Q+JjhKH5lMSmV2qraLKmfTlxiw/4LnCpbJMbJrqKtI2V1O53UEoXFqWiLf8NbO7lm+m40wBeDIOMIFGYq+558H0K710z7giAIgnAPiKDUA042KcsXy2Wr7kllTwD1yiZSeBdeulRI4cUkLuuUJ3oOksSnu85atOPvZsWTXz/J+bzzyChtaq1vIih1LgFOfAs555RtsdKeIAiCIAj3KaksKFX+MA/AWq8i01EpbK6+pg7njczfeoLkK4XmbX9Xew7mFXKpVM+JQuVh4St+dny6a8bNjaVu1pWTcHpbxbaVLdR6pObaFwRBEIR7QASlHnRlQSkTSvHM8qCUwUp5ypeiM/J9Zq75cEe1CjtTxRPADVHt8HK04ZLuGOfyzpn3+2p98XP0q/7637wCWWcqtp18b/tWBEEQBEEQ7qiymlKyrAyBjaYCMPhx1F8ZG1ndRFDqalktqYndQgny0OLl70jvA6ctjnFUKzU7bdQ2f7/PhlI4sK5iMRmPespiMk5+oPX4++0LgiAIwj2kqv4Q4X6mZErJFdP3jMoTwPJMqRJZGWQ9U8uVFQ3rsKVlPQx6ZUBmr1HTOtCNAHct+XolBb2ReyN+ee4XtjyzpfqBlCxDTqry5zZjoNM06D6vZm9QEIR7bvjw4UiShCRJaDQaQkJCmDdvHgaD4W+1u2PHDiRJIicnp2Y6ehPOnj3LoEGD8PX1xdbWltq1a9O3b19OnjxpcdyWLVvo1KkTjo6O2Nvb07p1a9auXWtxTEpKCpIkcfjw4Zu+/pw5c2jQoAFarRZXV1e6devG3r17LdocOXIkQUFB2NnZUbduXWbPno1Op6u27ZiYGJo1a4a9vT0+Pj68+OKLXL16tdrz0tLSeOGFF3B3d8fOzo4mTZqwf/9+8+vXfv7lXxERERZtBAYGVjrmnXfeMb+emJhIeHg4tWrVwtbWluDgYP71r3+h1+st2snJyWHs2LH4+PhgY2NDvXr12Lp1a5X937RpEz169MDd3f2WPw/hn+evmVImOReQkGQZd0cX2j4zoMrzTSaZvGLl7+3zberQ91E/zpStauxqpaa1k5Y+Xi40s1euUyNBqWNfw/dT4MgXyrZHPfBpJgJSgiAIwkNBZEo96EwyYEKW/5IppVaCUdnKJo+7OvCUlyt7z14lMUMJQDnYVHz8BTplxT1XG1c87KoZ5MgybHsD0g+DqewXiu7zwNq2Zu5JEIT7TkREBGvWrKG0tJStW7cyduxYrK2tmTFjxr3uGgA6nQ5N2UqjN6LX6+nevTv169dn06ZN+Pj4cOHCBb7//nuLwNiyZcuYOHEi06ZNY+XKlWg0Gr755huioqL4888/WbRo0W33s169eixfvpzg4GCKi4t5//336dGjB0lJSXh6enLy5ElMJhMff/wxISEh/Pnnn4wePZrCwsIqr7t7926GDh3K+++/T2RkJGlpaURFRTF69Gg2bdp0w/Oys7MJCwsjPDyc77//Hk9PT06fPo2rq+VU7PLPv5yNTeVftOfNm8fo0aPN246OjuY/W1tbM3ToUFq0aIGLiwt//PEHo0ePxmQyMX/+fED5DLt3746XlxcbN27Ez8+Pc+fO4eLiUuV7WlhYyOOPP85zzz1ncX1BuJYsy+T/nIpGr4yXTGWZUlZGA0bAVm+gT8ceuPXue93z03OLGbl2P1cKSsuT1InPL+TPy1c5nKfUkYrwdGZ+iCdHrhzh+JVEoIaCUtkpynevxhDUEVqN+PttCoIgCMJ9QgSlHnAmvYGDVsmY8AIqMqWMZavIXDEqUSkPayvW7z3Hm98cM5/rZGfNrxd+5bM/P+NS4SUAHDQO1V/0ahL8tqJi2yVABKQE4SFnY2ODt7c3AC+//DJff/01sbGxREVFMWHCBL799ltKS0vp1KkTS5cuJTQ0FIBz584xbtw4du3ahU6nIzAwkPfee49GjRoRHh4OYA6ADBs2jLVr15Kfn09UVBSbN2/GycmJqVOn8s033/Doo4/ywQcfAEpmzsiRIzl9+jSbN2/mmWeeYe3atezatYsZM2awf/9+PDw8ePrpp1mwYAFarZZjx46RnJzMTz/9REBAAAABAQGEhYWZ7zM1NZXJkyczceJEc7AEYPLkyWg0GsaPH0///v157LHHbut9HDRokMX2kiVL+PTTTzly5Ahdu3YlIiLCIgspODiYxMREVq5cWWVQKiEhgcDAQMaPHw9AUFAQY8aMYeHCqpegX7hwIf7+/hYBp6CgoErHXfv534ijo+MNjwkODiY4ONi8HRAQwI4dO4iPjzfv++yzz8jKymLPnj1Yl02hCgwMrPKaAEOGDAGULDNBuBF9eiF5ceeopZFABXJZ2QOVScn4lGQZ69q1b3j+zsQrHE/PM28HeWoZfyoV0zXH+NtqmBE/g5/O/2TeZ2t1m+MjowG+fgkun4T8dGVfw0gIvz8eBAiCIAhCTRHT9x5gRoOe37/eyDlVBqayTKmQI0dJd9ZSVJYx4Gdvy/M+bnR0deRMplKU09vJlpYBrowLD2HdsXUcuHSACwXK8sUBTgHVX7jwivLd0Qf6fQrDt9T8zQnCP4Esg67w7n/J8t/uup2dHTqdjuHDh7N//35iY2NJSEhAlmV69+5tnpY1duxYSktL+fXXXzl69CgLFy7EwcEBf39/vvrqK0CZ2pWens6HH34IwGuvvcbu3buJjY0lLi6O+Ph4Dh48WKkPixYtolmzZhw6dIg333yT5ORkIiIi6NevH0eOHOHLL79k165djBs3DgBPT09UKhUbN27EWBbA/6uNGzei1+t5/fXXK702ZswYHBwc+Pzzz//2+wdKZtDq1atxdnamWbNmNzwuNzcXNze3Kttq164dqampbN26FVmWuXTpEhs3bqR3795VnhcbG0urVq3o378/Xl5eNG/enE8++aTScTt27MDLy4v69evz8ssvX3da4DvvvIO7uzvNmzfnvffeq3J6Z1JSEj/88AOdOnWy6Eu7du0YO3YstWrV4pFHHmH+/Pk3/KwE4VbIOuXvUYa+Dluzp1Oa26bsBeVnlY2vHw5lgfLryS5SjuvWsBYxr7Rj/PNNMKHU6hxbx4tpQd6M8PMgOScZAH9Hfxq4NWBIoyG31+GMI/DnV3D5GBRnKfu8RVFzQRAE4eEjMqUeYIU5OZQWFiI7yphkNTIGjvjaYFRXPKnu4+tJhwZ1lONLlV8QhrQLYGx4CADrv1Wm8kU1i6KZZzPaeLe58QVzUuF8AqT/oWw714Ymz96BOxOEfwh9Ecy/B4sDzLwImttbEUqWZX766Se2bdtGr1692Lx5M7t376Z9+/aAUtfI39+fzZs3079/f86fP0+/fv1o0qQJgEW2THmgxcvLyzxFKz8/n3Xr1rF+/Xq6du0KwJo1a/D1rfw+denShcmTK5ZaHzVqFIMHD2bixIkAhIaGsnTpUjp16sTKlSvx8/Nj6dKlTJ06lblz59KqVSvCw8MZPHiwuV+nTp3C2dkZHx+fStfTaDQEBwdz6tSp23rvym3ZsoWBAwdSVFSEj48PcXFxeHhcf9p0UlISy5Ytq3bKYFhYGDExMQwYMICSkhIMBgORkZGsWLGiyvPOnDnDypUree2115g5cyb79u1j/PjxaDQahg0bBihT95555hmCgoJITk5m5syZ9OrVi4SEBNRq5YHI+PHjadGiBW5ubuzZs4cZM2aQnp7OkiVLLK7Xvn17Dh48SGlpKS+99BLz5s2z6MvPP//M4MGD2bp1K0lJSbzyyivo9Xpmz55d7fsqCFWRjUow/o/C7pzTPWreb63Lpxiw0mqRJKnSeWczC/n11BX2JGcCoHW0pn/yeXOGVJC9DW/Wrfj5lKdTsqk+CP+Aeq71br2jRgOc3g4pZVmEHvWh97vK6sbeTW+9PUEQBEG4z4lMqQeYyWBAQoUkGZFRgVyCUa18pBmuJWTU8aFRxy7m4wtLlaeEWo3avK9Ar9SSCvMN43G/x9Goq6jJEvMsbBoNCcuVba1nDd+RIAj3qy1btuDg4ICtrS29evViwIABDB8+HCsrK4upbO7u7tSvX58TJ04ASrAiOjqasLAwZs+ezZEjR6q8zpkzZ9Dr9bRpUxEgd3Z2pn79+pWObdWqlcX2H3/8wdq1a3FwcDB/9ezZE5PJxNmzZwElcysjI4OYmBjatWvHhg0baNy4MXFxcTf9XlRXuwqU4Ny1/bh2mlp4eDiHDx9mz549RERE8Nxzz3H58uVKbaSlpREREUH//v0taiVd225UVBQAx48fZ8KECcyaNYsDBw7www8/kJKSYn49Pj7e4ryYmBgATCYTLVq0YP78+TRv3pyXXnqJ0aNHs2rVKvP1Bg4cSJ8+fWjSpAlPPfUUW7ZsYd++fezYscN8zGuvvUbnzp1p2rQpUVFRLF68mGXLllFaWmpxT19++SUHDx5k/fr1fPfddxbBNpPJhJeXF6tXr6Zly5YMGDCAN954w9yXqt5TQahWWSEoQ1ktKbVNEg1P/oegc0ohfUmtvu5pr8QcZHbsMeJPK0GpQisJE6CRJLw0Vrzg4w7Avox9fHr0U/JKlaCUk8bp9vr551fwxfPw20fKtmc9CO6sFDa/TtBMEARBEB50IlPqAWbKvUiYx//RQS7g/6ROyKaylffU8EO7S0Q2HYe7nz/nrhbyZ1oeKVeV6XtaGysKdAVklWSZn+hpravJmpBlyCxb7jjgcSXLov34O3ZvgvCPYG2vZC3di+veovDwcHPRb19fX6ysrIiNja32vFGjRtGzZ0++++47tm/fzoIFC1i8eDGvvvrq7fTcglZr+XOroKCAMWPGmOsqXatOnTrmPzs6OhIZGUlkZCTR0dH07NmT6OhounfvTmhoKLm5uVy8eLFSdpZOpyM5OZmePXtW27c+ffpYBOv8/PxvxfSIAAEAAElEQVQs+h0SEkJISAht27YlNDSUTz/91KJo/MWLFwkPD6d9+/asXr3aou1rV5dzclJ+8V2wYAFhYWFMmTIFgKZNm6LVaunQoQPR0dG0atXK4rxatWoB4OPjQ6NGjSzab9iwoXlq5fUEBwfj4eFBUlKSOZvtrx577DEMBgMpKSkWAUV/f38AGjVqhNFo5KWXXmLy5Mmo1Wp8fHywtrY2Z1+V9yUjIwOdTlfleyoI1ZHLglJy2fNYlSoDn4zfyHC2BxxRq68/JL6QpRQxbxPqTom1ikxPDZSUMNDHjXfrK3+fi/RFRMVFoTMpq2SqJTXONs6319ErZSuBugSAdxMIm3R77QiCIAjCA0IEpR5g6rTfcNZkYJLLE96U6XlGtTLwivB0Q2800XfFbnKKKpbdNkmFhP/vGUqMJeZ9VQalclIhLw3KllHmha9EYXNBqAmSdNvT6O628kDKtRo2bIjBYGDv3r3m6XtXr14lMTHRItDh7+9PVFQUUVFRzJgxg08++YRXX33VnHF0bc2g4OBgrK2t2bdvnzmQlJuby6lTp+jYsWOVfWzRogXHjx+v1M+qSJJEgwYN2LNnDwDPPvss06ZNY/HixSxevNji2FWrVlFUVMTQoUOrbdfR0dFi9bmqmEwmi4yitLQ0wsPDadmyJWvWrEGlskxqvt79FRUVYWVl+b/08uCOLMvY2dld97ywsDASExMt9p06dcpcCP56Lly4wNWrV687xbHc4cOHUalUeHl53fAYk8mEXq/HZDKhVqsJCwtj/fr1mEwm8z2fOnUKHx8fNBoNGo3mpt9TQaikbPqeqSwoJZU9yNOVrVassqqcKWUwmsgvK32QUc+RUwY9lChjp9q2FRmTV4uvojPpsFJZ8UTQE7TxaYOdld3N981khB+mKwvJlK3aR4uh0LFybTtBEARBeNiIoNQDTNYrA6PTVmU1WuTylfeU77ZqW3KL9eaA1GNBbtRyssXV9RIlxhJUkgo7KzuaeTbDW3uDVZVO/wgx/Sq2NQ4iICUIAqDUbOrbty+jR4/m448/xtHRkenTp+Pn50ffvsqy6hMnTqRXr17Uq1eP7OxsfvnlFxo2bAgoK7BJksSWLVvo3bs3dnZ2ODo6MmzYMKZMmYKbmxteXl7Mnj0blUp13Xov15o2bRpt27Zl3LhxjBo1Cq1Wy/Hjx4mLi2P58uUcPnyY2bNnM2TIEBo1aoRGo2Hnzp189tlnTJs2DVAyqt59911ef/11bG1tGTJkCNbW1nzzzTfMnDmT6OhoHnnEstjwX4M6AI0bNzavIFeusLCQt99+mz59+uDj40NmZiYrVqwgLS2N/v37A0pAqnPnzgQEBLBo0SKuXLliPr+q1e8iIyMZPXo0K1eupGfPnqSnpzNx4kTatGlz3Xpc5SZNmkT79u2ZP38+zz33HL///jurV682Z2cVFBQwd+5c+vXrh7e3N8nJyUydOpWQkBBzxlhCQgJ79+4lPDwcR0dHEhISmDRpEi+88IJ5ZcWYmBisra1p0qQJNjY27N+/nxkzZjBgwADz+/Tyyy+zfPlyJkyYwKuvvsrp06eZP3/+dTPfrpWVlcX58+e5ePGixefh7e1d7YqBwj+HbDIhI2PUK8Gn+vuVjCSdVVlQ6ppMqaxCHXNij3E5v+Lh3fmywv1Pe7lQy8aaQWXT9or0RebFYjzsPIh+PPrWO3fxEPxumRGJZ+Upy4IgCILwMBJBqQeYyagMkM46lv/CUbassbUNLzR8gea1mnMhS0kl12rUfDmmHQBbzyj1E1rVasWnPT+t+iIXDynfre3BxgkeHVT18YIg/KOsWbOGCRMm8OSTT6LT6ejYsSNbt241BxqMRiNjx47lwoULODk5ERERwfvvvw8o06/mzp3L9OnTGTFiBEOHDmXt2rUsWbKEqKgonnzySZycnJg6dSqpqanY2lYdEG/atCk7d+7kjTfeoEOHDsiyTN26dRkwYAAAtWvXJjAwkLlz55KSkoIkSebtSZMqpshMmjSJ4OBgFi9ezIcffkhhoTL1+fPPP2fgwIGVrnu9fampqdT+y/LyarWakydPsm7dOjIzM3F3d6d169bEx8fTuHFjAOLi4khKSiIpKanS+XIVqyYOHz6c/Px8li9fzuTJk3FxcaFLly4sXLiwyvesdevWfP3118yYMYN58+YRFBTEBx98wODBg819PnLkCOvWrSMnJwdfX1969OjBW2+9hY2NDQA2NjZ88cUXzJkzh9LSUoKCgpg0aRKvvfaa+TpWVlYsXLiQU6dOIcsyAQEBjBs3zuJ99/f3Z9u2bUyaNImmTZvi5+fHhAkTzAHDG4mNjWXEiBHm7fLPY/bs2cyZM6fKc4V/jn2bvyLLygaDQQ1WIJU9yEv1LA9KVWRKbTuWQewfFVOrreytKED597eogT/asmO/Tf6Wf+3+FyZZKXvuYuNye53LT1e+u4dAx6lg7w51u1R9jiAIgiA8JCS5qlHuP1xeXh7Ozs7k5uaa63bcTzK/eQt+38BOhzAyzvXHqD+PvmAjLn51GLlEKZB59EIukct34e1ky28zldof/0v8H2/99hZd/LvwYZcPq77IDzOUYpthE6H73Dt8R4Lw8CopKeHs2bMEBQVVG1wRLBUWFuLn58fixYsZOXLkXb9+VlYWXbt2xcnJie+//x57+1uvySU8eKr6N3u/jw/uhfv6PTGZOPl6FzSOOhLSRpNjFUDtjM/Z+mQRlzOSefyoB0HNW/HM9DkAfLQjiXd/SCTQz5FTblbIrhpkOysC7TT81rZiavKs3bP4OulrAFSSipebvUxUs6ib79e3E+FELBhKQVcA9Z+A59fX4I0LgiAIwr1zs2MDkSn1gDLKMr8n1uLs1Q+QM2VMhvOY9CkA2Nho+P1sFlM3/kFusTJ1z9HWigOXDvC/xP9xJvcMAA4ahxtfIG4W/LkJirKUbXv3O3k7giAIZocOHeLkyZO0adOG3Nxc5s2bB2CeEni3ubm58eOPP7JixQoSEhJuWNxbEIT7k+niIRo4KZnfe8oLnRs80PobUKUrY6Jrp+9ll9fhdLTG5GtHTw8nhvt60MTRMiCdr8sHYOZjMxlQfwAq6RYWtdaXwIE1lvv8W9/KbQmCIAjCQ0EEpR5Qi3YlocrXYg/I8hn0Bd+YX7O2seW7IxdJuVpk3tfY14mlBz/g4OWD5n217Gtdv3FZhoSPwFRRHB2fpjV9C4IgCDe0aNEiEhMT0Wg0tGzZkvj4eDw8PO5Zf9zd3Zk1a9Y9u74gCLfPVJSHCiiSHShByXq7Yp2J11eZuBW7AMpU1Z9PXuL7oxlsT1JquZ3W6wE7WjhqCXeveMJrNBkpNBSSXZoNgLPG+dYCUvv+DcfLxm1WdvDSDrCyAdfAv3ejgiAIgvAAEkGpB1DOpQwOZVyhtVGpaWCnPYQuF6wNRozuNjz2VH9+S1TqS418PIj+rWoT6uXIs9/mATCowSDqu9WnR0CP61+gJLciIDUyDhy8xEBJEIS7pnnz5hw4cOBed0MQhIeE0VCKFVCMHQaUenc51pewzjVhjTKWcvHx5fVNR7mUV7ESpruTDY1cHXmqlot5n96kp39sf5Jzk837HDW3sCqk0QDfTwOTMk6jViPwanDb9yYIgiAIDzoRlHoA7d/yNVnaRqiMylM5h9J8cgGXohIKO9Ui8NGW5P+xD4AQLwcaeCtP9wr1SrHeyLqRPOLxSOWGc9Ng+7+g4JKyba0F/zZ3/H4EQRAEQRDuFJNOCTTJqAAJWZaRJaU4+U8tL/N8y+E8EvY8l+fGAWAV6kSxtYpFnevT45qAFEBGQYZFQMrL3ovGHo1vvjPFWWUBKQme+giCOv6dWxMEQRCEB54ISj1ACg1GFqdc4g/XAFLs7VGZylPFladtKpNMoVHine9PciJdqXPgYFPxERcZlOl89lY3KNL7x+dwbFPFtnvdGr8HQRAEQRCEu8mkV4JSJlTIkkT5uAmg2MeGR5t04bPky5Qv/VMQ6AAqiVBHu0pt5ZTmAOCt9WbrM1tRS+qbm7p3aruycEypMj7D3k2saCwIgiAIiKDUA+W7zFw+Sr1Mo3x3njhSgrqoLF3cUBaUkmVOZRazfWfFEzx7Gz3/PvpvivRFFOgKlH3WNwhKFVxWvtfvDY36QuDjd+xeBEEQBEEQ7gZjYTEAJiRABXJFUGp+uw30+/AQOqOSOaWykvhXiC+hWluC7G3MxyVlJ/HvP/9NekE6AK42rlirrG++EzsXQtr+im2P+rd/Q4IgCILwEBFBqQdIRqlS56n7kUKcCoGyugg2SdngaYtKhmJZAuCpR31p5u9CYvFWVh75yNyGlWSFk+YvyzGm7Fae3l1UVqYh8HFoNvBO344gCIIgCMIdVXz8Krrtl0BTlilFRaaUSq3mvcMXzQEpgAZ13RgXUHkhmP+c+A/fnfnOvF3bsfbNdeDiYbiwD7LKHhh2mwMuARDY4TbvSBAEQRAeLiIo9QA4V1zKmrRM9mQrmU42OgNgRWPrA9ju/YUrtoWALSXWMsmuznAVXu4cQn1vR+YmKNlPzTyb0cSjCY96PVo5U2rnQji7s2LbPeTu3JggCIIgCMIdUpB1ldOxP1MHI1CWKSWpkGUdAFYaDQeu5ithqgAHDA2cmdbs+qULsoqzAIgMjqRlrZZ08u9UfQeMelgXCaV5FfsefQEcPP/WfQmCIAjCw0QEpR4A76dc4ouMLPO2ymgErDBY7cM57ywZWlcAdjWWyLHSAKC1UVaTKZ+yFxEYwQuNXrj+BQqVpY9pPx4CwiCk+525EUEQBEEQhLvk2K8/k5eSgpOTDdvzPqDQaE9JwdfIRmVMVSSrkbNKkYDhgZ680i4EX1vNddvK0ymBpc7+nekReIPVi/+q8IoSkJJU0DAS/NuKgJQgCIIg/IUISj0ALumUaXsRHk60c3HAYLgAKlCVPfnTq5QpeyaVjMGgTOmzt1aTWZxJdkk2AFprrWWjuiKlqHlpPuSlKfua9AefpnfhjgRBEARBEO4sfUkJKknNBb0rWYYATIaLyMYM8+upkjuqXGWM1cTDoVJASm/SM3LbSE5cPUGpUSmW7mTzlxII15OyCw6sg2JlDIbWC577v5q5KUEQBEF4yNzEciHCvZajV4JPz/u485KvJ+Ufm7qsUKdJUoJSep03+tyWACz7YxHh/wtnb8ZeABw1jpaNHlgD34yFH6ZDSa6yz8HrDt+JIAgPouHDhyNJEpIkodFoCAkJYd68eRgMhupPrsKOHTuQJImcnJya6ehNOHv2LIMGDcLX1xdbW1tq165N3759OXnypMVxW7ZsoVOnTjg6OmJvb0/r1q1Zu3atxTEpKSlIksThw4dv+vpz5syhQYMGaLVaXF1d6datG3v37rVoc+TIkQQFBWFnZ0fdunWZPXs2Op2u2rZjYmJo1qwZ9vb2+Pj48OKLL3L16tUqzzEajbz55psW13vrrbeQy5chAzZt2kSPHj1wd3e/4f0mJyfz9NNP4+npiZOTE8899xyXLl265fs6cuQIHTp0wNbWFn9/f959991q7/vXX38lMjISX19fJEli8+bN1Z4j/DMYDXrUkhqDrIyb3AqPAWCnM5DqVsx3tSJw9LKnU0tfejfxqXR+al4qhy4fosRYgoyMo7UjoS6h1V94+5tw9H+QFKdsi9WMBUEQBOGGRFDqPmUwyQw9coZWCcc4WlAEgJOkImPxfqxUtsiyzPlcI7tD/bjk7KCcVNqYR2rVYXyXEA5cUX7JUUkq/Bz8eNTrUcsLZJ1Rvns1hkeehYh3wNH7Lt2dIAgPmoiICNLT0zl9+jSTJ09mzpw5vPfee/e6W2Y3E7TR6/V0796d3NxcNm3aRGJiIl9++SVNmjSxCIwtW7aMvn37EhYWxt69ezly5AgDBw4kKiqK119//W/1s169eixfvpyjR4+ya9cuAgMD6dGjB1euKNOoT548iclk4uOPP+bYsWO8//77rFq1ipkzZ1bZ7u7duxk6dCgjR47k2LFjbNiwgd9//53Ro0dXed7ChQtZuXIly5cv58SJEyxcuJB3332XZcuWmY8pLCzk8ccfZ+HChddto7CwkB49eiBJEj///DO7d+9Gp9MRGRmJyWS66fvKy8ujR48eBAQEcODAAd577z3mzJnD6tWrq7yHwsJCmjVrxooVK6o8TvjnMRkMqCQr9GVBKes8ZdqeldHIFSdrZEnF0icas65/cxxtK6+kl6tTHtr5an3Z1m8bP/b/EXc79youaAKjoSIDPWwi9HoXnvroxucIgiAIwj+cmL53n0osKmH71YrCmLYqiSA96LOKMWECuYjLRYC9rfkYLx8f/vPq4wBs+Z9SS+qLJ76goXvDioYLrihP7i4eVrZbDIG2L9/p2xEE4QFnY2ODt7cSuH755Zf5+uuviY2NJSoqigkTJvDtt99SWlpKp06dWLp0KaGhSjbBuXPnGDduHLt27UKn0xEYGMh7771Ho0aNCA8PB8DVVamLN2zYMNauXUt+fj5RUVFs3rwZJycnpk6dyjfffMOjjz7KBx98AEBgYCAjR47k9OnTbN68mWeeeYa1a9eya9cuZsyYwf79+/Hw8ODpp59mwYIFaLVajh07RnJyMj/99BMBAQEABAQEEBYWZr7P1NRUJk+ezMSJE5k/f755/+TJk9FoNIwfP57+/fvz2GOP3db7OGjQIIvtJUuW8Omnn3LkyBG6du1KREQEERER5teDg4NJTExk5cqVLFq06IbtJiQkEBgYyPjx4wEICgpizJgxNwwklduzZw99+/bliSeeAJT39fPPP+f33383HzNkyBBAyXa6nt27d5OSksKhQ4dwclKmNq1btw5XV1d+/vlnunXrdlP3FRMTg06n47PPPkOj0dC4cWMOHz7MkiVLeOmll254D7169aJXr15V3qfwz6TLykIruWCQlTqbkkkJXl9ygUP+znABnGwrD4X1Rj2HLh/iwOUDALjZuuHr4Fv1xXIvwOpwKLxcsa/ty+KBnyAIgiBUQ2RK3adyy6bs1ba1ZmvLUPa1a4RNbi4/W/+JjAlZVl5XmUzUT09no18PioOam88v0CtBKQdrB8uGvx0Pm1+GtP3KtkPlZY8FQbg7ZFmmSF9017+unZp1u+zs7NDpdAwfPpz9+/cTGxtLQkICsizTu3dv9HqlTsvYsWMpLS3l119/5ejRoyxcuBAHBwf8/f356quvAEhMTCQ9PZ0PP/wQgNdee43du3cTGxtLXFwc8fHxHDx4sFIfFi1aRLNmzTh06BBvvvkmycnJRERE0K9fP44cOcKXX37Jrl27GDduHACenp6oVCo2btyI0Wi87n1t3LgRvV5/3YyoMWPG4ODgwOeff/633z9QsrtWr16Ns7MzzZo1u+Fxubm5uLm5VdlWu3btSE1NZevWrciyzKVLl9i4cSO9e/eu8rz27dvz008/cerUKQD++OMPdu3adUtBntLSUiRJwsbGxrzP1tYWlUrFrl27bvq+EhIS6NixIxpNRV2fnj17kpiYSHZ29k3352FS3dTEa6fWln9dG/wDyMrKYvDgwTg5OeHi4sLIkSMpKCiwOOZ2pk0+CDKPFnDSEEiqzgMAVdmqe/n2MiZZCUY52FTOkFp2eBkjt4/ko8NKhpOzjXP1Fzu3xzIg5dNMqSUlCIIgCEKVRKbUfSrPoPzC5KWxpoWTltKiQj5f+BaX/QPRogKUKREqWca5pIh029q0Uqt45/d3uFx0mWJDMQAOmr8Epa4mK99rtwGvBlCv5926JUEQ/qLYUMxj628v4+bv2DtoL/bW9rd1rizL/PTTT2zbto1evXqxefNmdu/eTfv27QEl28Xf35/NmzfTv39/zp8/T79+/WjSpAmgZMiUKw9IeHl54eLiAkB+fj7r1q1j/fr1dO3aFYA1a9bg61s5S6FLly5MnjzZvD1q1CgGDx7MxIkTAQgNDWXp0qV06tSJlStX4ufnx9KlS5k6dSpz586lVatWhIeHM3jwYHO/Tp06hbOzMz4+levLaDQagoODzQGc27VlyxYGDhxIUVERPj4+xMXF4eHhcd1jk5KSWLZsWZVZUgBhYWHExMQwYMAASkpKMBgMREZGVjulbfr06eTl5dGgQQPUajVGo5G3336bwYMH3/T9tG3bFq1Wy7Rp05g/fz6yLDN9+nSMRiPp6ek3fV8ZGRkEBQVZHFerVi3za+UZdf8k5VMTX3zxRZ555pnrHhMREcGaNWvM29cGBwEGDx5Meno6cXFx6PV6RowYwUsvvcT69euBimmT3bp1Y9WqVRw9epQXX3wRFxeXKjPU7ney0USxuhGlVAQ5NaXZgAqTCpBVeDvZUset8s/CszlnAWXanoedB4MbVvHvofAqnNsFyb8o2436wpMfgK0LqMSzX0EQBEGojvi/5X3m+ys5hP12gtcSzwPgbKWknOdfzUTWGzHJJpSPrSxTSgaTBJisyNFdIeZEDHHnlMKaDtYOFUGp0nzIOQ9Fmcr2k+9Dn2Wg+cuqfIIgCNexZcsWHBwcsLW1pVevXgwYMIDhw4djZWVlMZXN3d2d+vXrc+LECQDGjx9PdHQ0YWFhzJ49myNHjlR5nTNnzqDX62nTpo15n7OzM/Xr1690bKtWrSy2//jjD9auXYuDg4P5q2fPnphMJs6eVX7JHDt2LBkZGcTExNCuXTs2bNhA48aNiYuLu+n34tpMnhuJiYmx6Ed8fLz5tfDwcA4fPsyePXuIiIjgueee4/Lly5XaSEtLIyIigv79+1vUhrq23aioKACOHz/OhAkTmDVrFgcOHOCHH34gJSXF/Hp8fLzFeTExMQD873//IyYmhvXr13Pw4EHWrVvHokWLWLdu3U2/H56enmzYsIFvv/0WBwcHnJ2dycnJoUWLFqiu80v5je6rOje6h4dZr169iI6O5umnn77hMeVTa8u/rg3enThxgh9++IF///vfPPbYYzz++OMsW7aML774gosXLwKW0yYbN27MwIEDGT9+PEuWLLnj93enyLLM5RWH0dooweUC/1O0++1NbEuU2m1GSWZG5z7snNoZO4260vl5OqV8wmutXiPmiRg61O5w44ttHAH/Gwp/KEE+nP3B3k0EpARBEAThJolMqfvM+vQskotLzduNHewAZVljSVJjpGzajaxkSkmyjKyyAtSYUNLSQ11Dea7eczT1bIq1yhqyU2BFWyjLngKUAZMgCPeUnZUdewftrf7AO3DdWxUeHs7KlSvRaDT4+vpiZWVFbGxsteeNGjWKnj178t1337F9+3YWLFjA4sWLefXVV2+n6xa0WsugekFBAWPGjDHXVbpWnTp1zH92dHQkMjKSyMhIoqOj6dmzJ9HR0XTv3p3Q0FByc3O5ePFipewsnU5HcnIyPXtWn2Hap08fi2Cdn5+fRb9DQkIICQmhbdu2hIaG8umnnzJjxgzzMRcvXiQ8PJz27dtXKvR97ep35TWcFixYQFhYGFOmTAGgadOmaLVaOnToQHR0NK1atbI4rzwDacqUKUyfPp2BAwcC0KRJE86dO8eCBQsYNmxYtfdZrkePHiQnJ5OZmYmVlRUuLi54e3tbZMZVd1/e3t4WK/YB5m1vb28CAwOvew//dDt27MDLywtXV1e6dOlCdHQ07u5KMe6EhARcXFwsArjdunVDpVKxd+9enn766RtOm1y4cCHZ2dkPZoaaCQoyCtErixNjbZ2FXUkWsr2yErGN6RGGNe1f6bQL+RfILc3laomyamWllYuv5/Jx5btvC2UV4xY3/+9GEARBEAQRlLrv5JTVkvpXsA+d3BzNQSldSTEqSVU2aQ/Kp+9JsoydlScAcnlQyiWUgQ0GVjR68VBZQEoCK1sIaA8OovCmINxrkiTd9jS6u608kHKthg0bYjAY2Lt3r3n63tWrV0lMTKRRo0bm4/z9/YmKiiIqKooZM2bwySef8Oqrr5p/Cb62vlNwcDDW1tbs27fPHEjKzc3l1KlTdOzYsco+tmjRguPHj1fqZ1UkSaJBgwbs2bMHgGeffZZp06axePFiFi9ebHHsqlWrKCoqYujQodW26+joiKPjTfxCC5hMJkpLKx5GpKWlER4eTsuWLVmzZk2lbKPr3V9RURFWVpb/S1erlQwQWZaxs7O74Xl/bV+tVptXzbtV5dMQf/75Zy5fvkyfPn1u+r7atWvHG2+8gV6vx9paqfMTFxdH/fr1zYGRW/ls/wkiIiJ45plnCAoKIjk5mZkzZ9KrVy8SEhJQq9VkZGTg5WVZ18jKygo3NzcyMjKA2582WVpaavH3Ni8v77rH3QvpRaVEdHbg1W1nURtceOryj5QCRkmJUknqynWk9lzcw5i4MRb7nDRO179AUZZSn7PgEhQq2VcM+lIJSgmCIAiCcEtEUOo+kWcwcqlUz5Wy4sCPOtnTxLHil1V9SQkSakzlmVLmmlJQaFAGWaWmQlBdp7h5kbIEMg2egIEP/3QHQRDujtDQUPr27cvo0aP5+OOPcXR0ZPr06fj5+dG3b18AJk6cSK9evahXrx7Z2dn88ssvNGyorAgaEBCAJEls2bKF3r17Y2dnh6OjI8OGDWPKlCm4ubnh5eXF7NmzUalUSGW/UN7ItGnTaNu2LePGjWPUqFFotVqOHz9OXFwcy5cv5/Dhw8yePZshQ4bQqFEjNBoNO3fu5LPPPmPatGmAklH17rvv8vrrr2Nra8uQIUOwtrbmm2++YebMmURHR/PII49YXDcxMbFSXxo3bmwOrJQrLCzk7bffpk+fPvj4+JCZmcmKFStIS0ujf38layMtLY3OnTsTEBDAokWLuHLlivn88tUPrycyMpLRo0ezcuVKevbsSXp6OhMnTqRNmzbXrcd17Xlvv/02derUoXHjxhw6dIglS5bw4osvmo/Jysri/Pnz5ule5fdbPl0MlLpfDRs2xNPTk4SEBCZMmMCkSZPM0y5v5r4GDRrE3LlzGTlyJNOmTePPP//kww8/5P33379h/0HJkEtKSjJvnz17lsOHD+Pm5maRIfcwKs9wAyXLrWnTptStW5cdO3aYa7LdKQsWLGDu3Ll39Bq3638//kS+ix8OhmKKceFKCVz0cSPXTlmxWFJXnrJ34qoy5djOyg4XGxeCnYOp71p52jAAp7bBqR8qth28wf76deEEQRAEQaiaCErdB67o9LT97QSFxoon0y5ltaSupqWy8e03KcrJxksTAJT9UnbN9L1ioxKo+jP7NzTuoC2vE7XvU9j9IZTkKNtiyp4gCDVszZo1TJgwgSeffBKdTkfHjh3ZunWrOSBjNBoZO3YsFy5cwMnJiYiICHOQwc/Pj7lz5zJ9+nRGjBjB0KFDWbt2LUuWLCEqKoonn3wSJycnpk6dSmpqKra2tlX2pWnTpuzcuZM33niDDh06IMsydevWZcCAAQDUrl2bwMBA5s6dS0pKCpIkmbcnTZpkbmfSpEkEBwezePFiPvzwQwoLCwH4/PPPLYIA5a63LzU1ldq1a1vsU6vVnDx5knXr1pGZmYm7uzutW7cmPj6exo0bA0pmUFJSEklJSZXOr2rVxOHDh5Ofn8/y5cuZPHkyLi4udOnShYULF1b5ni1btow333yTV155hcuXL+Pr68uYMWOYNWuW+ZjY2FhGjBhR6X5nz57NnDlzACVQNWPGDLKysggMDOSNN96weE9v5r6cnZ3Zvn07Y8eOpWXLlnh4eDBr1qxqi23v37+f8PBw8/Zrr70GwLBhw1i7dm2V5z5sgoOD8fDwICkpia5du+Lt7V2pXpnBYCArK8scDKxu2uSNzJgxw/xeg5Ip5e/vX1O3clvOF5fyTvJFdhuV4a1UNqzanemA7HVNVqqmcoZqri4XgP71+jOl9ZTrX8BogAu/w7ndynZwOLR9GbybihpSgiAIgnCbJLkm1gZ/SOXl5eHs7Exubq65bkdN+iAlA70sc65Yx8ZL2aglcFKraehgx5fN6mKtkvgj7nt+/LeyepKPNpQkP3fcr7THqD+PvmAjDsWlBOfqGPdUQzTO+3Gys+GD8A9o7d1aqSN15UTFBZ9YDK1H1fh9CIJQvZKSEs6ePUtQUFC1wRXBUmFhIX5+fixevJiRI0fe9etnZWXRtWtXnJyc+P7777G3fzCmXAp/T1X/Zu/0+OB6JEni66+/5qmnnrrhMRcuXKBOnTps3ryZPn36cOLECRo1asT+/ftp2bIlANu3byciIoILFy7g6+vLypUreeONN7h06ZI5mDxz5kw2bdrEyZMnb7p/9+I9+av5yRdZer4iCPf2puMU62pRmqMEwutk5rKxXls8m/di+UtdADidfZovTn7Bvkv7OJt7llebv8pLTW8QCN3xDuxYULH9+GvQbfYdux9BEARBeJDd7NhAZErdQx+eu0SxqSIm+JSXKysaBVgcYzIptVYCm7XCTu6CfZYyRcGEMs1PJYPGthSN225mPjaT5xs8X3FykVKok36fgncT8Kh3B+9GEAShZhw6dIiTJ0/Spk0bcnNzmTdvHoB5SuDd5ubmxo8//siKFStISEi449OiBKFcVVMT3dzcmDt3Lv369cPb25vk5GSmTp1KSEiIuRh/w4YNiYiIYPTo0axatQq9Xs+4ceMYOHCgeVrn7U6bvB9d0hkAaHQmkdBiHcVYwzXVOIMvZ7H3sTb0daqok7Xqj1VsP7fdvO2j9bnxBTKOKt+daoNrIDSrnCUpCIIgCMKtEUGpe+gFX3f0ZTEpG0liRO3K9QhkkwlHa3dMefU5m2PAjkAAjCqlqLkkyxjK8tMdrB1AVwQ/TIf8DCjKVBoJCAOnKgZZgiAI95lFixaRmJiIRqOhZcuWxMfHm4to3wvu7u4WU9oE4W6oamriypUrOXLkCOvWrSMnJwdfX1969OjBW2+9hY2NjfmcmJgYxo0bR9euXVGpVPTr14+lS5eaX7/daZP3k0VnM4jPziexQFlluN6FFOobJWQCkSyWiFGByZ7arhUrkGYWK2OlJ4OfpFWtVvQM/MvqmqUFSnZUYSaklq2W2usdaBh5Z29KEARBEP4hRFDqHnortHa1x8gmE8EurdhvzMWRWphUxWS6HOK86giP5IEKmVKUJ4P21vaQ/BMcXFfRgI0z2LvfqVsQBEGocc2bN+fAgQP3uhuCcM917ty5ylpi27Ztq7YNNzc31q9fX+UxTZs2JT4+/pb7dz/INxhZlJJhsa9WTjYmRxeQVSBXrO5pY6VhzYjWtK/rToGugMziTHNQ6qmQp3jM57HKFzgRCwnLLfe5Bdf0bQiCIAjCP5YISt3nTCYTWFlD2apTVqpC8tnEI8lawBlJhkJTCaDG0doRCs8rJ3o3hcfGgG8LsNLcs/4LgiAIgiDcKZllU/ZskInY9jmOJUU0NNpzXpJBVnPt9D1rKzXh9b3ILsmm16ZeFOoLza+52LhYNmw0QNp+SCkrau7/GDR4EtyCoFbjO3xXgiAIgvDPIYJS9znZZEKSrLCXlYGTfdGP+F2pWN5bbZLB2YFw/7Y082oGyWWDp1qNofkL96LLgiAIgiAId9SJgmLmJV80B6XcJah39jghQW14tOVAzv65AagISkmyjMpKGfYm5SRRqC9EJanQWmup51qPYJe/ZD/98jbsWlKxXbcrhI2/C3cmCIIgCP8sIih1nzMZjahUKtzJJQfIkksAsC/VoZesOOsSzMz35tB/z0x4vynoCpQTbV3uVZcFQRAEQRDuqP9evMovWfnm7QCViWDHZrQkHA5cwmhjKpu+pwStJFlGUqsAyNPlAfCI+yPEPBFz/QtkHFG+O/mBsz880u/O3YwgCIIg/IOJoNR9TsmUUpu3CyQZe6Du5Rw2B7dlX5MwZjvIcPwbyxN9H72r/RQEQRAEQbjTCg1GUkt1JBeVAjDE150ubo7USj5OtrUbB9VnSLXKwiAZUSpvKjWlVDKgUvH16a9JSE8AwMnmL8tTyzLsXAiXjsGF/cq+yKUQ2u0u3Z0gCIIg/POIoNR9zlQWlJJkpaaUZFIGV2qTiRKTOxq1qmKVPa0nvLAJbBxEEU5BEARBEB4K2XoDRhlKTSY6/n6SQmNFnahOro708nQhMclEjmTFQauzeEuXaUAeV+R2XDt9r1jWMWtPxSqa7rZ/WQgm85Sy0t613MV4ShAEQRDuJBGUuk/JBhOXPzpMnYu1SbfOQdIpQSlVWVDKyiijU1tjX5wKG+crJzl4g0/Te9VlQRAEQRCEGtfn4GlOl2VGlXO3tsLPxpowVwcAZJMRtWSNBzn4Z9chz1gLlWyNSVaCUipZxlAWoAp2Dqa5V3OGNh5qeaG8NOW7kx90eA3cQ8RDPkEQBEG4w0RQ6j5luFqM/mIhEipMyOTlXEBXshlrYzGgZEo5uCQzQt4HWeeUk7wa3sMeC4IgCIIg3Fkq4LVAb14P8rbYL5tMSGortDo7UkrbmPerDcpCMZIsc7m+J3CenoE9eeXRVypOPrAWtk4Bo07Z9giF1qPu7I0IgiAIggAo/28X7kNlD/Yo1efznsP7FORfwKQ/g8qkvGCrN7C4VjpdTeeg7VgY+g30WXoPeywIwsNq+PDhSJKEJEloNBpCQkKYN28eBoPhb7W7Y8cOJEkiJyenZjp6E86ePcugQYPw9fXF1taW2rVr07dvX06ePGlx3JYtW+jUqROOjo7Y29vTunVr1q5da3FMSkoKkiRx+PDhm77+nDlzaNCgAVqtFldXV7p168bevXst2hw5ciRBQUHY2dlRt25dZs+ejU6nq7btmJgYmjVrhr29PT4+Prz44otcvXq1ynPy8/OZOHEiAQEB2NnZ0b59e/bt22dxTEFBAePGjaN27drY2dnRqFEjVq1aZXHMmDFjqFu3LnZ2dnh6el73PT1//jxPPPEE9vb2eHl5MWXKlBv+Hdq9ezdWVlY8+uij1d73pk2b6NGjB+7u7rf8eQgPhl/bNCC9czPSOzcjrXOzygEpowm50ISVygapbF+BdJzi7CXoCr8CIFPryupIDQCOGkfLCxzbXBGQAggOv0N3IgiCIAjCX4mg1P3KJAOQZn2JS07lq8tY41VSm7ZJaWh1BlQFZRlSAe0guDNY292TrgqC8PCLiIggPT2d06dPM3nyZObMmcN77713r7tldjNBG71eT/fu3cnNzWXTpk0kJiby5Zdf0qRJE4vA2LJly+jbty9hYWHs3buXI0eOMHDgQKKionj99df/Vj/r1avH8uXLOXr0KLt27SIwMJAePXpw5coVAE6ePInJZOLjjz/m2LFjvP/++6xatYqZM2dW2e7u3bsZOnQoI0eO5NixY2zYsIHff/+d0aNHV3neqFGjiIuL4z//+Q9Hjx6lR48edOvWjbS0NPMxr732Gj/88AP//e9/OXHiBBMnTmTcuHHExsaaj2nZsiVr1qzhxIkTbNu2DVmW6dGjB0ajMuXcaDTyxBNPoNPp2LNnD+vWrWPt2rXMmjWrUp9ycnIYOnQoXbt2van3tLCwkMcff5yFCxfe1PHCg6c8KF7+dS3ZJHN52SGcdmhwt/VDUoZPGPUpSIBRpRx/yQGScpIA8LTzVA5K2QX710DmaWX72TUwLQUen3jnb0oQBEEQBEAEpe5fZUEpvaRHXTbAQtLgrHfhvF1tsoIdsNVcUPY7+tybPgqC8I9hY2ODt7c3AQEBvPzyy3Tr1o3Y2Fiys7MZOnQorq6u2Nvb06tXL06fPm0+79y5c0RGRuLq6opWq6Vx48Zs3bqVlJQUwsOVbARXV1ckSWL48OGAkr0zePBgtFotPj4+vP/++3Tu3JmJEyea2w0MDOStt95i6NChODk58dJLLwGwa9cuOnTogJ2dHf7+/owfP57CQmX6zrFjx0hOTuajjz6ibdu2BAQEEBYWRnR0NG3btgUgNTWVyZMnM3HiRObPn0+jRo0ICQlh8uTJvPfeeyxevNgis+lWDRo0iG7duhEcHEzjxo1ZsmQJeXl5HDmiLD8fERHBmjVr6NGjB8HBwfTp04fXX3+dTZs2VdluQkICgYGBjB8/nqCgIB5//HHGjBnD77//fsNziouL+eqrr3j33Xfp2LEjISEhzJkzh5CQEFauXGk+bs+ePQwbNozOnTsTGBjISy+9RLNmzSzafumll+jYsSOBgYG0aNGC6OhoUlNTSUlJAWD79u0cP36c//73vzz66KP06tWLt956ixUrVlQKKEZFRTFo0CDatWt3U+/pkCFDmDVrFt26iRXS/olkgwl9RhEABlmPirJBk6z8vaqTmUu2cyonwi8xuOFgXm3+Kp39O0N2Cqx9ArZMhLyy8ZRXQ7Bzvev3IAiCIAj/ZCIodZ+Sy4NS6JFMZU8FJRWyCmY8HkX+Y15IrYdDt7ng1/LedVQQhNsmyzKmoqK7/iXLcvWdq4adnR06nY7hw4ezf/9+YmNjSUhIQJZlevfujV6vB2Ds2LGUlpby66+/cvToURYuXIiDgwP+/v589ZUyrSYxMZH09HQ+/PBDQMnM2b17N7GxscTFxREfH8/Bgwcr9WHRokU0a9aMQ4cO8eabb5KcnExERAT9+vXjyJEjfPnll+zatYtx48YB4OnpiUqlYuPGjeYMnr/auHEjer3+uhlRY8aMwcHBgc8///xvv3+gZHetXr0aZ2dnmjVrdsPjcnNzcXNzq7Ktdu3akZqaytatW5FlmUuXLrFx40Z69+59w3MMBgNGoxFbW1uL/XZ2duzatcu83b59e2JjY0lLS0OWZX755RdOnTpFjx49rttuYWEha9asISgoCH9/f0AJmjVp0oRatWqZj+vZsyd5eXkcO3bMvG/NmjWcOXOG2bNnV3m/gmBmqvh59s2lT7hqpfzsQVa+2+kMlNgaCHUNZXqb6bzU9CVsrWwh64xynI0z1H8COk4BzwZ3u/eCIAiC8I8nCp3fp0rylSd8pWoJdVlQSkJF+dLGNo4eEPnhveqeIAg1QC4uJrHF3Q8q1z94AMne/rbOlWWZn376iW3bttGrVy82b97M7t27ad++PaDUNfL392fz5s3079+f8+fP069fP5o0aQJAcHDFSlblgRYvLy9cXFwAJUtq3bp1rF+/3jx9a82aNfj6+lbqS5cuXZg8ebJ5e9SoUQwePNicURUaGsrSpUvp1KkTK1euxM/Pj6VLlzJ16lTmzp1Lq1atCA8PZ/DgweZ+nTp1CmdnZ3x8KmegajQagoODOXXq1G29d+W2bNnCwIEDKSoqwsfHh7i4ODw8PK57bFJSEsuWLWPRokVVthkWFkZMTAwDBgygpKQEg8FAZGQkK1asuOE5jo6OtGvXjrfeeouGDRtSq1YtPv/8cxISEggJCTEft2zZMl566SVq166NlZUVKpWKTz75hI4dO1q099FHHzF16lQKCwupX78+cXFxaDRKDZ+MjAyLgBRg3s7IyADg9OnTTJ8+nfj4eKysxPBEuDmyUQlKmTAR2/Ysfrn2dM5Iw664EBNgZTJRan1NHamcVLiwT/kCZdXi59ffm84LgiAIgiAype5X6adySFJl8JP2BCrzQ0A1UlmxBBu72/uFUhAE4XZs2bIFBwcHbG1t6dWrFwMGDGD48OFYWVnx2GOPmY9zd3enfv36nDhxAoDx48cTHR1NWFgYs2fPNk9Tu5EzZ86g1+tp06Zi9SxnZ2fq169f6dhWrVpZbP/xxx+sXbsWBwcH81fPnj0xmUycPXsWUDK3MjIyiImJoV27dmzYsIHGjRsTFxd30+9FeaClKjExMRb9iI+PN78WHh7O4cOH2bNnDxERETz33HNcvny5UhtpaWlERETQv39/i9pQ17YbFRUFwPHjx5kwYQKzZs3iwIED/PDDD6SkpJhfj4+PtzgvJiYGgP/85z/Isoyfnx82NjYsXbqU559/HpWqYniwbNkyfvvtN2JjYzlw4ACLFy9m7Nix/Pjjjxb9HTx4MIcOHWLnzp3Uq1eP5557jpKSkpt6T41GI4MGDWLu3LnUq1fvlt9T4R+sLFOqFD2FtgZa/JmHLv9LTKYsAKyMJrIdwMveSzl+bW/YOAJ++0jZ1nrei14LgiAIglBGPIq8Txn1Rs6pr6CXDJbT98pqJWiaPH0PeycIQk2Q7Oyof/DAPbnurQoPD2flypVoNBp8fX2xsrKyKHR9I6NGjaJnz5589913bN++nQULFrB48WJeffXV2+m6Ba1Wa7FdUFDAmDFjGD9+fKVj69SpY/6zo6MjkZGRREZGEh0dTc+ePYmOjqZ79+6EhoaSm5vLxYsXK2Vn6XQ6kpOT6dmzZ7V969Onj0Wwzs/Pz6LfISEhhISE0LZtW0JDQ/n000+ZMWOG+ZiLFy8SHh5O+/btWb16tUXb164u5+TkBMCCBQsICwtjypQpADRt2hStVkuHDh2Ijo6mVatWFueVZynVrVuXnTt3UlhYSF5eHj4+PgwYMMCcOVZcXMzMmTP5+uuveeKJJ8xtHz58mEWLFlnUcXJ2dsbZ2ZnQ0FDatm2Lq6srX3/9Nc8//zze3t6V6ltdunQJAG9vb/Lz89m/fz+HDh0yT7c0mUzIsoyVlRXbt2+v8j0V/rkqyh3oUJvAVqdklKtle4qQie/Qmo5PN+WZ+s9CaQHknFdODHgcrGyg7Sv3quuCIAiCICCCUvct2ShjwoRbXihOxU7AMUCNjIzGSkWdZh2ra0IQhPucJEm3PY3ubisPpFyrYcOGGAwG9u7da56+d/XqVRITE2nUqJH5OH9/f6KiooiKimLGjBl88sknvPrqq+aMo2vrOwUHB2Ntbc2+ffvMgaTc3FxOnTpVabrYX7Vo0YLjx49X6mdVJEmiQYMG7NmzB4Bnn32WadOmsXjxYhYvXmxx7KpVqygqKmLo0KHVtuvo6Iijo2O1x4ESfCktLTVvp6WlER4ebl7R7tqsJeC691dUVFRpyptarQaUKZd2dnZVvi9arRatVkt2djbbtm3j3XffBZQVC/V6faU+qNVqTCbTDduTZRlZls331a5dO95++20uX76Ml5eSsRIXF4eTkxONGjXC2tqao0ePWrTx0Ucf8fPPP7Nx40aCgoLQarU3/Z4K/yBl0/cMkh6VqWJlvlpyW2YFBjOmlxcv+XnA+sFQdFV5UeMAI767F70VBEEQBOEvRFDqPmQ0GEje9w0GO2d8sxph1CWh5xigwpl89kzvgoeDzb3upiAI/3ChoaH07duX0aNH8/HHH+Po6Mj06dPx8/Ojb9++AEycOJFevXpRr149srOz+eWXX2jYsCEAAQEBSJLEli1b6N27N3Z2djg6OjJs2DCmTJmCm5sbXl5ezJ49G5VKVWkp+L+aNm0abdu2Zdy4cYwaNQqtVsvx48eJi4tj+fLlHD58mNmzZzNkyBAaNWqERqNh586dfPbZZ0ybNg1QMqreffddXn/9dWxtbRkyZAjW1tZ88803zJw5k+joaB555BGL6yYmJlbqS+PGjbG2trbYV1hYyNtvv02fPn3w8fEhMzOTFStWkJaWRv/+/QElINW5c2cCAgJYtGgRV65cMZ/v7e19w3uPjIxk9OjRrFy5kp49e5Kens7EiRNp06bNdetxldu2bRuyLFO/fn2SkpKYMmUKDRo0YMSIEYCSidWpUyemTJmCnZ0dAQEB7Ny5k//7v/9jyZIlgDLl8ssvv6RHjx54enpy4cIF3nnnHezs7MyF1nv06EGjRo0YMmQI7777LhkZGfzrX/9i7Nix2Ngo/z/76/vq5eWFra1tpf1/lZWVxfnz57l48SJQ8Xl4e3tX+Z4JDwddsZ4S9PxhfR6VXPEzQpLBqFLjoLGFPzdC6m8VJ3k3vQc9FQRBEAThekRQ6j50cfsPFOdcwmTrAoBBpdTk0BZnUseQJQJSgiDcN9asWcOECRN48skn0el0dOzYka1bt5oDMkajkbFjx3LhwgWcnJyIiIjg/fffB5TpV3PnzmX69OmMGDGCoUOHsnbtWpYsWUJUVBRPPvkkTk5OTJ06ldTU1EqrxP1V06ZN2blzJ2+88QYdOnRAlmXq1q3LgAEDAKhduzaBgYHMnTuXlJQUJEkyb0+aNMnczqRJkwgODmbx4sV8+OGHFBYWAvD5558zcODASte93r7U1FRq165tsU+tVnPy5EnWrVtHZmYm7u7utG7dmvj4eBo3bgwo2UNJSUkkJSVVOr+qVROHDx9Ofn4+y5cvZ/Lkybi4uNClSxcWLlxY5XuWm5vLjBkzuHDhAm5ubvTr14+3337bIqD2xRdfMGPGDAYPHkxWVhYBAQG8/fbb5npVtra2xMfH88EHH5CdnU2tWrXo2LEje/bsMWdFqdVqtmzZwssvv0y7du3QarUMGzaMefPmVdm/mxEbG2sOokHF5zF79mzmzJnzt9sX7m+Xz+ZxQn2BPzTnrsmUklDJMiZJRbCcARl/KrubvwBNngO/Fvesv4IgCIIgWJLkmlgb/CGVl5eHs7Mzubm55rodd8Mfr7xMYomWq7VCMWWHUmDah1VuPO75RYS7+hBQVqBWEIQHR0lJCWfPniUoKKja4IpgqbCwED8/PxYvXszIkSPv+vWzsrLo2rUrTk5OfP/999g/IFMuhb+nqn+z92p8cD+7V+/JmV9SOfjTdvbYHWOP+8/0/6U2oMbfEEZs+E/835XfUJXHqiKXQsthd61vgiAIgvBPdrNjA7H63n3IUFJEsmsm+61+oTTv/1DnK8sWq2QZbmLVJ0EQhAfZoUOH+Pzzz0lOTubgwYMMHjwYwDwl8G5zc3Pjxx9/pGvXriQkJNyTPgiCcH2GUh0mZGTkazKl1KiR+W9mWUDKLRj820K96hcpEARBEATh7hLT9+5DxoJMDjfSEXDGDtlYQPkQS1uqR/pLjRJBEISH0aJFi0hMTESj0dCyZUvi4+Px8PC4Z/1xd3dn1qxZ9+z6giBUVrjvd/bFrEEV0Bxv6SJq82rFaiQMyp9tXWD8oXvWR0EQBEEQqiaCUvcho64Ug0rGyqAMruyl+jx66ieci0qx69fsHvdOEAThzmrevDkHDhy4190QBOE+d/WH7eglI9aSCR/pIirzgpAqVHLZhmf9e9U9QRAEQRBugghK3WfOHT+Fya0TauvfsCobT1nLjhwMbszu1oNYP/aJe9tBQRAEQRCE+4C+tJg8Wx17PX9GpylAVapUpZAkNZIkQ98VEBx+j3spCIIgCEJVRFDqPmLa+29KNwUR4NUZldUB1EalBr0KiRxbR0ocXe5tBwVBEARBEO4ThtJSjvpd5ohTKr2ODSIs0x4jcYAKlUpSVtsTBEEQBOG+Jgqd3y+uJPLVqjWUUMxm6RDBSU2xK7UBQG2CYpUGa7X4uARBEARBEIoOX8ZGehxnB19CLzhT6/xujEVxZa+qcTZdvaf9EwRBEATh5ohMqftFfjrpJY7YW2VjOH8Ad13FYEqjL6HQwVYEpQRBEARBEID8Xy9gpXJHtlLhkVO+MrEaK6MB+8ICHp0gsqQEQRAE4UEgohz3i+JsTLIanWTEqMsBwKi2xt5oQ4PkHzmr8sb6/9m787ioqv4P4J9hGRhgGARBVhEEVFzIHVdEQ3BBKnMJQzQ1KUTNXVtQ0koDze1x6VH0eR40H83UH2qG5oJLaCppouACYeJODrLINuf3B3EfJ1Y3RvPzfr3mlffec8/5njtMHL5z7rn6surrICIiIvqbK8zPg/rGPdyT5eFa6e8wKin7jtXA2BuWpXKs7xYOcz8/HUdJREREtcGklK79/jOwoDFKN49BkcIcyYrzAEoBAL80laNp+u8wLs5FkZ4cTWzNdRsrERERkY7tWhqNu8W3scdoL6yML8GwuGw4qyf0UaDP5Q6IiIheJLx9T5dWdQeu/wIA2FXYA6nNTHHR9BiCUJZ8em9nHqzycgAAi4d3hFtXPtaYiIiIXm7qrEyYKFxgnZuJ3Nt2MFDrAwD0oI9M/QYw0OPMciIiohcFv0rSpdtp0j9T5A3hkVYPbyR1/3OPPuSlhSiV6aGwoQsat28JmYyDLCKqeyNGjIBMJoNMJoNcLoebmxuioqJQUlLyRPUeOHAAMpkM9+7dezqB1kJ6ejqCg4Nhb28PY2NjODo6IigoCBcuXNAqFx8fDx8fHyiVSpiYmKB9+/ZYt26dVpmMjAzIZDIkJyfXuv3Zs2ejadOmMDU1Rb169fDqq68iKSlJq85Ro0bBxcUFCoUCjRs3RmRkJIqKimqsOy4uDl5eXjAxMYGdnR3eeecd3L1b/WLPhw4dQmBgIOzt7SGTybBt27YKZbZu3YrevXvDysqqxv4KIdCnT58q61q3bh1atWoFY2Nj2NjYIDw8XOv4nj174O3tDaVSCWtrawwcOBAZGRl10k96MWgK85CrvotTZmm4cTcXZneUMC4uGx/pCwVu61sioIWtjqMkIiKi2mJSSpfe/hYIjQfeOwpcy4LB/fMoLUwGAOhBDpnBffQPWoDbX8VCz9hYt7ES0UstICAA169fx8WLFzF58mTMnj0bX375pa7DktQmaVNcXAw/Pz+o1Wps3boVqamp2LRpE1q2bKmVGFu6dCmCgoLQpUsXJCUl4cyZMxg6dCjCwsIwZcqUJ4rTw8MDy5Ytw9mzZ3H48GE0atQIvXv3xu3btwEAFy5cgEajwapVq3Du3DksWrQIK1euxKxZs6qt98iRIxg+fDhGjRqFc+fOYfPmzTh+/DjGjBlT7Xl5eXnw8vLC8uXLqy3TtWtXzJ8/v8b+ffXVV1V+gbJw4UJ8+OGHmDFjBs6dO4e9e/fC399fOp6eno6goCD07NkTycnJ2LNnD+7cuYM33nijTvpJL4af9u3BxSYO2OC0HQ80GgCAscYYhmavQQ4LfPl2B0zuzZnlRERELwxBVVKr1QKAUKvVz7SdktISsTAkUEQP7icWDhsvVozwEYltXhF7u/YSztPjxaG0W8+0fSJ69goKCkRKSoooKCjQdSiPLDQ0VAQFBWnt8/PzE97e3iI7O1uEhIQICwsLoVAoREBAgEhLS5PKZWRkiP79+wsLCwthYmIiPD09xc6dO0V6eroAoPUKDQ0VQgiRk5MjgoODhYmJibC1tRULFy4UPj4+YsKECVK9zs7OIioqSoSEhAilUimdm5iYKLp27SqMjY2Fo6OjiIiIELm5uUIIIU6fPi0AiIyMjCr7mpmZKQwNDcWkSZMqHFuyZIkAIH766SchhJD6cPr06Ue/qH8q/z2zd+/eKsssWLBAuLi4VFvPl19+KVxdXSvE6+DgUOtYAIjvvvuuyuM19ff06dPCwcFBXL9+vUJd2dnZQqFQVNvPzZs3CwMDA1FaWirt27Fjh5DJZKKoqEgIUTf9LFfdZ7auxgcvkmd+TQrUQmwdK7Z/OlKs+aSF6P1lO7FgSD8RPbifWDL6W7Fs7D4RO+xfIu/UqWfTPhERET2S2o4NOFNKhxYGByFmSH989VYQNIVl3/bpKdrBptQOVnkPkGNoBgAwNtTXZZhE9IwIIVBcWFrnLyHEE8euUChQVFSEESNG4Oeff8aOHTtw7NgxCCHQt29fFBcXAwDCw8NRWFiIQ4cO4ezZs5g/fz7MzMzg5OSEb7/9FgCQmpqK69evY/HixQCASZMm4ciRI9ixYwcSEhKQmJiIU6dOVYghOjoaXl5eOH36ND7++GNcvnwZAQEBGDhwIM6cOYNNmzbh8OHDGDduHADA2toaenp62LJlC0pLSyvt15YtW1BcXFzpjKixY8fCzMwMGzdufOLrB5TN7lq9ejVUKhW8vLyqLKdWq2FpaVltXZ06dcLVq1exa9cuCCFw8+ZNbNmyBX379n0qsdYkPz8fwcHBWL58OWxtK946lZCQAI1Gg2vXrqFZs2ZwdHTE4MGDcfXqValM27Ztoaenh9jYWJSWlkKtVuPf//43Xn31VRgaGj4X/SQdWdsH+MIJBWe+QfrN6/jjgjN6n2gAvT//V6YHQ5SIEhg2s4LilVd0GioRERE9Gi50rkPir38T6ZnDtFAfzY4nAwCyNWVvj7EBk1JEf0clRRqsnnCwztt9d7EPDI0e7/8rQgjs27cPe/bsQZ8+fbBt2zYcOXIEnTt3BlC23o+TkxO2bduGQYMGITMzEwMHDkTLli0BAK6urlJd5YkWGxsbWFhYAADu37+P9evXY8OGDejVqxcAIDY2Fvb29hVi6dmzJyZPnixtjx49GsOGDcPEiRMBAO7u7liyZAl8fHywYsUKODg4YMmSJZg2bRrmzJmDdu3awdfXF8OGDZPiSktLg0qlgp2dXYX25HI5XF1dkZaWVuHYo4iPj8fQoUORn58POzs7JCQkoH79+pWWvXTpEpYuXYro6Ohq6+zSpQvi4uIwZMgQPHjwACUlJQgMDKyz29U++OADdO7cGUFBQZUev3LlCjQaDT777DMsXrwYKpUKH330Efz8/HDmzBnI5XK4uLjghx9+wODBgzF27FiUlpaiU6dO2LVr13PTT9KNj3/NQVFRaxTo6aF+joApgFxFCUyLrWCg7w6n3/dhvJcfFvd7hetvEhERvWA4U0qHChu2wwOnznjQsAPMnZqgcakzPFM34oG+IbKNlDjk+ApUCkM41zfRdahE9JKLj4+HmZkZjI2N0adPHwwZMgQjRoyAgYEBOnbsKJWzsrJCkyZNcP78eQDA+PHjMXfuXHTp0gWRkZE4c+ZMte1cuXIFxcXF6NChg7RPpVKhSZOKa8S0a9dOa/uXX37BunXrYGZmJr38/f2h0WiQnp4OoGzm1o0bNxAXF4dOnTph8+bNaN68ORISEmp9LeRyeY1l4uLitOJITEyUjvn6+iI5ORlHjx5FQEAABg8ejFu3blWo49q1awgICMCgQYO01kx6uN6wsDAAQEpKCiZMmIBPPvkEJ0+exPfff4+MjAzpeGJiotZ5cXFxte5vTXbs2IEff/wRX331VZVlNBoNiouLsWTJEvj7+8Pb2xsbN27ExYsXsX//fgDAjRs3MGbMGISGhuLEiRM4ePAg5HI53nzzTWl2ny77SbpjeM8UNrfN4HzTBKYPyr6wa1jQAeZGg2Fo0h1FmrKHLiiN+V0rERHRi0Ynv70///xzbN26FRcuXIBCoUDnzp0xf/58rT86Hjx4gMmTJ+Obb75BYWEh/P398Y9//AMNGjSQymRmZuK9997D/v37YWZmhtDQUHz++ecwMPhftw4cOIBJkybh3LlzcHJywkcffYQRI0bUZXer1OnwBsiLAVnHL/CT1QU0+30H6qmzEen9Dpz69kZULzdYK41gIucgi+jvyECuh3cX++ik3Ufl6+uLFStWQC6Xw97eHgYGBtixY0eN540ePRr+/v7YuXMnfvjhB3z++eeIiYlBRETE44SuxdTUVGs7NzcXY8eOxfjx4yuUbdiwofRvpVKJwMBABAYGYu7cufD398fcuXPh5+cHd3d3qNVqZGVlVZidVVRUhMuXL2stzl2VAQMGaCXrHBwctOJ2c3ODm5sbvL294e7ujjVr1mDmzJlSmaysLPj6+qJz585YvXq1Vt0PP/3O3NwcQNnv1S5dumDq1KkAgFatWsHU1BTdunXD3Llz0a5dO63zHv5d+qR+/PFHXL58WZrtVm7gwIHo1q0bDhw4IM088/T0lI5bW1ujfv36yMzMBAAsX74cKpUKCxYskMr85z//gZOTE5KSkuDt7a3TfpLuePv2xIPcXGjUGty9pkaRujHyTV6RjhdaKhHcsSE6N658xiERERE9v3SS7Th48CDCw8PRvn17lJSUYNasWejduzdSUlKkPzI++OAD7Ny5E5s3b4ZKpcK4cePwxhtv4MiRIwCA0tJS9OvXD7a2tjh69CiuX7+O4cOHw9DQEJ999hmAsif59OvXD2FhYYiLi8O+ffswevRo2NnZ1eqPimfNJs8AKCrBvcLfYPbHHRg9KAQA5Bkq4FBPAWcr0xpqIKIXmUwme+zb6OpaeSLlYc2aNUNJSQmSkpKk2/fu3r2L1NRUreSDk5MTwsLCEBYWhpkzZ+Lrr79GRESENOPo4fWdXF1dYWhoiBMnTkiJJLVajbS0NHTv3r3aGNu0aYOUlJQKcVZHJpOhadOmOHr0KADgzTffxPTp0xETE4OYmBitsitXrkR+fj6GDx9eY71KpRJKpbJWMWg0GhQWFkrb165dg6+vL9q2bYvY2Fjo6WknESvrX35+vtYXMgCgr1/2syWEgEKheKTr8ihmzJiB0aNHa+1r2bIlFi1ahMDAQABlt90BZeuHOTo6AgCys7Nx584dODs7S334a1/L+6D58ylruuwn6Y4yLhGWt/JQ6BGEW44OEEYuAICc++chWjTGe9PmQk//xfh/KREREWnTSVLq+++/19pet24dbGxscPLkSXTv3h1qtRpr1qzBhg0b0LNnTwBla4o0a9YMP/30E7y9vfHDDz8gJSUFe/fuRYMGDfDKK6/g008/xfTp0zF79mzI5XKsXLkSLi4u0h8WzZo1w+HDh7Fo0aLnIimlpykbfFseXoFuD+3PNTSGSmGom6CIiGrJ3d0dQUFBGDNmDFatWgWlUokZM2bAwcFBWlto4sSJ6NOnDzw8PPDHH39g//79aNasGQDA2dkZMpkM8fHx6Nu3LxQKBZRKJUJDQzF16lRYWlrCxsYGkZGR0NPTq3GtmOnTp8Pb2xvjxo3D6NGjYWpqipSUFCQkJGDZsmVITk5GZGQkQkJC4OnpCblcjoMHD2Lt2rWYPn06gLIZVQsWLMCUKVNgbGyMkJAQGBoaYvv27Zg1axbmzp2LFi1aaLWbmppaIZbmzZtLi3OXy8vLw7x58zBgwADY2dnhzp07WL58Oa5du4ZBgwYBKEtI9ejRA87OzoiOjsbt27el8ytbQLxcYGAgxowZgxUrVsDf3x/Xr1/HxIkT0aFDh0rX4yqXm5uLS5cuSdvp6elITk6GpaWllBTMzs5GZmYmsrKytPpra2ur9fqrhg0bwsWlLHng4eGBoKAgTJgwAatXr4a5uTlmzpyJpk2bwtfXFwDQr18/LFq0CFFRUXjrrbdw//59zJo1C87OzmjduvUz7yc9v843CEFBI5uyjVwAf+afUvTz8UpbFyakiIiIXmTP9iGAtXPx4kUBQJw9e1YIIcS+ffsEAPHHH39olWvYsKFYuHChEEKIjz/+WHh5eWkdv3LligAgTv35OOBu3bppPUJcCCHWrl0rzM3NaxXXs3688VnP5iKlSVOR0qSpONHyFXHgFW8R6/O68P70B5F6I+eZtElEulHd4+Wfd6GhoSIoKKjSY9nZ2SIkJESoVCqhUCiEv7+/SEtLk46PGzdONG7cWBgZGQlra2sREhIi7ty5Ix2PiooStra2QiaTidDQUCGEEDk5OSI4OFiYmJgIW1tbsXDhQtGhQwcxY8YM6TxnZ2exaNGiCvEcP35c+Pn5CTMzM2FqaipatWol5s2bJ4QQ4vbt22L8+PGiRYsWwszMTCiVStGyZUsRHR0tSktLterZtm2b6NatmzA1NRUABACxceNGrTLp6enSsb++rl69WiG2goIC8frrrwt7e3shl8uFnZ2dGDBggDh+/LhUJjY2tso6a7JkyRLh6ekpFAqFsLOzE8OGDRO///57tefs37+/0rbK34vqYoqMjKyyXgDiu+++09qnVqvFO++8IywsLISlpaV4/fXXRWZmplaZjRs3itatWwtTU1NhbW0tBgwYIM6fP18n/fyr6j6zz3p88CJ6ltck9u31YuU728Xqkd+Jr0dsEf8cvklseG2eWPLfo+JubuFTb4+IiIieXG3HBjIhnsKzwZ+ARqPBgAEDcO/ePRw+fBgAsGHDBowcOVLrdgYA6NChA3x9fTF//ny8++67+O2337Bnzx7peH5+PkxNTbFr1y7pm/mRI0dqrdOxa9cu9OvXD/n5+VAoFFr1FxYWarWZk5MDJycnqNVqad2Op2nytChoZHrQyPSQrOeE3zSWeK+7C6b39az5ZCJ6oTx48ADp6elwcXGBsbGxrsN5oeTl5cHBwQExMTEYNWpUnbefnZ2NXr16wdzcHLt374aJCR8+8TKo7jObk5MDlUr1zMYHL6JneU18Jv0LfwhjlOjpo1hPHyV6+vAWV7DhiwjI9PjMHiIioudRbccGOl9BOzw8HL/++quUkNKlzz//HHPmzKmz9nbot0ax+HMwVbZcBhqoFFWfQET0Ejh9+jQuXLiADh06QK1WIyoqCgCkWwLrmqWlJfbu3Yvly5fj2LFj6NWrl07iIHpZ2Rjdh5lekbRtYqCHL8a+xYQUERHR34BOk1Ljxo1DfHw8Dh06JC18CpStU1FUVIR79+5pPc3n5s2b0roVtra2OH78uFZ9N2/elI6V/7d838NlzM3NK8ySAoCZM2di0qRJ0nb5TKlnxdVGhcKSUshkMsgA1DOVw6951WuGEBG9LKKjo5Gamgq5XI62bdsiMTER9evr7slaVlZW+OSTT3TWPtHLLOBBBvLVtwGZDI28eqNf+BDo6TMhRURE9Hegk6SUEAIRERH47rvvcODAAWkh1HJt27aFoaEh9u3bh4EDBwIoW1g1MzMTnTp1AgB06tQJ8+bNw61bt2BjU7b4ZUJCAszNzaWnPnXq1Am7du3SqjshIUGq46+MjIxgZGT0VPtanT0fVP8kKSKil1Hr1q1x8uRJXYdBRM+JUYu+1HUIRERE9IzoJCkVHh6ODRs2YPv27VAqlbhx4wYAQKVSQaFQQKVSYdSoUZg0aRIsLS1hbm6OiIgIdOrUCd7e3gCA3r17w9PTEyEhIViwYAFu3LiBjz76COHh4VJiKSwsDMuWLcO0adPwzjvv4Mcff8R///tf7Ny5UxfdJiIiIiIiIiKiP+lk7vOKFSugVqvRo0cP2NnZSa9NmzZJZRYtWoT+/ftj4MCB6N69O2xtbbF161bpuL6+PuLj46Gvr49OnTrh7bffxvDhw6W1RwDAxcUFO3fuREJCAry8vBATE4N//vOf8Pf3r9P+EhERERERERGRNp0/fe95xqfrENHTwqfvEb1Y+PS9R8NrQkRERA+r7diAq0QSEREREREREVGdY1KKiIiIiIiIiIjqHJNSRERERERERERU55iUIiIiIiIiIiKiOsekFBERVWvEiBGQyWSQyWSQy+Vwc3NDVFQUSkpKnqjeAwcOQCaT4d69e08n0FpIT09HcHAw7O3tYWxsDEdHRwQFBeHChQta5eLj4+Hj4wOlUgkTExO0b98e69at0yqTkZEBmUyG5OTkWrc/e/ZsNG3aFKampqhXrx5effVVJCUladU5atQouLi4QKFQoHHjxoiMjERRUVGNdcfFxcHLywsmJiaws7PDO++8g7t371Z7zqFDhxAYGAh7e3vIZDJs27btkWMGgHnz5qFz584wMTGBhYVFpW1lZmaiX79+MDExgY2NDaZOnar1M/Twz9nDr+bNm0tlPv/8c7Rv3x5KpRI2NjZ47bXXkJqaWuO1qU18RERERFT3mJQiIqIaBQQE4Pr167h48SImT56M2bNn48svv9R1WJLaJG2Ki4vh5+cHtVqNrVu3IjU1FZs2bULLli21EmNLly5FUFAQunTpgqSkJJw5cwZDhw5FWFgYpkyZ8kRxenh4YNmyZTh79iwOHz6MRo0aoXfv3rh9+zYA4MKFC9BoNFi1ahXOnTuHRYsWYeXKlZg1a1a19R45cgTDhw/HqFGjcO7cOWzevBnHjx/HmDFjqj0vLy8PXl5eWL58+WPHDJRd/0GDBuG9996rtI7S0lL069cPRUVFOHr0KNavX49169bhk08+kcosXrwY169fl15Xr16FpaUlBg0aJJU5ePAgwsPD8dNPPyEhIQHFxcXo3bs38vLyqu1nTfERERERkY4IqpJarRYAhFqt1nUoRPSCKygoECkpKaKgoEDXoTyy0NBQERQUpLXPz89PeHt7i+zsbBESEiIsLCyEQqEQAQEBIi0tTSqXkZEh+vfvLywsLISJiYnw9PQUO3fuFOnp6QKA1is0NFQIIUROTo4IDg4WJiYmwtbWVixcuFD4+PiICRMmSPU6OzuLqKgoERISIpRKpXRuYmKi6Nq1qzA2NhaOjo4iIiJC5ObmCiGEOH36tAAgMjIyquxrZmamMDQ0FJMmTapwbMmSJQKA+Omnn4QQQurD6dOnH/2i/qn898zevXurLLNgwQLh4uJSbT1ffvmlcHV1rRCvg4NDrWMBIL777rsay1UXc2xsrFCpVBX279q1S+jp6YkbN25I+1asWCHMzc1FYWFhpe189913QiaTVft+3bp1SwAQBw8erDHu6uKrTHWfWY4PKuI1ISIioofVdmzAmVJERDoihEDxgwd1/hJCPHHsCoUCRUVFGDFiBH7++Wfs2LEDx44dgxACffv2RXFxMQAgPDwchYWFOHToEM6ePYv58+fDzMwMTk5O+PbbbwEAqampuH79OhYvXgwAmDRpEo4cOYIdO3YgISEBiYmJOHXqVIUYoqOj4eXlhdOnT+Pjjz/G5cuXERAQgIEDB+LMmTPYtGkTDh8+jHHjxgEArK2toaenhy1btqC0tLTSfm3ZsgXFxcWVzogaO3YszMzMsHHjxie+fkDZ7J3Vq1dDpVLBy8urynJqtRqWlpbV1tWpUydcvXoVu3btghACN2/exJYtW9C3b9+nEuujxvxXx44dQ8uWLdGgQQNpn7+/P3JycnDu3LlKz1mzZg1effVVODs7V1mvWq0GgBqvDxERERE9nwx0HQAR0cuqpLAQS0LfrPN2x6/fAkNj48c6VwiBffv2Yc+ePejTpw+2bduGI0eOoHPnzgDK1jVycnLCtm3bMGjQIGRmZmLgwIFo2bIlAMDV1VWqqzyRYGNjI63zc//+faxfvx4bNmxAr169AACxsbGwt7evEEvPnj0xefJkaXv06NEYNmwYJk6cCABwd3fHkiVL4OPjgxUrVsDBwQFLlizBtGnTMGfOHLRr1w6+vr4YNmyYFFdaWhpUKhXs7OwqtCeXy+Hq6oq0tLTHunbl4uPjMXToUOTn58POzg4JCQmoX79+pWUvXbqEpUuXIjo6uto6u3Tpgri4OAwZMgQPHjxASUkJAgMDq70t71nFXJkbN25oJaQASNs3btyoUD4rKwu7d+/Ghg0bqqxTo9Fg4sSJ6NKlC1q0aFHrWIiIiIjo+cGZUkREVKP4+HiYmZnB2NgYffr0wZAhQzBixAgYGBigY8eOUjkrKys0adIE58+fBwCMHz8ec+fORZcuXRAZGYkzZ85U286VK1dQXFyMDh06SPtUKhWaNGlSoWy7du20tn/55ResW7cOZmZm0svf3x8ajQbp6ekAymZu3bhxA3FxcejUqRM2b96M5s2bIyEhodbXQi6X11gmLi5OK47ExETpmK+vL5KTk3H06FEEBARg8ODBuHXrVoU6rl27hoCAAAwaNEhrbaiH6w0LCwMApKSkYMKECfjkk09w8uRJfP/998jIyJCOJyYmap0XFxdX6/4+SsxPy/r162FhYYHXXnutyjLh4eH49ddf8c0330j7wsLCtPpJRERERM83zpQiItIRAyMjjF+/RSftPipfX1+sWLECcrkc9vb2MDAwwI4dO2o8b/To0fD398fOnTvxww8/4PPPP0dMTAwiIiIeJ3QtpqamWtu5ubkYO3Ysxo8fX6Fsw4YNpX8rlUoEBgYiMDAQc+fOhb+/P+bOnQs/Pz+4u7tDrVYjKyurwuysoqIiXL58Gf7+/jXGNmDAAK1knYODg1bcbm5ucHNzg7e3N9zd3bFmzRrMnDlTKpOVlQVfX1907twZq1ev1qr74af9mZubAyh7Kl2XLl0wdepUAECrVq1gamqKbt26Ye7cuWjXrp3WeX+dtVST2sRcHVtbWxw/flxr382bN6VjDxNCYO3atQgJCakyAThu3DjEx8fj0KFDcHR0lPZHRUU98WL0RERERFR3mJQiItIRmUz22LfR1bXypMTDmjVrhpKSEiQlJUm37929exepqanw9PSUyjk5OSEsLAxhYWGYOXMmvv76a0REREgJh4fXd3J1dYWhoSFOnDghJZLUajXS0tLQvXv3amNs06YNUlJSKsRZHZlMhqZNm+Lo0aMAgDfffBPTp09HTEwMYmJitMquXLkS+fn5GD58eI31KpVKKJXKWsWg0WhQWFgobV+7dg2+vr5o27YtYmNjoaenPam5sv7l5+fDwED7V7q+vj6AsiSPQqF4pOvyqDHXpFOnTpg3bx5u3boFGxsbAEBCQgLMzc21flaAsifsXbp0CaNGjapQjxACERER+O6773DgwAG4uLhoHbexsZHqJyIiIqLnH5NSRET0WNzd3REUFIQxY8Zg1apVUCqVmDFjBhwcHBAUFAQAmDhxIvr06QMPDw/88ccf2L9/P5o1awYAcHZ2hkwmQ3x8PPr27QuFQgGlUonQ0FBMnToVlpaWsLGxQWRkJPT09CCTyaqNZ/r06fD29sa4ceMwevRomJqaIiUlBQkJCVi2bBmSk5MRGRmJkJAQeHp6Qi6X4+DBg1i7di2mT58OoGxG1YIFCzBlyhQYGxsjJCQEhoaG2L59O2bNmoW5c+dWWL8oNTW1QizNmzeHoaGh1r68vDzMmzcPAwYMgJ2dHe7cuYPly5fj2rVrGDRoEICyhFSPHj3g7OyM6Oho3L59Wzr/rzOKHhYYGIgxY8ZgxYoV8Pf3x/Xr1zFx4kR06NCh0vW4yuXm5uLSpUvSdnp6OpKTk2FpaYmGDRvWKmYAyMzMRHZ2NjIzM1FaWirNynJzc4OZmRl69+4NT09PhISEYMGCBbhx4wY++ugjhIeHw+gvM/fWrFmDjh07VrpOVHh4ODZs2IDt27dDqVRK61GpVCooFIoq+1lTfERERESkI8/4KYAvND7emIieluoeL/+8Cw0NFUFBQZUey87OFiEhIUKlUgmFQiH8/f1FWlqadHzcuHGicePGwsjISFhbW4uQkBBx584d6XhUVJSwtbUVMplMhIaGCiGEyMnJEcHBwcLExETY2tqKhQsXig4dOogZM2ZI5zk7O4tFixZViOf48ePCz89PmJmZCVNTU9GqVSsxb948IYQQt2/fFuPHjxctWrQQZmZmQqlUipYtW4ro6GhRWlqqVc+2bdtEt27dhKmpqQAgAIiNGzdqlUlPT5eO/fV19erVCrEVFBSI119/Xdjb2wu5XC7s7OzEgAEDxPHjx6UysbGxVdZZkyVLlghPT0+hUCiEnZ2dGDZsmPj999+rPWf//v2VtlX+XtQmZiHKfkYqq2f//v1SmYyMDNGnTx+hUChE/fr1xeTJk0VxcbFWPffu3RMKhUKsXr260nirujaxsbHV9rM28f1VdZ9Zjg8q4jUhIiKih9V2bCAT4ik8G/xvKicnByqVCmq1Wlq3g4jocTx48ADp6elwcXGB8Qtyy97zIi8vDw4ODoiJian0lq5nLTs7G7169YK5uTl2794NExOTOo+B6l51n1mODyriNSEiIqKH1XZswKfvERHRc+X06dPYuHEjLl++jFOnTmHYsGEAIN0SWNcsLS2xd+9e9OrVC8eOHdNJDEREREREf0dcU4qIiJ470dHRSE1NhVwuR9u2bZGYmIj69evrLB4rKyt88sknOmufiIiIiOjviEkpIiJ6rrRu3RonT57UdRhERERERPSM8fY9IiIiIiIiIiKqc0xKERHVIT5bgujFwM8qERER0bPHpBQRUR0wNDQEAOTn5+s4EiKqjfLPavlnl4iIiIiePq4pRURUB/T19WFhYYFbt24BAExMTCCTyXQcFRH9lRAC+fn5uHXrFiwsLKCvr6/rkIiIiIj+tpiUIiKqI7a2tgAgJaaI6PllYWEhfWaJiIiI6NlgUoqIqI7IZDLY2dnBxsYGxcXFug6HiKpgaGjIGVJEREREdYBJKSKiOqavr88/eImIiIiI6KXHhc6JiIiIiIiIiKjOMSlFRERERERERER1jkkpIiIiIiIiIiKqc1xTqhpCCABATk6OjiMhIiKi50X5uKB8nEAcMxEREZG22o6XmJSqxv379wEATk5OOo6EiIiInjf379+HSqXSdRjPBY6ZiIiIqDI1jZdkgl/zVUmj0SArKwtKpRIymeyp15+TkwMnJydcvXoV5ubmT73+5xn7zr6z7y8P9p19/7v1XQiB+/fvw97eHnp6XAkBeLZjpr/zz1JN2Hf2nX1/ebDv7Pvfre+1HS9xplQ19PT04Ojo+MzbMTc3/9v9ANYW+86+v2zYd/b9ZfN37TtnSGmrizHT3/VnqTbYd/b9ZcO+s+8vm79r32szXuLXe0REREREREREVOeYlCIiIiIiIiIiojrHpJQOGRkZITIyEkZGRroOpc6x7+z7y4Z9Z99fNi9z3+npepl/lth39v1lw76z7y+bl7nv5bjQORERERERERER1TnOlCIiIiIiIiIiojrHpBQREREREREREdU5JqWIiIiIiIiIiKjOMSlFRERERERERER1jkkpIiIiIiIiIiKqc0xKERERERERERFRnWNSioiIiIiIiIiI6hyTUkREREREREREVOeYlCIiIiIiIiIiojrHpBQREREREREREdU5JqWIiIiIiIiIiKjOMSlFRERERERERER1jkkpIiIiIiIiIiKqc0xKEVGdycjIgEwmw7p163QdynNjxIgRaNSokdY+mUyG2bNn6yQeIiIiqjsvy9jowIEDkMlk2LJli65DqdLTHn+V9/nAgQNPrU6ivyMmpYheIkePHsXs2bNx7969xzr/H//4x99+0PQsZGVlYfbs2UhOTtZ1KERERPQQjo2erg0bNuCrr77SaQz5+fmYPXt2pcmgXbt28Ys/oucMk1JEL5GjR49izpw5HHjVsaysLMyZM6fSpNTXX3+N1NTUug+KiIiIODZ6yp6XpNScOXOqTErNmTOn7oMioioxKUVEpEOGhoYwMjLSdRhEREREz638/Hxdh0BEzwiTUkQvidmzZ2Pq1KkAABcXF8hkMshkMmRkZKCkpASffvopGjduDCMjIzRq1AizZs1CYWGhdH6jRo1w7tw5HDx4UDq3R48eAIDs7GxMmTIFLVu2hJmZGczNzdGnTx/88ssvTyX2Bw8eYPbs2fDw8ICxsTHs7Ozwxhtv4PLlywD+tx5DdHQ0Fi1aBGdnZygUCvj4+ODXX3/VqqtHjx5S3A+rbG2nmjRq1AgjRoyosP/hNg4cOID27dsDAEaOHCldu/JvVR+n3cp88803aNu2LZRKJczNzdGyZUssXrwYAHDlyhXIZDIsWrSownlHjx6FTCbDxo0bAQD379/HxIkT0ahRIxgZGcHGxgZ+fn44depUrWMpLi7GnDlz4O7uDmNjY1hZWaFr165ISEh44n4SERE9LRwblXlaY6MePXpg586d+O2336Tr8dfzNRoN5s2bB0dHRxgbG6NXr164dOlShXpatGiBkydPonv37jAxMcGsWbMAALdu3cKoUaPQoEEDGBsbw8vLC+vXr5fOzcjIgLW1NQBgzpw5UhyzZ8/GiBEjsHz5cgCQ9stksmr7dO3aNbzzzjto0KABjIyM0Lx5c6xdu7ZCud9//x2vvfYaTE1NYWNjgw8++EDrZ6W2OIail5GBrgMgorrxxhtvIC0tDRs3bsSiRYtQv359AIC1tTVGjx6N9evX480338TkyZORlJSEzz//HOfPn8d3330HAPjqq68QEREBMzMzfPjhhwCABg0aAChLemzbtg2DBg2Ci4sLbt68iVWrVsHHxwcpKSmwt7d/7LhLS0vRv39/7Nu3D0OHDsWECRNw//59JCQk4Ndff0Xjxo2lsv/6179w//59hIeH48GDB1i8eDF69uyJs2fPSrHWtWbNmiEqKgqffPIJ3n33XXTr1g0A0Llz56fWRkJCAt566y306tUL8+fPBwCcP38eR44cwYQJE+Dq6oouXbogLi4OH3zwgda5cXFxUCqVCAoKAgCEhYVhy5YtGDduHDw9PXH37l0cPnwY58+fR5s2bWoVz+zZs/H5559j9OjR6NChA3JycvDzzz/j1KlT8PPze2r9JiIiehIcGz3dsdGHH34ItVqN33//XfoizMzMTKvMF198AT09PUyZMgVqtRoLFizAsGHDkJSUpFXu7t276NOnD4YOHYq3334bDRo0QEFBAXr06IFLly5h3LhxcHFxwebNmzFixAjcu3cPEyZMgLW1NVasWIH33nsPr7/+Ot544w0AQKtWrZCXl4esrCwkJCTg3//+d439uXnzJry9vSGTyTBu3DhYW1tj9+7dGDVqFHJycjBx4kQAQEFBAXr16oXMzEyMHz8e9vb2+Pe//40ff/zxka8hx1D0UhJE9NL48ssvBQCRnp4u7UtOThYAxOjRo7XKTpkyRQAQP/74o7SvefPmwsfHp0K9Dx48EKWlpVr70tPThZGRkYiKitLaB0DExsbWOua1a9cKAGLhwoUVjmk0Gq16FQqF+P3336XjSUlJAoD44IMPpH0+Pj6V9iE0NFQ4OzvXOi4hhHB2dhahoaEV9v+1jRMnTlTZ78raBSAiIyNrHceECROEubm5KCkpqbLMqlWrBABx/vx5aV9RUZGoX7++Vh9UKpUIDw+vdduV8fLyEv369XuiOoiIiOoCx0ZPd2zUr1+/Ss/Zv3+/ACCaNWsmCgsLpf2LFy8WAMTZs2e14gEgVq5cqVXHV199JQCI//znP9K+oqIi0alTJ2FmZiZycnKEEELcvn27yrFUeHi4qOpP4L+eM2rUKGFnZyfu3LmjVW7o0KFCpVKJ/Px8rbj++9//SmXy8vKEm5ubACD2799faXuV4RiKXka8fY/oJbdr1y4AwKRJk7T2T548GQCwc+fOGuswMjKCnl7Z/05KS0tx9+5dmJmZoUmTJo9021dlvv32W9SvXx8REREVjv11yvVrr70GBwcHabtDhw7o2LGj1Me/KwsLC+Tl5VU7tXvw4MEwNjZGXFyctG/Pnj24c+cO3n77ba26kpKSkJWV9UTxnDt3DhcvXnzsOoiIiHSFY6NnZ+TIkZDL5dJ2+QzyK1euaJUzMjLCyJEjtfbt2rULtra2eOutt6R9hoaGGD9+PHJzc3Hw4MGnFqcQAt9++y0CAwMhhMCdO3ekl7+/P9RqtfQ+7tq1C3Z2dnjzzTel801MTPDuu+8+crscQ9HLiEkpopfcb7/9Bj09Pbi5uWntt7W1hYWFBX777bca69BoNFi0aBHc3d1hZGSE+vXrw9raGmfOnIFarX6i+C5fvowmTZrAwKDmu43d3d0r7PPw8EBGRsYTxfC8e//99+Hh4YE+ffrA0dER77zzDr7//nutMhYWFggMDMSGDRukfXFxcXBwcEDPnj2lfQsWLMCvv/4KJycndOjQAbNnz64wUKxJVFQU7t27Bw8PD7Rs2RJTp07FmTNnnqyTREREdYRjo2enYcOGWtv16tUDAPzxxx9a+x0cHLSSV0DZ++Lu7i4l+8o1a9ZMOv603L59G/fu3cPq1athbW2t9SpPlt26dUtq183NrUJCsEmTJo/cLsdQ9DJiUoqIAFT8Zu1RfPbZZ5g0aRK6d++O//znP9izZw8SEhLQvHlzaDSapxjlk6uqn6WlpTqt60nY2NggOTkZO3bswIABA7B//3706dMHoaGhWuWGDx+OK1eu4OjRo7h//z527NiBt956S2twN3jwYFy5cgVLly6Fvb09vvzySzRv3hy7d++udTzdu3fH5cuXsXbtWrRo0QL//Oc/0aZNG/zzn/98an0mIiJ61jg2evrjGX19/Ur3CyG0thUKxVNv+1GUv0dvv/02EhISKn116dLlqbfLMRS9jLjQOdFLpLJBh7OzMzQaDS5evCh90wSULe547949ODs7V3s+AGzZsgW+vr5Ys2aN1v579+5Ji4Y+rsaNGyMpKQnFxcUwNDSstmxlU53T0tK0nvxSr169Smf+PM63a/Xq1cO9e/cqrcvV1VXafpJBbW3J5XIEBgYiMDAQGo0G77//PlatWoWPP/5Y+qY3ICAA1tbWiIuLQ8eOHZGfn4+QkJAKddnZ2eH999/H+++/j1u3bqFNmzaYN28e+vTpU+t4LC0tMXLkSIwcORK5ubno3r07Zs+ejdGjRz+1PhMRET0pjo2e7tjoWY55nJ2dcebMGWg0Gq0v1C5cuCAdrymG2sZnbW0NpVKJ0tJSvPrqqzXG9euvv0IIoVV/ampqrdr6K46h6GXDmVJELxFTU1MA0Eqk9O3bF0DZE2QetnDhQgBAv379tM6vLAmjr69f4RuuzZs349q1a08c88CBA3Hnzh0sW7aswrG/trlt2zatNo8fP46kpCStZErjxo1x4cIF3L59W9r3yy+/4MiRI48cW+PGjfHTTz+hqKhI2hcfH4+rV69qlavsuj9Nd+/e1drW09NDq1atAEDrccQGBgZ466238N///hfr1q1Dy5YtpXJA2Teif72lwMbGBvb29o/0WOO/xmNmZgY3N7fHejQyERHRs8Sx0dMdG5mamj7x7YlV6du3L27cuIFNmzZJ+0pKSrB06VKYmZnBx8cHQNl6TkDl467ajsn09fUxcOBAfPvtt/j1118rHH/4WvXt2xdZWVnYsmWLtC8/Px+rV6+udd/KcQxFLyPOlCJ6ibRt2xZA2SN7hw4dCkNDQwQGBiI0NBSrV6/GvXv34OPjg+PHj2P9+vV47bXX4Ovrq3X+ihUrMHfuXLi5ucHGxgY9e/ZE//79ERUVhZEjR6Jz5844e/Ys4uLitGYLPa7hw4fjX//6FyZNmoTjx4+jW7duyMvLw969e/H+++8jKChIKuvm5oauXbvivffeQ2FhIb766itYWVlh2rRpUpl33nkHCxcuhL+/P0aNGoVbt25h5cqVaN68OXJych4pttGjR2PLli0ICAjA4MGDcfnyZfznP//RehQzUDbYs7CwwMqVK6FUKmFqaoqOHTvCxcXlyS7OQ3FkZ2ejZ8+ecHR0xG+//YalS5filVde0fqGFyi7nkuWLMH+/fsxf/58rWP379+Ho6Mj3nzzTXh5ecHMzAx79+7FiRMnEBMTU+t4PD090aNHD7Rt2xaWlpb4+eefsWXLFowbN+6p9JeIiOhp4djo6Y6N2rZti02bNmHSpElo3749zMzMEBgY+MR9BoB3330Xq1atwogRI3Dy5Ek0atQIW7ZswZEjR/DVV19BqVQCKLv1z9PTE5s2bYKHhwcsLS3RokULtGjRQnq/x48fD39/f+jr62Po0KGVtvfFF19g//796NixI8aMGQNPT09kZ2fj1KlT2Lt3L7KzswEAY8aMwbJlyzB8+HCcPHkSdnZ2+Pe//y0lxx4Fx1D0UtLdg/+ISBc+/fRT4eDgIPT09KRHIBcXF4s5c+YIFxcXYWhoKJycnMTMmTPFgwcPtM69ceOG6Nevn1AqlQKA9PjgBw8eiMmTJws7OzuhUChEly5dxLFjxyo8YvhxHnsshBD5+fniww8/lOKztbUVb775prh8+bJWvV9++aWIiYkRTk5OwsjISHTr1k388ssvFer7z3/+I1xdXYVcLhevvPKK2LNnz2M99lgIIWJiYoSDg4MwMjISXbp0ET///HOlj1bevn278PT0FAYGBlrXoLJ2UcVjjKuyZcsW0bt3b2FjYyPkcrlo2LChGDt2rLh+/Xql5Zs3by709PS0HhEthBCFhYVi6tSpwsvLSyiVSmFqaiq8vLzEP/7xj1rHIoQQc+fOFR06dBAWFhZCoVCIpk2binnz5omioqJHqoeIiKgucGz09MZGubm5Ijg4WFhYWAgA0vn79+8XAMTmzZu1ylfWfx8fH9G8efNK679586YYOXKkqF+/vpDL5aJly5aVXrujR4+Ktm3bCrlcrjWuKikpEREREcLa2lrIZDLx8J/DlY2/bt68KcLDw4WTk5N0nXv16iVWr16tVe63334TAwYMECYmJqJ+/fpiwoQJ4vvvvxcAxP79+2t17YTgGIpeTjIh/jLHk4joBZORkQEXFxd8+eWXmDJliq7Dee61bt0alpaW2Ldvn65DISIiomeAYyMielFwTSkiopfIzz//jOTkZAwfPlzXoRARERER0UuOa0oRkU4UFRVJ9+JXRaVS6eSRwNnZ2VqLl/+Vvr4+rK2tn3kcpaWlWgtpVsbMzAxmZmY11vXrr7/i5MmTiImJgZ2dHYYMGfLI8RQUFNS4eKmlpSXkcvkj101ERPSy49jo74tjKKKqMSlFRDpx9OhRrYVCKxMbG4sRI0bUTUAPeeONN3Dw4MEqjzs7OyMjI+OZx3H16tUaF0OPjIzE7Nmza6xry5YtiIqKQpMmTbBx40YYGxs/cjybNm3CyJEjqy2zf/9+9OjR45HrJiIietlxbPT3xTEUUdW4phQR6cQff/yBkydPVlumefPmsLOzq6OI/ufkyZP4448/qjyuUCjQpUuXZx7HgwcPcPjw4WrLuLq6PpUn+dTG9evXce7cuWrLtG3bFvXq1auTeIiIiP5OODb6++IYiqhqTEoREREREREREVGd40LnRERERERERERU57imVDU0Gg2ysrKgVCohk8l0HQ4RERE9B4QQuH//Puzt7aGnx+/3AI6ZiIiISFttx0tMSlUjKysLTk5Oug6DiIiInkNXr16Fo6OjrsN4LnDMRERERJWpabzEpFQ1lEolgLKLaG5uruNoiIiI6HmQk5MDJycnaZxAHDMRERGRttqOl5iUqkb59HNzc3MOsIiIiEgLb1P7H46ZiIiIqDI1jZe4EAIREREREREREdU5JqWIiIiIiIiIiKjOMSlFRERERERERER1jmtKERERERER0XOltLQUxcXFug6DiKpgaGgIfX39J66HSSkiIiIiIiJ6LgghcOPGDdy7d0/XoRBRDSwsLGBra/tED39hUoqIiIiIiIieC+UJKRsbG5iYmPBJp0TPISEE8vPzcevWLQCAnZ3dY9fFpBQRERERERHpXGlpqZSQsrKy0nU4RFQNhUIBALh16xZsbGwe+1Y+LnROREREREREOle+hpSJiYmOIyGi2ij/rD7J+m9MShEREREREdFzg7fsEb0YnsZnlUkpIiIiIiIiIiKqc0xKERERERERERFRnWNSioiIiIiIiOgJjBgxAjKZDDKZDHK5HG5uboiKikJJSckT1XvgwAHIZDLcu3fv6QRaC+np6QgODoa9vT2MjY3h6OiIoKAgXLhwQatcfHw8fHx8oFQqYWJigvbt22PdunVaZTIyMiCTyZCcnFzr9mfPno2mTZvC1NQU9erVw6uvvoqkpCStOkeNGgUXFxcoFAo0btwYkZGRKCoqqrbe69evIzg4GB4eHtDT08PEiRNrFc+hQ4cQGBgIe3t7yGQybNu2rdJy58+fx4ABA6BSqWBqaor27dsjMzNTOj527Fg0btwYCoUC1tbWlV7TEydOoFevXrCwsEC9evXg7++PX375pdL2Ll26BKVSCQsLi6fWB11gUoqIiIiIiIjoCQUEBOD69eu4ePEiJk+ejNmzZ+PLL7/UdViSmpI2QNmC1X5+flCr1di6dStSU1OxadMmtGzZUisxtnTpUgQFBaFLly5ISkrCmTNnMHToUISFhWHKlClPFKeHhweWLVuGs2fP4vDhw2jUqBF69+6N27dvAwAuXLgAjUaDVatW4dy5c1i0aBFWrlyJWbNmVVtvYWEhrK2t8dFHH8HLy6vW8eTl5cHLywvLly+vsszly5fRtWtXNG3aFAcOHMCZM2fw8ccfw9jYWCrTtm1bxMbG4vz589izZw+EEOjduzdKS0sBALm5uQgICEDDhg2RlJSEw4cPQ6lUwt/fv8JC4sXFxXjrrbfQrVu3p9YHnRFUJbVaLQAItVqt61CIiIjoOcHxQUW8JkT0NBQUFIiUlBRRUFCg61AeWWhoqAgKCtLa5+fnJ7y9vUV2drYICQkRFhYWQqFQiICAAJGWliaVy8jIEP379xcWFhbCxMREeHp6ip07d4r09HQBQOsVGhoqhBAiJydHBAcHCxMTE2FraysWLlwofHx8xIQJE6R6nZ2dRVRUlAgJCRFKpVI6NzExUXTt2lUYGxsLR0dHERERIXJzc4UQQpw+fVoAEBkZGVX2NTMzUxgaGopJkyZVOLZkyRIBQPz0009CCCH14fTp049+Uf9U/jtm7969VZZZsGCBcHFxqXWdf71WtQVAfPfddxX2DxkyRLz99tuPVNcvv/wiAIhLly4JIYQ4ceKEACAyMzOlMmfOnBEAxMWLF7XOnTZtmnj77bdFbGysUKlUT6UPj6O6z2xtxwacKUVERERERETPJSEE8otKdPIq+/v98SkUChQVFWHEiBH4+eefsWPHDhw7dgxCCPTt21ea/RIeHo7CwkIcOnQIZ8+exfz582FmZgYnJyd8++23AIDU1FRcv34dixcvBgBMmjQJR44cwY4dO5CQkIDExEScOnWqQgzR0dHw8vLC6dOn8fHHH+Py5csICAjAwIEDcebMGWzatAmHDx/GuHHjAADW1tbQ09PDli1bpBk8f7VlyxYUFxdXOiNq7NixMDMzw8aNG5/o2pUrKirC6tWroVKpqp3dpFarYWlp+VTafFQajQY7d+6Eh4cH/P39YWNjg44dO1Z7i1xeXh5iY2Ph4uICJycnAECTJk1gZWWFNWvWoKioCAUFBVizZg2aNWuGRo0aSef++OOP2Lx58/M56+kxGOg6ACIiIiIiIqLKFBSXwvOTPTppOyXKHybyR/+TWQiBffv2Yc+ePejTpw+2bduGI0eOoHPnzgCAuLg4ODk5Ydu2bRg0aBAyMzMxcOBAtGzZEgDg6uoq1VWeaLGxsZHWDrp//z7Wr1+PDRs2oFevXgCA2NhY2NvbV4ilZ8+emDx5srQ9evRoDBs2TFpPyd3dHUuWLIGPjw9WrFgBBwcHLFmyBNOmTcOcOXPQrl07+Pr6YtiwYVJcaWlpUKlUsLOzq9CeXC6Hq6sr0tLSHvm6PSw+Ph5Dhw5Ffn4+7OzskJCQgPr161da9tKlS1i6dCmio6OfqM3HdevWLeTm5uKLL77A3LlzMX/+fHz//fd44403sH//fvj4+Ehl//GPf2DatGnIy8tDkyZNkJCQALlcDgBQKpU4cOAAXnvtNXz66acAyt6fPXv2wMCg7Ofw7t27GDFiBP7zn//A3Ny87jv7DOhkptTnn3+O9u3bQ6lUwsbGBq+99hpSU1O1yjx48ADh4eGwsrKCmZkZBg4ciJs3b2qVyczMRL9+/WBiYgIbGxtMnTq1wkJyBw4cQJs2bWBkZAQ3N7cKC68RERERERERPan4+HiYmZnB2NgYffr0wZAhQzBixAgYGBigY8eOUjkrKys0adIE58+fBwCMHz8ec+fORZcuXRAZGYkzZ85U286VK1dQXFyMDh06SPtUKhWaNGlSoWy7du20tn/55ResW7cOZmZm0svf3x8ajQbp6ekAymZu3bhxA3FxcejUqRM2b96M5s2bIyEhodbXojzRUp24uDitOBITE6Vjvr6+SE5OxtGjRxEQEIDBgwfj1q1bFeq4du0aAgICMGjQIIwZM0ba/3C9YWFhtYo5MTFR67y4uLhanafRaAAAQUFB+OCDD/DKK69gxowZ6N+/P1auXKlVdtiwYTh9+jQOHjwIDw8PDB48GA8ePAAAFBQUYNSoUejSpQt++uknHDlyBC1atEC/fv1QUFAAABgzZgyCg4PRvXv3p9oHXdLJTKmDBw8iPDwc7du3R0lJCWbNmoXevXsjJSUFpqamAIAPPvgAO3fuxObNm6FSqTBu3Di88cYbOHLkCACgtLQU/fr1g62tLY4ePYrr169j+PDhMDQ0xGeffQag7KkB/fr1Q1hYGOLi4rBv3z6MHj0adnZ28Pf310XXiYiIiIiIqJYUhvpIidLN324KQ/1HKu/r64sVK1ZALpfD3t4eBgYG2LFjR43njR49Gv7+/ti5cyd++OEHfP7554iJiUFERMTjhi4p//u6XG5uLsaOHYvx48dXKNuwYUPp30qlEoGBgQgMDMTcuXPh7++PuXPnws/PD+7u7lCr1cjKyqowO6uoqAiXL1+u1d/bAwYM0ErWOTg4aMXt5uYGNzc3eHt7w93dHWvWrMHMmTOlMllZWfD19UXnzp2xevVqrbofftpfbWcUtWvXTuu8Bg0a1Oq8+vXrw8DAAJ6enlr7mzVrhsOHD2vtU6lUUKlUcHd3h7e3N+rVq4fvvvsOb731FjZs2ICMjAwcO3YMenpl84c2bNiAevXqYfv27Rg6dCh+/PFH7NixQ5oVJoSARqOBgYEBVq9ejbfeeuux+qBLOklKff/991rb69atg42NDU6ePInu3btDrVZjzZo12LBhA3r27AmgbDpis2bN8NNPP8Hb2xs//PADUlJSsHfvXjRo0ACvvPIKPv30U0yfPh2zZ8+GXC7HypUr4eLigpiYGAD/+6FYtGgRk1JERERERETPOZlM9li30OlCeSLlYc2aNUNJSQmSkpKk2/fu3r2L1NRUrSSGk5MTwsLCEBYWhpkzZ+Lrr79GRESENOPo4fWdXF1dYWhoiBMnTkiJJLVajbS0tCpn0JRr06YNUlJSKsRZHZlMhqZNm+Lo0aMAgDfffBPTp09HTEyM9Ld2uZUrVyI/Px/Dhw+vsV6lUgmlUlmrGDQaDQoLC6Xta9euwdfXV3qiXXkSp9yj9K+cQqF4rPPkcjnat29f4e6vtLQ0ODs7V3meEAJCCKlf+fn50NPTg0wmk8qUb5fPxjp27JjWz8L27dsxf/58HD16FA4ODo/dB116Lj7darUawP/ulz158iSKi4vx6quvSmWaNm2Khg0b4tixY/D29saxY8fQsmVLrcyfv78/3nvvPZw7dw6tW7fGsWPHtOooL1N+/ywRERERERHRs+Lu7o6goCCMGTMGq1atglKpxIwZM+Dg4ICgoCAAwMSJE9GnTx94eHjgjz/+wP79+9GsWTMAgLOzM2QyGeLj49G3b18oFAoolUqEhoZi6tSpsLS0hI2NDSIjIyskNCozffp0eHt7Y9y4cRg9ejRMTU2RkpKChIQELFu2DMnJyYiMjERISAg8PT0hl8tx8OBBrF27FtOnTwdQNqNqwYIFmDJlCoyNjRESEgJDQ0Ns374ds2bNwty5c9GiRQutdv+asAGA5s2bw9DQUGtfXl4e5s2bhwEDBsDOzg537tzB8uXLce3aNQwaNAhAWUKqR48ecHZ2RnR0NG7fvi2db2trW23/y2cR5ebm4vbt20hOToZcLq8wy+lhubm5uHTpkrSdnp6O5ORkWFpaSknBqVOnYsiQIejevTt8fX3x/fff4//+7/9w4MABAGW3XG7atAm9e/eGtbU1fv/9d3zxxRdQKBTo27cvAMDPzw9Tp05FeHg4IiIioNFo8MUXX8DAwAC+vr4AIP1clPv555+hp6dX4Xo/Th905qk8B/AJlJaWin79+okuXbpI++Li4oRcLq9Qtn379mLatGlCCCHGjBkjevfurXU8Ly9PABC7du0SQgjh7u4uPvvsM60yO3fuFABEfn5+hfofPHgg1Gq19Lp69Sofb0xERERaavuI45cJrwkRPQ3VPV7+eRcaGiqCgoIqPZadnS1CQkKESqUSCoVC+Pv7i7S0NOn4uHHjROPGjYWRkZGwtrYWISEh4s6dO9LxqKgoYWtrK2QymQgNDRVCCJGTkyOCg4OFiYmJsLW1FQsXLhQdOnQQM2bMkM5zdnYWixYtqhDP8ePHhZ+fnzAzMxOmpqaiVatWYt68eUIIIW7fvi3Gjx8vWrRoIczMzIRSqRQtW7YU0dHRorS0VKuebdu2iW7duglTU1MBQAAQGzdu1CqTnp4uHfvr6+rVqxViKygoEK+//rqwt7cXcrlc2NnZiQEDBojjx49LZWJjY6ussyaVnePs7FztOfv376/0vPL3otyaNWuEm5ubMDY2Fl5eXmLbtm3SsWvXrok+ffoIGxsbYWhoKBwdHUVwcLC4cOGCVh0//PCD6NKli1CpVKJevXqiZ8+e4tixY1XGFhsbK1QqVY39rm0fHlV1n9najg1kQjzhcy6f0HvvvYfdu3fj8OHDcHR0BFB23+TIkSO1pucBQIcOHeDr64v58+fj3XffxW+//YY9e/73JIb8/HyYmppi165dUqZ55MiRWved7tq1C/369UN+fj4UCoVW/bNnz8acOXMqxKhWq/82K9sTERHRk8nJyYFKpeL44CG8JkT0NDx48ADp6elwcXGBsbGxrsN5oeTl5cHBwQExMTEYNWpUnbefnZ2NXr16wdzcHLt374aJiUmdx0B1r7rPbG3HBjp5+l65cePGIT4+Hvv375cSUkDZlLuioiLcu3dPq/zNmzel6Xi2trYVnsZXvl1TGXNz8woJKQCYOXMm1Gq19Lp69eoT95GIiIiIiIjoaTp9+jQ2btyIy5cv49SpUxg2bBgASLcE1jVLS0vs3bsXvXr1wrFjx3QSA72YdJKUEkJg3Lhx+O677/Djjz/CxcVF63jbtm1haGiIffv2SftSU1ORmZmJTp06AQA6deqEs2fPaj0WMiEhAebm5tL9oJ06ddKqo7xMeR1/ZWRkBHNzc60XERERERER0fMmOjoaXl5eePXVV5GXl4fExETUr19fZ/FYWVnhk08+Qa9evXQWA714dLLQeXh4ODZs2IDt27dDqVTixo0bAMoej6hQKKBSqTBq1ChMmjQJlpaWMDc3R0REBDp16gRvb28AQO/eveHp6YmQkBAsWLAAN27cwEcffYTw8HAYGRkBAMLCwrBs2TJMmzYN77zzDn788Uf897//xc6dO3XRbSIiIiIiIqIn1rp1a5w8eVLXYRA9MZ3MlFqxYgXUajV69OgBOzs76bVp0yapzKJFi9C/f38MHDgQ3bt3h62tLbZu3Sod19fXR3x8PPT19dGpUye8/fbbGD58OKKioqQyLi4u2LlzJxISEuDl5YWYmBj885//hL+/f532l4iIiIiIiIiItOl8ofPnGRftJCIior/i+KAiXhMiehq40DnRi+WFX+iciIiIiIiIiIheTkxKERERERERERFRnWNSioiIiIiIiIiI6pxOnr5HRERE9KhKSjX49tTvuJVTCACI6OWu44iIiIiI6EkwKUVEREQvhMOX7mD6t2elbSaliIiIiF5svH2PiIiIXgj38oulf7/VwUmHkRAREWkbMWIEZDIZZDIZ5HI53NzcEBUVhZKSkieq98CBA5DJZLh3797TCbQW0tPTERwcDHt7exgbG8PR0RFBQUG4cOGCVrn4+Hj4+PhAqVTCxMQE7du3x7p167TKZGRkQCaTITk5udbtz549G02bNoWpqSnq1auHV199FUlJSVp1jho1Ci4uLlAoFGjcuDEiIyNRVFRUbb3Xr19HcHAwPDw8oKenh4kTJ9YqnhUrVqBVq1YwNzeHubk5OnXqhN27d0vHs7OzERERgSZNmkChUKBhw4YYP3481Gq1VGbdunXSz8dfX7du3ZLKFRYW4sMPP4SzszOMjIzQqFEjrF27Viuer776SmrLyckJH3zwAR48eFBtH7Zu3YrevXvDysrqkd+PZ40zpYiIiOiFUKoRAAAfD2t8/kYrHUdDRESkLSAgALGxsSgsLMSuXbsQHh4OQ0NDzJw5U9ehAQCKioogl8urLVNcXAw/Pz80adIEW7duhZ2dHX7//Xfs3r1bKzG2dOlSTJw4EdOnT8eKFSsgl8uxfft2hIWF4ddff0V0dPRjx+nh4YFly5bB1dUVBQUFWLRoEXr37o1Lly7B2toaFy5cgEajwapVq+Dm5oZff/0VY8aMQV5eXrXtFhYWwtraGh999BEWLVpU63gcHR3xxRdfwN3dHUIIrF+/HkFBQTh9+jSaN2+OrKwsZGVlITo6Gp6envjtt98QFhaGrKwsbNmyBQAwZMgQBAQEaNU7YsQIPHjwADY2NtK+wYMH4+bNm1izZg3c3Nxw/fp1aDQa6fiGDRswY8YMrF27Fp07d0ZaWpqUEF24cGGVfcjLy0PXrl0xePBgjBkzptZ9rxOCqqRWqwUAoVardR0KERHRS2/T8UzhPD1ejIw9rtM4OD6oiNeEiJ6GgoICkZKSIgoKCnQdyiMLDQ0VQUFBWvv8/PyEt7e3yM7OFiEhIcLCwkIoFAoREBAg0tLSpHIZGRmif//+wsLCQpiYmAhPT0+xc+dOkZ6eLgBovUJDQ4UQQuTk5Ijg4GBhYmIibG1txcKFC4WPj4+YMGGCVK+zs7OIiooSISEhQqlUSucmJiaKrl27CmNjY+Ho6CgiIiJEbm6uEEKI06dPCwAiIyOjyr5mZmYKQ0NDMWnSpArHlixZIgCIn376SQghpD6cPn360S/qn8p/x+zdu7fKMgsWLBAuLi61rvOv1+pR1atXT/zzn/+s8vh///tfIZfLRXFxcaXHb926JQwNDcW//vUvad/u3buFSqUSd+/erbLe8PBw0bNnT619kyZNEl26dKlV3E/j/XhYdZ/Z2o4NePseERERvRBKRdlMKT2ZTMeREBFRnRECKMrTzevP3zuPS6FQoKioCCNGjMDPP/+MHTt24NixYxBCoG/fviguLrstPTw8HIWFhTh06BDOnj2L+fPnw8zMDE5OTvj2228BAKmpqbh+/ToWL14MAJg0aRKOHDmCHTt2ICEhAYmJiTh16lSFGKKjo+Hl5YXTp0/j448/xuXLlxEQEICBAwfizJkz2LRpEw4fPoxx48YBAKytraGnp4ctW7agtLS00n5t2bIFxcXFmDJlSoVjY8eOhZmZGTZu3PhE165cUVERVq9eDZVKBS8vryrLqdVqWFpaPpU2q1NaWopvvvkGeXl56NSpU7XxmJubw8Cg8pvT/vWvf8HExARvvvmmtG/Hjh1o164dFixYAAcHB3h4eGDKlCkoKCiQynTu3BknT57E8ePHAQBXrlzBrl270Ldv36fUw7rH2/eIiIjohVDy5+17BnpMShERvTSK84HP7HXT9qwsQG76yKcJIbBv3z7s2bMHffr0wbZt23DkyBF07twZABAXFwcnJyds27YNgwYNQmZmJgYOHIiWLVsCAFxdXaW6yhMtNjY2sLCwAADcv38f69evx4YNG9CrVy8AQGxsLOztK16nnj17YvLkydL26NGjMWzYMGk9JXd3dyxZsgQ+Pj5YsWIFHBwcsGTJEkybNg1z5sxBu3bt4Ovri2HDhklxpaWlQaVSwc7OrkJ7crkcrq6uSEtLe+Tr9rD4+HgMHToU+fn5sLOzQ0JCAurXr19p2UuXLmHp0qVPdMtgTc6ePYtOnTrhwYMHMDMzw3fffQdPT89Ky965cweffvop3n333SrrW7NmDYKDg6FQKKR9V65cweHDh2FsbIzvvvsOd+7cwfvvv4+7d+8iNjYWABAcHIw7d+6ga9euEEKgpKQEYWFhmDVr1tPtcB3iTCkiIiJ6IWj+TErpMylFRETPofj4eJiZmcHY2Bh9+vTBkCFDMGLECBgYGKBjx45SOSsrKzRp0gTnz58HAIwfPx5z585Fly5dEBkZiTNnzlTbzpUrV1BcXIwOHTpI+1QqFZo0aVKhbLt27bS2f/nlF6xbtw5mZmbSy9/fHxqNBunp6QDKZm7duHEDcXFx6NSpEzZv3ozmzZsjISGh1teiprWrgLLk3MNxJCYmSsd8fX2RnJyMo0ePIiAgAIMHD9ZaELzctWvXEBAQgEGDBmmtlfRwvWFhYbWKOTExUeu8uLg46ViTJk2QnJyMpKQkvPfeewgNDUVKSkqFOnJyctCvXz94enpi9uzZlbZz7NgxnD9/HqNGjdLar9FoIJPJEBcXhw4dOqBv375YuHAh1q9fL82WOnDgAD777DP84x//wKlTp7B161bs3LkTn376aY3X9HnFmVJERET0QihlUoqI6OVjaFI2Y0lXbT8CX19fadFve3t7GBgYYMeOHTWeN3r0aPj7+2Pnzp344Ycf8PnnnyMmJgYRERGPG7nE1FR7pldubi7Gjh2L8ePHVyjbsGFD6d9KpRKBgYEIDAzE3Llz4e/vj7lz58LPzw/u7u5Qq9XIysqqMDurqKgIly9fhr+/f42xDRgwQCtZ5+DgoBW3m5sb3Nzc4O3tDXd3d6xZs0Zr0fisrCz4+vqic+fOWL16tVbdDz9dztzcvMZYgLIE3sPnNWjQQPp3+RMVAaBt27Y4ceIEFi9ejFWrVkll7t+/j4CAACiVSnz33XcwNDSstJ1//vOfeOWVV9C2bVut/XZ2dnBwcIBKpZL2NWvWDEII/P7773B3d8fHH3+MkJAQjB49GgDQsmVL5OXl4d1338WHH35Y7TV9XjEpRURERC+E/yWlNMjLuwQhNA8drbjuh7GxPQwMlHUUHRERPRMy2WPdQqcL5YmUhzVr1gwlJSVISkqSbt+7e/cuUlNTtW7/cnJyQlhYGMLCwjBz5kx8/fXXiIiIkGYcPby+k6urKwwNDXHixAkpkaRWq5GWlobu3btXG2ObNm2QkpJSIc7qyGQyNG3aFEePHgUAvPnmm5g+fTpiYmIQExOjVXblypXIz8/H8OHDa6xXqVRCqazd72mNRoPCwkJp+9q1a/D19UXbtm0RGxsLPT3tm8AepX/lFApFrc/7azw5OTnw9/eHkZERduzYAWNj40rPy83NxX//+198/vnnFY516dIFmzdvRm5uLszMzACU3Sqpp6cHR0dHAEB+fn6Fvurr6wMou230Ua7p84JJKSIiInohlC903sZ8MX5KOlJj+VYtV8La2u9Zh0VERFQld3d3BAUFYcyYMVi1ahWUSiVmzJgBBwcHBAUFAQAmTpyIPn36wMPDA3/88Qf279+PZs2aAQCcnZ0hk8kQHx+Pvn37QqFQQKlUIjQ0FFOnToWlpSVsbGwQGRkJPT09yGp4GMj06dPh7e2NcePGYfTo0TA1NUVKSgoSEhKwbNkyJCcnIzIyEiEhIfD09IRcLsfBgwexdu1aTJ8+HUDZjKoFCxZgypQpMDY2RkhICAwNDbF9+3bMmjULc+fORYsWLbTaTU1NrRBL8+bNK8wmysvLw7x58zBgwADY2dnhzp07WL58Oa5du4ZBgwYBKEtI9ejRA87OzoiOjsbt27el821tbavtf/lMqNzcXNy+fRvJycmQy+VVrg8FADNnzkSfPn3QsGFD3L9/Hxs2bMCBAwewZ88eAGUJqd69eyM/Px//+c9/kJOTg5ycHABlC8eXJ40AYNOmTSgpKcHbb79doZ3g4GB8+umnGDlyJObMmYM7d+5g6tSpeOedd6S1pwIDA7Fw4UK0bt0aHTt2xKVLl/Dxxx8jMDBQq52/ys7ORmZmJrKyymYdlr8ftra2NV6zZ41JKSIiInohlM+UUhlkAAAMDJSQySqfGg8AMr2qjxEREdWV2NhYTJgwAf3790dRURG6d++OXbt2SQmZ0tJShIeH4/fff4e5uTkCAgKwaNEiAGW3X82ZMwczZszAyJEjMXz4cKxbtw4LFy5EWFgY+vfvD3Nzc0ybNg1Xr16tcoZOuVatWuHgwYP48MMP0a1bNwgh0LhxYwwZMgQA4OjoiEaNGmHOnDnIyMiATCaTtj/44AOpng8++ACurq6IiYnB4sWLkZeXBwDYuHEjhg4dWqHdyvZdvXpVmgFUTl9fHxcuXMD69etx584dWFlZoX379khMTETz5s0BAAkJCbh06RIuXbpU4XxRwxMTW7duLf375MmT2LBhA5ydnZGRkVHlObdu3cLw4cNx/fp1qFQqtGrVCnv27IGfX9kXX6dOnUJSUhKAijO00tPT0ahRI2l7zZo1eOONN6RF6x9mZmaGhIQEREREoF27drCyssLgwYMxd+5cqcxHH30EmUyGjz76CNeuXYO1tTUCAwMxb968avu9Y8cOjBw5Utoufz8iIyOrXPuqrshETe/aSywnJwcqlUp6nCMRERHpzpJ9F7EwIQ1Le82Dif5NtGu7BSpV65pPfMo4PqiI14SInoYHDx4gPT0dLi4uNSZXSFteXh4cHBwQExNTYQHtupCdnY1evXrB3Nwcu3fvhonJo63HRS+m6j6ztR0b8Ol7RERE9EIonymlJysBAMhknPBNREQvp9OnT2Pjxo24fPkyTp06hWHDhgGAdEtgXbO0tMTevXvRq1cvHDt2TCcx0IuJozkiIiJ6IUhJKZQt9srb84iI6GUWHR2N1NRUyOVytG3bFomJiahfv77O4rGyssInn3yis/bpxcSkFBEREb0Qyhc6l8nKklJ6nClFREQvqdatW+PkyZO6DoPoifH2PSIiInohlM+UkqH89j3OlCIiIiJ6kTEpRURERC+E/92+V5aU0uPte0REREQvNCaliIiI6IXwv5lSf64pxdv3iIiIiF5oHM0RERHRcy0lKwd7z9/E6av3IIMGMpkGAJNSRERERC86juaIiIjoufbBpmSk3rwPADD4c5FzgLfvEREREb3omJQiIiKi59KlW/dx8WYu0u/kAQDeaOMAO3MhHedMKSIiIqIXG0dzRERE9Ny5l1+EfksOo7Ck7FY9hUEx3n1lJ4qLbuDWrbIyTEoRERERvdi40DkRERE9d367m4/CEg2MDPTQoZElPn71Dq79vha3bu0CABgYqJiUIiKi58aIESMgk8kgk8kgl8vh5uaGqKgolJSUPFG9Bw4cgEwmw717955OoLWQnp6O4OBg2Nvbw9jYGI6OjggKCsKFCxe0ysXHx8PHxwdKpRImJiZo37491q1bp1UmIyMDMpkMycnJtW5/9uzZaNq0KUxNTVGvXj28+uqrSEpK0qpz1KhRcHFxgUKhQOPGjREZGYmioqJq671+/TqCg4Ph4eEBPT09TJw4sdYxlfviiy8gk8kqnHv58mW8/vrrsLa2hrm5OQYPHoybN29qlZk3bx46d+4MExMTWFhYVFp/+c/Qw69vvvlGOr5161b4+flJ7XTq1Al79uypMe6tW7eid+/esLKyeuT341ljUoqIiIieG4fSbqPP4kS895+TAIBmdkr8a4QzOjjdAwCYm78Cd7cP0fqV9ZDJZDqMlIiISFtAQACuX7+OixcvYvLkyZg9eza+/PJLXYclqSlpAwDFxcXw8/ODWq3G1q1bkZqaik2bNqFly5ZaibGlS5ciKCgIXbp0QVJSEs6cOYOhQ4ciLCwMU6ZMeaI4PTw8sGzZMpw9exaHDx9Go0aN0Lt3b9y+fRsAcOHCBWg0GqxatQrnzp3DokWLsHLlSsyaNavaegsLC2FtbY2PPvoIXl5ejxzXiRMnsGrVKrRq1Uprf15eHnr37g2ZTIYff/wRR44cQVFREQIDA6HRaKRyRUVFGDRoEN57771q24mNjcX169el12uvvSYdO3ToEPz8/LBr1y6cPHkSvr6+CAwMxOnTp6utMy8vD127dsX8+fMfud/PnKAqqdVqAUCo1Wpdh0JERPRSCPv3z8J5erz02vD9MLF3n6v0unhxvq5D5PigErwmRPQ0FBQUiJSUFFFQUKDrUB5ZaGioCAoK0trn5+cnvL29RXZ2tggJCREWFhZCoVCIgIAAkZaWJpXLyMgQ/fv3FxYWFsLExER4enqKnTt3ivT0dAFA6xUaGiqEECInJ0cEBwcLExMTYWtrKxYuXCh8fHzEhAkTpHqdnZ1FVFSUCAkJEUqlUjo3MTFRdO3aVRgbGwtHR0cREREhcnNzhRBCnD59WgAQGRkZVfY1MzNTGBoaikmTJlU4tmTJEgFA/PTTT0IIIfXh9OnTj35R/1T+O2bv3r1VllmwYIFwcXGpdZ1/vVY1uX//vnB3dxcJCQkVzt2zZ4/Q09PT+h147949IZPJREJCQoW6YmNjhUqlqrQdAOK7776rdVxCCOHp6SnmzJlTq7JP4/14WHWf2dqODThTioiIiHSuqESDvMIS3Mx5AACY5OeOLWEdYGd8BgCgpyeHXF4f9a176TJMIiKqY0II5Bfn6+QlhKg5wGooFAoUFRVhxIgR+Pnnn7Fjxw4cO3YMQgj07dsXxcXFAIDw8HAUFhbi0KFDOHv2LObPnw8zMzM4OTnh22+/BQCkpqbi+vXrWLx4MQBg0qRJOHLkCHbs2IGEhAQkJibi1KlTFWKIjo6Gl5cXTp8+jY8//hiXL19GQEAABg4ciDNnzmDTpk04fPgwxo0bBwCwtraGnp4etmzZgtLS0gr1AcCWLVtQXFxc6YyosWPHwszMDBs3bnyia1euqKgIq1evhkqlqnZ2k1qthqWl5VNpszLh4eHo168fXn311QrHCgsLIZPJYGRkJO0zNjaGnp4eDh8+/Fht1a9fHx06dMDatWur/TnUaDS4f//+M+37s8bFGIiIiEinfrl6D299/RPyi8oGvwayYrSUR0B95ZJUpnu3U9DXV+gqRCIi0pGCkgJ03NBRJ20nBSfBxNDkkc8TQmDfvn3Ys2cP+vTpg23btuHIkSPo3LkzACAuLg5OTk7Ytm0bBg0ahMzMTAwcOBAtW7YEALi6ukp1lScbbGxspHWI7t+/j/Xr12PDhg3o1avsy5rY2FjY29tXiKVnz56YPHmytD169GgMGzZMWhPJ3d0dS5YsgY+PD1asWAEHBwcsWbIE06ZNw5w5c9CuXTv4+vpi2LBhUlxpaWlQqVSws7Or0J5cLoerqyvS0tIe+bo9LD4+HkOHDkV+fj7s7OyQkJCA+vXrV1r20qVLWLp0KaKjo5+ozap88803OHXqFE6cOFHpcW9vb5iammL69On47LPPIITAjBkzUFpaiuvXrz9SW1FRUejZsydMTEzwww8/4P3330dubi7Gjx9fafno6Gjk5uZi8ODBj9yv5wVnShEREZFOHbl8R0pIAYCXXQ40xf9LSNWr15kJKSIieu7Fx8fDzMwMxsbG6NOnD4YMGYIRI0bAwMAAHTv+L7FmZWWFJk2a4Pz58wCA8ePHY+7cuejSpQsiIyNx5syZatu5cuUKiouL0aFDB2mfSqVCkyZNKpRt166d1vYvv/yCdevWwczMTHr5+/tDo9EgPT0dQNlMnRs3biAuLg6dOnXC5s2b0bx5cyQkJNT6Wsjl8hrLxMXFacWRmJgoHfP19UVycjKOHj2KgIAADB48GLfKH7/7kGvXriEgIACDBg3CmDFjpP0P1xsWFlarmBMTE7XOi4uLw9WrVzFhwgTExcXB2Ni40vOsra2xefNm/N///R/MzMygUqlw7949tGnTBnp6j5Zy+fjjj9GlSxe0bt0a06dPx7Rp06pcl2zDhg2YM2cO/vvf/8LGxgZA9df0ecWZUkRERKQTl27dx7+O/Ybj6dkAgPe6N0Cw1+8oyM/C1auAqak72rb5BgYGKh1HSkREuqIwUCApOKnmgs+o7Ufh6+uLFStWQC6Xw97eHgYGBtixY0eN540ePRr+/v7YuXMnfvjhB3z++eeIiYlBRETE44YuMTU11drOzc3F2LFjK51507BhQ+nfSqUSgYGBCAwMxNy5c+Hv74+5c+fCz88P7u7uUKvVyMrKqjA7q6ioCJcvX4a/v3+NsQ0YMEArWefg4KAVt5ubG9zc3ODt7Q13d3esWbMGM2fOlMpkZWXB19cXnTt3xurVq7Xqfvjpcubm5jXGApQl8B4+r0GDBti3bx9u3bqFNm3aSPtLS0tx6NAhLFu2DIWFhdDX10fv3r1x+fJl3LlzBwYGBrCwsICtra3WrLfH0bFjR3z66acoLCzUuj3wm2++wejRo7F582atWwqru6bPKyaliIiISCcWJVzEzrP/m9beXPkN0lK/k7aNjexgaGihg8iIiOh5IZPJHusWOl0oT6Q8rFmzZigpKUFSUpJ0+97du3eRmpoKT09PqZyTkxPCwsIQFhaGmTNn4uuvv0ZERIQ04+jh9Z1cXV1haGiIEydOSIkktVqNtLQ0dO/evdoY27Rpg5SUlApxVkcmk6Fp06Y4evQoAODNN9/E9OnTERMTg5iYGK2yK1euRH5+PoYPH15jvUqlEkqlslYxaDQaFBYWStvXrl2Dr68v2rZti9jY2Aozkh6lf+UUCkWF83r16oWzZ89q7Rs5ciSaNm2K6dOnQ19fX+tY+S2GP/74I27duoUBAwY8chwPS05ORr169bQSUhs3bsQ777yDb775Bv369dMq/yjX9HnBpBQRERHpxO/3CgAAr7d2QBvnerA13AC1GlAqm8PYyB4NG47WcYRERERPxt3dHUFBQRgzZgxWrVoFpVKJGTNmwMHBAUFBQQCAiRMnok+fPvDw8MAff/yB/fv3o1mzZgAAZ2dnyGQyxMfHo2/fvlAoFFAqlQgNDcXUqVNhaWkJGxsbREZGQk9PDzKZrNp4pk+fDm9vb4wbNw6jR4+GqakpUlJSkJCQgGXLliE5ORmRkZEICQmBp6cn5HI5Dh48iLVr12L69OkAymZULViwAFOmTIGxsTFCQkJgaGiI7du3Y9asWZg7dy5atGih1W5qamqFWJo3bw5DQ0OtfXl5eZg3bx4GDBgAOzs73LlzB8uXL8e1a9cwaNAgAGUJqR49esDZ2RnR0dG4ffu2dL6trW21/S+fCZWbm4vbt28jOTkZcrlcK0H4MKVSWaEvpqamsLKy0tofGxuLZs2awdraGseOHcOECRPwwQcfaN1SmZmZiezsbGRmZqK0tFSKxc3NDWZmZvi///s/3Lx5E97e3jA2NkZCQgI+++wzrQXlN2zYgNDQUCxevBgdO3bEjRs3AJQl1FSqqmeWl7eblZUF4H/vh62tbY3X7Jl7Ks8B/Jvi442JiIierrzCYtF38SHR5KNdwnl6vGg3O1bsP9xfHDnaQ+z7sanYu89V3L17RNdhVovjg4p4TYjoaaju8fLPu9DQUBEUFFTpsezsbBESEiJUKpVQKBTC399fpKWlScfHjRsnGjduLIyMjIS1tbUICQkRd+7ckY5HRUUJW1tbIZPJRGhoqBBCiJycHBEcHCxMTEyEra2tWLhwoejQoYOYMWOGdJ6zs7NYtGhRhXiOHz8u/Pz8hJmZmTA1NRWtWrUS8+bNE0IIcfv2bTF+/HjRokULYWZmJpRKpWjZsqWIjo4WpaWlWvVs27ZNdOvWTZiamgoAAoDYuHGjVpn09HTp2F9fV69erRBbQUGBeP3114W9vb2Qy+XCzs5ODBgwQBw/flwqExsbW2WdNansHGdn5xrPe5iPj4+YMGGC1r7p06eLBg0aCENDQ+Hu7i5iYmKERqPRKhMaGlpp+/v37xdCCLF7927xyiuvSO+Ll5eXWLlypdZ19/HxqbSO8p+LqlR1zSIjIx+p739V3We2tmMDmRBP+JzLv7GcnByoVCqo1epa34dKREREVfvpyl0MXf2TtP2Gx370a/S/W/b09OTo3DkRRvLKn7DzPOD4oCJeEyJ6Gh48eID09HS4uLhUuag0VS4vLw8ODg6IiYnBqFGj6rz97Oxs9OrVC+bm5ti9ezdMTF6MWy7pyVT3ma3t2IC37xEREdEzdyIjG18fuoIsddkte/4eORjd5gSKC35FQQFgZ/sGHBzegrGx43OdkCIiInoenD59GhcuXECHDh2gVqsRFRUFANItgXXN0tISe/fuxfLly3Hs2DH06tVLJ3HQi4dJKSIiInrmluy7iMSLd6Ttno7xyMn+34ypevU6QaVqU9mpREREVIno6GikpqZCLpejbdu2SExMlBba1gUrKyt88sknOmufXkxMShEREdEzk34nD7//kY/0O3kAgDCfxmhmp0SDoq+RlwvY2w+BhaodGjTor+NIiYiIXhytW7fGyZMndR0G0RNjUoqIiIieiavZ+egVcwCaP1evdFFloKPiQ2iy7yPvzzIO9kNhbt5KZzESERERke4wKUVERETPxIUb96ERgMJQH85WJnjd7So0mvvScSMjO5iYNNZhhERERESkS0xKERER0VOVkHITKw9exq37DwAAw73OoK/HZeTmXsCDB4Cz83to6DQCBgYq6OkZ6jhaIiIiItIVJqWIiIjoqVp58DJO/vYHAEAGDdrVW4s7d4ql4yrzVpDzCXtERERELz0mpYiIiOipyLpXgLzCEly/VwAA+LivKzysH6DoellCqmmTeZDLrVC/fk9dhklEREREzwkmpYiIiOiJbU++hgnfJEvbza3Ow6V0spSQMjS0hIPDUB1FR0RERETPIyaliIiI6ImV366nMNSHQq6PPu6ZEOJ/t+zZ2PTVVWhERERE9JzS03UARERE9OL617EMjP33z0hIuQkA+LR3Bta//n9obfMLAMCt8XT49khF0yZzdBkmERHRMzVixAjIZDLIZDLI5XK4ubkhKioKJSUlT1TvgQMHIJPJcO/evacTaC2kp6cjODgY9vb2MDY2hqOjI4KCgnDhwgWtcvHx8fDx8YFSqYSJiQnat2+PdevWaZXJyMiATCZDcnJyrdufPXs2mjZtClNTU9SrVw+vvvoqkpKStOocNWoUXFxcoFAo0LhxY0RGRqKoqKjaeq9fv47g4GB4eHhAT08PEydOrHVM165dw9tvvw0rKysoFAq0bNkSP//8s3T84fe//BUQEKBVR6NGjSqU+eKLL6Tjqamp8PX1RYMGDWBsbAxXV1d89NFHKC4u1qrn3r17CA8Ph52dHYyMjODh4YFdu3ZVG//WrVvRu3dvWFlZPfL78axxphQRERE9lrzCEkTuOAchyrYNZMWoV7wQt26VSmVMTd2hp8fhBhER/f0FBAQgNjYWhYWF2LVrF8LDw2FoaIiZM2fqOjQAQFFREeRyebVliouL4efnhyZNmmDr1q2ws7PD77//jt27d2slxpYuXYqJEydi+vTpWLFiBeRyObZv346wsDD8+uuviI6Ofuw4PTw8sGzZMri6uqKgoACLFi1C7969cenSJVhbW+PChQvQaDRYtWoV3Nzc8Ouvv2LMmDHIy8urtt3CwkJYW1vjo48+wqJFi2odzx9//IEuXbrA19cXu3fvhrW1NS5evIh69epplSt//8sZGRlVqCsqKgpjxoyRtpVKpfRvQ0NDDB8+HG3atIGFhQV++eUXjBkzBhqNBp999hmAsvfQz88PNjY22LJlCxwcHPDbb7/BwsKi2j7k5eWha9euGDx4sFb7zwVBVVKr1QKAUKvVug6FiIjouVJSqhEXb94XztPjRZOPdomNRw+LH059J/bucxX7fmwqMjPXiRs34oVGU6rrUJ86jg8q4jUhoqehoKBApKSkiIKCAl2H8shCQ0NFUFCQ1j4/Pz/h7e0tsrOzRUhIiLCwsBAKhUIEBASItLQ0qVxGRobo37+/sLCwECYmJsLT01Ps3LlTpKenCwBar9DQUCGEEDk5OSI4OFiYmJgIW1tbsXDhQuHj4yMmTJgg1evs7CyioqJESEiIUCqV0rmJiYmia9euwtjYWDg6OoqIiAiRm5srhBDi9OnTAoDIyMiosq+ZmZnC0NBQTJo0qcKxJUuWCADip59+EkIIqQ+nT59+9Iv6p/LfMXv37q2yzIIFC4SLi0ut6/zrtarO9OnTRdeuXastU9n7/1fOzs5i0aJFtQvwTx988IFW2ytWrBCurq6iqKjokeop9zTej4dV95mt7diAt+8RERHRI0lIuQnPT77HqwsPAgB6u5yEdcFw6P0xGQBgZGQNJ6dQNGjQDzIZhxpERPT4hBDQ5Ofr5CXKpwI/JoVCgaKiIowYMQI///wzduzYgWPHjkEIgb59+0q3ZYWHh6OwsBCHDh3C2bNnMX/+fJiZmcHJyQnffvstgLJbu65fv47FixcDACZNmoQjR45gx44dSEhIQGJiIk6dOlUhhujoaHh5eeH06dP4+OOPcfnyZQQEBGDgwIE4c+YMNm3ahMOHD2PcuHEAAGtra+jp6WHLli0oLS2tUB8AbNmyBcXFxZgyZUqFY2PHjoWZmRk2btz4RNeuXFFREVavXg2VSgUvL68qy6nValhaWj6VNv9qx44daNeuHQYNGgQbGxu0bt0aX3/9dYVyBw4cgI2NDZo0aYL33nsPd+/erVDmiy++gJWVFVq3bo0vv/yy2ts7L126hO+//x4+Pj5asXTq1Anh4eFo0KABWrRogc8++6zK9+pFwPn0RERE9Ej2ptxEYYlG2u7gkAUA0Nc3g4GBEo6Ow3UVGhER/c2IggKktmmrk7abnDoJmYnJI58nhMC+ffuwZ88e9OnTB9u2bcORI0fQuXNnAEBcXBycnJywbds2DBo0CJmZmRg4cCBatmwJAHB1dZXqKk+02NjYSLdo3b9/H+vXr8eGDRvQq1cvAEBsbCzs7e0rxNKzZ09MnjxZ2h49ejSGDRsmrafk7u6OJUuWwMfHBytWrICDgwOWLFmCadOmYc6cOWjXrh18fX0xbNgwKa60tDSoVCrY2dlVaE8ul8PV1RVpaWmPfN0eFh8fj6FDhyI/Px92dnZISEhA/fr1Ky176dIlLF269IluGazOlStXsGLFCkyaNAmzZs3CiRMnMH78eMjlcoSGhgIou3XvjTfegIuLCy5fvoxZs2ahT58+OHbsGPT19QEA48ePR5s2bWBpaYmjR49i5syZuH79OhYuXKjVXufOnXHq1CkUFhbi3XffRVRUlFYsP/74I4YNG4Zdu3bh0qVLeP/991FcXIzIyMhn0v9njV9fEhERUa38+6ff4Bt9ADt+KUtCLex3Huv7RsJe/iMAwMP9Q3TtchjODUfrMkwiIiKdiI+Ph5mZGYyNjdGnTx8MGTIEI0aMgIGBATp27CiVs7KyQpMmTXD+/HkAZcmKuXPnokuXLoiMjMSZM2eqbefKlSsoLi5Ghw4dpH0qlQpNmjSpULZdu3Za27/88gvWrVsHMzMz6eXv7w+NRoP09HQAZTO3bty4gbi4OHTq1AmbN29G8+bNkZCQUOtrUdPaVUBZcu7hOBITE6Vjvr6+SE5OxtGjRxEQEIDBgwfj1q1bFeq4du0aAgICMGjQIK21kh6uNywsrFYxJyYmap0XFxcHANBoNGjTpg0+++wztG7dGu+++y7GjBmDlStXSucOHToUAwYMQMuWLfHaa68hPj4eJ06cwIEDB6QykyZNQo8ePdCqVSuEhYUhJiYGS5cuRWFhoVYcmzZtwqlTp7Bhwwbs3LlTK9mm0WhgY2OD1atXo23bthgyZAg+/PBDKZbqrunzijOliIiIqFbWHk5H+p08AIBMBljp/YCSwj/+3DaAufkrOoyOiIj+jmQKBZqcOqmzth+Fr6+vtOi3vb09DAwMsGPHjhrPGz16NPz9/bFz50788MMP+PzzzxETE4OIiIjHDV1iamqqtZ2bm4uxY8di/PjxFco2bNhQ+rdSqURgYCACAwMxd+5c+Pv7Y+7cufDz84O7uzvUajWysrIqzM4qKirC5cuX4e/vX2NsAwYM0ErWOTg4aMXt5uYGNzc3eHt7w93dHWvWrNFaND4rKwu+vr7o3LkzVq9erVX3w0+XMzc3rzEWoCyB9/B5DRo0AADY2dnB09NTq2yzZs2kWysr4+rqivr16+PSpUvSbLa/6tixI0pKSpCRkaGVUHRycgIAeHp6orS0FO+++y4mT54MfX192NnZwdDQUJp9VR7LjRs3UFRUVO01fV4xKUVERERVelBcii92X8Dt+4X4/Y986MtK8Y9B+mhYT4ZbV8u+sfRq9U+oVK/A0LBeDbURERE9GplM9li30OlCeSLlYc2aNUNJSQmSkpKk2/fu3r2L1NRUrUSHk5MTwsLCEBYWhpkzZ+Lrr79GRESENOPo4TWDXF1dYWhoiBMnTkiJJLVajbS0NHTv3r3aGNu0aYOUlJQKcVZHJpOhadOmOHr0KADgzTffxPTp0xETE4OYmBitsitXrkR+fj6GD6/5Vn6lUqn19LnqaDQarRlF165dg6+vL9q2bYvY2Fjo6WnfBPYo/SunUCgqPa9Lly5ITU3V2peWlgZnZ+cq6/r9999x9+7dSm9xLJecnAw9PT3Y2NhUWUaj0aC4uBgajQb6+vro0qULNmzYAI1GI/U5LS0NdnZ2kMvlkMvltb6mzwsmpYiIiKhK+87fwrqjGdL2gMaHYHDvO2Td+18ZJqSIiIgq5+7ujqCgIIwZMwarVq2CUqnEjBkz4ODggKCgIADAxIkT0adPH3h4eOCPP/7A/v370axZMwCAs7MzZDIZ4uPj0bdvXygUCiiVSoSGhmLq1KmwtLSEjY0NIiMjoaenB5lMVm0806dPh7e3N8aNG4fRo0fD1NQUKSkpSEhIwLJly5CcnIzIyEiEhITA09MTcrkcBw8exNq1azF9+nQAZTOqFixYgClTpsDY2BghISEwNDTE9u3bMWvWLMydOxctWrTQavevSR0AaN68OQwNDbX25eXlYd68eRgwYADs7Oxw584dLF++HNeuXcOgQYMAlCWkevToAWdnZ0RHR+P27dvS+ba2ttX2v3wmVG5uLm7fvo3k5GTI5fIKM6Ee9sEHH6Bz58747LPPMHjwYBw/fhyrV6+WZmfl5uZizpw5GDhwIGxtbXH58mVMmzYNbm5u0oyxY8eOISkpCb6+vlAqlTh27Bg++OADvP3226hXr2wMFRcXB0NDQ7Rs2RJGRkb4+eefMXPmTAwZMkS6Tu+99x6WLVuGCRMmICIiAhcvXsRnn31W6cy3h2VnZyMzMxNZWWVLMJS/H7a2tjVes2fuqTwH8G+KjzcmIqKXlUajEdfvFYiFP6QK5+nxYsCyw2L90XSReDxc7N3nKg4f6SaOn3hDXLz0pa5DrXMcH1TEa0JET0N1j5d/3oWGhoqgoKBKj2VnZ4uQkBChUqmEQqEQ/v7+Ii0tTTo+btw40bhxY2FkZCSsra1FSEiIuHPnjnQ8KipK2NraCplMJkJDQ4UQQuTk5Ijg4GBhYmIibG1txcKFC0WHDh3EjBkzpPOcnZ3FokWLKsRz/Phx4efnJ8zMzISpqalo1aqVmDdvnhBCiNu3b4vx48eLFi1aCDMzM6FUKkXLli1FdHS0KC0t1apn27Ztolu3bsLU1FQAEADExo0btcqkp6dLx/76unr1aoXYCgoKxOuvvy7s7e2FXC4XdnZ2YsCAAeL48eNSmdjY2CrrrEll5zg7O9d43v/93/+JFi1aCCMjI9G0aVOxevVq6Vh+fr7o3bu3sLa2FoaGhsLZ2VmMGTNG3LhxQypz8uRJ0bFjR6FSqYSxsbFo1qyZ+Oyzz8SDBw+kMt98841o06aN9L54enqKzz77rMLn4ejRo6Jjx47CyMhIuLq6innz5omSkpJq46/qmkVGRtbY9+pU95mt7dhAJsQTPufybywnJwcqlQpqtbrW96ESERH9HUz85jS2JZd9myaDBtG91sHSMAUaTTEAgeaei2BrO0C3QeoIxwcV8ZoQ0dPw4MEDpKenw8XFBcbGxroO54WSl5cHBwcHxMTEYNSoUXXefnZ2Nnr16gVzc3Ps3r0bJi/ILZf0ZKr7zNZ2bMCn7xEREVEFhy/dAQAY6MnQqF4eLPSTodEUARDQ01NApWqj2wCJiIheYqdPn8bGjRtx+fJlnDp1CsOGDQMA6ZbAumZpaYm9e/eiV69eOHbsmE5ioBcT15QiIiIiAIC6oBhzdpzD7dxC3Mktgly/ELve1YNe6U2kZwBGRrZo13YzDAxUMDAwrbE+IiIienaio6ORmpoKuVyOtm3bIjExEfXr19dZPFZWVvjkk0901j69mJiUIiIiIgDAD+duYOvpa9L2mx778dvlXdK2sZEdjI3tKzuViIiI6lDr1q1x8uRJXYdB9MSYlCIiIiIAwK37ZY9a9na1xJD2TrAt3Y78HMDMtAmMFU5wcqz58c5ERERERLXFpBQREdFLrLhUg5A1STh3LQeFJRrIoMEbLqthU5COB0W3AAAuLhNgY+Ov40iJiIiI6O+GSSkiIqKX2KVbufjpSra0bWNyB1b6h/DgQdm2TKYPpdJTR9ERERER0d8Zk1JEREQvoTu5hYj/JQtpt3IBAO42Rviybzo0hRfwx13A2NgRLZp/BSMjWxgb2+k4WiIiIiL6O2JSioiI6CUU80MqNh6/Km13dUzB3azF0rapaWOoVK11ERoRERERvSSYlCIiInqJPCguxaVbufj1Wg6AskXNG1qaIMDjEnLvAKam7rC07AZ7u0E6jpSIiIiI/u6YlCIiInqJvP3PJPz82x9/bgm833oLjHEZhTk3AABWVj3g7jZDdwESERER0UtDT9cBEBERUd0QQuCX3+8BAGyURujvWYTi+9tw//5ZFBXdBgCYmTXVYYREREQvphEjRkAmk0Emk0Eul8PNzQ1RUVEoKSl5onoPHDgAmUyGe/fuPZ1AayE9PR3BwcGwt7eHsbExHB0dERQUhAsXLmiVi4+Ph4+PD5RKJUxMTNC+fXusW7dOq0xGRgZkMhmSk5Nr3f7s2bPRtGlTmJqaol69enj11VeRlJSkVeeoUaPg4uIChUKBxo0bIzIyEkVFRdXWe/36dQQHB8PDwwN6enqYOHFireIpLS3Fxx9/rNXep59+CiGEVGbr1q3o3bs3rKysquzv5cuX8frrr8Pa2hrm5uYYPHgwbt68+cj9OnPmDLp16wZjY2M4OTlhwYIFNfbh0KFDCAwMhL29PWQyGbZt21arvtcFJqWIiIj+5q7dK8Dy/Zfw5Z5UFJcK6MlKsfM9C0zrcQ9A2aLmXq3+ibZtNsG2wQDdBks1Wr58ORo1agRjY2N07NgRx48fr7b85s2b0bRpUxgbG6Nly5bYtWtXlWXDwsIgk8nw1VdfPeWoiYj+/gICAnD9+nVcvHgRkydPxuzZs/Hll1/qOixJTUkbACguLoafnx/UajW2bt2K1NRUbNq0CS1bttRKjC1duhRBQUHo0qULkpKScObMGQwdOhRhYWGYMmXKE8Xp4eGBZcuW4ezZszh8+DAaNWqE3r174/btsi/QLly4AI1Gg1WrVuHcuXNYtGgRVq5ciVmzZlVbb2FhIaytrfHRRx/By8ur1vHMnz8fK1aswLJly3D+/HnMnz8fCxYswNKlS6UyeXl56Nq1K+bPn19pHXl5eejduzdkMhl+/PFHHDlyBEVFRQgMDIRGo6l1v3JyctC7d284Ozvj5MmT+PLLLzF79mysXr262j7k5eXBy8sLy5cvr3W/64ygKqnVagFAqNVqXYdCRET02CI2nBLO0+Ol10f/ChN797lKr1OnQnQd4gtFl+ODb775RsjlcrF27Vpx7tw5MWbMGGFhYSFu3rxZafkjR44IfX19sWDBApGSkiI++ugjYWhoKM6ePVuh7NatW4WXl5ewt7cXixYteqS4OGYioqehoKBApKSkiIKCAl2H8shCQ0NFUFCQ1j4/Pz/h7e0tsrOzRUhIiLCwsBAKhUIEBASItLQ0qVxGRobo37+/sLCwECYmJsLT01Ps3LlTpKenCwBar9DQUCGEEDk5OSI4OFiYmJgIW1tbsXDhQuHj4yMmTJgg1evs7CyioqJESEiIUCqV0rmJiYmia9euwtjYWDg6OoqIiAiRm5srhBDi9OnTAoDIyMiosq+ZmZnC0NBQTJo0qcKxJUuWCOD/2bvvsCiu9Q/g36UsW1m6VBEEFBSxIliiqDQNksRYAkGMJZJrjSWoiaIEY2JAr6ix5Br0/oLGq1FCUKNoLKjYQY0oiEJQioLoIn1hz+8PwsSVal017+d55nmYOWfOvGdgZXw55wzYqVOnGGOM60NKSsqT39S/1P+OOXjwYJN1li9fzmxsbFrd5uP3qjnDhg1j48ePVzn23nvvscDAwAZ1m+rv/v37mYaGhsrvyQcPHjAej8cSExObvPbj/fruu++Yvr4+q6qq4o6FhoayDh06tKovjDEGgO3evbvV9ZvT3Ge2tc8GNFKKEEIIeUPVKhlyH1Tg+t1SAMDgjiYIcrOGh20xAEBHxxQSiRMsLceqM0zyBFasWIFJkybho48+gpOTE9avXw+RSIQffvih0fqrVq2Cj48P5s6dC0dHR3z55Zfo3r071qxZo1IvNzcX06ZNQ2xsLLS1tV9GVwghpFUYY1BU1aplY49Mz3oaQqEQ1dXVGDduHM6dO4f4+HgkJyeDMYahQ4dCoVAAAKZMmYKqqiocO3YMly9fxjfffAOJRAIrKyv8/PPPAID09HTk5+dj1aq6N+XOmjULJ06cQHx8PBITE5GUlIQLFy40iCEyMhIuLi5ISUnBwoULcePGDfj4+GDEiBG4dOkStm/fjuPHj2Pq1KkAAGNjY2hoaGDnzp2ora1ttF87d+6EQqFodETU5MmTIZFIsG3btme6d/Wqq6uxceNGyGSyZkc3yeVyGBgYPJdrPq5Pnz44dOgQMjIyAAAXL17E8ePH4evr2+o2qqqqwOPxoKOjwx0TCATQ0NDA8ePHmzzv8X4lJyfjrbfeAp/P5455e3sjPT0d9+/fb6yJVx4tdE4IIYS8oQK+P4XTWXUJKC2eAsEOy8BqbqKmqgwA0MkpCvr6buoMkTyB6upqnD9/HvPnz+eOaWhoYMiQIUhOTm70nOTkZMyaNUvlmLe3t8paEkqlEkFBQZg7dy46derUqliqqqpQVVXF7ZeUlDxBTwghpPVqqpXYOOOoWq798aoB0NbRfOLzGGM4dOgQ9u/fD19fX8TFxeHEiRPo06cPACA2NhZWVlaIi4vDyJEjkZOTgxEjRsDZ2RkAYGtry7VVn5AwMTGBnp4eAODhw4fYsmULtm7disGDBwMAYmJiYG5u3iCWQYMGYfbs2dz+xIkTERgYyK2nZG9vj+joaAwYMADr1q2DhYUFoqOj8dlnn2HJkiXo2bMnPDw8EBgYyMWVkZEBmUwGMzOzBtfj8/mwtbXlEjhPKyEhAWPGjEF5eTnMzMyQmJgIIyOjRutmZmZi9erViIyMfKZrNmXevHkoKSlBx44doampidraWixduhSBgYGtbsPNzQ1isRihoaH46quvwBjDvHnzUFtbi/z8/EbPaaxfBQUFsLGxUanXpk0brkxfX/8peqheNFKKEEIIeQMpapU4k12XkOJramCQnRyKyouoqXkIQAktLV1a1Pw1U1RUhNraWu7hs16bNm1QUFDQ6DkFBQUt1v/mm2+gpaWF6dOntzqWZcuWQSaTcZuVldUT9IQQQt5MCQkJkEgkEAgE8PX1xejRozFu3DhoaWmhd+/eXD1DQ0N06NABV69eBQBMnz4dERER6Nu3L8LCwnDp0qVmr3Pz5k0oFAq4urpyx2QyGTp06NCgbs+ePVX2L168iM2bN0MikXCbt7c3lEolsrKyANSN3CooKEBsbCzc3d2xY8cOdOrUCYmJia2+F4+O5GlKbGysShxJSUlcmYeHB1JTU3Hy5En4+Phg1KhRuHv3boM2cnNz4ePjg5EjR2LSpEnc8UfbDQkJaVXMSUlJKufFxsYCAP73v/8hNjYWW7duxYULF7BlyxZERkZiy5YtrWoXqBuBtmPHDvz666+QSCSQyWR48OABunfvDg2NhmmZpvr1tH14ldFIKUIIIeQNUl5dg53nb6NAXgnGAKGWAkdn6OFhSRGy/wQkEkc4d14NPt8EWlpidYdL1Oz8+fNYtWoVLly4AB6P1+rz5s+frzICq6SkhBJThJAXQouvgY9XDVDbtZ+Eh4cH1q1bBz6fD3Nzc2hpaSE+Pr7F8yZOnAhvb2/s2bMHBw4cwLJlyxAVFYVp06Y9begcsVj1d31paSkmT57c6B8i2rZty30tlUrh5+cHPz8/REREwNvbGxEREfD09IS9vT3kcjny8vIajM6qrq7GjRs34O3t3WJsw4cPV0nWWVhYqMRtZ2cHOzs7uLm5wd7eHps2bVIZLZyXlwcPDw/06dOnwULfj779TldXt8VYgLoE3qPn1f9RZ+7cuZg3bx7GjBkDAHB2dsaff/6JZcuWITg4uFVtA4CXlxdu3LiBoqIiaGlpQU9PD6ampioj41rql6mpqcob+wBw+6ampmjXrl2jfXiVUVKKEEIIeYPsOHcbYfFXuP2xneJx+fLf0x6EAkuIRDaNnUpecUZGRtDU1Gz0YdTU1LTRc5p6eK2vn5SUhLt376r8R6S2thazZ8/Gv//9b2RnZzfaro6Ojsq6GIQQ8qLweLynmkKnDvWJlEc5OjqipqYGp0+f5qbv3bt3D+np6XBycuLqWVlZISQkBCEhIZg/fz6+//57TJs2jRtx9Oj6Tra2ttDW1sbZs2e5f7/lcjkyMjLw1ltvNRtj9+7dkZaW1iDO5vB4PHTs2BEnT54EALz//vsIDQ1FVFQUoqKiVOquX78e5eXlGDu25fUqpVIppFJpq2JQKpUq08Zzc3Ph4eGBHj16ICYmpsFooyfpXz2hUNjoeeXl5Q3a19TU5N6a96TqpyH+/vvvuHv3LoYP//vNxy31y93dHZ9//jkUCgW3BmRiYiI6dOjATd17mr6rEyWlCCGEkDdI9r2/1osy14WLpRS9TYrAqgGRqD34fCNYWX2k5gjJ0+Lz+ejRowcOHTqEd955B0DdQ/qhQ4e4BWof5+7ujkOHDnFrhwB1D6/u7u4AgKCgIAwZMkTlHG9vbwQFBeGjj+hnhRBCnpW9vT38/f0xadIkbNiwAVKpFPPmzYOFhQX8/f0BADNnzoSvry8cHBxw//59HD58GI6OjgAAa2tr8Hg8JCQkYOjQoRAKhZBKpQgODsbcuXNhYGAAExMThIWFQUNDo8VRr6GhoXBzc8PUqVMxceJEiMVipKWlITExEWvWrEFqairCwsIQFBQEJycn8Pl8HD16FD/88ANCQ0MB1I2oWr58OebMmQOBQICgoCBoa2vjl19+wYIFCxAREYHOnTurXDc9Pb1BLJ06dWrwco2ysjIsXboUw4cPh5mZGYqKirB27Vrk5uZi5MiRAOoSNwMHDoS1tTUiIyNRWFjInd/UH2nq1Y8iKi0tRWFhIVJTU8Hn81UShI/z8/PD0qVL0bZtW3Tq1AkpKSlYsWIFxo8fz9UpLi5GTk4O8vLyVPpramrKxRQTEwNHR0cYGxsjOTkZM2bMwKeffspNu2xNvwICArBkyRJMmDABoaGh+OOPP7Bq1SqsXLmy2X6XlpYiMzOT28/KykJqaioMDAxU/jClFs/lPYBvKHq9MSGEkNfForjLzHVpIuvwxV5mHZrAfvl9HDt4yJbb5PKL6g7xjaHO54OffvqJ6ejosM2bN7O0tDT28ccfMz09PVZQUMAYYywoKIjNmzePq3/ixAmmpaXFIiMj2dWrV1lYWBjT1tZmly9fbvIa1tbWbOXKlU8UFz0zEUKeh+ZeL/+qCw4OZv7+/o2WFRcXs6CgICaTyZhQKGTe3t4sIyODK586dSpr374909HRYcbGxiwoKIgVFRVx5eHh4czU1JTxeDwWHBzMGGOspKSEBQQEMJFIxExNTdmKFSuYq6uryu+Apv49P3PmDPP09GQSiYSJxWLWpUsXtnTpUsYYY4WFhWz69Omsc+fOTCKRMKlUypydnVlkZCSrra1VaScuLo7179+ficViBoABYNu2bVOpk5WVxZU9vt26datBbBUVFezdd99l5ubmjM/nMzMzMzZ8+HB25swZrk5MTEyTbbaksXOsra2bPaekpITNmDGDtW3blgkEAmZra8s+//xzVlVV1WJMYWFhXJ3Q0FDWpk0bpq2tzezt7VlUVBRTKpVP3K+LFy+yfv36MR0dHWZhYcG+/vrrFvt9+PDhRtut/3l6Ws19Zlv7bMBj7Bnfc/kGKykpgUwmg1wub/U8VEIIIeRlq6qpRYcvfuP2eVDiP16fou55AxAILOHWex80NUVqivDNou7ngzVr1uDbb79FQUEBunbtiujoaG5NjoEDB6Jdu3bYvHkzV3/Hjh344osvkJ2dDXt7eyxfvhxDhw5tsv127dph5syZKqOrWqLue0IIeTNUVlYiKysLNjY2EAgE6g7ntVJWVgYLCwtERUVhwoQJL/36xcXFGDx4MHR1dbFv3z6IRPTM8U/Q3Ge2tc8GlJRqBj1gEUIIeZXV1Cpx8sY93L5fgQW7L4OvybDjYyfo8stx82rdlID+/c5AS0sGDQ2asf+80PNBQ3RPCCHPAyWlWi8lJQXXrl2Dq6sr5HI5wsPDceTIEWRmZnJrFr1s9+7dw9q1a9G3b18MHjxYLTGQl+t5JKXoCZUQQgh5Tf109ha+iPuD2w91XYOiG9dR9Ne+trY++HxD9QRHCCGEkBcqMjIS6enp3JqDSUlJaktIAYChoSEWLVqktuuT1xMlpQghhJDXVMadhwAACz0hrA14aCe9/lcJDwAPbdq8rbbYCCGEEPLidOvWDefPn1d3GIQ8M0pKEUIIIa+Z/529haTMIlz48z74GtVY4LYFevwCVFYCmpoSDBxwUd0hEkIIIYQQ0iJKShFCCCGvkUpFLebvvoxaZd2SkJ0Mb0CgPI/Kyrpyma6LGqMjhBBCCCGk9SgpRQghhLwm7pdV42ZRKWqVDLo6VVg0KBO6mmlANSCTdYe93XxIJJ3UHSYhhBBCCCGtQkkpQggh5DXw68U8TP8pBfXvzB3WPhn6tbuA2rp9icQJMll39QVICCGEEELIE6KkFCGEEPIaOHXzHhgDNDV40NbkoZt5BQBAV7cr9PR6wsoyWM0REkIIIYQQ8mQ01HHRY8eOwc/PD+bm5uDxeIiLi1MpLy0txdSpU2FpaQmhUAgnJyesX79epU5lZSWmTJkCQ0NDSCQSjBgxAnfu3FGpk5OTg2HDhkEkEsHExARz585FTU3Ni+4eIYQQ8tycvnkP64/ewPk/70OTV4sVPkfxv1EJMBemAADMTN+Dvd18CATmao6UEEIIIYSQJ6OWkVJlZWVwcXHB+PHj8d577zUonzVrFn7//Xf8+OOPaNeuHQ4cOIB//etfMDc3x/DhwwEAn376Kfbs2YMdO3ZAJpNh6tSpeO+993DixAkAQG1tLYYNGwZTU1OcPHkS+fn5GDt2LLS1tfHVV1+91P4SQgghT6OiuhbBMWdQqVACADoZZkBSsxOFhX/XEYnaqSc4QgghhBBCnpFaRkr5+voiIiIC7777bqPlJ0+eRHBwMAYOHIh27drh448/houLC86cOQMAkMvl2LRpE1asWIFBgwahR48eiImJwcmTJ3Hq1CkAwIEDB5CWloYff/wRXbt2ha+vL7788kusXbsW1dXVL62vhBBCyNO6U1KJSoUSfE0NjOhuiREufACARNwBHRyWwNn5O+jr91FzlIQQQggZN24ceDweeDwe+Hw+7OzsEB4e/swzdY4cOQIej4cHDx48n0BbISsrCwEBATA3N4dAIIClpSX8/f1x7do1lXoJCQkYMGAApFIpRCIRevXqhc2bN6vUyc7OBo/HQ2pqaquvv3jxYnTs2BFisRj6+voYMmQITp8+rdLmhAkTYGNjA6FQiPbt2yMsLKzF/+fn5+cjICAADg4O0NDQwMyZM1sVz8OHDzFz5kxYW1tDKBSiT58+OHv2rEqd1sz2mjx5Mtq3bw+hUAhjY+NG7+mTzPY6ceIEtLS00LVr1xb7sGvXLnh5ecHQ0PCJvx8vmlqSUi3p06cP4uPjkZubC8YYDh8+jIyMDHh5eQEAzp8/D4VCgSFDhnDndOzYEW3btkVycjIAIDk5Gc7OzmjTpg1Xx9vbGyUlJbhy5crL7RAhhBDyBP539hZ8VyVhXMwZAAzTu8dguGkwbPh1DzdSXWdYWn4IE2Nv8Hg89QZLCCGEEACAj48P8vPzcf36dcyePRuLFy/Gt99+q+6wOK0ZnKFQKODp6Qm5XI5du3YhPT0d27dvh7Ozs0pibPXq1fD390ffvn1x+vRpXLp0CWPGjEFISAjmzJnzTHE6ODhgzZo1uHz5Mo4fP4527drBy8sLhX8NFb927RqUSiU2bNiAK1euYOXKlVi/fj0WLFjQbLtVVVUwNjbGF198ARcXl1bHM3HiRCQmJuL//u//cPnyZXh5eWHIkCHIzc3l6syaNQu//fYbfvzxR1y9ehUzZ87E1KlTER8fz9WpH0xz9epV7N+/H4wxeHl5oba27q019bO9qqurcfLkSWzZsgWbN2/GokWLGsT04MEDjB07FoMHD25VH8rKytCvXz988803re73S8PUDADbvXu3yrHKyko2duxYBoBpaWkxPp/PtmzZwpXHxsYyPp/foK1evXqxzz77jDHG2KRJk5iXl5dKeVlZGQPA9u7d22gslZWVTC6Xc9utW7cYACaXy5+xl4QQQkjrDfz2MLMOTWDWoQms88Jt7OAhW5UtN/d/6g7xH00ul9PzwWPonhBCnoeKigqWlpbGKioq1B3KEwsODmb+/v4qxzw9PZmbmxsrLi5mQUFBTE9PjwmFQubj48MyMjK4etnZ2eztt99menp6TCQSMScnJ7Znzx6WlZXFAKhswcHBjDHGSkpKWEBAABOJRMzU1JStWLGCDRgwgM2YMYNr19ramoWHh7OgoCAmlUq5c5OSkli/fv2YQCBglpaWbNq0aay0tJQxxlhKSgoDwLKzs5vsa05ODtPW1mazZs1qUBYdHc0AsFOnTjHGGNeHlJSUJ7+pf6n/HXPw4MEm6yxfvpzZ2Ni0us3H71VTysvLmaamJktISFA53r17d/b5559z+506dWLh4eHN1nncxYsXGQCWmZnJGGNs7969TENDgxUUFHB11q1bx3R1dVlVVZXKuaNHj2ZffPEFCwsLYy4uLi32o97z+H48qrnPbGufDV7JkVKrV6/GqVOnEB8fj/PnzyMqKgpTpkzBwYMHX+h1ly1bBplMxm1WVlYv9HqEEELIo36/dgcrEjOQ+6ACAMOad4uwZngaAEBb2wDubgfRt+8JmJuPVG+ghBBCyEvCGIOislItG2PsmWIXCoWorq7GuHHjcO7cOcTHxyM5ORmMMQwdOhQKhQIAMGXKFFRVVeHYsWO4fPkyvvnmG0gkElhZWeHnn38GAKSnpyM/Px+rVq0CUDcy58SJE4iPj0diYiKSkpJw4cKFBjFERkbCxcUFKSkpWLhwIW7cuAEfHx+MGDECly5dwvbt23H8+HFMnToVAGBsbAwNDQ3s3LmTG8HzuJ07d0KhUDQ6Imry5MmQSCTYtm3bM927etXV1di4cSNkMlmzo5vkcjkMDAyeyzUfVVNTg9raWggEApXjQqEQx48f5/Zbmu31uLKyMsTExMDGxobLO7R2tldMTAxu3ryJsLCw59lVtVHLQufNqaiowIIFC7B7924MGzYMANClSxekpqYiMjISQ4YMgampKaqrq/HgwQPo6elx5965cwempqYAAFNTU24NqkfL68saM3/+fMyaNYvbLykpocQUIYSQl+JBeTUm/fc8apV1D8DORpkQlq1G/SoCQoElRCIb9QVICCGEqEFNVRWig99Xy7Wnb9kJ7ceSEa3BGMOhQ4ewf/9++Pr6Ii4uDidOnECfPnXrQMbGxsLKygpxcXEYOXIkcnJyMGLECDg7OwMAbG1tubbqEy0mJibc/30fPnyILVu2YOvWrdz0rZiYGJibN3wT76BBgzB79mxuf+LEiQgMDOTWU7K3t0d0dDQGDBiAdevWwcLCAtHR0fjss8+wZMkS9OzZEx4eHggMDOTiysjIgEwmg5mZWYPr8fl82NraIiMj44nv26MSEhIwZswYlJeXw8zMDImJiTAyMmq0bmZmJlavXo3IyMhnumZjpFIp3N3d8eWXX8LR0RFt2rTBtm3bkJycDDs7O67e6tWr8fHHH8PS0hJaWlrQ0NDA999/j7feekulve+++w6fffYZysrK0KFDByQmJoLPr1sztKCgQCUhBYDbLygoAABcv34d8+bNQ1JSErS0Xrl0zlN55UZKKRQKKBQKaGiohqapqQmlsu7tQz169IC2tjYOHTrElaenpyMnJwfu7u4AAHd3d1y+fBl3797l6iQmJkJXVxdOTk6NXltHRwe6uroqGyGEEPIi1dQqkV7wECdv3EOtkkGqA0zt+xDT+uQBAAQCS5iZjoCdffPrJBBCCCFEvRISEiCRSCAQCODr64vRo0dj3Lhx0NLSQu/evbl6hoaG6NChA65evQoAmD59OiIiItC3b1+EhYXh0qVLzV7n5s2bUCgUcHV15Y7JZDJ06NChQd2ePXuq7F+8eBGbN2+GRCLhNm9vbyiVSmRlZQGoG7lVUFCA2NhYuLu7Y8eOHejUqRMSExNbfS/qEy3NiY2NVYkjKSmJK/Pw8EBqaipOnjwJHx8fjBo1SuX/9vVyc3Ph4+ODkSNHYtKkSdzxR9sNCQlpVcxJSUkq58XGxgIA/u///g+MMVhYWEBHRwfR0dH44IMPVHIWrZ3tFRgYiJSUFBw9ehQODg4YNWoUKisrWxVfbW0tAgICsGTJEjg4ODRap7l7+qpSS2qttLQUmZmZ3H5WVhZSU1NhYGCAtm3bYsCAAZg7dy6EQiGsra1x9OhR/Pe//8WKFSsA1H3gJkyYgFmzZsHAwAC6urqYNm0a3N3d4ebmBgDw8vKCk5MTgoKCsHz5chQUFOCLL77AlClToKOjo45uE0IIIQ2E/HgeB6/+/ZD1fsckdBPvAP56PjE2GgIHh4Vqio4QQghRLy0dHUzfslNt134SHh4eWLduHfh8PszNzaGlpaWy0HVTJk6cCG9vb+zZswcHDhzAsmXLEBUVhWnTpj1t6ByxWKyyX1paismTJ2P69OkN6rZt25b7WiqVws/PD35+foiIiIC3tzciIiLg6ekJe3t7yOVy5OXlNRidVV1djRs3bsDb27vF2IYPH66SrLOwsFCJ287ODnZ2dnBzc4O9vT02bdqE+fPnc3Xy8vLg4eGBPn36YOPGjSptP/p2udYONunZs6fKefWjlNq3b4+jR4+irKwMJSUlMDMzw+jRo7mRY62Z7VWvfqkge3t7uLm5QV9fH7t378YHH3zQ4myvhw8f4ty5c0hJSeGmWyqVSjDGoKWlhQMHDjR7T19VaklKnTt3Dh4eHtx+/ZS54OBgbN68GT/99BPmz5+PwMBAFBcXw9raGkuXLlXJcK5cuRIaGhoYMWIEqqqq4O3tje+++44r19TUREJCAj755BO4u7tDLBYjODgY4eHhL6+jhBBCSAvOZt8HABiI+eBraqCneSFQCwh0zCEQWsHcfJSaIySEEELUh8fjPdUUOnWoT6Q8ytHRETU1NTh9+jQ3fe/evXtIT09XmcFjZWWFkJAQhISEYP78+fj+++8xbdo0bsTRo+s72draQltbG2fPnuUSSXK5HBkZGQ2miz2ue/fuSEtLaxBnc3g8Hjp27IiTJ08CAN5//32EhoYiKioKUVFRKnXXr1+P8vJyjB07tsV2pVIppFJpq2JQKpWoqqri9nNzc+Hh4cG90e7xmVZP0r96QqGw2fPEYjHEYjHu37+P/fv3Y/ny5QBaN9urMYwxMMa4frm7u2Pp0qW4e/cuTExMAKjO9tLW1sbly5dV2vjuu+/w+++/Y+fOnbCxsYFYLG71PX1VqCUpNXDgwGYXjTM1NUVMTEyzbQgEAqxduxZr165tso61tTX27t371HESQgghL8Lt++WYsPkc7pVVQV6hAA9KrPP9D8oepoD99dBpZ78AbUx81RwpIYQQQp6Fvb09/P39MWnSJGzYsAFSqRTz5s2DhYUF/P39AQAzZ86Er68vHBwccP/+fRw+fBiOjo4A6v5Py+PxkJCQgKFDh0IoFEIqlSI4OBhz586FgYEBTExMEBYWBg0NDfB4vGbjCQ0NhZubG6ZOnYqJEydCLBYjLS0NiYmJWLNmDVJTUxEWFoagoCA4OTmBz+fj6NGj+OGHHxAaGgqgbkTV8uXLMWfOHAgEAgQFBUFbWxu//PILFixYgIiICHTu3Fnluunp6Q1i6dSpE7S1tVWOlZWVYenSpRg+fDjMzMxQVFSEtWvXIjc3FyNH1r3oJTc3FwMHDoS1tTUiIyNRWFjInd/U+tH16kdClZaWorCwEKmpqeDz+U0u8QMA+/fvB2MMHTp0QGZmJubOnYuOHTvio48+AlA3Equl2V43b97E9u3b4eXlBWNjY9y+fRtff/01hEIhhg4dCqB1s70ev68mJiYQCAQNjj+uuLgYOTk5yMurWx6i/vthamra4j170d6MlbEIIYSQ18jv1+4i/c5Dbt/VqhKlJee4fU1NCWS6XdUQGSGEEEKet5iYGMyYMQNvv/02qqur8dZbb2Hv3r1cQqa2thZTpkzB7du3oaurCx8fH6xcuRJA3fSrJUuWYN68efjoo48wduxYbN68GStWrEBISAjefvtt6Orq4rPPPsOtW7cavCXucV26dMHRo0fx+eefo3///mCMoX379hg9ejQAwNLSEu3atcOSJUuQnZ0NHo/H7X/66adcO59++ilsbW0RFRWFVatWoaysDACwbds2jBkzpsF1Gzt269YtWFpaqhzT1NTEtWvXsGXLFhQVFcHQ0BC9evVCUlISOnXqBKBu9FBmZiYyMzMbnN/SGxO7devGfX3+/Hls3boV1tbWyM7ObvIcuVyO+fPn4/bt2zAwMMCIESOwdOlSlYRaS7O9BAIBkpKS8O9//xv3799HmzZt8NZbb+HkyZPcqKgXOdsrPj6eS6IBf38/wsLCsHjx4mdu/1nw2LO+5/INVlJSAplMBrlcToueE0IIeWZ7L+fjl9RcZN4txY3CMnzYk4d3HP+ESLMQ+XlbIBBYoWeP/0FLSxeamq/HVIV/Ino+aIjuCSHkeaisrERWVhZsbGxaTK4QVWVlZbCwsEBUVBQmTJjw0q9fXFyMwYMHQ1dXF/v27YNIJHrpMZCXr7nPbGufDWikFCGEEPKSLPn1Cu6U/L0eQj+jVZDfyYT8r32hwAI6OibqCY4QQgghr42UlBRcu3YNrq6ukMvl3Gia+imBL5uBgQEOHjyItWvXIjk5GYMHD1ZLHOT1Q0kpQggh5AWqVTIczbiL4jIFl5Ba+LYT2ujqQHA/H7UAjI08oaUlhYVFoHqDJYQQQshrIzIyEunp6eDz+ejRoweSkpJgZGSktngMDQ2xaNEitV2fvJ4oKUUIIYS8QL/9UYApWy9w+87GmXDW+Q+UFZUoq61bf8HJKRJaWhJ1hUgIIYSQ10y3bt1w/vx5dYdByDOjpBQhhBDyAlTXKHHuz2IcvHoHAGChJ4SdiQSj2/+Mhw8vcfWEwraUkCKEEEIIIf9IlJQihBBCXoCv913DDyeyuP3Jvf9EV6NzePDgMhS1gK3Np5DJukEqbfoVxIQQQgghhLzJKClFCCGEvABX80sAAFYGQrQ1EKGtZjgKC4u48jZthkEkslFXeIQQQgghhKgdJaUIIYSQ56S4rBqRB9Ihr1Dgjzw5tHgKLPW6DUtZNbKy6hJS9vZfQCJ2oIQUIYQQQgj5x6OkFCGEEPKc7LpwG1tP53D7fcxToCj+EVnFdftaWrqwshwHHo+npggJIYQQQgh5dVBSihBCCHlGVTW1KKmoQVZR3dv0+tsbYYhjG1jzU1BbAojFDpDJusPYaDAlpAghhBBCCPmLhroDIIQQQl5n98uq4b7sd/RaehCxf42SGmG7BZaVnqgtiQEAtDEZBseOS2FkNEidoRJCCCHkBRk3rm4kNI/HA5/Ph52dHcLDw1FTU/NM7R45cgQ8Hg8PHjx4PoG2QlZWFgICAmBubg6BQABLS0v4+/vj2rVrKvUSEhIwYMAASKVSiEQi9OrVC5s3b1apk52dDR6Ph9TU1FZff/HixejYsSPEYjH09fUxZMgQnD59WqXNCRMmwMbGBkKhEO3bt0dYWBiqq6ubbTc/Px8BAQFwcHCAhoYGZs6c2ap4jh07Bj8/P5ibm4PH4yEuLq5BnV27dsHLywuGhoYt9pcxBl9f3ybb2rx5M7p06QKBQAATExNMmTJFpXz//v1wc3ODVCqFsbExRowYgezsbJU6sbGxcHFxgUgkgpmZGcaPH4979+49cz9fBEpKEUIIIU+poroWRzLuoris7iGIxwOMxFqQskMAlH8d04aefm81RkkIIYSQl8HHxwf5+fm4fv06Zs+ejcWLF+Pbb79Vd1iclpI2AKBQKODp6Qm5XI5du3YhPT0d27dvh7Ozs0pibPXq1fD390ffvn1x+vRpXLp0CWPGjEFISAjmzJnzTHE6ODhgzZo1uHz5Mo4fP4527drBy8sLhYWFAIBr165BqVRiw4YNuHLlClauXIn169djwYIFzbZbVVUFY2NjfPHFF3BxcWl1PGVlZXBxccHatWubrdOvXz988803Lbb373//u8mR8ytWrMDnn3+OefPm4cqVKzh48CC8vb258qysLPj7+2PQoEFITU3F/v37UVRUhPfee4+rc+LECYwdOxYTJkzAlStXsGPHDpw5cwaTJk165n6+EIw0SS6XMwBMLperOxRCCCGvmMKHlcw57DdmHZrArEMT2LT/28dSL37Mzp57nx08ZMsOHrJjFRV5TKF4qO5QyXNGzwcN0T0hhDwPFRUVLC0tjVVUVKg7lCcWHBzM/P39VY55enoyNzc3VlxczIKCgpienh4TCoXMx8eHZWRkcPWys7PZ22+/zfT09JhIJGJOTk5sz549LCsriwFQ2YKDgxljjJWUlLCAgAAmEomYqakpW7FiBRswYACbMWMG1661tTULDw9nQUFBTCqVcucmJSWxfv36MYFAwCwtLdm0adNYaWkpY4yxlJQUBoBlZ2c32decnBymra3NZs2a1aAsOjqaAWCnTp1ijDGuDykpKU9+U/9S/zvm4MGDTdZZvnw5s7GxaXWbj9+r1gLAdu/e3WR5S/1NSUlhFhYWLD8/v0FbxcXFTCgUNtvPHTt2MC0tLVZbW8sdi4+PZzwej1VXVzPGGPv222+Zra2tynnR0dHMwsKi5Q7+paV+1mvuM9vaZwMaKUUIIYQ8hT9y5SiprBuSLxVowdfuMoqKDkIuvwAAkIjtIRCYQUtLos4wCSGEEKImQqEQ1dXVGDduHM6dO4f4+HgkJyeDMYahQ4dCoVAAAKZMmYKqqiocO3YMly9fxjfffAOJRAIrKyv8/PPPAID09HTk5+dj1apVAIBZs2bhxIkTiI+PR2JiIpKSknDhwoUGMURGRsLFxQUpKSlYuHAhbty4AR8fH4wYMQKXLl3C9u3bcfz4cUydOhUAYGxsDA0NDezcuRO1tbWN9mvnzp1QKBSNjoiaPHkyJBIJtm3b9lzuYXV1NTZu3AiZTNbs6Ca5XA4DA4Pncs0Xpby8HAEBAVi7di1MTU0blCcmJkKpVCI3NxeOjo6wtLTEqFGjcOvWLa5Ojx49oKGhgZiYGNTW1kIul+P//u//MGTIEGhrawMA3N3dcevWLezduxeMMdy5cwc7d+7E0KFDX1pfnwQtdE4IIYQ8gbPZxUi+cQ9X80sAAD6ODEt8FMgvuIp75YCJsS9M2gyDnqyHmiMlhBBCXn+MMTCFUi3X5mlrPNULShhjOHToEPbv3w9fX1/ExcXhxIkT6NOnD4C69X6srKwQFxeHkSNHIicnByNGjICzszMAwNbWlmurPtFiYmICPT09AMDDhw+xZcsWbN26FYMHDwYAxMTEwNzcvEEsgwYNwuzZs7n9iRMnIjAwkFtPyd7eHtHR0RgwYADWrVsHCwsLREdH47PPPsOSJUvQs2dPeHh4IDAwkIsrIyMDMpkMZmZmDa7H5/Nha2uLjIyMJ75vj0pISMCYMWNQXl4OMzMzJCYmwsjIqNG6mZmZWL16NSIjI5/pmi/ap59+ij59+sDf37/R8ps3b0KpVOKrr77CqlWrIJPJ8MUXX8DT0xOXLl0Cn8+HjY0NDhw4gFGjRmHy5Mmora2Fu7s79u7dy7XTt29fxMbGYvTo0aisrERNTQ38/Pxe/rS8VqKkFCGEENJKSiXD+JizeFhVv2gpw9sWEfjjSiFXR1/fHW1MfNUTICGEEPKGYQol8hadVMu1zcP7gMfXbHX9hIQESCQSKBQKKJVKBAQE4L333kNCQgJ69/57fUlDQ0N06NABV69eBQBMnz4dn3zyCQ4cOIAhQ4ZgxIgR6NKlS5PXuXnzJhQKBVxdXbljMpkMHTp0aFC3Z8+eKvsXL17EpUuXEBsbyx1jjEGpVCIrKwuOjo6YMmUKxo4diyNHjuDUqVPYsWMHvvrqK8THx8PT07NV94LP57dYJzY2FpMnT+b29+3bh/79+wMAPDw8kJqaiqKiInz//fcYNWoUTp8+DRMTE5U2cnNz4ePjg5EjR6qsmSSR/D1S/cMPP8T69etbjCcpKQm+vn8/w23YsAGBgYEtntca8fHx+P3335GSktJkHaVSCYVCgejoaHh5eQEAtm3bBlNTUxw+fBje3t4oKCjApEmTEBwcjA8++AAPHz7EokWL8P777yMxMRE8Hg9paWmYMWMGFi1aBG9vb+Tn52Pu3LkICQnBpk2bXmg/nwYlpQghhJBWKKlUIO9BBR5W1UCDBwS6GkDGvwuhRl1CSk+vN/h8Q5iY+Kg5UkIIIYSog4eHB9atWwc+nw9zc3NoaWkhPj6+xfMmTpwIb29v7NmzBwcOHMCyZcsQFRWFadOmPXNMYrFYZb+0tBSTJ0/G9OnTG9Rt27Yt97VUKoWfnx/8/PwQEREBb29vREREwNPTE/b29pDL5cjLy2swOqu6uho3btxQWZy7KcOHD1dJ1llYWKjEbWdnBzs7O7i5ucHe3h6bNm3C/PnzuTp5eXnw8PBAnz59sHHjRpW2H337na6ubouxAHUJvEfPa9OmTavOa43ff/8dN27c4Ea71RsxYgT69++PI0eOcCPPnJycuHJjY2MYGRkhJ6fuDc9r166FTCbD8uXLuTo//vgjrKyscPr0abi5uWHZsmXo27cv5s6dCwDo0qULxGIx+vfvj4iIiBfaz6dBSSlCCCGkBQeuFCDkx/NQsrp9G/1KDNKfBKWyAgCgpaWHHt23qjFCQggh5M3E09aAeXgftV37SdQnUh7l6OiImpoanD59mpu+d+/ePaSnp6skH6ysrBASEoKQkBDMnz8f33//PaZNm8aNOHp0fSdbW1toa2vj7NmzXCJJLpcjIyMDb731VrMxdu/eHWlpaQ3ibA6Px0PHjh1x8mTdiLX3338foaGhiIqKQlRUlErd9evXo7y8HGPHjm2xXalUCqlU2qoYlEolqqqquP3c3Fx4eHigR48eiImJgYaG6vfqSfpXTygUPtV5rTFv3jxMnDhR5ZizszNWrlwJPz8/AHXT7oC69cMsLS0BAMXFxSgqKoK1tTWAunWpHu+rpmbdaD6lUsnV0dLSarQOY+yF9vNpUFKKEEIIacGJzCIoGcDjAZo8HkZ0KYNSWQEeTxNaWrqwMP9A3SESQgghbyQej/dEU+heNfb29vD398ekSZOwYcMGSKVSzJs3DxYWFtzaQjNnzoSvry8cHBxw//59HD58GI6OjgAAa2tr8Hg8JCQkYOjQoRAKhZBKpQgODsbcuXNhYGAAExMThIWFQUOj5TWwQkND4ebmhqlTp2LixIkQi8VIS0tDYmIi1qxZg9TUVISFhSEoKAhOTk7g8/k4evQofvjhB4SGhgKoG1G1fPlyzJkzBwKBAEFBQdDW1sYvv/yCBQsWICIiAp07d1a5bnp6eoNYOnXqxC3OXa+srAxLly7F8OHDYWZmhqKiIqxduxa5ubkYOXIkgLqE1MCBA2FtbY3IyEgUFv69jEJjC4g/qn6EUGlpKQoLC5Gamgo+n6+SIHxcaWkpMjMzuf2srCykpqbCwMCASwoWFxcjJycHeXl5Kv01NTVV2R7Xtm1b2NjYAAAcHBzg7++PGTNmYOPGjdDV1cX8+fPRsWNHeHh4AACGDRuGlStXIjw8nJu+t2DBAlhbW6Nbt24AAD8/P0yaNAnr1q3jpu/NnDkTrq6uja479iT9fCFa/U7AfyB6vTEhhPyzhf3yB/OIPMw6LfqNWYcmsO1J21lGxlKWkvoRO3jIlqWkfqTuEIka0PNBQ3RPCCHPQ3Ovl3/VBQcHM39//0bLiouLWVBQEJPJZEwoFDJvb2+WkZHBlU+dOpW1b9+e6ejoMGNjYxYUFMSKioq48vDwcGZqasp4PB4LDg5mjDFWUlLCAgICmEgkYqampmzFihXM1dWVzZs3jzvP2tqarVy5skE8Z86cYZ6enkwikTCxWMy6dOnCli5dyhhjrLCwkE2fPp117tyZSSQSJpVKmbOzM4uMjGS1tbUq7cTFxbH+/fszsVjMADAAbNu2bSp1srKyuLLHt1u3bjWIraKigr377rvM3Nyc8fl8ZmZmxoYPH87OnDnD1YmJiWmyzZY0do61tXWz5xw+fLjR8+q/F83FFBYW1mwsu3fvVjkml8vZ+PHjmZ6eHjMwMGDvvvsuy8nJUamzbds21q1bNyYWi5mxsTEbPnw4u3r1qkqd6Oho5uTkxIRCITMzM2OBgYHs9u3bz9zPxzX3mW3tswGPMcZeXMrr9VZSUgKZTAa5XN7qeaiEEELeDPIKBVyWHOD2NXi1+N5rPsAquWMWFh+iY4cl6giPqBE9HzRE94QQ8jxUVlYiKysLNjY2EAgE6g7ntVJWVgYLCwtERUVhwoQJL/36xcXFGDx4MHR1dbFv3z6IRKKXHgN5+Zr7zLb22YCm7xFCCCGPqKlVYvXvmbh+9yEAQFeghe+DHCHjFyH3eiV4PE1YWY2HpoYA5hZj1BwtIYQQQv6JUlJScO3aNbi6ukIulyM8PBwAuCmBL5uBgQEOHjyItWvXIjk5GYMHD1ZLHOT1Q0kpQggh5BEnbtzDqkPXuX2v9ukoy5mGUla3wCifbwx7u3nqCo8QQgghBAAQGRmJ9PR08Pl89OjRA0lJSTAyMlJbPIaGhli0aJHark9eT5SUIoQQQv5SXaNEzr0yAIBDGwne626J7rITeFhcl5Di8TTRpo2fOkMkhBBCCEG3bt1w/vx5dYdByDOjpBQhhBACYNm+q9hw9Ca3P6R9Lvoa/gy5/AIAwMFhMawsg9QVHiGEEEIIIW8cSkoRQgghAH77o4D7WluTh256P+Hu3SvcMbHIVh1hEUIIIYQQ8saipBQhhJB/LKWS4ddLebhbUoUCed1b9RKmusLGSICU80tRVQNYW38CXV1n6Ov3UXO0hBBCCCGEvFkoKUUIIeQf63hmEWb8lMrt92hzCXevz8adDAV3zNIiEAKBmRqiI4QQQggh5M1GSSlCCCH/OIwx3CmpwsVbDwAAlvpCuLYzwGDzA2CKvxNSurou0NExUVOUhBBCCCGEvNkoKUUIIeQfZ9b/LmJ3Si63H+D8Bzxs8lF8PwWVCqCDwxKYmb0HDQ0heDyeGiMlhBBCCCHkzUVJKUIIIf84J28UAahb0NxYrEAHwWrk5Su5crHYAZqaInWFRwghhBBCyD+ChroDIIQQQl6G8uoaJFzKw87zt3GvtBoAkPTZIByY4QRACU1NEdrbzoaT47fQ0+ul3mAJIYQQ8loZN24ceDweeDwe+Hw+7OzsEB4ejpqammdq98iRI+DxeHjw4MHzCbQVsrKyEBAQAHNzcwgEAlhaWsLf3x/Xrl1TqZeQkIABAwZAKpVCJBKhV69e2Lx5s0qd7Oxs8Hg8pKamtvr6ixcvRseOHSEWi6Gvr48hQ4bg9OnTKm1OmDABNjY2EAqFaN++PcLCwlBdXd1su/n5+QgICICDgwM0NDQwc+bMVsVz7Ngx+Pn5wdzcHDweD3FxcU8cMwAsXboUffr0gUgkgp6eXqPXysnJwbBhwyASiWBiYoK5c+eq/Aw9+nP26NapUyeuzrJly9CrVy9IpVKYmJjgnXfeQXp6eov9bE18LwIlpQghhPwjrP49E1O3pmDOjouoUTIMtTmE65cH4fz5MQAAgcAC7dr9C2Zm79GUPUIIIYQ8MR8fH+Tn5+P69euYPXs2Fi9ejG+//VbdYXFaStoAgEKhgKenJ+RyOXbt2oX09HRs374dzs7OKomx1atXw9/fH3379sXp06dx6dIljBkzBiEhIZgzZ84zxeng4IA1a9bg8uXLOH78ONq1awcvLy8UFhYCAK5duwalUokNGzbgypUrWLlyJdavX48FCxY0225VVRWMjY3xxRdfwMXFpdXxlJWVwcXFBWvXrn3qmIG6+z9y5Eh88sknjbZRW1uLYcOGobq6GidPnsSWLVuwefNmLFq0iKuzatUq5Ofnc9utW7dgYGCAkSNHcnWOHj2KKVOm4NSpU0hMTIRCoYCXlxfKysqa7WdL8b0wjDRJLpczAEwul6s7FEIIIc9owuazzDo0gXmvPMqCfzjNfjvkxg4esuW2K2mh6g6RvCbo+aAhuieEkOehoqKCpaWlsYqKCnWH8sSCg4OZv7+/yjFPT0/m5ubGiouLWVBQENPT02NCoZD5+PiwjIwMrl52djZ7++23mZ6eHhOJRMzJyYnt2bOHZWVlMQAqW3BwMGOMsZKSEhYQEMBEIhEzNTVlK1asYAMGDGAzZszg2rW2tmbh4eEsKCiISaVS7tykpCTWr18/JhAImKWlJZs2bRorLS1ljDGWkpLCALDs7Owm+5qTk8O0tbXZrFmzGpRFR0czAOzUqVOMMcb1ISUl5clv6l/qf8ccPHiwyTrLly9nNjY2rW7z8XvVWgDY7t27W6zXXMwxMTFMJpM1OL53716moaHBCgoKuGPr1q1jurq6rKqqqtHr7N69m/F4vGa/X3fv3mUA2NGjR1uMu7n4GtPcZ7a1zwY0UooQQsgbizGGOTsuwuffx3Ais24dqdn9ruKTTkughbq/XHXr9iN6u+6DY8ev1BkqIYQQQt4wQqEQ1dXVGDduHM6dO4f4+HgkJyeDMYahQ4dC8dcbf6dMmYKqqiocO3YMly9fxjfffAOJRAIrKyv8/PPPAID09HTk5+dj1apVAIBZs2bhxIkTiI+PR2JiIpKSknDhwoUGMURGRsLFxQUpKSlYuHAhbty4AR8fH4wYMQKXLl3C9u3bcfz4cUydOhUAYGxsDA0NDezcuRO1tbWN9mvnzp1QKBSNjoiaPHkyJBIJtm3b9lzuYXV1NTZu3AiZTNbs6Ca5XA4DA4Pncs1n1dqYH5ecnAxnZ2e0adOGO+bt7Y2SkhJcuXKl0XM2bdqEIUOGwNrausl25XI5ALwy9+dxtNA5IYSQN9aNwjLsPH+b29fgAfyKH1GqyAMA6OiYQl+vN3g8+hsNIYQQ8ipijHHJm5dNW1v7qab0M8Zw6NAh7N+/H76+voiLi8OJEyfQp08fAEBsbCysrKwQFxeHkSNHIicnByNGjICzszMAwNbWlmurPpFgYmLCrfPz8OFDbNmyBVu3bsXgwYMBADExMTA3N28Qy6BBgzB79mxuf+LEiQgMDOTWU7K3t0d0dDQGDBiAdevWwcLCAtHR0fjss8+wZMkS9OzZEx4eHggMDOTiysjIgEwmg5mZWYPr8fl82NraIiMj44nv26MSEhIwZswYlJeXw8zMDImJiTAyMmq0bmZmJlavXo3IyMhnuuazepKYG1NQUKCSkALA7RcUFDSon5eXh3379mHr1q1NtqlUKjFz5kz07dsXnTt3bnUsLxMlpQghhLxxKqpr8X3STVzNLwEAtDUQIMK3AnqCMhTdrhsh1anTv2Gg704JKUIIIeQVplAo8NVX6hnNvGDBAvD5/FbXT0hIgEQigUKhgFKpREBAAN577z0kJCSgd+/eXD1DQ0N06NABV69eBQBMnz4dn3zyCQ4cOIAhQ4ZgxIgR6NKlS5PXuXnzJhQKBVxdXbljMpkMHTp0aFC3Z8+eKvsXL17EpUuXEBsbyx1jjEGpVCIrKwuOjo6YMmUKxo4diyNHjuDUqVPYsWMHvvrqK8THx8PT07NV96I19y02NhaTJ0/m9vft24f+/fsDADw8PJCamoqioiJ8//33GDVqFE6fPg0TExOVNnJzc+Hj44ORI0di0qRJ3HGJRMJ9/eGHH2L9+vUtxpOUlARfX19uf8OGDQgMDGzxvHqtjfl52bJlC/T09PDOO+80WWfKlCn4448/cPz4ce5YSEgIfvzxR26/tLT0hcTXWpSUIoQQ8sbZczkfKxL//gudR7ssKAqXoX6pSR5PEybG3tDQaP2DJiGEEEJIczw8PLBu3Trw+XyYm5tDS0sL8fHxLZ43ceJEeHt7Y8+ePThw4ACWLVuGqKgoTJs27ZljEovFKvulpaWYPHkypk+f3qBu27Ztua+lUin8/Pzg5+eHiIgIeHt7IyIiAp6enrC3t4dcLkdeXl6D0VnV1dW4ceMGvL29W4xt+PDhKsk6CwsLlbjt7OxgZ2cHNzc32NvbY9OmTZg/fz5XJy8vDx4eHujTpw82btyo0vajb/vT1dVtMRagLoH36HmPj1pqSWtibo6pqSnOnDmjcuzOnTtc2aMYY/jhhx8QFBTUZAJw6tSpSEhIwLFjx2BpackdDw8Pf+bF6J8nSkoRQgh5Y1QqanE1vwTn/ywGALhYyuDR0QQelrdQlAfo8NtALHGAkaEHJaQIIYSQ14C2tnaLb1V7kdd+EvVJiUc5OjqipqYGp0+f5qbv3bt3D+np6XBycuLqWVlZISQkBCEhIZg/fz6+//57TJs2jUs4PLq+k62tLbS1tXH27FkukSSXy5GRkYG33nqr2Ri7d++OtLS0BnE2h8fjoWPHjjh58iQA4P3330doaCiioqIQFRWlUnf9+vUoLy/H2LFjW2xXKpVCKpW2KgalUomqqipuPzc3Fx4eHujRowdiYmKgoaE68v1J+ldPKBQ+1XlNeTzmlri7u2Pp0qW4e/cuN7oqMTERurq6Kj8rQN0b9jIzMzFhwoQG7TDGMG3aNOzevRtHjhyBjY2NSrmJickLG731NCgpRQgh5I0R+J/TOP/nfW5/pONpdDcvxMOSusUhTUx84eCwUF3hEUIIIeQJ8Xi8J5pC96qxt7eHv78/Jk2ahA0bNkAqlWLevHmwsLCAv78/AGDmzJnw9fWFg4MD7t+/j8OHD8PR0REAYG1tDR6Ph4SEBAwdOhRCoRBSqRTBwcGYO3cuDAwMYGJigrCwMGhoaLS4BlZoaCjc3NwwdepUTJw4EWKxGGlpaUhMTMSaNWuQmpqKsLAwBAUFwcnJCXw+H0ePHsUPP/yA0NBQAHUjqpYvX445c+ZAIBAgKCgI2tra+OWXX7BgwQJEREQ0WL8oPT29QSydOnVqkPgrKyvD0qVLMXz4cJiZmaGoqAhr165Fbm4uRo4cCaAuITVw4EBYW1sjMjIShYWF3PmPjyh6XP1IqNLSUhQWFiI1NRV8Pr9B0udRpaWlyMzM5PazsrKQmpoKAwMDtG3btlUxA0BOTg6Ki4uRk5OD2tpaLhY7OztIJBJ4eXnByckJQUFBWL58OQoKCvDFF19gypQp0NHRUYlp06ZN6N27d6PrRE2ZMgVbt27FL7/8AqlUyq1HJZPJIBQKm+xnS/G9MK16z98/FL3emBBCXh9KpZLZL9jLrEMTWJ9lh9gH635mBw/Zqmw5OZvVHSZ5A9DzQUN0Twghz0Nzr5d/1QUHBzN/f/9Gy4qLi1lQUBCTyWRMKBQyb29vlpGRwZVPnTqVtW/fnuno6DBjY2MWFBTEioqKuPLw8HBmamrKeDweCw4OZowxVlJSwgICAphIJGKmpqZsxYoVzNXVlc2bN487z9ramq1cubJBPGfOnGGenp5MIpEwsVjMunTpwpYuXcoYY6ywsJBNnz6dde7cmUkkEiaVSpmzszOLjIxktbW1Ku3ExcWx/v37M7FYzAAwAGzbtm0qdbKysriyx7dbt241iK2iooK9++67zNzcnPH5fGZmZsaGDx/Ozpw5w9WJiYlpss2WNHaOtbV1s+ccPny40fPqvxetiZmxup+Rxto5fPgwVyc7O5v5+voyoVDIjIyM2OzZs5lCoVBp58GDB0woFLKNGze2uo8AWExMTLP9bE18j2vuM9vaZwPeX0GT5L7OwAABAABJREFURpSUlEAmk0Eul7d6HiohhJCX6/b9cvx8Phfl1TXYcOwmAIaUBQ6oKL2Eq9dCoa1tiLZWH0FLSxdmZu9CU1Ok7pDJa46eDxqie0IIeR4qKyuRlZUFGxsbCAQCdYfzWikrK4OFhQWioqIandL1ohUXF2Pw4MHQ1dXFvn37IBLR89Y/QXOf2dY+G9D0PUIIIa+1yP3piEvN4/ZHdzyIC+dmcPtisR3atftEHaERQgghhLwQKSkpuHbtGlxdXSGXyxEeHg4A3JTAl83AwAAHDx7E2rVrkZycjMGDB6slDvL6oaQUIYSQ19qt+xUAgCGOJrDUF2GAUSGUlYCWlhSamhJYmI9Wc4SEEEIIIc9fZGQk0tPTwefz0aNHDyQlJcHIyEht8RgaGmLRokVquz55PVFSihBCyGunukaJj//vHG4UlqJAXgmAYVznXyHWzIFc/gcAoHOn1TA07K/eQAkhhBBCXoBu3brh/Pnz6g6DkGdGSSlCCCGvnYu3H+BI+t9vWmmvdwdV8lj8/dJdDYhEtuoIjRBCCCGEENJKlJQihBDy2pBXKLAp6SYu58oBAF0tdTB/cBlEvGLczQOEgrawsZkOkcgGQqGFmqMlhBBCCCGENIeSUoQQQl4bO87dQvTvmdy+v+0ulObvR+lf+2KJPczM3lVPcIQQQgghhJAnQkkpQgghr7x7pVW4kleCs9nFAABXGwP0tzNCR0kMyssAsdgefL4x2lpNVHOkhBBCCCGEkNaipBQhhJBX3rvfnUROcTm3/4HTQZhqH0dFeQ4AoGPHpdCT9VBXeIQQQgghhJCnQEkpQgghr7TSqhouIeVopgsjiRZkNbEoVygAABoaAohpUXNCCCGEEEJeO5SUIoQQ8krKvFuKz3dfxv3yagCAiagam8fIoagpQXp6XUKqW7cfIRLZQFtbX52hEkIIIYQQQp6ChroDIIQQQhoTl5KL01nFyLhTt4z5R13i8MeVGUhPXwgA4PONYaDvDoGOqTrDJIQQQgjBuHHjwOPxwOPxwOfzYWdnh/DwcNTU1DxTu0eOHAGPx8ODBw+eT6CtkJWVhYCAAJibm0MgEMDS0hL+/v64du2aSr2EhAQMGDAAUqkUIpEIvXr1wubNm1XqZGdng8fjITU1tdXXX7x4MTp27AixWAx9fX0MGTIEp0+fVmlzwoQJsLGxgVAoRPv27REWFobq6uoW246NjYWLiwtEIhHMzMwwfvx43Lt3r9lzjh07Bj8/P5ibm4PH4yEuLq7RelevXsXw4cMhk8kgFovRq1cv5OTkcOWTJ09G+/btIRQKYWxs3Og9PXv2LAYPHgw9PT3o6+vD29sbFy9ebPR6mZmZkEql0NPTa7Hfre2DOlBSihBCyCulplaJsqoa5MsrAQDv97DEf8e7oqtZ3SLnUmknGBj0h53dPHWGSQghhBCiwsfHB/n5+bh+/Tpmz56NxYsX49tvv1V3WJzWJG0UCgU8PT0hl8uxa9cupKenY/v27XB2dlZJjK1evRr+/v7o27cvTp8+jUuXLmHMmDEICQnBnDlznilOBwcHrFmzBpcvX8bx48fRrl07eHl5obCwEABw7do1KJVKbNiwAVeuXMHKlSuxfv16LFiwoNl2T5w4gbFjx2LChAm4cuUKduzYgTNnzmDSpEnNnldWVgYXFxesXbu2yTo3btxAv3790LFjRxw5cgSXLl3CwoULIRAIuDo9evRATEwMrl69iv3794MxBi8vL9TW1gIASktL4ePjg7Zt2+L06dM4fvw4pFIpvL29ofhr2Yp6CoUCH3zwAfr3799s7E/SB7VhpElyuZwBYHK5XN2hEELIP8KdkgrW48sDzDo0gVmHJrD283azhCPB7NTpoezQ7x3YwUO2TF5yWd1hkn84ej5oiO4JIeR5qKioYGlpaayiokLdoTyx4OBg5u/vr3LM09OTubm5seLiYhYUFMT09PSYUChkPj4+LCMjg6uXnZ3N3n77baanp8dEIhFzcnJie/bsYVlZWQyAyhYcHMwYY6ykpIQFBAQwkUjETE1N2YoVK9iAAQPYjBkzuHatra1ZeHg4CwoKYlKplDs3KSmJ9evXjwkEAmZpacmmTZvGSktLGWOMpaSkMAAsOzu7yb7m5OQwbW1tNmvWrAZl0dHRDAA7deoUY4xxfUhJSXnym/qX+t8xBw8ebLLO8uXLmY2NTbPtfPvtt8zW1rZBvBYWFq2OBQDbvXt3g+OjR49mH374YavbYYyxixcvMgAsMzOTMcbY2bNnGQCWk5PD1bl06RIDwK5fv65y7meffcY+/PBDFhMTw2Qy2RNdt6k+PI3mPrOtfTagkVKEEEJeGSk5D1BU+vdf8bqa5kBQm4TS0mtgTAFNTRFEQms1RkgIIYSQl4kxhtracrVsdf9/f3pCoRDV1dUYN24czp07h/j4eCQnJ4MxhqFDh3KjX6ZMmYKqqiocO3YMly9fxjfffAOJRAIrKyv8/PPPAID09HTk5+dj1apVAIBZs2bhxIkTiI+PR2JiIpKSknDhwoUGMURGRsLFxQUpKSlYuHAhbty4AR8fH4wYMQKXLl3C9u3bcfz4cUydOhUAYGxsDA0NDezcuZMbwfO4nTt3QqFQNDoiavLkyZBIJNi2bdsz3bt61dXV2LhxI2QyGVxcXJqsJ5fLYWBg0Gxb7u7uuHXrFvbu3QvGGO7cuYOdO3di6NChzxSjUqnEnj174ODgAG9vb5iYmKB3797NTpErKytDTEwMbGxsYGVlBQDo0KEDDA0NsWnTJlRXV6OiogKbNm2Co6Mj2rVrx537+++/Y8eOHa/mqKenQAudE0IIUbvy6hrsuZSPpOtFAABfJwm+8KzAw5L7yM0FpFJn2LWfC5HIBlpaUjVHSwghhJCXRamswJGjzmq59sABl6GpKXri8xhjOHToEPbv3w9fX1/ExcXhxIkT6NOnD4C6dY2srKwQFxeHkSNHIicnByNGjICzc10/bW3/fqtwfaLFxMSEWzvo4cOH2LJlC7Zu3YrBgwcDAGJiYmBubt4glkGDBmH27Nnc/sSJExEYGIiZM2cCAOzt7REdHY0BAwZg3bp1sLCwQHR0ND777DMsWbIEPXv2hIeHBwIDA7m4MjIyIJPJYGZm1uB6fD4ftra2yMjIeOL79qiEhASMGTMG5eXlMDMzQ2JiIoyMjBqtm5mZidWrVyMyMrLZNvv27YvY2FiMHj0alZWVqKmpgZ+f3zMnd+7evYvS0lJ8/fXXiIiIwDfffIPffvsN7733Hg4fPowBAwZwdb/77jt89tlnKCsrQ4cOHZCYmAg+nw8AkEqlOHLkCN555x18+eWXAOq+P/v374eWVl3q5t69exg3bhx+/PFH6OrqPlPcrwoaKUUIIUTttpz8E3N3XkL8xTwAwFttfsC1q1OQm/tfAIBEbA8Dg74QCBo+bBFCCCGEvAoSEhIgkUggEAjg6+uL0aNHY9y4cdDS0kLv3r25eoaGhujQoQOuXr0KAJg+fToiIiLQt29fhIWF4dKlS81e5+bNm1AoFHB1deWOyWQydOjQoUHdnj17quxfvHgRmzdvhkQi4TZvb28olUpkZWUBqBu5VVBQgNjYWLi7u2PHjh3o1KkTEhMTW30v6hMtzYmNjVWJIykpiSvz8PBAamoqTp48CR8fH4waNQp3795t0EZubi58fHwwcuRIlbWhHm03JCQEAJCWloYZM2Zg0aJFOH/+PH777TdkZ2dz5UlJSSrnxcbGtqqvSqUSAODv749PP/0UXbt2xbx58/D2229j/fr1KnUDAwORkpKCo0ePwsHBAaNGjUJlZd06qhUVFZgwYQL69u2LU6dO4cSJE+jcuTOGDRuGiooKAMCkSZMQEBCAt956q9FYnrYP6kQjpQghhKjdjcK6N+w5mumis7kuLCT5UFQBEokj+HwjWFqOVXOEhBBCCFEHDQ0hBg64rLZrPwkPDw+sW7cOfD4f5ubm0NLSQnx8fIvnTZw4Ed7e3tizZw8OHDiAZcuWISoqCtOmTXva0DlisVhlv7S0FJMnT8b06dMb1G3bti33tVQqhZ+fH/z8/BAREQFvb29ERETA09MT9vb2kMvlyMvLazA6q7q6Gjdu3IC3t3eLsQ0fPlwlWWdhYaESt52dHezs7ODm5gZ7e3ts2rQJ8+fP5+rk5eXBw8MDffr0wcaNG1XafvRtf/UjipYtW4a+ffti7ty5AIAuXbpALBajf//+iIiIQM+ePVXOa9OmTYt9AAAjIyNoaWnByclJ5bijoyOOHz+uckwmk0Emk8He3h5ubm7Q19fH7t278cEHH2Dr1q3Izs5GcnIyNDTqxg9t3boV+vr6+OWXXzBmzBj8/vvviI+P50aFMcagVCqhpaWFjRs34oMPPniqPqgTJaUIIYSoBWMMU7em4HhmEcqqasDXqMb0bt/DUPAApWV/AgA6d/o3xGI7NUdKCCGEEHXh8XhPNYVOHeoTKY9ydHRETU0NTp8+zU3fu3fvHtLT01WSGFZWVggJCUFISAjmz5+P77//HtOmTeNGHD26vpOtrS20tbVx9uxZLpEkl8uRkZHR5Aiaet27d0daWlqDOJvD4/HQsWNHnDx5EgDw/vvvIzQ0FFFRUYiKilKpu379epSXl2Ps2Jb/oCiVSiGVtm5ZBqVSiaqqKm4/NzcXHh4e3Bvt6pM49RrrX3l5OTcNrp6mpiaAuudSoVD4RPelHp/PR69evZCenq5yPCMjA9bWTa+FyhgDY4zrV3l5OTQ0NMDj8bg69fv1o7GSk5NVfhZ++eUXfPPNNzh58iQsLCyeug/qREkpQgghalFcVo09l/O5/a7G18GvOYGHdYOmoKUlhUBg0cTZhBBCCCGvPnt7e/j7+2PSpEnYsGEDpFIp5s2bBwsLC/j7+wMAZs6cCV9fXzg4OOD+/fs4fPgwHB0dAQDW1tbg8XhISEjA0KFDIRQKIZVKERwcjLlz58LAwAAmJiYICwtrkNBoTGhoKNzc3DB16lRMnDgRYrEYaWlpSExMxJo1a5CamoqwsDAEBQXByckJfD4fR48exQ8//IDQ0FAAdSOqli9fjjlz5kAgECAoKAja2tr45ZdfsGDBAkRERKBz584q1308YQMAnTp1gra2tsqxsrIyLF26FMOHD4eZmRmKioqwdu1a5ObmYuTIkQDqElIDBw6EtbU1IiMjUVhYyJ1vamraZN/9/PwwadIkrFu3Dt7e3sjPz8fMmTPh6ura6Hpc9UpLS5GZmcntZ2VlITU1FQYGBlxScO7cuRg9ejTeeusteHh44LfffsOvv/6KI0eOAKibcrl9+3Z4eXnB2NgYt2/fxtdffw2hUMgttO7p6Ym5c+diypQpmDZtGpRKJb7++mtoaWnBw8MDALifi3rnzp2DhoZGg/v9NH1Qm+fyHsA3FL3emBBCnj9FTS37I/cB23Mpj1mHJjD3iJ9ZasYOlnIplB08ZMvOnnufFRUdZRUVueoOlZBG0fNBQ3RPCCHPQ3Ovl3/VBQcHM39//0bLiouLWVBQEJPJZEwoFDJvb2+WkZHBlU+dOpW1b9+e6ejoMGNjYxYUFMSKioq48vDwcGZqasp4PB4LDg5mjDFWUlLCAgICmEgkYqampmzFihXM1dWVzZs3jzvP2tqarVy5skE8Z86cYZ6enkwikTCxWMy6dOnCli5dyhhjrLCwkE2fPp117tyZSSQSJpVKmbOzM4uMjGS1tbUq7cTFxbH+/fszsVjMADAAbNu2bSp1srKyuLLHt1u3bjWIraKigr377rvM3Nyc8fl8ZmZmxoYPH87OnDnD1YmJiWmyzZZER0czJycnJhQKmZmZGQsMDGS3b99u9pzDhw83eq3670W9TZs2MTs7OyYQCJiLiwuLi4vjynJzc5mvry8zMTFh2trazNLSkgUEBLBr166ptHHgwAHWt29fJpPJmL6+Phs0aBBLTk5uMraYmBgmk8la7Hdr+/CkmvvMtvbZgMfYM77n8g1WUlICmUwGuVz+xqxsTwgh6jZl6wXsufT3CKn5vTfBTnaR27ewCETHDuHqCI2QVqHng4bonhBCnofKykpkZWXBxsYGAoFA3eG8VsrKymBhYYGoqChMmDDhpV+/uLgYgwcPhq6uLvbt2weR6PWYckmeTXOf2dY+G9Db9wghhLxUqTkPAABGEj4s9IRop3cHAKCr2xVGRkNgafGhGqMjhBBCCHn1paSkYNu2bbhx4wYuXLiAwMBAAOCmBL5sBgYGOHjwIAYPHozk5GS1xEBeT7SmFCGEkBeurKoGC+P+wN2HVciXV0Ci/RD/HrwFyppCKBT3AQDOnVdDIGh6Pj8hhBBCCPlbZGQk0tPTwefz0aNHDyQlJcHIyEht8RgaGmLRokVquz55PVFSihBCyAt36Npd7ErJ5fZ7mt1AVUUGty8QWILPN1FHaIQQQgghr51u3brh/Pnz6g6DkGdGSSlCCCEvTKWiFlfySnDhz7rRUAPtGEY658FQKx9lcsDQ0AP2dvMgEFhCQ4N+JRFCCCGEEPJPQv8DIIQQ8sJM/r/zOJrx92t6/a3/A0HZZZT9tS8Wt4dYbKee4AghhBBCCCFqRUkpQgghL8zF2w8AABZ6QuiLtaHHz4OyFtDXcwNfxwSWFoHqDZAQQgghhBCiNpSUIoQQ8lzVKhnGxZxB6q0HeFhZA4Ah2ud/KC9NQXX1PQBA586rwOerbyFOQgghhBBCiPpRUooQQshzlX2vDEnXi7h9V6tqPChO5PaFwnbQ1jZQR2iEEEIIIYSQVwglpQghhDwXilolzmXfxx+5cgCAnTFDlN8DCHAbt28DOjqm6OryA4TCtuDxNNQcLSGEEEIIIUTdKClFCCHkufj3wQysPXyD2x9qfQBFt/dw+0JhW0gkHdQRGiGEEEIIIeQVRH+qJoQQ8lxcy38IoG5R865WeuhiVgIAkEqd0aaNH9rbzlZneIQQQgghL8y4cePA4/HA4/HA5/NhZ2eH8PBw1NTUPFO7R44cAY/Hw4MHD55PoK2QlZWFgIAAmJubQyAQwNLSEv7+/rh27ZpKvYSEBAwYMABSqRQikQi9evXC5s2bVepkZ2eDx+MhNTW11ddfvHgxOnbsCLFYDH19fQwZMgSnT59WaXPChAmwsbGBUChE+/btERYWhurq6hbbjo2NhYuLC0QiEczMzDB+/Hjcu3ev2XPWrVuHLl26QFdXF7q6unB3d8e+ffu48uLiYkybNg0dOnSAUChE27ZtMX36dMjlcq7O5s2buZ+Px7e7d+9y9aqqqvD555/D2toaOjo6aNeuHX744QeVeP79739z17KyssKnn36KysrKZvuwa9cueHl5wdDQ8Im/Hy8ajZQihBDy1EqrarD69+u4X1aNi7cfQKhVjiUDfoORqBxy+WXUAGjX7hOYGHurO1RCCCGEkBfKx8cHMTExqKqqwt69ezFlyhRoa2tj/vz56g4NAFBdXQ0+n99sHYVCAU9PT3To0AG7du2CmZkZbt++jX379qkkxlavXo2ZM2ciNDQU69atA5/Pxy+//IKQkBD88ccfiIyMfOo4HRwcsGbNGtja2qKiogIrV66El5cXMjMzYWxsjGvXrkGpVGLDhg2ws7PDH3/8gUmTJqGsrKzZ6544cQJjx47FypUr4efnh9zcXISEhGDSpEnYtWtXk+dZWlri66+/hr29PRhj2LJlC/z9/ZGSkoJOnTohLy8PeXl5iIyMhJOTE/7880+EhIQgLy8PO3fuBACMHj0aPj4+Ku2OGzcOlZWVMDEx4Y6NGjUKd+7cwaZNm2BnZ4f8/HwolUqufOvWrZg3bx5++OEH9OnTBxkZGVxCdMWKFU32oaysDP369cOoUaMwadKkFr8HLxUjTZLL5QwAk8vl6g6FEEJeSdvP5DDr0ARuC1z1OTt4yFZle1iaoe4wCXmu6PmgIbonhJDnoaKigqWlpbGKigp1h/LEgoODmb+/v8oxT09P5ubmxoqLi1lQUBDT09NjQqGQ+fj4sIyMv5+PsrOz2dtvv8309PSYSCRiTk5ObM+ePSwrK4sBUNmCg4MZY4yVlJSwgIAAJhKJmKmpKVuxYgUbMGAAmzFjBteutbU1Cw8PZ0FBQUwqlXLnJiUlsX79+jGBQMAsLS3ZtGnTWGlpKWOMsZSUFAaAZWdnN9nXnJwcpq2tzWbNmtWgLDo6mgFgp06dYowxrg8pKSlPflP/Uv875uDBg03WWb58ObOxsWm2nW+//ZbZ2to2iNfCwuKJY9LX12f/+c9/miz/3//+x/h8PlMoFI2W3717l2lra7P//ve/3LF9+/YxmUzG7t2712S7U6ZMYYMGDVI5NmvWLNa3b99Wxf08vh+Pau4z29pnA5q+Rwgh5KndflABAPC0L8EyrxQEd7sOANDX7wPHjt+ge7etkIjt1RkiIYQQQl5jjDGU1daqZWOMPVPsQqEQ1dXVGDduHM6dO4f4+HgkJyeDMYahQ4dCoVAAAKZMmYKqqiocO3YMly9fxjfffAOJRAIrKyv8/PPPAID09HTk5+dj1apVAIBZs2bhxIkTiI+PR2JiIpKSknDhwoUGMURGRsLFxQUpKSlYuHAhbty4AR8fH4wYMQKXLl3C9u3bcfz4cUydOhUAYGxsDA0NDezcuRO1tbWN9mvnzp1QKBSYM2dOg7LJkydDIpFg27Ztz3Tv6lVXV2Pjxo2QyWRwcXFpsp5cLoeBQfNvd3Z3d8etW7ewd+9eMMZw584d7Ny5E0OHDm11PLW1tfjpp59QVlYGd3f3ZuPR1dWFllbjk9P++9//QiQS4f333+eOxcfHo2fPnli+fDksLCzg4OCAOXPmoKKigqvTp08fnD9/HmfOnAEA3Lx5E3v37n2iPrxqaPoeIYSQJ/bZzov437nb3P677dZBB7lA3bMVDA36wdz8/SbOJoQQQghpnXKlEu2PXVbLtW+85QyxpuYTn8cYw6FDh7B//374+voiLi4OJ06cQJ8+fQDUrWtkZWWFuLg4jBw5Ejk5ORgxYgScnZ0BALa2tlxb9YkWExMT6OnpAQAePnyILVu2YOvWrRg8eDAAICYmBubm5g1iGTRoEGbP/ntdz4kTJyIwMBAzZ84EANjb2yM6OhoDBgzAunXrYGFhgejoaHz22WdYsmQJevbsCQ8PDwQGBnJxZWRkQCaTwczMrMH1+Hw+bG1tkZGR8cT37VEJCQkYM2YMysvLYWZmhsTERBgZGTVaNzMzE6tXr25xymDfvn0RGxuL0aNHo7KyEjU1NfDz88PatWtbjOfy5ctwd3dHZWUlJBIJdu/eDScnp0brFhUV4csvv8THH3/cZHubNm1CQEAAhEIhd+zmzZs4fvw4BAIBdu/ejaKiIvzrX//CvXv3EBMTAwAICAhAUVER+vXrB8YYampqEBISggULFrTYh1cVjZQihBDyRBhj+CU1DwBgJb2NvubnocPLBwCYmr6Dtm0nwtx8lDpDJIQQQgh56RISEiCRSCAQCODr64vRo0dj3Lhx0NLSQu/evbl6hoaG6NChA65evQoAmD59OiIiItC3b1+EhYXh0qVLzV7n5s2bUCgUcHV15Y7JZDJ06NDwLcc9e/ZU2b948SI2b94MiUTCbd7e3lAqlcjKygJQN3KroKAAsbGxcHd3x44dO9CpUyckJia2+l60tHYVUJecezSOpKQkrszDwwOpqak4efIkfHx8MGrUKJUFwevl5ubCx8cHI0eOVFkr6dF2Q0JCAABpaWmYMWMGFi1ahPPnz+O3335DdnY2V56UlKRyXmxsLNdehw4dkJqaitOnT+OTTz5BcHAw0tLSGsRTUlKCYcOGwcnJCYsXL26038nJybh69SomTJigclypVILH4yE2Nhaurq4YOnQoVqxYgS1btnCjpY4cOYKvvvoK3333HS5cuIBdu3Zhz549+PLLL1u8p68qGilFCCGkVSqqa/HjqT9RVFqFqholpPyHWNxnBcDq3iqjocGHk+O34PHo7x2EEEIIeT5EGhq48Zaz2q79JDw8PLhFv83NzaGlpYX4+PgWz5s4cSK8vb2xZ88eHDhwAMuWLUNUVBSmTZv2tKFzxGKxyn5paSkmT56M6dOnN6jbtm1b7mupVAo/Pz/4+fkhIiIC3t7eiIiIgKenJ+zt7SGXy5GXl9dgdFZ1dTVu3LgBb++WX3IzfPhwlWSdhYWFStx2dnaws7ODm5sb7O3tsWnTJpVF4/Py8uDh4YE+ffpg48aNKm0/+nY5XV1dAMCyZcvQt29fzJ07FwDQpUsXiMVi9O/fHxEREejZs6fKeW3atOG+rn+jIgD06NEDZ8+exapVq7BhwwauzsOHD+Hj4wOpVIrdu3dDW1u70X7/5z//QdeuXdGjRw+V42ZmZrCwsIBMJuOOOTo6gjGG27dvw97eHgsXLkRQUBAmTpwIAHB2dkZZWRk+/vhjfP75583e01cVJaUIIYS0SlxqLpbuvcrtOxjKAVYDDQ0hZLJuMDH2oYQUIYQQQp4rHo/3VFPo1KE+kfIoR0dH1NTU4PTp09z0vXv37iE9PV1l+peVlRVCQkIQEhKC+fPn4/vvv8e0adO4EUePru9ka2sLbW1tnD17lkskyeVyZGRk4K233mo2xu7duyMtLa1BnM3h8Xjo2LEjTp48CQB4//33ERoaiqioKERFRanUXb9+PcrLyzF27NgW25VKpZBKpa2KQalUoqqqitvPzc2Fh4cHevTogZiYGGg8lkBsrH/l5eUN1njS/OtnizEGoVDY6vvyeDwlJSXw9vaGjo4O4uPjIRAIGj2vtLQU//vf/7Bs2bIGZX379sWOHTtQWloKiUQCoG6qpIaGBiwtLbk+PN7XR/vwJPf0VUFJKUIIIa2SU1wOABhoex/9rG6gvcE9KMsAiaQDunf7PzVHRwghhBDy6rG3t4e/vz8mTZqEDRs2QCqVYt68ebCwsIC/vz8AYObMmfD19YWDgwPu37+Pw4cPw9HREQBgbW0NHo+HhIQEDB06FEKhEFKpFMHBwZg7dy4MDAxgYmKCsLAwaGhogMfjNRtPaGgo3NzcMHXqVEycOBFisRhpaWlITEzEmjVrkJqairCwMAQFBcHJyQl8Ph9Hjx7FDz/8gNDQUAB1I6qWL1+OOXPmQCAQICgoCNra2vjll1+wYMECREREoHPnzirXTU9PbxBLp06dGowmKisrw9KlSzF8+HCYmZmhqKgIa9euRW5uLkaOHAmgLiE1cOBAWFtbIzIyEoWFhdz5pqamTfbdz88PkyZNwrp16+Dt7Y38/HzMnDkTrq6uja7HVW/+/Pnw9fVF27Zt8fDhQ2zduhVHjhzB/v37AdQlpLy8vFBeXo4ff/wRJSUlKCkpAVC3cLzmI0nV7du3o6amBh9++GGD6wQEBODLL7/ERx99hCVLlqCoqAhz587F+PHjubWn/Pz8sGLFCnTr1g29e/dGZmYmFi5cCD8/P5XrPK64uBg5OTnIy6tbgqP++2FqatrsPXspnst7AN9Q9HpjQghhbMWBdOYReZh1DvuNWYcmsL2H3NnBQ7bcdvHSv9QdIiEvFT0fNET3hBDyPDT3evlXXXBwMPP392+0rLi4mAUFBTGZTMaEQiHz9vZmGRkZXPnUqVNZ+/btmY6ODjM2NmZBQUGsqKiIKw8PD2empqaMx+Ox4OBgxhhjJSUlLCAggIlEImZqaspWrFjBXF1d2bx587jzrK2t2cqVKxvEc+bMGebp6ckkEgkTi8WsS5cubOnSpYwxxgoLC9n06dNZ586dmUQiYVKplDk7O7PIyEhWW1ur0k5cXBzr378/E4vFDAADwLZt26ZSJysriyt7fLt161aD2CoqKti7777LzM3NGZ/PZ2ZmZmz48OHszJkzXJ2YmJgm22xJdHQ0c3JyYkKhkJmZmbHAwEB2+/btZs8ZP348s7a2Znw+nxkbG7PBgwezAwcOcOWHDx9uMp6srCyVttzd3VlAQECT17p69SobMmQIEwqFzNLSks2aNYuVl5dz5QqFgi1evJi1b9+eCQQCZmVlxf71r3+x+/fvN9uHpu5ZWFhYs+e1pLnPbGufDXiMPeN7Lt9gJSUlkMlk3OscCSHkn0apZOiwcB8UtXW/KjR5NdjoOQsAYNrmHWhqCmFpGQSJpOHCmoS8qej5oCG6J4SQ56GyshJZWVmwsbFpcvoTaVxZWRksLCwQFRXVYAHtl6G4uBiDBw+Grq4u9u3bB5FI9NJjIC9fc5/Z1j4b0PQ9QgghDVQqavHrxTzcfVgFRS2DlTQXS/ptBlgJmBLg8bTh5BTZ4hBxQgghhBDy/KWkpODatWtwdXWFXC5HeHg4AHBTAl82AwMDHDx4EGvXrkVycjIGDx6sljjI64eSUoQQQhrYcf42Fsb9we33s7wKVnuH29fXc6WEFCGEEEKIGkVGRiI9PR18Ph89evRAUlISjIyM1BaPoaEhFi1apLbrk9cTJaUIIYQ0kF1UBgAYaHMHg61+h5n4T6AWsLL6CFaWYyEQvPqvlyWEEEIIeVN169YN58+fV3cYhDwztby7+9ixY/Dz84O5uTl4PB7i4uIa1Ll69SqGDx8OmUwGsViMXr16IScnhyuvrKzElClTYGhoCIlEghEjRuDOnTsqbeTk5GDYsGEQiUQwMTHB3LlzUVNT86K7Rwghr61/H8zA0FVJ+PnCbQDACIdEmAuSwaute1OHTNYdQmFb8Hivx6uZCSGEEEIIIa8utSSlysrK4OLigrVr1zZafuPGDfTr1w8dO3bEkSNHcOnSJSxcuFBl4axPP/0Uv/76K3bs2IGjR48iLy8P7733HldeW1uLYcOGobq6GidPnsSWLVuwefNmGk5ICCFNUNQqEX3oOtLySyAvr4ImrwZirWIAdSOknDuvhbGRl5qjJIQQQgghhLwp1DJ9z9fXF76+vk2Wf/755xg6dCiWL1/OHWvfvj33tVwux6ZNm7B161YMGjQIABATEwNHR0ecOnUKbm5uOHDgANLS0nDw4EG0adMGXbt2xZdffonQ0FAsXrwYfD7/xXWQEEJeM/dKq5BTXA4lAyT8CqwavBKoLQBT1JWbmY6AVOqo3iAJIYQQQgghbxS1jJRqjlKpxJ49e+Dg4ABvb2+YmJigd+/eKlP8zp8/D4VCgSFDhnDHOnbsiLZt2yI5ORkAkJycDGdnZ7Rp04ar4+3tjZKSEly5cqXRa1dVVaGkpERlI4SQN93+KwXoufQg3v3uJACgi0k+UFvAlQuFbSES2agrPEIIIYQQQsgb6pVLSt29exelpaX4+uuv4ePjgwMHDuDdd9/Fe++9h6NHjwIACgoKwOfzoaenp3JumzZtUFBQwNV5NCFVX15f1phly5ZBJpNxm5WV1XPuHSGEvHpO3ywGY0AbUTH6WFyEX4csAICeXm+81T8F7m4HoakpaKEVQgghhBBCCHkyr9zb95RKJQDA398fn376KQCga9euOHnyJNavX48BAwa8sGvPnz8fs2bN4vZLSkooMUUIeWOdunkPZ7KKkXzzHgCG8H6roYV7XLlAYAZtbV31BUgIIYQQQgh5o71ySSkjIyNoaWnByclJ5bijoyOOHz8OADA1NUV1dTUePHigMlrqzp07MDU15eqcOXNGpY36t/PV13mcjo4OdHR0nldXCCHklVVdo8T4zWdRXl0LgEGiXcolpPT0ekNDgw8ry2D1BkkIIYQQQgh5o71y0/f4fD569eqF9PR0leMZGRmwtrYGAPTo0QPa2to4dOgQV56eno6cnBy4u7sDANzd3XH58mXcvXuXq5OYmAhdXd0GCS9CCPknqaiuxc2iUpRX10KmU4Y1QyKwyuNzAIC2tiF6dN+Kbl03Q1e3i5ojJYQQQgh5PYwbNw48Hg88Hg98Ph92dnYIDw9HTU3NM7V75MgR8Hg8PHjw4PkE2gpZWVkICAiAubk5BAIBLC0t4e/vj2vXrqnUS0hIwIABAyCVSiESidCrVy9s3rxZpU52djZ4PB5SU1Nbff3FixejY8eOEIvF0NfXx5AhQ3D69GmVNidMmAAbGxsIhUK0b98eYWFhqK6ubrHt2NhYuLi4QCQSwczMDOPHj8e9e/daPK/e119/DR6Ph5kzZ6ocv3HjBt59910YGxtDV1cXo0aN4gbF1Fu6dCn69OkDkUjUYCmievU/Q49uP/30E1e+a9cueHp6ctdxd3fH/v37W4x7165d8PLygqGh4RN/P140tSSlSktLkZqayt2IrKwspKamIicnBwAwd+5cbN++Hd9//z0yMzOxZs0a/Prrr/jXv/4FAJDJZJgwYQJmzZqFw4cP4/z58/joo4/g7u4ONzc3AICXlxecnJwQFBSEixcvYv/+/fjiiy8wZcoUGg1FCPnH2n+lAM6L98Pn30kAgB5muRBqFHLlRoYD1RQZIYQQQsjrzcfHB/n5+bh+/Tpmz56NxYsX49tvv1V3WJzWJG0UCgU8PT0hl8uxa9cupKenY/v27XB2dlZJjK1evRr+/v7o27cvTp8+jUuXLmHMmDEICQnBnDlznilOBwcHrFmzBpcvX8bx48fRrl07eHl5obCw7pn12rVrUCqV2LBhA65cuYKVK1di/fr1WLBgQbPtnjhxAmPHjsWECRNw5coV7NixA2fOnMGkSZNaFdfZs2exYcMGdOmi+ofbsrIyeHl5gcfj4ffff8eJEydQXV0NPz8/bnkioO7+jxw5Ep988kmz14mJiUF+fj63vfPOO1zZsWPH4Onpib179+L8+fPw8PCAn58fUlJSmm2zrKwM/fr1wzfffNOqvr5UTA0OHz7MADTYgoODuTqbNm1idnZ2TCAQMBcXFxYXF6fSRkVFBfvXv/7F9PX1mUgkYu+++y7Lz89XqZOdnc18fX2ZUChkRkZGbPbs2UyhULQ6TrlczgAwuVz+TP0lhJBXxee7LzHr0ATmuuQHNmrlYrZ1/7/YwUO27EJKMKuquseUSqW6QyTklUfPBw3RPSGEPA8VFRUsLS2NVVRUqDuUJxYcHMz8/f1Vjnl6ejI3NzdWXFzMgoKCmJ6eHhMKhczHx4dlZGRw9bKzs9nbb7/N9PT0mEgkYk5OTmzPnj0sKyuryf8zl5SUsICAACYSiZipqSlbsWIFGzBgAJsxYwbXrrW1NQsPD2dBQUFMKpVy5yYlJbF+/foxgUDALC0t2bRp01hpaSljjLGUlBQGgGVnZzfZ15ycHKatrc1mzZrVoCw6OpoBYKdOnWKMMa4PKSkpT35T/1L/O+bgwYNN1lm+fDmzsbFptp1vv/2W2draNojXwsKixRgePnzI7O3tWWJiYoP7vH//fqahoaHyO/DBgweMx+OxxMTEBm3FxMQwmUzW6HUAsN27d7cYz6OcnJzYkiVLWlX3eXw/HtXcZ7a1zwZqGSk1cOBAMMYabI8O9Rs/fjyuX7+OiooKpKamwt/fX6UNgUCAtWvXori4GGVlZdi1a1eDtaKsra2xd+9elJeXo7CwEJGRkdDSeuWW0SKEkBcu+cY9rD2ciXPZ96HBq8WX/aLxcZf/wkTrNwCAQGABPt8APB5PzZESQgghhPyNMYby6hq1bIyxZ4pdKBSiuroa48aNw7lz5xAfH4/k5GQwxjB06FAoFAoAwJQpU1BVVYVjx47h8uXL+OabbyCRSGBlZYWff/4ZQN1yNfn5+Vi1ahUAYNasWThx4gTi4+ORmJiIpKQkXLhwoUEMkZGRcHFxQUpKChYuXIgbN27Ax8cHI0aMwKVLl7B9+3YcP34cU6dOBQAYGxtDQ0MDO3fuRG1tbaP92rlzJxQKRaMjoiZPngyJRIJt27Y9072rV11djY0bN0Imk8HFxaXJenK5HAYGBs225e7ujlu3bmHv3r1gjOHOnTvYuXMnhg4d2mIcU6ZMwbBhwzBkyJAGZVVVVeDxeCozsgQCATQ0NLh1sZ/ElClTYGRkBFdXV/zwww/N/hwqlUo8fPiwxb6/yihDQwghb7jy6hqMizmDqpq64cN6Og+hiRIAGjDQd4eGphBWlmPVGyQhhBBCSCMqFLVwWtTymjkvQlq4N0T8J/8vM2MMhw4dwv79++Hr64u4uDicOHECffr0AVC3rpGVlRXi4uIwcuRI5OTkYMSIEXB2dgYA2Nracm3VJxtMTEy4dYgePnyILVu2YOvWrRg8eDCAuilf5ubmDWIZNGgQZs+eze1PnDgRgYGB3JpI9vb2iI6OxoABA7Bu3TpYWFggOjoan332GZYsWYKePXvCw8MDgYGBXFwZGRmQyWQwMzNrcD0+nw9bW1tkZGQ88X17VEJCAsaMGYPy8nKYmZkhMTERRkZGjdbNzMzE6tWrERkZ2Wybffv2RWxsLEaPHo3KykrU1NTAz88Pa9eubfa8n376CRcuXMDZs2cbLXdzc4NYLEZoaCi++uorMMYwb9481NbWIj8/v3Ud/kt4eDgGDRoEkUiEAwcO4F//+hdKS0sxffr0RutHRkaitLQUo0aNeqLrvEpeuYXOCSGEPD/3y6pxJqsYVTVKWEkL8dXArQh/q+4vVzp8Y3Tr9l+4dNkAiaSDmiMlhBBCCHm9JSQkQCKRQCAQwNfXF6NHj8a4ceOgpaWF3r17c/UMDQ3RoUMHXL16FQAwffp0REREoG/fvggLC8OlS5eavc7NmzehUCjg6urKHZPJZOjQoeHzXM+ePVX2L168iM2bN0MikXCbt7c3lEolsrKyANSN1CkoKEBsbCzc3d2xY8cOdOrUCYmJia2+F3w+v8U6sbGxKnEkJSVxZR4eHkhNTcXJkyfh4+ODUaNGqbzErF5ubi58fHwwcuRIlbWhHm03JCQEAJCWloYZM2Zg0aJFOH/+PH777TdkZ2dz5UlJSSrnxcbG4tatW5gxYwZiY2MhEAga7YexsTF27NiBX3/9FRKJBDKZDA8ePED37t2hofFkKZeFCxeib9++6NatG0JDQ/HZZ581uS7Z1q1bsWTJEvzvf/+DiYlJi/f0VUUjpQgh5A11/c5D+K5KQo2ybsjv0Pan0YZ/iisXidurKzRCCCGEkFYRamsiLdxbbdd+Eh4eHli3bh34fD7Mzc2hpaWF+Pj4Fs+bOHEivL29sWfPHhw4cADLli1DVFQUpk2b9rShc8Riscp+aWkpJk+e3OjIm7Zt23JfS6VS+Pn5wc/PDxEREfD29kZERAQ8PT1hb28PuVyOvLy8BqOzqqurcePGDXh7t/w9Gz58uEqyzsLCQiVuOzs72NnZwc3NDfb29ti0aRPmz5/P1cnLy4OHhwf69OmDjRs3qrT96NvldHV1AQDLli1D3759MXfuXABAly5dIBaL0b9/f0RERKBnz54q57Vp0waHDh3C3bt30b17d+54bW0tjh07hjVr1qCqqgqamprw8vLCjRs3UFRUBC0tLejp6cHU1FRl1NvT6N27N7788ktUVVWpTA/86aefMHHiROzYsUNlSmFz9/RVRUkpQgh5Q6XeeoAaJYO+oBTt9e/Buc1dgAGmpu/C0KA/9A36qjtEQgghhJBm8Xi8p5pCpw71iZRHOTo6oqamBqdPn+am7927dw/p6elwcnLi6llZWSEkJAQhISGYP38+vv/+e0ybNo0bcfTo+k62trbQ1tbG2bNnuUSSXC5HRkYG3nrrrWZj7N69O9LS0hrE2Rwej4eOHTvi5MmTAID3338foaGhiIqKQlRUlErd9evXo7y8HGPHtrw0hFQqhVQqbVUMSqUSVVVV3H5ubi48PDzQo0cPxMTENBiR1Fj/ysvLG6wxralZl3hkjEEoFDY4b/Dgwbh8+bLKsY8++ggdO3ZEaGgod369+imGv//+O+7evYvhw4e3qn9NSU1Nhb6+vkpCatu2bRg/fjx++uknDBs2TKX+k9zTV8Xr8ekmhBDSatfvPMTVgoc4eeMeNHk1WNrvG+hoyOve2QLAyGgQ2pi0vKAjIYQQQgh5Nvb29vD398ekSZOwYcMGSKVSzJs3DxYWFtzLvGbOnAlfX184ODjg/v37OHz4MBwdHQHUvbyLx+MhISEBQ4cOhVAohFQqRXBwMObOnQsDAwOYmJggLCwMGhoaLb60JjQ0FG5ubpg6dSomTpwIsViMtLQ0JCYmYs2aNUhNTUVYWBiCgoLg5OQEPp+Po0eP4ocffkBoaCiAuhFVy5cvx5w5cyAQCBAUFARtbW388ssvWLBgASIiItC5c2eV66anpzeIpVOnTtDW1lY5VlZWhqVLl2L48OEwMzNDUVER1q5di9zcXIwcORJAXUJq4MCBsLa2RmRkJAoLC7nzH3/52aP8/PwwadIkrFu3Dt7e3sjPz8fMmTPh6ura6HpcQF2S5/G+iMViGBoaqhyPiYmBo6MjjI2NkZycjBkzZuDTTz9VmVKZk5OD4uJi5OTkoLa2lhuVZWdnB4lEgl9//RV37tyBm5sbBAIBEhMT8dVXX6ksKL9161YEBwdj1apV6N27NwoKCgDULaovk8ma7Hv9dfPy8gD8/f0wNTVt9p69FM/lPYBvKHq9MSHkdVNaqWCOC/cx69AEZh2awHos3sIOHrJlBw/ZsZPJnuz8hQ+ZQlGi7jAJea3R80FDdE8IIc9Dc6+Xf9UFBwczf3//RsuKi4tZUFAQk8lkTCgUMm9vb5aRkcGVT506lbVv357p6OgwY2NjFhQUxIqKirjy8PBwZmpqyng8HgsODmaMMVZSUsICAgKYSCRipqambMWKFczV1ZXNmzePO8/a2pqtXLmyQTxnzpxhnp6eTCKRMLFYzLp06cKWLl3KGGOssLCQTZ8+nXXu3JlJJBImlUqZs7Mzi4yMZLW1tSrtxMXFsf79+zOxWMxQ9+dPtm3bNpU6WVlZXNnj261btxrEVlFRwd59911mbm7O+Hw+MzMzY8OHD2dnzpzh6sTExDTZZkuio6OZk5MTEwqFzMzMjAUGBrLbt2+3eN6jBgwYwGbMmKFyLDQ0lLVp04Zpa2sze3t7FhUVxZRKpUqd4ODgRmM+fPgwY4yxffv2sa5du3LfFxcXF7Z+/XqV+z5gwIBG26j/uWhKU/csLCzsifr+uOY+s619NuAx9ozvuXyDlZSUQCaTQS6Xc/NQCSHkVXatoAQ+/06ClF+N6T13QJ9fAH3+nxAK26KP+2F1h0fIG4GeDxqie0IIeR4qKyuRlZUFGxubJheVJo0rKyuDhYUFoqKiMGHChJd+/eLiYgwePBi6urrYt28fRCLRS4+BvHzNfWZb+2xA0/cIIeQNcKu4HGM2nsLdh5UAgEE2mbCVnObKxWIHdYVGCCGEEEKes5SUFFy7dg2urq6Qy+UIDw8HAG5K4MtmYGCAgwcPYu3atUhOTsbgwYPVEgd5/VBSihBC3gDHM4uQ+6CC23c2qwEA6Ml6oW3bCdDT693UqYQQQggh5DUUGRmJ9PR08Pl89OjRA0lJSdxC2+pgaGiIRYsWqe365PWk0XIVQgghr6qMOw+x/ugN7PujADwo8e3AtdjkNR02/P8AACRSJxgbe0Jbm6bTEPKmWLt2Ldq1aweBQIDevXvjzJkzzdbfsWMHOnbsCIFAAGdnZ+zdu5crUygUCA0NhbOzM8RiMczNzTF27FhuIVRCCCGvpm7duuH8+fMoLS1FcXExEhMT4ezsrO6wCHlilJQihJDX2PRtKfh63zUcyyiEkfAeDPh/v9mEx9OEgb67GqMjhDxv27dvx6xZsxAWFoYLFy7AxcUF3t7euHv3bqP1T548iQ8++AATJkxASkoK3nnnHbzzzjv4448/ANS9HvvChQtYuHAhLly4gF27diE9Pf2ZX2FNCCGEENIatNB5M2jRTkLIq6pWyVCjVKLL4gOoqVXgw+5yWEpuw1bnPxDomKNXr93Q0BBAS0ui7lAJeeOo8/mgd+/e6NWrF9asWQMAUCqVsLKywrRp0zBv3rwG9UePHo2ysjIkJCRwx9zc3NC1a1esX7++0WucPXsWrq6u+PPPP9G2bdtWxUXPTISQ54EWOifk9UILnRNCyD9QesFDjNqQDHmFAgAwvP1+vGX4G1euo9MGfL761hMghLwY1dXVOH/+PObPn88d09DQwJAhQ5CcnNzoOcnJyZg1a5bKMW9vb8TFxTV5HblcDh6PBz09vSbrVFVVoaqqitsvKSlpXScIIYQQQh5B0/cIIeQ1c/JGEZeQAoBupoUAAIHAArq6LmhrPUldoRFCXqCioiLU1taiTZs2KsfbtGmDgoKCRs8pKCh4ovqVlZUIDQ3FBx980OxfNZctWwaZTMZtVlZWT9gbQgghhBAaKUUIIa+NotIqXPjzPs5l3wcPSizz+BFmomzU1sjBGODgEAZjI3r9LiHk6SgUCowaNQqMMaxbt67ZuvPnz1cZgVVSUkKJKUIIIYQ8MUpKEULIa2JczBn8kVs3RcZMfAfG2udQ89eAKQ0NPqTSTmqMjhDyohkZGUFTUxN37txROX7nzh2Ympo2eo6pqWmr6tcnpP7880/8/vvvLa4LpaOjAx0dnafoBSGEEELI32j6HiGEvAaUSob0gocQa5UhoHMKPnROBQAIhdbo7boX/fqehECn8f+UEkLeDHw+Hz169MChQ4e4Y0qlEocOHYK7e+Nv2nR3d1epDwCJiYkq9esTUtevX8fBgwdhaGj4YjpACCGEEPIYSkoRQsgrLO9BBT78z2kMW30ciloGf7u9GGweg466+wAAIqE1JJIO0NbWV3OkhJCXYdasWfj++++xZcsWXL16FZ988gnKysrw0UcfAQDGjh2rshD6jBkz8NtvvyEqKgrXrl3D4sWLce7cOUydOhVAXULq/fffx7lz5xAbG4va2loUFBSgoKAA1dXVaukjIYS8jsaNGwcejwcejwc+nw87OzuEh4ejpqbmmdo9cuQIeDweHjx48HwCbYWsrCwEBATA3NwcAoEAlpaW8Pf3x7Vr11TqJSQkYMCAAZBKpRCJROjVqxc2b96sUic7Oxs8Hg+pqamtvv7ixYvRsWNHiMVi6OvrY8iQITh9+rRKmxMmTICNjQ2EQiHat2+PsLCwVv3eio2NhYuLC0QiEczMzDB+/Hjcu3evxfNyc3Px4YcfwtDQEEKhEM7Ozjh37hxX/uj3v37z8fFRaaNdu3YN6nz99ddceXp6Ojw8PNCmTRsIBALY2triiy++gEKhUGnnwYMHmDJlCszMzKCjowMHBwfs3bu32fh37doFLy8vGBoaPvH340Wj6XuEEPIK23s5H8czi7j99vp1X+vqdoNQaAUrq3FqiowQog6jR49GYWEhFi1ahIKCAnTt2hW//fYbt5h5Tk4ONDT+/ptjnz59sHXrVnzxxRdYsGAB7O3tERcXh86dOwOoe8iOj48HAHTt2lXlWocPH8bAgQP/n737Do+yShs//p2ZzGQmyaSSkEIIhB6aFOmISAmgEF0WUXgjKKDsSxVEUFeiLOiKFEVYFH8K7i6yvqAiiwUDIkRAkCZNCCUxlIQWSEiddn5/DAyMIaElGcr9ua655DzPec5znydOMrlzSqX0Swgh7gY9evRg4cKFFBcX88033zBixAj0er3bHws8yWKxYDAYyqxjtVrp1q0b9erV44svviAiIoJjx47x7bffuiXG3nvvPcaOHcvEiROZP38+BoOBr776iuHDh7Nnzx5mzJhx03HWrVuXuXPnEhsbS2FhIbNnz6Z79+4cOnSI0NBQ9u/fj8Ph4IMPPqB27drs2bOHYcOGkZ+fX+Z9N2zYwFNPPcXs2bPp3bs3x48fZ/jw4QwbNowvvvii1OvOnTtH+/bt6dy5M99++y2hoaEcPHiQoCD3Pwpf+vpfcrVp7lOmTGHYsMubEpnNZte/9Xo9Tz31FM2bNycwMJBff/2VYcOG4XA4eOONNwDn17Bbt26EhYWxbNkyoqKi+P3338vcMRcgPz+fDh068Pjjj7vd/7agRKlycnIUoHJycjwdihDiHnPkdJ5au/+k+t9/b1O1XvpSLfvuIbV6TR21ek2sWr0mVp09u8HTIQpxz5LPByXJMxFClIfCwkK1b98+VVhY6OlQbtigQYNUQkKC27Fu3bqpNm3aqOzsbJWYmKgCAwOVyWRSPXr0UKmpqa566enp6pFHHlGBgYHKx8dHxcXFqa+//lqlpaUpwO01aNAgpZRSubm5asCAAcrHx0eFh4erWbNmqU6dOqkxY8a42o2JiVFTpkxRiYmJymw2u65NSUlRHTp0UEajUVWrVk2NGjVK5eXlKaWU2rFjhwJUenp6qX3NyMhQer1ejRs3rsS5OXPmKED9/PPPSinl6sOOHTtu/KFedOlnzOrVq0utM336dFWzZs0y23n77bdVbGxsiXijoqLKvG7ixImqQ4cOZda52tf/j2JiYtTs2bPLrPNHzz//vNu958+fr2JjY5XFYrmhdi4pj6/Hlcp6z17vZwOZvieEELeZU7lFdJu1jsELf+Hr3ZlU8ztBoD4dsAOg1wdjNsd5NEYhhBBCiEqhFFjyPfNS6pZCN5lMWCwWBg8ezNatW1mxYgWbNm1CKUWvXr1c07JGjBhBcXEx69evZ/fu3bz11lv4+fkRHR3N559/DjindmVmZvLuu+8CzuncGzZsYMWKFSQnJ5OSksL27dtLxDBjxgyaNm3Kjh07ePXVVzl8+DA9evSgb9++7Nq1i88++4yffvrJNa07NDQUrVbLsmXLsNvtV+3XsmXLsFqtvPDCCyXOPffcc/j5+bFkyZJbenaXWCwWFixYQEBAAE2bNi21Xk5ODsHBwWW21bZtW44ePco333yDUoqTJ0+ybNkyevXqVeZ1K1asoGXLlvTr14+wsDCaNWvGhx9+WKLejz/+SFhYGPXq1eMvf/nLVacF/v3vfyckJIRmzZrx9ttvlzm989ChQ3z33Xd06tTJLZa2bdsyYsQIqlatSqNGjXjjjTdK/VrdCWT6nhBC3GYOncrD5lBE+J2nZ62dRPhmAWD2a0jTpv8PvT4ArVZ2vRJCCCHEPcBaAG9EeubeL58Ag+8NX6aUYs2aNaxatYqePXuyfPlyNmzYQLt27QDnukbR0dEsX76cfv36kZGRQd++fWncuDEAsbGxrrYuJVrCwsJcU7QuXLjAJ598wqeffkqXLl0AWLhwIZGRJZ/TQw89xPjx413loUOHMnDgQMaOHQtAnTp1mDNnDp06dWL+/PlERUUxZ84cXnzxRV5//XVatmxJ586dGThwoCuu1NRUAgICiIiIKHE/g8FAbGwsqampN/zcrrRy5UqeeOIJCgoKiIiIIDk5mSpVqly17qFDh3jvvfeuOWWwffv2LF68mP79+1NUVITNZqN3797MmzevzOuOHDnC/PnzGTduHC+//DK//PILo0ePxmAwMGjQIMA5de9Pf/oTNWvW5PDhw7z88sv07NmTTZs2odPpABg9ejTNmzcnODiYjRs38tJLL5GZmcmsWbPc7teuXTu2b99OcXExzz77LFOmTHGL5YcffmDgwIF88803HDp0iP/93//FarWSlJR0zed6O5KRUkIIcZs4dOoCf1u5jwUpRwAY1GgV7at+QazfRgBMPjF4e4dJQkoIIYQQ4ja0cuVK/Pz8MBqN9OzZk/79+zN48GC8vLxo3bq1q15ISAj16tXjt99+A5zJiqlTp9K+fXuSkpLYtWtXmfc5cuQIVquVVq1auY4FBARQr169EnVbtmzpVv71119ZtGgRfn5+rld8fDwOh4O0tDTAOXIrKyuLxYsX07ZtW5YuXUrDhg1JTk6+7mdxrbWrwJmcuzKOlJQU17nOnTuzc+dONm7cSI8ePXj88cc5depUiTaOHz9Ojx496Nevn9taSVe2O3z4cAD27dvHmDFjmDx5Mtu2beO7774jPT3ddT4lJcXtusWLFwPOnW6bN2/OG2+8QbNmzXj22WcZNmwY77//vut+TzzxBH369KFx48Y8+uijrFy5kl9++YUff/zRVWfcuHE8+OCDNGnShOHDhzNz5kzee+89iouL3fr02WefsX37dj799FO+/vprt2Sbw+EgLCyMBQsW0KJFC/r3788rr7ziiqWsZ3q7kpFSQghxm/j7twdY/dtJNDjQa22E+jh/8IaEdMbHpyZRkU96OEIhhBBCiEqm93GOWPLUvW9A586dXYt+R0ZG4uXl5dpMoixDhw4lPj6er7/+mu+//54333yTmTNnMmrUqJuN3MXX132kV15eHs899xyjR48uUbd69equf5vNZnr37k3v3r2ZOnUq8fHxTJ06lW7dulGnTh1ycnI4ceJEidFZFouFw4cPEx8ff83Y+vTp45asi4qKcou7du3a1K5dmzZt2lCnTh0++ugjt0XjT5w4QefOnWnXrh0LFixwa/vK3eX8/f0BePPNN2nfvj0TJkwAoEmTJvj6+tKxY0emTp1Ky5Yt3a67tIlIREQEcXHuS2c0aNDANbXyamJjY6lSpQqHDh1yjWb7o9atW2Oz2UhPT3dLKEZHRwMQFxeH3W7n2WefZfz48eh0OiIiItDr9a7RV5diubRrblnP9HYlSSkhhPCwjYfOsP7gGXYePYdRV8jbD87ER3f5L0E1a4wgIKCZByMUQgghhPAQjeamptB5wqVEypUaNGiAzWZj8+bNrul7Z8+e5cCBA26JjujoaIYPH87w4cN56aWX+PDDDxk1apRrxNGVawbFxsai1+v55ZdfXImknJwcUlNTeeCBB8qMsXnz5uzbt69EnGXRaDTUr1+fjRudo/f//Oc/M3HiRGbOnMnMmTPd6r7//vsUFBTw1FNPXbNds9nstvtcWRwOh9uIouPHj9O5c2datGjBwoUL3XaeBa7av4KCAry83FMgl5I7SilMJtNVr2vfvj0HDhxwO5aamkpMTEyp8R47doyzZ89edYrjJTt37kSr1RIWFlZqHYfDgdVqxeFwoNPpaN++PZ9++ikOh8PV59TUVCIiIjAYDBgMhut+prcLSUoJIYQHKaUY/u9t5BY5FzmsF3TULSFlNEbj51dyKLYQQgghhLj91alTh4SEBIYNG8YHH3yA2Wxm0qRJREVFkZCQAMDYsWPp2bMndevW5dy5c6xdu5YGDRoAEBMTg0ajYeXKlfTq1QuTyYTZbGbQoEFMmDCB4OBgwsLCSEpKQqvVotFoyoxn4sSJtGnThpEjRzJ06FB8fX3Zt28fycnJzJ07l507d5KUlERiYiJxcXEYDAbWrVvHxx9/zMSJEwHniKrp06fzwgsvYDQaSUxMRK/X89VXX/Hyyy8zdepUGjVq5HbfPyZ1ABo2bIher3c7lp+fz7Rp0+jTpw8RERGcOXOGefPmcfz4cfr16wc4E1IPPvggMTExzJgxg9OnT7uuDw8PL7XvvXv3ZtiwYcyfP5/4+HgyMzMZO3YsrVq1uup6XJc8//zztGvXjjfeeIPHH3+cLVu2sGDBAtforLy8PF5//XX69u1LeHg4hw8f5sUXX6R27dquEWObNm1i8+bNdO7cGbPZzKZNm3j++ef5n//5H4KCggDn1Du9Xk/jxo3x9vZm69atvPTSS/Tv39/1nP7yl78wd+5cxowZw6hRozh48CBvvPHGVUe+XSk7O5uMjAxOnDjh9vUIDw8v85lVinLZB/AuJdsbCyEqksVmVydzC1XMxJWq76y/qRXJD6jvf2ipVq+JVdu2DVBW6wXlcNg8HaYQ4g/k80FJ8kyEEOWhrO3lb3eDBg1SCQkJVz2XnZ2tEhMTVUBAgDKZTCo+Pl6lpqa6zo8cOVLVqlVLeXt7q9DQUJWYmKjOnDnjOj9lyhQVHh6uNBqNGjRokFJKqdzcXDVgwADl4+OjwsPD1axZs1SrVq3UpEmTXNfFxMSo2bNnl4hny5Ytqlu3bsrPz0/5+vqqJk2aqGnTpimllDp9+rQaPXq0atSokfLz81Nms1k1btxYzZgxQ9ntdrd2li9frjp27Kh8fX0VoAC1ZMkStzppaWmuc398HT16tERshYWF6rHHHlORkZHKYDCoiIgI1adPH7VlyxZXnYULF5ba5rXMmTNHxcXFKZPJpCIiItTAgQPVsWPHrnndf//7X9WoUSPl7e2t6tevrxYsWOA6V1BQoLp3765CQ0OVXq9XMTExatiwYSorK8tVZ9u2bap169YqICBAGY1G1aBBA/XGG2+ooqIiV53//Oc/qnnz5q6vS1xcnHrjjTdKvB82btyoWrdurby9vVVsbKyaNm2astnK/p2htGeWlJR0zb6Xpaz37PV+NtAodYv7XN7FcnNzCQgIICcnxzUPVQghysM/fjzE26sOuHYafqnVXGoHXt6lpEbM/1Kr1vhSrhZCeJJ8PihJnokQojwUFRWRlpZGzZo1MRqNng7njpKfn09UVBQzZ85kyJAhlX7/7OxsunTpgr+/P99++y0+Pje2Hpe4M5X1nr3ezwYyfU8IITxg1Z4slIKWVXcQ5nOaaP+TANSr9zf8/Ztg9ou7RgtCCCGEEOJetWPHDvbv30+rVq3IyclhypQpAK4pgZUtODiY1atXM2/ePDZt2lTq4t5C/JEkpYQQopIopfh8+3GOnSsg7Uw+1fyO85emC93qhAR3wmS6/XfJEEIIIYQQnjVjxgwOHDiAwWCgRYsWpKSkUKVKFY/FExISwuTJkz12f3FnkqSUEEJUkh1Hz/PC0l8BRaB3DrUC0wAwGMIICemE2dxQElJCCCGEEOKamjVrxrZt2zwdhhC3TJJSQghRwQotdr7encmmw2cBeKbx17SP+N51PjCwJXEN/u6p8IQQQgghhBDCIyQpJYQQFeyTTen8/dv9rnLjsEMAaDR6dDofqoY97KnQhBBCCCGEEMJjJCklhBAVJKfQyuHTeWxNz0aDg6H3rSY6IJcArxMoBfe3/AKzWRY0F0IIIYQQQtybJCklhBAVwGZ30OOd9WTmFAFQP/gQbcJWAqCUc5SU0SjrRwkhhBBCCCHuXZKUEkKICnA230JmThFajZ2WUdk0DzsOgK9vHSIjHsdsboheH+DhKIUQQgghhBDCcyQpJYQQ5ejYuQJ+2H+KrIsjpP5y339oHrrZdd7fvynVqz/jqfCEEEIIIYQQ4rYhSSkhhChHLyz9lZ+PZLvKsf5pABgMoXh5BRAR/idPhSaEEEIIIYQQtxWtpwMQQoi7QWZOIT8eOMX+rAuAYkrHj/iw2/MEep8CoGWLpbRts4qgoNaeDVQIIYQQQpS7wYMHo9Fo0Gg0GAwGateuzZQpU7DZbLfU7o8//ohGo+H8+fPlE+h1SEtLY8CAAURGRmI0GqlWrRoJCQns37/frd7KlSvp1KkTZrMZHx8f7r//fhYtWuRWJz09HY1Gw86dO6/7/q+99hr169fH19eXoKAgunbtyubNl2cepKenM2TIEGrWrInJZKJWrVokJSVhsViu2fbixYtp2rQpPj4+RERE8Mwzz3D27Nkyr7Hb7bz66qtu9/vb3/6GUspV54svvqB79+6EhISU2t/Dhw/z2GOPERoair+/P48//jgnT5684X7t2rWLjh07YjQaiY6OZvr06dfs9/r16+nduzeRkZFoNBqWL19+zWsqiySlhBDiFhVZ7fR4J4XBC3/hfIEVf8MFoky/otXYAfDxqYW3d4SHoxRCCCGEEBWpR48eZGZmcvDgQcaPH89rr73G22+/7emwXK4naWO1WunWrRs5OTl88cUXHDhwgM8++4zGjRu7Jcbee+89EhISaN++PZs3b2bXrl088cQTDB8+nBdeeOGW4qxbty5z585l9+7d/PTTT9SoUYPu3btz+vRpAPbv34/D4eCDDz5g7969zJ49m/fff5+XX365zHY3bNjAU089xZAhQ9i7dy9Lly5ly5YtDBs2rMzr3nrrLebPn8/cuXP57bffeOutt5g+fTrvvfeeq05+fj4dOnTgrbfeumob+fn5dO/eHY1Gww8//MCGDRuwWCz07t0bh8Nx3f3Kzc2le/fuxMTEsG3bNt5++21ee+01FixYUGYf8vPzadq0KfPmzSuznkcoUaqcnBwFqJycHE+HIoS4jR05nadiJq5U3f7+npq19Bn1f98nqtVrYtX6lFaqqChL2e1WT4cohChH8vmgJHkmQojyUFhYqPbt26cKCws9HcoNGzRokEpISHA71q1bN9WmTRuVnZ2tEhMTVWBgoDKZTKpHjx4qNTXVVS89PV098sgjKjAwUPn4+Ki4uDj19ddfq7S0NAW4vQYNGqSUUio3N1cNGDBA+fj4qPDwcDVr1izVqVMnNWbMGFe7MTExasqUKSoxMVGZzWbXtSkpKapDhw7KaDSqatWqqVGjRqm8vDyllFI7duxQgEpPTy+1rxkZGUqv16tx48aVODdnzhwFqJ9//lkppVx92LFjx40/1Isu/YxZvXp1qXWmT5+uatasWWY7b7/9toqNjS0Rb1RUVJnXPfzww+qZZ55xO/anP/1JDRw4sETd0vq7atUqpdVq3X5Onj9/Xmk0GpWcnFzqvf/Yr3/84x8qKChIFRcXu45NnDhR1atXr8w+XAlQX3755XXXL0tZ79nr/WwgI6WEEOIm/XTwDOP+byevrdgLQGLcFzQJ/pFg3QYAfHxi8fauilYry/cJIYQQQtwMpRQF1gKPvNQV07NuhslkwmKxMHjwYLZu3cqKFSvYtGkTSil69eqF1WoFYMSIERQXF7N+/Xp2797NW2+9hZ+fH9HR0Xz++ecAHDhwgMzMTN59910Axo0bx4YNG1ixYgXJycmkpKSwffv2EjHMmDGDpk2bsmPHDl599VUOHz5Mjx496Nu3L7t27eKzzz7jp59+YuTIkQCEhoai1WpZtmwZdrv9qv1atmwZVqv1qiOinnvuOfz8/FiyZMktPbtLLBYLCxYsICAggKZNm5ZaLycnh+Dg4DLbatu2LUePHuWbb75BKcXJkydZtmwZvXr1KvO6du3asWbNGlJTUwH49ddf+emnn+jZs+d196O4uBiNRoO3t7frmNFoRKvV8tNPP113vzZt2sQDDzyAwWBwHYuPj+fAgQOcO3fuuuO5nchvSkIIcZNe++9eDp3KQ6exY9RZCTY656NHRz+NwRBKWGh3D0cohBBCCHFnK7QV0vpTz6zJuXnAZnz0Pjd8nVKKNWvWsGrVKnr27Mny5cvZsGED7dq1A5zrGkVHR7N8+XL69etHRkYGffv2pXHjxgDExsa62rqUkAgLCyMwMBCACxcu8Mknn/Dpp5/SpUsXABYuXEhkZGSJWB566CHGjx/vKg8dOpSBAwcyduxYAOrUqcOcOXPo1KkT8+fPJyoqijlz5vDiiy/y+uuv07JlSzp37szAgQNdcaWmphIQEEBERMnlKQwGA7Gxsa4Ezs1auXIlTzzxBAUFBURERJCcnEyVKlWuWvfQoUO89957zJgxo8w227dvz+LFi+nfvz9FRUXYbDZ69+59zSltkyZNIjc3l/r166PT6bDb7UybNo2BAwded3/atGmDr68vEydO5I033kApxaRJk7Db7WRmZl53v7KysqhZs6ZbvapVq7rOBQUFXXdMtwsZKSWEEDdof1YuX+08ztHsAsJMp/lH11eZ1+VFjLo8AGrE/C81Yp7Dx6fmNVoSQgghhBB3i5UrV+Ln54fRaKRnz57079+fwYMH4+XlRevWlxNrISEh1KtXj99++w2A0aNHM3XqVNq3b09SUhK7du0q8z5HjhzBarXSqlUr17GAgADq1atXom7Lli3dyr/++iuLFi3Cz8/P9YqPj8fhcJCW5tw1esSIEWRlZbF48WLatm3L0qVLadiwIcnJydf9LK4cyVOaxYsXu8WRkpLiOte5c2d27tzJxo0b6dGjB48//jinTp0q0cbx48fp0aMH/fr1c1sb6sp2hw8fDsC+ffsYM2YMkydPZtu2bXz33Xekp6e7zqekpLhdt3jxYgD+7//+j8WLF/Ppp5+yfft2PvnkE2bMmMEnn3xy3c8jNDSUpUuX8t///hc/Pz8CAgI4f/48zZs3R6stmZYprV/XUlofbmcyUkoIIW5AbpGVR+dtoMjqXJCwftVDeGnyXOcDA+5Hr7/z/kIhhBBCCHE7MnmZ2Dxg87UrVtC9b0Tnzp2ZP38+BoOByMhIvLy8WLFixTWvGzp0KPHx8Xz99dd8//33vPnmm8ycOZNRo0bdbOguvr6+buW8vDyee+45Ro8eXaJu9erVXf82m8307t2b3r17M3XqVOLj45k6dSrdunWjTp065OTkcOLEiRKjsywWC4cPHyY+Pv6asfXp08ctWRcVFeUWd+3atalduzZt2rShTp06fPTRR7z00kuuOidOnKBz5860a9euxELfV+5+5+/vD8Cbb75J+/btmTBhAgBNmjTB19eXjh07MnXqVFq2bOl23aURSBMmTGDSpEk88cQTADRu3Jjff/+dN998k0GDBl2zn5d0796dw4cPc+bMGby8vAgMDCQ8PNxtZNy1+hUeHu62Yx/gKoeHh1OjRo2r9uF2JkkpIYS4AUezCyiyOogNPM6gRt9S1cf5F5uIiH7Uq/saWq03Go3Gw1EKIYQQQtwdNBrNTU2h84RLiZQrNWjQAJvNxubNm13T986ePcuBAweIi4tz1YuOjmb48OEMHz6cl156iQ8//JBRo0a5Rhxdub5TbGwser2eX375xZVIysnJITU1lQceeKDMGJs3b86+fftKxFkWjUZD/fr12bhxIwB//vOfmThxIjNnzmTmzJludd9//30KCgp46qmnrtmu2WzGbDZfVwwOh4Pi4mJX+fjx43Tu3JkWLVqwcOHCEqONrta/goICvLzcUyA6nQ5wTrk0mUylXvfH9nU6nWvXvBt1aRriDz/8wKlTp+jTp89196tt27a88sorWK1W9Ho9AMnJydSrV881de9Gvra3A0lKCSHEddh46AxTVu4jp9C5IGWf2puo5nN5aLXZ3BCdzuip8IQQQgghxG2oTp06JCQkMGzYMD744APMZjOTJk0iKiqKhIQEAMaOHUvPnj2pW7cu586dY+3atTRo0ACAmJgYNBoNK1eupFevXphMJsxmM4MGDWLChAkEBwcTFhZGUlISWq32mn8cnThxIm3atGHkyJEMHToUX19f9u3bR3JyMnPnzmXnzp0kJSWRmJhIXFwcBoOBdevW8fHHHzNx4kTAOaJq+vTpvPDCCxiNRhITE9Hr9Xz11Ve8/PLLTJ06lUaNGrnd98CBAyViadiwoSuxckl+fj7Tpk2jT58+REREcObMGebNm8fx48fp168f4EzcPPjgg8TExDBjxgxOnz7tuj48PLzUvvfu3Zthw4Yxf/584uPjyczMZOzYsbRq1eqq63Fded20adOoXr06DRs2ZMeOHcyaNYtnnnnGVSc7O5uMjAxOnDjh1t/w8HBXTAsXLqRBgwaEhoayadMmxowZw/PPP++adnk9/RowYACvv/46Q4YMYeLEiezZs4d3332X2bNnlxo/OEfIHTp0yFVOS0tj586dBAcHu42Q84hy2QfwLiXbGwshLhn56XYVM3GlqjXpS3Xf5H+p//uuj1q9Jlbt35+kzpxZp+x2i6dDFEJUEvl8UJI8EyFEeShre/nb3aBBg1RCQsJVz2VnZ6vExEQVEBCgTCaTio+PV6mpqa7zI0eOVLVq1VLe3t4qNDRUJSYmqjNnzrjOT5kyRYWHhyuNRqMGDRqklFIqNzdXDRgwQPn4+Kjw8HA1a9Ys1apVKzVp0iTXdTExMWr27Nkl4tmyZYvq1q2b8vPzU76+vqpJkyZq2rRpSimlTp8+rUaPHq0aNWqk/Pz8lNlsVo0bN1YzZsxQdrvdrZ3ly5erjh07Kl9fXwUoQC1ZssStTlpamuvcH19Hjx4tEVthYaF67LHHVGRkpDIYDCoiIkL16dNHbdmyxVVn4cKFpbZ5LXPmzFFxcXHKZDKpiIgINXDgQHXs2LEyr8nNzVVjxoxR1atXV0ajUcXGxqpXXnlFFRcXXzOmpKQkV52JEyeqqlWrKr1er+rUqaNmzpypHA7HDffr119/VR06dFDe3t4qKipK/f3vf79mv9euXXvVdi/9/3SzynrPXu9nA41St7jP5V0sNzeXgIAAcnJyXPNQhRD3lp1Hz5N68gIL1h8h/cw53uvyFgbN5UUWmzb9iCohD3ouQCFEpZPPByXJMxFClIeioiLS0tKoWbMmRqOMQL8R+fn5REVFMXPmTIYMGVLp98/OzqZLly74+/vz7bff4uNzZ0y5FLemrPfs9X42kOl7QghRijN5xfx5/kZsDmfuPtwn25WQ0mgMmEzVCPBv5skQhRBCCCHEPWjHjh3s37+fVq1akZOTw5QpUwBcUwIrW3BwMKtXr2bevHls2rSJLl26eCQOceeRpJQQQpQiI7sAm0PhY9DRJjaEJqEFAJhMMbRr+4OHoxNCCCGEEPeyGTNmcODAAQwGAy1atCAlJcW1iLYnhISEMHnyZI/dX9yZJCklhBB/sO33c7yzOpXTF4rRaWy80vodInwyUMq5w4ZBH+zhCIUQQgghxL2sWbNmbNu2zdNhCHHLJCklhBB/8NFPR0g5eAaAan4nCTcd4crV94KC2nooMiGEEEIIIYS4e0hSSgghLsovtlFgsXP8XCFGXSF/7bSBqj4nwAK+vnVpdt8iNBodBoPnhkULIYQQQgghxN1CklJCCAFsTc9mwIebsdidU/QeiNpOhNcKsDjP+/rWwdu7qgcjFEIIIYQQQoi7iySlhBAC2Hj4LBa7gxBjNh2ifqZZ1UMABAa2Jiw0nrCwnh6OUAghhBBCCCHuLpKUEkLc037Yf5LZyQc5ds65s95LHX8iSLPadT4srAfR1Z7yVHhCCCGEEEIIcdeSpJQQ4p62aOPv7D6e4yoHGs6AFapU6YK/uQkR4X/yYHRCCCGEEEIIcfeSpJQQ4p60PeMcv5/N5/CpPIK8zzHlwf8S4F2E3XIIB1A9+hmCgtp4OkwhhBBCCCGEuGtpPR2AEEJUtqPZBfSdv5HnP/uV4+cLaRWxHR+1FWvRHhyOIjQaL3x8Yj0dphBCCCGEuEMMHjwYjUaDRqPBYDBQu3ZtpkyZgs1mu6V2f/zxRzQaDefPny+fQK9DWloaAwYMIDIyEqPRSLVq1UhISGD//v1u9VauXEmnTp0wm834+Phw//33s2jRIrc66enpaDQadu7ced33f+2116hfvz6+vr4EBQXRtWtXNm/e7NbmkCFDqFmzJiaTiVq1apGUlITFYrlm24sXL6Zp06b4+PgQERHBM888w9mzZ8u85sKFC4wdO5aYmBhMJhPt2rXjl19+cauTl5fHyJEjqVatGiaTibi4ON5//323Os899xy1atXCZDIRGhp61WeakZHBww8/jI+PD2FhYUyYMKHU/4c2bNiAl5cX99133zX7/cUXX9C9e3dCQkJu+OtR0SQpJYS45xw6nYdSEFflGP/b8id61D4IQFhYL5o2+ZDWrb7F2zvMw1EKIYQQQog7SY8ePcjMzOTgwYOMHz+e1157jbffftvTYblcT9LGarXSrVs3cnJy+OKLLzhw4ACfffYZjRs3dkuMvffeeyQkJNC+fXs2b97Mrl27eOKJJxg+fDgvvPDCLcVZt25d5s6dy+7du/npp5+oUaMG3bt35/Tp0wDs378fh8PBBx98wN69e5k9ezbvv/8+L7/8cpntbtiwgaeeeoohQ4awd+9eli5dypYtWxg2bFiZ1w0dOpTk5GT+9a9/sXv3brp3707Xrl05fvy4q864ceP47rvv+Pe//81vv/3G2LFjGTlyJCtWrHDVadGiBQsXLuS3335j1apVKKXo3r07drsdALvdzsMPP4zFYmHjxo188sknLFq0iMmTJ5eI6fz58zz11FN06dLlup5pfn4+HTp04K233rqu+pVKiVLl5OQoQOXk5Hg6FCFEOfjPlt/V0E9+UY/MSVExE1eqFauaq9VrYl2vY8c+9XSIQog7gHw+KEmeiRCiPBQWFqp9+/apwsJCT4dywwYNGqQSEhLcjnXr1k21adNGZWdnq8TERBUYGKhMJpPq0aOHSk1NddVLT09XjzzyiAoMDFQ+Pj4qLi5Off311yotLU0Bbq9BgwYppZTKzc1VAwYMUD4+Pio8PFzNmjVLderUSY0ZM8bVbkxMjJoyZYpKTExUZrPZdW1KSorq0KGDMhqNqlq1amrUqFEqLy9PKaXUjh07FKDS09NL7WtGRobS6/Vq3LhxJc7NmTNHAernn39WSilXH3bs2HHjD/WiSz9jVq9eXWqd6dOnq5o1a5bZzttvv61iY2NLxBsVFVXqNQUFBUqn06mVK1e6HW/evLl65ZVXXOWGDRuqKVOmlFnnj3799VcFqEOHDimllPrmm2+UVqtVWVlZrjrz589X/v7+qri42O3a/v37q7/+9a8qKSlJNW3atNR7/FF5fD2uVNZ79no/G8hIKSHEPcHuULy6fC/J+06y+3gOBl0xPl7nAYgI70tM9eeoWvURzwYphBBCCCHcKKVwFBR45KWUuqXYTSYTFouFwYMHs3XrVlasWMGmTZtQStGrVy+sVisAI0aMoLi4mPXr17N7927eeust/Pz8iI6O5vPPPwfgwIEDZGZm8u677wLOkTkbNmxgxYoVJCcnk5KSwvbt20vEMGPGDJo2bcqOHTt49dVXOXz4MD169KBv377s2rWLzz77jJ9++omRI0cCEBoailarZdmyZa4RPH+0bNkyrFbrVUdEPffcc/j5+bFkyZJbenaXWCwWFixYQEBAAE2bNi21Xk5ODsHBwWW21bZtW44ePco333yDUoqTJ0+ybNkyevXqVeo1NpsNu92O0Wh0O24ymfjpp59c5Xbt2rFixQqOHz+OUoq1a9eSmppK9+7dr9pufn4+CxcupGbNmkRHRwOwadMmGjduTNWqVV314uPjyc3NZe/eva5jCxcu5MiRIyQlJZXZ3zuFLHQuhLjrbc84x2+ZuVjsDqr7n+CVtkvQkgsKtFoTDRq8hUaj8XSYQgghhBDiD1RhIQeat/DIvett34bGx+eGr1NKsWbNGlatWkXPnj1Zvnw5GzZsoF27doBzXaPo6GiWL19Ov379yMjIoG/fvjRu3BiA2NjLa5teSrSEhYURGBgIONc4+uSTT/j0009d07cWLlxIZGRkiVgeeughxo8f7yoPHTqUgQMHMnbsWADq1KnDnDlz6NSpE/PnzycqKoo5c+bw4osv8vrrr9OyZUs6d+7MwIEDXXGlpqYSEBBAREREifsZDAZiY2NJTU294ed2pZUrV/LEE09QUFBAREQEycnJVKlS5ap1Dx06xHvvvceMGTPKbLN9+/YsXryY/v37U1RUhM1mo3fv3sybN6/Ua8xmM23btuVvf/sbDRo0oGrVqixZsoRNmzZRu3ZtV7333nuPZ599lmrVquHl5YVWq+XDDz/kgQcecGvvH//4By+++CL5+fnUq1eP5ORkDAYDAFlZWW4JKcBVzsrKAuDgwYNMmjSJlJQUvLzujnSOjJQSQtzVDp26wJ/+sZFXvtwDQMdqe/BSv6NV5wAICLhPElJCCCGEEOKWrVy5Ej8/P4xGIz179qR///4MHjwYLy8vWrdu7aoXEhJCvXr1+O233wAYPXo0U6dOpX379iQlJbFr164y73PkyBGsViutWrVyHQsICKBevXol6rZs2dKt/Ouvv7Jo0SL8/Pxcr/j4eBwOB2lpaYBz5FZWVhaLFy+mbdu2LF26lIYNG5KcnHzdz+JSoqUsixcvdosjJSXFda5z587s3LmTjRs30qNHDx5//HFOnTpVoo3jx4/To0cP+vXr57Y21JXtDh8+HIB9+/YxZswYJk+ezLZt2/juu+9IT093nU9JSXG7bvHixQD861//QilFVFQU3t7ezJkzhyeffBKt9nI65b333uPnn39mxYoVbNu2jZkzZzJixAhWr17tFu/AgQPZsWMH69ato27dujz++OMUFRVd1zO12+0MGDCA119/nbp1697wM71d3R2pNSHuYspiwZ6bS85XX6EuLk5o7t4d71q1PBzZnSH1ZB4Aob4OmlfT0jHWChaIihpAVNRAfH3kOQohhBBC3K40JhP1tm/z2L1vROfOnZk/fz4Gg4HIyEi8vLzcFrouzdChQ4mPj+frr7/m+++/580332TmzJmMGjXqZkN38fX1dSvn5eXx3HPPMXr06BJ1q1ev7vq32Wymd+/e9O7dm6lTpxIfH8/UqVPp1q0bderUIScnhxMnTpQYnWWxWDh8+DDx8fHXjK1Pnz5uybqoqCi3uGvXrk3t2rVp06YNderU4aOPPuKll15y1Tlx4gSdO3emXbt2LFiwwK3tK3eX8/f3B+DNN9+kffv2TJgwAYAmTZrg6+tLx44dmTp1Ki1btnS77tIopVq1arFu3Try8/PJzc0lIiKC/v37u0aOFRYW8vLLL/Pll1/y8MMPu9reuXMnM2bMoGvXrq42AwICCAgIoE6dOrRp04agoCC+/PJLnnzyScLDw9myZYtbP06ePAlAeHg4Fy5cYOvWrezYscM13dLhcKCUwsvLi++//77MZ3q7kqSUELehs4sWUbB1K0V792HLzCxx3hBbS5JS17BkSwbvrTnIhWIb/oZc/tZ2GnptIVzcdMTPtx5mv/qeDVIIIYQQQpRJo9Hc1BQ6T7iUSLlSgwYNsNlsbN682TV97+zZsxw4cIC4uDhXvejoaIYPH87w4cN56aWX+PDDDxk1apRrxNGV6zvFxsai1+v55ZdfXImknJwcUlNTS0wX+6PmzZuzb9++EnGWRaPRUL9+fTZu3AjAn//8ZyZOnMjMmTOZOXOmW93333+fgoICnnrqqWu2azabMZvN1xWDw+GguLjYVT5+/DidO3d27Wh35agl4Kr9KygoKDHlTafTAc4plyaTqczn4uvri6+vL+fOnWPVqlVMnz4dcO5YaLVaS8Sg0+lwOByltqeUQinl6lfbtm2ZNm0ap06dIizMuRN4cnIy/v7+xMXFodfr2b17t1sb//jHP/jhhx9YtmwZNWvWxNfX97qf6e1CklJC3CYsv//OhbVrsWWdJHvRoqvW8evUCa+qVdFXu/0z3p726eYMTuQ4h8I2qZLhTEihQavVo9eHEBzc3rMBCiGEEEKIu16dOnVISEhg2LBhfPDBB5jNZiZNmkRUVBQJCQkAjB07lp49e1K3bl3OnTvH2rVradCgAQAxMTFoNBpWrlxJr169MJlMmM1mBg0axIQJEwgODiYsLIykpCS0Wu01l6WYOHEibdq0YeTIkQwdOhRfX1/27dtHcnIyc+fOZefOnSQlJZGYmEhcXBwGg4F169bx8ccfM3HiRMA5omr69Om88MILGI1GEhMT0ev1fPXVV7z88stMnTqVRo0aud33wIEDJWJp2LAher3e7Vh+fj7Tpk2jT58+REREcObMGebNm8fx48fp168f4ExIPfjgg8TExDBjxgxOnz7tuj48PLzUvvfu3Zthw4Yxf/584uPjyczMZOzYsbRq1eqq63FdsmrVKpRS1KtXj0OHDjFhwgTq16/P008/DThHYnXq1IkJEyZgMpmIiYlh3bp1/POf/2TWrFmAc8rlZ599Rvfu3QkNDeXYsWP8/e9/x2QyuRZa7969O3FxcSQmJjJ9+nSysrL461//yogRI/D29gYo8VzDwsIwGo0ljv9RdnY2GRkZnDhxArj89QgPDy/zmVWKctkH8C4l2xuLypTW/wm1t14Dta9efdcre8l/VN6mn5XtwgXl+MM2oKIkh8OhVu3JVAt/OqKavLZK3f/aQvXd+kS17qeH1Oo1sWrnr896OkQhxF1APh+UJM9ECFEeytpe/nY3aNAglZCQcNVz2dnZKjExUQUEBCiTyaTi4+NVamqq6/zIkSNVrVq1lLe3twoNDVWJiYnqzJkzrvNTpkxR4eHhSqPRqEGDBimllMrNzVUDBgxQPj4+Kjw8XM2aNUu1atVKTZo0yXVdTEyMmj17dol4tmzZorp166b8/PyUr6+vatKkiZo2bZpSSqnTp0+r0aNHq0aNGik/Pz9lNptV48aN1YwZM5TdbndrZ/ny5apjx47K19dXAQpQS5YscauTlpbmOvfH19GjR0vEVlhYqB577DEVGRmpDAaDioiIUH369FFbtmxx1Vm4cGGpbV7LnDlzVFxcnDKZTCoiIkINHDhQHTt2rMxrPvvsMxUbG6sMBoMKDw9XI0aMUOfPn3erk5mZqQYPHqwiIyOV0WhU9erVUzNnzlQOh0MppdTx48dVz549VVhYmNLr9apatWpqwIABav/+/W7tpKenq549eyqTyaSqVKmixo8fr6xWa6mxJSUlqaZNm16z36U9s6SkpGteW5ay3rPX+9lAo9Qt7nN5F8vNzSUgIICcnBzXPFQhypvt3DksaWmkDx/OrrCmnA1tSJQxn+5D4vH5w8KEomw7Ms7x2D82usqP1V7JI7Hfu8o1Yv6XWrXGX+1SIYS4bvL5oCR5JkKI8lBUVERaWho1a9bEaDR6Opw7Sn5+PlFRUcycOZMhQ4ZU+v2zs7Pp0qUL/v7+fPvtt/jcIVMuxa0p6z17vZ8NZPqeEB7ksFjYntCb8zYLB6OCKDJkQkEmp31rSkLqJhw5nQ9A7ZACetY+RIPAo6AgPPxRqoY9TFCQTNkTQgghhBB3vh07drB//35atWpFTk4OU6ZMAXBNCaxswcHBrF69mnnz5rFp0ya6dOnikTjEnUeSUkJ4UGHmCTZUDcBm8MYSXBUuLo4XXjXGw5HdWf61KZ35Px7mQpENgGcaLaWq9zbnoFQgJORBqlR5yIMRCiGEEEIIUb5mzJjBgQMHMBgMtGjRgpSUFKpUqeKxeEJCQpg8ebLH7i/uTJKUEsKDck9m4dBqsASHYw0Jcx1v0qOXB6O68/xz0++uRc0BQownQUFQUFt8fesSWqVrGVcLIYQQQghxZ2nWrBnbtm3zdBhC3DJJSgnhAUX5eaz+f/8gO+2I84CXCYCY6JrE1IghqoaHd0C4Ayil+GZ3FidzizhxvpBgYzZvdd+G2dtK4YVTOBTUq/savr7Xv92tEEIIIYQQQojKI0kpITwgfec2Dmxc7yornXNRuIaNG9CqVStPhXVH+flINiM+3e4q96qTgrZoDfkXB0xptd54e0tyTwghhBBCCCFuV5KUEsIDrMXFAFSpGonpkI2DXlWAHAwGg2cDu4OknXEuat4s/AzdY/cQaz4ECsLCehEQ0Bx/c2O8vPw8HKUQQgghhBBCiNJIUkoID7BbrQD4+wfgpeworXNFbr1e78mw7ghz1hxkwfojFNvsAPxP3FICvX5zLWoeEdGXKiEPei5AIYQQQgghhBDXRZJSQniAzWoB4JjGwNnWeiAXAIPBgFIKjUbjwehub0u3HSWv2OYq++tPg4Lw8Efx82tASHBHD0YnhBBCCCGEEOJ6SVJKCA8oOnYMgHMOHeicx7x1Rvwz4NTXOwh6vC6GSJl6dolSiu0Z5zl9oZhTucXUDEhncsfv0GuLKS46C0Ct2BcwGiM8HKkQQgghhBBCiOslSSkhPCBndTLoQF0cEdUhvxl1dUFYk7MAuPDjUUIGNPBkiLeVLWnZ9F/ws6vcIfJnHJZ9FF8sGwxVMBiqeCY4IYQQQgghhBA3RevpAIS4F9kuLnTOxVl64QFGtGjwqmLCWC+IwITangvuNnTg5AUAovyt9Kx3jvujneXq1YfSvNliWrf6Bq1W1uMSQgghhBCeMXjwYDQaDRqNBoPBQO3atZkyZQo2m+3aF5fhxx9/RKPRcP78+fIJ9DqkpaUxYMAAIiMjMRqNVKtWjYSEBPbv3+9Wb+XKlXTq1Amz2YyPjw/3338/ixYtcquTnp6ORqNh586d133/1157jfr16+Pr60tQUBBdu3Zl8+bNbm0OGTKEmjVrYjKZqFWrFklJSVgslmu2vXjxYpo2bYqPjw8RERE888wznD17tsxr1q9fT+/evYmMjESj0bB8+fISdb744gu6d+9OSEjINfurlKJnz56ltrVo0SKaNGmC0WgkLCyMESNGuJ1ftWoVbdq0wWw2ExoaSt++fUlPT6+UflYESUoJUYmUUlw4ewbLxVW5L42U0jqcgxZD/qcBVZ5uhM5XEiwAa347yYhPt/Pvn3/HS2vlr62m8OeYJHzZDUBgwP0EBbXBYAjxcKRCCCGEEOJe16NHDzIzMzl48CDjx4/ntdde4+233/Z0WC7Xk7SxWq1069aNnJwcvvjiCw4cOMBnn31G48aN3RJj7733HgkJCbRv357Nmzeza9cunnjiCYYPH84LL7xwS3HWrVuXuXPnsnv3bn766Sdq1KhB9+7dOX36NAD79+/H4XDwwQcfsHfvXmbPns3777/Pyy+/XGa7GzZs4KmnnmLIkCHs3buXpUuXsmXLFoYNG1bmdfn5+TRt2pR58+aVWadDhw689dZb1+zfO++8U+oawrNmzeKVV15h0qRJ7N27l9WrVxMfH+86n5aWRkJCAg899BA7d+5k1apVnDlzhj/96U+V0s8KoUSpcnJyFKBycnI8HYq4S/x39t/VjMcfdr2SXk1SSUlJat8ryeroxPXKerbQ0yHeVh6Y/oOKmbhSxUxcqVq//pFavSZWrV5TW/20oaPaurW/slpzPR2iEOIeJJ8PSpJnIoQoD4WFhWrfvn2qsPDO+0w8aNAglZCQ4HasW7duqk2bNio7O1slJiaqwMBAZTKZVI8ePVRqaqqrXnp6unrkkUdUYGCg8vHxUXFxcerrr79WaWlpCuce067XoEGDlFJK5ebmqgEDBigfHx8VHh6uZs2apTp16qTGjBnjajcmJkZNmTJFJSYmKrPZ7Lo2JSVFdejQQRmNRlWtWjU1atQolZeXp5RSaseOHQpQ6enppfY1IyND6fV6NW7cuBLn5syZowD1888/K6WUqw87duy48Yd60aWfMatXry61zvTp01XNmjXLbOftt99WsbGxJeKNioq67lgA9eWXX5Z6/lr93bFjh4qKilKZmZkl2srOzlYmk6nMfi5dulR5eXkpu93uOrZixQql0WiUxWJRSlVOPy8p6z17vZ8NZKSUEJXoRKpzyKtGKZTGxzVWUXdxVK/GW+ehyG4/Simycorw9crnnW6LmfLAvwHw8Ymlfbv1tGjxH7y8zB6OUgghhBBCVCSlFNZiu0dezt/Nb57JZMJisTB48GC2bt3KihUr2LRpE0opevXqhdVqBWDEiBEUFxezfv16du/ezVtvvYWfnx/R0dF8/vnnABw4cIDMzEzeffddAMaNG8eGDRtYsWIFycnJpKSksH379hIxzJgxg6ZNm7Jjxw5effVVDh8+TI8ePejbty+7du3is88+46effmLkyJEAhIaGotVqWbZsGXa7/ar9WrZsGVar9aojop577jn8/PxYsmTJLT27SywWCwsWLCAgIICmTZuWWi8nJ4fg4OAy22rbti1Hjx7lm2++QSnFyZMnWbZsGb169SqXWK+loKCAAQMGMG/ePMLDw0ucT05OxuFwcPz4cRo0aEC1atV4/PHHOXr0qKtOixYt0Gq1LFy4ELvdTk5ODv/617/o2rUrer3+tujnjZKFzoWoRHab8wdP+9/Psr/F8+TxEwC6i9kprSSlWHvgFK+v2EuR1UGxzUHziL2YNZvB4Txv9qvv2QCFEEIIIUSlsVkcLBizziP3fvbdTuhv4vO5Uoo1a9awatUqevbsyfLly9mwYQPt2rUDnOv9REdHs3z5cvr160dGRgZ9+/alcePGAMTGxrraupRoCQsLIzAwEIALFy7wySef8Omnn9KlSxcAFi5cSGRkZIlYHnroIcaPH+8qDx06lIEDBzJ27FgA6tSpw5w5c+jUqRPz588nKiqKOXPm8OKLL/L666/TsmVLOnfuzMCBA11xpaamEhAQQEREyZ2vDQYDsbGxpKam3vBzu9LKlSt54oknKCgoICIiguTkZKpUufrGRocOHeK9995jxowZZbbZvn17Fi9eTP/+/SkqKsJms9G7d+9Km672/PPP065dOxISEq56/siRIzgcDt544w3effddAgIC+Otf/0q3bt3YtWsXBoOBmjVr8v333/P444/z3HPPYbfbadu2Ld98881t088bJSOlhKhEl5JSOBRm3eW/vHjpvTA1qYLGS96Sy7YdI/1sAVm5RQDUCnEuCh8U1Jb7mn5M/fpveDI8IYQQQgghrmrlypX4+flhNBrp2bMn/fv3Z/DgwXh5edG6dWtXvZCQEOrVq8dvv/0GwOjRo5k6dSrt27cnKSmJXbt2lXmfI0eOYLVaadWqletYQEAA9erVK1G3ZcuWbuVff/2VRYsW4efn53rFx8fjcDhIS0sDnCO3srKyWLx4MW3btmXp0qU0bNiQ5OTk634WBoPhmnUWL17sFkdKSorrXOfOndm5cycbN26kR48ePP7445w6dapEG8ePH6dHjx7069fPbc2kK9sdPnw4APv27WPMmDFMnjyZbdu28d1335Genu46n5KS4nbd4sWLr7u/17JixQp++OEH3nnnnVLrOBwOrFYrc+bMIT4+njZt2rBkyRIOHjzI2rVrAcjKymLYsGEMGjSIX375hXXr1mEwGPjzn//sGtnnyX7eDBkpJUQlsttsOPQGVnftid2wyXU8+vUOaLX3dkLqXL6Fo+cKyDhbAChmx68kSH8YjeMcNhuY/eIICenk6TCFEEIIIUQl8jJoefZdz3wG9DLc2Ofzzp07M3/+fAwGA5GRkXh5ebFixYprXjd06FDi4+P5+uuv+f7773nzzTeZOXMmo0aNutnQXXx9fd3KeXl5PPfcc4wePbpE3erVq7v+bTab6d27N71792bq1KnEx8czdepUunXrRp06dcjJyeHEiRMlRmdZLBYOHz7stjh3afr06eOWrIuKinKLu3bt2tSuXZs2bdpQp04dPvroI1566SVXnRMnTtC5c2fatWvHggUL3Nq+cvc7f39/AN58803at2/PhAkTAGjSpAm+vr507NiRqVOn0rJlS7frqlates0+XK8ffviBw4cPu0a7XdK3b186duzIjz/+6Bp5FhcX5zofGhpKlSpVyMjIAGDevHkEBAQwffp0V51///vfREdHs3nzZtq0aePRft4Mj/wWfCNbDQ4fPhyNRlMio5idnc3AgQPx9/cnMDCQIUOGkJeX51Zn165ddOzYEaPRSHR0tNsXTghPcNhs2H3MWL3BoXHORwvzDrrnE1K5RVYemL6WPnM3sPt4DlV9TuOvkrFbjmCznQPAT6btCSGEEELcczQaDXpvnUdepe2QVppLiZTq1avj5eUc/9GgQQNsNhubN2921Tt79iwHDhxwSz5ER0czfPhwvvjiC8aPH8+HH34IXB5xdOX6TrGxsej1en755RfXsZycnOuaMte8eXP27dvnSvhc+SptdJNGo6F+/frk5+cD8Oc//xkvLy9mzpxZou77779PQUEBTz311DVjMZvNbvc3mUyl1nU4HBQXF7vKx48f58EHH6RFixYsXLiwxO9TV7YbFhYGONd0+mM9nc45PVMphclkcrvObC6/9WsnTZrErl272Llzp+sFMHv2bBYuXAg4p92Bc/2wS7Kzszlz5gwxMTHX7IPD4fB4P2+GR0ZKXdpq8JlnnnHbuvCPvvzyS37++eerzo0dOHAgmZmZJCcnY7Vaefrpp3n22Wf59NNPAcjNzaV79+507dqV999/n927d/PMM88QGBjIs88+W2F9E6I0yuHAYbejcP5wCynQ00V3P2H1oz0cmecdOZ3PhWIbPnoL7asdol6VkwAYjVHENZiOl5cZP7+4a7QihBBCCCHE7aVOnTokJCQwbNgwPvjgA8xmM5MmTSIqKsq1ttDYsWPp2bMndevW5dy5c6xdu5YGDRoAEBMTg0ajYeXKlfTq1QuTyYTZbGbQoEFMmDCB4OBgwsLCSEpKQqvVXjORNnHiRNq0acPIkSMZOnQovr6+7Nu3j+TkZObOncvOnTtJSkoiMTGRuLg4DAYD69at4+OPP2bixImAc0TV9OnTeeGFFzAajSQmJqLX6/nqq694+eWXmTp1Ko0aNXK775WJlksaNmzoWpz7kvz8fKZNm0afPn2IiIjgzJkzzJs3j+PHj9OvXz/gckIqJiaGGTNmcPr0adf1V1tA/JLevXszbNgw5s+fT3x8PJmZmYwdO5ZWrVpdNedwSV5eHocOHXKV09LS2LlzJ8HBwa7RZdnZ2WRkZHDixAm3/oaHh7u9/qh69erUrFkTgLp165KQkMCYMWNYsGAB/v7+vPTSS9SvX5/OnTsD8PDDDzN79mymTJnCk08+yYULF3j55ZeJiYmhWbNmFd7PCnHdewJWEErZavDYsWMqKipK7dmzR8XExKjZs2e7zu3bt08B6pdffnEd+/bbb5VGo1HHjx9XSin1j3/8QwUFBani4mJXnYkTJ6p69epdd2yyvbEoT1aLRc14/GH1xrODVVJSkvp/Y15WRyeuV9mfp1774rtUTqFFvbZij3pywSYVM3Glmv5//6tWr4l1vbZt/x9PhyiEECXI54OS5JkIIcpDWdvL3+4GDRqkEhISrnouOztbJSYmqoCAAGUymVR8fLxKTb38O8DIkSNVrVq1lLe3twoNDVWJiYnqzJkzrvNTpkxR4eHhSqPRqEGDBimllMrNzVUDBgxQPj4+Kjw8XM2aNUu1atVKTZo0yXXdH3+PvmTLli2qW7duys/PT/n6+qomTZqoadOmKaWUOn36tBo9erRq1KiR8vPzU2azWTVu3FjNmDFD2e12t3aWL1+uOnbsqHx9fRWgALVkyRK3Omlpaa5zf3wdPXq0RGyFhYXqscceU5GRkcpgMKiIiAjVp08ftWXLFledhQsXltrmtcyZM0fFxcUpk8mkIiIi1MCBA9WxY8fKvGbt2rVXvdelr0VZMSUlJZXa7tVyITk5OeqZZ55RgYGBKjg4WD322GMqIyPDrc6SJUtUs2bNlK+vrwoNDVV9+vRRv/32W6X084/Kes9e72cDjVK3uM/lLdJoNHz55Zc8+uijrmMOh4OuXbu6soQ1atRg7Nixrh0CPv74Y8aPH8+5c+dc19hsNoxGI0uXLuWxxx7jqaeeIjc3121q4Nq1a3nooYfIzs4mKCjomrHl5uYSEBBATk6Oax6qEDeruKCAuU8/jiUojOLw6sSct9HNGI9v2wiCEmp7OjyPWLz5d175co+r/Ganjwnz3omfbz28jZFUrz6E4KC2HoxQCCFKks8HJckzEUKUh6KiItLS0qhZsyZGo9HT4dxR8vPziYqKYubMmQwZMqTS75+dnU2XLl3w9/fn22+/xcfHp9JjEJWvrPfs9X42uC0XOn/rrbfw8vK66uJr4Fxx/tK80Eu8vLwIDg4mKyvLVefSMLhLLi3glZWVddWkVHFxsds81dzc3FvqhxBXytt6cc73xSG1WpzzejX6e3M9KavdwbFzhQAMb7GOZlU2oOcsSkHt2i8REtLRwxEKIYQQQghxe9qxYwf79++nVatW5OTkMGXKFADXlMDKFhwczOrVq5k3bx6bNm2iS5cuHolD3Hluu6TUtm3bePfdd9m+ffsNLyx3q958801ef/31Sr2nuPsV5l1g3T//H9n79gIQaorhGA70/lXBAhqvey8pNfY/O1i+84Sr3DxkFTqVhwK0WgN+fiW3sxVCCCGEEEJcNmPGDA4cOIDBYKBFixakpKRQpUoVj8UTEhLC5MmTPXZ/cWe67ZJSKSkpnDp1ym0hLbvdzvjx43nnnXdIT08nPDycU6dOuV1ns9nIzs52LR4WHh7OyZMn3epcKpe2+NlLL73EuHHjXOXc3Fyio2URanFrjmzbwt51awAw6nypaqrBMY6gdTjffjp/b0+GV+mUUnyzO8tV9jU40OHcObPZff/E168e3gbP/TAVQgghhBDidtesWTO2bdvm6TCEuGW3XVIqMTGRrl27uh2Lj48nMTGRp59+GoC2bdty/vx5tm3bRosWLQD44YcfcDgctG7d2lXnlVdewWq1ulb0T05Opl69eqWuJ+Xt7Y23972VIBAVz1pUBEBIQBBVj+uwaJxbdRpjgwhuWR9TXIgnw6s0SikOncojt8iKxe6gTcQvDL/vK5Sy4HCARqMjKKgtGs29N3JMCCGEEEIIIe5FHklKXWurwZAQ91/S9Xo94eHh1KvnnNLToEEDevTowbBhw3j//fexWq2MHDmSJ554wrXF4YABA3j99dcZMmQIEydOZM+ePbz77rvMnj278joqBGC32QDwN/oQbNFwAufeAsZIMz5NQj0ZWqX6+7f7+WD9EVe5feR27PbL67YFBLSUhJQQQgghhBBC3EM8kpTaunUrnTt3dpUvTZkbNGgQixYtuq42Fi9ezMiRI+nSpQtarZa+ffsyZ84c1/mAgAC+//57RowYQYsWLahSpQqTJ0/m2WefLde+CHEtdpsVAC2AlzeOi0kprfbeSsDsOHoegJjAC4T7niU2OAeABvX/TlBQG4zGSA9GJ4QQQgghhBCisnkkKfXggw+ilLru+unp6SWOBQcH8+mnn5Z5XZMmTUhJSbnR8IQoV46LI6WKrF4U+kZixzl9T6fTeTKsSnPo1AUysgs4fq4Qf0Muk1u9Dlhd5/386mMyydptQgghhBBCCHGvue3WlBLibmO3O5NSRx3BnKsZjtKeBe6NkVLHzhXQffZ6HBdz0A2CMwErWq0BkykGX986mM1xHo1RCCGEEEIIIYRnSFJKiApmt9lw6LzID9eRr0lzHb8XFtU/eDIPh4Jq/ud5utFSwkxnAAgMuJ9mzf7p4eiEEEIIIYQQQniSJKWEqGAOmxWzMYx8DWiVhlr2cHwCfWnatGmp1xSumsW5AwfQ6yyE9vlfiL6/EiO+dUezC3htxV7SzuYD8Gj936jht9t13s+vvqdCE0IIIYQQQghxm7j75w8J4WEFqQfx93busueNnk72+nRr/xC+vr5XrW+/kM2Sr2rw5b7+/PhbGyjMrsxwy8Xn24+xZv8pjpx2JqUi/AoACAvrxX1NFxEbO96T4QkhhBBCCFGuBg8ejEajQaPRYDAYqF27NlOmTMF2cX3Zm/Xjjz+i0Wg4f/58+QR6HdLS0hgwYACRkZEYjUaqVatGQkIC+/fvd6u3cuVKOnXqhNlsxsfHh/vvv7/ExmXp6eloNBp27tx53fd/7bXXqF+/Pr6+vgQFBdG1a1c2b97s1uaQIUOoWbMmJpOJWrVqkZSUhMViuWbbixcvpmnTpvj4+BAREcEzzzzD2bNny7xm/fr19O7dm8jISDQaDcuXL7/hmAGmTZtGu3bt8PHxITAw8Kr3ysjI4OGHH8bHx4ewsDAmTJjg9v/Qlf+fXflq2LChq86bb77J/fffj9lsJiwsjEcffZQDBw5c89lcT3wVQZJSQlQQh93O2WNHyTt2FHAuaq612wh61IRf25I7zdmtDtJ2nWHPj79T6AgEwFwjBsKbVGLUt6bIamffiVxST17AoLUw/cF5fNQjiUjDdwAE+N9HSEhHdLq7f+qiEEIIIYS4t/To0YPMzEwOHjzI+PHjee2113j77bc9HZbL9SRtrFYr3bp1Iycnhy+++IIDBw7w2Wef0bhxY7fE2HvvvUdCQgLt27dn8+bN7Nq1iyeeeILhw4fzwgsv3FKcdevWZe7cuezevZuffvqJGjVq0L17d06fPg3A/v37cTgcfPDBB+zdu5fZs2fz/vvv8/LLL5fZ7oYNG3jqqacYMmQIe/fuZenSpWzZsoVhw4aVeV1+fj5NmzZl3rx5Nx0zOJ9/v379+Mtf/nLVNux2Ow8//DAWi4WNGzfyySefsGjRIiZPnuyq8+6775KZmel6HT16lODgYPr16+eqs27dOkaMGMHPP/9McnIyVquV7t27k5+fX2Y/rxVfhVGiVDk5OQpQOTk5ng5F3IGWTv2rmvH4w2rG4w+rT/83SSUlJalZf5teav2t36Spuc+tcb2WjP7E7bzD4VAZuRkqNTtVpWanqtzi3Iruwg1xOByqy8wfVczElSpm4koV/9YstXpN7BWvWurcuV88HaYQQtwy+XxQkjwTIUR5KCwsVPv27VOFhYWeDuWGDRo0SCUkJLgd69atm2rTpo3Kzs5WiYmJKjAwUJlMJtWjRw+Vmprqqpeenq4eeeQRFRgYqHx8fFRcXJz6+uuvVVpamgLcXoMGDVJKKZWbm6sGDBigfHx8VHh4uJo1a5bq1KmTGjNmjKvdmJgYNWXKFJWYmKjMZrPr2pSUFNWhQwdlNBpVtWrV1KhRo1ReXp5SSqkdO3YoQKWnp5fa14yMDKXX69W4ceNKnJszZ44C1M8//6yUUq4+7Nix48Yf6kWXfsasXr261DrTp09XNWvWLLOdt99+W8XGxpaINyoq6rpjAdSXX355zXplxbxw4UIVEBBQ4vg333yjtFqtysrKch2bP3++8vf3V8XFxVe9z5dffqk0Gk2ZX69Tp04pQK1bt+6acZcV39WU9Z693s8GMlJKiApyKu0wAHo0oDUCoNOWvoxb7v4dAPjrsog27CQsai3fp3/PqxteZfQPo+m6tCu9vujFn1b8iT+t+BMbT2ys+E7cgAKLnUOn8jBoLbSrdphO1Y8A4O9/H61bfUOH9hsJDGzp4SiFEEIIIcSdRCmFtajIIy+l1C3FbjKZsFgsDB48mK1bt7JixQo2bdqEUopevXphtVoBGDFiBMXFxaxfv57du3fz1ltv4efnR3R0NJ9//jkABw4cIDMzk3fffReAcePGsWHDBlasWEFycjIpKSls3769RAwzZsygadOm7Nixg1dffZXDhw/To0cP+vbty65du/jss8/46aefGDlyJAChoaFotVqWLVuG3W6/ar+WLVuG1Wq96oio5557Dj8/P5YsWXJLz+4Si8XCggULCAgIKHNN3pycHIKDg8tsq23bthw9epRvvvkGpRQnT55k2bJl9OrVq1xivdGY/2jTpk00btyYqlWruo7Fx8eTm5vL3r17r3rNRx99RNeuXYmJiSm13ZycHIBrPh9PkYXOhagg9otzfzt5V+GAdx1gNzpt6Xlge955IICG5nUYojbypD+wbutV6wYbgzFoDeUe8836/Wy+a/2owQ2X0jri8vxpk6k6fn71PBWaEEIIIYS4g9mKi5kz6M8euffoT5ahNxpv+DqlFGvWrGHVqlX07NmT5cuXs2HDBtq1awc41zWKjo5m+fLl9OvXj4yMDPr27Uvjxo0BiI2NdbV1KZEQFhbmWufnwoULfPLJJ3z66ad06dIFgIULFxIZWXKJkIceeojx4y+v5zp06FAGDhzI2LFjAahTpw5z5syhU6dOzJ8/n6ioKObMmcOLL77I66+/TsuWLencuTMDBw50xZWamkpAQAAREREl7mcwGIiNjSU1NfWGn9uVVq5cyRNPPEFBQQEREREkJydTpUqVq9Y9dOgQ7733HjNmzCizzfbt27N48WL69+9PUVERNpuN3r17lzktr6JivpqsrCy3hBTgKmdlZZWof+LECb799ls+/fTTUtt0OByMHTuW9u3b06hRo+uOpTLJSCkhKojd5vzLB1Y7aBwA6HS60utbnXUKa7djT61E+q+zk7DLmxZVW/Bo7UdJapvEO53fYddTu1jXfx2dq3eu8D5cj+U7jtPp7R95etEvAET7ZwLg41OTgICWVIsa6MnwhBBCCCGEqBQrV67Ez88Po9FIz5496d+/P4MHD8bLy4vWrVu76oWEhFCvXj1+++03AEaPHs3UqVNp3749SUlJ7Nq1q8z7HDlyBKvVSqtWrVzHAgICqFev5B+CW7Z0n6nw66+/smjRIvz8/Fyv+Ph4HA4HaWlpgHPkVlZWFosXL6Zt27YsXbqUhg0bkpycfN3PwmC49h/QFy9e7BZHSkqK61znzp3ZuXMnGzdupEePHjz++OOcOnWqRBvHjx+nR48e9OvXz21tqCvbHT58OAD79u1jzJgxTJ48mW3btvHdd9+Rnp7uOp+SkuJ23eLFi6+7vzcSc3n55JNPCAwM5NFHHy21zogRI9izZw//+c9/XMeGDx/u1k9Pk5FSQlQApZRrpBQ2B84p4KDTlp6Ustmcdd7N3sCAJSn0PQ4XqmppNXNRBUd7a7ZnnMPkVUB8jY34e1uo6nsGgIZxs/H3b+zh6IQQQgghxJ3My9ub0Z8s89i9b0Tnzp2ZP38+BoOByMhIvLy8WLFixTWvGzp0KPHx8Xz99dd8//33vPnmm8ycOZNRo0bdbOguf9zxOy8vj+eee47Ro0eXqFu9enXXv81mM71796Z3795MnTqV+Ph4pk6dSrdu3ahTpw45OTmcOHGixOgsi8XC4cOHiY+Pv2Zsffr0cUvWRUVFucVdu3ZtateuTZs2bahTpw4fffQRL730kqvOiRMn6Ny5M+3atWPBggVubV+525+/vz/g3JWuffv2TJgwAYAmTZrg6+tLx44dmTp1Ki1btnS77o+jlq7lemIuS3h4OFu2bHE7dvLkSde5Kyml+Pjjj0lMTCw1AThy5EhWrlzJ+vXrqVatmuv4lClTbnkx+vIkSSkhKoByOEApHHpvVsbUx+Hl3D7V62ojpQ4mw45/YS90/hUj9LyVyGznKcN9t29SZ8WvJ9h0+CwbD5/hwWob6B373yvOajAaSw7nFUIIIYQQ4kZoNJqbmkLnCZeSEldq0KABNpuNzZs3u6bvnT17lgMHDhAXF+eqFx0dzfDhwxk+fDgvvfQSH374IaNGjXIlHK5c3yk2Nha9Xs8vv/ziSiTl5OSQmprKAw88UGaMzZs3Z9++fSXiLItGo6F+/fps3Ohc0/bPf/4zEydOZObMmcycOdOt7vvvv09BQQFPPfXUNds1m82YzebrisHhcFBcXOwqHz9+nM6dO9OiRQsWLlyI9g/LpFytfwUFBXh5uadALs1kUUphMplu6LncaMzX0rZtW6ZNm8apU6cICwsDIDk5GX9/f7f/V8C5w96hQ4cYMmRIiXaUUowaNYovv/ySH3/8kZo1a7qdDwsLc7V/O5CklBAVwH5x0UJDQDXy9TbX8TDzVeYUr34NTu7BUuQcfvt4SjHmQuepRq+VPS/aU4qsdsZ9thObwzm6q1PVswAEBDTH378p/uYmGAzXP39aCCGEEEKIu1GdOnVISEhg2LBhfPDBB5jNZiZNmkRUVBQJCQkAjB07lp49e1K3bl3OnTvH2rVradCgAQAxMTFoNBpWrlxJr169MJlMmM1mBg0axIQJEwgODiYsLIykpCS0Wi0ajabMeCZOnEibNm0YOXIkQ4cOxdfXl3379pGcnMzcuXPZuXMnSUlJJCYmEhcXh8FgYN26dXz88cdMnDgRcI6omj59Oi+88AJGo5HExET0ej1fffUVL7/8MlOnTi2xftGBAwdKxNKwYUP0er3bsfz8fKZNm0afPn2IiIjgzJkzzJs3j+PHj9OvXz/AmZB68MEHiYmJYcaMGZw+fdp1/R9HFF2pd+/eDBs2jPnz5xMfH09mZiZjx46lVatWV12P65K8vDwOHTrkKqelpbFz506Cg4OpXr36dcUMkJGRQXZ2NhkZGdjtdteorNq1a+Pn50f37t2Ji4sjMTGR6dOnk5WVxV//+ldGjBiB9x9G7X300Ue0bt36qutEjRgxgk8//ZSvvvoKs9nsWo8qICAAk8lUaj+vFV9FkaSUEBWg4LBz570YcyPOcZxoewhtbfWIbtCwRN3DZ2I5kteSc5oYUGDHijY6Cv8OHfEKCqrs0K/L6QvF2ByKDlFbeTJuPQaNc650ePhjVIsa4OHohBBCCCGEuH0sXLiQMWPG8Mgjj2CxWHjggQf45ptvXAkZu93OiBEjOHbsGP7+/vTo0YPZs2cDziltr7/+OpMmTeLpp5/mqaeeYtGiRcyaNYvhw4fzyCOP4O/vz4svvsjRo0cxXmNUWZMmTVi3bh2vvPIKHTt2RClFrVq16N+/PwDVqlWjRo0avP7666Snp6PRaFzl559/3tXO888/T2xsLDNnzuTdd98lP9+56dGSJUt44oknStz3aseOHj3qNq0MnCOX9u/fzyeffMKZM2cICQnh/vvvJyUlhYYNnb9LJScnc+jQIQ4dOlTi+rJ2TBw8eDAXLlxg7ty5jB8/nsDAQB566CHeeuutMp/Z1q1b6dz58nq+48aNA2DQoEEsWrToumIGmDx5Mp988omr3KxZMwDWrl3Lgw8+iE6nY+XKlfzlL3+hbdu2+Pr6MmjQIKZMmeIWT05ODp9//rlrJ8Y/mj9/PgAPPvig2/GFCxcyePDgUvt5rfgqikbd6j6Xd7Hc3FwCAgLIyclxzUMV4noc+/gjPlv1JXVq/Ynthgxq5Rno/UBf/LvVQmu6nAsuLrTx0fNrUVye1ud7aiaPf7YUH72PJ0Iv0+YjZ3lh2a/kFtrIKbTyt/YziPTNcJ1v2fILAvyvf9tTIYS4E8nng5LkmQghykNRURFpaWnUrFnzmskV4S4/P5+oqChmzpx51SldFS07O5suXbrg7+/Pt99+i4/P7fe7jCh/Zb1nr/ezgey+J0Q5sxQVUpCbC4Dj4jFz8zoE9qnnlpACKM63otBh19i5oP2BuqmfEe5rvS0TUgArd2VyNLuQIkseQd7nCDY6+1m//hu0aZ0sCSkhhBBCCCEqwY4dO1iyZAmHDx9m+/btDBzo3PH60pTAyhYcHMzq1avp0qULmzZt8kgM4s4k0/eEKEcnUn/j/6a87FpTSl2c0u1luvpfemxWZ9rKqiuiqvdWIjJ/x9D8YdZ/ugi71UqTLj0IqRZdKbGX5Wh2AfuzLvBbZi5VTGd5o8Pf0WkuL9oXEvyALGwuhBBCCCFEJZoxYwYHDhzAYDDQokULUlJSqFLFc+u6hoSEMHnyZI/dX9yZJCklRDnKOpTqSkgBqIsLDXp5XWXXPcB+MSll0xSTd1LHqia14Oh+5wuo0aSZx5NSRVY7D89JIbfIuWB7q/D0iwkpDVqtnsCAVnh739h2qUIIIYQQQoib16xZM7Zt2+bpMIS4ZZKUEqIc2W3OxE1sSDheGeEUXZzAp9Nf/a1mtTi3dg3OySXX6r5TRv32nQioWvruEZUlM6eI3CIbfoZC+jbYTe2A3wAIC+tF40ZzPBydEEIIIYQQQog7lSSlhChHl5JSWqVQOgP2i0kprz8kpZRSvPXLW/y+9zSNeBidvdBZz+5g4KC/ENSzBzov9+1RK1vqyQvM/P4Apy44p+n9qe5PPFD1v67zRmPp26YKIYQQQgghhBDXIkkpIcqRw+5MShXpvMitqsGivQCAl949wfT7ieMc/vYCQYU1Ll5YBIB3cAhVeveutHjL8s9N6azae9JVrh5wDgB//2YEBNxHdLVBngpNCCGEEELcxWSDeCHuDOXxXpWklBDl6NJIqUMBYVj1dsC5O5230dut3t6v93NfZhdX2cuaCzow3EZbp56+UIxWY2d8ux3EBhfhRzqWYqgW9SQREX09HZ4QQgghhLjL6C/+IbegoACTyeThaIQQ11JQUABcfu/eDElKCVGOio8exVvrQ4HOC1DE2Kvgh4lGjRq51StK2w005azXWqqeOECR/QLodBg8/MP3QpGVpBV7OZNnYdex8zQK+Y36vv+EYrBcrGM0Rnk0xsr2e2ExC4+fochR8q8AtUzeDIsO9UBUQgghhBB3H51OR2BgIKdOnQLAx8cHjUZzjauEEJVNKUVBQQGnTp0iMDAQne7qG3tdD0lKCVGOclNSaBz9COs15wBFG1td/H388fnDCCiLzZng8Lqwhzy9FfTON7F/lbDKDtnN6t9O8sX2465y85BsAHx8ahMa2hWjdwSBga08FZ5HzMs4xT9PnL3quQ6BfpKUEkIIIYQoR+Hhzo1+LiWmhBC3r8DAQNd79mZJUkqIcmS3WPDW+eDAmcTwjQshuHmNEvVsdmcSylRox6GBOlnZ1Ep6jZotW1dmuC4Wm4PUkxf49WgOAH9qeJye1RahJQcUBAe1pXatCR6JzdPO25w7JD4UbKaZv3tysfofpmUKIYQQQohbo9FoiIiIICwsDKvV6ulwhBCl0Ov1tzRC6hJJSglRjuxKodHoUBdHGVfp2wDTVdaJstucbz2NUqCBKKUjrnM3jw1PHvbPraxLPe0qtw7filZdXuQ8IKCZJ8K6LVgvTtvrGRpAYmQVD0cjhBBCCHFv0Ol05fILrxDi9qb1dABC3A2KCwo4m/E7Fp0ONJffVn/8QZr8ezLtlrTjqNYIgEPjTHjEvPOOR+fL/3rsPABRAYp2MeeJ8HNO24uNHUf7dimEhyd4LDZPs1xMSullPQMhhBBCCCGEKFcyUkqIW1SYd4H/N3IIlsIC8DdRX3s5KeXl5f4W27B5GzXTW+BjDUIph2tElU/t2pUZMgAOh2LtgVOczbNwvsCKXmvhjfZvYrOdxVrorGP2i8NojKz02G4nFuUAwKCVHL4QQgghhBBClCdJSglxi3KyMp0JKY0GL5sdpbm8Hab2ikRG0fkLVPmhBVXU/ThsGdgdR13n9N6VvzbRmv2nGPbPra5yhO95bLazgAaDIQSjsRqBgS0rPa7bzaXpewYZKSWEEEIIIYQQ5UqSUkLcIpvVAoDRJ5iA/Pux6f0A8NLp3KbkFWYdR4MOq/0I9rzlruNanQ4vvaFSYwY4fDoPgNhgB22rZ3F/tfNgAR+fmrRtk1zp8dyuii8lpbSSlBJCCCGEEEKI8iRJKSFukd1qAyBfeXO6fjaHNGcA0Gnd3162ggIALJxCBxisdgK1OhoOHoqmEqeGfbs7k//uOsH+rAsAjG6+ALN2Hzhzaxj0IZUWy53AqmRNKSGEEEIIIYSoCJKUEuIWWYucySa7yQQah+t4vRru60TZCp0LNSmKAaiSV0Ab/zBq9uxdSZE6Ja3Yy6kLxa6yr/Z3APx866HVmahefWilxnO7K3ZcWlNKklJCCCGEEEIIUZ4kKSXELSr6/ShatMSa6/MbJ6ltC6eTLY6qnZsDYHPYGPb9MM4fLKIrw/C2FGEHdA4HGkPlTtuz2R2czitGp7ExtXs6AcY8tIX5ADRv/h/0ev9Kjed29u8TZ9mbV8hJixWQhc6FEEIIIYQQorxJUkqIW2QvLsLfUAUfL18AdGjRGr3wCjYCcOzCMbae3EoNWyMAvIstFAA6h0IXFFQpMR7NLmDkkh1k5xejFLQI/5Uw9Qlc3GVPp/PFy8tcKbHcCY4WWXjhwFG3Y0F6nYeiEUIIIYQQQoi7kySlhLhFNksxOo0X9otT9/zuq0rEI63QGp1vr5PJK0jYMxpzXhHFF/4PDacB8G/WnKqjxlVKjKv2ZvHr0fOucsOqzvWkfHxqExjYgiohnd0WZb/XnbU41wnz99IyJCqU2j7e1PYxejgqIYQQQgghhLi7SFJKiFtQlJ9HQW4uOo0XDi7u0mY2uhJSABm79URcqIUl/zsctmMXa0FUwqMYatSo8Bgzcwo5csY5RW/I/WfoGL4UjT0Tmw3CQrtRq9YLFR7DnSbPbgcgwtvAxNgID0cjhBBCCCGEEHcnSUoJcZN+372Tz9+YjHI4CDfF4sA5Ukqnc5/mZbU6ywXGkxgtEH32Aq1f/xvV23ao8BjfXX2Q2atTXeUmQWuwF//mKvuZ4yo8hjtRnu3iqDedrCMlhBBCCCGEEBVFklJC3KSswwdRDgegQacxuEZK/TEpZbM7Ext2nXMBp8CCQqLiGqOphIWzN6edBcDbC6L8IciYg7UIatYcS5UqnTH7NazwGO4kKdkXmJ6W5Vrc3E8n60gJIYQQQgghREWRpJQQN8lhc647pDM0xujXjUIOOst/SGTY7c6yzuFMWmkdCq23d8XF5VBsyzhHToGVjOwCvHXF/KPbLLBnYi1y1gkOaou/uVGFxXCn+vj4GX7JzXeVa/lU3NdJCCGEEEIIIe51kpQS4ibZbc7RNGh0hJ3dTVqgM4FRWlLKu/hiEkspNBWYlPrvrhOM+c9OV7lmQCbYM11lk7E6fn71K+z+d7KzVufX6PmYqrQL9KNVoK+HIxJCCCGEEEKIu5ckpYS4STaLBS06wv3CcdiKyL9y+p5SnPrveGZl7iY6/xnQgl+OlXxv0Gl1aCpwWtiBLOfOemFmbyIDTXSMdu4aZzY3pGWLpWg0ejQaWSvpkmKHgy9PnuO81U56YTEA7YP86BBk9nBkQgghhBBCCHF3k6SUEDcpZ+MmIvwbcCD0DPs1ynVcp9NhzUzl81XtibY/guICDmsGjovvtqA+fSoknpW7TrDmt1PsPHoegIltvyBI8wNKOXeSM+hD0GplOtoffXHyHM/vP+p2rKpB76FohBBCCCGEEOLeIUkpIW5SUfrvaGvVQGnsaJWGAI03/pGh1K1bl9zDqTjsQShVTHHOQsAGFwdHVfnzn8s9FqUUE5buotDqTEBpcBDAGpSyueoEBbUp9/veDdIKnKOj6vh408TsQ31fI7VlLSkhhBBCCCGEqHCSlBLiJiilsCvw0ugAO/4GX8a88oLr/Mli54riebpj6LGhUYrAoBBC6tQjrGatco8np9B6MSGleK2nkWDjeTT5zoRUu7br0OlMGAwh5X7fO9mpYit/O3KCTefzAOhbNYixNcI9HJUQQgghhBBC3DskKSXETVBWK3atFr3WuTaTl5f7W8leVAxoceAcheNttdHviacxd+5crnHsPZHDmP/s5HyBBYCO0XuItn8IFzeQ8/IKxGSqVq73vFt8fvIcS7POucq1fIwejEYIIYQQQggh7j2SlBLiBl04e4bju3+lUK/DqNEAzsXLr2QrtgBG1MWklM6h0JpM5R7LN7szOXQqz1VuEXEScCajDIYqREb0Lfd73i1OWpy7J3YONjMosgrdqvh7OCIhhBBCCCGEuLdIUkqIG7Tk1Re5cPYUmHQEXdzFzpWUslvh6GbsJw8Bjah6rpgcQKfKNymVU2Dlp0Nn2P77eQBGdSiiTfgPYNlDURHEVB9GjRrDy+1+dwulFB8eO82RQgsbzjl3KWwX6EeP0AAPRyaEEEIIIYQQ9x5JSglxA5RSzoQUoNGFg84XyEenu5iUSk6Cn+dhK2wPNELjcI6U8vLywlCrdrnF8fKXu/l6d6ar3NB/GUW5W1xlH5+a5Xavu8mevEImHzrhdizaaPBQNEIIIYQQQghxb5OklBA3wGG/vJtduKU+flZn+VJSqujkMY4UdOWQpSG2oh0Uq0zQgN99zdD5+ZZbHKknnaN8GkX5E1vFD7P+HEU2iK42mICA5oSGdi23e91NMoudU/YivPUMiAgmRO9FTxklJYQQQgghhBAeofV0AELcSWwX1yEy64OpbjShu7jA+aXpe5sON2dt7ggOnUzHVriWQo1zVI63r98t3/tCkZV+72+k3ZtrOHw6D6OuiIktp9M3aihFhYcAiIx8nKpVH0aj0V2jtXuLUor0wmJS8527ItbzMTKhZgTPVAvFWyvfBoUQd5Z58+ZRo0YNjEYjrVu3ZsuWLWXWX7p0KfXr18doNNK4cWO++eYbt/NKKSZPnkxERAQmk4muXbty8ODBiuyCEEIIIQQgSSkhbkjuTz8B0DIigZyYAI75OoDLu+/lFzvXjXKoXACC8h2E39eI1o89fsv33nwkm1/Sz3EipwiHgvvCj2Ep3IfNdh5QGAxVMJmq3/J97kZJh07Q5uffmHrEOeUxSC9JOyHEnemzzz5j3LhxJCUlsX37dpo2bUp8fDynTp26av2NGzfy5JNPMmTIEHbs2MGjjz7Ko48+yp49e1x1pk+fzpw5c3j//ffZvHkzvr6+xMfHU1RUVFndEkIIIcQ9SpJSQtyA/N27ANjtfZJf9IfI0J0BwCfUDIDNpkMpBco5ra9ZegZPjp9C1dibX09KKUX6mXz2ZzkTXa1qBLHif1sxrU84AAEBzWnT+nvatV2LTlf+O/zdDTbnOHco9NFpqWrw4tGqQR6OSAghbs6sWbMYNmwYTz/9NHFxcbz//vv4+Pjw8ccfX7X+u+++S48ePZgwYQINGjTgb3/7G82bN2fu3LmA82fMO++8w1//+lcSEhJo0qQJ//znPzlx4gTLly+vxJ4JIYQQ4l4ka0oJcQNsxcVo0FCkcU7jq1G9BmHhYbRu3RoAq0MLONBcrK9ToNHrb+mekz7fzWdbj14sKfrWnMHpQ79y+uIRo7Eavr61buked6szFhv78go5cXEtqWVNa9E8oPzW9hJCiMpksVjYtm0bL730kuuYVqula9eubNq06arXbNq0iXHjxrkdi4+PdyWc0tLSyMrKomvXy2sRBgQE0Lp1azZt2sQTTzxx1XaLi4spLi52lXNzc2+2W9c0Z8AzKIe9wtoXdz6DLpJPH9hMtsZc4pyjsCWO4kYVHkNwwzx03srtmEaBUd2bYwAsGgP2i8tJ+KsLPFn8hYcjEuLeVSfcjEFX+veialH/Q1hYfCVG5E6SUkLcAHtREVqNDrvGOW2vVcv7iWvSEH56B3Yvw2oZAsrqqu+l16PRaEpp7fps/T0bAD9vL6r4Wqmi/9V1TqPRERLc8Zbav1sppYjfeoDjxZe/HiEG+ZYnhLhznTlzBrvdTtWqVd2OV61alf3791/1mqysrKvWz8rKcp2/dKy0Olfz5ptv8vrrr99wH26G3VHkmhYvxNXodPU5bzyN1vUnu8ss5+thza74nXbTaYDSyeeMqwlTWUT67PV0GELcs/JzIb+M81WqPFRpsVyNfOcU4jqcyzrB1+++x9mM486kFBfXkvK++BZKmQnFuVisBsA5dU+jFPqqYTd9zx0Z5ziZW8SpXOdfopcOjSHUlMmvu0Cn86FD+41oNF4yZa8U+XaHKyFV39dIS39fqhtv8EPpmUNw5gAc+BYOrQGHDQYuhcj7yj9gIYS4g7z00ktuI7Byc3OJjo6umJsFGNHZvSumbXEXUNj1h2mcdx/nte4jpRwGLfowP7zDjlR4FBGO7XgVOtyOadEQprs3d/ktNlbB5uXc6McbB0Vekz0ckRD3rkZRAXh7lT5Symyu+NGkZZGklBDX4cCG9Zw8shsAb60PtktJqYtT83aef4A9jmpk561G2c+6zlWf/95N3W/XsfM89o+NrnLbiC2cODiaExfLBn0VvLxKDlEXl523Oad66DUa1t5f78ZHrBWeg/ntwF7sftxhK6cIhRDixlSpUgWdTsfJkyfdjp88eZLw8PCrXhMeHl5m/Uv/PXnyJBEREW517rvvvlJj8fb2xtu7chJFz39w9fWyhBBCCHHnuzcnOQtxg6wWZ2JCq48lqqiaa6SUXq/n3PFcNuQM4dy5Zij7abh4LqpRU7xjY2/qfgdPOhfmDjDpub9GEI82dCa6dDpfvA1Viao24BZ7dPfac6GARcfPsPiE85kFeOlubgpl3mlnQkqjg2r3Q62HYNgPEBZXzhELIcT1MRgMtGjRgjVr1riOORwO1qxZQ9u2ba96Tdu2bd3qAyQnJ7vq16xZk/DwcLc6ubm5bN68udQ2hRBCCCHKi4yUEuI62K3OaWAabTDhOcc4qAkFwMvLi+Ic5wxdi9aZSNLbNTStHsoDE5Nu+D6/Zeay53gOKQedu/oNb76W+yMPU1BwBKsV6tR+iaioJ8ujS3clq0Pxp52HyLVdHj5/0+tIqYuL6poCYejqWw9OCCHKwbhx4xg0aBAtW7akVatWvPPOO+Tn5/P0008D8NRTTxEVFcWbb74JwJgxY+jUqRMzZ87k4Ycf5j//+Q9bt25lwYIFAGg0GsaOHcvUqVOpU6cONWvW5NVXXyUyMpJHH33UU90UQgghxD1CklJCXIcLm38GQGm1XDDrseFMWHh5eVFc5ExGFXldwAgYrMXUj2iARntjAxELLXb6zt9IgcXZtsmrgLq+/0dOzuU6fn71b70zpVBKseHQWc4VWPhubxZpp/NRwDejO9zyYu2V5ZzVRq7Nufthr9AANMATESE319ilaXpa+TYphLh99O/fn9OnTzN58mSysrK47777+O6771wLlWdkZKC94udPu3bt+PTTT/nrX//Kyy+/TJ06dVi+fDmNGl1eP+LFF18kPz+fZ599lvPnz9OhQwe+++47jEZjpfdPCCGEEPcW+W1LiOtgOZtNqDGaU9EGNtaoyqXFzL28vCgoLgLAobEAoFUK7U2ss3Eip5ACix2DTkunOj6E+zp3GtLpfIlr8Dbe3mEEBDQrnw5dpJTi5S938+vRHA6fzqPY5rj2Rbepo0UWfrk4ai1Ir+OjRjVvrUFJSgkhblMjR45k5MiRVz33448/ljjWr18/+vXrV2p7Go2GKVOmMGXKlPIKUQghhBDiushvW0JcB4fDTv2A1hzRpQPgo7yJNegI3PtPzqU6gKY4cE7x0zoUGsP17/KWU2hlwtJfST/rTKh0j93FY9X/H5fWpvL2DicsLL48u+NyIqeIJVuOuh0zeGlpXj2Qqv5G+javViH3LW+p+UV02rIfdbEcrC+Hb22Oi9P3tLpbb0sIIYQQQgghRAmSlBLiOtgdDry0lxNNQ+IHEvR7EprVX2Av7AA0xVR8eaSUxnD9I6XW7j/F9/su74x0X9WDXEpIgYaqYb3KoQdXV3hxqqCvQcc//qcFPgYdLaoHodXeGdP1LtmXV4gCTFoNEd4GhlYLvfVGLyWlNJKUEkIIIYQQQoiKIEkpIa6Dw+EAzeU1Oswtw9FeXIzcFtIQcqBKjpVzWtAphdbHdM02i6x2snKKOHDyAgA96xXx5/uK8LWeJj8P6tebRmRk/wpdz8lycbqej7cXneqWQyKnkimlOFxYzK4LhQB0DQngw0Y1yqdxmb4nhBBCCCGEEBVKftsSogx71m3ml5W7yPEOpsEVSSmdToe1yM6xopZkBj+Aw5aJDecaUIYqoZi7di2z3SKrnQff/pGsXOd6VAZdMY9VT4JzheRfrOPtXbXCFxi32B0X739ji7LfLv514iwvph5zlW96p72rkaSUEEIIIYQQQlQo+W1LiFKcyUhn1T/+5iqrK9YW0mq1/JDxIKnnW1Kc8W+U/RSWi3kdv/vuw6tKlTLbTj+b70pIRfgVUC8kA52mEI3GQGBAc7yNEQQFtSv/Tv3BpZFS3l5XT0qdLTzL0QvONafm7pjL6cLTANQOrM3MB2dWeHzXsjvPOULK30tLVYOeP4UFll/jkpQSQgghhBBCiAolv20JUYoL2Wcv/suACTNa5Ry15KXzQqPRcKrYHwCH/QwawGBT6CNDafhg6aOkjmYXMHjhFk7mFgPwYM1zJNZ5nUtrSPn61qJ588UV1aUSim3OdZMMVySl7A473//+Pek56fzj139c9TqT17WnJ1aG81Zn/C/WjCifdaSupC6u6yULnQshhBBCCCFEhZCklBClsFudu+lpdMHE5FThUmpCd3Gqm82hQykHmosJpQf2p9Pks6/QeJX+tlp/8DSHT+e7ym2iTwIOtFoDXl6BREUNqJC+lObSSKkrk1Kbszbz4voX3epFm6PRarTcF3ofCbUT8NX7VmqcV3IoxWdZ2ZwstrInrwCAIK8KSBy5RkpJUkoIIYQQQgghKoIkpYQoRfGJEwD46QMIMofh0DnfLrqLSQq7QwdYXfV1Wl2ZCSmAs3nOHfqGtDzOww1ywfIr585BePifaFB/WgX0omyupNQVa0qdLXSOEAs1hdImog196/alRdUWlR5baVLO5fH8/qNux8IM+vK/kUzfE0IIIYQQQogKJb9tCVGK4tOnAHgoLB6tTs9ZzQX0WPkfy1KY/gF2+2RQFxMXSuHl7X3Vdiw2B/0XbGLviVxsdgd++gu0DXqbcycdrjpGY2SF9+dK+cU25qw5yM6j5wH3kVIWuzNx1jCkIW90fKNS47oeR4uc8UUbDXQKMhNp1NMuyK/8byRJKSGEEEIIIYSoUPLblhClsFuK0aJlnyGT7fo0AKpzikjHMSgAu12PUs61oXQOhdZkvGo7qScvsCPjvKsc5pONRuNAp/MjPDwBLy8zUZFPVnh/rvTdniw+WH/EVa7idzmhZnE4kz56XQWMProFDqVIKyzmUIFzgfh2gX7MqB9dgTd0rlcl0/eEEEIIIYQQomJIUkqIUtiLLWg1XhzXZbuOeeEcPVPsX5uC1K9R9lwAdBoNwQMHul1/Nq+Y1/67j7QzeQD0rHOEJ+t/jsN+AbsNfHxqUr/elErqjbtzBc7EU6Mofx69L4pHmlweqXVppJRee3slpZ7b+zv/PX3eVQ7SV3CyyJWUkm+TQgghhBBCCFER5LctIa5CKUVengWdRof94kLmT/R/gjoc4eyS9XybF+tKSAHUeqAzVYYPd2vjm92Z/PfXE65yh8jNWIsvr4Xk79+0gntRurxiZ3KtabVAhnaMdTtndTjXyTLoDJUeV1m25joXiDfrtATodTwcGlgxN1IKMndC1i5nWZJSQgghhBBCCFEh5LctIa5i3ZJU9h7Wodd4Yb2YlPI2elN4ysp/Tr2P3XocWIZGG0yT82foOuoF17UOh+LkhSLXLnv9m2TxUI09mOyHsFqhTu1XCA5uj69vHU90DYC8ImdSys9Y8lvApZFSBu3tkZTKt9s5UWTlrMUZ89pW9almrMDYUlfBkv6Xy7dZck4IIYQQQggh7haSlBLiD35Z8TnbV/wLpex4ewW4Rkp5eXmRe84O6HBwcYqbzUKUj3vS4plPfuHHA6dd5QfD/x9eRadc+/QFB7fHz69eZXSlhA/WHWbZtmOcuuBcC8vPUEZS6jZIxhTZHbT7+TdOXkxIAYToK/jb1unfnP81BUNwLLR8umLvJ4QQQgghhBD3KElKCfEHqZs3oC7uqqdDh01zOSllszhTS3mGM5gA38LT+AReXo9JKcXGQ2cB0Os0BPl4YcBZjokZjtmvgccSUgBz1x7iQtHlBE+dqu671jmU47Za6PxEsdWVkAry0tG9SgAmnfYaV92igotriDV9EnrcfrsPCiGEEEIIIcTdQpJSQvyB3epMPOl9e9Lo6HZ+rO1c8NrLy4uiiwkSdXHck9ah0BgMZOdb+H5vFnnFNix2B81Cd/FC2+9RjmKKLXZAQ2zNsWg9sHh4Zk4hX+44TpHV4UpILXr6fqr6G6kfbnbVe2vLW/z7t3+7yrfDQufnbc54o7z1bGvXsOJu5LDDF8Pg9AHIPe485hNUcfcTQgghhBBCCCFJKSGupJSiKCMDvdabaL8q5NZugI0CapJB4NfDyDkWCDyF41JSSjmTUtO+/o3Ptx9ztfNQzM8UFWW4ymZznEcSUgBvf3eAL3Ycd5WDfPQ8WC+sRL3k35Nd/9Zr9TQLa1Yp8V3NgfwiDuQX8VteIQCBFb3TXuavsOdz92NhcRV7TyGEEEIIIYS4x0lSSogrqMJCbEVFxIa1Y0/QIYo0zuRTB35Bn56BvfABlLKgcxQBoHMocmyw+/h5AJ5odJAGQb8Q5fM7KKhX93X8A+7D16e2p7rE79kFAHSqG0q1IBNd46petV6eNQ+AJQ8vITYgFh+9T6XFeKXzVhvxWw9Q5FCuY0FeFfytKv+M87/BteDhmeATDOFNKvaeQgghhBBCCHGPk6SUEFdQFgsOrQa91ocijXP3vGp+VQlxeEMBHHDEUnx+LqaL9bVKsT49h9QqzoRO9+h/oeznQQFoCAl5EJOpWqX3I+1MPs9/tpOcQivHzjmTUqMeqk3LGsFXrW932Mm3Ovsb4RvhsYQUwLEiC0UOhUGjoUWAD14aDSOqlxzZVS7OZ8DK5+HsYWc5KAZqda6YewkhhBBCCCGEcCNJKSGu4Ci24NBoQHt5utjTzz+L7sNPoQBO5+S5jmuUwq/Axtc1GxEVaKJxpNGZkALq1H4ZP7/6HklIAazam8XOo+ddZaNeS61QvxL1copzmLZ5GmcKz7iOmQ3mEvUqS47VRmqBc2fAmj7efNmsTsXecO+XcGj15bJM2RNCCCGEEEKISiNJKSEuyj9fzNZvjmHT6dFcTEpp0KDVajl1IZhk62OuhcLN1GN1nwjm7GlAn1qrGNlkBkrZKSgAjUZPdPQzaDQaj/Ult9A57fDhJhE83a4G1YN9CPI1lKi39uhavk371lWu6lMVg65kvcqwPSefPjsOYrs4ay+4oteRgss77dV7GO4fAjHtK/6eQgghhBBCCCEASUoJ4bIn5Th7Np9HaQCNFgCd1vnf5elDsNr9cNgu7U5nZ/vvVjQ4eKTmd+Tn213t+PnV82hCCiC3yJmUqhXqV+qUPYALlgsA3Bd6H0/Wf5ImoZ5bR2lrbj42BVrAV6flsbAK3P3OWgSF5+BCprMc0RRqd6m4+wkhhBBCCCGEKEGSUkJclLrhPxTn7AUcaC4mo7y0XjhsCqvdOfXNQT4aQH/hMIPqGGge8i46jR2Nxov7mn4MgL+/5xI7mw6fZf66w/yWmeuMxVj2W/zSOlK1AmvRK7ZXhcdXGptDccbiHIU2OKoKb9StwGmPBdnwXgsozL58zBRYcfcTQgghhBBCCHFVkpQSArAUFXIqbaOrrOHiSCmdDpv18igoG7no0eEo1tC2yldouDidz9yQ4GDPT/36YP1h1qeedpVrhPiWWb/A5lwE3Vdfdr2K9Pz+DJZkXk4Qhegr+NvSyT2XE1IaHfhWgZqdKvaef2C327FarZV6TyHE9dPr9eh0lTCFWAghhBDiHidJKSEAS/blpEiN3EgCqjqTUj4aG7aTRwBw4ECrnNPyNF5aV0LqvqYf4+9/X+UGXIpzBc5Ex7MPxPJAnVDa1QpxnbM77Px47EdyinPYnLmZrPwsjl44CuDR3fa+Pn3e9W9vrYa2gSUXZC9Xheec/41uA0NWVey9/kApRVZWFufPn6/U+wohblxgYCDh4eEen44thBBCCHE3k6SUEMDZ//s/AIKqtuBIbS8O6c7gzwWeLfqEgo8+Aebj0FjROZyrcNeucgQr4OUVQEhI5Y6yKculBc671A+jdWyI27nVGat5Yd0LV72uurl6hcd2NTaHItfmAGBD6/pEehsw6bQVc7Os3bB1IZze7yybKnDNqtJCuJiQCgv7/+zdeVxU1f/48dfMwLAO+yIgggi45b5raeSGflw+aZppbqlJH80lyyUzl0yzXNL049LP7fP9aPnJTMk0I0tFJXNDTQUFQRFQQZCdmWHm/v64MjqpgMqI1nk+Hj7i3jn3nnMuS8yb93kfL+zt7cWbXUF4CkmSRGFhITdu3ADAx8enikckCIIgCILw1yWCUoIA6DJv4mFTnXwXZwqUuYABX25ijZ5iow0G/RWs9DlIBgUGFShU8pI+V9c2VTvw2xbuiWfXH+lcyZKX4znbW9/T5lKOnPHl5+hHiEsInvaetPFtg5PaiebezZ/oePVGiR8ybpGqvbOELcDWBiulBYM0P8+ChJ/vHLv4W66v+zAYDKaAlLu7e/kXCIJQZezs7AC4ceMGXl5eYimfIAiCIAiChYiglCAAJbpibFT23EIONoXVaEmwtRu/n4Lf8jzR529FD3A7i8enxzCqtxuMjdq76gZ9m9EosXJ/IobbWVwOahV+Lnam17+O+5ofk380LdXrEdSDsU3GVslYS0XeyGbM+SumYzdrlWUDUgC5afJ/m7wOHrWh0WuW7e9PSmtI2dtX3VJJQRAqrvR7Va/Xi6CUIAiCIAiChVhonUzZDhw4QM+ePfH19UWhULB9+3bTa3q9nilTptCgQQMcHBzw9fVlyJAhpKWlmd0jKyuLQYMG4eTkhIuLCyNGjCA/P9+szenTp3nhhRewtbXF39+fTz/99ElMT3gGlRRrsVJYYUBeSpYV6seZEieO5g/BWKwBQIktRvsiPBtkUb33MGxtno5aIwW6ElNA6v9GtOTXd18krySDL09/ybITy/j4yMccv36cG4XyUpRg1+CqHC4AyUU6AALt1PT0dGG+JXfb+/1L+G9fuJkoH7d6C9qNA0dPy/VZhqfha0YQhPKJ71VBEARBEATLq5JMqYKCAho1asQbb7xBnz59zF4rLCzkxIkTzJgxg0aNGpGdnc348ePp1asXx44dM7UbNGgQ6enpREVFodfrGT58OG+++SabN28GIDc3ly5dutCpUydWrVrFmTNneOONN3BxceHNN998ovMVnm45GYXc1NqiVFhRopCDUh/9EE+Pkht4UwO9ogAl4JeVh2/vIEI7v4KtTdUENO4nr1guuG6tUvB8sAcKhYLJBz5nd9Jus3YLOyzExcaFFtVaVMUwAXnZXlKRlqQiLQC9vVyZFmTBei1GA/w4FYzyM0JlA84WDIAJgiAIgiAIgiAIFVYlQalu3brRrVu3+77m7OxMVFSU2bnly5fTsmVLrly5Qo0aNTh//jw//vgjR48epXlzuRbOF198Qffu3Vm4cCG+vr5s2rQJnU7HunXrUKvV1K9fn9jYWBYvXiyCUoLJmV8O8/O6rUhSAbXsvDHcXr5nQIm/wy10eaBXFWAD2OryaFrnX9h7NqnaQd+WdquIBT/GcS2nGAAnW2vTX/ZLs6La+bWjumN1XqrxEm1921bZWEv1jU3g95wC07GrlYWXxBTn3AlI9V4B3s+BnYtl+xQEQRAEQRAEQRAqpEqW7z2snJwcFAoFLi4uAMTExODi4mIKSAF06tQJpVLJkSNHTG3at2+PWq02tenatSvx8fFkZ2c/0fELT6/fI7/CqL+AVJKKSmlFye3leyiMBGvk5V6SJNcCUhklFDbqB93qidt24io7YtM4kpQFgL/bnVpFubpcAIbUG8IHrT94KgJSkiRxPFcOSLlYqQi2t6GTh5PlOizRQf51+WO1Rq4l5dvYcv39hQ0bNgyFQoFCoUCtVhMcHMycOXMoKSl5rPvu27cPhULBrVu3KmegFZCUlMTAgQPx9fXF1taW6tWr07t3b+Li4sza7dy5kw4dOqDRaLC3t6dFixZs2LDBrE1ycjIKhYLY2NgK9z9r1izq1KmDg4MDrq6udOrUyfT/rdJ7jhgxgpo1a2JnZ0etWrWYOXMmOp2uzPump6czcOBAQkNDUSqVTJgwoULjKWs5/d3Onz9Pr169cHZ2xsHBgRYtWnDlyp26cKNHj6ZWrVrY2dnh6el532d69OhROnbsiIuLC66urnTt2pVTp07dt7+EhAQ0Go3p//uVMQdBEARBEATh6fPUB6WKi4uZMmUKr732Gk5O8hvYa9eu4eXlZdbOysoKNzc3rl27Zmrj7W1ehLr0uLTNn2m1WnJzc83+CX9t2mw5oONoVw+DCgwY8be7xFzn1TiaPv1yUEppNKK0ta2agd7HrUJ5XC/W9uTTVxry70FNSclL4d+x/+Zavvw17qS2YNDnIeWWGDDIpa+IbVufg63qEmxvoee5bwHM9YJ/t5aPRXbUYwsPDyc9PZ2LFy8yadIkZs2axWeffVbVwzIpL2gDcs3Czp07k5OTw7Zt24iPj2fLli00aNDALDD2xRdf0Lt3b9q1a8eRI0c4ffo0AwYMICIignffffexxhkaGsry5cs5c+YMBw8eJDAwkC5dupCRkQFAXFwcRqOR1atXc/bsWZYsWcKqVat4//33y7yvVqvF09OTDz74gEaNGlV4PKXL6VesWPHANomJiTz//PPUqVOHffv2cfr0aWbMmIHtXT8PmzVrxvr16zl//jx79uxBkiS6dOmCwSBnn+bn5xMeHk6NGjU4cuQIBw8eRKPR0LVrV9MmAKX0ej2vvfYaL7zwQqXNQRAEQRAEQXg6PdW77+n1evr3748kSaxcudLi/c2fP5/Zs2dbvB/h6WEoLsTfsT4XqzuSrjBgb5/NP9W7cL+lJ7agG8aSVGyL5eVxKklCYWNTxSO+I18rZ6k0q+FK/+b+AIz/ZSG/pPxiauNu614lY7tbdFYey65cp8AgZ6HZKZXYqiwcD4/bCUh3joM7Wba/vwEbGxuqVasGwFtvvcV3331HZGQkERERjB8/nu+//x6tVkuHDh1YtmwZISEhAFy+fJmxY8dy8OBBdDodgYGBfPbZZ9SrV4+wsDAAXF1dARg6dCgbNmwgLy+PiIgItm/fjpOTE5MnT2bHjh00btyYzz//HIDAwEBGjBjBxYsX2b59O3369GHDhg0cPHiQadOmcezYMTw8PHj55ZeZP38+Dg4OnD17lsTERPbu3UtAQAAAAQEBtGvXzjTPlJQUJk2axIQJE5g3b57p/KRJk1Cr1YwbN45+/frRqlWrR3qOAwcONDtevHgxa9eu5fTp03Ts2JHw8HDCw8NNrwcFBREfH8/KlStZuHDhA+8bGBjI0qVLAVi3bl2Fx1PWcvpS06dPp3v37mabhdSqVcuszd3L4gMDA5k7dy6NGjUiOTmZWrVqERcXR1ZWFnPmzMHfX/55NXPmTBo2bMjly5cJDr6zAcMHH3xAnTp16NixI4cPH66UOQiCIAiCIAhPp6c2U6o0IHX58mWioqJMWVIA1apV48aNG2btS0pKyMrKMr1pqlatGtevXzdrU3pc2ubPpk2bRk5OjulfSkpKZU5JeAoZJCPONl7oFfJf833t9FjpjRgkFadyJXR5W8Agp0ypJAmVo2NVDtdMaVDqevFlhv04jNd3vU5MegwA4YHhzGk7Bx9HCxYRr6B/p9wgOjufE7mFAATbP4HAXtHtJbpDdsDUFOj5ueX7fASSJFGoK3ni/yRJKn9w5bCzs0On0zFs2DCOHTtGZGQkMTExSJJE9+7dTdkvY8aMQavVcuDAAc6cOcOCBQtwdHTE39+fb7/9FoD4+HjS09NNQZV33nmHQ4cOERkZSVRUFNHR0Zw4ceKeMSxcuJBGjRpx8uRJZsyYQWJiIuHh4fTt25fTp0+zZcsWDh48yNixYwHw9PREqVSydetWUwbPn23duhW9Xn/fjKjRo0fj6OjIV1999djPD+TsrjVr1uDs7FxmdlNOTg5ubm6V0ufDMhqN/PDDD4SGhtK1a1e8vLxo1apVmUvkCgoKWL9+PTVr1jQFoGrXro27uztr165Fp9NRVFTE2rVrqVu3LoGBgaZrf/nlF7755huR9SQIgiAIgvA38VRmSpUGpC5evMivv/6Ku7t5tkebNm24desWx48fp1mzZoD8i6zRaDT99bpNmzZMnz4dvV6PtbU1AFFRUdSuXdv0V/k/s7GxweYpyoQRLE9CQqFU4ajJxNvrEkp3BXujPiS9qCHa/M1AASqjNY62EvXHT0JVgfomlpRbrGfQl0e4ml1oCkqdyDhMiuK4qY2NyobprabjYutSRaM0d0MnBycmBnhTz9GOVs4OlunIoIe9cyDnKuTdXqLr7A+2T88Sxj8r0huo9+GeJ97vuTldsVc/2o9/SZLYu3cve/bsoVu3bmzfvp1Dhw7Rtq1ct2zTpk34+/uzfft2+vXrx5UrV+jbty8NGjQA5MyfUqWBFi8vL1PtoLy8PDZu3MjmzZvp2LEjAOvXr8fX1/eesbz00ktMmjTJdDxy5EgGDRpkqqcUEhLCsmXL6NChAytXrsTPz49ly5YxefJkZs+eTfPmzQkLC2PQoEGmcV24cAFnZ2d8fO4N6KrVaoKCgrhw4cIjPbtSO3fuZMCAARQWFuLj40NUVBQeHh73bZuQkMAXX3xRZpaUJd24cYP8/Hw++eQT5s6dy4IFC/jxxx/p06cPv/76Kx06dDC1/fe//83kyZMpKCigdu3aREVFmeo6ajQa9u3bxz//+U8++ugjQP787NmzBysr+Wvx5s2bDBs2jP/+979mf4gSBEEQBEEQ/rqqJFMqPz+f2NhYU3HYpKQkYmNjuXLlCnq9nldeeYVjx46xadMmDAYD165d49q1a6aaIXXr1iU8PJxRo0bx+++/c+jQIcaOHcuAAQNMb1wGDhyIWq1mxIgRnD17li1btrB06VLeeeedqpiy8JQ5l5bLkHW/Y8QIChW1ah3F1y8eT1US6UUNb7eSMylqZqvxmzmSagMGVN2AbztxOZszqTlkF+rRGyRUSgWorwLwr0b/YmnYUr7p+c1TEZD6MiWDPicTSCzUAhDu6UxPLxe8bKwt02HSATi8DM5uA6MerGzB0bv864QK2blzJ46Ojtja2tKtWzdeffVVhg0bhpWVldlSNnd3d2rXrs358+cBGDduHHPnzqVdu3bMnDmT06dPl9nPpUuX0Ov1tGzZ0nTO2dmZ2rVr39P27s0uAE6dOsWGDRtwdHQ0/evatStGo5GkpCRAzty6du0amzZtok2bNnzzzTfUr1//nl1fy3L3BhoPsmnTJrNxREdHm14LCwsjNjaWw4cPEx4eTv/+/e/J/gVITU0lPDycfv36MWrUKNP5u+8bERFRoTFHR0ebXbdp06YKXWc0ystue/fuzcSJE2ncuDFTp06lR48erFq1yqztoEGDOHnyJPv37yc0NJT+/ftTfHv5c1FRESNGjKBdu3b89ttvHDp0iOeee45//OMfFBUVATBq1CgGDhxI+/btK3UOgiAIgiAIwtOrSjKljh07ZqolApgCRUOHDmXWrFlERkYC0LhxY7Prfv31V1588UVA/oV/7NixdOzYEaVSSd++fVm2bJmprbOzMz/99BNjxoyhWbNmeHh48OGHH5rVvRD+vr7e8xvFR/9AoTKCYz62tnkAeHsNpDQHIk+djmORFa45F6jj2/LBN3uCcovl7KhG/i4s6tcQja2K139aAnp43u95Gng2qOIRyoySxJzENPS3l4nZKBXUsLXwzoWlO+151oHmb4BvE7B5epZb3o+dtYpzc7pWSb8PKywsjJUrV6JWq/H19cXKysr0s7osI0eOpGvXrvzwww/89NNPzJ8/n0WLFvH2228/ytDNODiYZ93l5+czevRoxo0bd0/bGjVqmD7WaDT07NmTnj17MnfuXLp27crcuXPp3LkzISEh5OTkkJaWdk92lk6nIzExka5dy/+c9erVyyxY5+fnZzbu4OBggoODad26NSEhIaxdu5Zp06aZ2qSlpREWFkbbtm1Zs2aN2b3v3u2vohlFzZs3N7vuzxuBPIiHhwdWVlbUq1fP7HzdunU5ePCg2TlnZ2ecnZ0JCQmhdevWuLq68t133/Haa6+xefNmkpOTiYmJQamU/x62efNmXF1d2bFjBwMGDOCXX34hMjLSlBUmSRJGoxErKyvWrFnDa6+99khzEARBEARBEJ5eVRKUevHFF8usaVKReidubm5s3ry5zDYNGzY0++u0IADodVo0UatoZdRS59VLqJzjKX2LXt3nDSAOg6IEpVH+OlRb2+Bl7/XA+z1JecXyUjgvjQ1LzkzlwNUDptecbJ6e5S75BqMpIPXvegHUdbDF1dpCP26Kc+DU15CwVz6u1hBajbZMX5VMoVA88jK6J600kHK3unXrUlJSwpEjR0zL927evEl8fLxZEMPf35+IiAgiIiKYNm0aX375JW+//bYp4+ju+k5BQUFYW1tz9OhRUyApJyeHCxcuPDCDplTTpk05d+7cPeMsi0KhoE6dOqaC2q+88gpTpkxh0aJFLFq0yKztqlWrKCwsZMiQIeXeV6PRoNFoKjQGo9GIVqs1HaemphIWFmba0a40iFPqYeZXys7O7pGuU6vVtGjRgvj4eLPzFy5cMBWLvx9JkpAkyTSvwsJClEolCoXC1Kb0uDQbKyYmxuxrYceOHSxYsIDDhw/j5+f3yHMQBEEQBEEQnl7PxrshQagEBqPEkHVHOJtwlcEGHWpHPTbOcpDHYLAiP88fJGcASpQ6VEb5zZPS2sIZPhVw4EIG/4lJJvmmXCzcwUbJ3rsCUoFOgfg63Ftzpyrc0Oq5UiwvtbVTKujjff8abpXmt1Ww784uaWjuv5GBUPlCQkLo3bs3o0aNYvXq1Wg0GqZOnYqfnx+9e/cGYMKECXTr1o3Q0FCys7P59ddfqVu3LiDvfKdQKNi5cyfdu3fHzs4OjUbD0KFDee+993Bzc8PLy4uZM2feE9C4nylTptC6dWvGjh3LyJEjcXBw4Ny5c0RFRbF8+XJiY2OZOXMmgwcPpl69eqjVavbv38+6deuYMmUKIGdUffrpp7z77rvY2toyePBgrK2t2bFjB++//z5z587lueeeM+v3zwEbgPr165vqGZYqKCjg448/plevXvj4+JCZmcmKFStITU2lX79+gByQevHFFwkICGDhwoVkZGSYrn/QJh2lSrOI8vPzycjIIDY2FrVafU+W093y8/NJSEgwHZcup3dzczMFBd977z1effVV2rdvT1hYGD/++CPff/89+/btA+Qll1u2bKFLly54enpy9epVPvnkE+zs7OjevTsAnTt35r333mPMmDG8/fbbGI1GPvnkE6ysrEyZ06VfF6WOHTuGUqm853k/yhwEQRAEQRCEp5MISgl/G2m3ijiUcJNa6nRqhKVifXtll6HQiSPH/kFv698x3JwC9KFEqUd5OyhlZW2hGkgP4fOfL3Diyi3TsZeTEuRSLUS/Go1GrUGlfPglWZXto8Q0Vly5UxvH2eoJ/IjJub1Lpm8TqN7ymcmS+qtYv34948ePp0ePHuh0Otq3b8+uXbtMARmDwcCYMWO4evUqTk5OhIeHs2TJEkBe0jZ79mymTp3K8OHDGTJkCBs2bGDx4sVERETQo0cPnJycmDx5MikpKdja2pY5loYNG7J//36mT5/OCy+8gCRJ1KpVi1dffRWA6tWrExgYyOzZs0lOTkahUJiOJ06caLrPxIkTCQoKYtGiRSxdupSCggIAvvrqKwbcp7bc/c6lpKRQvXp1s3MqlYq4uDg2btxIZmYm7u7utGjRgujoaOrXrw/IG3IkJCSQkJBwz/XlZRE3adLE9PHx48fZvHkzAQEBJCcnP/CaspbTb9iwAYCXX36ZVatWMX/+fMaNG0ft2rX59ttvef755wGwtbUlOjqazz//nOzsbLy9vWnfvj2HDx/Gy0vOMq1Tpw7ff/89s2fPpk2bNiiVSpo0acKPP/5436LyD6MicxAEQRAEQRCeTgqpMvYG/4vKzc3F2dmZnJwcsRPQX0Bsyi3+ueIQ/6q/mWZ+v5nOZ2X5UvxHLQbzHdd0tfk26xOstZkU5m3AoFLSOc9Aw127q3Dk8NLCfVzKLGBMWC1CvO2o5pnJqJ+HobHWcHjg4Sod2926HovnVF4RVgpQKRS84efBzGC/8i98HF8Pgrid8I9F0GKkZft6DMXFxSQlJVGzZs1ygyuCuYKCAvz8/Fi0aBEjRox44v1nZWXRsWNHnJyc2L17N/b29k98DMKTV9b3rPj94F7imQiCIAiCcLeK/m4gMqWEv7z5u86z/lAyhtvxVz+FXBA7+3owmTkeWF0PJUiRy39vrCC3xAVDSRLWukyMSjlTyi6k6muYlBY4bxtix3u/vUaeXi7M/rTUkTJIEjd1JWTq5HHuaBJCM2eHcq56DMU5sHUE5F2DbHlXNZ6CHQeFynHy5Eni4uJo2bIlOTk5zJkzB8C0JPBJc3Nz4+eff2bFihXExMTQsWPHKhmHIAiCIAiCIPzViKCU8Je37WQqSgp5rc42nG3y8NJcBeBWZgDXbvoSfuY0Xq8P4vweF3QF32PUX0QPcLt+jd+cj6pk3JIksSM2jfScYnKK5BpN14qTTAEplUJFl8AuVTK2u0mSRI/jFzmZV2g652Hp4t0JeyEhyvycZx3L9ik8UQsXLiQ+Ph61Wk2zZs2Ijo7Gw8Ojysbj7u7Ohx9+WGX9C4IgCIIgCMJfkQhKCX9Zf6TmEHctj5v5Wlp4/0H76r+ZvV5QJBeVCliyhPzf5Nf03EAFOBTrKHRU0qxbf+ydXZ7wyGXHLmczYUus6VipAKWqCIAW1Vqwruu6KhnXnxUYjKaAlBJo7uxAdVsLF4cvuF38OeB5aD8JnPzAs7Zl+xSemCZNmnD8+PGqHoYgCIIgCIIgCBYmglLCX1J2gY4+/z6MziBvNe5qK2cXOTs1QfdLMZcyrMi3dwWFAbWDAyU6uZ2EvPzsuasZpP+jLh1ef6NqJoBcmB3A28mG9iGetKjphkFxBAAHawsujXtIN/XyM7NTKknq0NCynSVFw84JkH+7mLpXHaj1kmX7FARBEARBEARBECxCBKWEv6SU7EJ0BiPdg36labVrVNekgwSXjqSRctwLN7UHhiA5EGVlZUXJ7VpISAYAVEaJjsHhVTV84E4dqSb+rowLd+PczXMcuHoSeDqCUsdyChh7/jI5evmZuVk/gd3/znwDN+9s/Y5vU8v3KQiCIAiCIAiCIFiECEoJfylx13JZuS+RtFtFuNpk0zf4O/mF23tMFt0EKEGhUGFUyCetrKwouR1YUdwOSiklCYXawkvQHuBaTjH74m9w6GImABpbFYN+GES2NtvURmOtqZKx3e37jFsk3651BdDE6QnsSFZ4U/7vC5Og8SBwr2X5PgVBEARBEARBEASLEEEp4S9l9f5L7IhNw86qkLpuVwCwtnajZuAYzu47xM24VHQ+zcmyloNP1biBTfQ8DNetAH8Ukpw9pTIaUahtqmQOk76J5VDCTdOxvY1EdrYckGru3Rw7KzteCX2lSsZ2t6zby/ZG+3vymo8bIfa25VzxGOJ2QdpJuHZaPvZ+TgSkBEEQBEEQBEEQnnEiKCX8pVzPLaam02Xeb/U5SoUceLK3r4m//zBOXruKo7WRXBfQIi81a1Co5X87QygyuACgMFZ9plRKllxLqlVNN3xd7Ahv5MC2ffKSvfXh66tkTHf7Ov0mh27lczg7H4DaDrbUcbCzXIeFWbDlddPSSgCcfC3XnyAIgiAIgiAIgvBEiKCU8MzLKdTz6Z44bhXq+SM1h9beiSgVBhQKFSqVPdW8ewOQf/Ik/q7tSCMXpaTgJX0DrhQFkaX3Q5//HcaSKyhu31NllFDaP4HlaPebT5EegFm96pBhOMPZ7GMAaNRVv2SvoMTApPgUDNKdczUsvdNe/nU5IGVlB00Hg0sNqN7Ssn0KgiAIgiAIgiAIFieCUsIz7/vTaWw6coU2Pr/zRr1jVLPPAMC/+jBCQt43tSspLkKhkjOkVCho8kprktdHAzqMJcmmdvaAx8sv49Cm9ROcBRy5dJPTV3PIK5aDUnuvfs/qc5+ZXndWOz/R8dxPpr4EgwQ2SgVTavpQzcaadi6Olu206HYtLSdf6P5Z2W0FQRAEQRAEQRCEZ4ayqgcgCI/rem4xAAPrRtLAIw5Pe7kek4NjqFm7EkkChRyUslKrcWjqi0FSgVRiavPi+WSCPh6D39y5KO0suCTtTwq0JQxe9zsf7zqPUQIrpYIb2ssA+Dn60cqnFW81euuJjefPDJLElykZLEy+BoCHtRX/quFFH29XFApFOVc/Sod6WNsF5njAhh7yOTvXyu9HqJBhw4ahUChQKBSo1WqCg4OZM2cOJSUl5V9chn379qFQKLh161blDLQCkpKSGDhwIL6+vtja2lK9enV69+5NXFycWbudO3fSoUMHNBoN9vb2tGjRgg0bNpi1SU5ORqFQEBsbW+H+Z82aRZ06dXBwcMDV1ZVOnTpx5MgRs3uOGDGCmjVrYmdnR61atZg5cyY6na6Mu0J6ejoDBw4kNDQUpVLJhAkTKjSelStX0rBhQ5ycnHBycqJNmzbs3r3b9HpWVhZvv/02tWvXxs7Ojho1ajBu3DhycnJMbTZs2GD6+vjzvxs3bpjaabVapk+fTkBAADY2NgQGBrJu3Tqz8Xz++eemvvz9/Zk4cSLFxcVlzmHbtm106dIFd3f3h/58CIIgCIIgCFVLZEoJz6zZ359l24mreNok85xHLvZWuQDUrv0RtjbVcHNrD4C2sICcG9fRKwCFHIe1Uspf+nqjtalWkdJoRCkZcHVwf+JzuZmvQ1dixEqpoFcjX9oGe/B7/j4ABtUdxOB6g5/4mO4WnZ3HjIRU03F1Sy/Zy7oEKUfMzwU+b9k+hTKFh4ezfv16tFotu3btYsyYMVhbWzNt2rSqHhoAOp0OdTl14PR6PZ07d6Z27dps27YNHx8frl69yu7du80CY1988QUTJkxgypQprFy5ErVazY4dO4iIiOCPP/5g4cKFjzzO0NBQli9fTlBQEEVFRSxZsoQuXbqQkJCAp6cncXFxGI1GVq9eTXBwMH/88QejRo2ioKCgzH61Wi2enp588MEHLFmypMLjqV69Op988gkhISFIksTGjRvp3bs3J0+epH79+qSlpZGWlsbChQupV68ely9fJiIigrS0NLZu3QrAq6++Snh4uNl9hw0bRnFxMV5eXqZz/fv35/r166xdu5bg4GDS09MxGo2m1zdv3szUqVNZt24dbdu25cKFC6aA6OLFix84h4KCAp5//nn69+/PqFGjKjx3QRAEQRAEoeqJoJTwTJIkiU1HrlDX9RTjmnxpOq9UqvHzfc2UvaPXaVk7/k2KcnPAWgXK20Gp28v4SiRrJOTC4kpJwsrGjobezZ7wbCD39pI9d0c1C/s3JE+Xx0/7bwHgaG3h5XEVkHZ7fDXt1PzD04U+3hbMWirOgatH5Y9da8LwXaC0Akevsq8TLMrGxoZq1aoB8NZbb/Hdd98RGRlJREQE48eP5/vvv0er1dKhQweWLVtGSEgIAJcvX2bs2LEcPHgQnU5HYGAgn332GfXq1SMsLAwAV1f562no0KFs2LCBvLw8IiIi2L59O05OTkyePJkdO3bQuHFjPv/8cwACAwMZMWIEFy9eZPv27fTp04cNGzZw8OBBpk2bxrFjx/Dw8ODll19m/vz5ODg4cPbsWRITE9m7dy8BAQEABAQE0K5dO9M8U1JSmDRpEhMmTGDevHmm85MmTUKtVjNu3Dj69etHq1atHuk5Dhw40Ox48eLFrF27ltOnT9OxY0fCw8PNAjxBQUHEx8ezcuXKMoNSgYGBLF26FOCe7KOy9OzZ0+z4448/ZuXKlfz222/Ur1+f5557jm+//db0eq1atfj44495/fXXKSkpwcrKCjs7O+zuyizNyMjgl19+Ye3ataZzP/74I/v37+fSpUu4ubmZxny3w4cP065dO9MzCgwM5LXXXjPLJLufwYPloH1ycnKF5y0IgiAIgiA8HcTyPeGZs/tMOkuiLqArMeLvmAaAysoFR8e61Kw5wWw5WeGtbDkgBaBwAKX6dnsVktGIQbI2Ld9TGiVs7TWolKonNpdivYE9Z6+x56y8LM7J1ppXd77K818/T0x6DFC1Bc7TinVsTrvJL1lyFlpLZ0c+qOVLPUcLLW3U5sPSRrBjjHys8ZFrSf1VA1KSBLqCJ/9PksofWzns7OzQ6XQMGzaMY8eOERkZSUxMDJIk0b17d/R6OZA5ZswYtFotBw4c4MyZMyxYsABHR0f8/f1NwY74+HjS09NNQZV33nmHQ4cOERkZSVRUFNHR0Zw4ceKeMSxcuJBGjRpx8uRJZsyYQWJiIuHh4fTt25fTp0+zZcsWDh48yNixYwHw9PREqVSydetWDAbDPfcD2Lp1K3q9nnffffee10aPHo2joyNfffXVYz8/kLO71qxZg7OzM40aNXpgu5ycHFMgx5IMBgNff/01BQUFtGnTpszxODk5YWV1/79r/ec//8He3p5XXnnFdC4yMpLmzZvz6aef4ufnR2hoKO+++y5FRUWmNm3btuX48eP8/vvvAFy6dIldu3bRvXv3SpqhIAiCIAiC8LQRmVLCMyUps4C3Np2ghiaFboFxNPaOB8Df7zVq1br3TWTJ7TfGRmsH1M6dyLTSYyWVUDcridNLPgNaALeX70kSChubJzUVAFbuS2Tp3oumYwdbBXFZd2rbeNp50tCz4RMd093GnL9MzK2CO+NRW/hHxq3LtwubK8DJD5oOsWx/VU1fCPN8n3y/76eB2uGRLpUkib1797Jnzx66devG9u3bOXToEG3btgVg06ZN+Pv7s337dvr168eVK1fo27cvDRo0AOTMn1KlgRYvLy9cXFwAyMvLY+PGjWzevJmOHTsCsH79enx9731OL730EpMmTTIdjxw5kkGDBpnqKYWEhLBs2TI6dOjAypUr8fPzY9myZUyePJnZs2fTvHlzwsLCGDRokGlcFy5cwNnZGR8fn3v6U6vVBAUFceHChUd6dqV27tzJgAEDKCwsxMfHh6ioKDw8PO7bNiEhgS+++OKxlgyW58yZM7Rp04bi4mIcHR357rvvqFev3n3bZmZm8tFHH/Hmm28+8H5r165l4MCBZtlTly5d4uDBg9ja2vLdd9+RmZnJv/71L27evMn69esBOYssMzOT559/HkmSKCkpISIigvfff/9BXQmCIAiCIAjPOJEpJTxTUrIKARjXZC2vhH5PTacEAGxsqt23veF2UErrV5Nsz1QSbNPx12mJy+zJwYstADBKcgFhlVFCYWPhWkl/cuX2fGp6ONA+1JPXWsvLmBytHTk5+CQ/9/sZL/uqyxJKLpKfTTsXR17xdmWwr4XrbZXutOceDO+chcavWbY/ocJ27tyJo6Mjtra2dOvWjVdffZVhw4ZhZWVltpTN3d2d2rVrc/78eQDGjRvH3LlzadeuHTNnzuT06dNl9nPp0iX0ej0tW7Y0nXN2dqZ27dr3tG3evLnZ8alTp9iwYQOOjo6mf127dsVoNJKUlATImVvXrl1j06ZNtGnThm+++Yb69esTFRVV4WdRXu0qkINzd48jOjra9FpYWBixsbEcPnyY8PBw+vfvb1YQvFRqairh4eH069fPrFbS3feNiIio0Jijo6PNrtu0aZPptdq1axMbG8uRI0d46623GDp0KOfOnbvnHrm5ufzjH/+gXr16zJo16779xMTEcP78eUaMGGF23mg0olAo2LRpEy1btqR79+4sXryYjRs3mrKl9u3bx7x58/j3v//NiRMn2LZtGz/88AMfffRRuc9UEARBEARBeDaJTCnhmbD/Qgb74m+QlFmAlUKPq20WANW8/4la7Y63d6/7XmfQ63FVeyPZuJBPMd5GZ1wMKvIBG2UGaE9gl5FItp2cKaW0sX2Cs4J8rbx0cNQLQQxsVYM/Mv+AM+CodjQVY68KV4t1ZOhKuKmTx7e0bg3LFjeP3w1/bINceTkm9pZfqvRUsLaXs5aqot+HFBYWZir67evri5WVFZGRkeVeN3LkSLp27coPP/zATz/9xPz581m0aBFvv/32o4zcjIODebZXfn4+o0ePZty4cfe0rVGjhuljjUZDz5496dmzJ3PnzqVr167MnTuXzp07ExISQk5ODmlpafdkZ+l0OhITE+natWu5Y+vVq5dZsM7Pz89s3MHBwQQHB9O6dWtCQkJYu3atWdH4tLQ0wsLCaNu2LWvWrDG79927yzk5OZU7FpADeHdf5+3tbfq4dEdFgGbNmnH06FGWLl3K6tWrTW3y8vIIDw9Ho9Hw3XffYW1tfd9+/t//+380btyYZs3Ma/P5+Pjg5+eHs7Oz6VzdunWRJImrV68SEhLCjBkzGDx4MCNHjgSgQYMGFBQU8OabbzJ9+vQyn6kgCIIgCILwbBJBKeGpJ0kSb28+gTU3eL3u/3i+ZT4ACoU19eotNKsh9Wf6okKc1Z5kKOQdntrk+2FwzOZqLlgZj3IzPw5urzBR29jiNmSoxedzt/xiOehTbMxm+sHVpObLO9xVZXHzU3mFdD1mvjzJ1drCdbZ2vgN5dwVnXGo8uO1fiULxyMvonrTSQMrd6tatS0lJCUeOHDEt37t58ybx8fFmy7/8/f2JiIggIiKCadOm8eWXX/L222+bMo7uru8UFBSEtbU1R48eNQWScnJyuHDhAu3bty9zjE2bNuXcuXP3jLMsCoWCOnXqcPjwYQBeeeUVpkyZwqJFi1i0aJFZ21WrVlFYWMiQIeUvK9VoNGg0FasHZzQa0Wq1puPU1FTCwsJo1qwZ69evR6k0T2p+mPmVsrOzq/B1fx5Pbm4uXbt2xcbGhsjISGxt7x+8z8/P53//+x/z58+/57V27drxzTffkJ+fj6Oj/PPtwoULKJVKqlevDkBhYeE9c1Xd3pRCkqSHeqaCIAiCIAjCs0EEpYSnXp62hNziEroFHqeh550lJY4OoWUGpACuL1mCSlWDktt1o3QHPsN2zDtwA7TGYgCcC4vJ9VASPn05zsGhlpvIbQXaEhb8GEdmvpZz6XIB8aMZBzmYfSfrxNexCuoM3XY2T15KY6dU4K62opO7Mw4qCwaljEbIvy5/HDYd7Fyh7v0z34SnS0hICL1792bUqFGsXr0ajUbD1KlT8fPzo3fv3gBMmDCBbt26ERoaSnZ2Nr/++it169YF5J3vFAoFO3fupHv37tjZ2aHRaBg6dCjvvfcebm5ueHl5MXPmTJRKZbnf71OmTKF169aMHTuWkSNH4uDgwLlz54iKimL58uXExsYyc+ZMBg8eTL169VCr1ezfv59169YxZcoUQM6o+vTTT3n33XextbVl8ODBWFtbs2PHDt5//33mzp3Lc889Z9ZvfHz8PWOpX7/+PdlEBQUFfPzxx/Tq1QsfHx8yMzNZsWIFqamp9OvXD5ADUi+++CIBAQEsXLiQjIwM0/Wlux8+SGkmVH5+PhkZGcTGxqJWqx9YHwpg2rRpdOvWjRo1apCXl8fmzZvZt28fe/bsAeSAVJcuXSgsLOS///0vubm55ObKP7c8PT1NQSOALVu2UFJSwuuvv35PPwMHDuSjjz5i+PDhzJ49m8zMTN577z3eeOMNU+2pnj17snjxYpo0aUKrVq1ISEhgxowZ9OzZ06yfP8vKyuLKlSukpcmB7dLPR7Vq1cp9ZoIgCIIgCELVEkEp4amVry3hlZWHuXIzBx+HGwQ4y4ELL6/uVPPuhbNz03LvUZyWjqpGEAbkTCn3Pi+Tq5cDVNeMhTgC1W4VkF/XnmpPICAF8PP56/wn5rLZOaMqE4DOAZ1p49uGDtU7PJGx3E92ifx8eni58EXdAMt2dnY7pJ8C6XamTLvxYPVki80Lj2f9+vWMHz+eHj16oNPpaN++Pbt27TIFZAwGA2PGjOHq1as4OTkRHh7OkiVLAHn51ezZs5k6dSrDhw9nyJAhbNiwgcWLFxMREUGPHj1wcnJi8uTJpKSkPDBDp1TDhg3Zv38/06dP54UXXkCSJGrVqsWrr74KQPXq1QkMDGT27NkkJyejUChMxxMnTjTdZ+LEiQQFBbFo0SKWLl1KQYFc7P+rr75iwIAB9/R7v3MpKSmmDKBSKpWKuLg4Nm7cSGZmJu7u7rRo0YLo6Gjq168PQFRUFAkJCSQkJNxzvVTOrolNmjQxfXz8+HE2b95MQEAAycnJD7zmxo0bDBkyhPT0dJydnWnYsCF79uyhc+fOAJw4cYIjR44A92ZoJSUlERgYaDpeu3Ytffr0MRWtv5ujoyNRUVG8/fbbNG/eHHd3d/r378/cuXNNbT744AMUCgUffPABqampeHp60rNnTz7++OMy5x0ZGcnw4cNNx6Wfj5kzZz6w9pUgCIIgCILwdFBI5f2W+zeWm5uLs7Ozaftr4ck6lJDJoP93hBmtPiPQOcV0PjRkBv7+w8q8NjczgwNf7SXpt+MEOThx1FcOerz33nuc3/AtR85UJ7NkI455N6mXmold/xd5cdwnlpyOyfpDScz+/hwNqzvTr1l1qrvZs/XqbA5cPcCsNrPoG9r3iYzjz9ZdzeBkXiFn84o4V1DMm9U9mRNiwZott67A5w3uHNt7wOREy/VXxYqLi0lKSqJmzZrlBlcEcwUFBfj5+bFo0aJ7Cmg/CVlZWXTs2BEnJyd2796Nvf3D1+QSnj1lfc+K3w/uJZ6JIAiCIAh3q+jvBiJTSnjqSJKE3iBxPbcYa6XOFJCysnJGrXbH3T2s3Ht8v3ge1xIvAqBQtIPby/esrKwo0RtvdyTXc1IajTT2a3m/21hEbpHcb31fZ9rVM3Kz6DLX4+UsMEd11dSSuq7V8/7FVLNz1W3vX8i40uRclf9r6wzPvQK1u1u2P+GZcfLkSeLi4mjZsiU5OTnMmTMHwLQk8Elzc3Pj559/ZsWKFcTExNCxY8cqGYcgCIIgCIIg/NWIoJTw1Bm+4Sj746/TP3Q7YxtfA0CptKX9C8fLrSlTKi/rJga1LTrPWlyylgNSLbVp/DrlU27qA2+3ks8rJQmFjeWXjJ28ks2es9eJuXQTgGJjFr23DzRro1FXTRHfGzo9AE5WSsYHVMPJSkkfb1fLdGY0Qu5VyJSDhriHQI/FlulLeGYtXLiQ+Ph41Go1zZo1Izo6Gg8Pjyobj7u7Ox9++GGV9S8IgiAIgiAIf0UiKCU8VQq0JeyLzyDYJZkugftM5x0calU4IAVg0Oux9gqhUGNDJnJmUlbe8+SU3KnRYlUiB2JURgmFjbpyJlCG97aeJuFGvum4RJkFgIO1A9Xsq+Hr6EsTryYPutwiSowSJ3ILOJ5bCICvjZoxNbws2+n//ROS9t85tnezbH/CM6dJkyYcP368qochCIIgCIIgCIKFiaCU8FSQJInIU2mm3eg87eXgja1dTQIDRuHm2u6h7lei1+Fk600OtwgyeOFjdCVNkr/c/T3/IPdENJJNAVprK5SShPIJZEpdz5V3++vfvDrVXe1RuUSz7w/oVKMTc5+fW87VlrH48jUWJ183HbtZW/hHgtEIyQflj1U2YGUL9ftYtk9BEARBEARBEAThqSSCUsJT4fTVHMZ/HUsL7xMMqxdHoIu8xE3jEIyf76sPfT+DTod0O7PKIz2dtmP6suXLw0iSjoSLUUiOEqVf/pqQUOyalr+T3+OQJIl8rZyxNealGvwv8f9x+OphAJxtnC3ad1nO5RcB4GNjjYe1FSOrW3B5VHYyXD97Z6e9aVfByvIZaoIgCIIgCIIgCMLTSQSlhKfClaxCVAoDIxv8Fytliem8rZ3/Q99Ll5mJJEkYFfLGkoqcyzg08cYgWYGklbdVlyTsSnJxf7kXTQdNQqFUVtpc/iztVhHpOcWU7nMZmxnDf879x/S6r6Ovxfp+kExdCcdzC0gs1ALwcYgf3T1dLNdhbjp80QyMtz+3ti4iICUIgiAIgiAIgvA3J4JSQpU6fjmbE5ezOZNyFT/HNKyUJSgUVgTVnIBSZUs174ffbUuXmQGAETkK5NY9HCSJEskaSSoAwMooYSPdJKRLR4sGpI5cusmra34zHVspFeSVZANQx60OA+sMJLxmuMX6f5DXT18iNq/QdOyptvBOezcvygEplQ24B0PjgeVfIwiCIAiCIAiCIPyliaCUUGV0JUaGrD1CqMsJ/tVoHb195CCSWu1BYOBbj3TPgltadm+5igIFhtuZUs7NGiPpizGiBuSaVUqjRLBXPRp7Na6MqTzQH2lyfzZWSpztrOnZyJfCkqsA1Hevz8shL1u0/we5UCjXt2roaEcdR1uaaOwt15lBD/k35I/9msEbuy3XlyAIgiAIgiAIgvDMEEEpocrcyCumQGegnlsCSoWEJClQKFWPlB0FYDQYiPluN6lJZ0Ftj44S1OioduZzDGeKgOEgycvHlJJEqG8DlArLZUkB5BTJO/z1a16dCV19SMlLYUv8JUDede9JKygxUGg0UmgwArC1STBOVirLdfj1IIjbeedY7LQnCIIgCIIgCIIg3CaCUsITl5Gnpe/Kw+QW3KC2axqBLvLub6Gh06nhP/yR75t47Aixe9ZSFNwEg1VdoJC6hmsknpTQSaXFxOUi20rJiNLG9jFn8mAF2hIOXMjgVMotAOzV0OO7HhToC0xtHNWOFuv/fv7f1QxmXEy9vagRrBSgUVkwKGfQmwekUECtlyzXnyAIgiAIgiAIgvBMsWyaiCDcx+9JWVzNzmNGq0+Y3GI5QU5xAKit3R/rvvnZN7FSO2Owkr+srSQlhoLG/JY/mBMFfQBQGOTd5pRGCaWT5rH6K8tne+J5a9MJ9l+Q61sprYoo0BegVCgJcArgOffn6BLQxWL938+vN/NMASmA7p4uKG7vUFjpdAVw/Q/5Y4USJifJu+21GGGZ/gSLGjZsGAqFAoVCgVqtJjg4mDlz5lBSUlL+xWXYt28fCoWCW7duVc5AKyApKYmBAwfi6+uLra0t1atXp3fv3sTFxZm127lzJx06dECj0WBvb0+LFi3YsGGDWZvk5GQUCgWxsbEV7n/WrFnUqVMHBwcHXF1d6dSpE0eOHDG754gRI6hZsyZ2dnbUqlWLmTNnotPpyrxveno6AwcOJDQ0FKVSyYQJEyo8plKffPIJCoXinmsTExN5+eWX8fT0xMnJif79+3P9+nWzNh9//DFt27bF3t4eFxeX+96/9Gvo7n9ff/216fVt27bRuXNnUz9t2rRhz5495Y5727ZtdOnSBXd394f+fAiCIAiCIAhVSwSlhCcuq0CLkzofF9tcQIGDfTBuru1wd+/wWPc16PVYW9kBYGdUM+SGF27O8s521Zyu4S4dxTNNrmekdnXFpU+fx+qvLJdvyhlRod6O/KOhDy2D5SVyvg6+7Hx5J1/1+IpaLrUs1v/djJJEarGOa7ff1K57LpCUDo1YUz/QMh3m34BFdWDNi/KxvYe8bM/myWaGCZUrPDyc9PR0Ll68yKRJk5g1axafffZZVQ/LpLygDYBer6dz587k5OSwbds24uPj2bJlCw0aNDALjH3xxRf07t2bdu3aceTIEU6fPs2AAQOIiIjg3XfffaxxhoaGsnz5cs6cOcPBgwcJDAykS5cuZGTIAey4uDiMRiOrV6/m7NmzLFmyhFWrVvH++++XeV+tVounpycffPABjRo1euhxHT16lNWrV9OwYUOz8wUFBXTp0gWFQsEvv/zCoUOH0Ol09OzZE6PRaGqn0+no168fb71Vdj3A9evXk56ebvr3z3/+0/TagQMH6Ny5M7t27eL48eOEhYXRs2dPTp48WeY9CwoKeP7551mwYMFDz1sQBEEQBEGoWmL5nvBESJLE6P87zpmUZFp5H+CftW4CoFZ70rp1+X8Jr4gSvR6lUv6SVqHEmHsQY/W+AFgTQ/KtJHCR29oF1sS6WrVK6fd+covlDJJ3OocS/pwPh1IPAU9+yR7AoNOX+DUrz3RcTW2NtdJCGVIA6adBKwccsbKFRgMs15fwxNjY2FDt9vfMW2+9xXfffUdkZCQRERGMHz+e77//Hq1WS4cOHVi2bBkhISEAXL58mbFjx3Lw4EF0Oh2BgYF89tln1KtXj7CwMABcXV0BGDp0KBs2bCAvL4+IiAi2b9+Ok5MTkydPZseOHTRu3JjPP/8cgMDAQEaMGMHFixfZvn07ffr0YcOGDRw8eJBp06Zx7NgxPDw8ePnll5k/fz4ODg6cPXuWxMRE9u7dS0BAAAABAQG0a9fONM+UlBQmTZrEhAkTmDdvnun8pEmTUKvVjBs3jn79+tGqVatHeo4DB5rvPLl48WLWrl3L6dOn6dixI+Hh4YSH39mRMygoiPj4eFauXMnChQsfeN/AwECWLl0KwLp16x5qTPn5+QwaNIgvv/ySuXPnmr126NAhkpOTOXnyJE5OTgBs3LgRV1dXfvnlFzp16gTA7NmzAe7JJvszFxcX09fRn5V+bkvNmzePHTt28P3339OkSZMH3nPw4MGAnGUmCIIgCIIgPFtEppTwRNzI0/LTueu09t5Lz6AfeKH6bwDY2vpVWh8lRYUoSoNSkgKF2poSuc44RVp52Z66xICkNtKoS/dK6/du+doSEjPyySqQszZu6a8xNXoqK0+tBJ58cXNJkjh8Kx8AtUJBA0c76jraWbbTQjngSM328ME16PKRZft7hkmSRKG+8In/kySp/MGVw87ODp1Ox7Bhwzh27BiRkZHExMQgSRLdu3dHr5e/+caMGYNWq+XAgQOcOXOGBQsW4OjoiL+/P99++y0A8fHxpKenm4Iq77zzDocOHSIyMpKoqCiio6M5ceLEPWNYuHAhjRo14uTJk8yYMYPExETCw8Pp27cvp0+fZsuWLRw8eJCxY8cC4OnpiVKpZOvWrRgMhvvOa+vWrej1+vtmRI0ePRpHR0e++uqrx35+IGcXrVmzBmdn5zKzm3JycnBzs9wmAWPGjOEf//iHKcB0N61Wi0KhwMbGxnTO1tYWpVLJwYMHH6kvDw8PWrZsybp168r8WjQajeTl5Vl07oIgCIIgCELVEplSgkVJksSPf1zj1NUcAKo7ZQNgr2mJh2tDqnn3qrS+ChMSzIJSKhcXSkveJJbkYgMEX8/mVBc36rZ7vKWC95NTpOeFBb+YsqQAfrm6i5isH0zHPg4+ld5vWQqNRrRG+U3fueefw9GSO+0dWQO/zgW9HADEwcNyff1FFJUU0Wrzo2XcPI4jA49gb23/SNdKksTevXvZs2cP3bp1Y/v27Rw6dIi2bdsCsGnTJvz9/dm+fTv9+vXjypUr9O3blwYNGgBy5k+p0mCDl5eXqQ5RXl4eGzduZPPmzXTs2BGQl3z5+vreM5aXXnqJSZMmmY5HjhzJoEGDTDWRQkJCWLZsGR06dGDlypX4+fmxbNkyJk+ezOzZs2nevDlhYWEMGjTINK4LFy7g7OyMj8+936tqtZqgoCAuXLjwSM+u1M6dOxkwYACFhYX4+PgQFRWFh8f9v18SEhL44osvysySehxff/01J06c4OjRo/d9vXXr1jg4ODBlyhTmzZuHJElMnToVg8FAenr6Q/U1Z84cXnrpJezt7fnpp5/417/+RX5+PuPGjbtv+4ULF5Kfn0///v0fel6CIAiCIAjCs0FkSgkWdTjxJm9tOo51zhS+CJtCQ/fjANT0f42Q4GloNPUrra+SoiIUSjnoolJa4TVxIiUl8jK1XIMWAKXRiKPGtdL6vFtSZgG5xSUoFOBsZ02LQFck9VUAetXqxcw2M3mvxXsW6fvPzuYX8U7cFcafvwKAtUKBgyV32gM4vQWKc8Bwu7ZPjTaW7U94onbu3ImjoyO2trZ069aNV199lWHDhmFlZWW2lM3d3Z3atWtz/vx5AMaNG8fcuXNp164dM2fO5PTp02X2c+nSJfR6PS1btjSdc3Z2pnbt2ve0bd68udnxqVOn2LBhA46OjqZ/Xbt2xWg0kpSUBMiZOteuXWPTpk20adOGb775hvr16xMVFVXhZ6FWq8tts2nTJrNxREdHm14LCwsjNjaWw4cPEx4eTv/+/blx48Y990hNTSU8PJx+/foxatQo0/m77xsREVGhMUdHR5tdt2nTJlJSUhg/fjybNm3C1vb+u5F6enryzTff8P333+Po6IizszO3bt2iadOmKJUP9zNlxowZtGvXjiZNmjBlyhQmT578wLpkmzdvZvbs2fzvf//Dy8sLKPuZCoIgCIIgCM8mkSklWFTyzQJcbHJo7PWH6ZxCocbJqWEZVz0cSZLYte4opyQHjG5yEKpWcQY7PttDlr46AI5F8lIdlVHilQaDKq3vuxVo5QypEC9HfpooZ2IN/GE5AJ1qdCKsRphF+r2fhUnX2J2ZYzr2t1Vbbqe9UkVZ8n/7bZADUhrL1ez6q7CzsuPIwCPlN7RAvw8rLCyMlStXolar8fX1xcrKisjIyHKvGzlyJF27duWHH37gp59+Yv78+SxatIi33377UYZuxsHBfDlsfn4+o0ePvm/mTY0aNUwfazQaevbsSc+ePZk7dy5du3Zl7ty5dO7cmZCQEHJyckhLS7snO0un05GYmEjXrl3LHVuvXr3MgnV+fneWKjs4OBAcHExwcDCtW7cmJCSEtWvXMm3aNFObtLQ0wsLCaNu2LWvWrDG79927y5XWeSpP8+bNza7z9vZm79693Lhxg6ZNm5rOGwwGDhw4wPLly9FqtahUKrp06UJiYiKZmZlYWVmZ6kLdnfX2KFq1asVHH32EVqs1Wx749ddfM3LkSL755huzJYVlPVNBEARBEATh2SSCUoJFnE/PZc/ZVK6kx9DUKx6Qi5o3a/oV1tbuWFtX7I1URRz57nuuxsagc7/zpuZ6fhPyjbeXw0hGqmXpyZNWVuEAAQAASURBVLG3RilJOLl4VVrfd8u/HZRyUFsx/eB0LmZfJPFWIgBONpU334q4rpPr+bzm40aovS0vumks01H+DTi8DLT5kJsmn/OqJwJSFaRQKB55Gd2TVhpIuVvdunUpKSnhyJEjpuV7N2/eJD4+nnr16pna+fv7ExERQUREBNOmTePLL7/k7bffNmUc3V3fKSgoCGtra44ePWoKJOXk5HDhwgXat29f5hibNm3KuXPn7hlnWRQKBXXq1OHw4cMAvPLKK0yZMoVFixaxaNEis7arVq2isLCQIUOGlHtfjUaDRlOx7zuj0YhWqzUdp6amEhYWRrNmzVi/fv09GUkPM79SdnZ291zXsWNHzpw5Y3Zu+PDh1KlThylTpqBSmS/3LV1i+Msvv3Djxg169Xq85dexsbG4urqaBaS++uor3njjDb7++mv+8Y9/mLV/mGcqCIIgCIIgPBtEUEqwiHe/OUWAzVb6huyE23/MtrHxxt6+ZqX3lXIuFicbL9LJwdfgStOSmpxC3qq8Q2dI+/xjLruoAGs0rVph9wjbpZclI09LbMotjibJmUJKlY7IxDsZJFYKK2poajzo8kpTYpT4JSuX3BIDqcXyEroB1dxo5WLBHf+OrYPDX9w5VlqBo7fl+hOeKiEhIfTu3ZtRo0axevVqNBoNU6dOxc/Pj969ewMwYcIEunXrRmhoKNnZ2fz666/UrVsXkHe+UygU7Ny5k+7du2NnZ4dGo2Ho0KG89957uLm54eXlxcyZM1EqleVm+02ZMoXWrVszduxYRo4ciYODA+fOnSMqKorly5cTGxvLzJkzGTx4MPXq1UOtVrN//37WrVvHlClTADmj6tNPP+Xdd9/F1taWwYMHY21tzY4dO3j//feZO3cuzz33nFm/8fHx94ylfv36WFtbm50rKCjg448/plevXvj4+JCZmcmKFStITU2lX79+gByQevHFFwkICGDhwoVkZGSYrn/QrnWlSjOh8vPzycjIIDY2FrVabRYgvJtGo7lnLg4ODri7u5udX79+PXXr1sXT05OYmBjGjx/PxIkTzZZUXrlyhaysLK5cuYLBYDCNJTg4GEdHR77//nuuX79O69atsbW1JSoqinnz5pkVlN+8eTNDhw5l6dKltGrVimvXrgFyQM3Z2fmB8y7tNy1NDoyXfj6qVatW7jMTBEEQBEEQqpYISgkWcTW7iOeD5TcIWskTV8dqBAS8aZG+DHo90u03q7a3rlO9moETt+Q3SykpRznne2eJj/ebb6L40xvFxzVgTQyJGQWmY7W1HBDztvdmVttZ+Gv88bT3rNQ+7+eb61lMjEsxO+ehtvC3eGl2VM0OENAO/JqCnYtl+xSeKuvXr2f8+PH06NEDnU5H+/bt2bVrlykgYzAYGDNmDFevXsXJyYnw8HCWLFkCyMuvZs+ezdSpUxk+fDhDhgxhw4YNLF68mIiICHr06IGTkxOTJ08mJSXlgXWPSjVs2JD9+/czffp0XnjhBSRJolatWrz66qsAVK9encDAQGbPnk1ycjIKhcJ0PHHiRNN9Jk6cSFBQEIsWLWLp0qUUFMjf31999RUDBgy4p9/7nUtJSaF69epm51QqFXFxcWzcuJHMzEzc3d1p0aIF0dHR1K8v19eLiooiISGBhISEe64vb9fEJk2amD4+fvw4mzdvJiAggOTk5DKvK098fDzTpk0jKyuLwMBApk+fbva8AD788EM2btx4z1h+/fVXXnzxRaytrVmxYgUTJ05EkiSCg4NZvHixWa2sNWvWUFJSwpgxYxgzZozp/NChQ9mwYcMDxxcZGcnw4cNNx6Wfj5kzZzJr1qzHmbogCIIgCIJgYQqpMvYG/4vKzc3F2dmZnJycCtft+Dsr0hn4/OcLWOuiyMyOpanXadztsqlf/3Oqefe0WL//fX8qypJqXLC/RUh6Hp1D/fj2Yn2MWKOS1lNwS97xz9bBgeGfr8He6cF/cX9YkiRR6/1dGCV4zs8Je7UVHRsVsTx+PPXd6/N1j68rra/yfJSYxoorN6hua00tO1vqO9oxo5aPZWpJZcRD6gn4fQ2knYDuC6HlqPKv+xsrLi4mKSmJmjVrlhtcEcwVFBTg5+fHokWLGDFixBPvPysri44dO+Lk5MTu3buxt382llwKj6es71nx+8G9xDMRBEEQBOFuFf3dQGRKCZXmp3PX2PzbKRZ3WIbS6U6s0862ehlXPT5jSYkp8KI0GpCsVBiRszSMt2vVtE5Ipd7W/1VqQAqgQGfAeHuqSwbW4Ifk7ziVLW8X76i24LK5uxQZjBzNKeBcfhEAr/u4MyHQgktWDHpY21neaa+Uo2XqdAl/TydPniQuLo6WLVuSk5PDnDlzAExLAp80Nzc3fv75Z1asWEFMTAwdO3asknEIgiAIgiAIwl+NCEoJleZaTjFuNtkoFRIG7HFwfZVAr2CcnBpbtF99YQGK2/EflcEAVneKAhdpCwFQlxiwd3Kp9L7zi+Xi5iqlgi//+De7k3eZXvO0s/ySPYD3L17lq/Qs07GHunKXJ96jIPN2QEoBtV4CjQ8Edyr3MkF4GAsXLiQ+Ph61Wk2zZs2Ijo42FdquCu7u7nz44YdV1r8gCIIgCIIg/BWJoJTw2P53LIWYsz/Swv0/jGuSD4CLpiYtm3zwRPrX3biBtaYOIOGszEKpyja9VlKiwwolKqOEtW3lLbn55lgKC36MR1siZ2JpbK24WZwJQJh/GKGuobwc8nKl9VeW8/nFAATaqalpZ0NXDwsum8hNh2un5Y8dPGDwNsv1JfxtNWnShOPHj1f1MARBEARBEARBsDARlBIe2+KfLtAzIApv+zTTOY1j/SfSt9FoRK9SoldKtDWcweDQnH1n3eTXpBKsjHLWlFKSUNy17fjj+u5kKpn5d7Zwb1TdhTxdHgD9QvvxQvUXKq2vB0kp1pFWrCNdK++0t6JuAM2cHcq56jGc3AQ7/nXn2M7Ncn0JgiAIgiAIgiAIf3kiKCU8lpISLXrdDdxs5ewkK+dRNKwVjrPTc+Vc+fj2fxXP4TN70NauTxa3CCj05qK2tel1+8IMdLc/Vllbo7CqvC/3nCI9APP7NEBln0QxF/h/f8jbl2vUmkrr50EuF2lp89t5jHedc7f0Tnspv8n/VdmA2h6aDLJsf4IgCIIgCIIgCMJfmghKCY/kp7PXmL/rJGOfm8Gn7e8sl2tQ8wVcXRpbvH+9TsvlA/swesnFtpWSAoUk11LyqabF7foRHM/sYX9td/nctPcrre8Sg9EUlHLRFDL597Fmr7vZWj6DKK6gGCNgq1TgZ6OmiZM9AbZqy3SWnwEZcZB5UT7utgCaDy/7GkEQBEEQBEEQBEEohwhKCY/km+NXKdFdwcVGDkgZJSWODoE4OTV8Iv1fiDmIS0kaV1AB0E/XhjzpVwDsHQrIz/+DWy53Cp67v9K3UvpdcyCRT3bHmXbc00ry/B2tHXmh+guEuoZSw6lGpfT1IFn6Eq4UyTlg7Vw0bGoUZLnOSrTw71ZQePPOOYcnU8BdEARBEARBEARB+GsTQSnhoZy5msOv8dfQ5h+mhfdZAKxsQmnVcie21qonNo7CnFuoFFYYbi9guxT7BZ6tmkE+3Eg7QYauGLxdAVDb2aFQKsu6XYX9fP6GKSBV08MBR3u5rlSgUyCftv+0Uvooy9zENJZfuWE6dlNb+JnnpskBKYUSPELByQ+COli2T0EQBEEQBEEQBOFvQQSlhIfyr83H8bD6jbGN15rOOTv6PNGAFIBep0epUCEp5N3v/FKvUGRsDkCJvggAl4JiMv1t6DV8YqX1m19cAsC/BzWla/1q/Ji8CwAHtQULjN9lf1ae6WM7pYKu7s6W6UiS4MY5SIuVj538YMwRy/QlCIIgCIIgCIIg/C1VTvqI8LdgMEqkZhfh43AdgBI8cHd7kYAaEU98LHqtDhR3AmFKoxHD7arfeSX5APhn5aIPVhPSsm2l9ZuvlYNSOSWXeWffBNb+IQfnHKyeTFAqSy/3/0PTEJI6NKKHl4tlOopZASvb3tltz97dMv0Iz4Rhw4ahUChQKBSo1WqCg4OZM2cOJSUlj3Xfffv2oVAouHXrVuUMtAKSkpIYOHAgvr6+2NraUr16dXr37k1cXJxZu507d9KhQwc0Gg329va0aNGCDRs2mLVJTk5GoVAQGxtb4f5nzZpFnTp1cHBwwNXVlU6dOnHkyJ2Ab3JyMiNGjKBmzZrY2dlRq1YtZs6ciU6nK+OukJ6ezsCBAwkNDUWpVDJhwoQKjyk1NZXXX38dd3d37OzsaNCgAceOHTO9fvfnv/RfeHi42T0CAwPvafPJJ5+YXo+PjycsLAxvb29sbW0JCgrigw8+QK/Xm93n1q1bjBkzBh8fH2xsbAgNDWXXrl1ljn/btm106dIFd3f3h/58CIIgCIIgCFVLZEoJ5bqZr+XTH+PRaxNo5BlHkPNlAIJq/JOQ4GlVMqYSrQ6lUv7yrU46Pg1yyNbKb9pu6XJwBFRGCWs7+8fuq0hn4PtTaeQW67mZLy/X23V5G7E5v5ja+Dr6PnY/D5JarGPp5esUGIzc0MlBAFdrC3/rpsfK/7Vzlf+1HGXZ/oSnXnh4OOvXr0er1bJr1y7GjBmDtbU106ZVzc+AP9PpdKjVZRf71+v1dO7cmdq1a7Nt2zZ8fHy4evUqu3fvNguMffHFF0yYMIEpU6awcuVK1Go1O3bsICIigj/++IOFCxc+8jhDQ0NZvnw5QUFBFBUVsWTJErp06UJCQgKenp7ExcVhNBpZvXo1wcHB/PHHH4waNYqCgoIy+9VqtXh6evLBBx+wZMmSCo8nOzubdu3aERYWxu7du/H09OTixYu4urqatSv9/JeysbG5515z5sxh1Kg7Pys0mjs7kVpbWzNkyBCaNm2Ki4sLp06dYtSoURiNRubNmwfIn8POnTvj5eXF1q1b8fPz4/Lly7i4uJQ5h4KCAp5//nn69+9v1r8gCIIgCILw9BNBKaFc359KY/fps3zW/kOsfIym82q1R5WMJz9bS076LRxvZ0o1Lcomwbcn6UVywW/3XANaFaiMRnrVffwC51/9foU5O8+ZnSuW5MLfg+oOoqFHQzr4W67O0obUTP6TdqfQuI1SgZfaQt+6+mJIPwVZl+Tj8E+g0QDL9CU8U2xsbKhWrRoAb731Ft999x2RkZFEREQwfvx4vv/+e7RaLR06dGDZsmWEhIQAcPnyZcaOHcvBgwfR6XQEBgby2WefUa9ePcLCwgBMAZChQ4eyYcMG8vLyiIiIYPv27Tg5OTF58mR27NhB48aN+fzzzwE5M2fEiBFcvHiR7du306dPHzZs2MDBgweZNm0ax44dw8PDg5dffpn58+fj4ODA2bNnSUxMZO/evQQEBAAQEBBAu3btTPNMSUlh0qRJTJgwwRQsAZg0aRJqtZpx48bRr18/WrVq9UjPceDAgWbHixcvZu3atZw+fZqOHTsSHh5uloUUFBREfHw8K1euLDMoFRgYyNKlSwFYt25dhcezYMEC/P39zQJONWvWvKfd3Z//B9FoNA9sExQURFDQnU0ZAgIC2LdvH9HR0aZz69atIysri8OHD2NtbW2aV3kGDx4MyFlmgiAIgiAIwrNFLN8TypWRr8XbPgMrpREJG2zsG+Ph0RFvrx5PfCxFeTr+b8ZhrsRng1KF0mBDTE4EJwr6crNEfiOlMMp1plTWakIaPn6wKPWWXKMqxMuR3o19+bBHPbSKDAA61uhI96DuOFhbbvleulZe3hLu4cTsYF+2NKqFo5WFanh9PRDWdYHU4/KxQ9UEHoWnn52dHTqdjmHDhnHs2DEiIyOJiYlBkiS6d+9uWpY1ZswYtFotBw4c4MyZMyxYsABHR0f8/f359ttvAXlpV3p6uimo8s4773Do0CEiIyOJiooiOjqaEydO3DOGhQsX0qhRI06ePMmMGTNITEwkPDycvn37cvr0abZs2cLBgwcZO3YsAJ6eniiVSrZu3YrBYLjvvLZu3Yper+fdd9+957XRo0fj6OjIV199VSnPUKfTsWbNGpydnWnUqNED2+Xk5ODm5lYpff5ZZGQkzZs3p1+/fnh5edGkSRO+/PLLe9rt27cPLy8vateuzVtvvcXNmzfvafPJJ5/g7u5OkyZN+Oyzz8pc3pmQkMCPP/5Ihw53fkZHRkbSpk0bxowZg7e3N8899xzz5s174OdKEARBEARBePaJTCnhgbaduEpSxnWuXfuVZt5yppCLc32aN/umysaUe7OYagoJlVcQhdYSSqO8nM5aUYS7RzIZZ/dTpNIBSgKWLcXK/fFrIeUVy2+uezb2oUnodfL118i6mgVg0WDUqis3WHblOrkl8huy7p4u9K9mmTemJtfOyP91rgHutaBG5dXjEu4lSRJSUdET71dhZ4dCoXikayVJYu/evezZs4du3bqxfft2Dh06RNu28tfKpk2b8Pf3Z/v27fTr148rV67Qt29fGjRoAGCWLVMaaPHy8jIt0crLy2Pjxo1s3ryZjh07ArB+/Xp8fe9dIvvSSy8xadIk0/HIkSMZNGiQqZ5SSEgIy5Yto0OHDqxcuRI/Pz+WLVvG5MmTmT17Ns2bNycsLIxBgwaZxnXhwgWcnZ3x8fG5pz+1Wk1QUBAXLlx4pGdXaufOnQwYMIDCwkJ8fHyIiorCw+P+AeCEhAS++OKLx1oyWJZLly6xcuVK3nnnHd5//32OHj3KuHHjUKvVDB06FJCX7vXp04eaNWuSmJjI+++/T7du3YiJiUGlkgPk48aNo2nTpri5uXH48GGmTZtGeno6ixcvNuuvbdu2nDhxAq1Wy5tvvsmcOXPMxvLLL78waNAgdu3aRUJCAv/617/Q6/XMnDnTIvMXBEEQBEEQqpYISgn3dfF6Hu/87xRD622mu/9vpvNqtWcVjgoMJUY0jjc5aJMCgLXOEQA75S0y0g5SYF0IKEEBLjUCH6uv7AIdcdfyuHyzEICk3HN8uXeGWRtnGwvtfgd8fS2LLL0ckLJSQBPN49fHeiCjAYwlUCQH2xixB5wsVydLkElFRcQ3bfbE+6194jgK+4f7etq5cyeOjo7o9XqMRiMDBw6kT58+7Ny502wpm7u7O7Vr1+b8+fOAHKx46623+Omnn+jUqRN9+/alYcOGD+zn0qVL6PV6WrZsaTrn7OxM7dq172nbvHlzs+NTp05x+vRpNm3aZDonSRJGo5GkpCTq1q3LmDFjGDJkCPv27eO3337jm2++Yd68eURGRtK5c+cKPYvyaleBHJwbPXq06Xj37t288MILAISFhREbG0tmZiZffvkl/fv358iRI3h5eZndIzU1lfDwcPr162dWK8nR0dH08euvv86qVavKHU90dDTdunUzHa9evZpBgwZhNBpp3ry5aalikyZN+OOPP1i1apUpKDVgwJ0lvA0aNKBhw4bUqlWLffv2mQKH77zzjqlNw4YNUavVjB49mvnz55vVn9qyZQt5eXmcOnWK9957j4ULFzJ58mQAjEYjXl5erFmzBpVKRbNmzUhNTeWzzz5j5syZZT5TQRAEQRAE4dkkglLCfV25WYCNSktNl2sAFEkh+LrXIKDGm1U6rsyUJIoVcmaJtQHcSxQYACuFHv3t3amq5WTi+uFEnDy9yrhT2YxGiX8siyYtp9h0rsAoL9mr5lCNGpoa1Hevj6+D5QI32bd32lv3XCCtXRxxs1Rx84x4WNsFim/dOSd22xP+JCwszFT029fXFysrKyIjI8u9buTIkXTt2pUffviBn376ifnz57No0SLefvvtxx6Tg4N5pmJ+fj6jR49m3Lhx97StUaOG6WONRkPPnj3p2bMnc+fOpWvXrsydO5fOnTsTEhJCTk4OaWlp92Rn6XQ6EhMT6dq1a7lj69Wrl1mwzs/Pz2zcwcHBBAcH07p1a0JCQli7dq1Z0fi0tDTCwsJo27Yta9asMbv33bvLOTk5lTsWkAN4d1/n7e0NgI+PD/Xq1TNrW7duXdPSyvsJCgrCw8ODhIQEU1Dqz1q1akVJSQnJyclmAUV/f38A6tWrh8Fg4M0332TSpEmoVCp8fHywtrY2ZV+VjuXatWvodLoyn6kgCIIgCILwbBJBKcHMH6k5RPz3OH0Dl/HvjmdM59u3+BQnpwdnNzwp1y7+gVEhAaDKy6aBgyOxgAodBoMcxLHXFeBWM+Cx+snXlZgCUsFejng72eDuFgt50CekD281euux7v8gRkli2/Vs0rV6U5ZUA4295QJSAMnR5gGpmu3B6t6dtYTKp7Czo/aJ41XS78MqDaTcrW7dupSUlHDkyBHT8r2bN28SHx9vFujw9/cnIiKCiIgIpk2bxpdffsnbb79tyji6u2ZQUFAQ1tbWHD161BRIysnJ4cKFC7Rv377MMTZt2pRz587dM86yKBQK6tSpw+HDhwF45ZVXmDJlCosWLWLRokVmbVetWkVhYSFDhgwp974ajcZs97myGI1GtFqt6Tg1NZWwsDCaNWvG+vXrUSrNyz8+zPxK2dnZ3fe6du3aER8fb3buwoULpkLw93P16lVu3rx53yWOpWJjY1Eqlfdkf93NaDSaMu9UKhXt2rVj8+bNGI1G05wvXLiAj48ParUatVpd4WcqCIIgCIIgPBtEUEow8/P566RmF/Bc8z9M5+zsAnFwCKnCUd1RotUh3d51z/fmLRy968FNyFOVmN7YGlQSNqrHC6rkFsl1pNRWSr4d05iY9Bj+e05ejuSkrlhmwqM4fCufseevmI5VCnCztlBRc4ASLeRdlz9uPAjC54ON5eYnmFMoFA+9jO5pEhISQu/evRk1ahSrV69Go9EwdepU/Pz86N27NwATJkygW7duhIaGkp2dza+//krdunUBeQc2hULBzp076d69O3Z2dmg0GoYOHcp7772Hm5sbXl5ezJw5E6VSWW4drClTptC6dWvGjh3LyJEjcXBw4Ny5c0RFRbF8+XJiY2OZOXMmgwcPpl69eqjVavbv38+6deuYMmUKIGdUffrpp7z77rvY2toyePBgrK2t2bFjB++//z5z587lueeeM+v3z0EdgPr165t2kCtVUFDAxx9/TK9evfDx8SEzM5MVK1aQmppKv379ADkg9eKLLxIQEMDChQvJyMgwXV/e7nelmVD5+flkZGQQGxuLWq2+JxPqbhMnTqRt27bMmzeP/v378/vvv7NmzRpTdlZ+fj6zZ8+mb9++VKtWjcTERCZPnkxwcLApYywmJoYjR44QFhaGRqMhJiaGiRMn8vrrr5t2Vty0aRPW1tY0aNAAGxsbjh07xrRp03j11VdNz+mtt95i+fLljB8/nrfffpuLFy8yb968+2a+3S0rK4srV66QlpYG3Pl8VKtWrdxnJgiCIAiCIFQtEZQSALnuirbESF5BMnXcLqJUSICCDu1jUansUSiqfqNGqaSEghOxqPya4sN1BgT+QPKtm8A7ZJQYKX37p1dJ2Fs9+hv9zHwtp6/mAOBka83c3+byY/KPptctWUfqSrG8BNHPxpoXXDW0dXXEQWWhoFTk23DiP3eONT5ga7m5CX9N69evZ/z48fTo0QOdTkf79u3ZtWuXKdBgMBgYM2YMV69excnJifDwcJYsWQLIy69mz57N1KlTGT58OEOGDGHDhg0sXryYiIgIevTogZOTE5MnTyYlJQVbW9syx9KwYUP279/P9OnTeeGFF5AkiVq1avHqq68CUL16dQIDA5k9ezbJyckoFArT8cSJE033mThxIkFBQSxatIilS5dSUFAAwFdffWVWX6nU/c6lpKRQvXp1s3MqlYq4uDg2btxIZmYm7u7utGjRgujoaOrXrw9AVFQUCQkJJCQk3HO9JEllzr9Jkyamj48fP87mzZsJCAggOTn5gde0aNGC7777jmnTpjFnzhxq1qzJ559/zqBBg0xjPn36NBs3buTWrVv4+vrSpUsXPvroI1OtKBsbG77++mtmzZqFVqulZs2aTJw40azOlJWVFQsWLODChQtIkkRAQABjx441e+7+/v7s2bOHiRMn0rBhQ/z8/Bg/frwpYPggkZGRDB8+3HRc+vmYOXMms2bNKvNaQRAEQRAEoWoppPJ+y/0by83NxdnZmZycnArX7XhWvbHhKDlZP/GvxutM56yt3Wj/wtEqHJW5ojNn2D79E6wavoSD6gd8Cx1I1T1HsrYFrjdPkK7cB0ATKwNh/931SLuLXb5ZQMdF+ykxyt8WQR4OeNZZybmb56jjVodaLrWY3mo6GnXlLiGRJIkMXQnrUzNZcvk6r3i7srze4y1BLNcnAXeW7VnZwsD/QVCHMi8RHl1xcTFJSUnUrFmz3OCKYK6goAA/Pz8WLVrEiBEjnnj/WVlZdOzYEScnJ3bv3o39M5zdJlRcWd+zf6ffDypKPBNBEARBEO5W0d8NRKaUQLHewC9xN+gTLC8bKy6xxcHOFX//16p4ZOZ02TkYrNQoMFJUVItDeXd2klLpC+D2ir1WEz965O3u46/lUWKUsFYpcHewYWCrGnyXkQ/A+63ep4lXk3Lu8GgmxqXw9bUs07FFa0gBGPR3AlLjToLGF6xFoER4Opw8eZK4uDhatmxJTk4Oc+bMATAtCXzS3Nzc+Pnnn1mxYgUxMTEPLO4tCIIgCIIgCMLDEUGpv7FivYGfzl0nPSsTL7sMvB3koEjtWqMJrlV2DY8nLe3iLSK/1qJwCkCDEUmSI1Aa2zRyrv1ApiIHUGJlY4PDn7aJfxiFOrkuVaua7qwYXIes4iw27JaX8jlaO5Z16WM5eCsPkGtIaVQqOrtb6K/Mp7bAD+9ASemuggpwCQClBetWCcIjWLhwIfHx8ajVapo1a0Z0dDQeHh5VNh53d3c+/PDDKutfEARBEARBEP6KRFDqb2zL0RSW7DnMvOc/Yv4LOtN5W9uqe+N3PyVZWVzafhiD0R5rjBgURhSSXOPKRnUBnZQHavnYzad6WbcqV75W3sFPqdLz0v9eQme881wqe8ne3bJv77QX3bIuQfYW3Pnu3HbQ5d85DnxeBKSEp06TJk04fvzJ70ooCIIgCIIgCMKTJYJSf2OXMvKpobmKjUqHUVKgUNpjb+uBu9vzVT00M9c/+YQLCTew863OjerWlCgzqCeVFl6XgzmeuYUYOtXm1TGfPFZfhTo5KFUi5aMz6lApVNhb29PEqwle9g/e2vxRzUxI5XhOAQUGI2DhnfYACjLl//ZcBiGdwVHsTCUIgiAIgiAIgiBUDRGU+hs6cCGDI5dSyb+1k1Y+pwHw9HiRxo3+XxWP7P7012/g4upLhqsnxapsQAJTUEoO5tjq9Rh83FDb2j30/TPytLy6Oob0nGL0t4NDCpUegNY+rVnVeVVlTOMe6Vodq1PubPfurbbCycoCQakSLWzsBTfOgzZXPucRCk6+ld+XIAiCIAiCIAiCIFSQCEr9zegNRt78v2O84LOXAXW+M523tXk6M2auXr3KPjc3ctW25ClzAYlO7qHoDRmkF0LODTnzR2WUwO7RdsQ6lpzFpcwCs3M2DqlQYNkle1m3l+y5WKn4vE4NGmrsUD5igfYyXf8DUn67c2zjDJ61K78fQRAEQRAEQRAEQXgIIij1N5NdoKNYb8TbQc7Q0VKTGt7NqFHjyW+zXp7i/Hy+/e//yHZ2ojQjaiA7CL2ZxK/5bwENsc4tAltQShJK90erhZVXLC/Za1vLnQ5Nr7IsdiFHC+QglZO68guOFxgMnMot4mx+EQCeaivCPZ0rvR8ActMh7aT8sVd9ePX/wNELbCwXbBMEQRAEQRAEQRCEihBBqb+JKzcL2XP2GgX5f/CS/yFCXK8A0CDkdfz9h1Xt4B7gl/WryMm6BvaO+BTZUNMqgFrqVJDAIFnfbiVnG11rHsDAVgMeqZ/cYnmpnqfGhmxDAkqrAlxsXPB19KVnrZ6VMRUzQ08ncfDWnWLjbtYW+jZM2Av/7XPn2Lk6uNeyTF+CIAiCIAiCIAiC8JBEUOpv4v3vzhCTeJ3PX5xGg7rFpvNqG+8qHFXZcjIyQCnXjgrUuVFPUZ39t0aSWNwWPWqMJWnolXJAqdnzfXC2ebhsowvX81iwO44LN/IA0NhakX97Z7rhzw3njefeqMTZ3HG+QH7+AbZq7FVK3qhuod0Orx6T/2tlC3Zu0OjRgnaCIAiCIAiCIAiCYAkiKPU3kXyzAI06D3vrYiRJiZXDS/i4+eHhHlbVQ3sgvVaLjbUbUqE3iUXBJBSVAJ0B0OZuQjJcR6eW21qp1Q99/81HrrA37obpONDdgbN6edmeg5XDY4//fiRJ4laJvFxwe9NgfGweftzlKtFBdhJkJcrHbcZCxxmV348gCIIgCIIgCIIgPAZl+U2EZ1WRzsD4r08yat23vBywjH81WgeArY0nL7ZeTe3QD1GpbKt4lPc6G53K2nejuXk1B0mpwKbYA4k7BcDdrZJQqW4BYKfT4+BfjaCmLR+6n+xCHQAvN/Gh1/OpxBu/5FTGKQAc1JUblMrRlzDh/BUGnb6EQZLPuVhZKCa8vhusaAmnt8jHDhbKxBL+NoYNG4ZCoUChUKBWqwkODmbOnDmU3A6wPqp9+/ahUCi4detW5Qy0ApKSkhg4cCC+vr7Y2tpSvXp1evfuTVxcnFm7nTt30qFDBzQaDfb29rRo0YINGzaYtUlOTkahUBAbG1vh/mfNmkWdOnVwcHDA1dWVTp06ceTIEbN7jhgxgpo1a2JnZ0etWrWYOXMmOp2uzPump6czcOBAQkNDUSqVTJgwoULjMRgMzJgxw6y/jz76CEmSTG22bdtGly5dcHd3f+B8ExMTefnll/H09MTJyYn+/ftz/fr1h57X6dOneeGFF7C1tcXf359PP/203DkcOHCAnj174uvri0KhYPv27RWauyAIgiAIglD1RFDqLyz6YgY7YtNw5Ucae52hlksyAPYOT3ddoQu/XyfLeIn86l5oFQYUkvxl+kInO4Z5DudV93cwGuQ3w60TUmk4figu3g+/e2Bukbz0z8PtFr/e/IIfk3eSUSQXgPe2r9xljT9k5vD1tSx+yZKXClZTW2OnssC3n9EAqcflj21dwD0EQrpUfj/C3054eDjp6elcvHiRSZMmMWvWLD777LOqHpZJeUEbAL1eT+fOncnJyWHbtm3Ex8ezZcsWGjRoYBYY++KLL+jduzft2rXjyJEjnD59mgEDBhAREcG77777WOMMDQ1l+fLlnDlzhoMHDxIYGEiXLl3IyJB/9sTFxWE0Glm9ejVnz55lyZIlrFq1ivfff7/M+2q1Wjw9Pfnggw9o1KhRhcezYMECVq5cyfLlyzl//jwLFizg008/5YsvvjC1KSgo4Pnnn2fBggX3vUdBQQFdunRBoVDwyy+/cOjQIXQ6HT179sRoNFZ4Xrm5uXTp0oWAgACOHz/OZ599xqxZs1izZk2ZcygoKKBRo0asWLGiwvMWBEEQBEEQng5i+d5fWEa+FoAAF3mXN0eXHgT4dcLNtU1VDqt82hIKNclICjsAFJIKACdPWxxUt5CUaowGucA5koTa2u6hbr/uYBLrDiVxI1d+PpJCXrIX6BTIK6Gv4G3vTXPv5pU0GVmmTg6itXJ24NVqbrR0sczyQIpzgNsZDu9eBCsLLA8U/pZsbGyoVk0O/r711lt89913REZGEhERwfjx4/n+++/RarV06NCBZcuWERISAsDly5cZO3YsBw8eRKfTERgYyGeffUa9evUIC5OXD7u6ugIwdOhQNmzYQF5eHhEREWzfvh0nJycmT57Mjh07aNy4MZ9//jkAgYGBjBgxgosXL7J9+3b69OnDhg0bOHjwINOmTePYsWN4eHjw8ssvM3/+fBwcHDh79iyJiYns3buXgIAAAAICAmjXrp1pnikpKUyaNIkJEyYwb9480/lJkyahVqsZN24c/fr1o1WrVo/0HAcOHGh2vHjxYtauXcvp06fp2LEj4eHhhIeHm14PCgoiPj6elStXsnDhwgfeNzAwkKVLlwKwbt26Co/n8OHD9O7dm3/84x+m+3z11Vf8/vvvpjaDBw8G5Gyn+zl06BDJycmcPHkSJyd5x9KNGzfi6urKL7/8QqdOnSo0r02bNqHT6Vi3bh1qtZr69esTGxvL4sWLefPNNx84h27dutGtW7cKz1kQBEEQBEF4eohMqb+gX+Nu8Nb/HeRW6nu833IxtZxOA1DDpwPVvHuiVj/dy7ncinVICjmw8qKuPhqjHMBRO6qRJNAZ7gShDCoJterhAi//PXKZq9lF6AxGVEoFzho5KBXiGsLQ+kMJrxmOQqEo5y4Vk1BYzP+7mkF0tpwh1dTJnoG+7gTbV/KyyUv74P/6wFe3i5mrNSIgJViUnZ0dOp2OYcOGcezYMSIjI4mJiUGSJLp3745eL2cijhkzBq1Wy4EDBzhz5gwLFizA0dERf39/vv32WwDi4+NJT083BVXeeecdDh06RGRkJFFRUURHR3PixIl7xrBw4UIaNWrEyZMnmTFjBomJiYSHh9O3b19Onz7Nli1bOHjwIGPHjgXA09MTpVLJ1q1bMZQGtv9k69at6PX6+2ZEjR49GkdHR7766qtKeYY6nY41a9bg7OxcZnZTTk4Obm5uldLnn7Vt25a9e/dy4cIFAE6dOsXBgwcfKsij1WpRKBTY2NiYztna2qJUKjl48OADr/vzvGJiYmjfvj3qu2oEdu3alfj4eLKzsx9mWoIgCIIgCMIzQmRK/QUt+DEOO+NBXvE7bnbewSGkikb0cAxFmXA7kSgv8zwK+9ZQbIX1z1NIOejKrXQHaHC7rULCRmXz4JvdR36xnLX06Sv1cNCkEpNxGACNWlNpcyj1xplkLhTe2e3QS21d6X0AEL0YkvbfOfYItkw/QqWSJIkSnfGJ92ulVj5y4FWSJPbu3cuePXvo1q0b27dv59ChQ7Rt2xaQs138/f3Zvn07/fr148qVK/Tt25cGDeRv2qCgINO9SgMSXl5euLi4AJCXl8fGjRvZvHkzHTt2BGD9+vX4+vreM5aXXnqJSZMmmY5HjhzJoEGDTPWUQkJCWLZsGR06dGDlypX4+fmxbNkyJk+ezOzZs2nevDlhYWEMGjTINK4LFy7g7OyMj4/PPf2p1WqCgoJMAZxHtXPnTgYMGEBhYSE+Pj5ERUXh4XH/PxYkJCTwxRdflJkl9TimTp1Kbm4uderUQaVSYTAY+Pjjjxk0aFCF79G6dWscHByYMmUK8+bNQ5Ikpk6disFgID09/b7X3G9e165do2bNmmbtvL29Ta+VZtQJgiAIgiAIfx0iKPUXUqQzkHqriNRbRTT1kDNzDFbPUT90DBp7H5ycGlTxCMsnSRLagkSwB4e8WiQZdFhr5TfPVnmXyE+3xai882Y6NlTFq/ZeD9VHgVYOSu1OX8mxs7tN5zXWlR+USimWlwh2cXeimo01r1Sz0Juq/Nu7CLZ/D7zqQkC7stsLT4USnZE14/eX37CSvbm0A9Y2qoe6ZufOnTg6OqLX6zEajQwcOJA+ffqwc+dOs6Vs7u7u1K5dm/PnzwMwbtw43nrrLX766Sc6depE3759adiw4QP7uXTpEnq9npYt72xe4OzsTO3ate9p27y5+TLbU6dOcfr0aTZt2mQ6J0kSRqORpKQk6taty5gxYxgyZAj79u3jt99+45tvvmHevHlERkbSuXPnCj0LdQV2+9y0aROjR482He/evZsXXngBgLCwMGJjY8nMzOTLL7+kf//+HDlyBC8v859lqamphIeH069fP0aNGmU67+joaPr49ddfZ9WqVeWOJzo62iz7afXq1QwaNIj//e9/bNq0ic2bN5uWy02YMAFfX1+GDh1a7n1BzkD75ptveOutt1i2bBlKpZLXXnuNpk2bolTem5D9oHk96hwEQRAEQRCEZ5cISv1F6EqMdFy0D0flGV6p9TvVNakA+HvWw6/as1PoWjIaQQFWeg32hX5gDUYJlOixbTMYxdb/YFTJQSmFlRX/WLUbV9uKB3qMRokCnbxsJ7UwEZBrSXnYedCzVs9KnUuxwUiRUV6GuLxeAE5WDxcEqJC9H0HcD3Dzonxc759Q7bnK70f42wsLC2PlypWo1Wp8fX2xsrIiMjKy3OtGjhxJ165d+eGHH/jpp5+YP38+ixYt4u23337sMTk4mNdmy8/PZ/To0YwbN+6etjVq1DB9rNFo6NmzJz179mTu3Ll07dqVuXPn0rlzZ0JCQsjJySEtLe2e7CydTkdiYiJdu3Ytd2y9evUyC9b5+fmZjTs4OJjg4GBat25NSEgIa9euZdq0aaY2aWlphIWF0bZt23sKfd+9+11pDafyNG/e3Oy60gyk9957j6lTpzJggLz0t0GDBly+fJn58+dXOCgF0KVLFxITE8nMzMTKygoXFxeqVatmlhlX3ryqVatmtmMfYDquVq0agYGB952DIAiCIAiC8OwSQam/iPScItJyipnZehs1nFJN5+3s/KtwVA/PoNeDUoVCkgNPtlIB7WruxT1vP7hO4bqTPUW3l8Cp1Tb4ayo2v1/jb/D+tjMU6u7UkSkwZAGw5MUlBLtW3nK3fVm5zL+UTqFBXpalUoDGEjvtGfQQvQhTYXO1BlwDKr8fwWKs1EreXNqhSvp9WKWBlLvVrVuXkpISjhw5Ylq+d/PmTeLj46lXr56pnb+/PxEREURERDBt2jS+/PJL3n77bVPG0d31nYKCgrC2tubo0aOmQFJOTg4XLlygffv2ZY6xadOmnDt37p5xlkWhUFCnTh0OH5aX8b7yyitMmTKFRYsWsWjRIrO2q1atorCwkCFDhpR7X41Gg0ZTsexLo9GIVqs1HaemphIWFkazZs1Yv379PdlGDzO/UnZ2dve9rrCw8J77q1Qq0655D6t0GeIvv/zCjRs36NWrl+m18ubVpk0bpk+fjl6vx9pa/jkfFRVF7dq1TUv3HmXugiAIgiAIwtNLBKX+AnIK9STeyEelKMHDXi4GG1DjTWzt/Knm3aucq58eF49dJ+nUVVAoTUEpO4qo4/Q7Bdok/rdrD5k179R5sbapeC2pXafTSc+5U9uplqcdN/W3AHBUOz7gqkezMfUmp/KKTMeh9raVVjjdTFE2ckBKAUO2g0co2FT+EkTBchQKxUMvo3uahISE0Lt3b0aNGsXq1avRaDRMnToVPz8/evfuDcCECRPo1q0boaGhZGdn8+uvv1K3bl1A3vlOoVCwc+dOunfvjp2dHRqNhqFDh/Lee+/h5uaGl5cXM2fORKksvw7WlClTaN26NWPHjmXkyJE4ODhw7tw5oqKiWL58ObGxscycOZPBgwdTr1491Go1+/fvZ926dUyZMgWQM6o+/fRT3n33XWxtbRk8eDDW1tbs2LGD999/n7lz5/Lcc+bZiPHx8feMpX79+qbASqmCggI+/vhjevXqhY+PD5mZmaxYsYLU1FT69esHyIGbF198kYCAABYuXEhGRobp+tLdDx+kNIsoPz+fjIwMYmNjUavVZgHCP+vZsycff/wxNWrUoH79+pw8eZLFixfzxhtvmNpkZWVx5coV0tLSzOZbrVo105jWr19P3bp18fT0JCYmhvHjxzNx4kTTssuKzGvgwIHMnj2bESNGMGXKFP744w+WLl3KkiVLypx3fn4+CQkJpuOkpCRiY2Nxc3Mzy5ATBEEQBEEQnj4iKPWM23L0ClO/PcX0VotZ0/mK6XxAQATW1s5VOLKHIxkl9m44j9aQSTWHEhSSHHBSKSUoKSb6mBeS4TJo7LHT6sgJcqFtj9crfP8CnVxHakg7T364MYvryjQUyNkZlV3gPEsv9/VOoDetnR1pqLEr54qHdGk//L4GinPkY3s3CHqxcvsQhApav34948ePp0ePHuh0Otq3b8+uXbtMARmDwcCYMWO4evUqTk5OhIeHm4IMfn5+zJ49m6lTpzJ8+HCGDBnChg0bWLx4MREREfTo0QMnJycmT55MSkoKtrZl71rZsGFD9u/fz/Tp03nhhReQJIlatWrx6quvAlC9enUCAwOZPXs2ycnJKBQK0/HEiRNN95k4cSJBQUEsWrSIpUuXUlAg79D51VdfmZa53e1+51JSUqhevbrZOZVKRVxcHBs3biQzMxN3d3datGhBdHQ09evXB+TMoISEBBISEu65XpKkMuffpEkT08fHjx9n8+bNBAQEkJyc/MBrvvjiC2bMmMG//vUvbty4ga+vL6NHj+bDDz80tYmMjGT48OH3zHfmzJnMmjULkANV06ZNIysri8DAQKZPn272TCsyL2dnZ3766SfGjBlDs2bN8PDw4MMPP+TNN98sc97Hjh0jLCzMdPzOO+8AMHToUDZs2FDmtYIgCIIgCELVUkjl/Zb7N5abm4uzszM5OTkVrtvxpE3cEsuB86f5tP1s0zln52Y0a7rFMtk5FlKiM/DviT+S5XEUFGBb6I0mtzbeyuu8EvwRZ9YaOVrTj2wHO7yVhTy3dDGNvRpX+P5D1v3OgQsZvN7ByI4b75vOt/Nrx8qOKyvlWZ3IKSCxSMv8S+mkafVsbVyL510tkLm0rhtcOXznuHoLGPlz5fcjVKri4mKSkpKoWbNmucEVwVxBQQF+fn4sWrSIESNGPPH+s7Ky6NixI05OTuzevRt7e/snPgbhySvre/ZZ+P3gSRPPRBAEQRCEu1X0dwORKfWMu1Wow1Et/xXfRu1N69Z7UKkcn6mAFECJ3ojKqggUoJQU2Bvl7KISKx3xRi1WBjUGhVx/pO17Cwh6iIAU3NlxD6Vct6VTjU4sfnFxpT2n1GIdPU5c5O4qLO7WFvr2yr8m//f5d8C9FgSFld1eEJ4xJ0+eJC4ujpYtW5KTk8OcOXMATEsCnzQ3Nzd+/vlnVqxYQUxMDB07dqyScQiCIAiCIAjCX40Fqi8LlqYtMbByXyKrdi/nedcPGPGcvP25tdodKyvNMxeQAijRG6hnr0BVYod7VhPsC+Q6IIed0hngKgeoDEp5XhWtJWU0Sgxb/ztN5vxEbMot+ZyiEAAHa4dKfU5JRVqMgKNKSZibhtH+ntRxqMRsGEMJRH0IW9+AnNuF7BsNgCavg7Nf2dcKwjNo4cKFNGrUiE6dOlFQUEB0dLSpiHZVcHd358MPPxQBKaFKZWVlMWjQIJycnHBxcWHEiBHk5+eXeU1xcTFjxozB3d0dR0dH+vbta7bL4alTp3jttdfw9/fHzs6OunXrsnTpUktPRRAEQRAEAaiioNSBAwfo2bMnvr6+KBQKtm/fbva6JEl8+OGH+Pj4YGdnR6dOnbh48aJZm4r8Ynb69GleeOEFbG1t8ff359NPP7X01J6In85eZ8GPcbgYNxLolIifYzoADg61qnhkj86gNaBSSNgUe4LeEe3tRaU5dhk46uX8I+PtoJSVumJBqavZReyLzyC7UI/BKGGtglvG80DlFTfXGo1sSc/im2tygfkGGju+alSL2cF+lRscTI6GQ0vhj2/BoAWVDWh8yr9OEJ5BTZo04fjx4+Tn55OVlUVUVBQNGjSo6mEJQpUbNGgQZ8+eJSoqip07d3LgwIFya25NnDiR77//nm+++Yb9+/eTlpZGnz59TK8fP34cLy8v/vvf/3L27FmmT5/OtGnTWL58uaWnIwiCIAiCUDXL9woKCmjUqBFvvPGG2S9GpT799FOWLVvGxo0bqVmzJjNmzKBr166cO3fOVNdh0KBBpKenExUVhV6vZ/jw4bz55pts3rwZkNcvdunShU6dOrFq1SrOnDnDG2+8gYuLS7m/wD3tUrILAQlXm1wActXv8nztUFxdW1XtwB5D/s1bGDCikOSdyFSGCxT6buWq/S36lrzIJY8T6FXya1YVzJQqLW7uam+Nwu9zdIpMoq/Lu+I5WldOUOrba9m8E59iOq6mti6j9WPIkwOPeNSG5sPBpzHYipodgiAIfxfnz5/nxx9/5OjRozRv3hyQC9V3796dhQsX4uvre881OTk5rF27ls2bN/PSSy8Bd3ZK/O2332jdurXZTosAQUFBxMTEsG3bNsaOHWv5iQmCIAiC8LdWJUGpbt260a1bt/u+JkkSn3/+OR988IGpfsh//vMfvL292b59OwMGDKjQL2abNm1Cp9Oxbt061Go19evXJzY2lsWLFz+zQak9Z6+xePd+Xg/9gs9fzMVKKQdderUZhkpVyTu8PWFHtm7ESREE0u3kPf1FpDhbulMNA1eI87uzbMemgkWGS+tI2dsoyLVKwVphxXMejXFQO9AjqEeljDulWAdAsL0NzZ0cGO3vWSn3Ncm8CFEzIfP2lvO+jaH1W5XbhyAIgvDUi4mJwcXFxfR7D0CnTp1QKpUcOXKEl19++Z5rjh8/jl6vp1OnTqZzderUoUaNGsTExNC6dev79pWTk4Obm1uZ49FqtWi1WtNxbm7uw05JEARBEATh6asplZSUxLVr18x+gXJ2dqZVq1bExMQA5f9iVtqmffv2qNVqU5uuXbsSHx9Pdnb2ffvWarXk5uaa/XuaRMamUc32FL6O6WhuFzd3dKj9TAektIV6Yn++QnbqDUow4iTJNZ88rK8CoLMyonK2xyunAL+8IjoMHoGTh1eF7l2gMwCgtpLXAnrZe/F/3f+PVZ1WEegcWCnjzy6R++jp6cLndWtQ17GSPxfHN0D8D3AzQT72CK3c+wuCIAjPhGvXruHlZf7/PysrK9zc3Lh27doDr1Gr1bi4uJid9/b2fuA1hw8fZsuWLeX+AW/+/Pk4Ozub/vn7+1d8MoIgCIIgCLc9dUGp0l+SvL29zc7f/QtURX4xu3bt2n3vcXcff/a0/4KVXahDYy3XzXJy7Uyrlrto3vy7Kh7V4/njQCoHtp0l3yhxS1GAkyQvr5MkOdhzwzWP0BbBNE++RtNbxTTvce9fgu+5Z2oOo//vGJ/+GAdAgSELAGcb50ob92dJ6XT4PY5t1+V7u1qrKu3eZgoy5f826A8DvoI2YimFIAjCX8nUqVP/P3t3HhdltT9w/DMDDPsiCLKILIJrauaSqGm4gebSzVzSn0upSde1zK0N9VJezSW3q9Y19d7QvJkLmWVkabhkbqS5gCgoCq7Ivsz2/P4YHZ1AQCU1+75fr3kxz/Oc5zznPAww8+Wc70GlUpX7OHny5ANpy2+//UavXr2Ijo6mS5cu5ZadOnUqOTk55kd6enq55YUQQgghyvJQpu89qqZOncobb7xh3s7NzX0kAlObEy9w7VIskTW24qwxjfKq5lIbJ6e6D7ll9y49PZ1NmzaRl1OA0Suf3iTgxtccUl4hCzhia4NbXjHP/mYg6HtT4E1VyVxSK3ense3YrZWFsvSnsAfc7cufilBZiqKw4Owl9MqtffUcq3iE1OkfIP0XuHDQtB3UDup1q9prCCGEeOgmTJjA0KFDyy0THByMt7c3ly9fttiv1+vJysrC29u7zPO8vb3RarVkZ2dbjJa6dOlSqXOOHz9Ox44defXVV3nnnXcqbLetrS22lfy7LIQQQghxJ49cUOrmm6RLly7h43NrdbFLly7x5JNPmstU9MbM29vbYsnjm3Xcfo3fexTfYF3ILmLc54nMfzYWF6dbqws6Of55A1JgSth67do1AIK5QB0ljXyDJzrFEQCtYsoHpTYqKF7uaGzscevfr1J15xXrAGhaW8uJog3418iljX9v+tTtUyVtz9UbzAGpdU1q46Wxrtppe9pCWNPftMreTbLSnhBCPJY8PT3x9Kw4H2FYWBjZ2dkcPHiQZs2aAfDDDz9gNBp5+umyFzpp1qwZNjY2bN++nd69ewOQlJTEuXPnCAsLM5c7duwYHTp0YMiQIbz//vtV0CshhBBCiMp55IJSQUFBeHt7s337dnMQKjc3l3379vHaa6YEz5V5YxYWFsbbb7+NTqfDxsa0Ilp8fDx169alWrVqD75j9+hiThFqlQEnG1MOqWzbaDo3ehJn5z/38uh6vSno5JFtjZuqFl/o5nBNH2g+rjYaAbAyKtT99jusnBwrXXeRzjT1z9+rkJTsRMJq/o1prafdd5uvaHXEX83lyo1V/ezVatq7O993vaUUXDYFpNQ28NQgcPaF4Ger/jpCCCH+NOrXr09kZCQjRoxg2bJl6HQ6Ro8eTf/+/c0r7124cIGOHTvyn//8h5YtW+Lq6sqwYcN44403cHd3x8XFhTFjxhAWFmZOcv7bb7/RoUMHIiIieOONN8wpDqysrCoVLBNCCCGEuB8PJadUfn4+iYmJJCYmAqbk5omJiZw7dw6VSsX48eOJiYkhLi6Oo0ePMnjwYHx9fXn++ecByzdmv/zyC7t37y71xmzAgAFoNBqGDRvGsWPHWLduHQsWLLCYnvcoyynU8dPxg1xKeYH57d9GrVIAFS+0HoiLS2NUKtXDbuJ9uRmUMhbloy4+bw5IWaFQ6HAVvco0KkytKKhtNXeqpkxFNxKcGzDlp3K0qXxAqzxvn7rAG0npzEzNBMBTU8UxXUWB62fh0nHTtpMXdJ8P7SeC1SMXPxZ/IUOHDjXnttFoNISEhDBjxgzzz/G92rFjByqViuzs7KppaCWkpqYyYMAAfH19sbOzo2bNmvTq1atUzp4tW7bQvn17nJ2dcXBwoEWLFqxatcqiTFpaGiqVyvy3rDKmTZtGvXr1cHR0pFq1anTq1Mm8QMfNOocNG0ZQUBD29vbUrl2b6OhotFptufVmZmYyYMAA6tSpg1qtZvz48ZVqT15eHuPHjycgIAB7e3tat27N/v37Lcrk5+czevRoatasib29PQ0aNGDZsmUWZUaOHEnt2rWxt7fH09OzzHt67tw5nnvuORwcHPDy8mLixIl3fA3t3r0ba2tr8z+nyrNhwwa6dOmCh4fHXX8//mxiY2OpV68eHTt2pFu3brRt25aPP/7YfFyn05GUlERhYaF53/z58+nevTu9e/emXbt2eHt7s2HDBvPx9evXc+XKFT777DN8fHzMjxYtWjzQvgkhhBDir+mhfNI9cOAA4eHh5u2bgaIhQ4awatUqJk2aREFBAa+++irZ2dm0bduWb7/9Fjs7O/M5sbGxjB49mo4dO6JWq+nduzcLFy40H3d1deW7775j1KhRNGvWjOrVq/Pee+9VuJrMo2Lgip/xsdpM/3rp3IzJuLg0QaX6gxJqP2A3P4gUW2XhZV3CWS0oxiKMhbGor+fijWl0mxWgujHSrbLO5VwEbPnpQjw4gpPGqUrafKbQNJ2uhYsjnhpr+nhX8Yi7jVFw5PNb21WUA0uIqhAZGcnKlSspKSlh69atjBo1ChsbG6ZOnfqwmwaAVqu1WG21LDqdjs6dO1O3bl02bNiAj48P58+f55tvvrEIjC1atIjx48czefJkli5dikajYfPmzURFRfHbb78xZ86ce25nnTp1WLx4McHBwRQVFTF//ny6dOlCSkoKnp6enDx5EqPRyPLlywkJCeG3335jxIgRFBQUlHvdkpISPD09eeedd5g/f36l2zN8+HB+++03/vvf/+Lr68tnn31Gp06dOH78OH5+foDpb/QPP/zAZ599RmBgIN999x1///vf8fX1pWfPnoBpmtjAgQOpVasWWVlZTJs2jS5dupCamoqVlRUGg4HnnnsOb29v9uzZQ2ZmJoMHD8bGxoYPPvjAok3Z2dkMHjyYjh07lpqGX5aCggLatm1L3759GTFiRKX7/mfk7u7OmjVr7ng8MDAQRVEs9tnZ2bFkyRKWLFlS5jnTpk1j2rRpVdlMIYQQQohKUym/f/cizHJzc3F1dSUnJwcXF5cHdl2jUaFR9Ea6B39Nl4AdnMhuTYM6o3m2QVPU6rsbNfSo+t///sfx48cJyFbTxc7Ipux2GHWpaPNvrSZobTDQOj2LFreNIrgTRVFYuD2F45k5fHciHcWowT5gOdYOqSwMX0h4rfAK67iTyyU6fssvYuyJc1zV6fmmWR2aujjcc313NL8R5JwDazuw0kD7SdB6TNVfRzwUxcXFpKamEhQUZBFg/zMYOnQo2dnZbNq0ybyvS5cu5OXlsXXrVsaNG8dXX31FSUkJ7du3Z+HChYSGhgJw9uxZRo8eza5du9BqtQQGBvLhhx/SoEEDgoKCLK5z8x8TeXl5REVFsWnTJlxcXJg0aRKbN2/mySef5KOPPgJMH76HDRvGqVOn2LRpEy+88AKrVq1i165dTJ06lQMHDlC9enX+9re/MXPmTBwdHUlMTKRp06akpaUREBBQZl/T09OpXbs2Y8aMYe7cuRbHFi1axNixY/n55595+umnSUtLIygoiMOHD1dqRE9Zbv6d+f777+nYsWOZZT788EOWLl3KmTNnKlXns88+a3Gv7qSoqAhnZ2c2b97Mc889Z97frFkzunbtSkxMDABPPPEE/fr14913371jmd87cuQITZo0ISUlhdq1a/PNN9/QvXt3MjIyzCvhLlu2jMmTJ3PlyhWLgGL//v0JDQ3FysqKTZs2VXrkU1V8P25X3s/sw3p/8CiTeyKEEEKI21X2vcFDmb4n7uznM9dYnzCPj56dRJeAHQB0fyqMDk88/dgEpODWSClbtR1GTNPtrFSm6SnZbgZ+bHqWTsfScFVXbmTYuaxC5n+fzLZjl1CMpvv0Qfs3+f7F7+8rIKUoCpEHkxlw5AxXdaY2V/8jpu3ptVBoSvzOa3tgaroEpMQjzd7eHq1Wy9ChQzlw4ABxcXHs3bsXRVHo1q0bOp1pwYFRo0ZRUlLCTz/9xNGjR5k1axZOTk74+/vz5ZdfAqbEy5mZmSxYsAAwjczZvXs3cXFxxMfHk5CQwKFDh0q1Yc6cOTRp0oTDhw/z7rvvcvr0aSIjI+nduzdHjhxh3bp17Nq1i9GjRwOmhNJqtZr169djMBjK7Nf69evR6XS8+eabpY6NHDkSJycn1q5dWyX3UKvV8vHHH+Pq6kqTJk3uWC4nJwd396ofOanX6zEYDKUCLvb29uzatcu83bp1a+Li4rhw4QKKovDjjz+SnJxMly5dyqy3oKCAlStXEhQUZF7Bdu/evTRq1MgckAKIiIggNzeXY8eOmfetXLmSM2fOEB0dXZVdFUIIIYQQjyhJVPMIOX+9kJc++ZmxT+7Aw9M0gM3a2hl397YPuWVVK/NUEpfPpqLCiJ/1eVQqUxJ3tdr0IdYtV8+QHw2oFVBVckRJbpEpYORqb0Ox6zrUmqu0D16Ju939fZDL1RvIKDG1q5GTPc1cHalpe3fTCctl0MOKTpBx+NY+x+pVV794pCmKgr6kpOKCVcza1vae89IpisL27dvZtm0bXbt2ZdOmTezevZvWrVsDpqnV/v7+bNq0iT59+nDu3Dl69+5No0amxRmCg4PNdd0MtHh5eZmXq8/Ly2P16tWsWbPGPHJo5cqV5nyBt+vQoQMTJkwwbw8fPpyBAwea8ymFhoaycOFC2rdvz9KlS/Hz82PhwoVMmjSJ6dOn07x5c8LDwxk4cKC5XcnJybi6ulqs/nqTRqMhODiY5OTke7p3N23ZsoX+/ftTWFiIj48P8fHxVK9e9s99SkoKixYtuq8pg3fi7OxMWFgY//jHP6hfvz41atRg7dq17N27l5CQEHO5RYsW8eqrr1KzZk2sra1Rq9V88skntGvXzqK+f/3rX+bp93Xr1iU+Pt48AurixYsWASnAvH0zsfapU6eYMmUKCQkJWFvL2xMhhBBCiL8Cedf3CEnPKkJRwMXWlKC72CmGbi36oVI9PgParl+/zsbPVlNosKG59RHa2ieQoW0IQMGNxOTVsw08cdYUlLPx8qpUvYU3VsSr5mDNtWq/APeX4NyoKCTmFpJSZAoYOFmpiW9R957ru6PcC5YBqVphYCvTHv4q9CUlLBzy4gO/7tjV67G5yymEW7ZswcnJCZ1Oh9FoZMCAAbzwwgts2bLFYjl6Dw8P6taty4kTJ0zXGjuW1157je+++45OnTrRu3dvGjdufMfrnDlzBp1OR8uWLc37XF1dqVu39M9f8+bNLbZ//fVXjhw5QmxsrHmfoigYjUZSU1OpX78+o0aNYvDgwezYsYOff/6ZL774gg8++IC4uDg6d+5cqXtRUe4qMAXnRo4cad7+5ptveOaZZwAIDw8nMTGRq1ev8sknn9C3b1/27duH1+9+3124cIHIyEj69OljkSvJyelWnrz/+7//K5V0vCwJCQl07drVvL18+XIGDhzIf//7X1555RX8/PywsrLiqaee4qWXXuLgwYPmsosWLeLnn38mLi6OgIAAfvrpJ0aNGoWvry+dOnUylxs4cCCdO3cmMzOTOXPm0LdvX3bv3l2p6aoGg4EBAwYwffp06tSpU2aZ8u6pEEIIIYT4c5Kg1CPAaFRIvnSVc+mxPBd0hhoOVwFoXSfksQpIAXz11VdcVmnAGhwNRlZeXUmJYvqApaUYDWClKGS5qKnz+lu4tXu2UvXml5im/qUXnMYBsFZZo7mP6Y6xmdeYmHTevF3lU/ZuKrpu+upUA0bvNwWk/uQrK4rHU3h4uDnpt6+vL9bW1sTFxVV43vDhw4mIiODrr7/mu+++Y+bMmcydO5cxY+5/eqqjo2XgOT8/n5EjRzJ27NhSZWvVqmV+7uzsTI8ePejRowcxMTFEREQQExND586dCQ0NJScnh4yMjFKjs7RaLadPnyYiIqLCtvXs2dMiWHczafjNdoeEhBASEkKrVq0IDQ1lxYoVFknjMzIyCA8Pp3Xr1harqwEWOZYqm7unefPmFufdHKVUu3Ztdu7cSUFBAbm5ufj4+NCvXz/zyLGioiLeeustNm7caM471bhxYxITE5kzZ45FUMrV1RVXV1dCQ0Np1aoV1apVY+PGjbz00kt4e3vzyy+/WLTpZhJzb29v8vLyOHDgAIcPHzZPtzQajSiKgrW1Nd99912591QIIYQQQvw5SVDqETDzmxMknfmMIQ3X8ULorf22msdvGld+fj4AvgZ3bEtqmQNSoJBlfx7vHFAbjdSoVQ/PlwZWut6zOabpH9zIS/VUjafueXoSwIn8YgCq21hTw9aal/0877muMl1JhlPbIOtG4mIHD7BzrdpriEeeta0tY1evfyjXvVs3Aym3q1+/Pnq9nn379pmn7127do2kpCQaNGhgLufv709UVBRRUVFMnTqVTz75hDFjxphHHN2e3yk4OBgbGxv2799vDiTl5OSQnJxcarrY7z311FMcP368VDvLo1KpqFevHnv27AHgxRdfZPLkycydO7dUovNly5ZRWFjI4MGDK6zX2dkZZ2fnSrXBaDRScts0zgsXLhAeHk6zZs1YuXIlarXlPyfupn832dvbl3ueo6Mjjo6OXL9+nW3btjF79mzAtGKhTqcr1QYrKyuMRuMd61MUBUVRzP0KCwvj/fff5/Lly+YRYfHx8bi4uNCgQQNsbGw4evSoRR3/+te/+OGHH1i/fj1BQUE4OjpW+p4KIYQQQog/BwlKPQIOnr1O8I3RURcLa+Ll8RT1aj6Jg0NQBWf+ueivFVFyKR9U0FQfiK3xHADVHTIoapSKcf8ZwB61omBtZ1+pOn9Nz+ZfO1JIvpwFgMYG4l+Mx8uhctP+ylJsMHLlxnTAsQFevOp/73Xd0YbhkPnrrW3HKg56iT8FlUp119PoHiWhoaH06tWLESNGsHz5cpydnZkyZQp+fn706tULgPHjx9O1a1fq1KnD9evX+fHHH6lfvz4AAQEBqFQqtmzZQrdu3bC3t8fZ2ZkhQ4YwceJE3N3d8fLyIjo6GrVaXWGgefLkybRq1YrRo0czfPhwHB0dOX78OPHx8SxevJjExESio6MZNGgQDRo0QKPRsHPnTj799FMmT54MmEZUzZ49mzfffBM7OzsGDRqEjY0Nmzdv5q233iImJoYnnnjC4rpJSUml2tKwYUNsbCzzzxUUFPD+++/Ts2dPfHx8uHr1KkuWLOHChQv06dMHMAWknn32WQICApgzZw5Xrlwxn+/t7V1u/2+OhMrPz+fKlSskJiai0WgsAoS/t23bNhRFoW7duqSkpDBx4kTq1avHyy+/DJhGYrVv356JEydib29PQEAAO3fu5D//+Q/z5s0DTFMu161bR5cuXfD09OT8+fP885//xN7enm7dugGm1RobNGjAoEGDmD17NhcvXuSdd95h1KhR2N4Ikv7+vnp5eWFnZ1dq/+9lZWVx7tw5MjIygFvfD29v7wrvmRBCCCGEeLgkKPUQfb61PVYqLX1qKTjZ5AHQptEAAgNGVnDmn5MuswCjYgQVoCiUGE2Bn8KiU2R9exBfTIEojd6IuhI5WwD+vSuVbccumbft7Yrxdrz3DyEzz2Sy4Oyt+txt/qAfketppq/1uoO9GzR/5Y+5jhB/sJUrVzJu3Di6d++OVqulXbt2bN261RyQMRgMjBo1ivPnz+Pi4kJkZCTz588HTNOvpk+fzpQpU3j55ZcZPHgwq1atYt68eURFRdG9e3dcXFyYNGkS6enpFeYmaty4MTt37uTtt9/mmWeeQVEUateuTb9+/QCoWbMmgYGBTJ8+nbS0NFQqlXn79ddfN9fz+uuvExwczNy5c1mwYAEFBabFGNauXUv//v1LXbesfenp6dSsWdNin5WVFSdPnmT16tVcvXoVDw8PWrRoQUJCAg0bmnLrxcfHk5KSQkpKSqnzFUUpt/9NmzY1Pz948CBr1qwhICCAtLS0O56Tk5PD1KlTOX/+PO7u7vTu3Zv333/fIqD2+eefM3XqVAYOHEhWVhYBAQG8//77REVFAWBnZ0dCQgIfffQR169fp0aNGrRr1449e/aYR0VZWVmxZcsWXnvtNcLCwnB0dGTIkCHMmDGj3D5VRlxcnDmIBre+H9HR0UybNu2+6xdCCCGEEH8clVLRu9y/sNzcXFxdXcnJyal03o678U18PTRWOot9TZ/8D+7ubar8Wo+Cwl8vs2TDCgpUJTikHifMw5sjhc+jZyv66ye56lKCn50zrXck49m6Lf7LK07e+/LKX/gx6Qrt6lvzS85/aVRLzRfP/+ee2xj+y0lOFJim7rlZW7GteR0C7O9+qlOZSvIhJR50xbDJ9GGOiWfA0aNq6hePtOLiYlJTUwkKCqpU4mdxS0FBAX5+fsydO5dhw4Y98OtnZWXRsWNHXFxc+Oabb3BwcHjgbRAPXnk/s3/0+4M/I7knQgghhLhdZd8byEiph8it5lKMN2KCPq72eFfzfuym7N3uWno+Bm7kIFEUVFaml1+OIR9H4LxXEU2d/LHXGVBVcqTUzVX3nF3PY8OvONu3uK82ZulM9cU1DeEpF0es1VWYdHznLNiz8Na22to0SkoIYeHw4cOcPHmSli1bkpOTYx5Nc3NK4IPm7u7O999/z5IlS9i7dy8dO3Z8KO0QQgghhBDicSNBqYcorH74w27CA3U1LRcjCg1JIsTjOEaVGwAKpiTHjb2fpKVdPYrYW+mgVFp2BmDPD+e3Ye0MjtaOFZ7zeycLipiRkkHhbbmkfO00VRuQAriWYvrqWR9cfKBuN1BbVe01hHhMzJkzh6SkJDQaDc2aNSMhIYHq1R/e4g8eHh689957D+36QgghhBBCPI4kKCUeCEVRKMy+jJoSXuBbrFyNHCrQ3jhoCgS1KqiBdYopcFPpkVI3RjZVs3eklkdD+tbte9dtW5ORxQ9ZeeZtV2srPDVV+KOhK4L8y5BrSsJL+FvQoGfV1S/EY6Zp06YcPHjwYTdDCCGEEEII8QeToJR4IC6mJJN1di9qXx1WN6bw6Ws9C8cAxTRSquCrLeRdywVAXUHOFkVR0BkU9HrTaKaX6r/ImNbP3VPbrt0IbPX1rkYXD1eecLbH9nfLn9+zknxY2BQKLt/a5+BeNXULIYQQQgghhBB/YhKUEn84XYmBs5u3olKpsELP19enkl7SBONlO0CBG9P31IqCXZPG2Pj4Uq1/vzvWV6jV021BAmnXCgEnAJzt7j4Z+eUSHUkFxaQWlQAQ5uZEdy+3u66nXNdSbgWkbBzAozb4Ni3/HCGEEEIIIYQQ4i9AglLiD5V9qZDP3/+ZAh342KmxViCtpCWKomAsTsJozMNKyQdAbVTwnjoV+yefLLfOlMv5NwJSJiqb6wR4BN9Vu0qMRp7df5IsncG8z92min8c8i7B2d2m5zUawWu7qrZ+IYQQQgghhBDiT0yCUuIPdSU9j3ybdPLdc8gDPA2m1QYVw0V0BVsAsL9R1tpgRO3sXGGdxTrT9L8armrsAxdwtSSTavar76pdl0p0ZOkMqIB6jnb42mpo6+Z0V3WUq+g6LHwSdDeCZ06eVVe3EEIIIYQQQgjxGJCglPhDGUoMeNoVkw84KLZUM+q5DqDkAKDRG6ieV4idTk/1/CLUThUHpS7lXwfgSvF5HLUXUKnAwab8HFS/d11vGiFVQ2PDjy3r3dW5lXLttCkgpbYBjxBoPqzqryGEEEIIIYQQQvyJSVBK/KGMRTpQmwJAT+j8qK0v5ntAr9IB4FSs5Ynzl7HW2OLYpg3WnhUv+Z6RdwUAlVpPaLVQQtxCqO1au1LtWXT2Ep+cv0KJ0TRiq5qN1T30qhxGI1w+Bum/mLa9n4BXd1TtNYQQQgghhBBCiMeABKXEH8qgNaK7kcj8yNXt2Pq4Q24IRkULgJVR4csIZ96euxsbtU2l6swrMSUmt9dYsaHnhrtqz2cZ17is1Zu3n3K5uxFWFfphBuyaf2vboeIgmxBCCCGEEEII8VdUReveC2HJYDCwf/9+jp09RLa6gFBSGe+9hSf0OwGwKzEFpdSKkaj2kyoVkMov0fPtb5n8ll4EwL0McrquNwWk/tMoiJ0t6/FhXf+7r6Q8GYdNX+3dwT0YnhpctfUL8RAMHToUlUqFSqVCo9EQEhLCjBkz0Ov1FZ9cjh07dqBSqcjOzq6ahlZCamoqAwYMwNfXFzs7O2rWrEmvXr04efKkRbktW7bQvn17nJ2dcXBwoEWLFqxatcqiTFpaGiqVisTExEpff9q0adSrVw9HR0eqVatGp06d2Ldvn0Wdw4YNIygoCHt7e2rXrk10dDRarbbcejMzMxkwYAB16tRBrVYzfvz4SrXnp59+okePHvj6+qJSqdi0aVOpMhs2bKBLly54eHhU2F9FUejatesd61q1ahWNGzfGzs4OLy8vRo0aZXF827ZttGrVCmdnZzw9PenduzdpaWkWZWJjY2nSpAkODg74+PjwyiuvcO3atfvupxBCCCGEePAkKCX+EKdOneLrr7/m5KWj5KuKCSENO7Ueo2IKPqkU0/Q9a0cnqj8TXqk6Y7YcJ+qzQ+w4bhp5pbExVro9X1/JJuZ0Brl60znNXByp62iHWqW6m27dmV4L+ZdND4AXPoGxh6FBz6qpX4iHLDIykszMTE6dOsWECROYNm0aH3744cNulllFQRsAnU5H586dycnJYcOGDSQlJbFu3ToaNWpkERhbtGgRvXr1ok2bNuzbt48jR47Qv39/oqKiePPNN++rnXXq1GHx4sUcPXqUXbt2ERgYSJcuXbhyxTQt+eTJkxiNRpYvX86xY8eYP38+y5Yt46233iq33pKSEjw9PXnnnXdo0qRJpdtTUFBAkyZNWLJkSbll2rZty6xZsyqs76OPPkJ1h9+r8+bN4+2332bKlCkcO3aM77//noiICPPx1NRUevXqRYcOHUhMTGTbtm1cvXqVF154wVxm9+7dDB48mGHDhnHs2DG++OILfvnlF0aMGHHf/RRCCCGEEA+eTN8TVcpgMHDkyBFOnDgBgJPGBf9CZ2qo7MjHnRSrZ4BbQSm3jh2x9vCoVN3HLl4EwNY+C736MqEB1yt13jWtnhG/pXEzhGWvVuFWlbmkirJhcQsouHxrn4N71dUvxCPA1tYWb29vAF577TU2btxIXFwcUVFRjBs3jq+++oqSkhLat2/PwoULCQ0NBeDs2bOMHj2aXbt2odVqCQwM5MMPP6RBgwaEh5sC0tWqVQNgyJAhrFq1iry8PKKioti0aRMuLi5MmjSJzZs38+STT/LRRx8BEBgYyLBhwzh16hSbNm3ihRdeYNWqVezatYupU6dy4MABqlevzt/+9jdmzpyJo6Mjx44d4/Tp02zfvp2AgAAAAgICaNOmjbmf6enpTJgwgfHjx/PBBx+Y90+YMAGNRsPYsWPp06cPTz/99D3dxwEDBlhsz5s3jxUrVnDkyBE6duxIZGQkkZGR5uPBwcEkJSWxdOlS5syZc8d6AwMDWbBgAQCffvpppdvTtWtXunbtWm6ZQYMGAZQasfR7iYmJzJ07lwMHDuDj42Nx7Pr167zzzjt89dVXdOzY0by/cePG5ucHDx7EYDAQExODWm36n9mbb75Jr1690Ol02NjYsHfvXgIDAxk7diwAQUFBjBw5ssKAWWX6KYQQQgghHjwZKSWq1OnTp9m8eTPJyckAOBdXp42+HtcKn2T1lRX8erkrirEAxWiagmdlU7k8UgDnc28kOPfYgkOtVTSqWfFKfQCXtDqMgIOVmldrevJxw0CsqmqEFMDlE5YBKa+G4FW/6uoXjy1FUTBqDQ/8oSjKfbfd3t4erVbL0KFDOXDgAHFxcezduxdFUejWrRs6nSnwPGrUKEpKSvjpp584evQos2bNwsnJCX9/f7788ksAkpKSyMzMNAdV3njjDXbv3k1cXBzx8fEkJCRw6NChUm2YM2cOTZo04fDhw7z77rucPn2ayMhIevfuzZEjR1i3bh27du1i9OjRAHh6eqJWq1m/fj0Gg6HMfq1fvx6dTlfmiKiRI0fi5OTE2rVr7/v+gWl018cff4yrq2u5o5tycnJwd3+0A92FhYUMGDCAJUuWmIOXt4uPj8doNHLhwgXq169PzZo16du3L+np6eYyzZo1Q61Ws3LlSgwGAzk5Ofz3v/+lU6dO2Nz4WxEWFkZ6ejpbt25FURQuXbrE+vXr6dat2wPrqxBCCCGEqDoyUkpUqYKCAgBsVNaosxVssvdDjSCu6b0AMBRtR19yxFz+boJSWr0pkNQ58Bmeb/wqYT5h5ZY3KgrH8os4kFsIgJ+tDTNC/e6qP5VSeCOXiV9zGLG96usXjy1FZyTjvT0P/Lq+M1qj0tzbaEFFUdi+fTvbtm2ja9eubNq0id27d9O6dWvAlO/H39+fTZs20adPH86dO0fv3r1p1KgRYBr5c9PNQIuXlxdubm4A5OXlsXr1atasWWMeUbNy5Up8fX1LtaVDhw5MmDDBvD18+HAGDhxozqcUGhrKwoULad++PUuXLsXPz4+FCxcyadIkpk+fTvPmzQkPD2fgwIHmdiUnJ+Pq6lpqpA+ARqMhODjYHHS/V1u2bKF///4UFhbi4+NDfHw81auXvShCSkoKixYtKneU1KPg9ddfp3Xr1vTq1avM42fOnMFoNPLBBx+wYMECXF1deeedd+jcuTNHjhxBo9EQFBTEd999R9++fRk5ciQGg4GwsDC2bt1qrqdNmzbExsbSr18/iouL0ev19OjRQ6blCSGEEEL8SclIKVGlbo4+UHKvoMnYh8ZomjSnV0wfgDVWaaaCioKVrQ3BTzavdN16g+nl2qRGfTrW6oiDTfkr5y04e4nOB5KZmnweAA+bKo7BpmyHld0g/l3TtkPlpiEK8We0ZcsWnJycsLOzo2vXrvTr14+hQ4dibW1tMZXNw8ODunXrmqfwjh07lpiYGNq0aUN0dDRHjhy50yUAU/BCp9PRsmVL8z5XV1fq1q1bqmzz5pa/P3799VdWrVqFk5OT+REREYHRaCQ1NRUwjdy6ePEisbGxhIWF8cUXX9CwYUPi4+MrfS80Gk2FZWJjYy3akZCQYD4WHh5OYmIie/bsITIykr59+3L58uVSdVy4cIHIyEj69OljkTPp9nqjoqIq1eaEhASL82JjYyt1XmXExcXxww8/mKdWlsVoNKLT6Vi4cCERERG0atWKtWvXcurUKX788UcALl68yIgRIxgyZAj79+9n586daDQaXnzxRfPovuPHjzNu3Djee+89Dh48yLfffktaWpr5PvyR/RRCCCGEEFVPRkqJKmWeEqMo2Kg9qK6Y/vtvtLID4LqxEFug1ekMdMvfIvDJZhXW+WPSZXacvIxOa6rD2bbiD4QAR/JMUwQ9bKxxs7ZiiF/ZIxHu2d4lcHb3rW3POlVbv3jsqWzU+M5o/VCue7fCw8NZunQpGo0GX19frK2tiYuLq/C84cOHExERwddff813333HzJkzmTt3LmPGjLmXpltwdHS02M7Pz2fkyJHmfEO3q1Wrlvm5s7MzPXr0oEePHsTExBAREUFMTAydO3cmNDSUnJwcMjIySo3O0mq1nD592iI595307NnTIljn53drlKajoyMhISGEhITQqlUrQkNDWbFiBVOnTjWXycjIIDw8nNatW/Pxxx9b1H376ncuLi4VtgVMAbzbz6tRo0alzquMH374gdOnT5tHu93Uu3dvnnnmGXbs2GEeedagQQPzcU9PT6pXr865c+cAWLJkCa6ursyePdtc5rPPPsPf3599+/bRqlUrZs6cSZs2bZg4cSJgyknl6OjIM888Q0xMzB/aTyGEEEIIUfUkKCWqVOFJ01Q2f4e6dAy4lcBWZ7wxTe/GyCm1USGweuWCOOM/TySnSAfYAEa8nMsfIXW2qISdWXmcLDAFpWbXrclznm531Y9KKbxq+tp+MtRsCYFtq/4a4rGmUqnueRrdg3YzkHK7+vXro9fr2bdvn3n63rVr10hKSrIIPvj7+xMVFUVUVBRTp07lk08+YcyYMeYRR7fndwoODsbGxob9+/ebA0k5OTkkJyfTrl27ctv41FNPcfz48VLtLI9KpaJevXrs2WOaRvniiy8yefJk5s6dy9y5cy3KLlu2jMLCQgYPHlxhvc7Ozjg7Vy7vndFopKSkxLx94cIFwsPDadasGStXrjQn/b7pbvp3k729/T2dVxlTpkxh+PDhFvsaNWrE/Pnz6dGjB4A5mXxSUhI1a9YEICsri6tXr5qTzhcWFpbqq5WV6efDeONvR2FhIdbW1mWWURTlD+2nEEIIIYSoehKUElWq6HwOVno7tHm+HDDqyTUoFBtBj+nDpVOREZ0VqBUF/+q1K6zPYFRuBKTAxesXtDZJ+LhOK/ecV35L5Vh+sXm7hqbyeasqpC2EX9dCSS5km/67T2gE1Kx4xJcQj5vQ0FB69erFiBEjWL58Oc7OzkyZMgU/Pz9zbqHx48fTtWtX6tSpw/Xr1/nxxx+pX9+0EEBAQAAqlYotW7bQrVs37O3tcXZ2ZsiQIUycOBF3d3e8vLyIjo5GrVajqmCBgsmTJ9OqVStGjx7N8OHDcXR05Pjx48THx7N48WISExOJjo5m0KBBNGjQAI1Gw86dO/n000+ZPHkyYBpRNXv2bN58803s7OwYNGgQNjY2bN68mbfeeouYmBieeOIJi+smJSWVakvDhg3NyblvKigo4P3336dnz574+Phw9epVlixZwoULF+jTpw9gCkg9++yzBAQEMGfOHK5cuWI+v6wE4re7OUIoPz+fK1eukJiYiEajsQgQ/l5+fj4pKSnm7dTUVBITE3F3dzcHBbOysjh37hwZGRkW/fX29rZ4/F6tWrUICgoCoE6dOvTq1Ytx48bx8ccf4+LiwtSpU6lXr555FcbnnnuO+fPnM2PGDF566SXy8vJ46623CAgIoGnTpgD06NGDESNGsHTpUiIiIsjMzGT8+PG0bNmyzLxjd9NPIYQQQgjx4ElQSlQpg8GAQ6Ev2hJXLnD7Cl9WqI069BgBNQ716qH+3dSbsmw786P5ubFaHDZqPbZWtuWec7ZIC0C4uzP1He15yqX8kVV35fBn8M1Ey33OMj1E/HWtXLmScePG0b17d7RaLe3atWPr1q3mgIzBYGDUqFGcP38eFxcXIiMjmT9/PmCa0jZ9+nSmTJnCyy+/zODBg1m1ahXz5s0jKiqK7t274+LiwqRJk0hPT8fOzq7ctjRu3JidO3fy9ttv88wzz6AoCrVr16Zfv34A1KxZk8DAQKZPn05aWhoqlcq8/frrr5vref311wkODmbu3LksWLDAvIDD2rVr6d+/f6nrlrUvPT3dPCLoJisrK06ePMnq1au5evUqHh4etGjRgoSEBBo2bAiYVqlLSUkhJSWl1PkVrZp4M3ADcPDgQdasWUNAQABpaWl3POfAgQPmoBCYVj4EGDJkCKtWrQJMOaNefvnlUv2Njo5m2rRp5bbpdv/5z394/fXXee6551Cr1bRv355vv/3W/Frp0KEDa9asYfbs2cyePRsHBwfCwsL49ttvsbe3B2Do0KHk5eWxePFiJkyYgJubGx06dGDWrFnlXrsy/RRCCCGEEA+eSqmKtcEfU7m5ubi6upKTk1PpvB1/dZuiV3MlpwRtcQiBtr/gr0mkuk0a+swSsver+L6BN4pKzbCF/8atRvn/9Qf48OflLNlUE1AIbDqXBh71WdRhEVbqsqc86YwK/jt/BeB42ydwr+rk5tvehr2Lwash+DYFnybw9KtVew3xWCouLiY1NZWgoKAKgyvCUkFBAX5+fsydO5dhw4Y98OtnZWXRsWNHXFxc+Oabb3BwqMJAt3hklfczK+8PSpN7IoQQQojbVfa9gYyUElXKYDRwM1zkYZWM2+UknOo1xOgTRP7e9SiYpt/Y2JY/2umm/BLT1D1rKyM7+v14x3LfXc1hekoGxTfyjqgAV+sqzNWjKFCcDfmXTNuNesMzE8o9RQhxbw4fPszJkydp2bIlOTk5zJgxA8A8JfBBc3d35/vvv2fJkiXs3buXjh07PpR2CCGEEEII8biRoJSoErrcXL6LfocSx4agmBLVFhrsOZsSgnP3XpxOS+GipxvcyAljZV1+nqdLucXMj09m11nTinka6/IH9H2emcXpoluJghs42WFVQf6Zu7KqO5zddWvbwaPq6hZClDJnzhySkpLQaDQ0a9aMhIQEqlev4hU074KHhwfvvffeQ7u+EEIIIYQQjyMJSon7ptfrWbhoMXmu7kAmAYo/ACqVFT5TJ5Fby4ad61eDrymQo7KywvrGqlt3svHwBT7fnw6YVq9ydjCWW/6qTg/A28E+tKnmRD1H+/vr1O20hZYBKXt3CGhTdfULISw0bdqUgwcPPuxmCCGEEEIIIf5gEpQS9+3qiQzydKbk4mpFhUq5sTy3ygHHeqFcSfsZADutDp1NMWGvvFFhUCr3xop7Xh7Z5Nj8SP9W7UuVMSoKbyalc7KgmBP5RQA85eLAUy4VJ1CvNKMBcs6bnltp4K0MUFnB75YtF0IIIYQQQgghxN2RoJS4byVX8gGwVax5oaApB5U8CgAbZzWXUvfy896vAaieV8Sl6ldp2K7ifCzXi0x1ahwy0Djtw8etU6kyJwqKWZOZZd62VkFthypMIJ1/BZa2hoLLpm1HT7Aqf9qhEEIIIYQQQgghKkeCUuK+6XV6VBipazxJev4GFBtTAvDtGcdw/vcRczlbvQGDtRpbq4qTnG898z3QiMtF57F1Ageb0qtdXdWapuzVstMQE+pHoL0t3rZVGDTKOHQrIAVQt2vV1S2EEEIIIYQQQvzFSVBK3De9Tkdt5Sya3MacVfWmROcEgKbYAIBDSSFOJQZqXcvFq3UbbCoYbWQwGijQmqbveTu508T/WZ7xe8Z8/Le8Qj4+f4W0ItOUwVp2GrpUd636jhVdN30Nag8D1oFNFeapEkIIIYQQQggh/uIkKCXu28Uz2TgYVZwtaQ6AUX8Fg5KJjV4BVLRKuYyd3hSgCmocXmF9JYYSMJpemoOfeInhbetYHJ9/9hJfX8kxbwfYl5+f6q6l7Yb0nyF9v2nbsboEpIQQQgghhBBCiComQSlxz/Z/ncqVc3kUZ+ShvvFKUis5aIs+x6jXoUYFioLGYMDnnzPRBARg36RJuXX+a0cK245loC8IAcDZtvRUv0slplFUA33caezswHOeblXXKYMOYvuAruDWPqcaVVe/EEIIIYQQQgghAAlKiXuUe62IX75KRVEUqjtk4GClAkBlzMeo14GiUD2vCK+8QtQKuEREoLYvf7SR0agwZ1sSRgXAlEMqwMPJfPxIXiGpRSWcLzYFpV70difMzamMmu5D0fUbASkVNP0/0DhCq9eq9hpCCCGEEEIIIYRA1rUX90RXYpqOp9Jco0SVfeuFpCoBwMZgJORKJqHVa+ARNbLCgBSA1mC8EZACO9+1eNReydNB7gCkF2uJOJDMyGNnuXgj31R1mz8gpnozj5S9G/RaDF1ngVutqr+OEH8iQ4cORaVSoVKp0Gg0hISEMGPGDPR6/X3Vu2PHDlQqFdnZ2VXT0EpITU1lwIAB+Pr6YmdnR82aNenVqxcnT560KLdlyxbat2+Ps7MzDg4OtGjRglWrVlmUSUtLQ6VSkZiYWOnrT5s2jXr16uHo6Ei1atXo1KkT+/bts6hz2LBhBAUFYW9vT+3atYmOjkar1ZZbb2ZmJgMGDKBOnTqo1WrGjx9fqfb89NNP9OjRA19fX1QqFZs2bbrrNgO8//77tG7dGgcHB9zc3Mq81rlz53juuedwcHDAy8uLiRMnWryGbn+d3f5o2LChuczMmTNp0aIFzs7OeHl58fzzz5OUlFRhPyvTPiGEEEII8eBJUErctR9//JFPP1vGlRq7uOJxnFQXLWrFNFLquo0pYKRWFDaGqQnc8CVelfxwpDMYzc+tnY/h7HIVlcpU7+nCYhTA0UpNmJsjw2tWJ8Sh4lX8Ku38QVjaFv7zvGnbvlrV1S3EYyAyMpLMzExOnTrFhAkTmDZtGh9++OHDbpZZRUEbAJ1OR+fOncnJyWHDhg0kJSWxbt06GjVqZBEYW7RoEb169aJNmzbs27ePI0eO0L9/f6KionjzzTfvq5116tRh8eLFHD16lF27dhEYGEiXLl24cuUKACdPnsRoNLJ8+XKOHTvG/PnzWbZsGW+99Va59ZaUlODp6ck777xDkwqmSd+uoKCAJk2asGTJkntuM5juf58+fXjttbJHlhoMBp577jm0Wi179uxh9erVrFq1ivfee89cZsGCBWRmZpof6enpuLu706dPH3OZnTt3MmrUKH7++Wfi4+PR6XR06dKFgoKCsi5b6fYJIYQQQoiHRBF3lJOTowBKTk7Ow27KI2X27NlKdHS0+THj3Whl2+RhyuKR25V//H2+Mqfvc8q/enVRlsa8eFf1bj21UwmYvEUJmLxFabiykdLliy6K3mhUErJylfdOnVdq/HBY6X3o1B/Tqa2TFCXa5dbj8//7Y64j/rKKioqU48ePK0VFRQ+7KXdtyJAhSq9evSz2de7cWWnVqpWSlZWlDBo0SHFzc1Ps7e2VyMhIJTk52VwuLS1N6d69u+Lm5qY4ODgoDRo0UL7++mslNTVVASweQ4YMURRFUXJzc5UBAwYoDg4Oire3tzJv3jylffv2yrhx48z1BgQEKDNmzFAGDRqkODs7m89NSEhQ2rZtq9jZ2Sk1a9ZUxowZo+Tn5yuKoiiHDx9WACUtLe2OfT137pxiY2OjvPHGG6WOLVy4UAGUn3/+WVEUxdyHw4cP3/1NveHm35nvv//+jmVmz56tBAUFVbrO39+rygKUjRs3VliuvDavXLlScXV1LbV/69atilqtVi5evGjet3TpUsXFxUUpKSkp8zobN25UVCpVud+vy5cvK4Cyc+fOCttdXvvKUt7PrLw/KE3uiRBCCCFuV9n3BjJSSty1m9Mtgq8ZeS63LgOKwvA3VgfAiGm0glpReOnJoXdV7+rfYm88M6BSKfg6+fLlpeu8mHia5emm/8h7av6gNGgFV01fn34Nhm+H3iv+mOsIcRtFUdBqtQ/8oSjKfbfd3t4erVbL0KFDOXDgAHFxcezduxdFUejWrRs6nWnU5KhRoygpKeGnn37i6NGjzJo1CycnJ/z9/fnyyy8BSEpKIjMzkwULFgDwxhtvsHv3buLi4oiPjychIYFDhw6VasOcOXNo0qQJhw8f5t133+X06dNERkbSu3dvjhw5wrp169i1axejR48GwNPTE7Vazfr16zEYDGX2a/369eh0ujJHRI0cORInJyfWrl173/cPTKN3Pv74Y1xdXcsd3ZSTk4O7u3uVXPN+VbbNv7d3714aNWpEjRq3Fo6IiIggNzeXY8eOlXnOihUr6NSpEwEBAXesNyfHtBLro3J/hBBCCCHE3ZFE5+Ku3QxKPWnfAh/r07hZ/4OzJUFAFxTVjel7RgW1nd1d1ZtbUgiAjZWKD9t/SIsaLViWUQyAt8aGEAdbhtX0rLqOAOz7GM7uhnN7Tdu+T0LN5lV7DSHuQKfT8cEHHzzw67711ltoNJp7OldRFLZv3862bdvo2rUrmzZtYvfu3bRu3RqA2NhY/P392bRpE3369OHcuXP07t2bRo0aARAcHGyu62YgwcvLy5znJy8vj9WrV7NmzRo6duwIwMqVK/H19S3Vlg4dOjBhwgTz9vDhwxk4cKA5n1JoaCgLFy6kffv2LF26FD8/PxYuXMikSZOYPn06zZs3Jzw8nIEDB5rblZycjKurKz4+PqWup9FoCA4OJjk5+Z7u3U1btmyhf//+FBYW4uPjQ3x8PNWrVy+zbEpKCosWLWLOnDn3dc37dTdtLsvFixctAlKAefvixYulymdkZPDNN9+wZs2aO9ZpNBoZP348bdq04Yknnqh0W4QQQgghxKNDRkqJu6K9VGAeYWCntqdE+ZWdub05mNcJffEvuGWlAWClGFHdZVAqT1sEgK21NREBEbjZuXNNZwqADfHzYH3TEJq7OlZdZ4quwzcT4fgmyL9k2lctqOrqF+IxsmXLFpycnLCzs6Nr167069ePoUOHYm1tzdNPP20u5+HhQd26dTlx4gQAY8eOJSYmhjZt2hAdHc2RI0fKvc6ZM2fQ6XS0bNnSvM/V1ZW6deuWKtu8uWUA+ddff2XVqlU4OTmZHxERERiNRlJTUwHTyK2LFy8SGxtLWFgYX3zxBQ0bNiQ+Pr7S96IyAb3Y2FiLdiQkJJiPhYeHk5iYyJ49e4iMjKRv375cvny5VB0XLlwgMjKSPn36MGLECPP+2+uNioqqVJsTEhIszouNja34pNtUts1VZfXq1bi5ufH888/fscyoUaP47bff+Pzzz837oqKiLPophBBCCCEebTJSStyVwuRr5udWqPm1oClp2ifQFf6IoeSw+ZiN3oiNT+mRDWVZe3ItezL2kFOUD4C1lYoWPx/nfLHOXKbaH7HSXv6ND1Q2jtB5Orj4gn/L8s8RogrZ2NhUmMD6j7ru3QoPD2fp0qVoNBp8fX2xtrYmLi6uwvOGDx9OREQEX3/9Nd999x0zZ85k7ty5jBkz5l6absHR0TJInZ+fz8iRIxk7dmypsrVq3VpF09nZmR49etCjRw9iYmKIiIggJiaGzp07ExoaSk5ODhkZGaVGZ2m1Wk6fPk1ERESFbevZs6dFsM7Pz8+i3SEhIYSEhNCqVStCQ0NZsWIFU6dONZfJyMggPDyc1q1b8/HHH1vUfftqfy4uLhW2BUwBvNvP+/2opYpUps3l8fb25pdffrHYd+nSJfOx2ymKwqeffsqgQYPuGAAcPXo0W7Zs4aeffqJmzZrm/TNmzLjvZPRCCCGEEOLBkaCUuCv6Ih0o4JgfxLc5F7CxNk15cXHK5XoJuBZqcaxVg7avjMI2uOJRRzqjjlm/zMKgGDAYTR/aVFZWFgEpBys1LatyhFRJPnz9Bly9MQXHxQdajij/HCH+ACqV6p6n0T1oN4MSt6tfvz56vZ59+/aZp+9du3aNpKQkGjRoYC7n7+9PVFQUUVFRTJ06lU8++YQxY8aY+357fqfg4GBsbGzYv3+/OZCUk5NDcnIy7dq1K7eNTz31FMePHy/VzvKoVCrq1avHnj17AHjxxReZPHkyc+fOZe7cuRZlly1bRmFhIYMHD66wXmdnZ5ydnSvVBqPRSElJiXn7woULhIeH06xZM1auXIlabTmo+W76d5O9vf09nXcnv29zRcLCwnj//fe5fPkyXl5eAMTHx+Pi4mLxWgHTCnspKSkMGzasVD2KojBmzBg2btzIjh07CAqy/Dvj5eVlrl8IIYQQQjz6JCgl7oq2WIuVwQ6HAn+wBlPoyIirq47r18AvKwe3ycPwb9u1UvWV6EsoyQ1BXxhMQ7c2JAJWNz6AtXR1ZHWjIOzVauysqnCm6anv4Mi6W9vVS08LEkJULDQ0lF69ejFixAiWL1+Os7MzU6ZMwc/Pj169egEwfvx4unbtSp06dbh+/To//vgj9evXByAgIACVSsWWLVvo1q0b9vb2ODs7M2TIECZOnIi7uzteXl5ER0ejVqtRqVTltmfy5Mm0atWK0aNHM3z4cBwdHTl+/Djx8fEsXryYxMREoqOjGTRoEA0aNECj0bBz504+/fRTJk+eDJhGVM2ePZs333wTOzs7Bg0ahI2NDZs3b+att94iJiamVP6ipKSkUm1p2LBhqRFpBQUFvP/++/Ts2RMfHx+uXr3KkiVLuHDhAn369AFMAalnn32WgIAA5syZw5UrV8zn/35E0e/dHAmVn5/PlStXSExMRKPRlAr63C4/P5+UlBTzdmpqKomJibi7u1OrVq1KtRng3LlzZGVlce7cOQwGg7ktISEhODk50aVLFxo0aMCgQYOYPXs2Fy9e5J133mHUqFHY2tpatGnFihU8/fTTZeaJGjVqFGvWrGHz5s04Ozub81G5urpib29/x35W1D4hhBBCCPFwSFBKVIqiKJQknyVtdwoqK9MHLcVYyNMOX5LvlsT+PG+sACtFwcb2zh8Mfq9AV0zRhYGgaEjMMu0rtjJ99dRY/zHT9m6utOfXHML+DsHhVX8NIf4iVq5cybhx4+jevTtarZZ27dqxdetWc0DGYDAwatQozp8/j4uLC5GRkcyfPx8wTWmbPn06U6ZM4eWXX2bw4MGsWrWKefPmERUVRffu3XFxcWHSpEmkp6djV0GeusaNG7Nz507efvttnnnmGRRFoXbt2vTr1w+AmjVrEhgYyPTp00lLS0OlUpm3X3/9dXM9r7/+OsHBwcydO5cFCxZQUFAAwNq1a+nfv3+p65a1Lz093WJaGYCVlRUnT55k9erVXL16FQ8PD1q0aEFCQgINGzYETKOHUlJSSElJKXV+RasmNm3a1Pz84MGDrFmzhoCAANLS0u54zoEDBwgPv/U78I033gBgyJAhrFq1qlJtBnjvvfdYvXp1qbb8+OOPPPvss1hZWbFlyxZee+01wsLCcHR0ZMiQIcyYMcOiPTk5OXz55ZfmlRh/b+nSpQA8++yzFvtXrlzJ0KFD79jPitonhBBCCCEeDpVSFWuDP6Zyc3NxdXUlJyen0nk7Hlen/v0zW879RJFKi6J1wu16Y4yGqwxynsyg+raEJvrhd9WeJucuEbBiAaENWleq3uSr6XSZY0p87FvXnXNaLYYa9iiuGl72q87MOjUrqOEuXDoOSV9DagKk7oRmL0OPj6qufiHKUVxcTGpqKkFBQRUGV4SlgoIC/Pz8mDt3bplTuv5oWVlZdOzYERcXF7755hscHBweeBvEg1fez6y8PyhN7okQQgghblfZ9wYyUkpUypnzaeSoCwHQKDeGMilanL2dybHSY2U0TatRGxUCq1c+b0lucfGNZ0as6ruhLyqha3VXAuw1DK/pWZVdgM1/h4xbydhxLr3kuxDi4Tt8+DAnT56kZcuW5OTkmEfT3JwS+KC5u7vz/fffs2TJEvbu3UvHjh0fSjuEEEIIIYR43EhQSlSKwWjARu+CU24IVvqb+T/0WDnYUqwyoL6Rp1ilKKjuYmWvm0EpldrAFZ0egIlB3jRwqvwUwErLTjd9bfg3cPWH5i9X/TWEEFVizpw5JCUlodFoaNasGQkJCVSvXv2htcfDw4P33nvvoV1fCCGEEEKIx5EEpUSl6I0G3AvdMepvJYRt4HQC49VTFDn7Y31zpJQCKpvKryaWnGdavclobUu23hTZcq/qPFK6IjBooei6aTviA3DxLf8cIcRD07RpUw4ePPiwmyGEEEIIIYT4g0lQSlRIMSoYMOCmFJAFPOHwDQGag/jZHqUYsNarsDbcDEopqDQVj5Q6nX2aqdv+S9JVH6AmWEFDJztaujpRQ1OFL8vDsRA3BpRbS85j71519QshhBBCCCGEEOKeSFBKVOh6Rj4GFFQ3ckldI4+A3v3YbujNyZU7+L8TReayaqOCyrril9Un++P55XAL87a1tZ7tLepVfeNT4i0DUiGdwEaSTAshhBBCCCGEEA+bBKXEHWmL9VxNz2PP55swYMCAGoDPPXPZtOm/OBZZE5J9azqfnVaHs96ASq2usO5fr7manmhUGNxsad7Qo2obryhQnAP5l03bzy+DJ14Aq8pPLRRCCCGEEEIIIcQfR4JS4o42zDnEtfP5UHCUagH10GIaKeV/oQjfK27mcp65BTS+loODoxuuAwaWW+fSHadZ8mMK+VrTkpB6T3v0T1Tj2eAqXglvYxQc+fzWtrM3WNveubwQQgghhBBCCCEeKAlKiTu6frEArU0Oejc1enUuTopp5StH0yJ51FDb4HQtm5oXrxGyaBFO7dtXWGfcrxnkl+jN242883n7yea0cnUq56x7kBJ/67lrLfBtWrX1CyGEEEIIIYQQ4r5IUEqUcuLECX744QeuueVitC4hjCQas5mtimk5dLViKueTeh7f7HxQqdDUrl1hvQZF4XKxFgB9Y1f07vZ09kmibTXnqu2A0Xhrpb3xv4FrTVCpqvYaQgghhBBCCCGEuC8SlBKlHDp0iCtXrphfHc/wCw4UY7yxw+pGUMrKaMR7WjR2DRuiqVmzwnoTrudxpViHGjDYa0BjpFrFC/VVXnEu/PgB5F8ExWja5+QlASkhhBBCCCGEEOIRVHFGavGXo9ebptdVzy7hueJmnMjvzvbsMWj11VAULbbFpoCPtcGI6/PPY9+oUaXqzSjRoTKaIlqB6hRcri7C0aoK46LHN8O+pXBso2nbSfJICVEVhg4dikqlQqVSodFoCAkJYcaMGebfFfdqx44dqFQqsrOzq6ahlZCamsqAAQPw9fXFzs6OmjVr0qtXL06ePGlRbsuWLbRv3x5nZ2ccHBxo0aIFq1atsiiTlpaGSqUiMTGx0tefNm0a9erVw9HRkWrVqtGpUyf27dtnUeewYcMICgrC3t6e2rVrEx0djVarrbDu2NhYmjRpgoODAz4+Przyyitcu3at3HN++uknevToga+vLyqVik2bNpVZ7sSJE/Ts2RNXV1ccHR1p0aIF586dMx8fOXIktWvXxt7eHk9PzzLv6f79++nYsSNubm5Uq1aNiIgIfv311zKvl5KSgrOzM25ubhX2u7J9EEIIIYQQjx4JSolSDAYDAG5GBxwNrvycP5ATRc9QkvNfSrIXY1ViOm5tY4Pazq7i+hSFkwVFJBcUw42gVB1+xbboMNbqKgxK5V80fa3ZEiI+gP9bX3V1C/EXFxkZSWZmJqdOnWLChAlMmzaNDz/88GE3y6wyQRudTkfnzp3Jyclhw4YNJCUlsW7dOho1amQRGFu0aBG9evWiTZs27Nu3jyNHjtC/f3+ioqJ4880376udderUYfHixRw9epRdu3YRGBhIly5dTKNTgZMnT2I0Glm+fDnHjh1j/vz5LFu2jLfeeqvcenfv3s3gwYMZNmwYx44d44svvuCXX35hxIgR5Z5XUFBAkyZNWLJkyR3LnD59mrZt21KvXj127NjBkSNHePfdd7G77fd/s2bNWLlyJSdOnGDbtm0oikKXLl3Mf0/y8/OJjIykVq1a7Nu3j127duHs7ExERAQ6nc7iejqdjpdeeolnnnmm3LbfTR+EEEIIIcSjSabviVJKik0fEKxVVhQbTR8o7JQ0Sow55jIORqg18P8qVd9rx88SdzkbANsbs+qMKtMHSBt1Fczfu54Gabvg3M+m7YDWEDbq/usVQpjZ2tri7e0NwGuvvcbGjRuJi4sjKiqKcePG8dVXX1FSUkL79u1ZuHAhoaGhAJw9e5bRo0eza9cutFotgYGBfPjhhzRo0IDw8HAAqlWrBsCQIUNYtWoVeXl5REVFsWnTJlxcXJg0aRKbN2/mySef5KOPPgIgMDCQYcOGcerUKTZt2sQLL7zAqlWr2LVrF1OnTuXAgQNUr16dv/3tb8ycORNHR0eOHTvG6dOn2b59OwEBAQAEBATQpk0bcz/T09OZMGEC48eP54MPPjDvnzBhAhqNhrFjx9KnTx+efvrpe7qPAwYMsNieN28eK1as4MiRI3Ts2JHIyEgiIyPNx4ODg0lKSmLp0qXMmTPnjvXu3buXwMBAxo4dC0BQUBAjR45k1qxZ5bana9eudO3atdwyb7/9Nt26dWP27NnmfbV/l0fw1VdfNT8PDAwkJiaGJk2akJaWRu3atTl58iRZWVnMmDEDf39/AKKjo2ncuDFnz54lJCTEfP4777xDvXr16NixI3v27Cm3bZXtgxBCCCGEeDTJSClh4czhK1y7kIuV3p4ifSCnS0xRpGKN6b/4dlo9gbYFRK2Lw3fM2ErVeSi3AIBq1lbm6XtGSoAqCkqt6QebR0HK96ZtR8/7r1OIB0BRFAyGwgf+UBTlvttub2+PVqtl6NChHDhwgLi4OPbu3YuiKHTr1s08+mXUqFGUlJTw008/cfToUWbNmoWTkxP+/v58+eWXACQlJZGZmcmCBQsAeOONN9i9ezdxcXHEx8eTkJDAoUOHSrVhzpw5NGnShMOHD/Puu+9y+vRpIiMj6d27N0eOHGHdunXs2rWL0aNHA+Dp6YlarWb9+vXmETy/t379enQ6XZkjokaOHImTkxNr16697/sHptFdH3/8Ma6urjRp0uSO5XJycnB3dy+3rrCwMNLT09m6dSuKonDp0iXWr19Pt27d7quNRqORr7/+mjp16hAREYGXlxdPP/10uVPkCgoKWLlyJUFBQeYAVN26dfHw8GDFihVotVqKiopYsWIF9evXJzAw0HzuDz/8wBdffCGjnoQQQggh/iJkpJSwcPVCPgoKjnmBFBo8KbyxP9UuH19ArRixsbVFpa58PPO6zgB6I6vqB9FPMeUgSbp+DKiCoJSiwLXTpufBz5rySDXqc391CvGAGI1F7NhZuZxsVenZ9kexsnK4p3MVRWH79u1s27aNrl27smnTJnbv3k3r1q0BU14jf39/Nm3aRJ8+fTh37hy9e/em0Y3cc8HBwea6bgZavLy8zLmD8vLyWL16NWvWrKFjx44ArFy5El9f31Jt6dChAxMmTDBvDx8+nIEDBzJ+/HgAQkNDWbhwIe3bt2fp0qX4+fmxcOFCJk2axPTp02nevDnh4eEMHDjQ3K7k5GRcXV3x8fEpdT2NRkNwcDDJycn3dO9u2rJlC/3796ewsBAfHx/i4+OpXr16mWVTUlJYtGhRuaOkANq0aUNsbCz9+vWjuLgYvV5Pjx497ju4c/nyZfLz8/nnP/9JTEwMs2bN4ttvv+WFF17gxx9/pH379uay//rXv5g0aRIFBQXUrVuX+Ph4NBoNAM7OzuzYsYPnn3+ef/zjH4Dp+7Nt2zasrU1vRa5du8bQoUP57LPPcHFxua92CyGEEEKIPwcZKSUsGPK12FspqI2mBOE1bfRc9t5McnXT1Di1AvW9G1dYz1WtnucPnaL1zycozNViu+Mi/T7aZT5ebMgHwM/Z794bW5gFl4+D8UY+kv5r4YXl4Fzj3usUQpRpy5YtODk5YWdnR9euXenXrx9Dhw7F2traYiqbh4cHdevW5cSJEwCMHTuWmJgY2rRpQ3R0NEeOHCn3OmfOnEGn09GyZUvzPldXV+rWrVuqbPPmzS22f/31V1atWoWTk5P5ERERgdFoJDU1FTCN3Lp48SKxsbGEhYXxxRdf0LBhQ+Lj4yt9L24GWsoTGxtr0Y6EhATzsfDwcBITE9mzZw+RkZH07duXy5cvl6rjwoULREZG0qdPH4vcULfXGxUVBcDx48cZN24c7733HgcPHuTbb78lLS3NfDwhIcHivNjY2Er11Wg0jZbt1asXr7/+Ok8++SRTpkyhe/fuLFu2zKLswIEDOXz4MDt37qROnTr07duX4uJiAIqKihg2bBht2rTh559/Zvfu3TzxxBM899xzFBUVATBixAgGDBhAu3btymzLvfZBCCGEEEI8umSklDBTjArn96djow9GrTeNogi0yeEr763o8t0AJ9RGBReH8qeRAPyYlcvPOaZpe+o8HSrDzelCBhxdz7Gk8zy8Hb2p6176g2alpCbAf3qCciNJlbU9aO5t5IcQD4tabc+z7Y8+lOverfDwcJYuXYpGo8HX1xdra2vi4uIqPG/48OFERETw9ddf89133zFz5kzmzp3LmDFj7qXpFhwdHS228/PzGTlypDmv0u1q1aplfu7s7EyPHj3o0aMHMTExREREEBMTQ+fOnQkNDSUnJ4eMjIxSo7O0Wi2nT58mIiKiwrb17NnTIljn53crAO/o6EhISAghISG0atWK0NBQVqxYwdSpU81lMjIyCA8Pp3Xr1nz88ccWdd++2t/NEUUzZ86kTZs2TJw4EYDGjRvj6OjIM888Q0xMDM2bN7c4r0aNygXvq1evjrW1NQ0aNLDYX79+fXbt2mWxz9XVFVdXV0JDQ2nVqhXVqlVj48aNvPTSS6xZs4a0tDT27t2L+sZI2zVr1lCtWjU2b95M//79+eGHH4iLizOPClMUBaPRiLW1NR9//DEvvfTSPfVBCCGEEEI8uiQoJQDQ5WlJXnWIywVqrPEAQFGMJKX9G11dUBtVAKgVBVUlRglk6UxLxbev5kzhpUMcpQZ2zmk0aryDwQ0G096/fQU1VCB9nykgpbYGazt4ckDF5wjxiFGpVPc8je5BuxlIuV39+vXR6/Xs27fPPH3v2rVrJCUlWQQx/P39iYqKIioqiqlTp/LJJ58wZswY84ij2/M7BQcHY2Njw/79+82BpJycHJKTk+84guamp556iuPHj5dqZ3lUKhX16tUzJ9R+8cUXmTx5MnPnzmXu3LkWZZctW0ZhYSGDBw+usF5nZ2ecnZ0r1Qaj0UhJSYl5+8KFC4SHh5tXtFP/brp0Wf0rLCw0T4O7ycrKCjAFd+zt7e/qvtyk0Who0aIFSUlJFvuTk5PNyeLLoigKiqKY+1VYWIharUalUpnL3Ny+ORpr7969Fq+FzZs3M2vWLPbs2YOfn98990EIIYQQQjy6JCglAPh57kFKCq4BDhjVWoyOSdQpTCCk7nU2qlSVDkr9nJ3PpsvZHL6R3DzEwZYkQzZQg1ouvnzR44uqaXDRddPXp6Mg4v2qqVMIcVdCQ0Pp1asXI0aMYPny5Tg7OzNlyhT8/Pzo1asXAOPHj6dr167UqVOH69ev8+OPP1K/fn3AtPKdSqViy5YtdOvWDXt7e5ydnRkyZAgTJ07E3d0dLy8voqOjSwU0yjJ58mRatWrF6NGjGT58OI6Ojhw/fpz4+HgWL15MYmIi0dHRDBo0iAYNGqDRaNi5cyeffvopkydPBkwjqmbPns2bb76JnZ0dgwYNwsbGhs2bN/PWW28RExPDE088YXHd3wdsABo2bIiNjWXOvIKCAt5//3169uyJj48PV69eZcmSJVy4cIE+fUy58C5cuMCzzz5LQEAAc+bM4cqVK+bzb65+WJYePXowYsQIli5dSkREBJmZmYwfP56WLVuWmY/rpvz8fFJSUszbqampJCYm4u7ubg4KTpw4kX79+tGuXTvCw8P59ttv+eqrr9ixYwdgmnK5bt06unTpgqenJ+fPn+ef//wn9vb25kTrnTt3ZuLEiYwaNYoxY8ZgNBr55z//ibW1tXkVxpuvi5sOHDiAWq0udb/vpQ9CCCGEEOLRJEEpgaIoZOde54jtadxohEGtpYvjf2jgaHqTr8UbqxtBKZWioLK5c3LySUnnSS4sNm/72Wk4cmPUlK211f03dv8KOLYRrp4ybVdiKqEQ4o+zcuVKxo0bR/fu3dFqtbRr146tW7eaAzIGg4FRo0Zx/vx5XFxciIyMZP78+YBpStv06dOZMmUKL7/8MoMHD2bVqlXMmzePqKgounfvjouLC5MmTSI9PR07O7ty29K4cWN27tzJ22+/zTPPPIOiKNSuXZt+/foBULNmTQIDA5k+fTppaWmoVCrz9uuvv26u5/XXXyc4OJi5c+eyYMECCgpMQfa1a9fSv3//Utcta196ejo1a9a02GdlZcXJkydZvXo1V69excPDgxYtWpCQkEDDhg0BiI+PJyUlhZSUlFLnl7dq4tChQ8nLy2Px4sVMmDABNzc3OnTowKxZs8q9ZwcOHDAHhcC08iHAkCFDWLVqFQB/+9vfWLZsGTNnzmTs2LHUrVuXL7/8krZt2wJgZ2dHQkICH330EdevX6dGjRq0a9eOPXv24OXlBUC9evX46quvmD59OmFhYajVapo2bcq3335bZlL5u1GZPgghhBBCiEeTSqmKtcEfU7m5ubi6upKTk/NYrwRkMBjZOHkzydbncc1uSDXr07zoMRmNykCGdV2m2yj4nrTCqbA6nrkFPNdnMB6vvFxmXXUTjpKjNzC8ZnVq2Wl4yceD3qtmk5zSmOa1Yf2I5+6vsR/4gTb/1nbf/0KDnvdXpxAPQHFxMampqQQFBVUYXBGWCgoK8PPzY+7cuQwbNuyBXz8rK4uOHTvi4uLCN998g4PDn2PKpbg/5f3M/lXeH9wNuSdCCCGEuF1l3xvI6nsCg86IggGVYhoN5aAuRKMyoDOq2Z7TjDqHauBUaFquXG1UUDs5lqrjqlZPckExOXpTPpDxAd6orm9mys6xZBZcBcDO5j5HSumKbgWkev0LBm2Cet3vr04hxCPn8OHDrF27ltOnT3Po0CEGDhwIYJ4S+KC5u7vz/fff07FjR/bu3ftQ2iCEEEIIIcTjSKbvCa78eyVGtYs5Qqmo9BxtNIbckAZcnrnWXE4FBDR6EpfISIvzD+UW0P3gKYy37TMaclh4eCEAJboOALjYlg5mVYrRCFeTIf/ijYZYmRKbV5BfRgjx5zVnzhySkpLQaDQ0a9aMhIQEqlev/tDa4+HhwXvvvffQri+EEEIIIcTjSIJSgsu/7EPv9STWatNMzj32KvZt24vXugOgskZlVOhwPBWnHzcS4lW31PmHcwsxAjYqFY5Wap7zdKVYZ8rBYmtlSyu/jsRfBS/He8z/9N3b8PO/bm3bu0lASojHWNOmTTl48ODDboYQQgghhBDiDyZBqb+43bt3Ex/kh8qYQ7WiagCotdfxzLHnxmw+qhUWo/V2pbZnnTLryNaZpuz193Hnw7r+nL9eyA9JJ9BefxorapBlWx24jsb6HmeLXjhk+mrnBjb28NSQe6tHCCGEEEIIIYQQjwwJSv3FJScn45bvh01BiHmf/+USSgCnYi2tfQLx7d0Z59ZhpZZj//JiFusvXefUjdX23KytKNTqifwogfwSPfA3SoCDXAfAxe4eX26F10xf+6+BwDb3VocQQgghhBBCCCEeKRKU+ovT6/W46GwpAlQYUOu1eF1OJbUa2Or0BDz/QqkcUjf943QmF7U683awgy2XcorJL9GjUimobNNxc9LTLeRZnGxt6N+yVuUbVpQNn4RD1plb+xw87q2TQgghhBBCCCGEeORIUOovrCCnhJyrBbgrtgDUMn5C5qXrZDqqARucGzbEuVOnMs9VFIUrOlNA6v1QP/ztNHRwd2HOrjWAG1jl4hj0L57wakpM1zF337iMw5YBKbdaUC3w7usRQgghhBBCCCHEI0mCUn9hJ/dmUlxQAooVAKdyijA62JqP12jWApW15UukyGBk5YWrXNLqMJjyovN/vh7Yqk35ok5lpQNuqK20eDt687eQv91b44qyTF/9n4Z+n4F9NbCyube6hBBCCCGEEEII8ciRoNRfmK7YgK1aQUGNoigYMUWZnjx7iQvvDSSsy4BS53x1JZsZpzPM2x421tiq1Ww5ksEXB86TmBkAgJ+LO/Evxt99oy4chIOr4EqSadvJy/QQQgghhBBCCCHEY0WCUn9Rxfn5HIj7B4p/HbSoAb35mFtBAbZNmmNlXfrlkVGsBaCBox3PuDvTyd0FgA+3JXH2WiFg2vZ0uceV9rbPgDM7bm27BdxbPUIIIYQQQgghhHik3WPkQPzZXUpNQVd4HQNGFKxAMZiPaWztae3butQ5F0t0nLsRlAr3cGF6iB/PuDsDkFdsCmrVCjiMne9aXm7vcG8Ny7to+trsZeg6G56ZcG/1CCGqzNChQ1GpVKhUKjQaDSEhIcyYMQO9Xl/xyeXYsWMHKpWK7OzsqmloJaSmpjJgwAB8fX2xs7OjZs2a9OrVi5MnT1qU27JlC+3bt8fZ2RkHBwdatGjBqlWrLMqkpaWhUqlITEys9PWnTZtGvXr1cHR0pFq1anTq1Il9+/ZZ1Dls2DCCgoKwt7endu3aREdHo9VqK6w7NjaWJk2a4ODggI+PD6+88grXrl0r95ylS5fSuHFjXFxccHFxISwsjG+++cZ8PCsrizFjxlC3bl3s7e2pVasWY8eOJScnx1xm1apV5tfH7x+XL182lyspKeHtt98mICAAW1tbAgMD+fTTTy3a89FHH5mv5e/vz+uvv05xcXG5fdiwYQNdunTBw8Pjrr8fQgghhBDi4ZKRUn9R6RmZ6Nw80WEAoxVwKyhl6+CEWmUZr1yQdomZqZnm7WrWVhbHc4qLACuuWX+HjcN1PJ0dK98YRYETX0FOOuTemBrYYjh4P3G33RJC/EEiIyNZuXIlJSUlbN26lVGjRmFjY8PUqVMfdtMA0Gq1aDSacsvodDo6d+5M3bp12bBhAz4+Ppw/f55vvvnGIjC2aNEixo8fz+TJk1m6dCkajYbNmzcTFRXFb7/9xpw5c+65nXXq1GHx4sUEBwdTVFTE/Pnz6dKlCykpKXh6enLy5EmMRiPLly8nJCSE3377jREjRlBQUFDudXfv3s3gwYOZP38+PXr04MKFC0RFRTFixAg2bNhwx/Nq1qzJP//5T0JDQ1EUhdWrV9OrVy8OHz5Mw4YNycjIICMjgzlz5tCgQQPOnj1LVFQUGRkZrF+/HoB+/foR+btVWocOHUpxcTFeXremX/ft25dLly6xYsUKQkJCyMzMxGg0mo+vWbOGKVOm8Omnn9K6dWuSk5PNAdF58+bdsQ8FBQW0bduWvn37MmLEiAq/B0IIIYQQ4hGiiDvKyclRACUnJ+dhN6VKXbx4UYmOjjY/lozcrCwasUmZ0/c5Zd6L3ZSzrwwrdc5LiSlKjR8OK/4/JipP7f5NOZZXaD5mMBiVgMlblIDJW5QG/35a6fC/Dkp2cXblG3T+oKJEu1g+8i5XRVeFeGQUFRUpx48fV4qKih52U+7akCFDlF69elns69y5s9KqVSslKytLGTRokOLm5qbY29srkZGRSnJysrlcWlqa0r17d8XNzU1xcHBQGjRooHz99ddKamqqAlg8hgwZoiiKouTm5ioDBgxQHBwcFG9vb2XevHlK+/btlXHjxpnrDQgIUGbMmKEMGjRIcXZ2Np+bkJCgtG3bVrGzs1Nq1qypjBkzRsnPz1cURVEOHz6sAEpaWtod+3ru3DnFxsZGeeONN0odW7hwoQIoP//8s6IoirkPhw8fvvubesPNvzPff//9HcvMnj1bCQoKKreeDz/8UAkODi7VXj8/v7tuU7Vq1ZR///vfdzz+v//9T9FoNIpOpyvz+OXLlxUbGxvlP//5j3nfN998o7i6uirXrl27Y72jRo1SOnToYLHvjTfeUNq0aVOpdlfF9+N25f3MPq7vD+6H3BMhhBBC3K6y7w1k+t5fUF5eHgAqg4EAgydgjaKYpuFY2dnhv/Rfpc/Rm/6bvbRhAAdbN6SBk735WJHu1iirNc+t5Lve3+Fq61r5Bl1PNX119IJGfaDrh+DkeZe9EuLPR1EUCgyGB/5QFOW+225vb49Wq2Xo0KEcOHCAuLg49u7di6IodOvWDZ1OB8CoUaMoKSnhp59+4ujRo8yaNQsnJyf8/f358ssvAUhKSiIzM5MFCxYA8MYbb7B7927i4uKIj48nISGBQ4cOlWrDnDlzaNKkCYcPH+bdd9/l9OnTREZG0rt3b44cOcK6devYtWsXo0ePBsDT0xO1Ws369esxGAyl6gNYv349Op2ON998s9SxkSNH4uTkxNq1a+/7/oFpdNfHH3+Mq6srTZo0uWO5nJwc3N3dy60rLCyM9PR0tm7diqIoXLp0ifXr19OtW7dKt8dgMPD5559TUFBAWFhYue1xcXHBuoy8gwD/+c9/cHBw4MUXXzTvi4uLo3nz5syePRs/Pz/q1KnDm2++SVFRkblM69atOXjwIL/88gsAZ86cYevWrXfVByGEEEII8eci0/f+ggwGAyqjFV5ZT1BicDXllCIfAGtbW1RlTIHJ0Zs+wLneNm0vq0DLe5t/41LurXwfnk5uWKmtSp1fJr0WzvwIp380bddqBb3/fW+dEuJPqNBopPZPRx/4dU+3a4SjVSV/Tn9HURS2b9/Otm3b6Nq1K5s2bWL37t20bm3KQxcbG4u/vz+bNm2iT58+nDt3jt69e9OoUSMAgoODzXXdDLR4eXnh5uYGmILmq1evZs2aNXTs2BGAlStX4uvrW6otHTp0YMKEW3nnhg8fzsCBAxk/fjwAoaGhLFy4kPbt27N06VL8/PxYuHAhkyZNYvr06TRv3pzw8HAGDhxobldycjKurq74+PiUup5GoyE4OJjk5OR7unc3bdmyhf79+1NYWIiPjw/x8fFUr169zLIpKSksWrSowimDbdq0ITY2ln79+lFcXIxer6dHjx4sWbKkwvYcPXqUsLAwiouLcXJyYuPGjTRo0KDMslevXuUf//gHr7766h3rW7FiBQMGDMDe/tY/L86cOcOuXbuws7Nj48aNXL16lb///e9cu3aNlStXAjBgwACuXr1K27ZtURQFvV5PVFQUb731VoV9EEIIIYQQf04yUuovyGAwUF1nxGhwR6/o0Rf/glKwBwArGxtzud/yCnly9zECd/5KcqEp8OR8W1Aq/vhFthzJZH/adQBUNlk42txFgvP9/4Y1feHwf03bTl7llxdCPDRbtmzByckJOzs7unbtSr9+/Rg6dCjW1tY8/fTT5nIeHh7UrVuXEydOADB27FhiYmJo06YN0dHRHDlypNzrnDlzBp1OR8uWLc37XF1dqVu3bqmyzZs3t9j+9ddfWbVqFU5OTuZHREQERqOR1FTTiMxRo0Zx8eJFYmNjCQsL44svvqBhw4bEx8dX+l5UlLsKTMG529uRkJBgPhYeHk5iYiJ79uwhMjKSvn37WiQEv+nChQtERkbSp08fi1xJt9cbFRUFwPHjxxk3bhzvvfceBw8e5NtvvyUtLc18PCEhweK82NhYc31169YlMTGRffv28dprrzFkyBCOHz9eqj25ubk899xzNGjQgGnTppXZ771793LixAmGDRtmsd9oNKJSqYiNjaVly5Z069aNefPmsXr1avNoqR07dvDBBx/wr3/9i0OHDrFhwwa+/vpr/vGPf1R4T4UQQgghxJ/TIzlSymAwMG3aND777DMuXryIr68vQ4cO5Z133kGlUgGm/9ZHR0fzySefkJ2dTZs2bVi6dCmhoaHmem6uGvTVV1+hVqvp3bs3CxYswMnJ6WF17ZFgMBiwR0sRYKvbRW7Rr+Zjdo637s2PWXlc1OrM29VtrKltb2vezi0yHavna0Maq7FyOIeDdf/KN+TaKdNXtwDwqg/NX7m3DgnxJ+WgVnO6XaOHct27FR4ebk767evri7W1NXFxcRWeN3z4cCIiIvj666/57rvvmDlzJnPnzmXMmDH30nQLjo6WCyrk5+czcuRIxo4dW6psrVq1zM+dnZ3p0aMHPXr0ICYmhoiICGJiYujcuTOhoaHk5OSQkZFRanSWVqvl9OnTREREVNi2nj17WgTr/Pz8LNodEhJCSEgIrVq1IjQ0lBUrVlgkjc/IyCA8PJzWrVvz8ccfW9R9++pyLi4uAMycOZM2bdowceJEABo3boyjoyPPPPMMMTExNG/e3OK8GjVqmJ/fXFERoFmzZuzfv58FCxawfPlyc5m8vDwiIyNxdnZm48aN2Nz2D4zb/fvf/+bJJ5+kWbNmFvt9fHzw8/PD1fXW1O769eujKArnz58nNDSUd999l0GDBjF8+HAAGjVqREFBAa+++ipvv/12ufdUCCGEEEL8OT2SQalZs2axdOlSVq9eTcOGDTlw4AAvv/wyrq6u5g8bs2fPZuHChaxevZqgoCDeffddIiIiOH78OHZ2dgAMHDiQzMxM4uPj0el0vPzyy7z66qusWbPmYXbvodOW6FDfSCmjowQAl6ISbDXQ6dXR5nLXb+SKGujjzvhAb6rbWGNvdevD7E/p+wBXThcmYOdzBGuVNTZWZX9QKVNhlulrq79Dq6j76pMQf0Yqleqep9E9aDcDKberX78+er2effv2mafvXbt2jaSkJIvpX/7+/kRFRREVFcXUqVP55JNPGDNmjHnE0e35nYKDg7GxsWH//v3mQFJOTg7Jycm0a9eu3DY+9dRTHD9+vFQ7y6NSqahXrx579phGi7744otMnjyZuXPnMnfuXIuyy5Yto7CwkMGDB1dYr7OzM87OzpVqg9FopKSkxLx94cIFwsPDadasGStXrkT9uyBiWf0rLCwslePJ6sZrS1EU7O3tK31fft+e3NxcIiIisLW1JS4uzvw39vfy8/P53//+x8yZM0sda9OmDV988QX5+fnmfwwlJyejVqupWbOmuQ+/7+vtfbibeyqEEEIIIf4cHsmg1J49e+jVqxfPPfccAIGBgaxdu9ac/FRRFD766CPeeecdevXqBZgSq9aoUYNNmzbRv39/Tpw4wbfffsv+/fvNUzwWLVpEt27dmDNnTpn5Sf4KFEVh35bTON0ISmVZ6bAHPPKKcPHU4FunPr/mFZJWVMLR/EIA/O00+NuVnq5yMT8bcEVjAzUcahARWPHoAQquwX97QW4GFOea9jmUn8BXCPFoCg0NpVevXowYMYLly5fj7OzMlClT8PPzM/9uHj9+PF27dqVOnTpcv36dH3/8kfr16wMQEBCASqViy5YtdOvWDXt7e5ydnRkyZAgTJ07E3d0dLy8voqOjUavV5pGydzJ58mRatWrF6NGjGT58OI6Ojhw/fpz4+HgWL15MYmIi0dHRDBo0iAYNGqDRaNi5cyeffvopkydPBkwjqmbPns2bb76JnZ0dgwYNwsbGhs2bN/PWW28RExPDE088YXHdpKSkUm1p2LBhqdFEBQUFvP/++/Ts2RMfHx+uXr3KkiVLuHDhAn369AFMAalnn32WgIAA5syZw5UrV8zne3t737HvPXr0YMSIESxdupSIiAgyMzMZP348LVu2LPfv3dSpU+natSu1atUiLy+PNWvWsGPHDrZt2waYAlJdunShsLCQzz77jNzcXHJzTb+7PT09zUEjgHXr1qHX6/m///u/UtcZMGAA//jHP3j55ZeZPn06V69eZeLEibzyyivm3FM9evRg3rx5NG3alKeffpqUlBTeffddevToYXGd38vKyuLcuXNkZGQAt74f3t7e5d4zIYQQQgjx8D2SQamb0xWSk5OpU6cOv/76K7t27WLevHkApKamcvHiRTp16mQ+x9XVlaeffpq9e/fSv39/9u7di5ubm0XOkU6dOqFWq9m3bx9/+9vfHni/HgXnT55Af3U/ascbQaYbq+6pFYUarn6cLSoh8kAyt6/N5W5j+TK5lFvMhkMXuHzNNG2kbc0WLO/zj8o1IC0BLt6W2FltDT53XnVKCPFoW7lyJePGjaN79+5otVratWvH1q1bzQEZg8HAqFGjOH/+PC4uLkRGRjJ//nzANP1q+vTpTJkyhZdffpnBgwezatUq5s2bR1RUFN27d8fFxYVJkyaRnp5+xxE6NzVu3JidO3fy9ttv88wzz6AoCrVr16Zfv34A1KxZk8DAQKZPn05aWhoqlcq8/frrr5vref311wkODmbu3LksWLCAgoICANauXUv//qWnKJe1Lz093TwC6CYrKytOnjzJ6tWruXr1Kh4eHrRo0YKEhAQaNmwIQHx8PCkpKaSkpJQ6v7xVE4cOHUpeXh6LFy9mwoQJuLm50aFDB2bNmlXuPbt8+TKDBw8mMzMTV1dXGjduzLZt2+jcuTMAhw4dYt++fUDpEVqpqakEBgaat1esWMELL7xgTlp/OycnJ+Lj4xkzZgzNmzfHw8ODvn37EhMTYy5zc4r+O++8w4ULF/D09KRHjx68//775fYhLi6Ol19+2bx98/sRHR19x9xXQgghhBDi0aBSqmJt8CpmNBp56623mD17NlZWVhgMBt5//31zvo09e/bQpk0bMjIyLFZI6tu3LyqVinXr1vHBBx+wevXqUv/B9vLyYvr06bz22mulrltSUlJqyoK/v795+evHwc7PVnHm0AVsrYu5nhtOln4dDnkXCM3MolnzVpx6Zxr9fz2Do5Waxs72eNhY8886/lTX3ApMTd1wlLW/nDNv92+r5p/du1auAQc+hS2vQ1A76PohOHqCo0dVd1OIR05xcTGpqakEBQVVGFwRlgoKCvDz82Pu3LmlEmg/CFlZWXTs2BEXFxe++eYbHBzuYkEH8adV3s9sbm4urq6uj9X7g/sl90QIIYQQt6vse4NHcvW9//3vf8TGxrJmzRoOHTrE6tWrmTNnDqtXr/5Drztz5kxcXV3ND39//z/0eg+DQadHpVKhwjQNxvZG3igrRUFnZc2ZQlNQrqmzAxubhvLvJ4IsAlIAV/JurMTnkonG4weerW+ZbLhMBddg13w4tsm07VoLvOpJQEoIUcrhw4dZu3Ytp0+f5tChQwwcOBDAPCXwQXN3d+f777+nY8eO7N2796G0QQghhBBCiMfRIzl9b+LEiUyZMsU8BL9Ro0acPXuWmTNnMmTIEHOOiEuXLlmMlLp06RJPPvkkYMol8fsltvV6PVlZWXfMMTF16lTeeOMN8/bNkVKPi8uXL/Nr5mWKHHQEm1bgxrlAT6GVafreF9mFzD11AQB3zZ1fGudyTPfVptov4LCX6o4vVXzxn5dAwm1Jg1187lxWCPGXN2fOHJKSktBoNDRr1oyEhASqV6/+0Nrj4eHBe++999CuL4QQQgghxOPokQxK3WkFHqPRCEBQUBDe3t5s377dHITKzc1l37595ml5YWFhZGdnc/DgQfPS1D/88ANGo9FiSenb2draYmtr+wf16uE7evQoJSV5BHIVB6M31wAwjZTK9w8grm1H1ICjlZpu1V3LrONiwUVSss4BtSgyZGMNuNtVIlF5jinYRa0wqNUKWr56/x0SQjyWmjZtysGDBx92M4QQQgghhBB/sEcyKHUzsWmtWrVo2LAhhw8fZt68ebzyyiuAaQnv8ePHExMTQ2hoKEFBQbz77rv4+vry/PPPA6alyiMjIxkxYgTLli1Dp9MxevRo+vfv/5ddeU+n1eFzrT7X9TW5pr+EQbsdVKYEvkd79eZUjSAmBNZgYlDZo5gUReFK4TUwmgJ3nYKeoW3t3gS7BVd88aLrpq9PDoCnKl5OXQghhBBCCCGEEI+3RzIotWjRIt59913+/ve/c/nyZXx9fRk5cqTF1IlJkyZRUFDAq6++SnZ2Nm3btuXbb7+1SEYaGxvL6NGj6dixI2q1mt69e7Nw4cKH0aVHgq6ohHy9aTUnfdEujPqz5qxivxpNy21Xsyn7JVGsM9B90S5SLucDNQAY3ngQTfzd7nzB7HRY0QXyL4JiGuWGfSVGVQkhhBBCCCGEEOKx90gGpZydnfnoo4/46KOP7lhGpVIxY8YMZsyYcccy7u7urFmz5g9o4Z+ToVhnfl5NlcU1wDcrj5U9e3G0RiAANW01ZZ6bcjn/RkDKxEZTSLBnBQnOz+6GvIxb2xpn8H3yHlsvhBBCCCGEEEKIx8kjGZQSVU9RFEquFJm3s9SFANTIzeO3eo15K6QmnhprOnmUvVRjodaUe8rTBYq8p9O0RgOc7fqUf9GibNPXut2g+3ywcwUb+/vuixBCCCGEEEIIIf78JCj1F6E9l4f2UgkAepWOPHURTmgwqhXsrR0ZE1Cj3PN/OrcPgELjNdRWRThq7O5c+PpZuJIEGYdM287epocQQgghhBBCCCHEDRKU+ou4fjITg2J6blDrsTKakkkZ1RrcbMseHXW7z09sBHpRbMzBAajheIcgVkk+LG0D2rxb+ySPlBBCCCGEEEIIIX5HglJ/ATlbvubC8p8wPhEKgFGlR30jsbnBypaI6q53PHdH0mXmxSdz7WJ7AILcfBkZ9h6danW6w8XSTQEptTV4NwJbZ2jct2o7JIQQQgghhBBCiD899cNugPjjFR87BlY2GG+MlFIb9djoTRte9nZ8UKfmHc/97OdzHDmfg6J3A6BtUCh96vShml210oUvHoXfvjQ9dw+GV3fAkK/As24V9kYI8aANHToUlUqFSqVCo9EQEhLCjBkz0Ov191Xvjh07UKlUZGdnV01DKyE1NZUBAwbg6+uLnZ0dNWvWpFevXpw8edKi3JYtW2jfvj3Ozs44ODjQokULVq1aZVEmLS0NlUpFYmJipa8/bdo06tWrh6OjI9WqVaNTp07s27fPos5hw4YRFBSEvb09tWvXJjo6Gq1WW2HdsbGxNGnSBAcHB3x8fHjllVe4du1apdv2z3/+E5VKxfjx4y32nz59mr/97W94enri4uJC3759uXTpkkWZ999/n9atW+Pg4ICbm1uZ9d98Dd3++Pzzz83HN2zYQOfOnc3XCQsLY9u2bRW2e8OGDXTp0gUPD4+7/n4IIYQQQoiHS4JSfwGKToeitua8ozMAbgV6NDc+S9rcYbW9m3KLTR+ENB4/4BCwnLe6Niy7YFE2fNIRfvrQtO1Ufo4qIcSfS2RkJJmZmZw6dYoJEyYwbdo0Pvzww4fdLLPKBG10Oh2dO3cmJyeHDRs2kJSUxLp162jUqJFFYGzRokX06tWLNm3asG/fPo4cOUL//v2JiorizTffvK921qlTh8WLF3P06FF27dpFYGAgXbp04cqVKwCcPHkSo9HI8uXLOXbsGPPnz2fZsmW89dZb5da7e/duBg8ezLBhwzh27BhffPEFv/zyCyNGjKhUu/bv38/y5ctp3Lixxf6CggK6dOmCSqXihx9+YPfu3Wi1Wnr06IHRaDSX02q19OnTh9dee63c66xcuZLMzEzz4/nnnzcf++mnn+jcuTNbt27l4MGDhIeH06NHDw4fPlxunQUFBbRt25ZZs2ZVqq9CCCGEEOIRoog7ysnJUQAlJyfnYTflvpyYMk35JGqTsnjkdmXh8HXK8gGzlbl9uilz+j6nXFj3+R3Pyy3JVUKn/VsJmLxFqbe4txIWG3bni1w8pijRLooyo7qi/Le3opz+seo7IsSfWFFRkXL8+HGlqKjoYTflrg0ZMkTp1auXxb7OnTsrrVq1UrKyspRBgwYpbm5uir29vRIZGakkJyeby6WlpSndu3dX3NzcFAcHB6VBgwbK119/raSmpiqAxWPIkCGKoihKbm6uMmDAAMXBwUHx9vZW5s2bp7Rv314ZN26cud6AgABlxowZyqBBgxRnZ2fzuQkJCUrbtm0VOzs7pWbNmsqYMWOU/Px8RVEU5fDhwwqgpKWl3bGv586dU2xsbJQ33nij1LGFCxcqgPLzzz8riqKY+3D48OG7v6k33Pw78/3339+xzOzZs5WgoKBy6/nwww+V4ODgUu318/OrsA15eXlKaGioEh8fX+o+b9u2TVGr1RZ/B7OzsxWVSqXEx8eXqmvlypWKq6trmdcBlI0bN1bYnts1aNBAmT59eqXKVsX343bl/cw+Lu8PqpLcEyGEEELcrrLvDWSk1GNOURR+LbKhRHHGaMhCm/sf8vQ7UVQqANwiI+947pmcM+gMptxTKrWWLoFd7nyh4hzTV9ea8H/rIfjZquqCEI8tRVEo1Oof+ENRlPtuu729PVqtlqFDh3LgwAHi4uLYu3cviqLQrVs3dDodAKNGjaKkpISffvqJo0ePMmvWLJycnPD39+fLL03TfZOSksjMzGTBggUAvPHGG+zevZu4uDji4+NJSEjg0KFDpdowZ84cmjRpwuHDh3n33Xc5ffo0kZGR9O7dmyNHjrBu3Tp27drF6NGjAfD09EStVrN+/XoMBkOZ/Vq/fj06na7MEVEjR47EycmJtWvX3vf9A9Pooo8//hhXV1eaNGlyx3I5OTm4u5e/YERYWBjp6els3boVRVG4dOkS69evp1u3bhW2Y9SoUTz33HN06lQ6V2BJSQkqlQpbW1vzPjs7O9RqNbt27aqw7rKuVb16dVq2bMmnn35a7mvRaDSSl5dXYd+FEEIIIcSflyQ6f8ydP3+ec3b2OBSDm+oYlwG10YiVnRWNOvXEwaV0kvPLucXM/OYkqdcvoejcAPhfz//yhF8ZCdEzDkPSN3DttGnbzu0P64sQj5sinYEG71WcM6eqHZ8RgYPm3n79K4rC9u3b2bZtG127dmXTpk3s3r2b1q1bA6a8Rv7+/mzatIk+ffpw7tw5evfuTaNGjQAIDg4213Uz2ODl5WXOQ5SXl8fq1atZs2YNHTt2BExTvnx9fUu1pUOHDkyYMMG8PXz4cAYOHGjOiRQaGsrChQtp3749S5cuxc/Pj4ULFzJp0iSmT59O8+bNCQ8PZ+DAgeZ2JScn4+rqio+PT6nraTQagoODSU5Ovqd7d9OWLVvo378/hYWF+Pj4EB8fT/Xq1cssm5KSwqJFi5gzZ065dbZp04bY2Fj69etHcXExer2eHj16sGTJknLP+/zzzzl06BD79+8v83irVq1wdHRk8uTJfPDBByiKwpQpUzAYDGRmZlauwzfMmDGDDh064ODgwHfffcff//538vPzGTt2bJnl58yZQ35+Pn37ymIZQgghhBCPKxkp9Zg7cD2XRH9TovFitSnnikuRlhr+9oQPKTvXSNyvGWw8fIHEND0oNoARb1e7si+w4VXYOQt+W2/allxSQjyWtmzZgpOTE3Z2dnTt2pV+/foxdOhQrK2tefrpp83lPDw8qFu3LidOnABg7NixxMTE0KZNG6Kjozly5Ei51zlz5gw6nY6WLVua97m6ulK3bukFE5o3b26x/euvv7Jq1SqcnJzMj4iICIxGI6mpqYBppM7FixeJjY0lLCyML774goYNGxIfH1/pe6HRlJ+LD0zBudvbkZCQYD4WHh5OYmIie/bsITIykr59+3L58uVSdVy4cIHIyEj69OljkRvq9nqjoqIAOH78OOPGjeO9997j4MGDfPvtt6SlpZmPJyQkWJwXGxtLeno648aNIzY2Fju7sn/He3p68sUXX/DVV1/h5OSEq6sr2dnZPPXUU6jVd/cW4t1336VNmzY0bdqUyZMnM2nSpDvmJVuzZg3Tp0/nf//7H15eXhXeUyGEEEII8eckI6UeY4W5OXxxJh29tekD1DkbcAPUioL6tqkYv5eSZfrvt6vbRUrsE2jm70d1px5lF85ON319cqBplNRTg6quA0I85uxtrDg+I+KhXPduhYeHs3TpUjQaDb6+vlhbWxMXF1fhecOHDyciIoKvv/6a7777jpkzZzJ37lzGjBlzL0234OjoaLGdn5/PyJEjyxx5U6tWLfNzZ2dnevToQY8ePYiJiSEiIoKYmBg6d+5MaGgoOTk5ZGRklBqdpdVqOX36NBERFX/PevbsaRGs8/Pzs2h3SEgIISEhtGrVitDQUFasWMHUqVPNZTIyMggPD6d169Z8/PHHFnXfvrqci4sLADNnzqRNmzZMnDgRgMaNG+Po6MgzzzxDTEwMzZs3tzivRo0abN++ncuXL/PUU0+Z9xsMBn766ScWL15MSUkJVlZWdOnShdOnT3P16lWsra1xc3PD29vbYtTbvXj66af5xz/+QUlJicX0wM8//5zhw4fzxRdfWEwpLO+eCiGEEEKIPycJSj3GErdtITNPha+hOqBGwbTknkpReML7yTue98uFX4EAiqxOYOt2kPq+IaULZRyGS8dAX2Ta7joLbJ2rvA9CPM5UKtU9T6N70G4GUm5Xv3599Ho9+/btM0/fu3btGklJSTRo0MBczt/fn6ioKKKiopg6dSqffPIJY8aMMY84uj2/U3BwMDY2Nuzfv98cSMrJySE5OZl27dqV28annnqK48ePl2pneVQqFfXq1WPPnj0AvPjii0yePJm5c+cyd+5ci7LLli2jsLCQwYMHV1ivs7Mzzs6V+51oNBopKSkxb1+4cIHw8HCaNWvGypUrS41IKqt/hYWFWFtbvpasrEzBR0VRsLe3L3Vex44dOXr0qMW+l19+mXr16jF58mTz+TfdnGL4ww8/cPnyZXr27Fmp/t1JYmIi1apVswhIrV27lldeeYXPP/+c5557zqL83dxTIYQQQgjx5/Dn+DQk7pqiKOTlF6ByCMamwBSMuhmUUisK3m7+dzy3UGv6gNjAszYDWr1Ll4DfJTgvuAr/7gRGU31Y24PGqeo7IcT/s3fnYVVV6wPHv+cwHuAAgiCjCIrzUGpOqESmoIVU5pCGmEPadcwhh0rUq3lV1JyuZrfQe696+2llRpZhOeA84ZADOEDOIwIKMp71+4M8eQQBKwH1/TzPeeLsvYZ37QOxfFl7bVGh+fv7ExYWxoABA/jkk0/Q6/WMGzcOT09PwsLCABgxYgQdO3akZs2a3Lx5k02bNlGnTh0AfHx80Gg0xMTE0KlTJ3Q6HXq9noiICMaMGYOTkxOurq5ERkai1WrR/PaAhgcZO3YsLVq0YMiQIfTv3x9bW1uOHTtGbGwsCxcu5ODBg0RGRhIeHk7dunWxtLRky5YtfP7554wdOxYoWFE1c+ZMRo8ejbW1NeHh4VhYWPDNN98wYcIEpk6dSv369U36TUhIKBRLvXr1sLCwMDmWkZHBtGnT6Ny5M+7u7ly/fp1FixZx4cIFunbtChQkpJ5//nl8fHyIiori2rVrxvpubm4PHHtoaCgDBgxg8eLFBAcHc+nSJUaMGEGzZs2K3I8LCpI894/F1tYWZ2dnk+PR0dHUqVMHFxcXdu7cyfDhw3n33XdNbqk8e/YsKSkpnD17lvz8fOOqrBo1amBnZ8e3337LlStXaNGiBdbW1sTGxvLRRx+ZbCi/cuVKIiIimDdvHs2bN+fy5ctAwab6Dg5F7Gn4m7v9Xrx4Efj983Bzcyv2mgkhhBBCiPInSaknkEEpOh84yb5qBXuy1LhcMFE33JOU0hSxJ8qWxGtsSbhGapozAA1ca9KtVrvCHaSeLUhImVuDTyuo0xlK+MeiEOLJFB0dzfDhw3n55ZfJycmhbdu2rF+/3piQyc/PZ/DgwZw/fx57e3tCQkKYO3cuUHD71eTJkxk3bhxvvfUWvXv3ZtmyZcyZM4dBgwbx8ssvY29vz3vvvce5c+ceuO/RXQ0bNmTLli28//77tGnTBqUU1atXp3v37gB4eXlRrVo1Jk+eTHJyMhqNxvj+3XffNbbz7rvv4ufnx+zZs5k3bx4ZGRlAwSqeHj16FOq3qGPnzp3Dy8vL5JiZmRknTpxg+fLlXL9+HWdnZ5577jni4uKoV68eALGxsZw6dYpTp04Vql/ck+r69OnDrVu3WLhwIaNGjcLR0ZEXXniBGTNmFHvNSiMhIYHx48eTkpJCtWrVeP/9902uF8DEiRNZvny58f2zzz4LwKZNm3j++eexsLBg0aJFvPvuuyilqFGjBnPmzDHZK2vp0qXk5eUxePBgBg8ebDweERHBsmXLHhjfunXreOutt4zv734ekZGRTJo06c8MXQghhBBCPGIa9Vc8G/wJlZ6ejoODA2lpacZ9Ox4HV7JzabTjKADmeYrXD5zHP8mWzKwv0d75FbfU27w8dAwOL5veGtFw0gbSs/KM70d1cmRo24DCHZz+Gf7zKrjWg7/teKRjEeJJkZWVRVJSEr6+viUmV4SpjIwMPD09mT17Nv369Svz/lNSUmjXrh329vZ8//332NjYlHkMouwV9zP7uM4PHiW5JkIIIYS4V2nnBrJS6gmUmldw+13DM7cJ25sNFGwG7JKaxw2rgpVSZnrT2+1y8gzGhJTeZS85miu0rXXfRsSnf4bjMXAzueC9zvERjkII8bSKj4/nxIkTNGvWjLS0NKZMmQJgvCWwrDk5ObFx40YWLVrEzp07adeuiBWkQgghhBBCiIcmSakniFKKn1JusTv1NgBVr+cBBbfVaQw56LKugBXoatfGtmVLk7rJqZd+b8f5ayw1Bhx140w7WPs3uPV7OezlyUdCiEcjKiqKhIQELC0tadKkCXFxccaNtsuDs7MzEydOLLf+hRBCCCGEeBJJUuoJsjM1gzcPnzG+t8rLBzSYWx/A+9B/uWVuD9hj26BBoT2lEm8kF3yhycVL705d57p46+/ZDN2QD7cKNp2l1TCwdoCG3R/peIQQT6dnn32W/fv3l3cYQgghhBBCiEdMklJPkF+zCh4p7qzV4nj5Ei1STpCm6pFzJY7jrr9vmGt2zxOh7uTk8+3hi2w+fQsAc/N8fujyw++NKgVXfoHUc8Bv24+1mwhmpk+VEkIIIYQQQgghhHgYkpR6gqT/tpdU41wznju2C7f8fNLIJcdQcNw2K4d8z8rUCXjeWOeLvWeZ9O0x43tLizyTNklYD//r+ft7KwdJSAkhhBBCCCGEEOJPk6TUE+BSdg6JGdn8cvsOALZ5CjOyyUcH6vckU9uEc1wa2g13/1rGYwcuJgFgrbtJnkUyjWtqTRu/8lvCytoR9O7QSG7ZE0IIIYQQQgghxJ8nSanHXGa+gcA9J0jPMxiPWd2+jYYc8pQeVMEqKa3BgAbQ3reX1P7LRwE/DLb70Ln8RFPf+x63npVa8N/GvaHD3x/dQIQQQgghhBBCCPFUkaTUY+5ydi7peQa0QB07a2y1Gvy/+xEz21xStFYoClZKaVXBflAOts4m9X/bhornPBoQ3jKEtl5tCw6c3AgnN0DS1oL3ukplMRwhhBBCCCGEEEI8JSQp9ZhLzS1IOnlYW/DTc7XJSL1JbGoaV21zyVPmv6+U+m2P8vpuzwCw8OeT/HTiKqk3PQBoWKUmIb5tfm/4qwFwJ+X39/aej3wsQgghhBBCCCGEeHpIUuoxdTozi3+evcqvd3IAqGRe8FHm5eSg0ZhhpsnFgDn8tlLKzFBwe5/W0pLcfAOzYxMpWDxlDYCvs+3vjedl/56QajUM7D2gblhZDEsIIYQQQgghhBBPCW3JRURF9Mm5a6y4lMK21NsAeFsX7BV14fx5bljWIutyD7Kzat+zp1TBUimNhQXpWdm/JaTA1mslNtUW0tz3ntv67qT+9oUGXpwMLd4BC+uyGJYQogLq06cPGo0GjUaDpaUlNWrUYMqUKeTl5ZVcuRibN29Go9GQmpr61wRaCklJSfTs2RMPDw+sra3x8vIiLCyMEydOmJSLiYkhMDAQvV6PjY0Nzz33HMuWLTMpk5ycjEaj4eDBg6Xuf9KkSdSuXRtbW1sqVarEiy++yO7du03a7NevH76+vuh0OqpXr05kZCQ5OTkltr1ixQoaNWqEjY0N7u7u9O3blxs3bpRY78KFC7z55ps4Ozuj0+lo0KAB+/btM56/9/O/+woJCTFpo1q1aoXK/OMf/zCeT0hIICgoiCpVqmBtbY2fnx8ffPABubm5Ju2kpqYyePBg3N3dsbKyombNmqxfv77Y+L/66is6dOiAs7PzQ38eQgghhBCifMlKqcfUjd9u23vZxYEWjna85OJAbm4ue9Yt507+KyhDFjm316IMN4GCPaXMXV3R2tmx58z+gkY0eWj1h7HQWuCsc4YLB+CLN+FOQR10jqCVvKUQAkJCQoiOjiY7O5v169czePBgLCwsGD9+fHmHBkBOTg6W9z3I4X65ubm0b9+eWrVq8dVXX+Hu7s758+f5/vvvTRJjCxYsYMSIEYwdO5bFixdjaWnJN998w6BBg/jll1+Iior6w3HWrFmThQsX4ufnx507d5g7dy4dOnTg1KlTuLi4cOLECQwGA5988gk1atTgl19+YcCAAWRkZBTb7/bt2+nduzdz584lNDSUCxcuMGjQIAYMGMBXX331wHo3b94kICCAoKAgvv/+e1xcXDh58iSVKpnuI3j387/LysqqUFtTpkxhwIABxvd6vd74tYWFBb1796Zx48Y4Ojpy6NAhBgwYgMFg4KOPPgIKPsP27dvj6urKmjVr8PT05Ndff8XR0bHYa5qRkUHr1q3p1q2bSf9CCCGEEOIxoMQDpaWlKUClpaWVdyiFdDlwUlX5OV59eTnFeCw9PV3974O+auHAn9T8t5aoqG4vGV/fTB6v8tLTlVJKLY//UfmMjVF+769WK4+vVPFX4gsa+PkjpSLtf3+t6FYOIxPiyXTnzh117NgxdefOnfIO5aFFRESosLAwk2Pt27dXLVq0UCkpKSo8PFw5OjoqnU6nQkJCVGJiorFccnKyevnll5Wjo6OysbFRdevWVd99951KSkpSgMkrIiJCKVXw/7KePXsqGxsb5ebmpubMmaMCAwPV8OHDje36+PioKVOmqPDwcKXX64114+LiVOvWrZW1tbXy8vJSQ4cOVbdv31ZKKRUfH68AlZyc/MCxnj17VllYWKiRI0cWOjd//nwFqF27dimllHEM8fHxD39Rf3P398zGjRsfWGbmzJnK19e32HZmzZql/Pz8CsXr6elZbL2xY8eq1q1bF1umqM//fj4+Pmru3LnFlrnfu+++a9L34sWLlZ+fn8rJyXmodu76Kz6PexX3M1te84MbN26onj17Kr1erxwcHFTfvn3VrVu3iq1z584d9be//U05OTkpW1tb9dprr6nLly8XWfb69evK09NTAermzZsPFVtFnjMJIYQQouyVdm4gy2AeI/lK8c3Vm3x2/hrJvz02T2/2+0doMBgw++2+PC0Ft0TYZ2ZT2cuSl9//O+eytQz6z34+/7mgrqW5gTdqv8Ezrs8UNHB3H6nnBsDwQ9BjVdkMTIinlVKQk1H2r7v37/4JOp2OnJwc+vTpw759+1i3bh07d+5EKUWnTp2Mt2UNHjyY7Oxstm7dypEjR5gxYwZ2dnZ4e3vz5ZdfAgW3dl26dIl58+YBMHLkSLZv3866deuIjY0lLi6OAwcOFIohKiqKRo0aER8fz4cffsjp06cJCQmhS5cuHD58mC+++IJt27YxZMgQAFxcXNBqtaxZs4b8/Pwix7VmzRpyc3MZPXp0oXMDBw7Ezs6OVav+mv835uTksHTpUhwcHGjUqNEDy6WlpeHk5FRsWy1btuTcuXOsX78epRRXrlxhzZo1dOrUqdh669ato2nTpnTt2hVXV1eeffZZPv3000LlNm/ejKurK7Vq1eKdd94p8rbAf/zjHzg7O/Pss88ya9asYm/vPHXqFD/88AOBgYEmsbRs2ZLBgwdTpUoV6tevz0cfffTAz+pp1KtXL44ePUpsbCwxMTFs3bqVt99+u9g67777Lt9++y2rV69my5YtXLx4kddee63Isv369aNhw4aPInQhhBBCiCLJ7XuPkdjr6Qw8+qvJMWeL3z/C09vPYPbb15rfNji3yM/Hys4arZkZa/af54ejlwENAHY2BckpriVA/H/hzJaC906+UKnaIxyJEAKA3Ez4yKPs+51wESxtSy5XBKUUP/30Exs2bKBjx46sXbuW7du306pVK6BgXyNvb2/Wrl1L165dOXv2LF26dKFBgwYA+Pn5Gdu6m2hxdXU13qJ169Ytli9fzsqVK2nXrh0A0dHReHgUvk4vvPACo0aNMr7v378/vXr1YsSIEQD4+/szf/58AgMDWbx4MZ6ensyfP5/33nuPyZMn07RpU4KCgujVq5cxrsTERBwcHHB3dy/Un6WlJX5+fiQmJv6ha3dXTEwMPXr0IDMzE3d3d2JjY6lcuXKRZU+dOsWCBQtKvGUwICCAFStW0L17d7KyssjLyyM0NJRFixYVW+/MmTMsXryYkSNHMmHCBPbu3cuwYcOwtLQkIiICKLh177XXXsPX15fTp08zYcIEOnbsyM6dOzEzK/itM2zYMBo3boyTkxM7duxg/PjxXLp0iTlz5pj016pVKw4cOEB2djZvv/02U6ZMMYnl559/plevXqxfv55Tp07xt7/9jdzcXCIjI0u8rk+648eP88MPP7B3716aNm0KFNxq2qlTJ6Kioor8GUlLS+Ozzz5j5cqVvPDCC0DBz1OdOnXYtWsXLVq0MJZdvHgxqampTJw4ke+//75sBiWEEEKIp56slHqM/Prb6igvaws6uzoyrKorz9jbAPDL5o1cWB+L9rcFEFnaglUKWqXQWhTss3Iq5QIADk7JWHusok2T0wWFYyfCjvlwPaHgvb1nGY1ICPG4iImJwc7ODmtrazp27Ej37t3p06cP5ubmNG/e3FjO2dmZWrVqcfz4caAgWTF16lQCAgKIjIzk8OHDxfZz5swZcnNzadasmfGYg4MDtWrVKlT27j/M7zp06BDLli3Dzs7O+AoODsZgMJCUlAQUrNy6fPkyK1asoGXLlqxevZp69eoRGxtb6mtR0t5VUJCcuzeOuLg447mgoCAOHjzIjh07CAkJoVu3bly9erVQGxcuXCAkJISuXbua7JV0b7uDBg0C4NixYwwfPpyJEyeyf/9+fvjhB5KTk43n4+LiTOqtWLECKFhh27hxYz766COeffZZ3n77bQYMGMCSJUuM/fXo0YPOnTvToEEDXnnlFWJiYti7dy+bN282lhk5ciTPP/88DRs2ZNCgQcyePZsFCxaQnZ1tMqYvvviCAwcOsHLlSr777juTZJvBYMDV1ZWlS5fSpEkTunfvzvvvv2+Mpbhr+jTYuXMnjo6OJt/3L774Ilqt1mSz/Hvt37+f3NxcXnzxReOx2rVrU7VqVXbu3Gk8duzYMaZMmcK///1vtLKXpBBCCCHKkKyUeoyk5hbcwtDe2YHpNb1Mzl06eQIz7e9PyMslF3NAo8DermA1QvzlY4Avd8yOY+VwiOrOLQsKp18s+G+918CrKdTq+KiHIoQAsLApWLVUHv0+pKCgIOOm3x4eHpibm7Nu3boS6/Xv35/g4GC+++47fvzxR6ZPn87s2bMZOnToH4nchK2t6Wqv27dvM3DgQIYNG1aobNWqVY1f6/V6QkNDCQ0NZerUqQQHBzN16lTat2+Pv78/aWlpXLx4sdDKk5ycHE6fPk1wcHCJsXXu3NkkWefp+Xuy39bWlho1alCjRg1atGiBv78/n332mcmm8RcvXiQoKIhWrVqxdOlSk7bvfbqcvb09ANOnTycgIIAxY8YA0LBhQ2xtbWnTpg1Tp06ladOmJvWqVKkCgLu7O3Xr1jVpv06dOsZbK4vi5+dH5cqVOXXqlHE12/2aN29OXl4eycnJJglFb29vAOrWrUt+fj5vv/02o0aNwszMDHd3dywsLIyrr+7GcvnyZXJycoq9pk+Dy5cv4+rqanLM3NwcJycnLl++/MA6lpaWhTaLr1KlirFOdnY2b7zxBrNmzaJq1aqcOXOmVPFkZ2ebJB3T09MfYjRCCCGEEAUkKfUY2JN6mxlJlzmVmQWAo7lZoTL5eXlotZbGrWKUpuD2Pa1SNKsaAEB2bsHJ5h6N6NYsmHZVf/vHxJ3Ugv+2HFyQlBJClA2N5g/fRlfW7iZS7lWnTh3y8vLYvXu38fa9GzdukJCQYJLo8Pb2ZtCgQQwaNIjx48fz6aefMnToUOOKo3v3DPLz88PCwoK9e/caE0lpaWkkJibStm3bYmNs3Lgxx44dKxRncTQaDbVr12bHjh0AvP7664wdO5bZs2cze/Zsk7JLliwhMzOT3r17l9iuXq83efpccQwGg8k/7i9cuEBQUBBNmjQhOjq60MqVosaXmZmJubnpr/S7yR2lFDqdrsh6AQEBJCQkmBxLTEzEx8fngfGeP3+eGzduFHmL410HDx5Eq9UWSqLcy2AwkJubW7AfopkZAQEBrFy5EoPBYBxzYmIi7u7uWFpaYmlpWepr+jgZN24cM2bMKLbM3ZWHj8L48eOpU6cOb7755kPVmz59OpMnT35EUQkhhBDiaSFJqcfA5xeusz31tvF9DZvCj+I2v56Ep1Uqt9QtkgHF77fvpeebEX/8CllZBf/4bexej1BzYE49yL4FhoKy6CoValcIIR7E39+fsLAwBgwYwCeffIJer2fcuHF4enoSFhYGwIgRI+jYsSM1a9bk5s2bbNq0iTp16gDg4+ODRqMhJiaGTp06odPp0Ov1REREMGbMGJycnHB1dSUyMhKtVotGoyk2nrFjx9KiRQuGDBlC//79sbW15dixY8TGxrJw4UIOHjxIZGQk4eHh1K1bF0tLS7Zs2cLnn3/O2LFjgYIVVTNnzmT06NFYW1sTHh6OhYUF33zzDRMmTGDq1KnUr1/fpN/7kzoA9erVw8LCwuRYRkYG06ZNo3Pnzri7u3P9+nUWLVrEhQsX6Nq1K1CQkHr++efx8fEhKiqKa9euGeu7ubk9cOyhoaEMGDCAxYsXExwczKVLlxgxYgTNmjUrcq+hu959911atWrFRx99RLdu3dizZw9Lly41rs66ffs2kydPpkuXLri5uXH69Gnee+89atSoYVwxtnPnTnbv3k1QUBB6vZ6dO3fy7rvv8uabb1KpUsHvlRUrVmBhYUGDBg2wsrJi3759jB8/nu7duxuv0zvvvMPChQsZPnw4Q4cO5eTJk3z00UdFrny7V0pKCmfPnuXixYsmn4ebm1ux16yiGDVqFH369Cm2jJ+fH25uboVu88zLyyMlJeWB43RzcyMnJ4fU1FST1VJXrlwx1vn55585cuQIa9asAQqSmACVK1fm/ffff2Diafz48YwcOdL4Pj093bgSTgghhBCi1B79gwAfXxXl8cY9Dp5SVX6OVx8mnlc7bt5S+QaD8ZzBYFBZp66pa6P91dUJz6hDo3uohQN/UjPeGqeiur2kVr3YRg3oP0v5jI0xvj7btV+pDR8oFWn/+2tuA6Vys8pxlEI82Yp7vHxFFxERocLCwoo8l5KSosLDw5WDg4PS6XQqODhYJSYmGs8PGTJEVa9eXVlZWSkXFxcVHh6url+/bjw/ZcoU5ebmpjQajYqIiFBKKZWenq569uypbGxslJubm5ozZ45q1qyZGjdunLGej4+Pmjt3bqF49uzZo9q3b6/s7OyUra2tatiwoZo2bZpSSqlr166pYcOGqfr16ys7Ozul1+tVgwYNVFRUlMrPzzdpZ+3atapNmzbK1tZWAQpQq1atMimTlJRkPHf/69y5c4Viu3Pnjnr11VeVh4eHsrS0VO7u7qpz585qz549xjLR0dEPbLMk8+fPV3Xr1lU6nU65u7urXr16qfPnz5dY79tvv1X169dXVlZWqnbt2mrp0qXGc5mZmapDhw7KxcVFWVhYKB8fHzVgwAB1+fJlY5n9+/er5s2bKwcHB2Vtba3q1KmjPvroI5WV9fvvlP/973+qcePGxs+lbt266qOPPir087Bjxw7VvHlzZWVlpfz8/NS0adNUXl5esfE/6JpFRkaWOPbiFPczWx7zg2PHjilA7du3z3hsw4YNSqPRqAsXLhRZJzU1VVlYWKg1a9YYj504cUIBaufOnUoppU6dOqWOHDlifH3++ecKUDt27FBXrlwpdXwVZc4khBBCiIqhtHMDjVJ/wbPBn1Dp6ek4ODiQlpZm3LejPLy8P5F96ZlE169GRxdHk3PZv6ZzbfEhDt3ZS3L2M8bjZqnfk6GO430jnf/z7sy+KnUw150H81RiBnan9vZZBU/cCxgBzQeCTWUwL3nzXiHEH5OVlUVSUhK+vr5YW1uXXEEYZWRk4OnpyezZs+nXr1+Z95+SkkK7du2wt7fn+++/x8bm4ffkEo+f4n5my2t+0LFjR65cucKSJUvIzc3lrbfeomnTpqxcuRIoWGnXrl07/v3vfxsfFvDOO++wfv16li1bhr29vXE/t7u3rN5v8+bNBAUFcfPmzUJ7URWnosyZhBBCCFExlHZuILfvVWBbUm6RkHGHc1k5AOiL2EsqL6Vgn6mbeb8t3dfcwTozA6tbv5JhB/mVnfjF2Q+NNgddtYUAVN58HM7uLShfyQfsy+GR9EII8QDx8fGcOHGCZs2akZaWxpQpUwCMtwSWNScnJzZu3MiiRYvYuXPnAzf3FuJRW7FiBUOGDKFdu3ZotVq6dOnC/Pnzjedzc3NJSEggMzPTeGzu3LnGstnZ2QQHB/PPf/6zPMIXQgghhChEklIV1KXsHHocOs29y9icLYr4uPIMbDM/QT4Fm79aWfxE/UM/cbqKA2DPyboeZGVaodHcAsBdmeH4y9e/13d88Ga2QghRXqKiokhISMDS0pImTZoQFxdH5cqVyy0eZ2dnJk6cWG79CwEFCdK7q6KKUq1aNe5fAG9tbc2iRYtYtGhRqfp4/vnnC7UhhBBCCPGoSFKqgrqcnYcCbMy0BDvb429rTW3bwrf8qHzFRW0KlVQllMon/doZttX6faPRq+lWYA72OktWd/4Sr//2KPjQmw8C7+bgF1RmYxJCiNJ49tln2b9/f3mHIYQQQgghhHjEJClVQd3OK3hEure1JYvrVXtwwXwDBhQGZQ4qC2XIA8A8P4/rOjv25dUvSEpZa6mp0UFmSkG9xhFQpe6D2xVCCCGEEEIIIYR4hCQpVUHdzi9IStmZaYstp/IVBo3CgBlKFSSktAYDta78yoKQPtigw1y7j1fzt8LH+36vqKv0yGIXQgghhBBCCCGEKIkkpSqYpMxs/nPxBscz7gBgZ1Z4c/N73Th3DkUeeQYLoGDTczOD4o4lKGVGrt02dJXiqH/lGqABcyvwaQV2VR7xSIQQQgghhBBCCCEeTJJSFUxU8mW+vHLT+N7V6sEfUVbGbU7EbUZbJQ8D5qAKVlflaxVft9JCvg6luYMZGvxzc6FmCPT836MeghBCCCGEEEIIIUSJJClVwVzLyQUgpLI99e1s6O7u9MCy2alXqGv/I34qjVhNIFBw+16m3obdjsHkX6tKn6pX+BtXcM79VW7ZE0IIIYQQQgghRIUhSakK5laeAYCe7s50qOxQbFntmU1UtTlAnrIEMO4plZFjS/a1dgDUP7sRZ3W0oIK9+yOKWgghhBBCCCGEEOLhSFKqgvl9g/Pi95ICyDp3jitZLbmaV4X83CQMub8CkKcxx8L+MFrr8zS/nQD1XgcnX2j29iONXQghhBBCCCGEEKK0in+0mygTOQYDbx4+Q4tdxzhzJxsAO/PiP5rMI9c4uteLDanvse/mC+Te/pr87AMA5GotsHD+CUvnrdirfHh+PLzwAdi5PvKxCCGePH369EGj0aDRaLC0tKRGjRpMmTKFvLy8P9Xu5s2b0Wg0pKam/jWBlkJSUhI9e/bEw8MDa2trvLy8CAsL48SJEyblYmJiCAwMRK/XY2Njw3PPPceyZctMyiQnJ6PRaDh48GCp+580aRK1a9fG1taWSpUq8eKLL7J7926TNvv164evry86nY7q1asTGRlJTk5OiW2vWLGCRo0aYWNjg7u7O3379uXGjRvF1snPz+fDDz806e/vf/87Siljma+++ooOHTrg7Oz8wPGePn2aV199FRcXF+zt7enWrRtXrlx56HEdPnyYNm3aYG1tjbe3NzNnzixx3Fu3biU0NBQPDw80Gg1r164tsY4QQgghhKgYJClVAcSnZ7LxRjrJd3LIV6DTaqlqbVlsnawTN7mdrwPAggsAmBm03LZU7HVsgkabS7M7WdgqJXtJCSH+tJCQEC5dusTJkycZNWoUkyZNYtasWeUdllFpkja5ubm0b9+etLQ0vvrqKxISEvjiiy9o0KCBSWJswYIFhIWFERAQwO7duzl8+DA9evRg0KBBjB49+k/FWbNmTRYuXMiRI0fYtm0b1apVo0OHDly7dg2AEydOYDAY+OSTTzh69Chz585lyZIlTJgwodh2t2/fTu/evenXrx9Hjx5l9erV7NmzhwEDBhRbb8aMGSxevJiFCxdy/PhxZsyYwcyZM1mwYIGxTEZGBq1bt2bGjBlFtpGRkUGHDh3QaDT8/PPPbN++nZycHEJDQzEYDKUeV3p6Oh06dMDHx4f9+/cza9YsJk2axNKlS4sdQ0ZGBo0aNWLRokXFlhNCCCGEEBWQEg+UlpamAJWWlvZI2v846bKKOnNJDfwlSVX5OV6133NC7Um9ra5k5ZRY9/rK4+rrISvUwoE/qRWDequobi+p/3QIVG8NCVU+Y2PUpYleyhBpr9S8Z5XKz3sk8QshSu/OnTvq2LFj6s6dO+UdykOLiIhQYWFhJsfat2+vWrRooVJSUlR4eLhydHRUOp1OhYSEqMTERGO55ORk9fLLLytHR0dlY2Oj6tatq7777juVlJSkAJNXRESEUkqp9PR01bNnT2VjY6Pc3NzUnDlzVGBgoBo+fLixXR8fHzVlyhQVHh6u9Hq9sW5cXJxq3bq1sra2Vl5eXmro0KHq9u3bSiml4uPjFaCSk5MfONazZ88qCwsLNXLkyELn5s+frwC1a9cupZQyjiE+Pv7hL+pv7v6e2bhx4wPLzJw5U/n6+hbbzqxZs5Sfn1+heD09PYut99JLL6m+ffuaHHvttddUr169CpV90Hg3bNigtFqtye/K1NRUpdFoVGxs7AP7vn9c//znP1WlSpVUdna28djYsWNVrVq1ih3DvQD19ddfl7p8cYr7mX3U84PHkVwTIYQQQtyrtHMDWSlVjj7+9TKzki+z9moqALXtrHnOwRZXK4uSK+cZyPnt4zP8tsG5mVLkaQu2CbOv9hyawXvhnR2gLXl/KiFE2VNKkZmbWeYvdc+tWX+UTqcjJyeHPn36sG/fPtatW8fOnTtRStGpUydycwueJDp48GCys7PZunUrR44cYcaMGdjZ2eHt7c2XX34JQEJCApcuXWLevHkAjBw5ku3bt7Nu3TpiY2OJi4vjwIEDhWKIioqiUaNGxMfH8+GHH3L69GlCQkLo0qULhw8f5osvvmDbtm0MGTIEABcXF7RaLWvWrCH/t/377rdmzRpyc3OLXBE1cOBA7OzsWLVq1Z++flCwumvp0qU4ODjQqFGjB5ZLS0vDyenBT2IFaNmyJefOnWP9+vUopbhy5Qpr1qyhU6dOxdZr1aoVP/30E4mJiQAcOnSIbdu20bFjx1KPIzs7G41Gg5WVlfGYtbU1Wq2Wbdu2lXpcO3fupG3btlha/r5SODg4mISEBG7evFnqeIQQQgghxONDNjovRz3dncn97R+H1lotb3lWLlW9s2s3cWDfTW4aCm7fy80vuD3CzKDI1ZihN7uGzqEKuNR8NIELIf4Sd/Lu0Hxl8zLvd3fP3dhY2PyhukopfvrpJzZs2EDHjh1Zu3Yt27dvp1WrVkDBvkbe3t6sXbuWrl27cvbsWbp06UKDBg0A8PPzM7Z1NyHh6uqKo6MjALdu3WL58uWsXLmSdu0KniIaHR2Nh4dHoVheeOEFRo0aZXzfv39/evXqxYgRIwDw9/dn/vz5BAYGsnjxYjw9PZk/fz7vvfcekydPpmnTpgQFBdGrVy9jXImJiTg4OODuXvhppZaWlvj5+RkTOH9UTEwMPXr0IDMzE3d3d2JjY6lcuej//586dYoFCxYQFRVVbJsBAQGsWLGC7t27k5WVRV5eHqGhoSXe0jZu3DjS09OpXbs2ZmZm5OfnM23aNHr16lXq8bRo0QJbW1vGjh3LRx99hFKKcePGkZ+fz6VLl0o9rsuXL+Pr62tSrkqVKsZzlSrJrehCCCGEEE8aWSlVjqbV9GJmLW9m1vJmir8nvjZWJVcCNnx7hQvZjuQZ9ADY/poKgNZgQOmTeMPlIzQ6+0cVthDiKRQTE4OdnR3W1tZ07NiR7t2706dPH8zNzWne/PfEmrOzM7Vq1eL48eMADBs2jKlTpxIQEEBkZCSHDx8utp8zZ86Qm5tLs2bNjMccHByoVatWobJNmzY1eX/o0CGWLVuGnZ2d8RUcHIzBYCApKQkoWLl1+fJlVqxYQcuWLVm9ejX16tUjNja21Nfi3pU8D7JixQqTOOLi4ozngoKCOHjwIDt27CAkJIRu3bpx9erVQm1cuHCBkJAQunbtarI31L3tDho0CIBjx44xfPhwJk6cyP79+/nhhx9ITk42no+LizOpt2LFCgD+7//+jxUrVrBy5UoOHDjA8uXLiYqKYvny5aW+Hi4uLqxevZpvv/0WOzs7HBwcSE1NpXHjxmi1hacZDxpXSR40BiGEEEII8fiSlVKPoTxtwQopq7wNmF07S6p1HmBGjoXiV48sXs+8DU7VyzdIIUSJdOY6dvfcXXLBR9DvwwoKCmLx4sVYWlri4eGBubk569atK7Fe//79CQ4O5rvvvuPHH39k+vTpzJ49m6FDh/6R0E3Y2tqavL99+zYDBw5k2LBhhcpWrVrV+LVeryc0NJTQ0FCmTp1KcHAwU6dOpX379vj7+5OWlsbFixcLrc7Kycnh9OnTBAcHlxhb586dTZJ1np6eJnHXqFGDGjVq0KJFC/z9/fnss88YP368sczFixcJCgqiVatWhTb6vvfpd/b2BX+AmD59OgEBAYwZMwaAhg0bYmtrS5s2bZg6dSpNmzY1qXd3BdKYMWMYN24cPXr0AKBBgwb8+uuvTJ8+nYiIiBLHeVeHDh04ffo0169fx9zcHEdHR9zc3ExWxpU0Ljc3N5Mn9gHG925ublSrVq3IMQghhBBCiMeXJKUeM0opzMwg33CHtFu/gLUGKFhhFfOcFWPrdqGzR2vwe75c4xRClEyj0fzh2+jK2t1Eyr3q1KlDXl4eu3fvNt6+d+PGDRISEqhbt66xnLe3N4MGDWLQoEGMHz+eTz/9lKFDhxpXHN27v5Ofnx8WFhbs3bvXmEhKS0sjMTGRtm3bFhtj48aNOXbsWKE4i6PRaKhduzY7duwA4PXXX2fs2LHMnj2b2bNnm5RdsmQJmZmZ9O7du8R29Xo9er2+VDEYDAays7ON7y9cuEBQUBBNmjQhOjq60GqjosaXmZmJubnpr3Qzs4L9BJVS6HS6B9a7v30zMzPjU/Me1t3bEH/++WeuXr1K586dSz2uli1b8v7775Obm4uFRcHeirGxsdSqVct4697DfLZCCCGEEKLik6TUY2b16tWg0aFUDqBBY1B4p9xkRZ3nsbHQ8krg5PIOUQjxlPD39ycsLIwBAwbwySefoNfrGTduHJ6enoSFhQEwYsQIOnbsSM2aNbl58yabNm2iTp06APj4+KDRaIiJiaFTp07odDr0ej0RERGMGTMGJycnXF1diYyMRKvVotFoio1n7NixtGjRgiFDhtC/f39sbW05duwYsbGxLFy4kIMHDxIZGUl4eDh169bF0tKSLVu28PnnnzN27FigYEXVzJkzGT16NNbW1oSHh2NhYcE333zDhAkTmDp1KvXr1zfpNyEhoVAs9erVMyZW7srIyGDatGl07twZd3d3rl+/zqJFi7hw4QJdu3YFChI3zz//PD4+PkRFRXHt2jVjfTc3tweOPTQ0lAEDBrB48WKCg4O5dOkSI0aMoFmzZkXux3VvvWnTplG1alXq1atHfHw8c+bMoW/fvsYyKSkpnD17losXL5qM183NzRhTdHQ0derUwcXFhZ07dzJ8+HDeffdd422XpRlXz549mTx5Mv369WPs2LH88ssvzJs3j7lz5z4wfihYIXfq1Cnj+6SkJA4ePIiTk5PJCjkhhBBCCFEBPeKnAD7WKtrjjQ35BjVzynS1eOB6Nb//ahXV7SU177UQtb1xbVXt/ZWqz/SJ5R2iEOIBinu8fEUXERGhwsLCijyXkpKiwsPDlYODg9LpdCo4OFglJiYazw8ZMkRVr15dWVlZKRcXFxUeHq6uX79uPD9lyhTl5uamNBqNioiIUEoplZ6ernr27KlsbGyUm5ubmjNnjmrWrJkaN26csZ6Pj4+aO3duoXj27Nmj2rdvr+zs7JStra1q2LChmjZtmlJKqWvXrqlhw4ap+vXrKzs7O6XX61WDBg1UVFSUys/PN2ln7dq1qk2bNsrW1lYBClCrVq0yKZOUlGQ8d//r3LlzhWK7c+eOevXVV5WHh4eytLRU7u7uqnPnzmrPnj3GMtHR0Q9ssyTz589XdevWVTqdTrm7u6tevXqp8+fPF1snPT1dDR8+XFWtWlVZW1srPz8/9f7776vs7OwSY4qMjDSWGTt2rKpSpYqysLBQ/v7+avbs2cpgMDz0uA4dOqRat26trKyslKenp/rHP/5R4rg3bdpUZLt3v5/+qOJ+Ziva/KAikGsihBBCiHuVdm6gUeoveDb4Eyo9PR0HBwfS0tKM+3aUp7wbd5g1fzYOV1qQn3eDnFv/wTI3j0bnf6V3u2m8VD2VRf37ltyQEKLMZWVlkZSUhK+vL9bW1uUdzmMlIyMDT09PZs+eTb9+/cq8/5SUFNq1a4e9vT3ff/89NjaPxy2X4s8p7me2os0PKgK5JkIIIYS4V2nnBvL0vceIyjOQrwwotEDBHixapcgz04CypIa/bG4uhHj8xcfHs2rVKk6fPs2BAwfo1asXgPGWwLLm5OTExo0badeuHTt37iyXGIQQQgghhHgSyZ5Sj5E7qen8vh1wwSa0WgX5Wi0NmqxmQMtF5RWaEEL8paKiokhISMDS0pImTZoQFxdn3ES7PDg7OzNx4sRy618IIYQQQognkSSlHhM5dzL5dvY/0Lg5AaDU7yulqjt68W3X5eUZnhBC/GWeffZZ9u/fX95hCCGEEEIIIR4xuX3vMXHrxnVycsyxzLP97cjvSSmNrezdIIQQQgghhBBCiMeLrJR6TCQevkimdSf0KQWPRFcqBwCNQaGxsCzP0IQQQgghhBBCCCEemqyUegzcuXOHrZsPAhogH2W4gfONI0DBSimtlVV5hieEEEIIIYQQQgjx0GSl1GMg/epNnFUq2YCzYR0XUs9wxbpgxdQdSx1OffuWb4BCCCGEEEIIIYQQD0lWSlVwqVcuc/if67AhG4Db2Wmg+e0WPuBU3Rewax1QjhEKIYQQQgghhBBCPDxJSlVwvx6Ox5Ct0KiCjyrtt4RU3fPXuFWlJp17v1me4QkhhBBCCCGEEEL8IZKUquDyj3yJVmtOwX5SkKnJBcAi30C3gNoE1XItx+iEEEIIIYQQQggh/hhJSlVwuafi0WjM0KiCpJRG5QNgZlB4V65enqEJIZ4Sffr0QaPRoNFosLS0pEaNGkyZMoW8vLw/1e7mzZvRaDSkpqb+NYGWQlJSEj179sTDwwNra2u8vLwICwvjxIkTJuViYmIIDAxEr9djY2PDc889x7Jly0zKJCcno9FoOHjwYKn7nzRpErVr18bW1pZKlSrx4osvsnv3bpM2+/Xrh6+vLzqdjurVqxMZGUlOTk6Jba9YsYJGjRphY2ODu7s7ffv25caNG8XWuXXrFiNGjMDHxwedTkerVq3Yu3evSZnbt28zZMgQvLy80Ol01K1blyVLlpiUGThwINWrV0en0+Hi4lLkNT179iwvvfQSNjY2uLq6MmbMmAd+D23fvh1zc3OeeeaZEsf91Vdf0aFDB5ydnR/68xBCCCGEEOVLklIVmDIYuHnSHK3WDJRCGTIwy7+blDKgtbYu5wiFEE+LkJAQLl26xMmTJxk1ahSTJk1i1qxZ5R2WUWmSNrm5ubRv3560tDS++uorEhIS+OKLL2jQoIFJYmzBggWEhYUREBDA7t27OXz4MD169GDQoEGMHj36T8VZs2ZNFi5cyJEjR9i2bRvVqlWjQ4cOXLt2DYATJ05gMBj45JNPOHr0KHPnzmXJkiVMmDCh2Ha3b99O79696devH0ePHmX16tXs2bOHAQMGFFuvf//+xMbG8p///IcjR47QoUMHXnzxRS5cuGAsM3LkSH744Qf++9//cvz4cUaMGMGQIUNYt26dsUyTJk2Ijo7m+PHjbNiwAaUUHTp0IP+331n5+fm89NJL5OTksGPHDpYvX86yZcuYOHFioZhSU1Pp3bs37dq1K9U1zcjIoHXr1syYMaNU5YUQQgghRAWixAOlpaUpQKWlpZV534acfHUpao86N3ar2jr2/9TcN15TUd1eMr62PfuMyti3r8zjEkL8MXfu3FHHjh1Td+7cKe9QHlpERIQKCwszOda+fXvVokULlZKSosLDw5Wjo6PS6XQqJCREJSYmGsslJyerl19+WTk6OiobGxtVt25d9d1336mkpCRFwfMajK+IiAillFLp6emqZ8+eysbGRrm5uak5c+aowMBANXz4cGO7Pj4+asqUKSo8PFzp9Xpj3bi4ONW6dWtlbW2tvLy81NChQ9Xt27eVUkrFx8crQCUnJz9wrGfPnlUWFhZq5MiRhc7Nnz9fAWrXrl1KKWUcQ3x8/MNf1N/c/T2zcePGB5aZOXOm8vX1LbadWbNmKT8/v0Lxenp6PrBOZmamMjMzUzExMSbHGzdurN5//33j+3r16qkpU6YUW+Z+hw4dUoA6deqUUkqp9evXK61Wqy5fvmwss3jxYmVvb6+ys7NN6nbv3l198MEHKjIyUjVq1OiBfdzvr/g87lXcz2x5zg8qKrkmQgghhLhXaecGslKqIrp1hbyV75J3LQuAzNxb5OcXPH0PBbZZOdg5OGFVs2Y5BimE+LOUUhgyM8v8pZT607HrdDpycnLo06cP+/btY926dezcuROlFJ06dSI3t2D/u8GDB5Odnc3WrVs5cuQIM2bMwM7ODm9vb7788ksAEhISuHTpEvPmzQMKVuZs376ddevWERsbS1xcHAcOHCgUQ1RUFI0aNSI+Pp4PP/yQ06dPExISQpcuXTh8+DBffPEF27ZtY8iQIQC4uLig1WpZs2aNcQXP/dasWUNubm6RK6IGDhyInZ0dq1at+tPXDwpWdy1duhQHBwcaNWr0wHJpaWk4OTkV21bLli05d+4c69evRynFlStXWLNmDZ06dXpgnby8PPLz87G+b9WtTqdj27ZtxvetWrVi3bp1XLhwAaUUmzZtIjExkQ4dOhTZbkZGBtHR0fj6+uLt7Q3Azp07adCgAVWqVDGWCw4OJj09naNHjxqPRUdHc+bMGSIjI4sdrxBCCCGEeDKYl3cAogjH16FObwFeJyUrnTU2W6kNoLHF77Y77zevwWsj+mOml9v3hHicqTt3SGjcpMz7rXVgPxobmz9UVynFTz/9xIYNG+jYsSNr165l+/bttGrVCijY18jb25u1a9fStWtXzp49S5cuXWjQoAEAfn5+xrbuJlpcXV1xdHQECvY4Wr58OStXrjTevhUdHY2Hh0ehWF544QVGjRplfN+/f3969erFiBEjAPD392f+/PkEBgayePFiPD09mT9/Pu+99x6TJ0+madOmBAUF0atXL2NciYmJODg44O7uXqg/S0tL/Pz8SExM/EPX7q6YmBh69OhBZmYm7u7uxMbGUrly5SLLnjp1igULFhAVFVVsmwEBAaxYsYLu3buTlZVFXl4eoaGhLFq06IF19Ho9LVu25O9//zt16tShSpUqrFq1ip07d1KjRg1juQULFvD222/j5eWFubk5Wq2WTz/9lLZt25q0989//pP33nuPjIwMatWqRWxsLJaWlgBcvnzZJCEFGN9fvnwZgJMnTzJu3Dji4uIwN5fpiRBCCCHE00BWSlVEd1IBc3IMim1ZVjS82r7guEaL0uSybnAXXO0lISWEKDsxMTHY2dlhbW1Nx44d6d69O3369MHc3JzmzZsbyzk7O1OrVi2OHz8OwLBhw5g6dSoBAQFERkZy+PDhYvs5c+YMubm5NGvWzHjMwcGBWrVqFSrbtGlTk/eHDh1i2bJl2NnZGV/BwcEYDAaSkpKAgpVbly9fZsWKFbRs2ZLVq1dTr149YmNjS30t7iZairNixQqTOOLi4ozngoKCOHjwIDt27CAkJIRu3bpx9erVQm1cuHCBkJAQunbtarI31L3tDho0CIBjx44xfPhwJk6cyP79+/nhhx9ITk42no+LizOpt2LFCgD+85//oJTC09MTKysr5s+fzxtvvIFW+/v0YMGCBezatYt169axf/9+Zs+ezeDBg9m4caNJvL169SI+Pp4tW7ZQs2ZNunXrRlZWVqmuaX5+Pj179mTy5MnUfMAq4OKuqRBCCCGEeDzJnyIropxbKMw4obmKwol8Cm6DMcvPp3r2GWo4F/4LvhDi8aPR6ah1YH+59PuwgoKCWLx4MZaWlnh4eGBubm6y0fWD9O/fn+DgYL777jt+/PFHpk+fzuzZsxk6dOgfCd2Era2tyfvbt28zcOBAhg0bVqhs1apVjV/r9XpCQ0MJDQ1l6tSpBAcHM3XqVNq3b4+/vz9paWlcvHix0OqsnJwcTp8+TXBwcImxde7c2SRZ5+npaRJ3jRo1qFGjBi1atMDf35/PPvuM8ePHG8tcvHiRoKAgWrVqxdKlS03avvfpcvb29gBMnz6dgIAAxowZA0DDhg2xtbWlTZs2TJ06laZNm5rUu7tKqXr16mzZsoWMjAzS09Nxd3ene/fuxpVjd+7cYcKECXz99de89NJLxrYPHjxIVFQUL774orFNBwcHHBwc8Pf3p0WLFlSqVImvv/6aN954Azc3N/bs2WMyjitXrgDg5ubGrVu32LdvH/Hx8cbbLQ0GA0opzM3N+fHHH4u9pkIIIYQQ4vEkSamKKPs2YMZlTTrgRLZZOuaALusm+j/wj0khRMWk0Wj+8G10Ze1uIuVederUIS8vj927dxtv37tx4wYJCQnUrVvXWM7b25tBgwYxaNAgxo8fz6effsrQoUONK47u3d/Jz88PCwsL9u7da0wkpaWlkZiYWOh2sfs1btyYY8eOFYqzOBqNhtq1a7Njxw4AXn/9dcaOHcvs2bOZPXu2SdklS5aQmZlJ7969S2xXr9ej1+tLFYPBYCA7O9v4/sKFCwQFBRmfaHfvqiWgyPFlZmYWuuXNzMwMKLjlUqfTFXtdbG1tsbW15ebNm2zYsIGZM2cCBU8szM3NLRSDmZkZBoPhge0ppVBKGcfVsmVLpk2bxtWrV3F1dQUgNjYWe3t76tati4WFBUeOHDFp45///Cc///wza9aswdfXF1tb21JfUyGEEEII8XiQpFRFkZcN/+0C1xIgO51cQwPyKdiM2KApWCmlVQqNtdy2J4SoGPz9/QkLC2PAgAF88skn6PV6xo0bh6enJ2FhYQCMGDGCjh07UrNmTW7evMmmTZuoU6cOAD4+Pmg0GmJiYujUqRM6nQ69Xk9ERARjxozByckJV1dXIiMj0Wq1aDSaYuMZO3YsLVq0YMiQIfTv3x9bW1uOHTtGbGwsCxcu5ODBg0RGRhIeHk7dunWxtLRky5YtfP7554wdOxYoWFE1c+ZMRo8ejbW1NeHh4VhYWPDNN98wYcIEpk6dSv369U36TUhIKBRLvXr1sLCwMDmWkZHBtGnT6Ny5M+7u7ly/fp1FixZx4cIFunbtChQkpJ5//nl8fHyIiori2rVrxvpubm4PHHtoaCgDBgxg8eLFBAcHc+nSJUaMGEGzZs2K3I/rrg0bNqCUolatWpw6dYoxY8ZQu3Zt3nrrLaBgJVZgYCBjxoxBp9Ph4+PDli1b+Pe//82cOXOAglsuv/jiCzp06ICLiwvnz5/nH//4BzqdzrjReocOHahbty7h4eHMnDmTy5cv88EHHzB48GCsrKwACl1XV1dXrK2tCx2/X0pKCmfPnuXixYvA75+Hm5tbsddMCCGEEEKUP0lKVRSXf4Hk3/fHOJtdH8Nvf5i+m5QyUwqNVcl7mQghRFmJjo5m+PDhvPzyy+Tk5NC2bVvWr19vTMjk5+czePBgzp8/j729PSEhIcydOxcouP1q8uTJjBs3jrfeeovevXuzbNky5syZw6BBg3j55Zext7fnvffe49y5c4WeEne/hg0bsmXLFt5//33atGmDUorq1avTvXt3ALy8vKhWrRqTJ08mOTkZjUZjfP/uu+8a23n33Xfx8/Nj9uzZzJs3j4yMDABWrVpFjx49CvVb1LFz587h5eVlcszMzIwTJ06wfPlyrl+/jrOzM8899xxxcXHUq1cPKFg9dOrUKU6dOlWofnFPTezTpw+3bt1i4cKFjBo1CkdHR1544QVmzJhR7DVLS0tj/PjxnD9/HicnJ7p06cK0adNMEmr/+9//GD9+PL169SIlJQUfHx+mTZtm3K/K2tqauLg4Pv74Y27evEmVKlVo27YtO3bsMK6KMjMzIyYmhnfeeYeWLVtia2tLREQEU6ZMKTa+0li3bp0xiQa/fx6RkZFMmjTpT7cvhBBCCCEeHY36K54N/oRKT0/HwcGBtLQ0474dj8zpTfCfV8DJj6zQT/lm6v9IqVwHQ5ov2dnbUJl7cL51hxfcfKj6+eePNhYhxF8uKyuLpKQkfH19S0yuCFMZGRl4enoye/Zs+vXrV+b9p6Sk0K5dO+zt7fn++++xeUxuuRR/TnE/s2U6P3hMyDURQgghxL1KOzeQp+9VFNm3Cv5r60Lyyu9RBgNZmdfITl+BJrPgaVVapdDaO5RjkEII8ejFx8ezatUqTp8+zYEDB+jVqxeA8ZbAsubk5MTGjRtp164dO3fuLJcYhBBCCCGEeBLJ7XvlzZAPydvg1+0F7630pJ1OJNfcmZTMkzjmX+HuUrbbldxxGfbnn1glhBAVXVRUFAkJCVhaWtKkSRPi4uKoXLlyucXj7OzMxIkTy61/IYQQQgghnkSSlCpvh/8P1g4yvt1mDifS87np3gKH1M0A2Bl8uOJygrajP8fKz7WcAhVCiLLx7LPPsn///vIOQwghhBBCCPGISVKqPK3oBic3FHztUBWcfDnt1QhlZ49Nris5Bg0GwC5H0bJhCxpKQkoIIYQQQgghhBBPCNlTqjwlbf39647/gIh1mGV4YmnnCMBti+sAeFzaQzX3huUQoBBCCCGEEEIIIcSjISulytMri8BgABsn8AsCwGGXBVc1BblCgyYbAHODAa2jW7mFKYQQQgghhBBCCPFXk6RUearfxeStUoq8vHwM+RoMuecxzzMAYGYwoLGyKo8IhRBCCCGEEEIIIR4JSUpVIF9Nn0pWTjVup/6MIf8a1r8dNzMoNJaW5RqbEEIIIYQQQgghxF9JklIVxL5j+zh/vj7mBgcM+akAWOcacMzIRJ+Vg8ZSVkoJIYQQQgghhBDiyVFhNzq/cOECb775Js7Ozuh0Oho0aMC+ffuM55VSTJw4EXd3d3Q6HS+++CInT540aSMlJYVevXphb2+Po6Mj/fr14/bt22U9lFL57/f/wdxgh1IKyAWgVeI5Gv96BU0lJyyr+ZRvgEIIIYQQQgghhBB/oQqZlLp58yYBAQFYWFjw/fffc+zYMWbPnk2lSpWMZWbOnMn8+fNZsmQJu3fvxtbWluDgYLKysoxlevXqxdGjR4mNjSUmJoatW7fy9ttvl8eQSlTlVgpgBuQZj920y+ff4z6g5uafMbOzK7fYhBBPtz59+qDRaNBoNFhaWlKjRg2mTJlCXl5eyZWLsXnzZjQaDampqX9NoKWQlJREz5498fDwwNraGi8vL8LCwjhx4oRJuZiYGAIDA9Hr9djY2PDcc8+xbNkykzLJycloNBoOHjxY6v4nTZpE7dq1sbW1pVKlSrz44ovs3r3bpM1+/frh6+uLTqejevXqREZGkpOTU2LbK1asoFGjRtjY2ODu7k7fvn25ceNGsXW2bt1KaGgoHh4eaDQa1q5dW6jMAVaZAAEAAElEQVTMV199RYcOHXB2di5xvEopOnbs+MC2li1bRsOGDbG2tsbV1ZXBgwebnN+wYQMtWrRAr9fj4uJCly5dSE5OLpNxCiGEEEKIslchk1IzZszA29ub6OhomjVrhq+vLx06dKB69epAwaT3448/5oMPPiAsLIyGDRvy73//m4sXLxonmsePH+eHH37gX//6F82bN6d169YsWLCA//3vf1y8eLEcR1dYbkY2Xvm/JZ3U7//Iy7ZQDO/aDjPZ5FwIUc5CQkK4dOkSJ0+eZNSoUUyaNIlZs2aVd1hGpUna5Obm0r59e9LS0vjqq69ISEjgiy++oEGDBiaJsQULFhAWFkZAQAC7d+/m8OHD9OjRg0GDBjF69Og/FWfNmjVZuHAhR44cYdu2bVSrVo0OHTpw7do1AE6cOIHBYOCTTz7h6NGjzJ07lyVLljBhwoRi292+fTu9e/emX79+HD16lNWrV7Nnzx4GDBhQbL2MjAwaNWrEokWLii3TunVrZsyYUeL4Pv74YzQaTZHn5syZw/vvv8+4ceM4evQoGzduJDg42Hg+KSmJsLAwXnjhBQ4ePMiGDRu4fv06r732WpmMUwghhBBClANVAdWpU0eNGDFCvf7668rFxUU988wzaunSpcbzp0+fVoCKj483qde2bVs1bNgwpZRSn332mXJ0dDQ5n5ubq8zMzNRXX31VqjjS0tIUoNLS0v7cgB4g81a2ykzPVglfH1f/Gz1Fze+3Qs3pu1BFdXtJzXm9ozoU1vGR9CuEKHt37txRx44dU3fu3CnvUB5aRESECgsLMznWvn171aJFC5WSkqLCw8OVo6Oj0ul0KiQkRCUmJhrLJScnq5dfflk5OjoqGxsbVbduXfXdd9+ppKQkBZi8IiIilFJKpaenq549eyobGxvl5uam5syZowIDA9Xw4cON7fr4+KgpU6ao8PBwpdfrjXXj4uJU69atlbW1tfLy8lJDhw5Vt2/fVkopFR8frwCVnJz8wLGePXtWWVhYqJEjRxY6N3/+fAWoXbt2KaWUcQz3/y56GHd/z2zcuPGBZWbOnKl8fX2LbWfWrFnKz8+vULyenp6ljgVQX3/99QPPlzTe+Ph45enpqS5dulSorZSUFKXT6Yod5+rVq5W5ubnKz883Hlu3bp3SaDQqJydHKVU247yruJ/ZRz0/eBzJNRFCCCHEvUo7N6iQK6XOnDnD4sWL8ff3Z8OGDbzzzjsMGzaM5cuXA3D58mUAqlSpYlKvSpUqxnOXL1/G1dXV5Ly5uTlOTk7GMvfLzs4mPT3d5PUo/Xv8Dj4fs43YHy5y6UouObdWYrj9PVDwxD0HxyoltCCEeJwppcjNzi/zl1LqT8eu0+nIycmhT58+7Nu3j3Xr1rFz506UUnTq1Inc3IK98QYPHkx2djZbt27lyJEjzJgxAzs7O7y9vfnyyy8BSEhI4NKlS8ybNw+AkSNHsn37dtatW0dsbCxxcXEcOHCgUAxRUVE0atSI+Ph4PvzwQ06fPk1ISAhdunTh8OHDfPHFF2zbto0hQ4YA4OLiglarZc2aNeTn5xc5rjVr1pCbm1vkiqiBAwdiZ2fHqlWr/vT1g4LVXUuXLsXBwYFGjRo9sFxaWhpOTk7FttWyZUvOnTvH+vXrUUpx5coV1qxZQ6dOnf6SWEuSmZlJz549WbRoEW5uboXOx8bGYjAYuHDhAnXq1MHLy4tu3bpx7tw5Y5kmTZqg1WqJjo4mPz+ftLQ0/vOf//Diiy9iYWFRIcYphBBCCCH+WhXy6XsGg4GmTZvy0UcfAfDss8/yyy+/sGTJEiIiIh5Zv9OnT2fy5MmPrP1C8u4AVpiTjcFwjnxAq7RY5ObgcyMNrUu1sotFCFHm8nIMLB2+pcz7fXteIBZWZn+orlKKn376iQ0bNtCxY0fWrl3L9u3badWqFVCw34+3tzdr166la9eunD17li5dutCgQQMA/Pz8jG3dTbS4urri6OgIwK1bt1i+fDkrV66kXbt2AERHR+Ph4VEolhdeeIFRo0YZ3/fv359evXoxYsQIAPz9/Zk/fz6BgYEsXrwYT09P5s+fz3vvvcfkyZNp2rQpQUFB9OrVyxhXYmIiDg4OuLu7F+rP0tISPz8/EhMT/9C1uysmJoYePXqQmZmJu7s7sbGxVK5cuciyp06dYsGCBURFRRXbZkBAACtWrKB79+5kZWWRl5dHaGhomd2u9u6779KqVSvCwsKKPH/mzBkMBgMfffQR8+bNw8HBgQ8++ID27dtz+PBhLC0t8fX15ccff6Rbt24MHDiQ/Px8WrZsyfr16yvMOIUQQgghxF+rQq6Ucnd3p27duibH6tSpw9mzZwGMf4W9cuWKSZkrV64Yz7m5uXH16lWT83l5eaSkpBT5V1yA8ePHk5aWZnzd+xfcR6GPRwR/q/Iqb1fpgb02GYAmZ87T7viv1LiaiqWv7yPtXwghSismJgY7Ozusra3p2LEj3bt3p0+fPpibm9O8eXNjOWdnZ2rVqsXx48cBGDZsGFOnTiUgIIDIyEgOHz5cbD9nzpwhNzeXZs2aGY85ODhQq1atQmWbNm1q8v7QoUMsW7YMOzs74ys4OBiDwUBSUhJQsHLr8uXLrFixgpYtW7J69Wrq1atHbGxsqa+FpaVliWVWrFhhEkdcXJzxXFBQEAcPHmTHjh2EhITQrVu3Qr+voOAptCEhIXTt2tVkz6R72x00aBAAx44dY/jw4UycOJH9+/fzww8/kJycbDwfFxdnUm/FihWlHm9J1q1bx88//8zHH3/8wDIGg4Hc3Fzmz59PcHAwLVq0YNWqVZw8eZJNmzYBBSucBwwYQEREBHv37mXLli1YWlry+uuvG1f3lec4hRBCCCHEX69CrpQKCAggISHB5FhiYiI+Pj4A+Pr64ubmxk8//cQzzzwDQHp6Ort37+add94BCpb4p6amsn//fpo0aQLAzz//jMFgMPkH1L2srKywKsNNxaf/+iyafNDl6dDk5KEFLPPzORLwDC8PHoOuYcMyi0UIUfbMLbW8PS+wXPp9WEFBQSxevBhLS0s8PDwwNzdn3bp1Jdbr378/wcHBfPfdd/z4449Mnz6d2bNnM3To0D8SuglbW1uT97dv32bgwIEMGzasUNmqVasav9br9YSGhhIaGsrUqVMJDg5m6tSptG/fHn9/f9LS0rh48WKh1Vk5OTmcPn3aZHPuB+ncubPJ7xpPT0+TuGvUqEGNGjVo0aIF/v7+fPbZZ4wfP95Y5uLFiwQFBdGqVSuWLl1q0va9T7+zt7cHClb6BgQEMGbMGAAaNmyIra0tbdq0YerUqTRt2tSk3v23v/8ZP//8M6dPnzaudrurS5cutGnThs2bNxtXnt37BycXFxcqV65s/IPTokWLcHBwYObMmcYy//3vf/H29mb37t20aNGiXMcphBBCCCH+ehUyKXX3NoCPPvqIbt26sWfPHpYuXWqcmGs0GkaMGMHUqVPx9/fH19eXDz/8EA8PD1555RWgYGVVSEgIAwYMYMmSJeTm5jJkyBB69OhR5G0g5cEmwxwzgwYoeOKe1mDAJjsPlw5NsWncuHyDE0I8chqN5g/fRlfW7iZS7lWnTh3y8vLYvXu38fa9GzdukJCQYJJ88Pb2ZtCgQQwaNIjx48fz6aefMnToUOOKo3v3d/Lz88PCwoK9e/caE0lpaWkkJibStm3bYmNs3Lgxx44dKxRncTQaDbVr12bHjh0AvP7664wdO5bZs2cze/Zsk7JLliwhMzOT3r17l9iuXq9Hr9eXKgaDwUB2drbx/YULFwgKCqJJkyZER0ej1ZomEYsaX2ZmJubmpr/SzcwKvreUUuh0uoe6Lg9j3Lhx9O/f3+RYgwYNmDt3LqGhoUDBH5ugYP8wLy8vAFJSUrh+/brxD06ZmZmFxnp3DAaDwVimvMYphBBCCCH+ehUyKfXcc8/x9ddfM378eKZMmYKvry8ff/wxvXr1MpZ57733yMjI4O233yY1NZXWrVvzww8/YG1tbSyzYsUKhgwZQrt27dBqtXTp0oX58+eXx5CK9MNz10GbDygMBkvGrs7DwmCgcbVW5R2aEEKUyN/fn7CwMAYMGMAnn3yCXq9n3LhxeHp6GvcWGjFiBB07dqRmzZrcvHmTTZs2UadOHQB8fHzQaDTExMTQqVMndDoder2eiIgIxowZg5OTE66urkRGRqLVatFoNMXGM3bsWFq0aMGQIUPo378/tra2HDt2jNjYWBYuXMjBgweJjIwkPDycunXrYmlpyZYtW/j8888ZO3YsULCiaubMmYwePRpra2vCw8OxsLDgm2++YcKECUydOpX69eub9Hv/yl6AevXqGTfnvisjI4Np06bRuXNn3N3duX79OosWLeLChQt07doVKEhIPf/88/j4+BAVFcW1a9eM9R906zlAaGgoAwYMYPHixQQHB3Pp0iVGjBhBs2bNiv1DzO3btzl16pTxfVJSEgcPHsTJycmYFExJSeHs2bNcvHjRZLxubm4mr/tVrVoV399uQ69ZsyZhYWEMHz6cpUuXYm9vz/jx46lduzZBQUEAvPTSS8ydO5cpU6bwxhtvcOvWLSZMmICPjw/PPvvsIx+nEEIIIYQoB4/2IYCPt0f9eOOhffqr4RF9VVTnLuqTF7uq+LoN1LFatVXmL788kv6EEOWnuMfLV3QREREqLCysyHMpKSkqPDxcOTg4KJ1Op4KDg1ViYqLx/JAhQ1T16tWVlZWVcnFxUeHh4er69evG81OmTFFubm5Ko9GoiIgIpZRS6enpqmfPnsrGxka5ubmpOXPmqGbNmqlx48YZ6/n4+Ki5c+cWimfPnj2qffv2ys7OTtna2qqGDRuqadOmKaWUunbtmho2bJiqX7++srOzU3q9XjVo0EBFRUWp/Px8k3bWrl2r2rRpo2xtbRWgALVq1SqTMklJScZz97/OnTtXKLY7d+6oV199VXl4eChLS0vl7u6uOnfurPbs2WMsEx0d/cA2SzJ//nxVt25dpdPplLu7u+rVq5c6f/58sXU2bdpUZF93P4viYoqMjHxgu4D6+uuvTY6lpaWpvn37KkdHR+Xk5KReffVVdfbsWZMyq1atUs8++6yytbVVLi4uqnPnzur48eNlMs77Ffcz+6jnB48juSZCCCGEuFdp5wYapf6CZ4M/odLT03FwcCAtLc24b8df6ViDRmhyc0wPajTU2LIZC1fXv7w/IUT5ycrKIikpCV9fX5MVnaJkGRkZeHp6Mnv2bPr161fm/aekpNCuXTvs7e35/vvvsbGxKfMYRNkr7mf2Uc8PHkdyTYQQQghxr9LODSrk7XtPiys2lmgN5hi0GjJ0VWj8ehj2jepIQkoI8VSLj4/nxIkTNGvWjLS0NKZMmQJgvCWwrDk5ObFx40YWLVrEzp07adeuXbnEIYQQQgghxJNGklLlKN7PC2XIBaBmq+54DAkv54iEEKJiiIqKIiEhAUtLS5o0aUJcXByVK1cut3icnZ2ZOHFiufUvhBBCCCHEk0iSUuVo4OLPAdCam6OzK91TmoQQ4kn37LPPsn///vIOQwghhBBCCPGISVKqHNk6VirvEIQQQgghhBBCCCHKhba8AxBCCCGEEEIIIYQQTx9JSgkhhBBCCCGEEEKIMidJKSGEEEIIIYQQQghR5iQpJYQQQgghhBBCCCHKnCSlhBBCCCGEEEIIIUSZk6SUEEIIIYQQQgghhChzkpQSQghRrD59+qDRaNBoNFhaWlKjRg2mTJlCXl7en2p38+bNaDQaUlNT/5pASyEpKYmePXvi4eGBtbU1Xl5ehIWFceLECZNyMTExBAYGotfrsbGx4bnnnmPZsmUmZZKTk9FoNBw8eLDU/U+aNInatWtja2tLpUqVePHFF9m9e7dJm/369cPX1xedTkf16tWJjIwkJyenxLZXrFhBo0aNsLGxwd3dnb59+3Ljxo1i62zdupXQ0FA8PDzQaDSsXbv2oWMGmDZtGq1atcLGxgZHR8ci+zp79iwvvfQSNjY2uLq6MmbMGJPvoXu/z+591atXz1hm+vTpPPfcc+j1elxdXXnllVdISEgo8dqUJj4hhBBCCFH2JCklhBCiRCEhIVy6dImTJ08yatQoJk2axKxZs8o7LKPSJG1yc3Np3749aWlpfPXVVyQkJPDFF1/QoEEDk8TYggULCAsLIyAggN27d3P48GF69OjBoEGDGD169J+Ks2bNmixcuJAjR46wbds2qlWrRocOHbh27RoAJ06cwGAw8Mknn3D06FHmzp3LkiVLmDBhQrHtbt++nd69e9OvXz+OHj3K6tWr2bNnDwMGDCi2XkZGBo0aNWLRokV/OGYouP5du3blnXfeKbKN/Px8XnrpJXJyctixYwfLly9n2bJlTJw40Vhm3rx5XLp0yfg6d+4cTk5OdO3a1Vhmy5YtDB48mF27dhEbG0tubi4dOnQgIyOj2HGWFJ8QQgghhCgnSjxQWlqaAlRaWlp5hyKEeMzduXNHHTt2TN25c6e8Q3loERERKiwszORY+/btVYsWLVRKSooKDw9Xjo6OSqfTqZCQEJWYmGgsl5ycrF5++WXl6OiobGxsVN26ddV3332nkpKSFGDyioiIUEoplZ6ernr27KlsbGyUm5ubmjNnjgoMDFTDhw83tuvj46OmTJmiwsPDlV6vN9aNi4tTrVu3VtbW1srLy0sNHTpU3b59WymlVHx8vAJUcnLyA8d69uxZZWFhoUaOHFno3Pz58xWgdu3apZRSxjHEx8c//EX9zd3fMxs3bnxgmZkzZypfX99i25k1a5by8/MrFK+np2epYwHU119/XWK54mKOjo5WDg4OhY6vX79eabVadfnyZeOxxYsXK3t7e5WdnV1kP19//bXSaDTFfl5Xr15VgNqyZUuJcRcXX1GK+5mV+UFhck2EEEIIca/Szg1kpZQQQpQTpRS5WVll/lJK/enYdTodOTk59OnTh3379rFu3Tp27tyJUopOnTqRm5sLwODBg8nOzmbr1q0cOXKEGTNmYGdnh7e3N19++SUACQkJXLp0iXnz5gEwcuRItm/fzrp164iNjSUuLo4DBw4UiiEqKopGjRoRHx/Phx9+yOnTpwkJCaFLly4cPnyYL774gm3btjFkyBAAXFxc0Gq1rFmzhvz8/CLHtWbNGnJzc4tcETVw4EDs7OxYtWrVn75+ULB6Z+nSpTg4ONCoUaMHlktLS8PJyanYtlq2bMm5c+dYv349SimuXLnCmjVr6NSp018S68PGfL+dO3fSoEEDqlSpYjwWHBxMeno6R48eLbLOZ599xosvvoiPj88D201LSwMo8foIIYQQQoiKyby8AxBCiKdVXnY28yNeL/N+hy1fg4W19R+qq5Tip59+YsOGDXTs2JG1a9eyfft2WrVqBRTsa+Tt7c3atWvp2rUrZ8+epUuXLjRo0AAAPz8/Y1t3Ewmurq7GfX5u3brF8uXLWblyJe3atQMgOjoaDw+PQrG88MILjBo1yvi+f//+9OrVixEjRgDg7+/P/PnzCQwMZPHixXh6ejJ//nzee+89Jk+eTNOmTQkKCqJXr17GuBITE3FwcMDd3b1Qf5aWlvj5+ZGYmPiHrt1dMTEx9OjRg8zMTNzd3YmNjaVy5cpFlj116hQLFiwgKiqq2DYDAgJYsWIF3bt3Jysri7y8PEJDQ4u9Le9RxVyUy5cvmySkAOP7y5cvFyp/8eJFvv/+e1auXPnANg0GAyNGjCAgIID69euXOhYhhBBCCFFxyEopIYQQJYqJicHOzg5ra2s6duxI9+7d6dOnD+bm5jRv3txYztnZmVq1anH8+HEAhg0bxtSpUwkICCAyMpLDhw8X28+ZM2fIzc2lWbNmxmMODg7UqlWrUNmmTZuavD906BDLli3Dzs7O+AoODsZgMJCUlAQUrNy6fPkyK1asoGXLlqxevZp69eoRGxtb6mthaWlZYpkVK1aYxBEXF2c8FxQUxMGDB9mxYwchISF069aNq1evFmrjwoULhISE0LVrV5O9oe5td9CgQQAcO3aM4cOHM3HiRPbv388PP/xAcnKy8XxcXJxJvRUrVpR6vA8T819l+fLlODo68sorrzywzODBg/nll1/43//+Zzw2aNAgk3EKIYQQQoiKTVZKCSFEOTG3smLY8jXl0u/DCgoKYvHixVhaWuLh4YG5uTnr1q0rsV7//v0JDg7mu+++48cff2T69OnMnj2boUOH/pHQTdja2pq8v337NgMHDmTYsGGFylatWtX4tV6vJzQ0lNDQUKZOnUpwcDBTp06lffv2+Pv7k5aWxsWLFwutzsrJyeH06dMEBweXGFvnzp1NknWenp4mcdeoUYMaNWrQokUL/P39+eyzzxg/fryxzMWLFwkKCqJVq1YsXbrUpO17n/Znb28PFDyVLiAggDFjxgDQsGFDbG1tadOmDVOnTqVp06Ym9e5ftVSS0sRcHDc3N/bs2WNy7MqVK8Zz91JK8fnnnxMeHv7ABOCQIUOIiYlh69ateHl5GY9PmTLlT29GL4QQQgghyo4kpYQQopxoNJo/fBtdWbublLhXnTp1yMvLY/fu3cbb927cuEFCQgJ169Y1lvP29mbQoEEMGjSI8ePH8+mnnzJ06FBjwuHe/Z38/PywsLBg7969xkRSWloaiYmJtG3bttgYGzduzLFjxwrFWRyNRkPt2rXZsWMHAK+//jpjx45l9uzZzJ4926TskiVLyMzMpHfv3iW2q9fr0ev1pYrBYDCQnZ1tfH/hwgWCgoJo0qQJ0dHRaLWmi5qLGl9mZibm5qa/0s3MzICCJI9Op3uo6/KwMZekZcuWTJs2jatXr+Lq6gpAbGws9vb2Jt8rUPCEvVOnTtGvX79C7SilGDp0KF9//TWbN2/G19fX5Lyrq6uxfSGEEEIIUfFJUkoIIcQf4u/vT1hYGAMGDOCTTz5Br9czbtw4PD09CQsLA2DEiBF07NiRmjVrcvPmTTZt2kSdOnUA8PHxQaPREBMTQ6dOndDpdOj1eiIiIhgzZgxOTk64uroSGRmJVqtFo9EUG8/YsWNp0aIFQ4YMoX///tja2nLs2DFiY2NZuHAhBw8eJDIykvDwcOrWrYulpSVbtmzh888/Z+zYsUDBiqqZM2cyevRorK2tCQ8Px8LCgm+++YYJEyYwderUQvsXJSQkFIqlXr16WFhYmBzLyMhg2rRpdO7cGXd3d65fv86iRYu4cOECXbt2BQoSUs8//zw+Pj5ERUVx7do1Y/37VxTdKzQ0lAEDBrB48WKCg4O5dOkSI0aMoFmzZkXux3XX7du3OXXqlPF9UlISBw8exMnJiapVq5YqZoCzZ8+SkpLC2bNnyc/PN67KqlGjBnZ2dnTo0IG6desSHh7OzJkzuXz5Mh988AGDBw/G6r6Ve5999hnNmzcvcp+owYMHs3LlSr755hv0er1xPyoHBwd0Ot0Dx1lSfEIIIYQQopw84qcAPtbk8cZCiL9KcY+Xr+giIiJUWFhYkedSUlJUeHi4cnBwUDqdTgUHB6vExETj+SFDhqjq1asrKysr5eLiosLDw9X169eN56dMmaLc3NyURqNRERERSiml0tPTVc+ePZWNjY1yc3NTc+bMUc2aNVPjxo0z1vPx8VFz584tFM+ePXtU+/btlZ2dnbK1tVUNGzZU06ZNU0opde3aNTVs2DBVv359ZWdnp/R6vWrQoIGKiopS+fn5Ju2sXbtWtWnTRtna2ipAAWrVqlUmZZKSkozn7n+dO3euUGx37txRr776qvLw8FCWlpbK3d1dde7cWe3Zs8dYJjo6+oFtlmT+/Pmqbt26SqfTKXd3d9WrVy91/vz5Yuts2rSpyL7ufhaliVmpgu+RotrZtGmTsUxycrLq2LGj0ul0qnLlymrUqFEqNzfXpJ3U1FSl0+nU0qVLi4z3QdcmOjq62HGWJr77FfczK/ODwuSaCCGEEOJepZ0baJT6C54N/oRKT0/HwcGBtLQ0474dQgjxR2RlZZGUlISvry/Wj8ktexVFRkYGnp6ezJ49u8hbuh61lJQU2rVrh729Pd9//z02NjZlHoMoe8X9zMr8oDC5JkIIIYS4V2nnBvL0PSGEEBVKfHw8q1at4vTp0xw4cIBevXoBGG8JLGtOTk5s3LiRdu3asXPnznKJQQghhBBCiCeR7CklhBCiwomKiiIhIQFLS0uaNGlCXFwclStXLrd4nJ2dmThxYrn1L4QQQgghxJNIklJCCCEqlGeffZb9+/eXdxhCCCGEEEKIR0xu3xNCCCGEEEIIIYQQZU6SUkIIIYQQQgghhBCizElSSgghypDBYCjvEIQQpSA/q0IIIYQQj57sKSWEEGXA0tISrVbLxYsXcXFxwdLSEo1GU95hCSHuo5QiJyeHa9euodVqsbS0LO+QhBBCCCGeWJKUEkKIMqDVavH19eXSpUtcvHixvMMRQpTAxsaGqlWrotXKonIhhBBCiEdFklJCCFFGLC0tqVq1Knl5eeTn55d3OEKIBzAzM8Pc3FxWMwohhBBCPGKSlBJCiDKk0WiwsLDAwsKivEMRQgghhBBCiHIla9KFEEIIIYQQQgghRJmTpJQQQgghhBBCCCGEKHOSlBJCCCGEEEIIIYQQZU72lCqGUgqA9PT0co5ECCGEEBXF3XnB3XmCkDmTEEIIIUyVdr4kSali3Lp1CwBvb+9yjkQIIYQQFc2tW7dwcHAo7zAqBJkzCSGEEKIoJc2XNEr+zPdABoOBixcvotfrH8ljodPT0/H29ubcuXPY29v/5e1XZDJ2GbuM/ekhY5exP2ljV0px69YtPDw80GplJwR4tHOmJ/l7qSQydhm7jP3pIWOXsT9pYy/tfElWShVDq9Xi5eX1yPuxt7d/4r4BS0vGLmN/2sjYZexPmyd17LJCylRZzJme1O+l0pCxy9ifNjJ2GfvT5kkde2nmS/LnPSGEEEIIIYQQQghR5iQpJYQQQgghhBBCCCHKnCSlypGVlRWRkZFYWVmVdyhlTsYuY3/ayNhl7E+bp3ns4q/1NH8vydhl7E8bGbuM/WnzNI/9LtnoXAghhBBCCCGEEEKUOVkpJYQQQgghhBBCCCHKnCSlhBBCCCGEEEIIIUSZk6SUEEIIIYQQQgghhChzkpQSQgghhBBCCCGEEGVOklJCCCGEEEIIIYQQosxJUkoIIYQQQgghhBBClDlJSgkhhBBCCCGEEEKIMidJKSGEEEIIIYQQQghR5iQpJYQQQgghhBBCCCHKnCSlhBBCCCGEEEIIIUSZk6SUEEIIIYQQQgghhChzkpQSQgghhBBCCCGEEGVOklJCCCGEEEIIIYQQosxJUkoI8YckJyej0WhYtmxZeYdSYfTp04dq1aqZHNNoNEyaNKlM45g0aRIajYbr16+Xab9CCCGEKB8yL3uwZcuWodFo2LdvX3mHIoQogiSlhHhM7dixg0mTJpGamvqH6v/zn/+UicsfcPHiRSZNmsTBgwfLOxQ++ugj1q5dW95hCCGEEE89mZcV+LPXQQjx9JGklBCPqR07djB58uSnfvJT1i5evMjkyZOLTEp9+umnJCQklFkskpQSQgghKgaZlxX4s9dBCPH0kaSUEEL8RSwsLLCysirvMMpMZmZmeYcghBBCCFGkrKwsDAbDY9+HEE86SUoJ8RiaNGkSY8aMAcDX1xeNRoNGoyE5OZm8vDz+/ve/U716daysrKhWrRoTJkwgOzvbWL9atWocPXqULVu2GOs+//zzAKSkpDB69GgaNGiAnZ0d9vb2dOzYkUOHDv0lsWdlZTFp0iRq1qyJtbU17u7uvPbaa5w+fRr4fU+EqKgo5s6di4+PDzqdjsDAQH755ReTtp5//nlj3Pcqam+nklSrVo0+ffoUOn5vH5s3b+a5554D4K233jJeu7t/2fwj/RYlIyODUaNG4e3tjZWVFbVq1SIqKgqllLGMRqMhIyOD5cuXG+O4P/7U1FT69OmDo6MjDg4OvPXWW0Umkv773//SpEkTdDodTk5O9OjRg3PnzhW6DvXr12f//v20bdsWGxsbJkyYAMC+ffsIDg6mcuXK6HQ6fH196du370ON+eTJk3Tp0gU3Nzesra3x8vKiR48epKWlPVQ7QgghRFl7XOdlmzdvRqPR8H//939MmzYNLy8vrK2tadeuHadOnSpUfvfu3YSEhODg4ICNjQ2BgYFs3769VNfhtddeo3HjxibthYaGotFoWLdunUkfGo2G77//3njszJkzdO3aFScnJ2xsbGjRogXfffddkWP53//+xwcffICnpyc2Njakp6cXOfabN2/SrFkzvLy8Sr3K/UF9rF27Fq1Wy8SJE03Kr1y5Eo1Gw+LFi0vVvhBPK/PyDkAI8fBee+01EhMTWbVqFXPnzqVy5coAuLi40L9/f5YvX87rr7/OqFGj2L17N9OnT+f48eN8/fXXAHz88ccMHToUOzs73n//fQCqVKkCFPziX7t2LV27dsXX15crV67wySefEBgYyLFjx/Dw8PjDcefn5/Pyyy/z008/0aNHD4YPH86tW7eIjY3ll19+oXr16say//73v7l16xaDBw8mKyuLefPm8cILL3DkyBFjrGWtTp06TJkyhYkTJ/L222/Tpk0bAFq1avWX9aGUonPnzmzatIl+/frxzDPPsGHDBsaMGcOFCxeYO3cuAP/5z3/o378/zZo14+233wYwuX4A3bp1w9fXl+nTp3PgwAH+9a9/4erqyowZM4xlpk2bxocffki3bt3o378/165dY8GCBbRt25b4+HgcHR2NZW/cuEHHjh3p0aMHb775JlWqVOHq1at06NABFxcXxo0bh6OjI8nJyXz11VelHnNOTg7BwcFkZ2czdOhQ3NzcuHDhAjExMaSmpuLg4PAnrqgQQgjxaD2u87K7/vGPf6DVahk9ejRpaWnMnDmTXr16sXv3bmOZn3/+mY4dO9KkSRMiIyPRarVER0fzwgsvEBcXR7NmzYq9Dm3atOGbb74hPT0de3t7lFJs374drVZLXFwcnTt3BiAuLg6tVktAQAAAV65coVWrVmRmZjJs2DCcnZ1Zvnw5nTt3Zs2aNbz66qsmY/n73/+OpaUlo0ePJjs7G0tLy0LjvX79Ou3btyclJYUtW7YUmj+V5P4+QkJC+Nvf/sb06dN55ZVXaNy4MZcuXWLo0KG8+OKLDBo06KHaF+Kpo4QQj6VZs2YpQCUlJRmPHTx4UAGqf//+JmVHjx6tAPXzzz8bj9WrV08FBgYWajcrK0vl5+ebHEtKSlJWVlZqypQpJscAFR0dXeqYP//8cwWoOXPmFDpnMBhM2tXpdOr8+fPG87t371aAevfdd43HAgMDixxDRESE8vHxKXVcSinl4+OjIiIiCh2/v4+9e/c+cNxF9QuoyMjIUsexdu1aBaipU6eaHH/99deVRqNRp06dMh6ztbUtMubIyEgFqL59+5ocf/XVV5Wzs7PxfXJysjIzM1PTpk0zKXfkyBFlbm5ucjwwMFABasmSJSZlv/76awWovXv3lnqM94uPj1eAWr169R9uQwghhChPj+O8bNOmTQpQderUUdnZ2cbj8+bNU4A6cuSIUqpgjubv76+Cg4ON8zWllMrMzFS+vr6qffv2xV4HpX6fP61fv14ppdThw4cVoLp27aqaN29uLNe5c2f17LPPGt+PGDFCASouLs547NatW8rX11dVq1bNeG3ujsXPz09lZmaa9B0dHW2cq1y6dEnVq1dP+fn5qeTk5FJfq5L6yMjIUDVq1FD16tVTWVlZ6qWXXlL29vbq119/fag+hHgaye17QjxB1q9fD8DIkSNNjo8aNQqg0FLnolhZWaHVFvyvIT8/nxs3bmBnZ0etWrU4cODAn4rvyy+/pHLlygwdOrTQOY1GY/L+lVdewdPT0/i+WbNmNG/e3DjGJ9X69esxMzNj2LBhJsdHjRqFUspkOXtJ7v/LXJs2bbhx44ZxKftXX32FwWCgW7duXL9+3fhyc3PD39+fTZs2mdS3srLirbfeMjl2dyVVTEwMubm5pY7tXndXQm3YsEH2qRJCCPHEqOjzsrveeustkxVFd1eCnzlzBoCDBw9y8uRJevbsyY0bN4zzhYyMDNq1a8fWrVtL3Ffp2Wefxc7Ojq1btwIFK6K8vLzo3bs3Bw4cIDMzE6UU27ZtM/YPBdewWbNmtG7d2njMzs6Ot99+m+TkZI4dO2bST0REBDqdrsgYzp8/T2BgILm5uWzduhUfH5+HuErF92FjY8OyZcs4fvw4bdu25bvvvmPu3LlUrVr1D/UhxNNEklJCPEF+/fVXtFotNWrUMDnu5uaGo6Mjv/76a4ltGAwG5s6di7+/P1ZWVlSuXBkXFxcOHz78p/f3OX36NLVq1cLcvOQ7h/39/Qsdq1mzJsnJyX8qhoru119/xcPDA71eb3K8Tp06xvOldf9EqFKlSkDBPgpQsI+TUgp/f39cXFxMXsePH+fq1asm9T09PQstgw8MDKRLly5MnjyZypUrExYWRnR0tMleGSXx9fVl5MiR/Otf/6Jy5coEBwezaNEi2U9KCCHEY62iz8vuKs18AQqSMffPF/71r3+RnZ1dYixmZma0bNmSuLg4oCAp1aZNG1q3bk1+fj67du3i2LFjpKSkmCSlfv31V2rVqlWovQfNi3x9fR8YQ3h4OFevXmXLli0mf/h8WA/qIyAggHfeeYc9e/YQHBz80PtrCvG0kj2lhHgC3b/q6GF89NFHfPjhh/Tt25e///3vODk5odVqGTFiRIV7uohGozHZ/Puu/Pz8P9RWUfLz8zEzM3vo9iqCB8V995oZDAbjZqJFlbWzszN5X9RfHjUaDWvWrGHXrl18++23bNiwgb59+zJ79mx27dpVqI0HmT17Nn369OGbb77hxx9/ZNiwYUyfPp1du3bh5eVVqjaEEEKIiqiiz8tKM18AmDVrFs8880yRZUvz+75169ZMmzaNrKws4uLieP/993F0dKR+/frExcUZ99G6Nyn1sB60SgoK9v7697//zbx585g+ffpf3kd2djabN28GCv4Qm5mZiY2NzR/uR4inhSSlhHhMFTXB8fHxwWAwcPLkSeNfkKBgk8jU1FSTZcoPmiCtWbOGoKAgPvvsM5Pjqampxg0r/6jq1auze/ducnNzsbCwKLbs3b/K3SsxMdHk6XaVKlUyLi2/18OsJrq3rdTU1CLb8vPzM77/MxPL0vDx8WHjxo3cunXLZLXUiRMnjOf/qliqV6+OUgpfX19q1qz5p9pq0aIFLVq0YNq0aaxcuZJevXrxv//9j/79+5e6jQYNGtCgQQM++OADduzYQUBAAEuWLGHq1Kl/KjYhhBDiUXsc52WldXcjcHt7e1588cViyxY3N2nTpg05OTmsWrWKCxcuGJNPbdu2NSalatasafJAGx8fnyKfjlfUvKgkQ4cOpUaNGkycOBEHBwfGjRtX6rqlERkZyfHjx4mKimLs2LGMGzeO+fPn/6V9CPEkktv3hHhM2draApgkUjp16gQUPMXlXnPmzAHgpZdeMqlfVBLGzMys0Oqj1atXc+HChT8dc5cuXbh+/ToLFy4sdO7+PteuXWvS5549e9i9ezcdO3Y0HqtevTonTpzg2rVrxmOHDh0yeTxxaVWvXp1du3aRk5NjPBYTE8O5c+dMyhV13f9KnTp1Ij8/v9A1mjt3LhqNxmT8D/oMS+u1117DzMyMyZMnF7r+Silu3LhRYhs3b94sVPfuX1FLewtfeno6eXl5JscaNGiAVqt9qNsAhRBCiPLyOM7LSqtJkyZUr16dqKgobt++Xej8vfOw4uZJzZs3x8LCghkzZuDk5ES9evWAgmTVrl272LJlS6FVUp06dWLPnj3s3LnTeCwjI4OlS5dSrVo16tat+1Bj+fDDDxk9ejTjx49n8eLFD1W3OLt37yYqKooRI0YwatQoxowZw8KFC9myZctf1ocQTypZKSXEY6pJkyYAvP/++/To0QMLCwtCQ0OJiIhg6dKlpKamEhgYyJ49e1i+fDmvvPIKQUFBJvUXL17M1KlTqVGjBq6urrzwwgu8/PLLTJkyhbfeeotWrVpx5MgRVqxYYbJa6I/q3bs3//73vxk5ciR79uyhTZs2ZGRksHHjRv72t78RFhZmLFujRg1at27NO++8Q3Z2Nh9//DHOzs689957xjJ9+/Zlzpw5BAcH069fP65evcqSJUuoV6+ecTPv0urfvz9r1qwhJCSEbt26cfr0af773/8Wekxw9erVcXR0ZMmSJej1emxtbWnevHmxexg8jNDQUIKCgnj//fdJTk6mUaNG/Pjjj3zzzTeMGDHCJJ4mTZqwceNG5syZg4eHB76+vjRv3rzUfVWvXp2pU6cyfvx4kpOTeeWVV9Dr9SQlJfH111/z9ttvM3r06GLbWL58Of/85z959dVXqV69Ordu3eLTTz/F3t7eOBkvyc8//8yQIUPo2rUrNWvWJC8vj//85z+YmZnRpUuXUo9HCCGEKC+P47ystLRaLf/617/o2LEj9erV46233sLT05MLFy6wadMm7O3t+fbbb4u9Dra2ttjY2NCkSRN27dpFaGiocVVV27ZtycjIICMjo1BSaty4caxatYqOHTsybNgwnJycWL58OUlJSXz55ZfGTeAfxqxZs0hLS2Pw4MHo9XrefPPNP3V9srKyiIiIwN/fn2nTpgEwefJkvv32W9566y2OHDliTNYJIYpQLs/8E0L8Jf7+978rT09PpdVqjY/fzc3NVZMnT1a+vr7KwsJCeXt7q/Hjx6usrCyTupcvX1YvvfSS0uv1CjA+hjgrK0uNGjVKubu7K51OpwICAtTOnTtVYGCgyaOK/8ijh5UqeHzw+++/b4zPzc1Nvf766+r06dMm7c6aNUvNnj1beXt7KysrK9WmTRt16NChQu3997//VX5+fsrS0lI988wzasOGDSoiIkL5+Pg8VFxKKTV79mzl6emprKysVEBAgNq3b1+hcSul1DfffKPq1q2rzM3NTa5BUf0CKjIy8qHiuHXrlnr33XeVh4eHsrCwUP7+/mrWrFkmj2FWSqkTJ06otm3bKp1OpwAVERGhlFIqMjJSAeratWsm5e8+Evn+xzR/+eWXqnXr1srW1lbZ2tqq2rVrq8GDB6uEhARjmcDAQFWvXr1CsR44cEC98cYbqmrVqsrKykq5urqql19+We3bt6/U4z1z5ozq27evql69urK2tlZOTk4qKChIbdy4sdRtCCGEEOXtcZuXbdq0SQFq9erVJscf1FZ8fLx67bXXlLOzs7KyslI+Pj6qW7du6qeffirxOtw1ZswYBagZM2aY1KlRo4YCjPPBe50+fVq9/vrrytHRUVlbW6tmzZqpmJiYUo1Fqd/nP3v37jUey8/PV2+88YYyNzdXa9euLfY6ldTHu+++q8zMzNTu3btNju/bt0+Zm5urd955p1TtC/G00ihVxC7BQghRTpKTk/H19WXWrFklrtIRQgghhBBCCPH4kj2lhBBCCCGEEEIIIUSZkz2lhBB/Wk5ODikpKcWWcXBwKPYxvY9KSkqKyebl9zMzM8PFxeWRx5Gfn2+yEWhR7OzsSvVI5cdJRbn+QgghxNOiIs/LKiK5XkKUL0lKCSH+tB07dphs1lmU6Oho+vTpUzYB3eO1114r9sknPj4+JCcnP/I4zp07V+Jm6JGRkUyaNOmRx1KWKsr1F0IIIZ4WFXleVhHJ9RKifMmeUkKIP+3mzZvs37+/2DL16tXD3d29jCL63f79+7l58+YDz+t0OgICAh55HFlZWWzbtq3YMn5+fmX6NJ2yUFGuvxBCCPG0qMjzsopIrpcQ5UuSUkIIIYQQQgghhBCizMlG50IIIYQQQgghhBCizElSSgghhBBCCCGEEEKUOdnovBgGg4GLFy+i1+vRaDTlHY4QQgghKgClFLdu3cLDwwOtVv6+BzJnEkIIIYSp0s6XJClVjIsXL+Lt7V3eYQghhBCiAjp37hxeXl7lHUaFIHMmIYQQQhSlpPmSJKWKodfrgYKLaG9vX87RCCGEEKIiSE9Px9vb2zhPEDJnEkIIIYSp0s6XJClVjLvLz+3t7WWCJYQQQggTcpva72TOJIQQQoiilDRfko0QhBBCCCGEEEIIIUSZk6SUEEIIIYQQQgghhChzcvueEEKUsfz8fHJzc8s7DCHEA1hYWGBmZlbeYQghhBBCPPEkKSWEEGVEKcXly5dJTU0t71CEECVwdHTEzc1N9o0SQgghhHiEJCklhBBl5G5CytXVFRsbG/nHrhAVkFKKzMxMrl69CoC7u3s5RySEEEII8eSSpJQQQpSB/Px8Y0LK2dm5vMMRQhRDp9MBcPXqVVxdXeVWPiGEEEKIR0Q2OhdCiDJwdw8pGxubco5ECFEad39WZf83IYQQQohHR5JSQghRhuSWPSEeD/KzKoQQQgjx6ElSSgghhBBCCCGEEEKUOUlKCSGEEEIIIYQQQogyJ0kpIYQQxerTpw8ajQaNRoOlpSU1atRgypQp5OXl/al2N2/ejEajITU19a8JtBSSkpLo2bMnHh4eWFtb4+XlRVhYGCdOnDApFxMTQ2BgIHq9HhsbG5577jmWLVtmUiY5ORmNRsPBgwdL3f+kSZOoXbs2tra2VKpUiRdffJHdu3ebtNmvXz98fX3R6XRUr16dyMhIcnJyim330qVL9OzZk5o1a6LVahkxYkSp4tm6dSuhoaF4eHig0WhYu3ZtkeWOHz9O586dcXBwwNbWlueee46zZ88azw8cOJDq1auj0+lwcXEp8pru3buXdu3a4ejoSKVKlQgODubQoUNF9nfq1Cn0ej2Ojo5/2RiEEEIIIUTFI0kpIYQQJQoJCeHSpUucPHmSUaNGMWnSJGbNmlXeYRmVlLSBgg2r27dvT1paGl999RUJCQl88cUXNGjQwCQxtmDBAsLCwggICGD37t0cPnyYHj16MGjQIEaPHv2n4qxZsyYLFy7kyJEjbNu2jWrVqtGhQweuXbsGwIkTJzAYDHzyySccPXqUuXPnsmTJEiZMmFBsu9nZ2bi4uPDBBx/QqFGjUseTkZFBo0aNWLRo0QPLnD59mtatW1O7dm02b97M4cOH+fDDD7G2tjaWadKkCdHR0Rw/fpwNGzaglKJDhw7k5+cDcPv2bUJCQqhatSq7d+9m27Zt6PV6goODC20knpubyxtvvEGbNm3+sjEIIYQQQogKSokHSktLU4BKS0sr71CEEI+5O3fuqGPHjqk7d+6UdygPLSIiQoWFhZkca9++vWrRooVKSUlR4eHhytHRUel0OhUSEqISExON5ZKTk9XLL7+sHB0dlY2Njapbt6767rvvVFJSkgJMXhEREUoppdLT01XPnj2VjY2NcnNzU3PmzFGBgYFq+PDhxnZ9fHzUlClTVHh4uNLr9ca6cXFxqnXr1sra2lp5eXmpoUOHqtu3byullIqPj1eASk5OfuBYz549qywsLNTIkSMLnZs/f74C1K5du5RSyjiG+Pj4h7+ov7n7e2bjxo0PLDNz5kzl6+tb6jbvv1alBaivv/660PHu3burN99886HaOnTokALUqVOnlFJK7d27VwHq7NmzxjKHDx9WgDp58qRJ3ffee0+9+eabKjo6Wjk4OPwlY/gjivuZlflBYXJNhBBCCHGv0s4NZKWUEEKUE6UUmTl5Zf5SSv3p2HU6HTk5OfTp04d9+/axbt06du7ciVKKTp06GVe/DB48mOzsbLZu3cqRI0eYMWMGdnZ2eHt78+WXXwKQkJDApUuXmDdvHgAjR45k+/btrFu3jtjYWOLi4jhw4EChGKKiomjUqBHx8fF8+OGHnD59mpCQELp06cLhw4f54osv2LZtG0OGDAHAxcUFrVbLmjVrjCt47rdmzRpyc3OLXBE1cOBA7OzsWLVq1Z++flCwumvp0qU4ODgUu7opLS0NJyenv6TPh2UwGPjuu++oWbMmwcHBuLq60rx582JvkcvIyCA6OhpfX1+8vb0BqFWrFs7Oznz22Wfk5ORw584dPvvsM+rUqUO1atWMdX/++WdWr14tq56EEEIIIZ4S5uUdgBBCPK3u5OZTd+KGMu/32JRgbCz/2P/+lVL89NNPbNiwgY4dO7J27Vq2b99Oq1atAFixYgXe3t6sXbuWrl27cvbsWbp06UKDBg0A8PPzM7Z1N9Hi6upq3Dvo1q1bLF++nJUrV9KuXTsAoqOj8fDwKBTLCy+8wKhRo4zv+/fvT69evYz7Kfn7+zN//nwCAwNZvHgxnp6ezJ8/n/fee4/JkyfTtGlTgoKC6NWrlzGuxMREHBwccHd3L9SfpaUlfn5+JCYm/qFrd1dMTAw9evQgMzMTd3d3YmNjqVy5cpFlT506xYIFC4iKivpTff5RV69e5fbt2/zjH/9g6tSpzJgxgx9++IHXXnuNTZs2ERgYaCz7z3/+k/fee4+MjAxq1apFbGwslpaWAOj1ejZv3swrr7zC3//+d6Dg89mw4f/Zu++wKK71gePfXWBhgQUBUaoggii22FuiEhVQo+bGWILXFjWSi72XJJYYjUY0tmvJz3bvVWNijBJLItGoqMTYUGMBQYmKWFF62935/bEyukEBFQXlfJ5nnzCzM2feGeIy+857zvkFU1PD/4t3796lf//+/O9//8PGxubln6wgCIIgCILw0olKKUEQBKFI27dvx9raGgsLCzp06EDPnj3p378/pqamNG3aVN7OwcEBX19fzp8/D8Dw4cOZOXMmLVu2ZOrUqZw+fbrQ41y6dIm8vDyaNGkir7O1tcXX17fAto0aNTJaPnXqFGvXrsXa2lp+BQYGotfruXz5MmCo3Lpx4wbr16+nefPmfP/999SqVYuIiIhiX4v8REth1q9fbxRHZGSk/J6/vz/R0dEcPnyYoKAgevTowa1btwq0kZiYSFBQEN27d2fw4MHy+kfbDQkJKVbMkZGRRvutX7++WPvp9XoAunbtyqhRo3jjjTeYOHEi77zzDsuXLzfatnfv3pw8eZL9+/dTvXp1evToQXZ2NgBZWVkMHDiQli1b8vvvv3Po0CFq165Np06dyMrKAmDw4MEEBwfTqlWrEj0HQRAEQRAEoewSlVKCIAilRG1mwrkZgaVy3Kfl7+/PsmXLUKlUuLi4YGpqSnh4eJH7DRo0iMDAQHbs2MHu3buZPXs2YWFhDBs27FlCN2JlZWW0nJ6ezpAhQxg+fHiBbatUqSL/rNFo6Ny5M507d2bmzJkEBgYyc+ZM2rdvj4+PDykpKVy/fr1AdVZubi7x8fEEBhb9O+vSpYtRss7V1dUobm9vb7y9vWnWrBk+Pj6sWrWKSZMmydtcv34df39/WrRowcqVK43afnS2v+JWFDVq1Mhov8qVKxdrv4oVK2Jqaoqfn5/R+po1a3Lw4EGjdba2ttja2uLj40OzZs2ws7Pjxx9/5IMPPmDDhg0kJCQQFRWFUml4HrZhwwbs7OzYtm0bvXr1Yu/evYSHh8tVYZIkodfrMTU1ZeXKlXzwwQfPdA6CIAiCIAhC2SWSUoIgCKVEoVA8cze6ly0/kfKomjVrotVqOXLkiNx97+7du8TExBglMdzd3QkJCSEkJIRJkybxzTffMGzYMLni6NHxnby8vDAzM+Po0aNyIiklJYXY2NgnVtDka9CgAefOnSsQZ2EUCgU1atTg8OHDALz//vtMmDCBsLAwwsLCjLZdvnw5mZmZ9O3bt8h2NRoNGo2mWDHo9XpycnLk5cTERPz9/eUZ7fKTOPme5vzyqdXqZ9pPpVLRuHFjYmJijNbHxsbi4eHxxP0kSUKSJPm8MjMzUSqVKBQKeZv85fxqrKioKKP/F7Zt28acOXM4fPgwrq6uz3wOgiAIgiAIQtn1anwbEgRBEMocHx8funbtyuDBg1mxYgUajYaJEyfi6upK165dARg5ciQdOnSgevXq3Lt3j99++42aNWsC4OHhgUKhYPv27XTs2BG1Wo1Go6Ffv36MGzcOe3t7KlWqxNSpUwskNB5nwoQJNGvWjKFDhzJo0CCsrKw4d+4cERERLFmyhOjoaKZOnUqfPn3w8/NDpVKxf/9+Vq9ezYQJEwBDRdXcuXMZO3YsFhYW9OnTBzMzM7Zt28bkyZOZOXMmtWvXNjru3xM2ALVq1cLMzMxoXUZGBl988QVdunTB2dmZO3fusHTpUhITE+nevTtgSEi1adMGDw8P5s2bx+3bt+X9nZycCj3//Cqi9PR0bt++TXR0NCqVqkCV06PS09OJi4uTly9fvkx0dDT29vZyUnDcuHH07NmTVq1a4e/vz88//8xPP/3Evn37AEOXy02bNhEQEICjoyPXrl3jyy+/RK1W07FjRwDat2/PuHHjCA0NZdiwYej1er788ktMTU3x9/cHkP+/yHfs2DGUSmWB6/0s5yAIgiAIgiCUUS96GsBXmZjeWBCEklLY9PJlXb9+/aSuXbs+9r3k5GSpT58+kq2traRWq6XAwEApNjZWfn/o0KFStWrVJHNzc8nR0VHq06ePdOfOHfn9GTNmSE5OTpJCoZD69esnSZIkpaamSsHBwZKlpaXk5OQkzZ8/X2rSpIk0ceJEeT8PDw9pwYIFBeL5448/pPbt20vW1taSlZWVVLduXemLL76QJEmSbt++LQ0fPlyqXbu2ZG1tLWk0GqlOnTrSvHnzJJ1OZ9TO1q1bpbfeekuysrKSAAmQNm7caLTN5cuX5ff+/rp69WqB2LKysqR//OMfkouLi6RSqSRnZ2epS5cu0h9//CFvs2bNmie2WZTH7ePh4VHoPr/99ttj98v/XeRbtWqV5O3tLVlYWEj16tWTtm7dKr+XmJgodejQQapUqZJkZmYmubm5ScHBwdKFCxeM2ti9e7fUsmVLydbWVrKzs5PefvttKSoq6omxrVmzRrK1tS3yvIt7Dk+rsH+z4v6gIHFNBEEQBEF4VHHvDRSSVAJzg7+mUlNTsbW1JSUlRcwEJAjCc8nOzuby5ctUrVoVCwuL0g7nlZKRkYGrqythYWEMHDjwpR8/OTmZtm3bYmNjw65du7C0tHzpMQgvX2H/ZsX9QUHimgiCIAiC8Kji3huI2fcEQRCEMuXkyZNs3LiR+Ph4Tpw4Qe/evQHkLoEvm729Pb/++itt27YlKiqqVGIQBEEQBEEQhNeRGFNKEARBKHPmzZtHTEwMKpWKhg0bEhkZScWKFUstHgcHBz777LNSO74gCIIgCIIgvI5EUkoQBEEoU+rXr8/x48dLOwxBEARBEARBEF4w0X1PEARBEARBEARBEARBeOlEUkoQBEEQBEEQBEEQBEF46URSShAEQRAEQRAEQRAEQXjpRFJKEARBEARBEARBEARBeOlEUkoQBEEQBEEQBEEQBEF46cTse68ZrTaDtPRzWFv5YGZWobTDEQRBEARBEIQSIekl7pyJJ/FiLJkpuWRlZmGakYCplQqHltXRqTToJB06SYde0iNZW+LmVB0nK6fnPrZWp+fCjTR0eklel63NJluXjV7SU9VRhYmJhE6vk2NQoMDHzue5j13mZaeScD2WW7pH1tm4grkGAHMTJfU0lqUTmyCUU7fSsrl+LwNdbjweDipUJk+uRzK3cMFcVfElRmdMJKVeM6dOD+b+/SOYmzvTssUBFApRDCcIgiAIgiC82s7u38OlLSeIvXEAkIzeMzdvyQqbyY/db2yjsfSr1e+5jz9xyxk2H7/2xPetqs1BqbpntM7ewp79Pfc/97HLsk3X7/DfE79xzOrvybebD17gYaHiSHO/lx6bIJRXSSlZtJ67j/d9vqNtlQPcv1L49j4+n1DFfcDLCe4xRMbiNZKbm8z9+0cAyMlJQpJ0RexROlKy8oyeMgmCULb1798fhUKBQqFApVLh7e3NjBkz0Gq1z9Xuvn37UCgU3L9/v2QCLYbLly8THByMi4sLFhYWuLm50bVrVy5cuGC03fbt22ndujUajQZLS0saN27M2rVrjbZJSEhAoVAQHR1d7ONPmzaNGjVqYGVlhZ2dHe3atePIkSNGbQ4cOJCqVauiVqupVq0aU6dOJTc3t9B2k5KSCA4Opnr16iiVSkaOHFmseJYtW0bdunWxsbHBxsaG5s2bs2vXLvn95ORkhg0bhq+vL2q1mipVqjB8+HBSUlLkbdauXSv///H3161bt+TtcnJymDJlCh4eHpibm+Pp6cnq1auN4vn666/lY7m7uzNq1Ciys7MLPYctW7YQEBCAg4PDU/8+BEF4dZw7sJeryhQMCSkFCmUFFEp7lApbTLW5aHIlbDPBLkNBxTQFlVIUuGGHlZnVMx/z90t3eWPGbrwn7zRKSLlWUKOxzENheg+F6T2UZvdRmZhhaWqJxkxDBfMKOFg4YG9h//wnXobl6vWMib1mlJCqmnPD8DLRUlWtoqpahZuFqhSjFITyJS07m+gzExhR/2tauBjuMU1M7TE3d37iy9TEulRjFpVSrwFJ0pGYuJE7d/f9/Z3SCKdQ26ITGbkpmppONmwf9iZKpaK0QxIEoRiCgoJYs2YNOTk57Ny5k9DQUMzMzJg0aVJphwZAbm4uKlXhN715eXm0b98eX19ftmzZgrOzM9euXWPXrl1GibHFixczcuRIJkyYwLJly1CpVGzbto2QkBD+/PNP5s2b98xxVq9enSVLluDl5UVWVhYLFiwgICCAuLg4HB0duXDhAnq9nhUrVuDt7c2ff/7J4MGDycjIKPS4OTk5ODo68sknn7BgwYJix+Pm5saXX36Jj48PkiSxbt06unbtysmTJ6lVqxbXr1/n+vXrzJs3Dz8/P/766y9CQkK4fv06mzdvBqBnz54EBQUZtdu/f3+ys7OpVKmSvK5Hjx7cvHmTVatW4e3tTVJSEnq9Xn5/w4YNTJw4kdWrV9OiRQtiY2PlhOj8+fOfeA4ZGRm8+eab9OjRg8GDBxf73AVBeLVkpaWTJ6kBUJg4Ym7zT5D0+J2Zyomv63G4yZ8lfsz9sbe5n5knL7vZqfl1dGsszEyY+ftMNsVsYkjdIQytPxToXeLHL+uy9RLaB183Zl5eQfc+i7E1e6NUYxKE8mxfzC1mb93E+MY7qPEgJ65UqmjR7GdUKofSDa4wkvBEKSkpEiClpKSUdiiFunnzZ+nXPV4FXjpddmmHVkDo+uOSx4TtkseE7VJmjra0wxGElyYrK0s6d+6clJWVVdqhPLV+/fpJXbt2NVrXvn17qVmzZlJycrLUp08fqUKFCpJarZaCgoKk2NhYebuEhATpnXfekSpUqCBZWlpKfn5+0o4dO6TLly9LGDLn8qtfv36SJElSamqqFBwcLFlaWkpOTk7S/PnzpdatW0sjRoyQ2/Xw8JBmzJgh9enTR9JoNPK+kZGR0ptvvilZWFhIbm5u0rBhw6T09HRJkiTp5MmTEiAlJCQ88VyvXLkimZmZSaNHjy7w3qJFiyRA+v333yVJkuRzOHny5NNf1Afy/878+uuvT9xm7ty5UtWqVYvd5t+v1dOys7OT/u///u+J73/33XeSSqWS8vLyHvv+rVu3JDMzM+k///mPvG7Xrl2Sra2tdPfu3Se2GxoaKr399ttG60aPHi21bNmyWHGXxO/jUYX9my2J+4N///vfUp06dSSNRiNpNBqpWbNm0s6dO+X34+LipHfffVeqWLGipNFopO7du0s3btwwauPu3btScHCwpNFoJFtbW+nDDz+U0tLSjLY5deqU9Oabb0rm5uaSm5ubNGfOnAKxfPfdd5Kvr69kbm4u1a5dW9qxY8dTn8+rcs8kvLr+3ft9acHwMdK8Hp2ksOCPpG+7fSkt+ed7Us/pftI3p795Icec8dNZyWPCdumTH89ISfezpIycHGnqoanShz9/KLX+trVUe21t6b9n//tCjl3mXfxVujW3llR570mp8t6Tkv7reqUdkSCUe3N/Pi+9O2+W9OseL2n9T82k7b//R0pLu1Bq8RT33qBUuu/Nnj2bxo0bo9FoqFSpEu+++y4xMTFG22RnZxMaGoqDgwPW1tZ069aNmzdvGm1z5coVOnXqhKWlJZUqVWLcuHEFupPs27ePBg0aYG5ujre3d4HuF6+D1LTTAFhb++Hi0kteL5WRQqmsXB3jN5+iz6oj/Hr+ZtE7CEJ5IUmQm/HyXyXw4aBWq8nNzaV///4cO3aM8PBwoqKikCSJjh07kpdneLIcGhpKTk4OBw4c4MyZM8yZMwdra2vc3d354YcfAIiJiSEpKYmFCxcCMHr0aA4dOkR4eDgRERFERkZy4sSJAjHMmzePevXqcfLkST799FPi4+MJCgqiW7dunD59mk2bNnHw4EGGDh0KgKOjI0qlks2bN6PTPb578+bNm8nLy2Ps2LEF3hsyZAjW1tZs3Ljxua8fGKq7Vq5cia2tLfXq1XvidikpKdjbv/guIDqdjm+//ZaMjAyaN29eaDw2NjaYmj6+2Po///kPlpaWvP/++/K68PBwGjVqxNy5c3F1daV69eqMHTuWrKwseZsWLVpw/Phx/vjjDwAuXbrEzp076dixYwmdYdmSX6V2/Phxjh07xttvv03Xrl05e/YsGRkZBAQEoFAo2Lt3L4cOHSI3N5fOnTsbVZf17t2bs2fPEhERwfbt2zlw4AAfffSR/H5qaioBAQF4eHhw/PhxvvrqK6ZNm8bKlSvlbQ4fPswHH3zAwIEDOXnyJO+++y7vvvsuf/5Z8lUngvC08nKyObN3N0fDfyA7Jwu91tCdV6FQYZp1huXtYjnroaSqbdUXcvwcreFvhZ2VCidbC87fO8MPF3/gjxt/cDf7LgCetp4v5NhlXvxesrWGruUWuhwUXm1KNx5BKOckSU9eziVcNdcB8HP3o1PTPlhb+5ZyZEUrle57+/fvJzQ0lMaNG6PVapk8eTIBAQGcO3cOKytDv+9Ro0axY8cOvv/+e2xtbRk6dCjvvfcehw4dAgw3z506dcLJyYnDhw+TlJRE3759MTMzY9asWYBh7JBOnToREhLC+vXr2bNnD4MGDcLZ2ZnAwMDSOPUSdfv2bm7e3MH9lGMAuLr0xMnpXa5f//bBFmUjKxVx/ibfHXvywJCCUG7lZcIsl5d/3MnXQfVsY2xIksSePXv45Zdf6NChA1u3buXQoUO0aNECgPXr1+Pu7s7WrVvp3r07V65coVu3btSpUwcALy8vua38REulSpWoUKECAGlpaaxbt44NGzbQtm1bANasWYOLS8Hr9PbbbzNmzBh5edCgQfTu3VseT8nHx4dFixbRunVrli1bhqurK4sWLWL8+PFMnz6dRo0a4e/vT+/eveW4YmNjsbW1xdnZucDxVCoVXl5exMbGPtO1y7d9+3Z69epFZmYmzs7OREREULHi42c8iYuLY/Hixc/VZbAoZ86coXnz5mRnZ2Ntbc2PP/6In9/jB6S9c+cOn3/+uVHi4+9WrVpFcHAwarVaXnfp0iUOHjyIhYUFP/74I3fu3OFf//oXd+/eZc2aNQAEBwdz584d3nzzTSRJQqvVEhISwuTJjx+8+FXXuXNno+UvvviCZcuW8fvvv5OYmEhCQgInT57ExsYGgHXr1mFnZ8fevXtp164d58+f5+eff+bo0aM0atQIMHQ97dixI/PmzcPFxYX169eTm5vL6tWrUalU1KpVi+joaObPny//DhcuXEhQUBDjxo0D4PPPPyciIoIlS5awfPnyl3hFBKGgs/v3smfVvzHBFL0SuJPw4B0VOoWOac2nUcWmCg0rN3whx8/VGpLA5qaG5/gpOYbx9DxsPAh9IxQHCwcaOzV+Iccu8/IyyVEaus2bqyyg3delG48glGMZOVqi//yUptbfgbdhnZlphVKN6WmUSqXUzz//TP/+/alVqxb16tVj7dq1XLlyhePHjwOGp7CrVq1i/vz5vP322zRs2JA1a9Zw+PBhfv/9dwB2797NuXPn+N///scbb7xBhw4d+Pzzz1m6dKk8IOzy5cupWrUqYWFh1KxZk6FDh/L+++8/1XgbZZVWm8afZ0dw89Z2cnJuAGBj+wZQdsZoOpaQTOfFB5nx0zkAmns5MKdbnVKOShCEZ7F9+3asra2xsLCgQ4cO9OzZk/79+2NqakrTpk3l7RwcHPD19eX8+fMADB8+nJkzZ9KyZUumTp3K6dOnCz3OpUuXyMvLo0mTJvI6W1tbfH0LPuXJ/yKe79SpU6xduxZra2v5FRgYiF6v5/Lly4ChcuvGjRusX7+e5s2b8/3331OrVi0iIiKKfS2KGrsKDMm5R+OIjIyU3/P39yc6OprDhw8TFBREjx49jAYEz5eYmEhQUBDdu3c3Givp0XZDQkKKFXNkZKTRfuvXr5ff8/X1JTo6miNHjvDxxx/Tr18/zp07V6CN1NRUOnXqhJ+fH9OmTXvscaKiojh//jwDBw40Wq/X61EoFKxfv54mTZrQsWNH5s+fz7p16+RqqX379jFr1iz+/e9/c+LECbZs2cKOHTv4/PPPi7ymr7q/V6nl5OSgUCgwNzeXt7GwsECpVHLw4EHAcK0rVKhg9O+gXbt2KJVKefD8qKgoWrVqZfT/bGBgIDExMdy7d0/epl27dkbxBAYGEhUVVWjMOTk5pKamGr0EoaRlptzHwsQKBwtXACSFEoXCAhNVdXRKLe082tHYqTHKFzTbdH5SKn8q9fS8dABcrV3pULUDTZyboFCUnXvvlyov62FSysSklIMRhPJLkiTeWXyQc1cMf/sz8tToFE5UdupcxJ5lR5kY6Dx/Fp/8p+bHjx8nLy/P6CapRo0aVKlShaioKJo1a0ZUVBR16tShcuXK8jaBgYF8/PHHnD17lvr16z/xRqu4sxKVZZmZCej1huSbr+/nWKo9sNHURqvNeGSr0q2U2vjHVc4kPpyh6Z16znSu58KEH86UYlSCUIaYWRqqlkrjuE/J399fHvTbxcUFU1NTwsPDi9xv0KBBBAYGsmPHDnbv3s3s2bMJCwtj2LBhzxK5kfzK2nzp6ekMGTKE4cOHF9i2SpUq8s8ajYbOnTvTuXNnZs6cSWBgIDNnzqR9+/b4+PiQkpLC9evXC1Rn5ebmEh8fX6xK2y5duhgl61xdXY3i9vb2xtvbm2bNmuHj48OqVauMBo2/fv06/v7+tGjRwqirFWA0u1x+FU1RGjVqZLTfo38782dUBGjYsCFHjx5l4cKFrFixQt4mLS2NoKAgNBoNP/74I2ZmZo89zv/93//xxhtv0LChcdWCs7Mzrq6u2Nrayutq1qyJJElcu3YNHx8fPv30U/r06cOgQYMAqFOnDhkZGXz00UdMmTKl0Gv6qnpSlZqjoyNWVlZMmDCBWbNmIUkSEydORKfTkZSUBMCNGzeMBpIHMDU1xd7enhs3bsjbVK1q3K0p/3d/48YN7OzsuHHjhtH/D/nb5LfxJLNnz2b69OnPdf6CUBS9Toe1aQWyMdzz5jh74pzRmCylKzrlbixMLV7o8XN1hqSUpMjjf+f+R1SSIVlrbVa6M1WVCY9WSinFhO6CUFoyc3VcvpOBpW8mALsSRzP9/WAq2rzYz8eSVOpJKb1ez8iRI2nZsiW1a9cGDDdKKpVK7s6R79GbpCfdROW/V9g2qampZGVlGXUtAMNTv5ycHHm5LD71y829Q+zFmSQnG7ox2tjUw801WH7f+GnNy09KZeXq+PrXWK7dy+LI5WQAhrf1IcCvMrVcbMjKe/w4LoJQLikUz9yN7mXLT6Q8qmbNmmi1Wo4cOSJ337t79y4xMTFG3b/c3d0JCQkhJCSESZMm8c033zBs2DC5euPR8Z28vLwwMzPj6NGjciIpJSWF2NhYWrVqVWiMDRo04Ny5cwXiLIxCoaBGjRocPnwYgPfff58JEyYQFhZGWFiY0bbLly8nMzOTvn37FtmuRqNBo9EUKwa9Xm/0tycxMRF/f3+5Slj5t5v9pzm/fGq1utj7/T2e1NRUAgMDMTc3Jzw8HAuLx9/kpKen89133zF79uwC77Vs2ZLvv/+e9PR0rK0NX+ZiY2NRKpW4ubkBkJmZWeBcTR48fZck6amu6asiv0otJSWFzZs3069fP/bv34+fnx/ff/89H3/8MYsWLUKpVPLBBx/QoEGDAteotEyaNInRo0fLy6mpqbi7u5diRMLrSK/TolAoycDw0FVSKJAwfC5oFTpUyqIrV59HfqXU2bvR7L00R17voC7Ds1i9BH+mZfKDujmJbm8AYCFm0xaEUnP7fgy1HM6jURkqOb/q0RJr61cnIQVlICkVGhrKn3/+KZejl6ZX4anfX3+t5ObNn+RlO7sWf9vi4R8FqRRGOt997gYrDlwyWhdUywk/l+I9zRcE4dXh4+ND165dGTx4MCtWrECj0TBx4kRcXV3p2rUrACNHjqRDhw5Ur16de/fu8dtvv1GzZk0APDw8UCgUbN++nY4dO6JWq9FoNPTr149x48Zhb29PpUqVmDp1KkqlssguEhMmTKBZs2YMHTqUQYMGYWVlxblz5+TxcaKjo5k6dSp9+vTBz88PlUrF/v37Wb16NRMmTAAMFVVz585l7NixWFhY0KdPH8zMzNi2bRuTJ09m5syZ8gOUfH+fqAOgVq1aBaqJMjIy+OKLL+jSpQvOzs7cuXOHpUuXkpiYSPfu3QFDQqpNmzZ4eHgwb948bt++Le/v5ORU6PnnV0Klp6dz+/ZtoqOjUalUTxwfCgyJhQ4dOlClShXS0tLYsGED+/bt45dffgEeDpSdmZnJ//73P6NuWo6OjnLSCGDTpk1otVr++c9/FjhOcHAwn3/+OQMGDGD69OncuXOHcePG8eGHH8oPiDp37sz8+fOpX78+TZs2JS4ujk8//ZTOnTsbHefvkpOTuXLlCtevG6oO838fTk5ORV6z0lZYlVpAQADx8fHcuXMHU1NTKlSogJOTkzz+mZOTU4Fun1qtluTkZPm8nZycCkwSk79c1DZFXTtzc3Oj7oWC8CLodToUKJEePGjVpKhBafj6ojfRv/CuczkPklLZekNSzMfOh2bOzfhnzYKfc+VGahKfRMfzu3VzeFAwZm9W6l8pBaHcyczVcvRiNNqbPRn9SIG6qZntk3cqo0r1E2To0KHybDH5T0rBcIOUm5vL/fv3jaqlHr1JcnJykmfoefT9/Pfy//u4Gy0bG5sCVVLwajz1S0s7C4CDfSucXXrgWLHd37YonUqp3y/dZVt0In8mPqwum/1eHTzsLUVCShBeY2vWrGHEiBG888475Obm0qpVK3bu3CknZHQ6HaGhoVy7dg0bGxuCgoLkcf1cXV2ZPn06EydOZMCAAfTt25e1a9cyf/58QkJCeOedd7CxsWH8+PFcvXr1iRU6+erWrcv+/fuZMmUKb731FpIkUa1aNXr27AkYZjvz9PRk+vTpJCQkoFAo5OVRo0bJ7YwaNQovLy/CwsJYuHAhGRmGLyMbN26kV69eBY77uHVXr141+rsGhqqfCxcusG7dOu7cuYODgwONGzcmMjKSWrVqARAREUFcXBxxcXEF9i/qQUP9+vXln48fP86GDRvw8PAgISHhifvcunWLvn37kpSUhK2tLXXr1uWXX36hffv2AJw4cUIen+jvlVaXL1/G09NTXl61ahXvvfdegSpnMIyDFRERwbBhw2jUqBEODg706NGDmTNnytt88sknKBQKPvnkExITE3F0dKRz58588cUXhZ53eHg4AwYMkJfzfx9Tp0594thXZdXfq9QAeRD8vXv3cuvWLbp06QJA8+bNuX//PsePH5e7S+7duxe9Xi93c2zevDlTpkwhLy9P/jcZERGBr68vdnZ28jZ79uwxGtogIiKi0BkYBeFl0et0hvGiHsw6+cbpCOL8GoAaJBN9EXs/nQOxtxm28SSZuQ9n8s7TGT53JYVhRtk3Xd9kdMPRj92/3NgWSrJdH7Cy5r2bEbh7t6Br9bI/u5cgvG7GbT7N9aQIhtaHbK2K+7mVaejTGnNV5aJ3LmMUUimU00iSxLBhw/jxxx/Zt28fPj4+Ru+npKTg6OjIxo0b6datG2B48lmjRg15TKldu3bxzjvvkJSUJI+psHLlSsaNG8etW7cwNzdnwoQJ7Ny5kzNnHo5hFBwcTHJyMj///HORcaampmJraytPf12aYi/O5NatXfKg5o0a/oCt7RsFttPpstm33/DlpnWrU5iavpw+763m/saV5Ex5+ZNONRn0lleB7TJztfh9ZngCf35GEGqVGBhRKB+ys7O5fPkyVatWLTK5IhjLyMjA1dWVsLCwAgNovwzJycm0bdsWGxsbdu3ahaXl04/JJbx6Cvs3WxL3B4+rUpszZ46cFFyzZg01a9bE0dGRqKgoRowYQf/+/Y26lXbo0IGbN2+yfPly8vLyGDBgAI0aNWLDhg2A4X7K19eXgIAAJkyYwJ9//smHH37IggUL5Nn3Dh8+TOvWrfnyyy/p1KkT3377LbNmzeLEiRMFqgILU5bumYTXx6//t5RbB2O5ob+JlJNO4/jrxNSZQq65HdcqLmL2zK0ldqxp4WdZezihwHq1mQmdW//JrsR1DKk7hKH1h5bYMV9JS5vRpOpnXFG7sCP7Zxq2HwWmompSEF62wAUHqGgSwYe1N5CQVhcb10V0b1S2CmqKe29QKpVSoaGhbNiwgW3btqHRaOQxoGxtbVGr1dja2jJw4EBGjx6Nvb09NjY2DBs2jObNm9OsWTMAAgIC8PPzo0+fPsydO5cbN27wySefEBoaKpeTh4SEsGTJEsaPH8+HH37I3r17+e6779ixY0dpnPYzy8q6xtWra+RlS0svbGyeNIvdy6uUkiSJRXviOHs9hav3DAmpwW9VxbOiFf+oX/QAtFIpD8QuCELZdPLkSS5cuECTJk1ISUlhxowZAHKXwJfN3t6eX3/9laVLlxIVFUXbtm1LJQ7h9VJUlVpMTAyTJk0iOTkZT09PpkyZYlTRB4YZCYcOHUrbtm1RKpV069aNRYsWye/b2tqye/duQkNDadiwIRUrVuSzzz6TE1IALVq0YMOGDXzyySdMnjwZHx8ftm7d+lQJKUF4UeRKKclQFaWUJHLNDA80OzT6+xAWzyct21Ah9a821ejb3FNeb6M2Ze4xw+zfZsrHT/JQrmizyTIxfNdSvzVCJKQEoRSkpV+gueNGHC0Mw+Y09fakdq2ylZB6GqWSlFq2bBkAbdq0MVq/Zs0a+vfvD8CCBQvkG6ycnBwCAwP597//LW9rYmLC9u3b+fjjj2nevDlWVlb069dP/vICULVqVXbs2MGoUaNYuHAhbm5u/N///V+xZk4qS7KyrwKgUJjRqNFmLNVVUSgeX2H0MmelvXwngwW/xsrLjhpzJnesWWj/fgViIERBEIo2b948YmJiUKlUNGzYkMjISLkbU2lwcHDgs88+K7XjC6+fVatWFfr+l19+yZdfflnoNvb29nJV1JPUrVuXyMjIQrfp3r27PK6ZIJQl+WNK8aBjx19VAkFhGIKjjq1HiR4rI8eQlHK2tcDJ1rg6Mk9v6L6nMnmxA6u/ErQ5ZCsNiSiLMjLxgiCUF3q9xLqoBCpkTuQtl4e9wczNX70ue48qlaRUcXoMWlhYsHTpUpYuXfrEbTw8PNi5c2eh7bRp04aTJ08+dYxlQXb2dc6eG8P9+4axsypUaIyNpqgnly9+oPOryZmsP3KFy3cMI/y72Fow9G0fmlS1e+EDTgqC8PqrX78+x48fL+0wBEEQhFKm0xpm38u/pU12qINSYYYCCfPaJVe1mp6jJSXLkHiyMi/49ShPZ3hPVEoB2mw5KaU2Eff9gvAy/X75LtN/OsesljewsYKo603o3qw5VaoEl3Zoz0VMlVCGJSVtkRNSwGMGNX+cF999b35ELD+eTJSX61exI7hplRdyLEEQBEEQBKF8yjz7J0oqy5VSpnlZKJW/0GHkeCwdHUrkGJ9vP8eqg5fl5cclpXL1uYColFqYcJND1T8j70FyTlRKCcLLdet+IrUczlPBIg2ARrVH4uvdtJSjen4iKVWGpaX9CYCbW1+cKnfFxqZeqcbz7R9XOJ+UyqG4OwB0qeeCr5OGd4sxfpQgCIIgCIIgPA1tahoqS2fAMKaUqTYbpWUUVfxKJiEFcPDiHflnR405b7hXKLBNfve98lwplabVMftyElQwzPRqa6LA2kRMWCQIL0t6djbqlA8Z3fC+vO5tP58n7/AKEUmpMkiSJHS6DFIfJKUqOQY9dqa9x3sxlVLxt9OZuOWM0boR7Xyo5vhyZvcTBEEQBEEQyhdJklA+MqaUAsC0ZL++5OkNCa/1g5rS3MuBIzd+58vj36GTdPI2f94x3JObmZTTpFROGhlntgM1UUo6Fl2YTb2eSzFTiu57gvAy7DidxJQfDhDW+j4AaTov/DzboFLZl25gJUQkpcoYSZKIju5P8r2DD9Yo0Gj8ir2/8ZhOz5+UupGSzZHLdzlzLQUAJxsLgptWwaeStUhICYIgCIIgCCXuz98iOPTd/8iU8qiqeJiUUkoSkknJfn3R6gxtW5iZoFQqWBq9lFO3Tz1220rqSiV67FdG1FKyf18HTTei1uXw/u29YGNb2lEJQrkRdekOKhPDbPdZWgs07v+jus+rPbj5o0RSqozJzLz0SEIKHB0DMTXVPEULJTvQ+Qff/M7lOxnycj13W4a3fT3KBAVBEARBEISy59yBvaQn3wXgcvqfIBlmxlNIIJmWbJcxrc5QKWX2YNDutFzDWC39a/XHw+bhDH+OakcaOTUq0WO/MlKvkyXPuAd0CgMzi8L3EQShxKRnZWGjMkwyVsGqAm/WfH0SUiCSUmWOVmuoSDJXVaZ5872YmJTOB37CnQyu3suUE1JNPO1xsrXgo1ZepRKPIAiCIAiCUD7odA+7zukfJKRQWGIiqdCXePe9B4OoPxi0O0ubBUCARwB1HOuU6LFeWdpssk0eJKXUttBoQCkHJAjlQ0aOlotxX9K58ho6P8hDPV3ByqtBJKXKGK3OUJZnprJ7xoTU83ffO5qQTPflUfKyxtyU70KaP1NbgiAIgiAIgvA0JL0Oc6UlOfpM1Ca26CrXRJHZCGXKFZQlnZT6W6VUflJKbaou0eO80vKyyFYaZh5Um4gZ9wThZYi/nU6nRZF82mQ7TlYP1zs4tCm1mF4U8alSxui0hsokExPLZ9r/eceU0ukl9py/JS/7VLJm6NvezxRLUUqgd6EgCC9B//79USgUKBQKVCoV3t7ezJgxA61W+1zt7tu3D4VCwf3790sm0GK4fPkywcHBuLi4YGFhgZubG127duXChQtG223fvp3WrVuj0WiwtLSkcePGrF271mibhIQEFAoF0dHRxT7+tGnTqFGjBlZWVtjZ2dGuXTuOHDli1ObAgQOpWrUqarWaatWqMXXqVHJzcwttNykpieDgYKpXr45SqWTkyJHFjinfl19+iUKhKLBvfHw8//jHP3B0dMTGxoYePXpw8+ZNo22++OILWrRogaWlJRUqVHhs+/n/Dz36+vbbb+X3t2zZQvv27eXjNG/enF9++aXIuLds2UJAQAAODg5P/fsQBKFs0uv0eGkMs05rzfTEOCSjUKhQSjoo4Rnf8seUMjUxrpRSm4mkFECWTs8Uy7f4supgANRK8fVREF6GU1fvk52nR6My5AdWnptC7YbH8PGeWMqRlTzxqVLG6HT5SSmrIrYs2tPmfIb89xjVJu9k+f54ACZ3rEHE6NYMaV3tuWPJpxCTdAjCKykoKIikpCQuXrzImDFjmDZtGl999VVphyUrKmkDkJeXR/v27UlJSWHLli3ExMSwadMm6tSpY5QYW7x4MV27dqVly5YcOXKE06dP06tXL0JCQhg7duxzxVm9enWWLFnCmTNnOHjwIJ6engQEBHD79m0ALly4gF6vZ8WKFZw9e5YFCxawfPlyJk+eXGi7OTk5ODo68sknn1CvXr2njuvo0aOsWLGCunXrGq3PyMggICAAhULB3r17OXToELm5uXTu3Bn9gxmrwHD9u3fvzscff1zocdasWUNSUpL8evfdd+X3Dhw4QPv27dm5cyfHjx/H39+fzp07c/LkyULbzMjI4M0332TOnDlPfd6CIJRNkl6PqcIw090NVTLXLe4BoJB0WJiX7EQ7+ZVSI38bSvefupOjywFEpVS+A/fSWGXdhCO2hr8PTubldAZCQXjJFGkL+bTZXKzMDD2p/vtRVyrb2pVyVC+G6L5XRqSmnib61CDy8gyDOj5fUkoBSMUuRcrO03E7LYdfzj588m1hpqRFtYrPEYMgCK8Tc3NznJycAPj444/58ccfCQ8PJyQkhBEjRvDTTz+Rk5ND69atWbRoET4+hgkR/vrrL4YOHcrBgwfJzc3F09OTr776Cj8/P/z9/QGwszP8ge3Xrx9r164lLS2NkJAQtm7dio2NDePHj2fbtm288cYbfP311wB4enoycOBALl68yNatW3nvvfdYu3YtBw8eZNKkSRw7doyKFSvyj3/8g9mzZ2NlZcXZs2eJj49nz549eHgYBq/18PCgZcuW8nlevXqVMWPGMHLkSGbNmiWvHzNmDCqViuHDh9O9e3eaNm36TNcxODjYaHn+/PmsWrWK06dP07ZtW4KCgggKCpLf9/LyIiYmhmXLljFv3rwntuvp6cnChQsBWL169VPFlJ6eTu/evfnmm2+YOXOm0XuHDh0iISGBkydPYmNjA8C6deuws7Nj7969tGvXDoDp06cDFKgm+7sKFSrI/x/9Xf7vNt+sWbPYtm0bP/30E/Xr139im3369AEMVWaCILwe9HqdYVRzQKXVUeOq4ammQtLT0qNViR5L+2BMqbiUGJSZhkHO7S3s0ahev3FbnlraDdIunQSc8clI4CMXW9r71irtqAThtZZ4P4vIC7E46rbw4NYLlcoRM7MKpRrXiyQqpcqIW7d2yQkppVKFU+UuL+W4t9NyaDprD2/N/Q0AGwtTTn7anujPAqjtKqZ6FYQXSZIkMvMyX/qrJGbmVKvV5Obm0r9/f44dO0Z4eDhRUVFIkkTHjh3Jy8sDIDQ0lJycHA4cOMCZM2eYM2cO1tbWuLu788MPPwAQExNDUlKSnFQZPXo0hw4dIjw8nIiICCIjIzlx4kSBGObNm0e9evU4efIkn376KfHx8QQFBdGtWzdOnz7Npk2bOHjwIEOHDgXA0dERpVLJ5s2bjQbRfdTmzZvJy8t7bEXUkCFDsLa2ZuPGjc99/cBQXbRy5UpsbW0LrW5KSUnB3t6+RI75OKGhoXTq1ElOMD0qJycHhUKBubm5vM7CwgKlUsnBgwcLbF+cY1WsWJEmTZqwevXqQv9f1Ov1pKWlvdBzFwShbJL0evnzweOWxNunHyalbDQl99BUq9Ohe5CUQqHn85afs6LdCjZ33oyZUlQE8cMgck/8B4CqWYn0qaAUlVKC8IKN2HiSr3cfByBba068bjpNGm9DoSjZrstliaiUKiMyMy8DUM1rDG5ufZ5zVP0HlVLF6MAXffU+KVmGL49KBbzXwA07K9VzHFsQhOLK0mbRdMOzVdw8jyPBR7A0e7Zx6yRJYs+ePfzyyy906NCBrVu3cujQIVq0aAHA+vXrcXd3Z+vWrXTv3p0rV67QrVs36tQxzGDk5fVwBs/8ZEOlSpXkcYjS0tJYt24dGzZsoG3btoChy5eLi0uBWN5++23GjBkjLw8aNIjevXvLYyL5+PiwaNEiWrduzbJly3B1dWXRokWMHz+e6dOn06hRI/z9/endu7ccV2xsLLa2tjg7Oxc4nkqlwsvLi9jY2Ge6dvm2b99Or169yMzMxNnZmYiICCpWfPyXrLi4OBYvXlxoldTz+Pbbbzlx4gRHjx597PvNmjXDysqKCRMmMGvWLCRJYuLEieh0OpKSkp7qWDNmzODtt9/G0tKS3bt3869//Yv09HSGDx/+2O3nzZtHeno6PXr0eOrzEgTh1abX6bhjauiyopAk8kwNX8bMrHRYt25dYsf5I+m4/LOJ0jDj3rP+fXwtpVwjW214aKKq4ApVxMRHgvCi/ZWcibWZYWw7vcKWjo3ew9z89f5cEpVSZYRWlw6AhYXbc0/z+HCw8ycnpab8eIZGM39lxLeGsToCa1Xm0uxOTOsiSnIFQSho+/btWFtbY2FhQYcOHejZsyf9+/fH1NTUqCubg4MDvr6+nD9/HoDhw4czc+ZMWrZsydSpUzl9+nShx7l06RJ5eXk0adJEXmdra4uvr2+BbRs1amS0fOrUKdauXYu1tbX8CgwMRK/Xc/myIfEfGhrKjRs3WL9+Pc2bN+f777+nVq1aREREFPtaqFRFJ+7Xr19vFEdkZKT8nr+/P9HR0Rw+fJigoCB69OjBrVu3CrSRmJhIUFAQ3bt3Z/DgwfL6R9sNCQkpVsyRkZFG+61fv56rV68yYsQI1q9fj4XF42d7dXR05Pvvv+enn37C2toaW1tb7t+/T4MGDVA+5WC3n376KS1btqR+/fpMmDCB8ePHP3Fcsg0bNjB9+nS+++47KlWqBBR+TQVBeL1Iej05GCbTUEiQpjZ83lg6SpjYPn8l/+U7GXxz4BLfHrkjr/uk2SSRkPo7bQ45D2bds3CtD6biwbUgvEg3b+6iT/Wv+WeN7wGoZOuAm93r/7kkKqXKCJ3OkA191ln3jBmSUtITklJp2XmsP3LFaF2Tqg4lcFxBEJ6G2lTNkeAjRW/4Ao77tPz9/Vm2bBkqlQoXFxdMTU0JDw8vcr9BgwYRGBjIjh072L17N7NnzyYsLIxhw4Y9S+hGrKyMx95LT09nyJAhj628qVKlivyzRqOhc+fOdO7cmZkzZxIYGMjMmTNp3749Pj4+pKSkcP369QLVWbm5ucTHxxMYGFhkbF26dDFK1rm6uhrF7e3tjbe3N82aNcPHx4dVq1YxadIkeZvr16/j7+9PixYtWLlypVHbj84ulz/OU1EaNWpktF/lypXZs2cPt27dokGDBvJ6nU7HgQMHWLJkCTk5OZiYmBAQEEB8fDx37tzB1NRUHhfq0aq3Z9G0aVM+//xzcnJyjLoHfvvttwwaNIjvv//eqEthYddUEITXi16vQ0n+ZApK8swMn/dK85IZfHzc96c49tc9eVmh0POP6p1LpO3Xijab3AdJKZVSzFYkCC+KJEkM3XCStyp8Ti2Hh+M8q9VVCtnr9SGSUmWETmcoUTYxKcGZPv42VkfMjTQ+2/Ynt9Jy5HW/jm6FuakJ7vavfwZWEMoahULxyjyVzU+kPKpmzZpotVqOHDkid9+7e/cuMTEx+Pn5ydu5u7sTEhJCSEgIkyZN4ptvvmHYsGFyxdGj4zt5eXlhZmbG0aNH5URSSkoKsbGxtGpV+OC2DRo04Ny5cwXiLIxCoaBGjRocPnwYgPfff58JEyYQFhZGWFiY0bbLly8nMzOTvn37FtmuRqNBoyle1aterycn5+HncmJiIv7+/jRs2JA1a9YUqEh6mvPLp1arC+zXtm1bzpw5Y7RuwIAB1KhRgwkTJmDyt2nX87sY7t27l1u3btGly/ONfRgdHY2dnZ1RQmrjxo18+OGHfPvtt3Tq1Mlo+6e5poIgvNr0ej3KBwOdJ9vXQqUxfB4oq71VIu3fSTd85vq6aolPP0XdKuaYmYikVAHaHLIfJKXMn7I6VhCE4rt2L4sdZ5II9DdMtrAn8X2GtW9JRYeS+cwr60RSqox4mJR6nln38j3+Scamo1c5cjlZXm5d3RHvSuIGXxCEZ+Pj40PXrl0ZPHgwK1asQKPRMHHiRFxdXenatSsAI0eOpEOHDlSvXp179+7x22+/UbNmTcAw851CoWD79u107NgRtVqNRqOhX79+jBs3Dnt7eypVqsTUqVNRKpWPdE1+vAkTJtCsWTOGDh3KoEGDsLKy4ty5c0RERLBkyRKio6OZOnUqffr0wc/PD5VKxf79+1m9ejUTJkwADBVVc+fOZezYsVhYWNCnTx/MzMzYtm0bkydPZubMmdSuXdvouDExMQViqVWrFmZmxoPBZmRk8MUXX9ClSxecnZ25c+cOS5cuJTExke7duwOGhFSbNm3w8PBg3rx53L59W97/SbPW5cuvhEpPT+f27dtER0ejUqmMEoSP0mg0Bc7FysoKBwcHo/Vr1qyhZs2aODo6EhUVxYgRIxg1apRRl8orV66QnJzMlStX0Ol0cize3t5YW1vz008/cfPmTZo1a4aFhQURERHMmjXLaED5DRs20K9fPxYuXEjTpk25ceMGYEio2RbSXSf/uNevXwce/j6cnJyKvGaCIJRNulwtJqr8AcgNyRBTlQme9Urm33SeztC2f70Mrl/+Hm/3DiXS7uskLjObW1bVSbAwVKWKSilBeHHup9+imu0l1KaG3lPj/zGKCtbl5x5GJKXKiJKtlDIeU+qTrWc4FHeXW6nZAHSq40zf5h7UdatQAscSBKE8W7NmDSNGjOCdd94hNzeXVq1asXPnTjkho9PpCA0N5dq1a9jY2BAUFMSCBQsAQ/er6dOnM3HiRAYMGEDfvn1Zu3Yt8+fPJyQkhHfeeQcbGxvGjx/P1atXnzjuUb66deuyf/9+pkyZwltvvYUkSVSrVo2ePXsC4ObmhqenJ9OnTychIQGFQiEvjxo1Sm5n1KhReHl5ERYWxsKFC8nIyAAMVTy9evUqcNzHrbt69Spubm5G60xMTLhw4QLr1q3jzp07ODg40LhxYyIjI6lVyzCeX0REBHFxccTFxRXYv6hZE+vXry//fPz4cTZs2ICHhwcJCQmF7leUmJgYJk2aRHJyMp6enkyZMsXoegF89tlnrFu3rkAsv/32G23atMHMzIylS5cyatQoJEnC29ub+fPnG42VtXLlSrRaLaGhoYSGhsrr+/Xrx9q1a58YX3h4OAMGDJCX838fU6dOZdq0ac9z6oIglBK9Xof0SPc96/sH6PfttBJrP1dnaFtHLgDmJuaFbV7unEjJoOOJi1Dva3mdWlRKCcILodNlcuvSu0xumiavs7EsX0PrKKSSmBv8NZWamoqtrS0pKSnFHrfjWUiSxL79fuj1ubRofgC1+vnGyfhtX030+lxatogkQ+tAw5m/Gr2/fdib1HZ9/kEin0V2no4an/4MwJ/TA7E2F3lRoXzIzs7m8uXLVK1atcjkimAsIyMDV1dXwsLCGDhw4Es/fnJyMm3btsXGxoZdu3ZhaflqdLkUnk9h/2Zf1v3Bq0RcE6EkLe7XE3NLd9KSL6BU+WGfZ06/bz8vsfbrTd9NSlYeAzsm8t3lxfT07cknzT4psfZfabo8Nv35ByOSrbDUZeKafQtN5RrMq+mBn3UJDjMiCAIb/7jCL6eO0KfaRPSSgtQ8R+pW64yPz+TSDq1EFPfeQGQEygCdLhO93vCkxsysQgm0aKiUmrzlNPHJ1gA4WKlY3qchlTTmeDiURBdBQRCEF+PkyZNcuHCBJk2akJKSwowZMwDkLoEvm729Pb/++itLly4lKiqKtm3blkocgiAI5cGthEvk5mSSlxsPgAIFhc0o/SxytIaZ/RJS4wBQmYhZ5WSR88mJOQPVx9L63nHWnP0UPrsLSpOi9xUE4aks3nMRNTehGtzNsudo5nK6+dQr7bBeOpGUKkU3bmxDp8siN9cwZohCoSqh2fcM9sfe4m62YQDhOm62NPa0L7G2BUEQXqR58+YRExODSqWiYcOGREZGygNtlwYHBwc+++yzUju+IAhCeRF3NAokCUnKA0BhYo+kvV9i7WfmZZKt1QIm/H7jEEqzZ5uV9rV17zLZSkN3RgtzK3h7ikhICcILkJ19neo2B6ikTgTA0bYiMwNqF7HX60kkpUrRufMTkaRcednc3LHIgXyLsvJAPO55elQP/na08XWkZyN3mlcrX/1SBUF4ddWvX5/jx4+XdhiCIAhCKdA/mJH1voMptjpvTGgEObtLrP1raYkgGW6UGzvVx95aRddqpVOJWyZps8lWGh6SW1RvBzXKx5T0gvAyaXV6Tp4KoU/Ns/I6e00l1KrymQAWSalSVNGhNRISSqU5JiZqKld657nb/E/UX0xuYEhsmSrhs3f88HK0fu52BUEQBEEQBOFFiv39IJdOHAXgmk0y5unWqLUKTEpg4rf03HTmHp3LxXuXAcOECIvaLcDGwqzwHcubvGyyTOwAsBCDmwtCiTuflEqP5VHManEJSzM4n+zDW9U9qeL+YWmHVmpEUqoU1a27vETaycjRMv2ns9xOyyEpJZv8oeu3/KsFrhVFQkoQBEEQBEEo2yS9nl1L5qPNM/QikBQSZnpDUsSxBGbHO3j9IFtit6PPqSSvU5mIpEsB2myylYYxtiyUJZANFATByO+X7pKek4ulWRYAZzPHMrRuu1KOqnSJpNRr4NfzN/nu2DV5Ob8LoJ2lePIjCIIgCIIglH16vU5OSAHoFWAmGZJGZibP36UlPSebjPixSNqHM1CbiaSUkV/upDDaZSwpCsOMo6JSShBKVl5eClZZ8xhW/6q8bknvVqUYUdkgklKvsMNxdzh59T5HLicD0KSqPd0bumGRboKkh5KeqUQQBEEQBEEQXoT8saTySQoJ5YOkVEnkRu5lauWElK3ajAC/ypiISiAjO27f566JoZeFAok3bEpuAiZBKO8u3Ehl15FvqKv5GQdHwzpzc2dMxOyfIin1qkrOyKXv6j/Q6h8mnlpWq0j3Ru7s269EV8i+giAIgiAIglCWSHo9AEpM0aNFUoBCUoICSiJ3lJOXB6gxMdFyamqn52/wdRMxlewcb7Cqw+iEtXz45ntUrGhb9H6CIBTLsn3x5KVcpa4GYu954eL0D5q9EVjaYZUJIin1iknNzuPnMzeIuZkmJ6Q+aFIFjYUp/2z299kxRKWUIAiCIAiCUPbp9XpcLaujUppzOf0MeoWEAkO3vZKolMrVGh7ZmijF/XEBKdfg0Nfk1PoCrMAl5zYV7V1LOypBeK0kZ+RS2dQwjpSHUyPaNh2CuWn5nG3v70RS6hWzICKWNYcS5OWW3g7Mfq+O0Tb5Y0qVdZIkbgoEQRAEQRAEQ6WUnXll0vPuAVD7LwmNXkGmNShKICmV86B7oFIh7j8LyM0AINvU0F3PotUYcKhWmhEJwmvlcsJS3nVZj0qZAkBNFxeRkHqEGL3uFXEsIZkNR65wKO4OAKZKBd0auDE+sMYT9ymLSZ9XJF8mCMIj+vfvj0KhQKFQoFKp8Pb2ZsaMGWi12udqd9++fSgUCu7fv18ygRbD5cuXCQ4OxsXFBQsLC9zc3OjatSsXLlww2m779u20bt0ajUaDpaUljRs3Zu3atUbbJCQkoFAoiI6OLvbxp02bRo0aNbCyssLOzo527dpx5MgRozYHDhxI1apVUavVVKtWjalTp5Kbm1tIq5CUlERwcDDVq1dHqVQycuTIYseUmJjIP//5TxwcHFCr1dSpU4djx47J7z/6+89/BQUFGbXh6elZYJsvv/xSfj8mJgZ/f38qV66MhYUFXl5efPLJJ+Tl5Rm1c//+fUJDQ3F2dsbc3Jzq1auzc+fOQuPfsmULAQEBODg4PPXvQxCEskOv06FAgWQYGJV6l/RYZT0YU8rs+b+85Tz4myXG7n6MPEP1hpyUquhVmtEIwmvjXkYuk7ac5kLcCiqY38TSLBsAa+uapRxZ2SIqpV4Bt1Kz6bnyd3SPjB+1aUgzGnrYP2EPkfkRBKFkBQUFsWbNGnJycti5cyehoaGYmZkxadKk0g4NgNzcXFSqwgeKzMvLo3379vj6+rJlyxacnZ25du0au3btMkqMLV68mJEjRzJhwgSWLVuGSqVi27ZthISE8OeffzJv3rxnjrN69eosWbIELy8vsrKyWLBgAQEBAcTFxeHo6MiFCxfQ6/WsWLECb29v/vzzTwYPHkxGRkahx83JycHR0ZFPPvmEBQsWFDuee/fu0bJlS/z9/dm1axeOjo5cvHgROzs7o+3yf//5zM0LTs8+Y8YMBg8eLC9rNBr5ZzMzM/r27UuDBg2oUKECp06dYvDgwej1embNmgUYfoft27enUqVKbN68GVdXV/766y8qVKhQ6DlkZGTw5ptv0qNHD6PjC4LwapH0epQo0ZM/thRkWBoySJp6z58kydMZ2hXd9x5Da/iinKU0fLabiwHgBaFEbD99nU1HE2jX3lCN+PWJEBb+syOOjrVKObKyRSSlyrA8nZ6fTl3n9LUUdHoJjYUpzb0cqFrRivrudoXsmf+HRPzRFQShZJibm+Pk5ATAxx9/zI8//kh4eDghISGMGDGCn376iZycHFq3bs2iRYvw8fEB4K+//mLo0KEcPHiQ3NxcPD09+eqrr/Dz88Pf3x9AToD069ePtWvXkpaWRkhICFu3bsXGxobx48ezbds23njjDb7++mvAUJkzcOBALl68yNatW3nvvfdYu3YtBw8eZNKkSRw7doyKFSvyj3/8g9mzZ2NlZcXZs2eJj49nz549eHh4AODh4UHLli3l87x69Spjxoxh5MiRcrIEYMyYMahUKoYPH0737t1p2rTpM13H4OBgo+X58+ezatUqTp8+Tdu2bQkKCjKqQvLy8iImJoZly5YVmpTy9PRk4cKFAKxevbrY8cyZMwd3d3ejhFPVqlULbPfo7/9JNBrNE7fx8vLCy+vhl0oPDw/27dtHZGSkvG716tUkJydz+PBhzMzM5PMqSp8+fQBDlZkgCK8uvV6PQqHkriIVgDRrd9I1dij1YFap8M+f4sjRGSqlTESlVAE/3Ndx2utfXFMZpgRTi4skCCUiO+MYbd1/l5cnvdsXL6fKpRhR2SQ+ccqwnWeSGP3dKdYeTgCgsac9K/s2YlLHmigLfYIhklKC8CqQJAl9ZuZLf5VE1161Wk1ubi79+/fn2LFjhIeHExUVhSRJdOzYUe6WFRoaSk5ODgcOHODMmTPMmTMHa2tr3N3d+eGHHwBD166kpCQ5qTJ69GgOHTpEeHg4ERERREZGcuLEiQIxzJs3j3r16nHy5Ek+/fRT4uPjCQoKolu3bpw+fZpNmzZx8OBBhg4dCoCjoyNKpZLNmzej0z1+jtLNmzeTl5fH2LFjC7w3ZMgQrK2t2bhx43NfPzBUBq1cuRJbW1vq1av3xO1SUlKwt39SZezzCQ8Pp1GjRnTv3p1KlSpRv359vvnmmwLb7du3j0qVKuHr68vHH3/M3bt3C2zz5Zdf4uDgQP369fnqq68K7d4ZFxfHzz//TOvWrY1iad68OaGhoVSuXJnatWsza9asJ/6uBEF4veTPvpeKoaIgybklSr07ACbOfs/dfq42v1LquZt6rdzOzSP0rhUr3HuSbGoNgL2ZqFsQhOeVnX2dqoqJ9KrxIwBmZna08BYJqccRnzhl2KXbhj/KXo6GyqgBLT2fan9JJKUEoUyTsrKIadDwpR/X98RxFJaWz7SvJEns2bOHX375hQ4dOrB161YOHTpEixYtAFi/fj3u7u5s3bqV7t27c+XKFbp160adOoYJGR6tlslPtFSqVEnuopWWlsa6devYsGEDbdu2BWDNmjW4uLgUiOXtt99mzJgx8vKgQYPo3bu3PJ6Sj48PixYtonXr1ixbtgxXV1cWLVrE+PHjmT59Oo0aNcLf35/evXvLccXGxmJra4uzs3OB46lUKry8vIiNjX2ma5dv+/bt9OrVi8zMTJydnYmIiKBixYqP3TYuLo7Fixc/V5fBwly6dIlly5YxevRoJk+ezNGjRxk+fDgqlYp+/foBhq577733HlWrViU+Pp7JkyfToUMHoqKiMDExjPMyfPhwGjRogL29PYcPH2bSpEkkJSUxf/58o+O1aNGCEydOkJOTw0cffcSMGTOMYtm7dy+9e/dm586dxMXF8a9//Yu8vDymTp36Qs5fEISyQ6/XgUKJQn5wokCnvk7NuvWpUtvhmdu9lHKJA1cPcOleAuApklKP0utIvhoNmKHWZTMw7XeqNu1DTSuL0o5MEF5paw9d5vjF/bxbRSJba47WtBFNfd4v7bDKLPGxXMZk5moJWLCfqpN2sHDPRQDefcOVsB71qO1qW6w25Nn3yuBA54IgvJq2b9+OtbU1FhYWdOjQgZ49e9K/f39MTU2NurI5ODjg6+vL+fPnAUOyYubMmbRs2ZKpU6dy+vTpQo9z6dIl8vLyaNKkibzO1tYWX1/fAts2atTIaPnUqVOsXbsWa2tr+RUYGIher+fy5cuAoXLrxo0brF+/nubNm/P9999Tq1YtIiIiin0tihq7CgzJuUfjeLSbmr+/P9HR0Rw+fJigoCB69OjBrVu3CrSRmJhIUFAQ3bt3Nxor6dF2Q0JCihVzZGSk0X7r168HDN1lGjRowKxZs6hfvz4fffQRgwcPZvny5fK+vXr1okuXLtSpU4d3332X7du3c/ToUfbt2ydvM3r0aNq0aUPdunUJCQkhLCyMxYsXk5OTYxTHpk2bOHHiBBs2bGDHjh1GyTa9Xk+lSpVYuXIlDRs2pGfPnkyZMkWOpbBrKgjCq89QKaVA8eChqgIl+qr7aD+gFuaWZs/c7sQDEwk7Hkb8/QQAzERW6qF9X5L9478AsM9L4ZP0/fR2cXhlZvIWhLLqq19i+OuO4d7uRkYlLCrPxcmpSylHVXaJSqky5sy1FGJvpsvLKhMlzbye9umQ+EMiCK8ChVqN74njpXLcp+Xv7y8P+u3i4oKpqSnh4eFF7jdo0CACAwPZsWMHu3fvZvbs2YSFhTFs2LBnCd2IlZWV0XJ6ejpDhgxh+PDhBbatUqWK/LNGo6Fz58507tyZmTNnEhgYyMyZM2nfvj0+Pj6kpKRw/fr1AtVZubm5xMfHExgYWGRsXbp0MUrWubq6GsXt7e2Nt7c3zZo1w8fHh1WrVhkNGn/9+nX8/f1p0aIFK1euNGr70dnlbGxsiowFDAm8R/erXNlQPu7s7Iyfn3G3mJo1a8pdKx/Hy8uLihUrEhcXJ1ez/V3Tpk3RarUkJCQYJRTd3Q1dcfz8/NDpdHz00UeMGTMGExMTnJ2dMTMzk6uv8mO5ceMGubm5hV5TQRBefXqtFr2kgwfd+EAJJTDrXnJ2MnqtNd6aRpwBKlq+mO7Qr6Q7sWSZGKqiLBRAo4GlG48gvAZSM27gY3uS6naXAKhW2YlWNUW3vcKIpFQZcfZ6CoPWHSMpxTD7RdOq9iwJboClygQr82f9NYlKKUEoyxQKxTN3o3vZ8hMpj6pZsyZarZYjR47I3ffu3r1LTEyMUaLD3d2dkJAQQkJCmDRpEt988w3Dhg2TK44eHTPIy8sLMzMzjh49KieSUlJSiI2NpVWrVoXG2KBBA86dO1cgzsIoFApq1KjB4cOHAXj//feZMGECYWFhhIWFGW27fPlyMjMz6du3b5HtajQao9nnCqPX640qihITE/H396dhw4asWbMG5d/mL3+a88unVqsfu1/Lli2JiYkxWhcbGysPBP84165d4+7du4/t4pgvOjoapVJJpUqVnriNXq8nLy8PvV6PiYkJLVu2ZMOGDej1evmcY2NjcXZ2RqVSoVKpin1NBUF4tUiSxK5/L+BWcvzDbhwKBUrTEkhK3axFxrUAzjxYVps9e9XVa0ebTbbS8LdY7eAJNQtWJQuCUHx/3c0g9swHDKt/RV7noKlYxHjQgkhKlRF7z9+SE1IKBbxTzwVHTcEpt4tH/E8vCMKL5+PjQ9euXRk8eDArVqxAo9EwceJEXF1d6dq1KwAjR46kQ4cOVK9enXv37vHbb79Rs2ZNwDADm0KhYPv27XTs2BG1Wo1Go6Ffv36MGzcOe3t7KlWqxNSpU1EqlUV2J5gwYQLNmjVj6NChDBo0CCsrK86dO0dERARLliwhOjqaqVOn0qdPH/z8/FCpVOzfv5/Vq1czYcIEwFBRNXfuXMaOHYuFhQV9+vTBzMyMbdu2MXnyZGbOnEnt2rWNjvv3pA5ArVq15Bnk8mVkZPDFF1/QpUsXnJ2duXPnDkuXLiUxMZHu3bsDhoRUmzZt8PDwYN68edy+fVvev6jZ7/IrodLT07l9+zbR0dGoVKoClVCPGjVqFC1atGDWrFn06NGDP/74g5UrV8rVWenp6UyfPp1u3brh5OREfHw848ePx9vbW64Yi4qK4siRI/j7+6PRaIiKimLUqFH885//lGdWXL9+PWZmZtSpUwdzc3OOHTvGpEmT6Nmzp3ydPv74Y5YsWcKIESMYNmwYFy9eZNasWY+tfHtUcnIyV65c4fr168DD34eTk1OR10wQhLJBr9Ny63L8wxUKSxQmzmB24bnbzsowfA6YKEFtZkqnOk9OqJc7eVlkKR9USokvzYLwXG6kZNM27DeWtb0KCriS5kFddyfc3Ip+mFneiaRUKbubnsPpxBROXbsPQL/mHoxu74vtc/Sdz1fWBzov29EJglAca9asYcSIEbzzzjvk5ubSqlUrdu7cKScadDodoaGhXLt2DRsbG4KCgliwYAFg6H41ffp0Jk6cyIABA+jbty9r165l/vz5hISE8M4772BjY8P48eO5evUqFhaFD7xat25d9u/fz5QpU3jrrbeQJIlq1arRs2dPANzc3PD09GT69OkkJCSgUCjk5VGjRsntjBo1Ci8vL8LCwli4cCEZGYZJJzZu3EivXr0KHPdx665evYqbm5vROhMTEy5cuMC6deu4c+cODg4ONG7cmMjISGrVqgVAREQEcXFxxMXFFdi/qFkT69evL/98/PhxNmzYgIeHBwkJCU/cp3Hjxvz4449MmjSJGTNmULVqVb7++mt69+4tx3z69GnWrVvH/fv3cXFxISAggM8//xxzc8ODE3Nzc7799lumTZtGTk4OVatWZdSoUYwePVo+jqmpKXPmzCE2NhZJkvDw8GDo0KFG193d3Z1ffvmFUaNGUbduXVxdXRkxYoScMHyS8PBwBgwYIC/n/z6mTp3KtGnTCt1XEISyQS932YPNbe7QO/oLFAoFtlbPPsD5w7YNtVdD27kw6u36RWxdftzKyWNkxWDiHQ0VqGox1pYgPJdLt9MxV2aiVBju1yT75TRsUL2Uo3o1KKSSmBv8NZWamoqtrS0pKSnFHrfjaZxPSqXjokij8cg/71qLPs09n6vdyINNyc29Q5PG29Foaj5fkCUsV6un+ie7ADg9LQAbC1FCLZQP2dnZXL58mapVqxaZXBGMZWRk4OrqSlhYGAMHvvzxLpKTk2nbti02Njbs2rULy1eky6XwfAr7N/ui7w9eReKaCM8jNyuTxf17APDd23foe3IWAH0+tsem3hvP1bbPF1+Rl+bH+I5V+FerOs8b6mtjw/W7jI65Ki/3cXHgK1/3UoxIEF5dubl32XfsS079FUeDyqcxMbGkTeszRe/4mivuvYFIiZeiDgsfJqTqudnSobYTHUqkpFiU3wqC8Oo6efIkGzduJD4+nhMnTshVO/ldAl82e3t7fv31V9q2bUtUVFSpxCAIgvA60+v0jyw9+Hoi6VGZP99DHEmS5EoptanoICLLSSPzdiwAze5Hs8kpi8+9xeQRgvAszl1PZc2v/8YkewsNKhtmmbawEP+enob4dC5F7vZqcrV6ejZyZ3RASQ4smJ+UEkVwgiC8mubNm0dMTAwqlYqGDRsSGRlJxYoVSy0eBwcHPvvss1I7viAIwutMr3844YXiQVJKIUkoTJ5voHOtXguSoQ0LMcD5Q/99jxy8oNrHuGffoLVNXcOgW4IgPLWw3THY6a7iXRUuJHtjatmKfzbtWdphvVJEUqoURY5/+4W0qxBJKUEQXmH169fn+PHjpR2GIAiC8BKcO7CX37dsAkCPhELxICmFHkye76tKnj4PJEMbYta9R9yNI9fR8EDc3NYZnOqWckCC8Oq6k56Dm00mAJUrtqR1w7FYWT3rhGXlk0hKvcbK+kDngiAIgiAIQvkWvXsH95ISAZCUoJAedt9TPGf1Tp4+D0mulBJfe2TaHHKVhiSduXfb507+CUJ5FRc/j2CvH7EyvQdAU29PHDUiIfW0xCfQ6yh/2nQxhr0gCIIgCIJQhul1D7vu6RUSSim/+96zV0pJkkTMvRgSUhPkSikLU1EpJdNmk61UAaBSirFoBeFp3cvIZfWhOOqZLKeixcPv3NZWJTkkT/khOg8LgiAIgiAIglAq9DodphgSRpICVA9yVApJj8L02caU+j3pd94P78GYiC+R9A+SL6biaw8AOi1IOnIVhutirhTXRRCe1qZjV1kTeQaFwpCQ+urYMGrU2Y6dXdNSjuzVJD6FXktiTClBEARBEASh7JP0et6s3A0AdY7EnFWG9QpJD8+YMLmadpXsa33IiB+HlGeYJMNcJKUA0OVlkaswJdvE0MXIXFRKCcJTy82IpG2V/QDoJCtGduyFq2PNUo7q1SW67wmCIAiCIAiCUDr0YGFqCYCJHnkYCoWJElN7+2dqMk+fhy7bMCW7pcqEao7W1HS2KZFwX2Vn0jLpdvISqa32yOtUolJKEJ5KWvoFall8Tq1qhmWNVSWa13Yq3aBecSIp9RrKn32vrA90Loa8EgRBEARBKOf0EvoHXWAUSFy3N3TZM7O3Q2H6bF9VtHotSBYA/Pivlvg6aUom1lfc7/czSNU9vAFXKxU0trEsxYgE4dUSuuEEN2/9ysd1IS3XCjPLptTz6V3aYb3yRGr8dVSGBzpXiAphQRAEQRAE4QFJJyGhB0AhSWgfdLNTmDz7TeOjs+6ZPUc7r5VTm8j87UsAut3cTcwfPTj/Zh2aVLAu5cAE4dWQnadjx+kkzBQZAFxNc8fLJ4yKDm1KN7DXgEhKvZbEH19BEEpO//79USgUKBQKVCoV3t7ezJgxA61W+1zt7tu3D4VCwf3790sm0GK4fPkywcHBuLi4YGFhgZubG127duXChQtG223fvp3WrVuj0WiwtLSkcePGrF271mibhIQEFAoF0dHRxT7+tGnTqFGjBlZWVtjZ2dGuXTuOHDli1ObAgQOpWrUqarWaatWqMXXqVHJzcwttNykpieDgYKpXr45SqWTkyJHFiken0/Hpp58aHe/zzz9HeuShxpYtWwgICMDBweGJ5xsfH88//vEPHB0dsbGxoUePHty8efOpz+v06dO89dZbWFhY4O7uzty5c4s8hwMHDtC5c2dcXFxQKBRs3bq1WOcuCELZIOlBkvKTUqB/0J1M+RxjHeXp80BOSomvOwCc20aW3vDZbqtNx9apBhbi2ghCsd1JuUo9xzP42F0GoGV1T9EtuISIT6LXkhjoXBCEkhUUFERSUhIXL15kzJgxTJs2ja+++qq0w5IVlbQByMvLo3379qSkpLBlyxZiYmLYtGkTderUMUqMLV68mK5du9KyZUuOHDnC6dOn6dWrFyEhIYwdO/a54qxevTpLlizhzJkzHDx4EE9PTwICArh9+zYAFy5cQK/Xs2LFCs6ePcuCBQtYvnw5kydPLrTdnJwcHB0d+eSTT6hXr16x45kzZw7Lli1jyZIlnD9/njlz5jB37lwWL14sb5ORkcGbb77JnDlzHttGRkYGAQEBKBQK9u7dy6FDh8jNzaVz587o9fpin1dqaioBAQF4eHhw/PhxvvrqK6ZNm8bKlSsLPYeMjAzq1avH0qVLi33egiCUHZL+YaWUpDQj18IDAMVzlNfn6URSqoC8TDJNDF0aLet/AH22lm48gvAKycrNI/ZsD4bX/4bWbocAUJtXKN2gXiNiTKnXmkhKCYJQMszNzXFyMgzi+PHHH/Pjjz8SHh5OSEgII0aM4KeffiInJ4fWrVuzaNEifHx8APjrr78YOnQoBw8eJDc3F09PT7766iv8/Pzw9/cHwM7ODoB+/fqxdu1a0tLSCAkJYevWrdjY2DB+/Hi2bdvGG2+8wddffw2Ap6cnAwcO5OLFi2zdupX33nuPtWvXcvDgQSZNmsSxY8eoWLEi//jHP5g9ezZWVlacPXuW+Ph49uzZg4eH4UuPh4cHLVu2lM/z6tWrjBkzhpEjRzJr1ix5/ZgxY1CpVAwfPpzu3bvTtOmzTfkbHBxstDx//nxWrVrF6dOnadu2LUFBQQQFBcnve3l5ERMTw7Jly5g3b94T2/X09GThwoUArF69utjxHD58mK5du9KpUye5nY0bN/LHH3/I2/Tp0wcwVDs9zqFDh0hISODkyZPY2BieGK5btw47Ozv27t1Lu3btinVe69evJzc3l9WrV6NSqahVqxbR0dHMnz+fjz766Inn0KFDBzp06FDscxYEoYzRS+gfVGfmmNtz37Y7AMrn6b6n0wKGpJSp6L5nkJdFloUhKaW2tHvmmQ0Fobz59dxNxm46SFjruwBcS/eijntlXF16lXJkrw/xafQaelUGOheE8k6SJPJydC/9JZXAeHNqtZrc3Fz69+/PsWPHCA8PJyoqCkmS6NixI3l5eQCEhoaSk5PDgQMHOHPmDHPmzMHa2hp3d3d++OEHAGJiYkhKSpKTKqNHj+bQoUOEh4cTERFBZGQkJ06cKBDDvHnzqFevHidPnuTTTz8lPj6eoKAgunXrxunTp9m0aRMHDx5k6NChADg6OqJUKtm8eTM6ne6x57V582by8vIeWxE1ZMgQrK2t2bhx43NfPzBUd61cuRJbW9tCq5tSUlKwf8YZqIrSokUL9uzZQ2xsLACnTp3i4MGDT5XkycnJQaFQYG5uLq+zsLBAqVRy8ODBJ+739/OKioqiVatWqFQqeV1gYCAxMTHcu3fvaU5LEIRXxK2ES6Sl3eLQnfAHaxQotclgkU29tu7P3G6O7mH3clEpBQlZOQS6/IsfKrcDwFJcE0EotkPxdzBTpgGQrVVxRbmQBvX/h41NnVKO7PUhKqVeR+KBkCC8ErS5elaO2P/Sj/vRwtaYmZs8076SJLFnzx5++eUXOnTowNatWzl06BAtWrQADNUu7u7ubN26le7du3PlyhW6detGnTqGP9xeXl5yW/kJiUqVKlGhQgUA0tLSWLduHRs2bKBt27YArFmzBhcXlwKxvP3224wZM0ZeHjRoEL1795bHU/Lx8WHRokW0bt2aZcuW4erqyqJFixg/fjzTp0+nUaNG+Pv707t3bzmu2NhYbG1tcXZ2LnA8lUqFl5eXnMB5Vtu3b6dXr15kZmbi7OxMREQEFStWfOy2cXFxLF68uNAqqecxceJEUlNTqVGjBiYmJuh0Or744gt69y7+TDLNmjXDysqKCRMmMGvWLCRJYuLEieh0OpKSkh67z+PO68aNG1StWtVou8qVK8vv5VfUCYLw+og5fACtLg8wPMhQmNiiSf4On8FjqNXU9ZnbzdE+mpQSN8a/3k3l1INukQC+VhalGI0gvDqyshKpYrKQf9ZMBMDWyoFPA/xKOarXj0iTv5bK7ux7giC8mrZv3461tTUWFhZ06NCBnj170r9/f0xNTY26sjk4OODr68v58+cBGD58ODNnzqRly5ZMnTqV06dPF3qcS5cukZeXR5MmTeR1tra2+Pr6Fti2UaNGRsunTp1i7dq1WFtby6/AwED0ej2XLxsGpQwNDeXGjRusX7+e5s2b8/3331OrVi0iIiKKfS0ereR5kvXr1xvFERkZKb/n7+9PdHQ0hw8fJigoiB49enDr1q0CbSQmJhIUFET37t0ZPHiwvP7RdkNCQooVc2RkpNF+69evB+C7775j/fr1bNiwgRMnTrBu3TrmzZvHunXritUuGCrQvv/+e3766Sesra2xtbXl/v37NGjQAOVjuoc86bye9RwEQXh16R4kjyyt3bCyaoOZVScUSumZu0jn6nI5f/c8tzOT5XXlvlLq1gWyEqIAaHf3MIc9dbztIAZnFoSinE9K5dfjy6lisYfaFQ0T4qjVz17BKTyZqJQSBEEoJaYqJR8tbF0qx31a/v7+LFu2DJVKhYuLC6ampoSHhxe536BBgwgMDGTHjh3s3r2b2bNnExYWxrBhw54ldCNWVlZGy+np6QwZMoThw4cX2LZKlSryzxqNhs6dO9O5c2dmzpxJYGAgM2fOpH379vj4+JCSksL169cLVGfl5uYSHx9PYGBgkbF16dLF6EuVq+vDJ/5WVlZ4e3vj7e1Ns2bN8PHxYdWqVUyaNEne5vr16/j7+9OiRYsCA30/Ovtd/hhORWnUqJHRfvkVSOPGjWPixIn06mUYF6FOnTr89ddfzJ49m379+hWrbYCAgADi4+O5c+cOpqamVKhQAScnJ6PKuKLOy8nJyWjGPkBednJywtPT87HnIAjCq0uvN3SlzlTrscpzQqEwA4X+mdv7+NeP+ePGH+i1VoBh3ELT55jF77WwsSc5Nq3B80Ncs2/hpbEt7YgEoczL1erpsTyK96pdopUbRN+qTd1qgfjV7Fraob2WRFLqtSTGlBKEV4FCoXjmbnQvW34i5VE1a9ZEq9Vy5MgRufve3bt3iYmJwc/vYWmzu7s7ISEhhISEMGnSJL755huGDRsmVxw9Or6Tl5cXZmZmHD16VE4kpaSkEBsbS6tWrQqNsUGDBpw7d65AnIVRKBTUqFGDw4cPA/D+++8zYcIEwsLCCAsLM9p2+fLlZGZm0rdv3yLb1Wg0aDSaYsWg1+vJycmRlxMTE/H396dhw4asWbOmQLXR05xfPrVa/dj9MjMzC7RvYmIiz5r3tPK7Ie7du5dbt27RpUsX+b2izqt58+ZMmTKFvLw8zMzMAIiIiMDX11fuuvcs5y4IQtklPfisibY9R4O7/qgASfHs968xdy+jTauJWuFMBmCqfL5Z/F4LqUnkVDD8vbVwrQ8O1Uo5IEEo+5IzcknL0WJllgWAWtOCt94YgoXZq3Hf/qoRSanXkPzHt6x33yvj4QmCUDgfHx+6du3K4MGDWbFiBRqNhokTJ+Lq6krXroYnSSNHjqRDhw5Ur16de/fu8dtvv1GzZk3AMPOdQqFg+/btdOzYEbVajUajoV+/fowbNw57e3sqVarE1KlTUSqVRX6xmDBhAs2aNWPo0KEMGjQIKysrzp07R0REBEuWLCE6OpqpU6fSp08f/Pz8UKlU7N+/n9WrVzNhwgTAUFE1d+5cxo4di4WFBX369MHMzIxt27YxefJkZs6cSe3atY2OGxMTUyCWWrVqyYmVfBkZGXzxxRd06dIFZ2dn7ty5w9KlS0lMTKR7d8NsU4mJibRp0wYPDw/mzZvH7du35f3zZz98kvwqovT0dG7fvk10dDQqlcooQfh3nTt35osvvqBKlSrUqlWLkydPMn/+fD788EN5m+TkZK5cucL169eNztfJyUmOac2aNdSsWRNHR0eioqIYMWIEo0aNkrtdFue8goODmT59OgMHDmTChAn8+eefLFy4kAULFhR63unp6cTFxcnLly9fJjo6Gnt7e6MKOUEQyh79g4cSkgKUD0YVcVZZFbZLoe5db0nWnWZkPVhWm5XzrzqSBLoccpSGpJR5lcZQ3pN0glAMfyV8xadN91DZynC/8l7DmiIh9QKV80/q11XZ/WNTdiMTBOFZrFmzhhEjRvDOO++Qm5tLq1at2Llzp5yQ0el0hIaGcu3aNWxsbAgKCpKTDK6urkyfPp2JEycyYMAA+vbty9q1a5k/fz4hISG888472NjYMH78eK5evYqFReEDs9atW5f9+/czZcoU3nrrLSRJolq1avTs2RMANzc3PD09mT59OgkJCSgUCnl51KhRcjujRo3Cy8uLsLAwFi5cSEZGBgAbN26Uu7k96nHrrl69ipubm9E6ExMTLly4wLp167hz5w4ODg40btyYyMhIatWqBRgqg+Li4oiLiyuwf1GzJtavX1/++fjx42zYsAEPDw8SEhKeuM/ixYv59NNP+de//sWtW7dwcXFhyJAhfPbZZ/I24eHhDBgwoMD5Tp06lWnTpgGGRNWkSZNITk7G09OTKVOmGF3T4pyXra0tu3fvJjQ0lIYNG1KxYkU+++wzPvroo0LP+9ixY/j7+8vLo0ePBqBfv36sXbu20H0FQShd+gcztUoKCZVkgl4BlS2evXuZNtdQoepub45rBSs61Sk4aUW5os0GIFtpmB3V/DHj/AmC8NCd9BwGrtnL8Fpr8Xzko8jSyuvJOwnPTSGVxNzgr6nU1FRsbW1JSUkp9rgdZUHU7wFkZsbToP4G7OyebaDIF0Wr0+M9ZRcApz4LwNbSrIg9BOH1kJ2dzeXLl6latWqRyRXBWEZGBq6uroSFhTFw4MCXfvzk5GTatm2LjY0Nu3btwtLS8qXHILx8hf2bfVXvD14kcU2EZ7Fz4VecP7yfY773aHVzNHqFHf5sxW/5omdqz+eLr8hL82NSJw+GvFW76B1ed5nJMLcqw30n8p1TBz7xcmaohxiPTxCeZPvp68zY+guz35xJjk7FmYxx/KttczSamqUd2iupuPcGolLqtSbyjYIgvHpOnjzJhQsXaNKkCSkpKcyYMQNA7hL4stnb2/Prr7+ydOlSoqKiaNu2banEIQiC8LrITLnPt1PHk3LD0C1YUgAYusYo1c/WfU8v6dHrDZVA5qbiK45ekpgQf4uL9RZx0dLQldmivM9EKAiFkCSJ7LS9tHI1zFZpZVGRcW0HoCzvkyW8BOIT+7UkBjoXBOHVNm/ePGJiYlCpVDRs2JDIyEh5EO3S4ODgYNSlTRAEQXh2SXEx3Eu6jgI9oKTSfQlJMgUFKC0rPFObWr0WHoxLZWEqKvHP3kvmv3eyoUI9eZ27haoUIxKEsis7T8fxi3uxy5lKh6qGdZbqSiIh9ZKIpNRr6JUZ6FwQBOEx6tevz/Hjx0s7DEEQBOEFyR/g3NayIvczk+lwXMdfNZTolKA0fbZqnjx9HkiGaqtyXymVcJCMbZ9C3QVUzrnDzKtrcHh/Bc0qPPsg8oLwOgtdf4Ks1EgG1ob72TZoTd+gQbUhpR1WuVHOP7EFQRAEQRAEQXiZJL0eB3MX1Jhzn2QUEugfDMJt2/7Zukhr9VokOSlVziulrv5B9oOqMYe8+3R2cgQ761IOShDKrthbafhaG+btvJVTk7fqfY2d3bNPuiA8HZGUeq2JSilBEARBEAShbNHrdJgr1UhoAVBIEnqlCQpA/WA20qf1aKVUuZ+6XZtDjtLQVc/CpS40fL+UAxKEsis17U9q2u7HxyYOAP+aXtRwFQmpl0kkpV5Lou+rIAiCIAiCUDZJej0KhRJJ0gNwx6EuivyBzk2e7T42T/cwKWWqLOcDemuzyVKaA2AuxsQRhCfSajM4frwnPX2y5XVmZhVKL6Byqpx/Yr+eFGKgc0EQBEEQBKGM0uv1KFAiYUhK3a34YDBuBZiqnu7rSUxyDK03tSbgh4CHSalnTGy9NrTZZD9ISlmU9wSdIDzBgdjbdFsajl6fjVavJPpWbRwqvoOLS8/SDq3cEZ9Sr6NXZKBzkTQTBEEQBEEof/R6HQqFEv2DSilQkGH6J95t1Kgsnq4jx7Gbx0jOTgZAevDVRmVSfr/ipGp1hEtOHLGtC4BaJKUE4bHCT10nNeMeACk5tuy4Nop6db5GrXYv5cjKH9F977VUdp8OyTMDCoIgCIIgCOWSpNOjRIE+/wGlQkmKxQEcfd586ra0ei36XHsaO/rzp8qFO7l5mJbjpNRnFxP5Vu0PasOyZTm+FoLwJGnpF6itnk2NmjcBcKrgyM4Rb4nvqqVEJKUEQRAEQRAEQXhp9PKYUroHa5RIimd7eHkhUUFG/Hj2xQPkAWBWXrvvZSZzLdVQ+VEj/RLuNnYMdKteykEJQtmy5/xNLsfPp6rlUXmdnU01MUFCKRKpc0EQBKFQ/fv3R6FQoFAoUKlUeHt7M2PGDLRa7XO1u2/fPhQKBffv3y+ZQIvh8uXLBAcH4+LigoWFBW5ubnTt2pULFy4Ybbd9+3Zat26NRqPB0tKSxo0bs3btWqNtEhISUCgUREdHF/v406ZNo0aNGlhZWWFnZ0e7du04cuSIUZsDBw6katWqqNVqqlWrxtSpU8nNzS203aSkJIKDg6levTpKpZKRI0cWK560tDRGjhyJh4cHarWaFi1acPToUaNt0tPTGTp0KG5ubqjVavz8/Fi+fLnRNkOGDKFatWqo1WocHR0fe02vXLlCp06dsLS0pFKlSowbN+6J/w8dOnQIU1NT3njjjSLPYcuWLQQEBODg4PDUvw9BEEpHyq2bZGnTydHnPFijAIUC5TN0Nbt137CPqYkONzs1/r6OVK+sKcFoXxFpN2F+TXKSTgMwIWEV/7X+i/o2lqUcmCCULV/sOE9y2m0ADiY2xc51FjVqfF7KUZVvIiklCIIgFCkoKIikpCQuXrzImDFjmDZtGl999VVphyUrKmkDkJeXR/v27UlJSWHLli3ExMSwadMm6tSpY5QYW7x4MV27dqVly5YcOXKE06dP06tXL0JCQhg7duxzxVm9enWWLFnCmTNnOHjwIJ6engQEBHD7tuHm6MKFC+j1elasWMHZs2dZsGABy5cvZ/LkyYW2m5OTg6OjI5988gn16tUrdjyDBg0iIiKC//73v5w5c4aAgADatWtHYmKivM3o0aP5+eef+d///sf58+cZOXIkQ4cOJTw8XN6mYcOGrFmzhvPnz/PLL78gSRIBAQHodIYqCJ1OR6dOncjNzeXw4cOsW7eOtWvX8tlnnxWI6f79+/Tt25e2bdsW6xwyMjJ48803mTNnTrHPWxCE0nPzcjzHfvqBm9kJpOWlPlirRFIon6lSKk9r6AJY1SWFgxPeZs2AJpiVxy5rdy8+GODcAgBzWxfw8i/loASh7EnNSkejygDgrdrv0MC3J2ZmdqUcVflWDj+xBUEQhKdlbm6Ok5MTHh4efPzxx7Rr147w8HDu3btH3759sbOzw9LSkg4dOnDx4kV5v7/++ovOnTtjZ2eHlZUVtWrVYufOnSQkJODvb7hZtrOzQ6FQ0L9/f8BQvdO7d2+srKxwdnZmwYIFtGnTxqj6x9PTk88//5y+fftiY2PDRx99BMDBgwd56623UKvVuLu7M3z4cDIyDDceZ8+eJT4+nn//+980a9YMDw8PWrZsycyZM2nWrBkAV69eZcyYMYwcOZJZs2bh5+eHt7c3Y8aM4auvviIsLMyosulpBQcH065dO7y8vKhVqxbz588nNTWV06cNT7aDgoJYs2YNAQEBeHl50aVLF8aOHcuWLVsKbdfT05OFCxfSt29fbG1tixVLVlYWP/zwA3PnzqVVq1Z4e3szbdo0vL29WbZsmbzd4cOH6devH23atMHT05OPPvqIevXq8ccff8jbfPTRR7Rq1QpPT08aNGjAzJkzuXr1KgkJCQDs3r2bc+fO8b///Y833niDDh068Pnnn7N06dICCcWQkBCCg4Np3rx5sc6jT58+fPbZZ7Rr165Y2wuCULpSbxvGcNEpJe7aaFGa+WBi4gxK5TNVSuXpDIOll/ueN1rDlPbZKmsALDovADuP0oxIEMqc8+c/YU7LEVS3iwegXhUxqHlZIJJSgiAIpUSSJPKys1/6SyqBmTnVajW5ubn079+fY8eOER4eTlRUFJIk0bFjR/LyDON6hIaGkpOTw4EDBzhz5gxz5szB2toad3d3fvjhBwBiYmJISkpi4cKFgKEy59ChQ4SHhxMREUFkZCQnTpwoEMO8efOoV68eJ0+e5NNPPyU+Pp6goCC6devG6dOn2bRpEwcPHmTo0KEAODo6olQq2bx5s1zB83ebN28mLy/vsRVRQ4YMwdramo0bNz739QNDddfKlSuxtbUttLopJSUFe3v7Ejnmo7RaLTqdDgsLC6P1arWagwcPysstWrQgPDycxMREJEnit99+IzY2loCAgMe2m5GRwZo1a6hatSru7oabvaioKOrUqUPlypXl7QIDA0lNTeXs2bPyujVr1nDp0iWmTp1akqcqCEIZIukNSaRUax37GmWhsu6MElMq5Do8W6WUzvA3zdS0nI4jlS/vQVJKaQ6AhbKcXw9BeET87XQmbTlD/LVf5HVmZo5oNLVKMSohnxjoXBAEoZRoc3JY1O/9l37c4es2Y/a3RERxSZLEnj17+OWXX+jQoQNbt27l0KFDtGjRAoD169fj7u7O1q1b6d69O1euXKFbt27UqVMHAC8vL7mt/ERLpUqVqFChAmCoklq3bh0bNmyQu2+tWbMGFxeXArG8/fbbjBkzRl4eNGgQvXv3liuqfHx8WLRoEa1bt2bZsmW4urqyaNEixo8fz/Tp02nUqBH+/v707t1bjis2NhZbW1ucnZ0LHE+lUuHl5UVsbOwzXbt827dvp1evXmRmZuLs7ExERAQVK1Z87LZxcXEsXryYefPmPdcxH0ej0dC8eXM+//xzatasSeXKldm4cSNRUVF4e3vL2y1evJiPPvoINzc3TE1NUSqVfPPNN7Rq1cqovX//+9+MHz+ejIwMfH19iYiIQKVSAXDjxg2jhBQgL9+4cQOAixcvMnHiRCIjIzE1FbcngvC60j94KKBXSCgezBitkPSYYIal5dOPf5SflDIr70mYB5VSOQozACzKYxdGQXiCFfvj+e7YNd5qmw7AvJOfsn1kb0xMzEo5MgFEpZQgCIJQDNu3b8fa2hoLCws6dOhAz5496d+/P6ampjRt2lTezsHBAV9fX86fPw/A8OHDmTlzJi1btmTq1KlyN7UnuXTpEnl5eTRp0kReZ2tri6+vb4FtGzVqZLR86tQp1q5di7W1tfwKDAxEr9dz+fJlwFC5dePGDdavX0/z5s35/vvvqVWrFhEREcW+FvmJlsKsX7/eKI7IyEj5PX9/f6Kjozl8+DBBQUH06NGDW7duFWgjMTGRoKAgunfvzuDBg+X1j7YbEhJSrJgjIyON9lu/fj0A//3vf5EkCVdXV8zNzVm0aBEffPCBUReaxYsX8/vvvxMeHs7x48cJCwsjNDSUX3/91egYvXv35uTJk+zfv5/q1avTo0cPsrOzixWfTqcjODiY6dOnU73642eKKuyaCoLw6tA/qJSSlKCQDH3uFOhpFxiEh8fTdzeTk1LldcY9QKuXGJ9qT/e6YSSbGBJ75uU9SScIj7idloOJQou5iWHIgNnv+4uEVBkiHkUKgiCUElNzc4av21wqx31a/v7+LFu2DJVKhYuLC6ampkYDXT/JoEGDCAwMZMeOHezevZvZs2cTFhbGsGHDniV0I1ZWVkbL6enpDBkyhOHDhxfYtkqVKvLPGo2Gzp0707lzZ2bOnElgYCAzZ86kffv2+Pj4kJKSwvXr1wtUZ+Xm5hIfH09gYGCRsXXp0sUoWefq6moUt7e3N97e3jRr1gwfHx9WrVrFpEmT5G2uX7+Ov78/LVq0YOXKlUZtPzq7nI2NTZGxgCGB9+h++VVK1apVY//+/WRkZJCamoqzszM9e/aUK8eysrKYPHkyP/74I506dQKgbt26REdHM2/ePKNxnGxtbbG1tcXHx4dmzZphZ2fHjz/+yAcffICTk5PRGFQAN28axpVxcnIiLS2NY8eOcfLkSbm7pV6vR5IkTE1N2b17d6HXVBCEV8ejlVJK6WGlVK06tZ9pTCntg97YZqbl91l7dFom/8m1BztDBbK5UkFFM/E1TxAkSSLuyjbed/uUnm4Px7Cs6y7uIcqSUvn0PnDgAJ07d8bFxQWFQsHWrVuN3s+fevzvr0dnevL09Czw/pdffmnUzunTp3nrrbewsLDA3d2duXPnvozTKwPyn4w8/7gxL1IJDGsjCK80hUKBmYXFS389y5gd+YmUKlWqyF2ratasiVarNRr4++7du8TExODn5yevc3d3JyQkhC1btjBmzBi++eYb4GHF0aPjO3l5eWFmZsbRo0fldSkpKcXqMtegQQPOnTsnJ3wefT2pukmhUFCjRg15MPT3338fU1NTwsLCCmy7fPlyMjMz6du3b5GxaDQao+Or1eonbqvX68nJyZGXExMTadOmjTyj3d+/pD3abqVKlYqMBQzjRD26n0ZjPF16/qDy9+7d45dffqFr166AYcbCvLy8AjGYmJjI1Q6PI0kSkiTJ59W8eXPOnDljVBEWERGBjY0Nfn5+2NjYcObMGaKjo+VXSEgIvr6+REdH07Rp06e6poIglF0Pk1KgkB58tkh6MHm2kcrzk1Kq8lopdT2a9IOLAXDLTmJZ+i/83LA6tiIpJQiEbjjBD4f+i4VJJmYmWgBsbRugVIp/H2VJqfw2MjIyqFevHh9++CHvvfdegfeTkpKMlnft2sXAgQPp1q2b0foZM2YYdWl49CY7NTVVntp6+fLlnDlzhg8//JAKFSrIszQJL185vV0QhNeSj48PXbt2ZfDgwaxYsQKNRsPEiRNxdXWVkxojR46kQ4cOVK9enXv37vHbb79Rs2ZNADw8PFAoFGzfvp2OHTuiVqvRaDT069ePcePGYW9vT6VKlZg6dSpKZdFThU+YMIFmzZoxdOhQBg0ahJWVFefOnSMiIoIlS5YQHR3N1KlT6dOnD35+fqhUKvbv38/q1auZMGECYKiomjt3LmPHjsXCwoI+ffpgZmbGtm3bmDx5MjNnzqR27dpGx42JiSkQS61atTAzMy4Lz8jI4IsvvqBLly44Oztz584dli5dSmJiIt27dwceJqQ8PDyYN28et2/flvd3cnIq9PzzK6HS09O5ffs20dHRqFQqowTh3/3yyy9IkoSvry9xcXGMGzeOGjVqMGDAAMBQidW6dWvGjRuHWq3Gw8OD/fv385///If58+cDhi6XmzZtIiAgAEdHR65du8aXX36JWq2mY8eOAAQEBODn50efPn2YO3cuN27c4JNPPiE0NBTzB5V7f7+ulSpVwsLCosD6v0tOTubKlStcv34dePj7cHJyKvKaCYLwcqXevsWVP08BoDTJRSEZxjdUSHoUT5GU0ul1TI78lFNX00i8b+jebVZex1DaO5Ose1lQO4jKucn8wyIVrEXSXhAADsXdpYZfFgC7r/Zi/D+GYK8RVVJlTakkpTp06ECHDh2e+P7fbyK3bduGv7+/0QC5YEhCPemGc/369eTm5rJ69WpUKhW1atUiOjqa+fPni6SUIAhCCVmzZg0jRozgnXfeITc3l1atWrFz5045IaPT6QgNDeXatWvY2NgQFBTEggULAEP3q+nTpzNx4kQGDBhA3759Wbt2LfPnzyckJIR33nkHGxsbxo8fz9WrVwvMEvd3devWZf/+/UyZMoW33noLSZKoVq0aPXv2BMDNzQ1PT0+mT59OQkICCoVCXh41apTczqhRo/Dy8iIsLIyFCxfKVVQbN26kV69eBY77uHVXr17Fzc3NaJ2JiQkXLlxg3bp13LlzBwcHBxo3bkxkZCS1ahlmf4mIiCAuLo64uLgC+xc1a2L9+vXln48fP86GDRvw8PAgISHhifukpKQwadIkrl27hr29Pd26deOLL74wSqh9++23TJo0id69e5OcnIyHhwdffPGFPJ6VhYUFkZGRfP3119y7d4/KlSvTqlUrDh8+LFdymZiYsH37dj7++GOaN2+OlZUV/fr1Y8aMGYWeU3GEh4fLSTR4+PuYOnUq06ZNe+72BUEoOb8sXygnpSyzoGGcYf3TJqXi7sex5YhEXnKQvK6iVYWSDPXVkZ1CttLwYF5dwQ0aBRWxgyCUD1lZN6hscR57i3sAjOvUDgebKkXsJZQGhVQSc4M/TwAKBT/++CPvvvvuY9+/efMmbm5urFu3juDgYHm9p6cn2dnZ5OXlUaVKFYKDgxk1apTcraRv376kpqYadQ387bffePvtt0lOTsbOzq7AsXJycoy6UKSmpuLu7k5KSkqxx+0oC4780Zn09HO8UW8NDg6tit7hJdLrJbwm7wTg5KftsbMqesBgQXgdZGdnc/nyZapWrVpkckUwlpGRgaurK2FhYQwcOPClHz85OZm2bdtiY2PDrl27nml2KOHVU9i/2dTUVGxtbV+5+4MXSVwToTjWjQ0l5doN8qQcnO+l4XXfkuMNxmGRdYcB/+6E8m9jBT7J6dun+ceK3ejSa2JvrcDN3px/f9AcN7ty+Pm8/E024M5o3wm0c7Dhf3W9it5HEF5jOVodf8T/RU5iZxQ8nHClUcPvsbVtUIqRlT/FvTco83Wu69atQ6PRFOjmN3z4cL799lt+++03hgwZwqxZsxg/frz8fnGmn/672bNnywO12tra4u7uXsJnIwiCIBTl5MmTbNy4kfj4eE6cOEHv3r0B5C6BL5u9vT2//vorbdu2JSoqqlRiEARBeB3o9XrcrWsAoJAgW2X4KmJawabYCSmAPH2eYfo+4JOOdQn/V9vymZAC0OaQpTR0g1Y/w0DxgvC6mftzDFM270ZBNlq9khsZlalYsR0aTeHDAQilp8yP8LV69Wp69+5d4Cnl6NGj5Z/r1q2LSqViyJAhzJ49Wx6f4mlNmjTJqN38SilBEATh5Zo3bx4xMTGoVCoaNmxIZGQkFStWLLV4HBwc+Oyzz0rt+IIgCK8DSa/D5MHXDwUSNyrkJ6UqPFU7hqSUoR3T8jqWFHAiNYOPfGZxx8RQgWBRXgd7F4RHxN9Ox8osE4CUXGcybddST1QQlmllOikVGRlJTEwMmzZtKnLbpk2botVqSUhIwNfXFycnJ3m66XyPTj/9OObm5s+c0BIEQRBKRv369Tl+/HhphyEIgiCUML1OJ896o5RA+6CyR/mUyZQ83cNKqXI76x7w691Urqkc5eV6mnJaLSYID2RnJ1HJNJJKFc8D4FXZmUYNRUKqrCvTSalVq1bRsGFD6tWrV+S20dHRKJVKeVDV5s2bM2XKFPLy8uQBWyMiIvD19X3seFKCIAiCIAiCILw4er1enrThvq03WDcBKHJ21b/L0+chSYaB0U3La5c1bS45OYZqkJ43djGuzfu4OTsWsZMgvL72x94mM/GfBLomyOvMzCqUWjxC8ZXKp3h6ejrR0dHy9NWXL18mOjqaK1euyNukpqby/fffM2jQoAL7R0VF8fXXX3Pq1CkuXbrE+vXrGTVqFP/85z/lhFNwcDAqlYqBAwdy9uxZNm3axMKFC4265wmCIAiCIAiC8HJIOp38c6aVC3nq6gCoNWZP2uWxtHot5CelymOlVNpNCPMl5+gaACrn3sVNTMIhlGPX7mXSb/URlDpDPuHiPS8srFtQxf3lT5AjPL1SqZQ6duwY/v7+8nJ+oqhfv36sXbsWMExBLUkSH3zwQYH9zc3N+fbbb5k2bRo5OTlUrVqVUaNGGSWcbG1t2b17N6GhoTRs2JCKFSvy2Wef8dFHH73YkysDFPl10ZTqxIqCIAiCIAiCINPr9Ty8P1Vimn2BVE9z/Ps0f6p28vR5gCEppSqPY0rdPANZyeQqDck8c6uKoHn88CSCUB4kJqfgXeESpko9AHq7hbRoXPOpqzCF0lEqSak2bdrIpbtP8tFHHz0xgdSgQQN+//33Io9Tt25dIiMjnylG4cUTKTNBEARBEITyITM1hZyMTO4qrz9Yo0CZexl9pYrYOKifqi2j7nvlMSmVZ5jmPsfaBQBV4wGgNCnNiAShVKVdH8KkJmcBMDGx4l+t/Uo5IuFplMNPcaE0iWS1IAiCIAhC+XNiZzg6bS73cg0TDykU5kjoMHmGZIph9j3DfmblsfteXhYAOSaGCZosyuu4WkK598flZAasOYI+5wIAmdoKuLv1LeWohKclPsEEQRAEQRAEQXihsjPSAbBSVaSCmSsm5nWRFBJWaqtit3Ej4wZj9o3hP2f/80hSqhx+ndEaklK5D5JSKmU5TMwJArDyQDyH4xIxURrGqzuRtZxq1caWclTC0yrTs+8JgiAIgiAIgvDqk/SGL402Vi5Y5FqRrbREUugIDAgsdhu7E3az4/RN9Lk+SDpDl7/ylpTK00tEZpuT5ujPVZMKAJiLpJRQDun1OTia7CHQ4xoAEiaMCXyjdIMSnkn5+hQXBEEQnlr//v1RKBQoFApUqv9n777DojjXh49/Z4GFpUtTilIEe40lKrFgA00IicYSPZZEPZJjj7Gl2GJiTCzR6FGT14jndzTxaCzEGA0xsRtjI1hRURQRK0pn67x/LKwSELCxlOdzXVxxZmdm79nA7uw993M/SgIDA5k9ezY6ne6pjrt7924kSeL+/fvPJtBSuHz5MgMGDMDLywsbGxt8fHyIiIjg3LlzBbbbtm0bHTt2xMHBAVtbW1q1amWaiCNfYmIikiSZZpItjZkzZ1KvXj3s7OyoVq0aXbt25fDhwwWOOWzYMPz9/VGpVNSuXZsZM2ag0WiKPW5KSgoDBgygTp06KBQKxo8fX6p49u7dS3h4OF5eXkiSxJYtWwpts2nTJrp3746rq2uJ5yvLMj169HjksaKiomjSpAk2NjZ4eHgwatSoAo/v3LmTNm3a4ODggLu7O7179yYxMbHANmvXrqVp06bY2tri6enJ22+/zd27d5/6PAVBeL4MemMDYgkFct5XEINkwNXFtdTHuH5PS+71N9Hc6QKyEgAHmyp0j12W+e/ZWAao6zKywUxOWlUHwNZC9JMSqp4bN7bS1esbIgJ/BsBG6Ya9zePN5CmUDyIpJQiCIJQoLCyMlJQULly4wMSJE5k5cyZffPGFucMyKSlpA6DVaunWrRtpaWls2rSJ+Ph41q9fT+PGjQskxr766isiIiIIDg7m8OHDxMXF0b9/fyIjI3nvvacrCa9Tpw5Lly7l5MmT7N+/Hz8/P7p3787t27cBOHfuHAaDgZUrV3L69GkWLVrEihUreP/994s9rlqtxt3dnQ8//JCmTZuWOp6srCyaNm3KsmXLit3mpZdeYt68eSUe78svv3zkTDcLFy7kgw8+YOrUqZw+fZpff/2V0NAHFRKXL18mIiKCzp07Exsby86dO7lz5w69evUybXPgwAEGDx7MsGHDOH36NBs2bODPP/9kxIgRT32egiA8X7LBmJT60+kkKZbGJIqMAUtF6ZNKmbnGaXKsLPUMaevLZ70a4+X8eE3SK7Tj/+HKsfUAeOfepK3+Bq95ONPJxcHMgQlC2dHqDYz57gSr9xonPruR5YGNQw/q1p1t5siEJ1WFbi0IgiAIT8ra2poaNYzTTb/zzjts3ryZ6OhoIiMjGTduHD/++CNqtZqOHTuyZMkSgoKCALhy5QqjR49m//79aDQa/Pz8+OKLL2jQoAEhISEAVKtWDYAhQ4YQFRVFRkYGkZGRbNmyBUdHRyZPnszWrVtp1qwZX375JQB+fn4MGzaMCxcusGXLFnr16kVUVBT79+9n2rRpHD16FDc3N15//XXmzp2LnZ0dp0+fJiEhgV27duHr6wuAr68vwcHBpvNMSkpi4sSJjB8/nk8//dS0fuLEiSiVSsaOHUufPn148cUXn+h1HDBgQIHlhQsXsmrVKuLi4ujSpQthYWGEhYWZHg8ICCA+Pp7ly5czf/78Rx7Xz8+PxYsXA/Dtt9+WOp4ePXrQo0ePYrcZNGgQQKGKpb+LjY1lwYIFHD16FE9PzwKP3bt3jw8//JAff/yRLl26mNY3adLE9O9jx46h1+uZM2cOirymve+99x4RERFotVqsrKw4dOgQfn5+jB07FgB/f39GjhxZYsKsNOcpCMLzZcgbvpdicwcfSYENoJBklBbKUh9DrTcew06lZVZEo+cRZvl29wK5CmMfqb5ZsUx5MQRq+pk3JkEoY3HX7vPjX9d5s+59AP663ZSXuyzE2bb07yVC+SIqpQRBEMxElmUMGn2Z/8iy/NSxq1QqNBoNQ4cO5ejRo0RHR3Po0CFkWaZnz55otVoARo0ahVqtZu/evZw8eZJ58+Zhb29PzZo1+eGHHwCIj48nJSXFlFR59913OXDgANHR0cTExLBv3z6OHz9eKIb58+fTtGlTTpw4wUcffURCQgJhYWH07t2buLg41q9fz/79+xk9ejQA7u7uKBQKNm7ciD7vi83fbdy4Ea1WW2RF1MiRI7G3t+e777576tcPjNVdX3/9NU5OTsVWN6WlpeHi4vJMnvN5yc7OZsCAASxbtsyUvHxYTEwMBoOB5ORk6tevj4+PD3379iUpKcm0TYsWLVAoFKxevRq9Xk9aWhr/93//R9euXbGyMpbjt23blqSkJLZv344sy9y8eZONGzfSs2fPMjtXQRCejCFvyLcsydgZjBWVgQpnrBSlH26j0Rrfuy2qag8lnZocCxsAbFsNhZqtzRuPIJjB3bRkajtdxtf5HgAD2zYUCakKTlRKVUZ5n9MyT//FUxCE50fWGrg+/WCZP6/X7HZIyifrPyHLMrt27WLnzp306NGDLVu2cODAAdq1awcY+/3UrFmTLVu20KdPH65evUrv3r1p3LgxYKz8yZefaPHw8MDZ2RmAjIwM1qxZw7p160wVNatXr8bLy6tQLJ07d2bixImm5eHDhzNw4EBTP6WgoCCWLFlCx44dWb58Od7e3ixZsoTJkycza9YsWrZsSUhICAMHDjTFdf78eZycnApV+gAolUoCAgI4f/78E712+bZt20b//v3Jzs7G09OTmJgY3Nzcitz24sWLfPXVV8VWSZUHEyZMoF27dkRERBT5+KVLlzAYDHz66acsXrwYJycnPvzwQ7p160ZcXBxKpRJ/f39++eUX+vbty8iRI9Hr9bRt25bt27ebjhMcHMzatWvp168fubm56HQ6wsPDxbA8QagAtHfuACBLYG2QyLYAleXjfZHU5PWlslRU0WtcbQ65CuNrZqMQtQVC1ZKr1bPtxF84ZbzJ+y8+6Gvq6lj6vnRC+STezQRBEIQSbdu2DXt7e2xsbOjRowf9+vVj6NChWFpaFhjK5urqSt26dTl79iwAY8eOZc6cOQQHBzNjxgzi4uKKfZ5Lly6h1Wpp3frB3V8nJyfq1q1baNuWLVsWWP7rr7+IiorC3t7e9BMaGorBYODy5cuAsXLrxo0brF27lrZt27JhwwYaNmxITExMqV8LpbLkL1Fr164tEMe+fftMj4WEhBAbG8vBgwcJCwujb9++3Lp1q9AxkpOTCQsLo0+fPgV6Jj183MjIyFLFvG/fvgL7rV27tlT7lUZ0dDS//fabaWhlUQwGA1qtliVLlhAaGkqbNm347rvvuHDhAr///jsAN27cYMSIEQwZMoQjR46wZ88elEolb7zxhqm678yZM4wbN47p06dz7NgxduzYQWJioul1eJ7nKQjCk7ufeJ3cOzmA8aapjPHGiKVb4crK4mjzklJVulJKYayUUlWxWQcFYcOxa6ze8xsKSYfWYEGWvgaOjs1xc+1k7tCEpyQqpQSzeRZDiAShIpOsFHjNbmeW531cISEhLF++HKVSiZeXF5aWlkRHR5e43/DhwwkNDeWnn37il19+Ye7cuSxYsIAxY8Y8SegF2NnZFVjOzMxk5MiRpn5DD6tVq5bp3w4ODoSHhxMeHs6cOXMIDQ1lzpw5dOvWjaCgINLS0rh+/Xqh6iyNRkNCQkKB5tyP8uqrrxZI1nl7exeIOzAwkMDAQNq0aUNQUBCrVq1i2rRppm2uX79OSEgI7dq14+uvvy5w7Idnv3N0dCwxFjAm8B7er3r16qXarzR+++03EhISTNVu+Xr37k379u3ZvXu3qfKsQYMGpsfd3d1xc3Pj6tWrACxbtgwnJyc+//xz0zb//e9/qVmzJocPH6ZNmzbMnTuX4OBgJk2aBBh7UtnZ2dG+fXvmzJnzXM9TEIQncyvxErGfbURSG4fpRfxhQHKyIMcZFE9aKVUFJ5uLz8pli/ULnFMYeyLaVNXEnFBlXUvNxs4qG4B0fX1eaP5fAj1Ek//KQCSlhDL1qFmZBKEqkiTpiYfRlbX8RMrD6tevj06n4/Dhw6bhe3fv3iU+Pr5A8qFmzZpERkYSGRnJtGnT+OabbxgzZoyp4ujh/k4BAQFYWVlx5MgRUyIpLS2N8+fP06FDh2JjfOGFFzhz5kyhOIsjSRL16tXj4EHjMMo33niDKVOmsGDBAhYsWFBg2xUrVpCdnc3gwYNLPK6DgwMODqW7UDIYDKjVatNycnIyISEhtGjRgtWrV5uafud7nPPLp1Kpnmi/0pg6dSrDhw8vsK5x48YsWrSI8PBwAFMz+fj4eHx8fABITU3lzp07pqbz2dnZhc7VIm+ac0PerF3Z2dlYWloWuY0sy8/1PAVBeDKp16+hVFib2kp4pMnccTT+rVu5P16/PK1p+F7Vu5788MI19tm1NS27WImvcULVcT/tGM2Ub9OycRYA9b1riYRUJSLezQRBEIQnEhQUREREBCNGjGDlypU4ODgwdepUvL29Tb2Fxo8fT48ePahTpw737t3j999/p379+oBx5jtJkti2bRs9e/ZEpVLh4ODAkCFDmDRpEi4uLnh4eDBjxgwUCkWJSe0pU6bQpk0bRo8ezfDhw7Gzs+PMmTPExMSwdOlSYmNjmTFjBoMGDaJBgwYolUr27NnDt99+y5QpUwBjRdXnn3/Oe++9h42NDYMGDcLKyoqtW7fy/vvvM2fOHBo1KjjjU3x8fKFYGjZsaGrOnS8rK4tPPvmEV199FU9PT+7cucOyZctITk6mT58+gDEh1alTJ3x9fZk/fz63b9827V9UA/GH5VcIZWZmcvv2bWJjY1EqlQUShH+XmZnJxYsXTcuXL18mNjYWFxcXU1IwNTWVq1evcv369QLnW6NGjQI/f1erVi38/f0BqFOnDhEREYwbN46vv/4aR0dHpk2bRr169UyzML788sssWrSI2bNn8+abb5KRkcH777+Pr68vzZs3ByA8PJwRI0awfPlyQkNDSUlJYfz48bRu3brIvmOPc56CIDwfBr0eCQWybEwoIUOWrfH90a5d22L2LEynNya2LC2qWFLq7Dbu3rUHhTMv397DC74NaV/t0RNkCEJlsjDmPDl3/482HpmmddWqPd57h1C+iaSUIAiC8MRWr17NuHHjeOWVV9BoNHTo0IHt27ebEjJ6vZ5Ro0Zx7do1HB0dCQsLY9GiRYBxSNusWbOYOnUqb731FoMHDyYqKoqFCxcSGRnJK6+8gqOjI5MnTyYpKQkbG5tiY2nSpAl79uzhgw8+oH379siyTO3atenXrx8APj4++Pn5MWvWLBITE5EkybQ8YcIE03EmTJhAQEAACxYsYPHixWRlGe/Kfffdd/Tv37/Q8xa1LikpyVQRlM/CwoJz586xZs0a7ty5g6urK61atWLfvn00bNgQMM5Sd/HiRS5evFho/5KGPOcnbgCOHTvGunXr8PX1JTEx8ZH7HD161JQUAuPMhwBDhgwhKioKMPaMeuuttwqd74wZM5g5c2axMT3sP//5DxMmTODll19GoVDQsWNHduzYYfpd6dy5M+vWrePzzz/n888/x9bWlrZt27Jjxw5UKhUAQ4cOJSMjg6VLlzJx4kScnZ3p3Lkz8+bNK/a5S3OegiA8Hwa9HklSIGNMSknI6CyMX0EsStkX6eK9ixy9eZRbWXcBsKpKSSmdGja+Re4L34KtMyOSN9KmRROogtViQtWj0xv46rcLDKhrnGnvl8ROvNb+A3y8A0rYU6hIJFk09nmk9PR0nJycSEtLK3XfjvLgzyOvkpFxmqZNV5XLxm9+U38C4NiHXXG1tzZzNIJQNnJzc7l8+TL+/v4lJleEgrKysvD29mbBggUMGzaszJ8/NTWVLl264OjoyM8//4ytrW2ZxyCUveL+Zivq9cHzJF4T4VHidu0kbVMCVzJPczP3Ck2v3ORC49EYLGrSI7IxAc3cSzxGlw1duJl5H+29F1Hfepnm/jKbR75SBtGXA9mp8Lk/L7y4ges2HuywOU2zF/uDomIM/xeEp3E77TYDV6zllYBfaOgaj4PHRFo3+pe5wxJKqbTXBqJSShAEQShXTpw4wblz52jdujVpaWnMnj0bwDQksKy5uLjw66+/smzZMg4dOkSXLl3MEocgCEJFJBv0SJJk6il1ru4/kBTGSlBFKat9riU1RH3rwSQTng4ezz7Q8kprnLUw18J4I9emSS+RkBKqBFmWOXOyF1NaXTetq+kqJjCpjERSShAEQSh35s+fT3x8PEqlkhYtWrBv3z7c3NzMFo+rqyvTp0832/MLgiBUVH/vKWWwsMZCkkAh4+JlV8LeoDfo0WU9GKpjZSHRpe6je8hVOrpcAHIUxqSUSvH4M+gKQkVzKjmNaRv/ZHxjY0Lqdk51gjz9cHHtaObIhOdBJKUqpby7TmJkpiAIFVDz5s05duyYucMQBEEQngGD3oCEAgP516USlpotVH+5K45uqhL318k6kI2VQZ+/UZ9ezf2wLGUvqsrgSlY2J906oFYY++/ZiKSUUAVsi0shKdU42YveoCDm9pf0f7m1maMSnheRlBIEQRAEQRAE4bkwmIbv5c2+hwLkTCyUpRu6pzPokPOSUnbWVlUqIaU1yIRd1nGv4cemdbZV6PyFqis9V4vK0jh01dLSnuX/aGnmiITnSSSlBEEQBEEQBEF4Lgx6PQoUD2YQzesvpShlxY9WrzVVStlYWj2vMMsfvZbMhAPcMzgD0DrrAsENXsLBUvSTEiovWZY5eWo0HR1/o0MbYyLbWumI0lIkYysz8X9XMBsxuFAQBEEQBKHy0uu0JJ2O43LmSbJ16XlrFcgSSFIpK6UeGr5nY1WF7qcfXoF649sAWMg6opOXMiXA08xBCcLzk6nWMSxqL7dv78BS0mBloQPA2UlUSVV2IiklCIIgCIIgCMIzd+VkLFfiTpCcfQG1IRsASbLGIElPVCllVZWGrt27Qm5ec3MbWQ8vTTBzQILwfP2RcJfYK1cB0BksmLx3Ji7+P9GgwXzzBiY8d1XonV0QBEEQBEEQhLKizjYmonKtZU4GpGFl3RbJogYSUqkrpbQGramnlJVF6fapFHS55CqUAFhb20LD18wbjyA8Z/czkqnpkAyApaUTG0a9TnP/eqV+rxAqripUAysIgiAIgiAIQlmR9XoAMu30HKt3nza3G6CXJFR6VakrpXQGHcjGryxVqlJKp0adl5QSM+4JlVny/Rw27f+GBraLGdvcuM7WxpkAd3vzBiaUGfEOJwiCIAiCIAjCM2fIS0oZJGMnUUXeVw+VrS1169Yt1TG0hgfD96pUs2P9g6SUtUJUigiV1/8dusKNO8cA0Oot0ckOeHq+YeaohLJUhd7ZBUEQhCcxdOhQJMk41EKpVBIYGMjs2bPR6XRPddzdu3cjSRL3799/NoGWwuXLlxkwYABeXl7Y2Njg4+NDREQE586dK7Ddtm3b6NixIw4ODtja2tKqVSuioqIKbJOYmIgkScTGxpb6+WfOnEm9evWws7OjWrVqdO3alcOHDxc45rBhw/D390elUlG7dm1mzJiBRqMp9rgpKSkMGDCAOnXqoFAoGD9+fKni2bt3L+Hh4Xh5eSFJElu2bHnsmAE++eQT2rVrh62tLc7OzkU+19WrV3n55ZextbXFw8ODSZMmFfgdevj37OGfhg0bmraZO3curVq1wsHBAQ8PD1577TXi4+NLPM/SxCcIwrOVGHeCv37dYVxQGP/WZcn41SO4fQdq1apV7P57r+2l/5aRjP15AbJsnHXPsookZy5lq1lq3Yz1NXoAYC0qpYRK7E6mGjsr41DfHNU/aRt8BD/fkWaOSihL4h2uUqoaH9iCIJSdsLAwUlJSuHDhAhMnTmTmzJl88cUX5g7LpKSkDYBWq6Vbt26kpaWxadMm4uPjWb9+PY0bNy6QGPvqq6+IiIggODiYw4cPExcXR//+/YmMjOS99957qjjr1KnD0qVLOXnyJPv378fPz4/u3btz+/ZtAM6dO4fBYGDlypWcPn2aRYsWsWLFCt5///1ij6tWq3F3d+fDDz+kadOmpY4nKyuLpk2bsmzZsieOGYyvf58+fXjnnXeKPIZer+fll19Go9Fw8OBB1qxZQ1RUFNOnTzdts3jxYlJSUkw/SUlJuLi40KdPH9M2e/bsYdSoUfzxxx/ExMSg1Wrp3r07WVlZxZ5nSfEJgvDs7f2/Vdy4aEwaGyRjxZSc99VDUipL3P/r4//jjz96En8yAgzGht9VpVJqYvxV5jh2Zq3nKwA4WVqYOSJBeD4yMs7ip4zC3+kKAG1q++FoY2XmqIQyJwuPlJaWJgNyWlqauUN5LIf/jJB/3RUg3779m7lDKZLvlG2y75Rt8u2MXHOHIghlJicnRz5z5oyck5Nj7lAe25AhQ+SIiIgC67p16ya3adNGTk1NlQcNGiQ7OzvLKpVKDgsLk8+fP2/aLjExUX7llVdkZ2dn2dbWVm7QoIH8008/yZcvX5aBAj9DhgyRZVmW09PT5QEDBsi2trZyjRo15IULF8odO3aUx40bZzqur6+vPHv2bHnQoEGyg4ODad99+/bJL730kmxjYyP7+PjIY8aMkTMzM2VZluUTJ07IgJyYmPjIc7169apsZWUlv/vuu4UeW7JkiQzIf/zxhyzLsukcTpw48fgvap78z5lff/31kdt8/vnnsr+/f6mP+ffXqrQAefPmzSVuV1zMq1evlp2cnAqt3759u6xQKOQbN26Y1i1fvlx2dHSU1Wp1kc+zefNmWZKkYv9/3bp1SwbkPXv2lBh3cfEVpbi/2Yp6ffA8iddE+LtvRr8tz+/7sjy/78vyu2M6yo2iGsn/Hr5dXjpyl5y8dVeJ+7+8doLsO2Wb7D/1R/mFOT/Jw9cckg0GQxlEbmY6jRx86JRc/bcT8oAN/5YnHtorH7mfae6oBOGZMhgM8r/WHpP/3+au8q+7Akw/d+/uN3dowjNU2muDqnG7QRAE4RmRZRmNwYDaYEBjMDz9sTSaMv+RZfmpXweVSoVGo2Ho0KEcPXqU6OhoDh06hCzL9OzZE61WC8CoUaNQq9Xs3buXkydPMm/ePOzt7alZsyY//PADAPHx8aSkpLB48WIA3n33XQ4cOEB0dDQxMTHs27eP48ePF4ph/vz5NG3alBMnTvDRRx+RkJBAWFgYvXv3Ji4ujvXr17N//35Gjx4NgLu7OwqFgo0bN6LP63Pydxs3bkSr1RZZETVy5Ejs7e357rvvnvr1A2P1ztdff42Tk1Ox1U1paWm4uLg8k+d8WqWN+e8OHTpE48aNqV69umldaGgo6enpnD59ush9Vq1aRdeuXfH19X3kcdPS0gDKzesjCMIDBv2Dz0iPezK9DhhMw/cUpah40uXt7+NqwbEPevLN4DaVfxau1MvwRSC5964CMPFKFPNdsmnpZGfmwATh2UrN0vBTXAr2VvcBOJTSChfPyVSr1sa8gQlmIWbfEwRB+Js5CdfZeOMeWllGL8vo8v6rlWV0D+VzXnK2Z2PzwCd+Hq1Wy6effvoMIn4877//PspSDJ0oiizL7Nq1i507d9KjRw+2bNnCgQMHaNeuHQBr166lZs2abNmyhT59+nD16lV69+5N48aNAQgICDAdKz+R4OHhYerzk5GRwZo1a1i3bh1dunQBYPXq1Xh5eRWKpXPnzkycONG0PHz4cAYOHGjqpxQUFMSSJUvo2LEjy5cvx9vbmyVLljB58mRmzZpFy5YtCQkJYeDAgaa4zp8/j5OTE56enoWeT6lUEhAQwPnz55/otcu3bds2+vfvT3Z2Np6ensTExODm5lbkthcvXuSrr75i/vz5T/WcT+txYi7KjRs3CiSkANPyjRs3Cm1//fp1fv75Z9atW/fIYxoMBsaPH09wcDCNGjUqdSyCIJQN2WCgnmNrzqX/ie8NaJpk4PcOxqSShZ1tiftr8pJSVaWPFADJxyD3/oNZ96ztwbP0NwAEoaJIzzX2mcvvJfVW91l4u5du8gOh8hGVUoLZPINiDUF45lK1Ov599RY3NFruanXc1+nJ1BvIMRRMSFU127Ztw97eHhsbG3r06EG/fv0YOnQolpaWvPjii6btXF1dqVu3LmfPngVg7NixzJkzh+DgYGbMmEFcXFyxz3Pp0iW0Wi2tW7c2rXNycipylqaWLVsWWP7rr7+IiorC3t7e9BMaGorBYODy5cuAsXLrxo0brF27lrZt27JhwwYaNmxITExMqV+L0iT01q5dWyCOffv2mR4LCQkhNjaWgwcPEhYWRt++fbl161ahYyQnJxMWFkafPn0YMWKEaf3Dx42MjCxVzPv27Suw39q1a0u13+PG/KysWbMGZ2dnXnvttUduM2rUKE6dOsX3339vWhcZGVngPAVBMB9LgxVKC1XekszFGg8anasal5xIzq+UsrKoQl9XdLkAqC2NlVHWQ38EhxrmjEgQnjmN5i5X49/kiw7TUVkaf+fdndzNHJVgTqJSSihzkiQSUkL5laLWkj/g4PdWdbGUJKwUEhaShKUElpKEUpJQSBJPe/PWysqqxAbWz4OV1eM3kAwJCWH58uUolUq8vLywtLQkOjq6xP2GDx9OaGgoP/30E7/88gtz585lwYIFjBkz5klCL8DOruBwhszMTEaOHMnYsWMLbfvwLE8ODg6Eh4cTHh7OnDlzCA0NZc6cOXTr1o2goCDS0tK4fv16oeosjUZDQkICoaGhJcb26quvFkjWeXt7F4g7MDCQwMBA2rRpQ1BQEKtWrWLatGmmba5fv05ISAjt2rXj66+/LnDsh2f7c3R0LDEWMCbwHt7v71VLJSlNzMWpUaMGf/75Z4F1N2/eND32MFmW+fbbbxk0aNAjE4CjR49m27Zt7N27Fx8fH9P62bNnP3UzekEQng2D1oBsbfxEVcjwZ10FNUzD90r+CqLVGy8Wq1RSSpsDQK5kfH2sS/E6CUJF8vPJFA6d/p6OHqdxsTGus7HxxsrKybyBCWYl3ukEQRAekqUz9hryVympb68qYeunI0nSEw+jK2v5SYmH1a9fH51Ox+HDh03D9+7evUt8fDwNGjQwbVezZk0iIyOJjIxk2rRpfPPNN4wZM8Z07g/3dwoICMDKyoojR46YEklpaWmcP3+eDh06FBvjCy+8wJkzZwrFWRxJkqhXrx4HDx4E4I033mDKlCksWLCABQsWFNh2xYoVZGdnM3jw4BKP6+DggIODQ6liMBgMqNVq03JycjIhISG0aNGC1atXo/jbVOCPc375VCrVE+33KH+PuSRt27blk08+4datW3h4eAAQExODo6Njgd8VMM6wd/HiRYYNG1boOLIsM2bMGDZv3szu3bvx9/cv8LiHh4fp+IIgmJlBxiAbk1KSLKNXKIzTWgAKi5Lv6miraKWUAQlNXlLKRlGFzl2oEhbGnMfH+iZ4wJm7dUjSvcWnfV5GksQMk1WZSEoJgiA8JCvvItjOQnw4liQoKIiIiAhGjBjBypUrcXBwYOrUqXh7exMREQHA+PHj6dGjB3Xq1OHevXv8/vvv1K9fHwBfX18kSWLbtm307NkTlUqFg4MDQ4YMYdKkSbi4uODh4cGMGTNQKBQlNridMmUKbdq0YfTo0QwfPhw7OzvOnDlDTEwMS5cuJTY2lhkzZjBo0CAaNGiAUqlkz549fPvtt0yZMgUwVlR9/vnnvPfee9jY2DBo0CCsrKzYunUr77//PnPmzCnUvyg+Pr5QLA0bNixUkZaVlcUnn3zCq6++iqenJ3fu3GHZsmUkJyfTp08fwJiQ6tSpE76+vsyfP5/bt2+b9v97RdHf5VdCZWZmcvv2bWJjY1EqlYWSPg/LzMzk4sWLpuXLly8TGxuLi4sLtWrVKlXMAFevXiU1NZWrV6+i1+tNsQQGBmJvb0/37t1p0KABgwYN4vPPP+fGjRt8+OGHjBo1Cmtr6wIxrVq1ihdffLHIPlGjRo1i3bp1bN26FQcHB1M/KicnJ1SqRyeRS4pPEITnQAY5LwslAXrpQVJKKkWpsS6vbFlZiqbolcFNtZYotRdZtf9lWmdTlfppCZWeVpuGh/IotZ2MLRWCvOryj2avYWlZMW7QCs+PSEoJgiA8JNuQn5SqGhfBT2v16tWMGzeOV155BY1GQ4cOHdi+fbspIaPX6xk1ahTXrl3D0dGRsLAwFi1aBBiHtM2aNYupU6fy1ltvMXjwYKKioli4cCGRkZG88sorODo6MnnyZJKSkrCxsSk2liZNmrBnzx4++OAD2rdvjyzL1K5dm379+gHg4+ODn58fs2bNIjExEUmSTMsTJkwwHWfChAkEBASwYMECFi9eTFZWFgDfffcd/fv3L/S8Ra1LSkoqMKwMwMLCgnPnzrFmzRru3LmDq6srrVq1Yt++fTRs2BAwVg9dvHiRixcvFtq/pFkTmzdvbvr3sWPHWLduHb6+viQmJj5yn6NHjxISEmJafvfddwEYMmQIUVFRpYoZYPr06axZs6ZQLL///judOnXCwsKCbdu28c4779C2bVvs7OwYMmQIs2fPLhBPWloaP/zwg2kmxr9bvnw5AJ06dSqwfvXq1QwdOvSR51lSfIIgPHuSDPJDlVIGC4n88fHF3WPQ6DXE3Y57qKdU1bhJtPJKCv+mNvjUBkClkESllFBppOdq+Ss2krcbPBjKH1jDm2p2IiElgCQ/i7nBK6n09HScnJxIS0srdd+O8uDIkddJz4ijaZNvcHPrbO5wCvGf9hOyDEc+6Iq7g3XJOwhCGUjT6liYeJMTGdn8mZZFiIsD3zWt/cyOn5uby+XLl/H39y8xuSIUlJWVhbe3NwsWLChySNfzlpqaSpcuXXB0dOTnn3/G1rbkWaOEiq+4v9lncX2wfPlyli9fbkoaNmzYkOnTp9OjRw/AOCvhpEmTiImJISMjg7p16/LBBx/Qu3dv0zFSU1MZM2YMP/74IwqFgt69e7N48eIC1V9xcXGMGjWKI0eO4O7uzpgxY5g8eXKBWDZs2MBHH31EYmIiQUFBzJs3j549ez7W+VTUaybh+ZBlmVWD3sbT1p9zaX/irPXgVo06OBqMk1iMXNIRS2XRyaYP9n9AdEI0mtS2qG9G0LWBC/9vcNuyDL/sndzI+FMX+L5GD9reP8ELjna0axZGF1fxtyRUfLlaPS/N+40pL0zBxSaNpAwvGtcMoF7d6djZPbtrbaH8Ke21gUi/C4IgAKuS77Dy2m3+TDNWxXhbizs35nLixAm+++47EhISOH78OAMHDgQwDQksay4uLvz666906dKFQ4cOmSUGofLx8fHhs88+49ixYxw9epTOnTsTERHB6dOnARg8eDDx8fFER0dz8uRJevXqRd++fTlx4oTpGAMHDuT06dPExMSYGr//85//ND2enp5O9+7d8fX15dixY3zxxRfMnDmzQPP8gwcP8uabbzJs2DBOnDjBa6+9xmuvvcapU6fK7sUQKh2DXo9CUmDIu/edYV/LlJCyslagKGZIXlJGEgAOVs4A2FlVgRs5l3ajlowVxj1SD/ORr4tISAmVxs30XO5karCzMjbyT+IjWrywRiSkBBMxfE8QBAE4np4NQF07G/7p405PdzELiDnNnz+f+Ph4lEolLVq0YN++fbi5uZktHldXV6ZPn2625xcqn/Dw8ALLn3zyCcuXL+ePP/6gYcOGHDx4kOXLl9O6tfGL/IcffsiiRYs4duwYzZs35+zZs+zYsYMjR47QsmVLAL766it69uzJ/Pnz8fLyYu3atWg0Gr799luUSiUNGzYkNjaWhQsXmpJXixcvJiwsjEmTJgHw8ccfm/qwrVixogxfEaEyMRj0IINO1hhXSAoyLc5isFXSf+irKIrplZSWYUfuzZ7UUHbiDgasqkJPKZ2aXAvj6AGb7rOg5uPNkCoI5ZXBoOPmjY287H8Mawvj+8HUnq3NHJVQ3lSBd3lBEISS3VRrAfiothcDvVypZiVy9ubSvHlzjh07RmZmJqmpqcTExNC4cWNzhyUIz41er+f7778nKyuLtm2Nw5TatWvH+vXrSU1NxWAw8P3335Obm2vqgXXo0CGcnZ1NCSmArl27olAoOHz4sGmbDh06FJjlMzQ0lPj4eO7du2fapmvXrgXiCQ0NLbEqUK1Wk56eXuBHEPKd2bOLe9qbXMr4K2+NRKblBXLskvCsXfxNn8TLzdCmduDCDWNPKWeVVbHbVwq6HHIVxr9TG6sqcL5ClWAwyJxJ3EnGzdn0CvoJAIVCiaVl6WYnFqoO8a1LEAQBuKExJqVqKMXboiAIZePkyZO0bduW3Nxc7O3t2bx5s2m2xP/973/069cPV1dXLC0tsbW1ZfPmzQQGBgLGnlMeHh4FjmdpaYmLi4tpVsIbN27g7+9fYJvq1aubHqtWrRo3btwwrXt4m/xjPMrcuXOZNWvWk5+8UKklx599aMkChWUtZOk2CiQUJTTv1mqNSZnWta1oH+BPv9Y1n2Ok5YQ2l9y85LG1mHFPqCQi/3sMbcY+/lEfbme7clvTmL4v9UaSqsbkBULpiUopwWzypwkWBHPTGWTuaHQAVLcWdygFQSgbdevWJTY2lsOHD/POO+8wZMgQzpw5A8BHH33E/fv3+fXXXzl69Cjvvvsuffv25eTJk2aO2mjatGmkpaWZfpKSkswdklAOZKen8cPcGVw68gcAx+rew1XRFgurmvhrFEilSErJsjEp06WRLWO6BOHhULl7SsmyjF6nJldhHL6nEjPuCZXE8av3UFka+0hdSq+Li/d0qns83iQaQtUgSgKEMieBSEcJ5cb/Xb/DDzfuIQMWEriKYXuCIJQRpVJpqnxq0aIFR44cYfHixUyePJmlS5dy6tQpGjZsCEDTpk3Zt28fy5YtY8WKFdSoUYNbt24VOJ5OpyM1NZUaNWoAUKNGDW7evFlgm/zlkrbJf/xRrK2tsbYWM+gKBV356ziJscdMy3pJxgpjVYSHTiLF0rLEpJTBYHzcxrLyfx7rZZlXjl3ghO/HpnXWIiklVAL37h2hu8/3BDhdAqBPq/oEBfmaOSqhvBLveoIgVFl6WeajC8n8kTfjXn07FQpJlM0LgmAeBoMBtVpNdrZx4oW/f3m3sLDAYDD22Wnbti3379/n2LEHCYDffvsNg8HAiy++aNpm7969aLVa0zYxMTHUrVuXatWqmbbZtWtXgeeJiYkx9bYShMeh1xmrjpVKY8LSOUtGyksy2dnb0bdv35KTUrLxcesqkJRK2b2IExnZpmUXhYEG9pW7Mkyo/FbuSWDPkXfpUms3/k5XAbC2Lv5Gh1C1iaSUIAhV1rVcDbkGGaUksbqRH983FVPTCoJQNqZNm8bevXtJTEzk5MmTTJs2jd27dzNw4EDq1atHYGAgI0eO5M8//yQhIYEFCxYQExPDa6+9BkD9+vUJCwtjxIgR/Pnnnxw4cIDRo0fTv39/vLy8ABgwYABKpZJhw4Zx+vRp1q9fz+LFi3n33XdNcYwbN44dO3awYMECzp07x8yZMzl69CijR482x8siVHAGgx4Ai7zE0+uHDFjojf+uVs2ROnXqlHgMOS+JZV3ZK5czbpL757cAOOoyOHMgnNh6trgrRRsBoeK6di+buT+fw5K7ABxM6Uhg7Sl4efUxc2RCeVbJ3+2rqLxKD9GzSRCKlz/jnqe1FT3cnc0bjCAIVcqtW7cYPHgwKSkpODk50aRJE3bu3Em3bt0A2L59O1OnTiU8PJzMzEwCAwNZs2YNPXs+6Mexdu1aRo8eTZcuXVAoFPTu3ZslS5aYHndycuKXX35h1KhRtGjRAjc3N6ZPn84///lP0zbt2rVj3bp1fPjhh7z//vsEBQWxZcsWGjVqVHYvhlBpyHmVfIq8aidJljFY5CWZ3OxLd4y8fW0sKvnXFE3mgz5SVipcBm+A6vXMHJQgPJ076Wk4KdNQWaoBeL3DLHxrVoHJCoSnUsnf7QVBEB7tvs54R9fZSswCIghC2Vq1alWxjwcFBfHDDz8Uu42Liwvr1q0rdpsmTZqwb9++Yrfp06cPffqIu9jC0zMYDNR2aEaOLpUsspCAbHcZdKBwdi3VMfKTUkrLSv7ZrFOTY5GXlLKxhVoNzByQIDyd9IxT3L3Ul4Wd1HlrJBr6eJk1JqFiEMP3BEGosvKTUtWqQN+KpzF06FAkSUKSJFNj5tmzZ6PL6x3ypHbv3o0kSdy/f//ZBFoKly9fZsCAAXh5eWFjY4OPjw8RERGcO3euwHbbtm2jY8eOODg4YGtrS6tWrYiKiiqwTWJiIpIkERsbW+rnnzlzJvXq1cPOzo5q1arRtWtXDh8+XOCYw4YNw9/fH5VKRe3atZkxYwYajabEY69du5amTZtia2uLp6cnb7/9Nnfv3i12n7179xIeHo6XlxeSJLFly5Yitzt79iyvvvoqTk5O2NnZ0apVK65evWp6fOTIkdSuXRuVSoW7u3uRr+mRI0fo0qULzs7OVKtWjdDQUP76668in+/ixYs4ODjg7Oxc4nmX9hwEQXj+ZL0eF2tPZIyfr5IMWRgrpBT+7Ut3DIMxGWVT2Yfv6XJNlVI2orm5UMFtOZHM5HX/BVltWufh0QNJquTJZeGZEO+AgiBUOfe1Oj5JuM6754xfqkWlVMnCwsJISUnhwoULTJw4kZkzZ/LFF1+YOyyT0iRttFot3bp1Iy0tjU2bNhEfH8/69etp3LhxgcTYV199RUREBMHBwRw+fJi4uDj69+9PZGQk77333lPFWadOHZYuXcrJkyfZv38/fn5+dO/endu3bwNw7tw5DAYDK1eu5PTp0yxatIgVK1bw/vvvF3vcAwcOMHjwYFPvoA0bNvDnn38yYsSIYvfLysqiadOmLFu27JHbJCQk8NJLL1GvXj12795NXFwcH330ETY2D5rxtmjRgtWrV3P27Fl27tyJLMt0794dvd74xTQzM5OwsDBq1arF4cOH2b9/Pw4ODoSGhhZowg3G/09vvvkm7duX7gtsac5BEISyYTAYUKBAxjiMT5JltBgTL1IpK59k2bidylL5fIIsJ3I0am4pXQCRlBIqvh2nbmAlZQKwO6kdJw0/07jRV2aOSqgoKvktCEEQhMJWJt3mq6sPplJv7WRnxmgqBmtra9MU8e+88w6bN28mOjqayMhIxo0bx48//oharaZjx44sWbKEoKAgAK5cucLo0aPZv38/Go0GPz8/vvjiCxo0aEBISAiAaRawIUOGEBUVRUZGBpGRkWzZsgVHR0cmT57M1q1badasGV9++SUAfn5+DBs2jAsXLrBlyxZ69epFVFQU+/fvZ9q0aRw9ehQ3Nzdef/115s6di52dHadPnyYhIYFdu3bh62ucltjX15fg4GDTeSYlJTFx4kTGjx/Pp59+alo/ceJElEolY8eOpU+fPqbZzR7XgAEDCiwvXLiQVatWERcXR5cuXQgLCyMsLMz0eEBAAPHx8Sxfvpz58+c/8riHDh3Cz8+PsWPHAuDv78/IkSOZN29esfH06NGDHj16FLvNBx98QM+ePfn8889N62rXLjgpwMM9ivz8/JgzZw5NmzYlMTGR2rVrc+7cOVJTU5k9ezY183pLzJgxgyZNmnDlyhUCAwNN+3/44YfUq1ePLl26cPDgwWJjK+05CIJQNnIz1UiShCznJaWQAWOSSWHx6Nlt/3tmLQv3/IZW4wByZwBsrCpvw++zmTm8fMWG7PofAWCjEDP/ChVXrvoGbpZ7cHW6AkCf1g1oUr/kSQ0EIZ9IywtlIjkzmd+v/k58ary5QxEEYvOmX/axseLjQG/+4VW6PhfPmizL6PXZZf4jy08/CYJKpUKj0TB06FCOHj1KdHQ0hw4dQpZlevbsaap+GTVqFGq1mr1793Ly5EnmzZuHvb09NWvWNPXLiY+PJyUlhcWLFwPw7rvvcuDAAaKjo4mJiWHfvn0cP368UAzz58+nadOmnDhxgo8++oiEhATCwsLo3bs3cXFxrF+/nv3795tmEXN3d0ehULBx40ZTBc/fbdy4Ea1WW2RF1MiRI7G3t+e777576tcPjNVdX3/9NU5OTjRt2vSR26WlpeHi4lLssdq2bUtSUhLbt29HlmVu3rzJxo0bCzTFfhIGg4GffvqJOnXqEBoaioeHBy+++GKxQ+SysrJYvXo1/v7+pgRU3bp1cXV1ZdWqVWg0GnJycli1ahX169fHz8/PtO9vv/3Ghg0bRNWTIFRQep0eCQWGh4bv5X/dUBSTeNkQd4jUK73ISOmGMYklU93e+XmHazaxGdlky8bXw0LWE+rmZOaIBOHJyLLMX7HDCam+jCbuZwBwsnMzc1RCRSMqpYTnTq1X0+fHPmRoMgCQlBNAXR0xOaBgLll64x3cWYHevGzGWfcMhhx272lc5s/bqeNJLCxsn2hfWZbZtWsXO3fupEePHmzZsoUDBw7Qrl07wNjXqGbNmmzZsoU+ffpw9epVevfuTePGxvMMCAgwHSs/0eLh4WHqHZSRkcGaNWtYt24dXbp0AWD16tWmKe4f1rlzZyZOnGhaHj58OAMHDmT8+PGAsVH0kiVL6NixI8uXL8fb25slS5YwefJkZs2aRcuWLQkJCWHgwIGmuM6fP4+TkxOenp6Fnk+pVBIQEMD58+ef6LXLt23bNvr37092djaenp7ExMTg5lb0BdzFixf56quviq2SAggODmbt2rX069eP3NxcdDod4eHhT53cuXXrFpmZmXz22WfMmTOHefPmsWPHDnr16sXvv/9Ox44dTdv++9//ZvLkyWRlZVG3bl1iYmJQKo3DbxwcHNi9ezevvfYaH3/8MWD8/7Nz504s83q63b17l6FDh/Lf//4XR0fHp4pbEATzMOj1SJLCVCmlkGUkjMkXqZikVLba+D5gay3TPqgabQNq4Gr3ZJ9T5d6VQ+TGnwarlrx8ew/fZO5E0Xm7uaMShMd2+noaA745zNx2F7G2gAv3Amjg40/16uHmDk2oYESllPDc3cu9Z0pIASis0swYjSBAZl6DczsL8RZYWtu2bcPe3h4bGxt69OhBv379GDp0KJaWlgWGsrm6ulK3bl3Onj0LwNixY5kzZw7BwcHMmDGDuLi4Yp/n0qVLaLVaWrdubVrn5ORE3bp1C23bsmXLAst//fUXUVFR2Nvbm35CQ0MxGAxcvnwZMFZu3bhxg7Vr19K2bVs2bNhAw4YNiYmJKfVrkZ9oKc7atWsLxPHw7GchISHExsZy8OBBwsLC6Nu3L7du3Sp0jOTkZMLCwujTp0+B3lAPHzcyMhKAM2fOMG7cOKZPn86xY8fYsWMHiYmJpsf37dtXYL+1a9eW6lwNedO7R0REMGHCBJo1a8bUqVN55ZVXWLFiRYFtBw4cyIkTJ9izZw916tShb9++5ObmApCTk8OwYcMIDg7mjz/+4MCBAzRq1IiXX36ZnJwcAEaMGMGAAQPo0KFDkbE86TkIglB29Do9ChQY8npKyUiQ1yOquEopbd7NIu9qVqz8RzBD29V+5LYV3o/jUF81TnChMqhR2FYzc0CC8GQOXrxLljobawtjdfzaC2Np1nQZNtY1zByZUNGISinhucvUZJo7BEEoIL9Syt7CvA3OFQoVnTqeNMvzPq6QkBCWL1+OUqnEy8sLS0tLoqOjS9xv+PDhhIaG8tNPP/HLL78wd+5cFixYwJgxY54k9ALs7Ar2AsvMzGTkyJGmvkoPq1WrlunfDg4OhIeHEx4ezpw5cwgNDWXOnDl069aNoKAg0tLSuH79eqHqLI1GQ0JCAqGhoSXG9uqrrxZI1nl7exeIOzAwkMDAQNq0aUNQUBCrVq1i2rRppm2uX79OSEgI7dq14+uvvy5w7Idn+8uvKJo7dy7BwcFMmjQJgCZNmmBnZ0f79u2ZM2cOLVu2LLBf9erVSzwHADc3NywtLWnQoOBU5fXr12f//v0F1jk5OeHk5ERQUBBt2rShWrVqbN68mTfffJN169aRmJjIoUOHUOQ19F23bh3VqlVj69at9O/fn99++43o6GhTVZgsyxgMBiwtLfn666958803n+gcBEEoO8ZKKQvTMPGTjd/BWm+sipWK6SmVn5Syqgo3i7LvorY13tywrl4fmvQ2c0CC8PhkWcZW/f8Y3Sz/ZqOCXe/1QClmtBaegPitqZTyPvSfQd+YZyFTK5JSQvmw7dZ9LmTnckerA8xfKSVJ0hMPoytr+YmUh9WvXx+dTsfhw4dNw/fu3r1LfHx8gSRGzZo1iYyMJDIykmnTpvHNN98wZswYU8XRw/2dAgICsLKy4siRI6ZEUlpaGufPn39kBU2+F154gTNnzhSKsziSJFGvXj1TQ+033niDKVOmsGDBAhYsWFBg2xUrVpCdnc3gwYNLPK6DgwMODg6lisFgMKBWP5hCOTk5mZCQENOMdoq/zcpU1PllZ2ebhsHls8hLusqyjEqleqzXJZ9SqaRVq1bExxfsB3j+/HlTs/iiyLKMLMum88rOzkahUCBJD76U5i/nV2MdOnSowO/C1q1bmTdvHgcPHsTb2/uJz0EQhLJj0BuQsEKfN3zP1E9KKePqZf/I/XQG4zVrlUhK6XLJVeQlpbybg6uPmQMShMeTnqsl7vIJalisp0Ze9wGVqqZISAlPTPzmCM/NmtNr+L8z/4dary55Y0F4zuKzchl+OrHAOhcr8Rb4NIKCgoiIiGDEiBGsXLkSBwcHpk6dire3NxEREQCMHz+eHj16UKdOHe7du8fvv/9O/fr1AePMd5IksW3bNnr27IlKpcLBwYEhQ4YwadIkXFxc8PDwYMaMGYUSGkWZMmUKbdq0YfTo0QwfPhw7OzvOnDlDTEwMS5cuJTY2lhkzZjBo0CAaNGiAUqlkz549fPvtt0yZMgUwVlR9/vnnvPfee9jY2DBo0CCsrKzYunUr77//PnPmzKFRo0YFnvfvCRuAhg0bYvW3maOysrL45JNPePXVV/H09OTOnTssW7aM5ORk+vTpAxgTUp06dcLX15f58+dz+/Zt0/75sx8WJTw8nBEjRrB8+XJCQ0NJSUlh/PjxtG7dush+XPkyMzO5ePGiafny5cvExsbi4uJiSgpOmjSJfv360aFDB0JCQtixYwc//vgju3fvBoxDLtevX0/37t1xd3fn2rVrfPbZZ6hUKlOj9W7dujFp0iRGjRrFmDFjMBgMfPbZZ1haWppmYcz/vch39OhRFApFodf7Sc5BEITnz6DXc+9GEinaDNLlLAAUsoFL1TfSve1r2Do+euhz3qh6lJU9KSXLoM15kJQSs+4JFdCbX/+BLucYk1vB/VxHdHbDCW/6srnDEiow8Y1MeG42nt/Izeyb5g5DEAC4pTaOd69macHr1avRzNGW6taVd7rpsrJ69WrGjRvHK6+8gkajoUOHDmzfvt2UkNHr9YwaNYpr167h6OhIWFgYixYtAoxD2mbNmsXUqVN56623GDx4MFFRUSxcuJDIyEheeeUVHB0dmTx5MklJSdjY2BQbS5MmTdizZw8ffPAB7du3R5ZlateuTb9+/QDw8fHBz8+PWbNmkZiYiCRJpuUJEyaYjjNhwgQCAgJYsGABixcvJivL+OXqu+++o3///oWet6h1SUlJ+PgUvPttYWHBuXPnWLNmDXfu3MHV1ZVWrVqxb98+GjZsCEBMTAwXL17k4sWLhfYvbtbEoUOHkpGRwdKlS5k4cSLOzs507tyZefPmFfuaHT161JQUAuPMhwBDhgwhKioKgNdff50VK1Ywd+5cxo4dS926dfnhhx946aWXALCxsWHfvn18+eWX3Lt3j+rVq9OhQwcOHjyIh4cHAPXq1ePHH39k1qxZtG3bFoVCQfPmzdmxY0eRTeUfR2nOQRCE5+9y7DGunztRYJ0kG28oWFgWn2zS6Y3vb0pL8w6rf950Og0XVLW4oXQHwEZRyZNwQqUjyzLxNzJo7GrsB6mWPWjf+C1sbStG5b9QPknys5gbvJJKT0/HycmJtLS0CjUT0JGjvUlPj6VJ45W4u3c1Wxxd/teFWzm3+LzD59R2rs20fdM4f+88uUlvo82sw5/vd8HDsfgvmYLwrOy8k8aQk5d5wdGW7S3qlPnz5+bmcvnyZfz9/UtMrggFZWVl4e3tzYIFCxg2bFiZP39qaipdunTB0dGRn3/+WVx4VRHF/c1W1OuD50m8JsLJ33/hlxVLyLU2cNfRQK2MYGwsA1vMxgABAABJREFUmnHL6w9e6tyFzp07P3LfhovfISvlFTrVcyZqaHAZRl223jwRz+/3c0zLU/1rMN5PNIUWKo5z57/grwv/w9pCjYMyC1fXjjRr+q25wxLKqdJeG4j0vPDc5OiMH7r1XOpRp1odLKTKfferstHpDWSpdeYO45nJzmuiqhJ3Jcu9EydO8N1335GQkMDx48cZOHAggGlIYFlzcXHh119/pUuXLhw6dMgsMQiCIJR3cl5/uHsOOk4F6rBSBaPAgI2tHbVrFz2b3rWMa8RciUGX14LKujJXSu1fxKm7xiHZLto0gmyt6ebmZOagBKF09AaZ/RfucO3at7ipUnFQGqvI7e0blLCnIJRMDN8Tnpv8pJTK8vFn+hKeL43OwLA1RziVnIbeIGOQjR82elnGYJBNDUcVEiR82rPEXj4VQX5Syray96uoJObPn098fDxKpZIWLVqwb98+3NzczBaPq6sr06dPN9vzC4IglHc6rXGYvF2unvrXjMklSdYzaepUpCJuCOkMOt786U3uq++DbJzIotImpe4nwa8zyQneDsC28zMJGP27mYMShNL78a/rTNrwJyu6agBYcepdvn27C/Z2ZT/6QKh8RFJKeC60Bi062VhlI5JS5cfu+FvM3X6O+JsZpdreIBtnxLEqZhrn8k5jMBBzN53994znLJJS5V/z5s05duyYucMQBEEQSinmm6XE/boDgDrX9AT+ZcHRliDJhiITUgC5ulxjQgrwtPUhEVBZWpdNwGVNbbwGyVUYz0/12lfmjEYQHlvy7VO0rnEcAIOs4I02r+Bg/+hZeAXhcYiklPBMJWUkMXTHUO7k3DGts7Usuv+KaGZW9r7/M6lAQio40JXZEY2wkCQsFBIKhYSFJKFQgLWFBdZWCiwr+MwwXyfdZs6lFNOyU2W9CysIgiAIZnLpxFHTvyVZ5p698bPW0vbRM+5pDVq06U3QZwXgYPcSkI6VZcW+5ngkXS5ayQKdwvjVy6Z6PTMHJAill5t7nboWo6nXyDjqwFpZjX6tRUJKeHZEUkp4po7dPMat7Fum5cZujbFUFPw1q6SXGxVCapax5HZSaF061XWnXg1HLCp40qkke/IqpCwl6FW9Gv+s6W7miARBEAShcjHo9aZ/SzIcbGBJdQNYuj36MzdboyE3uS9gycn76QC4FJPEqtD0GnIUDyZMEP0thYpi7eErbDiwlTHNDKj1VsiWdagX8Ka5wxIqGZGUqpTykwxlX4uUpTU2vevk04mP2n6Eq41rpehHVFmkZhuTUs1rOdPQq2o010zXGS+UVzfyFw1FBUEQBOE50Km1+Ns35nLmSSRkDJIx6aIo5sZXlkZD/leRsV2CcLC25I0WPmURbpnbk6HnqM8bgPEq3bqS3xAUKo8f/7qOJBu/3yVnetOq5X/w9nY2b1BCpSOSUsIzla3NBqCaTTU8bD2K3kgSA/fKksEg8+HWU5y5ns7FW5kAeDhU0p4NRchvcG5nIYbtCYIgCMLzYCPZY29VDTBe5hkUFqAHRTE9KXPzGqMDjO8SVGwCqyK7pdbS/5Ytst/bADhaWogbtkKFIMt69NobuKnuAtDM14dmNZ3NG5RQKYmklPBM5VdK2VnZFXpMfACbx4mk+6w7fNW0XNNFRYCbvRkjKltZ+UkpS1EqLwiCIAjPgyTLyLLB9G9D3vA0qZhEU44uPymlr7QJKYA7Wh0yEjZ6Na9knyKsTW9zhyQIJdp7/jZZ14cTWf+UaZ2N0tGMEQmVmUhKCc/E3mt7mX1oNqm5qQDYWhXd3Fwoe+fzGps38XHiX51q07Smc6W++Mt3U63ldGYOaXnD9+zErHuCIAiC8HwYQCYvKQXIpRi+l5uXlJIkw3MPz5xyDcbzc9OmsjR1M3gMM3NEglC8CzczeGv1Ib7uZkxIaQ0WWFvZ4uEeZubIhMpKJKWEZ2LH5R3czL4JgEJS0NS9qZkjEn6Pv8WCX+JJuZ8LQGs/F8IaeZo5qrKhNhjodjSeWxqdaZ2DGL4nCIIgCM+FJINBNrZnUMgysmT8zC1u+J5aa/yMlhSVNCml18G6PqizDFB3FjYGDVhWnfYJQsWVdC8bOyvj6BdZlkhQ/MiojnXNHJVQmYnSAeGZyNYZe0mNajaKPX330MGng5kjEtb+cZVTyenczZtxr7W/i5kjKjux6dmmhFRLR1tG1/KgurWVmaOquIYOHYokSUiShFKpJDAwkNmzZ6PT6UreuRi7d+9GkiTu37//bAIthcuXLzNgwAC8vLywsbHBx8eHiIgIzp07V2C7bdu20bFjRxwcHLC1taVVq1ZERUUV2CYxMRFJkoiNjS3188+cOZN69ephZ2dHtWrV6Nq1K4cPHy5wzGHDhuHv749KpaJ27drMmDEDjUZT4rHXrl1L06ZNsbW1xdPTk7fffpu7d+8Wu8/y5ctp0qQJjo6OODo60rZtW37++WfT46mpqYwZM4a6deuiUqmoVasWY8eOJS0tzbRNVFSU6ffj7z+3bj2YjVWtVvPBBx/g6+uLtbU1fn5+fPvttwXi+fLLL03PVbNmTSZMmEBubm6x57Bp0ya6d++Oq6vrY///EATh6cmybKyOyquU0lg5opS9geKH7z2olNI/cpsK7c55SPiNXLXxy721QQPVG5k5KEEonlp9G/XdLxjcYD0AVlaOjOosElLC8yUqpYRnIkeXA4C3vTfONs7mDUYAICfvDuS/OtWmZ2NPGnpVnXHgd/LOvZWjHT+2CDJzNJVDWFgYq1evRq1Ws337dkaNGoWVlRXTpk0zd2gAaDQalMripxLXarV069aNunXrsmnTJjw9Pbl27Ro///xzgcTYV199xfjx45kyZQrLly9HqVSydetWIiMjOXXqFPPnz3/iOOvUqcPSpUsJCAggJyeHRYsW0b17dy5evIi7uzvnzp3DYDCwcuVKAgMDOXXqFCNGjCArK6vY5z1w4ACDBw9m0aJFhIeHk5ycTGRkJCNGjGDTpk2P3M/Hx4fPPvuMoKAgZFlmzZo1REREcOLECRo2bMj169e5fv068+fPp0GDBly5coXIyEiuX7/Oxo0bAejXrx9hYQVL+ocOHUpubi4eHg8mvOjbty83b95k1apVBAYGkpKSgsHwoEJi3bp1TJ06lW+//ZZ27dpx/vx5U0J04cKFjzyHrKwsXnrpJfr27cuIESNK/H8gCMKzJcsGJElh6il1s3prPHONNycVxQydf5CUqqQT4ORN/qO2qw6AjXtdePENc0YkCMX6K+k+h/5aSpDtZprnfXyrbCrnjJhC+SKSUsIzkZ+UUlmqzByJkC9Xa7w4bOLjRCNvJzNHU7bStMa7rk5WYsjes2JtbU2NGjUAeOedd9i8eTPR0dFERkYybtw4fvzxR9RqNR07dmTJkiUEBRmTgVeuXGH06NHs378fjUaDn58fX3zxBQ0aNCAkJASAatWMMzYNGTKEqKgoMjIyiIyMZMuWLTg6OjJ58mS2bt1Ks2bN+PLLLwHw8/Nj2LBhXLhwgS1bttCrVy+ioqLYv38/06ZN4+jRo7i5ufH6668zd+5c7OzsOH36NAkJCezatQtfX18AfH19CQ4ONp1nUlISEydOZPz48Xz66aem9RMnTkSpVDJ27Fj69OnDiy+++ESv44ABAwosL1y4kFWrVhEXF0eXLl0ICwsrkOAJCAggPj6e5cuXF5uUOnToEH5+fowdOxYAf39/Ro4cybx584qNJzw8vMDyJ598wvLly/njjz9o2LAhjRo14ocffjA9Xrt2bT755BP+8Y9/oNPpsLS0RKVSoVI9eO+/ffs2v/32G6tWrTKt27FjB3v27OHSpUu4uBirNv38/Ao898GDBwkODja9Rn5+frz55psFKsmKMmjQIMBYZSYIQtkz6A0oUCCTl1ySJLRSOlY21jTu6F1oe7Vezf5r+zl28zxQC0VlHb6Xl5TKtXYGwNraFsSkP0I59sXOeLwtrhHkC2fu1sHWoT39G/Y3d1hCFSCG7wlPJV2Tzum7p7mXew8AW8tHNziXKPhBLFfSG2PlRW5eYsa6CiZm8pubO1mW73OXZZksvb7Mf+Rn8MenUqnQaDQMHTqUo0ePEh0dzaFDh5BlmZ49e6LNm+p71KhRqNVq9u7dy8mTJ5k3bx729vbUrFnTlOyIj48nJSWFxYsXA/Duu+9y4MABoqOjiYmJYd++fRw/frxQDPPnz6dp06acOHGCjz76iISEBMLCwujduzdxcXGsX7+e/fv3M3r0aADc3d1RKBRs3LgRvb7o4SIbN25Eq9Xy3nvvFXps5MiR2Nvb89133z316wfG6q6vv/4aJycnmjZ9dB++tLQ0UyLnUdq2bUtSUhLbt29HlmVu3rzJxo0b6dmzZ6nj0ev1fP/992RlZdG2bdti43F0dMTSsuj7Wv/5z3+wtbXljTceVARER0fTsmVLPv/8c7y9valTpw7vvfceOTk5pm3atWvHsWPH+PPPPwG4dOkS27dvf6xzEASh7Ml6PUgS9yzyh/UqSLb7FeuGydR+waPQ9v8981/G7x5P9MWfjFsrKucF4bf3oGfzfzPX43UAbKrAJDNCxXYnU42tZd7ol+od6N3hPezsAswclVAViEqpSujBR97z/ZDP1mbT44cepGvSTetKM+ueuElUNvKTUjblPDHzrKWoNSRkqwGoVs4TctkGA7X3nizz503o0Bi7J2z8Lssyu3btYufOnfTo0YMtW7Zw4MAB2rVrBxj7GtWsWZMtW7bQp08frl69Su/evWncuDFgrPzJl59o8fDwwNnZGYCMjAzWrFnDunXr6NKlCwCrV6/Gy8urUCydO3dm4sSJpuXhw4czcOBAxo8fD0BQUBBLliyhY8eOLF++HG9vb5YsWcLkyZOZNWsWLVu2JCQkhIEDB5riOn/+PE5OTnh6Fp4UQKlUEhAQwPnz55/otcu3bds2+vfvT3Z2Np6ensTExODm5lbkthcvXuSrr74qcchgcHAwa9eupV+/fuTm5qLT6QgPD2fZsmUlxnPy5Enatm1Lbm4u9vb2bN68mQYNGhS57Z07d/j444/55z//+cjjrVq1igEDBhSonrp06RL79+/HxsaGzZs3c+fOHf71r39x9+5dVq9eDRiryO7cucNLL72ELMvodDoiIyN5//33SzwHQRDMx2DQk1QtgytWZ6l3zwGQMEh6FIqi733fzL6JrLPFxcKfZMBV5VyW4ZaZhel23HFsaFr2VYkm50L5JMsyN25soXm1vfg7XQWgdUAtnG2Lb4sgCM+KqJQSntiN7Buka9KRkPC29ybYO5gGrkV/kZF1BnoktuGDa8P5MLs2L1C+kwWVQf7wPRurqvNnPutiMs0PnuG/KcbmznVsbcwcUeWxbds27O3tsbGxoUePHvTr14+hQ4diaWlZYCibq6srdevW5ezZswCMHTuWOXPmEBwczIwZM4iLiyv2eS5duoRWq6V169amdU5OTtStW7jJZsuWLQss//XXX0RFRWFvb2/6CQ0NxWAwcPnyZcBYuXXjxg3Wrl1L27Zt2bBhAw0bNiQmJqbUr0VJvavAmJx7OI59+/aZHgsJCSE2NpaDBw8SFhZG3759CzQEz5ecnExYWBh9+vQp0Cvp4eNGRkYCcObMGcaNG8f06dM5duwYO3bsIDEx0fT4vn37Cuy3du1a0/Hq1q1LbGwshw8f5p133mHIkCGcOXOmUDzp6em8/PLLNGjQgJkzZxZ53ocOHeLs2bMMG1ZwynODwYAkSaxdu5bWrVvTs2dPFi5cyJo1a0zVUrt37+bTTz/l3//+N8ePH2fTpk389NNPfPzxxyW+poIgmI8uOwe1IguP+8aboRIK/DQWj0xKnbtiT+aFD0m+ZByq7GRtX2axlpkj/49svbG/5YJ72/iuSQAzahe+uSII5par1fPRhv9x5ux7dK0Zjbd9CgBKZdE3ywTheRCVUsITU+uM1SjuKnd29N5R7La5Cffpcq2FadmFp5u1SyiZOm8Im005rxZ6lg7cyzT9u6mDijC38t1Ly1ahIKFDY7M87+MKCQkxNf328vLC0tKS6OjoEvcbPnw4oaGh/PTTT/zyyy/MnTuXBQsWMGbMmCcJvQA7O7sCy5mZmYwcOdLUV+lhtWrVMv3bwcGB8PBwwsPDmTNnDqGhocyZM4du3boRFBREWloa169fL1SdpdFoSEhIIDQ0tMTYXn311QLJOm/vB31V7OzsCAwMJDAwkDZt2hAUFMSqVasKNI2/fv06ISEhtGvXjq+//rrAsR+eXc7R0TiBwdy5cwkODmbSpEkANGnSBDs7O9q3b8+cOXNo2bJlgf2qV69u+nf+jIoALVq04MiRIyxevJiVK1eatsnIyCAsLAwHBwc2b96MlVXRs1n+v//3/2jWrBktWrQosN7T0xNvb2+cnB78TdavXx9Zlrl27RpBQUF89NFHDBo0iOHDhwPQuHFjsrKy+Oc//8kHH3xQ7GsqCIL5HFyxBPcragySPXoLAAV+OkuyVUX3Gb2ZagsokCQZG0tLXm5SuDK1QrubAD9NRN1hFwBdLe5R3bXqTDYjVCx/Xk7lXPIFQtzgXq4TZ1Ib0+/FZri6djJ3aEIVIpJSwhPL1Run6ba2LLkcWc4pmISyQozhe55kWSZTbXzN7ZRV5888S2+sDtvSPJA2zuX/zqskSU88jK6s5SdSHla/fn10Oh2HDx82Dd+7e/cu8fHxBYZ/1axZk8jISCIjI5k2bRrffPMNY8aMMVUcPdzfKSAgACsrK44cOWJKJKWlpXH+/Hk6dOhQbIwvvPACZ86cKRRncSRJol69ehw8eBCAN954gylTprBgwQIWLFhQYNsVK1aQnZ3N4MGDSzyug4MDDg4OpYrBYDCgVqtNy8nJyYSEhNCiRQtWr15dqNqgqPPLzs4u1OPJIu93S5ZlVCpVqV+Xv8eTnp5OaGgo1tbWREdHY2NTdAViZmYm//vf/5g7d26hx4KDg9mwYQOZmZnY2xv/Ns+fP49CocDHx8d0Dn8/14fP4XFeU0EQys6FC2fRPtQqQLJwoVotAy91717k9lq9saIqpGkO3/bvUyYxlqmc+2glC/SS8T3Z+qVxZg5IEB7tfmYKNWyN1drVnJryVptl1HQpuR2LIDxLVefbqvDM5eryklIWpUhK5Q0lM2CcoUV4fnbH3yL+RoZp+J6HY9XpYZCZl9ywL2YKauHZCQoKIiIighEjRrBy5UocHByYOnUq3t7eREREADB+/Hh69OhBnTp1uHfvHr///jv169cHjDPfSZLEtm3b6NmzJyqVCgcHB4YMGcKkSZNwcXHBw8ODGTNmoFAokEpoSDdlyhTatGnD6NGjGT58OHZ2dpw5c4aYmBiWLl1KbGwsM2bMYNCgQTRo0AClUsmePXv49ttvmTJlCmCsqPr888957733sLGxYdCgQVhZWbF161bef/995syZQ6NGjQo8b3x8fKFYGjZsWKiaKCsri08++YRXX30VT09P7ty5w7Jly0hOTqZPH+MXs+TkZDp16oSvry/z58/n9u3bpv3zZz8sSnh4OCNGjGD58uWEhoaSkpLC+PHjad26dZH9uPJNmzaNHj16UKtWLTIyMli3bh27d+9m586dgDEh1b17d7Kzs/nvf/9Leno66enGPoLu7u6mpBHA+vXr0el0/OMf/yj0PAMGDODjjz/mrbfeYtasWdy5c4dJkybx9ttvm3pPhYeHs3DhQpo3b86LL77IxYsX+eijjwgPDy/wPH+XmprK1atXuX79OvDg/0eNGjWKfc0EQXg692+ksOWLj8nJNQ7BbZ54gxMt+2OhD8TdQzLNrPp3eYXcWFeQmzKPTZeLWvFgmLe1s48ZgxGER7t5cxt298fxunHCZLxcaoiElGAWIiklPDG13ngnXWVZdHn2w/KTUhpJi41cdZIkZe3K3SyGrj5iWnZ3sK5Sw/fyK6UqSvVRZbB69WrGjRvHK6+8gkajoUOHDmzfvt2UkNHr9YwaNYpr167h6OhIWFgYixYtAozDr2bNmsXUqVN56623GDx4MFFRUSxcuJDIyEheeeUVHB0dmTx5MklJSY+s0MnXpEkT9uzZwwcffED79u2RZZnatWvTr18/AHx8fPDz82PWrFkkJiYiSZJpecKECabjTJgwgYCAABYsWMDixYvJysoC4LvvvqN//8JTIxe1LikpyVQBlM/CwoJz586xZs0a7ty5g6urK61atWLfvn00bGhshhsTE8PFixe5ePFiof2LmzVx6NChZGRksHTpUiZOnIizszOdO3dm3rx5xb5mt27dYvDgwaSkpODk5ESTJk3YuXMn3bp1A+D48eMcPnwYKFyhdfnyZfz8/EzLq1atolevXqam9Q+zt7cnJiaGMWPG0LJlS1xdXenbty9z5swxbfPhhx8iSRIffvghycnJuLu7Ex4ezieffFLsOURHR/PWW2+ZlvP/f8yYMeORva8EQXh6V07GcvfaVSQkZGTsczVYWKhAD1IxM83pjB/VKCvrRCy6XHIfSkqJWfeE8mjlngSuXdlMJx/QGiww4ICHR5i5wxKqKEl+FnODP6a9e/fyxRdfcOzYMVJSUti8eTOvvfaa6fGhQ4eyZs2aAvuEhoayY8eDvkWpqamMGTOGH3/8EYVCQe/evVm8eLFpWABAXFwco0aN4siRI7i7uzNmzBgmT55c6jjT09NxcnIyTX9dURw9+gZp6Sdo0ng57u5Fl04/DVmWuZl9k11Xd/HZn5/RsnpLVoetfuT2Oq2eMyvicEnOJM0iEye9PWfQ02RaG2o4iUbUz9LhS3fp9/Uf2Ftb0rmeBy838SS0YeWvFMjS6bmco6brUeOsaHHtGuJhXXTPG3PJzc3l8uXL+Pv7l5hcEQrKysrC29ubBQsWFGqgXRZSU1Pp0qULjo6O/Pzzz9jairuIVUFxf7MV9frgeRKvSdVzYseP3Nh8kgvpR9EaNHQ4e5VDnd7BQlOX0K53CXyj6KF5rRd8w63bXvQNNvB5eHgZR10Gzv3Etc3jadlmA9YKiSsdm5o7IkEopOfifbRzXUpbr6P8Lz6CLq0m0LdlTXOHJVQypb02MEulVFZWFk2bNuXtt9+mV69eRW4TFhZmmiYawNq6YHXNwIEDSUlJISYmBq1Wy1tvvcU///lP1q1bBzwYctC1a1dWrFjByZMnefvtt3F2di52KmuhZON+H8fvSb+blkvqKZV09h63LqbhorJAX/Y50ColW2usifd1tWXJm83NHE3Z0BpkOvx5jmS1FjDekXSqQtVhldGJEyc4d+4crVu3Ji0tjdmzZwOYhgSWNRcXF3799VeWLVvGoUOH6NKli1niEARBKE8Mej1OVm7IsrH0SYGMBmtUgMI/+JH76fXGyiHrSvhZnZCdy8jbbtxuvhwAa1ElJZRDaWmxdKi+Gn+HSwBMDGtFHX+RkBLMxyxJqR49etCjR49it7G2tn5kL4izZ8+yY8cOjhw5YpoS/KuvvqJnz57Mnz8fLy8v1q5di0aj4dtvv0WpVNKwYUNiY2NZuHChSEo9peO3jgNga2mLvZU9rwS8UvSGBgP6I1uQ9ympYWVsTmup1YEFWBoMZRVulZKjMSalqlJz88s5apLVWhSAh9KKt33csH6C2eWE8mX+/PnEx8ejVCpp0aIF+/btw83NfNMTu7q6Mn36dLM9vyAIQnlj0OuRJAUyxhuOkgx6jMPWJCtloe2ztFkcv3kctd44EYu1ReW7Vvn19n1O6awh72Z6PbuSW1wIQlm7cPFTWnkcMy27OdUqZmtBeP7K7Te33bt34+HhQd26dXnnnXe4e/eu6bFDhw7h7OxsSkgBdO3aFYVCYep9cejQITp06GCa3QmMQwDj4+O5d+9e2Z2IOZTQDPhp5WiNDS23RGxhV99dj05KXd5NRvRelHeccLY0/qopM7MBcFJnmi5ihGcnOy8ppVJWvruPj5KYY+xt1sheRWxwQ8b6Vi9hD6G8a968OceOHSMzM5PU1FRiYmJo3LixucMSBEEQHmLQ65GQMORVSkmyTP5XC0URFUKT9kziX7v+RY7WWNlsa1W+htk/tT+/IXeXsU9e2J197Lz7HzY0q23moAThgUMJdwn+7DcSblwFYHdSO3z85lCtWlszRyZUdeXyFkVYWBi9evXC39+fhIQE3n//fXr06MGhQ4ewsLDgxo0beHh4FNjH0tISFxcXbty4AcCNGzfw9/cvsE316tVNjxU1I4harS40DXZF9jySPnqDHo1BA5Siwfn9JAwYx44ekC5zXnkFW0ctEXigkEWl1POQozHefbStQkmpjLxpfJwr4TAAQRAEQSivDHo9Fg9XSgGSbPwsLiopdelOOjnX3wCNcUbQuq6VLGFz4RdyFcYJKjzVd2gaVA9E5bZQjmw/mULy/RxsLIwTuJy6H0pt335Ikvg9FcyrXCalHp7JqHHjxjRp0oTatWuze/fu59rLY+7cucyaNeu5Hb8yyNXnmv5tY1l8s2Z1Rib3db4oJUi0uIFe0pOhUnBHk46Yf+/5yMqrlLKtQsP3MvJm3HOorLP4CIJgIsuGvFkIH/wUXibv36BQWKNQVJ33Q0EoSwa9Dgv5wZdZSZaR8iqlJIvCSanbN+qhS3vQ79LHuZI1xH9o1j3rVm9BXT/zxiMID9HpMqinnMWMNjexVxpHrqwZ3gVLC5GQEsyvQlypBQQE4ObmxsWLF+nSpQs1atTg1q1bBbbR6XSkpqaa+lDVqFGDmzdvFtgmf/lRvaqmTZvGu+++a1pOT0+nZk3R9C2f3qDnXq5x6KOEhLXFI1JLsgz3r3DimBUWukA8rUAvicqosnAv21jF5mxbyUrii5FfKWVvIZJSglCZaTT3yM1NhseoAlapfFEoKtkXX0EoJ4w9pR4sZzj4YiEbrz+KqpTS6Y2f060CVIx8qSFNfJzKJM4yo1OjzuslpbISt1+F8iM26T774jbQQHUc8moKrKxcsFeZr1enIDysQqRGr127xt27d/H09ASgbdu23L9/n2PHHjRo++233zAYDLz44oumbfbu3Ys2b9w6QExMDHXr1i1y6B4Ym6s7OjoW+BGMztw9Q/vv29Njk7FBvcpShfSo3lU/DIfFTclMSiI/TWCQ9GUTaBV2Mz2X5HvGfl/VqkBS6re76TTYf5JPLqUA4GBZId7OBEF4Qjp9BoUTUhKSpECSLI0/CisUCisUCiUKhVIMSRCE50iv12MctGcU23Qs1jrjtbOiiEqpvMJmGvqo6Nqg+qOvIysqbQ7q/EopMeueUI7M2HqKw5euAJBw3xeb6kt4sfVPKBSV//uCUDGYpVIqMzOTixcvmpYvX75MbGwsLi4uuLi4MGvWLHr37k2NGjVISEhg8uTJBAYGEhoaCkD9+vUJCwtjxIgRrFixAq1Wy+jRo+nfvz9eXsZx6gMGDGDWrFkMGzaMKVOmcOrUKRYvXsyiRYvMccoV3rGbx8jQZpiWu9QqZhjl1T8A0EiO5F+TGCiYlKps1yHmtuCXeL767cHflJNt4VlvKpvoW/dJ1Rp/r5SSxEvODmaOSBCE58Fg0GEw5KLXGT+DVKqaWFo6Vb4vtIJQwRj0Oh7+KqHQa8lW5eDq4oh7zcKfyQaDMUlsXQkrm7P0eu5I9qRaGau/xCzAQnlyK0NNdWfjjWtvtyDaNegpPkOFcsUsSamjR48SEhJiWs4fMjdkyBCWL19OXFwca9as4f79+3h5edG9e3c+/vhjrK0flMKuXbuW0aNH06VLFxQKBb1792bJkiWmx52cnPjll18YNWoULVq0wM3NjenTp/PPf/6z7E70CRhkGUU5fJNQ640N4F+t/Sqz2s3CsogeHfp0DVl/pmC4H45Bb4WfXRtUWhkZGYMYvvdcHUlMBUBlZYF3NRUdg9zNHNHzdzXXOFTx8zo+9K3hgo0YEy8IlY4sG8jOTsCQN8EGkFcBVf4+JwWhqjHo9Hztu416ed0yXO+dY1+DYwxvOgILq8KfyYa8S0GlRYXoHlJq97Q62vxxlrQ6c03rRKWUUF5curSYQXV24GJtnMk+sLqn+AwVyh2zfIvr1KkTsiwX+omKikKlUrFz505u3bqFRqMhMTGRr7/+2jRzXj4XFxfWrVtHRkYGaWlpfPvtt9jb2xfYpkmTJuzbt4/c3FyuXbvGlClTyvI0H9uwU5dpd/gsufryl8DJ0Rmz6/ZW9kUmpAAy9iSR/utVkrUhHKYeifIVjlldZL/luYeru4XnICevwflXbzbn13c7UsvV1swRPX9JeUmpenY2IiH1nA0dOhRJkpAkCaVSSWBgILNnz0an0z3VcXfv3o0kSdy/f//ZBFoKly9fZsCAAXh5eWFjY4OPjw8RERGcO3euwHbbtm2jY8eOODg4YGtrS6tWrYiKiiqwTWJiIpIkERsbW+rnnzlzJvXq1cPOzo5q1arRtWtXDh8+XOCYw4YNw9/fH5VKRe3atZkxYwYajaaYoxqtXbuWpk2bYmtri6enJ2+//TZ3794tdWyfffYZkiQxfvz4AusTEhJ4/fXXcXd3x9HRkb59+xbq2fjJJ5/Qrl07bG1tcXZ2LvL4+b9DD/98//33psc3bdpEt27dTM/Ttm1bfv55mykhpVDYoFS6o1AUnPl106ZNdO/eHVdX18f+/yEIwpPLOX+eS6pk07JkMOCe6/HIL7wG2bheWZkmJpFlLl47R1pef0tbfTY1raB9NVG9LZjX/WwNI9f8yuXEJdStdh53W+P1gMrW18yRCUJh4ptcOXBPq+PAvQx+up1GYo6GU5k55g6pkFydcdY9a8tHNG7MuY/+7AEAfrU8zWGrC/xpdZFTlleJt7xeYNPSt6gVSivbNOteJbrQK4bOIHNdbfyiWlNV+YcqlgdhYWGkpKRw4cIFJk6cyMyZM/niiy/MHZZJaZI2Wq2Wbt26kZaWxqZNm4iPj2f9+vU0bty4QGLsq6++IiIiguDgYA4fPkxcXBz9+/cnMjKS995776nirFOnDkuXLuXkyZPs378fPz8/unfvzu3btwE4d+4cBoOBlStXcvr0aRYtWsSKFSt4//33iz3ugQMHGDx4MMOGDeP06dNs2LCBP//8kxEjRpQqriNHjrBy5UqaNGlSYH1WVhbdu3dHkiR+++03Dhw4gEajITw8HIPhwQ0UjUZDnz59eOedd4p9ntWrV5OSkmL6ee2110yP7d27l27durF9+3aOHv2T9u1b8dprvfnrr7NYWNhibx+EjU2NQl94s7KyeOmll5g3b16pzlUQhGdDc+s2sumqTsICAy4aFxSPGLqWP3zPxrISVUqdjSZ36xgA6mZd4tL+HhypZ0+QXfEzVAvC87bn/G3iriYCkKOz5vsLw2nc+Bt8vAeaNzBBKEIl+lSomLQGmR7HzpOY8+ALldNT30F69mVJ+UkplYWq6A3O70C+fxvwJxPjUD8vDx8UiZdxvBTPjVrBpDqmPfO4BKP8pJSqiiSlrqs16GVjL6nqStGksSxYW1ubZi5955132Lx5M9HR0URGRjJu3Dh+/PFH1Go1HTt2ZMmSJQQFBQFw5coVRo8ezf79+9FoNPj5+fHFF1/QoEED0zDu/MknhgwZQlRUFBkZGURGRrJlyxYcHR2ZPHkyW7dupVmzZnz55ZcA+Pn5MWzYMC5cuMCWLVvo1asXUVFR7N+/n2nTpnH06FHc3Nx4/fXXmTt3LnZ2dpw+fZqEhAR27dqFr6/xTqGvry/BwcGm80xKSmLixImMHz+eTz/91LR+4sSJKJVKxo4dS58+fUyTajyuAQMGFFheuHAhq1atIi4uji5duhAWFkZYWJjp8YCAAOLj41m+fDnz589/5HEPHTqEn58fY8eOBcDf35+RI0eWKlGTmZnJwIED+eabb5gzZ06Bxw4cOEBiYiInTpwwTf6xZs0aqlWrxm+//UbXrl0BmDVrFkCharK/c3Z2fuQMuPn/bwE0mrt8+OEIfvxxOzt27KF1646PPOagQYMAY5WZIAjPX8rFeP7YtJ609FTe+z6Ls56ugAJJNl6LFJWU0hv0yLJxvbIyJaVunydHYbxhayNJ0LAXuASYOSihqpNlmZzMWF7wiANAZePBpwPexd1BzAoplE+iUsrMTmXmFEhIwTOsJHoGB0rOTGbrxa2cv3ceABvLR9z5ybmHjPGNLn+mvZy4/aRd+Qvu3cQtwwlLbcHhlbIomXpmcrT5lVKV6EKvCHpZ5tXjF2j9x1kAfGyU5bIHW1WgUqnQaDQMHTqUo0ePEh0dzaFDh5BlmZ49e5pmPh01ahRqtZq9e/dy8uRJ5s2bh729PTVr1uSHH34AID4+npSUFBYvXgwY+wweOHCA6OhoYmJi2LdvH8ePHy8Uw/z582natCknTpzgo48+IiEhgbCwMHr37k1cXBzr169n//79jB49GgB3d3cUCgUbN27MmzWqsI0bN6LVaousiBo5ciT29vZ89913z+Q11Gg0fP311zg5OdG0adNHbpeWloaLi0uxx2rbti1JSUls374dWZa5efMmGzdupGfPniXGMWrUKF5++WVTgulharUaSZIK9HS0sbFBoVCwf//+Eo9d1HO5ubnRunVrvv32W+RHfBDoDbkYDAYyM7Nxd6+FUln5++QJQkVxfHs0l479Sa7BwHUnj7y1Egor4/uqnZ1doX10sg7kSlgppcshNy8ppfJsBH1Wg2hyLpjZ/bSjuGvG0ivoJwCcbN1EQkoo1yrRp0LFdFtj/OLW1EFFUq6GVK2+XA1vi4yJJDE90bRsr7QvekN1BgbZFQADxj4zmox0FECWjRJrqTydVeWTrTG+5pV9+F5Ctpo/07JMy91cHc0YzdOTZdmUUCxLKiuLJ25yKcsyu3btYufOnfTo0YMtW7Zw4MAB2rVrBxj7GtWsWZMtW7bQp08frl69Su/evWncuDFgrPzJl59o8fDwMPUhysjIYM2aNaxbt44uXYyzfK5evdo0s+rDOnfuzMSJE03Lw4cPZ+DAgaaeSEFBQSxZsoSOHTuyfPlyvL29WbJkCZMnT2bWrFm0bNmSkJAQBg4caIrr/PnzODk54enpWej5lEolAQEBnD9//oleu3zbtm2jf//+ZGdn4+npSUxMDG5ubkVue/HiRb766qtiq6QAgoODWbt2Lf369SM3NxedTkd4eDjLli0rdr/vv/+e48ePc+TIkSIfb9OmDXZ2dkyZMoVPP/0UWZaZOnUqer2elJSU0p1wntmzZ9O5c2dsbW355Zdf+Ne//kVmZqapukuWZdTqFPT6HAyGXJYsiSIrK4cBA95CksSXPEEoL3QaY0V8jrUVORirlSWFA3b+1rz2WhgNGzY0bRufGs9XJ74iU5sJcksArC0rUYWzNpdci7xKKZGMEszMYJD519rjWKi30SsAMjR2yBYBNPErfmi9IJibSEqZ0ZizV7iYZfxgd7OyMjVulstRWup6prEfVLBXMN723nSr1a3A43LmHdK2xKK57ItOdsGAnH8jDOQH/UZEMcvzk6vVk6s1vtaOqkp0oVeES9nGv5dG9ir+16w2LlYV+y0sR6unwfSdZf68Z2aHPnZV3bZt27C3t0er1WIwGBgwYAC9evVi27ZtBYayubq6UrduXc6eNVazjR07lnfeeYdffvmFrl270rt370J9ix526dIltFotrVu3Nq1zcnKibt26hbZt2bJlgeW//vqLuLg41q5da1onyzIGg4HLly9Tv359Ro0axeDBg9m9ezd//PEHGzZs4NNPPyU6Oppu3br9/SmKpFSW3Mds7dq1jBw50rT8888/0759ewBCQkKIjY3lzp07fPPNN/Tt25fDhw/j4eFR4BjJycmEhYXRp0+fAr2hHp7U4x//+AcrVqzgzJkzjBs3junTpxMaGkpKSgqTJk0iMjKSVatWsW/fPnr06GHab+XKlXTo0IFx48YRExODjU3RVbDu7u5s2LCBd955hyVLlqBQKHjzzTd54YUXHtk35lE++ugj07+bN29OVlYWX3zxhSkpZTCo0WiMjVg3bPiJefNWsHnzJtPrUtxrKghC2THo9fjbN+Zy5kmqZeWQ5VQHya4HKsdkmjVrVmDbjec3sufaHgBkjO/rKqvKc62i1qlJtzS+J9tYiItdwbyS7+ew4/QNwvzSAYi705Cmjebj7uZt5sgEoXgV+xtdBbft1n1yDMYEVG1ba2IzsoHyM6xNb9CjyZv16LP2n+Fs41x4m/8bSeaV8YAX6VI2GVKq6bHGzVpx+tihsgm2ipJlmdQs4/8jC4WEo03l/pNO1RorwjytrSp8QqqiCQkJYfny5SiVSry8vLC0tCQ6OrrE/YYPH05oaCg//fQTv/zyC3PnzmXBggWMGTPmqWP6+xCRzMxMRo4caUpyPKxWrVqmfzs4OBAeHk54eDhz5swhNDSUOXPm0K1bN4KCgkhLS+P69euFqrM0Gg0JCQmEhoaWGNurr75aIFnn7f3ggtDOzo7AwEACAwNp06YNQUFBrFq1imnTppm2uX79OiEhIbRr146vv/66wLEfnl0uv8/T3LlzCQ4OZtKkSYBx9lk7Ozvat2/PnDlzaNmyZYH9qlevzq5du7h16xYvvPCCab1er2fv3r0sXboUtVqNhYUF3bt3JyEhgTt37mBpaWnqC/Vw1duTePHFF/n4449Rq9UolVYYDMbehRs3/syYMbP5/vt1dO/+IJFW3GsqCELZ0et0OFg6AaDS6Mi1cEFW2KPwb1do21ydGl1mHRo5t+OSpS93AaVF5ajqPnQ/kwG2/ckJNCbZRKWUYG437xxkUP3vCaqWBEDPJnVo2UR8Vgrln/hWZ0Yf1TZ+4XGwtCDMzYlNN++ZOaKCcvW5pn8/qpdU2i3j8MMbittsU8Y9eECWsfphM/jlNbQtcPNI/vsK4Qmk5Wh5eck+rt0zztZYzVb5xEOyKop7eVMuP/1kAOWDysqCM7NLTnA8j+d9XPmJlIfVr18fnU7H4cOHTcP37t69S3x8PA0aNDBtV7NmTSIjI4mMjGTatGl88803jBkzxlRx9HB/p4CAAKysrDhy5IgpkZSWlsb58+fp0KFDsTG+8MILnDlzplCcxZEkiXr16nHw4EEA3njjDaZMmcKCBQtYsGBBgW1XrFhBdnY2gwcPLvG4Dg4OODiUbkpwg8GAWq02LScnJxMSEkKLFi1YvXp1oYqkos4vOzsby7/1abHI++InyzIqlarQfl26dOHkyZMF1r311lvUq1ePKVOmmPbPlz/E8LfffuPWrVu8+uqrpTq/R4mNjaVatWpYWOjIyLwAsszGjdsZNWoG33+/nldfjSiw/eO8poIgPD+y4UGrCUmWkfPeoxSqwi0eku/YkpP0NkeSHqyzeYLPoPLoj/uZ5EjGhJQlBjq5iPcnwTy0egPf/3kVh4yP6VTzmmm9h3OtYvYShPJDJKXM6G2fgo1b8/MJ5aRQihxdjunf1haFm+NdO5fK7lvj6eQAt+W8Zu0GkHS5qDL1WOV9gVHYWqGwKC9nVXmcvp5mSkgBdAgquidNZZKWVylVrZJc0EqSVKGb0wcFBREREcGIESNYuXIlDg4OTJ06FW9vbyIijAmF8ePH06NHD+rUqcO9e/f4/fffqV+/PmCc+U6SJLZt20bPnj1RqVQ4ODgwZMgQJk2ahIuLCx4eHsyYMQOFQlFi0nXKlCm0adOG0aNHM3z4cOzs7Dhz5gwxMTEsXbqU2NhYZsyYwaBBg2jQoAFKpZI9e/bw7bffMmXKFMBYUfX555/z3nvvYWNjw6BBg7CysmLr1q28//77zJkzh0aNGhV43vj4+EKxNGzYEKu/DVHJysrik08+4dVXX8XT05M7d+6wbNkykpOT6dOnD2BMSHXq1AlfX1/mz5/P7du3Tfs/atY6gPDwcEaMGMHy5ctNw/fGjx9P69ati+zHBcYkz9/Pxc7ODldX1wLrV69eTf369XF3d+fQoUOMGzeOCRMmFBhSefXqVVJTU7l69Sp6vd5UlRUYGIi9vT0//vgjN2/epE2bNtjY2BATE8Onn37Ke++9h1abCrLMhg0/ERn5EQsXzuPFF1/kxo0bgLGpvpOT0yPPPf95r183DjfP//9Ro0aNYl8zQRCejCZXi4yxbYAkg0GyQAEoihi+lplt/Ly2tTbQxr8G3s4qWvpVK8twn48/vyH33EWo+SZvJW9iVr3aKD1fKHk/QXgOdp29yUdbT7O4k3HEytn0HkS0bI1njV5mjkwQSqfifhuqhPI/ystD+kaWZbK0xobSKktVkV8GU6/dR5EXtUFhjNo6S4/y2in8mneixoAIWPQZ1p6OYCgPZ1W5qPP6SNX3dGTd8Bdxtq08PRr+7sdb9xl37irZeuM5V1dW3nOtaFavXs24ceN45ZVX0Gg0dOjQge3bt5sSMnq9nlGjRnHt2jUcHR0JCwtj0aJFgHH41axZs5g6dSpvvfUWgwcPJioqioULFxIZGckrr7yCo6MjkydPJikp6ZF9j/I1adKEPXv28MEHH9C+fXtkWaZ27dr069cPAB8fH/z8/Jg1axaJiYlIkmRanjBhguk4EyZMICAggAULFrB48WKysozvhd999x39+/cv9LxFrUtKSsLHx6fAOgsLC86dO8eaNWu4c+cOrq6utGrVin379pkaA8fExHDx4kUuXrxYaP9HzVQHMHToUDIyMli6dCkTJ07E2dmZzp07M2/evGJfs9KIj49n2rRppKam4ufnxwcffFDg9QKYPn06a9asMS03b94cgN9//51OnTphZWXFsmXLmDBhArIsExgYyPz5X/D22wNQq40lFP/5z0/odDrGjp3I2LEPGtgPGTKEqKioR8YXHR3NW2+9ZVrO//8xY8YMZs6c+bSnLwjC3+h1OlOvCUmWQTImnhQWhYevaQ3Gz+1a7ga+Hdqq7IJ83s5Gk6swTuBhZ9Cg9Hr0DKqC8LylpOUiYcDWynizOqTFBGr61DZzVIJQepJc3FVuFZeeno6TkxNpaWmmvh3PU9MDp7ip0fFryzo0crB94uMcPdaXtLRjNG70bzw8Hn9oULY2m77b+nIl/QoA1ayrsbf/3gcb3L8Kh1dy9KQrCYnNCba35LRTCofUZ3C+mYI+NZkXekbgXa8BPy6ci3d1WxSGbpx3SkNnlUmopimqLAmPWaF4Oaue+Dyrup9PpvDO2uO08qvGhsjCfRwqk2GnLvPT7TQA7C0U7GpVF19VxZraNjc3l8uXL+Pv719ickUoKCsrC29vbxYsWMCwYcPK/PlTU1Pp0qULjo6O/Pzzz9jaPvn7s2AkyzJZWfEYDNq8NRL29vVQKMrPvbLi/mbL+vqgIhCvSdURNXEsHhkenE37A2tFEDh2Q5JsaPt6bV4I9S2wbfiaeZw824hGtfRs+9fTDfktV1Z1Z7JNMP/xiuC9mi68FyiGSQnmodWmsXXvJK6nXqOhq7FSuFPHM1gUMcpFEMpaaa8NREe+ckTKqzp6+izh0/UVunD/gikhBdDe52+zG+2ZB4eWok1JMP0C6fTG4Xv58+1ZljCziiR6Sj01tc74altXkv5KxcmfdW95A19OBjeqcAkp4fGcOHGC7777joSEBI4fP87AgQMBTEMCy5qLiwu//vorXbp04dAhMXnDs2Aw5JgSUhYWKqyta5SrhJQgCI9meKgPoM7KAUkyJm2dqxdO2Ov0xqtay8o2M50ulxyF8VpEpRQ3mgTzOHDxDst3rqaatMuUkLJWVhcJKaHCEVeA5ciz7yn1ZEdS64wJAD9HP9a/sh5bq4IXGbr7d7iW25I7UkPyrzEyMlJBBTlKC2wAS6V4M3zecrXGi0Ibq8qfW76f1+C8tq01qiKGBwiVz/z584mPj0epVNKiRQv27dtnarRtDq6urkyfPt1sz19ZGAw6NJpb6HQZAFhY2GFn93Sz+AmCULZkgwGD6TakhFr3K/bN6hDQrHOhbXV57RusKttnt05Nbl5SykZRyRJuQoXx/uaT1HO4SsM6cP5ebdw8+vDyC93MHZYgPDaRlCpHyktPqfxZ91SWqkIJqayjN7ka/wb3NB64AXZ5uSdt3sWJhUHGtbonga3acO/G9WKfx9znWdHlJ6WsK0nT7+Jk5CWlHCrJNNJC8Zo3b86xY8fMHYbwHGg0t9Fo7pqWLSztzBiNIAhPQtbrkeW8pJSkQMctLG2LnvU07+O7UiWl/t+123xcbylqhXFUgEpRec5NqDgMBh0K3VU8VMYJUbzcmtHtxbcq9AQ6QtUlfmvLEVNSyszZGk3eULy/z7iniz/BvY2ZOFADB+Xf9smbfa/Fq73o1s2YoS8pKSU8nVzT8L3KfTFkkGUy8xqc21fycxWEyk6vzwbAwsIGK6UbVpaPnlVPEITySdbLD1VKKZAlAxaPuGlUGSulfr6d9iAhJUFTR9FnUCh7sX+N4MMXH/T8bVyrpkhICRWW+M0tR5798L0nk18pZW1ZMCmlj54JvIeMzCFtKpL1FbIy72KQDdywyQXssbQUv1JlJUutA8BWWTmrh2RZ5ovEGxxLyzatE5VSglAx5eamoNOlYzAYb2DY2PhgYSEmuhCECskgo5eNJVASCgySHsUjqoXy208pK1FSSp03o+CX5+YS/vpM7OzFe5lQdu5lafj51A3csk5gAWRrVbg4uOPu1sXcoQnCExMZhHLE1OjczKVS+T2lbCwKNm6U86ZFv6C4wRmHM8aVLgqM/fLtAVAq/1ZC9WDv5xBp1XQ7Q03MmZscTDAOgfF0qpwXQ6cyc1iYeNO07GlthbXo2yAIFY7BoEWjuWNaVljYoFCIxsCCUJFcP3+OI9Eb0et0xDldQ2tIICjDDlBgkAwFrv9kWWbekXnE3Y7jXq5xNj6rylDpfC8Rdn5AbrV/gNKT6pq72Ikm50IZWxATz3//uMLXXbNAAZ8d/YgDH/Qzd1iC8FREUqocMXdPqSM3jrAveR+n75wG/jZ8T6dG1ht/XdItjDMmKQwGpJxMHHI0WOt0uHboQKNGjUy7iBn2no8Pt5xk5+kHyRqfapUzKXU6M8f075UNfWnhaIckid8pQahIDAYtWu19wJiMUtn4oFDYiL9lQahgjv20hYtH/gCgLjdxSHfgjiMgKbCXrAgODjZtezvnNmvPrgVAZ6gFgLONQ5nH/MzF/Q/ObUPdsi8owVqSwNbV3FEJVcyVu9lYW2iwUBgr9qa83NLMEQnC0xNJqXLE3Empd3e/y331fdOyi40LAPosLek/nUej6wOABmMttkqjRnH1PC9cuo57Rg51FyxAYSea1j5v1+4ZkzVtA1xp4uNEaMMaZo7o+cjI65kV4eFMhEc1M0cjCMLj0mrvk5OTZFq2tHQQQ/YEoYLSqo2tHXxqB6E5kUGGdX6FkIIu9V/Cx8fHtK1aryb3Zg+0qe0xVtODq6oS9I9TG2cNzbU2notN+CKwcTRnREIVkq3R8deFbYR7fs6rnsZRLZJkQXhTMYOtUPGJpFQ5Ys6eUnqD3pSQGtxgMG4qN8Jrh8PJjeRsjSEr8x9AHQCy9OlgAdrsdKwBC70xYumRQ/cKEgP5nk5mXi+pid3r0NLPxczRPD/peVP2OFqKPlKCUBFptfdM/1YolFhZiuSyIFRUhrzmULeTr6F2fFD1JEkqHJrUL7Ct1qBFl9GI/ISUpULihVqV4O9fa+xxqbY0JuSs3WubMxqhihnwzWGCXdbwQvUHoyXs7euJymOhUhBJqXLkwex7T5e2eZJhc2q92vTv0c1Ho7LMu5sdtx5DrvHi464ijlTHOyTfywFsQK/DwsICO7UGFAooqcm5LN40n4XMXGNSysHGysyRPF8ZeRfAorm5IFQsen0uen02Ol0mALa2AVhaiipaQajIDDodlpIVeq3xszng5j2u1+6ObFkHxd/6RWn1WpCN14T/HfYizWo5Y29dCb5yaI2V6mqM1yWiz6VQls6mpBNaw9jfN/b+mwwN6Y2zYz0zRyUIz0Yl6DpYeZganT+j48mPcaQc3YP+PQ/3krqU4sHJrNfIRs1mq9vsyZXRqYx3iLxS1YT8dRFrvQGFre0jM/Vm7tte6WTkVUrZ21SCC7winMzIZsSpRFYk3QbAsTI0R63ghg4diiRJSJKEUqkkMDCQ2bNno9Ppnuq4u3fvRpIk7t+//2wCLYXLly8zYMAAvLy8sLGxwcfHh4iICM6dO1dgu23bttGxY0ccHBywtbWlVatWREVFFdgmMTERSZKIjY0t9fPPnDmTevXqYWdnR7Vq1ejatSuHDx8ucMxhw4bh7++PSqWidu3azJgxA41GU+Kx165dS9OmTbG1tcXT05O3336bu3fvlrhfcnIy//jHP3B1dUWlUtG4cWOOHj1qevzh///5P2FhYQWO4efnZ3rM0lKFtbUrCxeuAiQUCmvi4+MJCQmhevXq2NjYEBAQwIcffohWqy1wnPv37zNq1Cg8PT2xtramTp06bN++vdj4N23aRPfu3XF1dX3s/x+CIJSOXq+npl09MBiTUrVS01Ha+CNJlij+VtGsM+hANq5zd7CuFAmp2PRsgu3eoHHbTaRhvClo/YgZBwXhWbudGkszt8O42qQC8FanHrhWay6GxAuVRsX/lKhEzNlTKldv7BVgY2GDQnrwIXv6RiPsZUeypWxTgJb37yDpdTS4lohT8+ZYODrh0L1bsceXxKC9Z0Kt06PJ67VUGS7yivLppRR+T80wLbevVgmao1YCYWFhrF69GrVazfbt2xk1ahRWVlZMmzbN3KEBoNFoipn900ir1dKtWzfq1q3Lpk2b8PT05Nq1a/z8888FEmNfffUV48ePZ8qUKSxfvhylUsnWrVuJjIzk1KlTzJ8//4njrFOnDkuXLiUgIICcnBwWLVpE9+7duXjxIu7u7pw7dw6DwcDKlSsJDAzk1KlTjBgxgqysrGKf98CBAwwePJhFixYRHh5OcnIykZGRjBgxgk2bNj1yv3v37hEcHExISAg///wz7u7uXLhwgWrVCg61yf//n8/a2vrvh2L27NkMHdqf3NxrADg7e6JSeaFQWGJlZcXgwYN54YUXcHZ25q+//mLEiBEYDAY+/fRTwPj/sFu3bnh4eLBx40a8vb25cuUKzs7Oxb6mWVlZvPTSS/Tt25cRI0YUu60gCE/GoNdhpbBFxngNIslAXsWQ5ORdYFutQYucVymlrAw3ljJusPNkLAmWD3p4uistcbeqnNdhQvmh1Rv4Je4U1vf68M8mBtN6K6VosC9ULuLdtBwxV0+pHF0O1zKMXyJMw/ZOb4H47eRqWuFoAfq8ixC7jEwUKYkANPtlB0qV7aMPXExVs8TTD1OsivKH7kHlTUrlz7o32MuVV9ydaeEkhv2UB9bW1tSoYbwgf+edd9i8eTPR0dFERkYybtw4fvzxR9RqNR07dmTJkiUEBQUBcOXKFUaPHs3+/fvRaDT4+fnxxRdf0KBBA0JCQgBMCZAhQ4YQFRVFRkYGkZGRbNmyBUdHRyZPnszWrVtp1qwZX375JWCszBk2bBgXLlxgy5Yt9OrVi6ioKPbv38+0adM4evQobm5uvP7668ydOxc7OztOnz5NQkICu3btwtfXOE25r69vgVmjkpKSmDhxIuPHjzclSwAmTpyIUqn8/+ydd3wUZf7H37Mtu+kkJKQQUiD03ouAoSWggTsRUDiKAhIPpIg0PSkeyqGAgnAg/hD43SH6ExUiohBROiItgiCBUARC6JC+deb3xyQLKxA6m4TnzSsvdmafeeY7s7szz3yeb2H48OH06NGDZs2a3dN57N27t8vyrFmzWLRoEfv27aN9+/YkJCS4eCHFxMSQlpbG/PnzixWltm/fTlRUFMOHDwcgOjqaIUOGMH369GLtmT59OhERES6CU3R09A3trv/8b4XRKBMQoMHhKI9O54unZ6TLccTEXEvGGhkZyYYNG9i8ebNz3SeffMLly5fZtm0ber3qiRAVFVXsPgH69u0LqF5mAoHg4SA7HGgkDXLh2E1SFPLwRg9o/jQWtMk2p6eUXlsGQty+HY3ZWhEinqfX2e9IqlmPiFrxGLVlQHATlGi++fUM/163gQlNZSwOA3/kVKZ9neZ4e1Vzt2kCwQNFXE1LENdySj26fV4quET7/2vPoHWDAPDQqbPf6Z/9h1+2QpYtGC0SDkl119YUum0D6Aw3zpQLHi5FSc49DVq0ZTSXQVGC82GVgmkTILykSiomkwmr1cqAAQPYtWsXycnJbN++HUVR6NKlizMsa+jQoVgsFjZt2sT+/fuZPn063t7eRERE8OWXXwKQlpZGZmYms2fPBuDVV19l69atJCcnk5KSwubNm9mzZ88NNsyYMYN69eqxd+9e3nzzTY4ePUpCQgLdu3dn3759fP7552zZsoVhw4YBEBQUhEajYcWKFTgcjhv6A1ixYgU2m43XXnvthveGDBmCt7c3y5cvfyDn0Gq1snDhQvz8/KhXr94t22VlZREQUHxRgxYtWnDq1CnWrFmDoiicO3eOFStW0KVLl2K3S05OpnHjxvTo0YPg4GAaNGjAxx9/fEO7DRs2EBwcTLVq1Xj55ZdvCAtUFAczZnxIREQjnniiJx988D/Fhnemp6fz/fff07ZtWxdbWrRowdChQ6lQoQK1a9fmnXfeueVnJRAIHh2ywwHKNb/3fbWHoHWoYpT2T+KM1W51ilJlw1MqE7NGHfOGBVakRo22eIsiLIJHwMnL+Xjp1QT7uY4IwisvpGrsP0Ryc0GZo2y6WpRy7iYX1P2SfjWdHJsaKmXQGOgc3ZmrZ7JYe2EoOsBHysVEDtZCTynF3xfpDGh1OjQiAfUjZd/pq+w4psaSl1UvKbNDxiyr33//x8EtXlGc1XweKXrPa66Zd4miKKxfv561a9fSuXNnVq5cydatW2nZsiWg5jWKiIhg5cqV9OjRg5MnT9K9e3fq1KkD4OItUyS0BAcHO0O0cnJyWLp0KZ9++int27cHYPHixYSFhd1gS7t27Rg9erRzedCgQfTp04eRI0cCEBsby5w5c2jbti3z588nPDycOXPmMHbsWKZMmULjxo2Ji4ujT58+TrsOHz6Mn58foaGhN+zPYDAQExPD4cOH7+ncFbF69Wqee+458vPzCQ0NJSUlhfLly9+0bXp6Oh9++OFtQwZbtWrFsmXL6NWrF2azGbvdTmJiIvPmzSt2u2PHjjF//nxeffVVXn/9dXbu3Mnw4cMxGAz0798fUEP3nnnmGaKjozl69Civv/46nTt3Zvv27WgL7wMvv9yPOnUqExQUzi+/7OfNN9/m4sU8Zs2a5bK/li1bsmfPHiwWCy+99BJvvfWWiy0//vgjffr0Yc2aNaSnp/P3v/8dm83GpEmTbnteBQLBw0O225GuS++Q4xuDBi2SBJ5+rqHTFoeNonlvQ1nwJrJbsGjUYzRV6wQG4cEtePjk5BwkyPEBnaOOAxAbEkaDejeOhQSCssBj8NRXenjQic7vBLNdzSVVO7A2y59WZ/9Pp54AoLWPhK9WDas5wXkACvJy8QSM3sKD5VGSdjaHrnO3Opd9TWWz8l6Rl5QEeJeFgeztsOXDO24YYLx+5q4H1atXr8bb2xubzYYsy/Tu3ZtnnnmG1atXu4SyBQYGUq1aNX7//XcAhg8fzssvv8y6devo0KED3bt3p27durfcz7Fjx7DZbDRt2tS5zs/Pj2rVbnRVb9y4scvyr7/+yr59+1i2bJlznaIoyLLM8ePHqVGjBkOHDqVfv35s2LCBn3/+mS+++IJ33nmH5ORkOnYsPjdeEbfLXQWqODdkyBDn8nfffUfr1q0BiIuLIzU1lYsXL/Lxxx/Ts2dPduzYQXBwsEsfGRkZJCQk0KNHD5dcSd7e3s7Xf/vb31iwYAEHDx5kxIgRTJw4kfj4eDIzMxkzZgxJSUksWrSIzZs307lzZ+d2H330EX369EGWZRo3buwMVWzQoAG//fYbCxYscIpSzz33nHO7OnXqULduXSpXrsxPP/1E69Z1sdtz+PvQ50FR8PSqTNOm8Xh6BjBkyBCmTZvmkn/q888/Jycnh19//ZUxY8YwY8YMxo4dC4AsywQHB7Nw4UK0Wi2NGjUiIyOD9957j0mTJhV7TgUCwcNFdjiQrguw0NkLOBWym97dn8fL79pv/GzeWU7lZAK+QBnxlLIVOEUpUXFP8ChYtOU48qUpxPjsIqQwxaPRGF78RgJBKUaIUiUId3hiOhOc64xgt8LvyVj2nUeiOr5a9euRZb1AlpIJBvDyK0ft9vHENmnx6I19jDlxSS0B6+Oho0aYL39rHnmbLUof31/I4qfL2QAEG3RohGtyiSIuLs6Z9DssLAydTkdycvJttxs0aBDx8fF8++23rFu3jmnTpjFz5kxeeeWV+7bJy8tVWMvNzWXIkCHOvErXU6lSJedrHx8fEhMTSUxMZOrUqcTHxzN16lQ6duxIbGwsWVlZnDlz5gbvLKvVytGjR4mPj7+tbV27dnUR68LDrw0mvby8qFKlClWqVKF58+bExsayaNEil6TxZ86cIS4ujpYtW7Jw4UKXvq+vLufrqz74TZs2jVatWjFmzBgA6tati5eXF61bt2bq1Kk0btzYZbsKFSoAEBoaSs2aNV36r1GjhjO08mbExMRQvnx5Dh8+SNOmFZzrJUmLVqNWZ23WrBl2u50TJ064CIoREREA1KxZE4fDwUsvvcTo0aPRarWEhoai1+ud3ldFtpw9exar1VrsORUIBA8Xh8PuMk7VOmzkmc7iV+Fa9a9lvy9j2o7pKHYf4HUA9GVhgslucYbviYp7gkfBjLVpjKivhslvPt2cJ2q2onJMLzdbJRA8PIQoVYJwR06pIk8po86IvHc5F76eQ5a1G2EGmfNSFg5kfsxeSbAV8IuhQlQ0nfr0ufsdCX3hvsgrzCVVv5I//xl4bwmWSzJH8swM+O24c7mOTzEJ9MsSek/Va8kd+71LioSU66lRowZ2u50dO3Y4w/cuXbpEWlqai9ARERFBUlISSUlJTJgwgY8//phXXnnF6XF0fc6gmJgY9Ho9O3fudApJWVlZHD58mDZt2hRrY8OGDTl48OANdhaHJElUr16dbdu2AfDss88ybtw4Zs6cycyZM13aLliwgPz8fPr163fbfn18fPDxuTOPUlmWsVgszuWMjAzi4uJo1KgRixcvRvOnh6CbHV9+fj46nestvUjcURQFk8l00+1atWpFWlqay7rDhw87E8HfjNOnT3Pp0iUqVPAHQJJ0GI3haLVGZ3hPamoqGo3mBu+vPx93keedVqulVatWfPrpp8iy7Dzmw4cPExoaisFgwGAw3PE5FQgEDxbVU+raYE5SFEDjIiLvP3+Q/OMjkC1qUQQJBV0p9yzKczg4ZgjlokF1VzGW8uMRlHzMNgcFNoczl1SnxgNoUaODyCMlKNMIUaoEUfTYcd+a1F1ctJyilNbIlo1arubMoKGXjq2eO0jV5KqNKsbwR2H7OwlbuRc7BMVTlOC8rOaS2pGV53w9tFIwvUOLT+pcZpCkUp2bIjY2lm7dujF48GA++ugjfHx8GD9+POHh4XTr1g2AkSNH0rlzZ6pWrcqVK1f46aefqFGjBqBWYJMkidWrV9OlSxdMJhM+Pj7079+fMWPGEBAQQHBwMJMmTUKj0dx2QDZu3DiaN2/OsGHDGDRoEF5eXhw8eJCUlBTmzp1LamoqkyZNom/fvtSsWRODwcDGjRv55JNPGDduHKB6VL377ru89tprGI1G+vbti16vZ9WqVbz++utMnTqV2rVru+z3z6IOQK1atZwV5IrIy8vj7bffpmvXroSGhnLx4kXmzZtHRkYGPXr0AFRB6sknnyQyMpIZM2Zw4cIF5/bFVb9LTExk8ODBzJ8/3xm+N3LkSJo2bXrTfFxFjBo1ipYtW/LOO+/Qs2dPfvnlFxYuXOj0zsrNzWXKlCl0796dkJAQjh49ypgxo4mJqUSbNrUA2L3nGKl71xIXF4ePjw/bt29n1KhR/O1vf3NWVly2bBl6vZ46derg4eHBrl27mDBhAr169XKep5dffpm5c+cyYsQIXnnlFY4cOcI777xzU8+367l8+TInT57kzJkzLp9HSEjIbSsGCgSC4tm3/nsO/7yVguxsdkcfw+Oqul6jKBg9vZy/cYCsfI1TkAJ4slpwqX6QVhSFDjvTOF7rWk4/o/CUEjxE7PY8du16ho86HEenUSfs6kRULNW/I4HgTiibT7illKLrjfzAskrdup/DVw6zKn0Vv138DVA9pS5eNlJOK6GgcFlSRQK9XcHhMBN0+Sqe0dG0aCHC9txBWRelLtvU4+sVEsCblUUSx9LE4sWLGTFiBE8//TRWq5U2bdqwZs0ap9DgcDgYOnQop0+fxtfXl4SEBN5//31ADb+aMmUK48eP54UXXqBfv34sWbKEWbNmkZSUxNNPP42vry9jx47l1KlTGI3GYm2pW7cuGzdu5I033qB169YoikLlypXp1Ut1ea9YsSJRUVFMmTKFEydOIEmSc3nUqFHOfkaNGkVMTAwzZ85k9uzZ5OWp18Ply5e75Fcq4mbrTp06RcWKFV3WabVaDh06xNKlS7l48SKBgYE0adKEzZs3U6uWKvCkpKSQnp5Oenr6DdsrxbjRDhgwgJycHObOncvo0aPx9/enXbt2TJ8+vdhz1qRJE77++msmTJjAW2+9RXR0NB988AF9Cj1itVot+/btY+nSpVy9epWwsDDatWvJ66+/hIeHAUnS4uUZyGef/ZPJkydjsViIjo5m1KhRvPrqq8796HQ6pk+fzuHDh1EUhcjISIYNG+Zy3iMiIli7di2jRo2ibt26hIeHM2LECKdgeCuSk5N54YUXnMtFn8ekSZOYPHlysdsKBILi2bRsMZbCa+Da8FS6pqvej5KiMGLwSJfrss2hFsUx6hX2vtkZo74UCzgOOwWbZnCcBAAqWC4SUi6EVuW8b7OhQHBvbE2/yFc/f0uXsHSKUrF5GCrg6Vn2UnYIBH9GUoob5T7mZGdn4+fnR1ZWljNvx8Okw840fsstYHndGOIC731/u/c8z9Wrv1C79odUCL55OfCkH5LYmnEtcfagyi9SfVUVgmRfAvQKS4wbAPBO24PO4SB+3zEqvD6BgDsIWyniyM7tJM94m7BgT3S0J80nF7shh47WuvjkaQmY3JGK5R6TMK375L21h5j301EGtIxictda7jbngTMlPYP5py4wJCKIKVXKZp4Ys9nM8ePHiY6Ovq24InAlLy+P8PBwZs6cycCBAx/5/i9fvkz79u3x9fXlu+++w9Pz8bxuORwFOBwFmM0ZAHh6RqPVepXZGdzifrOPenxQGhDnpGzywd/+isNmo1nL9kwwLOcvG4IBiUB9Dwb813VM2G/VeDZtb423UeG3yU+7x+AHxfHNXF7Wm5qtvgHg9JYEdOOOlmrvZkHJpu+iHWRf/YnhDT7mZHY4KWdf478vxaPReNx+Y4GghHKnY4NSPIVR9nDmlHoE+7pqvgpAQlQCw02VeXZNRWpp/QnWa7BzLb8Lsoy2cOZLGxj4CCwT3Ixcs+pJ5GMsm55SWYVV98rptLdpKXgc2Lt3L8uXL+fo0aPs2bPH6bVTFBL4qAkICOCHH36gffv2bN++3S02uBtFcZCXf8wpSCFJaLWmMitICQQCFbkw51/AoWMoily4VoPG+foa9qLxYll4ujBnOZOb65HR/e0LIUgJHipX8/Px0aupU8IDw/igdychSAkeG8rmE24p5VGKUkW5pLqF/hVp1WcoBjUHwGW7zOWC38EIyA50skJsdCyhzw/E5w7Lpf+ZWx2P8NG7c3It6qDQq4yF7/2Wk8/8Uxf48twVAEI97iJnmaBMM2PGDNLS0jAYDDRq1IjNmzdTvnx5t9kTGBjIxIkT3bZ/d+NwmEGRkSQNWq0Xen0AkiREZIGgLKMoCoqsCk2KXb5uQCchcaMoZXWKUmVArLabMWvVMYlRq4Po1m42SFCW+eOPjxhe8z00kvojCy0XTLCv8KoXPD6UrSfc0k7hPfyRiFIOVZTK+tXGyfy/EGmAQ9oMthqOoHirAoiH3sCI5auQdOJr4m5yLTag7IlSc06eJ/n8VedyI7/HMyxK4EqDBg3YvXu3u80QoHpI2WxXsNvVnDJarReenlHuNUogEDwSigQpAI09l4ZHbEVLNxWlijyldNqyIEpZnJ5SxjLh+iUoiWSbbXT/9zaejVpBFf+iJ0ANgQFPuNUugeBRU7aecEs5Tk+pR+BCVOQpRYHsjOE8pjmHorkWuhcaUuG+BKnrSwf/WWpzfU9wK7Ydvchnv5xiz8mrAPiUMVEq06wOcPuGBfJ0kD9VPMWskEBQkigoOIXdnuNc1mjEb1QgeFwoCt2r4tOQ3MztdDzqyeFQQJKcHh3XY3Oo63RlQMORbWbytCZAVNwTPDz2ncriyPlcTFXyAfhv2lDmvvASXkaRUF/weFG2nnBLOUVCzaP0lJKyLqKR1FxRNqkwb0D+VSynT9C+17OPwBJBcUxOPsDhc7nO5VC/svVAeMGmilLPVihHM39xAxYIShKKouBwqB5SOp0PGo0Rg8F9IZQCgeDRIsvquLCyTz3WZu8G76LcojoMlSJuaG93ilKle+Lxx0vZDMyrT0GDfwNgLOXHIyi5ZGdtoW3FXwg0ZQMw4/mOQpASPJYIUaoE8bBvefm2fEZvHM3J7JPk2dQHDenETjSF5W6dCc7NBWgcdgweZUsAKW1Y7TJHzquC1N+frEzdin40jQ5ws1UPlvNWNYF7sEHvZksEAkERiuLAbM7E4chXExtLEiZTJSRJeAsIBI8TRZ5SNtmqekfJMmaTES9dWwwhFW5ob5OLwvdK97Vi45UcCriWM++Jcj5utEZQFrE5ZFKP7cYjezT9al5b72UKcp9RAoEbEaJUCUJ6YDmlbi5vpZ5PZUvGFudykN0OsgFsR4Ca2FAFAnP2VbSAXpStdyv5VrszGfyrHauW+kHen8mzO8gvzD8RZBCXIoGgpGCzZWGzXXEu67TeQpASCB5DikSpopGph83B+fBy+Jqro7kupO23i79x5MoRcq0FAOhLc06pH6dizg4Av5YMPfkpw8tr8Kv6L3dbJShjjP9yP+mn1jO8AeRaPcmjNi2rt8HoEeJu0wQCtyCeBEsQ13JKPaAO/9RRgV0dLMSWi2Wq3ZfI/StZnn8V2XwaO9WwS4VJK2UZL/9y+AQ+oDANhYfvBlYGsdivVbEpa4LUuotZrLuouiqbNBJeZez4BILSjKKoYbVqlb1y6HQilEAgeBxxilKFs6Z2vRd+9sYAaAqFp6vmq/Rd0xe7YsdmqQOAXltKK3NacmHTe1iqjgM/8Ldn4+df8/bbCQR3yaGz2fjp1TxSFywx1Kkzl6iowNtsJRCUXYQoVYJwilIPKatUUR6pAK2Jmjl52OXyhOqj+TU6lyXaDc52z74+hYjoGPQifM+tmG3qYNBYFjKGXsdvOfn023/cuVzPxxNJEqqlQOBurNZLmC2ZzgkNnc4bg6Gcm60SCATuQnY4kNCoYbyAXeeNj70aAB5eatj9ZfNlzHkVkXPq4iNVwQz4eni5y+T7w6aKBGZtYdW9Rv2hThN3WiQog1y5soNOoR/iqz8LQPPKUdSOEYKU4PFGiFIliIed6NxqtwDgcXIHe4+1QKe8T3lfGat2r7NNUFAQlapURXcfVfecXCc0SI8kfXvZoshTykNfSmccb8HPWXnO18+HBjCoooifFwhKAlbrBacgJUka9Hp/9xokEAjciiI70Ega5KKco5KGq/oDeJh8afJUCwBssg1L5jPI1mAshduV8zS4x+D7xaZGFJiLqu4Fx4JWPCoJHhwLNx3FM+ef1A783bnOZLqxaIBA8LhRtlwwSjkPLqfUzTFb1XApDxm25/RHxhdrYR6pcmYtA8wmXn755QcjSAnum7LqKZVtV4+rb1gg71evRC1vk5stEtyOAQMGIEkSkiRhMBioUqUKb731Fna7/b763bBhA5IkcfXq1Qdj6B1w/PhxevfuTVhYGEajkYoVK9KtWzcOHTrk0m716tW0bdsWHx8fPD09adKkCUuWLHFpc+LECSRJIjU19Y73P3nyZKpXr46XlxflypWjQ4cO7Nixw6XPgQMHEh0djclkonLlykyaNAmr1XrbvpctW0a9evXw9PQkNDSUF198kUuXLhW7jcPh4I03JhAdHUlQUH3q1evC++9/gZdXdTQa9cHyq6++olOnTgQGBt7yeI8ePcpf//pXgoKC8PX1pWfPnpw7d+6uj2vfvn20bt0ao9FIREQE77777m2Pe9OmTSQmJhIWFoYkSaxcufK22wgEgtvzZ08p0HDRuBtbuTP4Bqr3bptsQ3Gor59vGsGI9rGMS6juJovvE7saUWDRqpECHpqyNf4SuBezzcG07w4hO9ScjT+eakeV2OlERia52TKBwP2Iq20J4oHnlPoTFkthDh9Zh4IGLWCV1IdKXU4mAe0auCSuFLiXsuoplVMoSnmLPFKlioSEBDIzMzly5AijR49m8uTJvPfee+42y8mdiDY2m42OHTuSlZXFV199RVpaGp9//jl16tRxEcY+/PBDunXrRqtWrdixYwf79u3jueeeIykpiddee+2+7KxatSpz585l//79bNmyhaioKDp16sSFCxcAOHToELIs89FHH3HgwAHef/99FixYwOuvv15sv1u3bqVfv34MHDiQAwcO8MUXX/DLL78wePDgYrf717/eYcGCBbz77lh++WUlU6aMYsaM95k7d56zTV5eHk888QTTp0+/aR95eXl06tQJSZL48ccf2bp1K1arlcTEROTCalx3clzZ2dl06tSJyMhIdu/ezXvvvcfkyZNZuHBhsceQl5dHvXr1mDdvXrHtBALB3SE7ZDSShuOa84VrNDg0Dpexok22oSjqZOag1jGM6liVSoGebrD2/vn8YgEjq47jgFc0AEYxJhY8QLIKbCgKeBXmknq+7UtERjwr8jYKBIjwvRLFtZxSD5ZdZ3ex+9xudmb+DICHYsSmz2KHMZM8jXph9G/WDN9OnR7wnv+MyBt0J2QV2Hj5v7s5flENc/MoY55SuYUV93x0ZUtsK+t4eHgQEqJWhXn55Zf5+uuvSU5OJikpiREjRvDNN99gsVho27Ytc+bMITY2FoA//viDYcOGsWXLFqxWK1FRUbz33nvUrFmTuLg4AMqVU/MW9e/fnyVLlpCTk0NSUhIrV67E19eXsWPHsmrVKurXr88HH3wAQFRUFAMHDuTIkSOsXLmSZ555hiVLlrBlyxYmTJjArl27KF++PH/961+ZNm0aXl5eHDhwgKNHj7J+/XoiIyMBiIyMpFWrVs7jPHXqFKNHj2bkyJG88847zvWjR4/GYDAwfPhwevToQbNmze7pPPbu3dtledasWSxatIh9+/bRvn17EhISSEhIcL4fExNDWloa8+fPZ8aMGbfsd/v27URFRTF8+HAAoqOjGTJkyC2FpCK2bt1Cly5xxMe3Qav1olq1JqxatZVffvnF2aZv376A6u108z62cuLECfbu3Yuvry8AS5cupVy5cvz444906NDhjo5r2bJlWK1WPvnkEwwGA7Vq1SI1NZVZs2bx0ksv3fIYOnfuTOfOnYs9ToFAcHdkXzjPpdN/oJG0XCKncK0GWeOgWrVqznZWhxUU9X5uKMWTTfkOmVfPKjhCuzjXBYvKwIIHhCxbOH50IiMbHsTHkAtA5QqhbrZKICg5lN67RxmkKHxPfoCylM1h4+/rX2Zu6lx2XNoPgK9iItfrd07pznNZo14Y/fz8H9g+BffHz8cuse3oJTKzVDfyysFlYwYlz+5g7cUsvj6nui0LTylQFIV8W/4j/1MegDumyWTCarUyYMAAdu3aRXJyMtu3b0dRFLp06YLNplZwGzp0KBaLhU2bNrF//36mT5+Ot7c3ERERfPnllwCkpaWRmZnJ7NmzAXj11VfZunUrycnJpKSksHnzZvbs2XODDTNmzKBevXrs3buXN998k6NHj5KQkED37t3Zt28fn3/+OVu2bGHYsGGAmjNPo9GwYsUKHM5S566sWLECm812U4+oIUOG4O3tzfLly+/7/IHq3bVw4UL8/PyoV6/eLdtlZWUREBBQbF8tWrTg1KlTrFmzBkVROHfuHCtWrKBLly43be9wFGCxXKBJk5ps2rSDP/64ipdXDL//fpotW7bclchjsViQJAkPDw/nOqPRiEajYcuWLXd8XNu3b6dNmzYYDNfy0cTHx5OWlsaVK1fu2B6BQHB/HN29g4+Hvcg37/9LDd+7LqeUpIW//OUvzrY22eYUpfSl9b7usJG3ZQ6OwsnTN85/zbwalWjmV0oTtgtKFDtPXGbgwo/Iu/Ildcr/jlaS0Wo9MRhEcnOBoAgxBVCCcCY6f4CuUnm2PAoKY+R7ZefgK8u0yQknWbkCeFHDHs75y7/xxBOtiu9I8MjIt6ohlfUq+jExsRZ1wv3cbNGDYczh03x17tqDZWVPUd2xwF5As0/vzePmftjRewee+nsLr1AUhfXr17N27Vo6d+7MypUr2bp1Ky1btgRUb5eIiAhWrlxJjx49OHnyJN27d6dOHbVUeExMjLOvIkEiODgYf39/AHJycli6dCmffvop7du3B2Dx4sWEhYXdYEu7du0YPXq0c3nQoEH06dOHkSNHAhAbG8ucOXNo27Yt8+fPJzw8nDlz5jB27FimTJlC48aNiYuLo0+fPk67Dh8+jJ+fH6GhN85gGgwGYmJiOHz48D2duyJWr17Nc889R35+PqGhoaSkpFC+fPmbtk1PT+fDDz8s1ksKoFWrVixbtoxevXphNpux2+0kJibeMqStoOAksmxl1KgBZGdnU69eW7RaLQ6Hg7fffps+ffrc8fE0b94cLy8vxo0bxzvvvIOiKIwfPx6Hw0FmZuYdH9fZs2eJjo52aVehQgXne0UedQKB4OFy8eQfAOj0BvRGb87prmACVaDSyC5tLXYrUCRKlVKP+OMbsWybB82fxEO28Ip5L4QUPxEgENwpa/ZnYrao+R1P54RyXu5OUsfOaLUip6pAUEQpndIomzyMW7nZoQpSekXhH5euMFwTjCa8ndMtK0oO5slGLfEPvPkD0f0gldKxibvJt6ozkhV8jTSKLIehjITv/XApC4AIo4GkiCCeDPBxs0WCu2H16tV4e3tjNBrp3LkzvXr1YsCAAeh0OpdQtsDAQKpVq8bvv6uVZYYPH87UqVNp1aoVkyZNYt++fcXu59ixY9hsNpo2bepc5+fn5xIuUkTjxo1dln/99VeWLFmCt7e38y8+Ph5Zljl+/Digem6dPXuWZcuW0aJFC7744gtq1apFSkrKHZ+L6z15bsWyZctc7Ni8ebPzvbi4OFJTU9m2bRsJCQn07NmT8+fP39BHRkYGCQkJ9OjRwyU31PX9JiWpCVIPHjzIiBEjmDhxIrt37+b777/nxIkTzvc3b97sst1nn30NQHLyFr744nuWLVvGnj17WLp0KTNmzGDp0qV3fD6CgoL44osv+Oabb/D29sbPz4+rV6/SsGHDm+YpvNVx3Y4/H8OyZcvueFuBQHDnyLI6DomNrcH+oBPsKldUpVlC0bqKUma7zflaX1rHKwVXsRQWdvDQaOCpWW42SFBWkGUrku13KvmcBqBqxbqM7jYSH+9SWgxAIHhICE+pEkSRhiMDY9NOUdPbxIDw+xGLFArsanlbo6zA4J8gvCG2NT+iHFkHgFbREFOn7n3ZfS8IverWFBSKUp6GspNzyaEoZBcmbl/TKJYgg97NFpUMTDoTO3rvuH3Dh7DfuyUuLo758+djMBgICwtDp9ORnJx82+0GDRpEfHw83377LevWrWPatGnMnDmTV1555V5Md8HLyzW0Ijc3lyFDhjjzKl1PpUqVnK99fHxITEwkMTGRqVOnEh8fz9SpU+nYsSOxsbFkZWVx5syZG7yzrFYrR48eJT4+/ra2de3a1UWsCw8Pd7G7SpUqVKlShebNmxMbG8uiRYuYMGGCs82ZM2eIi4ujZcuWNyT6vr76XVEOp2nTptGqVSvGjBkDQN26dfHy8qJ169ZMnTqVxo0bs3fvHiyWszgcBZQv7wdIvPHGv5gw4XWef/55AOrUqcMff/zBtGnT6N+//22Ps4hOnTpx9OhRLl68iE6nw9/fn5CQEBfPuNsdV0hIiEvFPsC5HBISQlRUlMuxF3lRCQSCB4tcGN6s5GRT8dJVIqyFYpOkpYVvuEtbs+1aFdZSm1PKbnaKUkaDCcpXcbNBgrLCgYOv0cr/W/BXl8t5B6HRiKcggeDPCFGqBFHkWfTjpWxWFIY53Z8oBebC0D2TIqN4+PLH/oucTrsIkjpw0KFBMt1+1v9B8pCKC5YZijylTGVIlMq1X8vf4ysSnDuRJOmew+geNUVCyvXUqFEDu93Ojh07nOF7ly5dIi0tjZo1azrbRUREkJSURFJSEhMmTODjjz/mlVdecXocXZ/fKSYmBr1ez86dO51CUlZWFocPH6ZNmzbF2tiwYUMOHjx4g53FIUkS1atXZ9u2bQA8++yzjBs3jpkzZzJz5kyXtgsWLCA/P59+/frdtl8fHx98fO7MG1CWZSwWi3M5IyODuLg4GjVqxOLFi2/wNrrZ8eXn56PTud7StVr1t6YoCiaTicjI8pjNFkANg9PpfMjPz7+hf61W66yad7cUhSH++OOPnD9/nq5du97xcbVo0YI33ngDm82GXq8K1ykpKVSrVs0Zunc3n61AILg3ZIeDAEMoNfKbE7P9B04G+PJbBIDEk8FqEYtvj33L1J+nkm+WgDeAUpxTylaA+XpPKYHgPrmYa6HPxzvoH7uLCp5w2eyHv1cQoSHd3G2aQFAiEaJUCaJINz9ntRXb7k5RNs0g99ghCAnCqChcvOTBmnn7qKHXoitnxIaMFg0a46MVpQTFU2ArFKX0ZefnmV1Ycc9DI4kBXxkiNjaWbt26MXjwYD766CN8fHwYP3484eHhdOumDrxGjhxJ586dqVq1KleuXOGnn36iRo0agFr5TpIkVq9eTZcuXTCZTPj4+NC/f3/GjBlDQEAAwcHBTJo0CY1Gg3SbmOBx48bRvHlzhg0bxqBBg/Dy8uLgwYOkpKQwd+5cUlNTmTRpEn379qVmzZoYDAY2btzIJ598wrhx4wDVo+rdd9/ltddew2g00rdvX/R6PatWreL1119n6tSp1K5d22W/aWlpN9hSq1Ytp7BSRF5eHm+//TZdu3YlNDSUixcvMm/ePDIyMujRowegCjdPPvkkkZGRzJgxgwsXLji3L6p+eDMSExMZPHgw8+fPJz4+nszMTEaOHEnTpk2dHl+ybAVAozFiNIag1XqRmJjI22+/TaVKlahVqxZ79+5l1qxZvPjii86+L1++zMmTJzlz5ozL8YaEhDhtWrx4MTVq1CAoKIjt27czYsQIRo0a5Qy7vJPj6t27N1OmTGHgwIGMGzeO3377jdmzZ/P+++/f8rhB9ZBLT093Lh8/fpzU1FQCAgJcPOQEAsGdITscBJsq4bBdIsPfm/O+RTkgNRgC1OIrP578kVxbLrKsiu+SpKAtrR4gdss1T6nSegyCEsXPxy6Rdi4HY3W1yvm8X5P4ZFBv/PzKRvEigeBBU3aeessARYnOCxz3NkP9Z/7pOMOmkCAAjBoP8swe+OntBHp7Ihfec7WyjD7kweeTuh7hGXV35JpVV3hvj7LhUbT+UjbfnL8KgLe2bByT4BqLFy9mxIgRPP3001itVtq0acOaNWucgozD4WDo0KGcPn0aX19fEhISnCJDeHg4U6ZMYfz48bzwwgv069ePJUuWMGvWLJKSknj66afx9fVl7NixnDp1CqOx+OT4devWZePGjbzxxhu0bt0aRVGoXLkyvXr1AqBixYpERUUxZcoUTpw4gSRJzuVRo0Y5+xk1ahQxMTHMnDmT2bNnk5eXB8Dy5ct57rnnbtjvzdadOnWKihUruqzTarUcOnSIpUuXcvHiRQIDA2nSpAmbN2+mVq1agOoZlJ6eTnp6+g3bF1c1ccCAAeTk5DB37lxGjx6Nv78/7dq1Y/r06VitFzFbzjqraOj1/uh06oPkhx9+yJtvvsnf//53zp8/T1hYGEOGDGHixInOvpOTk3nhhRduON5JkyYxefJkQBWqJkyYwOXLl4mKiuKNN95wOad3clx+fn6sW7eOoUOH0qhRI8qXL8/EiRN56aWXbnncALt27SIuLs65/OqrrwLQv39/lixZUuy2AoHgRhTZgYSG/QV7OB55XZispENbsSEAeRYwZ/6VCFN9jgGGUnp/T8szM81SlYzKaki5mDgT3C+KomDJWUenyP34GFRR6v+SOhFcTghSAsGtkJQHURu8jJKdnY2fnx9ZWVnOvB0Pk+dSj7LhSg61vI0cyFXD7s7G1b/rfnbv6c3VqztYetHA3gJVdxxY6wWeLOjKqh+WoUjXPvJh3V+gfJ3IB2L/nzm6ewcr3/0nIUGeeEhxHPIpwG7IpoO1Lv55OvwmdSAioHSELj1Khn66h2/3ZTIpsSYvtIq+/QYlmLQ8M21/OeRcfsLfmxUNHs/wG7PZzPHjx4mOjr6tuCJwJS8vj/DwcGbOnMnAgQMf+f4vX75M+/bt8fX15bvvvsPTs/RctxRFITf3EIqiit2SRo+XZwwajfCQvR3F/WYf9figNCDOSdnhx8UfYf35MhdyfuO8IwtJWx5J44/O2Iy+b3fDv4InTy99h99+r+fcJiLAxOax7dxo9T2gKEw8cIiFF66FTyeU92VJnZhiNhIIbo2iKBzL2MyJwy9ct1bDk21/RastPWMHgeBBcadjA+EpVYIoikzJf0CeUgBNrDL/fmE3Rp2Rn77ZgSIpSIqEXpHwNmkIrP0wQxuk617dqH0KOdSVfaev8s2vZ0g9eRWAAK/S/9D4W446QxRs0NGmnA9/rxTsZosEpYG9e/dy6NAhmjZtSlZWFm+99RaAMyTwURMQEMAPP/zAvHnz2L59O+3bt3eLHXeLw5GP3Z7nFKS8vKqi0eiRJOEJIBAIbo3sUD2lilKY6wwNsfiFEFszBr9gtVCGza6O8SoFQdITdWgeE+Ama++DlS+TW1ARQp+m2/n1dA7wpk31Rz/xISg7jPtyHxlnUnixtppHyq5rQNvaCUKQEghugxClSiAFjvtQa3LOwdWTzkUvSYdRZ8R2Pp/8/UcBCFZ8qXPZSEFdx21ztDw0RMj+Dby56gC/nrrqXA71u/sKaSWNDIuaH+3JAB/m1Hg4HnmCssmMGTNIS0vDYDDQqFEjNm/e7Eyi7Q4CAwNdQtpKOg6Hhby8o85lrdaEVuvhRosEAkFpQZbV8WFRMIVGzuN46AZ6P93KOW60FY5Vw8pJ9G5WSnO3nd6JOagyAA0tp/lL7LNQhvJ5Ch49Px+7TA0fNeT/eHY1WjWeTliY+8YuAkFpQVx5SxBFOk2+7Ci2XbH8/G/I+QP8CxM26tSQgysrj+CVqwcDaBUtZnseQZE17tPie0W4SN2MK3lqEuJnGoTToJI/jSPLudmi+yensOqen6i4J7gLGjRowO7du91tRqnG4VC9FCVJi1ZrwmAQXooCgeDOkO0OdGiQUT33pcJ/2uvyRjlkdSynK805mGxmzBpVrDe2fwPus+K14PHm4sWfGF13JEadev/t1rAG1aqI75RAcCcIUaoEUZToPNt+H+F7ueddnJCMFZsCYE0/iUOv9mux5VPh/K/UiX/t3vcjeOCYC6vuvfhENLXD/dxszYMhpzAUVSQ4FwgeDQ6HGZvtCg6HOlOr1/tjNIa52SqBQFCaUD2lNMhK4XhUUdAoGjTXCVBFQ1WDrhSLUvYCCgo9SI2lWVwTuBVZVkj5/RyWi1/jbcgtXCvh79/YrXYJBKUJcQUuQTyISDrZnEXBdR15eKtVUxSbjANV9LA6LEQOeeGm2wvcR0GhKGUylA0Bp8Ahk2VTM1L4CE8pgeCRYDZnYLVexOEoAECjKf1hwAKB4NEiOxxo0GAtzCqlSKBRNOh01+ayCx2hMWhL8aOEzUxBkaeUVuSVENwb245eYsh/dnMwIwOAVUe70KzFdioEd3GzZQJB6UF4SpUgfriUfe8byw6wZDPBnE6UnwdVC12ujVoj6bvPo+h8sZMDgCGgPL7xnR6EyYIHiMVW+JnpS7+AM/vEOaYdz3Qu+5TmmVSBoJQgyw5n2J7BUB5J0qHXlw2vS4FA8OhQHKqnlOJMt6DQoF4DypW7llagqCaPvpROOn119jK7Igdx1DMCAJPwlBLcIycvq/ddf6NaxfHJGvXwNgW50ySBoNQhRKmywOVj8HF7KLjMwfBQogpXBxgDaB/Znl3/c5Qw7VWuaFSXUqPp0VR1c02iLvJIFYdDVrAWjvCMZUDA+fbiVedrX52GJn5e7jNGICjjKIqDgoKTyLI6INZoPDAaQ91slUAgKK3IsgOHRuFaMgmF1q1au4zrikSp0ugplWWzM+z3k8jhzzjXlRcJzgX3gMVyAd+8v/OvJ84TYFKdC1pXj3azVQJB6UNcgUswRs0duhKf3AEFlwEwX7fN+GbjCQluwA/mf3PIeN65vnwJyFckifJ7LhTlk4KyEb532qwmbV/TKJa63p7o7vS7LBAI7hqbLQu7Pde5rNP5utEagUBQWknf+TNXz2VyJfMM/1MjjdZbvdA6ABR0GvWRIfloMulX0jHb1dA+j9LmKZWVQdZng5CrTkMn23nl1DIi2o+jga+nuy0TlDLW7M9k1+//pVX53zEVfn0kSYuXZxX3GiYQlEKEKFUCiTYZOF5gvXPfInOW+n/1p7FwCsh0eduqqG6lvrKJAvMlates+cBsvReEz5QrNrOZ/Zu3UCv7IDpJ5uA6G4oiI9vtVGvZBv8KIe428a7ItTu4XCiyxXoahSAlEDwkFEVBUWzY7FcB0Gq98PAIQasVeaQEAsHdcen0SVbNmAqAX76ZN346w87oWKw60KFQ0bsiGbkZvLHlDQDsDtXLyEtfyq43f2zFnKXm/vF25DMu/2eoWOHBJHYVPFZM//4Q1bzPQnnYf7E6IeHD+EvjBhg9Ste4XSAoCQhRqgTxnzrRfHz6AmOiQ0nccwTlTtUbS2EuKs9AzDlHnKvPHL7C6U2HkRRVIGhtq8Evp5cRGirCOkoKVrvMgjkLse1eR7vCdRv/s9n5fnBUTKkTpU4VekmV02lFgnOB4CFiNmdgs11xLhsM5dHpxGy/QCC4e/KzrgJgMHlSw1QOvyMZFDm1+2oltBotWZYsZJsfWnM1gnS1OQOU9/R3l8n3ht2MWaOmsTCa/OCljUKQEtw1NlsWVb3XUzPwEAC1ImrRtkl86a5GKRC4EfHLKUF0LO/H/9WvQriHHrgDj6ITW2HBE/Dzv9X2Hj6Y7Wbn20c3n6HCrrMYNGpPWjQ4ZBtaw6PJKVXErcQ1RfhMsfnIBQ79rgqJ5w3luRpcnWotW2OqG4NUO4yvMtYwY+cMpv8ynWk7pjH156m8tf0txm4ay8FLB91s/c0pEqUijI/2eyZ4eAwYMABJkpAkCYPBQJUqVXjrrbewF4Zv3CsbNmxAkiSuXr36YAy9A44fP07v3r0JCwvDaDRSsWJFunXrxqFDh1zarV69mrZt2+Lj44OnpydNmjRhyZIlLm1OnDiBJEmkpqbe8f4nT55M9erV8fLyoly5cnTo0IEdO3a49Dlw4ECio6MxmUxUrlyZSZMmYbVaXfpRFNnpIQWg1Xry+eerqFevHp6enoSGhvLiiy9y6dKlYu3Jyclh5MiRREZGYjKZaNmyJTt37nRpk5uby7Bhw6hYsSImk4maNWuyYMEClzZDhgyhcuXKmEwmgoKCbnpOT548yVNPPYWnpyfBwcGMGTPmlt+hrVu3otPpqF+/frH2A3z11Vd06tSJwMDAu/48BAKBisOhTmD6BQUTHRIIgK2wIp3BW53Dtst2Ck69QPbpZzhzURXAS13KAZsZc1HFPb0edGKsIrg70s7m8MPO6TxXbTl1yqv3uSqhkUKQEgjuA+EpVQIpmrC5rWiT+imc3Y8CbDEZOa01u2xj0qgPkbKkZqPMyPqNKs2aYvL2eUiWC+6WK/k2vAtzwYT7tkYvx/DHIQWUJngAZ7OOs7LOBzfdtl1EO2oGujcU83ou2+zE7zp8TZR6RAn1BY+GhIQEFi9ejMViYc2aNQwdOhS9Xs+ECRPcbRoAVqsVw20Ed5vNRseOHalWrRpfffUVoaGhnD59mu+++85FGPvwww8ZOXIk48aNY/78+RgMBlatWkVSUhK//fYbM2bMuGc7q1atyty5c4mJiaGgoID333+fTp06kZ6eTlBQEIcOHUKWZT766COqVKnCb7/9xuDBg8nLy3Pu127PxW7PAUVBkjR4e9dk27Zt9O8/gPfff5/ExEQyMjJISkpi8ODBfPXVV7e0Z9CgQfz222/85z//ISwsjP/+97906NCBgwcPEh4eDsCrr77Kjz/+yH//+1+ioqJYt24df//73wkLC6Nr164ANGrUiD59+lCpUiUuX77M5MmT6dSpE8ePH0er1eJwOHjqqacICQlh27ZtZGZm0q9fP/R6Pe+8846LTVevXqVfv360b9+ec+fO3fac5uXl8cQTT9CzZ08GDx58rx+NQPBYIztUgVij02Hf+w1gcI4pNYXJzG2yDdmm5iVtHFmOUH8TCbVLlze36ilVKEqJinuCuySrwEbi3C0MrJlG4xA4kVWJljWeICy0h7tNEwhKNUKUKoEUJQG/rR+RRc0ltbPhc/z9yjbIWOeyfeEEFzbFDhIE702mycz1D8PkmyPd9KUAUGSZlTOmcurgQSpYVVFKsvoha10/9TCHPy/UegGNpEEjadBqtGgkDV46L6oFVHOH6bfkl6t5TkFKAuICRLLlsoSHhwchIerDx8svv8zXX39NcnIySUlJjBgxgm+++QaLxULbtm2ZM2cOsbGxAPzxxx8MGzaMLVu2YLVaiYqK4r333qNmzZrExcUBOMuM9+/fnyVLlpCTk0NSUhIrV67E19eXsWPHsmrVKurXr88HH3wAQFRUFAMHDuTIkSOsXLmSZ555hiVLlrBlyxYmTJjArl27KF++PH/961+ZNm0aXl5eHDhwgKNHj7J+/XoiIyMBiIyMpFWrVs7jPHXqFKNHj2bkyJEuYsno0aMxGAwMHz6cHj160KxZs3s6j71793ZZnjVrFosWLWLfvn20b9+ehIQEEhISnO/HxMSQlpbG/PnzmTFjBjZbFgUFJ53vazRGJEli+/btREVFMXz4cACio6MZMmQI06dPv6UtBQUFfPnll6xatYo2bdoAqifXN998w/z585k6Vc0vowpe/XnyyScBeOmll/joo4/45ZdfnKLUSy+95Ow3KiqKqVOnUq9ePU6cOEHlypVZt24dBw8e5IcffqBChQrUr1+ff/7zn4wbN47Jkye7CIpJSUn07t0brVbLypUrb3tO+/btC6heZgKB4N6QC8vpxVCbE+WsHIjoCjmLQClAG6qON2yyDRTVM+qD5+pTsVzpChe+arOz0hbEvmA1YYIQpQR3y9ksM1a7jKdejUzxDnieGtVfus1WAoHgdoircQmkSMC5bU4pSw4AZ33KAxBoDCQhKoFoP7UUqVfhp+so9JQKHfMaGlMpS0hZRrmcmcGx3b8gF6iClKL3RdKUI+DyQVptm8ATW8fSestrdDj9Ja82fpWRjUYyvOFwhtYfysv1XqZfrX7Oz7mkUCRIxZf3Ja11Hf4WFuhmi0o+iqIg5+c/8j/ljhPW3RqTyYTVamXAgAHs2rWL5ORktm/fjqIodOnSBZvNBsDQoUOxWCxs2rSJ/fv3M336dLy9vYmIiODLL78EIC0tjczMTGbPng2onjlbt24lOTmZlJQUNm/ezJ49e26wYcaMGdSrV4+9e/fy5ptvcvToURISEujevTv79u3j888/Z8uWLQwbNgyAoKAgNBoNK1ascIaq/JkVK1Zgs9l47bXXbnhvyJAheHt7s3z58vs+f6B6dy1cuBA/Pz/q1at3y3ZZWVkEBAQA4HDkOdfr9f4Yjao3U4sWLTh16hRr1qxBURTOnTvHihUr6NKlyy37tdvtOBwOjEajy3qTycSWLVucyy1btiQ5OZmMjAwUReGnn37i8OHDdOrU6ab95uXlsXjxYqKjo4mIiABg+/bt1KlThwoVKjjbxcfHk52dzYEDB5zrFi9ezLFjx5g0adIt7RYIBA+eIk+pikoVMo11kLUGQB0/VqiqXmdsjmuilEFb+h4hPjx5nvFKDT4NfRoAP5H3UnCXXM05SmW/Y5T3VPP5tqsZ42aLBIKygfCUKoEUiVLyrRpkZ0LuWchRwxrMGvWmWj+4Pu+1fY+dP/UgGyiv16CgOPsp17HjQ7RacDdknT8LgORfgf96tWWwxYzskFDkHHIq6/DV+eCnN2EM0UHWafCr6GaLb0+RKFXZZMRXDPTuCKWggLSGjR75fqvt2Y3keW8z3IqisH79etauXUvnzp1ZuXIlW7dupWXLlgAsW7aMiIgIVq5cSY8ePTh58iTdu3enTp06gOr5U0SR0BIcHIy/vz+g5jhaunQpn376Ke3btwdUoSIsLOwGW9q1a8fo0aOdy4MGDaJPnz6MHDkSgNjYWObMmUPbtm2ZP38+4eHhzJkzh7FjxzJlyhQaN25MXFwcffr0cdp1+PBh/Pz8bloQwmAwEBMTw+HDh+/p3BWxevVqnnvuOfLz8wkNDSUlJYXy5cvftG16ejoffvgh06dPpaDgNA6HKmQbjWEYDNeE31atWrFs2TJ69eqF2WzGbreTmJjIvHnzbmmHj48PLVq04J///Cc1atSgQoUKLF++nO3bt1OlyrWS1h9++CEvvfQSFStWRKfTodFo+Pjjj53eVUX8+9//ZuzYseTl5VGtWjVSUlKcHlBnz551EaQA5/LZs+r18MiRI4wfP57Nmzej04nhiUDwKJEL87s5ZAdnCzZhz/8eUMX7ai3U66/FbgXU+7u+tIlSssz5HLUwRN2cNGp4edA/WoyLBXdOxrmt5J7qx+vXOUrrdCIqQCB4EJSyO8rjQbFFQE7thFk1YOGTcOF3AAoK3Y+NOnW2W7GpMtRvmj9YZtjoVLnEIL/kkHVeFRQVvyCu+uahL1BDMc/5m2lS/wD1au0ksuomKviugnMlM6H5nykSpSoa9W62RPAwWL16Nd7e3hiNRjp37kyvXr0YMGAAOp3OJZQtMDCQatWq8fvv6vVp+PDhTJ06lVatWjFp0iT27dtX7H6OHTuGzWajadOmznV+fn5Uq3ZjuGrjxo1dln/99VeWLFmCt7e38y8+Ph5Zljl+/Digem6dPXuWZcuW0aJFC7744gtq1apFSkrKHZ+L2+WuAlWcu96OzZuvVdWMi4sjNTWVbdu2kZCQQM+ePTl//vwNfWRkZJCQkMCzzz5Lnz7tsdmuIMs2wsKaERAQibe3N0lJSQAcPHiQESNGMHHiRHbv3s3333/PiRMnnO9v3rzZxZ5ly5YB8J///AdFUQgPD8fDw4M5c+bw/PPPo7kurOXDDz/k559/Jjk5md27dzNz5kyGDh3KDz/84GJvnz592Lt3Lxs3bqRq1ar07NkTs9nMneBwOOjduzdTpkyhatWqd31OBQLB/SE7HEhouGo9j13JoUiQUvQGvANUAdxyXWECfWlL6rziBSxpawHoefZ7ZksHaOjn5WajBKWFkZ/tZeKXqwAw2z3IslYgIKA1vr639nIWCAR3jlApSjiKoiBdr1Kd/RVQQGcCnxAIrILFOxgAo9bIb5syyM+2QgBc0OZg1qiz776+vnh4eLjhCK4h8kpdI/uC+gBqU/J57vxcrLqZAEh6M8ZKLUGrB41e/d+rdITBnRZV9+4ayWSi2p7dbtnv3RIXF+dM+h0WFoZOpyM5Ofm22w0aNIj4+Hi+/fZb1q1bx7Rp05g5cyavvPLKvZjugpeX6wNFbm4uQ4YMceZVup5KlSo5X/v4+JCYmEhiYiJTp04lPj6eqVOn0rFjR2JjY8nKyuLMmTM3eGdZrVaOHj1KfHz8bW3r2rWri1hXlDS8yO4qVapQpUoVmjdvTmxsLIsWLXJJGn/mzBni4uJo2bIlH300l/z8dAA8PELYuXMrOp03kiTh66vO0k6bNo1WrVoxZswYAOrWrYuXlxetW7dm6tSpNG7c2KUqXZGXUuXKldm4cSN5eXlkZ2cTGhpKr169nJ5jBQUFvP7663z99dc89dRTzr5TU1OZMWMGHTp0cPbp5+eHn58fsbGxNG/enHLlyvH111/z/PPPExISwi+//OJyjoqSmIeEhJCTk8OuXbvYu3evM9xSlmUURUGn07Fu3bpiz6lAILg/ZIcDjaRBUdSJTUnjj9nTiq5KQ/QGdfxYcL0opS1lo7qMPVgqNgHAZDBB7M3DjwWCm/FT2gXahuYDsONsYypFT+aZ+iJ0TyB4UAhRqgQiXSffKPxJzDGrMczUfgb+8m911Z45gOoptf+H04RUv5YvRpJlnqtalagePVxmvgXuJT/rKgAhR88TI73IxUD1U64SYoUX1rjRsrtnUnoG313IuiZKiap7d4wkSfccRveoKRJSrqdGjRrY7XZ27NjhDN+7dOkSaWlp1Kx5rTJkREQESUlJJCUlMWHCBD7++GNeeeUVp8fR9fmdYmJi0Ov17Ny50ykkZWVlcfjw4RvCxf5Mw4YNOXjw4A12FockSVSvXp1t27YB8OyzzzJu3DhmzpzJzJkzXdouWLCA/Px8+vXrd9t+fXx88PG5s0qnsixjsVicyxkZGcTFxdGwYQM+nPu6U5DSaAx4eARRo0bQDX3k5+ff4A2r1aphNoqiYDKZij0vXl5eeHl5ceXKFdauXcu7774LqBULbTbbDfcPrVaLLN8yyBxFUVAUxXlcLVq04O233+b8+fMEB6sTKSkpKfj6+lKzZk30ej379+936ePf//43P/74IytWrCA6OhovL687PqcCgeDuKPKUOiepIW5IOmSdFY3umvez2W4D1GV9aRtT2s1YNOo9xyNhKoQEuNkgQWnh4qXtdK70GVXLHQXgby3qUDVWCFICwYNEiFIlkOtFqBvSEVsKRSkPX1LPp/LtsW/Zc15NAOyh9cBudbhsr7daCSlXzu1eUndQS/CxwlqgzrbkedYgz7sBAAY5h85PlK7SymaHzEenLjiXwzz0RJvc/V0TPCpiY2Pp1q0bgwcP5qOPPsLHx4fx48cTHh5Ot27dABg5ciSdO3ematWqXLlyhZ9++okaNWoAauU7SZJYvXo1Xbp0wWQy4ePjQ//+/RkzZgwBAQEEBwczadIkNBqNq9foTRg3bhzNmzdn2LBhDBo0CC8vLw4ePEhKSgpz584lNTWVSZMm0bdvX2rWrInBYGDjxo188sknjBs3DlA9qt59911ee+01jEYjffv2Ra/Xs2rVKl5//XWmTp1K7dq1XfablpZ2gy21atVCr3cNZc3Ly+Ptt9+ma9euhIaGcvHiRebNm0dGRgY9eqjlpDMyMnjyySeJjIxk2rQ3OX8u07l9pUq1bnnsiYmJDB48mPnz5xMfH09mZiYjR46kadOmN83HVcTatWtRFIVq1aqRnp7OmDFjqF69Oi+88AKgetm2bduWMWPGYDKZiIyMZOPGjfzv//4vs2bNAtSQy88//5xOnToRFBTE6dOn+de//oXJZHImWu/UqRM1a9akb9++vPvuu5w9e5Z//OMfDB061Hl/+vN5DQ4Oxmg03rD+z1y+fJmTJ09y5swZ4NrnERIS4qwYKRAIisfhsKORNFylqJiCFlmSqVGtFrnWXLae2cqv538DGiBJMhpNKfOUslswa9RrjUdpE9QEbkFRFN5dm0Y1aRQdI6+NdT1NN+acFAgE94cQpUog19/nlSJXqfT1sO4fkJWhvmH05Z8//5PDV64l3C1vKo/dKl+X2hx0djsaNwlSUjEBe6VsKPPAOXz6IhpA0foiAY5ya+mhTUbrdWPYUUkm5zoPlx+bVCPK5CEGe48ZixcvZsSIETz99NNYrVbatGnDmjVrnIKMw+Fg6NChnD59Gl9fXxISEnj//fcBNfxqypQpjB8/nhdeeIF+/fqxZMkSZs2aRVJSEk8//TS+vr6MHTuWU6dO3VAl7s/UrVuXjRs38sYbb9C6dWsURaFy5cr06tULgIoVKxIVFcWUKVM4ceIEkiQ5l0eNGuXsZ9SoUcTExDBz5kxmz55NXp76kLZ8+XKee+65G/Z7s3WnTp2iYkXXAgVarZZDhw6xdOlSLl68SGBgIE2aNGHz5s3UqqUKTikpKaSnp5Oenk5MTB2X7YurmjhgwABycnKYO3cuo0ePxt/fn3bt2jF9+vRiz1lWVhYTJkzg9OnTBAQE0L17d95++20XQe2zzz5jwoQJ9OnTh8uXLxMZGcnbb7/tzFdlNBrZvHkzH3zwAVeuXKFChQq0adOGbdu2Ob2itFotq1ev5uWXX6ZFixZ4eXnRv39/3nrrrWLtuxOSk5OdIhpc+zwmTZrE5MmT77t/geBxQLY70EhaZIru6xrQKHR5Op63drzFisMrkK3lgAZoNKVwotFuxlzoKWUsbYKawC0cvZDH/A3pfNThMgA7zrWjT6umhIT81c2WCQRlD0l5ELXByyjZ2dn4+fmRlZXlzNvxKLhqs1N9y28AnGpbD71GghUvwm9fXmvUYyntD37I+fzzPFftOar4VyGxciIL3/iGiGZz8C93lkO/P4HliD9/f2kIxutCaR4Vx/fu4qt/TaZCeU88NW343ceKzZBNe2ttAvM98PxHO6LKP35JJvOzrjJtxCj8Cy6g9+qG1lAZnyrT6Zf7M3SdCw37utvEO+ZYvoWWO37HW6shvU1dd5tTojGbzRw/fpzo6OjbiisCV/Ly8ggPD2fmzJkMHDjwke//8uXLtG/fHl9fX7777js8H3LIZX7+H9jt2c5lkykSvV5U+HnUFPebddf4oCQjzknpZuc3X7Fz+Rf4BtXi3NmfkXTh5JW/xJuzVzD4++Fs3K/Hk0pcvVQFLw+JA1O6uNvkOyb53BX2ff8Oy0O6cMlQji/qVaZ1gAgFFhTPjqOnGb18DVNaqpM7lWvvICr45pVyBQLBzbnTsYHwlCqBuIbvFbpKWXLUFa1fg7o9Iagalv0zAHi++vPE+KuxzRbpqjNQTiMr1GvSxC2ClODm7F27mh8/WYB/0QpJ9UYI0KrV9/DwdodZ90yRp5SPTutmSwRlib1793Lo0CGaNm1KVlaW05umKCTwURMQEMAPP/zAvHnz2L59O+3bt39o+5Jlm4sgpdV6otOVruuCQCAoPRzbu5NdyV+RdeEcRpsVy9UDAEhokAtv7aczK2C9VB9r4Tblve++WIa7uGC1MeTgHyiV+jjX+evFmEVQPJlXLpL9RyJTWqr3Y43GQGRQ6Sg8JBCURoQoVQK5Pm+K042tSJQKrQtBaml0i11NIOuh80Cxy2RvOo2/9prjW4VL+bTon/goTL5DhLv0mbTfAZCRyPV0EKSrgNZhwT/nhNrAULpm7q7aCkUprRjgCR4sM2bMIC0tDYPBQKNGjdi8eTPly7tvhjIwMJCJEyc+tP4VRcHhyHMKUhqNHi+varfNoyUQCAT3w+7VX3PqoFpkoM2RE1w1mbhaqQKgAb16/bHY1LD8iEDo3iCWdtWD3WXuXXPV5kABjA4L/c+sJCpuJLVLkagmePTM+ymd/9uWwsQW2ciKhF0xEVOxu7gfCwQPESFKlUBcPKVsBZB7FvIvqSs8VNFCURTMDjMA1suw48vdVDxnxqi/lk/KqpjR/SnRrjsQ8aHXKEpwvqWqBkuAmcQ0DzSOHGo5LBBSByo2drOFd8YFq42ndh/hZGHFvcqeIrm54MHRoEEDdu/e7W4zHik22xXM5gznskZjFANggUDw0LFbbQA0aNEW71+PcsWz8LojaanTqiMADlkdyUVX0DKyQ1W32HlP7F9BwfoPoN5c/O3ZTDm+APq+A+LaKiiGnScu46kvAOBcfgjGsM+oVrXibbYSCAT3gxClSiAuotT7dcB86dqKQk8aq2x1rjq25QqW43lU9NRi51riaavGjM5QUsQCIU0BWPJVUcrukYvJqn42WtmK/+TLpWqQtOlyjlOQ0knQNdjfvQYJBKUcuz238JWETueFh4eoGicQCB4+sqyOGysEqt5PsnMsoqFtldYA2AuHlgZtKStkcvh7zIWCmlG2QKWWpWqsJXj0KIqC1ZqFv4eaVqN6WBiNGwlBSiB42Ljl7rJp0yYSExMJCwtDkiRWrlzpfM9mszFu3Djq1KmDl5cXYWFh9OvXz1nquYioqCgkSXL5+9e//uXSZt++fbRu3Rqj0UhERATvvvvuozi8+8ZFlLIWPqiYykGlFigVanMs6xip51MB8HKY8DlnIbjQxTrHkeXctnn359C4M6yq2Bv/4zkoKPKUsuns+OarVWC0irXUeUQcLVBDR3uGlCO9dV3+WqGcmy0SCEondnseZnMmdrt67TaZKuHpGY1WK5LhCwSCh4/scGDQmPDJPAWA4hyOaNBo1blrR6ETvr60iVLWfMwadQLQFBAF/b9xrz2CEo0sK/y6L4mBsUkMqvNfAHQ6UbRBIHgUuMVTKi8vj3r16vHiiy/yzDPPuLyXn5/Pnj17ePPNN6lXrx5XrlxhxIgRdO3alV27drm0feuttxg8eLBz2cfnWj6e7OxsOnXqRIcOHViwYAH79+/nxRdfxN/fn5deeunhHuD9cp0+oSBBowGQOBuAT/Yv4oM9Hzjf73kpnrBL+Vwx5HNEyqFAY3e+51u+ZMb8P84+U0WilI/ZSo3TOtCrolRpoyiXVLiHAWNpG6QKBCUERXFQUHACRSkKu5bQah9uZT+BQCC4HsXhoFFgR0wXfuGUlw/ZJj/1DUmD5KuOI+2FlyhDacsfacunQKuKUkadATRivCK4OamnrtL3f35mRuuf0Dm/JjrKl2/nTrMEgscGt4hSnTt3pnPnzjd9z8/Pj5SUFJd1c+fOpWnTppw8eZJKlSo51/v4+BAScvMQh2XLlmG1Wvnkk08wGAzUqlWL1NRUZs2aVeJFKcnFi0gCo59zKe1yGgB+Hn74GfxoWtAI+yUHKw2/4JAeZ7mndFAUvtfp2IvYTdEA6DU2d5p0TxRV3fMWVfcEgntGli1OQcpgKI9W64VGI6LqBQLBo0OWZUw6b1aduURWlWuTmRJaNAbVo9tRFL5Xiu75uXYH7/m0J9VXHUMbtaXLI13waNmafhGbPQ+dRv2yv7N7NsnDO+LlUVLSoAgEZZtSMWWQlZWFJEn4+/u7rP/Xv/5FYGAgDRo04L333sNuv+YltH37dtq0aYOh8IYKEB8fT1paGleuXHlUpt8T0q/Lna9lSQKPa66jBQ418d7IhiP59plvqeFXHTM2VZBSFDxys/D2FDPtJZFDmdnk5eYBYDMGg6T+/CoFHnOnWfdEbuG0qY/wkhII7hpZtpKf/wd5eepvX6v1xGgMRa8XYQICgeDRIjscSIqGLHvhBJnkBRo/vENr4FNODSOWC2P6SpMotfZiFh/5t2aHX10AKhjcX/hHUDJRFAVf60KS6n0CgCTp+X5UZyFICQSPkBL/RGk2mxk3bhzPP/88vr7XBuzDhw/ns88+46effmLIkCG88847jB071vn+2bNnqVChgktfRctnz5696b4sFgvZ2dkuf+5A+mGK87WCBAHRzuUCuypKGXXqQEGxyTgkVSDQOmRe8C1H8C28x9zGLRy4Hje/rtQTF9BS6AMvGZAs+3iuQh9aVt3uXsPugnePZ9J1zxG2Xs0BwKcUDVAFgpKCxXIBuz2boqugyFnxeDJ//nzq1q2Lr68vvr6+tGjRgu+++w6AEydO3JA3s+jviy++cPZx8uRJnnrqKTw9PQkODmbMmDEuE3QAGzZsoGHDhnh4eFClShWWLFlygy3z5s0jKioKo9FIs2bN+OWXXx7qsQtKDrLscEkbUU7biV+a2anXoxaSRn3DUdoSnZ/aSfZvyQDUyj3C24EWplQJd7NRgpLIqcv5/M+P3xOm/5I65Q8B4OkZhV6MbwWCR0qJjhOw2Wz07NkTRVGYP3++y3uvvvqq83XdunUxGAwMGTKEadOm4XGPyva0adOYMmXK7Rs+TGQZqeCaJ5fS8z8Q+6Rz2Ww3A2DSmbCa7ZizLM6KexpZRjJ4/Cn8r2RQ8ix6dCiKwk9LFnJuT+p1a/XI5OMr5YPe5C7T7opcu4NZJ865rIsyiVkkgeBukWW1UIBeX64wbE8kNX8cqVixIv/617+IjY1FURSWLl1Kt27d2Lt3L9WrVyczM9Ol/cKFC3nvvfec6Q8cDgdPPfUUISEhbNu2jczMTPr164der+edd94B4Pjx4zz11FMkJSWxbNky1q9fz6BBgwgNDSU+Ph6Azz//nFdffZUFCxbQrFkzPvjgA6dneXBwycxNKXhwyA6HS7EVjaIgKRJ2xc5fV/2VE9knMDvU/K8euhL92HCNlUlYTA2hcn1q5B1nYEgd8BCeUoIb+df3hziRcYBXG8GlgnIYAwbSok4Xd5slEDx2lNgpjyJB6o8//iAlJcXFS+pmNGvWDLvdzokTJwAICQnh3DnXB+ii5VvloZowYQJZWVnOv1OnTt3/gdwt1hykIm8aQIlpCxotsiJzKvsU2VbVe8ukM/Hdgv1cOJGNo7C9xiEjlSBX08dZiLqerPPn2Pv9N9jPF36fJAOSpMGhsaiq8HU5w0oyRXmktBIsqh3FmoaxNPAVoaKPAwMGDHB6aRgMBqpUqcJbb711g0fG3bJhwwYkSeLq1asPxtA74Pjx4/Tu3ZuwsDCMRiMVK1akW7duHDp0yKXd6tWradu2LT4+Pnh6etKkSZMbPEyKvFlSU1Nvu19FUcgvOMmECS/ToEF7QkObEhZWh/j4p9mxY4dLnwMHDiQ6OhqTyUTlypWZNGkSVuvtCyIsW7aMevXq4enpSWhoKC+++CKXLl0qdpviquEW8dVXX9GpUycCAwNve7yKotC5c+db9rVkyRLq1q2L0WgkODiYoUOHury/du1amjdvjo+PD0FBQXTv3t15X3/Yx/moSUxMpEuXLsTGxlK1alXefvttvL29+fnnn9FqtYSEhLj8ff311/Ts2RNvb28A1q1bx8GDB/nvf/9L/fr16dy5M//85z+ZN2+e8/uyYMECoqOjmTlzJjVq1GDYsGE8++yzvP/++047Zs2axeDBg3nhhReoWbMmCxYswNPTk08++cQt50XwaFEcjusq7gHISEhcNF8k/Wo6NocCsipGBZpKx3iF/EtYNGr6Do+KDSG4upsNEpRULmTn4GtQvf89jJXo0Ggwnp6RbrZKIHj8KJGiVJEgdeTIEX744QcCAwNvu01qaioajcY5q9eiRQs2bdqEzXYtiXRKSgrVqlWjXLmbl6/38PBwutEX/T0yFAU2z4LkV5CuC2wrejX8x+F0+boLx7OOA6oodflMHhoJpyill+14P9Hq+k4fkfF3z+MkWBVV3FMMHqQ0PofWVBUAo2RVz4NPqPuMuwvyCmtCe2u1PBXkT0M/LzdbJHiUJCQkkJmZyZEjRxg9ejSTJ0/mvffec7dZTu5EtLHZbHTs2JGsrCy++uor0tLS+Pzzz6lTp46LMPbhhx/SrVs3WrVqxY4dO9i3bx/PPfccSUlJvPbaa/dknyxbsduyqFIlkvfee50dO1azefMmoqKi6NSpExcuXADg0KFDyLLMRx99xIEDB3j//fdZsGABr7/+erH9b926lX79+jFw4EAOHDjAF198wS+//OJSofZmFFXDnTdvXrFtnnjiCaZPn37b4/zggw9cvC6uZ9asWbzxxhuMHz+eAwcO8MMPPzi9dUAVDLt160a7du1ITU1l7dq1XLx40aVK78M8TnficDj47LPPyMvLo0WLFje8v3v3blJTUxk4cKBz3fbt26lTp45LqoL4+Hiys7M5cOCAs02HDh1c+oqPj2f7djVs3Gq1snv3bpc2Go2GDh06ONvcipKS8kBwf8iy7FpeR1HQKBr0nnoKTvcm99Db2HPUvEwmfcmZ+CwWuwVzkSglBCnBLfjj5Me8FDuQQXX+C0B0cAiehlLiDSgQlDHc8svLzc0lPT3duXz8+HFSU1MJCAggNDSUZ599lj179rB69WocDoczB1RAQAAGg4Ht27ezY8cO4uLi8PHxYfv27YwaNYq//e1vTsGpd+/eTJkyhYEDBzJu3Dh+++03Zs+e7TI7WKK4kAbr1dBBiWtxzEWy0v6L+wFVjIrxi6F6QHV2FOxA4yE5c0p5RkXh2aQJ7H2klgtug73wYdmh15IRbMZ0wBc7UN2WpTYIrOI+4+6CIlHKq7TklBA8UDw8PJxepi+//DJff/01ycnJJCUlMWLECL755hssFgtt27Zlzpw5xMbGAvDHH38wbNgwtmzZgtVqJSoqivfee4+aNWsSFxcH4Lxu9+/fnyVLlpCTk0NSUhIrV67E19eXsWPHsmrVKurXr88HH3wAQFRUFAMHDuTIkSOsXLmSZ555hiVLlrBlyxYmTJjArl27KF++PH/961+ZNm0aXl5eHDhwgKNHj7J+/XoiI9WZ0MjISFq1uibmnzp1itGjRzNy5EhnCBTA6NGjMRgMDB8+nB49etCsWbM7Om+KouBwFGC3XwWgZ6+/4OVZGUnSIUkSs2bNYtGiRezbt4/27duTkJBAQkKCc/uYmBjS0tKYP38+M2bMuOV+tm/fTlRUFMOHDwcgOjqaIUOG3FZIKq4abhF9+/YFuMFj6c+kpqYyc+ZMdu3aRWioq9h+5coV/vGPf/DNN9/Qvn175/q6des6X+/evRuHw8HUqVPRFJZuf+211+jWrRs2mw29Xv9Qj9Md7N+/nxYtWmA2m/H29ubrr7+mZs2aN7RbtGgRNWrUoGXLls51d5I781ZtsrOzKSgo4MqVKzgcjpu2+bP34J8pESkPBPeN7HDgcI42JSRkmjdtjl+YH/bcGs52ngYt9SP83WLjXWO3OD2lDJrHaRpUcCfkWux89stJylu/w8dZuVxLYEBrt9olEDzOuOXpcteuXTRo0IAGDRoAan6oBg0aMHHiRDIyMkhOTub06dPUr1+f0NBQ59+2bdsA9eHos88+o23bttSqVYu3336bUaNGsXDhQuc+/Pz8WLduHcePH6dRo0aMHj2aiRMn8tJLL7njkG9PwWX1f8/ySB0mO1crhdfKolxSXzz9BbOi53Hufw5T21jAr8bf2aNTvad0+hIaL180Hii5jlsPFacoVViOWC+rn5Peywu6zIBGA9xl2l2RZxei1INGURRsFscj/1OU+/8xmkwmrFYrAwYMYNeuXSQnJ7N9+3YURaFLly5OL9WhQ4disVjYtGkT+/fvZ/r06Xh7exMREcGXX34JQFpaGpmZmcyePRtQ7wlbt24lOTmZlJQUNm/ezJ49e26wYcaMGdSrV4+9e/fy5ptvcvToURISEujevTv79u3j888/Z8uWLQwbNgyAoKAgNBoNK1aswFGUufdPrFixApvNdlOPqCFDhuDt7c3y5ctvsuXNsduzyc8/itWqhpdpNZ5oNHokScJqtbJw4UL8/PyoV6/eLfvIysoiICCg2P20aNGCU6dOsWbNGhRF4dy5c6xYsYIuXR5Nboz8/Hx69+7NvHnzbhoin5KSgizLZGRkUKNGDSpWrEjPnj1dwuQbNWqERqNh8eLFOBwOsrKy+M9//kOHDh3QF97f3H2cD5pq1aqRmprKjh07ePnll+nfvz8HDx50aVNQUMCnn37q4iVVEigRKQ8E943scHBtgKYBHFQIqoBDcYCiTpL+8Gpb9k7sSO3wUhC+57CD4sAiqaKUUSPGLAJX/m/nKaZ++zuXc9T78rzUgdRosJPw8OfdbJlA8PjiFk+pJ598stiHots9MDVs2JCff/75tvupW7cumzdvvmv73II1T/3fLxyp1Suw4Vfg2jDB4lAT42YdtXN88T4aeenI8DhNuu5aJUE/v5I5WHgAz7+lGrtN/ezsheMiCXWgpC8XBE2LDzkpCeTYHYz4/SRrLqqeXd5aUZHkQWG3yiwcsfGR7/el2W3Re9zb56goCuvXr2ft2rV07tyZlStXsnXrVqcHx7Jly4iIiGDlypX06NGDkydP0r17d+rUqQOonj9FFAktwcHB+Pv7A5CTk8PSpUv59NNPnR41ixcvJiws7AZb2rVrx+jRo53LgwYNok+fPowcORKA2NhY5syZQ9u2bZk/fz7h4eHMmTOHsWPHMmXKFBo3bkxcXBx9+vRx2nX48GH8/Pxu8PQBMBgMxMTEcPjw4Ts+X3Z7LgCSRo9W44GHRzCrV6/mueeeIz8/n9DQUFJSUihfvvxNt09PT+fDDz8s1ksKoFWrVixbtoxevXphNpux2+0kJiY+snC1UaNG0bJlS7p163bT948dO4Ysy7zzzjvMnj0bPz8//vGPf9CxY0f27duHwWAgOjqadevW0bNnT4YMGYLD4aBFixasWbOmxBzng6YoRxuootzOnTuZPXs2H330kbPNihUryM/Pp1+/fi7bhoSE3FAl78+5M2+VX9PX1xeTyYRWq0Wr1d60za3ybxbh4eFxz4VlBCUHWXYgXy9KKQ60khaLzUrR3HWAlwGPUlKNbMflK6SFJnLAW/1deQhPKcGfOHNVrWTuZ1TH539r2ZCwciXzGUogeFwQ0wclBav64ILB2yW2X0HBJtvUGSvAckXBUJivowDVA8czJw/jmRM8/fTTj9Liu+TxVaacnlIa9Rw4RSlT6Yhb//FytlOQAmgfKMrXP46sXr0ab29vjEYjnTt3plevXgwYMACdTucSyhYYGEi1atX4/fffARg+fDhTp06lVatWTJo0iX379hW7n2PHjmGz2WjatKlznZ+fH9WqVbuhbePGjV2Wf/31V5YsWYK3t7fzLz4+HlmWOX5c9SgdOnQoZ8+eZdmyZbRo0YIvvviCWrVqkZKScsfnwmAw3LbN0v/9H7y9vQgKiiUsrBm7dh7H0zMardZIXFwcqampbNu2jYSEBHr27Mn58+dv6CMjI4OEhAR69OjhkjPp+uNLSkoC4ODBg4wYMYKJEyeye/duvv/+e06cOOF8f/PmzS7bLVu27I6P93YkJyfz448/OkMrb4Ysy9hsNubMmUN8fDzNmzdn+fLlHDlyhJ9++glQQ80GDx5M//792blzJxs3bsRgMPDss886J6vceZyPAlmWsVgsLusWLVpE165dCQoKclnfokUL9u/f7/LdKSoMUxQC2KJFC9avX++yXUpKijNvlcFgoFGjRi5tZFlm/fr1N81tJSh7yFYrafad6oKkekrpNDrM9ms5WXXa0iHsXLDa+OtvGYyt+ho/+6vep2IiTVCEoigcOb2HmvqXea/Nm/gZLgLQqU5lN1smEAhKx1NxWcaaD39sg5OF1ZcM3jckibXYrw1QFZuErvDtbMdV0IHpwmkaNW2Kl1cJSzx9i2S3jxt/nL0KgEW2U++YDEphnoNSIkqdt6gV1pr7eTE6KoTm/t5utqjsoDNoeGl2W7fs926Ji4tj/vz5GAwGwsLC0Ol0JCcn33a7QYMGER8fz7fffsu6deuYNm0aM2fO5JVXXrkX01348zUvNzeXIUOGOPMNXU+lSpWcr318fEhMTCQxMZGpU6cSHx/P1KlT6dixI7GxsWRlZXHmzJkbvLOsVitHjx51Sc59MxRFoWOHumze/H/qCkmiauy1vFVeXl5UqVKFKlWq0Lx5c2JjY1m0aBETJkxwtjlz5gxxcXG0bNnSJTQdcKl+V1SQY9q0abRq1YoxY8YAqqewl5cXrVu3ZurUqTRu3Nhluz/nELoffvzxR44ePer0diuie/futG7dmg0bNjg9z67PlxQUFET58uU5efIkAPPmzcPPz493333X2ea///0vERER7Nixg+bNm7v1OB80EyZMoHPnzlSqVImcnBw+/fRTNmzYwNq1a51t0tPT2bRpk4u3WBGdOnWiZs2a9O3bl3fffZezZ8/yj3/8g6FDhzo9mJKSkpg7dy5jx47lxRdf5Mcff+T//u//+Pbbb539vPrqq/Tv35/GjRvTtGlTPvjgA/Ly8njhhRce/kkQuI0DG9dz4tc9VD6bSYVDJzlbLQLQAjImnYkc8zVRylAawvbzLnF+/1pkauIhW2h/+Rf863TjLxX83W2ZoIQw9dvfuZi5iK6VT0NhxhOdzh+TMdy9hgkEAiFKuZ3vx8Ge/7227OEDqGmYFMAhyxTIqpspCki5Mh6FYwObpHpPVc+4QMN2xT8klSQeN5+p5VsPUwuIuGCnRcYznAtWw3QMXqUj7OGcVR2Y1vYx0TrAx83WlC0kSbrnMLpHTZGQcj01atTAbrezY8cOZ/jepUuXSEtLcxEfIiIiSEpKIikpiQkTJvDxxx/zyiuvOD2Ors/vFBMTg16vZ+fOnU4hKSsri8OHD9OmTZtibWzYsCEHDx68wc7ikCSJ6tWrO3MWPvvss4wbN46ZM2cyc+ZMl7YLFiy4aRjVn5FlC97eJrx9IvEwBKHVeqPT3XrS4M/eMRkZGcTFxdGoUSMWL17sTPpdxM2OLz8/H53O9ZauLfQQUBQFk8l0V+flbhg/fjyDBg1yWVenTh3ef/99EhMTAZzJ5NPS0qhYsSIAly9f5uLFi86k8/n5+Tcca9ExyLLsbOOu43zQnD9/nn79+pGZmYmfnx9169Zl7dq1dOzY0dnmk08+oWLFinTq1OmG7bVaLatXr+bll1+mRYsWeHl50b9/f9566y1nm+joaL799ltGjRrF7NmzqVixIv/zP//jIqz26tWLCxcuMHHiRM6ePUv9+vX5/vvvS7SgJ7g/ZNnBuo8+RHbYaWYxo0hF9yENtvJGngh/gpVpKRQ9JuhKQwjcj//EcvhnaLiAYMtlPjk2C3rc/+SHoOyw+48r1PRSK2Lvvdiabi2HEVUhFq3W082WCQQCIUq5E3MWHC/MeVW+KngFQxM1kWmRKNVt1V/IN58GYELmILyyj7HRZy8/SmZnAvEK/friUaPGdR2XgsEDt88dVlaQc6+o/xurcDo4zrnev1rx+TpKCucLRakKhhKaSF/gNmJjY+nWrRuDBw/mo48+wsfHh/HjxxMeHu7MLTRy5Eg6d+5M1apVuXLlCj/99BM1Cq9XkZGRSJLE6tWr6dKlCyaTCR8fH/r378+YMWMICAggODiYSZMmodFobvAi/TPjxo2jefPmDBs2jEGDBuHl5cXBgwdJSUlh7ty5pKamMmnSJPr27UvNmjUxGAxs3LiRTz75hHHjxgGqR9W7777La6+9htFopG/fvuj1elatWsXrr7/O1KlTqV27tst+09LSAHA4LFit53HIFmpUj8Fo9MPD49qDfV5eHm+//TZdu3YlNDSUixcvMm/ePDIyMujRowegClJPPvkkkZGRzJgxgwsXLji3Ly7HT2JiIoMHD2b+/PnEx8eTmZnJyJEjadq06U3zcRVRXDXcIlHw8uXLnDx5kjNnzrgcb0hIiMvfn6lUqRLR0dEAVK1alW7dujFixAgWLlyIr68vEyZMoHr16s4qjE899RTvv/8+b731Fs8//zw5OTm8/vrrREZGOgujPMzjfNQsWrTotm3eeecdlyqQfyYyMvKmXlTX8+STT7J3b/FleYcNG+YsCCAo+8h2BxpZQ7uwvuRf+Deny1UHMkDSEFW9Fp56z8LwPR2goC0NolTuOQo06mSfUe8BT89ys0GCkoTdnoeXdIQgkxqy17N5aypVbHybrQQCwaNCiFLuZEZVKKyqR/dFEHqtNLZUqErl2HLRAs3+SKRpbn1O6DPJ1Zid7YweHlR+9tnbPqwJ3IfRkgOApPUHwN9nB400OyhfcagbrbpzLljV8L0gg7hcCG5k8eLFjBgxgqeffhqr1UqbNm1Ys2aNs1qaw+Fg6NChnD59Gl9fXxISEnj//fcBCA8PZ8qUKYwfP54XXniBfv36sWTJEmbNmkVSUhJPP/00vr6+jB07llOnTmE0Gou1pW7dumzcuJE33niD1q1boygKlStXplevXgBUrFiRqKgopkyZwokTJ5Akybk8atQoZz+jRo0iJiaGmTNnMnv2bPLy1EIUy5cv57nnnrthvzdbd/DgOipXdhU7tFothw4dYunSpVy8eJHAwECaNGnC5s2bqVWrFqDm+0lPTyc9Pd3pUVREcUL+gAEDyMnJYe7cuYwePRp/f3/atWvH9OnTiz1nu3btcopCoIZyAfTv358lS5YAas6o60O5io530qRJTJ48udj+r+d///d/GTVqFE899RQajYa2bdvy/fffO78r7dq149NPP+Xdd9/l3XffxdPTkxYtWvD9999jMpke+nEKBI8LssNOoEco3jp/fgwKRCYDAAkNhvKquGuxq/d+jaSUjjGmrQCLprDinn841GrnZoMEJYWLOWZ++/VpXqx+0rlOpxOJzQWCkoSkPC7uKvdAdnY2fn5+ZGVlOfN2PFCmhoC9AIJrwksbQHctnKvihlTsCgRkDOfpSs2ptvpp4oA0/Sl26I/gdTWHbo3rE/Pc8zeEMuzd25/LV7ZQs+ZMQkP+8uDtvkNO/LqHL9+ZSFCgJz7aJzjo7cDmkUWctTbB+UY83niSmKCym5/Ikp/PkV07WP7xRwRYc/Hw6IDkWZdalabzpPVn6L8aolu728xb8s35qyzNuMiWq2oS/uV1Y4gTSc7vGbPZzPHjx4mOjr6tuCJwJS8vj/DwcGbOnMnAgQMf+f4vX75M+/bt8fX15bvvvsPT80ZXf0VRyM9Px+EwozcEYNAHoNWaHrmtggdHcb/Zhz4+KIWIc1J6MOfm8tWw16nm14QNZz+/9oZPLK3H9ePLzM84cPY8v+15Fp3WTvrbN6+qWaL4pDNr8rS8WHsqTXy9+KZRrLstEpQATl/JJ37WWubEvQbAZbM/YQEVadxgoYsns0AgeDjc6dhAuD64k/F/ABJo9TckBZecAXwSvgZfZBtoDWBHzb0SeOUCoRUjbhCkBCWHrZ//h73ff0NA4bKkVWdlKuSdUhMsmsq5zbY74d3jmRzJV/PcBOi1NPUrYYn0BWWWvXv3cujQIZo2bUpWVpYzR05RSOCjJiAggB9++IF58+axfft22rdv7/J+fv4f2O3ZzmUhSAkEgpKMLDvQSFpkRc3VJmmDOBfmIDA4jP89uYiNpzfisKjVHktDjnMA7GbMWnXEZSwl1QIFD59DmTkYNKq3s0PR8MOlBSzo3Lh0eP8JBI8RQtFwJ7pbJ7qWrntl0pmw2xxoPXRYJdWdWm+zozGV8MR8113wJenxc8i7clbNv3LJW+aSfw51s9XqHhWlAlWQCqruTvNuy1mLmkvqvWoViQvwxUtXOhJyC8oGM2bMIC0tzVmyfvPmzZQvX95t9gQGBjJx4sQb1suy1UWQ0miNaDSlo4iBQCB4PJHtdlWUQi5co8Wht6PVaMi35yPbfGgamMiGY+DtUfIF9m8vXGVy5BtkFV57PTSlRUkTPEwUxUFuzk7qB+8HwGjw56O+TdxslUAguBlClCqhFOWUAjBqTJh15/hWf5arGrVqhN7hwBAV6T4D7wvlBs+wsog5V80ltadKLlbTVeoeKqxi0/ENqNYMtCX355fvkMlxqIPVbsHl8BWClOAR0qBBA3bv3u1uM4pFURQcjjwslnMAaDQeeHlVQZLEw5BAICjZyLIDDRoKlKIcpRpkjYxGo+Xc+WDy0ruzofAdg7bk3/+/PHuFU4Zrkxa1vEu+kCZ4uJzLNrN9/8f4WD7gb4W1oPR6kUdKICiplNyn4seYzac3Y5c9AS0gYZRMXPY5Tpb2WsnwKklJ6EW55hKNOUcVpawGK57Wa4M6bdMBYCrZP70LhRX3jBoJn1Ljuy8QPDpstkuYzZnOZb2+nBCkBAJBqUB2yGgkLYe0anVnSdIgSwoGg4HsHB8A9FrwMRro0TjCnaYWj6LAhn9RYK0BhijGH/+YLnGDiI0qHdWNBQ+PCV/tp4Kylw6RcNnsh04fSs3IQe42SyAQ3AIxgi6BjFv3P2j2XgazA72ip+7vFZEKw/Ya22Iw/ZFGw7Zt3WzlvVD2vaOKMNscZGUXiVI2jNZrIpRGV/LPw7WKe3oRdy8Q3ASb7VrInk7ng15fsnPECQQCQRGyw4EkabAqtsI1GpA0dIrvSKGTNHG1PNjzZkde7VjVbXbelouHYeO/KMi/CkBM/mmqBlYQ4xYBpy7n46lXo0vO2btSr/7nhIb+1c1WCQSCW1Gy3TUeU84c7okWK3CVscYJhJ7UoXiosXzhVl/+0IBGxMuXaNYeOIvFbMYAOHQyJqvB+Z62BHseWWWZj05d4D9nLgEQZBCXCIHgemy2q9jtOTgcauJUL6/KaLUlPL+fQCAQXIfssKNBi0KRB76GgPI+xMbGYv9OFXQMJXis4sScpf6nUwuxGOPGgW+YOy0SuBlFUbh4cT01/X4iwicDgL82rkF4Ga72LRCUBcQTZwmjqBIKgGR24LigxyIpOAqTUZ4+/jVPTxxXfCdihsjtXMyxoFdUbyO7VsZoU8P3JMWBpCm5n893F7N4+9i1kKQW/uImLhAUoSgyBQWnKUr4J0laNBqje40SCASCu0R2OPC5nEnwxQuc8QAkLVLh3FmRp5RBVwpEKVsBAGadOjFgCq3jTmsEbiarwEbyzhTC7K/QNfraeoM+4NYbCQSCEkEpuOM8Xlgc1/JGoZH4rqoHrTr5kuGvJnCs17A6kXXru8e4u0S6TbheWa7HZ7FYnUc/+Hs7ib+ooz2t01W+ZJKWpyY9bejrydTYcEZFirxlAkERsmwGFCRJi9EYKhKbCwSCUolss1Hh0HbKXSiahNIge6jz1A65yFOq5Cc4d4pSGnWMZSwN3l2Ch8aSrSdYvWcnAFkWH3adq0+F0L4EBLRxs2UCgeB2CE+pEobZbna+VjTwU5Ra3nZT1Xo8v3M9YWPH3HlnSsmVfUqur9CDwWIucL426V/hfIQqKnrKl91l0h1xxqyKZvGBfgyqGORmawSCkoHdnofFkolc6P2o0RoxXFfpSSAQCEoLiqxgP5mLRnYgOz3rNUheqgh1zVOqZItSsqLwjysmDtedRabeH1CLswgeX85dvUQFzwsAFEh1ia32DrVrVHSzVQKB4E4QolQJ43pRiuturnqHAwBtaZi5EmC1WAp/XBLZ5a4lCa1Y4by7TLojrtrVh+5yevE9EwiKsFjP4XBcE5p1WhHWKhAISid5v5yFNWrVPaVomClpqOQdCoBc6CnlUcJFqUN5Zj4p8INyjQDQSRDioXezVQJ3kZ//B23LDUAXoE6uNoqOono1IUgJBKUF4edaQsjMzeTlH17mhc+Srq2Urhel7Oh0OlFRpJRgzS98gC0M7dHZfqd7wHjaVN/hRqtuz1WbKn7664VeLbjGgAEDkCQJSZIwGAxUqVKFt956C3uhiHmvbNiwAUmSuHr16oMx9A44fvw4vXv3JiwsDKPRSMWKFenWrRuHDh1yabd69Wratm2Lj48PQeVr8eSTz/P55z/h6VkZg0H1Ijxx4gSSJJGamnrH+588eTLVq1fHy8uLcuXK0aFDB3bsuHZdOHHiBAMHDiQ6OhqTyUTlypWZNGkSVqv1tn0vW7aMevXq4enpSWhoKC+++CKXLl0qdptNmzaRmJhIWFgYkiSxcuXKu7YZ4O2336Zly5Z4enri7+9/032dPHmSp556Ck9PT4KDgxkzZozLd+j679n1f7Vq1XK2mTZtGk2aNMHHx4fg4GD+8pe/kJaWdttzcyf2CQRlnYxDBzmyfgt6KQ0FCYdUmO8SDd2iEoHrRakSPA64fIz8VSMBCLJeYsHVb/i+UVWCDEKUehx5/ev9jFn+OTrJhqxIKFI5goI6udssgUBwFwhRqoTww8kf2JKxhesm4108pQyyTIMGDR69YQ+AEhxF+MBx2G0snzgW4/dz1BWSOkDSyucIMaShDa7iRutuzWmzleWZl/g5S60o5l/CZ0gFj56EhAQyMzM5cuQIo0ePZvLkybz33nvuNsvJnYg2NpuNjh07kpWVxVdffUVaWhqff/45derUcRHGPvzwQ7p160bTpjVZv/4/bN26gu7dE3jllbGMHz/xviYHqlatyty5c9m/fz9btmwhKiqKTp06ceGCGnJw6NAhZFnmo48+4sCBA7z//vssWLCA119/vdh+t27dSr9+/Rg4cCAHDhzgiy++4JdffmHw4MHFbpeXl0e9evWYN2/ePdsM6vnv0aMHL7/88k37cDgcPPXUU1itVrZt28bSpUtZsmQJEydOdLaZPXs2mZmZzr9Tp04REBBAjx49nG02btzI0KFD+fnnn0lJScFms9GpUyfy8vKKPc7b2ScQPA5s+ex/uXz6FGcLsvmhURfSK1YvfEfDp8dWMGX7FOzq3FTJ9pQ69C3mC6oYHWDL4i/edmr7iCqojyOXci18uuMkuQVXAPj1Qm0q1fyJwIAn3GyZQCC4G0rwNMjjRVHYXj3fBhzJKFx5nWRYI6g8T7Vp+OgNE9wVl06f4kzaQedHp9H6ARAg50NADNTt6T7jimHgb8f5NUdVRCWgupeoKCZwxcPDg5CQEABefvllvv76a5KTk0lKSmLEiBF88803WCwW2rZty5w5c4iNjQXgjz/+YNiwYWzZsgWr1UpUVBTvvfceNWvWJC4uDoBy5coB0L9/f5YsWUJOTg5JSUmsXLkSX19fxo4dy6pVq6hfvz4ffPABAFFRUQwcOJAjR46wcuVKnnnmGZYsWcKWLVuYMGECu3btonz58vz1r39l2rRpeHl5ceDAAY4ePcr69euJjIwEIDIyklatWjmP89SpU4wePZrhw//Om2++VLhWYtSoofj4VGLEiBH06NGDZs2a3dN57N27t8vyrFmzWLRoEfv27aN9+/YkJCSQkJDgfD8mJoa0tDTmz5/PjBkzbtnv9u3biYqKYvjw4QBER0czZMgQpk+fXqw9nTt3pnPnzvdlM8CUKVMAWLJkyU37WLduHQcPHuSHH36gQoUK1K9fn3/+85+MGzeOyZMnYzAY8PPzw8/Pz7nNypUruXLlCi+88IJz3ffff+/S75IlSwgODmb37t20aXPrZLa3s08geBywmguQkNiTdRKb/VqOS73DwbLjyVxKr4XD2hwAb4PJXWbeHlsBlsLk5h7loqB5V/faI3AbF64ep17QfqoFnASgbfUYqlbwcbNVAoHgbhGeUiUEq9VGtfPNCD9bw7lOuc5TqlxpKM37Z1ycCR4Pd6m8vHz1f4ORL+JO46mNAaB8uQowfC+E1nOneTdFURQOF1bda1POm6mx4QSLvAyPBEVRsJnNj/xPeQDuiyaTCavVyoABA9i1axfJycls374dRVHo0qULNpua12Ho0KFYLBY2bdrE/v37mT59Ot7e3kRERPDll18CkJaWRmZmJrNnzwbg1VdfZevWrSQnJ5OSksLmzZvZs2fPDTbMmDGDevXqsXfvXt58802OHj1KQkIC3bt3Z9++fXz++eds2bKFYcOGARAUFIRGo2HFihU4CvP0/ZkvvvgCm83GsGGqEKPT+eLrWxtPz2iSkpLw9vZm+fLl933+QPXeWbhwIX5+ftSrd+trQ1ZWFgEBxZe0btGiBadOnWLNmjUoisK5c+dYsWIFXbp0eSC23q3Nf2b79u3UqVOHChWuVfSMj48nOzubAwcO3HSbRYsW0aFDB6eAeDOysrIAbnt+BAIByA4HGkmDvbASsEGqxKkII9G23zifk4jl3F+QLerkQ3mvEvxgbzdjkQpFKaMPaMUc++OGLCus/vU4f6T1ZHiDj2kW8jMA/l6iCIlAUBoRV/ESgu2IJ3FHeyOhgH9hsnP9NSEqwrvsuCWXZXnqnytTqQUUaCTyTA70khE7YDCWXDf4LLuDAln9VJbWicEkSio/MuwWC3P6P/vI9zt86Qr0xnvzhlMUhfXr17N27Vo6d+7MypUr2bp1Ky1btgTUvEYRERGsXLmSHj16cPLkSbp3706dOnUA1fOniCIhITg42JnnJycnh6VLl/Lpp586vXAWL15MWFjYDba0a9eO0aNHO5cHDRpEnz59GDlyJACxsbHMmTOHtm3bMn/+fMLDw5kzZw5jx45lypQpNG7cmLi4OPr06eO069ChX/Hz8yEoSE1mrtVeO08Gg4GYmBgOHz58T+euiNWrV/Pcc8+Rn59PaGgoKSkplC9/84F0eno6H374YbFeUgCtWrVi2bJl9OrVC7PZjN1uJzExsdiwvIdl8804e/asiyAFOJfPnj17Q/szZ87w3Xff8emnn96yT1mWGTlyJK1ataJ27dp3bItA8LgiOxxIaJALR2JGKZyz4Zc5mBiHskH1jGocWY66Ff1pVz3YnaYWj91yzVNKVNx7LNl+7BKTvt7Cu23ykBWJC+YYaoSFEBra3d2mCQSCe0A8fZYQ5DwJnQSt/K7phNJ1n47+upAGQcnl7EV11l7Rq4MkCQ8AdB4l96eWaVFnTP11WiFIAZizYN//wa5P4JeP4ef5sHUObJ4FG9+F7Ex3W+gWVq9ejbe3N0ajkc6dO9OrVy8GDBiATqdzCWULDAykWrVq/P777wAMHz6cqVOn0qpVKyZNmsS+ffuK3c+xY8ew2Ww0bdrUuc7Pz49q1ard0LZx48Yuy7/++itLlizB29vb+RcfH48syxw/fhxQPbfOnj3LsmXLaNGiBV988QW1atUiJSUFAEVRE29rtUYMhkD0+huFF4PBcNvztWzZMhc7Nm/e7HwvLi6O1NRUtm3bRkJCAj179uT8+Rsrc2ZkZJCQkECPHj1cckNd329Skloc4+DBg4wYMYKJEyeye/duvv/+e06cOOF8f/PmzS7bLVu27LbHcD13avODYunSpfj7+/OXv/zllm2GDh3Kb7/9xmeffeZcV+TNVvQnEAiuocgONJLWxVtWQsKOA6XwkeClNjFMTKyJl0cJnre2FWB2ilJi3PI4cvpKPl56NZegVfYnttZnNGjwv3h73zhWEAgEJZ8SfMd5vLDZZNZ6Wvk/6dpA4am0dI4pWvZVrV+mvYvKEopdTbYcFKB6timFopTBWHJ/amcLRSlRSrmQ9f+EnR/f+v3K7cA39IHsSufhwfClKx5IX3e737slLi6O+fPnYzAYCAsLQ6fTkZycfNvtBg0aRHx8PN9++y3r1q1j2rRpzJw5k1deeeVeTHfBy8vLZTk3N5chQ4Y48ypdT6VKlZyvfXx8SExMJDExkalTpxIfH88//zmZ1q1rERMTTlZWDpcuSVSq5OqdZbVaOXr0KPHx8be1rWvXri5iXXh4uIvdVapUoUqVKjRv3pzY2FgWLVrEhAkTnG3OnDlDXFwcLVu2ZOHChS59X1/tz9fXF1Cr0rVq1YoxY8YAULduXby8vGjdujVTp06lcePGLtv92WvpdtyJzcUREhLCL7/84rLu3LlzzveuR1EUPvnkE/r27XtLAXDYsGGsXr2aTZs2UbHitbLfb731Fq+99trdHJpA8NggOxzYNQpWVPFdQkFSJGzYQFE9uvUlfHJq1fkrrNW35FiYOnYxaoWn1OOGw1GAPvcDelVTQ78DfcvTJEqEcAsEpZmS+6T8mHGhQMMevWuOk8vmTDQa9UHq3lLAlGwpq6xV5bM5ZDQOdZCk6NRBklOU8ry9Z4U7SM83s/1qLgChQpRSufqH+n9ofSgXCRodaPSF/2vB88ENfCRJuucwukdNkShxPTVq1MBut7Njxw5n+N6lS5dIS0ujZs2aznYREREkJSWRlJTEhAkT+Pjjj3nllVecgsP1+Z1iYmLQ6/Xs3LnTKSRlZWVx+PDhYhNZAzRs2JCDBw/eYGdxSJJEtWpV2bLlJ6zWS3Tt2oGJE9/ngw/mMWvW+y5tFyxYQH5+Pv369bttvz4+Pvj43FlOFlmWsVgszuWMjAzi4uJo1KgRixcvRvMnT4CbHV9+fj66P5Vw12rVh0xFUTCZTHd1Xu7W5tvRokUL3n77bc6fP09wsBoWlJKSgq+vr8t3BdQKe+np6QwcOPCGfhRF4ZVXXuHrr79mw4YNREdHu7wfHBzs7F8gELgiO2SyPewoily4RsFDZ8KutZcOUUqWGXvoJFmGKlA4rAoyiLHL48Tek1fYdmAF1T1W4Vc4HDMZI9xrlEAguG+EKFVCMFvVhzIvbGgkBzmKES+9Aa8qVUkFlBIuMAnAbHOgLwz9KQrfUzSFopT33XumPGy2XMnh2dSjzmVRca8QS476f+tXoWY399pSwomNjaVbt24MHjyYjz76CB8fH8aPH094eDjduqnnbuTIkXTu3JmqVaty5coVfvrpJ2rUUAs6REZGIkkSq1evpkuXLphMJnx8fOjfvz9jxowhICCA4OBgJk2ahEajQZKKnxEfN24czZs3Z9iwYQwaNAgvLy8OHjxISkoKc+fOJTU1lUmTJtG3b19q1qyJwWBg48aNLF68hJEjB6DR6KlcuS7Tpr3FuHH/wGTypG/fvuj1elatWsXrr7/O1KlTb8hflJaWdoMttWrVQq93fVjKy8vj7bffpmvXroSGhnLx4kXmzZtHRkYGPXr0AFRB6sknnyQyMpIZM2Zw4cIF5/Z/9ii6nsTERAYPHsz8+fOJj48nMzOTkSNH0rRp05vm4yoiNzeX9PR05/Lx48dJTU0lICCASpUq3ZHNACdPnuTy5cucPHkSh8Ph9MqqUqUK3t7edOrUiZo1a9K3b1/effddzp49yz/+8Q+GDh2Kx5889xYtWkSzZs1umidq6NChfPrpp6xatQofHx9nPio/Pz9MpltXC7udfQLB44DssMP111FFoW5sEy4oJ52ilK4Eex4p/9uVrMipAIw58QmB1dqTGCXyyT1OvP71b1TQHqV6TTiZHY7BrztPVH/O3WYJBIL7RIhSbiTx60QK7AXYZTsR2Z2BCnhIVspr8shxGKnTqQsZob6QeblUSlLXP0BKKPypHF+Zw2yT0cuFFW2ybLy44Qks/8/eeYdHUa1//DPbN733kIQQQi/SQenSFLGL2FAseO3XXhBRvDZQsVzL/SnoveD12hARCzaKIFKlBgwQCISQ3rfP/P6YzYZIhySzSc7nefLsntmZPe/uZnfOfM97vq85GgBriP+VVl5frlYKDDHoSLOauSpepD4D4FAzxzCJC9VTYe7cudxzzz1ceOGFOJ1OBg8ezJIlS3yCjMfj4Y477uDAgQOEhIQwZswYXnlFzUBKTExkxowZPPLII9x4441cf/31zJs3j5dffpmpU6dy4YUXEhISwkMPPURubi6Wk2SVdevWjWXLlvH4449z3nnnoSgK6enpXHXVVQAkJSWRmprKjBkzyMnJQZKgTZtEHn10KnfccR0GQwgWSxwPPPAoGRmdmD17NnPmzKG6WvWt+Oijj5g48ejB77G25ebm1ltWBmrmUlZWFh988AFFRUVERkbSp08fVqxYQefOnQE1eyg7O5vs7Oyjjj9R1cTJkydTWVnJG2+8wf33309YWBjDhw/nhRdeOOF7tm7dOoYNG+Zr//3vfwfghhtuYN68eacUM8CTTz7JBx984Gv37NkTgJ9//pmhQ4ei1+tZvHgxt99+OwMGDCAwMJAbbriBp59+ul485eXlfPbZZ75KjH/lrbfeAmDo0KH1ts+dO5fJkycf93WeLD6BoDUgezwokuSb6JRQMBvMuGQXii9Tyn/Hao7cdeAtxnlL2QpCMu4Ek7iUaU0UVNhJi7EBEBrSmRH9/4ZZZPoLBM0eSWmI2uAtlIqKCkJDQykvL/f5djQkfef3xea2kW5LJj17DJ8Z0kmS7LR1u1iuD+a+ke3JTbLwn0PFPJQWx99Tjz9LfiQbN02mpGQFnTq+RHz8pQ0e96myf+sffPLM40RFBBBmHMDWQAmXuYyhzs7E2wLRPzqYdjEt58I/t6SGhx/5B73KN2HWZyKFXACA3m1n8lQrlt7DTvIMTcsDWbn851Ax96fG8mBaw3gkNVtqSuCnmVB1GHb/DK5qmPIDJPdpsC7sdjt79+4lLS3tpOKKoD7V1dUkJiYye/bsYy7pOlOqqnYiy05fOyCgLQZD4FH7lZSUMGLECEJCQvjmm28ICGg51VAFx+dE39nGHh80R8R74v98NnYkGfkV/NwuDrdOJlTqg+HuDDY5fufLH/uguMNYdOcguiWFaR3q0XjclD2XQodBXwOwf0g3TMLkvNWgKAq7ds1g5Y5fCDOXE2auIDn5JtpnPK51aAKB4ASc6thATC9oyPuj30eSJIL/WcK/TAdBBgsSQbIO9OqSvdpKt0I69H8cbg9GWV2+J+sD0QNBzg2co/yCpcvpVbpqCnLt6sV4ssU//a6alK2fwbr36tqSDkKTjr+/oFHZuHEjWVlZ9O3bl/Lycl82Te2SwLNFURQUxeMTpCyWJPR6C3r9sTMaIyIi+OGHH3jzzTdZvXo1I0aMaJA4BAKBoClJLCjBaLOhoE5yOo0yMTFBuPbVGZ0b/FXo8Tiwey0RdIDxJMu5BS2H3JIabp23hAd6/JvUI65pAwPStQtKIBA0KEKU0pAuUV1QZIWD1Sux61TVyeBxYtbXAIH1hCihSfk3bqeTPZs2EuYpUjdI6sApvN08uspFYPa/WeNTFaUURUFWZDyKB5d3eaKERICxBWWLVHs/t5RzoftEiOnYYBX2BGfGrFmz2LlzJyaTiV69erFixQqioqLO+nkVxUN1dXa9DCmjMRRJOvGFWGRkJE8++eRZ9y8QCARaIcmqwbni/bnbEwfvrZ6hLt9jCAAmg5+KPe46UcpyCh6DgpbDqt1FVNmKAahyBvBD/lSeubgfoaHnaByZQCBoKIQopTGyQ82sqa1hpJfcWDu1hx3lKIric2FqzkbnLT3L62CZjTeffZHI/WupLTqv6NSMi7SwBOhxW31jUY2pcnvYa3NwwCtKOez7+eLPXeyr2Mdnf36G0+PEo3jwKB5kRUb2Vempo3NkZ/574X+bOvTGw1Gh3ib1hnOu0zYWAT179mT9+vWN8txud3U9QcpkijqpICUQCAQtAQX1fO6WFHQKeHQKTu/voaToUfDfTKmFh0tZm3g5ABY/9r0SNDzVNfkkBB4CICIknlfOvx2DP1eJFAgEp40QpTTk/QdXYHB6GG7V4/CKTtbQEIxhYUC5ag3uFTNOR9eRWrihuL/xzZZD1BTkEQlUWGU8eidxejWlOPOmJWDxn69ZtdtDv992UOxSxVA9cP8PN+CWT720e4uiqhD2r4b8LWrb4n8ZbYKGQVFk3O4qnE61mp3RGIbFkiRm2wUCQYtHtrsp+nA7Vm8WVO2vnk6ScVV0ZFjsNSzFiBvFL6vv7ay2MzWnEpIuAyDc4D/jKkHjsj93HimeZ7i1m9q2msOEICUQtEDEr7qG9EHBYFJ/WO1e1SkowFgnRCl1A4fmmW105MCm5Vbfq3K4MXtFnY1dKwmqshN/KBgAg9G/Tpz77U6fIJVgNjI4BH7c78CoMzIoYRBGvZGrMq8iOTgZnaRDL+nrbnU6jDojOknXcoTPeRdA0c66tjVcu1gEjYrDkY/TWexr63RWIUgJBIJWwaGV21D2VGAzR5Ib1QtJyQKgvc3AZwdv4JuDAAqSBIH+Vs1OlinM3wVAmKuC8aW/MWHU7RoHJWgKpn+5FUvV1/SNB5fHgKSzEBd3sdZhCQSCRsDPzjyti3CzDtyq2mRTPAAEBxl9K73kesv3zgT/VLKa81LEY2FzenyilMPkJsKtfq0kxYPOz2Zzqj1q6n6KxcSaAZ34o/APfgRiAmJ4fcTr2gbX1CgKFP+p3o/pBPHdoWPDGGmfuNuW9f/fXHC71SWakqTHaAzDZBICpODEiO+qoCXgdrlY/b8F9I+4kN3Jl1MakgllOwA4iFptNMgiMb5bEj2TwwkP9LPiJ988hG33Fuj6Am3sebx08AMIf0jrqARNwNdb8rm2vQ2A+VkTuWX0nSQlRmsclUAgaAyEKKUhnoJvKHLZ2Gp0Ux7RHQCrUe/LQjkyt6hlDo1bxquqcXqweEWpap0do0fNktIpLi3DOiZVHlX8DPSKZdXOagCCjEGaxaQZziqo9cu6+QcwBTZqd0ajEYCamhqs1mNXeRM0PE5nMR6PDdlr0h8Y2B6dTpz6BCenpqYGqPvuCgTNEbfTgez2cNi2j8Pyjyhl3/se2xe+F+ydiA3R89yl3TSM8gQUbPcZnFslCfrerHFAgqZAURQqbC4CDKoo9Y/LBpCcIAQpgaClIkbmGlLz+xJ+HTiQfVGJ1LjNIENwgNmnRClKnT+2mLH1X2qcHoJldUmcW69gcquzjHrFrWVYx6Q2U0qHk8dWPMaBqgMABBobV5DxS+xec3OdAZqgkqBerycsLIyCggIAAgICxPKxRsbjcWKzHfS1JcmI0+kG/O+7KTg13B4ZWa47H5qM+gbvQ1EUampqKCgoICwsDL2+4fsQCJoKRZbRoeNQzW4U6vwjDdZAdifIsAf/9uhx2bDr1MqrluTe0CNd44AEjc3hkp1kbbuB14cVY9Cp49Yga5i2QQkEgkZFiFIaIcsKF42ZgQs91BWCok1CHAfK7AB/qb7XEmiZF+A1Dif62oo2OgWTxwKAwc/Mw6vdHnJt6v9WQdV+vsr9yvdYXGCcVmE1PY4q+L+RdUv3zCFNVh0xLk59n2uFKUHj4vHYcLlKkCQ9en0ger0OSdqrdViCM6Ta4aasxlXvfJgU3nhZh2FhYb7vrEDQXJE9HiRJh+wdp+jN3dmXuIcRA67Glb8EwC/NzX24bNgN3kwpf45T0CB8sCqHXza+z7UdCzF4tVKDIYzAwPbaBiYQCBoVIUpphE4nUSs16ZExeFwE6dwMzozlo9/3A7XL906/+p6gaamusfvue/QKJo96kWTEf0Sp/ztQyLQ/D/r+j8prcggBru14LWmhaQxvM1zL8JqW/C1QuKOunTKwybqWJIn4+HhiYmJwufxveWdLobJyGwcOLsBmy8XhOERMzDjS296ndViCM8TlkcktqeGDdbvZsL8UqDNjXnTXuY3Sp9FoFBlSghaBIsvoJD2lVAIgSQE4zBJ6oxHvin6Mfpople9wsSR0IL+aUgCw6PwzTkHDsTK7iECjunR6dV5vyo238vzl56LXmzWOTCAQNCZClNKQF7raCDJKhFlNGPR6Urr3ITIq8IiKe807U+rI5JOWPLdVUW3z3b9qVQYxtk7YQsCoOE9wVNOyvKSy7n9IthNh+42OUV25q+ddBDTB0jW/wqEOzInpDNd+BsFNnwmh1+vFBW8jsmHjA9hs+33tiPAOWCwWDSMSnA23vf87y3YV+tpzJ/dhWIcYDSMSCJoPsuxBhw67b6JMD3qJzMxM3HvUkYHRT8WeJ/48wOLE633tEIM4b7ZknM4SEoxLiAlQqy1OHNCbdukjNI5KIBA0BUKU0pBLr5l4zO21PjPKEU7nwlLK//hlZwE/ZxVwqNgrciARbLwDm9cT12Twj0yYGlcNB2pKAAPBRW9irlnDr5N+a31iVC0Or5dUQASExGsbi6DBcbkqfIJUhw7/ICCgLWGhvTSOSnC6KIrCtrwKCirtrNlbDEBkoInUqED6pkVoHJ1A0HxQZFldvldb2EPSEWANo23btnhtJv0zU8rtoMCmTvr1L/uDtNRzuDVZGF23VOav2UfxwWcZHPujb5vJFKVhRAKBoCkRopQfUpthJCtHVt87DVWqGZgn+3+EJ+e+jzdRWuMi1KUu39NJ6qBO7yolVtlLn+HaZWYoisK7m99lT/keluxdQmncM2BKRSdXE2QMaJ2CVFku7F0GOSvVtjlE23gEDYrHU8P6DZOorNwCgMWSTGLCVRpHJThTlv9ZxA3v/+5r63USqx8dgcnghxfPAoEf43E6icjNoiTAQY0RQIfBqg7/60QpP8tAqiqAN/pg7/QCBHfgztz5jBw2DAJExmtLZfb3u7g+Mw+A3WVp9M7oT1zsBI2jEggETYUQpfyQI4Wo5rx8ryWjKAplNjUT6srusXAAaj85Rd7MJe3fh+GLNIsvuyybNza94WvLkupz1Sk8jUmpl2gVlra8Nwoq8+raAeHaxSJocIqLV/gEKYC42PEaRiM4U+wuDzvzK/lxx2EAooJMtIkIYEyXOCFICQRngGPjJiJzNrMvJRbCgkDSk2s4yJVfXYlHVs+DfpcpdXgr2Mtw6NRqxpbIthCSqHFQgsZCURTKbS4CDKqXVO8ud3FOeyFICQStCSFK+SHSEUv29NKZG52fVnZVI+IfUTQsTo9qTn/ZoYVY9hYBIEvq4MlgAB7aC3rtvl6ldtUMONIazeUdb2F2SQw2GZ4fNI3MwFY40+iy1wlSqedBYDT0/5u2MQkaBI/HQUXFRvLzvwAgIf5K0tLuxmwWVdOaI9e9t4a1OaW+9jX9UrjvfFF1SSA4U+RK1WLAbfB6C6Aj31NEQUkxKGqhAIvRpFF0x8Gbge4wqhnNlgtng87PsrkEDYKiyGzbMZ37z1lDUvAhANJiEjSOSiAQNDVClPJDdD5PqbpMqRap7DRj7C6ZOHs+0c4i3zaDXvU5iTWbNBWkACpd6iD0cMQ9zCxSq9boJUi1+tnAs6mwl3vvSHD9IvBTU1fB6bNz13QOHfrE146JGYPFIrzCmhuVdhdlNS427i8DICHUQliAifHdxWcpEJwNsrfSq8crSkno8UgyqSGpdAq/nI8L7Jg1HrMchdsrSunUmM26lmD6IPgrhZUOXvt2CUMjF5DptQqUJD1Wa7K2gQkEgibHz85CAqDekr2Ws3zv6FfQnM3bHS4PoW5V6DCkxTA/bQN3rB5MFRBp1bZs7Y7iHWw8vBFFMlGqVwUpoyRxRVw45tYoxhzeDrlr1PuWECFItSAURaGw8DsA9PpAoiKHER4+UOOoBKfL2pwSJv3rN1we9aRg0EmseHg4enEhKhCcFYqsIBdWASDr3IAJJB0eJCRbBxRTFHAAo97PvmteUcou1YpS4rzdElm8OY91e/cyNBKKbeEsy7+K56+8EIvIdBYIWh1ClPJHjqi+d0ZG5/5CMzBcP1PsLhmz7ARACTFhs3hAUQdPBnPTf61eXPsi3+39jgJbgW+bx5gEQKhBT9a5XXxVHVsVxbvhrQF1bUuYZqEIGg5FUcjL+y9V1btwu9Vqiued+zt6fStcmtrMcXtkVuwqxOVR0OskLAYdl56TJAQpgaABqFqVh3HjMgBq9B7vVh2O6o5s3jeUzaohpl95SimKwkc1AexPnUKVTp3kE5lSLQ9F8eCqWUX36K0AhAYl88gldxAc3AoL8QgEAiFK+SM6X/U9xSckNENJ6sQ08/GF3e1Br6gDPFnyfjqKujTOaDEe77BGQVEUFuxYgEfx+LalhKSgD+zJGiDGZGidghSoohSAMRBiOkKvyZqGI2gYysp+J2vnE762xZIkBKlmyD3/3ciXm+qKD9w7IoO7RmRoGJFA0LLwlNjZ5alia6cUXD5PJj3VFb0AyIgJItBs4JJz/MdE/I9KG393pEJKKqAOF0MMwk+qJVHtcLP5z09I1z9JuprQT3xEAskRQpASCForQpTyQyTqhChfplSLU6WaNzanB52i1lL21IpSqGKUKahpL47dstsnSP1n3H9oE9yGcEs4SwrLWLM1h9DWPJhzqFk0JJ4DkxdrG4ugwSgtW+O7n5Z6N1FRwzWMRnC61PpHffVHnSAVaNJzXvtoDaMSCFoeiqywR5FwGGvHARKSPgK33QI6+Oquc7EY/WiMUJRN0bL3IeJKopwlTFDy6NljHOFGcbnSkrji7dWkW3/l4nZQYg/DYs0kpc0UrcMSCAQaIn7l/ZAjq++1CE+pZh380ewrrmbdvlL0qEKQW6eKU7XV94xBTTvTY/fYffc7RnTEpDdR6faws1rdHtaaB3O1opQ5RNs4BA3C4YJvyM2dR3n5OgDS0x8iNeU2jaMSnA6/Zhdxw/u/45bVE4PFqOP3x0diNer9agmRQNAikBWcGAEPhoCR6I3pSJIZt6San/vdd27zx9gPbYGIK2lrO8Cz4fkQF6F1VIIGRJYVsvIr6NreBsDe6kFc3f95QkNFlpRA0JppxVer/ovOJ0opbNlagL64Cjkh8jSeoZUu1WoCvtlyiNvnbwDgvNpMKdlDcqGCgipKmYKDmjQmu9cQVELCqDPyU3EF127eg+x9PNHctMsJ/YJtX8DKV6HqsNo2B2sajuDsURSFrKwncLvLALVCT0TEIG2DEpw2v2YX4Zbr/KOu6tOGkCZe8iwQtBYUWaG2jrMOPXtjt5BhU/BIPQDF/7zbXDXYvT5SlpgO0PcqjQMSNDQH8pdyTYf/0j5ctVe4sm9nsWxPIBAIUcofqfX/OVBqY2V2EUagsotT26DOEqmFpEttP6Rm3gSa9ISZ1RnG5LVl/K1mLAcSQwEwhDftrF5tppTFYEGSJD49XOoTpCKMeq49LUGzhbD6n3BoU107SvjUNGcUxYPDcdgnSHXu/Cohwd0ICEjRNjDBKfP8N1ks2XKI4ioHAA+OzmTqkHSNoxIIWjiyUlcoR6niYMRmIlOGwO+g0/nhuMxtrxOlgqLAoG01Y0HD4XTL/LDjMIbChxiaXOnbbjHHaxiVQCDwF4Qo5ceU21y++06X5wR7HgeNxxvScTK2/HAYdMpU2t0ATB6USre9O9n6M1Rau1EVPcS3T0jXLk0Wj1t2U2YvA8DiNXoudKr/N//slMKlseFNFotfYS9Xb89/BpL6QHJfbeMRnDE1NTmsW38FLlcJAGZzHHGx4zWOSnA6ONwe3lm+u543Ys/kMM3iEQhaA/u3bqY8a7dvkkqR1HGZy5vlrZP8cDTmtmPXe0Upf1taKDgrFm48yGOfr+ed81VB6ucDFzB1RH9iYkZrHJlAIPAHhCjlh+i8mVK2MxGi/JFjalN+ljJ+ilQ5VFEqyGzE6VRn/D16KwYgIvAXugceJDS+aUyX1+av5Y4f78DmVtflm70zitUedcAZ2JoHdLVeUmmDIaGHpqEIzo78w4t8ghRActINGkYjOB3W7yvhtn9voMLuQlEgwKTnv7f2JzLITGKYVevwBIIWzfL5c0mr7ODLlFIASZEotJUAqX6XKWX3yKwjiqwA9dLE4m9LCwVnxb6SagKM6nhVUSQGdH+YpET/qfooEAi0RYhSfkit0bnDXSdK+dfQofVS5c2UCrIY2FawRa23J6l+KF17HKBT/6ubLJY1h9b4BCmAkW1GAq1YlFIUyP4BynPBVqpuswiD8+aKLDuoqtpJZeU2AFLa3Epa2j3o9U1b3VJw5ny37TBF3uV6AIMzoumWFKZdQAJBK8JVXYWhokDNUJQAFHTo2FK0HTgHfxsi3Je1ny9CLgHvaTtA70dVAQVnRVXVLjJ0dzKtvzrBZDQGM7K7EKQEAkEdQpTyQ2rnhuwu2bdNUZqvLFUb+1/nvJrjK6pyuIlxFGD7YT5KXpm6UVIHTu0umgOhTWeo7fCoF3vXdbqO+3vdj16nxlHtUcXMAH8bcTY2eRth/uX1t1nCNAlFcPZs3nIHxcU/+9oBAW2FINVM+Ocv2fy4o4CcomoA7hmRwVV9kokPFZ+fQNBUtNu0g5CClchd24HkXb6nSJjM6vcwwOhffk27a9QxTRtbHjFBYVzZWu0HWhhfbDzAgf3z6BS8F7w6Y1BQR22DEggEfkcru2ptHtRmStldIlPK36h0uBlY8huVW1ZhqvaKbZJaNcQQ0LTVQ2qzpAKNgeh1ep7fc4jBa7LIs6ueUoGtbZaxbJ96GxAJHS6EUc9CgCgl3Rxxu6t8gpTFkkR4+ECioppmWazg7LA5Pbz03U7W7yuluFot0DEwPZKEMKuviIdAIGh8Aqqq67XLAyEnOIfe7foBYDGYtAjraDwu+H4a9rIDALy860UWh+dxTmigxoEJzhZFUXjksy3kFhcA8GteXzwR/0eP7nM1jkwgEPgbIlPKD6n1lKonSglVyi+osruI8Prb7EyvIaTCTaorDQB9E2cm1WZKWfQWDtqdvLrvsO+xMIOeJHMrK7Pu8FZzSewNE+drG4vgjFAUmfz8LyktXQWAwRDKoIHLNI5KcCpk5Vfw+YaDlFQ7ff5Rr1/dk9gQC50TxDJagaCpCUCtzIvXO6raolBmLkOnGg9g1PuJSLzvV1j1Gva+A8AAVo8DgmK1jkrQANQ4PTjcMgEGdRK1T7seDO86pMnHywKBwP8RopQf4/LUKVHKaeVK+clA43hh+GPFl1Okyu4iwKOeXP9IKWFgViCSW4+kuJGa2JTT7lYHnBaDhb22Ot+Wb3q1p63VRKChFWVKOaqgulC9L3ykmi35+QvZvuNBXzsoqIOG0QhOhycXbuP3nDpD+vToIEZ0FBeWAoFW6BQZGZ1v9KhI4LHHsv+wmoFk8BdhwFst125Qs80tI6dByiAtIxI0AB6Pg61bb+eZgVmEW9TPuGtSov/83wkEAr9CiFJ+yLGWOLS0TCmJ5rUk8f7//cH32/Kptjt8WtvAbR4uWqtne3fQK+4mi6XaVc2fpX9yuEbNjLLoLZR7TfF7hwTQM6RplxFqzvdPwKrX69pmIUo1V0rLfgfAYAgmJuYCUtrcrHFEgpPxfyv2sGp3MZsPlgFwbf82xARbGNMlTtvABILWjlx7o464ZEnBWTyUFXtV70uL0U/EAZc6wWb3egaaM4aDzk9iE5wR+eV2lm35hijnMhKC6rYHBmZoF5RAIPBrhCjlhxwr4aY5CTgtDY+s8NkG1evAqNQtqZyy1IPNqn6FdDrPMY9taBRF4YqvriC3Mte3zWqwUuZd6hlqaIVf6ewf6+7rzZAuvIeaG4cLvuHQoU8pLv4FgMzMZ4iLHa9tUIKTUm5zMfPrHb52gEnPo2M7Emhuhb9DAoGfofhq5agjSFkCkAgN9NApNoYbBqZoFNlf8PpjOiT1d8MiBKlmz5NfbqW4eBt/6w65lQn8kn8tb147gsDAdlqHJhAI/BQxcvRDjrUI7Myq7/mZlKX4ybLC08R2hLfXZzf3Zum09wDQKQr5EV5vBlPTvNcOj8MnSKWFppEQmMCAhAEsKFDNzUONrWjJXi21XlI3fgtJvUHfyry0mjmy7GDHjofweGoA0OnMRIQP0DgqwYn483AlizcforBKXTYcbDEw7cJOdEkIFYKUQOAvyFK9UaCik0Ex0qudi/ev7q9ZWEdS6HQxrrIDeYN/xCNEqRaBoig4bVm0DVWLzxiMCdww9BICA2M0jkwgEPgzYvToh4QFHF0Rxc/kpVaFzVknSqWEqZ+NTpKQgD9TQjEDARZXk8RSa24O8NlFn3HQIXPnzoNsrVIv6NtY/KSaTlPiqFBvAyKFINXMUBQPNTX7fIJUx44vEBzUCZMpSuPIBCfi4c82s2F/ma+dERPElb2TtQtIIBDUQ1EUFLn+XKA6ktFhMviP6LOhooZcxeKbjc0IMBPeGifXWhCH8j/juozpvvY5qSl0yhSClEAgODFClPJDxnSJY6ajC6XVTmYv3QW0BE+p5vsCakUpq1GP26WWONehY13P+zEaIgEICGia12fzprkbJANGnZH5eXn8WFLhe3xgWNDxDm1ZeNyQsxxqSuoypcyt5LW3EAoLf2DrtruRZVVoDQxsT0L85RpHJTgR323LZ+P+MnYcUr9zV/RKIiLIxITuiRpHJhAIjqTks884FBKEzVQ3UaPoFBRFh8lfjKYPb8e2fD5EXUHv8q38n2knUUOeRn8MX1WB/+PyyPxjyQ6i5eVkBkOlM5DIkDbEJ1yhdWgCgaAZIEQpP8Ri1HNtf3Wt//+t2Ud5heMkR/gpLWRgUbt8L8Ckx+NSM6JkRaIirC21Q7uoaPk4RzcstZlSFoNqCLqrRjUIvTkpiknxkXQMtDRJHJrz25uw9Mn624TBebOiqPhnnyAFkJR0nYbRCE5GeY2Lv83fgEdWBXiTXsfTE7pgNYmsBoHA39j763I2ph5ZbECHrFNAMfhPptQfC7AXZUMUBHuqiQuLPbapqqBZsHZvCXN/zWFyp2Iyg+Gn3OH84/pZBIkl3QKB4BQQvxR+Tu3pufnmGR2f5pL9VStKxTsLWfn1Ou9W76BO2shl0QuJufj1Yx/cwNjdqghVK0oVOtWqf+eGBdMpyNokMfgFRX/W3U8bDG2HikypZoKiKDgc+djtBwHIaPcYiYlXo9e3sqqRzYQqh5u1OSXkFFXjkRWCzAYm9kmmb1qEEKQEAj9D9nj4Y+xYyivLoU00JpeHwshwIt39QQZPTRtMej/53jqrsevMAFgTe0KfczQOSHA2lJauZHDiWtpFHAJgUv/OQpASCASnjPi1aCY0E/3mNGg+s2FVdjdhrjKG7f2IvepqSgyoolCbiEDinvwBDOZGjaHcUc4nuz4huywbAIu3dHJt1b2w1ubBYC9Xb8fNgr63aBuL4JRRFIUtW++ksPBb3zaLJUkIUn7M1H+vZ2V2ka/dNjqQJy7spGFEAoHgeFTl7MWyPxfFu5TfKDvIS04hNq8LirMcdEb/yZRy2bHr1bGTJSQW9OKSpLlSUrYFS+X93NC5bltabJJ2AQkEgmaHOAP4Ob5MKfnUZSnJ3wSfZq6oldY4CXeWAiCZjeSGVNCzoCOVQFhQWKMLUgD/2/k/Xtv4mq8dYYkAoMytZkqFGlqJKOVxQcF2qMhT25ZQbeMRnBY2W45PkNLrg7Ba2xAe3lfjqATHosrhpqjSweYDZQCEWo1kxgYz5bw0bQMTCATHxVVTg0dnxGVUhf7d8QZMHjWL2im7QWfC7C+ilNuOXafGaRHL9potLy/dxaqtX3J7d9VHykZneqa1IypyiNahCQSCZoQQpfwd73m6mes6zZIKu4v/rc1l9e5irLK6bE6XFM4Pmdn0XxxGJWA8RqXExqDEXgJAt+hu9I/vT1nAcMat30WJN1Mq0thKvsqfTIasxXVtIUo1C5zOYvIOfUpl5VYAQkPPoXevTzSOSnA8tudVcPE/f8XprvPK+/WR4WIphkDg55TmV7Fy0As43H9CzfckVGRiUs4FwO0xgwEiA8K0DRLYW+PgpcCR/BEQDIBZ5ydCmeC0+X5bPrFGtYLu7rK2ZHScTYfMBI2jEggEzQ0xwmwmNHdRSpKa3ytYsGY/z3+TBUAvj7fqnd3OpJ89SLJa0cYQ0DTG4rUG5+cmnMtN3W4jbdlmZFTT9S5BVmLMxhMd3nLI36zeBsZARFtoM0DbeASnxL5977A/9z1fOzS0l4bRCI6H2yOzp6iaxZvzfIJUsNnAyE6xQpASCJoBxXl2PHoz1ArKkir2OFDI0RkBmU5R2mc7/juvmM+tdWu9ElrLGKaFUV2dzfjk2USaVR+p87tk0K2LEKQEAsHpI0aZfk5tQrN8Rq7g2gpBx1tG2FzkqfxyNTuqa2IofYMCoRSitx1kxD6FzV3UAZQ5LLhJYqkVpcwGM4VONzJglCRe79iGAWGtyODbXqHeTl4M0ZnaxiI4ZWps+wAIDx9ASHA32rS5SeOIBMdiygfrWLar0Ne+bUhbHh3bUcOIBALB6eAoKQPCCKw5RDmwJ2Izy7qtoyL7MYZlRnNZm3D6t43UNsiibKoK84AQRhet5JK2mYxK6qZtTILT5qPf91N++E06hG/1bQsJStcwIoFA0JwR+bL+jqQKO0qzkXJaDlUO1a9pXNd4+rUJAcDkrXZXE6Iu2zNHhTdJLD5RSm+mwKlmSMWYDFwcG05sa5lhVBRwVKr3zSHaxiI4JfLzF7Hpj5soKvoBgOTkG2nX7iFMpiiNIxMcSZXDzf7iGn7fqy4TDg8wkhoZwIVdxYy3QNCcsO/cDoCkqOMERQeKos4/3zYknbtHZGDQazj0dzvgX8Nw5PwKQO+KrVwcIhGgZUyC06ba4ebxL7aQX1oAwNr83nTq/C8x4SQQCM4YkSnl5/iMzjWNouFpDpaWlXZ1UBdkMeB2OgHQeQ3nHcFmcIApuIkypdx1olShVxiLMbUSMar8IPznMqjKB0X10MIiRCl/R5YdZO2chsdTBYBOZyUkuKvGUQn+yh+5ZVzxzup6/lG/PTYCc2spniAQtADWfvU5G7/5ighbMFhBQj1XyhIgq0N9o94PRl72cnBU4NCpE3uWuC6QOkjjoASnS0m1E1mBIJNqbTG4y3DiY4drHJVAIGjOCFGqmVDpkrlrxz6ujotkYHjzWq7VXAW1Srsq/oRYDLhdqiilVxQcBpBktWKMObRxxZEaVw3F9mLKneVqf3ozhx3eTKnW4vGydxkU7qhrR2WCt7KQwH+pqtrlE6Q6dnyBkOBumM0xGkclOBKPrLAyu8gnSAWY9FzQNV4IUgJBM2PzD99QWVxIuDeLWFZkkECRFBRF/T4b/MFM3K3aIjj0qh+npedEMFq1jEhwmng8DnL3zuCunjtoF6YuzW8bE69xVAKBoLnTSq5qmy/e1XtsrbKxJV/mk/xS8of10DSm1kLt8r0gswGbN1OqPCSD4qRz8bjU5UemgMbLVjpQeYBLF12Kza3ORLlMbfl3aRTLKw8ArShTqtZHqt1IGPUshKfWfTEEfkdF5Va2bbuPmpo9gOojlRB/ucZRCf7Ko59v4aPf9/vadw5rxwOjhU+bQNAc8bi9k2hGKwWAW1IzpRQJULyFWfwhU8qb9W33ilKi6l7z4qesw7zz/Yfc2uVTekTXbbdak7QLSiAQtAiEKOXn+MEQotHwd5+s2kypYIuRvKoiAIqjeqC3tANAL7kICjc3Wv87S3Zic9vQSTqCjEEURd3I8sq6GcXB4U2zdFBzan2kQhIgpoO2sQhOyoHcD3yCFEBCwlUaRiP4K3aXh+JqJ59tOODbZjboOC9D+HwJBM0V2aOKUDqlNstRbZt1Fpyl/QEw+oNvk0udZHP4RKmWPMptefywowAjaub+/opE7KZLuLJfL0JCemocmUAgaO4IUcrPkbwZIRKnsQzOX7JI/CWOM6TWUyrQpGdL/h/EYgTJBIpM/9HlpPUcgLkRM6VsHnXw1jeuL/8a9S9GrM2ivMrO5MQozg0L4oLo0Ebr2y849AdkfQ17flHbwtzcr3G5Sqmo2EpB4bcApLd9kISEy4WpuR9RbnMxfNYvFFc7fds2TDufAJMei1Es2RMImiset5v2ySM5VF0JCiioS3JTw1JxVqkVNA0aC0DVbg+PHHST3202WwLSALCITKlmhcNRQoS1FIDuab04p/t9GkckEAhaCkKU8nOC9DoKwKdI9Q8N1DKcVsHnGw6wbFchpTUuUmv2se6tX4gt8IpPugCMnkp6XXpZo8dh93ovWAzqjGKNRx1kXhITRr+w5uUrdkYs/Bscris1TJDwI/JXFEVhw8ZrqarK8m2LjBwiBCk/I+tQhU+QMul1XNIzkYhAk8ZRCQSCs0WHkac7/YfRW84n3gaKN1Oq1F0O3uwprTOllpVW8kmlDsJ7+7YltpbqwS2ArKwnGBfzEXiHYkHWCG0DEggELQohSvk5tTNbd7SJ5vXqClE2t5FxumUe+nQzbm+Vvf5layk6XAio3gw6fSxmd3mTxFIrSln16pI9m0eNqdX8D1Tkqbddr4SwNtDzOm3jERwXu/2AT5AKDMwgMnIoQUFiqaW/8M6y3SzclEdZjSpI9W8bwX9vHaBxVAKBoKHQu+xcs9RGCHpsoaD3zmQeqDkIkjpm0NRTqiyXquwNQAqdqrK5q2IliRfMpEuwKFri7xRVOZjywTquSfuRSHWOFEUKIDJyqKZxCQSCloUmV7fLly9n/PjxJCQkIEkSCxcurPe4oig8+eSTxMfHY7VaGTlyJH/++We9fUpKSrjmmmsICQkhLCyMKVOmUFVVVW+fzZs3c95552GxWEhOTubFF19s7JfWaCh/uRU0Dna3xydIPTW+E3GofkbZicWYDFYknRU9rqaJxfOXTClZnflsFaKUoqilowFGPgUjpkGAmJXzN2TZTX7+InJz5wEQEJBO/37fktHuEd/SY4G2eGSF2d/vYsehCg6Vq78pXRNb+NJfgaAVIcsKOulCjKGvYwsdDoDJO1gMNAdTO/+safW9L27DtvlTAFLsh7jEuYu+rSHjuwWw8s8i/sgtw6SrBmD66sdo1/U3IiPP0zgygUDQktAkU6q6upru3btz0003cemllx71+Isvvshrr73GBx98QFpaGtOmTWP06NFs374di0W9QL/mmms4dOgQS5cuxeVyceONN3LrrbeyYMECACoqKhg1ahQjR47k7bffZsuWLdx0002EhYVx6623NunrPRskr9W5pJz+BZ6/G4n7Iw6X7Lt/bd9E5rymXsTd/l0FpRFGtnYGg9S4otTe8r28vvF1thdvR0Fil9KembvzqPYu37O2dA+G4t1QfgAUVYTDIryk/JX9+//F7j2zfO0Aa4qG0QiOxO7ycNu/17O7sAqn97fjP1P6YTXp6J4Upm1wAoGgwSjdX0Y1+Sg1uwGQkLEby8EDGRHtIV/dT1NPqYqD2AMSALAERUPvR7WLRXBalFdXYjXYCDSq4+GPbxtJYpSwEhEIBA2LJqLU2LFjGTt27DEfUxSFV199lSeeeIIJEyYA8OGHHxIbG8vChQuZOHEiO3bs4Ntvv2Xt2rX07q2uTX/99dcZN24cs2bNIiEhgfnz5+N0Onn//fcxmUx07tyZTZs28fLLLzcvUco7hhACU9PgcHsr1hh0vmo2ADpZoSpA9V6xBDfuZ/HZrs9Yum8pAC5zJr+4uvDL/gIADBKEGFqwIXHOSph3QV1b0oNJzKb6KyWlvwJgNscTEXEuyUk3aByRoJYN+0tZtqvQ1+6dEs65osKeQNCikJ0etr36BW7bsnrb3d7bGqWuYq+my/dcdux6tVqxNW0gpLXRLhbBKWF3ediw82MSHE/xxvC68XBceLSGUQkEgpaK33lK7d27l/z8fEaOHOnbFhoaSr9+/Vi9ejUTJ05k9erVhIWF+QQpgJEjR6LT6VizZg2XXHIJq1evZvDgwZhMdSauo0eP5oUXXqC0tJTw8PCj+nY4HDgcDl+7oqKikV7l6dMcV8IcGbN0hKjmzwKb061mFJgNOjyuuowonaKQ0zYYFDA1sgVClUtdhjomdQyxcZczKw8SzEbGR4fROzSQoJYsShXsUG9NQRAUC50mNM9//hbO4cOLKSj8jtLS1QB06TKHsNBeGkclAPh5ZwFv/byboir1XNazTRhPXtiJjvEi41AgaGnI1S4cDrVSryQFYzcfYFBAJfs8aXwl9WBLXhfwDhk0NTp327HpVFFKVNxrHtz27/Wkm75iUEKdIBUePgCdznqCowQCgeDM8DtRKj9fzTOOjY2ttz02Ntb3WH5+PjEx9StxGQwGIiIi6u2TlpZ21HPUPnYsUeq5555jxowZDfNCGhhFqX8raBwcXlHKZNDXE6UKo7qj6NKRPGDQy8c7vGFi8KgXk12iumAMaQd5uXQMtDIjI7FR+/ULHF4huPPFMOFNTUMRHBu3u5LtOx5EllXTbKMxnOCgzhpHJajlrV9283tOia/dNy2Cnm2OPt8JBIIWgKzg9lba0+sisAdtYUh0Ll8627NW7o3JoBBjNTM0MxqLUZsJrd/Lqnii8yxyzeq4XYhSzYMdhyro1k71kfrp0PVMGvI3OiVGCb9IgUDQKPidKKUljz76KH//+9997YqKCpKTkzWMiJb74++nr8txZKaUW02Al5DY2uVWJO9kkcnYNKKUWW+myusFE2hoJYM4h2osj1lkdfgrFRWbfYJU+4xphIcPQK+3aBxV66a4ysE7y/dQWu1kR54q7D46tgOZccH0bxupcXQCgaCx2L91M3sldTJWQkLxDhVqAm1QCSO6u3nripEneIbG59P8UjYHZfja7QLNGkYjOBXKytczKukjUoIPAHDPqP7ERItlewKBoPHwO1EqLi4OgMOHDxMfH+/bfvjwYXr06OHbp6CgoN5xbrebkpIS3/FxcXEcPny43j617dp9/orZbMZs9u+T5aklSvmX4HO87C5/zPpyuLyeUkYdHndtppQ6ylN0JbQz7aBrSuMu67S7VTNJs97MYa9IFtTSK+5l/wDbFsKBtWrbHKxpOIKjKStfz9at9+BwHAIgJmYcycmTtQ1KAMD8Nft5d/keX9ugk7i8VxKRQf59PhMIBGeOraqSn957G1ugKjxLCkiSOrBy6tThvUnrsYMsY3OrkxjX533J9WP+RucIUUnXX/HICl/9kYep9CGGJef4tlvM8cc/SCAQCBoAv7vSTUtLIy4ujh9//NG3raKigjVr1jBgwAAABgwYQFlZGevXr/ft89NPPyHLMv369fPts3z5clxHLMFaunQpmZmZx1y656/UykuSHwo4p49/iWVHoigKWw6U81OWKnZaDHq2FWwB6iof6oxrGBM2i8joxn0dDo8DWRfIT9WRvJSjCgCBWg8sG5uv7oON/4bCLLUdLAZA/sa+fe/6BCmAhPjLNYxGALAup4T7Pt7EZxvU2ewRHWJ4bFwHPryprxCkBIIWjrOm2js2rM3eltDr1AzvGowAGLXMsi7eDbMycGz7EoD2NfvoEhbWclcAtAB+yirg3o834XSqRTKWHziXzMx/EBzcVePIBAJBS0eTTKmqqiqys7N97b1797Jp0yYiIiJo06YN9957LzNnziQjI4O0tDSmTZtGQkICF198MQAdO3ZkzJgx3HLLLbz99tu4XC7uvPNOJk6cSEKCWnJ20qRJzJgxgylTpvDwww+zdetW5syZwyuvvKLFSz5j/lp9z59Nwpsz//ltH9O+3OZrZ8QGsaPgdwAkr3bbLjAEBt4FfW9r8P4dHgdvbHyDQ9WH2FW6i+rQy/mktG4JW7fgRnZX15qaIvV20L0QngLdJ2oajqAOt7uSGts+iop+AiCz/Qyio0djNotUfq154dss1uaU+trX9k9hWIeYExwhEAhaCrIsq+MTWR0X6pCQdUboeiWLd6cDYNJSlMpdAzVFOHWqQGYOSwa9Ubt4BCdlf0kNoBBgVM3ze3X5O0mJ3bUNSiAQtAo0EaXWrVvHsGHDfO1aH6cbbriBefPm8dBDD1FdXc2tt95KWVkZ5557Lt9++y0WS51vyfz587nzzjsZMWIEOp2Oyy67jNdee833eGhoKN9//z133HEHvXr1IioqiieffJJbb7216V5oA9I855WOjNq/xbTdhaqZY3iAkcRwKxdGVLB5syqc1opSYSk9YNT4Rul/1cFVzNs2z9d2h7cDIMVi4qr4CC6JaT7ZfaeNxw2uGvX+oHsgQKT2+wsej43ff78Im32/d4tEdMwYzKYoTeNqzdhdHr7blk9RlZM/C9RKnbcNbkvnxFCGtBdCoUDQWpA9HiRJh4KsjrYU0AWEw2X/Iu/FdwEw6zWs1uu1InAEqZPF5nPv1i4WwUmpqinHanuV27vnopfU7LsLurfXOCqBQNBa0ESUGjp0KMoJDIUkSeLpp5/m6aefPu4+ERERLFiw4IT9dOvWjRUrVpxxnP6AL1Oqtvre6Rzsj6ZNford6yV106A0rkyT+M+j9/oekxSvN0NoUKP1X+lSDb7TQ9OZ1HES/yhsQ74LXu/Yhr5hjdev5rjsUFm3JEx4SfkXZWXrfIKU2RxHXOwEIUhpzAercnjumyxfW5Lg1sFtxXI9gaCVocgyuiMzpRQJDKoIJcvq4NFs0NA61uUVpfTqb5O5pdsQNGP++/t+Fv32HlO6LKa2+LnRGIFOJ4qYCASCpsHvjM4F9ZFqs41a2Bp8f3s1taKUxainokitZGNye4iuqMER2pMqwBDQeCdnm0tNld50iNIAAQAASURBVE4LTePKzCuZWbQVcBNo0HCWs7FZ9z58/QAo3rKGBqtI7fcT3O4qDuZ9RE7OPwGIjh5Dt65vahxV6ya/3E5WfgUrs4t8267qnUzv1HAhSAkErZCqUgc1lpHoHX8go46ril3l9Px3T6qcNwFg0jRTSh3XOCTv8j1JiFL+yoo/iwg2qpOjORUptE+9nB7pw4T/l0AgaDKEKNVMqD0tiOSnxsHuUlOVLSY9Tps6kAqxOeieW8DKjtHgBIPZ1Hj9e9QZRavBCkC1R42nRRuc7/quTpAC6HihdrEI6pGbO5c9e1/1tcPD+2kXjACnW2bcaysoqXb6ts2Z2IMJPRI1jEogEGjJ4b01eKQwJO/A0OSqoUZx4Jb1KIoqRiWFHLvadGPjlGU+dMVRmHoz+/WqP6ZZJwQOf6XaUU2USV0OPqjjYDpk/k3jiAQCQWtDiFJ+Tt3yPaFGNSZ2tzdTyqDDWa6KUgaPjAwoelWMMlgaLxvB5p1R9OhDWV5SSU1rEKVsZertZe9Bp4tBL36O/IWi4l8AiIwcRkhwVxLir9Q2oFaKoih8uSmPHfkVlFQ7MegkMuOCiQ2xMFwYmgsErZo/13yJo2ytrx1VtA2dx4y7ZBBRxnYU2FxEB2rj0fhzSSVPSJ0hpbNvW5hRnOP9ke07Hua61E99bZOxBXuYCgQCv0WcIfwc6S+3QppqHGzOuuV7tZlSSEYOxZ2D7FTNgwPDG74CXo2rhmUHlrG5cDOyZOFjxzA++GO37/GAlihKyTJU5tVV3AuMEoKUH6AoCn9m/4Oy0jVUVm0HoEPmM1gs8RpH1nr5NbuYez/e5Gt3TgjhyzvP1S4ggUDgN5Tm7fTd18ky4TV2KstHYpOGYsMFQJBZg3NrzkqKV38FcVeTYjvIKIuDNhnn0SPY2vSxCI7LzvxKJr67mhn9lhBY65wgmQkP769pXAKBoHUirgT9HW+q1BkZnWtMc1qLbnd7l+8Z9bjsqihVHNmTsuAx4F1hFpTQ8JkJc7fN5e0/3gbAZemOHTUrq3uwleERIQRq6QfRWMy/DHb/VNe2hGoXi8BHZeUWcnPf97VDQnoIQUojdh2u5Lut+WzKLQMgNTKA8zKiubxXkraBCQQCv0F2qcJTrKsbPXYsRK8oVKMulRuaGU33pDDOaaNB1sumBdgqayAOulXu4pnEBEgWlUH9jV+ziyircWA1qGPeF9Y/w8e3TyA8KFDjyAQCQWtEiFICzfCHFYlOt0xBpZ3D5aqnU1SQiXWHtgIgG4LQA2Hm7bQNPEBw1PAG7/9QlVp5Li00DX3YYFYrcH5kCP/u1rbB+/Ib9q1Wb3VGiO0E0R21jUeAx2OnolL9vzcYgunS+XVCQrppHFXr5cFP/uCPA+W+9riu8Tw0poOGEQkEAr/DU+sxp8MY6SQwwEVWeBtQ4N6R7emRHKZNXC4bdp1qd2BpNwy6ddcmDsEJMdo+4tauG9FJ6mB80T2XYTGJohkCgUAbhCjl5/w110hpVrlS/o1HVhgzZzl7Cqt922JCDGw8sJZ0ApEkEygeLmo/n+B+tzZKDE7voPLK9ldSHHA+q/ceIrIl+y543L6KPDywCwK08bsQ1LFnz6vszXnd146JHktk5HkaRtR6KaiwU1rj8v0mTeiRQGyIhcmDUrUNTCAQ+A+2Msj6GkVRM7yrAhQqxxgI2eDCrTOBBwxamoq7HTh0QQBYgiJbXPXo5s6B0hoWrvudjvr3SPAmQ5vNcUKQEggEmtKCr35bBi3hXO6vQlqFre7iz2zQMahdFEFWGb27dg8TBtlB8B2rGy2G2qp7ZoOZQm8qfqSpBX8tnZV1901B2sUh8FFY9KPvvl4fQELCVRpG03r5z2/7eGLh1nrbZl7chWCL8ThHCASCVsmyF+G3N1EYDICCzCfKBK7d+TVKB9WH0mTQ0I/Sbceu92ZKiYp7fsfLS3exec8WOvaFCmcQBF7LyG4XaB3WcfF4PLi842OBQOB/GI1G9A1gN9OCr35bJqe35M0/xSB/weH1kTLqJXbOHEtJ3kHWL/yM6DLV10mSTBgUR+PG4HGgoGefK5QtDjWDKMHcAi9CZRkObYRir4m73gwGk7YxtXJstlwqKrdgt+cB0KvX/wgJ7o5OJ04LTUlJtZN1OSV8sfGgb1t8qFpdTwhSAoHgKKrygboRniIp6BQdkqIA6oWBtplSdhze87tF1wKLtTRzDlfYCTDUAGA0xTO0733aGOKfBEVRyM/Pp6ysTOtQBALBSQgLCyMuLu6s/KT971dIUA8xx9R4ONyqg7nJW+Hux/ffYv+WTQTivRDUWTFKzuMd3iDY3XZqQicwqyAGULO2ki0tUKxZOg1Wv1HXFubmmiLLDtauuwSXq9S3zWpNEYKUBtz64TrW7av7HObd2IehmQ1fVEEgELQQZDWduy4LXUanGNHJMoqiilJGjSr3TvvzAO+lzESW1P7NQpTyKwoLl3JJ4nQMSVUAJIbH+qUgBfgEqZiYGAICAppV8SSBoLWgKAo1NTUUFBQAEB9/5gWS/POXSOBD+kv1veaKdETWlr8s56vNlDIb1UGcrUI1Fo6uqEbSR1Ae1oYAy6FGjcHpceK09vS1L4sNZ3B4cKP2qQn5m+vuJ/WFHpO0i0VAVdVOXK5SdDoLYaG9CQvrg9kUpXVYrYo/D1dSXO1ka576u9MtKZS2UYEMSI/UODKBQODXeNz1xoSyJKNTJHUSU1FFIINemwv4xYXlPkHKiELv0ABN4hDUxyMrPPLZZtqb3qFt8GHf9qBg/yw04/F4fIJUZKQ4JwoE/ozVagWgoKCAmJiYM17KJ0SpZkKznB/w86CdtaKU13vB41ZnH9sWlLGuV2eMkp6gEPdxjz9TDlUdYuoPU8mrysPusSMn3ALAt73a0yOkhQ7gHF4vqUn/g/ajtY2lFWN35JO7/30Ki34AIDy8Hz26v69xVK2PVdlFTPq/Nb62JMEnUwdgNpz9mnyBQNDCkd3IRwywFGT0HglZJ1E7rDc0dYZS2X74aBL2ds+BIZiFm+6iy8UvEBQR0rRxCI7JjkMVfLL+AA/2VsdiX2SP56EJN5Ic01XjyI5NrYdUQEALHRMLBC2M2u+qy+USolRL5ejqe4KGwrd8zytKyV5R6kDScIw61fTRam54c8U1+WvYU76nboNO/SKHtOQL0lpRytwCs8CaEbt2PU1h4Xe+dkSEqLLXlMiyQo3Lw+85JQCEWAzEhFgY3TlWCFICgeCUsDt1rHL38bUVZNrsc1ISW3d+NTZ1ptTun+DwFuwZ6mVFvLucoKj0po1BcFxKa1QrilCz6pN624ixtIntrmVIp4RYsicQNA8a4rsqRCk/p/YzVk5j/Z7kbylKxwxd+xgdrvqZUm63KkAVRvemdo4xIaqswfu1u9WKe+clnseMQc/Q9bdcAIK1rJbTGCgKrHpNNTevUM20hSilLZWV2wGIjBxCZORQEhPEMsqmwub0MO61FewtqvZtu25ACg+O7qBhVAKBoLnx5dZxFFZFA28CoOBha7yLNwc5YK+6j6GpPaVcNhTArrMAYLn5BwgW3nj+QH7xHkrz/8Ol7fIIt6gTIm2iojWOSiAQCOojRKlmgk+c0jaMFoXPU8qboVCbKYWkw8N2Rod+T7vUhk9ttrnVKnt6cxI/ldWJcy0uU+rQH7D0ySM2SBAoBqlNjctVzuYtt+NwHMZuPwBAZvunsVqTNI6s9VBpd7E2p6SeIBVsMTC8g/g+CASC06PcHgyK7GuHl+7lxx5hDGg7ksW1olRTV99z2XBKRhTvYNUSFNG0/QuOyZs/Z1Oe9yj94jdwQdu67SaTEKUEAoF/0cJSM1oetVlPLVGM0srwfH9xDQ99+gc3zlsLQIhV1WY97tqlenok3TYyrcuQ0s5t8P7tbjuyZGGhexT3ZO0HIMlipKq0lFWrVvHrr79SWlp6kmdpBlQXqrfBCTD8Cbj6vxAcq21MrZCSkhWUla3BZssBFEymaMxm8Tk0Fev3lXDOM0u5ad46APqkhpP97Fg2Tx9FrxRx4SYQCE4PRdEBcm0Do6uabdXnsCdrrG+fJq++57bj0NVVDrZoVP1PUJ9Vu4uIsKjjyT8Ku2I3XUHHDs9jtSZrHFnLZfLkyUiShCRJmEwm2rVrx9NPP43bfXYetb/88guSJFFWVtYwgZ4Ce/fuZdKkSSQkJGCxWEhKSmLChAlkZWXV22/x4sUMGTKE4OBgAgIC6NOnD/Pmzau3T05ODpIksWnTplPu/6mnnqJDhw4EBgYSHh7OyJEjWbOmzo8zJyeHKVOmkJaWhtVqJT09nenTp+N0nrhy+qFDh5g0aRLt27dHp9Nx7733nlI8y5cvZ/z48SQkJCBJEgsXLjzmfjt27OCiiy4iNDSUwMBA+vTpw/79+32P33bbbaSnp2O1WomOjj7me7p27VpGjBhBWFgY4eHhjB49mj/++OOY/WVnZxMcHExYWFiDvQYtEGcNf8c72SV59ZvmW4XPfwL/YHUO/1t3wNcemB5FVkkWNnttFoMeo1kHV3wA7cc0eP82jw3ZEIULA0ZJopfZzH1ZDv735r/5/vvvWbp0KQd+3tng/TY5drWqGJHpMPhByGz491JwYlyuUmpq1Knz8PCB9DrnY/r3+wadzqhxZK2HVdnFuDwKkgQWo46LeyZi0OuEV4ZAIDhtdq9fQ3XpRzgqPgRAp0CBIQxPdSbbD6rWALEhZvRNmClV5fbwtCedh9rfD6jDVpP4fdMcj8dBqG4jkVZVlLpx1GNccO7zJCRcoXFkLZ8xY8Zw6NAh/vzzT+6//36eeuopXnrpJa3D8nEy0QZUw+rzzz+f8vJyPv/8c3bu3MnHH39M165d6wljr7/+OhMmTGDQoEGsWbOGzZs3M3HiRKZOncoDDzxwVnG2b9+eN954gy1btrBy5UpSU1MZNWoUhYXqpHdWVhayLPPOO++wbds2XnnlFd5++20ee+yxEz6vw+EgOjqaJ554gu7dT91brbq6mu7du/Pmm28ed5/du3dz7rnn0qFDB3755Rc2b97MtGnTsFgsvn169erF3Llz2bFjB9999x2KojBq1Cg8HtXruKqqijFjxtCmTRvWrFnDypUrCQ4OZvTo0b4iALW4XC6uvvpqzjvv1DxiT+U1aIVYvteC0SoTqRa/87byUmVXZytGdYplQo9ERnSM4Y1Nr4CsABKSpCciOAQ6X9yg/R6sOsiCHQtYlbcKWRcKQNsAM+/sdVK6q4CvTFUgQZQcTACmkzybH1OaA1s+gVw1Ew1LqKbhtFby8v7HjqxHfe3AwHaEhfXWMKLWxdNfbefzjQeodqi/N3cPz+C+89trHJVAIGjOZP26HEWu8rWD7Q7KJbVYyqguYVzULY0eyWFNGtM3ReX8U58JMZkARJsMQnTXmHKbi6ysJ7ks9VPfNpNJZOY2FWazmbi4OABuv/12vvjiCxYtWsTUqVO55557+Oqrr3A4HAwZMoTXXnuNjIwMAPbt28edd97JypUrcTqdpKam8tJLL9GpUyeGDRsGQHh4OAA33HAD8+bNo7KykqlTp7Jw4UJCQkJ46KGH+PLLL+nRowevvvoqAKmpqUyZMoU///yThQsXcumllzJv3jxWrlzJo48+yrp164iKiuKSSy7hueeeIzAwkG3btrF7925+/PFHUlJSAEhJSWHQoEG+15mbm8v999/Pvffeyz/+8Q/f9vvvvx+TycTdd9/NFVdcQb9+/c7ofZw0qb7v6csvv8x7773H5s2bGTFiBGPGjGHMmLoJ77Zt27Jz507eeustZs2addznTU1NZc6cOQC8//6pV6AeO3YsY8eOPeE+jz/+OOPGjePFF1/0bUtPr1/04dZbb60Xy8yZM+nevTs5OTmkp6eTlZVFSUkJTz/9NMnJalbj9OnT6datG/v27aNdu3a+45944gk6dOjAiBEjWLVqVYO8Bq0QmVJ+ztHV9/wn46i5Ult1r29aBBd0i8di1GNz1qBTat9tPd1i2jR4v+9veZ8Pt39Idlk2sl4Vaix2G/+343M+M/+GU1IvXq+/cTKpIzs3eP9NxnePw08z4U9vlbfgOG3jaaUUFHzjvafDYAglOmqkpvG0Fjyygt3l4d+/5VBW48LlUdDrJPq3jdQ6NIFA0MyptRnQW/pilqron30Ql04dyndODObCbgkkhQc0XUB7llG+7FUAOlVl87j0Jx92bXviYwSNSmGlg/7/+JENezYCcLgmiqDwSwgIaN7VEBVFocbp1uTvdIpNHQur1YrT6WTy5MmsW7eORYsWsXr1ahRFYdy4cb7slzvuuAOHw8Hy5cvZsmULL7zwAkFBQSQnJ/PZZ58BsHPnTg4dOuQTVf7+97/z66+/smjRIpYuXcqKFSvYsGHDUTHMmjWL7t27s3HjRqZNm8bu3bsZM2YMl112GZs3b+bjjz9m5cqV3HnnnQBER0ej0+n49NNPfRk8f+XTTz/F5XIdMyPqtttuIygoiI8++uis3rtanE4n7777LqGhoSfMbiovLyciQhsBVpZlvv76a9q3b8/o0aOJiYmhX79+J1wiV11dzdy5c0lLS/MJUJmZmURGRvLee+/hdDqx2Wy89957dOzYkdTUVN+xP/30E5988olfZj2dCSJTys/5a/W95ihJHStmLefQ6gzO6zTZjM/Wc7C2IemwxoQ3eL9ljjIAhiYPxRM6gc8rwGSvAcCg6DDrdKQFmHF+9ykOjxs8MorHg+JwINfUoMgeNZvL4yH82muxdu3S4DE2CJWH1NvMcRDTCXrfpG08rYyqql1UVWVRXLIcgD69PyMkpJvGUbUONuwv5fr3fqfKmx1l1Et8f98QwgOMhAU04+xHgUDgF3i8vjSSLhSj4kavgFtSi6SYtSiWsuED7FUmiIEuVX9yV9sOENKEopjgKHYdrsTm8hBoVMeXG8tv4cqxNzX77DWby0OnJ7/TpO/tT48mwHT6l8yKovDjjz/y3XffMXbsWBYuXMivv/7KwIEDAZg/fz7JycksXLiQK664gv3793PZZZfRtataZKlt2zqBt1ZoiYmJ8XkHVVZW8sEHH7BgwQJGjBgBwNy5c0lISDgqluHDh3P//ff72jfffDPXXHONz08pIyOD1157jSFDhvDWW2+RmJjIa6+9xkMPPcSMGTPo3bs3w4YN45prrvHFtWvXLkJDQ4mPjz+qP5PJRNu2bdm1a9dpv29HsnjxYiZOnEhNTQ3x8fEsXbqUqKioY+6bnZ3N66+/fsIsqcakoKCAqqoqnn/+eWbOnMkLL7zAt99+y6WXXsrPP//MkCFDfPv+85//5KGHHqK6uprMzEyWLl2KyaSOE4ODg/nll1+4+OKLeeaZZwD18/nuu+8wGNT/w+LiYiZPnsx//vMfQkJCmv7FNgIiU6rZ0LxPJir+8RqcXlHKZNDhstv5+pXnqdlVmw5vAkxY4xu+KpbD4wBgWPIwYkI7AmAtVvvt5U5nws9b6Pze+xS++ipFr79B0T//SfE771Aybx5l//sf5Z9+Rvnnn1P+5Ze48vIaPL4Gw1Gp3vb/G4yYBqGJ2sbTinC5yli77lK2bb8PAL0+kKCgDhpH1XpYtrPQJ0gBjOwYS1pUoBCkBALB2VN5GI9NPb9K6Om5Sx1TuL2ZUma9BvPMzhrsXoNzS+YY6HRx08cg8KEoClXF85nU4ROiA1QvqWnj+2EQxvNNyuLFiwkKCsJisTB27FiuuuoqJk+ejMFgqLeULTIykszMTHbs2AHA3XffzcyZMxk0aBDTp09n8+bNJ+xnz549uFwu+vbt69sWGhpKZmbmUfv27l3fvuGPP/5g3rx5BAUF+f5Gjx6NLMvs3at6kd5xxx3k5+czf/58BgwYwCeffELnzp1ZunTpKb8XtULLiZg/f369OFasWOF7bNiwYWzatIlVq1YxZswYrrzySgoKCo56joMHDzJmzBiuuOIKbrnlFt/2I5936tSppxTzihUr6h03f/78UzpOltXrywkTJnDffffRo0cPHnnkES688ELefvvtevtec801bNy4kWXLltG+fXuuvPJK7HbVF9BmszFlyhQGDRrEb7/9xq+//kqXLl244IILsNnUCu633HILkyZNYvDgwQ36GrREZEr5OX/1ZWqOmVL+Rl2mlJ7s9WvI+m0lBFoB0BlikSQJc0TDZ0rZ3XaqwiZy14E0PKgmfSEVqrm6AR3V7RNwd4tC0ekwGYzEhYSB3oBkMKALDkLS6UGnQ9LrMHvXn/sltaKUOVjbOFohpWVrkGUbBkMIwcFdSEychE4nBJHGxOb08J/f9nGgtIY1e0sA+NvQdG4bkk6IRZxiBQJBA7Dqdfj+CTz7ugGhIOmxuNQlNbnBagaF1ahBAQu3DbvODIAlOKYuvV/Q5OSV2fhh83IS3a8xwudAIbWYartWo57tT4/WrO/TYdiwYbz11luYTCYSEhIwGAwsWrTopMfdfPPNjB49mq+//prvv/+e5557jtmzZ3PXXXedaeg+AgMD67Wrqqq47bbbuPvuu4/at02bOguT4OBgxo8fz/jx45k5cyajR49m5syZnH/++WRkZFBeXk5eXt5R2VlOp5Pdu3czevTJP7OLLrqonliXmFg3mR0YGEi7du1o164d/fv3JyMjg/fee49HH63zTM3Ly2PYsGEMHDiQd999t95zH1nt71Qzinr37l3vuNjYU/sORUVFYTAY6NSpU73tHTt2ZOXKlfW2hYaGEhoaSkZGBv379yc8PJwvvviCq6++mgULFpCTk8Pq1avReScdFixYQHh4OF9++SUTJ07kp59+YtGiRb6sMEVRkGUZg8HAu+++y9VXX31Gr0FLxIjZzzmj87sfDgqOjEhrYa3WU8ps0FFyQC3RaZHDUaw9waLOLhgbIRXS7rHjCBiI7H03wh0ynQoKqQB2lq5hc3k2eAvWhca25eYnn2zwGBoNjwu+eRgKd0KVdwZDiFJNRnX1bnJz53IwT127Hxs7ng6ZT2scVevgo9/38+ySHfW2ZcQGEWoVFQ4FAkEDcWAtdkmigtqLYx0fjgpm0O42rE1MBxnMBg2G9G4HdqNXlGrCin+Co3lm8XYO5P/BvedAqT2UEmU0F/cditnc8Jn/WiBJ0hktodOCWiHlSDp27Ijb7WbNmjW+5XvFxcXs3LmznoiRnJzM1KlTmTp1Ko8++ij/+te/uOuuu3wZR0f6O7Vt2xaj0cjatWt9QlJ5eTm7du06bgZNLeeccw7bt28/Ks4TIUkSHTp08BlqX3755Tz88MPMnj2b2bNn19v37bffpqamhuuvv/6kzxscHExw8KldM8iyjMPh8LUPHjzIsGHDfBXtakWcWk7n9dVitVrP6DiTyUSfPn3YubN+BfVdu3b5zOKPhaIoKIrie101NTXodPWrNNe2a7OxVq9eXe9/4csvv+SFF15g1apVJCYmnvFr0JLm8e0WUCvlnKXXXtPih+IYHJEpZdRhr1aXz7kC2mO09gAgWH8YS9iplwg95X49DmSLOlPxbVobwt7ZxjeGair04KopRNJHo66o1WEJambm4Pt/g3Xv1bWNARDk/6p8S2FH1mOUl6/ztWOitZlNbE0cKK3huSVZbMotAyDIbODGQalEBJoY1/VofwWBQCA4Y2QPt8VFk3jATCSApOdAtBH3fgMytZ5STTukd8gyO3RR5HlFD7NOLBHTkrwyGwEG1UdKMaRw/jlPEBMVeJKjBE1FRkYGEyZM4JZbbuGdd94hODiYRx55hMTERCZMmADAvffey9ixY2nfvj2lpaX8/PPPdOyo2n2kpKQgSRKLFy9m3LhxWK1WgoODueGGG3jwwQeJiIggJiaG6dOnHyVoHIuHH36Y/v37c+edd3LzzTcTGBjI9u3bWbp0KW+88QabNm1i+vTpXHfddXTq1AmTycSyZct4//33efjhhwE1o+rFF1/kgQcewGKxcN1112E0Gvnyyy957LHHmDlzJl261Pe//atgA9C5c2eMf8n0rK6u5tlnn+Wiiy4iPj6eoqIi3nzzTQ4ePMgVV1wBqILU0KFDSUlJYdasWRQWFvqOr61+eDxqs4iqqqooLCxk06ZNmEymo7KcjqSqqors7Gxfe+/evWzatImIiAifKPjggw9y1VVXMXjwYIYNG8a3337LV199xS+//AKoSy4//vhjRo0aRXR0NAcOHOD555/HarUybtw4AM4//3wefPBB7rjjDu666y5kWeb555/HYDD4qjDW/l/Usm7dOnQ63VHv95m8Bq0QopSf46e6TrNkf3ENOw9XsvmAmo5kNuipcqoVLyQMSLKTromP0d/qQBc0scH6fW/Le2wr3kZOxSEIUmc6Ig7lo1PAjapyK6EXY3ZEEhJlYfh1HQmKsDRY/02CraTu/pUfqgbn5iDt4mllVFerRpIJCROJihxKRMSgkxwhOFs+WXeAr7cc8rVfvaoHIzsJIVYgEDQ8isdJjtFIsly7RU+sPQmdXIHsHco3tdH5VZt281tKXdUti/At0oyDeR8zOuETrDo1U71DfCJpQpDyO+bOncs999zDhRdeiNPpZPDgwSxZssQnyHg8Hu644w4OHDhASEgIY8aM4ZVXXgHUJW0zZszgkUce4cYbb+T6669n3rx5vPzyy0ydOpULL7yQkJAQHnroIXJzc7FYTnwd0a1bN5YtW8bjjz/Oeeedh6IopKenc9VVVwGQlJREamoqM2bMICcnB0mSfO377rvP9zz33Xcfbdu2Zfbs2cyZM4fqatWW5KOPPmLixKOvpY61LTc3l6SkpHrb9Ho9WVlZfPDBBxQVFREZGUmfPn1YsWIFnTurFcqXLl1KdnY22dnZRx1/soqJPXv29N1fv349CxYsICUlhZycnOMes27dOp8oBGrlQ4AbbriBefPmAXDJJZfw9ttv89xzz3H33XeTmZnJZ599xrnnnguAxWJhxYoVvPrqq5SWlhIbG8vgwYNZtWoVMTGqwN+hQwe++uorZsyYwYABA9DpdPTs2ZNvv/32mKbyp8OpvAatEKKUn+PzlFLq3TQvjlN+rymzvmxOD2PnLKfaWZfqmBETxNxD69UvgWRAkm20jzZg7HtXg6mBeVV5vLrhVQA8+jAAdIrCwv+8S2REByp1qqmdpKj9ZfaLIzGz4f2sGh17hXqbMQo6TdA2llaCLDvYvuMRqqv/xO1W3/+Mdo9gMIhlk43J/9bmsmxXIVsOquL2Rd0TuKxXEue1O3Y1GIFAIDgbnE4nB/fsxp0IelkdK0joiHEmIFOOzmQFOxibUhTa/D+yylJBMhHrKCI6OJJRkS2jAlRzY09hBXuzniQzrK7IhsWadIIjBI3JiS7sw8PD+fDDD4/7+Ouvv37C5542bRrTpk2rty04OLieiXV1dTUzZszg1ltv9W07ntDSp08fvv/++2M+FhUVxZw5c04YTy0TJkzwZXuVlJQwYsQI3nrrLS666CICAtRqnKmpqScVio7EYrHw+eefn3CfyZMnM3ny5FN+ziM5nVhqGTp06Ckdd9NNN3HTTceuPJ6QkMCSJUtO+hznn38+559//inHdqrvxam+Bi0QopSfI9XXpARnSHG1g2qnB0mC7klhDGkfTUyIhYKKfBIwAnp0io3o238DqeEGdpVO1fQ7wBjO6M6P8G4JhLgdlESHUUK+b78eQ9MZPL47emMzm2ksPwjbv4Q9v6htsxiUNhUFBd9x+HCdcabFkoxeL7LTGhOH28NjX2zBLdf9Il/UPYEh7aM1jEogELRkSktLcTpdhJdYMbm9YwRFolIn8dX5fQguS6LKbsegb6LU+rL98Pkt2M/9HvSweOPfSL71GwhsZhneLYAvNx3ksU9/5bXhqiD14fYreWhMD9JSx2kcmaCp2LhxI1lZWfTt25fy8nKeflr1E60ViZqaiIgIfvjhB958801Wr17NiBEjNIlD0PwQolQzoXaooQh56oyo9ZEKNhtYeIe6tKnGVYPH5QKMIBkIVuzoGlCQAtXcXJHMHIydybslqmAT4bD5Hu9hT2GPLZDoqJjmJ0gBfP132PVtXTtQXJw3Noqi4HQWUFy8DICgoA60S3+E4OBOJ/UQEJwZhZUO3l2+m8JKB25ZwWzQ8fgFHYkMNDO8Q8swkRUIBP6JLMus2JfEMEfd8jwdEp8Y4/HsSwPUjGvLaVYIO2NqSpCRsOu9Bucjp0NketP0LajH5gMlhJjVyU+Hx0xg+OV0Sj9HjAVaGbNmzWLnzp2YTCZ69erFihUriIrSLns7MjKSJ5tTsSaBXyBEqWaCn2banQbavgC7t3TykYO2yt27SD0MHh1IkgEjjuMdfub9uu24TSm4daogFazX0acwT41FMdLemchBhwFDcxSkAMpy1dvQNtDhAhjwN23jaQXs3v0i+/bXlbxNSJhIZOR5GkbU8vn3b/v414q9vna7mCCuH5CqXUACgaDVIMsylU4z4EbShSHpozF5zMhudal/p/gQOieE0C0xtGkCcjuw60y+prVnw3lwCk6d4pKV9LXeysBB6tg1NCCSf17TS+OoBE1Nz549Wb9+vdZhCARnjRCl/Jy/znY0J23KF7sfTNjYXWqm1JGiVPWnXxBikygNBNBjNja8KOXwOPAYVPPjweFBvG8PIPvPMBaaQYeOWs/SZpklBeBQZ+i4Yi4k9dY2llbCwbz/+e4HBmYQF3uhhtG0bDbsL2VdTgm/7FTNY4dlRtMrJZzzOzWz6pgCgaBZUnY4nw3fLfZ5gMQ5MomsyMdq/C8kqxWoXrqiG50TmkiQAvA4sOvMvqZFVN1rcub88CfO0v9yTmTduDUycoiGEQkEAsHZIUQpQavA4cuUUgdPiqJQWVJKpcWq7iAZCIx1H+/wM8butiPrVJ+faJMR585KPF4pSq9IFDjsQBBGU9NWzWkwHKrZs/CSanxKSn6lrGwdbncZAEMGb8ZgENV1GguH28O1/7eGmiOKI1zVpw1jughBSiAQNA2/ffZftq/9DYN33FBjyKZ9936sm5AK36njGUMTi0I2l4PDpki1bwkMOj+YeWxF2F0eXvlhF5M7lQKwaPdorh3xCB3aalvOXSAQCM4GIUr5OUed6k8pVcq/BgjHXnrYtDHWekrVlkz+/p3X2HpwD3i1IEkXhsWaf7zDT5tvc75lyZ4lHKw6iKLrBkCoQY/ikfFI3sGl280OjypY6U3NaKaxugjeH62anLu9/lhmUfGtMamq2sXGTTdQ+wNgsSQLQaqRcHlk1u4tYX9JDTVODya9jot7JhAXahX+UQKBoElxVFUSX1RBYYA6RigJklFSelAT+BuKdxzVlEX31pVXc/nBKOx95gEiS0oLCsvzGJSwhjYhBwG4uv859E5L1jgqgUAgODuEKOXniOp7DYP9L5lS+7f+4X1EQjImkGrNpmNaTYP199LvL1FgU5f8yOEDAFWUku0uPL5PU/1wLYFGIhOaUdW0/b9BcXZdO6KtMDhvZEpKVlL7K5CYcDWJSddqG1ALZt6vOTy7ZIev3SYygBcv765hRAKBoLUStCeXdn/u5dvuqpF4jcmD3mDA5XGBos6q6ZtQGFpXXo39iEnFsdFNuGxQwP7iGrZtf4ybuqzybWsbmySMzQUCQbNHiFLNBW+6kRCnzoxymwuAILMBRVGoLlPTnk0hN1Fl+ZbxEf+AhCcarL9KVyXVoZcjhY3DrhgBiDIZcO7N8S3fk2QY5fmcti+8ht7QjGYbHRXqbcq5cMlbEBQHevFT0hgUFy+jsOgH8vI+BSA15XbS0x/QOKqWiSwrOD0ymw+qS1KTwq3Ehli4YWCqtoEJBIJWi6XKiXzE8risNjLjQgNwyS5QapfvNZEgoSg4PKrNwcRDS5gtb0A/7NOm6VtAdkElI19eztMD95IYBAeq0+mb0Ud4SQkEghaBuJL0c/461GiuopRUL/KmexW5JTV8sCqHdftUESou1IrTVoPHpYpUki4Aj967BC25X4P0qSgKDo8DW9AwFK8gZdVJBPyyhMVyAdUGVZTSSRKJt09pXoIUgN0rSgVFQ5jwMGhMtm1/AJerxNcODRWVdRqDA6U1XPzmrxRVOX3bHhydyYQeiRpGJRAIWjs6N8hHZMFUWWW+KVnOKvMKoIu6T1OIUs5qePs87CFDIOUGrLIdvcF88uMEDcauw1UABBjUMWtA1IN07HC+liEJBAJBgyFEKT/nrFJyj23m1Kr414o9fLh6n6+dFhWAw+YVoZCQJCOKWYErP4TU8xqkT7fsRlZkFEkdsH3cPR3ztg38svwn7Alpvv2M+mACzunZIH02Cbt/hvXzoHCn2hbm5o2Ky1XhE6TSUu8mICCVyMih2gbVwlAUhaz8ShZvzqsnSEUFmeiXFqlhZAKBQAAx8g4qjxgHeiQPeyqyyQvJa9pMqcKdULIbe5gqglhkZ4ONmQQnR1Fkqqv3EhdwmCCTHYALurfTOCqBQCBoOJpZioZAaba5UtpQUq1eaA7NjOaJCzoyqV8Km754DwDJ63Jui7FApwl1Bl5nid1jVw1IvSWTOwdZsdRUoUjq1y1GDqVNSQIJxmaW9fLjDNi+EAq9fjthwlizMXA6i9mw8TqWr1AFS5MpirZt7yEuboLwjWhg3lu5l7FzVvDmz7sBuKZfG3Y8PYbfHxtJXKhF4+gEAkFrxVPppOTjnQTLBUdkSulRJJAlmdu6TaW2Uou+KUQptyqE2K2qf6RlwO3Qf2rj9yug0u7i1/V/J6LmOp4991mMOvWzMBhEgRl/ZPLkyUiShCRJmEwm2rVrx9NPP43bfXYVvn/55RckSaKsrKxhAj0F9u7dy6RJk0hISMBisZCUlMSECRPIysqqt9/ixYsZMmQIwcHBBAQE0KdPH+bNm1dvn5ycHCRJYtOmTafc/1NPPUWHDh0IDAwkPDyckSNHsmbNmnrPOWXKFNLS0rBaraSnpzN9+nScTucJnhUOHTrEpEmTaN++PTqdjnvvvfeU4nnrrbfo1q0bISEhhISEMGDAAL755hvf4yUlJdx1111kZmZitVpp06YNd999N+Xl5b595s2b5/v/+OtfQUGBbz+Hw8Hjjz9OSkoKZrOZ1NRU3n///XrxvPrqq76+kpOTue+++7Db7Sd8DZ9//jmjRo0iMjLytD+PxkZkSvk5Ry3fUxQm/es32kQE8Pxl3TSJqSFoqkvrWoPzMZ3jmNi3DZ7KSoz//AgykgB1ad2oLg072+fwOEAy+dpWvYTb5fSJXkGKGYucgWQyNmi/jU51sXo76F6I7gCdLtI0nJZKfv6XlJbWmZjGxV2sXTAtFLvLQ16ZjRV/FgEQFWQmKdzKpH5tsJr0GkcnEAhaO7ZtRRStzeZ3KYXqtrXjCT2KpCBLMmNSxzILdYJI3xSTFV5RymGwAmAxCtG+KXB5ZM5/eTl3dl1DfCDY3GYMehMJMYMwGkU2r78yZswY5s6di8PhYMmSJdxxxx0YjUYeffRRrUMDwOl0YjKZTriPy+Xi/PPPJzMzk88//5z4+HgOHDjAN998U08Ye/3117n33nt5+OGHeeuttzCZTHz55ZdMnTqVrVu3MmvWrDOOs3379rzxxhu0bdsWm83GK6+8wqhRo8jOziY6OpqsrCxkWeadd96hXbt2bN26lVtuuYXq6uoT9utwOIiOjuaJJ57glVdeOeV4kpKSeP7558nIyEBRFD744AMmTJjAxo0b6dy5M3l5eeTl5TFr1iw6derEvn37mDp1Knl5eXz6qeq/d9VVVzFmzJh6zzt58mTsdjsxMXUVnq+88koOHz7Me++9R7t27Th06BCyLPseX7BgAY888gjvv/8+AwcOZNeuXT5B9OWXXz7ua6iurubcc8/lyiuv5JZbbjnl194UiEwpP8c31vAmSNmK7KzaXcx/1+ZqFlNzosapilK1F5qe8oq6XDOdqsn2iO/QIH3Z3Xb+s/0/vP3H276lewBWnQ5DkUS0NUXtFh2yAnpjM/v62b1Kf8/roMfVYArUNp4Whiy7KK/4g8MFiwGIjjqf/v2W0i79YY0ja1nYXR6Gz/qF4bOXsWxXIQD/uKQLC+8YROcEUUlK0HScbNYVYPXq1QwfPpzAwEBCQkIYPHgwNt8SdHVm9pprriEkJISwsDCmTJlCVVVVvefYvHkz5513HhaLheTkZF588cWjYvnkk0/o0KEDFouFrl27smTJksZ50YJTQnHKbLX9wWFdEFUW9eJR0odi8BixGSvRSXXiuV7f+KLUb9Uyz6bdwnprWwDMTWWu3soprnKSX2EnyFgNwILsx4lK/4luXd8UmdN+jNlsJi4ujpSUFG6//XZGjhzJokWLKC0t5frrryc8PJyAgADGjh3Ln3/+6Ttu3759jB8/nvDwcAIDA+ncuTNLliwhJyeHYcOGARAeHo4kSUyePBmAyspKrrnmGgIDA4mPj+eVV15h6NCh9bJ/UlNTeeaZZ7j++usJCQnh1ltvBWDlypWcd955vkybu+++m+pq9X9t27Zt7N69m3/+85/079+flJQUBg0axMyZM+nfvz8Aubm53H///dx777384x//oFOnTrRr147777+fl156idmzZ9fLbDpdJk2axMiRI2nbti2dO3fm5ZdfpqKigs2bNwN14t+oUaNo27YtF110EQ888ACff/75CZ83NTWVOXPmcP311xMaeurjvvHjxzNu3DgyMjJo3749zz77LEFBQfz2228AdOnShc8++4zx48eTnp7O8OHDefbZZ/nqq698mXJWq5W4uDjfn16v56effmLKlCm+fr799luWLVvGkiVLGDlyJKmpqQwYMIBBgwb59lm1ahWDBg1i0qRJpKamMmrUKK6++mp+//33E76G6667jieffJKRI0ee8utuKprZVbFAcckn38lPkTRYeegTpYzqAE6uqabGEu59VB3omYIaRlz5Nudbnl/7Mm+XdaQ4UVXerTodSrWLyKwI4gLUwZxO0eFCISDkxLMUfsNPz8LcC8DhFaUs4sK9Mdi56ynWrbuUioo/AIiOPp/AwLZIkviZbkj2l9SQV25HkiAi0ET35DD6p4sZZ0HTUzvrun79etatW8fw4cOZMGEC27ZtA1RBasyYMYwaNYrff/+dtWvXcuedd6LT1f0mXHPNNWzbto2lS5eyePFili9f7rvgAKioqGDUqFGkpKSwfv16XnrpJZ566ineffdd3z6rVq3i6quvZsqUKWzcuJGLL76Yiy++mK1btzbdmyGohyIrHJZUT0GdIRlj0KUYgy4jqcTC7siN6KjLtG6KTKmppWG83uZadprjAQg3ioUWTcHBQwt5ot8sAo01AMydMpLeqREaR6URiqIa7mvxd5YevVarFafTyeTJk1m3bh2LFi1i9erVKIrCuHHjcHmLL91xxx04HA6WL1/Oli1beOGFFwgKCiI5OZnPPvsMgJ07d3Lo0CHmzJkDwN///nd+/fVXFi1axNKlS1mxYgUbNmw4KoZZs2bRvXt3Nm7cyLRp09i9ezdjxozhsssuY/PmzXz88cesXLmSO++8E4Do6Gh0Oh2ffvopHo/nmK/r008/xeVy8cADR1eFvu222wgKCuKjjz46q/euFqfTybvvvktoaCjdu3c/7n7l5eVERDT+d8Tj8fDf//6X6upqBgwYcMJ4QkJCMBiO/Zv54YcfEhAQwOWXX+7btmjRInr37s2LL75IYmIi7du354EHHqg3ITVw4EDWr1/vE6H27NnDkiVLGDduXAO9wqZHnFX8nvqDDdlzKj+M/j170pTalM0rSgWYDDhtNSz9+D9kp6SCXAiS+u9vCg5qkL6KbEW4TUm4zem+bX1CA5CrXUhIuFFV8hq7jS5d9XS+PKNB+m1Uakpg+RGz6tYIsIYff3/BGVNSvBwAizmBoOCOxMQ03xOLP/K/dbn8b20upTWq10BmbDDf3jtY46gErZnx48fXaz/77LO89dZb/Pbbb3Tu3Jn77ruPu+++m0ceecS3T2Zmpu/+jh07+Pbbb1m7di29e/cG1KUU48aNY9asWSQkJDB//nycTifvv/8+JpOJzp07s2nTJl5++WWfeDVnzhzGjBnDgw8+CMAzzzzD0qVLeeONN3j77bcb+20QHAuPgqJ4LwR1wRhdO+ix+X+sGn8QWQeKUidMNoWnVIms9ndN9QaSu4zjwhgxOdWYlNe4uPOjDYyN/SdpoQcBMBojMBpbqSAF4KqBfyRo0/djeWe0OkBRFH788Ue+++47xo4dy8KFC/n1118ZOHAgAPPnzyc5OZmFCxdyxRVXsH//fi677DK6du0KQNu2bX3PVSu0xMTEEBYWBqhZUh988AELFixgxIgRAMydO5eEhKPfp+HDh3P//ff72jfffDPXXHONL6MqIyOD1157jSFDhvDWW2+RmJjIa6+9xkMPPcSMGTPo3bs3w4YN45prrvHFtWvXLkJDQ4mPjz+qP5PJRNu2bdm1a9dpv29HsnjxYiZOnEhNTQ3x8fEsXbqUqKioY+6bnZ3N66+/flZLBk/Gli1bGDBgAHa7naCgIL744gs6dep0zH2Liop45pln6k0U/ZX33nuPSZMmYbVafdv27NnDypUrsVgsfPHFFxQVFfG3v/2N4uJi5s6dC6hZZEVFRZx77rkoioLb7Wbq1Kk89thjDfuCmxAxBe/n/HX5nuxpRplSfpBaXO30pkua9Oxet4ZdWzcgy+qSHb1Rol/QfAyBDWMWaXPbUHSqwJURYOb3/h35b/d0FLf64TkV9WJYLsul6zlWgiOagSeDvUy9NVjhinlwy4+gF1p2Q6EoCnl5n5C1czp2Rx4g0a/fN3Tv9i56vfWkxwtOndnf72TdvlJ2F6qp6Z0SRPVIgf/w11nXgoIC1qxZQ0xMDAMHDiQ2NpYhQ4awcuVK3zGrV68mLCzMJ0gBjBw5Ep1O51sysXr1agYPHlzPP2T06NHs3LmT0tJS3z5/TeUfPXo0q1evbsyXLDgBiqwA6nhPQkJy7iCsch9unTqe0FG3fK9Rq+/ZSpF/mIHTe7nwaPUq7k2NI1AvvPcak5XZRaz4swizrhKATeU306/vYnS6ZuZF2kpZvHgxQUFBWCwWxo4dy1VXXcXkyZMxGAz069fPt19kZCSZmZns2KH6w919993MnDmTQYMGMX36dN8yteOxZ88eXC4Xffv29W0LDQ2tN3lRy5HnCYA//viDefPmERQU5PsbPXo0siyzd+9eQM3cys/PZ/78+QwYMIBPPvmEzp07s3Tp0lN+L07mXQWqOHdkHCtWrPA9NmzYMDZt2sSqVasYM2YMV155ZT1D8FoOHjzImDFjuOKKK+p5JR35vFOnnlpxhhUrVtQ7bv78+b7HMjMz2bRpE2vWrOH222/nhhtuYPv27Uc9R0VFBRdccAGdOnXiqaeeOmY/q1evZseOHfWW7gHIsowkScyfP5++ffsybtw4Xn75ZT744ANfttQvv/zCP/7xD/75z3+yYcMGPv/8c77++mueeeaZk76n/oq4umw2qAORU8uUEtRSVqOmxIYHGCkoVH/EdIYkDIZ00jPn0NtZBcY3G6Qvm9uG7BWlYkxG2ljNVBQWsP3L70giFTfqrKdO9qALbCZ+TPYK9dYaBp0v0TSUlkhBwdfsyKrLgggJ6Y7B0DCZewKVeb/uZWteBQWVDgBev7onkYEmzkkRGX8C7TnerGutR8VTTz3FrFmz6NGjBx9++CEjRoxg69atZGRkkJ+fX88YFcBgMBAREUF+fj4A+fn5pKWl1dsnNjbW91h4eDj5+fm+bUfuU/scx8PhcOBwOHztioqKM3sTBEcjK1CbKYXkyzCXffpTE2VKbf4Ex6o34LwJAFgCwhqvL4GPqup9tAvbQ5BJvQCdMvIazObYkxzVwjEGqBlLWvV9GgwbNsxn+p2QkIDBYGDRokUnPe7mm29m9OjRfP3113z//fc899xzzJ49m7vuuutMI/cR+JfrjqqqKm677Tbuvvvuo/Zt06aN735wcDDjx49n/PjxzJw5k9GjRzNz5kzOP/98MjIyKC8vJy8v76jsLKfTye7duxk9evRJY7vooovqiXWJiYn14m7Xrh3t2rWjf//+ZGRk8N5779Uzjc/Ly2PYsGEMHDiw3tJ0oF51uZCQU5uM7N27d73jjjw/1lZUBOjVqxdr165lzpw5vPPOO759KisrGTNmDMHBwXzxxRcYjccWk//v//6PHj160KtX/Wrs8fHxJCYm1vO76tixI4qicODAATIyMpg2bRrXXXcdN998MwBdu3alurqaW2+9lccff/yE76m/IkQpP+eo6nvuZihKHXMtduNmUR0qt5GVX0mVQ82Uigg0sbtYrbQlGRIx6uMJjkuH9AuhgarI2Nw2ZL2adRXh9Vv47YuPObxmB0nxqXi8opS1TRssHTs2SJ+NhtsJe5dB3ka1bRZZJY1BecUmAPT6ABLiryQp6VptA2ph5JbU8NRXdTNY4QFGLuwWLwxiBX5D7axreXk5n376KTfccAPLli3zVdm57bbbuPHGGwHo2bMnP/74I++//z7PPfeclmED8NxzzzFjxgytw2iRKLICSm1mvA7Fa8rpqdWivMv3dBKN+3tmK8Whq8t0MA++/wQ7CxqCysptRNmu4dG65BeCrK142V4tktRsCuzUCilH0rFjR9xuN2vWrPEt3ysuLmbnzp31ln8lJyczdepUpk6dyqOPPsq//vUv7rrrLl/G0ZH+Tm3btsVoNLJ27VqfkFReXs6uXbsYPPjE9gTnnHMO27dvPyrOEyFJEh06dGDVKrVC9OWXX87DDz/M7NmzmT17dr193377bWpqarj++utP+rzBwcEEB5/aqhVZlutNhhw8eJBhw4bRq1cv5s6dW89zETit11eL1Wo95eP+Gk9FRQWjR4/GbDazaNEiLJZjX2NWVVXxv//975jn8kGDBvHJJ59QVVVFUJA6Ub1r1y50Oh1JSUkA1NTUHPVa9d4MVkVRTus99ReEKOXn/HWs4XEd22zu2DRDAasBqLS7GDF7mc/k3KCTCLEYWbVvBUGAJJnxSDaiJrwNkWcvDh2oPMDC7IVsPLwRWd8HgHizqorbKyuxBVhZa8imSFKNKgM6ZCLp/Hzl7K9z4OeZdW1hbt6gFBR8x7797/hMzdPTHyI56TqNo2o5eGSFTbmlbNxfBkB0sJkp56YxoG2kEKQEfsXxZl1rfaT+6lXRsWNH9u/fD0BcXNxRyxjcbjclJSXExcX59jl8+HC9fWrbJ9un9vHj8eijj/L3v//d166oqCA5OfnkL1pwcjwKinciC6kuU6rCk4Y9vytzfsgBwNDYYwlXjU+U0gGGkBP/TwjOjg9W5bA+60smpILDY0KWIsloM1JkULcAMjIymDBhArfccgvvvPMOwcHBPPLIIyQmJjJhgpqJeO+99zJ27Fjat29PaWkpP//8Mx29k9gpKSlIksTixYsZN24cVquV4OBgbrjhBh588EEiIiKIiYlh+vTp6HS6k451Hn74Yfr378+dd97JzTffTGBgINu3b/f5CW7atInp06dz3XXX0alTJ0wmE8uWLeP999/n4YfVqtBt2rThxRdf5IEHHsBisXDddddhNBr58ssveeyxx5g5cyZdunSp1+/OnTuPiqVz585HZRNVV1fz7LPPctFFFxEfH09RURFvvvkmBw8e5IorrgBUQWro0KGkpKQwa9YsCgsLfcef7PxVmwlVVVVFYWEhmzZtwmQyHdcfCtRz3tixY2nTpg2VlZUsWLCAX375he+++w6oKyxSU1PDf/7zHyoqKnwZxNHR0T7RCODjjz/G7XZz7bVHT0ZPmjSJZ555hhtvvJEZM2ZQVFTEgw8+yE033eTznho/fjwvv/wyPXv2pF+/fmRnZzNt2jTGjx9fr5+/UlJSwv79+8nLU7MOaz+P2mqAWiJEqWaCyy2jK7fjKLH7timK0swusOrHepbFLI7LoXI7NU4PBp1El8RQxnaJo2rdb8RvOUylJRAkIyadnQ4RHRqkv9c3vs7CQ/txWgdgC1bTVGtFKZvTSV5sMHns8+1vMTcDL6nibPU2LAVCk2HAHdrG08LI2fcmlZVqhS2dzkRE+PErdwhOn1nf7+StX3b72u1jg5g6JP0ERwgE/kHtrGtqaioJCQlHDeB37drF2LFjARgwYABlZWWsX7/el/7/008/IcuyL21/wIABPP7447hcLt+gf+nSpWRmZhIeHu7b58cff6xXQnzp0qUnrCgEatlzs9ncIK9bUIeiKFT9/Blhhw6SbwbQgTdz7kDNZbjkaD4vVS8oQqyN7DHktmP3ilIW/ckvdAVnx7xVOaRZywDYXNiJthmvktleCL0thblz53LPPfdw4YUX4nQ6GTx4MEuWLPH9Nns8Hu644w4OHDhASEgIY8aM4ZVX1GreiYmJzJgxg0ceeYQbb7yR66+/nnnz5vHyyy8zdepULrzwQkJCQnjooYfIzc09boZOLd26dWPZsmU8/vjjnHfeeSiKQnp6OldddRWgVodNTU1lxowZ5OTkIEmSr33ffff5nue+++6jbdu2zJ49mzlz5lBdrfp2fvTRR0ycOPGofo+1LTc315cBVIterycrK4sPPviAoqIiIiMj6dOnDytWrKBz586Aep7Kzs4mOzv7qOOVk1xk9uzZ03d//fr1LFiwgJSUFHJyco57TEFBAddffz2HDh0iNDSUbt268d1333H++ecDsGHDBp+f418zrfbu3Utqaqqv/d5773HppZf6TOuPJCgoiKVLl3LXXXfRu3dvIiMjufLKK5k5sy5Z4IknnkCSJJ544gkOHjxIdHQ048eP59lnnz3h6160aJEv+xrqPo/p06cf1/uqqRCilJ8jeYWcz3/dh8nhwXHEY4riF17ifkelXV2yFx9mYeEdgwDY/fA/MbskKi0gYSTB2nAp76X2Uioib0fR1y1x6xcaiOz0YLUHg6QaVbZzJJDnNNI+zc+X7gE4vN4g594HvW888b6C00KW3VRXq4JJp44vEh4xCItZzD43JFsPlgOQGGYlNsTMLee1PckRAkHTc6JZV0mSePDBB5k+fTrdu3enR48efPDBB2RlZfHpp58CatbUmDFjuOWWW3j77bdxuVzceeedTJw40efvMWnSJGbMmMGUKVN4+OGH2bp1K3PmzPFd6ADcc889DBkyhNmzZ3PBBRfw3//+l3Xr1h3lzSFoGpx7c6j8+n0sCTEQHQzocJn1GAf0xSWps+ST+rUhMtDE4PbRjRZHicvNHF1XDrRV/5csTVDlrzWjKAqVdjtBIWpW/dCObenXI+kkRwn8jXnz5h33sfDwcD788MPjPv7666+f8LmnTZvGtGnT6m0LDg6uZ8RdXV3NjBkz6lV8O57Q0qdPH77//vtjPhYVFcWcOXNOGE8tEyZM8GV7lZSUMGLECN566y0uuugiAgJUP67U1NSTCkVHYrFY+Pzzz0+4z+TJk5k8efIpP+eRnE4stbz33nsnfHzo0KGn/Ly1SyCPR4cOHU5oKG8wGJg+fTrTp08/pf5qOZv3rLERopSfU6ub1DjUNG7JqENxqTNm/r44r57oIzVdtNVeH6lAU92/t6eyAk/tgEoyEhzXcIOrGo8bxagKUn9LjqFzkIVzQgMpW7yHFGdHNph/J0Ax0dHRjvIasAY2g0ypWoNzi/CSaihstlw2bLwOuz0XAIMhlLi4S5AkP1/K2UworXby/DdZ5JXb2ORdtvf8ZV05L6PxLtoEgrPhZLOu9957L3a7nfvuu4+SkhK6d+/O0qVLSU+vy/qbP38+d955JyNGjECn03HZZZfx2muv+R4PDQ3l+++/54477qBXr15ERUXx5JNP1rtgGThwIAsWLOCJJ57gscceIyMjg4ULFx617ELQNJTtzwHA41uCIVE0rBueCTegzNoCwJRz00iPbtwlXZ8fLuUdUxfw/oRGHcesV3D2yLKbdeuv4IWBddXWIoMjRGaa4KRs3LiRrKws+vbtS3l5OU8//TSATyRqaiIiIvjhhx948803Wb16NSNGjNAkDkHzQ4hSfs5fz0chmWGUby0BQFYU9I1sGN4cqTU3D7ao/96bvvua30oKqQkIABSQjJgtrobrT1b70aMwLb3ORNlTasfjLemsKLDLIQEKRrOffu1kGeZfBvvXgEtNvxUG5w1H3qFPfIIUSLRpM0UIUg3Ioj/y+Hhdrq+tk6BtI1+0CQRnw8lmXQEeeeQRn7/UsYiIiGDBggUnfI5u3bqdtBz0FVdc4fPpEGhL0caf0QE6vdfoXNKxWF7Ml199BYp6wWnSN/K549fXKM23Q8QoelVsY2xUKCM6i4vLxmDV7iJe/XY5t3WsE6QkyUh4WH8NoxI0J2bNmsXOnTsxmUz06tWLFStWEBUVpVk8kZGRPPnkk5r1L2ie+OnVseB4SPo6Eep4GYKSnwlVTZ3RVStKBXnFn7VffUa14vZZWkm6cOKj9zZYf9VeUSrMUD87TPEoyN5X7/DImBw59Bo/mKgkP71QLs+F3T/VtS2hENdVu3haCB6PjaqqnRQWqmm4SUk30DbtLozGcI0jaxlUOdz8kVvG7zmqWB8VZObxCzqQFhVEYphV4+gEAoHg9LCU7cQJVNdWUgI8Bu9Iylt1z6Bv5HHez89iT74BIqB3+Vbu7DwSgsTvaWPw2fqD5JepBQvKHCG8vf1pvrlnBAZDgMaRCZoDPXv2ZP369VqHIRCcNUKU8nP+KjDpjpgdU/x+AZ82VHk9pQK9opTNW/nAGDgWm7WcMYHzSU7q02D91SiqCWi4oe6zOrwnm6qcfciSOtOpU6APq2gzwY/9mWp9pAIiYepKsEaAsRksNfRjFEVh0x9TKCtb49sWHt5PCFINyJVvr2b7oQpf+7bBbbmkp/DhEAgEzRSPOobx1E5yeW8e6/s4j+5QxzWNWnVP9oDbjk2vnv8Dul0O6ec0Xn+tGI/HThC/0itWXZYZERzNZ3eMwWAQSyUFAkHrQohS/s5fJ8NOIVOqtVN9xPI9t9OJy6FWLNQZ0igLf5vOhmUQe91Z9+P0uHlwVy65VrUSUoRR/Wyqy0qZ//jfGRY7EY/X4E9SwJzu59W/HKohO5YwCEnQNJSWgttd5hOkLJZEwsL6EhU5VNugWgh7CqvYW1TtE6SSwq2kRgYyrlu8xpEJBALBmZG/YAdBBRZKANkrPEl4s6O8VfAAjI2ZKeWyAWDTqZUVreFJoqpOI1Be42L7rtkMjnofvCutQgKiCLEIQUogELQ+hCjVzDiV5Xv+TmOHfeTyPVtVbQaFBJIZj8UJGRdBxqiz6mNTwSYmL3uB/KiHwRALQFtvaebqslIUWUYv6ZG9nlI6YwAxD997Vn02GlWFsPljOLxVbQtz87NGUTzk5n5ASemvAJhM0QwauFzjqFoOh8ptnP/Kcjyy+msSbDaw4qFhwhRWIBA0a+ybizArcCi2L06zByjzCUKKUpcdZWxMTym3Wue5NlPK2phZWa2UGqebwS/9zMSMjfSNg/zqGBIi00hN/ZvWoQkEAoEmCFHKzznqEus0lu/50/I+qQliWZtTwuzvd5JdoJp0B5oNfLJJNYCVJAuSJBEWlwJXvXPWff2e/zs1ijpg07sOkuFawdMZMwDwuFQTdYNk9Bmd6/UGJH8d2K2YBWvermsHaGeO2FI4fHgxf2Y/62sHB3fWMJqWx67DVXhkBatRT3pMIJf2TBKClEAgaPZIikKulMaOjsNxVn8DzjJkfa2flN63X2N6Ss09VMLT536LTa96SFka27+qFZJbYqPc5iLQoGal7ai8lEtH/x2rSX+SIwUCgaBlIkQpP+evF1o6Y52wIfuP5uQX/Oe3ffy2p8TXTouw4nrpK0oxg6QKSCNTejdIX3a3HVkfqj5nXAfmdR3n+6zcLicAOvTIeNT7/lxlrSJPvU3uD7GdoJcf+141E0q9S/YkyUha6h0kJF6tcUQtgxV/FvLmz9nkl6tLcvu1jWDejX01jkogEAgaBglweCe8dB4bMlAR4z1HH5kp1YiTXEtK7D5ByqyT6B4sDLcbEkWRKSpeSb+4dcQHqWPWe0adIwQpgUDQqhGilJ8THWT23VfMOgzBdWvNlea6fs9LQ2dy1Rqc3zAghQu6JdCNClbtKWVfahzo1EFVl+SGqSZnc9t8olSs2VRPPPQctJMUfx5fBW3HKakx6fw1SwrqDM573wTdr9I2lmbO4cNfc/DgAkrLfgOgU8cXiIuboHFULYe3ftldT3juGC+WmgoEgpaBLCvoJIlqjw2PJxs8xQDUhJQBoCh6wINOAp2ukbKX8rfgqCkFQpiV8zYTrnuTYIMQSxqKwxV2Zi2ax5iEl7i1W912ozFMs5gEAoHAHxCilJ/z91Ht6dkmjB0VNbxSXlbPbLI5S1KNMZyqcapZSeekhNM3LYKaTfuxG9V/cUkKBMAYEtEgfdk9dmSdKkrFmOqbUupX27EFB1GtK/RtCzCENUi/jUKtwbk5WNs4mjmKovBn9j9wOPIB0OkshIWJLJ6GYPmuQvaX1JBdUAXAI2M70D0pjN6pooqhQCBoGXhcHg57CthW/Qfwh2+7W1Jw16Swbb86cmo0P6mSPfD2udjPeQeCQ4hTqoUg1cD8sOMwZRXZkABljhA8ulS6pXQmJLi71qEJBAKBpvhx+oYAVLPu8d0TGNo1DiXQUC+7SJE1DMwPqXGpolSAyUDxwVzmvvIsOxJVfyRJpwouhpDIs+5nR5WNXxwdsAcPByDG9Bdt14HPSyq+JoXwwt50TO111v02KKU58GY/eCYGDq5XtwmD87PCbs/F4chHkox06TyHvn0WYbGISnBny878Sq5//3eeWLiVgkrVgPeCrvEMSI9sXLNfgUAgaEJkl8xeT663pcdAINVhVnaHJGDbdzsfLlMzr82GRvrdK9sPgNNbdc/S9bLG6acVU15dQaRVzfaNjh7LxSM+o0OHmeh0IkegpTB58mQkSUKSJEwmE+3atePpp5/G7Xaf1fP+8ssvSJJEWVlZwwR6Cuzdu5dJkyaRkJCAxWIhKSmJCRMmkJWVVW+/xYsXM2TIEIKDgwkICKBPnz7Mmzev3j45OTlIksSmTZtOuf+nnnqKDh06EBgYSHh4OCNHjmTNmjX1nnPKlCmkpaVhtVpJT09n+vTpOJ3OEz7voUOHmDRpEu3bt0en03Hvvfeecky1PP/880iSdNSxu3fv5pJLLiE6OpqQkBCuvPJKDh8+XG+fZ599loEDBxIQEEBYWNgxn7/2f+jIv//+97++xz///HPOP/98Xz8DBgzgu+++O2ncn3/+OaNGjSIyMvK0P4/GRozomzHHXf7m94a/jZPjZXOqP/gBJj0Hd2zDbrd5H9GhM6aQYNyGFBB2Vn38WfonN6xfyQ4l07etT2ig774sy+BRfKKU+dBuLroonnOvyDirfhuc7B+hMAs86kU+AVEQ00nbmJopNTV7WbGyH6tWDwMgJKQbsbEXEhiYrnFkLYM9hWp2VESgiTGd43hwdCbJEcLjRCAQtCxkl4xHUQulSPpwQqV2DHjgVooVNSP0/9k787iqyvyPv8/dL6ussoggimvuu1ZKpmK5VI5pOqZNWjRaapZbmdqYbWq5jS2/Emu0cSozs2ZyqdwzN8RcUFAUBRVEdrjr+f1xLheuIIuAXPS8Xy9e8JzznOf5ngvc+5zP8108XQQ6NW7AtP7Na8cAW9U9g9oNAG3z/rUzzz2I1SqScPkgzcQR9A/dCUAjn0A0tSUwytQpUVFRpKamcvbsWaZPn878+fN5//3369osOxWJNgAmk4n+/fuTlZXFxo0biY+PZ8OGDbRt29ZBGFuxYgXDhg2jd+/eHDhwgLi4OEaNGkV0dDSvvPJKtexs3rw5K1eu5Pjx4+zZs4ewsDAGDBhAWpoUiXL69GmsVisff/wxJ06c4IMPPuCjjz5izpw55Y5rMBjw8/Pj9ddfp337qnspHjx4kI8//ph27do5HM/Ly2PAgAEIgsAvv/zC3r17MRqNDBkyRHo+tGE0GhkxYgQvvPBCufOsWbOG1NRU+9djjz1mP7dr1y769+/PTz/9xOHDh4mMjGTIkCEcPXq03DHz8vK4//77effdd6t837WNLM3XE4pyFokl9CZnTynlmKS99o0tsHlK6TVKDPlSBT6FujkabXvuC1/Eg55eoHixWnMsP7qcS5YnQAW6nB0836wbrdykhKDXL13k4Ib13EdvzIL05uNacJ1GHUJQOptHR1EeqbAHYPhnoPcClaZubaqnpKZ+i9GYbmsJNAr+a53ac7ew6tcEfoxLJS1XelDq3sSb1X91Mo9DGRkZmRrCYrJitolSoELEwhcHr5J2LRyAyDYaPhzeu/YMMEsFJAwKKSWBprbyVt2DTPziEEL+f3iqpfT7NYvu+Hg/UMdWydQWWq2WgIAAAF544QW+++47Nm/eTHR0NFOmTOGHH37AYDDQp08fli9fTkSEtHF94cIFJk+ezJ49ezAajYSFhfH+++/TunVrIiOljU8vL0mkHjduHDExMeTk5BAdHc2mTZvw8PBgxowZfP/993To0IEPP/wQgLCwMJ599lnOnj3Lpk2beOKJJ4iJiWHPnj3Mnj2bQ4cO4evry+OPP87bb7+Nq6srJ06cIDExkR07dhAaGgpAaGgovXsXvwclJyczffp0pk6dyqJFi+zHp0+fjkaj4aWXXmLEiBF07979tl7H0aNHO7SXLl3KZ599RlxcHP369SMqKoqoqCj7+fDwcOLj41m9ejWLFy++5bhhYWEsW7YMgM8//7xKNuXm5jJmzBg+/fRTFi5c6HBu7969JCUlcfToUTw8pOiTtWvX4uXlxS+//MLDDz8MwIIFUrX2m73JbqZBgwb2v6ObKfrdFrFo0SK+//57fvjhBzp27HjLMceOHQtIXmbOhpM9KcvcirKWBlZnV6XuMDm2ROfuWhXGgnwABIULViEbNy9XhAemVnuOTEMuVpX0gbCoZUtebdnTfu73jRuIP/gHUBy+5/P4Y6gb+ld73hqnKI+Uf2twbygLUreB2ZxHZuYhsrKkXYmw0L/T58GjBAQMrWPL6j8FRguLt8ZzMjWbNFvIXttGnnVslYyMjEztYTUXi1KCoAZE9iXcwFAovfcFe6vLuboGMEmiVKEgzaOVRaka44/zGbiopXXp71ceJKjFTjw9O9StUfUMURTJN+XXyVd1C0vp9XqMRiPjx4/n0KFDbN68mf379yOKIo888ggmk/R/P2nSJAwGA7t27eL48eO8++67uLm5ERISwrfffgtAfHw8qampdlHl5ZdfZu/evWzevJlt27axe/dujhw5UsqGxYsX0759e44ePcrcuXNJTEwkKiqK4cOHExcXx4YNG9izZw+TJ08GwM/PD4VCwTfffIPFYinzvr755htMJlOZHlHPP/88bm5ufPXVV9V67YowGo188skneHp6luvdlJWVhbd3zeQPLotJkybx6KOP2gWmkhgMBgRBQKstLlKm0+lQKBTs2bPntuby9fWlW7dufP755+X+HVqtVnJycmr13msb2VOq3lH/Ep3fCe3MYhXJKpDe1Bu4aIi9bsvLIGgwKQrx++sm8Ghc7XlyrNLrLyAyKuIRFCW8wQx5uSgF6V+qSJTSBzSs9pw1SnYKJP4Klw5KbTmP1G1z7NizZGYdtLc9PNqjUsnJ4quDxSqy6tcEzlzNsb9vbHiuB+46Na0C5ddWRkbm7sVismKx2vLOCJKnFKKCBj5nKdQe5P7mU2pt7jSjiZW5XuQ0f5UchQ4AnTNXDa5H5Oaep4v/rzRvcA6Akd3b0EzeZKkyBeYCuq+/PY+b6nJg9AFc1FVPGyCKIjt27ODnn39m0KBBbNq0ib1799KrVy8A1q1bR0hICJs2bWLEiBFcvHiR4cOH07atVCk8PDzcPlaR2ODv72/PQ5STk8PatWtZv349/fr1A6SQr6CgoFK2PPTQQ0yfPt3enjBhAmPGjLHnRIqIiGD58uX06dOH1atXExwczPLly5kxYwYLFiygS5cuREZGMmbMGLtdZ86cwdPTk8DA0vlTNRoN4eHhnDlzpsqvW0m2bNnCqFGjyM/PJzAwkG3btuHr61tm34SEBFasWFGul1R1+Pe//82RI0c4ePBgmed79OiBq6srM2fOZNGiRYiiyKxZs7BYLKSmplZprjfffJOHHnoIFxcXtm7dyt///ndyc3N56aWXyuy/ePFicnNzefLJJ6t8X86C/InjLIgiZF2CjPNgLZ3BvOR+VZEOUrHY48SyVQ3mvdpw8CJvfP+n/fVQ7d9FwZattmm0GNUGgtxKv0HfDnkWaQfRQ4mDIAVgNVrRqt3JEQowIS0s1dpa3tmsKutGwPd/h/O7pLZerl52OxQWptoFKa02EG+v+/Hy6lnBVTIVceDcdZZuO8OWOOnDu30jT7qH+9A6yOOmcGAZGRmZuwNTYSFfzpzCF6//jRtpRVX31IhYEEUFrp7JqD3j0Kpqbx95Q2oGHxv9WR84GJOgRCmAp1x5r9pYrCLH4p7nr62+ppWP9HCu0VS/4I6Mc7Nlyxbc3NzQ6XQMGjSIkSNHMn78eFQqlUMom4+PDy1atODUqVMAvPTSSyxcuJDevXszb9484uLiyp3n3LlzmEwmunUrrvTs6elJixYtSvXt0qWLQ/vYsWPExMTg5uZm/xo4cCBWq5Xz588DkqfOlStXWLduHT179uTrr7+mTZs2bNu2rdKvhUZTcSTGunXrHOzYvXu3/VxkZCSxsbHs27ePqKgonnzySa5du1ZqjMuXLxMVFcWIESOYOHGi/XjJcaOjoytl8+7dux2uW7duHcnJyUyZMoV169ah0+nKvM7Pz4+vv/6aH374ATc3Nzw9PcnMzKRTp04oqijyz507l969e9OxY0dmzpzJjBkzbpmXbP369SxYsID//Oc/+PtL0TnlvabOiuwp5Sz8+hbssv2xRQyAMV+X2U1EEqhEykl0fg+RnJHPzG+P29v+7lqub9mIokjXEzSEeVhQ1UBlk23pWaSqOwDgq3Z8QM7dn0LHgkj+02Q/G4R99uNajZOJUhnSBw3+bSCoI7QdUbf21DOsVhOXLv+LK1e+A8DVtTk9uv+3jq2q/4iiSHahmbPXpKTmTf1c+UvnEPq3dsLQVxkZGZkaJPnUaa4lJTocU6gCwHwJUGAVpU0uhVBL+8hH15GVkg8uXemadZyHNfm07f4UXmr5EaE6rD8gbZiujLyAWgl/prdhQLv7CGg4pK5Nq5foVXoOjD5QccdamrsqREZGsnr1ajQaDUFBQahUKjZv3lzhdRMmTGDgwIH8+OOPbN26lbfffpslS5bw4ovVy4cL4Orq6tDOzc3l+eefL9PzpnHj4sgSd3d3hgwZwpAhQ1i4cCEDBw5k4cKF9O/fn4iICLKyskhJSSnlnWU0GklMTGTgwIEV2jZ06FAHsS44ONjB7mbNmtGsWTN69OhBREQEn332GbNnz7b3SUlJITIykl69evHJJ584jF2yulxRnqeK6NKli8N1DRs2ZMeOHVy7do1OnTrZj1ssFnbt2sXKlSsxGAwolUoGDBhAYmIi6enpqFQqe16okl5vt0P37t35xz/+gcFgcAgP/Pe//82ECRP4+uuvHUIKy3tNnRX5E8dZOFOijGNKbKnTRRKIiC2BuCg6faLzO0G6LQmyh07F2J6h9G3hT/a8b8hyCwRyEAQtTdzLjoWuCgcycxl7/DzoJG+YcL3j4rAw/gY5QiEGQQohVIoKBJPrLV1M6wSLCUxSAnjGbwGX+ht3XFdcu/YTZ88WJzaUvaOqj9Uq8peP9nHkYqb9WOdQL17oK1cvlJGRuftJOHwRAIXSG9eQNrinmcjQdEEsvACiAgRJlKqJzbVSWK3wwxQMTZ4Dl670yDrGlCBX8JFD+6vL9lNXETCgVkq/v9OFrzCl5YN1bFX9RRCE2wqhqwuKhJSStGrVCrPZzIEDB+zhe9evXyc+Pp7WrYurX4eEhBAdHU10dDSzZ8/m008/5cUXX7R7HJXM7xQeHo5arebgwYN2ISkrK4szZ87w4IPl/6116tSJkydPlrKzPARBoGXLluzbJ22+/+Uvf2HmzJksWbKEJUuWOPT96KOPyM/P5+mnn65wXHd3d9zdK5eiwWq1YjAY7O3Lly8TGRlJ586dWbNmTSmPpKrcXxF6vb7Udf369eP48eMOx5555hlatmzJzJkzUSodPUuLnv9++eUXrl27xtCh1cs3Gxsbi5eXl4Mg9dVXX/G3v/2Nf//73zz66KMO/avymjoLsijlLBR5sAAVhd0pBLDg/NX3SlJW4E1N2J9nkN6cAz31vDqwJaLVytfWJhg0p8CSA4IGN7ecas+zI/26/Wdt3l7GtRrgcF40W7Ha8kgpzCq803uBAO5eTvIBmp0KV0q8mWrlBeftkJklJY/08OiAt1dPGjd+to4tqv+k5xkcBCl3rYoBrcuuNiIjIyNzN1GYsBefuFlAOP6aVLorkjikHAkg5ZRCgVWU1jlKoRbC6cyFYDVRqJAedLQRD0MnebOlupjNObRyXUeT1ldsRxSs+mstVk6UcXoiIiIYNmwYEydO5OOPP8bd3Z1Zs2YRHBzMsGHDAJg6dSqDBg2iefPm3Lhxg19//ZVWrVoBUuU7QRDYsmULjzzyCHq9Hnd3d8aNG8err76Kt7c3/v7+zJs3D4VCUWHKg5kzZ9KjRw8mT57MhAkTcHV15eTJk2zbto2VK1cSGxvLvHnzGDt2LK1bt0aj0bBz504+//xzZs6cCUgeVe+99x6vvPIKOp2OsWPHolar+f7775kzZw4LFy7kvvvuc5g3Pj6+lC1t2rRBrXaMLMnLy+Ott95i6NChBAYGkp6ezqpVq7h8+TIjRkhRHpcvX6Zv376EhoayePFi0tLS7NffqmpdEUWeULm5uaSlpREbG4tGo3EQCEvi7u5e6l5cXV3x8fFxOL5mzRpatWqFn58f+/fvZ8qUKUybNs0hpPLixYtkZGRw8eJFLBaL3ZZmzZrh5ubGDz/8wNWrV+nRowc6nY5t27axaNEih4Ty69evZ9y4cSxbtozu3btz5Yr0XqPX6/H0vHXOuqJ5U1JSgOLfR0BAQIWvWW0ji1LOgNUKxgqEk6I8UogItgA+pw/fuwM5YHIN0g6Uq1ZarG18dwHJxsP2813dNtGySZtqzbHr0i7+7+QBcO+PPmszbllf09rtcYc+oslqT24uWKGdeIim0yfi5lV23PEdJT8Dlnewl3tG4wZK+V+/Kly99l+uXNlEevp2AEJCxssu+NUkJbOAj3cmkpol/V36uWv5Y04/OXeUjIzMPcN/P1rFuatSWMc1czt+vvEo2LUnKdF5tikDla6Wwvds64JCheSFoQvuCDo5CXd1MFmsnL/4HZ18frAf02kDUCjkHF33OmvWrGHKlCkMHjwYo9HIgw8+yE8//WQXZCwWC5MmTeLSpUt4eHgQFRXFBx98AEjhVwsWLGDWrFk888wzPP3008TExLB06VKio6MZPHgwHh4ezJgxg+Tk5FvmPSqiXbt27Ny5k9dee40HHngAURRp2rQpI0dKonijRo0ICwtjwYIFJCUlIQiCvT1t2jT7ONOmTSM8PJwlS5awbNky8vKkiIyvvvqKUaNGlZq3rGPJyck0atTI4ZhSqeT06dOsXbuW9PR0fHx86Nq1K7t376ZNG+m5btu2bSQkJJCQkFDq+ooqJnbs2NH+8+HDh1m/fj2hoaEkJSWVe11FxMfHM3v2bDIyMggLC+O1115zeL0A3njjDdauXVvKll9//ZW+ffuiVqtZtWoV06ZNQxRFmjVrxtKlSx1yZX3yySeYzWYmTZrEpEmT7MfHjRtHTEzMLe3bvHkzzzzzjL1d9PuYN28e8+fPr86tVxv5ydQZMOU7tityIbI9s1lLdPt4ZyKuWhV/7RFas7bVCLUnnuXZRSkVeZk3SIotFqRMGgWdPXejdKletY7Ya7FYBOnNXSuY6BnYkwDXYjW5MDeXguRkLILNU0oUaaK9TFCEkyQRv3FeWngqVOAVBu1G1rVF9QqDMZ0//3wJbKKjUukih+3VAGv2nmft/gv2dhNfV1mQkpGRuac4l1y8IalQSw9VakMqrgU55BeewWocDIIVT60nwW61kBPEJkoZlLaKe0q5/lF1yCk00W/JTnr6H2BoU0jMDKVd00do3WRAxRfL3BWUJwh4eXnxxRdf3PL8ihUryh177ty5zJ071+GYu7s769ats7fz8vJYsGABzz33nP3YrYSWrl27snXr1jLP+fr6smzZsnLtKWLYsGF2b6+MjAz69evH6tWrGTp0KC4uUsRIWFhYhUJRSXQ6HRs3biy3z/jx4xk/fnylxyxJVWy5Fb/99lupY++88w7vvPNOudfFxMSU+3cSFRVFVFRUleeuDNV5zWobWZRyBoy5Nx0o/Y8i2JQoUZTC96SfpX7JGfm8/d/TAE4qStXeg2ZmgZTDyUOnpiAn2zabFq3XJC42Wo7GbAXfiGrNUWAuQFT4AfB616n8Nai4ckp+dhb/N/lZHvJ9CotOuk9BFPAcVr3Y4RrFYFv0+jaHv++vW1vqGaJoISf7OEWCVMuWi/D06IBW40S5wuoZmflGDpzPsIfsDWzTkE6NvRjYRg7Zk5GRuXeQ1nDSOs7F9Sn0JpF2R99AXyilC/ihWXtAxcLebzKoTVjt5NMxFQAlRKkqVoiScST+Sg7Xc/NxDZa8Ra4UtuXp1tPQqWUvKZna4ejRo5w+fZpu3bqRlZXFm2++CWAXie403t7ebN++nVWrVrF//3769etXJ3bI1D9kUcoZMNwsSpVPSYEKIDPfZD9XE8pvfWDzsRTe/OEkmflGAEJ9XMj+/XfppCD9WRt9XOGR/0HI7XtK5ZotnDZ4YFEHAuB7UzWazCupmAyFKFBixZaM1MUdd2d6Ey4SpbT1K+FdXZOdHceRo3/FYpEWl35+AwkOkr3MqsuLXx1l99l0e3t4p0YMkAUpGRmZe4xTO47Yf26esIUTYZe4cl9TAk3d2BD8K3vcHgEjBLr714oglW+xMvFcLsldYrikk96DtQrZW7U6ZKbM5pP+2+3tcb3byoKUTK2zePFi4uPj0Wg0dO7cmd27d9dpoSUfHx/eeOONOptfpn4ii1LOQGGWY7sMYankMkEQHLsZLVb7OWs90KRqwsTNsSn2yntqpUBfX4HU19+FpkGALVmelweEVi/MavKpC/zP3NM+ZAtXxxhts1ESxdQKFRYkcVBRG8lIb4fEX+D0T5AmedHJolTVSEn5j12QEgQ1wcGj69ii+o3FKmKyWDmVKnk03hfsQZiPKw9E+NWxZTIyMjJ3nnOxxQl/FaKVlKZtGVYwktPaBE50OIsmsTGk56GqJe+lQxmZ7MgVwbWJ/VhTvbacK2RuxbWcQt7732kGeP1KUQSkQqGngVfXujVM5q6nY8eOHD58uOKOMjJOjixK1SXbF4DZIOX8ASm55M0CVRkobKpUUaJzo7lYlHJeT6matctglqrRzB3cmie7NEJ97ix/FCl3CklBUuqqt5CziCI7rkteRkrTFfp5qWniUrxgsxaYEQ/n0c33ETQKFyyCJGAonSWZ5cbnIe9acds9sO5sqUdYrUZyc09z5epmAFq1fJeAgCEoFPJi/XZJSs/jsX/udfDq/OJv3fF21dShVTIyMjJ1h9VcXNpdYbXQ9CIYTi9mwdOXCFSGk2XbZVTWhvfS2e3kb1sJrebTPO88b1/7moajPqeZixMUZ6mHbI5NYfPR8wx6WPqd/p77GbMe7YlSKa8bZGRkZCqDLErVJb+vBnNBcduvJSQfoMycUvbqe8VeU0X6k6mEp5TDlXUsUNWmE7jBJsQFeOhw16nJz8/HpCwqJyr9WT8a8XC15vjkxL8xiVIpVq/UmYxoutDhfH7sNZSnzHh7NGWLOpYcQfpdOkWFFasV8mylUe9/GVx9oe2IurWpHmC1Gjjwx1Dy8xPsx7y8esqCVDX5/dx1B0GqS6gXXi7qcq6QkZGRubuxWM32nxVWC5b8PCzXEyhQKdEqtZhtazu1shZWU0m7KBSlcf2MN+gd0AhkQeq2uZF7nUA3qSS7iJJJD/dCqZQ3XWRkZGQqiyxK1SU9J4HVDAolqPXQqBt8MbTC8L3i6ntSP5ND+J7zeUrVhvdWkSilVUneUNcuXuJksygwHUYQVCgwERVRfuWCivhf8n7QtUKw5OCm1tPGt43DeWue9JB9UZFOmiLbfjw4xAny45jysEuUfWZIf18yFZKd86ddkNLpgvH3i0Kvr4WKR/cIf17O4r9/pnL4wg1Ayh+1YFgbXDVKudKejIzMPY3FYinRsqK2SO+JFgWoFWrMtekpZTaQX5TcPPx+6PC3mp/jHkAURa6m7aaD5lk69ZDWpRq1Bw1cZEFKRkZGpirIolRd0s+xrCdpZyq8RKRk+J6Eg6eU82lSZSJU04+qKGRRq1aQFHeUbzf8X4nBFbTS/4Kgrl4J3jyr5PHkr9Wzc+ROtDe5YYs2G64WXgQ1+KTlMmT04zTuWb08VtXGbIScq9LPChWo5N3PijCbc7hw8VNSUv4DgJdXLzp1/LKOrar/vPL1MU5fKS553sTXBTet/LEjIyNzj3PtFGq+QVqGC4iCFbUZjEoVeRefZ9+5IEymoryZtZBTylRAoUISTnQq2Wv1dpn4xWFcjBsY1tSKVRQQBDUBDeum6pmMjIxMfUZ+OnAm7J4DVUt0biiRU8q5cRSiqqOfFeWU0qqUpF9Msh1VIwguBDXeQV+XGyC8e9vjH8jM5aqiOQABWmUpQSrz6hXO7t5FIOGYBckWfYGBwMAgFHVZUvnCfvjXE2DKl9pa9xJ/VzK3IiXlPyQlrbK3vb3qWFis52QVmLiRZyTpupRnbWSXEBp6aBnTPbSOLZORkZGpey5um8PbflcYQSNAgUUwoTMJnG8QhKWgCUU+VJ56NYGetbCxZDZQaAtL19flmqUeY7GKbD91ladaSKkbdiT3Z9zAd2ke6FHHlsnIyMjUP5z2kygsLAxBEEp9TZo0CYC+ffuWOhcdHe0wxsWLF3n00UdxcXHB39+fV199FbPZXNZ0zkU5ao0olswpJZJTaCI1q9B+Xgrfu/tFCIOpOHzPWCAJMEpNK7RuA/BtkAnBXW577GM5+Qw7mkCaThImGmlL54g68/se8m9IIXsWbLb4+6EJq+OH7vO7igUpgObVC2G8V8jKjgXAx6cPEc3mEBLybN0aVI85fimLLgu30XfxbxTa/k8XDGvDywNa4CUnNpeRkZHhqiELhdVenQVE8M5TYbblpNRpC9k27UH2zIzEXVeznkzHcvLp7/YEKxqPkeaSRanb4nrWBSIaJNLQVSooM7FPe1rJgpSMjIzMbeG0nlIHDx50iLf/888/6d+/PyNGFCdrnjhxIm+++aa97eLiYv/ZYrHw6KOPEhAQwL59+0hNTeXpp59GrVazaNGiO3MTVebWYlLJM0Xhe18fvsT/7T6HtYSI5bzhezVdfc8Wu5+ZTsqBA9JBQYNZYUDdfjR0n3rbYx/JtolcliyUxnOMavhAqT5mowGlwvbvo/ACruPRtTNCXS/uiqo39pgED70OGpfy+9/jnDv3IVev/UR+fiIAjUMm4O3dq46tqt8cupCBySKiVgq4alVEtQlAp3aC5P8yMjIyToKQkMeUQxYueQGCApVVgVW0UqiQ1jYqpUhEQ/damXvztUyOqxva281d5UIeVeX81UTOnRjErG7Fzyk6TYO6M0hGRkamnuO02yN+fn4EBATYv7Zs2ULTpk3p06ePvY+Li4tDHw+P4h2KrVu3cvLkSf71r3/RoUMHBg0axD/+8Q9WrVqF0Wisi1uqmHLC97CfEe3d9pxNdxCkyr+yDqjhsDGrVeT1TccZtmov6blSrgXNF/9HdmysbTotRqUBddsR0KDxbc0hiiK7r8YDoMv/Hc+0pbR1d3O0w2hBf1mHl0Za1FlsLvBqdR1qvFYLpB6DjHNS29VXFqQqwGIpJOnCP+2ClE7XCE/PjnVsVf3lX79fYM53x9l45DIAY7qHEvvGAN4Z3q6OLZORkZFxLhS/Z9HkWrGnlEGlRmkuxKKUBHx3jdutL64OeekU3kgGYMSV/7HdI4mJjfxqZ667lJ+OpzL5i+8ACyaLirSChnh6dsHXN7KuTZNxAsaPH2+P4NFoNDRr1ow333yz2pE6v/32G4IgkJmZWTOGVoLz588zevRogoKC0Ol0NGrUiGHDhnH69GmHflu2bKFPnz64u7vj4uJC165diYmJceiTlJSEIAjE2p7ZKsP8+fNp2bIlrq6ueHl58fDDD3OgyBHBNuazzz5LkyZN0Ov1NG3alHnz5lX4nJ+amsro0aNp3rw5CoWCqVOnVtqmy5cv89e//hUfHx/0ej1t27bl0KFD9vMlf/9FX1FRjlErZUWDvfPOO/bz8fHxREZG0rBhQ3Q6HeHh4bz++uuYTCaHcTIzM5k0aRKBgYFotVqaN2/OTz/9VK79GzduZMCAAfj4+FT591HbOK0oVRKj0ci//vUv/va3vzlUbFq3bh2+vr7cd999zJ49m/z84rCl/fv307ZtWxo2LN4NGjhwINnZ2Zw4ceKO2l8TFN23JDpJP2cXSn+cbwxube9XG5XunIWTqdn86/eLHEvOBKCpnyvq7BuYi5KAChquehaiqUYZ3j/T/+SXywcBEC3ZKAQFbmrHxWH+kav4XfHHUyMt5My28D0X9zpMKP6/WfDxg3Dmv1Jb51l3ttQDLJZCsrIOI4oW1GovOnX8ih7d/4dSKVcpvB2SM/J5fdOfrD9wkeOXJW+9MB9ZFJWRkZG5GXO2AcxiiU1EBaebN8cn4wQqrSsAbppa+CyyWmB1bwrPbAMgvOAS9+kVciXUKnLsUiauaul542JuOGm6tXTpvAGttmEFV8rcK0RFRZGamsrZs2eZPn068+fP5/33369rs+xUxjnDZDLRv39/srKy2LhxI/Hx8WzYsIG2bds6CGMrVqxg2LBh9O7dmwMHDhAXF8eoUaOIjo7mlVdeqZadzZs3Z+XKlRw/fpw9e/YQFhbGgAEDSEtLA+D06dNYrVY+/vhjTpw4wQcffMBHH33EnDlzyh3XYDDg5+fH66+/Tvv27Sttz40bN+jduzdqtZr//ve/nDx5kiVLluDl5eXQr+j3X/T11VdflRrrzTffdOjz4osv2s+p1Wqefvpptm7dSnx8PB9++CGffvop8+bNs/cxGo3079+fpKQkvvnmG+Lj4/n0008JDi6/YnheXh73338/7757+3mXawunDd8ryaZNm8jMzGT8+PH2Y6NHjyY0NJSgoCDi4uKYOXMm8fHxbNy4EYArV644CFKAvX3lypUy5zEYDBgMBns7Ozu7hu+kklQgLBVVB84plFR3L9fifAM3e07dTRSJcIGeOuY80oouYV4YJ3+O2RYyJwgaCjVZaBS3L0qlF6RjVUiLwi6+LXi6fU/cbtqxtOZKdmQZ07lSkImbWzIZqNFo67CCzZU/pe8uvuAVCs0H1p0tTs7167s4Fvccoij9Ht3cWuHl1a2Oraq/GM1W4m0V9nzdNIztEYaHXsWTXUPq2DIZGRkZ56LgRDppX/5JtlqPwcW2VhEU9DyyD5XFgFUtrSOUiloQigw5kHuluOqeV2No8mDNz3MXU1CQTAPLBroFxALQo1kY7dpG1K1RMk6HVqslICAAgBdeeIHvvvuOzZs3Ex0dzZQpU/jhhx8wGAz06dOH5cuXExEh/Q1duHCByZMns2fPHoxGI2FhYbz//vu0bt2ayEjJE69IABk3bhwxMTHk5OQQHR3Npk2b8PDwYMaMGXz//fd06NCBDz/8EJA8c5599lnOnj3Lpk2beOKJJ4iJiWHPnj3Mnj2bQ4cO4evry+OPP87bb7+Nq6srJ06cIDExkR07dhAaKuXLDQ0NpXfv3vb7TE5OZvr06UydOtUhNc706dPRaDS89NJLjBgxgu7du9/W6zh69GiH9tKlS/nss8+Ii4ujX79+REVFOXghhYeHEx8fz+rVq1m8ePEtxw0LC2PZsmUAfP7555W259133yUkJIQ1a9bYjzVp0qRUv5K//1vh7u5+yz7h4eGEh4fb26Ghofz222/s3r3bfuzzzz8nIyODffv2obZ9boSFhVV4D2PHjgUkLzNno154Sn322WcMGjSIoKAg+7HnnnuOgQMH0rZtW8aMGcMXX3zBd999R2Ji4m3P8/bbb+Pp6Wn/Cgm5ww9Vlai+J5bollUgPVR7lEyC6XDp3aVQ5Ruk2H1/Dx1D2gcR6KnHkp/n4CllVhoJdAu8rfGzzRZ+zwGjS1cAnmo+hMHhg0v1E235rE5aznBUkUi2VvqFKJV1mDfHIIkCPPEJTPwFPBvVnS1OzuWUf9sFKaXSlcDA4XVsUf3lPweTaf3G/5jwheS6HOHvzpSHI3imdxNcNPViz0NGRkbmjmG8nMvBtJ857NuIP0P8ARBQkO6vITEA8vtI649aEaVMUpW4oqp72q7PgL5Bzc9zlxKz9zwbdkynucuXdPQ/DoBGI4c+3ilEUcSan18nX9WNQtHr9RiNRsaPH8+hQ4fYvHkz+/fvRxRFHnnkEXtY1qRJkzAYDOzatYvjx4/z7rvv4ubmRkhICN9++y0ghXalpqbaRZWXX36ZvXv3snnzZrZt28bu3bs5cuRIKRsWL15M+/btOXr0KHPnziUxMZGoqCiGDx9OXFwcGzZsYM+ePUyePBmQ0ugoFAq++eYbhxzPJfnmm28wmUxlekQ9//zzuLm5lekldDsYjUY++eQTPD09y/VuysrKwtvbu0bmvJnNmzfTpUsXRowYgb+/Px07duTTTz8t1e+3337D39+fFi1a8MILL3D9+vVSfd555x18fHzo2LEj77//frnhnQkJCfzvf/9zSGG0efNmevbsyaRJk2jYsCH33XcfixYtuuXvqj7g9E8NFy5cYPv27XYPqFtRpMImJCTQtGlTAgIC+OOPPxz6XL16FeCWyuTs2bN5+eWX7e3s7Ow7L0xVAuGmhOge+mJRSqwHQtTt2phnlP5hXTXF4k9+Xi5GfdFuo5YRei989b63Nf7kkxfYer3YBTPCpXTyT6vFQv6ps2QJIie8Cij5L6TX12Hol8Hm1aeVK7/cCrM5l/z886Sn7wCgY4cv8PbuXcFVMrciz2Bm87EUzDb3TJ1aweD2tycIy8jIyNwTiJBpuiH9LLgiCFrULu34fOQhTmZd47mm7WFLfi2JUlLIWaFKCq3WKevFvrRTYLJY+cePp3i9mxRpEZfWmo5N7iO08cQ6tuzeQSwoIL5T5zqZu8WRwwguVU9JIIoiO3bs4Oeff2bQoEFs2rSJvXv30quXVFBn3bp1hISEsGnTJkaMGMHFixcZPnw4bdu2BXDwlikSWvz9/WnQoAEAOTk5rF27lvXr19OvXz8A1qxZ4+DEUcRDDz3E9OnT7e0JEyYwZswYez6liIgIli9fTp8+fVi9ejXBwcEsX76cGTNmsGDBArp06UJkZCRjxoyx23XmzBk8PT0JDCy99tNoNISHh3PmzJkqv24l2bJlC6NGjSI/P5/AwEC2bduGr2/Zz3kJCQmsWLGiXC+p6nDu3DlWr17Nyy+/zJw5czh48CAvvfQSGo2GcePGAVLo3hNPPEGTJk1ITExkzpw5DBo0iP3799udF1566SU6deqEt7c3+/btY/bs2aSmprJ06VKH+Xr16sWRI0cwGAw899xzDsXdzp07xy+//MKYMWP46aefSEhI4O9//zsmk8khzK8+4fSfSGvWrMHf359HH3203H5FibqK/jF69uzJ8ePHuXbtmr3Ptm3b8PDwoHXr1mUNgVarxcPDw+GrNjGnp2O8dAnD2bOYUlOx+0OVocjbPaXE4vC9Ijz1zh++VxPLq3yjpP4WeWD8tGIxP3uqydcUh+95624vdE8URQ5m5QGgMpyhjXiUNm6OIlNBbg6fTHqG+LOnyBOKwzzvUyp5+OGHadmy5W3NfduIIuxbCT9MgVxJcEVbO9V66jtWq5k/Dg7l4KHHEEWbuOkqu9zfLpPWHaHNvJ/Zk5AOwLoJ3Tn9j0GM6R5ax5bJyMjIODFWEasoeVu7qrpwLSiTHhMjMdrWFApBafte86JUQm4+3/o/zCWdlMpCX9fVgusROYVmLFYRF7Xkbdax9cv06boIvd75Nq5l6p4tW7bg5uaGTqdj0KBBjBw5kvHjx6NSqRxC2Xx8fGjRogWnTp0CJLFi4cKF9O7dm3nz5hEXF1fuPOfOncNkMtGtW3EKCk9PT1q0aFGqb5cuXRzax44dIyYmBjc3N/vXwIEDsVqtnD9/HpA8t65cucK6devo2bMnX3/9NW3atGHbtm2Vfi00moqfy9atW+dgR8kwtcjISGJjY9m3bx9RUVE8+eSTDs/2RVy+fJmoqChGjBjBxInFYnHJcaOjoytl8+7dux2uW7duHQBWq5VOnTqxaNEiOnbsyHPPPcfEiRP56KOP7NeOGjWKoUOH0rZtWx577DG2bNnCwYMH+e233+x9Xn75Zfr27Uu7du2Ijo5myZIlrFixwiGFEMCGDRs4cuQI69ev58cff3QQ26xWK/7+/nzyySd07tyZkSNH8tprr9ltKe81dVac2lPKarWyZs0axo0bh0pVbGpiYiLr16/nkUcewcfHh7i4OKZNm8aDDz5Iu3ZSpacBAwbQunVrxo4dy3vvvceVK1d4/fXXmTRpElqtc5S/Pds3Ekq464Wufh9Jhy9fWbo5KWXJ8D1nSnRe08kz8ww2MUErLdoSDhVXYEDhhr82gyaNc29vbIuVG2ZJ9Gpw7T06hz1Uyv70i0nk3chA4avCjNRXZ9Hx+CuTUbrVUqWc8kg5AltfK24LSnDzv/N21ANycuIoKLgAgFYbQEDA42i18mt1O1itIltPFufla+Slp10jObG+jIyMTEWIVhEL0lpGabVgUl1DrVNitkrHBKT1jaqGPaVMVpFHk8xktZprP+Yqe0pVClG0kHR+Gc+0OUoDreSV3jU8VE4Qf4cR9HpaHDlcZ3NXhcjISFavXo1GoyEoKAiVSsXmzZsrvG7ChAkMHDiQH3/8ka1bt/L222+zZMkShyTYt4urq6tDOzc3l+eff56XXnqpVN/GjYsrmLu7uzNkyBCGDBnCwoULGThwIAsXLqR///5ERESQlZVFSkpKKe8so9FIYmIiAwdWnON26NChDmJdyWTdrq6uNGvWjGbNmtGjRw8iIiL47LPPmD17tr1PSkoKkZGR9OrVi08++cRh7JLV5SrrbNKlSxeH64pyUgcGBpZybGnVqpU9tLIswsPD8fX1JSEhwe7NdjPdu3fHbDaTlJTkICgWRWu1bt0ai8XCc889x/Tp01EqlQQGBqJWqx1Sx7Rq1YorV65gNBrLfU2dFacWpbZv387Fixf529/+5nBco9Gwfft2PvzwQ/Ly8ggJCWH48OG8/vrr9j5KpZItW7bwwgsv0LNnT1xdXRk3bpyD61tdo3BxQTSZEE0mMJsxXLxERc6hZUlO7jqVw/mbw/vqmlvJZFUV0K7nSdUivFw0iFYrpkJpx0rj8Qwnmq5leuFr4D23vCFuSbZNkFJgBdGAVllauLTYqlXorAIFNlFKrXerG0EKIE/yUsEjGLo9B0EdwKV24qjrK0bjda5f38Wly/8CwMenLx3af1bHVtVPruUUsnDLKa5mF2KyiAgCHJ8/EBe1EkVthJrIyMjI3G1YRXIpRAAEEUQEVCoVJqut1LcoCUU1+p5qKiTnf/PIcnsKgAdyTxHYrBf3e8me1RURm5zJ1qM/0dntI+63PdMJghqtVs4ldacRBOG2QujqgiIhpSStWrXCbDZz4MABe/je9evXiY+PdxA6QkJCiI6OJjo6mtmzZ/Ppp5/y4osv2j2OSuYMCg8PR61Wc/DgQbuQlJWVxZkzZ3jwwfKLGHTq1ImTJ0+WsrM8BEGgZcuW7Nu3D4C//OUvzJw5kyVLlrBkyRKHvh999BH5+fk8/fTTFY7r7u6Ou3vl3o+sVquDR9Hly5eJjIykc+fOrFmzBsVNHqBVub8i9Hp9mdf17t2b+Ph4h2NnzpyxJ4Ivi0uXLnH9+vUyQxyLiI2NRaFQ4O9/681yq9WKyWTCarWiVCrp3bs369evx2q12u/5zJkzBAYGotFo0Gg0lX5NnQWnFqUGDBhQpnAREhLCzp07K7w+NDSUn376qTZMqxGaH/gdQRBInjSZ3B07itWbssL3SqxP1ErB4WcXjRJBkC6zOpGnVE1x4Xoe3x65zK4zUglQPzcNV1YXu0oKCjdMuiwoBLzCqjy+VbTyQ9IOIBCFaECAMkUpc6ERndIVQeOFWZA+FFSKOvwXKkpu7h0O90+tOzucmNPxr5OWttXebuDZpZzeMuXx/dEUNh9Lsbeb+7vjpnXqjxAZGRkZpyIzrQBRtNq3DgW0NGvWDNMpmyhly6pRo55SSbspPP4t9HwKjdXI11nfQKunam78u5i3fzqFWJBA53ZwNc+PxLxIJg0YjEpVvx72ZOqeiIgIhg0bxsSJE/n4449xd3dn1qxZBAcHM2zYMACmTp3KoEGDaN68OTdu3ODXX3+lVatWgPRMKwgCW7Zs4ZFHHkGv1+Pu7s64ceN49dVX8fb2xt/fn3nz5qFQKCr05Js5cyY9evRg8uTJTJgwAVdXV06ePMm2bdtYuXIlsbGxzJs3j7Fjx9K6dWs0Gg07d+7k888/Z+bMmYDkUfXee+/xyiuvoNPpGDt2LGq1mu+//545c+awcOFC7rvvPod5bxZ1ANq0aWOvIFdEXl4eb731FkOHDiUwMJD09HRWrVrF5cuXGTFiBCAJUn379iU0NJTFixeTlpZmv76i6ndFnlC5ubmkpaURGxuLRqO5ZYofgGnTptGrVy8WLVrEk08+yR9//MEnn3xi987Kzc1lwYIFDB8+nICAABITE5kxYwbNmjWze4zt37+fAwcOEBkZibu7O/v372fatGn89a9/tVdWXLduHWq1mrZt26LVajl06BCzZ89m5MiR9tfphRdeYOXKlUyZMoUXX3yRs2fPsmjRojI930qSkZHBxYsXSUmR1vNFv4+AgIAKX7PaRn6iqEPsbxglE0ZVgIjIC32b8u+DyehUSqLuC5B2D7BpWvVFk6qC2/O7/zvNT8eLw4VC865xZfU/oU0Y0ounQuXpA49+A00fqrIpu1KPsvj4t+A7GatFCv/z0nk59LHkGtH+aKJf4wn8oU4gQ5D6uXnW4a5NkSgl55G6Jbm5pwHw9OyCi74xwcFj6tii+sf59DwOnLvOb2ekGP6oNgE81jGIzqGyV56MjIxMZUm7mEP2qR/RYMSM5CmlVkh5Z4rC9xClUIwaTXRuyKbAttGmUyph2D9rbuy7GFG04EIcwV5SVW8X1xY81f01vL3ryDtept6zZs0apkyZwuDBgzEajTz44IP89NNPdqHBYrEwadIkLl26hIeHB1FRUXzwwQeAFH61YMECZs2axTPPPMPTTz9NTEwMS5cuJTo6msGDB+Ph4cGMGTNITk5Gp9OVa0u7du3YuXMnr732Gg888ACiKNK0aVNGjhwJQKNGjQgLC2PBggUkJSUhCIK9PW3aNPs406ZNIzw8nCVLlrBs2TLy8qT8vF999RWjRo0qNW9Zx5KTk2nUyLFquFKp5PTp06xdu5b09HR8fHzo2rUru3fvpk2bNoCUKzohIYGEhIRS11cUjdOxY0f7z4cPH2b9+vWEhoaSlJR0y2u6du3Kd999x+zZs3nzzTdp0qQJH374IWPGjLHbHBcXx9q1a8nMzCQoKIgBAwbwj3/8w546SKvV8u9//5v58+djMBho0qQJ06ZNcyi0plKpePfddzlz5gyiKBIaGsrkyZMdXveQkBB+/vlnpk2bRrt27QgODmbKlCl2wfBWbN68mWeeecbeLvp9zJs3j/nz55d7bW0ji1JOgCDYXA3t/0BlJTovXqCM7NqYkV0bO563uUrVF02qKqTlSG6a/Vr60ynUi/v1GZwtyoUgaBAEAXWDhhDRv8pjn8otYEy8AouvVALVV6Pn5c7TeTzicYd+piv5CCaBROUVzimv2o+HNK0DVXnvMji1BbJtXisaeYFUEqvVzLlzS8jLP0dBwUUA7mvzATpd6WokMhXz1/87wOXMAnv7gea+RN0nV9mTkZGRqSw5GYUk79xDJ9dF7BPvx4yAIIq4+0mbSsU5paS1TY2KUqZCChU2UUqtBfeGNTf2Xcyly+v4a8R79nbL4MY085fXWzLlExMTc8tzXl5efPHFF7c8v2LFinLHnjt3LnPnOqYpcXd3tyfiBsnDaMGCBTz33HP2Y7cSWrp27crWrVvLPOfr68uyZcvKtaeIYcOG2b29MjIy6NevH6tXr2bo0KG42EIuw8LCqpS2RafTsXHjxnL7jB8/nvHjx1d6zJLcbg7mwYMHM3jw4DLP6fV6fv7553Kv79SpE7///nu5fUaOHGkXB8ujZ8+eFY51M9V5zWobWZRyBoq8hor+QW7jH0UhgAVnDt+7fbvyDFKo3NO9wujT3I/cXbsw22OGpd0FzW3GmW++lonFJvjpxRymNWvF+OD7S/UTDZJrfbYlC9Tgk1VA5LNjiYi4wxXczEbYPh9s1XsA8JWryJXkxo39XLhYnOjQxSUcrVYWUW6HPIPZLkgNbNOQhh46BreTxT0ZGRmZyiJaRb5+5xA+hafp5A1FwXsCcLzwJD3X9yTXlGs7ZvOUqskk2uZCCpSS14Rcca9ijGYr7/3vNP7i7zR1hYxCTxr5tiAoqOKHRBmZO83Ro0c5ffo03bp1Iysry547uUgkutN4e3uzfft2Vq1axf79+2+Z3FtG5mZkUcoZsC0+ytOTKlqeFAXwlRyj7v2mamZRlWe0Vd3TSIs1a14eFtsuoiBIif8auDW4rbHTTdLYLpnf8JhXPs8EP1CqjyiK5J0+C4DFluC8gVVRKk76jlCYWSxIjfoKtG7QuOedt8OJKaqy5+bWmqDAv+Dj00euklNFjl/K4oV1h8nKl8RYV42Sj8fK+bhkZGRkqorVIlKQbQRVFnFaDXmCAgVWFIBRtNgFKV+9L3qV5IlTU4nOLaLImkIvDgUPB0AnV9yrkH2J6fzfnvNMbJtOU1f47VI/Fj/8DnqNsuKLZWTqgMWLFxMfH49Go6Fz587s3r0bX1/fOrPHx8eHN954o87ml6mfyKKUM2BffNw6fK+IWwpXRc5WNWVTTVJN760iTykXjfTnas3Nw1wifM+KBT+323vzzbFV3ROsBehVZZd8/eatuQjnjPTwH4LZJkq5d+t6W/NVC4u5OGRP5wktH7nzNjgxaWnbiY9/A4NRCq/09upJSMi4OraqfvK/E6lculEcstetiZw/SkZGRuZ2sFqlNZAgZrOqgSdhgAYpp5RVAXO6z6FXUC/8Xfz55pCUu6+mEp3vu5HL6+Zw8A8HwFstCysVcSPzGA+F7CK8gZTLdGyvtrIgJeO0dOzYkcOHD9e1GTIy1UYWpZwAuxdHJTylbtVFYY8AdEpZqlrkGWyeUlppUWC8eJKLQT2ACwiCBrPCRAefqnstWawWLuXfAAQUYgF6lVfpPmYzF4/HEu7WDgAzkpeS1uMOJxfPuQof9YY8W2UJXYM7O389IOnCP+2ClCCoCQioG9fl+sy2k1fZczaN/eeuAzDxgSaM7h5KY+/6UYZZRkZGxtkoEqUUGMlTKBDEIpEKrKICPYFoRH8y8yAzzyj1rQlRymrhenoSAMGFVxmmTGd4xBPVH/cuJj0nF9fcaYxpVbwp0yygUTlXyMjIyMjUBLIo5RTcJErdhrBUlAj9btOkDGYLBSbJO8ktLZUTK79k24nDWLS2DoIaH18XHmhUOuyuIv516l/EputA1wLBWoCLqvSDt9koLRCVCpuXlsIFyEWjUZfqW6ukHC0WpABaDLqz8zsxeXnnyMn5k/z8JADatV2Nl1dPuWRzFTFbrLz41REKTcX5yjqEeNHE17UOrZKRkZGp34gWmwiFEbMgiVEAgmgl79IEpsbkAb84XFMjOaU2TsSQlgst59A8P4k33JPBrWyPcBmYu+lPfjgax5I+BVhFgXRzLzqHt8Dbu3ddmyYjIyNz1yOLUs7AzYnOy6q+V4EzlcMQd1H+nBt5Uk4bpUKg4KNVnD/8O5YgH9tZJW5dQhg+vuo5lZZfuMqH11pgtpVMbeUZxKPhj5bqV3DmOvc3HI67zYvKYltNFpVvvWMYpZwThN4Pf/0G1PLCEsBiKeTQ4Scwm3Psxxo06CoLUlXAahU5mJTBxYx8Ck1WVAqBv/dtio+blgFt5CpNMjIyMtXBYrEiWrIRFHm2qnvScUEEiyh9lquVxes2rUrJw61r4L33ynEM6hYA6JQqaDmk+mPexexJSEevygegwOxCQOhimkf417FVMjIyMvcGsijlDNiqoVQn9K44vM8ZXaUEhDLsKs/SnEITw1bt5VxaHgBeLmoslzLsCc6Vmnbc8GtK8yH+uDbQljNSaYxWKx9euEo+kiDlqTDydf9/oCmjKk3B3qsEuzQjSZFGnOI0mYIkfrh46Ko0Z7Ux2EQXnacsSJUgL+8sZnMOCoUOL6/ueHn1Qq0uHYYpc2u+OniR1777094O8NTx8oAWdWiRjIyMzN3D7vX/hyH7v4ge12yeUkWeUyAKAuH+an55eUDNT2w2YNBKxWC0Ef2gcVjNz3GXUFBwmVYe23DzlnJ6+br70KulLEjJyMjI3ClkUcoZKJXnvAxPKXuXsqUchc07yupMmlQ1HLaOX8qyC1IA/Vo2xBqbj0VRnODcoDagVVZNkAJINZjIt0ghSl6przGzw1g0im5l9rUWWhAR+UUdh7XE/bi53aGQJqsF8q9DjpRwE63bnZnXySkouEh6+q/k5EhiiqdHBzq0/7yOraqfnEjJBiC4gZ4Qbz1PdWtcxxbJyMjI3D2kJSUAcKXAg+47vVHY1mkK0YpVUOBaW8nHzQYKFTZRqoxNNxmJZdvP4mOYxvBmp+zH1Bq5uIeMjIzMnUQWpZyA4kTnRblcyhKlKlB4nDrRedVtyiqQwvY6hDTgXxO646ZVkfh5Pmabp5QgqDEqC9EoNVUeO80oJU53EbNRmS7iqS5b2DIZDZizcwGVXZDqYDbT6LHHiIiIqPK8VcZqhU/6wJXjxcc0sigFcOLkdLKyjtjbbm4t69Ca+ocoikxef5RfTl+j0FaBcvJDzWRBSkZGRqaGsVqltV2mSYd9xSK4ohRVWAUFOlUtCUYWAwa7KHX3pHWoSTLyjHyw/QzvPSBt/MXfaMX9LZoSEvxUHVsmIyMjc28hi1LOgFD5BcmtNKeKqvPVN7ILJVHKx1WDm9aWZLygAEvR4k1QY1IWolFUXZS6ZpTG1oiSJ5ZeVTocLjfjOjHT/87D3n9Foy4Wgrq5uRPUpUuV57wtCjMdBSm1K0TUgot/PUMUreTkSDuavr4Po1F7ExLytzq2qn6RXWDmx+Op9rZeraRrmBz2KCMjI1OTZGZmUiAIFPoFo0u7jFUQiY8IocO1x1BcPYoVAb2m5j2ldlzP5kjgX9jjIVUO1smeUmWSkWdAIVhw00jrwYd7LKZ5sLzJJSMjI3OnkT+lnIGbs5iXE753K4rKBzunp1RpKrqfIk8pD31xQnFrTpY9pxQ2Tym1suoJx3+6uB8Ak1HKHaBTlc4Pde3COQz5eSgFFWYs9uN+E56t8ny3TWGm9F3tCvOz4LUUaBF15+Z3MkTRQvyZ+ezd9wBWawEKhYa2962kVau30euD69q8ekHCtVxW7DjLB9vPAOCpV/P77H4cmdufZv5ycngZGRmZmuLa5assW/w+6UazPY+USW3BoNcjCBoE0YpVENDXcOGUXLOF8cfPsyTkrxzwlEQpT1UthQjWY0TRwqWzY/m0/zS0SqnSchP/oDq2Sqa+M378eARBQBAENBoNzZo1480338RsNldr3N9++w1BEMjMzKwZQyvB+fPnGT16NEFBQeh0Oho1asSwYcM4ffq0Q78tW7bQp08f3N3dcXFxoWvXrsTExDj0SUpKQhAEYmNjKz3//PnzadmyJa6urnh5efHwww9z4MABhzGfffZZmjRpgl6vp2nTpsybNw+jrXL6rUhNTWX06NE0b94chULB1KlTK2WPxWJh7ty5DvP94x//cHj23rhxIwMGDMDHx+eW95uYmMjjjz+On58fHh4ePPnkk1y9erXK9xUXF8cDDzyATqcjJCSE9957r8J72LVrF0OGDCEoKAhBENi0aVOl7v1OIItSzoBNlBKt1go6llN9r+i8U2tStvusRM8iUcrTJkpZjUasuflYlArbSJIoVZWcUqdyC3j62Bm+uy61LaZ0AAJcA0r1NRsMAKgEFRZB+r0oFUrUvr6Vnq/aFEq5ftB53Lk5nZjr13dx6dKXGAySm7231/0oFHe4CmI9Z853x1my7Qwx+5IACPHWE+Cpq5WdehkZGZl7mZT9CehSLqJPTUKbngKAAg+aXu8gdbDllPLUudTovFlmCyZRRCFaGHd5E5MC3Xk62KfiC+8hfjl9lYff/xaLodgb3cOjo1y5V6ZGiIqKIjU1lbNnzzJ9+nTmz5/P+++/X9dm2alItAEwmUz079+frKwsNm7cSHx8PBs2bKBt27YOwtiKFSsYNmwYvXv35sCBA8TFxTFq1Ciio6N55ZVXqmVn8+bNWblyJcePH2fPnj2EhYUxYMAA0tLSADh9+jRWq5WPP/6YEydO8MEHH/DRRx8xZ86ccsc1GAz4+fnx+uuv0759+0rb8+6777J69WpWrlzJqVOnePfdd3nvvfdYsWKFvU9eXh73338/7777bplj5OXlMWDAAARB4JdffmHv3r0YjUaGDBliD/WuzH1lZ2czYMAAQkNDOXz4MO+//z7z58/nk08+Kfce8vLyaN++PatWrar0fd8p5PA9Z6BUrH8ZnlIVpZQSKi/41AeyC6QdhQZKKxeeeQbj+SQMGg/ydQ0AoxS+p6paTqnPL6ezNSMf1IEAPNqoLWO7fkpLb0dXbVEU4byJlp7dUSrUmCkEQKm4Q/8u53fBdy9AYZbU1nnemXmdGFEUyc2TvHs0Gn9atniTBg2617FV9YddZ9I4cvEGp2xJzYe0D6KBXs3jnWQPMxkZGZnawJxvRGm0VdpTBiAoXHHRtMU9LwQAjSkXQaGgV9MaFIwuHsBw4mfQDcXVUsC7CR/Ak6+CRt7AKcl/j1+h0CitsXKNLhwzfMLcyO7FOV5lZKqBVqslIEDa8H7hhRf47rvv2Lx5M9HR0UyZMoUffvgBg8FAnz59WL58uT1P7YULF5g8eTJ79uzBaDQSFhbG+++/T+vWrYmMjATAy0tKtTBu3DhiYmLIyckhOjqaTZs24eHhwYwZM/j+++/p0KEDH374IQBhYWE8++yznD17lk2bNvHEE08QExPDnj17mD17NocOHcLX15fHH3+ct99+G1dXV06cOEFiYiI7duwgNDQUgNDQUHr37m2/z+TkZKZPn87UqVNZtGiR/fj06dPRaDS89NJLjBgxgu7db2+9Pnr0aIf20qVL+eyzz4iLi6Nfv35ERUURFVUcQRIeHk58fDyrV69m8eLFtxw3LCyMZcuWAfD555UvkrRv3z6GDRvGo48+ah/nq6++4o8//rD3GTt2LCB5O5XF3r17SUpK4ujRo3h4SE4Ha9euxcvLi19++YWHH364Uve1bt06jEYjn3/+ORqNhjZt2hAbG8vSpUt57rnnbnkPgwYNYtCgQZW+5zuJ7CnlBAg3h++Vw626FOlaVidylbqdD3erVeTM1RySb+QDEHzpDJdOZ5KkiOBgl9kUFAk0gpoCdW6VPKWKcknpcnfS8MbHLO3wMD0Ce5TqZ7qUi8sxFe29+6IQlJhFKXxPqbxDotTJzZB9CYw5Uju4852Z10lJSHyfX39rSWKi5JYaGDgcP7/+qNWyB1llyDWYmbD2EB9uP0uOwYxSIbDo8fv4x2P30amxnEdKRkZGpjYwWIyI2Cr9WkJpddVK84vHaJr4Hc3P/ofGydv59fUohnduVHOT/jSdwj+/A0BnNUjh/2WkKLjXyS40oVcVAODl7svcoT0QqpDfVebOI4oiJoOlTr6qmxpFr9djNBoZP348hw4dYvPmzezfvx9RFHnkkUcwmaTnk0mTJmEwGNi1axfHjx/n3Xffxc3NjZCQEL799lsA4uPjSU1NtYsqL7/8Mnv37mXz5s1s27aN3bt3c+TIkVI2LF68mPbt23P06FHmzp1LYmIiUVFRDB8+nLi4ODZs2MCePXuYPHkyAH5+figUCr755hssFkup8QC++eYbTCZTmR5Rzz//PG5ubnz11VfVeu2KMBqNfPLJJ3h6epbr3ZSVlYW3d+1Uz+zVqxc7duzgzBlpk/zYsWPs2bOnSiKPwWBAEAS02uLnV51Oh0KhYM+ePbe87ub72r9/Pw8++CAaTbFzxsCBA4mPj+fGjRtVuS2nQfaUcgqKFKVbh+9VLO8U5ZSqXO87SVXey+f/cIIv9l+wt13Ts4ht/2JxB1tY36mGB7noc4Jgt8p7eqTbqu5pCo7iw8Vblki25EhurRfEVH7VnsZsC9/T6u/QTmORh1TvqdDpafBqcmfmdVJSUr5GFKXfnUrlTkDAsDq2qH6QXWjiyIUbpGQWYrRY0auVPNEpmG5NvHHXybvmMjIyMrWFVbTyJovpK3iiAdxzLpOh3kWmq3TenN0ej4kv4Opbww9P+TcoVEghaDqNHkb/GxRyeHYRoihy7twHPB74fxAorSt0Gk/ZQ6oeYDZa+WTKzjqZ+7llfVBrq/5/JIoiO3bs4Oeff2bQoEFs2rSJvXv30qtXL0DydgkJCWHTpk2MGDGCixcvMnz4cNq2bQtIHjJFFAkS/v7+NGjQAICcnBzWrl3L+vXr6devHwBr1qwhKKh0brSHHnqI6dOn29sTJkxgzJgx9nxKERERLF++nD59+rB69WqCg4NZvnw5M2bMYMGCBXTp0oXIyEjGjBljt+vMmTN4enoSGBhYaj6NRkN4eLhdwLldtmzZwqhRo8jPzycwMJBt27bhe4tUKgkJCaxYsaJcL6nqMGvWLLKzs2nZsiVKpRKLxcJbb73FmDFjKj1Gjx49cHV1ZebMmSxatAhRFJk1axYWi4XU1NQyrynrvq5cuUKTJo7Phw0bNrSfK/Koq0/I2wLOgE0ccdBubqHk3DKnVJGzlfM4St0WJ2zhRT6uGrqEeuEnSjemsFzFzBZMgiTYnA06wrBWQ6oUvlckSiks2bf0sEo8fIB9X60D4DypmBVWu8ZX5L5a6xhsuaS8w8Gnqf3v415CFEWyso5y5eoPmExSErBePX/lgfsP4OYaUcfW1Q8mrTvC+DUHmfOdlDMjzNeVtx5vy7AOcsiejIyMTG1SaC4kRXEFhW2vUWk1s/F+BZ8/IvDfh/Qs7Tgay6OP1fzEpnwKFNL6RufiBU0erPk56ilmi5XHVu3l0OmvUCsMqBWS90eDBneoorLMPcOWLVtwc3NDp9MxaNAgRo4cyfjx41GpVA6hbD4+PrRo0YJTp6SK0i+99BILFy6kd+/ezJs3j7i4uHLnOXfuHCaTiW7dutmPeXp60qJFi1J9u9xUOfzYsWPExMTg5uZm/xo4cCBWq5Xz588DkufWlStXWLduHT179uTrr7+mTZs2bNu2rdKvRUlPnluxbt06Bzt2795tPxcZGUlsbCz79u0jKiqKJ598kmvXrpUa4/Lly0RFRTFixAgmTpxoP15y3Ojo6ErZvHv3bofr1q2Tngv/85//sG7dOtavX8+RI0dYu3YtixcvZu3atZUaFyQPtK+//poffvgBNzc3PD09yczMpFOnTijKeN671X3d7j04M7KnlDNQhSzlt+piH6LeZJUSyryXAqO0SPhgZAcebO7HofnxiKKF/JyvQTTa/2C/GfE9DRqWTlBeHukmmyhlzUKnKjv068Cmr9GmqMCvI2ZBsqVrmzY8GBWFm5tblearMgk74OiXcOmQ1L6HE5xn3NhLbOw4e1urDUSvb1yHFtUfDl+4wcmULI5ezASgZYA7OrWSCQ/c2x53MjIyMncKU+IOAHvVPYXVzLr0FLRGC/8Se3McBWpVzW44WUWROG0wx9ykB1LdPbihVR6XMws4dimLic3zAPjn8Wks/+sQgrzltUV9QKVR8NyyPnU2d1WIjIxk9erVaDQagoKCUKlUbN68ucLrJkyYwMCBA/nxxx/ZunUrb7/9NkuWLOHFF1+s8NqKcHV1dWjn5uby/PPP89JLL5Xq27hx8f+Eu7s7Q4YMYciQISxcuJCBAweycOFC+vfvT0REBFlZWaSkpJTyzjIajSQmJjJw4MAKbRs6dKiDWBccXLx56urqSrNmzWjWrBk9evQgIiKCzz77jNmzZ9v7pKSkEBkZSa9evUol+i5Z/a4oh1NFdOnSxeG6Ig+kV199lVmzZjFq1CgA2rZty4ULF3j77bcZN25cWUOVyYABA0hMTCQ9PR2VSkWDBg0ICAhw8Iyr6L4CAgIcKvYB9nZAQABhYWFl3oMzI4tSzkBZbk6i6JDdvPinskUnhVAyfM9JEUv9UIpCkyQEFVUDMxisiJZrIEohdZk+eXTpNhRP/8r/c3108Roxl9PJs0hbloIlG63Sr8y+poICXATJ5dFs2210b9gQd/c7UJFl+zy4UlwJhgb37kIpJ+cEAGq1Dy4uoTQOmVDHFtUPsgpMPPXp7xjN0t+6QoDv/t5brq4nIyMjcwcxHtvKyn+aORIqYhVAabGgVIuIIhwRmwKgVtasaPTPC1dZ2H6lva2v4fHrOzeykwnzuIBeJVVXXvvcSNz0Za8FZZwPQRBuK4SuLigSUkrSqlUrzGYzBw4csIfvXb9+nfj4eFq3bm3vFxISQnR0NNHR0cyePZtPP/2UF1980e5xVDK/U3h4OGq1moMHD9qFpKysLM6cOcODD5bvJdmpUydOnjxZys7yEASBli1bsm/fPgD+8pe/MHPmTJYsWcKSJUsc+n700Ufk5+fz9NNPVziuu7t7pZ+zrFYrBluFdJA8iSIjI+ncuTNr1qwp5W1UlfsrQq/Xl3ldfn5+qfGVSqW9al5VKQpD/OWXX7h27RpDhw61n6vovnr27Mlrr72GyWRCrZZScmzbto0WLVrYQ/du597rElmUcgLsyRUd4/du6lN+db0i/epGvpE/zgbRXO9ciS2FSnpwFRSJUmolBTnZnL/2J+ZCSZBq4JrN9KZpMH5aleb+KDmNK7Yk5wrTVQSxEDdN2V5PZpMRpSD9c5ttL2plXE9rhDwpTI37X4aQ7hDU6c7M60QUFFzmcsp6Llz4CIDgoJE0bTq9gqtkRFHkzNVcTl/JxmiW8kdFtvTj/mZ+siAlIyMjcwcxXMwm/UA62T7DsApSPhWrwsqxXwJxc3HnuwekB1JNTYpGN5JIuHgG8MfHeAO/Bg15JrjsvCv3IllZR7l+/i/MLVHbxkVb/3KuyNRfIiIiGDZsGBMnTuTjjz/G3d2dWbNmERwczLBhUq7UqVOnMmjQIJo3b86NGzf49ddfadWqFSClEBEEgS1btvDII4+g1+txd3dn3LhxvPrqq3h7e+Pv78+8efNQKBQV5kmbOXMmPXr0YPLkyUyYMAFXV1dOnjzJtm3bWLlyJbGxscybN4+xY8fSunVrNBoNO3fu5PPPP2fmzJmA5FH13nvv8corr6DT6Rg7dixqtZrvv/+eOXPmsHDhQu677z6HeePj40vZ0qZNG7uwUkReXh5vvfUWQ4cOJTAwkPT0dFatWsXly5cZMWIEIAk3ffv2JTQ0lMWLF5OWlma/vqj64a0o8iLKzc0lLS2N2NhYNBqNg0B4M0OGDOGtt96icePGtGnThqNHj7J06VL+9re/2ftkZGRw8eJFUlJSHO43ICDAbtOaNWto1aoVfn5+7N+/nylTpjBt2jR72GVl7mv06NEsWLCAZ599lpkzZ/Lnn3+ybNkyPvjgg3LvOzc3l4SEBHv7/PnzxMbG4u3t7eAhVxfIopQzIBQH392ySwU9is5PWHsIg7k1XRo+xdJWde02VfXEkUWilE6tJG77T1zNPWs/56vJB4/SyfTKw2wV7VX3PK4tRm2IZ3D4o4xqMapUX9Eq4m72ooHGDxERM5ItN79R1hpFCc47jZXySd2DJCS8zbW0/9rbDbxur4zsvcZHO8/x7v9O29sRDd3455h7u2qjjIyMTF2Q9dN5knJacLHxg3BDel9O8NUTeE2FxUUDorRRoFHVYHLtbydicBsIDR9mavJ6Jvb/+J7MR1kWq35N4Oz57xgSBgaLGqPVg1ZNBqNQyI9AMneWNWvWMGXKFAYPHozRaOTBBx/kp59+sj9nWCwWJk2axKVLl/Dw8CAqKsouMgQHB7NgwQJmzZrFM888w9NPP01MTAxLly4lOjqawYMH4+HhwYwZM0hOTkanK985oV27duzcuZPXXnuNBx54AFEUadq0KSNHjgSgUaNGhIWFsWDBApKSkhAEwd6eNq3YOWDatGmEh4ezZMkSli1bRl6eFB771Vdf2cPcSlLWseTkZBo1cqxCqlQqOX36NGvXriU9PR0fHx+6du3K7t27adOmDSB5BiUkJJCQkFDq+ooqJnbs2NH+8+HDh1m/fj2hoaEkJSXd8poVK1Ywd+5c/v73v3Pt2jWCgoJ4/vnneeONN+x9Nm/ezDPPPFPqfufNm8f8+fMBSaiaPXs2GRkZhIWF8dprrzm8ppW5L09PT7Zu3cqkSZPo3Lkzvr6+vPHGGzz33HPl3vehQ4eIjIy0t19++WUAxo0bR0xMTLnX1jbyO7IzUOQFZb0pfK9kl7IPlxhC6mGwhe0cutoRuFp2Zycm35ZTSv1nLBc3fgOAQhVKoTaXPr6/g0fly24CpJlMWAEBK5rCOF7rPpunWj5VZt+831Pp6D6QzZqD7FD8Yj9eq55SVgsc/xpyUsEkvZGj9ay9+ZwYq9XE9QwpuWGjRk/j6dEBb6/edWyVc1NospCWY2BvQjoAXi5qPPRqnu4ZVreGycjIyNyjiAYLJqFoM0vKZSlaryCIUCAaEW2iVI2G7+WkUugppRzQtnlMFqRKsHZfEl18pU2/P1I7Y/GYzWPN76vgKhmZ26O8B3svLy+++OKLW55fsWJFuWPPnTuXuXPnOhxzd3d3SGKdl5fHggULHMSJWwktXbt2ZevWrWWe8/X1ZdmyZeXaU8SwYcPs3l4ZGRn069eP1atXM3ToUFxcXAAICwurUCgqiU6nY+PGjeX2GT9+POPHj6/0mCWpii1FuLu78+GHH/Lhhx9Wy6Z33nmHd955p1pjgCQslkwKXxn69u17W/d+J5BFKWdAUSJNuQUu/OqL4cdeKL28CFn9T7RNm1bsKXXThptKYaolY2sPk8Vqz4WT9K+dXDa7AfkotW3J9TpCg6Dm0Hl8lca8YpAWhFoxHwERnfLWOwfm9ALSFNnkKArtx3Q6nUPCvRon8Vf47vnitkJ9zyU4t1qNHIt7jpycE1gsuajV3jSPmFsc1ipTJgVGC5GLf+NKdvHf6wcjO9C3hX8dWiUjIyNzb2M2m7hWkIRRTHM4Hu/VmIOBoWCVBKsaFaVMBRQqpA00XZOeNTduPScnJ56ufj/R2lvyWItqF0G3dm3q2CoZmZrj6NGjnD59mm7dupGVlcWbb74JYBeJ7jTe3t5s376dVatWsX//fvr161cndsjUP2RRygmwx/2KYMhWUZCuAXKw5uSQt/93SZSydylblrpZlFLXQ1HqRr6UO6pd9p/EFZ7HYrWV/FR4EtgSmLivymNeMUhjasVcAPQqfZn90i6cJ/d8kj1kT5evZNiJAzTf/D1KZS3m5Mm+LH33aCSVbm4aCco7FC7oJGRlxZKRUaz0N2z4qCxIVYLEtFyuZBciCOCmVRHu60qXMO+6NktGRkbmnubijTNkGVPtbVEQQBR5q8sz5KuljTEBcNXU4BLcbMBgE6W0ihoMC6yniKLIkYs3yEiaxBPNztuPB3oHo5BfH5m7jMWLFxMfH49Go6Fz587s3r3bnkS7LvDx8XEIaZORqQyyKOUU2D4grSJW800P4zYXO4HyE50rblKlNE4oSt1qGSCKIltPXuVYciaCaOWB63sxInlMWZVKnmk4C/fQsVWa62KBgTWX04nNyQdAa81EBHSq0p5S15LO8eXMl+jhNxizh/RQr7CAzs21dgUpAEOO9D20Fzy+unbnckKsVhNZWYcB8Pa6n4jmr+Pq0rSOrXJu3v7vKTYcTMZk8yps16gB30+SwxxlZGRknIEM0w0ABIUnequObJcChLxcuyA1vFMjujXxwtOlBjegzIXFnlJy6B6/xafxTMxBVj2Ugk4Fh6925LHOHQgMGF7XpsnI1CgdO3bk8OHDdW2GjEy1kUUpZ8C+gBCxmsuWbirMKXVTW6Uw14Rld4QTKdk8/6X0hqq1mlDYBCmVywDSGu3BXZkJSm2Vxlx58RpfpFy3t/Nzj6GnbFHqRqrkraQS1OQJtpxWOhcCXn/9Nu6mihSJUtrKlUK9m0hOjuHM2bfA9vtu4NUNN9eIujXKyRFFkX/tv0CesbgkcPcmsneUjIyMjLNgtkrvz4LCHZ3oSn7+NYxC8XL7rcfvQ6euuQ2vLVczOBY6nos6qRCMLErB2Ws5KAUzOpVUOt4naC7Nm7evY6tkZGRkZG6FLEo5A0WJzkURq+UmecnuKWVr3nIIx+vUTiBKOZgk3Dqp2lVbThwvFzX9GrnARQAlKu19mN13Qj6gqpoodd0k3b+mIBZ14Um0ub+iU+oI9yxd1c5YUACAHhXXbeF7Gk8v9G3bVmnOKvH7avjjU8iXElTfk6LUpS8pEqQ0Gl8CAx6vW4OcmNSsAl75+hgZeSa7IPXfKQ/gqlER4l12SKqMjIyMzJ3Hai1afymllAuiiLWEUFSTuaSuG81MPHkRsfFf7cca1KDgVR+xWk34GafzYd+isucCf3uwFtdzMjIyMjLVRhalnIESblBiKU8pmygllGzdeogitEojUItV46rArbP8S8cLTNJDdvOG7sx4qCFf/gyCINku6MySKKWs2r3kWySxQ5v/O37GOP41bAO+el88NKWTiGtOCPRtNJY0jZVrigwAVKpa/tf4/Z+QebG47d+6dudzEqxWA1evbqGwMJWCgiQEQU3vXjtRq33k8szl8MOxFPYmFHv+NfN3o1XgvZUQX0ZGRsapEUUOL38Fo+WS1BYUIJhBBIstT6KAiLKmchoZ88nc+ykifdBaDYxP+Z7GfafQzu3e3aj4+lAyq7b9zNzux8Gm/Xl4dJDzVMrIyMg4OfJToBMgFO2gidwyfK/CMW66rIEuE6gfVbgKbJ4feo0SY76UAwrBFmank1yvq+oplWcTpQSrAb1aX6aHlMVs5mr8WVwv69jtco1LyuKHfpWqlgW9wmzp+/DPoGEb8GtZu/M5CVeu/MCp0zPt7QYNuqDVNqxDi5yb/xxMZt7mExSapf+RxzsG81jHYNoGe9axZTIyMjIyJbm2bwfuuWv52juCnqk+gALR5g1stHm01mTBPc78j8JDa6FLHzxNuSxIWQ8hi2pwgvrH1pNX0SjyAEgv8CGk2Ud0jpC9pGRkZGScHXnrwCkocoMSEW8ZvieUOFTa88hV66gvNtBmcWu/Kuei0OYppVcryc+x5VgSNCjNBSi10uKiqp5SeRZbTgexEJ2ydB4pgJ+Wv893by0AIFeQQvg0Rne0BX60b9uhindRBUSxRILz3uDfqrSqeJeSX5AEgItLUwIDhhPRbE7dGuTkfH/sMgUmC6IIKoXAyK4h9Gnuh7erc3hBysjIyMjA3m8TOPyfA1xSqxDEos9zJe4KL/7+2VekDgyQjtTkqrswkwLb+kan1cNT/67BwesfVqsBN47SyvsMAGH+IfRq0QmF4t6qaCwjIyNTH5E9pZyBkjmlbvKUEm/KKQWS1HSzhDFvSGs2HU3hy98vAM6d6FzEMQdWUfiem1Vg62dSwnNB0OKSn0xIUXLQSnpKxWbns/V6FidypTxVgtVQZnJzgPTkCyht45tsuaR67t1Kt/Vf4hpcC15mZiNc2CsJUqItUfU9kksqOzuOS5e+JDPrEAABAcNoEjapjq1yTkwWK9M2xHL2ai7nr0ui7Ooxnegd4YuHTl5cy8jIyDgbF/68jo9gxQIorLaDgoKGXr7o3dwxWKWDNVrQ12worrjn4g2N7w2P67KwWEVOn3mfwY3W2I9pNV51aJGMjIyMTFWQRSlnQCj2lCqV6PymLlC2/1PnUG86h3rjqVez8tcESstWzkuB0QqiiHfKBcyFaQAIqPG6vpf7ryRKndwDKjVW9MkkkgqMAKgFEaXpEjpl2RXdTEYDKpsoZRakBaOLKRe9Ty3l6tn5DuxeUtwWlKBxrZ25nIzT8a+Tk3PC3nZxKR1OKSNxLDmTLXGp9rZOraB7uI8sSMnIyMg4KVazFQELFkFAafOUElBixMjSw0tJzkoBJI/XGsNcSIFC2rDTKevPmq+myTeaGfDBLoaHHaCdH6Tl+xDo3YiQRuPq2jQZGRkZmUoih+85AyUWKaVyStkUKAdPqXKi8kroW3VPJUPScg0mWuaeQXP0MywGyVMq8OpROit2EZ6fBSodBHascByD1coFmyDVyBxHSPYXKMQCtLfwsjIbjXZPKbPNU6rR66+h0JXtWVVt0iWXcho0huDO8NDr90TYntmcYxekmoS9SNv7/om/34A6tsr52H02jSc/3s8rXx8DoG2wJxue68HOVyPlcD0ZGRkZJ8ZisSLYVhKCtehzXcHlglTW/LmGtHypiIq6hsQjg9XK/5kC+HfAIAD0int3OX/2ai6XbhSgV0lpGH5JGUXXLv/Bx+eBOrZM5l5k/PjxCIKAIAhoNBqaNWvGm2++idlcvQiW3377DUEQyMzMrBlDK8H58+cZPXo0QUFB6HQ6GjVqxLBhwzh9+rRDvy1bttCnTx/c3d1xcXGha9euxMTEOPRJSkpCEARiY2MrPf/8+fNp2bIlrq6ueHl58fDDD3PgwAGHMZ999lmaNGmCXq+nadOmzJs3D6PRWO64qampjB49mubNm6NQKJg6dWql7MnJyWHq1KmEhoai1+vp1asXBw8edOiTm5vL5MmTadSoEXq9ntatW/PRRx859Hn++edp2rQper0ePz+/Ml/Tixcv8uijj+Li4oK/vz+vvvrqLf+G9u7di0qlokOHDhXew8aNGxkwYAA+Pj5V/n3UNvfup5gTYQ9ls1rLqL5n61Pi5/L0pqKxxHr0q80qMOFrtCUZF7QocMHa5SpB/bTwl8/hud/A1afCcVIKTYiACjOFKe+Tc2M7ACHuIWX2NxuNZPk0YLPmIBabp5RX3741cEe3oCi5+UNvwMRf4IGXa28uJ8Bkyub3A1Hs3NUBAJ0uhPDwqfj7D0QQ7u2S1WWx+rdE/jifQdJ1Kdl/r6Y+dA/3oaFHLYmkMjIyMjLVJj8rkxvJn2Mt+MXmKWU7ISgwIT1EdG3YAwAXTc28n29Nz+Z1WvGjX18AvNT37mdqZk48EQ0S8XPJBeDt4T1x0ciBIDJ1R1RUFKmpqZw9e5bp06czf/583n///bo2y05Fog2AyWSif//+ZGVlsXHjRuLj49mwYQNt27Z1EMZWrFjBsGHD6N27NwcOHCAuLo5Ro0YRHR3NK6+8Ui07mzdvzsqVKzl+/Dh79uwhLCyMAQMGkJYmRdWcPn0aq9XKxx9/zIkTJ/jggw/46KOPmDOn/Hy1BoMBPz8/Xn/9ddq3b19peyZMmMC2bdv48ssvOX78OAMGDODhhx/m8uXL9j4vv/wy//vf//jXv/7FqVOnmDp1KpMnT2bz5s32Pp07d2bNmjWcOnWKn3/+GVEUGTBgABZbPmSLxcKjjz6K0Whk3759rF27lpiYGN54441SNmVmZvL000/Tr1+/St1DXl4e999/P++++26l7/tOIb9rOwWSkHTj31+j0t+0YCkzp1RZWaVw6OcUnlIVYLGKJKblkpJZiMYqVdlTabugsxoIGP0ItH6qSlX3kgulN1kXMRcBeKrlU/QN6Uvnhp1L9S08e4P2nv34tcEVQBKLlKjRaqtW5a9S5GfApYOQZSsTrbs3KqfduLGPvLyz9nZw0Kg6tMY5MVuszNt8gosZ+cQmZwLw2iOtuC/Yky5hcj4MGRkZGWfn0ukTWIxXMWotXDnWjHZGve2MEoNJQ37S8yS6NAMsaGoo03mGSRK7wgouEaUt4KnwITUybn1CFEXOX/oZ85VJzOpWfFyjuTfWWDLOi1arJSBASjvywgsv8N1337F582aio6OZMmUKP/zwAwaDgT59+rB8+XIiIqQ0IxcuXGDy5Mns2bMHo9FIWFgY77//Pq1btyYyMhIALy9pbThu3DhiYmLIyckhOjqaTZs24eHhwYwZM/j+++/p0KEDH374IQBhYWE8++yznD17lk2bNvHEE08QExPDnj17mD17NocOHcLX15fHH3+ct99+G1dXV06cOEFiYiI7duwgNDQUgNDQUHr37m2/z+TkZKZPn87UqVNZtKi48uf06dPRaDS89NJLjBgxgu7du9/W6zh69GiH9tKlS/nss8+Ii4ujX79+REVFERUVZT8fHh5OfHw8q1evZvHixbccNywsjGXLlgHw+eefV8qWgoICvv32W77//nsefPBBQPLk+uGHH1i9ejULFy4EYN++fYwbN46+NieH5557jo8//pg//viDoUOH2o+VtGXhwoW0b9+epKQkmjZtytatWzl58iTbt2+nYcOGdOjQgX/84x/MnDmT+fPno9EUR09ER0czevRolEolmzZtqvA+xo4dC0heZs5G/XGnuZsp4XZtLpB2uxQuLtKBIlGqRJhX+Z5S9p9q0MCa5Zqo4ChmXvk6jn5LdrInIR2t1abaCxpMijyCGvWskiAFcMkmSunELADa+ralV1AvtErHcbLT00jfdIoAl6bSlKJAl/y2NNM9iLJGs5DaWDcC1j8JGbb8WPoGNT+HE2G1GsnOjiMlZQMAAQGPcX/v3wkLi65jy5yPQxdusO7ARXafTSffKD2wDO/ciJ5NfVDXaJkmGRkZGZnawGrb3b5h8CDH6IGAlP9PULiTY/HEUtCES9elPsFeLtWf8NIhDBf/AKBj9mnmKxJo4XrvedQ+E3OQJT/9BEC+SU+2KRA/v4G4ujavY8tkagNRFDEVFtbJV1lVz6uCXq/HaDQyfvx4Dh06xObNm9m/fz+iKPLII49gMpkAmDRpEgaDgV27dnH8+HHeffdd3NzcCAkJ4dtvvwUgPj6e1NRUu6jy8ssvs3fvXjZv3sy2bdvYvXs3R44cKWXD4sWLad++PUePHmXu3LkkJiYSFRXF8OHDiYuLY8OGDezZs4fJkycD4Ofnh0Kh4JtvvrF78NzMN998g8lkKtMj6vnnn8fNzY2vvvqqWq9dEUajkU8++QRPT89yvZuysrLw9vaukTlLYjabsVgs6G5K8aLX69mzZ4+93atXLzZv3szly5cRRZFff/2VM2fOMGBA2WlL8vLyWLNmDU2aNCEkRIrs2b9/P23btqVhw4b2fgMHDiQ7O5sTJ4rz865Zs4Zz584xb968mrzVOkP2lHIGSuhHDZrl4dGogEzXsWT/+N+yupSLwh6+54wI3LDqibE2AKEQpBQLtHW5QStlKiakqnsmIY8A18olNgcwW0V+TM/kv+mSGKW1ZlIIZVbdu3o+kX/Nnsqjwc9hsSnNgqjAkpbBA88+VM37uwXXE6TvDe8D/9YQ1Kl25nESTp2ezZUrm+xtrwY90Gr96s4gJ+ToRUmMumCrrtcq0IPnHwwnoqGbnD9KRkZGph4hWiz4aINxU2SQRgEBmTmkB/ZDqe1ArM9VAEb19ODhiOZ0bVLNh6X8DPh8IIbgJyH8eTSi6Z4pmFISURTZfTad4c2kcPc9Kb3pfN/rtGtbdroGmfqP2WBg+bi/1MncL639BvVt5JsVRZEdO3bw888/M2jQIDZt2sTevXvp1asXAOvWrSMkJIRNmzYxYsQILl68yPDhw2nbti0gef4UUSS0+Pv706BBA0DKcbR27VrWr19vD99as2YNQUFBpWx56KGHmD59ur09YcIExowZY8+nFBERwfLly+nTpw+rV68mODiY5cuXM2PGDBYsWECXLl2IjIxkzJgxdrvOnDmDp6cngYGBpebTaDSEh4dz5syZKr9uJdmyZQujRo0iPz+fwMBAtm3bhq+vb5l9ExISWLFiRbleUreLu7s7PXv25B//+AetWrWiYcOGfPXVV+zfv59mzZrZ+61YsYLnnnuORo0aoVKpUCgUfPrpp3bvqiL++c9/MmPGDPLy8mjRogXbtm2ze0BduXLFQZAC7O0rV64AcPbsWWbNmsXu3btRqe4OOUfeincGSnhBuTY04BpgLOEZVVpeKjfRub2Pc3pKZYnSm7pOhMbeeuYPac0PQTEorOlSB0GLqCzEQ1P5Cnib0zJ5/sQFtl2XwvBUFmksnbL0B8j1SxdBFFEJKntyc8FipXvTazRqUQvhUqIIRinPAaP/A8M/BeXd8eZRFqJo4do1SUwVBDX+/o/QsOGjdWyV8/Hu/07zzeFLHEy6AUCPcG8e6xhMmyA57EBGRkamPmG1WGns2hKLVVqcuRoKyfQJQRCU5Nk8vjs2duXh1g3x1FezimruVbCaMdjWN1qvxtB2RPXGrIdcvvobT0Z8w32+UnLgFyI78mRXWZCScQ62bNmCm5sbOp2OQYMGMXLkSMaPH49KpXIIZfPx8aFFixacOnUKgJdeeomFCxfSu3dv5s2bR1xcXLnznDt3DpPJRLduxfGrnp6etGjRolTfLl26OLSPHTtGTEwMbm5u9q+BAwditVo5f/48IHluXblyhXXr1tGzZ0++/vpr2rRpw7Zt2yr9WpQMNbsV69atc7Bj9+7d9nORkZHExsayb98+oqKiePLJJ7l27VqpMS5fvkxUVBQjRoxg4sSJ9uMlx42OrlzExu7dux2uW7duHQBffvkloigSHByMVqtl+fLlPPXUUyhKRDytWLGC33//nc2bN3P48GGWLFnCpEmT2L59u8McY8aM4ejRo+zcuZPmzZvz5JNPUlhYWCn7LBYLo0ePZsGCBTRvXrZnaHmvqbNy9z4d1yOEEn/MgvImxanMnFLljFVUfQ/BlnvKORBstphtOmg7lMx4sgNdGrkRu8mXwkIlAlkIghati8khXLEijuVIO2VhOiWBwnXS0n4FyvaUMhtsuasENRakf36VVk/D1169/ZsrD7MBrLZqCVq32pnDScjI2EvGjf1YrQYUCg19+5xAEGTduwhRFNlwMJnLmQWcvpIDwLP3NyHM15Uh7UrvMsnIyMjIODfJyclsO3SEAt8CfHPzACVWhYhgW+tYRQEE0KmqKUYVYZLWOwadtImma9oXPO6tz4//HEzGI2saD4fm2I9pdZX3rpepn6i0Wl5a+02dzV0VIiMjWb16NRqNhqCgIFQqlUOi61sxYcIEBg4cyI8//sjWrVt5++23WbJkCS+++OLtmm7H1dXRozI3N5fnn3+el156qVTfxo0b2392d3dnyJAhDBkyhIULFzJw4EAWLlxI//79iYiIICsri5SUlFLeWUajkcTERAYOHFihbUOHDnUQ64KDgx3sbtasGc2aNaNHjx5ERETw2WefMXv2bHuflJQUIiMj6dWrF5988onD2CWry3l4VM7hoUuXLg7XFXkpNW3alJ07d5KXl0d2djaBgYGMHDnS7jlWUFDAnDlz+O6773j0UWlDvl27dsTGxrJ48WIefvhh+5ienp54enoSERFBjx498PLy4rvvvuOpp54iICCAP/74w8Gmq1clr9uAgABycnI4dOgQR48etYdbWq1WRFFEpVKxdevWcl9TZ0UWpZyCYgFGoRBvPlSqWZnqe86QU0qgdCihWZQWakVpQDHlc7IwEsG6AwCN2UDfFlULb0sukHJJCZk/kHCtOHa5LG8rk02UsigE8gXpZ6VSVSURrFKIIlw9ATlXio+p714X+6ysIxyNfdrednNrJQtSN3H4wg1mbTxubwsCRPdpip97LSTXl5GRkZGpdbZ++ysFyRcIvJJKocUKSiUWhRUlUn5Ki20dpNfUlCglbaYZlNIqSquo+7XenST+Sg6zNx7lk/6SILXvygDG3d8Vf79BdWyZTG0jCMJthdDVBUVCSklatWqF2WzmwIED9vC969evEx8fT+vWre39QkJCiI6OJjo6mtmzZ/Ppp5/y4osv2j2OSuZ3Cg8PR61Wc/DgQbuQlJWVxZkzZ0qFi91Mp06dOHnyZCk7y0MQBFq2bMm+ffsA+Mtf/sLMmTNZsmQJS5Yscej70UcfkZ+fz9NPP13WUA64u7vj7u5eKRusVisG27McSB5SkZGR9op2Jb2WgCrdXxF6vb7c61xdXXF1deXGjRv8/PPPvPfee4BUsdBkMpWyQalUYrVabzmeKIqIomi/r549e/LWW29x7do1/P39Adi2bRseHh60bt0atVrN8ePHHcb45z//yS+//MI333xDkyZNcHV1rfRr6izIopQzUEIQEZSOx+zJ9UqsO8rzgCoayuqk4Xtm20JNZ7uhvd/8m2sZ+0AsAKBT7D/xG1g1r6V0WxWa/AKpJGefRn24z/c+mnuVdmlUXLeiC+nCl/piN0alohb+DX59C3aVKP+qdrmrw/aupW0FQK9rjJt7K8JCX6hji5yHU6nZ/H7uur26Xoi3noda+NOhcQNZkJKRkZGppxTkGsk4+iuawjSuAygl4Slfp8ZF5wZ5YC3aiFPXjCh1w1DIRbfmpGh9ANAq7q3NnyvZhbio8+3tqJ5v0rixnLNSxvmJiIhg2LBhTJw4kY8//hh3d3dmzZpFcHAww4YNA2Dq1KkMGjSI5s2bc+PGDX799VdatWoFSJXvBEFgy5YtPPLII+j1etzd3Rk3bhyvvvoq3t7e+Pv7M2/ePBQKRYWb7TNnzqRHjx5MnjyZCRMm4OrqysmTJ9m2bRsrV64kNjaWefPmMXbsWFq3bo1Go2Hnzp18/vnnzJw5E5A8qt577z1eeeUVdDodY8eORa1W8/333zNnzhwWLlzIfffd5zBvfHx8KVvatGmD+qb3yLy8PN566y2GDh1KYGAg6enprFq1isuXLzNihBSyfPnyZfr27UtoaCiLFy8mLS3Nfn1R9cNbUeQJlZubS1paGrGxsWg0GgeB8GZ+/vlnRFGkRYsWJCQk8Oqrr9KyZUueeeYZQPLE6tOnD6+++ip6vZ7Q0FB27tzJF198wdKlSwEp5HLDhg0MGDAAPz8/Ll26xDvvvINer+eRRx4BYMCAAbRu3ZqxY8fy3nvvceXKFV5//XUmTZpkrxJ/8+vq7++PTqcrdfxmMjIyuHjxIikpKUDx7yMgIKDC16y2uXufkusTipKi1M3he7bjjqrULRGcwEOqPIrC93SAubCA37dssZ9TiKA3GlBoq7YTkm6URCmrWcqcPqf7HILcSif5sxrM+J7ywejiAtgWNaKCgAahVb+Rikg9Jn139QNdg7s258PVqz+SfOkL8vKkN7Xwpi8T0PDeK019K4xmK09+tJ8cg9l+LLKFPwuGlf+hISMjIyPj3JgKLQhmKWekoPACQSNV3At+Ec116QGrSJSqifC9HLOFbqle5HT+1H7sXvKUKii4SOHVmbzcSdqAVKnc6dpEFqRk6g9r1qxhypQpDB48GKPRyIMPPshPP/1kF2QsFguTJk3i0qVLeHh4EBUVxQcffABI4VcLFixg1qxZPPPMMzz99NPExMSwdOlSoqOjGTx4MB4eHsyYMYPk5ORSVeJupl27duzcuZPXXnuNBx54AFEUadq0KSNHjgSgUaNGhIWFsWDBApKSkhAEwd6eNm2afZxp06YRHh7OkiVLWLZsGXl5UgGfr776ilGjRpWat6xjycnJNGrUyOGYUqnk9OnTrF27lvT0dHx8fOjatSu7d++mTZs2gOQ9lJCQQEJCQqnrK6qY2LFjR/vPhw8fZv369YSGhpKUlHTLa7Kyspg9ezaXLl3C29ub4cOH89ZbbzkIav/+97+ZPXs2Y8aMISMjg9DQUN566y17PiudTsfu3bv58MMPuXHjBg0bNuTBBx9k3759dq8opVLJli1beOGFF+jZsyeurq6MGzeON998s9x7qgybN2+2i2hQ/PuYN28e8+fPr/b41UEWpZyAkmq2Qlnd8L2iPs65UDEVLdAQMGTZyu+hRu36KJ3jvkApiihcK1cyOc1o4mh2PqkGKXzPYrqGEtAqS3ufHPnpe079/Ct99MPtCc5bZHUio8CNboPbVPu+SlGQKX0f/AG0ujtFGlG0cubsPzAapZ0JpdIVH+8H6tgq58BqFVm7P4mz13LtgtTQ9kG4aJQ8e3+TOrZORkZGRqa6mE1WsErrCbXbEBRKx4pQBZocrtjWdC7qalZVNRVy+fDX5IhtUYgWAi05eHoGMMD33iiO8dPxVA7ELefBwD9obMvM4OLStG6NkpEpg5iYmFue8/Ly4osvvrjl+RUrVpQ79ty5c5k7d67DMXd3d3sibpA8jBYsWMBzzz1nP3YroaVr165s3bq1zHO+vr4sW7asXHuKGDZsmN3bKyMjg379+rF69WqGDh2Ki4v0TBcWFlahUFQSnU7Hxo0by+0zfvx4xo8fX+kxS1IVW4p48sknefLJJ8vtExAQwJo1a255PigoiJ9++qnCuUJDQyvVr4j58+dXSlSqzmtW28iilJOhUNn+SYr+V6qY6Lxo08zZqu9Zgeuo7dX3/MwmxFVSeJug8ECpCUeLEff+D+Nqi7UudzxRZNiRBM4VSPG3OoWAwiyJI2UlOD/68xas143QCEyCtIhscOIbBn+2BPeQGtxpu3wEErbDDalyBfpaqOjnJBQWXrYLUve1WY67e2vU6gZ1a5STsDcxnQU/nLS32zXyZPlTHcu5QkZGRkamPlGwfx8KixFpuaWmi+UrDrbezqcNJNXEKojknV4IQAN9NQudnN5Cwd6V0OljAg1pHM75Cvqvrd6Y9Ygv91+gsVqqVnvwSgf8/B/j6faD69gqGZm65+jRo5w+fZpu3bqRlZVl96YpEonuNN7e3mzfvp1Vq1axf/9++vXrVyd2yNQ/ZFHKCbBkZtp/VulsCexuigUWKhe9VyK5uHOJUp+omvOHwk9Sp4CI9LMYz56Gxv4ICmmxtmPZY8zsPatS4yXmG+yCVHdPVx7x0bEySXplyvKUMhsMaARbkkCbES55abj61nBFvK/HQebF4rZbw5od3wnIzz/P0dhxFBZKLvRubq1p2PDROrbKObiWU8juM+nsTUwHINzPlf6tGjKkfelwUhkZGRmZ+sup9b8g2vKACoIad00qFoUFq8KKKacVQsYQsOXRrLanVF4aBQppbeOi0UPf2RVccPdgMmURoNlDqFsyAH3v60O3+/6K4h4KXZSRKY/FixcTHx+PRqOhc+fO7N69G19f34ovrCV8fHx444036mx+mfqJLEo5AQq34uz4xYnObd/L8pQqx+WwpovIVYviWEKSBanynBYTjSwG1IWniQ+UEnUKCjfMgomOwZWvuleU3LyJXs3fvc+Rni+JACpBhaqMxOVmoxG9whUREYsgiVJalYCgqeZC8WaKqu21fRKCO4NvRM2O7wRcurzeLkgBBAeVjg+/V5m2IZa9Cdft7cgW/sx+pFUdWiQjIyMjU9Mc276dOE06FBXCEtT8GBTAAUsyYEU0+lGY7w2At6sGN101l9umAgqUkhe43iMA/FtUb7x6xJkzCxjc+Ht7u7FfkCxIycjY6NixI4cPH65rM2Rkqo0sSjkBDZ4cgSklBddePeH3kTedLRKlhJuOlI+zhe+ZBCmXVD/NWbqlpXOKS6CWFDhBFYBabaFf44GVHi/LJK0E8w3XeGXnK/bjLuqy81FpLHqMDfz4Q5VgPxY67zUEpbLM/reF2QgWKb8Vj7x314XuGY3pZNzYz6VLXwIQFjaJkEbj0Gh86tiyukUURRLT8ig0WTiZkg1A72Y+NPTQMa5nWN0aJyMjIyNToxTkGtm74StEy1UAzEoluyP+RaJvrH0HUbRqcXPNZvWoh2kR4I5aWc0qeWaD3VNKX92x6gknU7KZ/vUxRjaJI8QNLmYH06pxe/x8+9e1aTIyMjIyNYwsSjkBKm9vAt9cAFYr/C4du7mKXuVzSpUM36t6ErfawmS7AyVWzOYCADRWN8y6xig19+Hu6YpSUXmBKNMseUoJFqnyTbMGzfB38WdgWGlhK2fPJdoED2Wr5hiXsIXWiQq8enSrzi2Vxphb/LOmhsMCnYA/T0zjxo199ra/38B7XpACWLM3iTe3nHQ4tvKpTni51rAXnoyMjIxMnXP0vxew5kkbEGptT5KarsfLzUSHRDeCMgyk+oax29wddw8DD0RUP2dlnsXCR5ZQDtq8y3WKe0OU+vF4CqdSs1E2kaol/5D0JCMfiUatlh9dZGRkZO425Hd2Z6Jk7N3N4XuVzSklVNynLjAjLaKUiFitkqBkde2MRtcZgAZ+lau4ZxVF/sjK4/dMqeSoUszHAjzb9lkGh5ed9NJwKYcCQfJgcrXq0Bt8MBY2QK2pIS+p/AyI/wlyr0ltpRaU1S//7EyIopWsrKMANPDsipdXT9zcWtexVXVLocnCiZRsdpyWdss99WpcNEoejPCTBSkZGRmZuxTFtXwUtrg9lSKIPoWeWP90R3EqnzaXC9j0WFd24YZSUVgj8225lsX7ytYgRQPiq7k3lu438g0IWPFxkdZvK0b3xuUeuXcZGRmZew353d3JEcvMKXXr/vZ+zha+ZxelrFitJumgoKZQSOKRZwfQpFXlEoJvvpZJ9MkL9raL5RpGQK/Ul+prMZuI/fknXBNVmG0LSJPBFZespjRt6YVCWUOv0dbXIba4HCv6BjUzrhNgtZq4fHk9BYWXsFoLUCg0dOz4LxRl5O2613juy8PsOpNmby8e0Z7+re++xPYyMjIyMsUoTFasRakVRJGjiva4G3Lp+mRXIp4cy7Xd22Ef1JRDU5FneMvccwxxF3kyfEjNDOykJGfksz/uAyI91tBvQPGC18vNuw6tkpGRkZGpTeQnS2einCzllQ7fsyV/tDpR9T0RmyglivTf+yupOit5bnoEQUO+KoWWnYMRKpmh/USuFPrXUKOijZuevOSjZAJaVemKe+cOH+S3Lz7lgYZ/wewueUXpC3MYM0KB50MdKj1nhdxIkr4HdwH3ALhveM2M6wRcuvQFZxMW2dturi3veUEq4VoOV7MNHLkgladu5KUn1MeFXk3lUEYZGRmZux6rWGLDUEQUVCCC0sUVlZcXJotUTEVV3WTcFhOs+wtGoTk0GkPHnFNM9/EA3d3tiTtv8wl6em7Hx7N4tevi0gSdLrAOrZKRkZGRqU3u7adLZ8Yeh1cUvlcy0Xk51ffsnepelCoy2YKAKAi4GfMJvXyJ5IhgWwcNmQ0KqiQOpRokL6uJjfyYHNqQoeelqntaZWlRKj87037OLBgAUJotaLw8ak6QAiiQ5iFyDjTrV3PjOgGZWUcA0GmD8PMbQEDAY3VrUB1z4Nx1Rn7yu8OxbdP6oK+pUFAZGRkZGadGtFqx2tZmClEEhRpEEYWtcIrJInlmV7uOSlo8nPuNwtAwADRWE/jf/WHzKZkFuPtKKRrOmhYw5oEo3PReCIL8OSsjIyNztyKLUs5OVZND2ROdOw9m20JCbcslZbH5tAtoKPQ0VmmsIlEqO/88X5z4mYzCDAD0qtLheyaDARGBHJWJLEFKlKlp4Im+ffvbu5Gbif8vnPkfZNqSp98lYXuiKHI2YRFZWUfJzpbySLVo8Sa+vpF1bFndc/xyFiDlj2rkpad/64ayICUjIyNzD6E5/j+sVgsIUvgeggoBEYVtbVPkKVXtInlmKSeVQSeFrek6joJmLas5qHNzMXkNjzX+Di9dJgBPP9AbFxffujVKRkZGRqbWuTdKeNQrBIdvZZypXE4pJwrfK1ToANCbTRTofDBobAKSoMHTQ1elsa7YRKm1x5bw/qH3yTJIIoG7xt2hnzmzEO8jnnhE9GO76znOKaUk5C5BwQjV3r608V00HI4BYw4ggHtQzYxbxxQWppCc/LldkFKpGtCgQdc6tqrusFhFJn5xiB6LdrB02xkAnuzSiB9feoCpDzevY+tkZGRkZO4U5owMdAfWldj4E0GhBFHEJyQUoET4XnUnk0Qpo1oqBKPVeVRzQOfFahX5cv9ZzpxZRESDE6gUFgRBh0bjX9emychUifHjxyMIAoIgoNFoaNasGW+++SZmW2642+W3335DEAQyMzNrxtBKcP78eUaPHk1QUBA6nY5GjRoxbNgwTp8+7dBvy5Yt9OnTB3d3d1xcXOjatSsxMTEOfZKSkhAEgdjY2ErPP3/+fFq2bImrqyteXl48/PDDHDhwwGHMZ599liZNmqDX62natCnz5s3DaCzf4SE1NZXRo0fTvHlzFAoFU6dOrZQ9u3btYsiQIQQFBSEIAps2bSrVZ+PGjQwYMAAfH58K71cURQYNGnTLsWJiYmjXrh06nQ5/f38mTZrkcP7nn3+mR48euLu74+fnx/Dhw0lKSnLos27dOtq3b4+LiwuBgYH87W9/4/r169W+z9pAFqWcjZvDykooUHZRqpzLFbbrrU4Qvmexipxwa8Uf7h0AcLcaON1iNOai7J+CmskDn6/UWHkWCxcKDFw2SG80SksGLioXHg1/lCmdptDYvbFDf8PZTDT5ajKVBfZjGqMHQT5h1b4vACxmKMyUfn5gOoxaBx71P9+BxVJAdnYsAFptAO3afkS3rt+jUrnVrWF1hMli5dilTLadvMqV7ELyjVJYRpcwOeGqjIyMzL2GOTcHKF6HpXuIKFExaNJ09nsm8sL2Fzh1/SxQAzmlbKJUoVLavNPUVOZ0J+TQhRu8/99DCIIVqyiw5sRfadV2AyqVa12bJiNTZaKiokhNTeXs2bNMnz6d+fPn8/7779e1WXYqEm0ATCYT/fv3Jysri40bNxIfH8+GDRto27atgzC2YsUKhg0bRu/evTlw4ABxcXGMGjWK6OhoXnnllWrZ2bx5c1auXMnx48fZs2cPYWFhDBgwgLQ0qcjQ6dOnsVqtfPzxx5w4cYIPPviAjz76iDlz5pQ7rsFgwM/Pj9dff532VYieycvLo3379qxatarcPvfffz/vvvtuheN9+OGHt0wns3TpUl577TVmzZrFiRMn2L59OwMHDrSfP3/+PMOGDeOhhx4iNjaWn3/+mfT0dJ544gl7n7179/L000/z7LPPcuLECb7++mv++OMPJk6cWO37rA3k8L16hCAAYvmiVPHfdt2LUnuTsvnFr6+93azgHBmKPLBV32tyvzdBoY0qHCfDZKbn76fIMkuCgEYQUZjTCGrQlHceeKfMa8z5Ug4po2gCAfzSuoDFhdCmFc9XKYw5xT/3mQWq+p94NCfnFIcOP4HVKn1Yubm1ws+vfx1bVXf8eTmLkR/vJ88mRLUK9OCDke1poNcQ4Fk1Dz8ZGRkZmfpP8sZl0hrMtsQyqEEhKvAM9OWDbR9IxwzS56arpnRagapgNBZiVOrJV9o8paorcjkxqVkFuKikTUQLrjzVJ5pA3/q/0Sdzb6LVagkICADghRde4LvvvmPz5s1ER0czZcoUfvjhBwwGA3369GH58uVEREQAcOHCBSZPnsyePXswGo2EhYXx/vvv07p1ayIjpRQaXl5eAIwbN46YmBhycnKIjo5m06ZNeHh4MGPGDL7//ns6dOjAhx9+CEBYWBjPPvssZ8+eZdOmTTzxxBPExMSwZ88eZs+ezaFDh/D19eXxxx/n7bffxtXVlRMnTpCYmMiOHTsIDZW8QENDQ+ndu7f9PpOTk5k+fTpTp05l0aLiokjTp09Ho9Hw0ksvMWLECLp3735br+Po0aMd2kuXLuWzzz4jLi6Ofv36ERUVRVRUlP18eHg48fHxrF79/+ydd3gU1d7HP7Mtm94DIQkJgdCrdJASaQENqIgFpCgg8aUIoiI2BFEsIKIiqBeBewWvV1RERAFRepEW6QECIYGEkt63zvvHJJuEtA0EEvB8nickZ+acM7/ZXXbPfs+vLGH+/PnlzhsSEsKiRYsA+Oqrr+y2Z+DAgQwcOLDCPiNHjgQo5bF0PdHR0SxYsIADBw7g71/yvS4tLY3XXnuNn3/+mT59inIVt27d2vb3wYMHsVgszJ071xY6/sILLzBkyBBMJhNarZY9e/YQEhLClClTAGjQoAETJkyoVDCz5z5vBXfvtssdi7LokK5LdF50xr5E5/J1Y2uC+HRll8/LlMYDxlga5B7FYD0HgFWS8O1uX8LOmJx8myDlpFbRx82IhIxeXVoYsJjNfD1zGrtW/UdpS4obfejpNTwYqSGsY52bvi8ADNnKb7XurhCkAK5e+9UmSKnVzgQFjqphi2qWHWeSbYKUJMGDbevRtK6bEKQEAoHgH0re+S3k69xtbUdJxZjRY3DxdMGc1QzD1QHUU90HQHOfGw/vPpSRQ5Mr9Wh072+scW0P3L2iVEZmDOq06UxovQIAV0dP7m8tBClBSWRZxmq01MiPfJPfpxwdHTEajYwZM4YDBw6wbt069uzZgyzLDBo0CJNJ2ayfOHEiBoOB7du3c/ToUd577z1cXFwICgri+++/ByAmJoakpCSbqPL888+za9cu1q1bx+bNm9mxYweHDh0qZcP8+fNp06YNhw8f5vXXXyc2NpaIiAiGDh3KkSNH+Pbbb9m5cyeTJk0CwNfXF5VKxZo1a7AUFG+4njVr1mAymcr0iJowYQIuLi588803N/XYFWI0Gvniiy9wd3ev0LspIyMDL6/aHc2Qm5vL8OHDWbx4sU28LM7mzZuxWq1cunSJZs2aERgYyKOPPkpCQoKtT/v27VGpVCxfvhyLxUJGRgb/+c9/6Nu3L1qtFoCuXbuSkJDAhg0bkGWZK1eusGbNGgYNGnTb7rUqCE+pWk9xUUpxlarovbEwfE+uwfC99Fwjf51P5b+HFffKkPwEIrhMDAA6NPqOXA06j6TW2jVfVoEg1dbVid86NGZj3EYOAHpNaXEg4+oVrpw7g5+nP1astiKEHhnxeNZxuvmbSzwM+76ArESl7eBacf87AIPhKhkZh7hwYSkATZu+Q0C9x2rYqpoh32ThiS/3cvpyFsaCvCATeoXyfL/GOGhEQnOBQCD4J3PJ3I3Yrg9C+icANPJvSYMGDYhLTyTv4ghAQ1xBX0+nG9/A2JeSQl6xfWNXtYpO7ndfGP2CTTFcvjifiJD91C9ImeXkFFKjNglqJ7LJSuIbu2vk2vXmdEO6gaI2siyzZcsWNm7cyMCBA1m7di27du2iW7dugJLvJygoiLVr1zJs2DDi4+MZOnQorVq1AhTPn0IKhRY/Pz88PDwAyMrKYuXKlaxevdrmUbN8+XLq1Sud4/a+++5j+vTptva4ceMYMWKELZ9SWFgYH3/8Mb169WLJkiUEBATw8ccf89JLLzF79mw6dOhAeHg4I0aMsNl1+vRp3N3dS3n6AOh0OkJDQzl9+nSVH7firF+/nscff5zc3Fz8/f3ZvHkzPj5lFz84e/Ysn3zySYVeUrWBadOm0a1bN4YMGVLm+XPnzmG1WnnnnXdYtGgR7u7uvPbaa/Tr148jR46g0+lo0KABmzZt4tFHH2XChAlYLBa6du3Khg0bbPN0796dVatW8dhjj5Gfn4/ZbCYyMvK2h+XZi/CUqm0UekhVlOi8wvGFfWpOlIr6+iDP/OcgCRlKCF1A7mV0p48DoFK5o3HsjNXNfjGnUJRyLcgaml+QZ6EsUcpsNOCkcceidyJelWw77tm5I47F3B5vmD/ehr9Xw7mtStujfoXdazuyLHM4ehRHj01ElpXH2cuzWw1bVTNYrDLRCekcjk8nx2jBZJFRSXBvIx8hSAkEAoGALDkQsNraYR2UL2OZ+QYK93nH3tuAKX3CeLJL8I1dZPcn5G99H4Ankn4h7upCTt7birZu1bCxVsvYdPwKrlrF83xPYicMru/QssWiGrZKILg51q9fj4uLC3q9noEDB/LYY48xZswYNBpNiVA2b29vmjRpwsmTJwGYMmUKc+fOpXv37syaNYsjR45UeJ1z585hMpno1KmT7Zi7uztNmjQp1bdDhw4l2n///TcrVqzAxcXF9jNgwACsVivnz58HFM+ty5cvs2rVKrp27cp3331HixYt2Lx5s92PhU5XeTTJqlWrStixY8cO27nw8HCio6PZvXs3ERERPProo1y9erXUHJcuXSIiIoJhw4aVyJlUfN6oqCi7bN6xY0eJcatWrbJrnD2sW7eOP/74wxZaWRZWqxWTycTHH3/MgAED6NKlC9988w1nzpzhzz//BODy5cuMHz+e0aNHs3//frZt24ZOp+ORRx6xefadOHGC5557jjfeeIODBw/y22+/ERcXZ3scbuV93gjCU6rWIZX4Xdxl1K6cUrfMLvs5fUVZYLSo44Tl7CE6Xz2OKisDvPQgOQCgke1/6WUWeKwkZZ6l+zeji0SpMsL3jAfSuCf4UX7VHQYKRClZIvidt5DseGOslJyCN8Im90OzB6BBr5ufswbJy4sjJ0dJyurm1hZfn744OgbVsFW3n+iEdJ781z6yDUp1lHvqe/DRY+1w0Wvwcr47wjMFAoFAcOPIVis5hjQslmO2Y616KxtTeQXhN0hmXn/AvtQE5XJuG/kqRdByseajb9oH7sLQPYslFx/d39RxVtZVT/aMJKT+P9NLW1A5klZFvTk1s2kqaavmwxEeHs6SJUvQ6XTUq1cPjUbDunXrKh03btw4BgwYwC+//MKmTZuYN28eCxYsYPLkyTdqug1n55JFA7Kzs5kwYYIt31Bx6tcv2nB3dXUlMjKSyMhI5s6dy4ABA5g7dy79+vUjLCyMjIwMEhMTS3lnGY1GYmNjSyTnLo/BgweXEOsCAgJK2N2oUSMaNWpEly5dCAsLY9myZcycOdPWJzExkfDwcLp168YXX3xRYu7i1e/c3OyrYNqhQ4cS4+rUqabUL8Aff/xBbGyszdutkKFDh9KjRw+2bt1q8zxr3rzos8TX1xcfHx/i4+MBWLx4Me7u7rz//vu2Pl9//TVBQUHs27ePLl26MG/ePLp3786LL74IKDmpnJ2d6dGjB3Pnzr2l93kjCFGq1lIgPVWx+p5ULHzPbFWqh2nVt88hzmyxkpar5CX65KEwfpyxAJ3FgrnQBpXyBV8nqyvNeSXLMkey8ziSlQtAYuZpnI2ZtvNt/dqWGmO9aiRDUvrrrCqwOKLJ90FzA263ZZKXrvzu/hzUv7HEfbUBszmbc+cXkZKyHQAXl+Z07PB9DVtVc2yNuWoTpCQJ7m9dj/red9+utEAgEAhujAtHDpOafQooKIcuqZAKEszmmZR1jySVnXulSpjzyVMrG3j6LlHQKKCSAXceF1JyiDszhaebbbUdc3L0rjmDBLUeSZJuKISuJigUUorTrFkzzGYz+/bts4XvpaSkEBMTU0J8CAoKIioqiqioKGbOnMmXX37J5MmTbR5HxfM7hYaGotVq2b9/v01IysjI4PTp0/Ts2bNCG++55x5OnDhRys6KkCSJpk2bsnu3Ekb5yCOPMGPGDBYsWMCCBQtK9F26dCm5ubmMGlV5flpXV1dcXe2LoLFarRgMBlv70qVLhIeH0759e5YvX25L+l1IVe6vEEdHxxsaZw8vv/wy48aNK3GsVatWLFy4kMjISABbMvmYmBgCA5UCXampqSQnJ9uSzufm5pa6V7Va+f9htVptfTQaTZl9ZFm+pfd5IwhRqrZhC98rvStmE6UqEHMKN9MssprHvq6Ls34bf07vjeoW77LlGMzM3xRDdEI6sgxqlYSHXnl5qa1WLIXXl5Q3VU9r5bkR1lxJY/LJeFtbMioJ3r594Fv8nPzwcSwdUywbLZhR3rBdUo2ozfcCoKniLkcptr4HMb9AxkWl7ehxc/PVMEmXfyQhoajihKfnnSuw3Qwz1hxh3d+JtvxRk+9rxP/1boTjHbLwEQgEAsGtx2KycmL3WaUhOeFkkjE2aGA7n28u3NSwljW8apjyyNcWiFLqu++z6ERiJoM+3sHb3Y9T1xku5/jSJLAFXp7dKx8sENyhhIWFMWTIEMaPH8/nn3+Oq6srL7/8MgEBAbbcQlOnTmXgwIE0btyYtLQ0/vzzT5o1awYole8kSWL9+vUMGjQIR0dHXF1dGT16NC+++CJeXl74+fkxa9YsVCpVUcGscpgxYwZdunRh0qRJjBs3DmdnZ06cOMHmzZv59NNPiY6OZtasWYwcOZLmzZuj0+nYtm0bX331FTNmzAAUj6r333+fF154Ab1ez8iRI9Fqtfz000+88sorzJ07l5YtW5a4bkxMTClbWrRoYUvOXUhOTg5vv/02gwcPxt/fn+TkZBYvXsylS5cYNmwYoAhSvXv3Jjg4mPnz53Pt2jXb+LISiBen0EMoOzuba9euER0djU6nKyEQXk92djZnz561tc+fP090dDReXl42UTA1NZX4+HgSExNL3G/dunVL/FxP/fr1aVDwmdK4cWOGDBnCc889xxdffIGbmxszZ86kadOmtiqM999/PwsXLmTOnDk88cQTZGVl8corrxAcHEy7du0AiIyMZPz48SxZsoQBAwaQlJTE1KlT6dSpU5l5x6pyn7cCIUrVOq57E5GvP1dR7b0iLSs135PkXDXJObnkmSw4O9zap3rLqass3xVna3cN9UZdIESpLVYsBWquhPKm421xLzXH9exLzwHAT6chRK/h7KW9AIR5hKG9Lkm6xWzm9L5dqNJysBTke8h1CsI1ExycNEg3I8pZzLB1HrYnQ+cCbuX/Z74TyMpU4tS9vcPx8Q7H339oDVt0+zFZrHx3MAFrwdOqVkn0CPMVgpRAIBAISnD6QDwn90cDoNL4Uyc7j2t+IbbzheF7KtXNe0qlWtWkaxSvAf1t9HS/XZy5mgWAi1bxak/gDUa0q53VoASC6mT58uU899xzPPDAAxiNRnr27MmGDRtsgozFYmHixIlcvHgRNzc3IiIiWLhwIaCEtM2ePZuXX36Zp556ilGjRrFixQo+/PBDoqKieOCBB3Bzc+Oll14iISEBvb7iQgutW7dm27ZtvPrqq/To0QNZlmnYsCGPPaaE0AYGBhISEsLs2bOJi4tDkiRbe9q0abZ5pk2bRmhoKAsWLGDRokXk5Cjf3b755hsef/zxUtct61hCQoLNI6gQtVrNqVOnWLlyJcnJyXh7e9OxY0d27NhBixYtAKVK3dmzZzl79myp8ZVVTCwUbgAOHjzI6tWrCQ4OJi4urtwxBw4csIlCoFQ+BBg9ejQrVqwAlJxRTz31VKn7nTVrFm+++WaFNhXn3//+N9OmTeP+++9HpVLRq1cvfvvtN9tr5b777mP16tW8//77vP/++zg5OdG1a1d+++03HB0dARgzZgxZWVl8+umnTJ8+HQ8PD+677z7ee++9Cq9tz33eCiT5Zutc3sVkZmbi7u5ORkaG3XGoN81bfmAxcNn6f6T9by3ezzyD3/PKf/7Q7UfItVjZ16UZwY4OZQ5fe/gSU7+Nxt0hgwyDIvycnBNxy79or9p3gVd/PEbTuq6M6Fyffs3r4mTM5MtJT9MpLZFkkyPn/DxRO7RH69SLfh5W0p9pR6fQ8t21h0WfZUdaNp80q08PVyP91vRDo9JweOThUn1P793JzwvfpV+90Zx1zuaI5gKuGV60dKpH0+HhBLe4Cbfw3FR4v2BH9Ilvwa8ZeN5gAtMaRJZlTp+ZQ1bWCTIyDgDQuvUX+Pr0qWHLbi/HLmXw7KqDpGQbyTVacNCo+P35Xrjptbg72VcRUiAQ/LOpkfVBLedufky+mjYNQ1Y+uVkJqLSNqJ+eg9cjDxE+RhFTvonew8z/pqJ1yOTM7Cdu+DofX7jCO+eSbO23wwIYG+h70/bXFiwWA+t3zeJ4Qiwd6x5GJcnc230PDg5+NW2aoBaRn5/P+fPnadCgQaXiiqAkOTk5BAQEsGDBAsaOHXvbr5+amkqfPn1wc3Pj119/xclJpML4J1DR/1l71wbCU6q2UUH4XlWGG8xFolXFvlXVg9GseCeF1XFlZNcQdn+3igtHogE45uZDrloJ25NUTqglM044kl7JnOkmZcfxTMohthxbA4Cz1rnMvobYDJq4dcJR44KpYGZ9Xjqde9XH42YEKQBDQR4rjR6aRNzcXDVIdvYpLl78t62t0/ng6dGpghF3J78eSyIhNc/W7hHmS5CX+NAUCAQCQdnkZSbjpqtPLgmACgmZzm2KqlkVhu+pVDcRvifL7E3LsDV91TLdPCpPdXAnkZq6Axfzd3QuqCCvVjuj1XrUqE0CwZ3M4cOHOXXqFJ06dSIjI4M5c+YA2EICbzdeXl78/vvvLF68mD179tCnzz9r41tw4whRqtZyc4nODZbbWzHMUCBKOWhU5KSnsWfNN7ZzhYIUSKi0DexetGWYFVHqfyeWYclVqt3UdSodh2vJNOJx1JWTdeqxSrPPdtypfjDuBUnjbghDFvz9X0iJVdoOd+7Oryxbyc2LA8DJKZSwRjNxd++ARmNfYsG7gbnrT7DpxBVSc5SEtM/2bsiTXYLxdxO7cAKBQCAoH9lqRS5IDYCkAsmCY1vFg+lyzmUuZ18DHFDdTE6pb5/EoOsDnvew9MSbPDjsXXBxvHnjawFXs/IZ89V+gh138kgjuJjlj0H3AI91H4hKJSrcCgQ3w/z584mJiUGn09G+fXt27NiBj0/pvLu3C29vb954440au77gzkSIUrUNcz4A0qn1SrssUaoCVapIuCrKQ3A7AjQNpiJRKjdT2enTOTpizMujnhxKslsnJMkFi06Lsz4HKNvjCcAqy2SYLVzMV8QDgzEFDTCt/TT61C+tuFuyjEhInFNfKTooq/ALDEO6mSShB5bD5teL2s53pgt9auou/j4yAatV8Q5ydW2Jj899NWzV7SXfZOFfO8+XONa7sS8BHnfHgl8gEAgEtw6r1VLM61wFkowkSXx76jve2LgBS24ocA8q1U0suM5sxtBqIAB6Z2/wDLlZs2sNO88kcyIpk6BgxfM8ISuAZs2exN0tsJKRAoGgItq1a8fBgwdr2gyB4KYRolRtJT8dcIG8NNsh+zylbqFNFWAo8GrSaVTkZytJLB1dXHG9moLaNQiVph5JujXI3p40MDYGi1+ZSehkWSby0BkOZioJMFWAyqKIXI83eRwnbekwK7nAS6uw6p5/fCAmXQi+Hf1v7qYylcoJ1GkFAe2g1aM3N18NkZCwwiZISZKWevXuzPu4EZIy8vhw02mSs5XysXqtitXju+DtrCPYu3xhVCAQCASCQmRZxioraw0JFYUrsT9iLmJIesTWr65r5UVcysRqBYsBQ4HXkMMDH4L27vHitWZ+wQvt9xPolg7AwNaNad9aCFICgUAgUBCiVG3Harb9WSg4VZQjSlWGKnU7MtkXhe+pyc8pyMF0OZl6hiacqd8egFyHbFzlir2NTuXk2wQpgKF+LmyNV9o6ddku3rJR2cE0F7jWG/WBqKwqnNxu0iW8MJdUy4ehx/M3N1cNkJa2j+yc0ySn/AFAq5af4e3dC7X67lnoVsY3++L57uBFWzvMz5V76nvWoEUCgUAguNOQrRasxTyl5IIwvRyDsuZydbTwYJtQHu0QdGMXsCgbJ/mFotTNeHnXIjJyTbz2w3YerLcKz2LpPf08G9acUQKBQCCodQhRqtZTPHxPuu5IacpylLqVBRbPXMni95NXOXBB8ejySL9G3KLZ4K4nT+3HmbBhtr5xdTNpnVWxK9cVo1JWuYmzni0dmpCcd4WtB0AjadCoSr9cj/z+G0lbj9OE9rabr3dpD/UH96FJl9L5p+xClsFsKPJS0995uaTy8hI4dHi4ra1SOeDp2fUfI0j99694dpxJ5sildAAGtapL14Y+9Aq7M0MwBQKBQFBzJHhlkel0mKZpemWHsCA3psmi/K7jaeGtB1ve+AUKUjcUekrpVTXk9l7NbD19lf3nLvBgPcg3O5Dv/CK9moTg5dW9pk0TCAQCQS1CiFK1HNlaxZxSt3kdM2n1YWKuZNnaAQknMeZkg7sei9YDFRDrFc0Fz2MYdMZK58spWOC5a9RoVBJGizLGQeNQZv9d//sab7M/Zr+i5KIhFzbTrE0kWt0N7DTKMvx7CJzfVnTsDkxwnpsbB4BG44a3d298ffuj1d5593Ej5JssvLr2GJZi/3ce7RBE7yai5LRAIBAIqk7ji1fwSXcmzlcPqHCQlLydpgIvca36JhdfppKilINaVVHvO4a0HCNOWsXb3dHBi4iuY1DfJYKbQCAQCKoPIUrVeqpWfa+RnwtqyYpFLpbo/NYYBsDlTGUhNbhNPRr4ONMm+i9+q3sPEA8qPbI6Az/dSkIMAaSk9gOHjArnKxSl9CrYfWk35zOV5NQO6tKiVN7xZO51e4QzuhT+Up1RDsoSWrMRlVPp3FN2YcwuKUg5+0JQ5xubqwYwGJM5F7uA7Bzl8XBzbUXLFgtr2KrbQ57RwoELqVxKy8NilXHQqHj1/mb4ujjQU3hICQQCgeAGkK1W2sYbSHQtzEOoop5/fQBMBZsfmpsQpQ5l5PDk31dJ7/kHVknZTHO4C4Sb5JQD6PNWMzBEWcc5O3oIQUogEAgEZSJEqdpKGQpUUU6p8mnk58rXw/ZwMn4Xc/a+pPS/RaqULMvkGJScVzMHNUWTcYVfV58nS5VaYK8jmtwD6E8H07pOM/ZqncjHPlEqPj2GCX/PtB131JSukpZz8CrXHAwc0SbYjqmsWjyHDsahadMbuylDtvJbUsErSaDWgerO2bG8ePHfJCb9z9Z2dGpQg9bcXp7/XzS/Hrtsa9fzcGRU15CaM0ggEAgEdzw5W35CI8tYba7oKtzDlfAzs6VAlLrRdUJ+JttjDpFq8YACQSrAQUuAw03mxKxh3vjpGA2ZSqBrEr51lGMODsJbWSAQCARlI0Sp2k5ZFeoq8X1y15sJcEm6VRbZMJitmAt2CZ0dNGz/8X9cy021nQ/pH8rZdatRX7eDKJchuJ3LNfBWbCInc5QqcQZTujKHWwheei+GNh5a6vpWo5l8lBxUblm5mKWm6AxeBC4agnSju3HGAlFK53pHVr5JS9sHgL//I7i7tcPPL6KGLbr1HI5PIzohnb3nUgDQqVW0CnRnZJfgGrZMIBAIBHcysiyz4+gh6liLLVkkFQ4tFA9qs1XZSNPdaLjdrzPIy3CC4JEMT1rPjJTf8Jy4Hd0dtBlWFhuPX+bV9som5LaLPQhv1pjGYU/UsFUCgUAgqK3c2Z96/wTkolxJtkTnVfV8ukWeUrlGi+1vZ52GaxcUF22VNgy1vgWN7m1S7OIVG/HxhSv8mpxBXJ6SQ0pjvgrAzM4zWTlwJYMbDi41RjZaMEmKDSaCcM4OwRGPGxekoJgo5Vxxv1qE2ZzFnr0D2PJHIzIyDgAQEvx/BAQ8jlbrUbPG3WLyjBaGf7mP2T+fIC1XESj3vdKH75/txoPtAmrYOoFAIBDcyaSnpxObls+JJpO5UkepJCyhQqVVvJpMBQWSbzinVHo8+QXpCbyc3KjTc9IdL0jJshWDMRtHjbLJ+MLQ9wjv+ApO/yDPbcE/lzFjxiBJEpIkodPpaNSoEXPmzMFsNlc+uAK2bt2KJEmkp6dXj6F2cP78eYYPH069evXQ6/UEBgYyZMgQTp06VaLf+vXr6dWrF66urjg5OdGxY0dWrFhRok9cXBySJBEdHW339d98802aNm2Ks7Mznp6e9O3bl3379pWYc+zYsTRo0ABHR0caNmzIrFmzMBorzmGclJTE8OHDady4MSqViqlTp9plz/bt24mMjKRevXpIksTatWurbDPA22+/Tbdu3XBycsLDw6PMa8XHx3P//ffj5OSEn58fL774YonXUPHXWfGfFi1a2PrMmzePjh074urqip+fHw8++CAxMTGV3qc99t0K7uxPvrsYqQwRp2pLHrnYX7dGlcrOV/5zOGrVqFUSxjwlmaVG3wlZ64JeXTrkrjxO5Si5qR6u48m3bRrimbMZAGdt+eKQ1WTBjCJKyZLi1eRb37XqNwKweRYs6Q5f9FbaDi43Nk8NkJ5xkNzcsxQ+515ePXByuru9hDLzTfxnTxwLfz9NnsmCg0bFA639eWtICzyd7+ywB4FAIBDUDiwWC9Z0FVfYSb41TjkoqXD1UtYcloJdQq36BgqrAJjzyVMpopRjm0ehzeM3a3KNkp2fy649ESzoOR2VpDw2Lo6eNWyVQHB7iYiIICkpiTNnzjB9+nTefPNNPvjgg5o2y0Zlog2AyWSiX79+ZGRk8MMPPxATE8O3335Lq1atSghjn3zyCUOGDKF79+7s27ePI0eO8PjjjxMVFcULL7xwU3Y2btyYTz/9lKNHj7Jz505CQkLo378/165dA+DUqVNYrVY+//xzjh8/zsKFC1m6dCmvvPJKhfMaDAZ8fX157bXXaNOmjd325OTk0KZNGxYvXnzDNoPy+A8bNoxnn322zDksFgv3338/RqOR3bt3s3LlSlasWMEbb7xh67No0SKSkpJsPwkJCXh5eTFsWFHV+23btjFx4kT27t3L5s2bMZlM9O/fn5ycnArvszL7bhW1VpR68803S6l/TYvlCcrPz2fixIl4e3vj4uLC0KFDuXLlSok5KlMZ7wiKuUXZk1PK1vfWWFOC9AKvJg8nLQDmwjc5SYNFMuCotj/8LaPgeYn0kjBn/0WWMR0AZ035opRsLBKlPNPjGBAWy5Dn21X1NiA/A3Z9BFeOFR2rdwPz3GZk2UpGxiESE5UcUl5ePejefRdt23xVw5bdej7fFsvrPx3ni+3nAGjm78anw+9hpMghJRAIBIJqQpZlrDnJIGdBwXqj16NdyNSlsP3idvIK1j1azQ0up4uJUvo7vOLesUsZDPrwWwz5sbZjnp49UKnERpHgn4WDgwN169YlODiYZ599lr59+7Ju3TrS0tIYNWoUnp6eODk5MXDgQM6cOWMbd+HCBSIjI/H09MTZ2ZkWLVqwYcMG4uLiCA8PB8DT0xNJkhgzZgwAWVlZjBgxAmdnZ/z9/Vm4cCG9e/cu4f0TEhLCW2+9xahRo3Bzc+OZZ54BYOfOnfTo0QNHR0eCgoKYMmWKTbA4fvw4sbGxfPbZZ3Tp0oXg4GC6d+/O3Llz6dKlCwAJCQlMnz6dqVOn8s4779C8eXMaNWrE9OnT+eCDD1iwYEEpL6GqMHz4cPr27UtoaCgtWrTgww8/JDMzkyNHjgCK+Ld8+XL69+9PaGgogwcP5oUXXuCHH36ocN6QkBAWLVrEqFGjcHd3t9uegQMHMnfuXB566KEbthlg9uzZTJs2jVatWpU5x6ZNmzhx4gRff/01bdu2ZeDAgbz11lssXrzYJii6u7tTt25d28+BAwdIS0vjqaeess3z22+/MWbMGFq0aEGbNm1YsWIF8fHxHDx4sML7rMy+W0Wt/gRs0aJFCRVw586dtnPTpk3j559/5rvvvmPbtm0kJiby8MMP287bozLWamx5l6pWfa8sbkWi86x8E+eTlTcuDydlwWE2FSrvGowaU6WeUsXNSjcpi725u15m6p9TyTYpYXQuutIeS1mpyax5fy6H0o6TrMoCwDEvDU8PNeobWdTlpRWYrYexm+HZPfDg0qrPc5u5eGkVBw4O49q1jQC4urZE71AXSarV/61vir/Op/Ll9nNsOamEd3YK8eLJLvV5c3CLSkYKBAKBQFA1rFarLY2Cq7U+dUPaEtajA0PXDWXilolkGJR1kMMNeErJssx5yZVkneJJ5HiHV6Y7HJ+GTqWs3a7lerPuyn9o13Z5DVsluFuQZRmj0VgjP/JNfpFydHTEaDQyZswYDhw4wLp169izZw+yLDNo0CBMJiX9xMSJEzEYDGzfvp2jR4/y3nvv4eLiQlBQEN9//z0AMTExJCUlsWjRIgCef/55du3axbp169i8eTM7duzg0KFDpWyYP38+bdq04fDhw7z++uvExsYSERHB0KFDOXLkCN9++y07d+5k0qRJAPj6+qJSqVizZg0Wi6XUfABr1qzBZDKV6RE1YcIEXFxc+Oabb27qsSvEaDTyxRdf4O7uXqF3U0ZGBl5eXtVyzZvFXpuvZ8+ePbRq1Yo6derYjg0YMIDMzEyOHz9e5phly5bRt29fgoPLj5TJyFDy/NWWx+d6anWic41GQ926dUsdz8jIYNmyZaxevZr77rsPgOXLl9OsWTP27t1Lly5dbCrj77//Tp06dWjbti1vvfUWM2bM4M0330Snu0N2bsoSpSp7c5QkJKl4+F71Ep2QzqNL92AsqJTn6aTl0vvzMOfnF1xbjcHZikZl3yLNKstkmJU3vLS8BNRAa9/WtPVtS13nks+/bLZy7Ysj5GV5ckwXbzuuMxpwaNqk6jcjy5CrJMjG0QuCOlV9jhri6tUNtr89PbsSFDiyBq259WTmm3jyX/tsrzuAyX0a0SPMtwatEggEAsHdyrWETNs6TCPr0GmdyTBmkpEaiCmjAxpTMCbA36VOxROVwZuxiXze5F1b+072lLJYDKjz/kvf+vsBaFgngMcf6FbDVgnuJkwmE++8806NXPuVV165oe+NsiyzZcsWNm7cyMCBA1m7di27du2iWzfl/8aqVasICgpi7dq1DBs2jPj4eIYOHWrzUAkNDbXNVSgk+Pn52fL8ZGVlsXLlSlavXk2fPn0A5ftwvXr1Stly3333MX36dFt73LhxjBgxwuZRFRYWxscff0yvXr1YsmQJAQEBfPzxx7z00kvMnj2bDh06EB4ezogRI2x2nT59Gnd3d/z9/UtdT6fTERoayunTp6v8uBVn/fr1PP744+Tm5uLv78/mzZvx8fEps+/Zs2f55JNPmD9//k1d82apis1lcfny5RKCFGBrX758uVT/xMREfv31V1avXl3unFarlalTp9K9e3datmxpty23k1r9CXjmzBnq1atHaGgoI0aMID5eESEOHjyIyWSib9++tr5Nmzalfv367NmzB7gxlbE2UjwflC3ReU0ZU8DfCek2YUCvVTGolT8pa74uii9Eg3/zpqUHlmH4Z/FXeSQ6Fiugk0BlyUAlqfh64Ne82PHFUv1NV3LRpWsxqpTr+1pcccrxpcPU6bh07161G7FaYfkg+FIRNnH0qNr4GuLatc2cPvM26el/AdCp0y/c0+5rHByqvii+E7BaZRJSczl4IQ2jxYqjVs2w9oFM69uYbg3tf5MXCAQCgaAqnD14hcLFiySDpNJgxoTh2kDMWa3Iz3cDwN/dqcpzH8lS8nA6m3Np7CDRw/MGc2LWMBl5JqLP/EQdvqRj3WgAdA5+NWuUQFCDrF+/HhcXF/R6PQMHDuSxxx5jzJgxaDQaOnfubOvn7e1NkyZNOHnyJABTpkxh7ty5dO/enVmzZpUI+SqLc+fOYTKZ6NSpaEPd3d2dJk1Kb9J36NChRPvvv/9mxYoVuLi42H4GDBiA1Wrl/HmlcNXEiRO5fPkyq1atomvXrnz33Xe0aNGCzZs32/1Y2CPmrVq1qoQdO3bssJ0LDw8nOjqa3bt3ExERwaOPPsrVq1dLzXHp0iUiIiIYNmwY48ePtx0vPm9UVJRdNu/YsaPEuFXPFe8OAAEAAElEQVSrVtk1rqo2VxcrV67Ew8ODBx98sNw+EydO5NixY/z3v/+1HYuKiipxnzVNrfWU6ty5MytWrKBJkyYkJSUxe/ZsevTowbFjx7h8+TI6na5URvg6derYFMSqqoygJD4zGAy2dmZmZjXekZ08/CWkxMLp1YC5zJxS7567TKrJzJp2DXG2w2X8Zt1Or6ew6t4j7QOZP6wNGLI5aC52DUnDoC4PAsUrB5a2Ic9q5a3YRNuZZs5qEpFx1rogSWW7sctmZU6jrLi6mrIDcM7zwzOk/g3cSArE7y5qN7yv6nPcZnJzz3Pk6LMULpJ1Oh+cnRrWrFG3mMnfHOaXo0m2dkM/Zz4YZr8brEAgEAgEVSU3M4NLMb/Z1mGSLKNCjUk2I1uVL1pRvRrSzN+VAS1Ke/WXi9kAPzyDweUhcAzhs1NvMWDEZ6C/Qzz4i5GVb6LHe3/Qpc4+HmsCl7Lr4uDcgy4Nx1c+WCCoAlqtttIE1rfy2lUhPDycJUuWoNPpqFevHhqNhnXr1lU6bty4cQwYMIBffvmFTZs2MW/ePBYsWMDkyZNv1HQbzs4lc/RmZ2czYcIEpkyZUqpv/fpF36lcXV2JjIwkMjKSuXPnMmDAAObOnUu/fv0ICwsjIyODxMTEUt5ZRqOR2NhYBgwYUKltgwcPLiHWBQQUVc92dnamUaNGNGrUiC5duhAWFsayZcuYOXOmrU9iYiLh4eF069aNL774osTcxav9ubm5VWoLKAJe8XHX6wmVYY/NFVG3bl3++uuvEscK82ZfH0EmyzJfffUVI0eOLFcAnDRpEuvXr2f79u0EBgbajs+ZM+emk9FXJ7VWlBo4cKDt79atW9O5c2eCg4P53//+h6Oj/VXdqsK8efOYPXv2LZnbblo/qvz+V6ELXunwvS2pilj2Z0oWD/h5lDmNxK0L38sryP/kWFASmewrnGo4CijM+aXGy98F2arkeypPE0u1WJBR8ih0Ve3n4oX1ALhqy98tLBSlzCiJ0bV56TQI8sHLv/yE6OViVOxD6wzPn7gjPKXS0/dT+IzWrz8OP98IVKqqfVjeKaTlGIlPzWX7aaVihYNGhU6t4uF2gZWMFAgEAoHg5jh3aD85qWdwkJWFviTLqCQtJkwgK+ufyDb+tKhnf6JcAC4egBNryW8fCYCDpALnOzMM/UJKLpn5Zpy1eQAk5bVgSKdXcHa278ufQGAvkiTdMalXCkWJ4jRr1gyz2cy+ffts4XspKSnExMTQvHlzW7+goCCioqKIiopi5syZfPnll0yePNl278XzO4WGhqLVatm/f79NSMrIyOD06dP07NmzQhvvueceTpw4UcrOiigsOrZ7t7Kh/8gjjzBjxgwWLFjAggULSvRdunQpubm5jBo1qtJ5XV1dcXW1z1PUarWWcCC5dOkS4eHhtG/fnuXLl6NSlQwCq8r9FeLo6HhD48rjepsro2vXrrz99ttcvXoVPz/F63Tz5s24ubmVeK2AUmHv7NmzjB07ttQ8siwzefJkfvzxR7Zu3UqDBg1KnPfz87PNXxuotaLU9Xh4eNC4cWPOnj1Lv379MBqNpKenl/CWunLlik1BrIrKWMjMmTN5/vnnbe3MzEyCgoKq+U7spUCCshYpOprrvIe8tOU/feU4GlULeUZFEHLSKYuy6D+2cFVzQnGMkvQ07eKPi6cDWSlZFc6TUvDG6kwOR88tsh1v5FnBG4FFeTysBcJMo9if6fb4i0g3kiDUUGCfg2utF6QyMv8m5tTrZGUroaf1648nrNHLNWzVrSPHYKbXB3+SmV9ULfPwG/1w0t0xb1kCgUAguIOxmIzISLadNRWgkjQYrUabKKW7kTxQJkXAMWiVzTT9gx+DQ82HTtwIKde+54kmO2nlp4T7PNKxKQ3rCkFKILiesLAwhgwZwvjx4/n8889xdXXl5ZdfJiAggCFDhgAwdepUBg4cSOPGjUlLS+PPP/+kWbNmAAQHByNJEuvXr2fQoEE4Ojri6urK6NGjefHFF/Hy8sLPz49Zs2ahUqnKjTgpZMaMGXTp0oVJkyYxbtw4nJ2dOXHiBJs3b+bTTz8lOjqaWbNmMXLkSJo3b45Op2Pbtm189dVXzJgxA1A8qt5//31eeOEF9Ho9I0eORKvV8tNPP/HKK68wd+7cUvmLYmJiStnSokWLUt5oOTk5vP322wwePBh/f3+Sk5NZvHgxly5dYtiwYYAiSPXu3Zvg4GDmz5/PtWvXbOPL+65fSKEnVHZ2NteuXSM6OhqdTldK9ClOdnY2Z8+etbXPnz9PdHQ0Xl5e1K9f3y6bAeLj40lNTSU+Ph6LxWKzpVGjRri4uNC/f3+aN2/OyJEjef/997l8+TKvvfYaEydOxMHBoYRNy5Yto3PnzmXmiZo4cSKrV6/mp59+wtXV1RYp5u7uXqGDT2X23SrumG942dnZxMbGMnLkSNq3b49Wq2XLli0MHToUUF7k8fHxdO3aFaiayliIg4NDqSe7xijjzWRqSB3+l5TK3gyl2ovGTh2muqvvFXpK6bVqMq5eZsuaIpdUq78DfZ8q/z90cQpFKUfyyAe6+nclsmEk/YL7lTum0FPKIim/1WYTqqo+Z7IMWZchuaAM6x2wGEyI/8omSAH4+pb/GN0NnLuWQ2a+GbVKoq6bnn7N6whBSiAQCAS3DavVWrAWK8oppVZplPA9Wfk80t6IKGXOByBfpQfAwa10kuDazoWUHNb89RdtHd6mb7FiTw66uzO3pUBQHSxfvpznnnuOBx54AKPRSM+ePdmwYYNNkLFYLEycOJGLFy/i5uZGREQECxcuBJSQttmzZ/Pyyy/z1FNPMWrUKFasWMGHH35IVFQUDzzwAG5ubrz00kskJCSg1+srtKV169Zs27aNV199lR49eiDLMg0bNuSxxx4DIDAwkJCQEGbPnk1cXBySJNna06ZNs80zbdo0QkNDWbBgAYsWLSInR/mO+s033/D444+Xum5ZxxISEkqElQGo1WpOnTrFypUrSU5Oxtvbm44dO7Jjxw5atFAqbm/evJmzZ89y9uzZUuMrS13Trl07298HDx5k9erVBAcHExcXV+6YAwcOEB4ebmsXOrKMHj2aFStW2GUzwBtvvMHKlStL2fLnn3/Su3dv1Go169ev59lnn6Vr1644OzszevRo5syZU8KejIwMvv/+e1slxutZsmQJAL179y5xfPny5YwZM6bc+6zMvltFrf2W98ILLxAZGUlwcDCJiYnMmjULtVrNE088gbu7O2PHjuX555/Hy8sLNzc3Jk+eTNeuXenSpQtAlVTGWo1clJdpuL83w/296bb3JOfyDHaH5cnVHMBXmFPKSacmLfGSclByRqO/B0PvXLvnSS0QpZzIJR9o59eOyIaRFY6RCxKsWwryVWnN+UhVdeddPxUOrihq62qvKGWx5JKTc5aUVCU0smnTd/D06ISTU4NKRt6ZzPv1JP/efcEmfLYMcOeniVVMYC8QCAR3AEuWLGHJkiW2RXCLFi144403bOkLevfuzbZt20qMmTBhAkuXLrW14+PjefbZZ/nzzz9xcXFh9OjRzJs3D42maHm3detWnn/+eY4fP05QUBCvvfZaqQXp4sWL+eCDD7h8+TJt2rThk08+KZE895+IbLWiVmmwysrnkSRbUUtaTNai8D2t5mZEKeWLqP5GPL1rmEW/n+HI+WO07QTZRicuGQdyf9vG1K37YE2bJhDUKCtWrCj3nKenJ//+97/LPf/JJ59UOPfrr7/O66+/XuKYq6triUTcOTk5zJ49m2eeecZ2rDyhpWPHjmzatKnMcz4+PuWKHdczZMgQm7dXamoqffr0YcmSJQwePBgnJ6UIREhISJVyHOv1en744YcK+4wZM6ZCcaUibiTfcu/evSscZ4/NoLxGKnqdgOIZt2HDhgr7uLu7k5tb/vfuG80pbY99t4JaK0pdvHiRJ554gpSUFHx9fbn33nvZu3cvvr5K3P3ChQtRqVQMHToUg8HAgAED+Oyzz2zj7VUZay2FnlJlvKAKly+VvdQkZMX1vJqQZZksg5mrmUpcrIeTlswUxVVSpfZDo++I1T+6QosAMnRqFoU68J8MJTeWE5mkAnpNxap+womjXN12ijrUxSIpd6+2WJB0VRQZz20t+tulDrR7smrjbxNGYzL7/orEaFQqNmg0bvjXHYpKVWv/294Usiyzem+8TZAC6Nu09sQ6CwQCQXUSGBjIu+++S1hYGLIss3LlSoYMGcLhw4dtu6rjx48vsW4pXOCDsqt+//33U7duXXbv3k1SUhKjRo1Cq9XaSqefP3+e+++/n6ioKFatWsWWLVsYN24c/v7+tgS03377Lc8//zxLly6lc+fOfPTRRwwYMICYmJhalW/idiMbjVikWCSLknRXkkHrqMNoKQrf06qrvsb6M0/DBf8h5KiUtYteVasLYZdJSnY63voUAFTaQCI7vUmQV9UrEAoEgpvj8OHDnDp1ik6dOpGRkWH7vCgUiW43Xl5e/P777yxevJg9e/bQp0+fGrFDcOdRa7/dFi9ZWBZ6vZ7FixezePHicvvYozLWVioKBbbpVfZOVk2OUpO+OcwvR4qqoAV5OZGfmK00VI6ozXk46CoWlgDWhdZlZ0CRd5ObVYlxdVBXLC6tXfQBBs8QNLo4DJKSa0gRparoKZVfUFXx2T1Qx75Qw5ogLW2vTZDS6wMJChx1VwpSp69kMWrZX6TmGjEWhGfunBGOu6MWV/3dmcRdIBAIIiNLega//fbbLFmyhL1799pEKScnp3JzY2zatIkTJ07w+++/U6dOHdq2bctbb73FjBkzePPNN9HpdCxdupQGDRrYktA2a9aMnTt3snDhQpso9eGHHzJ+/HieeuopQElQ+8svv/DVV1/x8st3b+7CypCOHmfwzjS2tAzAoAarJNN2+H3szTuEkmGq6jmlTuXk8UROCDQuyl/qciPeVjVIRsYhhgdPQKNS1mFB3nWFICUQ1CDz588nJiYGnU5H+/bt2bFjBz4+PjVmj7e3N2+88UaNXV9wZ3JnfRL+o7DDU6pcsUnpUWXxqhIKq6AB1PdyonWgB/npKQXX0qOy5uOoKZY4zSasyRR32LrgpixeGmm1vN84EG/rOYCSY6/j2g8/kK3Skq1Xka7KQZYAq4RngwY4NAix/yZkGQwFopS+dibjNBpTuXDhc2LPKXHkdes8SPdu26hfv3RlhTudK5n5/Hj4Epcz822CVKcQLwI9nYQgJRAI/jFYLBb++9//kpOTY8uNCbBq1Sp8fHxo2bIlM2fOLOGqv2fPHlq1alWiXPWAAQPIzMzk+PHjtj59+/Ytca0BAwawZ88eQCnbffDgwRJ9VCoVffv2tfX5pyIV5EaxqJRVlKu3TOTWh5mx/VVbn6rmlErKNwHgZs7ifmMsr4X646u7cz7rZv10jNf+t8omSIEGn7s8x6VAUJtp164dBw8eJDs7m9TUVDZv3kyrVq1q2iyBoMrcfW4Xdw2KilNRPGh154qqDINJEQ22vtAbN2M6BxZN5+DBWEARpSRrLt6O3pXOk6dR3N7rZv7Epr9PEJuuzFGWp1T0pg1s//orWjvfS5hnF45xCS+rC83MDfEMb0HTOY3tND4LNr0GqefAWrCYcqidotSpmNe4dm2jre3i2rQGrbl1LP7zLB9sLKrCMe7eBjx1bwPqulXubScQCAR3A0ePHqVr167k5+fj4uLCjz/+aCvGMnz4cIKDg6lXrx5HjhxhxowZxMTE2HJWXL58uYQgBdjahVV2yuuTmZlJXl4eaWlpWCyWMvucOnWqQtsNBkOJMteZmZk38AjUYoxK7idLwaaa2kkmy5QFctFapUqi1F9fYjj8OzSeSVhuPMvYDcFDq9PiW87/DlwkIlgRRncm9mbaI0txExtIAoFAILhJhChVWynuZVTqlFTOmbKpjup7FquMsSDJuFPKFf78fAFxly4U2aSpC+Z8fPQNK52rUJQ6lbYDyXzRdjzYLbhU39N7d2I2GAj1b8dl1Wmln8WXLvd3xLV7YKn+5XJmc8nk5s6+tTbBeXr6fgA8Pbrg4dGRwIBRNWxR9SPLMjvOKJ53OrUKT2ctD7YLIMCjfG85gUAguNto0qQJ0dHRZGRksGbNGkaPHs22bdto3rx5iUS1rVq1wt/fnz59+hAbG0vDhpV/1t5q5s2bx+zZs2vajFuGlHWBZBdHQMlzaEFFdux0VBZPW58q5ZQ6+h35ZmcA9BYDBLWrZEDtIicvFW+HePwckwF4rHNzIUgJBAKBoFoQolRtpwxBqaJ8U6X6ydXjUWUwK4uykNw49s5cRoLaBCrwzHcjz/0eZE0wVssxmnk3q3AeGchTK6KUZM2joXtDnu/wPP7O/oR5hpXqr8vT4eHbih8d9pMt5QGQU8+jaoIUQG5K0d9Dl0HAPVCLkovKsoWjxyaRmroLiyUHUNG69RdoNM41bVq1kms0M+TTXZy5mm07tmp8ZzqGeNWgVQKBQFAz6HQ6GjVqBED79u3Zv38/ixYt4vPPPy/Vt3PnzgCcPXuWhg0bUrduXf76668Sfa5cuQJgy0NVt25d27Hifdzc3HB0dEStVqNWq8vsU14uq0JmzpxpK4kNiqdUUFCQPbdd6zHk5vBnhgVrw3qAEnJ3XgpCNvpSWIqjZYAbkr0LMgBTLvkqRdByCO4C7WtvTsvrSc++xqED4czulmc75uTgWcEIgUAgEAjsp/Z8KxeURCp4aspwcyp80irzgKrOIsN5RgvO5mwir/zKGa2xIMeChty6T4HTPUiSRMu+3fHUl79IORBalx/b9cRaUP5YZc3Fz8mPnoE9yxSkUi9cJZD25Hh5kabKxiQpS0FXlxsQMPIzlN9tn4RWj4BXaNXnuIWkp+/n2rVNBYIU+PkOuOsEKYBjlzJLCFIBHo4086+dYZQCgUBwu7FarSVC4ooTHR0NgL+/PwBdu3bl6NGjXL161dZn8+bNuLm52UIAu3btypYtW0rMs3nzZlveqsLEuMX7WK1WtmzZUiK3VVk4ODjg5uZW4uduITstFcU3XEJS+6DShpFbIML4eaex9YXe/Ph/3as2qSmP/IKKe44Od45X8N5zKTz+2bfI1jwsVhUZBjecnRvj4xNe06YJBAKB4C5BeErVVioM31Ow2jlVdYTv5ZutOFsKE6xqUeuakOvixBX3U1icchjWehht+9Uvd3y2VsfOpkXn70k1kyQbcdCUXXEvIyODT1csxepQdJfNr3mQREP87gmw3/Brp+HMRji/TWnr3e0fexuQZRmDIYm0dGW329ExmFatPsPZqeZDM6qT309c4aMtp0nLUXacO4Z48q/RHXFx0KBWVad8KhAIBHcGM2fOZODAgdSvX5+srCxWr17N1q1b2bhxI7GxsaxevZpBgwbh7e3NkSNHmDZtGj179qR169YA9O/fn+bNmzNy5Ejef/99Ll++zGuvvcbEiRNxcFA+W6Oiovj000956aWXePrpp/njjz/43//+xy+//GKz4/nnn2f06NF06NCBTp068dFHH5GTk2OrxvdPJPlaQWEXSY/OsQ1mDx1ZjmlgCsRBayXE5wY2jUz5GPRKtWB9LfLUroy/zqfioFY2ky5kBRJrXcS7A1vXsFUCgUAguJsQolStpYLqe7aqehWrTbYqfdVgTb7JgqYgQbikckXr3J8f2k3F4CDzWP0BdAkvX0SRZUjTK8mrdWYTT524yKPJPjzZEPTqspNaH9m9A6tsRSVL6K0a3JPOo810ROPljFpTBRHjh3GQ9HdR27nyROy3kxMnpnP5yk+2to93OK4ud19i82U7z3PsUlES3Hvqe+LuKHJRCASCfy5Xr15l1KhRJCUl4e7uTuvWrdm4cSP9+vUjISGB33//3SYQBQUFMXToUF577TXbeLVazfr163n22Wfp2rUrzs7OjB49mjlz5tj6NGjQgF9++YVp06axaNEiAgMD+de//sWAAQNsfR577DGuXbvGG2+8weXLl2nbti2//fZbqeTn/yQ2bSwsNqLCaj6JSluXTP96EA8FaTGrxDdJKSxstoD0Ag9ohztkMyY/Pwkn47d0qausozo0CGZ8WyFICQQCgaB6uXO2av5p2JPovDK1qRrXPCnZRhw0lwrm1aIxZdPJnMt/LyXxctc3yrl8kQEZBa7qzoY82l3LwF1xmEGn1pUaZ0zIImN3PACesgu90urQbfduJGfFy0mlqcLLNqMgkXqT+6HTBGg30v6xt4GU1J0AqNUuODoGU6dOZA1bVH0YzVYmrT7EwEU7OBifBsDswS34LqorLwxoUsPWCQQCQc2ybNky4uLiMBgMXL16ld9//51+/foBEBQUxLZt20hJSSE/P58zZ87w/vvvlwqRCw4OZsOGDeTm5nLt2jXmz5+PRlNyv7F3794cPnwYg8FAbGwsY8aMKWXLpEmTuHDhAgaDgX379tnyV/1Tycst9AxXYZEsdGjcg2xPRVCqyhIEAKuVVRevEK+vS6bGFYCmzrW/yuy6vxP5dsvLNHBYTif/QwDodD41bJVAULsZM2YMkiQhSZItZ+CcOXMwm803Ne/WrVuRJIn09PTqMdQOzp8/z/Dhw6lXrx56vZ7AwECGDBlSqjLr+vXr6dWrF66urjg5OdGxY0dWrFhRok9cXBySJNnC0O3hzTffpGnTpjg7O+Pp6Unfvn3Zt29fiTnHjh1LgwYNcHR0pGHDhsyaNQuj0Vjp3KtWraJNmzY4OTnh7+/P008/TUpKSoVjtm/fTmRkJPXq1UOSJNauXVtmv5MnTzJ48GDc3d1xdnamY8eOxMfH285PmDCBhg0b4ujoiK+vb5mP6f79++nTpw8eHh54enoyYMAA/v777+svBSh5Jl1dXfHw8Kj0vu29h5pAiFK1lUJ3qDJi9KrqASXfRPzeqcuZ9Hj/D17+aj0tXTcVGKBFbclnfEYGLVxD0OgrzyOR7qAswJyMJXNlXO8pJcsy1746hrtF2aFVo8JXMlH/3XdxuKeDcszeFaEsF+WSun8+DHofXPzsG3uLSUnZzrnzH2MyKW+A3br+Sbeuf+Du3rZmDatGDsSlsv5IEieTMjGarTjp1DzYNoCOIV5VK6MtEAgEAsFtRLYqOSwlSYUsWfFx9MFUUIG4SiHnsgzL+pJ3+TgA75xZyLYWPowP9K12m6ubmd8fIS9f2Yw8kdIYi/5BQoL/r4atEghqPxERESQlJXHmzBmmT5/Om2++yQcffFDTZtmwR7QxmUz069ePjIwMfvjhB2JiYvj2229p1apVCWHsk08+YciQIXTv3p19+/Zx5MgRHn/8caKionjhhRduys7GjRvz6aefcvToUXbu3ElISAj9+/fnWkF49alTp7BarXz++eccP36chQsXsnTpUl555ZUK5921axejRo1i7NixHD9+nO+++46//vqL8ePHVzguJyeHNm3asHjx4nL7xMbGcu+999K0aVO2bt3KkSNHeP3119Hri77vtm/fnuXLl3Py5Ek2btyILMv0798fi0X53MnOziYiIoL69euzb98+du7ciaurKwMGDMBkMpW4nslk4oknnqBHjx4V2l6Ve6gpRPheLcXmZSRbwWqF9c/B5WOg1tHB/wmOOrYtV5QqHCshK//eRPze9tPXSEjNYyp/YEkyFsyrRYORdg//GwI62DVPeoGnlKMxv8Rxd4frcjxZZOQ8MxaVsvgzmE3ssDbH+IceY74S/mWXKJV0BBIPQ0HIYW3KJZWbG0f0309TKCvqdL5otXdPFZvfjl3m0z/PkJKtvF7aBnnwUkQTQn1ccHcSIXsCgUAgqN1YLYU7ghIWyYJGrcZkVD6zteqqVdzj0kHy6ilfSJo7O9LEp579ZZRriHyThRyjBWet4jEWEvx/3Nf+fjRiQ0kgqBQHBwdb9dJnn32WH3/8kXXr1hEVFcVzzz3Hzz//jMFgoFevXnz88ceEhSnFni5cuMCkSZPYuXMnRqORkJAQPvjgA5o3b054uFJYwNNT+b4wevRoVqxYQVZWFlFRUaxduxY3NzdeeuklfvrpJ9q2bctHH30EQEhICGPHjuXMmTOsXbuWhx9+mBUrVrBz505mzpzJgQMH8PHx4aGHHmLevHk4Oztz/PhxYmNj2bJlC8HBwYDimdu9e1GBh4SEBKZPn87UqVN55513bMenT5+OTqdjypQpDBs27IY9b4cPH16i/eGHH7Js2TKOHDlCnz59iIiIICIiwnY+NDSUmJgYlixZwvz588udd8+ePYSEhDBlyhRACXOfMGEC7733XoX2DBw4kIEDB1bY59VXX2XQoEG8//77tmMNG5ZMcfPMM8/Y/g4JCWHu3Lm0adOGuLg4GjZsyKlTp0hNTWXOnDm2irazZs2idevWXLhwwVaxF+C1116jadOm9OnTh927d1dom733UFOIT5faSvEFS+JhOPRvSDwECXsZfGENULmnVHWseXKNimp7X+p5msQUJCWXdDjoddBkILhUvNtnUms43aA560ObAeBkKvKU6ldvGI83fbxEf9mkLAQtkvI71wLZFi3GfMUOjU5FnZBKPLPy0uBffeBn5c0GjR60TpXf7G0iLX0fhc+ev/8wWrX8tGplpWs5X+44x7FLmSRlKAJk7ya+dGvoQ1332h+uIBAIBIJ/NrIsIxfsWIMKq2RBo9ZiLhCqNFURpczKmqew6p4+8kOo5UnOrVYTx0+8wCudPsTXKRmA3s0aCUFKILhBHB0dMRqNjBkzhgMHDrBu3Tr27NmDLMsMGjTI5v0yceJEDAYD27dv5+jRo7z33nu4uLgQFBTE999/D0BMTAxJSUksWrQIUApV7Nq1i3Xr1rF582Z27NjBoUOHStkwf/582rRpw+HDh3n99deJjY0lIiKCoUOHcuTIEb799lt27tzJpEmTAPD19UWlUrFmzRqbB8/1rFmzBpPJVKZH1IQJE3BxceGbb76plsfQaDTyxRdf4O7uTps2bcrtl5GRgZdXxVXau3btSkJCAhs2bECWZa5cucKaNWsYNGjQTdlotVr55ZdfaNy4MQMGDMDPz4/OnTtXGCKXk5PD8uXLadCggU2AatKkCd7e3ixbtgyj0UheXh7Lli2jWbNmhISE2Mb+8ccffPfdd7XS6+lGEJ5StRxZluHayRLH1AVu5TcTlmcvhaJUfrYHsSFtwHgISeWEU4NAu8bva9eTPR3us7V9stIpfNk9GDIeP6eS4XSySbmeSVY8nBwM2UQ0i8f7iUdRa1Q4OGnQ6St52WYmgsUIagdoeB80HVQrdiUzM48QF/cZOblnAQgIGEHTJnMqGXVnYLXKLNpyhotpecRczgLgnYda0TLAjZb1ao+XmkAgEAgEFZF5PgNr4ZcwSYVVZWJf5iESs68CdaoWfm7KAyBfXSBKVUXQqgESUnPZHL2ZYNbR0EM5plI5oNfXq1G7BAJZlrFa82rk2iqV4w1tHsuyzJYtW9i4cSMDBw5k7dq17Nq1i27dugFKXqOgoCDWrl3LsGHDiI+PZ+jQobRq1QpQPH8KKRRa/Pz8bLmDsrKyWLlyJatXr6ZPnz4ALF++nHr1Sv9/ve+++5g+fbqtPW7cOEaMGMHUqVMBCAsL4+OPP6ZXr14sWbKEgIAAPv74Y1566SVmz55Nhw4dCA8PZ8SIETa7Tp8+jbu7O/7+/qWup9PpCA0N5fTp01V+3Iqzfv16Hn/8cXJzc/H392fz5s34+JSd2+7s2bN88sknFXpJAXTv3p1Vq1bx2GOPkZ+fj9lsJjIy8qbFnatXr5Kdnc27777L3Llzee+99/jtt994+OGH+fPPP+nVq5et72effcZLL71ETk4OTZo0YfPmzeh0Sp5lV1dXtm7dyoMPPshbb70FKM/Pxo0bbTkjU1JSGDNmDF9//XWpXJN3KkKUqq1IxTJHGbJLnFIVJJqyN8/5zWhXuUYzLTOPs8NiAYuivEtqZxp2DbZrfJKfIl7Vz0zDNcNM6LVEoH65/Y8dP84xzQlSJUXY0JhNeHqq8PCrgqdTQZgf7gEw/L/2j7vFnDn7LunpRQn6XO6iKnt7z6ewaMsZW1ujkohoWRcv59KJ7AUCgUAgqK1cOplarLqx4im1wLSE1DwlZ4ejtgqfa2bFYzivwFPKsZZ7Sb21/gRXr51gcjtIyvFjx+XHWDhiCFqt2FwS1CxWax5bt7WqkWv37nUUtdr+7yHr16/HxcUFk8mE1Wpl+PDhPPzww6xfv75EKJu3tzdNmjTh5EnF+WDKlCk8++yzbNq0ib59+zJ06FBaty6/2uW5c+cwmUx06tTJdszd3Z0mTUoXE+rQoWS6lb///psjR46watUq2zFF+LNy/vx5mjVrxsSJExk1ahRbt25l7969fPfdd7zzzjusW7fOVpSjMgqFlopYtWoVEyZMsLV//fVXW46k8PBwoqOjSU5O5ssvv+TRRx9l3759+PmVdGq4dOkSERERDBs2rERuKBcXF9vfTz75JEuXLuXEiRM899xzvPHGGwwYMICkpCRefPFFoqKiWLZsGTt27CgR4vb5558zYsSISu/DalW+nw8ZMoRp06YB0LZtW3bv3s3SpUtLiFIjRoygX79+JCUlMX/+fB599FF27dqFXq8nLy+PsWPH0r17d7755hssFgvz58/n/vvvZ//+/Tg6OjJ+/HiGDx9Oz549y7TlRu+hJhGiVG2lUJSSZTAX7AyoNGA1V2dRvUrJNVgIzT1va8tIPPTS/dRvFlD5YEki01WJfR5zbD9Z6R7kOZeRub2ASzEnWPvbT8iaojvUGc1IDlUM+zIUiFIOrlUbdwuRZZmsrKMABNd/Bjf3tvh4h9ewVTfPvnMp/GfvBS6kKHknmtRx5aF7AmhZz10IUgKBQCC44zBlZ+KZmoISeCdhlSzkq/WEurYmJg2aeTe2a54cs4Wxsdlc6vBv8gqKuuhruSh1LTMDdwdlDaXTBTD6vidxchIV9wSCqhAeHs6SJUvQ6XTUq1cPjUbDunXrKh03btw4BgwYwC+//MKmTZuYN28eCxYsYPLkyTdtk7Ozc4l2dnY2EyZMsOVVKk79+kXOA66urkRGRhIZGcncuXMZMGAAc+fOpV+/foSFhZGRkUFiYmIp7yyj0UhsbCwDBgyo1LbBgweXEOsCAoq+Yzo7O9OoUSMaNWpEly5dCAsLY9myZcycOdPWJzExkfDwcLp168YXX3xRYu7i1f4KPYrmzZtH9+7defHFFwFo3bo1zs7O9OjRg7lz59KhQ4cS4+rUqVPpPQD4+Pig0Who3rx5iePNmjVj586dJY65u7vj7u5OWFgYXbp0wdPTkx9//JEnnniC1atXExcXx549e1AVfGasXr0aT09PfvrpJx5//HH++OMP1q1bZ/MKKxQUNRoNX3zxBU888cQN3UNNIkSp2o4s29y/0TqDIQOpwPXJaqcHlGx3nb7S5BotuFnyCy4/iBznq9RvZv9OhUGnLMRcTEayKrLRZCXj+zjkAjGupcGfs+lHqH/BitqOEpcAHPsBfnkejAWlnB1q3p3RZMrg0OERZGcXhmCqCA2dhkp1dwg27/52isPx6bZ2v+Z1iOrVsPwBAoFAIBDUYq6tfI0WyUkcauAPqLCorKSfmUZ6wXkXnX0bZXszctiaI4Oz4lnupVXjoVXfEpurg/PnP2VS84W2dvOAAFo2FIKUoHagUjnSu9fRGrt2VSgUUorTrFkzzGYz+/bts4XvpaSkEBMTU0LECAoKIioqiqioKGbOnMmXX37J5MmTbR5HxfM7hYaGotVq2b9/v01IysjI4PTp0+V60BRyzz33cOLEiVJ2VoQkSTRt2tSWUPuRRx5hxowZLFiwgAULFpTou3TpUnJzcxk1alSl87q6uuLqap8jgdVqxWAoyk986dIlwsPDbRXtVNcJ/2XdX25uri0MrhC1WnlvlmUZR0fHKj0uheh0Ojp27EhMTEyJ46dPn7Yliy8LWZaRZdl2X7m5uahUqhIho4XtQm+sPXv2lHgt/PTTT7z33nvs3r2bgICAG76HmkSIUrWV4rHLpgKRReuoiFIFIlNlYlNxZ6sbJT3PSN2CGG5J5YakS6nSeINOcVl3uq6EZal+8Zk4ZOqhYK0Xkh/MZWtD/Hol49K7V4VjbRz/UUlyXkj9LlWy9VZw9eqvxQQpCAh44o4XpCxWmcV/niUhNdeWP2pq3zBCfV3o28yvktECgUAgENReDIarOBYuoCQVcQEqyAYnnRpPJx29GtvxOZd6jtwTe4HmNM8+y9yr39N45H9wqIWeUkazlVd+PEo7p/XULfzuLWnw9u5dk2YJBCWQJKlKIXS1jbCwMIYMGcL48eP5/PPPcXV15eWXXyYgIIAhQ4YAMHXqVAYOHEjjxo1JS0vjzz//pFkzpVBUcHAwkiSxfv16Bg0ahKOjI66urowePZoXX3wRLy8v/Pz8mDVrVilBoyxmzJhBly5dmDRpEuPGjcPZ2ZkTJ06wefNmPv30U6Kjo5k1axYjR46kefPm6HQ6tm3bxldffcWMGTMAxaPq/fff54UXXkCv1zNy5Ei0Wi0//fQTr7zyCnPnzqVly5Ylrnu9YAPQokULtNqS1blzcnJ4++23GTx4MP7+/iQnJ7N48WIuXbrEsGHDAEWQ6t27N8HBwcyfP59r167ZxhdWPyyLyMhIxo8fz5IlS2zhe1OnTqVTp05l5uMqJDs7m7Nnz9ra58+fJzo6Gi8vL5so+OKLL/LYY4/Rs2dPwsPD+e233/j555/ZunUroIRcfvvtt/Tv3x9fX18uXrzIu+++i6Ojoy3Rer9+/XjxxReZOHEikydPxmq18u6776LRaGxVGAtfF4UcOHAAlUpV6vG+kXuoKYQoVVspnhCq0FNKp7wZq2yilH1T3Az3pq3FaM1ERgWSI2qdfbt8J7Pz2JeSjbkg94Kj2Wg7V5bdssmKhaLQvgN5WiRJou6D/VA5ONhnbGHY3oB3oPmDSk6pGsJiyScn5zTXrm0EwNe3P02avIWD7s7fddxx5hofbi5KXKjTqBh7bwNc9doKRgkEAoFAULvJP3kSZNnmtS2hollOAFuBtRO707iOnWkB1k8jP1sHzZrja0yjm/UK6GrnkvtAXCprDl6kdTdlk2nx3xNZPiEKd6c7VwAQCGojy5cv57nnnuOBBx7AaDTSs2dPNmzYYBNkLBYLEydO5OLFi7i5uREREcHChYr3YkBAALNnz+bll1/mqaeeYtSoUaxYsYIPP/yQqKgoHnjgAdzc3HjppZdISEhAr6/Yo7N169Zs27aNV199lR49eiDLMg0bNuSxxx4DIDAwkJCQEGbPnk1cXBySJNnahfmSAKZNm0ZoaCgLFixg0aJF5OTkAPDNN9/w+OOPl7puWccSEhIIDCxZQEutVnPq1ClWrlxJcnIy3t7edOzYkR07dtCiRQsANm/ezNmzZzl79myp8RUVAxszZgxZWVl8+umnTJ8+HQ8PD+677z7ee++9Ch+zAwcO2EQhUCofAowePZoVK1YA8NBDD7F06VLmzZvHlClTaNKkCd9//z333nsvAHq9nh07dvDRRx+RlpZGnTp16NmzJ7t377blyWratCk///wzs2fPpmvXrqhUKtq1a8dvv/1WZlL5qmDPPdQUtfMTUoBNUiohSjkXnLFPlCrkRhylZv5wlA3RcXyjWcmvViU5niTp0VRW+Q7INlsYdPA0eQXxhSqLBUezCa7fICxumNmKtfCAVaZRzH8J/L/RBDWtuKxnCQoTnHs1rFFBCuDw4SfJyDxsa3t4dLrjBanjiRmsi07kWGIGAM383XioXT3aBnkKQUogEAgEdzw5Bw9xre5jGMgDyz5AhcaqBYmqVd3LvopBpVSo0rv6QYe3b43B1UBydi4OagPuDkqqhrkP9xCClEBwg1T0xd7T05N///vf5Z7/5JNPKpz79ddf5/XXXy9xzNXVtUSy8pycHGbPns0zzzxjOxYXF1fmfB07dmTTpk1lnvPx8WHRokUV2lPIkCFDbN5eqamp9OnThyVLljB48GCcCt5LQkJCqlQ1Xq/X88MPP1TYZ8yYMYwZM8buOYszefLkKufq6t27t1338PTTT/P000+Xea5evXps2LCh0jn69etndzJ5sP+xsPceagIhStVSSrhd5qYqv/UeyrmCF1Nlr6kbqF5q4/tDF2lgucghx2JeSpKepnUqrxh3yWAizyqjlSAk9jih8afRyOUnOAeQLVYsktJHkiEgaSf1Q6OQVJXchCzDry/BlRNw7ZRyTF+zuaQsFgMZmdEAODj44+LSFP+6D9aoTdXBqz8eIzoh3da+r6kvz/QU+aMEAoFAcHeQlmEl09ETqykdCtJ1mNVGsIJWXYVFlSmPfCdl/aQPaAPBIdVu682SazTzy+ETOGWO4bM+GbbjDfzKD3sRCAS1i8OHD3Pq1Ck6depERkYGc+bMAbCJRLcbLy8vfv/9dxYvXsyePXvo06dPjdghuPMQolRtJ2EfXCxYCLkrrolV9pSqgiJ65dxZ/vpuNc8d+QstJpIdmoMKVLIOSZII8KncAynFaAYgUKfhwU3fKAcDyqhWU8ws2SzbwvekguOSHWVEuRYDfxWrtCCpwKP8ZHK3Elm2cOHC51y9+hsgo9G40b3bjkrjumszVqvM2uhLXM0ycOaK4tr/ZJf6BHo68XjHoBq2TiAQCASC6uPomQOYsmNt7SCHY5yUlCTEuqp4SpnzySvIH1lbK+59vfcC6//6jefuKRKkXFya4eBwc+EhAoHg9jJ//nxiYmLQ6XS0b9+eHTt24ONTc9EZ3t7evPHGGzV2fcGdiRClaiuFQobVArnpyt/eShZ9m6eUnVNVxUlv93erOHdoPzhCPkUhWTpJWaQ41av8TS7FpIhSXhr78k+ZjBaSTqcVE6UUi+0SpQoTm7vUhYHv1mjo3tWrvxJ7rqj6hKdn1ztakALYcTaZ5//3t62tVkm8PLAZLg7irUMgEAgEdxd5eYpAI0kuqDRXaRFq4tOc9oD94XuJ+UYW13uSv5yVzTh9ZR7fNcTFtDyctUr+lxRTazq0+5IGvl5IUu0U0QQCQWnatWvHwYMHa9oMgeCmEd8sayvFxYx7RkOTgWBRkoXbXX3vBrJJ5WUqeZnqpRvJcfLG7J/CSb2eMHN/JCM4+lQeGlckSlW8sDm693e2r43HZDRhtVihQINSWasgShkU7x1c60CLhyrvfwvJKqiyp9V6ERw8gbp1ImvUnpvhSmY+O84ks+OMUski2NuJDsFedG3oLQQpgUAgENyV5FiU9Yte3ZLL3n8S98Qc4r5UynRrK1nTFLIyMYVldR+wtX11tS/notGYTD3VCuoGHAGgeUB9Qv3u7LyXAoFAILhzEd8uay2KKCXLQI/p4BkMJ9YVnKlaTqmq5DPLz1V2zZIDn0SlDQQrNM4tOq93rnhxFZ9n4HSOkiyztKeUraQgRswkxZ0ufQpwT1GEEFVFolR+JpzZBPF7lLZDzeWRunLlF86d/4jc3HMABAc/Q3D9cTVmT3UwafUh9sel2dqDWvkzI6LyfGICgUAgENyJpKWlkWNREklJAJKGfLPJdt6unFI5yaSnJgA6eqQdIKJNHx4JrF1iz9d7L5B6eSkt3H4EpX4ODnoRsicQCASCmkOIUrWV4p5SGocSx4qkHXuxr6f52jXy0wqSqksOgBGzLpVMtYyXkxeNG9XHy9+53PFL46/yZmyirV2Rp5QJs+1v93OnaOjchibuHUjIPoU6+meQJFQuLuUbu/kNOLi8qO3oWen93SrOnV9Ibu55ADQaN3y879ykfvkmCzkGM6cuKx5oPcJ8qOOm58kuNZOnSyAQCASCW40xL5e/1q+1LZckGbxUHsRnJgF1ANBWlhvKYoLPumAIeBr8B9Ez7SBjAx8Dbe1ZauebLLzx0zGGN71ECzc4ldqIlqEDCK4/uqZNEwgEAsE/mNrzSSm4jmJCkrrQY6hQlLIvp1RVsxjEjXgSg7saVCokyQEcThLX5FN+d3bihQ4v0K/FwArHb0tThAwPjZp6Dlru93BmWzm2mCRlN1JrVTGs3kTbcT+tHq9+Ebh26Yra3b38i6VfKBjQAjzqQ7cpVbnVasFiySM374JNkGrX9j+4ubVCo3G97bZUBz8evsiL3x3BbC16ZS15sr0I1xMIBALBXU3M3p38/fuvOBTkU5KQSbHCt9sPAQORJCuqynJD5WdCzjXy1QVV94I6gkPtWg9k5pmwyuCszQOgcfD99Gw3+Y7PfykQCASCOxvxbbO2Ihd5EtlEqUJPKVlJCF5pVb0qhO/JFgv5CQlYPUOVAyoH9vpdINrZCQCduvL8TnF5St6F5a0a0NXDhZz0NJsodT2mglrLOqkoHFBWSYSNexjHFt6VG2zIVn6Hz4Rmtz93k8Fwjb37+mM2Kzm4HB3r4+XV7bbbUR1YrDIXUnL48XCiTZDSqiX6Na8jBCmBQCAQ3PUYc3MBqYSn1ClJi/Gashmn19qRT8qspC7IV+kBcGgx+FaYesNYrQbOn5vD5LbHaeihbOy1DAwQgpRAIBAIahzxjbO2YrUW/W0L3yvcwVOozup71rw8zAWVZZT+OgzaPDSyjJfWhU51O1U6R7pJEZq8K3FV/1tzgb81yoJIK2tIzc1kh9GR+0Y2IcgeQQrAWCBK6SoI8buFpKRuswlSarUzIcH/VyN2VAfP/PsAW05dtbWXje5An2Z1atAigUAgEAhuH1aLBVmSoLDQCmCVVPi4aGgf7M2AFnUrn6RQlNI4AqC3s1rf7SAhNZedx37Gz/wtbf2Kjjs6itB8gUAgENQ8QpSqpUiyIvAgA6rCp6nQU6qS8L3rck/ZgzX1CueDegEXkCQHJEliZnYK7eqEQuRScKtX8XhZJsOs2OxeKsF5+Vhyrew0Kgs4TWVeORYznP4NMi9BVpJy7Da7xufmxpGRGU1S0g8AhAT/Hw0bTr+tNlQXeUYLuUYze86lAOCq1xDi7UynBl41bJlAIBAIBLcPq8VCfZdmXM08DijrLAtq2gW78vnIDnbNkWbI54xbS5K1HgDoK8tBdRuZ8f0RyDvO2JaQkFWPmKwIpg/sjrt7+5o2TSAQCAQCas8npqAkVkvR34Wu1dKN5ZSqLHxPtlrZ+b9/c849ueAyemS1hPezy2H0ukoFKYAci5VC3y57RKk6VndaJJrQpDghAw5OGvyCK6mgd/Q7+HYE/PoS5BVUhnO6fQKKLMscPPQEJ05MJz19HwA+PuG37frVydGLGbSds4n2c38n16i81va/2pefJ9+Lq772la8WCAQCgeBWYbVacNUVeWpLMlglNTo7N9lMVpmeZ40MbreYY85KGgR9ZTmobiOZ2fH4O18BQKVtyOCuUfh49xahewJBNTNmzBgkSUKSJHQ6HY0aNWLOnDmYzebKB1fA1q1bkSSJ9PT06jHUDs6fP8/w4cOpV68eer2ewMBAhgwZwqlTp0r0W79+Pb169cLV1RUnJyc6duzIihUrSvSJi4tDkiSio6Ptvv6bb75J06ZNcXZ2xtPTk759+7Jv374Sc44dO5YGDRrg6OhIw4YNmTVrFkajsdK5V61aRZs2bXBycsLf35+nn36alJSUCscsWbKE1q1b4+bmhpubG127duXXX3+1nU9NTWXy5Mk0adIER0dH6tevz5QpU8jIyLD1WbFihe31cf3P1atFUSsGg4FXX32V4OBgHBwcCAkJ4auvviphz0cffWS7VlBQENOmTSM/P7/Ce/jhhx/o378/3t7eVX4+bjXCU6q2IlvKOFgoShXmlLJzqkrkq6Szpzm0/6Ctne7nyAuvd8HNx7HSuU1WmagTcfyeooSyOalVdrms62QN+YY0JHUQfS5/Qdj3q1FXNi4trujvNk+AfxvwCq30WtWF0ZiM0XgVkPDyuhdXl2a4ubW7bdevLkwWK9tOX8VgLgoRHdSqLnqt/R5uAoFAIBDcLVgtVk67XsKQakaHsvlnVqnRqe37XEw3m7lmUdZooYbL1KvTiK4eNZNeoDg5BjMnY1cxrc0c27HOjUJo0tDOVAkCgaDKREREsHz5cgwGAxs2bGDixIlotVpmzpxZ06YBYDQa0ekqzhVsMpno168fTZo04YcffsDf35+LFy/y66+/lhDGPvnkE6ZOncqMGTNYsmQJOp2On376iaioKI4dO8b8+fNv2M7GjRvz6aefEhoaSl5eHgsXLqR///6cPXsWX19fTp06hdVq5fPPP6dRo0YcO3aM8ePHk5OTU+F1d+3axahRo1i4cCGRkZFcunSJqKgoxo8fzw8//FDuuMDAQN59913CwsKQZZmVK1cyZMgQDh8+TIsWLUhMTCQxMZH58+fTvHlzLly4QFRUFImJiaxZswaAxx57jIiIiBLzjhkzhvz8fPz8imKrH330Ua5cucKyZcto1KgRSUlJWIul9lm9ejUvv/wyX331Fd26deP06dM2QfTDDz8s9x5ycnK49957efTRRxk/fnylz8HtRIhStRVzodJZbBerMKdUgcZUmdhk7wZYbmZGwfRuaBzak9TNYJcgBbAnPZtfrhUpwA/4llcxT0Yulrw9w3AFOT8BvUsP6o58tHJBCiA/Xfl97/PQd5Zd9lUHVquRUzFvkJy8BQAHh7q0a7vitl2/Onnxu7/57uBFW3tSeCNeGNCkBi0SCAQCgaBmkS1m/pZ+p5lZ8QyXZBmL7IiDnZ5SBqNS6EVvMbD73GyI2HPLbLUXk8VK3w+30bfe7/QOAoNFh6uTH36+g2raNIHgrsbBwYG6dZU8dM8++yw//vgj69atIyoqiueee46ff/4Zg8FAr169+PjjjwkLCwPgwoULTJo0iZ07d2I0GgkJCeGDDz6gefPmhIcrkRmenp4AjB49mhUrVpCVlUVUVBRr167Fzc2Nl156iZ9++om2bdvy0UcfARASEsLYsWM5c+YMa9eu5eGHH2bFihXs3LmTmTNncuDAAXx8fHjooYeYN28ezs7OHD9+nNjYWLZs2UJwsJJ7Ljg4mO7du9vuMyEhgenTpzN16lTeeecd2/Hp06ej0+mYMmUKw4YNo3Pnzjf0OA4fPrxE+8MPP2TZsmUcOXKEPn36EBERUULgCQ0NJSYmhiVLllQoSu3Zs4eQkBCmTFEqtzdo0IAJEybw3nvvVWhPZGTJwlpvv/02S5YsYe/evbRo0YKWLVvy/fff2843bNiQt99+myeffBKz2YxGo8HR0RFHx6Lv2NeuXeOPP/5g2bJltmO//fYb27Zt49y5c3h5KRFBISEhJa69e/duunfvbnuMQkJCeOKJJ0p4kpXFyJEjAcXLrLYhwvdqKwbF86iEN1RhFJ+d4XuFVOZRZchRkoZLKk+0mhDcXO1I6FnA2VxFPPN30LKhfRjzmwQVmVtKFSsyxDEtBQf3ceg9AvEY+nDFF8m4BLs+hvi9BYM97LavOkhJ2U5S0neYTKkA+Pjcd1uvXx3kGs1cyzLw09+JtmOuDhrCm/pVMEogEAgEgrsf68FjvPzfbFxzlbZKhvy8pujUduzdbnwVw2LlS5eD1VhUnKaGSc42kJSRj4tWuakzeSPp0X0bnp6VF64RCATVh6OjI0ajkTFjxnDgwAHWrVvHnj17kGWZQYMGYTKZAJg4cSIGg4Ht27dz9OhR3nvvPVxcXAgKCrKJHTExMSQlJbFo0SIAnn/+eXbt2sW6devYvHkzO3bs4NChQ6VsmD9/Pm3atOHw4cO8/vrrxMbGEhERwdChQzly5AjffvstO3fuZNKkSQD4+vqiUqlYs2YNFktZ0TuwZs0aTCYTL7zwQqlzEyZMwMXFhW+++aZaHkOj0cgXX3yBu7s7bdq0KbdfRkaGTcgpj65du5KQkMCGDRuQZZkrV66wZs0aBg2yX7C3WCz897//JScnh65du1Zoj5ubGxpN2Z8l//73v3FycuKRRx6xHVu3bh0dOnTg/fffJyAggMaNG/PCCy+Ql5dn69OtWzcOHjzIX3/9BcC5c+fYsGFDle6htiE8pWordVoACeDsU+zgdTml7A3fq6Bf/okTXPzwQ9BLIOmR5Vw8HXzKH3AdhcnN7/Ny5R4350p6F7kd6swy+Q6uaHR26KKbXoPjxdwpnX3ttu9mkWULGZmHAfDyvJeAwOF4e/W8bdevDg5eSOWJL/ZhtCiPv1olEf1GP5x1GlS1KOeFQCAQCAQ1gelyCunuDTFrtIAF2UEi3iXAvpxSpzdiUCmhMA5WI4TWjlyTV67tZFCDTYS4XwLgsU4tatgigeDGkWWZ3OKVyW8jTirVDeVfk2WZLVu2sHHjRgYOHMjatWvZtWsX3bp1A5S8RkFBQaxdu5Zhw4YRHx/P0KFDadWqFaB4/hRSKLT4+fnh4eEBQFZWFitXrmT16tX06dMHgOXLl1OvXulcwPfddx/TpxcVZho3bhwjRoxg6tSpAISFhfHxxx/Tq1cvlixZQkBAAB9//DEvvfQSs2fPpkOHDoSHhzNixAibXadPn8bd3R1/f/9S19PpdISGhnL69OkqP27FWb9+PY8//ji5ubn4+/uzefNmfHzK/p569uxZPvnkk0pDBrt3786qVat47LHHyM/Px2w2ExkZyeLFiyu15+jRo3Tt2pX8/HxcXFz48ccfad68eZl9k5OTeeutt3jmmWfKnW/ZsmUMHz68hPfUuXPn2LlzJ3q9nh9//JHk5GT+7//+j5SUFJYvXw4oXmTJycnce++9yLKM2WwmKiqKV155pdJ7qK0IUaq20nww/LoYAu4pOibZWX3P1r1y1Spryx/kp6dBXS8kyYF8bS4++oZ2m5luq7hnz0up6MPEVFCdRqOzY8FXWGmvQS/l8Wg22G77bobTZ94mIaEoqZyv3wD8fAfclmtXJ7vPptgEKYAhbeqJZOYCgUAgEBRgtLhwqt2TWDK+Ams+sosVWVKhsye1gDmffJWyKefgVge63b70AmWRkWfi58NnqZM3iaFhRWkTdDr7NxwFgtpGrtVKw+1Ha+TasT1b4WxnfjlQhBQXFxdMJhNWq5Xhw4fz8MMPs379+hKhbN7e3jRp0oSTJ08CMGXKFJ599lk2bdpE3759GTp0KK1bty73OufOncNkMtGpU5H3o7u7O02alE7L0aFDySqif//9N0eOHGHVqlW2Y7IsY7VaOX/+PM2aNWPixImMGjWKrVu3snfvXr777jveeecd1q1bR79+/ex6LCrLXQWKODdhwgRb+9dff6VHjx4AhIeHEx0dTXJyMl9++SWPPvoo+/btK5F/CeDSpUtEREQwbNiwErmSXFyKcvs9+eSTLF26lBMnTvDcc8/xxhtvMGDAAJKSknjxxReJiopi2bJl7Nixg4EDB9rGff7554wYMQKAJk2aEB0dTUZGBmvWrGH06NFs27atlDCVmZnJ/fffT/PmzXnzzTfLvO89e/Zw8uRJ/vOf/5Q4brVakSSJVatW4e6upMX58MMPeeSRR/jss89wdHRk69atvPPOO3z22Wd07tyZs2fP8txzz/HWW2/x+uuvV/iY1laEKFVbcVRihtE4FTt4g9X3KuhpyM4n1SMEyASVAxlu+bTyCrHbzFSTsuDxsCNJtspU1CfbuTWOeaB1sONN3qCEF9J9CjTqa7dtN4PFYiAhYYWt7eTU6I4SpCxWmVnrjnEyKYv4VMV1f0qfMJ7v17iGLRMIBAKBoPZgunIVDQXiTUGRGZUuBuiExh5RypRHvlbxYtBX4YvrreKL7bF8u3c/7/UwY7aqOZN1L4PatsXTs0tNmyYQ/CMIDw+3Jf2uV68eGo2GdevWVTpu3LhxDBgwgF9++YVNmzYxb948FixYwOTJk2/aJmfnktEs2dnZTJgwwZZXqTj169e3/e3q6kpkZCSRkZHMnTuXAQMGMHfuXPr160dYWBgZGRkkJiaW8s4yGo3ExsYyYEDl350GDx5cQqwLCAgoYXejRo1o1KgRXbp0ISwsjGXLlpVIGp+YmEh4eDjdunXjiy++KDF38epybm5Klfd58+bRvXt3XnzxRQBat26Ns7MzPXr0YO7cuXTo0KHEuDp16tj+LqyoCNC+fXv279/PokWL+Pzzz219srKyiIiIwNXVlR9//BGttmxHgH/961+0bduW9u3blzju7+9PQECATZACaNasGbIsc/HiRcLCwnj99dcZOXIk48aNA6BVq1bk5OTwzDPP8Oqrr1b4mNZWhChVWynLS7Qw0blNlLIvfq+i8L3YuBzS3QLBeAJJ0hNitODjXHmS85+upvHq6Us2USrUseIcCmrJhD7HFdK2IuGCo1NPnOrqade/foXjADBmKb91rpX3rQaysk6QlXWMQs+unj0OoNG4IUk1v9i0l+iEdL7eG1/iWHN/txqyRiAQCASC2kn+lcvIKuXzXUYpJf5vZ3+QQVtJiPulfCNbvXpyykH5QqZX1Xyq1sT0fJw0ymaUGTe63rOA0GDPGrZKILg5nFQqYnu2qrFrV4VCIaU4zZo1w2w2s2/fPlv4XkpKCjExMSW8bIKCgoiKiiIqKoqZM2fy5ZdfMnnyZJvHUfH8TqGhoWi1Wvbv328TkjIyMjh9+jQ9e1acauSee+7hxIkTpeysCEmSaNq0Kbt37wbgkUceYcaMGSxYsIAFCxaU6Lt06VJyc3MZNWpUpfO6urri6mrfdzyr1YrBYLC1L126RHh4OO3bt2f58uWornuuyrq/3NzcUjme1AUbCrIs4+joaPfjcr09mZmZDBgwAAcHB9atW4dery9zXHZ2Nv/73/+YN29eqXPdu3fnu+++Izs72+bpdfr0aVQqFYGBgbZ7uP5ei99DVR7T2oIQpWo7xRWl68P3yhWbpGL/Vkx+nglkJVl5gMMJdjs0pI9z5Uk6v0lMJblAkPLSqulSSeljS/5+XDBgMuRh1LmwwD2P/zzZmrBG5biTG7Lg8NeQnwk5ycoxh1tfXjk94yAHDz5qazs5NUCrvXMWc8cTM4j6+iAp2UbbsS9HdcDTSUt7sSgVCAQCgaAEJ+LiyMKExXTO5inl79mV2FTQair+Mjrp5AX2NHzO1na2x7PqFmIypeHGblr7nALAy8VLfPYL7gokSapSCF1tIywsjCFDhjB+/Hg+//xzXF1defnllwkICGDIkCEATJ06lYEDB9K4cWPS0tL4888/adasGaBUvpMkifXr1zNo0CAcHR1xdXVl9OjRvPjii3h5eeHn58esWbNQ2ZEDa8aMGXTp0oVJkyYxbtw4nJ2dOXHiBJs3b+bTTz8lOjqaWbNmMXLkSJo3b45Op2Pbtm189dVXzJgxA1A8qt5//31eeOEF9Ho9I0eORKvV8tNPP/HKK68wd+5cWrZsWeK6MTExpWxp0aJFKW+inJwc3n77bQYPHoy/vz/JycksXryYS5cuMWzYMEARpHr37k1wcDDz58/n2rVrtvGF1Q/LIjIykvHjx7NkyRJb+N7UqVPp1KlTmfm4Cpk5cyYDBw6kfv36ZGVlsXr1arZu3crGjRsBRZDq378/ubm5fP3112RmZpKZqRQu8/X1tYlGAN9++y1ms5knn3yy1HWGDx/OW2+9xVNPPcXs2bNJTk7mxRdf5Omnn7blnoqMjOTDDz+kXbt2tvC9119/ncjIyBLXuZ7U1FTi4+NJTFQKXxU+H3Xr1q3wMbsdCFGqtlL4ZlJG+b2qVt+rCLNFjSwrO2ob6najfvt7CfKq3FMqNk9RhZe3DCHcyw19WQuxYm+IfyX7AkpuqCy9I9bKFLPDX8NvL5c85uRdqV03y7WrG21/e3h0IjCg9JtFbWbj8SskpBZVZ3ihf2P6Na9TwQiBQCAQCP6ZyBaZ+L2niDdfhOyLtuPHLxtA54xDJaJUUr5SNatLejTeDbryVHDNLOplWebAhTTSEybQ0/cQFNSD0WrdKx4oEAhuG8uXL+e5557jgQcewGg00rNnTzZs2GATZCwWCxMnTuTixYu4ubkRERHBwoULASX8avbs2bz88ss89dRTjBo1ihUrVvDhhx8SFRXFAw88gJubGy+99BIJCQnleugU0rp1a7Zt28arr75Kjx49kGWZhg0b8thjjwEQGBhISEgIs2fPJi4uDkmSbO1p06bZ5pk2bRqhoaEsWLCARYsWkZOTA8A333zD448/Xuq6ZR1LSEiweQAVolarOXXqFCtXriQ5ORlvb286duzIjh07aNFCKdqwefNmzp49y9mzZ0uNlysIExozZgxZWVl8+umnTJ8+HQ8PD+677z7ee++9Ch+zq1evMmrUKJKSknB3d6d169Zs3LjRll/r0KFD7Nu3DyjtoXX+/HlCQkJs7WXLlvHwww/bktYXx8XFhc2bNzN58mQ6dOiAt7c3jz76KHPnzrX1ee2115Akiddee41Lly7h6+tLZGQkb7/9doX3sG7dOp566ilbu/D5mDVrVrm5r24XklzRs/YPJzMzE3d3d1s5x9tJ2jffcHn2HFz79SXwk0+Ug3E7YcX9JLmG0O6elbzbOJAxAaU9jU6eepXExP8yY9eHJOdo+HnSvbQKLL0wuRRzkl9mvUuWnAmYGDr7A0KaNrPLvrDtR8iyWNnduRmhTmV7VuVmZrBk/Ahbu56HTECvYSyKc+Vgpp5V4zrTvTxPqU2vw+6PoW4rCOwI/m2h/Wi7bLsRUlN3kXT5Ry5f/hGAJk3eIjBg+C27XnUiyzKf/nGW88k5HE5I53xyDk93b8BT3UMI9HS8oYohAoFAICifmlwf1FbuxMck5VgyG5Z8xNXkaJAckCQ1J5wCuNr2Yeq4OzJnSAv83cvYqMtLh3WTaec1liSNB5sOjqP1cztAW/mm3q1gd2wyw7/cx4Jer+HhkElcZiANfP1o1XgCvr63JxenQFBd5Ofnc/78eRo0aFCpuCIoSU5ODgEBASxYsICxY8fe9uunpqbSp08f3Nzc+PXXX3Fycqp8kOCOp6L/s/auDYSnVG2lQEgooRkW5pSyt/peJed3/fffZMkptrn8KnBZLI5VlskuqObmWskuYnGa+su0Gz6Gdz7aDplZFea6Ij+jYFAk9J5h9zVuBKvVxNFjUzCb0wuOqPBw71DRkFrFofg0FmwuWXK1Y4gnQV7ig0AgEAgEgvLY+/0fWGVlPaPSNkSl0/O7bwd2jGhf8Wfo2d/h5DoM3ZQvfQ56N9DU3Jfnc1ezUUkWXLSKl0Ks+XVGdr4PXRXWaAKB4M7j8OHDnDp1ik6dOpGRkcGcOXMAbCGBtxsvLy9+//13Fi9ezJ49e+jTp0+N2CG48xCiVK2lMHyv9DFb+J6dTm7lJUTPSlFyNakd7uGqWyJObva5eedYrLYZXaoQ362z59VmyIZrMZB+QWnrb/1uq8FwxSZINWz4Em6urXBxqf1V6pRk5heIS1YWoY38XBjeqT5+bg70b1GzccECgUAgENR2UuJ2IusV8UlCwipZARXaynJDGZXP3Xy14hmlf3R5iZQFtxOr1YxHXhRf9jtjO/bWQ91R13B+K4FAcHuYP38+MTEx6HQ62rdvz44dO/DxKScS5Tbg7e3NG2+8UWPXF9yZCFGqtqIqI6fUdYnOrZVMUWZaqmLkpKcBoHZoQ47ztbI7FcMiy0w6cYHoLCUHlVaS0FdSmaY42sr0K1mGL3pBytmiY/pblw8hPeMgMTFvYDKlK5fSBxESPOGWXa+6effXk+w9l2pr92rsy9P3NqhBiwQCgUAguIOQLVhtqyk1MlZAqtzDyKwUiDFISi4YB3f7PM2rm0PxaXz2+zaeCCkSpNzdO6BW10wYoUAguL20a9eOgwcP1rQZAsFNI0Sp2kqhomQtLj2V9JSqdIoK+lnMZkyG/IJL6TFoLOX2LeRUTj4/Xk23tZu76CvMV6S6zotKry2nYyGmvCJByisU3AOhUb9K7bpRLif9SHb2KVvbza31LbtWdfL5tli2xlwjOiEdgAm9Qmno40JEK+EdJRAIBAKBvUiyVORNLknIKGshrbqSDTdTLmbUWArSKjhUYYOuOvl67wXOJCVBCKTnu2H1+Q/33dOiRmwRCAQCgeBGEaJULUUqy83JJgDJtlMX8gw4qFTUdShf8SlLmsq/eqXYvFoMWnOlNiUblT4hjjo+ax5MM+eKd+L0zi7c+/goEg/+iWfKHgI8K9lJNGQVGgSTD90yV3hZljGaUsjPvwRAcP0J+PoNwNXFviTvNUme0cK7v52yvSwctWomhjfCrVLFTyAQCAQCQSGyLCNJ2HJKgQpZUqrpVRS+J8sy20wuXKw70HbMQXX7Q+VkWSY3Lw0vfToAXq6+9OrQQhQ3EQgEAsEdhxClaiuFic4pP9F5qslM570nAbgc3rao23Upzq/PPSXLMmdGjgAfFxTvKzV5+so9pVJMiigV4KDjHjdnu26j80OPQmMtfLcaJP+KOxsyld8Obrc0N8OJEy9w+cpaW9vNvQ3ubm1u2fWqg9QcIyt2x3ElIx9ZVsSo9x5pTdO6rkKQEggEAoGgilgtZkAiTZOG4tetojBjpq4CUWpXejaP0xGadARALd1+T6lsg5ljx6YzLGg9BCnHXJ08UdWQx5ZAIBAIBDeDEKVqKwUCVMmEUJLtX5VsodcfU3gs+RgZGldovgLqNC85RTlrEzkvD2NyWoEopUGSJBw8OldqUkqBp5S3XRnLS1hS8en8DNi7BI5+p7RvYXJzszmbK1d/sdml1wfg4d7+ll2vulix6zwf/1GUayvU15nBbWomh4VAIBAIBHc6VrOFGL9kLqou0fKaG6ACyYokWcsXd079QsKuHyB0Mt7GNNpojfQJuwf1bfROyjWa6fn+n7zWYRvuDoVH1fj69r1tNggEAoFAUJ0IUaq2YsspVdxTqvCXlZbZZ+lycVPRuVO/lBKlCrk+fM+Snc2xFk+B5XeQdAD0adi/UpNSCzylvLXV/LL560vYOq+o7VP9le9k2Upy8hZS03YhyyYcHevTreuf1X6d6kSWZTYev0JcSg5bTl0FoEeYD60D3RnYshKvM4FAIBAIBOVisZjJcjCgMhYckFRoTC6oVRXk7Ty5nnyLshbqknGEZa3DIND31htbjItpeaTmGHDWKkVnVp5dwJLRA3F2cKhkpEAgEAgEtRMhStVWbOmjyvCUkmUa58aV7C+XrsVX5hSA+eolcpy8IQuQNNTzuMSDfcLLNeVYVi5fXLzGwQxlAVTtolRWkvJb5wL9ZkOrR6t3fiDh4krOnJlra3t796r2a1Q3++PSiPq6ZEWNUV1D6Ne8Tg1ZJBAIBALB3YHVbEZWgcpauFqSUJmccdJWIO6Y88lTKecdmw6EptW/iVYZ6VmJhLjFo1EpaRe+erovGo0QpAQCgUBw5yJEqVpK2YnOC3McyDhb8kr0l2VLqSC5srzJ87Iy+ffC9zBmZyttTyMPvTMcKshD8P75y2xKybS1gx119t6GfeRnKL97z4SO46p37gLS0/cDoNV64uvTj+D6E27JdaqD1Bwj3/wVz6ELabZjT3SqT4CHnt5Nbu+OrEAgEAgEdyMWixmNxRVHY0ElYlSoNBJPdK5f/iBzPvkqFwAcHSou9nIrSLy6l8z4J3m9i7I2lCQ1arV9OT4FAoFAIKit3P5yIQL7UBUJUDYKVCarXFqUKuUOVfKk7a+kszFkFwhSAPmNQ0GlrtCU07nKgu2ZQF8+bVafIX4elVlvFy7Jh2DdFLiwRzmgd6+WeYuTmPg/Dh56gmvXNgLQrNl7NGs2D72+9oa//WvHOT7YGGML2ZvQK5R5D7di0n1hFVYEEggEAoFAYB8JJ9IJTR5NaGor5YCkolOoNzMHVlCJ15RHvlrxStLf5qTiz/33MG+sWYOEjMmiIc/sRkDACFFtTyCoRYwZMwZJkpAkCZ1OR6NGjZgzZw5mc+VVziti69atSJJEenp69RhqB+fPn2f48OHUq1cPvV5PYGAgQ4YM4dSpUyX6rV+/nl69euHq6oqTkxMdO3ZkxYoVJfrExcUhSRLR0dF2X//NN9+kadOmODs74+npSd++fdm3b1+JOceOHUuDBg1wdHSkYcOGzJo1C6PRWMGsCqtWraJNmzY4OTnh7+/P008/TUpKit22vfvuu0iSxNSpU0scj42N5aGHHsLX1xc3NzceffRRrly5UqLP22+/Tbdu3XBycsLDw6PM+QtfQ8V//vvf/9rO//DDD/Tr1892na5du7Jx48ZK7f7hhx/o378/3t7eVX4+bjXiG26tpaD6nrV0+J7ZasHJkl+it1wqc1Sxc8VOmfILdgTV/ji4RaFv27pSSy4blBLJYwN9eKSuF7obLn1cuLOn3EeDQ+/BoZWQeVE57R54g/OWjcWSR8zpOaSn/wWARuOKu1u7ar1GdXIxLZe/zqcSnZAOQNdQbyaGN2TcvaE1a5hAIBAIBHcRJpOJLb/sVBqy8mVRZ8ignk/5X2YuG0yscWjGUZcwAPQ3vBa6Mf44dRVnrbIhuSuxM1ecfqBJ41m31QaBQFA5ERERJCUlcebMGaZPn86bb77JBx98UNNm2bBHtDGZTPTr14+MjAx++OEHYmJi+Pbbb2nVqlUJYeyTTz5hyJAhdO/enX379nHkyBEef/xxoqKieOGFF27KzsaNG/Ppp59y9OhRdu7cSUhICP379+fatWsAnDp1CqvVyueff87x48dZuHAhS5cu5ZVXXqlw3l27djFq1CjGjh3L8ePH+e677/jrr78YP368XXbt37+fzz//nNatS36HzsnJoX///kiSxB9//MGuXbswGo1ERkZitRal2TEajQwbNoxnn322wussX76cpKQk28+DDz5oO7d9+3b69evHhg0bOHjwIOHh4URGRnL48OEK58zJyeHee+/lvffes+tebycifK+2Umb4nnJMBXZ5SpW1d2bMU8ZJKj0qSYVnJZXu8i1W8guEMQ9NxR5V5VLOLp42v0CRbv8UBHWGBtWb5yk3Nw6rVbnfli0/wdWlBTqdV7Veo7o4dimDyE93lngaR3cLIaJl3ZozSiAQCASCu5D4c7FYTHmoAH1+MjlqaJb/G/Uivip3zNhj5zno95it7aK+wTXRDZCTm0gzj32EuMUDMLJbKxqHNbht1xcIBPbj4OBA3brK+v3ZZ5/lxx9/ZN26dURFRfHcc8/x888/YzAY6NWrFx9//DFhYYrQfeHCBSZNmsTOnTsxGo2EhITwwQcf0Lx5c8LDldy/np6eAIwePZoVK1aQlZVFVFQUa9euxc3NjZdeeomffvqJtm3b8tFHHwEQEhLC2LFjOXPmDGvXruXhhx9mxYoV7Ny5k5kzZ3LgwAF8fHx46KGHmDdvHs7Ozhw/fpzY2Fi2bNlCcHAwAMHBwXTv3t12nwkJCUyfPp2pU6fyzjvv2I5Pnz4dnU7HlClTGDZsGJ07V17hvSyGDx9eov3hhx+ybNkyjhw5Qp8+fYiIiCAiIsJ2PjQ0lJiYGJYsWcL8+fPLnXfPnj2EhIQwZcoUABo0aMCECRPsEmqys7MZMWIEX375JXPnzi1xbteuXcTFxXH48GHc3JTv1ytXrsTT05M//viDvn2VCqmzZ88GKOVNdj0eHh6219H1FD63hbzzzjv89NNP/Pzzz7RrV74DxsiRIwHFy6y2ITylagGyLJObmUFeViZygSohqcoQpQpkJg+NisZa83VzVDB/sb8LRSnQIctmPB1dKrQt02yxXdn1RkWpctCYspQ/Oo6Ftk8UC1m8Oa5cWc+27few/8DDALi6tqSO3yCcnIKrZf7qJN9k4XB8Gj8fSbQ9hw19nekR5sO9YT41a5xAIBAIBHcZcdEHWf/+e+jMGZgNxzFLigf5peAA1CFtyh4UvZpLGckAdMg4xmAnIw/X9bwt9p6+ksXeA2OY0HolrX1PAODgcHuuLRDUFmRZJtdorpEfucIUKZXj6OiI0WhkzJgxHDhwgHXr1rFnzx5kWWbQoEGYTEpEysSJEzEYDGzfvp2jR4/y3nvv4eLiQlBQEN9//z0AMTExJCUlsWjRIgCef/55du3axbp169i8eTM7duzg0KFDpWyYP38+bdq04fDhw7z++uvExsYSERHB0KFDOXLkCN9++y07d+5k0qRJAPj6+qJSqVizZg0Wi6XM+1qzZg0mk6lMj6gJEybg4uLCN998c1OPXSFGo5EvvvgCd3d32rQp530ayMjIwMurYgeErl27kpCQwIYNG5BlmStXrrBmzRoGDRpUqR0TJ07k/vvvtwlMxTEYDEiShEOxSqh6vR6VSsXOnTsrnbusa/n4+NCpUye++uqrCl+HVquVrKysSu+9NiM8pWoBa95+nfij0QA06dqDB6bOKMdTShFttLnJ9Mk+DkCeSoej1QgUq75XMFaSSr54TVeukPLrhoJzOsCMp6NruXZtSs7gt2QlCbmbRo2qmvIWhJnPEKy6gMZYkDzdoWJvrapy+crPmM0ZtraXZ/cKetcsUV8fZGvMNVv76e4NeCOy+f+zd+dxVVXr48c/+xw4cDjMCDLKIDjgPKaSA06Aht6bOVz9OZSadJ01pwZRw8xyyOlqdUv83ovV1crMLCVTwyFn00RRVBQVnFDm4Qz798eBI0cQnBCq9X69eMXeZ+21195obp79rGdV44gEQRAE4c/rxqWLBNi14NyNBGR9Prri92Hx6q4MKe/lWPZ12PQaBR2+A0tYmrSQoHafg/VTXvSlHDvP3ODl2IOs6Z6CpQLOZwbQPrA+tWu/UOXnFoSaJF+rJ3h25TVzqkLivDBsVI/+K7Msy+zYsYNt27YRERHBpk2b2Lt3Lx06dACMdY18fHzYtGkT/fv35/Lly/Tr148mTYx17gIC7pXvKAk2uLm5meoQZWdns27dOtavX0+3bt0A45QvT0/PMmPp2rUrU6dONW2PGjWKIUOGmGoiBQUFsXz5cjp37szq1avx8vJi+fLlTJ8+nblz59K6dWtCQ0MZMmSIaVxnz57FwcEBD4+ydXpVKhUBAQGcPXv2ke9baVu2bGHQoEHk5eXh4eFBfHw8tWqV/9I+OTmZFStWVJglBRASEkJcXBwDBw6koKAAnU5HZGQkq1atqvC4L774gqNHj3Lo0KFyP2/Xrh0ajYYZM2bw7rvvIssyM2fORK/Xk5aW9nAXXGzevHl07doVGxsbtm/fzj//+U9ycnJM2V33W7RoETk5OQwY8PRXsH9WRKZUNSvMyzUFpACunP7d+E1xAEiWywabALhpLDKXpPEv2+4+JXGtu//bQO6pkv5V6BU6atmUHxA6kZ3HsJMXWZ+WAUCwrfXDXlLFrh1nefZk1qg+RGEontOsdnwqXefnXyUjYy+3bv0EQHDD9wkJ2Utg4PSn0v/TdDunkCOX7nAkxbjCnpejmoYe9rzY0quaRyYIgiAIf14GvR5LpRWyoRAAtc6WZCcNd1wDyz+geIXgAkVxgfPub0PtRs9krInXMnC2voOlwpipUGS/hCZNVmJtJab2C0JNtWXLFmxtbbG2tiYiIoKBAwcyYsQILCwszKayubi4UL9+fU6fPg3AhAkTiImJISQkhOjoaE6cOFHheS5cuIBWq6Vt27amfQ4ODtSvX79M29atW5tt//bbb8TGxmJra2v6CgsLw2AwcPHiRcCYqZOenk5cXBzt27dnw4YNNGrUiPj4+Ie+FypV5cH7uLg4s3EkJCSYPgsNDeX48ePs27eP8PBwBgwYwI0bN8r0cfXqVcLDw+nfv79ZbajS/UZFRQGQmJjIxIkTmT17NkeOHOHHH38kJSXF9HlCQoLZcXFxcaSmpjJx4kTi4uKwti7/d2JXV1c2bNjAd999h62tLQ4ODty9e5eWLVuieMTZQG+//TYhISG0aNGCGTNmMH369AfWJVu/fj1z587lf//7H25ubpXe05pKZEpVs9tXLptt30vNK8mUKv1pqaBUw0gK3Jtz4OwZmmcnVTh/r6TPoow76Er+UkiWZFvr8HUqP81v3517K/QNdHfmVR/Xh7mcymWcByBLtsHg3hTH4O5PZdU9rfYuvx7oicFwrwC8k1P7GvngllOoI3TRLrIK7k3BjJ/S6bHewgiCIAiC8PAMeh0gmZ6b3Au8WemnJchaU/4B+kJkuLfqXpO/P7BW5tOk0+XibxjOB52M0wYVCivGdm5c5ecVhJpIbakkcV5YtZ37UYSGhrJ69WpUKhWenp5YWFiwefPmSo8bNWoUYWFhfP/992zfvp0FCxawePFixo8f/7hDN9FozP//lpOTw5gxY8rNvKlTp47pezs7OyIjI4mMjCQmJoawsDBiYmLo0aMHQUFBZGZmcu3atTLZWUVFRZw/f56wsMp/Zn369DEL1nl53XtBr9FoCAwMJDAwkHbt2hEUFMSnn37KrFmzTG2uXbtGaGgoHTp04OOPPzbru/TqciV1nhYsWEBISAjTpk0DoGnTpmg0Gjp27EhMTAytW7c2O6527drs2LGDGzdu0LJlS9N+vV7PL7/8wsqVKyksLESpVNKzZ0/Onz/PrVu3sLCwMNWFKp319jiee+453nnnHQoLC82mB37xxReMGjWKDRs2mE0prOie1lTit+BqYjDoWfPqUApyjMEfjZMzuXcy7jUor6ZU6YegbtFoHQOQz0UVNyun0Pl9z0xF2dnolIriz1Q4Wulw05SfAplZXEtqhFct3qv3FFfFKzRe70FDfay6/5eOQU8n2JWXdwGDoQBJUqGx8aeWa3esrcumr1anAq2e/Rduc/5GDlkFOiwUEl5Oaro1qC0CUoIgCILwDBj0eowv+YzPTQrZgF5hicriAW+ydYUUKO697X8Wq+7tPHOD/yT8wJC6t0z73NwiTKsXC8JfjSRJf5hn5ZJASmkNGzZEp9Nx4MAB0/S927dvk5SURHDwvbIdPj4+REVFERUVxaxZs/jkk08YP368KeOodH2ngIAALC0tOXTokCmQlJmZydmzZ+nUqVOFY2zZsiWJiYllxlkRSZJo0KAB+/btA+Cll15ixowZLF68mMWLF5u1XbNmDXl5eQwbNqzSfu3s7LCze3A5mdIMBgOFhYWm7atXrxIaGkqrVq1Yu3ZtmYyk8q4vLy8PCwvzP0vK4oUrZFlGrVaXOa5bt26cPHnSbN/LL79MgwYNmDFjhun4EiVTDH/++Wdu3LhBnz59Hur6HuT48eM4OTmZBaQ+//xzXnnlFb744gt69+5t1v5R7mlN8cf42/0npFAoMej1yLIBhVJJgw4dOfL9t/eCSw+oKZVc0IGdmf9EF52KX8tCZFP21INX3yv5JCs7mxy1E6ADSYW/+sEPNznF/9OzUz7Fhy9ZhiJjUCoHNVaVNH8YOl0OKSn/IifXOJ3Rzq4RbVpvfAo9P30f/nSONbvPm7ab+ziy8bUO1TgiQRAEQfhr0ev0yFLpZxsZA0osHxBsKigq5KL63su5ZxGUijtwibQ7xhWKr+Z44BW4gUbBZeu2CILwxxAUFETfvn0ZPXo0H330EXZ2dsycORMvLy/69u0LwKRJk4iIiKBevXrcuXOHnTt30rBhQ8C48p0kSWzZsoVevXqhVquxs7Nj+PDhTJs2DWdnZ9zc3IiOjkahUFQawJ4xYwbt2rVj3LhxjBo1Co1GQ2JiIvHx8axcuZLjx48THR3N0KFDCQ4ORqVSsXv3bj777DNmzJgBGDOq3n//fV5//XWsra0ZOnQolpaWfPvtt7zxxhvExMTQuLF5dmdSUlKZsTRq1AhLS0uzfbm5ucyfP58+ffrg4eHBrVu3WLVqFVevXqV///6AMSDVpUsXfH19WbRoETdv3qvR+6BV6wAiIyMZPXo0q1evJiwsjLS0NCZNmkTbtm3LrccFxiDP/dei0WhwcXEx27927VoaNmyIq6sr+/fvZ+LEiUyePNlsSuXly5fJyMjg8uXL6PV6U1ZWYGAgtra2fPfdd1y/fp127dphbW1NfHw87777rllB+fXr1zN8+HCWLVvGc889R3p6OmAsqu/g8OAZSCXnvXbtGnDv5+Hu7l7hPXsWRFCqGg2evwSVWo21rR13069x5PtvTUEo0/9MDOa1oi4UtKVI1oAeUo7eRG7x4KBUCVmGX+LWcuhuKhRPg5UkFRrrogcek60zntf+qay4VzzG1F/B0jiAXFmNy1Po+XLqWi5d/si0rVY/xayupySnUEd6Zj5HLxnrRwW4anC1tSKqS91qHpkgCIIg/LUYdHqzagiyrAdZgZ2VukzbfL2BDlesSWu9FgClBJaKqs9WupunxcbCuFqyv2ttnm9Y80oRCILwaNauXcvEiRN54YUXKCoqolOnTmzdutUUkNHr9YwdO5YrV65gb29PeHg4S5cuBYzTr+bOncvMmTN5+eWXGTZsGLGxsSxZsoSoqCheeOEF7O3tmT59OqmpqQ+se1SiadOm7N69mzfffJOOHTsiyzJ169Zl4MCBAHh7e+Pn58fcuXNJSUlBkiTT9uTJk039TJ48mYCAABYvXsyyZcvIzc0FjFk8gwYNKnPe8valpqbi7W3++5tSqeTMmTOsW7eOW7du4eLiQps2bUhISKBRI2NNv/j4eJKTk0lOTi5zfEUr1Y0YMYLs7GxWrlzJ1KlTcXR0pGvXrixcuLDCe/YwkpKSmDVrFhkZGfj5+fHmm2+a3S+A2bNns27dOtN2ixYtANi5cyddunTB0tKSVatWMXnyZGRZJjAwkCVLlpjVyvr444/R6XSMHTuWsWPHmvYPHz6c2NjYB45v8+bNvPzyy6btkp9HdHQ0c+bMeZJLf2IiKFWNnD3vze+UTIXNzTOl5NLBJoMOrXzvoUmWS4Wiypu+V+r7C0fvrRQgS1YE2FylaYeWZY7J0xs4cDeH72/eBcD2aQSlinJLDWQXALexw+fJVlgFIPOu8brUaj88Pfrj7v5k6ZFPW3aBlk7v7+ROnta0752+jQkJLH/apCAIgiAIVacwPZ0cRalFXiQDoKS1b9l/l68WFpGmNz4HWRu09PF0q/LxXbjwIQP9vkSJMShlZ+Mkpu0Jwh9ERQEBJycn/u///u+Bn69YsaLCvt9++23efvtts312dnbExcWZtnNzc5k7dy6vvvqqaV9KSkq5/bVp04bt27eX+1mtWrVYtmxZheMp0bdvX1O2V0ZGBt26dWP16tX06dMHGxsbAPz8/CoMFN3P2tqar7/+usI2I0aMYMSIEQ/dZ2njx49/4lpdu3btKrPvvffe47333qvwuNjY2Ar/nISHhxMeHv7I534YT3LPqpoIStUU90/XK0ktL/33V1eITi496U3GYGpXzup7plrpMrl3jVk6KrshXHDaxusxs8DKtswhb527YlpxD6Cu+ilMssu7fe/7FkP5JjGL/xb0oPljdifLMueS3+X27Z3k5RlXiAhuuBBHx9aVHPnsnb2ew508LQoJHNSW+NXS0KKOY3UPSxAEQRD+kuy2fUvtm3lcbuRfvMfAm70aM6JJ2UK0BTrjgiRuhbc5cW0RdPuhysZ14WYOk/93nNfqr8HZ6t6LLFvbsitpCYIgABw7dowzZ87Qtm1bMjMzmTdvHoApSPSsOTs789NPP7Fq1Sr2799Pt27dqmUcwh+PCErVENL9mVGmWXmlolL6IrRyqXRMGVNNqYqizwadjoKcbGO3CjvyrQrLDUgB/J5jfDMXaGNFGwcNHRzLb/dICrPufd93JZ+kJHAjM+vB7SuRl3eB1NTPTNvW1j7Y2TV5khE+ddM2/MaGI1dM2618ndgQJepHCYIgCEJ1cszLQSffqwuV5aigV92uZRt+N4nCsweg5WqsDYVg8TQqYT7YD7+nc/raDSwbGgNSy45NZM3Qjni4NqvS8wqC8Me2aNEikpKSUKlUtGrVioSEBFOh7erg4uLC7Nmzq+38wh+TCErVGKa0puLN8mpKSebT9yidSCWbtSvVIwZtqdpRkopClZ4HSS80Pgz9K9iXpnY2Dz/8ihQ8fgCqTFcF17hz51cAFAoVzZv/H7aaeiiVVfuw+LB0egO5hXq+PX7NbH+X+lWf8i8IgiAIQvlkrZ6b//4dg8aXS05BwEVAQh35Gm425fwbfWYL+ZbGOiVWhiLw71h1Y5Nl1EUbGNrwN+MOScUno0ZT26FsnStBEIQSLVq04MiRI9U9DEF4YiIoVUPcm71XXOi8ZHWX0hlQXq3QKq+BrnhbBvn+WlRmfRr3ZZ2/UGqvkiLr8rOqCvQGbhYZO/e0UpXb5rEon84fs7S0r0g8Pd207ezcESfHNk+l76chp1BH2NJfuHrXmG1moZDYN6srVhZKHNSWlRwtCIIgCEJVKbqWS9GlLM66hZNm7w+ZnwAKVA/691lbQEHxs5DarR60/VuVjEunN/DbxcP4Wv4b3+KFn2zUXiIgJQiCIPxliKBUTSHdt4peOYXOZUki3+AA3MuekuX7alHdR2nQ4/TOdKjrBiiRJAnZtvwVGVILipABjVKBi+XTWHWvWMhkuHIEmg9+om7S0781fa9W++LpOfBJR/ZUnbqaaQpIAUQ08cDNruLVLwRBEARBeAb0MjelLAqVVsjFdTj1koRTPcfy2+vyKVQYg1LWFlX3Ymnud4kcPfcLU1rB3QJ7lHb9aNPob1V2PkEQBEGoaURQqoaQiguWywbT/D3jf2RjFtS+r5K5eTkbnda8oLnMfcGs0n0CNroC7jg2BG6DZIEsG/AN8CjTNkun51CWcZU8P7Xq6a70onGBVx6/OGhGxl7y8i+Rm3cegBbN/w9n55CnNbon9sG2M2z+7Ro5BcYss3YBzqx7pS1WT2PlQkEQBEEQnphskDlmcRGVZEHJyz2dJGFtXfbf6qN3slgS/A6p1u4AWCuqbvW7xLQs1BbGF1q5Bk96NJ2KvZ3IkhIEQRD+OkRQqoaQSq2UZ7bDYCDrVj7Hf0o1tbW0UqItNNaFujd9r5zV9wCNtpAUvzDIXg9YkKW5TP/GfczaXM4vpPPBJPKL61f5WteM+kwAubnnOXZ8mNk+a2vPahpNWTq9gY92X0BnuBcUbOvnLAJSgiAIglCTGGR0GLBESUlQyoACSwtFmaafXrnBTy73Fifxtn6KJQ1KuX07gZaO69EoLwPQrI43HmLaniAIgvAXI4JSNYZ5oXNJcW9aXlG+MQBlpbGg86D6ONa24X/vHipuXk7tqVI0Ot29bCqLAsY6rsDB+5hZmx9vZZoCUrUsLejn7vSUrunJ5RVnR1laOuHo2BY722BsbPwrOarq5RfpGfLvXzl/MxedQUalVPDVax1Qq5TUddVU9/AEQRAEQSjl5M+7kJHRkY9BlweAQVKgUpYNSuXqjJnPQ9K2ENptLJ1d7J/qWPQGmfnfJ9JG/U/a1c4z7beyEouiCIIgCH89IihVQ0jSfbWhSm1rC40PR2pbFUFtalOQqzUdV1FNKQmZoPwkdHpjUEuyyMWhVtkaR7e1xs9HedciJsj7aVzOE8vPv8qFi0u4detnABwd29C0yb+qeVT3HLl0h6OX75q22/o708TbofoGJAiCIAjCA104tBe9Wy0ytHtBa3xmMqDAsnRQKisNvptAgcOLoGlIu6xTvFD76b+oO3b5Dv/9NYmQbsaA1E+XujK0QwP8fJ+s9qYgCIIg/BGJoFRN8aDpe8hoC41ZTJZWxilhUqnaBiVZUOXlSdXKTiMo//d7ZdGtLKH7nDLtcnTGoJRG+WynnJWf22WUfP49btzYatp2cnyu6gf0ELacuMbyHee4m2cMDLb1d+bdvzfGz0VkRwmCIAhCTSTLMhhk8rUFGJ8+lBSoDBy1bcZQZal6UUnfw7ntFDTrDYCVjWOVjOd2bhEaC2NASkbBwG7vE1yn5mSpC4IgCMKzVDZnWagWDyp0LhtkU/0oU1Cq1HGyKaOqbE0pdWG2sb3CAaWqKXndu0K9sDLtcvXGY23LSWGvCg9TQz07+3cAPNz70aL5/+HtPbyKR/Vw1u5N4ez1HG5kFwLQLsCFQDc7LJ7RvRMEQRAE4dHIsgFJUpBlMP5bLSkcueBvQXZQc+o429xrWGQMFBWoawFg3fWNpz6WwsLr6DLeZXijLwBQWTrSXASkBOFPYcSIEUiShCRJqFQqAgMDmTdvHrriKcGPa9euXUiSxN27d5/OQB/CxYsXGTx4MJ6enlhbW+Pt7U3fvn05c+aMWbstW7bQuXNn7OzssLGxoU2bNsTGxpq1SUlJQZIkjh8//tDnnzNnDg0aNECj0eDk5ET37t05cOCAWZ8jR47E398ftVpN3bp1iY6OpqioqNK+4+LiaNasGTY2Nnh4ePDKK69w+/btSo+7evUq/+///T9cXFxQq9U0adKEw4cPmz4v/fMv+QoPDzfrw8/Pr0yb9957z/R5UlISoaGh1K5dG2trawICAnjrrbfQarVm/dy9e5exY8fi4eGBlZUV9erVY+vWrVTk66+/pmfPnri4uDzyz6OqiUypmsIUqCkOSilKT98zBqUsVMr72hpTz82OK9XASmtczUVh4Y3K+jmc/PLLnLZAbyCzOFPKppoDK7Iscy75XW7f3kV+vrHoZ92607Cycq3Wcd3MLmTVzmRuZhdyOi0LgPdebEJDD3sae4kpe4IgCIJQkxl0eiwlHS7ydbQAkhK9wsDOKb3MG+oKACi0MAaqrJ9yptSGw6kcP72Url7f08QY98La2uupnkMQhOoVHh7O2rVrKSwsZOvWrYwdOxZLS0tmzZpV3UMDoKioCJWq4sUbtFotPXr0oH79+nz99dd4eHhw5coVfvjhB7PA2IoVK5g0aRIzZsxg9erVqFQqvv32W6Kiovj9999ZtGjRY4+zXr16rFy5koCAAPLz81m6dCk9e/YkOTkZV1dXzpw5g8Fg4KOPPiIwMJDff/+d0aNHk5ubW+F59+7dy7Bhw1i6dCmRkZFcvXqVqKgoRo8ezddff/3A4+7cuUNISAihoaH88MMPuLq6cu7cOZyczF8qlPz8S1hZlV1AbN68eYwePdq0bWdnZ/re0tKSYcOG0bJlSxwdHfntt98YPXo0BoOBd999FzD+DHv06IGbmxsbN27Ey8uLS5cu4ejoWOE9zc3N5fnnn2fAgAFm568JRFCqhpBKMqOKa0OVrjFVkGOMjFpryvlxlcSiysmUUukLiztXg6zDRWNr9vnCC2ksvXTdtK2p5qBUVvYJUlM/M23b27eo9oAUQNyBS8TuSzFtq5QKwhu742hTNavxCIIgCILw9BgMerq6b+JGvsRmggElsrLsc1OWVss1Gz+yFcZ/360VD5Ha/Qg+P3iZBjZ3ADh5qyHubt1o3+jFp3oOQRCql5WVFe7u7gC89tprfPPNN2zevJmoqCgmTpzId999R2FhIZ07d2b58uUEBQUBcOnSJcaNG8eePXsoKirCz8+PDz74gODgYEJDQwFMAZDhw4cTGxtLdnY2UVFRbNq0CXt7e6ZPn863335L8+bN+fDDDwFjZs7IkSM5d+4cmzZt4sUXXyQ2NpY9e/Ywa9YsDh8+TK1atfj73//OggUL0Gg0nDp1ivPnz7Njxw58fX0B8PX1JSQkxHSdqampTJ06lUmTJpmCJQBTp05FpVIxYcIE+vfvz3PPPV4JlsGDzWvsLVmyhE8//ZQTJ07QrVs3wsPDzbKQAgICSEpKYvXq1RUGpfbv34+fnx8TJkwAwN/fnzFjxrBw4cIKx7Nw4UJ8fHzMAk7+/mUX3yr9838QOzu7B7YJCAggICDAtO3r68uuXbtISEgw7fvss8/IyMhg3759WFpaAsafc2WGDh0KGLPMahox56imkMxX3yvZLpKsuZlqnIantlMVf1SqppSkMD+uFLWiOM1PskBGh4ed473jZJl1126Ztt1UFjznYEt10evzyM4+BYBSqaF5s89o3uzf1TYegB9OpjHzqxNsPn4NAC9HNQtebMKGqPYiICUIgiAIfxAGnR57izvoi18ASpIS+b6AU5ZOT2tFD7q0WccVyfg8ZPUUX9bJskxWQT4ay1wAOjWOYGDnSdjY+D61cwjCn5YsQ1Fu9Xw9YIXzh6VWqykqKmLEiBEcPnyYzZs3s3//fmRZplevXqZpWWPHjqWwsJBffvmFkydPsnDhQmxtbfHx8eGrr74CjFO70tLSWLZsGQBTpkxh7969bN68mfj4eBISEjh69GiZMSxatIhmzZpx7Ngx3n77bc6fP094eDj9+vXjxIkTfPnll+zZs4dx48YB4OrqikKhYOPGjeiLF8y638aNG9Fqtbz++utlPhszZgy2trZ8/vnnT3TvShQVFfHxxx/j4OBAs2bNHtguMzMTZ2fnCvtq3749qampbN26FVmWuX79Ohs3bqRXr14VHrd582Zat25N//79cXNzo0WLFnzyySdl2u3atQs3Nzfq16/Pa6+9Vu60wPfeew8XFxdatGjBBx98UOH0zuTkZH788Uc6d+5sNpb27dszduxYateuTePGjXn33Xcf+LP6IxCZUjVESaDJVOhcoeCydyjJdV6CQ8ZsJhv7kqCU2ZHmx5Xi73yLvDSQJAuQ9PjYeZo+KzTIZBSvupf4fGOcLavvj8LNm/Gc/H0csmz8C+laqwcuLp0rOapqFWj1TPziOEX6e29S5/VtRLeGtatxVIIgCIIgPCqDrghJktEbSoJMSvT3PfakFhSRJamQZAPOkpZ6js401JRdsfhx5BRo+f3kK8xqvs+0z92xttlLRkEQKqDNg3c9K29XFd64BqpHX9BIlmV27NjBtm3biIiIYNOmTezdu5cOHToAxrpGPj4+bNq0if79+3P58mX69etHkyZNAMyyZUoCLW5ubqYpWtnZ2axbt47169fTrVs3ANauXYunZ9n71LVrV6ZOnWraHjVqFEOGDGHSpEkABAUFsXz5cjp37szq1avx8vJi+fLlTJ8+nblz59K6dWtCQ0MZMmSIaVxnz57FwcEBDw+PMudTqVQEBARw9uzZR75vpW3ZsoVBgwaRl5eHh4cH8fHx1KpVq9y2ycnJrFixotIpgyEhIcTFxTFw4EAKCgrQ6XRERkayatWqCo+7cOECq1evZsqUKbzxxhscOnSICRMmoFKpGD7cWPs4PDycF198EX9/f86fP88bb7xBREQE+/fvR1m8oNiECRNo2bIlzs7O7Nu3j1mzZpGWlsaSJUvMztehQweOHj1KYWEhr776KvPmzTMby88//8yQIUPYunUrycnJ/POf/0Sr1RIdHV3pfa2JRKZUDVF6ul7xHjId6hZ/L+PgqKRe29olH5U+sriJeRq61UkJ+32XircsMKDDXXMvTTC7VCTV0eLZrrp3v5s3txcHpCQsLBxwc4uotrEU6vT8+Hs6n+29aApIzQhvwKL+zehS363axiUIgiAIwuMpSrtC+hF7biYV1+2QLKD0o8+dFApP/wCAd8F1Tlnu45sWQagUT/6YfO1uPs+/t5Xc7HsBKYXCFgeHlk/ctyAINc+WLVuwtbXF2tqaiIgIBg4cyIgRI7CwsDCbyubi4kL9+vU5ffo0YAxWxMTEEBISQnR0NCdOnKjwPBcuXECr1dK2bVvTPgcHB+rXr1+mbevWrc22f/vtN2JjY7G1tTV9hYWFYTAYuHjxImDM3EpPTycuLo727duzYcMGGjVqRHx8/EPfi8pqV4ExOFd6HKWnqYWGhnL8+HH27dtHeHg4AwYM4MaNG2X6uHr1KuHh4fTv39+sVlLpfqOiogBITExk4sSJzJ49myNHjvDjjz+SkpJi+jwhIcHsuLi4OAAMBgMtW7bk3XffpUWLFrz66quMHj2aNWvWmM43aNAg+vTpQ5MmTfjb3/7Gli1bOHToELt27TK1mTJlCl26dKFp06ZERUWxePFiVqxYQWFhodk1ffnllxw9epT169fz/fffmwXbDAYDbm5ufPzxx7Rq1YqBAwfy5ptvmsZS0T2tqUSmVE1RekqeLIMEsmR8YmpwJg7P679iNXknYG2qPwXGpYSLDzLrTk50JlvjDWSCpMRBI2FjeW+FmRydMeCiUSpQVNObOtmQT2bWb2RlnwSgaZN/4eras1rGUmLdvhTe3XpvVYlAN1te61K3giMEQRAEQajJcnckkHXOlnwXS7AHUJJXatE94vpToFVD8+VYG4pA9fTKGZy6loUkG8sw6AxKPr+0mn8Pfx4Li7LFbwVBeABLG2PGUnWd+xGEhoaain57enpiYWHB5s2bKz1u1KhRhIWF8f3337N9+3YWLFjA4sWLGT9+/OOO3ESjMc/0ysnJYcyYMaa6SqXVqVPH9L2dnR2RkZFERkYSExNDWFgYMTEx9OjRg6CgIDIzM7l27VqZ7KyioiLOnz9PWFjZVd/v16dPH7NgnZfXvcUfNBoNgYGBBAYG0q5dO4KCgvj000/NisZfu3aN0NBQOnTowMcff2zWd+nV5ezt7QFYsGABISEhTJs2DYCmTZui0Wjo2LEjMTExtG7d2uy42rWNSSEeHh4EBweb9d+wYUPT1MryBAQEUKtWLZKTk03ZbPd77rnn0Ol0pKSkmAUUfXx8AAgODkav1/Pqq68ydepUlEolHh4eWFpamrKvSsaSnp5OUVFRhfe0pqqxmVILFiygTZs22NnZ4ebmxt/+9jeSkpLM2nTp0qXMkoolUc4Sly9fpnfv3tjY2ODm5sa0adOeeFnOKifLSJKEQWGMGUqyHmQZ3a3iGlDlZUrdN33vur4L+eqSObVKguqbP2DlFGdK2VZTcXNby2z01wdw+PCL5OaeA0CjKRvZf1bO38zhf4dS2XbqXuH3sEa1ebNXw2obkyAIgiAITyb/1C0O7D/Jj03qcdqrJONcSaFNqeefzKsUKIxBImsrGwj+21M5t8GgIzdrH61q/waA2sqR2JHdREBKEB6VJBmn0FXH1yO+vC8JpNSpUwcLC+Pvcg0bNkSn03HgwAFTu9u3b5OUlGQW6PDx8SEqKoqvv/6aqVOnmmoWlWQcla4ZFBAQgKWlJYcOHTLty8zMfKgpcy1btiQxMdEU8Cn99aDsJkmSaNCgAbm5xrp4L730EhYWFixevLhM2zVr1pCXl8ewYcMqHYudnZ3Z+dVq9QPbGgwGs4yiq1ev0qVLF1q1asXatWtR3JfdWrpfNzfjjJe8vLwy7UqCO7Iso1arzY4rWRkvJCSkTCzi7NmzpkLw5bly5Qq3b98ud4pjiePHj6NQKEzje9B1a7VaDAaDaSzJycmm7ZKxeHh4oFKpHume1hQ1NlNq9+7djB07ljZt2qDT6XjjjTfo2bMniYmJZtHe0aNHm82xtLG5F83W6/X07t0bd3d39u3bR1paGsOGDcPS0tJslYCawKx4OTIoFKaglMKgK/mguLHZkcaP7suUkoo0IOcAUF+9hxbtjNX2iwwGopOv8e0N4+ov9tU0da+payLobwKgVvvh5NgWtbpOJUdVjQKtnr+t2kt2wb1g5eohLYlo8uD/gQiCIAiCUPNp03JJ0V1FVpR6TlK6oLP8/d62roDC4hX3rJx9wfbJV/4t0Oo5fOoT7PIW8Y8Gxn2Wlk4VHyQIwp9SUFAQffv2ZfTo0Xz00UfY2dkxc+ZMvLy86Nu3LwCTJk0iIiKCevXqcefOHXbu3EnDhsaX476+vkiSxJYtW+jVqxdqtRo7OzuGDx/OtGnTcHZ2xs3NjejoaBQKRaX16mbMmEG7du0YN24co0aNQqPRkJiYSHx8PCtXruT48eNER0czdOhQgoODUalU7N69m88++4wZM2YAxoyq999/n9dffx1ra2uGDh2KpaUl3377LW+88QYxMTE0btzY7Lz3B3UAGjVqZFpBrkRubi7z58+nT58+eHh4cOvWLVatWsXVq1fp378/cC8g5evry6JFi7h586bp+IpWv4uMjGT06NGsXr2asLAw0tLSmDRpEm3bti23HleJyZMn06FDB959910GDBjAwYMH+fjjj03ZWTk5OcydO5d+/frh7u7O+fPnmT59OoGBgaaMsf3793PgwAFCQ0Oxs7Nj//79TJ48mf/3//6faWXFuLg4LC0tadKkCVZWVhw+fJhZs2YxcOBA03167bXXWLlyJRMnTmT8+PGcO3eOd999t9zMt9IyMjK4fPky165dM/t5uLu7V7piYFWrsUGpH3/80Ww7NjYWNzc3jhw5QqdOnUz7bWxsHngTt2/fTmJiIj/99BO1a9emefPmvPPOO8yYMYM5c+Y81DzXZ6b0/zxk47ZBuj8oJRc3LWf6XqlMqYJsLVm6AmQ5C4C6PjlYN+gIwPc3M1l79d6qex2d7J7yhVQsN/cCbV2/w011DIA6PiMJCnrjmY6hhMEgs/7gZc5dzzYFpLo3dKO2vTWhDUT9KEEQBEH4o8svzDMtBmOt7s1+v99Jq7UHSVW8QrFeC7L+XlDqKdSRApi64Tcci36lax24ne+E0tKTRv6jKz9QEIQ/pbVr1zJx4kReeOEFioqK6NSpE1u3bjUFGvR6PWPHjuXKlSvY29sTHh7O0qVLAeP0q7lz5zJz5kxefvllhg0bRmxsLEuWLCEqKooXXngBe3t7pk+fTmpqKtbWFS/S0LRpU3bv3s2bb75Jx44dkWWZunXrMnDgQAC8vb3x8/Nj7ty5pKSkIEmSaXvy5MmmfiZPnkxAQACLFy9m2bJlpiyqzz//nEGDBpU5b3n7UlNT8fb2NtunVCo5c+YM69at49atW7i4uNCmTRsSEhJo1KgRAPHx8SQnJ5OcnFzm+PuTNUobMWIE2dnZrFy5kqlTp+Lo6EjXrl1ZuHBhhfesTZs2fPPNN8yaNYt58+bh7+/Phx9+yJAhQ0xjPnHiBOvWrePu3bt4enrSs2dP3nnnHaysjNmxVlZWfPHFF8yZM4fCwkL8/f2ZPHkyU6ZMMZ3HwsKChQsXcvbsWWRZxtfXl3Hjxpnddx8fH7Zt28bkyZNp2rQpXl5eTJw40RQwfJDNmzfz8ssvm7ZLfh7R0dHMmTOnwmOrmiRX9FOrQZKTkwkKCuLkyZOmqGuXLl04deoUsizj7u5OZGQkb7/9tilbavbs2WzevNlsXujFixcJCAjg6NGjtGjRwuwchYWFZimBWVlZ+Pj4kJmZaZqHWlUKcnNY9YrxD8akuG8oOp3EhvcOk21Xh2YnVuGSkYjf/75E3bQpskHmX//cCcCd537hrUtLyQ1+Ec2AtQCsm/UPbl3INvXd7415+DUzFtR85/w1Vl2+gaOFkpggL8JrOWD7DLOlDh8ZSGbmYdN248YrqV1Nhc13n73J8M8Omrab+ziyaWxItYxFEARB+OPIysrCwcHhmTwf/FHU1HuS+L8EfvjK+MuGrXUkK7uuBKCNexs+C/uM/LxMzqzuSbxze5b4jaCrsx3rmz15LckeS3bTpfYq2nkc4Zf0f/C356fSoo7IlBKEyhQUFHDx4kX8/f0rDa4I5nJzc/Hy8mLx4sWMHDnymZ8/IyODbt26YW9vzw8//GA2g0n486ro7+zDPhvU2Eyp0gwGA5MmTSIkJMQsDXDw4MH4+vri6enJiRMnmDFjBklJSXz99dcApKenm4qTlSjZTk9PL3OeBQsWMHfu3Cq8kgczy34qyZQqqSl1X6YUZklVJavv3duXd7fI2EzpSZH6Dt7BTUyfZWqNc5Ff9XHlJXdnnrX8fOOKgIfSm9M2qDWutXo88zHkFuq4ciefwykZAPjX0tClvisvtvCu5EhBEARBEP5I9KXqiCpkA3kpY3jO155V3YxTQF78/QrHWn5kamP9NFbcu7aRnl7f4GeXDEBUaAs8PERAShCEp+vYsWOcOXOGtm3bkpmZaSppUzIl8Flzdnbmp59+YtWqVezfv/+Bxb0F4X5/iKDU2LFj+f3339mzZ4/Z/ldffdX0fZMmTfDw8KBbt26cP3+eunUf/S3XrFmzzNLnSjKlno3SkSYZSSFhKF59r6Lpe+UVOtcXGQNPljbdyPLYhkWpebp3ix/OHJ5hdpQsG7h4cTkZd/ZTVGSc77v+zEu0a9UNheLZ/hEs0OrpungX17PuZcR1rudKdGSjZzoOQRAEQRCq1uHvvubOL+dN2wpZhz4/gGYuXqgtjIVfz+Qbp/G5F97CxtGLAU/wwq5Qp2dP0mXk67No6XqvAK21dc1f+UgQhD+mRYsWkZSUhEqlolWrViQkJFCrVq1qG4+LiwuzZ8+utvMLf0w1Pig1btw4tmzZwi+//FJmvuj9SpY+TE5Opm7duri7u3Pw4EGzNtevG1dXK68OlZWVlWnO57NmXlJKLs6UMgaTFLIxkFTeTEtTTalSn+kKi1dmkCzhvmL7mTrjZ47PMCiVkZHAxZQVpu1bBV5kFT3bWlYA1+7mc/JqJtezCpEkcNGo0FhZENlMFDQXBEEQhD+bC0cPkauWwbi2CxIG+qh+Z0Tb1lCYg3zoMwr0HUGS2P77FNxeP/FE5/tsTwr/3rWP9zsZ0BmUfHUuklmRHXF0fK7ygwVBEB5RixYtOHLkSHUPQxCeWI0NSsmyzPjx4/nmm2/YtWsX/v7+lR5TUjuqZNnF9u3bM3/+fG7cuGFaZjE+Ph57e3uz5TdrBMk8U8osKHX/9L3i5sbNktX3jG/kzt5OQq8tyahS4eBqXEHmWFYe/0vP4FROPgC1rcxXOagqBoOWrKyTAFipalOvXjRjNkiA9pmcv8T/7U9h9renTNvBHvZ8P6HjMx2DIAiCIAjPTlbWGT5ueIGB14xZ7wp0OCvyjct/n9xA4Y53kDvFA2CtevIlsy/evIuTtTECVmiwo0m9KPy9g564X0EQBEH4M6uxQamxY8eyfv16vv32W+zs7Ew1oBwcHFCr1Zw/f57169fTq1cvXFxcOHHiBJMnT6ZTp040bdoUgJ49exIcHMzQoUN5//33SU9P56233mLs2LHVlhH1IKWn5J1KuELGuUy0KmM2kVVh8Su+0plSpqiU+fS9vbv+W6qNJSHBXQF489wVjmblAWAhQbDtkz98VSY9fTOJp6cjy8YAlJfXP3BzC0NrSOBZBaW0egM3sgvZcfqGaZ+fiw0vh1Qe5BQEQRAE4Y/LzeYM7pn1AR2gRF38kk+SJMi7RYHy3irM1pGLn+hcObmpdHF8mbC2xtWn3Bxc6fOcCEgJgiAIQmVqbFBq9erVgHGFvdLWrl3LiBEjUKlU/PTTT3z44Yfk5ubi4+NDv379eOutt0xtlUolW7Zs4bXXXqN9+/ZoNBqGDx9uKgJXo5QKSu3ZkIwkGR+UVIV3sbJWYsjBPFOK4jBUyXGyjDYjjbwfGgPHiltY0DSoBQZZ5nROAQBjvF3p5GyHs2XV/+jTr39rCkhZWDjg7v63Kj9naQVaPT2W7iY1I9+079PhrenWsHYFRwmCIAiC8GdwJ+cf9EhvQhGfAhIG2VjyQKFQgDafAoXxBaVSAku/x199970fznA06X+MaZpr2lerlijwKwiCIAgPo8YGpcqrn1Saj48Pu3fvrrQfX19ftm7d+rSGVWWk0oXOkVGpJDzPfo9LximUDg4YcnLuy5QqaXovUyrnyD5TcXQJJQE3tmPl0oUMrZ58g3F635t1PVA9hZVlKpKff5W8/Ivcvr0LgBYt/oujQ2sUimczZVCWZU6nZXM89a4pIGWjUuLjZENrv2e/4qAgCIIgCM+eTu8KGJ9/JMA6+zRQB0tLS7K1OpI0xqxpa4XivkVkHs22U+n4qY3Z6CdvNeWl7mvxdnZ8ssELgiAIwl9EjQ1K/eXc9zBkbS0TkPK98SNX40qCsqFsUErmXqZU/o3bIBun/MmqfOq97YykVHK7wJgl5WChrPKAVFHRbQ4cjECvN74tVCiscXRo+cwCUgB7k2/z/z49YNpu5evEV691eGbnFwRBEAShesmyDDolJUEpC10hnvZF1ImMpMjKmraqF8hp+iJgDEo9Lp0uGw+rY/jbXwKge6N6IiAlCIIgCI9ABKVqCLOYlCxjqTHWfLJwdy+VFVW60LlxAp8s3Vt9r/BuDrJsTEXXW8tINsYpgLe1xhoKLs9gyl5Gxl5TQMrWNhgf76EoFOXX76o4F+7R6Q0ylzPy2JVkrB/laGOJl6Oa0R0DnvKZBEEQBEGoyX788UeUeRZgYQxKKWQZv6ZNqd2qFUcyc8mRVEiyASdJz2APt8c6R4FWz4kT4xjZaI9pn5WV01MZvyAIgiD8VYigVA0hSeZv6SysLal34FcUajUX+/Ur3mteU8q4q3j1PQwU3C0Euci439KAVpaYk3yVI5nGlHIv66rLViosvM61tI3cubMfAA+P/gQ3fK/ctuZTFZ+eV2IPsfvsTdP2sHa+TOlZv0rOJQiCIAhCzZV4MRFnuRYlmVJ5Fta4vDoaTm6k4Pxv4NCPwLzLJLheh7ptHrn/8zdziFyxh+jnEqmlhqs57jT08sPD/cWnfCWCIAiC8OdWtXO5hIdnFqeRUVooUDo4IKlU9z4sr6ZUcYpVYZGBg+dPocvfZdyv0XKowIk1qTc5lGXMXGptr6my4ScmTufChSWmoJSNzbNb3a5IZyAzT8v+87cBY4ZUgKuGiCYez2wMgiAIgiDUHLdybpKnO4OuwPhckmepxsLJCbZMofDSrwBYG4rAzv2x+j92+S55RXpsLIy1Kw9nTqN1y/9ia1vv6VyAIAh/OCNGjECSJCRJQqVSERgYyLx589DpdE/U765du5Akibt37z6dgT6EixcvMnjwYDw9PbG2tsbb25u+ffty5swZs3Zbtmyhc+fO2NnZYWNjQ5s2bYiNjTVrk5KSgiRJHD9+/KHPP2fOHBo0aIBGo8HJyYnu3btz4MC98iwpKSmMHDkSf39/1Go1devWJTo6mqKiokr7jouLo1mzZtjY2ODh4cErr7zC7du3KzxGr9fz9ttvm53vnXfeMauD/fXXX9OzZ09cXFweeL3nz5/n73//O66urtjb2zNgwACuX7/+yNd14sQJOnbsiLW1NT4+Prz//vuVXvcvv/xCZGQknp6eSJLEpk2bKj3mWRFBqRri/uwhC1WpH01xrQO5uFi58YCSDCmJwkwLTn1/g1t5d5ENmcaP3fK5rTNOm2ugsWZJAx/G1nm89PTKyLJMZtZRAFxr9SDAfzJenv+oknPd77fUuzSft51m87ZTpDegVEgcfrM7P0/tQkMP+2cyBkEQBEEQag5Zlql1W0mB7iQG7QUAiizUxpd7hZkUFde5VDnVgfq9H7l/g6GQoty9tKp9DBtLY1Dqg4HPP1GxdEEQ/hzCw8NJS0vj3LlzTJ06lTlz5vDBBx9U97BMHiZoo9Vq6dGjB5mZmXz99dckJSXx5Zdf0qRJE7PA2IoVK+jbty8hISEcOHCAEydOMGjQIKKionj99defaJz16tVj5cqVnDx5kj179uDn50fPnj25edM4K+bMmTMYDAY++ugjTp06xdKlS1mzZg1vvPFGhf3u3buXYcOGMXLkSE6dOsWGDRs4ePAgo0ePrvC4hQsXsnr1alauXMnp06dZuHAh77//PitWrDC1yc3N5fnnn2fhwoXl9pGbm0vPnj2RJImff/6ZvXv3UlRURGRkJIbi3/Mf5rqysrLo2bMnvr6+HDlyhA8++IA5c+bw8ccfV3gNubm5NGvWjFWrVlXYrjqI6Xs1hXlRKZQWirKflZMohSyRcU5DVpYWPEBh4YtWbYey/tfcNRgfupraqRns4fLUh2ww6DiT9CaZmUfR641TBBs1WoZSWX4NqaqQcO4meUV603afZp5YKEWsVRAEQRD+sgxg0MrGN6+ShlsOWo64hoNeC0CBwlhz08q2Figf7VHYYJA5d2E1tXUr+Gezkr0SlhZ2T234giD8cVlZWeHubszAfO211/jmm2/YvHkzUVFRTJw4ke+++47CwkI6d+7M8uXLCQoKAuDSpUuMGzeOPXv2UFRUhJ+fHx988AHBwcGEhoYC4ORkrFk3fPhwYmNjyc7OJioqik2bNmFvb8/06dP59ttvad68OR9++CEAfn5+jBw5knPnzrFp0yZefPFFYmNj2bNnD7NmzeLw4cPUqlWLv//97yxYsACNRsOpU6c4f/48O3bswNfXFzCuaB8SEmK6ztTUVKZOncqkSZN49913TfunTp2KSqViwoQJ9O/fn+eee+6x7uPgwYPNtpcsWcKnn37KiRMn6NatG+Hh4YSHh5s+DwgIICkpidWrV7No0aIH9rt//378/PyYMGECAP7+/owZM+aBgaQS+/bto2/fvvTubXyR4efnx+eff87BgwdNbYYOHQoYs53Ks3fvXlJSUjh27Bj29sbkiXXr1uHk5MTPP/9M9+7dH+q64uLiKCoq4rPPPkOlUtGoUSOOHz/OkiVLePXVVx94DREREURERFR4ndVF/PZeQ9z/ds1CpSz9ofG/ZoXO732jK1SSaWsMOkkWHlzyVGOplMksDkpVVYHzjDt7SEvbSF6e8S2ks3PHZxaQeu+HM7Sd/xMrdyYDMKFrIBcX9GLpwObP5PyCIAiCINRMGVdySDHYACApNNx0UoFTbdAZVyMuLAlKKR4ts0mrN9BreQJfHdgLwI08F7INjagbMPWBi7oIgvDkZFkmT5tXLV+lp2c9DrVaTVFRESNGjODw4cNs3ryZ/fv3I8syvXr1Qqs1BsvHjh1LYWEhv/zyCydPnmThwoXY2tri4+PDV199BUBSUhJpaWksW7YMgClTprB37142b95MfHw8CQkJHD16tMwYFi1aRLNmzTh27Bhvv/0258+fJzw8nH79+nHixAm+/PJL9uzZw7hx4wBwdXVFoVCwceNG9Hp9mf4ANm7ciFarLTcjasyYMdja2vL5558/0b0rUVRUxMcff4yDgwPNmjV7YLvMzEycnZ0r7Kt9+/akpqaydetWZFnm+vXrbNy4kV69elV4XIcOHdixYwdnz54F4LfffmPPnj2PFOQpLCxEkiSsrO79e2FtbY1CoWDPnj0PPO7+69q/fz+dOnVCpVKZ9oWFhZGUlMSdO3ceejw1iciUqoEKs2K5eMSTrD5vYe/qVipgVTpVqnj6niRx1i6Cm2oF6FKQFPYUWF5Do4C7emNQyrkKglJ6fSFZWScBsLJyp2GDBTg4tHrq5ymPwSDz2Z6LFOmNaY6SBO0CXETavCAIgiAI5GbkUySXPBMosbCAOX9rBLpC4F5QylrxaO9mr9zJ50x6NuGexuzwbZciGNlzHH5+rk9t7IIglJWvy+e59Y+XcfOkDgw+gI2lzSMfJ8syO3bsYNu2bURERLBp0yb27t1Lhw4dAGO2i4+PD5s2baJ///5cvnyZfv360aRJE8CYIVOiJCDh5uaGo6MjANnZ2axbt47169fTrVs3ANauXYunp2eZsXTt2pWpU6eatkeNGsWQIUOYNGkSAEFBQSxfvpzOnTuzevVqvLy8WL58OdOnT2fu3Lm0bt2a0NBQhgwZYhrX2bNncXBwwMOjbA1flUpFQECAKYDzuLZs2cKgQYPIy8vDw8OD+Ph4atWqVW7b5ORkVqxYUWGWFEBISAhxcXEMHDiQgoICdDodkZGRlU5pmzlzJllZWTRo0AClUoler2f+/PkMGTLkoa+nXbt2aDQaZsyYwbvvvossy8ycORO9Xk9aWtpDX1d6ejr+/ub1m2vXrm36rCSj7o9EZErVRHIBObcvcOHYYeN2SbClVE2pkl2KvAKuWigw6FKMTZwlgpvlk6lqwiWtsbC5i+rpBqVSU2PZtbsxFy9+CICHRz9cXDphYVF1hdQBLt7K5cV/7aXLol2m+lHbJnXi0Jvd6RBY/v+gBEEQBEH4a9EV6pGLV91DUuCkkehQtxZTL9yibsgPvBVonLbxqJlSadf+wyuN/4u/w1UAFrz0PB2DREBKEIR7tmzZgq2tLdbW1kRERDBw4EBGjBiBhYWF2VQ2FxcX6tevz+nTpwGYMGECMTExhISEEB0dzYkTJyo8z4ULF9BqtbRt29a0z8HBgfr1y6483rp1a7Pt3377jdjYWGxtbU1fYWFhGAwGLl68CBgzt9LT04mLi6N9+/Zs2LCBRo0aER8f/9D3onQmz4PExcWZjSMhIcH0WWhoKMePH2ffvn2Eh4czYMAAbty4UaaPq1evEh4eTv/+/c1qQ5XuNyoqCoDExEQmTpzI7NmzOXLkCD/++CMpKSmmzxMSEsyOi4uLA+B///sfcXFxrF+/nqNHj7Ju3ToWLVrEunXrHvp+uLq6smHDBr777jtsbW1xcHDg7t27tGzZEkU5L0kedF2VedA11GQiU6qGKC81VDYUp0uWZEWV00Z9/CQ3pbvGz4F/zPobI8+e5kihGxTXsav1lDOlUq/8h5Illi0s7Knl0vWp9v8g3/12jaOX75q2W/g4Ut9d1HAQBEEQBOEevVZvemaSUCAbE8f54nYheot7GQ/N7R4u++FmdiGzNvzMP/w+IKRUEoKtjfdTG7MgCA+mtlBzYPCByhtW0bkfRWhoKKtXr0alUuHp6YmFhQWbN2+u9LhRo0YRFhbG999/z/bt21mwYAGLFy9m/Pjxjzt0E43GPHEgJyeHMWPGmOoqlVanTh3T93Z2dkRGRhIZGUlMTAxhYWHExMTQo0cPgoKCyMzM5Nq1a2Wys4qKijh//jxhYWGVjq1Pnz5mwTovLy+zcQcGBhIYGEi7du0ICgri008/ZdasWaY2165dIzQ0lA4dOpQp9F169buSGk4LFiwgJCSEadOmAdC0aVM0Gg0dO3YkJiaG1q1bmx1XkoE0bdo0Zs6cyaBBgwBo0qQJly5dYsGCBQwfPrzS6yzRs2dPzp8/z61bt7CwsMDR0RF3d3ezzLjKrsvd3d1sxT7AtO3u7o6fn1+511CTiaBUDXEu8WqZfaYYVDk1pUoqnSsKjPURFBY+XHfKwtbRg2OFtwDwscilrYs3HZ2eTuCmsPAm2TmnyM9PAeD5kP2oVK5VPm3uX7uS+fH3dK7dNa5wM/i5Ogxo7UMDEZASBEEQBOE+hiJDqRWLFRiUMtqjcehpBED8qWm4jt6Ku5XlQ/X385nrnE27BH6Qp1VzRduffm2fw86uYdVcgCAIZiRJeqwpdNWhJJBSWsOGDdHpdBw4cMA0fe/27dskJSURHBxsaufj40NUVBRRUVHMmjWLTz75hPHjx5syjkrXdwoICMDS0pJDhw6ZAkmZmZmcPXuWTp06VTjGli1bkpiYWGacFZEkiQYNGrBv3z4AXnrpJWbMmMHixYtZvHixWds1a9aQl5fHsGHDKu3Xzs4OO7uH+53OYDBQWFho2r569SqhoaG0atWKtWvXlsk2Ku/68vLysLAwD4EolcZazrIso1arH3jc/f0rlUrTqnmPqmQa4s8//8yNGzfo06fPQ19X+/btefPNN9FqtVhaGv8di4+Pp379+qape4/ys60JRFCqhjjx05Vy9hYHoRTlFTo37lPodQBY2HQl22snmToDBiQsZC1feB2gbkAIT0N2diKHj/TDYDCmX1laOj95QOoh6gbqDTJLtp9FZ7jXuEdwbZr7OD7+eQVBEARB+NPK+8+/CL96mlRnQFIiF92k4PvX4fkfAAgy3MX6IQNSAFm5d/DQGN9C29p4MLL926gsRAUMQRAeTlBQEH379mX06NF89NFH2NnZMXPmTLy8vOjbty8AkyZNIiIignr16nHnzh127txJw4bGwLevry+SJLFlyxZ69eqFWq3Gzs6O4cOHM23aNJydnXFzcyM6OhqFQlHp72czZsygXbt2jBs3jlGjRqHRaEhMTCQ+Pp6VK1dy/PhxoqOjGTp0KMHBwahUKnbv3s1nn33GjBkzAGNG1fvvv8/rr7+OtbU1Q4cOxdLSkm+//ZY33niDmJgYGjdubHbepKSkMmNp1KiRKbBSIjc3l/nz59OnTx88PDy4desWq1at4urVq/Tv3x8wBm66dOmCr68vixYt4ubNm6bjS1Y/LE9kZCSjR49m9erVhIWFkZaWxqRJk2jbtm259bhKHzd//nzq1KlDo0aNOHbsGEuWLOGVV14xtcnIyODy5ctcu3bN7Hrd3d1NY1q7di0NGzbE1dWV/fv3M3HiRCZPnmyadvkw1zV48GDmzp3LyJEjmTFjBr///jvLli1j6dKlDxw/GDPkkpOTTdsXL17k+PHjODs7m2XIVQcRlKoh8vO0ZfbJhpLU8wevvifp9MWxHQss7GzILo6gq8l7quO7fXuXKSBlq6mPr2/UYwekHuawy7fz2PzbVbILdOgMMkqFxMdDW+GsUYmAlCAIgiAI5bp5/ir7rLqj864NeTsABYVWhRTojKsdSbKMVbe3H7q/W3eO46cfyKtNjS8B7W1cREBKEIRHtnbtWiZOnMgLL7xAUVERnTp1YuvWraaAjF6vZ+zYsVy5cgV7e3vCw8NNQQYvLy/mzp3LzJkzefnllxk2bBixsbEsWbKEqKgoXnjhBezt7Zk+fTqpqalYW1tXOJamTZuye/du3nzzTTp27Igsy9StW5eBAwcC4O3tjZ+fH3PnziUlJQVJkkzbkydPNvUzefJkAgICWLx4McuWLSM3NxeAzz//3DTNrbTy9qWmpuLtbT4VWqlUcubMGdatW8etW7dwcXGhTZs2JCQk0KhRccZrfDzJyckkJyeXOb6iFRNHjBhBdnY2K1euZOrUqTg6OtK1a1cWLlxY4T1bsWIFb7/9Nv/85z+5ceMGnp6ejBkzhtmzZ5vabN68mZdffrnM9UZHRzNnzhzAGKiaNWsWGRkZ+Pn58eabb5rd04e5LgcHB7Zv387YsWNp1aoVtWrVYvbs2bz66qsVXsPhw4cJDQ01bU+ZMgWA4cOHExsbW+GxVU2Sn3Sdyz+xrKwsHBwcyMzMNM1DrSpro3eTceYDs31dho2iVe+/kTLoH+QfP473yhXYde8OwGev/0JetpbCu8b/WVk5jOFSyGEG/G06kUfP4San841fInUDpjzRuPLzr5Ke/jWXLv8bvT4Hf7/xBARMeqI++6zcw4krmawd0YbQBm7ltnkl9hA/n7lXyM7PxYZd00LLbSsIgiAIz9KzfD74o6jue2LQ6zl98FfOfv1frmX3R59/GG3BL+TZ1iKt5XFmZuXTtt2XqBUSFzs/eEnx0mZ+dYLr6XH8v4YbMcgSMjYE15+Bt/fDr7YkCMKjKSgo4OLFi/j7+1caXBHM5ebm4uXlxeLFixk5cuQzP39GRgbdunXD3t6eH374ARubP8aUS+HJVPR39mGfDUSmVA2hKyg7H9UULyyv0LksA/fmFSNZolCr2ZmRBYDNU8qUOpccw82b203btlVcP2Ht3ov8fOYGRy7dAaB3Ew+cNSp6Ny273KggCIIgCALAb/Fb2f6/z2niYizoqyq8gxZIs09BpTCQrzRmSlmXs8LRg2xPvE57N2M9y/1p7ejRfhne3i5PfeyCIAiP49ixY5w5c4a2bduSmZnJvHnzAExTAp81Z2dnfvrpJ1atWsX+/fvp1q1btYxD+OMRQakaQldQzup7JUGokgcow31BKbn0lD8LdhYUcTnFWPPAmVtPPCZZlrl79zAAtWv3wd6+Ka61ej5xvw9SqNPzzpZE02VaWSh49+9NcLB5+LoPgiAIgiD89WTduomjlTuSIQdZ1gHGZySDAnY7NuXHusZpDdbKhwtKabVZeFj/jredsTbIgLbBNKgrAlKCINQsixYtIikpCZVKRatWrUhISDAV0a4OLi4uZlPaBOFhiKBUDSDLMobCcmZRmjKl7tsGJGRkuah4S4kkKci0CwLA3yKLPtpvgB6PNR69vpDE06+TlXUCrTYDSVIR3PA9FAqrx+qvMrdyCvnl7E0ycoswyKCyUPDei02o724nAlKCIAiCIFRKNuhxULlyMzONwuzllKzPZJBkcixsyLY0ThtobFv58u4FWj3Hjr7MlFbHTfusVY5Pf9CCIAhPoEWLFhw5cqS6hyEIT0wEpWoAbaGee5En4wOUQpZMmVLSvajUvWO0MsjGlHIkNQYJsu0b8GaABz0Lv+XKlbM8blDq5s1t3Lix1bTt5hZWZQEpMNZs+On0vfpRXo5qXmzpXcERgiAIgiAI9xj0BpCUZBXcWy5cD6S7FAAKXkrfxthO/Qjy8K+wnxNX7jLwo195//kkbCwhPdeN+p6+uLlFVO0FCIIgCMJflAhK1QBF+Tqzbb1CRqEvtUSdZL76nraggLzMXch64xQ9rcqKo23sMCgkNKXT0h+zhn1OrnH5ShubutSvF42DQ+vH6qcyV+7kceRSBr9fNdbBauPnhL21JQPa+FTJ+QRBEARB+HMy6PVcVaixkI3PTI5ycz5oWYClxyWQJLz0mTR09QBFxUsAH7yYQYFWi7VFAQBHcuYzpFXXKh+/IAiCIPxViaBUNSrI0aLXGbiVmmO2P0etwylHhWwoLn5eXFOqZPvcof3oC4+a2l+qbcnBQCvQG9AolZTOunoUpxKncv36VtO0QE/P/jg7hzxWXw/j7W9PmW0vG9QCT8fK0+oFQRAEQRBKMxj05EiWOJaU45QVNL2dzGkPkFFg1eZlUGkq7EOWDeTlpeJlm4ZCMnb0wYCqew4SBEEQBEEEparV2hl7MOjvZTPlOT9Hpt8Jsm9k45SjutfQlCll/E/2bWOGlKR0R2kZxM62DuTojQErzUMW8LyfXl9Aevom07ZCocbJqf1j9fUobFRKXO2saOvnjIeDWPZVEARBEIRHZ9Dr0UkqSh6WlAp43u8ypwGQsFY7VHj8wYsZpCaPoZHlUeZ2MO6TJBVKZdWVLxAEQRAEQQSlqpXSQoEs6zEo9GgVhRz1TSaotT98Z6yvJD+g0PmeszsAUFh4Y6EKINteZao29ThBqfz8VO7c2W8ck9KG9u13YqG0RamsmiCRlcW9MQ5s40N0ZKMqOY8gCIIgCH8Nuvw8fgnYSkS6DZZ60Ml6PrEtXqVYUmBVybS9SV8c463WvwNQqLfEUqnEx+PvVT1sQRAEQfjLE0GpaqI1aNnw/HzS89LM9ke6TOZXDgDGNHIASbpX6FyWZVJunMcPKySFNTL56C3rAmCnVBBsq+bu7YcfR17eRX49EIYs6wHQaIKwUlXtMqKv96zPF4dSsbJQ8EpIxQVHBUEQBEEQKiLr9dz9ZRcZf09DMhifie6FoJQUWTdCrXjwSztZlsnIzcFKaSxfcNniC4Z2aIzGSjwmC4IgCEJVE//aVhNLhSX5+jwA1BZqIgMiaVSrER08O/Ar64yNStKfpOIHKYOBu1k3cLyjBawAS/ydVOxpF4ylJOGqssRGqeDuI4zjdkYCsqxHqbRFbe1FgP/Ep3OBFXguwIXnAlyq/DyCIAiCIPz5GXLyUOtUjN+sJ1cpY5BAKSm46bMWkEBSYvOATHJZlkm+sIpXGu0o3qNkTJdmpV4ICoIgCIJQlR6vAJHwVHza81PiX4pn/z/283b7t3kx6EUsFBbIpsX2SqbvSabt26tWU+9q8coyWSk0rZNLoI01vmqrBz5wlaegII0rV+JITl4AQJ06o3juua24uHR+ehcoCIIgCIJQhWSDTNrqkzS0cKXxlbqU5EjplUqQLOiQeYKXnCzp6mJf5li9Qeb4heNcvrSUVrVPAKBWe4mAlCAIj2XEiBFIkoQkSahUKgIDA5k3bx46na7ygyuwa9cuJEni7t27T2egD+HixYsMHjwYT09PrK2t8fb2pm/fvpw5c8as3ZYtW+jcuTN2dnbY2NjQpk0bYmNjzdqkpKQgSRLHjx9/6PPPmTOHBg0aoNFocHJyonv37hw4cMCsz5EjR+Lv749araZu3bpER0dTVFRUad9xcXE0a9YMGxsbPDw8eOWVV7h9u+KpRtnZ2UyaNAlfX1/UajUdOnTg0KFDZm1ycnIYN24c3t7eqNVqgoODWbNmjVmbMWPGULduXdRqNa6uruXe08uXL9O7d29sbGxwc3Nj2rRpD/wztHfvXiwsLGjevHml1/3111/Ts2dPXFxcHvnnUdVEUKoa1Xeuj7vGHaVCadqnkO79SEqm75UudK47ew59cV2EQLcC3Pv1eqxznzo1maSzszEYjH9xXapwlT1BEARBEISqIOsMcFfPaYcWHGsxGUPxM1Wyny8AX5x4nZVBtbG3UJY5dsHW08zYuBuAu4X2fJP8Ek2bfPTsBi8Iwp9OeHg4aWlpnDt3jqlTpzJnzhw++OCD6h6WycMEbbRaLT169CAzM5Ovv/6apKQkvvzyS5o0aWIWGFuxYgV9+/YlJCSEAwcOcOLECQYNGkRUVBSvv/76E42zXr16rFy5kpMnT7Jnzx78/Pzo2bMnN2/eBODMmTMYDAY++ugjTp06xdKlS1mzZg1vvPFGhf3u3buXYcOGMXLkSE6dOsWGDRs4ePAgo0ePrvC4UaNGER8fz3/+8x9OnjxJz5496d69O1evXjW1mTJlCj/++CP//e9/OX36NJMmTWLcuHFs3rzZ1KZVq1asXbuW06dPs23bNmRZpmfPnuj1xlI6er2e3r17U1RUxL59+1i3bh2xsbHMnj27zJju3r3LsGHD6Nat20Pd09zcXJ5//nkWLlz4UO2fJRGUqmEkJOTiZYjLK3Qup11HX1wXwW3kK1h6eDzyOXS6bO5mGiO7jo7PUTdgGvb2LZ547IIgCIIgCM+UwfislKd0Mm4X18hMqOeFJMtYdpoOmvJrZSamZaGxyAcgW+tK/bqjsLWtV/VjFgThT8vKygp3d3d8fX157bXX6N69O5s3b+bOnTsMGzYMJycnbGxsiIiI4Ny5c6bjLl26RGRkJE5OTmg0Gho1asTWrVtJSUkhNDQUACcnJyRJYsSIEYAxe2fIkCFoNBo8PDxYunQpXbp0YdKkSaZ+/fz8eOeddxg2bBj29va8+uqrAOzZs4eOHTuiVqvx8fFhwoQJ5ObmAnDq1CnOnz/Pv/71L9q1a4evry8hISHExMTQrl07AFJTU5k6dSqTJk3i3XffJTg4mMDAQKZOncoHH3zA4sWLzTKbHtXgwYPp3r07AQEBNGrUiCVLlpCVlcWJE8as1vDwcNauXUvPnj0JCAigT58+vP7663z99dcV9rt//378/PyYMGEC/v7+PP/884wZM4aDBw8+8Jj8/Hy++uor3n//fTp16kRgYCBz5swhMDCQ1atXm9rt27eP4cOH06VLF/z8/Hj11Vdp1qyZWd+vvvoqnTp1ws/Pj5YtWxITE0NqaiopKSkAbN++ncTERP773//SvHlzIiIieOedd1i1alWZgGJUVBSDBw+mffv2D3VPhw4dyuzZs+nevftDtX+WRFCqhpFKleYsCUpJJdlTsgH5+i0MxZlSlpaqSnqTzbYMhkKSkubw64EIAKysPGjVcj1+flEiVV0QBEEQhD8cg87ARcV1SiY2yMXfpTmrsFYqkUJnlHvcjRs/0s55FWF+PwPQ3Neb8d2CnsWQBUF4RLIsY8jLq5YvU5LAY1Kr1RQVFTFixAgOHz7M5s2b2b9/P7Is06tXL7Ra4yqhY8eOpbCwkF9++YWTJ0+ycOFCbG1t8fHx4auvvgIgKSmJtLQ0li1bBhgzc/bu3cvmzZuJj48nISGBo0ePlhnDokWLaNasGceOHePtt9/m/PnzhIeH069fP06cOMGXX37Jnj17GDduHACurq4oFAo2btxoyuC538aNG9FqteVmRI0ZMwZbW1s+//zzJ7p3JYqKivj4449xcHCgWbNmD2yXmZmJs7NzhX21b9+e1NRUtm7diizLXL9+nY0bN9Kr14NnH+l0OvR6PdbW5ivTq9Vq9uzZY9ru0KEDmzdv5urVq8iyzM6dOzl79iw9e/Yst9/c3FzWrl2Lv78/Pj4+gDFo1qRJE2rXrm1qFxYWRlZWFqdOnTLtW7t2LRcuXCA6OrrC6/2jEIXOaxhJkkyhJEPx276S6Xs3ln6IVFCIvnjbQmVVfh+UH2BKT/+OK1f/Y9p2dS3/L4ggCIIgCMIfwbkD6RxQpKIxKNFr79XcMCiVqJVln4dkWWbR9iQaK6fTyCnXtN/K6tEzzwVBeDbk/HySWraqlnPXP3oEycbmkY+TZZkdO3awbds2IiIi2LRpE3v37qVDhw6Asa6Rj48PmzZton///ly+fJl+/frRpEkTAAICAkx9lQRa3NzccHR0BIxZUuvWrWP9+vWm6Vtr167F09OzzFi6du3K1KlTTdujRo1iyJAhpoyqoKAgli9fTufOnVm9ejVeXl4sX76c6dOnM3fuXFq3bk1oaChDhgwxjevs2bM4ODjgUc6sHZVKRUBAAGfPnn3k+1bali1bGDRoEHl5eXh4eBAfH0+tWuVnviYnJ7NixQoWLVpUYZ8hISHExcUxcOBACgoK0Ol0REZGsmrVqgceY2dnR/v27XnnnXdo2LAhtWvX5vPPP2f//v0EBgaa2q1YsYJXX30Vb29vLCwsUCgUfPLJJ3Tq1Mmsv3/9619Mnz6d3Nxc6tevT3x8PCqVMdkkPT3dLCAFmLbT09MBOHfuHDNnziQhIQELiz9HOEdkStUwkiTdm65XXFJKdycDgPMU8Ut9H3KtjX9obRydHqnvrOyTAKit69Ck8SoC605/KmMWBEEQBEF41mRZ5sKRX7l79zp5+dvR5nxleoTSKS2wUpR9zP39ahYf7TqDSmEMSG1KfgGPOm9QN2DyMxy5IAh/Vlu2bMHW1hZra2siIiIYOHAgI0aMwMLCgueee87UzsXFhfr163P69GkAJkyYQExMDCEhIURHR5umqT3IhQsX0Gq1tG3b1rTPwcGB+vXrl2nbunVrs+3ffvuN2NhYbG1tTV9hYWEYDAYuXrwIGDO30tPTiYuLo3379mzYsIFGjRoRHx//0PeiJNBSkbi4OLNxJCQkmD4LDQ3l+PHj7Nu3j/DwcAYMGMCNGzfK9HH16lXCw8Pp37+/WW2o0v1GRUUBkJiYyMSJE5k9ezZHjhzhxx9/JCUlxfR5QkKC2XFxcXEA/Oc//0GWZby8vLCysmL58uX84x//QFHq35kVK1bw66+/snnzZo4cOcLixYsZO3YsP/30k9l4hwwZwrFjx9i9ezf16tVjwIABFBQUPNQ91ev1DB48mLlz51KvXvnTzSu6pzXVnyO09ieiQGHKlJKLv9Nn3AHgvJsThZbGH1mBrYSTR9lIeHlSLn3E5cufoNNlAeDrF4WbW/jTHbggCIIgCMIzdC3pNJd/24RkW/zmXFJjUOSTVK85hVZqrBVlM6Vu5RRiY2msIyUjMaTbWwTXdX2WwxYE4RFJajX1jx6ptnM/itDQUFavXo1KpcLT0xMLCwuzQtcPMmrUKMLCwvj+++/Zvn07CxYsYPHixYwfP/5xh26i0WjMtnNychgzZgwTJkwo07ZOnTqm7+3s7IiMjCQyMpKYmBjCwsKIiYmhR48eBAUFkZmZybVr18pkZxUVFXH+/HnCwsIqHVufPn3MgnVeXl5m4w4MDCQwMJB27doRFBTEp59+yqxZs0xtrl27RmhoKB06dODjjz8267v06nL29sYVWBcsWEBISAjTpk0DoGnTpmg0Gjp27EhMTAytW7c2O64kS6lu3brs3r2b3NxcsrKy8PDwYODAgabMsfz8fN544w2++eYbevfuber7+PHjLFq0yKyOk4ODAw4ODgQFBdGuXTucnJz45ptv+Mc//oG7u3uZ+lbXr18HwN3dnezsbA4fPsyxY8dM0y0NBgOyLGNhYcH27dsrvKc1lQhK1TClazsZDMbpe3JhIQBapTESu7vZTZwa1H2oOlA6XS7nzy+iJO1KobDG0aHNUx61IAiCIAjCs5WXdRcJBSXPOEqrJmTbHmRL55cAqK8xr/+RcuMWedf+H+91vAyApYU97URAShBqPEmSHmsKXXUoCaSU1rBhQ3Q6HQcOHDBN37t9+zZJSUkEBweb2vn4+BAVFUVUVBSzZs3ik08+Yfz48aaMo9L1nQICArC0tOTQoUOmQFJmZiZnz54tM13sfi1btiQxMbHMOCsiSRINGjRg3759ALz00kvMmDGDxYsXs3jxYrO2a9asIS8vj2HDhlXar52dHXZ2dg81BoPBQGHx78VgzJAKDQ01rWinuC87trzry8vLKzPlTak0rs4qyzJqtbrC+6LRaNBoNNy5c4dt27bx/vvvA8YVC7VabZkxKJVKDAbDA/uTZRlZlk3X1b59e+bPn8+NGzdwc3MDID4+Hnt7e4KDg7G0tOTkyZNmffzrX//i559/ZuPGjfj7+6PRaB76ntYUIihVw5S3+p5cWIgBMBT/Ib/qWoCLTfn1pEorKLjG9RtbKHlY69B+N5aWTlhYaCo+UBAEQRAEoYbTa7UoJEWpQsQK9JKBAek/8LJtAY063ysA++PvaSz5/ktmtDkPxt8/cHRsXbZTQRCEpywoKIi+ffsyevRoPvroI+zs7Jg5cyZeXl707dsXgEmTJhEREUG9evW4c+cOO3fupGHDhgD4+voiSRJbtmyhV69eqNVq7OzsGD58ONOmTcPZ2Rk3Nzeio6NRKBSVJi7MmDGDdu3aMW7cOEaNGoVGoyExMZH4+HhWrlzJ8ePHiY6OZujQoQQHB6NSqdi9ezefffYZM2YYF4+oU6cO77//Pq+//jrW1tYMHToUS0tLvv32W9544w1iYmJo3Lix2XmTkpLKjKVRo0ZYWlqa7cvNzWX+/Pn06dMHDw8Pbt26xapVq7h69Sr9+/cHjAGpLl264Ovry6JFi7h586bpeHd39wdee2RkJKNHj2b16tWEhYWRlpbGpEmTaNu2bbn1uEps27YNWZapX78+ycnJTJs2jQYNGvDyyy8Dxkyszp07M23aNNRqNb6+vuzevZv/+7//Y8mSJYBxyuWXX35Jz549cXV15cqVK7z33nuo1WpTofWePXsSHBzM0KFDef/990lPT+ett95i7NixWFkZf/+//766ublhbW1dZv/9MjIyuHz5MteuXQPu/Tzc3d0rvGfPgghK1TCl/ydS8pBlKCxEp7wXddVaGFApK5+jm379W9KvfwuAvX0z1GrvpzxaQRAEQRCE6qHX6ZBQIMvGl28SCmSFjG9BGi3sVVDqjfXvV7OwszTWkbqW64eX/xKaNmpSLeMWBOGvZ+3atUycOJEXXniBoqIiOnXqxNatW00BGb1ez9ixY7ly5Qr29vaEh4ezdOlSwDj9au7cucycOZOXX36ZYcOGERsby5IlS4iKiuKFF17A3t6e6dOnk5qaWmaVuPs1bdqU3bt38+abb9KxY0dkWaZu3boMHDgQAG9vb/z8/Jg7dy4pKSlIkmTanjz5Xv29yZMnExAQwOLFi1m2bBm5ucb/x37++ecMGjSozHnL25eamoq3t/nvqEqlkjNnzrBu3Tpu3bqFi4sLbdq0ISEhgUaNGgHG7KHk5GSSk5PLHF/RiokjRowgOzublStXMnXqVBwdHenatSsLFy6s8J5lZmYya9Ysrly5grOzM/369WP+/PlmAbUvvviCWbNmMWTIEDIyMvD19WX+/PmmelXW1tYkJCTw4YcfcufOHWrXrk2nTp3Yt2+fKStKqVSyZcsWXnvtNdq3b49Go2H48OHMmzevwvE9jM2bN5uCaHDv5xEdHc2cOXOeuP8nIclPus7ln1hWVhYODg5kZmaa5qFWtQJdAVFv96DJBQeaRvSmx4jXONS8GXfVKk7UqU2RhYHtffOZ0moKkXUjy+3j7Nl3SL0SC4BSqcHKqjb1gmbj4tLxmVyDIAiCIPyZVcfzQU1XHffk4LLFnDh8knM2Em53b2Khfp40p514d3iece3CwcdYrqCw8Ab/2xlNQf4ZAhwuU6tWd5o1/eiZjFEQhEdTUFDAxYsX8ff3rzS4IpjLzc3Fy8uLxYsXM3LkyGd+/oyMDLp164a9vT0//PADNn+QKZfCk6no7+zDPhuITKka5v5MqZQTx/ilvo9pn0ujeuwc8OFD91fHZyQBAROf5hAFQRAEQRCqXdaFc8QHX8L5pozbXVtAgUEC6/ZR4G2sFXXpdi4pKf/BU7UdipPM1eo6D+5UEAThD+LYsWOcOXOGtm3bkpmZacqmKZkS+Kw5Ozvz008/sWrVKvbv30+3bt2qZRzCH48IStUwZqvvyTK3Uy8BYKE3YFNYhF9Yl0r7kBT30gjt7BpWwSgFQRAEQRCqz4XMC5y48Ru3Ag3Uul7yNl6BxtIJq+JV9y7fziN00S76ByXS0w9+v9UAP69I/P0GV9u4BUEQnqZFixaRlJSESqWiVatWJCQkUKtWrWobj4uLC7Nnz6628wt/TCIoVdNIxV+ALBs4f91YgMzzTjaNr97CMqDiAmYAnh4DKCxIQ2XliotLl6obqyAIgiAIQjW4mHkRra0HDS9fxvf6vULnthaeWBXXkjp3IxuDDHZW+QAUKJrSoenLWFpWvliMIAhCTdeiRQuOHDlS3cMQhCcmglI1zP2ZUrsu7KAuKiwMBrRKqOfgX2kfGk0AjRsvq9qBCoIgCIIgVJPCokIK3RrSd58DF5zyyLHMBUlBgVplypQquL2Md0N+xlmdBcCQ9k1wtRMBKUEQBEGoSRSVNxGeJUmSQDKGpfK1eRjyiwDj9D1F02CUCmV1Dk8QBEEQBKFa3b5ymZT/bsW6yJaz9YeSZ2NctUiSITXAA8s8PX9fuQvroi+prbmJpaIQAFvb+tU5bEEQBEEQyiGCUjWMhGTKlCrQFaDSGX9E9o0aU//D1dU3MEEQBEEQhBrg5M54VJd0uOmzAZAMxhd4jTQ/8V7bFvx+5hbnrl83tb8sLaZ9u59xdGhVLeMVBEEQBOHBRFCqhim9+p7OoMNSZ9x2GzIEy9pu1TUsQRAEQRCEGkGvLcJDEwh647ZSXwDAZRtbHOt25G6+FhsLYx0pSaFheOe+2Nj4VtdwBUEQBEGogKgpVRMVx6X0Bj0qrTFuaGWjqcYBCYIgCIIg1AwGvR69pOSa1g57fRYGdACkefUk9dpmWtkso3GrXABUlvYoFFJF3QmCIAiCUI1EplRNVJwtpdNrTdP3VDY2FR0hCIIgCMIfyOrVq2natCn29vbY29vTvn17fvjhhzLtZFkmIiICSZLYtGmT2WeXL1+md+/e2NjY4ObmxrRp09DpdGZtdu3aRcuWLbGysiIwMJDY2Ngy51i1ahV+fn5YW1vz3HPPcfDgwad5qU+dQa+nQLJAdfcohVn/RkcmAGfvwg8HluFoeYnaNrcA0GgCq3GkgiAIgiBURgSlaiCpOFVKb9BjVZwpZa2xrc4hCYIgCILwFHl7e/Pee+9x5MgRDh8+TNeuXenbty+nTp0ya/fhhx+aTe0vodfr6d27N0VFRezbt49169YRGxvL7NmzTW0uXrxI7969CQ0N5fjx40yaNIlRo0axbds2U5svv/ySKVOmEB0dzdGjR2nWrBlhYWHcuHGj6i7+CRn0erSSjKTPL96joMDJmQO5dtiqjBlSXyUPwDPgM5o2EfU4BUEQBKEmE0GpGkguXn0v98g5rLTG1fbsXFyrc0iCIAiCIDxFkZGR9OrVi6CgIOrVq8f8+fOxtbXl119/NbU5fvw4ixcv5rPPPitz/Pbt20lMTOS///0vzZs3JyIignfeeYdVq1ZRVGQs/L1mzRr8/f1ZvHgxDRs2ZNy4cbz00kssXbrU1M+SJUsYPXo0L7/8MsHBwaxZswYbG5tyz1lTaHU6iiSDaduVEJJefoV67uexV+UAsGDQyzT064xSqa6uYQqC8BczYsQIJElCkiRUKhWBgYHMmzevTAbro9q1axeSJHH37t2nM9CHcPHiRQYPHoynpyfW1tZ4e3vTt29fzpw5Y9Zuy5YtdO7cGTs7O2xsbGjTpk2ZjNyUlBQkSeL48eMPff45c+bQoEEDNBoNTk5OdO/enQMHDpj1OXLkSPz9/VGr1dStW5fo6GjTv38ViYuLo1mzZtjY2ODh4cErr7zC7du3Kzzml19+ITIyEk9Pz3IzlwG+/vprevbsiYuLS6XXW1EWNEBsbCxNmzbF2toaNzc3xo4da/b5tm3baNeuHXZ2dri6utKvXz9SUlKeyXVWBRGUqpHM34jq1AqsxPQ9QRAEQfhT0uv1fPHFF+Tm5tK+fXsA8vLyGDx4MKtWrcLd3b3MMfv376dJkybUrl3btC8sLIysrCxTttX+/fvp3r272XFhYWHs378fgKKiIo4cOWLWRqFQ0L17d1ObmuaH77/n6J08DtteKd6jRJL1FGb/woQWn6C2MBY9V1s7V98gBUH4ywoPDyctLY1z584xdepU5syZwwcffFDdwzJ5mKCNVqulR48eZGZm8vXXX5OUlMSXX35JkyZNzAJjK1asoG/fvoSEhHDgwAFOnDjBoEGDiIqK4vXXX3+icdarV4+VK1dy8uRJ9uzZg5+fHz179uTmzZsAnDlzBoPBwEcffcSpU6dYunQpa9as4Y033qiw37179zJs2DBGjhzJqVOn2LBhAwcPHmT06NEVHpebm0uzZs1YtWpVhW2ef/55Fi5cWOn1PSgLGowvi958801mzpzJqVOn+OmnnwgLCzN9fvHiRfr27UvXrl05fvw427Zt49atW7z44ovP5Dqrgih0XgOV/gN62jcLp2YNqnE0giAIgiBUhZMnT9K+fXsKCgqwtbXlm2++ITg4GIDJkyfToUMH+vbtW+6x6enpZgEpwLSdnp5eYZusrCzy8/O5c+cOer2+3Db3vw2/X2FhIYWFhabtrKysh7jiJyMbZM79dgrZoMc2YxfgDpIFMnqsMJCntSaj0JMOwd1QqWpV+XgEQRDuZ2VlZXqR8Nprr/HNN9+wefNmoqKimDhxIt999x2FhYV07tyZ5cuXExQUBMClS5cYN24ce/bsoaioCD8/Pz744AOCg4MJDQ0FwMnJCYDhw4cTGxtLdnY2UVFRbNq0CXt7e6ZPn863335L8+bN+fDDDwHw8/Nj5MiRnDt3jk2bNvHiiy8SGxvLnj17mDVrFocPH6ZWrVr8/e9/Z8GCBWg0Gk6dOsX58+fZsWMHvr7GlUt9fX0JCQkxXWdqaipTp05l0qRJvPvuu6b9U6dORaVSMWHCBPr3789zzz33WPdx8ODBZttLlizh008/5cSJE3Tr1o3w8HDCw8NNnwcEBJCUlMTq1atZtGjRA/vdv38/fn5+TJgwAQB/f3/GjBlTaSApIiKCiIiICtsMHToUoEzG0v1KsqAPHz6Mh4eH2Wd37tzhrbfe4rvvvqNbt26m/U2bNjV9f+TIEfR6PTExMSgUxhyj119/nb59+6LVarG0tKzS66wKIlOqBtLJ91I8fwvMxKO+CEoJgiAIwp9N/fr1OX78OAcOHOC1115j+PDhJCYmsnnzZn7++WfTLxU10YIFC3BwcDB9+fj4VPk5Cy9koiuQcb6Vxov7tMV7lSgkmQaKc5zOqMdlxTKCAmdW+VgEQXh2ZFlGW6ivli9Zlp9o7Gq1mqKiIkaMGMHhw4fZvHkz+/fvR5ZlevXqhVZr/H/Z2LFjKSws5JdffuHkyZMsXLgQW1tbfHx8+OqrrwBISkoiLS2NZcuWATBlyhT27t3L5s2biY+PJyEhgaNHj5YZw6JFi2jWrBnHjh3j7bff5vz584SHh9OvXz9OnDjBl19+yZ49exg3bhwArq6uKBQKNm7ciF6vL/e6Nm7ciFarLTcjasyYMdja2vL5558/0b0rUVRUxMcff4yDgwPNmjV7YLvMzEycnSvOkm3fvj2pqals3boVWZa5fv06GzdupFevXk9lrJWpLAs6Pj4eg8HA1atXadiwId7e3gwYMIDU1FRTm1atWqFQKFi7di16vZ7MzEz+85//0L17dywtLWvEdT4qkSlVAykM9zKlHDUuhPuHV9BaEARBEIQ/opKaI2B8yDx06BDLli1DrVZz/vx5HB0dzdr369ePjh07smvXLtzd3cusknf9+nUA04Ouu7u7aV/pNvb29qjVapRKJUqlstw25T0slzZr1iymTJli2s7KyqrywFTBrTwMkoyz1prkgBeA30BSYudZwHP8ilvTl2jSKLhKxyAIwrOnKzLw8cTd1XLuV5d1xtJK+cjHybLMjh072LZtGxEREWzatIm9e/fSoUMHwFjvx8fHh02bNtG/f38uX75Mv379aNKkCWDM/ClREmhxc3Mz/buQnZ3NunXrWL9+vSmjZu3atXh6epYZS9euXZk6dappe9SoUQwZMoRJkyYBEBQUxPLly+ncuTOrV6/Gy8uL5cuXM336dObOnUvr1q0JDQ1lyJAhpnGdPXsWBweHMpk+YPy3LSAggLNnzz7yfStty5YtDBo0iLy8PDw8PIiPj6dWrfKzYJOTk1mxYkWFWVIAISEhxMXFMXDgQAoKCtDpdERGRj6z6WqVZUFfuHABg8HAu+++y7Jly3BwcOCtt96iR48enDhxApVKhb+/P9u3b2fAgAGMGTMGvV5P+/bt2bp1a425zkclMqVqIAv9vaDUtkHxBLuIByxBEARB+LMzGAwUFhYyc+ZMTpw4wfHjx01fAEuXLmXt2rWA8S3oyZMnzVbJi4+Px97e3jQFsH379uzYscPsHPHx8aa6VSqVilatWpm1MRgM7Nixw9TmQaysrLC3tzf7qmqXT9xGjwGklmQ4G7PIJZTYOBlrjNhp/Kt8DIIgCBXZsmULtra2WFtbExERwcCBAxkxYgQWFhZmU9lcXFyoX78+p0+fBmDChAnExMQQEhJCdHQ0J06cqPA8Fy5cQKvV0rZtW9M+BwcH6tevX6Zt69atzbZ/++03YmNjsbW1NX2FhYVhMBi4ePEiYMzcSk9PJy4ujvbt27NhwwYaNWpEfHz8Q98LlUpVaZu4uDizcSQkJJg+K1k5dt++fYSHhzNgwIByV4a9evUq4eHh9O/f36xmUul+o6KiAEhMTGTixInMnj2bI0eO8OOPP5KSkmL6PCEhwey4uLi4h77eyjxMFrTBYECr1bJ8+XLCwsJo164dn3/+OefOnWPnzp2AcWr+6NGjGT58OIcOHWL37t2oVCpeeuklU2ZfdV7n4xCZUjWQslSmlEL56JF5QRAEQRBqtlmzZhEREUGdOnXIzs5m/fr17Nq1i23btuHu7l5uplKdOnXw9zcGXnr27ElwcDBDhw7l/fffJz09nbfeeouxY8diZWUFQFRUFCtXrmT69Om88sor/Pzzz/zvf//j+++/N/U5ZcoUhg8fTuvWrWnbti0ffvghubm5vPzyy8/mRjwCbb6WPFlCa5CR9XcBkJQFnPLMp2/QCnw8u1XcgSAIf0gWKgWvLutcbed+FKGhoaxevRqVSoWnpycWFhZs3ry50uNGjRpFWFgY33//Pdu3b2fBggUsXryY8ePHP+7QTTQajdl2Tk4OY8aMMdUbKq1OnTqm7+3s7IiMjCQyMpKYmBjCwsKIiYmhR48eBAUFkZmZybVr18pkZxUVFXH+/Hmz4twP0qdPH7NgnZeXl9m4AwMDCQwMpF27dgQFBfHpp58ya9YsU5tr164RGhpKhw4d+Pjjj836Lr36XcmLkwULFhASEsK0adMAY60mjUZDx44diYmJoXXr1mbH3V9z8Un8/PPPlWZBl2SelbxcAuN0ylq1anH58mUAVq1ahYODA++//76pzX//+198fHw4cOAA7dq1q9brfBwiKFUDKfXlV+IXBEEQBOHP4caNGwwbNoy0tDQcHBxo2rQp27Zto0ePHg91vFKpZMuWLbz22mu0b98ejUbD8OHDmTdvnqmNv78/33//PZMnT2bZsmV4e3vz73//2+wXhYEDB3Lz5k1mz55Neno6zZs358cff6z2B9TyyFqZ9Ixc7LO/Me3LsFRh79QUP++IB65kJAjCH5skSY81ha46lARSSmvYsCE6nY4DBw6Ypu/dvn2bpKQks+CDj48PUVFRREVFMWvWLD755BPGjx9vyjgqXd8pICAAS0tLDh06ZAokZWZmcvbsWTp16lThGFu2bEliYmKZcVZEkiQaNGjAvn37AHjppZeYMWMGixcvZvHixWZt16xZQ15eHsOGDau0Xzs7O+zs7B5qDCXZxCWuXr1KaGgorVq1Yu3ataai3yXKu768vDwsLMxDIMriJBBZllGr1Y90Xx7FzJkzGTVqlNm+Jk2asHTpUiIjIwFMxeSTkpLw9vYGICMjg1u3bpmKzufl5ZW51pJrMBgMpjbVdZ2PQwSlaiALvZhVKQiCIAh/Zp9++ukjtS+v2K6vr69ZDYnydOnShWPHjlXYZty4caYCtzWZQatDXZBZvKUEWYdT/SyGdGgiAlKCINRYQUFB9O3bl9GjR/PRRx9hZ2fHzJkz8fLyMtUWmjRpEhEREdSrV487d+6wc+dOGjZsCBj/Xy9JElu2bKFXr16o1Wrs7OwYPnw406ZNw9nZGTc3N6Kjo1EoFJX+/3DGjBm0a9eOcePGMWrUKDQaDYmJicTHx7Ny5UqOHz9OdHQ0Q4cOJTg4GJVKxe7du/nss8+YMWMGYMyoev/993n99dextrZm6NChWFpa8u233/LGG28QExND48aNzc6blJRUZiyNGjUyFecukZuby/z58+nTpw8eHh7cunWLVatWcfXqVfr37w8YA1JdunTB19eXRYsWcfPmTdPxFdVEjIyMZPTo0axevZqwsDDS0tKYNGkSbdu2LbceV4mcnBySk5NN2xcvXuT48eM4OzubgoIZGRlcvnyZa9eumV1vSfbzw2RB16tXj759+zJx4kQ+/vhj7O3tmTVrFg0aNDCtwti7d2+WLl3KvHnz+Mc//kF2djZvvPEGvr6+tGjRosqvs0rIwgNlZmbKgJyZmflMzzthXKi8aEBvedGA3s/0vIIgCIIgVK66ng9qsqq+J3fSrsnf/PMD+Z+vjpcXDegtfzj8A3nFP7rKm3c0lrOzk6rknIIgPHv5+flyYmKinJ+fX91DeWTDhw+X+/btW+5nGRkZ8tChQ2UHBwdZrVbLYWFh8tmzZ02fjxs3Tq5bt65sZWUlu7q6ykOHDpVv3bpl+nzevHmyu7u7LEmSPHz4cFmWZTkrK0sePHiwbGNjI7u7u8tLliyR27ZtK8+cOdN0nK+vr7x06dIy4zl48KDco0cP2dbWVtZoNHLTpk3l+fPny7Isyzdv3pQnTJggN27cWLa1tZXt7OzkJk2ayIsWLZL1er1ZP5s2bZI7duwoazQaGZAB+fPPPzdrc/HiRdNn93+lpqaWGVt+fr7897//Xfb09JRVKpXs4eEh9+nTRz548KCpzdq1ax/YZ2WWL18uBwcHy2q1Wvbw8JCHDBkiX7lypcJjdu7cWe65Sn4WFY0pOjr6gf0C8jfffGO2LzMzU37llVdkR0dH2dnZWf773/8uX7582azN559/Lrdo0ULWaDSyq6ur3KdPH/n06dPP5DrvV9Hf2Yd9NpBk+QnXufwTy8rKwsHBgczMzGdSwLPEtNe6455hDcDUL7c8s/MKgiAIglC56no+qMmq+p4c/vQjtqRbcTvlEH5Zl7C0CUOv28jINbHYiwLngvCnUVBQwMWLF/H398fa2rq6h/OHkpubi5eXF4sXL2bkyJHP/PwZGRl069YNe3t7fvjhB2xsbJ75GIRnr6K/sw/7bCCm79VAQZoAsjOuVfcwBEEQBEEQqt3yf7yCQdbjhIS9fBcZQLJCba0QASlBEP6yjh07xpkzZ2jbti2ZmZmmmoIlUwKfNWdnZ3766SdWrVrF/v376dZNLD4hPBwRlKqB2vboy47PVuPdsHHljQVBEARBEP7E9HIBBjnLbJ9Kr0Qf5FpNIxIEQagZFi1aRFJSEiqVilatWpGQkECtWrWqbTwuLi7Mnj272s4v/DGJoFQN1KxHBK5+Abj5ird/giAIgiD8tcmO1ij01siSjNZKwt7GgF/IHTqE/7u6hyYIglBtWrRowZEjR6p7GILwxERQqgaSFAq86jes7mEIgiAIgiBUuylrPqvuIQiCIAiCUEUU1T0AQRAEQRAEQRAEQRAE4a9HBKUEQRAEQRAEQRAEQRCEZ04EpQRBEARBEARBEARBEIRnTgSlBEEQBEEQBEEQBEEQhGdOBKUEQRAEQRAEQRAEQRCEZ04EpQRBEARBEARBEARBEIRnTgSlBEEQBEEQBEEQBOEJjBgxAkmSkCQJlUpFYGAg8+bNQ6fTPVG/u3btQpIk7t69+3QG+hAuXrzI4MGD8fT0xNraGm9vb/r27cuZM2fM2m3ZsoXOnTtjZ2eHjY0Nbdq0ITY21qxNSkoKkiRx/Pjxhz7/nDlzaNCgARqNBicnJ7p3786BAwfM+hw5ciT+/v6o1Wrq1q1LdHQ0RUVFlfYdFxdHs2bNsLGxwcPDg1deeYXbt29XeMwvv/xCZGQknp6eSJLEpk2bHnnMAPPnz6dDhw7Y2Njg6OhY7rkuX75M7969sbGxwc3NjWnTppn9GSr956z0V6NGjUxtFixYQJs2bbCzs8PNzY2//e1vJCUlVXpvHmZ8VUEEpQRBEARBEARBEAThCYWHh5OWlsa5c+eYOnUqc+bM4YMPPqjuYZk8TNBGq9XSo0cPMjMz+frrr0lKSuLLL7+kSZMmZoGxFStW0LdvX0JCQjhw4AAnTpxg0KBBREVF8frrrz/ROOvVq8fKlSs5efIke/bswc/Pj549e3Lz5k0Azpw5g8Fg4KOPPuLUqVMsXbqUNWvW8MYbb1TY7969exk2bBgjR47k1KlTbNiwgYMHDzJ69OgKj8vNzaVZs2asWrXqsccMxvvfv39/XnvttXL70Ov19O7dm6KiIvbt28e6deuIjY1l9uzZpjbLli0jLS3N9JWamoqzszP9+/c3tdm9ezdjx47l119/JT4+Hq1WS8+ePcnNza3wOisbX5WRhQfKzMyUATkzM7O6hyIIgiAIQg0hng/KEvdEEISnIT8/X05MTJTz8/OreyiPbPjw4XLfvn3N9vXo0UNu166dnJGRIQ8dOlR2dHSU1Wq1HB4eLp89e9bULiUlRX7hhRdkR0dH2cbGRg4ODpa///57+eLFizJg9jV8+HBZlmU5KytLHjx4sGxjYyO7u7vLS5YskTt37ixPnDjR1K+vr688b948eejQobKdnZ3p2ISEBPn555+Xra2tZW9vb3n8+PFyTk6OLMuyfOzYMRmQU1JSHnitly9fli0tLeUpU6aU+Wz58uUyIP/666+yLMumazh27Nij39RiJf/G/PTTTw9s8/7778v+/v4V9vPBBx/IAQEBZcbr5eX10GMB5G+++abSdhWNee3atbKDg0OZ/Vu3bpUVCoWcnp5u2rd69WrZ3t5eLiwsLPc833zzjSxJUoU/rxs3bsiAvHv37krHXdH4ylPR39mHfTYQmVKCIAiCIAiCIAhCjSTLMtqCgmr5kmX5icauVqspKipixIgRHD58mM2bN7N//35kWaZXr15otVoAxo4dS2FhIb/88gsnT55k4cKF2Nra4uPjw1dffQVAUlISaWlpLFu2DIApU6awd+9eNm/eTHx8PAkJCRw9erTMGBYtWkSzZs04duwYb7/9NufPnyc8PJx+/fpx4sQJvvzyS/bs2cO4ceMAcHV1RaFQsHHjRvR6fbnXtXHjRrRabbkZUWPGjMHW1pbPP//8ie5diaKiIj7++GMcHBxo1qzZA9tlZmbi7OxcYV/t27cnNTWVrVu3Issy169fZ+PGjfTq1eupjPVRx3y//fv306RJE2rXrm3aFxYWRlZWFqdOnSr3mE8//ZTu3bvj6+v7wH4zMzMBKr0/1cWiugcgCIIgCIIgCIIgCOXRFRayfPhL1XLuCes2Ymlt/cjHybLMjh072LZtGxEREWzatIm9e/fSoUMHwFjXyMfHh02bNtG/f38uX75Mv379aNKkCQABAQGmvkoCCW5ubqY6P9nZ2axbt47169fTrVs3ANauXYunp2eZsXTt2pWpU6eatkeNGsWQIUOYNGkSAEFBQSxfvpzOnTuzevVqvLy8WL58OdOnT2fu3Lm0bt2a0NBQhgwZYhrX2bNncXBwwMPDo8z5VCoVAQEBnD179pHvW2lbtmxh0KBB5OXl4eHhQXx8PLVq1Sq3bXJyMitWrGDRokUV9hkSEkJcXBwDBw6koKAAnU5HZGRkhdPyqmrM5UlPTzcLSAGm7fT09DLtr127xg8//MD69esf2KfBYGDSpEmEhITQuHHjhx7LsyQypQRBEARBEARBEAThCW3ZsgVbW1usra2JiIhg4MCBjBgxAgsLC5577jlTOxcXF+rXr8/p06cBmDBhAjExMYSEhBAdHc2JEycqPM+FCxfQarW0bdvWtM/BwYH69euXadu6dWuz7d9++43Y2FhsbW1NX2FhYRgMBi5evAgYM7fS09OJi4ujffv2bNiwgUaNGhEfH//Q90KlUlXaJi4uzmwcCQkJps9CQ0M5fvw4+/btIzw8nAEDBnDjxo0yfVy9epXw8HD69+9vVhuqdL9RUVEAJCYmMnHiRGbPns2RI0f48ccfSUlJMX2ekJBgdlxcXNxDX++jjPlpWbduHY6Ojvztb397YJuxY8fy+++/88UXX5j2RUVFmV1ndROZUoIgCIIgCIIgCEKNZGFlxYR1G6vt3I8iNDSU1atXo1Kp8PT0xMLCgs2bN1d63KhRowgLC+P7779n+/btLFiwgMWLFzN+/PjHHbqJRqMx287JyWHMmDFMmDChTNs6deqYvrezsyMyMpLIyEhiYmIICwsjJiaGHj16EBQURGZmJteuXSuTnVVUVMT58+cJCwurdGx9+vQxC9Z5eXmZjTswMJDAwEDatWtHUFAQn376KbNmzTK1uXbtGqGhoXTo0IGPP/7YrO/Sq/3Z29sDxlXpQkJCmDZtGgBNmzZFo9HQsWNHYmJiaN26tdlx92ctVeZhxlwRd3d3Dh48aLbv+vXrps9Kk2WZzz77jKFDhz4wADhu3Di2bNnCL7/8gre3t2n/vHnznrgY/dMkglKCIAiCIAiCIAhCjSRJ0mNNoasOJUGJ0ho2bIhOp+PAgQOm6Xu3b98mKSmJ4OBgUzsfHx+ioqKIiopi1qxZfPLJJ4wfP94UcChd3ykgIABLS0sOHTpkCiRlZmZy9uxZOnXqVOEYW7ZsSWJiYplxVkSSJBo0aMC+ffsAeOmll5gxYwaLFy9m8eLFZm3XrFlDXl4ew4YNq7RfOzs77OzsHmoMBoOBwsJC0/bVq1cJDQ2lVatWrF27FoXCfBJYedeXl5eHhYV5CESpVALGII9arX6k+/KoY65M+/btmT9/Pjdu3MDNzQ2A+Ph47O3tzf6sgHGFveTkZEaOHFmmH1mWGT9+PN988w27du3C39/f7HM3NzdT/zWBCEoJgiAIgiAIgiAIQhUICgqib9++jB49mo8++gg7OztmzpyJl5cXffv2BWDSpElERERQr1497ty5w86dO2nYsCEAvr6+SJLElv/P3n3HyVHXfxx/zWy/XpJceu8VEkgIJXRCEVQQBQEBuwJKVbHQ/UWliYIgSrMAgggqIFKFAAmEQCAEQklvl+RyvWyb+f7+mLtNLskld8ndbW73/Xw8QnZnZ2c/s2TvvvPZz/fzffJJTjzxRCKRCPn5+Zx77rlcccUVlJSU0KdPH66++mps28ayrF3G88Mf/pCDDjqICy+8kK9//evk5ubywQcf8Nxzz3H77bezaNEirr76as455xzGjx9PMBjk5Zdf5t577+WHP/wh4FVU/epXv+Lyyy8nHA5zzjnnEAgE+Oc//8mPf/xjbrjhhh36F3300Uc7xDJhwgQCgUCrbQ0NDfz85z/nlFNOoV+/flRUVHDHHXewbt06Tj/9dMBLSB1xxBEMGTKEm266ic2bN6eev31F0bZOPvlkvvGNb3DnnXcye/ZsNmzYwMUXX8z06dN32o+rRX19PZ9++mnq/ooVK1i0aBElJSUMHjy4XTEDrF69msrKSlavXo3jOKmqrJEjR5KXl8dxxx3H+PHjOeecc/jVr35FeXk5P/3pT7ngggsIbVe1d8899zBjxoyd9om64IILePDBB/nnP/9Jfn5+qh9VYWEhkUikzfPcXXxdpl3r/GUpLW8sIiIi29P4YEd6T0SkM+xqefl93bnnnms++9nP7vSxyspKc84555jCwkITiUTM7Nmzzccff5x6/MILLzQjRowwoVDI9O7d25xzzjmmoqIi9fh1111n+vbtayzLMueee64xxpja2lrz5S9/2eTk5Ji+ffuaW265xUyfPt386Ec/Sj1vyJAh5tZbb90hnjfffNMce+yxJi8vz+Tm5prJkyebn//858YYYzZv3my+973vmYkTJ5q8vDyTn59vJk2aZG666SbjOE6r4zzxxBPmsMMOM7m5uQYwgHnooYda7bNixYrUY9v/WbNmzQ6xNTU1mc9//vOmf//+JhgMmn79+plTTjnFvPnmm6l97rvvvjaPuTu/+c1vzPjx400kEjH9+vUzZ511llm7du0un/PSSy/t9LVa/l+0J2ZjvH8jOzvOSy+9lNpn5cqV5oQTTjCRSMT06tXLXHbZZSaRSLQ6TnV1tYlEIubuu+/eabxtvTf33XffLs+zPfFtb1ef2faODazmoDPaHXfcwY033kh5eTlTpkzht7/9baumcG2pra2lsLCQmpqa1DxUERERyW4aH+xI74mIdIZoNMqKFSsYNmwY4R4yZW9f0dDQwIABA7j55pt3OqWrq1VWVnL00UdTUFDAf/7zH3Jycro9Bul+u/rMtndskPGr7/3tb3/j0ksv5eqrr+btt99mypQpzJ49u0u74IuIiIiIiIh0lXfeeYeHHnqIZcuW8fbbb3PWWWcBpKYEdreSkhKef/55jj76aObNm5eWGKRnyvik1C233MI3vvENzj//fMaPH89dd91FTk4O9957b7pDExEREREREdkjN910E1OmTOGYY46hoaGBuXPn0qtXr7TFU1paylVXXcXRRx+dthik58noRufxeJyFCxe2WoLRtm2OOeYYZW9FRERERESkR9p///1ZuHBhusMQ2WsZnZSqqKjAcRzKyspabS8rK2Pp0qU77B+LxVot2VhbW9vlMYqIiIiIiIiIZKOMn77XEXPmzKGwsDD1Z9CgQekOSUREREREREQkI2V0UqpXr174fD42btzYavvGjRvp27fvDvtfeeWV1NTUpP6sWbOmu0IVERERERERIAsWiBfJCJ3xWc3opFQwGGTatGm88MILqW2u6/LCCy8wc+bMHfYPhUIUFBS0+iMiIiIiIiJdLxAIANDY2JjmSESkPVo+qy2f3T2R0T2lAC699FLOPfdcDjjgAKZPn86vf/1rGhoaOP/889MdmoiIiIiIiDTz+XwUFRWxadMmAHJycrAsK81Ricj2jDE0NjayadMmioqK8Pl8e3ysjE9KfelLX2Lz5s1cddVVlJeXs99++/HMM8/s0PxcRERERERE0qulzUpLYkpE9l1FRUU7bY3UEZbRhN021dbWUlhYSE1NjabyiYiICKDxwc7oPRGRzuY4DolEIt1hiEgbAoHALiuk2js2yPhKKREREREREelZfD7fXk0JEpGeIaMbnYuIiIiIiIiIyL5JSSkREREREREREel2SkqJiIiIiIiIiEi3U0+pXWjpAV9bW5vmSERERGRf0TIu0FoxW2nMJCIiIttq73hJSaldqKurA2DQoEFpjkRERET2NXV1dRQWFqY7jH2CxkwiIiKyM7sbL1lGX/O1yXVd1q9fT35+PpZldfrxa2trGTRoEGvWrMm65ZN17jp3nXv20Lnr3DPt3I0x1NXV0b9/f2xbnRCga8dMmfxvaXd07jp3nXv20Lnr3DPt3Ns7XlKl1C7Yts3AgQO7/HUKCgoy7h9ge+ncde7ZRueuc882mXruqpBqrTvGTJn6b6k9dO4692yjc9e5Z5tMPff2jJf09Z6IiIiIiIiIiHQ7JaVERERERERERKTbKSmVRqFQiKuvvppQKJTuULqdzl3nnm107jr3bJPN5y6dK5v/Lencde7ZRueuc8822XzuLdToXEREREREREREup0qpUREREREREREpNspKSUiIiIiIiIiIt1OSSkREREREREREel2SkqJiIiIiIiIiEi3U1JKRERERERERES6nZJSIiIiIiIiIiLS7ZSUEhERERERERGRbqeklIiIiIiIiIiIdDslpUREREREREREpNspKSUiIiIiIiIiIt1OSSkREREREREREel2SkqJiIiIiIiIiEi3U1JKRERERERERES6nZJSIrLPWrlyJZZlcf/996c7lH3O/fffj2VZvPXWW+kORURERHqwPR1vbdy4kS984QuUlpZiWRa//vWvuyS+dGgZZ61cuTLdoYhkPCWlRKRNr7/+Otdccw3V1dV79Pzf/e53GZFQ2tv3YV+2fv16rrnmGhYtWpTuUERERLJSTx1vXXLJJfz3v//lyiuv5M9//jPHH398t8cgIj2fklIi0qbXX3+da6+9tscNkjrb3r4P+7L169dz7bXXKiklIiKSJj11vPXiiy/y2c9+lssvv5yzzz6bsWPHdnsMItLzKSklItKDRKNRXNdNdxgiIiKS5TZt2kRRUVG3vJbGPyKZS0kpEdmpa665hiuuuAKAYcOGYVlWam59Mpnk+uuvZ8SIEYRCIYYOHcqPf/xjYrFY6vlDhw5lyZIlvPzyy6nnHnHEEQBUVlZy+eWXM2nSJPLy8igoKOCEE07g3Xff3eu4//e//2FZFo888gg///nPGThwIOFwmKOPPppPP/10h/3feOMNjj/+eAoLC8nJyeHwww/ntddea9f7cOqppzJ16tRWxzv55JOxLIt//etfrV7Dsiz+85//pLYtX76c008/nZKSEnJycjjooIN46qmndnouDz/8MD/96U8ZMGAAOTk51NbW7vTcq6qqmD59OgMHDuSjjz5q13t14IEHAnD++eenzu3+++/nww8/JBKJ8JWvfKXVc1599VV8Ph8//OEPd3t8ERER2bWeON5q6bdkjOGOO+5IvS5AIpHg2muvZdSoUYTDYUpLSzn00EN57rnn2n383Y1/djd2A1i1ahXf/e53GTNmDJFIhNLSUk4//fSd9ohasmQJRx11FJFIhIEDB3LDDTcoASbSjfzpDkBE9k2nnnoqH3/8MQ899BC33norvXr1AqB37958/etf54EHHuALX/gCl112GW+88QZz5szhww8/5PHHHwfg17/+NRdddBF5eXn85Cc/AaCsrAzwEjJPPPEEp59+OsOGDWPjxo38/ve/5/DDD+eDDz6gf//+ex3/L37xC2zb5vLLL6empoZf/epXnHXWWbzxxhupfV588UVOOOEEpk2bxtVXX41t29x3330cddRRzJ07l+nTp+/yfTjssMP45z//SW1tLQUFBRhjeO2117Btm7lz53LKKacAMHfuXGzb5pBDDgG8xqAHH3wwjY2NfO9736O0tJQHHniAU045hb///e98/vOfb3Uu119/PcFgkMsvv5xYLEYwGNzhfCsqKjj22GOprKzk5ZdfZsSIEbt9j8aNG8d1113HVVddxTe/+U0OO+wwAA4++GCGDx/O9ddfzxVXXMEXvvAFTjnlFBoaGjjvvPMYO3Ys11133Z79jxEREZGUnjjemjVrFn/+858555xzOPbYY1t9gXXNNdcwZ84cvv71rzN9+nRqa2t56623ePvttzn22GM79Do7G/+0Z+wGsGDBAl5//XXOOOMMBg4cyMqVK7nzzjs54ogj+OCDD8jJyQGgvLycI488kmQyyY9+9CNyc3O5++67iUQie/TeiMgeMCIibbjxxhsNYFasWJHatmjRIgOYr3/96632vfzyyw1gXnzxxdS2CRMmmMMPP3yH40ajUeM4TqttK1asMKFQyFx33XWttgHmvvvua3fML730kgHMuHHjTCwWS22/7bbbDGAWL15sjDHGdV0zatQoM3v2bOO6bmq/xsZGM2zYMHPsscfu8n0wxpgFCxYYwDz99NPGGGPee+89A5jTTz/dzJgxI7XfKaecYvbff//U/YsvvtgAZu7cualtdXV1ZtiwYWbo0KGp96blXIYPH24aGxtbvfZ9991nALNgwQKzYcMGM2HCBDN8+HCzcuXKdr9X257Dzt5jx3HMoYceasrKykxFRYW54IILjN/vNwsWLOjQa4iIiEjbeuJ4yxhjAHPBBRe02jZlyhRz0kkndeg422tr/NORsdv24yZjjJk3b54BzJ/+9KfUtpYx2RtvvJHatmnTJlNYWLjTsZ+IdD5N3xORDnn66acBuPTSS1ttv+yyywB2mIK2M6FQCNv2fvw4jsOWLVvIy8tjzJgxvP32250S5/nnn9+qoqilCmj58uUALFq0iE8++YQvf/nLbNmyhYqKCioqKmhoaODoo4/mlVde2W3p9v77709eXh6vvPIK4FVEDRw4kK985Su8/fbbNDY2Yozh1VdfTb0+eO/h9OnTOfTQQ1Pb8vLy+OY3v8nKlSv54IMPWr3Oueee2+Y3dmvXruXwww8nkUjwyiuvMGTIkA68S7tm2zb3338/9fX1nHDCCfzud7/jyiuv5IADDui01xAREZEd9ZTx1vaKiopYsmQJn3zyyV4fa/vxT0fGbts+L5FIsGXLFkaOHElRUVGrc3/66ac56KCDUhVW4FWpnXXWWXsdv4i0j6bviUiHrFq1Ctu2GTlyZKvtffv2paioiFWrVu32GK7rctttt/G73/2OFStW4DhO6rHS0tJOiXPw4MGt7hcXFwNe3yUgNVg699xz2zxGTU1N6nk74/P5mDlzJnPnzgW8pNRhhx3GoYceiuM4zJ8/n7KyMiorK1slpVatWsWMGTN2ON64ceNSj0+cODG1fdiwYW3GcM455+D3+/nwww/p27dvm/vtqREjRqT6XUycOJGf/exnnf4aIiIi0lpPGW9t77rrruOzn/0so0ePZuLEiRx//PGcc845TJ48ucPH2n7805GxW1NTE3PmzOG+++5j3bp1GGNa7dOirTHZmDFjOhyviOwZJaVEZI+0NLTcE//3f//Hz372M7761a9y/fXXU1JSgm3bXHzxxZ3WWNLn8+10e8ugpOV1brzxRvbbb7+d7puXl7fb1zn00EP5+c9/TjQaZe7cufzkJz+hqKiIiRMnMnfu3FRfh22TUh21q74Gp556Kn/605+47bbbmDNnzh6/xq48++yzAKxfv54tW7Z0SfJLREREdrSvj7e2N2vWLJYtW8Y///lPnn32Wf74xz9y6623ctddd/H1r3+9Q8fafvzTkbHbRRddxH333cfFF1/MzJkzKSwsxLIszjjjDDUxF9nHKCklIm3a2UBoyJAhuK7LJ598kqrsAa95d3V1davpY20NpP7+979z5JFHcs8997TaXl1dnWrw2dVaGoEXFBRwzDHH7HLfXQ0IDzvsMOLxOA899BDr1q1LJZ9mzZqVSkqNHj06lZwC7z3c2ep4S5cuTT3eXhdddBEjR47kqquuorCwkB/96Eftfi7sfrB711138dxzz/Hzn/+cOXPm8K1vfYt//vOfHXoNERERaVumjbdKSko4//zzOf/886mvr2fWrFlcc801HU5Kba8jY7e///3vnHvuudx8882pbdFolOrq6lb7DRkyZKdTDduzirGIdA71lBKRNuXm5gK0+gV+4oknAt5qL9u65ZZbADjppJNaPX/7X/7gVTFtW0YN8Oijj7Ju3bpOiLp9pk2bxogRI7jpppuor6/f4fHNmzenbu/sfWgxY8YMAoEAv/zlLykpKWHChAmAl6yaP38+L7/88g5VUieeeCJvvvkm8+bNS21raGjg7rvvZujQoYwfP75D5/Kzn/2Myy+/nCuvvJI777yzQ8/d1bmtWLGCK664gtNOO40f//jH3HTTTfzrX//iT3/6U4deQ0RERNqWSeOtLVu2tLqfl5fHyJEjicVie33sjozddnbuv/3tb1tNYQTvfZ4/fz5vvvlmq+P89a9/3et4RaR9VCklIm2aNm0aAD/5yU8444wzCAQCnHzyyZx77rncfffdVFdXc/jhh/Pmm2/ywAMP8LnPfY4jjzyy1fPvvPNObrjhBkaOHEmfPn046qij+MxnPsN1113H+eefz8EHH8zixYv561//yvDhw7vt3Gzb5o9//CMnnHACEyZM4Pzzz2fAgAGsW7eOl156iYKCAv7973/v8n3Izc0lJyeHadOmMX/+fE4++eTUt5WzZs2ioaGBhoaGHZJSP/rRj3jooYc44YQT+N73vkdJSQkPPPAAK1as4LHHHks1Je2IG2+8kZqaGi644ALy8/M5++yz2/W8ESNGUFRUxF133UV+fj65ubnMmDGDoUOH8tWvfpVIJJJKdH3rW9/iscce4/vf/z7HHHPMHi8lLSIiIltl0nhr/PjxHHHEEUybNo2SkhLeeust/v73v3PhhRfu9bE7Mnb7zGc+w5///GcKCwsZP3488+bN4/nnn9+hl9YPfvAD/vznP3P88cfz/e9/n9zcXO6++26GDBnCe++9t9cxi0g7pHPpPxHZ911//fVmwIABxrbt1NK4iUTCXHvttWbYsGEmEAiYQYMGmSuvvNJEo9FWzy0vLzcnnXSSyc/PN0BqueJoNGouu+wy069fPxOJRMwhhxxi5s2bZw4//PBWSxrvyRLFLcsIP/roo622t3Wsd955x5x66qmmtLTUhEIhM2TIEPPFL37RvPDCC7t9H1pcccUVBjC//OUvWz1n5MiRBjDLli3bIc5ly5aZL3zhC6aoqMiEw2Ezffp08+STT7brXIwx5r777jOAWbBgQWqb4zjmzDPPNH6/3zzxxBO7fJ+29c9//tOMHz/e+P3+1Ht02223GcA89thjrfZdvXq1KSgoMCeeeGK7jy8iIiK71tPGW8YYA5gLLrig1bYbbrjBTJ8+3RQVFZlIJGLGjh1rfv7zn5t4PN7u4+5q/GNM+8ZuVVVV5vzzzze9evUyeXl5Zvbs2Wbp0qVmyJAh5txzz211vPfee88cfvjhJhwOmwEDBpjrr7/e3HPPPTuM90Ska1jGbFfXKCIiIiIiIiIi0sXUU0pERERERERERLqdekqJSI8Qj8eprKzc5T6FhYU7LB+crfR+iYiISEd15fhBYxMR2RklpUSkR3j99ddbNfXcmfvuu4/zzjuvewLax+n9EhERkY7qyvGDxiYisjPqKSUiPUJVVRULFy7c5T4TJkygX79+3RTRvk3vl4iIiHRUV44fNDYRkZ1RUkpERERERERERLqdGp2LiIiIiIiIiEi3U0+pXXBdl/Xr15Ofn49lWekOR0RERPYBxhjq6uro378/tq3v90BjJhEREWmtveMlJaV2Yf369QwaNCjdYYiIiMg+aM2aNQwcODDdYewTNGYSERGRndndeElJqV3Iz88HvDexoKAgzdGIiIjIvqC2tpZBgwalxgmiMZOIiIi01t7xkpJSu9BSfl5QUKABloiIiLSiaWpbacwkIiIiO7O78ZIaIYiIiIiIiIiISLdTUkpERERERERERLqdklIiIiIiIiIiItLtlJQSEREREREREZFup6SUiIiIiIiIiIh0OyWlRERERERERESk2ykpJSIiIiIiIiIi3U5JKRERERERERER6XZKSomIiIiIiIiISLdTUkpERERERERERLqdklIiIiIiIiIiItLtlJQSEREREREREZFup6SUiIiIiIiIiIh0OyWlRERERERERESk2ykpJSIiIiIiIiIi3U5JKRERERERERER6XZKSomIiIiIiIiISLdTUkpERERERERERLqdklIiIiIiIiIiItLtlJQSEREREREREZFup6SUiIiIiIiIiIh0OyWlRERERERERESk2ykpJSIiIiIiIiIi3U5JKRERERERERER6XZKSomIiIiIiIiISLdTUkpERERERERERLqdklIiIiIiIiIiItLtlJQSEREREREREZFup6SUiIiIiIiIiIh0O3+6AxARjzEGjEndt2zljEVEREQAXNfdYZtlWViWlYZoRESksygpJZJmH7zyIqv/8zYbNi4nnmwi6fpwHAdjIM/uyysTniCRsHFsC8cG1wbfkMFcdtRVHNTvoL1+/d++8AkPL1jjJcWAuJugLl6L23x/9H5/xjFJXOPiuA5Jk2RsyVh+f+zv9/q192W1iSQLn72J3zKCpOXb+kDJCAjmADA5P8INowamKUKR7FMbTfDjfyymyHqBcQUvMqZv3i73HzHiBxQXHdhN0YnI3ojH40SjUdatW8eWLVswxlBbW0s0GmXDhg1UVFTs8JyTTz6ZadOmpSFaERHpLEpKiaTZ/McfocktItqweofHYvYo3h64k49pcg3Vseo9fs2PN9bx+5eX05RI8vTi8p3skZu6tap2Fdt/Cbk3r90T1CcdDnz9fWpyjt/xwSYDTQ0ABPXtrEi3Mcbw4rsvsK78bY4c9yhFoVpqanb9nGSiultiE5G2tVQ4bdiwgU2bNgFQXV1NLBZj7dq1VFVV4bouTU1N6QxTRETSREkpkTSL1tfTFAljAZavD/6w963+gLUvsnT2eq6fcAm+YB5+y4fP8mFbNoGcXMb3mbzHr/mHV5bz2NtrW217/LsH47MtblxwIws3LuSk4ScxrWwao8rux+/z47f8+Gzv9SP+yN6c8j5vbSxOjQuWcSlLVHNmaYhJgYT3YK9REPSSdqUB/QgV6Q7LN9fzyGv/4sCCn3Hhflu3T5zwG2w70ObzCgqmdH1wIlnEdV3q6+tbbdu0aRPl5eUkk0mqqqpwHIdYLEZNTQ3JZJLq6uqdTr1ri23bFBUVMXjwYHw+H0VFRfj9fgoLCxk6dGirfQOBtj//IiLSM+iKSiTNYnW1mHCRl5SyiwnTj7z693hp4gccfcqX+dyoz3f6a9bHkgCcNKkfBw4tZtrQQj5t/B9bolvY7C7EF1nHsaPHcNzQgzv9tfd5lcuJvfUYBI6lX6yCt9ffDLP/m+6oRLLaH19dwbp1izlwPNTFcwmEhjJh2PGUlZ2U7tBEMkJL0sh1XSoqKlKVS7W1tWzcuJFNmzZhjGHlypWp6f57IhKJMGDAAPx+P8XFxfh8PvLz8xk2bBiBQICioiL1iBIRyTJKSomkQTIeZ9XiRcQqKnCNi+smsQHLChKu/ANzPr8asDk9XNIlrx9PeoPPWaN78aUDB/PS6pe46vWrWu3TO6d3l7z2Pu/lG4mteA/2P5aQG4fCAemOSCTrVdTFyA00AhDIPZyjZvyaSNC3m2eJSIumpibWrl1LIpHgo48+wnEcGhoaqK+vx3EcampqcByn3cezt1uMJTc3lxEjRhAOhyksLASgoKCAnJwcIpEIBQUFWJZFOBxW0klERFpRUkokDd544lHmP/ZQ6r5d29y80wrg2A5TC0ZQVjyCGf1mdMnrxx0vKRX0e4PK8kavr9SAvAHM6DeDAXkDmNI7S6e9NFUSs4MAhHIK4ZBr0huPSJYrL/8nh5b8kbC1AYDR/QYoISVZqyVx1FLFFI1GU9PkWqbOOY5DdXV1als8Hu9Qvyafz0durjdNvbCwkHA4TCAQYMyYMdi2zcCBAykuLu6S8xMRkeyjpJRIGtRVbCZohwn4wjQkqrHjUQAsuwDX5/LA55/o0tePJZqTUj7vwq4+7vWHmN53OtcefG2XvvY+L9FItCUpld8HiganOSCR7GSM4YanPmRiYA4DcjantudEhqYvKJEu0JI0MsZQVVVFIpEgkUhQXV1NbW0tK1aswHVdotHoDv2cOqpv3774fD769+9PaWkpRUVFhEIhQqEQRUVFAIRCIXw+JX5FRKR7KCklkgau61AWGUZFbB0A8ZIy8prGYYUm4Uaf6fLXjzVXSvl98N7m9/i0+lMA8oK7Xl49KySaiNleI/fIdtMTRKT7rKls4p5XV3D7UbUAPLj0NC474Wj69Ts6zZGJtE8ymWTz5s3U1dWlEkuNjY3U1dVhjKG2tpampiai0egeHT8cDhMMBikoKCASibSaOtdyu6VPk8/no6CggFAo1JmnKCIisteUPP2puQABAABJREFUlBJJAzeZxGfZRIkBkCgowe+Ow7UCGP+eNxBtr5aeUs+veYZn3roltT0/mN/lr70vM8awyQ2wKej18gopKSWSNlWNcWzLIeL3fk5+/6TvMn7I0PQG1QNdc801XHtt6wrYMWPGsHTpUgCi0SiXXXYZDz/8MLFYjNmzZ/O73/2OsrKydIS7W5WVlcydO5d4PJ7uUHZryZIlHdrf5/Olkki2bad6Mdm2zYgRI4hEIhQXFxMKhVL9mURERHo6JaVE0sB1HCzs1Ao2gXghpvnjaLrhUxlPej0pKpq8Hi0l4RIG5Q9i9tDZXf/i+7BzF6/g2VFzUveDtpqxiqRDLLaRLasv4tqZa1PbJg7SogN7asKECTz//POp+37/1l80l1xyCU899RSPPvoohYWFXHjhhZx66qm89tpr6Qh1txYuXMg777yT7jA6JCcnh1AolEostUyZ8/l8FBUVEQ6HteqciIhkLSWlRNLAcZJYlo3BxQIOfu0/vL+/19Tc+Dq3UmrJ+hrumbsi1dwcYEONN1XAWN43zd+Z8h3OGHtGp75uj/PkpcwPnQr+PGzjELJ9nNCrMN1RiWSdP7yynI9X/JnjBy2kf/OM4pycYdh2IL2B9WB+v5++ffvusL2mpoZ77rmHBx98kKOOOgqA++67j3HjxjF//nwOOuig7g51t5LJJADDhw9nzJgxaY5m9/r168fgwepNKCIi0hYlpUTSwDgOPmxorpSKxOrB8pqKVvbr3AuvO/+3jCff27DTx3z+5iXWdbEHi/9O0/QzAXjr3W/T/zsvQLggzUGJZJ+7Xl7GjD6VALy3eTxOzhl8/7DPpDmqnu2TTz6hf//+hMNhZs6cyZw5cxg8eDALFy4kkUhwzDHHpPYdO3YsgwcPZt68eftkUqrFgAEDmDGja1aoFRERke6jpJRIGjiOg9/ypZJSFlt7F/U77MBOfa3qxgQAp04dwOQBWyt/hvfO48FV/wYg6At26mv2RMlknERzci7yrZcgrKbvIt3NdV1cZwsl4WoADhy5HzP2O5OAT/3d9tSMGTO4//77GTNmDBs2bODaa6/lsMMO4/3336e8vJxgMJhada1FWVkZ5eXluzxuLBYjFoul7tfW1nZF+DtomfYuIiIimUFJKZE0cJ0kFgHAG1w3RrY2lD178JGd+lp1MW+qw/ET+nLchNbTN+5f4U3fy/pKKWPYdu2jcCgnbaGIZKvGeJL3Fn+Hm2a9mNo2oKRMCam9dMIJJ6RuT548mRkzZjBkyBAeeeQRIpHIHh93zpw5OzRQFxEREekojfRE0sB1XGzLwmr+xnfx5O+mHrMHT+vU12poTkrlhXbMQced5qSUL8uTUskYTfbWZbLDanAu0q3eXl3Fftc9R8UWr7m2aywCgWJKS2elObLMU1RUxOjRo/n000/p27cv8Xic6urqVvts3Lhxpz2otnXllVdSU1OT+rNmzZoujHpHagouIiKSGZSUEkmD2OpVYLYOqC3XgNXIuIP74cst6pTXePjN1Zz9xzdYU+n1jcoL75iUSrje1L5sr5RaWV/H/4qnAxCxLV3siHSzt1ZW4joxIn5vOthzW+5n1mFvUVAwOc2RZZ76+nqWLVtGv379mDZtGoFAgBdeeCH1+EcffcTq1auZOXPmLo8TCoUoKCho9UdERESkozR9TyQNknX1WKVbEx9FtcuJTnydo77yaKe9xi+fWUpVcz8pv23Rr3DHaRqpSqksTkptjic49N11JMf9BICIpgqJdCtjHIpiN3DNwUsBsCwfvzz94DRHlTkuv/xyTj75ZIYMGcL69eu5+uqr8fl8nHnmmRQWFvK1r32NSy+9lJKSEgoKCrjooouYOXPmPt3kXERERDKHklIiaWAwWGxTKWVcLF/nfhybEg4AV31mPNOHlVCdXM3TS15vtU9l1FvhKpsbna+JxkkaCLgJxjau4vT9NF1IpLt8VF7Ho/NfYmbBK5DrbcvNHY1lKTncWdauXcuZZ57Jli1b6N27N4ceeijz58+nd+/eANx6663Yts1pp51GLBZj9uzZ/O53v0tz1CIiIpItlJQS6UaLX3yWxS/8l3qfBdtMEbMNWP7OrVZKOl6/qhMn9aNvYZiTHz+blbUrd7pvbiC3U1+7x1j4ANHX/woTf8XQpvU898HlcPLKdEclkjV+8+InfLJmBTMPhC1NxYR6XcXhUzt3sYds9/DDD+/y8XA4zB133MEdd9zRTRHtHa2+JyIiklmUlBLpRm8+8SjVGzeAZVEZ3ZDabhmD5fd12usYY0i63sDd7/OSX5saNwFw9OCjyfFvXV1uSMEQxhSP6bTX7lE+/DfR5vcp7MZg0Iw0BySSXbbUx4j4mwAoyO3LkdNOwt+JPwtFREREZN+mpJRIN0omE6nb5dEVzbd82MbFCnRepVTC2fpNcsC2McbQlPQu/H560E/pFenVaa/VoyWjRJtX3Qv3HQ8Hnp7mgESyR2Xla0wt+jPBIm/VtrLCUkJKSEk7aUEKERGRzNDpTRvmzJnDgQceSH5+Pn369OFzn/scH330Uat9otEoF1xwAaWlpeTl5XHaaaexcePGVvusXr2ak046iZycHPr06cMVV1xBMplstc///vc/pk6dSigUYuTIkdx///07xHPHHXcwdOhQwuEwM2bM4M033+zsUxZpN+M4qdsBOxdfTh8COcdiuS52J07fS7ru1tfxW8ScGAYvURXx79jwPGslmoj6mpNSwXCrKZUi0jUqG+L89InFzFv4Pab1eo5JvbwG56FQnzRHJiIiIiLdrdOTUi+//DIXXHAB8+fP57nnniORSHDcccfR0NCQ2ueSSy7h3//+N48++igvv/wy69ev59RTT0097jgOJ510EvF4nNdff50HHniA+++/n6uuuiq1z4oVKzjppJM48sgjWbRoERdffDFf//rX+e9//5va529/+xuXXnopV199NW+//TZTpkxh9uzZbNq0qbNPW6RdXNdlaN5EAIrDvXHLRuMLjccyDnYnNjrftlLKb9upKimAsC/caa/T031iFbA0dxgAEVuNlUW6wxPvrOOhN1YQ9lUD8MzKo+jd/0KGD78kvYGJiIiISLfr9Ol7zzzzTKv7999/P3369GHhwoXMmjWLmpoa7rnnHh588EGOOuooAO677z7GjRvH/PnzOeigg3j22Wf54IMPeP755ykrK2O//fbj+uuv54c//CHXXHMNwWCQu+66i2HDhnHzzTcDMG7cOF599VVuvfVWZs+eDcAtt9zCN77xDc4//3wA7rrrLp566inuvfdefvSjH3X2qYvslnEc8gJFALyT9zEV+UFmVHur79mdOH0v6WytlPrNO7fSmPSSwiFfCJ+t6TEAz2yu4bwRV6fuR3xKSol0h4aGpRzU7y0ADDanHHoDk0eXpTkqEREREUmHLr8Kq6mpAaCkpASAhQsXkkgkOOaYY1L7jB07lsGDBzNv3jwA5s2bx6RJkygr2zpInT17NrW1tSxZsiS1z7bHaNmn5RjxeJyFCxe22se2bY455pjUPtuLxWLU1ta2+iPSmVzXTU2jS9gJQgnvI2gbl8l99++019laKeXywAf38+jHjwJQHC7utNfo6T5pjAKQl2xgTNDwpb4laY5IJPNFo+sZ5/8eX534VwCCgWIOU0JKOkCr74mIiGSWLm107rouF198MYcccggTJ3pTlsrLywkGgxQVFbXat6ysjPLy8tQ+2yakWh5veWxX+9TW1tLU1ERVVRWO4+x0n6VLl+403jlz5nDttdfu2cmKtIPrOqmk1IyPXIqxWDkULOMwtGREp71OoqVSyvJ6WH1l/FfwWT4OH3R4p71Gj/bUZUSrAjDgDE7b+By/PO4MKC1Id1QiGe0Hf3+Xpatf5vv7ucScIMY/hrHDz0h3WCIiIiKSRl2alLrgggt4//33efXVV7vyZTrNlVdeyaWXXpq6X1tby6BBg9IYkWQa47pUWd5UOr9jMP7mSqmAITx2bKe9zvz1zQ39LYccfw5XHHhFpx07I7z9J2KDzwMg7LOhcGB64xHJcK5r+PvCtUzp5f38W1fXn2kH3MeAAarelD2j1fdEREQyQ5clpS688EKefPJJXnnlFQYO3HrB17dvX+LxONXV1a2qpTZu3Ejfvn1T+2y/Sl7L6nzb7rP9in0bN26koKCASCSCz+fD5/PtdJ+WY2wvFAoRCoX27IRF2sF1HGqtRgBsA5uKvP5OJVNy8G1XPbgnEo7L6spG3l63FijGshzOHn/2Xh83o7guOHHittfDKzjtKxDKS3NQIpmtqr6SkUWfMrRwNQD7DRnE1MFKSImIiIhku07vKWWM4cILL+Txxx/nxRdfZNiwYa0enzZtGoFAgBdeeCG17aOPPmL16tXMnDkTgJkzZ7J48eJWq+Q999xzFBQUMH78+NQ+2x6jZZ+WYwSDQaZNm9ZqH9d1eeGFF1L7iHQnYwzGdVP9MCxjwG6plOqcZOiXfj+Po29+mYde8i72wv4gF+1/UaccO2M4MQCitveehwJajVCkKz27pJz5C07lhwf+hs8MfxaASKgwzVGJiIiIyL6g05NSF1xwAX/5y1948MEHyc/Pp7y8nPLycpqavCXpCwsL+drXvsall17KSy+9xMKFCzn//POZOXMmBx10EADHHXcc48eP55xzzuHdd9/lv//9Lz/96U+54IILUpVM3/72t1m+fDk/+MEPWLp0Kb/73e945JFHuOSSrUtKX3rppfzhD3/ggQce4MMPP+Q73/kODQ0NqdX4RLqTMV6fp5aeUjWFo4iHvSSrPeqITnmN99d5zflDAQd8DYwdUt0px80oSa/BecwOAhCyNQVEpKt8vLGO7/5lPmFrLQAV0TLy8sbTv/8X0xyZiIiIiOwLOn363p133gnAEUcc0Wr7fffdx3nnnQfArbfeim3bnHbaacRiMWbPns3vfve71L4+n48nn3yS73znO8ycOZPc3FzOPfdcrrvuutQ+w4YN46mnnuKSSy7htttuY+DAgfzxj39k9uzZqX2+9KUvsXnzZq666irKy8vZb7/9eOaZZ3Zofi7SHYzbkpTy/q7PG0Qg4E0lDffqvffHN4Z4c4PzM4/7hMeW38+siV/d6+NmnKRXKRVXUkqky62rbiIn4H0pZYxF7+GPMWNsvzRHJT2ZVt8TERHJLJ2elGrPYCEcDnPHHXdwxx13tLnPkCFDePrpp3d5nCOOOIJ33nlnl/tceOGFXHjhhbuNSaSruY63El5LxRTY+GMfcMj5n2fMjJ33OeuIpLv1s+eYOAAhn3qkbWtFY4zLl1ZQO/UPrIr0ByBod3rBqIgArpskVvF/XLjfYgACgUIOV0JKRERERLbRpavvichWrtOSjGpOHlk2geQnTJw1oFOOH0+6qdtJ401RC/qCnXLsTPHvzdW8Vp+E/NGpbcMiStyJdLZVWxp4b/nL5MT+zYgib1tOzrBdPkekI7T6noiISGZQiYBIN4k1eqvuObF6ACxsLKvzpiEknK1JqSanubeUKqW2ev8xGuf/AYDZFa/y0Cf/x3MHjGZWsVbeE+lMxhhOu3Me985dBMCGhj68W38Zkyfdmd7ARERERGSfo6SUSDdZ8K+/A5BsqvQ2WH7oxKRURWNN8y2XF9Y8D0DQVqVUysIHiDYnBEc0reHIUJRJ+Tn6tl2kk9XHklTUx8j1e4l41x7AcdPOIhTa+955IiIiIpJZNH1PpJs0VFcB4IZCBJ0ifMGxEF/Tacf/oOIj74bl9a4qDhUzrWxapx2/x0tGiTav3hme8iUYPz7NAYlkpo8++gm3HP4sQV8CgKlDBzFxQGGaoxIRERGRfZGSUiLdYPnbC9iydhUAC4ZvYOb6WfjtfCx77yuloskoz6x8hhdWLgam4rNh8bmL9/q4GSfRRLS5f1SkaAAEwmkOSCSzVNTH+OPcpRwYeozCbWYOFxRMTl9QknG0+p6IiEhmUVJKpIs11lTzxK+uT626ZyyDbbyZs2Whgr0+/r+W/Yvr51+PEy0DpuL37fUhM1MySrS5x1ZYK+6JdLq/zl/NQ/OWcOAR4BqLh5Zfx+1nHUxOztB0hyYiIiIi+yglpUS6WLShIZWQAnBtCBobFygN5u718TfWb6Fx9flYCW8Vv/xQZK+PmWlWNcV4rGQ2S3JHAhCy1UdKpLPVNSxjVPFyAFzy+eHJJ5OTk5/mqCRTqR+giIhIZlBSSqSLGddLSNmWhWsMxvJW3gOwfXs/qF63xcZpGJO6P6ZMvVu2d+2n63m63xdS94sC+tEn0lmSjsvbSx9kZv7VzJzibcvPKWZMXyWkRERERGTXdGUm0sWM6zTfsgCDa5mtSalOqNiJJ72kV35OnAfOO4Lx/fZ+SmBGWf8Om2tiQJgjK9/ggLGHcWyp3iORzvKDv79HqPFFjhkCjYkw4VARAweek+6wRERERKQHUGMVkS7mui4lwb4UBrzl0I0FNPeUsjqhUirueEmvcNAwdXAx4YCaSqVUfAp3H0Gs0msy//V1j3HZoGIiPv3oE+ksS9bXkhNoBGBR1WeZduBLDB50fpqjEhEREZGeQFdmIl3MuC4jCvYnYHtNtnvXGGzXSxx1SqWU41VKKc+yE9VeMqrJ5/XZCo87CQr6pTMikYxSX/8xI/JeZkDeBgC+ethkSnKDaY5KMplW3xMREcksmr4n0sVc18Fn+VPNzr/8P4e1I23iIbA7Yam8RHNSyq+k1I6SUQCiAa+hfGT619MZjUjGcF3De2sr2LLsdE4bUZ/aHggWpzEqEREREelpdBkr0sVcx8XCwsVLHlnG4DRXSOWMH77Xx0+kKqW0EtEOWpJStle5EVI5mUin+NO8lZz7x+fA1OMai/c2j6e092mUlsxKd2iSJbT6noiISGZQpZRIFzOug2XZxPASJJaBhgIby4HQ4EF7ffxEc6Nzfyf0p8o0TfEYNcFSmiwvKRVW4k6kU3y8qZ68YAMAUSeX6vAc9ps0Mc1RiYiIiEhPo6SUSBczrkvCcqnHu4D7cOxXwOkLgN171F4fP+l6/TUCSkq1simW4NCa0dTO/EdqW9hWpZTI3orHK5mWcwkHHbgRgF4Fvbn2OCWkRERERKTjlJQS6WKu6+LYXoWUARLBAnz4sP0WhX1y9vi4jYlGVtSuoC7urXql6XutfdgQpbb5R5zfOBxQVEC/UCDNUYn0bMs31/PRyv9SFFiR2laQPyWNEYmIiIhIT6ayAZEuZhwH2Jowsl0H36ELOff/DiG3KLTHxz3zqTM548kzWFWzFlClVCvvPUrTk5cDMK12CWvr7uWJqaOw1YNEZI9FEw6fvf01/jp/CQBLK0dC7wcZP/7GNEcm2USr74mIiGQWVUqJdDHXuGBZ0DyQto3BVxolp2DPl013jcvymuUA5AUKiQFlub06I9zMsOCPNEWbV9xzotBn76dJimS7ivoYdbEkuYEmAPJy+nPI2AOwLH2/JSIiIiJ7RkkpkS626r13WFOzBOMkU9ts/95NI0u6SRK1k4hXHEXAPxhIkBfc86mAGSfRQJOvBIDwwKlwgKYXieyt1Stu4JqZcykK1QNw0IghhAO+NEcl2Uqr74mIiGQGJaVEulB95RbefvpfrbZZ+Pc6KZVwEySqDsKN9aMylgBgWC8lpVISUZpC3tTISE4xqMG5yB6rbIhzyUMv8pXhf2NQ/tbtubkj0xeUiIiIiGQEJaVEulCsyWtCnrRdVgyE8RUn4KeQYLBpr46bcBIY4318Lz12FLNG92HygMK9jjcTJFzDK5HRvJM3HoCwem2J7JW5n2zm4w3rYDg0JUMsqvsBFx0zhYICVSCKiIiIyN5RUkqkCxnXBSDhN3wyBCbVTcCKVnH00GP26rgJNwHGmzYzaUAR+w0q2ttQM8af11fw4xE/SN3P82l6kcjeqKtfxZCCNQDkhnvzg6O+QtCv6kMRERER2XtKSol0IddxADCWIZz0puxZuPTO77tXx/WSUt7HVxeHra2NetMZB0Q3Mq73AM7pX5rmiER6pqTjsmjpH+kX/yXfmORty40U62eOpJVW3xMREcksGlmKdKGWSinXgoDja9mItZfVO0k3iWmulAr49DFOefoHxN/5KwCnb/wvfxnTi/F5kTQHJdIzfeevb/Ofd14EIJoMEjcl9O//xTRHJSIiIiKZRFezIl1k8YvP8t/f/wYAY4Hf9Xob2caFvUxKqVJqJxJN8ObvicW9fl1BfxAiJWkOSqTnen9dDTkBry/eC+vPoP/o5xg44MtpjkrEo9X3REREMoOm74l0kdcf+Qv1VZWAN33P73ZepVTCTYDbUimlgTkAySgAMdubJhk86NvgD6YzIpEeq7bufcYVvkLfnM0A/PDE6ZT1KUpvUCIiIiKScZSUEukiyWQyddu1wO94ySNrLyulEm6ChkQDBu8YIVVKeZIxAOK2l4gKh3PTGY1Ij7WqYiOfLj6ds8bGU9uCgeI0RiQiIiIimUpXsyJdxLjO1tuWIdd4SSoLg2Xv2Ufv9fWvc/CDB3PeM+eB6+WU1VOqWUullM/rIRXU1A6RDrvn1RWceee/wcRJuD7e2zye/v3PprDwgHSHJiIiIiIZSJVSIl3EdVzGFs5gac0blNQbJi6w2dK3uVJqDy0oX0D1umNJ1o8FEwLUUyqluVIq5vPel9AeJv5Estnbq6vIC9YDUBUtpdz3c8aNnZzmqES20up7IiIimUVJKZEukmsV0Cc8iKU1b5DfaBhQ2ZyU8u/51L24kyRRdUjqfnFOgOIc9U3aFEtw9/om6kdezNKcIQCEbFVKiXREY+Mqji39Lif38Xrhjeo7gDMPUEJKRERERLqOklIiXcUYXLxvdG0Dm4u8ZFR4xPA9PmRsmz5VD359BuP7FxAO7F3T9Exw37oKbq8EBnw+ta00oB9vIu31+Dtr2Vz+D0aENqe2FRUdmMaIRHZNq++JiIhkBs1vEekqroVpnqpnYajN9ZJHvpzwHh8yltialJo6pJgiVUnB+kVULX8NgJnV73DZpn9z05hBHFycl+bARHqGjbVRLvnbuyxctQaAhRun0GfEfxk58odpjkxEREREMp2SUiJdwBiDBRiak1IGjOV93Pbm291YcmvzdDU4b/bMlTRu/gSAoyrf4IqG1zm7fyk+fYsu0i6bar1+bEUhb7GAcQOHM3HwiHSGJCIiIiJZQvNbRLqAMS4W21RKGYNreZVS1l70Ooo7zcezDD71TPI0bqEp16s+iww7DCZ8L80BifQcxrhUrP0hNxzyLsUhr8H5+AEDNDVKRERERLqFklIiXcB1XCzLTvWUqi0Yhj//eABs394kpbzpeyqS2kaiiUafl5TKGXc8lJWmOSCRnuHTTXU89PorHFzwHP1yt27Pyx2dvqBEdkOr74mIiGQWXdqKdIFELErCjbM6vgIAx5eD8XnJkvzSPe8pFW+evqeklKc+6fBg0UxWRAYCkGPrjRFpr9+9tIyXly4HoDJayKtV1zFj+tP06XNimiMTERERkWyhSimRLjDv0QepTVRQW1PhbbBs/PWP0nv255j1xT2vQmiZvudX7gWAP67dzC+Gfjd1v9CvlQhF2sMYQyL2KUMLVgOQGynj24eeRl7enifNRbqTppiKiIhkBiWlRLpA7eZNANj+CJhCfKH9CDv/4HNnHYu9F9U8CVVKbWUMG6Neg+ax9cs5asQkDtGKeyLtsnzFr/ncwNtT9/sVl1FWoISUiIiIiHQvXdqKdAHX8ZJHkZLhhPM/jy8wBNtn7VFCyhjD91/8PlP/PJV3Ny8BwLcXfakyguvCvccTe/vPAHx+8wtcNbwPQU3fE9mlWNLhc3e8xpNv/Q+AhkQOtn8A/fudnt7ARERERCQr6QpOpAu4rpeUmlv6Jg7elDKzhzPLYk6MF9e8SDwJxg0BEPEHOiXOHqupCtbMJ2YHAQjl94FgfpqDEtn3fVxez6I11YR8DQA8+slZTD3gBcrKTkpzZCIiIiKSjTR9T6QLtFRKNQaaoDkpVRCM7NGxEm6C2OZjiVccndoWCQT3OsYeLdkEQLR51b3QQd8BVUmJ7FZlzWKm911In9waAH71xUMozMnyJLf0KFp9T0REJLMoKSXSBZxGrwrBBSzLS0pNLRm5R8dKuAmS9aNabTt8dJ+9iq/HS0QBiPm8RF9IDc5FdimacHhswTv0aTqfb012U9vzIr3SGJWIiIiIZDslpUS6gNvckJxtVgeyA3uWOEm6ydTcv7vPmcas0b0J7+GxMkayJSnlTWcMq0pKZJf+tWg997/yOj+a7hJzgtQ6o9l/+P7k5Y1Jd2gie0Sr74mIiGQGJaVEOlF1+QaevO2XVK5f2bxlm6RUKHePjplwE7RMAcwL+bM+IWWM4a26KBt6HUF5sBSAsK2LE5FdWVfdRF7Aq+CMMZQDp/2VEb21WqWIiIiIpJeSUiKdaMWit9i4/FP8lgP4MNtWSuWX7NExE04C01wp5fepIujt2kZOXuuHCdemtkVUKSXSprq6JYy1vsLE/bw+UsP69FdCSkRERET2CbqSE+lEruP1agkGvWll3356a0NWn3/PPm7e9D3vuQFfllcEbVnG6rl3AlCYqGNm4yd8oayYg4p0gS2yM7e/+Ak3/utPBO1qbMv7eVRcNCPNUYmIiIiIeJSUEulErutQGupPGC9JEkpuTSKFx+1Z75aEm0j1lApke6XUgj/StHYhAAfWLubxmr9z+/ghRLL9fRFpw+0vfUpDtBqAV9bOxOr7NEOGfDO9QYnsBa2+JyIiklk0fU+kExnXpTjYly2xZc1brNRf+YceukfH3DYp5c/2SqlYLVE7CECobBxM+XyaAxLZd8WSDtGES46/CYAT95vC9HGj0xyViIiIiMhWSkqJdCLXcbAsC4M3jc/xRQDYm5ZHCXdrT6msr5RKxog1J6UipcOhoF+aAxLZNzlOE28vPJPfHvkJQV8cgH7FvbRimWQM/VsWERHJDEpKiXQi47rY2KnpBUvHnIUPsPZgdbiPKj/ilwt+yebGzcD5AASyvaF3MkrULgIgnO3vhUgbNtQ08fyiZ+nvLCYn4G2zLB8F+ZPSG5iIiIiIyHaUlBLpRK7rYFk2yeaklNXctq3PyEiHj/XU8qdYUL7Au9Pc6Dzrp+8lY0Rtr4l8aA8SfSLZ4IYnP2Rt+Yd8b39YU9efJ1ZewCPfOY5gcM9WABURERER6SoqNRDpRMZ1sbAweEkpfzLKyl4PMuUzvTt8rJgTA+D4ocdjGa/cIZuTUresLGd030v53aAzAAhn+1RGkZ1wnBjE3mJ0sdfXLhwq49ITjlZCSkRERET2SaqUEulEXk+prdP3LGPAtrD3YKrZmk1h6j/5If9eVkDLWkPBLE7EPFZeRa29teJsSn5OGqMR2ffURhMsWnwlpw79Z2rbxEGDmDi640lxkX1XA5OnPEND43947fVQ5x++i1b3M3TVqoE9cDXCHvcee0fvWcftypUqe+C/uS6KuWe+xz0r5p654mrP+/83csQPGTjw7C45dnsoKSXSiVzXxcJODYwsDFj2HjVkXbkhH5MsJtp8f1BJhLxQFn5km6rgX98jWvJV8Bdz3/s/Ydqxl9Knz37pjkxkn/LZ21/jzOHvMqIINjWWMqjXAAb0PzPdYYl0Kn9gJQUFmzEGotHd7y8iIiK75ppEWl8/C69wRbpG3ZYKPnnjNRJ1Tampd5YBY9l7VCmVdLy/DxjdyC8+cwIDiyP4s7FS6tMX4MN/EZ35VQCGNa2lT+mgNAclsm+JJhxWVDSQM6YRgE9i3+OMGWdphTLJOFbzlz62PZhpU29LczR7o4s/m1342be6NPbdH9skHYzbvLdtYfk7Mjbqwti7+Odt177vXa1nvu9d/56n97O0V0fv0eMLve/bCwSKu+S47aWklEgn+fSt+dRu3rTNFhubMFi+PfoBknS9gXdhDozsk9dJUfZA8QYAon5v6l74Sw9A79HpjEhkn7N2wzOcM+5vlISrAbhk9gE9fMAo0paWSuQIBQWT0xyLdBanIUF8ZQ3GBac6hhtN4jYmcGri3uM1MdymJCbu4NZv/UY/MqU3pWeOTVfYIiLSCZSUEukkTsIbJG0qjlPeK8wBG7+CLxYn7OTsYaWUd0EZ7NA3gBko6VWdxSyv2Xu474R0RiOyT3Fcw0flNaz/9AqOGBRr3moTCqqPlIikj0k4GNeQ3BIlvroWXEhWRTFxB6cugVsfxziGZGUUki4m4e7R62xcWUtpJ8cuIiLdS0kpkU7iOt58u4ZIkuoiH3ZFCZbZQIAwPp+vw8dLNo/Psrm5OQDJJpL4SFreexiyVf0h0uKnTyzm8YUfc8fRXkLqpXUnc/EJpxAM6jJNRLpOfF29l1AyXmLJJFxiy2twamKYhItbF9+j425JurgGGl1wMDS5kDAGF2+bayDqGmLNvX5HjCxmfOedloiIpIGSUiKdxLheFsm1DD7XSyRZxmHS5Mn06dOnw8drznER9Hc8oZUpjDG8mwixptehqW3hPag6E8lUi9fVkBNoAiDp+hk4+CJ69RqR5qhEuk7PXIlp3+fGHXAN0U+qvSom1+A0J5vcpqSXbGre5kaT0IHCpqQxbEoYHKDRNc1JJ0PSQLJ5mwFiLuSWhgmG/QydVIrftmhZXzGSHyCnIITtsyjsHcHXXEUeCGfvGElEJFMoKSXSSVoqpVwLfKY5cWJcTv3CF/boeI7bPH1vD6qsMsX8mgY+bw6CCQcBYKNKKZEWjY0rmFL4OPsVbAEgEirk24cpISXZQr8Ldse4BqcqinEMTUu2YBIOOMabRpc0uA0JnNqY16epIdnh4yeModYxOAYamhNLTS5sSRpixhBtTlxtm78aO7MvgYCPQaVhAiEfOYVBIvlBfH6bPoPzsfQ7XkQk6ygpJdJJXNdLSjm2i+20VErtWY8E2JqUCmVrTyknwYoNywAoTNQx3J9g9vDx2GreLMIjC9aQrLicowYuSm0LBXulLyCRbtNcKZXFvwqMMZi4AwZv6lzMIVkVJb6qFrcxSfTjKoxjtvYB6KBax1DnNFc2OS3JJkPCgIOXgHINRLcpWhs8voRQjp+CXhGKbItQjp+84jD+oE1BaQTbZ5FXEsIfyN4v2kREZOeUlBLpBHWVFWxevRIAY5lUpVTL0tXtlXAT/HHxH9nYsJHGRF8gi6fvPXwWTQ05MOpiDqteyB97N8HQo9IdlUjaxZIOP358MVcdtBFCsGjzZI6bNJFB/T+b7tBEZC+YpEuyKgqAUxvHbUx4fZqqY1sTUHEHN5rERJ12HzdhDMZAlWNoaJ4217hNZVOiuU9T3HgpPztgY1kQCPkYsl8vggGbXr0iBMM+8kvD+IM+AiEfhb0iYIE/YGNne/9LERHZY0pKiXSCv9/wMyrXrWm+Z8iJeYMzuyNNF4A3N7zJrc8tJb7lSDDeanNF4bzODLXn2Pg+0YLDAAgHwjD2yDQHJLJvqGlKkHQNOf5GAA7Z73ImjTkkzVGJdLd9q1TKJF3vT8IluaXJW22uOto6eWQMyZoYJurgxh2vZ5NrcGpiuE3OHlU2ucZrBm7wqpg2JlySxvs70VzNlN8r3Oo5hb0jlA0vxOe3KSgN4wvY5OQHiRQECeX4ieQF9+7NEBER6QAlpUQ6Qd2WitTt2QtdesdhyQSgg1PN6hJ1JOsmpRJSQb/hxLGTOzPUniMZpcnntTjNGX8S9BuU5oBE0s9xoiz7+DJ+dOBHFITqAJgyeHCaoxLpHqlpa4Abc2h8b3O3x+A2JYl9XOUlk+riuPUJAJyaGB0sjt4pYwxJSDUDd4CoC5ubV6VraE5ANbheLycD+AI2WBDODTD1pOH4gzbjSyP4AzalA/MIBLO04lpERHoEJaVEOoFxXfpFhrOhaTkBB4zVvCpMUWGHjpNwEmC8weOdZ03l8DG9yQlm6cc0ESVqe0kprbgnAn9bsJpn3/knXx75DKOKvW0+Xx7BYO/0BibSTTYv3EhiYwP0BrcuTuWLS9Md0k7FjSHmeg2+W1aba7HttpZm4C3bHAOhXmFK+ufhD/oo7B3BsqCgJEzvnNZjgfyScKqqKRjJ0nGCdLuka4jtQb9UC4scTfEUkTbot5hIJ3Adh3DQm2ZnGcPHA7xfvOExozp0nKSbxDT3o+pTEM7ahNTmeILHyj7D/MIpAEQ0kBHhT/NWked6K+2trh3AmsQZXH7SSfh84d08UyQzrF24tTLKMVCxh42895YxsMUxNLre1LmkAceYVBXTtgVT/pAPy/KSSMGwH9tnMWhcCTmFweapc75UrybbtvCrqkk6UX3SYUsiiWNgVVOMJnfrZ6Ym6bAummi1f8x1WR2Nk9gmk+piWBONU590WR9LkDAdLwkcEg7yxszxe34iIpLRsvOKV6STGdfFNA9DLQNOc2WP1cHpewk3Acb7WAZ8+1a/jO70m5Ub+MOI76buF2Zrs3eRbVQ3JuiT3wTAyP5jOWvqtwlm6+qckpXMNhfUdkGIgrPSd5HbVh207bco7B3B9tnkFgW12py0S6Pj4hjD8qYY8W0SQsY0J4QclwbHSxi52ySFKhNJNsaSAFQlk6yPJbZ5Lq2SUCIi+yolpUT2kjEGY1xavhuNhwox/jIA7A4mlrykVPPUvyyuDqqIxQGYVruEGeMO40t9S9IckUj6GGP4cOnPuGjS80R8DQD0yi9VQkqyjoFUf/NAyMfw/TV1VdKrrrkSaVsbYgmqEkmqkw7ronFcA6ujcZqcrQmiqOuyJhon7hrqHIfKRPtXU+won+W1QYjYNoMjQXzbLBLQPxygaLsv/gr9PvqHg62WEgjZFoPDIfL9NsMioY62TMXaxxYmEJF9i5JSInup5Ztb0/zN1boBR+APHwiAbXfsl3DSTWKIAFlaKRWrh5d/SdydAqGRnF7+X8475csdbhgvkik21DTxpbue5eoDH6J3ZOv2vLyx6QtKJF06oZG4wIZYnEbHpdHxEiMx17C6KU7UdalMJCmPt57SVZ1wWBuNt3k808Zt8Kp1tj7W+tH2P2/712v7H8Kun7eLWMyu9t35Y11RiRS0LPqFAq2GPSHbZnA4SNC26B0M0Cuw9fLNAgZFguT7bCwsBoYD5G+TZApYFv3DWk1RRPZtSkqJ7CXXafl2q2WYYmPcOny5IcYd3K9Dx/IqpbzeVP5sbO790dPw+m+ITvwFhEYSCoSUkJKstnBVFbFYJQDRZIgnVl/BzV88iPx8JaUkCxnDpmA+n3AIthlI9caqNpMHZpssw66TE60Ov8329j2fNpIgu0qktJU42WWcbZzPpniSLfEkLl5iqWGbapy42VqNk9rmGjShq3P5rdYLsgQsi4HhIBGfzYBQgMKAn7BtMTgcxL/NmKbA72NAc0XS4HCQPL+PkG3h07hHRLKMklIie6mlUspNDfMskvF/UXz4UQyd3KtDx9p29b1ANk7NaaoGIB72lhYLHfzdXewskvkStX/h/AnPAVCQ24fff/W8DldgimSKuAU3j/gsUSvoZWY+WJXukHqsAr9XWdM76KdXwE+Oz2ZwJIQPGBgOUrDdlK7tt237U2j7HIrVjtve86x27df6Odu/VvuOse3zWu/Xes+2zqutmEK2Td9QoI1HRUSkPZSUEtlL7z7/NABrGlqWprYBg70HlU5epVRzUiobLzwTjQDEQl4L2VDpsHRGI5I2NU0J3lq+moL47ynwcrTk5w5TQkqyWsyCqM+bijSeFZQUTUo91p6kw64SKdtq8/ltvsZ2z+/GWHzAoHCQHJ9NyLYZEtmxGmfgdtO3Cv2+VlO8RERE0klJKZG9tPLdd1K3LXzY/r7EnXfx+do/4NvStIV/fPIP5m94ExgBZGmj82QUgJjlfesYVAm7ZKnvPfQOH6z5gF8cBnEnwBrnQg4df0a6wxJJK28Km/d74WfWAxy5/xNpjUdERET2npJSInuppadUv94H4NaXUuPvC67hgAMOaPcx/vLhX7h74eO4iaLUNn82NjpPeMvdxy3vR1M4G/tqiQDLNteTE/A+DwmTzxH7n0somJ/mqETSq3XPpSz8HSkiIpKBlJQS2UvG9ZJSlu2H5gofLMPw4cPbfYxlG2M0LLui1bZsq5R6rqKGn9nHEDvoEDZZBQAENVVJslDFlv9x+ZRLCPu8ysGywt6MLlNCSmT7FdJERESk51NSSmQvuc0r3awMr6NPfR8AjN2xtW0q67xklt9nGFySxxGj+xAOZFG/h+Uv89j7y1iZPxVC3sV3yLYYFgmlOTCR7mOMYe4nFdRtfJz8YH1qe2FR+6suRURERER6kuwqxRDpAm5zpdTrJW/TZDcnkjpY4ZNoTmwN6ZPgxcuO4KqTx3dqjPu8t/9EU8xrcn7xqj/xbPE6Fs6cQB+taCNZZN7yLXzl3jd5b806AP617HgOmP4yY0Zfm+bIRPYR25RKWZbKpkRERDKBKqVE9lJLTykD+IyNC4yN9O3QMVqSUoFs7CMFkGgiGvSqokYedC6Tx0ze9XJEIhloZYWXmC0KxQA4ePRkCvMGpjMkkX2L8lAiIiIZR0kpkb3k1NYC4NqGkLFoAgZF+nToGEnHG2lnZXNzgGSUpuapeuGSIUpISdaJx2uINPyMHx24nmGFGwA4anz7+9KJZAOzza8GS78nREREMoKSUiJ7oamujmRjHGj5AtebEevv1a9Dx0k0J6Wyrbl5SjJK1G5OSmXreyBZ66n3NvDQy3/g/AmvUlC8dXskZ2jaYhLZF6nRuYiISObR1Z/IHlq1eBHzfngPthMG4NAlDq7r9UDyhTrWoDvpZndSqt4xNPgiAES04p5kmRc+3EjY51VcflI1Aor/jwMPeIK83FFpjkwy0S9+8Qssy+Liiy9ObTviiCOwLKvVn29/+9vpC7JN22al9LtCREQkE6hSSmQPbVz+KXn+IkzzIPmwJYZPm/uT27mRDh0r6bWlysqeUt/9YBX/GDEndT9iZ2diTrJTLLaZgYG/ESl7D4BDx89k4rgvpTkqyVQLFizg97//PZMnT97hsW984xtcd911qfs5OTndGVq7qFJKREQk8ygpJbKHXMfBh4VrvCblFpDwe5VSeTOmd+hYWVspFW/gpYqq1N3BfpfRueE0BiTSfd5dU82alb9iStE/UtvycvqnMSLJZPX19Zx11ln84Q9/4IYbbtjh8ZycHPr27dgiHeliNf/eFRERkZ4vy66ARTqP6zhYlo2hOSllDMmAl+f1t7NSqiHRwEeVHxFLJgEI+nxdE+y+KFoLt04gGo8C8OqbZzN/uEWeP4veA8laNY0JTr9rHh+sXQbAh1tGEyr6GgP6q0pKusYFF1zASSedxDHHHLPTx//617/Sq1cvJk6cyJVXXkljY+MujxeLxaitrW31p8upUkpERCTjdHpS6pVXXuHkk0+mf//+WJbFE0880erx7XsWtPy58cYbU/sMHTp0h8d/8YtftDrOe++9x2GHHUY4HGbQoEH86le/2iGWRx99lLFjxxIOh5k0aRJPP/10Z5+uZDHjOlhYmOb5BBZgmj9S7VkVKO7E+czjn+EL//4CVU11QJZVSlWtxDRV0eTzKqMK+ozC7jMuzUGJdI/y2ihxxyUv2ASAnXsKM/e7kkCgKL2BSUZ6+OGHefvtt5kzZ85OH//yl7/MX/7yF1566SWuvPJK/vznP3P22Wfv8phz5syhsLAw9WfQoEFdEXqbLPWUEhERyQidPn2voaGBKVOm8NWvfpVTTz11h8c3bNjQ6v5//vMfvva1r3Haaae12n7dddfxjW98I3U/Pz8/dbu2tpbjjjuOY445hrvuuovFixfz1a9+laKiIr75zW8C8Prrr3PmmWcyZ84cPvOZz/Dggw/yuc99jrfffpuJEyd25ilLlnIcB8sKpiql1gw4AvAanNvt6A1VFa1iw4ahxKvOgGQJAP3z+3RVuPueZIy4FUjdDZ/zd1CVlGQBYwwb19zAT2YsYGCe9zvxSzMm4FOTf+kCa9as4fvf/z7PPfcc4fDOp0e3jJ0AJk2aRL9+/Tj66KNZtmwZI0aM2OlzrrzySi699NLU/dra2i5PTG3tKaWSKRERkUzR6UmpE044gRNOOKHNx7fvV/DPf/6TI488kuHDh7fanp+f32Zvg7/+9a/E43HuvfdegsEgEyZMYNGiRdxyyy2pgdVtt93G8ccfzxVXXAHA9ddfz3PPPcftt9/OXXfdtTenKAJ40/dsbExzb4vNfQ7Abk6yBCO7/2gl3ATxLbNw41sTUSN6FXZNsPuiZBNRe+sqhWFdkEsWqGyI8/Q7b9Ev/neGpz7uFjk5w9IZlmSwhQsXsmnTJqZOnZra5jgOr7zyCrfffjuxWAzfdlPHZ8yYAcCnn37aZlIqFAoR6uBKs3tPySgREZFMk9a5Qhs3buSpp57ia1/72g6P/eIXv6C0tJT999+fG2+8kWRzzx2AefPmMWvWLILBYGrb7Nmz+eijj6iqqkrts33fhNmzZzNv3rwuOhvJNsZpnr5HS8NVG4f3GXiwRX7J7pt1J9wExnjJq6s+M57HvjOTLx7QvdMf0ioRJerzPsM2EGjHlEeRnu625z/mDy+/C0BdPJf/bbqCGdOfJhLJos++dKujjz6axYsXs2jRotSfAw44gLPOOotFixbtkJACWLRoEQD9+vXr5mh3rSUlZW3zXxEREenZ0rr63gMPPEB+fv4O0/y+973vMXXqVEpKSnj99de58sor2bBhA7fccgsA5eXlDBvW+lvlsrKy1GPFxcWUl5entm27T3l5eZvxxGIxYrFY6n63NO2UHsubvmdhUsNkmyTvUjJs/3Y9P+kmwXgXAzOGlzChf/ZUSSVdw9cr8li8/50AhH12u/pwifR066qjRAJec3/LLuFLh51JXl72fPal++Xn5+/QtiA3N5fS0lImTpzIsmXLePDBBznxxBMpLS3lvffe45JLLmHWrFlMnjw5TVG3QYVSIiIiGSetSal7772Xs846a4ceB9v2KJg8eTLBYJBvfetbzJkzp0tLxefMmcO1117bZceXzOImHaxtpu9hWZjmxvztkXATqaRUMJsanAOfNEZ5JpYD4RwARuV09xQQke63cdN/GJ3zPCMGrAZgQEkvJg5QQkrSKxgM8vzzz/PrX/+ahoYGBg0axGmnncZPf/rTdIfWJguDKqVEREQyQ9qSUnPnzuWjjz7ib3/72273nTFjBslkkpUrVzJmzBj69u3Lxo0bW+3Tcr+lD1Vb+7TVpwrS07RTeq5kPEbSJLaplPKSUrbdvgRT0k2mpu/5sykp9cG/aHr1Phh1NWWxCu6pe5rxs25Kd1QiXSbpuPz3vcWEqy5kWunW7cFQ7/QFJVntf//7X+r2oEGDePnll9MXTAcYs02plHJSIiIiGSFtV8L33HMP06ZNY8qUKbvdd9GiRdi2TZ8+XkPomTNn8sorr5BIJFL7PPfcc4wZM4bi4uLUPi+88EKr4zz33HPMnDmzzdcJhUIUFBS0+iOyM2s+WMzS11/mxQ1/Je62TPm0YQ8rpQLtWK0vY7z7MNGGLQAUJBs4oKSInGxKyknWeWZJOTc98yoAjYkwL6yeRU7xWYwYflmaIxPpqTSPT0REJFN0eqVUfX09n376aer+ihUrWLRoESUlJQwePBjwKpAeffRRbr755h2eP2/ePN544w2OPPJI8vPzmTdvHpdccglnn312KuH05S9/mWuvvZavfe1r/PCHP+T999/ntttu49Zbb00d5/vf/z6HH344N998MyeddBIPP/wwb731FnfffXdnn7JkofUfL8W4buq+5euFZRdgLDpUKZWV0/eSUWK21+A8VDoUDjolvfGIdLFVWxrJ9TcCEKeM4n4/5KD9xqiPmkgHtU5F6fMjIiKSCTo9KfXWW29x5JFHpu63TIc799xzuf/++wF4+OGHMcZw5pln7vD8UCjEww8/zDXXXEMsFmPYsGFccsklrabVFRYW8uyzz3LBBRcwbdo0evXqxVVXXcU3v/nN1D4HH3wwDz74ID/96U/58Y9/zKhRo3jiiSd2aPYpsidaElKfDmxg3vgqvv7mJViWRciNtPtCM5aM01KsGMiqpFRsa1IqGAFdmEuGcl3D4pXzKIr+htNGrQdgaO++nDZ1bJojE+mZWq++JyIiIpmg05NSRxxxROs5/zvxzW9+s1UCaVtTp05l/vz5u32dyZMnM3fu3F3uc/rpp3P66afv9lgiHeU6DgCOZcDaunKcZVmUlJS06xjRZDJ1O+DPpqRUlKidD0ConVVlIj3Rzc99hLPlZg7suwiae/nnRIakNSaRHm0340sRERHpedK6+p5IT7T8nQUsf3sBAMZ2sbb5zvazp32ewSNH7vL5721+j2dXPsunlWuBY4Hs6illkjGidi8Awnb2nLdkn/fX1TK9oB6Ad7YczbH7HcvIobPTHJVIz2epp5SIiEjGUFJKpIP+89ubiTZ4F5qOBXZzXyiAkl6lbT0t5cqXbuKDxcdikluTV4EsqRi68INV/H3s7an74Sw5b8k+xrgkExvJD3o/K84/6hxKSw9Lc1QiPVyrxff0pYaIiEgmUFJKpINijY2p28YyWGbrwNgO7P4jtbmyAJPYOsVvXL8IdpZUDD1dUdPq/syivDRFItJ1/ruknOjG7/PVUW+ltgUChWmMSCQzmFRWSpVSIiIimUJlCiIdYFwXY7auupfXBEM3bZOUakfD8qTXjoqpQ3J47UdH8eRFR+76CZmgsRL+8yNizX20XlpwHh+N9vGNQb3THJhI51q9pZFv/XkhIWcRAEnXJhgeQ27u6PQGJpIBsuPrGxERkeyipJRIB7iug4VF7/BgAI5+1+WnDzd/Y2tcLH9gt8dIut7++WE/A4oi+LKhSmrx30m+cTeO5f3I6RevoLBACSnJPBtqmgjYcQI+LwG7LvQ4hx38ND5fOM2RifR8LV8JWdv8V0RERHo2JaVEOsB1HIqCZRQGvN5RljE0hL2PkYUhOGTwbo/RUikV9Pl2vWMmiVYT9QVTd0NfvB/y+6YvHpEu4Dgxaisf58RhzwFgWT7OP3RCmqMSEREREdl3qaeUSAe4joPP8uE2f19rGXh4lo+x9WAHA1i7STQZY3CaK6WCgSxKSiWaiNrbJKVGHZ3GYEQ63+a6GO99/Gfs2jmcMsLbFgz0wrJUzSHSaZoLk73V9/TZEhERyQSqlBLpANdxsCw71VfKwmAsL7nUnmvPpJvENK/Wl1WVUokmYs1JqaBlYetCXTLMl34/j3+9/TYA6+vLWNV0OGPH3pDmqEQymH6NiIiIZAQlpUQ6wHUcbOzUCkC2AdOcYLF9ux8hx904GK9AMeTPnkLFiqTLulAZAKFs6KElWSXhuCyvaCA34K3MuSE2kwnjbqRXr6PSHJlIZjGpRfdUKSUiIpIpsueqWKQTbF8phTHQ3LzbakeypTHRCMbbP+TLjo/fLSvL+VXel2H/LwMQspULl8yy9ONf8otDHyc/WA/AGQdNZPCg0jRHJSIiIiKy79PVoUgHuI6DhZ3qKRULlxBxhwBg7yYpdd286zjq0aNS0/dC2dBTav07vPHxAgBs4xDA5bN9itIbk0gnSToulz7yDhvW30fvnC2E/TEA8vLGpjkykczUUiilGikREZHMkR2lGiKdxHUd7G0qpdYMPIZhdfsBu09KvbL2Fe9Gc1LKnw3T2F7+FbHw8VA0iLs/uIbPHPUNGD013VGJdIp311bz9LvLOelob0nNx1b9mJu+dAw5OUPSHJmIiOxMwnFZtaUhNRU07rg8u2Qjccfd62N/a9ZwinKCu99RRERaUVJKpAPcpFcpZZorpbBs4nYtPjvA5KNH7PK5sViARO0EJhYczTtVMfy+LChUjNbQlBMCIHTQt2HM7DQHJNJ5qhuaKAjVAmAIcP3pZ5PT/O9dRLpAqqmU2eVusu9zXENtUwLHGFZtaSCW2DEpZID11U3URpOtttc0xllfE6Up4bC2qgnH3frcaMJlTWUjSXfn/0acNrZ3hi9PH6yklIjIHlBSSqQDKtasoiq+EYeWAZLFqoInKCscw9TjTtrlczcu/xzxxoG8gzfFJxzIgqRUMkrU5w3QIiNmQZb00ZLMV1U1H1P+NeYcGgUgGCigNE8JKZHuYmkSX1rUNCbYWOf93CuviVLVGE89ZgysqWykIe4QS3oJo8Q2FUj10STrqptwjaGqIdEp1Ul7wmdbFEYCqfu2ZTF1cBGDSnL26rh5IY1xRET2hH56inTAov8+SUOyOnXfsiIY28VuR/PuZLwAgFFlYYaUFHDy5P5dFea+IxElZntJKTU4l0xx/2srqCx/lCnF0dQ2rbQn0vW29pRSpdSeqI8liSddqhvjlNdESbiG1ZWNxBJOap+ka1hb1Ug04dIUd1hb1Ugs6VUfRZNul1Qa5QR9DCiKYO0kzxjw2QwqziG0zRd5FtCvKEJBOEBJboCygnCr5xTnBOlbGKYtvfJC+LKhhYKISA+hpJRIO9Rs2sjLf7mHjcs/BWB5vwYmbTyEZGAYZcn57UpKtTQ4v+pzQzhs2MgujXefkWwianvVI2ENACUDOK7h+qc+5Eujt0Ax/GfF0fTp/11+MG6/dIcmkmX0O6XFxtoo1Y0J6mMJ1lY1EUu63t8JhxeXbqI2miDhGCob4rs/WDtEAj4iQR9+22JgcYRIcOvCLWG/j4HFEfw+m4JwgP5FYaxtsk1lBSGKc4LYlsWIPrkEbBvLotU+IiKSXZSUEmmHpa+9zCdvvJ66v6pvIzM2D6XO8jG+KcKyDiSlwr7Abvbs+Ywx3LuughVlX6Ta71WIhVUpJRmgpjFKQaCSolANAMdOHMth+09Mc1Qi2SEbVt+LJR3qo0nijsuqLY04rklNk6ttSrCu2qvQfGPFFtZXN7GnhUsDiiLkhfzkhHwMKs5h2++NIkE/g0oi2JZFSU6QPgUhcoJ+hpTmEPDZlOSqb5KIiHQeJaVE2iGZSAAQ8PlJOEmMZTBW8yp6oSAzZszY5fONMalV98KBzP/YfbBqMT9Z4UKfEwDvAqIo4Nv1k0T2ceurm1jy3uncdPiHqW2TBg0kJ5j5n2kR6RwJx2VlRQOugbdWVbK6spHqhgQbaqPEEg5vrKjco+MWhP0EfDZlBWFKcoPkhfwMKI7gsy3G9s1nTN98SnNDlBV41cuqTBIRkX2FRtIi7WCaV3bx2TYJB771tEPVQG9AN278WEYceugun580STBepVDYn+GVUpUrqHzi+zDlVkrjVZy94UkmHv4degcz/Lwlo63e0shxt/yXO472ElJJ10depIzi4oPSHJlI9jDG+48pj/F0cixLzfJ0h7RLccdlTaU3jW5ddRN10SQfbKht9/OLcgL0LQjj91kMKIoQCfjoVxShqLlJ96iyPCYOKCQS8JEf1u9YERHpmZSUEmkH121uAtq8HHVRo6GyuVIqUJC72+fHkgnA2z8SyPCBY80ampr7SA1y67iyzA9DR6Q5KJG989HGOiL+BgAc42Nd6Bm+esjwNEclkmWMwaqKY95r4kH2hw8+3P1z9lHFOQF8ts2AojAzhpfSvzBMfjiA32dxxJg+FIS9IboqmkREJNMpKSXSDsZ1KQsPpcmpIEoCy4CT5z3my8/f7fNjiWTqdiSQ4b0YkjGafN6qN5G+42D/U9IckMjeicU2Eq+8kbPGfQJAJFTMVw9VQkqku1kWWAmvcjk/GOWYCfv+Fx65zT2bQn6bgcU5BP02Q0tzGVyak+7QRERE9glKSom0g+s4jCk8kHcr/wOAZQxxXxAcsIfsfvpOU2LrijeRTJ++l4wStb3Em5qbS0/34YZa3nzvdgYGHmf/Pt62cHhAeoMSyVLb9vTul1vHrV/aL12hiIiISCfRFaNIOxjXxWf5MXjf0FpAjIh3OxTe7fOjTiJ1O5Tp0/eSMZrs5kopJaWkh7v+yQ/4pHwVAO9XjGVV4mtMGH9zmqMSEREREckMqpQSaYemuijFVgGuaU5KGUNLTte22+738J8V/+HhxS9RXRcEZgIOvl3s39Ntjie4tbaYhX1PBCDsU1JKerZNdTEmlTUBUFp6BLOnf4+cnFCaoxLJTsbsfh8RERHpWZSUEmmHeCyJjY1pHhFbBizjJZesXSSZbnjpEdZ9/IXUfct2uzbQNPvbhkrujZdCQSkAfYL6ESM915IPLuOiCS8Q9jUCcPT4EfTOV0JKZJ+Qud/viIiIZBVdMYq0g3FcLMvCTU3fM7SMiHdVKVXf4HVDD/hdCnMsTpzUv8tjTZtkjNrazQAcVL2Izwaq+dyQC9MclEjHbaqNct+rSzgg/AR5qdm2PvLzJ6QzLJGsZ1L/UU5KREQkUygpJdIOrpPE2r5SqmX6nq/tobHjevsfNrqYe79yaNcHmi7GwN1HEss/AgZ+kQNr3+f8oiYI6EeM9Dx/mreKR95cwgGzIOH4+cWCH/DERZ8hL68s3aGJZKVNq2pJVEaxna1fCImIiEhm0BWjSDu4rotl2bjNSalPRpyK7Xofn11N33Mc7++gz9flMaaVk4BNS4gWHAdAKBCG8bPTHJTInmlo/JhJvT7w7tiFXPeFUyjK753eoESy2JI/LGZU0qVXro2SUiIiIplFSSmRdnAdBxublo5QVSUTsbHBgnDOzlfTc42L09x3KuTP8KRU0msEHfV5/XZCh1wEQ1RVIj1PXd2HHFp4MYcWeveL8ko5aLQSUiLpVBrwQdLFUT5KREQk42hpLJF2MK5L0nZwm5tZBBINVBQtYewJEcJ5O09KJdwEGC8ZFfRleP434SWlYnYQgLCtHy3S8/zk8cVc+ci/AIgmQzi+0QwZ/M00RyUi/Qd7/RmLjhmc5khERESks+nKUWQ31i5dwoZP3uHZNffiGq9Wyu800ZC7hsL+O09IAcSdeCopFc703kotSSlfBIDQLqY0iuyLqhri/PWN1dQ3VQGwZMsYhox5hH79Pp/myETEbUoCYEe2/i619GtGREQkI2T4lbLI3lu9eBHGdbCa+1hYdiG2CRJxIti7qAiKO3Fa8r6Z3lPq7o31vDDpJhbnjwEg7FO+W3qWDZtf54ShzzGudBkAR44bwZi++WmOSkQA3EYvKWWFNWwVERHJNPrtLrIbbnO38o8H1uNGejNl83n4G9ZhYVFYWLjT58SdOOUN5RjjfcQCGZyUSm7+mGvKk7glB6a29Q+1XUEmsq9xnEY2rPgOXxgdT20rzu+bxohEZFuFxw/FqYtTXRRKbVOhlIiISGZQUkpkN1qSUkmfg40Py/Jh4fK1r32NgQMH7rB/Y6KRkx4/iYqmCjCnABD0ZejwueJTonfNwj30GQB+ve4+Bp50A4cU5aU5MJH2efWTCn7x5AtcMiVO0rX5sPpgTpg8nIEDzkp3aCLSLDKxFwB2fRM093aUzJTcvBm3qanVNqemhkR5+dYNxpAs34hTU5PaZOdEKP3a17orTBER6URKSonswtO338xHr88F4MS3DL3i8P5EsC3DoEGDdvqctfVrvYQUYOFVDPkzdTpb1Qqa7HDq7pfGHYBVrClP0nM8tXg9dU2VANTG89nAZYwZPTnNUYmI9HyJjZtIrFsLQLKiAmfLFhrfeYfEmrXguiTWr8dpaEjtbxIJSCT26LV8JSVKSomI9FBKSom0wXUdPpz7Uuq+bQzG8qbh+XPanp6WdJMkG4eQZ0YyuuA4FlZVEcjUpFQySpPtTaeI2BbWtHPSHJBI+8XiFUzLuYSZ0zYBUFZUxpzjJ6U5KhFpi2qk9i3GGBrnz8epq6Np4ULi69ZhYnESa9fiRqMkN2zYo+NaOTlY23aytywC/ftj522twrb8fgIDB2KHvTGInZOzV+ciIiLpo6SUSBtcx2113zLw36k+BsYgPLbtC9dNdVGaVn2LJmw2463klRPM0J5SyRhNvuakVKYm3iQjvbO6ivlLHmF0aGVqW6/iKdhaOVJk39acmdIntWu4TU240Sj1L7yAG4t50+RqazFOksTadZimJpzaWhLl5Zjtptm1JTBkMJbtIzBgAHZODr7iYvJmHYYVDBIYOBArsPWLPl9BAb6Cgq46PRER2QcpKSXSBtPcS6ogUEptYguWMcQDPoiBvYseUVvqvVX3LCvJseMGUJQT4KTJ/bop6u5lEjEafREAwrtYiVBkX/OTx9+nzL+a0eNgyZYxHLTfdYwbOTXdYYnILhizTa2UslLtZpJJEuvXY+Jx4mvWYOIJGl6dS7KyCpNMeMmmWAy3qQlny5YOHz8waBD+Pn3w9+pF7sEH4yvIx9+3L5bfT2jMGOxgsAvOSkREMoWSUiJtcF2H4mAZxaG+zUkpAC/xYu0iKRVNektX+wNR7v7KAd0QaXpsjieYXTuK9VN/D0BESSnpQTbWRhnax/uWf3jZMA4cOa31dBERkX2IG49j4nFIJomvWoVJJklu2kSyshK3rp7Ehg1gDG59PYn162GbBF7T4sXgurs4+s7lHHgg/t69vWqmcAg7HCEwcACWz+dNp8svwM6J4C8p6cxTFRGRLKOklEgbXMchaIdT38xaGGjuKbWrKT6x5qSUbXd8ANiTvFvXxHqz9dvPw0rU4Fz2fY5rWLb8Nr4y5nn65Hi9pEb366+ElEgPkMk9pYwxJNatg2SSRPlGnOpq3GgTifXriS5+n/qXXtr9QXbDzsnBzs/3kkyWRWDQICL774edk0tgQH8s28ZfVoavqAjL78fy6zJBRES6nn7biLTBdRwsy8bgJZcsw9ak1C4qpeJJb9qfbWXy8Blizd+67l/7AQ+b+RQe+Zs0RySya8s213P+PU9z9fTf0rzCPACRyM5X0hQR2VMmkcCNxTCxmFfZFIuRWLfO29bURHztWhLr19P01kKM42BisXYf24pECPTpAwG/V7EUySHQ10smAfj79MFXXNzqOaGRIwkOHtyZpygiItIplJQSaYPrOtjYrSqlrObpe+2rlMrQpJTrwlv3EK2zwD6APKeRQv0kkR5gwYpK3GQ1AA2JCG9Wnsv3j9mP0tLD0xuYiLTPq3M576Xn8W2M0jungU231aQ7IjCGxNp1uI2NuA0NJNatw7gOyY2boLk3ZUfY+fneynIDBmCFQ/iKigiU9cXOiVBy3nnYeXlYgQCWpsyLiEiG0KWkSBuM47ZZKbWrnlLx5kFoxial1syHpy8n1vdEGHMAYTcOkeLdP08kjYxxiTYuYXTxpwCUFvTn+uMu17Q9kR7CbWzEd8XlnNP8xQ/AlkXz0hhR+9n5+fhLS7FzcggMHAi2jb+kBH/vXljBEPlHH4UVCOArLcUOh9MdroiISLdSUkqkDa7jYFu+VFJqxdDPMLh2GrC7SikHsPFlalKqYTMATTl9AAiVDIUDT01jQCK7Vh9LsvD9Wxjk/p6zxnnbQsFiJaREehA3FsNqTkj9a9ghFEeinDJ1XJqj8lihoFfZFAjg790bf2kpVjBEcOgQsCyvskk/b0RERHZKSSmRNriug4WFY7ykVDKQi9+EAOg1cOdNvTc2bKSyqRYoytxKqYS3YlksfwAA4b4TIL9vOiMS2aWv3b+A/fIWML0f1MTyCQWLmTDw7HSHJSJ76M7Jn2Ni7wq+efl56Q5FRERE9pImpIu0wauU2jp9Dyw+LXmc0oOrmXL0jo2R737vbo75+zE8vfwZgIytlPow6vJQ2Qm8FR4KQFh9LWQf9/HGOiKBRgDerjqTMZP+Td+yk9MclYh0iMnM36kiIiLZTpVSIm1wHYe1+bWsT6ygT6MfsGkKbiGYt/P9F29eDICPIAB9ckq7KdLuk3ANn20cTe3YH6W25fqVlJJ9VzLZiOtUkdeclPr+sVPp3buND7GIiIiIiHQrJaVE2uA6Dp+WbiJQngD8WNjkuz7sNiqDVq3vQ/3HP8NHDgADMnBKW0P1emqbf2wcnVxDXv9JnNM/85Jv0vMlHZdnFr1CqOa73HL41qXW/f6dT70VkR7EskAtmkRERDKCShxE2rDqiX8wY/5mRq/1NW+xmFFfgM/n2+n+6zf2xTi5JB1vpDx5YGE3RdpNNn9M7PezAPCZJH9NvsbvJwxlZI5WCpJ9z/MfbuQf85/GZmtCKhIZTH7+hDRGJSJ7TNP3REREMpIqpUR2wrgu8996nWRewdaNVoDc0mIm7b//Tp/jNCejTj/Iz6VHzqJfYaQ7Qu0+mz8kank/MkJuEiZ8Ps0BibRtTWUTecEGAJY3HEuvgT/l6P0HpjkqEeksKpQSERHJDEpKiWynYvVKXrj3TpKuA0Df6no29TsAOzCEKfsV03/gzi9sHdcbIvcu8GdeQgogGSNqe6sPhsO5MHhSmgMS2bma2ncpjc/h0P6fAnDU+FGMGKGElIiIiIjIvkZJKZHtLH19Lms/XJK6P3nNJv43+gCsRADL3/Z3sy1JqVBg59P7erxklJjtNXEPacU92Uf976NNrF1+K/1CC6A5N5yTMyy9QYnI3tP0PRERkYykK0uR7SQTcQbnjkvdtwzYxks42YFQm89zm5NSEX+gawNMl8S2SSlNnJB905X/WExV/UYAXlh9GDXhOZSVnZLmqESks1mWklQiIiKZQEkpke0Yx2Fo3tZmyJYxuM1FhfaQGW0+z3W9j1M4kHkFiNWJJH+IlfBg35MACKtSSvZBjhMlYn1KUagGgP1HnciJB56GbWfeZ1Ik6zRXSrnqJiUiIpJRNFIX2Y7jJIGtFVEWkDQhgoAVytlhf2MMDYmGVFIqEsi8Sqk/rN3Mzc5I6DcSgEJ/hk5RlB5t4Ttf4SfTF6buHzdpDOFMnU4rIiIiIpIBVO4gsh0n4WA1fxNrGYNjk7pv72Ta2sUvXczMh2aSzNTpe8tfZvPSFwCYXLeUryQ/4eoR/dMclMhWKyoa+L+nP6S65n0AqmMFFBcfQn7euN08U0R6mubZ9KnfyyIiItKzKSklsh03maSlU4VlwLXBMt5HxfbtOAh+ddUHxCqOwjheFdWgwn7dFWr3eP5qYtVrADh58//4VWQtUwtz0xyUyFa3Pvcx9879CJ8VA+D2xdcxdf8/YTf3QBORns+o0bmIiEhG0vQ9ke04zk4qpZqTUtZOKqXqyo8gXrNf6n5p7o5T/Hq0aC2xQu/iPjz+FJg6K80BiWzlunFy3Rc5doiXODXG4sYvzkxzVCIiIiIi0h5KSolsx00moblWymK76XvbVUoZY3CSYQCmDyvgc/sNYWBxhiWlkjGiLavuDZ4Oobw0ByTiqY8leffjRzim3++guUAxGCzhgKG90huYiHShlvl7qpwSERHJBEpKiWzHSSZTSSjHF+Gd/W/ANs2r721XKZV0k4DXSPnzU/ty5oGDuzXWbpGMEmtOSoV9mvEr+44v/X4ew8Jv8PmRsLGxF0PKpjJyyCnpDktEusIOOSj1lBIREckESkqJbMd1nNTY11g+EqFiAPxhi3Bu6ybmCTcBxktKhTKtwXmLZHRrpdROpi+KpIMxhqXldUwYGQWgyjmYL027BZ/+jYqIiIiI9BgqexDZjpNM8nJhy7LyNkVb3uTDgU8z5Yt5+AKtPzIJN4FpTkqFMywp1eA4XPzhas4cczVL8kYCELb1I0P2DeUV73BAnwUMLvB6SZ00ZZQSUiJZwFjNPR93LJ0SERGRHkiVUiLbiW2p4KnhCzjp476AjT9ZDb4owbBvh32TbhKam6CH/Zn1cXq5so6HyyuhZHpq24BQZiXepOdpijs88dZb9G46i29O3npR6g8UpS8oEekG2yehlIQWERHJBCp7ENlO0+ZyaF562rIsIq5LaawUeydVQt70PS8ZFfBn0Mdp9XzqnrsegHH1y/jN0v/jsYkDmJifYU3cpcd57O21/OnV17AsQzQZYlnNOMr6fIY+vY9Ld2gi0o1UKSUiIpIZMqu0Q2QvrPvoQxa/+F8S8SY+N88lAYCNHxcLaxdJKW+7P5Omtr33N6J1FdAPhkbX88WmJVBamu6oRNhQ00RuoAGAJjOCsRPuZeLo3mmOSkS6y9ZUlCqlREREMoGSUiLN5j54P+uWLqFPfRN5sRyW9wGwMbYLgH8n0/OSbjLVUyrgy6ABcryRqB0CIDxkJnzmbMikpJv0SHV1Sxjn+zoTJlYBMLrfACYrISWSHYwqo0RERDKRklIizeLRJgA2FeazqWWj5ScwMof999+fESNGpPZdV7+OJ5c9yabGTWCGARDwZVDSJhkl6ssDIFzQByLFaQ5Ispkxhj/NW4VT+zBDgqlPJ4WF+6cxKhFJpwz6GkhERCSrZdBVtMjecZNJioN9AciJJcBfgj98MGVD+vPZz36WUCiU2vfWhbdy+6LbeeTjRwCvUsqfSZVSyShROwhARBVSkmZL1tdy9b+W8NGG9QC8vPZgosWPMmTIt9IcmYh0t5bV95SVEhERyQy62hRpZlzoFRoAQL/qeny5k/EFh2MPmb7DvlXRapxoGWPCnyFALpA5lVIrGmNckn8cT/Y6AoCwklKSZhuqtjC8cAWDC7YAMGnIBI6ZNCXNUYlIt9L0PRERkYyk6XsiLRyDaW6hahmDaa6Asgr77bDrho1lNK74PG9tsy2YIUmpe9Zt5qG8aan7ZSH9mJD02VQbJbHpfH4yY21q28GjhhHy+9IYlYiIiIiIdIbMuIoW6QRuwsHgNTW3ACzvotfeybS8+sYcACJBGNE7l1Om9GdwSU53hdp1Vs+nZuUbABxfMZdbi2s5p3+vNAcl2eqZ98s5+BfPEMJLSDU6fSgs2J/S0sPTHJmIdDtVSomIiGQklUCINHMTLq5pTkptUynl20lSyvF2Y+boAPeefUR3hdj1nrqMptLTofcIZlW9xZl9DoUMqQCTnmfRmmpy/N4CBK6xyBnwDw4Yv2PlooiIiIiI9ExKSom0cF2M5WWbqorH4bfKALB3kpRJOt7fQX+GJWyaqlMNzsOTvwj99ktvPJK1XDeBP/EG0/suBiAYyOdwJaREpJn6nIuIiGQGJaVEWhhw2SYpRQkAwZwdPyaO6w2HA74M62uTjBK1vVUGI8MOBkvDful+1Y1x3v/4fvbP+yX7j/W2BQJFaY1JRNKsefqeVt/LQB8+CWve2PljiUaoXg2uA4kmqF4FbnLn+x59Fex/dtfFKSIiXUJJKZEWrsH4muflYdNkvUfvESMYOLZ4x12bdwtl2tQ2J06TLwxA2NaIX7qfMYaTfvMqh/Z5g+OGQkVTCUX5Qxg+7CvpDk1E0mTBggVE16xBHQ57iKYqcJLQsBnqyyEZ9xJLTgxidVC9BiqXwbqFbSeY9kSiqfOOJSIi3UZJKZEWBkxzTyksmzrf6wwfPhjfThJPLT2lMqlS6tWqOh4f+h1WRAYAELYzLOEmPUJ9LMm66iZyBzYCsKzhOL51+FWU5oXSHJmIpMsbb7xB46pVnAyY5hIpFfJ2M9eBik+8JFLdBmishGQTVK0CNwF15dC4BTZ/BLXrOn78YD4ccN7OH8vpBfl9d7y9vXxN8RYR6YmUlBJpYUxq+h7YuJaL3UZipmX6XiYtS//TT9axtO+Jqft9QoE0RiPZavmK3/Lj6U/SN3czAOceOlkJKZEsN2HCBKL5+fDvJ1Pb/D4NYTvdpg+9hNPGD2DjEjAO1K73Kp82fQAtX9y1l+WDokEQzINQgXcbC/LLvORSKB/GnAC2H3JKlWkUEclS+o0uAhjXxcZKrb7XkpTytVEJ5WZgUqo24ZXQf3XdP5h+5HcYnxtOc0SSbSrq6qjYcAcjirZuy80ZkbZ4RGTfcOSRRxJfu45lc36xdaPyF+1XVw4NFRCv96bRJaNehZMTg3XvwJZPvcfi9bs/VrgIgrlQNBgCEe9+4QAvsVQ0GAK53v2hh3b1WYmISIZQUkqy2rqPPuSDl1/AdR3WFTXgxLdQ0AQWFq5tWlVKGWN47JPHWF23mqTjNVwNZsI3tckYrHiFaKIY8HPu+icY0/dn+sZSutX1T37Ao2++y61HgGssHl32XW464xjy8yelOzQR2YeYVJ/zLPsdFauDeCPUb/R6NRkD1Ssh3gDRWqhZ6yWbqld5PZxidVCzBjAdex1/GEpHeYmn0bMhkNOcbApD0RAo1RcFIiLSuTLgilpkz738l3vY8PFS707BBkqqikj6ImD58Fk2o0ePTu37cdXHXDvvWgBc463ukhvMgGlFL/8K5t5E7JD/gN9PGNf7xlOkG732aQURfxSAaDLEyMEnUlAwNs1Rici+o4PJlX2Z2eZcGjZ7iabV86Fqpde7qWql16+pqdrrz+Q60FS5d68ZKQZfEPLKILe3l3QqHgJYkNcHRhzlPV4yAtRTUkREupGuPCWrxRu9ZsqjRo6l6Nn1LO1nUxcBsDj9gNMYNWpUat+aWA2xTbNx6ydjJb0V+YrC+WmIupNVrQQg6vMSbKGDL1CVlHSrxsYVTCl6nGDxFgCK84r5wSFKSIlI23rMb6matbB5KTgJb+pc1Sp48/d7vuqcHfAql4I54I94t30BKOgPkRIIF0DhQMDy/m5JRoULOvW0REREOouSUpLVXMcBYPXqFXwyvP82j/gYeMDMVvsm3ATxLbOArX2khvXK7YYou1iiiSQ+HMs7r9CMb6Q5IMkmlz3yLmMCV3Lc4I9S24JBLfwuIm2xuND3OLOrFsOfHkl3MDvnJJqrnaLeinS7Ey7yps219GIK5HhT5WwfFA6CcOE2ySYREZHMoqSUZDXX8b6pjMVjAOQ1xWgqGIkdGIgv2Hr1uVgyTktC6t7zDmBoaS7De+d1a7xdItFAzA6m7oZUti/dpKYxwWNvr+X/DvGmpSyp3J9jJ06gf7/PpTcwEdn3NE95szBcHngUEsDypemNqSP6TvZWoWupbNr/bCgd6d0OF6Y7OhERkbRRUkqymuM4DMubxIr6xQAc9vFaXj7yElwTwtpuZb3GRCJ1e/qwUvJCPf/jUx5L8FDuTKqHjk9tC9k9ZlKE9HA1Td5nKjfYAMAZR99An2JN2xORtlnNvaUarAi5n/9tmqPZhVCeV+1k2VAyHPzB3T9HREQkC3X6VfUrr7zCjTfeyMKFC9mwYQOPP/44n/vc51KPn3feeTzwwAOtnjN79myeeeaZ1P3Kykouuugi/v3vf2PbNqeddhq33XYbeXlbq1Lee+89LrjgAhYsWEDv3r256KKL+MEPftDquI8++ig/+9nPWLlyJaNGjeKXv/wlJ554YmefsvRgbjJJrr8odd+xwBivUsgOt56aF90mKRX0ZUY10W9WbeTekuOhxLtf4LfxqZ+UdIPq+g18uuRM7jy6nKDP+2wV5pSmOSoR2WfVlQMQNl5lc6WvmNzJp6czIhEREekEnX5l3dDQwJQpU7jjjjva3Of4449nw4YNqT8PPfRQq8fPOusslixZwnP/z959h0lRZQ8f/1Z1nhxhAsOQcxKQICIiIKAiuhhR1F1MvzXruqhrDmtCXdMadk37rqirq+iaEUVQEZEgIpIzM4TJqWPVff/omYYhgzNTPT3n8zwDU7erq0433fTtU+feO2sWH374IXPnzuXyyy+P3F5RUcHJJ59Mfn4+ixYt4tFHH+Xuu+/mxRdfjOzz3Xffcf755zN16lSWLFnCGWecwRlnnMHy5csb+iGLZsw0jMhsqZpSKB1Uba5W32tlPV9o96SkDlsMJG4+/jPFS8LzcQwtW8KlSUGe69HO2phEi/DhsgIu/+fLqNCWSEIqLq4jTmeaxZEJIaJW4TJg9wTny51SVSmEEELEggavlBo/fjzjx48/6D4ul4usrKz93vbrr7/y6aefsnDhQgYOHAjA008/zSmnnML06dPJycnh9ddfJxAI8PLLL+N0OunZsydLly7l8ccfjySvnnzyScaNG8fNN98MwH333cesWbN45plneP755xvwEYvmzDRC6Pa6Lq7Gtpzh1OVq9b0ST75gCLCjayZaLFQTrXgff/7VAEwqnc+FYydCnKzOIxrft2uL8djDQ/Z+Ke6KlnwLVw0aiqbZDnFPIURLZ6DT3/c8PbJMDt7bFEIIIURzYMkYpDlz5tCqVSu6du3K//3f/1FcvHtlkvnz55OSkhJJSAGMHj0aXddZsGBBZJ8TTjgBp3P3+PyxY8eyatUqSktLI/uMHj263nnHjh3L/PnzG/OhiWbGCBlQm2BSmoP1Hc8L36CBzV7/7eELhSs6dN1s0hgbTciHTw9Xg7nG3g9xUqUiGp9h1OA0FpOftAWAk3r05JqTT0DXHYe4pxCiZQvPJYUGJcgFFCGEECJWNHlSaty4cfzrX/9i9uzZPPzww3z99deMHz8ewzAA2L59O61atap3H7vdTlpaGtu3b4/s07p163r71G0fap+62/fH7/dTUVFR70fEtrrV98I0bKFqqj3bGTghD6e7fiGhPxR+jeq6asIIG1HIj6921T23QyZgFY1v4cYSPp57GSek38uINt8B4HKmWhyVEC3LQw89hKZpXH/99ZE2n8/HVVddRXp6OgkJCUyaNIkdO3ZYF+T+xMhHrxBCCCHqa/Llw84777zI771796ZPnz507NiROXPmMGrUqKYOp54HH3yQe+65x9IYRNNRSqFMEy0yqZSOx1vIhvx19Dzh9Mh+M9fO5Nmlz1JSHgdcji0WklJK1a+UkhX3RCOr9oe44J8LuHfoauI8sL06k+zUbLKyzrA6NCFajIULF/LCCy/Qp0+feu033HADH330EW+//TbJyclcffXV/O53v+Pbb7+1KNKD0fb4U7QEQSNIYXVhvTaf4WNb5TYMZRzy/p1SOtEuuV0jRSeEEOK3snxN+w4dOpCRkcHatWsZNWoUWVlZ7Ny5s94+oVCIkpKSyDxUWVlZ+1zBq9s+1D4HmssK4NZbb+XGG2+MbFdUVJCXl3f0D05Etd1VUnVdWx2UiaY0dH13EeG7qz5k/YoJmP5MAFz2GJj3xggACn9tpZRHj43VBEX0Kq4KEAiZxNu9AOxy3M+5Q0/CHiMrWQoR7aqqqrjgggv4xz/+wf333x9pLy8v56WXXmLGjBmcdNJJALzyyit0796d77//niFDhlgVcn0qRobOt1CmMvGGvCil+Hrr11QGKqkOVlNYXYihDAqrCqkMVlLqK6XIW1Tvvt6Q9zed+8YBN/L75N//pmMIIYRoPJYnpbZu3UpxcTHZ2dkADB06lLKyMhYtWsSAAQMA+PLLLzFNk8GDB0f2+ctf/kIwGMThCM9DMmvWLLp27Upqampkn9mzZ9crT581axZDhw49YCwulwuXy3XA20XsWDb7U7b88jMA210lta0aYOB2uuvNV1ZanohR0zGy3S/3wInN5kApxY0rt7C8/z9YH9cGkEop0bhM00/Blif4fc9fiHOEv1z88aRjJCElRBO66qqrOPXUUxk9enS9pNSiRYsIBoP15uHs1q0bbdu2Zf78+QdMSvn9fvx+f2RbpjxomXZU72BZ0TJMZbKtahvekJddNbso8ZWglGJb9TZqgjWU+Ep+c3Ip3hFfbzvFlULruNYH2Hu3VnGtDrmPEEII6zR4Uqqqqoq1a9dGtjds2MDSpUtJS0sjLS2Ne+65h0mTJpGVlcW6dev485//TKdOnRg7diwA3bt3Z9y4cVx22WU8//zzBINBrr76as477zxycnIAmDx5Mvfccw9Tp05l2rRpLF++nCeffJInnngict7rrruOESNG8Nhjj3Hqqafy5ptv8uOPP/Liiy829EMWzYy/poZZ/3gWlMLQFP9qN5ux2zOoq5SaeslU7Pbdb42AER6u1zpZ48ULj6N7dvOeYHXDjo28sasKErsAYAPyPDKnlGgcW0pq+H7Fu6QFXub43HCbzRaP3d6830dCNCdvvvkmixcvZuHChfvctn37dpxOJykpKfXaDzUPZ9NPeaD2+BMZv9fIlFLUhGpQSrGlcgvekJfFOxezrWpbOAFVGU5ALStadlTH757WnTaJbcjwZJDmTsNpc5KTkIPb5iYnIadeAkpDIys+C12TCxlCCBGLGjwp9eOPPzJy5MjIdt1wuIsvvpjnnnuOZcuW8dprr1FWVkZOTg4nn3wy9913X70Kpddff52rr76aUaNGoes6kyZN4qmnnorcnpyczOeff85VV13FgAEDyMjI4M477+Tyyy+P7HPccccxY8YMbr/9dm677TY6d+7MzJkz6dWrV0M/ZNHMhAL+8JxKQI/ho/k0+G8ANE3HoUzysuoP2TRqk1LxLp2+eSlNGmuD2zCXmndugIEvkRos5++rHyH/D++S7ZKklGgc1765hCRzBRf1gG1V2Wz1DeePJ0+S1faEaCJbtmzhuuuuY9asWbjd7gY7blNPeaBiYDrHaFDuL6fMX0bIDLG1cit+w0+Zv4ydNTtZUbyCDeUbUCjK/eVUBasO+7j9MvsR54gjNyEXl81Fdnw2HocHt80daWub1BaH7sCm23DIZ4AQQohaDZ6UOvHEE1EH6Tl89tlnhzxGWloaM2bMOOg+ffr0Yd68eQfd5+yzz+bss88+5PlEy2Katavo2eykLl6N1qvucqvG/rpIQTP8erbbYuCy7M6V+GzhBHCi6Wdk14EQJ0NWRePZUuLl2IwaAAxbN0YfezMpKWkWRyVEy7Fo0SJ27txJ//79I22GYTB37lyeeeYZPvvsMwKBAGVlZfWqpQ41D2eTT3mwV98yBj6RG4Q35MUwDbZVbaMqWEXACFBQVYDP8DF361yqAlUEzADbKrfhN/wEzMARn8Ou28mOz8am2WgV14pBWYNw28PJJptmo0d6D1rHH3oYnRBCCLE/ls8pJURTU0Z4slTdZiNQU4UW6efq6PtJPBm1SSlHLEwGHvLhq53c3J3aFgafbHFAIpYVFX3NpA7/IDdhGwDDurSnS3tJSAnRlEaNGsXPP/9cr+33v/893bp1Y9q0aeTl5eFwOJg9ezaTJk0CYNWqVWzevPmg83BapgVko6oCVSwoXEDQDLK1aivekBd/yE9BdQFBM8iuml2U+krxG36KfcVHfHyXzYVTd+JxeMhNyEXXdHITcol3xJPsSmZ47nB0TScvMQ+33Y1Ns2HX5SuDEEKIxiGfMKLFMWpX3dNtOqGAQXpkblYNbT+d3aBRVykVG0kprx6+su2OhcovEZVqAiGmf7aaPq7bGZRVEGl3u3MsjEqIlikxMXGfqQvi4+NJT0+PtE+dOpUbb7yRtLQ0kpKSuOaaaxg6dGj0rLwH+xm/1zw/w2qCNeFkU+VWfIYPb8hLQVUBxd5i/rXiXwTNIH7Df+gD7cWu2Wkd3xqH7iDBkUB2QriyqV1yO3qm9yTeER8ZRpfuSW+ERyaEEEIcHUlKiRbHNMLD91q58sneNo8/fqT4sQOg6ejavkNPawurcMRIUspXm5TyxELll4hKs1bs4OVvN/DUyNLw9uZxXHPyiWS1Ps3iyIQQ+/PEE09E5vD0+/2MHTuWv//971aHdVDRlJKqCdawo2YHJb4SFhQuIGSGKPGVUOwtRqEoqC6gKlBFTaiGcn/5YR+3T2YfEp2JtElog67pJLuSyYrLwqbbyInPwWP3kO5JJ8OTga7pUs0khBCiWZJPL9HiKMPAptnpkzCcL5J/IZBmq71Fx5mfv8/+obrhe808KbWy2suLqhdr27QDwC1JKdFIiiq9OPUAcXYfAOePvIncnA4WRyWEqDNnzpx62263m2effZZnn33WmoAOQ90loxpdkdD1dpZoigH/7zFLY6pzNPM0OXQHOQk5aGikudPIjMvEptkY224s3dO6k+xKJs4R1wjRCiGEENFFklKixTFNE7vmoDywi4DNFmnX7W3xdO+27/7hwiqce+zbHD2zaSfv2DpAcni7lUve/qLhVVWvoU3gLJ4bvXvVpt55bSyMSAgRCyqD3sjvmh5CAYG6D+goYNfseBwenLqTYbnDSHImkZOQQ7wjHofuIDchF6fNSVZ8FsnOZHRNx6Y3736FEEII0RDkW6locUzDQNNsmCo8Li+12suaLv1oUzMcXd89IKAmGC6zr6uUcjbnSqmtiygvqQESOX3nlwzKyuX0Dr+zOioRYx6ftZp1G/8fv+u4OyGVlno8eu3k+kII0RCq1kxjaNsqHr/gDKtDAUDXdDI9mWj7m5hSCCGEEAclSSnR4piGga7pqNrBAEpz4SA86Wfd6ns7qndw+szTqQnVYJjDAXDYm2lSqnIHvDQaf+9HIXUgY4u/ZVK7seByWB2ZiDEzFmxmUGZ45YD5BQM5tu9f6ddLhu0JIX67yGc2oEIpONHJis+yNighhBBC/GaSlBItjmkaaOiYKlz2X5HUgdY14RWG6iql1patpbI6AaOmJ8rXHoB4p8eagH+rygJQJj7dDYC7zUDoMdHioESs8fuLaJ+wkPZJmwE4tV9PjunV0eKohBAxY5/V94QQQggRCyQpJVocFamUql1WT9MJ6JU4HA469m8FgN8I4N10BcqIj9wv3tlM3y7B8GTTPkf4sbiGXQWJSVZGJGLM4s2l7Fh/MVf2WRlpS03IsDAiIUSsqZ+S0pCRckIIIURsaKbjkYQ4eoZhoKNjRq66aqxo9Rq2bpvI6hCeBdwbCEQSUiO7ZjKhbw4XDmlrUcS/USg8OazP5gLArUtPXjScoio/Zz8/n5B/EwCbKtqSnj6S1q1PtzgyIURMUXVD7i2OQwghhBANqpmWfghx9MKVUjZ2aKW1LTaUbqDru3O03lAo8vtzFw7A7Wi+K+QU+AJsTO5LhS2cZPPokosWDaegzItpGrjt4Yq8xJy/0a9vX4ujEkLEmkh1sxBCCCFiiiSlRIvir6nBW1WJhk6BVlzbqmHYTFJTUyP7+UJBIDwRuKMZr7pXHAgxdGcr/P2eirS5m/HjEdFFKYPSkq85oc0CdC1cxTBpYDeLoxJCxJovfpmOc/scMvdok4IpIYQQIjZIUkq0GCvmfsmnf/8bSplkuHLrzSnl8Dg588wzI/v6QiHAgaaZ2JrxcLetxVvxo2M3Q7Q3Suma04lu8W6rwxIxYENRNR8vfINurge5qEe4zWaLR9dd1gYmhIg5t+zqzRjfNi5iY6RN/q8RQgghYoOUTIgWY9vKFSgVTkTpuj3yu4aO7tRwOByRff3BYHg/rRmv9rN2Nv43LgAgz7edeaWv8c9e7bHJ7LCiATw9ew3LNy0HoMSXzE5/Pzp3us3iqIQQsSjTnYJbqz98z+PJtygaIYQQQjQkSUqJFsM0DQAGHXcia3OrWJ60vPYWHWWv/1bw1c4ppevNOCm1Yzl+3QmAS1PQ+xyLAxKxZFeVn3hHTXjDPYoThv6b3NzzrA1KCBGTPhkymCvysoDdE53revOd61EIIYQQu8nwPdFimEY4KRVcu5bCxJVkF9e+/DWd/MT0evv6Q+F9bc05KRXy46tLSrXqAj26WhyQiBXr1j/OpDZv4NCqABjYoR25KR6LoxJCxDLVjD+OhRBCCHFgkpQSLYZpGCQ5Msiuac8Ns75mVVYa61oD6FzdYTwA3237jjdWvsGKwkrg7OZdKRX0RiqlZMU90RAqfUH+OW8DPfRXSKyrkgISE3pYGJUQoiWSgehCCCFEbJBvqqLFME2Tjol98fhNFOC313VpdRye8OTfzy97njlb51BYtRMAZ3NeqS7k2z18T5JSogF88FMBT3+5ErsWTkg9+uPVtOv2CRkZIy2OTAgR6+oWJ2nGl4qEEEIIsR9SKSVaDDMUwqbFscL4iV/7dtzjFh09LReAKp+Jv2gE7T1DWQWkepIsifW3qgwZzFGtmZ8cB4CrGa8gKKLHrooSsuN3RLb/ePIkOua0tTAiIYQQQgghRHMmSSnRYpimgabpbDX9e7Tq6PYc9KxuABQWdCKw61hW1d6a7HE2eZwN4d51Bfw/94mQE96Ob84VXyIqlJZ+T0/9InofVzvfmi2e0/tJQkoI0URqJ5Wqu8SiyUqyQgghREyQpJRoMZRhoKMTqh216kg4A92eR0pWIvba1fcCQQcAHVrZGdG5DRP75VoW71FbOoMt2z3gak/X6vXkJaZyWZvOVkclmrFXvt1A4db3GJxpYCoNTbOTlTXR6rCEEC1I3bA9JbkoIYQQIqZI+YRoMUzTRNN0VG3XVg+VsDX7W06/sTda7fA2wwz/fWyHOO6a0JN+eSlWhXv0PrkFn7cCgD9tfJV/Z1bSPzne4qBEc/boZ6soqy4G4LONJ6GyvqZb1/ssjkoI0aLI8ntCCCFETJJKKdFimIaBho5Zd71VBTDsXhzO3W8DszYp5bDZrAjxt1MK/BV4dRcA7mHXQtcTrY1JNGvFZb8wqePrdEtbC8DE/t05vnsri6MSQrQ0aq+klBRMCSGEELFBklKixTANA13TIpVSSgNd6eh7rExnhBf3wWVvpkkpIwAofLbwXFiedoPBJm9zcXSq/SFWrvkbJ+Z9F2nrnNNJ5nIRQlhG6qWEEEKI2CLD90SLYRohFFqkUkppJprSsO1RFVVXKdVsk1JBLwC+ukopXd7i4uh8u7aIfvd+zs+bNwDw487BdO/2IK0yx1ocmRCiRZLhe0IIIURMkhIK0WKYhklIV5FKKVB069INu33f4Xsue/N8a+z0VrM1sTuVtvAcUm5dKlrE0flhQwlBQxHn8AFgiz+VnJxzLI5KCCFqycebEEIIEROa5zdvIY6CaRqg7a4cUprJOZPqf8k2Vfh2ZzMc8rbTH2Tgsl0E+j8fafPYpFJKHLlQqJLE0Jv8rtM2suLLAbh8RB+LoxJCCCQZJYQQQsSY5vfNW4gjoEyTzcuXUV1eSk1lOTM6fkGnwnCllKkp7Hr4LbC+fD3bq7djmuEkjtvRzN4agWo2LJpJQPXEbobICRTRO68r7T0uqyMTzczGomqWr3mJ9q7XaN9hd7vTmWFdUEKIFk8p0+oQhBBCCNEImtk3byGOzObly3jngdsBcIW8HL+xkO0JHUEDm6Zw6A5Wl65m0geTau/xBwA8dodFER+ln97At/AN6PMYXWo28uWGv8L4xVZHJZoZpRTnvDCfE7N/YWw72FDeluzMwfTvOAi3O9vq8IQQIkKTkikhhBAiJsjYHhHTKkuKAPAkJtEz5KD/ekXd2j35dheaprGlcgvKcGEPdMRFGgCJrjirQj46Vbvw6eEV99yeZDjtCYsDEs1RTcDA599FqqsMAL9tOMf3v4/s7N9ZG5gQQtRWSsl050IIIURskUopEdNMIwRATtfutEksJLhqU2Q+iriMcOLJHwpQvf4GVCglcj+HrZldgQ358NatuJfeHjp0sjgg0RytXvsoT5z4z8j2GQO6kxzXzKoGhRAtgtbMPqaFEEIIsX9SKSVimmmEr6xqaISWfV7vCmvdqnuVvlAkIZWT7GZAfiqD2qc1caS/UciPry4pJSvuiSNUXhPkxEe/4odVswEwlI7LlUVq6lCLIxNCiDCpkBJCCCFik1RKiZhWVymV6W1NSUJPtnUfDHwHgD2vBwD+UAgID3379paT0Jrh5dddBux0pgOy4p44cj9tLWNjcQ2erl4Afii/k9tHTbE4KiGE2IOqTUs1v49oIYQQQhyEJKVETDNDIZy6m7Y13Zid5qLS2QrKwkmp+Lz2wO6klKaZzTIh9fD6Qp6IPw9qV0pz65KUEkem0hdO3ia7/ABcM7qfhdEIIcS+9q6Uan6f1kIIIYTYH0lKiZhmmiZ23YlhhqgMriQYWh65rcfwNgD4QuEv5LrePAcH/FBeDYCuDOI0ODkjyeKIRHNSUbEMe/G1PHZCOQmOCgAc9kSLoxJCiL2pPf4UQgghRKyQpJSIaWYohI5OoXc9/uCy3TfY7Ljc4QmcAyEj3KSbVoT42/z4Cv7iTHC24eVf7mDccedAqwFWRyWaiVe+3UDFzlfolbyFFHe4zeFIx+XKtjYwIYTYi1KSjhJCCCFikYzzETHNMAw0zUbQDACg6SlUJ4Cn72C02mFu/uZaKaUUfDINnz88D5DLDEBSrsVBiebCFzS478MVFFcWATB783BWhZ7huKGzsdlcFkcnhBAH1wxH2wshhBBiP6RSSsQ00wiho1GqhYclabY0apJKcKW3iuzjr50MvdnND26GwPDj18OTtLtOug06nmhtTKLZKKrYRaeUNWTF7QJgePcBjDhmTGRVSiGEiC4y0bkQQggRi+Tbh4hppmGgazZ2UV7bomNoJpmtMlFKUeIrocJXA4CtuVVKhXwA+GqTUu62g0EmOReHYf66nZRvmsi0Y4sibcfk5xPnlI8EIUSUamYf0UIIIYQ4PPINVsQ00zDQNB2DuvmidDTdwWmnncYDCx7gxP+cyKcbvgCaYaVUKLxSWl2llLvZPQBhheXbyrn01Tk4CCekinw5pKYOJT19uMWRCSHEwdTPSmlSMiWEEELEBLksLmJaePiejqpLSmk6nhQXuq7zQ8FPBMv6Y/jCq/AlueIsjPTIlfpq2BHXjhpbeIZqly4ddHFoG4urSXCEV2wMmB5S8t+mf88si6MSQoiDU3v9LYQQQojYIEkpEZM2LF3Eym+/pnDNShwKNF/tnFLYwBF+2e8o6IGvcFDkPhnxSZbEejQKfAGO+7kE37GvRdpcMnRPHEIoVIVWchPX9V8PQFJcBsMkISWEaA4kGyWEEELEJElKiZj01Wv/oLRgK7qpGL5mMwVJiVRmpwE6mj1cUeQPhCuM8tLt9GvTivMH5VkY8ZFZU+PHp8CmQqSEqumflUeOy2F1WCKKfbq8kC+XvsvYnB9w1xYFJiR0sTYoIYQ4TEqZ9bZl9T0hhBAiNkhSSsSkoM8LQN/ufYj/eT1mSm3vVdPJPiZcHWUY4aaR3RO597RjrAjz6BStwbdsDmjH0rdyFR+vfxBOXm51VCLKPf3lWpLUTsiBDeVtcaZezYk9T7E6LCGEEEIIIUQLJkkpEZPM2oxTfnIGASBgrxvapvP7Y68I76PCiSqX3WZBhL/BZ7fhLQtBj2NxmwHwpFgdkWgGymqCZCWFk7Udsjpz/LFnYpPJ8YUQzYUM3xNCCCFikiSlREwyTRMNDUfVTgKAoe9OSmkOR+0+4aSU09bM3gbVu/Dq4XmA3IlZcOzfrI1HRL31G55iSpePSXGWAJCdmonTLgkpIURzstfqezJ8TwghhIgJzezbuBCHRxkGw1qdSWLR+1QDZl3vVbOhO8KVUXVJKbejmb0Ngl58DhcAnqxu0Ka9xQGJaLWpuJoX5ixlVOqTdE7Z3R4X186qkIQQ4jdRkowSQgghYopcKhcxyTQMkp2tmFNh8nmfvuxISau9RUevTVCZZvjl77Q1n+F7plL86Mjhl/hOAHhkxT1xEP+av4nZv6wGwG84eeWXP9Cz1z/Ia3OxxZEJIcSRUfsM35PslBBCCBELmlmJiBCHxzQNAoaX9T4FWlWk3RWfhqZrKKUic0o1p0qpNwpLuKnzXZHtOJkTSByAUgr8CxiSvRAAmy2Nm8+4iqxWKdYGJoQQQgghhBC1ms+3cSGOgGkYqMj8E3YS7ENYk7edi889EYCQGQIVrpBy2x3WBHmkTJMNFeUApAdK6ZCSwXlZaYe4k2iJTFPx6+a5HJd6P6SG29KSWtM3L8XSuIQQ4mgpZVodghBCCCEagSSlRMxRSqFMk8ikqJoNt+mkJL0CWxw88P0DbK/eDqorAC57M3gbKAUvj8XvGgRtzuaC7R9x23F/gsR4qyMTUei6t5ZSumsWv+8F5f5EkpL60qH9VKvDEkKIBiMTnQshhBCxoRl8GxfiyIQTUnuyASY6Or+W/sqbq94M70d3ADwOZ9MGeDRCPtj6A/7OxwPgSsiE+FYWByWi1ZLNpfRI8gKwraYXo0b8k+S4ZlIRKIQQ+xW+0CQTnQshhBCxRZJSIuaYhgGAn1Btiw4YaEojqIfwFpyD7uuEFkwEwGlvBhOdh3wA+PVwAs018BKQSc7Ffuzc9RnndniWdPdOAE7u3VkSUkKI5m+fic6FEEIIEQskKSVijmmGk1LB2qSUpumgQvTv15+Ay0GovH9kX12DDhnNYAhcyA/sTkq5ZYJzsR+bi2vYsGo6PdLXR9riPPkWRiSEEI1DCqaEEEKI2CDfbEXMMQ0DDQ1TM2pbdBQGvXr0wldbRaVpJjOvGsZ3t4wiP705JKVqK6VsHgBcunTHRX0vf7OBEx79iuLKXQD8d81pdOv+DLm551scmRBC/HZK1Q7fszgOIYQQQjQsqZQSMcc0DDRNx1R1SSkbCgObbiMQCldP6bqiXzNaiSwQ8FFjT6DKHk6guWTontjL0i1lAMQ5wnNJZWROIDd7tIURCSFEQ5J0lBBCCBGLJCklYo4yTXRsVGs14QYtPKeUXbPjD4UTVbrWfJaW3u4PMnKlj9JhH0XanLLskNiD17uNjq5XuLB7OQ49nHi98/TBFkclhBANpy4lVffpJx+DQgghRGyQpJSIKWsWfMfWlb+Qv2sb8ev+BR2yCQ/fM7HpNvxGXaWUtXEeiWWVNZTukUPLcNjpnxRnXUAiqrzxw2YKN99P37TZkBJus9kSsNmawbBUIYQ4QkqyUUIIIURMaUZfzYU4uOqyUj544kEWf/w+uSVVmJF+q4432U73tO74a4fv2fRmMgxg3uP4354KwODyZWxZ8X8sG9aTth6XxYGJaPHMl2sJBcPzSP20qyepra+gb58XwhP8CyFErFDNp8JZCCGEEIdPvrWImOGrrsKhORnU6lScgNedFr5B0xk4fCxxjjiCRrhT22ySUitm4lPh7JrH8OHIG4guV4nFHsq9QeId4aGqJx0zhf49/0xq6hCLoxJCiAa218e2JuvvCSGEEDFBhu+JmKEMg9y4TuR6OvNZl+F4bUEwdqBhw5aSDbB7Tqnmko4N+vDbnQC42w+HYy6zOCARLZQyWfbzVdw5aCHJrgoA8tJbWxyVEEIIIYQQQhy+5vLVXIhDMk0Tm+agoGYtNWxFGTvCN9jdJHWx8791/2Nz+dZwU3N55Yd8+GzhoXoul0dmdhUA7Kzw8X+vfUBR0eeke0qx6waa5iA+vrPVoQkhRKNQe5VKycehEEIIERukUkrEDDMUQtdshMwgAJotk52tymnfqQN/XXcni3YsIlTVBTgOm95MerMhP169tlKq2ZR3icb2xa87WVVQAG2hzJfEfzdexytTT8XlyrQ6NCGEEEIIIYQ4bJKUEjHDNA10bJgqPERP01Moyaihs8fDjupw1VS7pI78CmTEpVgX6GH6ubKGd3LO58fa6hdXc0mkiUZX5g0QVzuPVGpia/5+yWRcLqfFUQkhROOpq5NS8lEohBBCxBRJSomYYRoGuqZjqFBti47SFTabjdLitlRuvJSVphuAOEf0r153x5ptfJ99RmQ73SFvVwEbt75HJ+MOru/vAyA5Po2UOElICSFinFl/9T3JTQkhhBCxQb7lipgRTkrZWK1tCTdoNgxdw2azUVWeD6Y7cqV1YLs0y+I8LBWFlHirAI1JOz6nS/9JXNhGhma1dNe9uYQc9f8Y2NobaUtNGWRhREIIIYQQQghx9GSSGhEz6iql/Cr8hV1Dx9R0+vbti2mGX+pThmWw6PbR3DK+m5WhHtzOlfBED3zlhQD8Ydt7XNc2g3Sn5JBbuq9W7iTeHn59v73mbJLyP6NDh+utDUoIIZqEOvQuQgghhGh2JCklYkbdnFLUzikFOl27dadPnz4YZrjQPy3OSXpClA/d27USlBlZdc/deRS4ky0OSlgtEKhCUyUkOKsAuOfMkzm2YyeLoxJCiKaxd0pKk+X3hBBCiJggpRciZpiGibOqlMRQGRUAmk5cUhwAqjYp5WoO8zIFw5UwPns8AO7Rt1sZjYgCa7Z+z+Y1v+fxEYFIm8sliUohRMsj9VJCCCFEbGkG39CFODxGeRkZi2ZSlJVGRatkQMdeuyKZqcJFgS67zcIID1OoNimlhd+ebl0KGluyp2evYfnq/3BO190Jqbi4jiQmdLcwKiGEaGJm/XTU579sZ92uKouCEQ1JMxXOgEJT4PabaCY4QgpnsP6/uT20ez9XwETfY+77kE1jeU9PE0cuhBDNw2Pn9KVVotvqMA5IklIiZphF5WjKxLDVJXF07A4nhmmgVDgZ5bZF90teKcXnPg/bcs4gIEkpASzaXEq6sxqAr7eOREu+nntO6mVxVEIIYY26NEVBuY+Ccp+lsYj9c9T+I+WGdFJMDZuCZFPHBsQrjXhTwwYk1d7mbIC1FKs1k3lrin7zcYQQIhb5g+ahd7JQdH9DF+IwVS0oJG6OlxrAb69N4mg6qfFphFQI6pJSDod1QR6GH8qruTjYHTqHq2B0IM4mSamWyucrYET6A6Q6NwDw++H9aN9eElJCiJaoNtNRm78Y3jmD3/XPtS6cFsYMmPgLasBUGNUhTJ+BCpgYVUGA2jYTM2Cg/Ef35Udz6GgODXuSA9CwJdpBD6FCPpQZwvSXors1NLuOZtPQ4+yR10NKWjZPtO/aQI9WCCFiS1q80+oQDkqSUqLZ2752NeVfrSdZ+4kawIhUFmlM6DKBkBnaXSkVzXNKBb0UrvsOaEV6oJQhtkqGdz8OjySlWqT3l26jfNe/aZuwPNIWn9DZwoiEEMI6Sql69TQdMxM485g2lsUTi0JBAzOkqC73s211GUG/waafiwgFTXZsqDji4ymlSExzkZ5rB1WJK07hrynFHWdj16afCQW82B06aGCz63grK6gqLSFQETkAvqrKwzrXqKl/pN8xxx5yP1/IR8gMHfFjOVqaphHviG+y8zWqyu1QU7x7Wyko3wL+A/wbtR0CKW2bJjYhRLMWxd/QhTg8Hz8zne7GIBxGgEXdJ1Du2gVqFxoaS3YsodhXHKmUctmjuFLqu2fwr1gI3W6jT9VqXkrZAbmnWx2VsMCGomque3MpEztuIrcjLN3Zi1OPu43MjEFWhyaEEFFBFt87ONNUVBZ7USZUFHsJeA28lQFqKsLzE1YW+/B7QwT9BpUlPoygSXW5/5AzyaflxONJdJKY7gazhrgkO3anwldVhG7zs2P9cux2KNuxjV2bN+AvUxSt/+2PR7PpuBIScScnEjCDmKp+Ndb80oV8s2Q9lYFKCqoL6t1WFaiisLoQv+GnyNu0Q/xSXanMPW9u457ENHcni3zl4UTRniq2gbd0r7ZC8JaEF9cp2wTGHom6kA/KNoMR2OMOR7HEwFkvS1JKCHFYJCklmj1vZSV6nM4XlUVUOqsin5v2UJDLP78aw9sGZUwCwG2P4pd8xVb8eri00h2fDseMsTggYZXCsvBk92kePwCdcvvRre1gK0MSQghLKcIjtVrq6numYRIKmAQDBuW7vChTUVHkIxQwqC73460MUrajhp2bK1GmwjiK+UOUMgGFMsvRtRDJmWWEAqW44+2EAqVomkGw2kvJ5iJCfj+hgP+wj625HWhOO7bEOPA48Jl+jCQH5elQFQhX2igNAvE6ZaqSYl8xSoFPC1DlCXHIaad8P8KyI37I1vOWhZNG/spwIkjt8QoPVELZFlAmVBdB1fb6960pDlcveUv3SiA1Incy2PYYBmRzQWp+/bY68a2aJiYhRLMXxd/QhTg8pmGgaTo+M9w50rUEvG6NntsX4N16EUb17iFPTnsUD4UL+SNJKVfeQEhrZ208whLVvkoqt57Hi6M3YatdWqhffp7FUQkhhNViOx1VUeRl56ZwQqm8yIsRNPFXB6ks9WMaJpt/KTmq4zpcIZRRgCfJiRkqx+kygBABXwk2u6KqfAdKhVBGAH9Feb2kiK/80Mc3NYUCAg6TancIpcGONB/VbgO/02RbphdTUwQdB/n3c+21rQFxuzedmg2Xtnv1ZI9mJ8eRiL5Hpsqj22njSEJHI8seT5Kt/kFb2+NJsblJtbnJtMXRqMxQOMEUrJ2I/90rQBlQuilcmRTyhn83g41z/uS24E7ava3bwxVLjj1WJ9Qdu9s8KZCUQ73MnycVkvcaHmt3hZNSQgjRwCQpJZo90zTQ0FG1HdZEuvFzz814J2ViLsgAoE2qh66tE+nTJoo/TINe/Hq4w+CSFfdapAXri7nrnTe5eeCG8Cz3gKY5SU4+xtrAhBAiymgNsGJbU6gu91O+s4bq8gDbVpehDBNvVZDq8gCmYVJZ7CMYCM/ldCBKKSB8kUKZFbjiTGw2L5rmxRVnxwiWYXeYBP0VBL0l6I4A5aUlKNPAVxoellW16wjjdoWrk6o8IXak+QnZFJWeIEqDak+IgMPE6zIIHCDZZFeKrFCIbAWJhklWwEDbI+GVoBTZoRA2BTmhEPHm7ts0FDkhg3hl4lSKDCO6V436zZwJ4IiDpGyIS69/W0IWxKeDpkNyHrgS97hRCyeW3EmQ3hns0T2RsRBCHIgkpUSzpwwDXdNrO23hzoyu6VQm6ED4ytoLUwbQMyeKE1JQWykVjtGlN4/OtmhYCzaU4NSrANhSmUt81lOcOaATdnuCxZEJIYS1jIDJ6i7nUZ6QzJlVThJnL+ejeXOsDmu/TGWjIpBKyLRTFUw55P5KBTBDBWgqRJJjMygfDr0Kf8iHjp/iqsr6o7qOfM5xipL8GDZFlSeEoYPXZeBzGQRtJqYrnGzyuUIEnAaZZoh4zcCBIjdk0K0uYeRKxG5zkqN03MqGy3TQxtYalyuJfN2DfY9EoY6GvSVP/OXwQGo70HdXeGF3727zpEFSbvj3uDSrohRCiKggSSnR7BmGQVBXmLWVUgoTGzaCZjAywbkjylewW13t4xdnJ352tAbALZVSLY5pBrEFvqVP5i8A9Gnbjv7H9LM2KCGEiBKlxfEU5AwHoFMICGWw0ZdhbVCHoJRCmUWgQsRrW1BmNan2zYSMGuzUEFAhfIai2Lt7EZbDmYa7xhXC0BVVHoOQzcSwKSrjwm3VnnCiKWQ36WwPEK+glVPRPiGZeN1OrrsVujuZXFcKccn5pLtSceq1Xwec8eH5gTQ9nDDxpDTK8yKEEELsSZJSollTpglKscNRHRm+Bwq3w43X8KKaQVKqxjAZv2g11elnRdriojhe0fBqAiF+XvMG3Vz30a12+iinM/3gdxJCiBbEVOHPRbtvM0scO0hyFZMYX2ZtUHvQDBPdVzu3ZSCIFgxi8wXQaquM6qahLqt3r/rd8PK4ID6XQZXHwNBN/E6TareB0hS2nHgSEhNo5UkhyR1Pmj2O3q4UNDRauVNJSeuMx5VMXlpXNIcHm25D16QvIYQQIvpJUko0a6ZpAGBoCvZISg3qdzxfeD+Guk5sFA+HK/v+n1Qbg9CUyfFli0nM7sU5WVLK3ZKc+ex39Eicz2kdoMibRkJCd9rm/cHqsIQQImrUDV8L+X+is3dNeOMI50mySsBuEnCYVHlCBO0mQZuiKi6E0hRVboOgw0RLS6Br1/7YdBvjco4j2ZlMTkIOic5EPHYPya4on4JACCGEOEqSlBLNmmmEk1Jqj8kWlGaSkpBCoDoQ/cP3akrwffM3GDSDBKOGt5fdBEPnQdzeS9GIWBU0TFbtqGRAqheA9VXDuGjYgyQleQ5xTyGEaHkU4RXLqhJTyO4SXUvO2xLjsMW7QdNwpCagOR3Y4t04W6XW2y/NnUaGJ4MkZxJZCVkAOHTH/g4phBBCxDxJSolmzTQMskuryNnxERtb11ZDaQqXy0kgFKRuonOHLUorpQJV+PRwAsrtcMEF70B2H4uDEk1p49aZnNbhKzqnrAdg8tBe5KZIQkoIIepR9X8J5nTl8j/fYVk4QgghhGgYkpQSzZppGHQrLMIZ2gmtOwDgc5gkZ8QRWGNE9rNHa6VUyL87KeWKh87HWhyQaCrFVX5e+3o2fT03c2an3e0uZ6Z1QQkhRJTac/U5AKL0WpMQQgghjkyUflMX4vCYhoHdVJh7dE5XtFU8u+RZtlVuj7Q5ozUpFfTirUtKRfG8V6Lhvb1oK3N+XQ5AuT+RpcUn0q7d1WRmnmxxZEIIEY3qPiNrs1OafGYKIYQQsaDBv6nPnTuXCRMmkJOTg6ZpzJw5M3JbMBhk2rRp9O7dm/j4eHJycrjooosoKCiod4x27dqhaVq9n4ceeqjePsuWLWP48OG43W7y8vJ45JFH9onl7bffplu3brjdbnr37s3HH3/c0A9XWMw0DTSlUHt0Tn1OxaKdi/CFgpE2e5QO39vp87M2ri0AHj1KE2eiURRV+ol3VANgd3XmtOF/o2OHG7DZZOieEELsTQqlhBBCiNjU4N+Cq6ur6du3L88+++w+t9XU1LB48WLuuOMOFi9ezLvvvsuqVas4/fTT99n33nvvpbCwMPJzzTXXRG6rqKjg5JNPJj8/n0WLFvHoo49y99138+KLL0b2+e677zj//POZOnUqS5Ys4YwzzuCMM85g+fLlDf2QhUVMX4iaL7ejQb2klKkZGN4cTkj9Y6QtGlff+7myhn4b7UzrchMALklKtRg7dn5CT+c1nNX5AwDat8qia1aixVEJIUT0Unv9piQtJYQQQsSEBp9Tavz48YwfP36/tyUnJzNr1qx6bc888wyDBg1i8+bNtG3bNtKemJhIVlbWfo/z+uuvEwgEePnll3E6nfTs2ZOlS5fy+OOPc/nllwPw5JNPMm7cOG6++WYA7rvvPmbNmsUzzzzD888/3xAPVVhs19zVBH8sRaFTkZBb26rRo8rB11XX8vHGcIvTrqNFYZn/iiofJhpOM0C6UcN52XlWhySawDuLtmLsepYM58bI/8AJ8V0sjUkIIZqPcFIqGj/XhRBCCHHkLC/NKC8vR9M0UlJS6rU/9NBDpKenc8wxx/Doo48SCoUit82fP58TTjgBp9MZaRs7diyrVq2itLQ0ss/o0aPrHXPs2LHMnz//gLH4/X4qKirq/YjoVFNexsL/voNSJsv6XMOyPv9Xe4vORiO8RHSCW6dfXgo3jonCL/w/v4Pvu2cAGFWygCVb/soFOekWByUaW8gwufXdZfj8ZQC8teoMtMx/0K7dHw9+RyGEaOEiE53X/S1JKSGEECImWLr6ns/nY9q0aZx//vkkJSVF2q+99lr69+9PWloa3333HbfeeiuFhYU8/vjjAGzfvp327dvXO1br1q0jt6WmprJ9+/ZI2577bN++nQN58MEHueeeexrq4YlGVFVagqagzLedItsqzJoVtbdobIjbDv7uHNsuiVcuGWZpnAc050F87mMgDTyGD5KlSqolqPSFCBoKj90HwMRBpzKi50i54i+EEIe010TnMnxPCCGEiAmWJaWCwSDnnHMOSimee+65erfdeOONkd/79OmD0+nkiiuu4MEHH8TlcjVaTLfeemu9c1dUVJCXJ8mCaKRMEw2dVRULCYVWR9odDhubUqpgB9ijdcU9AH8VvvjaVffyh8Axl1sckGhsPl8Ba1Y/wlV9N5HsCldhjuzeHlsUzncmhBBRR2Y6F0IIIWKSJUmpuoTUpk2b+PLLL+tVSe3P4MGDCYVCbNy4ka5du5KVlcWOHTvq7VO3XTcP1YH2OdA8VQAul6tRk16i4Zimga7ZCJp+AHRHF7a23siY4ydjbpgNgNNmszLEgwt58enh4afu9PbgTrY4INGY5q7exeJf/kbv5P/Rv7aAU9ddOJ0Z1gYmhBDNxO7Re1IpJYQQQsSSJi8lqUtIrVmzhi+++IL09EPPo7N06VJ0XadVq/BcQUOHDmXu3LkEg8HIPrNmzaJr166kpqZG9pk9e3a948yaNYuhQ4c24KMRVjENE03TqVFeAHRHe7ZnO4lv1Qqlwi9rR5RWSiml2KInstMZfu27ZdW9mPfk7DUUV4SHDi/Z2Yt5O35P//5vYLfLintCCHFY9qqUkmHPQgghRGxo8Eqpqqoq1q5dG9nesGEDS5cuJS0tjezsbM466ywWL17Mhx9+iGEYkTme0tLScDqdzJ8/nwULFjBy5EgSExOZP38+N9xwAxdeeGEk4TR58mTuuecepk6dyrRp01i+fDlPPvkkTzzxROS81113HSNGjOCxxx7j1FNP5c033+THH3/kxRdfbOiHLCygTAMdHS/hpJSGDhqkZaSBCldIRWul1JW/bOT9Y1+PbLtt0rGOZUopAv4CUtPKAOiWfxKDel5BcpLb2sCEEKJZ2nscnxBCCCGaswZPSv3444+MHDkysl03R9PFF1/M3XffzQcffABAv3796t3vq6++4sQTT8TlcvHmm29y99134/f7ad++PTfccEO9uZ6Sk5P5/PPPueqqqxgwYAAZGRnceeedXH757nl5jjvuOGbMmMHtt9/ObbfdRufOnZk5cya9evVq6IcsLGAaJrqmo5QZbtBs5GZ2ok27NkBtUsoenUmpH8urAXCZflJccZyUdvDhq6L5+rWwgnVr7+b6Pu9H2ga2b0crSUgJIcRRiVzGkUopIYQQIiY0eFLqxBNPRKkDX8U62G0A/fv35/vvvz/kefr06cO8efMOus/ZZ5/N2WeffchjiebHDATw7NyI3VZDQAPQiU+MI2gGoXb4XtRVSgWqYe50fNoY0OP4dNEVdP/TItCjLE7RIAIhk3Oen89N/ReSlwgBw0FifA4pqYOtDk0IIZodtc9vkpQSQgghYoFMZiOapdD335P6yxfYvTXhBk2nwLmZ5396HlU7fC/qVt9b9Ql88zh+M9yhdrviJCEVw8q9QSr9IeId4dfoTucTHH/cl7hdB15sQQghGtpzzz1Hnz59SEpKIikpiaFDh/LJJ59Ebj/xxBPRNK3ez5VXXmlhxAegwkmouonOZU4pIYQQIjZYsvqeEL+VWVIKgBGphrKxYOcCviv6FtQEAOx6lHVYfWUA+G3hFR5dpz9lYTCiMSmlKCicyfh280l0VgFwzqCeFkclhGiJ2rRpw0MPPUTnzp1RSvHaa68xceJElixZQs+e4f+XLrvsMu69997IfeLi4qwK94D2qbOPso94IYQQQhwdSUqJZkmFQgAY9rqXsI6pmbRLaofyd2d5aRRWSgV9GOgEtXDMrtx+1sYjGoU/ZDBv+Sy0kts4q0tdq47DkWplWEKIFmrChAn1th944AGee+45vv/++0hSKi4ujqysZlbFKZVSQgghREyIsm/tQhwmfwCIVPOjaTqmMumc3IeuKX0AcERbpVTIi193RDbd0RafaBCvfLuRl76eD0CJL4XlpcPp3u1B7PZEiyMTQrR0hmHw5ptvUl1dzdChQyPtr7/+OhkZGfTq1Ytbb72VmpoaC6PcP5lTSgghhIhNUiklmp2q+QV4Vq6gGvDrBmDD0CBQPJJ3Vx0HbAWir1JqU1BjU9Lu1R9denTFJxrGpl1FpLrLACgLdad7t4fIyWlmFQhCiJjy888/M3ToUHw+HwkJCbz33nv06NEDgMmTJ5Ofn09OTg7Lli1j2rRprFq1inffffegx/T7/fj9/sh2RUVFoz4GGb8nhBBCxCZJSolmx7e6lB1aMevbZLJnsZ9RHRkrRYLLzqD20TNcakFZFRP10dB3NAB2LQrnvBK/2Y4dH3FS6g3oaQYAJ3TtRNeukpASQlira9euLF26lPLyct555x0uvvhivv76a3r06MHll18e2a93795kZ2czatQo1q1bR8eOHQ94zAcffJB77rmnKcKvVfeZWTfReROeWgghhBCNRpJSovkxFQvtiXjTd69cZ9M8GN403M4gy+48HZuuYYuWpI8RZNXmnwEPHsNHhs1kQpt2VkclGpBSipve/olW5jsc2yqckFK4SE8/weLIhBACnE4nnTp1AmDAgAEsXLiQJ598khdeeGGffQcPHgzA2rVrD5qUuvXWW7nxxhsj2xUVFeTl5TVw5LvtWygVJZ/xQgghhPhNZPyQaHaUggDhhJTNNQBH/EQ0PT68bQOnXY+ehBTAV3/Ft+CfAIwr+oaFjgXc2SnH4qBEQyqqCvDu4m1ghoevvLXqTNr1mk9GxkkWRyaEEPsyTbPe0Ls9LV26FIDs7OyDHsPlcpGUlFTvp1Gpvf6W4XtCCCFETJBKKdH8mAqlaYDC5uqO3+3EptYB7bFFYx+1ZD2+2qSZOz4Veoy0OCDR0IrKN9A382ey4osBuGHsIDq1SrY4KiGECFc0jR8/nrZt21JZWcmMGTOYM2cOn332GevWrWPGjBmccsoppKens2zZMm644QZOOOEE+vTpY3Xoe5Hhe0IIIUQskqSUaH5MhartlAbUKla03UR8Vg/4BWz6PgX+1gv58drSAHB3HQtpbSwOSDSkal81BWvO5dpjqiJtmcmtLIxICCF227lzJxdddBGFhYUkJyfTp08fPvvsM8aMGcOWLVv44osv+Nvf/kZ1dTV5eXlMmjSJ22+/3eqw6xn3t7mcVuXYqzZKslJCCCFELJCklGhWtvyyDN/27ZHqfVNT6OgEa1fai6phe3UMPz7dCYArGuMTR+39pdv46wez+evxVZhKY4e3PX3bdSM1ZYjVoQkhBAAvvfTSAW/Ly8vj66+/bsJojk7IVOw9fq91stOyeETDCgUCFG/djDJNKop24q+pIej3UbFrB6ZpRvbzVVZSWVJU776ehCROv+m2pg5ZCCFEA5KklGhWPn56OoNc4yLbSlNoSiOowp0Wm+1A97RQyI/P4QLAo8s0brFk3poiXLYaAMr9SexyPUvvXl0OcS8hhBBH4o3LhvDtnR+zzQt1SalOWR5LYxIH5quqIuCrIeD1UrFrJ6ZpUrFrB0GfL7KPv6aajUsXYYRClBRsPepzxaemNUTIQgghLCRJKdGseKuqwB6IbJuaQkNj6a6fge7Yoiznc9+6Av6ddzs1mgMAtySlYobPV0B750tkddwEQG5aa84aIgkpIYRoaJmJrn3mjNRk+F6TCQWDKMOgpHAbyjDwVVdRUbSLUCAQrmYyDKpKi/FWVOCtrKB46+ajOk9CegYOp5OkzNbYHA7iklKIT0mN3K5pkJiRiSsuPtJmc0jFnBBCNHeSlBLNSp+1W3CUPwJ9OgBg6uFKqbri7kRnnHXB7cdbhSWU28IxaSj6JMqV3ViwsaiaNWueolviR5AYbvN4Dr5SlRBCiAYkw+EbXF1yKejzsW7RD5ihEAv/918CXu9RHc/mcJCYloE7MRG7w0lSZits9t1fPTRdp033XiSmZZCSlU1CWnpDPRQhhBDNiCSlRLOhlCKzohq1Rz+0LAG2xG9hVLsLeWc7JLsTrQtwb2Wb8RkhAN7+6Qa6nf4AmemNvGS2aHTV/hCnPDWPKV3XMSgbftrVkwGdTqBL57OsDk0IIWLYXqvvSaXUIZmmgWmYVBUX4a2qoLq0lC2/LMM0DSp27STg9RLwhYfYKdPEX1N90OPZHI5I5VJiegau+AQ8CYkkpmeg6TaSMlvhcLlxuF2069sfXY/GORWEEEJEG0lKiWbDNELYlCK0xxC48njYkriFAfZwKbdj7/p+q2yYC69NwDd8Nuh2OtVsJtPlsjoq0QB2VPioCRjEO8NzSRnOkQzpey0uu3S+hRCisai9/ta1ljkcPhjws/WXnzEMg0BNdb1hdEYoRMBbQ/munaBMKop2YQSDR3wOu8OJZrOR37sfnqQk8nv3o13f/jjcbkk0CSGEaHCSlBLNhhEIoikw92gzMTGDCVTUhDtJ9miZs2nHCkLYCOnht5g7byC07m1xUOK3Mgw/2wte4Pyuy2mbWAjAJcf3loSUEEI0mdpKKS1KLkL9Rso0MUIhairK2PTzUpRpUllcjK+qgqDfT2XRTozQ7jmbAt6aIz+JppGQkopud2Cz22nXtz9xySkkZ7YKz92UnEJcciqaBsmtsyTxJIQQoklJUko0GyFfeE4DFemIaihd4dt2Ae+vDbdFTaVUsAafbffkm+7JbxB1s7CLI6KUYuO2T/EW/53R+bvbXa5W1gUlhBAthNpruF40JqWMUIgty38iFAxSsWsHfm8NQZ8vXLlkmngrK6gqLY7sr5SiqqSEUMB/xOfKbNsOu9NFQno6noQknHFxJGVkhhNQael4EpOwO5ykZGVjczhwOKVaWwghRHSSpJRoNkxfuNO2e04pHaWZKKXjtEOS28lpfXIsi6+ekA+vvrsD6JIJWZu9699aSnXJN5zfDbZVZbPdfywXDjuOxESpgBNCiEan6v+yc/Ualjk+tSycksJt7Fi/BmWa1JSXUV1WdnRVTHtpf8xAHE4XSa1aY3c68SQkkpCega7bSK5rS0zGnZDQAI9CCCGEsJ4kpUSzYdR29nZXSumYmKB0ppzg5I6Tx1gX3B5KgyEeNLpR0HUaEE5I6VF4RVccmW/XFjGsdfg1uKa0I/kdriEnp4PFUQkhRMtgqvrbm777nk3ffW9NMIeQ3qYtnqQkkjNbY7M7iEtJJT45BTSNpMxMnJ7dKwXb7HZSs3LRbTp2l0uGzgkhhGhxJCklmg2zpgrYo1JKC1dKgRZVc/p8tKucf9k6QHo4YZHldFgckfitduz4mDuPnYbb5gPgkuP70LGjJKSEEKLJ7FUplZrflvRW1lZH2+wOOg4YhMPtCa8853bjjk/Akygr7QohhBCHS5JSotmomv8tPruNak9dkkcLJ6WUjjNaklIhPxU7VgMejqlYwdkpNo7vM9HqqMRRMk3F9+uLqSh8j3hH3bAMneTk/pbGJYQQLV3XMaMZNuZ3VochhBBCiN9IZl4WzcaGr2bzZY98fsyvuzKqY2oK0KOnUuqLu/EtmQFAr6q1/MFVSpd4t8VBiaP11aqdTP7nAlYVFgDwzpozGX78AjIyRlocmRBCtCzNYaJzIYQQQhw5SUqJqGcGAiw+6yzKd5WCpqGZCkO3Y3P1xDTcmIF03PYoKforWY/PFp7g3JXYGrqfZnFA4rfYuKuIZGc5qe5qAE7s0R+nM83iqIQQQmiadGGFEEKIWBAl3+SFOLDCL2fjWf4LtEoB4kn0V7Kq8xm0L+lHqKIUbA5c0ZKUCvnw6U4A3D0nQHKUrAYojlh5xU+0DZ7D4yeGIm0n9+5sYURCCNFyqciEkuE5paROSgghhIgNUfJNXogDC1RWhn9xhCuQfuqg4VHhK6RGbSfV7YiSl3LQh88djtOty1Xc5ur9pdtYuW4mA1PDCSmldOLjO5CY0N3iyIQQQoAM3xNCCCFihXxrFlGvuiLA8h5/oCBzAABZVT1pXRle+cxQ4bmkEp0ey+KrUx4M8Y6nJyvj2wPg1qXD3Fzd9+GvFJTsBOCrLcdTnvIVQ4d8ht2eYHFkQgjRMqm9fpPhe0IIIURsiJLyEiEOrGC7k52tBhD0fgs+SAik4ahNDlQqJ2DSLsX6YXIPrC/kX9kXRbYTomXydXFEvN6d9E//lO5pqwEY0a0jJ/az/vUlhBAtmab22pZKKSGEECImSFJKRL1gTQAAj7+EKmBzykrWZ/kpKz6J+LbxnJ+XQsdM6ytYtvmCAPSsWkPP7I6clplibUDiiC3fVs6m9fdzbtePIm3dctvhsMkVeSGEsJKsvieEEELEJvmmJaJeYOsWABxGBQAl8TtYnbKGjQ6TFy4ayIO/64Nu5VA5Iwj/noR/03wArt78Bk+1cZDhlJxvc7KzwsfEZ79lTeE6ANaWdaZt20vJaj3R4siEEELUUZHhe5KUEkIIIWKBfGsWUWvxx++zduH32FVd7rR20mkNlAq/dO3RMJn4juWw9gv8/c4AwKVrkJxnbUziiG0prcEwFQkOHwAZrS+mc6fzLY5KCCFE2N6VUlHw+S+EEEKI30ySUiJqzZvxGqFggHzXMfXaTU2haic4t9ui4EppMJzE8DvCQwhdpz8JnhQLAxJHyjQDlBV/xEl5y2kVVwrAST06WhyVEEKIOnVTStV96kullBBCCBEbJCklopJSilAwPJeUs/ZlWq0b4ds0wAy3OaKhUioUTkr5bC4AXHHJVkYjjtBPW8r4dOGrDEx5mgu67253OFOtC0oIIcR+yfA9IYQQIrZIUkpEJdMIRX7XCVdFKczw35rC8OYDUVIpFfID4NecALijIVEmDtuzX63F5VvLwBTYUZ0Jji4M6Xos8XGdrA5NCCEEUPKv/4e9xIREwiVTmgzfE0IIIWKFJKVEVDJDBhoa/dPHUO6tTVBpJihon9yNb4uGAdYnpfymycxKG2W5Z1Nqiwdq55QSzUZpTYAOLi8ASaljGN7/TpLjHBZHJYQQok7pW29hV33CSanaj1iplBJCCCFigySlRFQyjBDxcZnce8x/Gbv4VBLU7kopc49+qNXD9/67o5QbKzOh09WRtiS7zcKIxJHYuPHvTMp7izh7CQC98/IkISWEEFEmecJp+L/fBoDfobAFAUlKCSGEEDFBklIiKpmGgc9Zw4BlRaTU2Ah5oG6a0zXl6wHQNIVucVXSDn8QgPY1W+mvldG95xjyPS5LYxKHVu4N8o+56+ljf5pMTyDSHh/f2cKohBBC7E/GlVcS2HYP7AJDBxtSKSWEEELEChmQL6JSKBCgVUl3ji34A7reHoA4o3ZuqdqOqN3quZs+uBbfvL8BcFLJAp6tmsXV+a2tjUkclncXb+X5r3/FpoUTUk8tuYwO3d8hPf1EawMTQgixX0rVT0LpkpQSQgghYoIkpURU2rmpgqKk9mxPTsKrFWME1hF0hIfvjcwfA4DTZvHL96c38NW+hTymD9oMtDYecdh2VvqJs4fnkVJK48oxU2iffYxceRdCiKhXt/qedGGFEEKIWCDD90TUMWuCrHntMwJVH9drD9b+revh4XE2K4fumQYYAby1sbgHXw7dZOhXc1BU9BWd9Ee5cUAlAA5HAqP75FoclRBCiCMhSSkhhBAiNkhSSkSd4PYaarxlAGi4CDgraGvzU2xkstKexZe/5IENHFZWSoX8ALuTUp4k62IRh+0v7/1MrvkYXVNXkZIYbouL62RtUEIIIQ5p7+F7UtkqhBBCxAa5zCSijjIVpgoP1XNrbajI2c7kdj+h5ebwUetT8NriABjSMd2yGNdVVvJA+8tYktQdAI/VQwnFIRmmYsYPm/HYKgCYufZU4rOepF/flyyOTAghxMH8/OXnVJcWEvItxBYKAZKUEkIIIWKFVEqJqFO0eRM7KQNAU3V/QKWnErwwdaSHa4cPJ8lj3cv3r5uL+ajthZHtdIe8laJdcflm+mcuJcVdDsCfJkwhP/tYi6MSQghxKHPfeRtfcSGwGVttm8MlK90KIYQQsUC+SYuoUlKwjbn/eolquxFe8hnQa5NSfj3cFU32OEiOc1gXJFAaNAAYW/I9Q479HeMyki2NRxxccZWf5csm88d+2yNtrVKyLIxICCHE4ar25eF0pgFQ4d7K6tab+L/OXS2OSgghhBANQcYciahSVVIMmk5kdR0Fbj0AQFCFk1JOu+1Ad2983lL48gECZVsBOK/ka/6vbSvcMnwvan3+y3aGPPgJyggnpDZVdiAv7/e43W0sjkwIIcThMDJH4EweSHlmT1Z3LeanzuXYbHJdVQghhIgF8k1aRBVlmmjoaCqclNIVoGuQks8CFV7dzmVlUmrpGzD3Efy+8MptLofHuljEYVm0qZQ4Ww0AptIodj9Jl863y3wkQgjRTNz68Ajad3+Yd/o+SqUnfFFIQ/4PF0IIIWKBJKVEVFGmgabrUDvRuaaA3AFw/TI2q1YAuOwWXh31lgDgc4ZX23Mef411sYhDMgw/7tAXjMj7FgCnI4mbx/awOCohhBBHrPZiVR1JSgkhhBCxQWqfRVQxTRPQ9qiUUui1k5maKpxDdVs5qXjQC0DAmRCOJbOLdbGIg/pq5U6+XfYcQzP+RZ/wP1dkThIhhBDNx9ufXUeldxck7jF/o+SkhBBCiJgglVIiqvhqDLy2LuhGeCJzTcHmmkKu/+p6TDPcA7W0UirkA8CvhWNw6dIrjlbPzVlHZfVmAAqqWqPHnUTnTrdZHJUQQogj9e9tX1Gwx2e/U3eiSxdWCCGEiAlSKSWiyraVAWr0jmjmzyjAbgTY6N3Kts0FKDUIgHS3dSvdrTbcVCT1pJq6pJR0iqNVaU2AXgnhuaTa5Z3D8f2uk3mkhBCiGRqV2gN75VIgPGzv/uPvx6ZbOL+kEEIIIRqMJKVEVClcOx9/xTpMcxcakFGyAgMHnkBfgloSPiA9zpqk1MwdpVyZeDYcc3akTSqlotP6DU9xQaf3SXPtBKBD62xJSAkhRDN17Zlv8tHrkyC0Gl3TGN9+vNUhCSGEEKKBSFJKRA2lFLs2fAOoyFQRiTWVVBdcxM6irpH9nHYLqpOqi1i9bjHQisRQFWkOB/0yW9PW7Wz6WMQBbSquZvpnyzgj60nyEna3x8d1tC4oIYQQv1ndNOdyeUEIIYSILTL2SEQN0zCo63ZmedswdM1W0qp9BEPpAHRpncA5A9vQNi2u6YP7+E/41s4G4ILCD1mQvoUXeraT6pso8+bCLXyzah0Ahqnz/LIr6d33HZKTB1gcmRBCiN9CSVpKCCGEiElSKSWihhkKRn5PDMST6vXhTgtS7AmvmDbjsiFkJLisCa6iAL8zDwB36+7Q+WRr4hAHpXwLGZazEADNlsw951xBq/Qki6MSQgjxW/grCjD85SDTSAkhhBAxR5JSIjoohVm4LLK5LstgwpBCijckY2rhgj6HlZOKh3z4POGEmLvrWHBLoiOa+IIGS9d/z7FJd3Ns7T9NUlwreuTIv5MQQjR357wzjvU2degdhRBCCNHsyPA9ER0++TPmS6dENpWmeMS4no0rcyJtdpuFJfshP349PH+UW1bcizo3/ecnpn/8JQCVgXgM5zA6dLzJ4qiEEEI0iD0+/vMq5GKDEEIIEUukUkpEBVWwFHOPXqfSDExlI2Tf/RK1Ninlw1ublHLZJCkVbVZur6CNqwaAkmB3Rg54iWSPw+Ko9k8pRSgUwjAMq0MRQhyAzWbDbrfLvIFR4o0Lv2f7utW8fc9tpKVnWx2OEKIJSH9JiOjXUP0lSUqJ6GCGMFXdi1kHTaGMICHb7peoVcP3/rl1F7Pzb2CZJx8Aty5fUqJJWfkiRue8QqZ7MwBDOuZHbUIqEAhQWFhITU2N1aEIIQ4hLi6O7OxsnE5ZZdVqcY443Lobu6kjeUIhYp/0l4RoPhqivyRJKREdjGC9pJSpGWimIhhJSil0C5JBplLctXYbRnK/SFuuS76gRAPTVLz14xbiK+9kUOuVkXa3O+cg97KOaZps2LABm81GTk4OTqdTqjCEiEJKKQKBALt27WLDhg107twZXYZtR4HaOaXk/00hYpr0l4RoHhqyvyRJKREdzNAew/d0FCaaUoTs4aV2dN1s+ph8FfiWvIGhBgMwfdWj5J1yD8NTE5o+FrGP+euLufXdn/nr8UXEx8GcLcP5/YiR5OWeaXVo+xUIBDBNk7y8POLi4qwORwhxEB6PB4fDwaZNmwgEArjdbqtDavFUXU4K+XIqRCyT/pIQzUdD9Zfk0p+IDkaQQF2llKajdJOs7VVUu8PDsHTNglV3Fr2Kb/b9kc3ztn/KiIw0uVoTJQrKvAAkOHwADOp1KR3aXYzDEd2T4ErFhRDNg7xXo8zurJQQogWQ/4OFaB4a4r0qlVIiKry/+UI2lbUGZgA6SpnsdJbx+tBqqABLPpeqd+LTXQDYlYl94pMQl2ZBIGJvoVAVger59ErfhMceTkqN6dnB4qiEEEI0FlU7fE8uDAkhhBCxRZJSwnKGYbKtqi86OwDQ0HF7y/jsWBvelEyoALfdgomrgz78tSvuue12OObCpo9B7OM/P26hbOt1dEz6iRsG7G6326O7QkoIIcRvUFcpJaVSQgghREyRukhhOWXUdTTD80a5/WU4awKsC+RzjOtmAOIcrqYPLOTFZwuf1yUlxFHjxbnrSXZsAaCwuhUBrRP5ba/Abpe5vhrLJZdcgqZpaJqG0+mkU6dO3HvvvYRCod903Dlz5qBpGmVlZQ0T6GHYsGEDkydPJicnB7fbTZs2bZg4cSIrV66st9+HH37IiBEjSExMJC4ujmOPPZZXX3213j4bN25E0zSWLl162Oe/++676datG/Hx8aSmpjJ69GgWLFhQ75hTp06lffv2eDweOnbsyF133UUgEDjocQsLC5k8eTJdunRB13Wuv/76w4pn7ty5TJgwgZycHDRNY+bMmfvd79dff+X0008nOTmZ+Ph4jj32WDZv3hy5/YorrqBjx454PB4yMzP3+5wuXLiQUaNGkZKSQmpqKmPHjuWnn37a7/nWrl1LYmIiKSkpDfYYRDMXyUlJUkoIEZ2kvyT9JekvHR35pi0st2XFcgJVHxHyzgNAUyYbHJkEikfyv6U7AUj2NG2lVNBUzKYVs9KGAuC2YOU/sX/VvioSnVUAdOvxImNHfEqnTn+2OKrYN27cOAoLC1mzZg033XQTd999N48++qjVYUUcqhMCEAwGGTNmDOXl5bz77rusWrWKt956i969e9fr6D399NNMnDiRYcOGsWDBApYtW8Z5553HlVdeyZ/+9KffFGeXLl145pln+Pnnn/nmm29o164dJ598Mrt27QJg5cqVmKbJCy+8wC+//MITTzzB888/z2233XbQ4/r9fjIzM7n99tvp27fvYcdTXV1N3759efbZZw+4z7p16zj++OPp1q0bc+bMYdmyZdxxxx31JrMcMGAAr7zyCr/++iufffYZSilOPvlkDMMAoKqqinHjxtG2bVsWLFjAN998Q2JiImPHjiUYDNY7XzAY5Pzzz2f48OEN9hhE8xcZvmdxHEIIcTDSX5L+kvSXjoISB1ReXq4AVV5ebnUoMe2NO6ep6eecGvl56ZST1HXnXaHyp32ofv/KAvXARyvU4k0lTRrTS1t2qtZfLon8DP/+1yY9v9i/lavuVl/M7hD5CQYrrA7psHm9XrVixQrl9XqtDuWIXXzxxWrixIn12saMGaOGDBmiSkpK1JQpU1RKSoryeDxq3LhxavXq1ZH9Nm7cqE477TSVkpKi4uLiVI8ePdRHH32kNmzYoAjXPkR+Lr74YqWUUhUVFWry5MkqLi5OZWVlqccff1yNGDFCXXfddZHj5ufnq3vvvVdNmTJFJSYmRu47b948dfzxxyu3263atGmjrrnmGlVVVaWUUmrJkiUKUBs3bjzgY928ebNyOBzqxhtv3Oe2p556SgHq+++/V0qpyGNYsmTJkT+pteo+Z7744osD7vPII4+o9u3bH/Yx936uDheg3nvvvX3azz33XHXhhRce0bF++uknBai1a9cqpZRauHChAtTmzZsj+yxbtkwBas2aNfXu++c//1ldeOGF6pVXXlHJyckN8hiOxsHes9I/2FdjPyebl/+kpp9zqnr5hisb5fhCiOgg/SXpL+2P9Jdiu78klVLCcgFveBU1m6svqd4S+m3eiaGFpzs799i23HZKd45pm9p0AVUUsGXjIgByfTs43l7NTe1bN935xT52Vfo58+/fsmztx5G2xKRB2GzNe8ieUoqaQKjJf1Rkbpaj5/F4CAQCXHLJJfz444988MEHzJ8/H6UUp5xySuRqzlVXXYXf72fu3Ln8/PPPPPzwwyQkJJCXl8d///tfAFatWkVhYSFPPvkkADfeeCPffvstH3zwAbNmzWLevHksXrx4nximT59O3759WbJkCXfccQfr1q1j3LhxTJo0iWXLlvHWW2/xzTffcPXVVwOQmZmJruu88847kStSe3vnnXcIBoP7vcJ3xRVXkJCQwBtvvPGbnz8IX6188cUXSU5OPujVuvLyctLSrFlkwTRNPvroI7p06cLYsWNp1aoVgwcPPmjJd3V1Na+88grt27cnLy8PgK5du5Kens5LL71EIBDA6/Xy0ksv0b17d9q1axe575dffsnbb78dnVfxhKUii+/J8D0hWhyr+ksN0WeS/tJvJ/2l2O8vyUTnwnJG3ThrZ3tS/R/hCYYIabZwk82CvOmHN+Azu0Lu7zhnx6dMaz8aWjVhUkzsY96aXSzZXMbvO1YD8Pwvd/DWVRc1+y8n3qBBjzs/a/Lzrrh3LHHOo/vvXynF7Nmz+eyzzxg/fjwzZ87k22+/5bjjjgPg9ddfJy8vj5kzZ3L22WezefNmJk2aRO/evQHo0GH3Kol1HYdWrVpFxsJXVlby2muvMWPGDEaNGgXAK6+8Qk5Ozj6xnHTSSdx0002R7UsvvZQLLrggMj9A586deeqppxgxYgTPPfccubm5PPXUU/z5z3/mnnvuYeDAgYwcOZILLrggEtfq1atJTk4mOzt7n/M5nU46dOjA6tWrj+q5q/Phhx9y3nnnUVNTQ3Z2NrNmzSIjI2O/+65du5ann36a6dOn/6ZzHq2dO3dSVVXFQw89xP3338/DDz/Mp59+yu9+9zu++uorRowYEdn373//O3/+85+prq6ma9euzJo1C6czvFhEYmIic+bM4YwzzuC+++4Dwv8+n332GXZ7+LVYXFzMJZdcwr///W+SkmThArG3355MF0I0T1b1l+Do+0zSX5L+kvSXDp9USgnLmbVJKZvSaLMzfLUgpIffdA4rklIVBfj08ATn7txjoONJTR+DiFBK4a1axLGtFxPvCFfVvXjJOHSZfL5JffjhhyQkJOB2uxk/fjznnnsul1xyCXa7ncGDB0f2S09Pp2vXrvz6668AXHvttdx///0MGzaMu+66i2XLlh30POvXrycYDDJo0KBIW3JyMl27dt1n34EDB9bb/umnn3j11VdJSEiI/IwdOxbTNNmwYQMQvhK5fft2Xn/9dYYOHcrbb79Nz549mTVr1mE/F3Udh4N5/fXX68Uxb968yG0jR45k6dKlfPfdd4wbN45zzjmHnTt37nOMbdu2MW7cOM4++2wuu+yySPuex73yyisPK+Z58+bVu9/rr79+WPczzfACFBMnTuSGG26gX79+3HLLLZx22mk8//zz9fa94IILWLJkCV9//TVdunThnHPOwefzAeD1epk6dSrDhg3j+++/59tvv6VXr16ceuqpeGurZS+77DImT57MCSec0KCPQcSGumqF5n4xQggR26S/tJv0l6S/dLikUkpYZ+kM+OYJjNJMQEc3NRK84Td0iTsRAIfNgs5nyLc7KdVtHDg8TR+DAMAwFb9u/Iqs0I1cGanW1UiOt6Y0t6F5HDZW3DvWkvMeqZEjR/Lcc8/hdDrJycnBbrfzwQcfHPJ+l156KWPHjuWjjz7i888/58EHH+Sxxx7jmmuuOZrQ64mPj6+3XVVVxRVXXMG11167z75t27aN/J6YmMiECROYMGEC999/P2PHjuX+++9nzJgxdO7cmfLycgoKCva52hgIBFi3bh1jxx763+z000+v1/nMzc2tF3enTp3o1KkTQ4YMoXPnzrz00kvceuutkX0KCgoYOXIkxx13HC+++GK9Y++5es3hXiEbOHBgvfu1bn14Q5IzMjKw2+306NGjXnv37t355ptv6rUlJyeTnJxM586dGTJkCKmpqbz33nucf/75zJgxg40bNzJ//vxIQnnGjBmkpqby/vvvc9555/Hll1/ywQcfRK5yKqUwTRO73c6LL77I+eeff1SPQcQIWX1PiBbLqv5S3bmPhPSXpL+0J+kvHR5JSgnrLHwJilZjGOmAjqbg/eHpDFpt5+eM9qDAbkWlVNCHXw9n9t1SjWOpK/+9iEDFF1zUAyoD8WDvwDGdT0HXD33lpTnQNO2oh9E1tbqOwZ66d+9OKBRiwYIFkXL04uJiVq1aVe9DOS8vjyuvvJIrr7ySW2+9lX/84x9cc801kStoe85X0KFDBxwOBwsXLox0jMrLy1m9evUBrwjV6d+/PytWrNgnzoPRNI1u3brx3XffAXDWWWcxbdo0HnvsMR577LF6+z7//PPU1NRw0UUXHfK4iYmJJCYmHlYMpmni9/sj29u2bWPkyJGRFVr2rgo8ksdXx+PxHNX9nE4nxx57LKtWrarXvnr1avLz8w94P6UUSqnI46qpqUHX9XpVLnXbdVcX58+fX++18P777/Pwww/z3XffkZube9SPQcQGWX1PiJZL+kvSXwLpL8Vyf6l5vLtFbDIC3JeeikOz4QA0NOb3SqX3ViM80bmyaE6pkBevLVwp5dKl+2ulZVvL6J9WA8C6ir6MHvo0+Xkp1gYlIjp37szEiRO57LLLeOGFF0hMTOSWW24hNzeXiRMnAnD99dczfvx4unTpQmlpKV999RXdu3cHID8/H03T+PDDDznllFPweDwkJiZy8cUXc/PNN5OWlkarVq2466679vmA3p9p06YxZMgQrr76ai699FLi4+NZsWIFs2bN4plnnmHp0qXcddddTJkyhR49euB0Ovn66695+eWXmTZtGhC+QvjII4/wpz/9CbfbzZQpU3A4HLz//vvcdttt3H///fTq1aveeffugAD07NkTh8NRr626upoHHniA008/nezsbIqKinj22WfZtm0bZ599NhDuYJ144onk5+czffr0yNLHAFlZWQd9/HVXxaqqqti1axdLly7F6XTuc9VuT1VVVaxduzayvWHDBpYuXUpaWlqkk3vzzTdz7rnncsIJJzBy5Eg+/fRT/ve//zFnzhwgPITgrbfe4uSTTyYzM5OtW7fy0EMP4fF4OOWUUwAYM2YMN998M1dddRXXXHMNpmny0EMPYbfbGTlyJEDkdVHnxx9/RNf1fZ7vo3kMIgbsnunc2jiEEOIISX8pTPpL0l86oAZZBzBGyZLPjcv37BDV69Ve6sHzT1HTzzlVPXfRy+qCxy5QH588VrW/9Q2VP+1D9Wth0z33pmmqi5etU22/WKCyZi9Srb9cot7bXtJk5xf1FRXNVVe/eKN6+j/j1BezO6hVq++zOqTfJNaWOK5Tt8RxcnKy8ng8auzYsfWWOL766qtVx44dlcvlUpmZmWrKlCmqqKgocvu9996rsrKylKZpB13ieNCgQeqWW26J3C8/P1898cQT+8Tzww8/qDFjxqiEhAQVHx+v+vTpox544AGllFK7du1S1157rerVq5dKSEhQiYmJqnfv3mr69OnKMIx6x5k5c6YaPny4io+PjyzB/MYbb9TbZ3/LNNf9bNmyZZ/YvF6vOvPMM1VOTo5yOp0qOztbnX766eqHH36I7PPKK68c8JiHsr/75OfnH/Q+X3311X7vV/dvUeell15SnTp1Um63W/Xt21fNnDkzctu2bdvU+PHjVatWrZTD4VBt2rRRkydPVitXrqx3jM8//1wNGzZMJScnq9TUVHXSSSep+fPnHzC2w13i+HAfw5FqiCWOW5LGfk42LPlRTT/nVPXan69plOMLIaKD9JekvyT9pZbXX9KUaoC1wWNURUUFycnJlJeXx8zM9tHC6/VS8lhvxuV5mPJJW2xKI9E1iW0dNjLku/n8ceBlKDOOL24cQadWCU0SU3VlER1/3BrZ9mgwa1A3OsW5m+T8YrdAoIR53wwBdpemduxwM+3aHd4khdHI5/OxYcMG2rdvj9str6kjUV1dTW5uLo899hhTp05t8vOXlJQwatQokpKS+OSTT4iLi2vyGETTO9h7VvoH+2rs52TD0kW8++BdtGrXkSkPP9ngxxdCRAfpLx096S8JKzREf0kmzBGW2LJlC0EjgG6CrmpLTDUNZSqWje+JyxZORDXZ8L3idXif2T3J3sLvz+HnAW0kIWWBr1buZPILHwIGfsPBN9sGk5t7Mdk5Z1kdmmgiS5Ys4Y033mDdunUsXryYCy64ACBS4t7U0tLS+OKLLxg1ahTz58+3JAYhWrzI8D1rwxBCiGgh/SURK2ROKWGJUCjE/I2duGjF7gy6bipm6DmEduQB4Ync7E21+t7OX/HV5mhdZoC8DoMhIb1pzi3q+e/irVTWlABQ7E3ju6IruavrwSdsFLFn+vTprFq1CqfTyYABA5g3bx4ZGRmWxZOens6dd95p2fmFaOkiE53LnFJCCBEh/SURCyQpJSwR9PspqtmdkNJsrdCxEfLlAWDXNfrnp5KV1ESVSoYfrx4+l9vpgXP/X9OcV9RTWraQ41Lu5LikcFIqPzOL98cPszgq0dSOOeYYFi1aZHUYQohoEplsQpJSQggB0l8SsUOSUqLJVZUUs2nZ0sh2quNMnMEAScHvgAkALLp9DMlxjv0foDGE/PhqV9xzy4p7lpj96w7KC1+gtXt1pC0zpStuh83CqIQQQkSDuilQpVBKCCGEiC0yp5Rocp+/8BQr5n0Z2XZU/Y8BqcUsm+SKtNmaathenZAfn+4EwK3L26Kp7ajwcem/fmRLUSEAn248iZQ2z9Gly93WBiaEECJK1M0pJVkpIYQQIpbIt2/R5KpLS4mv8dZu2Vibq6ENn0RRpieyj70Jq5WWVNRwcnVnrux+FwDupppcXUQUlFWSG7+NdE85AH06nEj/zmOw2VyHuKcQQoiWYPc855KUEkIIIWKJDN8TTS5zYwHdV67i6+75gA2fy0Sz6wSMUGQfvQmvhM7cUcoyMwHc4RX/OsVJIqSplWy5inuO2z0mfkK/rjKZrRBCiN1k9T0hhBAiJklJiGhyyZUGZl3CQdPZmKWjEp0E90hKNWWllNcMr/R3fuFHfFDzEX/vkd9k527p1u6s5PiHv8Rb/QsAXiORlJTBJCb2tjgyIYQQ0UTtnulcCCGEEDFEKqVEk9NNUJEqGBuVLpPvvT+x1QjPJ6Sh0JsiKRXyw+x78Zq9wN2djt4tDEpJAplTqsnMXV3EttJqXDY/ABt4ntP6D7E4KiGEEFFLqmiFEEKImCLfvkWTS9J2YNYmnTTNhkLxwYb32VyxFaBpElIA67+G+c/grwgnw9yGHxJbN825BQAVviBuux9dC18B/+NJx1gckRBCiKhUt/qejN8TQgghYkqDJ6Xmzp3LhAkTyMnJQdM0Zs6cWe92pRR33nkn2dnZeDweRo8ezZo1a+rtU1JSwgUXXEBSUhIpKSlMnTqVqqqqevssW7aM4cOH43a7ycvL45FHHtknlrfffptu3brhdrvp3bs3H3/8cUM/XHEEjOoglV+tIVnbtnv4HjYUYGoGQ7OHAWBvqkolX3hSbZ87DQB3n7Ng0BVNc27BylV30FObwN9OvA0ATXPKxOZR6pJLLkHTNDRNw+l00qlTJ+69915CodCh73wQc+bMQdM0ysrKGibQw7BhwwYmT55MTk4ObrebNm3aMHHiRFauXFlvvw8//JARI0aQmJhIXFwcxx57LK+++mq9fTZu3IimaSxduvSwz3/33XfTrVs34uPjSU1NZfTo0SxYsKDeMadOnUr79u3xeDx07NiRu+66i0AgcNDjFhYWMnnyZLp06YKu61x//fWHFc9zzz1Hnz59SEpKIikpiaFDh/LJJ59Ebi8pKeGaa66ha9eueDwe2rZty7XXXkt5eXlkn1dffTXy+tj7Z+fOnZH9/H4/f/nLX8jPz8flctGuXTtefvnlevH87W9/i5wrLy+PG264AZ/Pd9DH8O6773LyySeTnp5+xP8eohmpG70nlVJCiCgl/SXpL0l/6eg0+Lf/6upq+vbty7PPPrvf2x955BGeeuopnn/+eRYsWEB8fDxjx46t9yRecMEF/PLLL8yaNYsPP/yQuXPncvnll0dur6io4OSTTyY/P59Fixbx6KOPcvfdd/Piiy9G9vnuu+84//zzmTp1KkuWLOGMM87gjDPOYPny5Q39kMVhqvqugB0f/cRSZ2s2ZCbXtuqYGijN5JZBtwJga6pKqVD4Ned3JgHgbjcUXAlNc+4WzB8yOOeF+azf/F90LYRdNwBITTnW4sjEwYwbN47CwkLWrFnDTTfdxN13382jjz5qdVgRh+qEAASDQcaMGUN5eTnvvvsuq1at4q233qJ37971OnpPP/00EydOZNiwYSxYsIBly5Zx3nnnceWVV/KnP/3pN8XZpUsXnnnmGX7++We++eYb2rVrx8knn8yuXbsAWLlyJaZp8sILL/DLL7/wxBNP8Pzzz3Pbbbcd9Lh+v5/MzExuv/12+vbte9jxtGnThoceeohFixbx448/ctJJJzFx4kR++SU8z1tBQQEFBQVMnz6d5cuX8+qrr/Lpp58yderUyDHOPfdcCgsL6/2MHTuWESNG0KpVq8h+55xzDrNnz+all15i1apVvPHGG3Tt2jVy+4wZM7jlllu46667+PXXX3nppZd46623DvnYq6urOf7443n44YcP+3GL5uXNu/7Mp8/9DZCclBAiukl/SfpL0l86CqoRAeq9996LbJumqbKystSjjz4aaSsrK1Mul0u98cYbSimlVqxYoQC1cOHCyD6ffPKJ0jRNbdu2TSml1N///neVmpqq/H5/ZJ9p06aprl27RrbPOeccdeqpp9aLZ/DgweqKK6447PjLy8sVoMrLyw/7PuLASt9fq96+4k9q+jmnRn4em3yFOvlvZ6pxfztLrdlRrvKnfah63fVpk8RTMP8VNftvo9WIz2ep1l8uUR/sKG2S87Z0SzeXqo63vKe+mN1BfTG7gxp63z/U3BXLlWkaVofWqLxer1qxYoXyer1Wh3LELr74YjVx4sR6bWPGjFFDhgxRJSUlasqUKSolJUV5PB41btw4tXr16sh+GzduVKeddppKSUlRcXFxqkePHuqjjz5SGzZsUIRrHyI/F198sVJKqYqKCjV58mQVFxensrKy1OOPP65GjBihrrvuushx8/Pz1b333qumTJmiEhMTI/edN2+eOv7445Xb7VZt2rRR11xzjaqqqlJKKbVkyRIFqI0bNx7wsW7evFk5HA5144037nPbU089pQD1/fffK6VU5DEsWbLkyJ/UWnWfM1988cUB93nkkUdU+/btD/uYez9XRyo1NVX985//PODt//nPf5TT6VTBYHC/t+/cuVM5HA71r3/9K9L2ySefqOTkZFVcXHzA41511VXqpJNOqtd24403qmHDhh1W3A3x77Gng71npX+wr8Z8Tl6+4cpIv2HWP55t8OMLIaKH9Jekv7Q/0l/aLRb7S006p9SGDRvYvn07o0ePjrQlJyczePBg5s+fD8D8+fNJSUlh4MCBkX1Gjx6NruuRkr358+dzwgkn4HQ6I/uMHTuWVatWUVpaGtlnz/PU7VN3HtH0lKnYoUoA0Gw52NxDsMeNJKU6noKk1SgVvvzZFCvvBUyTk7w9mdznUVbaMwCIs8kUa02huHg2v+81o3bLxnvXXMDw7j3RtBb4/CsFgeqm/6lbWv038Hg8BAIBLrnkEn788Uc++OAD5s+fj1KKU045hWAwCMBVV12F3+9n7ty5/Pzzzzz88MMkJCSQl5fHf//7XwBWrVpFYWEhTz75JAA33ngj3377LR988AGzZs1i3rx5LF68eJ8Ypk+fTt++fVmyZAl33HEH69atY9y4cUyaNIlly5bx1ltv8c0333D11VcDkJmZia7rvPPOOxiGsd/H9c477xAMBvd7he+KK64gISGBN9544zc/fxC+Wvniiy+SnJx80Kt15eXlpKWlNcg5D8YwDN58802qq6sZOnToQeNJSkrCbt//Win/+te/iIuL46yzzoq0ffDBBwwcOJBHHnmE3NxcunTpwp/+9Ce8Xm9kn+OOO45Fixbxww8/ALB+/Xo+/vhjTjnllAZ6hKK5OuPm27n40We45PHnGDX1/6wORwjR1KzqLzVAn0n6S7+d9Jdiv7/UpKvvbd++HYDWretPJt26devIbdu3b69XvgZgt9tJS0urt0/79u33OUbdbampqWzfvv2g59kfv9+P3++PbFdUVBzJwxOHYiiUMgHQHXnojhS6rp/N+z2XoNsdGLX/6TfF8L3ykEEpDgD6GEXktO7AkJT4Rj9vS1btD/Ha/I3kB+9nSHb4veVx59I62WNxZBYK1sBfc5r+vLcVgPPoXu9KKWbPns1nn33G+PHjmTlzJt9++y3HHXccAK+//jp5eXnMnDmTs88+m82bNzNp0iR69+4NQIcOHSLHqus4tGrVipSUFAAqKyt57bXXmDFjBqNGjQLglVdeISdn3+fppJNO4qabbopsX3rppVxwwQWR+QE6d+7MU089xYgRI3juuefIzc3lqaee4s9//jP33HMPAwcOZOTIkVxwwQWRuFavXk1ycjLZ2dn7nM/pdNKhQwdWr159VM9dnQ8//JDzzjuPmpoasrOzmTVrFhkZGfvdd+3atTz99NNMnz79N53zYH7++WeGDh2Kz+cjISGB9957jx49eux336KiIu677756Q+r39tJLLzF58mQ8nt3v7fXr1/PNN9/gdrt57733KCoq4o9//CPFxcW88sorAEyePJmioiKOP/54lFKEQiGuvPLKQ5aji9iXmp1rdQhCCCtZ1V+Co+4zSX9J+kvSXzp8LbA04cAefPBBkpOTIz95eXlWhxRTlFlXdQoaOnrNh7TdNg9DB4fuwDCbKCllmvi2/QSEV9z7PDiLV3t3IN5ma9zztnDvLdnG9M9W4LaFE1Jras6hd+/9zz0nos+HH35IQkICbreb8ePHc+6553LJJZdgt9sZPHhwZL/09HS6du3Kr7/+CsC1117L/fffz7Bhw7jrrrtYtmzZQc+zfv16gsEggwYNirQlJyfXG0tfZ8+KWoCffvqJV199lYSEhMjP2LFjMU2TDRs2AOErkdu3b+f1119n6NChvP322/Ts2ZNZs2Yd9nOxZ5Xugbz++uv14pg3b17ktpEjR7J06VK+++47xo0bxznnnFNvgss627ZtY9y4cZx99tlcdtllkfY9j3vllVceVszz5s2rd7/XX389clvXrl1ZunQpCxYs4P/+7/+4+OKLWbFixT7HqKio4NRTT6VHjx7cfffd+z3P/Pnz+fXXX+vNoQBgmiaapvH6668zaNAgTjnlFB5//HFee+21yNW/OXPm8Ne//pW///3vLF68mHfffZePPvqI++6775DPqRBCCBENpL+0m/SXpL90uJq0UiorKwuAHTt21Muq7tixg379+kX22fvFFgqFKCkpidw/KyuLHTt21NunbvtQ+9Tdvj+33norN954Y2S7oqJCElMNyVRQWykFGtQO1zN1sGv2SFKq0Vff+/5Z/PNegEH/xmUGwNGCK3Wa0K6KSlJdZZHtU4beSmJiknUBRQNHXPgKnBXnPUIjR47kueeew+l0kpOTg91u54MPPjjk/S699FLGjh3LRx99xOeff86DDz7IY489xjXXXHM0kdcTH1//ymVVVRVXXHEF11577T77tm3bNvJ7YmIiEyZMYMKECdx///2MHTuW+++/nzFjxtC5c2fKy8spKCjY52pjIBBg3bp1jB079pCxnX766fU6n7m5uys94uPj6dSpE506dWLIkCF07tyZl156iVtvvTWyT0FBASNHjuS4446rt4gHUG+1lKSkw3sPDRw4sN799qwkrlshCGDAgAEsXLiQJ598khdeeCGyT2VlJePGjSMxMZH33nsPh8Ox3/P885//pF+/fgwYMKBee3Z2Nrm5uSQnJ0faunfvjlKKrVu30rlzZ+644w6mTJnCpZdeCkDv3r2prq7m8ssv5y9/+ctBn1MhhBAxzKr+Ut25j4D0l6S/JP2lI9eklVLt27cnKyuL2bNnR9oqKipYsGBBZDzm0KFDKSsrY9GiRZF9vvzyS0zTjDy5Q4cOZe7cuZExuACzZs2ia9eupKamRvbZ8zx1+xxs3KfL5Yos81j3IxqOMszd47KVAnYnpWy6jVBtUqqxc1IUrcavhzP3Lk1Br0mNfEJRVvYjPW1n88gJ9wBgtyfSNl3eX2hauCS8qX+OYvmquo5B27ZtI2Pju3fvTigUqrdEb3FxMatWrapXzpyXl8eVV17Ju+++y0033cQ//vEPYPcVtD3nK+jQoQMOh4OFCxdG2srLyw+rBLx///6sWLEi0oHZ8+dAV+s0TaNbt25UV1cDcNZZZ2G323nsscf22ff555+npqaGiy666JCxJCYm1jv/nqXZezNNs97Q8W3btnHiiScyYMAAXnnlFfS9/lPc87h7D3c/EI/HU+9+iYmJhx1P3Yq3TqeTDz74ALfbvd/7VVVV8Z///Gefq34Aw4YNo6CggKqqqkjb6tWr0XWdNm3aAFBTU7PPY7XVVrAqpY7oORVCCBFDrOovHUWfSfpL0l+S/tKRa/BKqaqqKtauXRvZ3rBhA0uXLiUtLY22bdty/fXXc//999O5c2fat2/PHXfcQU5ODmeccQYQftOOGzeOyy67jOeff55gMMjVV1/NeeedF8nCTp48mXvuuYepU6cybdo0li9fzpNPPskTTzwROe91113HiBEjeOyxxzj11FN58803+fHHH/fJoIomtMfwPX2PSil/sBWqtCdfrAhXtjV6pVTQtzsplZABWfsfCywaxpxVO1m3/gPauXYvQZuZMcbCiERD6dy5MxMnTuSyyy7jhRdeIDExkVtuuYXc3FwmTpwIwPXXX8/48ePp0qULpaWlfPXVV3Tv3h2A/Px8NE3jww8/5JRTTsHj8ZCYmMjFF1/MzTffTFpaGq1ateKuu+5C13W0Q3QMp02bxpAhQ7j66qu59NJLiY+PZ8WKFcyaNYtnnnmGpUuXctdddzFlyhR69OiB0+nk66+/5uWXX2batGlA+ArhI488wp/+9CfcbjdTpkzB4XDw/vvvc9ttt3H//ffTq1eveuddtWrVPrH07Nlzn6tj1dXVPPDAA5x++ulkZ2dTVFTEs88+y7Zt2zj77LOB3R2s/Px8pk+fHln6GDhopS/sviJYVVXFrl27WLp0KU6n84DzHUC4Qnj8+PG0bduWyspKZsyYwZw5c/jss8+A3R2smpoa/v3vf1NRURGZbzEzMzPSCQJ46623CIVCXHjhhfucZ/Lkydx33338/ve/55577qGoqIibb76ZP/zhD5HO0oQJE3j88cc55phjGDx4MGvXruWOO+5gwoQJ9c6zt5KSEjZv3kxBQfgqet2/R1ZW1iGfMyGEEKKxSX8pTPpLYdJf2o8GWQdwD1999dU+y1ayx9KVpmmqO+64Q7Vu3Vq5XC41atQotWrVqnrHKC4uVueff75KSEhQSUlJ6ve//72qrKyst89PP/2kjj/+eOVyuVRubq566KGH9onlP//5j+rSpYtyOp2qZ8+e6qOPPjqixyJLPjcc0zTV1r+8ql4493dq+jmnqqem3K+ePfdUtbxrd9Xu1rdU/rQPIz9jn/i6cYN5Y7L69vHhqvWXS9Tx369o3HMJ1efuz9SfXrpUfTG7g7rl5d+rmYvXWR2SJWJtieM6dUscJycnK4/Ho8aOHVtvieOrr75adezYUblcLpWZmammTJmiioqKIrffe++9KisrS2madtAljgcNGqRuueWWyP3y8/PVE088sU88P/zwgxozZoxKSEhQ8fHxqk+fPuqBBx5QSim1a9cude2116pevXqphIQElZiYqHr37q2mT5+uDMOod5yZM2eq4cOHq/j4+Mjn2BtvvFFvn/0t01z3s2XLln1i83q96swzz1Q5OTnK6XSq7Oxsdfrpp6sffvghss8rr7xywGMeyv7uk5+ff9D7/OEPf1D5+fnK6XSqzMxMNWrUKPX5559Hbj/QZzqgNmzYUO9YQ4cOVZMnTz7guX799Vc1evRo5fF4VJs2bdSNN96oampqIrcHg0F19913q44dOyq3263y8vLUH//4R1VaWnrQx3Cg5+yuu+466P0OpSGWOG5J5DkRQjQE6S9Jf0n6Sy2vv6Qp1QBrg8eoiooKkpOTI8s5iqNXs3gxmyZfwMIO+exKtONyDkULfc9x26s4c3B4KdETumTitGmce2xbxvRofYgjHp1qw2DWzHtYUh3khbxz6Z3gYdax+04IKBqGP2TQ9fZPuajHm4xo8x1ltks49bjbcDta3qTyPp+PDRs20L59+wOW84r9q66uJjc3l8cee2y/pc6NraSkhFGjRpGUlMQnn3xCXNyRz8klmp+DvWelf7AveU6EEA1B+ktHT/pLwgoN0V9q0onORcu186efATBqh+YZOtjGjaBi8GB4NVza+OKUAY2erPj75p08lvY7CK+sSrxNFqBsLKbpZ9myq7jvuBWkuMoBGNQhr0UmpMSRWbJkCStXrmTQoEGUl5dz7733AkRK3JtaWloaX3zxBc8++yzz58+PLL0shBBCCGEV6S+JWCFJKdEkti/7jmRAqx0y7HNofOH5jPeWzAMuB8DR2Ami9XMo2FwD5NC5ehMd01sztV3Hxj1nC7V2ZyWfLP6UHs6vyEnY3R4f38W6oESzMn36dFatWoXT6WTAgAHMmzePjIwMy+JJT0/nzjvvtOz8QgghhBB7k/6SiAWSlBJNIq16JQbgq8s7aYrt3u2YwboVDRQ2/chXBDtsvgr491l4u94KrXK4qPB9LutzOaQdeEUFcfQe+mQlRUVr6XEMbKvK4qvCi3nmwpOIj+9kdWiiGTjmmGPqrcAqhBBCCCHqk/6SiBUydkk0Cd0IAhDUwi85szb/dGnvcJWU097IQ7q8pWAG8erhca6eTqOgzaDGPWcLpZTC71tPbkIhAAlxbbjulHMkISWEEEIIIYQQoh6plBKNruj9tXgCboKA0jRAYatNTrVL7ASU42jMKimAkA8AryMeAE/38aBLTrYxrF5zL5d0/ldku0t2Dr3yUqwLSAghhBBCCCFEVJJv5aJRBSsD+OYXYlM6XlcaqnZSKa02CaVU+CXosDfyS7E2KeWzhSul3DLBeYOr8oeY+Oy3fLtiHgA1QQ82Rw5ZrU+3ODIhhBBCCCGEENFIvpmLRuWvDA/b22jrzfyh92E4MgEwaguj6pJS9kauWnqvJMDv+v6NXzz5AHikSqrBLd5Uyk9bynDoNQD8v1VXMmTIHDIyRlocmRBCCCGEEEKIaCTD90SjMkMGAGW21uEGFd4uTt0W3qyrlLI17vC9x0t01qQcE9nOczsb9XwtUVnlFnLiC0lxh5NST18wArejkecKE0IIIYQQQgjRbEm5iGhURtAM/22CUgE0oxSAHRnrAFBmbaVUIyelalT4778U/Y9PBnShc7y7Uc/XkpTVBHjli5eILz+b+4Y9SJy9EoCkuFSLIxNCCPHcc8/Rp08fkpKSSEpKYujQoXzyySeR230+H1dddRXp6ekkJCQwadIkduzYYWHEQgghhGhJJCklGpUZMikIFbLa+z3+smcw8QMQ0gzMYCK7KsNJK0djzfFUvA6md8HnrQBgtG8txyTFNc65WqjXF2xm5ebvAPAbDoIqmYyMUbjdORZHJoQQok2bNjz00EMsWrSIH3/8kZNOOomJEyfyyy+/AHDDDTfwv//9j7fffpuvv/6agoICfve731kctRBCCCFaCklKiUZlhkx+Df6KSWh3m93GFvKpXvsXHvlwFwCOxprjafP3ULUDvx4erufO7ds452nBtpf7SHBWA1CiTaH/sd/Rt8+LaJr89xIrLrnkEjRNQ9M0nE4nnTp14t577yUUCh36zgcxZ84cNE2jrOz/s3fncVFX++PHXzPAwAAjiIIsKoKCitt1K7cyMgQ15XZN8+ol/aWmXZfMFtRbUaYthllq16VvYfdeNG9m5sXKcElxSU1BLRMSMUxBcQPZh5nz+2NkckIRBSXh/Xw85vFwPnM+57w/H7a353OWSzUTaBVkZGQwcuRIfH19cXJyomnTpkRGRnL06FGbcgkJCfTt2xeDwYCzszPdu3dnxYoVNmVOnDiBRqMhJSWlyu2/8sortGnTBhcXFxo2bMhDDz3Enj17bOocO3YsAQEB6PV6WrZsSUxMDKWlpZXWm5WVxciRIwkODkar1TJt2rQqx1TuzTffRKPRVDg3PT2dRx55BE9PTxo0aMDw4cMrjKSZO3cuvXr1wtnZGXd392vWX/49dPXrk08+sX6+du1awsLCrO307NmTjRs33jDutWvX0r9/fxo1anTTX4/6YPDgwQwcOJCgoCCCg4OZO3curq6ufPfdd+Tm5vLhhx/yzjvv8OCDD9K1a1fi4uLYtWsX3333XW2HLoQQdxXJlyRfknzp1sj/GsVtZTYqysyWxc619v7o7ZsSOvtFLhotC4472Glo4GRPZOfbNKrmyq57pXaOADj2mnx72qmncnOT6e78JN29DwDwYEgwXg1kamRdFBERQVZWFj///DPPPvssr7zyCm+//XZth2V1oyQEwGg0EhYWRm5uLmvXriU1NZXVq1fToUMHm0Rv0aJFREZG0rt3b/bs2cOhQ4cYMWIEEydO5LnnnqtWnMHBwSxevJjDhw+zY8cOWrRoQf/+/cnJsXTQHz16FLPZzLJly/jxxx9ZsGABS5cuZdasWZXWW1JSgqenJy+++CKdOt185/u+fftYtmwZHTt2tDleUFBA//790Wg0bNmyhZ07d1JaWsrgwYMxm83WcqWlpQwbNoynnnqq0nbi4uLIysqyvv785z9bP9u+fTthYWF8+eWX7N+/n9DQUAYPHkxycnKldRYUFNCnTx/eeuutm77u+sZkMvHJJ59QUFBAz5492b9/P0ajkYceeshapk2bNjRv3pzdu3fXYqRCCHF3knxJ8iXJl26BEteVm5urAJWbm1vbody1Tu/LUssmR6vY4YPUO6OmqfdHTVCvfb1NtXx5hfKPTlDvbv3+9gawa7EyxbipJluSVZMtyepcifH2tlePxHzxg3pt5VNq0+ZAtWlzoErc3Erl5R2p7bD+sIqKitSRI0dUUVFRbYdy00aPHq0iIyNtjoWFhakePXqoCxcuqKioKOXu7q70er2KiIhQaWlp1nInTpxQDz/8sHJ3d1fOzs4qJCREbdiwQWVkZCjA5jV69GillFJ5eXlq5MiRytnZWXl7e6t33nlH9e3bVz399NPWev39/dXs2bNVVFSUMhgM1nOTkpJUnz59lJOTk2ratKmaMmWKys/PV0oplZycrAB14sSJ615rZmamcnBwUNOnT6/w2cKFCxWgvvvuO6WUsl5DcnLyzd/UK8r/zmzatOm6ZebNm6cCAgKqXOfv79WNXL58WQUFBanExMQK527cuFFptVqbv4OXLl1SGo1GJSYmVqgrLi5Oubm5XbMdQH3++edVjksppUJCQtSrr75apbI18fW4WmU/s3dbfnDo0CHl4uKi7OzslJubm9qwYYNSSqn4+Hil0+kqlO/evbt64YUXKq2zuLhY5ebmWl8nT568q+6JEOKPSfIlyZeuRfKlyt3t+ZKMlBK3lblMYTJfGbKqcUBpTHy44xfKShoD4Ot2m0fVlBVTonWwvnXU3t4F1euLgpIyVuw6QZkxF4DEX/riGfgNBkPbWo7s7qKUotBYeMdfSqlqx67X6yktLWXMmDF8//33rF+/nt27d6OUYuDAgRiNlhGSkyZNoqSkhO3bt3P48GHeeustXF1dadasGZ999hkAqampZGVl8d577wEwffp0du7cyfr160lMTCQpKYkDBw5UiCE2NpZOnTqRnJzMSy+9RHp6OhEREQwdOpRDhw6xevVqduzYweTJlhGSnp6eaLVa1qxZg8lkuuZ1rVmzBqPReM0nfBMmTMDV1ZVVq1ZV+/6B5WnZ8uXLcXNzq/RpXW5uLh4eHjXS5rVMmjSJQYMG2YyWKVdSUoJGo8HR0dF6zMnJCa1Wy44dO26prcaNG3PPPffw0UcfVfq9aDabuXz58m299vqidevWpKSksGfPHp566ilGjx7NkSNHqlXnG2+8gZubm/XVrFmzGopWCCFs1Va+VBM5k+RL1Sf5Ut3Pl+xrOwBRt6kyM+Yr0/c02KMwgdKiM6SC0wm6Bz5/29ouKDORWObBBe+B1mOOt2vtqnrmYv45gtzT8XI5B8DIXn3o2CKglqO6+xSVFXHvynvveLt7Ru7B2eHWFvxXSrF582Y2btzIgAEDWLduHTt37qRXr14AxMfH06xZM9atW8ewYcPIzMxk6NChdOjQAYDAwEBrXeV/PL28vKzz6i9fvszHH3/MypUr6devH2AZwuzrW3GK74MPPsizzz5rfT9u3DhGjRplneMfFBTEwoUL6du3L0uWLMHPz4+FCxfywgsv8Oqrr9KtWzdCQ0MZNWqUNa60tDTc3Nzw8fGp0J5OpyMwMJC0tLRbunflEhISGDFiBIWFhfj4+JCYmEjjxo2vWfbYsWMsWrSI2NjYarV5PZ988gkHDhxg37591/y8R48euLi4EB0dzeuvv45SihkzZmAymcjKyrqptmbPns2DDz6Is7Mz33zzDX//+9/Jz89n6tSp1ywfGxtLfn4+w4cPv+nrErbK1zYB6Nq1K/v27eO9997jscceo7S0lEuXLtmsbXHmzBm8vb0rrXPmzJlMnz7d+j4vL086poQQt0Vt5Utw6zmT5EuSL0m+VHXyP3RxW5QWFfL1knf5dt17lFw+bTl4ZaQUaHFstBPHxltxsneotJ7qWPDLGSbSmVlBzwCg02iwl4FS1aaUiWM/PsKMe96jdcNjADRx96rlqMTtlpCQgKurK05OTgwYMIDHHnuMMWPGYG9vz733/pYoNmrUiNatW/PTTz8BMHXqVObMmUPv3r2JiYnh0KFDlbZz/PhxjEYj99xzj/WYm5sbrVu3rlC2W7duNu8PHjzIihUrcHV1tb7Cw8Mxm81kZGQAlidP2dnZxMfH07NnTz799FPatWtHYmJile+FTqe7YZn4+HibOJKSkqyfhYaGkpKSwq5du4iIiGD48OGcPXu2Qh2nTp0iIiKCYcOGMX78eOvxq+udOHFilWJOSkqyOS8+Pp6TJ0/y9NNPEx8fj5PTtUetenp68umnn/K///0PV1dX3NzcuHTpEl26dEF7k538L730Er1796Zz585ER0fzwgsvXHedjZUrV/Lqq6/y3//+Fy8vy++Xyu6puDlms5mSkhK6du2Kg4MDmzdvtn6WmppKZmYmPXv2rLQOR0dHGjRoYPMSQoj6TvKl30i+JPlSVclIKXFb/LxvHz9+u8nmmEZrwGy2jJQyY0QL2Gnsbk8AZ3/i9JlzgIHgggyaOzvTP7grGo30SlXH1z9ks/q7Q/wt0PIH4XxxE1p6t8DDo08tR3Z30tvr2TNyz40L3oZ2b1ZoaChLlixBp9Ph6+uLvb0969evv+F548aNIzw8nA0bNvDNN9/wxhtvMH/+fKZMmXIrodtwcXGxeZ+fn8+ECROu+SSpefPm1n8bDAYGDx7M4MGDmTNnDuHh4cyZM4ewsDCCgoLIzc3l9OnTFZ42lpaWkp6eTnh4+A1jGzJkiE3y6efnZxN3q1ataNWqFT169CAoKIgPP/yQmTNnWsucPn2a0NBQevXqxfLly23qvnq3lKp2BHTr1s3mvCZNmrB582bOnj1Lly5drMdNJhPbt29n8eLFlJSUYGdnR//+/UlPT+fcuXPY29vj7u6Ot7e3zVPcW3Hvvffy2muvUVJSYjPc/ZNPPmHcuHF8+umnNkPkK7un4vpmzpzJgAEDaN68OZcvX2blypV8++23bNy4ETc3N8aOHcv06dPx8PCgQYMGTJkyhZ49e9KjR4/aDl0IIYDay5fK274Zki9JviT50s2TTilxW/y89wQADvbe0LghLhddKXLsSFnxfpTSorCsM6XV3IbBekWXYFlfSlr/Azz78sSpzxkT0gn8bvyLUVRu8dafybl4CgKh0OjEl2feZcXAe258orgmjUZzy9Po7rTyxOBqbdu2paysjD179liHo58/f57U1FRCQkKs5Zo1a8bEiROZOHEiM2fO5IMPPmDKlCnWJ2hXr1cQGBiIg4MD+/btsyZGubm5pKWlcf/991caY5cuXThy5EiFOCuj0Who06YNu3btAuDRRx8lOjqa+fPnM3/+fJuyS5cupbCwkMcff/yG9RoMBgwGQ5ViKB+1Uu7UqVOEhobStWtX4uLiKjxhu5nrK6fX6yuc169fPw4fPmxz7P/9v/9HmzZtiI6Oxs7O9qFB+ZD5LVu2cPbsWYYMGXLTcVwtJSWFhg0b2iRYq1at4oknnuCTTz5h0KBBNuVv5p6K35w9e5bHH3+crKws3Nzc6NixIxs3biQsLAyABQsWoNVqGTp0KCUlJYSHh/PPf/6zlqMWQojfSL4k+RJIvlSX8yXplBI1ruDYHux/Xg40pInLcTq455Kc/xTFGnvMGhNgB1i2xrTX3oZvwfyzYCqh2M7yg+vYpC20f7Tm26lnysoKaKHfSluXkwDoHd1597E/1W5QolYFBQURGRnJ+PHjWbZsGQaDgRkzZuDn50dkZCQA06ZNY8CAAQQHB3Px4kW2bt1K27aWBfH9/f3RaDQkJCQwcOBA9Ho9BoOB0aNH8/zzz+Ph4YGXlxcxMTFotdobjnSMjo6mR48eTJ48mXHjxuHi4sKRI0dITExk8eLFpKSkEBMTQ1RUFCEhIeh0OrZt28ZHH31EdHQ0YHlCOG/ePJ577jmcnJyIiorCwcGBL774glmzZjFnzhzat29v025qamqFWNq1a4eDg+305IKCAubOncuQIUPw8fHh3LlzvP/++5w6dYphw4YBlgTrgQcewN/fn9jYWOvWx8AN1/gpf7KXn59PTk4OKSkp6HQ6m4T3agaDocK1uLi40KhRI5vjcXFxtG3bFk9PT3bv3s3TTz/NM888YzNFIDMzkwsXLpCZmYnJZLLG0qpVK1xdXfnf//7HmTNn6NGjB05OTiQmJvL666/bLJC6cuVKRo8ezXvvvce9995LdnY2YEkQ3dzcrnvd5e2ePm2ZKl7+9fD29r7hPasPPvzww0o/d3Jy4v333+f999+/QxEJIUT9IvmSheRLki9dV43sA1hH3W1bPv9RfPX8n9XSkQ+p2OGD1LtR/1CLJ2y2vmJHD1X+M9aqtkvDVPsV7VVeSV7NB3D6oFIxDdRf1v1bNdmSrD7PvlDzbdRDx48vUps2B1pfe/ZG1nZId5W6tsVxufItjt3c3JRer1fh4eE2WxxPnjxZtWzZUjk6OipPT08VFRWlzp07Z/189uzZytvbW2k0mkq3OL7nnnvUjBkzrOf5+/urBQsWVIhn7969KiwsTLm6uioXFxfVsWNHNXfuXKWUUjk5OWrq1Kmqffv2ytXVVRkMBtWhQwcVGxurTCaTTT3r1q1T9913n3JxcbFuwbxq1SqbMtfaprn8dfLkyQqxFRUVqUceeUT5+voqnU6nfHx81JAhQ9TevXutZeLi4q5b541c6xx/f/8bnne1a22PHB0drZo0aaIcHBxUUFCQmj9/vjKbzTZlRo8efc32t27dqpRS6quvvlJ/+tOfrF+XTp06qaVLl9rc9759+16zjvLvi+u53j2LiYm5qWv/vZrY4rg+kXsihKgJki9JviT5Uv3LlzRK1cDe4HVUXl4ebm5u5ObmygKeVVRw6SJLJ0RZ39s7P4S9Y0fLv40FXCybx1KfF3AOfBc310K2P7YdB7saXuz85F74MIyHu/0f37sEEde+BQM83Wu2jXokt8jI1FXJ/KnBP+nokURmnh8dA/5EQPO/4tGw8oVwxW+Ki4vJyMggICDguoskimsrKCjAz8+P+fPnM3bs2Dve/oULF+jXrx8NGjTgq6++wtn57phCIKqnsp9ZyQ8qknsihKgJki/dOsmXRG2oiXxJdt8TNcpkNF75lxYH10ex07Wn2/63uG/HC/TZNYu8/GBAy9TOk1gRsaLmO6QAyooBKNFapu853eSOB8LWjp/PsS0thzJjLgDf5zxAp/bvSoeUuG2Sk5NZtWoV6enpHDhwgFGjRgFYh7jfaR4eHmzatIl+/fqxe/fuWolBCCGEEOJqki+JukLWlBI1Km3XD1f+ZU/HtI0c9/yFbB8HGpc1Zb/HcRI9LQvvDQyMoLlHzfeeF5hMLD5vx7mgZ8nUWRaZc5ROqVumlMJ8cQ5v9NmHh1MeANP6d8XeTu6puL1iY2NJTU1Fp9PRtWtXkpKSrAtH1oZGjRrx8ssv11r7QgghhBC/J/mSqAukU0rUqJ++v7IzgUaDtuw8x7vcT1j+QHa7HuLHew+Tu80LyszY2VW+AN+t+jonlwWXXcD3t10OGuvk2/xW5BUb2ZDyI16mr/lt9K0G38btKztNiGrr3Lkz+/fvr+0whBBCCCH+sCRfEnWFDHcQNcpsKrvyLy0mjYnux+0oPPpf3vf+BJ1WR5nJsuueg/Y2dEqdOsDFPZZdhtrkHyf60maWhvgT7CLz0W/F8m3Hee+bAwAUlTmSVvYOvXttx8WlZS1HJoQQQgghhBCiLpAhJKJGmc2mK//SYtaaMGWlU3LhGBccSrDXOmC+sqy+3e3olNqzjOKLGmgQRof8NJ7Rn4QmDWu+nXri14uFODsUWt5o3fhz9/44OelrNyghhBBCCCGEEHWGdEqJGmVWlpFQaLSUac3ojAp1Zf0hhysLjwPY3451nkrzKdY2AkDfoid0fqrm26gncs5tpn+jZxjQ2LJovFcDT3zcpENKCCGEEEIIIUTNkU4pUXOKLtJI/cwlQIMWs8aErkxR6KCj6PTDbD/bylrU/nasKVVWTJHWMlVP37gVOLnVfBv1wGsJR3Ar/Q/t3Ausx9zdu9diREIIIYQQQggh6iJZU0rUmOOfDOcjr5Qr77SU2Vk6pQ56BFKW25Xs85ZOIndnBxztb8O3XlkJxVdGYznJ7nC3JDu3mA93ZFBccgmAz35+GL/WiQQFvVi7gQkhhBBCCCGEqHNkpJSoMYcLT1OkKd+mTYvWpMXebKbYzvJt5m4o5tVBPejY1B37Gu40Siso5gP3Qexy8APA6XasWVUPXMjPw9XhMg2dLKOkxvbtRRu/wFqOSgghhBBCCCFEXSSdUqLGOJ4083CGogxAo8VQ7IpGaybPXASAq95M5J/8bkvbizPP8F+3ntb3TXQOt6Wduiw/P42stEd4L7TYeqyFp3ctRiSEEEIIIYQQoi6TOU6iRiil8NpmpuOJ8m8pLUZ7BzTmMsquLGru7mi4be3nlVl2/RuUs435jUv4i+y6d1O2HD3DzE9WgvqtQ8rJqSkNGnSsxajEH8WYMWPQaDRoNBp0Oh2tWrVi9uzZlJWVVaveb7/9Fo1Gw6VLl2om0CrIyMhg5MiR+Pr64uTkRNOmTYmMjOTo0aM25RISEujbty8GgwFnZ2e6d+/OihUrbMqcOHECjUZDSkpKldt/5ZVXaNOmDS4uLjRs2JCHHnqIPXv22NQ5duxYAgIC0Ov1tGzZkpiYGEpLSyutNysri5EjRxIcHIxWq2XatGlVjunUqVP87W9/o1GjRuj1ejp06MD3339v/fzqr3/5KyIiwqaOFi1aVCjz5ptvWj9PTU0lNDSUJk2a4OTkRGBgIC+++CJGo9GmnkuXLjFp0iR8fHxwdHQkODiYL7/8stL4165dS//+/WnUqNFNfz2EEEKImiL5kuRLki/dGhkpJWpE/sXzaI1gtv+tU+poYBv67k+koctDADR29qj5hstKIW4AxY1GQsOuhJ/fyfCGfUDWlLop61NOYyzLBWDX6e6UGV7k1Qfb13JU4o8kIiKCuLg4SkpK+PLLL5k0aRIODg7MnDmztkMDoLS0FJ1OV2kZo9FIWFgYrVu3Zu3atfj4+PDrr7/y1Vdf2SR6ixYtYtq0aURHR7NkyRJ0Oh1ffPEFEydO5IcffiA2NvaW4wwODmbx4sUEBgZSVFTEggUL6N+/P8eOHcPT05OjR49iNptZtmwZrVq14ocffmD8+PEUFBRU2m5JSQmenp68+OKLLFiwoMrxXLx4kd69exMaGspXX32Fp6cnP//8Mw0b2nbsl3/9yzk6Ov6+KmbPns348eOt7w2G3x5EODg48Pjjj9OlSxfc3d05ePAg48ePx2w28/rrrwOWr2FYWBheXl6sWbMGPz8/fvnlF9zd3Su9hoKCAvr06cPw4cNt2hdCCCHuNMmXJF+SfOkWKHFdubm5ClC5ubm1HcofWsGhHHUyZoc60CVYbezZU8UOH6Tmj3xSHW4Too60bqPeeeIF5R+doJ6I21vzjWf/oFRMAxW5doVqsiVZfbHsr0oVXqj5duqwkpIc9eKqheqtlY+oTZsD1Z6UF5XZbK7tsOqcoqIideTIEVVUVFTbody00aNHq8jISJtjYWFhqkePHurChQsqKipKubu7K71eryIiIlRaWpq13IkTJ9TDDz+s3N3dlbOzswoJCVEbNmxQGRkZCrB5jR49WimlVF5enho5cqRydnZW3t7e6p133lF9+/ZVTz/9tLVef39/NXv2bBUVFaUMBoP13KSkJNWnTx/l5OSkmjZtqqZMmaLy8/OVUkolJycrQJ04ceK615qZmakcHBzU9OnTK3y2cOFCBajvvvtOKaWs15CcnHzzN/WK8r8zmzZtum6ZefPmqYCAgCrX+ft7VZno6GjVp0+fSstc6+v/e/7+/mrBggVVC/CKZ555xqbtJUuWqMDAQFVaWnpT9ZSria/H1Sr7mZX8oCK5J0KImiD5kuRL1yL5Ut3Ol2Q4iai24p/Os+/XjWxpFcThZpbRUBq0aJUZAHOL5gDY3Y7Fx42W9aqKHVwBcBryLuhl6l5V7Uo/R+LO/8cDXu/StclBABo38EKjkYXi7wSlFObCwjv+UkpVO3a9Xk9paSljxozh+++/Z/369ezevRulFAMHDrQOM540aRIlJSVs376dw4cP89Zbb+Hq6kqzZs347LPPAMtQ5aysLN577z0Apk+fzs6dO1m/fj2JiYkkJSVx4MCBCjHExsbSqVMnkpOTeemll0hPTyciIoKhQ4dy6NAhVq9ezY4dO5g8eTIAnp6eaLVa1qxZg8lkuuZ1rVmzBqPRyHPPPVfhswkTJuDq6sqqVauqff/A8qRr+fLluLm50alTp+uWy83NxcPjNow0BdavX0+3bt0YNmwYXl5edO7cmQ8++KBCuW+//RYvLy9at27NU089xfnz5yuUefPNN2nUqBGdO3fm7bffrnS6wrFjx/j666/p27evTSw9e/Zk0qRJNGnShPbt2/P6669f92slhBCifqitfKkmcibJl6pP8qW6ny/J9D1RbcqsOFV4zOaYg86XqTMacsmYx6iW98I3Z25Tp1QhAMV2TgA46fQ130YddT6/hKgP9zL//l9w0sHx3Oa09m2Bj3dkbYdWb6iiIlK7dL3j7bY+sB+Ns/ONC16DUorNmzezceNGBgwYwLp169i5cye9evUCID4+nmbNmrFu3TqGDRtGZmYmQ4cOpUOHDgAEBv62m2N54uDl5WUdcnz58mU+/vhjVq5cSb9+/QCIi4vD19e3QiwPPvggzz77rPX9uHHjGDVqlHV9gKCgIBYuXEjfvn1ZsmQJfn5+LFy4kBdeeIFXX32Vbt26ERoayqhRo6xxpaWl4ebmho+PT4X2dDodgYGBpKWl3dK9K5eQkMCIESMoLCzEx8eHxMREGjdufM2yx44dY9GiRdUaAl+Z48ePs2TJEqZPn86sWbPYt28fU6dORafTMXr0aMAyFP0vf/kLAQEBpKenM2vWLAYMGMDu3buxs7MDYOrUqXTp0gUPDw927drFzJkzycrK4p133rFpr1evXhw4cICSkhKefPJJZs+ebRPLli1bGDVqFF9++SXHjh3j73//O0ajkZiYmNty/UIIIf74aitfglvPmSRfknxJ8qWqk5FSovrMCvOVUVENtH3J8W9B38nDuOxgokSngSsD8m5Hp1RxaRGndZ4UlHdK3Y6OrzoqO68Yk9mMs71ltFmRy+v06f4Ren3zWo5M/BElJCTg6uqKk5MTAwYM4LHHHmPMmDHY29tz7733Wss1atSI1q1b89NPPwGWP75z5syhd+/exMTEcOjQoUrbOX78OEajkXvuucd6zM3NjdatW1co261bN5v3Bw8eZMWKFbi6ulpf4eHhmM1mMjIyAMuTyOzsbOLj4+nZsyeffvop7dq1IzExscr34kZrMYAl2bw6jqSkJOtnoaGhpKSksGvXLiIiIhg+fDhnz56tUMepU6eIiIhg2LBhNnP/r6534sSJVYo5KSnJ5rz4+HgAzGYzXbp04fXXX6dz5848+eSTjB8/nqVLl1rPHTFiBEOGDKFDhw78+c9/JiEhgX379vHttwH2EUUAAQAASURBVN9ay0yfPp0HHniAjh07MnHiRObPn8+iRYsoKSmxiWP16tUcOHCAlStXsmHDBpvk0Ww24+XlxfLly+natSuPPfYY//jHP6yxVHZPhRBCiD8CyZd+I/mS5EtVJSOlRPUpUFiGC+qNJVxwScPVw5Eyc9mVj29Pp1R+mYme2Y3I6bnGesxRFjivErO5lAtnP+HPLQ9ip7V0KE7q1xmtdOrdURq9ntYH9tdKuzcrNDTUuoilr68v9vb2rF+//obnjRs3jvDwcDZs2MA333zDG2+8wfz585kyZcqthG7DxcXF5n1+fj4TJkxg6tSpFco2b/5bZ6vBYGDw4MEMHjyYOXPmEB4ezpw5cwgLCyMoKIjc3FxOnz5d4WljaWkp6enphIeH3zC2IUOG2CSffn5+NnG3atWKVq1a0aNHD4KCgvjwww9tFkE9ffo0oaGh9OrVi+XLl9vUffVuKQ0aNLhhLGBJSK8+r0mTJgD4+PgQEhJiU7Zt27bWqQLXEhgYSOPGjTl27Jj16ezv3XvvvZSVlXHixAmbBLlZs2YAhISEYDKZePLJJ3n22Wexs7PDx8cHBwcH69PE8liys7MpLS2t9J4KIYSou2orXypv+2ZIviT5UjnJl6pOOqVEtZWWGSnD0gGlUQrQYmdnR5m6Mj/2doyUMhk5cfgrcsyWX5wOykSwwYVgZ6eaa6OOOpNXzP6j/8Uxfx6DW1qO2dm5Ymcn9+5O02g0tzyN7k4rTwyu1rZtW8rKytizZ491OPr58+dJTU21+cPdrFkzJk6cyMSJE5k5cyYffPABU6ZMsT5Bu3oOfGBgIA4ODuzbt8+aGOXm5pKWlsb9999faYxdunThyJEjFeKsjEajoU2bNuzatQuARx99lOjoaObPn8/8+fNtyi5dupTCwkIef/zxG9ZrMBhsdlOpjNlstnlCdurUKUJDQ+natStxcXFotbad7TdzfeX0ev01z+vduzepqak2x9LS0vD3979uXb/++ivnz5+/5pD9cikpKWi1Wry8vK5bxmw2YzQaMZvN2NnZ0bt3b1auXInZbLZec1paGj4+Puh0OnQ6XZXvqRBCiLpD8iXJl0DypbqcL0mnlKi2/OJCuLIIoEYp7LTONPFuYp3Sp5SlM8quJhfP/nEdRVsXQOd/0qLoV74r+AwejLvxeYInVuyjue4AjwbD6fwm5KsOPNp7eG2HJe5CQUFBREZGMn78eJYtW4bBYGDGjBn4+fkRGWlZm2zatGkMGDCA4OBgLl68yNatW2nbti0A/v7+aDQaEhISGDhwIHq9HoPBwOjRo3n++efx8PDAy8uLmJgYtFrtDRfgj46OpkePHkyePJlx48bh4uLCkSNHSExMZPHixaSkpBATE0NUVBQhISHodDq2bdvGRx99RHR0NGB5Qjhv3jyee+45nJyciIqKwsHBgS+++IJZs2YxZ84c2rdvb9Pu75MUgHbt2uHg4GBzrKCggLlz5zJkyBB8fHw4d+4c77//PqdOnWLYsGGAJcF64IEH8Pf3JzY2lpycHOv53t7elV5/+ZO9/Px8cnJySElJQafTVXiyd7VnnnmGXr168frrrzN8+HD27t3L8uXLrU8b8/PzefXVVxk6dCje3t6kp6fzwgsv0KpVK+sT0N27d7Nnzx5CQ0MxGAzs3r2bZ555hr/97W/WrZLj4+NxcHCgQ4cOODo68v333zNz5kwee+wx63166qmnWLx4MU8//TRTpkzh559/5vXXX7/mk9yrXbhwgczMTE6fPg389vXw9va+4T0TQgghbjfJlywkX5J86bpqZB/AOkq2N76xrOOX1M7nVqnYxwar2OGD1Mo/v6qef3OSKi4rVu1XtFftV7RXsd/8oPyjE1T0moM11/COd9X2BQ+oJluS1QPfJCp1OqXm6q7DzGazevCNj9Qr//qr2rQ5UL23drLadexcbYdVL9S1LY7LlW9x7ObmpvR6vQoPD7fZ4njy5MmqZcuWytHRUXl6eqqoqCh17txv33OzZ89W3t7eSqPRVLrF8T333KNmzJhhPe96W+ru3btXhYWFKVdXV+Xi4qI6duyo5s6dq5RSKicnR02dOlW1b99eubq6KoPBoDp06KBiY2OVyWSyqWfdunXqvvvuUy4uLtYtmFetWmVT5lrbNJe/Tp48WSG2oqIi9cgjjyhfX1+l0+mUj4+PGjJkiNq7d6+1TFxc3HXrvJFrnePv73/D8/73v/+p9u3bK0dHR9WmTRu1fPly62eFhYWqf//+ytPTUzk4OCh/f381fvx4lZ2dbS2zf/9+de+99yo3Nzfl5OSk2rZtq15//XVVXFxsLfPJJ5+oLl26WL8uISEh6vXXX6/w87Br1y517733KkdHRxUYGKjmzp2rysrKKo3/evcsJibmhtdemZrY4rg+kXsihKgJki9JviT5Uv3LlzRK1cDe4HVUXl4ebm5u5ObmVnkean2izIqjaxNoffhx3j3aGwX4lXYnI7KIqaNeosfKHgCM8VnNoi0ZjLq3OXMf6VAzjW+bxzeHtvJ4+zfobHDmq27BNVNvHfdz+rtk/rLI+r5l4LO0aPH3Woyo/iguLiYjI4OAgACcnGSq5M0oKCjAz8+P+fPnM3bs2Dve/oULF+jXrx8NGjTgq6++wvkumUIgqqeyn1nJDyqSeyKEqAmSL906yZdEbaiJfElWhRa3xGQ0s2r2HrJ27karMVPes6lRihTz90zePNla1jp9rybXlDIWUaR1BEAvi5vfUJnJzIZDWRzN3AdAgVGPi0swjT3DajkyISpKTk5m1apVpKenc+DAAUaNGgVgHeJ+p3l4eLBp0yb69evH7t27ayUGIYQQQoirSb4k6gpZU0rckssXirmYXYi34yWytL+t/K9VitNF2Vw6cwaARk6NMNdwp5RSiv0mF/Y3sMz7dZId427oyx+ymboqmejuZwluCJ8e+xv/njSjtsMS4rpiY2NJTU1Fp9PRtWtXkpKSaNy4ca3F06hRI15++eVaa18IIYQQ4vckXxJ1gXRKiVtiNlnGRtlpc3nOszFdrhzXKoXSwJTOU/Bz9aNj447E7yywlK2hhc6/PJfLWN1D0NTy3llGSt3QmfNH6eR5GE/nXAAeu+f6C/kJUds6d+7M/v21s/WzEEIIIcTdQPIlUVdIp5S4JWazpVNKi5Ec7W/fRhqlMGsgtFkoQQ2DADCZjwBgZ1cznVInikoB8DBeIkgHY/xa1ki9dVVJ6TlaqKeY2rnMeqxvG7lnQgghhBBCCCFql3RKiVuiyjulNEZM/NbZpFWK/F+eZMT7x7HT/ALA5WJLZ0iNjJT6ehYlOSZo+lcG5Wzn7ZZe0PCB6tdbRy3e8jN705IYHVyG0WRPmV0rAn3a4+ratrZDE0IIIYQQQghRz0mnlLgl5SOlNBgxqaunzynKjL7k5ZcBZTbnBDcxVL/h/Sso8fsrAI7mUvBuX/0667B/fptOoOE8AFkFTWje+iNC2jap5aiEEEIIIYQQQgjplBK36Pv1/6b4YiIm7UlMVx3XKDNmjZZuLRowe0gn63GDkz3NPGpgW9CyYoq1OgAcu42GFkHVr7OOulyQQ8sGhwhyTwcgyNuHPtIhJYQQQgghhBDiD0I6pcQtOXFwF1BGVpGBbj/orhzVWhY6R0NjVx0hvg1qtlFTGSgTJeWdUk6uNVt/HfLl4SzMZ0YyrUum9VgDF49ajEgIIYQQQgghhLAl25aJW6KUGYCThe40zbkyAkrjfGWhcy163W3o7zSVAFg7pZy08u17Lcdz8pkU/z2OmpMAnC5ohptbV5r6RdVyZEIIIYQQQgghxG9kpJS4aWVlZZjMYGzggUPeBYp1JgrcAvApeQDNpb2YNBpcdA413u6J/HxONOzGSSdvABy1NbObX12TlVuMs30RWo1l3a/mwSvp1tq3lqMSQgghhBBCCCFsyVATcVNOZf7KW2+8Sa5Pc0zOloXL853KKHDzRmvXGI1SKI0GvUPN9ndmlxjpfTCLER3ns6NhV0BGSl2L2VxCYdbfea336wDY2bnQVzqkRDWNGTMGjUaDRqNBp9PRqlUrZs+eTVlZ2Y1PrsS3336LRqPh0qVLNRNoFWRkZDBy5Eh8fX1xcnKiadOmREZGcvToUZtyCQkJ9O3bF4PBgLOzM927d2fFihU2ZU6cOIFGoyElJaXK7b/yyiu0adMGFxcXGjZsyEMPPcSePXts6hw7diwBAQHo9XpatmxJTEwMpaWlldablZXFyJEjCQ4ORqvVMm3atCrFYzKZeOmll2zae+2111BKWcusXbuW/v3706hRo+teb3p6Oo888gienp40aNCA4cOHc+bMmZu+rkOHDnHffffh5OREs2bNmDdv3g2vYfv27QwePBhfX180Gg3r1q2r0rULIYQQNUnyJcmXJF+6NfK/enFTjm06hP3xn3A5/iNO2b8AoDO741HYFACNMqE0WvQOdjXabmZRCSZAZy6lXUE69zd0pX/jGl6z6i63/5eLxHy2Fq1xP26OlwEwGGR3QlEzIiIiyMrK4ueff+bZZ5/llVde4e23367tsKxulIQAGI1GwsLCyM3NZe3ataSmprJ69Wo6dOhgk+gtWrSIyMhIevfuzZ49ezh06BAjRoxg4sSJPPfcc9WKMzg4mMWLF3P48GF27NhBixYt6N+/Pzk5OQAcPXoUs9nMsmXL+PHHH1mwYAFLly5l1qxZldZbUlKCp6cnL774Ip06daq07NXeeustlixZwuLFi/npp5946623mDdvHosWLbKWKSgooE+fPrz11lvXrKOgoID+/fuj0WjYsmULO3fupLS0lMGDB2M2m6t8XXl5efTv3x9/f3/279/P22+/zSuvvMLy5csrvYaCggI6derE+++/X+XrFkIIIW4HyZckX5J86RYocV25ubkKULm5ubUdyh9G4sLP1dsj/qJihw9SsY/9RcU+Nly9N2aRWjxhs1o8YbP6qt/flX90gvps/8maazT3tNqe/I1qsiVZ9V3/mVJv+tdc3XXImI/2qIfffktt2hyo/vVFTzXvf18ok6m4tsMSVxQVFakjR46ooqKi2g7lpo0ePVpFRkbaHAsLC1M9evRQFy5cUFFRUcrd3V3p9XoVERGh0tLSrOVOnDihHn74YeXu7q6cnZ1VSEiI2rBhg8rIyFCAzWv06NFKKaXy8vLUyJEjlbOzs/L29lbvvPOO6tu3r3r66aet9fr7+6vZs2erqKgoZTAYrOcmJSWpPn36KCcnJ9W0aVM1ZcoUlZ+fr5RSKjk5WQHqxIkT173WzMxM5eDgoKZPn17hs4ULFypAfffdd0opZb2G5OTkm7+pV5T/ndm0adN1y8ybN08FBARUuc7f36vKDBo0SD3xxBM2x/7yl7+oUaNGVSh7vevduHGj0mq1Nn8rL126pDQajUpMTLxu27+/rn/+85+qYcOGqqSkxHosOjpatW7dukrXopRSgPr888+rXL4ylf3MSn5QkdwTIURNkHxJ8qVrkXypbudLMlJK3BSTyYTmyiLnHtxHi+JO+F3Mwzv7O5r+uoUm55P5/O+9eKSzX801GjeAou3zAXAyl4CDc83VXYdcKCjF2b4IAE83P57sNwCt1rGWoxKVUUphLDHd8Ze6aqjxrdLr9ZSWljJmzBi+//571q9fz+7du1FKMXDgQIxGIwCTJk2ipKSE7du3c/jwYd566y1cXV1p1qwZn332GQCpqalkZWXx3nvvATB9+nR27tzJ+vXrSUxMJCkpiQMHDlSIITY2lk6dOpGcnMxLL71Eeno6ERERDB06lEOHDrF69Wp27NjB5MmTAfD09ESr1bJmzRpMJtM1r2vNmjUYjcZrPuGbMGECrq6urFq1qtr3DyxPK5cvX46bm1ulT+tyc3Px8Lg9u2f26tWLzZs3k5aWBsDBgwfZsWMHAwYMqHIdJSUlaDQaHB1/+33j5OSEVqtlx44d1z3v99e1e/du7r//fnQ6nfVYeHg4qampXLx48WYuSwghRB1SW/lSTeRMki9Vn+RLdT9fkoXORZWZzCY+dv6ELpjQAD5nvseh9ADFDgoUmIr9cP7bCFo3b1hzjSoFFzMobuwPgJODI/SNrrn664iMjEUMb/EZOq1l2p6vhydu+ppfbF7UrLJSM8uf3nbH233yvb44ON7aFFulFJs3b2bjxo0MGDCAdevWsXPnTnr16gVAfHw8zZo1Y926dQwbNozMzEyGDh1Khw4dAAgMDLTWVf4H1svLC3d3dwAuX77Mxx9/zMqVK+nXrx8AcXFx+PpWXBvtwQcf5Nlnn7W+HzduHKNGjbKuDxAUFMTChQvp27cvS5Yswc/Pj4ULF/LCCy/w6quv0q1bN0JDQxk1apQ1rrS0NNzc3PDx8anQnk6nIzAw0JqQ3KqEhARGjBhBYWEhPj4+JCYm0rhx42uWPXbsGIsWLSI2NrZabV7PjBkzyMvLo02bNtjZ2WEymZg7dy6jRo2qch09evTAxcWF6OhoXn/9dZRSzJgxA5PJRFZW1jXPudZ1ZWdnExAQYFOuSZMm1s8aNqzBvy1CCCHuGrWVL8Gt50ySL0m+9HuSL12fjJQSVfZL3i8cdjwKV0ZK2ZnLiBmpZcb/s+fNUQamhj6D05ixNduo0TLyp9jO0qOs9+sEXUfXbBt3sTKTmZlrUzh2fBHezifxcLoEgItzy9oNTNQ5CQkJuLq64uTkxIABA3jssccYM2YM9vb23HvvvdZyjRo1onXr1vz0008ATJ06lTlz5tC7d29iYmI4dOhQpe0cP34co9HIPffcYz3m5uZG69atK5Tt1q2bzfuDBw+yYsUKXF1dra/w8HDMZjMZGRmA5UlkdnY28fHx9OzZk08//ZR27dqRmJhY5Xtx9ZOp64mPj7eJIykpyfpZaGgoKSkp7Nq1i4iICIYPH87Zs2cr1HHq1CkiIiIYNmwY48ePtx6/ut6JEydWKeakpCSb8+Lj4wH473//S3x8PCtXruTAgQN8/PHHxMbG8vHHH1epXrA8Uf3000/53//+h6urK25ubly6dIkuXbqgvcaGFNe7rlu9BiGEEOKPQvKl30i+ZEvypeuTkVKiykqzUtAo0Fx5b2cu4+2zl3HKK2RD4cP8H+BgV8P9nMYiTGgpujINzVGrucEJ9UvyyUusO3CMhx60DK1dfPApFo3sja9n91qOTFSFvU7Lk+/1rZV2b1ZoaChLlixBp9Ph6+uLvb0969evv+F548aNIzw8nA0bNvDNN9/wxhtvMH/+fKZMmXIrodtwcXGxeZ+fn8+ECROYOnVqhbLNmze3/ttgMDB48GAGDx7MnDlzCA8PZ86cOYSFhREUFERubi6nT5+u8LSxtLSU9PR0wsPDbxjbkCFDbJJPP7/fpjS7uLjQqlUrWrVqRY8ePQgKCuLDDz9k5syZ1jKnT58mNDSUXr16VVi48urdXBo0qNqGD926dbM5r/yJ2vPPP8+MGTMYMWIEAB06dOCXX37hjTfeYPToqj8A6N+/P+np6Zw7dw57e3vc3d3x9va2edJ7o+vy9va22YEGsL739vamRYsW17wGIYQQdVtt5Uvlbd8MyZckX6qM5EvXJp1SosrKkv7NrM/MnHK3vLc3ldKDS2hK4F8myzd7TXdKfXDqPK/cn4hJY/lWdbpGL3J9dqkgHw8ny9xhhY43/vokTZvIroR3C41Gc8vT6O608sTgam3btqWsrIw9e/ZYh6OfP3+e1NRUQkJCrOWaNWvGxIkTmThxIjNnzuSDDz5gypQp1idoV69XEBgYiIODA/v27bMmRrm5uaSlpXH//fdXGmOXLl04cuRIhTgro9FoaNOmDbt27QLg0UcfJTo6mvnz5zN//nybskuXLqWwsJDHH3/8hvUaDAYMBkOVYjCbzZSUlFjfnzp1itDQULp27UpcXFyFp2c3c33l9Hr9Nc8rLCysUL+dnZ11F5ibVT6sfsuWLZw9e5YhQ4ZYP7vRdfXs2ZN//OMfGI1GHBws048TExNp3bq1dSj6rVy7EEKIu5vkS5IvgeRL5epiviSdUqJKjGcLKTpwGY/S7pziHADK3syJ770xNfJgva/lF6yuJjulykr55twlTBrLL2IN0Mvdtebqv8udv7ADzZnxzO5l2drVSdeQNt7SISXunKCgICIjIxk/fjzLli3DYDAwY8YM/Pz8iIyMBGDatGkMGDCA4OBgLl68yNatW2nbti0A/v7+aDQaEhISGDhwIHq9HoPBwOjRo3n++efx8PDAy8uLmJgYtFotGk3lIyWjo6Pp0aMHkydPZty4cbi4uHDkyBESExNZvHgxKSkpxMTEEBUVRUhICDqdjm3btvHRRx8RHW1Zq6558+bMmzeP5557DicnJ6KionBwcOCLL75g1qxZzJkzh/bt29u0m5qaWiGWdu3aWROFcgUFBcydO5chQ4bg4+PDuXPneP/99zl16hTDhg0DLInIAw88gL+/P7Gxsdatj8Hy9Ksy5U/F8vPzycnJISUlBZ1OZ5Pw/t7gwYOZO3cuzZs3p127diQnJ/POO+/wxBNPWMtcuHCBzMxMTp8+bXO93t7e1pji4uJo27Ytnp6e7N69m6effppnnnnGOo2gKtc1cuRIXn31VcaOHUt0dDQ//PAD7733HgsWLKj0uvPz8zl27Jj1fUZGBikpKXh4eNg88RVCCCFqg+RLFpIvSb50XTWyD2AdJdsb/ybr7X3qv0+8phaN/5+KHT5IxQ4fpBYMG6kOt2mrdg+NVP7RCco/OkEVlBhrrtFlfdXgzz9WTbYkq9VxT6rLxrKaq/su90XKKbU84Tm1aXOg9fXT0ZdrOyxRibq2xXG58i2O3dzclF6vV+Hh4TZbHE+ePFm1bNlSOTo6Kk9PTxUVFaXOnTtn/Xz27NnK29tbaTSaSrc4vueee9SMGTOs5/n7+6sFCxZUiGfv3r0qLCxMubq6KhcXF9WxY0c1d+5cpZRSOTk5aurUqap9+/bK1dVVGQwG1aFDBxUbG6tMJpNNPevWrVP33XefcnFxsW7BvGrVKpsy19qmufx18uTJCrEVFRWpRx55RPn6+iqdTqd8fHzUkCFD1N69e61l4uLirlvnjVzrHH9//0rPycvLU08//bRq3ry5cnJyUoGBgeof//iHzTbD14spJibGWiY6Olo1adJEOTg4qKCgIDV//nxlNptv+roOHjyo+vTpoxwdHZWfn5968803b3jdW7duvWa95d9Pt6omtjiuT+SeCCFqguRLki9JvlT/8iWNUjWwN3gdlZeXh5ubG7m5uVWeh1pXnXplN9t+3cMFbQAluR9gGbekiDiYTnbHIMYGTgDg57kDamYKn1Lwqjv9uyznkKE18Wov/R58svr11gEms6Lty1/zWNAqHmi2k/+lh+PlO4FZg66/RaqofcXFxWRkZBAQEICTk1Nth3NXKSgowM/Pj/nz5zN2bA1vplAFFy5coF+/fjRo0ICvvvoKZ2fnOx6DuPMq+5mV/KAiuSdCiJog+dKtk3xJ1IaayJdkgR5RJaYyIwWlpygrTgYs3aoA5/RubNKW/8JR2NfUQuQmy5S0Yq1l6p5T57/WTL11wLlLJ2nb8CC+rtkA9A5uxVMPtK3lqISoOcnJyaxatYr09HQOHDhg3W63fIj7nebh4cGmTZvo168fu3fvrpUYhBBCCCGuJvmSqCtkTSlRJWl5h8gr+em3AxoNpdjzZL9oSuwtHUcOdtxwDnOVGYsAKCnvlJIFzgEoMZZx5IdhTO18znrsvtYtaehy4y1XhbibxMbGkpqaik6no2vXriQlJVkXhawNjRo14uWXX6619oUQQgghfk/yJVEXSKeUqJKzprMAaLRu2KlSih21FJTZUWKvQ4OitXcDBnXwqbkGyyw7KxRrHQFwrKkRWHexralnmbYqiXfut3RIncwPoEuLVjRq9EDtBiZEDevcuTP79++v7TCEEEIIIf6wJF8SdYV0SokqMSnLFqQaez+czJcwFp/G5GjZctLFCb6eVvnWozcrNT+fTI8e5NtbpgY61eSufneppLRzOGjyASgu05Gh3mVMx/Y3OEsIIYQQQgghhPhjkk4pcUPKrDArMwAatCiNQgOYtHYA2NvVbHu/FJXwwNHLqA5vWY/p6/n0PZOphBZ2bzGpUwYADVwa8Wp/6ZASQgghhBBCCHH3kk4pcUP7/huHRllG6KCxQynLIuQmjaU3yq4mp9aZyvjl+B4UDdCbimld/Cudg3vg6+hQc23cZTb/dIbE5C8I894BVzY0cHVuWbtBCSGEEEIIIYQQ1VS/h5+IG7qwJxF9ejRJ7slXjmhRV0ZNFbtYOqUc7GqwUyrlPxRveQOANgXH+fr467wR3LTmFlC/Cy3ccowTOacByMzzw7lJLO3bL6zlqIQQQgghhBBCiOqRTilxXT8mneLH1Rs4qHekjPJOITtc7Brz2Ktvkd7Nsgi5fU2OlLqUSdGVxc2ddE7QN7rm6r4LKaUwGbPx1FsWNw/wbkOPkD/j4OBWy5EJIYQQQgghhBDVI9P3xHXt/jydthgxAVp1peNJo6VjcCeatmlH6XcKAIeaXIS8rOS3TinfTtCpfk9TS02L4ZmO8db3Tdw96/WoMSGEEEIIIYQQdYeMlBLXZSw1ocWISQNac3lHiBYjpXyd8TUFpUUA2Nfk9L2yYoqvdErV58XN80vKGPfx9xxM3waA0WyHnX1DvDz713JkQgghhBBCCCFEzai//+sXlVJKYS5TaDBiRoPWsowUGuz47sxent/+PLklBQDoamj7PbNS7FHuHDYEA+BUkyOw7jK7jp1j009n0GJZYH7xwefp1WsvjRr1reXIRH00ZswYNBoNGo0GnU5Hq1atmD17NmVlZdWq99tvv0Wj0XDp0qWaCbQKMjIyGDlyJL6+vjg5OdG0aVMiIyM5evSoTbmEhAT69u2LwWDA2dmZ7t27s2LFCpsyJ06cQKPRkJKSUuX2X3nlFdq0aYOLiwsNGzbkoYceYs+ePTZ1jh07loCAAPR6PS1btiQmJobS0tJK683KymLkyJEEBwej1WqZNm1aleK5fPky06ZNw9/fH71eT69evdi3b59Nmfz8fCZPnkzTpk3R6/WEhISwdOlSmzITJkygZcuW6PV6PD09r3lPMzMzGTRoEM7Oznh5efH8889f93to586d2Nvb86c//emG17B27Vr69+9Po0aNbvrrIYQQQtQUyZckX5J86dbU3//1i0rl5ZyjNP9/KONRyjS20/cKTJbOqOauAQA00DnXSJursi4Q6TKYeJ+HAXCuxyOlLhXm4WxfiKtDMQDvR92Pzr7+3g9R+yIiIsjKyuLnn3/m2Wef5ZVXXuHtt9+u7bCsbpSEABiNRsLCwsjNzWXt2rWkpqayevVqOnToYJPoLVq0iMjISHr37s2ePXs4dOgQI0aMYOLEiTz33HPVijM4OJjFixdz+PBhduzYQYsWLejfvz85OTkAHD16FLPZzLJly/jxxx9ZsGABS5cuZdasWZXWW1JSgqenJy+++CKdOnWqcjzjxo0jMTGRf//73xw+fJj+/fvz0EMPcerUKWuZ6dOn8/XXX/Of//yHn376iWnTpjF58mTWr19vLdO1a1fi4uL46aef2LhxI0op+vfvj8lkAsBkMjFo0CBKS0vZtWsXH3/8MStWrODll1+uENOlS5d4/PHH6devX5WuoaCggD59+vDWW29V+bqFEEKI20HyJcmXJF+6BUpcV25urgJUbm5ubYdyx+35Yq2KHT5IbZnYSf1z/D3qjZFhKnb4IPXu6LdVzIQnVKs3/6H+smSr8o9OUFEf7qmRNuccO6WabElW7b/epP787Ta1Pze/Ruq922Sf2aASNwepTZsDra/S0gu1HZaopqKiInXkyBFVVFRU26HctNGjR6vIyEibY2FhYapHjx7qwoULKioqSrm7uyu9Xq8iIiJUWlqatdyJEyfUww8/rNzd3ZWzs7MKCQlRGzZsUBkZGQqweY0ePVoppVReXp4aOXKkcnZ2Vt7e3uqdd95Rffv2VU8//bS1Xn9/fzV79mwVFRWlDAaD9dykpCTVp08f5eTkpJo2baqmTJmi8vMtv0uSk5MVoE6cOHHda83MzFQODg5q+vTpFT5buHChAtR3332nlFLWa0hOTr75m3pF+d+ZTZs2XbfMvHnzVEBAQJXr/P29up7CwkJlZ2enEhISbI536dJF/eMf/7C+b9eunZo9e3alZX7v4MGDClDHjh1TSin15ZdfKq1Wq7Kzs61llixZoho0aKBKSkpszn3sscfUiy++qGJiYlSnTp1ueB3lauLrcbXKfmbrc35wPXJPhBA1QfIlyZeuRfKlup0vydALcU1lJZZe9F8vN6Iw1xOHMh0AGo0T+QUBGC/2ZP8Jy4iphs4O1W+wtIDS4jwAHsv+ms8Nv9ClgUv1673L/OPzw/z728/QYLIec3e/B3t799oLStw2SimMxcV3/KWUqnbser2e0tJSxowZw/fff8/69evZvXs3SikGDhyI0WgEYNKkSZSUlLB9+3YOHz7MW2+9haurK82aNeOzzz4DIDU1laysLN577z3A8qRp586drF+/nsTERJKSkjhw4ECFGGJjY+nUqRPJycm89NJLpKenExERwdChQzl06BCrV69mx44dTJ48GQBPT0+0Wi1r1qyxPpH6vTVr1mA0Gq/5hG/ChAm4urqyatWqat8/sDytXL58OW5ubpU+rcvNzcXDw6NG2rxaWVkZJpMJJycnm+N6vZ4dO3ZY3/fq1Yv169dz6tQplFJs3bqVtLQ0+ve/9hp3BQUFxMXFERAQQLNmzQDYvXs3HTp0oEmTJtZy4eHh5OXl8eOPP1qPxcXFcfz4cWJiYmryUoUQQtzFaitfqomcSfKl6pN8qe7nS7L7nrgmU5mJhjpvMJ8GoPHlAvIa3YdGF8RhtwsADO/eBH8PdyL/5Fu9xvJOw+LuFDcfD35/xtFcCvaO1b2Eu865/BLi92QyseMlAFYdfYS+f3qKBzsHyo57dVRZSQkLRz96x9ud+vEaHH73h7WqlFJs3ryZjRs3MmDAANatW8fOnTvp1asXAPHx8TRr1ox169YxbNgwMjMzGTp0KB06dAAgMDDQWld54uDl5YW7uztgmbP/8ccfs3LlSutw5Li4OHx9K/6eefDBB3n22Wet78eNG8eoUaOs6wMEBQWxcOFC+vbty5IlS/Dz82PhwoW88MILvPrqq3Tr1o3Q0FBGjRpljSstLQ03Nzd8fHwqtKfT6QgMDCQtLe2W7l25hIQERowYQWFhIT4+PiQmJtK4ceNrlj127BiLFi0iNja2Wm1ei8FgoGfPnrz22mu0bduWJk2asGrVKnbv3k2rVq2s5RYtWsSTTz5J06ZNsbe3R6vV8sEHH3D//ffb1PfPf/6TF154gYKCAlq3bk1iYiI6neWBRnZ2tk2CBVjfZ2dnA/Dzzz8zY8YMkpKSsLeX9EQIIYRFbeVLcOs5k+RLki9JvlR1MlJKXJOprIy27j0wmy3fInpjHiXundFoHLjsYFlDanTvZkwKbUXThtVcU+rMj1CaT4nW8sPo5OgMzXtWr8670JnzKdzvt4umhjMATHigK3/rKR1S4o8hISEBV1dXnJycGDBgAI899hhjxozB3t6ee++911quUaNGtG7dmp9++gmAqVOnMmfOHHr37k1MTAyHDh2qtJ3jx49jNBq55557rMfc3Nxo3bp1hbLdunWzeX/w4EFWrFiBq6ur9RUeHo7ZbCYjIwOwPInMzs4mPj6enj178umnn9KuXTsSExOrfC/KE4fKxMfH28SRlJRk/Sw0NJSUlBR27dpFREQEw4cP5+zZsxXqOHXqFBEREQwbNozx48dbj19d78SJE6sUc1JSks158fHxAPz73/9GKYWfnx+Ojo4sXLiQv/71r2ivWtNv0aJFfPfdd6xfv579+/czf/58Jk2axKZNm2zaGDVqFMnJyWzbto3g4GCGDx9OcXFxleIzmUyMHDmSV199leDg4GuWqeyeCiGEEH8Eki/9RvIlyZeqqm50rYka9euvv/JDVjaqgRmHnDLAnjI7BVg6R5Sy7Lbn7HDjXzRVYiwCoNTV0tOuu+8ZcPeqmbrvEj+dPsvp9CcY3e63X0iBTZpKh1QdZ+/oyNSP19RKuzcrNDSUJUuWoNPp8PX1xd7e3mbhxusZN24c4eHhbNiwgW+++YY33niD+fPnM2XKlFsJ3YaLi+0U3/z8fCZMmMDUqVMrlG3evLn13waDgcGDBzN48GDmzJlDeHg4c+bMISwsjKCgIHJzczl9+nSFp42lpaWkp6cTHh5+w9iGDBlik3z6+fnZxN2qVStatWpFjx49CAoK4sMPP2TmzJnWMqdPnyY0NJRevXqxfPlym7qv3i2lQYMGN4wFLAnp1eeVP3Vr2bIl27Zto6CggLy8PHx8fHjsscesT0KLioqYNWsWn3/+OYMGDQKgY8eOpKSkEBsby0MPPWSt083NDTc3N4KCgujRowcNGzbk888/569//Sve3t7s3bvXJqYzZywd8N7e3ly+fJnvv/+e5ORk6/QBs9mMUgp7e3u++eabSu+pEEKIuqu28qXytm+G5EuSL0m+dPOkU0pU8M2Xm8g9l4NnTg5GE6CFUnuF9soSZGa0gEJfw51SJXaWX/qO9WzXveTMi4yP+4q37iumzKzll4I/0bdtexo2vPfGJ4u7mkajueVpdHdaeWJwtbZt21JWVsaePXusw9HPnz9PamoqISEh1nLNmjVj4sSJTJw4kZkzZ/LBBx8wZcoU6xO0q9crCAwMxMHBgX379lkTo9zcXNLS0ioMf/69Ll26cOTIkQpxVkaj0dCmTRt27doFwKOPPkp0dDTz589n/vz5NmWXLl1KYWEhjz/++A3rNRgMGAyGKsVgNpspKSmxvj916hShoaHWHVq0v/udeDPXV06v11d6nouLCy4uLly8eJGNGzcyb948wLIDj9ForBCDnZ0dZrP5uvUppVBKWa+rZ8+ezJ07l7Nnz+LlZXnokJiYSIMGDQgJCcHBwYHDhw/b1PHPf/6TLVu2sGbNGgICAnBxcanyPRVCCFF3SL4k+RJIvlSX8yXplBI2cnMKObdzM07FF7kMoLV8i5TozOh0jlBm2fYBwNmhBhY4ByizdEoVa8s7perX6KC0M5dxsS8EoMjkhk+L92gdXM11uoS4A4KCgoiMjGT8+PEsW7YMg8HAjBkz8PPzIzIyEoBp06YxYMAAgoODuXjxIlu3bqVt27YA+Pv7o9FoSEhIYODAgej1egwGA6NHj+b555/Hw8MDLy8vYmJi0Gq1Nxw5GB0dTY8ePZg8eTLjxo3DxcWFI0eOkJiYyOLFi0lJSSEmJoaoqChCQkLQ6XRs27aNjz76iOjoaMDyhHDevHk899xzODk5ERUVhYODA1988QWzZs1izpw5tG/f3qbd1NTUCrG0a9cOh9/9jiwoKGDu3LkMGTIEHx8fzp07x/vvv8+pU6cYNmwYYEmwHnjgAfz9/YmNjbVufQyWJ2SVKX+yl5+fT05ODikpKeh0OpuE9/fKtyNu3bo1x44d4/nnn6dNmzb8v//3/wDLk8W+ffvy/PPPo9fr8ff3Z9u2bfzrX//inXfeASxTCFavXk3//v3x9PTk119/5c0330Sv1zNw4EAA+vfvT0hICFFRUcybN4/s7GxefPFFJk2ahOOVp9C/v69eXl44OTlVOP57Fy5cIDMzk9OnLWsgln89vL29b3jPhBBCiNtN8iULyZckX7qumtgGsK6qj9sb/5p6Qb09/GEVO3yQih0+WMUOH6LeGTFaxT71X7V4wia1eMJm1e25Dco/OkEVlZZVu70LpUbVe+su5Z/4nfLefEA12ZKs1mZfqIEruTsUFp5Ua7ZMV/M/Gaw2bQ5Uu7+LqO2QxG1S17Y4Lle+xbGbm5vS6/UqPDzcZovjyZMnq5YtWypHR0fl6empoqKi1Llz56yfz549W3l7eyuNRlPpFsf33HOPmjFjhvU8f39/tWDBggrx7N27V4WFhSlXV1fl4uKiOnbsqObOnauUUionJ0dNnTpVtW/fXrm6uiqDwaA6dOigYmNjlclksqln3bp16r777lMuLi7WLZhXrVplU+Za2zSXv06ePFkhtqKiIvXII48oX19fpdPplI+PjxoyZIjau3evtUxcXNx167yRa53j7+9f6TmrV69WgYGBSqfTKW9vbzVp0iR16dIlmzJZWVlqzJgxytfXVzk5OanWrVur+fPnK7PZrJRS6tSpU2rAgAHKy8tLOTg4qKZNm6qRI0eqo0eP2tRz4sQJNWDAAKXX61Xjxo3Vs88+q4xG43Vjq+oWx9e7ZzExMTc8tzI1scVxfSL3RAhREyRfknxJ8qX6ly9plKqBvcHrqLy8PNzc3MjNza3yPNS7XcahLNbOtSwQ5+g+CY3Gdh61yc7I+y5llGjh+OsD0VZnVJNSbD5+hFGZRushJ62Gjd1a09rl7hiiWx17My5w5OgrNHPcYD3WqFFf/tTpo1qMStwuxcXFZGRkEBAQUGFLWVG5goIC/Pz8mD9/PmPHjr3j7V+4cIF+/frRoEEDvvrqK5ydq7m5g7grVPYzWx/zgxuReyKEqAmSL906yZdEbaiJfKlWFu9p0aIFGo2mwmvSpEkAPPDAAxU++/2K+ZmZmQwaNAhnZ2e8vLx4/vnnKSsrsynz7bff0qVLFxwdHWnVqhUrVqy4U5d41ypK3n/VOwe6a9dwtuWrfNpxHp92nMeKDm9TogU0pup1SAEk/4eir2YA8Ke8n9hXtJbDvdvXiw4pgJfW/cCZS78CkHy2Pec0Y2kd/ErtBiXEH0BycjKrVq0iPT2dAwcOMGrUKADrEPc7zcPDg02bNtGvXz92795dKzEIIYQQQlxN8iVRV9TKmlL79u2zWajthx9+ICwszDpHFGD8+PHMnj3b+v7qnlaTycSgQYPw9vZm165dZGVl8fjjj+Pg4MDrr78OQEZGBoMGDWLixInEx8ezefNmxo0bh4+PT5V2AqivTsevhoYAdmg0WnydvqfY+RznXVwou9wG56JQAJzsa+BbJ+coRVpLB5S7VtGs3QCwt6t+vXcBs7kMO/NxPJwuAdDUZwgD730cvVMNrdMlxF0uNjaW1NRUdDodXbt2JSkpicaNG9daPI0aNeLll1+utfaFEEIIIX5P8iVRF9RKp5Snp6fN+zfffJOWLVvSt29f6zFnZ+frLrj1zTffcOTIETZt2kSTJk3405/+xGuvvUZ0dDSvvPIKOp2OpUuXEhAQYN0NoG3btuzYsYMFCxZIp9R1HNy0ncNeXmC8CBrLLg/fN/QjsywfgLKCYM5f9AegsWsNjGYqK6b4yo57+hY9wT+g+nXeJQ4ffopnO2+xvg9rH4xBOqSEAKBz587s37//xgWFEEIIIeopyZdEXVEr0/euVlpayn/+8x+eeOIJm50C4uPjady4Me3bt2fmzJkUFhZaP9u9ezcdOnSgSZMm1mPh4eHk5eXx448/Wss89NBDNm2Fh4fLUMLrUEqx7V+LMRstq/Ab7TXsbv4FLzU/xg/uV0YvKXsaNijk+fDWLP1b1+o3aiym6MqOe071ZMe9X84X8PIXP/BrTgoAl0tdcDV0xs2tS+0GJoQQQgghhBBC3GG1MlLqauvWrePSpUuMGTPGemzkyJH4+/vj6+vLoUOHiI6OJjU1lbVr1wKQnZ1t0yEFWN9nZ2dXWiYvL4+ioiL0en2FWEpKSigpKbG+z8vLq5FrvBvsXPMzxhJLx5+Ttg2bO28it+GP+F10pMHlUi64+pJ+uS2efkVMCm1V7faMZsUOjRcpBsu0TL1drfeP3hFLt6Wzau9J7n0wH7TwXsoLbIkedcOtW4UQQgghhBBCiLqm1julPvzwQwYMGICvr6/12JNPPmn9d4cOHfDx8aFfv36kp6fTsmXL2xbLG2+8wauvvnrb6v8jU2kXrf921rZmweW1/PqLJ8XJGgJzivjnw/dzzN6AnfZCjbS34tQ5XmoQCVcW4XepJ51SZ/NK0GpMONmXAjBveG/pkBJCCCGEEEIIUS/Vak/AL7/8wqZNmxg3blyl5e69914Ajh07BoC3tzdnzpyxKVP+vnwdquuVadCgwTVHSQHMnDmT3Nxc6+vkyZM3f1F3KTvjbzsXasxm/qX5K/tzW+D+5z/T9J/vkx1i6TS0t6uZDpSTxZZOGb/iMzxon89In0Y1Uu8fVWmZmb0/LKG/17O82vNN6/GuLfxqMSohhBBCCCGEEKL21GqnVFxcHF5eXgwaNKjScikpKQD4+PgA0LNnTw4fPszZs2etZRITE2nQoAEhISHWMps3b7apJzExkZ49e163HUdHRxo0aGDzqi+U+apOKRR2yg5Q6EPaYXjwQYxYOqPsq7v2k8kIm2dTcmwrAH/N3sDKhmdp63rtjsK64okV+ziZuZzGTqfwdbV0lur1/mi1ulqOTAghhBBCCCGEqB211illNpuJi4tj9OjR2Nv/NoswPT2d1157jf3793PixAnWr1/P448/zv3330/Hjh0B6N+/PyEhIURFRXHw4EE2btzIiy++yKRJk3B0tCycPXHiRI4fP84LL7zA0aNH+ec//8l///tfnnnmmVq53j86ZTZf9c6EBg0ohdbOssh5mUkB4FDdaXYnkiBpPiUXMwFwNJeCa5MbnHT3++H0JVx1BQAkZk2hXYd/0b3b57UclRBCCCGEEEIIUXtqbU2pTZs2kZmZyRNPPGFzXKfTsWnTJt59910KCgpo1qwZQ4cO5cUXX7SWsbOzIyEhgaeeeoqePXvi4uLC6NGjmT17trVMQEAAGzZs4JlnnuG9996jadOm/N///R/h4eF37BrvFkop7E7suvqIpVMK0GotnVAms6VTqtrT94pzAShxagiAY4eh4N+renX+wWVlf0F4s/9hrzUBMHfEBOzs6vbIMCGEEEIIIYQQ4kZqbaRU//79UUoRHBxsc7xZs2Zs27aN8+fPU1xczM8//8y8efMqTKXz9/fnyy+/pLCwkJycHGJjY21GXAE88MADJCcnU1JSQnp6us0Of+I3JWk/o09ZZX1v1lo6oFAKZ3dL55F1pJS2mt8yZZbdDUsd3QBw9OsMdXih7x9P/syRI9Pp72+Zrmhv7yYdUuKuM2bMGDQaDRqNBp1OR6tWrZg9ezZlZWU3PrkS3377LRqNhkuXLtVMoFWQkZHByJEj8fX1xcnJiaZNmxIZGcnRo0dtyiUkJNC3b18MBgPOzs50796dFStW2JQ5ceIEGo3GOsW8Kl555RXatGmDi4sLDRs25KGHHmLPnj02dY4dO5aAgAD0ej0tW7YkJiaG0tLSSuvNyspi5MiRBAcHo9VqmTZtWpXi2b59O4MHD8bX1xeNRsO6desqlFm7di39+/enUaNGN7xepRQDBgy4bl0rVqygY8eOODk54eXlxaRJk2w+37hxIz169MBgMODp6cnQoUM5ceKETZn4+Hg6deqEs7MzPj4+PPHEE5w/f77a1ymEEEJUh+RLki9JvnRr6seWZ6JSptxLmK39Qnb86mmZytfviQkcccvmvQPvcb7IMsKp2tP3yooBKNZaplnqqrtG1R/YtrQcJv07EYBCoxOJmQ/Svt2iWo5KiFsTERFBVlYWP//8M88++yyvvPIKb7/9dm2HZXWjJATAaDQSFhZGbm4ua9euJTU1ldWrV9OhQwebRG/RokVERkbSu3dv9uzZw6FDhxgxYgQTJ07kueeeq1acwcHBLF68mMOHD7Njxw5atGhB//79ycnJAeDo0aOYzWaWLVvGjz/+yIIFC1i6dCmzZs2qtN6SkhI8PT158cUX6dSpU5XjKSgooFOnTrz//vuVlunTpw9vvfXWDet79913r7uj6DvvvMM//vEPZsyYwY8//simTZtsRi9nZGQQGRnJgw8+SEpKChs3buTcuXP85S9/sZbZuXMnjz/+OGPHjuXHH3/k008/Ze/evYwfP77a1ymEEEJUl+RLki9JvnQLlLiu3NxcBajc3NzaDuW2OvTaM+r7Du1V7PBBKnZ4pHphxjsqJiZGHT19VLVf0V61X9FetXz9VeUfnaCmrPmieo3tXqJUTAP16NdfqCZbktXa7As1cxF/QMu2HVMD3opVmzYHqpUJ96t3E9NqOyRRi4qKitSRI0dUUVFRbYdy00aPHq0iIyNtjoWFhakePXqoCxcuqKioKOXu7q70er2KiIhQaWm/fa+fOHFCPfzww8rd3V05OzurkJAQtWHDBpWRkaEAm9fo0aOVUkrl5eWpkSNHKmdnZ+Xt7a3eeecd1bdvX/X0009b6/X391ezZ89WUVFRymAwWM9NSkpSffr0UU5OTqpp06ZqypQpKj8/XymlVHJysgLUiRMnrnutmZmZysHBQU2fPr3CZwsXLlSA+u6775RSynoNycnJN39Tryj/O7Np06brlpk3b54KCAiocp2/v1dVBajPP//8up/f6HqTk5OVn5+fysrKqlDXhQsXlF6vr/Q6P/30U2Vvb69MJpP12Pr165VGo1GlpaVKKaXefvttFRgYaHPewoULlZ+f340v8IobXWe5yn5m60t+cDPkngghaoLkS5IvXYvkS7+pi/mSjJQSXDr5JerKGlJo7HBCQ2RkJEYHI6ZiX7QF3Wls3waAkMatb7mdQ5cLiSxuw0Nd/o/9DpadFOvqSKnCwl9wKVnGQ/7bAAj28eXph4JqOSrxR6OUwlxquuMvy9+Z6tHr9ZSWljJmzBi+//571q9fz+7du1FKMXDgQIxGIwCTJk2ipKSE7du3c/jwYd566y1cXV1p1qwZn332GQCpqalkZWXx3nvvATB9+nR27tzJ+vXrSUxMJCkpiQMHDlSIITY2lk6dOpGcnMxLL71Eeno6ERERDB06lEOHDrF69Wp27NjB5MmTAfD09ESr1bJmzRpMJtM1r2vNmjUYjcZrPuGbMGECrq6urFq16hpn3rzS0lKWL1+Om5tbpU/rcnNz8fDwqJE2b5fCwkJGjhzJ+++/j7e3d4XPExMTMZvNnDp1irZt29K0aVOGDx/OyZMnrWW6du2KVqslLi4Ok8lEbm4u//73v3nooYdwcHAALDvrnjx5ki+//BKlFGfOnGHNmjUMHDjwjl2rEEKIO6u28qWayJkkX6o+yZfqfr5Uawudiz+O86oXWV0fgML/Ahp6Bz5A585/YvPx7ynMmAxoyb1S1uDkdMvtrMm+yB7lDgZ367EWesdbD/wP6j/f/UJe9ku0brATb0/LMUedV+0GJf6QlNHM6Zd33bhgDfOd3QuNzu6WzlVKsXnzZjZu3MiAAQNYt24dO3fupFcvy4YF8fHxNGvWjHXr1jFs2DAyMzMZOnQoHTp0ACAwMNBaV3ni4OXlhbu7OwCXL1/m448/ZuXKlfTr1w+AuLg4fH19K8Ty4IMP8uyzz1rfjxs3jlGjRlnXBwgKCmLhwoX07duXJUuW4Ofnx8KFC3nhhRd49dVX6datG6GhoYwaNcoaV1paGm5ubvj4+FRoT6fTERgYSFpa2i3du3IJCQmMGDGCwsJCfHx8SExMpHHjxtcse+zYMRYtWkRsbGy12rzdnnnmGXr16kVkZOQ1Pz9+/Dhms5nXX3+d9957Dzc3N1588UXCwsI4dOgQOp2OgIAAvvnmG4YPH86ECRMwmUz07NmTL7/80lpP7969iY+P57HHHqO4uJiysjIGDx4s0/KEEKIOq618CW49Z5J8SfKla5F86dpkpJTgkqYrZXblnUN2eLdqBMCZ3BJAi0ZTRs/ARgzq4EP/kIo9ulWSsorCH9YBMDz7K1aVbuPbe1rTzrXuLfo9/5tUTEbLfOf9ZzpSqn+Cli2fr+WohKiehIQEXF1dcXJyYsCAATz22GOMGTMGe3t77r33Xmu5Ro0a0bp1a3766ScApk6dypw5c+jduzcxMTEcOnSo0naOHz+O0WjknnvusR5zc3OjdeuKozS7detm8/7gwYOsWLECV1dX6ys8PByz2UxGRgZgeRKZnZ1NfHw8PXv25NNPP6Vdu3YkJiZW+V7odLoblomPj7eJIykpyfpZaGgoKSkp7Nq1i4iICIYPH87Zs2cr1HHq1CkiIiIYNmyYzRoAV9c7ceLEKsWclJRkc158fHyVzquK9evXs2XLFt59993rljGbzRiNRhYuXEh4eDg9evRg1apV/Pzzz2zdatkIIjs7m/HjxzN69Gj27dvHtm3b0Ol0PProo9Yn1UeOHOHpp5/m5ZdfZv/+/Xz99decOHHCeh9u53UKIYQQNyL50m8kX7Il+dL1yUipek4phbHsMmazZeioxt5Mx9BmAJSUWYZr6hwLWPVkj+o1tGsRxR5/BqBtwXFCW94DLnWvQ8pkMlNWdgGDLh+Anh2eoHfIw2jr6DRFUT0aBy2+s3vVSrs3KzQ0lCVLlqDT6fD19cXe3p7169ff8Lxx48YRHh7Ohg0b+Oabb3jjjTeYP38+U6ZMuZXQbbi4uNi8z8/PZ8KECUydOrVC2ebNm1v/bTAYGDx4MIMHD2bOnDmEh4czZ84cwsLCCAoKIjc3l9OnT1d42lhaWkp6errNYpPXM2TIEJvk08/PzybuVq1a0apVK3r06EFQUBAffvghM2fOtJY5ffo0oaGh9OrVi+XLl9vUffVuLr/fmfZ6unXrZnNekyZNqnReVWzZsoX09HTr09tyQ4cO5b777uPbb7+1PkkNCQmxfu7p6Unjxo3JzMwE4P3338fNzY158+ZZy/znP/+hWbNm7Nmzhx49evDGG2/Qu3dvnn/e0tHfsWNHXFxcuO+++5gzZ85tvU4hhBC1o7bypfK2b4bkS5IvXY/kS9cnnVL13NEd35KXv8P6XnNV50lxmaWjSqs1V78hYwFFWktvub7HBAjpUv06/4BSDk3g3Qe2WN93bN5cOqTEdWk0mlueRnenlScGV2vbti1lZWXs2bPHOhz9/PnzpKam2vwxbdasGRMnTmTixInMnDmTDz74gClTplifoF29XkFgYCAODg7s27fPmhjl5uaSlpbG/fffX2mMXbp04ciRIxXirIxGo6FNmzbs2mWZFvDoo48SHR3N/PnzmT9/vk3ZpUuXUlhYyOOPP37Deg0GAwaDoUoxmM1mSkpKrO9PnTpFaGgoXbt2JS4uDq3WNiG+mesrp9frb+m8qpgxYwbjxo2zOdahQwcWLFjA4MGDAcswcrCsh9G0aVMALly4wLlz5/D39wcs6yz8/lrt7Cw/H2az2VrG3t7+mmWUUrf1OoUQQtQOyZckXwLJl+pyviSdUvXc6Z9/sfxD44i9yYiTX7D1s/KRUnba6i+KjLGYIq1lPSqnRgGgrVszR384lcuYuL28dm8S5X8znZ1b4eoSXPmJQtzFgoKCiIyMZPz48SxbtgyDwcCMGTPw8/OzzpWfNm0aAwYMIDg4mIsXL7J161batm0LgL+/PxqNhoSEBAYOHIher8dgMDB69Gief/55PDw88PLyIiYmBq1We92tc8tFR0fTo0cPJk+ezLhx43BxceHIkSMkJiayePFiUlJSiImJISoqipCQEHQ6Hdu2beOjjz4iOjoasDwhnDdvHs899xxOTk5ERUXh4ODAF198waxZs5gzZw7t27e3aTc1NbVCLO3atbMuNlmuoKCAuXPnMmTIEHx8fDh37hzvv/8+p06dYtiwYYAlwXrggQfw9/cnNjbWuvUxcM0FMa9W/sQrPz+fnJwcUlJS0Ol0Ngnv7+Xn53Ps2DHr+4yMDFJSUvDw8LAmuRcuXCAzM5PTp0/bXK+3t7fN6/eaN29OQEAAYNnaOTIykqeffprly5fToEEDZs6cSZs2bQgNDQVg0KBBLFiwgNmzZ/PXv/6Vy5cvM2vWLPz9/encuTMAgwcPZvz48SxZsoTw8HCysrKYNm0a99xzzzXX0biZ6xRCCCFuB8mXLCRfknzpuqq8J2A9VNe3Nz6655SKHR2tYocPUgui/qFWDRmuVv7z39bP39jypfKPTlAd5n5c/cbeaKYeWfuRarIlWX2efaH69f3BLPn2mGo1c63atDlQbdocqJ5csVWZzebaDkv8gdS1LY7LlW9x7ObmpvR6vQoPD7fZ4njy5MmqZcuWytHRUXl6eqqoqCh17tw56+ezZ89W3t7eSqPRVLrF8T333KNmzJhhPc/f318tWLCgQjx79+5VYWFhytXVVbm4uKiOHTuquXPnKqWUysnJUVOnTlXt27dXrq6uymAwqA4dOqjY2FibbXWVUmrdunXqvvvuUy4uLtYtmFetWmVT5lrbNJe/Tp48WSG2oqIi9cgjjyhfX1+l0+mUj4+PGjJkiNq7d6+1TFxc3HXrvJFrnePv71/pOVu3br3meeVfi8piiomJqTSW328jnJubq5544gnl7u6uPDw81COPPKIyMzNtyqxatUp17txZubi4KE9PTzVkyBD1008/2ZRZuHChCgkJUXq9Xvn4+KhRo0apX3/9tdrX+Xs1scVxfSL3RAhREyRfknxJ8qX6ly9plKqBvcHrqLy8PNzc3MjNza3yPNS7yQeTp1JYdJmy/BzsHLvQJO8nfEeOp+/w/gDMTvwfH23W0tD9HMkzRt9yOx/9msOyQ/vIcmxMqVbHvzoE0L+xW01dRq0zmUr4ePMSDv2SxuCWGwE7Qh84WmFYpajfiouLycjIICAgAKdq7GJZHxUUFODn58f8+fMZO3bsHW//woUL9OvXjwYNGvDVV1/h7Ox8x2MQd15lP7N1PT+4FXJPhBA1QfKlWyf5kqgNNZEvyf+a6yllNpOXcxxn+/LOIS32aLin02+7M5SWWeak2lXzu+Rfp8/xi96XUq0OLdDKuW79gTlz5gv87Rdd6ZACR11j6ZASohqSk5NZtWoV6enpHDhwgFGjRgFcd/vc283Dw4NNmzbRr18/du/eXSsxCCGEEEJcTfIlUVfImlL1VPkiaIorA+U0WjT24BTU0FrGsqaUPXZ21RhM9+ULFNs9BDov3kl9i9CRS/BxdqxG5H8cFwpKWbj5Z5poDhDsAqfzm+Bq+BP3tRlW26EJcdeLjY0lNTUVnU5H165dSUpKonHjxrUWT6NGjXj55ZdrrX0hhBBCiN+TfEnUBdIpVU+ZzSY0aPht9qYW7Cy7761N+5w3tq8k70IboAf2tzrop+A87F1GcY8wADqYL+LjWneG9K898Csrdp3gr63PEuwCyWc7Eur/Io0bX3/xOCHEjXXu3Jn9+/fXdhhCCCGEEH9Yki+JukI6peopZTKhQYtSlhFTGrRoruyy9/G+Q+QcG2Mt66Gv2jadFRgLACjRWkZGOQ77qM7suqeUgsK1jGh9hK7elh0KHgxpSXj7ynd7EEIIIYQQQgghhIV0StVTZrMZjUaDGfOVI1rQWrYPLSjQA+DsaKaVp4GZYT1urZGyEgCKtToAHF0bVSvmP4qCkjLW7tlGgMMSAvx/O94tsDUO1V2ASwghhBBCCCGEqCekU6qeMptMnG5UDHaZNMkDNBo0V/pTysyWEVPdWtrzr8cfuPVGyopRQMmVTimnOjJKas3+X/nvnmSmd4XcEgNObkNo37QFnp7htR2aEEIIIYQQQghx15BOqXpKmc3452ShL3TnoosB0KKzs3w7lJksnVLVHvVjLKZMY4f5Sm+X45WRWHe707lF6O2LAbDT+RPaLQa9zq6WoxJCCCGEEEIIIe4udWPoirhpJlMZDx4qxclY3lGkpWXzEADKrszo09ndekfLwcuFPPqrhsF/et96zLEOjJTKL/gZg2kDHT1/BKCFZxPpkBJCCPGH9cYbb9C9e3cMBgNeXl78+c9/JjU11abMAw88gEajsXlNnDixliIWQgghRH0iI6XqqZItnwJYV5RCo6XxkMEAmEyWQ7pbHSmlFPEnMtlRbA8N2gLQRGd/14+U+r/t6TQpfoy2zrngbDnmYO9eqzEJIYQQldm2bRuTJk2ie/fulJWVMWvWLPr378+RI0dwcXGxlhs/fjyzZ8+2vnd2dq6NcIUQQghRz0inVD1kNptJ/eF7GgFK89tIKV3TQACuzN5DZ3+LI4A+n0BhaSto0p+/Zm0gQpNDh0fmodXcvZ1SZrNi/jeHWPxgLgDJZ9vTxd+H5s3H1nJkQgghxPV9/fXXNu9XrFiBl5cX+/fv5/7777ced3Z2xttbdpAVQgghxJ1198+nEjft1KlTZJTakxo0gsuGpleOatHqHICrRkrdaqdU5ncUXVncvFNhBuEtgvF10lUz6tp1uaQMJ7sCABT29On+IaE9luDq2rqWIxPi9hszZox1So9Op6NVq1bMnj2bsrKyatX77bffotFouHTpUs0EWgUZGRmMHDkSX19fnJycaNq0KZGRkRw9etSmXEJCAn379sVgMODs7Ez37t1ZsWKFTZkTJ06g0WhISUmpcvuvvPIKbdq0wcXFhYYNG/LQQw+xZ88emzrHjh1LQEAAer2eli1bEhMTQ2lpaaX1ZmVlMXLkSIKDg9FqtUybNq1K8Wzfvp3Bgwfj6+uLRqNh3bp1Nx0zwNy5c+nVqxfOzs64u7tfs63MzEwGDRqEs7MzXl5ePP/88zbfQ1d/n139ateunbVMVaaiXUtV4qsvcnMtD1c8PDxsjsfHx9O4cWPat2/PzJkzKSwsrLSekpIS8vLybF5CCFGfSb4k+ZLkS7dGOqXqodLSUooueZDRIIciuyIAtFotjnrLwDmTsoxocrS7xYF0ZcUUaZ0AcBr0FvT8e/WDrkUmUxFHDo9h5j3vAuCoc6dHy8Zo7uKRX0LcrIiICLKysvj555959tlneeWVV3j77bdrOyyrGyUhAEajkbCwMHJzc1m7di2pqamsXr2aDh062CR6ixYtIjIykt69e7Nnzx4OHTrEiBEjmDhxIs8991y14gwODmbx4sUcPnyYHTt20KJFC/r3709OTg4AR48exWw2s2zZMn788UcWLFjA0qVLmTVrVqX1lpSU4OnpyYsvvkinTp2qHE9BQQGdOnXi/fffv26ZG8UMlvs/bNgwnnrqqWvWYTKZGDRoEKWlpezatYuPP/6YFStW8PLLL1vLvPfee2RlZVlfJ0+exMPDg2HDhlnLlE9F++6770hMTMRoNNK/f38KCgoqvc4bxVdfmM1mpk2bRu/evWnfvr31+MiRI/nPf/7D1q1bmTlzJv/+97/529/+Vmldb7zxBm5ubtZXs2bNbnf4Qgjxhyf5kuRLki/dAiWuKzc3VwEqNze3tkOpUWlpaerdv41SscMHWV8Hvt6hSstK1fmi86rNG28q/+gE9ebGvbfWwBvN1CNrP1JNtiSrz7Mv1Gzwd1hqdp6aumKZ2rQ50Po6kDy6tsMSd6GioiJ15MgRVVRUVNuh3LTRo0eryMhIm2NhYWGqR48e6sKFCyoqKkq5u7srvV6vIiIiVFpamrXciRMn1MMPP6zc3d2Vs7OzCgkJURs2bFAZGRkKsHmNHj1aKaVUXl6eGjlypHJ2dlbe3t7qnXfeUX379lVPP/20tV5/f381e/ZsFRUVpQwGg/XcpKQk1adPH+Xk5KSaNm2qpkyZovLz85VSSiUnJytAnThx4rrXmpmZqRwcHNT06dMrfLZw4UIFqO+++04ppazXkJycfPM39YryvzObNm26bpl58+apgICAKtf5+3tVVYD6/PPPb1iuspjj4uKUm5tbheNffvml0mq1Kjs723psyZIlqkGDBqqkpOSa7Xz++edKo9FU+vU6e/asAtS2bdtuGHdl8V1LZT+zd2t+MHHiROXv769OnjxZabnNmzcrQB07duy6ZYqLi1Vubq71dfLkybvynggh/lgkX5J86VokX6rb+ZKMlKqHzGYzKMsS526ljWkR0JeAvu14aM1D9F3dF+OV+Xu3vPuesZgirSMAzre6WPofxPqU05y+cAaAE3lNSTj1Kh07LKvlqERdoZSitLT0jr+UUtWOXa/XU1paypgxY/j+++9Zv349u3fvRinFwIEDMRqNAEyaNImSkhK2b9/O4cOHeeutt3B1daVZs2Z89tlnAKSmppKVlcV7770HwPTp09m5cyfr168nMTGRpKQkDhw4UCGG2NhYOnXqRHJyMi+99BLp6elEREQwdOhQDh06xOrVq9mxYweTJ08GwNPTE61Wy5o1azCVz1P+nTVr1mA0Gq/5hG/ChAm4urqyatWqat8/sDyNWr58OW5ubpU+rcvNza0w1aq2VDXm39u9ezcdOnSgSZMm1mPh4eHk5eXx448/XvOcDz/8kIceegh/f//r1nu9qWiiosmTJ5OQkMDWrVtp2rRppWXvvfdeAI4dO3bdMo6OjjRo0MDmJYQQt0Nt5Us1kTNJvlR9ki/V/XxJFjqvhwrzSuDKL1i9yRk3Vx+O5x4n56IzZQUdMJdafgg8nN1vuu4300+zvOe636bvae/eTimz2YidcRchjSxzpwObtGLEgBHY3eq0RiF+x2g08vrrr9/xdmfNmoVOd2vrvCml2Lx5Mxs3bmTAgAGsW7eOnTt30qtXL8CyLk2zZs1Yt24dw4YNIzMzk6FDh9KhQwcAAgMDrXWV/2H08vKyzlu/fPkyH3/8MStXrqRfv34AxMXF4evrWyGWBx98kGeffdb6fty4cYwaNcq6PkBQUBALFy6kb9++LFmyBD8/PxYuXMgLL7zAq6++Srdu3QgNDWXUqFHWuNLS0nBzc8PHx6dCezqdjsDAQNLS0m7p3pVLSEhgxIgRFBYW4uPjQ2JiIo0bN75m2WPHjrFo0SJiY2Or1WZ13UzM15KdnW2TYAHW99nZ2RXKnz59mq+++oqVK1det87rTUUTtpRSTJkyhc8//5xvv/2WgICAG55Tvu7HtX4OhBDiTqutfAluPWeSfEnyJcmXqu7u7TEQt+yHpFMoLJ1SGg3Ya+wxmo0UnRxNac4AzCWW3Xfc9Y43XffaMxcptHNGabS4aDW0dnGq0djvpFOnP6Gj8xzub/odAN4NvXFxlA4pUT8lJCTg6uqKk5MTAwYM4LHHHmPMmDHY29tbR1UANGrUiNatW/PTTz8BMHXqVObMmUPv3r2JiYnh0KFDlbZz/PhxjEYj99xzj/WYm5sbrVtX3FSgW7duNu8PHjzIihUrcHV1tb7Cw8Mxm81kZGQAlieR2dnZxMfH07NnTz799FPatWtHYmJile9FVZLT+Ph4mziSkpKsn4WGhpKSksKuXbuIiIhg+PDhnD17tkIdp06dIiIigmHDhjF+/Hjr8avrnThxYpViTkpKsjkvPj6+SufdbMw15eOPP8bd3Z0///nP1y0zadIkfvjhBz755BPrsYkTJ9pcp7Dcp//85z+sXLkSg8FAdnY22dnZFBVZ1pRMT0/ntddeY//+/Zw4cYL169fz+OOPc//999OxY8dajl4IIe4uki/9RvIlyZeqSv6HXc8UXc7jUlaKdaQUSuFgb09JWQnK5ALAkE6+NG2o56G2Ta5f0e8Zi2HXIorLeoPWmf8cfoGeE/+Hy5Ud/e4muUVG/vZ/e+jacDv3+UJOkQduhtY09at80VchbpaDg8MNF2S8Xe3erNDQUJYsWYJOp8PX1xd7e3vWr19/w/PGjRtHeHg4GzZs4JtvvuGNN95g/vz5TJky5VZCt+Hi4mLzPj8/nwkTJjB16tQKZZs3b279t8FgYPDgwQwePJg5c+YQHh7OnDlzCAsLIygoiNzcXE6fPl3haWNpaSnp6emEh4ffMLYhQ4bYJJ9+fn42cbdq1YpWrVrRo0cPgoKC+PDDD5k5c6a1zOnTpwkNDaVXr14sX77cpu6rd6+p6pSpbt262Zz3+6dwN1KVmCvj7e3N3r17bY6dOXPG+tnVlFJ89NFHREVFXTehLZ+Ktn37dpupaLNnz6724qp1zZIlSwB44IEHbI7HxcUxZswYdDodmzZt4t1336WgoIBmzZoxdOhQXnzxxVqIVgghKqqtfKm87Zsh+ZLkS5Iv3TzplKpnDm3eSMGln3Dit04pe40dhSYj5QPnXotsj5vzTf6nNe1r2DqHkl4JoIUW5su46G5+pNUfwfcnLnD4VC7d3fMB2P7rfUwe/AoGg6yXIWpW+ZbBd4PyP7JXa9u2LWVlZezZs8c6HP38+fOkpqYSEhJiLdesWTMmTpzIxIkTmTlzJh988AFTpkyxXvvV6xUEBgbi4ODAvn37rIlRbm4uaWlp3H///ZXG2KVLF44cOVIhzspoNBratGnDrl27AHj00UeJjo5m/vz5zJ8/36bs0qVLKSws5PHHH79hvQaDAYPBUKUYzGYzJSUl1venTp0iNDSUrl27EhcXh/Z306Bv5vrK6fX6Wzrven4f84307NmTuXPncvbsWby8vABITEykQYMGNt8rYNkx5tixY4wdO7ZCPTeaiubl5WWtX1jcaD2UZs2asW3btjsUjRBC3DzJlyRfAsmX6nK+JJ1S9UxpoWUbSGuSqlHYaewpvrLIHoCDvebmKy66CECJnaUjynFQ7c7nrY783F308dtPcCPLUMunwzrT2lc6pIT4vaCgICIjIxk/fjzLli3DYDAwY8YM/Pz8iIyMBGDatGkMGDCA4OBgLl68yNatW2nbti0A/v7+aDQaEhISGDhwIHq9HoPBwOjRo3n++efx8PDAy8uLmJgYtFotGk3lv5uio6Pp0aMHkydPZty4cbi4uHDkyBESExNZvHgxKSkpxMTEEBUVRUhICDqdjm3btvHRRx8RHR0NWJ4Qzps3j+eeew4nJyeioqJwcHDgiy++YNasWcyZM6fCfPzU1NQKsbRr167C09WCggLmzp3LkCFD8PHx4dy5c7z//vucOnXKuo3vqVOneOCBB/D39yc2NtZmG+HfPyH7vfIne/n5+eTk5JCSkoJOp6uQxFwtPz/fZjHrjIwMUlJS8PDwoHnz5lWKGSAzM5MLFy6QmZmJyWSyxtKqVStcXV3p378/ISEhREVFMW/ePLKzs3nxxReZNGkSjo62DzA+/PBD7r333muuezBp0iRWrlzJF198YZ2KBpYpC3q9/rrXeaP4hBBCiNtF8iULyZckX7quKu3zV0/drVs+V+bbf3+o3hj/uHpnxFAVO3yQih88Xu1/e4P65Mf1yj86QflHJ6jSMtPNV7x7iTLHNFBNtiSrJluS1dmS0poP/jbLKypVmw5uVZs2B9q8zpz5qrZDE3VAXdviuFz5Fsdubm5Kr9er8PBwmy2OJ0+erFq2bKkcHR2Vp6enioqKUufOnbN+Pnv2bOXt7a00Gk2lWxzfc889asaMGdbz/P391YIFCyrEs3fvXhUWFqZcXV2Vi4uL6tixo5o7d65SSqmcnBw1depU1b59e+Xq6qoMBoPq0KGDio2NVSaT7e+9devWqfvuu0+5uLhYt2BetWqVTZlrbdNc/jp58mSF2IqKitQjjzyifH19lU6nUz4+PmrIkCFq79691jJxcXHXrfNGrnWOv79/peds3br1mueVfy2qErNSlu+Ra9WzdetWa5kTJ06oAQMGKL1erxo3bqyeffZZZTQabeq5dOmS0uv1avny5VW+RkDFxcVVep1Vie/3amKL4/pE7okQoiZIviT5kuRL9S9f0lwJWlxDXl4ebm5u5Obm1pmtjr/91/+xb+du7HMvYVYl+BR5077vMFLCCnl5pWVoaMYbA2/Yw17BjgUUb36dFvdbFr/7+b4OGOztajr822rCv7/nwrmvmNhpBZdLXSjRhtCxeUuCg17Ezu76PcpCVEVxcTEZGRkEBATg5HT3bgBQGwoKCvDz82P+/PnXHKJ8u124cIF+/frRoEEDvvrqK5ydne94DOLOq+xnti7mB9Ul90QIURMkX7p1ki+J2lAT+ZLsvlfPmI2l5DmlY8Z85YjCXudAcVkZAFqN+eY7pICTRg3fu7WzvnfU3sIUwFp27Gw+rjrL9MZzpSG0b7+Mtm3mSoeUEHdYcnIyq1atIj09nQMHDjBq1CgA6xD3O83Dw4NNmzbRr18/du/eXSsxCCGEEEJcTfIlUVfImlL1jFPyQUZuOsPXHd0xa0CjMdN8UEdKzllGOGm15hvUUNG+3AIG8wB0esBSB+BwCx1btenSpe95ss0MXB3yAOgdFEBbX7dajkqI+is2NpbU1FR0Oh1du3YlKSmJxo0b11o8jRo14uWXX6619oUQQgghfk/yJVEXSKdUPaPJuwyA0lhmbXo20fHU0WdIz8kHxqHV3vxsztSCYgD0pmI8tGYebuZ/S6OtastHOzIoOR9HsOG3BfIaNOhYixEJUb917tyZ/fv313YYQgghhBB/WJIvibpCpu/VN6ZSABRXOp8alJGSk8Kl4nwAHOxu8lvix3UU7/sIgP7nd7Jfu51Xg/xqLNzb7XKxkdc2HOHc5fMAbDnZj27dN+Hn99dajkwIIYQQQgghhKjbpFOqntGXZGO008KVTimjRkvRqRE4XRwDQANHl5urMPElis+lA+BoLoUGvjUY7e13saAEDSYMukIAIrv1ws0QUMtRCSGEEEIIIYQQdZ9M36tH8i9eYJvWjbL27pR3SiXTkrK8Dly4Usbb7SZ3uSi5TLGbZdc+p4A+0PHeGov3disuPk36D3/mg7Dz1mMtPL1rMSIhhBBCCCGEEKL+kE6peuTcLxmUXbXWk8bOhzP2jUBBc69Cnu7bk96tbnJhPGMxJdornVKNAsFeV5Mh3zbJmReJ37aKAX6/dUjZ2zeQtaSEEEIIIYQQQog7RDql6pH8fMu6URq7JijXTrja6TmvL4BC8GxoZGjXpjdXoVJQVkSx1hEAJ+3ds7j5mv2/cj4vB/wgJacdJ83P8c5jPdBq745ONSGEEEIIIYQQ4m4nnVL1hNls5uuvvsLSbaSlUJtEE01rCvU+UAgOt9Ch9L/sHD5rN4cfXVoB4HSzi6TXkrKyy+hMewlo8AsA3QJaMqlzb7Rau1qOTAghhBBCCCGEqD+kU6qeKCsro7ioCD2ARovSmOjYPZR/FWfA+VvYdQ949fgZfm18n/W9t6NDzQV8m/xwKpeTxybQx2Of9ZifhzdODtIhJYQQQgghhBBC3El3x9AWUW1ms5nyxc01aEBjxrdFEGVmy7Gb6pQym+CTUVwuzAMg+kQc/9euBY82aVjTYdeogpIyHl26i8v5xwA4nd8EjWMXvL3/XLuBCfEHN2bMGDQaDRqNBp1OR6tWrZg9ezZlZWXVqvfbb79Fo9Fw6dKlmgm0CjIyMhg5ciS+vr44OTnRtGlTIiMjOXr0qE25hIQE+vbti8FgwNnZme7du7NixQqbMidOnECj0ZCSklLl9l955RXatGmDi4sLDRs25KGHHmLPnj02dY4dO5aAgAD0ej0tW7YkJiaG0tLSG9YdHx9Pp06dcHZ2xsfHhyeeeILz589Xes727dsZPHgwvr6+aDQa1q1bd81yP/30E0OGDMHNzQ0XFxe6d+9OZmam9fMJEybQsmVL9Ho9np6e17yn+/bto1+/fri7u9OwYUPCw8M5ePDgNds7duwYBoMBd3f3G153Va9BCCGEuJ0kX5J8SfKlWyOdUvWE2Wy2rAEFgBalUWjstJSZLUduqlPqfDocTaBYaxlo96jpOA97uaPT/rG/nXIul1BsNOPiUAjASV7lvh6rcXVtXcuRCfHHFxERQVZWFj///DPPPvssr7zyCm+//XZth2VVlSTEaDQSFhZGbm4ua9euJTU1ldWrV9OhQwebRG/RokVERkbSu3dv9uzZw6FDhxgxYgQTJ07kueeeq1acwcHBLF68mMOHD7Njxw5atGhB//79ycnJAeDo0aOYzWaWLVvGjz/+yIIFC1i6dCmzZs2qtN6dO3fy+OOPM3bsWH788Uc+/fRT9u7dy/jx4ys9r6CggE6dOvH+++9ft0x6ejp9+vShTZs2fPvttxw6dIiXXnoJJ6ffdmvt2rUrcXFx/PTTT2zcuBGlFP3798dkMgGWNQ0jIiJo3rw5e/bsYceOHRgMBsLDwzEajTbtGY1G/vrXv3LfffdRFVW5BiGEEOJOkHxJ8iXJl26BEteVm5urAJWbm1vboVTb5bzL6rWnJ6nY4YPUOyMnqZjJD6sLO0+pXu8uV/7RCWryZ59XvbLTKcoU46aabElWTbYkq7OX//j3p6ysSO068Jp69V8j1KbNgWrT5kBVWnqxtsMS9UhRUZE6cuSIKioqqu1Qbtro0aNVZGSkzbGwsDDVo0cPdeHCBRUVFaXc3d2VXq9XERERKi0tzVruxIkT6uGHH1bu7u7K2dlZhYSEqA0bNqiMjAyFZfim9TV69GillFJ5eXlq5MiRytnZWXl7e6t33nlH9e3bVz399NPWev39/dXs2bNVVFSUMhgM1nOTkpJUnz59lJOTk2ratKmaMmWKys/PV0oplZycrAB14sSJ615rZmamcnBwUNOnT6/w2cKFCxWgvvvuO6WUsl5DcnLyzd/UK8r/zmzatOm6ZebNm6cCAgIqreft/8/encfHeO0PHP/MJDPJZEUksiBNiCW2FlVrNSUS2tBW0VLLLS6ttVoN7q2oUqVRt8q19Cq994cqVU3REmvtlFgqJBVRROwksk9mzu+PyNQ0EkFIxPf9es1L5pnznOf7PJPMfJ1znnM+/VT5+/sXiNfHx6fYsQDq+++/L7C9R48e6o033ih2PUopdejQIQWoEydOKKWU2rdvnwLU6dOnLWUOHz6sAPX7779b7fv++++rN954Qy1cuFC5urre1XELO4d7UdTfbHnKD0qKXBMhREmQfEnypduRfKl850tle2iLKDE3fr+K5ubte3lzSpmJTT9O5s3W8rsaKWXMIuuWVeoM9o4lGWqJyzKa2Bf3IxnXFtLKZy8ANjZO2No6l3Jk4nGnlMJkynjoD2UZNXnvDAYDOTk59OvXj19//ZWoqCh27dqFUopOnTpZenOGDBlCdnY2v/zyC0eOHGHq1Kk4OTlRrVo1vvvuOwDi4uJITk7m888/B2DUqFHs2LGDqKgooqOj2bZtGwcOHCgQQ2RkJI0aNSImJoYPPviAhIQEQkND6dq1K4cPH2bZsmVs376doUOHAuDu7o5Wq2XFihWWHqm/WrFiBUaj8bY9fIMGDcLJyYmlS5fe9/WDvN7K+fPn4+rqSqNGjQotl5KSQqVKlYqsq0WLFpw5c4a1a9eilOLChQusWLGCTp063VeMZrOZNWvWUKtWLUJCQvDw8OCZZ54pcsh3eno6CxcuxM/Pj2rVqgFQu3Zt3NzcWLBgATk5OWRmZrJgwQLq1q3LE088Ydl306ZNLF++vGz24gkhhCgVpZUvlUTOJPnS/ZN8qfznSzLR+WPij0MX86eUArSYNSZGnA4nNbsbAPa2d/GrkJtFltbO8tS+jN+29/f/7cc281d61YUzN7w5m9WGYaGvotHI5OaidJnNmWzZ2uChH/e5tkewsXG4p32VUmzcuJF169bRsWNHVq1axY4dO2jZsiWQd59+tWrVWLVqFd26deP06dN07dqVBg3yztPf399SV37i4OHhYbkX/saNG3z99dcsWbKEdu3aAbBw4UK8vb0LxPL888/z7rvvWp4PGDCAXr16MXLkSAACAgKYOXMmbdu2Zc6cOfj4+DBz5kzef/99PvzwQ5o2bUpQUBC9evWyxBUfH4+rqyteXl4FjqfX6/H39yc+Pv6erl2+1atX89prr5GRkYGXlxfR0dFUrlz5tmVPnDjBF198QWRkZJF1tmrVisWLF9OjRw+ysrLIzc0lLCzsvpOVixcvkpaWxieffMKkSZOYOnUqP//8M6+88gqbN2+mbdu2lrL//ve/ef/990lPT6d27dpER0ej1+d1YDg7O7NlyxZeeuklPvroIyDv/Vm3bh22N79/rly5Qr9+/fi///s/XFxc7ituIYQQ5Udp5Utw7zmT5EuSL0m+VHxluzVBlBhjVjb2mZk3n2kxanLQ2mtw0edNTl6rUo1i1ZOaa2LCFVver5X3wWarAVut5kGEXGJiz6XicHMeqcvZNalX621cXRuXclRCPFpWr16Nk5MT9vb2dOzYkR49etCvXz9sbW155plnLOXc3NyoXbs2x44dA2D48OFMmjSJVq1aERERweHDh4s8zsmTJzEajTRr1syyzdXVldq1C8791rRpU6vnhw4dYtGiRTg5OVkeISEhmM1mEhMTgbyeyPPnz7N48WJatGjB8uXLqVevHtHR0cW+FvmJQ1EWL15sFce2bdssrwUFBXHw4EF27txJaGgo3bt35+LFiwXqSEpKIjQ0lG7dulnNdXBrvYMHDwYgNjaWESNGMH78ePbv38/PP//MqVOnLK9v27bNar/FixcX61zzFsmALl268M477/Dkk08yZswYXnzxRebOnWtVtlevXsTExLB161Zq1apF9+7dycrKAiAzM5P+/fvTqlUrdu/ezY4dO6hfvz4vvPACmTe/mwYOHEjPnj159tlnbxvLvZ6DEEII8bBIvvQnyZckXyouGSn1GFBKkbtyEnUzr3HMpzKgIUcL146/D2YHQOFazFvw1ly6ztw0R3B/DoAqet0Di7skJCbOZmyT/2CwzftDf6lxHWrWrFrKUQmRR6s18FzbI6Vy3LsVFBTEnDlz0Ov1eHt7Y2trS1RU1B33GzBgACEhIaxZs4b169czZcoUpk+fzrBhw+4ldCuOjtafW2lpaQwaNIjhw4cXKFu9enXLz87OzoSFhREWFsakSZMICQlh0qRJBAcHExAQQEpKCufOnSvQ25iTk0NCQgIhISF3jK1z585WyaePj49V3DVr1qRmzZo0b96cgIAAFixYwNixYy1lzp07R1BQEC1btmT+/PlWdd+6ek1+D9mUKVNo1aoVo0ePBqBhw4Y4OjrSpk0bJk2aRNOmTa32q1Klyh3PAaBy5crY2toSGBhotb1u3bps377dapurqyuurq4EBATQvHlzKlasyPfff8/rr7/OkiVLOHXqFLt27UJ7c3TtkiVLqFixIj/88AOvvfYamzZtIioqytLLqZTCbDZja2vL/Pnzef311+/pHIQQQjzaSitfyj/23ZB8SfKlW0m+VDzSKPUYMGZnQcZ5VP4tdxotf3jYY7xuABRaDQR4FGN+pZx0Ui6eBHQ0vBHHS6ZTPNv+/j8oHwSjycx3+89S4cZ/qWCXatnu7FI6Q3+FuB2NRnPPt9E9bPmJwa3q1q1Lbm4ue/bssQxHv3LlCnFxcVZfytWqVWPw4MEMHjyYsWPH8uWXXzJs2DBLD9qt8xX4+/uj0+nYt2+fJTFKSUkhPj6+0B6hfI0bNyY2NrZAnEXRaDTUqVOHnTt3AvDqq68SHh7O9OnTmT59ulXZuXPnkpGRQZ8+fe5Yr7OzM87OxZu3zmw2k52dbXmelJREUFCQZYUW7V9ukb7d+WVkZFiGdeezscm7RVkphcFguKvrkk+v1/P0008TFxdntT0+Ph5fX99C91NKoZSynFdGRgZarRaN5s+RtfnP83sXd+3aZfW78MMPPzB16lR27tyJj4/PPZ+DEEKIR5vkS5IvgeRL5Tlfkkapx0DWyZNolELd/OXWoMUrrS4A37/dEp+KBjyc7YuqIs/XncmyqQN+A6mf9jtv8xs4l80viA2xFxiz8gizn7+Bzhb+fegt/jeoBw4O1Uo7NCHKjYCAALp06cLAgQOZN28ezs7OjBkzBh8fH7p06QLAyJEj6dixI7Vq1eLatWts3ryZunXzPn98fX3RaDSsXr2aTp06YTAYcHZ2pm/fvowePZpKlSrh4eFBREREgS/o2wkPD6d58+YMHTqUAQMG4OjoSGxsLNHR0cyaNYuDBw8SERFB7969CQwMRK/Xs3XrVr766ivCw8OBvB7CadOm8d5772Fvb0/v3r3R6XT88MMPjBs3jkmTJlG/fn2r4/41AQGoV68eOp31SNL09HQmT55M586d8fLy4vLly8yePZukpCS6dcub3y8pKYnnnnsOX19fIiMjLUsfA3h6ehZ67mFhYQwcOJA5c+YQEhJCcnIyI0eOpFmzZredXyJfWloaJ06csDxPTEzk4MGDVKpUyZLkjh49mh49evDss88SFBTEzz//zI8//siWLVuAvFsIli1bRocOHXB3d+fs2bN88sknGAwGy8ShwcHBjB49miFDhjBs2DDMZjOffPIJtra2BAUFAVh+L/L9+uuvaLXaAtf7Xs5BCCGEKC2SL+WRfEnypUKVyDqA5VR5Wd444ZOpaukrEWp+16EqsvsLasYbY9Q74R8o3/DVKttoKn5FH1dVnywcqapsilFjV3ym1LE1Dy7o+zR/a4LyG/OD2rDRX23Y6K9+OnSstEMSj7nytsRxvvwljl1dXZXBYFAhISFWSxwPHTpU1ahRQ9nZ2Sl3d3fVu3dvdfnyZcvrEydOVJ6enkqj0RS5xHGzZs3UmDFjLPv5+vqqGTNmFIhn7969Kjg4WDk5OSlHR0fVsGFDNXnyZKWUUpcuXVLDhw9X9evXV05OTsrZ2Vk1aNBARUZGKpPJ+rNw1apVqk2bNsrR0dGyBPPSpUutytxumeb8x5kzZwrElpmZqV5++WXl7e2t9Hq98vLyUp07d1Z79+61lFm4cGGhdd7JzJkzVWBgoDIYDMrLy0v16tVLnT17tsh9Nm/efNtj5b8X+RYsWKBq1qyp7O3tVaNGjdSqVassryUlJamOHTsqDw8PpdPpVNWqVVXPnj3V8ePHrepYv369atWqlXJ1dVUVK1ZUzz//vNq1a1ehsRV3iePinsPdKokljh8nck2EECVB8iXJlyRfevzyJY1SJbA2eDmVmpqKq6srKSkpj/TM9nvHfc7eyzXIzdqHKXs/tnb1OOFjx4/qGRKndLpja7rFxMpMeGIAc6u9xtvVPBhfs/DW5NKilOLk+QSO/DYIU+5Vy617Qc/FodXKwEBRerKyskhMTMTPzw97+2KMTBQW6enp+Pj4MH36dPr37//Qj3/16lXatWuHi4sLP/30Ew4OZXOEqChZRf3Nlpf8oCTJNRFClATJl+6d5EuiNJREviSr7z0GTlw6SnbKXEzZ+wGoYb+HXA1oNObiN0iZTWA2knVzXip7m7K54t6crQl89N1/cLY5ZWmQcnKqIw1SQjxCYmJiWLp0KQkJCRw4cIBevXoBWIa4P2yVKlViw4YNtGvXjl27dpVKDEIIIYQQt5J8SZQX8j/1x8CNzGuWnzUaEzUrJPObegKt1lzsOq5nprG+SgixTjUAMGjLZnvmwdPXcdRlAHD8emNaPTmaBr4NSzkqIcTdioyMJC4uDr1eT5MmTdi2bRuVK1cutXjc3NwYP358qR1fCCGEEOKvJF8S5YE0SpVzSilyybtDsyLNSPQ7yM8vjuPMj5XRa43FrufjUxf5b51xlueONmWvUSon5wpV9atxc8ibRC+kYVNq+jcr5aiEEHfrqaeeYv/+/aUdhhBCCCFEmSX5kigvpFGqnDt79iz5TU8awGxjR5Y579Y7rbaY04kpxbmsHAAapP1O/YBn6OxRseSDvQ+/nrpK8ulJtPKIsmzT691LMSIhhBBCCCGEEEIUpewNdxElJjcnhxMH/2w91yiFp86DHFPebXs2xWmUysmA2c3I/iPvvuC3kn9gRp3qVNaXnfbMizey6D5vFyeS85a4/P2aPw4VX8fL6+VSjkwIIYQQQgghhBCFkUapcizm5x/Z88MKuLnAosasuJKTybIjW4BijpS6HA+X4/+c4Ny95gOK9t4lX8/CrMBRn5W3wel1mj/5ETpd2RrNJYQQQgghhBBCiD+VneEuosSlXb1C3k17NxullGKzyZn0pOcBcNDp71xJbjYAWTpnAOzavPMgQr1nJlMG1y7M57Xax/FyvAhA92Z1i7+qoBBCCCGEEEIIIUqFNEqVY2azCTSa/DYpNChytTbotRqc7Gx4s0UxRj3l5o0+yrK5OVKqDE1wnp1r4kj8Ckyp8wj2/XO7vZ1n6QUlhBBCCCGEEEKIYpFGqXLMbDLhYXiClPQjAGgVmLHhzVZ+jOlYt1h1KGM2Cg2Z2rxRVQZt2WmU6vXlHjxt9vFyTTiVWpU01ZTuzVvj4OBX2qEJIYQQQgghhBDiDspOC4MocWaTGTd7nz/nlFIKk8YGfTFHO2WYzLS5UBHvtls4q3MDwK6MjJRSShF77iKu+lQAzqTVp2aN92RycyGEEEIIIYQQ4hFRNloYxAOhzCZOO5zHZJlTyoxZY4ttMRuW4tOzOGHSWZ772Ol4wlCMeageghOJX/H5c+/xfPXtAPytTSNeaOhVylEJUT7169cPjUaDRqNBr9dTs2ZNJk6cSG5u7n3Vu2XLFjQaDdevXy+ZQIshMTGRnj174u3tjb29PVWrVqVLly4cP37cqtzq1atp27Ytzs7OODg48PTTT7No0SKrMqdOnUKj0XDw4MFiH3/ChAnUqVMHR0dHKlasSPv27dmzZ49Vnf3798fPzw+DwUCNGjWIiIggJyfnjnUvXryYRo0a4eDggJeXF2+++SZXrlwpcp85c+bQsGFDXFxccHFxoUWLFvz000+W169evcqwYcOoXbs2BoOB6tWrM3z4cFJSUixlFi1aZPn9+Ovj4sWLlnLZ2dn84x//wNfXFzs7O5544gm++uorq3j+9a9/WY5VrVo13nnnHbKysoo8h5UrV9KhQwfc3Nzu+v0QQgghSorkS5IvSb50b6RRqhzLMeWwxvV71C0Tnedih61N8SYBzzabAXgi8yyxyZ+xu3kgjjY2Dyze4sgymnjl3ztYd2AVWk3eednYOFGxYvNSjUuI8i40NJTk5GR+//133n33XSZMmMCnn35a2mFZFCcJMRqNBAcHk5KSwsqVK4mLi2PZsmU0aNDAKtH74osv6NKlC61atWLPnj0cPnyY1157jcGDB/Pee+/dV5y1atVi1qxZHDlyhO3bt/PEE0/QoUMHLl26BMDx48cxm83MmzePo0ePMmPGDObOncu4ceOKrHfHjh306dOH/v37c/ToUZYvX87evXsZOHBgkftVrVqVTz75hP379/Prr7/y/PPP06VLF44ePQrAuXPnOHfuHJGRkfz2228sWrSIn3/+mf79+1vq6NGjB8nJyVaPkJAQ2rZti4eHh6Vc9+7d2bhxIwsWLCAuLo6lS5dSu3Zty+tLlixhzJgxREREcOzYMRYsWMCyZcvueO7p6em0bt2aqVOnFllOCCGEeNAkX5J8SfKle6BEoVJSUhSgUlJSSjuUe/LTgN4qtnYd9Vm3F1Vk9xfUt2Hhqu6ob9SXvyTceeeds9TW/xusqmyKUUFRy5X6pteDD7gY9v9xVfmGr1bzVwapDRv91bgl/1Imk7G0wxLijjIzM1VsbKzKzMws7VDuWt++fVWXLl2stgUHB6vmzZurq1evqt69e6sKFSoog8GgQkNDVXx8vKXcqVOn1IsvvqgqVKigHBwcVGBgoFqzZo1KTExU5C3DYHn07dtXKaVUamqq6tmzp3JwcFCenp7qs88+U23btlUjRoyw1Ovr66smTpyoevfurZydnS37btu2TbVu3VrZ29urqlWrqmHDhqm0tDSllFIxMTEKUKdOnSr0XE+fPq10Op0aNWpUgddmzpypALV7926llLKcQ0xMzN1f1Jvyv2c2bNhQaJlp06YpPz+/Iuv59NNPlb+/f4F4fXx87jqmihUrqv/85z+Fvv7tt98qvV6vjMbbf/ZevHhR6XQ69d///tey7aefflKurq7qypUrhdY7ZMgQ9fzzz1ttGzVqlGrVqlWx4i6J9+NWRf3NPur5wYMg10QIURIkX5J86XYkX/pTecyXZKRUOaZNukymvRuKvJFRuQYdGTonbLXFGCm1eQpZVxIBsDPnQAXfO+zwcFxPOUhzr324O1wH4J0OzdFqZb5+8WhSSpFuMj30h7o5z9z9MBgM5OTk0K9fP3799VeioqLYtWsXSik6deqE0WgEYMiQIWRnZ/PLL79w5MgRpk6dipOTE9WqVeO7774DIC4ujuTkZD7//HMARo0axY4dO4iKiiI6Oppt27Zx4MCBAjFERkbSqFEjYmJi+OCDD0hISCA0NJSuXbty+PBhli1bxvbt2xk6dCgA7u7uaLVaVqxYgclkuu15rVixAqPReNsevkGDBuHk5MTSpUvv+/pBXm/l/PnzcXV1pVGjRoWWS0lJoVKlSkXW1aJFC86cOcPatWtRSnHhwgVWrFhBp06dih2PyWTim2++IT09nRYtWhQZj4uLC7a2t//s/e9//4uDgwOvvvqqZVtUVBRNmzZl2rRp+Pj4UKtWLd577z0yMzMtZVq2bMn+/fvZu3cvACdPnmTt2rV3dQ5CCCHKn9LKl0oiZ5J86f5JvlT+8yX533w5lu4QwO/Nu6Cu/QuANI+8+aDuOKeUUpCTRpbWDgB79wBo1vVBhnpHZrPiWNLvmC8NZGCDP78cDPZupRiVEPcnw2ymxi9HHvpxE55tcM+34iql2LhxI+vWraNjx46sWrWKHTt20LJlSyDvPv1q1aqxatUqunXrxunTp+natSsNGjQAwN/f31JXfuLg4eFBhQoVALhx4wZff/01S5YsoV27dgAsXLgQb2/vArE8//zzvPvuu5bnAwYMoFevXowcORKAgIAAZs6cSdu2bZkzZw4+Pj7MnDmT999/nw8//JCmTZsSFBREr169LHHFx8fj6uqKl1fBOer0ej3+/v7Ex8ff07XLt3r1al577TUyMjLw8vIiOjqaypUr37bsiRMn+OKLL4iMjCyyzlatWrF48WJ69OhBVlYWubm5hIWFMXv27DvGc+TIEVq0aEFWVhZOTk58//33BAYG3rbs5cuX+eijj/j73/9eaH0LFiygZ8+eGAwGy7aTJ0+yfft27O3t+f7777l8+TJvv/02V65cYeHChQD07NmTy5cv07p1a5RS5ObmMnjw4DsORxdCCFG+lVa+BPeeM0m+JPmS5EvFJyOlyqmcs2fR6J1uPstrxDHq/wC48+p7phxAka3Na8Syd6wEtnYPKNLi+XjtMd5ZshYNiqxcPeezGlG9+gAcHGqUalxCPC5Wr16Nk5MT9vb2dOzYkR49etCvXz9sbW155plnLOXc3NyoXbs2x44dA2D48OFMmjSJVq1aERERweHDh4s8zsmTJzEajTRr1syyzdXV1epe+nxNmza1en7o0CEWLVqEk5OT5RESEoLZbCYxMW/k55AhQzh//jyLFy+mRYsWLF++nHr16hEdHV3sa6HX33nBh8WLF1vFsW3bNstrQUFBHDx4kJ07dxIaGkr37t2tJrjMl5SURGhoKN26dbOa6+DWegcPHgxAbGwsI0aMYPz48ezfv5+ff/6ZU6dOWV7ftm2b1X6LFy+21Fe7dm0OHjzInj17eOutt+jbty+xsbEF4klNTeWFF14gMDCQCRMm3Pa8d+3axbFjx6zmUAAwm81oNBoWL15Ms2bN6NSpE5999hlff/21pfdvy5YtfPzxx/z73//mwIEDrFy5kjVr1vDRRx/d8ZoKIYQQZYHkS3+SfEnypeKSkVLlVNrRoyiN9uaQ07xGqW8MPpDLHSc6z8xOJ86pNgkO1QCwK87tfg/Yb+dScLDN+0O8nFUVn5pzCKhZpZSjEuL+OGi1JDzboFSOe7eCgoKYM2cOer0eb29vbG1tiYqKuuN+AwYMICQkhDVr1rB+/XqmTJnC9OnTGTZs2L2EbsXR0dHqeVpaGoMGDWL48OEFylavXt3ys7OzM2FhYYSFhTFp0iRCQkKYNGkSwcHBBAQEkJKSwrlz5wr0Nubk5JCQkEBISMgdY+vcubNV8unj42MVd82aNalZsybNmzcnICCABQsWMHbsWEuZc+fOERQURMuWLZk/f75V3beuluLi4gLAlClTaNWqFaNHjwagYcOGODo60qZNGyZNmkTTpk2t9qtS5c/Pz/wVggCaNGnCvn37+Pzzz5k3b56lzI0bNwgNDcXZ2Znvv/8ene7PlVlv9Z///Icnn3ySJk2aWG338vLCx8cHV1dXy7a6deuilOLs2bMEBATwwQcf0Lt3bwYMGABAgwYNSE9P5+9//zv/+Mc/irymQgghyq/Sypfyj303JF+SfEnypbsnjVLl1IGzSeRiBpVm2WZwbQRX7nz7XpffznG4yZ9/1Hb38B/YkmQyZWKvTlDZ+RwADav78FSgNEiJR59Goyn1FS2LKz8xuFXdunXJzc1lz549luHoV65cIS4uzmo4c7Vq1Rg8eDCDBw9m7NixfPnllwwbNszSg3brfAX+/v7odDr27dtnSYxSUlKIj4/n2WefLTLGxo0bExsbWyDOomg0GurUqcPOnTsBePXVVwkPD2f69OlMnz7dquzcuXPJyMigT58+d6zX2dkZZ2fnYsVgNpvJzs62PE9KSiIoKIgmTZqwcOFCtH/5DL7d+WVkZBSYs8Dm5u+WUgqDwVDs6/LXeFJTUwkJCcHOzo6oqCjs7e1vu19aWhrffvstU6ZMKfBaq1atWL58OWlpaTg55Y3ijY+PR6vVUrVqVcs5/PVcbz2Hu7mmQgghyg/JlyRfAsmXynO+JI1S5ZDKNXMu/hSXcg9ByiHL9pOXNKAF3R1GPh3LzAXAM/syDhV8eLVKxQcab1GyjCYO7O9K74A4yzZb20frj0yI8iogIIAuXbowcOBA5s2bh7OzM2PGjMHHx4cuXboAMHLkSDp27EitWrW4du0amzdvpm7dugD4+vqi0WhYvXo1nTp1wmAw4OzsTN++fRk9ejSVKlXCw8ODiIgItFotGk3Rn13h4eE0b96coUOHMmDAABwdHYmNjSU6OppZs2Zx8OBBIiIi6N27N4GBgej1erZu3cpXX31FeHg4kNdDOG3aNN577z3s7e3p3bs3Op2OH374gXHjxjFp0iTq169vddy4uLgCsdSrV69A71h6ejqTJ0+mc+fOeHl5cfnyZWbPnk1SUhLdunUD8hKs5557Dl9fXyIjIy1LHwN4enoWeu5hYWEMHDiQOXPmEBISQnJyMiNHjqRZs2a3nV8i39ixY+nYsSPVq1fnxo0bLFmyhC1btrBu3TogL8Hq0KEDGRkZ/N///R+pqamkpqYCeROh2tzyn4Rly5aRm5vLG2+8UeA4PXv25KOPPuJvf/sbH374IZcvX2b06NG8+eablrkUwsLC+Oyzz3jqqad45plnOHHiBB988AFhYWFWx/mrq1evcvr0ac6dy+u4yH8/PD09i7xmQgghxMMg+VIeyZfySL50GyWyDmA59agub3zjt0tq7t+HqcjuL6jI7i+oT7u/oIb1Haz8wn9ULadsVMnXC1liNStV5W77XFXZFKOqbIpRl6c3fLiB/8X23y+p2v/8UW3Y6K82bPRX3655Sm3Z9py6dGlTqcYlxL0ob0sc58tf4tjV1VUZDAYVEhJitcTx0KFDVY0aNZSdnZ1yd3dXvXv3VpcvX7a8PnHiROXp6ak0Gk2RSxw3a9ZMjRkzxrKfr6+vmjFjRoF49u7dq4KDg5WTk5NydHRUDRs2VJMnT1ZKKXXp0iU1fPhwVb9+feXk5KScnZ1VgwYNVGRkpDKZTFb1rFq1SrVp00Y5OjpalmBeunSpVZnbLdOc/zhz5kyB2DIzM9XLL7+svL29lV6vV15eXqpz585q7969ljILFy4stM47mTlzpgoMDFQGg0F5eXmpXr16qbNnzxa5z5tvvql8fX2VXq9X7u7uql27dmr9+vWW1zdv3lxoPImJiVZ1tWjRQvXs2bPQYx07dky1b99eGQwGVbVqVTVq1CiVkZFhed1oNKoJEyaoGjVqKHt7e1WtWjX19ttvq2vXrhV5DoVds4iIiCL3u5OSWOL4cSLXRAhREiRfknxJ8qXHL1/SKFUCa4OXU6mpqbi6ulqWc3xURI//gRPno8lIOYWNfXPSDZf4skIHEj7uhE1Ro6T2fknGz//Av816ABJi38ZxyM6HFHVBkevi+O+OA8x47p+YlYbPjvyHH4Y+i95W5ucXj56srCwSExPx8/MrdDivuL309HR8fHyYPn16gQkhH4arV6/Srl07XFxc+Omnn3BwcHjoMYiHr6i/2Uc1P3iQ5JoIIUqC5Ev3TvIlURpKIl+S/92XM8asLK4l7SC/rVGDFrNGodGYi26QAki/ZFlxD8DuhelFFH6wTKYsntCEM775pwDodRVYO6KtNEgJ8RiIiYlh6dKlJCQkcODAAXr16gVgGeL+sFWqVIkNGzbQrl07du3aVSoxCCGEEELcSvIlUV7InFLljDE7Cy0aFOabW/IapbSaYgyIM2ZYGqVsNGD7RIsHF2gRTlxMY33MWmrrjlh+Q12c693x/mghRPkRGRlJXFwcer2eJk2asG3bNipXrlxq8bi5uTF+/PhSO74QQgghxF9JviTKA2mUKmdMply0aP9slNJoUCi02uI0SmVZGqVKc8W9j9ce49rVE9R+Es7c8KZKtYk0atSy1OIRQjxcTz31FPv37y/tMIQQQgghyizJl0R5IfdClTPmXBMajZY/pwrTYtaYsSlGo9QfubYccQoAwP5Ot/o9QMkpWTjYZgJQybkqzzd8Fq3WrtTiEUIIIYQQQgghRMmTkVLljNmUiwYNOZrsm1u0mDTqjo1Say9d502X16Be3vPSGikVeyyct+v+hI3GCIB/FU/sbAtf2lIIIYQQQgghhBCPJhkpVc6YcnP51fMPThlO523QaDFrwMamiEapU9uJ3fV/ADiYMvDW5NDX2+0hRPunG1lGXp69leTkFTjYpmNnkwOAi0vDhxqHEEIIIYQQQgghHg5plCpnzCYTFx3T0Kr82+80kFMRW5sibsfbNp3Ma3mNWL3P/cgBn1RGPuH54IO9xYHT10m4cM7yfHpMBE2e3kz1an97qHEIIYQQQgghhBDi4ZDb98oZc24uZo2ZPxfb02LO9sDN4Fr4TtlpZNnlzdlkCHwRajz8VfdSM7Jw1qcBoNE68e3QnjjZya+nEEIIIYQQQghRXsn/+ssZk8kESoetOe+t1aAlVwNNfYtYGjQ3kyyHvEYp+8o14CHPJ3Xlyjbsrw5mYsssAOz0FaRBSgghhBBCCCGEKOfkf/7lzJljaTz5x2CMN77DzBnQaOnerBrNXm5Q+E652WTeXN3O/iE3SE39+TikLKWpe5Zlm5vbsw81BiGEEEIIIYQQQjx8MqdUOZKZmcmBnQlo0KIwA6AzZuJf3YBGc/s5pdJyTRzQ+XDeLm8klcHm4f1KZOTkMmdLAlk51wGISgjlhOZ76tT+6KHFIIS4s379+qHRaNBoNOj1emrWrMnEiRPJzc29r3q3bNmCRqPh+vXrJRNoMSQmJtKzZ0+8vb2xt7enatWqdOnShePHj1uVW716NW3btsXZ2RkHBweefvppFi1aZFXm1KlTaDQaDh48WOzjT5gwgTp16uDo6EjFihVp3749e/bssaqzf//++Pn5YTAYqFGjBhEREeTk5Nyx7sWLF9OoUSMcHBzw8vLizTff5MqVK8WO7ZNPPkGj0TBy5Eir7QkJCbz88su4u7vj4uJC9+7duXDhglWZyZMn07JlSxwcHKhQocJt68//Hbr18c0331heX7lyJcHBwZbjtGjRgnXr1t0x7pUrV9KhQwfc3Nzu+v0QQgghSorkS5IvSb50b6RRqhw5GR+Pysqbl8k+K+8P66mri3Br1aTQfUJ+jadTrQnsrPAU8HAbpa6lpVDVKQk3+2sAdH+mEQPaFjGiSwhRakJDQ0lOTub333/n3XffZcKECXz66aelHZZFcZIQo9FIcHAwKSkprFy5kri4OJYtW0aDBg2sEr0vvviCLl260KpVK/bs2cPhw4d57bXXGDx4MO+99959xVmrVi1mzZrFkSNH2L59O0888QQdOnTg0qVLABw/fhyz2cy8efM4evQoM2bMYO7cuYwbN67Ienfs2EGfPn3o378/R48eZfny5ezdu5eBAwcWK659+/Yxb948Gja0XvE0PT2dDh06oNFo2LRpEzt27CAnJ4ewsDDMZrOlXE5ODt26deOtt94q8jgLFy4kOTnZ8njppZcsr/3yyy8EBwezdu1a9u/fT1BQEGFhYcTExBRZZ3p6Oq1bt2bq1KnFOlchhBDiQZF8SfIlyZfugSoFERERCrB61K5d2/J6Zmamevvtt1WlSpWUo6OjeuWVV9T58+et6vjjjz9Up06dlMFgUO7u7uq9995TRqPRqszmzZvVU089pfR6vapRo4ZauHDhXcWZkpKiAJWSknLP5/qwnDywT80YOlj95+1/qZn9l6qZXV9Skd1fUBveD1LKbL7tPsZzh1WVTTGqyqYY1WTtWtVp9yGVnJXzUOI1m3PV5l/aqA0b/S2P5PNRD+XYQpSGzMxMFRsbqzIzM0s7lLvWt29f1aVLF6ttwcHBqnnz5urq1auqd+/eqkKFCspgMKjQ0FAVHx9vKXfq1Cn14osvqgoVKigHBwcVGBio1qxZoxITEwt8D/Tt21cppVRqaqrq2bOncnBwUJ6enuqzzz5Tbdu2VSNGjLDU6+vrqyZOnKh69+6tnJ2dLftu27ZNtW7dWtnb26uqVauqYcOGqbS0NKWUUjExMQpQp06dKvRcT58+rXQ6nRo1alSB12bOnKkAtXv3bqWUspxDTEzM3V/Um/K/ZzZs2FBomWnTpik/P78i6/n000+Vv79/gXh9fHzuGMONGzdUQECAio6OLnCd161bp7RardX34PXr15VGo1HR0dEF6lq4cKFydXW97XEA9f33398xnlsFBgaqDz/8sFhlS+L9uFVRf7OPUn7wsMg1EUKUBMmXJF+6HcmXivao50ulNlKqXr16Vq1/27dvt7z2zjvv8OOPP7J8+XK2bt3KuXPneOWVVyyvm0wmXnjhBXJycti5cydff/01ixYtYvz48ZYyiYmJvPDCCwQFBXHw4EFGjhzJgAEDijW07VGUsH8v1fV1Sbn6Czk3/o8cGyMAP7j3g9vdunclgaz/BFuebtvXhzV13fG00z3wWLfEXaTF5O8xGZMAuJHjirNzfSpVbPnAjy1EWaKUIiMn96E/lFJ3Du4ODAYDOTk59OvXj19//ZWoqCh27dqFUopOnTphNOZ9Bg0ZMoTs7Gx++eUXjhw5wtSpU3FycqJatWp89913AMTFxZGcnMznn38OwKhRo9ixYwdRUVFER0ezbds2Dhw4UCCGyMhIGjVqRExMDB988AEJCQmEhobStWtXDh8+zLJly9i+fTtDhw4FwN3dHa1Wy4oVK/IWhbiNFStWYDQab9vDN2jQIJycnFi6dOl9Xz/I6y2bP38+rq6uNGrUqNByKSkpVKpUqci6WrRowZkzZ1i7di1KKS5cuMCKFSvo1KnTHeMYMmQIL7zwAu3bty/wWnZ2NhqNBrubK7QC2Nvbo9Vqrb63i2vIkCFUrlyZZs2a8dVXXxX5u2g2m7lx48Ydz10IIUT5Vlr5UknkTJIv3T/Jl8p/vlRqE53b2tri6elZYHtKSgoLFixgyZIlPP/880De8LW6deuye/dumjdvzvr164mNjWXDhg1UqVKFJ598ko8++ojw8HAmTJiAXq9n7ty5+Pn5MX36dADq1q3L9u3bmTFjBiEhIQ/1XB8GY44RrUaHMmcDYGu24ayTPbmVq91+h2unLJObA9g1GwAuXg8jVDYdv4hGpQCQbnTg16yvmfS03LYnHj+ZRhOB4x9+Q3nsxBAc9Pf28a+UYuPGjaxbt46OHTuyatUqduzYQcuWeY3Kixcvplq1aqxatYpu3bpx+vRpunbtSoMGeX/j/v7+lrryvzw9PDws99XfuHGDr7/+miVLltCuXTsg7zvA29u7QCzPP/887777ruX5gAED6NWrl+Ue/4CAAGbOnEnbtm2ZM2cOPj4+zJw5k/fff58PP/yQpk2bEhQURK9evSxxxcfH4+rqipdXwc9DvV6Pv78/8fHx93Tt8q1evZrXXnuNjIwMvLy8iI6OpnLl26+QeuLECb744gsiIyOLrLNVq1YsXryYHj16kJWVRW5uLmFhYcyePbvI/b755hsOHDjAvn37bvt68+bNcXR0JDw8nI8//hilFGPGjMFkMpGcnFy8E75p4sSJPP/88zg4OLB+/Xrefvtt0tLSGD58+G3LR0ZGkpaWRvfu3e/qOEIIIcqX0sqX4N5zJsmXJF+SfKn4Sm2k1O+//463tzf+/v706tWL06dPA7B//36MRqNVC2SdOnWoXr06u3btAmDXrl00aNCAKlWqWMqEhISQmprK0aNHLWX+2ooZEhJiqeN2srOzSU1NtXo8KkzGWyfQ0+CX5sn3AfXR2TsWskMO2Vo9AHZaDdrQKQ8+SCAn5yqN7EcwrtkMACo5uTPpJWmQEqKsW716NU5OTtjb29OxY0d69OhBv379sLW15ZlnnrGUc3Nzo3bt2hw7dgyA4cOHM2nSJFq1akVERASHDx8u8jgnT57EaDTSrFkzyzZXV1dq165doGzTpk2tnh86dIhFixbh5ORkeYSEhGA2m0lMTATyep7Onz/P4sWLadGiBcuXL6devXpER0cX+1ro9fo7llm8eLFVHNu2bbO8lj+Cd+fOnYSGhtK9e3cuXrxYoI6kpCRCQ0Pp1q2b1VwHt9Y7ePBgAGJjYxkxYgTjx49n//79/Pzzz5w6dcry+rZt26z2W7x4MWfOnGHEiBEsXrwYe3v7256Hu7s7y5cv58cff8TJyQlXV1euX79O48aN0d7laq0ffPABrVq14qmnniI8PJz333+/0Hk2lixZwocffsi3336Lh4fHHa+pEEIIURZIvvQnyZckXyquUhkp9cwzz7Bo0SJq165NcnIyH374IW3atOG3337j/Pnz6PX6ArPRV6lShfPnzwNw/vx5qwap/NfzXyuqTGpqKpmZmRgMhgJxTZkyhQ8//LCkTvOhMuWaUJr8YX1azJgALXpbm9vvkJtF1s2RUvZ3+Ydyrw6duc4vh78j0HDKsq3izQnWhXgcGXQ2xE58+CM3DbpCPheKEBQUxJw5c9Dr9Xh7e2Nra0tUVNQd9xswYAAhISGsWbOG9evXM2XKFKZPn86wYcPuJXQrjo7Wje5paWkMGjTotj1J1atXt/zs7OxMWFgYYWFhTJo0iZCQECZNmkRwcDABAQGkpKRw7ty5Ar2NOTk5JCQkFGu0befOna2STx8fH6u4a9asSc2aNWnevDkBAQEsWLCAsWPHWsqcO3eOoKAgWrZsyfz5863qvnW1FBcXFyDv+6tVq1aMHj0agIYNG+Lo6EibNm2YNGkSTZs2tdqvSpUqbNy4kYsXL9K4cWPLdpPJxC+//MKsWbPIzs7GxsaGDh06kJCQwOXLl7G1taVChQp4enpa9eLei2eeeYaPPvqI7Oxsq+Hu33zzDQMGDGD58uVWnUtFXVMhhBDlV2nlS/nHvhuSL0m+JPnS3SuVRqmOHTtafm7YsCHPPPMMvr6+fPvtt7dtLHpYxo4dy6hRoyzPU1NTqVatkNvfyhiz6dZ7nrWYNSZQNkU0SuXc0ih1mzmnHoAJPx7FMfcPAutD3NUaNKo/hcDa0iglHl8ajeaeb6N72PITg1vVrVuX3Nxc9uzZYxmOfuXKFeLi4ggMDLSUq1atGoMHD2bw4MGMHTuWL7/8kmHDhll60G6dr8Df3x+dTse+ffssiVFKSgrx8fE8++yzRcbYuHFjYmNjC8RZFI1GQ506ddi5cycAr776KuHh4UyfPt1y+3e+uXPnkpGRQZ8+fe5Yr7OzM87OzsWKwWw2k52dbXmelJREUFAQTZo0YeHChQV62G53fhkZGdjaWv8u2djkff4rpTAYDAX2a9euHUeOHLHa9re//Y06deoQHh5u2T9f/pD5TZs2cfHiRTp37lys8yvMwYMHqVixolWCtXTpUt58802++eYbXnjhBavyd3NNhRBClB+SL0m+BJIvled8qUz8dVeoUIFatWpx4sQJgoODycnJ4fr161ajpS5cuGCZg8rT05O9e/da1XHhwgXLa/n/5m+7tYyLi0uhDV92dnZWb/ajxHzrJHSa/EYpLfa2BScuT8018cr16px86gsA7B7SSKmLqdkEumQB4OvhS4tajdHcbhJ2IcQjISAggC5dujBw4EDmzZuHs7MzY8aMwcfHhy5dugAwcuRIOnbsSK1atbh27RqbN2+mbt26APj6+qLRaFi9ejWdOnXCYDDg7OxM3759GT16NJUqVcLDw4OIiAi0Wu0dPy/Cw8Np3rw5Q4cOZcCAATg6OhIbG0t0dDSzZs3i4MGDRERE0Lt3bwIDA9Hr9WzdupWvvvqK8PBwIK+HcNq0abz33nvY29vTu3dvdDodP/zwA+PGjWPSpEnUr1/f6rhxcXEFYqlXrx46nfXnb3p6OpMnT6Zz5854eXlx+fJlZs+eTVJSEt26dQPyEqznnnsOX19fIiMjLUsfA7edhzFfWFgYAwcOZM6cOYSEhJCcnMzIkSNp1qzZbeeXgLyk5a/n4ujoiJubm9X2/Hkd3d3d2bVrFyNGjOCdd96xukXg9OnTXL16ldOnT2MymSy9jDVr1sTJyYkff/yRCxcu0Lx5c+zt7YmOjubjjz+2miB1yZIl9O3bl88//5xnnnnGMvLZYDDg6upa6LnnH/fcuXPAn++Hp6dnkddMCCGEeBgkX8oj+ZLkS4UqkXUA79ONGzdUxYoV1eeff66uX7+udDqdWrFiheX148ePK0Dt2rVLKaXU2rVrlVarVRcuXLCUmTdvnnJxcVFZWVlKKaXef/99Vb9+favjvP766yokJKTYcT1KyxsvGz9OLXv3Xyqy+wsqsseratmLvZT/R5+qBdtOFii75UqqqrIpxvIY+FviA4/v1Kl56l/fdlb/i2quNmz0V8eO//OBH1OIsqS8LXGcL3+JY1dXV2UwGFRISIjVEsdDhw5VNWrUUHZ2dsrd3V317t1bXb582fL6xIkTlaenp9JoNEUucdysWTM1ZswYy36+vr5qxowZBeLZu3evCg4OVk5OTsrR0VE1bNhQTZ48WSml1KVLl9Tw4cNV/fr1lZOTk3J2dlYNGjRQkZGRymQyWdWzatUq1aZNG+Xo6GhZgnnp0qVWZW63THP+48yZMwViy8zMVC+//LLy9vZWer1eeXl5qc6dO6u9e/dayixcuLDQOu9k5syZKjAwUBkMBuXl5aV69eqlzp49e8f9bvXXJY6VUio8PFxVqVJF6XQ6FRAQoKZPn67MZrNVmb59+9425s2bNyullPrpp5/Uk08+aXlfGjVqpObOnWt13du2bXvbOvJ/LwpT2DWLiIi4q3P/q5JY4vhxItdECFESJF+SfEnypccvX9IoVQJrg9+l9957j7CwMHx9fTl37hwREREcPHiQ2NhY3N3deeutt1i7di2LFi3CxcXFci9t/nBBk8nEk08+ibe3N9OmTeP8+fP07t2bAQMG8PHHHwOQmJhI/fr1GTJkCG+++SabNm1i+PDhrFmzptir76WmpuLq6kpKSorlPtSyyJyTw5bQ1pizsjlUrRpoHPFJ13LlH734+9Od0NlYj4RadzmFvkcSCUw7wVem3VTv8inaBzRi6dz1TP67/TBPO/S02l6zxvv4+g56IMcUoizKysoiMTERPz+/QidJFLeXnp6Oj48P06dPp3///g/9+FevXqVdu3a4uLjw008/4eDg8NBjEA9fUX+zj0p+8DDJNRFClATJl+6d5EuiNJREvlQqq++dPXuW119/ndq1a9O9e3fc3NzYvXs37u7uAMyYMYMXX3yRrl278uyzz+Lp6cnKlSst+9vY2LB69WpsbGxo0aIFb7zxBn369GHixImWMn5+fqxZs4bo6GgaNWrE9OnT+c9//lPsBqlHien6dTxSbuCUmb9Fyw1XDT2fbFWgQYqtn5K5YRIArrk3eEKT9cAapAAWbE9k1YG8FRGzcu34v2O9qFP3c6pW7fvAjimEeLTFxMSwdOlSEhISOHDgAL169QKwDHF/2CpVqsSGDRto165dkSu4CiGEEEI8LJIvifKiVOaU+uabb4p83d7entmzZzN79uxCy/j6+rJ27doi63nuueeIiYm5pxgfFeasXFJWJ5Grd+Oi0xPAdTQaLbX7TaCifUXrwrk5sHkyWVVCoArYm3PAzfeBxaaUGduczbStdgAAjY0bA0OH4+NV+YEdUwhRPkRGRhIXF4der6dJkyZs27bNMnFkaXBzc2P8+PGldnwhhBBCiL+SfEmUB2VionNx77Lir5EVn8ZRv95cdXCAG8sADXqn2wyXNGYAimxt3goOBp8noemDW/3u2rVdNKvwGVTIe+5RwZumNaRBSghRtKeeeor9+/eXdhhCCCGEEGWW5EuivCiV2/dEyVG5Zi5rUsnWuaCUGYAsjQZ3v9vcs5mbt/Jdlk3evZ52zlXAVv9A4pq+Po73vvkZgKtZrij7DtSsMfqBHEsIIYQQQgghhBCPHmmUetSZFdt1x1EaGyCvUeqGjRY7vU2Bor+lpvFBjaH86B4EgP1f55sqQSsPJGGryQAg4Xot6tX7jAoVmj6w4wkhhBBCCCGEEOLRIrfvPeKUSZFDLvYaLfmNUmY06G/T4PRhUjrbqnazPK+sezBv/40bsdRy2UZAhZMAhD1VGy9XwwM5lhBCCCGEEEIIIR5N0ij1iEs8cBiFwowCc97ye2aNtuCqe8C1XDOgoevV7dRp2o3XvdxKNBaTWfHjwd9xvN6VN+rkWLYb7CqV6HGEEEIIIYQQQgjx6JPb9x5hmWk3SDywC5WTwY2MJRgz8uZwMqNFZ3vLW5t+BbZOIzvjGgBvXNvOMN8qVNaXbJvklriLfLJ6O1pyyDXbcPRyIO7unfDyeqVEjyOEEEIIIYQQQohHnzRKPcKMWZlo0ZCZlQEYAVAoEh2eQGej+bPgvv/A5slkGrMBsLO7zcp8JSDpeiYOurx5pHKUG9UD5tKwwRcYDNUeyPGEEEIIIYQQQgjx6JLb9x5h5lwTGo2WFJMOB0Br+wSbGsZzSTW2nlMq4woA2baOANi3Hl7isWTnXMY2YwnPVTsCQBVXd5o95VPixxFCCCGEEOWH6fp1TCkpqNxccs6cQWX/OQWEOTMDY1ISmMyYrl/HeOHCXdVd4eWXcG7fvqRDFkIIUYJkpNQjzGw2odVoUCo3b4PGBgdHW7a8G4JGc8tIqdy8uaaybPMmG7evUrdE4/gl/hKLoz+kimYBrbz3AqC3q1yixxBClJ5+/fqh0WjQaDTo9Xpq1qzJxIkTyc3Nva96t2zZgkaj4fr16yUTaDEkJibSs2dPvL29sbe3p2rVqnTp0oXjx49blVu9ejVt27bF2dkZBwcHnn76aRYtWmRV5tSpU2g0Gg4ePFjs40+YMIE6derg6OhIxYoVad++PXv27LGqs3///vj5+WEwGKhRowYRERHk5OQUUWuexYsX06hRIxwcHPDy8uLNN9/kypUrd9wvKSmJN954Azc3NwwGAw0aNODXX3+1vH7r+5//CA0NtarjiSeeKFDmk08+sbweFxdHUFAQVapUwd7eHn9/f/75z39iNBqt6rl+/TpDhgzBy8sLOzs7atWqxdq1a4uMf+XKlXTo0AE3N7e7fj+EEA+HOT0dU1o66Tt3cnXJEi5/+SXJEyZw+s3+xDdvQUJIKCdfeJGzg98iacQIyyN5zFgufzGLy//+N9eWLCFt48a7euScPlPapy4eI5IvSb4k+dK9kZFSjzCzMYcWbv+Hxw0NW6gB2KLVa7HX2VgXzM27bS+bvO12Wg0l6YMffiOs2hl8DXD8ak2qutenWY2BJXoMIUTpCg0NZeHChWRnZ7N27VqGDBmCTqdj7NixpR0aADk5Oej1+iLLGI1GgoODqV27NitXrsTLy4uzZ8/y008/WSV6X3zxBSNHjiQ8PJw5c+ag1+v54YcfGDx4ML/99huRkZH3HGetWrWYNWsW/v7+ZGZmMmPGDDp06MCJEydwd3fn+PHjmM1m5s2bR82aNfntt98YOHAg6enpRR53x44d9OnThxkzZhAWFkZSUhKDBw9m4MCBrFy5stD9rl27RqtWrQgKCuKnn37C3d2d33//nYoVK1qVy3//89nZ2RWoa+LEiQwc+Odnv7Ozs+VnnU5Hnz59aNy4MRUqVODQoUMMHDgQs9nMxx9/DOS9h8HBwXh4eLBixQp8fHz4448/qFChQpHXND09ndatW9O9e3er4wshHixlNOaNYgJyL10i9+o1chITyTp6FJWbi/HsWcwZGZjT0jClpNyxPq2TE1oHB3Q+PqD9s9/ctlIlbN3dQaNB5+2F1sm5iFqsGZ5sdPcnJsR9kHxJ8iXJl+6BEoVKSUlRgEpJSSntUG7r0m87lYpwUbvfClSR3V9Qn70xWvVY+JJVmYvZOapx9FZVZVOM5XEp21iicdT94Cc1e3mw2rDRX63YvkhlZOeWaP1ClAeZmZkqNjZWZWZmlnYod61v376qS5cuVtuCg4NV8+bN1dWrV1Xv3r1VhQoVlMFgUKGhoSo+Pt5S7tSpU+rFF19UFSpUUA4ODiowMFCtWbNGJSYmKsDq0bdvX6WUUqmpqapnz57KwcFBeXp6qs8++0y1bdtWjRgxwlKvr6+vmjhxourdu7dydna27Ltt2zbVunVrZW9vr6pWraqGDRum0tLSlFJKxcTEKECdOnWq0HM9ffq00ul0atSoUQVemzlzpgLU7t27lVLKcg4xMTF3f1Fvyv+e2bBhQ6Flpk2bpvz8/Iqs59NPP1X+/v4F4vXx8Slyv/DwcNW6desiy9zu/f8rX19fNWPGjCLL/NU777xjdew5c+Yof39/lZOTc1f15CuJ9+NWRf3NlvX8oDTINXk0mc1mlXvjhjJeuaLS9x9Q6fv2qRu//KKuLv1GXfn6a5U8abI6988P1Nn3RqvE13uqk11fVXHNnlHHGjZSsbXr3NMj/rkgdWb4CJX80SR1cfZsdfk/C1TutWulfSlEGSH5kuRLtyP5UvnOl2Sk1CNM3Zy4PNuc19qtwQaNnc6qzIHUDJJsXCzP6zraU/GvI6nu9fjKzG9H32NM0z14GC4DEFS3JgZ9ydQvRLmnFBgzHv5xdQ6gub8RkwaDgStXrtCvXz9+//13oqKicHFxITw8nE6dOhEbG4tOp2PIkCHk5OTwyy+/4OjoSGxsLE5OTlSrVo3vvvuOrl27EhcXh4uLCwZD3i3Go0aNYseOHURFRVGlShXGjx/PgQMHePLJJ61iiIyMZPz48URERACQkJBAaGgokyZN4quvvuLSpUsMHTqUoUOHsnDhQtzd3dFqtaxYsYKRI0diY1Pws2rFihUYjUbee++9Aq8NGjSIcePGsXTpUp555pn7un6Q19M1f/58XF1dadSo8N78lJQUKlWqVGRdLVq0YNy4caxdu5aOHTty8eJFVqxYQadOnYrcLyoqipCQELp168bWrVvx8fHh7bffLtCDtmXLFjw8PKhYsSLPP/88kyZNws3NzarMJ598wkcffUT16tXp2bMn77zzDra2t08zTpw4wc8//8wrr/y5OmtUVBQtWrRgyJAh/PDDD7i7u9OzZ0/Cw8Nv+14JIQoynjuHOTubjD17Cp1/yZyeTvov21A5OZiuX8eccR/fQxoNWicnNDY26Ly90TgY0NrZ49T2WWwqVEBXtSoaW1t0Pj5onZzyyt9hlIYQBZRWvgT3nTNJviT5kuRLdyaNUo8w44VzXDnuyI1se9ADGhuU7a1zSWWTlZIMQNOU31jo50ilhi9hc5//GQVITslk/Iq1vOb3Az5O+VttcHDwu++6hXhsGDPgY++Hf9xx50DveE+7KqXYuHEj69ato2PHjqxatYodO3bQsmVLIO8+/WrVqrFq1Sq6devG6dOn6dq1Kw0aNADA39/fUld+4uDh4WEZcnzjxg2+/vprlixZQrt27QBYuHAh3t4Fr9Pzzz/Pu+++a3k+YMAAevXqxciRIwEICAhg5syZtG3bljlz5uDj48PMmTN5//33+fDDD2natClBQUH06tXLEld8fDyurq54eXkVOJ5er8ff35/4+Ph7unb5Vq9ezWuvvUZGRgZeXl5ER0dTufLt5+E7ceIEX3zxxR2HwLdq1YrFixfTo0cPsrKyyM3NJSwsjNmzZxe538mTJ5kzZw6jRo1i3Lhx7Nu3j+HDh6PX6+nbty+QNxT9lVdewc/Pj4SEBMaNG0fHjh3ZtWuXJfkZPnw4jRs3plKlSuzcuZOxY8eSnJzMZ599ZnW8li1bcuDAAbKzs/n73//OxIkTrWLZtGkTvXr1Yu3atZw4cYK3334bo9FoSaSFeByY09NRZrPlucrNJW3TJsyZWZhvpGI8l4xSZoxnkzBnZJB76RKmq1dROTl5/3m/R1onJ2xvfhbZuLlh6+6O1mBA5+ODxkaLTcWK2HpUQWuwR1etGhqNBltPTzSP6H+CxCOktPIluOecSfIlyZckXyo+aZR6hGVs2ELKQVcyvfXgDnBLo5TZBP9uQbauJtQZh7MpHXe9632Pjsi34dhFTl5MBj+4luXK2rODmN37BeztS+kLQwjxQK1evRonJyeMRiNms5mePXvyyiuvsHr1aqteMDc3N2rXrs2xY8eAvC/ft956i/Xr19O+fXu6du1Kw4YNCz3OyZMnMRqNNGvWzLLN1dWV2rVrFyjbtGlTq+eHDh3i8OHDLF682LJNKYXZbCYxMZG6desyZMgQ+vTpw5YtW9i9ezfLly/n448/JioqiuDg4GJdizvNxQB5yeagQYMsz3/66SfatGkDQFBQEAcPHuTy5ct8+eWXdO/enT179uDh4WFVR1JSEqGhoXTr1s2qJ87JydITwBtvvMHcuXOJjY1lxIgRjB8/npCQEJKTkxk9ejSDBw9mwYIFbNu2jY4dO1r2mzdvHr169cJsNtO0aVPLPAVPPfUUv/32G3PnzrUkWa+99pplvwYNGtCwYUNq1KjBli1bLInwqFGjLGUaNmyIXq9n0KBBTJkyxWo+hWXLlnHjxg0OHTrE6NGjiYyM5P333wfAbDbj4eHB/PnzsbGxoUmTJiQlJfHpp58SERFR5DUV4lGSefAgxvPn/1xNTilyk89jSk0l6/hxcpOT76t+rZMT2Nig9/XFcPM/uAXYaHFo0hSdtxf6J55AY2eHRqezXihHCHHXJF/6k+RLki8VlzRKPaIyDl7k2JkszgbWJ9s2FzCCxgatzc2JIbNS4GoC2V6BANjZ2kH1FiV2/PSMZDwdLwLg5uLFv/q8icFed4e9hBBWdA55PXClcdy7FBQUZJnE0tvbG1tbW6Kiou6434ABAwgJCWHNmjWsX7+eKVOmMH36dIYNG3YvkVtxdLTuuUxLS2PQoEEMHz68QNnq1atbfnZ2diYsLIywsDAmTZpESEgIkyZNIjg4mICAAFJSUjh37lyB3sacnBwSEhIICQm5Y2ydO3e2Sj59fHys4q5ZsyY1a9akefPmBAQEsGDBAqtJUM+dO0dQUBAtW7Zk/vz5VnXfulqKi0ve7dlTpkyhVatWjB49GshLdBwdHWnTpg2TJk2iadOmVvtVqVIFAC8vLwIDA63qr1u3Lt99912h5+bv70/lypU5ceKEJcn6q2eeeYbc3FxOnTpllSBXq1YNgMDAQEwmE3//+9959913sbGxwcvLC51OZzX0vG7dupw/f56cnJwir6kQZYkym8k6cgRzdnbe7XQ30sj67QjZp06Rey6Z3EuX7qleQ9Mm2Lq7o6viiU0FVzR29uh8vNHa26OrWhWtvT02rq5oHe9tJKwQZVZp5Uv5x74Lki9JvpRP8qXik0apR9TVI6eJV1fhlnYgk60Brc3NHq6bK+5l2eTdc2xX8zlwvP1wx7v1xx/zCWAqAfXznldwdMNFGqSEuHsazT3fRvew5ScGt6pbty65ubns2bPHMhz9ypUrxMXFWX1xV6tWjcGDBzN48GDGjh3Ll19+ybBhwyw9aCaTyVLW398fnU7Hvn37LIlRSkoK8fHxPPvss0XG2LhxY2JjYwvEWRSNRkOdOnXYuXMnAK+++irh4eFMnz6d6dOnW5WdO3cuGRkZ9OnT5471Ojs7W62mUhSz2Ux2drbleVJSEkFBQTRp0oSFCxeivWUVKuC255eRkVFgPoL8ZEUphcFguO1+rVq1Ii4uzmpbfHw8vr6+hcZ79uxZrly5ctsh+/kOHjyIVqst0Jt5K7PZbOlJtrGxoVWrVixZsgSz2Ww55/j4eLy8vNDr9ej1+mJfU1G+pW3dSkZMTGmHAYA5LT1vBTqzGeO5JEzp6eSeK95IJ4dmzdB5eaF1dkaj0+XNu2Rvh65qVRwaN7YubGMjt8mJx5fkS4DkS5Ivld98SRqlHlGZ2ek3f7LBzq4Fx9wvc8J3O1W0rnmbczMByLLNa923/8sf6b0au/IIbjlreMoDcs02aLT2VKnyYonULYR4tAQEBNClSxcGDhzIvHnzcHZ2ZsyYMfj4+NClSxcARo4cSceOHalVqxbXrl1j8+bN1K1bFwBfX180Gg2rV6+mU6dOGAwGnJ2d6du3L6NHj6ZSpUp4eHgQERGBVqu9420l4eHhNG/enKFDhzJgwADLRKHR0dHMmjWLgwcPEhERQe/evQkMDESv17N161a++uorwsPDgbwewmnTpvHee+9hb29P79690el0/PDDD4wbN45JkyZRv359q+P+NUkBqFevHjqddWN9eno6kydPpnPnznh5eXH58mVmz55NUlIS3bp1A/ISrOeeew5fX18iIyO5dMuICk9Pz0LPPSwsjIEDBzJnzhzLcPSRI0fSrFmz284vke+dd96hZcuWfPzxx3Tv3p29e/cyf/58S29jWloaH374IV27dsXT05OEhATef/99atasaekB3bVrF3v27CEoKAhnZ2d27drFO++8wxtvvGFZKnnx4sXodDoaNGiAnZ0dv/76K2PHjqVHjx6W6/TWW28xa9YsRowYwbBhw/j999/5+OOPb9uTe6urV69y+vRpzp07Z/V+eHp6FnnNxKPJnJXF2aHDUEZjaYdyR7bu7ti4ueXNyaTXYePsgtNzz6Gx0+Pw9NMy4bcQjwnJl/JIviT5UmGkUeoRdSU9/w/PBhutjl8argMg0L49AGZjFjdsnEjV5w1VtNOWzBwBqw+d4+2GeatffHW0LyNfHIy3t9sd9hJClFcLFy5kxIgRvPjii+Tk5PDss8+ydu1ayxenyWRiyJAhnD17FhcXF0JDQ5kxYwaQN5z4ww8/ZMyYMfztb3+jT58+LFq0iM8++4zBgwfz4osv4uLiwvvvv8+ZM2ewt7cvMpaGDRuydetW/vGPf9CmTRuUUtSoUYMePXoAULVqVZ544gk+/PBDTp06hUajsTx/5513LPW88847+Pv7M336dD7//HPS0/M6AZYuXWo1X0C+2207c+YMVatWtdpmY2PD8ePH+frrr7l8+TJubm48/fTTbNu2jXr16gEQHR3NiRMnOHHiRIH9VRETGPfr148bN24wa9Ys3n33XSpUqMDzzz/P1KlTi7xmTz/9NN9//z1jx45l4sSJ+Pn58a9//YtevXpZYj58+DBff/01169fx9vbmw4dOvDRRx9Z5j6ws7Pjm2++YcKECWRnZ+Pn58c777xjNW+Cra0tU6dOJT4+HqUUvr6+DB061Oq6V6tWjXXr1vHOO+/QsGFDfHx8GDFihCUBLkxUVBR/+9vfLM/z34+IiAgmTJhQ5L7i0aOysiwNUhV79YIS6nS7H7Ye7thWrIjGzg6dT1U0Oh02FSug/8vfsBDi8SX5kuRLki8VTqOKetcec6mpqbi6upKSkmK5D7Ws2Dn9W3bt/S9o7HG2e5pPA2/QpkZlpnbqhZuhMqG7DnI4+8+GqL9XdWdiwP3dT3rp8jbGfhtFxyc2UME+lTr1FuFTpWxPmiZEWZGVlUViYiJ+fn53TBaEtfT0dHx8fJg+fTr9+/d/6Me/evUq7dq1w8XFhZ9++gkHh7ufk0s8eor6my3L+UFpeVjXJPfaNX5vkXf7S53Yo2jKQKOUEKLkSL507yRfEqWhJPIl+SZ/BMWsW83lPy7cfGaDrTJivNaC1h4v4u7gzjWjyapByqDV0Kai0+0rK6aL1/7g8OG/8XqdlVSwTwXA1bHwe1+FEOJexcTEsHTpUhISEjhw4IClFyp/iPvDVqlSJTZs2EC7du3YtWtXqcQghLjpljlVpEFKCPE4k3xJlBdy+94jaP+aVejN+ROwadCSy7O6BLo1eR7MJrJO7wUc0JmNnIx7B+1b27C5jyV+521NYPmuNYxtpsjMtePolQZ0b94GR8daJXI+QgjxV5GRkcTFxaHX62nSpAnbtm2jcuWSWazhXri5uTF+/PhSO74QIo8ym/N+kAYpIYSQfEmUC9Io9Qi6pElmQ82DdLrkiUZjgw1G/G2uYrDTwa7ZZG2fB80WYzBnodPZ5a1YcR+2n7iMoy5vHqnkdE+u6Mbh59eoJE5FCCEKeOqpp9i/f39phyGEKIvyZ52QRikhxGNO8iVRXkij1CPI0/04Tln+N59pcFC5gC5vpYWrCWRp8yZTs0dBiyH3dayMjD/oUGU8Dl4XAXjaz5eBT0qDlBBCCCFKwc2RUnLrnhBCCFE+SKPUI8h45S3apbpjZDlgg8mcN6GYRqMBY+afjVJOlaH+s/d8nIU7Ejl75j+09Dhh2eboVPu+YhdCCCGEuFfKJLfvCSGEEOWJfKM/gkw51YG8pEyrTJhzzqPVatFqtZiNmaTZ5q10YLC5v7c3cl0c19KuALD/wlMEBH5DzRqj76tOIYQQQjw8U6ZM4emnn8bZ2RkPDw9eeukl4uLirMpkZWUxZMgQ3NzccHJyomvXrly4cKGQGkuZkkYpIYQQojyRb/RHkdmG/EYpx/TzVHYxERwczJmsHBq6DaJHw+kA2GvvfS6pLGMuWq7jape30t7z9ZtR3fNpNBqb+w5fCCGEEA/H1q1bGTJkCLt37yY6Ohqj0UiHDh1IT0+3lHnnnXf48ccfWb58OVu3buXcuXO88sorpRh1EeT2PSGEEKJckdv3HjFr1qxBa7S19BRqFTzVsiVuLVqw6sI1Lts4Wco+W9H5no9z6NCb/Ou5HZbnHhXc7z1oIYQQQpSKn3/+2er5okWL8PDwYP/+/Tz77LOkpKSwYMEClixZwvPPPw/AwoULqVu3Lrt376Z58+alEXah5PY9IYQQonyRb/RHzJHYIyj+HCmVYnDG9aUu8Mcusn/fCECba79yoso5/lHD+67rP3ExjS6zt5OSssuyTaerRKWKLUskfiGEEEKUnpSUFAAqVaoEwP79+zEajbRv395Spk6dOlSvXp1du3bdtg6A7OxsUlNTrR4Pxc1OOc19riwshBBCiLJBGqUeMTeyUsnNPYnZeBKAi87u2DrZwX+7kHN0FQBOpkycHFzuqf6ff0vm+LmL2Gjykr4vf1/As2324SQTnAvx2OrXrx8ajQaNRoNer6dmzZpMnDiR3Nzc+6p3y5YtaDQarl+/XjKBFkNiYiI9e/bE29sbe3t7qlatSpcuXTh+/LhVudWrV9O2bVucnZ1xcHDg6aefZtGiRVZlTp06hUaj4eDBg8U+/oQJE6hTpw6Ojo5UrFiR9u3bs2fPHqs6+/fvj5+fHwaDgRo1ahAREUFOTs4d6168eDGNGjXCwcEBLy8v3nzzTa5cuVLkPiaTiQ8++MDqeB999BFKKUuZlStX0qFDB9zc3Ao934SEBF5++WXc3d1xcXGhe/fuVnMSFfe8Dh8+TJs2bbC3t6datWpMmzbtjuf9yy+/EBYWhre3NxqNhlWrVt1xn8eV2Wxm5MiRtGrVivr16wNw/vx59Ho9FSpUsCpbpUoVzp8/X2hdU6ZMwdXV1fKoVq3agwz9T2YZKSWEKJskX5J8SfKleyPf6I8QZVI4Xs8iO3M9ppyjAGht7SHrOpiyyb656p6+kh9Uu/vh9kopsrLOU9Xp3M0tOr7q17qEohdCPMpCQ0NJTk7m999/591332XChAl8+umnpR2WRXGSEKPRSHBwMCkpKaxcuZK4uDiWLVtGgwYNrBK9L774gi5dutCqVSv27NnD4cOHee211xg8eDDvvffefcVZq1YtZs2axZEjR9i+fTtPPPEEHTp04NKlSwAcP34cs9nMvHnzOHr0KDNmzGDu3LmMGzeuyHp37NhBnz596N+/P0ePHmX58uXs3buXgQMHFrnf1KlTmTNnDrNmzeLYsWNMnTqVadOm8cUXX1jKpKen07p1a6ZOnXrbOtLT0+nQoQMajYZNmzaxY8cOcnJyCAsLw3yzAaE455WamkqHDh3w9fVl//79fPrpp0yYMIH58+cXeQ7p6ek0atSI2bNnF1lOwJAhQ/jtt9/45ptv7ruusWPHkpKSYnmcOXOmBCK8M5XfKGUjc1wKIcoeyZckX5J86R4oUaiUlBQFqJSUlNIORSmllPFyhpo8bKiK7P6CiuzRXb034CXVb8oypS6fUCrCRX2xcLiqsilGDYs9dU/1/37iU7Vho7/lsfWXpiV8BkI8vjIzM1VsbKzKzMws7VDuWt++fVWXLl2stgUHB6vmzZurq1evqt69e6sKFSoog8GgQkNDVXx8vKXcqVOn1IsvvqgqVKigHBwcVGBgoFqzZo1KTExUgNWjb9++SimlUlNTVc+ePZWDg4Py9PRUn332mWrbtq0aMWKEpV5fX181ceJE1bt3b+Xs7GzZd9u2bap169bK3t5eVa1aVQ0bNkylpaUppZSKiYlRgDp1qvDPyNOnTyudTqdGjRpV4LWZM2cqQO3evVsppSznEBMTc/cX9ab875kNGzYUWmbatGnKz8+vyHo+/fRT5e/vXyBeHx+fIvd74YUX1Jtvvmm17ZVXXlG9evUqULaw8123bp3SarVW35XXr19XGo1GRUdHF3rsv57Xv//9b1WxYkWVnZ1t2RYeHq5q165d5DncClDff/99scsXpai/2bKWHxTHkCFDVNWqVdXJkyettm/cuFEB6tq1a1bbq1evrj777LNi1/+wrklmbKyKrV1Hxbdu80CPI4QoHZIvSb50O5Ivle98SUZKPUKunLnBWVPeROZaWy8OVnci190XcrMAyLY1AGB/l0Pac3LNDFl8gJ2xeXNSGU22mDHg5VVGV94RQpQ6g8FATk4O/fr149dffyUqKopdu3ahlKJTp04YjUYgb2RGdnY2v/zyC0eOHGHq1Kk4OTlRrVo1vvvuOwDi4uJITk7m888/B2DUqFHs2LGDqKgooqOj2bZtGwcOHCgQQ2RkJI0aNSImJoYPPviAhIQEQkND6dq1K4cPH2bZsmVs376doUOHAuDu7o5Wq2XFihWYTKbbnteKFSswGo237eEbNGgQTk5OLF26tESuYU5ODvPnz8fV1ZVGjRoVWi4lJcUy/09hWrRowZkzZ1i7di1KKS5cuMCKFSvo1KlTkfu1bNmSjRs3Eh8fD8ChQ4fYvn07HTt2LPZ5ZGdno9FosLOzs2yzt7dHq9Wyffv2Yp/Xrl27ePbZZ9Hr9ZZtISEhxMXFce3atWLHI6wppRg6dCjff/89mzZtws/Pz+r1Jk2aoNPp2Lhxo2VbXFwcp0+fpkWLFg873DtScvueEOIRIvnS/ZN8qfznS7L63iPkalIaRnP+xJ422Npq6d3cF3LzbrfLtslrlLLT3t3knwdOX2PNkWSeaXkDgM9jBvHPV/oQULNyicUuhChIKUVmbuZDP67B1nDPkwQrpdi4cSPr1q2jY8eOrFq1ih07dtCyZd5iCIsXL6ZatWqsWrWKbt26cfr0abp27UqDBg0A8Pf3t9SV/wXr4eFhmc/mxo0bfP311yxZsoR27doBeSuBeXsXXLjh+eef591337U8HzBgAL169WLkyJEABAQEMHPmTNq2bcucOXPw8fFh5syZvP/++3z44Yc0bdqUoKAgevXqZYkrPj4eV1dXvLy8ChxPr9fj7+9vSUju1erVq3nttdfIyMjAy8uL6OhoKle+/eftiRMn+OKLL4iMjCyyzlatWrF48WJ69OhBVlYWubm5hIWF3XGI9pgxY0hNTaVOnTrY2NhgMpmYPHkyvXr1Kvb5NG/eHEdHR8LDw/n4449RSjFmzBhMJhPJycnFPq/z588XaDCpUqWK5bWKFSsWOybxpyFDhrBkyRJ++OEHnJ2dLfNEubq6YjAYcHV1pX///owaNYpKlSrh4uLCsGHDaNGiRZlbeQ8A8835O2ykUUqIx0Vp5Utw7zmT5EuSL/2V5EuFk0apR0hudi626uZEeRotz9SqSId6nozbf5Z9jb/knMETAP1d9h5ev7qF56vtwc0+b0Wej7u25El/txKNXQhRUGZuJs8seeahH3dPzz046Bzuap/Vq1fj5OSE0WjEbDbTs2dPXnnlFVavXs0zz/x5Dm5ubtSuXZtjx44BMHz4cN566y3Wr19P+/bt6dq1Kw0bNiz0OCdPnsRoNNKsWTPLNldXV2rXLrjYQtOmTa2eHzp0iMOHD7N48WLLNqUUZrOZxMRE6taty5AhQ+jTpw9btmxh9+7dLF++nI8//pioqCiCg4OLdS1u7ZkqzOLFixk0aJDl+U8//USbNm0ACAoK4uDBg1y+fJkvv/yS7t27s2fPHjw8PKzqSEpKIjQ0lG7dulnNdeDk5GT5+Y033mDu3LnExsYyYsQIxo8fT0hICMnJyYwePZrBgwezYMECtm3bZtWbN2/ePHr16sW3337L4sWLWbJkCfXq1ePgwYOMHDkSb29v+vbtW6zr4e7uzvLly3nrrbeYOXMmWq2W119/ncaNG6O9zfdRYed1J4WdgyjanDlzAHjuueesti9cuJB+/foBMGPGDLRaLV27diU7O5uQkBD+/e9/P+RIi8mc12uv0UijlBCPi9LKl+DucybJl/4k+ZI1yZcKJ41SjxBjjhHb/GQMLRo7HRezjXyVagvOtSzl/Ax2hVVh5Wp6Dv/bvon6uvfpVffP7XV9fGWpZSGElaCgIObMmYNer8fb2xtbW1uioqLuuN+AAQMICQlhzZo1rF+/nilTpjB9+nSGDRt23zE5OjpaPU9LS2PQoEEMHz68QNnq1atbfnZ2diYsLIywsDAmTZpESEgIkyZNIjg4mICAAFJSUjh37lyB3sacnBwSEhIICQm5Y2ydO3e2Sj59fHys4q5ZsyY1a9akefPmBAQEsGDBAsaOHWspc+7cOYKCgmjZsmWBiStvXc3FxSVvpdUpU6bQqlUrRo8eDUDDhg1xdHSkTZs2TJo0iaZNm1rtl9+jNnr0aMaMGcNrr70GQIMGDfjjjz+YMmVKsZMsgA4dOpCQkMDly5extbWlQoUKeHp6WvX03um8PD09rVagASzPPT09eeKJJ257DqJo6paVgQpjb2/P7Nmzy+bkp38ht+8JIcoyyZckXyqK5Eu3J41Sj5DcnBx0+ckYWjT2GtLPxwJgMGWx4PzXOIdF0sSleK353+w7zabfDlL/KbiR40iWtjEt6rTG3r7gMEwhRMkz2BrY03PPnQs+gOPerfzE4FZ169YlNzeXPXv2WIajX7lyhbi4OAIDAy3lqlWrxuDBgxk8eDBjx47lyy+/ZNiwYZYetFvnK/D390en07Fv3z5LYpSSkkJ8fDzPPvtskTE2btyY2NjYAnEWRaPRUKdOHXbu3AnAq6++Snh4ONOnT2f69OlWZefOnUtGRgZ9+vS5Y73Ozs44OzsXKwaz2Ux2drbleVJSEkFBQTRp0oSFCxcW6D273fllZGRga2v9lW5zc3UypRQGg6HQ/f5av42NjWUVmLuVP6x+06ZNXLx4kc6dOxf7vFq0aME//vEPjEYjOp0OgOjoaGrXrm0Zin43760op242smmkUUqIx0Zp5Uv5x74bki9JvlQcki9Zk0apR4RSCtYvpV7KGa47AGjRntlKVsw6aLoQB1Mmz+ecAlfHO9T0p4up2TjpMgDQ6uvSvtk8KjsVb5SVEOL+aTSau76NriwJCAigS5cuDBw4kHnz5uHs7MyYMWPw8fGhS5cuAIwcOZKOHTtSq1Ytrl27xubNm6lbN29opq9v3qjM1atX06lTJwwGA87OzvTt25fRo0dTqVIlPDw8iIiIQKvV3nEEZ3h4OM2bN2fo0KEMGDAAR0dHYmNjiY6OZtasWRw8eJCIiAh69+5NYGAger2erVu38tVXXxEeHg7k9RBOmzaN9957D3t7e3r37o1Op+OHH35g3LhxTJo0ifr161sdNy4urkAs9erVsyQK+dLT05k8eTKdO3fGy8uLy5cvM3v2bJKSkujWrRuQl4g899xz+Pr6EhkZaVn6GPJ6vwoTFhbGwIEDmTNnjmU4+siRI2nWrNlt55e4db/JkydTvXp16tWrR0xMDJ999hlvvvmmpczVq1c5ffo0586dszpfT09PS0wLFy6kbt26uLu7s2vXLkaMGME777xjuY2gOOfVs2dPPvzwQ/r37094eDi//fYbn3/+OTNmzCg0fsjr8T1x4oTleWJiIgcPHqRSpUpWPb6inMj/T5k0Sgnx2JB8SfIlyZfKeb5UIusAllNlacnns7vi1ey/r1cz+kxQkd1fUDPe+If6+N/11P7IZqrKphjV+OdopQ78X7HrS0k5pH5Y31KtXldHbdjor478NvIBRi+EKG9LHOfLX+LY1dVVGQwGFRISYrXE8dChQ1WNGjWUnZ2dcnd3V71791aXL1+2vD5x4kTl6empNBpNkUscN2vWTI0ZM8ayn6+vr5oxY0aBePbu3auCg4OVk5OTcnR0VA0bNlSTJ09WSil16dIlNXz4cFW/fn3l5OSknJ2dVYMGDVRkZKQymUxW9axatUq1adNGOTo6WpZgXrp0qVWZ2y3TnP84c+ZMgdgyMzPVyy+/rLy9vZVer1deXl6qc+fOau/evZYyCxcuLLTOO5k5c6YKDAxUBoNBeXl5qV69eqmzZ88WuU9qaqoaMWKEql69urK3t1f+/v7qH//4h9Uyw4XFFBERYSkTHh6uqlSponQ6nQoICFDTp09XZrP5rs/r0KFDqnXr1srOzk75+PioTz755I7nvXnz5tvWm//7dK9KYonjx8nDuiZpu/eo2Np11IlOLzzQ4wghSofkS5IvSb70+OVLGqWKMdnAYyo1NRVXV1dSUlIs96GWhsS44xyeNY+zxjBy07eQm3OAG65eGBpto02OB688OZOaDnZsf6bunSsDPl13HOO1f/OMxxrLtoCAf1K92t8e1CkI8djLysoiMTERPz8/7O3tSzucR0p6ejo+Pj5Mnz6d/v37P/TjX716lXbt2uHi4sJPP/2Eg8Oj21sriq+ov9mykh+UJQ/rmqTv3s3pfn/DLqAm/j/++MCOI4QoHZIv3TvJl0RpKIl8ScY+l3G//riSbz77BPubq+7ZZ+dNYnay8nFszEaytHm329kXcxh7ltHE7M0JZGRfB2DT6dY4VfteGqSEEGVGTEwMS5cuJSEhgQMHDlhWDMkf4v6wVapUiQ0bNtCuXTt27dpVKjEIIW6yTHRuU7pxCCFEKZN8SZQXMqdUGZec8Duueg8wZwE355bSgFmrWOPWitXOLwFgry3eankpmTnYaow46dIBePnpFjQNKHy5USGEKA2RkZHExcWh1+tp0qQJ27Zts0wKWRrc3NwYP358qR1fCJFHmWT1PSGEyCf5kigPpFGqjFMmExXsPLl05RDZWQtAkwaAWaM4bahKulPe8pHVDXeeoFwpxYljbzIveK9lm08ljwcTuBBC3KOnnnqK/fv3l3YYQoiySOU1St1pIl8hhCjvJF8S5YV0M5VxZrMJNBquZKagzCkoTd6qMylORhQaup//if/UrcYntaoWWc9vSSl0m7OJrPQ/G6RsbZ1xdX3qgcYvhBBCCFFSVP7tezZy+54QQghRHshIqTLObDLxu8YRF/Lmo69oCmBu4xQyPf8AtDTN+oMXPd3uWM+qmCQSLiRDHcg1a/k+6T/8u3cLtFr9Az4DIYQQQoj7kxUXR+rPP5OTeCpvQzGnLRBCCCFE2SaNUmWc2WTimkaHy81FEvVmA47mRDIBNBrsmw8uVj3XM4046DIB0Nm68K+erdHKJKFCCCGEeAScHx9B5qFDluc2jo6lGI0QQgghSoo0SpVxymwiV6O9OU4KHHQaWtoeJwodoMXOzbfI/c9czeD48XBau+ymZRMjAPZ2LtjrpEFKCCGEEI8GU1renJrOwcHovL1xffml0g1ICCGEECVCGqXKuNzcXI74/MATiQoNkEoOG6rkNyhpMRSx+ozRZKbbnPVMbrEWZ92f252d6z/QmIUQQgghStTNuaQq9e2DQ9OmpRyMEEIIIUqKNEqVYeacHM6dOsxVvyQ05I2IMmEi42ZDVK7OC7siGqWuZeRgzr0OgNGsZ9vVjxjZvjZuFeo+8NiFEEIIIUpM/gTnReQ9QgghhHj0SKNUGZbzxx/YZmTQ7ReTZZut1oFrVSJQWkdMOi/sC5noUynFhYvRPFt1JwDOhspM7v7qQ4lbCCGEEKIkKctEBjLBuRBCCFGeSHdTGaVyzVxZcYE26ZUIOehu2W60tSPXriauykATZwMNnB1uu//Va79y8Y+RdPTbCIBeX/mhxC2EKH/69euHRqNBo9Gg1+upWbMmEydOJDc3977q3bJlCxqNhuvXr5dMoMWQmJhIz5498fb2xt7enqpVq9KlSxeOHz9uVW716tW0bdsWZ2dnHBwcePrpp1m0aJFVmVOnTqHRaDh48GCxjz9hwgTq1KmDo6MjFStWpH379uzZs8eqzv79++Pn54fBYKBGjRpERESQk5Nzx7oXL15Mo0aNcHBwwMvLizfffJMrV64Uuc+NGzcYOXIkvr6+GAwGWrZsyb59+6zKpKWlMXToUKpWrYrBYCAwMJC5c+dalRk0aBA1atTAYDDg7u5+22t6+vRpXnjhBRwcHPDw8GD06NGF/g7t2LEDW1tbnnzyyTue98qVK+nQoQNubm53/X6IR4g5r1FKI6vuCSHKKMmXJF+SfOneSKNUGZV7JROVojheuQP7nh5j2X6oTm3cc64Qu+dV1jStjYNNwbdw6s/HGfK/NQCkZDtz7FozatR476HFLoQof0JDQ0lOTub333/n3XffZcKECXz66aelHZZFcZIQo9FIcHAwKSkprFy5kri4OJYtW0aDBg2sEr0vvviCLl260KpVK/bs2cPhw4d57bXXGDx4MO+9d3+fpbVq1WLWrFkcOXKE7du388QTT9ChQwcuXboEwPHjxzGbzcybN4+jR48yY8YM5s6dy7hx44qsd8eOHfTp04f+/ftz9OhRli9fzt69exk4cGCR+w0YMIDo6Gj+97//ceTIETp06ED79u1JSkqylBk1ahQ///wz//d//8exY8cYOXIkQ4cOJSoqylKmSZMmLFy4kGPHjrFu3TqUUnTo0AGTKW+kr8lk4oUXXiAnJ4edO3fy9ddfs2jRIsaPH18gpuvXr9OnTx/atWtXrGuanp5O69atmTp1arHKi0eU3L4nhHgESL4k+ZLkS/dAiUKlpKQoQKWkpDz0Y2efS1Nnwn9R8/qvUl8MXK0iu7+gIru/oBqu2KOa/rROqZ/GFLpv0Keb1d9mva82bPRXUxa/oj768ehDjFwIcTuZmZkqNjZWZWZmlnYod61v376qS5cuVtuCg4NV8+bN1dWrV1Xv3r1VhQoVlMFgUKGhoSo+Pt5S7tSpU+rFF19UFSpUUA4ODiowMFCtWbNGJSYmKsDq0bdvX6WUUqmpqapnz57KwcFBeXp6qs8++0y1bdtWjRgxwlKvr6+vmjhxourdu7dydna27Ltt2zbVunVrZW9vr6pWraqGDRum0tLSlFJKxcTEKECdOnWq0HM9ffq00ul0atSoUQVemzlzpgLU7t27lVLKcg4xMTF3f1Fvyv+e2bBhQ6Flpk2bpvz8/Iqs59NPP1X+/v4F4vXx8Sl0n4yMDGVjY6NWr15ttb1x48bqH//4h+V5vXr11MSJE4ss81eHDh1SgDpx4oRSSqm1a9cqrVarzp8/bykzZ84c5eLiorKzs6327dGjh/rnP/+pIiIiVKNGjQo9xl+VxPtxq6L+ZkszPyirHvQ1iQ8KUrG166iMw4cfSP1CiLJB8iXJl25H8qXynS9Jd1NZZVb8ob2EWaMF8noHFXChkh77itUgdMptd0tNPUIt503UqRQPQMeGAfzzxcCHFLQQ4nFhMBjIycmhX79+/Prrr0RFRbFr1y6UUnTq1Amj0QjAkCFDyM7O5pdffuHIkSNMnToVJycnqlWrxnfffQdAXFwcycnJfP7550BeT9OOHTuIiooiOjqabdu2ceDAgQIxREZG0qhRI2JiYvjggw9ISEggNDSUrl27cvjwYZYtW8b27dsZOnQoAO7u7mi1WlasWGHpkfqrFStWYDQab9vDN2jQIJycnFi6dGmJXMOcnBzmz5+Pq6srjRo1KrRcSkoKlSpVKrKuFi1acObMGdauXZs3p+CFC6xYsYJOnToVuk9ubi4mkwl7e3ur7QaDge3bt1uet2zZkqioKJKSklBKsXnzZuLj4+nQocNt601PT2fhwoX4+flRrVo1AHbt2kWDBg2oUqWKpVxISAipqakcPXrUsm3hwoWcPHmSiIiIIs9XPIYsU0pJ6iqEeHRIvnT/JF96DPKlEmkeK6dKsyf02I8JKuKDaWp2/xVqZv/FKrL7C2pajxdVlU0xqv3e4wXKm0xmterA72r9xkC1YaO/5fH7iU8feuxCiIJu14tgNpuVKT39oT/MZvNdxX5rz5/ZbFbR0dHKzs5OvfTSSwpQO3bssJS9fPmyMhgM6ttvv1VKKdWgQQM1YcKE29a7efNmBahr165ZtqWmpiqdTqeWL19u2Xb9+nXl4OBQoOfvpZdesqqvf//+6u9//7vVtm3btimtVmu57rNmzVIODg7K2dlZBQUFqYkTJ6qEhARL+cGDBytXV9dCr0XDhg1Vx44dlVL33tP0448/KkdHR6XRaJS3t7fau3dvoWV///135eLioubPn3/Her/99lvl5OSkbG1tFaDCwsJUTk5Okfu0aNFCtW3bViUlJanc3Fz1v//9T2m1WlWrVi1LmaysLNWnTx8FKFtbW6XX69XXX39doK7Zs2crR0dHBajatWtbev2UUmrgwIGqQ4cOVuXT09MVoNauXauUUio+Pl55eHiouLg4pZQqFz1/j5MHPlLq2bYqtnYdlXlURn8LUZ6VpXzpbnMmyZf+JPmS5EtKFT83kNX3yiClFGcOx5N65RLON7Zatmtuzu1pf5v5FLafuMxHUTuY2iaLXLOW3y7XI7i+Hz7ePR5W2EKIu6QyM4lr3OShH7f2gf1oHG6/SEJhVq9ejZOTE0ajEbPZTM+ePXnllVdYvXo1zzzzjKWcm5sbtWvX5tixYwAMHz6ct956i/Xr19O+fXu6du1Kw4YNCz3OyZMnMRqNNGvWzLLN1dWV2rVrFyjbtGlTq+eHDh3i8OHDLF682LJNKYXZbCYxMZG6desyZMgQ+vTpw5YtW9i9ezfLly/n448/JioqiuDg4GJdC71ef8cyixcvZtCgQZbnP/30E23atAEgKCiIgwcPcvnyZb788ku6d+/Onj178PDwsKojKSmJ0NBQunXrZjXXgZOTk+XnN954g7lz5xIbG8uIESMYP348ISEhJCcnM3r0aAYPHsyCBQvYtm0bHTt2tOw3b948evXqxf/+9z/efPNNfHx8sLGxoXHjxrz++uvs37/fUvaLL75g9+7dREVF4evryy+//MKQIUPw9vamffv2lnK9evUiODiY5ORkIiMj6d69Ozt27CjQs3g7JpOJnj178uGHH1KrVq27vqbiMZA/p5RGJjoX4nFTWvkS3H3OJPnSnyRfknypuKRRqgw6eWAvyXGrMNj+OVxSoTjn6w+A3W1Wnjl7LRNHXQYARlWBJwJm0bB+1YcTsBCi3AsKCmLOnDno9Xq8vb2xtbW1mrixMAMGDCAkJIQ1a9awfv16pkyZwvTp0xk2bNh9x+To6Gj1PC0tjUGDBjF8+PACZatXr2752dnZmbCwMMLCwpg0aRIhISFMmjSJ4OBgAgICSElJ4dy5c3h7e1vVkZOTQ0JCAiEhIXeMrXPnzlbJp4+Pj1XcNWvWpGbNmjRv3pyAgAAWLFjA2LFjLWXOnTtHUFAQLVu2ZP78+VZ137paiouLCwBTpkyhVatWjB49GoCGDRvi6OhImzZtmDRpEk2bNrXaL39YeI0aNdi6dSvp6emkpqbi5eVFjx498PfP+77JzMxk3LhxfP/997zwwguWug8ePEhkZKRVkuXq6oqrqysBAQE0b96cihUr8v333/P666/j6enJ3r17rc7jwoULAHh6enLjxg1+/fVXYmJiLLcPmM1mlFLY2tqyfv36Iq+pKP9U/v17MtG5EKIMk3xJ8iXJl+6eNEqVQdfPn0eDFlTePca2Du054bWa5cFvAuBpp7Mqn5ubhl36FN6oGweAu4s7zzSRBikhyjqNwUDtA/vvXPABHPdu5ScGt6pbty65ubns2bOHli1bAnDlyhXi4uIIDPxzLrtq1aoxePBgBg8ezNixY/nyyy8ZNmyYpQft1vkK/P390el07Nu3z5IYpaSkEB8fz7PPPltkjI0bNyY2NrZAnEXRaDTUqVOHnTt3AvDqq68SHh7O9OnTmT59ulXZuXPnkpGRQZ8+fe5Yr7OzM87OzsWKwWw2k52dbXmelJREUFCQZYUW7V/+E36788vIyMDW1vor3cbGBsjr/TQYDEVeF0dHRxwdHbl27Rrr1q1j2rRpQN4KPEajsUAMNjY2mPNHrtyGUgqllOW8WrRoweTJk7l48aKlhzM6OhoXFxcCAwPR6XQcOXLEqo5///vfbNq0iRUrVuDn54ejo2Oxr6koh8w3G6VkpJQQj53Sypfyj303JF+SfOmvdUu+dGfSKFUGmXKNoNGiUfmzemrJ1cJLFzfS2sOT0Jp/3pK3/uh5Fm/5ij5111PBNW+bwcH34QcthLhrGo3mrm+jK0sCAgLo0qULAwcOZN68eTg7OzNmzBh8fHzo0qULACNHjqRjx47UqlWLa9eusXnzZurWrQuAr68vGo2G1atX06lTJwwGA87OzvTt25fRo0dTqVIlPDw8iIiIQKvVornDf0bDw8Np3rw5Q4cOZcCAATg6OhIbG0t0dDSzZs3i4MGDRERE0Lt3bwIDA9Hr9WzdupWvvvqK8PBwIK+HcNq0abz33nvY29vTu3dvdDodP/zwA+PGjWPSpEnUr1/f6rhxcXEFYqlXrx46nXUHQnp6OpMnT6Zz5854eXlx+fJlZs+eTVJSEt26dQPyEqznnnsOX19fIiMjLUsfQ14PWWHCwsIYOHAgc+bMsQxHHzlyJM2aNSvQg3mr/OWIa9euzYkTJxg9ejR16tThb3/7G5DXs9i2bVtGjx6NwWDA19eXrVu38t///pfPPvsMyLuFYNmyZXTo0AF3d3fOnj3LJ598gsFgsEwc2qFDBwIDA+nduzfTpk3j/Pnz/POf/2TIkCHY2dkBFLiuHh4e2NvbF9j+V1evXuX06dOcO3cO+PP98PT0LPKaiUfMzaT+Tp8DQojyR/IlyZckXyrn+VKJzG5VTpXWRKY7VyxR/+s3TP2jXz8V2f0F9Xm/L9TA8e3U0n93V2rbZ1ZlRy07qN6cPVpt2Oiv5n8XpNbtW6Sys6881HiFEHdW3pY4zpe/xLGrq6syGAwqJCTEaonjoUOHqho1aig7Ozvl7u6uevfurS5fvmx5feLEicrT01NpNJoilzhu1qyZGjNmjGU/X19fNWPGjALx7N27VwUHBysnJyfl6OioGjZsqCZPnqyUUurSpUtq+PDhqn79+srJyUk5OzurBg0aqMjISGUymazqWbVqlWrTpo1lIkpALV261KrM7ZZpzn+cOXOmQGyZmZnq5ZdfVt7e3kqv1ysvLy/VuXNnq4k7Fy5cWGiddzJz5kwVGBioDAaD8vLyUr169VJnz54tcp9ly5Ypf39/pdfrlaenpxoyZIi6fv26VZnk5GTVr18/5e3trezt7VXt2rXV9OnTLZO/JiUlqY4dOyoPDw+l0+lU1apVVc+ePdXx49aLcpw6dUp17NhRGQwGVblyZfXuu+8qo9FYaGzFnbizsGsWERFxx32LIhOd350HfU3imj2jYmvXUVm3TAgrhCh/JF+SfEnypccvX9IoZRmOI/4iNTUVV1dXUlJSLPehPgybPpnIufirxJmuUyHrMjrHThx84ns6e3rwUqd3oGreZHVGYyqRP8zB3rSdhu6xVPZ4nUb1Jz20OIUQxZeVlUViYiJ+fn7FmshQ/Ck9PR0fHx+mT59O//79H/rxr169Srt27XBxceGnn37C4RHurRXFV9TfbGnlB2XZg74mcc80x5ySgv/atdj5+5V4/UKIskHypXsn+ZIoDSWRL8lskWVQRlwc6wPiybFPvrlFi9EG7F6aZWmQMpsViaf+TbNK82noHguAi2OVUopYCCFKTkxMDEuXLiUhIYEDBw7Qq1cvAMsQ94etUqVKbNiwgXbt2rFr165SiUGIx55l9b3SDUMIIcoKyZdEeSFzSpUxsVdiOZt6lmPuN/BJvLncpQJbvTt2NydhS7iUxqtzdtKj5j6e9oRTKdXw826Mt3f3UoxcCCFKTmRkJHFxcej1epo0acK2bduoXLlyqcXj5ubG+PHjS+34Qjz28ueUktX3hBDCQvIlUR5Io1QZc+DCAbIcKuCXfA2XjLxtGsDe0Ag7bV734O6TV7iWYcRBl5n3/EI7Xgp+3zL5mRBCPMqeeuop9u8vnVV2hBBlVP5sE9IoJYQQgORLovyQRqkyJjMtkyyvOgxbq+Gwt4YsWyMaNGTq7THkJ2Lp3/G3er9Ss2Le7X0fvdICNydpkBJCCCFE+WSZAlVW3xNCCCHKFeluKkOuJJ0hbXMsDhmuHG40nGx93mRgNhoTyVWqkJNuZFLUVjyZTWufPdhpUwFwdKhammELIYQQQjxY+bfvSaOUEEIIUa5Io1QZsvu7bzCcMFLZnHdbHioXgPpOG5jesC7f7zzNuiPHAcgw2pNiO4D69Wfh7FSntEIWQgghhHjw8ic6l9v3hBBCiHJFvtnLkJzMDKo61UarbvYGmrMAyKxgov4TDbmUlo2DbV6DlU7vQWjz0VTx6Fhq8QohhBBCPAwq/wcZKSWEEEKUKzKnVBliNpnI1Oq4bnK82VyYl4Il1nyDa9f30sB5EfUMSQBUdnbDQS9vnxBCCCEeA/kjpTTSnyqEEEKUJ9KqUYaYTSYuYUN22mHMpn2gMQJwLM3A5j0jaFjxkqWs3q5KaYUphBBCCPFw5c8ppZWRUkIIIUR5It1NZYgpN5fc3DTMpjQgr0HKbHBg7akcDDbXAdhwui2VvYYQUDO89AIVQgghhHiYZPU9IYQQolySRqkyxGwyYcrPtTROuFKL5LfGY2+fjd4mr5HqbyGTaVR3FAZD9dILVAjxWOnXrx8ajQaNRoNer6dmzZpMnDiR3Nzc+6p3y5YtaDQarl+/XjKBFkNiYiI9e/bE29sbe3t7qlatSpcuXTh+/LhVudWrV9O2bVucnZ1xcHDg6aefZtGiRVZlTp06hUaj4eDBg8U+/oQJE6hTpw6Ojo5UrFiR9u3bs2fPHqs6+/fvj5+fHwaDgRo1ahAREUFOTs4d6168eDGNGjXCwcEBLy8v3nzzTa5cuVLkPr/88gthYWF4e3uj0WhYtWpVgTIrV66kQ4cOuLm53fF8lVJ07Nix0LoWLVpEw4YNsbe3x8PDgyFDhli9vm7dOpo3b46zszPu7u507dqVU6dOPZTzFGWXUurPJzLRuRCijJJ8SfIlyZfujXyzlxE/rV7NCY2BRNu8W/Q0Gh1ajQ25GYuZ8dw/b26zIcDTszTDFEI8pkJDQ0lOTub333/n3XffZcKECXz66aelHZZFcZIQo9FIcHAwKSkprFy5kri4OJYtW0aDBg2sEr0vvviCLl260KpVK/bs2cPhw4d57bXXGDx4MO+99959xVmrVi1mzZrFkSNH2L59O0888QQdOnTg0qW8z/7jx49jNpuZN28eR48eZcaMGcydO5dx48YVWe+OHTvo06cP/fv35+jRoyxfvpy9e/cycODAIvdLT0+nUaNGzJ49u8gyrVu3ZurUqXc8v3/9619oChnJ8tlnn/GPf/yDMWPGcPToUTZs2EBISIjl9cTERLp06cLzzz/PwYMHWbduHZcvX+aVV155KOcpyrD8+aRARkoJIco0yZckX5J86R4oUaiUlBQFqJSUlAd6HLPJrCZN+FCNixij3h7ZTEV2f0FNf72v+s9r76h3Nw5XGzb6qw0b/dXhw0MeaBxCiAcnMzNTxcbGqszMzNIO5a717dtXdenSxWpbcHCwat68ubp69arq3bu3qlChgjIYDCo0NFTFx8dbyp06dUq9+OKLqkKFCsrBwUEFBgaqNWvWqMTEREXeag6WR9++fZVSSqWmpqqePXsqBwcH5enpqT777DPVtm1bNWLECEu9vr6+auLEiap3797K2dnZsu+2bdtU69atlb29vapataoaNmyYSktLU0opFRMTowB16tSpQs/19OnTSqfTqVGjRhV4bebMmQpQu3fvVkopyznExMTc/UW9Kf97ZsOGDYWWmTZtmvLz8yuynk8//VT5+/sXiNfHx6fYsQDq+++/L/T1O51vTEyM8vHxUcnJyQXqunr1qjIYDEWe5/Lly5Wtra0ymUyWbVFRUUqj0aicnByl1MM5z3xF/c0+rPzgUfIgr4k5J0fF1q6jYmvXUbnXr5d4/UKIskPyJcmXbkfypT+Vx3xJRkqVAZlHLmEyK6okJdBtR/7wThtstFo8OM/mM6355cYKGjSYVapxCiFKllIKY7bpoT/UrbfC3CODwUBOTg79+vXj119/JSoqil27dqGUolOnThiNebccDxkyhOzsbH755ReOHDnC1KlTcXJyolq1anz33XcAxMXFkZyczOeffw7AqFGj2LFjB1FRUURHR7Nt2zYOHDhQIIbIyEgaNWpETEwMH3zwAQkJCYSGhtK1a1cOHz7MsmXL2L59O0OHDgXA3d0drVbLihUrMJlMtz2vFStWYDQab9vDN2jQIJycnFi6dOl9Xz/I662cP38+rq6uNGrUqNByKSkpVKpUqci6WrRowZkzZ1i7di1KKS5cuMCKFSvo1KlTicR6JxkZGfTs2ZPZs2fjeZsRvdHR0ZjNZpKSkqhbty5Vq1ale/funDlzxlKmSZMmaLVaFi5ciMlkIiUlhf/973+0b98enU5XJs5TlJJbP7NkpJQQj53SypdKImeSfOn+Sb5U/vMlWX2vDMi6kIFZo3DJdiK5ytPAWdDY4uhjpjG/YluvPy2ebFjaYQohSlhujpn5I7Y+9OP+/fO26Oxs7mlfpRQbN25k3bp1dOzYkf9n787joqz2P4B/BmFggAFEQRYRQXBB0Vxy30gR1ITKNMMQS0y64JJLqLdCDTUNNLdcuob+7kXzaqVc1BR3VHIFNVFIhDAQFVGQRbY5vz+4PNeRXZFx+bxfr3nF8zznOed7nmHieOYsO3fuxIkTJ9C7d28AZfPXbWxssHPnTowaNQqpqakYOXIknJ2dAQD29vZSXuUNB3Nzc5iYmAAAHjx4gM2bN2PLli0YNGgQACAsLAxWVlYVYnnjjTcwY8YM6djX1xdjx47FtGnTAACOjo5YuXIlBgwYgLVr18La2horV67EZ599hvnz56Nbt25wcXHB2LFjpbgSExNhbGwMS0vLCuXJ5XLY29sjMTHxiZ5ducjISIwZMwb5+fmwtLREVFQUmjZtWmnaa9euYdWqVQgJCak2zz59+iA8PBzvvfceHj58iJKSEowYMaLBhl9/+umn6N27Nzw9PSu9fv36dahUKixatAgrVqyAsbExPv/8c7i6uuLixYuQy+Wws7PD/v37MXr0aEyaNAmlpaXo1asX9uzZ89zUkzRDcE0poleaptpLwJO3mdheYnupMmwvVY5/2Z8DKZduAwCK9IbjTtOy/xHJ0AhNLNIgA+BgYQtd7Sf7ByQRUX2IjIyEoaEh9PT0MHToULz33nsYP348tLW10aNHDyldkyZN0KZNG1y5cgUAMGXKFAQHB6NPnz4ICgrCxYsXqy3n+vXrKC4uRvfu3aVzxsbGaNOmTYW03bp1Uzu+cOECNm3aBENDQ+nl5uYGlUqF5ORkAGXfRGZkZCA8PBy9evXC9u3b0b59e0RFRdX6Wcjl8hrThIeHq8URHR0tXXNxcUFcXBxOnjwJd3d3jB49Grdv366QR1paGtzd3TFq1Ci1NQAezdfPzw8AEB8fj6lTp+LLL7/EuXPn8OuvvyIlJUW6Hh0drXZfeHh4retbk4iICBw6dAjffvttlWlUKhWKi4uxcuVKuLm5oWfPnti6dSv++OMPHD58GACQkZGBiRMnwsfHB2fOnMHRo0chl8vx7rvvSp0SmqwnadAja0pVtQYHEdHzgO2l/2F7SR3bS1XjSKnnQGFeEYpEI5TIDCFQNkRSrnMPKRbZ6NdiIpo1G6HhCInoWdCWa+HjFQM0Um5dubi4YO3atZDL5bCysoK2tjYiIiJqvM/X1xdubm7YvXs39u/fj8WLFyM0NBSTJ09+ktDVGBgYqB3n5uZi0qRJmDJlSoW0LVr8b8dSpVKJESNGYMSIEQgODoabmxuCg4Ph6uoKR0dHZGdnIz09vcK3jUVFRUhKSlJbbLIqHh4eao1Pa2trtbgdHBzg4OCAnj17wtHRERs3bsScOXOkNOnp6XBxcUHv3r2xYcMGtbwf3c3FyMgIALB48WL06dMHs2bNAgB07NgRBgYG6NevH4KDg9GtWze1+5o1a1ZjHWrr0KFDSEpKkr69LTdy5Ej069cPR44ckb5JdXJykq6bmZmhadOmSE1NBQCsWbMGxsbGWLp0qZTmX//6F2xsbHDq1Cn07NlTo/UkDeL0PaJXmqbaS+Vl1wXbS2wvVYXtpaqxU+o5UFpagtuZhWhyfw2Asm8D0xXaKCz1wEcOf9NscET0zMhksieeRtfQyhsGj2rXrh1KSkpw6tQpaTj63bt3kZCQoPbH1MbGBn5+fvDz88OcOXPw/fffY/LkydI3aI+uV2Bvbw8dHR2cOXNGahhlZ2cjMTER/fv3rzbGLl26ID4+vkKc1ZHJZGjbti1OnjwJAHj33XcRGBiI0NBQhIaGqqVdt24d8vPzMW7cuBrzVSqVUCqVtYpBpVKhsLBQOk5LS4OLiwu6du2KsLAwaD02Xamy+uXn50NbW/1PeqNGZb9bQggoFIo6PZe6mD17Nnx9fdXOOTs7Y/ny5RgxouxLlT59+gAoWw+jefPmAICsrCxkZmbC1tZWqsPjdS2vg+q/I2U0WU/SHKHi9D2iVxnbS2wvAWwvvcztJXZKPQdUqlI0zbuJ8g4pALC0vYUxw7pXfRMRkYY5OjrC09MTEydOxPr166FUKjF79mxYW1tLc+WnTZuGoUOHonXr1rh37x4OHz6Mdu3aAQBsbW0hk8kQGRmJYcOGQaFQQKlUwsfHB7NmzYKpqSnMzc0RFBQELS2tGqftBAYGomfPnggICICvry8MDAwQHx+PqKgorF69GnFxcQgKCoK3tzecnJwgl8tx9OhR/PDDDwgMDARQ9g3h0qVLMXPmTOjp6cHb2xs6OjrYtWsX5s6di+DgYHTo0EGt3ISEhAqxtG/fXlpsslxeXh4WLlwIDw8PWFpaIjMzE2vWrEFaWhpGjRoFoKyBNXDgQNja2iIkJETa+hhApQtilhsxYgQmTpyItWvXws3NDTdv3sS0adPQvXv3SteXKJebm4tr165Jx8nJyYiLi4OpqanUyM3KykJqairS09PV6mthYaH2elyLFi1gZ2cHoGxrZ09PT0ydOhUbNmyAkZER5syZg7Zt28LFxQUAMHz4cCxfvhwLFizA+++/jwcPHmDu3LmwtbVF586dn3k96Tkm/tc+YqcUEb1o2F4qw/YS20tVqtV+gK+ohtjy+fafyWLn9PXi7+PGiZDRw8WK8avEFxP7iwMH7UV+/l/PrFwialgv2xbH5cq3ODY2NhYKhUK4ubmpbXEcEBAgWrVqJXR1dYWZmZnw9vYWmZmZ0vUFCxYICwsLIZPJqt3iuHv37mL27NnSfba2tmL58uUV4jl9+rRwdXUVhoaGwsDAQHTs2FEsXLhQCCHEnTt3xJQpU0SHDh2EoaGhUCqVwtnZWYSEhKhtqyuEEDt37hT9+vUTBgYG0hbMW7duVUtT2TbN5a8bN25UiK2goEC8/fbbwsrKSsjlcmFpaSk8PDzE6dOnpTRhYWFV5lmTlStXCicnJ6FQKISlpaUYO3as+Ouv6v+OHD58uNKyyt+L6mIKCgqqMl9Uso1wdna2+Oijj4SJiYkwNTUVb7/9tkhNTVVLs3XrVtG5c2dhYGAgzMzMhIeHh7hy5UqD1PNx9bHF8avkWT6TkuxsEd+mrYhv01aoCgvrPX8ien6wvcT2EttLr157SSZEPewN/pLKycmBsbExsrOzpXmo9e3oylD8R9UShud+hrIoG7oGbyPdcAum/n06mjUb/kzKJKKG9/DhQyQnJ8POzg56enqaDueFkpeXB2tra4SGhmLChAkNXn5WVhYGDRoEIyMj7N27F/r6+g0eAzW86j6zDdE+eNE8y2dSev8+Env2AgC0/f0SZNoc6E/0smJ76cmxvUSaUB/tJY6B1qCVXh/hwm+X0fK3PVAW5QIAtFQyNFMaskOKiF5ZsbGx2Lp1K5KSknD+/HmMHTsWAKrcPvdZMzU1xYEDBzBo0CDExMRoJAaiV9ndzZv/d8Dpe0REANheopcHv2rSoOLSLAAlauf0iksgb171PFgioldBSEgIEhISIJfL0bVrV0RHR6Np06Yai6dJkyb48ssvNVY+0asse9cuAIBMoeDue0REj2B7iV4G7JTSIB1dU0AICC2B0kYCcrkW9NtfwqBxX2k6NCIijencuTPOnTun6TCI6DnRePRolGTehUHv3jUu4EtE9Kpge4leFhoZA7148WK8/vrrUCqVMDc3x1tvvVVhNf6BAwdCJpOpvfz8/NTSpKamYvjw4dDX14e5uTlmzZqFkhL1kUdHjhxBly5doKurCwcHB2zatOlZV6/WpvzfD5jyzzBM3bwJ03/YjIB1YRgzeRXMDMw1HRoRERHRc6Gpnx8sPv87lG+4aDoUIiIiqmca6ZQ6evQo/P398dtvvyEqKgrFxcUYMmQI8vLy1NJNnDgRN2/elF5Lly6VrpWWlmL48OEoKirCyZMnsXnzZmzatEltuGBycjKGDx8OFxcXxMXFYdq0afD19cW+ffsarK5ERERERERERFSRRqbv/frrr2rHmzZtgrm5Oc6dO4f+/ftL5/X19WFhUfn6Svv370d8fDwOHDiAZs2a4bXXXsNXX32FwMBAzJs3D3K5HOvWrYOdnR1CQ0MBAO3atcPx48exfPlyuLm5PbsKEhERERERERFRtZ6LLUyys7MBlK3Y/6jw8HA0bdoUHTp0wJw5c5Cfny9di4mJgbOzM5o1ayadc3NzQ05ODi5fviylGTx4sFqebm5u3A2AiIiIiIiIiEjDNL7QuUqlwrRp09CnTx906NBBOu/l5QVbW1tYWVnh4sWLCAwMREJCAn7++WcAQEZGhlqHFADpOCMjo9o0OTk5KCgogEKhULtWWFiIwsJC6TgnJ6f+KkpERERERERERBKNd0r5+/vj999/x/Hjx9XOf/zxx9LPzs7OsLS0xKBBg5CUlIRWrVo9k1gWL16M+fPnP5O8iYiIiIiIiIjofzQ6fS8gIACRkZE4fPgwmjdvXm3aHj16AACuXbsGALCwsMCtW7fU0pQfl69DVVUaIyOjCqOkAGDOnDnIzs6WXjdu3HiyihERERERERERUbU00iklhEBAQAB++eUXHDp0CHZ2djXeExcXBwCwtLQEAPTq1QuXLl3C7du3pTRRUVEwMjKCk5OTlObgwYNq+URFRaFXr16VlqGrqwsjIyO1FxHRq278+PGQyWSQyWSQy+VwcHDAggULUFJS8lT5HjlyBDKZDPfv36+fQGshOTkZXl5esLKygp6eHpo3bw5PT09cvXpVLV1kZCQGDBgApVIJfX19vP7669i0aZNampSUFMhkMunvU23MmzcPbdu2hYGBARo3bozBgwfj1KlTanlOmDABdnZ2UCgUaNWqFYKCglBUVFRj3uHh4ejUqRP09fVhaWmJjz76CHfv3q32nmPHjmHEiBGwsrKCTCbDzp076xwzACxcuBC9e/eGvr4+TExMKi0rNTUVw4cPh76+PszNzTFr1iy136FHf88efbVv315Ks3jxYrz++utQKpUwNzfHW2+9hYSEhBqfTW3iIyIiehpsL7G9xPbSk9FIp5S/vz/+9a9/YcuWLVAqlcjIyEBGRgYKCgoAAElJSfjqq69w7tw5pKSkICIiAuPGjUP//v3RsWNHAMCQIUPg5OQEb29vXLhwAfv27cPnn38Of39/6OrqAgD8/Pxw/fp1fPbZZ7h69Sq+++47/Pvf/8ann36qiWoTEb2w3N3dcfPmTfzxxx+YMWMG5s2bh2+++UbTYUlq0wgpLi6Gq6srsrOz8fPPPyMhIQHbtm2Ds7OzWkNv1apV8PT0RJ8+fXDq1ClcvHgRY8aMgZ+fH2bOnPlUcbZu3RqrV6/GpUuXcPz4cbRs2RJDhgzBnTt3AABXr16FSqXC+vXrcfnyZSxfvhzr1q3D3Llzq833xIkTGDduHCZMmIDLly9j+/btOH36NCZOnFjtfXl5eejUqRPWrFnzxDEDZc9/1KhR+OSTTyrNo7S0FMOHD0dRURFOnjyJzZs3Y9OmTfjyyy+lNCtWrMDNmzel140bN2BqaopRo0ZJaY4ePQp/f3/89ttviIqKQnFxMYYMGYK8vLxq61lTfERERPWB7SW2l9heegJCAwBU+goLCxNCCJGamir69+8vTE1Nha6urnBwcBCzZs0S2dnZavmkpKSIoUOHCoVCIZo2bSpmzJghiouL1dIcPnxYvPbaa0Iulwt7e3upjNrIzs4WACqUS0RUVwUFBSI+Pl4UFBRoOpQ68/HxEZ6enmrnXF1dRc+ePUVWVpbw9vYWJiYmQqFQCHd3d5GYmCilS0lJEW+++aYwMTER+vr6wsnJSezevVskJydX+Bvg4+MjhBAiJydHeHl5CX19fWFhYSGWLVsmBgwYIKZOnSrla2trKxYsWCC8vb2FUqmU7o2OjhZ9+/YVenp6onnz5mLy5MkiNzdXCCFEbGysACBSUlKqrGtqaqrQ0dER06dPr3Bt5cqVAoD47bffhBBCqkNsbGzdH+p/lf+dOXDgQJVpli5dKuzs7KrN55tvvhH29vYV4rW2tq51LADEL7/8UmO66mIOCwsTxsbGFc7v2bNHaGlpiYyMDOnc2rVrhZGRkSgsLKy0nF9++UXIZLJq36/bt28LAOLo0aM1xl1dfJWp7jPL9kFFfCZEVB/YXmJ7qTJsL73c7SWNTd+r7DV+/HgAgI2NDY4ePYq7d+/i4cOH+OOPP7B06dIK0+lsbW2xZ88e5Ofn486dOwgJCYG2tvra7QMHDkRsbCwKCwuRlJQklUFEpGlCCBQ/fNjgLyHEU8euUChQVFSE8ePH4+zZs4iIiEBMTAyEEBg2bBiKi4sBlI2MLSwsxLFjx3Dp0iUsWbIEhoaGsLGxwU8//QQASEhIwM2bN7FixQoAwPTp03HixAlEREQgKioK0dHROH/+fIUYQkJC0KlTJ8TGxuKLL75AUlIS3N3dMXLkSFy8eBHbtm3D8ePHERAQAAAwMzODlpYWduzYgdLS0krrtWPHDhQXF1f6Dd+kSZNgaGiIrVu3PvXzA8q+jdqwYQOMjY3RqVOnKtNlZ2fD1NS02rx69eqFGzduYM+ePRBC4NatW9ixYweGDRtWL7HWNebHxcTEwNnZWW1HXDc3N+Tk5ODy5cuV3rNx40YMHjwYtra2VeabnZ0NADU+HyIienFpqr1UH20mtpeeHttLL397SeO77xERvapKCgux0ufdBi93yuYd0NHTe6J7hRA4ePAg9u3bh6FDh2Lnzp04ceIEevfuDaBsnr6NjQ127tyJUaNGITU1FSNHjoSzszMAwN7eXsqr/A+jubm5NG/9wYMH2Lx5M7Zs2YJBgwYBAMLCwmBlZVUhljfeeAMzZsyQjn19fTF27FhMmzYNAODo6IiVK1diwIABWLt2LaytrbFy5Up89tlnmD9/Prp16wYXFxeMHTtWiisxMRHGxsbS+oWPksvlsLe3R2Ji4hM9u3KRkZEYM2YM8vPzYWlpiaioKDRt2rTStNeuXcOqVasQEhJSbZ59+vRBeHg43nvvPTx8+BAlJSUYMWJEtcPMn1XMlcnIyFBrYAGQjjMyMiqkT09Px969e7Fly5Yq81SpVJg2bRr69OmDDh061DoWIiJ6sWiqvQQ8eZuJ7SW2l9heqj2N7r5HREQvhsjISBgaGkJPTw9Dhw7Fe++9h/Hjx0NbW1vaHRUAmjRpgjZt2uDKlSsAgClTpiA4OBh9+vRBUFAQLl68WG05169fR3FxMbp37y6dMzY2Rps2bSqk7datm9rxhQsXsGnTJhgaGkovNzc3qFQqJCcnAyj7JjIjIwPh4eHo1asXtm/fjvbt2yMqKqrWz0Iul9eYJjw8XC2O6Oho6ZqLiwvi4uJw8uRJuLu7Y/To0WqbdpRLS0uDu7s7Ro0apbbWwaP5+vn5AQDi4+MxdepUfPnllzh37hx+/fVXpKSkSNejo6PV7gsPD691fesSc33ZvHkzTExM8NZbb1WZxt/fH7///jt+/PFH6Zyfn59aPYmIiBoS20v/w/YS20u1xZFSREQaoq2riymbd2ik3LpycXHB2rVrIZfLYWVlBW1tbURERNR4n6+vL9zc3LB7927s378fixcvRmhoKCZPnvwkoasxMDBQO87NzcWkSZMwZcqUCmlbtGgh/axUKjFixAiMGDECwcHBcHNzQ3BwMFxdXeHo6Ijs7Gykp6dX+LaxqKgISUlJcHNzqzE2Dw8PtcantbW1WtwODg5wcHBAz5494ejoiI0bN2LOnDlSmvT0dLi4uKB3797YsGGDWt6P7l5TPq198eLF6NOnD2bNmgUA6NixIwwMDNCvXz8EBwejW7duavc9/i1cTWoTc3UsLCxw+vRptXO3bt2Srj1KCIEffvgB3t7eVTZoAwICEBkZiWPHjqF58+bS+QULFjz14qpERPR80VR7qbzsumB7ie0ltpfqjp1SREQaIpPJnngaXUMr/yP7qHbt2qGkpASnTp2ShqPfvXsXCQkJcHJyktLZ2NjAz88Pfn5+mDNnDr7//ntMnjxZ+gP66HoF9vb20NHRwZkzZ6SGUXZ2NhITE9G/f/9qY+zSpQvi4+MrxFkdmUyGtm3b4uTJkwCAd999F4GBgQgNDUVoaKha2nXr1iE/Px/jxo2rMV+lUgmlUlmrGFQqFQoLC6XjtLQ0uLi4oGvXrggLC4OWlvqg5srql5+fX2FNxUaNGgEoa7QoFIo6PZe6xlyTXr16YeHChbh9+zbMzc0BAFFRUTAyMlL7XQHKdoy5du0aJkyYUCEfIQQmT56MX375BUeOHIGdnZ3adXNzcyl/IiJ6ObC9xPYSwPbSy9xeYqcUERE9EUdHR3h6emLixIlYv349lEolZs+eDWtra3h6egIApk2bhqFDh6J169a4d+8eDh8+jHbt2gEo26xCJpMhMjISw4YNg0JjD7/AAAEAAElEQVShgFKphI+PD2bNmgVTU1OYm5sjKCgIWlpakMlk1cYTGBiInj17IiAgAL6+vjAwMEB8fDyioqKwevVqxMXFISgoCN7e3nBycoJcLsfRo0fxww8/IDAwEEDZN4RLly7FzJkzoaenB29vb+jo6GDXrl2YO3cugoODK8zHT0hIqBBL+/btoaOjo3YuLy8PCxcuhIeHBywtLZGZmYk1a9YgLS1N2sY3LS0NAwcOhK2tLUJCQtS2EX78G7JHjRgxAhMnTsTatWvh5uaGmzdvYtq0aejevXul60uUy83NxbVr16Tj5ORkxMXFwdTUFC1atKhVzACQmpqKrKwspKamorS0VPqW0cHBAYaGhhgyZAicnJzg7e2NpUuXIiMjA59//jn8/f2h+9i30Bs3bkSPHj0qXffA398fW7Zswa5du6BUKqX1FYyNjaFQKKqsZ03xERERPStsL5Vhe4ntpSrVap+/VxS3Nyai+vKybXFcrnyLY2NjY6FQKISbm5vaFscBAQGiVatWQldXV5iZmQlvb2+RmZkpXV+wYIGwsLAQMpms2i2Ou3fvLmbPni3dZ2trK5YvX14hntOnTwtXV1dhaGgoDAwMRMeOHcXChQuFEELcuXNHTJkyRXTo0EEYGhoKpVIpnJ2dRUhIiCgtLVXLZ+fOnaJfv37CwMBA2oJ569atamkq26a5/HXjxo0KsRUUFIi3335bWFlZCblcLiwtLYWHh4c4ffq0lCYsLKzKPGuycuVK4eTkJBQKhbC0tBRjx44Vf/31V7X3HD58uNKyyt+L2sQsRNnvSGX5HD58WEqTkpIihg4dKhQKhWjatKmYMWOGKC4uVsvn/v37QqFQiA0bNlQab1XPJiwsrNp61ia+x9XHFsevEj4TIqoPbC+xvcT20qvXXpL9N2iqRE5ODoyNjZGdnS3NQyUiehIPHz5EcnIy7OzsoPeCDEF/XuTl5cHa2hqhoaGVDlF+1rKysjBo0CAYGRlh79690NfXb/AYqOFV95ll+6AiPhMiqg9sLz05tpdIE+qjvcTd94iI6LkSGxuLrVu3IikpCefPn8fYsWMBQBri3tBMTU1x4MABDBo0CDExMRqJgYiIiOhRbC/Ry4JrShER0XMnJCQECQkJkMvl6Nq1K6Kjo9G0aVONxdOkSRN8+eWXGiufiIiI6HFsL9HLgJ1SRET0XOncuTPOnTun6TCIiIiInltsL9HLgtP3iIiIiIiIiIiowbFTioiIiIiIiIiIGhw7pYiIGhA3PCV6MfCzSkSkOfx/MNGLoT4+q+yUIiJqADo6OgCA/Px8DUdCRLVR/lkt/+wSEdGzx/YS0YulPtpLXOiciKgBNGrUCCYmJrh9+zYAQF9fHzKZTMNREdHjhBDIz8/H7du3YWJigkaNGmk6JCKiVwbbS0QvhvpsL7FTioiogVhYWACA1NAioueXiYmJ9JklIqKGw/YS0YujPtpL7JQiImogMpkMlpaWMDc3R3FxsabDIaIq6OjocIQUEZGGsL1E9GKor/YSO6WIiBpYo0aN+A9eIiIiomqwvUT0auBC50RERERERERE1ODYKUVERERERERERA2OnVJERERERERERNTguKZUNYQQAICcnBwNR0JERETPi/J2QXk7gdhmIiIiInW1bS+xU6oaDx48AADY2NhoOBIiIiJ63jx48ADGxsaaDuO5wDYTERERVaam9pJM8Gu+KqlUKqSnp0OpVEImk9V7/jk5ObCxscGNGzdgZGRU7/k/z1h31p11f3Ww7qz7y1Z3IQQePHgAKysraGlxJQTg2baZXubfpZqw7qw76/7qYN1Z95et7rVtL3GkVDW0tLTQvHnzZ16OkZHRS/cLWFusO+v+qmHdWfdXzctad46QUtcQbaaX9XepNlh31v1Vw7qz7q+al7XutWkv8es9IiIiIiIiIiJqcOyUIiIiIiIiIiKiBsdOKQ3S1dVFUFAQdHV1NR1Kg2PdWfdXDevOur9qXuW6U/16lX+XWHfW/VXDurPur5pXue7luNA5ERERERERERE1OI6UIiIiIiIiIiKiBsdOKSIiIiIiIiIianDslCIiIiIiIiIiogbHTikiIiIiIiIiImpw7JQiIiIiIiIiIqIGx04pIiIiIiIiIiJqcOyUIiIiIiIiIiKiBsdOKSIiIiIiIiIianDslCIiIiIiIiIiogbHTikiIiIiIiIiImpw7JQiIiIiIiIiIqIGx04pIiIiIiIiIiJqcOyUIiIiIiIiIiKiBsdOKSJ66aSkpEAmk2HTpk11uu/WrVt499130aRJE8hkMnz77bfPJL76MH78eLRs2VLTYRAREdEL6knbSy+7I0eOQCaT4ciRI9I5truInh12ShFRvTt58iTmzZuH+/fvP9H93333nUYaSJ9++in27duHOXPm4J///Cfc3d0bPIYnlZ+fj3nz5qk1oIiIiOj59aK2l14WfH5Ezwd2ShFRvTt58iTmz5//wjWyDh06BE9PT8ycORMffPAB2rZt2+Ax1Nb333+PhIQE6Tg/Px/z589npxQREdEL4kVtL70sqnp+/fv3R0FBAfr379/wQRG9gtgpRUT0X7dv34aJiYmmw6hWXl4eAEBHRwe6uroajoaIiIjo5aKlpQU9PT1oafGfykQNgZ80IqpX8+bNw6xZswAAdnZ2kMlkkMlkSElJQUlJCb766iu0atUKurq6aNmyJebOnYvCwkLp/pYtW+Ly5cs4evSodO/AgQMBAFlZWZg5cyacnZ1haGgIIyMjDB06FBcuXHiqmDdt2gSZTAYhBNasWSOVCwDFxcWYP38+HB0doaenhyZNmqBv376IioqqVd5CCDRt2hTTp0+XzqlUKpiYmKBRo0Zq344uWbIE2trayM3NBVC2foGhoSGSkpIwbNgwKJVKjB07VrpWvrZBSkoKzMzMAADz58+X4p83b56U99WrV/Huu+/C1NQUenp66NatGyIiIp70kREREdFTeBHbS+X+/PNPeHh4wMDAAObm5tLyB4+vwzRw4EB06NAB586dQ+/evaFQKGBnZ4d169ap5VfeDktJSVE7X9naTjWZN2+e1Iarrozqnt+TlEtET05b0wEQ0cvlnXfeQWJiIrZu3Yrly5ejadOmAAAzMzP4+vpi8+bNePfddzFjxgycOnUKixcvxpUrV/DLL78AAL799ltMnjwZhoaG+Pvf/w4AaNasGQDg+vXr2LlzJ0aNGgU7OzvcunUL69evx4ABAxAfHw8rK6snirl///745z//CW9vb7i6umLcuHHStXnz5mHx4sXw9fVF9+7dkZOTg7Nnz+L8+fNwdXWtMW+ZTIY+ffrg2LFj0rmLFy8iOzsbWlpaOHHiBIYPHw4AiI6ORufOnWFoaCilLSkpgZubG/r27YuQkBDo6+tXKMPMzAxr167FJ598grfffhvvvPMOAKBjx44AgMuXL6NPnz6wtrbG7NmzYWBggH//+99466238NNPP+Htt99+oudGRERET+ZFbC8BZSO233jjDdy8eRNTp06FhYUFtmzZgsOHD1ea/t69exg2bBhGjx6N999/H//+97/xySefQC6X46OPPnriOJ5Wdc+PiBqYICKqZ998840AIJKTk6VzcXFxAoDw9fVVSztz5kwBQBw6dEg61759ezFgwIAK+T58+FCUlpaqnUtOTha6urpiwYIFaucAiLCwsDrFDUD4+/urnevUqZMYPnx4nfJ53DfffCMaNWokcnJyhBBCrFy5Utja2oru3buLwMBAIYQQpaWlwsTERHz66afSfT4+PgKAmD17doU8fXx8hK2trXR8584dAUAEBQVVSDto0CDh7OwsHj58KJ1TqVSid+/ewtHR8anqRkRERE/mRWwvhYaGCgBi586d0rmCggLRtm1bAUAcPnxYOj9gwAABQISGhkrnCgsLxWuvvSbMzc1FUVGREEKIsLCwCs9BCCEOHz5cIc+aBAUFicr+iVtZGVU9v8rKfbzdRUT1h9P3iKhB7NmzBwDUprEBwIwZMwAAu3fvrjEPXV1daX5/aWkp7t69C0NDQ7Rp0wbnz5+v54jLmJiY4PLly/jjjz+eOI9+/fqhtLQUJ0+eBFA2Iqpfv37o168foqOjAQC///477t+/j379+lW4/5NPPnnisrOysnDo0CGMHj0aDx48QGZmJjIzM3H37l24ubnhjz/+QFpa2hPnT0RERPXneW8v/frrr7C2toaHh4d0Tk9PDxMnTqw0vba2NiZNmiQdy+VyTJo0Cbdv38a5c+eeKhYiejmwU4qIGsSff/4JLS0tODg4qJ23sLCAiYkJ/vzzzxrzUKlUWL58ORwdHaGrq4umTZvCzMxMmg73LCxYsAD3799H69at4ezsjFmzZuHixYt1yqNLly7Q19eXOqDKO6X69++Ps2fP4uHDh9K1vn37qt2rra2N5s2bP3H8165dgxACX3zxBczMzNReQUFBAMoWeCciIiLNe97bS3/++SdatWpVYd2mx+MtZ2VlBQMDA7VzrVu3BoAKa0gR0auJa0oRUYOqbPHJ2lq0aBG++OILfPTRR/jqq69gamoKLS0tTJs2DSqVqh6j/J/+/fsjKSkJu3btwv79+/GPf/wDy5cvx7p16+Dr61urPHR0dNCjRw8cO3YM165dQ0ZGBvr164dmzZqhuLgYp06dQnR0NNq2bSstWF7u0W87n0T5c5k5cybc3NwqTVNVQ5KIiIg040VrLz2NqupaWlqq0byIqGGwU4qI6l1lDQJbW1uoVCr88ccfaNeunXT+1q1buH//Pmxtbau9HwB27NgBFxcXbNy4Ue38/fv3pQVCnwVTU1N8+OGH+PDDD5Gbm4v+/ftj3rx5te6UAsqm8C1ZsgQHDhxA06ZN0bZtW8hkMrRv3x7R0dGIjo7Gm2+++cQxVvXM7O3tAZR1jA0ePPiJ8yciIqL69SK2l2xtbREfHw8hhFr5165dqzR9eno68vLy1EZLJSYmAoC0i3Djxo2l+B5Vm1Fhj3s0LxMTk2rzepqOPyKqP5y+R0T1rrzh8WjjYtiwYQDKdjt51LJlywBA2oGu/P7HGyYA0KhRIwgh1M5t3779ma6JdPfuXbVjQ0NDODg4qG3LXBv9+vVDYWEhvv32W/Tt21dqCPXr1w///Oc/kZ6eXul6UrVVvivf48/N3NwcAwcOxPr163Hz5s0K9925c+eJyyQiIqIn9yK2l9zc3JCWloaIiAjp3MOHD/H9999Xmr6kpATr16+XjouKirB+/XqYmZmha9euAIBWrVoBgNpOxaWlpdiwYUOd46ssr7y8PGzevLlC2qqeHxE1LI6UIqJ6V97I+Pvf/44xY8ZAR0cHI0aMgI+PDzZs2ID79+9jwIABOH36NDZv3oy33noLLi4uavevXbsWwcHBcHBwgLm5Od544w28+eabWLBgAT788EP07t0bly5dQnh4uDQa6FlwcnLCwIED0bVrV5iamuLs2bPYsWMHAgIC6pRPr169oK2tjYSEBHz88cfS+f79+2Pt2rUA8FSdUgqFAk5OTti2bRtat24NU1NTdOjQAR06dMCaNWvQt29fODs7Y+LEibC3t8etW7cQExODv/76CxcuXHjicomIiOjJvIjtpUmTJmH16tV4//33MXXqVFhaWiI8PBx6enoAKo4+srKywpIlS5CSkoLWrVtj27ZtiIuLw4YNG6CjowMAaN++PXr27Ik5c+YgKysLpqam+PHHH1FSUlLn+IYMGYIWLVpgwoQJmDVrFho1aoQffvgBZmZmSE1NVUtb1fMjogam2c3/iOhl9dVXXwlra2uhpaUlbcFbXFws5s+fL+zs7ISOjo6wsbERc+bMEQ8fPlS7NyMjQwwfPlwolUoBQNqu9+HDh2LGjBnC0tJSKBQK0adPHxETEyMGDBigtqXvk2xxLIQQAIS/v7/aueDgYNG9e3dhYmIiFAqFaNu2rVi4cKG0jXFdvP766wKAOHXqlHTur7/+EgCEjY1NhfQ+Pj7CwMCg0rwq25r45MmTomvXrkIulwsAIigoSLqWlJQkxo0bJywsLISOjo6wtrYWb775ptixY0ed60FERET140VsL12/fl0MHz5cKBQKYWZmJmbMmCF++uknAUD89ttvUroBAwaI9u3bi7Nnz4pevXoJPT09YWtrK1avXl0hz6SkJDF48GChq6srmjVrJubOnSuioqIEAHH48OE6xXfu3DnRo0cPIZfLRYsWLcSyZctEWFiY9HzLVfX8Dh8+XKHcytpdRFQ/ZEI8NraTiIiIiIiIqJa+/fZbfPrpp/jrr79gbW0NABg4cCAyMzPx+++/azg6InqecU0pIiIiIiIiqpWCggK144cPH2L9+vVwdHSUOqSIiGqLa0oR0UutqKgIWVlZ1aYxNjaGQqF4rvImIiIiaih1adO88847aNGiBV577TVkZ2fjX//6F65evYrw8PBnFl9BQQGys7OrTWNqagq5XP7MYiCiZ4OdUkT0Ujt58qTaoqCVCQsLw/jx45+rvImIiIgaSl3aNG5ubvjHP/6B8PBwlJaWwsnJCT/++CPee++9Zxbftm3b8OGHH1ab5vDhwxg4cOAzi4GIng2uKUVEL7V79+7h3Llz1aZp3749LC0tn6u8iYiIiBrK896muXnzJi5fvlxtmq5du6Jx48YNFBER1Rd2ShERERERERERUYPjQudERERERERERNTguKZUNVQqFdLT06FUKiGTyTQdDhERET0HhBB48OABrKysoKXF7/cAtpmIiIhIXW3bS+yUqkZ6ejpsbGw0HQYRERE9h27cuIHmzZtrOoznAttMREREVJma2kvslKqGUqkEUPYQjYyMNBwNERERPQ9ycnJgY2MjtROIbSYiIiJSV9v2EjulqlE+/NzIyIgNLCIiIlLDaWr/wzYTERERVaam9hIXQiAiIiIiIiIiogbHTikiIiIiIiIiImpw7JQiIiIiIiIiIqIGxzWliIiIiIiI6LlSWlqK4uJiTYdBRFXQ0dFBo0aNnjofdkoRERERERHRc0EIgYyMDNy/f1/ToRBRDUxMTGBhYfFUm7+wU4qIiIiIiIieC+UdUubm5tDX1+dOp0TPISEE8vPzcfv2bQCApaXlE+fFTikiIiIiIiLSuNLSUqlDqkmTJpoOh4iqoVAoAAC3b9+Gubn5E0/l40LnREREREREpHHla0jp6+trOBIiqo3yz+rTrP/GTikiIiIiIiJ6bnDKHtGLoT4+q+yUIiIiIiIiIiKiBsdOKSIiIiIiIqKnMH78eMhkMshkMsjlcjg4OGDBggUoKSl5qnyPHDkCmUzWoLsRJicnw8vLC1ZWVtDT00Pz5s3h6emJq1evqqWLjIzEgAEDoFQqoa+vj9dffx2bNm1SS5OSkgKZTIa4uLhalz9v3jy0bdsWBgYGaNy4MQYPHoxTp06p5TlhwgTY2dlBoVCgVatWCAoKQlFRUbX53rx5E15eXmjdujW0tLQwbdq0WsVz7NgxjBgxAlZWVpDJZNi5c2el6a5cuQIPDw8YGxvDwMAAr7/+OlJTU6XrkyZNQqtWraBQKGBmZlbpMz1z5gwGDRoEExMTNG7cGG5ubrhw4UKl5V27dg1KpRImJib1VgdNYKcUERERERER0VNyd3fHzZs38ccff2DGjBmYN28evvnmG02HJamp0wYoWxvI1dUV2dnZ+Pnnn5GQkIBt27bB2dlZrWNs1apV8PT0RJ8+fXDq1ClcvHgRY8aMgZ+fH2bOnPlUcbZu3RqrV6/GpUuXcPz4cbRs2RJDhgzBnTt3AABXr16FSqXC+vXrcfnyZSxfvhzr1q3D3Llzq823sLAQZmZm+Pzzz9GpU6dax5OXl4dOnTphzZo1VaZJSkpC37590bZtWxw5cgQXL17EF198AT09PSlN165dERYWhitXrmDfvn0QQmDIkCEoLS0FAOTm5sLd3R0tWrTAqVOncPz4cSiVSri5uVVYs6m4uBjvv/8++vXrV2910BhBVcrOzhYARHZ2tqZDISIioucE2wcV8ZkQUX0oKCgQ8fHxoqCgQNOh1JmPj4/w9PRUO+fq6ip69uwpsrKyhLe3tzAxMREKhUK4u7uLxMREKV1KSop48803hYmJidDX1xdOTk5i9+7dIjk5WQBQe/n4+AghhMjJyRFeXl5CX19fWFhYiGXLlokBAwaIqVOnSvna2tqKBQsWCG9vb6FUKqV7o6OjRd++fYWenp5o3ry5mDx5ssjNzRVCCBEbGysAiJSUlCrrmpqaKnR0dMT06dMrXFu5cqUAIH777TchhJDqEBsbW/eH+l/lf2MOHDhQZZqlS5cKOzu7Wuf5+LOqLQDil19+qXD+vffeEx988EGd8rpw4YIAIK5duyaEEOLMmTMCgEhNTZXSXLx4UQAQf/zxh9q9n332mfjggw9EWFiYMDY2rpc6PInqPrO1bRtwpBQRERERERFRPVMoFCgqKsL48eNx9uxZREREICYmBkIIDBs2TBr94u/vj8LCQhw7dgyXLl3CkiVLYGhoCBsbG/z0008AgISEBNy8eRMrVqwAAEyfPh0nTpxAREQEoqKiEB0djfPnz1eIISQkBJ06dUJsbCy++OILJCUlwd3dHSNHjsTFixexbds2HD9+HAEBAQAAMzMzaGlpYceOHdIInsft2LEDxcXFlY6ImjRpEgwNDbF169Z6eYZFRUXYsGEDjI2Nqx3dlJ2dDVNT03ops65UKhV2796N1q1bw83NDebm5ujRo0e1U+Ty8vIQFhYGOzs72NjYAADatGmDJk2aYOPGjSgqKkJBQQE2btyIdu3aoWXLltK9hw4dwvbt25/PUU9PQFvTARARERERERFVRgiBguLKO0eeNYVOoyfaXUwIgYMHD2Lfvn0YOnQodu7ciRMnTqB3794AgPDwcNjY2GDnzp0YNWoUUlNTMXLkSDg7OwMA7O3tpbzKO1rMzc2ltYMePHiAzZs3Y8uWLRg0aBAAICwsDFZWVhVieeONNzBjxgzp2NfXF2PHjpXWU3J0dMTKlSsxYMAArF27FtbW1li5ciU+++wzzJ8/H926dYOLiwvGjh0rxZWYmAhjY2NYWlpWKE8ul8Pe3h6JiYl1fm6PioyMxJgxY5Cfnw9LS0tERUWhadOmlaa9du0aVq1ahZCQkKcq80ndvn0bubm5+PrrrxEcHIwlS5bg119/xTvvvIPDhw9jwIABUtrvvvsOn332GfLy8tCmTRtERUVBLpcDAJRKJY4cOYK33noLX331FYCy92ffvn3Q1i7rurl79y7Gjx+Pf/3rXzAyMmr4yj4D7JQiIiIiIiKi51JBcSmcvtynkbLjF7hBX177fzJHRkbC0NAQxcXFUKlU8PLywjvvvIPIyEj06NFDStekSRO0adMGV65cAQBMmTIFn3zyCfbv34/Bgwdj5MiR6NixY5XlXL9+HcXFxejevbt0ztjYGG3atKmQtlu3bmrHFy5cwMWLFxEeHi6dE0JApVIhOTkZ7dq1g7+/P8aNG4cjR47gt99+w/bt27Fo0SJERETA1dW1Vs+ivKOlOuHh4Zg0aZJ0vHfvXmmNJBcXF8TFxSEzMxPff/89Ro8ejVOnTsHc3Fwtj7S0NLi7u2PUqFGYOHGidN7Q0FD6+YMPPsC6detqjCc6OhpDhw6VjtevX4+xY8fWeJ9KpQIAeHp64tNPPwUAvPbaazh58iTWrVun1ik1duxYuLq64ubNmwgJCcHo0aNx4sQJ6OnpoaCgABMmTECfPn2wdetWlJaWIiQkBMOHD8eZM2egUCgwceJEeHl5oX///vVaB01ipxQRERERERHRU3JxccHatWshl8thZWUFbW1tRERE1Hifr68v3NzcsHv3buzfvx+LFy9GaGgoJk+e/NQxGRgYqB3n5uZi0qRJmDJlSoW0LVq0kH5WKpUYMWIERowYgeDgYLi5uSE4OBiurq5wdHREdnY20tPTK4zOKioqQlJSEtzc3GqMzcPDQ62zztraWi1uBwcHODg4oGfPnnB0dMTGjRsxZ84cKU16ejpcXFzQu3dvbNiwQS3vR3f7q+2Iom7duqnd16xZs1rd17RpU2hra8PJyUntfLt27XD8+HG1c8bGxjA2NoajoyN69uyJxo0b45dffsH777+PLVu2ICUlBTExMdDSKltpacuWLWjcuDF27dqFMWPG4NChQ4iIiJBGhZV3KGpra2PDhg14//33n6gOmsROKSIiIiIiInouKXQaIX5BzR0cz6rsuijvSHlUu3btUFJSglOnTknT9+7evYuEhAS1TgwbGxv4+fnBz88Pc+bMwffff4/JkydLI44eXd/J3t4eOjo6OHPmjNSRlJ2djcTExCpH0JTr0qUL4uPjK8RZHZlMhrZt2+LkyZMAgHfffReBgYEIDQ1FaGioWtp169YhPz8f48aNqzFfpVIJpVJZqxhUKhUKCwul47S0NLi4uEg72pV34pSrS/3KKRSKJ7pPLpfj9ddfR0JCgtr5xMRE2NraVnmfEAJCCKle+fn50NLSUpsyWn5cPhorJiZG7Xdh165dWLJkCU6ePAlra+snroMmsVOKiIiIiIiInksymaxOU+ieN46OjvD09MTEiROxfv16KJVKzJ49G9bW1vD09AQATJs2DUOHDkXr1q1x7949HD58GO3atQMA2NraQiaTITIyEsOGDYNCoYBSqYSPjw9mzZoFU1NTmJubIygoqEKHRmUCAwPRs2dPBAQEwNfXFwYGBoiPj0dUVBRWr16NuLg4BAUFwdvbG05OTpDL5Th69Ch++OEHBAYGAigbUbV06VLMnDkTenp68Pb2ho6ODnbt2oW5c+ciODgYHTp0UCv38Q4bAGjfvj10dHTUzuXl5WHhwoXw8PCApaUlMjMzsWbNGqSlpWHUqFEAyjqkBg4cCFtbW4SEhODOnTvS/RYWFtXWv3wUUW5uLu7cuYO4uDjI5fIKo5welZubi2vXrknHycnJiIuLg6mpqdQpOGvWLLz33nvo378/XFxc8Ouvv+I///kPjhw5AqBsyuW2bdswZMgQmJmZ4a+//sLXX38NhUKBYcOGAQBcXV0xa9Ys+Pv7Y/LkyVCpVPj666+hra0NFxcXAJB+L8qdPXsWWlpaFZ73k9RBY+plH8CXFLc3JiIiosexfVARnwkR1Yfqtpd/3vn4+AhPT89Kr2VlZQlvb29hbGwsFAqFcHNzE4mJidL1gIAA0apVK6GrqyvMzMyEt7e3yMzMlK4vWLBAWFhYCJlMJnx8fIQQQuTk5AgvLy+hr68vLCwsxLJly0T37t3F7NmzpftsbW3F8uXLK8Rz+vRp4erqKgwNDYWBgYHo2LGjWLhwoRBCiDt37ogpU6aIDh06CENDQ6FUKoWzs7MICQkRpaWlavns3LlT9OvXTxgYGAgAAoDYunWrWprk5GTp2uOvGzduVIitoKBAvP3228LKykrI5XJhaWkpPDw8xOnTp6U0YWFhVeZZk8rusbW1rfaew4cPV3pf+XtRbuPGjcLBwUHo6emJTp06iZ07d0rX0tLSxNChQ4W5ubnQ0dERzZs3F15eXuLq1atqeezfv1/06dNHGBsbi8aNG4s33nhDxMTEVBlbWFiYMDY2rrHeta1DXVX3ma1t20AmhBDPvOfrBZWTkwNjY2NkZ2e/NCvbExER0dNh+6AiPhMiqg8PHz5EcnIy7OzsoKenp+lwXih5eXmwtrZGaGgoJkyY0ODlZ2VlYdCgQTAyMsLevXuhr6/f4DFQw6vuM1vbtoFWlVeIiIiIiIiI6LkTGxuLrVu3IikpCefPn5d2WCufEtjQTE1NceDAAQwaNAgxMTEaiYFeTC/u5FwiIiIiIiKiV1RISAgSEhIgl8vRtWtXREdHo2nTphqLp0mTJvjyyy81Vj69mNgpRURERERERPQC6dy5M86dO6fpMIieGqfvERERERERERFRg2OnFBERERERERERNTh2ShERERERERERUYNjpxQRERERERERETU4dkoREREREREREVGDq1On1OLFi/H6669DqVTC3Nwcb731FhISEqTrWVlZmDx5Mtq0aQOFQoEWLVpgypQpyM7OVssnNTUVw4cPh76+PszNzTFr1iyUlJSopTly5Ai6dOkCXV1dODg4YNOmTRXiWbNmDVq2bAk9PT306NEDp0+fVrv+8OFD+Pv7o0mTJjA0NMTIkSNx69atulSZiIiIiIiIiIieAe26JD569Cj8/f3x+uuvo6SkBHPnzsWQIUMQHx8PAwMDpKenIz09HSEhIXBycsKff/4JPz8/pKenY8eOHQCA0tJSDB8+HBYWFjh58iRu3ryJcePGQUdHB4sWLQIAJCcnY/jw4fDz80N4eDgOHjwIX19fWFpaws3NDQCwbds2TJ8+HevWrUOPHj3w7bffws3NDQkJCTA3NwcAfPrpp9i9eze2b98OY2NjBAQE4J133sGJEyfq8xkSERFRA8rI2IW09B8hhAqA+O9Z8b8EouznVg6BaGzyeoPHR0RERES1JJ7C7du3BQBx9OjRKtP8+9//FnK5XBQXFwshhNizZ4/Q0tISGRkZUpq1a9cKIyMjUVhYKIQQ4rPPPhPt27dXy+e9994Tbm5u0nH37t2Fv7+/dFxaWiqsrKzE4sWLhRBC3L9/X+jo6Ijt27dLaa5cuSIAiJiYmFrVLzs7WwAQ2dnZtUpPREREz0ZpaaFISdkgjp75Uhw4aF+r1+3bUc8kFrYPKuIzIaL6UFBQIOLj40VBQYGmQ6kzHx8fgbJvSISOjo5o1aqVmD9/vvTv4Cd1+PBhAUDcu3evfgKthevXr4v3339fWFpaCl1dXWFtbS08PDzElStX1NL95z//Ef379xeGhoZCoVCIbt26ibCwMLU0ycnJAoCIjY2tdflBQUGiTZs2Ql9fX5iYmIhBgwaJ3377TS3Pjz76SLRs2VLo6ekJe3t78eWXX0r9CVVJT08X77//vnB0dBQymUxMnTq1VvF89913wtnZWSiVSqFUKkXPnj3Fnj17pOt3794VAQEBonXr1kJPT0/Y2NiIyZMni/v370tpwsLCpN+Px1+3bt2S0j18+FDMnTtXtGjRQsjlcmFrays2btyoFs/y5culspo3by6mTZtW42fmp59+Eq6ursLU1LTO70d1qvvM1rZtUKeRUo8rn5ZnampabRojIyNoa5cVFRMTA2dnZzRr1kxK4+bmhk8++QSXL19G586dERMTg8GDB6vl4+bmhmnTpgEAioqKcO7cOcyZM0e6rqWlhcGDByMmJgYAcO7cORQXF6vl07ZtW7Ro0QIxMTHo2bPn01SdiIiIGlDm3cO4lvS12jknp1A00lKUHcj+d1723wMjo44NFR4RERHc3d0RFhaGwsJC7NmzB/7+/tDR0VH7d6smFRUVQS6XV5umuLgYrq6uaNOmDX7++WdYWlrir7/+wt69e3H//n0p3apVqzBt2jQEBgZi7dq1kMvl2LVrF/z8/PD7778jJCTkieNs3bo1Vq9eDXt7exQUFGD58uUYMmQIrl27BjMzM1y9ehUqlQrr16+Hg4MDfv/9d0ycOBF5eXnVlltYWAgzMzN8/vnnWL58ea3jad68Ob7++ms4OjpCCIHNmzfD09MTsbGxaN++fa1mjL333ntwd3dXy3f8+PF4+PChNNMLAEaPHo1bt25h48aNcHBwwM2bN6FSqaTrW7ZswezZs/HDDz+gd+/eSExMxPjx4yGTybBs2bIq65CXl4e+ffti9OjRmDhxYq3r3iCetEestLRUDB8+XPTp06fKNHfu3BEtWrQQc+fOlc5NnDhRDBkyRC1dXl6eACD1Njo6OopFixappdm9e7cAIPLz80VaWpoAIE6ePKmWZtasWaJ79+5CCCHCw8OFXC6vENPrr78uPvvss0rjffjwocjOzpZeN27c4Ld+REREz4GUPzeJAwftxf/t6iVm/GOimPnP7zQWC0cFVcRnQkT14UUfKeXp6al2ztXVVfTs2VNkZWUJb29vYWJiIhQKhXB3dxeJiYlSupSUFPHmm28KExMToa+vL5ycnMTu3bulUUaPvnx8fIQQQuTk5AgvLy+hr68vLCwsxLJly8SAAQPURv/Y2tqKBQsWCG9vb6FUKqV7o6OjRd++faWRNpMnTxa5ublCCCFiY2MFAJGSklJlXVNTU4WOjo6YPn16hWsrV64UAKSRTU8yUupx5X9jDhw4UGWapUuXCjs7u1rn+fizqqvGjRuLf/zjH1Vef3zG2ONu374tdHR0xP/93/9J5/bu3SuMjY3F3bt3q8zX399fvPHGG2rnpk+fXm2/zKPq4/14VH2MlHri3ff8/f3x+++/48cff6z0ek5ODoYPHw4nJyfMmzfvSYtpUIsXL4axsbH0srGx0XRIREREr7ygXb/jm1/PAgAS77WCSbNp+OaDTzQcFRERUfUUCgWKioowfvx4nD17FhEREYiJiYEQAsOGDUNxcTGAsn9bFxYW4tixY7h06RKWLFkCQ0ND2NjY4KeffgIAJCQk4ObNm1ixYgUAYPr06Thx4gQiIiIQFRWF6OhonD9/vkIMISEh6NSpE2JjY/HFF18gKSkJ7u7uGDlyJC5evIht27bh+PHjCAgIAACYmZlBS0sLO3bsQGlpaaX12rFjB4qLizFz5swK1yZNmgRDQ0Ns3bq1Xp5hUVERNmzYAGNjY3Tq1KnKdNnZ2dXO4KovpaWl+PHHH5GXl4devXpVG8+jM8Ye93//93/Q19fHu+++K52LiIhAt27dsHTpUlhbW6N169aYOXMmCgoKpDS9e/fGuXPnpE3erl+/jj179mDYsGH1VMOG90TT9wICAhAZGYljx46hefPmFa4/ePAA7u7uUCqV+OWXX6CjoyNds7CwqLBLXvmOeBYWFtJ/H98l79atWzAyMoJCoUCjRo3QqFGjStM8mkdRURHu378PExOTStM8bs6cOZg+fbp0nJOTw44pIiIiDUpOXo3XdDdC1+4hAOBhqQEGOTbVcFRERNRghACK8zVTto4+IJPVnO4xQggcPHgQ+/btw9ChQ7Fz506cOHECvXv3BgCEh4fDxsYGO3fuxKhRo5CamoqRI0fC2dkZAGBvby/lVd7RYm5uLv279sGDB9i8eTO2bNmCQYMGAQDCwsJgZWVVIZY33ngDM2bMkI59fX0xduxYaWkcR0dHrFy5EgMGDMDatWthbW2NlStX4rPPPsP8+fPRrVs3uLi4YOzYsVJciYmJMDY2hqWlZYXy5HI57O3tkZiYWOfn9qjIyEiMGTMG+fn5sLS0RFRUFJo2rfzv/7Vr17Bq1aqnmjJYk0uXLqFXr154+PAhDA0N8csvv8DJyanStJmZmfjqq6/w8ccfV5nfxo0b4eXlBYVCIZ27fv06jh8/Dj09Pfzyyy/IzMzE3/72N9y9exdhYWEAAC8vL2RmZqJv374QQqCkpAR+fn6YO3du/Va4AdWpU0oIgcmTJ+OXX37BkSNHYGdnVyFNTk4O3NzcoKuri4iICOjp6ald79WrFxYuXIjbt29LcyejoqJgZGQkvam9evXCnj171O6LioqSeiLlcjm6du2KgwcP4q233gIAqFQqHDx4UOrh7dq1K3R0dHDw4EGMHDkSQFnvcmpqapU9mrq6utDV1a3LIyEiIqJn6K+0cBjJc6Tjqe4eaG5lXs0dRET0UinOBxZV7GxpEHPTAblBrZNHRkbC0NAQxcXFUKlU8PLywjvvvIPIyEj06NFDStekSRO0adMGV65cAQBMmTIFn3zyCfbv34/Bgwdj5MiR6Nix6nURr1+/juLiYnTv3l06Z2xsjDZt2lRI261bN7XjCxcu4OLFiwgPD5fOCSGgUqmQnJyMdu3awd/fH+PGjcORI0fw22+/Yfv27Vi0aBEiIiLg6upaq2dR09pVQFnn3KRJk6TjvXv3ol+/fgAAFxcXxMXFITMzE99//z1Gjx6NU6dOqa2/BABpaWlwd3fHqFGj1NZKMjQ0lH7+4IMPsG7duhrjiY6OxtChQ6Xj9evXY+zYsQCANm3aIC4uDtnZ2dixYwd8fHxw9OjRCh1TtZkxFhMTgytXruCf//yn2nmVSgWZTIbw8HAYGxsDAJYtW4Z3330X3333HRQKBY4cOYJFixbhu+++Q48ePXDt2jVMnToVX331Fb744otqn+nzqk6dUv7+/tiyZQt27doFpVKJjIwMAGUfAIVCgZycHAwZMgT5+fn417/+hZycHOTklDUkzczM0KhRIwwZMgROTk7w9vbG0qVLkZGRgc8//xz+/v5Sh5Cfnx9Wr16Nzz77DB999BEOHTqEf//739i9e7cUy/Tp0+Hj44Nu3bqhe/fu+Pbbb5GXl4cPP/xQimnChAmYPn06TE1NYWRkhMmTJ6NXr15c5JyIiOg5J4TA/P9cRm+Du2gkA0LO+mOL37tobNRC06ERERFVysXFRVr028rKCtra2oiIiKjxPl9fX7i5uWH37t3Yv38/Fi9ejNDQUEyePPmpYzIwUO9Uy83NxaRJkzBlypQKaVu0+N/fWKVSiREjRmDEiBEIDg6Gm5sbgoOD4erqCkdHR2RnZyM9Pb3C6KyioiIkJSXBzc2txtg8PDzUOuusra3V4nZwcICDgwN69uwJR0dHbNy4UW3R+PT0dLi4uKB3797YsGGDWt5xcXHSz0ZGRjXGApR14D1636Obs8nlcjg4OAAoGwBz5swZrFixAuvXr5fSVDdj7FH/+Mc/8Nprr6Fr165q5y0tLWFtbS11SAFAu3btIITAX3/9BUdHR3zxxRfw9vaGr68vAMDZ2Rl5eXn4+OOP8fe//73aZ/q8qlOn1Nq1awEAAwcOVDsfFhaG8ePH4/z58zh16hQASG9YueTkZLRs2RKNGjVCZGQkPvnkE/Tq1QsGBgbw8fHBggULpLR2dnbYvXs3Pv30U6xYsQLNmzfHP/7xD7Vf7Pfeew937tzBl19+iYyMDLz22mv49ddf1X5xli9fDi0tLYwcORKFhYVwc3PDd999V5cqExERUQMTQuDshc9gqzqFRrKy9SzyRXt2SBERvYp09MtGLGmq7Doo70h5VLt27VBSUoJTp05J0/fu3r2LhIQEtVE2NjY28PPzg5+fH+bMmYPvv/8ekydPlkYcPbq+k729PXR0dHDmzBmpIyk7OxuJiYno379/tTF26dIF8fHxFeKsjkwmQ9u2bXHy5EkAwLvvvovAwECEhoYiNDRULe26deuQn5+PcePG1ZivUqmEUqmsVQwqlQqFhYXScVpaGlxcXNC1a1eEhYVBS0t9uey61K+cQqGo9X2Px1PTjLFyubm5+Pe//43FixdXuNanTx9s374dubm50kivxMREaGlpScsm5efnV6hro0aNAJS1n+ryTJ8XdZ6+V52BAwfWmAYAbG1tK0zPqyyv2NjYatMEBARI0/Uqo6enhzVr1mDNmjU1xkRERETPh4KCFORk/YwW//1iUzSyxo9+1TeyiYjoJSWT1WkK3fPG0dERnp6emDhxItavXw+lUonZs2fD2toanp6eAIBp06Zh6NChaN26Ne7du4fDhw+jXbt2AMr+7SyTyRAZGYlhw4ZBoVBAqVTCx8cHs2bNgqmpKczNzREUFAQtLS3IalgDKzAwED179kRAQAB8fX1hYGCA+Ph4REVFYfXq1YiLi0NQUBC8vb3h5OQEuVyOo0eP4ocffkBgYCCAshFVS5cuxcyZM6Gnpwdvb2/o6Ohg165dmDt3LoKDg9GhQwe1chMSEirE0r59+wqjifLy8rBw4UJ4eHjA0tISmZmZWLNmDdLS0jBq1CgAZR1SAwcOhK2tLUJCQnDnzh3p/qrWjy5XPhIqNzcXd+7cQVxcHORyeZXrQwFla08PHToULVq0wIMHD7BlyxYcOXIE+/btA4BazRgrt23bNpSUlOCDDz6oUI6Xlxe++uorfPjhh5g/fz4yMzMxa9YsfPTRR9LaUyNGjMCyZcvQuXNnafreF198gREjRqiV87isrCykpqYiPb2sg7f8/bCwsKjxmT1z9bIP4EuK2xsTERE1vGt/xYgDB+3Fjj2viU/+sVoUFt7RdEhq2D6oiM+EiOpDddvLP+98fHyEp6dnpdeysrKEt7e3MDY2FgqFQri5uYnExETpekBAgGjVqpXQ1dUVZmZmwtvbW2RmZkrXFyxYICwsLIRMJhM+Pj5CCCFycnKEl5eX0NfXFxYWFmLZsmWie/fuYvbs2dJ9tra2Yvny5RXiOX36tHB1dRWGhobCwMBAdOzYUSxcuFAIIcSdO3fElClTRIcOHYShoaFQKpXC2dlZhISEiNLSUrV8du7cKfr16ycMDAwEAAFAbN26VS1NcnKydO3x140bNyrEVlBQIN5++21hZWUl5HK5sLS0FB4eHuL06dNSmrCwsCrzrEll99ja2lZ7z0cffSRsbW2FXC4XZmZmYtCgQWL//v3S9cOHD1cZT3JyslpevXr1El5eXlWWdeXKFTF48GChUChE8+bNxfTp00V+fr50vbi4WMybN0+0atVK6OnpCRsbG/G3v/1N3Lt3r9o6VPXMgoKCqr2vJtV9ZmvbNpAJUYuhTa+onJwcGBsbS9s5EhER0bO14egV7D27EwGd/4E/c5oj6vYSbP34+VoLku2DivhMiKg+PHz4EMnJybCzs6ty+hNVLi8vD9bW1ggNDcWECRMavPysrCwMGjQIRkZG2Lt3L/T16zb1kV5M1X1ma9s20KryChEREVEDSkvbCrsSDwR0/gcAoEhlgLc6a2jHJSIioudYbGwstm7diqSkJJw/f17aJa58SmBDMzU1xYEDBzBo0CDExMRoJAZ6MdVpTSkiIiKiZ+Xu3aPQkqkAAAIyDO32DmxbcHFzIiKiyoSEhCAhIQFyuRxdu3ZFdHQ0mjZtqrF4mjRpgi+//FJj5dOLiZ1SREREpHH384uQW3APALDx97GYOGQibFvYaDgqIiKi51Pnzp1x7tw5TYdB9NQ4fY+IiIg06tS1K/D4djOu304FAGQXGsFIYajhqIiIiIjoWeNIKSIiItKYrKwTyE0dh6BH1jK3bGyG9lZcLJuIiIjoZcdOKSIiItKYnAe/AwAKS3UgkxmimWkbbPjofWhpNdJwZERERET0rHH6HhEREWlEfHoOon5PBAAcvdEHf8i2okuXcGhpyTUcGRERERE1BI6UIiIiogb34EE8fjsfAgMRDwDILTZA88YKDUdFRERERA2JnVJERETU4JJT1sBW/6h07N6pM9w6WmkwIiIiIiJqaJy+R0RERA2uuDgLAHA8rQcaNQ7C8O5jIddms4SIiIjoVcLWHxERETWYUpXArO0XcC0jAwBwOqMLTJp6cB0pIiJ6oY0fPx4ymQwymQxyuRwODg5YsGABSkpKnirfI0eOQCaT4f79+/UTaC0kJyfDy8sLVlZW0NPTQ/PmzeHp6YmrV6+qpYuMjMSAAQOgVCqhr6+P119/HZs2bVJLk5KSAplMhri4uFqXP2/ePLRt2xYGBgZo3LgxBg8ejFOnTqnlOWHCBNjZ2UGhUKBVq1YICgpCUVFRtfnevHkTXl5eaN26NbS0tDBt2rRax1Tu66+/hkwmq3BvUlIS3n77bZiZmcHIyAijR4/GrVu31NIsXLgQvXv3hr6+PkxMTCrNv/x36NHXjz/+KF3/+eef4erqKpXTq1cv7Nu3r8a4f/75ZwwZMgRNmjSp8/vxrLFTioiIiBpEaWk+zlxeh8J730PRKBMAUKTShw3XkiIiopeAu7s7bt68iT/++AMzZszAvHnz8M0332g6LElNnTYAUFxcDFdXV2RnZ+Pnn39GQkICtm3bBmdnZ7WOsVWrVsHT0xN9+vTBqVOncPHiRYwZMwZ+fn6YOXPmU8XZunVrrF69GpcuXcLx48fRsmVLDBkyBHfu3AEAXL16FSqVCuvXr8fly5exfPlyrFu3DnPnzq0238LCQpiZmeHzzz9Hp06d6hzXmTNnsH79enTs2FHtfF5eHoYMGQKZTIZDhw7hxIkTKCoqwogRI6BSqaR0RUVFGDVqFD755JNqywkLC8PNmzel11tvvSVdO3bsGFxdXbFnzx6cO3cOLi4uGDFiBGJjY6vNMy8vD3379sWSJUvqXO9nTlCVsrOzBQCRnZ2t6VCIiIheeDf+ChcHDtqrva7cuKrpsOqM7YOK+EyIqD4UFBSI+Ph4UVBQoOlQ6szHx0d4enqqnXN1dRU9e/YUWVlZwtvbW5iYmAiFQiHc3d1FYmKilC4lJUW8+eabwsTEROjr6wsnJyexe/dukZycLACovXx8fIQQQuTk5AgvLy+hr68vLCwsxLJly8SAAQPE1KlTpXxtbW3FggULhLe3t1AqldK90dHRom/fvkJPT080b95cTJ48WeTm5gohhIiNjRUAREpKSpV1TU1NFTo6OmL69OkVrq1cuVIAEL/99psQQkh1iI2NrftD/a/yvzEHDhyoMs3SpUuFnZ1drfN8/FnV5MGDB8LR0VFERUVVuHffvn1CS0tL7W/g/fv3hUwmE1FRURXyCgsLE8bGxpWWA0D88ssvtY5LCCGcnJzE/Pnza5W2Pt6PR1X3ma1t24AjpYiIiOiZKylVIeXWdQDAjQdWuJI9GG3afIW2zdtoODIiIqJnQ6FQoKioCOPHj8fZs2cRERGBmJgYCCEwbNgwFBcXAwD8/f1RWFiIY8eO4dKlS1iyZAkMDQ1hY2ODn376CQCQkJCAmzdvYsWKFQCA6dOn48SJE4iIiEBUVBSio6Nx/vz5CjGEhISgU6dOiI2NxRdffIGkpCS4u7tj5MiRuHjxIrZt24bjx48jICAAAGBmZgYtLS3s2LEDpaWlldZrx44dKC4urnRE1KRJk2BoaIitW7fWyzMsKirChg0bYGxsXO3opuzsbJiamtZLmZXx9/fH8OHDMXjw4ArXCgsLIZPJoKurK53T09ODlpYWjh8//kRlNW3aFN27d8cPP/wAIUSVaVUqFR48ePBM6/6scfc9IiIieubm/yceIvsPuNgAsbc7osRgAgKsu2g6LCIies4JIVBQUqCRshXaCshksjrfJ4TAwYMHsW/fPgwdOhQ7d+7EiRMn0Lt3bwBAeHg4bGxssHPnTowaNQqpqakYOXIknJ2dAQD29vZSXuWdDebm5tI6RA8ePMDmzZuxZcsWDBo0CEDZlC8rq4q72L7xxhuYMWOGdOzr64uxY8dKayI5Ojpi5cqVGDBgANauXQtra2usXLkSn332GebPn49u3brBxcUFY8eOleJKTEyEsbExLC0tK5Qnl8thb2+PxMTEOj+3R0VGRmLMmDHIz8+HpaUloqKi0LRp00rTXrt2DatWrUJISMhTlVmVH3/8EefPn8eZM2cqvd6zZ08YGBggMDAQixYtghACs2fPRmlpKW7evFmnshYsWIA33ngD+vr62L9/P/72t78hNzcXU6ZMqTR9SEgIcnNzMXr06DrX63nBTikiIiJ6pm789X9waLQDhuY3AACGisZwf91Gw1EREdGLoKCkAD229NBI2ae8TkFfR7/W6SMjI2FoaIji4mKoVCp4eXnhnXfeQWRkJHr0+F8dmjRpgjZt2uDKlSsAgClTpuCTTz7B/v37MXjwYIwcObLCukWPun79OoqLi9G9e3fpnLGxMdq0qTj6uFu3bmrHFy5cwMWLFxEeHi6dE0JApVIhOTkZ7dq1g7+/P8aNG4cjR47gt99+w/bt27Fo0SJERETA1dW1Vs9CLq95A5Pw8HBMmjRJOt67dy/69esHAHBxcUFcXBwyMzPx/fffY/To0Th16hTMzc3V8khLS4O7uztGjRqFiRMnSucNDQ2lnz/44AOsW7euxniio6MxdOhQ6Xj9+vXo378/pk6diqioKOjp6VV6n5mZGbZv345PPvkEK1euhJaWFt5//3106dIFWlp1m5z2xRdfSD937twZeXl5+OabbyrtlNqyZQvmz5+PXbt2Sc+lumf6vGKnFBERET0zQghcu7YYzQ3+t7jqp+6D0LSpmQajIiIiqn8uLi5Yu3Yt5HI5rKysoK2tjYiIiBrv8/X1hZubG3bv3o39+/dj8eLFCA0NxeTJk586JgMDA7Xj3NxcTJo0qdJOjhYtWkg/K5VKjBgxAiNGjEBwcDDc3NwQHBwMV1dXODo6Ijs7G+np6RVGZxUVFSEpKQlubm41xubh4aHWWWdtba0Wt4ODAxwcHNCzZ084Ojpi48aNmDNnjpQmPT0dLi4u6N27NzZs2KCW96O7yxkZGdUYC1DWgffofc2aNcPBgwdx+/ZtdOnyv9HdpaWlOHbsGFavXo3CwkI0atQIQ4YMQVJSEjIzM6GtrQ0TExNYWFiojXp7Ej169MBXX32FwsJCtemBP/74I3x9fbF9+3a1KYXVPdPnFTuliIiI6Jm5+yAbKlVZh9TG38fiU7e+aNJkgIajIiKiF4VCW4FTXqc0VnZdlHekPKpdu3YoKSnBqVOnpOl7d+/eRUJCApycnKR0NjY28PPzg5+fH+bMmYPvv/8ekydPlkYcPbq+k729PXR0dHDmzBmpIyk7OxuJiYno379/tTF26dIF8fHxFeKsjkwmQ9u2bXHy5EkAwLvvvovAwECEhoYiNDRULe26deuQn5+PcePG1ZivUqmEUqmsVQwqlQqFhYXScVpaGlxcXNC1a1eEhYVVGJFUl/qVUygUFe4bNGgQLl26pHbuww8/RNu2bREYGIhGjRqpXSufYnjo0CHcvn0bHh4edY7jUXFxcWjcuLFah9TWrVvx0Ucf4ccff8Tw4cPV0tflmT4v2ClFREREz8StnIcY8e1eLO4LlKq0cDK9O4JNe0Mm4z4rRERUOzKZrE5T6J43jo6O8PT0xMSJE7F+/XoolUrMnj0b1tbW8PT0BABMmzYNQ4cORevWrXHv3j0cPnwY7dq1AwDY2tpCJpMhMjISw4YNg0KhgFKphI+PD2bNmgVTU1OYm5sjKCgIWlpaNa6BFRgYiJ49eyIgIAC+vr4wMDBAfHw8oqKisHr1asTFxSEoKAje3t5wcnKCXC7H0aNH8cMPPyAwMBBA2YiqpUuXYubMmdDT04O3tzd0dHSwa9cuzJ07F8HBwejQoYNauQkJCRViad++PXR0dNTO5eXlYeHChfDw8IClpSUyMzOxZs0apKWlYdSoUQDKOqQGDhwIW1tbhISE4M6dO9L9FhYW1da/fCRUbm4u7ty5g7i4OMjlcrUOwkcplcoKdTEwMECTJk3UzoeFhaFdu3YwMzNDTEwMpk6dik8//VRtSmVqaiqysrKQmpqK0tJSKRYHBwcYGhriP//5D27duoWePXtCT08PUVFRWLRokdqC8lu2bIGPjw9WrFiBHj16ICMjA0BZh5qxsXGV9S4vNz09HcD/3g8LC4san9kzVy/7AL6kuL0xERHRk3lYeEccOvWZ+Garhzhw0F7s+tVZfBh2WpSUqjQd2lNj+6AiPhMiqg/VbS//vPPx8RGenp6VXsvKyhLe3t7C2NhYKBQK4ebmJhITE6XrAQEBolWrVkJXV1eYmZkJb29vkZmZKV1fsGCBsLCwEDKZTPj4+AghhMjJyRFeXl5CX19fWFhYiGXLlonu3buL2bNnS/fZ2tqK5cuXV4jn9OnTwtXVVRgaGgoDAwPRsWNHsXDhQiGEEHfu3BFTpkwRHTp0EIaGhkKpVApnZ2cREhIiSktL1fLZuXOn6NevnzAwMBAABACxdetWtTTJycnStcdfN27cqBBbQUGBePvtt4WVlZWQy+XC0tJSeHh4iNOnT0tpwsLCqsyzJpXdY2trW+N9jxowYICYOnWq2rnAwEDRrFkzoaOjIxwdHUVoaKhQqdTbPD4+PpWWf/jwYSGEEHv37hWvvfaa9L506tRJrFu3Tu25DxgwoNI8yn8vqlLVMwsKCqpT3R9X3We2tm0DmRDV7C/4isvJyYGxsTGys7NrPQ+ViIiIgJSUdUi6/o10rDRsj+7da15X40XA9kFFfCZEVB8ePnyI5ORk2NnZVbmoNFUuLy8P1tbWCA0NxYQJExq8/KysLAwaNAhGRkbYu3cv9PVf3NFtVHvVfWZr2zbg+HkiIiKqV0IIZOXeAgBcudsa5+95o3375RqOioiI6OURGxuLrVu3IikpCefPn8fYsWMBQJoS2NBMTU1x4MABDBo0CDExMRqJgV5MXFOKiIiI6tXC3VdQei8Bfa2B+KzW0DV5CwYGrTQdFhER0UslJCQECQkJkMvl6Nq1K6Kjo6WFtjWhSZMm+PLLLzVWPr2Y2ClFRERE9ebW7T0wKtwB88bXAAAyLSWGdtDwAppEREQvmc6dO+PcuXOaDoPoqbFTioiIiOqFEKWIj5+B9o2LpHPz334DTZuyU4qIiIiIKuKaUkRERFQvSkoeQKUq65D6+Y/hMLL4Eqam/TUcFRERERE9r9gpRURERE/t97RsjN94EADwsESO3cluaNZsFLS0OCibiIiIiCrHliIRERE9laKiTMRd/gYdlNcBAPklCpjo68DcSFfDkRERERHR84ydUkRERPRU/krbCkvtHbC0LDs2M26OQzMGQk+nkWYDIyIiIqLnGjuliIiI6KkUFd0GAFzNcoCFWW+4dRoDQwO5hqMiIiIioucd15QiIiKiJ/av3/5EzB8pAIDY2x2hMvgIhoZtNBsUEREREb0Q2ClFRERETyTj9jGkJ38K40aXAJStJdW8sb6GoyIiImp448ePh0wmg0wmg1wuh4ODAxYsWICSkpKnyvfIkSOQyWS4f/9+/QRaC8nJyfDy8oKVlRX09PTQvHlzeHp64urVq2rpIiMjMWDAACiVSujr6+P111/Hpk2b1NKkpKRAJpMhLi6u1uXPmzcPbdu2hYGBARo3bozBgwfj1KlTanlOmDABdnZ2UCgUaNWqFYKCglBUVFRtvjdv3oSXlxdat24NLS0tTJs2rdYxpaWl4YMPPkCTJk2gUCjg7OyMs2fPStcfff/LX+7u7mp5tGzZskKar7/+WrqekJAAFxcXNGvWDHp6erC3t8fnn3+O4uJitXzu378Pf39/WFpaQldXF61bt8aePXuqjf/nn3/GkCFD0KRJkzq/H88ap+8RERHRE7me/C26NrsgHfv0642e9qYajIiIiEhz3N3dERYWhsLCQuzZswf+/v7Q0dHBnDlzNB0aAKCoqAhyefXT64uLi+Hq6oo2bdrg559/hqWlJf766y/s3btXrWNs1apVmDZtGgIDA7F27VrI5XLs2rULfn5++P333xESEvLEcbZu3RqrV6+Gvb09CgoKsHz5cgwZMgTXrl2DmZkZrl69CpVKhfXr18PBwQG///47Jk6ciLy8vGrLLSwshJmZGT7//HMsX7681vHcu3cPffr0gYuLC/bu3QszMzP88ccfaNy4sVq68ve/nK5uxQ1fFixYgIkTJ0rHSqVS+llHRwfjxo1Dly5dYGJiggsXLmDixIlQqVRYtGgRgLL30NXVFebm5tixYwesra3x559/wsTEpNo65OXloW/fvhg9erRa+c8FQVXKzs4WAER2dramQyEiInruHIl2EQcO2os5myaJO3cOCZVKpemQGgTbBxXxmRBRfSgoKBDx8fGioKBA06HUmY+Pj/D09FQ75+rqKnr27CmysrKEt7e3MDExEQqFQri7u4vExEQpXUpKinjzzTeFiYmJ0NfXF05OTmL37t0iOTlZAFB7+fj4CCGEyMnJEV5eXkJfX19YWFiIZcuWiQEDBoipU6dK+dra2ooFCxYIb29voVQqpXujo6NF3759hZ6enmjevLmYPHmyyM3NFUIIERsbKwCIlJSUKuuampoqdHR0xPTp0ytcW7lypQAgfvvtNyGEkOoQGxtb94f6X+V/Yw4cOFBlmqVLlwo7O7ta5/n4s6pOYGCg6Nu3b7VpKnv/H2drayuWL19euwD/69NPP1Ure+3atcLe3l4UFRXVKZ9y9fF+PKq6z2xt2wacvkdERER1IoTA72nZKCx+AABIyO6Jpk1dIJPJNBwZERG9bIQQUOXna+QlhHiq2BUKBYqKijB+/HicPXsWERERiImJgRACw4YNk6Zl+fv7o7CwEMeOHcOlS5ewZMkSGBoawsbGBj/99BOAsqldN2/exIoVKwAA06dPx4kTJxAREYGoqChER0fj/PnzFWIICQlBp06dEBsbiy+++AJJSUlwd3fHyJEjcfHiRWzbtg3Hjx9HQEAAAMDMzAxaWlrYsWMHSktLK63Xjh07UFxcjJkzZ1a4NmnSJBgaGmLr1q1P9ezKFRUVYcOGDTA2NkanTp2qTJednQ1T02czWjsiIgLdunXDqFGjYG5ujs6dO+P777+vkO7IkSMwNzdHmzZt8Mknn+Du3bsV0nz99ddo0qQJOnfujG+++aba6Z3Xrl3Dr7/+igEDBqjF0qtXL/j7+6NZs2bo0KEDFi1aVOV79SLg9D0iIiKqk3/+9ie+3HUZa97IRSNtQFvbUNMhERHRS0oUFCChS1eNlN3m/DnI9Ou+VqIQAgcPHsS+ffswdOhQ7Ny5EydOnEDv3r0BAOHh4bCxscHOnTsxatQopKamYuTIkXB2dgYA2NvbS3mVd7SYm5tLU7QePHiAzZs3Y8uWLRg0aBAAICwsDFZWVhVieeONNzBjxgzp2NfXF2PHjpXWU3J0dMTKlSsxYMAArF27FtbW1li5ciU+++wzzJ8/H926dYOLiwvGjh0rxZWYmAhjY2NYWlpWKE8ul8Pe3h6JiYl1fm6PioyMxJgxY5Cfnw9LS0tERUWhadOmlaa9du0aVq1a9VRTBqtz/fp1rF27FtOnT8fcuXNx5swZTJkyBXK5HD4+PgDKpu698847sLOzQ1JSEubOnYuhQ4ciJiYGjRo1AgBMmTIFXbp0gampKU6ePIk5c+bg5s2bWLZsmVp5vXv3xvnz51FYWIiPP/4YCxYsUIvl0KFDGDt2LPbs2YNr167hb3/7G4qLixEUFPRM6v+scaQUERER1VpW1kk0yRuNVS6B0NMuW1B0ZNfWGo6KiIhI8yIjI2FoaAg9PT0MHToU7733HsaPHw9tbW306NFDStekSRO0adMGV65cAVDWWREcHIw+ffogKCgIFy9erLac69evo7i4GN27d5fOGRsbo02birvfduvWTe34woUL2LRpEwwNDaWXm5sbVCoVkpOTAZSN3MrIyEB4eDh69eqF7du3o3379oiKiqr1s6hp7SqgrHPu0Tiio6Olay4uLoiLi8PJkyfh7u6O0aNH4/bt2xXySEtLg7u7O0aNGqW2VtKj+fr5+dUq5ujoaLX7wsPDAQAqlQpdunTBokWL0LlzZ3z88ceYOHEi1q1bJ907ZswYeHh4wNnZGW+99RYiIyNx5swZHDlyREozffp0DBw4EB07doSfnx9CQ0OxatUqFBYWqsWxbds2nD9/Hlu2bMHu3bvVOttUKhXMzc2xYcMGdO3aFe+99x7+/ve/S7FU90yfVxwpRURERLV2+84+6Gndlb7WUihsMap7e80GRURELy2ZQoE2589prOy6cHFxkRb9trKygra2NiIiImq8z9fXF25ubti9ezf279+PxYsXIzQ0FJMnT37S0CUGBgZqx7m5uZg0aRKmTJlSIW2LFi2kn5VKJUaMGIERI0YgODgYbm5uCA4OhqurKxwdHZGdnY309PQKo7OKioqQlJQENze3GmPz8PBQ66yztrZWi9vBwQEODg7o2bMnHB0dsXHjRrVF49PT0+Hi4oLevXtjw4YNank/uruckZFRjbEAZR14j97XrFkzAIClpSWcnJzU0rZr106aWlkZe3t7NG3aFNeuXZNGsz2uR48eKCkpQUpKilqHoo2NDQDAyckJpaWl+PjjjzFjxgw0atQIlpaW0NHRkUZflceSkZGBoqKiap/p84qdUkRERFQr2fnFuHH3NrQA7L4+GP06fgiXbp0hkzWq8V4iIqInIZPJnmgKnSaUd6Q8ql27digpKcGpU6ek6Xt3795FQkKCWkeHjY0N/Pz84Ofnhzlz5uD777/H5MmTpRFHj64ZZG9vDx0dHZw5c0bqSMrOzkZiYiL69+9fbYxdunRBfHx8hTirI5PJ0LZtW5w8eRIA8O677yIwMBChoaEIDQ1VS7tu3Trk5+dj3LhxNearVCrVdp+rjkqlUhtRlJaWBhcXF3Tt2hVhYWHQ0lKfBFaX+pVTKBSV3tenTx8kJCSonUtMTIStrW2Vef3111+4e/dupVMcy8XFxUFLSwvm5uZVplGpVCguLoZKpUKjRo3Qp08fbNmyBSqVSqpzYmIiLC0tIZfLIZfLa/1MnxfslCIiIqJambotFh3109DJDLhdYAYjpR20tCpud0xERERlHB0d4enpiYkTJ2L9+vVQKpWYPXs2rK2t4enpCQCYNm0ahg4ditatW+PevXs4fPgw2rVrBwCwtbWFTCZDZGQkhg0bBoVCAaVSCR8fH8yaNQumpqYwNzdHUFAQtLS0atx0JDAwED179kRAQAB8fX1hYGCA+Ph4REVFYfXq1YiLi0NQUBC8vb3h5OQEuVyOo0eP4ocffkBgYCCAshFVS5cuxcyZM6Gnpwdvb2/o6Ohg165dmDt3LoKDg9GhQwe1ch/v1AGA9u3bQ0dHR+1cXl4eFi5cCA8PD1haWiIzMxNr1qxBWloaRo0aBaCsQ2rgwIGwtbVFSEgI7ty5I91vYWFRbf3LR0Ll5ubizp07iIuLg1wurzAS6lGffvopevfujUWLFmH06NE4ffo0NmzYII3Oys3Nxfz58zFy5EhYWFggKSkJn332GRwcHKQRYzExMTh16hRcXFygVCoRExODTz/9FB988AEaN24MoGzqnY6ODpydnaGrq4uzZ89izpw5eO+996Tn9Mknn2D16tWYOnUqJk+ejD/++AOLFi2qdOTbo7KyspCamor09HQA/3s/LCwsanxmz1y97AP4kuL2xkRERGUSEr8S/xcxUETuaycOHLQXi376TuQXlmg6LI1g+6AiPhMiqg/VbS//vPPx8RGenp6VXsvKyhLe3t7C2NhYKBQK4ebmJhITE6XrAQEBolWrVkJXV1eYmZkJb29vkZmZKV1fsGCBsLCwEDKZTPj4+AghhMjJyRFeXl5CX19fWFhYiGXLlonu3buL2bNnS/fZ2tqK5cuXV4jn9OnTwtXVVRgaGgoDAwPRsWNHsXDhQiGEEHfu3BFTpkwRHTp0EIaGhkKpVApnZ2cREhIiSktL1fLZuXOn6NevnzAwMBAABACxdetWtTTJycnStcdfN27cqBBbQUGBePvtt4WVlZWQy+XC0tJSeHh4iNOnT0tpwsLCqsyzJpXdY2trW+N9//nPf0SHDh2Erq6uaNu2rdiwYYN0LT8/XwwZMkSYmZkJHR0dYWtrKyZOnCgyMjKkNOfOnRM9evQQxsbGQk9PT7Rr104sWrRIPHz4UErz448/ii5dukjvi5OTk1i0aFGFz8PJkydFjx49hK6urrC3txcLFy4UJSXVt8mqemZBQUE11r061X1ma9s2kAnxlPtcvsRycnJgbGyM7OzsWs9DJSIietkUFd1F9PHuaud6dN8DQ8OKC6q+Ctg+qIjPhIjqw8OHD5GcnAw7Ozvo6elpOpwXSl5eHqytrREaGooJEyY0ePlZWVkYNGgQjIyMsHfvXui/IFMu6elU95mtbduAu+8RERFRtVIzy4bFF5bKsfy8Hxza73xlO6SIiIieB7Gxsdi6dSuSkpJw/vx5jB07FgCkKYENzdTUFAcOHMCgQYMQExOjkRjoxcQ1pYiIiKhKv6dl42+bjiCoF5BXrMDvmU4wa9xO02ERERG98kJCQpCQkAC5XI6uXbsiOjoaTZs21Vg8TZo0wZdffqmx8unFxE4pIiIiqpQQpbj2Vwzamv4BACgV+vDpZQt9OZsPREREmtS5c2ecO3dO02EQPTW2KomIiKhSf6b+A8q8pXjvvzP1HJpZYEy3DtXfRERERERUS+yUIiIiokrl5ZWNkLr/0Agy7aboYPOhhiMiIiIiopcJFzonIiKiCuJu3Ef8XzcBABHXh+L3whVo1my4hqMiIiIiopcJO6WIiIiogrk/X8Kt7CwAQEGJHsyUuhqOiIiIiIheNpy+R0RERGpSb4RhkOU+NFemAQCGdbTH291baDgqIiIiInrZsFOKiIiIJIWFt/HHH8F47ZEdpUe+3hVKfR3NBUVERERELyVO3yMiIiLJg/xMAMDDEl1suToSrdp8B6WynYajIiIiIqKXETuliIiICABwNSMHPhsPAQCyC41wMHUArC1cNRwVERHR82/8+PGQyWSQyWSQy+VwcHDAggULUFJS8lT5HjlyBDKZDPfv36+fQGshOTkZXl5esLKygp6eHpo3bw5PT09cvXpVLV1kZCQGDBgApVIJfX19vP7669i0aZNampSUFMhkMsTFxdW6/Hnz5qFt27YwMDBA48aNMXjwYJw6dUotzwkTJsDOzg4KhQKtWrVCUFAQioqKqs335s2b8PLyQuvWraGlpYVp06bVKp7S0lJ88cUXauV99dVXEEJIaX7++WcMGTIETZo0qbK+SUlJePvtt2FmZgYjIyOMHj0at27dqnO9Ll68iH79+kFPTw82NjZYunRpjXU4duwYRowYASsrK8hkMuzcubNWdW8I7JQiIiIiCFGK+OsR6NT0HICyxc2HODWDTiM2FZ43a9asQcuWLaGnp4cePXrg9OnT1abfvn072rZtCz09PTg7O2PPnj1VpvXz84NMJsO3335bz1ETEb383N3dcfPmTfzxxx+YMWMG5s2bh2+++UbTYUlq6rQBgOLiYri6uiI7Oxs///wzEhISsG3bNjg7O6t1jK1atQqenp7o06cPTp06hYsXL2LMmDHw8/PDzJkznyrO1q1bY/Xq1bh06RKOHz+Oli1bYsiQIbhz5w4A4OrVq1CpVFi/fj0uX76M5cuXY926dZg7d261+RYWFsLMzAyff/45OnXqVOt4lixZgrVr12L16tW4cuUKlixZgqVLl2LVqlVSmry8PPTt2xdLliypNI+8vDwMGTIEMpkMhw4dwokTJ1BUVIQRI0ZApVLVul45OTkYMmQIbG1tce7cOXzzzTeYN28eNmzYUG0d8vLy0KlTJ6xZs6bW9W4wgqqUnZ0tAIjs7GxNh0JERPRM3blzUBw4aC+9zsf6aDqk55Ym2wc//vijkMvl4ocffhCXL18WEydOFCYmJuLWrVuVpj9x4oRo1KiRWLp0qYiPjxeff/650NHREZcuXaqQ9ueffxadOnUSVlZWYvny5XWKi20mIqoPBQUFIj4+XhQUFGg6lDrz8fERnp6eaudcXV1Fz549RVZWlvD29hYmJiZCoVAId3d3kZiYKKVLSUkRb775pjAxMRH6+vrCyclJ7N69WyQnJwsAai8fHx8hhBA5OTnCy8tL6OvrCwsLC7Fs2TIxYMAAMXXqVClfW1tbsWDBAuHt7S2USqV0b3R0tOjbt6/Q09MTzZs3F5MnTxa5ublCCCFiY2MFAJGSklJlXVNTU4WOjo6YPn16hWsrV64UAMRvv/0mhBBSHWJjY+v+UP+r/G/MgQMHqkyzdOlSYWdnV+s8H39W1Rk+fLj46KOP1M698847YuzYsRXSVlXfffv2CS0tLbW/k/fv3xcymUxERUVVWfbj9fruu+9E48aNRWFhoXQuMDBQtGnTplZ1EUIIAOKXX36pdfrqVPeZrW3bgF9/EhERER4+TAcAZD00RkZRX9jZTdZwRFSZZcuWYeLEifjwww/h5OSEdevWQV9fHz/88EOl6VesWAF3d3fMmjUL7dq1w1dffYUuXbpg9erVaunS0tIwefJkhIeHQ0eHi9oT0fNDCIHiwlKNvMQj07OehEKhQFFREcaPH4+zZ88iIiICMTExEEJg2LBhKC4uBgD4+/ujsLAQx44dw6VLl7BkyRIYGhrCxsYGP/30EwAgISEBN2/exIoVKwAA06dPx4kTJxAREYGoqChER0fj/PnzFWIICQlBp06dEBsbiy+++AJJSUlwd3fHyJEjcfHiRWzbtg3Hjx9HQEAAAMDMzAxaWlrYsWMHSktLK63Xjh07UFxcXOmIqEmTJsHQ0BBbt259qmdXrqioCBs2bICxsXG1o5uys7NhampaL2U+rnfv3jh48CASExMBABcuXMDx48cxdOjQWudRWFgImUwGXV1d6Zyenh60tLRw/PjxKu97vF4xMTHo378/5HK5dM7NzQ0JCQm4d+9eXar13ODue0RERITS0jwAwJW7baDVOBAmxk4ajogeV1RUhHPnzmHOnDnSOS0tLQwePBgxMTGV3hMTE4Pp06ernXNzc1NbS0KlUsHb2xuzZs1C+/btn0nsRERPqqRIhQ1Tj2qk7I9XDICObqM63yeEwMGDB7Fv3z4MHToUO3fuxIkTJ9C7d28AQHh4OGxsbLBz506MGjUKqampGDlyJJydnQEA9vb2Ul7lHRLm5uYwMTEBADx48ACbN2/Gli1bMGjQIABAWFgYrKysKsTyxhtvYMaMGdKxr68vxo4dK62n5OjoiJUrV2LAgAFYu3YtrK2tsXLlSnz22WeYP38+unXrBhcXF4wdO1aKKzExEcbGxrC0tKxQnlwuh729vdSB86QiIyMxZswY5Ofnw9LSElFRUWjatGmlaa9du4ZVq1YhJCTkqcqsyuzZs5GTk4O2bduiUaNGKC0txcKFCzF27Nha59GzZ08YGBggMDAQixYtghACs2fPRmlpKW7evFnpPZXVKyMjA3Z2dmrpmjVrJl1r3LjxE9RQszhSioiI6BVWqhLw3XwW3x+7DAB4WKoLfV1+Z/U8yszMRGlpqdT4LNesWTNkZGRUek9GRkaN6ZcsWQJtbW1MmTKl1rEUFhYiJydH7UVE9KqLjIyEoaEh9PT0MHToULz33nsYP348tLW10aNHDyldkyZN0KZNG1y5cgUAMGXKFAQHB6NPnz4ICgrCxYsXqy3n+vXrKC4uRvfu3aVzxsbGaNOmTYW03bp1Uzu+cOECNm3aBENDQ+nl5uYGlUqF5ORkAGUjtzIyMhAeHo5evXph+/btaN++PaKiomr9LB4dyVOV8PBwtTiio6Olay4uLoiLi8PJkyfh7u6O0aNH4/bt2xXySEtLg7u7O0aNGoWJEydK5x/N18/Pr1YxR0dHq90XHh4OAPj3v/+N8PBwbNmyBefPn8fmzZsREhKCzZs31ypfoGwE2vbt2/Gf//wHhoaGMDY2xv3799GlSxdoaVXslqmqXk9ah+cZW51ERESvsKTbN5H411m0tC3b/aWwVBdOlkoNR0UN5dy5c1ixYgXOnz8PmUxW6/sWL16M+fPnP8PIiIjKaMu18PGKARoruy5cXFywdu1ayOVyWFlZQVtbGxERETXe5+vrCzc3N+zevRv79+/H4sWLERoaismTn34qvYGBgdpxbm4uJk2aVOkXES1atJB+ViqVGDFiBEaMGIHg4GC4ubkhODgYrq6ucHR0RHZ2NtLT0yuMzioqKkJSUhLc3NxqjM3Dw0Ots87a2lotbgcHBzg4OKBnz55wdHTExo0b1UYLp6enw8XFBb17966w0Peju98ZGRnVGAtQ1oH36H3lX+rMmjULs2fPxpgxYwAAzs7O+PPPP7F48WL4+PjUKm8AGDJkCJKSkpCZmQltbW2YmJjAwsJCbWRcTfWysLBQ27EPgHRsYWGBli1bVlqH5xk7pYiIiF5RJSW5+OvqMAT1eiCd8+7VFq85VRyOT5rXtGlTNGrUqNLGqIWFRaX3VNV4LU8fHR2N27dvq/1DpLS0FDNmzMC3336LlJSUSvOdM2eO2rTAnJwc2NjYPEm1iIiqJZPJnmgKnSaUd6Q8ql27digpKcGpU6ek6Xt3795FQkICnJz+N1XexsYGfn5+8PPzw5w5c/D9999j8uTJ0oijR9d3sre3h46ODs6cOSP9/zs7OxuJiYno379/tTF26dIF8fHxFeKsjkwmQ9u2bXHy5EkAwLvvvovAwECEhoYiNDRULe26deuQn5+PcePG1ZivUqmEUlm7L8JUKhUKCwul47S0NLi4uKBr164ICwurMNqoLvUrp1AoKr0vPz+/Qv6NGjWSds2rq/JpiIcOHcLt27fh4eEhXaupXr169cLf//53FBcXS2tARkVFoU2bNtLUvSepuyaxU4qIiOgV9fBhGoTqAVRChrxiE1g0NoNDi2GaDouqIJfL0bVrVxw8eBBvvfUWgLJG+sGDB6UFah/Xq1cvHDx4UFo7BChrvPbq1QsA4O3tjcGDB6vd4+bmBm9vb3z44YdVxqKrq6u2WCsREVXO0dERnp6emDhxItavXw+lUonZs2fD2toanp6eAIBp06Zh6NChaN26Ne7du4fDhw+jXbt2AABbW1vIZDJERkZi2LBhUCgUUCqV8PHxwaxZs2Bqagpzc3MEBQVBS0urxlGvgYGB6NmzJwICAuDr6wsDAwPEx8cjKioKq1evRlxcHIKCguDt7Q0nJyfI5XIcPXoUP/zwAwIDAwGUjahaunQpZs6cCT09PXh7e0NHRwe7du3C3LlzERwcjA4dOqiVm5CQUCGW9u3bV9hcIy8vDwsXLoSHhwcsLS2RmZmJNWvWIC0tDaNGjQJQ1nEzcOBA2NraIiQkBHfu3JHur+pLmnLlo4hyc3Nx584dxMXFQS6Xq3UQPm7EiBFYuHAhWrRogfbt2yM2NhbLli3DRx99JKXJyspCamoq0tPT1eprYWEhxRQWFoZ27drBzMwMMTExmDp1Kj799FNp2mVt6uXl5YX58+djwoQJCAwMxO+//44VK1Zg+fLl1dY7NzcX165dk46Tk5MRFxcHU1NTtS+mNKJe9gF8SXF7YyIielmpVCoRd+2YOHDQXmz9z+virTXHNR3SC0OT7YMff/xR6Orqik2bNon4+Hjx8ccfCxMTE5GRkSGEEMLb21vMnj1bSn/ixAmhra0tQkJCxJUrV0RQUJDQ0dERly5dqrIMW1tbsXz58jrFxTYTEdWH6raXf975+PgIT0/PSq9lZWUJb29vYWxsLBQKhXBzcxOJiYnS9YCAANGqVSuhq6srzMzMhLe3t8jMzJSuL1iwQFhYWAiZTCZ8fHyEEELk5OQILy8voa+vLywsLMSyZctE9+7d1f4GVPX/89OnTwtXV1dhaGgoDAwMRMeOHcXChQuFEELcuXNHTJkyRXTo0EEYGhoKpVIpnJ2dRUhIiCgtLVXLZ+fOnaJfv37CwMBAABAAxNatW9XSJCcnS9cef924caNCbAUFBeLtt98WVlZWQi6XC0tLS+Hh4SFOnz4tpQkLC6syz5pUdo+trW219+Tk5IipU6eKFi1aCD09PWFvby/+/ve/i8LCwhpjCgoKktIEBgaKZs2aCR0dHeHo6ChCQ0OFSqWqc70uXLgg+vbtK3R1dYW1tbX4+uuva6z34cOHK823/PfpSVX3ma1t20AmxFPuc/kSy8nJgbGxMbKzs2s9D5WIiOhFsDwqEQfiIjC961rceGCFg5kh+OeEHjXfSBpvH6xevRrffPMNMjIy8Nprr2HlypXSmhwDBw5Ey5YtsWnTJin99u3b8fnnnyMlJQWOjo5YunQphg2rekRcy5YtMW3aNLXRVTXR9DMhopfDw4cPkZycDDs7O+jp6Wk6nBdKXl4erK2tERoaigkTJjR4+VlZWRg0aBCMjIywd+9e6OvrN3gM1PCq+8zWtm3A6XtERESvGCEE/roTD2vDsi2IhUwf773O9YBeFAEBAVVO1zty5EiFc6NGjZKmPNRGVetIERHR8yM2NhZXr15F9+7dkZ2djQULFgCANCWwoZmamuLAgQNYs2YNYmJiMGjQII3EQS8edkoRERG9YpJTVmGYxQrgv8sudG5hhdc6WlV/ExERET1XQkJCkJCQIK05GB0dLS2irQlNmjTBl19+qbHy6cXETikiIqJXzIMHlwEA+cUK6OuZwNJypIYjIiIiorro3Lkzzp07p+kwiJ6aVs1JiIiI6GWx+WQKYv9MAwD88//Zu++wqK70gePfQRgZYMCKFBVFsGAhsbfEEEVQgyRrLKuLuFEju9ZYYtlEEqMxMagby2rMz6C7i8bVqGHRRLFjNwpqLGCBYG8oSB+Y8/sDnXVEAaPJWN7P89zn4d577rnvuQN6eTnlRC+cPKKpVu0NC0clhBBCCCFeRJKUEkIIIV4gX24+RUFBFgAGoy01K8lEpEIIIYQQwjIkKSWEEEK8IPLyrlFVm4SDNhOAT95qibOjrG4khBBCCCEsQ+aUEkIIIV4ABsNNdu95jfdb5JqOeVSpasGIhBBCCCHEi056SgkhhBAvgJyccxiNuRQarbiaXZlKlV7H3r6epcMSQgghhBAvMElKCSGEEM+5XEMhB1POA3A525nJez7i5Ze+xspKOkwLIYQQQgjLkaSUEEII8Zz7dP0J/h57BIDcgvI4lJdklBBCCCGEsDxJSgkhRAm23Mig3d4TNNt9jKZ3tpfvbO8eS7F0eEKUyaW0i1S2vQmA1sae9/zrWjgiIYQQ4vkyYMAANBoNGo0GrVaLl5cXU6ZMoaCg4LHq3bZtGxqNhlu3bj2ZQMsgOTmZvn374ubmhq2tLdWrVyc4OJiTJ0+alYuJiaFDhw7o9Xrs7Oxo0aIFS5YsMSuTkpKCRqMhISGhzPf/6KOPqF+/Pvb29lSsWJFOnTqxb98+szoHDhxI7dq10el01KlTh/DwcPLz80us99KlS/Tt25e6detiZWXFqFGjyhTP7du3GTVqFB4eHuh0Otq2bcuBAwfMymRmZjJs2DCqV6+OTqfDx8eHhQsXmpUZMmQIderUQafTUbVq1Qc+09TUVLp164adnR3Ozs6MGzfuod9Du3btwtrampdeeqnUNqxevZrOnTtTuXLlR/48fmuSlBJCiBKsunKTMzl5XMgzcPHOdunOlpb/eC8ZQvweUlL+QR+Pv9CvwSoAmnq4079NLcsGJYQQQjyHAgMDuXTpEqdOnWLMmDF89NFHfPHFF5YOy6S0pA2AwWDA39+f9PR0Vq9eTWJiIitWrKBx48ZmibG5c+cSHBxMu3bt2LdvH0eOHKFPnz6EhYUxduzYx4qzbt26zJs3j6NHj7Jz505q1apF586duXbtGgAnT57EaDTy1VdfcezYMWbPns3ChQuZNGlSifXm5eVRtWpVPvjgA3x9fcscz6BBg4iNjeVf//oXR48epXPnznTq1IkLFy6YyowePZoff/yRf//735w4cYJRo0YxbNgwoqOjTWWaNWtGZGQkJ06cYMOGDSil6Ny5M4WFhQAUFhbSrVs38vPz2b17N0uXLmXJkiVMnjy5WEy3bt2if//+dOzYsUxtyMrKon379nz++edlbvfvRomHSk9PV4BKT0+3dChCCAvpf+SMqrYlXk1f/pE6PK+zOnwmXh3OyFJHMrLUmaxcS4cnRKkOxYeqTZs91cZNddSmLQ3VxYvfWTqkZ568HxQnz0QI8STk5OSo48ePq5ycHEuH8shCQ0NVcHCw2TF/f3/VunVrlZaWpkJCQlSFChWUTqdTgYGBKikpyVQuJSVFvfHGG6pChQrKzs5O+fj4qHXr1qnk5GQFmG2hoaFKKaUyMjJU3759lZ2dnXJxcVGzZs1SHTp0UCNHjjTV6+HhoaZMmaJCQkKUXq83XRsXF6fat2+vbG1tVfXq1dXw4cNVZmamUkqp+Ph4BaiUlJSHtjU1NVXZ2Nio0aNHFzs3Z84cBai9e/cqpZSpDfHx8Y/+UO+4+3/Mpk2bHlpmxowZqnbt2mWu8/5n9TDZ2dmqXLlyKiYmxux406ZN1d/+9jfTfsOGDdWUKVNKLHO/w4cPK0CdPn1aKaXU+vXrlZWVlbp8+bKpzIIFC5Sjo6PKy8szu7Z3797qgw8+UOHh4crX17fUdtz1JD6Pe5X0M1vWdwPpKSWEECXIKTQC4J12hCbX9tJEW0ATvR2N9XZ42pW3cHRClGz36ev8cueviv84/A5VvXfi6voHC0clhBBClJ1SCkNurkU2pdRjxa7T6cjPz2fAgAH89NNPREdHs2fPHpRSdO3aFYPBAMDQoUPJy8tjx44dHD16lM8//xwHBwdq1KjBd999B0BiYiKXLl3iyy+/BIp65uzatYvo6GhiY2OJi4vj0KFDxWKIiIjA19eX+Ph4PvzwQ86cOUNgYCA9evTgyJEjrFixgp07dzJs2DAAqlatipWVFatWrTL14LnfqlWrMBgMD+wRNWTIEBwcHFi+fPljPbu78vPzWbRoEU5OTiX2bkpPT6dSpUpP5J73KigooLCwEFtbW7PjOp2OnTt3mvbbtm1LdHQ0Fy5cQCnF1q1bSUpKonPnzg+sNysri8jISGrXrk2NGjUA2LNnD40bN6ZatWqmcgEBAWRkZHDs2DHTscjISM6ePUt4ePiTbKrFyEynQghRguw7SSm7wlxo/g44+1g4IiHKbsS38QxvnI5eD7kFtlRxkESqEEKIZ0tBXh5zQt+2yL1HLF2FzX3JiLJQSrF582Y2bNhAly5dWLt2Lbt27aJt27YAREVFUaNGDdauXUvPnj1JTU2lR48eNG7cGABPT09TXXcTLc7OzlSoUAEomuNo6dKlLFu2zDR8KzIyEjc3t2KxvP7664wZM8a0P2jQIPr162eaT8nb25s5c+bQoUMHFixYgLu7O3PmzOH999/n448/pnnz5vj5+dGvXz9TXElJSTg5OeHq6lrsflqtFk9PT5KSkh75ud0rJiaGPn36kJ2djaurK7GxsVSpUuWBZU+fPs3cuXOJiIh4rHs+iF6vp02bNnzyySc0aNCAatWqsXz5cvbs2YOXl5ep3Ny5c3n33XepXr061tbWWFlZ8fXXX/Pqq6+a1fePf/yD999/n6ysLOrVq0dsbCxarRaAy5cvmyWkANP+5cuXATh16hQTJkwgLi4Oa+vnI50jPaWEEKIEpqSUMReqtwCtnYUjEqJssrKSqe+0A6fyGQD89fUmuFXQWTgqIYQQ4vkVExODg4MDtra2dOnShd69ezNgwACsra1p1aqVqVzlypWpV68eJ06cAGDEiBFMnTqVdu3aER4ezpEjR0q8z9mzZzEYDLRs2dJ0zMnJiXr16hUr27x5c7P9w4cPs2TJEhwcHExbQEAARqOR5ORkoKjn1uXLl4mKiqJNmzasXLmShg0bEhsbW+ZncTfRUpKoqCizOOLi4kzn/Pz8SEhIYPfu3QQGBtKrVy+uXr1arI4LFy4QGBhIz549GTx4sOn4vfWGhYWVKea4uDiz66KiogD417/+hVIKd3d3ypcvz5w5c/jjH/+IldX/0ilz585l7969REdHc/DgQWbOnMnQoUPZtGmT2T369etHfHw827dvp27duvTq1Yvc3NwyxVdYWEjfvn35+OOPqVv3wYvWlPRMn1bPR2pNCCGeIKNSDDn2C8cycziXWzQhpK4wF2zkF3rx7IhPGMCfG5437Xf08SqhtBBCCPF0si5fnhFLV1ns3o/Cz8+PBQsWoNVqcXNzw9ra2myi64cZNGgQAQEBrFu3jo0bNzJ9+nRmzpzJ8OHDf23oJvb29mb7mZmZDBkyhBEjRhQrW7NmTdPXer2eoKAggoKCmDp1KgEBAUydOhV/f3+8vb1JT0/n4sWLxXpn5efnc+bMGQICAkqNrXv37mbJOnd3d7O4vby88PLyonXr1nh7e7N48WImTpxoKnPx4kX8/Pxo27YtixYtMqv73tXlHB0dS40FihJ49153t5dSnTp12L59O1lZWWRkZODq6krv3r1NPcdycnKYNGkSa9asoVu3bgA0adKEhIQEIiIi6NSpk6lOJycnnJyc8Pb2pnXr1lSsWJE1a9bwxz/+ERcXF/bv328W05UrVwBwcXHh9u3b/PTTT8THx5uGWxqNRpRSWFtbs3HjxhKf6dNKklJCCHGfM9l5/PfaLdO+jSqgVs5FsJFeUuLZoJQiL+8iAMdv1CXw5Y7odB4WjkoIIYR4dBqN5lcNobOEu4mUezVo0ICCggL27dtnGr5348YNEhMT8fH537QQNWrUICwsjLCwMCZOnMjXX3/N8OHDTT2O7p3fydPTExsbGw4cOGBKJKWnp5OUlFRsuNj9mjZtyvHjx4vFWRKNRkP9+vXZvXs3AG+//Tbjx49n5syZzJw506zswoULyc7Opn///qXWq9fr0ev1ZYrBaDSSl5dn2r9w4QJ+fn6mFe3u7bUEPFL77tLpdCVeZ29vj729PTdv3mTDhg3MmDEDKFqx0GAwFIuhXLlyGI3Gh9anlLrzzlbUrjZt2jBt2jSuXr2Ks7MzALGxsTg6OuLj44ONjQ1Hjx41q+Mf//gHW7ZsYdWqVdSuXRt7e/syP9OnhSSlhBDiPtl3/vOoYq3hm8q3qbFlEs6GNLB+Nl6IhFAqHyj6Pl58bDDDe8rk5kIIIYQleHt7ExwczODBg/nqq6/Q6/VMmDABd3d3goODARg1ahRdunShbt263Lx5k61bt9KgQQMAPDw80Gg0xMTE0LVrV3Q6HXq9ntDQUMaNG0elSpVwdnYmPDwcKysrNBpNifGMHz+e1q1bM2zYMAYNGoS9vT3Hjx8nNjaWefPmkZCQQHh4OCEhIfj4+KDVatm+fTvffPMN48ePB4p6VM2YMYOxY8dia2tLSEgINjY2fP/990yaNImpU6fSqFEjs/smJiYWi6Vhw4bY2NiYHcvKymLatGl0794dV1dXrl+/zvz587lw4QI9e/YEihJSr732Gh4eHkRERHDtzqIuUNSjqCR3e0JlZmZy7do1EhIS0Gq1ZgnC+23YsAGlFPXq1eP06dOMGzeO+vXr8+c//xko6onVoUMHxo0bh06nw8PDg+3bt/PPf/6TWbNmAUVDLlesWEHnzp2pWrUq58+f57PPPkOn09G1a1cAOnfujI+PDyEhIcyYMYPLly/zwQcfMHToUMrf6bV3/3N1dnbG1ta22PH7paWlkZqaysWLRX+0vPt5uLi4lPrMfnNPZB3A55QsbyzEi2nvzduq2pZ41Wbdf5UKd/zfdu6ApUMTolRJlzPUH+atV5s2e6pNmz1Vs09+sHRIzx15PyhOnokQ4kkoaXn5p11oaKgKDg5+4Lm0tDQVEhKinJyclE6nUwEBASopKcl0ftiwYapOnTqqfPnyqmrVqiokJERdv37ddH7KlCnKxcVFaTQaFRoaqpRSKiMjQ/Xt21fZ2dkpFxcXNWvWLNWyZUs1YcIE03UeHh5q9uzZxeLZv3+/8vf3Vw4ODsre3l41adJETZs2TSml1LVr19SIESNUo0aNlIODg9Lr9apx48YqIiJCFRYWmtWzdu1a9corryh7e3sFKEAtX77crExycrLp3P3buXPnisWWk5Oj3nrrLeXm5qa0Wq1ydXVV3bt3V/v37zeViYyMfGidpXnQNR4eHiVes2LFCuXp6am0Wq1ycXFRQ4cOVbdu3TIrc+nSJTVgwADl5uambG1tVb169dTMmTOV0WhUSil14cIF1aVLF+Xs7KxsbGxU9erVVd++fdXJkyfN6klJSVFdunRROp1OValSRY0ZM0YZDIaHxhYeHq58fX1LbffDnll4eHip15akpJ/Zsr4baJR6zHUun2MZGRk4OTmRnp5e5nGoQohn37a0DPocPotP5mm2HHoXqtSFynWg5xIoZ1Pq9UJY0rwtp1i8fR8RHcIpMJZjydl/svzd1pYO67ki7wfFyTMRQjwJubm5JCcnU7t2bWyfkSF7T4usrCzc3d2ZOXMmAwcO/N3vn5aWRseOHXF0dOSHH37Azk6mvXgRlPQzW9Z3A1l9Twgh7pNbWJSr1xnzwMkdhu6FPlGSkBJPPaPRgCHvHK72RZNi2ljriPxzCwtHJYQQQognLT4+nuXLl3PmzBkOHTpEv379AExDAn9vlSpVYtOmTXTs2JE9e/ZYJAbxbJI5pYQQ4j65d+aUsi3MAxv7UkoL8fQ4eLAXTcofocmd1Z9trO2wtSln2aCEEEII8ZuIiIggMTERrVZLs2bNiIuLo0qVKhaLp3LlykyePNli9xfPJklKCSHEHWuu3ORvp86TVXgnKWXMA610PRbPBqUKybh9BICcgvJora1xde1h4aiEEEII8Vt4+eWXOXjwoKXDEOKxyfA9IYS4I/rqLdIMheQZi4bvvXz7BNhIUko8GxZu/dn09XvbpnHV7r941RlrwYiEEEIIIYQomSSlhBDijpw7PaQmn/kHP+3tydhfloKtk4WjEqJ0SikWxx0DoNBohcFog2cVGXoqhBBCCCGebjJ8Twgh7rg7l1TN3EtUL28Ddd6EtsMtG5QQZZBrKKB8uSwArMrZET2sPY3dJaEqhBBCCCGebpKUEkKIO7KN98wlVccPgudbOCIhSmcw3OTA/jeY0vYyALZaB5pUr2DZoIQQQgghhCgDGb4nhBB33B2+pyvMk7mkxDPj9u3jGPIvm/YrV3rVgtEIIYQQQghRdtJTSgjxQss3Gll/LZ2bBYXcMBQAoDPmgrWthSMTomzyDZkAnE2vyTcnRrNnUpCFIxJCCCGEEKJsHqmn1PTp02nRogV6vR5nZ2fefPNNEhMTzcrk5uYydOhQKleujIODAz169ODKlStmZVJTU+nWrRt2dnY4Ozszbtw4CgoKzMps27aNpk2bUr58eby8vFiyZEmxeObPn0+tWrWwtbWlVatW7N+//5FjEUK82KKv3iLs+C9MTDpPmqEQAMeCLLDRWTgyIUq36/R1xq3cB0BOgQ4rK5ncXAghhBBCPDseKSm1fft2hg4dyt69e4mNjcVgMNC5c2eysrJMZd577z3++9//snLlSrZv387Fixf5wx/+YDpfWFhIt27dyM/PZ/fu3SxdupQlS5YwefJkU5nk5GS6deuGn58fCQkJjBo1ikGDBrFhwwZTmRUrVjB69GjCw8M5dOgQvr6+BAQEcPXq1TLHIoQQF/MMANS0Ubyhvc3Ym5upk3NOekqJZ8LuM9exIheAvILyvFq3qoUjEkIIIV5MAwYMQKPRoNFo0Gq1eHl5MWXKlGKdLx7Vtm3b0Gg03Lp168kEWgbJycn07dsXNzc3bG1tqV69OsHBwZw8edKsXExMDB06dECv12NnZ0eLFi2KdSZJSUlBo9GQkJBQ5vt/9NFH1K9fH3t7eypWrEinTp3Yt2+fWZ0DBw6kdu3a6HQ66tSpQ3h4OPn5+SXWe+nSJfr27UvdunWxsrJi1KhRZYpnx44dBAUF4ebmhkajYe3atcXKrF69ms6dO1O5cuVS26uUokuXLg+ta8mSJTRp0gRbW1ucnZ0ZOnSo2fkNGzbQunVr9Ho9VatWpUePHqSkpJiViYqKwtfXFzs7O1xdXXnnnXe4cePGY7fzt/BISakff/yRAQMG0LBhQ3x9fVmyZAmpqakcPHgQgPT0dBYvXsysWbN4/fXXadasGZGRkezevZu9e/cCsHHjRo4fP86///1vXnrpJbp06cInn3zC/PnzTd9ECxcupHbt2sycOZMGDRowbNgw3n77bWbPnm2KZdasWQwePJg///nP+Pj4sHDhQuzs7Pjmm2/KHIsQQmTfmUfKP2UN/xf7BmOPTEEDUF5v0biEKE1e/nWqsYh2bkUvaf6NajH9D40tHJUQQgjx4goMDOTSpUucOnWKMWPG8NFHH/HFF19YOiyT0pI2AAaDAX9/f9LT01m9ejWJiYmsWLGCxo0bmyXG5s6dS3BwMO3atWPfvn0cOXKEPn36EBYWxtixYx8rzrp16zJv3jyOHj3Kzp07qVWrFp07d+batWsAnDx5EqPRyFdffcWxY8eYPXs2CxcuZNKkSSXWm5eXR9WqVfnggw/w9fUtczxZWVn4+voyf/7DF0HKysqiffv2fP7556XW9/e//x2NRvPAc7NmzeJvf/sbEyZM4NixY2zatImAgADT+eTkZIKDg3n99ddJSEhgw4YNXL9+3azzza5du+jfvz8DBw7k2LFjrFy5kv379zN48ODHbudvQj2GU6dOKUAdPXpUKaXU5s2bFaBu3rxpVq5mzZpq1qxZSimlPvzwQ+Xr62t2/uzZswpQhw4dUkop9corr6iRI0ealfnmm2+Uo6OjUkqpvLw8Va5cObVmzRqzMv3791fdu3cvcyz3y83NVenp6abt3LlzClDp6elleRxCiGfQh0nnVbUt8WrqkjFKfeKs1NLuSv1ngFIZly0dmhAlSk6erzZt9jRtSaemWzqkF0Z6erq8H9xHnokQ4knIyclRx48fVzk5OZYO5ZGFhoaq4OBgs2P+/v6qdevWKi0tTYWEhKgKFSoonU6nAgMDVVJSkqlcSkqKeuONN1SFChWUnZ2d8vHxUevWrVPJyckKMNtCQ0OVUkplZGSovn37Kjs7O+Xi4qJmzZqlOnToYPZ7tIeHh5oyZYoKCQlRer3edG1cXJxq3769srW1VdWrV1fDhw9XmZmZSiml4uPjFaBSUlIe2tbU1FRlY2OjRo8eXezcnDlzFKD27t2rlFKmNsTHxz/6Q73j7v8xmzZtemiZGTNmqNq1a5e5zvufVVkBxfIQ9yqtvfHx8crd3V1dunSpWF1paWlKp9OV2M6VK1cqa2trVVhYaDoWHR2tNBqNys/PV0op9cUXXyhPT0+z6+bMmaPc3d1Lb+AdpbXzrpJ+Zsv6bvCrV98zGo2MGjWKdu3a0ahRIwAuX76MVqulQoUKZmWrVavG5cuXTWWqVatW7PzdcyWVycjIICcnh+vXr1NYWPjAMvfWUVos95s+fTpOTk6mrUaNGmV8GkKIZ9XdnlJ2hblQsTb0/x56RoK+WilXCmFZBsMtAJJu1uGGVRgeNd+1bEBCCCHEb0AphTG/0CJb0e/mv55OpyM/P58BAwbw008/ER0dzZ49e1BK0bVrVwyGomkkhg4dSl5eHjt27ODo0aN8/vnnODg4UKNGDb777jsAEhMTuXTpEl9++SUAo0ePZteuXURHRxMbG0tcXByHDh0qFkNERAS+vr7Ex8fz4YcfcubMGQIDA+nRowdHjhxhxYoV7Ny5k2HDhgFQtWpVrKysWLVqFYWFhQ9s16pVqzAYDA/sETVkyBAcHBxYvnz5Yz27u/Lz81m0aBFOTk4l9m5KT0+nUqVKT+Sev5Xs7Gz69u3L/PnzcXFxKXY+NjYWo9HIhQsXaNCgAdWrV6dXr16cO3fOVKZZs2ZYWVkRGRlJYWEh6enp/Otf/6JTp07Y2NgA0KZNG86dO8f69etRSnHlyhVWrVpF165df7e2Popfvfre0KFD+fnnn9m5c+eTjMeiJk6cyOjRo037GRkZkpgS4jl1u6CQr89fY1960cpldoW5oLWzcFRClI1SioLCHABO3KhL6+q90Wqf7hcxIYQQ4tdQBiMXJ++2yL3dprRFoy33yNcppdi8eTMbNmygS5curF27ll27dtG2bVugaL6fGjVqsHbtWnr27Elqaio9evSgceOiYfienp6muu4mWpydnU0dLm7fvs3SpUtZtmwZHTt2BCAyMhI3N7disbz++uuMGTPGtD9o0CD69etnmk/J29ubOXPm0KFDBxYsWIC7uztz5szh/fff5+OPP6Z58+b4+fnRr18/U1xJSUk4OTnh6upa7H5arRZPT0+SkpIe+bndKyYmhj59+pCdnY2rqyuxsbFUqVLlgWVPnz7N3LlziYiIeKx7/tbee+892rZtS3Bw8APPnz17FqPRyKeffsqXX36Jk5MTH3zwAf7+/hw5cgStVkvt2rXZuHEjvXr1YsiQIRQWFtKmTRvWr19vqqddu3ZERUXRu3dvcnNzKSgoICgo6PcflldGv6qn1LBhw4iJiWHr1q1Ur17ddNzFxYX8/Pxik7BduXLFlAl0cXEptgLe3f3Syjg6OqLT6ahSpQrlypV7YJl76ygtlvuVL18eR0dHs00I8Xz67spNZiRf5lR2HgBVDDfBRpJS4umnlCI08gArD5wGIM+oRaf91R2fhRBCCPGExMTE4ODggK2tLV26dKF3794MGDAAa2trWrVqZSpXuXJl6tWrx4kTJwAYMWIEU6dOpV27doSHh3PkyJES73P27FkMBgMtW7Y0HXNycqJevXrFyjZv3txs//DhwyxZsgQHBwfTFhAQgNFoJDk5GSjqgHL58mWioqJo06YNK1eupGHDhsTGxpb5WWi12lLLREVFmcURFxdnOnd30bPdu3cTGBhIr169zBY1u+vChQsEBgbSs2dPszmT7q03LCysTDHHxcWZXRcVFVWm68oiOjqaLVu28Pe///2hZYxGIwaDgTlz5hAQEEDr1q1Zvnw5p06dYuvWrUDRiLDBgwcTGhrKgQMH2L59O1qtlrffftvUs+/48eOMHDmSyZMnc/DgQX788UdSUlJMz+G3bOev8Ug9pZRSDB8+nDVr1rBt2zZq165tdr5Zs2bY2NiwefNmevToARR1M0xNTaVNmzZAUVeyadOmcfXqVZydnYGibmqOjo74+PiYytyb6btb5m4dWq2WZs2asXnzZt58802g6APcvHmzqdthWWIRQry40gxFK6E0Mt7k7Zs76Xp9B3i9buGohChdrsHIjqRr+DQpmqzUSmOLb/UKlg1KCCGE+I1obKxwm9LWYvd+FH5+fixYsACtVoubmxvW1tZER0eXet2gQYMICAhg3bp1bNy4kenTpzNz5kyGDx/+a0M3sbe3N9vPzMxkyJAhjBgxoljZmjVrmr7W6/UEBQURFBTE1KlTCQgIYOrUqfj7++Pt7U16ejoXL14s1jsrPz+fM2fOmE3O/TDdu3c3S9a5u7ubxe3l5YWXlxetW7fG29ubxYsXM3HiRFOZixcv4ufnR9u2bVm0aJFZ3feuflfWzibNmzc3u+7+6YIex5YtWzhz5kyx6YV69OjBK6+8wrZt20w9z+7mRaBoOGWVKlVITU0FYP78+Tg5OTFjxgxTmX//+9/UqFGDffv20bp1a6ZPn067du0YN24cAE2aNMHe3p5XXnmFqVOn/qbt/DUeKSk1dOhQli1bxvfff49erzfNzeTk5IROp8PJyYmBAwcyevRoKlWqhKOjI8OHD6dNmza0bt0agM6dO+Pj40NISAgzZszg8uXLfPDBBwwdOpTy5csDEBYWxrx583j//fd555132LJlC//5z39Yt26dKZbRo0cTGhpK8+bNadmyJX//+9/Jysriz3/+symm0mIRQry4cu7MJdX2YixhZ+50ZdU/uBelEE+TjOxruDtcxFF7G4AJ3XzxqOpg4aiEEEKI34ZGo/lVQ+gs4W4i5V4NGjSgoKCAffv2mYbv3bhxg8TERLPkQ40aNQgLCyMsLIyJEyfy9ddfM3z4cFOPo3vnd/L09MTGxoYDBw6YEknp6ekkJSXx6quvlhhj06ZNOX78eLE4S6LRaKhfvz67dxcNo3z77bcZP348M2fOZObMmWZlFy5cSHZ2Nv379y+1Xr1ej15fthWvjUYjeXl5pv0LFy7g5+dHs2bNiIyMxMrKPIH4KO27S6fT/arrymLChAkMGjTI7Fjjxo2ZPXs2QUFBQNGwOyjqTHN3RFpaWhrXr1/Hw8MDKJqX6v62litX9PNhNBpNZaytrR9YRin1m7bz13ikpNSCBQsAeO2118yOR0ZGMmDAAABmz56NlZUVPXr0IC8vj4CAAP7xj3+YypYrV46YmBj+8pe/0KZNG+zt7QkNDWXKlCmmMrVr12bdunW89957fPnll1SvXp3/+7//M8u29u7dm2vXrjF58mQuX77MSy+9xI8//miW5SstFiHEiyv3zj/ausI8qN4SGvUo2oR4iuXkpPJzvD9T2haYjpWXYadCCCHEU8vb25vg4GAGDx7MV199hV6vZ8KECbi7u5vmFho1ahRdunShbt263Lx5k61bt9KgQQMAPDw80Gg0xMTE0LVrV3Q6HXq9ntDQUMaNG0elSpVwdnYmPDwcKysrNBpNifGMHz+e1q1bM2zYMAYNGoS9vT3Hjx8nNjaWefPmkZCQQHh4OCEhIfj4+KDVatm+fTvffPMN48ePB4p6VM2YMYOxY8dia2tLSEgINjY2fP/990yaNImpU6eaFkO7KzExsVgsDRs2NE3OfVdWVhbTpk2je/fuuLq6cv36debPn8+FCxfo2bMnUJSQeu211/Dw8CAiIoJr166Zrn/YVD133e0hlJmZybVr10hISECr1ZolCO+XmZnJ6dOnTfvJyckkJCRQqVIlU1IwLS2N1NRULl68aNZeFxcXs+1+NWvWNI1Aq1u3LsHBwYwcOZJFixbh6OjIxIkTqV+/Pn5+fgB069aN2bNnM2XKFP74xz9y+/ZtJk2ahIeHBy+//DIAQUFBDB48mAULFhAQEMClS5cYNWoULVu2fOC8Y4/Szt9EmdcEfAHJ8sZCPL/GnEhV1bbEq1mLhyq14QNLhyNEmVy7tllt2uypfoz1Uqt/eEnt2xekcnOvWjqsF468HxQnz0QI8SSUtLz80y40NFQFBwc/8FxaWpoKCQlRTk5OSqfTqYCAAJWUlGQ6P2zYMFWnTh1Vvnx5VbVqVRUSEqKuX79uOj9lyhTl4uKiNBqNCg0NVUoplZGRofr27avs7OyUi4uLmjVrlmrZsqWaMGGC6ToPDw81e/bsYvHs379f+fv7KwcHB2Vvb6+aNGmipk2bppRS6tq1a2rEiBGqUaNGysHBQen1etW4cWMVERGhCgsLzepZu3ateuWVV5S9vb0CFKCWL19uViY5Odl07v7t3LlzxWLLyclRb731lnJzc1NarVa5urqq7t27q/3795vKREZGPrTO0jzoGg8PjxKv2bp16wOvu/tZlBRTeHh4ibGsWbPG7Fh6erp65513VIUKFVSlSpXUW2+9pVJTU83KLF++XL388svK3t5eVa1aVXXv3l2dOHHCrMycOXOUj4+P0ul0ytXVVfXr10+dP3/+sdt5v5J+Zsv6bqBR6jHXuXyOZWRk4OTkRHp6ukx6LsRzZujxX/juyk0+OjOfMG9v6PC+pUMSolQXL8Vw4sRITqZ5EXXqfXZP7GjpkF5I8n5QnDwTIcSTkJubS3JyMrVr18bW1tbS4TxTsrKycHd3Z+bMmQwcOPB3v39aWhodO3bE0dGRH374ATs76cn9IijpZ7as7wayXI8Q4oWRU2jkzUOn8N2yh5jLRd18dYW5oJX5eMTTb+vJq0z47gAABqMNumdkfg0hhBBCPHnx8fEsX76cM2fOcOjQIfr16wdgGhL4e6tUqRKbNm2iY8eO7NmzxyIxiGfTI80pJYQQz7KfM3PYm54FGh0AGmWkflYyVOht4ciEKN2u09fRULTiXn6hlg51nS0ckRBCCCEsKSIigsTERNPq9HFxcVSpUsVi8VSuXJnJkydb7P7i2SRJKSHEC+Puinue2ef4+pe5VGoRimvXiVA30MKRCVG63IJCypcrSkoFNKqJb+OHT8gphBBCiOfbyy+/zMGDBy0dhhCPTZJSQogXxt0V95wKbtPQ2gAt+lk4IiHKJivrDBU1W7F3+gUAray4J4QQQgghngOSlBJCvDBy7iSlbI15IL/Ui2eE0Wjgp4Nv85I+A/RFx6zLyTxoQgghhBDi2ScTnQshXhi5hUWLjdoa88FGZ+FohCibgoLbFBRkAHDsej3yrF/Bza2XhaMSQgghhBDi8UlSSgjxYsi7Td7Fw4AkpcSzJfVGGgAFRmtmHRqKwXEa9vZeFo5KCCGEEEKIxydJKSHEc+9QehbDtv3Avy9cBcC2MA/K6y0clRClyy8w8pd/7QYgt0ALgL1WRt4LIYQQQojng7zZCiGee1+kXGarti4U/U5PNTs7aDrQskEJUQYZuQbyDVlFOxpbuvu60darsmWDEkIIIYQQ4gmRpJQQ4rl3y1AIQMjFaHwb+vFG+3fBRv75E0+/zOw0XOyLevg5OzkxJ+BlC0ckhBBCCCHEkyPD94QQz72swqJV94KvbeFPlWyoIAkp8QzIyjrNmWOv8W6TfwJQzkpWjBRCCCGeVgMGDECj0aDRaNBqtXh5eTFlyhQKCgoeq95t27ah0Wi4devWkwm0DJKTk+nbty9ubm7Y2tpSvXp1goODOXnypFm5mJgYOnTogF6vx87OjhYtWrBkyRKzMikpKWg0GhISEsp8/48++oj69etjb29PxYoV6dSpE/v27TOrc+DAgdSuXRudTkedOnUIDw8nPz+/xHovXbpE3759qVu3LlZWVowaNapM8ezYsYOgoCDc3NzQaDSsXbv2kWMGmDZtGm3btsXOzo4KFSo88F6pqal069YNOzs7nJ2dGTdunNn30L3fZ/duDRs2NJWZPn06LVq0QK/X4+zszJtvvkliYmKp7SxLfL8FSUoJIZ57WYVFPaUcCrLBRn6xF0+/goJMbqTFgSqgwGhFdoE9Li7Blg5LCCGEECUIDAzk0qVLnDp1ijFjxvDRRx/xxRdfWDosk9KSNgAGgwF/f3/S09NZvXo1iYmJrFixgsaNG5slxubOnUtwcDDt2rVj3759HDlyhD59+hAWFsbYsWMfK866desyb948jh49ys6dO6lVqxadO3fm2rVrAJw8eRKj0chXX33FsWPHmD17NgsXLmTSpEkl1puXl0fVqlX54IMP8PX1LXM8WVlZ+Pr6Mn/+/F8dMxQ9/549e/KXv/zlgXUUFhbSrVs38vPz2b17N0uXLmXJkiVMnjzZVObLL7/k0qVLpu3cuXNUqlSJnj17msps376doUOHsnfvXmJjYzEYDHTu3JmsrKwS21lafL8ZJR4qPT1dASo9Pd3SoQghfoVfsnPV2m3/Up6b9qhqW+JV0meNlLp+2tJhCVGiixdXqU2b66hNmz3Vps2e6m9LQlTHmdssHZa4h7wfFCfPRAjxJOTk5Kjjx4+rnJwcS4fyyEJDQ1VwcLDZMX9/f9W6dWuVlpamQkJCVIUKFZROp1OBgYEqKSnJVC4lJUW98cYbqkKFCsrOzk75+PiodevWqeTkZAWYbaGhoUoppTIyMlTfvn2VnZ2dcnFxUbNmzVIdOnRQI0eONNXr4eGhpkyZokJCQpRerzddGxcXp9q3b69sbW1V9erV1fDhw1VmZqZSSqn4+HgFqJSUlIe2NTU1VdnY2KjRo0cXOzdnzhwFqL179yqllKkN8fHxj/5Q77j7f8ymTZseWmbGjBmqdu3aZa7z/mdVVoBas2ZNqeVKijkyMlI5OTkVO75+/XplZWWlLl++bDq2YMEC5ejoqPLy8h54nzVr1iiNRlPi53X16lUFqO3bt5cad0nxPUhJP7NlfTeQnlJCiOeSUoo3Dp1iiLERWVa2ADhqjODgbOHIhChOqUISDg9i245mHD/xPkXvnUUr7iVcbYx9eRlyKoQQ4sWklCI/P98im1LqsWLX6XTk5+czYMAAfvrpJ6Kjo9mzZw9KKbp27YrBYABg6NCh5OXlsWPHDo4ePcrnn3+Og4MDNWrU4LvvvgMgMTGRS5cu8eWXXwIwevRodu3aRXR0NLGxscTFxXHo0KFiMURERODr60t8fDwffvghZ86cITAwkB49enDkyBFWrFjBzp07GTZsGABVq1bFysqKVatWUXhntMH9Vq1ahcFgeGCPqCFDhuDg4MDy5csf69ndlZ+fz6JFi3Byciqxd1N6ejqVKlV6Ivd8XGWN+X579uyhcePGVKtWzXQsICCAjIwMjh079sBrFi9eTKdOnfDw8Hhovenp6QBPzfO5n7zlCiGeS7lGxdX8ovHXrW8dpqVrTaoNjIbyegtHJsT/XL26gcuX15Bx+zh5eRdMxw3GckzePZHytjVxc7Ljnfa1LRilEEIIYTkGg4FPP/3UIveeNGkSWq32ka9TSrF582Y2bNhAly5dWLt2Lbt27aJt27YAREVFUaNGDdauXUvPnj1JTU2lR48eNG7cGABPT09TXXcTCc7OzqZ5fm7fvs3SpUtZtmwZHTt2BCAyMhI3N7disbz++uuMGTPGtD9o0CD69etnmk/J29ubOXPm0KFDBxYsWIC7uztz5szh/fff5+OPP6Z58+b4+fnRr18/U1xJSUk4OTnh6upa7H5arRZPT0+SkpIe+bndKyYmhj59+pCdnY2rqyuxsbFUqVLlgWVPnz7N3LlziYiIeKx7Pq5HiflBLl++bJaQAkz7ly9fLlb+4sWL/PDDDyxbtuyhdRqNRkaNGkW7du1o1KhRmWP5PUlPKSHEcyn7zuTmAN8dHsWkFq9A5ToWjEiIIgZDOhcvruT8+X9z9Oe/cu16rCkhdTnLmQ92TeLvR2bi37g5ce93ZMWQNgQ0dLFw1EIIIYQoTUxMDA4ODtja2tKlSxd69+7NgAEDsLa2plWrVqZylStXpl69epw4cQKAESNGMHXqVNq1a0d4eDhHjhwp8T5nz57FYDDQsmVL0zEnJyfq1atXrGzz5s3N9g8fPsySJUtwcHAwbQEBARiNRpKTk4GinluXL18mKiqKNm3asHLlSho2bEhsbGyZn0VZknlRUVFmccTFxZnO+fn5kZCQwO7duwkMDKRXr15cvXq1WB0XLlwgMDCQnj17MnjwYNPxe+sNCwsrU8xxcXFm10VFRZXpukeN+UlZunQpFSpU4M0333xomaFDh/Lzzz/z7bffmo6FhYWZtdPSpKeUEOK5lG0sSkrZFuZRzsoKysk/d8Ky8vNvkJFxmMSkj8nNPW92bvnJP5BTYMvR6z4MeKUZo/3rWihKIYQQ4uliY2NT6gTWv+W9H4Wfnx8LFixAq9Xi5uaGtbU10dHRpV43aNAgAgICWLduHRs3bmT69OnMnDmT4cOH/9rQTezt7c32MzMzGTJkCCNGjChWtmbNmqav9Xo9QUFBBAUFMXXqVAICApg6dSr+/v54e3uTnp7OxYsXi/XOys/P58yZMwQEBJQaW/fu3c2Sde7u7mZxe3l54eXlRevWrfH29mbx4sVMnDjRVObixYv4+fnRtm1bFi1aZFb3vav9OTo6lhoLFCXw7r3u/l5LpSlLzCVxcXFh//79ZseuXLliOncvpRTffPMNISEhD00ADhs2jJiYGHbs2EH16tVNx6dMmfLYk9E/SfJbmhDiuXS3p5SdMQesdRaORrzI8vPTKCi4zU8He2Aw3DQdzzLoOJFWlyPXGvJLjh+bRndAo4Hy1uUsGK0QQgjxdNFoNL9qCJ0l3E1K3KtBgwYUFBSwb98+0/C9GzdukJiYiI+Pj6lcjRo1CAsLIywsjIkTJ/L1118zfPhwU9vvnd/J09MTGxsbDhw4YEokpaenk5SUxKuvvlpijE2bNuX48ePF4iyJRqOhfv367N69G4C3336b8ePHM3PmTGbOnGlWduHChWRnZ9O/f/9S69Xr9ej1ZZtaw2g0kpeXZ9q/cOECfn5+NGvWjMjISKyszAeBPUr77tLpdL/quoe5P+bStGnThmnTpnH16lWcnYvmwY2NjcXR0dHsewWKVtg7ffo0AwcOLFaPUorhw4ezZs0atm3bRu3a5tNAODs7m+p/GkhSSgjxXNl4PZ1dtzK5fmc+KV1hLliXt3BU4kV18+ZeDsX/ibsTlwNczKxG6u3qfPNzP3o0q8XEHrXwrGqPrY0ko4QQQojnjbe3N8HBwQwePJivvvoKvV7PhAkTcHd3Jzg4GIBRo0bRpUsX6taty82bN9m6dSsNGjQAwMPDA41GQ0xMDF27dkWn06HX6wkNDWXcuHFUqlQJZ2dnwsPDsbKyQqPRlBjP+PHjad26NcOGDWPQoEHY29tz/PhxYmNjmTdvHgkJCYSHhxMSEoKPjw9arZbt27fzzTffMH78eKCoR9WMGTMYO3Ystra2hISEYGNjw/fff8+kSZOYOnVqsfmLEhMTi8XSsGHDYr3RsrKymDZtGt27d8fV1ZXr168zf/58Lly4QM+ePYGihNRrr72Gh4cHERERXLt2zXT9/T2K7ne3J1RmZibXrl0jISEBrVZbLOlzr8zMTE6fPm3aT05OJiEhgUqVKlGzZs0yxQyQmppKWloaqampFBYWmmLx8vLCwcGBzp074+PjQ0hICDNmzODy5ct88MEHDB06lPLlzX+fWbx4Ma1atXrgPFFDhw5l2bJlfP/99+j1etN8VE5OTuh0D/9jfWnx/WbKtM7fC0qWNxbi2WIoNCqPbQmq2pZ409Z57XKlZjW0dGjiBXM2eZ7atbuz2rTZ07TFbGigJi/tpzzGx6jInWfV2vjzKtdQYOlQxa8g7wfFyTMRQjwJJS0v/7QLDQ1VwcHBDzyXlpamQkJClJOTk9LpdCogIEAlJSWZzg8bNkzVqVNHlS9fXlWtWlWFhISo69evm85PmTJFubi4KI1Go0JDQ5VSSmVkZKi+ffsqOzs75eLiombNmqVatmypJkyYYLrOw8NDzZ49u1g8+/fvV/7+/srBwUHZ29urJk2aqGnTpimllLp27ZoaMWKEatSokXJwcFB6vV41btxYRUREqMLCQrN61q5dq1555RVlb2+vKPoLnFq+fLlZmeTkZNO5+7dz584Viy0nJ0e99dZbys3NTWm1WuXq6qq6d++u9u/fbyoTGRn50DpL86BrPDw8Srxm69atD7zu7mdRlpiVKvoeeVA9W7duNZVJSUlRXbp0UTqdTlWpUkWNGTNGGQwGs3pu3bqldDqdWrRoUZnbCKjIyMgS21mW+O5X0s9sWd8NNHeCFg+QkZGBk5MT6enpZR6HKoSwnHRDAfV2/gzAX88tx1oVEnRtG40dbCFsp4WjE887pRSZWYnk5d3kyJE/o5TBdG5ewkDir/rSu3kNXm/gLBOXP+Pk/aA4eSZCiCchNzeX5ORkateuja2traXDeaZkZWXh7u7OzJkzHzik67eWlpZGx44dcXR05IcffsDOzu53j0H8/kr6mS3ru4EM3xNCPDdyjEU59nKqkA/PLkTjHQANOkDjnqVcKcTju3ZtI0d//qtpP6/Qhi8PDaF6ZRfcqtVl4aCGVHOUF2whhBBCPL74+HhOnjxJy5YtSU9PZ8qUKQCmIYG/t0qVKrFp0ybmz5/Pnj176Nixo0XiEM8eSUoJIZ4bOabJzfPRALQbAbXaWzQm8eK4nXkMgCyDHel5evZcasFtYxP+/qdX0ds+2uo9QgghhBCliYiIIDExEa1WS7NmzYiLi6NKlSoWi6dy5cpMnjzZYvcXzyZJSgkhnhvZxqKklM54Z5ULG1l1T/z2bt06yJYj67DK242+HGz85TWq1xjK9P51sNeWw7qcVal1CCGEEEI8ipdffpmDBw9aOgwhHpskpYQQz4X9tzLZeSsTuLPiHoCNjGUXvy2lFIcOv4tT4S24s3jezdyKvF7NASed9I4SQgghhBCiJJKUEkI8847ezqZ7/P+WadUXZBV9IT2lxG8sKycDVXgLgANXX6VGlep0erkPXRu7WjYwIYQQQgghngGSlBJCPPN+yckHwKkgE9/bJxlwYW3RCekpJX4jRmMBR45PZv+pg9RxgtyC8qQYhjGhUzNLhyaEEEIIIcQzQ5JSQohn3t25pJpmHGP50feLDtZoBXaWm+hRPN8yMhK4cXUFdZyK9q9ku/CGr/SOEkIIIYQQ4lFIUkoI8czLurvqXmEOeLSH/t+DVTnQaCwcmXhe5eVfA+BiZjVOZvZgco8/Ub58NQtHJYQQQgghxLNFklJCiGdetikplQtaeygn/7SJ38a58/9i17H/UpB/GVd7uJRVjZvqNUlICSGEEEII8SvIb25CiGfWicwcPj59kVPZRavt2RfmQHmZR0r8NoxGA0lJn1DVphDuLKx3JduZl7wrWDQuIYQQQgghnlVWlg5ACCF+rRWX09h28zYX8gwA1Mq9CDb2Fo5KPK9uZ18HCjEqDUuP96WS+2cMD5rGu6/WsXRoQgghhLCwAQMGoNFo0Gg0aLVavLy8mDJlCgUFBY9V77Zt29BoNNy6devJBFoGycnJ9O3bFzc3N2xtbalevTrBwcGcPHnSrFxMTAwdOnRAr9djZ2dHixYtWLJkiVmZlJQUNBoNCQkJZb7/Rx99RP369bG3t6dixYp06tSJffv2mdU5cOBAateujU6no06dOoSHh5Ofn19q3VFRUfj6+mJnZ4erqyvvvPMON27cKPGaHTt2EBQUhJubGxqNhrVr1z6w3IkTJ+jevTtOTk7Y29vTokULUlNTTeeHDBlCnTp10Ol0VK1a9YHP9MCBA3Ts2JEKFSpQsWJFAgICOHz48APvd/r0afR6PRUqVCi13WVtgyVIUkoI8cy6O2zvzWtbWXFkDAMvfAc2OgtHJZ43WVln2byrH6s39QHgdr4DiRkdeLleT2o5y2T6QgghhCgSGBjIpUuXOHXqFGPGjOGjjz7iiy++sHRYJmVJ2hgMBvz9/UlPT2f16tUkJiayYsUKGjdubJYYmzt3LsHBwbRr1459+/Zx5MgR+vTpQ1hYGGPHjn2sOOvWrcu8efM4evQoO3fupFatWnTu3Jlr14rm9Dx58iRGo5GvvvqKY8eOMXv2bBYuXMikSZNKrHfXrl3079+fgQMHcuzYMVauXMn+/fsZPHhwiddlZWXh6+vL/PnzH1rmzJkztG/fnvr167Nt2zaOHDnChx9+iK2tralMs2bNiIyM5MSJE2zYsAGlFJ07d6awsBCAzMxMAgMDqVmzJvv27WPnzp3o9XoCAgIwGAxm9zMYDPzxj3/klVdeKTH2R2mDxSjxUOnp6QpQ6enplg5FCPEAw46nqGpb4tW8r99VKtxRqSlVlDoebemwxHPm1OkZatNmT9M2d2WA+ij6Z0uHJSxI3g+Kk2cihHgScnJy1PHjx1VOTo6lQ3lkoaGhKjg42OyYv7+/at26tUpLS1MhISGqQoUKSqfTqcDAQJWUlGQql5KSot544w1VoUIFZWdnp3x8fNS6detUcnKyAsy20NBQpZRSGRkZqm/fvsrOzk65uLioWbNmqQ4dOqiRI0ea6vXw8FBTpkxRISEhSq/Xm66Ni4tT7du3V7a2tqp69epq+PDhKjMzUymlVHx8vAJUSkrKQ9uampqqbGxs1OjRo4udmzNnjgLU3r17lVLK1Ib4+PhHf6h33P0/ZtOmTQ8tM2PGDFW7du0S6/niiy+Up6dnsXjd3d3LHAug1qxZU+x479691Z/+9Kcy16OUUocPH1aAOn36tFJKqQMHDihApaammsocOXJEAerUqVNm177//vvqT3/6k4qMjFROTk6PdN+HteHXKOlntqzvBtJTSgjxzMq501PK1pgHr4yFieehQZCFoxLPk19uZHHm8i8A7LrYkktWHzHwjWWEBzW0bGBCCCHEC0IpRWFhtkW2ot/ffz2dTkd+fj4DBgzgp59+Ijo6mj179qCUomvXrqbeL0OHDiUvL48dO3Zw9OhRPv/8cxwcHKhRowbfffcdAImJiVy6dIkvv/wSgNGjR7Nr1y6io6OJjY0lLi6OQ4cOFYshIiICX19f4uPj+fDDDzlz5gyBgYH06NGDI0eOsGLFCnbu3MmwYcMAqFq1KlZWVqxatcrUg+d+q1atwmAwPLBH1JAhQ3BwcGD58uWP9ezuys/PZ9GiRTg5OeHr6/vQcunp6VSqVKnEutq0acO5c+dYv349SimuXLnCqlWr6Nq162PFaDQaWbduHXXr1iUgIABnZ2datWpV4hC5rKwsIiMjqV27NjVq1ACgXr16VK5cmcWLF5Ofn09OTg6LFy+mQYMG1KpVy3Ttli1bWLly5dPZ6+lXkInOhRDPrFxj0YuCzpgHto5gXd7CEYnnyfkL/2F3/Gycyt/Cuhwk3azDS407orMt+YVHCCGEEE+O0ZjDtu2NLXLv1zocpVy5R19ERynF5s2b2bBhA126dGHt2rXs2rWLtm3bAkXzGtWoUYO1a9fSs2dPUlNT6dGjB40bF7XT09PTVNfdRIuzs7Np7qDbt2+zdOlSli1bRseOHQGIjIzEzc2tWCyvv/46Y8aMMe0PGjSIfv36MWrUKAC8vb2ZM2cOHTp0YMGCBbi7uzNnzhzef/99Pv74Y5o3b46fnx/9+vUzxZWUlISTkxOurq7F7qfVavH09CQpKemRn9u9YmJi6NOnD9nZ2bi6uhIbG0uVKg+eNuH06dPMnTuXiIiIEuts164dUVFR9O7dm9zcXAoKCggKCnrs5M7Vq1fJzMzks88+Y+rUqXz++ef8+OOP/OEPf2Dr1q106NDBVPYf//gH77//PllZWdSrV4/Y2Fi0Wi0Aer2ebdu28eabb/LJJ58ARZ/Phg0bsLYuSt3cuHGDAQMG8O9//xtHR8fHivtpIT2lhBDPrFxTT6l8sJa5pMST9cu5f+Fsd5Xy5YrmX6jt8jKv13e2cFRCCCGEeFrFxMTg4OCAra0tXbp0oXfv3gwYMABra2tatWplKle5cmXq1avHiRMnABgxYgRTp06lXbt2hIeHc+TIkRLvc/bsWQwGAy1btjQdc3Jyol69esXKNm/e3Gz/8OHDLFmyBAcHB9MWEBCA0WgkOTkZKOq5dfnyZaKiomjTpg0rV66kYcOGxMbGlvlZ3E20lCQqKsosjri4ONM5Pz8/EhIS2L17N4GBgfTq1YurV68Wq+PChQsEBgbSs2dPs7mh7q03LCwMgOPHjzNy5EgmT57MwYMH+fHHH0lJSTGdj4uLM7suKiqqTG01Got+JwkODua9997jpZdeYsKECbzxxhssXLjQrGy/fv2Ij49n+/bt1K1bl169epGbW7SSeE5ODgMHDqRdu3bs3buXXbt20ahRI7p160ZOTg4AgwcPpm/fvrz66qsPjOXXtsGSpKeUEOKZYjAqFpy7yqU8A0nZRf+A2xbmgY1tKVcKUTZGo2LpnhSqZl9FVw5Wnu7P7JB36KirYenQhBBCiBeOlZWO1zoctdi9H4Wfnx8LFixAq9Xi5uaGtbU10dHRpV43aNAgAgICWLduHRs3bmT69OnMnDmT4cOH/9rQTeztzVemzszMZMiQIYwYMaJY2Zo1a5q+1uv1BAUFERQUxNSpUwkICGDq1Kn4+/vj7e1Neno6Fy9eLNY7Kz8/nzNnzhAQEFBqbN27dzdL1rm7u5vF7eXlhZeXF61bt8bb25vFixczceJEU5mLFy/i5+dH27ZtWbRokVnd9672d7dH0fTp02nXrh3jxo0DoEmTJtjb2/PKK68wdepUmjdvbnZdtWrVSm0DQJUqVbC2tsbHx8fseIMGDdi5c6fZMScnJ5ycnPD29qZ169ZUrFiRNWvW8Mc//pFly5aRkpLCnj17sLIq6j+0bNkyKlasyPfff0+fPn3YsmUL0dHRpl5hSimMRiPW1tYsWrSIP/7xj7+qDZYkSSkhxDNlx83bfHr2ktmxKoab0lNKPBF5eVfYe2QeZ0+n4OZ+E4AsmqCThJQQQghhERqN5lcNobOEu4mUezVo0ICCggL27dtnGr5348YNEhMTzZIYNWrUICwsjLCwMCZOnMjXX3/N8OHDTT2O7p3fydPTExsbGw4cOGBKJKWnp5OUlPTQHjR3NW3alOPHjxeLsyQajYb69euze/duAN5++23Gjx/PzJkzmTlzplnZhQsXkp2dTf/+/UutV6/Xo9fryxSD0WgkLy/PtH/hwgX8/PxMK9rdTeLc9aD2ZWdnm4bB3VWuXDmgKLmj0+ke6bncpdVqadGiBYmJiWbHk5KS8PDweOh1SimUUqZ2ZWdnY2VlhUajMZW5u3+3N9aePXvMvhe+//57Pv/8c3bv3o27u/uvboMlSVJKCPFMuWkoAMCjII0eN/dQPT2JFhk/S08p8UScO7eUgtvLeO1ODsqobHi/SxvLBiWEEEKIZ5a3tzfBwcEMHjyYr776Cr1ez4QJE3B3dyc4OBiAUaNG0aVLF+rWrcvNmzfZunUrDRo0AMDDwwONRkNMTAxdu3ZFp9Oh1+sJDQ1l3LhxVKpUCWdnZ8LDw4slNB5k/PjxtG7dmmHDhjFo0CDs7e05fvw4sbGxzJs3j4SEBMLDwwkJCcHHxwetVsv27dv55ptvGD9+PFDUo2rGjBmMHTsWW1tbQkJCsLGx4fvvv2fSpElMnTqVRo0amd33/oQNQMOGDbGxsTE7lpWVxbRp0+jevTuurq5cv36d+fPnc+HCBXr27AkUJaRee+01PDw8iIiI4Nq1a6brXVxcHtr2oKAgBg8ezIIFCwgICODSpUuMGjWKli1bPnA+rrsyMzM5ffq0aT85OZmEhAQqVapkSgqOGzeO3r178+qrr+Ln58ePP/7If//7X7Zt2wYUDblcsWIFnTt3pmrVqpw/f57PPvsMnU5nmmjd39+fcePGMXToUIYPH47RaOSzzz7D2toaPz8/ANP3xV0//fQTVlZWxZ73r2mDxTyRdQCfU7K8sRBPn39euKaqbYlXof+Zo1S44/+2y8csHZp4xh0+d1Mt2/CO2rTZU8369g01P3qSunFjp6XDEk8heT8oTp6JEOJJKGl5+addaGioCg4OfuC5tLQ0FRISopycnJROp1MBAQEqKSnJdH7YsGGqTp06qnz58qpq1aoqJCREXb9+3XR+ypQpysXFRWk0GhUaGqqUUiojI0P17dtX2dnZKRcXFzVr1izVsmVLNWHCBNN1Hh4eavbs2cXi2b9/v/L391cODg7K3t5eNWnSRE2bNk0ppdS1a9fUiBEjVKNGjZSDg4PS6/WqcePGKiIiQhUWFprVs3btWvXKK68oe3t7BShALV++3KxMcnKy6dz927lz54rFlpOTo9566y3l5uamtFqtcnV1Vd27d1f79+83lYmMjHxonaWZM2eO8vHxUTqdTrm6uqp+/fqp8+fPl3jN1q1bH3ivu5/FXYsXL1ZeXl7K1tZW+fr6qrVr15rOXbhwQXXp0kU5OzsrGxsbVb16ddW3b1918uRJszo2btyo2rVrp5ycnFTFihXV66+/rvbs2fPQ2CIjI5WTk1Op7S5rGx5VST+zZX030Cj1mOtcPscyMjJwcnIiPT39uZnZXohn3aJzV5l8+iJvXdnEgtvroeNkcHSHKt6WDk08w35J/ZrY+A1U0p7Gqfxt/u/on2jeoC9jOhefMFQIeT8oTp6JEOJJyM3NJTk5mdq1a2NrK73gH0VWVhbu7u7MnDmTgQMH/u73T0tLo2PHjjg6OvLDDz9gZ/dsDLkUj6ekn9myvhvI6ntCiGdKTmFRHl1nzC1KRnm+Jgkp8VgMhlucPv0ZtfXxOJW/DYB/kxa80662hSMTQgghhHiw+Ph4li9fzpkzZzh06BD9+vUDMA0J/L1VqlSJTZs20bFjR/bs2WORGMSzSeaUEkI8M24aCkgrKJpTSleYBzoHC0cknnVKKfaePgNAXqGWZSd78EFQB1736FTqnAxCCCGEEJYUERFBYmIiWq2WZs2aERcXR5UqVSwWT+XKlZk8ebLF7i+eTZKUEkI8E8YlnuNfF2+Y9m2NeaCVbsHi1ysouM2+k9v4V9w2eteDjDw9uy62oYarnySkhBBCCPFUe/nllzl48KClwxDisUlSSgjxTIi7edv0tUNBFh1u/gSu7SwYkXjWHT06jNybO+l9Z9ooTbkKTOrSAPvy8l+jEEIIIYQQvwd58xZCPBOyCo0AbP7pHXzyL6FxqAYNgiwclXhWXbudx41bx9EA52+74qDT49dsJM7OnpYOTQghhBBCiBeGTHQuhHgmZN9JStkX5qDx+xuMTIAaLS0blHgmpWcc5l8bx6KMNwGYdfCvnDHOxtk50MKRCSGEEEII8WKRnlJCiKeeUsqUlLIrzAUbnYUjEs+ykycn4VvxJAAGo5bWXnXo1byGhaMSQgghhBDixSNJKSHEU+3o7WwO385B3dm3M+aAjUxwLn693NxLAGw/35Y/vRbKV51aWTgiIYQQQgghXkySlBJCPLUyCwoJOnSKXGNRSspaFaIrzAMbWwtHJp41ShmJPfQdaw8eoYdXOgCrT3VjQp/XLBuYEEIIIYQQLzBJSgkhnlo3DAXkGhXlULymrtLpXAzlMEpPKfHIbtzYTrn0CfTwKtovMJbDo4orOptylg1MCCGEEEKIF5hMdC6EeGrd7SHlZMggakcv/pz8z6ITukoWjEo8i3JyfgEgLbcCmZq2uNX8kLXDXkGj0Vg4MiGEEEI8DwYMGIBGo0Gj0aDVavHy8mLKlCkUFBQ8Vr3btm1Do9Fw69atJxNoGSQnJ9O3b1/c3NywtbWlevXqBAcHc/LkSbNyMTExdOjQAb1ej52dHS1atGDJkiVmZVJSUtBoNCQkJJT5/h999BH169fH3t6eihUr0qlTJ/bt22dW58CBA6lduzY6nY46deoQHh5Ofn5+qXVHRUXh6+uLnZ0drq6uvPPOO9y4caPEaxYsWECTJk1wdHTE0dGRNm3a8MMPP5jOp6WlMXz4cOrVq4dOp6NmzZqMGDGC9PR0U5klS5aYvj/u365evWoql5eXx9/+9jc8PDwoX748tWrV4ptvvjGL5+9//7vpXjVq1OC9994jNze3xDasXr2azp07U7ly5Uf+PH5r0lNKCPHUyjUWTW5uW5gHVtbQYhBUqAnVm1s4MvEs+Wr7GQzpJ2jgAIevNcSv5Rc0rlvN0mEJIYQQ4jkTGBhIZGQkeXl5rF+/nqFDh2JjY8PEiRMtHRoA+fn5aLXaEssYDAb8/f2pV68eq1evxtXVlfPnz/PDDz+YJcbmzp3LqFGjGD9+PAsWLECr1fL9998TFhbGzz//TERExK+Os27dusybNw9PT09ycnKYPXs2nTt35vTp01StWpWTJ09iNBr56quv8PLy4ueff2bw4MFkZWWVeN9du3bRv39/Zs+eTVBQEBcuXCAsLIzBgwezevXqh15XvXp1PvvsM7y9vVFKsXTpUoKDg4mPj6dhw4ZcvHiRixcvEhERgY+PD7/88gthYWFcvHiRVatWAdC7d28CA81Xeh4wYAC5ubk4OzubjvXq1YsrV66wePFivLy8uHTpEsY7vxMBLFu2jAkTJvDNN9/Qtm1bkpKSTAnRWbNmPbQNWVlZtG/fnl69ejF48OBSP4PflRIPlZ6ergCVnp5u6VCEeCHtvXlbVdsSr1rH/FepzzwsHY54xhQW5qude95UP8Z6q42b6qhNmz3VqK/DVNLlDEuHJp5x8n5QnDwTIcSTkJOTo44fP65ycnIsHcojCw0NVcHBwWbH/P39VevWrVVaWpoKCQlRFSpUUDqdTgUGBqqkpCRTuZSUFPXGG2+oChUqKDs7O+Xj46PWrVunkpOTFWC2hYaGKqWUysjIUH379lV2dnbKxcVFzZo1S3Xo0EGNHDnSVK+Hh4eaMmWKCgkJUXq93nRtXFycat++vbK1tVXVq1dXw4cPV5mZmUoppeLj4xWgUlJSHtrW1NRUZWNjo0aPHl3s3Jw5cxSg9u7dq5RSpjbEx8c/+kO94+7/MZs2bXpomRkzZqjatWuXWM8XX3yhPD09i8Xr7u7+yDFVrFhR/d///d9Dz//nP/9RWq1WGQyGB56/evWqsrGxUf/85z9Nx3744Qfl5OSkbty48dB6hw4dql5//XWzY6NHj1bt2rUrU9xP4vO4V0k/s2V9N5Dhe0KIp1beneF7tsY8sNZZOBrxrMnOTiY3+wjWVoVYaRQKK95oHoh3Nb2lQxNCCCFEGSmlyCostMimlCo9wBLodDry8/MZMGAAP/30E9HR0ezZswelFF27dsVgMAAwdOhQ8vLy2LFjB0ePHuXzzz/HwcGBGjVq8N133wGQmJjIpUuX+PLLLwEYPXo0u3btIjo6mtjYWOLi4jh06FCxGCIiIvD19SU+Pp4PP/yQM2fOEBgYSI8ePThy5AgrVqxg586dDBs2DICqVatiZWXFqlWrKCwsfGC7Vq1ahcFgYOzYscXODRkyBAcHB5YvX/5Yz+6u/Px8Fi1ahJOTE76+vg8tl56eTqVKJU/x0aZNG86dO8f69etRSnHlyhVWrVpF165dyxxPYWEh3377LVlZWbRp06bEeBwdHbG2fvDgtH/+85/Y2dnx9ttvm45FR0fTvHlzZsyYgbu7O3Xr1mXs2LHk5OSYyrRt25aDBw+yf/9+AM6ePcv69esfqQ1PGxm+J4R4apmG7xllxT3xaNKy8vnyh328WhmuZFdh3YUPWPJOB2xsHC0dmhBCCCEeQbbRSJ0dRy1y7zOvNsa+3KMviqKUYvPmzWzYsIEuXbqwdu1adu3aRdu2bYGieY1q1KjB2rVr6dmzJ6mpqfTo0YPGjRsD4OnpaarrbqLF2dmZChUqAHD79m2WLl3KsmXL6NixIwCRkZG4ubkVi+X1119nzJgxpv1BgwbRr18/Ro0aBYC3tzdz5syhQ4cOLFiwAHd3d+bMmcP777/Pxx9/TPPmzfHz86Nfv36muJKSknBycsLV1bXY/bRaLZ6eniQlJT3yc7tXTEwMffr0ITs7G1dXV2JjY6lSpcoDy54+fZq5c+eWOmSwXbt2REVF0bt3b3JzcykoKCAoKIj58+eXGs/Ro0dp06YNubm5ODg4sGbNGnx8fB5Y9vr163zyySe8++67D61v8eLF9O3bF53uf394P3v2LDt37sTW1pY1a9Zw/fp1/vrXv3Ljxg0iIyMB6Nu3L9evX6d9+/YopSgoKCAsLIxJkyaV2oanlfSUEkI8VQqVonfCGerHHSXseNHk1NJTSjyK9PQE9v40gFo2XwOQkeeIa6WakpASQgghxG8qJiYGBwcHbG1t6dKlC71792bAgAFYW1vTqlUrU7nKlStTr149Tpw4AcCIESOYOnUq7dq1Izw8nCNHjpR4n7Nnz2IwGGjZsqXpmJOTE/Xq1StWtnlz87lYDx8+zJIlS3BwcDBtAQEBGI1GkpOTgaKeW5cvXyYqKoo2bdqwcuVKGjZsSGxsbJmfRWlzV0FRcu7eOOLi4kzn/Pz8SEhIYPfu3QQGBtKrVy+zCcHvunDhAoGBgfTs2dNsrqR76w0LCwPg+PHjjBw5ksmTJ3Pw4EF+/PFHUlJSTOfj4uLMrouKijLVV69ePRISEti3bx9/+ctfCA0N5fjx48XiycjIoFu3bvj4+PDRRx89sN179uzhxIkTDBw40Oy40WhEo9EQFRVFy5Yt6dq1K7NmzWLp0qWm3lLbtm3j008/5R//+AeHDh1i9erVrFu3jk8++aTUZ/q0kp5SQoinyrncfLbfvG12rMntJOkpJcrs3LlIyhfuo+adHJSna336NX3wX7KEEEII8XSzs7LizKuNLXbvR+Hn52ea9NvNzQ1ra2uio6NLvW7QoEEEBASwbt06Nm7cyPTp05k5cybDhw//taGb2Nvbm+1nZmYyZMgQRowYUaxszZo1TV/r9XqCgoIICgpi6tSpBAQEMHXqVPz9/fH29iY9PZ2LFy8W652Vn5/PmTNnCAgIKDW27t27myXr3N3dzeL28vLCy8uL1q1b4+3tzeLFi80mjb948SJ+fn60bduWRYsWmdV97+pyjo5FL4XTp0+nXbt2jBs3DoAmTZpgb2/PK6+8wtSpU2nevLnZddWq/W9hnLsrKgI0a9aMAwcO8OWXX/LVV1+Zyty+fZvAwED0ej1r1qzBxsbmge3+v//7P1566SWaNWtmdtzV1RV3d3ecnJxMxxo0aIBSivPnz+Pt7c2HH35ISEgIgwYNAqBx48ZkZWXx7rvv8re//a3EZ/q0kqSUEOKpkl1YNGSvkiGD6Pi/YqMKqJl7CWq9YuHIxLPg5OUMkq+eww7YnPoqHq5tGfhqH6ytH/xSIIQQQoinm0aj+VVD6CzhbiLlXg0aNKCgoIB9+/aZhu/duHGDxMREs+FfNWrUICwsjLCwMCZOnMjXX3/N8OHDTT2O7p3fydPTExsbGw4cOGBKJKWnp5OUlMSrr75aYoxNmzbl+PHjxeIsiUajoX79+uzevRuAt99+m/HjxzNz5kxmzpxpVnbhwoVkZ2fTv3//UuvV6/Xo9WWb69NoNJKXl2fav3DhAn5+fjRr1ozIyEis7ksgPqh92dnZxeZ4Knfne0sphU6nK/NzuT+ejIwMAgICKF++PNHR0djaPvgP6pmZmfznP/9h+vTpxc61a9eOlStXkpmZiYODA1A0VNLKyorq1aub2nB/W+9tw6M806eFJKWEEE+VnDtJKYeCTLxyL0ClOqBvAM3fsXBk4ml3I20n32z4gRZVf8HOFg5fa4iXVyesrZ+t/5iFEEII8fzw9vYmODiYwYMH89VXX6HX65kwYQLu7u4EBwcDMGrUKLp06ULdunW5efMmW7dupUGDBgB4eHig0WiIiYmha9eu6HQ69Ho9oaGhjBs3jkqVKuHs7Ex4eDhWVlZoNJoS4xk/fjytW7dm2LBhDBo0CHt7e44fP05sbCzz5s0jISGB8PBwQkJC8PHxQavVsn37dr755hvGjx8PFPWomjFjBmPHjsXW1paQkBBsbGz4/vvvmTRpElOnTqVRo0Zm901MTCwWS8OGDYv1JsrKymLatGl0794dV1dXrl+/zvz587lw4QI9e/YEihJSr732Gh4eHkRERHDt2jXT9S4uLg9te1BQEIMHD2bBggUEBARw6dIlRo0aRcuWLR84H9ddEydOpEuXLtSsWZPbt2+zbNkytm3bxoYNG4CihFTnzp3Jzs7m3//+NxkZGWRkZABFE8eXuyepumLFCgoKCvjTn/5U7D59+/blk08+4c9//jMff/wx169fZ9y4cbzzzjumuaeCgoKYNWsWL7/8Mq1ateL06dN8+OGHBAUFmd3nfmlpaaSmpnLx4kXgf5+Hi4tLic/sd/FE1gF8TsnyxkL8/nbcyFDVtsSrDtHfKRVRz9LhiGdETs4FtWlzHbVps6dp++K/MSotM8/SoYnnkLwfFCfPRAjxJJS0vPzTLjQ0VAUHBz/wXFpamgoJCVFOTk5Kp9OpgIAAlZSUZDo/bNgwVadOHVW+fHlVtWpVFRISoq5fv246P2XKFOXi4qI0Go0KDQ1VSimVkZGh+vbtq+zs7JSLi4uaNWuWatmypZowYYLpOg8PDzV79uxi8ezfv1/5+/srBwcHZW9vr5o0aaKmTZumlFLq2rVrasSIEapRo0bKwcFB6fV61bhxYxUREaEKCwvN6lm7dq165ZVXlL29vQIUoJYvX25WJjk52XTu/u3cuXPFYsvJyVFvvfWWcnNzU1qtVrm6uqru3bur/fv3m8pERkY+tM7SzJkzR/n4+CidTqdcXV1Vv3791Pnz50u85p133lEeHh5Kq9WqqlWrqo4dO6qNGzeazm/duvWh8SQnJ5vV1aZNG9W3b9+H3uvEiROqU6dOSqfTqerVq6vRo0er7Oxs03mDwaA++ugjVadOHWVra6tq1Kih/vrXv6qbN2+W2IaHPbPw8PASrytNST+zZX030Cj1mOtcPscyMjJwcnIyLecohPjtbbyeTv+jybyccZwffomAEcWXthXifjdvHeDQoT5kG2w5et2HHi3bUddrZKl/LRTi15D3g+LkmQghnoTc3FySk5OpXbv2Q4c/iQfLysrC3d2dmTNnFptA+/eQlpZGx44dcXR05IcffsDOzu53j0H8/kr6mS3ru4GsvieEeCpcyzfQ/8hZwk9fAMCuMBe09qVcJV50Sik2HU3g0+/XAXApy4XI43+WhJQQQgghnmvx8fEsX76cM2fOcOjQIfr16wdgGhL4e6tUqRKbNm2iY8eO7NmzxyIxiGeTzCklhHgqxF7PYOONDNN+rdyLoHWwYETiWZCcPAfNtTkE1ijazzTYU9/FURJSQgghhHjuRUREkJiYiFarpVmzZsTFxVGlShWLxVO5cmUmT55ssfuLZ5MkpYQQT4Xbd1YUaX0rgeHnltHmVgL4BFk2KPHUS08/CEBeoQ3lytnTpmEfwt5qbeGohBBCCCF+Wy+//DIHDx60dBhCPDYZvieEeCpk31l1r07OeTpmHsOuy3QILL5UqhB3XbudR3r2dQAWHH4HR4+NtGnUFzut/L1FCCGEEEKIZ4G8uQshngp3k1J2hTlgWwFa/P4TNIpnx8kzS9mS8C21HJMpX65o2J6Tzqb0C4UQQgghhBBPDUlKCSGeCv9LSuWCjay2Ikp2IfUL6lXMAaDAWI4G7vWoW03mIBNCCCGEEOJZIkkpIYRFzfnlCssu3eB6fgEAdsZcsNFZOCrxNLudkwmqKCG19fJgxgcFE6BvYOGohBBCCCGEEI9K5pQSQljUV+eukZKTT+adnlL1spLBWpJSojilFDtP/kyPOUsBKDRacbWgI3pJSAkhhBBCCPFMkp5SQgiLyjEWJaO+vv0D9W/9jPeNXVD7VQtHJZ5GZ85GkHdxIeNbFO3nFOjo3NDVskEJIYQQQgghfjVJSgkhLEYpRc6dHlItf15Etfy0ohN6STSI4m7d+gmA/EIbylnZ4OPVF2+v6haOSgghhBBCCPFryfA9IYTF5CuFuvO1bWE+vDoOukaA/ycWjUs8ff619xd+uXYJgL8fGkKq9nu8vSZYOCohhBBCiCIDBgxAo9Gg0WjQarV4eXkxZcoUCgoKHqvebdu2odFouHXr1pMJtAySk5Pp27cvbm5u2NraUr16dYKDgzl58qRZuZiYGDp06IBer8fOzo4WLVqwZMkSszIpKSloNBoSEhLKfP+PPvqI+vXrY29vT8WKFenUqRP79u0zq3PgwIHUrl0bnU5HnTp1CA8PJz8/v9S6o6Ki8PX1xc7ODldXV9555x1u3LhR5tg+++wzNBoNo0aNMjt+5swZ3nrrLapWrYqjoyO9evXiypUrZmWmTZtG27ZtsbOzo0KFCg+s/+730L3bt99+azq/evVq/P39Tfdp06YNGzZsKDXu1atX07lzZypXrvzIn8dvTZJSQgiLyb3TSwpAZ8yFFoOg5WDQV7NgVOJpolQhp059xpWU97ArdxWALIM9nlXtLRyZEEIIIYS5wMBALl26xKlTpxgzZgwfffQRX3zxhaXDMilL0sZgMODv7096ejqrV68mMTGRFStW0LhxY7PE2Ny5cwkODqZdu3bs27ePI0eO0KdPH8LCwhg7duxjxVm3bl3mzZvH0aNH2blzJ7Vq1aJz585cu3YNgJMnT2I0Gvnqq684duwYs2fPZuHChUyaNKnEenft2kX//v0ZOHAgx44dY+XKlezfv5/BgweXKa4DBw7w1Vdf0aRJE7PjWVlZdO7cGY1Gw5YtW9i1axf5+fkEBQVhNP7v9538/Hx69uzJX/7ylxLvExkZyaVLl0zbm2++aTq3Y8cO/P39Wb9+PQcPHsTPz4+goCDi4+NLrDMrK4v27dvz+eefl6mtvyslHio9PV0BKj093dKhCPFcupSbr6ptiVeum39SxnBHpXJuWTok8ZS5eesntWmzp2mL3VxXbT1+ShUWGi0dmniByftBcfJMhBBPQk5Ojjp+/LjKycmxdCiPLDQ0VAUHB5sd8/f3V61bt1ZpaWkqJCREVahQQel0OhUYGKiSkpJM5VJSUtQbb7yhKlSooOzs7JSPj49at26dSk5OVoDZFhoaqpRSKiMjQ/Xt21fZ2dkpFxcXNWvWLNWhQwc1cuRIU70eHh5qypQpKiQkROn1etO1cXFxqn379srW1lZVr15dDR8+XGVmZiqllIqPj1eASklJeWhbU1NTlY2NjRo9enSxc3PmzFGA2rt3r1JKmdoQHx//6A/1jrv/x2zatOmhZWbMmKFq165dYj1ffPGF8vT0LBavu7t7qTHcvn1beXt7q9jY2GLPecOGDcrKysrs/8Bbt24pjUajYmNji9UVGRmpnJycHngfQK1Zs6bUeO7l4+OjPv744zKVfRKfx71K+pkt67uB9JQSQvzukrJyab33OO33nQDA1piHBsBGer+I/1FKcfbyeQCuZlfm28TeNG+2jNcaeGFlpbFwdEIIIYT4PSilyM4vsMimlCo9wBLodDry8/MZMGAAP/30E9HR0ezZswelFF27dsVgMAAwdOhQ8vLy2LFjB0ePHuXzzz/HwcGBGjVq8N133wGQmJjIpUuX+PLLLwEYPXo0u3btIjo6mtjYWOLi4jh06FCxGCIiIvD19SU+Pp4PP/yQM2fOEBgYSI8ePThy5AgrVqxg586dDBs2DICqVatiZWXFqlWrKCwsfGC7Vq1ahcFgeGCPqCFDhuDg4MDy5csf69ndlZ+fz6JFi3BycsLX1/eh5dLT06lUqVKJdbVp04Zz586xfv16lFJcuXKFVatW0bVr11LjGDp0KN26daNTp07FzuXl5aHRaChfvrzpmK2tLVZWVuzcubPUuh90rypVqtCyZUu++eabEr8PjUYjt2/fLrXtTzOZ6FwI8bvblpZBSs7/ug+/dDsRymmhnPyTJP5nzaGzfL9nL/194HJWNY7d6kgFp2aWDksIIYQQv6McQyE+k0ufM+e3cHxKAHbaR38/VUqxefNmNmzYQJcuXVi7di27du2ibdu2QNG8RjVq1GDt2rX07NmT1NRUevToQePGjQHw9PQ01XU32eDs7Gyah+j27dssXbqUZcuW0bFjR6BoyJebm1uxWF5//XXGjBlj2h80aBD9+vUzzYnk7e3NnDlz6NChAwsWLMDd3Z05c+bw/vvv8/HHH9O8eXP8/Pzo16+fKa6kpCScnJxwdS2+OJFWq8XT05OkpKRHfm73iomJoU+fPmRnZ+Pq6kpsbCxVqlR5YNnTp08zd+5cIiIiSqyzXbt2REVF0bt3b3JzcykoKCAoKIj58+eXeN23337LoUOHOHDgwAPPt27dGnt7e8aPH8+nn36KUooJEyZQWFjIpUuXytbgO6ZMmcLrr7+OnZ0dGzdu5K9//SuZmZmMGDHigeUjIiLIzMykV69ej3Sfp4n0lBJC/O5yCouy/W9c28au/f34z+ExUMHDwlGJp0ly8lyc0jvT3+c/AFiVc2Lwq56lXCWEEEIIYTkxMTE4ODhga2tLly5d6N27NwMGDMDa2ppWrVqZylWuXJl69epx4kTRqIERI0YwdepU2rVrR3h4OEeOHCnxPmfPnsVgMNCyZUvTMScnJ+rVq1esbPPmzc32Dx8+zJIlS3BwcDBtAQEBGI1GkpOTgaKeOpcvXyYqKoo2bdqwcuVKGjZsSGxsbJmfhVarLbVMVFSUWRxxcXGmc35+fiQkJLB7924CAwPp1asXV69eLVbHhQsXCAwMpGfPnmZzQ91bb1hYGADHjx9n5MiRTJ48mYMHD/Ljjz+SkpJiOh8XF2d2XVRUFOfOnWPkyJFERUVha2v7wHZUrVqVlStX8t///hcHBwecnJy4desWTZs2xcrq0VIuH374Ie3atePll19m/PjxvP/++w+dl2zZsmV8/PHH/Oc//8HZ2bnUZ/q0km4JQojfXe6dCf+q5d2gjiYHeiyCmq0tHJV4mly/vsX0tVLl6NX+bVxdalswIiGEEEJYgs6mHMenBFjs3o/Cz8+PBQsWoNVqcXNzw9ramujo6FKvGzRoEAEBAaxbt46NGzcyffp0Zs6cyfDhw39t6Cb29ubTY2RmZjJkyJAH9rypWbOm6Wu9Xk9QUBBBQUFMnTqVgIAApk6dir+/P97e3qSnp3Px4sVivbPy8/M5c+YMAQGlf2bdu3c3S9a5u7ubxe3l5YWXlxetW7fG29ubxYsXM3HiRFOZixcv4ufnR9u2bVm0aJFZ3feuLufo6AjA9OnTadeuHePGjQOgSZMm2Nvb88orrzB16lSaN29udl21atXYvHkzV69epWnTpqbjhYWF7Nixg3nz5pGXl0e5cuXo3LkzZ86c4fr161hbW1OhQgVcXFzMer39Gq1ateKTTz4hLy/PbHjgt99+y6BBg1i5cqXZkMKSnunTSpJSQojfXfadpJStMQ90FaHx2xaOSDxN4lNvcisrDStg1sG/0Kttdzq51LV0WEIIIYSwAI1G86uG0FnC3UTKvRo0aEBBQQH79u0zDd+7ceMGiYmJ+Pj4mMrVqFGDsLAwwsLCmDhxIl9//TXDhw839Ti6d34nT09PbGxsOHDggCmRlJ6eTlJSEq+++mqJMTZt2pTjx48Xi7MkGo2G+vXrs3v3bgDefvttxo8fz8yZM5k5c6ZZ2YULF5KdnU3//v1LrVev16PX68sUg9FoJC8vz7R/4cIF/Pz8aNasGZGRkcV6JD2ofdnZ2Vhbm38vlStXlHhUSqHT6Ypd17FjR44ePWp27M9//jP169dn/PjxpuvvujvEcMuWLVy9epXu3buXqX0Pk5CQQMWKFc0SUsuXL+edd97h22+/pVu3bmblH+WZPi2ejZ9uIcRzJaewKCmlM+aCtc7C0YinydHkOKZ/v5WQBtexs4GbuRWoYC8T4AshhBDi2eTt7U1wcDCDBw/mq6++Qq/XM2HCBNzd3QkODgZg1KhRdOnShbp163Lz5k22bt1KgwYNAPDw8ECj0RATE0PXrl3R6XTo9XpCQ0MZN24clSpVwtnZmfDwcKysrNBoSl4MZvz48bRu3Zphw4YxaNAg7O3tOX78OLGxscybN4+EhATCw8MJCQnBx8cHrVbL9u3b+eabbxg/fjxQ1KNqxowZjB07FltbW0JCQrCxseH7779n0qRJTJ06lUaNGpndNzExsVgsDRs2xMbGxuxYVlYW06ZNo3v37ri6unL9+nXmz5/PhQsX6NmzJ1CUkHrttdfw8PAgIiKCa9euma53cXF5aNuDgoIYPHgwCxYsICAggEuXLjFq1Chatmz5wPm4oCjJc39b7O3tqVy5stnxyMhIGjRoQNWqVdmzZw8jR47kvffeMxtSmZqaSlpaGqmpqRQWFpp6ZXl5eeHg4MB///tfrly5QuvWrbG1tSU2NpZPP/3UbEL5ZcuWERoaypdffkmrVq24fPkyUDSpvpOT00Pbfve+Fy9eBP73ebi4uJT4zH4XT2QdwOeULG8sxJOVmJmjvjl/TXX9KVFV2xKv5n39rlJfd7R0WOIpkXH7hNq02dNsG/PtFpWek2/p0IQwI+8HxckzEUI8CSUtL/+0Cw0NVcHBwQ88l5aWpkJCQpSTk5PS6XQqICBAJSUlmc4PGzZM1alTR5UvX15VrVpVhYSEqOvXr5vOT5kyRbm4uCiNRqNCQ0OVUkplZGSovn37Kjs7O+Xi4qJmzZqlWrZsqSZMmGC6zsPDQ82ePbtYPPv371f+/v7KwcFB2dvbqyZNmqhp06YppZS6du2aGjFihGrUqJFycHBQer1eNW7cWEVERKjCwkKzetauXateeeUVZW9vrwAFqOXLl5uVSU5ONp27fzt37lyx2HJyctRbb72l3NzclFarVa6urqp79+5q//79pjKRkZEPrbM0c+bMUT4+Pkqn0ylXV1fVr18/df78+VKvu1eHDh3UyJEjzY6NHz9eVatWTdnY2Chvb281c+ZMZTQazcqEhoY+MOatW7cqpZT64Ycf1EsvvWT6XHx9fdXChQvNnnuHDh0eWMfd74uHedgzCw8Pf6S236+kn9myvhtolHrMdS6fYxkZGTg5OZGenm4ahyqE+PVa7TnOL7n/W3Xvi6QIQsrfggExlgtKPDWuXv2Roz8PJcugI6OwDm3qv0Ydz/csHZYQxcj7QXHyTIQQT0Jubi7JycnUrl37oZNKiwfLysrC3d2dmTNnMnDgwN/9/mlpaXTs2BFHR0d++OEH7OzsfvcYxO+vpJ/Zsr4byOp7QojfzeV8AwAd1RX6Z8XzxrVtYCPD9wT8ciOLpTuLxuufuuXJodsfS0JKCCGEEOIh4uPjWb58OWfOnOHQoUP069cPwDQk8PdWqVIlNm3aRMeOHdmzZ49FYhDPJklKCSF+F4VKkWcs6pg5Z/dgZvw0iooFt4smOhcvtJu3DrDv0CgqWRX1mMs22OFRWeaREuJh5s+fT61atbC1taVVq1bs37+/xPIrV66kfv362Nra0rhxY9avX286ZzAYGD9+PI0bN8be3h43Nzf69+9vmnNCCCHE0ysiIgJfX186depEVlYWcXFxpom2LaFy5cpMnjyZjh07WiwG8eyRpJQQ4neRe2dyc7gzwflLf4K2w6HDeAtGJZ4GZ87MoHK5LdRyPA9AS6+GDOnweMvnCvG8WrFiBaNHjyY8PJxDhw7h6+tLQEAAV69efWD53bt388c//pGBAwcSHx/Pm2++yZtvvsnPP/8MFK1EdOjQIT788EMOHTrE6tWrSUxMfOzVgoQQQvy2Xn75ZQ4ePEhmZiZpaWnExsbSuHFjS4clxCOTOaVKIPMjCPHkXMs30HjXMQAubn8Nq/fPgl0lywYlLM5oVOze+zp5uals/OU1Wno1JbhNf6ytn62lbMWLxZLvB61ataJFixbMmzcPKFoiu0aNGgwfPpwJEyYUK9+7d2+ysrKIifnf3H2tW7fmpZdeYuHChQ+8x4EDB2jZsiW//PKLaanx0sg7kxDiSZA5pYR4tsicUkKIZ0bunaF7toV5WKHARiY/fNEZjYq3Fuwm7fZ1AHacb4uN41uSkBLiIfLz8zl48CCdOnUyHbOysqJTp04Pnb9jz549ZuUBAgICSpzvIz09HY1GQ4UKFZ5I3EIIIYQQD2Nt6QCEEM+3XTdvMy/1KhkFhcCdoXsaK7Aub+HIhCXl59/gp0P9+XOdc9jbZAOgtXGimYfMMSbEw1y/fp3CwkKqVatmdrxatWqcPHnygddcvnz5geUvX778wPK5ubmMHz+eP/7xjyX+VTMvL4+8vDzTfkZGRlmbIYQQQghhIj2lhBC/qQXnrrE17TYHM4oSDzVyL4ONPWg0Fo5MWNLNW/vJyT6JXpsFgK1tdTaPDca9gqzGKISlGAwGevXqhVKKBQsWlFh2+vTpODk5mbYaNWr8TlEKIYQQ4nkiPaWEEL+pzDs9pIac/w8vZxynTfphcHC2cFTC0goKinpVnEzz4ofUP/H9yJ6UK2dj4aiEeLpVqVKFcuXKceXKFbPjV65cwcXF5YHXuLi4lKn83YTUL7/8wpYtW0qdF2rixImMHj3atJ+RkSGJKSGEEEI8MukpJYT4TWXfWXXv1Zs/8WbmYaq1DYO3F1s4KmFJKw6k8o/NCQDczK1ALjUpV04mMxWiNFqtlmbNmrF582bTMaPRyObNm2nTps0Dr2nTpo1ZeYDY2Fiz8ncTUqdOnWLTpk1Urly51FjKly+Po6Oj2SaEEEII8aikp5QQ4jeVbSxKSukKc8HRHV4bb+GIhCWdO/9Pyl3/B62cMwHILrCjXjWZ2FyIsho9ejShoaE0b96cli1b8ve//52srCz+/Oc/A9C/f3/c3d2ZPn06ACNHjqRDhw7MnDmTbt268e233/LTTz+xaNEioCgh9fbbb3Po0CFiYmIoLCw0zTdVqVIltFqtZRoqhBBCiBfCI/eU2rFjB0FBQbi5uaHRaFi7dq3Z+czMTIYNG0b16tXR6XT4+PgUW3I4NzeXoUOHUrlyZRwcHOjRo0exruWpqal069YNOzs7nJ2dGTduHAUFBWZltm3bRtOmTSlfvjxeXl4sWbKkWLzz58+nVq1a2Nra0qpVK/bv3/+oTRZCPIa7PaXsCnPBRuYLetGdP/8vKpa/hr1NDgDdmrZnVm9fC0clxLOjd+/eREREMHnyZF566SUSEhL48ccfTZOZp6amcunSJVP5tm3bsmzZMhYtWoSvry+rVq1i7dq1NGrUCIALFy4QHR3N+fPneemll3B1dTVtu3fvtkgbhRDiWTRgwAA0Gg0ajQatVouXlxdTpkwp9jvso9q2bRsajYZbt249mUDLIDk5mb59++Lm5oatrS3Vq1cnODi42KIaMTExdOjQAb1ej52dHS1atCj2O3lKSgoajYaEhIQy3/+jjz6ifv362NvbU7FiRTp16sS+ffvM6hw4cCC1a9dGp9NRp04dwsPDyc/PL7XuqKgofH19sbOzw9XVlXfeeYcbN26Uet2FCxf405/+ROXKldHpdDRu3JiffvrJdP7ez//uFhgYaFZHrVq1ipX57LPPTOcTExPx8/OjWrVq2Nra4unpyQcffIDBYDCr59atWwwdOhRXV1fKly9P3bp1Wb9+fYnxr169ms6dO1O5cuVH/jx+a4/cUyorKwtfX1/eeecd/vCHPxQ7P3r0aLZs2cK///1vatWqxcaNG/nrX/+Km5sb3bt3B+C9995j3bp1rFy5EicnJ4YNG8Yf/vAHdu3aBUBhYSHdunXDxcWF3bt3c+nSJfr374+NjQ2ffvopUPSD0q1bN8LCwoiKimLz5s0MGjQIV1dXAgICAFixYgWjR49m4cKFtGrVir///e8EBASQmJiIs7PMaSPEb2nRuausv5bO1fyif0TtjLlg8+A5T8SLodCoMBhuAfDVkVA+7fUH6rg2RCOT3gvxSIYNG8awYcMeeG7btm3FjvXs2ZOePXs+sHytWrVQSj3J8IQQ4oUVGBhIZGQkeXl5rF+/nqFDh2JjY8PEiRMtHRoA+fn5pfaANRgM+Pv7U69ePVavXo2rqyvnz5/nhx9+MEuMzZ07l1GjRjF+/HgWLFiAVqvl+++/JywsjJ9//pmIiIhfHWfdunWZN28enp6e5OTkMHv2bDp37szp06epWrUqJ0+exGg08tVXX+Hl5cXPP//M4MGDycrKKvG+u3bton///syePZugoCAuXLhAWFgYgwcPZvXq1Q+97ubNm7Rr1w4/Pz9++OEHqlatyqlTp6hY0XzV6Luf/13lyxdfbXzKlCkMHjzYtK/X/2/EgI2NDf3796dp06ZUqFCBw4cPM3jwYIxGoykPkp+fj7+/P87OzqxatQp3d3d++eUXKlSoUOIzzcrKon379vTq1cvs/k8F9RgAtWbNGrNjDRs2VFOmTDE71rRpU/W3v/1NKaXUrVu3lI2NjVq5cqXp/IkTJxSg9uzZo5RSav369crKykpdvnzZVGbBggXK0dFR5eXlKaWUev/991XDhg3N7tO7d28VEBBg2m/ZsqUaOnSoab+wsFC5ubmp6dOnl6l96enpClDp6ellKi+E+J+a2xJUtS3xqtqWeFVzy0F1a4qbUlG9LR2WsJDTF8+oXl/OUj/GeqlNmz2V7+R/q/ScfEuHJcSvIu8HxckzEUI8CTk5Oer48eMqJyfH0qE8stDQUBUcHGx2zN/fX7Vu3VqlpaWpkJAQVaFCBaXT6VRgYKBKSkoylUtJSVFvvPGGqlChgrKzs1M+Pj5q3bp1Kjk5WQFmW2hoqFJKqYyMDNW3b19lZ2enXFxc1KxZs1SHDh3UyJEjTfV6eHioKVOmqJCQEKXX603XxsXFqfbt2ytbW1tVvXp1NXz4cJWZmamUUio+Pl4BKiUl5aFtTU1NVTY2Nmr06NHFzs2ZM0cBau/evUopZWpDfHz8oz/UO+7+H7Np06aHlpkxY4aqXbt2ifV88cUXytPTs1i87u7uJV43fvx41b59+xLLPOjzv5+Hh4eaPXt2iWXu995775nde8GCBcrT01Pl5/+69+gn8Xncq6Sf2bK+Gzzxic7btm1LdHQ0Fy5cQCnF1q1bSUpKonPnzgAcPHgQg8FAp06dTNfUr1+fmjVrsmfPHgD27NlD48aNTV3RAQICAsjIyODYsWOmMvfWcbfM3Try8/M5ePCgWRkrKys6depkKnO/vLw8MjIyzDYhxKMrMCryjEV/ef970hds/GkgToWZYCOTWb+ICgtzST75Fu82moe1VdFwzgZubujLy7SGQgghhCiFUpCfZZntMXuS6nQ68vPzGTBgAD/99BPR0dHs2bMHpRRdu3Y1DcsaOnQoeXl57Nixg6NHj/L555/j4OBAjRo1+O6774CioV2XLl3iyy+/BIpGKO3atYvo6GhiY2OJi4vj0KFDxWKIiIjA19eX+Ph4PvzwQ86cOUNgYCA9evTgyJEjrFixgp07d5p64FatWhUrKytWrVpFYWHhA9u1atUqDAYDY8eOLXZuyJAhODg4sHz58sd6dnfl5+ezaNEinJyc8PV9+JQP6enpVKpUqcS62rRpw7lz51i/fj1KKa5cucKqVavo2rVriddFR0fTvHlzevbsibOzMy+//DJff/11sXLbtm3D2dmZevXq8Ze//OWBwwI/++wzKleuzMsvv8wXX3xR4vDO06dP8+OPP9KhQwezWNq0acPQoUOpVq0ajRo14tNPP33oZ/UseOK/EcydO5d3332X6tWrY21tjZWVFV9//TWvvvoqAJcvX0ar1RbrXlatWjXTxJqXL182S0jdPX/3XEllMjIyyMnJ4ebNmxQWFj6wzP1jYe+aPn06H3/88a9ruBDCJPfO5OYA3a/EYmfMK9qp0cpCEQlLys+/hkZlYlQa0g0eNPQMZJnfazJsTwghhBClM2TDp26Wufeki6C1f+TLlFJs3ryZDRs20KVLF9auXcuuXbto27YtUDSvUY0aNVi7di09e/YkNTWVHj160LhxYwA8PT1Ndd1NtDg7O5t+h759+zZLly5l2bJldOzYEYDIyEjc3Io/p9dff50xY8aY9gcNGkS/fv0YNWoUAN7e3syZM4cOHTqwYMEC3N3dmTNnDu+//z4ff/wxzZs3x8/Pj379+pniSkpKwsnJCVdX12L302q1eHp6kpSU9MjP7V4xMTH06dOH7OxsXF1diY2NpUqVKg8se/r0aebOnVvqkMF27doRFRVF7969yc3NpaCggKCgIObPn1/idWfPnmXBggWMHj2aSZMmceDAAUaMGIFWqyU0NBQoGrr3hz/8gdq1a3PmzBkmTZpEly5d2LNnD+XKlQNgxIgRNG3alEqVKrF7924mTpzIpUuXmDVrltn92rZty6FDh8jLy+Pdd99lypQpZrFs2bKFfv36sX79ek6fPs1f//pXDAYD4eHhpT7Xp9ET7yk1d+5c9u7dS3R0NAcPHmTmzJkMHTqUTZs2PelbPXETJ04kPT3dtJ07d87SIQnxTMq5Jylla8yHv+yBsaeg9V8sGJWwlKzcWwCk5zlyMHs2DeqOk4SUEEIIIZ47MTExODg4YGtrS5cuXejduzcDBgzA2tqaVq3+98fZypUrU69ePU6cOAEUJSumTp1Ku3btCA8P58iRIyXe5+zZsxgMBlq2bGk65uTkRL169YqVbd68udn+4cOHWbJkCQ4ODqYtICAAo9FIcnIyUNRz6/Lly0RFRdGmTRtWrlxJw4YNiY2NLfOzKMvqrVFRUWZxxMXFmc75+fmRkJDA7t27CQwMpFevXly9erVYHRcuXCAwMJCePXuazZV0b71hYWEAHD9+nJEjRzJ58mQOHjzIjz/+SEpKiul8XFyc2XVRUVEAGI1GmjZtyqeffsrLL7/Mu+++y+DBg80WdOvTpw/du3encePGvPnmm8TExHDgwAGzuR5Hjx7Na6+9RpMmTQgLC2PmzJnMnTuXvLw8szatWLGCQ4cOsWzZMtatW2eWbDMajTg7O7No0SKaNWtG7969+dvf/maKpaRn+rR6oj2lcnJymDRpEmvWrKFbt24ANGnShISEBCIiIujUqRMuLi7k5+dz69Yts95SV65cwcWlaBJkFxeXYqvk3V2d794y96/Yd+XKFRwdHdHpdJQrV45y5co9sMzdOu5Xvnz5B05GJoR4NLl3hu6VN+ZhhYIq3lDOxsJRid+bUkZmxqzl5Lnd/LE+ZBfocLSV7wMhhBBCPAIbu6IeS5a69yPw8/MzTfrt5uaGtbU10dHRpV43aNAgAgICWLduHRs3bmT69OnMnDmT4cOH/9rITeztzXt6ZWZmMmTIEEaMGFGsbM2aNU1f6/V6goKCCAoKYurUqQQEBDB16lT8/f3x9vYmPT2dixcvFuudlZ+fz5kzZ0yLj5Wke/fuZsk6d3d3s7i9vLzw8vKidevWeHt7s3jxYrNJ4y9evIifnx9t27Zl0aJFZnXfu7qco6MjUDQyql27dowbNw4oylXY29vzyiuvMHXqVJo3b2523d1RV66urvj4+JjV36BBA9PQygfx9PSkSpUqnD592tSb7X6tWrWioKCAlJQUs4RijRo1APDx8aGwsJB3332XMWPGUK5cOVxdXbGxsTH1vroby+XLl8nPzy/xmT6tnmhPKYPBgMFgwMrKvNpy5cphvNNzolmzZtjY2LB582bT+cTERFJTU2nTpg1QNNbz6NGjZpnQ2NhYHB0dTd8Mbf6fvTuPi7Lc/z/+moEZZoABREEWFcEdt8p9j1xATanMNA2x1JP9XNNM7ZSWR/NkqGV6XDqlnvM1jycrM21DM8Mld9RcIBXCBRRFB1lnmLl+f5BzJBSX0FH8PB+PedR939d93+/7xoHhw3VfV5s2JY5xpc2VY+j1epo1a1aijd1uZ+PGjY42Qog7o/D397ub3QJanRSkHlC//baYhz0m8Gz9LwAoKHKnTa3KTk4lhBBCiPuKRlP8CJ0zXrfYs/tKIaVGjRq4uhb3/2jQoAFFRUXs2LHD0e7ChQskJSWVKHRUr16d4cOH8/nnnzN+/HjHmEVXehxdPWZQWFgYOp2OXbt2OdaZzeabemTukUce4fDhw46Cz9Wv6/Vu0mg01K9fn9zcXACefvppXF1dmT17dqm2ixYtIi8vj0GDBt0wi8lkKnF+o9F43bZ2u71Ej6LTp0/z6KOP0qxZM5YuXVqqBnH1cf39/QHIy8u7Zq0Cih+5NBqNJfa7MjNeu3btSEpKKrFfcnIyISEh18176tQpLly4cM1HHK9ITExEq9U68l3vuq1Wq6Oe0q5dO44dO+ZYvpIlMDAQvV5/S/f0XnHLPaVycnI4duyYYzklJYXExER8fX2pUaMGnTp1YsKECRiNRkJCQti8eTP/+te/HM9Jent7M2TIEMaNG4evry9eXl6MGjWKNm3a0Lp1awC6detGeHg4MTExzJo1i4yMDF5//XVGjBjh6Mk0fPhw5s+fz6uvvsoLL7zADz/8wH//+1/Wr1/vyDZu3DhiY2Np3rw5LVu25L333iM3N5fnn3/+T900IcS1nS208s15M6cKLAAYbBbQ39pfmETFkZNb/MHIXGiislcAPVr/P6oFXf+HrhBCCCFERVOnTh2io6MZNmwYixcvxmQyMWnSJIKDg4mOjgZg7NixdO/enbp163Lx4kU2bdpEgwYNAAgJCUGj0bBu3Tp69OiB0WjEZDIRGxvLhAkT8PX1xd/fn6lTp6LVam84RMLEiRNp3bo1I0eOZOjQoXh4eHD48GHi4+OZP38+iYmJTJ06lZiYGMLDw9Hr9WzevJmPP/6YiRMnAsU9qmbNmsUrr7yCwWAgJiYGnU7Hl19+yWuvvcb06dNp1KhRifP+sagD0LBhQ3S6kn+8zs3NZcaMGfTu3ZvAwEDOnz/PggULOH36NH379gX+V5AKCQkhLi6OzMxMx/7XeyoKoFevXgwbNoyFCxcSGRlJeno6Y8eOpWXLltccj+uKl19+mbZt2/L222/zzDPPsHPnTpYsWeLonZWTk8Nbb71Fnz59CAgI4Pjx47z66qvUrl3b0WNs+/bt7Nixg4iICEwmE9u3b+fll1/mueeeo1KlSkDxo3c6nY7GjRvj5ubG7t27mTx5Mv369XPcp5deeon58+czZswYRo0axa+//srbb799zZ5vV8vKyiItLY0zZ86U+HoEBASUec/uilud8m/Tpk2lpqXkqqkp09PT1eDBg1VQUJAyGAyqXr16avbs2cput5eYNvD//b//pypVqqTc3d3Vk08+qdLT00ucJzU1VXXv3l0ZjUZVpUoVNX78eGW1Wktleeihh5Rer1dhYWFq6dKlpfJ+8MEHqkaNGkqv16uWLVs6pqa8GTK9sRC35oWDJ1TVH/Y5Xu3WrVEqrp6zYwkn+Pn4ebX2hwFqw8YwNXDeX9XF3EJnRxKi3Mjng9LkngghykNZ08vf62JjY1V0dPQ1t2VlZamYmBjl7e2tjEajioyMVMnJyY7tI0eOVLVq1VJubm7Kz89PxcTEqPPnzzu2T5s2TQUEBCiNRuP4vTs7O1sNGDBAubu7q4CAADVnzhzVsmVLNWnSJMd+ISEhau7cuaXy7Ny5U3Xt2lV5enoqDw8P1aRJEzVjxgyllFKZmZlq9OjRqlGjRsrT01OZTCbVuHFjFRcXp2w2W4njrFmzRnXo0EF5eHg46gIrV64s0SYlJeWa9QNAnTx5slS2/Px89eSTT6qgoCCl1+tVYGCg6t27t9q5c6ejzdKlS697zBuZN2+eCg8PV0ajUQUGBqqBAweqU6dO3XC/r776SjVq1Ei5ubmp+vXrqyVLlji25eXlqW7duik/Pz+l0+lUSEiIGjZsmMrIyHC02bNnj2rVqpXy9vZWBoNBNWjQQL399tuqoKDA0eY///mPeuSRRxxfl/DwcPX222+Xej9s27ZNtWrVSrm5uamwsDA1Y8YMVVRUVGb+692zqVOn3vDay1LWe/ZmPxtolPqT81xWYNnZ2Xh7e2M2mx3PoQohrq/nnmT2ZOfRynyAgMJM+p79ji4BAfDMv5wdTdxFl/IstJixgXGPvEfdSsdZcnAIn4yajItWBjcXFYN8PihN7okQojwUFBSQkpJCaGgoBoPB2XHuK7m5uQQHBzN79myGDBly18+flZVF586d8fLy4ptvvsHdXZ6WeBCU9Z692c8G5TrQuRDiwZZnK362edxvy+mky4NB/wXvak5OJe6m/PxT7N8by+yO5zC65gMwsHUDKUgJIYQQQpSjffv2cfToUVq2bInZbGbatGkAjkcC7zZfX182bNjAggUL2L59+3UH9xbij6QoJYQoN/m/D7hntBWAyRt8qjs5kbjbsrK2UGRJxeP34QG0WiORD7V1bighhBBCiAooLi6OpKQkxyRfCQkJVKlSxWl5KleuzJQpU5x2fnF/kqKUEKLc5P/eU8rdVgA6GdD6QZNnKeLgydPogH3nGnPAPJCPh0Th6mpydjQhhBBCiArl4YcfZs+ePc6OIcSfpr1xEyGEKFtOkY295lxyfi9KGe0FoJPnyB8072/4lW8PHgcgq6ASyrWGFKSEEEIIIYQQ1yU9pYQQf4pSis67kvitwOJYV9xTyujEVOJuO5O+mpqa5dQOPg1AVe/K9GpS28mphBBCCCGEEPcyKUoJIf6UArtyFKSqFaTTynyQAMt5MPg4N5i4q06cmIu/W4Zj+ZnWbQgMrOzEREIIIYQQQoh7nTy+J4T4U67MuAfw846BLLBsQ9PyL9BmhBNTibvNar0IwL8P90VVeo+AgCecG0gIIYQQQghxz5OilBDiT8n7fcY9vd2KKzZoNwZ6vAu+oU5OJu6GUxfzeGrBD9jthQDsyGiOp3dbNBoXJycTQgghhBBC3Ovk8T0hxJ/imHHv96KEjCX14FDKRuL+l+hf8xAAdqXBroyEVfFwcjIhhBBCCCHE/UCKUkKI23bBUkRqfnExSopSD57c3OMY7Vsw/v4l17nVIWFSZ/xNBucGE0IIIYQQQtwX5PE9IcRt+ercJRpt/YVBB1MAMNryizfo3J2YStxNNlsuABcLvNmf/y4d2nwmBSkhhBBCPJAGDx6MRqNBo9Gg1+upXbs206ZNo6io6E8d98cff0Sj0XDp0qXyCXoTUlJSGDBgAEFBQRgMBqpVq0Z0dDRHjx4t0W7dunV06tQJk8mEu7s7LVq0YNmyZSXapKamotFoSExMvOnzv/nmm9SvXx8PDw8qVapEly5d2LFjR4ljDhkyhNDQUIxGI7Vq1WLq1KlYLJYyjlpsxYoVNG3aFHd3dwIDA3nhhRe4cOFCmfvYbDbeeOONEuf729/+hlLK0ebzzz+nW7duVK5c+brXe/z4cZ588kn8/Pzw8vLimWee4ezZs7d8XQcOHKBDhw4YDAaqV6/OrFmzbnjdP/30E7169SIoKAiNRsOaNWtuuM/dIkUpIcRt2ZOdiwJclB2j3cKTZ+OLN7hKUeJB8MtpM5/tTgYgx+qBRt8IFxcpSAohhBDiwRUVFUV6ejq//vor48eP58033+Tdd991diyHmynaWK1Wunbtitls5vPPPycpKYlVq1bRuHHjEoWxDz74gOjoaNq1a8eOHTs4cOAA/fv3Z/jw4bzyyit/KmfdunWZP38+Bw8eZMuWLdSsWZNu3bqRmZkJwNGjR7Hb7SxevJhDhw4xd+5cFi1axGuvvVbmcbdu3cqgQYMYMmQIhw4d4tNPP2Xnzp0MGzaszP3eeecdFi5cyPz58zly5AjvvPMOs2bN4oMPPnC0yc3NpX379rzzzjvXPEZubi7dunVDo9Hwww8/sHXrViwWC7169cL++xi9N3Nd2dnZdOvWjZCQEPbs2cO7777Lm2++yZIlS8q8htzcXJo2bcqCBQvKbOcUSlyX2WxWgDKbzc6OIsQ959WjaarqD/vUrI9HKzXVq/g1PUCpwhxnRxN3QcdZP6gnZ89QGzaGqYWrO6t/bUtxdiQh7hr5fFCa3BMhRHnIz89Xhw8fVvn5+c6OcstiY2NVdHR0iXVdu3ZVrVu3VllZWSomJkb5+Pgoo9GooqKiVHJysqNdamqqevzxx5WPj49yd3dX4eHhav369SolJUUBJV6xsbFKKaWys7PVgAEDlLu7uwoICFBz5sxRnTp1UmPGjHEcNyQkRE2bNk3FxMQok8nk2DchIUG1b99eGQwGVa1aNTVq1CiVk1P8GX7fvn0KUKmpqde91rS0NKXT6dS4ceNKbZs3b54C1M8//6yUUo5r2Ldv363f1N9d+RmzYcOG67aZNWuWCg0NLfM47777rgoLCyuVNzg4uMz9evbsqV544YUS65566ik1cODAUm2vd73fffed0mq1JX5OXrp0SWk0GhUfH3/dc//xuv7xj3+oSpUqqcLCQse6iRMnqnr16pV5DVcD1BdffHHT7ctS1nv2Zj8bSE8pIcRtyf+9om+0F0K9HvDkEhi6EfQyyHVFl5Iyn+ENJvNcg/8C4O9did4PBTs5lRBCCCEqIqUUedY8p7zUVY9n3Q6j0YjFYmHw4MHs3r2btWvXsn37dpRS9OjRA6vVCsCIESMoLCzkp59+4uDBg7zzzjt4enpSvXp1PvvsMwCSkpJIT0/n/fffB2DcuHFs3bqVtWvXEh8fT0JCAnv37i2VIS4ujqZNm7Jv3z7eeOMNjh8/TlRUFH369OHAgQOsWrWKLVu2MHLkSAD8/PzQarWsXr0am812zetavXo1Vqv1mj2iXnzxRTw9PVm5cuWfundXWCwWlixZgre3N02bNr1uO7PZjK+vb5nHatOmDSdPnuTrr79GKcXZs2dZvXo1PXr0KHO/tm3bsnHjRpKTi58S2L9/P1u2bKF79+43fR2FhYVoNBrc3Nwc6wwGA1qtli1bttz0dW3fvp2OHTui1+sd6yIjI0lKSuLixYs3nedeIgOdCyFuS76t+Ie00VYAQY9A035OTiTult/S/om/+2XHcuOQh/E26pyYSAghhBAVVX5RPq0+aeWUc+8YsAP32xgvVSnFxo0b+e677+jevTtr1qxh69attG3bFige16h69eqsWbOGvn37kpaWRp8+fWjcuDEAYWFhjmNdKUj4+/vj4+MDwOXLl1m+fDmffPIJnTt3BmDp0qUEBQWVyvLYY48xfvx4x/LQoUMZOHAgY8eOBaBOnTrMmzePTp06sXDhQoKDg5k3bx6vvvoqb731Fs2bNyciIoKBAwc6ciUnJ+Pt7U1gYGCp8+n1esLCwhwFnNu1bt06+vfvT15eHoGBgcTHx1OlSpVrtj127BgffPABcXFxZR6zXbt2rFixgn79+lFQUEBRURG9evW64SNtkyZNIjs7m/r16+Pi4oLNZmPGjBkMHDjwpq+ndevWeHh4MHHiRN5++22UUkyaNAmbzUZ6evpNX1dGRgahoaEl2lWtWtWxrVKlSjed6V4hPaWEELelRE8pmXHvgfHrWTM2Ww4A7+/9C4888gW1a090ciohhBBCCOdbt24dnp6eGAwGunfvTr9+/Rg8eDCurq60avW/wlrlypWpV68eR44cAWD06NFMnz6ddu3aMXXqVA4cOFDmeU6cOIHVaqVly5aOdd7e3tSrV69U2+bNm5dY3r9/P8uWLcPT09PxioyMxG63k5JSPIHRiBEjyMjIYMWKFbRp04ZPP/2Uhg0bEh8ff9P34uqePNezYsWKEjkSEhIc2yIiIkhMTGTbtm1ERUXxzDPPcO7cuVLHOH36NFFRUfTt27fE2FBXH3f48OEAHD58mDFjxjBlyhT27NnDt99+S2pqqmN7QkJCif1WrFgBwH//+19WrFjBJ598wt69e1m+fDlxcXEsX778pu+Hn58fn376KV999RWenp54e3tz6dIlHnnkEbTa0mWZ613XjVzvGu5l0lNKCHFLVqVnsfXSZQ5ezgPA3VYAOhnc/EGw8chZRvxfAgs6F/eSO5UbTiWfJk5OJYQQQoiKzOhqZMeAHTdueIfOfSsiIiJYuHAher2eoKAgXF1dWbt27Q33Gzp0KJGRkaxfv57vv/+emTNnMnv2bEaNGnW70R08PEoOrZGTk8OLL77I6NGjS7WtUaOG4/9NJhO9evWiV69eTJ8+ncjISKZPn07Xrl2pU6cOZrOZM2fOlOqdZbFYOH78OJGRkTfM1rt37xLFuuDg/w0H4eHhQe3atalduzatW7emTp06fPTRR0yePNnR5syZM0RERNC2bdtSA31fPfudl5cXADNnzqRdu3ZMmDABgCZNmuDh4UGHDh2YPn06zZs3L7HflR5IEyZMYNKkSfTv3x+Axo0b89tvvzFz5kxiY2NveJ1XdOvWjePHj3P+/HlcXV3x8fEhICCgRM+4G11XQEBAiRn7AMdyQEAANWvWvOY13MukKCWEuGn5NjvjktKwXfV4vZ8lC26jW7O4vxQV5ZKZ8RFP1Snuim2zu/B8+9J/jRNCCCGEKE8ajea2HqFzhiuFlKs1aNCAoqIiduzY4Xh878KFCyQlJREeHu5oV716dYYPH87w4cOZPHkyH374IaNGjXL0OLp6fKewsDB0Oh27du1yFJLMZjPJycl07NixzIyPPPIIhw8fLpWzLBqNhvr167Nt2zYAnn76aSZOnMjs2bOZPXt2ibaLFi0iLy+PQYMG3fC4JpMJk8l0UxnsdjuFhYWO5dOnTxMREUGzZs1YunRpqd5G17q+vLw8XF1LlkBcXFyA4kcujUbjdff74/FdXFwcs+bdqiuPIf7www+cO3eO3r173/R1tWnThr/+9a9YrVZ0uuLhM+Lj46lXr57j0b1b+dreC6QoJYS4aTk2m6Mg9dcTiwgqzKSNeb88vvcAOHv2K/zUR3T+/Q9o7kZ/RrWr69xQQgghhBD3uDp16hAdHc2wYcNYvHgxJpOJSZMmERwcTHR0NABjx46le/fu1K1bl4sXL7Jp0yYaNGgAQEhICBqNhnXr1tGjRw+MRiMmk4nY2FgmTJiAr68v/v7+TJ06Fa1Wi0ajKTPPxIkTad26NSNHjmTo0KF4eHhw+PBh4uPjmT9/PomJiUydOpWYmBjCw8PR6/Vs3ryZjz/+mIkTi4dsqFGjBrNmzeKVV17BYDAQExODTqfjyy+/5LXXXmP69Ok0atSoxHmTkpJKZWnYsKGjsHJFbm4uM2bMoHfv3gQGBnL+/HkWLFjA6dOn6du3L1BcuHn00UcJCQkhLi6OzMxMx/4BAQHXvfZevXoxbNgwFi5cSGRkJOnp6YwdO5aWLVteczyuq/ebMWMGNWrUoGHDhuzbt485c+bwwgsvONpkZWWRlpbGmTNnSlxvQECAI9PSpUtp0KABfn5+bN++nTFjxvDyyy87Hru8mesaMGAAb731FkOGDGHixIn88ssvvP/++8ydO/e6+aG4h9yxY8ccyykpKSQmJuLr61uih5xTlMs8gBWUTG8sREm/5RWoqj/sUzXjtys11Uupt6srNb+VUtkZzo4mXDJEuAABAABJREFU7rDjJ95XGzaGqY+/6KA++X68ysr62dmRhHAa+XxQmtwTIUR5KGt6+XtdbGysio6Ovua2rKwsFRMTo7y9vZXRaFSRkZEqOTnZsX3kyJGqVq1ays3NTfn5+amYmBh1/vx5x/Zp06apgIAApdFoVGxsrFJKqezsbDVgwADl7u6uAgIC1Jw5c1TLli3VpEmTHPuFhISouXPnlsqzc+dO1bVrV+Xp6ak8PDxUkyZN1IwZM5RSSmVmZqrRo0erRo0aKU9PT2UymVTjxo1VXFycstlsJY6zZs0a1aFDB+Xh4aEABaiVK1eWaJOSkuLY9sfXyZMnS2XLz89XTz75pAoKClJ6vV4FBgaq3r17q507dzraLF269LrHvJF58+ap8PBwZTQaVWBgoBo4cKA6depUmftkZ2erMWPGqBo1aiiDwaDCwsLUX//6V1VYWHjDTFOnTnW0mThxoqpatarS6XSqTp06avbs2cput9/yde3fv1+1b99eubm5qeDgYPX3v//9hte9adOmax73yr+n21XWe/ZmPxtolPqT81xWYNnZ2Xh7e2M2mx3PoQrxIDuam8+jO5PwtVzi8PYnYOpFuMFfY8T973hmDoeO/A2PotWsP9GVOrUn8NKjtZwdSwinkc8Hpck9EUKUh4KCAlJSUggNDcVgkDFLb0Vubi7BwcHMnj2bIUOG3PXzZ2Vl0blzZ7y8vPjmm29wd78/HrkUf05Z79mb/Wwgs+8JIW7KnrN7+G/y7wM1qt9n3JOCVIVXUJDOkq//RuaF4gFG84sM+LjrbrCXEEIIIYS4k/bt28fKlSs5fvw4e/fuZeDAgQCORwLvNl9fXzZs2EDnzp3Zvn27UzKI+5OMKSWEuKH8ogKe2/oJebqa4FmPAqzgKn+9ehAcOzaLbtX/N2tM/eCadG90/Wf1hRBCCCHE3REXF0dSUhJ6vZ5mzZqRkJDgGETbGSpXrsyUKVOcdn5xf5KilBDihjadv8DFSjGO5cpWswxu/oDILUgH4PCFunRt+iidwobi6qp3ciohhBBCiAfbww8/zJ49e5wdQ4g/TR7fE0LcUMbv06+6FGUxzDWDfya9J0WpB8BvF3LJyTcDsOFkF+rXnYirq6eTUwkhhBBCCCEqCilKCSFu6HKRFQA3Syp/29iPpjnJUpSq4L79JYNO7/7IWXMWAK4uHk5OJIQQQgghhKho5PE9IcQN5fxelHK1F4LRFzyrQqvhTk4l7hS7vZD8s+P4W9tUqhiLi1KRjWS2PSGEEEIIIUT5kqKUEOKGLhcVAb8XpdqNhvYvOzmRuJOysw/ipdmB1+9P6rm4uPNCu9bODSWEEEIIIYSocKQoJYS4rtT8Qr47byYxxw5o0dkLQOfr7FjiDrPZcgHIyPWnwP0VnmvdHldXk5NTCSGEEEIIISoaKUoJIa5JKUXP7Ru5oAniyvBzbrYc0FdzbjBxR/1y2szB4yn4A+ZCE0bfR3Bzq+rsWEIIIYQQQogKSAY6F0Jc04WCC1wscgFAl78fw+UNPJb5jQxwXsHFfryTdYnHASi0uVHJXe/kREIIIYQQQoiKSopSQohryi/KB40OgGVJC/h5/9vMPHsM9J5OTibulLRTn/J0rcU8VuMnAAIrVaZruPSSEkIIIYS4kcGDB6PRaNBoNOj1emrXrs20adMo+n1s1tv1448/otFouHTpUvkEvQkpKSkMGDCAoKAgDAYD1apVIzo6mqNHj5Zot27dOjp16oTJZMLd3Z0WLVqwbNmyEm1SU1PRaDQkJibe9PnffPNN6tevj4eHB5UqVaJLly7s2LGjxDGHDBlCaGgoRqORWrVqMXXqVCwWyw2PvWLFCpo2bYq7uzuBgYG88MILXLhwocx9Ll++zNixYwkJCcFoNNK2bVt27dpVok1OTg4jR46kWrVqGI1GwsPDWbRoUYk2L774IrVq1cJoNOLn53fNe5qWlkbPnj1xd3fH39+fCRMmXPff0NatW3F1deWhhx664XV//vnndOvWjcqVK9/y1+NOk6KUEOKaCooKUFo3AEIseQT4NURTrwfUbO/kZOJOUMrOsV/foGXAPmp6nQKgWWhdPNzkKW8hhBBCiJsRFRVFeno6v/76K+PHj+fNN9/k3XffdXYsh5sp2litVrp27YrZbObzzz8nKSmJVatW0bhx4xKFsQ8++IDo6GjatWvHjh07OHDgAP3792f48OG88sorfypn3bp1mT9/PgcPHmTLli3UrFmTbt26kZmZCcDRo0ex2+0sXryYQ4cOMXfuXBYtWsRrr71W5nG3bt3KoEGDGDJkCIcOHeLTTz9l586dDBs2rMz9hg4dSnx8PP/+9785ePAg3bp1o0uXLpw+fdrRZty4cXz77bf83//9H0eOHGHs2LGMHDmStWvXOto0a9aMpUuXcuTIEb777juUUnTr1g2bzQaAzWajZ8+eWCwWtm3bxvLly1m2bBlTpkwplenSpUsMGjSIzp0739Q9zc3NpX379rzzzjs31f6uUuK6zGazApTZbHZ2FCHuuv3n9quqG3eoqj/sUydnNXF2HHGHWa3ZasPGMLVhY5gavmiCOn16lbJY5HufENcinw9Kk3sihCgP+fn56vDhwyo/P9/ZUW5ZbGysio6OLrGua9euqnXr1iorK0vFxMQoHx8fZTQaVVRUlEpOTna0S01NVY8//rjy8fFR7u7uKjw8XK1fv16lpKQooMQrNjZWKaVUdna2GjBggHJ3d1cBAQFqzpw5qlOnTmrMmDGO44aEhKhp06apmJgYZTKZHPsmJCSo9u3bK4PBoKpVq6ZGjRqlcnJylFJK7du3TwEqNTX1utealpamdDqdGjduXKlt8+bNU4D6+eeflVLKcQ379u279Zv6uys/YzZs2HDdNrNmzVKhoaFlHufdd99VYWFhpfIGBwdfd5+8vDzl4uKi1q1bV2L9I488ov761786lhs2bKimTZtWZps/2r9/vwLUsWPHlFJKff3110qr1aqMjAxHm4ULFyovLy9VWFhYYt9+/fqp119/XU2dOlU1bdr0uuf4o/L4elytrPfszX42kJ5SQohryrUWgKZ4PCGji8bJacSdZM638nHCLwAU2bXsyuxKUNAz6HReTk4mhBBCiAedUgp7Xp5TXkqpP5XdaDRisVgYPHgwu3fvZu3atWzfvh2lFD169MBqtQIwYsQICgsL+emnnzh48CDvvPMOnp6eVK9enc8++wyApKQk0tPTef/994Hinjlbt25l7dq1xMfHk5CQwN69e0tliIuLo2nTpuzbt4833niD48ePExUVRZ8+fThw4ACrVq1iy5YtjBw5EgA/Pz+0Wi2rV6929OD5o9WrV2O1Wq/ZI+rFF1/E09OTlStX/ql7d4XFYmHJkiV4e3vTtGnT67Yzm834+pY9S3ibNm04efIkX3/9NUopzp49y+rVq+nRo8d19ykqKsJms2EwGEqsNxqNbNmyxbHctm1b1q5dy+nTp1FKsWnTJpKTk+nWrds1j5ubm8vSpUsJDQ2levXqAGzfvp3GjRtTter/hs+IjIwkOzubQ4cOOdYtXbqUEydOMHXq1DKv934hz2UIIUr4LSeL7qu3kpemRY8rlvb+GLVSv67IVu/cx/eJG3mpKeQXGani6ebsSEIIIYQQAKj8fJIeaeaUc9fbuweNu/st76eUYuPGjXz33Xd0796dNWvWsHXrVtq2bQsUj2tUvXp11qxZQ9++fUlLS6NPnz40btwYgLCwMMexrhRa/P398fHxAYrHOFq+fDmffPKJ4/GtpUuXEhQUVCrLY489xvjx4x3LQ4cOZeDAgYwdOxaAOnXqMG/ePDp16sTChQsJDg5m3rx5vPrqq7z11ls0b96ciIgIBg4c6MiVnJyMt7c3gYGBpc6n1+sJCwsjOTn5lu/b1datW0f//v3Jy8sjMDCQ+Ph4qlSpcs22x44d44MPPiAuLq7MY7Zr144VK1bQr18/CgoKKCoqolevXixYsOC6+5hMJtq0acPf/vY3GjRoQNWqVVm5ciXbt2+ndu3ajnYffPABf/nLX6hWrRqurq5otVo+/PBDOnbsWOJ4//jHP3j11VfJzc2lXr16xMfHo9cXdwTIyMgoUZACHMsZGRkA/Prrr0yaNImEhARcXStGOUd+0xRClLAs9QA5J/WQB9q8IgzWCxgqyDc8UVp+/ilqFD3HS02XAqBz9eTtpxo7OZUQQgghxP1n3bp1eHp6YjAY6N69O/369WPw4MG4urrSqlUrR7vKlStTr149jhw5AsDo0aOZPn067dq1Y+rUqRw4cKDM85w4cQKr1UrLli0d67y9valXr16pts2bNy+xvH//fpYtW4anp6fjFRkZid1uJyUlBSjuuZWRkcGKFSto06YNn376KQ0bNiQ+Pv6m78WVQktZVqxYUSJHQkKCY1tERASJiYls27aNqKgonnnmGc6dO1fqGKdPnyYqKoq+ffuWGBvq6uMOHz4cgMOHDzNmzBimTJnCnj17+Pbbb0lNTXVsT0hIKLHfihUrAPj3v/+NUorg4GDc3NyYN28ezz77LNqr/nD/wQcf8PPPP7N27Vr27NnD7NmzGTFiBBs2bCiRd+DAgezbt4/NmzdTt25dnnnmGQoKCm7qntpsNgYMGMBbb71F3bp1b/me3qvkN00hRAnZRVY0tuKuyp2qHeWt3QvQVqnm5FTiTsnN/RWtxkaR3QW7pjKN6w6hRo1Kzo4lhBBCCAGAxmik3t49Tjv3rYiIiGDhwoXo9XqCgoJwdXUtMdD19QwdOpTIyEjWr1/P999/z8yZM5k9ezajRo263egOHh4eJZZzcnJ48cUXGT16dKm2NWrUcPy/yWSiV69e9OrVi+nTpxMZGcn06dPp2rUrderUwWw2c+bMmVK9sywWC8ePHycyMvKG2Xr37l2iWBccHFwid+3atalduzatW7emTp06fPTRR0yePNnR5syZM0RERNC2bVuWLFlS4thXzy7n5VU8JMXMmTNp164dEyZMAKBJkyZ4eHjQoUMHpk+fTvPmzUvsd6WXUq1atdi8eTO5ublkZ2cTGBhIv379HD3H8vPzee211/jiiy/o2bOn49iJiYnExcXRpUsXxzG9vb3x9vamTp06tG7dmkqVKvHFF1/w7LPPEhAQwM6dO0tcx9mzZwEICAjg8uXL7N69m3379jket7Tb7SilcHV15fvvvy/znt6rpCglhCghr6gIfi9KvXHun9TUXgCPh52cStwpNlseAMcv1URfdRHda4TdYA8hhBBCiLtHo9Hc1iN0znClkHK1Bg0aUFRUxI4dOxyP7124cIGkpCTCw8Md7apXr87w4cMZPnw4kydP5sMPP2TUqFGOHkdXj+8UFhaGTqdj165djkKS2WwmOTm51ONif/TII49w+PDhUjnLotFoqF+/Ptu2bQPg6aefZuLEicyePZvZs2eXaLto0SLy8vIYNGjQDY9rMpkwmUw3lcFut1NYWOhYPn36NBEREY4Z7bR/GG7kWteXl5dX6pE3FxcXoPiRS6PRWOZ98fDwwMPDg4sXL/Ldd98xa9YsoHjGQqvVWiqDi4sLdrv9usdTSqGUclxXmzZtmDFjBufOncPf3x+A+Ph4vLy8CA8PR6fTcfDgwRLH+Mc//sEPP/zA6tWrCQ0NxcPD46bv6b1CilJCiBLybUVgK/6GaghpDrWbQKOnnJxK3AkbDp/l2G+/UscNCmwGKhvkR4IQQgghRHmqU6cO0dHRDBs2jMWLF2MymZg0aRLBwcFER0cDMHbsWLp3707dunW5ePEimzZtokGDBgCEhISg0WhYt24dPXr0wGg0YjKZiI2NZcKECfj6+uLv78/UqVPRarVoNGVPUDRx4kRat27NyJEjGTp0KB4eHhw+fJj4+Hjmz59PYmIiU6dOJSYmhvDwcPR6PZs3b+bjjz9m4sSJQHGPqlmzZvHKK69gMBiIiYlBp9Px5Zdf8tprrzF9+nQaNWpU4rxJSUmlsjRs2BCdTldiXW5uLjNmzKB3794EBgZy/vx5FixYwOnTp+nbty9QXJB69NFHCQkJIS4ujszMTMf+AQEB1732Xr16MWzYMBYuXEhkZCTp6emMHTuWli1bXnM8riu+++47lFLUq1ePY8eOMWHCBOrXr8/zzz8PFPfE6tSpExMmTMBoNBISEsLmzZv517/+xZw5c4DiRy5XrVpFt27d8PPz49SpU/z973/HaDQ6Blrv1q0b4eHhxMTEMGvWLDIyMnj99dcZMWIEbm7FY77+8b76+/tjMBhKrf+jrKws0tLSOHPmDPC/r0dAQECZ9+xukN9AhBAl5NnsaOzFRSlj3UehwxDnBhJ3hKXIyuTVm2gVcJw6taGwyA0/kwxwLoQQQghR3pYuXcqYMWN4/PHHsVgsdOzYka+//tpRkLHZbIwYMYJTp07h5eVFVFQUc+fOBYofv3rrrbeYNGkSzz//PIMGDWLZsmXMmTOH4cOH8/jjj+Pl5cWrr77KyZMnS80S90dNmjRh8+bN/PWvf6VDhw4opahVqxb9+vUDoFq1atSsWZO33nqL1NRUNBqNY/nll192HOfll18mLCyM2bNn8/7775ObmwvAypUr6d+/f6nzXmvdyZMnqVat5DAhLi4uHD16lOXLl3P+/HkqV65MixYtSEhIoGHDhkBx76Fjx45x7NixUvuXNWPi4MGDuXz5MvPnz2f8+PH4+Pjw2GOP8c4775R5z8xmM5MnT+bUqVP4+vrSp08fZsyYUaKg9p///IfJkyczcOBAsrKyCAkJYcaMGY7xqgwGAwkJCbz33ntcvHiRqlWr0rFjR7Zt2+boFeXi4sK6det46aWXaNOmDR4eHsTGxjJt2rQy892MtWvXOopo8L+vx9SpU3nzzTf/9PH/DI36s/NcVmDZ2dl4e3tjNpsdz6EKUVGlmdNYkbidT09ayfqleEyhw30u4t7iOScnE+VNKcXPO3uTl3vYsS5H250eHeahc5H5L4S4Efl8UJrcEyFEeSgoKCAlJYXQ0NAbFldESbm5uQQHBzN79myGDLn7f1TOysqic+fOeHl58c033+B+nzxyKf6cst6zN/vZQH77EEIA0Oeb9Sz+xtNRkAKFwSA/TCoimy3PUZCyKw0uLp60bfiEFKSEEEIIIe4T+/btY+XKlRw/fpy9e/cycOBAAMcjgXebr68vGzZsoHPnzmzfvt0pGcT9SR7fE0JwrtDKmaIm6LiEctWgPHV0cNmLVt/U2dHEHWCzFXevtisNk7f/g92vd3NyIiGEEEIIcavi4uJISkpCr9fTrFkzEhISqFKlitPyVK5cmSlTpjjt/OL+JEUpIQTmIptjxr1ahlP8xXsjvTM3gfErJycT5e3AqUu8s24zL9SFgiI3PNx0N95JCCGEEELcUx5++GH27Nnj7BhC/GlSlBJCkGe3O4pS9QpS6O+tgQbjoVoLJycT5W3dgXROXrgAQIHNjbpV768pY4UQQgghhBAVhxSlhBBctlrAXlyUcscCXd4E//rODSXKXVbWNh7Wj+SRVjkAVDH5ML/bw05OJYQQQgghhHhQSVFKiAeYXdn5+czPbLxwEY3NEwBPVQg6o5OTiTvh/IUf0GvNjuWAKq1wc3VxYiIhhBBCCCHEg0yKUkI8wL5M3ca4XZuxFVVHk1dciHLHAjqZda8ishUVD3D+bepjNGvwIo/Vb+bkREIIIYQQQogHmRSlhHiA/euMFfv+h9HaFJAPgFFjAZ3BucFEuVt/IJ3s9DP46+BigQ9GYyAajcbZsYQQQgghhBAPMK2zAwghnCcrV6GxKUDh45ZPuMtvdNfuBFd5fK8iybfYGPOffaRfuggUz7rnZ3JzciohhBBCCCHEg056SgnxACuwFg9urnMtIFEzBHRA5drgIt8aKpJfT8xj7CPfUcN0CoAnm9WhdWhlJ6cSQgghhBBCPOikp5QQD7BCa/F/XbVWCO0EQ+LhLz86NZMoX0VFl8k8M58Gvr/ioSt+RLNr44fRauXRPSGEEEKI8jJ48GA0Gg0ajQa9Xk/t2rWZNm0aRUVFf+q4P/74IxqNhkuXLpVP0JuQkpLCgAEDCAoKwmAwUK1aNaKjozl69GiJduvWraNTp06YTCbc3d1p0aIFy5YtK9EmNTUVjUZDYmLiTZ//zTffpH79+nh4eFCpUiW6dOnCjh07ShxzyJAhhIaGYjQaqVWrFlOnTsVisdzw2CtWrKBp06a4u7sTGBjICy+8wIULF8rc56effqJXr14EBQWh0WhYs2ZNqTaff/453bp1o3Llyje8XqUU3bt3v+6xli1bRpMmTTAYDPj7+zNixIgS27/77jtat26NyWTCz8+PPn36kJqaeleu806QopQQDzDL7z8jdRoreFeD6i3BzeTcUKJcFRVdLv6v3YX/HhtGs0dW4eXVxMmphBBCCCEqnqioKNLT0/n1118ZP348b775Ju+++66zYzncTNHGarXStWtXzGYzn3/+OUlJSaxatYrGjRuXKIx98MEHREdH065dO3bs2MGBAwfo378/w4cP55VXXvlTOevWrcv8+fM5ePAgW7ZsoWbNmnTr1o3MzEwAjh49it1uZ/HixRw6dIi5c+eyaNEiXnvttTKPu3XrVgYNGsSQIUM4dOgQn376KTt37mTYsGFl7pebm0vTpk1ZsGBBmW3at2/PO++8c8Pre++99647tuucOXP461//yqRJkzh06BAbNmwgMjLSsT0lJYXo6Ggee+wxEhMT+e677zh//jxPPfXUXbnOO0KJ6zKbzQpQZrPZ2VGEKFefnNipor5fpap9tEGFTFynHpn6oVLrxjk7lihnWTmFasg//6s2bAxTX3zTWHWbs9nZkYSoEOTzQWlyT4QQ5SE/P18dPnxY5efnOzvKLYuNjVXR0dEl1nXt2lW1bt1aZWVlqZiYGOXj46OMRqOKiopSycnJjnapqanq8ccfVz4+Psrd3V2Fh4er9evXq5SUlOLBX696xcbGKqWUys7OVgMGDFDu7u4qICBAzZkzR3Xq1EmNGTPGcdyQkBA1bdo0FRMTo0wmk2PfhIQE1b59e2UwGFS1atXUqFGjVE5OjlJKqX379ilApaamXvda09LSlE6nU+PGlf79Yd68eQpQP//8s1JKOa5h3759t35Tf3flZ8yGDRuu22bWrFkqNDS0zOO8++67KiwsrFTe4ODgm84CqC+++OK62290vfv27VPBwcEqPT291LGysrKU0Wgs8zo//fRT5erqqmw2m2Pd2rVrlUajURaLRSl1d67zirLeszf72UB6SgnxAJq85wKHN3rgklwAgDv5oHN3cipR3n4+cYHjZ4v/olRoc6NBoPSCE0IIIcT9RSmFtdDmlFfx7+a3z2g0YrFYGDx4MLt372bt2rVs374dpRQ9evTAai0eS2PEiBEUFhby008/cfDgQd555x08PT2pXr06n332GQBJSUmkp6fz/vvvAzBu3Di2bt3K2rVriY+PJyEhgb1795bKEBcXR9OmTdm3bx9vvPEGx48fJyoqij59+nDgwAFWrVrFli1bGDlyJAB+fn5otVpWr16NzWa75nWtXr0aq9V6zR5RL774Ip6enqxcufJP3bsrLBYLS5Yswdvbm6ZNm163ndlsxtfXt8xjtWnThpMnT/L111+jlOLs2bOsXr2aHj16lEvWG8nLy2PAgAEsWLCAgICAUtvj4+Ox2+2cPn2aBg0aUK1aNZ555hlOnjzpaNOsWTO0Wi1Lly7FZrNhNpv597//TZcuXdDpdPfEdd4qGc1YiAdQUY4OV2ygURhcCxhp+wZ0HZwdS5Qju92KLftfdA/9GYAAb1/ioq7/g1wIIYQQ4l5UZLGzZMxmp5z7L+93Qufmcsv7KaXYuHEj3333Hd27d2fNmjVs3bqVtm3bAsXj/VSvXp01a9bQt29f0tLS6NOnD40bNwYgLCzMcawrhRZ/f398fHwAuHz5MsuXL+eTTz6hc+fOACxdupSgoKBSWR577DHGjx/vWB46dCgDBw5k7NixANSpU4d58+bRqVMnFi5cSHBwMPPmzePVV1/lrbfeonnz5kRERDBw4EBHruTkZLy9vQkMDCx1Pr1eT1hYGMnJybd83662bt06+vfvT15eHoGBgcTHx1OlSpVrtj127BgffPABcXFxZR6zXbt2rFixgn79+lFQUEBRURG9evW6a4+rvfzyy7Rt25bo6Ohrbj9x4gR2u523336b999/H29vb15//XW6du3KgQMH0Ov1hIaG8v333/PMM8/w4osvYrPZaNOmDV9//fU9c523SnpKCfEAUrbiH66P6vZw1GUI/Vy2QuVaTk4lylPWxa0YC5fQrOoBALw8quLqIt/yhRBCCCHulHXr1uHp6YnBYKB79+7069ePwYMH4+rqSqtWrRztKleuTL169Thy5AgAo0ePZvr06bRr146pU6dy4MCBMs9z4sQJrFYrLVu2dKzz9vamXr16pdo2b968xPL+/ftZtmwZnp6ejldkZCR2u52UlBSguOdWRkYGK1asoE2bNnz66ac0bNiQ+Pj4m74Xer3+hm1WrFhRIkdCQoJjW0REBImJiWzbto2oqCieeeYZzp07V+oYp0+fJioqir59+5YYM+nq4w4fPhyAw4cPM2bMGKZMmcKePXv49ttvSU1NdWxPSEgosd+KFStu+npvZO3atfzwww+89957121jt9uxWq3MmzePyMhIWrduzcqVK/n111/ZtGkTABkZGQwbNozY2Fh27drF5s2b0ev1PP30046efc68ztshPaWEeMBYbFY09uLihBd50Gse+IdDteY32FPcT6yWLADO5lXBrB5jUKuhTk4khBBCCHHrXPVa/vJ+J6ed+1ZERESwcOFC9Ho9QUFBuLq6snbt2hvuN3ToUCIjI1m/fj3ff/89M2fOZPbs2YwaNep2ozt4eHiUWM7JyeHFF19k9OjRpdrWqFHD8f8mk4levXrRq1cvpk+fTmRkJNOnT6dr167UqVMHs9nMmTNnSvXOslgsHD9+vMTg3NfTu3fvEsW64ODgErlr165N7dq1ad26NXXq1OGjjz5i8uTJjjZnzpwhIiKCtm3bsmTJkhLHvnr2Oy8vLwBmzpxJu3btmDBhAgBNmjTBw8ODDh06MH36dJo3b15iv6pVq97wGm7WDz/8wPHjxx293a7o06cPHTp04Mcff3T0PAsPD3ds9/Pzo0qVKqSlpQGwYMECvL29mTVrlqPN//3f/1G9enV27NhB69atnXqdt0OKUkI8YMyWfLAVV9G9VR7Uegx8qjs5lShvNls+AKcuB3HJMAAPD+kJJ4QQQoj7j0ajua1H6JzhSiHlag0aNKCoqIgdO3Y4Ht+7cOECSUlJJYoP1atXZ/jw4QwfPpzJkyfz4YcfMmrUKEePo6vHdwoLC0On07Fr1y5HIclsNpOcnEzHjh3LzPjII49w+PDhUjnLotFoqF+/Ptu2bQPg6aefZuLEicyePZvZs2eXaLto0SLy8vIYNGjQDY9rMpkwmW5uzFO73U5hYaFj+fTp00RERNCsWTOWLl2KVluygHit68vLy8PVtWQJxMWl+N+WUgqj0XhL9+VWTJo0iaFDS/6RuHHjxsydO5devXoBxY/dQfH4YdWqVQMgKyuL8+fPExIS4riGP17rlWuw2+2ONs66ztshRSkhHhB2ZefbY9vZkHwOzeXib/4+9jzQGZ2cTJS3KV/+gso5xKOBYLHpcdfdHx/khBBCCCEqmjp16hAdHc2wYcNYvHgxJpOJSZMmERwc7BhbaOzYsXTv3p26dety8eJFNm3aRIMGDQAICQlBo9Gwbt06evTogdFoxGQyERsby4QJE/D19cXf35+pU6ei1WrRaDRl5pk4cSKtW7dm5MiRDB06FA8PDw4fPkx8fDzz588nMTGRqVOnEhMTQ3h4OHq9ns2bN/Pxxx8zceJEoLhH1axZs3jllVcwGAzExMSg0+n48ssvee2115g+fTqNGjUqcd6kpKRSWRo2bOgYnPuK3NxcZsyYQe/evQkMDOT8+fMsWLCA06dP07dvX6C4IPXoo48SEhJCXFwcmZmZjv2vNYD4Fb169WLYsGEsXLiQyMhI0tPTGTt2LC1btrzmeFxX5OTkcOzYMcdySkoKiYmJ+Pr6OoqCWVlZpKWlcebMmRLXGxAQUOL1RzVq1CA0NBSAunXrEh0dzZgxY1iyZAleXl5MnjyZ+vXrExERAUDPnj2ZO3cu06ZN49lnn+Xy5cu89tprhISE8PDDD9/x67wjbnpOwAeQTG8sKpIPk39UNaZ9rkImrnO8PvxrP6UKLjs7mihH57ILVMjEdWrU4hFqw8Yw9fqyGPV/P19/Sl8hxK2TzwelyT0RQpSHsqaXv9fFxsaq6Ojoa27LyspSMTExytvbWxmNRhUZGamSk5Md20eOHKlq1aql3NzclJ+fn4qJiVHnz593bJ82bZoKCAhQGo1GxcbGKqWUys7OVgMGDFDu7u4qICBAzZkzR7Vs2VJNmjTJsV9ISIiaO3duqTw7d+5UXbt2VZ6ensrDw0M1adJEzZgxQymlVGZmpho9erRq1KiR8vT0VCaTSTVu3FjFxcUpm81W4jhr1qxRHTp0UB4eHgpQgFq5cmWJNikpKY5tf3ydPHmyVLb8/Hz15JNPqqCgIKXX61VgYKDq3bu32rlzp6PN0qVLr3vMG5k3b54KDw9XRqNRBQYGqoEDB6pTp06Vuc+mTZuuea4rX4uyMk2dOvW6xwXUF198UWKd2WxWL7zwgvLx8VG+vr7qySefVGlpaSXarFy5Uj388MPKw8ND+fn5qd69e6sjR47clev8o7Leszf72UCj1J+c57ICy87OxtvbG7PZ7HgOVYj7VdT2HzmyPg9NkcLuo0ens7A1ewQBU4+DVnrSVBT7kz7mq13fEeJ1miDPdAw+A2nz0FtotWX/1UwIcfPk80Fpck+EEOWhoKCAlJQUQkNDMRgMzo5zX8nNzSU4OJjZs2czZMiQu37+rKwsOnfujJeXF9988w3u7u53PYO4+8p6z97sZwOZikmIB0SuDbAX16An+q5ng3UCAa65UpCqQKzWi5w/PYM2QbsJ8kwHoFqVGlKQEkIIIYSoYPbt28fKlSs5fvw4e/fuZeDAgQCORwLvNl9fXzZs2EDnzp3Zvn27UzKI+5OMKSXEA6LABprise/od/ozqmiyIfAhp2YS5auo6DIAVrsLm8/0YWTnpgQE9HZyKiGEEEIIcSfExcWRlJSEXq+nWbNmJCQkUKVKFaflqVy5MlOmTHHa+cX9SYpSQjwgCm3/6y3j1n4kNIqCKvWcmEiUJ6vNzhd7j1MVyC8yctDcg+DgDs6OJYQQQggh7oCHH36YPXv2ODuGEH+aPL4nxAPCclVRylC1NgQ2BZ08q19R/JScyYebjwDFM+75erg5OZEQQgghhBBClE16SglRwb209yfiL0GO1YCBy2iwo9MbnR1LlLPzOYXoXSwAuLt58FqP+k5OJIQQQgghhBBlk6KUEBXcV4ftuCTn42bLAUCnsYDO18mpRHlSyk5RwWFqeqcBUNXbm/oBMvuVEEIIIYQQ4t4mRSkhKjjNOSsai92x/LDmOOiqOTGRKG+//baYAGscz9QtXnZxkSl4hRBCCCGEEPc+KUoJUYFZbEXw+1hSL7p9Tn+1heqac+D2uJOTifKUm3cMgGyLJy4uvjQMHuDkREIIIYQQQghxY1KUEqICM1sL0NgUALVczhMa2hD8+oB/AycnE+Ulw1zAyQsX0QFfHutOvVqx9K4qX18hhBBCCCHEvU+KUkJUYJes+WAvLkr5Gj0g5hMnJxLl7f+t2EOHypk08QOLXY+XQefsSEIIIYQQQghxU7TODiCEKH9KKU5dPkXSxRT4vaeUh07e7hXRqYv5uLkUAtAouCrRDwU5OZEQQgghxINn8ODBaDQaNBoNer2e2rVrM23aNIqKiv7UcX/88Uc0Gg2XLl0qn6A3ISUlhQEDBhAUFITBYKBatWpER0dz9OjREu3WrVtHp06dMJlMuLu706JFC5YtW1aiTWpqKhqNhsTExJs+/5tvvkn9+vXx8PCgUqVKdOnShR07dpQ45pAhQwgNDcVoNFKrVi2mTp2KxWK54bFXrFhB06ZNcXd3JzAwkBdeeIELFy6Uuc9PP/1Er169CAoKQqPRsGbNmlvODDBjxgzatm2Lu7s7Pj4+1zxXWloaPXv2xN3dHX9/fyZMmFDi39DV/86ufjVs2NDRZubMmbRo0QKTyYS/vz9PPPEESUlJN7w3N5PvTpDfUoWogIbu+JQW29IYegjH43sGvfSgqYjyrTb0LlYA/tIpnGqVZJBzIYQQQghniIqKIj09nV9//ZXx48fz5ptv8u677zo7lsPNFG2sVitdu3bFbDbz+eefk5SUxKpVq2jcuHGJwtgHH3xAdHQ07dq1Y8eOHRw4cID+/fszfPhwXnnllT+Vs27dusyfP5+DBw+yZcsWatasSbdu3cjMzATg6NGj2O12Fi9ezKFDh5g7dy6LFi3itddeK/O4W7duZdCgQQwZMoRDhw7x6aefsnPnToYNG1bmfrm5uTRt2pQFCxbcdmYovv99+/blpZdeuuYxbDYbPXv2xGKxsG3bNpYvX86yZcuYMmWKo837779Penq643Xy5El8fX3p27evo83mzZsZMWIEP//8M/Hx8VitVrp160Zubm6Z13mjfHeMEtdlNpsVoMxms7OjCHFLwj9do2pMWqdCJv7vdfjDoc6OJcqR3V6k9u6LVWu+aay+31BLbdgYprKytjs7lhAPBPl8UJrcEyFEecjPz1eHDx9W+fn5zo5yy2JjY1V0dHSJdV27dlWtW7dWWVlZKiYmRvn4+Cij0aiioqJUcnKyo11qaqp6/PHHlY+Pj3J3d1fh4eFq/fr1KiUlRQElXrGxsUoppbKzs9WAAQOUu7u7CggIUHPmzFGdOnVSY8aMcRw3JCRETZs2TcXExCiTyeTYNyEhQbVv314ZDAZVrVo1NWrUKJWTk6OUUmrfvn0KUKmpqde91rS0NKXT6dS4ceNKbZs3b54C1M8//6yUUo5r2Ldv363f1N9d+RmzYcOG67aZNWuWCg0NLfM47777rgoLCyuVNzg4+KazAOqLL764YbuyMi9dulR5e3uXWv/1118rrVarMjIyHOsWLlyovLy8VGFh4TXP88UXXyiNRlPm1+vcuXMKUJs3b75h7rLyXUtZ79mb/WwgPaWEqIAKL2nRqP8t19OkEeotb/eKJD//FFlZCXjqc9FqFFqtAXf3MGfHEkIIIYQoV0oprAUFTnkppW4csAxGoxGLxcLgwYPZvXs3a9euZfv27Sil6NGjB1ZrcW/3ESNGUFhYyE8//cTBgwd555138PT0pHr16nz22WcAJCUlkZ6ezvvvvw/AuHHj2Lp1K2vXriU+Pp6EhAT27t1bKkNcXBxNmzZl3759vPHGGxw/fpyoqCj69OnDgQMHWLVqFVu2bGHkyJEA+Pn5odVqWb16NTab7ZrXtXr1aqxW6zV7RL344ot4enqycuXKP3XvrrBYLCxZsgRvb2+aNm163XZmsxlfX98yj9WmTRtOnjzJ119/jVKKs2fPsnr1anr06FEuWW818x9t376dxo0bU7VqVce6yMhIsrOzOXTo0DX3+eijj+jSpQshISHXPa7ZbAa44f1xFhnoXIgKyG4rLkA1NR3iS69VENoJWo1zcipRnnILcwDIsbjz911j2TDhKdzcKjk5lRBCCCFE+SoqLGRe7NNOOffo5avRGQy3vJ9Sio0bN/Ldd9/RvXt31qxZw9atW2nbti1QPK5R9erVWbNmDX379iUtLY0+ffrQuHFjAMLC/veHxiuFBH9/f8c4P5cvX2b58uV88skndO7cGYClS5cSFFR6bNHHHnuM8ePHO5aHDh3KwIEDGTt2LAB16tRh3rx5dOrUiYULFxIcHMy8efN49dVXeeutt2jevDkREREMHDjQkSs5ORlvb28CAwNLnU+v1xMWFkZycvIt37errVu3jv79+5OXl0dgYCDx8fFUqVLlmm2PHTvGBx98QFxcXJnHbNeuHStWrKBfv34UFBRQVFREr169ynws705lvpaMjIwSBSnAsZyRkVGq/ZkzZ/jmm2/45JPrT2Zlt9sZO3Ys7dq1o1GjRjed5W6SrhNCVEB2mwYAD/IhLAIenwN+9ZycSpSXX06bee7DnwDItxk4mxeAu5uPc0MJIYQQQjzg1q1bh6enJwaDge7du9OvXz8GDx6Mq6srrVq1crSrXLky9erV48iRIwCMHj2a6dOn065dO6ZOncqBAwfKPM+JEyewWq20bNnSsc7b25t69Up/3m/evHmJ5f3797Ns2TI8PT0dr8jISOx2OykpKUBxz62MjAxWrFhBmzZt+PTTT2nYsCHx8fE3fS/0ev0N26xYsaJEjoSEBMe2iIgIEhMT2bZtG1FRUTzzzDOcO3eu1DFOnz5NVFQUffv2LTE21NXHHT58OACHDx9mzJgxTJkyhT179vDtt9+Smprq2J6QkFBivxUrVtz09d5K5vKyfPlyfHx8eOKJJ67bZsSIEfzyyy/85z//cawbPnx4iet0NukpJUQFcuryKb46/hV2W020KDwpAL0MfF3R7D91CVQBAFabjp5NimcCEUIIIYSoaFzd3Bi9fLXTzn0rIiIiWLhwIXq9nqCgIFxdXVm7du0N9xs6dCiRkZGsX7+e77//npkzZzJ79mxGjRp1u9EdPDw8Sizn5OTw4osvMnr06FJta9So4fh/k8lEr1696NWrF9OnTycyMpLp06fTtWtX6tSpg9ls5syZM6V6Z1ksFo4fP05kZOQNs/Xu3btEsS44OLhE7tq1a1O7dm1at25NnTp1+Oijj5g8ebKjzZkzZ4iIiKBt27YsWbKkxLGvnu3Py8sLKJ6Vrl27dkyYMAGAJk2a4OHhQYcOHZg+fTrNmzcvsd8fey3dyM1kLktAQAA7d+4sse7s2bOObVdTSvHxxx8TExNz3QLgyJEjWbduHT/99BPVqlVzrJ82bdqfHoy+PElRSogKZObuxWw4kYQqfAGASioPdKW71Yr7W4HV7phxr16gHzEtHnZyIiGEEEKIO0Oj0dzWI3TOcKUocbUGDRpQVFTEjh07HI/vXbhwgaSkJMLDwx3tqlevzvDhwxk+fDiTJ0/mww8/ZNSoUY6Cw9XjO4WFhaHT6di1a5ejkGQ2m0lOTqZjx45lZnzkkUc4fPhwqZxl0Wg01K9fn23btgHw9NNPM3HiRGbPns3s2bNLtF20aBF5eXkMGjTohsc1mUyYTKabymC32yksLHQsnz59moiICJo1a8bSpUvRaks+BHat68vLy8PVtWQJxMXFBSgu8hiNxlu6L7ea+UbatGnDjBkzOHfuHP7+/gDEx8fj5eVV4t8KFM+wd+zYMYYMGVLqOEopRo0axRdffMGPP/5IaGhoie3+/v6O498LpCglRAWx8UI2Xx7tjOtvrXGh+IdWVXsu6IxOTibKk82Wj6tlCw18i5/Td9HK11cIIYQQ4l5Vp04doqOjGTZsGIsXL8ZkMjFp0iSCg4OJjo4GYOzYsXTv3p26dety8eJFNm3aRIMGDQAICQlBo9Gwbt06evTogdFoxGQyERsby4QJE/D19cXf35+pU6ei1Wpv2Ht+4sSJtG7dmpEjRzJ06FA8PDw4fPgw8fHxzJ8/n8TERKZOnUpMTAzh4eHo9Xo2b97Mxx9/zMSJE4HiHlWzZs3ilVdewWAwEBMTg06n48svv+S1115j+vTppcYvSkpKKpWlYcOG6HS6Eutyc3OZMWMGvXv3JjAwkPPnz7NgwQJOnz5N3759geKC1KOPPkpISAhxcXFkZmY69v9jj6Kr9erVi2HDhrFw4UIiIyNJT09n7NixtGzZ8prjcV2Rk5PDsWPHHMspKSkkJibi6+tLjRo1biozQFpaGllZWaSlpWGz2Ry9smrXro2npyfdunUjPDycmJgYZs2aRUZGBq+//jojRozA7Q+99j766CNatWp1zXGiRowYwSeffMKXX36JyWRyjEfl7e2N0Xj93x1ulO+Oual5/h5QMr2xuJ/MSUlX1d6JVyET16mQv65T9d5co46/UVepHUucHU2Uo+Rf31YbNoY5XvsSX3B2JCEeOPL5oDS5J0KI8lDW9PL3utjYWBUdHX3NbVlZWSomJkZ5e3sro9GoIiMjVXJysmP7yJEjVa1atZSbm5vy8/NTMTEx6vz5847t06ZNUwEBAUqj0ajY2FillFLZ2dlqwIAByt3dXQUEBKg5c+aoli1bqkmTJjn2CwkJUXPnzi2VZ+fOnapr167K09NTeXh4qCZNmqgZM2YopZTKzMxUo0ePVo0aNVKenp7KZDKpxo0bq7i4OGWz2UocZ82aNapDhw7Kw8NDAQpQK1euLNEmJSXFse2Pr5MnT5bKlp+fr5588kkVFBSk9Hq9CgwMVL1791Y7d+50tFm6dOl1j3kj8+bNU+Hh4cpoNKrAwEA1cOBAderUqTL32bRp0zXPdeVrcTOZlSr+N3Kt42zatMnRJjU1VXXv3l0ZjUZVpUoVNX78eGW1Wksc59KlS8poNKolS679e9717s3SpUvLvM6byfdHZb1nb/azgeb30OIasrOz8fb2xmw2O55DFeJeNeP4GRb/9xe0Zisve8xjjNoDHn4Q8wX413d2PFFODhwcQWbmt2Tk+mE0VOPRZuPw9W3r7FhCPFDk80Fpck+EEOWhoKCAlJQUQkNDMdwnj+zdK3JzcwkODmb27NnXfKTrTsvKyqJz5854eXnxzTff4O4u49o+CMp6z97sZwOZfU+ICiLfbgdbcY3Zg0IYnwTjj0hBqoKx2/IB+DqlG6lqhhSkhBBCCCEeQPv27WPlypUcP36cvXv3MnDgQADHI4F3m6+vLxs2bKBz585s377dKRnE/UnGlBKigsi3/a8oZVKFoJO/LlU0kz8/SDX7aer7QqFNh5vOxdmRhBBCCCGEk8TFxZGUlIRer6dZs2YkJCRQpUoVp+WpXLkyU6ZMcdr5xf1JilJCVACFRRYuXC5Ec6UoRSG4ygDYFc13hzJ4qVHxrHsKN5qFVHJyIiGEEEII4QwPP/wwe/bscXYMIf40KUoJcZ8bsWstX/2gQ3vRzpW5Nry0NtDK07kVTYHVhl5rAWD+wDYE+ld2ciIhhBBCCCGEuH1SlBLiPveDWYPmot2xrDec42Gt2YmJRHlTys4vh8bwWovd+BkvAODu5uHkVEIIIYQQd4bMxSXE/aE83qtSlBLiPme1aR09pNabxlPfmo6LvqpTM4nylZt3nHPnvibw9zqURqPDYKzh3FBCCCGEEOVMp9MBkJeXh9EoQ1EIca/Ly8sD/vfevR1SlBLiPldk1wLFPaXqWs7hogHCIpyaSZSvKzPumQtNLDrwPJ+Peho3vfMGsRRCCCGEuBNcXFzw8fHh3LlzALi7u6PRaG6wlxDiblNKkZeXx7lz5/Dx8cHF5fYnYJKilBD3ObvNFS0WXLCh6/tPqN0FDF7OjiXKSZHNztZfT6EHcq3upGTXwdM92NmxhBBCCCHuiICAAABHYUoIce/y8fFxvGdvlxSlhLhPmQvNJF9MxvZ7UUqvsYJnVSlIVTDfHspg0aZDvPwIWOw6PN3k27YQQgghKi6NRkNgYCD+/v5YrVZnxxFCXIdOp/tTPaSukN9uhLgP2ex2On6zBPPJALRFgQAYsIBeBr+uaNIvFeD2+4x7Hm6evNm7oZMTCSGEEELceS4uLuXyC68Q4t52y3PG//TTT/Tq1YugoCA0Gg1r1qwp1ebIkSP07t0bb29vPDw8aNGiBWlpaY7tBQUFjBgxgsqVK+Pp6UmfPn04e/ZsiWOkpaXRs2dP3N3d8ff3Z8KECRQVFZVo8+OPP/LII4/g5uZG7dq1WbZsWaksCxYsoGbNmhgMBlq1asXOnTtv9ZKFuOfsMmdzPqs1nPbF5WwhAP6aS6CTolRFUlSUg6t1M/V9kwGoF+hH9EPy6J4QQgghhBCiYrjlolRubi5NmzZlwYIF19x+/Phx2rdvT/369fnxxx85cOAAb7zxBgaDwdHm5Zdf5quvvuLTTz9l8+bNnDlzhqeeesqx3Waz0bNnTywWC9u2bWP58uUsW7aMKVOmONqkpKTQs2dPIiIiSExMZOzYsQwdOpTvvvvO0WbVqlWMGzeOqVOnsnfvXpo2bUpkZKQ8nyzuexkFuWisxYObBxou8qTnNt7XLwZPPycnE+Xp2PF3qaGZzmM1tgDg4iJFRyGEEEIIIUTFoVFKqdveWaPhiy++4IknnnCs69+/Pzqdjn//+9/X3MdsNuPn58cnn3zC008/DcDRo0dp0KAB27dvp3Xr1nzzzTc8/vjjnDlzhqpVi6e2X7RoERMnTiQzMxO9Xs/EiRNZv349v/zyS4lzX7p0iW+//RaAVq1a0aJFC+bPnw+A3W6nevXqjBo1ikmTJt3w+rKzs/H29sZsNuPlJeP0iHvH8t+O8df1p3BNy+Ully+Z2LMxBDeHkDbOjibKUWLi81zI+onTOQF4ulfjseYT8PFp7uxYQjzw5PNBaXJPhBBCCHG1m/1scMs9pcpit9tZv349devWJTIyEn9/f1q1alXiEb89e/ZgtVrp0qWLY139+vWpUaMG27dvB2D79u00btzYUZACiIyMJDs7m0OHDjnaXH2MK22uHMNisbBnz54SbbRaLV26dHG0EeJ+o5Tiu9Tv2HR6O9iL68kGjQVavigFqQqoyJYHwJfHenBGO10KUkIIIYQQQogKpVyLUufOnSMnJ4e///3vREVF8f333/Pkk0/y1FNPsXnzZgAyMjLQ6/X4+PiU2Ldq1apkZGQ42lxdkLqy/cq2stpkZ2eTn5/P+fPnsdls12xz5Rh/VFhYSHZ2domXEPeSI1lHeGXzK2w5swvNlaIUReCic3IyUZ4sRXae++cOjpwpHmuvwOaGQScDfQohhBBCCCEqlnLvKQUQHR3Nyy+/zEMPPcSkSZN4/PHHWbRoUXme6o6YOXMm3t7ejlf16tWdHUmIEs7nnwfAqPMG2+9FKVdAo3FiKlHeDp0xs+34WVw0+QAU2tyoHyCPwwghhBBCCCEqlnItSlWpUgVXV1fCw8NLrG/QoIFj9r2AgAAsFguXLl0q0ebs2bMEBAQ42vxxNr4ryzdq4+XlhdFopEqVKri4uFyzzZVj/NHkyZMxm82O18mTJ2/h6oW489ZlwQXP97mY2w1Nvg0Ag8ttDwsn7kFFRZfJSnmCD7u+TFX34iLk4kHtaV+nipOTCSGEEEIIIUT5KteilF6vp0WLFiQlJZVYn5ycTEhICADNmjVDp9OxceNGx/akpCTS0tJo06Z4TJw2bdpw8ODBErPkxcfH4+Xl5Sh4tWnTpsQxrrS5cgy9Xk+zZs1KtLHb7WzcuNHR5o/c3Nzw8vIq8RLiXrLpjAv6Xfm4HshGm20FwN1VilIVwZkzq9mypS2bf3oIbKcc6w2GYGpWree8YEIIIYQQQghxh7je6g45OTkcO3bMsZySkkJiYiK+vr7UqFGDCRMm0K9fPzp27EhERATffvstX331FT/++CMA3t7eDBkyhHHjxuHr64uXlxejRo2iTZs2tG7dGoBu3boRHh5OTEwMs2bNIiMjg9dff50RI0bg5uYGwPDhw5k/fz6vvvoqL7zwAj/88AP//e9/Wb9+vSPbuHHjiI2NpXnz5rRs2ZL33nuP3Nxcnn/++T9zz4RwmoKc4t5RWq2VpppUqqtzdKqS6+RU4nbZ7VaSkqeSm5uG2VxyAoaNaR257DqY9we0Q6u95W/VQgghhBBCCHHPu+XfdHbv3k1ERIRjedy4cQDExsaybNkynnzySRYtWsTMmTMZPXo09erV47PPPqN9+/aOfebOnYtWq6VPnz4UFhYSGRnJP/7xD8d2FxcX1q1bx0svvUSbNm3w8PAgNjaWadOmOdqEhoayfv16Xn75Zd5//32qVavGP//5TyIjIx1t+vXrR2ZmJlOmTCEjI4OHHnqIb7/9ttTg50LcLyxFxb2iTG7n+KLNBQh4GELHODmVuFXZ2Qc4fXolFy5sptBS8hHjuN0juFBQCb1bDaY8Xk8KUkIIIYQQQogKS6OUkmd/riM7Oxtvb2/MZrM8yiecamHiQrae2cpPmbFoj1jwdz/BzpiHILSDs6OJW5CZuYGCwjMkJ79VYv1liwefHH2afHs1qlRqxOKY5uhdy/XpaiFEOZLPB6XJPRFCCCHE1W72s4H8CV6Ie1xBUQH/2F/ck9Bu06AFPCkAnbtzg4mbUlR0mUuXdnPp0i5+S1tcYtuPJ9tyJjeQHenN6FCvNgufa+aklEIIIYQQQghx90lRSoh7XH5RPtbsRlgudMRFFQ9uXq/oMuiMTk4mylJUlEt+wUkOHvx/5Of/VmLbzoyHSTGH8P1vjxH/ckd83PVU8dQ7KakQQgghhBBCOIcUpYS4x22/mE1eTgzaAoUGOwBhmnQpSt3D7HYrP++IpLAw3bEux+LOqZwg/pv8BC5uDXg1sh6v9jFR29/TiUmFEEIIIYQQwnmkKCXEPe77C7lgcwFtDtrav+ChN2M4H8/x/KHUItTZ8cRVfkv7kN9++xCr9YJjnbnQxK8Xa7HowGAerVeVcT2C6dKgKh5u8u1XCCGEEEII8WCT34qEuMddthWBTaH32YGbyzdggyWVTNS1ZFHL2eGEg9Vm57eTK0oUpH5Ob8bq40MZ2CqEN3u78VzrEFy0GiemFEIIIYQQQoh7hxSlhLhHZeZl8q/D/+Jgdk00Nnc0rpcBqF+pHo39mlDNq4aTEwqAoqIcDh95jd0njlHN4zQuWojbPYKLBT7gWo0REbUZ2iHM2TGFEEIIIYQQ4p4jRSkh7lH/SfoPyw4tw1zlZTR2I2iLBzl/LKQzLzV9ycnpxBXnL2wiM3M9Iabi5RyLB1WrtGb94DZopVeUEEIIIYQQQlyXFKWEuEftyvXgovEtNNl+aGzZaDQWAIwuMsD5vSQ37ywAyRfD2J3ZhQ8G9SfaPcTJqYQQQgghhBDi3idFKSHuUbuyauC6txDILl7xe08pg6vBeaGEw/nzm9iZOAEt2ei0kJZdnfTCtrhLQUoIIYQQQgghbooUpYS4R1lzix/9ctFaqOt6AptLGulIUepecfbcety0Fx3Lv14KpUtDfycmEkIIIYQQQoj7ixSlhLhH2WwAClPNDzjllulYL0Up5zt0xszJ82fQAauTezEueiz/16E6Bp2Ls6MJIYQQQgghxH1DilJC3GPMhWZSs1Ox2bRotQXYripI+Rn9eMjvIeeFe8ApZWdP4lBOnd2D0TUPtJCeG0iIXw30rlpnxxNCCCGEEEKI+4oUpYS4h1jtVp788kky8zOx2ebhoi0EwBUtewclAqDRyIxuzpKffxLzxc2Y9MXLNqWjT6tHpSAlhBBCCCGEELdBfpMS4h5iLjRzLj8ThQbsLmh+L0p5uOjRaDRSkHIim11x8ORJAC4VerHkyDQiOv5MTPtWTk4mhHjQLFiwgJo1a2IwGGjVqhU7d+4ss/2nn35K/fr1MRgMNG7cmK+//rrEdqUUU6ZMITAwEKPRSJcuXfj111/v5CUIIYQQQgBSlBLinpKam8Ml+2yyU2ehSzuL1u0sAO7Kld9iBnHiqac48dRT5G7f7uSkDxaLJYt//vAVizd8BcBliyfKJQydzse5wYQQD5xVq1Yxbtw4pk6dyt69e2natCmRkZGcO3fumu23bdvGs88+y5AhQ9i3bx9PPPEETzzxBL/88oujzaxZs5g3bx6LFi1ix44deHh4EBkZSUFBwd26LCGEEEI8oDRKKeXsEPeq7OxsvL29MZvNeHl5OTuOeAAsOnGYtz85iUthBh615qLR2AAILXDnnbnZjnbB77+PV2Q3Z8V8oBQV5bBlaztsthzHupM59fAP/YgejQOdmEwI4SzO/HzQqlUrWrRowfz58wGw2+1Ur16dUaNGMWnSpFLt+/XrR25uLuvWrXOsa926NQ899BCLFi1CKUVQUBDjx4/nlVdeAcBsNlO1alWWLVtG//79byrXnbwnv+wtuyeYeHBpXcDN4IZGq8XVw6N4RYkGWlxcdbho7vxEJK7aa/do17k8oKOlaFxKfD30WuntL4Sz6FzKfuJGo3FBcwe+T97sZ4MH9LukEPemy0UWsClcDBloNDa0SuFtt9PtYgCQjdfjj+Md3RtD/frOjvrAyDKnYLPlYFdaLuRXorLJnaiWwwkIkIKUEOLuslgs7Nmzh8mTJzvWabVaunTpwvbr9KDdvn0748aNK7EuMjKSNWvWAJCSkkJGRgZdunRxbPf29qZVq1Zs3779ukWpwsJCCgsLHcvZ2dnXbFce4me9h13dueOL+5+bWzsWd/7kmtsKznbHmtXpjmco7FAV5S6/Wl2Lv8pgLiOcHUMIcR116rxOjerPO+388vieEPeA8/nnWbx/MQlndqEpUqCxANDaozo/tZzOU9kNAXCrWxfPDh1w9fNzZtwHglKKsxcSeefLZQCczglg0papeFb7jICA3s4NJ4R4IJ0/fx6bzUbVqlVLrK9atSoZGRnX3CcjI6PM9lf+eyvHBJg5cybe3t6OV/Xq1W/5eoQQQgghpJwvxD3g34f/zce/fEyeqQfYgtBorQAYKteFRk9hz08AQGswODPmA+VC1mZ+2T+EHjWLl/OKvGha3Yem1b2dmksIIe4FkydPLtEDKzs7+44Vpho+3YPCQhnfSpSm1blgNBnQurqwoMpslFZXsoGLDr3BiO6P6+8Ao16D9g+Px2jQYNR53PFz35Nc9aAtnq5Yq6mGh8suJwcS4sHlqXdFW8YjtNrf36vOIkUpIe4BWQVZWLMbYch5iFw71Czwokba41SxBsNjoPKLP4xr3Y1OTvrgyMlJAuCyxYPLVn+e6fQK/69KOyenEkI8yKpUqYKLiwtnz54tsf7s2bMEBARcc5+AgIAy21/579mzZwkMDCzR5qGHHrpuFjc3N9zc3G7nMm5Zt6efuyvnEUIIIcTdJ4/vCXEPOJgfTP7pgeSe9MJVQa+MpjxyuiueyQGcHDmS/P37AdAYpCh1pxUWZhK/8z027lsDwJbTrVl35m9UqRLh3GBCiAeeXq+nWbNmbNy40bHObrezceNG2rRpc8192rRpU6I9QHx8vKN9aGgoAQEBJdpkZ2ezY8eO6x5TCCGEEKK8SE8pIe4BhwrroKEAV+99NFD7sP4GVmXB4lqdnA2bHO10gdf+S7goPydOzEGb819q/j5BxMVCH5qEyCN7Qoh7w7hx44iNjaV58+a0bNmS9957j9zcXJ5/vniA0kGDBhEcHMzMmTMBGDNmDJ06dWL27Nn07NmT//znP+zevZslS5YAoNFoGDt2LNOnT6dOnTqEhobyxhtvEBQUxBNPPOGsyxRCCCHEA0KKUkLcA6y24ik43SpvpsZRF1DFb02j5TAAlYcNxb1FC4yPPOK0jA+KgoLTABzNqk3Vyg/x6hOjqRsY5ORUQghRrF+/fmRmZjJlyhQyMjJ46KGH+Pbbbx0DlaelpaHV/q8jfNu2bfnkk094/fXXee2116hTpw5r1qyhUaNGjjavvvoqubm5/OUvf+HSpUu0b9+eb7/9FoOMYyiEEEKIO0yjlFLODnGvys7OxtvbG7PZjJeXl7PjiAqs+hcJuOzIxlTr73Q+6EX1sxr0xgb0KVxHXnIR1VZ8haF+fWfHrNDyLEUs3/YbwUUv4aE9zvt7X2TiEy/QrnYVZ0cTQtxj5PNBaXJPhBBCCHG1m/1sID2lhHCSy5bLTP95OhfyL2CzDcZkh+bpHamcewbIxNVqxHa2ADcv0Hp6OjtuhZabe4Itu16kSt4FDPrLxeus7gR4Sy8BIYQQQgghhLhTpCglhJNsOb2FdclbsFxsi4tLIc0KXWme3RlL4RrsZOJaZCU3ww29VxFajwd0OuG75Pz5eFztJ/D9vQZlUwZe7NyJWn5SDBRCCCGEEEKIO0WKUkI4yWXLZXJzh8CFqrhQgLvSAVCozUYHBGXsQdk14N8QF28ZaPtOSTmfy9akYwS6wtYzLfGrGsPQR9ug01VydjQhhBBCCCGEqNCkKCWEk5yzWLFpauJCPjZfN6pe+JHC3DNo1QUAPPIvUGP5MtybN0dz1aC1ovyk/raYvUc/xVOdAyA9pyr16zeWgpQQQgghhBBC3AVSlBLCScxWC9hA43qJGj4L8M72RQEuv293L7Sir1YNjYtLWYcRt0kpRUrK+/joCh3r2tdvSe+mMtOeEEIIIYQQQtwN0v1CCCew2CxcsuSBXeHinorNnvf7FhcCCjzpcDQNU6FVxpK6g46mZ2K3FxekPtg3FGPgcgZ0ehaDToqAQgghhBBCCHE3SFFKiLvs+KXjdFzVka9SvgebQqOx4mrTFG/U6Kh2QYOp0IrGRWbduxOUspF8cjMzP5sHQJHdhcTMxvhXbopGo3FyOiGEEEIIIYR4cMjje0LcZQcyD5BrzUW56dHYFJ0v1KL6qSHAt4ArencdeaFd8LYcQeMqb9HylpGxlpO/vkJsw+LlQrsnA1uFyEx7QgghhBBCCHGXyW+8Qtxl+UUFFOXWppprV87k22icE4y9CCyARuOKpzaPfEMYWp08uncn5OYdB+BigTcF9qpEPDKY3kGNnZxKCCGEEEIIIR48UpQS4i775Jg3+WlDOQ74FNmw28xY7ecB8Mi7gKcd8i05aH1Mzg1aAX20JYW8zCTCveGnU23JNwzmuaDmzo4lhBBCCCGEEA8kKUoJcZcdNbsDuSi9nQ4Xv8eSneLY5mqzkqfxQFfHD/+B/ZwXsoKx2wv55ZeXcbnwCyHuWQDkWN2pU016owkhhBBCCCGEs0hRSoi7zFYEUIR3yDtUTfX9fa0rrrZCgi5dprCqD/Wmj8Ld092JKSuWS+a9ZJ7/jupXdT4b0LYT7RvVdV4oIYQQQgghhHjASVFKiLvkYOZBfr30K0U2X1x12SjXy7jaiotSPrputN3/AQB7w/R4n02nlmctZ8atUA78lgrAyctBrD3xFMuHRuHpWV9m2xNCCCGEEEIIJ5KilBB3gbnQzKBvB2G1F6FsH+BOEU1PReBadAIArU1xpFUDTnpVw1otGBcXFycnrhgKC8+x7/AcklN2UssHzuVV4ULRQ5hMDZwdTQghhBBCCCEeeFKUEuIuOJ9/niJ7ETqtAW2Rne4Zv1Gt0Afb79v1RRayAisTcjyN3n+fidZDxjoqD2fOrCL34qfU8ile9nSvwes9w52aSQghhBBCCCFEMSlKCXEX5BflU5jZmbxL7aiVfYjA7N2OgpRGaamd8jW7Quuid3NDYzQ6NWtFUlB4DoCD5+uTp2nLhCdGotN5OzmVEEIIIYQQQgiQopQQd0VKXj6Fl7uiKbLjqT0FgEbrg7mSls67fsErJ58C1yYE/r+X0Gi1Tk57/yssPMvqrZ9QkJ1ATS84eL4hXpV7SkFKCCGEEEIIIe4hUpQS4i7YdbkIbBr0VX7APWcHpPuicQ2g06FM/C7nA5DvYsQYEODkpBXD0aQ3CGAjeBUvX7aY6F67inNDCSGEEEIIIYQoQYpSQtxBNruNg+cP8ltOBtj0aPWZuNqKe0Jp0OFitwJQVEWHzcUVg8HgzLgVRkF+cW+0o1m1aVDjYf75l7F4uZucnEoIIYQQQgghxNWkKCXEHbQgcQEfHvyQHM/eaFRbNJoi3Ky64o0aV5TGxponovEpLKRVq1ZUr17duYHvc3a7Ytm2VAIKLuCmhf8mP8HHnWLwcvd0djQhhBBCCCGEEH8gRSkh7qDU7FSU0uCurYy9qJDYAw/hlvcbdk6CRgcaG4UGA21+S+Oh7t2dHfe+ZrFkseOXJRxNPkZQjYsAFNrcqeLp5uRkQgghhBBCCCGuRYpSQtxBZy+5kPPr62DzoPOlbegu78f++zZdkQ194VmgETqdzpkxK4RTp/6N5dKHRNYsXrYrF956oj3eRrm3QgghhBBCCHEvkqKUEHdQUlY9sHmAphCT/QIAyrUyAdpfCd/3GQWm4nGOKj32mDNjVgi5+WeA4nGk0DXkmbZR+PnVcnIqIYQQQgghhBDXI0UpIe6gc6omWs1lPOrOwnCxCuSCh6Y+zXbtBOCya/Fb0P+5gc6MeV8rLDzLvzevQpv3MyFesCO9GcHBz+Ln19jZ0a7LZrNhtVqdHUMIcR06nQ4XFxdnxxBCCCGEqPCkKCXEHaRsWrS6i2i1ubgW+QEKrdIUb9NAelAQVatWxdVV3oq36/CRiYS6JoBX8XJekTcd61RxbqjrUEqRkZHBpUuXnB1FCHEDPj4+BAQEoNFonB1FCCGEEKLCkt+EhShnFpuF575+jqSLySjbXILy0wlMNeFRULzdxQ7fRkXinpvLE6+/TuXgYOcGvs/l56cBkHyxFo1CHuLfI0Zh1Ls7OdW1XSlI+fv74+7uLr/sCnEPUkqRl5fHuXPnAAgMDHRyIiGEEEKIikuKUkKUsxRzCkeyjmCzVsI9J5fotO1o8QUUAK52DVadDr3Fin+1amjkEZHbYrMrlm5NoZolC50G/n34Gf772IB7tiBls9kcBanKlSs7O44QogxGoxGAc+fO4e/vL4/yCSGEEELcIVKUEqKcFdgKKDzfCUtmd3wtF9AC4IJWVxuNiw+GXD1Frq64+XhLQeo2FRSks/3AfH47kUZItRwArHYPKnu4OTnZ9V0ZQ8rd/d4smgkhSrryXrVarVKUEkIIIYS4Q7TODiBERZNnLaSosAEArvw+mLXWHatfA2pc0hCW+g02Fxd8o6KcmPL+dvLUMuw5/+HR6tvQahQ25cbMp9tj1N/7vzjKI3tC3B/kvSqEEEIIcedJTykhytnScwqrrh46t98w+S+F0z5ocCXwbAINkopn3bO5tEGn1zs56f3rcu5ZAA5khqN3b8qz7XviW6m6k1MJIYQQQgghhLgV0lNKiHJ2shA0doWL+wl09sLilRpXqp8sAqDAzQ00GgwGgxNT3p+UUkz+/ACbjx4HYPfZh8hUz+JbqY2Tk1VsgwcPRqPRoNFo0Ov11K5dm2nTplFUVPSnjvvjjz+i0Wju6myEKSkpDBgwgKCgIAwGA9WqVSM6OpqjR4+WaLdu3To6deqEyWTC3d2dFi1asGzZshJtUlNT0Wg0JCYm3vT533zzTerXr4+HhweVKlWiS5cu7Nixo8QxhwwZQmhoKEajkVq1ajF16lQsFkuZx01PT2fAgAHUrVsXrVbL2LFjbyrPTz/9RK9evQgKCkKj0bBmzZprtjty5Ai9e/fG29sbDw8PWrRoQVpammP7iy++SK1atTAajfj5+V3znu7atYvOnTvj4+NDpUqViIyMZP/+/dc837FjxzCZTPj4+JTbNQghhBBCiHuPFKWEKEeZeZnkFFnAptBoLbjYrjz+4YrFx4XD4eGkdupI8+bNadKkiVOz3m+UsrFn7zN08XmSJn6HAbBh4rH6/k5O9mCIiooiPT2dX3/9lfHjx/Pmm2/y7rvvOjuWw42KNlA8NlDXrl0xm818/vnnJCUlsWrVKho3blyiMPbBBx8QHR1Nu3bt2LFjBwcOHKB///4MHz6cV1555U/lrFu3LvPnz+fgwYNs2bKFmjVr0q1bNzIzMwE4evQodrudxYsXc+jQIebOncuiRYt47bXXyjxuYWEhfn5+vP766zRt2vSm8+Tm5tK0aVMWLFhw3TbHjx+nffv21K9fnx9//JEDBw7wxhtvlCisN2vWjKVLl3LkyBG+++47lFJ069YNm80GQE5ODlFRUdSoUYMdO3awZcsWTCYTkZGRjvHWrrBarTz77LN06NCh3K5BCCGEEELco5S4LrPZrABlNpudHUXcB5bsX6IaLWukgr9Zpeq/sVpFTX5evTChg4p7pqeaM+Al9fngYerdSW+oc/M+cHbU+1J+/mm1YWOY4/XDpqYqvyDd2bFuWn5+vjp8+LDKz893dpRbFhsbq6Kjo0us69q1q2rdurXKyspSMTExysfHRxmNRhUVFaWSk5Md7VJTU9Xjjz+ufHx8lLu7uwoPD1fr169XKSkpiuIpKR2v2NhYpZRS2dnZasCAAcrd3V0FBASoOXPmqE6dOqkxY8Y4jhsSEqKmTZumYmJilMlkcuybkJCg2rdvrwwGg6pWrZoaNWqUysnJUUoptW/fPgWo1NTU615rWlqa0ul0aty4caW2zZs3TwHq559/VkopxzXs27fv1m/q7678nNmwYcN128yaNUuFhobe9DH/eK9uFqC++OKLUuv79eunnnvuuVs61v79+xWgjh07ppRSateuXQpQaWlpjjYHDhxQgPr1119L7Pvqq6+q5557Ti1dulR5e3uXyzXcjrLes/L5oDS5J0IIIYS42s1+NpCeUkKUk73n9mK50B7tUSNPpKyly/FzhP/mVbxRo8PuotBZrbhU9nVu0PuQza5Yn1j8KJC50MSYTTNo+EgCBrcAJyd7cBmNRiwWC4MHD2b37t2sXbuW7du3o5SiR48ejt4vI0aMoLCwkJ9++omDBw/yzjvv4OnpSfXq1fnss88ASEpKIj09nffffx+AcePGsXXrVtauXUt8fDwJCQns3bu3VIa4uDiaNm3Kvn37eOONNzh+/DhRUVH06dOHAwcOsGrVKrZs2cLIkSMB8PPzQ6vVsnr1akcPnj9avXo1Vqv1mj2iXnzxRTw9PVm5cmW53EOLxcKSJUvw9vYus3eT2WzG19c53zfsdjvr16+nbt26REZG4u/vT6tWrcp8RC43N5elS5cSGhpK9erFY73Vq1ePypUr89FHH2GxWMjPz+ejjz6iQYMG1KxZ07HvDz/8wKeffiq9noQQQgghHhBSlBKinJw3ayk89zi6y8fwKcoCQOMSiNY1BL1rI9DmYqjshU90tJOT3l/sdgub98zmWMp8AC5bPLHYvank4eHkZH+eUoo8S9Fdfyml/lTmDRs28N1331GjRg3Wrl3LP//5Tzp06EDTpk1ZsWIFp0+fdhQt0tLSaNeuHY0bNyYsLIzHH3+cjh074uLi4ii0+Pv7ExAQgLe3N5cvX2b58uXExcXRuXNnGjVqxNKlS69ZRHrssccYP348tWrVolatWsycOZOBAwcyduxY6tSpQ9u2bZk3bx7/+te/KCgoIDg4mHnz5jFlyhQqVarEY489xt/+9jdOnDjhOGZycjLe3t4EBgaWOp9erycsLIzk5OTbvn9QPF6Vp6cnBoOBuXPnEh8fT5UqVa7Z9tixY3zwwQe8+OKLf+qct+vcuXPk5OTw97//naioKL7//nuefPJJnnrqKTZv3lyi7T/+8Q88PT3x9PTkm2++IT4+Hv3vEzqYTCZ+/PFH/u///g+j0Yinpyfffvst33zzDa6uxXOuXLhwgcGDB7Ns2TK8vLzu+rUKIYQQQoi7T2bfE6IcKKVILnoYAGPgalx/qVS8wfQobQ4uxsO8jcOd6mIKCUFbAYopd9P5C5tQlxfSvGrxssEQwJx+TdG53P819XyrjfAp39318x6eFom7/ta+/V8ppFitVux2OwMGDOCpp55i3bp1tGrVytGucuXK1KtXjyNHjgAwevRoXnrpJb7//nu6dOlCnz59yhxP7cSJE1itVlq2bOlY5+3tTb169Uq1bd68eYnl/fv3c+DAAVasWOFYp5TCbreTkpJCgwYNGDFiBIMGDeLHH3/k559/5tNPP+Xtt99m7dq1dO3a9abuhf4mZs5csWJFiULSN9984xgjKSIigsTERM6fP8+HH37IM888w44dO/D3Lzk+2unTp4mKiqJv374MGzbMsd7T09Px/8899xyLFi26YZ6EhAS6d+/uWF68eDEDBw684X52ux2A6OhoXn75ZQAeeughtm3bxqJFi+jUqZOj7cCBA+natSvp6enExcXxzDPPsHXrVgwGA/n5+QwZMoR27dqxcuVKbDYbcXFx9OzZk127dmE0Ghk2bBgDBgygY8eO5XoNQgghhBDi3iVFKSH+pFxrLj9fyCDTpTF6zqNX+UBxUapSjhXvrOIBjD18Q3joOr9sieuzFBbfvzM5VcnTduK5iGF4eAQ5OdWDJyIigoULF6LX6wkKCsLV1ZW1a9fecL+hQ4cSGRnJ+vXr+f7775k5cyazZ89m1KhRfzqTxx8KvDk5Obz44ouMHj26VNsaNWo4/t9kMtGrVy969erF9OnTiYyMZPr06XTt2pU6depgNps5c+YMQUEl/51ZLBaOHz9OZGTkDbP17t27RLEuODi4RO7atWtTu3ZtWrduTZ06dfjoo4+YPHmyo82ZM2eIiIigbdu2LFmypMSxr57t72Z7FDVv3rzEflWrVr2p/apUqYKrqyvh4eEl1jdo0IAtW7aUWOft7Y23tzd16tShdevWVKpUiS+++IJnn32WTz75hNTUVLZv345WW1xQ/uSTT6hUqRJffvkl/fv354cffmDt2rXExcUB/ysourq6smTJEp599tnbugYhhBBCCHHvkqKUEH+CudBM1GdRXNQGAeNpcXEXQQd8ft/qgquycamSN1ZXVzp17YmpWjUnpr3//Hf3SZKP/UIbfzhhromrbwweHmHOjlVujDoXDk+7cYHjTpz3Vl0ppFytQYMGFBUVsWPHDtq2bQsUP4KVlJRUoohRvXp1hg8fzvDhw5k8eTIffvgho0aNcvQ4uvrRvLCwMHQ6Hbt27XIUksxmM8nJydftQXPFI488wuHDh0vlLItGo6F+/fps27YNgKeffpqJEycye/ZsZs+eXaLtokWLyMvLY9CgQTc8rslkwmQy3VQGu91OYWGhY/n06dNEREQ4ZrS7UsS54lau7wqj0Xhb++n1elq0aEFSUlKJ9cnJyYSEhFx3P6UUSinHdeXl5aHVatFoNI42V5av9Mbavn17iX8LX375Je+88w7btm0jODj4tq9BCCGEEELcu6QoJcSfkJqdSo41B2Uw4Gu+QOtLuwF3ADRaEy62QjZ37ES1k6do7u7u3LD3GbM5kW0H1hDicQiAvCIjD/t53mCv+4tGo7nlx+juJXXq1CE6Opphw4axePFiTCYTkyZNIjg4mOjfx04bO3Ys3bt3p27duly8eJFNmzbRoEEDAEJCQtBoNKxbt44ePXpgNBoxmUzExsYyYcIEfH198ff3Z+rUqaUKGtcyceJEWrduzciRIxk6dCgeHh4cPnyY+Ph45s+fT2JiIlOnTiUmJobw8HD0ej2bN2/m448/ZuLEiUBxj6pZs2bxyiuvYDAYiImJQafT8eWXX/Laa68xffp0GjVqVOK8fyzYADRs2BCdTldiXW5uLjNmzKB3794EBgZy/vx5FixYwOnTp+nbty9QXJB69NFHCQkJIS4ujszMTMf+AQFlD+x/pRdRTk4OmZmZJCYmotfrS/VyulpOTg7Hjh1zLKekpJCYmIivr6+jKDhhwgT69etHx44diYiI4Ntvv+Wrr77ixx9/BIofuVy1ahXdunXDz8+PU6dO8fe//x2j0UiPHj0A6Nq1KxMmTGDEiBGMGjUKu93O3//+d1xdXYmIiABw/Lu4Yvfu3Wi12lL3+3auQQghhBBC3Jvu39+GhLgHFBYVouwu+NjrQ/bvgyVrjLgaWqPV1cA16yRFrq642orQysC9N81qNbNnb3961bQ61vVsWp92D1V3YipxLUuXLmXMmDE8/vjjWCwWOnbsyNdff+0oyNhsNkaMGMGpU6fw8vIiKiqKuXPnAsWPtL311ltMmjSJ559/nkGDBrFs2TLmzJnD8OHDefzxx/Hy8uLVV1/l5MmTGAyGMrM0adKEzZs389e//pUOHTqglKJWrVr069cPgGrVqlGzZk3eeustUlNT0Wg0juUr4yUBvPzyy4SFhTF79mzef/99cnNzAVi5ciX9+/cvdd5rrTt58iTV/tAz0sXFhaNHj7J8+XLOnz9P5cqVadGiBQkJCTRs2BCA+Ph4jh07xrFjx0rtf6MB6h9++GHH/+/Zs4dPPvmEkJAQUlNTr7vP7t27HUUhKJ75ECA2NpZly5YB8OSTT7Jo0SJmzpzJ6NGjqVevHp999hnt27cHwGAwkJCQwHvvvcfFixepWrUqHTt2ZNu2bY5xsurXr89XX33FW2+9RZs2bdBqtTz88MN8++231xxU/lbczDUIIYQQQoh7k0b9mWmYKrjs7Gy8vb0xm80yE5C4pp9O/cTgfx5C45pDLeN/idxZFY1LFWy+kQRnXqJm6td8H/UIzd3d6fnqqzfs6SGK5eQksWNnD6w2V3650ICIBqE0rPcqBsOf++XVmQoKCkhJSSE0NPSGxRVRUm5uLsHBwcyePZshQ4bc9fNnZWXRuXNnvLy8+Oabb3CXXo8PhLLes/L5oDS5J0IIIYS42s1+Nrj/p68SwomO51mxWarjos/E1Xal4KSjZeJaHt4/D6/cE6DR4NOunRSkbtLhM9m8+81OAM4X+DI/cRgNw+Pu64KUuDX79u1j5cqVHD9+nL179zpmWLvySODd5uvry4YNG+jcuTPbt293SgYhhBBCCCEqInl8T4g/YddlLRq7BrRWXC3FRSeNRoeLrQCbVktqjZpotdoSM2+J6zNn7+fAgb8Rqj8LQK7VHX+TG4bbGJhb3N/i4uJISkpCr9fTrFkzEhISqFKlitPyVK5cmSlTpjjt/EIIIYQQQlREUpQS4jYopTh+6TgZuZd52HyQRumnMdoDABtodORUdWdDZF/6+vvT+fnnMRqNzo58Xzh1cjl++n1QPCkb1arU45NhrZ0bStx1Dz/8MHv27HF2DCGEEEIIIcQdJkUpIW7Du7vf5d+H/81ljxiGX9yNTv1vQG6N1ge75gwAAY2bSEHqFlisWQBsTOtIx0aRRD7UE1fXijXjnhBCCCGEEEKIYjKmlBC3ITkrGQAdHo6ClMazK16GJtQ5exm4DIBP2zbOinhfKSoq4O0vP+fXM8UzGP5yvj5ePl1wdTU5OZkQQgghhBBCiDtFekoJcRvSL5jIS3seT9cgx7pcT2+a/raIoN/gl0YNcXFxwcVFxkK6GT/vjqWVabdjOb/InZAqHk5MJIQQQgghhBDiTpOeUkLchmOnWmHLr46r9yzHOs98Oy6ZxdOGF7m6ymN7t6Aw/wgA5kIfcGvBPwYPINhH7p8QQgghhBBCVGTSU0qI25Bvr4TO7Rh6TcHva1zxyy6i6oXi5YDatWnWu7fzAt5HLhdYUCoPDfDf1Gn856Wezo4khBBCCCGEEOIukKKUELfIphQuVhtPpWzFNzmweKVGh4vdQmrNENysRXSaNAkXTxmg+0b2/HaeoR9vIq6TAsDg5uXkREKI/8/encdFVe4PHP8My8CwC4IsIoLivuSS4h65gJZSmWZ4Cbtu9HNNK5cs1LTSUHPpunRNu/eqeTU1U8vQUnHJFdJcQA3SAHNBQfZh5vn9Qc51QhHLHNTv+/U6LznnPOc53+cMA8PXZxFCCCGEEOJ+kaSUEBVUZCjim7RvuFyYi2deId4FOdwYAWtlXQ0rfTGHWrakoVKSkKqA9PTPuHr2beI6GQDQG2zo2rCGhaMSQgghhBBCCHG/yJxSQlTQF2e+YOLuicQdmY9WXQFAY1UFrcsAbJ2ewbYkH4O1NVW6dLFwpA+Gy1e+RYPBtO9TrRP9WwdYMCJxOwMGDECj0aDRaNBqtdSuXZupU6dSUlLyp+rdsWMHGo2Ga9eu3ZtAKyA1NZXIyEh8fX2xt7enevXqREREcOrUKbNymzZtolOnTjg7O+Pg4MDjjz/O8uXLzcqkpaWh0WhISkqq8P0nT55MvXr1cHR0pEqVKnTp0oX9+/eb1Tlw4EACAwPR6XTUqlWL2NhYiouLy603MzOTyMhI6tSpg5WVFaNHj65QPAsXLqRJkya4uLjg4uJCmzZt+Oqrr0zns7KyGDFiBHXr1kWn01GjRg1GjhxJdna2qczy5ctN3x+/3y5evGgqV1RUxJtvvklAQAB2dnbUrFmTTz75xCyeDz/80HQvf39/Xn31VQoLCynPunXr6NatGx4eHnf9egghhBBCCMuSnlJCVNCFvAvorzXHWFgLZ4//QpoXaOxwKfgVt2s/4P/rDo4264ytra2lQ630jEZFfuE1AJb+2J/H6/ZidOMWlg1KlCs8PJxly5ZRVFTEli1bGDZsGLa2tkyYMMHSoQFQXFyMVqstt4xer6dr167UrVuXdevW4ePjwy+//MJXX31llhibP38+o0ePZty4cSxcuBCtVssXX3xBTEwMP/74I3FxcX84zjp16rBgwQKCgoIoKChgzpw5dOvWjTNnzuDp6cmpU6cwGo0sXryY2rVr8+OPPzJ48GDy8vLKvW9RURGenp5MmjSJOXPmVDie6tWr8/777xMcHIxSik8//ZSIiAgSExNp2LAhGRkZZGRkEBcXR4MGDfj555+JiYkhIyODtWvXAvDCCy8QHh5uVu+AAQMoLCzEy8vLdKxv3778+uuvLF26lNq1a5OZmYnRaDSdX7lyJePHj+eTTz6hbdu2pKSkmBKis2fPvm0b8vLyaN++PX379mXw4MEVbrsQQgghhKgElLit7OxsBajs7GxLhyIqgff3v6+Cpnyogj8YpZ5+t5WK6/uUmh05VO1q+7w6UbeeOhDSUsXGxqrvv//e0qFWetGf7FfLNrRX27YHqfAZs9SiHWcsHdJfrqCgQJ04cUIVFBRYOpS7Fh0drSIiIsyOde3aVYWEhKisrCwVFRWl3NzclE6nU+Hh4SolJcVULi0tTT399NPKzc1NOTg4qAYNGqjNmzer1NRUBZht0dHRSimlcnJyVGRkpHJwcFDe3t5q9uzZqlOnTmrUqFGmegMCAtTUqVNVVFSUcnZ2Nl2bkJCg2rdvr+zt7VX16tXViBEjVG5urlJKqcTERAWotLS027b13LlzytbWVo0ZM6bMuXnz5inA9B6/0YbExMS7f6i/ufF7Ztu2bbctM3PmTBUYGFjhOn//rO5WlSpV1D//+c/bnv/vf/+rtFqt0uv1tzx/8eJFZWtrq/71r3+Zjn311VfK1dVVXbly5bb1Dhs2TD355JNmx8aMGaPatWtXobjvxetxs/Les/L5oCx5JkIIIYS4WUU/G8jwPSEq6HSxIyXWAWis9NgYNb8dtcVgq9jTri3fdgjF2dmZwMBAi8ZZmRkMRRw4+Ax9q0fj75wBgJ3WhfbBVS0cmYUoBcV5939T6k+HrtPpKC4uZsCAARw6dIiNGzeyb98+lFL06NEDvV4PwLBhwygqKmLXrl0cO3aMGTNm4OTkhL+/P59//jkAycnJZGZmMnfuXADGjBnDnj172LhxI/Hx8SQkJHDkyJEyMcTFxdG0aVMSExN56623OHv2LOHh4fTu3ZujR4+yevVqdu/ezfDhwwHw9PTEysqKtWvXYjAYytQHsHbtWvR6Pa+99lqZc0OHDsXJyYlVq1b96ecHpb27lixZgqurK02bNr1tuezsbNzd3e/JPctjMBj47LPPyMvLo02bNuXG4+Ligo3NrTtb/+tf/8LBwYHnn3/edGzjxo20bNmSmTNn4ufnR506dXjttdcoKCgwlWnbti2HDx/mwIEDAPz0009s2bKFHj163KMWCiGEEEKIykaG7wlRQYf1tbAxGKiRnYNnnl3pQY0NRhvFddcq/K3EgN/YsZYNspLLzT3J9evHsLMu3bexqcLa4S9gY+Ns2cAsRZ8P7/re//tOzACt4x+6VCnF9u3b2bp1K927d2fDhg3s2bOHtm3bArBixQr8/f3ZsGEDffr04dy5c/Tu3ZvGjRsDEBQUZKrrRqLFy8sLNzc3AK5fv86nn37KypUr6dy5MwDLli3D17fsc3ryyScZe9N7btCgQfTv3980n1JwcDDz5s2jU6dOLFy4ED8/P+bNm8cbb7zBlClTaNmyJaGhofTv398UV0pKCq6urvj4+JS5n1arJSgoiJSUlD/07G7YtGkT/fr1Iz8/Hx8fH+Lj46la9daJ2TNnzjB//vw/NWTwTo4dO0abNm0oLCzEycmJ9evX06BBg1uWvXz5Mu+88w5Dhgy5bX1Lly4lMjISnU5nOvbTTz+xe/du7O3tWb9+PZcvX+b//u//uHLlCsuWLQMgMjKSy5cv0759e5RSlJSUEBMTw8SJE+9tg4UQQgghRKUhPaWEuIOswiy+OPMFuQYjT/yyg/BTV6l7/rckisYWo8aIja01bn37WDbQB0BJSQ4AGbnVGJcQS0jIzkc3IfWA2bRpE05OTtjb29O9e3deeOEFBgwYgI2NDa1btzaV8/DwoG7dupw8eRKAkSNHMm3aNNq1a0dsbCxHjx4t9z4//fQTer2eVq1amY65urpSt27dMmVbtmxptv/DDz+wfPlynJycTFtYWBhGo5HU1FSgtOfWhQsXWLFiBW3atGHNmjU0bNiQ+Pj4Cj+LO81dBaXJuZvjSEhIMJ0LDQ0lKSmJvXv3Eh4eTt++fc0mBL8hPT2d8PBw+vTpYzZX0s31xsTEVCjmhIQEs+tWrFhhOle3bl2SkpLYv38/r7zyCtHR0Zw4caJMHTk5OTz11FM0aNCAyZMn3/I++/bt4+TJkwwcONDsuNFoRKPRsGLFClq1akWPHj2YPXs2n376qam31I4dO3j33Xf5xz/+wZEjR1i3bh2bN2/mnXfeueMzFUIIIYQQDybpKSXEHUz/fjrf/PwNxe5D8Sk5B5SuuqexcsbGrikGq9M41auHY0iIhSOt3PaczuCbw/vo6AU5xc7kG7yw+4O9dR4atg6lvZYscd+7FBoaapr029fXFxsbGzZu3HjH6wYNGkRYWBibN2/mm2++4b333mPWrFmMGDHij0RuxtHR/PsnNzeXoUOHMnLkyDJla9SoYfra2dmZnj170rNnT6ZNm0ZYWBjTpk2ja9euBAcHk52dTUZGRpneWcXFxZw9e5awsLA7xtarVy+zZJ2fn59Z3LVr16Z27dqEhIQQHBzM0qVLzSaNz8jIIDQ0lLZt27JkyRKzum9eXc7FxeWOsUBpAu/m66pVq2b6+saKigAtWrTg4MGDzJ07l8WLF5vKXL9+nfDwcJydnVm/fv1tF3T45z//yWOPPUaLFuYLF/j4+ODn54erq6vpWP369VFK8csvvxAcHMxbb71FVFQUgwYNAqBx48bk5eUxZMgQ3nzzzXKfqRBCCCGEeDBJUkqIO8jMywTAJWsxNioAABtdJ+ypikv2OZQxX1bcu4Nr1w6R+/NLdPQqAiBf70BNj0c8IQWg0fzhYXT3241Eys3q169PSUkJ+/fvNw3fu3LlCsnJyWbDv/z9/YmJiSEmJoYJEybw8ccfM2LECFOPo5vndwoKCsLW1paDBw+aEknZ2dmkpKTQsWPHcmNs3rw5J06cKBNneTQaDfXq1WPv3r0APP/884wbN45Zs2Yxa9Yss7KLFi0iPz+fl1566Y71Ojs74+xcsV6ARqORoqIi0356ejqhoaG0aNGCZcuWYWVl3qn5btp3g06nq/B1v48nJyeHsLAw7Ozs2LhxI/b29re8Ljc3l//+97+89957Zc61a9eONWvWkJubi5OTE1A6VNLKyorq1asDkJ+fX6at1talY32VUnf1TIUQQgghxINBklJC3EFWtj2FF3pi7/0ldsUaQOFYcI22iaV/sCY+9pgkpe7g6rX92FiV/pGrlBVNaocx4OlWd7hKVHbBwcFEREQwePBgFi9ejLOzM+PHj8fPz4+IiAgARo8eTffu3alTpw5Xr17lu+++o379+gAEBASg0WjYtGkTPXr0QKfT4ezsTHR0NK+//jru7u54eXkRGxuLlZUVGo2mvHAYN24cISEhDB8+nEGDBuHo6MiJEyeIj49nwYIFJCUlERsbS1RUFA0aNECr1bJz504++eQTxo0bB5T2qJo5cyavvfYa9vb2REVFYWtryxdffMHEiROZNm0ajRo1MrtvcnJymVgaNmxY5udCXl4e06dPp1evXvj4+HD58mU++ugj0tPT6dOndPhveno6TzzxBAEBAcTFxXHp0iXT9d7e3uW2/0ZPqNzcXC5dukRSUhJarfa280MBTJgwge7du1OjRg2uX7/OypUr2bFjB1u3bgVKE1LdunUjPz+f//znP+Tk5JCTUzoM19PT05Q0Ali9ejUlJSX87W9/K3OfyMhI3nnnHV5++WWmTJnC5cuXef311/n73/9umnuqZ8+ezJ49m2bNmtG6dWvOnDnDW2+9Rc+ePc3u83tZWVmcO3eOjIzSXoc3Xg9vb+87PjMhhBBCCGFZkpQS4g7SrzTCuqgQuyKr31bdU1hrFJueegqjtRUFDg60cLj74VCPkpKS6wBs+7kTT7efTrvgspNIiwfTsmXLGDVqFE8//TTFxcV07NiRLVu2mBIyBoOBYcOG8csvv+Di4kJ4eDhz5swBSodfTZkyhfHjx/Pyyy/z0ksvsXz5cmbPnk1MTAxPP/00Li4uvPHGG5w/f/62PXRuaNKkCTt37uTNN9+kQ4cOKKWoVasWL7zwAgDVq1enZs2aTJkyhbS0NDQajWn/1VdfNdXz6quvEhQUxKxZs5g7dy55eXkArFq1in79+pW5762OnT9/3tQD6AZra2tOnTrFp59+yuXLl/Hw8ODxxx8nISGBhg0bAhAfH8+ZM2c4c+ZMmevVHVZNbNasmenrw4cPs3LlSgICAkhLS7vtNRcvXuSll14iMzMTV1dXmjRpwtatW+natSsAR44cYf/+/UDZHlqpqanUrFnTtL906VKee+4506T1N3NyciI+Pp4RI0bQsmVLPDw86Nu3L9OmTTOVmTRpEhqNhkmTJpGeno6npyc9e/Zk+vTp5bZ748aNvPzyy6b9G69HbGzsbee+EkIIIYQQlYNG3elT7iMsJycHV1dX0/LX4tFjVIpO0/5Jz+Mbsb7prVLNugNn6hQQoBQ1OnakRYsWt/xD7FFnNCpmbk3GvWQOtRy3seFMd4Y+NZ1Gfq53vvghU1hYSGpqKoGBgXdMrghzeXl5+Pn5MWvWrDITaN8PWVlZdO7cGRcXF7766iscJAn9SCjvPSufD8qSZyKEEEKIm1X0s4H0lBLiFkqMJcxLnMe567/ik+1klpDSWFdD+9vClR2iov7Q/C6PAqUU+4/Gob9yGBe3nwAoMujwdpWEjChfYmIip06dolWrVmRnZzN16lQA05DA+83d3Z1t27bx0UcfsW/fPjp37myROIQQQgghhHjYSFJKiFtIvJjIsh+XYdQ40dJYuhS9tX0rbOzblX6dewBA5pIqx/XrP5KftYi2Ny1g9nKH1lR1srNcUOKBERcXR3JyMlqtlhYtWpCQkEDVqlUtFo+Hhwdvv/22xe4vhBBCCCHEw0iSUkLcQk5xDsYSB+ytfXDgZ8ARDVoc8y9gbShGW3IG8DetHibK0uuzAMgqdON0bg9e7tCMatV6Wjgq8SBo1qwZhw8ftnQYQgghhBBCiL+Y1Z2LCPHoKdAXkp86ktwsb2xLfsvdamwIvLYUo+0OfgguXdFJklK3lno5jznfHAHgYn5Vzhc/g4/Pc1hZSc8yIYQQQgghhBClpKeUELdwIb8Iz7ximmRfwjO7NJFipTRcqu5BWrVAbKytCahenSpVqlg40sqnuDiLXT98htZQOsSxoERHbS8nC0clhBBCCCGEEKKykaSUELew45qOtllb8S8s4EaHQhulpdimdD6k1994Azs7mRvpVpJTJlNds5nqv80l1TKwJu1aBls2KCGEEEIIIYQQlY4kpYS4yfXi62w8u5GUawZqGAsBsNY2xMrGH7uSKhT9lpSSCc5vr7DwFwB+yg6gqmsAXRu+gq21jBQWQgghhBBCCGFOklJC3GR18mrmHplLicYbO2t7AKxtauNWqMEv4xtOVnPC2toaKytJstzK0t2puOVewk0La1N6EdXpWZycAiwdlhBCCCGEEEKISkj+shbiJpcLLmMo8MNGXcDaWHrMMf8KLRNn4Xt5P1n2VaSX1G0YjIp3t5xEGfMAKCixJ8DDwcJRCSGEEEIIIYSorO46KbVr1y569uyJr68vGo2GDRs23LZsTEwMGo2GDz/80Ox4VlYW/fv3x8XFBTc3NwYOHEhubq5ZmaNHj9KhQwfs7e3x9/dn5syZZepfs2YN9erVw97ensaNG7Nlyxaz80op3n77bXx8fNDpdHTp0oXTp0/fbZPFIyTjioaC8wMAsDFoSv9VRtI6PM+hJs0x2NhIUuoWsrOT2LuvE7M7jqOKfTYA7z4XQvvaVS0cmRBCCCGEEEKIyuquk1J5eXk0bdqUjz76qNxy69ev5/vvv8fX17fMuf79+3P8+HHi4+PZtGkTu3btYsiQIabzOTk5dOvWjYCAAA4fPswHH3zA5MmTWbJkianM3r17efHFFxk4cCCJiYk888wzPPPMM/z444+mMjNnzmTevHksWrSI/fv34+joSFhYGIWFhXfbbPGIuJxrDVbFAFgZ1W//GtjvZ82ZunUAcHCQ3j+/d+lyPMVF6Thp8wHQar1oU6c+Go3GwpGJe2HAgAFoNBo0Gg1arZbatWszdepUSkpK/lS9O3bsQKPRcO3atXsTaAWkpqYSGRmJr68v9vb2VK9enYiICE6dOmVWbtOmTXTq1AlnZ2ccHBx4/PHHWb58uVmZtLQ0NBoNSUlJFb7/5MmTqVevHo6OjlSpUoUuXbqwf/9+szoHDhxIYGAgOp2OWrVqERsbS3Fxcbn1ZmZmEhkZSZ06dbCysmL06NEVjumG999/H41GU+bas2fP8uyzz+Lp6YmLiwt9+/bl119/NSszffp02rZti4ODA25ubres/8b30M3bZ599Zjq/bt06unbtarpPmzZt2Lp16x3jXrduHd26dcPDw+OuXw8hhBBCCGFZd52U6t69O9OmTePZZ5+9bZn09HRGjBjBihUryvQqOXnyJF9//TX//Oc/ad26Ne3bt2f+/Pl89tlnZGRkALBixQqKi4v55JNPaNiwIf369WPkyJHMnj3bVM/cuXMJDw/n9ddfp379+rzzzjs0b96cBQsWAKW9pD788EMmTZpEREQETZo04V//+hcZGRnl9u4Sj7YThYH4F5zH95K9KSllo0rH8QW7u9O2bVt69uxpyRArpbyCawBsP9eBmUcm07bNdqytZXXCh0l4eDiZmZmcPn2asWPHMnnyZD744ANLh2Vyp6QNgF6vp2vXrmRnZ7Nu3TqSk5NZvXo1jRs3NkuMzZ8/n4iICNq1a8f+/fs5evQo/fr1IyYmhtdee+1PxVmnTh0WLFjAsWPH2L17NzVr1qRbt25cunQJgFOnTmE0Glm8eDHHjx9nzpw5LFq0iIkTJ5Zbb1FREZ6enkyaNImmTZvedVwHDx5k8eLFNGnSxOx4Xl4e3bp1Q6PR8O2337Jnzx6Ki4vp2bMnRqPRVK64uJg+ffrwyiuvlHufZcuWkZmZadqeeeYZ07ldu3bRtWtXtmzZwuHDhwkNDaVnz54kJiaWW2deXh7t27dnxowZd91uIYQQQghhYepPANT69evNjhkMBhUaGqo+/PBDpZRSAQEBas6cOabzS5cuVW5ubmbX6PV6ZW1trdatW6eUUioqKkpFRESYlfn2228VoLKyspRSSvn7+5vVq5RSb7/9tmrSpIlSSqmzZ88qQCUmJpqV6dixoxo5cuQt21NYWKiys7NN2/nz5xWgsrOz7/QoxEPgl+u/qP8b+ayK6/uU2fbf595SsbGx6ueff7Z0iJXSV8cy1LT/9FXbtgepwf8Yo9rP2G7pkCqlgoICdeLECVVQUGDpUO5adHR0mZ/JXbt2VSEhISorK0tFRUUpNzc3pdPpVHh4uEpJSTGVS0tLU08//bRyc3NTDg4OqkGDBmrz5s0qNTVVAWZbdHS0UkqpnJwcFRkZqRwcHJS3t7eaPXu26tSpkxo1apSp3oCAADV16lQVFRWlnJ2dTdcmJCSo9u3bK3t7e1W9enU1YsQIlZubq5RSKjExUQEqLS3ttm09d+6csrW1VWPGjClzbt68eQpQ33//vVJKmdrw+98zdyM7O1sBatu2bbctM3PmTBUYGFjhOn//rO7k+vXrKjg4WMXHx5e5duvWrcrKysrs9+C1a9eURqNR8fHxZepatmyZcnV1veV9bvWZ4U4aNGigpkyZUqGy9+L1uFl579kbr5t8PvgfeSZCCCGEuFlFPxvc84nOZ8yYgY2NDSNHjrzl+QsXLuDl5WV2zMbGBnd3dy5cuGAqU61aNbMyN/bvVObm8zdfd6syv/fee+/h6upq2vz9/e/YXvHg0xv1zDsyjxHbR1Alt3SSbo2VGxprL6ztmuHAdQDs7KTnz+9dv36cKxnvU8vtJwAMypFnm1W3cFQPDqUU+fr8+74ppf507DqdjuLiYgYMGMChQ4fYuHEj+/btQylFjx490Ov1AAwbNoyioiJ27drFsWPHmDFjBk5OTvj7+/P5558DkJycTGZmJnPnzgVgzJgx7Nmzh40bNxIfH09CQgJHjhwpE0NcXBxNmzYlMTGRt956i7NnzxIeHk7v3r05evQoq1evZvfu3QwfPhwAT09PrKysWLt2LQaD4ZbtWrt2LXq9/pY9ooYOHYqTkxOrVq36088PSnsXLVmyBFdX13J7N2VnZ+Pu7n5P7nkrw4YN46mnnqJLly5lzhUVFaHRaMx+/tnb22NlZcXu3bv/0L2qVq1Kq1at+OSTT8r9XjQajVy/fv0vbbsQQgghhLAsm3tZ2eHDh5k7dy5Hjhx5IOeSmTBhAmPGjDHt5+TkSGLqEXAw8yAfH/sYFDxWUppQsXUIp/HVjRT4pHE8oDSxKUmpsk6feQ9vm32mnyQzX+iMh0cdywb1ACkoKaD1ytb3/b77I/fjYPvH5kZTSrF9+3a2bt1K9+7d2bBhA3v27KFt27ZA6fBrf39/NmzYQJ8+fTh37hy9e/emcePGAAQFBZnqupFs8PLyMs1DdP36dT799FNWrlxJ586dgdIhX7ean/DJJ59k7Nixpv1BgwbRv39/05xIwcHBzJs3j06dOrFw4UL8/PyYN28eb7zxBlOmTKFly5aEhobSv39/U1wpKSm4urri4+NT5n5arZagoCBSUlL+0LO7YdOmTfTr14/8/Hx8fHyIj4+natVbLwpw5swZ5s+fT1xc3J+65+189tlnHDlyhIMHD97yfEhICI6OjowbN453330XpRTjx4/HYDCQmZl5V/eaOnUqTz75JA4ODnzzzTf83//9H7m5ubf9T6y4uDhyc3Pp27fvXbdLCCGEEEI8GO5pT6mEhAQuXrxIjRo1sLGxwcbGhp9//pmxY8dSs2ZNALy9vbl48aLZdSUlJWRlZeHt7W0q8/tJVG/s36nMzedvvu5WZX7Pzs4OFxcXs008/K4VXQMFNS67YVtS+pawMUK+Npf9nrXItXaiSpUqODs7WzbQSqi4+DIAu9Nbc8VmNO7u7S0ckfirbNq0CScnJ+zt7enevTsvvPACAwYMwMbGhtat/5dY8/DwoG7dupw8eRKAkSNHMm3aNNq1a0dsbCxHjx4t9z4//fQTer2eVq1amY65urpSt27dMmVbtmxptv/DDz+wfPlynJycTFtYWBhGo5HU1FSgtKfOhQsXWLFiBW3atGHNmjU0bNiQ+Pj4Cj8LrVZ7xzIrVqwwiyMhIcF0LjQ0lKSkJPbu3Ut4eDh9+/Yt83sRSudnDA8Pp0+fPgwePNh0/OZ6Y2JiKhRzQkKC2XUrVqzg/PnzjBo1ihUrVmBvb3/L6zw9PVmzZg1ffvklTk5OuLq6cu3aNZo3b46V1d19hHjrrbdo164dzZo1Y9y4cbzxxhu3nZds5cqVTJkyhf/+97+m3tXlPVMhhBBCCPFguqc9paKiosp0/w8LCyMqKoqXX34ZgDZt2nDt2jUOHz5MixYtAPj2228xGo2mP2zatGnDm2++iV6vN02UHh8fT926dalSpYqpzPbt281WCYqPj6dNmzYABAYG4u3tzfbt23nssceA0p5P+/fvv+NErOLRkl2YT72kttTOvYJtSenKjNZGI8U2pX94DnnySbzatsXa2tqSYVY6M74+RV3NZZxt4dtzHWjYoCcajTyju6Gz0bE/cv+dC/4F971boaGhLFy4EK1Wi6+vLzY2NmzcuPGO1w0aNIiwsDA2b97MN998w3vvvcesWbMYMWLEHwndjKOjo9l+bm4uQ4cOvWXPmxo1api+dnZ2pmfPnvTs2ZNp06YRFhbGtGnT6Nq1K8HBwWRnZ5ORkVGmd1ZxcTFnz54lLCzsjrH16tXLLFnn5+dnFnft2rWpXbs2ISEhBAcHs3TpUiZMmGAqk5GRQWhoKG3btjVbeRYwW12uov950rJlS7PrqlWrxvbt27l48SLNmzc3HTcYDOzatYsFCxZQVFSEtbU13bp14+zZs1y+fBkbGxvc3Nzw9vY26/X2R7Ru3Zp33nmHoqIis56on332GYMGDWLNmjVmnynKe6ZCCCGEEOLBdNdJqdzcXM6cOWPaT01NJSkpCXd3d2rUqIGHh4dZeVtbW7y9vU3/y12/fn3Cw8MZPHgwixYtQq/XM3z4cPr162f6AyAyMpIpU6YwcOBAxo0bx48//sjcuXOZM2eOqd5Ro0bRqVMnZs2axVNPPcVnn33GoUOHTB/ebyxrPW3aNIKDgwkMDOStt97C19fXbLUfIeJPpdE6M53/DTjVotWXUKS1Q6PR4NOhwwM5HPWvopQi8+JOjp3eRpN6uQDkl+io7eVk4cgePBqN5g8Po7vfbiRSbla/fn1KSkrYv3+/afjelStXSE5OpkGDBqZy/v7+xMTEEBMTw4QJE/j4448ZMWKEqcfRzfM7BQUFYWtry8GDB02JpOzsbFJSUujYsWO5MTZv3pwTJ06UibM8Go2GevXqsXfvXgCef/55xo0bx6xZs5g1a5ZZ2UWLFpGfn89LL710x3qdnZ0r3LvSaDRSVFRk2k9PTyc0NJQWLVqwbNmyMj2S7qZ9N+h0ujLXde7cmWPHjpkde/nll6lXrx7jxo0rk4i/McTw22+/5eLFi/Tq1euu47hZUlISVapUMUtIrVq1ir///e989tlnPPXUU2bl7+aZCiGEEEKIB8NdJ6UOHTpEaGioaf/GHEzR0dEsX768QnWsWLGC4cOH07lzZ6ysrOjduzfz5s0znXd1deWbb75h2LBhtGjRgqpVq/L2228zZMgQU5m2bduycuVKJk2axMSJEwkODmbDhg00atTIVOaNN94gLy+PIUOGcO3aNdq3b8/XX39922EK4tFSbCgm6WISxy5/RkNKh3Ta2T2Ba0ExNX/5ijONHLGxsZGE1O9cv36Mk8cH8nLD/x1bPrAzDau7WSwmYRnBwcFEREQwePBgFi9ejLOzM+PHj8fPz4+IiAgARo8eTffu3alTpw5Xr17lu+++o379+gAEBASg0WjYtGkTPXr0QKfT4ezsTHR0NK+//jru7u54eXkRGxuLlZXVHd+L48aNIyQkhOHDhzNo0CAcHR05ceIE8fHxLFiwgKSkJGJjY4mKiqJBgwZotVp27tzJJ598wrhx44DSHlUzZ87ktddew97enqioKGxtbfniiy+YOHEi06ZNM/s9A6UTtf9ew4YNTT19b8jLy2P69On06tULHx8fLl++zEcffUR6ejp9+vQBShNSTzzxBAEBAcTFxXHp0iXT9bcben7DjZ5Qubm5XLp0iaSkJLRarVmC8GbOzs5l2uLo6IiHh4fZ8WXLllG/fn08PT3Zt28fo0aN4tVXXzUbUnnu3DmysrI4d+4cBoPBFEvt2rVxcnLiyy+/5NdffyUkJAR7e3vi4+N59913zSaUX7lyJdHR0cydO5fWrVubFiXR6XS4urrett037puRkQH87/Xw9va+4zMTQgghhBAW9lcvA/ggk+WNH26jvh2lGi1vpEL+0VTF9X1KxfXtpVb2ma8yelVX6b0C1JS3JqkZM2ZYOsxK58KFL9W27UFq/VeN1Yf/jVBpaYstHdIDobzl5Su76OhoFRERcctzWVlZKioqSrm6uiqdTqfCwsJUSkqK6fzw4cNVrVq1lJ2dnfL09FRRUVHq8uXLpvNTp05V3t7eSqPRqOjoaKWUUjk5OSoyMlI5ODgob29vNXv2bNWqVSs1fvx403UBAQFqzpw5ZeI5cOCA6tq1q3JyclKOjo6qSZMmavr06UoppS5duqRGjhypGjVqpJycnJSzs7Nq3LixiouLUwaDwayeDRs2qA4dOihHR0cFKECtWrXKrExqaqrp3O+38+fPl4mtoKBAPfvss8rX11dptVrl4+OjevXqpQ4cOGAqs2zZstvWeSe3uiYgIOCO192sU6dOatSoUWbHxo0bp6pVq6ZsbW1VcHCwmjVrljIajWZloqOjb3n/7777Timl1FdffaUee+wx0+vStGlTtWjRIrPn3qlTp1vWceP74nZu98xiY2Pvqu2/V957Vj4flCXPRAghhBA3q+hnA41S92Bt8IdUTk4Orq6uZGdny6TnD6Ge63uSlpOGa64Nz+7yA40d/iXtaORWhZy0j/m6fTdcXFzMVmR81CmlOHhiGdd/nU7ixcasTxvJnvFPWjqsB0JhYSGpqakEBgZKb827lJeXh5+fH7NmzWLgwIH3/f5ZWVl07twZFxcXvvrqKxwcHowhl+LPKe89K58PypJnIoQQQoibVfSzwT1dfU+IB0lugRUll9phbbjxNrDB2ljMlmq/sPPx0rlrfj/85lGmlOKzvTtZf6B0xav8Eh3O9vd0rQQhAEhMTGTVqlWcPXuWI0eO0L9/fwDTkMD7zd3dnW3bttG5c2f27dtnkRiEEEIIIYR4GMlflOKRdeVCY4quV8fFIQUAjcYGK/Tk2hqA0v8Vv7EUuYD0jFV4Fb1Fl4DSfa2tCy+3q2nRmMTDKy4ujuTkZLRaLS1atCAhIcE00bYleHh48Pbbb1vs/kIIIYQQQjyMJCklHlm2+Xr6nz+De1FDjKQCNlipYsCap3v0wMfPTybJvUlu7ikA8vQ6bG29eSU8BlfXGhaOSjyMmjVrxuHDhy0dhhBCCCGEEOIvJsP3xCNp45kvaZy7D7e8UxhLUgGwxg6PnNLl0avXqIGfn1+ZJdEfZYaSPAA2/9SNbKdPcHVtZuGIhBBCCCGEEEI8yKSnlHik5OvzmXlwJrvSvye4pHR5eSubAGr8+hMBF/dh7a0FHkOr1Vo20Epm6pcn8Cr5mWBXKDTY42wvc20JIYQQQgghhPhzpKeUeKTszdjL56c/J+/KNWxKSr/9rWwDCXA0ktfJi/iQ0pXk7OzsLBlmpZJ55ST7Tn6NreYSAAUl9tTycrRwVEIIIYQQQgghHnTSU0o8UvL0eRgutSVPm4WN8UrpQY0NvzhWIcmjHgC+vr7odDoLRll55OQc5cQPz/Jay/8dm9SzBfW8ZblvIYQQQgghhBB/jiSlxCOlyFBEybUQ2mku43n9B+AaGmwxWIG1lYbX3xiHVqvFyko6EQLk5Z0FoLDEjqtFVWlUI5gGAU9YNighhBBCCCGEEA8FSUqJR0phSSGNcwp57LoNhkKFAqyMCr2NBq2dPfb29pYOsdJQSnH+SumQvR+v1GNr+ki+7fmEZYMSQgghhBBCCPHQkKSUeKSsP72TNhcvUqKU6Vjt1C1cCvaQyc1/Z+nuVI6cOE7vYCgsscfJXn5cCCGEEEIIIYS4d2SMknhkXCm4QuaFw1grBWjQGatS89I1/C+mUqC1x9ZWVpS7ITc3Gce8N+notw8AO60z0W1qWjYoYTEDBgxAo9Gg0WjQarXUrl2bqVOnUlJS8qfq3bFjBxqNhmvXrt2bQCsgNTWVyMhIfH19sbe3p3r16kRERHDq1Cmzcps2baJTp044Ozvj4ODA448/zvLly83KpKWlodFoSEpKqvD9J0+eTL169XB0dKRKlSp06dKF/fv3m9U5cOBAAgMD0el01KpVi9jYWIqLi8utNzMzk8jISOrUqYOVlRWjR4+ucEzp6en87W9/w8PDA51OR+PGjTl06JDp/M2v/40tPDzcrI6aNWuWKfP++++bzicnJxMaGkq1atWwt7cnKCiISZMmodfrzeq5du0aw4YNw8fHBzs7O+rUqcOWLVvKjX/dunV069YNDw+Pu349hBBCCCGEZUnXB/FI2Ju+l10J67E2aEoPaLR4G2rR2vY7iuvbccHTmxpOTpYNshJJT1+Fl/YA/NZ5rH/bNvj7V7dsUMKiwsPDWbZsGUVFRWzZsoVhw4Zha2vLhAkTLB0aAMXFxXfs7ajX6+natSt169Zl3bp1+Pj48Msvv/DVV1+ZJcbmz5/P6NGjGTduHAsXLkSr1fLFF18QExPDjz/+SFxc3B+Os06dOixYsICgoCAKCgqYM2cO3bp148yZM3h6enLq1CmMRiOLFy+mdu3a/PjjjwwePJi8vLxy71tUVISnpyeTJk1izpw5FY7n6tWrtGvXjtDQUL766is8PT05ffo0VapUMSt34/W/4VYrlE6dOpXBgweb9p2dnU1f29ra8tJLL9G8eXPc3Nz44YcfGDx4MEajkXfffRcofQ27du2Kl5cXa9euxc/Pj59//hk3N7dy25CXl0f79u3p27ev2f2FEEIIIUTlJ0kp8dDLLspm2PZhPHayGkH2DYFrgA02Wj2rmzxP1fNXaN+xE42aNLFwpJWHviQbgH0ZLWlY61n8/J6zcETC0uzs7PD29gbglVdeYf369WzcuJGYmBhGjRrFl19+SVFREZ06dWLevHkEBwcD8PPPPzN8+HB2795NcXExNWvW5IMPPqBBgwaEhoYCmBIg0dHRLF++nOvXrxMTE8OGDRtwcXHhjTfe4IsvvuCxxx7jww8/BEp75gwcOJDTp0+zYcMGnnvuOZYvX87u3buZMGEChw4domrVqjz77LO89957ODo6cvz4cc6ePcv27dsJCAgAICAggHbt2pnaef78ecaOHcvo0aNNyRKAsWPHotVqGTlyJH369KF169Z/6DlGRkaa7c+ePZulS5dy9OhROnfuTHh4uFkvpKCgIJKTk1m4cGG5SamaNWsyd+5cAD755JMKxzNjxgz8/f3NEk6BgYFlyt38+t+Os7PzbcsEBQURFBRk2g8ICGDHjh0kJCSYjn3yySdkZWWxd+9eU8/VmjVr3rENUVFRQGkvMyGEEEII8WCR4XvioXet6BrFRc745/6dVufDANBobLGiiBycCR0+iie7dMHLy8vCkVYehpJcAJKv1sbGoSNWVjLf1l9BKYUxP/++b+qmOdX+KJ1OR3FxMQMGDODQoUNs3LiRffv2oZSiR48epmFZw4YNo6ioiF27dnHs2DFmzJiBk5MT/v7+fP7550Dp0K7MzExTUmXMmDHs2bOHjRs3Eh8fT0JCAkeOHCkTQ1xcHE2bNiUxMZG33nqLs2fPEh4eTu/evTl69CirV69m9+7dDB8+HABPT0+srKxYu3YtBoPhlu1au3Yter2e1157rcy5oUOH4uTkxKpVq/7084PSnkFLlizB1dWVpk2b3rZcdnY27u7u9+Sev7dx40ZatmxJnz598PLyolmzZnz88cdlyu3YsQMvLy/q1q3LK6+8wpUrV8qUef/99/Hw8KBZs2Z88MEH5Q7vPHPmDF9//TWdOnUyi6VNmzYMGzaMatWq0ahRI959993bvlZCCCGEEOLBJz2lxEMvX59PcVZ7HA3OKJUHgI1Bj1fxIaADDjVqWDbASiSnUE/sF8dp4ZSJj650gnMHrbWlw3poqYICkpu3uO/3rXvkMBoHhz90rVKK7du3s3XrVrp3786GDRvYs2cPbdu2BWDFihX4+/uzYcMG+vTpw7lz5+jduzeNGzcGMOstcyPR4uXlZRqidf36dT799FNWrlxJ586dAVi2bBm+vr5lYnnyyScZO3asaX/QoEH079/fNJ9ScHAw8+bNo1OnTixcuBA/Pz/mzZvHG2+8wZQpU2jZsiWhoaH079/fFFdKSgqurq74+PiUuZ9WqyUoKIiUlJQ/9Oxu2LRpE/369SM/Px8fHx/i4+OpWrXqLcueOXOG+fPn/6khg+X56aefWLhwIWPGjGHixIkcPHiQkSNHotVqiY6OBkqH7j333HMEBgZy9uxZJk6cSPfu3dm3bx/W1qU/H0aOHEnz5s1xd3dn7969TJgwgczMTGbPnm12v7Zt23LkyBGKiooYMmQIU6dONYvl22+/pX///mzZsoUzZ87wf//3f+j1emJjY/+S9gshhBBCCMuSnlLiobfhzAaC1G5sspajz90IgGP+FWxsSoeoyQTnpZRS7D08mhYOr1BVexqAQoMd/u5/LHkhHi6bNm3CyckJe3t7unfvzgsvvMCAAQOwsbExG8rm4eFB3bp1OXnyJFCarJg2bRrt2rUjNjaWo0ePlnufn376Cb1eT6tWrUzHXF1dqVu3bpmyLVu2NNv/4YcfWL58OU5OTqYtLCwMo9FIamoqUNpz68KFC6xYsYI2bdqwZs0aGjZsSHx8fIWfRUVW6lyxYoVZHDcPUwsNDSUpKYm9e/cSHh5O3759uXjxYpk60tPTCQ8Pp0+fPmZzJd1cb0xMTIViTkhIMLtuxYoVABiNRpo3b867775Ls2bNGDJkCIMHD2bRokWma/v160evXr1o3LgxzzzzDJs2beLgwYPs2LHDVGbMmDE88cQTNGnShJiYGGbNmsX8+fMpKioyi2P16tUcOXKElStXsnnzZrNkm9FoxMvLiyVLltCiRQteeOEF3nzzTVMs5T1TIYQQQgjxYJKeUuKh99WZLTS4ZA2/9ZIC8LLL5Vqt0l4aFfkD81FQVJSJbdHX+DiW7iuseCsinDrVnMu/UPxhGp2OukcOW+S+dys0NNQ06bevry82NjZs3LjxjtcNGjSIsLAwNm/ezDfffMN7773HrFmzGDFixB8J3Yyjo6PZfm5uLkOHDmXkyJFlyta4qUeks7MzPXv2pGfPnkybNo2wsDCmTZtG165dCQ4OJjs7m4yMjDK9s4qLizl79ixhYWF3jK1Xr15myTo/Pz+zuGvXrk3t2rUJCQkhODiYpUuXmk0an5GRQWhoKG3btmXJkiVmdd+8upyLi8sdY4HSBN7N11WrVg0AHx8fGjRoYFa2fv36pqGVtxIUFETVqlU5c+aMqTfb77Vu3ZqSkhLS0tLMEor+/v4ANGjQAIPBwJAhQxg7dizW1tb4+Phga2tr6n11I5YLFy5QXFxc7jMVQgghhBAPJklKiYfWhbwLjN06ivz8XGxLSidStrZvTV3rXWj9q3BQ0xQ7OzvpKfWbEkNp0i5fb09S3pu81r0TOp380fdX0mg0f3gY3f12I5Fys/r161NSUsL+/ftNw/euXLlCcnKyWaLD39+fmJgYYmJimDBhAh9//DEjRowwJYRvnjMoKCgIW1tbDh48aEokZWdnk5KSQseOHcuNsXnz5pw4caJMnOXRaDTUq1ePvXv3AvD8888zbtw4Zs2axaxZs8zKLlq0iPz8fF566aU71uvs7Gy2+lx5jEajWY+i9PR0QkNDadGiBcuWLcPKyrxT89207wadTnfL69q1a0dycrLZsZSUFNNE8Lfyyy+/cOXKlVsOcbwhKSkJKyurcufqMxqN6PV6jEYj1tbWtGvXjpUrV2I0Gk1tTklJwcfHB61Wi1arrfAzFUIIIYQQDwZJSomH1r6MfWSl5dDx8t+omn0UuIKVlRs5ypNkVZsutV0IePJFs/+Vf5QZSn5LSpU4UGLdRBJS4o6Cg4OJiIhg8ODBLF68GGdnZ8aPH4+fnx8REREAjB49mu7du1OnTh2uXr3Kd999R/369YHSFdg0Gg2bNm2iR48e6HQ6nJ2diY6O5vXXX8fd3R0vLy9iY2OxsrJCo9GUG8+4ceMICQlh+PDhDBo0CEdHR06cOEF8fDwLFiwgKSmJ2NhYoqKiaNCgAVqtlp07d/LJJ58wbtw4oLRH1cyZM3nttdewt7cnKioKW1tbvvjiCyZOnMi0adNo1KiR2X1/n9QBaNiwYZmEd15eHtOnT6dXr174+Phw+fJlPvroI9LT0+nTpw9QmpB64oknCAgIIC4ujkuXLpmuv9Pqdzd6QuXm5nLp0iWSkpLQarVlekLd7NVXX6Vt27a8++679O3blwMHDrBkyRJT76zc3FymTJlC79698fb25uzZs7zxxhvUrl3b1GNs37597N+/n9DQUJydndm3bx+vvvoqf/vb30wrK65YsQJbW1saN26MnZ0dhw4dYsKECbzwwgum5/TKK6+wYMECRo0axYgRIzh9+jTvvvvuLXu+3SwrK4tz586RkZEB/O/18Pb2vuMzE0IIIYQQFqbEbWVnZytAZWdnWzoU8Qf858R/1Kvjp6kFQ7erWS8OVnF9n1ILouaoZYOj1Izp05QyGCwdYqXx0XenVeSC+Wrb9iC1fEM7NeOrk5YO6aFTUFCgTpw4oQoKCiwdyl2Ljo5WERERtzyXlZWloqKilKurq9LpdCosLEylpKSYzg8fPlzVqlVL2dnZKU9PTxUVFaUuX75sOj916lTl7e2tNBqNio6OVkoplZOToyIjI5WDg4Py9vZWs2fPVq1atVLjx483XRcQEKDmzJlTJp4DBw6orl27KicnJ+Xo6KiaNGmipk+frpRS6tKlS2rkyJGqUaNGysnJSTk7O6vGjRuruLg4Zfjdz4MNGzaoDh06KEdHRwUoQK1atcqsTGpqqunc77fz58+Xia2goEA9++yzytfXV2m1WuXj46N69eqlDhw4YCqzbNmy29Z5J7e6JiAg4I7Xffnll6pRo0bKzs5O1atXTy1ZssR0Lj8/X3Xr1k15enoqW1tbFRAQoAYPHqwuXLhgKnP48GHVunVr5erqquzt7VX9+vXVu+++qwoLC01lPvvsM9W8eXPT69KgQQP17rvvlnk/7N27V7Vu3VrZ2dmpoKAgNX36dFVSUlJu/Ld7ZrGxsXdse3nKe8/K54Oy5JkIIYQQ4mYV/WygUeoerA3+kMrJycHV1ZXs7OwKz9shKo+Pf1jK+fkZuOWloAzXQKNonF7A6eZ10QfVMa3Q9ajLytrD0vjF2FtdooFHCmev1cS39r95uknZ1c7EH1dYWEhqaiqBgYHY29tbOpwHSl5eHn5+fsyaNYuBAwfe9/tnZWXRuXNnXFxc+Oqrr3B4QIZcij+nvPesfD4oS56JEEIIIW5W0c8GsvqeeGgdyjiFc/4xlPEqaBQapahT4yyXqlSVeaRukpwSS3PPPTTwKF3mvmlAsCSkhEUlJiayatUqzp49y5EjR+jfvz+AaUjg/ebu7s62bdvo3Lkz+/bts0gMQgghhBBCPIxkTinxUDqWdJBfTp0nWBkBCMyy5ZcOHmwv8AGNlay4dxO9/hoAW9NCeal9S2rX6GXZgIQA4uLiSE5ORqvV0qJFCxISEqhatarF4vHw8ODtt9+22P2FEEIIIYR4GElSSjx05ifOp2iJCz3UEAqNCwBwy9ezrFonWmSeBSh3RahHjcGQD8D2c52YVKMf9vbSi0xYVrNmzTh8+LClwxBCCCGEEEL8xWT4nnjorEvZgLVyB0ChB8D1+jma/XKatof2MmTg3+nZs6clQ6wULl0v4uVl+zAaS5eiLzTY4aiVPLUQQgghhBBCiPtDklLioXMxvSVKY49SRjSUzuNvYzCgNRpo3NaAr38NrKzkW3/HiRR+ykgy7VdzdcPaSmO5gIQQQgghhBBCPFKkW4R4qCilKC5ww0ZpgBLTcWujwmBtjW7oZ5YLrhLJzk6kSl5f3m5j/O2INauHdrRoTEIIIYQQQgghHi2SlBIPFb1Rj0e+FYbcjRhUsem40mpQVlbY2stS7gDXrx9Hg5ESozUKHTX9e+HpbH/nC4UQQgghhBBCiHtEklLioaE36tmatpVmuQkY9f877kAxx59oDICtrUziDWAwFgBw4EJzjK5vEV63oYUjEkIIIYQQQgjxqJGklHgoFJQU8OK/n6XqTwH45jsBuVhrG5Jnf5git8f41dEJABsb+ZYH0OtLV9wrMmhx1VpbOBohhBBCCCGEEI8ime1ZPBTSr6fjk1KdZpdeoEq+BwA2mmr4Gzwp/i0h5e3tLROcA+M/P8qiHccBKDbY4SAr7gkhhBBCCCGEsAD5C108FAoNhajiYABKNKW9gKpn7kNvraN9wQGGRfdh0KBBlgyx0tiVnIaTbR4ABqWlRUAVC0ckKrsBAwag0WjQaDRotVpq167N1KlTKSkpufPF5dixYwcajYZr167dm0ArIDU1lcjISHx9fbG3t6d69epERERw6tQps3KbNm2iU6dOODs74+DgwOOPP87y5cvNyqSlpaHRaEhKSqrw/SdPnky9evVwdHSkSpUqdOnShf3795vVOXDgQAIDA9HpdNSqVYvY2FiKi4vLqRUyMzOJjIykTp06WFlZMXr06ArFYzAYeOutt8zu984776CUMpVZt24d3bp1w8PD47btPXv2LM8++yyenp64uLjQt29ffv3117tu19GjR+nQoQP29vb4+/szc+bMO7Zh165d9OzZE19fXzQaDRs2bKhQ24UQQgghhOVJUko8FNKv5eJo8APAQGnCxf3aWYqttXg9+waegQ1l6B5w/vynvBPyKh2qfw/AK6GNCAnysHBU4kEQHh5OZmYmp0+fZuzYsUyePJkPPvjA0mGZ3ClpA6DX6+natSvZ2dmsW7eO5ORkVq9eTePGjc0SY/PnzyciIoJ27dqxf/9+jh49Sr9+/YiJieG11177U3HWqVOHBQsWcOzYMXbv3k3NmjXp1q0bly5dAuDUqVMYjUYWL17M8ePHmTNnDosWLWLixInl1ltUVISnpyeTJk2iadOmFY5nxowZLFy4kAULFnDy5ElmzJjBzJkzmT9/vqlMXl4e7du3Z8aMGbesIy8vj27duqHRaPj222/Zs2cPxcXF9OzZE6PRWOF25eTk0K1bNwICAjh8+DAffPABkydPZsmSJeW2IS8vj6ZNm/LRRx9VuN1CCCGEEKKSUOK2srOzFaCys7MtHYq4g38f+U4tHDhczXpxgJrV52kV1/cptbv5Y2resGHq1KlTlg6v0vjh6Ctq2/YgtW17kPpux2PqWnaSpUN6ZBQUFKgTJ06ogoICS4dy16Kjo1VERITZsa5du6qQkBCVlZWloqKilJubm9LpdCo8PFylpKSYyqWlpamnn35aubm5KQcHB9WgQQO1efNmlZqaqgCzLTo6WimlVE5OjoqMjFQODg7K29tbzZ49W3Xq1EmNGjXKVG9AQICaOnWqioqKUs7OzqZrExISVPv27ZW9vb2qXr26GjFihMrNzVVKKZWYmKgAlZaWdtu2njt3Ttna2qoxY8aUOTdv3jwFqO+//14ppUxtSExMvPuH+psbv2e2bdt22zIzZ85UgYGBFa7z98+qPE899ZT6+9//bnbsueeeU/379y9T9nbt3bp1q7KysjL7XXnt2jWl0WhUfHz8be/9+3b94x//UFWqVFFFRUWmY+PGjVN169atUFuUUgpQ69evr3D58pT3npXPB2XJMxFCCCHEzSr62UB6SokHXubZbDISr5Ofm4EyXEJpFChFsaMD19zc0Gq1lg6x0igpKV1175Mf+9O89QFcXSreo0Lce0op9EWG+76pm4Zm/VE6nY7i4mIGDBjAoUOH2LhxI/v27UMpRY8ePdDrS5fAHDZsGEVFRezatYtjx44xY8YMnJyc8Pf35/PPPwcgOTmZzMxM5s6dC8CYMWPYs2cPGzduJD4+noSEBI4cOVImhri4OJo2bUpiYiJvvfUWZ8+eJTw8nN69e3P06FFWr17N7t27GT58OACenp5YWVmxdu1aDAbDLdu1du1a9Hr9LXtEDR06FCcnJ1atWvWnnx+U9u5asmQJrq6u5fZuys7Oxt3d/Z7c8/fatm3L9u3bSUlJAeCHH35g9+7ddO/evcJ1FBUVodFosLOzMx2zt7fHysqK3bt33/a637dr3759dOzY0exndlhYGMnJyVy9evVumiWEEEIIIR4QMp5JPNCS088S/0EajjhSqEr/yPQocmdOv45cP/ULVlZWeHjI8LQb9L8lpYoMttjbyKp7llZSbGTJqJ33/b5D5nbC1u6Pvf5KKbZv387WrVvp3r07GzZsYM+ePbRt2xaAFStW4O/vz4YNG+jTpw/nzp2jd+/eNG7cGICgoCBTXTcSEl5eXri5uQFw/fp1Pv30U1auXEnnzp0BWLZsGb6+vmViefLJJxk7dqxpf9CgQfTv3980n1JwcDDz5s2jU6dOLFy4ED8/P+bNm8cbb7zBlClTaNmyJaGhofTv398UV0pKCq6urvj4+JS5n1arJSgoyJTA+aM2bdpEv379yM/Px8fHh/j4eKpWrXrLsmfOnGH+/PnExcX9qXvezvjx48nJyaFevXpYW1tjMBiYPn06/fv3r3AdISEhODo6Mm7cON59912UUowfPx6DwUBmZuYtr7lVuy5cuEBgYKBZuWrVqpnOVaki898JIYQQQjxspKeUeKCtPPhfNGgo1hQCpZMue2SfpcllI0/98BWjRo7ExcXFskFWAkajYv9PV7iadx2AEmWHrbXGwlGJB8mmTZtwcnLC3t6e7t2788ILLzBgwABsbGxo3bq1qZyHhwd169bl5MmTAIwcOZJp06bRrl07YmNjOXr0aLn3+emnn9Dr9bRq1cp0zNXVlbp165Yp27JlS7P9H374geXLl+Pk5GTawsLCMBqNpKamAqU9ty5cuMCKFSto06YNa9asoWHDhsTHx1f4WVSk9+WKFSvM4khISDCdCw0NJSkpib179xIeHk7fvn25ePFimTrS09MJDw+nT58+DB482HT85npjYmIqFHNCQoLZdStWrADgv//9LytWrGDlypUcOXKETz/9lLi4OD799NMK1QulPdDWrFnDl19+iZOTE66urly7do3mzZvfcsXT27Xrj7ZBCCGEEEI8uKSnlHig5eQX4AXk2V5G99sxT30xTS78SqM6Oeh+633xqIs/+StD/32YqW2z8XMCKyt7NBpJSlmajdaKIXM7WeS+dys0NJSFCxei1Wrx9fXFxsaGjRs33vG6QYMGERYWxubNm/nmm2947733mDVrFiNGjPgjoZtxdHQ028/NzWXo0KGMHDmyTNkaNWqYvnZ2dqZnz5707NmTadOmERYWxrRp0+jatSvBwcFkZ2eTkZFRpndWcXExZ8+eJSws7I6x9erVyyxZ5+fnZxZ37dq1qV27NiEhIQQHB7N06VImTJhgKpORkUFoaCht27YtM9H3zavfVTTp3rJlS7PrbvRAev311xk/fjz9+vUDoHHjxvz888+89957REdHV6hugG7dunH27FkuX76MjY0Nbm5ueHt7m/WMu1O7vL29zVbsA0z73t7e1KxZ85ZtEEIIIYQQDy5JSokHWvpPvtQsPEKV7HQKAZTCYGODrYM1ur+vsXR4lUbW5S08U+sQVeyyAejzeG0LRyQANBrNHx5Gd7/dSKTcrH79+pSUlLB//37T8L0rV66QnJxMgwYNTOX8/f2JiYkhJiaGCRMm8PHHHzNixAhTj6Ob53cKCgrC1taWgwcPmhJJ2dnZpKSk0LFjx3JjbN68OSdOnCgTZ3k0Gg316tVj7969ADz//POMGzeOWbNmMWvWLLOyixYtIj8/n5deeumO9To7O+Ps7FyhGIxGI0VFRab99PR0QkNDadGiBcuWLSvT2+hu2neDTqe75XX5+fll6re2tjatmne3bgxD/Pbbb7l48SK9evUynbtTu9q0acObb76JXq/H1tYWgPj4eOrWrWsauvdH2i6EEEIIISovSUqJB1bixURccw5QUnDxt4F7oC0xkOXlgZOXF3g3smh8lUVBQTpehun0rPW/YxHN6lsuIPHQCA4OJiIigsGDB7N48WKcnZ0ZP348fn5+REREADB69Gi6d+9OnTp1uHr1Kt999x3165d+/wUEBKDRaNi0aRM9evRAp9Ph7OxMdHQ0r7/+Ou7u7nh5eREbG4uVldUde/eNGzeOkJAQhg8fzqBBg3B0dOTEiRPEx8ezYMECkpKSiI2NJSoqigYNGqDVatm5cyeffPIJ48aNA0p7VM2cOZPXXnsNe3t7oqKisLW15YsvvmDixIlMmzaNRo3Mf7YkJyeXiaVhw4amxMoNeXl5TJ8+nV69euHj48Ply5f56KOPSE9Pp0+fPkBp4uaJJ54gICCAuLg4Ll26ZLre29u73Pbf6EWUm5vLpUuXSEpKQqvVmiUIf69nz55Mnz6dGjVq0LBhQxITE5k9ezZ///vfTWWysrI4d+4cGRkZZu319vY2xbRs2TLq16+Pp6cn+/btY9SoUbz66qumYZcVaVdkZCRTpkxh4MCBjBs3jh9//JG5c+cyZ86cctudm5vLmTNnTPupqakkJSXh7u5u1kNOCCGEEEJUQn/9QoAPLlneuPLKyrmm3pw3R8XGjFFxfZ9SH/bpq/7x0pNq5ZheKjb2bfXpp59aOsRKIzv7B7Vte5D6cmt99a+vR6jz5/9j6ZAeSeUtL1/ZRUdHq4iIiFuey8rKUlFRUcrV1VXpdDoVFhamUlJSTOeHDx+uatWqpezs7JSnp6eKiopSly9fNp2fOnWq8vb2VhqNRkVHRyullMrJyVGRkZHKwcFBeXt7q9mzZ6tWrVqp8ePHm64LCAhQc+bMKRPPgQMHVNeuXZWTk5NydHRUTZo0UdOnT1dKKXXp0iU1cuRI1ahRI+Xk5KScnZ1V48aNVVxcnDIYDGb1bNiwQXXo0EE5OjoqQAFq1apVZmVSU1NN536/nT9/vkxsBQUF6tlnn1W+vr5Kq9UqHx8f1atXL3XgwAFTmWXLlt22zju51TUBAQHlXpOTk6NGjRqlatSooezt7VVQUJB68803VVFR0R1jio2NNZUZN26cqlatmrK1tVXBwcFq1qxZymg03nW7fvjhB9W+fXtlZ2en/Pz81Pvvv3/Hdn/33Xe3rPfG99MfVd57Vj4flCXPRAghhBA3q+hnA41S92Bt8IdUTk4Orq6uZGdny2TZlUh2UTbDFrxJm9PPUVKwj5LCfTgZqrEvpBEuRiPu+ddp06ZNheZ9eRRcvXqAI4kvkpnnRYbtMt4Ir2fpkB5JhYWFpKamEhgYiL29vaXDeaDk5eXh5+fHrFmzGDhw4H2/f1ZWFp07d8bFxYWvvvoKBweH+x6DuP/Ke8/K54Oy5JkIIYQQ4mYV/Wwgq++JB8756+exzSudiybf5ioAbtk/45WTTaO0n4nUn6Nr166WDLFSMRoLAdAbbNHZPhjzF4lHW2JiIqtWreLs2bMcOXKE/v37A5iGBN5v7u7ubNu2jc6dO7Nv3z6LxCCEEEIIIcTDSJJS4oFTUFKAc3Z1ADyvXgHATl9A9WtXcCm6TM0WAbdchvxRFH/iVyatPwRAkUGLTitJKfFgiIuLo2nTpnTp0oW8vDwSEhJMk2hbgoeHB2+//TadO3e2WAxCZGVl0b9/f1xcXHBzc2PgwIHk5uaWe01hYSHDhg3Dw8MDJycnevfubbbK4Q8//MCLL76Iv78/Op2O+vXrM3fu3L+6KUIIIYQQgEx0Lh5A6VcLoLg6Bv059JoCAGytSshxdqG+xzm0LWXY3g3/PXSenNzrAOiNttTzcrJwRELcWbNmzTh8+LClwxCi0unfvz+ZmZnEx8ej1+t5+eWXGTJkCCtXrrztNa+++iqbN29mzZo1uLq6Mnz4cJ577jn27NkDwOHDh/Hy8uI///kP/v7+7N27lyFDhmBtbc3w4cPvV9OEEEII8YiSpJR44Jy7ehX/qxvQ63PQ//Yd7NAASmxt0XYcCTVCLBtgJXHhwhe0qbISXC4A0LKmD23qelk4KiGEEH/EyZMn+frrrzl48CAtW7YEYP78+fTo0YO4uDh8fX3LXJOdnc3SpUtZuXIlTz75JPC/lRK///57QkJCzFZaBAgKCmLfvn2sW7dOklJCCCGE+MvJGCfxQDm2P43ULafR6PMA0BpsyHd1YJ9rBwAcnGRy1RtSTr9DgOMhAlx+AaCKS3ULRySEEOKP2rdvH25ubqaEFECXLl2wsrJi//79t7zm8OHD6PV6unTpYjpWr149atSoUe78aNnZ2bi7u5cbT1FRETk5OWabEEIIIcTdkqSUeGCk56az4z+nqHXpMTQYAKh/UUd8hxfwzrxCu7YhNGrUyMJRVh4lJaXD9tak9MKqylvUChpr4YiEEEL8URcuXMDLy7y3q42NDe7u7ly4cOG212i1Wtzc3MyOV6tW7bbX7N27l9WrVzNkyJBy43nvvfdwdXU1bf7+/hVvjBBCCCHEbyQpJR4Ycw/PRaO3AfSmY9UuH8VJX0zImQN07RqGTqezXICViNGoR6kSAHb90hZHt17Y2rpaOCohhBC/N378eDQaTbnbqVOn7kssP/74IxEREcTGxtKtW7dyy06YMIHs7GzTdv78+fsSoxBCCCEeLjKnlHhgXMzJJQArlCoGQKMUVhh5/FwytZ7MBY3GwhFWDoV6A18mneHGwItigy06W1l1TwghKqOxY8cyYMCAcssEBQXh7e3NxYsXzY6XlJSQlZWFt7f3La/z9vamuLiYa9eumfWW+vXXX8tcc+LECTp37syQIUOYNGnSHeO2s7PDzs7ujuWEEEIIIcojSSnxwCjYW4Wi7H+aegBZG4xgpcEaI9rH+1o4uspjY1IG079MZPYTYFQaSpQNLjp5qwshRGXk6emJp6fnHcu1adOGa9eucfjwYVq0aAHAt99+i9FopHXr1re8pkWLFtja2rJ9+3Z69+4NQHJyMufOnaNNmzamcsePH+fJJ58kOjqa6dOn34NWCSGEEEJUjAzfEw8M/4sXUMYcUPkAuBQWo7e3RWvvgOapDywcXeVxKecSXg6XATAqOyb2qE+Ah6OFoxJCCPFn1K9fn/DwcAYPHsyBAwfYs2cPw4cPp1+/fqaV99LT06lXrx4HDhwAwNXVlYEDBzJmzBi+++47Dh8+zMsvv0ybNm0ICSldqfbHH38kNDSUbt26MWbMGC5cuMCFCxe4dOmSxdoqhBBCiEeHJKXEAyHlago2mqsA2Nq1wd72Mn4OcLTV43To0MHC0VUeWVl7qMsLjG81FwCdnQNDOtaycFTiQTdgwADT3DZarZbatWszdepUSkpK/lS9O3bsQKPRcO3atXsTaAWkpqYSGRmJr68v9vb2VK9enYiIiDJz9mzatIlOnTrh7OyMg4MDjz/+OMuXLzcrk5aWhkajISkpqcL3nzx5MvXq1cPR0ZEqVarQpUsXs5XT0tLSGDhwIIGBgeh0OmrVqkVsbCzFxcXl1puZmUlkZCR16tTBysqK0aNHVyie69evM3r0aAICAtDpdLRt25aDBw+alcnNzWX48OFUr14dnU5HgwYNWLRokVmZoUOHUqtWLXQ6HZ6enrd8pufOneOpp57CwcEBLy8vXn/99dt+D+3ZswcbGxsee+yxO7Zh3bp1dOvWDQ8Pj7t+PR40K1asoF69enTu3JkePXrQvn17lixZYjqv1+tJTk4mPz/fdGzOnDk8/fTT9O7dm44dO+Lt7c26detM59euXculS5f4z3/+g4+Pj2l7/PHH72vbhBBCCPFokqSUqPR+SrzEl+/+iEeBMwA2OLPw6eYc8W5CD4cc2rVrZ+EIK4+cnB/QaIwYlQajssPbO8LSIYmHRHh4OJmZmZw+fZqxY8cyefJkPvig8vRQvFPSBkr/YO/atSvZ2dmsW7eO5ORkVq9eTePGjc0SY/PnzyciIoJ27dqxf/9+jh49Sr9+/YiJieG11177U3HWqVOHBQsWcOzYMXbv3k3NmjXp1q2bqVfKqVOnMBqNLF68mOPHjzNnzhwWLVrExIkTy623qKgIT09PJk2aRNOmTSscz6BBg4iPj+ff//43x44do1u3bnTp0oX09HRTmTFjxvD111/zn//8h5MnTzJ69GiGDx/Oxo0bTWVatGjBsmXLOHnyJFu3bkUpRbdu3TAYSldKNRgMPPXUUxQXF7N3714+/fRTli9fzttvv10mpmvXrvHSSy/RuXPnCrUhLy+P9u3bM2PGjAq3+0Hl7u7OypUruX79OtnZ2XzyySc4OTmZztesWROlFE888YTpmL29PR999BFZWVnk5eWxbt06s/mkJk+ejFKqzJaWlnYfWyaEEEKIR5YSt5Wdna0AlZ2dbelQHlmX8i+p2ZPXqAVDt6tZ/V5ScX2fUv98YZry+Wa7mjdoqLr8ZpSlQ6xUzpz5QG3bHqTGf/KymrstxdLhiJsUFBSoEydOqIKCAkuHcteio6NVRESE2bGuXbuqkJAQlZWVpaKiopSbm5vS6XQqPDxcpaT873svLS1NPf3008rNzU05ODioBg0aqM2bN6vU1FQFmG3R0dFKKaVycnJUZGSkcnBwUN7e3mr27NmqU6dOatSoUaZ6AwIC1NSpU1VUVJRydnY2XZuQkKDat2+v7O3tVfXq1dWIESNUbm6uUkqpxMREBai0tLTbtvXcuXPK1tZWjRkzpsy5efPmKUB9//33SillakNiYuLdP9Tf3Pg9s23bttuWmTlzpgoMDKxwnb9/VreTn5+vrK2t1aZNm8yON2/eXL355pum/YYNG6qpU6eWW+b3fvjhBwWoM2fOKKWU2rJli7KyslIXLlwwlVm4cKFycXFRRUVFZte+8MILatKkSSo2NlY1bdr0ju244V68Hjcr7z0rnw/KkmcihBBCiJtV9LOB9JQSldqms5u4mpMDgI0+G4D659fRNP0S3lmXsHaSuZJuZjAWAlAkK+49EJRS6AsL7/umlPrTset0OoqLixkwYACHDh1i48aN7Nu3D6UUPXr0QK/XAzBs2DCKiorYtWsXx44dY8aMGTg5OeHv78/nn38OlE68nJmZydy5pcNOx4wZw549e9i4cSPx8fEkJCRw5MiRMjHExcXRtGlTEhMTeeuttzh79izh4eH07t2bo0ePsnr1anbv3s3w4cOB0gmlraysWLt2rakHz++tXbsWvV5/yx5RQ4cOxcnJiVWrVv3p5welvbuWLFmCq6trub2bsrOzcXd3v+35P6qkpASDwYC9vb3ZcZ1Ox+7du037bdu2ZePGjaSnp6OU4rvvviMlJYVu3brdst68vDyWLVtGYGAg/v7+AOzbt4/GjRtTrVo1U7mwsDBycnI4fvy46diyZcv46aefiI2NvZdNFUIIIYQQlZQsySUqtZziHLzynTDoz6MonXvEPfA6rdNO4lolH+c2jS0cYeUxYd0xHApSaOsDxUYt9lpJSlV2JUVFzIt+/r7fd+Sna7H9XSKiopRSbN++na1bt9K9e3c2bNjAnj17aNu2LVA6542/vz8bNmygT58+nDt3jt69e9O4cel7NSgoyFTXjUSLl5eXabn669ev8+mnn7Jy5UrT8K1ly5aZJnK+2ZNPPsnYsWNN+4MGDaJ///6m+ZSCg4OZN28enTp1YuHChfj5+TFv3jzeeOMNpkyZQsuWLQkNDaV///6muFJSUnB1dcXHx6fM/bRaLUFBQaSkpPyhZ3fDpk2b6NevH/n5+fj4+BAfH0/VqlVvWfbMmTPMnz+fuLi4P3XPW3F2dqZNmza888471K9fn2rVqrFq1Sr27dtH7dq1TeXmz5/PkCFDqF69OjY2NlhZWfHxxx/TsWNHs/r+8Y9/8MYbb5CXl0fdunWJj49Hq9UCcOHCBbOEFGDav3DhAgCnT59m/PjxJCQkYGMjH0+EEEIIIR4F0lNKVFpGg5HCjByKstajz11DyW85ljT/mgB4PR6AdfPelguwkllz6DwaVQSA3mhHQ18XC0ckHiabNm3CyckJe3t7unfvzgsvvMCAAQOwsbExW47ew8ODunXrcvLkSQBGjhzJtGnTaNeuHbGxsRw9erTc+/z000/o9XpatWplOubq6krdunXLlG3ZsqXZ/g8//MDy5ctxcnIybWFhYRiNRlJTU4HSnlsXLlxgxYoVtGnThjVr1tCwYUPi4+Mr/CxuJFrKs2LFCrM4EhISTOdCQ0NJSkpi7969hIeH07dvXy5evFimjvT0dMLDw+nTpw+DBw82Hb+53piYmArFnJCQYHbdihUrAPj3v/+NUgo/Pz/s7OyYN28eL774IlZW//t4MH/+fL7//ns2btzI4cOHmTVrFsOGDWPbtm1m9+jfvz+JiYns3LmTOnXq0LdvXwoLCysUn8FgIDIykilTplCnTp1blinvmQohhBBCiAeT/FekqJQK8/SsmLIP+yvV0fM9YI1DUTEnatXEKUfPE8+0pkGnzlCBPw4fBRmZm5jcZjru9tcAGNutCXVqVLFsUOKObOzsGPnpWovc926FhoaycOFCtFotvr6+2NjYmE10fTuDBg0iLCyMzZs388033/Dee+8xa9YsRowY8UdCN+PoaD58Nzc3l6FDhzJy5MgyZWvUqGH62tnZmZ49e9KzZ0+mTZtGWFgY06ZNo2vXrgQHB5OdnU1GRkaZ3lnFxcWcPXuWsLCwO8bWq1cvs2Sdn5+fWdy1a9emdu3ahISEEBwczNKlS5kwYYKpTEZGBqGhobRt29ZsdTXAbHU5F5eKJZ9btmxpdt2NXkq1atVi586d5OXlkZOTg4+PDy+88IKp51hBQQETJ05k/fr1PPXUUwA0adKEpKQk4uLi6NKli6lOV1dXXF1dCQ4OJiQkhCpVqrB+/XpefPFFvL29OXDggFlMv/76KwDe3t5cv36dQ4cOkZiYaBpuaTQaUUphY2PDN998U+4zFUIIIYQQDyZJSolK6ddz1yjMKQFVOi+NjcaVNmeO8K9+A+j734/o0KmjJKRukp6xGh/H//W08KxSz4LRiIrSaDR/eBjd/XYjkXKz+vXrU1JSwv79+03D965cuUJycjINGjQwlfP39ycmJoaYmBgmTJjAxx9/zIgRI0w9jm6e3ykoKAhbW1sOHjxoSiRlZ2eTkpJSZrjY7zVv3pwTJ06UibM8Go2GevXqsXfvXgCef/55xo0bx6xZs5g1a5ZZ2UWLFpGfn89LL710x3qdnZ1xdnauUAxGo5GioiLTfnp6OqGhoaYV7W7utQTcVftu0Ol05V7n6OiIo6MjV69eZevWrcycORMoXbFQr9eXicHa2hqj0Xjb+tRvK7jdaFebNm2YPn06Fy9exMvLC4D4+HhcXFxo0KABtra2HDt2zKyOf/zjH3z77besXbuWwMBAHB0dK/xMhRBCCCHEg0GSUqJSen/PTBrRnTybDLSAa84vlNhYE3A1D1tKwEZn6RArlZKSfADWpvQi7qVRODrUtGxA4pEQHBxMREQEgwcPZvHixTg7OzN+/Hj8/PyIiIgAYPTo0XTv3p06depw9epVvvvuO+rXrw9AQEAAGo2GTZs20aNHD3Q6Hc7OzkRHR/P666/j7u6Ol5cXsbGxWFlZodFoyo1n3LhxhISEMHz4cAYNGoSjoyMnTpwgPj6eBQsWkJSURGxsLFFRUTRo0ACtVsvOnTv55JNPGDduHFDao2rmzJm89tpr2NvbExUVha2tLV988QUTJ05k2rRpNGrUyOy+ycnJZWJp2LAhtra2Zsfy8vKYPn06vXr1wsfHh8uXL/PRRx+Rnp5Onz59gNKE1BNPPEFAQABxcXFcunTJdL23t3e57b/REyo3N5dLly6RlJSEVqs1SxD+3tatW1FKUbduXc6cOcPrr79OvXr1ePnll4HSnlidOnXi9ddfR6fTERAQwM6dO/nXv/7F7NmzgdIhl6tXr6Zbt254enryyy+/8P7776PT6ejRowcA3bp1o0GDBkRFRTFz5kwuXLjApEmTGDZsGHa/9dz7/XP18vLC3t6+zPHfy8rK4ty5c2RkZAD/ez28vb3v+MyEEEIIIYRlSVJKVDoGo4EL136lvv4cbrm/kg/YGI1Yaayo9+s5tJoSsJLp0G5WYigA4NeCGpKQEvfVsmXLGDVqFE8//TTFxcV07NiRLVu2mBIyBoOBYcOG8csvv+Di4kJ4eDhz5swBSodfTZkyhfHjx/Pyyy/z0ksvsXz5cmbPnk1MTAxPP/00Li4uvPHGG5w/f77MKnG/16RJE3bu3Mmbb75Jhw4dUEpRq1YtXnjhBQCqV69OzZo1mTJlCmlpaWg0GtP+q6++aqrn1VdfJSgoiFmzZjF37lzy8vIAWLVqFf369Stz31sdO3/+PNWrVzc7Zm1tzalTp/j000+5fPkyHh4ePP744yQkJNCwYUOgtPfQmTNnOHPmTJnr77RqYrNmzUxfHz58mJUrVxIQEEBaWtptr8nOzmbChAn88ssvuLu707t3b6ZPn26WUPvss8+YMGEC/fv3Jysri4CAAKZPn26az8re3p6EhAQ+/PBDrl69SrVq1ejYsSN79+419YqytrZm06ZNvPLKK7Rp0wZHR0eio6OZOnVquW2qiI0bN5qSaPC/1yM2NpbJkyf/6fqFEEIIIcRfR6PuxdrgD6mcnBxcXV3Jzs6u8Lwd4s/LK87jjYn/R9D5K6Zj3tfysNe5ceyxpkRmfEmdJYctGGHlUVxi5NtTFzH+2gc7TQb/OPYan496xdJhiVsoLCwkNTWVwMDAOyZXhLm8vDz8/PyYNWsWAwcOvO/3z8rKonPnzri4uPDVV1/h4OBw32MQ919571n5fFCWPBMhhBBC3Kyinw2ku4moVHIuF7Bk9hZqZJUOubBWWjIcnVjUtD/HHmsKgGewJSOsXD4/8gsx/zlMflFpTw4ba/ljWTz4EhMTWbVqFWfPnuXIkSP0798fwDQk8H5zd3dn27ZtdO7cmX379lkkBiGEEEIIIR5GMnxPVCrJ+y+gTfNAU6LFALgWOzO7fS9aXsuhztV0qlcpoUrH4ZYOs1JQSqHPXk50gxSctaVJqQHtZIJz8XCIi4sjOTkZrVZLixYtSEhIoGrVqhaLx8PDg7ffftti9xdCCCGEEOJhJEkpUanoC0tX4cq3uYhdEXhkn6E4sBZ1v9nMs+0eR/f0EAtHWHlcv34MP+tP8ftt2hmNxpoujepYNigh7oFmzZpx+LAM0RVCCCGEEOJhJ0kpUWnoDXoyrl0AwKrkOgC2qgQAXV42Vq4ybu9mev01AK4WuqK3e5auTTtga1vFskEJIYQQQgghhBAVJEkpUWlM3h2L++5MrIrtsS/OxWAF1hqFV04Wrc4mYuv3rKVDrFQMxtIV9y4XuGPj3J+qHkEWjkgIIYQQQgghhKg4SUqJSuPimTO45+djBNMU/HleLjyXuIu2zX/EysnNgtFVLhdzCtmV/AtVgGKjFmettaVDEkIIIYQQQggh7oqsvicqjYK8fAA0Vq64lriysV4oWc6+PMNWXKzzQSdD0254+4vjfJH4EwB6gy2uOlsLRySEEEIIIYQQQtwdSUqJSmH9ogM0P9qtdMfKGS025DWqQZefvuexFq2h51xw9rZskJXIhZxCtNZ6APyqVOHJel4WjkgIIYQQQgghhLg7MnxPWFyJ3kBGUi7WBg0lgAYbtIYr2Bp0WDk4Qs8PLR1ipaGU4uixGEbU32Y61qRGNRy08lYWQgghhBBCCPFgkZ5SwuJ2ndhc+oUq7flT9cpJHK0NaA0lWEmyxYxSei5f3nbTEQ1uro9bLB4hhBBCCCGEEOKPkqSUsCi9Uc+m7e9jKD6JUf8zALaGEi7q3HEoLMTa2d7CEVYuBkOh6evXdk7Bu85OfH2ft2BE4lEwYMAANBoNGo0GrVZL7dq1mTp1KiUlJX+q3h07dqDRaLh27dq9CbQCUlNTiYyMxNfXF3t7e6pXr05ERASnTp0yK7dp0yY6deqEs7MzDg4OPP744yxfvtysTFpaGhqNhqSkpArff/LkydSrVw9HR0eqVKlCly5d2L9/v1mdAwcOJDAwEJ1OR61atYiNjaW4uLjcejMzM4mMjKROnTpYWVkxevToCsWza9cuevbsia+vLxqNhg0bNpQps27dOrp164aHh8cd26uUonv37reta/ny5TRp0gR7e3u8vLwYNmyY2fmtW7cSEhKCs7Mznp6e9O7dm7S0NLMyK1asoGnTpjg4OODj48Pf//53rly58qfbKYQQQggh7j9JSgmLytfn45KpQ5/3FcaSswDYGAxccPHm/5L+hUdHfwtHWLmcu5IFgFFpuFrkhqO9m2UDEo+M8PBwMjMzOX36NGPHjmXy5Ml88MEHlg7L5E5JGwC9Xk/Xrl3Jzs5m3bp1JCcns3r1aho3bmyWGJs/fz4RERG0a9eO/fv3c/ToUfr160dMTAyvvfban4qzTp06LFiwgGPHjrF7925q1qxJt27duHTpEgCnTp3CaDSyePFijh8/zpw5c1i0aBETJ04st96ioiI8PT2ZNGkSTZs2rXA8eXl5NG3alI8++qjcMu3bt2fGjBl3rO/DDz9Eo9Hc8tzs2bN58803GT9+PMePH2fbtm2EhYWZzqemphIREcGTTz5JUlISW7du5fLlyzz33HOmMnv27OGll15i4MCBHD9+nDVr1nDgwAEGDx78p9sphBBCCCEsQInbys7OVoDKzs62dCgPJaPRqGb+Z7GaNPTvKq7vU2r2Cy+q6f26q7+9PEVdeMZPqVgXpda/YukwK42fLuWqllOWq23bg9Tmb+qpgHGb1K85BZYOS1RQQUGBOnHihCooePBes+joaBUREWF2rGvXriokJERlZWWpqKgo5ebmpnQ6nQoPD1cpKSmmcmlpaerpp59Wbm5uysHBQTVo0EBt3rxZpaamKsBsi46OVkoplZOToyIjI5WDg4Py9vZWs2fPVp06dVKjRo0y1RsQEKCmTp2qoqKilLOzs+nahIQE1b59e2Vvb6+qV6+uRowYoXJzc5VSSiUmJipApaWl3bat586dU7a2tmrMmDFlzs2bN08B6vvvv1dKKVMbEhMT7/6h/ubG75lt27bdtszMmTNVYGBghev8/bOqKECtX7/+tufv1N7ExETl5+enMjMzy9SVlZWldDpdue1cs2aNsrGxUQaDwXRs48aNSqPRqOLiYqWUUh988IEKCgoyu27evHnKz8/vzg38zZ3aeUN571n5fFCWPBMhhBBC3Kyinw2kp5SwmF9Tc3BIqI1HnicA9hp/vveqQ6pXINYO9uAeBI1laNoNqZdzsdWUzrtlUFpebFUDTyc7C0cl/gylFMZiw33flFJ/OnadTkdxcTEDBgzg0KFDbNy4kX379qGUokePHuj1pd+rw4YNo6ioiF27dnHs2DFmzJiBk5MT/v7+fP755wAkJyeTmZnJ3LlzARgzZgx79uxh48aNxMfHk5CQwJEjR8rEEBcXR9OmTUlMTOStt97i7NmzhIeH07t3b44ePcrq1avZvXs3w4cPB8DT0xMrKyvWrl2LwWC4ZbvWrl2LXq+/ZY+ooUOH4uTkxKpVq/7084PS3l1LlizB1dW13N5N2dnZuLu735N7/lXy8/OJjIzko48+wtu77Eqp8fHxGI1G0tPTqV+/PtWrV6dv376cP3/eVKZFixZYWVmxbNkyDAYD2dnZ/Pvf/6ZLly7Y2toC0KZNG86fP8+WLVtQSvHrr7+ydu1aevTocd/aKoQQQggh7h2ZRVpYhFKKc4e/BHwp0RSgAbwu/cjV9gMIO3sAq+b9YOQ0S4dZqRQWl2BnUwRAFUdn3uvW2MIRiT9L6Y1kvL33vt/Xd2pbNFrrP3StUort27ezdetWunfvzoYNG9izZw9t27YFSuf78ff3Z8OGDfTp04dz587Ru3dvGjcu/X4NCgoy1XUj0eLl5YWbmxsA169f59NPP2XlypV07twZgGXLluHr61smlieffJKxY8ea9gcNGkT//v1N8ykFBwczb948OnXqxMKFC/Hz82PevHm88cYbTJkyhZYtWxIaGkr//v1NcaWkpODq6oqPj0+Z+2m1WoKCgkhJSflDz+6GTZs20a9fP/Lz8/Hx8SE+Pp6qVavesuyZM2eYP38+cXFxf+qef7VXX32Vtm3bEhERccvzP/30E0ajkXfffZe5c+fi6urKpEmT6Nq1K0ePHkWr1RIYGMg333xD3759GTp0KAaDgTZt2rBlyxZTPe3atWPFihW88MILFBYWUlJSQs+ePWVYnhBCCCHEA0p6SgmLWJOyhh+OrsdouIqeawA451+iwMMJp8JCNA5Olg2wkrlyJQHt5W5Maj0bAGtrmQBe3F+bNm3CyckJe3t7unfvzgsvvMCAAQOwsbGhdevWpnIeHh7UrVuXkydPAjBy5EimTZtGu3btiI2N5ejRo+Xe56effkKv19OqVSvTMVdXV+rWrVumbMuWLc32f/jhB5YvX46Tk5NpCwsLw2g0kpqaCpT23Lpw4QIrVqygTZs2rFmzhoYNGxIfH1/hZ6HVau9YZsWKFWZxJCQkmM6FhoaSlJTE3r17CQ8Pp2/fvly8eLFMHenp6YSHh9OnTx+zOZNurjcmJqZCMSckJJhdt2LFigpdVxEbN27k22+/5cMPP7xtGaPRiF6vZ968eYSFhRESEsKqVas4ffo03333HQAXLlxg8ODBREdHc/DgQXbu3IlWq+X555839e47ceIEo0aN4u233+bw4cN8/fXXpKWlmZ7DX9lOIYQQQghx70lPKWERqT+fwCalCFjGjT/vrI1GjFZWuOXmYOVY9g/QR1nW1d1o+N/Ke1WqtLNgNOJe0dha4Tu1rUXue7dCQ0NZuHAhWq0WX19fbGxs2Lhx4x2vGzRoEGFhYWzevJlvvvmG9957j1mzZjFixIg/EroZR0dHs/3c3FyGDh3KyJEjy5StUaOG6WtnZ2d69uxJz549mTZtGmFhYUybNo2uXbsSHBxMdnY2GRkZZXpnFRcXc/bsWbPJuW+nV69eZsk6Pz8/s7hr165N7dq1CQkJITg4mKVLlzJhwgRTmYyMDEJDQ2nbti1Lliwxq/vm1e9cXFzuGAuUJvBuvq5atWoVuq4ivv32W86ePWvq7XZD79696dChAzt27DD1PGvQoIHpvKenJ1WrVuXcuXMAfPTRR7i6ujJz5kxTmf/85z/4+/uzf/9+QkJCeO+992jXrh2vv/46AE2aNMHR0ZEOHTowbdq0v7SdQgghhBDi3pOklLjvTlw5wZHjCbRCB2jQKCsciwpwKiyh/85NNPzpJLomAy0dZqViMBQA8FVqZ5TTS8x6sr2FIxL3gkaj+cPD6O63G4mUm9WvX5+SkhL2799vGr535coVkpOTzZIP/v7+xMTEEBMTw4QJE/j4448ZMWKEqcfRzfM7BQUFYWtry8GDB02JpOzsbFJSUujYsWO5MTZv3pwTJ06UibM8Go2GevXqsXdv6TDK559/nnHjxjFr1ixmzZplVnbRokXk5+fz0ksv3bFeZ2dnnJ2dKxSD0WikqKjItJ+enk5oaCgtWrRg2bJlWFmZJxHvpn036HS6P3RdRYwfP55BgwaZHWvcuDFz5syhZ8+eQOmwOyidP6x69eoAZGVlcfnyZQICAoDSeal+31Zr69L3h9FoNJWxsbG5ZRml1F/aTiGEEEIIce9JUkrcd5t/2kxBYS6gw8qmOjrrGuxxLCHk9Cpedfs3micVmsBalg6z0kg8d5UfUzPw1UKe3gFXm4r1jBDirxYcHExERASDBw9m8eLFODs7M378ePz8/ExzC40ePZru3btTp04drl69ynfffUf9+vUBCAgIQKPRsGnTJnr06IFOp8PZ2Zno6Ghef/113N3d8fLyIjY2FisrKzQaTbnxjBs3jpCQEIYPH86gQYNwdHTkxIkTxMfHs2DBApKSkoiNjSUqKooGDRqg1WrZuXMnn3zyCePGjQNKe1TNnDmT1157DXt7e6KiorC1teWLL75g4sSJTJs2jUaNGpndNzk5uUwsDRs2NE3OfUNeXh7Tp0+nV69e+Pj4cPnyZT766CPS09Pp06cPUJqQeuKJJwgICCAuLo5Lly6Zrr/VBOI3u9FDKDc3l0uXLpGUlIRWqzVLEP5ebm4uZ86cMe2npqaSlJSEu7u7KSmYlZXFuXPnyMjIMGuvt7e32fZ7NWrUIDAwEIA6deoQERHBqFGjWLJkCS4uLkyYMIF69eoRGhoKwFNPPcWcOXOYOnUqL774ItevX2fixIkEBATQrFkzAHr27MngwYNZuHAhYWFhZGZmMnr0aFq1anXLecfupp1CCCGEEMIC/uJVAB9osrzxX+P9pYvUm8PGqri+T6nZ/UeofwyYo2rFblInG9ZRKtZFqQ+bKlVSbOkwK40+i/aq91c8p7ZtD1IvL3hDxW09ZemQxB9Q3vLylV10dLSKiIi45bmsrCwVFRWlXF1dlU6nU2FhYSolJcV0fvjw4apWrVrKzs5OeXp6qqioKHX58mXT+alTpypvb2+l0WhUdHS0UkqpnJwcFRkZqRwcHJS3t7eaPXu2atWqlRo/frzpuoCAADVnzpwy8Rw4cEB17dpVOTk5KUdHR9WkSRM1ffp0pZRSly5dUiNHjlSNGjVSTk5OytnZWTVu3FjFxcUpg8FgVs+GDRtUhw4dlKOjowIUoFatWmVWJjU11XTu99v58+fLxFZQUKCeffZZ5evrq7RarfLx8VG9evVSBw4cMJVZtmzZbeu8k1tdExAQUO4133333S2vu/FalBdTbGxsubGsX7/e7Fh2drb6+9//rtzc3JS7u7t69tln1blz58zKrFq1SjVr1kw5OjoqT09P1atXL3Xy5EmzMvPmzVMNGjRQOp1O+fj4qP79+6tffvnlT7fz98p7z8rng7LkmQghhBDiZhX9bKBR6h6sDf6QysnJwdXVlezs7ArP2yHKpy8ysHjUDgyFSZQUfIeVbR1s7HxZ3rwuq5aOp86OeHD0BGvbO1f2iAibs4tw3w9o4nmCKzZjCWs5GFcHeT4PmsLCQlJTUwkMDMTeXiaqvxt5eXn4+fkxa9YsBg68/0N7s7Ky6Ny5My4uLnz11Vc4ODjc9xjE/Vfee1Y+H5Qlz0QIIYQQN6voZwNZfU/cVxuSVqJBA6oYALfsn/m5Zj5VnIqxsrMGF19JSN3k5KmJDKn3GvXdS5eg71S3hiSkxEMvMTGRVatWcfbsWY4cOUL//v0BTEMC7zd3d3e2bdtG586d2bdvn0ViEEIIIYQQ4mEkc0qJ+yZfn89XW5fT+Ho9lOEqABrDdb5s+gTNfjqFnaf0PrhZSUkuGRmrcbO7cUSDo2OwJUMS4r6Ji4sjOTkZrVZLixYtSEhIoGrVqhaLx8PDg7ffftti9xdCCCGEEOJhJEkpcd+sO72O6j/bYSz52XRsS90OtEs9ylvnFuAX2daC0VU+BmOh6etp349lyYAwnJxkAnjx8GvWrBmHDx+2dBhCCCGEEEKIv5gM3xP3zdpTn2NbUrp0t71NEw671iOPKrz3w3ICXTKxcnC0cISVS3budQCKDFpScwJwdvSzcERCCCGEEEIIIcS9I0kpcV+cPXKRJ+NfwaGodIiePd78bNsQ/4IsbAtKlxnHqZoFI6xc0i7n0WfRdwAUG0rnkNLZWlsyJCGEEEIIIYQQ4p6SpJS4L37ZtRtrZWOa4LzK1VSuh/jQ7spxNNWCoftMaDPMwlFWHqcu5KChdPie3mhHeENvXHQy2lYIIYQQQgghxMND/soVfzmlFJd/OUFJoQOgByDoXDyFbs/hVJCPlV8DaD3UskFWIgZDASV58bSslgRAdXd3FvVoYdmghBBCCCGEEEKIe0ySUuIvd+KHvaSd/960r1GKQlstjkUFVM/IQKOrZ8HoKp/z55ejy4uje2Dpvo2Nk2UDEkIIIYQQQggh/gKSlBJ/ua1HN5Z+oXHAQW/gZ9sqHAly4N9vjcYaI3aB/pYNsJIpLCqdY+tCnhfKOoDHmv6fhSMSQgghhBBCCCHuvbueU2rXrl307NkTX19fNBoNGzZsMJ3T6/WMGzeOxo0b4+joiK+vLy+99BIZGRlmdWRlZdG/f39cXFxwc3Nj4MCB5ObmmpU5evQoHTp0wN7eHn9/f2bOnFkmljVr1lCvXj3s7e1p3LgxW7ZsMTuvlOLtt9/Gx8cHnU5Hly5dOH369N02WfwJ6bnp7D+3DwArG2+sbXV8FtiD4AsXqR32K8ERv2JXs4aFo6xcDIYCABLSQ/ghbwIeHh0tHJEQQgghhBBCCHHv3XVSKi8vj6ZNm/LRRx+VOZefn8+RI0d46623OHLkCOvWrSM5OZlevXqZlevfvz/Hjx8nPj6eTZs2sWvXLoYMGWI6n5OTQ7du3QgICODw4cN88MEHTJ48mSVLlpjK7N27lxdffJGBAweSmJjIM888wzPPPMOPP/5oKjNz5kzmzZvHokWL2L9/P46OjoSFhVFYWHi3zRZ/0Lcrf6TJuQ6/7dmiUGg0tjiX5GHvVoKNZzXwb2XRGCuTlF+vc+7KVaB01T2dVlbcE5Y3YMAANBoNGo0GrVZL7dq1mTp1KiUlJX+q3h07dqDRaLh27dq9CbQCUlNTiYyMxNfXF3t7e6pXr05ERASnTp0yK7dp0yY6deqEs7MzDg4OPP744yxfvtysTFpaGhqNhqSkpArff/LkydSrVw9HR0eqVKlCly5d2L9/v1mdAwcOJDAwEJ1OR61atYiNjaW4uLjcejMzM4mMjKROnTpYWVkxevToCsVT3n80VTRmgOnTp9O2bVscHBxwc3O75b3OnTvHU089hYODA15eXrz++utm30M3f5/dvDVs2NBU5r333uPxxx/H2dkZLy8vnnnmGZKTk+/YzorEJ4QQQggh7r+7Tkp1796dadOm8eyzz5Y55+rqSnx8PH379qVu3bqEhISwYMECDh8+zLlz5wA4efIkX3/9Nf/85z9p3bo17du3Z/78+Xz22WemHlUrVqyguLiYTz75hIYNG9KvXz9GjhzJ7NmzTfeaO3cu4eHhvP7669SvX5933nmH5s2bs2DBAqC0l9SHH37IpEmTiIiIoEmTJvzrX/8iIyPjlh+6xb2Xn1NMzhFbnIqdAdBobLCz0uFdy4ADCmKvwZiT4OJr2UAriUK9gWc/2sOJjEsAFBu1ONrJCFtROYSHh5OZmcnp06cZO3YskydP5oMPPrB0WCZ3StpAaW/erl27kp2dbfpPk9WrV9O4cWOzxNj8+fOJiIigXbt27N+/n6NHj9KvXz9iYmJ47bXX/lScderUYcGCBRw7dozdu3dTs2ZNunXrxqVLpe/7U6dOYTQaWbx4McePH2fOnDksWrSIiRMnlltvUVERnp6eTJo0iaZNm1Y4nvL+o6miMUPp8+/Tpw+vvPLKLeswGAw89dRTFBcXs3fvXj799FOWL1/O22+/bSozd+5cMjMzTdv58+dxd3enT58+pjI7d+5k2LBhfP/998THx6PX6+nWrRt5eXnltvNO8QkhhBBCCAtRfwKg1q9fX26Z+Ph4pdFoVHZ2tlJKqaVLlyo3NzezMnq9XllbW6t169YppZSKiopSERERZmW+/fZbBaisrCyllFL+/v5qzpw5ZmXefvtt1aRJE6WUUmfPnlWASkxMNCvTsWNHNXLkyAq1Lzs7WwGm2MXdOXh0r1owdLua+7dYFdf3KbWyWzf1/msjVOd/rVUnWj9m6fAqnfSr+Spg3CY1/7/hatv2IDV97Yfqp0u5lg5L3CMFBQXqxIkTqqCgwNKh3LXo6OgyP5O7du2qQkJCVFZWloqKilJubm5Kp9Op8PBwlZKSYiqXlpamnn76aeXm5qYcHBxUgwYN1ObNm1VqaqoCzLbo6GillFI5OTkqMjJSOTg4KG9vbzV79mzVqVMnNWrUKFO9AQEBaurUqSoqKko5Ozubrk1ISFDt27dX9vb2qnr16mrEiBEqN7f0fZSYmKgAlZaWdtu2njt3Ttna2qoxY8aUOTdv3jwFqO+//14ppUxt+P3vmbtx4/fMtm3bbltm5syZKjAwsMJ1/v5ZVVRFfqcrVX7My5YtU66urmWOb9myRVlZWakLFy6Yji1cuFC5uLiooqKiW95n/fr1SqPRlPt6Xbx4UQFq586dd4y7vPhupbz3rHw+KEueiRBCCCFuVtHPBnfdU+puFBYWMm7cOF588UVcXFwAuHDhAl5eXmblbGxscHd358KFC6Yy1apVMytzY/9OZW4+f/N1tyrze0VFReTk5Jht4o/J1+ez6j/vUHhtIfriRACy/HTM7/Y3ap4/h1Y6AJVx8eJm+tZZj6/TrwAM7lifwKqOFo5K/JWUUhQXF9/3TSn1p2PX6XQUFxczYMAADh06xMaNG9m3bx9KKXr06IFerwdg2LBhFBUVsWvXLo4dO8aMGTNwcnLC39+fzz//HIDk5GQyMzOZO3cuAGPGjGHPnj1s3LiR+Ph4EhISOHLkSJkY4uLiaNq0KYmJibz11lucPXuW8PBwevfuzdGjR1m9ejW7d+9m+PDhAHh6emJlZcXatWsxGAy3bNfatWvR6/W37BE1dOhQnJycWLVq1Z9+flDae2fJkiW4urqW27spOzsbd3f3e3LPP6uiMf/evn37aNy4sdnv5LCwMHJycjh+/Pgtr1m6dCldunQhICDgtvVmZ2cDVJrnI4QQQggh7s5flhrQ6/X07dsXpRQLFy78q25zT7333ntMmTLF0mE8FP59/D+4XbACVWA6ttWjPc9/8wX9t32NpopkpQCMxmJ+/nkJ13OPc+XSN4TV/N85W1v5I+thp9freffdd+/7fSdOnIhWq/1D1yql2L59O1u3bqV79+5s2LCBPXv20LZtW6B0+LW/vz8bNmygz/+zd99xVZf948dfh3GYBxAcDBVFcODKkQvN0BQ0kcocaailJvft3qOSNMpU1G+OW7O70Pt3o5lmZqgZmSaOnDgSBVEIxS0Csse5fn+Q5/aEAo5E7f18PM7jwefzucb7+hzgfLi4Ru/eJCcn06tXLxo3bgyAh4eHoazbHQlVq1Y1rPNz69YtVq1axerVq+ncuTMA4eHhuLqWnObbqVMnJkyYYDgeOnQoAwYMMKyn5OXlxaJFi+jYsSPLli3Dzc2NRYsWMXnyZGbOnEnLli3x9fVlwIABhrji4+Oxt7fHxcWlRH1arRYPDw/i4+Mf6N7dFhkZSb9+/cjOzsbFxYWoqCgqV65817QJCQksXryYsLCwh6rzYd1PzHdTnn823enixYts3bqV1atX37NMvV7P2LFj8fHxoVGjRuWORQghhBBCPDn+kpFStzukfv/9d6KiogyjpACcnZ25evWqUfrCwkJSU1NxdnY2pLly5YpRmtvHZaW58/qd+e6W5s+mTZtGenq64XX+/Pn7arcolnD4Knkr3LHOswbA3qQNW93roAosGRa5AducbKw9qlRwlBUrPT2GlJSviDk6mHOJC7l27UfDtQNXu1Ov7kzs7ZtXYIRCGIuMjMTW1hZLS0u6detG3759GTx4MGZmZrRu3dqQzsnJiXr16nHq1CkARo8eTWhoKD4+PoSEhHD8+PFS6zl37hwFBQW0avW/DRDs7e2pV69eibQtW7Y0Oj527BgrV67E1tbW8PLz80Ov15OYmAgUj9y6fPkyERERtG3blnXr1tGwYUOioqLKfS/K06EXERFhFEd0dLThmq+vL0ePHmXv3r34+/vTp0+fEp+LACkpKfj7+9O7d2+GDRtmOH9nucHBweWKOTo62ihfREREufLdb8yPyqpVq3BwcOCVV165Z5oRI0bw22+/8dVXXxnOBQcHG7VTCCGEEEI82R75cJXbHVJnzpxhx44dODk5GV1v27YtaWlpHD58mBYtWgDw888/o9frDX/YtG3blnfffZeCggLMzc0BiIqKol69elSqVMmQZvv27UY7DEVFRdG2bVsAateujbOzM9u3b+e5554Dinf1279//z0XOrWwsMDCwuKR3Yu/q98PnsFUb06BygPAMf0GN6q1pkFeCu4dbmDpWIBZ9yEVHOXjp9cXkJFxjNzci5yMHVfi+ndn/TlwqQWt6zajevVmFRCheNzMzc3LXMD6r6r3fvn6+rJs2TK0Wi2urq6YmZmxadOmMvMNHToUPz8/Nm/ezI8//sjs2bOZP38+o0aNepDQjdjYGE9vzczMZPjw4YwePbpE2po1axq+1ul0BAQEEBAQQGhoKH5+foSGhtKlSxe8vLxIT0/n4sWLJUZn5efnc/bsWfz8/MqMrWfPnkaddW5ubkZxe3p64unpSZs2bfDy8uKLL75g2rRphjQXL17E19eXdu3aGe08Cxjt9nfnP31K07JlS6N8fx61VJbyxFwaZ2dnDhw4YHTuz/9suk0pxZdffklQUNA9OwBHjhxp2L23evXqhvOzZs166MXohRBCCCHE43PfnVKZmZkkJCQYjhMTEzl69CiOjo64uLjw+uuvc+TIESIjIykqKjIMy3d0dESr1dKgQQP8/f0ZNmwYy5cvp6CggJEjR9KvXz/DHwD9+/dn5syZDBkyhClTpvDbb7/x6aefsnDhQkO9Y8aMoWPHjsyfP5+XX36Zr776ikOHDhke3jUaDWPHjiU0NBQvLy9q167N+++/j6ura6n/eRUPR6/0pF1LRl9kChSv2VLn9x/Ja9CeyrkZmDduiZnPK9C0b4XG+TgVFeWQmRXP2bPzuHlzn9G1mKuNyC20ZENCDxrVrMeiIE+a1rCvoEjF46bRaB54Gt3jdrtT4k4NGjSgsLCQ/fv3G6bv3bhxg7i4OLy9vQ3patSoQXBwMMHBwUybNo3PP/+cUaNGGdp+5/pOHh4emJubc/DgQUNHUnp6OvHx8bzwwgulxti8eXNiY2NLxFkajUZD/fr12bt3LwCvv/46U6ZMYf78+cyfP98o7fLly8nOzmbgwIFllqvT6dDpdOWKQa/Xk5eXZzhOSUnB19eXFi1aEB4ejomJ8aDm+2nfbVZWVg+U717+HHNZ2rZty0cffcTVq1cN60reHkl95/cKFO+wl5CQwJAhJf95oZRi1KhRfPvtt+zcuZPatWsbXa9atWqJdSuFEEIIIcST6747pQ4dOoSvr6/hePz48QAMGjSIDz74wPCf89ujk27bsWMHL774IlA8rWHkyJF07twZExMTevXqxaJFiwxp7e3t+fHHHxkxYgQtWrSgcuXKzJgxg3feeceQpl27dqxevZr33nuP6dOn4+XlxcaNG43WlZg8eTJZWVm88847pKWl0b59e3744QcsLS3vt9minL44+jm3Tm5Dqf9tz26m13OraRV8I46gebU9tH6nlBKePTFHB5GeftjoXHKGG5sTu3LoSjNm9mzI9AZm9GjigqW5aQVFKcT98/LyIjAwkGHDhvHZZ5+h0+mYOnUqbm5uBAYGAjB27Fi6detG3bp1uXnzJjt27KBBgwYAuLu7o9FoiIyMpHv37lhZWaHT6Rg0aBCTJk3C0dGRqlWrEhISgomJCRqNptR4pkyZQps2bRg5ciRDhw7FxsaG2NhYoqKiWLJkCUePHiUkJISgoCC8vb3RarX88ssvfPnll0yZMgUoHlE1d+5cJk6ciKWlJUFBQZibm/Pdd98xffp0QkNDS6xfFBcXVyKWhg0blhiRlpWVxUcffUTPnj1xcXHh+vXrLF26lJSUFHr37g0Ud0i9+OKLuLu7ExYWxrVr1wz57zX1/LbbI6EyMzO5du0aR48eRavVluj0uVNp/2iqWbNmuWIGSE5OJjU1leTkZIqKigyxeHp6YmtrS9euXfH29iYoKIi5c+dy+fJl3nvvPUaMGFFihPIXX3xB69at77pO1IgRI1i9ejXfffcdOp3O8I8ve3t7rKys7tnOsuITQgghhBAV5K/eBvBpJtsb35+k9CT12qruKqzPyyqsz8tq4es91IrufmrGyImq0//7Rv3csaMq+GlRRYf5WFy89K36ZVcLFbW9nvppu4f6abuH2vRDQ/Xp192U17QNqnHID2rlnkR1MS27okMVj0lp28s/6QYNGqQCAwPvei01NVUFBQUpe3t7ZWVlpfz8/FR8fLzh+siRI1WdOnWUhYWFqlKligoKClLXr183XJ81a5ZydnZWGo1GDRo0SCmlVEZGhurfv7+ytrZWzs7OasGCBapVq1Zq6tSphnzu7u5q4cKFJeI5cOCA6tKli7K1tVU2NjaqSZMm6qOPPlJKKXXt2jU1evRo1ahRI2Vra6t0Op1q3LixCgsLU0VFRUblbNy4UXXo0EHZ2NgoQAFqzZo1RmkSExMN1/78On/+fInYcnJy1KuvvqpcXV2VVqtVLi4uqmfPnurAgQOGNOHh4fcssyx3y+Pu7l5qnh07dtw13+33ojwxK1X8PXK3cnbs2GFIk5SUpLp166asrKxU5cqV1YQJE1RBQYFROWlpacrKykqtWLGi3G0EVHh4eKntLE98f1baz6w8H5Qk90QIIYQQdyrvs4FGqUewN/gzKiMjA3t7e9LT08u9bsff2dz/rODiyURqJJ0AjRW3HOH/VRnEwII9VL6ZRofo3TT6YhImrcue+vK0OnPmYy5d3kRBwTWj82fT3Pn4wAT8GlZDZ2nOJL96VLOTEXt/J7m5uSQmJlK7dm0ZrXmfsrKycHNzY/78+Xed0vVXS01NpXPnztjZ2bF161asra0fewzi8SvtZ1aeD0qSeyKEEEKIO5X32eCRL3Qu/p6yM/Kx2etJnUJr8jmBRmNOnZwCTIHGv+6m4Y1UbN0yMbEt3xorT5Pr13dw/cZO9Po8Ll1aZ3Rt9oExZOTZ0bJOA9YHe9GylmMFRSnE0yMmJobTp0/TqlUr0tPTmTVrFoBhSuDj5ujoyE8//cTSpUvZt28fnTt3rpA4hBBCCCGEeNZIp5R4JPKyCwAoJAcAi7xMbLV5mKHnefNr1Oh1DfSFYP7sjDC4fn0H165HcfHi2hLXQvZOoUhTGXubykS81Qyvas9eZ5wQf6WwsDDi4uLQarW0aNGC6OhoKleuXGHxODk5MWPGjAqrXwghhBBCiGeRdEqJR+Lq5fMU5h2jUH8eE8AiP5s8UysqmWVjQk5xh5SJOVSuW9GhPhJKKU7GjqOw8Jbh3Kaz/ijgxLWGuDs3IWJom4oLUIinWLNmzTh8+HDZCYUQQgghhBBPNemUEo/E5v/3Hio7l9sbl2uL9NysWYVmhYmYOFSD4M2gcwabihvp8CgVFWUbOqQiz3Ul5mpjLmbVZtMoH+wszXGW9aKEEEIIIYQQQohSSaeUeGjRF6JJy87HHjDTOFLtRhKuGVls0dYkaP03aJrqwLnk1t5Po9zci8QlfccvpxNoaAf5ReZsTgxgxyRfnGy0WJqbVnSIQgghhBBCCCHEU0E6pcRD++TX2TRR5gBY4c5/vOpyw6YWn63+BIvCIkwsn43RUQDx8bO4fj2Khn9sHpCWZ0d9FzvcHKwqNjAhhBBCCCGEEOIpI51S4qEkHr9Ox+ihmGZuA1IwUYpU05o4FWZio7PAVJ+OrlnNig7zoRUV5fH71Xiu3jyFBjh+zRt7W2dcXXrwRcfnKzo8IYQQQgghhBDiqSOdUuKhnImOxybPgTx9EQqwzknjVtOqvL33a7xeuQE5N6G2c0WH+VCUUhw89ApZWfFo/ji3Nu5Vxvq/hH+Lp7/DTQghhBBCCCGEqAgmZScR4t4yfz9EUV4s+SbXAah+cS85rnZUyk0v7pCCp37HvaKibLKy4gG4lW/D75nP0cyjMX4Nn+7ONiGEEEIIIYQQoiLJSCnxwPad3UXi71GAwvyPc+ZFeqpmpuF86zoMigRLO3BuUpFhPjC9Po/fr54jYu8h2jpAXpE5M36dy/EP/Hm7ooMTQgghhBBCCCGecjJSSjywyN82AAowwS7XlJrX09Hl5vPZrCnUuHUNancAl6ag0ZRV1BNHKcWBg4Gci+1BW4cPAMjMt6VOVV3FBiZEBRg8eDAajQaNRoNWq8XT05NZs2ZRWFj4UOXu3LkTjUZDWlraowm0HBITE+nfvz+urq5YWlpSvXp1AgMDOX36tFG6yMhIOnbsiE6nw9ramueff56VK1capUlKSkKj0XD06NFy1//BBx9Qv359bGxsqFSpEi+99BL79+83KnPIkCHUrl0bKysr6tSpQ0hICPn5+WWWHRERQdOmTbG2tsbFxYW3336bGzdulJpn165dBAQE4OrqikajYePGjXdNd+rUKXr27Im9vT02NjY8//zzJCcnG64PHz6cOnXqYGVlRZUqVe56Tw8ePEjnzp1xcHCgUqVK+Pn5cezYsbvWl5CQgE6nw8HBocx2l7cNQgghhBDiySOdUuKBXMu+xpmkP/7g0NjgmG9GRlE1NEqhLSzA1uPp3o2uoOAGWVlnAMgusCJfb4OlfSBL+jev4MiEqBj+/v5cunSJM2fOMGHCBD744APmzZtX0WEZlKfTpqCggC5dupCens6GDRuIi4tj7dq1NG7c2KhjbPHixQQGBuLj48P+/fs5fvw4/fr1Izg4mIkTJz5UnHXr1mXJkiWcOHGC3bt3U6tWLbp27cq1a9cAOH36NHq9ns8++4yTJ0+ycOFCli9fzvTp00std8+ePQwcOJAhQ4Zw8uRJ1q1bx4EDBxg2bFip+bKysmjatClLly69Z5qzZ8/Svn176tevz86dOzl+/Djvv/8+lpaWhjQtWrQgPDycU6dOsW3bNpRSdO3alaKiIgAyMzPx9/enZs2a7N+/n927d6PT6fDz86OgoMCovoKCAt544w06dOhQauz30wYhhBBCCPGEUuKe0tPTFaDS09MrOpQnzqq136lxEyeqsD4vq/n93lRTR/ZSHtO/V+c7u6ui9+yU+sKvokN8IPn56Wrvr6+qjT80VT9t91Drtzyn3KdEqq8O/F7RoYmnXE5OjoqNjVU5OTkVHcp9GzRokAoMDDQ616VLF9WmTRuVmpqqgoKClIODg7KyslL+/v4qPj7ekC4pKUn16NFDOTg4KGtra+Xt7a02b96sEhMTFcVDLQ2vQYMGKaWUysjIUP3791fW1tbK2dlZLViwQHXs2FGNGTPGUK67u7uaNWuWCgoKUjqdzpA3OjpatW/fXllaWqrq1aurUaNGqczMTKWUUjExMQpQSUlJ92xrcnKyMjc3V+PHjy9xbdGiRQpQv/76q1JKGdoQExNz/zf1D7c/Z3766ad7ppk7d66qXbt2qeXMmzdPeXh4lIjXzc2t3LEA6ttvvy1xvm/fvurNN98sdzlKKXXs2DEFqISEBKWUUgcPHlSASk5ONqQ5fvy4AtSZM2eM8k6ePFm9+eabKjw8XNnb299Xvfdqw4Mo7WdWng9KknsihBBCiDuV99lARkqJ+5ZxI4dbP9tSK7V+8QmNORaaOtSulomJucLEzATq+lVskA8oLe1XsrOOYWt+C4CzabWxNDehhXulCo5MPIuUUhQVZT/2l1LqoWO3srIiPz+fwYMHc+jQITZt2sS+fftQStG9e3fD6JcRI0aQl5fHrl27OHHiBHPmzMHW1pYaNWrwzTffABAXF8elS5f49NNPARg/fjx79uxh06ZNREVFER0dzZEjR0rEEBYWRtOmTYmJieH999/n7Nmz+Pv706tXL44fP87atWvZvXs3I0eOBKBKlSqYmJiwfv16wwieP1u/fj0FBQV3HRE1fPhwbG1tWbNmzUPfPyge3bVixQrs7e1p2rTpPdOlp6fj6OhYallt27bl/PnzbNmyBaUUV65cYf369XTv3v2hYtTr9WzevJm6devi5+dH1apVad26dalT5LKysggPD6d27drUqFEDgHr16uHk5MQXX3xBfn4+OTk5fPHFFzRo0IBatWoZ8v7888+sW7dORj0JIYQQQvxNyELn4r79duZXAAo0WQBYZ98g2a02DqbZmFho4d0rYKatyBDvm1JF/H7lFNtjdlLLAk6lepGYN5RJPfwZ2csSa638qIhHT6/PYecvjR97vS92PIGpqfUD5VVKsX37drZt20a3bt3YuHEje/bsoV27dkDxukY1atRg48aN9O7dm+TkZHr16kXjxsXt9PDwMJR1u6OlatWqhrWDbt26xapVq1i9ejWdO3cGIDw8HFdX1xKxdOrUiQkTJhiOhw4dyoABAxg7diwAXl5eLFq0iI4dO7Js2TLc3NxYtGgRkydPZubMmbRs2RJfX18GDBhgiCs+Ph57e3tcXFxK1KfVavHw8CA+Pv6B7t1tkZGR9OvXj+zsbFxcXIiKiqJy5cp3TZuQkMDixYsJCwsrtUwfHx8iIiLo27cvubm5FBYWEhAQ8NCdO1evXiUzM5NPPvmE0NBQ5syZww8//MBrr73Gjh076NixoyHtv/71LyZPnkxWVhb16tUjKioKrbb4s0Cn07Fz505eeeUVPvzwQ6D4/dm2bRtmZsW/X2/cuMHgwYP573//i52d3UPFLYQQQgghng4yUkrcl+s51/l6ywLy0ldB5i4ArPJvcdq+NlZ5uWi0Zk9dhxRAbOxkzsYGUstiLQBXsqriUrkxzva20iElBMUdKba2tlhaWtKtWzf69u3L4MGDMTMzo3Xr1oZ0Tk5O1KtXj1OnTgEwevRoQkND8fHxISQkhOPHj5daz7lz5ygoKKBVq1aGc/b29tSrV69E2pYtWxodHzt2jJUrV2Jra2t4+fn5odfrSUxMBIpHbl2+fJmIiAjatm3LunXraNiwIVFRUeW+F7c7WkoTERFhFEd0dLThmq+vL0ePHmXv3r34+/vTp08frl69WqKMlJQU/P396d27t9HaUHeWGxwcDEBsbCxjxoxhxowZHD58mB9++IGkpCTD9ejoaKN8ERER5WqrXq8HIDAwkHHjxvHcc88xdepUevTowfLly43SDhgwgJiYGH755Rfq1q1Lnz59yM3NBSAnJ4chQ4bg4+PDr7/+yp49e2jUqBEvv/wyOTk5AAwbNoz+/fvzwgsv3DWWB22DEEIIIYR4cslf2+K+HLt6DPurGpT+fzs62ebmozcxIfDnbZhUejq/pdLTi6cGZeZbo0x0NKrzGv4tPMrIJcTDMTGx4sWOJyqk3vvl6+vLsmXL0Gq1uLq6YmZmxqZNm8rMN3ToUPz8/Ni8eTM//vgjs2fPZv78+YwaNepBQjdiY2NjdJyZmcnw4cMZPXp0ibQ1a9Y0fK3T6QgICCAgIIDQ0FD8/PwIDQ2lS5cueHl5kZ6ezsWLF0uMzsrPz+fs2bP4+ZU9Pblnz55GnXVubm5GcXt6euLp6UmbNm3w8vLiiy++YNq0aYY0Fy9exNfXl3bt2rFixQqjsu/c7e/2iKLZs2fj4+PDpEmTAGjSpAk2NjZ06NCB0NBQWrZsaZSvWrVqZbYBoHLlypiZmeHt7W10vkGDBuzevdvonL29Pfb29nh5edGmTRsqVarEt99+yxtvvMHq1atJSkpi3759mJgU/z9s9erVVKpUie+++45+/frx888/s2nTJsOoMKUUer0eMzMzVqxYwRtvvPFAbRBCCCGEEE+up7MHQVSISzeusuLrr2mUZwekYYMnN4sSOFKtKeNWfUqtGxmYv2RTZjlPkuTkcH75LYpq2guYmsCH+yfybs/O9G1WvaJDE38DGo3mgafRPW63O1Lu1KBBAwoLC9m/f79h+t6NGzeIi4sz6sSoUaMGwcHBBAcHM23aND7//HNGjRplGHF05/pOHh4emJubc/DgQUNHUnp6OvHx8fccQXNb8+bNiY2NLRFnaTQaDfXr12fv3r0AvP7660yZMoX58+czf/58o7TLly8nOzubgQMHllmuTqdDp9OVKwa9Xk9eXp7hOCUlBV9fX8OOdrc7cW67W/uys7MN0+BuMzU1BYo7d6ysrO7rvtym1Wp5/vnniYuLMzofHx+Pu7v7PfMppVBKGXO7o58AAQAASURBVNqVnZ2NiYkJGo3GkOb28e3RWPv27TP6Xvjuu++YM2cOe/fuxc3N7YHbIIQQQgghnlzSKSXK7dcNp3nhbF/y8tagSMOyyJKvawXgfzme57u3xyLxv9g2diu7oCdEQUEaZxJCcf1jV/PcQgtuFTjQ2M2hQuMS4mnh5eVFYGAgw4YN47PPPkOn0zF16lTc3NwIDAwEYOzYsXTr1o26dety8+ZNduzYQYMGDQBwd3dHo9EQGRlJ9+7dsbKyQqfTMWjQICZNmoSjoyNVq1YlJCSkRIfG3UyZMoU2bdowcuRIhg4dio2NDbGxsURFRbFkyRKOHj1KSEgIQUFBeHt7o9Vq+eWXX/jyyy+ZMmUKUDyiau7cuUycOBFLS0uCgoIwNzfnu+++Y/r06YSGhtKoUSOjev/cYQPQsGFDzM3Njc5lZWXx0Ucf0bNnT1xcXLh+/TpLly4lJSWF3r17A8UdUi+++CLu7u6EhYVx7do1Q35nZ+d7tj0gIIBhw4axbNky/Pz8uHTpEmPHjqVVq1Z3XY/rtszMTBISEgzHiYmJHD16FEdHR0On4KRJk+jbty8vvPACvr6+/PDDD3z//ffs3LkTKJ5yuXbtWrp27UqVKlW4cOECn3zyCVZWVoaF1rt06cKkSZMYMWIEo0aNQq/X88knn2BmZoavry+A4fvitkOHDmFiYlLifj9IG4QQQgghxJNJOqVEuWUnJwHVKdJkYQK4XIkhrac/7Y9uwN7lAObV9WB5/9OCKsKtrIscTDgAQHaBJT8kv0rwSwHsafcclW0tKjg6IZ4e4eHhjBkzhh49epCfn88LL7zAli1bDB0yRUVFjBgxggsXLmBnZ4e/vz8LFy4Eiqe0zZw5k6lTp/LWW28xcOBAVq5cyYIFCwgODqZHjx7Y2dkxefJkzp8/j6WlZamxNGnShF9++YV3332XDh06oJSiTp069O3bF4Dq1atTq1YtZs6cSVJSEhqNxnA8btw4Qznjxo3Dw8OD+fPn8+mnn5KVVbypw5o1a+jXr1+Jeu927vz581Svbjzi0tTUlNOnT7Nq1SquX7+Ok5MTzz//PNHR0TRs2BCAqKgoEhISSEhIKJG/tF0TBw8ezK1bt1iyZAkTJkzAwcGBTp06MWfOnFLv2aFDhwydQlC88yHAoEGDWLlyJQCvvvoqy5cvZ/bs2YwePZp69erxzTff0L59ewAsLS2Jjo7m//7v/7h58ybVqlXjhRdeYO/evVStWhWA+vXr8/333zNz5kzatm2LiYkJzZo144cffrjrovL3ozxtEEIIIYQQTyaNehR7gz+jMjIysLe3Jz09/W+/E1BhQQFL3x5CYf4toHir9zZnUnh93r/5KmQsPh1OYGahwPc96DipYoMtQ0rKGk7HvWc4Pn/LlfXJHxM5qkMFRiWedbm5uSQmJlK7du0yO1eEsaysLNzc3Jg/fz5Dhgx57PWnpqbSuXNn7Ozs2Lp1K9bWT8eUS/FwSvuZleeDkuSeCCGEEOJO5X02kJFSoly+2vMFhfmphmPzwiJytdbo8nKwycnG5J2t4NwArBwqLshySks/BEBBkRmFSsuFXF9GdfKq4KiEELfFxMRw+vRpWrVqRXp6OrNmzQIwTAl83BwdHfnpp59YunQp+/bto3PnzhUShxBCCCGEEM8a6ZQSZdqevJ1VR7/An2poTOyonpbFUYvaJPlU4cPPFmCTlYXGqdYT3yGVnZ3Imn1Hsck/SRUL+M+pvvR9YTjvdX161sES4u8iLCyMuLg4tFotLVq0IDo6msqVK1dYPE5OTsyYMaPC6hdCCCGEEOJZJJ1SolRFBXpilt+k27UhKCJBY8F1XSGrPfxZvGshnqkpmFnq0Wif7Oks6ekxHDr8OrU0wB9LRmXk66hTxbZC4xJClNSsWTMOHz5c0WEIIYQQQggh/mLSKSVKlXopC6tUR4qKrlMAaJQpRSY6qlbLp15lLY5uGdg454G5TUWHWqpbt2IByCm04Fa+A5XsajItsB+N3OwrODIhhBBCCCGEEOLvSTqlRKluXrlMUV4s+fpzaIBK6YnEebemqn0OOnWCyg0zwVQLpk/mt1Ju7iXW7I3m6tUfaFkV9l9qweG0d9gyRhY1F0IIIYQQQgghKtKT2ZMgnhg/fD6Tguw0NH8ca4uKyLC0xaKgAFNzBWZW0KR3hcZ4L4WFt/h1vx81yaJm8a7k3MrX8VxNhwqNSwghhBBCCCGEENIpJUqRnJFMXkYaJoA5TthkpmCWb8GvjZ6j765tmOjs4b2TFR3mPf0af4KioiwK9aZcyqqGe+WqDPMbToPqjSo6NCGEEEIIIYQQ4m9POqXEPZ29mYCJKv7akeZ82rgRyrwmi8M+wDEnA+tXnsx1pAoLs4iNX8CRk7/S0AkuZjoz+9A0Ts3yx9REU3YBQgghhBBCCCGE+MuZVHQA4sl0LfM6C79dZjg2KSoiS2OLe8E1Ggz0p+6rl7B2t6vACO/t6rWtXLu8koZOpwEw09Zg3utNpENKCCGEEEIIIYR4gkinlLirXWtP0TV2kOHYTF9AWsfmNM4/j5kVmJgB5tYVF+BdKKU4/nsC3x3aDUBCWi12XhpA787zCXzOrYKjE0IIIYQQQgghxJ2kU0qUcD3nOjfiz6BUwR9nTKl+aQ96Cwus8nIxOfLHCCrtk9UpdfxEMNfO+lHX5nsAYm/UJ8P0VSwtnCs4MiGeboMHD0aj0aDRaNBqtXh6ejJr1iwKCwsfqtydO3ei0WhIS0t7NIGWQ2JiIv3798fV1RVLS0uqV69OYGAgp0+fNkoXGRlJx44d0el0WFtb8/zzz7Ny5UqjNElJSWg0Go4ePVru+j/44APq16+PjY0NlSpV4qWXXmL//v1GZQ4ZMoTatWtjZWVFnTp1CAkJIT8/v8yyIyIiaNq0KdbW1ri4uPD2229z48aNUvMsW7aMJk2aYGdnh52dHW3btmXr1q2G66mpqYwaNYp69ephZWVFzZo1GT16NOnp6YY0K1euNHx//Pl19epVQ7q8vDzeffdd3N3dsbCwoFatWnz55ZdG8fzf//2foa4aNWowbtw4cnNzS23Dhg0b6Nq1K05OTvf9fgghhBBCiIola0qJEsJ+nUu1lCvoC7MAMC/Mxyb7AgDOl69g4qpAYwpeXSsyzBJu3twLQJHehCJsebHJK3Rs1LCCoxLi2eDv7094eDh5eXls2bKFESNGYG5uzrRp0yo6NADy8/PRarWlpikoKKBLly7Uq1ePDRs24OLiwoULF9i6datRx9jixYsZO3YsU6ZMYdmyZWi1Wr777juCg4P57bffCAsLe+A469aty5IlS/Dw8CAnJ4eFCxfStWtXEhISqFKlCqdPn0av1/PZZ5/h6enJb7/9xrBhw8jKyiq13j179jBw4EAWLlxIQEAAKSkpBAcHM2zYMDZs2HDPfNWrV+eTTz7By8sLpRSrVq0iMDCQmJgYGjZsyMWLF7l48SJhYWF4e3vz+++/ExwczMWLF1m/fj0Affv2xd/f36jcwYMHk5ubS9WqVQ3n+vTpw5UrV/jiiy/w9PTk0qVL6PV6w/XVq1czdepUvvzyS9q1a0d8fLyhQ3TBggX3bENWVhbt27enT58+DBs2rMz3QAghhBBCPEGUuKf09HQFqPT09IoO5bEa8Z83VViflw2v8G6+6ttO/qrazzFq00tdVUHCUaUKCyo6TKWUUnq9Xl26dkit2BauftruoX7a7qHqTV+ndsZdrejQhDCSk5OjYmNjVU5OTkWHct8GDRqkAgMDjc516dJFtWnTRqWmpqqgoCDl4OCgrKyslL+/v4qPjzekS0pKUj169FAODg7K2tpaeXt7q82bN6vExEQFGL0GDRqklFIqIyND9e/fX1lbWytnZ2e1YMEC1bFjRzVmzBhDue7u7mrWrFkqKChI6XQ6Q97o6GjVvn17ZWlpqapXr65GjRqlMjMzlVJKxcTEKEAlJSXds63JycnK3NxcjR8/vsS1RYsWKUD9+uuvSillaENMTMz939Q/3P6c+emnn+6ZZu7cuap27dqlljNv3jzl4eFRIl43N7f7jqlSpUrq3//+9z2vf/3110qr1aqCgrt/Dly9elWZm5ur//znP4ZzW7duVfb29urGjRv3LHfEiBGqU6dORufGjx+vfHx8yhX3o3g/7lTaz+zf9fmgNHJPhBBCCHGn8j4byPQ9YSQ3J5+81OJpIhoTBxxzTfihclemvD0Rh7wM2j4Xi5lbLTB9MgbZXb++nZPH++Bh9iEAeUXm5BZZ4uZgVcGRCVE2pRRZRUWP/aWUeujYraysyM/PZ/DgwRw6dIhNmzaxb98+lFJ0796dgoLi6b8jRowgLy+PXbt2ceLECebMmYOtrS01atTgm2++ASAuLo5Lly7x6aefAjB+/Hj27NnDpk2biIqKIjo6miNHjpSIISwsjKZNmxITE8P777/P2bNn8ff3p1evXhw/fpy1a9eye/duRo4cCUCVKlUwMTFh/fr1FBUV3bVd69evp6CggIkTJ5a4Nnz4cGxtbVmzZs1D3z8oHt21YsUK7O3tadq06T3Tpaen4+joWGpZbdu25fz582zZsgWlFFeuXGH9+vV079693PEUFRXx1VdfkZWVRdu2bUuNx87ODjOzu38O/Oc//8Ha2prXX3/dcG7Tpk20bNmSuXPn4ubmRt26dZk4cSI5OTmGNO3atePw4cMcOHAAgHPnzrFly5b7aoMQQgghhHi6PBk9C+KJkHMrn/B3f6Fx5ksU8B1oLLmuy+RX18bM+/03up+djY1NDpjbVHSoBplZcQBk5NuSU1QFvcVLLH6jOZ5VbSs4MiHKlq3XU2fXicde79kXGmNjavpAeZVSbN++nW3bttGtWzc2btzInj17aNeuHVC8rlGNGjXYuHEjvXv3Jjk5mV69etG4cWMAPDw8DGXd7mipWrUqDg4OANy6dYtVq1axevVqOnfuDEB4eDiurq4lYunUqRMTJkwwHA8dOpQBAwYwduxYALy8vFi0aBEdO3Zk2bJluLm5sWjRIiZPnszMmTNp2bIlvr6+DBgwwBBXfHw89vb2uLi4lKhPq9Xi4eFBfHz8A9272yIjI+nXrx/Z2dm4uLgQFRVF5cqV75o2ISGBxYsXlzll0MfHh4iICPr27Utubi6FhYUEBASwdOnSMuM5ceIEbdu2JTc3F1tbW7799lu8vb3vmvb69et8+OGHvPPOO/cs74svvqB///5YWf3vnwPnzp1j9+7dWFpa8u2333L9+nX++c9/cuPGDcLDwwHo378/169fp3379iilKCwsJDg4mOnTp5fZBiGEEEII8XSSkVLCIPVSFirfFEUeAOZFheTkW2Nhqafd5V+w0eeAmeUTMUoqK+ss3+1dwu6T2wCIvtCWy9p/8eZLUwloWvKPVyHEw4mMjMTW1hZLS0u6detG3759GTx4MGZmZrRu3dqQzsnJiXr16nHq1CkARo8eTWhoKD4+PoSEhHD8+PFS6zl37hwFBQW0atXKcM7e3p569eqVSNuyZUuj42PHjrFy5UpsbW0NLz8/P/R6PYmJiUDxyK3Lly8TERFB27ZtWbduHQ0bNiQqKqrc96KstauguHPuzjiio6MN13x9fTl69Ch79+7F39+fPn36GC0IfltKSgr+/v707t3baK2kO8sNDg4GIDY2ljFjxjBjxgwOHz7MDz/8QFJSkuF6dHS0Ub6IiAhDefXq1ePo0aPs37+ff/zjHwwaNIjY2NgS8WRkZPDyyy/j7e3NBx98cNd279u3j1OnTjFkyBCj83q9Ho1GQ0REBK1ataJ79+4sWLCAVatWGUZL7dy5k48//ph//etfHDlyhA0bNrB582Y+/PDDMu+pEEIIIYR4OlV874J4YuRl5aP0OZjnXqQQcEj/nZOt/fF0z8Yidj84AlalTyF5XI4dG4ptbjK2f/wjPi3Pno5VnpwRXEKUh7WJCWdfaFwh9d4vX19fw6Lfrq6umJmZsWnTpjLzDR06FD8/PzZv3syPP/7I7NmzmT9/PqNGjXqQ0I3Y2Bj/zGdmZjJ8+HBGjx5dIm3NmjUNX+t0OgICAggICCA0NBQ/Pz9CQ0Pp0qULXl5epKenc/HixRKjs/Lz8zl79ix+fn5lxtazZ0+jzjo3NzejuD09PfH09KRNmzZ4eXnxxRdfGC0af/HiRXx9fWnXrh0rVqwwKvvO3eXs7OwAmD17Nj4+PkyaNAmAJk2aYGNjQ4cOHQgNDaVly5ZG+apVq2b4+vaOigAtWrTg4MGDfPrpp3z22WeGNLdu3cLf3x+dTse3336Lubn5Xdv973//m+eee44WLVoYnXdxccHNzQ17e3vDuQYNGqCU4sKFC3h5efH+++8TFBTE0KFDAWjcuDFZWVm88847vPvuu6XeUyGEEEII8XSSTilh8OOqmeSlJxuOTfV6El1rYF2Qj4ldZWjRGxr0qMAIi2Xk5JCTWxxnzNVGNHCrzZu+Q+lYX0ZIiaeLRqN54Gl0j9vtjpQ7NWjQgMLCQvbv32+Yvnfjxg3i4uKMpn/VqFGD4OBggoODmTZtGp9//jmjRo0yjDi6c30nDw8PzM3NOXjwoKEjKT09nfj4eF544YVSY2zevDmxsbEl4iyNRqOhfv367N1bvHvn66+/zpQpU5g/fz7z5883Srt8+XKys7MZOHBgmeXqdDp0Ol25YtDr9eTl5RmOU1JS8PX1pUWLFoSHh2Pyp07Eu7UvOzu7xBpPpn98bymlsLKyKvd9+XM8GRkZ+Pn5YWFhwaZNm7C0tLxrvszMTL7++mtmz55d4pqPjw/r1q0jMzMTW9vi6dXx8fGYmJhQvXp1Qxv+3NY723A/91QIIYQQQjwdpFNKUJBXxOEjp8m8lIzmj3N6YGujThyr602fHVuwaPgcBPxfxQUJFBZmcubcSr7af4QX3ECvNITHDudkP1kEV4iK4OXlRWBgIMOGDeOzzz5Dp9MxdepU3NzcCAwMBGDs2LF069aNunXrcvPmTXbs2EGDBg0AcHd3R6PREBkZSffu3bGyskKn0zFo0CAmTZqEo6MjVatWJSQkBBMTEzQaTWnhMGXKFNq0acPIkSMZOnQoNjY2xMbGEhUVxZIlSzh69CghISEEBQXh7e2NVqvll19+4csvv2TKlClA8YiquXPnMnHiRCwtLQkKCsLc3JzvvvuO6dOnExoaSqNGjYzqjYuLKxFLw4YNS4wmysrK4qOPPqJnz564uLhw/fp1li5dSkpKCr179waKO6RefPFF3N3dCQsL49q1a4b8zs7O92x7QEAAw4YNY9myZfj5+XHp0iXGjh1Lq1at7roe123Tpk2jW7du1KxZk1u3brF69Wp27tzJtm3FU6MzMjLo2rUr2dnZ/Pe//yUjI4OMjAygeOF40zs6VdeuXUthYSFvvvlmiXr69+/Phx9+yFtvvcXMmTO5fv06kyZN4u233zasPRUQEMCCBQto1qwZrVu3JiEhgffff5+AgACjev4sNTWV5ORkLl68CPzv/XB2di71ngkhhBBCiIonnVKCX1bHcfrXC4YOqZp5rXi3dQ5ZLsWLDDepEo9N3eoVF+AfLl3+losXFvLCHzM20vIq0b91rQqNSYi/u/DwcMaMGUOPHj3Iz8/nhRdeYMuWLYYOmaKiIkaMGMGFCxews7PD39+fhQsXAsXTr2bOnMnUqVN56623GDhwICtXrmTBggUEBwfTo0cP7OzsmDx5MufPn7/nCJ3bmjRpwi+//MK7775Lhw4dUEpRp04d+vbtC0D16tWpVasWM2fOJCkpCY1GYzgeN26coZxx48bh4eHB/Pnz+fTTT8nKygJgzZo19OvXr0S9dzt3/vx5wwig20xNTTl9+jSrVq3i+vXrODk58fzzzxMdHU3Dhg0BiIqKIiEhgYSEhBL5S9s1cfDgwdy6dYslS5YwYcIEHBwc6NSpE3PmzCn1nl29epWBAwdy6dIl7O3tadKkCdu2baNLly4AHDlyhP379wMlR2glJiZSq1Ytw/EXX3zBa6+9Zli0/k62trZERUUxatQoWrZsiZOTE3369CE0NNSQ5r333kOj0fDee++RkpJClSpVCAgI4KOPPiq1DZs2beKtt94yHN9+P0JCQu659pUQQgghhHgyaNSj2Bv8GZWRkYG9vb1h++tn1X9n7yYtMZ289GUAtEwuYkiPDuS4d8TG1ZxvDwfTsEUv6PRuhcWYW1DE0ZOhZKX+h3Pp7mQUNWTIS4NwcGhZdmYhngC5ubkkJiZSu3btMjtXhLGsrCzc3NyYP39+iQW0H4fU1FQ6d+6MnZ0dW7duxdra+rHHIB6/0n5m/y7PB/dD7okQQggh7lTeZwPZfU+Qn3ETVAEAJno9dnmJKKsmLFs7n9iM/9Aw6yyYV9wf0RdSVhOx5TXOX/wOgCNXmhCfIx1SQjyrYmJiWLNmDWfPnuXIkSMMGDAAwDAl8HFzdHTkp59+onPnzuzbt69CYhBCCCGEEOJZJNP3BAW30tHrizulTPWKmzWqYethhcv2VMwS44sTmVfMyACl9MTHf0gtXb7hXIGmJn1b1KiQeIQQj0dYWBhxcXFotVpatGhBdHQ0lStXrrB4nJycmDFjRoXVL4QQQgghxLNIOqX+5vbs+o7Ma2uB4lmcaVod/f/5EW7p13FrkAzpN4oT6ipmsdgffzuDmSrukAo/+SYL3+hEJ98OaDQyyE+IZ1WzZs04fPhwRYchhBBCCCGE+ItJp9TfWOS5SDb8+H80xAbQoFF6TtvVAxMTrIryqGKbBp3eh0q1oH6PxxpbUVE2ew+8SU56AjotZBVYkZTdkSqVOz7WOIQQQgghhBBCCPHXkOEmf2ORh6Owu2UPgKnl87hnFrLHxQeARkVxmFMErd6Bxq+DqXlpRT1y6elHyc85hk5bvOtVlqpP6CuNysglhBBCCCGEEEKIp4WMlPqbSruaTePtgRRkbaOIk2gwR6u3QDlb4pqZQa+rUcUJK2Atqd9vZPFbwlksgcT0mvyWNZIF/QMxMZFvVyGEEEIIIYQQ4lkhf+X/TaWfv1z8hT4PAIeMZHKdNLQyucSn2/fg5vArmGrB9PF+i1y+HMlXO9dib34Jr0qQmlsJMwtP6ZASQgghhBBCCCGeMfKX/t/U0agIctN+A5UNQM2CAyztFIxlbgG6+g5wGTC3eqwx6fUFxJ6aSMuqBYZzNtbVGdyy1mONQwghhBBCCCGEEH896ZT6G0pMTyTu1CFMVREAeiC07T856dGCNxO2YJeyuDihuc1ji0mvVyzfcZh6mgL0SsPmxEAm+DXmBedAzM3tH1scQgghhBBCCCGEeDykU+pv6NCVQ2j0GgDs9Q1Y4OlFbrVaADTWx4JVJdC5QvOBjyWeW7dOcej4VCrlXAJruJVvy9mcV6lRo/1jqV8IIYQQQgghhBCPn+y+9zeTlJ7ErH2zKFTFx2ZYkGNiR65V8VQ9t7yr0OxN+OdeaBP8WGK6fOU79Hm/UdX6RnFMFvVY2LfpY6lbCFG2wYMHo9Fo0Gg0aLVaPD09mTVrFoWFhQ9V7s6dO9FoNKSlpT2aQMshMTGR/v374+rqiqWlJdWrVycwMJDTp08bpYuMjKRjx47odDqsra15/vnnWblypVGapKQkNBoNR48eLXf9H3zwAfXr18fGxoZKlSrx0ksvsX//fqMyhwwZQu3atbGysqJOnTqEhISQn59fZtkRERE0bdoUa2trXFxcePvtt7lx40a5Y/vkk0/QaDSMHTvW6PzZs2d59dVXqVKlCnZ2dvTp04crV64Ypfnoo49o164d1tbWODg43LX8299Dd76++uorw/UNGzbQpUsXQz1t27Zl27ZtZca9YcMGunbtipOT032/H0IIIYQQomJJp9TfTGxsIs0udMKsyBQAE6WnyKYSr8dEsezSVnxTD4LW9rHFcyUjl+TrKQDsPN+OHdc+4OWOK/GsqntsMQghyubv78+lS5c4c+YMEyZM4IMPPmDevHkVHZZBeTptCgoK6NKlC+np6WzYsIG4uDjWrl1L48aNjTrGFi9eTGBgID4+Puzfv5/jx4/Tr18/goODmThx4kPFWbduXZYsWcKJEyfYvXs3tWrVomvXrly7dg2A06dPo9fr+eyzzzh58iQLFy5k+fLlTJ8+vdRy9+zZw8CBAxkyZAgnT55k3bp1HDhwgGHDhpUrroMHD/LZZ5/RpEkTo/NZWVl07doVjUbDzz//zJ49e8jPzycgIAC9Xm9Il5+fT+/evfnHP/5Raj3h4eFcunTJ8HrllVcM13bt2kWXLl3YsmULhw8fxtfXl4CAAGJiYkotMysri/bt2zNnzpxytVUIIYQQQjxBlLin9PR0Baj09PSKDuWRKCosUkv/8YNaMny7Cuv7mgrr87Ja8+pkVe3nGLWnVWuV93mQUiF2Su1Z9FjiOZf4mVq6vof6ZktT9dN2D/Xmoulq2objj6VuIR63nJwcFRsbq3Jycio6lPs2aNAgFRgYaHSuS5cuqk2bNio1NVUFBQUpBwcHZWVlpfz9/VV8fLwhXVJSkurRo4dycHBQ1tbWytvbW23evFklJiYqwOg1aNAgpZRSGRkZqn///sra2lo5OzurBQsWqI4dO6oxY8YYynV3d1ezZs1SQUFBSqfTGfJGR0er9u3bK0tLS1W9enU1atQolZmZqZRSKiYmRgEqKSnpnm1NTk5W5ubmavz48SWuLVq0SAHq119/VUopQxtiYmLu/6b+4fbnzE8//XTPNHPnzlW1a9cutZx58+YpDw+PEvG6ubmVGcOtW7eUl5eXioqKKnGft23bpkxMTIw+B9PS0pRGo1FRUVElygoPD1f29vZ3rQdQ3377bZnx3Mnb21vNnDmzXGkfxftxp9J+Zp+154NHQe6JEEIIIe5U3mcDGSn1N3Is5Tj5mXvJz4wEfR4AWssETPR6bFU+Zld2FSfU/vULnBcWZnHu3FzqVYrF3uIWAJXsPOnbssZfXrcQTwqlFNn5hY/9pZR66NitrKzIz89n8ODBHDp0iE2bNrFv3z6UUnTv3p2CguJdNEeMGEFeXh67du3ixIkTzJkzB1tbW2rUqME333wDQFxcHJcuXeLTTz8FYPz48ezZs4dNmzYRFRVFdHQ0R44cKRFDWFgYTZs2JSYmhvfff5+zZ8/i7+9Pr169OH78OGvXrmX37t2MHDkSgCpVqmBiYsL69espKiq6a7vWr19PQUHBXUdEDR8+HFtbW9asWfPQ9w+KRxetWLECe3t7mja995Tl9PR0HB0dSy2rbdu2nD9/ni1btqCU4sqVK6xfv57u3buXGceIESN4+eWXeemll0pcy8vLQ6PRYGFhYThnaWmJiYkJu3fvLrPsu9VVuXJlWrVqxZdfflnq96Jer+fWrVtltl0IIYQQQjy9ZKHzvwm90rPi+3l45qUXn9CA0mh4781/YqEvxLvzOUwK/vjjwNHjr41Fr4jYd4zqKAr0pnx7NojZvTvRybcdGo3mL61biCdJTkER3jPKXjPnUYud5Ye19sF+/Sul2L59O9u2baNbt25s3LiRPXv20K5dO6B4XaMaNWqwceNGevfuTXJyMr169aJx48YAeHj87/fL7c6GqlWrGtYhunXrFqtWrWL16tV07twZKJ7y5erqWiKWTp06MWHCBMPx0KFDGTBggGFNJC8vLxYtWkTHjh1ZtmwZbm5uLFq0iMmTJzNz5kxatmyJr68vAwYMMMQVHx+Pvb09Li4uJerTarV4eHgQHx//QPfutsjISPr160d2djYuLi5ERUVRuXLlu6ZNSEhg8eLFhIWFlVqmj48PERER9O3bl9zcXAoLCwkICGDp0qWl5vvqq684cuQIBw8evOv1Nm3aYGNjw5QpU/j4449RSjF16lSKioq4dOlS+Rr8h1mzZtGpUyesra358ccf+ec//0lmZiajR4++a/qwsDAyMzPp06fPfdUjhBBCCCGeHjJS6m9iXdw6rqcWL0yr0dhRYJbHJucAUq2c0JGLmYWCDhNh6Hao3fEviyM//zrRMXP4/ffFANzK13G1qBOOjj7SISXEEywyMhJbW1ssLS3p1q0bffv2ZfDgwZiZmdG6dWtDOicnJ+rVq8epU6cAGD16NKGhofj4+BASEsLx48dLrefcuXMUFBTQqlUrwzl7e3vq1atXIm3Lli2Njo8dO8bKlSuxtbU1vPz8/NDr9SQmJgLFI3UuX75MREQEbdu2Zd26dTRs2JCoqKhy3wutVltmmoiICKM4oqOjDdd8fX05evQoe/fuxd/fnz59+nD16tUSZaSkpODv70/v3r2N1oa6s9zg4OINKWJjYxkzZgwzZszg8OHD/PDDDyQlJRmuR0dHG+WLiIjg/PnzjBkzhoiICCwtLe/ajipVqrBu3Tq+//57bG1tsbe3Jy0tjebNm2Nicn+PEO+//z4+Pj40a9aMKVOmMHny5HuuS7Z69WpmzpzJ119/TdWqVcu8p0IIIYQQ4ukkI6X+Jn6/9TvawuK320Sjo0Apfq9UEwBL/R8LBNdqD9Vb3quIR+L8+ZUUpn+Ozx+DHrRaZz56pfFfWqcQTyorc1NiZ/lVSL33y9fXl2XLlqHVanF1dcXMzIxNmzaVmW/o0KH4+fmxefNmfvzxR2bPns38+fMZNWrUg4RuxMbGeKpxZmYmw4cPv+vIm5o1axq+1ul0BAQEEBAQQGhoKH5+foSGhtKlSxe8vLxIT0/n4sWLJUZn5efnc/bsWfz8yn7PevbsadRZ5+bmZhS3p6cnnp6etGnTBi8vL7744gumTZtmSHPx4kV8fX1p164dK1asMCr7zt3l7OzsAJg9ezY+Pj5MmjQJgCZNmmBjY0OHDh0IDQ2lZcuWRvmqVavG9u3buXr1Ks2bNzecLyoqYteuXSxZsoS8vDxMTU3p2rUrZ8+e5fr165iZmeHg4ICzs7PRqLcH0bp1az788EPy8vKMpgd+9dVXDB06lHXr1hlNKSztngohhBBCiKeTdEr9DSilKIq3xS3NA0hGg4Y8fWWUZfEfpi2yzhQnNLf+S+PIyC3gUurvAJxK9cLMwpsBLw5Fp7P7S+sV4kml0WgeeBrd43a7I+VODRo0oLCwkP379xum7924cYO4uDi8vb0N6WrUqEFwcDDBwcFMmzaNzz//nFGjRhlGHN25vpOHhwfm5uYcPHjQ0JGUnp5OfHw8L7zwQqkxNm/enNjY2BJxlkaj0VC/fn327t0LwOuvv86UKVOYP38+8+fPN0q7fPlysrOzGThwYJnl6nQ6dLry7SKq1+vJy8szHKekpODr60uLFi0IDw8vMSLpbu3Lzs7GzMz4e8nUtPh3vFIKKyurEvk6d+7MiRMnjM699dZb1K9fnylTphjy33Z7iuHPP//M1atX6dmzZ7nady9Hjx6lUqVKRh1Sa9as4e233+arr77i5ZdfNkp/P/dUCCGEEEI8HZ6Ov4bEQ7mSmIFddH2sc7MoJBlTpSGjhhON7dKYl1NEg3P/V5zQ3Oovi+Hy1e0s+eFbvCsdopoN7LvYCk/3Puh03mVnFkI8kby8vAgMDGTYsGF89tln6HQ6pk6dipubG4GBgQCMHTuWbt26UbduXW7evMmOHTto0KABAO7u7mg0GiIjI+nevTtWVlbodDoGDRrEpEmTcHR0pGrVqoSEhGBiYlLmFN8pU6bQpk0bRo4cydChQ7GxsSE2NpaoqCiWLFnC0aNHCQkJISgoCG9vb7RaLb/88gtffvklU6ZMAYpHVM2dO5eJEydiaWlJUFAQ5ubmfPfdd0yfPp3Q0FAaNWpkVG9cXFyJWBo2bIi5ubnRuaysLD766CN69uyJi4sL169fZ+nSpaSkpNC7d2+guEPqxRdfxN3dnbCwMK5du2bI7+zsfM+2BwQEMGzYMJYtW4afnx+XLl1i7NixtGrV6q7rcUFxJ8+f22JjY4OTk5PR+fDwcBo0aECVKlXYt28fY8aMYdy4cUZTKpOTk0lNTSU5OZmioiLDqCxPT09sbW35/vvvuXLlCm3atMHS0pKoqCg+/vhjowXlV69ezaBBg/j0009p3bo1ly9fBooX1be3t79n22/Xe/HiReB/74ezs3Op90wIIYQQQlQ86ZT6Gzi5M4r8rANQWLymlH3GeZLqtKK6Po+6Djlo8jKKE/5FI6UKCzM5efKf+FYvNJyzsnSh53My9UKIp114eDhjxoyhR48e5Ofn88ILL7BlyxZDh0xRUREjRozgwoUL2NnZ4e/vz8KFC4Hi6VczZ85k6tSpvPXWWwwcOJCVK1eyYMECgoOD6dGjB3Z2dkyePJnz58/fc92j25o0acIvv/zCu+++S4cOHVBKUadOHfr27QtA9erVqVWrFjNnziQpKQmNRmM4HjdunKGccePG4eHhwfz58/n000/JysoCikfx9OvXr0S9dzt3/vx5qlevbnTO1NSU06dPs2rVKq5fv46TkxPPP/880dHRNGzYEICoqCgSEhJISEgokb+0neoGDx7MrVu3WLJkCRMmTMDBwYFOnToxZ86cUu9ZecTFxTFt2jRSU1OpVasW7777rtH9ApgxYwarVq0yHDdr1gyAHTt28OKLL2Jubs7SpUsZN24cSik8PT1ZsGCB0VpZK1asoLCwkBEjRjBixAjD+UGDBrFy5cp7xrdp0ybeeustw/Ht9yMkJIQPPvjgYZouhBBCCCH+Yhr1KPYGf0ZlZGRgb29Penq6Yd2Op01ebjZLBveFO95mSxtLPnzzXaYlbGPMxdn/SzwhDnSP9r/KRXrFuv17qJIziPwic45c68CbPs9Ts+YQNJr7X9dGiKdVbm4uiYmJ1K5du8zOFWEsKysLNzc35s+fz5AhQx57/ampqXTu3Bk7Ozu2bt2KtfVfO9VZPBlK+5l9Fp4PHjW5J0IIIYS4U3mfDWT3vWdcRMwqQ4eUQ2FtTtlXYc1zb4FGg13RJbCvUbzbXoeJj7xDqqDgJr/ELOK3+OJFem/m2XMs423c3d+RDikhxD3FxMSwZs0azp49y5EjRxgwYACAYUrg4+bo6MhPP/1E586d2bdvX4XEIIQQQgghxLNIpu89wxLO/87xTReoAYAWx4IqJDjYkmJvC4BOpUDTftDpvb+k/t9/X4FKX4FvcQBYaKvxfg9ZQ0oIUbawsDDi4uLQarW0aNGC6Ohow0LbFcHJyYkZM2ZUWP1CCCGEEEI8i6RT6hl26IdT1LnWiHyOgUaLRV4at1Q9cisXb6NeI/fyX7a4+a3cApKvnQXgzM3aWFp58Vr7f2Bnd+/FaoUQAorXIzp8+HBFhyGEEEIIIYT4i8n0vWdUQW4uqdHrKcj+EQCLglxqpOzgxotN6Bl/iG/T1tEq4wSY2zzyurOzE/lkw3KSr54CYMf5DlzWjMHOrskjr0sIIYQQQgghhBBPJxkp9YxKPnaQnLzLhmMnUin0MSHX2oqOFhraZscXX3jEI6UKCzM5cLAnnZyzDefcHF15rbnstCeEEEIIIYQQQoj/kU6pZ9S5S8cB0Jg4YaI15ZarLe+3fAWAJlnL4eq54oTmj3YXqWtpyRQVZVOoNyUx3Z2WdbwJe3EgJiYWj7QeIYQQQgghhBBCPN1k+t4zKD0vnW9ObQRAY6IjVVuFZUWvcdLBCwDbotzihJYO4Nb8kdV7/PckRv+3uN7rOU58cnAsjRoukA4pIYQQQgghhBBClCAjpZ5B/439LzfzcgEL0JiRr9GQYWtLjokpANZFufDGWvDsDKbmj6TO8xf+H9fOfkDwH8tGZRfa8mozNyzNTR9J+UIIIYQQQgghhHi2SKfUM0bpFblrnGl3NYBCdoHGjGwzV3LqOwJQqTAT+8JbYO34yDqkANLSDgBQpDcBjTn+Ld9kWI3nHln5QgghhBBCCCGEeLbI9L1nTMbVVCwzKoEqAsBUr+dqbR3PZSQSXsmc7bGTsFAFj3SB8893nePA2eI1qv79WxBH8jdQo8agR1a+EEIIIYQQQgghnj3SKfWMubbzG4ryz6KKrgDgcvUgv9WpiUcVJ7o91xDX7JTihI9ggXOlijh+PJhKWX2pbnMGgMx8G7xd7R66bCHEk2Pw4MFoNBo0Gg1arRZPT09mzZpFYWHhQ5W7c+dONBoNaWlpjybQckhMTKR///64urpiaWlJ9erVCQwM5PTp00bpIiMj6dixIzqdDmtra55//nlWrlxplCYpKQmNRsPRo0fLXf8HH3xA/fr1sbGxoVKlSrz00kvs37/fqMwhQ4ZQu3ZtrKysqFOnDiEhIeTn55dZdkREBE2bNsXa2hoXFxfefvttbty4UWa+lJQU3nzzTZycnLCysqJx48YcOnTIcP3O9//2y9/f36iMWrVqlUjzySefGK7HxcXh6+tLtWrVsLS0xMPDg/fee4+CggKjctLS0hgxYgQuLi5YWFhQt25dtmzZUmr8GzZsoGvXrjg5Od33+yGEEEIIISqWTN97huTn5RK5KZKiIr3h3K+NmnG9khM19ckQPR/yM4svmFk+dH1Z2ee4dj2KSn+sY64wJ6x/IA3cXB66bCHEk8Xf35/w8HDy8vLYsmULI0aMwNzcnGnTplV0aADk5+ej1WpLTVNQUECXLl2oV68eGzZswMXFhQsXLrB161ajjrHFixczduxYpkyZwrJly9BqtXz33XcEBwfz22+/ERYW9sBx1q1blyVLluDh4UFOTg4LFy6ka9euJCQkUKVKFU6fPo1er+ezzz7D09OT3377jWHDhpGVlVVqvXv27GHgwIEsXLiQgIAAUlJSCA4OZtiwYWzYsOGe+W7evImPjw++vr5s3bqVKlWqcObMGSpVqmSU7vb7f5uFRckNLGbNmsWwYcMMxzqdzvC1ubk5AwcOpHnz5jg4OHDs2DGGDRuGXq/n448/Borfwy5dulC1alXWr1+Pm5sbv//+Ow4ODqXe06ysLNq3b0+fPn2M6hdCCCGEEE8BJe4pPT1dASo9Pb2iQymXnbHbVFifl1VYn5fVgn6D1Zi3+yv/WctVtZ9j1Op/9VUqxK749YGDUjkP16Zrt3JVxK6N6qftHmptZAvV8aOl6uati4+oJUI8e3JyclRsbKzKycmp6FDu26BBg1RgYKDRuS5duqg2bdqo1NRUFRQUpBwcHJSVlZXy9/dX8fHxhnRJSUmqR48eysHBQVlbWytvb2+1efNmlZiYqACj16BBg5RSSmVkZKj+/fsra2tr5ezsrBYsWKA6duyoxowZYyjX3d1dzZo1SwUFBSmdTmfIGx0drdq3b68sLS1V9erV1ahRo1RmZqZSSqmYmBgFqKSkpHu2NTk5WZmbm6vx48eXuLZo0SIFqF9//VUppQxtiImJuf+b+ofbnzM//fTTPdPMnTtX1a5du9Ry5s2bpzw8PErE6+bmVmq+KVOmqPbt25ea5m7v/5+5u7urhQsXlprmz8aNG2dU97Jly5SHh4fKz8+/r3JuexTvx51K+5mtqOeDGzduqP79+yudTqfs7e3V22+/rW7dulVqnpycHPXPf/5TOTo6KhsbG/Xaa6+py5cv3zXt9evXlZubmwLUzZs37yu2p+2ZSQghhBB/rfI+G8j0vWdIwpU/pp9oLLC18CPSowmXK7sCYKXPBZuq0OxN6LkYLB98il1BQTpboseRcXUxADfz7LmeVwd7G+eHboMQfytKQX7W438p9dChW1lZkZ+fz+DBgzl06BCbNm1i3759KKXo3r27YVrWiBEjyMvLY9euXZw4cYI5c+Zga2tLjRo1+Oabb4DiqV2XLl3i008/BWD8+PHs2bOHTZs2ERUVRXR0NEeOHCkRQ1hYGE2bNiUmJob333+fs2fP4u/vT69evTh+/Dhr165l9+7djBw5EoAqVapgYmLC+vXrKSoqumu71q9fT0FBARMnTixxbfjw4dja2rJmzZqHvn9QPDJoxYoV2Nvb07Rp03umS09Px9HRsdSy2rZty/nz59myZQtKKa5cucL69evp3r17qfk2bdpEy5Yt6d27N1WrVqVZs2Z8/vnnJdLt3LmTqlWrUq9ePf7xj3/cdVrgJ598gpOTE82aNWPevHmlTu9MSEjghx9+oGPHjkaxtG3blhEjRlCtWjUaNWrExx9/fM/36u9owIABnDx5kqioKCIjI9m1axfvvPNOqXnGjRvH999/z7p16/jll1+4ePEir7322l3TDhkyhCZNmvwVoQshhBBC3JVM33tGHEs5wY+7f6EVAFo0Kp8iG2sueboBYF2UCy5NIHDpQ9d19epW3Cy2wR+zN6ws3Zn3ehM0Gs1Dly3E30pBNnzs+vjrnX4RtDYPlFUpxfbt29m2bRvdunVj48aN7Nmzh3bt2gHF6xrVqFGDjRs30rt3b5KTk+nVqxeNGzcGwMPDw1DW7Y6WqlWrGqZo3bp1i1WrVrF69Wo6d+4MQHh4OK6uJe9Tp06dmDBhguF46NChDBgwgLFjxwLg5eXFokWL6NixI8uWLcPNzY1FixYxefJkZs6cScuWLfH19WXAgAGGuOLj47G3t8fFpeQ0ZK1Wi4eHB/Hx8Q90726LjIykX79+ZGdn4+LiQlRUFJUrV75r2oSEBBYvXlzmlEEfHx8iIiLo27cvubm5FBYWEhAQwNKlpf/OP3fuHMuWLWP8+PFMnz6dgwcPMnr0aLRaLYMGFW9Y4e/vz2uvvUbt2rU5e/Ys06dPp1u3buzbtw9TU1MARo8eTfPmzXF0dGTv3r1MmzaNS5cusWDBAqP62rVrx5EjR8jLy+Odd95h1qxZRrH8/PPPDBgwgC1btpCQkMA///lPCgoKCAkJKfO+PutOnTrFDz/8wMGDB2nZsiVQPNW0e/fuhIWF3fVnJD09nS+++ILVq1fTqVMnoPjnqUGDBvz666+0adPGkHbZsmWkpaUxY8YMtm7d+ngaJYQQQoi/PRkp9Yw4EH4Bn8SeAGg05piofHIaP4/nlQv4maTik3b0gf8IvdNvKensOl38B1n8TQ80DlPp99I8ujWWdaSEeJZFRkZia2uLpaUl3bp1o2/fvgwePBgzMzNat25tSOfk5ES9evU4deoUUNxZERoaio+PDyEhIRw/frzUes6dO0dBQQGtWrUynLO3t6devXol0t7+w/y2Y8eOsXLlSmxtbQ0vPz8/9Ho9iYmJQPHIrcuXLxMREUHbtm1Zt24dDRs2JCoqqtz3oqy1q6C4c+7OOKKjow3XfH19OXr0KHv37sXf358+ffpw9erVEmWkpKTg7+9P7969jdZKurPc4OBgAGJjYxkzZgwzZszg8OHD/PDDDyQlJRmuR0dHG+WLiIgAQK/X07x5cz7++GOaNWvGO++8w7Bhw1i+fLmhvn79+tGzZ08aN27MK6+8QmRkJAcPHmTnzp2GNOPHj+fFF1+kSZMmBAcHM3/+fBYvXkxeXp5Rm9auXcuRI0dYvXo1mzdvNups0+v1VK1alRUrVtCiRQv69u3Lu+++a4iltHv6d7Bv3z4cHByMvu9feuklTExMjBbLv9Phw4cpKCjgpZdeMpyrX78+NWvWZN++fYZzsbGxzJo1i//85z+YmJTv0TAvL4+MjAyjlxBCCCHE/ZKRUs+AW6nXuXXyvyh9FgCmej0uN/dipp5jq3d1dNm7QJ8D5g/XKVVYeIuQDZE0cThNVTc4m1YbX9e+aLWy254QD8TcunjUUkXUe598fX0Ni367urpiZmbGpk2bysw3dOhQ/Pz82Lx5Mz/++COzZ89m/vz5jBo16kEiN2JjY/w7LTMzk+HDhzN69OgSaWvWrGn4WqfTERAQQEBAAKGhofj5+REaGkqXLl3w8vIiPT2dixcvlhh5kp+fz9mzZ/Hz8ysztp49exp11rm5uRnF7enpiaenJ23atMHLy4svvvjCaNH4ixcv4uvrS7t27VixYoVR2XfuLmdnV/z7d/bs2fj4+DBp0iQAmjRpgo2NDR06dCA0NJSWLVsa5atWrRoALi4ueHt7G5XfoEEDw9TKu/Hw8KBy5cokJCQYRrP9WevWrSksLCQpKcmoQ7FGjRoAeHt7U1RUxDvvvMOECRMwNTXFxcUFc3Nzw+ir27FcvnyZ/Pz8Uu/p38Hly5epWrWq0TkzMzMcHR25fPnyPfNotdoSi8VXq1bNkCcvL4833niDefPmUbNmTc6dO1eueGbPns3MmTPvvyFCCCGEEHeQTqlnwIVTJ1H6dMNxjfREzjTyxkZThG7Ly1D0x1biDzFSqqAgg737OvLPhv/7T2jrOrWoV01XSi4hRKk0mkcygvFxuN2RcqcGDRpQWFjI/v37DdP3bty4QVxcnFFHR40aNQgODiY4OJhp06bx+eefM2rUKMOIozvXDPLw8MDc3JyDBw8aOpLS09OJj4/nhRdeKDXG5s2bExsbWyLO0mg0GurXr8/evXsBeP3115kyZQrz589n/vz5RmmXL19OdnY2AwcOLLNcnU5ntPtcafR6vdGIopSUFHx9fWnRogXh4eElRq7crX3Z2dmYmRl/pN/u3FFKYWVlddd8Pj4+xMXFGZ2Lj4/H3d39nvFeuHCBGzdu3HWK421Hjx7FxMSkRCfKnfR6PQUFBej1ekxNTfHx8WH16tXo9XpDm+Pj43FxcUGr1aLVast9T58mU6dOZc6cOaWmuT3y8K8wbdo0GjRowJtvvnnf+caPH284zsjIMHQ6CiGEEEKUl3RKPQMOXSgetm9iVoMc7Xnm1XqHRN9GuBWlQ2HuH6k0ULPNvQspw4VrpykszECvNGQXWFHZrgrdmvSSdaSE+Bvz8vIiMDCQYcOG8dlnn6HT6Zg6dSpubm4EBgYCMHbsWLp160bdunW5efMmO3bsoEGDBgC4u7uj0WiIjIyke/fuWFlZodPpGDRoEJMmTcLR0ZGqVasSEhKCiYlJmb9vpkyZQps2bRg5ciRDhw7FxsaG2NhYoqKiWLJkCUePHiUkJISgoCC8vb3RarX88ssvfPnll0yZMgUoHlE1d+5cJk6ciKWlJUFBQZibm/Pdd98xffp0QkNDadSokVG9f+7UAWjYsCHm5uZG57Kysvjoo4/o2bMnLi4uXL9+naVLl5KSkkLv3r2B4g6pF198EXd3d8LCwrh27Zohv7PzvTeTCAgIYNiwYSxbtgw/Pz8uXbrE2LFjadWq1V3XGrpt3LhxtGvXjo8//pg+ffpw4MABVqxYYRidlZmZycyZM+nVqxfOzs6cPXuWyZMn4+npaRgxtm/fPvbv34+vry86nY59+/Yxbtw43nzzTSpVqgQUT70zNzencePGWFhYcOjQIaZNm0bfvn0N9+kf//gHS5YsYcyYMYwaNYozZ87w8ccf33Xk251SU1NJTk7m4sWLRu+Hs7NzqffsSTFhwgQGDx5cahoPDw+cnZ1LTPMsLCwkNTX1nu10dnYmPz+ftLQ0o9FSV65cMeT5+eefOXHiBOvXrweKOzEBKleuzLvvvnvP0VAWFhZYWFiUp4lCCCGEEPf2128E+PR6GrY3Ts9LV5PC3lBhfV5WCwaMUxPfeU25T4lU1X48rNpviVQqxE6pU5FKZd144Dqi46+pl+fNVT9t91BffPuCqv/e1kfYAiH+HkrbXv5JN2jQIBUYGHjXa6mpqSooKEjZ29srKysr5efnp+Lj4w3XR44cqerUqaMsLCxUlSpVVFBQkLp+/brh+qxZs5Szs7PSaDRq0KBBSimlMjIyVP/+/ZW1tbVydnZWCxYsUK1atVJTp0415HN3d1cLFy4sEc+BAwdUly5dlK2trbKxsVFNmjRRH330kVJKqWvXrqnRo0erRo0aKVtbW6XT6VTjxo1VWFiYKioqMipn48aNqkOHDsrGxkYBClBr1qwxSpOYmGi49ufX+fPnS8SWk5OjXn31VeXq6qq0Wq1ycXFRPXv2VAcOHDCkCQ8Pv2eZZVm0aJHy9vZWVlZWysXFRQ0YMEBduHChzHzff/+9atSokbKwsFD169dXK1asMFzLzs5WXbt2VVWqVFHm5ubK3d1dDRs2TF2+fNmQ5vDhw6p169bK3t5eWVpaqgYNGqiPP/5Y5ebmGtJ89dVXqnnz5ob3xdvbW3388cclfh727t2rWrdurSwsLJSHh4f66KOPVGFhYanx3+uehYSElNn20pT2M1sRzwexsbEKUIcOHTKc27Ztm9JoNColJeWuedLS0pS5ublav3694dzp06cVoPbt26eUUiohIUGdOHHC8Pryyy8VoPbu3auuXLlS7viehmcmIYQQQjw+5X020Cj1CPYGf0ZlZGRgb29Penq6Yd2OJ0nalWz+79//j6KU33C4kYiJ1pszNolsdhxMXmdXmuSc48dDb8Pw6OKd9x5AZmYc2w4s5nLqGeo7JnAmrT6plmFM797gEbdGiGdbbm4uiYmJ1K5dG0tLy4oO56mSlZWFm5sb8+fPZ8iQIY+9/tTUVDp37oydnR1bt27F2vr+1+QST5/SfmYr6vmgW7duXLlyheXLl1NQUMBbb71Fy5YtWb16NVA80q5z58785z//MWwW8I9//IMtW7awcuVK7OzsDOu53Z6y+mc7d+7E19eXmzdvlliLqjRP+jOTEEIIIR6v8j4byPS9p9jRn36nynkvCnKuUUQiJnrIsKlHQWNHMNHQOuNkccIHWNT4tnOJn+LANhyKd27nhQaN8W4gHVJCiL9OTEwMp0+fplWrVqSnpzNr1iwAw5TAx83R0ZGffvqJpUuXsm/fvnsu7i3EXy0iIoKRI0fSuXNnTExM6NWrF4sWLTJcLygoIC4ujuzsbMO5hQsXGtLm5eXh5+fHv/71r4oIXwghhBCiBOmUeoplnk8GzLHOvsgtE6h6/QQXO79FTYtbbGzZBOeFfzyomls9UPl7E66TfuN3tMDulNbUcW1Ge4/Bjyp8IYS4p7CwMOLi4tBqtbRo0YLo6GgqV65cYfE4OTkxY8aMCqtfCCjuIL09KupuatWqxZ8HwFtaWrJ06VKWLl1arjpefPHFEmUIIYQQQvxVpFPqKaXXF5EU+xV5edfI/WNjpgLHImJredE88xLOUeNAX1B84QE6pY7HreTw8bXUcUgCU9h1oR2edQOwsKjy6BohhBB30axZMw4fPlzRYQghhBBCCCH+YtIp9ZRKPH+avLz/7cpUhIYtzp1Ao8E9+yScXlt8QWtb/LpP1y7Ow9upeOc+vTKlfYOmvNz43tt/CyGEEEIIIYQQQtwP6ZR6Cu2K3cfab1fjAaCxxD1Nz7Qm/fGwzALASp8HjnWg5VtQozWYactdtl6vOHDuIqjiDqldV4YxsUcAXXQN/4KWCCGEEEIIIYQQ4u/KpKIDEPfvyP+7RP3E1gBoNBaYqjwKTSxwtNQDYKnPh8pe0G4U1Gh1X2V/H3Oc99d/A0CR3oQbqgs66ZASQgghhBBCCCHEIyYjpZ5C2lQNhaoQAPOCXKoWXsf2eWuOW9YFwFKfB9r733L++vWfsU0fxtQ/+rHylQ2D2tV+ZHELIYQQQgghhBBC3CadUk+ZnMxbFOaeQa9PBcCqKIMve/TlmqOTIU2tnBSwtbnvstMzjgJQUGSGxsSK+h5v4lnL8ZHELYQQQgghhBBCCHEnmb73lNmxNpyC3F0U5f8GwG8Oddj8XCfMiwpZ1agWGzSHGHBpM5jf30ipn09fYU98IgBbkzpzXrsBzzoTH3n8QgghhBBCCCGEECAjpZ4quYW5/HIqiqqAxrQamdzieKXnAHAwN8PP3hzyfwf0YFa+TimlFBcvfs0P+36hoeNx0EJWgTUu9lZ/WTuEEEIIIYQQQggh7nuk1K5duwgICMDV1RWNRsPGjRuNriulmDFjBi4uLlhZWfHSSy9x5swZozSpqakMGDAAOzs7HBwcGDJkCJmZmUZpjh8/TocOHbC0tKRGjRrMnTu3RCzr1q2jfv36WFpa0rhxY7Zs2XLfsTxNlh1bRn5u8a54phZNOG/lQoZF8bQ9h5xL8LEr7F1UnLicnVK3bv3G6bjp+Llvo7ruEgBdGzeii3e1R98AIcRTafDgwWg0GjQaDVqtFk9PT2bNmkVhYeFDlbtz5040Gg1paWmPJtBySExMpH///ri6umJpaUn16tUJDAzk9OnTRukiIyPp2LEjOp0Oa2trnn/+eVauXGmUJikpCY1Gw9GjR8td/wcffED9+vWxsbGhUqVKvPTSS+zfv9+ozCFDhlC7dm2srKyoU6cOISEh5Ofnl1l2REQETZs2xdraGhcXF95++21u3LhRap6ioiLef/99o/o+/PBDlFKGNBs2bKBr1644OTnds71nz57l1VdfpUqVKtjZ2dGnTx+uXLly3+0qz2f/n5X1XCKEEEIIIZ5c990plZWVRdOmTVm6dOldr8+dO5dFixaxfPly9u/fj42NDX5+fuT+0ZkCMGDAAE6ePElUVBSRkZHs2rWLd955x3A9IyODrl274u7uzuHDh5k3bx4ffPABK1asMKTZu3cvb7zxBkOGDCEmJoZXXnmFV155hd9+++2+YnlapF3JRv3Hgxo36wCgwZRbRc7csrEGwCYv7X+JzSyhVvsyy9TrFbEXEgC4mWvPjvO+1PGYSK92b6A1k5mdQoj/8ff359KlS5w5c4YJEybwwQcfMG/evIoOy6A8nTYFBQV06dKF9PR0NmzYQFxcHGvXrqVx48ZGHWOLFy8mMDAQHx8f9u/fz/Hjx+nXrx/BwcFMnPhw05rr1q3LkiVLOHHiBLt376ZWrVp07dqVa9euAXD69Gn0ej2fffYZJ0+eZOHChSxfvpzp06eXWu6ePXsYOHAgQ4YM4eTJk6xbt44DBw4wbNiwUvPNmTOHZcuWsWTJEk6dOsWcOXOYO3cuixcvNqTJysqiffv2zJkz565lZGVl0bVrVzQaDT///DN79uwhPz+fgIAA9Hp9udtVns/+e9Vf2nOJEEIIIYR4gqmHAKhvv/3WcKzX65Wzs7OaN2+e4VxaWpqysLBQa9asUUopFRsbqwB18OBBQ5qtW7cqjUajUlJSlFJK/etf/1KVKlVSeXl5hjRTpkxR9erVMxz36dNHvfzyy0bxtG7dWg0fPrzcsZQlPT1dASo9Pb1c6f9KR9ZuV0uGb1fz3xiqwvq8rD7vO1O9PHqpcvlqr6r2c4wa/PUipWbXUCovU6mCvLILVEqt239QjfhspPppu4ea/1WAajd7+1/cCiH+vnJyclRsbKzKycmp6FDu26BBg1RgYKDRuS5duqg2bdqo1NRUFRQUpBwcHJSVlZXy9/dX8fHxhnRJSUmqR48eysHBQVlbWytvb2+1efNmlZiYqACj16BBg5RSSmVkZKj+/fsra2tr5ezsrBYsWKA6duyoxowZYyjX3d1dzZo1SwUFBSmdTmfIGx0drdq3b68sLS1V9erV1ahRo1RmZqZSSqmYmBgFqKSkpHu2NTk5WZmbm6vx48eXuLZo0SIFqF9//VUppQxtiImJuf+b+ofbnzM//fTTPdPMnTtX1a5du9Ry5s2bpzw8PErE6+bmVmq+l19+Wb399ttG51577TU1YMCAEmnv1d5t27YpExMTo8/KtLQ0pdFoVFRU1D3r/nO7yvPZX5Y/P5c8jNJ+Zp+k54MnhdwTIYQQQtypvM8Gj3Q4TGJiIpcvX+all14ynLO3t6d169bs27cPgH379uHg4EDLli0NaV566SVMTEwMUxj27dvHCy+8gFarNaTx8/MjLi6OmzdvGtLcWc/tNLfrKU8sf5aXl0dGRobR60mRm1Q87dCs8BYAXme/46JPHRpmnWd6zgVCEz4FrQ60NmCmLa0oAK5c2UylzL686lk85dHMzIERvp5/XQOEECUopcguyH7sL3XH1KwHZWVlRX5+PoMHD+bQoUNs2rSJffv2oZSie/fuFBQUADBixAjy8vLYtWsXJ06cYM6cOdja2lKjRg2++eYbAOLi4rh06RKffvopAOPHj2fPnj1s2rSJqKgooqOjOXLkSIkYwsLCaNq0KTExMbz//vucPXsWf39/evXqxfHjx1m7di27d+9m5MiRAFSpUgUTExPWr19PUVHRXdu1fv16CgoK7joiavjw4dja2rJmzZqHvn9QPLprxYoV2Nvb07Rp03umS09Px9Gx9J1Q27Zty/nz59myZQtKKa5cucL69evp3r17qfnatWvH9u3biY+PB+DYsWPs3r2bbt26lbsdeXl5aDQaLCwsDOcsLS0xMTFh9+7d5W5XeT77hRBCCCHEs+WRLnR++fJlAKpVM16PqFq1aoZrly9fpmrVqsZBmJnh6OholKZ27dolyrh9rVKlSly+fLnMesqK5c9mz57NzJkzy9fYx0jp9ZyKP0BeVjSKLABWvfgKF6tUI8izOqMrpcKBa6CrV+4yMzKOAZBXZI6JaSUGvDgEJ6eaf0n8Qoi7yynMofXq1o+93v3992Ntbv1AeZVSbN++nW3bttGtWzc2btzInj17aNeuHVC8rlGNGjXYuHEjvXv3Jjk5mV69etG4cWMAPDw8DGXd7pCoWrUqDg4OANy6dYtVq1axevVqOnfuDEB4eDiurq4lYunUqRMTJkwwHA8dOpQBAwYwduxYALy8vFi0aBEdO3Zk2bJluLm5sWjRIiZPnszMmTNp2bIlvr6+DBgwwBBXfHw89vb2uLi4lKhPq9Xi4eFh6MB5UJGRkfTr14/s7GxcXFyIioqicuXKd02bkJDA4sWLCQsLK7VMHx8fIiIi6Nu3L7m5uRQWFhIQEFDmlLapU6eSkZFB/fr1MTU1paioiI8++ogBAwaUuz1t2rTBxsaGKVOm8PHHH6OUYurUqRQVFXHp0qVyt6s8n/1CCCGEEOLZIgsH3WHatGmkp6cbXufPn6/okACIO3eUm7euoPRpoFEUaTQkO1UHwC35O/jxveKEFrblKu+X+GscTkoGYPO5rlyz/gonp45/RehCiGdEZGQktra2WFpa0q1bN/r27cvgwYMxMzOjdev/daw5OTlRr149Tp06BcDo0aMJDQ3Fx8eHkJAQjh8/Xmo9586do6CggFatWhnO2dvbU69eyU73O0fcQvEon5UrV2Jra2t4+fn5odfrSUxMBIpHbl2+fJmIiAjatm3LunXraNiwIVFRUeW+F3eO5LmXiIgIoziio6MN13x9fTl69Ch79+7F39+fPn36cPXq1RJlpKSk4O/vT+/evY3Whrqz3ODgYABiY2MZM2YMM2bM4PDhw/zwww8kJSUZrkdHRxvli4iIAODrr78mIiKC1atXc+TIEVatWkVYWBirVq0q9/2oUqUK69at4/vvv8fW1hZ7e3vS0tJo3rw5JiYlHzPu1a6y3KsNQgghhBDi6fVIR0o5OzsDcOXKFaP/Ml+5coXnnnvOkObPD9+FhYWkpqYa8js7Oxvt2nO7jDvruFeaO6+XFcufWVhYGE0/eBIU6Yt47+dptMUcNFY4FDrzaf1a2FrrALC8sB+uHy1O7FD2SKf0jNOs+ikCH5fTVLGH7EJrqumerDYL8XdhZWbF/v77y074F9R7v3x9fVm2bBlarRZXV1fMzMzYtGlTmfmGDh2Kn58fmzdv5scff2T27NnMnz+fUaNGPUjoRmxsbIyOMzMzGT58OKNHjy6RtmbN//1+1Ol0BAQEEBAQQGhoKH5+foSGhtKlSxe8vLxIT0/n4sWLJUZn5efnc/bsWfz8/MqMrWfPnkaddW5ubkZxe3p64unpSZs2bfDy8uKLL75g2rRphjQXL17E19eXdu3alVjo+87d7+zs7IDikb4+Pj5MmjQJgCZNmmBjY0OHDh0IDQ2lZcuWRvluj0CaNGkSU6dOpV+/fgA0btyY33//ndmzZzNo0KAy23lb165dOXv2LNevX8fMzAwHBwecnZ2NRsaV1a6yPvtr1ap11zYIIYQQQoin1yMdKVW7dm2cnZ3Zvn274VxGRgb79++nbdu2QPG6F2lpaRw+fNiQ5ueff0av1xse4Nu2bcuuXbsMa5IAREVFUa9ePcPw/bZt2xrVczvN7XrKE8vTYN8v26h71BwAjcYSUxMLbik3isyL3zpLfR407gOv/RteXlBqWUoVERPTnwH1V1PLvngUWOeG9XixXtVS8wkh/hoajQZrc+vH/tJoNPcd6+2OlJo1a2JmVvz/jAYNGlBYWGhYDxDgxo0bxMXF4e3tbThXo0YNgoOD2bBhAxMmTODzzz8H/jfi6M71nTw8PDA3N+fgwYOGc+np6eWaMte8eXNiY2MNHT53vu41ukmj0VC/fn2ysoqnRr/++uuYmZkxf/78EmmXL19OdnY2AwcOLDMWnU5nVL+V1b07AvV6PXl5eYbjlJQUXnzxRVq0aEF4eHiJ0UZ3lnt7Onx2dnaJdKampkDxlEsrKyujfDqdrtR8t3fNu1+VK1fGwcGBn3/+matXr9KzZ89yt6usz/57tUEIIYQQQjy97nukVGZmJgkJCYbjxMREjh49iqOjIzVr1mTs2LGEhobi5eVF7dq1ef/993F1deWVV14Biv+I8ff3Z9iwYSxfvpyCggJGjhxJv379DP+V7t+/PzNnzmTIkCFMmTKF3377jU8//ZSFCxca6h0zZgwdO3Zk/vz5vPzyy3z11VccOnTI8J9XjUZTZixPurzsAk58ZYJz4asU8C1ozLHSm2Blac1NF3sArPW5UMsHmvQus7yCgnSKitIBOHG9Mf5NGvGiV19MTWUWpxDi/nl5eREYGMiwYcP47LPP0Ol0TJ06FTc3NwIDAwEYO3Ys3bp1o27duty8eZMdO3bQoEEDANzd3dFoNERGRtK9e3esrKzQ6XQMGjSISZMm4ejoSNWqVQkJCcHExKTMzrQpU6bQpk0bRo4cydChQ7GxsSE2NpaoqCiWLFnC0aNHCQkJISgoCG9vb7RaLb/88gtffvklU6ZMAYpHVM2dO5eJEydiaWlJUFAQ5ubmfPfdd0yfPp3Q0FAaNWpkVG9cXFyJWBo2bIi5ubnRuaysLD766CN69uyJi4sL169fZ+nSpaSkpNC7d/Hv8NsdN+7u7oSFhXHt2jVD/tsjgO8mICCAYcOGsWzZMvz8/Lh06RJjx46lVatWd12P6858H330ETVr1qRhw4bExMSwYMEC3n77bUOa1NRUkpOTuXjxolF7nZ2dDTGFh4fToEEDqlSpwr59+xgzZgzjxo0zTLssT7vK89l/N2U9lwghhBBCiCfY/W7rt2PHjhLbeHPHVt56vV69//77qlq1asrCwkJ17txZxcXFGZVx48YN9cYbbyhbW1tlZ2en3nrrLXXr1i2jNMeOHVPt27dXFhYWys3NTX3yySclYvn6669V3bp1lVarVQ0bNlSbN282ul6eWEpT0dsbXzt/Sy1+Z5v6dPAiFdbnZfVpvyA1bs58Ve3nGMPr5NznlDr2dZllnbiQpj7ZtE39tN1DbfrBW7X5+N7bjwshHr3Stpd/0g0aNEgFBgbe9VpqaqoKCgpS9vb2ysrKSvn5+an4+HjD9ZEjR6o6deooCwsLVaVKFRUUFKSuX79uuD5r1izl7OysNBqN4XMkIyND9e/fX1lbWytnZ2e1YMEC1apVKzV16lRDPnd3d7Vw4cIS8Rw4cEB16dJF2draKhsbG9WkSRP10UcfKaWUunbtmho9erRq1KiRsrW1VTqdTjVu3FiFhYWpoqIio3I2btyoOnTooGxsbAyfc2vWrDFKk5iYeNfPQ0CdP3++RGw5OTnq1VdfVa6urkqr1SoXFxfVs2dPdeDAAUOa8PDwe5ZZlkWLFilvb29lZWWlXFxc1IABA9SFCxdKzZORkaHGjBmjatasqSwtLZWHh4d69913VV5eXpkxhYSEGNJMmTJFVatWTZmbmysvLy81f/58pdfr77td5fns/7OynkseVGk/sxX9fPAkknsihBBCiDuV99lAo9Qj2Bv8GZWRkYG9vT3p6emGdTsep38vnU36rr0UP19DirUrqwf+k6rZmbxqb0XdlA30P7UETd8IaNDjnuVkZyfy36jp6Auv4VUpkes5jnz1+//x7T99HlNLhBC5ubkkJiZSu3ZtLC0tKzqcp0pWVhZubm7Mnz+fIUOGPPb6U1NT6dy5M3Z2dmzduhVr6wfbuVA8XUr7ma3o54MnkdwTIYQQQtypvM8GMm/rCZYYe5DbHVIKxXnb4mkIvg6FzMxYy4Df16AB0Jb+B9LFi19TR3cAr0rFu09ZWLrzyWtN/sLIhRDiwcXExLBmzRrOnj3LkSNHGDBgAIBhSuDj5ujoyE8//UTnzp3Zt29fhcQghBBCCCHEs+iR7r4nHp2fk3+G/OKFZnWa5sRU/5nTuuJ1TKwSd0DCZ/9LbFPlnuXkFhSRkV28dseBy83o1vJ12td6CQutLBArhHhyhYWFERcXh1arpUWLFkRHR1O5cuUKi8fJyYkZM2ZUWP1CCCGEEEI8i6RT6gm19tBaqv2x+ZGp0qDX2KHVFp+w1ueCmRW0HQGOHlCt0V3LOJ+aTbdPoxlU/yzNq0FcqidDXV7FQmvxuJohhBD3rVmzZkY7tAohhBBCCCGeTdIp9QSK//V3mn/fgezcH9GTiqleUdmyIZkNnQCwLsoBayfo/P49yygouMnp395kZpuL2JgXb3Ve3akaTjZ33xZdCCGEEEIIIYQQ4nGSTqkn0LFN+8jTZKJXeQBY56Vxyvs50nX2ALjmXQNzq1LLuHlzPyaFp3H4Y1CURmPKtJ4BmJiUvqW6EEIIIYQQQgghxOMgnVJPoEvJkRQUpBmOG3ht52iVfvhZm/GaZSrdrvwI1bzvmV8pxbWM6wDEpdbhiuafTA9oj4W24tZjEUIIIYQQQgghhLiTdEo9YU6nnqag4BYA2iITjlWpxjc1B5Jtak2A5U0CL24GVQham3uWMXn9cdKvx9C3HqTmVkJj5yUdUkIIIYQQQgghhHiiSKfUE2b/xf1A8YLmlXPN2OH8HI7a4nWgLKPnwvVdxQkt7r573uXL39HQYik27sUjpZTGlq7e1f7yuIUQQgghhBBCCCHuh3RKPUEuZ13m632b6IQCQJGPUmbozU0BsNLngW01cHkOfMbctYzEpH9Rw/as4XjwCy9Qo4aMkhJCCCGEEEIIIcSTxaSiAxD/s/XHPXgntDUcF5kUoArsKbT+Y6RUUR54dYUBX0MtnxL5F0TFc+PWFQD+e+p16tRfiZvbgMcTvBBCCCGEEEIIIcR9kE6pJ0j2j1a436xnOHYsUuQ9V4srLsXT76z0uWBhd9e8568e52BsBFpNFgCJmS2pXs0HExMZDCeEeDiDBw9Go9Gg0WjQarV4enoya9YsCgsLH6rcnTt3otFoSEtLezSBlkNiYiL9+/fH1dUVS0tLqlevTmBgIKdPnzZKFxkZSceOHdHpdFhbW/P888+zcuVKozRJSUloNBqOHj1a7vo/+OAD6tevj42NDZUqVeKll15i//79RmUOGTKE2rVrY2VlRZ06dQgJCSE/P7/MsiMiImjatCnW1ta4uLjw9ttvc+PGjVLz3Lp1i7Fjx+Lu7o6VlRXt2rXj4MGDRmkyMzMZOXIk1atXx8rKCm9vb5YvX26UZvjw4dSpUwcrKyuqVKly13uanJzMyy+/jLW1NVWrVmXSpEn3/B7as2cPZmZmPPfcc2W2e8OGDXTt2hUnJ6f7fj+EEEIIIUTFkk6pJ4QqyEUV5qIvSgXARA9ZLjboK1sC4FKQhld2MljYlshbWJjFmZNvMLTxfzE10aMw4cu3OmNmKm+vEOLR8Pf359KlS5w5c4YJEybwwQcfMG/evIoOy6A8nTYFBQV06dKF9PR0NmzYQFxcHGvXrqVx48ZGHWOLFy8mMDAQHx8f9u/fz/Hjx+nXrx/BwcFMnDjxoeKsW7cuS5Ys4cSJE+zevZtatWrRtWtXrl27BsDp06fR6/V89tlnnDx5koULF7J8+XKmT59earl79uxh4MCBDBkyhJMnT7Ju3ToOHDjAsGHDSs03dOhQoqKi+H//7/9x4sQJunbtyksvvURKSoohzfjx4/nhhx/473//y6lTpxg7diwjR45k06ZNhjQtWrQgPDycU6dOsW3bNpRSdO3alaKiIgCKiop4+eWXyc/PZ+/evaxatYqVK1cyY8aMEjGlpaUxcOBAOnfuXK57mpWVRfv27ZkzZ0650gshhBBCiCeIEveUnp6uAJWenv6X1/X9ondVWJ+XDa/Ffbuq19b/W9XbskvdmOWmCkIqKRVip9T+FSXyZmUlqZ+2e6htUZ5q2Yae6vfkL//yeIUQ9ycnJ0fFxsaqnJycig7lvg0aNEgFBgYanevSpYtq06aNSk1NVUFBQcrBwUFZWVkpf39/FR8fb0iXlJSkevTooRwcHJS1tbXy9vZWmzdvVomJiQoweg0aNEgppVRGRobq37+/sra2Vs7OzmrBggWqY8eOasyYMYZy3d3d1axZs1RQUJDS6XSGvNHR0ap9+/bK0tJSVa9eXY0aNUplZmYqpZSKiYlRgEpKSrpnW5OTk5W5ubkaP358iWuLFi1SgPr111+VUsrQhpiYmPu/qX+4/Tnz008/3TPN3LlzVe3atUstZ968ecrDw6NEvG5ubvfMk52drUxNTVVkZKTR+ebNm6t3333XcNywYUM1a9asUtP82bFjxxSgEhISlFJKbdmyRZmYmKjLly8b0ixbtkzZ2dmpvLw8o7x9+/ZV7733ngoJCVFNmza9Zx1/9ijejzuV9jP7OJ8PnhZyT4QQQghxp/I+G8hQmifEiZOH//jKFL0GLtq6s8exBdX0qTgW3cKsaR/oOBWa9DHKd/R8GhO/3gtARr6O789PpGaNtx5z9EKIB6GUQp+d/dhfSqmHjt3Kyor8/HwGDx7MoUOH2LRpE/v27UMpRffu3SkoKABgxIgR5OXlsWvXLk6cOMGcOXOwtbWlRo0afPPNNwDExcVx6dIlPv30U6B4ZM6ePXvYtGkTUVFRREdHc+TIkRIxhIWF0bRpU2JiYnj//fc5e/Ys/v7+9OrVi+PHj7N27Vp2797NyJEjAahSpQomJiasX7/eMILnz9avX09BQcFdR0QNHz4cW1tb1qxZ89D3D4pHd61YsQJ7e3uaNm16z3Tp6ek4OjqWWlbbtm05f/48W7ZsQSnFlStXWL9+Pd27d79nnsLCQoqKirC0tDQ6b2Vlxe7duw3H7dq1Y9OmTaSkpKCUYseOHcTHx9O1a9e7lpuVlUV4eDi1a9emRo0aAOzbt4/GjRtTrdr/doP18/MjIyODkydPGs6Fh4dz7tw5QkJCSm2vEEIIIYR4NsiCQ08ApRTkFfcPaq27sdtuL4UWTQCwKsopTtTpfbB3K5F37cFkzl65AjUhp9CSOlVKTu8TQjyZVE4Occ1bPPZ66x05jMba+oHyKqXYvn0727Zto1u3bmzcuJE9e/bQrl07oHhdoxo1arBx40Z69+5NcnIyvXr1onHjxgB4eHgYyrrd0VK1alUcHByA4jWOVq1axerVqw3Tt8LDw3F1dS0RS6dOnZgwYYLheOjQoQwYMICxY8cC4OXlxaJFi+jYsSPLli3Dzc2NRYsWMXnyZGbOnEnLli3x9fVlwIABhrji4+Oxt7fHxcWlRH1arRYPDw/i4+Mf6N7dFhkZSb9+/cjOzsbFxYWoqCgqV777LqkJCQksXryYsLCwUsv08fEhIiKCvn37kpubS2FhIQEBASxduvSeeXQ6HW3btuXDDz+kQYMGVKtWjTVr1rBv3z48PT0N6RYvXsw777xD9erVMTMzw8TEhM8//5wXXnjBqLx//etfTJ48maysLOrVq0dUVBRabfFGHZcvXzbqkAIMx5cvXwbgzJkzTJ06lejoaMzM5PFECCGEEOLvQEZKVaATOy+we/0ZVr7/C9pcewBMlQkFpuZUNskE7uiUMrcqkT/h7Dx87fswvkXxHx2ujpX5pFfjxxO8EOJvJTIyEltbWywtLenWrRt9+/Zl8ODBmJmZ0bp1a0M6Jycn6tWrx6lTpwAYPXo0oaGh+Pj4EBISwvHjx0ut59y5cxQUFNCqVSvDOXt7e+rVq1cibcuWLY2Ojx07xsqVK7G1tTW8/Pz80Ov1JCYmAsUjty5fvkxERARt27Zl3bp1NGzYkKioqHLfi9sdLaWJiIgwiiM6OtpwzdfXl6NHj7J37178/f3p06cPV69eLVFGSkoK/v7+9O7d22htqDvLDQ4O/v/s3XlYVdX+P/D3YThwgMNBFGQQEQRUFL0OKYpGqAhYQF1zCEMsJekqak6oDSihpoHmlENX0e/vonk1NS5mhuWAQ2oKaaGgBGmCOaAHGWQ66/cHl309MqoIau/X85znuvdee63PWgfic9ceFgAgLS0NU6ZMwUcffYTTp0/j22+/RXZ2tnQ8OTlZ67z4+HgAwP/7f/8PQgjY2trCwMAAK1aswBtvvAEdnf+lBytXrsSPP/6IhIQEnD59GrGxsZg4cSL279+vFe/o0aORkpKCQ4cOwcXFBSNGjMC9e/caNKYVFRUICgrC/Pnz4eLi8tBjSkRERETPJl6KbEbfb1wKTdmfEBq1tE9RUgB5az38atsRAGBU8d+EvoZJqWvXvoaurAyQVW63teoLIzm/UqJnhUyhQIczp+sv+ATafVheXl5Ys2YN5HI5bGxsoKenp/Wi69qMHz8ePj4+2LNnD7777jssWrQIsbGxCA8Pf5TQtRgbG2ttFxQUYMKECZg8eXK1sm3btpX+rVQq4e/vD39/f0RHR8PHxwfR0dHw9vaGs7Mz1Go1cnJyqt2dVVpaiszMTPj4+NQbW0BAgNZkna3t/+50NTY2hpOTE5ycnODu7g5nZ2ds2LABc+bMkcrk5OTAy8sL/fr1w/r167Xqvn91OVPTyhVZFy1aBA8PD8ycORMA0LVrVxgbG2PAgAGIjo5Gr169tM6rukupffv2OHToEAoLC5Gfnw9ra2uMHDlSunOsuLgYc+fOxa5du/Dyyy9LdaempiImJgaDBw+W6lSpVFCpVHB2doa7uztatGiBXbt24Y033oCVlRVOnjyp1Y8///wTAGBlZYW7d+/ip59+QkpKivS4pUajgRACenp6+O677+ocUyIiIiJ6NnEGoxlVlFwCoJG25eVA9/R/Yb3fe8iybQcAsCytXI0Petrv/Mi+WYiS0jsAgEUnp2Dm0IFwdurSBFETUWORyWSP/BhdU6uaSLlfp06dUF5ejhMnTkiP7926dQvp6elwdXWVytnZ2SEsLAxhYWGYM2cOvvjiC4SHh0t3HN3/fidHR0fo6+vj1KlT0kSSWq1GRkZGtcfFHtSjRw+kpaVVi7MuMpkMHTt2xLFjle/me/311xEREYHY2FjExsZqlV27di2KioowZsyYeutVKpVQKpUNikGj0aCkpETavnr1Kry8vKQV7e6/awlAjf0rKiqq9sibrq4ugMpHLhUKRZ3jYmxsDGNjY9y+fRv79u3DkiVLAFSuWFhWVlYtBl1dXWg0mpqqktoUQkj96tu3LxYsWIDr16/D0tISAJCUlARTU1O4urpCX18f586d06rj888/xw8//IAdO3bAwcEBxsbGDR5TIiIiIno2cFKqGXW6eg26GhnMiu7BoLwC+uUVKFAZ4w+rDhhckAGP4vP4e/amygkpmUw67+Sl85j574P4yL3y0b7cAisojayaqRdE9Ffl7OyMwMBAhIaGYt26dVAqlZg9ezZsbW0RGBgIAJg6dSr8/Pzg4uKC27dv48CBA+jUqRMAwN7eHjKZDImJiRg6dCgUCgWUSiVCQkIwc+ZMmJubw9LSEpGRkdDR0YHsvv8O1iQiIgLu7u6YNGkSxo8fD2NjY6SlpSEpKQmrVq1CamoqIiMjERwcDFdXV8jlchw6dAgbN25EREQEgMo7qpYsWYIZM2bA0NAQwcHB0NfXx9dff425c+ciOjoaXbpoXwBIT0+vFkvnzp2hr6+vta+wsBALFixAQEAArK2tcfPmTaxevRpXr17F8OHDAVROSL300kuwt7dHTEwMbty4IZ1vZVX7f+f9/f0RGhqKNWvWwMfHB7m5uZg6dSp69+5d4/u4quzbtw9CCHTo0AGXLl3CzJkz0bFjR7z1VuWCGaampvD09MTMmTOhUChgb2+PQ4cO4f/+7/+wdOlSAJWPXG7btg1DhgyBhYUF/vjjD3zyySdQKBTSi9aHDBkCV1dXBAcHY8mSJbh27Ro++OADTJw4EQYGBgBQbVwtLS1haGhYbf+D8vLycPnyZeTk5AD43/dhZWVV55gRERERUfPjpFQz+qW1K0pkhiiT6eGktSv+NDCDjp0JyvTlGH5xCwJvHKgsaNFROketPoO7l4fjI/fKbSFk6Olghx72LZqhB0T0VxcXF4cpU6bglVdeQWlpKV588UV888030oRMRUUFJk6ciD/++AOmpqbw9fXFsmXLAFQ+fjV//nzMnj0bb731FsaMGYNNmzZh6dKlCAsLwyuvvAJTU1PMmjULV65cqbZK3IO6du2KQ4cO4f3338eAAQMghED79u0xcuRIAECbNm3Qrl07zJ8/H9nZ2ZDJZNL2e++9J9Xz3nvvwdHREbGxsVi+fDkKCwsBAFu3bsWoUaOqtVvTvitXrqBNmzZa+3R1dXHhwgVs3rwZN2/eRMuWLfHCCy8gOTkZnTt3BlB599ClS5dw6dKlaufXtWri2LFjcffuXaxatQrTp0+HmZkZBg4ciMWLF9c5Zmq1GnPmzMEff/wBc3NzDBs2DAsWLNCaUPvyyy8xZ84cjB49Gnl5ebC3t8eCBQuk91UZGhoiOTkZn332GW7fvo3WrVvjxRdfxLFjx6S7onR1dZGYmIh3330Xffv2hbGxMUJCQhAVFVVnfA2RkJAgTaIB//s+IiMjMW/evMeun4iIiIieHJlojLXBn1P5+flQqVRQq9XSezsaU4eIPSj574V/Bcohl5XB0NUEv7exwv/9MgdDlLpA73cAuz6AsvL9H3/88S+kZ0SitEIfGpkpnNq+gg4uHzV6bETUuO7du4esrCw4ODjUO7lC2goLC2Fra4vY2FiMGzeuydvPy8vDoEGDYGpqir1798LoGXnkkh5PXb+zTzo/eBZxTIiIiOh+Dc0NuPpeM1qlY4INMMZBKDFBno7XDH6BMKm8Om1YUQK0cgZcA6QJqZTLtxH/YxoA4ERuT/xS/n+ckCKi505KSgq2bt2KzMxMnDlzBqNHjwYA6ZHApmZubo79+/dj0KBBOH78eLPEQERERET0POLje83opWkvSP+uWH8EKAPK/vuiWkNNCaCnvUJW/PEM6Bb+CZgDxeWG6NxKe+UpIqLnRUxMDNLT0yGXy9GzZ08kJyejVatWzRZPy5Yt8dFHvAhARERERNSYOCnVjP6zZzuu3c5DaXk5zpma47aRCfLllY8IGGpKAP3/PS6QljYLfhZfARaV20O7OaN/9zY1VUtE9Ezr3r07Tp8+3dxhEBERERHRE8ZJqWb066WLqNDTwx2FMb7t4q51TFVeoHWn1M1bB6R/Cxiiq+NA6OrUvRIVEREREREREdHTipNSzajztWvQLS3FlRaVqxOZFhXAu+Aiupalwf5eLqBfOSmVlqNGaVk+ZADmHnkfS0b6okWL2pf4JiIiIiIiIiJ62nFSqhndnf8JyoXApbvFwLU8dCu5gNXnp/+vgNIKeYWleH3NAaz0KgcAqEtMYcaVn4iIiIiIiIjoGcdJqWY079JVFGuEtN26NA8wtgBenAkYtUSZ84s4/0sE3nHLAAAIIcOwXs7oYqtqrpCJiIiIiIiIiBoFJ6Wa0csWZigVlZNSBgXX8I8rWwGlFdBnAgDgz6tbcC8/AW7/XXBKobDFgkHdmitcIiIiIiIiIqJGw0mpZrTK1f5/G+fPAYW/AeZ9pF1lZbcBAOl57XHl3kv48O9vNHWIRERERERERERPBCelnhZlxZX/q1/5vqgvDv+GW7lpeMECyM63R45mEIyMHJoxQCIiIiIiIiKixqPT3AH85ZUUAEc+A85tr9zWN0JhYSauXl4AW0UKAKCoTIH2FsbNFyMR/aWNHTsWMpkMMpkMcrkcTk5OiIqKQnl5+WPVe/DgQchkMty5c6dxAm2ArKwsBAUFwcbGBoaGhmjTpg0CAwNx4cIFrXKJiYnw9PSEUqmEkZERXnjhBWzatEmrTHZ2NmQyGVJTUxvc/rx589CxY0cYGxujRYsWGDx4ME6cOKFV57hx4+Dg4ACFQoH27dsjMjISpaWl9dYdHx+Pbt26wcjICNbW1nj77bdx69atOs85fPgw/P39YWNjA5lMht27d1crs3PnTgwZMgQtW7ast79CCPj5+dVa16ZNm9C1a1cYGhrC0tISEydO1Dq+b98+uLu7Q6lUwsLCAsOGDUN2dnaT9JOIiIiImh4npZpbyr+A/ZHAxe8qt43MkZW1CgNsDsLG5E8AwEj3Hnj/ZddmDJKI/up8fX2Rm5uLixcvYvr06Zg3bx4+/fTT5g5L0pBJm7KyMnh7e0OtVmPnzp1IT0/Htm3b4ObmpjUxtnLlSgQGBsLDwwMnTpzA2bNnMWrUKISFhWHGjBmPFaeLiwtWrVqFc+fO4ciRI2jXrh2GDBmCGzduAAAuXLgAjUaDdevW4ddff8WyZcuwdu1azJ07t856jx49ijFjxmDcuHH49ddfsX37dpw8eRKhoaF1nldYWIhu3bph9erVdZbp378/Fi9eXG//PvvsM8hkshqPLV26FO+//z5mz56NX3/9Ffv374ePj490PCsrC4GBgRg4cCBSU1Oxb98+3Lx5E3//+9+bpJ9ERERE1AwE1UqtVgsAQq1WP5kGvv9YiEjTys8Xg4VIihQiL0ucPB0s9n/vKD6J/7v4Lfv/RHn5vSfTPhE1meLiYpGWliaKi4ubO5SHFhISIgIDA7X2eXt7C3d3d5GXlyeCg4OFmZmZUCgUwtfXV2RkZEjlsrOzxSuvvCLMzMyEkZGRcHV1FXv27BFZWVkCgNYnJCRECCFEfn6+CAoKEkZGRsLKykosXbpUeHp6iilTpkj12tvbi6ioKBEcHCyUSqV0bnJysujfv78wNDQUbdq0EeHh4aKgoEAIIURKSooAILKzs2vt6+XLl4W+vr6YNm1atWMrVqwQAMSPP/4ohBBSH1JSUh5+UP+r6u/M/v37ay2zZMkS4eDgUGc9n376qXB0dKwWr62tbYNjASB27dpV6/H6+puSkiJsbW1Fbm5utbry8vKEQqGos5/bt28Xenp6oqKiQtqXkJAgZDKZKC0tFUI0TT+r1PU7+8Tzg2cQx4SIiIju19DcgHdKNadjq/73715vQwyKxCc/3sPFa5VXzH+6/gLatX0TuroGzRQgET1JQgiUlVQ0+Uf8d9XPx6FQKFBaWoqxY8fip59+QkJCAo4fPw4hBIYOHYqysjIAwMSJE1FSUoLDhw/j3LlzWLx4MUxMTGBnZ4evvvoKAJCeno7c3FwsX74cADBt2jQcPXoUCQkJSEpKQnJyMs6cOVMthpiYGHTr1g0pKSn48MMPkZmZCV9fXwwbNgxnz57Ftm3bcOTIEUyaNAkAYGFhAR0dHezYsQMVFRU19mvHjh0oKyur8Y6oCRMmwMTEBFu3bn3s8QMq7+5av349VCoVunWrfWVVtVoNc3PzOuvq27cvrly5gm+++QZCCPz555/YsWMHhg4d2iix1qeoqAhBQUFYvXo1rKysqh1PSkqCRqPB1atX0alTJ7Rp0wYjRozAlStXpDI9e/aEjo4O4uLiUFFRAbVajf/3//4fBg8eDH19/aein0RERETUuPii8+bU5x2gohwwbgl0fg0ZfxZg7aFMzOtbABgCpkbKWh+DIKJnX3mpBuunHGrydt9Z7gl9A91HOlcIge+//x779u2Dn58fdu/ejaNHj6Jfv34AKt/3Y2dnh927d2P48OG4fPkyhg0bBjc3NwCAo6OjVFfVRIulpSXMzMwAAHfv3sXmzZuxZcsWDBo0CAAQFxcHGxubarEMHDgQ06dPl7bHjx+P0aNHY+rUqQAAZ2dnrFixAp6enlizZg1sbW2xYsUKzJo1C/Pnz0evXr3g5eWF0aNHS3FlZGRApVLB2tq6WntyuRyOjo7IyMh4pLGrkpiYiFGjRqGoqAjW1tZISkpCq1ataix76dIlrFy5EjExMXXW6eHhgfj4eIwcORL37t1DeXk5/P39m+xxtffeew/9+vVDYGBgjcd/++03aDQaLFy4EMuXL4dKpcIHH3wAb29vnD17FnK5HA4ODvjuu+8wYsQITJgwARUVFejbty+++eabp6afRERERNS4eKdUc/KOAnwXAgOmQ+gZ4NbtM+jSKg0qg0IAwCzf7s0cIBFRpcTERJiYmMDQ0BB+fn4YOXIkxo4dCz09PfTp00cq17JlS3To0AHnz58HAEyePBnR0dHw8PBAZGQkzp49W2c7v/32G8rKytC7d29pn0qlQocOHaqV7dWrl9b2zz//jE2bNsHExET6+Pj4QKPRICsrC0DlnVvXrl1DfHw8+vbti+3bt6Nz585ISkpq8FjI5fJ6y8THx2vFkZycLB3z8vJCamoqjh07Bl9fX4wYMQLXr1+vVsfVq1fh6+uL4cOHa70z6f56w8LCAABpaWmYMmUKPvroI5w+fRrffvstsrOzpePJycla58XHxze4v/VJSEjADz/8gM8++6zWMhqNBmVlZVixYgV8fHzg7u6OrVu34uLFizhw4AAA4Nq1awgNDUVISAhOnTqFQ4cOQS6X4/XXX5fu7mvOfhIRERFR4+OdUk+J6ze+RXHuJLzX43/7bM1bNl9ARPTE6cl18M5yz2Zp92F5eXlhzZo1kMvlsLGxgZ6eHhISEuo9b/z48fDx8cGePXvw3XffYdGiRYiNjUV4ePijhK7F2Fh7VdKCggJMmDABkydPrla2bdu20r+VSiX8/f3h7++P6Oho+Pj4IDo6Gt7e3nB2doZarUZOTk61u7NKS0uRmZmp9XLu2gQEBGhN1tna2mrF7eTkBCcnJ7i7u8PZ2RkbNmzAnDlzpDI5OTnw8vJCv379sH79eq2671/9ztTUFACwaNEieHh4YObMmQCArl27wtjYGAMGDEB0dDR69eqldV7r1q3r7UND/fDDD8jMzJTudqsybNgwDBgwAAcPHpTuPHN1/d+iHRYWFmjVqhUuX74MAFi9ejVUKhWWLFkilfnXv/4FOzs7nDhxAu7u7s3aTyIiIiJqfJyUekoUFFwEAOSXmqBUWMDNvgeMjZ2bOSoiepJkMtkjP0bX1KomUu7XqVMnlJeX48SJE9Lje7du3UJ6errW5IOdnR3CwsIQFhaGOXPm4IsvvkB4eLh0x9H973dydHSEvr4+Tp06JU0kqdVqZGRk4MUXX6wzxh49eiAtLa1anHWRyWTo2LEjjh07BgB4/fXXERERgdjYWMTGxmqVXbt2LYqKijBmzJh661UqlVAqlQ2KQaPRoKSkRNq+evUqvLy80LNnT8TFxUFHR3sSsab+FRUVQU9P+0+6rm7lz5YQAgqF4qHG5WHMnj0b48eP19rn5uaGZcuWwd/fH0DlY3dA5fvD2rRpAwDIy8vDzZs3YW9vL/Xhwb5W9UGj0UhlmqufRERERNT4OCn1FNh0NAvpF3/G4LZA8h/uKJCHYqRfr/pPJCJqRs7OzggMDERoaCjWrVsHpVKJ2bNnw9bWVnq30NSpU+Hn5wcXFxfcvn0bBw4cQKdOnQAA9vb2kMlkSExMxNChQ6FQKKBUKhESEoKZM2fC3NwclpaWiIyMhI6OTr3v2IuIiIC7uzsmTZqE8ePHw9jYGGlpaUhKSsKqVauQmpqKyMhIBAcHw9XVFXK5HIcOHcLGjRsREREBoPKOqiVLlmDGjBkwNDREcHAw9PX18fXXX2Pu3LmIjo5Gly5dtNpNT0+vFkvnzp2ll3NXKSwsxIIFCxAQEABra2vcvHkTq1evxtWrVzF8+HAAlRNSL730Euzt7RETE4MbN25I59f0AvEq/v7+CA0NxZo1a+Dj44Pc3FxMnToVvXv3rvF9XFUKCgpw6dIlaTsrKwupqakwNzeXJgXz8vJw+fJl5OTkaPXXyspK6/Ogtm3bwsHBAQDg4uKCwMBATJkyBevXr4epqSnmzJmDjh07wsvLCwDw8ssvY9myZYiKisIbb7yBu3fvYu7cubC3t0f37t2feD+JiIiIqBk82UUAn21Pennjn8+GiZTUt8XGhNfEv/f0EPu/dxQT1rwnNh3NeiLtEVHzqWt5+addSEiICAwMrPFYXl6eCA4OFiqVSigUCuHj4yMyMjKk45MmTRLt27cXBgYGwsLCQgQHB4ubN29Kx6OiooSVlZWQyWQiJCRECCFEfn6+CAoKEkZGRsLKykosXbpU9O7dW8yePVs6z97eXixbtqxaPCdPnhTe3t7CxMREGBsbi65du4oFCxYIIYS4ceOGmDx5sujSpYswMTERSqVSuLm5iZiYGFFRUaFVz+7du8WAAQOEsbGxACAAiK1bt2qVycrKko49+Lly5Uq12IqLi8Vrr70mbGxshFwuF9bW1iIgIECcPHlSKhMXF1drnfVZsWKFcHV1FQqFQlhbW4vRo0eLP/74o85zDhw4UGNbVd9FXTFFRkbWWi8AsWvXLq19arVavP3228LMzEyYm5uL1157TVy+fFmrzNatW0X37t2FsbGxsLCwEAEBAeL8+fNN0s8H1fU7+6Tzg2cRx4SIiIju19DcQCZEI6wN/pzKz8+HSqWCWq2W3tvRmL4/4AqIEq19zh1Xoa2NX6O3RUTN6969e8jKyoKDgwMMDQ2bO5xnSmFhIWxtbREbG4tx48Y1eft5eXkYNGgQTE1NsXfvXhgZGTV5DNT06vqdfdL5wbOIY0JERET3a2huwMf3mtHmX0egQlP1LhUZIob2gZ31kGaNiYiouaWkpODChQvo3bs31Go1oqKiAEB6JLCpmZubY//+/Vi9ejWOHz+OQYMGNUscRERERETPG05KNaO7Ot4oqah8eWtnG1O4te9a7ztTiIj+CmJiYpCeng65XI6ePXsiOTkZrVq1arZ4WrZsiY8++qjZ2iciIiIieh5xUqoZ7fqHR3OHQET01OnevTtOnz7d3GEQEREREdETplN/ESIiIiIiIiIiosbFSSkiIiIiIiIiImpynJQiIiIiIiIiIqImx0kpIiIiIiIiIiJqcpyUIiIiIiIiIiKiJsdJKSIiIiIiIiIianKclCIiIiIiIiIioibHSSkiIqrT2LFjIZPJIJPJIJfL4eTkhKioKJSXlz9WvQcPHoRMJsOdO3caJ9AGyMrKQlBQEGxsbGBoaIg2bdogMDAQFy5c0CqXmJgIT09PKJVKGBkZ4YUXXsCmTZu0ymRnZ0MmkyE1NbXB7c+bNw8dO3aEsbExWrRogcGDB+PEiRNadY4bNw4ODg5QKBRo3749IiMjUVpaWm/d8fHx6NatG4yMjGBtbY23334bt27dqvOcw4cPw9/fHzY2NpDJZNi9e/dDxwwACxYsQL9+/WBkZAQzM7Ma27p8+TJefvllGBkZwdLSEjNnztT6Gbr/5+z+T+fOnaUyixYtwgsvvAClUglLS0u8+uqrSE9Pr3dsGhIfERERETU9TkoREVG9fH19kZubi4sXL2L69OmYN28ePv300+YOS9KQSZuysjJ4e3tDrVZj586dSE9Px7Zt2+Dm5qY1MbZy5UoEBgbCw8MDJ06cwNmzZzFq1CiEhYVhxowZjxWni4sLVq1ahXPnzuHIkSNo164dhgwZghs3bgAALly4AI1Gg3Xr1uHXX3/FsmXLsHbtWsydO7fOeo8ePYoxY8Zg3Lhx+PXXX7F9+3acPHkSoaGhdZ5XWFiIbt26YfXq1Y8cM1A5/sOHD8e7775bYx0VFRV4+eWXUVpaimPHjmHz5s3YtGkTPvroI6nM8uXLkZubK32uXLkCc3NzDB8+XCpz6NAhTJw4ET/++COSkpJQVlaGIUOGoLCwsM5+1hcfERERETUTQbVSq9UCgFCr1c0dChE944qLi0VaWpooLi5u7lAeWkhIiAgMDNTa5+3tLdzd3UVeXp4IDg4WZmZmQqFQCF9fX5GRkSGVy87OFq+88oowMzMTRkZGwtXVVezZs0dkZWUJAFqfkJAQIYQQ+fn5IigoSBgZGQkrKyuxdOlS4enpKaZMmSLVa29vL6KiokRwcLBQKpXSucnJyaJ///7C0NBQtGnTRoSHh4uCggIhhBApKSkCgMjOzq61r5cvXxb6+vpi2rRp1Y6tWLFCABA//vijEEJIfUhJSXn4Qf2vqr8z+/fvr7XMkiVLhIODQ531fPrpp8LR0bFavLa2tg2OBYDYtWtXveXqijkuLk6oVKpq+7/55huho6Mjrl27Ju1bs2aNMDU1FSUlJTW2s2vXLiGTyer8vq5fvy4AiEOHDtUbd13x1aSu31nmB9VxTIiIiOh+Dc0NeKcUEVEzEUKg7N69Jv8IIR47doVCgdLSUowdOxY//fQTEhIScPz4cQghMHToUJSVlQEAJk6ciJKSEhw+fBjnzp3D4sWLYWJiAjs7O3z11VcAgPT0dOTm5mL58uUAgGnTpuHo0aNISEhAUlISkpOTcebMmWoxxMTEoFu3bkhJScGHH36IzMxM+Pr6YtiwYTh79iy2bduGI0eOYNKkSQAACwsL6OjoYMeOHaioqKixXzt27EBZWVmNd0RNmDABJiYm2Lp162OPH1B598769euhUqnQrVu3Wsup1WqYm5vXWVffvn1x5coVfPPNNxBC4M8//8SOHTswdOjQRon1YWN+0PHjx+Hm5obWrVtL+3x8fJCfn49ff/21xnM2bNiAwYMHw97evtZ61Wo1ANQ7PkRERET0dNJr7gCIiP6qyktKsCLk9SZvd/LmHdA3NHykc4UQ+P7777Fv3z74+flh9+7dOHr0KPr16weg8r1GdnZ22L17N4YPH47Lly9j2LBhcHNzAwA4OjpKdVVNJFhaWkrv+bl79y42b96MLVu2YNCgQQCAuLg42NjYVItl4MCBmD59urQ9fvx4jB49GlOnTgUAODs7Y8WKFfD09MSaNWtga2uLFStWYNasWZg/fz569eoFLy8vjB49WoorIyMDKpUK1tbW1dqTy+VwdHRERkbGI41dlcTERIwaNQpFRUWwtrZGUlISWrVqVWPZS5cuYeXKlYiJiamzTg8PD8THx2PkyJG4d+8eysvL4e/vX+djeU8q5ppcu3ZNa0IKgLR97dq1auVzcnKwd+9ebNmypdY6NRoNpk6dCg8PD3Tp0qXBsRARERHR04N3ShERUb0SExNhYmICQ0ND+Pn5YeTIkRg7diz09PTQp08fqVzLli3RoUMHnD9/HgAwefJkREdHw8PDA5GRkTh79myd7fz2228oKytD7969pX0qlQodOnSoVrZXr15a2z///DM2bdoEExMT6ePj4wONRoOsrCwAlXduXbt2DfHx8ejbty+2b9+Ozp07IykpqcFjIZfL6y0THx+vFUdycrJ0zMvLC6mpqTh27Bh8fX0xYsQIXL9+vVodV69eha+vL4YPH671bqj76w0LCwMApKWlYcqUKfjoo49w+vRpfPvtt8jOzpaOJycna50XHx/f4P4+TMyNZfPmzTAzM8Orr75aa5mJEyfil19+wZdffintCwsL0+onERERET3deKcUEVEz0TMwwOTNO5ql3Yfl5eWFNWvWQC6Xw8bGBnp6ekhISKj3vPHjx8PHxwd79uzBd999h0WLFiE2Nhbh4eGPEroWY2Njre2CggJMmDABkydPrla2bdu20r+VSiX8/f3h7++P6Oho+Pj4IDo6Gt7e3nB2doZarUZOTk61u7NKS0uRmZkJHx+femMLCAjQmqyztbXVitvJyQlOTk5wd3eHs7MzNmzYgDlz5khlcnJy4OXlhX79+mH9+vVadd+/2p+pqSmAylXpPDw8MHPmTABA165dYWxsjAEDBiA6Ohq9evXSOu/Bu5bq05CY62JlZYWTJ09q7fvzzz+lY/cTQmDjxo0IDg6udQJw0qRJSExMxOHDh9GmTRtpf1RU1GO/jJ6IiIiImg4npYiImolMJnvkx+iaWtWkxP06deqE8vJynDhxQnp879atW0hPT4erq6tUzs7ODmFhYQgLC8OcOXPwxRdfIDw8XJpwuP/9To6OjtDX18epU6ekiSS1Wo2MjAy8+OKLdcbYo0cPpKWlVYuzLjKZDB07dsSxY8cAAK+//joiIiIQGxuL2NhYrbJr165FUVERxowZU2+9SqUSSqWyQTFoNBqUlJRI21evXoWXlxd69uyJuLg46Oho39RcU/+Kioqgp6f9J11XVxdA5SSPQqF4qHF52Jjr07dvXyxYsADXr1+HpaUlACApKQmmpqZaPytA5Qp7ly5dwrhx46rVI4RAeHg4du3ahYMHD8LBwUHruKWlpVQ/ERERET39OClFRESPxNnZGYGBgQgNDcW6deugVCoxe/Zs2NraIjAwEAAwdepU+Pn5wcXFBbdv38aBAwfQqVMnAIC9vT1kMhkSExMxdOhQKBQKKJVKhISEYObMmTA3N4elpSUiIyOho6MDmUxWZzwRERFwd3fHpEmTMH78eBgbGyMtLQ1JSUlYtWoVUlNTERkZieDgYLi6ukIul+PQoUPYuHEjIiIiAFTeUbVkyRLMmDEDhoaGCA4Ohr6+Pr7++mvMnTsX0dHR1d5flJ6eXi2Wzp07Q19fX2tfYWEhFixYgICAAFhbW+PmzZtYvXo1rl69iuHDhwOonJB66aWXYG9vj5iYGNy4cUM6/8E7iu7n7++P0NBQrFmzBj4+PsjNzcXUqVPRu3fvGt/HVaWgoACXLl2StrOyspCamgpzc3O0bdu2QTEDwOXLl5GXl4fLly+joqJCuivLyckJJiYmGDJkCFxdXREcHIwlS5bg2rVr+OCDDzBx4kQYPHDn3oYNG9CnT58a3xM1ceJEbNmyBV9//TWUSqX0PiqVSgWFQlFrP+uLj4iIiIiayRNeBfCZxuWNiaix1LW8/NMuJCREBAYG1ngsLy9PBAcHC5VKJRQKhfDx8REZGRnS8UmTJon27dsLAwMDYWFhIYKDg8XNmzel41FRUcLKykrIZDIREhIihBAiPz9fBAUFCSMjI2FlZSWWLl0qevfuLWbPni2dZ29vL5YtW1YtnpMnTwpvb29hYmIijI2NRdeuXcWCBQuEEELcuHFDTJ48WXTp0kWYmJgIpVIp3NzcRExMjKioqNCqZ/fu3WLAgAHC2NhYABAAxNatW7XKZGVlScce/Fy5cqVabMXFxeK1114TNjY2Qi6XC2traxEQECBOnjwplYmLi6u1zvqsWLFCuLq6CoVCIaytrcXo0aPFH3/8Uec5Bw4cqLGtqu+iITELUfkzUlM9Bw4ckMpkZ2cLPz8/oVAoRKtWrcT06dNFWVmZVj137twRCoVCrF+/vsZ4axubuLi4OvvZkPgeVNfvLPOD6jgmREREdL+G5gYyIRphbfDnVH5+PlQqFdRqtfTeDiKiR3Hv3j1kZWXBwcEBhs/II3tPi8LCQtja2iI2NrbGR7qetLy8PAwaNAimpqbYu3cvjIyMmjwGanp1/c4yP6iOY0JERET3a2huwNX3iIjoqZKSkoKtW7ciMzMTZ86cwejRowFAeiSwqZmbm2P//v0YNGgQjh8/3iwxEBERERE9j/hOKSIieurExMQgPT0dcrkcPXv2RHJyMlq1atVs8bRs2RIfffRRs7VPRERERPQ84qQUERE9Vbp3747Tp083dxhERERERPSE8fE9IiIiIiIiIiJqcpyUIiJqQlxbgujZwN9VIiIioiePk1JERE1AX18fAFBUVNTMkRBRQ1T9rlb97hIRERFR4+M7pYiImoCuri7MzMxw/fp1AICRkRFkMlkzR0VEDxJCoKioCNevX4eZmRl0dXWbOyQiIiKi5xYnpYiImoiVlRUASBNTRPT0MjMzk35niYiIiOjJ4KQUEVETkclksLa2hqWlJcrKypo7HCKqhb6+Pu+QIiIiImoCnJQiImpiurq6/D+8RERERET0l8cXnRMRERERERERUZPjpBQRERERERERETU5TkoREREREREREVGT4zul6iCEAADk5+c3cyRERET0tKjKC6ryBGLORERERNoami9xUqoOd+/eBQDY2dk1cyRERET0tLl79y5UKlVzh/FUYM5ERERENakvX5IJXuarlUajQU5ODpRKJWQyWaPXn5+fDzs7O1y5cgWmpqaNXv/TjH1n39n3vw72nX1/3vouhMDdu3dhY2MDHR2+CQF4sjnT8/yzVB/2nX1n3/862Hf2/Xnre0PzJd4pVQcdHR20adPmibdjamr63P0ANhT7zr7/1bDv7PtfzfPad94hpa0pcqbn9WepIdh39v2vhn1n3/9qnte+NyRf4uU9IiIiIiIiIiJqcpyUIiIiIiIiIiKiJsdJqWZkYGCAyMhIGBgYNHcoTY59Z9//ath39v2v5q/cd2pcf+WfJfadff+rYd/Z97+av3Lfq/BF50RERERERERE1OR4pxQRERERERERETU5TkoREREREREREVGT46QUERERERERERE1OU5KERERERERERFRk+OkFBERERERERERNTlOShERERERERERUZPjpBQRERERERERETU5TkoREREREREREVGT46QUERERERERERE1OU5KERERERERERFRk+OkFBERERERERERNTlOShERERERERERUZPjpBQRERERERERETU5TkoR0VMtOzsbMpkMmzZtau5QiIiIiJoccyEiep5xUoqI6nTs2DHMmzcPd+7ceaTzP//8cyZRRERE9MxiLkRE9ORwUoqI6nTs2DHMnz+fiRgRERH9JTEXIiJ6cjgpRURED00IgeLi4uYOg4iIiOipVVhY2NwhED31OClFRLWaN28eZs6cCQBwcHCATCaDTCZDdnY2ysvL8fHHH6N9+/YwMDBAu3btMHfuXJSUlEjnt2vXDr/++isOHToknfvSSy8BAPLy8jBjxgy4ubnBxMQEpqam8PPzw88//9wosf/+++8ICAiAsbExLC0t8d5772Hfvn2QyWQ4ePCgVO6ll15Cly5dcPr0afTr1w8KhQIODg5Yu3atVn2bNm2S+n6/gwcPVquzPlV1HT58GBMmTEDLli1hamqKMWPG4Pbt29XKf/755+jcuTMMDAxgY2ODiRMnal2tXbFiBXR1dbX2xcbGQiaTYdq0adK+iooKKJVKRERESPs0Gg0+++wzdO7cGYaGhmjdujUmTJhQLY527drhlVdewb59+9CrVy8oFAqsW7euwX0mIiJ6FjEX+p8nkQsdOXIEkydPhoWFBczMzDBhwgSUlpbizp07GDNmDFq0aIEWLVpg1qxZEEJo1fGwOczBgwelHMbNzU2Kd+fOnXBzc4OhoSF69uyJlJSUavH+8MMPGDBgAIyNjWFmZobAwECcP39eq8y8efMgk8mQlpaGoKAgtGjRAv3790dcXBxkMlmN9S5cuBC6urq4evVqg8eO6Hmj19wBENHT6+9//zsyMjKwdetWLFu2DK1atQIAWFhYYPz48di8eTNef/11TJ8+HSdOnMCiRYtw/vx57Nq1CwDw2WefITw8HCYmJnj//fcBAK1btwYA/Pbbb9i9ezeGDx8OBwcH/Pnnn1i3bh08PT2RlpYGGxubR467sLAQAwcORG5uLqZMmQIrKyts2bIFBw4cqLH87du3MXToUIwYMQJvvPEG/v3vf+Pdd9+FXC7H22+//chx1GfSpEkwMzPDvHnzkJ6ejjVr1uD333+XkjugMsGZP38+Bg8ejHfffVcqd+rUKRw9ehT6+voYMGAANBoNjhw5gldeeQUAkJycDB0dHSQnJ0vtpaSkoKCgAC+++KK0b8KECdi0aRPeeustTJ48GVlZWVi1ahVSUlKk+qukp6fjjTfewIQJExAaGooOHTo8sbEhIiJ6GjAXerK5UHh4OKysrDB//nz8+OOPWL9+PczMzHDs2DG0bdsWCxcuxDfffINPP/0UXbp0wZgxY6RzHyaHuXTpEoKCgjBhwgS8+eabiImJgb+/P9auXYu5c+fiH//4BwBg0aJFGDFiBNLT06GjU3n/xv79++Hn5wdHR0fMmzcPxcXFWLlyJTw8PHDmzBm0a9dOq0/Dhw+Hs7MzFi5cCCEEXn/9dUycOBHx8fHo3r27Vtn4+Hi89NJLsLW1fUIjTPQMEEREdfj0008FAJGVlSXtS01NFQDE+PHjtcrOmDFDABA//PCDtK9z587C09OzWr337t0TFRUVWvuysrKEgYGBiIqK0toHQMTFxTU45tjYWAFA7N69W9pXXFwsOnbsKACIAwcOSPs9PT0FABEbGyvtKykpEX/729+EpaWlKC0tFUIIERcXV20chBDiwIED1eqsT1VdPXv2lOoXQoglS5YIAOLrr78WQghx/fp1IZfLxZAhQ7TGatWqVQKA2LhxoxBCiIqKCmFqaipmzZolhBBCo9GIli1biuHDhwtdXV1x9+5dIYQQS5cuFTo6OuL27dtCCCGSk5MFABEfH68V37ffflttv729vQAgvv322wb3k4iI6HnAXOjJ5UI+Pj5Co9FI+/v27StkMpkICwuT9pWXl4s2bdpojeGj5DDHjh2T9u3bt08AEAqFQvz+++/S/nXr1lXrS9U43Lp1S9r3888/Cx0dHTFmzBhpX2RkpAAg3njjjWr9feONN4SNjY3W933mzJmH/l6Jnkd8fI+IHto333wDAFqPhgHA9OnTAQB79uyptw4DAwPpClRFRQVu3boFExMTdOjQAWfOnHms+L799lvY2toiICBA2mdoaIjQ0NAay+vp6WHChAnStlwux4QJE3D9+nWcPn36sWKpyzvvvKN1Fe/dd9+Fnp6eNL779+9HaWkppk6dKo0VAISGhsLU1FQaZx0dHfTr1w+HDx8GAJw/fx63bt3C7NmzIYTA8ePHAVTePdWlSxeYmZkBALZv3w6VSgVvb2/cvHlT+vTs2RMmJibVrqY6ODjAx8fniY0HERHRs4K5UOMYN26cdHc4APTp0wdCCIwbN07ap6uri169euG3336T9j1sDuPq6oq+fftqtQMAAwcORNu2bavtr2orNzcXqampGDt2LMzNzaVyXbt2hbe3t/RzcL+wsLBq+8aMGYOcnBytuOLj46FQKDBs2LB6Rono+cZJKSJ6aL///jt0dHTg5OSktd/KygpmZmb4/fff661Do9Fg2bJlcHZ2hoGBAVq1agULCwucPXsWarX6seNr3769VpIDoFq8VWxsbGBsbKy1z8XFBQCqvTehMTk7O2ttm5iYwNraWmqzahwffExOLpfD0dFRa5wHDBiA06dPo7i4GMnJybC2tkaPHj3QrVs36RG+I0eOYMCAAdI5Fy9ehFqthqWlJSwsLLQ+BQUFuH79ula7Dg4OjdZ3IiKiZxlzocZx/4QQAKhUKgCAnZ1dtf33vyvqYXOYh2kHgNRWbbkYAHTq1Ak3b96s9jLzmvIlb29vWFtbIz4+HkDld79161YEBgZCqVRWK0/0V8J3ShHRI3sw0XkYCxcuxIcffoi3334bH3/8MczNzaGjo4OpU6dCo9E0YpSNo7a+VlRUNHEkNevfvz/Kyspw/PhxJCcnS5NPAwYMQHJyMi5cuIAbN25oTUppNBpYWlpKCdKDLCwstLYVCsWT6wAREdEziLnQ4+VCurq6Dd4v7nvR+cPmMA/TzoNtPaya8iVdXV0EBQXhiy++wOeff46jR48iJycHb7755iO3Q/S84KQUEdWppgTE3t4eGo0GFy9eRKdOnaT9f/75J+7cuQN7e/s6zweAHTt2wMvLCxs2bNDaf+fOHekloo/K3t4eaWlpEEJotX/p0qUay+fk5KCwsFDrCmFGRgYASC+vbNGihRTf/RpyJbQ2Fy9ehJeXl7RdUFCA3NxcDB06VOoHUPmCcUdHR6lcaWkpsrKyMHjwYGlf7969IZfLkZycjOTkZGmloBdffBFffPEFvv/+e2m7Svv27bF//354eHhwwomIiKgWzIXaAXgyudCjaqoc5v5c7EEXLlxAq1atqt1hVpsxY8YgNjYW//nPf7B3715YWFjwtQhE4ON7RFSPqj+09ycgVZMmn332mVbZpUuXAgBefvllrfMfTF6AyitGD16F2r59e6Msievj44OrV68iISFB2nfv3j188cUXNZYvLy/HunXrpO3S0lKsW7cOFhYW6NmzJ4DK5AeA9N4moPLK4Pr16x85zvXr16OsrEzaXrNmDcrLy+Hn5wcAGDx4MORyOVasWKE1Vhs2bIBardYaZ0NDQ7zwwgvYunUrLl++rHWnVHFxMVasWIH27dvD2tpaOmfEiBGoqKjAxx9/XOOY1PS9ERER/dUwF3pyudCjaqocxtraGn/729+wefNmrTp/+eUXfPfdd9LPQUN07doVXbt2xT//+U989dVXGDVqFPT0eI8IEX8LiKhOVYnI+++/j1GjRkFfXx/+/v4ICQnB+vXrcefOHXh6euLkyZPYvHkzXn31Va27f3r27Ik1a9YgOjoaTk5OsLS0xMCBA/HKK68gKioKb731Fvr164dz584hPj5e646gRzVhwgSsWrUKb7zxBqZMmSI9w29oaAig+hVLGxsbLF68GNnZ2XBxccG2bduQmpqK9evXSy8i79y5M9zd3TFnzhzk5eXB3NwcX375JcrLyx85ztLSUgwaNEhaevjzzz9H//79pZeSWlhYYM6cOZg/fz58fX0REBAglXvhhReq3fI9YMAAfPLJJ1CpVHBzcwMAWFpaokOHDkhPT8fYsWO1ynt6emLChAlYtGgRUlNTMWTIEOjr6+PixYvYvn07li9fjtdff/2R+0dERPQ8YC705HKhR9WUOcynn34KPz8/9O3bF+PGjUNxcTFWrlwJlUqFefPmPVRdY8aMwYwZMwCAj+4RVWm2df+I6Jnx8ccfC1tbW6GjoyMtBVxWVibmz58vHBwchL6+vrCzsxNz5swR9+7d0zr32rVr4uWXXxZKpVIAkJbzvXfvnpg+fbqwtrYWCoVCeHh4iOPHjwtPT0+tJX8fZRlkIYT47bffxMsvvywUCoWwsLAQ06dPF1999ZUAIH788UepnKenp+jcubP46aefRN++fYWhoaGwt7cXq1atqlZnZmamGDx4sDAwMBCtW7cWc+fOFUlJSY+8DPKhQ4fEO++8I1q0aCFMTEzE6NGjtZYbrrJq1SrRsWNHoa+vL1q3bi3effddcfv27Wrl9uzZIwAIPz8/rf3jx48XAMSGDRtqjGf9+vWiZ8+eQqFQCKVSKdzc3MSsWbNETk6OVMbe3l68/PLLDe4jERHR84S5UKXGzoVOnTqltT8yMlIAEDdu3NDaHxISIoyNjavV8zg5DAAxceJErX1VY/3pp59q7d+/f7/w8PAQCoVCmJqaCn9/f5GWltag2O+Xm5srdHV1hYuLS61liP5qZEI8xlvciIieIZ999hnee+89/PHHH7C1tQUAvPTSS7h58yZ++eWXJotj06ZNeOutt3Dq1Cn06tWrydolIiKiv7anJRf6q7p58yasra3x0Ucf4cMPP2zucIieCnynFBE9l4qLi7W27927h3Xr1sHZ2VlKwoiIiIieV8yFnj6bNm1CRUUFgoODmzsUoqcG3ylFRM+M0tJS5OXl1VlGpVJBoVDg73//O9q2bYu//e1vUKvV+Ne//oULFy7UunRwYyguLoZara6zjLm5+RNrn4iIiJ5vz0suJJfLn1gMT6MffvgBaWlpWLBgAV599VVpRUMi4qQUET1Djh07pvXi0JrExcVh7Nix8PHxwT//+U/Ex8ejoqICrq6u+PLLLzFy5MgnFt+2bdvw1ltv1VnmwIEDT6x9IiIier49L7nQSy+99MRieBpFRUXh2LFj8PDwwMqVK5s7HKKnCt8pRUTPjNu3b+P06dN1luncuTOsra2bKCJtubm5+PXXX+ss07NnT7Ro0aKJIiIiIqLnCXMhInrecFKKiIiIiIiIiIiaHF90TkRERERERERETY7vlKqDRqNBTk4OlEolZDJZc4dDRERETwEhBO7evQsbGxvo6PD6HsCciYiIiLQ1NF/ipFQdcnJyYGdn19xhEBER0VPoypUraNOmTXOH8VRgzkREREQ1qS9f4qRUHZRKJYDKQTQ1NW3maIiIiOhpkJ+fDzs7OylPIOZMREREpK2h+RInpepQdfu5qakpEywiIiLSwsfU/oc5ExEREdWkvnyJL0IgIiIiIiIiIqImx0kpIiIiIiIiIiJqcpyUIiIiIiIiIiKiJsd3ShERNbGKigqUlZU1dxhEVAt9fX3o6uo2dxhERH9pzJeInm6NlS9xUoqIqIkIIXDt2jXcuXOnuUMhonqYmZnBysqKLzMnImpizJeInh2NkS9xUoqIqIlUJViWlpYwMjLi/9klegoJIVBUVITr168DAKytrZs5IiKivxbmS0RPv8bMlzgpRUTUBCoqKqQEq2XLls0dDhHVQaFQAACuX78OS0tLPspHRNREmC8RPTsaK1/ii86JiJpA1TsRjIyMmjkSImqIqt9Vvs+EiKjpMF8ierY0Rr7ESSkioibEW9CJng38XSUiaj78bzDRs6Exflc5KUVERERERERERE2Ok1JERERERERERNTkOClFRER1Gjt2LGQyGWQyGeRyOZycnBAVFYXy8vLHqvfgwYOQyWRNuuRzVlYWgoKCYGNjA0NDQ7Rp0waBgYG4cOGCVrnExER4enpCqVTCyMgIL7zwAjZt2qRVJjs7GzKZDKmpqQ1uf968eejYsSOMjY3RokULDB48GCdOnNCqc9y4cXBwcIBCoUD79u0RGRmJ0tLSOuvNzc1FUFAQXFxcoKOjg6lTpzYonsOHD8Pf3x82NjaQyWTYvXt3jeXOnz+PgIAAqFQqGBsb44UXXsDly5el4xMmTED79u2hUChgYWFR45ieOnUKgwYNgpmZGVq0aAEfHx/8/PPPNbZ36dIlKJVKmJmZNVofiIiIniTmS8yXmC89Gk5KERFRvXx9fZGbm4uLFy9i+vTpmDdvHj799NPmDktSXxICVL6A0dvbG2q1Gjt37kR6ejq2bdsGNzc3rURv5cqVCAwMhIeHB06cOIGzZ89i1KhRCAsLw4wZMx4rThcXF6xatQrnzp3DkSNH0K5dOwwZMgQ3btwAAFy4cAEajQbr1q3Dr7/+imXLlmHt2rWYO3dunfWWlJTAwsICH3zwAbp169bgeAoLC9GtWzesXr261jKZmZno378/OnbsiIMHD+Ls2bP48MMPYWhoKJXp2bMn4uLicP78eezbtw9CCAwZMgQVFRUAgIKCAvj6+qJt27Y4ceIEjhw5AqVSCR8fn2ovxiwrK8Mbb7yBAQMGNFofiIiImgLzJeZLzJcegaBaqdVqAUCo1ermDoWInnHFxcUiLS1NFBcXN3coDy0kJEQEBgZq7fP29hbu7u4iLy9PBAcHCzMzM6FQKISvr6/IyMiQymVnZ4tXXnlFmJmZCSMjI+Hq6ir27NkjsrKyBACtT0hIiBBCiPz8fBEUFCSMjIyElZWVWLp0qfD09BRTpkyR6rW3txdRUVEiODhYKJVK6dzk5GTRv39/YWhoKNq0aSPCw8NFQUGBEEKIlJQUAUBkZ2fX2tfLly8LfX19MW3atGrHVqxYIQCIH3/8UQghpD6kpKQ8/KD+V9Xfmf3799daZsmSJcLBwaHBdT44Vg0FQOzatava/pEjR4o333zzoer6+eefBQBx6dIlIYQQp06dEgDE5cuXpTJnz54VAMTFixe1zp01a5Z48803RVxcnFCpVI3Sh0dR1+8s84PqOCZE1BiYLzFfqgnzpec7X+KdUkREzUQIgaLS8ib/VP4tejwKhQKlpaUYO3YsfvrpJyQkJOD48eMQQmDo0KHS1ZyJEyeipKQEhw8fxrlz57B48WKYmJjAzs4OX331FQAgPT0dubm5WL58OQBg2rRpOHr0KBISEpCUlITk5GScOXOmWgwxMTHo1q0bUlJS8OGHHyIzMxO+vr4YNmwYzp49i23btuHIkSOYNGkSAMDCwgI6OjrYsWOHdEXqQTt27EBZWVmNV/gmTJgAExMTbN269bHHD6i8Wrl+/XqoVKo6r9ap1WqYm5s3SpsPS6PRYM+ePXBxcYGPjw8sLS3Rp0+fOm/5LiwsRFxcHBwcHGBnZwcA6NChA1q2bIkNGzagtLQUxcXF2LBhAzp16oR27dpJ5/7www/Yvn3703kVj4iImkVz5UuNkTMxX3p8zJee/3xJr7kDICL6qyouq4DrR/uavN20KB8YyR/tP/9CCHz//ffYt28f/Pz8sHv3bhw9ehT9+vUDAMTHx8POzg67d+/G8OHDcfnyZQwbNgxubm4AAEdHR6muqsTB0tJSehb+7t272Lx5M7Zs2YJBgwYBAOLi4mBjY1MtloEDB2L69OnS9vjx4zF69Gjp/QDOzs5YsWIFPD09sWbNGtja2mLFihWYNWsW5s+fj169esHLywujR4+W4srIyIBKpYK1tXW19uRyORwdHZGRkfFIY1clMTERo0aNQlFREaytrZGUlIRWrVrVWPbSpUtYuXIlYmJiHqvNR3X9+nUUFBTgk08+QXR0NBYvXoxvv/0Wf//733HgwAF4enpKZT///HPMmjULhYWF6NChA5KSkiCXywEASqUSBw8exKuvvoqPP/4YQOX3s2/fPujpVf4s3rp1C2PHjsW//vUvmJqaNn1niYjoqdRc+RLw6DkT8yXmS8yXGo53ShERUb0SExNhYmICQ0ND+Pn5YeTIkRg7diz09PTQp08fqVzLli3RoUMHnD9/HgAwefJkREdHw8PDA5GRkTh79myd7fz2228oKytD7969pX0qlQodOnSoVrZXr15a2z///DM2bdoEExMT6ePj4wONRoOsrCwAlVcir127hvj4ePTt2xfbt29H586dkZSU1OCxqEoc6hIfH68VR3JysnTMy8sLqampOHbsGHx9fTFixAhcv369Wh1Xr16Fr68vhg8fjtDQUGn//fWGhYU1KObk5GSt8+Lj4xt0nkajAQAEBgbivffew9/+9jfMnj0br7zyCtauXatVdvTo0UhJScGhQ4fg4uKCESNG4N69ewCA4uJijBs3Dh4eHvjxxx9x9OhRdOnSBS+//DKKi4sBAKGhoQgKCsKLL77YqH0gIiJqKsyX/of5EvOlhuKdUkREzUShr4u0KJ9mafdheXl5Yc2aNZDL5bCxsYGenh4SEhLqPW/8+PHw8fHBnj178N1332HRokWIjY1FeHj4o4SuxdjYWGu7oKAAEyZMwOTJk6uVbdu2rfRvpVIJf39/+Pv7Izo6Gj4+PoiOjoa3tzecnZ2hVquRk5NT7WpjaWkpMjMz4eNT/3cWEBCglXza2tpqxe3k5AQnJye4u7vD2dkZGzZswJw5c6QyOTk58PLyQr9+/bB+/Xqtuu9fvaahV8h69eqldV7r1q0bdF6rVq2gp6cHV1dXrf2dOnXCkSNHtPapVCqoVCo4OzvD3d0dLVq0wK5du/DGG29gy5YtyM7OxvHjx6GjU3k9bMuWLWjRogW+/vprjBo1Cj/88AMSEhKkq5xCCGg0Gujp6WH9+vV44403HqkPRET0bGuufKmq7YfBfIn50v2YLzUMJ6WIiJqJTCZ75MfomlpVYnC/Tp06oby8HCdOnJBuR7916xbS09O1/ijb2dkhLCwMYWFhmDNnDr744guEh4dLV9Duf1+Bo6Mj9PX1cerUKSkxUqvVyMjIqPWKUJUePXogLS2tWpx1kclk6NixI44dOwYAeP311xEREYHY2FjExsZqlV27di2KioowZsyYeutVKpVQKpUNikGj0aCkpETavnr1Kry8vKQVWqqSkioP078qCoXikc6Ty+V44YUXkJ6errU/IyMD9vb2tZ4nhIAQQupXUVERdHR0IJPJpDJV21VXF48fP671s/D1119j8eLFOHbsGGxtbR+5D0RE9GxjvsR8CWC+9DznS8/GbzcRET11nJ2dERgYiNDQUKxbtw5KpRKzZ8+Gra0tAgMDAQBTp06Fn58fXFxccPv2bRw4cACdOnUCANjb20MmkyExMRFDhw6FQqGAUqlESEgIZs6cCXNzc1haWiIyMrLaH+iaREREwN3dHZMmTcL48eNhbGyMtLQ0JCUlYdWqVUhNTUVkZCSCg4Ph6uoKuVyOQ4cOYePGjYiIiABQeYVwyZIlmDFjBgwNDREcHAx9fX18/fXXmDt3LqKjo9GlSxetdh9MQACgc+fO0NfX19pXWFiIBQsWICAgANbW1rh58yZWr16Nq1evYvjw4QAqE6yXXnoJ9vb2iImJkZY+BgArK6s6+191VaygoAA3btxAamoq5HJ5tat29ysoKMClS5ek7aysLKSmpsLc3FxKcmfOnImRI0fixRdfhJeXF7799lv85z//wcGDBwFUPkKwbds2DBkyBBYWFvjjjz/wySefQKFQYOjQoQAAb29vzJw5ExMnTkR4eDg0Gg0++eQT6OnpwcvLCwCkn4sqP/30E3R0dKqN96P0gYiIqLkwX6rEfIn5Uq0aZR3A5xSXNyaixvK8LXFcpWqJY5VKJRQKhfDx8dFa4njSpEmiffv2wsDAQFhYWIjg4GBx8+ZN6XhUVJSwsrISMpmsziWOe/fuLWbPni2dZ29vL5YtW1YtnpMnTwpvb29hYmIijI2NRdeuXcWCBQuEEELcuHFDTJ48WXTp0kWYmJgIpVIp3NzcRExMjKioqNCqZ/fu3WLAgAHC2NhYWoJ569atWmVqWqa56nPlypVqsRUXF4vXXntN2NjYCLlcLqytrUVAQIA4efKkVCYuLq7WOutT0zn29vZ1nnPgwIEaz6v6Lqps2LBBODk5CUNDQ9GtWzexe/du6djVq1eFn5+fsLS0FPr6+qJNmzYiKChIXLhwQauO7777Tnh4eAiVSiVatGghBg4cKI4fP15rbA1d4rihfXhYjbHE8V8Jx4SIGgPzJeZLzJf+evmSTIhGWBv8OZWfnw+VSgW1Wv3cvNmeiJrHvXv3kJWVBQcHBxgaGjZ3OM+UwsJC2NraIjY2FuPGjWvy9vPy8jBo0CCYmppi7969MDIyavIYqOnV9TvL/KA6jgkRNQbmS4+O+RI1h8bIl7j6HhERPVVSUlKwdetWZGZm4syZMxg9ejQASLe4NzVzc3Ps378fgwYNwvHjx5slBiIiIqL7MV+i5wXfKUVERE+dmJgYpKenQy6Xo2fPnkhOTkarVq2aLZ6WLVvio48+arb2iYiIiB7EfImeB5yUIiKip0r37t1x+vTp5g6DiIiI6KnFfImeF3x8j4iIiIiIiIiImhwnpYiIiIiIiIiIqMlxUoqIiIiIiIiIiJocJ6WIiIiIiIiIiKjJcVKKiIiIiIiIiIiaHCeliIiIiIiIiIioyXFSioiIiIiIiIiImhwnpYiIqE5jx46FTCaDTCaDXC6Hk5MToqKiUF5e/lj1Hjx4EDKZDHfu3GmcQBsgKysLQUFBsLGxgaGhIdq0aYPAwEBcuHBBq1xiYiI8PT2hVCphZGSEF154AZs2bdIqk52dDZlMhtTU1Aa3P2/ePHTs2BHGxsZo0aIFBg8ejBMnTmjVOW7cODg4OEChUKB9+/aIjIxEaWlpnfXm5uYiKCgILi4u0NHRwdSpUxsUz5o1a9C1a1eYmprC1NQUffv2xd69e6XjeXl5CA8PR4cOHaBQKNC2bVtMnjwZarVaKrNp0ybp5+PBz/Xr16VyJSUleP/992Fvbw8DAwO0a9cOGzdu1Irns88+k9qys7PDe++9h3v37tXZh507d2LIkCFo2bLlQ38fREREjYX5EvMl5kuPRq+5AyAioqefr68v4uLiUFJSgm+++QYTJ06Evr4+5syZ09yhAQBKS0shl8vrLFNWVgZvb2906NABO3fuhLW1Nf744w/s3btXK9FbuXIlpk6dioiICKxZswZyuRxff/01wsLC8MsvvyAmJuaR43RxccGqVavg6OiI4uJiLFu2DEOGDMGlS5dgYWGBCxcuQKPRYN26dXBycsIvv/yC0NBQFBYW1tluSUkJLCws8MEHH2DZsmUNjqdNmzb45JNP4OzsDCEENm/ejMDAQKSkpKBz587IyclBTk4OYmJi4Orqit9//x1hYWHIycnBjh07AAAjR46Er6+vVr1jx47FvXv3YGlpKe0bMWIE/vzzT2zYsAFOTk7Izc2FRqORjm/ZsgWzZ8/Gxo0b0a9fP2RkZEgJ/tKlS2vtQ2FhIfr3748RI0YgNDS0wX0nIiJqbMyXmC8xX3oEgmqlVqsFAKFWq5s7FCJ6xhUXF4u0tDRRXFzc3KE8tJCQEBEYGKi1z9vbW7i7u4u8vDwRHBwszMzMhEKhEL6+viIjI0Mql52dLV555RVhZmYmjIyMhKurq9izZ4/IysoSALQ+ISEhQggh8vPzRVBQkDAyMhJWVlZi6dKlwtPTU0yZMkWq197eXkRFRYng4GChVCqlc5OTk0X//v2FoaGhaNOmjQgPDxcFBQVCCCFSUlIEAJGdnV1rXy9fviz09fXFtGnTqh1bsWKFACB+/PFHIYSQ+pCSkvLwg/pfVX9n9u/fX2uZJUuWCAcHhwbX+eBYPawWLVqIf/7zn7Ue//e//y3kcrkoKyur8fj169eFvr6++L//+z9p3969e4VKpRK3bt2qtd6JEyeKgQMHau2bNm2a8PDwaFDcjfF93K+u31nmB9VxTIioMTBfYr5UE+ZL//M85kt8fI+IqLkIAZQWNv1HiMcOXaFQoLS0FGPHjsVPP/2EhIQEHD9+HEIIDB06FGVlZQCAiRMnoqSkBIcPH8a5c+ewePFimJiYwM7ODl999RUAID09Hbm5uVi+fDkAYNq0aTh69CgSEhKQlJSE5ORknDlzploMMTEx6NatG1JSUvDhhx8iMzMTvr6+GDZsGM6ePYtt27bhyJEjmDRpEgDAwsICOjo62LFjByoqKmrs144dO1BWVoYZM2ZUOzZhwgSYmJhg69atjz1+QOXVyvXr10OlUqFbt261llOr1TA3N2+UNutSUVGBL7/8EoWFhejbt2+d8ZiamkJPr+abrf/v//4PRkZGeP3116V9CQkJ6NWrF5YsWQJbW1u4uLhgxowZKC4ulsr069cPp0+fxsmTJwEAv/32G7755hsMHTq0kXpIRETPpObKlxohZ2K+9PiYLz3/+RIf3yMiai5lRcBCm6Zvd24OIDd+pFOFEPj++++xb98++Pn5Yffu3Th69Cj69esHAIiPj4ednR12796N4cOH4/Llyxg2bBjc3NwAAI6OjlJdVYmDpaUlzMzMAAB3797F5s2bsWXLFgwaNAgAEBcXBxub6uM0cOBATJ8+XdoeP348Ro8eLb0fwNnZGStWrICnpyfWrFkDW1tbrFixArNmzcL8+fPRq1cveHl5YfTo0VJcGRkZUKlUsLa2rtaeXC6Ho6MjMjIyHmnsqiQmJmLUqFEoKiqCtbU1kpKS0KpVqxrLXrp0CStXrnysW+Drc+7cOfTt2xf37t2DiYkJdu3aBVdX1xrL3rx5Ex9//DHeeeedWuvbsGEDgoKCoFAopH2//fYbjhw5AkNDQ+zatQs3b97EP/7xD9y6dQtxcXEAgKCgINy8eRP9+/eHEALl5eUICwvD3LlzG7fDRET0bGmufAl45JyJ+RLzJeZLDcc7pYiIqF6JiYkwMTGBoaEh/Pz8MHLkSIwdOxZ6enro06ePVK5ly5bo0KEDzp8/DwCYPHkyoqOj4eHhgcjISJw9e7bOdn777TeUlZWhd+/e0j6VSoUOHTpUK9urVy+t7Z9//hmbNm2CiYmJ9PHx8YFGo0FWVhaAyiuR165dQ3x8PPr27Yvt27ejc+fOSEpKavBY1PcuBqAy2bw/juTkZOmYl5cXUlNTcezYMfj6+mLEiBFaL7iscvXqVfj6+mL48OFaz/7fX29YWFiDYk5OTtY6Lz4+XjrWoUMHpKam4sSJE3j33XcREhKCtLS0anXk5+fj5ZdfhqurK+bNm1djO8ePH8f58+cxbtw4rf0ajQYymQzx8fHo3bs3hg4diqVLl2Lz5s3S1b+DBw9i4cKF+Pzzz3HmzBns3LkTe/bswccff1zvmBIRET0NmC/9D/Ml5ksNxTuliIiai75R5RW45mj3IXl5eUkvsbSxsYGenh4SEhLqPW/8+PHw8fHBnj178N1332HRokWIjY1FeHj4o0SuxdhY+8plQUEBJkyYgMmTJ1cr27ZtW+nfSqUS/v7+8Pf3R3R0NHx8fBAdHQ1vb284OztDrVYjJyen2tXG0tJSZGZmwsfHp97YAgICtJJPW1tbrbidnJzg5OQEd3d3ODs7Y8OGDVovQc3JyYGXlxf69euH9evXa9V9/2oppqam9cYCVCak95/XunVr6d9VKwQBQM+ePXHq1CksX74c69atk8rcvXsXvr6+UCqV2LVrF/T19Wts55///Cf+9re/oWfPnlr7ra2tYWtrC5VKJe3r1KkThBD4448/4OzsjA8//BDBwcEYP348AMDNzQ2FhYV455138P7779c5pkRE9Bxrrnypqu2HwHyJ+RLzpYfHSSkiouYikz3yY3RNrSoxuF+nTp1QXl6OEydOSLej37p1C+np6Vq3M9vZ2SEsLAxhYWGYM2cOvvjiC4SHh0tX0O5/X4GjoyP09fVx6tQpKTFSq9XIyMjAiy++WGeMPXr0QFpaWrU46yKTydCxY0ccO3YMAPD6668jIiICsbGxiI2N1Sq7du1aFBUVYcyYMfXWq1QqoVQqGxSDRqNBSUmJtH316lV4eXmhZ8+eiIuLg46O9k3ND9O/KgqFosHnPRhPfn4+fHx8YGBggISEBBgaGtZ4XkFBAf79739j0aJF1Y55eHhg+/btKCgogImJCYDKW/91dHTQpk0bAEBRUVG1vurq6gKofAziYcaUiIieI8yXADBfYr70/OZLnJQiIqJH4uzsjMDAQISGhmLdunVQKpWYPXs2bG1tERgYCACYOnUq/Pz84OLigtu3b+PAgQPo1KkTAMDe3h4ymQyJiYkYOnQoFAoFlEolQkJCMHPmTJibm8PS0hKRkZHQ0dGBTCarM56IiAi4u7tj0qRJGD9+PIyNjZGWloakpCSsWrUKqampiIyMRHBwMFxdXSGXy3Ho0CFs3LgRERERACqvEC5ZsgQzZsyAoaEhgoODoa+vj6+//hpz585FdHQ0unTpotVuenp6tVg6d+5c7epYYWEhFixYgICAAFhbW+PmzZtYvXo1rl69iuHDhwOoTLBeeukl2NvbIyYmBjdu3JDOt7KyqrP/VVf2CgoKcOPGDaSmpkIul9f6vgMAmDNnDvz8/NC2bVvcvXsXW7ZswcGDB7Fv3z4AlQnWkCFDUFRUhH/961/Iz89Hfn4+gMoXoVYlQQCwbds2lJeX480336zWTlBQED7++GO89dZbmD9/Pm7evImZM2fi7bfflt6l4O/vj6VLl6J79+7o06cPLl26hA8//BD+/v5a7TwoLy8Ply9fRk5O5VX0qu/Dysqq3jEjIiJ60pgvVWK+VIn5Ug0aZR3A5xSXNyaixvK8LXFcpWqJY5VKJRQKhfDx8dFa4njSpEmiffv2wsDAQFhYWIjg4GBx8+ZN6XhUVJSwsrISMpmsziWOe/fuLWbPni2dZ29vL5YtW1YtnpMnTwpvb29hYmIijI2NRdeuXcWCBQuEEELcuHFDTJ48WXTp0kWYmJgIpVIp3NzcRExMjKioqNCqZ/fu3WLAgAHC2NhYWoJ569atWmVqWqa56nPlypVqsRUXF4vXXntN2NjYCLlcLqytrUVAQIA4efKkVCYuLq7WOutT0zn29vZ1nvP2228Le3t7IZfLhYWFhRg0aJD47rvvpOMHDhyoNZ6srCytuvr27SuCgoJqbev8+fNi8ODBQqFQiDZt2ohp06aJoqIi6XhZWZmYN2+eaN++vTA0NBR2dnbiH//4h7h9+3adfahtzCIjI+s8rz6NscTxXwnHhIgaA/Ml5kvMl/56+ZJMiEZYG/w5lZ+fD5VKJS3nSET0qO7du4esrCw4ODjUejsv1aywsBC2traIjY2t9kLIppCXl4dBgwbB1NQUe/fuhZHRw7+Ti549df3OMj+ojmNCRI2B+dKjY75EzaEx8iWuvkdERE+VlJQUbN26FZmZmThz5gxGjx4NANIt7k3N3Nwc+/fvx6BBg3D8+PFmiYGIiIjofsyX6HnBd0oREdFTJyYmBunp6ZDL5ejZsyeSk5PRqlWrZounZcuW+Oijj5qtfSIiIqIHMV+i5wEnpYiI6KnSvXt3nD59urnDICIiInpqMV+i5wUf3yMiIiIiIiIioibHSSkiIiIiIiIiImpynJQiIiIiIiIiIqImx0kpIiIiIiIiIiJqcpyUIiIiIiIiIiKiJsdJKSIiIiIiIiIianKclCIiIiIiIiIioibHSSkiIqrT2LFjIZPJIJPJIJfL4eTkhKioKJSXlz9WvQcPHoRMJsOdO3caJ9AGyMrKQlBQEGxsbGBoaIg2bdogMDAQFy5c0CqXmJgIT09PKJVKGBkZ4YUXXsCmTZu0ymRnZ0MmkyE1NbXB7c+bNw8dO3aEsbExWrRogcGDB+PEiRNadY4bNw4ODg5QKBRo3749IiMjUVpaWme9ubm5CAoKgouLC3R0dDB16tQGx1Tlk08+gUwmq3ZuZmYmXnvtNVhYWMDU1BQjRozAn3/+qVVmwYIF6NevH4yMjGBmZlZj/VU/Q/d/vvzyS+n4zp074e3tLbXTt29f7Nu3r964d+7ciSFDhqBly5YP/X0QERE1FuZLzJeYLz0aTkoREVG9fH19kZubi4sXL2L69OmYN28ePv300+YOS1JfEgIAZWVl8Pb2hlqtxs6dO5Geno5t27bBzc1NK9FbuXIlAgMD4eHhgRMnTuDs2bMYNWoUwsLCMGPGjMeK08XFBatWrcK5c+dw5MgRtGvXDkOGDMGNGzcAABcuXIBGo8G6devw66+/YtmyZVi7di3mzp1bZ70lJSWwsLDABx98gG7duj10XKdOncK6devQtWtXrf2FhYUYMmQIZDIZfvjhBxw9ehSlpaXw9/eHRqORypWWlmL48OF4991362wnLi4Oubm50ufVV1+Vjh0+fBje3t745ptvcPr0aXh5ecHf3x8pKSl11llYWIj+/ftj8eLFD91vIiKixsR8ifkS86VHIKhWarVaABBqtbq5QyGiZ1xxcbFIS0sTxcXFzR3KQwsJCRGBgYFa+7y9vYW7u7vIy8sTwcHBwszMTCgUCuHr6ysyMjKkctnZ2eKVV14RZmZmwsjISLi6uoo9e/aIrKwsAUDrExISIoQQIj8/XwQFBQkjIyNhZWUlli5dKjw9PcWUKVOkeu3t7UVUVJQIDg4WSqVSOjc5OVn0799fGBoaijZt2ojw8HBRUFAghBAiJSVFABDZ2dm19vXy5ctCX19fTJs2rdqxFStWCADixx9/FEIIqQ8pKSkPP6j/VfV3Zv/+/bWWWbJkiXBwcGhwnQ+OVX3u3r0rnJ2dRVJSUrVz9+3bJ3R0dLT+Dt65c0fIZDKRlJRUra64uDihUqlqbAeA2LVrV4PjEkIIV1dXMX/+/AaVbYzv4351/c4yP6iOY0JEjYH5EvOlmjBfqtuzni/xTikiomYihEBRWVGTf4QQjx27QqFAaWkpxo4di59++gkJCQk4fvw4hBAYOnQoysrKAAATJ05ESUkJDh8+jHPnzmHx4sUwMTGBnZ0dvvrqKwBAeno6cnNzsXz5cgDAtGnTcPToUSQkJCApKQnJyck4c+ZMtRhiYmLQrVs3pKSk4MMPP0RmZiZ8fX0xbNgwnD17Ftu2bcORI0cwadIkAICFhQV0dHSwY8cOVFRU1NivHTt2oKysrMYrfBMmTICJiQm2bt362OMHVF4tW79+PVQqVZ1X69RqNczNzRulzZpMnDgRL7/8MgYPHlztWElJCWQyGQwMDKR9hoaG0NHRwZEjRx6prVatWqF3797YuHFjnT+LGo0Gd+/efaJ9JyKip19z5UuNkTMxX3p8zJee/3xJr7kDICL6qyouL0afLX2avN0TQSdgpG/0SOcKIfD9999j37598PPzw+7du3H06FH069cPABAfHw87Ozvs3r0bw4cPx+XLlzFs2DC4ubkBABwdHaW6qv54WlpaSs/V3717F5s3b8aWLVswaNAgAJW3MNvY2FSLZeDAgZg+fbq0PX78eIwePVp6xt/Z2RkrVqyAp6cn1qxZA1tbW6xYsQKzZs3C/Pnz0atXL3h5eWH06NFSXBkZGVCpVLC2tq7Wnlwuh6OjIzIyMh5p7KokJiZi1KhRKCoqgrW1NZKSktCqVasay166dAkrV65ETEzMY7VZmy+//BJnzpzBqVOnajzu7u4OY2NjREREYOHChRBCYPbs2aioqEBubu5DtRUVFYWBAwfCyMgI3333Hf7xj3+goKAAkydPrrF8TEwMCgoKMGLEiIfuFxERPT+aK18CHj1nYr7EfIn5UsPxTikiIqpXYmIiTExMYGhoCD8/P4wcORJjx46Fnp4e+vT5X6LYsmVLdOjQAefPnwcATJ48GdHR0fDw8EBkZCTOnj1bZzu//fYbysrK0Lt3b2mfSqVChw4dqpXt1auX1vbPP/+MTZs2wcTERPr4+PhAo9EgKysLQOWVp2vXriE+Ph59+/bF9u3b0blzZyQlJTV4LORyeb1l4uPjteJITk6Wjnl5eSE1NRXHjh2Dr68vRowYgevXr1er4+rVq/D19cXw4cMRGhoq7b+/3rCwsAbFnJycrHVefHw8rly5gilTpiA+Ph6GhoY1nmdhYYHt27fjP//5D0xMTKBSqXDnzh306NEDOjoPl0J8+OGH8PDwQPfu3REREYFZs2bV+p6NLVu2YP78+fj3v/8NS0tLAHWPKRER0dOA+dL/MF9ivtRQvFOKiKiZKPQUOBF0ov6CT6Ddh+Xl5YU1a9ZALpfDxsYGenp6SEhIqPe88ePHw8fHB3v27MF3332HRYsWITY2FuHh4Y8SuhZjY2Ot7YKCAkyYMKHGK0lt27aV/q1UKuHv7w9/f39ER0fDx8cH0dHR8Pb2hrOzM9RqNXJycqpdbSwtLUVmZiZ8fHzqjS0gIEAr+bS1tdWK28nJCU5OTnB3d4ezszM2bNiAOXPmSGVycnLg5eWFfv36Yf369Vp1379aiqmpab2xAJUJ6f3ntW7dGt9//z2uX7+OHj16SPsrKipw+PBhrFq1CiUlJdDV1cWQIUOQmZmJmzdvQk9PD2ZmZrCystK6ivso+vTpg48//hglJSVat7t/+eWXGD9+PLZv3651i3xdY0pERM+v5sqXqtp+GMyXmC8xX3p4nJQiImomMpnskR+ja2pVicH9OnXqhPLycpw4cUK6Hf3WrVtIT0+Hq6urVM7Ozg5hYWEICwvDnDlz8MUXXyA8PFy6gnb/+wocHR2hr6+PU6dOSYmRWq1GRkYGXnzxxTpj7NGjB9LS0qrFWReZTIaOHTvi2LFjAIDXX38dERERiI2NRWxsrFbZtWvXoqioCGPGjKm3XqVSCaVS2aAYNBoNSkpKpO2rV6/Cy8sLPXv2RFxcXLUrbA/TvyoKhaLaeYMGDcK5c+e09r311lvo2LEjIiIioKurq3Ws6pb5H374AdevX0dAQMBDx3G/1NRUtGjRQivB2rp1K95++218+eWXePnll7XKP8yYEhHR84P5EvMlgPnS85wvcVKKiIgeibOzMwIDAxEaGop169ZBqVRi9uzZsLW1RWBgIABg6tSp8PPzg4uLC27fvo0DBw6gU6dOAAB7e3vIZDIkJiZi6NChUCgUUCqVCAkJwcyZM2Fubg5LS0tERkZCR0cHMpmszngiIiLg7u6OSZMmYfz48TA2NkZaWhqSkpKwatUqpKamIjIyEsHBwXB1dYVcLsehQ4ewceNGREREAKi8QrhkyRLMmDEDhoaGCA4Ohr6+Pr7++mvMnTsX0dHR6NKli1a76enp1WLp3Lkz9PX1tfYVFhZiwYIFCAgIgLW1NW7evInVq1fj6tWrGD58OIDKBOull16Cvb09YmJipKWPAcDKyqrO/ldd2SsoKMCNGzeQmpoKuVyulfDeT6lUVuuLsbExWrZsqbU/Li4OnTp1goWFBY4fP44pU6bgvffe03pE4PLly8jLy8Ply5dRUVEhxeLk5AQTExP85z//wZ9//gl3d3cYGhoiKSkJCxcu1HpB6pYtWxASEoLly5ejT58+uHbtGoDKBFGlUtXa76p2c3JyAPzv+7Cysqp3zIiIiJ405kuVmC8xX6pVo6wD+Jzi8sZE1FietyWOq1QtcaxSqYRCoRA+Pj5aSxxPmjRJtG/fXhgYGAgLCwsRHBwsbt68KR2PiooSVlZWQiaT1bnEce/evcXs2bOl8+zt7cWyZcuqxXPy5Enh7e0tTExMhLGxsejatatYsGCBEEKIGzduiMmTJ4suXboIExMToVQqhZubm4iJiREVFRVa9ezevVsMGDBAGBsbS0swb926VatMTcs0V32uXLlSLbbi4mLx2muvCRsbGyGXy4W1tbUICAgQJ0+elMrExcXVWmd9ajrH3t6+3vPuV9PyyBEREaJ169ZCX19fODs7i9jYWKHRaLTKhISE1Nj+gQMHhBBC7N27V/ztb3+Tvpdu3bqJtWvXao27p6dnjXVU/VzUprYxi4yMfKi+P6gxljj+K+GYEFFjYL7EfIn50l8vX5IJ0Qhrgz+n8vPzoVKpoFarG/wcKhFRTe7du4esrCw4ODjU+pJEqllhYSFsbW0RGxuLcePGNXn7eXl5GDRoEExNTbF3714YGT0bjxDQ46nrd5b5QXUcEyJqDMyXHh3zJWoOjZEvcfU9IiJ6qqSkpGDr1q3IzMzEmTNnMHr0aACQbnFvaubm5ti/fz8GDRqE48ePN0sMRERERPdjvkTPC75TioiInjoxMTFIT0+HXC5Hz549kZycLL04sjm0bNkSH330UbO1T0RERPQg5kv0POCkFBERPVW6d++O06dPN3cYRERERE8t5kv0vODje0RERERERERE1OQ4KUVERERERERERE2Ok1JERERERERERNTkOClFRERERERERERNjpNSRERERERERETU5DgpRURERERERERETY6TUkRERERERERE1OQ4KUVERHUaO3YsZDIZZDIZ5HI5nJycEBUVhfLy8seq9+DBg5DJZLhz507jBNoAWVlZCAoKgo2NDQwNDdGmTRsEBgbiwoULWuUSExPh6ekJpVIJIyMjvPDCC9i0aZNWmezsbMhkMqSmpja4/Xnz5qFjx44wNjZGixYtMHjwYJw4cUKrznHjxsHBwQEKhQLt27dHZGQkSktL66w3NzcXQUFBcHFxgY6ODqZOndrgmK5evYo333wTLVu2hEKhgJubG3766Sfp+P3ff9XH19dXq4527dpVK/PJJ59Ix9PT0+Hl5YXWrVvD0NAQjo6O+OCDD1BWVqZVz507dzBx4kRYW1vDwMAALi4u+Oabb+qMf+fOnRgyZAhatmz50N8HERFRY2G+xHyJ+dKj0WvuAIiI6Onn6+uLuLg4lJSU4JtvvsHEiROhr6+POXPmNHdoAIDS0lLI5fI6y5SVlcHb2xsdOnTAzp07YW1tjT/++AN79+7VSvRWrlyJqVOnIiIiAmvWrIFcLsfXX3+NsLAw/PLLL4iJiXnkOF1cXLBq1So4OjqiuLgYy5Ytw5AhQ3Dp0iVYWFjgwoUL0Gg0WLduHZycnPDLL78gNDQUhYWFdbZbUlICCwsLfPDBB1i2bFmD47l9+zY8PDzg5eWFvXv3wsLCAhcvXkSLFi20ylV9/1UMDAyq1RUVFYXQ0FBpW6lUSv/W19fHmDFj0KNHD5iZmeHnn39GaGgoNBoNFi5cCKDyO/T29oalpSV27NgBW1tb/P777zAzM6uzD4WFhejfvz9GjBih1T4REVFTY77EfIn50iMQVCu1Wi0ACLVa3dyhENEzrri4WKSlpYni4uLmDuWhhYSEiMDAQK193t7ewt3dXeTl5Yng4GBhZmYmFAqF8PX1FRkZGVK57Oxs8corrwgzMzNhZGQkXF1dxZ49e0RWVpYAoPUJCQkRQgiRn58vgoKChJGRkbCyshJLly4Vnp6eYsqUKVK99vb2IioqSgQHBwulUimdm5ycLPr37y8MDQ1FmzZtRHh4uCgoKBBCCJGSkiIAiOzs7Fr7evnyZaGvry+mTZtW7diKFSsEAPHjjz8KIYTUh5SUlIcf1P+q+juzf//+WsssWbJEODg4NLjOB8eqLhEREaJ///51lqnp+3+Qvb29WLZsWcMC/K/33ntPq+01a9YIR0dHUVpa+lD1VGmM7+N+df3OMj+ojmNCRI2B+RLzpZowX3q+8yU+vkdE1EyEENAUFTX5Rwjx2LErFAqUlpZi7Nix+Omnn5CQkIDjx49DCIGhQ4dKtxlPnDgRJSUlOHz4MM6dO4fFixfDxMQEdnZ2+OqrrwBU3qqcm5uL5cuXAwCmTZuGo0ePIiEhAUlJSUhOTsaZM2eqxRATE4Nu3bohJSUFH374ITIzM+Hr64thw4bh7Nmz2LZtG44cOYJJkyYBACwsLKCjo4MdO3agoqKixn7t2LEDZWVlmDFjRrVjEyZMgImJCbZu3frY4wdUXulav349VCoVunXrVms5tVoNc3PzRmnzQQkJCejVqxeGDx8OS0tLdO/eHV988UW1cgcPHoSlpSU6dOiAd999F7du3apW5pNPPkHLli3RvXt3fPrpp3U+rnDp0iV8++238PT01Iqlb9++mDhxIlq3bo0uXbpg4cKFtX5XRET019Bc+VJj5EzMlx4f86XnP1/i43tERM1EFBcjvUfPJm+3w5nTkBkZPdK5Qgh8//332LdvH/z8/LB7924cPXoU/fr1AwDEx8fDzs4Ou3fvxvDhw3H58mUMGzYMbm5uAABHR0eprqrEwdLSUrrl+O7du9i8eTO2bNmCQYMGAQDi4uJgY2NTLZaBAwdi+vTp0vb48eMxevRo6f0Azs7OWLFiBTw9PbFmzRrY2tpixYoVmDVrFubPn49evXrBy8sLo0ePluLKyMiASqWCtbV1tfbkcjkcHR2RkZHxSGNXJTExEaNGjUJRURGsra2RlJSEVq1a1Vj20qVLWLly5WPdAl+X3377DWvWrMG0adMwd+5cnDp1CpMnT4ZcLkdISAiAylvR//73v8PBwQGZmZmYO3cu/Pz8cPz4cejq6gIAJk+ejB49esDc3BzHjh3DnDlzkJubi6VLl2q1169fP5w5cwYlJSV45513EBUVpRXLDz/8gNGjR+Obb77BpUuX8I9//ANlZWWIjIx8Iv0nIqKnX3PlS8Cj50zMl5gvMV9qON4pRURE9UpMTISJiQkMDQ3h5+eHkSNHYuzYsdDT00OfPn2kci1btkSHDh1w/vx5AJV/fKOjo+Hh4YHIyEicPXu2znZ+++03lJWVoXfv3tI+lUqFDh06VCvbq1cvre2ff/4ZmzZtgomJifTx8fGBRqNBVlYWgMorkdeuXUN8fDz69u2L7du3o3PnzkhKSmrwWNT3LgagMtm8P47k5GTpmJeXF1JTU3Hs2DH4+vpixIgRuH79erU6rl69Cl9fXwwfPlzr2f/76w0LC2tQzMnJyVrnxcfHAwA0Gg169OiBhQsXonv37njnnXcQGhqKtWvXSueOGjUKAQEBcHNzw6uvvorExEScOnUKBw8elMpMmzYNL730Erp27YqwsDDExsZi5cqVKCkp0Ypj27ZtOHPmDLZs2YI9e/ZoJY8ajQaWlpZYv349evbsiZEjR+L999+XYqlrTImIiJ4GzJf+h/kS86WG4p1SRETNRKZQoMOZ083S7sPy8vKSXmJpY2MDPT09JCQk1Hve+PHj4ePjgz179uC7777DokWLEBsbi/Dw8EcJXYuxsbHWdkFBASZMmIDJkydXK9u2bVvp30qlEv7+/vD390d0dDR8fHwQHR0Nb29vODs7Q61WIycnp9rVxtLSUmRmZsLHx6fe2AICArSST1tbW624nZyc4OTkBHd3dzg7O2PDhg1aL0HNycmBl5cX+vXrh/Xr12vVff9qKaampvXGAlQmpPef17p1awCAtbU1XF1dtcp26tRJelSgJo6OjmjVqhUuXbokXZ19UJ8+fVBeXo7s7GytBNnOzg4A4OrqioqKCrzzzjuYPn06dHV1YW1tDX19felqYlUs165dQ2lpaZ1jSkREz6/mypeq2n4YzJeYL1VhvtRwnJQiImomMpnskR+ja2pVicH9OnXqhPLycpw4cUK6Hf3WrVtIT0/X+sNtZ2eHsLAwhIWFYc6cOfjiiy8QHh4uXUG7/xl4R0dH6Ovr49SpU1JipFarkZGRgRdffLHOGHv06IG0tLRqcdZFJpOhY8eOOHbsGADg9ddfR0REBGJjYxEbG6tVdu3atSgqKsKYMWPqrVepVGqtplIXjUajdYXs6tWr8PLyQs+ePREXFwcdHe2bmh+mf1UUCkWN53l4eCA9PV1rX0ZGBuzt7Wut648//sCtW7dqvGW/SmpqKnR0dGBpaVlrGY1Gg7KyMmg0Gujq6sLDwwNbtmyBRqOR+pyRkQFra2vI5XLI5fIGjykRET0/mC8xXwKYLz3P+RInpYiI6JE4OzsjMDAQoaGhWLduHZRKJWbPng1bW1sEBgYCAKZOnQo/Pz+4uLjg9u3bOHDgADp16gQAsLe3h0wmQ2JiIoYOHQqFQgGlUomQkBDMnDkT5ubmsLS0RGRkJHR0dCCTyeqMJyIiAu7u7pg0aRLGjx8PY2NjpKWlISkpCatWrUJqaioiIyMRHBwMV1dXyOVyHDp0CBs3bkRERASAyiuES5YswYwZM2BoaIjg4GDo6+vj66+/xty5cxEdHY0uXbpotftgkgIAnTt3hr6+vta+wsJCLFiwAAEBAbC2tsbNmzexevVqXL16FcOHDwdQmWC99NJLsLe3R0xMDG7cuCGdb2VlVWf/q67sFRQU4MaNG0hNTYVcLq92Ze9+7733Hvr164eFCxdixIgROHnyJNavXy9dbSwoKMD8+fMxbNgwWFlZITMzE7NmzYKTk5N0BfT48eM4ceIEvLy8oFQqcfz4cbz33nt48803paWS4+Pjoa+vDzc3NxgYGOCnn37CnDlzMHLkSGmc3n33XaxatQpTpkxBeHg4Ll68iIULF9Z4Jfd+eXl5uHz5MnJycgD87/uwsrKqd8yIiIieNOZLlZgvMV+qVaOsA/ic4vLGRNRYnrcljqtULXGsUqmEQqEQPj4+WkscT5o0SbRv314YGBgICwsLERwcLG7evCkdj4qKElZWVkImk9W5xHHv3r3F7NmzpfNqW1L35MmTwtvbW5iYmAhjY2PRtWtXsWDBAiGEEDdu3BCTJ08WXbp0ESYmJkKpVAo3NzcRExMjKioqtOrZvXu3GDBggDA2NpaWYN66datWmZqWaa76XLlypVpsxcXF4rXXXhM2NjZCLpcLa2trERAQIE6ePCmViYuLq7XO+tR0jr29fb3n/ec//xFdunQRBgYGomPHjmL9+vXSsaKiIjFkyBBhYWEh9PX1hb29vQgNDRXXrl2Typw+fVr06dNHqFQqYWhoKDp16iQWLlwo7t27J5X58ssvRY8ePaTvxdXVVSxcuLDa78OxY8dEnz59hIGBgXB0dBQLFiwQ5eXldcZf25hFRkbW2/e6NMYSx38lHBMiagzMl5gvMV/66+VLMiEaYW3w51R+fj5UKhXUanWDn0MlIqrJvXv3kJWVBQcHBxgaGjZ3OM+UwsJC2NraIjY2FuPGjWvy9vPy8jBo0CCYmppi7969MHpGHiGgx1PX7yzzg+o4JkTUGJgvPTrmS9QcGiNf4up7RET0VElJScHWrVuRmZmJM2fOYPTo0QAg3eLe1MzNzbF//34MGjQIx48fb5YYiIiIiO7HfImeF3ynFBERPXViYmKQnp4OuVyOnj17Ijk5Ga1atWq2eFq2bImPPvqo2donIiIiehDzJXoecFKKiIieKt27d8fp082z9DMRERHRs4D5Ej0v+PgeERERERERERE1OU5KERERERERERFRk+OkFBERERERERERNTlOShERERERERERUZPjpBQRERERERERETU5TkoREREREREREVGT46QUERERERERERE1OU5KERFRncaOHQuZTAaZTAa5XA4nJydERUWhvLz8seo9ePAgZDIZ7ty50ziBNkBWVhaCgoJgY2MDQ0NDtGnTBoGBgbhw4YJWucTERHh6ekKpVMLIyAgvvPACNm3apFUmOzsbMpkMqampDW5/3rx56NixI4yNjdGiRQsMHjwYJ06c0Kpz3LhxcHBwgEKhQPv27REZGYnS0tI6683NzUVQUBBcXFygo6ODqVOnNiieiooKfPjhh1rtffzxxxBCSGV27tyJIUOGoGXLlrX2NzMzE6+99hosLCxgamqKESNG4M8//3zofp09exYDBgyAoaEh7OzssGTJknr7cPjwYfj7+8PGxgYymQy7d+9uUN+JiIgaE/Ml5kvMlx7NUzUptXr1arRr1w6Ghobo06cPTp48WWf57du3o2PHjjA0NISbmxu++eabWsuGhYVBJpPhs88+a+SoiYief76+vsjNzcXFixcxffp0zJs3D59++mlzhyWpLwkBgLKyMnh7e0OtVmPnzp1IT0/Htm3b4ObmppXorVy5EoGBgfDw8MCJEydw9uxZjBo1CmFhYZgxY8Zjxeni4oJVq1bh3LlzOHLkCNq1a4chQ4bgxo0bAIALFy5Ao9Fg3bp1+PXXX7Fs2TKsXbsWc+fOrbPekpISWFhY4IMPPkC3bt0aHM/ixYuxZs0arFq1CufPn8fixYuxZMkSrFy5UipTWFiI/v37Y/HixTXWUVhYiCFDhkAmk+GHH37A0aNHUVpaCn9/f2g0mgb3Kz8/H0OGDIG9vT1Onz6NTz/9FPPmzcP69evr7ENhYSG6deuG1atXN7jfzzrmS0RETyfmS8yXmC89AvGU+PLLL4VcLhcbN24Uv/76qwgNDRVmZmbizz//rLH80aNHha6urliyZIlIS0sTH3zwgdDX1xfnzp2rVnbnzp2iW7duwsbGRixbtqzBManVagFAqNXqR+0WEZEQQoji4mKRlpYmiouLmzuUhxYSEiICAwO19nl7ewt3d3eRl5cngoODhZmZmVAoFMLX11dkZGRI5bKzs8Urr7wizMzMhJGRkXB1dRV79uwRWVlZAoDWJyQkRAghRH5+vggKChJGRkbCyspKLF26VHh6eoopU6ZI9drb24uoqCgRHBwslEqldG5ycrLo37+/MDQ0FG3atBHh4eGioKBACCFESkqKACCys7Nr7evly5eFvr6+mDZtWrVjK1asEADEjz/+KIQQUh9SUlIeflD/q+rvzP79+2sts2TJEuHg4NDgOh8cq7q8/PLL4u2339ba9/e//12MHj26Wtna+rtv3z6ho6Oj9bfyzp07QiaTiaSkpFrbfrBfn3/+uWjRooUoKSmR9kVERIgOHTo0qC9CCAFA7Nq1q8Hl61LX72xz5gdPY74kBHMmImoczJeYL9WE+dLznS89NXdKLV26FKGhoXjrrbfg6uqKtWvXwsjICBs3bqyx/PLly+Hr64uZM2eiU6dO+Pjjj9GjRw+sWrVKq9zVq1cRHh6O+Ph46OvrN0VXiIgaRAiBspKKJv+I+241flQKhQKlpaUYO3YsfvrpJyQkJOD48eMQQmDo0KEoKysDAEycOBElJSU4fPgwzp07h8WLF8PExAR2dnb46quvAADp6enIzc3F8uXLAQDTpk3D0aNHkZCQgKSkJCQnJ+PMmTPVYoiJiUG3bt2QkpKCDz/8EJmZmfD19cWwYcNw9uxZbNu2DUeOHMGkSZMAABYWFtDR0cGOHTtQUVFRY7927NiBsrKyGq/wTZgwASYmJti6detjjx9QebVy/fr1UKlUdV6tU6vVMDc3b5Q2H9SvXz98//33yMjIAAD8/PPPOHLkCPz8/BpcR0lJCWQyGQwMDKR9hoaG0NHRwZEjR2o978F+HT9+HC+++CLkcrm0z8fHB+np6bh9+/bDdOu5xnyJiP5qmitfaoycifnS42O+9PznS3rNHQBQ+YN2+vRpzJkzR9qno6ODwYMH4/jx4zWec/z4cUybNk1rn4+Pj9azkRqNBsHBwZg5cyY6d+5cbxwlJSUoKSmRtvPz8x+yJ0REDVdeqsH6KYeavN13lntC30D3kc4VQuD777/Hvn374Ofnh927d+Po0aPo168fACA+Ph52dnbYvXs3hg8fjsuXL2PYsGFwc3MDADg6Okp1Vf2BtbS0hJmZGQDg7t272Lx5M7Zs2YJBgwYBAOLi4mBjY1MtloEDB2L69OnS9vjx4zF69Gjp/QDOzs5YsWIFPD09sWbNGtja2mLFihWYNWsW5s+fj169esHLywujR4+W4srIyIBKpYK1tXW19uRyORwdHaWE5FElJiZi1KhRKCoqgrW1NZKSktCqVasay166dAkrV65ETEzMY7VZm9mzZyM/Px8dO3aErq4uKioqsGDBAowePbrBdbi7u8PY2BgRERFYuHAhhBCYPXs2KioqkJubW+M5NfXr2rVrcHBw0CrXunVr6ViLFi0eoYfPl6clXwKYMxFR02mufAl49JyJ+RLzpQcxX6rdU3Gn1M2bN1FRUSENZpXWrVvj2rVrNZ5z7dq1essvXrwYenp6mDx5coPiWLRoEVQqlfSxs7N7yJ4QET2fEhMTYWJiAkNDQ/j5+WHkyJEYO3Ys9PT00KdPH6lcy5Yt0aFDB5w/fx4AMHnyZERHR8PDwwORkZE4e/Zsne389ttvKCsrQ+/evaV9KpUKHTp0qFa2V69eWts///wzNm3aBBMTE+nj4+MDjUaDrKwsAJVXIq9du4b4+Hj07dsX27dvR+fOnZGUlNTgsbj/ylRt4uPjteJITk6Wjnl5eSE1NRXHjh2Dr68vRowYgevXr1er4+rVq/D19cXw4cMRGhoq7b+/3rCwsAbFnJycrHVefHw8AODf//434uPjsWXLFpw5cwabN29GTEwMNm/e3KB6gcorqtu3b8d//vMfmJiYQKVS4c6dO+jRowd0dKqnGbX161H78FfytORLAHMmIqKaMF/6H+ZL2pgv1e6puFPqSTh9+jSWL1+OM2fOQCaTNeicOXPmaF1NzM/PZ5JFRE+MnlwH7yz3bJZ2H5aXlxfWrFkDuVwOGxsb6OnpISEhod7zxo8fDx8fH+zZswffffcdFi1ahNjYWISHhz9K6FqMjY21tgsKCjBhwoQa/49127ZtpX8rlUr4+/vD398f0dHR8PHxQXR0NLy9veHs7Ay1Wo2cnJxqVxtLS0uRmZkJHx+femMLCAjQSj5tbW214nZycoKTkxPc3d3h7OyMDRs2aN39kpOTAy8vL/Tr16/aiyvvX83F1NS03liAyoT0/vOqJilmzpyJ2bNnY9SoUQAANzc3/P7771i0aBFCQkIaVDcADBkyBJmZmbh58yb09PRgZmYGKysrrSu99fXLyspKawUaANK2lZUV2rVrV2Mf6PE8Sr4EMGcioqbTXPlSVdsPg/kS86W6MF+q2VMxKdWqVSvo6urWOLhWVlY1nlPbl1FVPjk5GdevX9f6xaqoqMD06dPx2WefITs7u1qdBgYGWs94EhE9STKZ7JEfo2tqVYnB/Tp16oTy8nKcOHFCuh391q1bSE9Ph6urq1TOzs4OYWFhCAsLw5w5c/DFF18gPDxcuoJ2//sKHB0doa+vj1OnTkn//Var1cjIyMCLL75YZ4w9evRAWlpatTjrIpPJ0LFjRxw7dgwA8PrrryMiIgKxsbGIjY3VKrt27VoUFRVhzJgx9darVCqhVCobFINGo9F6DOrq1avw8vJCz549ERcXV+3q2cP0r4pCoajxvKKiomr16+rqSqvAPKyq2+p/+OEHXL9+HQEBAdKx+vrVt29fvP/++ygrK5PeaZSUlIQOHTpIt6I/St+fJ09LvgQwZyKipsN8ifkSwHypyvOYLz0Vk1JyuRw9e/bE999/j1dffRVA5Q/d999/L71w7UF9+/bF999/Lz0LC1R+GX379gUABAcHY/DgwVrn+Pj4IDg4GG+99dYT6QcR0V+Js7MzAgMDERoainXr1kGpVGL27NmwtbVFYGAgAGDq1Knw8/ODi4sLbt++jQMHDqBTp04AAHt7e8hkMiQmJmLo0KFQKBRQKpUICQnBzJkzYW5uDktLS0RGRkJHR6feuzgiIiLg7u6OSZMmYfz48TA2NkZaWhqSkpKwatUqpKamIjIyEsHBwXB1dYVcLsehQ4ewceNGREREAKi8QrhkyRLMmDEDhoaGCA4Ohr6+Pr7++mvMnTsX0dHR6NKli1a76enp1WLp3LlztZdFFxYWYsGCBQgICIC1tTVu3ryJ1atX4+rV/8/evYdFVa79A/8OwjjDzDiIghxEAkEURfKQImhEyskCapuHYCNulaRXUPIQainGRk0F/YW6UXsNffdGMs2MjZphaSIinkBNFJJgY4gHJIc4yGnu3x9s1nbkKLLB6P5c11yXs9aznnU/ayC+rbVmPYWYOnUqgPog8sorr8Dc3BxRUVHC1McAmj3p0KDhqlhZWRnu37+PzMxMiMVijcD7JC8vL6xZswYDBgzA0KFDkZGRgU2bNmH27NlCm5KSEhQUFOD27dsa4zUyMhJqiouLw5AhQ2BgYIC0tDQsXLgQ7733nvA1graMy9fXFx999BHmzJmDsLAw/Pjjj/jkk0+wefPmFsddVlaGmzdvCu/z8vKQmZkJfX19jRMt3QHnJcYY+/3hvFSP8xLnpWZ1yDyAHeDzzz+nnj170u7duykrK4veeecd0tPTozt37hARkb+/Py1btkxon5qaStra2hQVFUXXr1+n8PDwZqc4bmBubv5UUxzz9MaMsY7S3aY4btAwxbFSqSSpVEru7u4aUxwHBwfTwIEDqWfPnmRgYED+/v5UXFwsrI+IiCAjIyMSiUQtTnE8ZswYjb8Bzf33/Ny5c+Tq6kpyuZxkMhkNHz6c1qxZQ0RE9+/fpwULFtCwYcNILpeTQqEgOzs7ioqKorq6Oo1+Dh06RBMmTCCZTCZMwZyQkKDRpqlpmhtet27dalRbZWUlvfnmm2RiYkJisZiMjY3J29ubzp07J7SJi4trts/WNLWNubl5i9uUlpbSwoULacCAASSRSMjS0pI++OADjWmGm6spPDxcaBMWFkb9+vUjHR0dsra2pujoaFKr1U89rsuXL9P48eOpZ8+eZGpqSh9//HGr4z5x4kST/Tb8PLVXR0xx/N/wPOYlIs5MjLGOwXmJ8xLnpT9eXnpuTkoREW3ZsoUGDBhAYrGYxowZQ2fPnhXWOTs7NzpgX3zxBQ0aNIjEYjENHTqUDh8+3GL/fFKKMdZVfs8hq6uVlZWRUqmk//3f/+2S/T948IBefPFFevnll6m8vLxLamCd73k9KUX0/OUloq4/Joyx7oHzUvtxXmJdoSPykoiIqD13WP0RlJaWQqlUQqVStfnhaIwx1pRHjx4hLy8PFhYWkEgkXV3Ocy0jIwM3btzAmDFjoFKpEBERgZMnT+LmzZvNTgX83/bgwQNs27YNTk5OwtTLrHtr6XeW80FjfEwYYx2B81LbcV5iz4OOyEvPxTOlGGOMscdFRUUhOztbeIZOSkpKlwUsoH7q5lWrVnXZ/hljjDHGnsR5iXUHfFKKMcbYc2XEiBG4ePFiV5fBGGOMMfbc4rzEugut1pswxhhjjDHGGGOMMdax+KQUY4wxxhhjjDHGGOt0fFKKMcYYY4wxxhhjjHU6PinFGGOMMcYYY4wxxjodn5RijDHGGGOMMcYYY52OT0oxxhhjjDHGGGOMsU7HJ6UYY4y1aNasWRCJRBCJRBCLxbCyskJERARqa2ufqd+TJ09CJBLh4cOHHVNoG+Tl5cHX1xcmJiaQSCTo378/fHx8cOPGDY12SUlJcHZ2hkKhgK6uLl566SXs3r1bo01+fj5EIhEyMzPbvP/Vq1dj8ODBkMlk6N27NyZNmoT09HSNPufMmQMLCwtIpVIMHDgQ4eHhqK6ubrHfoqIi+Pr6YtCgQdDS0kJoaGib6vntt98QGhoKc3NzSKVSODo64vz58xptysrKEBwcjP79+0MqlcLW1hbbt2/XaDNv3jwMHDgQUqkUBgYGTR7TgoICvPbaa9DV1YWhoSGWLl3a7M9QamoqtLW18eKLL7Y6hoMHD8LNzQ19+vR56s+DMcYY6yiclzgvcV5qHz4pxRhjrFUeHh4oKirCTz/9hMWLF2P16tXYuHFjV5claC2EAEBNTQ1cXV2hUqlw8OBBZGdnY9++fbCzs9MIelu2bIGPjw+cnJyQnp6OK1euYMaMGQgKCsKSJUueqc5BgwZh69atuHr1Kk6fPo0XXngBbm5uuH//PgDgxo0bUKvV2LFjB65du4bNmzdj+/btWLFiRYv9VlVVwcDAAB9++CHs7e3bXM/cuXORnJyMv//977h69Src3NwwadIkFBYWCm0WLVqEb775Bv/4xz9w/fp1hIaGIjg4GImJiUKbUaNGIS4uDtevX8exY8dARHBzc0NdXR0AoK6uDq+99hqqq6tx5swZ7NmzB7t378aqVasa1fTw4UPMnDkTEydObNMYysvLMX78eKxfv77N42aMMcb+GzgvcV7ivNQOxJqlUqkIAKlUqq4uhTH2O1dZWUlZWVlUWVnZ1aU8tYCAAPLx8dFY5urqSg4ODlRSUkL+/v6kp6dHUqmUPDw8KCcnR2iXn59Pr7/+Ounp6ZGuri7Z2trS4cOHKS8vjwBovAICAoiIqLS0lHx9fUlXV5eMjIxo06ZN5OzsTAsXLhT6NTc3p4iICPL39yeFQiFsm5KSQuPHjyeJREL9+/enkJAQKisrIyKijIwMAkD5+fnNjrWgoIB0dHRo0aJFjdbFxMQQADp79iwRkTCGjIyMpz+o/9bwd+b48ePNttmwYQNZWFi0uc8nj1VzKioqqEePHpSUlKSxfOTIkfTBBx8I74cOHUoREREttnnS5cuXCQDdvHmTiIiOHDlCWlpadOfOHaFNbGws9erVi6qqqjS2nT59On344YcUHh5O9vb2rY6jQUd8Ho9r6XeW80FjfEwYYx2B8xLnpaZwXureeYnvlGKMMfbUpFIpqqurMWvWLFy4cAGJiYlIS0sDEWHy5MmoqakBAMyfPx9VVVU4deoUrl69ivXr10Mul8PMzAxffvklACA7OxtFRUX45JNPANRfaUpNTUViYiKSk5ORkpKCS5cuNaohKioK9vb2yMjIwMqVK5GbmwsPDw9MmTIFV65cwb59+3D69GkEBwcDAAwMDKClpYUDBw4IV6SedODAAdTU1DR5hW/evHmQy+VISEjokGNYXV2NnTt3QqlUtni1TqVSQV9fv0P2+bja2lrU1dVBIpFoLJdKpTh9+rTw3tHREYmJiSgsLAQR4cSJE8jJyYGbm1uT/ZaXlyMuLg4WFhYwMzMDAKSlpcHOzg79+vUT2rm7u6O0tBTXrl0TlsXFxeHnn39GeHh4Rw6VMcYY6xKcl54d56U/QF7qkNNj3RRf9WOMdZSmriKo1Wqqrqzs9JdarX6q2h+/8qdWqyk5OZl69uxJb7zxBgGg1NRUoW1xcTFJpVL64osviIjIzs6OVq9e3WS/J06cIAD066+/CstKS0tJR0eH9u/fLyx7+PAh6erqNrry98Ybb2j0N2fOHHrnnXc0lqWkpJCWlpZw3Ldu3Uq6urqkUCjIxcWFIiIiKDc3V2gfFBRESqWy2WMxfPhw8vT0JKL2X2n65z//STKZjEQiEZmYmNC5c+eabfvTTz9Rr169aOfOnW3uv61X/oiIxo0bR87OzlRYWEi1tbX097//nbS0tGjQoEFCm0ePHtHMmTMJAGlra5NYLKY9e/Y06mvbtm0kk8kIANnY2AhX/YiIAgMDyc3NTaN9eXk5AaAjR44QEVFOTg4ZGhpSdnY2EVG3uPL3R8LHhDHWEZ6nvPS0mYnz0n9wXuK8RNT2bKDd2SfBGGOM1autqkJMwFudvt8Few5A54mrPa1JSkqCXC5HTU0N1Go1fH198ac//QlJSUkYO3as0K5Pnz6wsbHB9evX6/e1YAHeffddfPvtt5g0aRKmTJmC4cOHN7ufn3/+GTU1NRgzZoywTKlUwsbGplHb0aNHa7y/fPkyrly5gvj4eGEZEUGtViMvLw9DhgzB/PnzMXPmTJw8eRJnz57F/v37sXbtWiQmJsLV1bVNx0IsFrfaJj4+HvPmzRPeHz16FBMmTAAAuLi4IDMzE8XFxfj0008xbdo0pKenw9DQUKOPwsJCeHh4YOrUqQgMDBSWy+Vy4d9//vOfGz1EsykpKSnw9PQU3u/YsQN+fn74+9//jtmzZ8PU1BQ9evTAyJEj8fbbb+PixYtC2y1btuDs2bNITEyEubk5Tp06hfnz58PExASTJk0S2vn5+cHV1RVFRUWIiorCtGnTkJqa2ujKYlPq6urg6+uLjz76CIMGDWqyTUvHlDHGWPfVVXkJePrMxHnpPzgvcV5qKz4pxRhjrFUuLi6IjY2FWCyGiYkJtLW1NR7c2Jy5c+fC3d0dhw8fxrfffot169YhOjoaISEhz1yTTCbTeF9WVoZ58+ZhwYIFjdoOGDBA+LdCoYCXlxe8vLwQGRkJd3d3REZGwtXVFdbW1lCpVLh9+zZMTEw0+qiurkZubi7c3d1brc3b21sjfJqammrUbWVlBSsrKzg4OMDa2hq7du3C8uXLhTa3b9+Gi4sLHB0dsXPnTo2+H58tpVevXq3WAtQH0se3a7gtfODAgfjhhx9QXl6O0tJSGBsbY/r06bC0tAQAVFZWYsWKFfjqq6/w2muvAQCGDx+OzMxMREVFaYQspVIJpVIJa2trODg4oHfv3vjqq6/w9ttvw8jICOfOndOo6e7duwAAIyMj/Pbbb7hw4QIyMjKErw+o1WoQEbS1tfHtt9+2eEwZY4yx5wHnJc5LnJeeHp+UYoyxLqLdsycW7DnQJft9Wg3B4HFDhgxBbW0t0tPT4ejoCAB48OABsrOzYWtrK7QzMzNDUFAQgoKCsHz5cnz66acICQkRrqA9/rwCS0tL6Ojo4Pz580IwUqlUyMnJwcsvv9xijSNHjkRWVlajOlsiEokwePBgnDlzBgDw1ltvISwsDNHR0YiOjtZou337dlRUVGDmzJmt9qtQKKBQKNpUg1qtRlVVlfC+sLAQLi4uwgwtWlqaj398mvE1kEqlLW4nk8kgk8nw66+/4tixY9iwYQOA+hl4ampqGtXQo0cPqNXqZvsjIhCRMK5x48ZhzZo1uHfvnnCFMzk5Gb169YKtrS10dHRw9epVjT7+9re/4fvvv8eBAwdgYWEBmUzW5mPKGGOs++iqvNSw76fBeYnz0uM4L7UNn5RijLEuIhKJnvprdM8Ta2tr+Pj4IDAwEDt27IBCocCyZctgamoKHx8fAEBoaCg8PT0xaNAg/Prrrzhx4gSGDBkCADA3N4dIJEJSUhImT54MqVQKhUKBgIAALF26FPr6+jA0NER4eDi0tLQgEolarCcsLAwODg4IDg7G3LlzIZPJkJWVheTkZGzduhWZmZkIDw+Hv78/bG1tIRaL8cMPP+Czzz5DWFgYgPorhBs2bMCSJUsgkUjg7+8PHR0dfP3111ixYgUiIyMxbNgwjf1mZ2c3qmXo0KHQ0dHRWFZeXo41a9bA29sbxsbGKC4uxrZt21BYWIipU6cCqA9Yr7zyCszNzREVFSVMfQzUXyFrScOVvbKyMty/fx+ZmZkQi8UagfdJDdMR29jY4ObNm1i6dCkGDx6Mv/zlLwDqryw6Oztj6dKlkEqlMDc3xw8//ID/+7//w6ZNmwDUf4Vg3759cHNzg4GBAX755Rd8/PHHkEqlmDx5MgDAzc0Ntra28Pf3x4YNG3Dnzh18+OGHmD9/Pnr+O/A/eVwNDQ0hkUgaLX9SSUkJCgoKcPv2bQD/+TyMjIxaPWaMMcaef5yXOC9xXurmealDnm7VTfFDOxljHaW7TXHcoGGKY6VSSVKplNzd3TWmOA4ODqaBAwdSz549ycDAgPz9/am4uFhYHxERQUZGRiQSiVqc4njMmDG0bNkyYTtzc3PavHlzo3rOnTtHrq6uJJfLSSaT0fDhw2nNmjVERHT//n1asGABDRs2jORyOSkUCrKzs6OoqCiqq6vT6OfQoUM0YcIE4UGUACghIUGjTVPTNDe8bt261ai2yspKevPNN8nExITEYjEZGxuTt7e3xoM74+Limu2zNU1tY25u3uI2+/btI0tLSxKLxWRkZETz58+nhw8farQpKiqiWbNmkYmJCUkkErKxsaHo6Gjh4a+FhYXk6elJhoaGpKOjQ/379ydfX1+6ceOGRj/5+fnk6elJUqmU+vbtS4sXL6aamppma2vrgzubO2bh4eGtbtsSftD50+FjwhjrCJyXOC9xXvrj5SUREVHHnubqPkpLS6FUKqFSqdr8PVTGGGvKo0ePkJeXBwsLizY9yJD9R3l5OUxNTREdHY05c+Z0+v5LSkowceJE9OrVC0ePHoWurm6n18A6X0u/s5wPGuNjwhjrCJyX2o/zEusKHZGXtJpdwxhjjHWBjIwMJCQkIDc3F5cuXYKfnx8ACLe4dzZ9fX0cP34cEydORFpaWpfUwBhjjDH2OM5LrLvgZ0oxxhh77kRFRSE7OxtisRijRo1CSkoK+vbt22X19OnTB6tWreqy/TPGGGOMPYnzEusO+KQUY4yx58qIESNw8eLFri6DMcYYY+y5xXmJdRf89T3GGGOMMcYYY4wx1un4pBRjjDHGGGOMMcYY63R8UooxxhhjjDHGGGOMdTo+KcUYY4wxxhhjjDHGOh2flGKMMcYYY4wxxhhjnY5PSjHGGGOMMcYYY4yxTscnpRhjjDHGGGOMMcZYp+OTUowxxlo0a9YsiEQiiEQiiMViWFlZISIiArW1tc/U78mTJyESifDw4cOOKbQN8vLy4OvrCxMTE0gkEvTv3x8+Pj64ceOGRrukpCQ4OztDoVBAV1cXL730Enbv3q3RJj8/HyKRCJmZmW3e/+rVqzF48GDIZDL07t0bkyZNQnp6ukafc+bMgYWFBaRSKQYOHIjw8HBUV1e32G9RURF8fX0xaNAgaGlpITQ0tE31nDp1Cl5eXjAxMYFIJMKhQ4catTl48CDc3NzQp0+fVsdLRPD09Gy2r927d2P48OGQSCQwNDTE/PnzNdYfO3YMDg4OUCgUMDAwwJQpU5Cfn6/RJj4+Hvb29tDV1YWxsTFmz56NBw8ePPM4GWOMsWfBeYnzEuel9uGTUowxxlrl4eGBoqIi/PTTT1i8eDFWr16NjRs3dnVZgtZCCADU1NTA1dUVKpUKBw8eRHZ2Nvbt2wc7OzuNoLdlyxb4+PjAyckJ6enpuHLlCmbMmIGgoCAsWbLkmeocNGgQtm7diqtXr+L06dN44YUX4Obmhvv37wMAbty4AbVajR07duDatWvYvHkztm/fjhUrVrTYb1VVFQwMDPDhhx/C3t6+zfWUl5fD3t4e27Zta7HN+PHjsX79+lb7+3//7/9BJBI1uW7Tpk344IMPsGzZMly7dg3Hjx+Hu7u7sD4vLw8+Pj549dVXkZmZiWPHjqG4uBh/+tOfhDapqamYOXMm5syZg2vXrmH//v04d+4cAgMDn3mcjDHG2LPivMR5ifNSOxBrlkqlIgCkUqm6uhTG2O9cZWUlZWVlUWVlZVeX8tQCAgLIx8dHY5mrqys5ODhQSUkJ+fv7k56eHkmlUvLw8KCcnByhXX5+Pr3++uukp6dHurq6ZGtrS4cPH6a8vDwCoPEKCAggIqLS0lLy9fUlXV1dMjIyok2bNpGzszMtXLhQ6Nfc3JwiIiLI39+fFAqFsG1KSgqNHz+eJBIJ9e/fn0JCQqisrIyIiDIyMggA5efnNzvWgoIC0tHRoUWLFjVaFxMTQwDo7NmzRETCGDIyMp7+oP5bw9+Z48ePN9tmw4YNZGFh0eY+nzxWbQWAvvrqq2bXtzbejIwMMjU1paKiokZ9lZSUkFQqbXGc+/fvJ21tbaqrqxOWJSYmkkgkourqaiIi2rhxI1laWmpsFxMTQ6ampq0P8N9aG2eDln5nOR80xseEMdYROC9xXmoK56X/6I55ie+UYowx9tSkUimqq6sxa9YsXLhwAYmJiUhLSwMRYfLkyaipqQEAzJ8/H1VVVTh16hSuXr2K9evXQy6Xw8zMDF9++SUAIDs7G0VFRfjkk08AAIsWLUJqaioSExORnJyMlJQUXLp0qVENUVFRsLe3R0ZGBlauXInc3Fx4eHhgypQpuHLlCvbt24fTp08jODgYAGBgYAAtLS0cOHAAdXV1TY7rwIEDqKmpafIK37x58yCXy5GQkNAhx7C6uho7d+6EUqls8WqdSqWCvr5+h+zzv6WiogK+vr7Ytm0bjIyMGq1PTk6GWq1GYWEhhgwZgv79+2PatGm4deuW0GbUqFHQ0tJCXFwc6urqoFKp8Pe//x2TJk2Cjo4OAGDcuHG4desWjhw5AiLC3bt3ceDAAUyePLnTxsoYY4y1FeelZ8d56Q+Ql9p8quwPiK/6McY6SlNXEdRqNdVV1Xb6S61WP1Xtj1/5U6vVlJycTD179qQ33niDAFBqaqrQtri4mKRSKX3xxRdERGRnZ0erV69ust8TJ04QAPr111+FZaWlpaSjo0P79+8Xlj18+JB0dXUbXfl74403NPqbM2cOvfPOOxrLUlJSSEtLSzjuW7duJV1dXVIoFOTi4kIRERGUm5srtA8KCiKlUtnssRg+fDh5enoSUfuv/P3zn/8kmUxGIpGITExM6Ny5c822/emnn6hXr160c+fONvffFVf+3nnnHZozZ06zfa1bt450dHTIxsaGvvnmG0pLS6OJEyeSjY0NVVVVCe1OnjxJhoaG1KNHDwJA48aN0/j5ICL64osvSC6Xk7a2NgEgLy8v4cpgR4yzAd8p9XT4mDDGOsLzlJeeNjNxXvoPzkucl4jang20O/MEGGOMsf+gGjVurzrT6fs1iXCESNzjqbZJSkqCXC5HTU0N1Go1fH198ac//QlJSUkYO3as0K5Pnz6wsbHB9evXAQALFizAu+++i2+//RaTJk3ClClTMHz48Gb38/PPP6OmpgZjxowRlimVStjY2DRqO3r0aI33ly9fxpUrVxAfHy8sIyKo1Wrk5eVhyJAhmD9/PmbOnImTJ0/i7Nmz2L9/P9auXYvExES4urq26ViIxeJW28THx2PevHnC+6NHj2LChAkAABcXF2RmZqK4uBiffvoppk2bhvT0dBgaGmr0UVhYCA8PD0ydOlXjGQByuVz495///Gds37691XpSUlLg6ekpvN+xYwf8/Pxa3a4tEhMT8f333yMjI6PZNmq1GjU1NYiJiYGbmxsAICEhAUZGRjhx4gTc3d1x584dBAYGIiAgAG+//TZ+++03rFq1Cm+99RaSk5MhEomQlZWFhQsXYtWqVXB3d0dRURGWLl2KoKAg7Nq16786TsYYY12jq/IS8PSZifPSf3Be0sR5qXl8UooxxlirXFxcEBsbC7FYDBMTE2hrayMxMbHV7ebOnQt3d3ccPnwY3377LdatW4fo6GiEhIQ8c00ymUzjfVlZGebNm4cFCxY0ajtgwADh3wqFAl5eXvDy8kI14V8ZAAC2VUlEQVRkZCTc3d0RGRkJV1dXWFtbQ6VS4fbt2zAxMdHoo7q6Grm5uRoPm2yOt7e3Rvg0NTXVqNvKygpWVlZwcHCAtbU1du3aheXLlwttbt++DRcXFzg6OmLnzp0afT8+m0uvXr1arQWoD6SPb9evX782bdcW33//PXJzc6Gnp6exfMqUKZgwYQJOnjwJY2NjAICtra2w3sDAAH379kVBQQEAYNu2bVAqldiwYYPQ5h//+AfMzMyQnp4OBwcHrFu3Dk5OTli6dCkAYPjw4ZDJZJgwYQIiIyP/q+NkjDHGWsN5ifNSczgvNY9PSjHGWBcR6WjBJMKxS/b7tBqCweOGDBmC2tpapKenw9GxfhwPHjxAdna2xh9TMzMzBAUFISgoCMuXL8enn36KkJAQ4Qra488rsLS0hI6ODs6fPy8EI5VKhZycHLz88sst1jhy5EhkZWU1qrMlIpEIgwcPxpkz9Vdg33rrLYSFhSE6OhrR0dEabbdv346KigrMnDmz1X4VCgUUCkWbalCr1aiqqhLeFxYWwsXFBaNGjUJcXBy0tDQ/r6cZXwOpVNqu7dpi2bJlmDt3rsYyOzs7bN68GV5eXgAAJycnAPXPw+jfvz8AoKSkBMXFxTA3NwdQ/5yFJ8fao0f91Wm1Wi200dbWbrINEf1Xx8kYY6xrdFVeatj30+C8xHmpOZyXmscnpRhjrIuIRKKn/hrd88Ta2ho+Pj4IDAzEjh07oFAosGzZMpiamsLHxwcAEBoaCk9PTwwaNAi//vorTpw4gSFDhgAAzM3NIRKJkJSUhMmTJ0MqlUKhUCAgIABLly6Fvr4+DA0NER4eDi0trWanzm0QFhYGBwcHBAcHY+7cuZDJZMjKykJycjK2bt2KzMxMhIeHw9/fH7a2thCLxfjhhx/w2WefISwsDED9FcINGzZgyZIlkEgk8Pf3h46ODr7++musWLECkZGRGDZsmMZ+s7OzG9UydOhQ4WGTDcrLy7FmzRp4e3vD2NgYxcXF2LZtGwoLCzF16lQA9QHrlVdegbm5OaKiooSpjwE0+UDMxzVc8SorK8P9+/eRmZkJsVisEXifVFZWhps3bwrv8/LykJmZCX19fSHklpSUoKCgALdv39YYr5GRkcbrSQMGDICFhQWA+qmdfXx8sHDhQuzcuRO9evXC8uXLMXjwYLi4uAAAXnvtNWzevBkRERHC7egrVqyAubk5RowYAQDw8vJCYGAgYmNjhdvRQ0NDMWbMmEZXap92nIwxxp5PnJc4L3Fe6uZ5qc1PuvoD4od2MsY6Sneb4rhBwxTHSqWSpFIpubu7a0xxHBwcTAMHDqSePXuSgYEB+fv7U3FxsbA+IiKCjIyMSCQStTjF8ZgxY2jZsmXCdubm5rR58+ZG9Zw7d45cXV1JLpeTTCaj4cOH05o1a4iI6P79+7RgwQIaNmwYyeVyUigUZGdnR1FRURrT6hIRHTp0iCZMmEAymUyYgjkhIUGjTVPTNDe8bt261ai2yspKevPNN8nExITEYjEZGxuTt7e3xoM74+Limu2zNU1tY25u3uI2DQ9PffLV8Fm0VFN4eHiLtTz5cEyVSkWzZ88mPT090tfXpzfffJMKCgo02iQkJNCIESNIJpORgYEBeXt70/Xr1zXaxMTEkK2tLUmlUjI2NiY/Pz/65ZdfnnmcT+IHnT8dPiaMsY7AeYnzEuelP15eEhERtfeEVndXWloKpVIJlUrV5u+hMsZYUx49eoS8vDxYWFhAIpF0dTm/K+Xl5TA1NUV0dDTmzJnT6fsvKSnBxIkT0atXLxw9ehS6urqdXgPrfC39znI+aIyPCWOsI3Beaj/OS6wrdEReevoHizDGGGP/RRkZGUhISEBubi4uXbokzAbScIt7Z9PX18fx48cxceJEpKWldUkNjDHGGGOP47zEugt+phRjjLHnTlRUFLKzsyEWizFq1CikpKSgb9++XVZPnz59sGrVqi7bP2OMMcbYkzgvse6AT0oxxhh7rowYMQIXL17s6jIYY4wxxp5bnJdYd8Ff32OMMcYYY4wxxhhjnY5PSjHGGGOMMcYYY4yxTscnpRhjjDHGGGOMMcZYp+OTUowxxhhjjDHGGGOs0/FJKcYYY4wxxhhjjDHW6fikFGOMMcYYY4wxxhjrdHxSijHGGGOMMcYYY4x1Oj4pxRhjrEWzZs2CSCSCSCSCWCyGlZUVIiIiUFtb+0z9njx5EiKRCA8fPuyYQtsgLy8Pvr6+MDExgUQiQf/+/eHj44MbN25otEtKSoKzszMUCgV0dXXx0ksvYffu3Rpt8vPzIRKJkJmZ2eb9r169GoMHD4ZMJkPv3r0xadIkpKena/Q5Z84cWFhYQCqVYuDAgQgPD0d1dXWL/RYVFcHX1xeDBg2ClpYWQkND21TPqVOn4OXlBRMTE4hEIhw6dOipawaANWvWwNHREbq6utDT02tyXwUFBXjttdegq6sLQ0NDLF26VONn6PGfs8dfQ4cOFdqsW7cOL730EhQKBQwNDfHGG28gOzu71XG2pT7GGGPsWXBe4rzEeal9+KQUY4yxVnl4eKCoqAg//fQTFi9ejNWrV2Pjxo1dXZagtRACADU1NXB1dYVKpcLBgweRnZ2Nffv2wc7OTiPobdmyBT4+PnByckJ6ejquXLmCGTNmICgoCEuWLHmmOgcNGoStW7fi6tWrOH36NF544QW4ubnh/v37AIAbN25ArVZjx44duHbtGjZv3ozt27djxYoVLfZbVVUFAwMDfPjhh7C3t29zPeXl5bC3t8e2bdvaXTNQf/ynTp2Kd999t8k+6urq8Nprr6G6uhpnzpzBnj17sHv3bqxatUpo88knn6CoqEh43bp1C/r6+pg6darQ5ocffsD8+fNx9uxZJCcno6amBm5ubigvL29xnK3VxxhjjHUEzkuclzgvtQOxZqlUKgJAKpWqq0thjP3OVVZWUlZWFlVWVnZ1KU8tICCAfHx8NJa5urqSg4MDlZSUkL+/P+np6ZFUKiUPDw/KyckR2uXn59Prr79Oenp6pKurS7a2tnT48GHKy8sjABqvgIAAIiIqLS0lX19f0tXVJSMjI9q0aRM5OzvTwoULhX7Nzc0pIiKC/P39SaFQCNumpKTQ+PHjSSKRUP/+/SkkJITKysqIiCgjI4MAUH5+frNjLSgoIB0dHVq0aFGjdTExMQSAzp49S0QkjCEjI+PpD+q/NfydOX78eLNtNmzYQBYWFm3u88lj1VYA6Kuvvmq1XUs1x8XFkVKpbLT8yJEjpKWlRXfu3BGWxcbGUq9evaiqqqrJ/Xz11VckEola/Lzu3btHAOiHH35ote6W6mtKS7+znA8a42PCGOsInJc4LzWF81L3zkt8pxRjjHURIkJ1dXWnv4jomWuXSqWorq7GrFmzcOHCBSQmJiItLQ1EhMmTJ6OmpgYAMH/+fFRVVeHUqVO4evUq1q9fD7lcDjMzM3z55ZcAgOzsbBQVFeGTTz4BACxatAipqalITExEcnIyUlJScOnSpUY1REVFwd7eHhkZGVi5ciVyc3Ph4eGBKVOm4MqVK9i3bx9Onz6N4OBgAICBgQG0tLRw4MAB1NXVNTmuAwcOoKampskrfPPmzYNcLkdCQsIzHz+g/mrUzp07oVQqW7xap1KpoK+v3yH7fFZtrflJaWlpsLOzQ79+/YRl7u7uKC0txbVr15rcZteuXZg0aRLMzc2b7VelUgHAc3N8GGOMdbyuyksdkZk4Lz07zkvdPy9pd3UBjDH2R1VTU4O1a9d2+n5XrFgBsVjcrm2JCN999x2OHTsGT09PHDp0CKmpqXB0dAQAxMfHw8zMDIcOHcLUqVNRUFCAKVOmwM7ODgBgaWkp9NXwh9HQ0FD43vpvv/2GPXv2YO/evZg4cSIAIC4uDiYmJo1qefXVV7F48WLh/dy5c+Hn5yc8H8Da2hoxMTFwdnZGbGwsTE1NERMTg/fffx8fffQRRo8eDRcXF/j5+Ql15eTkQKlUwtjYuNH+xGIxLC0tkZOT065j1yApKQkzZsxARUUFjI2NkZycjL59+zbZ9ubNm9iyZQuioqKeaZ/P6mlqbsqdO3c0AhYA4f2dO3catb99+zaOHj2KvXv3NtunWq1GaGgonJycMGzYsDbXwhhj7Pelq/IS0P7MxHmJ8xLnpbbjO6UYY4y1KikpCXK5HBKJBJ6enpg+fTpmzZoFbW1tjB07VmjXp08f2NjY4Pr16wCABQsWIDIyEk5OTggPD8eVK1da3M/PP/+MmpoajBkzRlimVCphY2PTqO3o0aM13l++fBm7d++GXC4XXu7u7lCr1cjLywNQfyXyzp07iI+Px7hx47B//34MHToUycnJbT4WbQmn8fHxGnWkpKQI61xcXJCZmYkzZ87Aw8MD06ZNw7179xr1UVhYCA8PD0ydOhWBgYHC8sf7DQoKalPNKSkpGtvFx8e3abunrbmj7NmzB3p6enjjjTeabTN//nz8+OOP+Pzzz4VlQUFBGuNkjDHGOhPnpf/gvMR5qa34TinGGOsiOjo6rT6Q8b+136fl4uKC2NhYiMVimJiYQFtbG4mJia1uN3fuXLi7u+Pw4cP49ttvsW7dOkRHRyMkJKQ9pWuQyWQa78vKyjBv3jwsWLCgUdsBAwYI/1YoFPDy8oKXlxciIyPh7u6OyMhIuLq6wtraGiqVCrdv3250tbG6uhq5ublwd3dvtTZvb2+N8GlqaqpRt5WVFaysrODg4ABra2vs2rULy5cvF9rcvn0bLi4ucHR0xM6dOzX6fnz2ml69erVaC1AfSB/f7smrcK1pS80tMTIywrlz5zSW3b17V1j3OCLCZ599Bn9//2YDbXBwMJKSknDq1Cn0799fWB4REfHMD1dljDH2fOmqvNSw76fBeYnzEuelp8cnpRhjrIs0TBn8e9DwR/ZxQ4YMQW1tLdLT04Xb0R88eIDs7GzY2toK7czMzBAUFISgoCAsX74cn376KUJCQoSxP/68AktLS+jo6OD8+fNCMFKpVMjJycHLL7/cYo0jR45EVlZWozpbIhKJMHjwYJw5cwYA8NZbbyEsLAzR0dGIjo7WaLt9+3ZUVFRg5syZrfarUCigUCjaVINarUZVVZXwvrCwEC4uLhg1ahTi4uKgpaV5U/PTjK+BVCpt13bNebLm1owbNw5r1qzBvXv3YGhoCABITk5Gr169NH5WgPoZY27evIk5c+Y06oeIEBISgq+++gonT56EhYWFxnpDQ0Ohf8YYY90D5yXOSwDnpe6cl/ikFGOMsXaxtraGj48PAgMDsWPHDigUCixbtgympqbw8fEBAISGhsLT0xODBg3Cr7/+ihMnTmDIkCEAAHNzc4hEIiQlJWHy5MmQSqVQKBQICAjA0qVLoa+vD0NDQ4SHh0NLSwsikajFesLCwuDg4IDg4GDMnTsXMpkMWVlZSE5OxtatW5GZmYnw8HD4+/vD1tYWYrEYP/zwAz777DOEhYUBqL9CuGHDBixZsgQSiQT+/v7Q0dHB119/jRUrViAyMrLR9/Gzs7Mb1TJ06NBGV1fLy8uxZs0aeHt7w9jYGMXFxdi2bRsKCwuFaXwLCwvxyiuvwNzcHFFRURrTCD95hexJDVf2ysrKcP/+fWRmZkIsFjcKMY8rKyvDzZs3hfd5eXnIzMyEvr4+BgwY0KaaAaCgoAAlJSUoKChAXV2dUIuVlRXkcjnc3Nxga2sLf39/bNiwAXfu3MGHH36I+fPno2fPnho17dq1C2PHjm3yuQfz58/H3r178fXXX0OhUAjPV1AqlZBKpc2Os7X6GGOMsf8Wzkv1OC9xXmpWm+b5+4Pi6Y0ZYx2lu01x3KBhimOlUklSqZTc3d01pjgODg6mgQMHUs+ePcnAwID8/f2puLhYWB8REUFGRkYkEolanOJ4zJgxtGzZMmE7c3Nz2rx5c6N6zp07R66uriSXy0kmk9Hw4cNpzZo1RER0//59WrBgAQ0bNozkcjkpFAqys7OjqKgoqqur0+jn0KFDNGHCBJLJZMIUzAkJCRptmpqmueF169atRrVVVlbSm2++SSYmJiQWi8nY2Ji8vb3p3LlzQpu4uLhm+2xNU9uYm5u3uM2JEyea3K7hs2hLzUT1PyNN9XPixAmhTX5+Pnl6epJUKqW+ffvS4sWLqaamRqOfhw8fklQqpZ07d7Z5jAAoLi6uxXG2pb4ndcQUx38kfEwYYx2B8xLnJc5Lf7y8JPp30awJpaWlUCqVUKlUbf4eKmOMNeXRo0fIy8uDhYUFJBJJV5fzu1JeXg5TU1NER0c3eYvyf1tJSQkmTpyIXr164ejRo9DV1e30Gljna+l3lvNBY3xMGGMdgfNS+3FeYl2hI/ISz77HGGPsuZKRkYGEhATk5ubi0qVL8PPzAwDhFvfOpq+vj+PHj2PixIlIS0vrkhoYY4wxxh7HeYl1F/xMKcYYY8+dqKgoZGdnQywWY9SoUUhJSUHfvn27rJ4+ffpg1apVXbZ/xhhjjLEncV5i3QGflGKMMfZcGTFiBC5evNjVZTDGGGOMPbc4L7Hugr++xxhjjDHGGGOMMcY6HZ+UYowxxhhjjDHGGGOdjk9KMcYYY4wxxhhjjLFOxyelGGOMMcYYY4wxxlin45NSjDHGGGOMMcYYY6zT8UkpxhhjjDHGGGOMMdbp+KQUY4wxxhhjjDHGGOt0fFKKMcZYi2bNmgWRSASRSASxWAwrKytERESgtrb2mfo9efIkRCIRHj582DGFtkFeXh58fX1hYmICiUSC/v37w8fHBzdu3NBol5SUBGdnZygUCujq6uKll17C7t27Ndrk5+dDJBIhMzOzzftfvXo1Bg8eDJlMht69e2PSpElIT0/X6HPOnDmwsLCAVCrFwIEDER4ejurq6lb7jo+Ph729PXR1dWFsbIzZs2fjwYMHLW5z6tQpeHl5wcTEBCKRCIcOHWqy3fXr1+Ht7Q2lUgmZTIaXXnoJBQUFwvp58+Zh4MCBkEqlMDAwaPKYnj9/HhMnToSenh569+4Nd3d3XL58ucn93bx5EwqFAnp6eq2Ou61jYIwxxv6bOC9xXuK81D58UooxxlirPDw8UFRUhJ9++gmLFy/G6tWrsXHjxq4uS9CWEFJTUwNXV1eoVCocPHgQ2dnZ2LdvH+zs7DSC3pYtW+Dj4wMnJyekp6fjypUrmDFjBoKCgrBkyZJnqnPQoEHYunUrrl69itOnT+OFF16Am5sb7t+/DwC4ceMG1Go1duzYgWvXrmHz5s3Yvn07VqxY0WK/qampmDlzJubMmYNr165h//79OHfuHAIDA1vcrry8HPb29ti2bVuzbXJzczF+/HgMHjwYJ0+exJUrV7By5UpIJBKhzahRoxAXF4fr16/j2LFjICK4ubmhrq4OAFBWVgYPDw8MGDAA6enpOH36NBQKBdzd3VFTU6Oxv5qaGrz99tuYMGFCi7U/zRgYY4yxzsB5ifMS56V2INYslUpFAEilUnV1KYyx37nKykrKysqiysrKri7lqQUEBJCPj4/GMldXV3JwcKCSkhLy9/cnPT09kkql5OHhQTk5OUK7/Px8ev3110lPT490dXXJ1taWDh8+THl5eQRA4xUQEEBERKWlpeTr60u6urpkZGREmzZtImdnZ1q4cKHQr7m5OUVERJC/vz8pFAph25SUFBo/fjxJJBLq378/hYSEUFlZGRERZWRkEADKz89vdqwFBQWko6NDixYtarQuJiaGANDZs2eJiIQxZGRkPP1B/beGvzPHjx9vts2GDRvIwsKixX42btxIlpaWjeo1NTVtcy0A6Kuvvmq0fPr06fTnP/+5zf0QEV2+fJkA0M2bN4mI6Pz58wSACgoKhDZXrlwhAPTTTz9pbPv+++/Tn//8Z4qLiyOlUvlU+21uDO3R0u8s54PG+JgwxjoC5yXOS03hvNS98xLfKcUYY12EiFBXV9Hpr/q/Rc9GKpWiuroas2bNwoULF5CYmIi0tDQQESZPnixczZk/fz6qqqpw6tQpXL16FevXr4dcLoeZmRm+/PJLAEB2djaKiorwySefAAAWLVqE1NRUJCYmIjk5GSkpKbh06VKjGqKiomBvb4+MjAysXLkSubm58PDwwJQpU3DlyhXs27cPp0+fRnBwMADAwMAAWlpaOHDggHBF6kkHDhxATU1Nk1f45s2bB7lcjoSEhGc+fkD91cqdO3dCqVTC3t6+2XYqlQr6+vot9jVu3DjcunULR44cARHh7t27OHDgACZPnvxMNarVahw+fBiDBg2Cu7s7DA0NMXbs2BZv+S4vL0dcXBwsLCxgZmYGALCxsUGfPn2wa9cuVFdXo7KyErt27cKQIUPwwgsvCNt+//332L9///N5FY8xxliX6Kq81BGZifPSs+O81P3zknZXF8AYY39UanUlTv5g1+n7fcX5Knr00G3XtkSE7777DseOHYOnpycOHTqE1NRUODo6Aqj/nr6ZmRkOHTqEqVOnoqCgAFOmTIGdXf04LS0thb4agoOhoaHwXfjffvsNe/bswd69ezFx4kQAQFxcHExMTBrV8uqrr2Lx4sXC+7lz58LPzw+hoaEAAGtra8TExMDZ2RmxsbEwNTVFTEwM3n//fXz00UcYPXo0XFxc4OfnJ9SVk5MDpVIJY2PjRvsTi8WwtLRETk5Ou45dg6SkJMyYMQMVFRUwNjZGcnIy+vbt22TbmzdvYsuWLYiKimqxTycnJ8THx2P69Ol49OgRamtr4eXl9cxh5d69eygrK8PHH3+MyMhIrF+/Ht988w3+9Kc/4cSJE3B2dhba/u1vf8P777+P8vJy2NjYIDk5GWKxGACgUChw8uRJvPHGG/jrX/8KoP7zOXbsGLS166PIgwcPMGvWLPzjH/9Ar169nqluxhhj3UdX5SWg/ZmJ8xLnJc5Lbcd3SjHGGGtVUlIS5HI5JBIJPD09MX36dMyaNQva2toYO3as0K5Pnz6wsbHB9evXAQALFixAZGQknJycEB4ejitXrrS4n59//hk1NTUYM2aMsEypVMLGxqZR29GjR2u8v3z5Mnbv3g25XC683N3doVarkZeXB6D+SuSdO3cQHx+PcePGYf/+/Rg6dCiSk5PbfCwagkNL4uPjNepISUkR1rm4uCAzMxNnzpyBh4cHpk2bhnv37jXqo7CwEB4eHpg6darGsw4e7zcoKAgAkJWVhYULF2LVqlW4ePEivvnmG+Tn5wvrU1JSNLaLj49v01jVajUAwMfHB++99x5efPFFLFu2DK+//jq2b9+u0dbPzw8ZGRn44YcfMGjQIEybNg2PHj0CAFRWVmLOnDlwcnLC2bNnkZqaimHDhuG1115DZWUlACAwMBC+vr54+eWXm6ylvWNgjDHGOgvnpf/gvMR5qa34TinGGOsiWlpSvOJ8tUv2+7RcXFwQGxsLsVgMExMTaGtrIzExsdXt5s6dC3d3dxw+fBjffvst1q1bh+joaISEhLSndA0ymUzjfVlZGebNm4cFCxY0ajtgwADh3wqFAl5eXvDy8kJkZCTc3d0RGRkJV1dXWFtbQ6VS4fbt242uNlZXVyM3Nxfu7u6t1ubt7a0RPk1NTTXqtrKygpWVFRwcHGBtbY1du3Zh+fLlQpvbt2/DxcUFjo6O2Llzp0bfj89e03CFbN26dXBycsLSpUsBAMOHD4dMJsOECRMQGRmJ0aNHa2zXr1+/VscAAH379oW2tjZsbW01lg8ZMgSnT5/WWKZUKqFUKmFtbQ0HBwf07t0bX331Fd5++23s3bsX+fn5SEtLg5ZW/fWwvXv3onfv3vj6668xY8YMfP/990hMTBSuchIR1Go1tLW1sXPnTrz99tvtGgNjjLHft67KSw37fhqclzgvPY7zUtvwSSnGGOsiIpGo3V+j62wNweBxQ4YMQW1tLdLT04Xb0R88eIDs7GyNP8pmZmYICgpCUFAQli9fjk8//RQhISHCFbTHn1dgaWkJHR0dnD9/XghGKpUKOTk5zV4RajBy5EhkZWU1qrMlIpEIgwcPxpkzZwAAb731FsLCwhAdHY3o6GiNttu3b0dFRQVmzpzZar8KhQIKhaJNNajValRVVQnvCwsL4eLiIszQ0hBKGjQ1voqKCuG27gY9evQAUB9WpFLpUx2XBmKxGC+99BKys7M1lufk5MDc3LzZ7YgIRCSMq6KiAlpaWhCJREKbhvcNVxfT0tI0fha+/vprrF+/HmfOnIGpqWm7x8AYY+z3jfMS5yWA81J3zkt8Uooxxli7WFtbw8fHB4GBgdixYwcUCgWWLVsGU1NT+Pj4AABCQ0Ph6emJQYMG4ddff8WJEycwZMgQAIC5uTlEIhGSkpIwefJkSKVSKBQKBAQEYOnSpdDX14ehoSHCw8Mb/YFuSlhYGBwcHBAcHIy5c+dCJpMhKysLycnJ2Lp1KzIzMxEeHg5/f3/Y2tpCLBbjhx9+wGeffYawsDAA9VcIN2zYgCVLlkAikcDf3x86Ojr4+uuvsWLFCkRGRmLYsGEa+30ygADA0KFDoaOjo7GsvLwca9asgbe3N4yNjVFcXIxt27ahsLAQU6dOBVAfsF555RWYm5sjKipKmPoYAIyMjJodu5eXFwIDAxEbGwt3d3cUFRUhNDQUY8aMafL5Eg3Kyspw8+ZN4X1eXh4yMzOhr68vhNylS5di+vTpePnll+Hi4oJvvvkG//znP3Hy5EkA9V8h2LdvH9zc3GBgYIBffvkFH3/8MaRSqfDgUFdXVyxduhTz589HSEgI1Go1Pv74Y2hra8PFxQUAhJ+LBhcuXICWllaj492eMTDGGGNdhfNSPc5LnJea1SHzAHZTPL0xY6yjdLcpjhs0THGsVCpJKpWSu7u7xhTHwcHBNHDgQOrZsycZGBiQv78/FRcXC+sjIiLIyMiIRCJRi1McjxkzhpYtWyZsZ25uTps3b25Uz7lz58jV1ZXkcjnJZDIaPnw4rVmzhoiI7t+/TwsWLKBhw4aRXC4nhUJBdnZ2FBUVRXV1dRr9HDp0iCZMmEAymUyYgjkhIUGjTVPTNDe8bt261ai2yspKevPNN8nExITEYjEZGxuTt7c3nTt3TmgTFxfXbJ+tiYmJIVtbW5JKpWRsbEx+fn70yy+/tLjNiRMnmtxXw2fRYNeuXWRlZUUSiYTs7e3p0KFDwrrCwkLy9PQkQ0ND0tHRof79+5Ovry/duHFDo49vv/2WnJycSKlUUu/evenVV1+ltLS0Zmtr6xTHbR3D0+qIKY7/SPiYMMY6Auclzkucl/54eUlE1AFzg3dTpaWlUCqVUKlU3ebJ9oyxrvHo0SPk5eXBwsICEomkq8v5XSkvL4epqSmio6MxZ86cTt9/SUkJJk6ciF69euHo0aPQ1f19fIWAPZuWfmc5HzTGx4Qx1hE4L7Uf5yXWFToiL/Hse4wxxp4rGRkZSEhIQG5uLi5dugQ/Pz8AEG5x72z6+vo4fvw4Jk6ciLS0tC6pgTHGGGPscZyXWHfBz5RijDH23ImKikJ2djbEYjFGjRqFlJQU9O3bt8vq6dOnD1atWtVl+2eMMcYYexLnJdYd8Ekpxhhjz5URI0bg4sWLXV0GY4wxxthzi/MS6y7463uMMcYYY4wxxhhjrNPxSSnGGGOMMcYYY4wx1un4pBRjjDHGGGOMMcYY63R8UooxxhhjjDHGGGOMdTo+KcUYY4wxxhhjjDHGOh2flGKMMcYYY4wxxhhjnY5PSjHGGGOMMcYYY4yxTscnpRhjjLVo1qxZEIlEEIlEEIvFsLKyQkREBGpra5+p35MnT0IkEuHhw4cdU2gb5OXlwdfXFyYmJpBIJOjfvz98fHxw48YNjXZJSUlwdnaGQqGArq4uXnrpJezevVujTX5+PkQiETIzM9u8/9WrV2Pw4MGQyWTo3bs3Jk2ahPT0dI0+58yZAwsLC0ilUgwcOBDh4eGorq5ute/4+HjY29tDV1cXxsbGmD17Nh48eNDiNrGxsRg+fDh69eqFXr16Ydy4cTh69KiwvqSkBCEhIbCxsYFUKsWAAQOwYMECqFQqoc3u3buFn48nX/fu3RPaVVVV4YMPPoC5uTl69uyJF154AZ999plGPf/v//0/YV9mZmZ477338OjRoxbHcPDgQbi5uaFPnz5P/XkwxhhjHYXzEuclzkvto93VBTDGGHv+eXh4IC4uDlVVVThy5Ajmz58PHR0dLF++vKtLAwBUV1dDLBa32Kampgaurq6wsbHBwYMHYWxsjF9++QVHjx7VCHpbtmxBaGgowsLCEBsbC7FYjK+//hpBQUH48ccfERUV1e46Bw0ahK1bt8LS0hKVlZXYvHkz3NzccPPmTRgYGODGjRtQq9XYsWMHrKys8OOPPyIwMBDl5eUt7jc1NRUzZ87E5s2b4eXlhcLCQgQFBSEwMBAHDx5sdrv+/fvj448/hrW1NYgIe/bsgY+PDzIyMjB06FDcvn0bt2/fRlRUFGxtbfGvf/0LQUFBuH37Ng4cOAAAmD59Ojw8PDT6nTVrFh49egRDQ0Nh2bRp03D37l3s2rULVlZWKCoqglqtFtbv3bsXy5Ytw2effQZHR0fk5OQIAX/Tpk3NjqG8vBzjx4/HtGnTEBgY2OpnwBhjjP23cF7ivMR5qR2INUulUhEAUqlUXV0KY+x3rrKykrKysqiysrKrS3lqAQEB5OPjo7HM1dWVHBwcqKSkhPz9/UlPT4+kUil5eHhQTk6O0C4/P59ef/110tPTI11dXbK1taXDhw9TXl4eAdB4BQQEEBFRaWkp+fr6kq6uLhkZGdGmTZvI2dmZFi5cKPRrbm5OERER5O/vTwqFQtg2JSWFxo8fTxKJhPr3708hISFUVlZGREQZGRkEgPLz85sda0FBAeno6NCiRYsarYuJiSEAdPbsWSIiYQwZGRlPf1D/reHvzPHjx5tts2HDBrKwsGixn40bN5KlpWWjek1NTZ+6pt69e9P//u//Nrv+iy++ILFYTDU1NU2uv3fvHuno6ND//d//CcuOHj1KSqWSHjx40Gy/8+fPp1dffVVj2aJFi8jJyalNdXfE5/G4ln5nOR80xseEMdYROC9xXmoK56X/6I55ib++xxhjXYSIUF5X1+kvInrm2qVSKaqrqzFr1ixcuHABiYmJSEtLAxFh8uTJqKmpAQDMnz8fVVVVOHXqFK5evYr169dDLpfDzMwMX375JQAgOzsbRUVF+OSTTwAAixYtQmpqKhITE5GcnIyUlBRcunSpUQ1RUVGwt7dHRkYGVq5cidzcXHh4eGDKlCm4cuUK9u3bh9OnTyM4OBgAYGBgAC0tLRw4cAB1dXVNjuvAgQOoqanBkiVLGq2bN28e5HI5EhISnvn4AfVXK3fu3AmlUgl7e/tm26lUKujr67fY17hx43Dr1i0cOXIERIS7d+/iwIEDmDx5cpvrqaurw+eff47y8nKMGzeuxXp69eoFbe2mb7b+v//7P+jq6uKtt94SliUmJmL06NHYsGEDTE1NMWjQICxZsgSVlZVCG0dHR1y8eBHnzp0DAPz88884cuTIU42BMcZY99NVeakjMhPnpWfHean75yX++h5jjHWRCrUaA09d7fT95r5sB1mPHu3alojw3Xff4dixY/D09MShQ4eQmpoKR0dHAPXf0zczM8OhQ4cwdepUFBQUYMqUKbCzswMAWFpaCn01BAdDQ0Po6ekBAH777Tfs2bMHe/fuxcSJEwEAcXFxMDExaVTLq6++isWLFwvv586dCz8/P4SGhgIArK2tERMTA2dnZ8TGxsLU1BQxMTF4//338dFHH2H06NFwcXGBn5+fUFdOTg6USiWMjY0b7U8sFsPS0hI5OTntOnYNkpKSMGPGDFRUVMDY2BjJycno27dvk21v3ryJLVu2tHoLvJOTE+Lj4zF9+nQ8evQItbW18PLywrZt21qt5+rVqxg3bhwePXoEuVyOr776Cra2tk22LS4uxl//+le88847zfa3a9cu+Pr6QiqVCst+/vlnnD59GhKJBF999RWKi4vxP//zP3jw4AHi4uIAAL6+viguLsb48eNBRKitrUVQUBBWrFjR6hgYY4x1X12Vl4D2ZybOS5yXOC+1Hd8pxRhjrFVJSUmQy+WQSCTw9PTE9OnTMWvWLGhra2Ps2LFCuz59+sDGxgbXr18HACxYsACRkZFwcnJCeHg4rly50uJ+fv75Z9TU1GDMmDHCMqVSCRsbm0ZtR48erfH+8uXL2L17N+RyufByd3eHWq1GXl4egPorkXfu3EF8fDzGjRuH/fv3Y+jQoUhOTm7zsWjtWQxAfdh8vI6UlBRhnYuLCzIzM3HmzBl4eHhg2rRpGg+4bFBYWAgPDw9MnTpV47v/j/cbFBQEAMjKysLChQuxatUqXLx4Ed988w3y8/OF9SkpKRrbxcfHC/3Z2NggMzMT6enpePfddxEQEICsrKxG9ZSWluK1116Dra0tVq9e3eS409LScP36dcyZM0djuVqthkgkQnx8PMaMGYPJkydj06ZN2LNnj3D17+TJk1i7di3+9re/4dKlSzh48CAOHz6Mv/71r60eU8YYY+x5wHnpPzgvcV5qK75TijHGuoiulhZyX7brkv0+LRcXF+EhliYmJtDW1kZiYmKr282dOxfu7u44fPgwvv32W6xbtw7R0dEICQlpT+kaZDKZxvuysjLMmzcPCxYsaNR2wIABwr8VCgW8vLzg5eWFyMhIuLu7IzIyEq6urrC2toZKpcLt27cbXW2srq5Gbm4u3N3dW63N29tbI3yamppq1G1lZQUrKys4ODjA2toau3bt0ngI6u3bt+Hi4gJHR0fs3LlTo+/HZ0vp1asXAGDdunVwcnLC0qVLAQDDhw+HTCbDhAkTEBkZidGjR2ts169fP+HfDTMEAcCoUaNw/vx5fPLJJ9ixY4fQ5rfffoOHhwcUCgW++uor6OjoNDnu//3f/8WLL76IUaNGaSw3NjaGqakplEqlsGzIkCEgIvzyyy+wtrbGypUr4e/vj7lz5wIA7OzsUF5ejnfeeQcffPBBi8eUMcZY99VVealh30+D8xLnJc5LT49PSjHGWBcRiUTt/hpdZ2sIBo8bMmQIamtrkZ6eLtyO/uDBA2RnZ2vczmxmZoagoCAEBQVh+fLl+PTTTxESEiJcQXv8eQWWlpbQ0dHB+fPnhWCkUqmQk5ODl19+ucUaR44ciaysrEZ1tkQkEmHw4ME4c+YMAOCtt95CWFgYoqOjER0drdF2+/btqKiowMyZM1vtV6FQQKFQtKkGtVqNqqoq4X1hYSFcXFwwatQoxMXFQeuJQNzU+CoqKho9s6DHv3+2iAhSqbTNx+XJekpLS+Hu7o6ePXsiMTEREomkye3KysrwxRdfYN26dY3WOTk5Yf/+/SgrK4NcLgdQf+u/lpYW+vfvL4zhybE+PoanOaaMMca6D85LnJcAzkvdOS/xSSnGGGPtYm1tDR8fHwQGBmLHjh1QKBRYtmwZTE1N4ePjAwAIDQ2Fp6cnBg0ahF9//RUnTpzAkCFDAADm5uYQiURISkrC5MmTIZVKoVAoEBAQgKVLl0JfXx+GhoYIDw+HlpYWRCJRi/WEhYXBwcEBwcHBmDt3LmQyGbKyspCcnIytW7ciMzMT4eHh8Pf3h62tLcRiMX744Qd89tlnCAsLA1B/hXDDhg1YsmQJJBIJ/P39oaOjg6+//horVqxAZGQkhg0bprHf7OzsRrUMHTq00dWx8vJyrFmzBt7e3jA2NkZxcTG2bduGwsJCTJ06FUB9wHrllVdgbm6OqKgo3L9/X9jeyMio2bF7eXkhMDAQsbGxcHd3R1FREUJDQzFmzJgmny/RYPny5fD09MSAAQPw22+/Ye/evTh58iSOHTsGoD5gubm5oaKiAv/4xz9QWlqK0tJSAPUPQu3x2P8k7Nu3D7W1tfjzn//caD++vr7461//ir/85S/46KOPUFxcjKVLl2L27NnCsxS8vLywadMmjBgxAmPHjsXNmzexcuVKeHl5aeznSSUlJSgoKMDt27cB/OfzMDIyavGYMcYYY52B81I9zkv1OC81oUPmAeymeHpjxlhH6W5THDdomOJYqVSSVCold3d3jSmOg4ODaeDAgdSzZ08yMDAgf39/Ki4uFtZHRESQkZERiUSiFqc4HjNmDC1btkzYztzcnDZv3tyonnPnzpGrqyvJ5XKSyWQ0fPhwWrNmDRER3b9/nxYsWEDDhg0juVxOCoWC7OzsKCoqiurq6jT6OXToEE2YMIFkMpkwBXNCQoJGm6amaW543bp1q1FtlZWV9Oabb5KJiQmJxWIyNjYmb29vOnfunNAmLi6u2T5bExMTQ7a2tiSVSsnY2Jj8/Pzol19+aXGb2bNnk7m5OYnFYjIwMKCJEyfSt99+K6w/ceJEs/Xk5eVp9DVu3Djy9fVtdl/Xr1+nSZMmkVQqpf79+9OiRYuooqJCWF9TU0OrV6+mgQMHkkQiITMzM/qf//kf+vXXX1scQ3PHLDw8vMXtWtMRUxz/kfAxYYx1BM5LnJc4L/3x8pKIqAPmBu+mSktLoVQqhekcGWOsvR49eoS8vDxYWFg0ezsva1p5eTlMTU0RHR3d6IGQnaGkpAQTJ05Er169cPToUejq6nZ6DazztfQ7y/mgMT4mjLGOwHmp/Tgvsa7QEXmJZ99jjDH2XMnIyEBCQgJyc3Nx6dIl+Pn5AYBwi3tn09fXx/HjxzFx4kSkpaV1SQ2MMcYYY4/jvMS6C36mFGOMsedOVFQUsrOzIRaLMWrUKKSkpKBv375dVk+fPn2watWqLts/Y4wxxtiTOC+x7oBPSjHGGHuujBgxAhcvXuzqMhhjjDHGnlucl1h3wV/fY4wxxhhjjDHGGGOdjk9KMcYYY4wxxhhjjLFOxyelGGOMMcYYY4wxxlin45NSjDHGGGOMMcYYY6zT8UkpxhhjjDHGGGOMMdbp+KQUY4wxxhhjjDHGGOt0fFKKMcYYY4wxxhhjjHU6PinFGGOsRbNmzYJIJIJIJIJYLIaVlRUiIiJQW1v7TP2ePHkSIpEIDx8+7JhC2yAvLw++vr4wMTGBRCJB//794ePjgxs3bmi0S0pKgrOzMxQKBXR1dfHSSy9h9+7dGm3y8/MhEomQmZnZ5v2vXr0agwcPhkwmQ+/evTFp0iSkp6dr9DlnzhxYWFhAKpVi4MCBCA8PR3V1dat9x8fHw97eHrq6ujA2Nsbs2bPx4MGDNtf28ccfQyQSITQ0VGN5bm4u3nzzTRgYGKBXr16YNm0a7t69q9FmzZo1cHR0hK6uLvT09Jrsv+Fn6PHX559/Lqw/ePAgXF1dhf2MGzcOx44da7XugwcPws3NDX369Hnqz4MxxhjrKJyXOC9xXmofPinFGGOsVR4eHigqKsJPP/2ExYsXY/Xq1di4cWNXlyVoSwipqamBq6srVCoVDh48iOzsbOzbtw92dnYaQW/Lli3w8fGBk5MT0tPTceXKFcyYMQNBQUFYsmTJM9U5aNAgbN26FVevXsXp06fxwgsvwM3NDffv3wcA3LhxA2q1Gjt27MC1a9ewefNmbN++HStWrGix39TUVMycORNz5szBtWvXsH//fpw7dw6BgYFtquv8+fPYsWMHhg8frrG8vLwcbm5uEIlE+P7775Gamorq6mp4eXlBrVYL7aqrqzF16lS8++67Le4nLi4ORUVFwuuNN94Q1p06dQqurq44cuQILl68CBcXF3h5eSEjI6PFPsvLyzF+/HisX7++TWNljDHG/ls4L3Fe4rzUDsSapVKpCACpVKquLoUx9jtXWVlJWVlZVFlZ2dWlPLWAgADy8fHRWObq6koODg5UUlJC/v7+pKenR1KplDw8PCgnJ0dol5+fT6+//jrp6emRrq4u2dra0uHDhykvL48AaLwCAgKIiKi0tJR8fX1JV1eXjIyMaNOmTeTs7EwLFy4U+jU3N6eIiAjy9/cnhUIhbJuSkkLjx48niURC/fv3p5CQECorKyMiooyMDAJA+fn5zY61oKCAdHR0aNGiRY3WxcTEEAA6e/YsEZEwhoyMjKc/qP/W8Hfm+PHjzbbZsGEDWVhYtNjPxo0bydLSslG9pqamrdbw22+/kbW1NSUnJzc6zseOHSMtLS2Nv4MPHz4kkUhEycnJjfqKi4sjpVLZ5H4A0FdffdVqPY+ztbWljz76qE1tO+LzeFxLv7OcDxrjY8IY6wiclzgvNYXzUst+73mJ75RijLEuQkSoqK7t9BcRPXPtUqkU1dXVmDVrFi5cuIDExESkpaWBiDB58mTU1NQAAObPn4+qqiqcOnUKV69exfr16yGXy2FmZoYvv/wSAJCdnY2ioiJ88sknAIBFixYhNTUViYmJSE5ORkpKCi5dutSohqioKNjb2yMjIwMrV65Ebm4uPDw8MGXKFFy5cgX79u3D6dOnERwcDAAwMDCAlpYWDhw4gLq6uibHdeDAAdTU1DR5hW/evHmQy+VISEh45uMH1F8t27lzJ5RKJezt7Zttp1KpoK+v32Jf48aNw61bt3DkyBEQEe7evYsDBw5g8uTJrdYxf/58vPbaa5g0aVKjdVVVVRCJROjZs6ewTCKRQEtLC6dPn26176b21bdvX4wZMwafffZZiz+LarUav/32W6tjZ4wx1r11VV7qiMzEeenZcV7q/nlJu6sLYIyxP6rKmjrYrmr9O+AdLSvCHbri9v3nn4jw3Xff4dixY/D09MShQ4eQmpoKR0dHAPXf0zczM8OhQ4cwdepUFBQUYMqUKbCzswMAWFpaCn01/PE0NDQUvlf/22+/Yc+ePdi7dy8mTpwIoP4WZhMTk0a1vPrqq1i8eLHwfu7cufDz8xO+429tbY2YmBg4OzsjNjYWpqamiImJwfvvv4+PPvoIo0ePhouLC/z8/IS6cnJyoFQqYWxs3Gh/YrEYlpaWyMnJadexa5CUlIQZM2agoqICxsbGSE5ORt++fZtse/PmTWzZsgVRUVEt9unk5IT4+HhMnz4djx49Qm1tLby8vLBt27YWt/v8889x6dIlnD9/vsn1Dg4OkMlkCAsLw9q1a0FEWLZsGerq6lBUVNS2Af9bREQEXn31Vejq6uLbb7/F//zP/6CsrAwLFixosn1UVBTKysowbdq0p9oPY4yx7qWr8hLQ/szEeYnzEueltuM7pRhjjLUqKSkJcrkcEokEnp6emD59OmbNmgVtbW2MHTtWaNenTx/Y2Njg+vXrAIAFCxYgMjISTk5OCA8Px5UrV1rcz88//4yamhqMGTNGWKZUKmFjY9Oo7ejRozXeX758Gbt374ZcLhde7u7uUKvVyMvLA1B/5enOnTuIj4/HuHHjsH//fgwdOhTJycltPhZisbjVNvHx8Rp1pKSkCOtcXFyQmZmJM2fOwMPDA9OmTcO9e/ca9VFYWAgPDw9MnTpV41kHj/cbFBQEAMjKysLChQuxatUqXLx4Ed988w3y8/OF9SkpKRrbxcfH49atW1i4cCHi4+MhkUiaHIeBgQH279+Pf/7zn5DL5VAqlXj48CFGjhwJLa2nixArV66Ek5MTRowYgbCwMLz//vvNPmdj7969+Oijj/DFF1/A0NCw1WPKGGOMPQ84L/0H5yXOS23Fd0oxxlgXker0QFaEe5fs92m5uLggNjYWYrEYJiYm0NbWRmJiYqvbzZ07F+7u7jh8+DC+/fZbrFu3DtHR0QgJCWlP6RpkMpnG+7KyMsybN6/JK0kDBgwQ/q1QKODl5QUvLy9ERkbC3d0dkZGRcHV1hbW1NVQqFW7fvt3oamN1dTVyc3Ph7t76Z+bt7a0RPk1NTTXqtrKygpWVFRwcHGBtbY1du3Zh+fLlQpvbt2/DxcUFjo6O2Llzp0bfj8+W0qtXLwDAunXr4OTkhKVLlwIAhg8fDplMhgkTJiAyMhKjR4/W2K5fv3747rvvcO/ePYwcOVJYXldXh1OnTmHr1q2oqqpCjx494ObmhtzcXBQXF0NbWxt6enowMjLSuIrbHmPHjsVf//pXVFVVadzu/vnnn2Pu3LnYv3+/xi3yLR1Txhhj3VdX5aWGfT8NzkuclzgvPT0+KcUYY11EJBK1+2t0na0hGDxuyJAhqK2tRXp6unA7+oMHD5CdnQ1bW1uhnZmZGYKCghAUFITly5fj008/RUhIiHAF7fHnFVhaWkJHRwfnz58XgpFKpUJOTg5efvnlFmscOXIksrKyGtXZEpFIhMGDB+PMmTMAgLfeegthYWGIjo5GdHS0Rtvt27ejoqICM2fObLVfhUIBhULRphrUajWqqqqE94WFhXBxccGoUaMQFxfX6ApbU+OrqKiAtrbmz1KPHvVBmogglUobbTdx4kRcvXpVY9lf/vIXDB48GGFhYcL2DRpumf/+++9x7949eHt7t2l8zcnMzETv3r01AlZCQgJmz56Nzz//HK+99ppG+6c5powxxroPzkuclwDOS905L/0+frsZY4w9d6ytreHj44PAwEDs2LEDCoUCy5Ytg6mpKXx8fAAAoaGh8PT0xKBBg/Drr7/ixIkTGDJkCADA3NwcIpEISUlJmDx5MqRSKRQKBQICArB06VLo6+vD0NAQ4eHh0NLSgkgkarGesLAwODg4IDg4GHPnzoVMJkNWVhaSk5OxdetWZGZmIjw8HP7+/rC1tYVYLMYPP/yAzz77DGFhYQDqrxBu2LABS5YsgUQigb+/P3R0dPD1119jxYoViIyMxLBhwzT2m52d3aiWoUOHQkdHR2NZeXk51qxZA29vbxgbG6O4uBjbtm1DYWEhpk6dCqA+YL3yyiswNzdHVFSUMPUxABgZGTU7di8vLwQGBiI2Nhbu7u4oKipCaGgoxowZ0+TzJYD60PLkWGQyGfr06aOxPC4uDkOGDIGBgQHS0tKwcOFCvPfeexpfESgoKEBJSQkKCgpQV1cnXGW0srKCXC7HP//5T9y9excODg6QSCRITk7G2rVrNR6QunfvXgQEBOCTTz7B2LFjcefOHQD1D4lVKpXNjr1hv7dv3wbwn8/DyMioxWPGGGOMdQbOS/U4L3FealaHzAPYTfH0xoyxjtLdpjhu0DDFsVKpJKlUSu7u7hpTHAcHB9PAgQOpZ8+eZGBgQP7+/lRcXCysj4iIICMjIxKJRC1OcTxmzBhatmyZsJ25uTlt3ry5UT3nzp0jV1dXksvlJJPJaPjw4bRmzRoiIrp//z4tWLCAhg0bRnK5nBQKBdnZ2VFUVBTV1dVp9HPo0CGaMGECyWQyYQrmhIQEjTZNTdPc8Lp161aj2iorK+nNN98kExMTEovFZGxsTN7e3nTu3DmhTVxcXLN9tiYmJoZsbW1JKpWSsbEx+fn50S+//NLqdo97copjIqKwsDDq168f6ejokLW1NUVHR5NardZoExAQ0GTNJ06cICKio0eP0osvvih8Lvb29rR9+3aN4+7s7NxkHw0/F81p7piFh4c/1dif1BFTHP+R8DFhjHUEzkuclzgv/fHykoioA+YG76ZKS0uhVCqhUqmE76Eyxlh7PHr0CHl5ebCwsGj2IYmsaeXl5TA1NUV0dDTmzJnT6fsvKSnBxIkT0atXLxw9ehS6urqdXgPrfC39znI+aIyPCWOsI3Beaj/OS6wrdERe4tn3GGOMPVcyMjKQkJCA3NxcXLp0CX5+fgAg3OLe2fT19XH8+HFMnDgRaWlpXVIDY4wxxtjjOC+x7oKfKcUYY+y5ExUVhezsbIjFYowaNQopKSnCgyO7Qp8+fbBq1aou2z9jjDHG2JM4L7Hu4Lm6U2rbtm144YUXIJFIMHbsWJw7d67F9vv378fgwYMhkUhgZ2eHI0eOCOtqamoQFhYGOzs7yGQymJiYYObMmcKDvRhjjD2fRowYgYsXL6KsrAwlJSVITk6GnZ1dV5fF2HOD8xJjjDHOS6y7eG5OSu3btw+LFi1CeHg4Ll26BHt7e7i7u+PevXtNtj9z5gzefvttzJkzBxkZGXjjjTfwxhtv4McffwRQP93jpUuXsHLlSly6dAkHDx5Ednb2M0/JyBhjjDHWVTgvMcYYY6w7eW4edD527Fi89NJL2Lp1KwBArVbDzMwMISEhWLZsWaP206dPR3l5OZKSkoRlDg4OePHFF7F9+/Ym93H+/HmMGTMG//rXvzBgwIBWa+KHdjLGOgo/uJOx35fn9UHnz2NeAjgzMcY6Buclxn5fus2Dzqurq3Hx4kVMmjRJWKalpYVJkyY1+5C0tLQ0jfYA4O7u3uJD1VQqFUQiEfT09JpcX1VVhdLSUo0XY4wxxtjz4HnJSwBnJsYYY4x1jOfipFRxcTHq6urQr18/jeX9+vXDnTt3mtzmzp07T9X+0aNHCAsLw9tvv93sWbp169ZBqVQKLzMzs3aMhjHGGGOs4z0veQngzMQYY4yxjvFcnJT6b6upqcG0adNARIiNjW223fLly6FSqYTXrVu3OrFKxhhjjLGu09a8BHBmYowxxljH0O7qAgCgb9++6NGjB+7evaux/O7duzAyMmpyGyMjoza1bwhY//rXv/D999+3eNWvZ8+e6NmzZztHwRhjjDH23/O85CWAMxNjjDHGOsZzcaeUWCzGqFGj8N133wnL1Go1vvvuO4wbN67JbcaNG6fRHgCSk5M12jcErJ9++gnHjx9Hnz59/jsDYIwxxhj7L+O8xBhjjLHu5rk4KQUAixYtwqeffoo9e/bg+vXrePfdd1FeXo6//OUvAICZM2di+fLlQvuFCxfim2++QXR0NG7cuIHVq1fjwoULCA4OBlAfsN566y1cuHAB8fHxqKurw507d3Dnzh1UV1d3yRgZY+z3aNasWRCJRBCJRBCLxbCyskJERARqa2ufqd+TJ09CJBLh4cOHHVNoG+Tl5cHX1xcmJiaQSCTo378/fHx8cOPGDY12SUlJcHZ2hkKhgK6uLl566SXs3r1bo01+fj5EIhEyMzPbvP/Vq1dj8ODBkMlk6N27NyZNmoT09HSNPufMmQMLCwtIpVIMHDgQ4eHhbfq7FR8fD3t7e+jq6sLY2BizZ8/GgwcPWt2usLAQf/7zn9GnTx9IpVLY2dnhwoULwvrHP/+Gl4eHh0YfL7zwQqM2H3/8sbA+OzsbLi4u6NevHyQSCSwtLfHhhx+ipqZGo5+HDx9i/vz5MDY2Rs+ePTFo0CAcOXKkxfoPHjwINzc39OnT56k/j98jzkuMMfZ84rzEeYnzUvs8F1/fA+qnLL5//z5WrVqFO3fu4MUXX8Q333wjPJyzoKAAWlr/OYfm6OiIvXv34sMPP8SKFStgbW2NQ4cOYdiwYQDqf2gSExMBAC+++KLGvk6cOIFXXnmlU8bFGGPdgYeHB+Li4lBVVYUjR45g/vz50NHR0fif365UXV0NsVjcYpuamhq4urrCxsYGBw8ehLGxMX755RccPXpUI+ht2bIFoaGhCAsLQ2xsLMRiMb7++msEBQXhxx9/RFRUVLvrHDRoELZu3QpLS0tUVlZi8+bNcHNzw82bN2FgYIAbN25ArVZjx44dsLKywo8//ojAwECUl5e3uN/U1FTMnDkTmzdvhpeXFwoLCxEUFITAwEAcPHiw2e1+/fVXODk5wcXFBUePHoWBgQF++ukn9O7dW6Ndw+ffoKmvbUVERCAwMFB4r1AohH/r6Ohg5syZGDlyJPT09HD58mUEBgZCrVZj7dq1AOo/Q1dXVxgaGuLAgQMwNTXFv/71rxZngAOA8vJyjB8/HtOmTdPYf3fFeYkxxp5fnJc4L3FeagdizVKpVASAVCpVV5fCGPudq6yspKysLKqsrOzqUp5aQEAA+fj4aCxzdXUlBwcHKikpIX9/f9LT0yOpVEoeHh6Uk5MjtMvPz6fXX3+d9PT0SFdXl2xtbenw4cOUl5dHADReAQEBRERUWlpKvr6+pKurS0ZGRrRp0yZydnamhQsXCv2am5tTREQE+fv7k0KhELZNSUmh8ePHk0Qiof79+1NISAiVlZUREVFGRgYBoPz8/GbHWlBQQDo6OrRo0aJG62JiYggAnT17lohIGENGRsbTH9R/a/g7c/z48WbbbNiwgSwsLFrsZ+PGjWRpadmoXlNT0xa3CwsLo/Hjx7fYpqnP/0nm5ua0efPmFts86b333tPYd2xsLFlaWlJ1dfVT9dOgIz6Px7X0O8v5oDE+JoyxjsB5ifNSUzgvde+89Nx8fY8xxv5wiIDq8s5/ET1z6VKpFNXV1Zg1axYuXLiAxMREpKWlgYgwefJk4Tbj+fPno6qqCqdOncLVq1exfv16yOVymJmZ4csvvwRQf6tyUVERPvnkEwD1X09KTU1FYmIikpOTkZKSgkuXLjWqISoqCvb29sjIyMDKlSuRm5sLDw8PTJkyBVeuXMG+fftw+vRp4WtKBgYG0NLSwoEDB1BXV9fkuA4cOICamhosWbKk0bp58+ZBLpcjISHhmY8fUH+la+fOnVAqlbC3t2+2nUqlgr6+fot9jRs3Drdu3cKRI0dARLh79y4OHDiAyZMnt7hdYmIiRo8ejalTp8LQ0BAjRozAp59+2qjdyZMnYWhoCBsbG7z77rtN3ub+8ccfo0+fPhgxYgQ2btzY4tcVbt68iW+++QbOzs4atYwbNw7z589Hv379MGzYMKxdu7bZz4oxxtgfRFflpQ7ITJyXnh3npe6fl56br+8xxtgfTk0FsNak8/e74jYglrVrUyLCd999h2PHjsHT0xOHDh1CamoqHB0dAdR/T9/MzAyHDh3C1KlTUVBQgClTpsDOzg4AYGlpKfTVEBwMDQ2FW45/++037NmzB3v37sXEiRMBAHFxcTAxaXycXn31VSxevFh4P3fuXPj5+SE0NBQAYG1tjZiYGDg7OyM2NhampqaIiYnB+++/j48++gijR4+Gi4sL/Pz8hLpycnKgVCphbGzcaH9isRiWlpbIyclp17FrkJSUhBkzZqCiogLGxsZITk5G3759m2x78+ZNbNmypdVb4J2cnBAfH4/p06fj0aNHqK2thZeXF7Zt29bidj///DNiY2OxaNEirFixAufPn8eCBQsgFosREBAAoP5W9D/96U+wsLBAbm4uVqxYAU9PT6SlpaFHjx4AgAULFmDkyJHQ19fHmTNnsHz5chQVFWHTpk0a+3N0dMSlS5dQVVWFd955BxERERq1fP/99/Dz88ORI0dw8+ZN/M///A9qamoQHh7e6nFljDHWTXVVXgLanZk4L3Fe4rzUdnynFGOMsVYlJSVBLpdDIpHA09MT06dPx6xZs6CtrY2xY8cK7fr06QMbGxtcv34dQP0f38jISDg5OSE8PBxXrlxpcT8///wzampqMGbMGGGZUqmEjY1No7ajR4/WeH/58mXs3r0bcrlceLm7u0OtViMvLw9A/ZXIO3fuID4+HuPGjcP+/fsxdOhQJCcnt/lYtPYsBqA+bD5eR0pKirDOxcUFmZmZOHPmDDw8PDBt2jTcu3evUR+FhYXw8PDA1KlTNb77/3i/QUFBAICsrCwsXLgQq1atwsWLF/HNN98gPz9fWJ+SkqKxXXx8PID6mdtGjhyJtWvXYsSIEXjnnXcQGBiI7du3C/ubMWMGvL29YWdnhzfeeANJSUk4f/48Tp48KbRZtGgRXnnlFQwfPhxBQUGIjo7Gli1bUFVVpTGmffv24dKlS9i7dy8OHz6sER7VajUMDQ2xc+dOjBo1CtOnT8cHH3wg1NLSMWWMMcaeB5yX/oPzEueltuI7pRhjrKvo6NZfgeuK/T4lFxcX4SGWJiYm0NbWFh6O3JK5c+fC3d0dhw8fxrfffot169YhOjoaISEh7alcg0ymeeWyrKwM8+bNw4IFCxq1HTBggPBvhUIBLy8veHl5ITIyEu7u7oiMjISrqyusra2hUqlw+/btRlcbq6urkZubC3d391Zr8/b21gifpqamGnVbWVnBysoKDg4OsLa2xq5duzQegnr79m24uLjA0dERO3fu1Oj78dlSevXqBQBYt24dnJycsHTpUgDA8OHDIZPJMGHCBERGRmL06NEa2zU8FNvY2Bi2trYa/Q8ZMkT4qkBTLC0t0bdvX9y8eVO4OvuksWPHora2Fvn5+RoB2czMDABga2uLuro6vPPOO1i8eDF69OgBY2Nj6OjoCFcTG2ppmAWupWPKGGOsG+uqvNSw76fAeYnzUgPOS23HJ6UYY6yriETt/hpdZ2sIBo8bMmQIamtrkZ6eLtyO/uDBA2RnZ2v84TYzM0NQUBCCgoKwfPlyfPrppwgJCRGuoD3+HXhLS0vo6Ojg/PnzQjBSqVTIycnByy+/3GKNI0eORFZWVqM6WyISiTB48GCcOXMGAPDWW28hLCwM0dHRiI6O1mi7fft2VFRUYObMma32q1AoNGZTaYlarda4QlZYWAgXFxeMGjUKcXFxGjOpAWhyfBUVFdDW1vyT3hBWiAhSqbTJ7ZycnJCdna2xLCcnB+bm5s3W+8svv+DBgwdN3rLfIDMzE1paWjA0NGy2jVqtRk1NDdRqNXr06AEnJyfs3bsXarVaGHNOTg6MjY0hFoshFovbfEwZY4x1I5yXAHBe4rzUffMSn5RijDHWLtbW1vDx8UFgYCB27NgBhUKBZcuWwdTUFD4+PgCA0NBQeHp6YtCgQfj1119x4sQJDBkyBABgbm4OkUiEpKQkTJ48GVKpFAqFAgEBAVi6dCn09fVhaGiI8PBwaGlpQSQStVhPWFgYHBwcEBwcjLlz50ImkyErKwvJycnYunUrMjMzER4eDn9/f9ja2kIsFuOHH37AZ599hrCwMAD1Vwg3bNiAJUuWQCKRwN/fHzo6Ovj666+xYsUKREZGYtiwYRr7fTKkAMDQoUOho6Ojsay8vBxr1qyBt7c3jI2NUVxcjG3btqGwsBBTp04FUB+wXnnlFZibmyMqKgr3798XtjcyMmp27F5eXggMDERsbCzc3d1RVFSE0NBQjBkzpsnnSzR477334OjoiLVr12LatGk4d+4cdu7cKVxtLCsrw0cffYQpU6bAyMgIubm5eP/992FlZSVcAU1LS0N6ejpcXFygUCiQlpaG9957D3/+85+FqZLj4+Oho6MDOzs79OzZExcuXMDy5csxffp04Ti9++672Lp1KxYuXIiQkBD89NNPWLt2bZNXch9XUlKCgoIC3L59W+PzMDIyavGYMcYYY52B81I9zkucl5rVIfMAdlM8vTFjrKN0tymOGzRMcaxUKkkqlZK7u7vGFMfBwcE0cOBA6tmzJxkYGJC/vz8VFxcL6yMiIsjIyIhEIlGLUxyPGTOGli1bJmzX3JS6586dI1dXV5LL5SSTyWj48OG0Zs0aIiK6f/8+LViwgIYNG0ZyuZwUCgXZ2dlRVFQU1dXVafRz6NAhmjBhAslkMmEK5oSEBI02TU3T3PC6detWo9oqKyvpzTffJBMTExKLxWRsbEze3t507tw5oU1cXFyzfbYmJiaGbG1tSSqVkrGxMfn5+dEvv/zS6nb//Oc/adiwYdSzZ08aPHgw7dy5U1hXUVFBbm5uZGBgQDo6OmRubk6BgYF0584doc3Fixdp7NixpFQqSSKR0JAhQ2jt2rX06NEjoc3nn39OI0eOFD4XW1tbWrt2baPfhzNnztDYsWOpZ8+eZGlpSWvWrKHa2toW62/umIWHh7c69pZ0xBTHfyR8TBhjHYHzEuclzkt/vLwkIuqAucG7qdLSUiiVSqhUKuF7qIwx1h6PHj1CXl4eLCwsIJFIurqc35Xy8nKYmpoiOjoac+bM6fT9l5SUYOLEiejVqxeOHj0KXd2nfyYX+/1p6XeW80FjfEwYYx2B81L7cV5iXaEj8hLPvscYY+y5kpGRgYSEBOTm5uLSpUvw8/MDAOEW986mr6+P48ePY+LEiUhLS+uSGhhjjDHGHsd5iXUX/Ewpxhhjz52oqChkZ2dDLBZj1KhRSElJQd++fbusnj59+mDVqlVdtn/GGGOMsSdxXmLdAZ+UYowx9lwZMWIELl682NVlMMYYY4w9tzgvse6Cv77HGGOMMcYYY4wxxjodn5RijDHGGGOMMcYYY52OT0oxxhhjjDHGGGOMsU7HJ6UYY4wxxhhjjDHGWKfjk1KMMcYYY4wxxhhjrNPxSSnGGGOMMcYYY4wx1un4pBRjjDHGGGOMMcYY63R8UooxxliLZs2aBZFIBJFIBLFYDCsrK0RERKC2tvaZ+j158iREIhEePnzYMYW2QV5eHnx9fWFiYgKJRIL+/fvDx8cHN27c0GiXlJQEZ2dnKBQK6Orq4qWXXsLu3bs12uTn50MkEiEzM7PN+1+9ejUGDx4MmUyG3r17Y9KkSUhPT9foc86cObCwsIBUKsXAgQMRHh6O6urqVvuOj4+Hvb09dHV1YWxsjNmzZ+PBgwctblNXV4eVK1dq7O+vf/0riEhoc/DgQbi5uaFPnz7Njjc3NxdvvvkmDAwM0KtXL0ybNg1379596nFduXIFEyZMgEQigZmZGTZs2NDquE+dOgUvLy+YmJhAJBLh0KFDrW7DGGOMdTTOS5yXOC+1D5+UYowx1ioPDw8UFRXhp59+wuLFi7F69Wps3Lixq8sStCWE1NTUwNXVFSqVCgcPHkR2djb27dsHOzs7jaC3ZcsW+Pj4wMnJCenp6bhy5QpmzJiBoKAgLFmy5JnqHDRoELZu3YqrV6/i9OnTeOGFF+Dm5ob79+8DAG7cuAG1Wo0dO3bg2rVr2Lx5M7Zv344VK1a02G9qaipmzpyJOXPm4Nq1a9i/fz/OnTuHwMDAFrdbv349YmNjsXXrVly/fh3r16/Hhg0bsGXLFqFNeXk5xo8fj/Xr1zfZR3l5Odzc3CASifD9998jNTUV1dXV8PLyglqtbvO4SktL4ebmBnNzc1y8eBEbN27E6tWrsXPnzhbHUF5eDnt7e2zbtq3Fdowxxth/G+clzkucl9qBWLNUKhUBIJVK1dWlMMZ+5yorKykrK4sqKyu7upSnFhAQQD4+PhrLXF1dycHBgUpKSsjf35/09PRIKpWSh4cH5eTkCO3y8/Pp9ddfJz09PdLV1SVbW1s6fPgw5eXlEQCNV0BAABERlZaWkq+vL+nq6pKRkRFt2rSJnJ2daeHChUK/5ubmFBERQf7+/qRQKIRtU1JSaPz48SSRSKh///4UEhJCZWVlRESUkZFBACg/P7/ZsRYUFJCOjg4tWrSo0bqYmBgCQGfPniUiEsaQkZHx9Af13xr+zhw/frzZNhs2bCALC4sW+9m4cSNZWlo2qtfU1LTF7V577TWaPXu2xrI//elP5Ofn16htc+M9duwYaWlpafytfPjwIYlEIkpOTm5230+O629/+xv17t2bqqqqhGVhYWFkY2PT4hgeB4C++uqrNrdvSUu/s5wPGuNjwhjrCJyXOC81hfNS985LfKcUY4x1ESJCRU1Fp7/osVuN20sqlaK6uhqzZs3ChQsXkJiYiLS0NBARJk+ejJqaGgDA/PnzUVVVhVOnTuHq1atYv3495HI5zMzM8OWXXwIAsrOzUVRUhE8++QQAsGjRIqSmpiIxMRHJyclISUnBpUuXGtUQFRUFe3t7ZGRkYOXKlcjNzYWHhwemTJmCK1euYN++fTh9+jSCg4MBAAYGBtDS0sKBAwdQV1fX5LgOHDiAmpqaJq/wzZs3D3K5HAkJCc98/ID6q5U7d+6EUqmEvb19s+1UKhX09fVb7GvcuHG4desWjhw5AiLC3bt3ceDAAUyePLnF7RwdHfHdd98hJycHAHD58mWcPn0anp6ebR5HVVUVRCIRevbsKSyTSCTQ0tLC6dOn2zyutLQ0vPzyyxCLxcIyd3d3ZGdn49dff21zPYwxxrqXrspLHZGZOC89O85L3T8vaXd1AYwx9kdVWVuJsXvHdvp+033Toauj265tiQjfffcdjh07Bk9PTxw6dAipqalwdHQEUP89fTMzMxw6dAhTp05FQUEBpkyZAjs7OwCApaWl0FfDH1hDQ0Po6ekBAH777Tfs2bMHe/fuxcSJEwEAcXFxMDExaVTLq6++isWLFwvv586dCz8/P4SGhgIArK2tERMTA2dnZ8TGxsLU1BQxMTF4//338dFHH2H06NFwcXGBn5+fUFdOTg6USiWMjY0b7U8sFsPS0lIIJO2VlJSEGTNmoKKiAsbGxkhOTkbfvn2bbHvz5k1s2bIFUVFRLfbp5OSE+Ph4TJ8+HY8ePUJtbS28vLxavUV72bJlKC0txeDBg9GjRw/U1dVhzZo18PPza/N4HBwcIJPJEBYWhrVr14KIsGzZMtTV1aGoqKjN47pz5w4sLCw02vXr109Y17t37zbXxBhjrPvoqrwEtD8zcV7ivPQkzkvN4zulGGOMtSopKQlyuRwSiQSenp6YPn06Zs2aBW1tbYwd+5+g2KdPH9jY2OD69esAgAULFiAyMhJOTk4IDw/HlStXWtzPzz//jJqaGowZM0ZYplQqYWNj06jt6NGjNd5fvnwZu3fvhlwuF17u7u5Qq9XIy8sDUH8l8s6dO4iPj8e4ceOwf/9+DB06FMnJyW0+Fo9fmWpOfHy8Rh0pKSnCOhcXF2RmZuLMmTPw8PDAtGnTcO/evUZ9FBYWwsPDA1OnTtV41sHj/QYFBQEAsrKysHDhQqxatQoXL17EN998g/z8fGF9SkqKxnbx8fEAgC+++ALx8fHYu3cvLl26hD179iAqKgp79uxp8/EwMDDA/v378c9//hNyuRxKpRIPHz7EyJEjoaXVOGY0N67WNDcGxhhj7HnBeek/OC9p4rzUPL5TijHGuohUW4p03/TWG/4X9vu0XFxcEBsbC7FYDBMTE2hrayMxMbHV7ebOnQt3d3ccPnwY3377LdatW4fo6GiEhIS0p3QNMplM431ZWRnmzZuHBQsWNGo7YMAA4d8KhQJeXl7w8vJCZGQk3N3dERkZCVdXV1hbW0OlUuH27duNrjZWV1cjNzcX7u7urdbm7e2tET5NTU016raysoKVlRUcHBxgbW2NXbt2Yfny5UKb27dvw8XFBY6Ojo0eXPn4bC69evUCAKxbtw5OTk5YunQpAGD48OGQyWSYMGECIiMjMXr0aI3tGq6oLV26FMuWLcOMGTMAAHZ2dvjXv/6FdevWISAgoNVxNnBzc0Nubi6Ki4uhra0NPT09GBkZaVzpbW1cRkZGGjPQABDeGxkZ4YUXXmhyDIwxxrq3rspLDft+GpyXOC+1hPNS0/ikFGOMdRGRSNTur9F1toZg8LghQ4agtrYW6enpwu3oDx48QHZ2NmxtbYV2ZmZmCAoKQlBQEJYvX45PP/0UISEhwhW0x59XYGlpCR0dHZw/f14IRiqVCjk5OXj55ZdbrHHkyJHIyspqVGdLRCIRBg8ejDNnzgAA3nrrLYSFhSE6OhrR0dEabbdv346KigrMnDmz1X4VCgUUCkWbalCr1aiqqhLeFxYWwsXFBaNGjUJcXFyjq2dNja+iogLa2pp/0nv06AGg/isEUqm02e2e7L9Hjx7CLDBPq+G2+u+//x737t2Dt7d3m8c1btw4fPDBB6ipqYGOjg4AIDk5GTY2NsKt6E/z2TLGGOseOC9xXgI4LzXojnmJT0oxxhhrF2tra/j4+CAwMBA7duyAQqHAsmXLYGpqCh8fHwBAaGgoPD09MWjQIPz66684ceIEhgwZAgAwNzeHSCRCUlISJk+eDKlUCoVCgYCAACxduhT6+vowNDREeHg4tLS0IBKJWqwnLCwMDg4OCA4Oxty5cyGTyZCVlYXk5GRs3boVmZmZCA8Ph7+/P2xtbSEWi/HDDz/gs88+Q1hYGID6K4QbNmzAkiVLIJFI4O/vDx0dHXz99ddYsWIFIiMjMWzYMI39ZmdnN6pl6NChQlBoUF5ejjVr1sDb2xvGxsYoLi7Gtm3bUFhYiKlTpwKoDyKvvPIKzM3NERUVJUx9DNRf/WqOl5cXAgMDERsbC3d3dxQVFSE0NBRjxoxp8vkSj2+3Zs0aDBgwAEOHDkVGRgY2bdqE2bNnC21KSkpQUFCA27dva4zXyMhIqCkuLg5DhgyBgYEB0tLSsHDhQrz33nvC1wjaMi5fX1989NFHmDNnDsLCwvDjjz/ik08+webNm5utH6i/4nvz5k3hfV5eHjIzM6Gvr69xxZcxxhjrCpyX6nFe4rzUrA6ZB7Cb4umNGWMdpbtNcdygYYpjpVJJUqmU3N3dNaY4Dg4OpoEDB1LPnj3JwMCA/P39qbi4WFgfERFBRkZGJBKJWpzieMyYMbRs2TJhO3Nzc9q8eXOjes6dO0eurq4kl8tJJpPR8OHDac2aNUREdP/+fVqwYAENGzaM5HI5KRQKsrOzo6ioKKqrq9Po59ChQzRhwgSSyWTCFMwJCQkabZqaprnhdevWrUa1VVZW0ptvvkkmJiYkFovJ2NiYvL296dy5c0KbuLi4ZvtsTUxMDNna2pJUKiVjY2Py8/OjX375pcVtSktLaeHChTRgwACSSCRkaWlJH3zwgcY0w83VFB4eLrQJCwujfv36kY6ODllbW1N0dDSp1eqnHtfly5dp/Pjx1LNnTzI1NaWPP/641XGfOHGiyX4bfp7aqyOmOP4j4WPCGOsInJc4L3Fe+uPlJRFRB8wN3k2VlpZCqVRCpVIJ30NljLH2ePToEfLy8mBhYQGJRNLV5fyulJeXw9TUFNHR0ZgzZ06n77+kpAQTJ05Er169cPToUejq/j6+QsCeTUu/s5wPGuNjwhjrCJyX2o/zEusKHZGXePY9xhhjz5WMjAwkJCQgNzcXly5dEqbbbbjFvbPp6+vj+PHjmDhxItLS0rqkBsYYY4yxx3FeYt0FP1OKMcbYcycqKgrZ2dkQi8UYNWoUUlJShIdCdoU+ffpg1apVXbZ/xhhjjLEncV5i3QGflGKMMfZcGTFiBC5evNjVZTDGGGOMPbc4L7Hugr++xxhjjDHGGGOMMcY6HZ+UYowxxhhjjDHGGGOdjk9KMcYYY4wxxhhjjLFOxyelGGOMMcYYY4wxxlin45NSjDHGGGOMMcYYY6zT8UkpxhhjjDHGGGOMMdbp+KQUY4wxxhhjjDHGGOt0fFKKMcZYi2bNmgWRSASRSASxWAwrKytERESgtrb2mfo9efIkRCIRHj582DGFtkFeXh58fX1hYmICiUSC/v37w8fHBzdu3NBol5SUBGdnZygUCujq6uKll17C7t27Ndrk5+dDJBIhMzOzzftfvXo1Bg8eDJlMht69e2PSpElIT0/X6HPOnDmwsLCAVCrFwIEDER4ejurq6lb7jo+Ph729PXR1dWFsbIzZs2fjwYMHLW7z22+/ITQ0FObm5pBKpXB0dMT58+c12pSVlSE4OBj9+/eHVCqFra0ttm/frtFm3rx5GDhwIKRSKQwMDJo8pgUFBXjttdegq6sLQ0NDLF26tNmfodTUVGhra+PFF19sddwHDx6Em5sb+vTp89SfB2OMMdZROC9xXuK81D58UooxxlirPDw8UFRUhJ9++gmLFy/G6tWrsXHjxq4uS9CWEFJTUwNXV1eoVCocPHgQ2dnZ2LdvH+zs7DSC3pYtW+Dj4wMnJyekp6fjypUrmDFjBoKCgrBkyZJnqnPQoEHYunUrrl69itOnT+OFF16Am5sb7t+/DwC4ceMG1Go1duzYgWvXrmHz5s3Yvn07VqxY0WK/qampmDlzJubMmYNr165h//79OHfuHAIDA1vcbu7cuUhOTsbf//53XL16FW5ubpg0aRIKCwuFNosWLcI333yDf/zjH7h+/TpCQ0MRHByMxMREoc2oUaMQFxeH69ev49ixYyAiuLm5oa6uDgBQV1eH1157DdXV1Thz5gz27NmD3bt3Y9WqVY1qevjwIWbOnImJEye26ZiWl5dj/PjxWL9+fZvaM8YYY/8tnJc4L3FeagdizVKpVASAVCpVV5fCGPudq6yspKysLKqsrOzqUp5aQEAA+fj4aCxzdXUlBwcHKikpIX9/f9LT0yOpVEoeHh6Uk5MjtMvPz6fXX3+d9PT0SFdXl2xtbenw4cOUl5dHADReAQEBRERUWlpKvr6+pKurS0ZGRrRp0yZydnamhQsXCv2am5tTREQE+fv7k0KhELZNSUmh8ePHk0Qiof79+1NISAiVlZUREVFGRgYBoPz8/GbHWlBQQDo6OrRo0aJG62JiYggAnT17lohIGENGRsbTH9R/a/g7c/z48WbbbNiwgSwsLFrsZ+PGjWRpadmoXlNT02a3qaiooB49elBSUpLG8pEjR9IHH3wgvB86dChFRES02OZJly9fJgB08+ZNIiI6cuQIaWlp0Z07d4Q2sbGx1KtXL6qqqtLYdvr06fThhx9SeHg42dvbN7uPJ3XE5/G4ln5nOR80xseEMdYROC9xXmoK56XunZf4TinGGOsiRAR1RUWnv4jomWuXSqWorq7GrFmzcOHCBSQmJiItLQ1EhMmTJ6OmpgYAMH/+fFRVVeHUqVO4evUq1q9fD7lcDjMzM3z55ZcAgOzsbBQVFeGTTz4BUH+lKTU1FYmJiUhOTkZKSgouXbrUqIaoqCjY29sjIyMDK1euRG5uLjw8PDBlyhRcuXIF+/btw+nTpxEcHAwAMDAwgJaWFg4cOCBckXrSgQMHUFNT0+QVvnnz5kEulyMhIeGZjx9Qf7Vy586dUCqVsLe3b7adSqWCvr5+i32NGzcOt27dwpEjR0BEuHv3Lg4cOIDJkyc3u01tbS3q6uogkUg0lkulUpw+fVp47+joiMTERBQWFoKIcOLECeTk5MDNza3JfsvLyxEXFwcLCwuYmZkBANLS0mBnZ4d+/foJ7dzd3VFaWopr164Jy+Li4vDzzz8jPDy8xfEyxhj74+iqvNQRmYnz0rPjvNT985J2VxfAGGN/VFRZieyRozp9vzaXLkKkq9uubYkI3333HY4dOwZPT08cOnQIqampcHR0BFD/PX0zMzMcOnQIU6dORUFBAaZMmQI7OzsAgKWlpdBXQ3AwNDSEnp4egPrv7O/Zswd79+4VbkeOi4uDiYlJo1peffVVLF68WHg/d+5c+Pn5ITQ0FABgbW2NmJgYODs7IzY2FqampoiJicH777+Pjz76CKNHj4aLiwv8/PyEunJycqBUKmFsbNxof2KxGJaWlsjJyWnXsWuQlJSEGTNmoKKiAsbGxkhOTkbfvn2bbHvz5k1s2bIFUVFRLfbp5OSE+Ph4TJ8+HY8ePUJtbS28vLywbdu2ZrdRKBQYN24c/vrXv2LIkCHo168fEhISkJaWBisrK6Hdli1b8M4776B///7Q1taGlpYWPv30U7z88ssa/f3tb3/D+++/j/LyctjY2CA5ORlisRgAcOfOHY2ABUB4f+fOHQDATz/9hGXLliElJQX/v717D9OqrPfH/5kRBgYYBpHDAAKBooKiGcZBMyPQAd1IRR75IhYe6Ace8rARKykv3JRCFmke9uWhdmh+dSe5ySw8kxIoQR5QVIKNcvJADAoCA3P//uDLk48DAyqsgeH1uq7nilnrXmvd91ozPp/eaz3PXa+e8gSALWqrXor49DWTekm9pF7aeZ6UAmCHpk2bFk2aNImGDRvGwIED44wzzohzzz036tWrF7169cq1O+CAA+LQQw+NV155JSIiLr744hg/fnwcd9xxMW7cuHjhhRdqPM4//vGPqKysjJ49e+aWlZaWxqGHHlqt7THHHJP389///ve4++67o0mTJrlXeXl5VFVVxaJFiyJiy53IFStWxJQpU6JPnz5x//33x+GHHx7Tp0/f6XOxtXCoyZQpU/L6MWPGjNy6vn37xrx58+LZZ5+NAQMGxOmnnx5vv/12tX0sXbo0BgwYEKeddlredx18dL8jR46MiIj58+fHJZdcEtdcc03MmTMnHnnkkVi8eHFu/YwZM/K2mzJlSkRE/Nd//VeklKJdu3bRoEGDmDx5cpx11llRWPiv8uAXv/hF/PWvf42HHnoo5syZE5MmTYpRo0bFo48+mtffoUOHxty5c+Opp56KQw45JE4//fRYv379Tp3TzZs3x9lnnx0/+tGP4pBDDvnE5xQA9gTqpX9RL6mXdlbdiNYA9kIFxcVx6N/m1MpxP6m+ffvGLbfcEkVFRdG2bduoV69e3hc3bs95550X5eXl8Yc//CH+/Oc/x4QJE2LSpElx0UUXfZqu52ncuHHezx988EFceOGFcfHFF1dr26FDh9y/S0pKYtCgQTFo0KAYP358lJeXx/jx4+PEE0+MLl26REVFRSxbtqza3caNGzfGwoULo7y8fId9O/XUU/OKz3bt2uX1++CDD46DDz44evfuHV26dIk77rgjxo4dm2uzbNmy6Nu3bxx77LFx++235+37o7OlNG3aNCIiJkyYEMcdd1xceeWVERFx5JFHRuPGjeP444+P8ePHxzHHHJO33da7bgcddFA89dRTsXbt2lizZk20adMmzjjjjNyd0A8//DCuvvrqePDBB+OUU07J7XvevHkxceLE6N+/f26fpaWlUVpaGl26dInevXvH/vvvHw8++GCcddZZUVZWFrNnz84bx8qVKyMioqysLN5///14/vnnY+7cubmPD1RVVUVKKerVqxd//vOfazynANRdtVUvbT32J6FeUi+plz45oRRALSkoKPjUH6PL2tbC4KO6du0amzZtilmzZuUeR3/vvfdiwYIF0a1bt1y79u3bx8iRI2PkyJExduzY+M///M+46KKLcnfQPvp9BZ07d4769evHc889lyuMKioq4rXXXqv2+PPHfeELX4j58+dX62dNCgoK4rDDDotnn302IiK++c1vxpgxY2LSpEkxadKkvLa33nprrFu3Ls4555wd7rekpCRKSkp2qg9VVVWxYcOG3M9Lly6Nvn375mZo+ehduIjY5vjWrVtX7RHu/fbbLyK2fISguLi4xvPSuHHjaNy4cfzzn/+MP/3pT3H99ddHxJYZeCorK6v1Yb/99ouqqqrt7i+lFCml3Lj69OkT1113Xbz99tvRqlWriIiYPn16NG3aNLp16xb169ePF198MW8fv/zlL+Pxxx+PBx54IDp16hSNGzfe6XMKQN2hXlIvRaiX6nK9JJQC4FPp0qVLDB48OM4///y47bbboqSkJK666qpo165dDB48OCIiLr300hg4cGAccsgh8c9//jOeeOKJ6Nq1a0REdOzYMQoKCmLatGlx8sknR3FxcZSUlMTw4cPjyiuvjObNm0erVq1i3LhxUVhYGAUFBTX2Z8yYMdG7d+8YPXp0nHfeedG4ceOYP39+TJ8+PW666aaYN29ejBs3LoYNGxbdunWLoqKieOqpp+LOO++MMWPGRMSWO4TXX399XHHFFdGwYcMYNmxY1K9fP37/+9/H1VdfHePHj48jjjgi77gLFiyo1pfDDz886tevn7ds7dq1cd1118Wpp54abdq0iXfffTduvvnmWLp0aZx22mkRsaXA+spXvhIdO3aMiRMn5qY+jthyh2x7Bg0aFOeff37ccsstUV5eHsuXL49LL700evbsuc3vl9hq63TEhx56aLzxxhtx5ZVXxmGHHRbf+ta3ImLLncUTTjghrrzyyiguLo6OHTvGU089Fb/+9a/jpz/9aURs+QjBfffdFyeddFK0bNky3nrrrfjxj38cxcXFuS8OPemkk6Jbt24xbNiwuP7662PFihXx/e9/P0aNGhUNGjSIiKh2Xlu1ahUNGzastvzjVq1aFUuWLIlly5ZFxL+uR1lZWY3nDACyoF7aQr2kXtquzzoFYF1memNgV6lrUxxvtXWK49LS0lRcXJzKy8vzpjgePXp0Ouigg1KDBg1Sy5Yt07Bhw9K7776bW3/ttdemsrKyVFBQUOMUxz179kxXXXVVbruOHTumG2+8sVp/Zs+enU488cTUpEmT1Lhx43TkkUem6667LqWU0jvvvJMuvvjidMQRR6QmTZqkkpKS1L179zRx4sS0efPmvP1MnTo1HX/88alx48a5KZjvvffevDbbmqZ56+vNN9+s1rcPP/wwff3rX09t27ZNRUVFqU2bNunUU09Ns2fPzrW56667trvPHZk8eXLq1q1bKi4uTm3atElDhw5Nb731Vo3b3Hfffalz586pqKgolZWVpVGjRqXVq1fntVm+fHk699xzU9u2bVPDhg3ToYcemiZNmpSqqqpSSiktXbo0DRw4MLVq1SrVr18/HXjggenss89Or776at5+Fi9enAYOHJiKi4tTixYt0uWXX54qKyu327edneJ4e+ds3LhxO9y2JrtiiuN9iXMC7ArqJfWSemnfq5cKUtoFc4PXUWvWrInS0tKoqKjIfQ4V4NNYv359LFq0KDp16lRtSllqtnbt2mjXrl1MmjQpRowYkfnxV61aFf369YumTZvGH//4x2i0l3yEgM+mpr9Z9UF1zgmwK6iXPj31ErVhV9RLZt8DYI8yd+7cuPfee2PhwoXxt7/9LYYOHRoRkXvEPWvNmzePRx99NPr16xczZ86slT4AAHyUeom6wndKAbDHmThxYixYsCCKioqiR48eMWPGjGjRokWt9eeAAw6Ia665ptaODwDwceol6gKhFAB7lKOPPjrmzKmdqZ8BAPYG6iXqCh/fAwAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAanTuuedGQUFBFBQURFFRURx88MFx7bXXxqZNmz7Tfp988skoKCiI1atX75qO7oRFixbF2WefHW3bto2GDRvGgQceGIMHD45XX301r920adPihBNOiJKSkmjUqFF88YtfjLvvvjuvzeLFi6OgoCDmzZu308f/4Q9/GIcddlg0btw49t9//+jfv3/MmjUrb58jRoyITp06RXFxcRx00EExbty42Lhx4w73PWXKlDjqqKOiUaNG0aZNm/j2t78d7733Xo3bPP300zFo0KBo27ZtFBQUxNSpU6u1+d3vfhcnnXRSHHDAATscb0opBg4cuN193X333XHkkUdGw4YNo1WrVjFq1Ki89X/605+id+/eUVJSEi1btowhQ4bE4sWLMxknAHwW6iX1knrp0xFKAbBDAwYMiOXLl8frr78el19+efzwhz+MG264oba7lbMzRUhlZWWceOKJUVFREb/73e9iwYIFcd9990X37t3zCr1f/OIXMXjw4DjuuONi1qxZ8cILL8SZZ54ZI0eOjCuuuOIz9fOQQw6Jm266KV588cX4y1/+Ep/73OfipJNOinfeeSciIl599dWoqqqK2267LV5++eW48cYb49Zbb42rr766xv0+88wzcc4558SIESPi5Zdfjvvvvz9mz54d559/fo3brV27No466qi4+eaba2zzpS99KX7yk5/scHw/+9nPoqCgYJvrfvrTn8b3vve9uOqqq+Lll1+ORx99NMrLy3PrFy1aFIMHD46vfvWrMW/evPjTn/4U7777bnzjG9/IZJwA8Fmpl9RL6qVPIbFdFRUVKSJSRUVFbXcF2Mt9+OGHaf78+enDDz+s7a58YsOHD0+DBw/OW3biiSem3r17p1WrVqVhw4alZs2apeLi4jRgwID02muv5dotXrw4/du//Vtq1qxZatSoUerWrVv6wx/+kBYtWpQiIu81fPjwlFJKa9asSWeffXZq1KhRKisrSz/96U/TCSeckC655JLcfjt27JiuvfbaNGzYsFRSUpLbdsaMGelLX/pSatiwYTrwwAPTRRddlD744IOUUkpz585NEZEWL1683bEuWbIk1a9fP1122WXV1k2ePDlFRPrrX/+aUkq5McydO/eTn9T/Z+v7zKOPPrrdNtdff33q1KlTjfu54YYbUufOnav1t127djvdl4hIDz744HbX72i8c+fOTe3atUvLly+vtq9Vq1al4uLiGsd5//33p3r16qXNmzfnlj300EOpoKAgbdy4MaWUzTi3qulvVn1QnXMC7ArqJfXStqiX/qUu1kuelAKoJSmlqNywOfPXlveZz6a4uDg2btwY5557bjz//PPx0EMPxcyZMyOlFCeffHJUVlZGRMSoUaNiw4YN8fTTT8eLL74YP/nJT6JJkybRvn37+O///u+IiFiwYEEsX748fv7zn0dExGWXXRbPPPNMPPTQQzF9+vSYMWNG/O1vf6vWh4kTJ8ZRRx0Vc+fOjR/84AexcOHCGDBgQAwZMiReeOGFuO++++Ivf/lLjB49OiIiWrZsGYWFhfHAAw/E5s2btzmuBx54ICorK7d5h+/CCy+MJk2axL333vuZz1/ElruVt99+e5SWlsZRRx213XYVFRXRvHnzGvfVp0+fePPNN+Phhx+OlFKsXLkyHnjggTj55JN3SV93ZN26dXH22WfHzTffHGVlZdXWT58+PaqqqmLp0qXRtWvXOPDAA+P000+PN998M9emR48eUVhYGHfddVds3rw5Kioq4r/+67+if//+Ub9+/T1inABkr7bqpV1RM6mXPjv1Ut2vl+rVdgcA9lWbNlbF7Zc8lflxL/j5CVG/wX6fatuUUjz22GPxpz/9KQYOHBhTp06NZ555Jo499tiI2PL59fbt28fUqVPjtNNOiyVLlsSQIUOie/fuERHRuXPn3L62Fg6tWrWKZs2aRUTE+++/H7/61a/innvuiX79+kVExF133RVt27at1pevfvWrcfnll+d+Pu+882Lo0KFx6aWXRkREly5dYvLkyXHCCSfELbfcEu3atYvJkyfHv//7v8ePfvSjOOaYY6Jv374xdOjQXL9ee+21KC0tjTZt2lQ7XlFRUXTu3Dlee+21T3Xutpo2bVqceeaZsW7dumjTpk1Mnz49WrRosc22b7zxRvziF7+IiRMn1rjP4447LqZMmRJnnHFGrF+/PjZt2hSDBg3K7PHr7373u3HsscfG4MGDt7n+H//4R1RVVcV//Md/xM9//vMoLS2N73//+3HiiSfGCy+8EEVFRdGpU6f485//HKeffnpceOGFsXnz5ujTp088/PDDe8w4AchebdVLEZ++ZlIvqZe2Rb20bZ6UAmCHpk2bFk2aNImGDRvGwIED44wzzohzzz036tWrF7169cq1O+CAA+LQQw+NV155JSIiLr744hg/fnwcd9xxMW7cuHjhhRdqPM4//vGPqKysjJ49e+aWlZaWxqGHHlqt7THHHJP389///ve4++67o0mTJrlXeXl5VFVVxaJFiyJiy53IFStWxJQpU6JPnz5x//33x+GHHx7Tp0/f6XNRVFS0wzZTpkzJ68eMGTNy6/r27Rvz5s2LZ599NgYMGBCnn356vP3229X2sXTp0hgwYECcdtpped8B8NH9jhw5MiIi5s+fH5dccklcc801MWfOnHjkkUdi8eLFufUzZszI227KlCk7Pd4deeihh+Lxxx+Pn/3sZ9ttU1VVFZWVlTF58uQoLy+P3r17x7333huvv/56PPHEExERsWLFijj//PNj+PDh8dxzz8VTTz0VRUVF8c1vfjN3p7o2xwkAO6Je+hf1Uj710vZ5UgqgltQrKowLfn5CrRz3k+rbt2/ccsstUVRUFG3bto169erFQw89tMPtzjvvvCgvL48//OEP8ec//zkmTJgQkyZNiosuuujTdD1P48aN837+4IMP4sILL4yLL764WtsOHTrk/l1SUhKDBg2KQYMGxfjx46O8vDzGjx8fJ554YnTp0iUqKipi2bJl1e42bty4MRYuXJj3ZZPbc+qpp+YVn+3atcvr98EHHxwHH3xw9O7dO7p06RJ33HFHjB07Ntdm2bJl0bdv3zj22GPj9ttvz9v3R2dzadq0aURETJgwIY477ri48sorIyLiyCOPjMaNG8fxxx8f48ePj2OOOSZvu9atW+9wDDvr8ccfj4ULF+bu3m41ZMiQOP744+PJJ5/M3Unt1q1bbn3Lli2jRYsWsWTJkoiIuPnmm6O0tDSuv/76XJvf/OY30b59+5g1a1b07t27VscJQO2orXpp67E/CfWSeml71EvbJ5QCqCUFBQWf+mN0WdtaGHxU165dY9OmTTFr1qzc4+jvvfdeLFiwIO/NtH379jFy5MgYOXJkjB07Nv7zP/8zLrrootwdtI9+X0Hnzp2jfv368dxzz+UKo4qKinjttdfiy1/+co19/MIXvhDz58+v1s+aFBQUxGGHHRbPPvtsRER885vfjDFjxsSkSZNi0qRJeW1vvfXWWLduXZxzzjk73G9JSUmUlJTsVB+qqqpiw4YNuZ+XLl0affv2jR49esRdd90VhYX5BfG2xrdu3bqoVy//LX2//bb8bqWUori4+BOdl0/iqquuivPOOy9vWffu3ePGG2+MQYMGRcSWx8gjtnwfxoEHHhgREatWrYp33303OnbsmBvDx8e6dQxVVVW5NrU1TgBqh3pJvRShXqrL9ZJQCoBPpUuXLjF48OA4//zz47bbbouSkpK46qqrol27drnPyl966aUxcODAOOSQQ+Kf//xnPPHEE9G1a9eIiOjYsWMUFBTEtGnT4uSTT47i4uIoKSmJ4cOHx5VXXhnNmzePVq1axbhx46KwsHC7U+duNWbMmOjdu3eMHj06zjvvvGjcuHHMnz8/pk+fHjfddFPMmzcvxo0bF8OGDYtu3bpFUVFRPPXUU3HnnXfGmDFjImLLHcLrr78+rrjiimjYsGEMGzYs6tevH7///e/j6quvjvHjx8cRRxyRd9wFCxZU68vhhx+e+7LJrdauXRvXXXddnHrqqdGmTZt499134+abb46lS5fGaaedFhFbCqyvfOUr0bFjx5g4cWJu6uOI2OYXYm41aNCgOP/88+OWW26J8vLyWL58eVx66aXRs2fPbX6/xFYffPBBvPHGG7mfFy1aFPPmzYvmzZvnitxVq1bFkiVLYtmyZXnjLSsry3t9XIcOHaJTp04RsWVq58GDB8cll1wSt99+ezRt2jTGjh0bhx12WPTt2zciIk455ZS48cYb49prr42zzjor3n///bj66qujY8eOcfTRR+/2cQLA7qBe2kK9pF7arp2bEHDfZHpjYFepa1Mcb7V1iuPS0tJUXFycysvL86Y4Hj16dDrooINSgwYNUsuWLdOwYcPSu+++m1t/7bXXprKyslRQUFDjFMc9e/ZMV111VW67jh07phtvvLFaf2bPnp1OPPHE1KRJk9S4ceN05JFHpuuuuy6llNI777yTLr744nTEEUekJk2apJKSktS9e/c0ceLEvGl1U0pp6tSp6fjjj0+NGzfOTcF877335rXZ1jTNW19vvvlmtb59+OGH6etf/3pq27ZtKioqSm3atEmnnnpqmj17dq7NXXfdtd197sjkyZNTt27dUnFxcWrTpk0aOnRoeuutt2rc5oknntjmsbZei5r6NG7cuO3uN7YxjXBFRUX69re/nZo1a5aaN2+evv71r6clS5bktbn33nvT0UcfnRo3bpxatmyZTj311PTKK69kMs6P2xVTHO9LnBNgV1AvqZfUS/tevVSQ0i6YG7yOWrNmTZSWlkZFRUXuc6gAn8b69etj0aJF0alTp2jYsGFtd2evsnbt2mjXrl1MmjQpRowYkfnxV61aFf369YumTZvGH//4x2jUqFHmfSB7Nf3Nqg+qc06AXUG99Ompl6gNu6JeMvseAHuUuXPnxr333hsLFy6Mv/3tbzF06NCIiO1On7u7NW/ePB599NHo169fzJw5s1b6AADwUeol6grfKQXAHmfixImxYMGCKCoqih49esSMGTOiRYsWtdafAw44IK655ppaOz4AwMepl6gLhFIA7FGOPvromDNnTm13AwBgj6Veoq7w8T0AAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAqBG5557bhQUFERBQUEUFRXFwQcfHNdee21s2rTpM+33ySefjIKCgli9evWu6ehOWLRoUZx99tnRtm3baNiwYRx44IExePDgePXVV/PaTZs2LU444YQoKSmJRo0axRe/+MW4++6789osXrw4CgoKYt68eTt9/B/+8Idx2GGHRePGjWP//feP/v37x6xZs/L2OWLEiOjUqVMUFxfHQQcdFOPGjYuNGzfucN9TpkyJo446Kho1ahRt2rSJb3/72/Hee+/VuM3TTz8dgwYNirZt20ZBQUFMnTr1E/c5IuK6666LY489Nho1ahTNmjXb5rGWLFkSp5xySjRq1ChatWoVV155Zd7v0Ed/zz76Ovzww3NtJkyYEF/84hejpKQkWrVqFV/72tdiwYIFOzw3O9M/APgs1EvqJfXSpyOUAmCHBgwYEMuXL4/XX389Lr/88vjhD38YN9xwQ213K2dnipDKyso48cQTo6KiIn73u9/FggUL4r777ovu3bvnFXq/+MUvYvDgwXHcccfFrFmz4oUXXogzzzwzRo4cGVdcccVn6uchhxwSN910U7z44ovxl7/8JT73uc/FSSedFO+8805ERLz66qtRVVUVt912W7z88stx4403xq233hpXX311jft95pln4pxzzokRI0bEyy+/HPfff3/Mnj07zj///Bq3W7t2bRx11FFx8803f+o+R2w5/6eddlp85zvf2eY+Nm/eHKecckps3Lgxnn322fjVr34Vd999d1xzzTW5Nj//+c9j+fLludebb74ZzZs3j9NOOy3X5qmnnopRo0bFX//615g+fXpUVlbGSSedFGvXrq1xnDvqHwDsCuol9ZJ66VNIbFdFRUWKiFRRUVHbXQH2ch9++GGaP39++vDDD2u7K5/Y8OHD0+DBg/OWnXjiial3795p1apVadiwYalZs2apuLg4DRgwIL322mu5dosXL07/9m//lpo1a5YaNWqUunXrlv7whz+kRYsWpYjIew0fPjyllNKaNWvS2WefnRo1apTKysrST3/603TCCSekSy65JLffjh07pmuvvTYNGzYslZSU5LadMWNG+tKXvpQaNmyYDjzwwHTRRRelDz74IKWU0ty5c1NEpMWLF293rEuWLEn169dPl112WbV1kydPThGR/vrXv6aUUm4Mc+fO/eQn9f/Z+j7z6KOPbrfN9ddfnzp16lTjfm644YbUuXPnav1t167dTvclItKDDz64w3Y19fmuu+5KpaWl1ZY//PDDqbCwMK1YsSK37JZbbklNmzZNGzZs2OZxHnzwwVRQUFDj9Xr77bdTRKSnnnpqh/2uqX/bUtPfrPqgOucE2BXUS+qlbVEv1e16yZNSALUkpRSV69dn/kopfea+FxcXx8aNG+Pcc8+N559/Ph566KGYOXNmpJTi5JNPjsrKyoiIGDVqVGzYsCGefvrpePHFF+MnP/lJNGnSJNq3bx///d//HRERCxYsiOXLl8fPf/7ziIi47LLL4plnnomHHnoopk+fHjNmzIi//e1v1fowceLEOOqoo2Lu3Lnxgx/8IBYuXBgDBgyIIUOGxAsvvBD33Xdf/OUvf4nRo0dHRETLli2jsLAwHnjggdi8efM2x/XAAw9EZWXlNu/wXXjhhdGkSZO49957P/P5i9hyN+r222+P0tLSOOqoo7bbrqKiIpo3b17jvvr06RNvvvlmPPzww5FSipUrV8YDDzwQJ5988i7p6yft88fNnDkzunfvHq1bt84tKy8vjzVr1sTLL7+8zW3uuOOO6N+/f3Ts2HG7+62oqIiI2OH5AWDvVVv10q6omdRLn516qe7XS/VquwMA+6pNGzbE5OHfzPy4F//qgajfsOGn2jalFI899lj86U9/ioEDB8bUqVPjmWeeiWOPPTYitnxOv3379jF16tQ47bTTYsmSJTFkyJDo3r17RER07tw5t6+tb4ytWrXKfW79/fffj1/96ldxzz33RL9+/SIi4q677oq2bdtW68tXv/rVuPzyy3M/n3feeTF06NC49NJLIyKiS5cuMXny5DjhhBPilltuiXbt2sXkyZPj3//93+NHP/pRHHPMMdG3b98YOnRorl+vvfZalJaWRps2baodr6ioKDp37hyvvfbapzp3W02bNi3OPPPMWLduXbRp0yamT58eLVq02GbbN954I37xi1/ExIkTa9zncccdF1OmTIkzzjgj1q9fH5s2bYpBgwbV+Jj57urztqxYsSKvwIqI3M8rVqyo1n7ZsmXxxz/+Me65557t7rOqqiouvfTSOO644+KII47Y6b4AsHeprXop4tPXTOol9ZJ6aed5UgqAHZo2bVo0adIkGjZsGAMHDowzzjgjzj333KhXr1706tUr1+6AAw6IQw89NF555ZWIiLj44otj/Pjxcdxxx8W4cePihRdeqPE4//jHP6KysjJ69uyZW1ZaWhqHHnpotbbHHHNM3s9///vf4+67744mTZrkXuXl5VFVVRWLFi2KiC13IlesWBFTpkyJPn36xP333x+HH354TJ8+fafPRVFR0Q7bTJkyJa8fM2bMyK3r27dvzJs3L5599tkYMGBAnH766fH2229X28fSpUtjwIABcdppp+V918FH9zty5MiIiJg/f35ccsklcc0118ScOXPikUceicWLF+fWz5gxI2+7KVOm7PR4P0mfd5Vf/epX0axZs/ja17623TajRo2Kl156KX7729/mlo0cOTJvnACQJfXSv6iX1Es7y5NSALWkXoMGcfGvHqiV435Sffv2jVtuuSWKioqibdu2Ua9evXjooYd2uN15550X5eXl8Yc//CH+/Oc/x4QJE2LSpElx0UUXfZqu52ncuHHezx988EFceOGFcfHFF1dr26FDh9y/S0pKYtCgQTFo0KAYP358lJeXx/jx4+PEE0+MLl26REVFRSxbtqza3caNGzfGwoULo7y8fId9O/XUU/OKz3bt2uX1++CDD46DDz44evfuHV26dIk77rgjxo4dm2uzbNmy6Nu3bxx77LFx++235+37o7PXNG3aNCK2zLJy3HHHxZVXXhkREUceeWQ0btw4jj/++Bg/fnwcc8wxedt9/C7cjuxMn2tSVlYWs2fPzlu2cuXK3LqPSinFnXfeGcOGDdtuQTt69OiYNm1aPP3003HggQfmll977bWf+ctVAdiz1Fa9tPXYn4R6Sb2kXvrkhFIAtaSgoOBTf4wua1vfZD+qa9eusWnTppg1a1bucfT33nsvFixYEN26dcu1a9++fYwcOTJGjhwZY8eOjf/8z/+Miy66KPcG+tHvK+jcuXPUr18/nnvuuVxhVFFREa+99lp8+ctfrrGPX/jCF2L+/PnV+lmTgoKCOOyww+LZZ5+NiIhvfvObMWbMmJg0aVJMmjQpr+2tt94a69ati3POOWeH+y0pKYmSkpKd6kNVVVVs2LAh9/PSpUujb9++0aNHj7jrrruisDD/oeZtjW/dunVRr17+W/p+++0XEVuKluLi4k90Xj5pn3ekT58+cd1118Xbb78drVq1ioiI6dOnR9OmTfN+VyK2zBjzxhtvxIgRI6rtJ6UUF110UTz44IPx5JNPRqdOnfLWt2rVKrd/AOoG9ZJ6KUK9VJfrJaEUAJ9Kly5dYvDgwXH++efHbbfdFiUlJXHVVVdFu3btYvDgwRERcemll8bAgQPjkEMOiX/+85/xxBNPRNeuXSMiomPHjlFQUBDTpk2Lk08+OYqLi6OkpCSGDx8eV155ZTRv3jxatWoV48aNi8LCwigoKKixP2PGjInevXvH6NGj47zzzovGjRvH/PnzY/r06XHTTTfFvHnzYty4cTFs2LDo1q1bFBUVxVNPPRV33nlnjBkzJiK23CG8/vrr44orroiGDRvGsGHDon79+vH73/8+rr766hg/fny1z+MvWLCgWl8OP/zwqF+/ft6ytWvXxnXXXRennnpqtGnTJt599924+eabY+nSpblpfJcuXRpf+cpXomPHjjFx4sS8aYQ/fofsowYNGhTnn39+3HLLLVFeXh7Lly+PSy+9NHr27LnN75fY6oMPPog33ngj9/OiRYti3rx50bx58+jQocNO9TkiYsmSJbFq1apYsmRJbN68OXeX8eCDD44mTZrESSedFN26dYthw4bF9ddfHytWrIjvf//7MWrUqGjwsbvQd9xxR/Tq1Wub33swatSouOeee+L3v/99lJSU5L5fobS0NIqLi7c7zh31DwB2F/XSFuol9dJ27dQ8f/so0xsDu0pdm+J4q61THJeWlqbi4uJUXl6eN8Xx6NGj00EHHZQaNGiQWrZsmYYNG5befffd3Pprr702lZWVpYKCghqnOO7Zs2e66qqrctt17Ngx3XjjjdX6M3v27HTiiSemJk2apMaNG6cjjzwyXXfddSmllN5555108cUXpyOOOCI1adIklZSUpO7du6eJEyemzZs35+1n6tSp6fjjj0+NGzfOTcF877335rXZ1jTNW19vvvlmtb59+OGH6etf/3pq27ZtKioqSm3atEmnnnpqmj17dq7NXXfdtd197sjkyZNTt27dUnFxcWrTpk0aOnRoeuutt2rc5oknntjmsbZei53pc0pbfke2tZ8nnngi12bx4sVp4MCBqbi4OLVo0SJdfvnlqbKyMm8/q1evTsXFxen222/fZn+3d27uuuuuGse5M/37uF0xxfG+xDkBdgX1knpJvbTv1UsF/6/TbMOaNWuitLQ0Kioqcp9DBfg01q9fH4sWLYpOnTpFw73kEfQ9xdq1a6Ndu3YxadKkbT6ivLutWrUq+vXrF02bNo0//vGP0ahRo8z7QPZq+ptVH1TnnAC7gnrp01MvURt2Rb1k9j0A9ihz586Ne++9NxYuXBh/+9vfYujQoRERuUfcs9a8efN49NFHo1+/fjFz5sxa6QMAwEepl6grfKcUAHuciRMnxoIFC6KoqCh69OgRM2bMiBYtWtRafw444IC45pprau34AAAfp16iLhBKAbBHOfroo2POnDm13Q0AgD2Weom6wsf3AAAAAMicUAoAAACAzAmlADJUVVVV210AdoK/VYDa47/BsHfYFX+rvlMKIANFRUVRWFgYy5Yti5YtW0ZRUVEUFBTUdreAj0kpxcaNG+Odd96JwsLCKCoqqu0uAewz1Euwd9iV9ZJQCiADhYWF0alTp1i+fHksW7astrsD7ECjRo2iQ4cOUVjooXKArKiXYO+yK+oloRRARoqKiqJDhw6xadOm2Lx5c213B9iO/fbbL+rVq+fuPEAtUC/B3mFX1UtCKYAMFRQURP369aN+/fq13RUAgD2Segn2HZ5JBwAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMrdHhVI333xzfO5zn4uGDRtGr169Yvbs2TW2v//+++Owww6Lhg0bRvfu3ePhhx/OW59SimuuuSbatGkTxcXF0b9//3j99dd35xAAAHYr9RIAUFfsMaHUfffdF5dddlmMGzcu/va3v8VRRx0V5eXl8fbbb2+z/bPPPhtnnXVWjBgxIubOnRtf+9rX4mtf+1q89NJLuTbXX399TJ48OW699daYNWtWNG7cOMrLy2P9+vVZDQsAYJdRLwEAdUlBSinVdiciInr16hVf/OIX46abboqIiKqqqmjfvn1cdNFFcdVVV1Vrf8YZZ8TatWtj2rRpuWW9e/eOz3/+83HrrbdGSinatm0bl19+eVxxxRUREVFRURGtW7eOu+++O84888wd9mnNmjVRWloaFRUV0bRp0100UgBgb1ab9cGeWC9FqJkAgHw7WxvUy7BP27Vx48aYM2dOjB07NressLAw+vfvHzNnztzmNjNnzozLLrssb1l5eXlMnTo1IiIWLVoUK1asiP79++fWl5aWRq9evWLmzJnbLLI2bNgQGzZsyP28Zs2azzKsHfrZmedExB6RCbKHalC/Xdx5/KxYV9Cw2rrKNSdF1YaDdnsf9u+5IQoK8pcVpIj6u/3Ie6bKqB/p/z1kemDVWzGk8sFa7hHsuw5pXVLj+oMPGhP7798ro97sfntKvRSRbc00+axvRVXatNv2z96vwX4d479OeCoqCppUW7fpgz6x+cPP7/Y+lB61MfZr+LG6PkUU7fYj75k2Rb2oiv0iIqI0VcS5G39dyz2CfVenFo2j/n7b/5Bc+/bfirLWgzLsUb49IpR69913Y/PmzdG6deu85a1bt45XX311m9usWLFim+1XrFiRW7912fbafNyECRPiRz/60acaw6exOa2JCEUW25dS11jf4N1tfs62av362PT+fru9D28WHhzVUikiIqKkcHWU1ftHbXcD9lk7ykE2bdq9N5eytqfUSxHZ1kyb04aoSnXrWrJrbd6vW7zfYHUUxupq66oqP4hNa3Z/vbQsPhepcI/4v1Z7nFZpRZQVq5egtny4NuLDGtZv3PhuZn3ZFv/l/IixY8fm3U1cs2ZNtG/ffrcdr3D/5h6UYjtSFETEh41fj6PX9Y4PC4vz1m5uUC8adiiIooLd/wbfbsO8aplU/cJ60WK/ffPjGesbtYmq/bY8uVZScEBEvRtquUew7zqqfbMa15eUdM+mI/ugTGum5sVRuLn6E8OwtV6qbLAwvriuZ7xf2Dhv7eb6+0WDNqXRoO3ur5fK4u9Rb0N+YV9YUBCt6+2/24+9J9pQ3DI219vy5FqDqIqor16C2nJYm6bRoN72n5Rq3LhLhr2pbo8IpVq0aBH77bdfrFy5Mm/5ypUro6ysbJvblJWV1dh+6/+uXLky2rRpk9fm85///Db32aBBg2jQoMGnHcYn9t1b78zsWADA3m1PqZcisq2ZvvvLOzI5DgCQvT1i9r2ioqLo0aNHPPbYY7llVVVV8dhjj0WfPn22uU2fPn3y2kdETJ8+Pde+U6dOUVZWltdmzZo1MWvWrO3uEwBgT6VeAgDqmj3iSamIiMsuuyyGDx8exxxzTPTs2TN+9rOfxdq1a+Nb3/pWREScc8450a5du5gwYUJERFxyySVxwgknxKRJk+KUU06J3/72t/H888/H7bffHhERBQUFcemll8b48eOjS5cu0alTp/jBD34Qbdu2ja997Wu1NUwAgE9NvQQA1CV7TCh1xhlnxDvvvBPXXHNNrFixIj7/+c/HI488kvvizSVLlkRh4b8e7Dr22GPjnnvuie9///tx9dVXR5cuXWLq1KlxxBFH5Nr8+7//e6xduzYuuOCCWL16dXzpS1+KRx55JBo29L0EAMDeR70EANQlBSklX7W9HWvWrInS0tKoqKiIpk33zS91BgDyqQ+qc04AgI/a2dpgj/hOKQAAAAD2LUIpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADK3R4RSq1atiqFDh0bTpk2jWbNmMWLEiPjggw9q3Gb9+vUxatSoOOCAA6JJkyYxZMiQWLlyZW793//+9zjrrLOiffv2UVxcHF27do2f//znu3soAAC7hXoJAKhr9ohQaujQofHyyy/H9OnTY9q0afH000/HBRdcUOM23/3ud+N//ud/4v7774+nnnoqli1bFt/4xjdy6+fMmROtWrWK3/zmN/Hyyy/H9773vRg7dmzcdNNNu3s4AAC7nHoJAKhrClJKqTY78Morr0S3bt3iueeei2OOOSYiIh555JE4+eST46233oq2bdtW26aioiJatmwZ99xzT3zzm9+MiIhXX301unbtGjNnzozevXtv81ijRo2KV155JR5//PGd6tuaNWuitLQ0KioqomnTpp9yhABAXVIb9cGeXC9FqJkAgHw7WxvU+pNSM2fOjGbNmuUKrIiI/v37R2FhYcyaNWub28yZMycqKyujf//+uWWHHXZYdOjQIWbOnLndY1VUVETz5s23u37Dhg2xZs2avBcAQG3bk+qlCDUTALBr1HootWLFimjVqlXesnr16kXz5s1jxYoV292mqKgomjVrlre8devW293m2Wefjfvuu6/Gx9wnTJgQpaWluVf79u0/2WAAAHaDPaleilAzAQC7xm4Lpa666qooKCio8fXqq6/ursPneemll2Lw4MExbty4OOmkk7bbbuzYsVFRUZF7vfnmm5n0DwDYN+2N9VKEmgkA2DXq7a4dX3755XHuuefW2KZz585RVlYWb7/9dt7yTZs2xapVq6KsrGyb25WVlcXGjRtj9erVeXf/Vq5cWW2b+fPnR79+/eKCCy6I73//+zX2p0GDBtGgQYMa2wAA7Cp7Y70UoWYCAHaN3RZKtWzZMlq2bLnDdn369InVq1fHnDlzokePHhER8fjjj0dVVVX06tVrm9v06NEj6tevH4899lgMGTIkIiIWLFgQS5YsiT59+uTavfzyy/HVr341hg8fHtddd90uGBUAwK6jXgIA9mW1PvteRMTAgQNj5cqVceutt0ZlZWV861vfimOOOSbuueeeiIhYunRp9OvXL379619Hz549IyLiO9/5Tjz88MNx9913R9OmTeOiiy6KiC3fhRCx5RH0r371q1FeXh433HBD7lj77bffThV/EWaSAQCqq636YE+tlyLUTABAvp2tDXbbk1KfxJQpU2L06NHRr1+/KCwsjCFDhsTkyZNz6ysrK2PBggWxbt263LIbb7wx13bDhg1RXl4ev/zlL3PrH3jggXjnnXfiN7/5TfzmN7/JLe/YsWMsXrw4k3EBAOwq6iUAoK7ZI56U2lO56wcAfJz6oDrnBAD4qJ2tDXbb7HsAAAAAsD1CKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyt0eEUqtWrYqhQ4dG06ZNo1mzZjFixIj44IMPatxm/fr1MWrUqDjggAOiSZMmMWTIkFi5cuU227733ntx4IEHRkFBQaxevXo3jAAAYPdSLwEAdc0eEUoNHTo0Xn755Zg+fXpMmzYtnn766bjgggtq3Oa73/1u/M///E/cf//98dRTT8WyZcviG9/4xjbbjhgxIo488sjd0XUAgEyolwCAuqYgpZRqswOvvPJKdOvWLZ577rk45phjIiLikUceiZNPPjneeuutaNu2bbVtKioqomXLlnHPPffEN7/5zYiIePXVV6Nr164xc+bM6N27d67tLbfcEvfdd19cc8010a9fv/jnP/8ZzZo126m+rVmzJkpLS6OioiKaNm362QcLAOz1aqM+2JPrpQg1EwCQb2drg1p/UmrmzJnRrFmzXIEVEdG/f/8oLCyMWbNmbXObOXPmRGVlZfTv3z+37LDDDosOHTrEzJkzc8vmz58f1157bfz617+OwsIdD3XDhg2xZs2avBcAQG3bk+qlCDUTALBr1HootWLFimjVqlXesnr16kXz5s1jxYoV292mqKio2h281q1b57bZsGFDnHXWWXHDDTdEhw4ddqovEyZMiNLS0tyrffv2n3xAAAC72J5UL0WomQCAXWO3hVJXXXVVFBQU1Ph69dVXd9fhY+zYsdG1a9f4P//n/3yibSoqKnKvN998c7f1DwBgb6yXtm6nZgIAPqt6u2vHl19+eZx77rk1tuncuXOUlZXF22+/nbd806ZNsWrVqigrK9vmdmVlZbFx48ZYvXp13t2/lStX5rZ5/PHH48UXX4wHHnggIiK2fnVWixYt4nvf+1786Ec/qrbfBg0aRIMGDXZ2iAAAn8neWC9FqJkAgF1jt4VSLVu2jJYtW+6wXZ8+fWL16tUxZ86c6NGjR0RsKZCqqqqiV69e29ymR48eUb9+/XjsscdiyJAhERGxYMGCWLJkSfTp0yciIv77v/87Pvzww9w2zz33XHz729+OGTNmxEEHHfRZhwcA8JmplwCAfdluC6V2VteuXWPAgAFx/vnnx6233hqVlZUxevToOPPMM3MzySxdujT69esXv/71r6Nnz55RWloaI0aMiMsuuyyaN28eTZs2jYsuuij69OmTm0nm44XUu+++mzveJ5lNBgCgtqmXAIC6qNZDqYiIKVOmxOjRo6Nfv35RWFgYQ4YMicmTJ+fWV1ZWxoIFC2LdunW5ZTfeeGOu7YYNG6K8vDx++ctf1kb3AQB2O/USAFDXFKStXx5ANWvWrInS0tKoqKiIpk2b1nZ3AIA9gPqgOucEAPiona0NdtvsewAAAACwPUIpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc/VquwN7spRSRESsWbOmlnsCAOwpttYFW+sE1EwAQL6drZeEUjV4//33IyKiffv2tdwTAGBP8/7770dpaWltd2OPoGYCALZlR/VSQXKbb7uqqqpi2bJlUVJSEgUFBbt8/2vWrIn27dvHm2++GU2bNt3l+9+TGbuxG/u+w9iNva6NPaUU77//frRt2zYKC30TQsTurZnq8u/Sjhi7sRv7vsPYjb2ujX1n6yVPStWgsLAwDjzwwN1+nKZNm9a5X8CdZezGvq8xdmPf19TVsXtCKl8WNVNd/V3aGcZu7PsaYzf2fU1dHfvO1Etu7wEAAACQOaEUAAAAAJkTStWiBg0axLhx46JBgwa13ZXMGbux72uM3dj3Nfvy2Nm19uXfJWM39n2NsRv7vmZfHvtWvugcAAAAgMx5UgoAAACAzAmlAAAAAMicUAoAAACAzAmlAAAAAMicUKoW3XzzzfG5z30uGjZsGL169YrZs2fXdpc+kwkTJsQXv/jFKCkpiVatWsXXvva1WLBgQV6br3zlK1FQUJD3GjlyZF6bJUuWxCmnnBKNGjWKVq1axZVXXhmbNm3Kciif2A9/+MNq4zrssMNy69evXx+jRo2KAw44IJo0aRJDhgyJlStX5u1jbxx3RMTnPve5amMvKCiIUaNGRUTduuZPP/10DBo0KNq2bRsFBQUxderUvPUppbjmmmuiTZs2UVxcHP3794/XX389r82qVati6NCh0bRp02jWrFmMGDEiPvjgg7w2L7zwQhx//PHRsGHDaN++fVx//fW7e2g7VNPYKysrY8yYMdG9e/do3LhxtG3bNs4555xYtmxZ3j629bvy4x//OK/N3jb2iIhzzz232rgGDBiQ16YuXveI2ObffkFBQdxwww25NnvrdWfPoV7au987P0q9pF6KUC+pl9RL6qWPSdSK3/72t6moqCjdeeed6eWXX07nn39+atasWVq5cmVtd+1TKy8vT3fddVd66aWX0rx589LJJ5+cOnTokD744INcmxNOOCGdf/75afny5blXRUVFbv2mTZvSEUcckfr375/mzp2bHn744dSiRYs0duzY2hjSThs3blw6/PDD88b1zjvv5NaPHDkytW/fPj322GPp+eefT717907HHntsbv3eOu6UUnr77bfzxj19+vQUEemJJ55IKdWta/7www+n733ve+l3v/tdioj04IMP5q3/8Y9/nEpLS9PUqVPT3//+93TqqaemTp06pQ8//DDXZsCAAemoo45Kf/3rX9OMGTPSwQcfnM4666zc+oqKitS6des0dOjQ9NJLL6V77703FRcXp9tuuy2rYW5TTWNfvXp16t+/f7rvvvvSq6++mmbOnJl69uyZevTokbePjh07pmuvvTbvd+Gj/33YG8eeUkrDhw9PAwYMyBvXqlWr8trUxeueUsob8/Lly9Odd96ZCgoK0sKFC3Nt9tbrzp5BvbT3v3d+lHpJvZSSekm9pF5SL+UTStWSnj17plGjRuV+3rx5c2rbtm2aMGFCLfZq13r77bdTRKSnnnoqt+yEE05Il1xyyXa3efjhh1NhYWFasWJFbtktt9ySmjZtmjZs2LA7u/uZjBs3Lh111FHbXLd69epUv379dP/99+eWvfLKKyki0syZM1NKe++4t+WSSy5JBx10UKqqqkop1d1r/vE3nKqqqlRWVpZuuOGG3LLVq1enBg0apHvvvTellNL8+fNTRKTnnnsu1+aPf/xjKigoSEuXLk0ppfTLX/4y7b///nljHzNmTDr00EN384h23rbebD9u9uzZKSLS//7v/+aWdezYMd14443b3WZvHfvw4cPT4MGDt7vNvnTdBw8enL761a/mLasL153ao17atr31vVO99C/qJfVSSuqlj9qXrrt6KZ+P79WCjRs3xpw5c6J///65ZYWFhdG/f/+YOXNmLfZs16qoqIiIiObNm+ctnzJlSrRo0SKOOOKIGDt2bKxbty63bubMmdG9e/do3bp1bll5eXmsWbMmXn755Ww6/im9/vrr0bZt2+jcuXMMHTo0lixZEhERc+bMicrKyrzrfdhhh0WHDh1y13tvHvdHbdy4MX7zm9/Et7/97SgoKMgtr6vX/KMWLVoUK1asyLvOpaWl0atXr7zr3KxZszjmmGNybfr37x+FhYUxa9asXJsvf/nLUVRUlGtTXl4eCxYsiH/+858Zjeazq6ioiIKCgmjWrFne8h//+MdxwAEHxNFHHx033HBD3scO9uaxP/nkk9GqVas49NBD4zvf+U689957uXX7ynVfuXJl/OEPf4gRI0ZUW1dXrzu7l3qpbr53qpfUS+qlf1EvqZc+qq5e9x2pV9sd2Be9++67sXnz5rw3lYiI1q1bx6uvvlpLvdq1qqqq4tJLL43jjjsujjjiiNzys88+Ozp27Bht27aNF154IcaMGRMLFiyI3/3udxERsWLFim2el63r9lS9evWKu+++Ow499NBYvnx5/OhHP4rjjz8+XnrppVixYkUUFRVVe7Np3bp1bkx767g/burUqbF69eo499xzc8vq6jX/uK193dZYPnqdW7Vqlbe+Xr160bx587w2nTp1qraPrev233//3dL/XWn9+vUxZsyYOOuss6Jp06a55RdffHF84QtfiObNm8ezzz4bY8eOjeXLl8dPf/rTiNh7xz5gwID4xje+EZ06dYqFCxfG1VdfHQMHDoyZM2fGfvvtt89c91/96ldRUlIS3/jGN/KW19Xrzu6nXqp7753qpS3US+qlCPWSekm9tJVQit1i1KhR8dJLL8Vf/vKXvOUXXHBB7t/du3ePNm3aRL9+/WLhwoVx0EEHZd3NXWbgwIG5fx955JHRq1ev6NixY/zf//t/o7i4uBZ7lq077rgjBg4cGG3bts0tq6vXnG2rrKyM008/PVJKccstt+Stu+yyy3L/PvLII6OoqCguvPDCmDBhQjRo0CDrru4yZ555Zu7f3bt3jyOPPDIOOuigePLJJ6Nfv3612LNs3XnnnTF06NBo2LBh3vK6et1hV1AvqZe2qqvXnG1TL6mX1Ev/4uN7taBFixax3377VZtNZOXKlVFWVlZLvdp1Ro8eHdOmTYsnnngiDjzwwBrb9urVKyIi3njjjYiIKCsr2+Z52bpub9GsWbM45JBD4o033oiysrLYuHFjrF69Oq/NR693XRj3//7v/8ajjz4a5513Xo3t6uo139rXmv6uy8rK4u23385bv2nTpli1alWd+F3YWmD97//+b0yfPj3vrt+29OrVKzZt2hSLFy+OiL177B/VuXPnaNGiRd7veF2+7hERM2bMiAULFuzw7z+i7l53dj310r/U1fdO9dL21dVrrl5SL22lXqpZXb3u2yKUqgVFRUXRo0ePeOyxx3LLqqqq4rHHHos+ffrUYs8+m5RSjB49Oh588MF4/PHHqz1euC3z5s2LiIg2bdpERESfPn3ixRdfzPsP0tb/WHfr1m239Ht3+OCDD2LhwoXRpk2b6NGjR9SvXz/vei9YsCCWLFmSu951Ydx33XVXtGrVKk455ZQa29XVa96pU6coKyvLu85r1qyJWbNm5V3n1atXx5w5c3JtHn/88aiqqsoVn3369Imnn346Kisrc22mT58ehx566B79WO7WAuv111+PRx99NA444IAdbjNv3rwoLCzMPaq9t4794956661477338n7H6+p13+qOO+6IHj16xFFHHbXDtnX1urPrqZf+pa6+d6qXtq+uXnP1knppK/VSzerqdd+m2v2e9X3Xb3/729SgQYN09913p/nz56cLLrggNWvWLG9Gjb3Nd77znVRaWpqefPLJvKks161bl1JK6Y033kjXXnttev7559OiRYvS73//+9S5c+f05S9/ObePrdPdnnTSSWnevHnpkUceSS1bttwjp7v9qMsvvzw9+eSTadGiRemZZ55J/fv3Ty1atEhvv/12SmnLFMcdOnRIjz/+eHr++edTnz59Up8+fXLb763j3mrz5s2pQ4cOacyYMXnL69o1f//999PcuXPT3LlzU0Skn/70p2nu3Lm5GVN+/OMfp2bNmqXf//736YUXXkiDBw/e5hTHRx99dJo1a1b6y1/+krp06ZI31e3q1atT69at07Bhw9JLL72Ufvvb36ZGjRrV+nSvNY1948aN6dRTT00HHnhgmjdvXt7f/9YZQp599tl04403pnnz5qWFCxem3/zmN6lly5bpnHPOyR1jbxz7+++/n6644oo0c+bMtGjRovToo4+mL3zhC6lLly5p/fr1uX3Uxeu+VUVFRWrUqFG65ZZbqm2/N1939gzqpb3/vfOj1EvqpZTUS+ol9dLH7c3XfVcQStWiX/ziF6lDhw6pqKgo9ezZM/31r3+t7S59JhGxzdddd92VUkppyZIl6ctf/nJq3rx5atCgQTr44IPTlVdemSoqKvL2s3jx4jRw4MBUXFycWrRokS6//PJUWVlZCyPaeWeccUZq06ZNKioqSu3atUtnnHFGeuONN3LrP/zww/T//X//X9p///1To0aN0te//vW0fPnyvH3sjePe6k9/+lOKiLRgwYK85XXtmj/xxBPb/B0fPnx4SmnLNMc/+MEPUuvWrVODBg1Sv379qp2T9957L5111lmpSZMmqWnTpulb3/pWev/99/Pa/P3vf09f+tKXUoMGDVK7du3Sj3/846yGuF01jX3RokXb/ft/4oknUkopzZkzJ/Xq1SuVlpamhg0bpq5du6b/+I//yCtEUtr7xr5u3bp00kknpZYtW6b69eunjh07pvPPP7/a/2Gui9d9q9tuuy0VFxen1atXV9t+b77u7DnUS3v3e+dHqZfUSympl9RL6qWP25uv+65QkFJKn/YpKwAAAAD4NHynFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkLn/H2jt6A4cMSf/AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "list_metrics = evaluation.get_monitoring_metrics()\n",
+ "row=0\n",
+ "col=0\n",
+ "rows = (len(list_metrics)+1)//2\n",
+ "\n",
+ "fig, axes = plt.subplots(nrows=rows, ncols=2, sharex=True, squeeze=False, figsize=(12,8*rows))\n",
+ "for metric in list_metrics:\n",
+ " df = evaluation.get_monitoring_metric(metric, component='stream')\n",
+ " #if df.sum().sum() > 0:\n",
+ " ax = df.plot(ax=axes[row,col], kind='line', title=metric, layout=(rows,2))\n",
+ " col = col + 1\n",
+ " if col > 1:\n",
+ " row = row + 1\n",
+ " col = 0\n",
+ "plt.legend(loc='best')\n",
+ "plt.tight_layout()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Plot some Aggregations\n",
+ "\n",
+ "#### Compute Time"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 78,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "PostgreSQL-32-1-16384-1 3331.054276\n",
+ "PostgreSQL-32-1-32768-1 2135.833365\n",
+ "PostgreSQL-32-1-49152-1 2860.510238\n",
+ "PostgreSQL-32-1-65536-1 4950.739413\n",
+ "PostgreSQL-32-1-81920-1 5049.445946\n",
+ "PostgreSQL-32-1-98304-1 4894.388010\n",
+ "PostgreSQL-32-1-114688-1 4695.229749\n",
+ "PostgreSQL-32-1-131072-1 4854.766119\n",
+ "PostgreSQL-32-8-16384-1 3250.851061\n",
+ "PostgreSQL-32-8-32768-1 2153.290309\n",
+ "PostgreSQL-32-8-49152-1 2969.004657\n",
+ "PostgreSQL-32-8-65536-1 4392.625075\n",
+ "PostgreSQL-32-8-81920-1 4174.933585\n",
+ "PostgreSQL-32-8-98304-1 4309.111984\n",
+ "PostgreSQL-32-8-114688-1 4379.602404\n",
+ "PostgreSQL-32-8-131072-1 4079.609299\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 78,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAANsAAADsCAYAAAD9/NNVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3E0lEQVR4nO2deVxU1f//X8MwM8wAMwOyK5sLIIgCCoiaK4lKpmW5ZIVW7pakmfkr0U9mmpppadrn20fRT7ZIfdRKRE1FS9EExQUQXFhMGVBk2NeZ9++PkasjiKwzMJzn43EfzJzzvue87+W+5rzvueecyyMiAoPBaHWM9O0Ag9FRYGJjMHQEExuDoSOY2BgMHcHExmDoCCY2BkNHMLExGDqCiY3B0BFMbAyGjmBiY+iFyMhI8Hg88Hg8hIeH69udOmlpHzuk2O7evYs5c+bAyckJIpEIdnZ2CAkJwalTpzgbHo+Hffv21dp32rRpGD9+PDIyMrh/xJO2yMhI3R2Ujhg6dGiLiUMqlSI7OxsrV67USr9+/TqmT5+OLl26QCQSwdXVFVOmTEF8fDxn8+h5lslkGDhwII4dO/ZUPyMjIyGXyxvk36RJk5CdnY2goKAmHd/jGLdIKe2MCRMmoLKyEjt37kTXrl2Rk5ODo0ePIi8vr8FlODo6Ijs7m/u+fv16xMTE4I8//uDSZDJZi/ptaPB4PNjZ2WmlxcfHY8SIEejVqxe++eYbeHh4oKioCPv378eiRYtw4sQJznbHjh0YNWoU7t27hw8//BDPPfccrly5gq5du7aIf2KxGGKxGEKhsEXKA3Uw8vPzCQDFxsbWaweA9u7dWys9LCyMxo0bVyt9+fLl1KdPnwb7MHPmTLKxsSGRSEReXl7022+/cfk///wzeXp6klAoJGdnZ1q/fr3W/s7OzrRy5Up67bXXyNTUlJycnGj//v2Um5tLzz//PJmampK3tzedO3eO22fHjh0kk8lo79691L17dxKJRDRy5EjKysqq99gWLFhAQ4YM4fIBaG3p6elERHT58mUaNWoUmZqako2NDb366qt09+7dJ56DGn8eRa1Wk5eXF/Xt25dUKlWd562Gx/8/t2/fJgC0bds2IiIaMmQILViw4Kn1Hj9+nPz9/UkikZBMJqMBAwZQRkaG1j5PKquxdLgw0szMDGZmZti3bx8qKip0Xr9arcbo0aNx6tQpfPfdd0hOTsaaNWvA5/MBAAkJCZg4cSImT56My5cvY8WKFVi2bFmtkPSLL77AwIEDceHCBYSGhuK1117D66+/jldffRXnz59Ht27d8Prrr4MemdRRWlqKVatWYdeuXTh16hSUSiUmT57cYN83bdqEoKAgzJgxA9nZ2cjOzoajoyOUSiWGDx8OX19fxMfHIyYmBjk5OZg4cWKjzk1iYiKSkpKwaNEiGBnVvjTrC//EYjEAoLKyssH1VVdXY/z48RgyZAguXbqEuLg4zJw5Ezwer1F+N5QOF0YaGxsjMjISM2bMwLZt2+Dn54chQ4Zg8uTJ6N27d6vX/8cff+Dvv/9GSkoK3NzcAEAr7NmwYQNGjBiBZcuWAQDc3NyQnJyMdevWYdq0aZzdmDFjMGvWLABAREQEtm7dCn9/f7z88ssAgCVLliAoKAg5OTlcqFZVVYXNmzcjMDAQALBz50707NkTf//9NwICAp7qu0wmg1AohEQi0Qr/Nm/eDF9fX3z66adc2vbt2+Ho6Ii0tDTuOJ/GtWvXAAAeHh4Nsq+htLQUH330Efh8PoYMGdLg/QoLC1FQUIDnnnsO3bp1AwD07NmzUXU3hg7XsgGae7Y7d+7g119/xahRoxAbGws/Pz+ddGgkJiaiS5cuT7wAU1JSMHDgQK20gQMH4tq1a1CpVFzaoz8Mtra2AABvb+9aabm5uVyasbEx/P39ue8eHh6Qy+VISUlpxhEBFy9exPHjx7mowczMjBPMjRs3GlwONXJq5ZQpU2BmZgZzc3P88ssv+M9//tOoH0xLS0tMmzYNISEhGDt2LDZt2qR1H97SdEixAYCJiQmeffZZLFu2DKdPn8a0adOwfPlyLt/c3BwFBQW19lMqlc3q+KgJd5qLQCDgPteEPXWlqdXqBpdpZGRU64Kvqqp66n7FxcUYO3YsEhMTtbZr165h8ODBDa6/5gfo6tWrDbL/4osvkJiYCIVCAYVCgbCwMC5PKpU26P+3Y8cOxMXFYcCAAfjpp5/g5uaGM2fONNjnxtBhxfY4np6eKCkp4b67u7sjISFBy0alUuHixYsNDovqonfv3vjnn3+QlpZWZ37Pnj21HkEAwKlTp+Dm5sbd1zWV6upqre7z1NRUKJVKLnSytrau9cuemJio9V0oFGq1sADg5+eHpKQkuLi4oHv37lqbqalpg/3z8fGBp6cnPv/88zp/JJRKpdZ3Ozs7dO/eHdbW1rVs3d3dcf78+Vrp58+fr/X/8/X1xdKlS3H69Gn06tUL33//fYN9bgwdTmx5eXkYPnw4vvvuO1y6dAnp6emIiorC2rVrMW7cOM5u4cKF+Pbbb/H111/j2rVrSExMxMyZM5Gfn4+33nqryfUPGTIEgwcPxoQJE3DkyBGkp6fj4MGDiImJAQAsWrQIR48excqVK5GWloadO3di8+bNeO+995p97AKBAG+//TbOnj2LhIQETJs2Df379+fu14YPH474+Hjs2rUL165dw/Lly3HlyhWtMlxcXHD27FlkZGTg3r17UKvVmDdvHu7fv48pU6bg3LlzuHHjBg4dOoTp06fXEmZ98Hg87NixA2lpaXjmmWcQHR2Nmzdv4tKlS1i1apXW/+dpzJkzB2lpaXjnnXdw6dIlpKamYsOGDfjhhx+waNEiAEB6ejqWLl2KuLg4ZGZm4vDhw7h27Vrr3bc1uz+znVFeXk4ffPAB+fn5kUwmI4lEQu7u7vTRRx9RaWmplu3u3bupb9++ZG5uTra2tjRmzBi6ePFineU2pus/Ly+Ppk+fTp06dSITExPq1asX/f7771x+Tde/QCAgJycnWrdundb+zs7O9MUXX2il4bGu8PT0dAJAFy5cIKKHXd6//PILde3alUQiEQUHB1NmZqZWOREREWRra0symYzeffddmj9/Ptf1T0SUmppK/fv3J7FYrNX1n5aWRi+88ALJ5XISi8Xk4eFB4eHhpFar6zwHdXX9P1rH66+/Tg4ODtzjjylTptD58+efeLx18ffff9Ozzz5L1tbWJJPJKDAwUGsfhUJB48ePJ3t7e66eiIiIWo8dWqrrn/fAcYaBExkZifDw8FqhmL5oa/7Ux9ChQ+Hj44ONGzc2q5wOF0Yy2g4FBQUwMzPDkiVL9O1KnezevRtmZmb4888/W6S8DvecjdE2mDBhAgYNGgSg/ofV+uT555/nnkm2hI8sjGQwdAQLIxkMHcHExmDoCCY2BkNHGGwHiVqtxp07d2Bubt5qo7gZDEAzprOoqAgODg51zlaowWDFdufOHTg6OurbDUYH4tatW+jSpcsT8w1WbObm5gA0J0AqlerZG4YhU1hYCEdHR+6aexIGK7aa0FEqlXZosalUKu6h7DPPPNPswcyMJ/O02xWDFRtDQ3l5OYYNGwZAMxWmMaPwGS0L641kMHQEExuDoSNYGMl4ImWVKmTeL0HGvRJk5JUiM68E6fdKkJlXiuLyavTqLIOfsxx+ThbwdbKApWkLLflmoDCxdXDKKlXIyCt5ICRtQSkKy+vdN+5mHuJuPlxrs6uVKXydLODnLEdfZwv0sDEH34g946yBia0DcfiKAtllhMx7pcjIK0FGXglyCutfzk9qYgxXK1O4WJnCuZMpXK0kcO5kChNjPi7+o8T5zHycz8rHjbsluHlPs/1y/h8AgJnIGD6Ocvg5yeHnbAFfRwvIJIJ66zNkDHbUf2FhIWQyGQoKCjp0139JSQnMzMwAAI7v/gwjoUktG5lYABcrU7h0ksClkylcrB787WQKiwaGhsrSSlzIUuJ8Vj4SMvNx8ZYSJZW1l0TobmOGvg9aPz8nC3SzNoNRO2/9GnqtsZbNwLlTWAn50Ong8QAf507oait7ICxTTmBySfPvteQSIYZ52GCYhw0AQKUmpCqKcD4rn2v9MvJKcT23GNdzi/FT/C0AmpbT18kCfZ0t8EwPK/TuIjfY0JO1bAbO17HXsTYmFYO6W+G7twL16su94gqu9TufmY+L/yhRXqW9ipalqRCDe1hhmIcNBvewbnDL2prkFpUjISMfMrEAA7pb1cpnLRsDABB9WbM03Rhvez17AliZifCspy2e9dQsIFulUuNqtqb1O5uehz/T7uF+SSX2Jd7BvsQ7mtbYUY5h7jYY6m6NXg6yVg851WrCtdxixGfeR0JGPuIz85F1vxQAENzTpk6xNRQmNgMmK68Ul2/lozr3JqzL5VCpOrep4VoCvhG8u8jg3UWGsAEuqFKpcT4zH8dT7yI2NRdXFUW4kKXEhSwlNhxJg5WZEIPdrDHMXdPqtURnS1mlCom3lEjIvI/4TE2LW1herWXD4wHutuboYVv/2MenwcJIA2bbiRv4dH8ibn3xEoD2N1wru6AMJ1Lv4nhqLk5dz0NxxUMRGPEAPycLDHW3xlB3G3g5SBs0lSq3sBzxmfmIz8hHQuZ9JN0pRLVaWwJiAR8+jnL0c9HcS/o6WUAmfrKwWRjJ4ELI9oq9TIzJAU6YHOCEymo14jPvc+JLyynWiCYzH+sPp8HGXIQhbtYY5mGDQT2sIDURQKUmpOUUcS1WfOZ93LpfVqseO6kJ+rpYoJ+zBfo5W8LD3hwCfssPrmItm4Fy634pnll7HKgqR+aG9tmy1cdtZRliU3MRm3oXp67fQ+kjjxn4Rjz0tDdH5r1SFFVoh4RGPMDdTqoR1oOWq7Nc3KwJxqxl6+DUtGr+LpbI1LMvrUFnuRhTA50xNdAZFdUqnEvPR2xqLo6n5uLG3RJcuV0IAJAI+fB1kqOvsyX6OVvA10kOcxP9PFhnYjNQasQW0ssOP+vZl9ZGZMzHoB5WGNTDCh8954lb90uReEsJVytTeNiZw7gVQsKmwMRmgNy6X4qL/xTAiAcE97TVtzs6x9FSAkdLib7dqEXbkDyjRTl4RdOqBbhawtpcpGdvGDWwls0Aib6sAACEettDIBBwL3l89GWJDN3DxGZg3FaWIfGWEjye5n5NKBRixYoV+naLARZGGhwHH3SMBLhYwsa89gh/hv5gLZuBceCxsZBqtZp7QX3Pnj3rXUSU0bowsRkQd5RluJClCSFH97IDAJSVlaFXr14AgOL978PUdwLQuR9gSKKrrgCKFA+2bM3f8gKg+wigSz99e8fBxGZAcA+ynS1hI30QQiouPzQ4sxU4vw0wswXcxwAezwGuzwDGbbTHUlUFFOc+IqLs2qIqygbK7te9f+ynmh+W/nMAz3EAX78dRExsBsTD6TR2DxP/2vTws9cLQNYxoDgHSNih2URSoMezgEco0P1ZwESHQ9uIgPx0IPsScPeqRjiFj4iq5C6ABo4m5IsAczvA3B6Q2mvKTo0GbscDv7wJHP4I6Pcm0G86YNr0aTLNgYnNQLijLMP5mhCyZu5abgqQeuCh0fivAZEAyPgTuHpAsxUrgCu/aDa+EHAdohGe+xjAvAUfiKuqgbxrGmFlXwQUlzSfKwrq38/IGDCzeyCkB2Kq66/YQjMX5lGKc4H4HUD8fzQCPv4JcHId4P0y0H82YOfdcsfXANhAZANh+1/p+Pj3ZPi7WCBq9gBN4i9voSRhD8xWFwGoYyCyWg3cOQ+k/AZc/R3Iu/5IiTzAMUAjPI/ngE7dGu5MdQWQm/xQWNkXgZwkoLr2iHvwhYCNJ2DXC5A51RaSpFPz7y+rK4HkfZow+s75h+nOg4DAWZpjNGr6PL+GXmtMbAbCS1tPIz4zH8vHemL6QFcg7wawuR9KKlRPFtvj3E3ViO7qAeB2gnaedU+g53OaC9Pe52ErUlEM5Fx5IKoH4rqbAqiraxUPgammNbHv82DrDVh76O5eigj455xGdMn7AXowU0DmBATMAPxe07SQjYSJrQOJTVFQjv6rjwIAziwdATuZCbBvLpC4GyVOwTB7838AGjnFpuC25p7n6u9Axl/a4pF2ARx8NOLMu44676vEFoBd70eE1Qew7NqsFqRFKbitCS/jdzzsYBFIgD5TgMDZgLVbg4tiU2w6EDVjIfs6W2iElp8JXPwRACAY+h7ee6+r5nNjhmvJOmt+7QNmAGX5wLUjmnDz+h9A4T+arQZz+8eE1RuQOda+h2pLyDoDIyKAwYuBy1HAmW1AbtIDAf4H6DYcCJwDdA9uscckTGwGQK1Fff76QhMidR0GYdcgrFsX1LwKxBZA74maraoMuBmradGse2qEZWbTvPL1iUAM+L0O+L6m6Tg6+40mjL5xTLN16g4EzAJ8pgCi5q1B0izJrlmzBjweD+Hh4VxaeXk55s2bh06dOsHMzAwTJkxATk6O1n5ZWVkIDQ2FRCKBjY0NFi9ejOpq7Rg/NjYWfn5+EIlE6N69OyIjI5vjqsGS82BNDeBBl3/BbSBxtyZzyPstX6FADLiPBga8DfQIbt9CexQeD3AdDEzeDSxIBILmAyKZ5kfl4GJggydw6EPNfV8TabLYzp07h2+++Qa9e/fWSn/33Xfx22+/ISoqCidOnMCdO3fw4osvcvkqlQqhoaGorKzE6dOnsXPnTkRGRiIiIoKzSU9PR2hoKIYNG4bExESEh4fjrbfewqFDh5rqrsFy8HI2iAA/JznsZWLg9JeAqhJwHgg4D4BarUZGRgYyMjKgVqufXiADsHABQlYBC5OBMes1rVtFIXD/ZvNCY2oCRUVF1KNHDzpy5AgNGTKEFixYQERESqWSBAIBRUVFcbYpKSkEgOLi4oiIKDo6moyMjEihUHA2W7duJalUShUVFURE9P7775OXl5dWnZMmTaKQkJAG+1hQUEAAqKCgoCmH2G54edtpcl7yO/3fyRtEhQqilTZEy6VE148REVFxcTFB04NBxcXFeva2naJSEaUdIbp9oc7shl5rTWrZ5s2bh9DQUAQHB2ulJyQkoKqqSivdw8MDTk5OiIuLAwDExcXB29sbtrYPH5iGhISgsLAQSUlJnM3jZYeEhHBl1EVFRQUKCwu1NkMnt7Ac5zI0PWljvO2BuM1AdblmiFLXofp1zpAwMtKEzA4+zSqm0R0kP/74I86fP49z587VylMoFBAKhZDL5Vrptra2UCgUnM2jQqvJr8mrz6awsBBlZWUQi8W16l69ejX+9a9/NfZw2jUxSQoQAb5OcjgISoFz/9FkDHm/bfcEdlAa1bLdunULCxYswO7du2Fi0rbmSi1duhQFBQXcduvWLX271OocuKTphQz1tgfObgWqSjRd8D1G6tkzRl00SmwJCQnIzc2Fn58fjI2NYWxsjBMnTuDLL7+EsbExbG1tUVlZCaVSqbVfTk4O7Ow0g2Pt7Oxq9U7WfH+ajVQqrbNVAwCRSASpVKq1GTK5ReX4+0EIObqHWNNlDWieG7FWrU3SKLGNGDECly9fRmJiIrf169cPU6dO5T4LBAIcPXqU2yc1NRVZWVkICtI86wkKCsLly5eRm5vL2Rw5cgRSqRSenp6czaNl1NjUlMEADl3RhJB9HOXonPpfTW+ZdU/NOEZG26S5HTWP9kYSEc2ePZucnJzo2LFjFB8fT0FBQRQUFMTlV1dXU69evWjkyJGUmJhIMTExZG1tTUuXLuVsbt68SRKJhBYvXkwpKSm0ZcsW4vP5FBMT02C/DL03ctI3ml7I7UcvEq1x1vRAXoqqZcd6I1ufhl5rLT6C5IsvvoCRkREmTJiAiooKhISE4Ouvv+by+Xw+fv/9d8yZMwdBQUEwNTVFWFgYPv74Y87G1dUVBw4cwLvvvotNmzahS5cu+PbbbxESEtLS7rZL7hZV4O90TQj5guqQZjiVZTfNfLXHMDY2xty5c7nPDP3BBiK3Q747k4mP9l2Bf2cRospnayZZjvsa8J2qb9c6JA291gxoIYqOQ81YyHCLOI3Q5E6acYuMNg2LK9oZ94orcOZmHkSoRGD2d5rEQQufOCeMiHDv3j0AgJWVVbPe1sJoHkxs7YxDSQqoCVjQ6RyMSxSAtDPg88oT7UtLS2FjoxksbEivjGqPsDCynRF9ORvGqMar1ZoJoRi4oO2ujsXQgomtHZFXXIG4G3l4gf8XpBXZgKmNZi4Wo13AxNaOOJSUAx6p8K7oN03CgLc188sY7QImtnZE9OVsPGcUBwd1NiC2BPq9oW+XGI2AdZC0E+6XVOLMzbs4aLxfkxA0FxCZ6dcpRqNgLVs74XCSAs/ib/Qwuq2Zrh8wU98uMRoJa9naCQcu3cFS432aL4GzABNZg/YzNjZGWFgY95mhPzrk2f8nvxQA0MWi7b13uS7ySyphkn4EnoJMqAWmMOo/p8H7ikQitlhSG6HDhZH7E29jxOcnsHx/kr5daTCHk7Ixj695rmYUMAOQWOrZI0ZT6HBi83KQQa1W4cTVO4hNzX36Dm2AzHMH4GN0E1VGIs0Sa42AiFBSUoKSkhIY6JjzdkOHE1t3/INjlp9hHn8/Vv6ejCpV217eTVlSgWE5kQCAUu/XADPrRu1fWloKMzMzmJmZobS0tBU8ZDSUDic25CbDsfgS5gn2A/fSsCsuU98e1cuFPw/A3ygVlTCGbMQifbvDaAYdT2xeLwA9RkKIanwq+A82/XEVecUV+vbqidgkfgkAuGo/HpA66NcZRrPoeGLj8YDQz0ECCQKNrmJ01VGsP5ymb6/qpPjaaXiVX0AV8SELXqxvdxjNpOOJDQDkTuAN+xAA8P+Md+OPc5eQdOcpb8DUA0VHPgUAHBMNh3M3Dz17w2guHVNsgOYdXPZ9IOOVYpnxf/GvX5PbVm/dnQuwz/0TKuIh23uuvr1htAAdV2x8Y2DslyCeEZ7nx0GSdRQHHiw30Baoil0HAPhVPQCDAv317A2jJei4YgMABx/w+mtajU8EO7Dh9wsoq1Tp2SkAOUkQpB2Amnj4XfYKuts0/b1gfD4fL730El566SXw+W3krZ8dlI4tNgAYuhRqmSO68O5hculufHPyhr49Ak6uBwBEqwPg7RPQrKJMTEwQFRWFqKioNrdkfEeDiU1kBqPQDQCAN/nROHniD9xWlunPn4s/AUmaoVlbqsdr1vFnGARMbADgNhLk9SL4PMK/eN/gswNX9ONHZhzwq2Y41tbqsai29kIP2+a9WpbRdmBiewBv1BqohFJ4G2XAOjkSZ2/m6daB+zeBH18BVJVIkAzC2upJD9+R3QxKSkrA4/HA4/FQUlLSAo4ymgoTWw3mtuCHrAQALDKOwtZ9x6FS6+hRQFk+8P0koOw+Cix64XXlWyAYIbQ3CyENCSa2R/F9HVVd+kPCq8Dr+V9hz7ms1q9TVQXseR24l4YKiR3G5M5DiVqIl/p2gRsLIQ0KJrZHMTKCYNyXUPEEGM5PRGJMJArKqlqvPiLgwEIg/SRUxqaYWPQubqtkGN3LDmte9G69ehl6gYntcazdgWcWAgDeU/8H/z6U0Hp1nf4KOL8LxDPC/Mr5uFjliGHu1tg02RfGfPavMTTYf7QO+IMXoVTaFda8AjgmfIbruUUtX0nK78CRCADAWnodByv7YEC3Ttj6al8Ijdm/xRBh/9W6MBZB8uJmAMBk/jH8+POelh03eScR+N8MAIQ9vBBsLX8WfZ0t8H+v94OJgI3yMFSY2J6Ey0AUeWpeWDFZsR7Hk/5pmXILbgM/TAaqShHH88HSslfRq7MM26f5w1TU8usv8fl8jBkzBmPGjGHDtfQME1s9mI/9FMUCS3Q3uoPM/Z+gsrqZSyhUFAM/TAKKsnGT54iZZfPRzVaGXW8EQiau+5VPzcXExAQHDhzAgQMH2HAtPcPEVh9iCxiP+QwA8Erlz9h75FjTy1KrNKGj4jLu82R4vfw9dOpkhe/eDISlqbCFHGa0ZTrkupGNwcTnZWSf3gX7u3+i65mPkDtwAGykTVhv8kgEkBqNSgjwZvlCkMwJu2f0h41U962NSqVCVVUrPtIwMAQCQYuE4ExsT4PHg+2UzSj/MgD+vBRE/fgFXp75YePKiN8OxGk6XBZWzsZts16ImhGIzvLWfwNNSUkJ9zLEnJwcFBUVQalUtnq9hoZcLoednV2z3tzKxNYAjCxdcNf/PTieW4WRtzcjOW0iPN16NGznG8dAB94DD8D6qpdxWjwEP70VCOdOunsDaM0Sdnl5edybSCUSCXvlbwMgIpSWliI3V7PGqL1904fQMbE1EMdRC/HPpT3oUnENl35ZBPpg/9Mv1tyroD1h4JEKv6gGYZfgJfzwZoBeRvKbmpqiuLgYdnZ26NSpk87rb8+IxZoIJDc3FzY2Nk0OKVkHSUPhG8NkwhaoiIdnKk4g7tCP9duX3AN9PxG8ikL8rXbHSt5sRL4RCC+Hhr0Qo6WpEZhE0j7eb9DWqDlvzbnXZWJrBFZugbjcRfPszeXMMpQUPWFFrqpy0A9TwFNmIkNti3fUi7Bt2gD4OVno0FttalphFjo2jZY4b0xsjcTjldVQ8KzhgLtI/n5pbQMi0P554P3zNwpIglmqxVjz2jD078pCt44OE1sjMTGV4faATwAAfne+h+LqGa18il0D3pWfUUV8zKt+FwtfGYuh7jb6cJXxGDweD/v27dNb/UxsTcAveBLOiAeDzyNU7H0bUFUDAOjSHvBOrAEALKt+Ay+/PBUhXnb6dBVGRkYYMmQIAgICWAipZ5jYmgCPx4PVyxtRSBI4V6QhPXoDkHUGqr2aZfG2VT8H3/HvYJxPZz17qulJi42Nxa5du5jY9AwTWxPp3rUbjjtpFuexS/gcZf+dBGOqwiFVP4hGfYxJ/k569rDhDB06FO+88w7ef/99WFpaws7ODitWrODyMzIywOPxkJiYyKUplUrweDzExsYCAGJjY8Hj8XDo0CH4+vpCLBZj+PDhyM3NxcGDB9GzZ09IpVK88sor9b66KjIyEnK5HPv27UOPHj1gYmKCkJAQ3Lp1S8tu69at6NatG4RCIdzd3fHf//5XK//atWsYPHgwTExM4OnpiSNHjmjlV1ZWYv78+bC3t4eJiQmcnZ2xevXqpp3ABsLE1gyGTF6E8/CAGOUQVylxWe2CjCEbMX1QN3271mh27twJU1NTnD17FmvXrsXHH39c6wJtCCtWrMDmzZtx+vRp3Lp1CxMnTsTGjRvx/fff48CBAzh8+DC++uqressoLS3FqlWrsGvXLpw6dQpKpRKTJ0/m8vfu3YsFCxZg0aJFuHLlCmbNmoXp06fj+PHjAAC1Wo0XX3wRQqEQZ8+exbZt27BkyRKtOr788kv8+uuv2LNnD1JTU7F79264uLg0+ngbBRkoBQUFBIAKCgpatZ59h49SSYQ1/RPhSl//+mer1tUUiouLycrKinx8fOjKlStUVlZWy2bIkCE0aNAgrTR/f39asmQJERGlp6cTALpw4QKXn5+fTwDo+PHjRER0/PhxAkB//PEHZ7N69WoCQDdu3ODSZs2aRSEhIU/0d8eOHQSAzpw5w6WlpKQQADp79iwREQ0YMIBmzJihtd/LL79MY8aMISKiQ4cOkbGxMd2+fZvLP3jwIAGgvXv3EhHR22+/TcOHDye1Wv1EXx6lrKyMkpOT6zx/Db3WGtWyrV69Gv7+/jA3N4eNjQ3Gjx+P1NRULZvy8nLMmzcPnTp1gpmZGSZMmICcnBwtm6ysLISGhkIikcDGxgaLFy9GdXW1lk1sbCz8/PwgEonQvXv3NvsS9tDhQ7HTfy9OjtiP2c8N1Lc7dXLv3j3k5+fXa9O7d2+t7/b29twQpcbwaDm2traQSCTo2rWrVtrTyjU2Noa//8P3G3h4eEAulyMlJQUAkJKSgoEDtc/1wIEDtfIdHR3h4PDwfXZBQUFa9tOmTUNiYiLc3d3xzjvv4PDhw4080sbTKLGdOHEC8+bNw5kzZ3DkyBFUVVVh5MiRWusRvvvuu/jtt98QFRWFEydO4M6dO3jxxRe5fJVKhdDQUFRWVuL06dPYuXMnIiMjERERwdmkp6cjNDQUw4YNQ2JiIsLDw/HWW2/h0KFDLXDILYsx3whznhuIKYO923UHhECgPZ+Ox+NBrdbM3zMy0lwm9Mhs9SeNpHi0HB6PV2+5+sTPzw/p6elYuXIlysrKMHHiRLz00kutW2mD2tAnkJubSwDoxIkTRESkVCpJIBBQVFQUZ1MTAsTFxRERUXR0NBkZGZFCoeBstm7dSlKplCoqKoiI6P333ycvLy+tuiZNmlRv+PE4ugoj2zrFxcUEgJydnesNIxcsWKCVNm7cOAoLCyMiotLSUgJABw4c4PIPHz5cZxiZn5/P2ezYsYNkMplWucuXL6c+ffo80d+aMLImZCQiunr1aoPCyNDQUCJ6GEbeuXOHy4+JidEKIx+nJj8vL6/O/JYII5s1ELmgQDNcydLSEgCQkJCAqqoqBAcHczYeHh5wcnJCXFwc+vfvj7i4OHh7e8PW1pazCQkJwZw5c5CUlARfX1/ExcVplVFjEx4e/kRfKioqUFHx8HW9hYWFzTk0xiOIxWL0798fa9asgaurK3Jzc/HRRx+1Wn0CgQBvv/02vvzySxgbG2P+/Pno378/AgI0LxlZvHgxJk6cCF9fXwQHB+O3337D//73P/zxxx8AgODgYLi5uSEsLAzr1q1DYWEhPvxQe1rUhg0bYG9vD19fXxgZGSEqKgp2dnaQy+WtdlxN7o1Uq9UIDw/HwIED0atXLwCAQqGAUCis5bCtrS0UCgVn86jQavJr8uqzKSwsRFlZ3S+9WL16NWQyGbc5Ojo29dAYdbB9+3ZUV1ejb9++CA8PxyeffNJqdUkkEixZsgSvvPIKBg4cCDMzM/z0009c/vjx47Fp0yasX78eXl5e+Oabb7Bjxw4MHToUgCbs3bt3L8rKyhAQEIC33noLq1at0qrD3Nwca9euRb9+/eDv74+MjAxER0dzIXOrUG+7Vw+zZ88mZ2dnunXrFpe2e/duEgqFtWz9/f3p/fffJyKiGTNm0MiRI7XyS0pKCABFR0cTEVGPHj3o008/1bI5cOAAAaDS0tI6/SkvL6eCggJuu3XrFgsjqWFhZFuirtCzLaC3MHL+/Pn4/fffcfLkSXTp0oVLt7OzQ2VlJZRKpVbrlpOTAzs7O87m77//1iqvprfyUZvHezBzcnIglUq5uUWPIxKJIBKJmnI4Bo2RkRH69esHW1vbdt2BYwg0qs0kIsyfPx979+7FsWPH4OrqqpXft29fCAQCHD16lEtLTU1FVlYW1/UaFBSEy5cva3X/HjlyBFKpFJ6enpzNo2XU2Dzefct4OmKxGOfOncPPP//MxKZvGtOUzpkzh2QyGcXGxlJ2dja3PRrazZ49m5ycnOjYsWMUHx9PQUFBFBQUxOVXV1dTr169aOTIkZSYmEgxMTFkbW1NS5cu5Wxu3rxJEomEFi9eTCkpKbRlyxbi8/kUExPTYF9Zb6Q29YVBjKfTEmFko8QGoM5tx44dWk7NnTuXLCwsSCKR0AsvvEDZ2dla5WRkZNDo0aNJLBaTlZUVLVq0iKqqqrRsjh8/Tj4+PiQUCqlr165adTQEJjZtmNiaR0uIjUfUkutqtx0KCwshk8lQUFAAqVSqb3f0RmlpKTw9PdG5c2f8+9//Rrdu3dhirU2gvLwc6enpcHV1rXX+GnqtsQV/DBwiQmZmpr7dYICN+mcwdAYTG4OhI5jYGAwdwcTGYOgIJjaGwXDy5EmMHTsWDg4Oel9Jqy6Y2AwcHo8HT09PdO/eXd+utDolJSXo06cPtmzZom9X6oR1/Rs4EokESUlJ3HOipkBEKKtStbBnDUMs4Dd4mNno0aMxevToVvao6TCxMZ5KWZUKnhH6mSWf/HEIJELDuExZGMlg6AjD+MlgPJHS0lL4+/vD3t4emzZtalIZYgEfyR+HtLBnDa/bUGBiM3CICMnJyVqLMjUWHo9nMKGcPmFhJIOhI9jPFcNgKC4uxvXr17nv6enpSExMhKWlJZyc9L8cPBMbw2CIj4/HsGHDuO8LFy4EAISFhbWJRX6Z2BgGw9ChQ9GWp2eyezYGQ0cwsRk4PB4Pzs7O6NxZ/++K6+iwMNLAkUgkyMjIaNZwLUbLwFo2BkNHMLExGDqCic3AKSsrg7+/P1566aU23VPXEWD3bAaOWq1GfHw8nJ2dmdj0DGvZGAwdwcTGYOgIJjYGQ0cwsTEMBpVKhWXLlsHV1RVisRjdunXDypUr28y9KusgYRgMn332GbZu3YqdO3fCy8sL8fHxmD59OmQyGd555x19u8fE1hGwsrKChYVF0wsgAqpKW86hxiCQAA1c8Of06dMYN24cQkNDAQAuLi744Ycfar18U18wsRk4pqamuHv3bvOGa1WVAp86tKxjDeX/3QGEpg0yHTBgAP79738jLS0Nbm5uuHjxIv766y9s2LChlZ1sGExsDIPhgw8+QGFhITw8PMDn86FSqbBq1SpMnTpV364BYGJjNASBRNPC6KvuBrJnzx7s3r0b33//Pby8vJCYmIjw8HA4ODggLCysFZ1sGExsBk5ZWRlGjx4NGxsbrFixommF8HgNDuX0yeLFi/HBBx9g8uTJAABvb29kZmZi9erVTGyM1ketVuPEiRMdYrhWaWkpjIy0n2bx+Xyo1Wo9eaQNExvDYBg7dixWrVoFJycneHl54cKFC9iwYQPeeOMNfbsGgImNYUB89dVXWLZsGebOnYvc3Fw4ODhg1qxZiIiI0LdrAJjYGAaEubk5Nm7ciI0bN+rblTphw7UYDB3BxMZg6Agmtg6ARCKBWCzWtxsdHnbPZuCYmpqipKSEra7VBmAtWwfD0J+1tRYtcd6Y2DoIAoEAgObBL6Px1Jy3mvPYFFgYaeCUl5djwoQJAIBt27YhNzcXgOY+rqHvqu7IEBFKS0uRm5sLuVwOPr/pL2dkYjNwVCoVoqOjAQAWFhYwNjbmBMdoOHK5HHZ2ds0qg4mtA8Hj8WBvbw8bGxtUVVXp2512g0AgaFaLVgMTWweEz+e3yMXDaBxtuoNky5YtcHFxgYmJCQIDA9vM9HYGoym0WbH99NNPWLhwIZYvX47z58+jT58+CAkJYfcbjHZLmxXbhg0bMGPGDEyfPh2enp7Ytm0bJBIJtm/frm/XGIwm0Sbv2SorK5GQkIClS5dyaUZGRggODkZcXFyd+1RUVKCiooL7XlBQAAAoLCxsXWfbOCUlJdznwsJCqFQqPXpjmNRcY0978N0mxXbv3j2oVCrY2tpqpdva2uLq1at17rN69Wr861//qpXu6OjYKj62Rxwc9LRCVgehqKgIMpnsifltUmxNYenSpVi4cCH3Xa1W4/79++jUqVO7fHhbWFgIR0dH3Lp1C1KpVN/u6Iz2eNxEhKKioqf+mLVJsVlZWYHP5yMnJ0crPScn54kPFkUiEUQikVaaXC5vLRd1hlQqbTcXXUvS3o67vhathjbZQSIUCtG3b18cPXqUS1Or1Th69CiCgoL06BmD0XTaZMsGAAsXLkRYWBj69euHgIAAbNy4ESUlJZg+fbq+XWMwmkSbFdukSZNw9+5dREREQKFQwMfHBzExMbU6TQwVkUiE5cuX1wqNDR1DPm4esQlODIZOaJP3bAyGIcLExmDoCCY2BkNHMLExGDqCia2FWLFiBXg8ntbm4eHB5ZeXl2PevHno1KkTzMzMMGHChFoP7bOyshAaGgqJRAIbGxssXrwY1dXVWjaxsbHw8/ODSCRC9+7dERkZWcuX1pyadPLkSYwdOxYODg7g8XjYt2+fVj4RISIiAvb29hCLxQgODsa1a9e0bO7fv4+pU6dCKpVCLpfjzTffRHFxsZbNpUuX8Mwzz8DExASOjo5Yu3ZtLV+ioqLg4eEBExMTeHt7czPSG+OLTiFGi7B8+XLy8vKi7Oxsbrt79y6XP3v2bHJ0dKSjR49SfHw89e/fnwYMGMDlV1dXU69evSg4OJguXLhA0dHRZGVlRUuXLuVsbt68SRKJhBYuXEjJycn01VdfEZ/Pp5iYGM7mxx9/JKFQSNu3b6ekpCSaMWMGyeVyysnJaZHjjI6Opg8//JD+97//EQDau3evVv6aNWtIJpPRvn376OLFi/T888+Tq6srlZWVcTajRo2iPn360JkzZ+jPP/+k7t2705QpU7j8goICsrW1palTp9KVK1fohx9+ILFYTN988w1nc+rUKeLz+bR27VpKTk6mjz76iAQCAV2+fLlRvugSJrYWYvny5dSnT58685RKJQkEAoqKiuLSUlJSCADFxcURkeYiNjIyIoVCwdls3bqVpFIpVVRUEBHR+++/T15eXlplT5o0iUJCQrjvAQEBNG/ePO67SqUiBwcHWr16dbOP8XEeF5tarSY7Oztat24dl6ZUKkkkEtEPP/xARETJyckEgM6dO8fZHDx4kHg8Ht2+fZuIiL7++muysLDgjpuIaMmSJeTu7s59nzhxIoWGhmr5ExgYSLNmzWqwL7qGhZEtyLVr1+Dg4ICuXbti6tSpyMrKAgAkJCSgqqoKwcHBnK2HhwecnJy4KUNxcXHw9vbWemgfEhKCwsJCJCUlcTaPllFjU1NGzdSkR22eNjWpJUlPT4dCodCqXyaTITAwUOs45XI5+vXrx9kEBwfDyMgIZ8+e5WwGDx4MoVDI2YSEhCA1NRX5+fmcTX3noiG+6BomthYiMDAQkZGRiImJwdatW5Geno5nnnkGRUVFUCgUEAqFtQZG29raQqFQAAAUCkWdU4pq8uqzKSwsRFlZWb1Tk2rKaE1q6qivfoVCARsbG618Y2NjWFpatsi5eDT/ab7omjY7XKu9MXr0aO5z7969ERgYCGdnZ+zZs4ets88AwFq2VkMul8PNzQ3Xr1+HnZ0dKisroVQqtWwenTJkZ2dX55Simrz6bKRSKcRicZOmJrUkNXXUV7+dnV2tdWSqq6tx//79FjkXj+Y/zRddw8TWShQXF+PGjRuwt7dH3759IRAItKYMpaamIisri5syFBQUhMuXL2tdiEeOHIFUKoWnpydn82gZNTY1Zeh7apKrqyvs7Oy06i8sLMTZs2e1jlOpVCIhIYGzOXbsGNRqNQIDAzmbkydPaq1teeTIEbi7u8PCwoKzqe9cNMQXnaOXbhkDZNGiRRQbG0vp6el06tQpCg4OJisrK8rNzSUiTde/k5MTHTt2jOLj4ykoKIiCgoK4/Wu6/keOHEmJiYkUExND1tbWdXb9L168mFJSUmjLli11dv2LRCKKjIyk5ORkmjlzJsnlcq1ezuZQVFREFy5coAsXLhAA2rBhA124cIEyMzOJSNPdLpfLaf/+/XTp0iUaN25cnV3/vr6+dPbsWfrrr7+oR48eWl3/SqWSbG1t6bXXXqMrV67Qjz/+SBKJpFbXv7GxMa1fv55SUlJo+fLldXb9P80XXcLE1kJMmjSJ7O3tSSgUUufOnWnSpEl0/fp1Lr+srIzmzp1LFhYWJJFI6IUXXqDs7GytMjIyMmj06NEkFovJysqKFi1aRFVVVVo2x48fJx8fHxIKhdS1a1fasWNHLV+++uorcnJyIqFQSAEBAXTmzJkWO87jx48TgFpbWFgYEWm63JctW0a2trYkEoloxIgRlJqaqlVGXl4eTZkyhczMzEgqldL06dOpqKhIy+bixYs0aNAgEolE1LlzZ1qzZk0tX/bs2UNubm4kFArJy8uLDhw4oJXfEF90CZtiw2DoCHbPxmDoCCY2BkNHMLExGDqCiY3B0BFMbAyGjmBiYzB0BBMbg6EjmNgYDB3BxMZg6AgmtnbO0KFDER4erm83ONqaP20JJjYGKisr9e1Cx0BvozIZzSYsLKzWgODr16/TG2+8QS4uLmRiYkJubm60cePGWvuNGzeOPvnkE7K3tycXFxci0oyk79OnD4lEIurbty/t3buXANCFCxe4fS9fvkyjRo0iU1NTsrGxoVdffZVb2Kguf9LT03V1Oto8TGztGKVSSUFBQTRjxgxuRa/y8nKKiIigc+fO0c2bN+m7774jiURCP/30E7dfWFgYmZmZcVNYrly5QgUFBWRpaUmvvvoqJSUlUXR0NLm5uWmJLT8/n5v2k5KSQufPn6dnn32Whg0b9kR/qqur9XFq2iRsWYR2jEwmg1AohEQi0Zp9/Ojrjl1dXREXF4c9e/Zg4sSJXLqpqSm+/fZbblGdbdu2gcfj4f/+7/9gYmICT09P3L59GzNmzOD22bx5M3x9ffHpp59yadu3b4ejoyPS0tLg5uZWpz8MDUxsBsiWLVuwfft2ZGVloaysDJWVlfDx8dGy8fb21lq9KjU1Fb1794aJiQmXFhAQoLXPxYsXcfz4cZiZmdWq88aNG3Bzc2vZAzEwmNgMjB9//BHvvfcePv/8cwQFBcHc3Bzr1q3jlomrwdTUtNFlFxcXY+zYsfjss89q5dnb2zfZ544CE1s7RygUQqVScd9PnTqFAQMGYO7cuVzajRs3nlqOu7s7vvvuO1RUVHAvIjx37pyWjZ+fH3755Re4uLjA2LjuS+dxfxgPYV3/7RwXFxecPXsWGRkZuHfvHnr06IH4+HgcOnQIaWlpWLZsWS3R1MUrr7wCtVqNmTNnIiUlBYcOHcL69esBADweDwAwb9483L9/H1OmTMG5c+dw48YNHDp0CNOnT+cE9rg/arW69Q6+ncHE1s557733wOfz4enpCWtra4SEhODFF1/EpEmTEBgYiLy8PK1W7klIpVL89ttvSExMhI+PDz788ENEREQAAHcf5+DggFOnTkGlUmHkyJHw9vZGeHg45HI5jIyM6vSnZlVoBnvNL6Medu/ejenTp6OgoIAtNNsCsHs2BseuXbvQtWtXdO7cGRcvXsSSJUswceJEJrQWgomNwaFQKBAREQGFQgF7e3u8/PLLWLVqlb7dMhhYGMlg6AjWQcJg6AgmNgZDRzCxMRg6gomNwdARTGwMho5gYmMwdAQTG4OhI5jYGAwd8f8Box6N0LNnX+wAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_monitoring_metric('total_cpu_util_s', component='stream').max() - evaluation.get_monitoring_metric('total_cpu_util_s', component='stream').min()\n",
+ "plot_metric(df, \"SUT compute [CPUs]\", peak_benchmark)\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Maximum CPU Util"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 79,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "PostgreSQL-32-1-16384-1 4.973462\n",
+ "PostgreSQL-32-1-32768-1 4.478603\n",
+ "PostgreSQL-32-1-49152-1 13.785709\n",
+ "PostgreSQL-32-1-65536-1 16.049334\n",
+ "PostgreSQL-32-1-81920-1 16.826042\n",
+ "PostgreSQL-32-1-98304-1 15.550890\n",
+ "PostgreSQL-32-1-114688-1 13.336056\n",
+ "PostgreSQL-32-1-131072-1 13.245598\n",
+ "PostgreSQL-32-8-16384-1 2.856713\n",
+ "PostgreSQL-32-8-32768-1 3.039626\n",
+ "PostgreSQL-32-8-49152-1 11.866286\n",
+ "PostgreSQL-32-8-65536-1 14.107406\n",
+ "PostgreSQL-32-8-81920-1 13.991398\n",
+ "PostgreSQL-32-8-98304-1 13.454298\n",
+ "PostgreSQL-32-8-114688-1 15.131495\n",
+ "PostgreSQL-32-8-131072-1 15.122374\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 79,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMoAAADsCAYAAAA1kDmDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAysUlEQVR4nO2deVxUVf/HP7MPwzYgO7KqgKDijmsukWhmVpZmVig9ao+2/cy1XCsfc8nM4tGenkfRtFwqbdG0UtEiQVFwxQ1BUBbZB4ZlgPn+/rhwZWRxkBlmwPN+ve6LufecOed7r/PxnuV7vkdARAQGg9EkQlMbwGC0BZhQGAw9YEJhMPSACYXB0AMmFAZDD5hQGAw9YEJhMPSACYXB0AMmFAZDD5hQGAw9YEJpgJycHPzzn/+Ep6cnZDIZXFxcEBYWhpiYGD6PQCDA/v3763136tSpeOaZZ5CamgqBQNDkERUV1WD93t7eEAgE2LVrV720oKCgJr9rSLKysvDmm2/C19cXMpkMHh4eGDduHI4cOVLPVoFAAEtLS/Tu3Rt79+7l02ufx/1ER0dDIBCgsLDQ6PdhCMSmNsAcmTBhAjQaDbZt2wZfX19kZ2fjyJEjyMvL07sMDw8PZGZm8ufr1q3DoUOH8Mcff/DXbG1tm/z+1q1b8eKLL/LXYmNjkZWVBUtLy2beUfNJTU3F4MGDoVQqsXbtWnTv3h2VlZU4fPgwZs+ejStXrvB5P/jgA0yfPh0qlQqffPIJJk2aBHd3dwwaNMjodrYW7I1yH4WFhfjzzz+xevVqjBgxAl5eXujfvz8WLVqEp59+Wu9yRCIRXFxc+MPKygpisVjnmoWFRaPfnzJlCo4fP4709HT+2pYtWzBlyhSIxbr/v61fvx7du3eHpaUlPDw8MGvWLJSUlPDpERER6NGjByoqKgAAGo0GvXr1wquvvtpo/bNmzYJAIMCpU6cwYcIE+Pn5ISgoCHPmzEFsbKxOXmtra7i4uMDPzw+RkZGwsLDAzz//rPezagswodyHlZUVrKyssH//fv6HZQqcnZ0RFhaGbdu2AQBKS0uxe/duRERE1MsrFAqxceNGXLp0Cdu2bcPRo0cxf/58Pn3jxo1Qq9VYuHAhAOD9999HYWEhvvjiiwbrzs/Px6FDhzB79uwG315KpbJRu8ViMSQSCTQaTXNu1+xhQrkPsViMqKgobNu2DUqlEoMHD8Z7772H8+fPt7otERERiIqKAhHhu+++Q6dOndCzZ896+d555x2MGDEC3t7eGDlyJD766CPs2bOHT7eyssKOHTsQGRmJpUuXYsOGDfj6669hY2PTYL03btwAESEgIKBZ9mo0GqxatQpFRUUYOXJks75r7jChNMCECROQkZGBn376CaNHj0Z0dDR69+7dKh3ouowdOxYlJSU4ceIEtmzZ0uDbBAD++OMPPP7443B3d4e1tTVeeeUV5OXlobS0lM8zcOBAzJ07Fx9++CHeffddDBkypNF6m7tEacGCBbCysoJCocDq1avx8ccfY+zYsc0qw9xhQmkEuVyOJ554AkuWLMHff/+NqVOnYtmyZXy6tbU1ioqK6n2vsLCwyU56cxCLxXjllVewbNkyxMXFYcqUKfXypKam4qmnnkKPHj3w/fff48yZM4iMjAQAneaPVqtFTEwMRCIRbty40WS9Xbp0gUAg0OmwN8W8efOQmJiI27dvo6CgAAsWLODTbGxsGn1OIpGoVQYmDAETip4EBgZCrVbz5/7+/jhz5oxOnurqapw7dw5+fn4GqzciIgLHjx/H+PHjYWdnVy/9zJkz0Gq1+OSTTzBgwAD4+fkhIyOjXr61a9fiypUrOH78OA4dOoStW7c2Wqe9vT3CwsIQGRmpc8+13D+k6+DggM6dO8PFxQUCgUAnzd/fH5cuXarX3zt79ix8fHwgkUiaun3zgRg65Obm0ogRI+jrr7+mc+fO0c2bN2nPnj3k7OxMERERfL5vvvmGLCwsKDIykq5du0YJCQkUERFBtra2lJWVVa/cZcuWUXBwsF42eHl50aeffqpjU2lpKX9ua2tLW7duJSKixMREAkAbNmyg5ORk2r59O7m7uxMAKigoICKis2fPklQqpZ9++omIiL788kuytram5OTkRm1ITk4mFxcXCgwMpO+++46uXbtGly9fps8++4wCAgIatfV+CgoKyMnJiSZOnEjx8fF0/fp1+t///kfW1ta0adMmvZ6HOcCEch/l5eW0cOFC6t27N9na2pJCoSB/f39avHixzo+ViGjnzp3Up08fsra2JmdnZ3ryySfp3LlzDZbbEqHcT12hEBGtX7+eXF1dycLCgsLCwmj79u28UMrKyigwMJBmzJihU8bTTz9NgwYNoqqqqkbrycjIoNmzZ5OXlxdJpVJyd3enp59+mo4dO6a3rUREV69epWeffZbc3NzI0tKSgoOD6auvviKtVtvk98wJARELLsFgPAjWR2Ew9IAJhcHQAyYUBkMPmFAYDD1gQmEw9IAJhcHQA7Nbj6LVapGRkQFra+t6s7wMhiEhIhQXF8PNzQ1CYdPvDLMTSkZGBjw8PExtBuMRIj09HR07dmwyj9kJxdraGgBnfGNu4AyGIVCpVPDw8OB/c01hdkKpbW7Z2Ng88kKprq7Gn3/+CQAYOnQoRCKRiS1qn+jTxDc7oTDuUV5ejhEjRgAASkpK2oxLenuEjXoxGHrAhMJg6AFrej0CaLWEM2kFOHA+E38kZcPJWoa5o/wxqLODqU1rMzChtFO0WkJCegF+OZ+Jgxcyka26t8LwdkEZXvpvHEb4O2LRk13h5/zgUZ9HHSaUdgQRISG9EAdqxJFZVM6nWcvFGBXogrAgZ/ydnIcdsbdw7GoOjl/LwaR+Hvi/UD842chNaL15Y3YLt1QqFWxtbVFUVPTIDw+r1WpYWVkBaHzUi4hw/nYRDlzIxIHzmbhTWManWcnEeCLQGU/1cMWQLg6Qie8NL6fkqrH61ys4dCkLAKCQijB9qC9mPOYLS9mj8f9nc35rj8YTaaNIJBKsWbOG/1wLEeHiHRV+uZCBA+czcbvgnjgspSKEBjpjbHdXPObnCLmk4bkXHwdLbH6lD+JT87HyYBIS0grx2ZHr+OZUGuY84YcX+nSEWMTGemphb5Q2AhHhcqYKv5zn3hxp+fdidimkIjzelRPHcP/GxdFU2QcvZGH1oSt8uX7OVlg0piuG+zu2W5+75vzWmFDMnOvZxfgxMQMHLmQiJfde6CC5RIjHA5wxtocrRvg7wULa8ll7TZUWO2JvYePR6ygsrQQADOrUAe892RXd3A0Tq8ycYEJpJ+yKTcWczftABEidO0EulWBkgBPG9nDFyAAnKKTGaTkXlVXi38duYGtMKjTVWgDAs73cMTfMH+7KxgOLtzWYUNoBO+NuYdHueKR/+jwAYNff1/BUb59W7Win55di3W9X8WMiF1BPKhYiYrAPZo3oBBt5Gwlc1wTN+a2x3poZsu3vVLy/76LOtad6uLX6aJSHvQKfvdgLP70xGCE+9tBUabH5eDKGr41GVEwKNFXaVrXHlDChmBn//fMmlv10CQDw2hBv0xpTQ4+OSuyaMQD/fbUvOjlaIl+twfKfL2PUp8fx64XMZgf1bouwppcZsfl4Mj7+lQuMPXtEJ/xzcEd+rYS5eA9XVWux63Q6NvxxDbklXBDwgb4dsPnlPrBVtK3mGGt6tUG+OHqdF8nbj3fB3FH+ZjksKxYJ8fIAL0TPG4G3RnaGXCLEyZt5mPxVLPJKTLfxkrFptlBOnDiBcePGwc3NrcENP6dOnVpvU8/Ro0cbyt52BxHh09+vYd1v1wAAc0f54f+e8DNLkdTFSibGnFH+2D97MBysZLicqcKk/8QiW1X+4C+3QZrdO1Sr1QgODkZERASee+65BvOMHj1aZ1sBmUz28Ba2Y4gI6367ishjyQCAhWMC8PqwTia2qnkEuNhg98wBmPJVHG7cLcHEL09i5z9C0NFO8XAFakqBu0kACIAAEKDmr6AFfwFYOQMyq4e+z2YLZcyYMRgzZkyTeWq3nGY0DhHh41+v4MsTNwEAi8d2xT+G+urkkUgk/OZF5ryPSCdHK+x9fSBe+m8sbuWVYuLmk/hm+gB4OzSzT3XzOPDDDKAky/BGTvgf0P35h/66UcYbo6Oj4eTkBDs7O35PwQ4dOjSYt6KiQmeTGZVKZQyTzAoiwoe/JGFLTAoAYPm4QEwd7FMvn1QqxfLly1vZuofDw16BPTMHYspXcbiZq+bfLF30ceGvrgSO/Qv461MABFjYAVJr7jPRQ/6F7rmoZf/RtGjUSyAQYN++fXjmmWf4a7t27YJCoYCPjw+Sk5Px3nvvwcrKCidPnmwwOMLy5cuxYsWKetfb66gXEWH5T5ew7eQtAMBHz3TDywO8TGyV4cgprsAr/4vDlaxi2FtKsT2if9PuLwWpwHevAXfiufPe4cDoVYDU+CN8rTYz35BQ7ufmzZvo1KkTvyHn/TT0RvHw8GiXQtFqCYt/vIhv4tIgEAAfP9cdk/p5NpFfi6SkJABA165dHxikzVwoUGsQvvUUzt8ugo1cjG0R/dHLs/62erjwHfDL/wEVKkBuC4zbCAQ902p2mtXwsK+vLxwcHBrdYFMmk/GhidpziKJqLWHhD+d5kax9PrhJkQBAWVkZunXrhm7duqGsrKzJvOaEnaUUO/4Rgr5edlCVV+Hl/8Yh9mbevQwVJcD+2cD3r3Ei8RgAvP5Xq4qkuRhdKLdv30ZeXh5cXV2NXZXZUq0lzNt7Dnvib0MoADZM6onn+zQdmbCtYyOXYPtr/TGoUweoNdWYuvUUjl/LATISgf8MAxJ3AAIhMGwBMPUAoGz6Pw1T0+zOfElJic7bISUlBYmJibC3t4e9vT1WrFiBCRMmwMXFBcnJyZg/fz46d+6MsLAwgxreVqiq1mLOnnP46VwGREIBPnuxJ57q4WZqs1oFhVSMLVP74Z87zuDY1buI+XoFhop3QUiVgI078Nx/AO/G97s3K5q76eOxY8dqhhF0j/DwcCotLaVRo0aRo6MjSSQS8vLyounTpze4S25jFBUVEQAqKipqrmlmh6aqmmbtOENeC36hTosO0MHzGc36fklJCf98S0pKjGSl8akozKILq0OJltkQLbOhjM3PEqnzTG1Ws35rzX6jDB8+vEknuMOHDz+MXtsdmiot3vz2LA5fyoZEJEDkS70xKqgFc0t3EgA7R0BqxU2cSa0AYRsIsZp8FNIfZqJb6V1oBFJ8oJmCb1JDsfqyGi/0tTe1dXrD1swbgYqqaszeeRZ/JN2FVCzEly/3wYgAp+YXdDLy3ueoJwHpfW4tEkUd4Vhycw+1IpJZ1Tm3rLlmzf218wYcAwBjjqJVVwJHPwRiPuPOHbtCPOF/qP67GtpT6Zj33XmUV1bjlYHexrPBgDChGJjyymq8vuMMoq/mQCYW4qtX++IxP8fmF3R8DXD0o3vn1u6AQM2NGFE1d62ylDvUd5tfvtwW8AgBPAcAngMBt16AxECrF/NvcnMjGWe5874RwKiVEEoV+NezBJlYhKi/U7Hkx0soq6zGjMfM322HCcWAlFdWY/r2ePx5PRdyiRD/C++Hwc2NxkjECeTPdZCIgLkvPgZ07A/JuysBqZRLryoHNGqgohjQlHDi0ZTcO9fUCEpTXCet9rwYyLkKlBcB13/jDgAQSjixeIZwwvEIASwfIpLk+T3AL3O4uuRKYPwXQNdxfLJAIMCycYFQSEX4d3Qy/nXwCso0Wrz1eGezdgRl61EMyLen0rDohwtQSEXYMrUfBvg27LbTKETAb4uBk19w56M+Aga9aXhDqyuBrAtAWiyQHsv9Lcmun69DlzrCGQB06HTPyfB+KoqBg/OAc99y556DgAlfAbaND4N/cfQ67zU9c5gvFo4OaFWxsLheJuKvG7kAgBmP+TZfJFot8Ot84PRX3PmYtUDIDANbWINIArj35o6BsziBFqTqCifnCpB3nTsSdnDfUzjUNNUGcMJxDQbEUiAjAfgugmtyCYTAsIXAY3MfONjwxsgukEtE+OhAEr48fhPlmmosGxcEodD83ixMKAaCiBB3Mx8At+KvWWi1wC9vA2e3AxAAT30K9J0GrVaLtLQ0AICnp6fxXFgEAsDehzt6TuauleYD6aeAtJNAehxw5yxQmgtc+YU7AEAs58Ry5yygrQRsOgIT/gt4DdS76n8M9YVcIsLi/Rex7eQtlFVWY9VzPSAyM7EwoRiI5Bw1cksqIBULEeyh1P+L2mrgx9lck0UgBMZHAj1fAsC5sPj4cF7Frb4UWGEP+I/mDgCoquBm1WuFkxYLlOVznwGg69PA0xs5z99m8vIAL1hIRJj3Hee9kKWqQHd3G1hIRLCQimv+CmEhEUEuEdWci+6d1/lsLIExoRiIuBTOl6m3p1L/SI3VlcC+mcDF7wGBiJupbsGaCaMiltX0V0K4cyIg9zonFCtnoMsTjfdf9GBCn46QS0R4e1cCTlzLwYlrOQ9VjlTMCaqumCykIrz9eJeHG32sgQnFQMTWNLtCfPRsdlVpgO+mcc0YoQR4YavO6JDZIxAAjn7cYSDG9nCFq1KO3y9no0xTjfLKapRVVqNMc9/fymqU1/1ceS9skqZKC02VFkVllTplF5dXtcg2JhQDwPVPuDeKXp34ynJgz6vA9cOASAZM+hrwezR94e6nt6cdejfkkt8EWi2hokrLC6chkQV3VLbILiYUA5CSq8bd4gpIRUL08lQ2nVlTCux6Cbh5jOsMv/gN0Ln+Oh2G/giFAq6ZZYD4y43BhGIA4lK4ZlfPB/VPKkqAb18EUv8EJJbAS7sBn6GtZCWjJTChGIDaRUkDfJpw8isvAna+wHV+pdbAy99x8xGMNgETSgupO3/SaP+krAD4+jnO90luC7y8D+jY54Fli8VizJo1i//MMB3s6beQW3mlyFKVQyISNLwuXJ0HfD2ecxmxsAde3c9N0umBTCZDZGTkgzMyjA4TSgupnT/p6aGs35ksuQtsexrISQIsHYFXfwKcA01gJaOlMKG0kEbnT1QZnEjyrgNWLkD4z82ecyAi5OZy/mMODg5m7V3b3mFCaQGNzp8UpgPbxgEFKZz/U/hPnOdtMyktLYWTE7fgy1yi2T+qMKG0gPT8MmQUlUMsFKC3l5K7mJ/CvUmK0gClF/cmsWs/Ae4eVZhQWkBsTf8k2EPJ7aeoygS2PgkUZwD2nTiR2Lqb2EqGIWBCaQG18ychtfMnCTs4kXToAkz9BbBmgcrbC20jRqeZUm/+JOU493fA60wk7QwmlIckPb8UdwrLIBIK0MfLjvPhql2b4TPclKYxjAATykNS2+zq0dGW2603PRao1nAREB9ihIth3rA+ykNS6wjJz5/crGl2+Qxr0QKmuojFYoSHh/OfGaaDPf2HhHeE9K3pyNf2T3yHGawOmUyGqKgog5XHeHhY0+shuF1QitsFXP+kr7c95/SYkcgl+hhOKAzzgQnlIagd7ermbgsrmRhI/QsAAQ5+gI3htrcgIqjVaqjV6ibjPTOMDxPKQ1DrCMk3u+r2TwxIaWkprKysYGVlhdLSUoOWzWgeTCgPQa0j5ACf++ZPDNg/YZgXTCjNJKOwDGn5pRAKgL7edpyXcO41AALAa7CpzWMYCSaUZlLb7OrmbgtruQRIOcEluAZzQeMY7RImlGZSz23lJmt2PQo0WygnTpzAuHHj4ObmBoFAgP379+ukExGWLl0KV1dXWFhYIDQ0FNevXzeUvSZHxxGS6F7/hA0Lt2uaLRS1Wo3g4OBG13KvWbMGGzduxObNmxEXFwdLS0uEhYWhvLy8xcaamqyicqTm1fZP7IG8ZEB1BxBJua0RGO2WZs/MjxkzBmPGjGkwjYiwYcMGLF68GOPHjwcAbN++Hc7Ozti/fz9efPHFlllrYmr7J4FuNrC1kAAXo7mEjv0BqcLg9YlEIjz//PP8Z4bpMKgLS0pKCrKyshAaGspfs7W1RUhICE6ePNmgUCoqKlBRUcGfq1QqQ5pkUOoNCxu5fyKXy7F3716jlM1oHgbtzGdlZQEAnJ2dda47OzvzafezatUq2Nra8oeHh4chTTIotevjQ3w7cHuapP7JJbD+SbvH5KNeixYtQlFREX+kp6eb2qQGuasqx81cNQQCoL+3PZB9gfPxklpxO1cx2jUGFYqLC7eqLztbdz/A7OxsPu1+ZDIZbGxsdA5zJLbGrb6riw1sFZJ7zS6vwdxWb0ZArVZDIBBAIBBArVYbpQ6GfhhUKD4+PnBxccGRI0f4ayqVCnFxcRg4sG2PCtULS8TcVh4pmt2ZLykpwY0bN/jzlJQUJCYmwt7eHp6ennjnnXfw0UcfoUuXLvDx8cGSJUvg5uaGZ555xpB2tzr8/ImvPbcJ0K2/uQTWP3kkaLZQ4uPjMWLECP58zpw5AIDw8HBERUVh/vz5UKvVmDFjBgoLCzFkyBAcOnQIcrnccFa3MjnFFUjO4fonIT72wJ14oLKU2yXXiYVIfRRotlCGDx/e5NoIgUCADz74AB988EGLDDMnaudP/J2toVRI67jVPwYYa6dehlnB/pX1oNGwRKx/8sjAhKIHOuvjK0qA26e5BNY/eWRgwSUeQG5JBa7fLQEA9PfpAKQdB7RVgNITsPcxat0ikQhPPvkk/5lhOphQHsCpmvkTf2dr2FtKgZvRXEIrvE3kcjkOHDhg9HoYD4Y1vR5A42GJhpvGIIZJYG+UB1DbkQ/x7cBtM5d1gUvweazVbdFqtdBoNK1eb1tGKpVCaICRSSaUJshXa3A1uxgA0N/HHkg9yCU4BQJWTkavX61W8xsJ3blzB9nZ2dBqtUavtz0hFArh4+MDqVTaonKYUJrgVM38iZ+zFRysZEYLS9QUpaWlEAgEyM3NhUgkgoeHh0H+h3wU0Gq1yMjIQGZmJjw9PVu0tR8TShPU25/RRPMnSqUSFRUV6NixIxQKwy8Qa884OjoiIyMDVVVVkEge3nmV/dfUBLF1HSEL04H8m4BA1OphiaytrQGgxc2HR5HaZ1ZdXd2icphQGqFArcGVrDr9k9q3iXtvQN66SwFqmwxsV+DmY6hnxoTSCKdSuWZXZycrOFqbpn/CMB+YUBqh0bBEzL/LJDQUGqs1YZ35RtBxhMy5CpRkA2I5F3GllRAKhRg2bBicnJxYs8vEMKE0QFFpJZKyuGgwIb72wOWfuQTPAYCk9dbVWFhYIDo6GuXl5UhJSWm1ehn1YU2vBjiVmg8iwNfREk7WcrPunwwfPhxvvfUW5s+fD3t7e7i4uGD58uV8empqKgQCARITE/lrhYWFEAgEiI6OBgBER0dDIBDg8OHD6NWrFywsLDBy5EjcvXsXv/76K7p27QobGxu89NJLTW4/ERUVBaVSif3796NLly6Qy+UICwurFzBk06ZN6NSpE6RSKfz9/fH111/rpF+/fh2PPfYY5HI5AgMD8fvvv+ukazQavPHGG3B1dYVcLoeXlxdWrVr1cA9QT5hQGuBe/6QDUF1Vs1EQzLZ/sm3bNlhaWiIuLg5r1qzBBx98UO/HpQ/Lly/HF198gb///hvp6emYOHEiNmzYgG+++QYHDhzAb7/9hs8//7zJMkpLS7Fy5Ups374dMTExKCws1Inntm/fPrz99tt49913cfHiRcycORPTpk3DsWPHAHCThM899xykUini4uKwefNmLFiwQKeOjRs34qeffsKePXtw9epV7Ny5E97e3s2+32ZBZkZRUREBoKKiIpPZMHbjCfJa8AvtT7hNlB5PtMyGaJUHUXVVq9pRUlJCDg4O1LNnT7p48SKVlZXVyzNs2DAaMmSIzrV+/frRggULiIgoJSWFAFBCQgKfXlBQQADo2LFjRER07NgxAkB//PEHn2fVqlUEgJKTk/lrM2fOpLCwsEbt3bp1KwGg2NhY/lpSUhIBoLi4OCIiGjRoEE2fPl3ney+88AI9+eSTRER0+PBhEovFdOfOHT79119/JQC0b98+IiJ68803aeTIkaTVahu1pZaysjK6fPlyg8+uOb819ka5j6KySlzK4PonA3w7ACnRXIL3UEDY+mtCcnNzUVBQ0GSeHj166Jy7urri7t27za6rbjnOzs5QKBTw9fXVufagcsViMfr168efBwQEQKlUIikpCQCQlJSEwYN1J2wHDx6sk+7h4QE3Nzc+/f4IPlOnTkViYiL8/f3x1ltv4bfffmvmnTYfJpT7iK/pn/g4WMLZxrz7J7Xc75ohEAh458lavzCqE+egsrLygeUIBIImyzUlvXv3RkpKCj788EOUlZVh4sSJfIxmY8GEch868yeV5UB6HJdgArd6Q+Do6AgAyMzM5K/V7dgbmqqqKsTHx/PnV69eRWFhIbp27QoA6Nq1K2JiYnS+ExMTg8DAQD49PT1dx97Y2Nh69djY2GDSpEn46quvsHv3bnz//ffIz883xi0BYMPD9YhLqTN/kh4HVJUDVi6Ao7+JLXs4LCwsMGDAAHz88cfw8fHB3bt3sXjxYqPVJ5FI8Oabb2Ljxo0Qi8V44403MGDAAPTvz80/zZs3DxMnTkSvXr0QGhqKn3/+GT/88AP++OMPAEBoaCj8/PwQHh6OtWvXQqVS4f3339epY/369XB1dUWvXr0gFAqxd+9euLi4QKlUGu2+2BulDqrySly8UwSgZv4kpU5YojY84bdlyxZUVVWhT58+fIBCY6FQKLBgwQK89NJLGDx4MKysrLB7924+/ZlnnsFnn32GdevWISgoCF9++SW2bt2K4cOHA+Caivv27UNZWRn69++Pf/zjH1i5cqVOHdbW1lizZg369u2Lfv36ITU1FQcPHjTu8oMHdvdbGVOOeh1NyiavBb/QY2uOchf+M5Ib8Tr7davbQsSNegEgLy+vRke9zImtW7eSra2tqc3QwVCjXqzpVQed/kl5EZBxlkswUUdeKBSib9++cHZ2Zi4sJoYJpQ6xdfsnqTEAaQF7X0Bpmj1bLCwscPr0aebCYgawPkoNJRVVdfonHdgmpg/B1KlTUVhYaGozjAITSg3xqfmo1hI87C3grrRg22IzdGBCqUFnfXxxNpDDzRTD23TzJ6WlpfD29sbjjz9uFhN9jzKsj1KDzvr4lBPcRZfugGUHk9lERLh165bJ6mfcg71RAKgrqnChtn/iY3/Pv4v1Txg1MKEAiL9VgGotwV1pAQ87C+BmzRuFhU1l1GBwoSxfvpzfoLP2CAgIMHQ1BkVnf8aCVKAoDRCKAc+2ve8kw3AYpY8SFBTE++4AnOu1OaOzP2NKzUatHfsBMisTWsUwJ4zS9BKLxXBxceEPBwcHY1RjEEo1VTh/m+ufDPTt0Cbc6tsjJ06cwLhx4+Dm5mbyiCsNYRShXL9+HW5ubvD19cWUKVOQlpbWaN6KigqoVCqdozG2n0zF61+fwebjyYi9mQd1RVWLbT1zqwBVWoKbrRwdlbJ7I15mMH8iEAgQGBiIzp07m9oUo6NWqxEcHIzIyEhTm9IgBm8ThYSEICoqCv7+/sjMzMSKFSswdOhQXLx4kQ8NWpdVq1ZhxYoVepUdfTUHR6/cxaFLWQAAoQDwc7ZGTw8ld3gq0cXJGiKh/n5RdcMSCe4mAaW5gEQBuPfVuwxjoVAocOnSpRa5sBARyipbFk70YbCQiJrlnzZmzBiMGTPGiBa1DIMLpe7N9ujRAyEhIfDy8sKePXvw2muv1cu/aNEifgtuAFCpVPDwaNi36o2RndHfxx6JaYU4d7sQmUXluJJVjCtZxdh1mov0YSkVoXtHWwR7KNHLQ4meHnZwsW08xJBu/6QmLJHXIEDcPuL8llVWI3Dp4Vav9/IHYVBIzbtv2hyMfidKpRJ+fn64ceNGg+kymQwymUyvsnp72qG3px1/nq0qR0JaIRLTC5GYXoALt4ug1lQj9mY+P9MOAC42cv6N09NDie7utrCUiVGmqca524UAaka8DrH+CaNhjC6UkpISJCcn45VXXjF42c42cozu5oLR3VwAANVawo27JUhML0BieiES0gpxLbsYWapyHLqUVa/J5q60QGU1wcVGDk9bCXCrZomqGfRPAM6FpV+/fnB1dcVnn332UGVYSES4/EGYgS3Tr972hMGFMnfuXIwbNw5eXl7IyMjAsmXLIBKJMHnyZENXVQ+RUAB/F2v4u1hjUj9PAPdm3RPTCxtssgFcs0uQkQBoSgALe8C5u9Ft1QciwuXLl6FWqx+6DIFA0K6aQKbC4E/w9u3bmDx5MvLy8uDo6IghQ4YgNjaWD3LQ2ljKxBjg24FrWtVQt8l2p7AMb47sDCRt4hJ9hgJsRyvGfRhcKLt27TJ0kQbn/iYbAOAA65+YkpKSEp1+bEpKChITE2Fvbw9PT08TWsbB3skAoCkFbp/iPjP/LpMQHx+PESNG8Oe1I6Hh4eGIiooykVX3YEIBgLSTQLUGsOnILf1ltDrDhw/XCdJnbrDGOKC7SRAL4sBoACYUwGz9uwQCAby8vODu7m5qUx55WNOrNB/IPMd9NrOwqQqFAqmpqSwKixnA3iipfwEgwMEfsHE1tTUMM4UJhW1iytADJhQz7Z8AQFlZGfr164fnn3/erEeEHgUe7T6KKgPIuw4IhID3EFNbUw+tVov4+Hh4eXkxoZiY9iuUynKgLB9Q5wKleTVHPrfepPY8/yaX17UnYKE0pbUMM6dtCaUwDSi6o/tjV+fVEUJeTVo+5+CoLwFPGs9mRrugbQnl0CLgyi/65xeIAEUH7rB0ABT2984VDtxfaxcWbYXxQNqWUJRenIuJzo/dvo4QOugecls2094GqK6uxvLly7Fjxw5kZWXBzc0NU6dOxeLFi81mu4u2JZTR/+IORrti9erV2LRpE7Zt24agoCDEx8dj2rRpsLW1xVtvvWVq8wC0NaE8gjg4OMDOzu7BGRuDCKgsNZxB+iJR6P02//vvvzF+/HiMHTsWAODt7Y1vv/0Wp06dMqaFzYIJxYyxtLRETk5Oy1xYKkuBf7k9OJ+heS8DkFrqlXXQoEH4z3/+g2vXrsHPzw/nzp3DX3/9hfXr1xvZSP1hQmGYnIULF0KlUiEgIAAikQjV1dVYuXIlpkyZYmrTeJhQ2jsSBfe/uynq1ZM9e/Zg586d+OabbxAUFITExES88847cHNzQ3h4uBGN1B8mFDOmrKwMY8aMgZOTE5YvX/5whQgEejeBTMW8efOwcOFCvPjiiwCA7t2749atW1i1ahUTCuPBaLVaHD9+vN27sJSWltbbI14kEpnVLmNMKAyTM27cOKxcuRKenp4ICgpCQkIC1q9fj4iICFObxsOEwjA5n3/+OZYsWYJZs2bh7t27cHNzw8yZM7F06VJTm8bDhMIwOdbW1tiwYQM2bNhgalMaha1HYTD0gAmFwdADJhQzR6FQwMLCwtRmPPKwPooZY2lpCbVazaKwmAHsjdKGaM9zKcbCUM+MCaUNIBJxe41oNBoTW9L2qH1mtc/wYWFNLzOmvLwcEyZMgEAgwMaNG5GTkwOJRFJvFpvRMFqtFjk5OVAoFC3ewl1AZvY+V6lUsLW1RVFREWxsbExtjklRq9WwsuL2ui8oKEB2drZZuXW0BYRCIXx8fCCV1t+Tszm/NfZGaSNIJBJ06dKFNb+aiVQqNcgbmAmlDSEUCiGXN77DMcN4GK2xGxkZCW9vb8jlcoSEhJjVsk4Go7kYRSi7d+/GnDlzsGzZMpw9exbBwcEICwvD3bt3jVEdg2F0jCKU9evXY/r06Zg2bRoCAwOxefNmKBQKbNmyxRjVMRhGx+B9FI1GgzNnzmDRokX8NaFQiNDQUJw8ebJe/oqKClRUVPDnRUVFALgRiUeduttmq1QqVFdXm9Ca9kftb0yfgV+DCyU3NxfV1dVwdnbWue7s7IwrV67Uy79q1SqsWLGi3nUPDw9Dm9amcXMzQSSVR4Ti4mLY2to2mcfko16LFi3id4AFuEmi/Px8dOjQwWyiBDYXlUoFDw8PpKenPzJzQW3xnokIxcXFev0nZHChODg4QCQSITs7W+d6dnY2XFxc6uWXyWSQyWQ615RKpaHNMgk2NjZt5kdjKNraPT/oTVKLwTvzUqkUffr0wZEjR/hrWq0WR44cwcCBLBg2o21ilKbXnDlzEB4ejr59+6J///7YsGED1Go1pk2bZozqGAyjYxShTJo0CTk5OVi6dCmysrLQs2dPHDp0qF4Hv70ik8mwbNmyek3K9kx7v2ezc4pkMMwR5q/NYOgBEwqDoQdMKAyGHjChMBh6wIQCYPny5RAIBDpHQEAAn15eXo7Zs2ejQ4cOsLKywoQJE+pNqKalpWHs2LFQKBRwcnLCvHnzUFVVpZMnOjoavXv3hkwmQ+fOnREVFVXPFmMtTzhx4gTGjRsHNzc3CAQC7N+/XyediLB06VK4urrCwsICoaGhuH79uk6e/Px8TJkyBTY2NlAqlXjttddQUqK7+/L58+cxdOhQyOVyeHh4YM2aNfVs2bt3LwICAiCXy9G9e3ccPHiw2ba0OsSgZcuWUVBQEGVmZvJHTk4On/7666+Th4cHHTlyhOLj42nAgAE0aNAgPr2qqoq6detGoaGhlJCQQAcPHiQHBwdatGgRn+fmzZukUChozpw5dPnyZfr8889JJBLRoUOH+Dy7du0iqVRKW7ZsoUuXLtH06dNJqVRSdnZ2i+/x4MGD9P7779MPP/xAAGjfvn066R9//DHZ2trS/v376dy5c/T000+Tj48PlZWV8XlGjx5NwcHBFBsbS3/++Sd17tyZJk+ezKcXFRWRs7MzTZkyhS5evEjffvstWVhY0JdffsnniYmJIZFIRGvWrKHLly/T4sWLSSKR0IULF5plS2vDhEKcUIKDgxtMKywsJIlEQnv37uWvJSUlEQA6efIkEXE/QqFQSFlZWXyeTZs2kY2NDVVUVBAR0fz58ykoKEin7EmTJlFYWBh/3r9/f5o9ezZ/Xl1dTW5ubrRq1aoW32Nd7heKVqslFxcXWrt2LX+tsLCQZDIZffvtt0REdPnyZQJAp0+f5vP8+uuvJBAI6M6dO0RE9O9//5vs7Oz4eyYiWrBgAfn7+/PnEydOpLFjx+rYExISQjNnztTbFlPAml41XL9+HW5ubvD19cWUKVOQlpYGADhz5gwqKysRGhrK5w0ICICnpye/bODkyZPo3r27zoRqWFgYVCoVLl26xOepW0Ztntoyapcn1M3T1PIEQ5KSkoKsrCydum1tbRESEqJzj0qlEn379uXzhIaGQigUIi4ujs/z2GOP6QRyCAsLw9WrV1FQUMDnaeo56GOLKWBCARASEoKoqCgcOnQImzZtQkpKCoYOHYri4mJkZWVBKpXWc9R0dnZGVlYWACArK6vBZQW1aU3lUalUKCsra3J5Qm0ZxqK2/KbqzsrKgpOTk066WCyGvb29QZ5D3fQH2WIKTO5mbw6MGTOG/9yjRw+EhITAy8sLe/bsYXF/GQDYG6VBlEol/Pz8cOPGDbi4uECj0aCwsFAnT91lAy4uLg0uK6hNayqPjY0NLCwsmr08wZDUlt9U3S4uLvViHlRVVSE/P98gz6Fu+oNsMQVMKA1QUlKC5ORkuLq6ok+fPpBIJDrLBq5evYq0tDR+2cDAgQNx4cIFnR/S77//DhsbGwQGBvJ56pZRm6e2DFMuT/Dx8YGLi4tO3SqVCnFxcTr3WFhYiDNnzvB5jh49Cq1Wi5CQED7PiRMnUFlZqXOP/v7+sLOz4/M09Rz0scUkmGwYwYx49913KTo6mlJSUigmJoZCQ0PJwcGB7t69S0Tc8LCnpycdPXqU4uPjaeDAgTRw4ED++7XDw6NGjaLExEQ6dOgQOTo6Njg8PG/ePEpKSqLIyMgGh4dlMhlFRUXR5cuXacaMGaRUKnVG0x6W4uJiSkhIoISEBAJA69evp4SEBLp16xYRcUOySqWSfvzxRzp//jyNHz++weHhXr16UVxcHP3111/UpUsXneHhwsJCcnZ2pldeeYUuXrxIu3btIoVCUW94WCwW07p16ygpKYmWLVvW4PDwg2xpbZhQiBumdXV1JalUSu7u7jRp0iS6ceMGn15WVkazZs0iOzs7UigU9Oyzz1JmZqZOGampqTRmzBiysLAgBwcHevfdd6myslInz7Fjx6hnz54klUrJ19eXtm7dWs+Wzz//nDw9PUkqlVL//v0pNjbWIPd47NgxAlDvCA8PJyJuWHbJkiXk7OxMMpmMHn/8cbp69apOGXl5eTR58mSysrIiGxsbmjZtGhUXF+vkOXfuHA0ZMoRkMhm5u7vTxx9/XM+WPXv2kJ+fH0mlUgoKCqIDBw7opOtjS2vD3OwZDD1gfRQGQw+YUBgMPWBCYTD0gAmFwdADJhQGQw+YUBgMPWBCYTD0gAmFwdADJhQGQw+YUEzI8OHD8c4775jaDB5zs8ecYEJp47BdglsJk3qaPcKEh4fXc1C8ceMGRUREkLe3N8nlcvLz86MNGzbU+9748ePpo48+IldXV/L29iYizis3ODiYZDIZ9enTh/bt20cAKCEhgf/uhQsXaPTo0WRpaUlOTk708ssv80E0GrInJSWltR6H2cOEYiIKCwtp4MCBNH36dD7yS3l5OS1dupROnz5NN2/epB07dpBCoaDdu3fz3wsPDycrKyvelf3ixYtUVFRE9vb29PLLL9OlS5fo4MGD5OfnpyOUgoIC3vU/KSmJzp49S0888QSNGDGiUXuqqqpM8WjMEiYUEzJs2DB6++23m8wze/ZsmjBhAn8eHh5Ozs7OOpFONm3aRB06dNBZr/HVV1/pCOXDDz+kUaNG6ZSdnp5OAHgXdn3seVRha+bNjMjISGzZsgVpaWkoKyuDRqNBz549dfJ0795dJ9LJ1atX0aNHD8jlcv5a//79db5z7tw5HDt2DFZWVvXqTE5Ohp+fn2FvpJ3BhGJG7Nq1C3PnzsUnn3yCgQMHwtraGmvXruXDAdViaWnZ7LJLSkowbtw4rF69ul6aq6vrQ9v8qMCEYkKkUqnOltgxMTEYNGgQZs2axV9LTk5+YDn+/v7YsWMHKioq+I18Tp8+rZOnd+/e+P777+Ht7Q2xuOF/9vvtYdyDDQ+bEG9vb8TFxSE1NRW5ubno0qUL4uPjcfjwYVy7dg1Lliyp94NviJdeeglarRYzZsxAUlISDh8+jHXr1gEAv7Py7NmzkZ+fj8mTJ+P06dNITk7G4cOHMW3aNF4c99uj1WqNd/NtDCYUEzJ37lyIRCIEBgbC0dERYWFheO655zBp0iSEhIQgLy9P5+3SGDY2Nvj555+RmJiInj174v3338fSpUsBgO+3uLm5ISYmBtXV1Rg1ahS6d++Od955B0qlEkKhsEF7aqNlMtjWdO2WnTt3Ytq0aSgqKmJB/AwA66O0E7Zv3w5fX1+4u7vj3LlzWLBgASZOnMhEYiCYUNoJWVlZ/C7Mrq6ueOGFF7By5UpTm9VuYE0vBkMPWGeewdADJhQGQw+YUBgMPWBCYTD0gAmFwdADJhQGQw+YUBgMPWBCYTD04P8Bsn04gQEk8gkAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_monitoring_metric('total_cpu_util', component='stream').max()\n",
+ "plot_metric(df, \"SUT Max CPU\", peak_benchmark)\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Maximum Util of a CPU Core"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 80,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMoAAADsCAYAAAA1kDmDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAyNElEQVR4nO2dd1hUx97Hv9srS1WaNAsodowFe0HRGMuVRJN4fbG8iW+CJl5L1JtYoterUWO8JsTk5omiSYwlRmNii1GxYIkiEBWkCZEIKyqw9Lq/94/DrqwUF1jYBefzPOdhd2bOzO8czndn5nem8IiIwGAw6oRvbgMYjJYAEwqDYQRMKAyGETChMBhGwITCYBgBEwqDYQRMKAyGETChMBhGwITCYBgBEwqDYQStSigPHz7EW2+9BXd3d0gkEjg5OSEwMBARERH6NDweD4cPH6527syZMzF58mSkpqaCx+PVeYSFhdVYvqenJ3g8Hvbu3VstrmvXrnWea0rUajXmz5+P9u3bQyKRwM3NDRMmTMDp06er2crj8aBQKODn54cDBw7o43X342nCw8PB4/GQk5NTpw1nz57Fiy++CHt7e8jlcvj6+mLRokW4f/++qS6zWWlVQgkKCkJUVBR27dqFhIQEHDlyBMOHD8fjx4+NzsPNzQ0ZGRn6Y9GiRejatatB2LRp0+o8f+fOnQZhV65cgVqthkKhaPC1GUtqair69OmDM2fOYNOmTbh58yZOnDiBESNGICQkxCDtmjVrkJGRgaioKPTt2xfTpk3DpUuXGm3Dl19+iYCAADg5OeHgwYOIjY3FF198AY1Gg48//rjB+ZaWljbatgZDrYTs7GwCQOHh4XWmA0CHDh2qFh4cHEyTJk2qFr5q1Srq2bOnUTZ4eHjQsmXLSCKR0L179/Thb7zxBs2fP5+sra1p586d+vCPP/6YunXrRnK5nNq1a0dvvfUW5eXl6eNnzZpF3bt3p+LiYiIiKikpoV69etGMGTNqtWHcuHHk6upK+fn51eKys7MNbP3kk0/038vKykgul9OyZcuIqPb7cfbsWQJgkFdV0tLSSCwW04IFC2qMr3reDz/8QL6+viQWi8nDw4M2b95skNbDw4PWrFlDM2bMICsrKwoODiYiogsXLtDgwYNJKpVSu3btaP78+TVerylpNTWKUqmEUqnE4cOHUVJSYjY7HB0dERgYiF27dgEACgsLsW/fPsyePbtaWj6fj23btuH27dvYtWsXzpw5g/fee08fv23bNhQUFGDZsmUAgPfffx85OTn47LPPaiw7KysLJ06cQEhISI21l42NTa12C4VCiESiRv9qHzhwAKWlpQbXUZMNkZGRmDp1Kl599VXcvHkTq1evxooVK6o1TTdv3oyePXsiKioKK1asQHJyMsaOHYugoCD88ccf2LdvHy5evIh58+Y1yu5n0qQybGZ++OEHsrW1JalUSgMHDqTly5dTTEyMQRo0cY3yySef0OHDh6lDhw6k1Wpp165d1Lt3byKiajXK0xw4cIDs7e0Nwi5dukQikYhWrFhBQqGQLly4UOv5V69eJQD0448/Gm0rEVdT/fvf/yYA9MsvvxBRw2uUt956i1Qq1TPLf/3112n06NEGYUuWLCFfX18DGydPnmyQZs6cOfTmm28ahF24cIH4fD4VFRU9s9yG0mpqFIDro6Snp+PIkSMYO3YswsPD4efn1ywd6KqMHz8e+fn5OH/+PHbs2FFjbQIAv/32G0aNGgVXV1dYWVlhxowZePz4MQoLC/Vp/P39sXjxYqxduxaLFi3C4MGDay2X6jm1aOnSpVAqlZDL5fjoo4+wYcMGjB8/vl551GQDj8d7Zrq4uDgMGjTIIGzQoEFITExERUWFPuyFF14wSBMTE4OwsDB9C0KpVCIwMBBarRYpKSmNsr0uWpVQAEAqlWL06NFYsWIFLl26hJkzZ2LVqlX6eCsrK2g0mmrn5eTkwNra2iQ2CIVCzJgxA6tWrcLVq1cxffr0amlSU1Px0ksvoUePHjh48CAiIyMRGhoKwLDTqtVqERERAYFAgKSkpDrL7dSpE3g8Hu7cuWOUnUuWLEF0dDT++usvZGdnY+nSpfo4lUpV630SCAS1Oia8vb2h0WiQkZFhlA3P4uly8vPzMXfuXERHR+uPmJgYJCYmokOHDiYpsyZanVCextfXFwUFBfrvPj4+iIyMNEhTUVGBmJgYeHt7m6zc2bNn49y5c5g0aRJsbW2rxUdGRkKr1eLjjz/GgAED4O3tjfT09GrpNm3ahDt37uDcuXM4ceJENY9aVezs7BAYGIjQ0FCDa9bxtEvXwcEBHTt2hJOTU7VawMfHB7dv367W37tx4wa8vLwgEolqtOHll1+GWCzGxo0ba4zX2dClSxcDtz0AREREwNvbGwKBoNZr9PPzQ2xsLDp27FjtEIvFtZ7XaJqsUdfMPHr0iEaMGEHffPMNxcTE0N27d2n//v3k6OhIs2fP1qfbs2cPyWQyCg0NpYSEBIqKiqLZs2eTtbU1qdXqavk2pI9S1abCwkL996p9lOjoaAJAW7dupeTkZNq9eze5uroatP9v3LhBYrGYjhw5QkREX375JVlZWVFycnKtNiQnJ5OTkxP5+vrSDz/8QAkJCRQbG0v/+c9/qHPnzrXa+jTZ2dnUtm1bmjp1Kl2/fp0SExPp66+/JisrK9q+fXud9yE0NJR4PB7Nnj2bwsPDKTU1lS5evEhvvvkmLVy4kIiIIiMjic/n05o1ayg+Pp7CwsJIJpMZ9OFqsjEmJoZkMhmFhIRQVFQUJSQk0OHDhykkJKROmxpLqxFKcXExLVu2jPz8/Mja2prkcjn5+PjQBx98YPCwEhF999131KdPH7KysiJHR0d68cUXq3X6dTRGKE/zdGd+y5Yt5OzsTDKZjAIDA2n37t16oRQVFZGvr2+1juvEiRNp4MCBVF5eXms56enpFBISQh4eHiQWi8nV1ZUmTpxIZ8+eNdpWIqL4+Hj629/+Ri4uLqRQKKhnz5701VdfkVarrfM8IqJTp05RYGCg3rnSuXNnWrx4MaWnp+vT6NzDIpGI3N3dadOmTQZ51Gbj77//TqNHjyalUkkKhYJ69OhB69ate6ZNjYFHxBaXYDCeRavvozAYpoAJhcEwAiYUBsMImFAYDCNgQmEwjIAJhcEwAqG5DXgarVaL9PR0WFlZGTVmiMFoKESEvLw8uLi4gM+vu86wOKGkp6fDzc3N3GYwniPS0tLQrl27OtNYnFCsrKwAcMarVCozW8NozeTm5sLNzU3/zNWFxQlF19xSqVTPvVAqKipw4cIFAMCQIUPqHCzIaDjGNPEtTiiMJxQXF2PEiBEAuOHlzTHnnlEzzOvFYBgBEwqDYQSs6fWcEJeRi33X0nD0ZgYEPB7at1Fwh4MSXm0U6OCghKutDAI+c8nXBBNKKyavuAxHYtKx/1oaYv4ynNarzi3GpWTD9c7EQj487eVo76CsFBL3t4ODEtbymmc0Pi8wobQyiAjXUrMra490FJdpAQAiAQ8BXRwx9QU3WMtFuPuwAHcf5nN/H+Uj9VEhSsu1SHiQj4QH+dXytVeI9TVQVRG528khErT+FjwTSishM68YP964j/3X0nD30ZP58h3bKjHtBTf8zc8VDkqJPtzP3XAef4WWcD+7CMmP8vUiSnlUgLsPC6DOLcbjglI8LijFtdRsg/OEfB4GtLfHe2N90KOdTZNeozlhQrFgRCKRfpGGmhZzKK/Q4lzCQ+y7lobTdzJRoeUmq8rFArzUwxnT+rrDz93GqPcEAj4P7vZyuNvLMcLHMK6gpBwpjwqQrK+BngipsLQCF5Me4eJnjzCxpwuWBPrAzU7e+Iu3MCxuKnBubi6sra2h0Wie+xeOtZH6qAD7r6fh4I2/8CD3ySopfu42mNbXDeN7uEApafrfQCJC6uNCfHomEYei7oMIEAv4CB7ogXkjOll8v6Y+zxoTSguhuKwCx29lYN+1NFy5m6UPt1OIMaW3K6b1dUMnx2cPxWgqbt3XYMPxO7iY9AgAYC0TYf7Ijpjh7wGJ0DJHFDChtBIqstMQ/tl8RBU74RvBeGhKuU4zjwcM7dQGr/Z1w6gujhALLaMzTUQ4l/AQ64/dQfyDPABAO1sZlgT6YEIPF/AtzPXMhNIK+OvBI+R/EYAuq2MAADFLvfGdahZc+03Byy+4wcVGZmYLa6dCSzgY+Rc+PhWvbxr2bGeNf77YBf3b25vZuicwobRgikorsP1sInwiFmB4+SUo13O/zPnLraAQ8wCPwcCYNYBrHzNb+mwKS8vx9YUUfHEuGQWl3HrCAV0csWxcZ3Rsq2y6gsuKgZw/gawUIDuF+zt8GSC3M0jGhNICISL8/EcG1h+Lw9/y9+I90X5oSvmwWZ8DAMg/shyKmK+B8mLuhG5BwKiVgK2n2Ww2lod5JfjP6QR8/3saKrQEAZ+HV/u6YUGAN9pYSZ6dQU0UazgBZN19IobsVO5v7n0ATz3Wc04Bbv0MgphQWhi30zX48Egsfk/NQgA/Ev8VbwEfhPxRH8Fq6FsAKkcPl2cDZ/4FxOwFQIBADPR7ExiyqNqvpSWSlJmPj07cwanYBwAAhViAucM64H+HeEEufspLRwTkP6hBDJV/i7JqKKEKYivAzhOw9QLsvAC/YMDecBFvJpQWQlZBKTb/Go+9v9+DloBuovv4UbwK4opCoO//omD4GiiVXBPFYJh9RgxwaiVwN5z7LrUBhi7mRCNs4C90M3L17mP8+/gdxKTlAAA6KMvwgV8Jhlmlg58RDTxK4GqHssK6sgEUbTkR6MSg+2vXHpDbc16POmBCsXDKKrT49sqf+ORUAnKLywEA07opsO7hOxBq/gQ8hwAzDqGguLRmoQDcL27SaeDUCiAzlguzcQdGrQK6TgGeMQfcbBRmARkxoPRoZNy5AkqPgis9qDktjw+ybocKGy+UqjxQpHBHvtwNOdJ2yJY4I5dkKCgprzwqUFhajoJS7nNByZPPhaXlCH3dr5r7vD7PGnsz38xcTHyED3++jcRMbjyVr7MKH77kjb4X/xfQ/Mk97K/sAgQiAHVsE8fjAZ0CgA4jgOg9wNl1QM494OAc4HIoMGYt4Fn7pkPNQmEWkBENpEc/+ZvzJwCAB8ClStI0OCKmwhO3tF54IOuIVHJEcqkdctU8QP10xprKw3hyisoaeBEcTCjNxL3HhfjX0Vj8Wtk+t1OIsXiMD6b1dYPgxFIg5TwgUgCv7QUUnAtVJBLpN0GqbT8S8AWA3wyg2xTg8udAxFYg/QYQNh7wHgeM/hBo41PzuaakDlFUw9YTcOkNOPcCXHoBzj2hIiX+CE9CWEQqSvO11U4R8HlQiAVQSISQiwVQSoSQi4VQSHRhQiglAoMwhfhJWu9GvoxlTa8mpqCkHJ+HJ+GrCykoLddCwOfhf/w9sGCUNzfEI3IX8PM7XOJp3wFdXmpcgfmZQPgGIDIMoAqAJwD8/gcYvhywcmxYnkRAUTaQpwby0oHcDCCv8sjNADJvc7VZTdh6VYqhl14UkFXfWElHZl4x0rIKDR50hUQIiZBv8uWrWB/FAiAi/BSdjg3H70Cdy7l0B3d0wMoJvk9+3f68DOyaAGjLgBHvA8Nq3km3QTxMAH5bDcQf5b6LFMCgd4GB8wBxlb5OWXHlQ1+LCHSfdW7puqinKMwNE4qZuXVfg9VHbuP6n9yQdDc7GT4Y74sxvo5PfhVz0oCvRgAFDwHfycArYdW8NFqtFnFxcQC4rdyetUhbjaRGAL9+wDXHAEDpBDh1eyKCZ7lZqyKzBaxcACsnQOX85LN9B4sXRU0woZiJotIKfPjzbey7ngYiQCYSYN7Ijpgz2AtSUZWBgaWFwI5AQP0H4NQdmH3S8Fe+koKCgtq9XvVBqwVu/wicXlNzv0EoBaycuUPlXPNnKydAZLnDZhoC83qZic/Dk7D3WhoAYHIvFywb1wVO1lLDRETAT29zIpE7AK/uqVEkJoXPB7q/DHSZAMQe4ZpRVWsEme0z3zk87zChmJDf4jIBAGsnd8OMAR41J7qwGbh9COCLgGnfcu7g5kIoAXq80nzltSIs9K1UyyMztxhxGbng8YAXuznVnOjOUW4ICgCM3wx4+DefgYxGwYRiIs4nchOWurtaw15ZwzCSB7HAj29yn/u9CfSZ2XzGMRoNE4qJOJfwEAA3oaoahVnA968Cpfnc8JTAfzezdYzGwoRiAiq0hIuJnFCG+TwllIoyYP//cN4mGw9g6u7K4SmMlgTrzJuAm/c1yC4sg5VEiF5uNoaRJ/8JpF4AxEpueEo9hsOLRCIsXrxY/5lhPphQTMC5eK42GdTRwXAxuMgw4Pf/cp+n/Bdw9K1XvmKxGJs2bTKRlYzGwJpeJuB8ZbNrqHeVZtefl4GjXG2AkR8AncebwTKGqWA1SiPRFJYh6h43VGWotwMXmJMG7Ps7N4ar6xRgyOIG5a3VanHvHjfY0N3dvWFDWBgmgQmlkUQkP4KWuKVL29nKgdICYO9rQOEjwKkHMCm0wW+9i4qK4OXlBYBtJGRu2E9UI9H1T4Z2asMNTzn8NqC+CSjaVA5PaX3Liz6PMKE0AiLS90+G+bQBor4BYg9XGZ7CdjduLTRKKBs2bACPx8OCBQv0YcXFxQgJCYG9vT2USiWCgoLw4EEtc6JbOImZ+cjQFEMi5KO/lx1w8wAXMXwp4D7AvMYxTEqDhXLt2jV8+eWX6NGjh0H4P/7xD/z88884cOAAzp07h/T0dEyZMqXRhloi5yvfxvdvbw9pRT7w5yUuoluQGa1iNAUNEkp+fj6mT5+Or776Cra2TybraDQafP3119iyZQtGjhyJPn36YOfOnbh06RKuXLliMqMthSfDVhy4FVG05YCDN7dcDqNV0SChhISEYPz48QgICDAIj4yMRFlZmUF4586d4e7ujsuXL9eYV0lJCXJzcw2OlkBRaQWupnCzA4f7tAESTnIR3oFmtIrRVNTbPbx3717cuHED165dqxanVqshFothY2NjEO7o6Ai1utqaMwCA9evX48MPP6yvGWbnSspjlJZr4WojQwd7GZD4KxfhPdZkZQiFQrz99tv6zwzzUa+7n5aWhnfffRenTp2CVCp99glGsHz5cixcuFD/PTc3F25ulu8t0ruFvR3Aux/JzT2XWgNu/U1WhkQiQWhoqMnyYzScejW9IiMjkZmZCT8/PwiFQgiFQpw7dw7btm2DUCiEo6MjSktLkZOTY3DegwcP4ORU82QmiUQClUplcLQE9G5h7zZAwgkusONoNjK4lVKvGmXUqFG4efOmQdisWbPQuXNnLF26FG5ubhCJRDh9+jSCgjjPT3x8PO7duwd//9Yzmy8tqxB3HxZAwOdhYEcH4Lyuf2K6ZhfAvad59IibEObg4GDyda0YxlMvoVhZWaFbt24GYQqFAvb29vrwOXPmYOHChbCzs4NKpcL8+fPh7++PAQNaz3sFXW3i524DVXHlAnA8PtBxlEnLKSwsRNu2bQGwISzmxuQ9xE8++QR8Ph9BQUEoKSlBYGAgPv/8c1MXY1YMhq3ovF1uA1rE1guMhtFooYSHhxt8l0qlCA0NbbWd0LIKLS4lPwZQOWwlvLJ/wtzCrRo21que3PgzG/kl5bBTiNHNQcAtrg0APuPMaxijSWFCqSe6t/FDOjmAn3oeqCjlVmd38DavYYwmhQmlntToFvYey1ZabOUwodSDh3kluHWfG2IzpKM9G7byHMHGRdSDi0lcbdLVRYU2eXHcZpxiJeAxqEnKEwqFCA4O1n9mmA929+vBk2ErbYCEQ1xgh5FNtsGoRCJBWFhYk+TNqB+s6WUkWi3hQuWyqdX6J4xWD6tRjOR2ei4eF5RCIRbAz7aY26cQPKDT6CYrk4hQWMhtIS2Xy9kQFjPCahQjOZfAbekwsKMDxHdPcYGufQBl2yYrs7CwEEqlEkqlUi8YhnlgQjGS8wlVm11NMwiSYbkwoRhBbnEZIisXuRveXgncDecifJhQnheYUIzgUtJjVGgJ7R0UaKe5AZQVAipXwLHbs09mtAqYUIxAv4iEgbcrkL2Nf45gQnkGRKRflmhYJwfWP3lOYUJ5BskPC3A/pwhiAR8DrNSAJg0QygCvoeY2jdGMsPcoz0BXm/TzsoNM5xZuP6xZ9lwXCAR4+eWX9Z8Z5oMJ5Rno+ifmcAtLpVIcOHCgWcpi1A1retVBcVkFrtzlZjOOcOMDf1WuZcZGCz93MKHUwe8pWSgp18JJJUUHzSUAxO15onIxt2mMZoYJpQ6euIUdwDPDIMiCggLweDzweDwUFBQ0W7mM6jCh1IGuIz+8ow2QdIYLZG7h5xImlFpIzylCYmY++DxgqCQJKM0DFG0Bl97mNo1hBphQakFXm/Rys4Hyz9+4QO8xANtw9LmE/ddrQe8W7tQGiD/OBbJm13MLE0oNlFdocTGJG1Y/2ikXyE4BBGKg/XDzGsYwG0woNRCdloO84nLYyEXorKncbs5zMCCxMq9hDLPB3szXgK7ZNbijA/iJurfxzb8SpEAgwIsvvqj/zDAfTCg1oOvIB3iKgVOVW+p5j2l2O6RSKY4ePdrs5TKqw5peT5FVUIo/7msAAMOFNwGqANp04ZZNZTy3sBrlKS4kPgQR0NnJCjZph7lACxnbVVFRgbKyMnOb0aIQi8Xgm8Clz4TyFLr+yXBvW+AP029gWh8KCgrQtm1b8Hg83L59m63E0gD4fD68vLwgFosblQ8TShW0WtKvtjLe5i+gOAeQ2QLt+prNpsLCQsyePRsFBQVwdHRk63vVA61Wi/T0dGRkZMDd3b1R940JpQpx6lw8yi+BXCxAl7wILrDTGEBgvtukUCgwceJEtGnTBvb29mazo6XSpk0bpKeno7y8HCJRwzeiZZ35KuhqE//29hAm6Zpd5u2f2NvbQywWQyZr+hmVrRFdk6uioqJR+TChVEG3GuR4txLg4R2AJwA6mHYD0/qiG2bPmlsNw1T3jQmlkvySclxP5Ra5G4YbXKDHQEBmYz6jGBYDE0oll5Mfo1xL8LCXw/6+bu6JZbiFGVzNcPjwYbOVz4RSia7ZFdBeDqRe5ALNMGylKnw+H/369YNEImFNLzPDhAJukTvd+5OJVvGAtgyw6wA4dDSrXTKZDLt374aTk5NJXpoxGg67+wBSHxciLasIIgEPvvm6sV0tY+7J8OHD8c477+C9996DnZ0dnJycsHr1an18amoqeDweoqOj9WE5OTng8XgIDw8HAISHh4PH4+HkyZPo3bs3ZDIZRo4ciczMTBw/fhxdunSBSqXC66+/XudLz7CwMNjY2ODw4cPo1KkTpFIpAgMDkZaWZpBu+/bt6NChA8RiMXx8fPDNN98YxCcmJmLo0KGQSqXw9fXFqVOnDOJLS0sxb948ODs7QyqVwsPDA+vXr2/YDTQSJhQ8GQTZ190GouTKf0oL6p/s2rULCoUCV69excaNG7FmzZpqD5cxrF69Gp999hkuXbqEtLQ0TJ06FVu3bsWePXtw9OhR/Prrr/j000/rzKOwsBDr1q3D7t27ERERgZycHLz66qv6+EOHDuHdd9/FokWLcOvWLcydOxezZs3C2bNnAXAvCadMmQKxWIyrV6/iiy++wNKlSw3K2LZtG44cOYL9+/cjPj4e3333HTw9Pet9vfWCLAyNRkMASKPRNFuZs3b+Th5Lf6GDPx0iWqUi+nc7orKSZiu/NvLz86lXr1508uRJys/PrzHNsGHDaPDgwQZhffv2paVLlxIRUUpKCgGgqKgofXx2djYBoLNnzxIR0dmzZwkA/fbbb/o069evJwCUnJysD5s7dy4FBgbWau/OnTsJAF25ckUfFhcXRwDo6tWrREQ0cOBAeuONNwzOe+WVV+jFF18kIqKTJ0+SUCik+/fv6+OPHz9OAOjQoUNERDR//nwaOXIkabXaWm3RUVRURLGxsVRUVFQtrj7P2nNfo5SUV+ByMrfI3RCK5AI7jgKEjRsbZCqys7Oh1WrrTNOjRw+D787OzsjMzKx3WVXz0Q2Xad++vUHYs/IVCoXo2/fJkJ/OnTvDxsYGcXFxAIC4uDgMGmS4i/KgQYMM4t3c3ODi8mTtNH9/f4P0M2fORHR0NHx8fPDOO+/g119/reeV1p/nXijXU7NRVFaBNlYSOGRw1X9L6Z/oeHpoBo/H04tL5wQgIn18bSOQq+bD4/HqzNec+Pn5ISUlBWvXrkVRURGmTp2qX6O5qaiXUNavX4++ffvCysoKbdu2xeTJkxEfH2+Qpri4GCEhIbC3t4dSqURQUBAePHhgUqNNic7bNcGTwFPfBMADOjbdBqbNTZs2bQAAGRkZ+rCqHXtTU15ejuvXr+u/x8fHIycnB126dAEAdOnSBREREQbnREREwNfXVx+flpZmYO+VK1eqlaNSqTBt2jR89dVX2LdvHw4ePIisrKymuCQA9RwUee7cOYSEhKBv374oLy/HP//5T4wZMwaxsbFQKBQAgH/84x84evQoDhw4AGtra8ybNw9TpkypdnMsBV1HfpLiFhfg1g9QtJ7BhzKZDAMGDMCGDRvg5eWFzMxMfPDBB01Wnkgkwvz587Ft2zYIhULMmzcPAwYMQL9+/QAAS5YswdSpU9G7d28EBATg559/xo8//ojffuOWhAoICIC3tzeCg4OxadMm5Obm4v333zcoY8uWLXB2dkbv3r3B5/Nx4MABODk5wcbGpsmuq15COXHihMH3sLAwtG3bFpGRkRg6dCg0Gg2+/vpr7NmzByNHjgQA7Ny5E126dMGVK1cwYMAA01luAtSaYtxR54HHA7rkVS4i0YK8XcayY8cOzJkzB3369IGPjw82btyIMWOaZmqzXC7H0qVL8frrr+P+/fsYMmQIvv76a3385MmT8Z///AebN2/Gu+++Cy8vL+zcuRPDhw8HwDUVDx06hDlz5qBfv37w9PTEtm3bMHbsk+awlZUVNm7ciMTERAgEAvTt2xfHjh1r2ndNz+zu10FiYiIBoJs3bxIR0enTpwkAZWdnG6Rzd3enLVu21JhHcXExaTQa/ZGWltakXq/CknK6+zCfIpIe0odHbpPH0l/o5U9/I1rblvN4qW83SbkNIT8/nzw8POj48eO1er0siZ07d5K1tbW5zTDAVF6vBk+00Gq1WLBgAQYNGoRu3bhNP9VqNcRicbUq0NHREWq1usZ81q9fjw8//LChZughIuQWl0OtKYY6txhqTREyNMV4kFuMDE2xPjynsHpH9vU2qcCjYsDaHWjbpdG2mAo+n49u3bpBLBazISxmpsFCCQkJwa1bt3Dx4sVGGbB8+XIsXLhQ/z03Nxdubm41pr2jzkVaVhHUmiKonxKAWlOMwlLj5hzIxQI4W0vhZC2Fp70C46BbksiyNjCVyWT44YcfkJKSwoawmJkGCWXevHn45ZdfcP78ebRr104f7uTkhNLSUuTk5BjUKg8ePICTk1ONeUkkEkgkEqPK/ce+GMRl5NaZxkYugpNKWikEWZXP3F9HaymsJMInv9BEwBbd2/iW5Ra2NGbOnImZM2ea24wmoV5CISLMnz8fhw4dQnh4OLy8vAzi+/TpA5FIhNOnTyMoKAgA5x68d+9etZdGDcHXWQWRgGcoBGsJnFQyvRikonouFKe+CeSlAyI5txokg1ED9RJKSEgI9uzZg59++glWVlb6foe1tTVkMhmsra0xZ84cLFy4EHZ2dlCpVJg/fz78/f1N4vH6eKIXIFaadkV53b6M7UcAIqnp8jUBhYWFGD16NFavXg13d3dzm/NcUy+hbN++HQD0rjwdO3fu1Fe5n3zyCfh8PoKCglBSUoLAwEB8/vnnJjEWP8wC7p4DrNsBNu6Vh0eVz+6AlRPAr0etklC5Ur2P5TW7iAj3799v9HxvRuOpd9PrWUilUoSGhiI0NLTBRtWK5i9urkh2CnfUBF9Ys5Cs3bi/KpcnQsrPBO5Xju/q1PxLpjJaDi1ruaL/i+D6Ezn3Ko+0yr9/cn9z7wPaciA7lTtqgi8EVK6caHS49OZqIgajFlqWUATCJzVFTWgrgLyMKkLSiahSULoaKedP7tBh5im/DMunZQnlWfAFXLPLuh23gsrTaCuAPHWlaNI4sZSXAAPean5bGS2K1iWUZ8EXANau3IHGu6sZpuP8+fPYtGkTIiMjkZGRgUOHDmHy5MnmNksPe91rwfB4PHTs2LFRS4G2FAoKCtCzZ8+mcQKZgOerRmlhyOVy/PLLL0hJSWnQjltEhKIy87iWZSJBvcanjRs3DuPGWW5fkQmlFVNUVgHflSfNUnbsmkDIxa3n8WJNLwbDCFqP5FshhYWFmDhxIpYvX96gISwykQCxa8wzEU1W3zF3Fg4TigVDREhKSmrwdnQ8Hq9VNX/MCWt6MRhGwH5uGBZBfn4+kpKS9N9TUlIQHR0NOzs7ixg5zYTCsAiuX7+OESNG6L/rZr0GBwcjLCzMTFY9gQmFYREMHz7cqNHp5oL1URgMI2BCsWB4PB5cXV0b9FaeYVqYUCwYuVyO06dPo127dkwsZoYJhcEwAiYUBsMImFAsmKKiIrz88svIyMiwiO0WnmeYUCwYrVaLW7duobS01KJdp88DTCgMhhEwoTAYRsCEwmAYARMKw+xUVFRgxYoV8PLygkwmQ4cOHbB27VqL6pexsV4Ms/PRRx9h+/bt2LVrF7p27Yrr169j1qxZsLa2xjvvvGNu8wAwoVg8tra2Dd8bhQgoKzStQcYikhu918ylS5cwadIkjB8/HgDg6emJ77//Hr///ntTWlgvmFAsGIVCgcuXLzd4FRaUFQL/dnl2uqbgn+mAWGFU0oEDB+K///0vEhIS4O3tjZiYGFy8eBFbtmxpYiONhwmFYXaWLVuG3NxcdO7cGQKBABUVFVi3bh2mT59ubtP0MKG0ZkRy7pfdXGUbyf79+/Hdd99hz5496Nq1K6Kjo7FgwQK4uLggODi4CY2sBybcgNUk1Gen1tZOYWEhvfLKK3TmzBkqKCgwtzlNRrt27eizzz4zCFu7di35+Pg0Om9T7QrM3MMWjFarxe+//46SkhKLcpWamsLCwmoOC4FAYFHj21jTi2F2JkyYgHXr1sHd3R1du3ZFVFQUtmzZgtmzZ5vbND1MKAyz8+mnn2LFihV4++23kZmZCRcXF8ydOxcrV640t2l6mFAYZsfKygpbt27F1q1bzW1KrbA+CoNhBEwoDIYRMKFYODKZrF77jDCaBiYUC0ahUCAqKgru7u5sFRYzw4TSQmjN71GaElPdNyYUC0e3f2NhoZlGAbdwSktLAaDRNTJzD1swxcXFCAoKwrBhw/DSSy8B4BbFY30W49BqtXj48CHkcjmEwsY96jyysDo9NzcX1tbW0Gg0UKlU5jbHrBQUFECpVILH4yElJYXVKg2Az+fDy8sLYrG4Wlx9njVWo7QAiAgODg6QSqUN3n3reUUsFjd84lsVmFBaEAKBgHm/zESTdeZDQ0Ph6ekJqVSK/v37W9S0TgajvjSJUPbt24eFCxdi1apVuHHjBnr27InAwEBkZmY2RXEMRpPTJELZsmUL3njjDcyaNQu+vr744osvIJfLsWPHjqYojsFockzeRyktLUVkZCSWL1+uD+Pz+QgICMDly5erpS8pKUFJSYn+u0ajAcB5JJ53CgoK9J9zc3NRUVFhRmtaH7pnzBjHr8mF8ujRI1RUVMDR0dEg3NHREXfu3KmWfv369fjwww+rhbu5uZnatBaNi4uZVlN5DsjLy4O1tXWdaczu9Vq+fLl+B1iAe0mUlZUFe3v7FvtiLTc3F25ubkhLS3tu3gW1xGsmIuTl5Rn1I2RyoTg4OEAgEODBgwcG4Q8ePICTk1O19BKJBBKJxCDMxsbG1GaZBZVK1WIeGlPR0q75WTWJDpN35sViMfr06YPTp0/rw7RaLU6fPg1/f39TF8dgNAtN0vRauHAhgoOD8cILL6Bfv37YunUrCgoKMGvWrKYojsFocppEKNOmTcPDhw+xcuVKqNVq9OrVCydOnKjWwW+tSCQSrFq1qlqTsjXT2q/Z4gZFMhiWCJuPwmAYARMKg2EETCgMhhEwoTAYRsCEAmD16tXg8XgGR+fOnfXxxcXFCAkJgb29PZRKJYKCgqq9UL137x7Gjx8PuVyOtm3bYsmSJSgvLzdIEx4eDj8/P0gkEnTs2BFhYWHVbGmq6Qnnz5/HhAkT4OLiAh6Ph8OHDxvEExFWrlwJZ2dnyGQyBAQEIDEx0SBNVlYWpk+fDpVKBRsbG8yZMwf5+fkGaf744w8MGTIEUqkUbm5u2LhxYzVbDhw4gM6dO0MqlaJ79+44duxYvW1pdhq9rn4rYNWqVdS1a1fKyMjQHw8fPtTH/9///R+5ubnR6dOn6fr16zRgwAAaOHCgPr68vJy6detGAQEBFBUVRceOHSMHBwdavny5Ps3du3dJLpfTwoULKTY2lj799FMSCAR04sQJfZq9e/eSWCymHTt20O3bt+mNN94gGxsbevDgQaOv8dixY/T+++/Tjz/+SADo0KFDBvEbNmwga2trOnz4MMXExNDEiRPJy8vLYLuEsWPHUs+ePenKlSt04cIF6tixI7322mv6eI1GQ46OjjR9+nS6desWff/99ySTyejLL7/Up4mIiCCBQEAbN26k2NhY+uCDD0gkEtHNmzfrZUtzw4RCnFB69uxZY1xOTg6JRCI6cOCAPiwuLo4A0OXLl4mIewj5fD6p1Wp9mu3bt5NKpaKSkhIiInrvvfeoa9euBnlPmzaNAgMD9d/79etHISEh+u8VFRXk4uJC69evb/Q1VuVpoWi1WnJycqJNmzbpw3JyckgikdD3339PRESxsbEEgK5du6ZPc/z4ceLxeHT//n0iIvr888/J1tZWf81EREuXLjXY52Tq1Kk0fvx4A3v69+9Pc+fONdoWc8CaXpUkJibCxcUF7du3x/Tp03Hv3j0AQGRkJMrKyhAQEKBP27lzZ7i7u+unDVy+fBndu3c3eKEaGBiI3Nxc3L59W5+mah66NLo8dNMTqqapa3qCKUlJSYFarTYo29raGv379ze4RhsbG7zwwgv6NAEBAeDz+bh69ao+zdChQw0WcggMDER8fDyys7P1aeq6D8bYYg6YUAD0798fYWFhOHHiBLZv346UlBQMGTIEeXl5UKvVEIvF1QZqOjo6Qq1WAwDUanWN0wp0cXWlyc3NRVFRUZ3TE3R5NBW6/OsqW61Wo23btgbxQqEQdnZ2JrkPVeOfZYs5MPswe0tg3Lhx+s89evRA//794eHhgf3790Mmk5nRMoalwGqUGrCxsYG3tzeSkpLg5OSE0tJS5OTkGKSpOm3AycmpxmkFuri60qhUKshksnpPTzAluvzrKtvJyanamgfl5eXIysoyyX2oGv8sW8wBE0oN5OfnIzk5Gc7OzujTpw9EIpHBtIH4+Hjcu3dPP23A398fN2/eNHiQTp06BZVKBV9fX32aqnno0ujyMOf0BC8vLzg5ORmUnZubi6tXrxpcY05ODiIjI/Vpzpw5A61Wi/79++vTnD9/3mDtsVOnTsHHxwe2trb6NHXdB2NsMQtmcyNYEIsWLaLw8HBKSUmhiIgICggIIAcHB8rMzCQizj3s7u5OZ86coevXr5O/vz/5+/vrz9e5h8eMGUPR0dF04sQJatOmTY3u4SVLllBcXByFhobW6B6WSCQUFhZGsbGx9Oabb5KNjY2BN62h5OXlUVRUFEVFRREA2rJlC0VFRdGff/5JRJxL1sbGhn766Sf6448/aNKkSTW6h3v37k1Xr16lixcvUqdOnQzcwzk5OeTo6EgzZsygW7du0d69e0kul1dzDwuFQtq8eTPFxcXRqlWranQPP8uW5oYJhTg3rbOzM4nFYnJ1daVp06ZRUlKSPr6oqIjefvttsrW1JblcTn/7298oIyPDII/U1FQaN24cyWQycnBwoEWLFlFZWZlBmrNnz1KvXr1ILBZT+/btaefOndVs+fTTT8nd3Z3EYjH169ePrly5YpJrPHv2LAGodgQHBxMR55ZdsWIFOTo6kkQioVGjRlF8fLxBHo8fP6bXXnuNlEolqVQqmjVrFuXl5RmkiYmJocGDB5NEIiFXV1fasGFDNVv2799P3t7eJBaLqWvXrnT06FGDeGNsaW7YMHsGwwhYH4XBMAImFAbDCJhQGAwjYEJhMIyACYXBMAImFAbDCJhQGAwjYEJhMIyACYXBMAImFDMyfPhwLFiwwNxm6LE0eywJJpQWTmlpqblNeD4w60iz55jg4OBqAxSTkpJo9uzZ5OnpSVKplLy9vWnr1q3Vzps0aRL961//ImdnZ/L09CQiblRuz549SSKRUJ8+fejQoUMEgKKiovTn3rx5k8aOHUsKhYLatm1Lf//73/WLaNRkT0pKSnPdDouHCcVM5OTkkL+/P73xxhv6lV+Ki4tp5cqVdO3aNbp79y59++23JJfLad++ffrzgoODSalU6oey37p1izQaDdnZ2dHf//53un37Nh07doy8vb0NhJKdna0f+h8XF0c3btyg0aNH04gRI2q1p7y83By3xiJhQjEjw4YNo3fffbfONCEhIRQUFKT/HhwcTI6OjgYrnWzfvp3s7e0N5mt89dVXBkJZu3YtjRkzxiDvtLQ0AqAfwm6MPc8rbM68hREaGoodO3bg3r17KCoqQmlpKXr16mWQpnv37gYrncTHx6NHjx6QSqX6sH79+hmcExMTg7Nnz0KpVFYrMzk5Gd7e3qa9kFYGE4oFsXfvXixevBgff/wx/P39YWVlhU2bNumXA9KhUCjqnXd+fj4mTJiAjz76qFqcs7Nzg21+XmBCMSNisdhgS+yIiAgMHDgQb7/9tj4sOTn5mfn4+Pjg22+/RUlJiX4jn2vXrhmk8fPzw8GDB+Hp6QmhsOZ/+9P2MJ7A3MNmxNPTE1evXkVqaioePXqETp064fr16zh58iQSEhKwYsWKag98Tbz++uvQarV48803ERcXh5MnT2Lz5s0AoN9ZOSQkBFlZWXjttddw7do1JCcn4+TJk5g1a5ZeHE/bo9Vqm+7iWxhMKGZk8eLFEAgE8PX1RZs2bRAYGIgpU6Zg2rRp6N+/Px4/fmxQu9SGSqXCzz//jOjoaPTq1Qvvv/8+Vq5cCQD6fouLiwsiIiJQUVGBMWPGoHv37liwYAFsbGzA5/NrtEe3WiaDbU3Xavnuu+8wa9YsaDQatoifCWB9lFbC7t270b59e7i6uiImJgZLly7F1KlTmUhMBBNKK0GtVut3YXZ2dsYrr7yCdevWmdusVgNrejEYRsA68wyGETChMBhGwITCYBgBEwqDYQRMKAyGETChMBhGwITCYBgBEwqDYQT/DwfJpI1Cppr9AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_monitoring_metric('total_cpu_util_max', component='stream').max()*100\n",
+ "plot_metric(df, \"SUT Max CPU Core\", peak_benchmark)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Maximum RAM"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 81,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOQAAADsCAYAAABkBArgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqYElEQVR4nO3de1xUdd4H8M+Z+wwwDApyi5sXVBAFLyCWqclK6pa1lmypS7qruVqbL69Zqe3TBctyLWNdn90Au3rZ0i5ruKagqWiCQAooqaA+ykXTYQSG28z3+YM4Mg4iIDCDfN+v1wjn/L5zzu+M8+GcObcRiIjAGLMLElt3gDF2EweSMTvCgWTMjnAgGbMjHEjG7AgHkjE7woFkzI5wIBmzIxxIxuwIB5IxO8KBtJErV67gz3/+M3x9faFUKuHh4YHo6GgcOnRIrBEEATt37rR67jPPPIPHHnsMhYWFEASh2UdSUlKT8/f394cgCNiyZYtVW3BwcLPPbS/PPPOM2E+5XI6AgAAsW7YMVVVVVrX/93//B4VCgUGDBjU5rYbpHDlyxGJ8dXU1evbsCUEQkJqa2hGL0a44kDYydepUZGZmYvPmzcjPz8fXX3+NsWPH4pdffmnxNHx8fFBUVCQ+Fi9ejODgYItxMTExzT4/MTHRYtyRI0dQXFwMBweHNi9bazz88MMoKirCuXPn8Le//Q2bNm3C6tWrreqSkpIwbdo0GAwGHD16tMlpNbU8O3bsgKOjY4f0vSNwIG1Ar9fjhx9+wFtvvYVx48bBz88P4eHhWLFiBR599NEWT0cqlcLDw0N8ODo6QiaTWYxTq9W3ff706dOxf/9+XLx4URyXkJCA6dOnQyaTWdSuW7cOISEhcHBwgI+PD+bPn4/y8nKxffbs2Rg8eDCqq6sBADU1NQgLC8Mf/vCHZpehYevAx8cHjz32GKKiorBnzx6LGiJCYmIiZs6ciaeffhoffvhhk9OKjY3Fli1bYDQaLZYnNja22T7YEw6kDTg6OsLR0RE7d+4U38C24O7ujujoaGzevBkAUFlZia1bt2L27NlWtRKJBO+//z5ycnKwefNm7Nu3D8uWLRPb33//fVRUVODFF18EALz88svQ6/X44IMPWtyfkydP4vDhw1AoFBbjU1JSUFlZiaioKMyYMQNbtmxBRUWF1fOHDRsGf39/fPHFFwCACxcu4MCBA5g5c2aL+2BrHEgbkMlkSEpKwubNm6HT6XD//ffjpZdewk8//dTpfZk9ezaSkpJARPj3v/+NPn36IDQ01Kpu4cKFGDduHPz9/fHQQw/h9ddfx7Zt28R2R0dHfPLJJ4iPj8eqVauwfv16fPzxx9Bqtc3O/9tvv4WjoyNUKhVCQkJQWlqKpUuXWtR8+OGH+P3vfw+pVIpBgwahd+/e2L59+22XJyEhAUD9Zu6kSZPg5ubWylfFdjiQNjJ16lRcvnwZX3/9NR5++GGkpqZi6NChHb4j5VaTJ09GeXk5Dhw4gISEhCbXjgDw/fffY/z48fD29oaTkxNmzpyJX375BZWVlWJNZGQklixZgtdeew2LFy/GAw88cMf5jxs3DllZWTh69ChiY2Mxa9YsTJ06VWzX6/X48ssvMWPGDHHcjBkzbrvZOmPGDKSlpeHcuXNISkq67fLYKw6kDalUKvzmN7/BypUrcfjwYTzzzDMWOzScnJxQVlZm9Ty9Xg9nZ+d26YNMJsPMmTOxevVqHD16FNOnT7eqKSwsxG9/+1sMHjwYX3zxBTIyMhAfHw+g/rNiA7PZjEOHDkEqleLMmTMtmr+DgwP69u2LIUOGICEhAUePHrUI22effYaqqipERERAJpNBJpNh+fLlOHjwIPLz862m17NnT/z2t7/FH//4R1RVVWHixImtfUlsigNpR4KCgiw+G/Xv3x8ZGRkWNSaTCdnZ2QgMDGy3+c6ePRv79+/HlClT4OLiYtWekZEBs9mMd999FyNHjkRgYCAuX75sVbd27VqcOnUK+/fvR3JystUezzuRSCR46aWX8Morr4g7Zj788EMsXrwYWVlZ4iM7OxujR48WN02bWp7U1FT84Q9/gFQqbVUfbI5Yp7t69SqNGzeOPv74Y8rOzqZz587Rtm3byN3dnWbPni3WffbZZ6RWqyk+Pp7y8/MpMzOTZs+eTc7OzlRcXGw13dWrV9OQIUNa1Ac/Pz/629/+ZtGnyspKcdjZ2ZkSExOJiCgrK4sA0Pr16+ns2bP00Ucfkbe3NwGg69evExHR8ePHSaFQ0Ndff01ERJs2bSInJyc6e/bsbfsQGxtLU6ZMsRhXW1tL3t7etHbtWsrMzCQAlJeXZ/Xcv//97+Th4UG1tbVERASAduzYQUREZrOZrly5QtXV1UREdP36dQJAKSkpLXptbIkDaQNVVVX04osv0tChQ8nZ2Zk0Gg3179+fXnnlFYtQEBF9+umnNGzYMHJyciJ3d3eaNGkSZWdnNznduwnkrRoHkoho3bp15OnpSWq1mqKjo+mjjz4SA2k0GikoKIjmzp1rMY1HH32URo0aRXV1dU3Oo6lAEhHFxcWRm5sb/elPf6KgoKAmn1tUVEQSiYS++uorIrIM5K26UiAFIr7JFWP2gj9DMmZHOJCM2REOJGN2hAPJmB3hQDJmRziQjNkR2Z1L7k1msxmXL1+Gk5MTBEGwdXfYPYyIcOPGDXh5eUEiaX4d2G0DefnyZfj4+Ni6G6wbuXjxIu67775ma7ptIJ2cnADUv0h3ukSIsbthMBjg4+Mjvuea020D2bCZqtVqu30gTSYTfvjhBwDA6NGju94J2V1ESz4addtAspuqqqowbtw4AEB5eXmn3U+HWeO9rIzZEQ4kY3aEN1m7ueo6E77PLRGHZ/zrCAS5CiYCTGYzTGbAbCaYiMSfdSaCmQgm882f4oMIZjNgIoJUEKCSS6BWSKGWS6GSS6FRSC2G1XJpk+1im/zmsEougVImgUIqhVwmQCGVQCGTQC6VQCGVQCLp+MNXRIQakxk1dWbUmgi1v/7eMM7VUQk3J2Wbp8+B7IZMZkLa2V/wdfYlfHeyGGWGm7dzzDivh0Shap/5oP7Na6iqa4epNVwlePvQyaVCfThl9QGVS38NcENoG8b/+lMqAepMNwNWYzKLAas1URPj6sc358WJAzBvTJ82LyUHspsgImRd1OPr7Mv49qciXLlRDSdUYpgkH5GaPMz7te5H19fgqJICIPGtX/+zflgAARB+/fnrsNC4DmIbiEBkBpnNAJlBZBbHweJBEMhcPw/xJ0GAGQIIUpjF5aiBDLUkq/+JX3+SFLW/DtdChpo6GWpqGw03tNEtw5CiDjLUkaT+JySogxR1kMIEKWohhenWNolUrKkjKUgiAyQyCFIZBKkCTibPu/p/4kDe434uuYGvsi7j6+zLMF67jBGSU5gvOY1I1WkE4gIkMKOihsRAOpWfg0ON/Z65pEAdFEIdLPYD20t3TQBkKwEMbfMkOJD3oIvXKvFN9iUcO54B12sZGCGcxmbJKQSoSqyLXQIg94rA2y+UASoXyGOfABRy3FztWa4nYXEsrQU1grR+WJA0+tnogVvbmqkhM2CuBUw1gKnh5+1+v2VcXXXT48119dM01wGmukbDplvamxtu9FDe+eB/cziQ94irhkqkpR1AyckUeOgzMVVyGvMFPSC/WUMQILgHA76RgF8k4DsK0HpCAWDpk7bqOWuMA9lV1VWjsuBHnM34HubCQwgw5uAR4debFv96oo1JkIG8wiDzvx/wGwXBJwJQ62zWZXZnHMiuwmyC+XI2rp74L+p+ToHr9ePQUA1CGtoFoFJQ45pLKJwHPAinwAch9R4GyG//ZTsNTCYTjh8/DgAYOnQonzpnQxxIe0UE89UzKM5KRk1+Ctx++REO5hvo1ajkKmmRKw8G+USi74gJ8O4/Ahpp6/9Lq6qqEB4eDoBPnbM1DqQdqdNfxuXMZBhPp8DtShp6mK7Aq1H7DVLjGIJwySUc0j5jMThsJEZ7O/P1nPcQDqQN1VZcx4XMPag8tQ89Sg7Du/Y8fBu1V5MM2QjERV040HssAoY8gNE+PSGX8hmP9yoOZCeqqTKiICsFN3K/h3PxYQRUn0Yf4eZBbzMJOAV/nHceAXPAGPiEjsdQX3eEcwC7DQ5kEzJ2vAd1/s76ARL/EZF47oq1290HXmquQUBNPvoLN78tCgJwHh4ocBqBOr/R8A6LRv8APwR1wjmZzD5xIJtQc+UshhmPt/+EBeAqdDjnOAw1vqPhHhqNPn0Hwo8DyH7FgWxCj/AYHCoYeMu5nPW/NHGeCiAIlud7Nj5RRTx5RYIevYfCb8AwuN7hRkes++JANqF/6P3oH3q/rbvRaeRyufhFsXK5/A7VrCN122+/MhgMcHZ2RllZWbe/pw7rWK15r/G2E2N2hDdZGcxmM/Ly8gAAAwcOvOPNfFnH4UAyGI1GDBo0CACfOmdr/KeQMTvCgWTMjnAgGbMjHEjG7MhdBXLNmjUQBAELFy4Ux1VVVWHBggXo2bMnHB0dMXXqVJSUWN7L5cKFC5g8eTI0Gg169eqFpUuXoq7O8laBqampGDp0KJRKJfr27YukpCSr+cfHx8Pf3x8qlQoRERH48ccf72ZxGLM9aqMff/yR/P39afDgwfTCCy+I4+fNm0c+Pj60d+9eSk9Pp5EjR9KoUaPE9rq6Oho0aBBFRUVRZmYm7dq1i1xdXWnFihVizblz50ij0dCiRYsoNzeXNmzYQFKplJKTk8WaLVu2kEKhoISEBMrJyaE5c+aQTqejkpKSFvW/rKyMAFBZWVlbX4J7Rnl5OaH+XHkqLy+3dXfuOa15r7UpkDdu3KB+/frRnj17aMyYMWIg9Xo9yeVy2r59u1ibl5dHACgtLY2IiHbt2kUSiYSKi4vFmo0bN5JWq6Xq6moiIlq2bBkFBwdbzDMmJoaio6PF4fDwcFqwYIE4bDKZyMvLi+Li4lq0DBzIm6qrq2nJkiW0ZMkS8f+AtZ/WvNfatMm6YMECTJ48GVFRURbjMzIyUFtbazF+wIAB8PX1RVpaGgAgLS0NISEhcHd3F2uio6NhMBiQk5Mj1tw67ejoaHEaNTU1yMjIsKiRSCSIiooSa25VXV0Ng8Fg8WD1FAoF1q5di7Vr10KhUNi6O91aq08M2LJlC44fP45jx45ZtRUXF0OhUECn01mMd3d3R3FxsVjTOIwN7Q1tzdUYDAYYjUZcv34dJpOpyZpTp0412e+4uDj89a9/bfmCMmYDrVpDXrx4ES+88AI+/fRTqFTt8/0PnWXFihUoKysTHxcvXrR1l+yG2WxGYWEhCgsLYTab7/wE1mFatYbMyMhAaWkphg69eat0k8mEAwcO4IMPPsDu3btRU1MDvV5vsZYsKSmBh4cHAMDDw8Nqb2jDXtjGNbfumS0pKYFWq4VarYZUKoVUKm2ypmEat1IqlVAq2/6tRPcyo9GIgIAAAHzqnK21ag05fvx4nDhxAllZWeJj+PDhmD59uvi7XC7H3r17xeecPn0aFy5cQGRkJAAgMjISJ06cQGlpqVizZ88eaLVaBAUFiTWNp9FQ0zANhUKBYcOGWdSYzWbs3btXrGGsS7rbPUiN97IS1R/28PX1pX379lF6ejpFRkZSZGSk2N5w2GPChAmUlZVFycnJ5Obm1uRhj6VLl1JeXh7Fx8c3edhDqVRSUlIS5ebm0ty5c0mn01nsvW0O72W9iQ97dKwOP+zR2K2BNBqNNH/+fHJxcSGNRkOPP/44FRUVWTynsLCQJk6cSGq1mlxdXWnx4sVUW1trUZOSkkKhoaGkUCiod+/elJiYaDXvDRs2kK+vLykUCgoPD6cjR460uN8cyJs4kB2rNe81vmMA3zEAFRUVcHR0BMCfITsC3zGAsS6KA8mYHeE7BjDIZDLMnz9f/J3ZDr/6DEqlEvHx8bbuBgNvsjJmV3gNyUBEuHr1KgDA1dWVv97OhjiQDJWVlejVq/6rYPmwh23xJitjdoQDyZgd4UAyZkc4kIzZEQ4kY3aEA8mYHeHDHgwymQyxsbHi78x2+NVnUCqVTd6ImnU+3mRlzI7wGpKBiFBZWQkA0Gg0fOqcDfEakqGyshKOjo5wdHQUg8lsgwPJmB3hQDJmRziQjNkRDiRjdoQDyZgd4UAyZkf4OCSDVCrFE088If7ObIcDyaBSqbB9+3Zbd4OBN1kZsyscSMbsCAeSoaKiAoIgQBAEVFRU2Lo73RoHkjE7woFkzI5wIBmzIxxIxuwIB5IxO8KBZMyO8Jk6DFKpFJMmTRJ/Z7bDgWRQqVT4z3/+Y+tuMPAmK2N2hdeQzIrZbEZNTY2tu9GlyOXydtnc50AyVFRUiF/YeunSJZSUlMBsNtu4V12PTqeDh4fHXd1GkwPJANTfClIQBFy9ehVSqRQ+Pj6QSPgTTUs03Ne2tLQUAODp6dnmaXEgmUin06G6uhr33XcfNBqNrbvTpajVagBAaWkpevXq1ebNV/4TyEROTk4AAIVCYeOedE0Nf8Rqa2vbPA0OJBM1fPbhrxJom/Z43TiQjNkRDiRjjQiCgJ07d9ps/rxTh0EikWDMmDHo1asXb67aGAeSQa1WIzU1FVVVVSgoKLB1d7o13mRlLTJ27Fj85S9/wbJly9CjRw94eHjg1VdfFdsLCwshCAKysrLEcXq9HoIgIDU1FQCQmpoKQRCwe/duhIWFQa1W46GHHkJpaSm+++47DBw4EFqtFk8//XSzX4uXlJQEnU6HnTt3ol+/flCpVIiOjsbFixct6jZu3Ig+ffpAoVCgf//++Pjjjy3af/75Zzz44INQqVQICgrCnj17LNpramrw3HPPwdPTEyqVCn5+foiLi2vbC9hS1ApvvvkmDR8+nBwdHcnNzY2mTJlCp06dsqgxGo00f/586tGjBzk4ONDvfvc7Ki4utqg5f/48TZo0idRqNbm5udGSJUuotrbWoiYlJYXCwsJIoVBQnz59KDEx0ao/H3zwAfn5+ZFSqaTw8HA6evRoi5elrKyMAFBZWVnLX4B7nNFopNzcXDIajVZtY8aMIa1WS6+++irl5+fT5s2bSRAE+u9//0tERAUFBQSAMjMzxedcv36dAFBKSgoR1f+fAqCRI0fSwYMH6fjx49S3b18aM2YMTZgwgY4fP04HDhygnj170po1a27bz8TERJLL5TR8+HA6fPgwpaenU3h4OI0aNUqs+fLLL0kul1N8fDydPn2a3n33XZJKpbRv3z4iIjKZTDRo0CAaP348ZWVl0f79+yksLIwA0I4dO4iIaO3ateTj40MHDhygwsJC+uGHH+izzz5r9evXmvdaqwIZHR1NiYmJdPLkScrKyqJJkyaRr68vlZeXizXz5s0jHx8f2rt3L6Wnp9PIkSMtXqi6ujoaNGgQRUVFUWZmJu3atYtcXV1pxYoVYs25c+dIo9HQokWLKDc3lzZs2EBSqZSSk5PFmi1btpBCoaCEhATKycmhOXPmkE6no5KSkhYtCwfypvLycnJ1daXQ0FA6efLkbQP5wAMPWIwbMWIELV++nIhaF8jvv/9erImLiyMAdPbsWXHcs88+S9HR0bftb2JiIgGgI0eOiOPy8vIIgPhHedSoUTRnzhyL5z355JM0adIkIiLavXs3yWQyunTpktj+3XffWQTy+eefp4ceeojMZvNt+9JYpwfyVqWlpQSA9u/fT0REer2e5HI5bd++XaxpeKHS0tKIiGjXrl0kkUgs1pobN24krVZL1dXVRES0bNkyCg4OtphXTEyMxX9SeHg4LViwQBw2mUzk5eVFcXFxLeo7B/Km8vJyAkB+fn7NBnL+/PkW4x599FGaNWsWEbUukKWlpWJNQkICaTQai+muWrWKwsLCbtvfxMREkslkZDKZLMbrdDpKSkoiIiIXFxfx9wbr16+ngIAAq98b6PV6i0BmZGRQjx49qF+/fvT888/T7t27b9snovYJ5F19hiwrKwMA9OjRAwCQkZGB2tpaREVFiTUDBgyAr68v0tLSAABpaWkICQmBu7u7WBMdHQ2DwYCcnByxpvE0GmoaplFTU4OMjAyLGolEgqioKLHmVtXV1TAYDBYP1jpyudxiWBAE8ST0hvNeiUhsv90ZK42nIwhCs9O1paFDh6KgoACvvfYajEYjpk2bJn4HSkdpcyDNZjMWLlyI+++/H4MGDQIAFBcXQ6FQQKfTWdS6u7ujuLhYrGkcxob2hrbmagwGA4xGI65evQqTydRkTcM0bhUXFwdnZ2fx4ePj07YFZ01yc3MDABQVFYnjGu/gaW91dXVIT08Xh0+fPg29Xo+BAwcCAAYOHIhDhw5ZPOfQoUMICgoS2y9evGjR3yNHjljNR6vVIiYmBv/85z+xdetWfPHFF7h27VpHLBKAuzjssWDBApw8eRIHDx5sz/50mBUrVmDRokXisMFg4FC2I7VajZEjR2LNmjUICAhAaWkpXnnllQ6bn1wux/PPP4/3338fMpkMzz33HEaOHInw8HAAwNKlSzFt2jSEhYUhKioK33zzDb788kt8//33AICoqCgEBgYiNjYWa9euhcFgwMsvv2wxj3Xr1sHT0xNhYWGQSCTYvn07PDw8rFY47alNa8jnnnsO3377LVJSUnDfffeJ4z08PFBTUwO9Xm9RX1JSAg8PD7GmpKTEqr2hrbkarVYLtVoNV1dXSKXSJmsapnErpVIJrVZr8WDtKyEhAXV1dRg2bBgWLlyI119/vcPmpdFosHz5cjz99NO4//774ejoiK1bt4rtjz32GN577z288847CA4OxqZNm5CYmIixY8cCqN/E3rFjB4xGI8LDw/GnP/0Jb7zxhsU8nJyc8Pbbb2P48OEYMWIECgsLsWvXro69LO2OnzIbMZvNtGDBAvLy8qL8/Hyr9oadOv/+97/FcadOnWpyp07jvaGbNm0irVZLVVVVRFS/U2fQoEEW037qqaesduo899xz4rDJZCJvb2/eqdMGLdmpY08SExPJ2dnZ1t2w0ul7Wf/85z+Ts7MzpaamUlFRkfiorKwUa+bNm0e+vr60b98+Sk9Pp8jISIqMjBTbGw57TJgwgbKysig5OZnc3NyaPOyxdOlSysvLo/j4+CYPeyiVSkpKSqLc3FyaO3cu6XQ6q2Oet8OBvKmyspKGDx9OkydPppycHA5kG3V6IAE0+Wh80L7hxAAXFxfSaDT0+OOPU1FRkcV0CgsLaeLEiaRWq8nV1ZUWL17c5IkBoaGhpFAoqHfv3k2eGLBhwwby9fUlhUJB4eHhFsel7oQDaa25EwPsyb0cSIGo0X7qbsRgMMDZ2RllZWX8efJXDeeyBgQEQKVS2bo7Xc7tXr/WvNf4XFbG7AgHkqGyshL+/v4YP368XRyQ78748isGIsL58+dt3Q0GXkMyZlc4kIzZEQ4kY3aEA8mYHeFAsm7lwIEDeOSRR+Dl5WXzO8w1hQPJIAgCgoKC0LdvX1t3pcNVVFRgyJAhiI+Pt3VXmsSHPRg0Gg1ycnLu6q5zRARjramde3Znarm0VbeunDhxIiZOnNiBPbo7HEjWLoy1JgSt2t3p8839n2hoFPfO25g3WRmzI/fOnxbWZpWVlRgxYgQ8PT3x3nvvtWkaarkUuf8T3c49a9l87yUcSAYiQm5uLioqKto8DUEQ7qlNR1vhTVbG7Aj/SWPdSnl5Oc6cOSMOFxQUICsrCz169ICvr68Ne1aPA8m6lfT0dIwbN04cbrgTYWxsLJKSkmzUq5s4kKxbGTt2LOz5Jhn8GZIxO8KBZBAEAX5+fvD29rZ1V7o93mRl0Gg0KCws5C9stQO8hmTMjnAgGbMjHEgGo9GIESNG4IknnrDrPZDdAX+GZDCbzUhPT4efnx8H0sZ4DcmYHeFAMmZHOJCM2REOJOtWTCYTVq5ciYCAAKjVavTp0wevvfaa3Xx25p06rFt56623sHHjRmzevBnBwcFIT0/HrFmz4OzsjL/85S+27h4HktVzdXWFi4tL2ydABNRWtl+HWkquAVpxk6vDhw9jypQpmDx5MgDA398fn3/+OX788ceO6mGrcCAZHBwccOXKlbs7da62EnjTq3071hIvXQYUDi0uHzVqFP73f/8X+fn5CAwMRHZ2Ng4ePIh169Z1YCdbjgPJupUXX3wRBoMBAwYMgFQqhclkwhtvvIHp06fbumsAOJCsvcg19WsrW8y3FbZt24ZPP/0Un332GYKDg5GVlYWFCxfCy8sLsbGxHdTJluNAMhiNRkycOBG9evXCq6++2raJCEKrNh1tZenSpXjxxRfx+9//HgAQEhKC8+fPIy4ujgPJ7IPZbMb+/fu7xalzlZWVkEgsj/ZJpVK7+eZoDiTrVh555BG88cYb8PX1RXBwMDIzM7Fu3TrMnj3b1l0DwIFk3cyGDRuwcuVKzJ8/H6WlpfDy8sKzzz6LVatW2bprADiQrJtxcnLC+vXrsX79elt3pUl86hxjdoQDyZgd4UAyAPU3ulKr1bbuRrfHnyEZHBwcUFFRwXedswO8hmRW7vVjkR2lPV43DiQTSaX137VYU1Nj4550TZWV9Ve7yOXyNk+DN1kZqqqqMHXqVAiCgPfffx9XrlyBXC63OqOFNY2IUFlZidLSUuh0OvEPW1sI1E23TwwGA5ydnVFWVgatVmvr7thURUUFHB0dAQDXr19HSUmJ3ZxK1pXodDp4eHhAuOX6zNa813gNySzI5XL069ePN1tbSS6X39WasQEHklmRSCRQqVS27ka31OU/JMTHx8Pf3x8qlQoRERF2cysGxtqiSwdy69atWLRoEVavXo3jx49jyJAhiI6ORmlpqa27xlibdOlArlu3DnPmzMGsWbMQFBSEf/zjH9BoNEhISLB11xhrky77GbKmpgYZGRlYsWKFOE4ikSAqKgppaWlW9dXV1aiurhaHy8rKANTvAevuKioqxN8NBgNMJpMNe3PvaXiPteSARpcN5NWrV2EymeDu7m4x3t3dHadOnbKqj4uLw1//+ler8T4+Ph3Wx67Iy8sGd47rJm7cuAFnZ+dma7psIFtrxYoVWLRokThsNptx7do19OzZ0+q4UVdhMBjg4+ODixcvdptjqV1xmYkIN27caNEfuy4bSFdXV0ilUpSUlFiMLykpgYeHh1W9UqmEUqm0GKfT6Tqyi51Gq9V2mTdne+lqy3ynNWODLrtTR6FQYNiwYdi7d684zmw2Y+/evYiMjLRhzxhruy67hgSARYsWITY2FsOHD0d4eDjWr1+PiooKzJo1y9ZdY6xNunQgY2JicOXKFaxatQrFxcUIDQ1FcnKy1Y6ee5VSqcTq1autNsXvZff6Mnfbk8sZs0dd9jMkY/ciDiRjdoQDyZgd4UAyZkc4kJ3o1VdfhSAIFo8BAwaI7VVVVViwYAF69uwJR0dHTJ061erEhwsXLmDy5MnQaDTo1asXli5dirq6Ooua1NRUDB06FEqlEn379kVSUpJVXzrysrUDBw7gkUcegZeXFwRBwM6dOy3aiQirVq2Cp6cn1Go1oqKi8PPPP1vUXLt2DdOnT4dWq4VOp8Mf//hHlJeXW9T89NNPGD16NFQqFXx8fPD2229b9WX79u0YMGAAVCoVQkJCsGvXrlb3pVMR6zSrV6+m4OBgKioqEh9XrlwR2+fNm0c+Pj60d+9eSk9Pp5EjR9KoUaPE9rq6Oho0aBBFRUVRZmYm7dq1i1xdXWnFihVizblz50ij0dCiRYsoNzeXNmzYQFKplJKTk8WaLVu2kEKhoISEBMrJyaE5c+aQTqejkpKSdlnOXbt20csvv0xffvklAaAdO3ZYtK9Zs4acnZ1p586dlJ2dTY8++igFBASQ0WgUax5++GEaMmQIHTlyhH744Qfq27cvPfXUU2J7WVkZubu70/Tp0+nkyZP0+eefk1qtpk2bNok1hw4dIqlUSm+//Tbl5ubSK6+8QnK5nE6cONGqvnQmDmQnWr16NQ0ZMqTJNr1eT3K5nLZv3y6Oy8vLIwCUlpZGRPVvdIlEQsXFxWLNxo0bSavVUnV1NRERLVu2jIKDgy2mHRMTQ9HR0eJweHg4LViwQBw2mUzk5eVFcXFxd72Mt7o1kGazmTw8PGjt2rXiOL1eT0qlkj7//HMiIsrNzSUAdOzYMbHmu+++I0EQ6NKlS0RE9Pe//51cXFzE5SYiWr58OfXv318cnjZtGk2ePNmiPxEREfTss8+2uC+djTdZO9nPP/8MLy8v9O7dG9OnT8eFCxcAABkZGaitrUVUVJRYO2DAAPj6+oqXk6WlpSEkJMTixIfo6GgYDAbk5OSINY2n0VDTMI2Gy9Ya1zR32Vp7KygoQHFxscX8nZ2dERERYbGcOp0Ow4cPF2uioqIgkUhw9OhRsebBBx+EQqEQa6Kjo3H69Glcv35drGnutWhJXzobB7ITRUREICkpCcnJydi4cSMKCgowevRo3LhxA8XFxVAoFFYnvLu7u6O4uBgAUFxc3OTlZg1tzdUYDAYYjcZmL1trmEZHaphHc/MvLi5Gr169LNplMhl69OjRLq9F4/Y79aWzdelT57qaiRMnir8PHjwYERER8PPzw7Zt2/h7NRgAXkPalE6nQ2BgIM6cOQMPDw/U1NRAr9db1DS+nMzDw6PJy80a2pqr0Wq1UKvVrb5srb01zKO5+Xt4eFjdF6murg7Xrl1rl9eicfud+tLZOJA2VF5ejrNnz8LT0xPDhg2DXC63uJzs9OnTuHDhgng5WWRkJE6cOGHxZt2zZw+0Wi2CgoLEmsbTaKhpmIatL1sLCAiAh4eHxfwNBgOOHj1qsZx6vR4ZGRlizb59+2A2mxERESHWHDhwALW1tWLNnj170L9/f7i4uIg1zb0WLelLp7PJrqRuavHixZSamkoFBQV06NAhioqKIldXVyotLSWi+sMevr6+tG/fPkpPT6fIyEiKjIwUn99w2GPChAmUlZVFycnJ5Obm1uRhj6VLl1JeXh7Fx8c3edhDqVRSUlIS5ebm0ty5c0mn01nsvb0bN27coMzMTMrMzCQAtG7dOsrMzKTz588TUf2hBp1OR1999RX99NNPNGXKlCYPe4SFhdHRo0fp4MGD1K9fP4vDHnq9ntzd3WnmzJl08uRJ2rJlC2k0GqvDHjKZjN555x3Ky8uj1atXN3nY40596UwcyE4UExNDnp6epFAoyNvbm2JiYujMmTNiu9FopPnz55OLiwtpNBp6/PHHqaioyGIahYWFNHHiRFKr1eTq6kqLFy+m2tpai5qUlBQKDQ0lhUJBvXv3psTERKu+bNiwgXx9fUmhUFB4eDgdOXKk3ZYzJSWFAFg9YmNjiaj+cMPKlSvJ3d2dlEoljR8/nk6fPm0xjV9++YWeeuopcnR0JK1WS7NmzaIbN25Y1GRnZ9MDDzxASqWSvL29ac2aNVZ92bZtGwUGBpJCoaDg4GD6z3/+Y9Hekr50Jr78ijE7wp8hGbMjHEjG7AgHkjE7woFkzI5wIBmzIxxIxuwIB5IxO8KBZMyOcCAZsyMcyG5g7NixWLhwoa27IbK3/tgTDiRrkZqaGlt3oXuw2Vm0rFPExsZaneR95swZmj17Nvn7+5NKpaLAwEBav3691fOmTJlCr7/+Onl6epK/vz8R1V9BMWTIEFIqlTRs2DDasWMHAaDMzEzxuSdOnKCHH36YHBwcqFevXjRjxgzxZl5N9aegoKCzXg67x4G8x+n1eoqMjKQ5c+aId7qrqqqiVatW0bFjx+jcuXP0ySefkEajoa1bt4rPi42NJUdHR/HyppMnT1JZWRn16NGDZsyYQTk5ObRr1y4KDAy0COT169fFS8Ly8vLo+PHj9Jvf/IbGjRt32/7U1dXZ4qWxS3wLj3ucs7MzFAoFNBqNxVXwjb/ePSAgAGlpadi2bRumTZsmjndwcMC//vUv8UZS//jHPyAIAv75z39CpVIhKCgIly5dwpw5c8TnfPDBBwgLC8Obb74pjktISICPjw/y8/MRGBjYZH9YPQ5kNxUfH4+EhARcuHABRqMRNTU1CA0NtagJCQmxuKvb6dOnMXjwYKhUKnFceHi4xXOys7ORkpICR0dHq3mePXsWgYGB7bsg9xgOZDe0ZcsWLFmyBO+++y4iIyPh5OSEtWvXirdYbODg4NDqaZeXl+ORRx7BW2+9ZdXm6enZ5j53FxzIbkChUMBkMonDhw4dwqhRozB//nxx3NmzZ+84nf79++OTTz5BdXW1+IWpx44ds6gZOnQovvjiC/j7+0Mma/rtdWt/2E182KMb8Pf3x9GjR1FYWIirV6+iX79+SE9Px+7du5Gfn4+VK1daBaspTz/9NMxmM+bOnYu8vDzs3r0b77zzDgBAEAQAwIIFC3Dt2jU89dRTOHbsGM6ePYvdu3dj1qxZYghv7Y/ZbO64he9iOJDdwJIlSyCVShEUFAQ3NzdER0fjd7/7HWJiYhAREYFffvnFYm15O1qtFt988w2ysrIQGhqKl19+GatWrQIA8XOll5cXDh06BJPJhAkTJiAkJAQLFy6ETqeDRCJpsj8Nd29n/JXm7C59+umnmDVrFsrKyvhmz+2AP0OyVvnoo4/Qu3dveHt7Izs7G8uXL8e0adM4jO2EA8lapbi4GKtWrUJxcTE8PT3x5JNP4o033rB1t+4ZvMnKmB3hnTqM2REOJGN2hAPJmB3hQDJmRziQjNkRDiRjdoQDyZgd4UAyZkf+H9nhR6FdCmL6AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_monitoring_metric('total_cpu_memory', component='stream').max()\n",
+ "plot_metric(df, \"SUT Max RAM\", peak_benchmark)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Maximum Cache"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 82,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOQAAADsCAYAAABkBArgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAArZUlEQVR4nO3deVQUZ9Y/8G+zdNMtNI0i3WDYXBBBVFBB1EQdGYlhjElMNMZ4UDNqlJj4anCZRDGLg6PG18QQzeQ9ipkYt0l0kleFISguiERQiALiBsGf2qAiNPvW9/cHLzWUIDYKdCP3c06fQ9dzq55bbV+rupanJEREYIyZBDNjJ8AY+w8uSMZMCBckYyaEC5IxE8IFyZgJ4YJkzIRwQTJmQrggGTMhXJCMmRAuSPbUGDt2LBYvXmzsNJ4IF2Q7u3PnDhYsWAAXFxfIZDJoNBoEBwcjMTFRiJFIJDh48GCTeWfNmoWXXnoJubm5kEgkLb6io6Ob7d/NzQ0SiQR79uxp0ubt7d3ivG1Jq9Vi0aJF6N27N2QyGZydnTFp0iTEx8e3e9+diYWxE3jaTZkyBdXV1di5cyd69+6N/Px8xMfH4969ewYvw9nZGbdv3xbeb9y4ETExMfjll1+Eaba2ti3Ov2PHDrz++uvCtDNnzkCr1aJbt26tXKPWy83NxahRo6BSqbBhwwb4+PigpqYGsbGxCAsLw6VLl9o9h06DWLu5f/8+AaCEhIQW4wDQgQMHmkwPDQ2lyZMnN5keERFBgwcPNigHV1dXWrFiBclkMsrLyxOmz507lxYtWkS2tra0Y8cOYfpnn31GAwcOJIVCQc888wwtWLCASkpKhPbZs2eTj48PVVZWEhFRVVUVDRkyhGbOnPnQHCZOnEi9evWi0tLSJm337983uG8iolOnTtGYMWNILpeTSqWiCRMmUGFhIRERjRkzhhYtWkTh4eFkZ2dHarWaIiIimvT31ltvkb29PdnY2NC4ceMoLS3tkZ9jR+Fd1nZkbW0Na2trHDx4EFVVVUbLQ61WIzg4GDt37gQAlJeXY+/evZgzZ06TWDMzM3zxxRfIyMjAzp07cfToUSxbtkxo/+KLL1BWVoYVK1YAAD744AMUFRXhyy+/bLbvwsJCxMTEICwsrNmtsUqlMrjvtLQ0jB8/Hl5eXkhKSsKpU6cwadIk1NXVCTE7d+5Et27dkJycjPXr1+Pjjz9GXFyc0P7aa6+hoKAAR44cQWpqKvz8/DB+/HgUFhYa+Gm2M2P/j/C0++c//0l2dnZkZWVFI0eOpJUrV1J6erooBu28hfzv//5vOnjwIPXp04f0ej3t3LmTfH19iYiabCEftH//furRo4do2unTp8nS0pJWrVpFFhYWdPLkyYfOn5ycTADoxx9/NCjflvqePn06jRo16qHxY8aModGjR4umDR8+nJYvX05ERCdPniSlUils3Rv06dOHvv7661bn1x54C9nOpkyZglu3buGnn37C888/j4SEBPj5+XXIgZTGQkJCUFpaihMnTmD79u3Nbh0B4JdffsH48ePRq1cv2NjYYObMmbh37x7Ky8uFmMDAQLz//vv45JNPsHTpUowePfqh/VIrbrd9VN8NW8iWDBo0SPTe0dERBQUFAID09HSUlpaiR48ewt6LtbU1cnJycO3aNYPzbE9ckB3AysoKf/zjH7Fq1SqcPn0as2bNQkREhNBuY2OD4uLiJvMVFRW1eLCmNSwsLDBz5kxEREQgOTkZM2bMaBKTm5uLP/3pTxg0aBB++OEHpKamIioqCgBQXV0txOn1eiQmJsLc3BxXr15tsd9+/fpBIpE88sCNIX3L5fJHrqelpaXovUQigV6vBwCUlpbC0dERaWlpold2djbCw8MfueyOwAVpBF5eXigrKxPe9+/fH6mpqaKYuro6pKenw8PDo836nTNnDo4fP47JkyfDzs6uSXtqair0ej0+++wzjBgxAh4eHrh161aTuA0bNuDSpUs4fvw4YmJisGPHjof22b17dwQHByMqKkq0zg2KiooM7nvQoEFPdJrEz88PWq0WFhYW6Nu3r+hlb2//2MttU8beZ36a3b17l8aNG0f/+Mc/KD09na5fv0779u0jtVpNc+bMEeK+//57ksvlFBUVRZcvX6bz58/TnDlzyNbWlrRabZPlPs5vyMY5lZeXC+8b/4ZMS0sjALR582a6du0affvtt9SrVy8CIBwNPXfuHEmlUvrpp5+IiOjrr78mGxsbunbt2kNzuHbtGmk0GvLy8qJ//vOfdPnyZcrMzKTPP/+cPD09De47OzubpFIpLViwgNLT0ykrK4u++uorunPnDhHV/4Z87733RH1PnjyZQkNDiYhIr9fT6NGjafDgwRQbG0s5OTmUmJhIf/nLX+js2bMGfZ7tjQuyHVVWVtKKFSvIz8+PbG1tSaFQUP/+/enDDz8UFQUR0a5du2jo0KFkY2NDarWaXnjhhSYHfxo8SUE+6MGDOps2bSJHR0eSy+UUHBxM3377rVAUFRUV5OXlRfPmzRMt48UXX6SRI0dSbW3tQ/u5desWhYWFkaurK0mlUurVqxe9+OKLdOzYMYP6bpCQkEAjR44kmUxGKpWKgoODhfZHFSQRkU6no0WLFpGTkxNZWlqSs7MzzZgxQ3RKyJgkRDzIFWOmgn9DMmZCuCAZMyFckIyZEC5IxkwIFyRjJoQLkjET0qXvh9Tr9bh16xZsbGwgkUiMnQ57ihERSkpK4OTkBDOzh28Hu3RB3rp1C87OzsZOg3UhN27cwDPPPPPQ9i5dkDY2NgDqPySlUmnkbNjTTKfTwdnZWfjOPUyXLsiG3VSlUtmlC7Kurg4nT54EADz77LMwNzc3ckZPr0f9NOrSBcnqVVZWYty4cQDqb1HqiHF2WPP4KCtjJoQLkjETwruszTj7w2b4/PZph/ZJePhvi5ba2mJ5ZdX/ueGndG1vkLS+XQLxjUAPvn9Qk3h6cP5HxD9i+a3R3Pq39Jk07fvhubeUd2rPyfB/Z6fBeT6IC7IZen0drCQ1xk6jw0gk//lCWaMC3R7jP4DmF9w2i+lMnvRuRi7IZngHz8Et/0nt35Gh/3jNxLX8D69/+KL0TecrLy8HIgMAAP/v9V+gUCjqGyTi7YLIQ9sejHuwN4l49iZHHSWQtLQ8kZa3ak0/t6btErOW+pKI0iNJQ+4SUaykfiIAoL/CuoV8H40LshnWSjtYK5uOOfO0ajzWzTN9vPkoqxFxQTJYWlpi/fr1wt/MeLr0EB46nQ62trYoLi7u0hcGsPZn6HeNT3swZkJ4l5Whrq4O586dA1A/dilfOmc8XJAMlZWV8Pf3B8CXzhkb77IyZkK4IBkzIVyQjJmQVhfkzZs38eabb6JHjx6Qy+Xw8fFBSkqK0E5EWL16NRwdHSGXyxEUFIQrV66IllFYWIgZM2ZAqVRCpVLhrbfeQmlpqSjmt99+w7PPPgsrKys4OzsL58ka279/Pzw9PWFlZQUfHx8cPny4tavDmGlpzXMHCgsLydXVlWbNmkXJycl0/fp1io2NpatXrwox69atI1tbWzp48CClp6fTiy++SO7u7lRRUSHEPP/88zR48GA6c+YMnTx5kvr27UvTp08X2ouLi0mtVtOMGTPo4sWLtHv3bpLL5aKHaiYmJpK5uTmtX7+eMjMz6cMPPyRLS0u6cOGCwetTXFxMAKi4uLg1H8NTp7S0lFB/XVmzjx1nT87Q71qrCnL58uVNnlDbmF6vJ41GQxs2bBCmFRUVkUwmo927dxMRUWZmJgEQPW3oyJEjJJFI6ObNm0RE9NVXX5GdnR1VVVWJ+u7fv7/wfurUqRQSEiLqPyAggObPn2/w+nBB1uOCbH+Gftdatcv6008/YdiwYXjttdfg4OAAX19ffPPNN0J7Tk4OtFotgoKChGm2trYICAhAUlISACApKQkqlQrDhg0TYoKCgmBmZobk5GQh5rnnnoNUKhVigoODkZ2djfv37wsxjftpiGnopzlVVVXQ6XSiF6u/XC4iIgIRERF86ZyRtaogr1+/jq1bt6Jfv36IjY3FggUL8O6772Lnzvr7v7RaLQBArVaL5lOr1UKbVquFg4ODqN3CwgLdu3cXxTS3jMZ9PCymob05kZGRsLW1FV484lw9qVSKNWvWYM2aNaL/BFnHa1VB6vV6+Pn54a9//St8fX0xb948zJ07F9u2bWuv/NrUypUrUVxcLLxu3Lhh7JQYE2lVQTo6OsLLy0s0bcCAAcjLywMAaDQaAEB+fr4oJj8/X2jTaDQoKCgQtdfW1qKwsFAU09wyGvfxsJiG9ubIZDJhhLmuPtJcY3q9HhkZGcjIyIBe//B7KVn7a1VBjho1CtnZ2aJply9fhqurKwDA3d0dGo1G9Bx4nU6H5ORkBAYGAgACAwNRVFSE1NRUIebo0aPQ6/UICAgQYk6cOIGamv/ctR8XF4f+/fvDzs5OiHnwefNxcXFCP8xwFRUVGDhwIAYOHIiKigpjp9O1teZI0a+//koWFha0du1aunLlCu3atYsUCgV99913Qsy6detIpVLRv/71L/rtt99o8uTJzZ728PX1peTkZDp16hT169dPdNqjqKiI1Go1zZw5ky5evEh79uwhhULR5LSHhYUFbdy4kbKysigiIoJPezwmPsra/trltAcR0c8//0wDBw4kmUxGnp6e9Pe//13UrtfradWqVaRWq0kmk9H48eMpOztbFHPv3j2aPn06WVtbk1KppNmzZ1NJSYkoJj09nUaPHk0ymYx69epF69ata5LLvn37yMPDg6RSKXl7e9OhQ4datS5ckPW4INufod81vkGZb1BGWVkZrK3rx4Lhuz3aB9+gzFgnxAXJmAnhgmTMhPCIAQyWlpZ4//33hb+Z8fBBHT6owzoAH9RhrBPiXVYGvV4vXP7o4uICMzP+f9pYuCAZKioq4O7uDoDPQxob/1fImAnhgmTMhHBBMmZCuCAZMyFckIyZEC5IxkwIn/ZgsLCwwMKFC4W/mfHwp88gk8kQFRVl7DQYeJeVMZPCW0gGIsLdu3cBAPb29pBIJEbOqOvigmQoLy8XBq/mS+eMi3dZGTMhXJCMmRAuSMZMCBckYyaEC5IxE8IFyZgJ4dMeDBYWFggNDRX+ZsbDnz6DTCZDdHS0sdNg4F1WxkwKbyEZiAjl5eUAAIVCwZfOGRFvIRnKy8thbW0Na2troTCZcXBBMmZCuCAZMyFckIyZkCcqyHXr1kEikWDx4sXCtMrKSoSFhaFHjx6wtrbGlClTkJ+fL5ovLy8PISEhUCgUcHBwQHh4OGpra0UxCQkJ8PPzg0wmQ9++fZs9LB8VFQU3NzdYWVkhICAAv/7665OsDmPG97jPTP/111/Jzc2NBg0aRO+9954w/e233yZnZ2eKj4+nlJQUGjFiBI0cOVJor62tpYEDB1JQUBCdP3+eDh8+TPb29rRy5Uoh5vr166RQKGjJkiWUmZlJW7ZsIXNzc4qJiRFi9uzZQ1KplLZv304ZGRk0d+5cUqlUlJ+fb/A6GPrc96ddaWkpASAAVFpaaux0nkqGftceqyBLSkqoX79+FBcXR2PGjBEKsqioiCwtLWn//v1CbFZWFgGgpKQkIiI6fPgwmZmZkVarFWK2bt1KSqWSqqqqiIho2bJl5O3tLepz2rRpFBwcLLz39/ensLAw4X1dXR05OTlRZGSkwevBBVmPC7L9Gfpde6xd1rCwMISEhCAoKEg0PTU1FTU1NaLpnp6ecHFxQVJSEgAgKSkJPj4+UKvVQkxwcDB0Oh0yMjKEmAeXHRwcLCyjuroaqampohgzMzMEBQUJMc2pqqqCTqcTvRhgbm6OV199Fa+++irMzc2NnU6X1uoLA/bs2YNz587h7NmzTdq0Wi2kUilUKpVoulqthlarFWIaF2NDe0NbSzE6nQ4VFRW4f/8+6urqmo25dOnSQ3OPjIzERx99ZNiKdiFWVlbYv3+/sdNgaOVBnRs3buC9997Drl27YGVl1V45tZuVK1eiuLhYeN24ccPYKTEm0qqCTE1NRUFBAfz8/GBhYQELCwscP34cX3zxBSwsLKBWq1FdXY2ioiLRfPn5+dBoNAAAjUbT5Khrw/tHxSiVSsjlctjb28Pc3LzZmIZlNEcmk0GpVIpejJmSVhXk+PHjceHCBaSlpQmvYcOGYcaMGcLflpaWiI+PF+bJzs5GXl4eAgMDAQCBgYG4cOECCgoKhJi4uDgolUp4eXkJMY2X0RDTsAypVIqhQ4eKYvR6PeLj44UYZriysjJIJBJIJBKUlZUZO52u7UmPHjU+ykpUf9rDxcWFjh49SikpKRQYGEiBgYFCe8NpjwkTJlBaWhrFxMRQz549mz3tER4eTllZWRQVFdXsaQ+ZTEbR0dGUmZlJ8+bNI5VKJTp6+yh8lLUeH2Vtf+162qOxBwuyoqKCFi5cSHZ2dqRQKOjll1+m27dvi+bJzc2liRMnklwuJ3t7e1q6dCnV1NSIYo4dO0ZDhgwhqVRKvXv3ph07djTpe8uWLeTi4kJSqZT8/f3pzJkzrcqdC7IeF2T7M/S7JiEiMt722bh0Oh1sbW1RXFzcpX9PlpWVwdraGgAPlNxeDP2u8bWsjJkQLkjGTAgXJGMmhIfwYDA3N8cLL7wg/M2MhwuSwcrKCocOHTJ2Ggy8y8qYSeEtJGtWXV0dampqjJ1Gp2Fpadkmu/tckAxlZWXCA1vz8/NRUlLS5Hpk9mgqlQoajeaJhtHkgmQAIAz/eO/ePeGJyjxGq2Ho/8a1bbg+29HR8bGXxQXJBN26dUNpaSk0Gg169Ohh7HQ6FblcDgAoKCiAg4PDY+++8kEdJmgoQoVCYeRMOqeGz+1JfntzQTJBw+4p76Y+nrb43LggGTMhXJCMNSKRSHDw4EGj9c8HdRjMzMwwZswYODg48O6qkXFBMsjlciQkJKCyshI5OTnGTqdL411WZpCxY8fi3XffxbJly9C9e3doNBqsWbNGaM/NzYVEIkFaWpowraioCBKJBAkJCQDqHw8hkUgQGxsLX19fyOVy/OEPf0BBQQGOHDmCAQMGQKlU4o033mjxsXjR0dFQqVQ4ePAg+vXrBysrKwQHBzcZRXDr1q3o06cPpFIp+vfvj3/84x+i9itXruC5556DlZUVvLy8EBcXJ2qvrq7GO++8A0dHR1hZWcHV1RWRkZGP9wEaiAuSGWznzp3o1q0bkpOTsX79enz88cdNvsSGWLNmDb788kucPn0aN27cwNSpU7F582Z8//33OHToEP79739jy5YtLS6jvLwca9euxbfffovExEQUFRXh9ddfF9oPHDiA9957D0uXLsXFixcxf/58zJ49G8eOHQNQPyjaK6+8AqlUiuTkZGzbtg3Lly8X9fHFF1/gp59+wr59+5CdnY1du3bBzc2t1evbKh0xnoip4jF16pWWlpK9vT0NGTKELl68SBUVFU1ixowZQ6NHjxZNGz58OC1fvpyIiHJycggAnT9/Xmi/f/8+AaBjx44RUf04SQDol19+EWIiIyMJAF27dk2YNn/+fNFjIx60Y8cOAiAaQ6nhkRXJyclERDRy5EiaO3euaL7XXnuNXnjhBSIiio2NJQsLC7p586bQfuTIEQJABw4cICKiRYsW0R/+8AfS6/UPzaWxiooKyszMbPbza9dHCbCnz927d3H//v0WYwYNGiR67+joKBrO01CNl6NWq6FQKNC7d2/RtEct18LCAsOHDxfee3p6QqVSISsrCwCQlZWFUaNGieYZNWqUqN3Z2RlOTk5C+4NDiM6aNQtpaWno378/3n33Xfz73/9u5Zq2HhckM5ilpaXovUQigV6vB1B/pBaov66zwcOuWGm8HIlE0uJyjcnPzw85OTn45JNPUFFRgalTp+LVV19t1z65IFmb6NmzJwDg9u3bwrTGB3jaWm1tLVJSUoT32dnZKCoqwoABAwAAAwYMQGJiomiexMREYTDuAQMG4MaNG6J8z5w506QfpVKJadOm4ZtvvsHevXvxww8/oLCwsD1WCQCf9mBtRC6XY8SIEVi3bh3c3d1RUFCADz/8sN36s7S0xKJFi4THWLzzzjsYMWIE/P39AQDh4eGYOnUqfH19ERQUhJ9//hk//vgjfvnlFwBAUFAQPDw8EBoaig0bNkCn0+GDDz4Q9bFp0yY4OjrC19cXZmZm2L9/PzQaTZOHSbUl3kKyNrN9+3bU1tZi6NChWLx4MT799NN260uhUGD58uV44403MGrUKFhbW2Pv3r1C+0svvYTPP/8cGzduhLe3N77++mvs2LEDY8eOBVC/i33gwAFUVFTA398ff/7zn7F27VpRHzY2Nli/fj2GDRuG4cOHIzc3F4cPHxZ2z9sDD5TMAyULAyW7urri0KFD6NOnj0k/3Sw6OhqLFy82uZuoGy6scHd3b/L5Gfpd411WBjMzMwwbNgxqtZovnTMyLkgGuVyOs2fP8qVzJoB/Q7JOZ9asWSa3u9pWuCAZMyFckAzl5eVwc3PD+PHjTeKEfFfGvyEZiAi///67sdNg4C0kYyaFC5IxE9KqgoyMjMTw4cNhY2MDBwcHvPTSS8jOzhbFVFZWIiwsDD169IC1tTWmTJmC/Px8UUxeXh5CQkKgUCjg4OCA8PBw1NbWimISEhLg5+cHmUyGvn37Ijo6ukk+UVFRcHNzg5WVFQICAvDrr7+2ZnUYMzmtKsjjx48jLCwMZ86cQVxcHGpqajBhwgSUlZUJMf/1X/+Fn3/+Gfv378fx48dx69YtvPLKK0J7XV0dQkJCUF1djdOnT2Pnzp2Ijo7G6tWrhZicnByEhIRg3LhxSEtLw+LFi/HnP/8ZsbGxQszevXuxZMkSRERE4Ny5cxg8eDCCg4Mf63YgxkyGQXdePkRBQQEBoOPHjxMRUVFREVlaWtL+/fuFmIYbR5OSkoiI6PDhw2RmZkZarVaI2bp1KymVSqqqqiIiomXLlpG3t7eor2nTpoluWvX396ewsDDhfV1dHTk5OVFkZKTB+fMNyvVKS0sJALm6uj70BuWnxfHjx+lPf/oTOTo6im5GbgtGv0G5uLgYANC9e3cAQGpqKmpqahAUFCTEeHp6wsXFBUlJSQCApKQk+Pj4QK1WCzHBwcHQ6XTIyMgQYhovoyGmYRnV1dVITU0VxZiZmSEoKEiIaU5VVRV0Op3oxervP/Ty8kLfvn2NnUq7Kysrw+DBgxEVFWXsVJr12Kc99Ho9Fi9ejFGjRmHgwIEAAK1WC6lU2uT2FLVaDa1WK8Q0LsaG9oa2lmJ0Oh0qKipw//591NXVNRtz6dKlh+YcGRmJjz76qPUr+5RTKBTIyMh4okvniAgVNXVtnJlh5JbmBl+DO3HiREycOLGdM3p8j12QYWFhuHjxIk6dOtWW+bSrlStXYsmSJcJ7nU4HZ2dnI2b09KioqYPX6thHB7aDzI+DoZA+HafUH2st3nnnHfzv//4vTpw4gWeeeUaYrtFoUF1djaKiItFWMj8/HxqNRoh58Ghow1HYxjEPHpnNz8+HUqmEXC6Hubk5zM3Nm41pWEZzZDIZZDJZ61eYsQ7SqoIkIixatAgHDhxAQkIC3N3dRe1Dhw6FpaUl4uPjMWXKFAD1Qyvk5eUJAwgFBgZi7dq1wmO7ACAuLg5KpVIYXiEwMBCHDx8WLTsuLk5YhlQqxdChQxEfH4+XXnoJQP0udHx8PN55551WfgSsvLwcw4cPh6OjIz7//PPHWobc0hyZHwe3cWaG9/3UaM1RpAULFpCtrS0lJCTQ7du3hVd5ebkQ8/bbb5OLiwsdPXqUUlJSKDAwkAIDA4X22tpaGjhwIE2YMIHS0tIoJiaGevbsSStXrhRirl+/TgqFgsLDwykrK4uioqLI3NycYmJihJg9e/aQTCaj6OhoyszMpHnz5pFKpRIdvX0UPsparysdZW0MJniUtVUFCaDZ144dO0RJLVy4kOzs7EihUNDLL79Mt2/fFi0nNzeXJk6cSHK5nOzt7Wnp0qVUU1Mjijl27BgNGTKEpFIp9e7dW9RHgy1btpCLiwtJpVLy9/cXjdNpCC7IelyQbaMtCpKH8OAhPDrdEB5PorS0FFevXgUA+Pr6YtOmTRg3bhy6d+8OFxeXJ1o2D+HBWCulpKRg3LhxwvuGo+6hoaHNXp7Z0bggWZcyduxYmPJOId/twZgJ4YJkkEgkcHV1Ra9evYydSpfHu6wMCoUCubm5POqcCeAtJGMmhAuSMRPCBclQUVGB4cOH49VXXzXpI5BdAf+GZNDr9UhJSYGrqysXpJHxFpIxE8IFyZgJ4YJkzIRwQbIupa6uDqtWrYK7uzvkcjn69OmDTz75xGR+O/NBHdal/O1vf8PWrVuxc+dOeHt7IyUlBbNnz4atrS3effddY6fHBcnq2dvbw87O7vEXQATUlLddQq1hqQAMHOTq9OnTmDx5MkJCQgAAbm5u2L17t8kMss0FydCtWzfcuXPnyS6dqykH/urUtokZ6i+3AGk3g0JHjhyJv//977h8+TI8PDyQnp6OU6dOYdOmTe2cpGG4IFmXsmLFCuh0Onh6esLc3Bx1dXVYu3YtZsyYYezUAHBBsrZiqajfUhmrbwPt27cPu3btwvfffw9vb2/hURVOTk4IDQ1txyQNwwXJUFFRgYkTJ8LBwQFr1qx5vIVIJAbvNhpTeHg4VqxYgddffx0A4OPjg99//x2RkZFckMw06PV6HD9+vEtcOldeXg4zM/HZPnNzc5N5cjQXJOtSJk2ahLVr18LFxQXe3t44f/48Nm3ahDlz5hg7NQBckKyL2bJlC1atWoWFCxeioKAATk5OmD9/vuhxiMbEBcm6FBsbG2zevBmbN282dirN4kvnGDMhXJCMmRAuSAagfqAruVxu7DS6PP4NydCtWzeUlZXxqHMmgLeQrImn/Vxke2mLz40LkgksLS0B1J88Z63X8Lk1fI6Pg3dZGSorK4UH7G7btg0FBQUA6n9XSgy8rakrIyKUl5ejoKAAKpUK5uaP/wBZLkiGuro64YnVdnZ2sLCwEIqSGU6lUkGj0TzRMrggmYhEIoGjoyMcHBxQU1Nj7HQ6DUtLyyfaMjbggmTNMjc3b5MvGGudTn9QJyoqCm5ubrCyskJAQIDJDMXA2OPo1AW5d+9eLFmyBBERETh37hwGDx6M4OBg/v3DOq1OXZCbNm3C3LlzMXv2bHh5eWHbtm1QKBTYvn27sVNj7LF02t+Q1dXVSE1NxcqVK4VpZmZmCAoKQlJSUrPzVFVVoaqqSnhfXFwMANDpdO2brIkrKysT/tbpdKirqzNiNk+nhu/Yoy4e6LQFeffuXdTV1UGtVoumq9VqXLp0qdl5IiMj8dFHHzWZ7uzs3C45dkZOTkYaOa6LKCkpga2t7UPbO21BPo6VK1diyZIlwnu9Xo/CwkL06NGjU54A1+l0cHZ2xo0bN6BUKo2dToforOtMRCgpKXnkf3idtiDt7e1hbm6O/Px80fT8/PyHnpyVyWSQyWSiaSqVqr1S7DBKpbJTfTnbQmdc55a2jA067UEdqVSKoUOHIj4+Xpim1+sRHx+PwMBAI2bG2OPrtFtIAFiyZAlCQ0MxbNgw+Pv7Y/PmzSgrK8Ps2bONnRpjj6VTF+S0adNw584drF69GlqtFkOGDEFMTEyTAz1PK5lMhoiIiCa74U+zp32dJcQ3vzFmMjrtb0jGnkZckIyZEC5IxkwIFyRjJoQLsgOtWbMGEolE9PL09BTaKysrERYWhh49esDa2hpTpkxpcuFDXl4eQkJCoFAo4ODggPDwcNTW1opiEhIS4OfnB5lMhr59+yI6OrpJLu1529qJEycwadIkODk5QSKR4ODBg6J2IsLq1avh6OgIuVyOoKAgXLlyRRRTWFiIGTNmQKlUQqVS4a233kJpaako5rfffsOzzz4LKysrODs7Y/369U1y2b9/Pzw9PWFlZQUfHx9hZITW5NKhiHWYiIgI8vb2ptu3bwuvO3fuCO1vv/02OTs7U3x8PKWkpNCIESNo5MiRQnttbS0NHDiQgoKC6Pz583T48GGyt7enlStXCjHXr18nhUJBS5YsoczMTNqyZQuZm5tTTEyMELNnzx6SSqW0fft2ysjIoLlz55JKpaL8/Pw2Wc/Dhw/TBx98QD/++CMBoAMHDoja161bR7a2tnTw4EFKT0+nF198kdzd3amiokKIef7552nw4MF05swZOnnyJPXt25emT58utBcXF5NaraYZM2bQxYsXaffu3SSXy+nrr78WYhITE8nc3JzWr19PmZmZ9OGHH5KlpSVduHChVbl0JC7IDhQREUGDBw9utq2oqIgsLS1p//79wrSsrCwCQElJSURU/0U3MzMjrVYrxGzdupWUSiVVVVUREdGyZcvI29tbtOxp06ZRcHCw8N7f35/CwsKE93V1deTk5ESRkZFPvI4PerAg9Xo9aTQa2rBhgzCtqKiIZDIZ7d69m4iIMjMzCQCdPXtWiDly5AhJJBK6efMmERF99dVXZGdnJ6w3EdHy5cupf//+wvupU6dSSEiIKJ+AgACaP3++wbl0NN5l7WBXrlyBk5MTevfujRkzZiAvLw8AkJqaipqaGgQFBQmxnp6ecHFxEW4nS0pKgo+Pj+jCh+DgYOh0OmRkZAgxjZfRENOwjIbb1hrHPOq2tbaUk5MDrVYr6t/W1hYBAQGi9VSpVBg2bJgQExQUBDMzMyQnJwsxzz33HKRSqRATHByM7Oxs3L9/X4hp6bMwJJeOxgXZgQICAhAdHY2YmBhs3boVOTk5ePbZZ1FSUgKtVgupVNrkYne1Wg2tVgsA0Gq1zd5u1tDWUoxOp0NFRUWLt601LKM9NfTRUv9arRYODg6idgsLC3Tv3r1NPovG7Y/KpaN16kvnOpuJEycKfw8aNAgBAQFwdXXFvn37+LkaDABvIY1KpVLBw8MDV69ehUajQXV1NYqKikQxjW8n02g0zd5u1tDWUoxSqYRcLn+s29baUkMfLfWv0WiajItUW1uLwsLCNvksGrc/KpeOxgVpRKWlpbh27RocHR0xdOhQWFpaim4ny87ORl5ennA7WWBgIC5cuCD6ssbFxUGpVMLLy0uIabyMhpiGZRj7tjV3d3doNBpR/zqdDsnJyaL1LCoqQmpqqhBz9OhR6PV6BAQECDEnTpwQjR0bFxeH/v37w87OTohp6bMwJJcOZ5RDSV3U0qVLKSEhgXJycigxMZGCgoLI3t6eCgoKiKj+tIeLiwsdPXqUUlJSKDAwkAIDA4X5G057TJgwgdLS0igmJoZ69uzZ7GmP8PBwysrKoqioqGZPe8hkMoqOjqbMzEyaN28eqVQq0dHbJ1FSUkLnz5+n8+fPEwDatGkTnT9/nn7//Xciqj/VoFKp6F//+hf99ttvNHny5GZPe/j6+lJycjKdOnWK+vXrJzrtUVRURGq1mmbOnEkXL16kPXv2kEKhaHLaw8LCgjZu3EhZWVkUERHR7GmPR+XSkbggO9C0adPI0dGRpFIp9erVi6ZNm0ZXr14V2isqKmjhwoVkZ2dHCoWCXn75Zbp9+7ZoGbm5uTRx4kSSy+Vkb29PS5cupZqaGlHMsWPHaMiQISSVSql37960Y8eOJrls2bKFXFxcSCqVkr+/P505c6bN1vPYsWMEoMkrNDSUiOpPN6xatYrUajXJZDIaP348ZWdni5Zx7949mj59OllbW5NSqaTZs2dTSUmJKCY9PZ1Gjx5NMpmMevXqRevWrWuSy759+8jDw4OkUil5e3vToUOHRO2G5NKR+PYrxkwI/4ZkzIRwQTJmQrggGTMhXJCMmRAuSMZMCBckYyaEC5IxE8IFyZgJ4YJkzIRwQXYBY8eOxeLFi42dhsDU8jElXJDMINXV1cZOoWsw2lW0rEOEhoY2ucj76tWrNGfOHHJzcyMrKyvy8PCgzZs3N5lv8uTJ9Omnn5KjoyO5ubkRUf0dFIMHDyaZTEZDhw6lAwcOEAA6f/68MO+FCxfo+eefp27dupGDgwO9+eabwmBezeWTk5PTUR+HyeOCfMoVFRVRYGAgzZ07VxjprrKyklavXk1nz56l69ev03fffUcKhYL27t0rzBcaGkrW1tbC7U0XL16k4uJi6t69O7355puUkZFBhw8fJg8PD1FB3r9/X7glLCsri86dO0d//OMfady4cQ/Np7a21hgfjUniITyecra2tpBKpVAoFKK74Bs/2t3d3R1JSUnYt28fpk6dKkzv1q0b/ud//kcYSGrbtm2QSCT45ptvYGVlBS8vL9y8eRNz584V5vnyyy/h6+uLv/71r8K07du3w9nZGZcvX4aHh0ez+bB6XJBdVFRUFLZv3468vDxUVFSguroaQ4YMEcX4+PiIRnXLzs7GoEGDYGVlJUzz9/cXzZOeno5jx47B2tq6SZ/Xrl2Dh4dH267IU4YLsgvas2cP3n//fXz22WcIDAyEjY0NNmzYIAyx2KBbt26tXnZpaSkmTZqEv/3tb03aHB0dHzvnroILsguQSqWoq6sT3icmJmLkyJFYuHChMO3atWuPXE7//v3x3XffoaqqSnhg6tmzZ0Uxfn5++OGHH+Dm5gYLi+a/Xg/mw/6DT3t0AW5ubkhOTkZubi7u3r2Lfv36ISUlBbGxsbh8+TJWrVrVpLCa88Ybb0Cv12PevHnIyspCbGwsNm7cCACQSCQAgLCwMBQWFmL69Ok4e/Ysrl27htjYWMyePVsowgfz0ev17bfynQwXZBfw/vvvw9zcHF5eXujZsyeCg4PxyiuvYNq0aQgICMC9e/dEW8uHUSqV+Pnnn5GWloYhQ4bggw8+wOrVqwFA+F3p5OSExMRE1NXVYcKECfDx8cHixYuhUqlgZmbWbD4No7czfqQ5e0K7du3C7NmzUVxczIM9twH+Dcla5dtvv0Xv3r3Rq1cvpKenY/ny5Zg6dSoXYxvhgmStotVqsXr1ami1Wjg6OuK1117D2rVrjZ3WU4N3WRkzIXxQhzETwgXJmAnhgmTMhHBBMmZCuCAZMyFckIyZEC5IxkwIFyRjJuT/AzBjl5KWGZd5AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_monitoring_metric('total_cpu_memory_cached', component='stream').max()\n",
+ "plot_metric(df, \"SUT Max Cache\", peak_benchmark)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Benchmarker Driver\n",
+ "\n",
+ "### Transform Monitoring Results to DataFrame\n",
+ "\n",
+ "This has to be done only once. Transformed Results are stored in result folder.\n",
+ "\n",
+ "We also show a list of available metrics."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 83,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['total_cpu_memory',\n",
+ " 'total_cpu_memory_cached',\n",
+ " 'total_cpu_util',\n",
+ " 'total_cpu_util_max',\n",
+ " 'total_cpu_throttled',\n",
+ " 'total_cpu_util_others',\n",
+ " 'total_cpu_util_s',\n",
+ " 'total_cpu_util_user_s',\n",
+ " 'total_cpu_util_sys_s',\n",
+ " 'total_cpu_throttled_s',\n",
+ " 'total_cpu_util_others_s',\n",
+ " 'total_network_rx',\n",
+ " 'total_network_tx',\n",
+ " 'total_fs_read',\n",
+ " 'total_fs_write',\n",
+ " 'total_gpu_util',\n",
+ " 'total_gpu_power',\n",
+ " 'total_gpu_memory']"
+ ]
+ },
+ "execution_count": 83,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "evaluation.transform_monitoring_results(component='benchmarker')\n",
+ "\n",
+ "evaluation.get_monitoring_metrics()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Plot all Metrics"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 84,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAABwWCAYAAACx0tk5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd2AUZd4H8O8zW1M3hUAIhBBapKuoiICAoKGIqFgQDhEQ9A6wYMFyCqh3KiCK5UDvFPQ98Dgbx+EpBEFBRaRFkF5CJ7Q0UrfM8/6xu5NsekJ2s9l8PxqyM/PMzDOzm8wvv3nmeYSUUoKIiIiIiIiIiMiHlPquABERERERERERNT5MShERERERERERkc8xKUVERERERERERD7HpBQREREREREREfkck1JERERERERERORzTEoREREREREREZHPMSlFREREREREREQ+x6QUERERERERERH5HJNSRERERERERETkc0xKEZHXHT16FEIILFmypL6rQkRERFQpxi1UH5YsWQIhBLZu3er1fT3wwANo3bq11/dDVB1MShE1Aj///DNmzZqFrKysWq3/t7/9jYEZERER+QTjFiKixoNJKaJG4Oeff8bs2bMZ3BEREZHfY9xCRNR4MClFRERlSClRUFBQ39UgIiIiqhLjFqKGi0kpogA3a9YsPPXUUwCAxMRECCEghMDRo0dht9vx8ssvo23btjCZTGjdujWee+45FBUVaeu3bt0au3fvxg8//KCt279/fwBARkYGnnzySXTt2hWhoaEIDw/HkCFD8Ntvv9VJ3QsLCzFr1ix06NABZrMZzZs3x5133onDhw8DKO7zYd68eXjzzTeRkJCAoKAg9OvXD7///rvHtvr376/Vu6TaPFPfv39/dOnSBTt37kS/fv0QHByMdu3a4fPPPwcA/PDDD+jZsyeCgoKQlJSEtWvXltnGqVOnMGHCBDRr1gwmkwmdO3fGRx995FHm+++/hxAC//73vzF79my0aNECYWFhuOuuu5CdnY2ioiI89thjaNq0KUJDQzF+/HiP9w5Atd5jwPk+33rrrVi9ejWuueYaBAUF4f3330e/fv3QvXv3cs9DUlISkpOTa3TuiIiIKsO4xYlxi3/ELZs3b8bQoUMRGRmJkJAQdOvWDQsWLNCW79y5Ew888ADatGkDs9mM2NhYTJgwARcvXiz3HE6cOBFxcXEwmUxITEzEH//4R1itVo9yRUVFmD59OmJiYhASEoI77rgD58+fL7O9b775Bn379kVISAjCwsIwbNgw7N69u0y5FStWoEuXLjCbzejSpQu++uqrGp0DIm/T13cFiMi77rzzThw4cACffvop3nzzTTRp0gQAEBMTgwcffBAff/wx7rrrLjzxxBPYvHkzXn31Vezdu1e7YL311luYNm0aQkND8fzzzwMAmjVrBgA4cuQIVqxYgbvvvhuJiYk4e/asFhDs2bMHcXFxta63w+HArbfeiu+++w6jRo3Co48+ikuXLiElJQW///472rZtq5X95JNPcOnSJUyZMgWFhYVYsGABbrrpJuzatUura13LzMzErbfeilGjRuHuu+/GwoULMWrUKCxduhSPPfYYHn74YYwePRpz587FXXfdhRMnTiAsLAwAcPbsWVx//fUQQmDq1KmIiYnBN998g4kTJyInJwePPfaYx75effVVBAUF4ZlnnsGhQ4fwzjvvwGAwQFEUZGZmYtasWfjll1+wZMkSJCYm4sUXX9TWrc577LZ//37cd999eOihhzBp0iQkJSUhNDQUkyZNwu+//44uXbpoZbds2YIDBw7gz3/+s1fOLxERNU6MWxi3+EvckpKSgltvvRXNmzfHo48+itjYWOzduxerVq3Co48+qpU5cuQIxo8fj9jYWOzevRsffPABdu/ejV9++QVCCADA6dOncd111yErKwuTJ0/GFVdcgVOnTuHzzz9Hfn4+jEajtt9p06YhMjISM2fOxNGjR/HWW29h6tSpWL58uVbm//7v/zBu3DgkJyfj9ddfR35+PhYuXIg+ffpgx44dWuJyzZo1GDlyJDp16oRXX30VFy9exPjx49GyZctqnwcir5NEFPDmzp0rAci0tDRtXmpqqgQgH3zwQY+yTz75pAQg161bp83r3Lmz7NevX5ntFhYWSofD4TEvLS1Nmkwm+dJLL3nMAyAXL15c7Tp/9NFHEoCcP39+mWWqqnpsNygoSJ48eVJbvnnzZglAPv7449q8fv36lXsM48aNkwkJCdWul3tbAOSyZcu0efv27ZMApKIo8pdfftHmr169usyxT5w4UTZv3lxeuHDBY7ujRo2SFotF5ufnSymlXL9+vQQgu3TpIq1Wq1buvvvuk0IIOWTIEI/1e/Xq5XEsNXmPExISJAD57bffepTNysqSZrNZzpgxw2P+I488IkNCQmRubm5lp4qIiKjGGLcwbimpPuIWu90uExMTZUJCgszMzPRY5n4/pZTasZf06aefSgByw4YN2rz7779fKooit2zZUqa8e3uLFy+WAOSgQYM89vH4449LnU4ns7KypJRSXrp0SUZERMhJkyZ5bCc9PV1aLBaP+VdeeaVs3ry5tq6UUq5Zs0YCqPHniMhb+PgeUSP1v//9DwAwffp0j/lPPPEEAODrr7+uchsmkwmK4vw14nA4cPHiRYSGhiIpKQnbt2+/rPp98cUXaNKkCaZNm1Zmmfuuk9vtt9+OFi1aaNPXXXcdevbsqR2jN4SGhmLUqFHadFJSEiIiItCxY0f07NlTm+9+feTIEQDOPg+++OILDB8+HFJKXLhwQftKTk5GdnZ2mXN3//33w2AweGxTSokJEyZ4lOvZsydOnDgBu90OoObvcWJiYplm7RaLBSNGjMCnn34KKSUA53u9fPly3H777QgJCanO6SIiIrosjFsuD+OWmsUtO3bsQFpaGh577DFERER4LCv5fgYFBWmvCwsLceHCBVx//fUAoJ0XVVWxYsUKDB8+HNdcc02ZfZX+fEyePNljXt++feFwOHDs2DEAztZZWVlZuO+++zzeD51Oh549e2L9+vUAgDNnziA1NRXjxo2DxWLRtnfzzTejU6dO1ToPRL7ApBRRI3Xs2DEoioJ27dp5zI+NjUVERIR24auMqqp488030b59e5hMJjRp0gQxMTHYuXMnsrOzL6t+hw8fRlJSEvT6qp8ybt++fZl5HTp0wNGjRy+rDpVp2bJlmSDCYrEgPj6+zDzA2WweAM6fP4+srCx88MEHiImJ8fgaP348AODcuXMe22jVqlW52yxvX6qqaue+pu9xYmJiucd6//334/jx49i4cSMAYO3atTh79izGjh1bbnkiIqK6xrjl8jBuqVnc4u4HrOQjgOXJyMjAo48+imbNmiEoKAgxMTFavdzHdf78eeTk5FS5LbfS5y8yMhJA8Xty8OBBAMBNN91U5j1Zs2aN9n64z1d5n7ekpKRq1YXIF9inFFEjVzpAqYm//vWveOGFFzBhwgS8/PLLiIqKgqIoeOyxx6Cqah3W8vIJIbQ7ZiU5HI5abU+n09Vovnvf7vPyhz/8AePGjSu3bLdu3epkX27VfY9L3u0rKTk5Gc2aNcM///lP3HjjjfjnP/+J2NhYDBo0qFrbJSIiqiuMWxi3uPlD3HLPPffg559/xlNPPYUrr7wSoaGhUFUVgwcPrvVnqrrvyf/93/8hNja2TLnqJEaJ/Ak/sUSNQHkX94SEBKiqioMHD6Jjx47a/LNnzyIrKwsJCQmVrg8An3/+OQYMGIAPP/zQY35WVpbWMWlttW3bFps3b4bNZvNoAl4e9x2jkg4cOOAxOk1kZKTWFL2k6txZrUsxMTEICwuDw+HwelKnJu9xZXQ6HUaPHo0lS5bg9ddfx4oVKzBp0qQKgyYiIqLLwbiFcUt9xy3ujul///33Co87MzMT3333HWbPnu3RWXvp9zcmJgbh4eFlRlisLXfdmjZtWul74j5f5X3e9u/fXyd1IaoLfHyPqBFwPz+flZWlzRs6dCgA5yg1Jc2fPx8AMGzYMI/1S67rptPpytzd+uyzz3Dq1KnLrvPIkSNx4cIFvPvuu2WWld7nihUrPPb566+/YvPmzRgyZIg2r23btti3b5/HkLq//fYbfvrpp8uua03odDqMHDkSX3zxRbnBSXlD/tZWTd7jqowdOxaZmZl46KGHkJubiz/84Q91Vk8iIqKSGLcwbimpPuKWq6++GomJiXjrrbfKfJbc76c7yVX6/S1df0VRcPvtt+O///0vtm7dWmZf5bWIq0xycjLCw8Px17/+FTabrcxy93vSvHlzXHnllfj44489Hk9NSUnBnj17arRPIm9iSymiRqBHjx4AgOeffx6jRo2CwWDA8OHDMW7cOHzwwQfIyspCv3798Ouvv+Ljjz/G7bffjgEDBnisv3DhQrzyyito164dmjZtiptuugm33norXnrpJYwfPx433HADdu3ahaVLl6JNmzaXXef7778fn3zyCaZPn45ff/0Vffv2RV5eHtauXYs//elPGDFihFa2Xbt26NOnD/74xz+iqKgIb731FqKjo/H0009rZSZMmID58+cjOTkZEydOxLlz57Bo0SJ07twZOTk5l13fmnjttdewfv169OzZE5MmTUKnTp2QkZGB7du3Y+3atcjIyKiT/XTv3r3a73FVrrrqKnTp0gWfffYZOnbsiKuvvrpO6khERFQa4xbGLfUdtyiKgoULF2L48OG48sorMX78eDRv3hz79u3D7t27sXr1aoSHh+PGG2/EnDlzYLPZ0KJFC6xZswZpaWlltvfXv/4Va9asQb9+/TB58mR07NgRZ86cwWeffYYff/yxTGfqlQkPD8fChQsxduxYXH311Rg1ahRiYmJw/PhxfP311+jdu7eWHH311VcxbNgw9OnTBxMmTEBGRgbeeecddO7cGbm5uTU6J0Re48uh/oio/rz88suyRYsWUlEUbZhlm80mZ8+eLRMTE6XBYJDx8fHy2WeflYWFhR7rpqeny2HDhsmwsDAJQBuiuLCwUD7xxBOyefPmMigoSPbu3Vtu2rSpzDDGtRlaWUrnMLvPP/+8Vr/Y2Fh51113ycOHD3tsd+7cufKNN96Q8fHx0mQyyb59+8rffvutzPb++c9/yjZt2kij0SivvPJKuXr16loPrdy5c+cy8xMSEuSwYcPKzAcgp0yZ4jHv7NmzcsqUKTI+Pl47toEDB8oPPvhAK+MeWvmzzz7zWNc9ZHDpYYVnzpwpAcjz589r86r7HldU95LmzJkjAci//vWvlZYjIiK6XIxbGLf4Q9zy448/yptvvlmGhYXJkJAQ2a1bN/nOO+9oy0+ePCnvuOMOGRERIS0Wi7z77rvl6dOnJQA5c+ZMj20dO3ZM3n///TImJkaaTCbZpk0bOWXKFFlUVCSlrPg8uc/r+vXry8xPTk6WFotFms1m2bZtW/nAAw/IrVu3epT74osvZMeOHaXJZJKdOnWSX375Za0+R0TeIqSsYXtBIiI/cfToUSQmJmLu3Ll48skn67s6AW/BggV4/PHHcfTo0TIjwxAREVHlGLf4FuMWooaBfUoREVGVpJT48MMP0a9fPwZ2RERE5NcYtxA1HOxTioh8ymq1Vtn3gMViqXCYX2/KyMiA1WqtcLlOp0NMTIwPa1T/8vLysHLlSqxfvx67du3Cf/7zn/quEhERkc8wbmlYqhO38LwR+RcmpYjIp37++ecqO6pcvHgxHnjgAd9UqIQ777wTP/zwQ4XLExIScPToUd9VyA+cP38eo0ePRkREBJ577jncdttt9V0lIiIin2Hc0rBUJ27heSPyL+xTioh8KjMzE9u2bau0TOfOndG8eXMf1ajYtm3bkJmZWeHyoKAg9O7d24c1IiIiovrEuCXw8LwR+RcmpYiIiIiIiIiIyOfY0TkREREREREREflco+5TSlVVnD59GmFhYRBC1Hd1iIiIyA9JKXHp0iXExcVBUXg/j/ETERERVaW68VOjTkqdPn0a8fHx9V0NIiIiagBOnDiBli1b1nc16h3jJyIiIqququKnRp2UCgsLA+A8SeHh4fVcGyIiIvJHOTk5iI+P1+KGxo7xExEREVWluvFTo05KuZuch4eHM6giIiKiSvFRNSfGT0RERFRdVcVP7BiBiIiIiIiIiIh8jkkpIiIiIiIiIiLyOSaliIiIiIiIiIjI55iUIiIiIiIiIiIin2NSioiIiIiIiIiIfI5JKSIiIiIiIiIi8jkmpYiIiIiIiIiIyOeYlCIiIiIiIiIiIp9jUoqIiIiIiIiIiHyOSSkiIiIiIiIiIvI5JqWIiIiIiIiIiMjnmJQiIiIiIiIiIiKfY1KKiIiIiIiIiIh8jkkpIiIiIiIiIiLyOSaliIiIiIiIiIjI5+o8KbVhwwYMHz4ccXFxEEJgxYoVFZZ9+OGHIYTAW2+95TE/IyMDY8aMQXh4OCIiIjBx4kTk5uZ6lNm5cyf69u0Ls9mM+Ph4zJkzp64PhYiIiIiIiIiIvKTOk1J5eXno3r073nvvvUrLffXVV/jll18QFxdXZtmYMWOwe/dupKSkYNWqVdiwYQMmT56sLc/JycEtt9yChIQEbNu2DXPnzsWsWbPwwQcf1PXhEBERERERERGRF+jreoNDhgzBkCFDKi1z6tQpTJs2DatXr8awYcM8lu3duxfffvsttmzZgmuuuQYA8M4772Do0KGYN28e4uLisHTpUlitVnz00UcwGo3o3LkzUlNTMX/+fI/kFRERERERERER+Sef9ymlqirGjh2Lp556Cp07dy6zfNOmTYiIiNASUgAwaNAgKIqCzZs3a2VuvPFGGI1GrUxycjL279+PzMxM7x8EERERERERERFdljpvKVWV119/HXq9Ho888ki5y9PT09G0aVOPeXq9HlFRUUhPT9fKJCYmepRp1qyZtiwyMrLcbRcVFaGoqEibzsnJqfVxEBERERERERFR7fm0pdS2bduwYMECLFmyBEIIX+4aAPDqq6/CYrFoX/Hx8T6vAxERERERERER+TgptXHjRpw7dw6tWrWCXq+HXq/HsWPH8MQTT6B169YAgNjYWJw7d85jPbvdjoyMDMTGxmplzp4961HGPe0uU55nn30W2dnZ2teJEyfq8OiIiIiIiIiIiKi6fPr43tixYzFo0CCPecnJyRg7dizGjx8PAOjVqxeysrKwbds29OjRAwCwbt06qKqKnj17amWef/552Gw2GAwGAEBKSgqSkpIqfHQPAEwmE0wmkzcOjYiIiIiIiIiIaqDOk1K5ubk4dOiQNp2WlobU1FRERUWhVatWiI6O9ihvMBgQGxuLpKQkAEDHjh0xePBgTJo0CYsWLYLNZsPUqVMxatQoxMXFAQBGjx6N2bNnY+LEiZgxYwZ+//13LFiwAG+++WZdHw4REREREREREXlBnSeltm7digEDBmjT06dPBwCMGzcOS5YsqdY2li5diqlTp2LgwIFQFAUjR47E22+/rS23WCxYs2YNpkyZgh49eqBJkyZ48cUXMXny5Do9FiIiIiIiIiIi8g4hpZT1XYn6kpOTA4vFguzsbISHh9d3dYiIiMgPMV7wxPNBREREValuvODTjs6JiIiIiIiIiIgAJqWIiIiIiIiIiKgeMClFREREREREREQ+x6QUERERERERERH5XJ2PvkfUEEgpcWjrLyjIyYGiKIhJSESzNu3qu1pERERUjpOZ+fhu7zk4VIlYixlDusRCCFHf1SIiIqLLxKSUD0kpsX7/OZzOKoQiBPonxSAuIqi+q1U/Tm4Fsk8AUgVCmwEJvQEfBpen9u/Bynl/0aYVvQEP/W0xgi0RPqsDERERVc+zX+7CxoMXtOl/Tb4e17eJrscaERERUV1gUsqHdpzIwoQlW7XpG9pGY9mk6+uxRvXkdCrwj4Ge8x74H9C6t9d26bh0CWpODqTDAXnpPFLWLPFYrtpt+M9zoxAWpEJKCQmpfVehwgYVkIDVooc9VA/hkNApAgqAMMWM9qZoGI1mJLRvA705GIhMBJKG1CrRpqoSOYU2bVpAuF84v3lOaneKi6eL1ym9++J1BYQADDo+wUu+43AUAZCuqZKfUeExr3hZVfOJqLG4mGv1mD6bU1hPNSEiIqK6xKSUD124VOQxfSqroJ5qUs8uHnJ+N1sARQ/kX3TOq2ZSynY2HfbDv0MWFUAWFkItKsShpf/GPntLqELAKuwABFSokJAQUKDCAYdrPgDYRAGgAIqxEwR0cFh34fSFavw4nFZc21AhYAIgcA7AUaFAgYRYdxSAgBAHYNR/ASEkbDqBS86lAIDsYGBN6wgUKmZACkgISAmtbnYHYM1tB2mPqOYJrR0B4O6+rTGydwIknKkCKeFMyLnKOKfdXxJSAqprWpWyzDruacBzPbsqkWFzVFiX4j26pqTntLsupbcMSKjS9VoW10K6prUaSAlVLYQqHYDHvkocaKkaReslBkc6oC8+G2XrLEsvk57HIyVUtQhW6wVXebW4ftp+S5w9qTqXlKx7iWNxLlNLreO5TLrfIff5kKpHWc99VWe+ioL8Y3CoBZDufUsVcCVqJdRy13GXdZeX0gGHI7fsub9sAoCAydQUQuiqKFfVdipaUsW6lS6+jP1WmXyrbLk391u77TqXVrK8lserCAMSEx9BkyYDqlifAoFOEXCoEkV2tb6rQkRERHWASSkfcv/ZGmzUId/qQF6RvV7rUxO2wkLYigpRZC/CaXkBVtWKCFMEEi2JNd9YYbbze+u+gCkM+O1TyPwMZC6cC9vB3wCHAwVnz8Gm2nGiMAzn9a2gSgnhACAlhPOvb0gAhUYjbDqBHEUCxhM1roqiREDom8Fh3QOg4qRJseIgWKLQ9R1QZakEowQKStzULdkeKSofGJmVjs/7H0ORUXX9SV3MCEBX0BL5R6fW6FhqSgL4167T+CTYVmXZwFGzlmHnjv0FV2G7l+pCdcOZ+CoqSq/vilA9OnlqKZNSAc4dQ5n1CvKsDhRVcqODiIiIGg4mpXygKC0Nueu/R9iZbNx4Mg/7rrgO+VYHchtIUuq3lG/w3Yd/01qvnInOQVqLDAgAU7r+EQlh8VAdDkC1w+GwQ6p2SIcdqq0A0m6FzV6EfFs+7NYCWM+kQ55Pg+lEEyi/H4AUejgKmiM4ZTEuBPdETmgCrDqBTFMTqCIbMigDwPFq17XQHAqpCEhphoQCqeigQsCh6FBkNAMAHMIEOxTYhBl7I7ojXa+HME+BPsrgTDm5skRCAkK42jcJAaECQfZ86KHA4LDDZCuEVPQw2G0Iz70IkzUfTXLOQu+wIzr7HISjAJAOAGXfZ4NdRVh+Z+SEGp0tXYTzD2tFzYfBfgAILUDhLXHlNurxUGa5RLDMhUHaIFwLXW2xPF7bz0sU7lJhkFZEydMey+Fq01X+a/e0Wu52K3otIBGObG1+dVS3bJlyQtGWOP911lgIHZTSLWkqaJmx09EemQiHzdQeIfpL5Wyv5LqiguXF84zGGOh0QVo5AeFaX2j1g/B8XbwMxdPC3VLPvQ14TGsthYRSYluKVjPP+aX3rZR47T6PzjJGYxMYTU21MkIoJdZXXPVy71fxrGuJbRuNURDCgNItywCUaB1XQeszj+XSs4RqhdVa3NdMabKqz1KZlnKea9duWRX7rXSflfPe8VS+/PKOxzvHm5GxEceP/wMlbxhQYHL/DjAbdMizOlBo43tOREQUCJiU8oEzzz6HgtRURAJ4FsDcuOZYpzRDoU2F3aFC781+fexFQFEuHAW5OLkzFfbCAsBhh1DtyL54FlsPbofNboe0AdKug6qqsEsVOoeEKd/5vcAuIZXiPwqaX4xEq4uJAAR27vwVO/Gr9nd56T8eyk4XQspowBwJ7Y/LkGggBADOuL5QJo+j6sxQhQJAByl0cCh6SOjgEDrk64OgSoHfwxKwJzYBEgY4WkZBmnWQJh2gANKgAEbPhIRRCOzu0wVDtx3AwXzPRysBwKQI6IWAETY01eXBVnQWzXAWUbgIBar2JeCADioMsMIorBAQyBEREIhy/klvVyFUCSEEOvwjGqeUNEj1IpKbhAAtQlx9QAHNRAayi6z4+0kgWsnD/Kh/QYGAEAKKK6HgnEaJ+QogAJ1ruVERsBjM0OtDYTQ1g9EQXSph4EwirD9oxfRd2egSasAnPWLKSVYoHvOE0BVvp0QSRgjhMV08D8XztD6vhFbGOUPr+arU9lCiXMV9CzkTMM7kh7NuSp31NXTfb4exPuMS2rZ9EtfHRtXJNsm7zOa4+q4C1QNr0dn6rgL5mNngvJYX2dlSioiIKBAwKeUDjmzn42pSCAgpEVeYDQQ3AwDkWR2wBHknKSVP/4a18/6Dc0WtkZ21DwX2ndVe144SeSEFAASM4RNgzfkEgA02XCy1szqpMhyKEQ4B5BrDkBpyNfJ0QThhbgaHUvVHNapVGIb3T4BOCOgFYFIUWPTFiajiPo+cqbKeEaEI0+uw7torkG61QS8AvRDQCQEdgDC9DhfOr8Gu3/+knYzw8O7o1HEedPpg6HWhEELvSoroSyRtKvbfJW8A0pk4ua/rn5DQ7SqP5bsv7MbfT45CkDESg698vZpnreZCQ9IBbINOFwKL5aoqyxMREdUnqUoIqcJscF5r2VKKiIgoMDAp5QuuJudqSBh0uTkItRX3P2R3eCGo2v8NsHsFzh7MwoH8hyClRJH9c+cyJRxCGLU6CSUIEMEABIS0a49puVukOPMnDghjU2SFXgDMvaE3SzRvEY2fD2fBrko4hAIpFKhCuB6Zc35XjEYoOmeLG6kIZ4slYxCkKQhQdDCY9FAVBUKnQBUKpF4HGM0QAgg26dHBrIdOCFwnAEUIKIozWaQozsSRIgQiQgwINenRLMiIQe1jajWanEERiDcby11WUOjsp8psbokISw+0bPkHhIS0qfE+iIiIqHak3Y4nvvwL8hwCH973PAC2lCIiIgoUTEr5kBrqTEoFF+VBEYAqAYdaR02MSrB/9jgKjmXgWHZ/OEL2QCnYC3d/G+t7ZCM32I5CfT5U4YCqGpB77GHYHeGwl+i+JjrEhDCzHp3jwhERbEC42YBW4WYoAhjYsRkWX8zEyuPntH0u69YGN0WH1/mx1De7LQsA0KTJTUjqMLN+K0NERNSI2E6dwtE/jIX9zBnEu+aFugYl4eh7REREgYFJKV9wtUpyhITCAMBsLYBeUWB1qLB7ISl1/GsH8rOa4GiiGTbxrTY/M7QIQ/o9iDfXHIG0h0NKBdIWif9NGwqDToFJr0CvE4gKMcKkr2xodSD9jDMhdWuMBXfHRmFAVFidH4c/sNlzAAAGvaWea0JERIFuw4YNmDt3LrZt24YzZ87gq6++wu23315u2Ycffhjvv/8+3nzzTTz22GPa/IyMDEybNg3//e9/oSgKRo4ciQULFiA0NFQrs3PnTkyZMgVbtmxBTEwMpk2bhqefftrLR1dz+ampsJ854zHPKJ3JKG/c1CMiIiLfY1LKF6x5AIDQ/GOwAzA4rNApAnDUfVAlbYXYr4/Cnq5NAJGhzT/bTodeg/8Ak/lG2C+FwhJkwJWtInDfda3QsXnNWzhdsDo7WRoYHY7kJoGbsLG5WkrpDYF7jERE5B/y8vLQvXt3TJgwAXfeeWeF5b766iv88ssviIsr28H/mDFjcObMGaSkpMBms2H8+PGYPHkyli1bBgDIycnBLbfcgkGDBmHRokXYtWsXJkyYgIiICEyePNlrx1YrrhApqHt3FPz2GwDANU4u1MsYwZKIiIj8B5NSPiDznckhoyMbdpjQ1HYWesX5rFxdt5RSM8/hVISlxHD1Bli7Xo85f54BAPhi20kAQPf4CHw84bpa7yfL5mw+H2UI7I+QnS2liIjIR4YMGYIhQ4ZUWubUqVOYNm0aVq9ejWHDhnks27t3L7799lts2bIF11xzDQDgnXfewdChQzFv3jzExcVh6dKlsFqt+Oijj2A0GtG5c2ekpqZi/vz5/peUchFBQVAhoEDCKJxxk93BpBQREVEg8M6wb1SKK3BydcJtduRDp3MmjRxq3faJ4Dh/GpeCggEAxrAxMEVMhWhWPKR9oatjULP+8t76Ale9g5TA/gixpRQREfkLVVUxduxYPPXUU+jcuXOZ5Zs2bUJERISWkAKAQYMGQVEUbN68WStz4403wmgsHuAjOTkZ+/fvR2ZmZrn7LSoqQk5OjseXT5RoDeVQnN0KmKQzjuHje0RERIEhsJu5+AtX3KTqjQAkzA5nn1JA3beUcpxPhypcia6mEgeULWjerrh/qAKrM5gLMlbeZ1RVilxJKbMiqijZsNnt2QACt6UUQ3oiCgiN5FGu119/HXq9Ho888ki5y9PT09G0aVOPeXq9HlFRUUhPT9fKJCYmepRp1qyZtiwyMrLMdl999VXMnj27Lg6hdlS7cxRftfjxPW/0ydkg2IuA06mAanNOx10NGIN9WoVz504idecGGMJDEBnWBN2vuAFCBHY8SERE3sOklA9JvQGAFQbVVvz4Xh03P7eeT4d7pL2i3mew/sJSjA8fry13j1ZjrqIj86oUuoJBsy7QW0o57xobDBF1v3FZcSs5yXSRX2gkf+cSUQOwbds2LFiwANu3b/d5AuDZZ5/F9OnTtemcnBzEx8dXskYdueRMpIljP8EsDFChwChtAAxwNNZf0F89BOz+qni63SDgD1/UfntSAuf2AHnnnXGJlABkibtWsnhe3nnYii5h/j+/Qsz54pZ2X3TXI/GaVlClCilV7buUKvJUKxzSAQWADgLC9V0RCvRCj45BTdHcaEGUORpNwloAih5odT1gDrwRnYmIqHxMSvmQdCWCdKrD2dE56u5Onz0jA2dXrMaZTfu0efscztdmnVmbV1ctpQodzoSKKYAf31PVItjtlwAARmOTeq5N3eIdTSIKDI3nd9nGjRtx7tw5tGrVSpvncDjwxBNP4K233sLRo0cRGxuLc+fOeaxnt9uRkZGB2NhYAEBsbCzOnj3rUcY97S5TmslkgslkqsvDqZ6sY9pLoTjjpVC1AIABjsbap9TZ3c7voc2A3LPAmZ3ll5MSOPqjs4x7GhKw5gJ5FwDVDqgOYO9K2I4dgmpXcFinx4/GZnBIHSAFhBRQ7AKmPAUCAkVSwCp0aJIZ4bGrmO02hP50EEI6E1iKlM7XAIRUoUgJm04iI9QOh7DBefNUBaSKfdKBfZA4b3HgcAtA1UkUNpW4MqwpjDoTgtsOAkwWCAhX7OJMbAkICCiAEMiyOWCTEhICBlhwRVQfKMIZ56oSzl8Tro+LhHNaSgkIoeXeCh0q0q022KWEdMdIsvgmobuc6yzCZNLBYNAVz3OVlR7TJeaV2L8qpfMMaPOK10Op9QBnP65WKUtso+yty5LbL1Nn14t4sxG3No2AtykAuoUFIyjAb1xXh5QSDkc+ANX5mXN+Alyvi+dJ18+Dcx3VOU+6fk4A6HTBMJma1csxEPkCk1K+pHOebkV1QH+ZfUrZci7AlpmO00eO4OKZ07i45mccUpMgdYkADgFQsDnzFwBAiCFEWy/PNWqe2XC5LaX88/G9wsLTuHBhPaS0OS/K0vWLHhKQquuC77oQuH7hX7r0O/LyDkJKO6RqhyptkNKudXIuhB56fV3dsasiiPav09lo8W0gIn8zduxYDBo0yGNecnIyxo4di/HjnS2ie/XqhaysLGzbtg09evQAAKxbtw6qqqJnz55ameeffx42mw0GgwEAkJKSgqSkpHIf3atX7r+mgyKAnFwAQJb9V+hC4mFTm1a8nh+TUkKVKnRKLeOwgizn99sXAv+809nC6dPRQEEmUJgNuz0fZwou4qK041iRAqsUSIMJ+XYFQfkCpiwFikNAZwcUFYi4FI5LEbNQpAdU9RIk7IDQA7IQzvSCRJ6aC/cfxwAgkAZAhTH0blhzP4NNJ3AiNMi1sPQVVJR5LYQREGYADggRAqFYEGo34KpjegAKQvcbYLQWAEJBeNbPCC44DgBwCOCrXkX4qUvlyY78E/fDkdupVqe3uqROoKh3UyCoYf0p9eGpCz7Zz7XmTCyI3eWc0Fo1lkynyTLLSszVXtntObDZsj3Kl0j9lZiGK86vaJlHitBzOx6v1eKalNxeqf26E0fOTatl57uSlHb7JdjtWZdxJosZjTHQ6y0AHJBShV4Xio4dX0NYmHc/60S+0LB+kzZQ5yxdsbPb/VB1Ruiii3DF+aXFLaVK3+lTHYDDhoI9e5Cx+TfYrA7sOXIOl/ILkZl9ATb1EiRU2HAJJQMEp03aK4cicFXTqxAfFo9hbYpH57mYawUANAk1oiKqlLBJCbuUcEi4vjunzxTacKLIqj2+V5uOzqWUKCg4Crv9EqS0Q5UOZ0JIOqCqRcjM3ISiorOQ0qF92WxZsFkvui4Iapm7CO5p9+N2dSkysheE4N0eIiLyrtzcXBw6dEibTktLQ2pqKqKiotCqVStER0d7lDcYDIiNjUVSUhIAoGPHjhg8eDAmTZqERYsWwWazYerUqRg1ahTi4uIAAKNHj8bs2bMxceJEzJgxA7///jsWLFiAN99803cHWgt5OgVmAAfsKQhuJZCtxgC4tr6rVS12mw2HLxzAIxseR3rRWahSRe/Y6/BI10lQHQ6o0gFVtUNVHXBIG6TDBtVeANVhR54tF/m2fBTY85FZcBGq0Q6pt0Ck/wQZ2QyqLETcD78gcYcBUIEiRMBuuA42QyhyYhJh05sQDYlo1w069x/WDkXAqlNxJuwIpC0FsNX0qAxw6GIAJRpQLwJwxpfV6X1AygIA2a7ixUkSh+t7JqD9hXI2WgeguHVg++OAosvDuubNXTkurY0RdMFHoBguQRjzAYM7GSY9vgHl3Hgq8aiiKGedMq2SVAXCIdE9dysizHmubUpt/apeK9o8CXdbLfd+RYk6uF+bUAAzCj3KufdZfCzlz3Nv/1dcjwto6rHUG6ww4qKIwdECK9LSFnh1X4HB1e5PKAAUV05XKTFPwOFwJuSt1vOwWs97rP3rluEwGmMurwZCj+bNR8JoiKq6sIeat1b1efcktXnMWwg0ie6P4ODEqstSnWFSygcuhHeCQ++8g2Q3BCMzKEnrU8qhSjjyLyHn9AXs/vgd5P2UDrvOiCPRwbDiHJyp9qJKty8UC4SuKaTjHAoMRcg1ZeNoXCF275+E7fZgfPVTKlQ4L/b2XGfU8cbpc3jzx3wt2eT87kxA1eTHNy9zPQ7n7YLVluFKIDmTSw5HPoqKzkBVrVBVm2uZzZV4KtQei/OG0JAkhIS0d92tczfvRonXxQ2/IQQM+ghERfWGTh8KReghXF86XRCEYoTREF35DomIiOrA1q1bMWDAAG3a3Y/TuHHjsGTJkmptY+nSpZg6dSoGDhwIRVEwcuRIvP3229pyi8WCNWvWYMqUKejRoweaNGmCF198EZMnT67TY6kT7oBEADYdYAagc92PK8C5itaqO9Z8wGF1PurmsAIOm/b6QNZh/Ja5Hw57IRwFGbCrdmTY87S+lBw2O6TdgdDPLqJQOG8EDlaNaJHXBQapA2DHAbzvPDgp4P4PELAaFGSGOh+fE1JAkQJ6FYguOIfwvI4w2UNg/88BSPSEQyjIDYvHlg7N4VAU2HABqvUgpHoRwMWK/250oDgLBMAu9DhnioFVGHBJHwq70MGhNwCqRL4+GDbFACiA1DtjKtXSEqolFGfsYxEV5YDRqEARgCIETIpAmN75B3aEQQ9ZdBRFubsRpz8Fg7RDl+eAkBJCEVByHVDyVehtDsAqIPMF1AsS0uHu38pRpuo9Mh244abDAFQocCZtglCExRkK9hUpmHDFUvQM/aQOPwhuCoQQmPXzkzh+qQVuVb5FF+WgljyA9oih4vHavdwddxYrPa9EfOqedM0DoD2+WJxWE6W6Y6h4e7dhhcf2tDppyRD3tE6LlYuX6ZwD/rhu0Gr1c1aqxL6AvdZo/OniTdDrQ9Gi2WiPunqsK1DJsuL5imKCydjEWaZk/F7iOEtOa68hXP+XnHb9HeDahygzv/gRUQilwu0W36gWpd770tt2nrvg4NYQwlji81Dye9WklMjJ2QGHo8BVLx1yclJx6PDrAFAmUVUbR4++e9nbCCQHD74CRTFXXbAcen0oWsSNhhA1bQ1b+4Td5aT6goNbI7bZ8MvYQt1gUsqHdLIIDmGCXQnCnLw/40rzTpz9YSiW/3ozMkVrOKwdYIs54Cxc3qdL6CGMYVBNYcjRh2B7cAIkdJBwXjRyDVfhlMEBFQqkNRxIFwAKyq1LllmBtNlrWH87zChAc5yGATZ0xi4c2fN5jbbhpigmGI1NnBc/off4rtMFIzysK4KCW0O4fqELxQCzqTkUxVR8AXBfREpcOBTFhKCgVuwziYiIGpz+/fu7+hipnqNHj5aZFxUVhWXLllW6Xrdu3bBx48aaVq9eOVw38/SuToKcSRcvWjEFcsdSWAsNuHg0FLl2EwABG4JhlwZsRQik1AHQQyqhEFIgHAKQEka7QHARYNcJnAwvbpmuKsCJsGwIJQpav0olWvpoLZm0Toik6+9dCSgOILQICFXgjO1KxncXAWtquYdRoA+HXRigCsXZbkYozjgRCvIVM4oUI3J1JmyOvhadO8eifesIdE2IgMWg8+g3tLivJIlgnYIBUeFVDnZz+vS/cfrMF8jPPwxbZCYMhijo9WEwGCKhCAMgFCjC7IzjtFjQ9RoKHHaBokvO99v+aza2/N4N9vzvYNSZ0KPV9ShOwjjjwpDCX4Ci04iNvQNJLboXJ1e0755JIs9lxWUMxmiEh3WBEHp4Jpuc5u3cCFzKQfduf8eNHS6vlUqgKcjOAy4ehMEQiSuSXq7v6gQEIQQslqs95kVGXodmsbfBZsu6rG3n5x3G+QtrIWXZ5G9NeSQra72Ruvj7rfbbkNKOc+f+BwBQ1cJabcNqLUTa0berLuhHwsO61HvLMCalfMDdVNYgC+EQJkjFhCa7LuDr/IdR8FskMpo2h7Slw56/rsQ6OpwIb4VfItugQEYgK7IFdCF6xEeHQGfUIU9VoQggVK9DYrAJBqHCZj2LK+AAZAGEWgRFFECvqBDyAmyFJ2GWBYAELKZLiA87BZ10QAcVChzQweH6rkIHu8d8HVQIqDAaoiCE3tmaSNFDCCN0uq4wmZoiLLQzFMWoJZAUYYTZ3Bw6XXCppJPzdVBQAnS6eug0lYiIiBoECYlMSzukh7fDWVM+9jY5iZu2FaLfDjt29vq97ndYkAms+wuQfxF7t+bg++x/wyGBImUJoM+pZMV8z0kjgODiSUWfAEUfB3uhs5sFqWbUabUlALsSjDydGQ7osC+0LU6bmyNPF4JLhrAq128bE4JND/VCk9C6jcsOH3kTVqu7RZtAj6v/hZCQtrXa1rmL32DrbmffUgZDBDpe8dcyZUJOTgEyTyMy8nq0bHFHbatN1CCYTbEwm8ofnKK6wkKvQLNmw6ou2Iio6jwUFdWu9Vl29nZkZm1G7dsu1S6hVtuEYPrZlXA48mCzV3Z98w0mpXxIpzgfnStUQ7EzazDSEm6ElHmwZn/o6lDS6eP4u5Gjb4LmrS1IaG1BzzgLHurUAiZFgUERyM8/ivPnV8OhFqGg4BgcjkJcuLAO0miteOeumESvjyjV7NR5B0ivD0er+PGuR9iMUBQjdPpQ6HRBUIQBISHt2a8SERER+YzNoUNq96mQigG2/A1wFJ0C4OwOod2+3Lrf4e6vgC1/BwD8dvovUEP0UK27AdUdsOvg8UyhEga4WqxL4e41yBUryUsQ0gZVGLHPci0OBsUgxN4cz9x5BZ7ZmgZxyQ6pKIgxGtDFEgydIqAoChRFwKjXIdRscE4LAZ2iQNHroA8Jh95ggMmgh8moh1AUV2sjAeF6VEmnACPDzNArznkllymKc1oRgF5REGsxQwjAqKv+o0TVJWVxP59XXPFXhIV1rnVCiojIV5xP3bSs1bpBQS0RG3tbHdfIey5mbITDkVff1QDApJRPKSYFKALshhBcDFJRlL3QY7k1KAzo0AMz70xGi1ATrm9Z/ig4+/Y9j8ysX8pdFhXVF3p9GMzmFlCEHnC1UNLrQxHX/G7o9aF1flxEREREdc2u6iAV5wiBslTfQvrKu9usFduJ4zi9LhoONRQ5bUJgL9oJe/5aAEB+Ez2sdw7C7yftOJOl4vwlBxx5HdA0NAQGnQKjXoHZoEOrqCCYDTq0jg5B+2ah0AmB5IggmPQKmoSakKVIHFODEapTsP66K9DSZAjILgccjnxI6bwZG9tsOHS64CrWICKixopJKR9SgnVAEZAdGoECJRdGV3cAuSYjkHwfZo65u1rbycs/AgCIiUmG2dQcQUGtAKEgKrIXQkLaeav6RERERL7j7l9LqrArNihwPtInIKCrWbeY1XJpy37knTPBrjiQ23I1pCxujXX76EfwQqoJqSeytHn/N/E69G1fsz6FDmY6t9nUaEC8ueKRkBs6u905up4QRihKUD3XhoiI/BmTUj7gbuit6OxwWPcBtpMwujqmO3z11fjyujsxp0P1mgmqqlUbZSEp6SXXiBTUIFXyuHFNOrq9rCr4eGTWhsbnQ9cSUa3wZzXwOYTD+WCcUJwXL1XgrbUHcHOnZugcZ6mTfRRk5uD7K1qhwGQAXAmpJu3bo/UVXdG5Vz9c+sXZOfzkG9vg2tZR6NOu5jFYrsPZ4itcX9ORmRoWdwfMBoMlIFuCERFR3WFSypeUAljzvoFwB89KGHa3dj7HGW2s3ltRVHQOgIQQRhgNUV6qKPkC/4giIiKqRInLpCpcj+8pCuBwQELBW2sP4r+/ncZ3T/Svk92l5xSiwFTcqkcxtMMtM55G87DmAIBCmwoAuLVbc3RrGVGrfeQ7nNsI0gV2oqY4KRVRr/UgIiL/x6SUTzgDDwm7lpBKax+DvU3243DEvQCAxKDKRzzJydmJnbv+iKKidADOERfY8XjDU1UIWifDqdZBPRo7X70PRHS5+LMa0Eo055VwJnOKk1LO9/7w+TxcKrQhzGy47N2dsYYBih2KoQ0MIbchx3wRwcbivpAKbM7EWJCh9q2cClXncZiVwI7hbK7H9/T6umnFRkREgYtJKR8q2S7mi/5/ApAPqbOgfbAJbYOLk1J2ey6OHlsImy0TQuggoMPJU//nsa3oJv19UmfyBv4RRUREVBV34klAQgp3UkoPwAYJBcFGHfKtDmTm1U1SKk8GA8iByaDH6qSPcTY0DU/ob9eWF1idSSnzZSWlnNFgUKAnpVwj7wVySym2d68Yzw0R1QSTUj4kpVr8WtEBwoIdN3RCU6MBuhLP25879y2OHVtU7ja6dF6AqKjeMBjKH5mPiIiIKCCU01JKKnoIAKpQEGRwJqXybZfX67k9MxPWo0dRKJ2JLau+EEeiUyEgYFSMrqrI4pZSxstISrke3zPrAjspZbVeBAAYjdF1vm32h0lEFFiYlPIhFWqJKWcSKsqg90hIAUCR9SwAICysK5o0uQlSOgDpgMkch6ZNh7HDSCIiImpUtJZSOmfiSIXAaHyDX0Uc8q03AAdWA/v/5yzTdiDQ6TaP9fNt+ShyFEE9uxvKke+hqg44pAO2rDwce+swjjcfiBxTDOC4iAzh7O8zyhylxVxF9uIY7vJaSrkf3/O/WM7hKILdngNAdfZ7KSUA6Rp8RS31GrDZsnHhwlrY7JcgVStUaYNUbVClFefPrwEAGA11lJSqRuzrsy4Q/O+t8x88N0QNjx9k+pmU8gl3n1Ky+LvrimYo58pmtzmfw4+MvB5tEh/xUR2JiIiI/ElxoKzd2NOZnd+FAH4/gD6Gkzj/bja+wCXkRG3AIZOE5buWaG5/G5BFyJPnkC+zYcwNgbnwMHQ2OySCYVeAIsUOIQFHywioun2Q0pmMyrM40KfNOCREX4Mlpy7gvNWGrEtWbbevHD0DuwSsUoVVlbBJiSJVwqbK4nmqRJEsOy/P3dG5Fx7fU1U7srI2w+HIh5QqJByQqg2FhWegShsgVVeLM+l67Uw8Saiw2TJx7tz/4HDk12mdgoPb1On2iIgo8DAp5UOqKwspXXkoAUApJymljViij/BNxYiIiIj8jOfNW2cyR5GRUPQKVPtJAIDVlo9952OgNw0Acm5DcykhHWeQqeZBqjZI1QShBqHIloYiRQVMCoDCUju6ANgvaJP7wuOQmtYLSAMg9wEARKEDegCqUcGS0xcv67gEgB6WEKiqFTk5O+FwFEBKO6R0QEo7rNYLsNkyIaUDqrR7LCssPI38/MNQVTsgHSXKOGC3Z11WvbT6CZ2rlorrHqoCQLhajSmuMs7X4WFdEG65CjrFBKEYoAgDhGKEIgwwGCIQHT2gTupERER1zX+aNjIp5QNSe8Nd/SG4pvQVtP91qAUAAJ0uqNzlRERERAFPy0pJqMLZn5PeFg1d6C0AbFBz/gObegJBufuQW7QTkFYIJQSq/UTlm1Wi4VBCASiw61tCqFnI0ak4adChUGfGgUvdYNiTVe66TcPNuCuhGYyKgEEIqNZ0CHsGdLDDABt0sEMvCyHUPChqHtSiE1DUPOjVIuhghU4WIQi5CD2UiQ37cuq8ZRIAhIV1gaIYIYQeAgr0hnDnY3RCgYDiaq0vIEpNBwclIC7uHldSioiIyDeYlPIhLbRy5aL0FSQnpXR22CmUyx9JhoiIiKihyzFmwwKguMWOEfHpO3GkaSQuKccBZ84KUs0AAOTqgpFhiEK2IRwFuiBkmJtCtkyCoiiIaxIGRQhkXCqCQ5XQKYBOSOgUCaOwoo/e2ZcSABQVnYbdfgkCKhShYlDi7+h07iQACZstQxtlrqaKXN8NhmiYTM2coy0LPYRQYDBEwmiMhiKMrvnuZTroDRaEhXWGTjGXWSaEDiZTc+jcjzgSERE1AExK+ZB75BhoSanys1JSOiMr3qkib6v/bu2IiIjK525pLgDYFWefTjlXnkDGeYFLsWexPnEYem3/WSufr5hxJCQR+aYI3DJqFK4KD8KVLSNgCTYgxKiDXqcgL+8IiorSYbNloKjoHKy2izhz5nNYrRfKq0K58ks1bhLCiMjInlAUExRhgKIYoTdEaAmm0JAkKIrBlTzSQyh6VzkTQkLaMd4jIqJGjUkpH5LVfHyPSalGopKRDiTTRX6B7wIRUT0q5zoZHtwETSYk49dcPX7MKML5rr2xPCkOWXYdcowRAIAOzUIREWwss25u7n5s/nVopbs0GptCrw/RHn2D0MFsjkN8y/tdJQQghHMZBBTF6HpcjiE1ERFRbfAK6gPuO31S9ezoXFdlUopvD3kHhzMmooDAX2aNhIRwJahOFtnxf8cdcD+v16FVAmLbtkZsNbaSc2kXAECnC4XZHIcgc0vo9WEwmpqiVasHYdBHMLlERETkY7zy+pC79Yus8vE9V59SbCnV6Ag/GgWhMePfuUREfsCjpZTzdaFrVvtgE64KD8a0Vs2qvbnCwjMAgGZNh6Jjx1frqpbkc5W3Y/ZVa3NZSYv3xo4t/omoJpiU8iG11ON7ugo7OmdLKSIiIiI34QqeHK67Brc3jcQTidVpH1WssPAUAMBsjqvTuhEREVHtMevhQ9pdA1cyyqBU3lJKYUspIiIiIghIAAJ2V3PzYJ1S7XUPHvwrTp/5DA5HHgAmpRqmqpsw+6q1OVtTV4wt/omoNpiU8gnXL2hZ047O+fYQERFR4yS1e3lS+1PXIZzJqIqSUvsPzMbp08sBSAhhhCX8SmRk/qgtF8IIi+VqL9aavMEZMjPhQURU9+r/cVtmPXyodJ9SFXd07mwpBVH9u4BEREREAaVEnOzs6FzAgcpbSqWnfwVVLXJNWbWEVFBQAq7s/hEMhigYDOFerDQRERHVBJNSPuTuENGdlDKwpRQRERFR5WRxn1J2VNxSSlXtsNsvAQC6dv0bsrO2AQCEYkBssxEIDm7tk+oSERH5O3963JZZD59wv+GeTeOClPLv8hUnpdinFBERETVOniN4OV/bXDFVeTGU3Z6lvW4SPRBNY5K9WT0iIiKqA3w+zIeKW0q5AqoKht9zP77HllJERETUeBXf1HO/qqyllLuVlE4XCkVhDEVERNQQMCnlA+77fPmuZJN7OqiC/hCk6mwpxdH3Apyr4/vyl/mqDvXfsZ0/49khaiD4uywwlXhfheu1rZLR91TVCgBQFKMPKkdERER1gUkpH8qyOZNSqut2X8WP77GlFBEREVFpBZV0dM4+OYmIiBoeJqV8whlASVfLmCpbSsFZjn1KBSA/GdK4gj72yYWnh6hh8KdOOqnuyTKj7wF2V2wUXM6NveKbeoyfGjPpo5aTbJ9ZMTZeJaKaYFLKhxRX7OzuU8pcQUspd/Nz3ulrfASzRURERGVovUsJZ+wUqi+beHK3lFKEwVfVonrAhAcRUWBh1sMH3NdOvWs8YwkBsyLQLzKsTFlVtcFmywQAGIzRvqoiERERkX9xBVCiREfnLYOCMCIxFuGVJKWEwpZSjZKP7uuxhWbFeGaIqDaYlPIhxRVdKYrAgd4dYC08jpOnvsbx4/+AzZYJKR2Q0gZAQgg9jIao+q0wERERkT9wNY+5Ly4Gw1rHVlCEfXIGLLYkJyLykvpvfsqrtk+4+pSCu6UUsG3rCOTnH65wjaio3hCCT1cSERFRY1Vi9D3Xd72u4lZQxR2ds6UUERFRQ8GklA+5OzCXQmgJKYMhGjExgxDf8gEoigmKYoAQOhiNTeuzqkRERET1y6Ojc+d3Rak4dGVH50RERNXkRw1QmZTyJXfPjCWaIPe6fi0MhvB6qhARERGRf5JaVkpCuF7rdRV3Yl7cUorhLRERUUPB58N8SApXS6kSaUmOtkZERERUDo+WUs54SV9JJ+ZsKUVERNTwMCnlC+7Ekyw1TVTP6r9bOyKiusDfZoGpbLykq+TxPZUtpYiIiBocJqV8SOtTqp7rQf5Byoo/CZKfEv/At4GIqN6UvBa6+5TS6dinFBERUSBhUsoHpHTf6Svbp5Rf9TBGjYbg546IAgJ/lzUGokTHB7rKHt9T3UkptpRqzHhjj4ioYWFSyofcF0nJpBRVgMki/8B3gYjID6glW0o5fzMrSsWha3FH52wpFdj8JOnkJ9UgImromJTyBa2hlOqaZkfnRERERJUpbh8ltQRA5UkptpRqFJgM8lv8s4aIaoNJKZ9ytZQCW0oRERERVU9xO2IhKg5dVWl1lWFSKuBUI1z2VWtzJl6IKJD4wyPPvGr7gCx9kRQVThARERGRB6l1dC7VAqSlvYvCwlPIyzuI+FYTYLFcDak6kJ93BABgMsbUY13JexgzExEFIialfIp9ShERERFVS4lRat2tYDIyN+LipX9o87N/n1ZmNZOpmffrRkRE1KD5Tx6Cj+/5kJRlm8axCTARERFRZYr7lFJlEQDAWKI1lBA6KIoJOl0ogoJaoUmTgfVRSSIiIqoFtpTyJXfTc7aUIiIiIqpciXt57mhJEc7ZzZoOQ/v2zzmXcbQ9IiKiBotJKZ9whVLuDhHYpxQRERFRtRWHUK4uWYVgMoqIiCgA8PE9X5IcfY9KkGrFi3w0CkI5T5RSCTw9RA2DP4wcQ3WvZLcHQjrjJUWnjcNXDzUiIiKiusaklE+5b/MxkCIiIiKqMXfjcyaliIiIAgKTUj5Q+v6tLBFHCSaoGhVR4t965QdV8Gf8sSQiqn/u+ElAFj++J9gqjirns9bmbKFZIZ4ZIqoJJqXqAzs6JyIiIqo27aG9Mi+osWHCg4gosDAp5RPOwEm7o8KOzomIiIgqV3L0PVcz8+JcFOOnRqUaSUhfPdLJT17FeG6IGiA/6GSYSSlfKqejcz6+R0RERFRN7FOqUeK7TUQUuJiU8iH3BVUyEUVERERUqeKbt8V9SilKcU9TREREVFv+cx1lUsqXZOnH9/zng0BERETkr0SJBJVzBmMoIiKiQMCklE9obaRck6LUfCIiIiKqiPtxPaEUzyEiIqKGj0kpHyruQszdWScDKiIiIqLyybIvXU2mGEEREREFBialfMDdsblwRVSSLaXIT0gOrFwpnh2ihoI/rQGpZJ9SrlcKu0AgIiIKKExK+RL7lKISZCXDb1a2jIiIqLFRpPsGnwtbmxMREQUEJqV8wRU3udMMxff7GFBR/eAnj4gCAhMTAU2Lm0reqGGfUlQFX93Y4/3DivHUEFFNMCnlQ+7H99x9STGWJvJP/NEkIvIDsvh2npvQ+pTib+rGiskgIqLAwqSUT3gGTpJxFFWAnd8TERE5aX2bl0hKKaJ4LjUefhUf+VNd/AzPDBHVBpNSXubRhFjrU4qP7xERERFVh+egHKVjKWoUhPZPxUX4mSAiapCYlPIJ90WSSSkiIiKimijZUop9ShEREQUWJqW8rbwH3zn6HhEREVHlZJkXJfqUIiIiotryp9aldZ6U2rBhA4YPH464uDgIIbBixQptmc1mw4wZM9C1a1eEhIQgLi4O999/P06fPu2xjYyMDIwZMwbh4eGIiIjAxIkTkZub61Fm586d6Nu3L8xmM+Lj4zFnzpy6PpQ64w6lFKkCAFTFedr96YNARERE5FfKua+n8MYeERFRQKnzpFReXh66d++O9957r8yy/Px8bN++HS+88AK2b9+OL7/8Evv378dtt93mUW7MmDHYvXs3UlJSsGrVKmzYsAGTJ0/Wlufk5OCWW25BQkICtm3bhrlz52LWrFn44IMP6vpwLl+JllKK3Q4AsBsNrjkMqIiIiIgqI6VDe60o7FOKiIgokOjreoNDhgzBkCFDyl1msViQkpLiMe/dd9/Fddddh+PHj6NVq1bYu3cvvv32W2zZsgXXXHMNAOCdd97B0KFDMW/ePMTFxWHp0qWwWq346KOPYDQa0blzZ6SmpmL+/PkeySt/4RBW2Ap+RpCjAABgN7lPOwMqIiIiospIWQQAsOkkhM4ZOwnGUERERAGh3vuUys7OhhACERERAIBNmzYhIiJCS0gBwKBBg6AoCjZv3qyVufHGG2E0GrUyycnJ2L9/PzIzMyvcV1FREXJycjy+vE5K5OEoHIW/wGizOesRZPL+fsn/ldffmHtRec8s+LYKBN+9D0R0mfjLLCBJCUhpg8NxEQBQZFBR/Ewfk1JERESBoF6TUoWFhZgxYwbuu+8+hIeHAwDS09PRtGlTj3J6vR5RUVFIT0/XyjRr1syjjHvaXaY8r776KiwWi/YVHx9fl4dTIRXOx/bygoPxS6cMXGpiAcA+pYiIiIgqokoVRdmLUVDwPQBnUkowKUV+grnwivHcEFFN1FtSymaz4Z577oGUEgsXLvTJPp999llkZ2drXydOnPD+Tkv8Vs4NDcG+1pdKJKMYUDU6fvKWMyFaOT4WQtQw8Gc1sNlUFZDOgW4KjA4caFFYnJTidawRY8aDiCiQ1HmfUtXhTkgdO3YM69at01pJAUBsbCzOnTvnUd5utyMjIwOxsbFambNnz3qUcU+7y5THZDLBZKq/R+dKDGhc6juRE//AIiIiciqZelg+6CRUewggnHN5taT6ws9exXhuiKg2fN5Syp2QOnjwINauXYvo6GiP5b169UJWVha2bdumzVu3bh1UVUXPnj21Mhs2bIDN1UcTAKSkpCApKQmRkZG+OZDqKqf9quBwxkRERESVK7dBDB/fa5SEqPIt5409IqKa84c+dOs8KZWbm4vU1FSkpqYCANLS0pCamorjx4/DZrPhrrvuwtatW7F06VI4HA6kp6cjPT0dVqsVANCxY0cMHjwYkyZNwq+//oqffvoJU6dOxahRoxAXFwcAGD16NIxGIyZOnIjdu3dj+fLlWLBgAaZPn17Xh3PZpMdr55TiumjyESoiIiKiCpS5sSdK5KQYQxEREQWCOn98b+vWrRgwYIA27U4UjRs3DrNmzcLKlSsBAFdeeaXHeuvXr0f//v0BAEuXLsXUqVMxcOBAKIqCkSNH4u2339bKWiwWrFmzBlOmTEGPHj3QpEkTvPjii5g8eXJdH45XMIwiIiIiqlzZbg9KzmU0RUREVHv+cx2t86RU//79ISsb6r4awzFERUVh2bJllZbp1q0bNm7cWOP6+Vw5x6uwo3MiIiKiGhJ+8ZgBERER1Z16G32vUXHlnqTrO1ucExEREVWuTAKqxCT7DyIiIgoMTEp5myx7T09w9D0iIiKiGhLg43tERESBhUmpeuA+6ezonOpbNZ6mbdR4fogaBj7SFaDKe1vdv5gZQxEREQUEJqW8rcRftWUHjGFA1ZhJqdZ3FYiIiBoUJiCJiIgCC5NSPuUMpBQ+vkf1jJ+8yvH8EDUU/GkNZGVH3yt+fI99SlFFqjOoUp3sxyd7aZiYPCaimmBSytukR6+czm+uplIMqBofUeJfIiIiqkSlf9fyWtpY8dF6IqLAwqSUD7mvodpJZ38IVAoTlURERG5lh4phn1KNlB+9335UFb/D/nKJGiA/yPQzKeVtHm+y6/E9/r4mIiIiqpSUpQMmUeKxIAZTjUl13m0mRIiIGiYmpXzIHVsJ9ilFREREVAvsU4qIiOjy+c91lEkpLyunoRQU9ilFREREVKmynSUXd3TuT8E0ERER1R6TUl5X9hlNnnQiIiIqbcOGDRg+fDji4uIghMCKFSu0ZTabDTNmzEDXrl0REhKCuLg43H///Th9+rTHNjIyMjBmzBiEh4cjIiICEydORG5urkeZnTt3om/fvjCbzYiPj8ecOXN8cXiXoUQCin1KERERBRTmR3xIlhp9jwEVERERueXl5aF79+547733yizLz8/H9u3b8cILL2D79u348ssvsX//ftx2220e5caMGYPdu3cjJSUFq1atwoYNGzB58mRteU5ODm655RYkJCRg27ZtmDt3LmbNmoUPPvjA68dXY6X7lJIcap6IiCjQ6Ou7AgFPSkjXHb4yo++x6TkRERG5DBkyBEOGDCl3mcViQUpKise8d999F9dddx2OHz+OVq1aYe/evfj222+xZcsWXHPNNQCAd955B0OHDsW8efMQFxeHpUuXwmq14qOPPoLRaETnzp2RmpqK+fPneySv/EN5j++5XzGGIiIiCgRsKeUTnkGVItjROaHS4Telj4bm5P3myvH8EJE/y87OhhACERERAIBNmzYhIiJCS0gBwKBBg6AoCjZv3qyVufHGG2E0GrUyycnJ2L9/PzIzM31a/6rk29Vy5rJPKSIiokDCllLeVjK5IJyvFcGRY6h+8clRIqKGrbCwEDNmzMB9992H8PBwAEB6ejqaNm3qUU6v1yMqKgrp6elamcTERI8yzZo105ZFRkaW2VdRURGKioq06ZycnDo9lorYS92gERDsU4qq5KtHPH11A7Eh4pkhoppgS6l6oCWjGE8R+SX+rUPUQDTSH1abzYZ77rkHUkosXLjQ6/t79dVXYbFYtK/4+Hiv7xMo26BYQGgJB97YIyIiCgxMSnlbOXdRdHx8j4iIiGrBnZA6duwYUlJStFZSABAbG4tz5855lLfb7cjIyEBsbKxW5uzZsx5l3NPuMqU9++yzyM7O1r5OnDhRl4dUQ3x8j+oXP3kV47khaojqv20jk1L1gB2dU0VEI73rT0REVXMnpA4ePIi1a9ciOjraY3mvXr2QlZWFbdu2afPWrVsHVVXRs2dPrcyGDRtgs9m0MikpKUhKSir30T0AMJlMCA8P9/jyheIwueTNPCalGi++50REgYhJKW8r0VJKcZ1tLbRiAoKIiIhccnNzkZqaitTUVABAWloaUlNTcfz4cdhsNtx1113YunUrli5dCofDgfT0dKSnp8NqtQIAOnbsiMGDB2PSpEn49ddf8dNPP2Hq1KkYNWoU4uLiAACjR4+G0WjExIkTsXv3bixfvhwLFizA9OnT6+uwK1TuvVutTylf1oSIiCjQ+M+FlB2d14PiXJT/fBCIiIiofm3duhUDBgzQpt2JonHjxmHWrFlYuXIlAODKK6/0WG/9+vXo378/AGDp0qWYOnUqBg4cCEVRMHLkSLz99ttaWYvFgjVr1mDKlCno0aMHmjRpghdffBGTJ0/27sHVQtkoiX1KERERBRompbys5MgcxQ3O2acUEREReerfv3+lI3pVZ7SvqKgoLFu2rNIy3bp1w8aNG2tcP1+r/HgZQxEREQUCPr7nU7LUdwZURERERNUjSnSLwBiKiIgoEDApVQ/cfUmxTykiIiKimnD3KcUYioiIKBAwKeVt5TQ9V3h3j/xEdR4Facx4dogaCv60BibPVlGCfUoREREFHCalfEgKVyAlGDwTIKVa8TL+gUVERI1d+cPvub4zKUXl81UMxUitYjw3RFQTTEp5m5Qo2685OzpvtPzkcQPeYSaiwMDfZY2LKLcFOjUubOVNRBRYmJTyIRUOAMUJASYGGh8BCf4RRUREVLWyuYfix/f85SYP+Ygfvd3sE7ZiPDNEVBtMSnmbLE5COGAFAOiEzrmMFzUqhYlKIiKiqvF62cjw7SYi8pL6b33KpJQPuO/q6WCCNeN6tDAlAACEOzlFRERERNXAPqWofExUEhFVnz+1+tTXdwUCXom252Y1CkVnhzpbSklAgEkpIiIiovKUvXdbok8pPwqmiYiIqPbYUqoeCLhGXWNLKSIiIqLKieK+OCVbShEREQUUJqW8rPwRQpxJKSF4+omIiIiqzxlX8VEtIiKiwMCsSL1wBVRsKUVERERULu1JPW2OAPuUIiIiCixMSnmbLO+lq6UUTz8RERFR9ZXNVBEREVEDxqxIfZDux/fYz3yjVu6jna5FfjA0J/nDAKlEVC2V/D6lwOHsU4oxFFWu/K4zyJf4FhBRTTAp5XXsU4r8DwctIiKihqJkJCWlHQBbm1P9Y+KFiKhu8IrubR5XLHcmgKPvEfkz5uyIGgZ2dh3YHK6W5W6KIxpSa23OGIqIiCgQMCnlQ9IVOwswoCIiIiKqTMlH2fOPTUZQ9hhI6QDAGKqxEULAX24Z+UctiIjqhj90G8OklLeV27bXPfoeTz+VwkiHiIjIRWjfHfltoAg9k1JUIcG+CYiIGiRmRXzKnaByj77HgIqIiIioPKVv6wmIEkkpdnROREQUCJiU8jZZskGcZ59SvMtHREREVIFSrc2FQImkFENYIiKiQMArug+5Yyt20klERERUMwIAXEkpDhZDREQUGJiU8raSd/lcz7oLbfQ9nn4iIiKi8pTbKyf7lCIiIgoozIr4VKk+pRhQEREREVWLEAISrqQU++UkIiIKCExKeVn5g++5Ozrn6af6Ve7nkzSSJ4ioQfCH4Yyp7pXt6JxdIBAREQUaZkV8SLo7OhfOMIsBVeNWWcKDyRAiImrsRDlZKSntzpeMoagCvktSM1arCM8MEdUEk1JeV96vZQ5n3GgJUXUZH/CPWvgvwTNE1EDwZzWwlRp9D2wpRWzlTUQUaJiU8in38Hvs6LzxkuAfUURERFUrzj0UXzfZUqpxEn5yUw/wm/uLfonnhqgB8oNMP7Mi3ubxJrtH33M/vsfTT0RERFQdQgi2lKIKsZUzEVHDxKyIt0lZTsMYd6KKF0/yxICKiIjIpdTNW+cV0t0FApNSREREtec/f3cyKeVT7jfe1VLKjz4IRERERP5MCEBKh2uCSSkiIqJAwKSUt5V4fE9rH1VmOBkiIiIiKqmcwfc0CpNSREREAYFJKV+Qni+EO1HFPqWIiIiIqsUzScUYioiIKBDwiu5t5fVmL/j4HhEREVGlyu1TyvWaN/aIiIgCAq/oPiC176WTUExKEREREVWH53DzjKGIiIgCAZNSXibLaSkl3GkqwYCqUXMNa13uojI9aXipCj7aT0PFs0PUUPCnNRAVv6uixL+e84jqS3kPQ5AT40siqgkmpXzIancmIYp/UTOgonrCjx4RETU0Ja5dgjf2GjEmPIiIAgmTUt5W4rqpum6pNAstAsA+pYj8Ff/WIWog+LMa2Cq9h8c3v1Hxowsz4/eK8dwQNUT1n+hnUsoXXL+fm1mCsObxG9HKUuCaz1/cRERERNXhGTUxhG1MnCEz42YiokDEK7rXFWceg016dGgWxsf3qEK8w0RERFQ+Icp/TQQwhiIiqgl/+p3JpFS9cCal/OmDQERERORfKuvanDEUERFRIGBSytvKHZqDLaWIiIiIKlN6BC/P1lGMoYiIiAIBk1LeVjIpJUrNEzz9REREROUqc1+veIZgDEVERBQQeEWvB1J7fI+IiIiIylfZiECMooiIiAIBk1LeVqKllNaHlFS1OURERERUGVHiX895RERE1LAxKVWfOHQM1bNyuzwjDU8PUUPBn9ZAVPpd9Rx9jzEUlU8yuCEialCYlPIy54XR3YeUax5H3yOg8owQ4ykiImrkSl8mRTmvqPHxl5yTn1SDiKjBY1LKp7Sezl3fefobG39JRPpLPfwVzw5Rw8DfZYFNVT2nr24V6nrF953qET9+FeKpIaLa0Nd3BQKeLHEnpczoe/zV3SjxfSciIqqG4rYoO164GUH6DPz0Ex/da5T4nhMRBSw21fEh9x1dCdU1TURERERViQwxlnhuixEUlYMfCyKi6vOjZD+TUl5X3hPnDKqofLz7S0RE5FQ2gmL3B0RERIGGV3VfKt2llODpJyIiIqoJ3r8hIiIKHMyKeFuJIUKKW8Fw9D0iIiKimpDS3fM54yciIqJAwaRUPZB8fI+IiIiohhg/ERERBRompbxNltOnlPtOH9ufExEREVWhVEtzdn9AREQUMHhV97ZyHt+T5XZ+TkREREQVkRx9j4iIKOAwKVUv3H1K8fQ3ZrK8VnTuZT5KXDI9SkQBoZLfp9RwlX1b2acUVc1nMRR/7VSI54aIaoJZES+rLPHAx/eovvCjR0REDZXgRYyIiChg6Ou7Ao2JNtoem583XnzLG4S6fJscDgdsNlsdbpGI3Gw2HRQlDkAUCgsLa70dnU4HvV7PZIefKf1u8PG9xsx/3nP/qYn/qctzI6WE3W6Hw+Gow60SUbEmUJQ4FFlR6xiqruInJqW8rURDKfd7JV3NzwUva0QBLTc3FydPnqy8xSQR1ZrDEYkIy0wIYURaWtplbSs4OBjNmzeH0Wiso9rRZSsT5DIp1bjxfW8srFYrzpw5g/z8/PquClHAMhknwGiw4eLFYGRl1j6Gqov4iUmpesGgiijQORwOnDx5EsHBwYiJiWELDCIvsNlyUVSkh6KYERzcqlbbkFLCarXi/PnzSEtLQ/v27aEo7N3AH0gpPUIlyT6lqBK82RsYVFVFWloadDod4uLiYDQaGUMReUFevoBUrTCbW0CvD6nx+nUZPzEp5WVSqiWmFPdM53f+gqVSGFAFDpvNBiklYmJiEBQUVN/VIQpIOp0VUgrodDqYzeZabycoKAgGgwHHjh2D1Wq9rG1R3dPamrriJyGYNCQKVFarFaqqIj4+HsHBwfVdHaKAZXfooDoEzGYj9PraxT11FT/xql4PpDb6HhMQRIGOd/eIGga2jmoI+Cg0UWPB38lEDUNd/Kzyp93LSvYlU/ZvU/6xSkRERFQpxk9EREQBi0kpnyjdhxQf3yMiIiKqCXeXCGyBSkREFDiYlPIyqUpoySj36HuSo+8Rkf964IEHIISAEAJGoxHt2rXDSy+9BLvdflnb/f777yGEQFZWVt1UtBrS0tIwevRoxMXFwWw2o2XLlhgxYgT27dvnUW7VqlXo168fwsLCEBwcjGuvvRZLlizxKHP06FEIIZCamlrt/c+aNQtXXHEFQkJCEBkZiUGDBmHz5s0e25w4cSISExMRFBSEtm3bYubMmbBarZVu98yZMxg9ejQ6dOgARVHw2GOPVas+GzZswPDhwxEXFwchBFasWFFuub179+K2226DxWJBSEgIrr32Whw/flxb/tBDD6Ft27YICgpCTExMued0y5YtGDhwICIiIhAZGYnk5GT89ttv5e7v0KFDCAsLQ0RERI2OwWi0YNWqddU6dmp4SrQ1LzWH4SsR+R/GT4yfGkr8JITAf/+bUq1j9wVe1esFgyryDyUfL6WyGvPpGTx4MM6cOYODBw/iiSeewKxZszB37tz6rpamqqADcHY2f/PNNyM7Oxtffvkl9u/fj+XLl6Nr164egd0777yDESNGoHfv3ti8eTN27tyJUaNG4eGHH8aTTz55WfXs0KED3n33XezatQs//vgjWrdujVtuuQXnz58HAOzbtw+qquL999/H7t278eabb2LRokV47rnnKt1uUVERYmJi8Oc//xndu3evdn3y8vLQvXt3vPfeexWWOXz4MPr06YMrrrgC33//PXbu3IkXXnjBo/PKHj16YPHixdi7dy9Wr14NKSVuueUWOBwOAEBubi4GDx6MVq1aYfPmzfjxxx8RFhaG5ORk2Gw2j/3ZbDbcd9996Nu3b50dAwUq9slJVfNVbCPZx1mFGvOZYfzE+InxUy3IRiw7O1sCkNnZ2V7bR872HfLNUZPlvHuGyTfmz5JSSrkjdbxc+10beer0Z17bL/mnb8bNk2+Mdn4e9n//TZnlx7KPyS5LusieS3t6tR6bDl+QCTNWyZvmrffqfhqqh35Pk83W7ZAfHD9X620UFBTIPXv2yIKCgjqsmW+MGzdOjhgxwmPezTffLK+//nqZkZEhx44dKyMiImRQUJAcPHiwPHDggFbu6NGj8tZbb5UREREyODhYdurUSX799dcyLS1Nwhmnal/jxo2TUkqZk5MjR48eLYODg2VsbKycP3++7Nevn3z00Ue17SYkJMiXXnpJjh07VoaFhWnrbty4Ufbp00eazWbZsmVLOW3aNJmbmyullHLHjh0SgDx69GiFx3r8+HFpMBjk9OnTyyx7++23JQD5yy+/SCmldgw7duyo+Ul1cV931q5dW2GZOXPmyMTExGpvs/S5qi4A8quvvioz/95775V/+MMfarSt3377TQKQhw4dklJKuWXLFglAHj9+XCuzc+dOCUAePHjQY92nn35a/uEPf5CLFy+WFoulxsewdOlbMjf3UI3WK09lP7O+iBcaEl+dj6V3T5Tz7hkm5953r3O/Obvk2u/ayI0/3uDV/ZL/yVq/QS6YsFjOu2eY/GjSyHLLPP3D07LLki7y498/9mpd7ln0s0yYsUr+97dTXt1PQ3Qgt0A2W7dDJm3YWettMH5i/FQexk91Hz8t+/Q9mZ29U9psOTVat7S6iJ/qvKlOVU3bpJR48cUX0bx5cwQFBWHQoEE4ePCgR5mMjAyMGTMG4eHhiIiIwMSJE5Gbm+tRZufOnejbty/MZjPi4+MxZ86cuj6UOieKn9/znCbyMX7yKueN8yOlRL7VXi9fsg7uGgcFBcFqteKBBx7A1q1bsXLlSmzatAlSSgwdOlS7ezNlyhQUFRVhw4YN2LVrF15//XWEhoYiPj4eX3zxBQBg//79OHPmDBYsWAAAmD59On766SesXLkSKSkp2LhxI7Zv316mDvPmzUP37t2xY8cOvPDCCzh8+DAGDx6MkSNHYufOnVi+fDl+/PFHTJ06FQAQExMDRVHw+eefa3egSvv8889hs9nKvaP30EMPITQ0FJ9++ullnz/AeXfygw8+gMViqfTuXHZ2NqKioupknzWlqiq+/vprdOjQAcnJyWjatCl69uxZYTN1wHnnbfHixUhMTER8fDwAICkpCdHR0fjwww9htVpRUFCADz/8EB07dkTr1q21ddetW4fPPvvMP+/akf9xdX9AjZAf9SPmR1XxO946Nw05hmL8dPkYPwV+/KSv6w26m4VNmDABd955Z5nlc+bMwdtvv42PP/4YiYmJeOGFF5CcnIw9e/ZoTdvGjBmDM2fOICUlBTabDePHj8fkyZOxbNkyAEBOTg5uueUWDBo0CIsWLcKuXbswYcIEREREYPLkyXV9SJfF2bTX+Rva/Ytalun4nBoLvuONV4HNgU4vrq6Xfe95KRnBxtr9updS4rvvvsPq1asxZMgQrFixAj/99BNuuOEGAMDSpUsRHx+PFStW4O6778bx48cxcuRIdO3aFQDQpk0bbVvuQKFp06bas++XLl3Cxx9/jGXLlmHgwIEAgMWLFyMuLq5MXW666SY88cQT2vSDDz6IMWPGaP0BtG/fHm+//Tb69euHhQsXokWLFnj77bfx9NNPY/bs2bjmmmswYMAAjBkzRqvXgQMHYLFY0Lx58zL7MxqNaNOmDQ4cOFCrc+e2atUqjBo1Cvn5+WjevDlSUlLQpEmTcsseOnQI77zzDubNm3dZ+6ytc+fOITc3F6+99hpeeeUVvP766/j2229x5513Yv369ejXr59W9m9/+xuefvpp5OXlISkpCSkpKTAajQCAsLAwfP/997j99tvx8ssvA3C+P6tXr4Ze7/wsXrx4EQ888AD++c9/Ijw83PcHS/6vRLecJQl2f9DoMBHUuDXEGIrxE+Mnxk/VV+dX9SFDhuCVV17BHXfcUWaZlBJvvfUW/vznP2PEiBHo1q0bPvnkE5w+fVrLIu7duxfffvst/vGPf6Bnz57o06cP3nnnHfzrX//C6dOnATh/iK1WKz766CN07twZo0aNwiOPPIL58+fX9eFcNlfruNIzXS94hSUi/7Rq1SqEhobCbDZjyJAhuPfee/HAAw9Ar9ejZ8+eWrno6GgkJSVh7969AIBHHnkEr7zyCnr37o2ZM2di586dle7nyJEjsNlsuO6667R5FosFSUlJZcpec801HtO//fYblixZgtDQUO0rOTkZqqoiLS0NgPPOY3p6OpYuXYpevXrhs88+Q+fOnZGSUv3OHd2BQmWWLl3qUY+NGzdqywYMGIDU1FT8/PPPGDx4MO655x6cO3euzDZOnTqFwYMH4+6778akSZO0+SW3+/DDD1erzhs3bvRYb+nSpdVaT1WdLVFGjBiBxx9/HFdeeSWeeeYZ3HrrrVi0aJFH2TFjxmDHjh344Ycf0KFDB9xzzz0oLCwEABQUFGDixIno3bs3fvnlF/z000/o0qULhg0bhoKCAgDApEmTMHr0aNx44411egwUuCRHL6ZKcFRG8geMn4oxfmL8VF113lKqMmlpaUhPT8egQYO0eRaLBT179sSmTZswatQobNq0CRERER4/PIMGDYKiKNi8eTPuuOMObNq0CTfeeKPHBz05ORmvv/46MjMzERkZ6cvDqpyUWvBUfK10Pb4neKePPPGRzsAVZNBhz0vJ9bbvmhowYAAWLlwIo9GIuLg46PV6rFy5ssr1HnzwQSQnJ+Prr7/GmjVr8Oqrr+KNN97AtGnTalN1DyEhIR7Tubm5eOihh/DII4+UKduqVSvtdVhYGIYPH47hw4fjlVdeQXJyMl555RXcfPPNaN++PbKzs3H69OkydxetVisOHz6M5OSq37fbbrvNI9hs0aKFR73btWuHdu3a4frrr0f79u3x4Ycf4tlnn9XKnD59GgMGDMANN9yADz74wGPbJUerqe4dsWuuucZjvWbNmlVrvSZNmkCv16NTp04e8zt27Igff/zRY57FYoHFYkH79u1x/fXXIzIyEl999RXuu+8+LFu2DEePHsWmTZugKM5r3bJlyxAZGYn//Oc/GDVqFNatW4eVK1dqdzWllFBVFXq9Hh988AHuu+++Wh0DBTDe1CNqlBpSDMX4ifFTSYyfqsenSan09HQAZU9Ms2bNtGXp6elo2rSpx3K9Xo+oqCiPMomJiWW24V5WUVKqqKgIRUVF2nROTs5lHE31SLVkKylnEMXH94gaHyFErR+hqw/uQKCkjh07wm63Y/PmzVrz84sXL2L//v0eF+H4+Hg8/PDDePjhh/Hss8/i73//O6ZNm6bdSCjZP0GbNm1gMBiwZcsWLRDKzs7GgQMHKrwD5Hb11Vdjz549ZepZGSEErrjiCvz8888AgLvuugszZszAG2+8gTfeeMOj7KJFi5Cfn4/777+/yu2GhYUhLCysWnVQVdXjWnTq1CkMGDBAG5HFHYS41eT43IKCgmq1ntFoxLXXXov9+/d7zD9w4AASEhIqXE9KCSmldlz5+flQFMWj5YJ72n03cdOmTR6fhf/85z94/fXX8fPPP6NFixa1PgYKZO4+pRg/ETUmDSmGYvzE+Kkkxk/V0zB+uuvIq6++itmzZ/t0n7LEv6VbShERNSTt27fHiBEjMGnSJLz//vsICwvDM888gxYtWmDEiBEAgMceewxDhgxBhw4dkJmZifXr16Njx44AgISEBAghsGrVKgwdOhRBQUEICwvDuHHj8NRTTyEqKgpNmzbFzJkzy1yQyzNjxgxcf/31mDp1Kh588EGEhIRgz549SElJwbvvvovU1FTMnDkTY8eORadOnWA0GvHDDz/go48+wowZMwA47wjOmTMHTz75JMxmM8aOHQuDwYD//Oc/eO655/DKK6+gS5cuHvstHXAAQOfOnWEwGDzm5eXl4S9/+Qtuu+02NG/eHBcuXMB7772HU6dO4e677wbgDKj69++PhIQEzJs3TxvqGABiY2MrPX73XbDc3FycP38eqampMBqNZe7SlZSbm4tDhw5p02lpaUhNTUVUVJQW1D711FO49957ceONN2LAgAH49ttv8d///hfff/89AOcjA8uXL8ctt9yCmJgYnDx5Eq+99hqCgoIwdOhQAMDNN9+Mp556ClOmTMG0adOgqipee+016PV6DBgwAAC0z4Xb1q1boShKmfNd1TEcO3YKO3fuQYsWBo87vBQIZKkpdzzFpBQRNRyMn5wYP/lb/HQSO3fuQ1ycDm3aVHzsvuDTpJT7A3L27FmPTtHOnj2LK6+8UitT+llRu92OjIwMbf3Y2FicPXvWo4x7urIP4bPPPovp06dr0zk5OVpP914jy7aU0uYxqCKiBmbx4sV49NFHceutt8JqteLGG2/E//73Py2gcDgcmDJlCk6ePInw8HAMHjwYb775JgBnk+zZs2fjmWeewfjx43H//fdjyZIlmD9/Ph5++GHceuutCA8Px9NPP40TJ05og19UpFu3bvjhhx/w/PPPo2/fvpBSom3btrj33nsBAC1btkTr1q0xe/ZsHD16FEIIbfrxxx/XtvP444+jTZs2eOONN7BgwQLk5eUBAD799FOMGjWqzH7Lm3fixAm0bNnSY55Op8O+ffvw8ccf48KFC4iOjsa1116LjRs3onPnzgCAlJQUHDp0CIcOHSqzflUj/lx11VXa623btmHZsmVISEjA0aNHK1xn69atWlADQLsmjhs3DkuWLAEA3HHHHVi0aBFeffVVPPLII0hKSsIXX3yBPn36AADMZjM2btyIt956C5mZmWjWrBluvPFG/Pzzz1pL5yuuuAL//e9/MXv2bPTq1QuKouCqq67Ct99+W26nqDVR+hiee24ugLkex0ABio/vEVEDxfiJ8ZO/xU/PPvMqAGDs2NH45JP67XdKyLoYK7yijQuBr776CrfffjsA5wckLi4OTz75pDYCQE5ODpo2bYolS5Zg1KhR2Lt3Lzp16oStW7eiR48eAIA1a9Zg8ODBOHnyJOLi4rBw4UI8//zzOHv2rPaD/Nxzz+HLL7/Evn37ql2/nJwcWCwWZGdne63n+oxft+CTt/4Bh+MUDL174ZFHnse27aORlbUZXTovQLNmt3plv+SfVj/wBnbbDkDaT2H4n6aiQ7/BHstP5JzA0K+GIsQQgl9G/+K1emw+chH3fvAL2saE4Lsn+nttPw3VH3cfxVfnsvByuxaYFB9Tq20UFhYiLS0NiYmJVQYH5CkvLw8tWrTAG2+8gYkTJ/p8/xkZGRg4cCDCw8PxzTffIDg42Od1oOqx2XJQUHAMOl0wQkLaXta2KvuZ9UW80JD46nwsu2sizujOQupC8eSyfyErayu2bb8XQUGtcUOv77y2X/I/ORt+xJKPD8GW+zmiLGaM/+DzMmWe2fgMvj7yNZ665inc37nqx4Zqa9QHm/DLkQy8O/oq3Nqt7Ehnjdmh/EL02bwPEXod9vXtWqttMH6qPcZPVBO5eQehOgoRHNwaen31HqEsT13ET3Xe03Zubi5SU1O1ZnHupm3Hjx+HEAKPPfYYXnnlFaxcuRK7du3C/fffj7i4OC1x1bFjRwwePBiTJk3Cr7/+ip9++glTp07FqFGjtE7URo8eDaPRiIkTJ2L37t1Yvnw5FixY4NEKyl9IqOU8reduKcWOzomIduzYgU8//RSHDx/G9u3bMWbMGADQmrT7WlRUFNauXYuBAwdi06ZN9VIHIgJkqRZRUjr70+Dje41d5ffTpY+6yfDebf2Gj6fGNxg/UaCo88f3qmra9vTTTyMvLw+TJ09GVlYW+vTpg2+//dYjq7Z06VJMnToVAwcOhKIoGDlyJN5++21tucViwZo1azBlyhT06NEDTZo0wYsvvojJkyfX9eHUKS2IYvNzQuVNS73YgNFzPz7ZS8Plq8CWgHnz5mH//v0wGo3o0aMHNm7ciCZNmtRbfaKjo/Hiiy/W2/6ppviz2ji432fe1CMiAhg/UWCo86RU//79K/2DWgiBl156CS+99FKFZaKiorBs2bJK99OtWzds3Lix1vX0GbXsudA66mRSiuoJ7zKTP7nqqquwbdu2+q4GEfkbUfoFb+o1Wn70ljN+rxjPjG8xfqJAwVtN3iah/YYuTgQwqGq0hPYP+TEm7YiI/IDk6HtERESBjkkpLyvdaqyw8DQcjgLnBGMqIiIiogqUCpRcfUoRERHR5fGnVESdP75HpRUnpaxF5/DTz321acGcIBEREVGNMH6i8vCxOiKiholJKR9yqHkAAEUxITi4DSyWq+u5RuR3GE8RERF5co8To41ezIslERFRoGBSysukR1NzZzCV0OohtGnzaP1UiIiIiKiB2X/gJVy4sNY1xaQUERFRoGBSyss8u5Ryd9Cpq5e6EBERETVEJ09+rL0OMresx5oQERFRXWJSytukRMl+pQBACJ52IiIiopq6+qqlCA+/sr6rQURERHWEPUV6mattlOu181E+oTApRUT+64EHHoAQAkIIGI1GtGvXDi+99BLsdvtlbff777+HEAJZWVl1U9FqSEtLw+jRoxEXFwez2YyWLVtixIgR2Ldvn0e5VatWoV+/fggLC0NwcDCuvfZaLFmyxKPM0aNHIYRAampqtfc/a9YsXHHFFQgJCUFkZCQGDRqEzZs3e2xz4sSJSExMRFBQENq2bYuZM2fCarVWut0zZ85g9OjR6NChAxRFwWOPPVat+ixcuBDdunVDeHg4wsPD0atXL3zzzTfa8oyMDEybNg1JSUkICgpCq1at8MgjjyA7O1srs2TJEu3zUfrr3LlzWrmioiI8//zzSEhIgMlkQuvWrfHRRx951Oett97S9hUfH4/HH38chYWFlR7Dl19+iVtuuQXR0dEwGi3YuXNfpeUbkg0bNmD48OGIi4uDEAIrVqzwWC6lxIsvvojmzZsjKCgIgwYNwsGDBz3KZGRkYMyYMQgPD0dERAQmTpyI3NxcjzI7d+5E3759YTabER8fjzlz5nj70GpFlpmjIDLyeuh05nqoDRFVlyznp7cxYPzE+KmhxE9CCOzcuadax+4LTEp5mSzx/J7g43vkwQ8u2H5QBX/WmE/P4MGDcebMGRw8eBBPPPEEZs2ahblz59Z3tTRVBR0AYLPZcPPNNyM7Oxtffvkl9u/fj+XLl6Nr164egd0777yDESNGoHfv3ti8eTN27tyJUaNG4eGHH8aTTz55WfXs0KED3n33XezatQs//vgjWrdujVtuuQXnz58HAOzbtw+qquL999/H7t278eabb2LRokV47rnnKt1uUVERYmJi8Oc//xndu3evdn1atmyJ1157Ddu2bcPWrVtx0003YcSIEdi9ezcA4PTp0zh9+jTmzZuH33//HUuWLMG3336LiRMnatu49957cebMGY+v5ORk9OvXD02bNtXK3XPPPfjuu+/w4YcfYv/+/fj000+RlJSkLV+2bBmeeeYZzJw5E3v37sWHH36I5cuXV3nseXl56NOnD15//fVqH3dDkZeXh+7du+O9994rd/mcOXPw9ttvY9GiRdi8eTNCQkKQnJzsEYiOGTMGu3fvRkpKClatWoUNGzZg8uTJ2vKcnBzccsstSEhIwLZt2zB37lzMmjULH3zwgdeP73IpvKlHfqQxxwhUMcZPjJ8YP9WCbMSys7MlAJmdne21fZz54Xv55n2T5Lx7hsk5c8bJtd+1kcdPfOK1/ZF/+/aBefKN0Q/JefcMk/vWfV1m+fGc47LLki7y2n9e69V6bD5yUSbMWCUHzF3v1f00VH/cfVQ2W7dDLjp+ttbbKCgokHv27JEFBQV1WDPfGDdunBwxYoTHvJtvvllef/31MiMjQ44dO1ZGRETIoKAgOXjwYHngwAGt3NGjR+Wtt94qIyIiZHBwsOzUqZP8+uuvZVpamvtZZu1r3LhxUkopc3Jy5OjRo2VwcLCMjY2V8+fPl/369ZOPPvqott2EhAT50ksvybFjx8qwsDBt3Y0bN8o+ffpIs9ksW7ZsKadNmyZzc3OllFLu2LFDApBHjx6t8FiPHz8uDQaDnD59epllb7/9tgQgf/nlFyml1I5hx44dNT+pLu7rztq1ayssM2fOHJmYmFjtbZY+VzUVGRkp//GPf1S4/N///rc0Go3SZrOVu/zcuXPSYDDITz4pvrZ988030mKxyIsXL1a43SlTpsibbrrJY9706dNl7969q1Vv9/uxceO/ZW7uwWqtU5nKfmZ9ES+UBkB+9dVX2rSqqjI2NlbOnTtXm5eVlSVNJpP89NNPpZRS7tmzRwKQW7Zs0cp88803UgghT506JaWU8m9/+5uMjIyURUVFWpkZM2bIpKSkatfNV+fj/0ZOlPPuGSbnjh4l137XRq7/votX90f+K3vDRrlgwmI5755h8sMH7yy3zDMbnpFdlnSRS35f4tW63PfBJpkwY5X8T+opr+6nITqcVyibrdsh22/4rdbbYPzE+Kk8jJ+K1VX89PPPK2R29k5ps+VUa72K1EX8xJZSXiZL9nTueq2wTymqZxxNu3JeOT1SAta8+vmSl38/NygoCFarFQ888AC2bt2KlStXYtOmTZBSYujQobDZbACAKVOmoKioCBs2bMCuXbvw+uuvIzQ0FPHx8fjiiy8AAPv378eZM2ewYMECAMD06dPx008/YeXKlUhJScHGjRuxffv2MnWYN28eunfvjh07duCFF17A4cOHMXjwYIwcORI7d+7E8uXL8eOPP2Lq1KkAgJiYGCiKgs8//xwOh6Pc4/r8889hs9nKvaP30EMPITQ0FJ9++ullnz/AeXfygw8+gMViqfTuXHZ2NqKioupkn5VxOBz417/+hby8PPTq1avS+oSHh0OvL//a9cknnyA4OBh33XWXNm/lypW45pprMGfOHLRo0QIdOnTAk08+iYKCAq3MDTfcgG3btuHXX38FABw5cgT/+9//MHTo0Do6wsCSlpaG9PR0DBo0SJtnsVjQs2dPbNq0CQCwadMmRERE4JprrtHKDBo0CIqiaI89bNq0CTfeeCOMRqNWJjk5Gfv370dmZqaPjqZ22Cdn4yWEAEddbMQacAzF+OnyMX4K/PiJV3dvkyWb97of3+Npb8wE2OS7UbLlA3+Nq599P3caMIbUalUpJb777jusXr0aQ4YMwYoVK/DTTz/hhhtuAAAsXboU8fHxWLFiBe6++24cP34cI0eORNeuXQEAbdq00bblDhSaNm2KiIgIAMClS5fw8ccfY9myZRg4cCAAYPHixYiLK3uubrrpJjzxxBPa9IMPPogxY8Zo/QG0b98eb7/9Nvr164eFCxeiRYsWePvtt/H0009j9uzZuOaaazBgwACMGTNGq9eBAwdgsVjQvHnzMvszGo1o06YNDhw4UKtz57Zq1SqMGjUK+fn5aN68OVJSUtCkSZNyyx46dAjvvPMO5s2bd1n7rMyuXbvQq1cvFBYWIjQ0FF999RU6depUbtkLFy7g5Zdf9nj8q7QPP/wQo0ePRlBQkDbvyJEj+PHHH2E2m/HVV1/hwoUL+NOf/oSLFy9i8eLFAIDRo0fjwoUL6NOnD6SUsNvtePjhh6tsft5YpaenAwCaNWvmMb9Zs2basvT0dI9HAABAr9cjKirKo0xiYmKZbbiXRUZGltl3UVERioqKtOmcnJzLPJraYfxE1Eg1wBiK8RPjJ8ZP1ceWUt5WMvsgXB2ds08pIvJzq1atQmhoKMxmM4YMGYJ7770XDzzwAPR6PXr27KmVi46ORlJSEvbu3QsAeOSRR/DKK6+gd+/emDlzJnbu3Fnpfo4cOQKbzYbrrrtOm2exWDyenXcr2foDAH777TcsWbIEoaGh2ldycjJUVUVaWhoA553H9PR0LF26FL169cJnn32Gzp07IyUlpdrnomSLkoosXbrUox4bN27Ulg0YMACpqan4+eefMXjwYNxzzz0eHVq6nTp1CoMHD8bdd9+NSZMmafNLbvfhhx+uVp03btzosd7SpUu1ZUlJSUhNTcXmzZvxxz/+EePGjcOePWU7u8zJycGwYcPQqVMnzJo1q9z9bNq0CXv37vXoMwEAVFWFEAJLly7Fddddh6FDh2L+/Pn4+OOPtbt933//Pf7617/ib3/7G7Zv344vv/wSX3/9NV5++eUqzyn51quvvgqLxaJ9xcfH+7gGzhYyijD4eL/UkAi2pCI/wPipGOMnxk/VxVtOXuY5+gRbSlHlGFAFMEOw825bfe27hgYMGICFCxfCaDQiLi4Oer0eK1eurHK9Bx98EMnJyfj666+xZs0avPrqq3jjjTcwbdq02tTcQ0iI553K3NxcPPTQQ3jkkUfKlG3VqpX2OiwsDMOHD8fw4cPxyiuvIDk5Ga+88gpuvvlmtG/fHtnZ2Th9+nSZu4tWqxWHDx9GcnJylXW77bbbPILNFi1aeNS7Xbt2aNeuHa6//nq0b98eH374IZ599lmtzOnTpzFgwADccMMNZTqcLjlaTXh4eJV1AZwBaMn1SraucY8IBAA9evTAli1bsGDBArz//vtamUuXLmHw4MEICwvDV199BYOh/GTAP/7xD1x55ZXo0aOHx/zmzZujRYsWsFgs2ryOHTtCSomTJ0+iffv2eOGFFzB27Fg8+OCDAICuXbsiLy8PkydPxvPPP1/pOW2MYmNjAQBnz571uDN99uxZXHnllVqZ0gG73W5HRkaGtn5sbCzOnj3rUcY97S5T2rPPPovp06dr0zk5OfWQmOJNPaJGqwHFUIyfGD8xfqo5tpTyunKSUhw9hqjxEcLZ/Ls+vmrRiZg7EGjVqpX2LHzHjh1ht9s9huS9ePEi9u/f79F8OT4+Hg8//DC+/PJLPPHEE/j73/8OoPiOWcn+Cdq0aQODwYAtW7Zo87Kzs6vV5Pvqq6/Gnj17tICl5FdFd+eEELjiiiuQl5cHALjrrrug1+vxxhtvlCm7aNEi5Ofn4/7776+yLmFhYR77L9kUuzRVVT0ehTp16hT69++PHj16YPHixVAUz0tzye2WfjSrIkFBQR7rhYWFVbs+7tHZjEYjVq5cCbPZXO56ubm5+Pe//13mLh8A9O7dG6dPn0Zubq4278CBA1AUBS1btgQA5OfnlzlWnc6ZdJBS1uicNgaJiYmIjY3Fd999p83LycnB5s2btT4tevXqhaysLGzbtk0rs27dOqiqqgWovXr1woYNG7R+TAAgJSUFSUlJ5T66BwAmk0kbBtv9VR8YPxE1Ug0ohmL8xPiJ8VPN8eruZR4dnWstpXinj4ganvbt22PEiBGYNGkS3n//fYSFheGZZ55BixYtMGLECADAY489hiFDhqBDhw7IzMzE+vXr0bFjRwBAQkIChBBYtWoVhg4diqCgIISFhWHcuHF46qmnEBUVhaZNm2LmzJlQFMXVsW3FZsyYgeuvvx5Tp07Fgw8+iJCQEOzZswcpKSl49913kZqaipkzZ2Ls2LHo1KkTjEYjfvjhB3z00UeYMWMGAOcdwTlz5uDJJ5+E2WzG2LFjYTAY8J///AfPPfccXnnlFXTp0sVjv/v37y9Tl86dO5e5G5aXl4e//OUvuO2229C8eXNcuHAB7733Hk6dOoW7774bQHFAlZCQgHnz5mlDHQMVt1pxc9/Jy83Nxfnz55Gamgqj0Vhh/waAs8XLkCFD0KpVK1y6dAnLli3D999/j9WrVwMoDqjy8/Pxz3/+Ezk5OVr/QTExMVrQAwDLly+H3W7HH/7whzL7GT16NF5++WWMHz8es2fPxoULF/DUU09hwoQJWnA0fPhwzJ8/H1dddRV69uyJQ4cO4YUXXsDw4cM99lNaRkYGjh8/jtOnnXfNDx48Cp3OhMTE0CrPmb/Lzc3FoUOHtOm0tDSkpqYiKioKrVq1wmOPPYZXXnkF7du3R2JiIl544QXExcXh9ttvB+D8w2fw4MGYNGkSFi1aBJvNhqlTp2LUqFHanezRo0dj9uzZmDhxImbMmIHff/8dCxYswJtvvlkfh1wjgo/vEVEDxPjJifGTk7/ETwcOpMHhsKJ16yC0bFlx8s0nLmv8vwbOF0Man/xurZx/3yQ5755hcs6ce+Ta79rIc+crHsqSAtu3D8yT80c/JOfdM0zuW/d1meUnck7ILku6yGv/ea1X6/Fr2kWZMGOVHDB3vVf301D9afdR2WzdDrno+NlabyPQhjR2cw9pbLFYZFBQkExOTvYY0njq1Kmybdu20mQyyZiYGDl27Fh54cIFbflLL70kY2NjpRCi0iGNr7vuOvnMM89o6yUkJMg333yzTH1+/fVXefPNN8vQ0FAZEhIiu3XrJv/yl79IKaU8f/68fOSRR2SXLl1kaGioDAsLk127dpXz5s2TDofDYzsrVqyQffv2lSEhIdqQy59++qlHmfKGZXZ/nThxokzdCgoK5B133CHj4uKk0WiUzZs3l7fddpv89ddftTKLFy+ucJtVKW+dhISESteZMGGCTEhIkEajUcbExMiBAwfKNWvWaMvXr19fYX3S0tI8ttWrVy85evToCve1d+9eOWjQIBkUFCRbtmwpp0+fLvPz87XlNptNzpo1S7Zt21aazWYZHx8v//SnP8nMzMxKj6GiczZz5sxK16tKXQxpfLkqOv/unxVVVeULL7wgmzVrJk0mkxw4cKDcv3+/xzYuXrwo77vvPhkaGirDw8Pl+PHj5aVLlzzK/Pbbb7JPnz7SZDLJFi1ayNdee61G9fTV+fhk5EQ5755hcu7o++Ta79rITb8M9ur+yH/lbPxRLpiwRM67Z5j88ME7yy3z7IZnZZclXeSS35d4tS73fbBJJsxYJf+Tesqr+2mIDucVymbrdsj2G36r9TYYPzF+Yvzk2/jphReeqXS9qtRF/CSkrIOxwhuonJwcWCwWbbhGbzi1NgX//ugzqI7TUK8JxtU9tqF79w/RJLq/V/ZH/m31+Dewx3oQqv0kbn34T0ga4Dl058lLJzHkyyEI0gfh1zG/eq0eW45m4O5Fm9CmSQjWPdnfa/tpqKbsOYYvzmZidrs4PBRfvea+pRUWFiItLQ2JiYkVNt+l8uXl5aFFixZ44403ym3a7G0ZGRkYOHAgwsPD8c033yA4uOZ9cpFv2Gw5KCg4Bp0uCCEh7S5rW5X9zPoiXmhIfHU+/u+uB3FOlw6pD8dVEzcjLLQzrruu6r5ZKPBc+vEnLF58CLbczxAZbsKEv39RpsxzG5/Df4/8F09e8yTGdR7ntbqM/vsv+PnwRbx931W4rXs9jQjnp47kF+GGzXsRrldwoG+3Wm2D8VPtMX6imsjLOwiHoxDBwa2h19e+pVRdxE/sU8rLykv5CfDxPSIitx07duDTTz/F4cOHsX37dowZMwYAtCbtvhYVFYW1a9di4MCB2LRpU73UgYgAlBr8g31KUXX46n57I76vXyWeGt9g/ESBgld3L/McfY+omJRqfVeBn84qMKjynXnz5mH//v0wGo3o0aMHNm7ciCZNmtRbfaKjo/Hiiy/W2/6JqCzBe6lERB4YP1EgYFLKh2o+/hWRd/CzSP7kqquu8hgtjIgIAO+cULFajCLrLX5UFb/DU+NbjJ+oLvjDpZa3nLytZFML929qXs0aLedbz/ff3/EdIiKqf6LMC2qshODHgIgoUDEp5VP+kIckIiIi8n9SlIqbeFOPiIiojvjPNZVJKW/z6JTG+Vr40QeAiIiIiKihE0xaEhE1SExK+QRbSFH1MKAiIiJyK31N5DWSiIgo0DAp5W0cvouIiIio5qTHNyIiIgpATEp5HUMpIiIiosvHllJERESBhkkpL5MlWkrxySwiIiIiIiIiIicmpbyt3Mf3mJ0iIv/1wAMPQAgBIQSMRiPatWuHl156CXa7/bK2+/3330MIgaysrLqpaDWkpaVh9OjRiIuLg9lsRsuWLTFixAjs27fPo9yqVavQr18/hIWFITg4GNdeey2WLFniUebo0aMQQiA1NbXa+581axauuOIKhISEIDIyEoMGDcLmzZs9tjlx4kQkJiYiKCgIbdu2xcyZM2G1Wivd7pkzZzB69Gh06NABiqLgscceq3ad3F577TUIIcqse/jwYdxxxx2IiYlBeHg47rnnHpw9e9ajzF/+8hfccMMNCA4ORkRERLnbd3+GSn7961//0pZ/+eWXuPnmm7X99OrVC6tXr66y3l9++SVuueUWREdHw2i0YOfOfVWuQw1T6QiKA8VQdUg+pVDvGus7wPiJ8VNDiZ+EENi5c0+Nj91bmJQiasQk+zyrVGM+O4MHD8aZM2dw8OBBPPHEE5g1axbmzp1b39XSVBV0AIDNZsPNN9+M7OxsfPnll9i/fz+WL1+Orl3/n707j4uqev8A/hmEkQEGEAVZRATFBUFyyb2IlE1DKhMNvoi5JCUuuaGmYYSZNmii5dJXwb4/NNOKCCtD3FAJNxATBSUIA1zJURZZn98fxM2RVWSAgef9ek0xc88957mXGebxnHPvsVNI7DZv3gwPDw+MGjUKCQkJSE5OxpQpU+Dn54fFixc/U5y9e/fGli1bcOnSJZw8eRI9evSAs7Mz7ty5AwC4evUqKioqsH37dly+fBkbN27Etm3bsGLFijrrLS4uhqGhIVauXAl7e/unjuvs2bPYvn07BgwYoPB6QUEBnJ2dIRKJcOTIEZw6dQolJSVwd3dHRUWFUK6kpASTJk3CO++8U2c7YWFhyM3NFR6vvvqqsO3EiRNwcnLCTz/9hPPnz8PR0RHu7u5ITEyss86CggKMHj0a69ate+rjZqqKO6PYvzh3Ya0Z50+cP3H+1AjUjsnlcgJAcrlcaW38+WMUbXhzJsk8x5MsZCIdjrWie3mnldYea90OvSWjDV5+JPMcT1cOR1Xb/tfDv8g23JaG/G+IUuM4m3GPLAKiyWH9EaW2o6rmXM6krkcS6Ys/bzW6jqKiIkpJSaGioqImjKx5+Pr6koeHh8JrTk5ONHz4cMrLyyMfHx/S19cniURCrq6ulJaWJpTLzMykV155hfT19UlLS4tsbGzo4MGDlJGRQajs5xMevr6+RET04MED8vLyIi0tLTI2NqYNGzaQg4MDzZ8/X6jXwsKCgoKCyMfHh6RSqbBvXFwcjR49mjQ1Nalbt240d+5cys/PJyKixMREAkCZmZm1HmtWVhZpaGjQwoULq20LDQ0lAPTbb78REQnHkJiY+PQn9R9V3zuHDx+utcz69evJ0tKywXU+ea7q8/DhQ7K2tqaYmJhq+x46dIjU1NQUvhfv379PIpGIYmJiqtUVFhZGenp6NbYDgL7//vsGx0VEZGNjQx9++GGDylb9PuLivqH8/GtP1U5N6vrMNke+oEqa63zsfr0yf1rv7UWHY63o3PkpSm2PtV4PT5+m0OnhJPMcT/+d8VqNZVbErSDbcFvadWmXUmPx/vI3sgiIpsjEv5TajirKKHxEXY8kUs/jFxtdB+dPnD/VhPOnujUmfzp9+geSy5OppOTZvsubIn/imVKMtUN8f7PmR0QoLC1skQc1waiyRCJBSUkJpk2bhnPnziEqKgrx8fEgIowbNw6lpaUAgDlz5qC4uBgnTpzApUuXsG7dOujo6MDc3BzffvstACA1NRW5ubnYtGkTAGDhwoU4deoUoqKiEBMTg7i4OFy4cKFaDDKZDPb29khMTMSqVauQnp4OV1dXTJw4EcnJydi3bx9OnjwJf39/AIChoSHU1NRw4MABlJeX13hcBw4cQGlpaY0jerNnz4aOjg727t37zOcPqBwd27FjB/T09OocnZPL5TAwMGiSNmsyZ84cjB8/HmPHjq22rbi4GCKRCB07dhRe09TUhJqaGk6ePNmotrp06YKhQ4di165ddb4XKyoq8PDhQ6UeO2NMlXHy0l6pcg7F+dOz4/yp7edP6i0dQNtX/Q3E90RgrP0pKivCsD3DWqTtBK8EaGloNWpfIkJsbCwOHToENzc3REZG4tSpUxg5ciQAICIiAubm5oiMjMSkSZOQlZWFiRMnws7ODgBgZWUl1FX1ZWlkZCRcR//w4UPs3r0be/bswZgxYwBUTlk2NTWtFsvLL7+MRYsWCc9nzpwJb29v4Zp+a2trhIaGwsHBAVu3boWZmRlCQ0OxdOlSfPjhhxgyZAgcHR3h7e0txJWWlgY9PT2YmJhUa08sFsPKygppaWmNOndVoqOjMWXKFBQWFsLExAQxMTHo0qVLjWWvX7+OzZs3QyaTPVObtfn6669x4cIFnD17tsbtw4cPh7a2NgICAvDxxx+DiLBs2TKUl5cjNzf3qdoKCgrCyy+/DC0tLfz666949913kZ+fj3nz5tVYXiaTIT8/H56enk99XKy94PyJsfZIFXMozp84f+L8qeF4plRzEvE18Iwx1RAdHQ0dHR1oamrCzc0NkydPxrRp06Curo5hw/5NDDt37ow+ffrgypUrAIB58+YhODgYo0aNQmBgIJKTk+ts548//kBpaSmGDh0qvKanp4c+ffpUKztkyBCF5xcvXkR4eDh0dHSEh4uLCyoqKpCRkQGgcqTp5s2biIiIwIgRI7B//370798fMTExDT4XYrG43jIREREKccTFxQnbHB0dkZSUhNOnT8PV1RWenp64fft2tTqys7Ph6uqKSZMmYdasWcLrj9fr5+fXoJjj4uIU9ouIiMCNGzcwf/58REREQFNTs8b9DA0NsX//fvz444/Q0dGBnp4e7t+/j0GDBkFN7elShlWrVmHUqFEYOHAgAgICsHTp0lrvq7Fnzx58+OGH+Oabb2BkZASg7nPKGGOMtUacP/2L8yfOnxqKZ0opGT12Y7N/Z03xSB9j7Y1EXYIEr4T6Cyqp7afl6OiIrVu3QiwWw9TUFOrq6oiKiqp3v5kzZ8LFxQUHDx7Er7/+irVr1yIkJARz585tTOgKtLW1FZ7n5+dj9uzZNY4cde/eXfhZKpXC3d0d7u7uCA4OhouLC4KDg+Hk5ARra2vI5XLk5ORUG10sKSlBeno6XFxc6o1twoQJCsmmmZmZQty9evVCr169MHz4cFhbW2Pnzp1Yvny5UCYnJweOjo4YOXIkduzYoVD346vV6Orq1hsLUJmAPr5f165dERsbi9u3b2PQoEHC6+Xl5Thx4gS2bNmC4uJidOjQAc7OzkhPT8fdu3ehrq4OfX19GBsbK4zaNsawYcPw0Ucfobi4WGF6+9dff42ZM2di//79ClPi6zqnjDHG2g9VyqE4f+L8ifOnp8edUoy1InxpZ9slEokafQldS6hKBB7Xr18/lJWVISEhQZh+fu/ePaSmpsLGxkYoZ25uDj8/P/j5+WH58uX48ssvMXfuXGHE7PH7E1hZWUFDQwNnz54VEiG5XI60tDS8+OKLdcY4aNAgpKSkVIuzLiKRCH379sXp06cBAG+88QYCAgIQEhKCkJAQhbLbtm1DYWEhpk6dWm+9UqkUUqm0QTFUVFSguLhYeJ6dnQ1HR0cMHjwYYWFh1UbUnub4qkgkkmr7jRkzBpcuXVJ47a233kLfvn0REBCADh06KGyrmiJ/5MgR3L59GxMmTHjqOB6XlJSETp06KSRUe/fuxfTp0/H1119j/PjxCuWf5pwyxhhru1Qph+L8ifMnzp+eHndKKRsB1K4XlmeMtRXW1tbw8PDArFmzsH37dkilUixbtgxmZmbw8PAAACxYsABubm7o3bs3/v77bxw9ehT9+vUDAFhYWEAkEiE6Ohrjxo2DRCKBVCqFr68vlixZAgMDAxgZGSEwMBBqamoQ1XNH/oCAAAwfPhz+/v6YOXMmtLW1kZKSgpiYGGzZsgVJSUkIDAyEj48PbGxsIBaLcfz4cezatQsBAQEAKkcE169fj8WLF0NTUxM+Pj7Q0NDADz/8gBUrViA4OBi2trYK7aamplaLpX///tDQ0FB4raCgAGvWrMGECRNgYmKCu3fv4vPPP0d2djYmTZoEoDKheumll2BhYQGZTCYsdQwAxsbGdR5/1Uhefn4+7ty5g6SkJIjFYoUE93FSqbTasWhra6Nz584Kr4eFhaFfv34wNDREfHw85s+fj/fee0/hkoCsrCzk5eUhKysL5eXlQiy9evWCjo4OfvzxR9y6dQvDhw+HpqYmYmJi8PHHHyvcEHXPnj3w9fXFpk2bMGzYMNy8eRNAZUKop6dX63FXtZuTkwMAuHYtEx06dISlpU6954ypNh64YYypIs6fKnH+1Lryp7S0DJSXF8PCQhPm5g2bSaY0z7T+n4prjiWNMyO/p5A3Z5DMczzJNrxKh2OtKC8vQWntsdbt0Fsy2uDlRzLP8XTlcFS17dkPs8k23JaG/G+IUuM4l3mPLAKiyWH9EaW2o6rmXM6krkcS6Ys/bzW6jra2pHGVqiWN9fT0SCKRkIuLi8KSxv7+/tSzZ0/q2LEjGRoako+PD929e1fYHhQURMbGxiQSiepc0njo0KG0bNkyYT8LCwvauHFjtXjOnDlDTk5OpKOjQ9ra2jRgwABas2YNERHduXOH5s2bR7a2tqSjo0NSqZTs7OxIJpNReXm5Qj2RkZH0wgsvkLa2trDk8t69exXK1LQsc9Xjxo0b1WIrKiqi1157jUxNTUksFpOJiQlNmDCBzpw5I5QJCwurtc761LSPhYVFvfs9rqblkAMCAqhr166koaFB1tbWFBISQhUVFQplfH19a2z/6NGjRET0888/03PPPSf8Xuzt7Wnbtm0K593BwaHGOqreF7Wp7ZwFBgY+1bE/qSmWNG4vmut87H59Fsk8x9P6/3jR4VgrOn/eS6ntsdbr4enTFDp9N8k8x9N/Z7xWY5kVcSvINtyWdl3apdRYvL/8jSwCoiky8S+ltqOKMgofUdcjidTz+MVG18H5E+dPnD81b/60cuWyOverT1PkTyKiJlgrXEU9ePAAenp6kMvlDb7O9Gll/vAdvtv3E6j8JjBCA88NSMaggXvRqdPQ+ndmbc6v00Nwufg6KspuYPzbs9F3jLvC9pz8HLh86wLNDpo4+5+aV3doCuf/zMPErfHo0VkLx5Y4Kq0dVeWf8icO3PobgT1N8U53o0bV8ejRI2RkZMDS0rLWmyKymhUUFMDMzAwhISGYMWNGs7efl5eHMWPGQFdXFz///DO0tFTjkoH2qLT0AYqK/kSHDhJoaz/9NP3H1fWZbY58QZU01/n4auLbuKOegwqxHga99Rs6dRqBQQP/T2ntsdYrPz4eYf+9hpL8b6AvFWPGf7+rVub9k+8jKj0K7w1+D9Ntpystlv/8NwEnr9/FpinPweO51n+vluaUWVSM4b9dgXYHNaS/OKBRdXD+1HicP7GnUVBwHeXlRZBILKCh0fjv8qbIn3j1vZZQz5RKxhhrTxITE7F3716kp6fjwoUL8Pb2BgBhSntzMzAwwOHDhzFmzBjEx8e3SAyMsX+Xh2GsNWq/w/qsteD8ibUVfE8pZXv8G4u/vdhj6pqk2Fz3IeN3ZN34/DQfmUyG1NRUiMViDB48GHFxccKNIltC586d8cEHH7RY+4wxQMR/hVkrxGPLteNT0/w4f2JtAXdKKVlN/Q58o07W8vg9yFqPgQMH4vz58y0dBmOs1ePvrvZKJOKLOxh7EudPrK3gv/DNiXOpdk/02H9Z68WjoIypCP6wMsYYY4ypNO6UUja+ZI8xxhhjrBFETzzjTkhWO35/MMaYauJOKSVT7JPiDirGGGOMMcYYY4wxgDullI4qKiB0Rom4U4rVjUf5GGOMsUpU7TuRvyMZY4yxtoY7pVoC3wODMcYYY6xOnC0xxhhjbR93SinbY9fvcXLFGGOMMdZIPKjHGGOMtTncKdWcRFX/46SKMcYYY6xufNsDxlQRf3IZY0+DO6WUjv8sM8ZUy7Rp0yASiSASiSAWi9GrVy8EBQWhrKzsmeo9duwYRCIR7t+/3zSBNkBGRga8vLxgamoKTU1NdOvWDR4eHrh69apCuejoaDg4OEAqlUJLSwvPP/88wsPDFcpkZmZCJBIhKSmpwe2vXr0affv2hba2Njp16oSxY8ciISFBoc4ZM2bA0tISEokEPXv2RGBgIEpKSuqsNzc3F15eXujduzfU1NSwYMGCBseUnZ2N//znP+jcuTMkEgns7Oxw7tw5Yfvjv/+qh6urq0IdPXr0qFbmk08+EbanpqbC0dERXbt2haamJqysrLBy5UqUlpYq1HP//n3MmTMHJiYm6NixI3r37o2ffvqpzvi/++47ODs7o3PnzhBr6CI5+Wqd5Rlj7Qs108rXxDk+ewLnT5w/qUr+JBKJkJyc0uBjVzb1lg6grav5e5FnSjGgNXRYNlPeprLa8+lxdXVFWFgYiouL8dNPP2HOnDnQ0NDA8uXLWzo0AEBJSQnEYnGdZUpLS+Hk5IQ+ffrgu+++g4mJCf766y/8/PPPCond5s2bsWDBAgQEBGDr1q0Qi8X44Ycf4Ofnh99//x0ymazRcfbu3RtbtmyBlZUVioqKsHHjRjg7O+P69eswNDTE1atXUVFRge3bt6NXr174/fffMWvWLBQUFNTZbnFxMQwNDbFy5Ups3LixwfH8/fffGDVqFBwdHfHzzz/D0NAQ165dQ6dOnRTKVf3+q3Ts2LFaXUFBQZg1a5bwXCqVCj9raGhg6tSpGDRoEPT19XHx4kXMmjULFRUV+PjjjwFU/g6dnJxgZGSEAwcOwMzMDH/++Sf09fXrPIaCggKMHj0anp6ej7Xfnj+tbRf/VllNOHdhrRnnT5w/qVb+1Dpwp5SSlMvluLX2E5T+/juga9TS4TAV01yjfIzVpmPHjjA2NgYAvPPOO/j+++8RFRUFPz8/zJ8/Hz/++COKi4vh4OCA0NBQWFtbAwD+/PNP+Pv74+TJkygpKUGPHj3w6aefwsbGBo6OjgAgfIH7+voiPDwcDx8+hJ+fHyIjI6Grq4ulS5fihx9+wHPPPYfPPvsMQOXI0owZM3Dt2jVERkbi9ddfR3h4OE6ePInly5fj3Llz6NKlC1577TWsXbsW2trauHz5MtLT0xEbGwsLCwsAgIWFBUaNGiUc540bN7Bo0SIsWLBA+LIHgEWLFkEsFmPevHmYNGkShg0b1qjz6OXlpfB8w4YN2LlzJ5KTkzFmzBi4uroqjKJZWVkhNTUVW7durTOp6tGjBzZt2gQA2LVrV4PjWbduHczNzRUSJktLy2rlHv/910YqldZaxsrKClZWVsJzCwsLHDt2DHFxccJru3btQl5eHk6fPg0NDQ3huOrj4+MDoHKUlLVtVUN4JDznQb12SyTie4oxlcD5E+dPnD89Pb58T0nyT5yAPDISFel//PuiiDsaWOvAeV3dlHF6iAgVhYUt8miKTk6JRIKSkhJMmzYN586dQ1RUFOLj40FEGDdunDCteM6cOSguLsaJEydw6dIlrFu3Djo6OjA3N8e3334LoHJqcm5urpAULFy4EKdOnUJUVBRiYmIQFxeHCxcuVItBJpPB3t4eiYmJWLVqFdLT0+Hq6oqJEyciOTkZ+/btw8mTJ+Hv7w8AMDQ0hJqaGg4cOIDy8vIaj+vAgQMoLS3F4sWLq22bPXs2dHR0sHfv3mc+f0DlyNaOHTugp6cHe3v7WsvJ5XIYGBg0SZtPioqKwpAhQzBp0iQYGRlh4MCB+PLLL6uVO3bsGIyMjNCnTx+88847uHfvXrUyn3zyCTp37oyBAwfi008/rfPyhOvXr+OXX36Bg4ODQiwjRozAnDlz0LVrV9ja2uLjjz+u9XfF2h/iTijGGFQ7h+L86dlx/tT28yeeKaUkVFL5B0atZ89/XxRV+4Ex1k5QURFSBw1ukbb7XDgPkZZWo/YlIsTGxuLQoUNwc3NDZGQkTp06hZEjRwIAIiIiYG5ujsjISEyaNAlZWVmYOHEi7OzsAEBhtKcqUTAyMhKmGD98+BC7d+/Gnj17MGbMGABAWFgYTE1Nq8Xy8ssvY9GiRcLzmTNnwtvbW7gfgLW1NUJDQ+Hg4ICtW7fCzMwMoaGhWLp0KT788EMMGTIEjo6O8Pb2FuJKS0uDnp4eTExMqrUnFothZWWFtLS0Rp27KtHR0ZgyZQoKCwthYmKCmJgYdOnSpcay169fx+bNm59pyntd/vjjD2zduhULFy7EihUrcPbsWcybNw9isRi+vr4AKqeev/7667C0tER6ejpWrFgBNzc3xMfHo0OHDgCAefPmYdCgQTAwMMDp06exfPly5ObmYsOGDQrtjRw5EhcuXEBxcTHefvttBAUFKcRy5MgReHt746effsL169fx7rvvorS0FIGBgUo5fqbieESFsXZJFXMozp84f+L8qeF4ppSSiboa4t+J5zxTijGmGqKjo6GjowNNTU24ublh8uTJmDZtGtTV1RWmYnfu3Bl9+vTBlStXAFR+2QYHB2PUqFEIDAxEcnJyne388ccfKC0txdChQ4XX9PT00KdPn2plhwwZovD84sWLCA8Ph46OjvBwcXFBRUUFMjIyAFSOPN68eRMREREYMWIE9u/fj/79+yMmJqbB56K+ey8Alcnl43E8Ps3a0dERSUlJOH36NFxdXeHp6Ynbt29XqyM7Oxuurq6YNGmSwrX+j9fr5+fXoJjj4uIU9ouIiAAAVFRUYNCgQfj4448xcOBAvP3225g1axa2bdsm7DtlyhRMmDABdnZ2ePXVVxEdHY2zZ8/i2LFjQpmFCxfipZdewoABA+Dn54eQkBBs3rwZxcXFCnHs27cPFy5cwJ49e3Dw4EGFZLGiogJGRkbYsWMHBg8ejMmTJ+P9998XYqnrnDLG2JNE3GnJWgHOn/7F+RPnTw3FM6WUToRqnVH8pclYuyOSSNDnwvkWa/tpOTo6CjetNDU1hbq6OqKiourdb+bMmXBxccHBgwfx66+/Yu3atQgJCcHcuXMbE7oCbW1thef5+fmYPXs25s2bV61s9+7dhZ+lUinc3d3h7u6O4OBguLi4IDg4GE5OTrC2toZcLkdOTk610cWSkhKkp6fDxcWl3tgmTJigkGyamZkpxN2rVy/06tULw4cPh7W1NXbu3Klw09OcnBw4Ojpi5MiR2LFjh0Ldj69Wo6urW28sQGUC+vh+Xbt2BQCYmJjAxsZGoWy/fv2ESwNqYmVlhS5duuD69evCaOyThg0bhrKyMmRmZiokxObm5gAAGxsblJeX4+2338aiRYvQoUMHmJiYQENDQxg9rIrl5s2bKCkpqfOcsvaK8yfG2iNVyqE4f+L8qQrnTw3HnVLKxpOj2FPgUb62SyQSNfoSupZQlQg8rl+/figrK0NCQoIw/fzevXtITU1V+KI2NzeHn58f/Pz8sHz5cnz55ZeYO3euMGL2+DXvVlZW0NDQwNmzZ4VESC6XIy0tDS+++GKdMQ4aNAgpKSnV4qyLSCRC3759cfr0aQDAG2+8gYCAAISEhCAkJESh7LZt21BYWIipU6fWW69UKlVYPaUuFRUVCiNi2dnZcHR0xODBgxEWFgY1NcVJzE9zfFUkEkmN+40aNQqpqakKr6WlpQk3Mq3JX3/9hXv37tU4Rb9KUlIS1NTUYGRU+8IeFRUVKC0tRUVFBTp06IBRo0Zhz549qKioEI45LS0NJiYmEIvFEIvFDT6nrI3jr0bG2jVVyqE4f+L8qQrnTw3HnVJKU1NvVOVrvHoMY0wVWVtbw8PDA7NmzcL27dshlUqxbNkymJmZwcPDAwCwYMECuLm5oXfv3vj7779x9OhR9OvXD0DlCiIikQjR0dEYN24cJBIJpFIpfH19sWTJEhgYGMDIyAiBgYFQU1Ort5M2ICAAw4cPh7+/P2bOnAltbW2kpKQgJiYGW7ZsQVJSEgIDA+Hj4wMbGxuIxWIcP34cu3btQkBAAIDKEcH169dj8eLF0NTUhI+PDzQ0NPDDDz9gxYoVCA4Ohq2trUK7TyYlANC/f39hBZQqBQUFWLNmDSZMmAATExPcvXsXn3/+ObKzszFp0iQAlQnVSy+9BAsLC8hkMty5c0fYv77VW6pG8vLz83Hnzh0kJSVBLBZXG8l73HvvvYeRI0fi448/hqenJ86cOYMdO3YIo4v5+fn48MMPMXHiRBgbGyM9PR1Lly5Fr169hBHP+Ph4JCQkwNHREVKpFPHx8Xjvvffwn//8R1gZKCIiAhoaGrCzs0PHjh1x7tw5LF++HJMnTxbO0zvvvIMtW7Zg/vz5mDt3Lq5du4aPP/64xpHbx+Xl5SErKws5OTkAgGvXMtGhgxiWlrWvZsPaCs6fGGOqh/OnSpw/ta78KS0tA+XlxbCw0IS5ecNmkikNtWNyuZwAkFwub/K6/z5wgFL69KUrb82gkDffIpnneNqweTwdjrUiufxik7fHVMOvb8log9c7JPMcTykxkdW25+bnkm24LQ36apBS4zj/Zx5ZBETTC+uOKLUdVTU3JZO6HkmkLX/eanQdRUVFlJKSQkVFRU0YWfPw9fUlDw+PGrfl5eWRj48P6enpkUQiIRcXF0pLSxO2+/v7U8+ePaljx45kaGhIPj4+dPfuXWF7UFAQGRsbk0gkIl9fXyIievDgAXl5eZGWlhYZGxvThg0baOjQobRs2TJhPwsLC9q4cWO1eM6cOUNOTk6ko6ND2traNGDAAFqzZg0REd25c4fmzZtHtra2pKOjQ1KplOzs7Egmk1F5eblCPZGRkfTCCy+QtrY2oXIEgfbu3atQJiMjQ9j25OPGjRvVYisqKqLXXnuNTE1NSSwWk4mJCU2YMIHOnDkjlAkLC6u1zvrUtI+FhUW9+/34449ka2tLHTt2pL59+9KOHTuEbYWFheTs7EyGhoakoaFBFhYWNGvWLLp586ZQ5vz58zRs2DDS09MjTU1N6tevH3388cf06NEjoczXX39NgwYNEn4vNjY29PHHH1f7PJw+fZqGDRtGHTt2JCsrK1qzZg2VlZXVGX9t5ywwMLDeY69LXZ9ZZeYLqqi5zkf462+TzHM8rfPxosOxVpSYNEOp7bHWK/+3BAqd8RXJPMfTl9Nfq7HMypMryTbclv6b/F+lxvKf//5GFgHR9N2F6n/327vMwkfU9UgiWR5v/L91OH/i/Inzp+bNn1auXFbnfvVpivxJRNQEa4WrqAcPHkBPTw9yubzB15k21P1vv0Xu+yuBUaPwc1EFqPw2RC8Q7G2u4vkh30NXd0CTtsdUQ8z0EPxenI6KsiyMmzUL/cZ6KGy/WXATTgecIFYT47yP8q6dv5D1N17/4jS6G2jhxFJHpbWjquZd+RPf3Pwbq3qaYk732qfT1uXRo0fIyMiApaUlNDU1mzjCtq2goABmZmYICQnBjBkzmr39vLw8jBkzBrq6uvj555+hpSKXDLRHZWUPUViYiQ4dNKGtbf1MddX1mVVmvqCKmut87J44G3fVs1HeUQ+Dp/2GLp1fhr199SW4WdtXkHAGu75MRcnDfdDTEWPmzu+qlVl1ahUir0di/qD5mGk3U2mx+OxMQNy1u9jgaY/XB3VTWjuq6M+iYgz77QokamrIcGjcv3U4f2o8zp/Y0ygouI7y8iJIJBbQ0Gj8d3lT5E+8+p6S0WP/5VnnjDFWXWJiIvbu3Yv09HRcuHAB3t7eACBMaW9uBgYGOHz4MMaMGYP4+PgWiYExxhhjrC6cP7G2gu8ppXSix36qaME4WKtTUfv7gZrpDvnN1Y6qascTSZudTCZDamoqxGIxBg8ejLi4OHTp0qXF4uncuTM++OCDFmufsfbswU8/4X5kJDqUiThTZZVa0cAuL0pTOz4zzY/zJ9YW8Fe9stT5j1n+k81aFr8DWWsycOBAnD/fMks9M8Zan9ubNqH0zyyIeleuIFVR9aXFnQHtGw8UMaaA8yfWVvDle82JcykmEv7DWjFeIZMxxloOlZYCAB7qV46dVnC2yhhjjLVZ/DWvdDX845ZH+hhjjDHG6vRI658J/ULaxPkTqx0PKDHGmGriTinGGGOMMcYYY4wx1uy4U6pZKF4DzyM5jDHGGGOMMcYYa++4U0pJqlbtUuiOEvENGhljjDHG6sTpEmOMMdZucKdUs+IsizHGGGPsadA/M8x5pjljjDHW9nCnVHPiG3UyxhhjjD0lHtRjTLXwZ5Yx1nDcKaVsvNIeY0zFTJs2DSKRCCKRCGKxGL169UJQUBDKysqeqd5jx45BJBLh/v37TRNoA2RkZMDLywumpqbQ1NREt27d4OHhgatXryqUi46OhoODA6RSKbS0tPD8888jPDxcoUxmZiZEIhGSkpIa3P7q1avRt29faGtro1OnThg7diwSEhIU6pwxYwYsLS0hkUjQs2dPBAYGoqSkpM56c3Nz4eXlhd69e0NNTQ0LFixoUDzl5eVYtWqVQnsfffSRcMk5AHz33XdwdnZG586daz3e9PR0vPbaazA0NISuri48PT1x69atpz6u5ORkvPDCC9DU1IS5uTnWr19f7zGcOHEC7u7uMDU1hYaGLqKjjzTo2FkbwDkVA0CtpMODWkcYrBXh/InzJ1XJn0QiEX78MaZBx94cuFOqWVW9aTmpYq0DJ1R1a8+nx9XVFbm5ubh27RoWLVqE1atX49NPP23psAT1JR0AUFpaCicnJ8jlcnz33XdITU3Fvn37YGdnp5DYbd68GR4eHhg1ahQSEhKQnJyMKVOmwM/PD4sXL36mOHv37o0tW7bg0qVLOHnyJHr06AFnZ2fcuXMHAHD16lVUVFRg+/btuHz5MjZu3Iht27ZhxYoVddZbXFwMQ0NDrFy5Evb29g2OZ926ddi6dSu2bNmCK1euYN26dVi/fj02b94slCkoKMDo0aOxbt26GusoKCiAs7MzRCIRjhw5glOnTqGkpATu7u6oqKho8HE9ePAAzs7OsLCwwPnz5/Hpp59i9erV2LFjR53HUFBQAHt7e3z++efCa+35s8pYeyBqRR2SrSeS1qc1/Z5aCudPnD+pUv7UalA7JpfLCQDJ5fImrzvvm28opU9f+n3G2xQyZSrJPMfThq1OdDjWih48SGny9phq+HW6jDZ4vUsyz/F0+dC31bbn5ueSbbgtPffVc0qN48KfeWQREE2jPolVajuqal7Kn9T1SCKFZt5sdB1FRUWUkpJCRUVFTRhZ8/D19SUPDw+F15ycnGj48OGUl5dHPj4+pK+vTxKJhFxdXSktLU0ol5mZSa+88grp6+uTlpYW2djY0MGDBykjI4NQ2XcgPHx9fYmI6MGDB+Tl5UVaWlpkbGxMGzZsIAcHB5o/f75Qr4WFBQUFBZGPjw9JpVJh37i4OBo9ejRpampSt27daO7cuZSfn09ERImJiQSAMjMzaz3WrKws0tDQoIULF1bbFhoaSgDot99+IyISjiExMfHpT+o/qr53Dh8+XGuZ9evXk6WlZYPrfPJc1WX8+PE0ffp0hddef/118vb2rla2tuM9dOgQqampKXx33r9/n0QiEcXExNTa9pPH9cUXX1CnTp2ouLhYeC0gIID69OnToGMhIgJAERGf0cP8tPoL16Ouz6wy8wVVpOzzkebwEqX06UsbZ88jmed4Cn7Liw7HWtHF5HeU0h5r/QrOnKHQ6btJ5jmedkx/tcYyq06uIttwW/oy+UulxjJ1ZwJZBETTgXM3lNqOKsoqKqauRxKpx7GkRtfB+RPnTzXh/Knp86e9e78guTyZSkqe7bu8KfInnimlLDVOQfnnNR5FaLday01aeSSrbso4O0SE0uLyFnlQE0yJk0gkKCkpwbRp03Du3DlERUUhPj4eRIRx48ahtLQUADBnzhwUFxfjxIkTuHTpEtatWwcdHR2Ym5vj22+/BQCkpqYiNzcXmzZtAgAsXLgQp06dQlRUFGJiYhAXF4cLFy5Ui0Emk8He3h6JiYlYtWoV0tPT4erqiokTJyI5ORn79u3DyZMn4e/vDwAwNDSEmpoaDhw4gPLy8hqP68CBAygtLa1xRG/27NnQ0dHB3r17n/n8AZWjkzt27ICenl6do3NyuRwGBgZN0uaTRo4cidjYWKSlpQEALl68iJMnT8LNza3BdRQXF0MkEqFjx47Ca5qamlBTU8PJkydr3e/J44qPj8eLL74IsVgsvObi4oLU1FT8/fffT3NYrK3iKXCMMah2DsX507Pj/ElZ+VPr+fegeksH0NZxPsUYA4CykgrsmH+8Rdp+e5MDNDp2aNS+RITY2FgcOnQIbm5uiIyMxKlTpzBy5EgAQEREBMzNzREZGYlJkyYhKysLEydOhJ2dHQDAyspKqKvqC9XIyAj6+voAgIcPH2L37t3Ys2cPxowZAwAICwuDqalptVhefvllLFq0SHg+c+ZMeHt7C/cDsLa2RmhoKBwcHLB161aYmZkhNDQUS5cuxYcffoghQ4bA0dER3t7eQlxpaWnQ09ODiYlJtfbEYjGsrKyEBKSxoqOjMWXKFBQWFsLExAQxMTHo0qVLjWWvX7+OzZs3QyaTPVObtVm2bBkePHiAvn37okOHDigvL8eaNWvg7e3d4DqGDx8ObW1tBAQE4OOPPwYRYdmyZSgvL0dubm6N+9R0XDdv3oSlpaVCua5duwrbOnXq1IgjZG1KtXy59STQjLHmo4o5FOdPnD89ifOn2vFMKSWjxxMoUUXLBcIYY08hOjoaOjo60NTUhJubGyZPnoxp06ZBXV0dw4YNE8p17twZffr0wZUrVwAA8+bNQ3BwMEaNGoXAwEAkJyfX2c4ff/yB0tJSDB06VHhNT08Pffr0qVZ2yJAhCs8vXryI8PBw6OjoCA8XFxdUVFQgIyMDQOXI482bNxEREYERI0Zg//796N+/P2JiGn5zx8dHomoTERGhEEdcXJywzdHREUlJSTh9+jRcXV3h6emJ27dvV6sjOzsbrq6umDRpEmbNmiW8/ni9fn5+DYo5Li5OYb+IiAgAwDfffIOIiAjs2bMHFy5cwO7duyGTybB79+4G1QtUjqDu378fP/74I3R0dKCnp4f79+9j0KBBUFOrnlbUdlyNPQbWnnAnFGs4ngXOWgPOn/7F+ZMizp9qxzOlWkBruYSLMdZ81MVqeHuTQ4u1/bQcHR2xdetWiMVimJqaQl1dHVFRUfXuN3PmTLi4uODgwYP49ddfsXbtWoSEhGDu3LmNCV2Btra2wvP8/HzMnj0b8+bNq1a2e/fuws9SqRTu7u5wd3dHcHAwXFxcEBwcDCcnJ1hbW0MulyMnJ6fa6GJJSQnS09Ph4uJSb2wTJkxQSDbNzMwU4u7Vqxd69eqF4cOHw9raGjt37sTy5cuFMjk5OXB0dMTIkSOr3ajy8dVbdHV1640FqExAH9+vagRtyZIlWLZsGaZMmQIAsLOzw59//om1a9fC19e3QXUDgLOzM9LT03H37l2oq6tDX18fxsbGCiO79R2XsbGxwoozAITnxsbG6NGjR43HwNovzp8Ya59UKYfi/Inzp7pw/lQz7pRSMk6g2NPg90vbJRKJGn0JXUuoSgQe169fP5SVlSEhIUGYfn7v3j2kpqbCxsZGKGdubg4/Pz/4+flh+fLl+PLLLzF37lxhxOzx+xNYWVlBQ0MDZ8+eFRIhuVyOtLQ0vPjii3XGOGjQIKSkpFSLsy4ikQh9+/bF6dOnAQBvvPEGAgICEBISgpCQEIWy27ZtQ2FhIaZOnVpvvVKpFFKptEExVFRUoLi4WHienZ0NR0dHDB48GGFhYdVGy57m+KpIJJIa9yssLKxWf4cOHYRVX55W1TT6I0eO4Pbt25gwYYKwrb7jGjFiBN5//32UlpZCQ0MDABATE4M+ffoIU88bc+ysDeClYRljj1GlHIrzJ86fGoLzJ0XcKaUspPC/StzfwBhTYdbW1vDw8MCsWbOwfft2SKVSLFu2DGZmZvDw8AAALFiwAG5ubujduzf+/vtvHD16FP369QMAWFhYQCQSITo6GuPGjYNEIoFUKoWvry+WLFkCAwMDGBkZITAwEGpqavVeihEQEIDhw4fD398fM2fOhLa2NlJSUhATE4MtW7YgKSkJgYGB8PHxgY2NDcRiMY4fP45du3YhICAAQOWI4Pr167F48WJoamrCx8cHGhoa+OGHH7BixQoEBwfD1tZWod3U1NRqsfTv319IDKoUFBRgzZo1mDBhAkxMTHD37l18/vnnyM7OxqRJkwBUJh4vvfQSLCwsIJPJhKWOgcrRrrpUjYLl5+fjzp07SEpKglgsVkhwn+Tu7o41a9age/fu6N+/PxITE7FhwwZMnz5dKJOXl4esrCzk5OQoHK+xsbEQU1hYGPr16wdDQ0PEx8dj/vz5eO+994TLBhpyXF5eXvjwww8xY8YMBAQE4Pfff8emTZuwcePGOo87Pz8f169fF57/+Wc2kpNT0M2so8IIL2uD+PIsxpgK4vypEudPrS1/uoHk5KswMVFDz57969xX6Z5p/T8Vp8wljfO+3kcpffpS8gw/CpkylWSe42nj9pfpcKwVPXx4tcnbY6ohZnoIbfB6l2Se4+nyoW+rbb+Zf5Nsw23pua+eU2ociVl/k0VANI36JFap7aiq+Sl/UtcjiRSaebPRdbS1JY2rVC1prKenRxKJhFxcXBSWNPb396eePXtSx44dydDQkHx8fOju3bvC9qCgIDI2NiaRSFTnksZDhw6lZcuWCftZWFjQxo0bq8Vz5swZcnJyIh0dHdLW1qYBAwbQmjVriIjozp07NG/ePLK1tSUdHR2SSqVkZ2dHMpmMysvLFeqJjIykF154gbS1tYUll/fu3atQpqZlmaseN25UXxq8qKiIXnvtNTI1NSWxWEwmJiY0YcIEOnPmjFAmLCys1jrrU9M+FhYWde7z4MEDmj9/PnXv3p00NTXJysqK3n//fYVlhWuLKTAwUCgTEBBAXbt2JQ0NDbK2tqaQkBCqqKh46uO6ePEijR49mjp27EhmZmb0ySef1HvcR48erbHeqvdTYzXFksbthbLPR9qLDpTSpy9tfHs+yTzHU/BbXnQ41oqSL/krpT3W+hWcOUOh03eTzHM87Zj+ao1lPjj1AdmG29KXyV8qNZapOxPIIiCaDpyr/ne/vcsqKqauRxLJ4lhSo+vg/InzJ86fmjd/8vHxqnffujRF/iQiar9zpB88eAA9PT3I5fIGX2faUH/v+wY3AwNR9oIjYvILQBX30GFMEex6ZWLY0J+ho9O7SdtjquHwjA249CgdFWV/wm3GdNg4v66w/VbBLYw9MBbqaupI9ElUWhxJN+7j1c9PoVsnCU4GvKy0dlTVgitZ+PpmHt63MsFci8Zdh/3o0SNkZGTA0tISmpqaTRxh21ZQUAAzMzOEhIRgxowZzd5+Xl4exowZA11dXfz888/Q0tJq9hhYw5SVPURhYSbUOmhCR9v6meqq6zOrzHxBFSn7fFxzeAllt27hkIMzyu+n45GOHoZ7/wYjo3Gws93c5O2x1q/w7Fns3HYFJfnfQFdbA7N2fV+tTODpQHx37TvMGzgPswY0/KbAT8t31xkcT7sD2SR7vDG4m9LaUUU3HpXg+fgUaKqJkOlg36g6OH9qPM6f2NMoKEhHeXkhJBILaGg0/ru8KfInXn1P6ao6IRljjNUkMTERe/fuRXp6Oi5cuCAsr1s1pb25GRgY4PDhwxgzZgzi4+NbJAbGGPhyPdYq8duydnxqmhfnT6yt4HtKNaeqv9T8bcYAoKKOzspm6sdsv/MkWWsjk8mQmpoKsViMwYMHIy4uTrgJZEvo3LkzPvjggxZrn7F2jb+c2JM4d2asRpw/sbaAO6WUhRMq1opxasdak4EDB+L8+fMtHQZjrLWplkrxtxdjjFXh/Im1FXz5npKRQgLFHVXtnojfA6qAB2QZY6z14G9OxhhjrO3iTimle+xft/90SIh4pI8xxhhj7Klw/sTqwu8PxhhTTdwp1ax4rI8xxhhjrCE4a2KMMcbaPu6Uahb0xP95JIcxxhhjrEa13ZeTr61mjDHG2hzulFKaGhIqzqVYPUSccDPGGGMAOG1ijDHG2oNm75QqLy/HqlWrYGlpCYlEgp49e+Kjjz4CPTYqRkT44IMPYGJiAolEgrFjx+LatWsK9eTl5cHb2xu6urrQ19fHjBkzkJ+f39yHU6/Hu6ZENfzEGGOMMcYagvMnxhhjrK1p9k6pdevWYevWrdiyZQuuXLmCdevWYf369di8ebNQZv369QgNDcW2bduQkJAAbW1tuLi44NGjR0IZb29vXL58GTExMYiOjsaJEyfw9ttvN/fhPBVOpRhjjDHGGobvKcUag5rpnUO1XWbK+LPLGHsqzd4pdfr0aXh4eGD8+PHo0aMH3njjDTg7O+PMmTMAKv/Af/bZZ1i5ciU8PDwwYMAAfPXVV8jJyUFkZCQA4MqVK/jll1/w3//+F8OGDcPo0aOxefNmfP3118jJyWnuQ6obX47FGFMx06ZNg0gkgkgkglgsRq9evRAUFISysrJnqvfYsWMQiUS4f/9+0wTaABkZGfDy8oKpqSk0NTXRrVs3eHh44OrVqwrloqOj4eDgAKlUCi0tLTz//PMIDw9XKJOZmQmRSISkpKQGt7969Wr07dsX2tra6NSpE8aOHYuEhASFOmfMmKEwezgwMBAlJSV11pubmwsvLy/07t0bampqWLBgQYPiefjwIRYsWAALCwtIJBKMHDkSZ8+eVSiTn58Pf39/dOvWDRKJBDY2Nti2bZtCmdmzZ6Nnz56QSCQwNDSs8ZxmZWVh/Pjx0NLSgpGREZYsWVLre+jUqVNQV1fHc889V+8xfPfdd3B2dkbnzp2hoaGL5OSr9e7D2gZeXY0x1ppx/sT5k6rkTyKRCMnJKQ069ubQ7J1SI0eORGxsLNLS0gAAFy9exMmTJ+Hm5gag8gNw8+ZNjB07VthHT08Pw4YNQ3x8PAAgPj4e+vr6GDJkiFBm7NixUFNTU3iztrRbhoOQIbKt9jrfN4hV4nGk1q49/4ZcXV2Rm5uLa9euYdGiRVi9ejU+/fTTlg5LUF/SAQClpaVwcnKCXC7Hd999h9TUVOzbtw92dnYKid3mzZvh4eGBUaNGISEhAcnJyZgyZQr8/PywePHiZ4qzd+/e2LJlCy5duoSTJ0+iR48ecHZ2xp07dwAAV69eRUVFBbZv347Lly9j48aN2LZtG1asWFFnvcXFxTA0NMTKlSthb2/f4HhmzpyJmJgY/O9//8OlS5fg7OyMsWPHIjs7WyizcOFC/PLLL/i///s/XLlyBQsWLIC/vz+ioqKEMoMHD0ZYWBiuXLmCQ4cOgYjg7OyM8vJyAJWX6o8fPx4lJSU4ffo0du/ejfDwcHzwwQfVYrp//z6mTp2KMWPGNOgYCgoKMHr0aKxbt67Bx81US3PNdGEqRCSCqJW8LTiLrx2fG86fOH9SxfypFfxxpWZWXl5OAQEBJBKJSF1dnUQiEX388cfC9lOnThEAysnJUdhv0qRJ5OnpSUREa9asod69e1er29DQkL744ota23706BHJ5XLhcePGDQJAcrm8iY7uXznhe2nL2zG0ZXYshUzxJpnnePrsvy/Q4VgrKij4o8nbY6ohZoaMNni9SzLP8fT7z/urbb9VcItsw23Jfre9UuNIyvqbLAKiaeTaWKW2o6oWXPmTuh5JpE2ZNxtdR1FREaWkpFBRUVETRtY8fH19ycPDQ+E1JycnGj58OOXl5ZGPjw/p6+uTRCIhV1dXSktLE8plZmbSK6+8Qvr6+qSlpUU2NjZ08OBBysjIIFR+6wkPX19fIiJ68OABeXl5kZaWFhkbG9OGDRvIwcGB5s+fL9RrYWFBQUFB5OPjQ1KpVNg3Li6ORo8eTZqamtStWzeaO3cu5efnExFRYmIiAaDMzMxajzUrK4s0NDRo4cKF1baFhoYSAPrtt9+IiIRjSExMfPqT+g+5XE4A6PDhw7WWWb9+PVlaWja4zifPVW0KCwupQ4cOFB0drfD6oEGD6P333xee9+/fn4KCguos86SLFy8SALp+/ToREf3000+kpqZGN2/++xnaunUr6erqUnFxscK+kydPppUrV1JgYCDZ29vXexxVqn4fcXHf0MP8tPp3qEddn9mq35sy8gVVpOzzkTp6NKX06Usb3p5PMs/x9NF0Lzoca0W//179c8rah4Jz52jzW7tJ5jmedrz1ao1lAk8Fkm24LW2/uF2psUzblUAWAdH0zdkspbajiv4qKqauRxKp+7GkRtfB+RPnTzXh/Knp86fTp6NILk+mkpL7Dd63Jk2RPzX7TKlvvvkGERER2LNnDy5cuIDdu3dDJpNh9+7dSm977dq10NPTEx7m5uZKa6usQgSI1CCiCpR0KFRaO0y1iB77b0viyXp1U8bpISKUPnrUIg9qgvteSCQSlJSUYNq0aTh37hyioqIQHx8PIsK4ceNQWloKAJgzZw6Ki4tx4sQJXLp0CevWrYOOjg7Mzc3x7bffAgBSU1ORm5uLTZs2AagcWTp16hSioqIQExODuLg4XLhwoVoMMpkM9vb2SExMxKpVq5Ceng5XV1dMnDgRycnJ2LdvH06ePAl/f38AgKGhIdTU1HDgwAFhBOpJBw4cQGlpaY0jerNnz4aOjg727t37zOcPqByd3LFjB/T09OocnZPL5TAwMGiSNh9XVlaG8vJyaGpqKrwukUhw8uRJ4fnIkSMRFRWF7OxsEBGOHj2KtLQ0ODs711hvQUEBwsLCYGlpKXyvxsfHw87ODl27dhXKubi44MGDB7h8+bLwWlhYGP744w8EBgY25aGytoa/sxhr11Q5h+L86dlx/tT28yf15m5wyZIlWLZsGaZMmQIAsLOzw59//om1a9fC19cXxsbGAIBbt27BxMRE2O/WrVvCtZLGxsa4ffu2Qr1lZWXIy8sT9q/J8uXLsXDhQuH5gwcPlNoxBQBqKEeJRj40SsVKbYcx1rqVFRcj1PeNFml73u4D0Hjii7ShiAixsbE4dOgQ3NzcEBkZiVOnTmHkyJEAgIiICJibmyMyMhKTJk1CVlYWJk6cCDs7OwCAlZWVUFdVomBkZAR9fX0Aldfo7969G3v27BGmH4eFhcHU1LRaLC+//DIWLVokPJ85cya8vb2F+wFYW1sjNDQUDg4O2Lp1K8zMzBAaGoqlS5fiww8/xJAhQ+Do6Ahvb28hrrS0NOjp6Sl831QRi8WwsrISLjdvrOjoaEyZMgWFhYUwMTFBTEwMunTpUmPZ69evY/PmzZDJZM/UZk2kUilGjBiBjz76CP369UPXrl2xd+9exMfHo1evXkK5zZs34+2330a3bt2grq4ONTU1fPnll3jxxRcV6vviiy+wdOlSFBQUoE+fPoiJiYFYXPldd/PmTYWECoDw/ObNmwCAa9euYdmyZYiLi4O6erOnI0wVcecUY+2SKuZQnD9x/sT5U8M1+0ypwsJCqKkpNtuhQwdUVFQAACwtLWFsbIzY2Fhh+4MHD5CQkIARI0YAAEaMGIH79+/j/PnzQpkjR46goqICw4YNq7Xtjh07QldXV+GhNHV2qnNWxRhr3aKjo6GjowNNTU24ublh8uTJmDZtGtTV1RX+znbu3Bl9+vTBlStXAADz5s1DcHAwRo0ahcDAQCQnJ9fZzh9//IHS0lIMHTpUeE1PTw99+vSpVvbx+wgClfckDA8Ph46OjvBwcXFBRUUFMjIyAFSOPN68eRMREREYMWIE9u/fj/79+yMmJqbB56IqUahLRESEQhxxcXHCNkdHRyQlJeH06dNwdXWFp6dntYEVAMjOzoarqysmTZqEWbNmCa8/Xq+fn1+DYo6Li1PYLyIiAgDwv//9D0QEMzMzdOzYEaGhoXjzzTcVvpc3b96M3377DVFRUTh//jxCQkIwZ84cHD58WKENb29vJCYm4vjx4+jduzc8PT0VVsmtS3l5Oby8vPDhhx+id+/eNZap65yy9oLzJcaYauH86V+cP3H+1FDN3rXm7u6ONWvWoHv37ujfvz8SExOxYcMGTJ8+HUDlTcAXLFiA4OBgWFtbw9LSEqtWrYKpqSleffVVAEC/fv3g6uqKWbNmYdu2bSgtLYW/vz+mTJlSY+9wayFqDTcRY4y1CPWOHTFv94EWa/tpOTo6YuvWrRCLxTA1NYW6urrCjRprM3PmTLi4uODgwYP49ddfsXbtWoSEhGDu3LmNCV2Btra2wvP8/HzMnj0b8+bNq1a2e/fuws9SqRTu7u5wd3dHcHAwXFxcEBwcDCcnJ1hbW0MulyMnJ6fa90dJSQnS09Ph4uJSb2wTJkxQSDbNzMwU4u7Vqxd69eqF4cOHw9raGjt37sTy5cuFMjk5OXB0dMTIkSOxY8cOhbofX62moYMpQ4YMUdivapStZ8+eOH78OAoKCvDgwQOYmJhg8uTJwshnUVERVqxYge+//x7jx48HAAwYMABJSUmQyWTVFiHR09ODtbU1hg8fjk6dOuH777/Hm2++CWNjY2FV3Sq3bt0CUDnb+eHDhzh37hwSExOFywUqKipARFBXV8evv/5a5zllbVyt6RJ3UjHWHqlSDsX5E+dPnD89vWbvlNq8eTNWrVqFd999F7dv34apqSlmz56tcEf5qulsb7/9Nu7fv4/Ro0fjl19+UbiOMyIiAv7+/hgzZgzU1NQwceJEhIaGNvfh1Kruy485qWKsvRGJRI2+hK4lVCUCj+vXrx/KysqQkJAgTD+/d+8eUlNTYWNjI5QzNzeHn58f/Pz8sHz5cnz55ZeYO3euMGL2+P0JrKysoKGhgbNnzwqJkFwuR1paWrXpzk8aNGgQUlJSqsVZF5FIhL59++L06dMAgDfeeAMBAQEICQlBSEiIQtlt27ahsLAQU6dOrbdeqVQKqVTaoBgqKipQXFwsPM/Ozoajo6OwIsuTs4mf5viqSCSSOvfT1taGtrY2/v77bxw6dAjr168HULniTmlpaZ0zmmtCRCAi4bhGjBiBNWvW4Pbt2zAyMgIAxMTEQFdXFzY2NtDQ0MClS5cU6vjiiy9w5MgRHDhwAJaWltDW1m7wOWVtFI/lMcagWjkU50+cPz2O86eGafZOKalUis8++wyfffZZrWVEIhGCgoIQFBRUaxkDAwPs2bNHCREqAf3TCcV9UaweIn6TsFbM2toaHh4emDVrFrZv3w6pVIply5bBzMwMHh4eAIAFCxbAzc0NvXv3xt9//42jR4+iX79+AAALCwuIRCJER0dj3LhxkEgkkEql8PX1xZIlS2BgYAAjIyMEBgZCTU0NonruyB8QEIDhw4fD398fM2fOhLa2NlJSUhATE4MtW7YgKSkJgYGB8PHxgY2NDcRiMY4fP45du3YhICAAQOWI4Pr167F48WJoamrCx8cHGhoa+OGHH7BixQoEBwfD1tZWod3U1NRqsfTv3x8aGhoKrxUUFGDNmjWYMGECTExMcPfuXXz++efIzs7GpEmTAFQmVC+99BIsLCwgk8mEpY4B1HmPRODfEcD8/HzcuXMHSUlJEIvFCgnuk6qWH+7Tpw+uX7+OJUuWoG/fvnjrrbcAVI4kOjg4YMmSJZBIJLCwsMDx48fx1VdfYcOGDQAqLxnYt28fnJ2dYWhoiL/++guffPIJJBIJxo0bBwBwdnaGjY0NfHx8sH79ety8eRMrV67EnDlz0PGfUecnz6uRkRE0NTWrvf6kvLw8ZGVlIScnBwBw7Vom1DqIYWUprfecMdXG35GMMVXE+VMlzp9aV/6UlpaB8vJHsLDoCHNzvTr3Vba2cWcslcFDfowx1RYWFob58+fjlVdeQUlJCV588UX89NNPQkJRXl6OOXPm4K+//oKuri5cXV2xceNGAJXThz/88EMsW7YMb731FqZOnYrw8HBs2LABfn5+eOWVV6Crq4ulS5fixo0b1VY5edKAAQNw/PhxvP/++3jhhRdAROjZsycmT54MAOjWrRt69OiBDz/8EJmZmRCJRMLz9957T6jnvffeg5WVFUJCQrBp0yYUFBQAAPbu3SssyvG4ml67ceMGunXrpvBahw4dcPXqVezevRt3795F586d8fzzzyMuLg79+/cHUDn6df36dVy/fr3a/vWt+DNw4EDh5/Pnz2PPnj2wsLBAZmZmrfvI5XIsX74cf/31FwwMDDBx4kSsWbNGISH8+uuvsXz5cnh7eyMvLw8WFhZYs2aNcD8GTU1NxMXF4bPPPsPff/+Nrl274sUXX8Tp06eFUb0OHTogOjoa77zzDkaMGAFtbW34+vrWOdjUUFFRUUISCADTpy8FAAQGBmL16tXPXD9jTLU1xYqzDWqnWVpRTc30K1ApnD9x/tTa8qdp0+YDAFauDMBHH33yzPU/CxE111/uVujBgwfQ09ODXC5v8pue/7lzH6LPGqIDleB28UZoF2lA7HIfNj1yMXLEUUgk3euvhLU5sTNDkFyUgYqyTLi+NQ39XRVXErlTeAcv738ZHUQdkDQ1SWlxJP91HxO2nIKZvgSnlr2stHZU1cKrWdiTm4cVViaYZ9G1/h1q8OjRI2RkZMDS0rLe5IApKigogJmZGUJCQjBjxoxmbz8vLw9jxoyBrq4ufv75Z2hpaTV7DKxhysryUViYAbUOmtDRtn6muur6zCozX1BFyj4fJ8b54bKZB0rKrqKsMBZFUj2M8PoNJsavw8bm0yZvj7V+hefPY9fnl1Fc8A2kWhp4O+z7amVWn16Nb699C//n/DHbfrbSYnkr7AyOpt7B+jcGwHOIclfxVjXZj0owOD4FYpEIWS/ZN6oOzp8aj/Mn9jQKCtJRXl4IiaQ7NDQaP1OqKfKnZl99r13jWeeMMVZNYmIi9u7di/T0dFy4cAHe3t4AIExpb24GBgY4fPgwxowZg/j4+BaJgbH27K7UGhUdOgrTLUrVi/7ZwolUu1XP5UjNqb5Lo9ozPjPNi/Mn1lZwp1RzEial8Z9sBoDquOldM00Kb8cTJRuET0/zkclksLe3x9ixY1FQUIC4uDh06dKlxeLp3LkzPvjgA4wZM6bFYmBPoZ18VsvLy7Fq1SpYWlpCIpGgZ8+e+OijjxT+lhMRPvjgA5iYmEAikWDs2LG4du2aQj15eXnw9vaGrq4u9PX1MWPGDOTn5zf34dSrouN1AECJekELR8IYY60T50+sLeB7SikL/2uWtWJ8s1jWmgwcOBDnz59v6TAYa/XWrVuHrVu3Yvfu3ejfvz/OnTuHt956C3p6esLS3uvXr0doaCh2794NS0tLrFq1Ci4uLkhJSRGm1Xt7eyM3NxcxMTEoLS3FW2+9hbfffrv1LSCjVlb5/6qvLJ6hwhhjAs6fWFvBnVLN4N8UimdKMf7dqwL+LTHGWqPTp0/Dw8MD48ePBwD06NEDe/fuxZkzZwBUzpL67LPPsHLlSuHyja+++gpdu3ZFZGQkpkyZgitXruCXX37B2bNnMWTIEADA5s2bMW7cOMhkMpiamrbMwdWBh/kYY4yxtosv31My/sctY4wxxprCyJEjERsbi7S0NADAxYsXcfLkSbi5uQEAMjIycPPmTYwdO1bYR09PD8OGDRPu7xEfHw99fX2hQwoAxo4dCzU1NSQkJDTj0TTEk91RnFWx2vG9nhhjTDXxTCnGGGOMMRWwbNkyPHjwAH379kWHDh1QXl6ONWvWCDe3vXnzJgCga1fFVUO7du0qbLt586aw9HQVdXV1GBgYCGWeVFxcjOLiYuH5gwcPmuyYasadC4wxxlh7wTOlmoNw1R5fvscYY4yxxvnmm28QERGBPXv24MKFC9i9ezdkMhl2796t1HbXrl0LPT094WFubq7U9v6lOFOK74fIGGOMtT3cKaUsVO0HTqVYvXjqOWOMsdosWbIEy5Ytw5QpU2BnZwcfHx+89957WLt2LQDA2NgYAHDr1i2F/W7duiVsMzY2xu3btxW2l5WVIS8vTyjzpOXLl0MulwuPGzduNPWh1YxvJsUYY4y1edwppSR15VHc8cAYY4yxp1VYWAg1NcXUrUOHDqioqAAAWFpawtjYGLGxscL2Bw8eICEhASNGjAAAjBgxAvfv31dYsenIkSOoqKjAsGHDamy3Y8eO0NXVVXgwxlhtuD+ZMfY0+J5SjDHGGGMqwN3dHWvWrEH37t3Rv39/JCYmYsOGDZg+fTqAykGvBQsWIDg4GNbW1rC0tMSqVatgamqKV199FQDQr18/uLq6YtasWdi2bRtKS0vh7++PKVOmtMqV9wD+By57OtRc7xh+YzLGWJPgmVKMMcYUTJs2DSKRCCKRCGKxGL169UJQUBDKysqeqd5jx45BJBLh/v37TRNoA2RkZMDLywumpqbQ1NREt27d4OHhgatXryqUi46OhoODA6RSKbS0tPD8888jPDxcoUxmZiZEIhGSkpIa3P7q1avRt29faGtro1OnThg7dqzCCmeZmZmYMWMGLC0tIZFI0LNnTwQGBqKkpKTOenNzc+Hl5YXevXtDTU0NCxYsaFA8J06cgLu7O0xNTSESiRAZGVmtzHfffQdnZ2d07ty53uMlIri5udVaV3h4OAYMGABNTU0YGRlhzpw5CtsPHTqE4cOHQyqVwtDQEBMnTkRmZqZCmYiICNjb20NLSwsmJiaYPn067t2798zHqYo2b96MN954A++++y769euHxYsXY/bs2fjoo4+EMkuXLsXcuXPx9ttv4/nnn0d+fj5++eUXaGpqCmUiIiLQt29fjBkzBuPGjcPo0aOxY8eOljikGlENPwEAeKZ5O9Z6fvetJ5LWp71/RDl/4vyJ86fG4U4pZeHRE6YC+G1at2YbbW2FXF1dkZubi2vXrmHRokVYvXo1Pv3005YOS1Bf0gEApaWlcHJyglwux3fffYfU1FTs27cPdnZ2Cond5s2b4eHhgVGjRiEhIQHJycmYMmUK/Pz8sHjx4meKs3fv3tiyZQsuXbqEkydPokePHnB2dsadO3cAAFevXkVFRQW2b9+Oy5cvY+PGjdi2bRtWrFhRZ73FxcUwNDTEypUrYW9v3+B4CgoKYG9vj88//7zOMqNHj8a6devqre+zzz6r9ZL0DRs24P3338eyZctw+fJlHD58GC4uLsL2jIwMeHh44OWXX0ZSUhIOHTqEu3fv4vXXXxfKnDp1ClOnTsWMGTNw+fJl7N+/H2fOnMGsWbOeaE3xs9qQ41RFUqkUn332Gf78808UFRUhPT0dwcHBEIvFQhmRSISgoCDcvHkTjx49wuHDh9G7d2+FegwMDLBnzx48fPgQcrkcu3btgo6OTnMfDmNPqf1+JzPVwfkT50+qlT89/XEqBbVjcrmcAJBcLm/yujO27aEts2Np29s/UdBUZ5J5jqfNu4bR4VgrKirKafL2mGo4PCOENnjNIZnneLp08Otq2+8U3iHbcFuyC7dTahzJN+6TRUA0Df/4sFLbUVULr/xJXY8k0saM3EbXUVRURCkpKVRUVNSEkTUPX19f8vDwUHjNycmJhg8fTnl5eeTj40P6+vokkUjI1dWV0tLShHKZmZn0yiuvkL6+PmlpaZGNjQ0dPHiQMjIyCJX/ohAevr6+RET04MED8vLyIi0tLTI2NqYNGzaQg4MDzZ8/X6jXwsKCgoKCyMfHh6RSqbBvXFwcjR49mjQ1Nalbt240d+5cys/PJyKixMREAkCZmZm1HmtWVhZpaGjQwoULq20LDQ0lAPTbb78REQnHkJiY+PQn9R9V3zuHD9f+2Vu/fj1ZWlo2uM4nz1VDAaDvv/++1u31HW9iYiKZmZlRbm5utbry8vJIIpHUeZz79+8ndXV1Ki8vF16LiooikUhEJSUlRET06aefkpWVlcJ+oaGhZGZmRkREpaUPSS5PpocPUxt9nFXq+swqM19QRco+Hwc8Q2jL7FjaOPstknmOp6X+znQ41opSrqxQSnus9Ss4f4E2vxVOMs/xtH3aqzWWWX16NdmG29LWpK1KjWV62BmyCIimfWeylNqOKsp5VExdjyRSt6NJja6D8yfOn2rC+dO/miJ/IiLKz79OcnkylZTcb9RxVmmK/IlnSilNVc8nj+qwx4iE/7So9j69uj7KWHaciFBRUt4ij8rvlWcjkUhQUlKCadOm4dy5c4iKikJ8fDyICOPGjUNpaSkAYM6cOSguLsaJEydw6dIlrFu3Djo6OjA3N8e3334LAEhNTUVubi42bdoEAFi4cCFOnTqFqKgoxMTEIC4uDhcuXKgWg0wmg729PRITE7Fq1Sqkp6fD1dUVEydORHJyMvbt24eTJ0/C398fAGBoaAg1NTUcOHAA5eXlNR7XgQMHUFpaWuOI3uzZs6Gjo4O9e/c+8/kDKkcnd+zYAT09vTpH5+RyOQwMDJqkTWUpLCyEl5cXPv/88xpXbIuJiUFFRQWys7PRr18/dOvWDZ6engqrtg0ePBhqamoICwtDeXk55HI5/ve//2Hs2LHQ0NAAUHlT7hs3buCnn34CEeHWrVs4cOAAxo0b12zHylqCqM6njLH2RZVzKM6fnh3nT20/f+IbnTcDZfwDlzGmWqi0AjkfnG6Rtk2DRkIk7tCofYkIsbGxOHToENzc3BAZGYlTp05h5MiRACqvVzc3N0dkZCQmTZqErKwsTJw4EXZ2dgAAKysroa6qRMHIyAj6+voAgIcPH2L37t3Ys2cPxowZAwAICwur8YbLL7/8MhYtWiQ8nzlzJry9vYX7AVhbWyM0NBQODg7YunUrzMzMEBoaiqVLl+LDDz/EkCFD4OjoCG9vbyGutLQ06OnpwcTEpFp7YrEYVlZWSEtLa9S5qxIdHY0pU6agsLAQJiYmiImJQZcuXWose/36dWzevBkymeyZ2lS29957DyNHjoSHh0eN2//44w9UVFTg448/xqZNm6Cnp4eVK1fCyckJycnJEIvFsLS0xK+//gpPT0/Mnj0b5eXlGDFiBH766SehnlGjRiEiIgKTJ0/Go0ePUFZWBnd39zZ3WR6rj+if/3I+xVh7pIo5FOdPnD/VhPOnmvFMqeYkqvjn/5xUMcZat+joaOjo6EBTUxNubm6YPHkypk2bBnV1dYVl4zt37ow+ffrgypUrAIB58+YhODgYo0aNQmBgIJKTk+ts548//kBpaSmGDh0qvKanp4c+ffpUKztkyBCF5xcvXkR4eDh0dHSEh4uLCyoqKpCRkQGgcuTx5s2biIiIwIgRI7B//370798fMTExDT4Xj9+vpzYREREKccTFxQnbHB0dkZSUhNOnT8PV1RWenp64fft2tTqys7Ph6uqKSZMmKVzz/3i9fn5+DYo5Li5OYb+IiIgG7dcQUVFROHLkCD777LNay1RUVKC0tBShoaFwcXHB8OHDsXfvXly7dg1Hjx4FANy8eROzZs2Cr68vzp49i+PHj0MsFuONN94QRqZTUlIwf/58fPDBBzh//jx++eUXZGZmCufh5MlTMDUdBmPjgU1+nKwF/fP7F/Fsc/YUuNOStQacP/2L8ydFrSl/iouLQ9euA2BqOgydOpm1eP7EM6WUpCqN4q9HxhgAiDTUYBo0ssXaflqOjo7YunUrxGIxTE1Noa6ujqioqHr3mzlzJlxcXHDw4EH8+uuvWLt2LUJCQjB37tzGhK5AW1tb4Xl+fj5mz56NefPmVSvbvXt34WepVAp3d3e4u7sjODgYLi4uCA4OhpOTE6ytrSGXy5GTk1NtdLGkpATp6ekKN5eszYQJExSSTTMzM4W4e/XqhV69emH48OGwtrbGzp07sXz5cqFMTk4OHB0dMXLkyGqroD2+eouurm69sQCVCejj+3Xt2rVB+zXEkSNHkJ6eLozWVpk4cSJeeOEFHDt2TBg5tbGxEbYbGhqiS5cuyMrKAgB8/vnn0NPTw/r164Uy//d//wdzc3MkJCRg+PDhWLt2LUaNGoUlS5YAAAYMGABtbW288MILCA4OxuDBgxAXtx9qamJoa1s26XGyFvTP4F1VLkVPvM4Ya19UKYfi/Inzp9q0pvxpyJAhOH06CuXlj6CpaYpu3Xo12XE2BndKKcvj1x8/uaIxd1Ux1u6IRKJGX0LXEqoSgcf169cPZWVlSEhIEKaf37t3D6mpqQpfnubm5vDz84Ofnx+WL1+OL7/8EnPnzhVGzB6/P4GVlRU0NDRw9uxZIRGSy+VIS0vDiy++WGeMgwYNQkpKSrU46yISidC3b1+cPl15GcAbb7yBgIAAhISEICQkRKHstm3bUFhYiKlTp9Zbr1QqhVQqbVAMFRUVKC4uFp5nZ2fD0dERgwcPRlhYGNTUFBPgpzm+KhKJpFH7NcSyZcswc+ZMhdfs7OywceNGuLu7A6icNg5U3v+iW7duAIC8vDzcvXsXFhYWACrvq/DksXboUPkZqaioEMqoq6vXWIaI/lkGujvU1DpCR6dlEyqmPJw1Mda+qVIOxfkT50+1aX35Uw+UlxdCIukODY2G/Q6UhTullO7fHilOqhhjqsza2hoeHh6YNWsWtm/fDqlUimXLlsHMzEy4Nn7BggVwc3ND79698ffff+Po0aPo168fAMDCwgIikQjR0dEYN24cJBIJpFIpfH19sWTJEhgYGMDIyAiBgYFQU1OrdancKgEBARg+fDj8/f0xc+ZMaGtrIyUlBTExMdiyZQuSkpIQGBgIHx8f2NjYQCwW4/jx49i1axcCAgIAVI4Irl+/HosXL4ampiZ8fHygoaGBH374AStWrEBwcDBsbW0V2k1NTa0WS//+/YWbS1YpKCjAmjVrMGHCBJiYmODu3bv4/PPPkZ2djUmTJgGoTKheeuklWFhYQCaTCUsdA6jxBpiPqxrJy8/Px507d5CUlASxWKyQ4D4pPz8f169fF55nZGQgKSkJBgYGQlKbl5eHrKws5OTkKByvsbGxwuNJ3bt3h6WlJYDKpZw9PDwwf/587NixA7q6uli+fDn69u0LR0dHAMD48eOxceNGBAUF4c0338TDhw+xYsUKWFhYYODAgQAAd3d3zJo1C1u3boWLiwtyc3OxYMECDB06FKampigry2/0cTLVwZkUY6qF+NJbBZw/VeL8qfXkT89ynEpR7xp/bZgylzT+Y+se2jI7lra/HU0fTXUhmed42hI2hA7HWtGjR7eavD2mGg7PDKENXv4k8xxPlw5+XW37ncI7ZBtuS3bhdkqN49Jf98kiIJqGf1z7cqPt2aIrWdT1SCJtzMhtdB1tbUnjKlVLGuvp6ZFEIiEXFxeFJY39/f2pZ8+e1LFjRzI0NCQfHx+6e/eusD0oKIiMjY1JJBLVuaTx0KFDadmyZcJ+FhYWtHHjxmrxnDlzhpycnEhHR4e0tbVpwIABtGbNGiIiunPnDs2bN49sbW1JR0eHpFIp2dnZkUwmU1hGl4goMjKSXnjhBdLW1haWXN67d69CmZqWZa563Lhxo1psRUVF9Nprr5GpqSmJxWIyMTGhCRMm0JkzZ4QyYWFhtdZZn5r2sbCwqHOfo0eP1rhf1e+irpgCAwPrjOXJZYPlcjlNnz6d9PX1ycDAgF577TXKylJcQn3v3r00cOBA0tbWJkNDQ5owYQJduXJFoUxoaCjZ2NiQRCIhExMT8vb2pr/++ouIiEpLH5JcnkwPH6Y+9XE+qSmWNG4vlH0+9ntuoC2zY2nj7Gkk8xxPS+a60OFYK7pydZVS2mOtX8H5C7T5rXCSeY6n7dNerbHMh6c/JNtwW/oi6QulxjI97AxZBETT12f+VGo7qijnUTF1PZJIZkcTG10H50+cP3H+pPz8iYgoP/86yeXJVFJy/6mO80lNkT+J/jkZ7dKDBw+gp6cHuVze4OtMGypj2178lNQVGlSE20WbISlWh6bbLfTtnofRo+LRsaNRk7bHVEPsrA1ILsxARVkGXHx9YDtussL2u0V34fiNI0QQIdm37hscPovfs+V4ZfNJmOhpIn75GKW1o6oWX72B/8u9h2WWxljQo+7Rlto8evQIGRkZsLS0hKamZhNH2LYVFBTAzMwMISEhmDFjRrO3n5eXhzFjxkBXVxc///wztLS0mj0G1jBlZfkoLMz45/K93s9UV12fWWXmC6pI2efjwOSNuNXJHmX4CmV/38WtrmVwefUazMy80bdPUJO3x1q/wguJ2LUlGcUF+6EjUcfs8MhqZYLig7A/bT/efe5dvGP/jtJimRF+FrFXb2PdRDtMfp5nXj7uZnEpnjt9Geoi4K+XnmtUHZw/NR7nT+xpFBSkP3b5nl6j62mK/IlX32tW7bb/jzHGapWYmIi9e/ciPT0dFy5cgLe3NwDUulyushkYGODw4cMYM2YM4uPjWyQGxtq32i494cv32i2R8J8Wx/fbZ60F50+sreB7SilNXR1Q/G3GoHgz/Cc3NVMHZvudJ9kwfHqaj0wmQ2pqKsRiMQYPHoy4uDh06dKlxeLp3LkzPvjggxZrnzGGx76kOG9ijLGacP7E2gLulGpW/E9cxhh70sCBA3H+/PmWDoMx1tqInnzKnVOMMVaF8yfWVvDle0ry7wyUxzqiqnIpnvfbbrWi2eesDvwRZYyx1oP4bzJjjDHWZnGnVDPif+gyxhhjjDUS51GsDjyTjjHGVBN3SjWDJ78i+SuTMcYYY6xuIr7tAWOMMdbmcaeUsvyTR4lqepExxhhjjNWIePU9xhhjrN3gTqkWwUkVY4wxxljdeDCPMcYYa+u4U6o5cE7FGojvh8AYY4zVhr8jWQM0U95NnN/Xik8NY+xpcKeUklANPzHGGGOMMcYYY4yxStwp1SJ4pI8x1npNmzYNIpEIIpEIYrEYvXr1QlBQEMrKyp6p3mPHjkEkEuH+/ftNE2gDZGRkwMvLC6amptDU1ES3bt3g4eGBq1evKpSLjo6Gg4MDpFIptLS08PzzzyM8PFyhTGZmJkQiEZKSkhrc/urVq9G3b19oa2ujU6dOGDt2LBISEhTqnDFjBiwtLSGRSNCzZ08EBgaipKSkznpzc3Ph5eWF3r17Q01NDQsWLGhQPCdOnIC7uztMTU0hEokQGRn51DEDwJo1azBy5EhoaWlBX1+/xraysrIwfvx4aGlpwcjICEuWLFF4Dz3+Pnv80b9/f6HM2rVr8fzzz0MqlcLIyAivvvoqUlNT6z3OhsTHVEfV8B7PJm6/RCIRWs9AL78Pa9PezwznT5w/cf7UONwp1Yza+x9q9qSWT66oFcTQmrXns+Pq6orc3Fxcu3YNixYtwurVq/Hpp5+2dFiC+pIOACgtLYWTkxPkcjm+++47pKamYt++fbCzs1NI7DZv3gwPDw+MGjUKCQkJSE5OxpQpU+Dn54fFixc/U5y9e/fGli1bcOnSJZw8eRI9evSAs7Mz7ty5AwC4evUqKioqsH37dly+fBkbN27Etm3bsGLFijrrLS4uhqGhIVauXAl7e/sGx1NQUAB7e3t8/vnnjY4ZqDz/kyZNwjvvvFNjHeXl5Rg/fjxKSkpw+vRp7N69G+Hh4fjggw+EMps2bUJubq7wuHHjBgwMDDBp0iShzPHjxzFnzhz89ttviImJQWlpKZydnVFQUFDncdYXH1MV/3ZHMcaYKuD8ifMn1cmfqn+3tlj+RO2YXC4nACSXy5u87mtb/o+2zI6lHW9HUfB/XEjmOZ6++GogHY61opKSvCZvj6mG2JkhtMHbn2Se4yn5xz3Vtt8tvEu24bZkG26r1Dgu/XWfLAKiaeiaGKW2o6oWX82irkcSKSQjt9F1FBUVUUpKChUVFTVhZM3D19eXPDw8FF5zcnKi4cOHU15eHvn4+JC+vj5JJBJydXWltLQ0oVxmZia98sorpK+vT1paWmRjY0MHDx6kjIwMQuW/MIWHr68vERE9ePCAvLy8SEtLi4yNjWnDhg3k4OBA8+fPF+q1sLCgoKAg8vHxIalUKuwbFxdHo0ePJk1NTerWrRvNnTuX8vPziYgoMTGRAFBmZmatx5qVlUUaGhq0cOHCattCQ0MJAP32229ERMIxJCYmPv1J/UfV987hw4drLbN+/XqytLRscJ1PnquGAkDff/99veXqijksLIz09PSqvf7TTz+Rmpoa3bx5U3ht69atpKurS8XFxTW28/3335NIJKrz93X79m0CQMePHyciotLShySXJ9PDh6k1lq8tvprU9ZlVZr6gipR9Pr7x/Iy2zI6lTbO9SeY5nhbNc6PDsVaUmvaRUtpjrV9hYiJtfiucZJ7jaZuvR41lgk4HkW24LX2R+IVSY5kRfpYsAqJpb8KfSm1HFd18VEJdjySS6dHERtfB+RPnTzXh/Klp8yciovz8dJLLk6mk5H6D46tJU+RPPFOKseYkEv7TokQtH0KrpozTQ0QoKSlpkQc1wd1YJRIJSkpKMG3aNJw7dw5RUVGIj48HEWHcuHEoLS0FAMyZMwfFxcU4ceIELl26hHXr1kFHRwfm5ub49ttvAQCpqanIzc3Fpk2bAAALFy7EqVOnEBUVhZiYGMTFxeHChQvVYpDJZLC3t0diYiJWrVqF9PR0uLq6YuLEiUhOTsa+fftw8uRJ+Pv7AwAMDQ2hpqaGAwcOoLy8vMbjOnDgAEpLS2sc0Zs9ezZ0dHSwd+/eZz5/QOXo044dO6Cnp1fn6JxcLoeBgUGTtPmsGhrzk+Lj42FnZ4euXbsKr7m4uODBgwe4fPlyjfvs3LkTY8eOhYWFRa31yuVyAGg154cxxpjyqXIOxfnTs+P8qe3nT+otHUBbJ6KaPsjcI8BYe1NaWoqPP/64RdpesWIFxGJxo/YlIsTGxuLQoUNwc3NDZGQkTp06hZEjRwIAIiIiYG5ujsjISEyaNAlZWVmYOHEi7OzsAABWVlZCXVVfhEZGRsJ16g8fPsTu3buxZ88ejBkzBgAQFhYGU1PTarG8/PLLWLRokfB85syZ8Pb2Fu4HYG1tjdDQUDg4OGDr1q0wMzNDaGgoli5dig8//BBDhgyBo6MjvL29hbjS0tKgp6cHExOTau2JxWJYWVkhLS2tUeeuSnR0NKZMmYLCwkKYmJggJiYGXbp0qbHs9evXsXnzZshksmdq81k9Tcw1uXnzpkJCBUB4fvPmzWrlc3Jy8PPPP2PPnj211llRUYEFCxZg1KhRsLW1bXAsTPXQP3mSqNpF1Jw/sdqJeMStzVLFHIrzJ86fOH9qOJ4ppSxlldfriir+7ZTi70rGmKqIjo6Gjo4ONDU14ebmhsmTJ2PatGlQV1fHsGHDhHKdO3dGnz59cOXKFQDAvHnzEBwcjFGjRiEwMBDJycl1tvPHH3+gtLQUQ4cOFV7T09NDnz59qpUdMmSIwvOLFy8iPDwcOjo6wsPFxQUVFRXIyMgAUDnyePPmTURERGDEiBHYv38/+vfvj5iYmAafi4YkoxEREQpxxMXFCdscHR2RlJSE06dPw9XVFZ6enrh9+3a1OrKzs+Hq6opJkyZh1qxZwuuP1+vn59egmOPi4hT2i4iIaNB+TxtzU9m9ezf09fXx6quv1lpmzpw5+P333/H1118Lr7377nyYmg6DsfFA6OjoKC0+1rKI8yfGmIrg/OlfnD+13vzJz88PXbvawdR0GDp1MlNafA3FM6WUpezRY084m2KsvdPQ0Kj35ovKbPtpOTo6YuvWrRCLxTA1NYW6ujqioqLq3W/mzJlwcXHBwYMH8euvv2Lt2rUICQnB3LlzGxO6Am1tbYXn+fn5mD17NubNm1etbPfu3YWfpVIp3N3d4e7ujuDgYLi4uCA4OBhOTk6wtraGXC5HTk5OtdHFkpISpKenw8XFpd7YJkyYoJBsmpn9+wWvra2NXr16oVevXhg+fDisra2xc+dOLF++XCiTk5MDR0dHjBw5Ejt27FCo+/HVanR1deuNBahMQB/f78lRt/o0JOa6GBsb48yZMwqv3bp1S9j2OCLCrl274OPjU2sC6+/vj+joaJw4cQLdunUTXl+9eiXeeed1qKmJoa1t+TSHyFQQr77HWPukSjkU50+cP6lC/hQUFIR33/VEeXkRNDWrz65rbtwppSyPXX9M1Yb4OKlirL2pWh5YVVR9qT6uX79+KCsrQ0JCgjD9/N69e0hNTYWNjY1QztzcHH5+fvDz88Py5cvx5ZdfYu7cucLxP35/AisrK2hoaODs2bNCIiSXy5GWloYXX3yxzhgHDRqElJSUanHWRSQSoW/fvjh9+jQA4I033kBAQABCQkIQEhKiUHbbtm0oLCzE1KlT661XKpVCKpU2KIaKigoUFxcLz7Ozs+Ho6IjBgwcjLCwMamqKk5if5viqSCSSRu1Xmydjrs+IESOwZs0a3L59G0ZGRgCAmJgY6OrqKrxXgMoVYq5fv44ZM2ZUq4eIMHfuXHz//fc4duwYLC0VO56MjAyho9MdamodoaPTdMfLWov2vAYqY6yKKuVQnD9x/vS41ps/GUFbuwfKywsgkXSvtn9z404pxloRvh8Ca82sra3h4eGBWbNmYfv27ZBKpVi2bBnMzMzg4eEBAFiwYAHc3NzQu3dv/P333zh69Cj69esHALCwsIBIJEJ0dDTGjRsHiUQCqVQKX19fLFmyBAYGBjAyMkJgYCDU1NTq/TwEBARg+PDh8Pf3x8yZM6GtrY2UlBTExMRgy5YtSEpKQmBgIHx8fGBjYwOxWIzjx49j165dCAgIAFA5Irh+/XosXrwYmpqa8PHxgYaGBn744QesWLECwcHB1a6/T01NrRZL//79q42mFhQUYM2aNZgwYQJMTExw9+5dfP7558jOzhaW7c3OzsZLL70ECwsLyGQyhWWDnxwRe1LVSF5+fj7u3LmDpKQkiMXiaknL4/Lz83H9+nXheUZGBpKSkmBgYIDu3bs3KGYAyMrKQl5eHrKyslBeXi7E0qtXL+jo6MDZ2Rk2Njbw8fHB+vXrcfPmTaxcuRJz5sxBx44dFWLauXMnhg0bVuN9DubMmYM9e/bghx9+gFQqFe6noKenB4lEUutx1hcfUxHcJ8UagfiN0+KaYH2VNoXzp0qcP3H+VKsGrfPXRilzSeNrn26hLbNj6b8zDtBH3m6VS9j+7zk6HGtFJSW8pHR7FTsrhDZ4zyWZ53hK/nFPte33iu6Rbbgt2YbbKjWO37Pvk0VANA1dE6PUdlTVkqtZ1PVIIoVk5Da6jra2pHGVqiWN9fT0SCKRkIuLi8KSxv7+/tSzZ0/q2LEjGRoako+PD929e1fYHhQURMbGxiQSiepc0njo0KG0bNkyYT8LCwvauHFjtXjOnDlDTk5OpKOjQ9ra2jRgwABas2YNERHduXOH5s2bR7a2tqSjo0NSqZTs7OxIJpNReXm5Qj2RkZH0wgsvkLa2trDk8t69exXK1LQsc9Xjxo0b1WIrKiqi1157jUxNTUksFpOJiQlNmDCBzpw5I5QJCwurtc761LSPhYVFnfscPXq0xv2qfhcNiZmo8j1SUz1Hjx4VymRmZpKbmxtJJBLq0qULLVq0iEpLSxXquX//PkkkEtqxY0eDjxEAhYWFERFRaelDksuT6eHD1KeO70lNsaRxe6Hs87HPcxNtmR1LoW+/STLP8bRwvhsdjrWitLQ1SmmPtX6FiYm0+a1wknmOp62+HjWW+Sj+I7INt6XPEz9Xaiwzws+SRUA07Un4U6ntqKKbj0qo65FEMjmS2Og6OH/i/InzJ+XnT0RE+fnpJJcnU0nJ/aeK70lNkT+J/gm6XXrw4AH09PQgl8sbfJ1pQ12TfY5fr/eDZlkebj7aBc1SNei4Z6OX6QO8+EIiNDSatj2mGo68vQEXCzNRUfoHnH28YffKmwrb8x7lwWGfAwDgku8lpcVxOUeO8aEn0VW3IxJWjFVaO6pqaeoNfJVzD0stjbGwR92jLbV59OgRMjIyYGlpCU1NzSaOsG0rKCiAmZkZQkJCapySrGx5eXkYM2YMdHV18fPPP0NLS6vZY2ANU1aWj8LCjH8u3+v9THXV9ZlVZr6gipR9Pr6ZHIo7nWxRQf9Fyf0HyDGpwLgJqehuPgPW1i1zXxnWsoouXsTOTUkoLtgPbYk6/MIjq5UJ/i0Y+1L34R37d/Duc+8qLZZZX51DTMotrH3dDm8ObfnLXlqT28WlGHD6MtQA5Dg+16g6OH9qPM6f2NMoKPhDuHxPQ0Ov0fU0Rf7Eq+8pS01dff/MpORLtBhj7F+JiYnYu3cv0tPTceHCBXh7ewOAMKW9uRkYGODw4cMYM2YM4uPjWyQGxhjwbzIlJFAtFglreXyje8YUcf7E2gq+p5SytN8JaKyh6nmPEJHSOzD5bVo3Pj/NRyaTITU1FWKxGIMHD0ZcXBy6dOnSYvF07twZH3zwQYu1z1i79s8fXw2UoqSFQ2GMsdaM8yfWFnCnlJKJavmZsZbEo42sNRk4cCDOnz/f0mEwxloNxRGBMlGHf37i7y7GGKvC+RNrK/jyPaXhKRaMMcYYY411X00fAFDB6SpjjDHWZvG3vLJwnxRjjDHG2FOjf2ZE0RMTo3iWL2OMMdb2cKeU0tVxx3PGGGOMMVYjHt9jjDHG2j7ulFKWGu+QzOkVY4wxxljj8KAeY4wx1tZwp5TS1NUBxUkVY4wxxhhjrO3hYXjG2NPgTikleXyilIj/MrMG4vtlMMYYY7UQ8XckQ709HtRMXSI1XhTBGGPsqXGnlNLU8E31Ty4l4qSKMcYYY4wxlcNZfO34nziMqaKW72HnTimlEf3z339/yWr8h5oxpgKmTZsGkUgEkUgEsViMXr16ISgoCGVlZc9U77FjxyASiXD//v2mCbQBMjIy4OXlBVNTU2hqaqJbt27w8PDA1atXFcpFR0fDwcEBUqkUWlpaeP755xEeHq5QJjMzEyKRCElJSQ1uf/Xq1ejbty+0tbXRqVMnjB07FgkJCQp1zpgxA5aWlpBIJOjZsycCAwNRUlJSb90RERGwt7eHlpYWTExMMH36dNy7d6/OfU6cOAF3d3eYmppCJBIhMjKyxnJXrlzBhAkToKenB21tbTz//PPIysoSts+ePRs9e/aERCKBoaFhjef07NmzGDNmDPT19dGpUye4uLjg4sWLNbZ3/fp1SKVS6Ovr13vcjx+DhoYU0dFH6t2HqSYhgxKmnHMi1W5xbwdTAZw/cf6kKvmTSCTCjz/+Wu8+zYU7pZSF5/SyerX8e6TlI2jd2vP5cXV1RW5uLq5du4ZFixZh9erV+PTTT1s6LEFDko7S0lI4OTlBLpfju+++Q2pqKvbt2wc7OzuFxG7z5s3w8PDAqFGjkJCQgOTkZEyZMgV+fn5YvHjxM8XZu3dvbNmyBZcuXcLJkyfRo0cPODs7486dOwCAq1evoqKiAtu3b8fly5exceNGbNu2DStWrKiz3lOnTmHq1KmYMWMGLl++jP379+PMmTOYNWtWnfsVFBTA3t4en3/+ea1l0tPTMXr0aPTt2xfHjh1DcnIyVq1aBU1NTaHM4MGDERYWhitXruDQoUMgIjg7O6O8vBwAkJ+fD1dXV3Tv3h0JCQk4efIkpFIpXFxcUFpaqtBeaWkp3nzzTbzwwgt1xv40x8DahqrLsIgq31ciEaetjLHWjfMnzp84f2oEasfkcjkBILlc3uR1p67ZSFtmx9KuGftojZcbyTzH05d77OlwrBWVlRU2eXtMNcTOCqEN3nNJ5jmeLv7wv2rb84ryyDbclmzDbam8olxpcVzOlpNFQDQNCY5RWhuqbMnVLOp6JJE+/SO30XUUFRVRSkoKFRUVNWFkzcPX15c8PDwUXnNycqLhw4dTXl4e+fj4kL6+PkkkEnJ1daW0tDShXGZmJr3yyiukr69PWlpaZGNjQwcPHqSMjAxCZT+f8PD19SUiogcPHpCXlxdpaWmRsbExbdiwgRwcHGj+/PlCvRYWFhQUFEQ+Pj4klUqFfePi4mj06NGkqalJ3bp1o7lz51J+fj4RESUmJhIAyszMrPVYs7KySENDgxYuXFhtW2hoKAGg3377jYhIOIbExMSnP6n/qPreOXz4cK1l1q9fT5aWlnXW8+mnn5KVlVW1eM3MzBocCwD6/vvvq70+efJk+s9//tPgeoiILl68SADo+vXrRER09uxZAkBZWVlCmeTkZAJA165dU9h36dKl9J///IfCwsJIT0/vqdoFQBERn9HDh6lPtV9N6vrMKjNfUEXKPh9fT9pEW2bH0kfvvEUyz/E0Z8ErdO78m/Tw4VWltMdav8KLF2nLW7tJ5jmetk71qLHMR/EfkW24LW1J3KLUWGbtPksWAdEU8dufSm1HFd0uLqGuRxLJ+Ehio+vg/Inzp5pw/tT0+dPevVtJLk+mkpK/n2rfJzVF/sRDTsrCM6VYDSpnn7f8FHSeBV83ZZweIkJ5eWGLPKgJ/h5JJBKUlJRg2rRpOHfuHKKiohAfHw8iwrhx44TRmzlz5qC4uBgnTpzApUuXsG7dOujo6MDc3BzffvstACA1NRW5ubnYtGkTAGDhwoU4deoUoqKiEBMTg7i4OFy4cKFaDDKZDPb29khMTMSqVauQnp4OV1dXTJw4EcnJydi3bx9OnjwJf39/AIChoSHU1NRw4MABYQTqSQcOHEBpaWmNI3qzZ8+Gjo4O9u7d+8znD6gcndyxYwf09PRgb29fazm5XA4DA4M66xoxYgRu3LiBn376CUSEW7du4cCBAxg3btwzxVhRUYGDBw+id+/ecHFxgZGREYYNG1brNHWgcuQtLCwMlpaWMDc3BwD06dMHnTt3xs6dO1FSUoKioiLs3LkT/fr1Q48ePYR9jxw5gv3797fOUTvWaohEHTB40B7o6PRp6VAYYy1AlXMozp+eHedPbT9/Um/pANqumv6A8T0RGGuvKiqKcOy4XYu0/ZLDJXTooNWofYkIsbGxOHToENzc3BAZGYlTp05h5MiRACqvyzc3N0dkZCQmTZqErKwsTJw4EXZ2lcdqZWUl1FWVKBgZGQnXvj98+BC7d+/Gnj17MGbMGABAWFgYTE1Nq8Xy8ssvY9GiRcLzmTNnwtvbGwsWLAAAWFtbIzQ0FA4ODti6dSvMzMwQGhqKpUuX4sMPP8SQIUPg6OgIb29vIa60tDTo6enBxMSkWntisRhWVlZIS0tr1LmrEh0djSlTpqCwsBAmJiaIiYlBly5daix7/fp1bN68GTKZrM46R40ahYiICEyePBmPHj1CWVkZ3N3dnzk5uX37NvLz8/HJJ58gODgY69atwy+//ILXX38dR48ehYODg1D2iy++wNKlS1FQUIA+ffogJiYGYrEYACCVSnHs2DG8+uqr+OijjwBU/n4OHToEdfXK1OPevXuYNm0a/u///g+6urrPFDdrW+iJ/zPWELyCcdulijkU50+cP3H+1HA8U4oxxlg10dHR0NHRgaamJtzc3DB58mRMmzYN6urqGDZsmFCuc+fO6NOnD65cuQIAmDdvHoKDgzFq1CgEBgYiOTm5znb++OMPlJaWYujQocJrenp66NOn+oyIIUOGKDy/ePEiwsPDoaOjIzxcXFxQUVGBjIwMAJUjjzdv3kRERARGjBiB/fv3o3///oiJiWnwuahKFOoSERGhEEdcXJywzdHREUlJSTh9+jRcXV3h6emJ27dvV6sjOzsbrq6umDRpksK9DR6v18/PDwCQkpKC+fPn44MPPsD58+fxyy+/IDMzU9geFxensF9ERESDjrWiogIA4OHhgffeew/PPfccli1bhldeeQXbtm1TKOvt7Y3ExEQcP34cvXv3hqenJx49egQAKCoqwowZrHrN1gABAABJREFUMzBq1Cj89ttvOHXqFGxtbTF+/HgUFRUBAGbNmgUvLy+8+OKLNcbS2GNgbQF3LjDGVBPnT//i/Inzp4bimVJK8u9Mz5rG+TjZYqy9UVOT4CWHSy3W9tNydHTE1q1bIRaLYWpqCnV1dURFRdW738yZM+Hi4oKDBw/i119/xdq1axESEoK5c+c2JnQF2traCs/z8/Mxe/ZszJs3r1rZ7t27Cz9LpVK4u7vD3d0dwcHBcHFxQXBwMJycnGBtbQ25XI6cnJxqo4slJSVIT0+Hi4tLvbFNmDBBIdk0MzNTiLtXr17o1asXhg8fDmtra+zcuRPLly8XyuTk5MDR0REjR47Ejh07FOp+fLWaqhGxtWvXYtSoUViyZAkAYMCAAdDW1sYLL7yA4OBgDBkyRGG/rl271nsMANClSxeoq6vDxsZG4fV+/frh5MmTCq/p6elBT08P1tbWGD58ODp16oTvv/8eb775Jvbs2YPMzEzEx8dDTa1y/GvPnj3o1KkTfvjhB0yZMgVHjhxBVFSUMKpJRKioqIC6ujp27NiBN998s1HHwNoOEf2TL3HaxFi7pko5FOdPnD89jvOnhuFOqWbAuRRjTCQSNfoSupZQlQg8rl+/figrK0NCQoIw/fzevXtITU1V+BI2NzeHn58f/Pz8sHz5cnz55ZeYO3euMGL2+P0JrKysoKGhgbNnzwqJkFwuR1paWq0jQFUGDRqElJSUanHWRSQSoW/fvjh9+jQA4I033kBAQABCQkIQEhKiUHbbtm0oLCzE1KlT661XKpVCKpU2KIaKigoUFxcLz7Ozs+Ho6CisyFKVhFSp6fgKCwuFadxVOnToAKAyOZFIJE91XqqIxWI8//zzSE1NVXg9LS0NFhYWte5HRCAi4bgKCwuhpqYG0WM3sKt6XjWaGB8fr/Be+OGHH7Bu3TqcPn0aZmZmjT4G1naQiG97wBhTrRyK8yfOnx7H+VPDcKeU0lSfISX6J7nim0wzxlSRtbU1PDw8MGvWLGzfvh1SqRTLli2DmZkZPDw8AAALFiyAm5sbevfujb///htHjx5Fv379AAAWFhYQiUSIjo7GuHHjIJFIIJVK4evriyVLlsDAwABGRkYIDAys9oVck4CAAAwfPhz+/v6YOXMmtLW1kZKSgpiYGGzZsgVJSUkIDAyEj48PbGxsIBaLcfz4cezatQsBAQEAKkcE169fj8WLF0NTUxM+Pj7Q0NDADz/8gBUrViA4OBi2trYK7T6ZcABA//79oaGhofBaQUEB1qxZgwkTJsDExAR3797F559/juzsbEyaNAlAZUL10ksvwcLCAjKZTFjqGACMjY1rPXZ3d3fMmjULW7duhYuLC3Jzc7FgwQIMHTq0xvtJVMnPz8f169eF5xkZGUhKSoKBgYGQ1C5ZsgSTJ0/Giy++CEdHR/zyyy/48ccfcezYMQCVlwzs27cPzs7OMDQ0xF9//YVPPvkEEolEuFGok5MTlixZgjlz5mDu3LmoqKjAJ598AnV1dTg6OgKA8L6ocu7cOaipqVU73/Udw59/ZiM5+Qq6ddNUGOFljLVPTbG4R4Pa4bue1YrPjCLOnypx/tTa8qe/kJx8FSYmQM+e+nXuq3TPtP6filPmksZXg2S0ZXYs7ZrxNX3s5UYyz/H03712dDjWisrLHzV5e0w1HHk7hDZ4zyOZ53i6+MP/qm3/u+hvsg23JdtwWyqvKFdaHCk5crIIiKYhwTFKa0OVLb2aRV2PJNKnf+Q2uo62tqRxlaoljfX09EgikZCLi4vCksb+/v7Us2dP6tixIxkaGpKPjw/dvXtX2B4UFETGxsYkEonqXNJ46NChtGzZMmE/CwsL2rhxY7V4zpw5Q05OTqSjo0Pa2to0YMAAWrNmDRER3blzh+bNm0e2trako6NDUqmU7OzsSCaTUXm54ucrMjKSXnjhBdLW1haWXN67d69CmZqWZa563Lhxo1psRUVF9Nprr5GpqSmJxWIyMTGhCRMm0JkzZ4QyYWFhtdZZn9DQULKxsSGJREImJibk7e1Nf/31V537HD16tMa2qn4XVXbu3Em9evUiTU1Nsre3p8jISGFbdnY2ubm5kZGREWloaFC3bt3Iy8uLrl69qlDHr7/+SqNGjSI9PT3q1KkTvfzyyxQfH19rbA1d0rihx/C0mmJJ4/ZC2edj76RQ2jI7loLemU4yz/Hkv/BVpbTDVEfhxYu05a3dJPMcT1unetRYJjg+mGzDbWnzhc1KjWXW7rNkERBN//dbplLbUUW3i0uo65FE6noksdF1cP7E+RPnT82bP/n4vFnvvnVpivxJRNRMwwmt0IMHD6Cnpwe5XN7kd65P/SgEh7MHQqvsDm4W7oa4XA36r2Whh1EBHF9KgZpaxyZtj6mGo7M3IKngT1SUpsPJewoGTPiPwvb7j+7jhX0vAAAuTr0INZFy1iK4kvsAbpviYCjtiLPvj1VKG6osIPUGdufcw+IexlhsWftoS10ePXqEjIwMWFpaQlNTs4kjbNsKCgpgZmaGkJAQzJgxo9nbz8vLw5gxY6Crq4uff/4ZWlqqcclAe1RWVoDCwj+gptYROjq9n6muuj6zyswXVJGyz8fXkzfjXqf+yFP7P2jdu43MbhrYHPJ9k7fDVEfRpUvYtTERjwq+gbamOvx2R1Yrs+a3Nfg69WvMHjAb/gP9lRbL7P+dw6HLt7DmNVt4D6v9spz26E5JKexOXQYA3HR8rlF1cP7UeJw/sadRUPAHyssLIJGYQ0NDv9H1NEX+xKvvNSORMJmVr99jjLEqiYmJ2Lt3L9LT03HhwgV4e3sDgDClvbkZGBjg8OHDGDNmDOLj41skBsYYY4yxunD+xNoKvqeUkhAqb0T2b0dUZVdUhw5aEIk6tFBUrFWpZ5IiESm9/7L9zpNsGL5fRPORyWRITU2FWCzG4MGDERcXhy5durRYPJ07d8YHH3zQYu0zxvi+NIwxVh/On1hbwJ1SyvJYJlXVr2Bo9AoG2L3CnVKsxfHN9llrMnDgQJw/f76lw2CMtRLEM8oZY6xenD+xtoI7pZSkptE9E9NXYWAwrNljYYw9nfpWLWGMMcYYY4wx9uz4nlKMMcYYY6z14oEC1gA8oMQYY6qJO6WUpvpcKTWejs4YY4wxVg/OlxhjjLH2gjullEW4g/TjN5fiJIsxxhhjrCH4RueMMcZY28edUowxxhhjjDGVUN/KuM21ci6vYMwYY02DO6WUhb+oWCPw/RAYY4wxxurAOTZjjLUp3CnVjLi/gTHGGGOMsaclajVTk0R8z7Na8blhjDUGd0opSyv54mSMsac1bdo0iEQiiEQiiMVi9OrVC0FBQSgrK3umeo8dOwaRSIT79+83TaANkJGRAS8vL5iamkJTUxPdunWDh4cHrl69qlAuOjoaDg4OkEql0NLSwvPPP4/w8HCFMpmZmRCJREhKSmpw+6tXr0bfvn2hra2NTp06YezYsUhISFCoc8aMGbC0tIREIkHPnj0RGBiIkpKSeuuOiIiAvb09tLS0YGJigunTp+PevXt17rN161YMGDAAurq60NXVxYgRI/Dzzz8L2/Py8jB37lz06dMHEokE3bt3x7x58yCXy4Uy4eHhwvvjycft27eFcsXFxXj//fdhYWGBjh07okePHti1a5dCPJ999pnQlrm5Od577z08evSozmP47rvv4OzsjM6dO0NDQwfJyVfrLM9UUeU/bDmTYoq4w4O1bpw/cf6kKvmTSCRCcnJKveequai3dABt17+plIgqv0R59IC1Ppzy16U9nx1XV1eEhYWhuLgYP/30E+bMmQMNDQ0sX768pUMDAJSUlEAsFtdZprS0FE5OTujTpw++++47mJiY4K+//sLPP/+skNht3rwZCxYsQEBAALZu3QqxWIwffvgBfn5++P333yGTyRodZ+/evbFlyxZYWVmhqKgIGzduhLOzM65fvw5DQ0NcvXoVFRUV2L59O3r16oXff/8ds2bNQkFBQZ3tnjp1ClOnTsXGjRvh7u6O7Oxs+Pn5YdasWfjuu+9q3a9bt2745JNPYG1tDSLC7t274eHhgcTERPTv3x85OTnIycmBTCaDjY0N/vzzT/j5+SEnJwcHDhwAAEyePBmurq4K9U6bNg2PHj2CkZGR8Jqnpydu3bqFnTt3olevXsjNzUVFRYWwfc+ePVi2bBl27dqFkSNHIi0tTUjoN2zYUOsxFBQUYPTo0fD09MSsWbP+ebU9f1oZY4y1Fpw/cf6kWvlTK0HtmFwuJwAkl8ubvO7Lqz6mLbNjKXxGBH0yZRzJPMfTxbRzTd4OUy1H3g6hDd7zKt8PkV9V237/0X2yDbcl23BbKi0vVVocV3LlZBEQTYM/+lVpbaiygNQb1PVIIq37I6fRdRQVFVFKSgoVFRU1YWTNw9fXlzw8PBRec3JyouHDh1NeXh75+PiQvr4+SSQScnV1pbS0NKFcZmYmvfLKK6Svr09aWlpkY2NDBw8epIyMDEJlz4Hw8PX1JSKiBw8ekJeXF2lpaZGxsTFt2LCBHBwcaP78+UK9FhYWFBQURD4+PiSVSoV94+LiaPTo0aSpqUndunWjuXPnUn5+PhERJSYmEgDKzMys9VizsrJIQ0ODFi5cWG1baGgoAaDffvuNiEg4hsTExKc/qf+o+t45fPhwrWXWr19PlpaWddbz6aefkpWVVbV4zczMnjqmTp060X//+99at3/zzTckFouptLTmv0m3b98mDQ0N+uqrf/+m/fzzz6Snp0f37t2rtd45c+bQyy+/rPDawoULadSoUQ2Ku+r3ERf3DT18eLVB+9Slrs+sMvMFVaTs87HH83PaMjuWAt95i2Se42nO4teV0g5THYXJl2jLtN0k8xxPX/hMqLHMmt/WkG24LYVeCFVqLLO/OkcWAdH0v/jav1vaqzvFpdT1SCJ1PZLY6Do4f+L8qSacP/2rqfKn06d/JLk8mUpK/m7QfrVpivyJL99TMh67ZY9rLfcV41l7dVPG2SEiFJSXt8iDmuByYolEgpKSEkybNg3nzp1DVFQU4uPjQUQYN24cSktLAQBz5sxBcXExTpw4gUuXLmHdunXQ0dGBubk5vv32WwBAamoqcnNzsWnTJgDAwoULcerUKURFRSEmJgZxcXG4cOFCtRhkMhns7e2RmJiIVatWIT09Ha6urpg4cSKSk5Oxb98+nDx5Ev7+/gAAQ0NDqKmp4cCBAygvL6/xuA4cOIDS0lIsXry42rbZs2dDR0cHe/fufebzB1SOTu7YsQN6enqwt7evtZxcLoeBgUGddY0YMQI3btzATz/9BCLCrVu3cODAAYwbN67B8ZSXl+Prr79GQUEBRowYUWc8urq6UFeveXL1V199BS0tLbzxxhvCa1FRURgyZAjWr18PMzMz9O7dG4sXL0ZRUZFQZuTIkTh//jzOnDkDAPjjjz/w008/PdUxsLaJcyfG2ONUOYfi/OnZcf7U9vMnvnyPMcaaQWFFBXqeuNQibae/aAftDh0atS8RITY2FocOHYKbmxsiIyNx6tQpjBw5EkDldfnm5uaIjIzEpEmTkJWVhYkTJ8LOzg4AYGX1/+zde1zM2f8H8Nd0mZpqKqW7tEUuKRYtksu2dHFJ310rvtpk0coWcg2LaMOiWGFz+dmy34315WttG5bcQ5tbyYpSaiXlFpNK1zm/P9o+2+jeNtXU+/l4DM3ncz7nnM9nppl355zPOWZcXpWBgq6uLjQ1NQEAb968wf79+3HgwAGMGjUKABAWFgZDQ8Nqdfnoo4+waNEi7vmsWbPg5uYGX19fAIC5uTlCQkIwcuRIhIaGwsjICCEhIVi6dCnWrl0La2tr2NnZwc3NjatXSkoKNDQ0YGBgUK08Pp8PMzMzpKSkNOnaVYqKisKUKVNQWFgIAwMDREdHo3PnzjWmTU1Nxfbt2+sd8m5ra4uIiAhMnjwZRUVFKCsrg7OzM3bu3Flvfe7cuQMbGxsUFRVBTU0NP//8MywsLGpM++LFC3z99df44osvas1v3759mDp1KgQCAbft4cOHuHz5MpSVlfHzzz/jxYsX+PLLL/Hy5UuEhYUBAKZOnYoXL15g2LBhYIyhrKwMXl5eWLFiRb3nQDoGapwijUEdbu2XLMZQFD9R/ETxU8PRSCkp49XxjBBC2qqoqCioqalBWVkZY8aMweTJkzF9+nQoKChg8ODBXDptbW307NkT9+7dAwDMmzcPgYGBsLW1hb+/PxITE+ss5+HDhygtLcWgQYO4bRoaGujZs2e1tNbW1hLPb9++jfDwcKipqXEPR0dHiMVipKenA6joeczJyUFERARsbGxw+PBh9OnTB9HR0Q2+FvXNvQBUBJdV6xETE8Pts7OzQ0JCAq5evQonJye4urpKTGhZKSsrC05OTpg0aZLEvf5V8/Xy8gIAJCUlYf78+Vi9ejVu3ryJ3377DRkZGdz+mJgYieMiIiK4/Hr27ImEhATExcVhzpw58PDwQFJS9cku8/LyMG7cOFhYWGDNmjU1nndsbCzu3buHmTNnSmwXi8Xg8XiIiIjAoEGDMHbsWGzZsgX79+/nevsuXLiA9evX47vvvsOtW7dw9OhRHD9+HF9//XW915R0FBXNUhQ9EUJkBcVPf6P4ieKnhqKRUtJS01BPiqoI6bBU5OSQNsKq1cpuLDs7O27SSkNDQygoKCAyMrLe42bNmgVHR0ccP34cp0+fxoYNGxAcHIy5c+c2peoSVFVVJZ7n5+dj9uzZmDdvXrW0Xbt25X4WCoVwdnaGs7MzAgMD4ejoiMDAQNjb28Pc3BwikQhPnjyp1rtYUlKCtLQ0ODo61lu3CRMmSASbRkZGEvXu3r07unfvjiFDhsDc3Bz79u2TmPT0yZMnsLOzw9ChQ7Fnzx6JvKuuVqOurg4A2LBhA2xtbbFkyRIAQN++faGqqorhw4cjMDAQ1tbWEsfp6elxP1euCAQAAwcOxPXr17Ft2zbs3r2bS/PmzRs4OTlBKBTi559/hqKiYo3n/X//9394//33MXDgQIntBgYGMDIygoaGBretd+/eYIzh8ePHMDc3x6pVq+Du7o5Zs2YBAKysrFBQUIAvvvgCX331VZ3XlLRz3L3utAofIUS2YiiKnyh+ovip8ahRSlpqapNqKxMKEUJaHI/Ha/ItdK2hMhCoqnfv3igrK0NcXBw3/Pzly5dITk6WGL5sbGwMLy8veHl5Yfny5di7dy/mzp3L9ZhVnZ/AzMwMioqKuH79OhcIiUQipKSkYMSIEXXWccCAAUhKSqpWz7rweDz06tULV69eBQB8+umn8PPzQ3BwMIKDgyXS7tq1C4WFhZg2bVq9+QqFQgiFwgbVQSwWo7i4mHuelZUFOzs7DBw4EGFhYZB7JwCu6fwKCwurzVEg/9f7izEGgUDQ4Ovybn3y8vLg6OgIJSUlREZGQllZucbj8vPz8d///hcbNmyots/W1haHDx9Gfn4+1NTUAFQM9ZeTk0OXLl24c3j3XKueQ2OuKSGEkLaFMdZsf/vIUgxF8RPFTxQ/NR41SkkNe+d/QgiRbebm5nBxcYGnpyd2794NoVCIZcuWwcjICC4uLgAAX19fjBkzBj169MCrV69w/vx59O7dGwBgYmICHo+HqKgojB07FgKBAEKhEB4eHliyZAm0tLSgq6sLf39/yMnJ1RvM+vn5YciQIfDx8cGsWbOgqqqKpKQkREdHY8eOHUhISIC/vz/c3d1hYWEBPp+Pixcv4vvvv4efnx+Aih7BTZs2YfHixVBWVoa7uzsUFRXxyy+/YMWKFQgMDISlpaVEucnJydXq0qdPn2q9YQUFBVi3bh0mTJgAAwMDvHjxAjt37kRWVhYmTZoEoCKg+vDDD2FiYoKgoCA8f/6cO15fX7/Wc3d2doanpydCQ0Ph6OiI7Oxs+Pr6YtCgQTXOJ1Fp+fLlGDNmDLp27Yo3b97gwIEDuHDhAk6dOgWgIqBycHBAYWEhfvzxR+Tl5SEvLw9AxcSn8lX+KDh06BDKysrw2WefVStn6tSp+Prrr/H5559j7dq1ePHiBZYsWYIZM2Zwcyc4Oztjy5Yt6N+/PwYPHozU1FSsWrUKzs7OEuW8Kzc3F48ePcKTJ08AAA8eZEBOThFmZhp1XjNCSMfQHIt7NKicFimFtAcUP1Wg+KlCW4mfUh48RHn5W5iY8GFsrFnrcS2BGqUIIYQ0WFhYGObPn4/x48ejpKQEI0aMwIkTJ7iAory8HN7e3nj8+DHU1dXh5OSErVu3AqgYPrx27VosW7YMn3/+OaZNm4bw8HBs2bIFXl5eGD9+PNTV1bF06VJkZmbW2sNUqW/fvrh48SK++uorDB8+HIwxdOvWDZMnTwYAdOnSBe+99x7Wrl2LjIwM8Hg87vmCBQu4fBYsWAAzMzMEBwdj27ZtKCgoAAAcPHgQU6ZMqVZuTdsyMzO5HqxK8vLyuH//Pvbv348XL15AW1sbH3zwAWJiYtCnTx8AQHR0NFJTU5Gamlrt+Lr+sJo+fTrevHmDHTt2YNGiRdDU1MRHH32EjRs31nnNnj17hmnTpiE7OxsaGhro27cvTp06BXt7ewDArVu3EBcXB6B6D2N6ejree+897vm+ffvwySefcJOuVqWmpobo6GjMnTsX1tbW0NbWhqurKwIDA7k0K1euBI/Hw8qVK5GVlQUdHR04Oztj3bp1dZ5DZGQkPv/8c+75jBlLAQD+/v61zt1AZFPlbwCNMydtZvlitKmqtDl0aWpH8RPFT5XaSvw03WP+X/n54euvv6nzWGnjsZbqTmiD8vLyoKGhwS3X2JzurlyHCy9soFaWjaf5ByDPeHBYHwirbu83azlEtlzw2oL4/D8hLk2D/dTJ6OviLrFfVCzCsJ+GAQDi3eOhICedduPknDdw/PYSOqvxcWOlvVTKkGXLUx4jLOsFFr6nh6Wm1VcVaYiioiKkp6fD1NS03uCASCooKICRkRGCg4OrTQDZEnJzczFq1Cioq6vj5MmTUFFRafE6kIYpKytAYeFDyMnxoaZWfXLXxqjrd1aa8YIskvb1ODAlFK80e+Kp3I/QePkMGV2VsX3zkWYvh8iOt3/cxffBN1BUeBgqSvKY88Mv1dJsiNuAA/cPwNPKE/MGVJ8rp7nM+fEmTv6Rg6//ZQn3ISZSK0cWvSwpQ58rfwAAsj/s16Tb9yh+ajqKn0hjFBQ+RHlZAQQCYygqajY5n+aIn2j1Pamp3tYnR90HhBBSTXx8PA4ePIi0tDTcunULbm5uAMANaW9pWlpaOHPmDEaNGoXY2NhWqQMhHRl7d4Jzip8IIaQaip9Ie0G370lLhx1/RhqKicV172+BN1HHHSfZMHR9Wk5QUBCSk5PB5/MxcOBAxMTEoHPnzq1WH21tbaxevbrVyieEEEIIqQ/FT6Q9oEYpqavyVy3dhE7aCHorkrakf//+uHnzZmtXgxDSxvCoh48QQmpF8RNpL1rl9r2srCx89tln0NbWhkAggJWVFW7cuMHtZ4xh9erVMDAwgEAgwOjRo/HgwQOJPHJzc+Hm5gZ1dXVoampi5syZyM/Pb+lTIaSReKD7ENo+eoUIIaTtoKYpQgghpP1q8UapV69ewdbWFoqKijh58iSSkpIQHByMTp06cWk2bdqEkJAQ7Nq1C3FxcVBVVYWjoyOKioq4NG5ubrh79y6io6MRFRWFS5cu4Ysvvmjp06lD9TVjaHQKIYQQQkjDUGMUaYymTKpNCCGk9bX47XsbN26EsbExwsLCuG2mpqbcz4wxfPvtt1i5ciU3SdsPP/wAPT09HDt2DFOmTMG9e/fw22+/4fr167C2tgYAbN++HWPHjkVQUBAMDQ1b9qRq8tdkNDxuuk6AR+MvCCGEEEIahaInQgghpP1q8ZFSkZGRsLa2xqRJk6Crq4v+/ftj79693P709HTk5ORg9OjR3DYNDQ0MHjyYm8U/NjYWmpqaXIMUAIwePRpycnKIi4urtezi4mLk5eVJPFoSNUoRQgghhNSH4iVCZB2NdCSENFSLN0o9fPgQoaGhMDc3x6lTpzBnzhzMmzcP+/fvBwDk5OQAAPT09CSO09PT4/bl5ORAV1dXYr+CggK0tLS4NDXZsGEDNDQ0uIexsXFznpoEWrWLEEIIIaTpGPc/NVKRNoiCfUIIaRYt3iglFosxYMAArF+/Hv3798cXX3wBT09P7Nq1S+plL1++HCKRiHtkZmZKsbTqX1R0qzupD82HQAghpKNj9F1I6kBNQW0X/eoSQpqixRulDAwMYGFhIbGtd+/eePToEQBAX18fAPD06VOJNE+fPuX26evr49mzZxL7y8rKkJuby6WpiZKSEtTV1SUehBBCCCGEkDaM13amwaCGF0IIaV4t3ihla2uL5ORkiW0pKSkwMTEBUDHpub6+Ps6ePcvtz8vLQ1xcHGxsbAAANjY2eP36NW7evMmlOXfuHMRiMQYPHtwCZ9EQ9I1FCJFN06dPB4/HA4/HA5/PR/fu3REQEICysrJ/lO+FCxfA4/Hw+vXr5qloA6Snp2Pq1KkwNDSEsrIyunTpAhcXF9y/f18iXVRUFEaOHAmhUAgVFRV88MEHCA8Pl0iTkZEBHo+HhISEBpe/Zs0a9OrVC6qqqujUqRNGjx4tMfdhRkYGZs6cCVNTUwgEAnTr1g3+/v4oKSmpN++IiAj069cPKioqMDAwwIwZM/Dy5csG1+2bb74Bj8eDr6+vxPa0tDR8/PHH0NHRgbq6OlxdXat1FK1btw5Dhw6FiooKNDU1a8y/8j1U9fHTTz9x+48ePQp7e3uuHBsbG5w6dareeh89ehQODg7Q1taGoqIaEhPv13sMIYQQIm0UP1H8JCvxE4/HQ+Ltew0+Z2lr8UapBQsW4Pfff8f69euRmpqKAwcOYM+ePfD29gYA7gUODAxEZGQk7ty5g2nTpsHQ0BD/+te/AFSMrHJycoKnpyeuXbuGK1euwMfHB1OmTGkbK++hYhXBv36qMs64xS83IXWiIfCkNk5OTsjOzsaDBw+waNEirFmzBps3b27tanEaEnSUlpbC3t4eIpEIR48eRXJyMg4dOgQrKyuJwG779u1wcXGBra0t4uLikJiYiClTpsDLywuLFy/+R/Xs0aMHduzYgTt37uDy5ct477334ODggOfPnwMA7t+/D7FYjN27d+Pu3bvYunUrdu3ahRUrVtSZ75UrVzBt2jTMnDkTd+/exeHDh3Ht2jV4eno2qF7Xr1/H7t270bdvX4ntBQUFcHBwAI/Hw7lz53DlyhWUlJTA2dkZYrGYS1dSUoJJkyZhzpw5dZYTFhaG7Oxs7lH5PQ4Aly5dgr29PU6cOIGbN2/Czs4Ozs7OiI+PrzPPgoICDBs2DBs3bmzQuRLZxah/jxAiYyh+oviJ4qcmYK3g119/ZZaWlkxJSYn16tWL7dmzR2K/WCxmq1atYnp6ekxJSYmNGjWKJScnS6R5+fIl+/e//83U1NSYuro6+/zzz9mbN28aVQ+RSMQAMJFI9I/P6V2Jfv5sx+yzbP/MH9gm17EsyHUcS/7zbrOXQ2TL+dlb2Ba3+SzIdRxLOBpWbb+oWMQswy2ZZbglKykrkVo9knPymIlfFOsfcFpqZciy5cmZTO9cPPsm7UmT83j79i1LSkpib9++bcaatQwPDw/m4uIisc3e3p4NGTKE5ebmMnd3d6apqckEAgFzcnJiKSkpXLqMjAw2fvx4pqmpyVRUVJiFhQU7fvw4S09PZ6hoB+UeHh4ejDHG8vLy2NSpU5mKigrT19dnW7ZsYSNHjmTz58/n8jUxMWEBAQHM3d2dCYVC7tiYmBg2bNgwpqyszLp06cLmzp3L8vPzGWOMxcfHMwAsIyOj1nN99OgRU1RUZAsXLqy2LyQkhAFgv//+O2OMcecQHx/f+Iv6l8rvnTNnztSaZtOmTczU1LTOfDZv3szMzMyq1dfIyKjeOrx584aZm5uz6Ojoatf51KlTTE5OTuJ78fXr14zH47Ho6OhqeYWFhTENDY0aywHAfv7553rrU5WFhQVbu3Ztg9JWvh4xMf9lb97cb1Q5Nanrd1aa8YIskvb1+M+U3WzH7LNsxZfTWZDrOOaz5FOplENkR+Eff7Cd0/ezINdxbKf7hBrTbIjbwCzDLdm2m9ukWpc5P95gJn5R7Ier6VItRxa9LClleufimd65eFYuFjcpD4qfKH6qCcVPdWtK/HT1ahQTiRJZScmrRpX1ruaIn1pl6M748eNx584dFBUV4d69e9VaJnk8HgICApCTk4OioiKcOXMGPXr0kEijpaWFAwcO4M2bNxCJRPj++++hpqbWkqdRN+reIzVpI2+LNlKNNksa14cxhsKSslZ5sGZYIUggEKCkpATTp0/HjRs3EBkZidjYWDDGMHbsWJSWlgIAvL29UVxcjEuXLuHOnTvYuHEj1NTUYGxsjP/9738AgOTkZGRnZ2Pbtm0AgIULF+LKlSuIjIxEdHQ0YmJicOvWrWp1CAoKQr9+/RAfH49Vq1YhLS0NTk5OmDhxIhITE3Ho0CFcvnwZPj4+AAAdHR3IycnhyJEjKC8vr/G8jhw5gtLS0hp79GbPng01NTUcPHjwH18/oKJ3bM+ePdDQ0EC/fv1qTScSiaClpVVnXjY2NsjMzMSJEyfAGMPTp09x5MgRjB07tt56eHt7Y9y4cRg9enS1fcXFxeDxeFBSUuK2KSsrQ05ODpcvX64375rK6ty5MwYNGoTvv/++zveiWCzGmzdv6j33ji4rKwufffYZtLW1IRAIYGVlhRs3bnD7GWNYvXo1DAwMIBAIMHr0aDx48EAij9zcXLi5uUFdXR2ampqYOXMm8vPzW/pU6kfDeQkhkO0YiuKnf47ip/YfPym0dgXar7/fOLxqPxBCOpq3peWwWF3//d7SkBTgCBV+0z7uGWM4e/YsTp06hTFjxuDYsWO4cuUKhg4dCqDivnxjY2McO3YMkyZNwqNHjzBx4kRYWVkBAMzMzLi8Kr8sdXV1ufvo37x5g/379+PAgQMYNWoUgIohyzXdiv3RRx9h0aJF3PNZs2bBzc2Nu6ff3NwcISEhGDlyJEJDQ2FkZISQkBAsXboUa9euhbW1Nezs7ODm5sbVKyUlBRoaGjAwMKhWHp/Ph5mZGVJSUpp07SpFRUVhypQpKCwshIGBAaKjo9G5c+ca06ampmL79u0ICgqqM09bW1tERERg8uTJKCoqQllZGZydnbFz5846j/vpp59w69YtXL9+vcb9Q4YMgaqqKvz8/LB+/XowxrBs2TKUl5cjOzu7YSf8l4CAAHz00UdQUVHB6dOn8eWXXyI/Px/z5s2rMX1QUBDy8/Ph6uraqHI6klevXsHW1hZ2dnY4efIkdHR08ODBA3Tq1IlLs2nTJoSEhGD//v0wNTXFqlWr4OjoiKSkJCgrKwMA3NzckJ2djejoaJSWluLzzz/HF198gQMHDrTWqb1DMmCifj7SEG1lInTS/GQxhqL4ieInip8ajiY5IoQQUk1UVBTU1NSgrKyMMWPGYPLkyZg+fToUFBQkFpTQ1tZGz549ce9exWSJ8+bNQ2BgIGxtbeHv74/ExMQ6y3n48CFKS0sxaNAgbpuGhgZ69uxZLa21tbXE89u3byM8PBxqamrcw9HREWKxGOnp6QAqeppycnIQEREBGxsbHD58GH369EF0dHSDrwWfz683TUREhEQ9YmJiuH12dnZISEjA1atX4eTkBFdX12oryAIVI2CcnJwwadIkiRHEVfP18vICACQlJWH+/PlYvXo1bt68id9++w0ZGRnc/piYGInjIiIikJmZifnz5yMiIoJrnHiXjo4ODh8+jF9//RVqamrQ0NDA69evMWDAAMjJNS5kWLVqFWxtbdG/f3/4+flh6dKltc6rceDAAaxduxb//e9/oaurW+817ag2btwIY2NjhIWFYdCgQTA1NYWDgwO6desGoOKPoG+//RYrV66Ei4sL+vbtix9++AFPnjzBsWPHAAD37t3Db7/9hv/7v//D4MGDMWzYMGzfvh0//fQTnjx50opnRwghso/ip79R/ETxU0PRSCmpYe/8D8jRGrKEdFgCRXkkBTi2WtmNZWdnh9DQUPD5fBgaGkJBQQGRkZH1Hjdr1iw4Ojri+PHjOH36NDZs2IDg4GDMnTu3KVWXoKqqKvE8Pz8fs2fPrrHnqGvXrtzPQqEQzs7OcHZ2RmBgIBwdHREYGAh7e3uYm5tDJBLhyZMn1XoXS0pKkJaWBkfH+l+3CRMmSASbRkZGEvXu3r07unfvjiFDhsDc3Bz79u3D8uXLuTRPnjyBnZ0dhg4dij179kjkXXW1GnV1dQDAhg0bYGtriyVLlgAA+vbtC1VVVQwfPhyBgYGwtraWOE5PTw9nz57Fs2fPMGDAAG57eXk5Ll26hB07dqC4uBjy8vJwcHBAWloaXrx4AQUFBWhqakJfX1+i17YpBg8ejK+//hrFxcUSw9t/+uknzJo1C4cPH5YYEl/XNe2oIiMj4ejoiEmTJuHixYswMjLCl19+yQXh6enpyMnJkbiOGhoaGDx4MGJjYzFlyhTExsZCU1NT4o+U0aNHQ05ODnFxcfj4449b/LwIIaQushRDUfxE8RPFT41HjVLSUuW2z8rhxDSsmJCOi8fjNfkWutZQGQhU1bt3b5SVlSEuLo4bfv7y5UskJyfDwsKCS2dsbAwvLy94eXlh+fLl2Lt3L+bOncv1mFWdn8DMzAyKioq4fv06FwiJRCKkpKRgxIgRddZxwIABSEpKqlbPuvB4PPTq1QtXr14FAHz66afw8/NDcHAwgoODJdLu2rULhYWFmDZtWr35CoVCCIXCBtVBLBajuLiYe56VlQU7OzsMHDgQYWFh1XrUajq/wsJCKChIvp/k5SsCZ8YYBAJBteNGjRqFO3fuSGz7/PPP0atXL/j5+XHHV6ocIn/u3Dk8e/YMEyZMaND51SYhIQGdOnWSCKgOHjyIGTNm4KeffsK4ceMk0jfmmnYUDx8+RGhoKBYuXIgVK1bg+vXrmDdvHvh8Pjw8PJCTkwOgIoiuSk9Pj9uXk5PD9aZWUlBQgJaWFpfmXcXFxRLv2by8vOY8rXpR/EQag7XQZGQ05VndmvP6yFIMRfETxU8UPzWebPx2E0IIaXXm5uZwcXGBp6cndu/eDaFQiGXLlsHIyAguLi4AAF9fX4wZMwY9evTAq1evcP78efTu3RsAYGJiAh6Ph6ioKIwdOxYCgQBCoRAeHh5YsmQJtLS0oKurC39/f8jJyYFXz+hSPz8/DBkyBD4+Ppg1axZUVVWRlJSE6Oho7NixAwkJCfD394e7uzssLCzA5/Nx8eJFfP/99/Dz8wNQ0SO4adMmLF68GMrKynB3d4eioiJ++eUXrFixAoGBgbC0tJQoNzk5uVpd+vTpA0VFRYltBQUFWLduHSZMmAADAwO8ePECO3fuRFZWFiZNmgSgIqD68MMPYWJigqCgIG6pYwDQ19ev9dydnZ3h6emJ0NBQODo6Ijs7G76+vhg0aFCN80kAFUHKu+eiqqoKbW1tie1hYWHo3bs3dHR0EBsbi/nz52PBggUStwQ8evQIubm5ePToEcrLy7lexe7du0NNTQ2//vornj59iiFDhkBZWRnR0dFYv369xISoBw4cgIeHB7Zt24bBgwdzDSICgQAaGhq1nntluZW3mj14kAE5OUWYmWnUec3aA7FYDGtra6xfvx4A0L9/f/zxxx/YtWsXPDw8pFbuhg0bsHbtWqnlXx+aU4oQIssofqpA8VNbi58eory8ECYmfBgba9Z6XIv4R+v/yThpLml8e8lqtmP2WbZ/ZsXytUGu41hq5r1mL4fIlvNeW9gWt/ksyHUcSzgaVm1/XnEeswy3ZJbhlqykrERq9UjJyWMmflGsf8BpqZUhy1YkZzK9c/Hsm7QnTc6jvS1pXKlySWMNDQ0mEAiYo6OjxJLGPj4+rFu3bkxJSYnp6Ogwd3d39uLFC25/QEAA09fXZzwer84ljQcNGsSWLVvGHWdiYsK2bt1arT7Xrl1j9vb2TE1NjamqqrK+ffuydevWMcYYe/78OZs3bx6ztLRkampqTCgUMisrKxYUFMTKy8sl8jl27BgbPnw4U1VV5ZZcPnjwoESampZlrnxkZmZWq9vbt2/Zxx9/zAwNDRmfz2cGBgZswoQJ7Nq1a1yasLCwWvOsT0hICLOwsGACgYAZGBgwNzc39vjx43qPq+rdJY0ZY8zPz4/p6ekxRUVFZm5uzoKDg5n4naW9PTw8aqzz+fPnGWOMnTx5kr3//vvc69KvXz+2a9cuies+cuTIGvOofF/UprZr5u/v36hzf1dzLGksbV27dmUzZ86U2Pbdd98xQ0NDxhhjaWlpNS67PWLECDZv3jzGGGP79u1jmpqaEvtLS0uZvLw8O3r0aI3lFhUVMZFIxD0yMzOlej1+mLKX7Zh9li3/cjoLch3HvP0mSaUcIjve3r3Ldk4PZ0Gu49hO9wk1pvkm7htmGW7Jvr35rVTr8uWPN5mJXxTbfzVdquXIotySUqZ3Lp7pnYtnZe98bzQUxU8UP1H81LLx08qVfo0693c1R/zEY6wZ1gqXUXl5edDQ0IBIJOLuM20uiUv9EZM3EsKyx3j+5r8AgI+3BMHMqFezlkNky4U5WxH/5k+IS1Mxesqn6PfxdIn9b0reYOjBimG9tz67BUV5xRpy+ecePH0D+62XoKXKx61V9lIpQ5Z9lfIY+7JeYIGJHvzMqq8q0hBFRUVIT0+HqalprZMikpoVFBTAyMgIwcHBmDlzZouXn5ubi1GjRkFdXR0nT56EiopKi9eBNExZWQEKCx9CTo4PNbXqk7s2Rl2/s9KMFxpj6tSpyMzMlJi0dMGCBYiLi8PVq1fBGIOhoSEWL17MrbSUl5cHXV1dhIeHY8qUKbh37x4sLCxw48YNDBw4EABw+vRpODk54fHjx7X2FFcl7evxn3//H/I0zJAl/x9ov3iOdFMV7Pjmv81eDpEdRUlJ+H7zdbwtPAyBkjy+/OGXamk2XtuIH+/9iFlWszB/wHyp1cU74haO38lGgEsfTLN5T2rlyKJXpWXoffkPAEDWh/0g34T5dCl+ajqKn0hjFBamo6wsHwKBMRQVNZucT3PET7T6nrR02KY+QtoP+jVuGfHx8Th48CDS0tJw69YtuLm5AQA3pL2laWlp4cyZMxg1ahRiY2NbpQ6E1GTBggX4/fffsX79eqSmpuLAgQPYs2cPvL29AVTM+eHr64vAwEBERkbizp07mDZtGgwNDfGvf/0LQMXcJk5OTvD09MS1a9dw5coV+Pj4YMqUKQ1qkCKEENI2UPxE2guaU0rKeFX+rK3v/l7SsdQ3SLElJurswAMlSRsTFBSE5ORk8Pl8DBw4EDExMdxEka1BW1sbq1evbrXyCanJBx98gJ9//hnLly9HQEAATE1N8e2333J/iADA0qVLUVBQgC+++AKvX7/GsGHD8Ntvv0n0XkZERMDHxwejRo2CnJwcJk6ciJCQkNY4pTrRNxQhhNSN4ifSHlCjlJRJ/NFPjVKkjaC3ImlL+vfvj5s3b7Z2NQiRCePHj8f48eNr3c/j8RAQEICAgIBa02hpaeHAgQPSqB4hhJAWQvETaS/o9j2pqd6/R0saE16Vf0nbRY12hBBCCCGEECJ91ChFCCGEEELajsqeAbp/jxBCCGn3qFFKWmoKpGj0BSGEEEJIA/0VTFH8RAghhLRb1CglJYwiKEIIIYSQf4D3zv+EgEbQyQhaS4cQ0lDUKCU17J3/CSGEEEJI/agRitSuvsi6pVYWpkYXQghpHtQo1YJ4NHsyIYQQQgghjdOWYug2VJW2hi4NIbKHtYFBNNQoRUgbQis0EkII6ei4sea81g+USRvCKEYihJD2iBqlpIXiKEKIjJo+fTp4PB54PB74fD66d++OgIAAlJWV/aN8L1y4AB6Ph9evXzdPRRsgPT0dU6dOhaGhIZSVldGlSxe4uLjg/v37EumioqIwcuRICIVCqKio4IMPPkB4eLhEmoyMDPB4PCQkJDS4/DVr1qBXr15QVVVFp06dMHr0aMTFxUnkOXPmTJiamkIgEKBbt27w9/dHSUlJvXlHRESgX79+UFFRgYGBAWbMmIGXL1/We1xWVhY+++wzaGtrQyAQwMrKCjdu3OD2V339Kx9OTk4Sebz33nvV0nzzzTfc/uTkZNjZ2UFPTw/KysowMzPDypUrUVpaKpHP69ev4e3tDQMDAygpKaFHjx44ceJEnfU/evQoHBwcoK2tDUVFNSQm3q8zPZFl1AhBCJEdFD9R/CQr8ROPx8Pt20n1nnNLUWjtCrR/f7dO0SgY0tZQ22ndOvL1cXJyQlhYGIqLi3HixAl4e3tDUVERy5cvb+2qAQBKSkrA5/PrTFNaWgp7e3v07NkTR48ehYGBAR4/foyTJ09KBHbbt2+Hr68v/Pz8EBoaCj6fj19++QVeXl74448/EBQU1OR69ujRAzt27ICZmRnevn2LrVu3wsHBAampqdDR0cH9+/chFouxe/dudO/eHX/88Qc8PT1RUFBQZ7lXrlzBtGnTsHXrVjg7OyMrKwteXl7w9PTE0aNHaz3u1atXsLW1hZ2dHU6ePAkdHR08ePAAnTp1kkhX+fpXUlJSqpZXQEAAPD09uedCoZD7WVFREdOmTcOAAQOgqamJ27dvw9PTE2KxGOvXrwdQ8Rra29tDV1cXR44cgZGREf78809oamrWeU0LCgowbNgwuLq6SpRPCCGEtDaKnyh+ovip8ahRSsp4HfrPWlKnembIbAv395KOS0lJCfr6+gCAOXPm4Oeff0ZkZCS8vLwwf/58/PrrryguLsbIkSMREhICc3NzAMCff/4JHx8fXL58GSUlJXjvvfewefNmWFhYwM7ODgC4L3APDw+Eh4fjzZs38PLywrFjx6Curo6lS5fil19+wfvvv49vv/0WQEXP0syZM/HgwQMcO3YMn3zyCcLDw3H58mUsX74cN27cQOfOnfHxxx9jw4YNUFVVxd27d5GWloazZ8/CxMQEAGBiYgJbW1vuPDMzM7Fo0SL4+vpyX/YAsGjRIvD5fMybNw+TJk3C4MGDm3Qdp06dKvF8y5Yt2LdvHxITEzFq1Cg4OTlJ9KKZmZkhOTkZoaGhdQZVsbGxeO+99zBv3jwAgKmpKWbPno2NGzfWWZ+NGzfC2NhYImAyNTWtlq7q618boVBYaxozMzOYmZlxz01MTHDhwgXExMRw277//nvk5ubi6tWrUFRUBFDxOtfH3d0dQEUvKWmvqBOPECKbKH6i+Inip8aj2/cIaUltJs5uMxVpk6RydRgDSgpa59EMSwQJBAKUlJRg+vTpuHHjBiIjIxEbGwvGGMaOHcsNK/b29kZxcTEuXbqEO3fuYOPGjVBTU4OxsTH+97//AagYmpydnY1t27YBABYuXIgrV64gMjIS0dHRiImJwa1bt6rVISgoCP369UN8fDxWrVqFtLQ0ODk5YeLEiUhMTMShQ4dw+fJl+Pj4AAB0dHQgJyeHI0eOoLy8vMbzOnLkCEpLS7F48eJq+2bPng01NTUcPHjwH18/oKJna8+ePdDQ0EC/fv1qTScSiaClpVVnXjY2NsjMzMSJEyfAGMPTp09x5MgRjB07ts7jIiMjYW1tjUmTJkFXVxf9+/fH3r17q6W7cOECdHV10bNnT8yZM6fGYe3ffPMNtLW10b9/f2zevLnO2xNSU1Px22+/YeTIkRJ1sbGxgbe3N/T09GBpaYn169fX+loRQgjpoGQ4hqL46Z+j+Kn9x080UkpKavz4aksrhxBCWlZpIbDesHXKXvEE4Ks26VDGGM6ePYtTp05hzJgxOHbsGK5cuYKhQ4cCqLgv39jYGMeOHcOkSZPw6NEjTJw4EVZWVgAg0dtTGSjo6upyQ4zfvHmD/fv348CBAxg1ahQAICwsDIaG1a/VRx99hEWLFnHPZ82aBTc3N/j6+gIAzM3NERISgpEjRyI0NBRGRkYICQnB0qVLsXbtWlhbW8POzg5ubm5cvVJSUqChoQEDA4Nq5fH5fJiZmSElJaVJ165SVFQUpkyZgsLCQhgYGCA6OhqdO3euMW1qaiq2b99e75B3W1tbREREYPLkySgqKkJZWRmcnZ2xc+fOOo97+PAhQkNDsXDhQqxYsQLXr1/HvHnzwOfz4eHhAaBi6Pknn3wCU1NTpKWlYcWKFRgzZgxiY2MhLy8PAJg3bx4GDBgALS0tXL16FcuXL0d2dja2bNkiUd7QoUNx69YtFBcX44svvkBAQIBEXc6dOwc3NzecOHECqamp+PLLL1FaWgp/f/96ryshhFRFq1y3YzIYQ1H8RPETxU8NRyOlCCGEVBMVFQU1NTUoKytjzJgxmDx5MqZPnw4FBQWJodja2tro2bMn7t27B6DiyzYwMBC2trbw9/dHYmJineU8fPgQpaWlGDRoELdNQ0MDPXv2rJbW2tpa4vnt27cRHh4ONTU17uHo6AixWIz09HQAFT2POTk5iIiIgI2NDQ4fPow+ffogOjq6wdeivrkXgIrgsmo9qg6ztrOzQ0JCAq5evQonJye4urri2bNn1fLIysqCk5MTJk2aJHGvf9V8vby8AABJSUmYP38+Vq9ejZs3b+K3335DRkYGtz8mJkbiuIiICACAWCzGgAEDsH79evTv3x9ffPEFPD09sWvXLq68KVOmYMKECbCyssK//vUvREVF4fr167hw4QKXZuHChfjwww/Rt29feHl5ITg4GNu3b0dxcbHEOR06dAi3bt3CgQMHcPz4cYlgUSwWQ1dXF3v27MHAgQMxefJkfPXVV1xd6rqmpJ37q22BbmMnhMgaip/+RvETxU8NRSOlCCGkJSiqVPS2tVbZjWRnZ8dNWmloaAgFBQVERkbWe9ysWbPg6OiI48eP4/Tp09iwYQOCg4Mxd+7cptRcgqqqZE9lfn4+Zs+ezc0LUFXXrl25n4VCIZydneHs7IzAwEA4OjoiMDAQ9vb2MDc3h0gkwpMnT6r1LpaUlCAtLQ2Ojo711m3ChAkSwaaRkZFEvbt3747u3btjyJAhMDc3x759+yQmPX3y5Ans7OwwdOhQ7NmzRyLvqqvVqKurAwA2bNgAW1tbLFmyBADQt29fqKqqYvjw4QgMDIS1tbXEcXp6egAAAwMDWFhYSOTfu3dv7taAmpiZmaFz585ITU3lemPfNXjwYJSVlSEjI0MiIDY2NgYAWFhYoLy8HF988QUWLVoEeXl5GBgYQFFRkes9rKxLTk4OSkpK6rympP1irOoCMX/9TwNgiARqrJQFzfoqyVAMRfETxU+VKH5qOGqUakFycjQwjZAOi8dr8i10raEyEKiqd+/eKCsrQ1xcHDf8/OXLl0hOTpb4ojY2NoaXlxe8vLywfPly7N27F3PnzuV6zKre825mZgZFRUVcv36dC4REIhFSUlIwYsSIOus4YMAAJCUlVatnXXg8Hnr16oWrV68CAD799FP4+fkhODgYwcHBEml37dqFwsJCTJs2rd58hUKhxOopdRGLxRI9YllZWbCzs8PAgQMRFhZW7buipvMrLCyEgoLkV3hlcMIYg0AgqPE4W1tbJCcnS2xLSUnhJjKtyePHj/Hy5csah+hXSkhIgJycHHR1dWtNIxaLUVpaCrFYDHl5edja2uLAgQMQi8XcOaekpMDAwAB8Ph98Pr/B15S0T4z7n1qlSMO11Ag71gzzNZIGkqEYiuInip8qUfzUcNQoJXX0hUUIaR/Mzc3h4uICT09P7N69G0KhEMuWLYORkRFcXFwAAL6+vhgzZgx69OiBV69e4fz58+jduzeAihVEeDweoqKiMHbsWAgEAgiFQnh4eGDJkiXQ0tKCrq4u/P39IScnV+/8IH5+fhgyZAh8fHwwa9YsqKqqIikpCdHR0dixYwcSEhLg7+8Pd3d3WFhYgM/n4+LFi/j+++/h5+cHoKJHcNOmTVi8eDGUlZXh7u4ORUVF/PLLL1ixYgUCAwNhaWkpUe67QQkA9OnTh1sBpVJBQQHWrVuHCRMmwMDAAC9evMDOnTuRlZWFSZMmAagIqD788EOYmJggKCgIz58/546va/UWZ2dneHp6IjQ0FI6OjsjOzoavry8GDRpU43wSlRYsWIChQ4di/fr1cHV1xbVr17Bnzx6udzE/Px9r167FxIkToa+vj7S0NCxduhTdu3fnejxjY2MRFxcHOzs7CIVCxMbGYsGCBfjss8+4lYEiIiKgqKgIKysrKCkp4caNG1i+fDkmT57MXac5c+Zgx44dmD9/PubOnYsHDx5g/fr1NfbcVpWbm4tHjx7hyZOKXvMHDzIgJ6cIMzONele8IbKCGqHIO9rQcLm2U5O2h65NzSh+qkDxU1uLnx6ivLwQXbsqomvXTnUeK3WsAxOJRAwAE4lEzZ53/MKVbMfss+yHGXtZkOs4FuQ6jmU+T2/2cohsuTBnC9vi5suCXMex+CP7qu3PL8lnluGWzDLckhWVFUmtHg+evmEmflGs39pTUitDlq1MyWR65+LZ+rQnTc7j7du3LCkpib19+7YZa9YyPDw8mIuLS437cnNzmbu7O9PQ0GACgYA5OjqylJQUbr+Pjw/r1q0bU1JSYjo6Oszd3Z29ePGC2x8QEMD09fUZj8djHh4ejDHG8vLy2NSpU5mKigrT19dnW7ZsYYMGDWLLli3jjjMxMWFbt26tVp9r164xe3t7pqamxlRVVVnfvn3ZunXrGGOMPX/+nM2bN49ZWloyNTU1JhQKmZWVFQsKCmLl5eUS+Rw7dowNHz6cqaqqMlT0JrCDBw9KpElPT+f2vfvIzMysVre3b9+yjz/+mBkaGjI+n88MDAzYhAkT2LVr17g0YWFhteZZn5CQEGZhYcEEAgEzMDBgbm5u7PHjx/Ue9+uvvzJLS0umpKTEevXqxfbs2cPtKywsZA4ODkxHR4cpKioyExMT5unpyXJycrg0N2/eZIMHD2YaGhpMWVmZ9e7dm61fv54VFf39mfXTTz+xAQMGcK+LhYUFW79+fbXfh6tXr7LBgwczJSUlZmZmxtatW8fKysrqrH9t18zf37/ec69LXb+z0owXZJE0r4dYLGb7p4axHbPPsqVferAg13HMe/nkZi+HyJa39+6xnR7hLMh1HNvxmXONaTZe28gswy3ZlhtbpFoX74ibzMQvioVdfijVcmTR65JSpncunumdi2cl5eIm5UHxE8VPFD+1bPy0cuXSes+9Ls0RP/EY67hjT/Py8qChoQGRSMTdZ9pcEhauxpXCD6FemoZn+b8AACbv3IEund9r1nKIbLn45VbcynsEcekDjHL9BO9PnCGxv6C0AEMODAEA3PjsBpTklaRSj9Rn+Ri95SI0VRSRsNpBKmXIslUPHmPv4xeYb6KH5Wa1D7mtS1FREdLT02FqagplZeVmrmH7VlBQACMjIwQHB2PmzJktXn5ubi5GjRoFdXV1nDx5EioqjZ+Ti7SMsrJCFBamQU6ODzW16pO7NkZdv7PSjBdkkTSvB2MMP3y2H/nCrngkvx+6L14ivZsadqz/qVnLIbKl6P59fP9NHN6+PQxlvhy8/1N9jp5N1zfhP0n/wQzLGVgwcIHU6uJz4BaiErOxxtkC021NpVaOLBKVlqHn5T8AAJkj+0FRrvFjpyh+ajqKn0hjFBamo6wsH8rKXcDnN32kVHPETzTJkZR02JY+QtqRDtxm36Li4+Nx8OBBpKWl4datW3BzcwMAbkh7S9PS0sKZM2cwatQoxMbGtkodCOmw6HOXEEIahOIn0l7QnFItiEd3WpMq6mvwaIkGEYr9SVsRFBSE5ORk8Pl8DBw4EDExMejcuXOr1UdbWxurV69utfIJIQDNUEMIIXWj+Im0B9Qo1ZLa0CSNpGOjt2LdqAG5ZfXv3x83b95s7WoQQtqMdz+D6TOZEELeRfETaS/o9j2po6Eo5G+8Kv8SQgghpAHoa5M0AHUoEUKIbKJGKSmh26IIIYQQQgghhBBCakeNUlLGq+VnQgghhBDyDsa4e8wZjTYnhBBC2j1qlGpBPJrIhxBCCCGkUSh6Io3RUo2Z1GRaN2pUJoQ0FDVKSRl9HBNCCCGENAGT+I+QCvSGIISQdoUapaSMB3GVJ9TXRwghhBBCSKPweG0mjKY7H2pH14YQ0hTUKEVIG0IrxxBCCCF/oa9EQgghpN2jRilpoaHFhBAZNX36dPB4PPB4PPD5fHTv3h0BAQEoKyv7R/leuHABPB4Pr1+/bp6KNkB6ejqmTp0KQ0NDKCsro0uXLnBxccH9+/cl0kVFRWHkyJEQCoVQUVHBBx98gPDwcIk0GRkZ4PF4SEhIaHD5a9asQa9evaCqqopOnTph9OjRiIuLk8hz5syZMDU1hUAgQLdu3eDv74+SkpJ6846IiEC/fv2goqICAwMDzJgxAy9fvqzzmPLycqxatUqivK+//hqsypKxR48ehYODA7S1tWs937S0NHz88cfQ0dGBuro6XF1d8fTp00afV2JiIoYPHw5lZWUYGxtj06ZN9Z73pUuX4OzsDENDQygqqiIq6ly9xxAZwhgYtUYRQmQQxU8UP8lK/MTj8fDrr6frPaalUKOUlEm0TdGQViKh9Vsuq36Qkuo68tVxcnJCdnY2Hjx4gEWLFmHNmjXYvHlza1eL05Cgo7S0FPb29hCJRDh69CiSk5Nx6NAhWFlZSQR227dvh4uLC2xtbREXF4fExERMmTIFXl5eWLx48T+qZ48ePbBjxw7cuXMHly9fxnvvvQcHBwc8f/4cAHD//n2IxWLs3r0bd+/exdatW7Fr1y6sWLGiznyvXLmCadOmYebMmbh79y4OHz6Ma9euwdPTs87jNm7ciNDQUOzYsQP37t3Dxo0bsWnTJmzfvp1LU1BQgGHDhmHjxo015lFQUAAHBwfweDycO3cOV65cQUlJCZydnSEWixt8Xnl5eXBwcICJiQlu3ryJzZs3Y82aNdizZ0+d51BQUIB+/fph586dVbZ25N/WDoDCJ0KIjKD4ieIn2Yqf2gjWgYlEIgaAiUSiZs/75vxVbMfss+yHGaEsyHUcC3Idx568etzs5RDZcnHOFrbFbQELch3Hbv13b7X9BSUFzDLcklmGW7LC0kKp1SP12Rtm4hfFrPx/k1oZsmxVymOmdy6eBaZmNTmPt2/fsqSkJPb27dtmrFnL8PDwYC4uLhLb7O3t2ZAhQ1hubi5zd3dnmpqaTCAQMCcnJ5aSksKly8jIYOPHj2eamppMRUWFWVhYsOPHj7P09HSGipYD7uHh4cEYYywvL49NnTqVqaioMH19fbZlyxY2cuRINn/+fC5fExMTFhAQwNzd3ZlQKOSOjYmJYcOGDWPKysqsS5cubO7cuSw/P58xxlh8fDwDwDIyMmo910ePHjFFRUW2cOHCavtCQkIYAPb7778zxhh3DvHx8Y2/qH+p/N45c+ZMrWk2bdrETE1N68xn8+bNzMzMrFp9jYyM6jxu3LhxbMaMGRLbPvnkE+bm5lYtbW3ne+rUKSYnJyfx3fn69WvG4/FYdHR0rWW/e17fffcd69SpEysuLua2+fn5sZ49e9Z5DlUBYBER37I3b+41+Jja1PU7K814QRZJ83qIS0tZmNsPbMfss2zJl9NYkOs45v3VlGYvh8iWt/fvs++mh7Mg13Fsh5tzjWk2XdvELMMtWfCNYKnWxefALWbiF8W+v/xQquXIIlFpGdM7F8/0zsWz4vLyJuVB8RPFTzWh+Kn546efftrFRKJEVlyc2+DjatIc8RONlJISWgaVtGXU6Vw3aVwfxhgKSwtb5cGaYUScQCBASUkJpk+fjhs3biAyMhKxsbFgjGHs2LEoLS0FAHh7e6O4uBiXLl3CnTt3sHHjRqipqcHY2Bj/+9//AADJycnIzs7Gtm3bAAALFy7ElStXEBkZiejoaMTExODWrVvV6hAUFIR+/fohPj4eq1atQlpaGpycnDBx4kQkJibi0KFDuHz5Mnx8fAAAOjo6kJOTw5EjR1BeXl7jeR05cgSlpaU19ujNnj0bampqOHjw4D++fkBF7+SePXugoaGBfv361ZpOJBJBS0urzrxsbGyQmZmJEydOgDGGp0+f4siRIxg7dmydxw0dOhRnz55FSkoKAOD27du4fPkyxowZ0+DzKC4uBo/Hg5KSErdNWVkZcnJyuHz5coPPKzY2FiNGjACfz+e2OTo6Ijk5Ga9evWpwfUh7VvnZRd9ahHRkshxDUfz0z1H81P7jJ4XWrkD79/cHGYVUhHRcb8veYvCBwa1SdtzUOKgoqjTpWMYYzp49i1OnTmHMmDE4duwYrly5gqFDhwKouC/f2NgYx44dw6RJk/Do0SNMnDgRVlZWAAAzMzMur8ovVF1dXWhqagIA3rx5g/379+PAgQMYNWoUACAsLAyGhobV6vLRRx9h0aJF3PNZs2bBzc0Nvr6+AABzc3OEhIRg5MiRCA0NhZGREUJCQrB06VKsXbsW1tbWsLOzg5ubG1evlJQUaGhowMDAoFp5fD4fZmZmXADSVFFRUZgyZQoKCwthYGCA6OhodO7cuca0qamp2L59O4KCgurM09bWFhEREZg8eTKKiopQVlYGZ2fneodkL1u2DHl5eejVqxfk5eVRXl6OdevWwc3NrcHnM2TIEKiqqsLPzw/r168HYwzLli1DeXk5srOzG3xeOTk5MDU1lUinp6fH7evUqVOD60TaKerfI41Ai8W0X7IYQ1H8RPHTuyh+qh2NlJI6+oIkhMieqKgoqKmpQVlZGWPGjMHkyZMxffp0KCgoYPDgvwNDbW1t9OzZE/fu3QMAzJs3D4GBgbC1tYW/vz8SExPrLOfhw4coLS3FoEGDuG0aGhro2bNntbTW1tYSz2/fvo3w8HCoqalxD0dHR4jFYqSnpwOo6HnMyclBREQEbGxscPjwYfTp0wfR0dENvhZVe6JqExERIVGPmJgYbp+dnR0SEhJw9epVODk5wdXVFc+ePauWR1ZWFpycnDBp0iSJuQ2q5uvl5QUASEpKwvz587F69WrcvHkTv/32GzIyMrj9MTExEsdFREQAAP773/8iIiICBw4cwK1bt7B//34EBQVh//79Db4eOjo6OHz4MH799VeoqalBQ0MDr1+/xoABAyAnVz2sqO286lPbOZB2rsqoBJrwnBAiayh++hvFT5IofqodjZSSFurdI4RUIVAQIG5qXP0JpVR2Y9nZ2SE0NBR8Ph+GhoZQUFBAZGRkvcfNmjULjo6OOH78OE6fPo0NGzYgODgYc+fObUrVJaiqqko8z8/Px+zZszFv3rxqabt27cr9LBQK4ezsDGdnZwQGBsLR0RGBgYGwt7eHubk5RCIRnjx5Uq13saSkBGlpaXB0dKy3bhMmTJAINo2MjCTq3b17d3Tv3h1DhgyBubk59u3bh+XLl3Npnjx5Ajs7OwwdOrTaRJVVV29RV1cHAGzYsAG2trZYsmQJAKBv375QVVXF8OHDERgYCGtra4njKnvQlixZgmXLlmHKlCkAACsrK/z555/YsGEDPDw86j3PSg4ODkhLS8OLFy+goKAATU1N6OvrS/Ts1nde+vr6EivOAOCe6+vr47333qvxHEgHULkwDLVJkRrUG2JTDN4mNOfLIEsxFMVPFD/VheKnmlGjlNSJuZ94PBqYRkhHxePxmnwLXWuoDASq6t27N8rKyhAXF8cNP3/58iWSk5NhYWHBpTM2NoaXlxe8vLywfPly7N27F3PnzuV6zKrOT2BmZgZFRUVcv36dC4REIhFSUlIwYsSIOus4YMAAJCUlVatnXXg8Hnr16oWrV68CAD799FP4+fkhODgYwcHBEml37dqFwsJCTJs2rd58hUIhhEJhg+ogFotRXFzMPc/KyoKdnR0GDhyIsLCwar1lNZ1fYWEhFBQkv8Ll5eUBVNwyIBAIaj3u3fzl5eW5VV8aq3IY/blz5/Ds2TNMmDChwedlY2ODr776CqWlpVBUVAQAREdHo2fPntzQ88a8toQQ0pJoAeOWI0sxFMVPFD81BMVPkqhRSmqoe48Q0r6Ym5vDxcUFnp6e2L17N4RCIZYtWwYjIyO4uLgAAHx9fTFmzBj06NEDr169wvnz59G7d28AgImJCXg8HqKiojB27FgIBAIIhUJ4eHhgyZIl0NLSgq6uLvz9/SEnJwcer+7PUT8/PwwZMgQ+Pj6YNWsWVFVVkZSUhOjoaOzYsQMJCQnw9/eHu7s7LCwswOfzcfHiRXz//ffw8/MDUNEjuGnTJixevBjKyspwd3eHoqIifvnlF6xYsQKBgYGwtLSUKDc5OblaXfr06cMFBpUKCgqwbt06TJgwAQYGBnjx4gV27tyJrKwsTJo0CUBF4PHhhx/CxMQEQUFB3FLHQEVvV22cnZ3h6emJ0NBQODo6Ijs7G76+vhg0aFCN80lUPW7dunXo2rUr+vTpg/j4eGzZsgUzZszg0uTm5uLRo0d48uSJxPnq6+tzdQoLC0Pv3r2ho6OD2NhYzJ8/HwsWLOBuG2jIeU2dOhVr167FzJkz4efnhz/++APbtm3D1q1ba60/UNHDm5qayj3/888sJCbeQ5cuKhI9vESW8f76l/7qJ5XaTlzddmrS9tC1qRnFTxUofmpb8VNGRiYSE+9DXx/o3r2V56H6R+v/yThpLml8Y94qtmP2WfbDjJ0syHUcC3Idx3JeP2n2cohsuThnC9vitoAFuY5jt/67t9r+gpICZhluySzDLVlhaaHU6pH27A0z8YtiVv6/Sa0MWbY65THTOxfPAlOzmpxHe1vSuFLlksYaGhpMIBAwR0dHiSWNfXx8WLdu3ZiSkhLT0dFh7u7u7MWLF9z+gIAApq+vz3g8Xp1LGg8aNIgtW7aMO87ExIRt3bq1Wn2uXbvG7O3tmZqaGlNVVWV9+/Zl69atY4wx9vz5czZv3jxmaWnJ1NTUmFAoZFZWViwoKIiVv7NU9bFjx9jw4cOZqqoqt+TywYMHJdLUtCxz5SMzM7Na3d6+fcs+/vhjZmhoyPh8PjMwMGATJkxg165d49KEhYXVmmd9QkJCmIWFBRMIBMzAwIC5ubmxx48f13lMXl4emz9/PuvatStTVlZmZmZm7KuvvpJYVri2Ovn7+3Np/Pz8mJ6eHlNUVGTm5uYsODiYicXiRp/X7du32bBhw5iSkhIzMjJi33zzTb3nff78+RrzrXw/NVVzLGncUUjzeohLSljYZz+yHbPPsiVfurMg13HM+6upzV4OkS1v7yez76aHsyDXcWy7m3ONaTZf28wswy1Z8PVgqdZl7oFbzMQviu2LeSjVcmRRXmkZ0zsXz/TOxbOid75nG4riJ4qfKH5q2fjJ3f3f9R5bl+aIn3iMddzBp3l5edDQ0IBIJOLuM20uN+evwu/FdlAvvY9n+ScAAJ/t2Qs9jeorFJCO49KXW3EzLxPi0hR89Om/0H/SLIn9haWF3Ooi19yuNWkuoIZ4+DwfHwVfhLqyAhLX1H+/d0fj/yALux8/x9yuuviqW+29JnUpKipCeno6TE1Noays3Mw1bN8KCgpgZGSE4OBgzJw5s8XLz83NxahRo6Curo6TJ09CRUU2bhnoiMrKC1FYkAY5OUWoqfX6R3nV9TsrzXhBFknzerCSEuyfeRgFqgbIkA+H/otcpJtrYEdg25+olUhPUXIKwr6JRWHhYSgpysHnx+pz9ARdD8L+pP34vM/nWGi9UGp1mXcwHpG3n2D1eAvMGGZa/wEdyJuycpjH3AEA/DmyL5RqmLy5PhQ/NR3FT6QxCgszUFb2BsrKXcDnN32kVHPETzTJkZR02JY+0gj0Lmnr6BVqGfHx8Th48CDS0tJw69YtbnndyiHtLU1LSwtnzpzBqFGjEBsb2yp1IKQjo89eQgipH8VPpL2gOaWkhVX7od77e0nHUt8YxZYYxEiBP2krgoKCkJycDD6fj4EDByImJoabBLI1aGtrY/Xq1a1WPiGkCgqfCCGkRhQ/kfaAGqVaEDVKEbSR9wC9F+tBl6dF9e/fHzdv3mztahAZRL+q7Rt1nBBCSO0ofiLtBd2+JzUUKpPa0HuDEEIIqR2vjmeE1Iw63AghRDZRo5TUVPTv0XLGhBBCCCENQ1ETIYQQ0rFQo1RLoh4cQgghhJAGoaiJENnVcdd3J4Q0FjVKSRl9HhNCCCGENMJfrVHsryiKYinSGKyF3jH0viSEkOZBjVLS8tc3VdXb93jU50cIIYQQ0igUPZG29CagGx9qR5eGEFnU+k3s1CjVguiDmhBCCCGkPhQxkRq0/t9NhBBCpIAapaSEUUBFmoBWjiGEEEIIIYQQ0lFQo5TUsHf+J4QQ2TB9+nTweDzweDzw+Xx0794dAQEBKCsr+0f5XrhwATweD69fv26eijZAeno6pk6dCkNDQygrK6NLly5wcXHB/fv3JdJFRUVh5MiREAqFUFFRwQcffIDw8HCJNBkZGeDxeEhISGhw+WvWrEGvXr2gqqqKTp06YfTo0YiLi5PIc+bMmTA1NYVAIEC3bt3g7++PkpKSevOOiIhAv379oKKiAgMDA8yYMQMvX76s85g3b97A19cXJiYmEAgEGDp0KK5fvy6RJj8/Hz4+PujSpQsEAgEsLCywa9cuiTSzZ89Gt27dIBAIoKOjU+M1ffToEcaNGwcVFRXo6upiyZIltb6Hrly5AgUFBbz//vv1nvfRo0fh4OAAbW1tKCioIjHxfr3HEBlS0+zI1GFDCJEBFD9R/CQr8ROPx8Pt20n1HtNSqFFKanjv/A8Kqsg72kCDZRuoQlvWkS+Pk5MTsrOz8eDBAyxatAhr1qzB5s2bW7tanIYEHaWlpbC3t4dIJMLRo0eRnJyMQ4cOwcrKSiKw2759O1xcXGBra4u4uDgkJiZiypQp8PLywuLFi/9RPXv06IEdO3bgzp07uHz5Mt577z04ODjg+fPnAID79+9DLBZj9+7duHv3LrZu3Ypdu3ZhxYoVdeZ75coVTJs2DTNnzsTdu3dx+PBhXLt2DZ6ennUeN2vWLERHR+M///kP7ty5AwcHB4wePRpZWVlcmoULF+K3337Djz/+iHv37sHX1xc+Pj6IjIzk0gwcOBBhYWG4d+8eTp06BcYYHBwcUF5eDgAoLy/HuHHjUFJSgqtXr2L//v0IDw/H6tWrq9Xp9evXmDZtGkaNGtWga1pQUIBhw4Zh48aNDUpPZE9H/uwlhMg2ip8ofqL4qQlYByYSiRgAJhKJmj3vaz6r2I7ZZ9l/ZoSwINdxLMh1HHuZ/6LZyyGy5eKXW9kWt4UsyHUcu3lod7X9haWFzDLcklmGW7KCkgKp1ePh83xm4hfFLFf/JrUyZNnqB4+Z3rl4FpCa1eQ83r59y5KSktjbt2+bsWYtw8PDg7m4uEhss7e3Z0OGDGG5ubnM3d2daWpqMoFAwJycnFhKSgqXLiMjg40fP55pamoyFRUVZmFhwY4fP87S09MZKv7W5B4eHh6MMcby8vLY1KlTmYqKCtPX12dbtmxhI0eOZPPnz+fyNTExYQEBAczd3Z0JhULu2JiYGDZs2DCmrKzMunTpwubOncvy8/MZY4zFx8czACwjI6PWc3306BFTVFRkCxcurLYvJCSEAWC///47Y4xx5xAfH9/4i/qXyu+dM2fO1Jpm06ZNzNTUtM58Nm/ezMzMzKrV18jIqNZjCgsLmby8PIuKipLYPmDAAPbVV19xz/v06cMCAgLqTPOu27dvMwAsNTWVMcbYiRMnmJycHMvJyeHShIaGMnV1dVZcXCxx7OTJk9nKlSuZv78/69evX61lvKvy9YiJ+S978+Zeg4+rTV2/s9KMF2SRNK9HeVER2+d+gO2YfZYt+vIzFuQ6jvmscmv2cohseZuczL7zCGdBruPYdjfnGtMEXQ9iluGWLOh6kFTrMu/gLWbiF8X+L+ahVMuRRW9Ky5jeuXimdy6evS0rb1IeFD9R/FQTip+aP366evU4E4kSWXHxywYfW5PmiJ9opJTU0O17pLq2MliujVSjzZLG9WGMQVxY2CoPVtPtMI0kEAhQUlKC6dOn48aNG4iMjERsbCwYYxg7dixKS0sBAN7e3iguLsalS5dw584dbNy4EWpqajA2Nsb//vc/AEBycjKys7Oxbds2ABU9S1euXEFkZCSio6MRExODW7duVatDUFAQ+vXrh/j4eKxatQppaWlwcnLCxIkTkZiYiEOHDuHy5cvw8fEBAOjo6EBOTg5HjhzheqDedeTIEZSWltbYozd79myoqanh4MGD//j6ARW9k3v27IGGhgb69etXazqRSAQtLa0687KxsUFmZiZOnDgBxhiePn2KI0eOYOzYsbUeU1ZWhvLycigrK0tsFwgEuHz5Mvd86NChiIyMRFZWFhhjOH/+PFJSUuDg4FBjvgUFBQgLC4OpqSmMjY0BALGxsbCysoKenh6XztHREXl5ebh79y63LSwsDA8fPoS/v3+d50s6JoqkCCGAbMdQFD/9cxQ/tf/4SaG1K9ChtJUWCUJIi2Nv3yJ5wMBWKbvnrZvgqag06VjGGM6ePYtTp05hzJgxOHbsGK5cuYKhQ4cCqLgv39jYGMeOHcOkSZPw6NEjTJw4EVZWVgAAMzMzLq/KQEFXVxeampoAKu7R379/Pw4cOMANPw4LC4OhoWG1unz00UdYtGgR93zWrFlwc3ODr68vAMDc3BwhISEYOXIkQkNDYWRkhJCQECxduhRr166FtbU17Ozs4ObmxtUrJSUFGhoaMDAwqFYen8+HmZkZUlJSmnTtKkVFRWHKlCkoLCyEgYEBoqOj0blz5xrTpqamYvv27QgKCqozT1tbW0RERGDy5MkoKipCWVkZnJ2dsXPnzlqPEQqFsLGxwddff43evXtDT08PBw8eRGxsLLp3786l2759O7744gt06dIFCgoKkJOTw969ezFixAiJ/L777jssXboUBQUF6NmzJ6Kjo8Hn8wEAOTk5EgEVAO55Tk4OAODBgwdYtmwZYmJioKBA4QipilfHM0JqxqN3SrslizEUxU8UP1H81HA0UkpKqFePECLLoqKioKamBmVlZYwZMwaTJ0/G9OnToaCggMGDB3PptLW10bNnT9y7dw8AMG/ePAQGBsLW1hb+/v5ITEyss5yHDx+itLQUgwYN4rZpaGigZ8+e1dJaW1tLPL99+zbCw8OhpqbGPRwdHSEWi5Geng6goucxJycHERERsLGxweHDh9GnTx9ER0c3+FpUBgp1iYiIkKhHTEwMt8/Ozg4JCQm4evUqnJyc4OrqimfPnlXLIysrC05OTpg0aZLE3AZV8/Xy8gIAJCUlYf78+Vi9ejVu3ryJ3377DRkZGdz+mJgYieMiIiIAAP/5z3/AGIORkRGUlJQQEhKCf//735CT+zsc2L59O37//XdERkbi5s2bCA4Ohre3N86cOSNRXzc3N8THx+PixYvo0aMHXF1dUVRU1KBrWl5ejqlTp2Lt2rXo0aNHo68paceaYWQnIaT1ddTfZIqf/kbxE8VPDdU+mtbaso76iUwIkcATCNDz1s1WK7ux7OzsEBoaCj6fD0NDQygoKEhM1FibWbNmwdHREcePH8fp06exYcMGBAcHY+7cuU2pugRVVVWJ5/n5+Zg9ezbmzZtXLW3Xrl25n4VCIZydneHs7IzAwEA4OjoiMDAQ9vb2MDc3h0gkwpMnT6r1LpaUlCAtLQ2Ojo711m3ChAkSwaaRkZFEvbt3747u3btjyJAhMDc3x759+7B8+XIuzZMnT2BnZ4ehQ4diz549EnlXXa1GXV0dALBhwwbY2tpiyZIlAIC+fftCVVUVw4cPR2BgIKytrSWOq+xl69atGy5evIiCggLk5eXBwMAAkydP5no+3759ixUrVuDnn3/GuHHjuLwTEhIQFBSE0aNHc3lqaGhAQ0MD5ubmGDJkCDp16oSff/4Z//73v6Gvr49r165JnMfTp08BAPr6+njz5g1u3LiB+Ph47nYBsVgMxhgUFBRw+vTpOq8p6Rho3Atpiua4Zb0tlUNkK4ai+IniJ4qfGo8apVqQHN2+R0iHxePxmnwLXWuoDASq6t27N8rKyhAXF8cNP3/58iWSk5NhYWHBpTM2NoaXlxe8vLywfPly7N27F3PnzuV6zKrOT2BmZgZFRUVcv36dC4REIhFSUlKqDXd+14ABA5CUlFStnnXh8Xjo1asXrl69CgD49NNP4efnh+DgYAQHB0uk3bVrFwoLCzFt2rR68xUKhRAKhQ2qg1gsRnFxMfc8KysLdnZ23IosVXvdANR4foWFhdWGbMvLywOo+ENJIBDUeV1UVVWhqqqKV69e4dSpU9i0aROAihV3SktLq9VBXl4eYrG41vwYY2CMcedlY2ODdevW4dmzZ9DV1QUAREdHQ11dHRYWFlBUVMSdO3ck8vjuu+9w7tw5HDlyBKamplBVVW3wNSXtzF/xEnvnOSFA6w+mo3dj7aR1bWQphqL4ieKnd/Om+Kl+1CglddSLQghpH8zNzeHi4gJPT0/s3r0bQqEQy5Ytg5GREVxcXAAAvr6+GDNmDHr06IFXr17h/Pnz6N27NwDAxMQEPB4PUVFRGDt2LAQCAYRCITw8PLBkyRJoaWlBV1cX/v7+kJOTA6+eP0T9/PwwZMgQ+Pj4YNasWVBVVUVSUhKio6OxY8cOJCQkwN/fH+7u7rCwsACfz8fFixfx/fffw8/PD0BFj+CmTZuwePFiKCsrw93dHYqKivjll1+wYsUKBAYGwtLSUqLc5OTkanXp06cPFBUVJbYVFBRg3bp1mDBhAgwMDPDixQvs3LkTWVlZmDRpEoCKgOrDDz+EiYkJgoKCuKWOgYoesdo4OzvD09MToaGhcHR0RHZ2Nnx9fTFo0KAa55OoVLn8cM+ePZGamoolS5agV69e+PzzzwFU9CSOHDkSS5YsgUAggImJCS5evIgffvgBW7ZsAVBxy8ChQ4fg4OAAHR0dPH78GN988w0EAgE3UaiDgwMsLCzg7u6OTZs2IScnBytXroS3tzeUlJQAoNp11dXVhbKycrXt78rNzcWjR4/w5MkTAMCDBxmQk1OAmZlmndeMyC5qBCA8Hs0YRWQXxU8VKH5qa/HTQ5SXF6BrVwV07Vr3BPHSRo1SUsaoUYoQ0o6EhYVh/vz5GD9+PEpKSjBixAicOHGCCyjKy8vh7e2Nx48fQ11dHU5OTti6dSuAiuHDa9euxbJly/D5559j2rRpCA8Px5YtW+Dl5YXx48dDXV0dS5cuRWZmZrVVTt7Vt29fXLx4EV999RWGDx8Oxhi6deuGyZMnAwC6dOmC9957D2vXrkVGRgZ4PB73fMGCBVw+CxYsgJmZGYKDg7Ft2zYUFBQAAA4ePIgpU6ZUK7embZmZmejSpYvENnl5edy/fx/79+/HixcvoK2tjQ8++AAxMTHo06cPgIrer9TUVKSmplY7vq5bQ6ZPn443b95gx44dWLRoETQ1NfHRRx9h48aNdV4zkUiE5cuX4/Hjx9DS0sLEiROxbt06iYDwp59+wvLly+Hm5obc3FyYmJhg3bp13HwLysrKiImJwbfffotXr15BT08PI0aMwNWrV7lePXl5eURFRWHOnDmwsbGBqqoqPDw8EBAQUGf9GiIyMpILAgFgxoylAAB/f3+sWbPmH+dPWh9FToSQ9obiJ4qf2lr85OFRcWvoypVL8fXXdZ+/tPFYB74hOi8vDxoaGhCJRNx9ps0lzmcVbpTZQb0kEc8KKiY3m7n/R2gqazZrOUS2xPh8ixuvMyEuTYbdxAkY4PqFxP6isiJ8EPEBACBuahxUFKUzVDnjRQE+DLoAoZIC7qyt/37vjmZNahZ2ZT6Hd1ddrOpWe69JXYqKipCeng5TU9N6gwMiqaCgAEZGRggODsbMmTNbvPzc3FyMGjUK6urqOHnyJFRk5JaBjqi8vBAFBWmQk1OEmlqvf5RXXb+z0owXZJE0r4f47VuEeUWiSKCDh/JhMHzxCn/26oSQtf9p1nKIbCl+8ABh666i4O1h8BXkMDei+hw9W25sQdjdMHhYeGDxB9WXqW8uvj/F41jCE6wc1xuzhpvVf0AHUlBWjm4xFbcWpY/oC4F849fUovip6Sh+Io1RWJiBsrI3UFY2Ap/f9JFSzRE/0ep7hLSWjtseLDPoJWoZ8fHxOHjwINLS0nDr1i24ubkBADekvaVpaWnhzJkzGDVqFGJjY1ulDoSQKui+LUIIqYbiJ9Je0O17hLSWelo8WuLWT2pzIW1FUFAQkpOTwefzMXDgQMTExKBz586tVh9tbW2sXr261conjUOfZe0NtUIRQkhDUPxE2gNqlGpB9U06R0hLobdi3ejytKz+/fvj5s3WWeqZENJ2UWMjIYTUjuIn0l7Q7XtSRyEVIYQQQgghUkU9SoQQIpOoUUpaWOU3I31DEkIIIYQ0SA23tvMoliKEEELaLWqUkhpW5V9CCCGEEEKItLXEnJykfvQqEEIaihqlpIxHH8mEEEIIIQ1HEx8SQgghHQY1SkkJe+d/gCY6J4QQQghpOOrYI39pQzE0xfN1oEtDCGkCapRqITSUmBBCCCGkCagRgBBCCGm3qFFKyiiMIoTImunTp4PH44HH44HP56N79+4ICAhAWVnZP8r3woUL4PF4eP36dfNUtAHS09MxdepUGBoaQllZGV26dIGLiwvu378vkS4qKgojR46EUCiEiooKPvjgA4SHh0ukycjIAI/HQ0JCQoPLX7NmDXr16gVVVVV06tQJo0ePRlxcnESeM2fOhKmpKQQCAbp16wZ/f3+UlJTUm3dERAT69esHFRUVGBgYYMaMGXj58mWdx1y6dAnOzs4wNDQEj8fDsWPHqqU5evQoHBwcoK2tXe/5MsYwZsyYWvMKDw9H3759oaysDF1dXXh7e0vsP3XqFIYMGQKhUAgdHR1MnDgRGRkZLXKepI1iDOyv6Im68wghsoTiJ4qfKH5qGmqUkjoKqUjD0ZBw0lY4OTkhOzsbDx48wKJFi7BmzRps3ry5tavFaUjQUVpaCnt7e4hEIhw9ehTJyck4dOgQrKysJAK77du3w8XFBba2toiLi0NiYiKmTJkCLy8vLF68+B/Vs0ePHtixYwfu3LmDy5cv47333oODgwOeP38OALh//z7EYjF2796Nu3fvYuvWrdi1axdWrFhRZ75XrlzBtGnTMHPmTNy9exeHDx/GtWvX4OnpWedxBQUF6NevH3bu3FlnmmHDhmHjxo31nt+3335b6+fWli1b8NVXX2HZsmW4e/cuzpw5A0dHR25/eno6XFxc8NFHHyEhIQGnTp3Cixcv8Mknn7TIeRJZQN+JhBDZQvETxU8UPzUB68BEIhEDwEQiUbPnHfvlSrZj9ln2w+dBLMh1HNs0eSwTFTd/OUS2XPLeyra4LWRBruPYzYOh1fYXlRUxy3BLZhluyfJL8qVWj4wX+czEL4pZrDoptTJk2ZoHj5neuXi25sHjJufx9u1blpSUxN6+fduMNWsZHh4ezMXFRWKbvb09GzJkCMvNzWXu7u5MU1OTCQQC5uTkxFJSUrh0GRkZbPz48UxTU5OpqKgwCwsLdvz4cZaens5Q0UrPPTw8PBhjjOXl5bGpU6cyFRUVpq+vz7Zs2cJGjhzJ5s+fz+VrYmLCAgICmLu7OxMKhdyxMTExbNiwYUxZWZl16dKFzZ07l+XnV/zuxMfHMwAsIyOj1nN99OgRU1RUZAsXLqy2LyQkhAFgv//+O2OMcecQHx/f+Iv6l8rvnTNnztSaZtOmTczU1LTOfDZv3szMzMyq1dfIyKjBdQHAfv7551r313e+8fHxzMjIiGVnZ1fLKzc3lwkEgjrP8/Dhw0xBQYGVl5dz2yIjIxmPx2MlJSWMsfrPs6ysgIlEiSzvzb0mn2elun5npRkvyCJpXo/y/Hy21+Mw2zH7LPP98jMW5DqOzVszrdnLIbKl6MEDFuoRzoJcx7GQqc41pgm+Ecwswy3ZpmubpFoX35/imYlfFNt7KU2q5cii/LIypncunumdi2cFZeX1H1ADip8ofqoJxU9/a474iTHGCgrSmUiUyIqLXzbpPCs1R/xEI6WkjnH/8qjHj1RR3zxjFZ8FhLQNAoEAJSUlmD59Om7cuIHIyEjExsaCMYaxY8eitLQUAODt7Y3i4mJcunQJd+7cwcaNG6GmpgZjY2P873//AwAkJycjOzsb27ZtAwAsXLgQV65cQWRkJKKjoxETE4Nbt25Vq0NQUBD69euH+Ph4rFq1CmlpaXBycsLEiRORmJiIQ4cO4fLly/Dx8QEA6OjoQE5ODkeOHEF5eXmN53XkyBGUlpbW2KM3e/ZsqKmp4eDBg81yDUtKSrBnzx5oaGigX79+taYTiUTQ0tKqMy8bGxtkZmbixIkTYIzh6dOnOHLkCMaOHdssda1PYWEhpk6dip07d0JfX7/a/ujoaIjFYmRlZaF3797o0qULXF1dkZmZyaUZOHAg5OTkEBYWhvLycohEIvznP//B6NGjoaio2CbOk7S2iu9BGkRMCJFVFD/9cxQ/tf/4SaG1K9B+vTMfAgVUBKh4H7SB6JoaSOsmjevDGENZibjZ820IBb5ck28NZYzh7NmzOHXqFMaMGYNjx47hypUrGDp0KICK+9WNjY1x7NgxTJo0CY8ePcLEiRNhZWUFADAzM+PyqgwUdHV1oampCQB48+YN9u/fjwMHDmDUqFEAgLCwMBgaGlary0cffYRFixZxz2fNmgU3Nzf4+voCAMzNzRESEoKRI0ciNDQURkZGCAkJwdKlS7F27VpYW1vDzs4Obm5uXL1SUlKgoaEBAwODauXx+XyYmZkhJSWlSdeuUlRUFKZMmYLCwkIYGBggOjoanTt3rjFtamoqtm/fjqCgoDrztLW1RUREBCZPnoyioiKUlZXB2dm5xYZbL1iwAEOHDoWLi0uN+x8+fAixWIz169dj27Zt0NDQwMqVK2Fvb4/ExETw+XyYmpri9OnTcHV1xezZs1FeXg4bGxucOHGiEedJn2WEENLeyWIMRfETxU81aTvxU9tCjVJSw955RqNeCOnIykrE2DP/YquU/cW2kVBUkm/UMVFRUVBTU0NpaSnEYjGmTp2KTz75BFFRURg8eDCXTltbGz179sS9e/cAAPPmzcOcOXNw+vRpjB49GhMnTkTfvn1rLefhw4coLS3FoEGDuG0aGhro2bNntbTW1tYSz2/fvo3ExERERERw2xhjEIvFSE9PR+/eveHt7Y1p06bhwoUL+P3333H48GGsX78ekZGRsLe3b9C14PP59aaJiIjA7NmzuecnT57E8OHDAQB2dnZISEjAixcvsHfvXri6uiIuLg66uroSeWRlZcHJyQmTJk2SuOdfTU2N+/mzzz7Drl27kJSUhPnz52P16tVwdHREdnY2lixZAi8vL+zbtw8xMTEYM2YMd9zu3bvh5ubWoPOtT2RkJM6dO4f4+Pha04jFYpSWliIkJAQODg4AgIMHD0JfXx/nz5+Ho6MjcnJy4OnpCQ8PD/z73//GmzdvsHr1anz66aeIjo4Gj8drwHlewfjxE/BXi3+znidpHTRImDQVdbi1X7IUQ1H89DeKnyS1rfgpBmPGOKGizUKu1eMnapSSksqgqrIxitH3JCFEhtjZ2SE0NBR8Ph+GhoZQUFBAZGRkvcfNmjULjo6OOH78OE6fPo0NGzYgODgYc+fO/cd1UlVVlXien5+P2bNnY968edXSdu3alftZKBTC2dkZzs7OCAwMhKOjIwIDA2Fvbw9zc3OIRCI8efKkWu9iSUkJ0tLSJCaXrM2ECRMkgk0jIyOJenfv3h3du3fHkCFDYG5ujn379mH58uVcmidPnsDOzg5Dhw7Fnj17JPKuunqLuro6AGDDhg2wtbXFkiVLAAB9+/aFqqoqhg8fjsDAQFhbW0scp6enV+85NNS5c+eQlpbG9dZWmjhxIoYPH44LFy5wPacWFhbcfh0dHXTu3BmPHj0CAOzcuRMaGhrYtGkTl+bHH3+EsbEx4uLiMGTIkAac5wDExBwGT04BaqrdmvU8SWvi1fGMECILOmqHPMVPFD/Vpm3FT9aIjT2OsrICKCnpwdi4emNmS6JGKanrmB/IhBBJCnw5fLFtZKuV3ViVgUBVvXv3RllZGeLi4rjh5y9fvkRycrLEl6exsTG8vLzg5eWF5cuXY+/evZg7dy7XY1Z1fgIzMzMoKiri+vXrXCAkEomQkpKCESNG1FnHAQMGICkpqVo968Lj8dCrVy9cvXoVAPDpp5/Cz88PwcHBCA4Olki7a9cuFBYWYtq0afXmKxQKIRQKG1QHsViM4uJi7nlWVhbs7OwwcOBAhIWFQU5O8vWq6fwKCwuhoCD5FS4vX9GTyxiDQCBo1HVpjGXLlmHWrFkS26ysrLB161Y4OzsDqBg2DlTMf9GlSxcAQG5uLl68eAETExPuHN4918pzEIvFXJr6zrNbt67gySlCqCad8yWtj1GzFKmi3jk5Wyj2plF9LUeWYiiKnyh+qk3bi5/eQ1nZGygrG4HPb9hrIC3UKCUtTPIHGilFSMfG4/EafQtdW2Nubg4XFxd4enpi9+7dEAqFWLZsGYyMjLh74319fTFmzBj06NEDr169wvnz59G7d28AgImJCXg8HqKiojB27FgIBAIIhUJ4eHhgyZIl0NLSgq6uLvz9/SEnV/8cDn5+fhgyZAh8fHwwa9YsqKqqIikpCdHR0dixYwcSEhLg7+8Pd3d3WFhYgM/n4+LFi/j+++/h5+cHoKJHcNOmTVi8eDGUlZXh7u4ORUVF/PLLL1ixYgUCAwNhaWkpUW5ycnK1uvTp04ebXLJSQUEB1q1bhwkTJsDAwAAvXrzAzp07kZWVhUmTJgGoCKg+/PBDmJiYICgoiFvqGECNE2BWcnZ2hqenJ0JDQ7lh2b6+vhg0aFCN80lUys/PR2pqKvc8PT0dCQkJ0NLS4oLa3NxcPHr0CE+ePJE4X319fYnHu7p27QpTU1MAFUs5u7i4YP78+dizZw/U1dWxfPly9OrVC3Z2dgCAcePGYevWrQgICOCGn69YsQImJibo379/g86zvPxtk8+TtGHcrz575znpsNrAfJyV2k5N2h5p3UIp6zEUxU8VKH5qO/HTPzlPqah3jT8p27BhAwMgsXTl27dv2Zdffsm0tLSYqqoq++STT1hOTo7EcX/++ScbO3YsEwgETEdHhy1evJiVlpY2qmxpLml81WsV2zH7LAv/fAMLch3H1k11Ym+K3zR7OUS2XPLZyrZ8togFuY5jNw5+V21/UVkRswy3ZJbhllJ9v/z5ooCZ+EUxi1UnpVaGLFv7IIvpnYtnax48bnIe7W1J40qVSxpraGgwgUDAHB0dJZY09vHxYd26dWNKSkpMR0eHubu7sxcvXnD7AwICmL6+PuPxeHUuaTxo0CC2bNky7jgTExO2devWavW5du0as7e3Z2pqakxVVZX17duXrVu3jjHG2PPnz9m8efOYpaUlU1NTY0KhkFlZWbGgoCCJZXQZY+zYsWNs+PDhTFVVlVty+eDBgxJpalqWufKRmZlZrW5v375lH3/8MTM0NGR8Pp8ZGBiwCRMmsGvXrnFpwsLCas2zPiEhIczCwoIJBAJmYGDA3Nzc2OPHdb9nz58/X2NZla9FXXXy9/evNV/UsGywSCRiM2bMYJqamkxLS4t9/PHH7NGjRxJpDh48yPr3789UVVWZjo4OmzBhArt3716Dz7OsrJCJRIks743kMQ05z3c1x5LGHYU0r0fZm3y2d/oRtmP2WbZgjhsLch3H5n89vdnLIbKlKDWVhXqEsyDXcWzb1PE1ptlyYwuzDLdkG69tlGpdFvwUz0z8otiei2lSLUcWFZSVM71z8UzvXDzLLytrUh4UP1H8RPGT9OMnxhgrKEhnIlEiKy5+2ajzfFdzxE+8vy5Gq7h+/TpcXV2hrq4OOzs7fPvttwCAOXPm4Pjx4wgPD4eGhgZ8fHwgJyeHK1euAKgYuvj+++9DX18fmzdvRnZ2NqZNmwZPT0+sX7++weXn5eVBQ0MDIpGIu8+0ucTOWY1b7EOoFV/Di8LLKFIsx/zvD0ONr1b/waTdipn7LW68fgxxyX18+PE4DJwyR2J/cXkxrH+smIww9t+xUnu/PHpZiBGbz0OVL4+7AU5SKUOWBaQ+wXeZzzDHWAf+3Y3qP6AGRUVFSE9Ph6mpKZSVlZu5hu1bQUEBjIyMEBwcjJkzZ7Z4+bm5uRg1ahTU1dVx8uRJqKiotHgdSMOUl79FQUHqX7fv9fpHedX1OyvNeEEWSfN6lOfnI2zuKRQrdUKa3D4YvRQhs68Ovv0qrFnLIbKlOC0NYV9fRsHbw1BU4GFexK/V0my9uRXf//E93C3csfSDpVKry8JDCTgan4WvxvaG5wiz+g/oQArLxTC7lAgASBthBVX5xo9uovip6Sh+Io1RWJhR5fY9rSbn0xzxU+MnGmkm+fn5cHNzw969e9GpUyduu0gkwr59+7BlyxZ89NFH3D2iV69exe+//w4AOH36NJKSkvDjjz/i/fffx5gxY/D1119j586dKCkpaa1Tesdft+3RnFKkEWjlGNIRxcfH4+DBg0hLS8OtW7e41T9qWy5X2rS0tHDmzBmMGjUKsbGxrVIHQjqyyjmk6BuREEJqR/ETaS9arVHK29sb48aNw+jRoyW237x5E6WlpRLbe/Xqha5du3Jv7tjYWFhZWUnMhu/o6Ii8vDzcvXu3ZU6gXpKhFM0pRaqh9so2j16ilhMUFIR+/fph9OjRKCgoQExMDDp37txq9dHW1sbq1asxatSoVqsDIR1e5YdwG5pPiBBC2hKKn0h70CoTnf/000+4desWrl+/Xm1fTk4O+Hx+taUS9fT0kJOTw6V5d3nGyueVaWpSXFwsMWN/Xl5eU0+BkGbQ+qvHUKMLaQv69++PmzdvtnY1CCFtDI8mOieEkFpR/ETaixYfKZWZmYn58+cjIiKixe8T3rBhAzQ0NLiHsbFxC5Raufoeq3clBNL+tZV3AL0V60bXhxBC2hD6UCaEEELarRZvlLp58yaePXuGAQMGQEFBAQoKCrh48SJCQkKgoKAAPT09lJSU4PXr1xLHPX36lFtCUV9fH0+fPq22v3JfbZYvXw6RSMQ9MjMzm/fkqmDv/ES37xFCCCGE1KPq+jtM4j9C6kTzchJCiGxq8UapUaNG4c6dO0hISOAe1tbWcHNz435WVFTE2bNnuWOSk5Px6NEj2NjYAABsbGxw584dPHv2jEsTHR0NdXV1WFhY1Fq2kpIS1NXVJR7Sw+p4RgghhBDyz3zzzTfg8Xjw9fXlthUVFcHb2xva2tpQU1PDxIkTq3XkPXr0COPGjYOKigp0dXWxZMkSlJWVtXDt61d5+x4NlCJEBtEfP4SQBmrxOaWEQiEsLS0ltqmqqkJbW5vbPnPmTCxcuBBaWlpQV1fH3LlzYWNjgyFDhgAAHBwcYGFhAXd3d2zatAk5OTlYuXIlvL29oaSk1NKnVCcGccUPFFARQgghpJlcv34du3fvRt++fSW2L1iwAMePH8fhw4ehoaEBHx8ffPLJJ7hy5QoAoLy8HOPGjYO+vj6uXr2K7OxsTJs2DYqKili/fn1rnEoN3lkshoIoUlU9jR2MtUxrCK2wTQghzaPVVt+ry9atWzF+/HhMnDgRI0aMgL6+Po4ePcrtl5eXR1RUFOTl5WFjY4PPPvsM06ZNQ0BAQCvWWtK7ARR9bRFCCCGkOeTn58PNzQ179+5Fp06duO0ikQj79u3Dli1b8NFHH2HgwIEICwvD1atX8fvvvwMATp8+jaSkJPz44494//33MWbMGHz99dfYuXMnSkpKWuuUasatvteqtSBtQVsaLteGqtLW0KUhhDRFm2iUunDhAr799lvuubKyMnbu3Inc3FwUFBTg6NGj1eaKMjExwYkTJ1BYWIjnz58jKCgICgqtsphggzAeNUsRQggh5J/z9vbGuHHjMHr0aIntN2/eRGlpqcT2Xr16oWvXroiNjQUAxMbGwsrKSmIVY0dHR+Tl5eHu3bstcwL1+asB4u/V9+hPXQJQKE0IIc2p7Xy3tt1WHFlX+cVZZQgxTcBICCGEkH/ip59+wq1bt3D9+vVq+3JycsDn86GpqSmxXU9PDzk5OVyaqg1Slfsr99WkuLgYxcXF3PO8vLx/cgp1q+nWKwqfCCGEkHarTYyUas+4tikKqAghMmL69Ong8Xjg8Xjg8/no3r07AgIC/vFEyBcuXACPx6u2uqo0paenY+rUqTA0NISysjK6dOkCFxcX3L9/XyJdVFQURo4cCaFQCBUVFXzwwQcIDw+XSJORkQEej4eEhIQGl79mzRr06tULqqqq6NSpE0aPHo24uDiJPGfOnAlTU1MIBAJ069YN/v7+DbqNKiIiAv369YOKigoMDAwwY8YMvHz5ss5jLl26BGdnZxgaGoLH4+HYsWONrjMArFu3DkOHDoWKikq1BpBK9U2mXfV9VvXRp08fLs2GDRvwwQcfQCgUQldXF//617+QnJxc77VpSP1kUWZmJubPn4+IiAgoKyu3WLkbNmyAhoYG9zA2Nm6Zgrn2KQqiCCFtH8VPFD9R/NQ01CglJSXiikjqr2nOaU4p0iA0mo60FU5OTsjOzsaDBw+waNEirFmzBps3b27tanEaEnSUlpbC3t4eIpEIR48eRXJyMg4dOgQrKyuJwG779u1wcXGBra0t4uLikJiYiClTpsDLywuLFy/+R/Xs0aMHduzYgTt37uDy5ct477334ODggOfPnwMA7t+/D7FYjN27d+Pu3bvYunUrdu3ahRUrVtSZ75UrVzBt2jTMnDkTd+/exeHDh3Ht2jV4enrWeVxBQQH69euHnTt3NrnOQMX1nzRpEubMmVNjHpWTaZeUlODq1avYv38/wsPDsXr1ai7Ntm3bkJ2dzT0yMzOhpaWFSZMmcWkuXrwIb29v/P7774iOjkZpaSkcHBxQUFBQ53nWVz9ZdfPmTTx79gwDBgyAgoICFBQUcPHiRYSEhEBBQQF6enooKSmp9ofL06dPuWkQ9PX1q63GV/n83akSKi1fvhwikYh7ZGZmNv/JVfH3VFKVt+9JtThCCGk2FD9R/ETxUxOwDkwkEjEATCQSNXvep2atYDtmn2V7pq1hQa7j2Fcz7FlBSUGzl0NkS4zPVrbls0UsyHUcu3FgZ7X9JWUlzDLcklmGW7K84jyp1ePRywJm4hfFeq08KbUyZFlAahbTOxfPVj943OQ83r59y5KSktjbt2+bsWYtw8PDg7m4uEhss7e3Z0OGDGG5ubnM3d2daWpqMoFAwJycnFhKSgqXLiMjg40fP55pamoyFRUVZmFhwY4fP87S09MZKv7W5B4eHh6MMcby8vLY1KlTmYqKCtPX12dbtmxhI0eOZPPnz+fyNTExYQEBAczd3Z0JhULu2JiYGDZs2DCmrKzMunTpwubOncvy8/MZY4zFx8czACwjI6PWc3306BFTVFRkCxcurLYvJCSEAWC///47Y4xx5xAfH9/4i/qXyu+dM2fO1Jpm06ZNzNTUtM58Nm/ezMzMzKrV18jIqMF1AcB+/vnnetPVVeewsDCmoaFRbfuJEyeYnJwcy8nJ4baFhoYydXV1VlxcXGM5P//8M+PxeHW+Xs+ePWMA2MWLFxljjJWVFTKRKJHl5SXVmL62+tWkrt9ZacYLjZGXl8fu3Lkj8bC2tmafffYZu3PnDnv9+jVTVFRkR44c4Y65f/8+A8BiY2MZY3+/Nk+fPuXS7N69m6mrq7OioqIG1UOa16NMJGK7P/+Z7Zh9li31dGVBruPYvOAvmr0cIluK0tLYrmnhLMh1HNv27/E1ptl6YyuzDLdk38R9I9W6LDgUz0z8otjui6lSLUcWFZaVM71z8UzvXDzLLy1rUh4UP1H8VBOKn5o3fmKMsYKCDCYSJbLi4pcNrl9NmiN+opFSUlLZyydHszKSWrB6liympYZJWyIQCFBSUoLp06fjxo0biIyMRGxsLBhjGDt2LEpLSwFUTMBcXFyMS5cu4c6dO9i4cSPU1NRgbGyM//3vfwCA5ORkZGdnY9u2bQCAhQsX4sqVK4iMjER0dDRiYmJw69atanUICgpCv379EB8fj1WrViEtLQ1OTk6YOHEiEhMTcejQIVy+fBk+Pj4AAB0dHcjJyeHIkSMoLy+v8byOHDmC0tLSGnv0Zs+eDTU1NRw8eLBZrmFJSQn27NkDDQ0N9OvXr9Z0IpEIWlpadeZlY2ODzMxMnDhxAowxPH36FEeOHMHYsWObpa6NrfO7mjKZ9r59+zB69GiYmJjUmq9IJAKAeq9PeyUUCmFpaSnxUFVVhba2NiwtLaGhoYGZM2di4cKFOH/+PG7evInPP/8cNjY2GDJkCADAwcEBFhYWcHd3x+3bt3Hq1CmsXLkS3t7eUFJSauUzlMSFUDRSihAioyh++ucofmr/8RNNdC51FREVzSlFgMoFhOjN0NZJ4xVijKGsykTBLUlBSQm8Jq5exRjD2bNncerUKYwZMwbHjh3DlStXMHToUAAV9+UbGxvj2LFjmDRpEh49eoSJEyfCysoKAGBmZsblVflFqKury92n/ubNG+zfvx8HDhzAqFGjAABhYWEwNDSsVpePPvoIixYt4p7PmjULbm5u8PX1BQCYm5sjJCQEI0eORGhoKIyMjBASEoKlS5di7dq1sLa2hp2dHdzc3Lh6paSkQENDAwYGBtXK4/P5MDMzQ0pKSpOuXaWoqChMmTIFhYWFMDAwQHR0NDp37lxj2tTUVGzfvh1BQUF15mlra4uIiAhMnjwZRUVFKCsrg7Ozc53DyqVV55o0djLtJ0+e4OTJkzhw4ECteYrFYvj6+sLW1haWlpYNrktHs3XrVsjJyWHixIkoLi6Go6MjvvvuO26/vLw8oqKiMGfOHNjY2EBVVRUeHh4ICAhoxVpXwRj+/hSuiKHo1nZCOjZZjKEofqL4ieKnhqNGKSlhTDKgIoR0bGXFxQjx+LRVyp63/wgUGzkpclRUFNTU1FBaWgqxWIypU6fik08+QVRUFAYPHsyl09bWRs+ePXHv3r2KsubNw5w5c3D69GmMHj0aEydORN++fWst5+HDhygtLcWgQYO4bRoaGujZs2e1tNbW1hLPb9++jcTERERERHDbGGMQi8VIT09H79694e3tjWnTpuHChQv4/fffcfjwYaxfvx6RkZGwt7dv0LXg8/n1pomIiMDs2bO55ydPnsTw4cMBAHZ2dkhISMCLFy+wd+9euLq6Ii4uDrq6uhJ5ZGVlwcnJCZMmTZKY20BNTY37+bPPPsOuXbuQlJSE+fPnY/Xq1XB0dER2djaWLFkCLy8v7Nu3DzExMRgzZgx33O7du+Hm5tag821MnZvL/v37oampiX/961+1pvH29sYff/yBy5cvc9u+/HIuIiIqAzE55OfnS6V+bdmFCxcknisrK2Pnzp11BtgmJiY4ceKElGvWfKhjjzREUztfSNsnSzEUxU9/o/ip7cZPXl5e+PHH/6CiraL14ydqlGohjG7jI4TIEDs7O4SGhoLP58PQ0BAKCgqIjIys97hZs2bB0dERx48fx+nTp7FhwwYEBwdj7ty5/7hOqqqqEs/z8/Mxe/ZszJs3r1rarl27cj8LhUI4OzvD2dkZgYGBcHR0RGBgIOzt7WFubg6RSIQnT55U610sKSlBWloaHB0d663bhAkTJIJNIyMjiXp3794d3bt3x5AhQ2Bubo59+/Zh+fLlXJonT57Azs4OQ4cOxZ49eyTyrrpajbq6OoCKVVVsbW2xZMkSAEDfvn2hqqqK4cOHIzAwENbW1hLHvdvrVp+G1Lku+vr6uHbtmsS22ibTZozh+++/h7u7e60BrI+PD6KionDp0iV06dKF275mzSp4eX0MHk8eamrdG3OKpK2qcms73b5H2rJ6ZmHo8Drq5aH4ieInWYifAgIC4O39b5SV5UNJqXHnKA3UKCV1rMq/hJCOSkFJCfP2H2m1shur8ku1qt69e6OsrAxxcXHc8POXL18iOTkZFhYWXDpjY2N4eXnBy8sLy5cvx969ezF37lzuC7Pq/ARmZmZQVFTE9evXuUBIJBIhJSUFI0aMqLOOAwYMQFJSUrV61oXH46FXr164evUqAODTTz+Fn58fgoODERwcLJF2165dKCwsxLRp0+rNVygUQigUNqgOYrEYxVVuQ8jKyoKdnR0GDhyIsLAwyMlJTvdY0/kVFhZCQUHyK1xeXh5ARZAiEAgadV0aW+f62NjYYN26dXj27BnXOxgdHQ11dXWJ9wpQsUJMamoqZs6cWS0fxhjmzp2Ln3/+GRcuXICpqanEfl1dXaiqdgWPpwChkBql2p/K1feoVYqQjkyWYiiKnyh+qqvO9WnJ+ElN7S3KyvKgrGxU7fiWRo1SUvJuIxQNPSekY+PxeI2+ha6tMTc3h4uLCzw9PbF7924IhUIsW7YMRkZGcHFxAQD4+vpizJgx6NGjB169eoXz58+jd+/eACpuGeLxeIiKisLYsWMhEAggFArh4eGBJUuWQEtLC7q6uvD394ecnFy9t2L4+flhyJAh8PHxwaxZs6CqqoqkpCRER0djx44dSEhIgL+/P9zd3WFhYQE+n4+LFy/i+++/h5+fH4CKHsFNmzZh8eLFUFZWhru7OxQVFfHLL79gxYoVCAwMrHb/fXJycrW69OnTB4qKihLbCgoKsG7dOkyYMAEGBgZ48eIFdu7ciaysLG7Z3qysLHz44YcwMTFBUFCQxLLB7/aIVeXs7AxPT0+EhoZyw899fX0xaNCgGueTqJSfn4/U1FTueXp6OhISEqClpYWuXbs2qM4A8OjRI+Tm5uLRo0coLy/nehW7d+8ONTU1icm0N23ahJycnFon0963bx8GDx5c4zwH3t7eOHDgAH755RcIhUJuPgUNDQ0IBIJaz7O++hHZ8PcgcwqiCA9tpYuX5jirnbSujKzHUBQ/VaD4ieKnWjVonb92SppLGp+Y8RXbMfss2+vxFQtyHcf8vhjNCksLm70cIlsuz93Ktny2mAW5jmPXI3ZU219SVsIswy2ZZbglExVLb+nxRy8LmIlfFOu18qTUypBlX6dmMb1z8Wz1g8dNzqO9LWlcqXJJYw0NDSYQCJijo6PEksY+Pj6sW7duTElJieno6DB3d3f24sULbn9AQADT19dnPB6vziWNBw0axJYtW8YdZ2JiwrZu3VqtPteuXWP29vZMTU2Nqaqqsr59+7J169Yxxhh7/vw5mzdvHrO0tGRqampMKBQyKysrFhQUxMrLyyXyOXbsGBs+fDhTVVXlllw+ePCgRJqalmWufGRmZlar29u3b9nHH3/MDA0NGZ/PZwYGBmzChAns2rVrXJqwsLBa86xPSEgIs7CwYAKBgBkYGDA3Nzf2+HHd79nz58/XWFbla9GQOjNW8R6pKZ/z589zaTIyMtiYMWOYQCBgnTt3ZosWLWKlpaUS+bx+/ZoJBAK2Z8+eGutb27UJCwtjjDFWVlbIRKJElpeX1Oj6vas5ljTuKKR5PcpevmS7Z/zCdsw+y1bMmMiCXMexeSFfNns5RLYUpT1ku6aFsSDXcWzbv8fXmObbm98yy3BL9k3cN1Kty8JDCczEL4rtupAq1XJk0duycqZ3Lp7pnYtnb0rLmpYHxU8UP1H8JPX4iTHGCgoymEiUyIqLXzaqfu9qjviJ91elO6S8vDxoaGhAJBJx95k2l5Mzv8JDxVFQensWoqLbeKZZhDU7f4VAofaWSdL+XZn3La69yoK45B5GuoyB9VRvif2l5aUY8OOAirT/vgJ1fvO+Lytl5hZi+KbzECjK497XTlIpQ5YFpj3BjkfPMNtYB2u7N21Ia1FREdLT02FqagplGe7daw0FBQUwMjJCcHBwjUOSpS03NxejRo2Curo6Tp48CRUVlRavA2mY8vK3KChI/ev2vd7/KK+6fmelGS/IImlej/LcXOxbchmlimp4WrodGvml+HOYCULmNs/KSEQ2FT9MR/jai8gvOgJFeR7mHfi1Wpptt7bh/+78Hz7r/Rn8BvlJrS6L/nsb/7v1GMvH9MLskd2kVo4sKioX471LiQCA1OFWUFOQb3weFD81GcVPpDEKC//kbt/j87WanE9zxE9yte4hzeSvOaVopC8hhNQoPj4eBw8eRFpaGm7dusWtclI5pL2laWlp4cyZMxg1ahRiY2NbpQ6EkCq371G0Sggh1VD8RNoLmlOKkLaEGi/blg47jrTlBQUFITk5GXw+HwMHDkRMTAw6d+7cavXR1tbG6tWrW618Qjoy+uglhJCGofiJtAfUKCUl7K/Whco2BhopRaqp587ZlrizllHoT9qA/v374+bNm61dDUJIm0Or7xFCSG0ofiLtBQ2IliImLkSpOL/i51auC2kr2kZgTfF93ejyEEJI66jaWUKr7xFCCCHtH42UkpJyVoZi0fcoRgkAgPEYLSFLCCGEEFKvd+Il6kIlDUBxNiGEyCb6mpeSMnE58FeD1Cu1EqR0zW/dChFCWkUHXuCUEJlCv6ttRA2vA6PhvYTInH/6iUqfyYTIhub4XaWRUlJT8eLwII9fRmS3cl0IIS1NXr5iGeSSkhIIBIJWrg0hpD6FhYUAAEVFxVauCcE783ISUlV9f/601HyZ1GQiHZWfwYWFhRQ/EdIi/tmnWXPET9QoRQghUqCgoAAVFRU8f/4cioqKkJOjgamENLfy8mKUlDDweGIUFRU1KQ/GGAoLC/Hs2TNoampyDcqkDajsfaXWKdKG3gM0cK92zXFt5OXloampiWfPngEAVFRUwKOLTkizKy4uQ3k5A1ACsbjxMVRzxk/UKCUlrC19exJCWhyPx4OBgQHS09Px559/tnZ1CGmXxOJSlJQ8AyAPZeV/1vCrqakJfX395qkYaTom5n7k1fATIaT9q/wsrmyYIoQ0v5KSlxCLi6CgUAIFhddNzqc54idqlGpB1MpPSMfC5/Nhbm6OkpKS1q4KIe1SQUEaEu+shaKiNnr3/qnJ+SgqKtIIqbakMlyqvKOA4idCOpTKjj1dXV2Ulpa2dnUIaZeSk8PxWnQVZqbzoac3vkl5NFf8RI1SUkN3mhNCADk5OSgrK7d2NQhpl0pL5SAWPwFjZfR71k4wxlBamoriNxegivLWrg4hpBXJy8tThwEhUsLjiSAWP4GCQmmrx1A0yYnU8N75n5D60XLGhBBCOjIxYygvewSgDABQpFiOYg1qcCSEEELaK2qUkpKWWvmDkH+CVtutG10eQghpWeIqn7wZRio4/NFjiJVpRURCCCGkvaJGKWmhv2ZJPajhkhBCmgt9nrYX5eK/X8tSeaCc7twhhBBC2jVqlGpBdGsWqXgLtP77gCbdrxtdHUJkBH2WtTtiRl02hBBCSEdCjVLSRvEyIYQQQkiDVAyU+qtZimIoQmQWNS4TQhqKGqWkhD6ICSGEEEIaR1xlssPKn2hAHGkM1kITZtK8nIQQ0jyoUUpK/v6eokiKEEIIIaQhxDV261Es1dHxeG1nEoy2Uo+2iK4NIbKnLdw0T41SUlPx4tKHMyGEEEJIw1QdKfV3EEXRFCGEENKs2tAwZGqUkhKhPC0XQwghhBDSGBWNUq3fa0sIIYSQlkGNUi2o7Qw8JoQQQghpeyTnlKqImyh6IoQQQtovapSSEurjI4QQQghpnHKJ2aMpmiKEEELaO2qUkhoKpEg9ali2hUbTtS1tYeI/QgjpSOhTlxBCCOlYqFFKyqiRgdSqnsi7JZY0puCfENI+0KdZe8HEYlS+noxCKEIIIaTdo0YpQjogivPrxmtDq1EQQmpHHT/tj6Lc368pN6cUfSYTQggh7RY1SkkJq6l7j2IqQgghhJBa6fIVW7sKREZR42Xb0hIj/gkh7QM1ShFCCCGEkDaCgbsdk9oYSE3qm/6ghW7npXknCSGkeVCjlNTQFxUhhBBCCCH/WBsaBdWGqtLm0C3VhJCmoEYpKaEmKUIIIYSQRqpyy8/fP9EfugQUXBNCSLNqO9+t1CgldW3nxSaEEEIIadNqmIeGIilCCCGk/aJGqRZEQ1oJIYQQQurDqvxLCCGEkPaMGqUIIYQQQkjbw6v2AyGEEELaGWqUkhrq3yOEEEIIaZwa4idqkyKEEELaLWqUkhJqkiL1q2HejJZe0oXeqHWiy0MIIS2rhimlCCGEENKOUaOUlNE8UqQ29cXdjJpECCGkQRi1ZLQrjJtTquJ/iqUIIYSQ9osapQhpQTxe2wiuW3pAlqyhy0MIIa2kSgMjo09j0ghtIb4ihBDSeNQoJSVcSFXl+5G+LAkhhBBC6kMj30jt6h1p3kIjJ2mAZt3o8hBCGooapaSFPokJIYQQQpqAJ/EfIYQQQqSkDbSwU6MUIYQQQghpG5gYlT17jBqlSKU2NO8A3flQO7oyhMiStvMbS41ShBBCCCGkzaJGAEIIIaT9okYpQgghhBDS5tAqtIQQQkj7R41SUvJ3GPV37x6vDQ09JoQQQghpcxjD31EUxU2EEEJIe0eNUoQQQgghhBBCCCH/z959B0ZR5v8Df8/2TbJJKAkpxNBCR1SQqmJECKCAiqAHItwJikdRsSDeKUUUC8hZAe+r4P0E9ERFDlSMBakC0kSRIBCkhB7Sk63P74/NTrKkbSC7O5t5v+4iyezszDMzOzOf/TzPPA8FHJNSRMFSyVMJ7DdDWRQwGAURkcqICr+xpTkREVH9xaSUn7AfBKpZ9Z+RQHyG+DklovqB17L6pXT0PR5XIiKieo9JKX8pjaNYt0flKaWyly2yqse9QxQqeLbWa0q5aRIREZHfMCnld+U6OmfwTERERERU5/iYp7KwnSMR+YpJKT/hhZiIiIiolsqNvsc+pehy8LFPIqLaCP41k0kpIiIiIlIGjjBBlVFQYlJBRVEc7hui0KGkp7iYlCIiIiIixRHKiZeJiIjIT5iUIiIiIiLFqNhWitkpIiKi+opJKb9h83MiIiKi2rukT6ngFYSIiIj8jEmpAGJHnUREREREREREbkxK+YkorddjIoqIiIjIRy5XuT/YVoqIiKi+Y1LKb7ybnhP5ItBJTA5yVD3uHiKi4GFH50RERPUfk1J+wro9qomoISNU0+tERET10iX3PzY6JyIiqr+YlPIX5hOoUsqIrBngE1G9wItZvSNE2eN7DKWoNiSFxFjkxvOXiHzFpBQRERERKUjp11nmGKgSSmlJrpRyEBGFOialiIiIiEgZvL7nMytFpSTltINiA82qcdcQhR6hgHaNTEoRERERkUKISn4jIiKiOqWgDDuTUn7DUIqIiIio9jwjGDOWIiIiqu+YlPITwQasRERERLVSWTc9ynlwi4iIiOoak1J+44mqSgMpwYCKiIiIqHoC7OiciIhIPZiUIiIiIiLlUlC/F0RERFS3mJTyE/aCQBT6eB4TEQWYYEfnREREasKklJ+xbo+qVFnHGeVfDkA4zoCfiOoHXs3qDSaliIiIVIVJKaJAkuT/BFXwS6BsfFKEKDSwA+z6yjsdxaNMFHpqqHslIpIxKeUvvBATERER1U65+IljxFBteJLUIkDZECZdiIjqBpNSfidd8i8RERERVY6j7xEREQVO8DPsTEr5GwMqIiIiIp+4gh8bkyJJUMIXJzcG91XhniGiy8GklJ9U7KSal2kiIiIiXyklBUFERET+w6QUERERESmDKPf4XimJo08QERHVW0xKBQwDKiIiIqJqiYp/cJRFIiKi+otJKT9hk3MiIiKiyyAPa8akFBERUX3HpFTAMKAiIiIiqpZwlf1aGjoxKUVERFR/MSkVKIIBFfmGwbdysMUjEVFgiUp+532RiIio/mJSyu8YSFFVgp/yECL4ZSAiulK8ltVPcn0eOzonIiKqt4KSlJo7dy6uv/56WCwWxMbG4o477kBGRobXPCUlJZg4cSIaNWqEiIgIDBs2DGfOnPGa59ixY7jtttsQFhaG2NhYPPnkk3A4HIHcFJ+xlo8ABX0OFFIMpeLuIQoVPFvrn0pG3+NxJl/wY6IorCogIl8FJSn1448/YuLEifjpp5+Qnp4Ou92O/v37o7CwUJ7nsccew//+9z988skn+PHHH5GVlYW77rpLft3pdOK2226DzWbDli1b8MEHH2Dp0qV47rnngrFJRERERFSn+LWWak8E6HPDTycR1QsKaG2uC8ZKv/76a6+/ly5ditjYWOzcuRM33XQTcnNz8d5772H58uW45ZZbAABLlixBu3bt8NNPP6FHjx745ptvsH//fnz77bdo0qQJrrnmGjz//POYNm0aZs6cCYPBEIxNk1U8tKy+ISIiIqqWqNhSSiOxtwm1cz/BqYxYmk+TVk3iziEKIco5X4OSlLpUbm4uAKBhw4YAgJ07d8Jut+PWW2+V52nbti2uuuoqbN26FT169MDWrVvRqVMnNGnSRJ4nLS0NDz/8MH777Tdce+21FdZjtVphtVrlv/Py8vy1SVQPCSFgu3gRLqcTLqcLwingcjihybsISQC2gxlw5eYAAIytWiHsphsxc8tM/HHxDwBA3+S+6HgZ6wR4kyciIpUol48SUvBrb4mIiMi/gp6UcrlcePTRR9G7d2907Oj+yn769GkYDAZER0d7zdukSROcPn1anqd8Qsrzuue1ysydOxezZs2q4y2oSmkyQf6bSQWlsuYXIffgSQghkHPkMGxFhSg5dAoluSUAJEgiHBpJB7vkglUrIGl0EAYzhEZCiWRHoSiGUziglXTQSloAgDiSgYIvf0WSqwkMGj0ORO3H179/jpjcTvJ6fz2xC1+veQwulxMO4cQFazYKw7Vys/O7V9+N7JLsCs3QPX1rSJIEz/9KXyh7DZL8umdeAIg2RqNZZDPYbCYAaXAJgYfSH/JavlFrxN+v+TvaNmxbp/uZiIiuzNy5c/HZZ5/hwIEDMJvN6NWrF15++WW0adNGnqekpASPP/44PvroI1itVqSlpeGdd97xipmOHTuGhx9+GD/88AMiIiIwZswYzJ07Fzpd0MNCLxx9j4iIqP4LevQxceJE/Prrr9i0aZPf1zV9+nRMnTpV/jsvLw9JSUl+WZfGqANsgNDIQ8f4ZT1Ukd1aAuFywelywplvx/msTGR+tRGwC+guuqB1GGDWNUQDYzwkSYNcTTHOS/lwSk7kSkWww4k8yYWSBhJccCFfOgvX5dTW6st+bWVrA8kKSBftQLgTAJC46Q/0+nCX11t+6CRhz+3uxNaFkguVLtaTpKow2pQPRSx2FONU4Sm4HBEA0gAIbMnaUmG+xubGeK4n+2cjIlIST5+c119/PRwOB5555hn0798f+/fvR3h4OAB3n5xr167FJ598gqioKEyaNAl33XUXNm/eDKCsT864uDhs2bIFp06dwv333w+9Xo8XX3wxmJtXjvD+l62FQ55wueB0OiFcTgiXCy6XC1qNFloh4LJaUfLrbxBOByS9HmFdu0JjNOJ88XnYnDaE6cIQHuwNICIivwlqUmrSpElYs2YNNmzYgKZNm8rT4+LiYLPZkJOT49Va6syZM4iLi5Pn2b59u9fyPKPzeea5lNFohNForOOtqJy+gRnIB1x6BlJ1wWG3oyj3IoRLYO/WdJScOg/YXDCcB1zFdogCHcJ0UdBJekTooyFBgzOGIuRrbLBKduRLerggkBNVCJtUAiAPwFEICFgl30ds1Lo0gCRBCCBPWwAhOaCFC06NHVGFejhdTjSwmRCla4RCvQvnDWWPiwoJKNZY4TntBAAhSe58pRCQBHDjxRgswkUICCy+dTFaRLeAXqMvnb8s6ySEgICQE1OVvlYueSUgUOIoweHcw7A77cgrAv7xh7sF1Ys3lH0JWX98Pb758xvYXfZaHR8iIvI/VfTJWUmHqxpW7ClW7tkzsJUUw1pYgItZJ2EvLMTprVtgK7aixOYArHrAJcHmtEOSNNAbIqAzRUFIEko0DpQIG4QAjBoTtMIdoxf9ZxNsYWE4j0JsbLkJTo0dz3fzbtVtc9qQb8sHAOTZ8lDkKMLxvOMAgMM5h/Hh/g9hd9lhc9pwrvgchBByq/HyrckvbVWugaZsmgQ0CWuCCH0EtBotmkU2Q7g+XF7vxZKLyMzN9CpXXHgczDqz/3Y4EVE9FJSklBACkydPxueff47169ejefPmXq936dIFer0e3333HYYNGwYAyMjIwLFjx9CzZ08AQM+ePfHCCy/g7NmziI2NBQCkp6cjMjIS7du3D+wGVerSoEq9AZVwCcAl4MyzwXG+GC67HWd2/ARht8HpErC6imG32lCSZQUcGkBIMErhcLkEXE4XAAGbFnAYjXBJEoq1Ag6pAQqkYhTCCpi0gAkAClEglSBfOnpZ/VBotBpIRi30MQZo9RroGmihN+mg0+tgijJBq9GiiaUJtJIWZr0ZDYwNAABRxihEGaOg1+jlBFLeuTNwOZ2w2+1w2J1Y+/obONmwgdf6Gt57D9qPfRwAULRzJ/4cdR/CtGYAFwEArRu2RmNz48vd7ZVKaZACADibX4J/4DtIkDC45e3y62eKzuCbP7+p03USEZF/1Mc+OXWNG8ITQwn1hk5B4bDZUFJY4DVt//fpyDmWCafNjpIj5+F0CZilGJi0EdBIEoQpApC0KNE4UKSxwyVJKNG1gIhAaaVgCVySC0Wwljue1nJr8HRibyv98SgGAPQ/3R0SgIz/tw9AMgD394iMTp29ypkTAXz3Ny1glrDr7C7sOuvdEr0ulZy6A0APLPt9GVae/97rtcbmxvh62NcwagNTCU5EVB8EJSk1ceJELF++HF988QUsFovcB1RUVBTMZjOioqLwwAMPYOrUqWjYsCEiIyMxefJk9OzZEz169AAA9O/fH+3bt8fo0aPxyiuv4PTp0/jnP/+JiRMnBqw1lE88N+AQ7qvTZXWiMOMsnFY7HCUO2EucgBDQG7XQOIGCw6dhzysE7AJ5RUWwCycuuApgF04IIaDTGKGFBp5eIexwIldTBAec3isySoBRoFAqQZ50AS4IOOGCC67LDkyNeiPiGycgLqEJohpGw2AwID4xrkK/GQ0bNqzTvjSiYr1b65ngQltHAoCDZRMr+UwEahjjqnhqCyurqVYj7gciUqr62ienplxLLc89UQJH37tcQghcOHEMTrsdxQX5yM74HcLpgi0vH7bsfBw/+gdgNcAgmWDUhMGgNcMlSbCGhQEaDWw6CZK2AaySEwVNIsrFKQI5UgHsUk6ty6QXWkgCMEALI3SQhAThckECEKYJh4DAca27C4NiXWmsaChE+ao9nct7mY3zgKZFJhw0W5EYkYirG18NvVYPnUaHhqaGMGgMcivy8q3Nvf6FgPv/7mkF9gKcLnKfE1kFWbhQ7C6TU2uAHYBRZ0SkIVIuQ54tD+eLz+NiyUXEhVf+1AYREVUUlKTUwoULAQA333yz1/QlS5Zg7NixAIAFCxZAo9Fg2LBhXh11emi1WqxZswYPP/wwevbsifDwcIwZMwazZ88O1GZUy1pcBMD9DH2g2c4Wwn6+CHABEALCJSDsDthz8gEBnD19GiX5hRB2QCoBhAuwFxfC5XSgyGVDniiBBAlGKQwaSYs8TTFypCK44EKOphA2eB53k8r9F7BLzrIKL23db5cBehj1JhgNRsQkxEOn06JJQiyioi1e88XGxiIsLAwajUbuYyPoKhnK2CsBVa6/DEmS3AFSABIiVa0h2MkxIqLaUd81q772yVn+3udp9cwRaN1cLidO/LQF2QcOeE3PzjqN3NN5EAAMMEEnGVFYnA+rowQCgNYUCb3ODJdOB6E3wSUJWHUSoAmHJuY6AEAhXDgpFcIhOVEoWeHdmqkGAtAIwKl1wKlxoFBbhDPmcwCAC8ZsFGuLIeklaE3u4LCxpTFMOpPcwlyv0SPKGIVIYyScxVaEF2jRujAOjc9YYCgGfsvNQiEKy9YnSWi47nM0MDWABAknp05F8c6duLHpjThY/C16JfTya7+Yz3y+D8svHMP4TuMxpe8r8vQu/68LbC4bK7SIiGopaI/v1cRkMuHtt9/G22+/XeU8ycnJ+PLLL+uyaHXG5XAnbjybKgQwZ84cREZG4oEHHrisZIntfCFKTuXCabXBcfEinFYbcjLOw1FgR46tCNmuYkjQQKcxwAUXiiUb8qViuCCQKxXBJjnggBMOqZJEmQaoq4pIrQPQCkBvF9AIAZcQcGp0gAQInRMunQZ6kwnh8Y0gaSQ0CWuCcH04dHotLI1MkCQJjRs3RlRUFDQaDbRaLfR6Pczm+vKMfmXBdem0AMUxVY1kxMDfjSM9EYUKdZ6r9blPzsqE8lEuOHoOOZlZ7r4d8+3uvo1MEkxNTSjOyUPu3j8gHC44Cx2wWZ0ocdmQY7VCuFywO10wSmZoJR3M2ghoJA0KNFYUSaWPuZUGmRqpETTRTeCU3IklGxxwNYyGCwLFnnnlx+OKfC57uMYIg04PU6MwwKCBsYERxkYmaKBBlDEKBo0B4RHhSEhMgF6jRyNzI+gkHc4UnYFG0kCvcbdU0mv0MGgN0Ei1DzT3b/getk8uYI+pbJoEoEly2QjBkkFf8Y1BxIo9N+4HIvJV0Effq6+0pS2kyr7jS3A4HMjOzsaff/4p93slnC6U/J4Nl9WJksJClOTmw1FcjKx9h6FzaCGcAgWuYkDS4KzRDhfKEkrFkh0XNPmwwwG7/pJH4Wosn6djx7IWOe6/JRiceuhcOgjhhF24a9mEQ0KJzgin5MTJqJ9g1eUgXt8M7Rq1h8ZoQETTZtBCB71JD61OiwhTODpe1RYaSYMIfQQM2uB2nBp0IdIxBpMxRETKpY4+OYGyUfdK/wxQhYnL5sS5nw/CabWXjkbi7hfTdj4HLqsDJcXFKMwrgHABersBkksDp8MOh80Kl8uJHBTDARf0GiNM2nC4JAkXNPmwSg6UwIY8qRhC8hqKpHQ1AiVS6QAjGgBedXCepFLlI/L6yih0gCTBpDfCYDZCr9MhvEk4NAYtoiKiYTAaEW4OR9O4ptBqtbBYLLBYLDUvuBJ1+uiaJJXV8Jaq0Gur5N1yP1DJkEvr2FmxR0ShKfgJZCal/ESj8dTalN0ok6JicDz3HHZ++D2y7Nvh1GpQohPIlgrghAsXNPkogc09GohGgmRA5a2aqhFZ6L55F8OKEr2ATSpEka4ITsmJzAanYNXZUKIrgcHghFYCGsAAjSQQAS3CJY1XdaQBGjQRBkiShGSY0R4RCIcGZikWDmdj2IryIOVtAyAgnfvR/SYhIJV+sAtLn83PB0qnlfVDIJW7k0ul4YN7mpCnyUqXKS5ZzqXLkJdfrgzu+ZzQO4trtR/Lrfwy3+fNlZcCKbKT1zTrnpXIfvk/AADbWfdxdl08Brjcrcpy3r4FWpd/ApwcVwSAfwDChQsvl3UWWhQmgEig5NfVuLB5jdd7hPBfH0vCD8mwqkta9Su5+lisuGoWtoZHAGHAT0cu4OlfL1YIPMuWVM1aqnxPbeevZp/Xeh2Vv1LdUa39dlS9DqvdxccaqsC9UrUmkUb887b2CDcyZFFDn5wlBfnlx5MFALicLtjtduj1l9cipjgvD2e3ZsBlc8B65hzsxSWw5dgg8gGXELgg2eCSJBh0ZggIOOBCnlQEu+SEFXbkSe4YolCywnlpXKZD3UXTwt3fUpjLAJNLB5SWxe5u545ijRUuCbCbXHAZAA00iAmLgVFjgCPSAWECIswRSIpPgtFgRMsGLWHQG2CxWGAymWpcvVKVjV1Tw5UyQPeXqiIWuV9OXtGJKAQoqTECIzx/kVsGydV8cJ2yAWHAYcN5HDacr/KtonyCpZTO6W7VpLPaIJwlsEXkwmTMg04qQpj+T+jhRBTyYIxwJ3xinU7oBKCFgFYABiHQOM8JCUC4cMHI+2VAaVzNK0wzOgvQsNg9fHGxVY+LiIHG5YC7Qy4J0SUn0NDpnz7JnKKsY85GxUfl38P1FgANYHQUolHxldXKhqIm1j9xck86fm1+C9AqEofOFuDP33ODXSwi1bu5TSzSOrDjYDX0yWkvLoY8+l7ptD279+KFTS+g/ZlzuObUWViu7YS4556F7WQBCg+eha2wCGcOHoLL6kBBdjYMDhO0kg4lcMChEbCZjLggeSe7sjUFyDeXwOppoVQblzTk8vylFRKMDiMkSHAIO5xwAAKwCw3sGgl5htM4GbEXBqcJ4S4L9FodChpoYQy3QEgCDoMDkIC4BrGItcRAo9Gga5NuaBXdChpJA62khUlngsVweS2YQpFvX5mU88UK4CApRES1xaSUn0j60huk3JZYQoorDjaXQLGrGE5hh+R0txqQnA5E2HNgkJxo2EJgv60AecUOJNkjodVooIUDGm1ps2CdVNqKXYLkjIJB1wDR+uaw2l3ItzpQWLrCbACiXDNiIQFS6dEWkMrdv8vfyMtadcktVy7poFsAcjN6vSkcJpNZfq8ol4DzasMkSWXLlLtOqnp+z/KF13oluRyXlr9sOy9Zr7wNGpRowlFj0FKLmKa6FtperbxKF+o4/j0aXzLf75E3YG/LGwAAFtNJXIulyNM3hpAKAQh8mDwX4VJEzWWpokauujIWOCTggHtf/l+rt+Ry7nJtB8QP+COyG/4v+nav92glwKyvugf7qtZXZTEu43DUNuys/jh5u+nwPDQuOoQ7O8chJ6YRNsCOa5KiMTCpSemyah/0Vr1PqurTy7ey+mMd1alq26usLa7iBYNOA51GWV8elEJJtVVKsmjDYRw5VwibI/CDhiiRGvrkREFBJQ1i3BOOxCQgIuJ66Ep02P2PD3FBW4gS2FAk2ZAjFUJIAlK4+3wSKOso3RdGmwZ6hwtOYUeOyQ4XHMg15MCpceGCOQcXwi9CQCDHmOPTco1CQhg00Aqgo8uMJkKHZg4HrnU4gcICXFNywT0ucaEnYvFEOq7SfwUkCYgwfACdtuzBNLvLhkKX7/1CST58ZjxzVBVPVP8uH8pQi6Ve2trJltMAAuMqzFM8O1Eur+tIGAA9nL+vBZqb4Nz5IUrSF19Beauf12m7D0AqHD++AuuW/5W9kNQY0EiwvdkN1kquWb4cizJ1V97LVZvlCkj4vvF9+DZ2LDwB76zVv8FcrvsKAaDQ6oCrkv1Q2a6pbcvyqt5RmxbftW1RXletyWu3bN+3sy6W4Z6/CpUet7pZdm2ORe3LrY7EsSRJGN0jGcO6NK155iBjUspPJG3Fzhxb6Zqila0p9onlGGhejr1N0vDfpGdhd7pwyilgc7rgcgl89au7Of7/e6AbbkyJCXTRyQ8+3LldDpI92qW0Qo/R9wEAivfuxdGlSxEZHg5JKoIQAvfdPQwxYf45/ufyrfjXC99CkiSMu2+0PP2D35zY+PMPaNm8GcbdeJ9f1q1Y7/8HOHYIAzvF4zdzI2w4ehodE6MwqY1/Rpgiopp9tvsEjpwrrHlGqjcMmrI+KF2lyZ+wIvdjhSUaO7aHH632/ULy/lKkcblHhhPChQLXBZToHDjVMBvhLidK9Bfg1BZDK9kQJhVCL4T7B4BeCMS7XNAAuNrpgqnInTSKz3PALASinS6ECRc0Aoh1Oit8gY901fBguq99fttLf1TKICof5MbsKpB/18AIQA+NcPevqhV2mFz+u25oS9ejE3YYXWXdQ0ilHU3oXSUwumrX12t9cNWZdHxy/FYgLREA8L9fTkGysUKBKJiKbU4mpaiiYkc+jGGbAQBrzjTCsqxjlc4nSUDzxrUfoY+UqcZ8vKdpiUoy94rEY0CkOGV9tJBaaCMb4dIj3sQQjU6FVyFLykaBKw8al4BwuRNBTs15uHT5KLKU4EwTK87lWtHYZkEnexPoJCACOjgh4ZwhH1ESECt06GJPgCRJiNK0gkGrQU6xA3ZnWXshSJ4SlMscld4jLujcLbSPe+Yt/VeUm8+rJXi51uIlmjA4JD00kgap7WKREB1WutzSH6nsX7tTYPPhC7A7UVqe0nZUkg4lOgtqbH8kVflHDeqo2Xg5opr5Kr7iPcV69ABaZDgqzLO0y6fyfm67621En/4df0Z3B/ArMmL6Y0mzeyq8x9cWqZeOTXPpuzIO2YDTDuxOGImlyWPl6Y7zjwOw4dOrFyNaG1Phfb72n+l5IsJXnuX6djhqsdwaFuh5NT5vL/rvn45YiwFPXd8Gs4U7YTgptaW7v9pywg26ci3/Ll2e7y28a9tSu8pjX6tl102r8cq3p25at9emjP5szV91uevmSYHKtrO2x6G+O3A6H6+uy4DDFRqJYSal/KQsOCn75Q3zM9Dq7MgqvBuLRBh2itZ49NYU6LUaGLQa6LUStBoJkiShZUwEmjYIC07hqe6FyBVR/gKo6sSMmredSJnUfU1SGa/HxD2Dn0jo7kjBn7YM9I58HgBwg/V1nBAxiDbrEWnSQ0Cg+LgT5wts6Na8IR57qGcQCl+37rw22CUIvgOb9TiWsct7ogSMHXyr/Oex1R+j8CCQHB8LWIE2yYn4a8++fivTH5/vw8+nj+Ha1s0x9tYUefrCZTrYHTYMu7kHkiJV1Mr6iAPYDzQKM+DvN7fC7B/2AADG9m6OGMPlDU5ARFfGMzhMqERPTEr5iykaAOCUawgk/Lf4aQDAsOuawmzQ4KlrEtG1WcPglI8CqsaUlNyPljIuHUopR2CxpRSR0oRIPp/qkNasxaUdnZ92ncVyzYdo1Ogn9LYDJ0RjnBYNAAA5RXbkFHk/33ZNUnTgCkx+V3MMVfpvkG/fksJiuYDhhZpIcULtrGRSyl8s7s6RHVJpjZ8Avn70RjRtEIYIDmutQqK0+X5VPAmR4HZ4fDmdedcblWy7ysJKIsVR8yWJyhRpBX4UneAsuAb/lTQoDm+KHx5JhV6rwcmcIgDuQWAkuAdUaBcXWdMiKVRItetuWwlUl5RSSlaQiCoKkdOS2RE/qfiogYS2DJLUq7JvVjW0yAlEUHNpEaRyyTH1UvXGEylK2SPFNc3J87beKHewhab0d0mHvqn9MKZXMzSKMHrNHhdlCmTpKMDclWU1nN8KyV6rfhRVtjQnUoyylpuhgUkpfwmVTwAFhtyRaRUfjAB3sq2Q+E2ZhK9dkRJRoFSVpFd16876ylSxAk+r1WBq/zZBKAwpUhUVanJ7nQDFUpdel1TbL6fEllJEShNq4ZGvA9LSFQuxTwbVsRoSHWWRVADKUk0x1NofAhB6V28iFeBpqT7C1AByn1JSaUfnKrwlkYcESbijqBovBwH6nNR0XVJfDCVV8xcRBUNtkvRKuGYxKeUnSji4RJdLnZ9fhlFESqW2hgfk5rkXSQxXVUuSfMg1KSV7rZBiBFyAW/sTke+qPSuVcu0Ek1J+5D1yjHrvVATU/IiJxBu6cvAYECkOT0u1Ed7/KihwpgDz5dgrpJW3/PieKiv2AD6+R6QcofbVkkmpQBEMqNTMU9dbJYVcOVTbHwLAPhGIFCjUOuokf2EMRT5QyoVCKeUIGJ6fRMoTWuclk1L+knuy9BfV3ZmoMiFSy6vqPqVC7OJNpAY8K9WtrD6PnwS18mlEO4XEWKodeEEhFatEVEY+LUPkOx2TUv5iKyz9xfNBUOmNigAAUo0dnas5GaQQDKqIFEuVrTdVzfvxPbV+1ycAkg+xkUI+IHx8T63bTaRcoRI+MSnlJyI81v2LxF1MPihLZwe3GEyeIugHgYhkCrk0UiBVdrDZBYKq+Xz02QVCkLBSj0hpFDKwu8+YMfEXY2TpL1K5/5JqKaQWrybqDagABlVEyhMaV06qUznH4MlMudjROfnU0bn/i0HV4PlJpDih9jgxk1J+w9H3qJxKDr934qcsIaLuxFAQhdjFm0gNJJ+bSvF6WZ8JjSHYRaAgkSDVWFmklC9f6u2XkwPFENGVYVLKT+TLsnydVsYNk4JDoPyjcZV8FgLcxrKqT6N6A6ryBPNTRAqj7muSughLQtnvUmkFH7tCIB8o5dat2uvVJTEs61aJgqfsq2VonIi8yxMFQKj11RQqF7C6xcf3iJQm1PpEoDqg1VaYJDFcVS9J8iHFE5wYi9elUhJbShEpTahVsPMu7y8V7lQh9smgulXD4Zc48lvwhdrVm0gFeFqqkEDZvbD0+Cvl8SwKPEmC+/MgoeqcR4BjqKoqGtXb/YJUzV9EFAxlo4FWP5dSMCnlN2q7IVF1JNRw2iskKaXux/dY00ekVDwr1cnz+B6pW41fmxSStFRt8pThE5FihUqOnEkpf6nwAVDpjYpCSllWPUSuYP4QKldvIlXwtDwIcjEowC454OyXU8V8eXyPlIFHikgpysaJCY3zkkkpPwuNjwH5X43P77n/5Tev4GGfCESKo9aGB2rmfRt0/xFq/TJS3XG3PqrhvuzzKJ3+pd6KPcawRHRlmJTyk4o3JAZUqibJ/6nidV+e+/U/OfAPdkGCgucokdKUpYpVeVFSPU8DKUnDcJWqId++g9wFglr7lGLtAZHihFp7B97l/U2OqHnBJuVTd59SpULl6k2kIjwt1UZU8S+pTgiGz+qNodS63UTKFSpnJZNS/sIImsqTaoqrQiydXR/x8T0ixVHIUzkUJJ7jLjFcVS0JUo1JHkkpF4oQTKDVDcawREojhVifnLzL+wkf36PyauwPQ86HKKTpedAju2CoeIzUuBeIlIR9CakVW0hRmZqvAsqoVFJtDMXH94gUJ9ROSyal/KSoqBhAsG+PpGhVJaACPFpCZX0fqK4/BCD0Hr4mUpMazktVXrNUoKznA4arqhVq36wAFQb/lScFVbcbiBSk7NIZGmci7/J+Yi1xJ6XKPgcheFOlOiNqeHxPCnBCRArFIC9gBM9WIoWo+akcnq31jVeCUXL/ruFhVq3KhoGpcD24JKYJWKVehWKo/IPKygEixfHptFTAucuklJ+YTCb3L6V7WGJH5+rm4+h7wb4osKNzBP0YEFEZtX/HUyOr1Vphmuq/7KucqOQ3LwHuU6qqjyMf3xPefxJR0EiVpvQrn0cJmJTyE5PZDACQJM8uVs5BJ6qKagMqgFEUkQKFWkeddOVKiktwaRitpMCZAiwE783qe5w49I4RUX0XapdOJqX8pfR+ZBfO4JaDFKHmjs6V0VKKgFB59ppITdT3JU+9dHqd/HtZBUmIRddUdySp5tuyQkbfU23ylDEskWKFSvzEpJSfOIUDAFACm3uC0AaxNBR0kuTpGqPK14Ggx1PKGVY5KBhUESmOmi9JKhUeHg7PEfckpVT7ZZ8A+JCSVEiHvuwCQa3bTaQ8yhiT1He6mmehy+F0lbWQcuS3hTmnaxBLQ+QbPr5HRErCs1KFyt1+hNYOgEkpNQvFY6++GIqVekRKE2pfa5iU8hdR1uS8+MRYNNAWBLU4FFySBoCruhl4Qw++ELt6E6kIL43qJDTukYw1Elubq5ZPT++xSWVQhdq3XyJVCK0+OZmU8hO5loTXaQLgruur7sOgrKRUqDx/7Bdq3nYihZEU8mgzBVrpY3vOCNhyUhChSQhyeSi4RA0XAWU8qFI2MINar1hq3W4i5QqV6xH7lPKXCsc/ND4QpG6q7g9BqhjUhsh1nKjeYr2O+pS/7hoK28F66m5owZZSauWJS0LhWiCptsWQsipWiUgx4z/4jEkpPynrnNNDrTcqAtyByqWJnvKZ67J8iAh4/wmMITx4jhIpTdmTzbxQqZlqv+sTfLo3V1KpRAFUxQnKo0EUPKF222RSyl+EZ+QYInhfGSq7eQe4T6mqLlSq7ujcQ4iQu5ATqRfP1vpGiHIdMMqtZHic1cwdk1TzGbikSUDAktiXrEe9MRSTgkRKU7u+9oJ/7jIp5TeX3qiCf7CJaiIH/mr8uLKmlUhxyjUiJRUSgskotZO/V0nV9M0Z4KZ0VVbsebpAUOsFS1z6lAgRBVv1VyPlnK1MSvmJ3Vla08c254Sauznn6HtKwHOVSGnU20eLilVyH+THQMV48JWPlXpEilNWqRca5yWTUn6SXWgDwBwDlaopqFJI0MWOzsGTlkiBVHlNUimX1zXYHaYyOal2NTxWr5CcCB/fIyKlCLXbJpNSfqKp8EEIsU8GBUWwwxj1BlTlqXnbiZSFj++pT16RveJEhlCq5VN/Ygr79hUqLRPqTKgN80WkIqFyWjIp5SeNwg0Ayt8nQ+UjQf5QY7zEVjoKwGNApDjK+q5JAVBoLUtKidJ7o65iTR+phVSb2zLv38HF/U+kFHJDgxA5LZmU8ptLPgGMp1SuxqxUQEpRIzUPv66wmlYiKt96k9QizKAt95f7+FtM+uAUhhSi+sf3lPJ4p6q7QABC59svkQqUNWAMjfOSSSk/4XWZLkuQPzgcdhvg118i5eE9VT0izeUSUJ7jzluTevmUcFLGB0S1MZRCkoJEFLqYlPKb0khKvk7zgq1qkgSpui9VCus4JVSy6nWLj+8RKU2o1fRRHfA61FLpfxlDqVWtjj3v30HG/U+kNKFyWWRSKkAkXqhVraam5Yppei4/f6zCz2slx4BfhImCSxlXRgokl3DJvws5TOW1WM1qvBczhgqyyiv1GEMRBU+ojT/ApJSflN2QlHGjJCWq5DIhRMCDmlC5WPmfQsaUJqIKar4c8rytN8odbE9QrZCcAwWD5GktV/M8ns9OoJIhl65FtX1K8QQlUhylNHjwFZNSfqOyGxL5qIrPRYBH36vqOhVqFzC/KJcYJKLgqumSxGtWPVTuNiiEJ0zlcVarslNcOX1L8bpzKe9KPcZQRMEnn4U+fLVUQiKdSSl/Y59SBB8CGIUEOGUjXQX/4hRwEltKESkNv9yoW9mYa/wcqJuA+zNQVcVeIMtSM1XGUEDodF5DpCLVXo8UdO1kUspPKj56xQs1kbIp6MpMRADKNyLlPVQteKzJmySnpKqeRRkDlciP76ntM8xKPSLFUchl0WdMSvmNKPdfUr1QaykVKlcwf1DzthMpFE9LFSl/sIX7nqRRxi2SgoCPyoUCHiMipQm1luZMSvkJ42cqr8bLglKCLjUPv16bh6+JKCBCbfQYunJex1ru6TwYJSHFqHHwPWV8QFTbBUKoNckgUpFQOSuZlPIX4ensj4hCA89WIuXheak6lXyxDbUaX6pDElDz1yplPD4mQe1ZdNVuOJHihFr3B0xK+ZlgIEUAIIVGSK3aWr7yQuTiTaQmPC3Vw/tYh8Kdk/ypLHpS/mdBKS22Ao8tpYiURhmpet8xKeUnktb9r9A4g1sQUoSaAhWlBDKqruVjR51EiiOp+ZFi1Sp/rN0fAEnD469aklTz2a+w53xVd71SSAxLROWE2GnJpJSfRCS7PwkXw7OCXBJSLJXFLMpXMajlISIKLjlVzJNRNbz6OQ+hVjLkTzV2KlU6mzIe31NdUkqm1u0mUq5QiZ+YlPIT+flNxlHkIS79s9yESmqZAhXUlH/WWB7OWI2BBWv6iBTH99NShdeseioi2iD/LoQnTOX1Wa08cUm1nwDev4Os8qRgqHwZJqqPQqPjmDJMSvmJ54s+r8cEQA6Yqvw8lAuoAvEoX1UXKrmWT9WRhGB8S6QwVV+ReLLWN5K23DH1JSFBqlRdnBKoGKaq1aguhmL3B0SKU7vvMsE/d5mU8huOvkcUWpTR/J+Iykg8LwlsCKN2cuvtqi4DCsmJqLe1uVTNX0QUDOXPw6oT5co5W5mU8pOyg6+cg03BU2PrJ4VE3OoNqKCYY0BEZXhaqpBXp1KellL8IKiWfBGo+jOguMFi1IqVB0SKFAqnJpNSfsI+pchbDaGKQgIqD1UmpWRq3nYiZeJZqR7la3QFgyjVq13CiVeKoODje0SKU/7aGQpnJpNSfnLpl3qGVURKx8eEiJSGo+8RoLh6Gwq4mtKTyviAqLdfTmXsfyIqE2pnJZNSfiMu+ZfUrOaAWhmXDvUGVGBNH5ECqfqRYrXyuv+UhqnKuEVSkNQYkigka6na65VC9j8RVS4UvtcxKeUnZce+hlHXSCVqqONTyP1cKf0yBIeat52ISBm8g2f2KaV2tYpLQuCLV73HY0CkCOUvnaFwVjIp5SdCuNy/MI4iCi0MqIgUh6el+rhbmzCIIqDGr1QKqVBTb2vz8t9+1bbtRMpUvjInFE5LJqX85ZKDr4zbJQVLrUbfC+KFQw6oQiKnXsf4+B6R4nhOS56VauX+AGgUknSgIJB8aC2nlM+HfL1S2RVLKfufiMqE2GnJpJSfqK+WhKpV04VBITd09dbyAZUdJDXuBSIl4WNb6uO5/7j/W3r8+TFQrVodet60FUBU8hsRBVMoJMqZlPKTUDj4FGRVJH6kANe08ZN6CVUm5IiUrabTUp2J9HrKcywl+T9gVkrdKo2Hyp/zUtmcVc7vBxVH2lZxa3MPXouJFEGqzVO1CjhvmZTyEwbIVJ4ECWXdY1QSXAe6pVRVq1Nr03PA6/E9fv0hUoaak/Q8W+sbr2Mt2FJK9aSaPwOSL4/41aGqQjapLIhSF68dIpTS+J9I1Xw5DZXUGp1JKb8pX9NHqifVcNor5A6u7lo+TzCpxm0nUqZLGkCQiniNwaeMWyQFAUffCwU8QYmUJtRGVGdSyk/KWkqF1geCSLVC7OJNpAY8LVXIK68glfsvqVcNIzEqZKASz5dAdVbslWJikEhxQuG0ZFLKT/j4HnmRJFQbLCnkm5ccUKn686vmbSdSJp6V6iHYpxR5kXw4/5Xx+VBta/NLHt8jouDzPiuVf14yKeUnQrgAKCbXQEFWU12vUj4mSnq2OPD4+B6R0jBRrkbl+5RimKp67FYsBPDoEClNqOUgeLf3E5fwDGbMpudEISHUrt5EKsCzUoWE5x8BT5iq0fCTQNVQWPJaKeUImFoN80VEgRYKpyWTUn7iaSlFBKDmhIdCEiJy0/NQuHr5jZq3nUiZVH1JUjGJLaVUT5Kkmi8ASomh2KcUGEMRKUP5p19C4azk3d5PXJ7H9+Tny0nNpFDrU0rNn1h++yVSDpWOsK5m5StFhNACYIs5dfM8cVBdR+el/wb5QqHeLhDYUopIabwbMCr/vGRSyk8uPfhqvU0RhYxKRu8JgWs4Ub1W1nozyAWhAHIfbCGBfUoRgKDnmmpNdRV7VVSsqmwvENEV4N3eTy5tKUVUITVZ/m5dyQ09UFntylajuoAKAFPHRMrjeyNSNV6z6ifve5I7TJUU0pqYAs996Cue315xSpA+H5fGT/LnVNWXI1VvPJEi1XxWBv+81QW7APWV1PUqfGvcjWhLFPBnsEtDweZ5fK/KgY29Air/B1dVxW/sUwpskkGkQFUnypmsqG90BgP+bFIEp0awTykqC1hE1We7JxkkBej2XVWFs3oror0f31PrXiBSEt/GH1DO2cqklJ84GofhRJNiFJQ0C3ZRiMgXrIknUhz5oVrmilXDGGnBD13OAQB0fxoBsKUU+UoZFwrVtTb3Oj9Vtu1ECuWVJA+B05JVUH5y+HweAOBsYQwAQCdxND5Vk6Tqa/AUEnCrO/BX87YTKZOqL0kqZXfZ5d8vFjcGoPZ7k7pJkCBQU+sbZXw+1NvaXBn7n4jKhNptky2l/CTfagUAhGlt6J20AYl5TYJcIgqmGsbeU0zArd6m5+WoLpgkIlIOh3DIv0cb8tBEX4xm0Z2CWCIKKjk+qm70PYXELgopRlAxhiJSnFBovcmWUn5idbhr+hqZ8zCq3Uo00ZUEuUREvguFi1edq2T0PSIKLvW2PFAvh7MsKfVMt9cxseX/YNQxXKWaKeU6oboYio/vESmO11kZAqcl7/J+4klKGTyP7QlWn6iaFBptkDwttpQS2AWWpzNVNW47kTJxMCv1KbC5W5oLISFMXwI2P1E3z+h71X4KFNJSSk6iq+6K5VOPykQUQOWfwgmFszLkk1Jvv/02mjVrBpPJhO7du2P79u3BLhIAoMRRDAAwaEpr/JRxv6Qg8enxPAUEVaGROvMTBex/IvLGs9K/lBhDXSwsdP8itDBp3QkqfhDUrMpxi8vPUiq4X71UG0MxfiJSnFA7K0M6KfXxxx9j6tSpmDFjBnbt2oXOnTsjLS0NZ8+eDXbRUGzNBgAYtaWP7bGlFIUQ9dXylafmbSdSJla+1z2lxlDn80+V/qZxf9cVKv6yT7WjkOuEOlube6h524mUKRSuSSGdlHrttdcwfvx4/PWvf0X79u2xaNEihIWF4f333w920XCPWYO/hoVjUORFFJ5pg8LC+GAXiYIqNFpKeYTCxavu8fE9IsWR1Po4jP8pNYaKEi7cEWbC4DADnDYT8k9eB0mjnPsjBZYkSTXflxUSPyll0JrA4+N7REpT/nIUCmdlyCalbDYbdu7ciVtvvVWeptFocOutt2Lr1q2VvsdqtSIvL8/rx1+KTgyB8bsXUfDNizj+4xOQYkLh40B+U9onQnk//bAVC0Y+iIxpD5TOU/rlq8Tdum7IqiEBKdpf/v2T/LsnoDpRcAKzt84OyPoVw3P13r4YOPg1AGDlmWykbPgFR4utQSwYkXp5YqoPfzqGtb+cqnI+l6sEe395KDCFqgdqG0MFMn6ymK9C3Hcvo+kPL+CPVW/iXGZPJCVyBGPVkjz/eCd8FvxlGJaMeh74I12OXUp+/RUAsPrwaqw6tMrvRXtn/WFsOHiuXFHd5Xhm0zM4WXDS7+tXjPLffl9pLiem+mw/gKkHjgWpUETqVj5Jfvsbm6qd99DhV5Cbu8fPJapeyCalzp8/D6fTiSZNvAOVJk2a4PTp05W+Z+7cuYiKipJ/kpKS/Fa+waO64epHwnD1I2G47vFIPPb3UX5bFylfbLOWkEqKUWxyQKNpJE8XcMFld3eKb2rXDgDQ/LT7Zh5ljPJbecINOjRrFAYAsDtd8vQkSxLC9eEAAKtTZYmYuLIhxzs4zkIC4BBAvtMFF3PKREHRPiFS/r7jcLkqvG4wNIbBEAsAcDk5yq2vahtDBTJ+SmwSi9YTdPLPwOdaoVViM7+tj5QtLDIadrMNFl0DhJWcg6TxxEYOuKAFXA4Y27QFJAnJp5yQSm/YDpej6oVeoQ4JkfLvznIBQtuGbeXfVdXiXNIATTrKf3YK1wMACp0ulDCAIgoaz7XKqK885WOxtJd/F3AGpExVkUSIXjWzsrKQmJiILVu2oGfPnvL0p556Cj/++CO2bdtW4T1WqxVWa9kX7by8PCQlJSE3NxeRkZEV5ieqS3nnzyHveDbO/n4UtrNH0SCxAQwmMxKuToExuS2E3Q77yZNwCCey7OdhjE9AksV/gX+J3YlTuSUw6DRIjDbL0wtsBbhQcgHh+nA0Njf22/oVKf8MYCsAjJE4Z4hGvsP9JbipSQ+DJmRz+EQh7Wx+CQqtTjSOMMBi0ld43ekshtV6GhqtGSZjnF/KkJeXh6ioqHoTL9Q2hmL8RMFkt5Yg78QZnDl6CgUZR6HVFSE6tiEsjaIQ2+16wBgBx/nzcBUUINuWgyKLATGNkmAxWPxWpjN5JSiyOdEk0ogwgw6AOxGVVZgFh8uBhIgE6DUVr1f1lsMG5B53/xp1FY7Z3PFThFaDWKOK9gORgtidLpy4WAydRkJSw7BK5ykpOQWXqwRGYzy0WlOdl8HX+ElX52sOkMaNG0Or1eLMmTNe08+cOYO4uMqDUqPRCKPRGIjiEVUQ2TgGkY1j0PTaNpW+Lun1MDRrBgOAVmjp9/KY9Fo0bxxeYXqEIQIRhgi/r1+RLE0AuFsOxACIMQS1NEQEINZiAqr5bqnVmhEW1jxwBaoHahtDMX6iYNIbTWjUMhmNWiYDfXtUOo+ucWOgcWP4Jy1dUZPIil/eJElCYkRigEqgMDoD0Mgdu+oAtAjZb5hE9Ydeq6n0u155JpMy+r0O2ap/g8GALl264LvvvpOnuVwufPfdd161fkRERERUhjEUERERKUVI57GnTp2KMWPGoGvXrujWrRv+9a9/obCwEH/961+DXTQiIiIixWIMRUREREoQ0kmpe+65B+fOncNzzz2H06dP45prrsHXX39doeNOIiIiIirDGIqIiIiUIGQ7Oq8L9a3jUiIiIqp7jBe8cX8QERFRTXyNF0K2TykiIiIiIiIiIgpdTEoREREREREREVHAMSlFREREREREREQBx6QUEREREREREREFHJNSREREREREREQUcExKERERERERERFRwDEpRUREREREREREAcekFBERERERERERBRyTUkREREREREREFHBMShERERERERERUcAxKUVERERERERERAHHpBQREREREREREQUck1JERERERERERBRwTEoREREREREREVHAMSlFREREREREREQBx6QUEREREREREREFHJNSREREREREREQUcExKERERERERERFRwDEpRUREREREREREAcekFBERERERERERBRyTUkREREREREREFHBMShERERERERERUcAxKUVERERERERERAHHpBQREREREREREQUck1JERERERERERBRwTEoREREREREREVHA6YJdgGASQgAA8vLyglwSIiIiUipPnOCJG9SO8RMRERHVxNf4SdVJqfz8fABAUlJSkEtCRERESpefn4+oqKhgFyPoGD8RERGRr2qKnySh4mo/l8uFrKwsWCwWSJJUp8vOy8tDUlISjh8/jsjIyDpddihQ8/aredsBdW+/mrcdUPf2q3nbgfq//UII5OfnIyEhARoNez7wZ/wE1P/PU3XUvO2AurdfzdsOqHv71bztgLq3v75vu6/xk6pbSmk0GjRt2tSv64iMjKyXHzBfqXn71bztgLq3X83bDqh7+9W87UD93n62kCoTiPgJqN+fp5qoedsBdW+/mrcdUPf2q3nbAXVvf33edl/iJ1b3ERERERERERFRwDEpRUREREREREREAceklJ8YjUbMmDEDRqMx2EUJCjVvv5q3HVD39qt52wF1b7+atx3g9lPdUvPnSc3bDqh7+9W87YC6t1/N2w6oe/vVvO3lqbqjcyIiIiIiIiIiCg62lCIiIiIiIiIiooBjUoqIiIiIiIiIiAKOSSkiIiIiIiIiIgo4JqWIiIiIiIiIiCjgmJQiIiIiIiIiIqKAY1KKiIiIiIiIiIgCjkkpIiIiIiIiIiIKOCaliIiIiIiIiIgo4JiUIiIiIiIiIiKigGNSioiIiIiIiIiIAo5JKSIiIiIiIiIiCjgmpYiIiIiIiIiIKOCYlCIiIiIiIiIiooBjUoqIiIiIiIiIiAKOSSkiCllHjx6FJElYunRpsIuiGGPHjkWzZs28pkmShJkzZwalPERERHR5GOdUxDiHqP5hUoqILtuWLVswc+ZM5OTkXNb733nnHQZalyErKwszZ87Enj17gl0UIiKieotxTnAwziFSFyaliOiybdmyBbNmzWKwFmBZWVmYNWtWpcHav//9b2RkZAS+UERERPUM45zgYJxDpC66YBeAiIjqjl6vD3YRiIiIiPyCcQ5R/cOWUkR0WWbOnIknn3wSANC8eXNIkgRJknD06FE4HA48//zzaNmyJYxGI5o1a4ZnnnkGVqtVfn+zZs3w22+/4ccff5Tfe/PNNwMAsrOz8cQTT6BTp06IiIhAZGQkBg4ciL1799ZJ2UtKSjBz5ky0bt0aJpMJ8fHxuOuuu3D48GEAZX04zJs3DwsWLEBycjLMZjP69OmDX3/91WtZN998s1zu8irr86AmzZo1w9ixYytML7+O9evX4/rrrwcA/PWvf5X3nacm9nLWS0RERN4Y57jVxzin/Pa//fbbaNGiBcLCwtC/f38cP34cQgg8//zzaNq0KcxmM4YOHYrs7GyvZXzxxRe47bbbkJCQAKPRiJYtW+L555+H0+mU5/n9999hNptx//33e71306ZN0Gq1mDZt2hVtB1F9wZZSRHRZ7rrrLhw8eBArVqzAggUL0LhxYwBATEwMxo0bhw8++AB33303Hn/8cWzbtg1z587F77//js8//xwA8K9//QuTJ09GREQE/vGPfwAAmjRpAgA4cuQIVq1aheHDh6N58+Y4c+YMFi9ejD59+mD//v1ISEi47HI7nU7cfvvt+O6773DvvffikUceQX5+PtLT0/Hrr7+iZcuW8rz/+c9/kJ+fj4kTJ6KkpASvv/46brnlFuzbt08ua6C1a9cOs2fPxnPPPYcHH3wQN954IwCgV69eQSkPERFRfcQ4p/7HOcuWLYPNZsPkyZORnZ2NV155BSNGjMAtt9yC9evXY9q0aTh06BDefPNNPPHEE3j//ffl9y5duhQRERGYOnUqIiIi8P333+O5555DXl4eXn31VXlbnn/+eTz55JO4++67MWTIEBQWFmLs2LFo27YtZs+eXefbRBSSBBHRZXr11VcFAJGZmSlP27NnjwAgxo0b5zXvE088IQCI77//Xp7WoUMH0adPnwrLLSkpEU6n02taZmamMBqNYvbs2V7TAIglS5b4XOb3339fABCvvfZahddcLpfXcs1mszhx4oT8+rZt2wQA8dhjj8nT+vTpU+k2jBkzRiQnJ/tcLiGESE5OFmPGjKkw/dJ17Nixo8rtrmy9AMSMGTNqVRYiIiK1Y5xTP+Mcz/bHxMSInJwcefr06dMFANG5c2dht9vl6X/5y1+EwWAQJSUl8rSioqIKy33ooYdEWFiY13xOp1PccMMNokmTJuL8+fNi4sSJQqfTiR07dvhcXqL6jo/vEVGd+vLLLwEAU6dO9Zr++OOPAwDWrl1b4zKMRiM0Gvflyel04sKFC4iIiECbNm2wa9euKyrfp59+isaNG2Py5MkVXpMkyevvO+64A4mJifLf3bp1Q/fu3eVtJCIiInVhnFN/DB8+HFFRUfLf3bt3BwDcd9990Ol0XtNtNhtOnjwpTzObzfLv+fn5OH/+PG688UYUFRXhwIED8msajQZLly5FQUEBBg4ciHfeeQfTp09H165d/blpRCGFSSkiqlN//vknNBoNWrVq5TU9Li4O0dHR+PPPP2tchsvlwoIFC5CSkgKj0YjGjRsjJiYGv/zyC3Jzc6+ofIcPH0abNm28go2qpKSkVJjWunVrHD169IrKQERERKGJcU79cdVVV3n97UlQJSUlVTr94sWL8rTffvsNd955J6KiohAZGYmYmBjcd999AFDhGLZs2RIzZ87Ejh070KFDBzz77LN1vi1EoYxJKSLyi0tr42rjxRdfxNSpU3HTTTfhww8/xLp165Ceno4OHTrA5XLVYSmvXFXbWb6jy2Asi4iIiPyHcU7oxzlarbZW04UQAICcnBz06dMHe/fuxezZs/G///0P6enpePnllwGg0mP4zTffAACysrJw4cKFuig+Ub3Bjs6J6LJVFlwkJyfD5XLhjz/+QLt27eTpZ86cQU5ODpKTk6t9PwCsXLkSqampeO+997ym5+TkyB2NXq6WLVti27ZtsNvtNQ4r/Mcff1SYdvDgQa9RXxo0aIAjR45UmM+XmtJLNWjQADk5OZUuq0WLFvLfVxIIExERkW8Y5zDOqcz69etx4cIFfPbZZ7jpppvk6ZmZmZXOv2jRIqSnp+OFF17A3Llz8dBDD+GLL74IVHGJFI8tpYjosoWHhwOAV4AxaNAgAO5RZ8p77bXXAAC33Xab1/srC060Wq1cG+XxySefeD3Lf7mGDRuG8+fP46233qrw2qXrXLVqldc6t2/fjm3btmHgwIHytJYtW+LAgQM4d+6cPG3v3r3YvHlzrcvWsmVL/PTTT7DZbPK0NWvW4Pjx417zVbbfiYiIqG4xzmGcUxlPS6ry+9Nms+Gdd96pMG9mZiaefPJJDBs2DM888wzmzZuH1atX4z//+U/AykukdGwpRUSXrUuXLgCAf/zjH7j33nuh1+sxePBgjBkzBu+++67cvHn79u344IMPcMcddyA1NdXr/QsXLsScOXPQqlUrxMbG4pZbbsHtt9+O2bNn469//St69eqFffv2YdmyZV61aJfr/vvvx3/+8x9MnToV27dvx4033ojCwkJ8++23+Pvf/46hQ4fK87Zq1Qo33HADHn74YVitVvzrX/9Co0aN8NRTT8nz/O1vf8Nrr72GtLQ0PPDAAzh79iwWLVqEDh06IC8vr1ZlGzduHFauXIkBAwZgxIgROHz4MD788EOv4ZsBd1AXHR2NRYsWwWKxIDw8HN27d0fz5s2vbOcQERGRjHEO45zK9OrVCw0aNMCYMWMwZcoUSJKE//f//l+FpJ8QAn/7299gNpuxcOFCAMBDDz2ETz/9FI888ghuvfVWJCQkBGMTiJQleAP/EVF98Pzzz4vExESh0WjkYZPtdruYNWuWaN68udDr9SIpKUlMnz7da4hcIYQ4ffq0uO2224TFYhEA5OGAS0pKxOOPPy7i4+OF2WwWvXv3Flu3bq0wZPDlDJUshHsY33/84x9y+eLi4sTdd98tDh8+7LXcV199VcyfP18kJSUJo9EobrzxRrF3794Ky/vwww9FixYthMFgENdcc41Yt27dZQ2VLIQQ8+fPF4mJicJoNIrevXuLn3/+udLhmL/44gvRvn17odPpvPZBXQyVTERERG6Mc+pfnFN++8v74YcfBADxySefeE1fsmSJACB27NghT9u8ebPo0aOHMJvNIiEhQTz11FNi3bp1AoD44YcfhBBCvP766wKA+PTTT72Wd+zYMREZGSkGDRrkc5mJ6jNJiEtSukREKnf06FE0b94cr776Kp544olgF4eIiIiozjDOISIlYZ9SREREREREREQUcOxTiojqBZvNhuzs7GrniYqKgtlsDlCJymRnZ3t16nkprVaLmJiYAJaIiIiIQgnjnJo5nU6vDtkrExERgYiICL+XhYh8x6QUEdULW7Zs8epctDJLlizB2LFjA1Ogcu666y78+OOPVb6enJyMo0ePBq5AREREFFIY59Ts+PHjNXaGPmPGDMycOdPvZSEi37FPKSKqFy5evIidO3dWO0+HDh0QHx8foBKV2blzJy5evFjl62azGb179w5giYiIiCiUMM6pWUlJCTZt2lTtPC1atKiTUQ6JqO4wKUVERERERERERAHHjs6JiIiIiIiIiCjgVN2nlMvlQlZWFiwWCyRJCnZxiIiISIGEEMjPz0dCQgI0GtbnMX4iIiKimvgaP6k6KZWVlYWkpKRgF4OIiIhCwPHjx9G0adNgFyPoGD8RERGRr2qKn1SdlLJYLADcOykyMjLIpSEiIiIlysvLQ1JSkhw3qB3jJyIiIqqJr/GTqpNSnibnkZGRDKqIiIioWnxUzY3xExEREfmqpviJHSMQEREREREREVHAMSlFREREREREREQBx6QUEREREREREREFnKr7lCIi8jen0wm73R7sYhBRNbRaLXQ6HfuMIiJSCCEEHA4HnE5nsItCRFWoq/iJSSkiIj8pKCjAiRMnIIQIdlGIqAZhYWGIj4+HwWAIdlGIiFTNZrPh1KlTKCoqCnZRiKgGdRE/MSlFROQHTqcTJ06cQFhYGGJiYtgCg0ihhBCw2Ww4d+4cMjMzkZKSAo2GvRsQEQWDy+VCZmYmtFotEhISYDAYGEMRKVBdxk9MShER+YHdbocQAjExMTCbzcEuDhFVw2w2Q6/X488//4TNZoPJZAp2kYiIVMlms8HlciEpKQlhYWHBLg4RVaOu4idWBRIR+RFr94hCA1tHEREpB6/JRKGhLs5Vnu1ERERERERERBRwTEoREREREREREVHAMSlFRERexo4dC0mSIEkSDAYDWrVqhdmzZ8PhcFzRctevXw9JkpCTk1M3BfVBZmYmRo4ciYSEBJhMJjRt2hRDhw7FgQMHvOZbs2YN+vTpA4vFgrCwMFx//fVYunSp1zxHjx6FJEnYs2ePz+ufOXMm2rZti/DwcDRo0AC33nortm3b5rXMBx54AM2bN4fZbEbLli0xY8YM2Gy2apd76tQpjBw5Eq1bt4ZGo8Gjjz7qU3k2bNiAwYMHIyEhAZIkYdWqVZXO9/vvv2PIkCGIiopCeHg4rr/+ehw7dkx+/aGHHkLLli1hNpsRExNT6T7dsWMH+vbti+joaDRo0ABpaWnYu3dvpes7dOgQLBYLoqOj62wbiIiIAonxE+Mnxk+Xh0kpIiKqYMCAATh16hT++OMPPP7445g5cyZeffXVYBdLVlPQAbg7m+/Xrx9yc3Px2WefISMjAx9//DE6derkFdi9+eabGDp0KHr37o1t27bhl19+wb333osJEybgiSeeuKJytm7dGm+99Rb27duHTZs2oVmzZujfvz/OnTsHADhw4ABcLhcWL16M3377DQsWLMCiRYvwzDPPVLtcq9WKmJgY/POf/0Tnzp19Lk9hYSE6d+6Mt99+u8p5Dh8+jBtuuAFt27bF+vXr8csvv+DZZ5/16ryyS5cuWLJkCX7//XesW7cOQgj0798fTqcTAFBQUIABAwbgqquuwrZt27Bp0yZYLBakpaXBbrd7rc9ut+Mvf/kLbrzxxjrbBiIiomBg/MT4ifHTZRAqlpubKwCI3NzcYBeFiOqZ4uJisX//flFcXBzsotTamDFjxNChQ72m9evXT/To0UNkZ2eL0aNHi+joaGE2m8WAAQPEwYMH5fmOHj0qbr/9dhEdHS3CwsJE+/btxdq1a0VmZqYA4PUzZswYIYQQeXl5YuTIkSIsLEzExcWJ1157TfTp00c88sgj8nKTk5PF7NmzxejRo4XFYpHfu3HjRnHDDTcIk8kkmjZtKiZPniwKCgqEEELs3r1bABBHjx6tcluPHTsm9Hq9mDp1aoXX3njjDQFA/PTTT0IIIW/D7t27a79TS3nuO99++22V87zyyiuiefPmPi/z0n3lKwDi888/rzD9nnvuEffdd1+tlrV3714BQBw6dEgIIcSOHTsEAHHs2DF5nl9++UUAEH/88YfXe5966ilx3333iSVLloioqKg62YbLUd05y3jBG/cHEfkL4yfGT5Vh/FS/4ye2lCIiCgAhBIpsjqD8uO89V8ZsNsNms2Hs2LH4+eefsXr1amzduhVCCAwaNEiuvZk4cSKsVis2bNiAffv24eWXX0ZERASSkpLw6aefAgAyMjJw6tQpvP766wCAqVOnYvPmzVi9ejXS09OxceNG7Nq1q0IZ5s2bh86dO2P37t149tlncfjwYQwYMADDhg3DL7/8go8//hibNm3CpEmTAAAxMTHQaDRYuXKlXAN1qZUrV8Jut1dao/fQQw8hIiICK1asuOL9B7hrJ999911ERUVVWzuXm5uLhg0b1sk6a8vlcmHt2rVo3bo10tLSEBsbi+7du1fbxLuwsBBLlixB8+bNkZSUBABo06YNGjVqhPfeew82mw3FxcV477330K5dOzRr1kx+7/fff49PPvlEmbV2RESkCKEcQzF+unKMn+p//KQLdgGIiNSg2O5E++fWBWXd+2enIcxweZd7IQS+++47rFu3DgMHDsSqVauwefNm9OrVCwCwbNkyJCUlYdWqVRg+fDiOHTuGYcOGoVOnTgCAFi1ayMvyBAqxsbHys+/5+fn44IMPsHz5cvTt2xcAsGTJEiQkJFQoyy233ILHH39c/nvcuHEYNWqU3B9ASkoK3njjDfTp0wcLFy5EYmIi3njjDTz11FOYNWsWunbtitTUVIwaNUou18GDBxEVFYX4+PgK6zMYDGjRogUOHjx4WfvOY82aNbj33ntRVFSE+Ph4pKeno3HjxpXOe+jQIbz55puYN2/eFa3zcp09exYFBQV46aWXMGfOHLz88sv4+uuvcdddd+GHH35Anz595HnfeecdPPXUUygsLESbNm2Qnp4Og8EAALBYLFi/fj3uuOMOPP/88wDcx2fdunXQ6dyfxQsXLmDs2LH48MMPERkZGfiNJSKikBCKMRTjJ8ZPjJ98x5ZSRERUwZo1axAREQGTyYSBAwfinnvuwdixY6HT6dC9e3d5vkaNGqFNmzb4/fffAQBTpkzBnDlz0Lt3b8yYMQO//PJLtes5cuQI7HY7unXrJk+LiopCmzZtKszbtWtXr7/37t2LpUuXIiIiQv5JS0uDy+VCZmYmAHfN4+nTp7Fs2TL07NkTn3zyCTp06ID09HSf94UnUKjOsmXLvMqxceNG+bXU1FTs2bMHW7ZswYABAzBixAicPXu2wjJOnjyJAQMGYPjw4Rg/frw8vfxyJ0yY4FOZN27c6PW+ZcuW+fQ+l8sFABg6dCgee+wxXHPNNXj66adx++23Y9GiRV7zjho1Crt378aPP/6I1q1bY8SIESgpKQEAFBcX44EHHkDv3r3x008/YfPmzejYsSNuu+02FBcXAwDGjx+PkSNH4qabbqrTbSAiIgoWxk9lGD8xfvIVW0oREQWAWa/F/tlpQVt3baWmpmLhwoUwGAxISEiATqfD6tWra3zfuHHjkJaWhrVr1+Kbb77B3LlzMX/+fEyePPlyiu4lPDzc6++CggI89NBDmDJlSoV5r7rqKvl3i8WCwYMHY/DgwZgzZw7S0tIwZ84c9OvXDykpKcjNzUVWVlaF2kWbzYbDhw8jLa3m4zZkyBCvYDMxMdGr3K1atUKrVq3Qo0cPpKSk4L333sP06dPlebKyspCamopevXrh3Xff9Vp2+dFqfK0R69q1q9f7mjRp4tP7GjduDJ1Oh/bt23tNb9euHTZt2uQ1LSoqClFRUUhJSUGPHj3QoEEDfP755/jLX/6C5cuX4+jRo9i6dSs0Gnf91/Lly9GgQQN88cUXuPfee/H9999j9erVcq2mEAIulws6nQ7vvvsu/vKXv1zWNhARUf0SSjEU4yfGT+UxfvINk1JERAEgSdJlP0IXDJ5AoLx27drB4XBg27ZtcvPzCxcuICMjw+smnJSUhAkTJmDChAmYPn06/v3vf2Py5MlyjVn5/glatGgBvV6PHTt2yIFQbm4uDh48WGUNkMd1112H/fv3VyhndSRJQtu2bbFlyxYAwN13341p06Zh/vz5mD9/vte8ixYtQlFREe6///4al2uxWGCxWHwqg8vlgtVqlf8+efIkUlNT5RFZPEGIR222z8NsNl/W+wwGA66//npkZGR4TT948CCSk5OrfJ8QAkIIebuKioqg0WggSZI8j+dvT23i1q1bvT4LX3zxBV5++WVs2bIFiYmJl70NRERUv4RSDMX4ifFTeYyffBMaZzcREQVdSkoKhg4divHjx2Px4sWwWCx4+umnkZiYiKFDhwIAHn30UQwcOBCtW7fGxYsX8cMPP6Bdu3YAgOTkZEiShDVr1mDQoEEwm82wWCwYM2YMnnzySTRs2BCxsbGYMWNGhRtyZaZNm4YePXpg0qRJGDduHMLDw7F//36kp6fjrbfewp49ezBjxgyMHj0a7du3h8FgwI8//oj3338f06ZNA+CuEXzllVfwxBNPwGQyYfTo0dDr9fjiiy/wzDPPYM6cOejYsaPXei8NOACgQ4cO0Ov1XtMKCwvxwgsvYMiQIYiPj8f58+fx9ttv4+TJkxg+fDgAd0B18803Izk5GfPmzZOHOgaAuLi4arffUwtWUFCAc+fOYc+ePTAYDBVq6corKCjAoUOH5L8zMzOxZ88eNGzYUA5qn3zySdxzzz246aabkJqaiq+//hr/+9//sH79egDuRwY+/vhj9O/fHzExMThx4gReeuklmM1mDBo0CADQr18/PPnkk5g4cSImT54Ml8uFl156CTqdDqmpqQAgfy48fv75Z2g0mgr7+3K2gYiISCkYP7kxfmL8VKU6GQcwRHFIYyLyl/o2pLGHZ0jjqKgoYTabRVpamteQxpMmTRItW7YURqNRxMTEiNGjR4vz58/Lr8+ePVvExcUJSZKqHdK4W7du4umnn5bfl5ycLBYsWFChPNu3bxf9+vUTERERIjw8XFx99dXihRdeEEIIce7cOTFlyhTRsWNHERERISwWi+jUqZOYN2+ecDqdXstZtWqVuPHGG0V4eLg85PKKFSu85qlsWGbPz/HjxyuUrbi4WNx5550iISFBGAwGER8fL4YMGSK2b98uz7NkyZIql1mTyt6TnJxc7Xt++OGHSt/nORYe7733nmjVqpUwmUyic+fOYtWqVfJrJ0+eFAMHDhSxsbFCr9eLpk2bipEjR4oDBw54LeObb74RvXv3FlFRUaJBgwbilltuEVu3bq2ybL4OaezrNtRWXQxprBbcH0TkL4yfGD8xflJf/CQJUQdjhYeovLw8REVFITc3t970XE9EylBSUoLMzEw0b94cJpMp2MUJKYWFhUhMTMT8+fPxwAMPBHz92dnZ6Nu3LyIjI/HVV18hLCws4GWgwKvunGW84I37g4j8hfHT5WP8RMFQF/ETR98jIqKg2r17N1asWIHDhw9j165dGDVqFADITdoDrWHDhvj222/Rt29fbN26NShlICIiIqoO4yeqL9inFBERBd28efOQkZEBg8GALl26YOPGjWjcuHHQytOoUSM899xzQVs/ERERUU0YP1F9wKQUEREF1bXXXoudO3cGuxhEREREIYPxE9UXfHyPiIiIiIiIiIgCjkkpIiIiIiIiIiIKOCaliIiIiIiIiIgo4JiUIiIiIiIiIiKigGNSioiIiIiIiIiIAo6j7/lRni0PJ/JPQCtpkdIgBRqJOUAiIiIiIsf5YrisTgCAPi4MkpZxMhGRGjEp5SfFjmIM+mwQcq25AIB72tyDf/b4Z5BLRUREREQUXIU7z+DiJwflv03tG6Hx/e2DWCIiIgoWVkn4SXZJtpyQAoDM3MwgloaIyHdjx46FJEmQJAkGgwGtWrXC7Nmz4XA4rmi569evhyRJyMnJqZuC+iAzMxMjR45EQkICTCYTmjZtiqFDh+LAgQNe861ZswZ9+vSBxWJBWFgYrr/+eixdutRrnqNHj0KSJOzZs8fn9c+cORNt27ZFeHg4GjRogFtvvRXbtm3zWuYDDzyA5s2bw2w2o2XLlpgxYwZsNlu1yz116hRGjhyJ1q1bQ6PR4NFHH/WpPAsXLsTVV1+NyMhIREZGomfPnvjqq6/k17OzszF58mS0adMGZrMZV111FaZMmYLc3LL72dKlS+XPx6U/Z8+eleezWq34xz/+geTkZBiNRjRr1gzvv/++V3n+9a9/yetKSkrCY489hpKSkmq34bPPPkP//v3RqFGjWh8PIlIGx7ki9y9ayftvohDG+InxE+Ony8OWUgEiIIJdBCIinw0YMABLliyB1WrFl19+iYkTJ0Kv12P69OnBLhoAwGazwWAwVDuP3W5Hv3790KZNG3z22WeIj4/HiRMn8NVXX3kFdm+++SYeffRRTJs2DQsXLoTBYMAXX3yBCRMm4Ndff8W8efMuu5ytW7fGW2+9hRYtWqC4uBgLFixA//79cejQIcTExODAgQNwuVxYvHgxWrVqhV9//RXjx49HYWFhteu1Wq2IiYnBP//5TyxYsMDn8jRt2hQvvfQSUlJSIITABx98gKFDh2L37t3o0KEDsrKykJWVhXnz5qF9+/b4888/MWHCBGRlZWHlypUAgHvuuQcDBgzwWu7YsWNRUlKC2NhYedqIESNw5swZvPfee2jVqhVOnToFl8slv758+XI8/fTTeP/999GrVy8cPHhQDuhfe+21KrehsLAQN9xwA0aMGIHx48f7vO1EpCClYbE+Phz2EwVgmEz1BeMnxk+Mny6DULHc3FwBQOTm5tb5so/nHRcdl3aUf8Z8NabO10FEylVcXCz2798viouLg12UWhszZowYOnSo17R+/fqJHj16iOzsbDF69GgRHR0tzGazGDBggDh48KA839GjR8Xtt98uoqOjRVhYmGjfvr1Yu3atyMzMFHB/7ZB/xowZI4QQIi8vT4wcOVKEhYWJuLg48dprr4k+ffqIRx55RF5ucnKymD17thg9erSwWCzyezdu3ChuuOEGYTKZRNOmTcXkyZNFQUGBEEKI3bt3CwDi6NGjVW7rsWPHhF6vF1OnTq3w2htvvCEAiJ9++kkIIeRt2L17d+13ainPfefbb7+tcp5XXnlFNG/e3OdlXrqvaqtBgwbi//7v/6p8/b///a8wGAzCbrdX+vrZs2eFXq8X//nPf+RpX331lYiKihIXLlyocrkTJ04Ut9xyi9e0qVOnit69e/tU7ro4HuVVd876M14IRdwfdKVyvjwijk/bIE6/tVscn7ZBnHp1R7CLRArB+InxU2UYP5Wpj/ETH98LECFYBUSkakIAtsLg/NTB9cdsNsNms2Hs2LH4+eefsXr1amzduhVCCAwaNAh2ux0AMHHiRFitVmzYsAH79u3Dyy+/jIiICCQlJeHTTz8FAGRkZODUqVN4/fXXAQBTp07F5s2bsXr1aqSnp2Pjxo3YtWtXhTLMmzcPnTt3xu7du/Hss8/i8OHDGDBgAIYNG4ZffvkFH3/8MTZt2oRJkyYBAGJiYqDRaLBy5Uo4nc5Kt2vlypWw2+144oknKrz20EMPISIiAitWrLji/Qe4ayffffddREVFoXPnzlXOl5ubi4YNG9bJOqvjdDrx0UcfobCwED179qy2PJGRkdDpKm9c/Z///AdhYWG4++675WmrV69G165d8corryAxMRGtW7fGE088geLiYnmeXr16YefOndi+fTsA4MiRI/jyyy8xaNCgOtpCddiwYQMGDx6MhIQESJKEVatW1fie9evX47rrroPRaESrVq0qPGpB5G+eu5IkT2CcTNUI4RiK8dOVY/xU/+MnPr7nJ5c+rsfH94hUzl4EvJgQnHU/kwUYwi/rrUIIfPfdd1i3bh0GDhyIVatWYfPmzejVqxcAYNmyZUhKSsKqVaswfPhwHDt2DMOGDUOnTp0AAC1atJCX5QkUYmNjER0dDQDIz8/HBx98gOXLl6Nv374AgCVLliAhoeK+uuWWW/D444/Lf48bNw6jRo2S+wNISUnBG2+8gT59+mDhwoVITEzEG2+8gaeeegqzZs1C165dkZqailGjRsnlOnjwIKKiohAfH19hfQaDAS1atMDBgwcrvFYba9aswb333ouioiLEx8cjPT0djRs3rnTeQ4cO4c0337yiJu812bdvH3r27ImSkhJERETg888/R/v2lXcwfP78eTz//PN48MEHq1zee++9h5EjR8JsNsvTjhw5gk2bNsFkMuHzzz/H+fPn8fe//x0XLlzAkiVLAAAjR47E+fPnccMNN0AIAYfDgQkTJuCZZ56p2w2u5woLC9G5c2f87W9/w1133VXj/JmZmbjtttswYcIELFu2DN999x3GjRuH+Ph4pKWlBaDEROWUZqUYJVO1QjCGYvzE+Inxk+/YUipA2FKKiELJmjVrEBERAZPJhIEDB+Kee+7B2LFjodPp0L17d3m+Ro0aoU2bNvj9998BAFOmTMGcOXPQu3dvzJgxA7/88ku16zly5Ajsdju6desmT4uKikKbNm0qzNu1a1evv/fu3YulS5ciIiJC/klLS4PL5UJmpntwiYkTJ+L06dNYtmwZevbsiU8++QQdOnRAenq6z/uipr4XAHdwWb4cGzdulF9LTU3Fnj17sGXLFgwYMAAjRozw6tDS4+TJkxgwYACGDx/u9ax/+eVOmDDBpzJv3LjR633Lli2TX2vTpg327NmDbdu24eGHH8aYMWOwf//+CsvIy8vDbbfdhvbt22PmzJmVrmfr1q34/fff8cADD3hNd7lckCQJy5YtQ7du3TBo0CC89tpr+OCDD+TavvXr1+PFF1/EO++8g127duGzzz7D2rVr8fzzz9e4T6nMwIEDMWfOHNx5550+zb9o0SI0b94c8+fPR7t27TBp0iTcfffdtepbg+iKyU2lmJWi+oXxUxnGT4yffMWWUgHCllJEKqcPc9e2BWvdtZSamip3WpmQkACdTofVq1fX+L5x48YhLS0Na9euxTfffIO5c+di/vz5mDx58uWU3Et4uHdNZUFBAR566CFMmTKlwrxXXXWV/LvFYsHgwYMxePBgzJkzB2lpaZgzZw769euHlJQU5ObmIisrq0Ltos1mw+HDh31qPTJkyBCvYDMxMdGr3K1atUKrVq3Qo0cPpKSk4L333vPq9DQrKwupqano1asX3n33Xa9llx8dJTIyssayAO4AtPz7mjRpIv/uGREIALp06YIdO3bg9ddfx+LFi+V58vPzMWDAAFgsFnz++efQ6/WVruf//u//cM0116BLly5e0+Pj45GYmIioqCh5Wrt27SCEwIkTJ5CSkoJnn30Wo0ePxrhx4wAAnTp1QmFhIR588EH84x//qHaf0uXbunUrbr31Vq9paWlp1Y5AZLVaYbVa5b/z8vL8VTwioopCKIZi/MT4ifFT7TEp5S+X5KDYUopI5STpsh+hCwZPIFBeu3bt4HA4sG3bNrn5+YULF5CRkeHVfDkpKQkTJkzAhAkTMH36dPz73//G5MmT5Rqz8v0TtGjRAnq9Hjt27JADodzcXBw8eBA33XRTtWW87rrrsH///grlrI4kSWjbti22bNkCALj77rsxbdo0zJ8/H/Pnz/ead9GiRSgqKsL9999f43ItFgssFotPZXC5XF5f8E+ePInU1FR06dIFS5YsgUbj3Yi5NtvnYTabfX7fpeXJy8tDWloajEYjVq9eDZPJVOn7CgoK8N///hdz586t8Frv3r3xySefoKCgABEREQDcTf01Gg2aNm0KACgqKqqwrVqtFoD7nlmbfUq+O336tFeQDbiD7ry8PBQXF3s9RuAxd+5czJo1K1BFJFUojYul6uciAhBSMRTjJ8ZPjJ9qj0mpAGFLKSIKdSkpKRg6dCjGjx+PxYsXw2Kx4Omnn0ZiYiKGDh0KAHj00UcxcOBAtG7dGhcvXsQPP/yAdu3aAQCSk5MhSRLWrFmDQYMGwWw2w2KxYMyYMXjyySfRsGFDxMbGYsaMGdBoNJCk6r+tTJs2DT169MCkSZMwbtw4hIeHY//+/UhPT8dbb72FPXv2YMaMGRg9ejTat28Pg8GAH3/8Ee+//z6mTZsGwF0j+Morr+CJJ56AyWTC6NGjodfr8cUXX+CZZ57BnDlz0LFjR6/1ZmRkVChLhw4dKtSGFRYW4oUXXsCQIUMQHx+P8+fP4+2338bJkycxfPhwAO6A6uabb0ZycjLmzZuHc+fOye+Pi4urdvs9NXkFBQU4d+4c9uzZA4PBUGX/BgAwffp0DBw4EFdddRXy8/OxfPlyrF+/HuvWrQPgDqj69++PoqIifPjhh8jLy5NbxcTExMhBDwB8/PHHcDgcuO+++yqsZ+TIkXj++efx17/+FbNmzcL58+fx5JNP4m9/+5uc9Bg8eDBee+01XHvttejevTsOHTqEZ599FoMHD/Zaz6Wys7Nx7NgxZGW5a809xyMuLq7GfUaXZ/r06Zg6dar8d15eHpKSkoJYIqo3PJd5Vt5SPcb4yY3xkxvjp0rUyTiAIcqfQxr/mfun6Li0o+i0pIP4b/924uN7e9T5OohIuerbkMYeniGNo6KihNlsFmlpaV5DGk+aNEm0bNlSGI1GERMTI0aPHi3Onz8vvz579mwRFxcnJEmqdkjjbt26iaefflp+X3JysliwYEGF8mzfvl3069dPREREiPDwcHH11VeLF154QQghxLlz58SUKVNEx44dRUREhLBYLKJTp05i3rx5wul0ei1n1apV4sYbbxTh4eHykMsrVqzwmqeyYZk9P8ePH69QtuLiYnHnnXeKhIQEYTAYRHx8vBgyZIjYvn27PM+SJUuqXGZNKntPcnJyte/529/+JpKTk4XBYBAxMTGib9++4ptvvpFf/+GHH6osT2ZmpteyevbsKUaOHFnlun7//Xdx6623CrPZLJo2bSqmTp0qioqK5NftdruYOXOmaNmypTCZTCIpKUn8/e9/FxcvXqx2G6raZw6GllcAAQAASURBVDNmzKj2fTWpiyGNgw2A+Pzzz6ud58Ybb6wwBPb7778vIiMjfV5PqOwPUq6Law6L49M2iDOL9orj0zaIrLnbgl0kUgjGT4yfGD+pL36ShFBv1UReXh6ioqLk4Rrr0rG8Y7jt89uQfEbg1ffdTS3bHfi9TtdBRMpVUlKCzMxMNG/evMrmu1S5wsJCJCYmYv78+RU6gAyE7Oxs9O3bF5GRkfjqq68QFlb7Prko9FR3zvozXqhLkiTh888/xx133FHlPNOmTcOXX36Jffv2ydNGjhyJ7OxsfP311z6tJ1T2BylXztojKNh4EsYWUbAeyYU22oj4p7vV/Eaq9xg/XT7GTxQMdRE/cfQ9P9O4gl0CIiJl2717N1asWIHDhw9j165dGDVqFADITdoDrWHDhvj222/Rt29fbN26NShlIPJVQUEB9uzZIz+OkJmZiT179uDYsWMA3I8clO/XY8KECThy5AieeuopHDhwAO+88w7++9//4rHHHgtG8Umt5NH3gloKopDG+InqC/Yp5SeePqTK32uFEDU+40tEpEbz5s1DRkYGDAYDunTpgo0bN6Jx48ZBK0+jRo3w3HPPBW39RL76+eefkZqaKv/t6ftpzJgxWLp0KU6dOiUnqACgefPmWLt2LR577DG8/vrraNq0Kf7v//7Pp1GSiOqcJy5W7XMbRFeG8RPVB0xK+ZlU/iYrRNnNl4iIAADXXnstdu7cGexiEIWkm2++udoRfpcuXVrpe3bv3u3HUhHVFrNSRLXF+InqCz6+5yeVBojq7b6LiIiIiMibPPpeUEtBRERBxKSUn1VoKUVEREREpGaemLj0CQJGyERE6sWklJ95PazHpBQRERERkTeGyEREqsWklJ94Ojovf5Otrs8HIiIiIiI1YVerRETEpJSfsaUUEREREVElJHYqRUSkdkxK+YmnpRSTUkRERERE5VwaEjNEJiJSLSal/I0dnRMRERERVcTH94iIVI9JKT9jSykiCjVjx46FJEmQJAkGgwGtWrXC7Nmz4XA4rmi569evhyRJyMnJqZuC+iAzMxMjR45EQkICTCYTmjZtiqFDh+LAgQNe861ZswZ9+vSBxWJBWFgYrr/+eixdutRrnqNHj0KSJOzZs8fn9c+cORNt27ZFeHg4GjRogFtvvRXbtm3zWuYDDzyA5s2bw2w2o2XLlpgxYwZsNlu1yz116hRGjhyJ1q1bQ6PR4NFHH/W5TB4vvfQSJEmq8N7Dhw/jzjvvRExMDCIjIzFixAicOXPGa54XXngBvXr1QlhYGKKjoytdvuczVP7no48+kl//7LPP0K9fP3k9PXv2xLp162os92effYb+/fujUaNGtT4eRKQwnsf3GCJTPcD4ifET46fLw6SUv3hGumVLKSIKQQMGDMCpU6fwxx9/4PHHH8fMmTPx6quvBrtYspqCDgCw2+3o168fcnNz8dlnnyEjIwMff/wxOnXq5BXYvfnmmxg6dCh69+6Nbdu24ZdffsG9996LCRMm4IknnriicrZu3RpvvfUW9u3bh02bNqFZs2bo378/zp07BwA4cOAAXC4XFi9ejN9++w0LFizAokWL8Mwzz1S7XKvVipiYGPzzn/9E586da12uHTt2YPHixbj66qu9phcWFqJ///6QJAnff/89Nm/eDJvNhsGDB8Plcsnz2Ww2DB8+HA8//HC161myZAlOnTol/9xxxx3yaxs2bEC/fv3w5ZdfYufOnUhNTcXgwYOxe/fuapdZWFiIG264AS+//HKtt5uIiMifGD8xfmL8dBmEiuXm5goAIjc3t86XffjiYdFxaUcxfHYHsb9NW7G/TVvhyM+v8/UQkTIVFxeL/fv3i+Li4mAXpdbGjBkjhg4d6jWtX79+okePHiI7O1uMHj1aREdHC7PZLAYMGCAOHjwoz3f06FFx++23i+joaBEWFibat28v1q5dKzIzMwXc6Xr5Z8yYMUIIIfLy8sTIkSNFWFiYiIuLE6+99pro06ePeOSRR+TlJicni9mzZ4vRo0cLi8Uiv3fjxo3ihhtuECaTSTRt2lRMnjxZFBQUCCGE2L17twAgjh49WuW2Hjt2TOj1ejF16tQKr73xxhsCgPjpp5+EEELeht27d9d+p5by3He+/fbbKud55ZVXRPPmzX1e5qX7qib5+fkiJSVFpKenV3jvunXrhEaj8bov5uTkCEmSRHp6eoVlLVmyRERFRVW6HgDi888/97lcQgjRvn17MWvWLJ/mrYvjUV5156w/44VQxP1BVyp71R/i+LQN4tx/fhPHp20QJ2dvCXaRSCEYPzF+qgzjp+qFevzEllJ+Ind0Xr51FFtKEamWEAJF9qKg/Ig6uPaYzWbYbDaMHTsWP//8M1avXo2tW7dCCIFBgwbBbrcDACZOnAir1YoNGzZg3759ePnllxEREYGkpCR8+umnAICMjAycOnUKr7/+OgBg6tSp2Lx5M1avXo309HRs3LgRu3btqlCGefPmoXPnzti9ezeeffZZHD58GAMGDMCwYcPwyy+/4OOPP8amTZswadIkAEBMTAw0Gg1WrlwJp9NZ6XatXLkSdru90hq9hx56CBEREVixYsUV7z/AXTv27rvvIioqqtraudzcXDRs2LBO1lmZiRMn4rbbbsOtt95a4TWr1QpJkmA0GuVpJpMJGo0GmzZtuqx1NW7cGN26dcP7779f7WfR5XIhPz/fr9tORMrCwffIF6EcQzF+unKMn+p//KQLdgHqO/YpRUQAUOwoRvfl3YOy7m0jtyFMH3ZZ7xVC4LvvvsO6deswcOBArFq1Cps3b0avXr0AAMuWLUNSUhJWrVqF4cOH49ixYxg2bBg6deoEAGjRooW8LM/NMjY2Vn6OPj8/Hx988AGWL1+Ovn37AnA3WU5ISKhQlltuuQWPP/64/Pe4ceMwatQo+Zn+lJQUvPHGG+jTpw8WLlyIxMREvPHGG3jqqacwa9YsdO3aFampqRg1apRcroMHDyIqKgrx8fEV1mcwGNCiRQscPHjwsvadx5o1a3DvvfeiqKgI8fHxSE9PR+PGjSud99ChQ3jzzTcxb968K1pnVT766CPs2rULO3bsqPT1Hj16IDw8HNOmTcOLL74IIQSefvppOJ1OnDp1qlbrmj17Nm655RaEhYXhm2++wd///ncUFBRgypQplc4/b948FBQUYMSIEbXeLiIKURJ7OqeahWIMxfiJ8RPjJ9+xpZS/sU8pIgpBa9asQUREBEwmEwYOHIh77rkHY8eOhU6nQ/fuZYFho0aN0KZNG/z+++8AgClTpmDOnDno3bs3ZsyYgV9++aXa9Rw5cgR2ux3dunWTp0VFRaFNmzYV5u3atavX33v37sXSpUsREREh/6SlpcHlciEzMxOAu6bp9OnTWLZsGXr27IlPPvkEHTp0QHp6us/7wmAw1DjPsmXLvMqxceNG+bXU1FTs2bMHW7ZswYABAzBixAicPXu2wjJOnjyJAQMGYPjw4Rg/frw8vfxyJ0yY4FOZN27c6PW+ZcuW4fjx43jkkUewbNkymEymSt8XExODTz75BP/73/8QERGBqKgo5OTk4LrrroNGU7uQ4dlnn0Xv3r1x7bXXYtq0aXjqqaeq7Fdj+fLlmDVrFv773/8iNjYWQPX7lIjqCU8/5wyRqZ5g/FSG8RPjJ1+xpZSfeJrYsaUUEQGAWWfGtpHbap7RT+uurdTUVCxcuBAGgwEJCQnQ6XRYvXp1je8bN24c0tLSsHbtWnzzzTeYO3cu5s+fj8mTJ19O0b2Eh4d7/V1QUICHHnqo0pqjq666Sv7dYrFg8ODBGDx4MObMmYO0tDTMmTMH/fr1Q0pKCnJzc5GVlVWhdtFms+Hw4cNIS0ursWxDhgzxCjYTExO9yt2qVSu0atUKPXr0QEpKCt577z1Mnz5dnicrKwupqano1asX3n33Xa9llx8dJTIyssayAO4AtPz7mjRpgu+++w5nz57FddddJ093Op3YsGED3nrrLVitVmi1WvTv3x+HDx/G+fPnodPpEB0djbi4OK9a28vRvXt3PP/887BarV7N2z/66COMGzcOn3zyiVeT+Or2KRGFuEtDYobIVI1QiqEYPzF+YvxUe0xK+Znk1aUU77hEaiVJ0mU/QhcMnkCgvHbt2sHhcGDbtm1y8/MLFy4gIyMD7du3l+dLSkrChAkTMGHCBEyfPh3//ve/MXnyZLnGrHz/BC1atIBer8eOHTvkQCg3NxcHDx7ETTfdVG0Zr7vuOuzfv79COasjSRLatm2LLVu2AADuvvtuTJs2DfPnz8f8+fO95l20aBGKiopw//3317hci8UCi8XiUxlcLhesVqv898mTJ5GamoouXbpgyZIlFWrUarN9HmazucL7+vbti3379nlN++tf/4q2bdti2rRp0Gq1Xq95msh///33OHv2LIYMGVLrcpS3Z88eNGjQwCugWrFiBf72t7/ho48+wm233eY1f232KRGFKD6+Rz4IpRiK8RPjJ8ZPtceklJ8IVvkQUT2TkpKCoUOHYvz48Vi8eDEsFguefvppJCYmYujQoQCARx99FAMHDkTr1q1x8eJF/PDDD2jXrh0AIDk5GZIkYc2aNRg0aBDMZjMsFgvGjBmDJ598Eg0bNkRsbCxmzJgBjUYDqYYvK9OmTUOPHj0wadIkjBs3DuHh4di/fz/S09Px1ltvYc+ePZgxYwZGjx6N9u3bw2Aw4Mcff8T777+PadOmAXDXCL7yyit44oknYDKZMHr0aOj1enzxxRd45plnMGfOHHTs2NFrvRkZGRXK0qFDB+j1eq9phYWFeOGFFzBkyBDEx8fj/PnzePvtt3Hy5EkMHz4cgDuguvnmm5GcnIx58+bJQx0DQFxcXLXb76nJKygowLlz57Bnzx4YDAavALc8i8VSYVvCw8PRqFEjr+lLlixBu3btEBMTg61bt+KRRx7BY4895vVIwLFjx5CdnY1jx47B6XTKZWnVqhUiIiLwv//9D2fOnEGPHj1gMpmQnp6OF1980atD1OXLl2PMmDF4/fXX0b17d5w+fRqAOyCMioqqcrs9683KygJQdjzi4uJq3GdEpDDyZZ5xM9VfjJ/cGD8xfqpSnYwDGKL8OaTxweyDouPSjmLkc+3F1usHim1dbhX28+frfD1EpEz1bUhjD8+QxlFRUcJsNou0tDSvIY0nTZokWrZsKYxGo4iJiRGjR48W58td+2bPni3i4uKEJEnVDmncrVs38fTTT8vvS05OFgsWLKhQnu3bt4t+/fqJiIgIER4eLq6++mrxwgsvCCGEOHfunJgyZYro2LGjiIiIEBaLRXTq1EnMmzdPOJ1Or+WsWrVK3HjjjSI8PFwecnnFihVe81Q2LLPn5/jx4xXKVlxcLO68806RkJAgDAaDiI+PF0OGDBHbt2+X51myZEmVy6xJZe9JTk6u8X3lVTYc8rRp00STJk2EXq8XKSkpYv78+cLlcnnNM2bMmErX/8MPPwghhPjqq6/ENddcIx+Xzp07i0WLFnnt9z59+lS6DM/noipV7bMZM2bUatsvVRdDGqsF9wddqezP/xDHp20QF1b8Lo5P2yBOPLc52EUihWD8xPiJ8ZP64idJCPU+U5aXl4eoqCjk5ub6/Jypr/64+AfuWn0XuhwKw/Xn5gIAHppzNXRVjBhARPVLSUkJMjMz0bx58yo7RaTKFRYWIjExEfPnz8cDDzwQ8PVnZ2ejb9++iIyMxFdffYWwsNB4ZICuTHXnrD/jhVDE/UFX6uLnf6Bw22mEXRuLot1nIRm1SJzVK9jFIgVg/HT5GD9RMNRF/MTR9/zE8/ie2d6w3ETV5v+IiKq0e/durFixAocPH8auXbswatQoAJCbtAdaw4YN8e2336Jv377YunVrUMpARKQKnqeMGCIT1RrjJ6ov2KeUn2lEWcdnKm6URkRUrXnz5iEjIwMGgwFdunTBxo0b5Y4ig6FRo0Z47rnngrZ+IiIiopowfqL6gEkpP9OgXFLKxaQUEdGlrr32WuzcuTPYxSAiokCT2FSK6HIxfqL6go/v+YmnVZTGVX6ISN5wiYiIiEjlPCExc1JERKrHllJ+pnFpYSv8GpJkBlxtg10cIiIiIiIiIiJFYFLKzww2CS7bfgCA0+EMcmmIiIiIiJRBKn18j92uEhGplyIe31u4cCGuvvpqREZGIjIyEj179sRXX31V5fxLly6FJEleP0obMlTY7BiwA7jqrEue5rCWBLFEREREREQK4nl8j8/vERGpliJaSjVt2hQvvfQSUlJSIITABx98gKFDh2L37t3o0KFDpe+JjIxERkaG/Lckd5SoDI4NP6HpqaYo0ZUlomwltiCWiIiIiIhIAS7tU4qIiFRLEUmpwYMHe/39wgsvYOHChfjpp5+qTEpJkoS4uLhAFO+yWLMvwqHTek2zsaVUyLI53QlFvUavuAQoERERUUhjQykiItVSxON75TmdTnz00UcoLCxEz549q5yvoKAAycnJSEpKwtChQ/Hbb78FsJQ1yy/yJC50gBQOALCXFAevQHTZZm2dhS4fdkGXD7tg0veTgl0cIiIiopDmGaUarOgjIlI9xSSl9u3bh4iICBiNRkyYMAGff/452rdvX+m8bdq0wfvvv48vvvgCH374IVwuF3r16oUTJ05Uuw6r1Yq8vDyvH3/580xZKylJ0gMAbExKhaQNxzeU/X5iA+wuO/6b8V8cyTkSxFIR+c/YsWPl/voMBgNatWqF2bNnw+FwXNFy169fD0mSkJOTUzcF9UFmZiZGjhyJhIQEmEwmNG3aFEOHDsWBAwe85luzZg369OkDi8WCsLAwXH/99Vi6dKnXPEePHoUkSdizZ4/P6585cybatm2L8PBwNGjQALfeeiu2bdvmtcwHHngAzZs3h9lsRsuWLTFjxgzYbNU/7n3q1CmMHDkSrVu3hkajwaOPPupzmU6ePIn77rsPjRo1gtlsRqdOnfDzzz/Lr5c//p6fAQMGeC2jWbNmFeZ56aWX5NczMjKQmpqKJk2awGQyoUWLFvjnP/8Ju93utZycnBxMnDgR8fHxMBqNaN26Nb788stqy//ZZ5+hf//+aNSoUa2PBxEpjCcnxZZSVA8wfmL8xPjp8iji8T3AnWjas2cPcnNzsXLlSowZMwY//vhjpYmpnj17erWi6tWrF9q1a4fFixfj+eefr3Idc+fOxaxZs/xS/ku55P7NBSAZAAAOqzUg66a6ZXN5X9xW/L4Cr/78KgBg35h9wSgSkd8NGDAAS5YsgdVqxZdffomJEydCr9dj+vTpwS4aAMBms8FgMFQ7j91uR79+/dCmTRt89tlniI+Px4kTJ/DVV195BXZvvvkmHn30UUybNg0LFy6EwWDAF198gQkTJuDXX3/FvHnzLrucrVu3xltvvYUWLVqguLgYCxYsQP/+/XHo0CHExMTgwIEDcLlcWLx4MVq1aoVff/0V48ePR2FhYbXrtVqtiImJwT//+U8sWLDA5/JcvHgRvXv3RmpqKr766ivExMTgjz/+QIMGDbzm8xx/D6PRWGFZs2fPxvjx4+W/LRaL/Lter8f999+P6667DtHR0di7dy/Gjx8Pl8uFF198EYD7GPbr1w+xsbFYuXIlEhMT8eeffyI6OrrabSgsLMQNN9yAESNGeK2fiEIZs1JUPzB+YvzE+OkyCIXq27evePDBB32e/+677xb33ntvtfOUlJSI3Nxc+ef48eMCgMjNzb3S4law+PHXxLwRt4l5I4aI+SMfFPNG3Cb2frqyztdD/td9WXfRcWlH+WfSt5Pk34mqUlxcLPbv3y+Ki4uDXZRaGzNmjBg6dKjXtH79+okePXqI7OxsMXr0aBEdHS3MZrMYMGCAOHjwoDzf0aNHxe233y6io6NFWFiYaN++vVi7dq3IzMwUcH/rkH/GjBkjhBAiLy9PjBw5UoSFhYm4uDjx2muviT59+ohHHnlEXm5ycrKYPXu2GD16tLBYLPJ7N27cKG644QZhMplE06ZNxeTJk0VBQYEQQojdu3cLAOLo0aNVbuuxY8eEXq8XU6dOrfDaG2+8IQCIn376SQgh5G3YvXt37XdqqdzcXAFAfPvtt1XO88orr4jmzZv7vMxL91V1pk2bJm644YZq56ns+F8qOTlZLFiwwLcClnrssce81r1w4ULRokULYbPZarUcj7o4HuVVd856jps/4oVQxP1BV+rCJxni+LQN4uIXh8TxaRvE8ekbgl0kUgjGT4yfKsP4qX7HT4p5fO9SLpcLVh9bFjmdTuzbtw/x8fHVzmc0GhEZGen14z9lNT4S3I/v2W1sKRWKPJ2cexQ7+Bgm1Z4QAq6ioqD8CHHlNdBmsxk2mw1jx47Fzz//jNWrV2Pr1q0QQmDQoEFys+KJEyfCarViw4YN2LdvH15++WVEREQgKSkJn376KQB30+RTp07h9ddfBwBMnToVmzdvxurVq5Geno6NGzdi165dFcowb948dO7cGbt378azzz6Lw4cPY8CAARg2bBh++eUXfPzxx9i0aRMmTXL3/RYTEwONRoOVK1fC6XRWul0rV66E3W7HE088UeG1hx56CBEREVixYsUV7z/AXbP17rvvIioqCp07d65yvtzcXDRs2LBO1nmp1atXo2vXrhg+fDhiY2Nx7bXX4t///neF+davX4/Y2Fi0adMGDz/8MC5cuFBhnpdeegmNGjXCtddei1dffbXaxxMOHTqEr7/+Gn369PEqS8+ePTFx4kQ0adIEHTt2xIsvvljlsSKieuTS0ffYUIqqEcoxFOOnK8f4qf7HT4p4fG/69OkYOHAgrrrqKuTn52P58uVYv3491q1bBwC4//77kZiYiLlz5wJwN3nr0aMHWrVqhZycHLz66qv4888/MW7cuGBuRtVKH9+zlXD0vVBht1mx95svUZyfh/YZYTicWIiCMPcFo9jJpBTVniguRsZ1XYKy7ja7dkIKC7us9woh8N1332HdunUYOHAgVq1ahc2bN6NXr14AgGXLliEpKQmrVq3C8OHDcezYMQwbNgydOnUCALRo0UJelidQiI2NlZsY5+fn44MPPsDy5cvRt29fAMCSJUuQkJBQoSy33HILHn/8cfnvcePGYdSoUXJ/ACkpKXjjjTfQp08fLFy4EImJiXjjjTfw1FNPYdasWejatStSU1MxatQouVwHDx5EVFRUpZUaBoMBLVq0wMGDBy9r33msWbMG9957L4qKihAfH4/09HQ0bty40nkPHTqEN99884qavFfnyJEjWLhwIaZOnYpnnnkGO3bswJQpU2AwGDBmzBgA7qbnd911F5o3b47Dhw/jmWeewcCBA7F161Zote7+EqdMmYLrrrsODRs2xJYtWzB9+nScOnUKr732mtf6evXqhV27dsFqteLBBx/E7Nmzvcry/fffY9SoUfjyyy9x6NAh/P3vf4fdbseMGTP8sv1ERBR6QjGGYvzE+Inxk+8U0VLq7NmzuP/++9GmTRv07dsXO3bswLp169CvXz8AwLFjx3Dq1Cl5/osXL2L8+PFo164dBg0ahLy8PGzZsqXKjtGDolxW3dPR+e4N6fjspZmwMzmleL9vXI8f/9972L7qE1z7RzSuPRgNs84MAChx8PhR/bdmzRpERETAZDJh4MCBuOeeezB27FjodDp0795dnq9Ro0Zo06YNfv/9dwDum+2cOXPQu3dvzJgxA7/88ku16zly5Ajsdju6desmT4uKikKbNm0qzNu1a1evv/fu3YulS5ciIiJC/klLS4PL5UJmZiYAd83j6dOnsWzZMvTs2ROffPIJOnTogPT0dJ/3RU19LwDu4LJ8OTZu3Ci/lpqaij179mDLli0YMGAARowYgbNnz1ZYxsmTJzFgwAAMHz7c61n/8sudMGGCT2XeuHGj1/uWLVsGwN0K+brrrsOLL76Ia6+9Fg8++CDGjx+PRYsWye+99957MWTIEHTq1Al33HEH1qxZgx07dmD9+vXyPFOnTsXNN9+Mq6++GhMmTMD8+fPx5ptvVmjh/PHHH2PXrl1Yvnw51q5d6xUsulwuxMbG4t1330WXLl1wzz334B//+Idclur2KRHVE57R99hSiuoJxk9lGD8xfvKVIlpKvffee9W+Xv5AAsCCBQtq1TFZsEladwdoxYX5yNz9M05m7EezztcFuVRUnYunTgIAdEYjHFYrDHYJFr0FxY5iJqXoskhmM9rs2hm0dddWamqq3GllQkICdDodVq9eXeP7xo0bh7S0NKxduxbffPMN5s6di/nz52Py5MmXU3Qv4eHhXn8XFBTgoYcewpQpUyrMe9VVV8m/WywWDB48GIMHD8acOXOQlpaGOXPmoF+/fkhJSUFubi6ysrIq1C7abDYcPnwYaWlpNZZtyJAhXsFmYmKiV7lbtWqFVq1aoUePHkhJScF7773n1elpVlYWUlNT0atXL7z77rteyy4/Ooqvj5137drV631NmjQBAMTHx1eowGnXrp38aEBlWrRogcaNG+PQoUNybeylunfvDofDgaNHj3oFxElJSQCA9u3bw+l04sEHH8Tjjz8OrVaL+Ph46PV6ufbQU5bTp0/DZrNVu0+JiEg9QimGYvzE+MmD8ZPvFJGUqu+0xuuh0TWFSf8t8rLPw+UK3ec91SL/wnkAQGSTJsg+dgwaISFMHwYUAw7XlQ3rSuokSdJlP0IXDJ5AoLx27drB4XBg27ZtcvPzCxcuICMjw+tGnZSUhAkTJmDChAmYPn06/v3vf2Py5MlyjVn5Z95btGgBvV6PHTt2yIFQbm4uDh48iJtuuqnaMl533XXYv39/hXJWR5IktG3bFlu2bAEA3H333Zg2bRrmz5+P+fPne827aNEiFBUV4f77769xuRaLxWv0lOpc2mfiyZMnkZqaii5dumDJkiXQaLwbMddm+zzMZnOl7+vduzcyMjK8ph08eBDJyclVLuvEiRO4cOFCtf027tmzBxqNBrGxsVXO43K5YLfb4XK5oNVq0bt3byxfvhwul0ve5oMHDyI+Ph4GgwEGg8HnfUpEIcbzRIGm/CQBydNyiqicUIqhGD8xfvJg/OQ7JqX8pHw355IkQdIlwGA0uV9zsY2y0tlL3P1G6UtvgBIk6LXuxzCZlCK1SklJwdChQzF+/HgsXrwYFosFTz/9NBITEzF06FAAwKOPPoqBAweidevWuHjxIn744Qe0a9cOAJCcnAxJkrBmzRoMGjQIZrMZFosFY8aMwZNPPomGDRsiNjYWM2bMgEajqfHLybRp09CjRw9MmjQJ48aNQ3h4OPbv34/09HS89dZb2LNnD2bMmIHRo0ejffv2MBgM+PHHH/H+++9j2rRpANw1gq+88gqeeOIJmEwmjB49Gnq9Hl988QWeeeYZzJkzBx07dvRa76VBCQB06NABer3ea1phYSFeeOEFDBkyBPHx8Th//jzefvttnDx5EsOHDwfgDqhuvvlmJCcnY968eTh37pz8/ri4uGq331OTV1BQgHPnzmHPnj0wGAzVPsr+2GOPoVevXnjxxRcxYsQIbN++He+++65cu1hQUIBZs2Zh2LBhiIuLw+HDh/HUU0+hVatWco3n1q1bsW3bNqSmpsJisWDr1q147LHHcN9998lDIy9btgx6vR6dOnWC0WjEzz//jOnTp+Oee+6R99PDDz+Mt956C4888ggmT56MP/74Ay+++GKlNbflZWdn49ixY8jKygJQdjzi4uJq3GdEpDRMQlH9x/jJjfET46cq1ck4gCHKn0MaL576qpg34jYxb8RQ8dZD34m3HvpOfPDoBDFvxG3ijx0/1fn6qG79d/Z0MW/EbWL5nKfFvBG3iZdG9hVvTHxZPPbU4+Kmj24SHZd2FB2Xdgx2MUnB6tuQxh6eIY2joqKE2WwWaWlpXkMaT5o0SbRs2VIYjUYRExMjRo8eLc6fPy+/Pnv2bBEXFyckSap2SONu3bqJp59+Wn5fVUPobt++XfTr109ERESI8PBwcfXVV4sXXnhBCCHEuXPnxJQpU0THjh1FRESEsFgsolOnTmLevHnC6XR6LWfVqlXixhtvFOHh4fKQyytWrPCap7JhmT0/x48fr1C24uJiceedd4qEhARhMBhEfHy8GDJkiNi+fbs8z5IlS6pcZk0qe09ycnKN7/vf//4nOnbsKIxGo2jbtq1499135deKiopE//79RUxMjNDr9SI5OVmMHz9enD59Wp5n586donv37iIqKkqYTCbRrl078eKLL4qSkhJ5no8++khcd9118nFp3769ePHFFyucD1u2bBHdu3cXRqNRtGjRQrzwwgvC4XBUW/6q9tmMGTNq3Pbq1MWQxmrB/UFX6sLHB8TxaRtEzpdHxPFpG8TxaRuEy+kKdrFIARg/MX5i/KS++EkSog7GCg9ReXl5iIqKQm5urs/Pmfpq8ePzUHBiPQAtTA0eAQBEmD/B+azjGPL4M0jp1qtO10d1a/mzT+DUwQOIa9sRpw/8CpPTAjR2d5z30U3PIseeBwDYN2ZfMItJClZSUoLMzEw0b94cJpMp2MUJKYWFhUhMTMT8+fPxwAMPBHz92dnZ6Nu3LyIjI/HVV18hLEQeGaArU9056894IRRxf9CVyv44A0W7z8Jyc1Pkrz8BAEh88QZIGracUjvGT5eP8RMFQ13ET4oYfa9eEp6batnNVZT+ruI8YMhw2GwAgILSlqBWY9lJZMnj43tEdWn37t1YsWIFDh8+jF27dmHUqFEAIDdpD7SGDRvi22+/Rd++fbF169aglIGISB3KJaEYHhPVCuMnqi/Yp5SfiGrurMLlCmBJqDYKsi/g1B8ZOHf0CABAI5WOalAukRiVbcdx5Q9iQBRS5s2bh4yMDBgMBnTp0gUbN25E48aNg1aeRo0a4bnnngva+omIVMGrYZS4dAIR1YDxE9UHTEr5SWW3VE9ag0kp5fp41tPIOX1K/tug9xzJsqSUxs7RE4nq0rXXXoudO4Mz1DMREQURc1BEl43xE9UXfHwvgPJL3MmM/Vm5QS4JVSWv3MgNAOByuBOIGld+uYlMKhIRERFdtsq6suDje0REqsSklJ8IUTFxcSavBADwfxsOB7o45COXy504bNm1B5q0aA2dztP8tex46pw8bYiIiIiuWA1D1xMRUf3Hb9d+YnLkVZjm6ehcx72uSC6XU665i2t9J3Iv3o6L+VHuF8slGTWCARQRERHR5fI0ivLKSbGlFBGRKjE94idaVyUjtJXeeCMM2sAWhnzicpT1FXX2z8LS39wHTRIl8ms6F5NSRERERHWLWSkiIjViUspPqht9r3G4PoAlIV95Ht0DyhpGXRVX2seUsMuvaZ1MShERERFdtkqaSlXWzRQREdV/TEoFQmmGQ6dx7+6EKGMwS0NVKN9SypOfkkOlckGTli2liIiIiK4cQyoiItXTBbsAahIdZoCwAsLFqiAlcjkd5X53JxAlyZ1QLH/EmJQiIiIi8o0tqwB56X9C2F2ARoLl/7N33vFRlOvfvmY3vRJ6NSEQqogKKEWBSEkAQ845ShEORQGJL0UUkKIY0CCCAaQJcn5I8AgcjoiIyBEjCoQiSokgJUiTFjokJCFld+f9Y3dmZ7KbCkkIPNfnE7M788wz98yGndvvc5d2Ne07RaFzgUAgeOgRkVIlhez4xjfnmu2tY2c+QdljMVvDoySDAYvZ+pkZJEcB0Whx/s/GbDJx8fhRzh/5g+sXzpWcoQJBCTN48GAkSUKSJNzc3Khfvz7vvfceJpOTWnlFYOvWrUiSxK1bt+6NoYXg9OnT9OvXj5o1a+Lh4UHt2rWJjIzk2LFjunEbN26kQ4cO+Pr64uXlRatWrYiLi9ONOXPmDJIkkZiYWOjzT506lUaNGuHt7U1AQACdO3dmz549ujmHDBlC3bp18fT0pF69ekRHR5OdnZ3vvMnJyfTr148GDRpgMBgYM2ZMoewxm81MmTJFd773338fWZM3s27dOrp27UqlSpXyvN6TJ0/y97//nSpVquDn50fv3r25fPlyka/r4MGDPPvss3h4eFCnTh1mzZpV4DVs376diIgIatasiSRJrF+/vlDXLhAIyob0Xy+RefQGWSdukXX8Jqlbz9t3ikLnggcI4T8J/0n4T8VDiFIljPZZ65NjrU/kn3mxbIwR5IsiShmMRswmmyjlxEPSFjo3m3I4+8dBTNnZ/PTZElZPGc+aaROJe/M1zv7xe+kYLhCUAOHh4SQnJ/Pnn38yduxYpk6dykcffVTWZqkU5HQA5OTk0KVLF1JSUli3bh1JSUmsWbOGZs2a6Ry7BQsWEBkZSbt27dizZw8HDx6kb9++REVFMW7cuLuys0GDBixcuJBDhw6xY8cOgoKC6Nq1K1evWp8Hx44dw2Kx8Omnn3L48GHmzp3LkiVLmDx5cr7zZmVlUaVKFd555x2aN29eaHtmzpzJ4sWLWbhwIUePHmXmzJnMmjWLBQsWqGPS09N55plnmDlzptM50tPT6dq1K5Ik8dNPP7Fz506ys7OJiIjAYrEU+rpSU1Pp2rUrgYGB7Nu3j48++oipU6eydOnSfK8hPT2d5s2bs2jRokJft0AgKENsC33Gih6295Y8CkgJVUpQ/hH+k/CfhP9UDOSHmJSUFBmQU1JS7vncca+Nl2N795Bn946UF776g7xw+Bb5i+efk2N795CXvjv+np9PcPfcSL4gx/buIc8b+KL8xbu75YXDt8jfTXlPju3dQ57bK0xe+OqP8sLhW+S3RjwtPxr3qPxo3KPyj8sWy7G9e8gb582SV74zVo7t3UP9+f3H/5X1JQnKkDt37shHjhyR79y5U9amFJlBgwbJkZGRum1dunSRW7duLd+4cUMeMGCAXKFCBdnT01MODw+Xjx8/ro47c+aM/Pzzz8sVKlSQvby85CZNmsjfffedfPr0aRnr/3GoP4MGDZJlWZZTU1Plfv36yV5eXnL16tXlOXPmyB06dJBff/11dd7AwED5vffekwcMGCD7+vqqxyYkJMjPPPOM7OHhIdeuXVseNWqUnJaWJsuyLB84cEAG5DNnzuR5rWfPnpVdXV3lN99802Hf/PnzZUD+5ZdfZFmW1Ws4cOBA0W+qDeW58+OPP+Y5ZtasWXLdunULPWfue5UfPXr0kF955RXdtn/84x9y//79Hcbmdb2bN2+WDQaD7tl569YtWZIkOT4+Ps9z576uTz75RA4ICJCzsrLUbRMmTJAbNmxYqGuRZVkG5K+//rrQ4/Mjv3+zJekvlEfE/RAUhRtrj8vnJmyXLy3YL5+bsF2+vOiAfG3lEfnchO1y6taz8rkJ2+VzE7bL5js5ZW2q4D5A+E/Cf3KG8J8ebP9JREqVOBLKyo+cY73d7jdvlZ05gjyxR0oZMJusarVkS9+TNZ+jtqZU4uaNABzbuY3MtDQAPHx8rceI2mECDbIsk5NlLpMf+R60NPL09CQ7O5vBgwezd+9eNmzYwO7du5Flme7du5OTY+1QOWLECLKysti+fTuHDh1i5syZ+Pj4UKdOHb766isAkpKSSE5OZt68eQC8+eab7Ny5kw0bNhAfH09CQgL79+93sCE2NpbmzZtz4MABpkyZwsmTJwkPD+eFF17g4MGDrFmzhh07djBy5EgAqlSpgsFgYO3atZjNZof5ANauXUtOTo7TFb3hw4fj4+PD6tWr7/r+gXV1cunSpfj7++e7OpeSkkLFihXvyTlz07ZtW7Zs2cLx48cB+P3339mxYwfdunUr9BxZWVlIkoS7u71ph4eHBwaDgR07duR5XO7r2r17N+3bt8fNzU3dFhYWRlJSEjdv3izKZQkEgvsY9Rmk1I/SPpJETSlBISjPPpTwn+4e4T89+P6TKHReCpgNMkYZJBfbl5rl7vKKBSWDXZRywWITpdSaUpJVoJIBg8VgDTvP5UjdvGitkeDp60tm2u17IgQIHhxM2RaWvr6tTM796rwOuLobi3WsLMts2bKFzZs3061bN9avX8/OnTtp27YtACtXrqROnTqsX7+eXr16cfbsWV544QWaNWsGQHBwsDqX8kCtWrUqFSpUAOD27dusWLGCVatW0alTJwCWL19OzZqaQrg2nnvuOcaOHau+Hzp0KP3791frAYSEhDB//nw6dOjA4sWLqVWrFvPnz+ett95i2rRptGzZktDQUPr376/adfz4cfz9/alRo4bD+dzc3AgODlYdkOKyceNG+vbtS0ZGBjVq1CA+Pp7KlSs7HXvixAkWLFhAbGzsXZ0zLyZOnEhqaiqNGjXCaDRiNpuZPn06/fv3L/QcrVu3xtvbmwkTJvDBBx8gyzITJ07EbDaTnJzs9Bhn13Xp0iXq1q2rG1etWjV1X0BAQDGuUCAQ3K8406QEgsJQHn0o4T8J/yk3wn/KGxEpVZrY7rZkEYXO70cstiKERk1NKclJUfpOB2W+iDXTa7vzlQOfgErWF0KUEpRjNm7ciI+PDx4eHnTr1o0+ffowePBgXFxcePrpp9VxlSpVomHDhhw9ehSA0aNHExMTQ7t27YiOjubgwYP5nufUqVPk5OTw1FNPqdv8/f1p2LChw9iWLVvq3v/+++/ExcXh4+Oj/oSFhWGxWDh9+jRgXXm8dOkSK1eupE2bNnz55Zc0bdqU+Pj4Qt8L7UpUXqxcuVJnR0JCgrovNDSUxMREdu3aRXh4OL179+bKlSsOc1y4cIHw8HB69erFsGHD1O3aeaOiogplc0JCgu64lStXAvDf//6XlStXsmrVKvbv38+KFSuIjY1lxYoVhZoXrCuoX375Jd9++y0+Pj74+/tz69YtnnzySQwGR7cir+sq7jUIBIJyjizblSlR6FzwgCH8JzvCf9Ij/Ke8EZFSpYBse8qqgTVClLovsVhs3feMRkxKpJRB+awkDJKEWQb/DAk3E/TaKfO/JwzIuT5PT/8KAMiiy6JAg4ubgVfndSizcxeV0NBQFi9ejJubGzVr1sTFxYUNGzYUeNzQoUMJCwvju+++44cffmDGjBnMnj2bUaNGFcd0Hd7e3rr3aWlpDB8+nNGjRzuMfeSRR9TXvr6+REREEBERQUxMDGFhYcTExNClSxdCQkJISUnh4sWLDquL2dnZnDx5krCwsAJt69mzp87ZrFWrls7u+vXrU79+fVq3bk1ISAjLli1j0qRJ6piLFy8SGhpK27ZtHQpVaru3+Pn5FWgLWB1Q7XHKCtr48eOZOHEiffv2BaBZs2b89ddfzJgxg0GDBhVqboCuXbty8uRJrl27houLCxUqVKB69eq6ld2Crqt69eq6jjOA+r569eoEBQU5vQaBQFBOcZqqp9kmFvMEeVCefCjhPwn/KT+E/+QcIUqVBvZyRFaEKHVfotSAkiSJnGxbKh/W3zIgubpAtgX3tm3gp+84V9nWqU/zeVavF4Jkc7CunE3lxD6rmm8wStRuFICbh/gn97AiSVKxU+jKAsUR0NK4cWNMJhN79uxRw8+vX79OUlISTZo0UcfVqVOHqKgooqKimDRpEv/6178YNWqUumKmrU8QHByMq6srv/32m+oIpaSkcPz4cdq3b5+vjU8++SRHjhxxsDM/JEmiUaNG7Nq1C4AXX3yRCRMmMHv2bGbPnq0bu2TJEjIyMhg4cGCB8/r6+uLr61soGywWC1lZWer7CxcuEBoaSosWLVi+fLnDallRrk/B09PT6XEZGRkO8xuNRrXrS1FRwuh/+uknrly5Qs+ePdV9BV1XmzZtePvtt8nJycHV1RWA+Ph4GjZsqIaeF+faBQLBfYqiP8lOtgkE+VCefCjhPwn/qTAI/0mP+D/kEkJ28k6yrRA5SwkT3A9oYsnVmpz2z0oyWD8/j+5hZP/0HRYJDAYjZnLUMUZXV9JuWb8sj+1K5sT+P9R9TZ6pSeg/G5XsJQgEJUhISAiRkZEMGzaMTz/9FF9fXyZOnEitWrWIjIwEYMyYMXTr1o0GDRpw8+ZNfv75Zxo3bgxAYGAgkiSxceNGunfvjqenJ76+vgwaNIjx48dTsWJFqlatSnR0NAaDQf3OzIsJEybQunVrRo4cydChQ/H29ubIkSPEx8ezcOFCEhMTiY6OZsCAATRp0gQ3Nze2bdvGZ599xoQJEwDriuCsWbMYN24cHh4eDBgwAFdXV7755hsmT55MTEwMjz76qO68SUlJDrY0bdpUdQwU0tPTmT59Oj179qRGjRpcu3aNRYsWceHCBXr16gVYHY+OHTsSGBhIbGys2uoYrKtd+aGsgqWlpXH16lUSExNxc3PTObi5iYiIYPr06TzyyCM0bdqUAwcOMGfOHF555RV1zI0bNzh79iwXL17UXW/16tVVm5YvX07jxo2pUqUKu3fv5vXXX+eNN95Q0wYKc139+vVj2rRpDBkyhAkTJvDHH38wb9485s6dm+91p6WlceLECfX96dOnSUxMpGLFiroVXoFAUA4QgVKChwDhP1kR/pPwn/LknvQBLKeUZEvj5a+Nl2N795Bn9/6bPPe1TfLC4VvkVZGd5NjePeTPh/S55+cT3D3njx2RY3v3kJeOeEVeOHyLvHD4Fnnre2Ntn2M3eemYbfKCV+Plk5t+lo80bCT/0LaRPH9QLzm2dw/157/vTZb/PXmaHNu7h7zo1Vh5Xew++Yt3d8sLh2+Rv12QWNaXKChFHrSWxgpKS2N/f3/Z09NTDgsL07U0HjlypFyvXj3Z3d1drlKlijxgwAD52rVr6v733ntPrl69uixJUr4tjZ966il54sSJ6nGBgYHy3LlzHez59ddf5S5dusg+Pj6yt7e3/Nhjj8nTp0+XZVmWr169Ko8ePVp+9NFHZR8fH9nX11du1qyZHBsbK5vNZt0869evl5999lnZ29tbbbm8evVq3RhnbZmVn3PnzjnYdufOHfnvf/+7XLNmTdnNzU2uUaOG3LNnT/nXX39VxyxfvjzPOQvC2TGBgYH5HpOamiq//vrr8iOPPCJ7eHjIwcHB8ttvv61rK5yXTdHR0eqYCRMmyNWqVZNdXV3lkJAQefbs2bLFYinydf3+++/yM888I7u7u8u1atWSP/zwwwKv++eff3Y6r/L3VFzuRUvjhwVxPwRF4fp/k+RzE7bLl5ckyucmbJcvzdsnX/v3YfnchO3y7Z0X5HMTtsvnJmyXTWnZZW2q4D5A+E/CfxL+08PnP0my/PCuS6SmpuLv709KSkqh80wLS9z/e4vr148g4Yqh0jBcLR5UvPwhF93cqObjzT+Xrbmn53sQmLJzCptObQKgV8NeTHxqYqme/8KxI/wn+i38qlQn29QPySDxaPVv+e3wcSTZgotHY3KyzxLRfzjm8aO4VAEON21OVlqaOkfdJ1py57aRSyf2UKNhD/q99xpHdyXz0+dHCXy0Es+PzLuNqeDBIjMzk9OnT1O3bl08PDzK2pxyRXp6OrVq1WL27NkMGTKk1M9/48YNOnXqhJ+fH//73//w8vIqdRsEpU9+/2ZL0l8oj4j7ISgKN748Tsa+y7gH+5N1KgXXGt64VPLgzh/XqRBZj1vfnASgxpTWGL1dC5hN8KAj/KfiI/wnQVlwL/wn0X2vLCiJmlJ3bsKPU+HbMdafE1vu/TlKmP+d/h/ZlmyyLdmqOFWaKAXps+9Yu/C5uBow5qTb9knkZCWBfIezJw4DYLSAJOXKLXZxtaduSg+t3isQFIkDBw6wevVqTp48yf79+9X2ukpIe2lTsWJFfvzxRzp16sTu3bvLxAaBQCB4oHHmIj286+QCQbEQ/pPgQUHUlCopdA9WtUCRk333iN//Azs0eaQnfoQ3/sh7/H2INmjvjulOqZ8/7UYmAFkZJtz9wd3LBQM2AVGTm+3i6g7YRCljLlHK1RWJbOshpWCzQPCgEBsbS1JSEm5ubrRo0YKEhAS1CGRZUKlSJd59990yO79AIBA8cIhC5wLBPUf4T4IHASFKlQKy8sBVH8YlECmVai2oRqX6cP0E5GTc+3OUMLLGS8k0Z2KRLRik0gvmy7pjK1guSTR4qhr1W1Tlypdmh3EWs4n9gdXwv5OGlLsLg4sLKIXPRaSUQFAonnjiCfbt21fWZggEAoGgJJHsqpTdQ9JWOi9dcwSC8o7wnwQPCiJ9r1QohUipjOvW37ValNw5Shg5lzeSacos3fPbtEKDQaLLK02p27wKyBYMFr1dSQd3c6mCD0k1qmN009c+cPP0QnWwyt9HIBAIBAKBQFAyOHODRaSUQCAQPPQIUapUUZ7GJRAplXHD+turkm1DOVREcpmcYSrlaC/ZMVUPixljrhpgdzJuq68D6gaqrx/rHM6T3XuifM5SefwMBAKBQCAQCO4lcq7FWRApfAKBQCBQEel7JYW92jUOkVIloEmp6Xqu5avLwdW/TvP94o/JzsigR0ZV9jS+waXK1gipOzl3wLP0bHEWSi5bTLiYLeS4GDXb7CMttqOe7TeYpyJf1E8o0vcEAoFAIBAIAF32nlNurj2OsYI7/uF1MXiK/0URCASChwXxjV9iyJpX1tc5trg0E451iu4as7W4Ni62NozlJH3vz193c+W0tRVwAK4EX/RWRakcS849P19Gagp//BxPTlYWPgEB1H28JZLRgE9AJWRbRJR2wU42m2l46TpHA/3IQhH8NKKUxfpZStrVP6eVPAUCgUAgEAgEuf0jg48rlts5ZCbdBMA9yB+vJ6qWhWECgUAgKAOEKFUa2DSKa5IZZAM3SL/351DqL7l63Pu5SxA5l3imDS7KXWPqXrB/0zfs+fq/DtubduxMlaCWNiP06Xs1b6VzKTiLy+Z6yJj0ByYesR2iia7KIw69nOiEAoFAIBAIBPceyUnNTQmqDG1G1plU0ndfJOdSBrKpJFIKBAKBQHC/ImpKlRCys3cGW8RUSURKmXJFSpXTKB2tnGMpgdpbmWm3nW5PPn5MI5DpRSnrJslRkALSblsLnadev+U4qUjfEwgEAoFAILCiC0W3+0iu1bzxeboGxgrla2FVIBAIBPcGIUqVIkoEjYtcAhUdlUgpF/d7P3eJkrdwUxKilNnkXBA0m01OQ5lkjSjlgOROmk8tAI4fuqjdoRyd56ECgUAgEAgEDyUad0sSVc4FAoHgoUeIUqWAIq2ocTglIUo51JS696coLYyStah4SaTvqSJTLswmk1rAXJKcR0o5TmYXsgwWSPjvcU4euIKoKSUo7wwePBhJkpAkCTc3N+rXr897772HyeQYLVgUtm7diiRJ3Lp1694YWghOnz5Nv379qFmzJh4eHtSuXZvIyEiOHTumG7dx40Y6dOiAr68vXl5etGrViri4ON2YM2fOIEkSiYmJhT7/1KlTadSoEd7e3gQEBNC5c2f27Nmjm3PIkCHUrVsXT09P6tWrR3R0NNnZ2fnOm5ycTL9+/WjQoAEGg4ExY8YUyp7bt28zZswYAgMD8fT0pG3btvz222+6MWlpaYwcOZLatWvj6elJkyZNWLJkiW7M8OHDqVevHp6enlSpUsXpPT179iw9evTAy8uLqlWrMn78+Dz/hnbu3ImLiwuPP/54gdewbt06unbtSqVKlYr8eQgEgjJAdYCFACV4sBH+k/CfhP9UPIQoVQooGpTy21025j24uJTbSCk9kmwXhUoiUspidi5KWUzaSClt9z2bDQZnjpQZxdPKvOXBwZ/O8/2nf4BY9RM8AISHh5OcnMyff/7J2LFjmTp1Kh999FFZm6VSkNMBkJOTQ5cuXUhJSWHdunUkJSWxZs0amjVrpnPsFixYQGRkJO3atWPPnj0cPHiQvn37EhUVxbhx4+7KzgYNGrBw4UIOHTrEjh07CAoKomvXrly9ehWAY8eOYbFY+PTTTzl8+DBz585lyZIlTJ48Od95s7KyqFKlCu+88w7NmzcvtD1Dhw4lPj6ef//73xw6dIiuXbvSuXNnLly4oI558803+f777/niiy84evQoY8aMYeTIkWzYsEEd06JFC5YvX87Ro0fZvHkzsizTtWtXzLbvWLPZTI8ePcjOzmbXrl2sWLGCuLg43n33XQebbt26xcCBA+nUqVOhriE9PZ1nnnmGmTNnFvq6BYK8kGWZnEvpZJ1KIetUCubUrLI26cFFXbOTHbcJBA8Iwn8S/pPwn4qOEKVKDNnhdYmEKJ9OgFV94Y61Y0l5rykFJRspZc5HlLJYHEWwfNP3rDNax8maf0o2s6Vy/BkIBO7u7lSvXp3AwEBee+01OnfuzIYNG7h58yYDBw4kICAALy8vunXrxp9//qke99dffxEREUFAQADe3t40bdqUTZs2cebMGUJDQwEICAhAkiQGDx4MWFef+vfvj7e3NzVq1GDu3Ll07NhRt3oVFBTE+++/z8CBA/Hz8+PVV18FYMeOHTz77LN4enpSp04dRo8eTXq6tZnE4cOHOXnyJJ988gmtW7cmMDCQdu3aERMTQ+vWrQE4d+4cY8eOZcyYMXzwwQc0adKE+vXrM3bsWD766CNmz56tW5krKv369aNz584EBwfTtGlT5syZQ2pqKgcPHgSszuvy5cvp2rUrwcHB9OzZk3HjxrFu3bp85w0KCmLevHkMHDgQf3//Qtly584dvvrqK2bNmkX79u2pX78+U6dOpX79+ixevFgdt2vXLgYNGkTHjh0JCgri1VdfpXnz5vz666/qmFdffZX27dsTFBTEk08+SUxMDOfOnePMmTMA/PDDDxw5coQvvviCxx9/nG7duvH++++zaNEiB4c4KiqKfv360aZNm0Jdx4ABA3j33Xfp3LlzocYLBPlx54/rXP54P1eXHuTq0oMkz9qLJePed/8V5IojFy6S4AFF+E/CfxL+U9ERolQp4CiuFF2ckmWZ86NGkfR0a5Kebs35N96w7tgxF47/DywmMLqBd2XlgLszurRwsFPCIBlsu0ogfc8mSoU83Rb/qtXoPHQEYEvfU01wTN+T8vqnIjsRrWyvS0JUE5RfZFkmJzOzTH7uxb8lT09PsrOzGTx4MHv37mXDhg3s3r0bWZbp3r07OTnW/4kbMWIEWVlZbN++nUOHDjFz5kx8fHyoU6cOX331FQBJSUkkJyczb948wLqytHPnTjZs2EB8fDwJCQns37/fwYbY2FiaN2/OgQMHmDJlCidPniQ8PJwXXniBgwcPsmbNGnbs2MHIkSMBqFKlCgaDgbVr1+YpSK9du5acnBynK3rDhw/Hx8eH1atX3/X9A+vq5NKlS/H39893dS4lJYWKFSvek3NqMZlMmM1mPDz0xYQ9PT3ZsWOH+r5t27Zs2LCBCxcuIMsyP//8M8ePH6dr165O501PT2f58uXUrVuXOnXqALB7926aNWtGtWrV1HFhYWGkpqZy+PBhddvy5cs5deoU0dHR9/JSBYJCY75xBwDJ3Wh1z0wWzLcLjiQQFIOCqhuIqClBHpRnH0r4T3eP8J8efP/JpawNeGBx8v0lS8rztuhfbuZbt7gd/6P6/vb/vscSE4Mhx+pM0WooPPFPcPcrlrn3C5Jsj5QqkULnZms+blDzFvR8czK3r1+zbjeZ7Kl6WuT80vcAtZOiZr8tT1P4VgItpqws5g96sUzOPXrFWlw9itfVSJZltmzZwubNm+nWrRvr169n586dtG3bFoCVK1dSp04d1q9fT69evTh79iwvvPACzZo1AyA4OFidS3EUqlatSoUKFQDrKt+KFStYtWqVGn68fPlyatas6WDLc889x9ixY9X3Q4cOpX///uqKYEhICPPnz6dDhw4sXryYWrVqMX/+fN566y2mTZtGy5YtCQ0NpX///qpdx48fx9/fnxo1ajicz83NjeDgYI4fP16se6ewceNG+vbtS0ZGBjVq1CA+Pp7KlSs7HXvixAkWLFhAbGzsXZ3TGb6+vrRp04b333+fxo0bU61aNVavXs3u3bupX7++Om7BggW8+uqr1K5dGxcXFwwGA//6179o3769br5PPvmEt956i/T0dBo2bEh8fDxubm4AXLp0SedQAer7S5cuAfDnn38yceJEEhIScHER7oigbPF8tDKZx65jSb+72i+CfBA1pQTFpDz6UMJ/Ev6T8J8Kj4iUKjE0dYlsvz1UDbAYD2UnKrUsy9YIKYDgUFLdGnE1OZsbptolEmVUGkigRkqVhCilREoZbf+Ald8Ws90J1aZZqjbk4UjJsvPVA9veu7BUIChbNm7ciI+PDx4eHnTr1o0+ffowePBgXFxcePrpp9VxlSpVomHDhhw9ehSA0aNHExMTQ7t27YiOjlbDrPPi1KlT5OTk8NRTT6nb/P39adiwocPYli1b6t7//vvvxMXF4ePjo/6EhYVhsVg4ffo0YF15vHTpEitXrqRNmzZ8+eWXNG3alPj4+ELfC8VRyI+VK1fq7EhISFD3hYaGkpiYyK5duwgPD6d3795cuXLFYY4LFy4QHh5Or169GDZsmLpdO29UVFShbE5ISNAdt3LlSgD+/e9/I8sytWrVwt3dnfnz5/PSSy9hMNjdgQULFvDLL7+wYcMG9u3bx+zZsxkxYgQ//vij7hz9+/fnwIEDbNu2jQYNGtC7d28yMzMLZZ/ZbKZfv35MmzaNBg0aOB2T3z0VCATlEFFTSvAQIPwnO8J/Ev5TYXkwpLX7EHvqloTFxR9ywB0j2ZgdtIqM1BQunbQqyRVr1qFCterqvluXkvlP9Fuk37qJ9FgwDZJvUO/qLdtJZLBYQz7P/OXGd/N2245aQEu/r3ma+x9n2pmavleCNaWULxCDRl02K10NtA6SLXpKMuTWbyWsH6STSKk849OFSPUw4+LuzugVa8vs3EUlNDSUxYsX4+bmRs2aNXFxcdEVasyLoUOHEhYWxnfffccPP/zAjBkzmD17NqNGjSqO6Tq8vb1179PS0hg+fDijR492GPvII4+or319fYmIiCAiIoKYmBjCwsKIiYmhS5cuhISEkJKSwsWLFx1WF7Ozszl58iRhYWEF2tazZ0+ds1mrVi2d3fXr16d+/fq0bt2akJAQli1bxqRJk9QxFy9eJDQ0lLZt27J06VLd3NruKH5+hYuGbdmype44ZZWtXr16bNu2jfT0dFJTU6lRowZ9+vRRVz7v3LnD5MmT+frrr+nRowcAjz32GImJicTGxurqEPj7++Pv709ISAitW7cmICCAr7/+mpdeeonq1avraigAXL58GYDq1atz+/Zt9u7dy4EDB9R0AYvFgizLuLi48MMPP+R7TwUCQTkit7Mna7cJVUpQMOXJhxL+k/CfhP9UdIQoVUJoH7EyBsCCJQ9N4j/vjudm8kUAjK6uRC35Nx4+PgAk/3mM9FvWIuayJHHZ3zuXKGUVUq5f14smN3McQzfvayTJej0ypVJTypArUgrAYlIKm0pw8wx8/Rpy2hXA6BApZXQxYjaZMJpTMSnHKOeQRU0pgSOSJBU7ha4sUBwBLY0bN8ZkMrFnzx41/Pz69eskJSXRpEkTdVydOnWIiooiKiqKSZMm8a9//YtRo0apK2ba+gTBwcG4urry22+/qY5QSkoKx48fdwh3zs2TTz7JkSNHHOzMD0mSaNSoEbt27QLgxRdfZMKECcyePZvZs2frxi5ZsoSMjAwGDhxY4Ly+vr74+voWygaLxUJWlr3D14ULFwgNDVU7shhyieBFuT4FT0/PfI/z9vbG29ubmzdvsnnzZmbNmgVYO+7k5OQ42GA0Gp02g1CQZRlZltXratOmDdOnT+fKlStUrVoVgPj4ePz8/GjSpAmurq4cOnRIN8cnn3zCTz/9xNq1a6lbty7e3t6FvqcCQXHRuxpKu+SysOQhoLDpe+L+C3JRnnwo4T8J/0mL8J8KhxClSghnPo6Ux8M49ao9DNGck0NG6i1VlHKYV1vbyGJRC3Fn38oEvNRdpjvlKzNTQkJGRqKka0opkVLWcxiMTiKlAPb/G87uQrZUBoxILvpVEsloBJMJyFbtd0RtwycQPBCEhIQQGRnJsGHD+PTTT/H19WXixInUqlWLyMhIAMaMGUO3bt1o0KABN2/e5Oeff6Zx48YABAYGIkkSGzdupHv37nh6euLr68ugQYMYP348FStWpGrVqkRHR2MwGPL8zlSYMGECrVu3ZuTIkQwdOhRvb2+OHDlCfHw8CxcuJDExkejoaAYMGECTJk1wc3Nj27ZtfPbZZ0yYMAGwrgjOmjWLcePG4eHhwYABA3B1deWbb75h8uTJxMTE8Oijj+rOm5SU5GBL06ZNcXV11W1LT09n+vTp9OzZkxo1anDt2jUWLVrEhQsX6NWrF2B1qDp27EhgYCCxsbFqq2Owrojlh7KSl5aWxtWrV0lMTMTNzU3n4OZGaT/csGFDTpw4wfjx42nUqBEvv/wyYF1J7NChA+PHj8fT05PAwEC2bdvG559/zpw5cwBrysCaNWvo2rUrVapU4fz583z44Yd4enrSvXt3ALp27UqTJk0YMGAAs2bN4tKlS7zzzjuMGDECd9uqc+77WrVqVTw8PBy25+bGjRucPXuWixetiznK51G9evUC75lAIChDnAWSCx9J8BAg/Ccrwn8S/lNeCFGqVHFe5twhqlmzQdcRTpaxaNRXWZbBbI3uuXP+GvAIBksOFoMrOenl7CmvZMNRsul79kgpRZQyqvsstn2SJME16z9S2bMikAYefoBdJDMaXTCRhSRng2SkcrUL3LzVFA8fV5u0hljpEzyQLF++nNdff53nn3+e7Oxs2rdvz6ZNm1SHwmw2M2LECM6fP4+fnx/h4eHMnTsXsIYPT5s2jYkTJ/Lyyy8zcOBA4uLimDNnDlFRUTz//PP4+fnx1ltvce7cOYcuJ7l57LHH2LZtG2+//TbPPvsssixTr149+vTpA0Dt2rUJCgpi2rRpnDlzBkmS1PdvKB1MgTfeeIPg4GBmz57NvHnz1JbIq1evpm/fvg7ndbbt3Llz1K5dW7fNaDRy7NgxVqxYwbVr16hUqRKtWrUiISGBpk2bAtbVrxMnTnDixAmH4wuKFn3iiSfU1/v27WPVqlUEBgaqbYWdkZKSwqRJkzh//jwVK1bkhRdeYPr06TqH8D//+Q+TJk2if//+3Lhxg8DAQKZPn67WY/Dw8CAhIYGPP/6YmzdvUq1aNdq3b8+uXbvUVT2j0cjGjRt57bXXaNOmDd7e3gwaNIj33nsv32sqDBs2bFCdQLB/HtHR0UydOvWu5xc8xJQz16m84JioJxwkwcOH8J+E/yT8p7yR5PJaEfsekJqair+/PykpKYXOMy0sn706lpspSUi4c6fWKCpkWDCmLSA9Jwd3Mhm5xl7wbG6/SFUQARg8ezGValvbQh5J+Jn/LZyN0cUVsykH72wTHY7+BUDIrp24/Ps5uHma+DsLOJ5SG5ecDEyuXtRI28c/vhh/T6+pJNjxn8/Z8/V/MRiNWMxmzlRL53h7Ny6mX+T/uv4fT9e4t5Wxvpg0hsunTvCPiVOp+4S16N/svhEgyzQPG8Dvm/+Nu3cdRna6Dn9u5ucLT1E94TwHezTk/Hl7JJWnrx93bqfiIlswSQZqhzTk2rUeuHu74OaWyNVTP1C7yTP0iZ7IsV+S2RJ3lEeaViRi1OP39HoE9y+ZmZmcPn2aunXrFugcCPSkp6dTq1YtZs+ezZAhQ0r9/Ddu3KBTp074+fnxv//9Dy8vr4IPEpR78vs3W5L+QnnkQbofqVvPkfr9GbxaVCMz6QaWtByqjXkS1+reBR8sKBTX/3OMO4lX8XqiKhkHrmD0c8OlujdZx28S0KsB3i2sNVuurThM5tEbBPwjBO+nRNTjw4rwn4qP8J8EZcG98J/KV45Xucf5EpzZkruDm0YntGmGRltkj0WbvifLavqeWbYV7rbkUC6xhZlKSGrIaUmk71lsKXqSJkJKSb2TLZp0O7M1LU+RbLVhsJIkqRFW9tU/2ysZUq8q3RMeWr1XICgSBw4cYPXq1Zw8eZL9+/fTv39/ADWkvbSpWLEiP/74I506dWL37t0FHyAQCASCghGB5ALBPUX4T4IHBZG+VwrIip6RR1i4LMu6mkSyk2JoRlvtI4uUW5SyilBm2ZaOVk5FKa3oo9SUKon0PaXQnLYInWSQkM3a+y6paZGq6KQZ7+vvg2z7POypetaRskXGbLLYNgm3SyAoLLGxsSQlJeHm5kaLFi1ISEigcuXKZWZPpUqVePfdd8vs/AKBoOwQj+97TH7NiJ34xqJRjEBQeIT/JHgQEKJUSaN92EqFC0zTPooVYcOoROZIEhgMYLFYRRRb9z2LGillojwjUbLd9/Rnsr1SIrNsopQE9kgptUq9gT4ts9l9JJ3Qfr1Yv3a7bb8ym02Uku2Cl5evvmifQCBwzhNPPMG+ffvK2gyBQCAQlCTqAqQQnQSCe4HwnwQPCkKUKgUcF4j0y0IOi0ROxBglXcwC9oe6jBrRo6bvyeUrUkq258fZNpRs9z3lfNqAM0kRwZRIKUlSRSn7GInaFSV6Bf4BVQLUrn1yru4WskVGVkLjJOF0CQQCgUBQLpDQdIcTz+8SQatJ5fb/cr8WCAQCwUODqClVGtiesRbZeTK9lEuWchYhpERKWST0K00ONaVMtj3l68GuTd9TIo1KJHw7HydIlp2k72lrSqnCmUXXtc96hD1SSjnG4XMUPq5AIBAIBIKHHeEPCQQCgUCDEKVKDNnhlaWAp7BFFTaciFIGTU0pRRxxlr4nm3KfvlwgqYXOwWD7syyRSCnlfE7S95RIKclZpJTRaE+/lC0YXHIFGSpClEUGybrPnKOfQyAQCAQCwf1M+VrQK29IBm2olG1b2ZgiEAgEgvsIIUqVEFpNyMOo3GbJYZ9WgJKdhI0r+100IohFKbqtK3Ru3WZURKnyEgLtJJqoRGtKqaFP9k2Kk6QrMO9QU0rS1ASTebRjF3wqVsKIBb+MTLx9PAGwWGQkydoKMyv99r23XyAQCAQCwb2jnC3iPRCIey4QCAQCDUKUKnEkarpbC14bnBQ61wkv+ehIrm5uGGyiSZari3KwPX3PUs4jpTTd7dSaUtz7SCn1xuhEOyV9T7PPlr6nDNd9drLMk90iGL54BUEu6Tzz5wVcjZr9NlHq1uVk9nz9X078+h2mO3u4lbyHnMzMErgmgUAgEAgEd005Wc8rdzhZENSErjsZX8L2CAQCgeC+QhQ6LynUwkL29DCzy1OQ9TPaJ7CsSVGz1lCS9EKVUphbBjeTmUw3A3trV8L7jg91Mu/gantym21hVgbZrJy2WGSdPMnNlauQc3IwVqhApWFDMfr5FXO2oiMh2WtKlUCklFroXJu+Z3DWfS9Lb4PBoEnf09ilhKJrtkkGHwAyUm6y4z+fq9uvnIIjCXVo3qX7vbocgUAgEAgE9xohipQosgxyjnXx79Y333D7f9fw694dEF2LBQKB4GFEiFKlgE+AO7cuZyBL/gDIkru6T1s3yVn6nn2njG9mNplurtx2t/5cPPknDdR5cqXvFZNri5eQunGj+t61dm0C+vS+qzkLhSZyqSS779lX5rQ1pey1ogAwZULGDdtOo22MvtC5Op2TbZKhIi6eHWj4tBsGg8StK3c4f+QPZMtNMtPT7/klCQQCgUAgENz3aDotmy5fBnxI356A6cJvZPy2F9+/vV+m5gkEAoGgbBDpeyWNBOHDm9Hj/z0Gcrp9ow1nNaV02zTLdY//dYU2sjve2VbhyWxbZQJtpNTdiVKWzDv69xkZdzVfQeSO3pZkexRTSaTvKfdT33xPHylFTobVMu+qyDbBSpI0kVLaJVSlQLumHpUkSbh4tKDLq6PoOnw0zbsMxOBS03aoWH4V3P8MHjwYSZKQJAk3Nzfq16/Pe++9h8l0d98vW7duRZIkbt26dW8MLQSnT5+mX79+1KxZEw8PD2rXrk1kZCTHjh3Tjdu4cSMdOnTA19cXLy8vWrVqRVxcnG7MmTNnkCSJxMTEQp9/6tSpNGrUCG9vbwICAujcuTN79uzRzTlkyBDq1q2Lp6cn9erVIzo6muzs/BslJCcn069fPxo0aIDBYGDMmDGFsmf79u1ERERQs2ZNJEli/fr1DmPWrVtH165dqVSpUoHXK8sy3bp1y3OuuLg4HnvsMTw8PKhatSojRozQ7d+8eTOtW7fG19eXKlWq8MILL3DmzBndmJUrV9K8eXO8vLyoUaMGr7zyCtevX7/r6xQIciOy90oY9QbLyGZrZL8SjW9OTysbmwSCe4jwn4T/JPyn4iFEqRLD7tq4e7oQ9FhlJJTi2XacRQM5S1uTZQuuFgs1je64ma3HyBYz13Pq8EdGV3Is1qA3I2aH898VFnPBY+4F2ppSBmt0UomEz8u5ZTA03QxldY+leX+uP/kOrmmZtiEG+zHOotucGGsoL8XmBQInhIeHk5yczJ9//snYsWOZOnUqH330UVmbpVKQ0wGQk5NDly5dSElJYd26dSQlJbFmzRqaNWumc+wWLFhAZGQk7dq1Y8+ePRw8eJC+ffsSFRXFuHHj7srOBg0asHDhQg4dOsSOHTsICgqia9euXL16FYBjx45hsVj49NNPOXz4MHPnzmXJkiVMnjw533mzsrKoUqUK77zzDs2bNy+0Penp6TRv3pxFixblO+aZZ55h5syZBc738ccfq8J+bubMmcPbb7/NxIkTOXz4MD/++CNhYWHq/tOnTxMZGclzzz1HYmIimzdv5tq1a/zjH/9Qx+zcuZOBAwcyZMgQDh8+zJdffsmvv/7KsGHD7vo6BQIrYrGo1NHccmPFitYX5pKoIyoQlD7CfxL+k/Cfio5I3ytj9JFSymttTSnbrzvWCCaDpyeSLeBKtlj45uY07lgC1OFG2R49dU/ss5SOk6D9J2mwaaUlkb5nr2WuTd9TIqXsqxjf/XKd+t98SE1lTF41pVRBK5d4J2lbH9s2CATlCHd3d6pXrw7Aa6+9xtdff82GDRuIiori9ddf59tvvyUrK4sOHTowf/58QkJCAPjrr78YOXIkO3bsIDs7m6CgID766COaNGlCaGgoAAEB1u+sQYMGERcXx+3bt4mKimL9+vX4+fnx1ltv8c033/D444/z8ccfAxAUFMSQIUP4888/Wb9+Pf/4xz+Ii4tjx44dTJo0ib1791K5cmX+/ve/M2PGDLy9vTl8+DAnT55ky5YtBAYGAhAYGEi7du3U6zx37hxjx45lzJgxfPDBB+r2sWPH4ubmxujRo+nVqxdPP/10se5jv379dO/nzJnDsmXLOHjwIJ06dSI8PJzw8HB1f3BwMElJSSxevJjY2Ng85w0KCmLevHkAfPbZZ4W2p1u3bnTr1i3fMQMGDABwWHHLTWJiIrNnz2bv3r3UqFFDt+/mzZu88847fPvtt3Tq1End/thjj6mv9+3bh9lsJiYmRq0lOG7cOCIjI8nJycHV1ZXdu3cTFBTE6NGjAahbty7Dhw8v0OErzHUKBA7kV0ZBcNc4/R8wxVcqJX9TIChphP8k/CfhPxUdESlVijhzcWQsDvu1vlD6L78AkH3yFABuQUF2n8li5o7FWqeqmscNgk9twNN8O++TFYeSXrnSdrzDlr6niEQl2n3PvkXp/Ceb7aLU9aOHAMhwg3OV4dYTwRpRSvOZGRzT90BESQkckWUZS7a5TH7uRdMAT09PsrOzGTx4MHv37mXDhg3s3r0bWZbp3r07ObZ04hEjRpCVlcX27ds5dOgQM2fOxMfHhzp16vDVV18BkJSURHJysuoUvPnmm+zcuZMNGzYQHx9PQkIC+/fvd7AhNjaW5s2bc+DAAaZMmcLJkycJDw/nhRde4ODBg6xZs4YdO3YwcuRIAKpUqYLBYGDt2rWYzc6jPteuXUtOTo7TFb3hw4fj4+PD6tWr7/r+gXV1cunSpfj7++e7OpeSkkJFJXrgPiUjI4N+/fqxaNEi1fnWEh8fj8Vi4cKFCzRu3JjatWvTu3dvzp07p45p0aIFBoOB5cuXYzabSUlJ4d///jedO3fG1dVa8LhNmzacO3eOTZs2Icsyly9fZu3atXTvLhpGCO4tea1YC+4hqgOLphmyzQcTopQgH8qzDyX8p7tH+E8Pvv8kIqVKDMcvMGcOj2zRRt3YtmlEj5zkZOsLgwGXmjXwe74H0t4E6zizBUVXbBVwnIyzm7nc2KpsyvfKuSqJYuNOUO6NpOk+uP7EegwYeKb2M/i5Fb0DYGZ6Gif37sFsysHD24d6LZ923n3P9lu2RTtJmm1fPGfgxycMjKlTBW45pu8pYpqM/gtbHyVlpyQ6CgrKB3KOhYvv7iqTc9d8ry2Sm7FYx8qyzJYtW9i8eTPdunVj/fr17Ny5k7Zt2wLWfPU6deqwfv16evXqxdmzZ3nhhRdo1qwZYF25UlAchapVq1KhQgUAbt++zYoVK1i1apW6IrR8+XJq1qxJbp577jnGjh2rvh86dCj9+/dX6wGEhIQwf/58OnTowOLFi6lVqxbz58/nrbfeYtq0abRs2ZLQ0FD69++v2nX8+HH8/f0dVqoA3NzcCA4O5vjx48W6dwobN26kb9++ZGRkUKNGDeLj46lcubLTsSdOnGDBggX5rvLdD7zxxhu0bduWyMhIp/tPnTqFxWLhgw8+YN68efj7+/POO+/QpUsXDh48iJubG3Xr1uWHH36gd+/eDB8+HLPZTJs2bdi0aZM6T7t27Vi5ciV9+vQhMzMTk8lERESESMsTlBBCmCoRHFwfbf6ebcHPbBa3X5An5dGHEv6T8J+cIfwn54hIqTJG131PfeEoXLjVDSLkp5/wevJJlKe2blXJ9lqJ+il2pJRynBo9VPorV3suWYvY7Unew4SECczZO6dY8+z6ciXffzKX+KUL+XbuhxxJ+Nlp9z31WpX0PUlCyaRUb0cehc4V8S93pJRkFJ6VoHyzceNGfHx88PDwoFu3bvTp04fBgwfj4uKiC8WuVKkSDRs25OjRowCMHj2amJgY2rVrR3R0NAcPHsz3PKdOnSInJ4ennnpK3ebv70/Dhg0dxrZs2VL3/vfffycuLg4fHx/1JywsDIvFwunTpwHryuOlS5dYuXIlbdq04csvv6Rp06bEx8cX+l64ubkVOGblypU6OxISEtR9oaGhJCYmsmvXLsLDw+nduzdXrlxxmOPChQuEh4fTq1cvXc6/dt6oqKhC2ZyQkKA7buXKlYU6rjBs2LCBn376SU0NcIbFYiEnJ4f58+cTFhZG69atWb16NX/++Sc///wzAJcuXWLYsGEMGjSI3377jW3btuHm5saLL76oCvhHjhzh9ddf591332Xfvn18//33nDlzRr0PJXmdAoHgHqPpvpd7m4iUEjwoCP/JjvCf9Aj/KW9EpFQZoH0WO6sppduWX2SPbI/OUY9QxZa7FEWMRqvQVVqFzjWRUrm5fif/LgF5kX7zpu59xq1bmu57jjWlZGfhqbZhFdwr2N84iZSSLPquGvpyUprYKxEp9dAiuRqo+V7bMjt3UQkNDWXx4sW4ublRs2ZNXFxc2LBhQ4HHDR06lLCwML777jt++OEHZsyYwezZsxk1alRxTNfh7e2te5+Wlsbw4cPVfHktjzzyiPra19eXiIgIIiIiiImJISwsjJiYGLp06UJISAgpKSlcvHjRYXUxOzubkydP6opL5kXPnj11zmatWrV0dtevX5/69evTunVrQkJCWLZsGZMmTVLHXLx4kdDQUNq2bcvSpUt1c2u7t/j5FS5qtGXLlrrjqlWrVqjjCsNPP/3EyZMn1dVahRdeeIFnn32WrVu3qiunTZo0UfdXqVKFypUrc/bsWQAWLVqEv78/s2bNUsd88cUX1KlThz179tC6dWtmzJhBu3btGD9+PGCtqeDt7c2zzz5LTExMiV6n4CFBPJZLDyeuqbqYmkeKkEAA5cuHEv6T8J/yQvhPeSNEqZJCdnzyOpOJZF3UjfW3pYDVImUei0nzAFfSAPNIGysqksFgTfkv4ZUrOVdNKadjiukxWnI5OLLF4lQUUusZmO2RUv5ufkAKVb2qMaV1FN3qdoN9axWjNQcrcxcufU/w8CJJUrFT6MoCxRHQ0rhxY0wmE3v27FHDz69fv05SUpLu4VmnTh2ioqKIiopi0qRJ/Otf/2LUqFHqipm2PkFwcDCurq789ttvqiOUkpLC8ePHad++fb42Pvnkkxw5csTBzvyQJIlGjRqxa5c1DeDFF19kwoQJzJ49m9mzZ+vGLlmyhIyMDAYOHFjgvL6+vvj6+hbKBovFQlZWlvr+woULhIaG0qJFC5YvX64WrVQoyvUpeHp6Fuu4wjBx4kSGDh2q29asWTPmzp1LREQEgFoMNSkpidq1awNw48YNrl27phZNzcjIcLhWo9H6b0R5DmZkZODi4uJ0jCzLJXqdgocQbc0jwb1Hsz6n9vYxippSgoIpTz6U8J+E/5QXwn/KGyFKlSLOfBytAKXsL7DAtyqE2MdJkj4C6K79KXXlqpRrSjkxvNiilE0oMhiNWMy2QoVORDA1mtwWeSZJEgbbsA6BHWnXsHeugY6FznOLXYY80veKey0Cwf1ASEgIkZGRDBs2jE8//RRfX18mTpxIrVq11Nz4MWPG0K1bNxo0aMDNmzf5+eefady4MWDt3CJJEhs3bqR79+54enri6+vLoEGDGD9+PBUrVqRq1apER0djMBgKLDw8YcIEWrduzciRIxk6dCje3t4cOXKE+Ph4Fi5cSGJiItHR0QwYMIAmTZrg5ubGtm3b+Oyzz5gwYQJgXRGcNWsW48aNw8PDgwEDBuDq6so333zD5MmTiYmJ4dFHH9WdNykpycGWpk2bqsUlFdLT05k+fTo9e/akRo0aXLt2jUWLFnHhwgV69eoFWB2qjh07EhgYSGxsrNrqGHBaAFOLssKVlpbG1atXSUxMxM3NTefg5iYtLY0TJ06o70+fPk1iYiIVK1ZUndobN25w9uxZLl68qLve6tWr635y88gjj1C3bl3A2so5MjKS119/naVLl+Ln58ekSZNo1KiR2kWoR48ezJ07l/fee4+XXnqJ27dvM3nyZAIDA3niiScAiIiIYNiwYSxevJiwsDCSk5MZM2YMTz31lNO6GUW5ToFAh1hLKnkkR9VPWRjUdd8TrpLgAUP4T1aE/yT8p7wQolSJ4eSJ6qzQuS4VzPqroEgpRTDRHatGSmlUU1nONwIpP5RIqdIqdF4SKOl4BhcXLGYzFotFU1JKK0oZdOPRFFs3SJpVGclJ+K4qpsmAvfC86OIjeFBZvnw5r7/+Os8//zzZ2dm0b9+eTZs2qQ6F2WxmxIgRnD9/Hj8/P8LDw5k7dy5gDcmeNm0aEydO5OWXX2bgwIHExcUxZ84coqKieP7559WWxufOncPDwyNfWx577DG2bdvG22+/zbPPPossy9SrV48+ffoAULt2bYKCgpg2bRpnzpxBkiT1/RtvvKHO88YbbxAcHMzs2bOZN28e6enpAKxevZq+ffs6nNfZtnPnzqkrWgpGo5Fjx46xYsUKrl27RqVKlWjVqhUJCQk0bdoUsHZZOXHiBCdOnHA4vqDGCIrjAdb2wKtWrSIwMDDfVsR79+5VnRqwdu4Be3tpsNY8ePnllx2uNzo6mqlTp+Zrk5bPP/+cN954gx49emAwGOjQoQPff/+9+rfy3HPPsWrVKmbNmsWsWbPw8vKiTZs2fP/993h6egIwePBgbt++zcKFCxk7diwVKlTgueeeK7ClcWGuUyAQlC6qZ6T9ajOImlKChwPhPwn/qbA8jP6TEKVKFcd/ILr0PZSaUk5Wi3Q1imy7tFFWagDQXdaUkvXiVqkVOs+nplRxO9Yp4p6LiyumrCyrwOYsfU9xiNRIKdRxBoMTUcpJTSlkC5Lm03RM33NS3FMguE/J76ETEBDA559/nuf+BQsW5Dv3lClTmDJlim6br6+vrsBieno606ZN49VXX1W35eUotGrVih9++MHpvsqVK6ttkwsiMjJSXa28ceMGnTp1YvHixfTs2RMvLy8AgoKCivR95OHhwbp16/IdM3jwYAYPHlzoObUU57uxY8eOBR5XHJuczenn58eyZctYtmxZnsf17dvXqZOqZdSoUUWuqVGY6xQIBKWE6qQ62aepKSWW8wTlHeE/Cf9J+E/FQ3TfK3E0j1gnqXW69D0lUkoXneRERLHNqauZpByjFUPu4g9KLTxZSitXirYjAa8+Zv0i7RHcA7j7mlJGm6pssVjsheO1kUxS7noGkl2U0kVHOUvfU05moabbEXV7zZAKxbJZIHgYOXDgAKtXr+bkyZPs37+f/v37A+TZLrekqVixIj/++COdOnVi9+7dZWKDQCAoJXSd4MrMiocDJ933JFFTSiAoNsJ/EjwoiEipEsK5kCLn+p2r057y2+K4rcAIIjVSypDrDMVEKYRWWk6CRiQa9cQohjw6hB/++oHvTn1X7CktmvQ9yHW/tOl7tt9KsXJJ0qTvOY2U0hanV7rvyUQGRHPH4of0wv/h0dx5TrJYuRcInBMbG0tSUhJubm60aNGChIQEKleuXGb2VKpUiXfffbfMzi8QCMoO8awuaTResmSPlBIIBEVH+E+CBwEhSpUQzkQkZ0twOvFKrSmljYByDHlWgnN0hc5tqWf2mlISdyVNGe8uUkrOzibr1CkAXKpVwyUgIN/xyv1SCp17uXqp2+620LmLLVJK1kZKac9tyLVKJ2kipXSilGOkFJoCnZIk42VMAU9zsWt5CQQPI0888QT79u0razMEAoFAUBLkLkUh219LTv1NIQoKBIVB+E+CBwUhSpUYhXugautHyTZFxln3PcnJO1mzqqRqV7b0vTuSRI/1EQT51+Xj0I9xNei7GhSEGnFlKd7K1dlhr5KxZ491Lg8P6v+0BZeKFR3GyQ6imxMxp5i+iVro3GiLlLKY8+i+p6iBZvu+/CKltJFutk0+xy5ww9+bgJB0JIvJ0RgnHWcEAoFAIBDcR4gFpZLF2f3VlEkQHpJAIBA8nAhRqoQwmexizgcffGBt6enkYayrKaX81rXFdax0rgbsyE7G2XZakDh7+xxnb5/j+M3jNK3UtGgXYEvfw5K3i2DOsWA2WzC6GjAa9eXJsjStJOXMTHLOn3cqSqmohc61m+7OObTYirQb1UgpTSFy7dw2EUn5LKS8RCknNaVMHta5vU9d4TL+uPqa8C2mkCcQCAQCgUDwoKJbn1McstxdowUCgUDw0CFEqVIgOzub33//nUr4AfqVIF33PVVsyv+hrBY619aesgklV7KugZt1WwX3CtzKulW02gi5C4HnIbCcOXSN7z/9A7PJgruXCy9ObEmFql55z1tgGqCjAFXc9L3Lp05wM/kCV86cBPSFzh1EPllGupYE+JBjsopTZslS6JpSf7YP4uTVJCKPeeN+7TaWLANc/gMqN4BqjnWlhL8lEAgEAsF9jnhW31PyvZ1aUUrceIFAIHgoEd33SgiDi+OtlZw8bJ0JRvrue3mjjahKz04H4GZ2qvX8gLeLV5Hm01FAofPkEymYTdZ9WRkmrp69ncs4/XXJ+URcgab7nuwoThVFVEu7cZ2Vk9/ku/kfqduM2kLnudMFs1LVl9dy7gBwmUw1Gsoo5V9TKtvHnbXPGrhTO8B2DmD7R7C4DZz8udB2CwQCgUAgEDzQOImAl0SklEAgEDz0CFGqhHAmrjirK+S0ppSz6KR8usUBmExZ1n22NDo32X5McQqFq06CuZACWUGORF4pbU4Kud8N6bdu6tMa0deUUu6FGgl25xa3jdbXZpspWZJJ/YgKKnSuRq2pLY0lcPOx7rx11omFwuESCAQCgeC+Q+Ke+SKCPHDmGmvLPwgXSSAQCB5KhChVmjir4a0Rc2RFRNJuc/KEVgQVbRSTEg3lYrAKMAbN6YrV2lipKVXoqK3cG3JHShUwjy01zllNqaKIaoqg5+Ht42CLNVJKnR3O74Xf/o87sjWizCPH+tvdYFTtNRo1Ga5OCp2rp7AJW7LBA+q2z3OcQCAQCAQCwUOFY3lU+xtnkVLCfRIIBIKHClFTqlRxUujciejjbJuEVVQx5Vhs4oisE5ss2s5x6jF3seRnUDr83atIqYLqZOUzdxG8E0VMcvPyJjM9DQBTTo66T7FTspjh879B9m0wPQ+kYJSNWACjq0WNtnI1ujlaqblWVTjTRko5xfFYgUAgEAgEgocGbfqebFv8NNi3FWsRVSAQCATlHhEpVYroippro3cUnBQ61y4arZ25j6Wjt3He5zHA3l3OOs722uAoShUpfU8RbWxpazvPJ9D72958+vunumFZOfp0vNSMHOfzFRhxpU/f0wppxRHVlA56Rhd72p1ZI0qp55NNVkEKe4RalutNALK9c9T74Gp0tU9ui0JTuvXpzqvcd1kT/y+cK0E5ZfDgwUiShCRJuLm5Ub9+fd577z1MJse//aKwdetWJEni1q1b98bQQnD69Gn69etHzZo18fDwoHbt2kRGRnLs2DHduI0bN9KhQwd8fX3x8vKiVatWxMXF6cacOXMGSZJITEws9PmnTp1Ko0aN8Pb2JiAggM6dO7Nnzx7dnEOGDKFu3bp4enpSr149oqOjyc7Oznfe5ORk+vXrR4MGDTAYDIwZM6ZQ9mzfvp2IiAhq1qyJJEmsX7++yDYDTJ8+nbZt2+Ll5UWFChWcnuvs2bP06NEDLy8vqlatyvjx43V/Q9q/M+1P06b2brEzZsygVatW+Pr6UrVqVf72t7+RlJRU4HUWxj6BANAvNDnZJrh36Dofy97KRnVT1ok/S9kigeDeIvwn4T8J/6l4CFGqFNE+jBURyVn3PWc1pSyyxJUzqfqNGqHHHilli9iRJQy28xWr0LktnDotM5WjN47yye+fYNbYdThZb8v241dz2aYWZbKZWlD6niLkaDbhuK0glPNIkoHGz3TEr0o1gp9spe5TS1hp74nB1p3Pw/rWJNkdU12klIsyINPBRjV9L89IKZt9ws8VlBPCw8NJTk7mzz//ZOzYsUydOpWPPvqo4ANLiYKcDoCcnBy6dOlCSkoK69atIykpiTVr1tCsWTOdY7dgwQIiIyNp164de/bs4eDBg/Tt25eoqCjGjRt3V3Y2aNCAhQsXcujQIXbs2EFQUBBdu3bl6lXrd+axY8ewWCx8+umnHD58mLlz57JkyRImT56c77xZWVlUqVKFd955h+bNmxfanvT0dJo3b86iRYuKbTNY73+vXr147bXXnM5hNpvp0aMH2dnZ7Nq1ixUrVhAXF8e7776rjpk3bx7Jycnqz7lz56hYsSK9evVSx2zbto0RI0bwyy+/EB8fT05ODl27diU9PT3f6yzIPoFAUPpIHka829TApZoXSGmYLv+BwSMDg5+1O3XOufMAWNLSytJMgeCuEP6T8J+E/1R0hChVqtgFi6jP9/Jz0hVdUW6vLCfRU+qRWrFDEXoc0/ckTaQUTmpUFdpSm5hkq72ORbaQmm0XorJNepEpM9t5IXNViCukKOVM0ila+p4S6WWg+6hxDJ3/L9y9bF0ILRaNKuQYjWawnd1ksRc6d9FGSrkqolSWxmyl0LkSlWZwWtBeIChvuLu7U716dQIDA3nttdfo3LkzGzZs4ObNmwwcOJCAgAC8vLzo1q0bf/5pX93+66+/iIiIICAgAG9vb5o2bcqmTZs4c+YMoaGhAAQEBCBJEoMHDwbg9u3b9O/fH29vb2rUqMHcuXPp2LGjbvUqKCiI999/n4EDB+Ln58err74KwI4dO3j22Wfx9PSkTp06jB49Wn3gHj58mJMnT/LJJ5/QunVrAgMDadeuHTExMbRu3RqAc+fOMXbsWMaMGcMHH3xAkyZNqF+/PmPHjuWjjz5i9uzZDqtcRaFfv3507tyZ4OBgmjZtypw5c0hNTeXgwYOA1Xldvnw5Xbt2JTg4mJ49ezJu3DjWrVuX77xBQUHMmzePgQMH4u/vX2h7unXrRkxMDH//+9+LbTPAtGnTeOONN2jWrJnTOX744QeOHDnCF198weOPP063bt14//33WbRokeoQ+/v7U716dfVn79693Lx5k5dfflmd5/vvv2fw4ME0bdqU5s2bExcXx9mzZ9m3b1++11mQfQKBU5x0hxPcWwIi61P9jRYY3fZwZ/d8JKOF2vM+ptKwoer9t9xlVIlAUJYI/0n4T8J/KjpClCpNNHe7wpYlrPxiHebLduW09hWrcOM0sslJcUhd5z4lQkgVpaTipe8p2NLuDJpDb2bdzHO4xZzrHIrSo6TvFSRKOUEqhnNovw8G9bekEefU7nu6e6IXxEyySX1t1HbfUyKlcu5ojixspJQQqh52ZFkmOzu7TH7uRZ0OT09PsrOzGTx4MHv37mXDhg3s3r0bWZbp3r07ObY02REjRpCVlcX27ds5dOgQM2fOxMfHhzp16vDVV18BkJSURHJyMvPmzQPgzTffZOfOnWzYsIH4+HgSEhLYv3+/gw2xsbE0b96cAwcOMGXKFE6ePEl4eDgvvPACBw8eZM2aNezYsYORI0cCUKVKFQwGA2vXrsVsdi6cr127lpycHKcresOHD8fHx4fVq1ff9f0D6+rT0qVL8ff3z3d1LiUlhYoVK96Tc94thbU5N7t376ZZs2ZUq1ZN3RYWFkZqaiqHDx92esyyZcvo3LkzgYGBec6bkpICcN/cH4FAUAS0LpLmueTdpg1Vx461d34WrpIgF+XZhxL+090j/KcH33+6LwqdL168mMWLF3PmzBkAmjZtyrvvvku3bt3yPObLL79kypQpnDlzhpCQEGbOnEn37t1LyeKCcVKhAIPRCJInyHeoln0Vz/O/YrlSxWGk7svP6RehbSVJ231PqXOk6WJyV+t9NnFL0pw+NSs1j8FgyeMLWzIYkMk7fU9Np3NibXFENVmNGNPcB20KoTqV45wuN601ptJz0u3Xre0K4+Ju/e00UsqeNmk3xiaAiYVXAdZQ6A8++KBMzj158mTc3NwKHugEWZbZsmULmzdvplu3bqxfv56dO3fStm1bAFauXEmdOnVYv349vXr14uzZs7zwwgvqCktwcLA6l/IgrFq1qpqnfvv2bVasWMGqVavo1KkTAMuXL6dmzZoOtjz33HOMHTtWfT906FD69++vrgiGhIQwf/58OnTowOLFi6lVqxbz58/nrbfeYtq0abRs2ZLQ0FD69++v2nX8+HH8/f2pUaOGw/nc3NwIDg7m+PHjxbp3Chs3bqRv375kZGRQo0YN4uPjqVy5stOxJ06cYMGCBcTGxt7VOe+WotjsjEuXLukcKkB9f+nSJYfxFy9e5H//+x+rVq3Kc06LxcKYMWNo164djz76aKFtEQgEZUx+/1MvnCRBISiPPpTwn4T/JPynwnNfRErVrl2bDz/8kH379rF3716ee+45IiMj81QDd+3axUsvvcSQIUM4cOAAf/vb3/jb3/7GH3/8UcqWFw3JYMDdbwDeklWIkmQLFrXwtjadrKCoIiUqx1G8kpSaUmhEneKk7+EoSslOUt4ULHl111MLnRdgg+0vUZIdnZOi2K9EmRl0opTRNo89fU93Xe5VdXNkeJg1+zX2uHhafzupKSXZRLebfxRUU0os/wnKBxs3bsTHxwcPDw+6detGnz59GDx4MC4uLjz99NPquEqVKtGwYUOOHj0KwOjRo4mJiaFdu3ZER0frQpadcerUKXJycnjqqafUbf7+/jRs2NBhbMuWLXXvf//9d+Li4vDx8VF/wsLCsFgsnD59GrCuPF66dImVK1fSpk0bvvzyS5o2bUp8fHyh70VhnNGVK1fq7EhISFD3hYaGkpiYyK5duwgPD6d3795cuXLFYY4LFy4QHh5Or169GDZsmLpdO29UVFShbE5ISNAdt3LlykIdV1Sb7xUrVqygQoUK/O1vf8tzzIgRI/jjjz/4z3/+o26LiorSXadAcE8Qj+qSR/VbNfVWxY0XPAAI/8mO8J+E/1RY7otIqYiICN376dOns3jxYn755RddFXmFefPmER4ezvjx4wF4//33iY+PZ+HChSxZsqRUbC4YJw9WCSSDDy542sc4ESm0UUV2EUMrdjhL33MSIWQTqCwUIXVODV0q2spV7stQrS5sTSlncV3FWDzLnb6nteHWnZua1Ei7weYKj+FhDia72Vl+zv6BC1UyefVAJeC63gYlUurODUi7Cj72KLda8Um28yNqSgmc4urqWmDxxZI8d1EJDQ1l8eLFuLm5UbNmTVxcXNiwYUOBxw0dOpSwsDC+++47fvjhB2bMmMHs2bMZNWpUcUzX4e3trXuflpbG8OHDGT16tMPYRx55RH3t6+tLREQEERERxMTEEBYWRkxMDF26dCEkJISUlBQuXrzosLqYnZ3NyZMnCQsLK9C2nj176pzNWrVq6eyuX78+9evXp3Xr1oSEhLBs2TImTZqkjrl48SKhoaG0bduWpUuX6ubWdqvxsxUELoiWLVvqjsu96lYQhbE5P6pXr86vv/6q23b58mV1nxZZlvnss88YMGBAng7syJEj2bhxI9u3b6d27drq9vfee++ui6kKBILSQR8Vn5+PJPwngZ7y5EMJ/0n4T8J/Kjr3hSilxWw28+WXX5Kenk6bNm2cjtm9ezdvvvmmbltYWJjT1oxasrKyyMqyp16lpuadjnav0EtJak6Y9b0s69LepMI+gxWxSZPjq4gtksFge5bbH/3Fis7RFB43SAYssiXfeRxqSikoqXPmPEQpe/6e9pftddHT9yxORKnz6RcA2HdpH7UsnhiRUB0eyQAYMbrVxxKYw9nb1npR1b2qkc11vTjnahMTT2+H2BDotVzddaVVHar+di4fy5ROgsLRelhR2gOXF5SHqpbGjRtjMpnYs2ePGn5+/fp1kpKSaNKkiTquTp06REVFERUVxaRJk/jXv/7FqFGj1OvX1icIDg7G1dWV3377TXWEUlJSOH78OO3bt8/XxieffJIjR4442JkfkiTRqFEjdu3aBcCLL77IhAkTmD17NrNnz9aNXbJkCRkZGQwcOLDAeX19ffH19S2UDRaLRfcsunDhAqGhobRo0YLly5frIj2BIl2fgqenZ7GOy4vcNhdEmzZtmD59OleuXKFqVWs0anx8PH5+frq/FbB2iDlx4gRDhgxxmEeWZUaNGsXXX3/N1q1bqVu3rm5/1apV1fkFgrtC0rTeFY/q0kOk7wkKQXnyoYT/JPwnLcJ/Khz3jSh16NAh2rRpQ2ZmJj4+Pnz99dcON14hr1xLZ3mWWmbMmMG0adPumc35kncpKHQChSKiaA7Siz9yrmNBsn1sJk13El2EkO37Si3wXRzvSnESZDBKRqsopauUpZ/TQbDKXei8oJREzflyUyRRzZZGqP1SupF5w3oK2T6/pNgjGdRt2ogypROfrth6YFuoGAy3zoLFBBcPIPlYr+98p/pU/e0cRg+4y2peAsF9S0hICJGRkQwbNoxPP/0UX19fJk6cSK1atYiMjARgzJgxdOvWjQYNGnDz5k1+/vlnGjduDEBgYCCSJLFx40a6d++Op6cnvr6+DBo0iPHjx1OxYkWqVq1KdHQ0Bk2TgryYMGECrVu3ZuTIkQwdOhRvb2+OHDmiRs4mJiYSHR3NgAEDaNKkCW5ubmzbto3PPvuMCRMmANYVwVmzZjFu3Dg8PDwYMGAArq6ufPPNN0yePJmYmBiH/PukpCQHW5o2beqwmpqens706dPp2bMnNWrU4Nq1ayxatIgLFy6obXsvXLhAx44dCQwMJDY2Vtc2OPeKWG6Ulby0tDSuXr1KYmIibm5ueT47lbEnTpxQ358+fZrExEQqVqzII488UiibAc6ePcuNGzc4e/YsZrNZtaV+/fr4+PjQtWtXmjRpwoABA5g1axaXLl3inXfeYcSIEbi7u+tsWrZsGU8//bTTOgcjRoxg1apVfPPNN/j6+qrPeX9/fzw9PR3GF9Y+gUBQtjjLBBDek+BBRfhPVoT/JPynvLhvRKmGDRuSmJhISkoKa9euZdCgQWzbti3fP46iMmnSJF2EVWpqKnXq1Lln8xeMvssbyE4FlwJFJMn6sZnNWlHK+touStm77+WeLj0li4zUbCRJomJNbwwGJ19cmkgpo2Qkh5x8xSE5j5pSasRSAel7kpT73jgvfl4QaqSUZBelZNtLd4Ob7t7bDNSIUvbVBzU1Uqu4+9eG0Qfgx2mwYw6YspHwsh5r674naZr1OU3NLPIVCQT3F8uXL+f111/n+eefJzs7m/bt27Np0ybVoTCbzYwYMYLz58/j5+dHeHg4c+fOBawh2dOmTWPixIm8/PLLDBw4kLi4OObMmUNUVBTPP/88fn5+vPXWW5w7dw4PD498bXnsscfYtm0bb7/9Ns8++yyyLFOvXj369OkDWOsVBgUFMW3aNM6cOYMkSer7N954Q53njTfeIDg4mNmzZzNv3jy1JfLq1avp27evw3mdbTt37pwuLBrAaDRy7NgxVqxYwbVr16hUqRKtWrUiISFBTU2Pj4/nxIkTnDhxwuH4ggT5J554Qn29b98+Vq1aRWBgoNo0xBl79+5VW0sD6jNx0KBBxMXFFcpmgHfffZcVK1Y42PLzzz/TsWNHjEYjGzdu5LXXXqNNmzZ4e3szaNAg3nvvPZ09KSkpfPXVV2onodwsXrwYgI4dO+q2L1++XG2J7YyC7BMI8kc8rUsEZ933nP3Ps7j9ggcQ4T8J/wmE/5QX940o5ebmpobKtWjRgt9++4158+bx6aefOoytXr26mlupcPny5QJVUXd3dweFsVRRNSJ7pJSsROfImme1U4FH+9C2Kh/aEE6ntZSUfZqn+81L6ax+71dVRKrfsiphQ51U4deczqAWT9cUOs81vKBC53mJVvlRkMrvDLPZ2lb1yI0jDNg0gJFPjFQdHjeDG2oYmS5SyklEmbNC5wpqF75MJKw52rL9IxWh6IJyT1xcXJ77AgIC+Pzzz/Pcv2DBgnznnjJlClOmTNFt8/X11RWSTE9PZ9q0abz66qvqtrwchVatWvHDDz843Ve5cuU8H9a5iYyMVFcrb9y4QadOnVi8eDE9e/bEy8sqPgcFBRUpctPDw4N169blO2bw4MH5Ogf5UZzU7I4dO+Z7XGFsBuvfSH5/J2Bd2d20aVO+Y/z9/cnIyMhzf3GbQxTGPoEARFZ9qSDuseAhQfhPwn8qCOE/Oee+6L7njPzyL9u0acOWLVt02+Lj4/OsQXX/oUQFyblLKgGFiZSyiVKa9L3cXedkyR5pZNGkzt26ckcnEN1MTtdN7XBuW/peQTj83efuqpJH+p56PiVSyln3vSJ4M8lpyQCkmdJJvJrIf5P+q9pgxB4VJas5jvZ/Am1qtaayZ2V61uuZ/wqe0ZbTvm850mVrh0hZKQjmxH7bRLb9wjMTCHJz4MABVq9ezcmTJ9m/fz/9+/cHUJ2c0qZixYr8+OOPdOrUid27d5eJDQKBoAwQa0olzs2bN9mzZw+HJAPHQ0JI1SywCgSCoiH8J8GDwn0hSk2aNInt27dz5swZDh06xKRJk9i6dav6D2vgwIG6ivWvv/4633//PbNnz+bYsWNMnTqVvXv3MnLkyLK6hEIh505Rk3OpmIquodnmTLSSnERKoXbfU2o4Fa6mVF4aiYTd1txF45zPU1Ch8wKcDqfN94oTKWUV6hRtyCyb1fQ9SRONpqT5IRlUIczXzY/4F+OZ/sx05zdewUUTbXfuF+t8sjVCSykyLxAIikZsbCzNmzenc+fOpKenk5CQQOXKlcvMnkqVKvHuu+/SqVOnMrNBICgsixYtIigoCA8PD55++mmHzj25+fjjj2nYsCGenp7UqVOHN954g8zMzFKy9v5HrB+VHBs2bOB///sfu12MHGjxJD+l3HIySnwAAkFhEf6T4EHgvkjfu3LlCgMHDiQ5ORl/f38ee+wxNm/eTJcuXQBrwS2tMNK2bVtWrVrFO++8w+TJkwkJCWH9+vVOi3zdj8jaxDo1gkh2KB6ubNcfg1pTymTSilK2At+SNn2v+OKIrIkQUiKlilRTSi10rtSUKsjByLumVFHCD5U0RostckkbJSZp6mzJsiZSSq3JbsDF4KKz32kKoW5OKxZTum2XVmR0FLaKG0opEDzIPPHEE+zbt6+szRAIyiVr1qzhzTffZMmSJTz99NN8/PHHhIWFkZSU5LSzzqpVq5g4cSKfffYZbdu25fjx4wwePBhJkpgzZ04ZXIHgYUJJN6lgsXDLYCBDREoJBMVG+E+CB4X7QpRatmxZvvu3bt3qsK1Xr166SvblASmX8CLJzguda5fo1N4kOm3EKhLdTL2BhS8xuj+miiz2mlKSPVIqPzEpr12SYqPzmlIOWX55RVwZCtd9L78yTEVJ3zPbIsbUGk/WkDHrOTTTWHRpg9b9qiAF+afvZd222+1RATBz6s4l2iJWVwUCgUBQusyZM4dhw4bx8ssvA9ZW3N999x2fffYZEydOdBi/a9cu2rVrR79+/QBrrY+XXnqJPXv2lKrd9yci0rm0CLJYSDQYnHt4wpcSCASCh4r7In3vwcTJE1X1dQzqGNmJWOO8KLimZa7BDwCTyYTFdA7TnV/UCCGDwehwRL6iTt75eyra6Ku8p8mr0LlN0LJYrOdKuQC3zkFWmmKc7XxOOgUWwzeU1bQ8u12yKrBpeu85i5TSROPJ2kLoucm21+FKdrEKWbtyrgCQoyt0LrwqgUAgEJQc2dnZ7Nu3j86dO6vbDAYDnTt3zrOeR9u2bdm3b5+a4nfq1Ck2bdpE9+7dS8VmwUOM1rdUa3wKBAKB4GHnvoiUejCRcv3GIepGQtY9je2RPHlHJEkSGFyq4ObblwZVD/HHycOARRVR1MgkyZ6qpk1hK2woj5IuKMngYksXzLc2VW5tTU1/s4k6Zgt8MxISv7C+d/WC//eL5rocFSg11a4ILotSK0qJhLLIFl3Ul32crUi8pqaUUSPo5RGiZkUjSp2RrOKWRc3jK7SpAoFAIBDcFdeuXcNsNlOtWjXd9mrVqnHs2DGnx/Tr149r167xzDPPIMsyJpOJqKgoJk+enOd5srKydM1nUlNT780F3G+INaWSwYnvqZSs0O8RN14gEAgeRkSkVAlRqMeqnEekVD4HK+KNwaUm1SpWsW21gBIpZSxaofM8T+4kUirfekh51YxSoo9kC1zYa9+ekwGX/3AY7jQ4qgjmW5yl7xkc0/eU+y5LBvWsRqNWlMqn0Hm70VZR7alXVQ3KYrtMg7bQue5+Fb0+lkAgEAgE95qtW7fywQcf8Mknn7B//37WrVvHd999x/vvv5/nMTNmzMDf31/9qVOnTilaXEqIzL1SQfGDpFzvBQKBQPDwIiKlShM16saqYEjIqmBkr2xELjFDDdmxH2pTQvQBUEr6nk1AkjSFzouRvafVZJQIovzELUvuiXIVOlfT6rTk3LE7I07S94pTqF3p8qeKUhq79DWlrOMyNZFS7tquevkVOq8YDBPOgIs75hVPWOdTPh5bR0Xh2woEAoGgpKlcuTJGo5HLly/rtl++fJnq1as7PWbKlCkMGDCAoUOHAtCsWTPS09N59dVXefvtt5123J00aRJvvvmm+j41NfXBFKZUhFBSMmhKUdj8LBFgLhAIBAIRKVWa5E7fk2W7mCOr/3EaPWWfwvGBLiOroo/SKQ+Kl/6mYpA0Lwv+M8lLhFHTCbWRVK5e1t85dzTjbEKdVpQqRqSXRY2Asr9XopgkzW1V0vxSjQb1Pnm5etoH5FfoHMAmYJmVNEHdsHzi/8WKoEAgEAjuEW5ubrRo0YItW7ao2ywWC1u2bKFNmzZOj8nIyHAQnpRI4byiVtzd3fHz89P9CAR3g/OaUmJJTyAQCB5GRKRUSeHUr8v9sJXVtLu8jpFzpZFJ+p223xb1tUHXfU+ZtvhCiCRrhK780grz2mfUpO8puHpa0/dMmfbjDXk7IkUJ7VbEJllSVuCc319ZNvGnqyu/uxnVSCmtDaow6GTFWHc+5bd2WF6pjAKBQCAQ3GPefPNNBg0aRMuWLXnqqaf4+OOPSU9PV7vxDRw4kFq1ajFjxgwAIiIimDNnDk888QRPP/00J06cYMqUKUREROjT2B8WxGJRmaDWlHLahbqUjREIBAJBmSIipUoTm0qkROZIOBeMnD2gTbZaSSalaxxoYp5lsG03GLQ6o2MdI8csO+dPfk2jOlWU0tlagMNgrxNuS98za8QhF1tEUk6GxlTHuk/FSt/LLQjJ9muRNPuO3T7DP2rXYJqPvaaULlVPHZq/DbZy6bpIKfWWOqkpJTwtQXlg8ODBSJKEJEm4ublRv3593nvvPUwmU8EH58PWrVuRJIlbt27dG0MLwenTp+nXrx81a9bEw8OD2rVrExkZ6VAEeuPGjXTo0AFfX1+8vLxo1aoVcXFxujFnzpxBkiQSExMLff6pU6fSqFEjvL29CQgIoHPnzuzZs0c355AhQ6hbty6enp7Uq1eP6OhosrOzC5x75cqVNG/eHC8vL2rUqMErr7zC9evX8z1m+/btREREULNmTSRJYv369U7HHT16lJ49e+Lv74+3tzetWrXi7Nmz6v7hw4dTr149PD09qVKlitN7+ttvv9GpUycqVKhAQEAAYWFh/P77707Pd+LECXx9falQoUKB113Ya3hY6NOnD7Gxsbz77rs8/vjjJCYm8v3336vFz8+ePUtycrI6/p133mHs2LG88847NGnShCFDhhAWFsann35aVpdw3yCa55YwkuNLxTvMzMwky2Ahh7t7zggEZYnwn4T/JPyn4iFEqbJAVqKHZH3NI2W3E6Ho6p2rAGRb7N1vJFkX+gOAQdNBzqB038svYz9Px8te60otdJ6Pl5ZnpJQSaWTJFSkFkJNpP490b9L3ZNu1KkdYsKgRUNq5991KAsDfYu8uqMvUy6fQucVi4Y8//mDXrl2YlW5/ukipQpsrENy3hIeHk5yczJ9//snYsWOZOnUqH330UVmbpVIYpyMnJ4cuXbqQkpLCunXrSEpKYs2aNTRr1kzn2C1YsIDIyEjatWvHnj17OHjwIH379iUqKopx48bdlZ0NGjRg4cKFHDp0iB07dhAUFETXrl25etX6nX7s2DEsFguffvophw8fZu7cuSxZsiTfTmgAO3fuZODAgQwZMoTDhw/z5Zdf8uuvvzJs2LB8j0tPT6d58+YsWrQozzEnT57kmWeeoVGjRmzdupWDBw8yZcoUPDw81DEtWrRg+fLlHD16lM2bNyPLMl27dsVsq+uXlpZGeHg4jzzyCHv27GHHjh34+voSFhZGTk6O7nw5OTm89NJLPPvss/naXpRreNgYOXIkf/31F1lZWezZs4enn35a3bd161bd/yC4uLgQHR3NiRMnuHPnDmfPnmXRokWFcmgFguKgd1dt/qpaggK2bdvGhx9+yOpHbvG5+zYOXT1VBlYKBPcG4T8J/0n4T0VHpO+VGE6ElFy1mSS0olQeUUi21yazCTeDPS0NtA95WU0ZM7jYP1LJSfHwAq1Uc/wdhRz9sIJCpWxik7b7nmKwqzZSys82Lm9biyRKWRxrSqlHayKlrmTdAOBv2eDt4kN2jilXpFTehc7PnTvH2rVrrZfwiGNNKd3ngi3iy1lDPoHgPsbd3V0tlPzaa6/x9ddfs2HDBqKionj99df59ttvycrKokOHDsyfP5+QkBAA/vrrL0aOHMmOHTvIzs4mKCiIjz76iCZNmhAaGgpAQEAAAIMGDSIuLo7bt28TFRXF+vXr8fPz46233uKbb77h8ccf5+OPPwYgKCiIIUOG8Oeff7J+/Xr+8Y9/EBcXx44dO5g0aRJ79+6lcuXK/P3vf2fGjBl4e3tz+PBhTp48yZYtWwgMDAQgMDCQdu3aqdd57tw5xo4dy5gxY/jggw/U7WPHjsXNzY3Ro0fTq1cv3f/kF4V+/frp3s+ZM4dly5Zx8OBBOnXqRHh4OOHh4er+4OBgkpKSWLx4MbGxsXnOu3v3boKCghg9ejQAdevWZfjw4cycOTNfe7p160a3bt3yHfP222/TvXt3Zs2apW6rV6+ebsyrr76qvg4KCiImJobmzZtz5swZ6tWrx7Fjx7hx4wbvvfeeWhA7Ojqaxx57jL/++ov69eurx7/zzjs0atSITp06sWvXrnxtK+w1CATFQ9Q0Ki0U/1KWZU6fPq1ulyW4kHatjKwSCO4e4T8J/0n4T0VHREqVJmrkj+0tsvpG233PWaHzTLNSf8kxOgosWCzWsFB7oXOpcIXO81JJJIcXxWvbqxRP1abVGd2svy2aUFYnhc6LQ26RT5Zl+1+5Zu4cpVuhJNnbE2v/NeRT6Dwjw5p26OXlpYpRZs2xor2xwBmyLGM2Z5TJz734m/T09CQ7O5vBgwezd+9eNmzYwO7du5Flme7du6urNyNGjCArK4vt27dz6NAhZs6ciY+PD3Xq1OGrr74CICkpieTkZObNmwdYa+Ls3LmTDRs2EB8fT0JCAvv373ewITY2lubNm3PgwAGmTJnCyZMnCQ8P54UXXuDgwYOsWbOGHTt2MHLkSACqVKmCwWBg7dq16gpUbtauXUtOTo7TFb3hw4fj4+PD6tWr7/r+gXV1cunSpfj7+9O8efM8x6WkpFCxYsV852rTpg3nzp1j06ZNyLLM5cuXWbt2Ld27d78rGy0WC9999x0NGjQgLCyMqlWr8vTTT+cb4p2ens7y5cupW7eu6kA1bNiQSpUqsWzZMrKzs7lz5w7Lli2jcePGBAUFqcf+9NNPfPnll/flqp1AICg5tJmSyvdz1UyjZqtAYKc8+1DCf7p7hP/04PtPIlKqNFH1DUWAkXPHNOt/A3dM1g51ZqWrnPZBbVZC+Ozilqebl7Il33TAglCOMFC8NDoFyegkfc/oav1tztFoP3nXlCpSofNc3fdkjdXadEezbBXEDEgONthOqmzM81yVKlVSRSltDS41fc9ZTSkhWD20WCx32LqtWZmcu2OHQxiNXsU6VpZltmzZwubNm+nWrRvr169n586dtG3bFrDm5depU4f169fTq1cvzp49ywsvvECzZtZrDQ4OVudSHIWqVauqqUK3b99mxYoVrFq1ik6dOgGwfPlyatas6WDLc889x9ixY9X3Q4cOpX///owZMwaAkJAQ5s+fT4cOHVi8eDG1atVi/vz5vPXWW0ybNo2WLVsSGhpK//79VbuOHz+Ov78/NWrUcDifm5sbwcHBHD9+vFj3TmHjxo307duXjIwMatSoQXx8PJUrV3Y69sSJEyxYsCDfVT6Adu3asXLlSvr06UNmZiYmk4mIiIi7dk6uXLlCWloaH374ITExMcycOZPvv/+ef/zjH/z888906NBBHfvJJ5/w1ltvkZ6eTsOGDYmPj8fNzbro4Ovry9atW/nb3/7G+++/D1g/n82bN+Nii+i9fv06gwcP5osvvhDd3AT3B6KmVKlhULoXYxeljHbnTSDQUR59KOE/Cf9J+E+FR0RKlSZOBA5ngot2S44lV96vdgq1eLhMNc+qALgYXZFlE9nyVXzO5eCf5lK87nuabn/FKThuF3Vs9agsGpVdKcZusefF5td9r0inteijzCyyxX7fNbsUkc+AZE/r02lSevvzQp1SklSB6uzyP0j+1V9ETAnKNRs3bsTHxwcPDw+6detGnz59GDx4MC4uLrpQ7EqVKtGwYUOOHj0KwOjRo4mJiaFdu3ZER0dz8ODBfM9z6tQpcnJyeOqpp9Rt/v7+NGzY0GFsy5Ytde9///134uLi8PHxUX/CwsKwWCxqOsiIESO4dOkSK1eupE2bNnz55Zc0bdqU+Pj4Qt8LxVHIj5UrV+rsSEhIUPeFhoaSmJjIrl27CA8Pp3fv3ly5csVhjgsXLhAeHk6vXr10tQ2080ZFRQFw5MgRXn/9dd5991327dvH999/z5kzZ9T9CQkJuuNWrlxZqGtVOphGRkbyxhtv8PjjjzNx4kSef/55lixZohvbv39/Dhw4wLZt22jQoAG9e/cmM9Ma1Xvnzh2GDBlCu3bt+OWXX9i5cyePPvooPXr04M4d62LLsGHD6NevH+3bt3dqS3GvQSAQ3B9kZGRw/Phxzty5yCXplt4vUmpKybKDKCW8J0F5RvhPdoT/JPynwiIipUoMZ4/U3N33ZCxOCp1ro2nU1DKbsGLUPtAVoUeWcZNs0UcGCdOdndyy7KPOT1CLmmS1ue3cFDnvwB17iqFUOFEqj3myFNVGm76nilL29L38Cp0XBeV+qYttsgwGxyglk+3ckiSpQlZhI6W0TpVWArviD9VvQdalDLLwptK1VHJ/FRdLIBQ8EBgMnnTscKjMzl1UQkNDWbx4MW5ubtSsWRMXFxc2bNhQ4HFDhw4lLCyM7777jh9++IEZM2Ywe/ZsRo0aVRzTdXh7e+vep6WlMXz4cLUugJZHHnlEfe3r60tERAQRERHExMQQFhZGTEwMXbp0ISQkhJSUFC5evOiwupidnc3JkycJCwsr0LaePXvqnM1atWrp7K5fvz7169endevWhISEsGzZMiZNmqSOuXjxIqGhobRt25alS5fq5tZ2q1FWxGbMmEG7du0YP348AI899hje3t48++yzxMTE0LJlS91xSie2gqhcuTIuLi40adJEt71x48bs2LFDt83f3x9/f39CQkJo3bo1AQEBfP3117z00kusWrWKM2fOsHv3bgy29OxVq1YREBDAN998Q9++ffnpp5/YsGGDuqopyzIWiwUXFxeWLl3KSy+9VKxrEAiKQ3F8DkH+rFq1ivPnz1vfuIP5vJ+90LltjDZ9zyBcJEEelCcfSvhPwn/SIvynwiFEqRLC6XNVdXisvw3IziOltKKH8vBWIo4k2Vo0XDJoUuLs6pJVZElRjzcgYUpNczRFsTH36QspxhSkrWSbzLgCO0/d4GkgMysH3G071fQ9bU2pfNL3ilLoPFc9LlmTwCdphDETZvV8lhwTGFywpNyCitWViRQj8kVb4PztQUaeSJYYvV7Gkm1GNjnPwRY8nEiSVOwUurJAcQS0NG7cGJPJxJ49e9Tw8+vXr5OUlKR7CNepU4eoqCiioqKYNGkS//rXvxg1apS6YqatTxAcHIyrqyu//fab6gilpKRw/PjxPFeAFJ588kmOHDniYGd+SJJEo0aN1IKQL774IhMmTGD27NnMnj1bN3bJkiVkZGQwcODAAuf19fXF19e3UDZYLBaysuydVC9cuEBoaKjakUVxQhScXV9GRoYaxq1gVGr4yTKenp5Fui8Kbm5utGrViqSkJN3248ePq8VOnSHbuskq15WRkYHBYND9j77yXllN3L17t+5v4ZtvvmHmzJns2rWLWrVqFfsaBAJB6WJOz+H2tnNYMqx+nVtNH3za1iQlxeqPukhGTLKZ25np6jFKSQWdKGXbJxbwBLkpTz6U8J+E/6RF+E+FQ4hSpYpjKphFm26mlJTSbFMFFWeZlhpRyl6uyoA+fgdks/69bp+ToupaYyRZKlZNKUXTsdjEtFvpWdRRRCmDTZSymBy73DnrvleENDh7pJStVoFsQXaavmcPFVf2m65cQX6kCpLRmG/3PYXc+257SfxRz4jkaoFssya9Euw1pQp9KQLBfUdISAiRkZEMGzaMTz/9FF9fXyZOnEitWrWIjIwEYMyYMXTr1o0GDRpw8+ZNfv75Zxo3bgxYO7dIksTGjRvp3r07np6e+Pr6MmjQIMaPH0/FihWpWrUq0dHRDg9kZ0yYMIHWrVszcuRIhg4dire3N0eOHCE+Pp6FCxeSmJhIdHQ0AwYMoEmTJri5ubFt2zY+++wzJkyYAFhXBGfNmsW4cePw8PBgwIABuLq68s033zB58mRiYmJ49NFHdefN7XAANG3aFFdXV9229PR0pk+fTs+ePalRowbXrl1j0aJFXLhwgV69egFWh6pjx44EBgYSGxurtjoG1O49zoiIiGDYsGEsXryYsLAwkpOTGTNmDE899ZTTehIKaWlpnDhxQn1/+vRpEhMTqVixourUjh8/nj59+tC+fXtCQ0P5/vvv+fbbb9m6dStgTRlYs2YNXbt2pUqVKpw/f54PP/wQT09PtVBoly5dGD9+PCNGjGDUqFFYLBY+/PBDXFxc1C5Cyt+Fwt69ezEYDA73uzjXIBAISo+MA1dI237B/p7LeDSxFxuu6OrHleybOn9OuwhpMtnqfMoiWk3wYCL8JyvCfxL+U14IUaoUsX8/OO9o5zx9zwIYNMqvNn1PI0qpdZEkkPUROhaNkpp94aL1hdkMBiPmmzfzMNaWTodcrILj6rkVQctisdtusHVX0dWUcpK+V4xaVrJm5Q2UmlKOBeTNSgSaRcJkO8+NpUu5NmIPgatWFqrQeV4o9bFy17cSCB4Eli9fzuuvv87zzz9PdnY27du3Z9OmTapDYTabGTFiBOfPn8fPz4/w8HDmzp0LWEOyp02bxsSJE3n55ZcZOHAgcXFxzJkzh6ioKJ5//nm1pfG5c+fw8PDI15bHHnuMbdu28fbbb/Pss88iyzL16tWjT58+ANSuXZugoCCmTZvGmTNnkCRJff/GG2+o87zxxhsEBwcze/Zs5s2bR3q6dTV/9erV9O3b1+G8zradO3eO2rVr67YZjUaOHTvGihUruHbtGpUqVaJVq1YkJCTQtGlTAOLj4zlx4gQnTpxwOD6/79zBgwdz+/ZtFi5cyNixY6lQoQLPPfdcgS2N9+7dqzo1YO3cA/b20gB///vfWbJkCTNmzGD06NE0bNiQr776imeeeQYADw8PEhIS+Pjjj7l58ybVqlWjffv27Nq1i6pVrfUNGzVqxLfffsu0adNo06YNBoOBJ554gu+//95pUdSiUJhrEJRfzGaz2uUWwNXVtcDvgrvCSU8S0ZSkaMjZVj/TtZYPOZczwGRBzrY4fodpV/61JRVsopRR3HbBA4zwn4T/JPynvBGiVGmiFs22P5QV3UJb2lFfs0jJvbdHSklKzJI2fU89hYRjpJRdlDJfv67fl1eKmVaMKYwuk0caoBKFZNFGDWm676ko6XtIyLJsVfg1HfQKi6y/oTYbbJu0q3JK+p5ZUj+XjF/34JaTxvX/+z/7Z2DIv9D5W7crMsv3BgPSTPzbx8VqqSJKOYlQE8XPBeWB/B5MAQEBfP7553nuX7BgQb5zT5kyhSlTpui2+fr66oowpqenM23aNF599VV125kzZ5zO16pVK3744Qen+ypXrqy2TS6IyMhIdbXyxo0bdOrUicWLF9OzZ0+8vKwpA0FBQUX6N+zh4cG6devyHTN48GAGDx5c6Dm1jBo1qsi1Jjp27Fioa3jllVd45ZVXnO6rWbMmmzZtKnCOLl260KVLl0LbVth7UdhrEJRPUlNTdf9uDQYDffv2pUGDBmVolaAwuNX0wXQjE9mk93+cLTJKOIpSak0p8c9bUE4R/pPwn4T/VDxE972Swmmdc31NKQCL7EQUctKdRJ9Cp9RI0kRKqcdIyIVK31O2OVec1AhqXRmpov8Rm9Xuexob1PQ9s3oCSSP+OKsLVVhyH6tL39OQY1HS9zRin+0eulSqrPkM8q+t1SbHh/2nz9LzTo7NVk0nQScCmUAgcOTAgQOsXr2akydPsn//fvr37w+gOjmlTcWKFfnxxx/p1KkTu3fvLhMbBIKHGUmylw6wWCxcvHixtE4MFE8TyTx+kyuLErk8fz9XFiWS+WcekegPIhqXSd8zxmHF0l7oXLMrJ8fqQxmEwyQQFAnhPwkeFESkVEmjiziyvva7I3HT1shBK9aoOpC2plQ+tY2yL9+wj7Mo4o6T9D2Lo/ClFDovyPGSyL/guIxzzUVZAZN16Xs2jEr3PU36nub6ZIsFDMa7St9TuvlZsOhDpGyYbaKc0aLVZa3b3OoGFarQuSRZkxtdAcl2j7WiVO6VQtQRAoEgN7GxsSQlJeHm5kaLFi1ISEigcuXKZWZPpUqVePfdd8vs/ALBw0pAQADR0dGAtbX63r17y9iiwpG2J5nsc/Zux+l7kvEICSix85luZJLy/WnkLKv/4dWyOl7Nyu470wFdeYr8I6UUlPQ9UehcICg8wn8SPAgIUaoUyfLzw3hRr3PIakc42a5XaGtK2X5L2u57NjJPJUOgtT6TGoPlrNC5ThyxyUh5he7lihDSilLF8RHkfCOltN33NJFSFr0QV5xC55Ik4ZUpU//Ybfz8z5O7/6BJVrrv2c/r80w7srb+aL2HhSh0bh1gPd4g20UpRE0pgaBIPPHEE+zbt6+szRAIBILiY/NdXCp7Yrp2hzz7yNwjMg5c4c7Ba+p7043MshOlCvDT7DVT7dsMsox7ZiZZtto3Li4uuFlEAodAUBSE/yR4UBCiVAlhF5vsZPv54kkO5ytJoNTwdFLoXC/CKN337OKIJFnXkFyrBACp+vNJBodIKdlJpFSB6AK8ih9OLRuciVK2PzuzXZRyiJQq7vkUL1CSePs/ZkKSz2ORznOz4SPccbeKYVcqZNm772l0MUkroBW20LkiSjmJlEJ3HYrAVrzrEggEAoFAUErcxbNa8jDeOzvyQSnNYAxwx3wzC9l8HzgYEhpntoBFRVmm049bMA8bhlfrp6levTr7Y+JKwUiBQCAQ3G8IUaqEcC5lWAUMk4u2ppSTB3a+yoWshjwHdGwGv+60bdWewuqoWIwSBrOcKx2wMNZjF2MKqCklS7bsuFwT2xsN2oQes9k+Ril0bsmxRzYZNKKUTVgqTvqeRZPGWCXFus0gQ4djZ9kyriM7fJI5mvkXVfGz7rNonEfldBY5X1FK62QpkWCSJlLKYotMu/yfXXhfn0lKekWHOQQCgUAgENw/WP2Uso9wNqfncOePa8gmCwYvV7yaVUZyyTuCyODtivlmVilaWBDOizqA1Y9UfSgZfNPSqF6hAgHNm5eeeQKBQCC47xCiVElhcHwoGwyuQBbaB7azqCgssn6TBPYHOmpBKEkjbklqyps9fU92kcAsYzFrI6WsE6o1n/KyX7L/clZTyqHLbx7TOE/fUyKlcjR5h473RD1vkdL3rOcxSAZdEU0DYHRzweLlAllgVsbJ9vPaMwg1TpNUQCi5bb9RNtmOhJzrdwDIunCTrLg40qo8CcGNFQMLfS0CgUAgEAhKlpxLlwC4uWolxor1MQYElak9qfF/kf5Lsn2D2YJ3y+plZ1Ah0Lk2Tgqd59FSx2G8PWPg3tkmEAgEgvsfkbxdmtjEmGqaGk9ascZktFY/v3Yii72bTpOd6SS9TbJHSmmLRKq1piQJWYnacSlMwe085CTb+bQ1wvMThxz2KGOdpbIpopRmRVLbfc+SK32vSAUv84lwMlisYhVoakrp6hdoakEVstA5kjXSyiA7F/kqDR2Ce+NGhbdfIBAIBAJBqWGyiVL3jLsoeQBgSc/Rv88w5TEyF/eDkqNbYNRudlboXCAQCAQCK0KUKkUstq5zktHdvlHz0L7t+wgAKRdM7NlwmhP7rtif6rpfmjAmZRqLVgTSREqRK0opt9Pi0K3XUawqVE2pvOqmqzWltN6JQTFas82xplRxallpu+8pkVIWmzBmkGVVlKp03UTUd2Y8b2qFMSVl0Z6+V5ANsrpfEaXs1+kS4E3VcePwfPwJTSrifeA0CgQCgUBwn5KdaeL4b5c4/tslUq5kFHzAPcIYUBG7s3UPntX3SiTKa5r73Z0o6PrtnXw0G4WvJBAIBA8jIn2vDEj3qAi2rsG6ek+Svjhm9h1dFW5lFMrD2qB5aCuih1VEyRUp5axweB7OwjlDMIeeeQGLyRXvFm2pdGmu/ZB8nIQipe+popS942B+hc6LEimlpu8ZDGqUl2w0gMWMZLGLUiO+yqTOFZmcI+mce0axwTZJEWpKKZFSTiso5FMDQiAQCAQCgSOZaTnELzsCwG2/m+BVSic2SOVTC3FSA7TU0flF2s16o3TvCtvlWCAQCAQPPEKUKkXUx642VU12NsIWdSNrI3FyJd3LIGmKJulqIMm5IqU0NaXkXCtTuX2YS4bamA3W9rxpvnXwu1HHaU2p3EfmnsfhWrV1rVRRSt8V0IKMAcnRiSlKTSmL3clRRSkXA+SYMZjt6Xt1rtjusaZmlD1SqvDd9zLcq1iHKefX7JOMBt2+ol6LQCAQCAQPG0ZXA7UbBWA2Wbh9xbqtJJ+dsjZC/B6c5t5LLPkbdV9JOpoaqPrNedVSxfni3z02SyAQCAT3NyKUoxRRHrKyZNCk5eXd6UWb8mYXPWT7o11zrCIYSUZ7+h7GvAuFS07S9JyRXOf/2VexnHgJSp3wPGcx5Bcppd1mn+vWpYvkZGYWq/uebA+9ckjfkzTpe6memhOrZtkjuNR7Zsj7n4gkSVwIaMNhQkj3rWc91GCPdpNcSqcttEBwrxk8eLBV2JUk3NzcqF+/Pu+99x4mUyFrm+TB1q1bkSSJW7du3RtDC8Hp06fp168fNWvWxMPDg9q1axMZGcmxY8d04zZu3EiHDh3w9fXFy8uLVq1aERcXpxtz5swZJEkiMTGx0OefOnUqjRo1wtvbm4CAADp37syePXt0cw4ZMoS6devi6elJvXr1iI6OJjs7u8C5V65cSfPmzfHy8qJGjRq88sorXL9+Pd9jFi9ezGOPPYafnx9+fn60adOG//3vf+r+GzduMGrUKBo2bIinpyePPPIIo0ePJiUlRR0TFxen/n3k/rly5Yo6Lisri7fffpvAwEDc3d0JCgris88+09nz8ccfq+eqU6cOb7zxBpmZmflew7p16+jatSuVKlUq8uchuP/x9ncncswThA17tHRPrFtBKt1T3xX3lSqlQS6g0HkBnaYFgvKI8J+E/yT8p+IhRKkSw8kDVdF2JINdZNKINbnrDsma2kb2LnW5z6Gk6Ck1jezpexg1aXIOZsm5Nzi/CoN7scQhtbufpBXGcgk9skUVkWRQi7WvmTqRpSNfwZxV8JeKo8G21EZNBJRsU6e0hc6Taks6+yRke/SYNn2vgGu3uHjyJc9zpNnbtuvQiFy69L37ILxeICgC4eHhJCcn8+effzJ27FimTp3KRx99VNZmqRTG6cjJyaFLly6kpKSwbt06kpKSWLNmDc2aNdM5dgsWLCAyMpJ27dqxZ88eDh48SN++fYmKimLcuHF3ZWeDBg1YuHAhhw4dYseOHQQFBdG1a1euXr0KwLFjx7BYLHz66accPnyYuXPnsmTJEiZPnpzvvDt37mTgwIEMGTKEw4cP8+WXX/Lrr78ybNiwfI+rXbs2H374Ifv27WPv3r0899xzREZGcvjwYQAuXrzIxYsXiY2N5Y8//iAuLo7vv/+eIUOGqHP06dOH5ORk3U9YWBgdOnSgatWq6rjevXuzZcsWli1bRlJSEqtXr6Zhw4bq/lWrVjFx4kSio6M5evQoy5YtY82aNQVee3p6Os888wwzZ87Md5zgAaA8PjPvsUhULgKstaUY8r1+ZxH3Gr+pPFyrQFAAwn8S/pPwn4qOSN8rReySk7XekSyhRgs5e4brioNrU+hsg3Mwg+QOciYmg4R77uPzi5Ry8so6f94UqQueMrsSOVRQpBRwonY69ZN9ccmBzNupZN1MKfp5NT6OEiml3AeDLGO01YDKsN2sy+38bamQBnunQF2hcyen0NzP3FFkMjJVwutxdfMJqvdtXXi7BYL7DHd3d6pXt7Yhf+211/j666/ZsGEDUVFRvP7663z77bdkZWXRoUMH5s+fT0hICAB//fUXI0eOZMeOHWRnZxMUFMRHH31EkyZNCA0NBSAgIACAQYMGERcXx+3bt4mKimL9+vX4+fnx1ltv8c033/D444/z8ccfAxAUFMSQIUP4888/Wb9+Pf/4xz+Ii4tjx44dTJo0ib1791K5cmX+/ve/M2PGDLy9vTl8+DAnT55ky5YtBAYGAhAYGEi7du3U6zx37hxjx45lzJgxfPDBB+r2sWPH4ubmxujRo+nVqxdPP/10se5jv379dO/nzJnDsmXLOHjwIJ06dSI8PJzw8HB1f3BwMElJSSxevJjY2Ng85929ezdBQUGMHj0agLp16zJ8+PACHY2IiAjd++nTp7N48WJ++eUXmjZtyqOPPspXX32l7q9Xrx7Tp0/nn//8JyaTCRcXFzw9PfH0VMNNuXr1Kj/99BPLli1Tt33//fds27aNU6dOUbFiRcD6GWrZtWsX7dq1U+9RUFAQL730km4l1BkDBgwArKukAsG9wloZoRyrIveJ6fZofsdof+cHOAlRu0+uRSAoDsJ/Ev4TCP+pqIhIqRLDaelrQKljZIsQMpudjLLXlMo9m6x5nSFnI0nWCqDnvN256eWud6gUUUorbuWu11SIFT21plQxlutkp+l7NqFK1kaJwS+P3mDHCxLeAdZ/gLIp79TGPM+n6b6nrLhZbDZIFruI5KLcdiWayaAVmApfU0qS9PdGRqbyc8E0ejEZz7pVHcaXa4dXcFfIsky62VwmP/eiHounpyfZ2dkMHjyYvXv3smHDBnbv3o0sy3Tv3p2cHGsb8xEjRpCVlcX27ds5dOgQM2fOxMfHhzp16qgP66SkJJKTk5k3bx4Ab775Jjt37mTDhg3Ex8eTkJDA/v37HWyIjY2lefPmHDhwgClTpnDy5EnCw8N54YUXOHjwIGvWrGHHjh2MHDkSgCpVqmAwGFi7di1mJ9+1AGvXriUnJ8fpit7w4cPx8fFh9erVd33/wLo6uXTpUvz9/WnevHme41JSUlRHJC/atGnDuXPn2LRpE7Isc/nyZdauXUv37t0LbY/ZbOY///kP6enptGnTJl97/Pz8cHFxvo71+eef4+XlxYsvvqhu27BhAy1btmTWrFnUqlWLBg0aMG7cOO7cuaOOadu2Lfv27ePXX38F4NSpU2zatKlI1yAQ3D1OQ9Hvnof1ce+00LnTFb5SMUfwYFCefSjhP909wn968P0nESlVmqjpe/Yi3BaLPcdYTf2y7bToakppZCnby3TZhGTwRrbc4JS/F6f9POmUnW6fz6iJ/MnDlkI5YWowkLaweq7Dc59Cea9EH5kLjpRSMCr/cG1CVpEeBppuLvbue46RUkbl1IpgJUm5ugIWLEopOcDWS9Gv7kminJQgFxkWC/W2HyqTc59s3wxvY/H+KGVZZsuWLWzevJlu3bqxfv16du7cSdu2bQFrXn6dOnVYv349vXr14uzZs7zwwgs0a9YMsK5cKSiOQtWqValQoQIAt2/fZsWKFaxatYpOnToBsHz5cmrWrOlgy3PPPcfYsWPV90OHDqV///6MGTMGgJCQEObPn0+HDh1YvHgxtWrVYv78+bz11ltMmzaNli1bEhoaSv/+/VW7jh8/jr+/PzVq1HA4n5ubG8HBwRw/frxY905h48aN9O3bl4yMDGrUqEF8fDyVK1d2OvbEiRMsWLAg31U+gHbt2rFy5Ur69OlDZmYmJpOJiIgIFi1aVKA9hw4dok2bNmRmZuLj48PXX39NkyZNnI69du0a77//Pq+++mqe8y1btox+/frpVv9OnTrFjh078PDw4Ouvv+batWv8v//3/7h+/TrLly8HrKug165d45lnnkGWZUwmE1FRUQWGnwsEJYIE5TJSR8rLEStFdD6hs0LnmqFyrnssCp0LCkF59KGE/yT8J+E/FR4RKVVi5PNI1dQ7wkkxc3vAjmNcjTZSKk024eLZFqNLPQwWGVmSyLxz2z7Y4CzCqRgpeE667xV6PdGWvpdnoXMngpPB9sVvsSnzRYkusnchtNcmsNheSKlXHCKlZFWUQlOUXXNGW+G506dPc/r0aZ1Kbd2tvxMW2cLtdEUY1NYDy0cgFAjuQzZu3IiPjw8eHh5069aNPn36MHjwYFxcXHSh2JUqVaJhw4YcPXoUgNGjRxMTE0O7du2Ijo7m4MGD+Z7n1KlT5OTk8NRTT6nb/P39dbnzCi1bttS9//3334mLi8PHx0f9CQsLw2KxcPr0acC68njp0iVWrlxJmzZt+PLLL2natCnx8fGFvhdubm4Fjlm5cqXOjoSEBHVfaGgoiYmJ7Nq1i/DwcHr37q0raKlw4cIFwsPD6dWrl662gXbeqKgoAI4cOcLrr7/Ou+++y759+/j+++85c+aMuj8hIUF33MqVK9X5GjZsSGJiInv27OG1115j0KBBHDlyxMGe1NRUevToQZMmTZg6darT6969ezdHjx7V1UwAsFgsSJLEypUreeqpp+jevTtz5sxhxYoV6vfo1q1b+eCDD/jkk0/Yv38/69at47vvvuP9998v8J4KBPeMe/1cLiDCusiUC7fBWScc7RvFH3UyQMo9SiAo3wj/yY7wn4T/VFhEpFSJ42wFSFJT9PQd6HIXOs81jYxNabGOy5BzMLjUwtWzIuaMJDLdXMjJyVYPkFRRyjEiSSrAy/GSUsmQ/fC4cybfcbKTVwAGpRugIvTITkQpS16RUq7WY8xFT9/DSfqebM4ADBguJmKUulnPoUxt1EZKYbfLZtvZc+f493ffqdNXrFiRjh07qu8NtutLTUm1HipbSEpKoiVY84eLfgWCBxQvg4GT7ZuV2bmLSmhoKIsXL8bNzY2aNWvi4uLChg0bCjxu6NChhIWF8d133/HDDz8wY8YMZs+ezahRo4pjug5vb2/d+7S0NIYPH67WBdDyyCOPqK99fX2JiIggIiKCmJgYwsLCiImJoUuXLoSEhJCSksLFixcdVhezs7M5efIkYWFhBdrWs2dPnbNZq1Ytnd3169enfv36tG7dmpCQEJYtW8akSZPUMRcvXiQ0NJS2bduydOlS3dza7ih+fn4AzJgxg3bt2jF+/HgAHnvsMby9vXn22WeJiYmhZcuWuuOqVaumvlY6AgG0aNGC3377jXnz5vHpp5+qY27fvk14eDi+vr58/fXXuLq6Or3u//u//+Pxxx+nRYsWuu01atSgVq1a+Pv7q9saN26MLMucP3+ekJAQpkyZwoABAxg6dCgAzZo1Iz09nVdffZW3334733sqeFgoRZlCksqJAJSL+yBQitz+qrI5v+57ynCnIl55/CAEJUl58qGE/yT8J+E/FR3x/8wlhbPnqSZ9z1mEuENUlKYLnGQLapM18+yT01G+Aow2EcWUk2XbYtA4KkV/uHsY7pBu8sFivoVbihnJkn8aXV4OhxKJhEVbp8kxfU87sxIppdTbKkr6nqxJ31MeIRZbxXPJAgbbVnv6ntFmkqQKaGC/77dsbTxdXFwwmUzcvHnTaaHzG9dvgCe6G5Gdne3wD0wESj28SJJU7BS6skBxBLQ0btwYk8nEnj171PDz69evk5SUpAtfrlOnDlFRUURFRTFp0iT+9a9/MWrUKHXFTFufIDg4GFdXV3777TfVEUpJSeH48eO0b98+XxuffPJJjhw54mBnfkiSRKNGjdi1axcAL774IhMmTGD27NnMnj1bN3bJkiVkZGQwcODAAuf19fXF19e3UDZYLBaysrLU9xcuXCA0NJQWLVqwfPlyVexWcHZ9GRkZDjUKjMp3pyzj6elZ6PuS257U1FTCwsJwd3dnw4YNeHh4OD0uLS2N//73v8yYMcNhX7t27fjyyy9JS0vDx8cHsIb6GwwGateurV5D7mvVXkNR7qlAcG8pxsO6xJ7v5chx0AhMzn032elLgaAgypMPJfwn4T8J/6noCFGqLNAE5WjT2tS6UZr0PUdkzLYn+UHuUBNr1JPBNjbzxm39XHnOo8wmIcuyQxc5CZmc9A1k5ZwieC34+leHfL7f8jqDpKbvaUYoHflki1ORRrZYbbmwK52nTM9zOcQxLLJAQ7SOkVLLXAaDTRBzMdui0RRRSpNiJ1sc0wqrVavGhQsX9NemqSmVlZVlFaUAg8EIFq0xAsGDQUhICJGRkQwbNoxPP/0UX19fJk6cSK1atYiMjARgzJgxdOvWjQYNGnDz5k1+/vlnGjduDFg7t0iSxMaNG+nevTuenp74+voyaNAgxo8fT8WKFalatSrR0dEYDIY8VtDtTJgwgdatWzNy5EiGDh2Kt7c3R44cIT4+noULF5KYmEh0dDQDBgygSZMmuLm5sW3bNj777DMmTJgAWFcEZ82axbhx4/Dw8GDAgAG4urryzTffMHnyZGJiYnj00Ud1501KSnKwpWnTpg6rYenp6UyfPp2ePXtSo0YNrl27xqJFi7hw4QK9evUCrA5Vx44dCQwMJDY2Vm11DKjde5wRERHBsGHDWLx4MWFhYSQnJzNmzBieeuopp/UkFCZNmkS3bt145JFHuH37NqtWrWLr1q1s3rwZsDpUXbt2JSMjgy+++ILU1FRSU62RoFWqVFGdHoA1a9ZgMpn45z//6XCefv368f777/Pyyy8zbdo0rl27xvjx43nllVfU2gkRERHMmTOHJ554gqeffpoTJ04wZcoUIiIidOfJzY0bNzh79iwXL14E7J9H9erV871ngvKFVKDAcY8or4/q+8huJ5l61u3qwqqTOlP51O4UC3iCBw3hP1kR/pMV4T85IkSpEsLZA1i7VyG/lSR9Zp9krb+NvcaSj9rFzv5wTz112XaE9gtJhkuH4MepcKgK0FtvnSw7OAUSYDFdVt9XSnVzXttJr6M5YFS62+VkY8mRrXFKBRQ6z7htXQW49WcWT7p14aBfEdL4nDhAFtttkmSodi6Nf/5kpvpN204XTfqeojhrCp3LtvuS15e7TpRSTFDD4JzFswtPS1C+Wb58Oa+//jrPP/882dnZtG/fnk2bNqkOhdlsZsSIEZw/fx4/Pz/Cw8OZO3cuYA0fnjZtGhP/P3vnHSdFff//52y7fgccBxxFjt4ELKCUACJdBb7RIAYiYgQ5A1JERTQIGARRQAUMlp8CJohERERCIlhQmqgUISBHkZMO0o7rW2Z+f+zM7Mzu7N4e9YDPMw9zuzOf8p7Zu50378/7/fo88wwPP/wwAwYMYN68ecyYMYPMzEzuuecefUvjgwcPhl1h0mjWrBnffPMNzz33HO3atUNRFOrUqUPfvn0BqF69OhkZGUycOJHs7GwkSdLfjxo1Sh9n1KhR1K5dm+nTp/P666+Tr+rCLVy4kAceeCBkXqtjBw8e1FewNOx2O7t27WL+/PmcPHmS1NRUWrZsyZo1a2jSpAkAq1atYu/evezduzekf6R/iA8cOJDc3Fxmz57N6NGjKVeuHHfeeWeJWxqfOHGCAQMGcPToUVJSUmjWrBmff/45Xbp0AWDz5s36lsLBK4X79+83bUv87rvvcu+99+qiq0YSExNZtWoVjz/+OC1atCA1NZX777+fSZMm6W3++te/IkkSf/3rXzl8+DBpaWn07NmTF198MeI1LFu2jIcfflh/r30e48ePD6vdIBCUiKTpJHBhj+oLyFK37BflMFfUuyiFjSHfaxdbg0sgKKMI/0n4TxrCfwpFBKUuGeEDOBDYGc4qcCFJmqaUdcCqGB8OIElRs3wc4I5PAjwcLNqmjuQwaGsrsOWfsPcLyO0ATgwBIQl8vkBARjclSCNKCec0qE5cmPN2h9/GtJ+3kPUzVLwxkbR7QoNSkrGkUdEL7/xj+KxrcSNhMzg5shY4k+HmT/Io9t3PiaoS54rOoLhO+s/ZsN4pMNg3DPpM9KBUkTEoJRwswdXNvHnzwp4rX74877//ftjzs2bNijj2uHHjGDdunOlYUlKSSUgyPz+fiRMnmnYsyc7OthyvZcuWrFy50vJcxYoV9W2TS6J37976auXp06fp1KkTc+bMoVevXsTHxwOQkZFRqoyN2NhYlixZErHNwIEDGThwYNRjGnn88cdLrTXx7rvvRjx/xx13RH2NWgp/OBo2bBhRENXhcDB+/HjGjx8f1XwaF3LPBIKrjZNvvc2xv35NUpcupE+cENqgTLgcBtHyoMx7iF43SopwTiC4GhD+k/CfokH4T6GI3fcuEdaSUpLhnBZ4MuoqmR/aimlnPrWvBB71F/4Y/owim10hPi7NPJfkDPSRFfB5wtpl9QfkF0I3ZyjJEYTHjVlUxvFO3lCfc854/X3B8ZgSM6UkPQNM2yIv7LQWhvgbG3+xjeV7x1J6cLhae45UbccvtXtxLq6uNqnuNJk+E1toppTx+iKvRBg9stC+AoHAz5YtW1i4cCH79u1j8+bN9O/fH0B3ci43FSpU4IsvvqBTp05s2LDhitggEAguP2XxCa0UFuI7fZqz//pXmBahQaArRlDsKZLPEzhntSGQQCCIBuE/Ca4VRKbU5UR77kqG4jJT4El7oQROhTzQFbTHtbFErX65lmw49qmhnQMkLagT6KNPoWVCSWqmVIipoX0UOdAuJPs6ZAQ/hVVq8Me7JvC06yAdPlJXAPSglC9kDj+qqLukBofCZmmFYqVfEJ/rf91obQwbW5qzrmTZH1SSJINdhuBbQPLAQg9BkvQdE04Xnmb5keX+PnrnqM0WCK57pk2bRlZWFi6Xi1tvvZU1a9ZQsWLFK2ZPamoqzz///BWbXyAQXC6ukod1WV7U0k2TwjuEFn0UoNjtpigvD0dMzKWxTSC4xhH+k+BaQASlrgjhyve0s1ble4Esq0CMJiDo5LSZH+YSDiTJsHtdmBUpBfw74+nvjSJRZtssM6UsM7ID/VxOG7Jko9i0e6AtpJ1Jr0rSdJ5KoSUVNLcxKJV4NpA3pej3UfbvaCg71bkkQ8q5UcyLwHkL4uLi+N3vfkdOcQ586D8mB+tHGbuWYZ9SILhS3HzzzWzatOlKmyEQCK5L9Ad92Qz8hNVcUoJOX0HbQxPDQVEiCp2jKHxXpypn/vUe/Os9XHFx1EtqeclNFQiuJYT/JLhWEOV7lxOzujgAstEBCnI8lLBZVErgpYrLbi4jk3AagixK2FI51N33grGhhDpnYccIT6zTX4p38EyhOgam3fc0PHkK9217krSTtdB+LSXpPBysCJlN/hP+H7LkVV841PbomlKKMVNK6xZmvCNjxrD79lb80rlryBwCgUAgEAiuDoyP+QuKTV1CH6DMSwAEX7u66Cnn5QF++7VrUBSFM4lxelN3YSE+IXouEAgE1yUiKHUFUIzle7qDYcgV0oTOZQVDzZ/ayoik/3/5mCpUj29AUmJlJHtlYu31gkoEzTvKSMaRLMr3jGWC+hE5gjMU5lRKrD8T6cg5TQhcMmlKac7JyZ88pOXX4NZN/2e4vNIHwQKrcgG2dvDhdsCBph79jE8NSil6UEpC0sv3wpcpGudAUcj5dBm+nBxkdctPMN6K0Ew3kSolEAgEAkF0XJ4QxcV5LstFRQAU7fwZAPehwxdl3BIpQ+6FBHp0z/vbSRQtE9/t1zX15QZ8JaODVbm2eaeqMnApAoFAILiMiPK9K0JgpznjQzk4vdmfSGQuAVPU/5nbK9gkO20r/x/59ZP44vvTOPOPAT+pU1hkPZnmCQ3+SBble1btLOWeDHO1r1+JgrhEcr/8VTPVUuhc9oBdk3tStEwpAn0sOHK2kJlf7iG32Eusw85fOtbRG9sM9/KX5k6m3i7x9M5ClBP+47KkCr9rQSlbYELTdUYq3zNcZ0y9+sAv/sNSyGmBQCAQCARlGnU3YeB8wiLekyeBeOT8PGxx4Dlw4PzMCJk6KIWrLGYTWTg8shqIAoMPZeFHAti0DHp9vItmmUAgEAiuAkRQ6jJilILS4y16YCZUeEhRAtlT1vX4FseMiVVaOZpF1pOhzi2MtaF9ZMuMqsjEumw80bUBXx/cbrDRYvc9xeKlLbJXsuiHg3z4w0H9fYzTRiW1izkFUMZnd6C4YvTr9dm84AsEpZAksFlkSmkmh9l9T8OeENhhUImwbFnmU+8FAoFAICgDlMXYS2TUBUNVsPuSPO+txixLN0rCKCplOB5amGHWEg09KxAIBILrB1G+dzkxCZRrgSftmLFUz1i+F9w3cF4LVJkK+wzOialEMMxueeEe+1aZUkQq3zOZZ8j+Uu3R5a0g4JzIYYJcitZHMb0PpsDtL8FLjPEHlo7nFAXK9wz3QQt9KQ6bfkU+m1a+Zw/Yp2c4GTOlNFsiB6VsdmfIMX2IsGcEAoFAIBCUxCVd0LEa+gKmk+yGxa6LwUUTu7ocmG1VJMl81Gi/SVLVFnpQIBAIBNcNIih1GTEV6ukZ4hai2upPWQ4c1AJQiqToMZpkq93wjHPom8lZZUoF2lkftdCUCiN07nP/QuqpRSx4dhRf/L83rJ1HLQspuHzPLHVlskkLSklhglIen/989fJ+ocyTecWg3hNjEMmnBfnsdn1sr1q+ZzPsvifpmVKRhc59OcUGK9Xz9kDqufVdEjV9AoFAIBBcLhRFoTg7h4Ltv1G44yRykTdyh4u9gnSpH/dhEuCvCMEOLPidWIvAnC50bjgm2bTglZV+qkAgEAiudUT53mXEKjtJsdKU0jOEAudsFvHDB3Py2AXmh76pmSE9SXcColXEtCjfC5PZ5CvehMt7lGP74Ni+PbS4+/9CbDBpMplWxEKjUtplSzZT3CoEtxo8SkuKYdexXM4WevRsLltxjt9mQJGLASfYJf1elXc6oAi8+eVU+wJ2KRbXaXSrzn15AJwgewLhJ8kRCEoFkt9kin3FHMk7GnpOIBAIBALBJaN4Xw4n/19AOiCueRqpf2wYvoNk1JSKHp9XJudEIV6f5qldpCe9lTmW5XsXZ7qLhsUanHWwyZhVL9bIBQKB4HpGPAUuJ1pgxrT7XuB0cEKQLBsf2KH6UEkNe/lPxiaHTKUYpvNnY1nlIqmvLLN3LPSQfBYaUBIoSrGpnbfY/F69gEC/YEHLIIv0X0stU8qiNYBXtSdZ3eGvyOMDrz8DSsr5VR9WDzEVn9ODctVcfs2H/CJ/lpVkCwSsrDKlMMSpFC1oaAhK2ewuSxtnbp7J6kOr9feHcg+FuRqBoOwwcOBAdUdKCZfLRd26dXnhhRfwekvINCiB1atXI0kSZ8+evTiGRsH+/fvp168fVatWJTY2lurVq9O7d2927dplard8+XI6dOhAUlIS8fHxtGzZknnz5pnaZGdnI0kSW7dujXr+CRMm0LBhQxISEihfvjydO3dm48aNpjEfeeQRatWqRVxcHHXq1GH8+PG43e4Sx16wYAHNmzcnPj6e9PR0/vznP3Pq1KmobXvppZeQJImRI0eaju/bt4/f//73pKWlkZyczP3338/x48dNbV588UXatGlDfHw85cqVsxxf+x0y/vfhhx/q55csWUKXLl30eVq3bs3nn39eot1Lliyha9eupKamlvrzEFxFXGCwxXeuOOL7ABcWRPr45U0sfGEjJ86pWlJagOVSBIsiZluXlWUvo15DEKYFyFAf17KhQHAVIfwn4T8J/+n8EEGpK4IhEGTpYMiGUxbBIfWnrWYb9YU9pMzP+Np69z29g7WFUqC9HiwLpymlmP/4ZcMXrx6HsxnWD40rYlbXr5tmWduno5XvJcX6E/6KPDKKOreEQm5idfbX7E7CiXuolFvTpMBV3/YfUh37iYtxE5/somHrdF0Y3qR1pV9A4JA9OSbEFmP5nmIIwGWdzjK1K/IWWl+MQFDG6N69O0ePHmXPnj2MHj2aCRMm8Morr1xps3SicTo8Hg9dunQhJyeHJUuWkJWVxaJFi2jatKnJsZs1axa9e/embdu2bNy4kW3btvHAAw+QmZnJk08+eUF21q9fn9mzZ7N9+3bWrl1LRkYGXbt25bfffgNg165dyLLMW2+9xY4dO3j11Vd58803efbZZyOOu27dOgYMGMAjjzzCjh07+Oijj/j+++8ZPHhwVHb98MMPvPXWWzRr1sx0PD8/n65duyJJEl999RXr1q3D7XbTs2dPZMPOWW63mz59+vDYY49FnGfu3LkcPXpU/+///u//9HPffvstXbp0YcWKFWzatImOHTvSs2dPtmzZEnHM/Px8fve73zF16tSorlVw9VOWNwk5dTjP9F6+6K61QdPyIo98sdA/H6M+p8GXsnI1JVMqlblFGf64BYISEf6T8J+E/1R6RPnepaKEB2qgiE6xOKqekxWLYFMgU8qGPbSXHvCRAiFHJbymlBKUKRV4ZcgWsklIPsUsvG6wWQkKSvm8HsNpyfxTkUAyBHC0P1LT6pm5jLGk8j1N6LzI4wM1UGWTFHY0epiChCokn4BuZ3IoumG4frPSfJt4oOJH0G0ytB4KwG8/q0E8OfR+hK7imbE5Qv+UvIrMxmMbuZtmaBPLwtMSXCXExMRQpUoVAB577DE++eQTli1bRmZmJiNGjOCzzz6juLiYDh06MHPmTOrVqwfAr7/+yrBhw1i7di1ut5uMjAxeeeUVGjduTMeOHQEoX748AA899BDz5s0jNzeXzMxMli5dSnJyMk8//TSffvopN910E6+99hoAGRkZPPLII+zZs4elS5dy7733Mm/ePNauXcvYsWP58ccfqVixIr///e+ZMmUKCQkJ7Nixg3379vHll19Ss2ZNAGrWrEnbtm316zx48CCjR49m5MiRTJ48WT8+evRoXC4Xw4cPp0+fPtx+++3ndR/79etnej9jxgzeffddtm3bRqdOnejevTvdu3fXz9euXZusrCzmzJnDtGnTwo67YcMGMjIyGD58OAC1atViyJAhUTkaeXl59O/fn3feeYdJkyaZzq1bt47s7Gy2bNlCcrI/C3f+/PmUL1+er776is6dOwMwceJEgJDV0GDKlSun/x4Fo322GpMnT+bTTz/ls88+4+abbw475oMPPgj4V0kFgtLgOZbP2WX7kIt9IEFi66rojoEkBR76F+NRfZ5jROwWafe9suZeWNhq9HlN3m9ZvQaB4DwQ/pPwn4T/VHpEptTlRAp9aQ70BK8UKSHLS4ohg8lpC93xzWb4RE0lgiHCkoFXW45v4ZezvwTZarDLrgZrfBaaUhKBTCk108jnCU1RNWtKBV4f/9/ekLZaiZ1kCwidT1nxM80nruSFz3Yyd91+cos8evleklq+V+yVA5pSKHic8fqYsd4EcIA9Th2z5cPQfzHc9qjBLk3oPHCd+m5+ppXK0AwuY1BKO3zQZ149DekkuK5QFIUCt/eK/Hcxsgzi4uJwu90MHDiQH3/8kWXLlrFhwwYUReGuu+7C4/EHo4cOHUpxcTHffvst27dvZ+rUqSQmJlKjRg0+/vhjALKysjh69Civv/46AE888QTr1q1j2bJlrFq1ijVr1rB58+YQG6ZNm0bz5s3ZsmUL48aNY9++fXTv3p377ruPbdu2sWjRItauXcuwYcMASEtLw2azsXjxYnxW31/A4sWL8Xg8lit6Q4YMITExkYULF17w/QP/6tjbb79NSkoKzZs3D9suJyeHChUqRByrdevWHDx4kBUrVqAoCsePH2fx4sXcddddJdoxdOhQ7r77bt1BMlJcXIwkScTEBDJCY2NjsdlsrF27tsSxreaqWLEit912G++9917E30VZlsnNzS3x2gWC80KBgq0nKP4lB8/hPDyH8shbc+iSPZZLWswqeYCgn0GUKW/CwhiTBIVxKVbzRy0zpcrUVQnKEFezDyX8pwtH+E/Xvv8kMqWuCIbVONOefOpPSVWOkpWQx3N1n4wvNgXZbRA/t8yLlpC0AjhTppQa8DEMPHL1SM4lSLzf4/1Ad8NOe5LsANxhd98DfxCqyO4lVraTV5xrssP/w0roHIqLzGN67cVQpAQ3453vNuCssIG5GzuieFM4dKYwpHwPArpXQZsQY1ccZtHNGi2hXmvzZdi0TCmDTZb2m374X9sNNqht3Yr/S9xuzAwTmVLXLYUeH42fL7ne+1Kw84VuxLvO7+teURS+/PJLPv/8c3r06MHSpUtZt24dbdr4y4cXLFhAjRo1WLp0KX369OHAgQPcd999NG3aFPCvXGloD8tKlSrpdfS5ubnMnz+fDz74gE6dOgH+lOWqVauG2HLnnXcyevRo/f2gQYPo37+/XtNfr149Zs6cSYcOHZgzZw7VqlVj5syZPP3000ycOJEWLVrQsWNH+vfvr9u1e/duUlJSSE9PD5nP5XJRu3Ztdu/efV73TmP58uU88MADFBQUkJ6ezqpVq6hYsaJl27179zJr1qyIq3wAbdu2ZcGCBfTt25eioiK8Xi89e/bkjTfeiNjvww8/ZPPmzfzwww+W51u1akVCQgJjxoxh8uTJKIrCM888g8/n4+jRo5Z9wvHCCy9w5513Eh8fz8qVK/nLX/5CXl6evjoZzLRp08jLy+P+++8v1TyCaxPJWAt2PlipA6iPd0dqLN5TRZjcGsnYqYw+q8u6DyFJkeNLxmMWmlLShXzegmuaq9GHEv6T8J+E/xQ9IlPqkmP9gNX0khRT6Zz5SS7Lob0ryAoJzgS1b3RTR9aUsulzGEW47TaDLpTPn4lkLmsLtd9r978+m3862ARdUwoFcMZB5RtN1iRW07Ki7Ciyv1dAO1wivuZbuMp/R1y1BQBsPnAGj1a+ZwhKFbv9gSAbckDbScWGFLjHVmLrWntDUEoJOuW/5sDr2JsfIqHHNBT5zpDhPGoJZJwj1jBeGXcoBQKV5cuXk5iYSGxsLD169KBv374MHDgQh8NhSsVOTU2lQYMG/PzzzwAMHz6cSZMm0bZtW8aPH8+2bdsizvPLL7/g8Xi47bbb9GMpKSk0aNAgpG2LFi1M73/66SfmzZtHYmKi/l+3bt2QZZn9+/cD/pWmY8eOsWDBAlq3bs1HH31EkyZNWLVqVdT3wuWy3sjAyIIFC0x2rFmzRj/XsWNHtm7dyvr16+nevTv3338/J06cCBnj8OHDdO/enT59+pi0DYzjZmZmArBz505GjBjB888/z6ZNm/jvf/9Ldna2fn7NmjWmfgsWLODgwYOMGDGCBQsWEBsbGzI/+FdHP/roIz777DMSExNJSUnh7Nmz3HLLLdhspXMZxo0bR9u2bbn55psZM2YMTz/9dFhdjQ8++ICJEyfyr3/9i0qVKpV4TwWCC0GKuwxrshctgBTGAdHOlrk4ji4qFbFVZHkE4SsJrl6E/xRA+E/Cf4oWkSl1ibAKPpieu/piXPilJKvSPil4HIICV1JAUDywWqWU6BwE47IbdqmRbKAQJlMqYKNPLbfzeAwaU5oRNmOmkQ0e/QbyjsHwF/yn1e8su+xA1q5V7eL1KUiOAv/5+AMAuL0yHoffnniXnfLxTs4UeJDVQJVNUggO6dlluy5AahQmD5il3js5NE3VtHpnuK/Omm3VuxCqxlWMZotd7yQypa5f4px2dr7Q7YrNXVo6duzInDlzcLlcVK1aFYfDwbJly0rsN2jQILp168a///1vVq5cyZQpU5g+fTqPP/74+ZhuIiEhwfQ+Ly+PIUOGWK4c3XDDDfrrpKQkevbsSc+ePZk0aRLdunVj0qRJdOnShXr16pGTk8ORI0dCVhfdbjf79u2jW7eSP7devXqZnM1q1aqZ7K5bty5169alVatW1KtXj3fffZexY8fqbY4cOULHjh1p06YNb7/9tmls4+4omk7BlClTaNu2LU899RQAzZo1IyEhgXbt2jFp0iRatGhh6le5cmW+/PJLTpw4wS233KIf9/l8fPvtt8yePZvi4mLsdjtdu3Zl3759nDx5EofDoesaGFdtz4fbb7+dv/3tbxQXF5vS2z/88EMGDRrERx99ZEqJj3RPBdcXl+7RGWbB7mJwKaJFEW7EFXUvrPSjDAt8+sY7KHhz80GC7OJqwGkuKBtOcN1wNflQwn8S/pPwn0qPCEpdEaSgnKjAcQBv0WkU2/+QfbeHPudNgS0t20kKjGTSlLIIhOjC6YZjuta4IRNKCUwkYfOfsRQ6NwSl1Ewpryf8rg66KXYHpFTXjzvjYUXDt6hDI9rnV+DXbeBTHRqvNzQYVuyViVXL9xw2G/Mevo3vfjnFqbcN1xfkENoVh6aDDjarX321vS80U8o4lpWmlGQrCBnNqwa3bMa+Iih13SJJ0nmX0F0JNEfASKNGjfB6vWzcuFFPPz916hRZWVk0btxYb1ejRg0yMzPJzMxk7NixvPPOOzz++OP6iplRn6B27do4nU5++OEH3RHKyclh9+7dtG/fPqKNt9xyCzt37gyxMxKSJNGwYUPWr18PwB/+8AfGjBnD9OnTmT59uqntm2++SUFBAQMGDChx3KSkJJKSkqKyQZZliosDgf/Dhw/TsWNHbr31VubOnRuyomZ1fQUFBTiCNliwq8F2RVGIi4sL6depUye2b99uOvbwww/TsGFDxowZo/fX0FLkv/rqK06cOEGvXr2iur5wbN26lfLly5scqoULF/LnP/+ZDz/8kLvvvtvUvjT3VCCIjvB+TBFxSHbVMS4Lj+qApkPgWBn3ISRjxaXRR9JeeH14fBI4FE6kNodT5u8jjbJ9lYIrwdXkQwn/SfhPwn8qPVfHX/e1gqStFBkwCUH6f6E9RSeBleSdSsRnTwQs6vgoyTcxOjFWjS1WtUyiS8bzttDzFu1k9e/R6w0EpfTN90x/rJLl6wPld+JMKaZSwf+ZglJWGgNur+zfbQ+IddponBZL4olTfKxotsQZyiHVq1Bs+nySVfmeVaaUpc5BqD2SZBBH1zSlTJlS6rky7lAKBJGoV68evXv3ZvDgwbz11lskJSXxzDPPUK1aNXr37g3AyJEj6dGjB/Xr1+fMmTN8/fXXNGrUCPDv3CJJEsuXL+euu+4iLi6OpKQkHnroIZ566ikqVKhApUqVGD9+PDabrUSh4DFjxtCqVSuGDRvGoEGDSEhIYOfOnaxatYrZs2ezdetWxo8fz4MPPkjjxo1xuVx88803vPfee4wZMwbwrwi+/PLLPPnkk8TGxvLggw/idDr59NNPefbZZ5k0aRI33mguN87KygqxpUmTJjid5s0n8vPzefHFF+nVqxfp6emcPHmSN954g8OHD9OnTx/A71Ddcccd1KxZk2nTpulbHQNhd10B6NmzJ4MHD2bOnDl069aNo0ePMnLkSG677TZLPQnwOynB15KQkEBqaqrp+Ny5c2nUqBFpaWls2LCBESNGMGrUKFNJwIEDBzh9+jQHDhzA5/Ppq4p169YlMTGRzz77jOPHj9OqVStiY2NZtWoVkydPNgmifvDBBzz00EO8/vrr3H777Rw7dgzwi8KmpKSEvXZt3iNHjgCBz6NKlSoR75ngKqMUCTSek4Wc/nAXcoEXyS6R0qNW1H1zi13EA4fkGpRLkrAuzIhAyGP9Yj/nS7gRZXTnOpM+p3ZMkVEkGyATFwd5YBYQFQiuUYT/5Ef4T8J/CocISl0B/AtJaomewYtw2dKxO1yg7MbnzsXnLSA3/iYo3oy7OB4k1TXRglsWiVLGLyFT+V5Ee0IDLubyw/AZV8axFXWXPo/bmCkVJDke1nkLnAhEuRVzX5XY9EUUFfXE4UkD/Gm1X773Jju++QJzqCkoKGULBKqMwuR6a7s6r1cNMElSYPc9q9rLoFskKZJpd0RNU8puCIAJTSnB1c7cuXMZMWIE99xzD263m/bt27NixQrdofD5fAwdOpRDhw6RnJxM9+7defXVVwF/+vDEiRN55plnePjhhxkwYADz5s1jxowZZGZmcs899+hbGh88eDBs3b5Gs2bN+Oabb3juuedo164diqJQp04d+vbtC0D16tXJyMhg4sSJZGdnI0mS/n7UqFH6OKNGjaJ27dpMnz6d119/nfz8fMC/CvXAAw+EzGt17ODBg1SvXt10zG63s2vXLubPn8/JkydJTU2lZcuWrFmzhiZNmgCwatUq9u7dy969e0P6RwpiDxw4kNzcXGbPns3o0aMpV64cd955Z1RbGpdEVlYWY8eO5fTp02RkZPDcc8+Z7hfA888/z/z58/X32hbEX3/9NXfccQdOp5M33niDUaNGoSgKdevWZcaMGSath7fffhuv18vQoUMZOnSoflzb6jocy5Yt4+GHH9bfa5/H+PHjmTBhwoVcuqDMEvnZWbTrNJ5DgR1vCzYfJ7ZRavgOhkCO22cnHs0vu3ilZOf9tA+kaPvfmLKtL8YElwCjAKdRz1QnNHBWvnoKeYcQCK4bhP8k/CcQ/lM4RFDqiiBZBnVskgtnfAdsnKPAnWvSlPJ5Y8AJkiQTiDVZZS6FSakKamos3wtkWoe287+P5KQZOqi6UbISyBrKPXWSc3EYNKXCjWWwR3cWdS+HGHsMxT5/uqaz3BaKz1bCUdADgDiXnQOn/KJ3xQl29qWd4UbJFyJ0br/xAdinaVxZrMypwSPFFwhKWWJ1WNLdR11Tyq1omVKBuUSmlOBqINIDrXz58rz//vthz8+aNSvi2OPGjWPcuHGmY0lJSSxYsEB/n5+fz8SJE3n00Uf1Y9nZ2ZbjtWzZkpUrV1qeq1ixor5tckn07t1bX608ffo0nTp1Ys6cOfTq1Yv4+HgAMjIySvU3HBsby5IlSyK2GThwIAMHDox6TCOPP/74BWtNrF69OuTYSy+9xEsvvRSx37x58yL+nnTv3p3u3buXeu5ouJB7JrhGiVYaKsKfb4xUDMSdtwkXXRnJckArvy/CuSuBxfZ72pFzBYENZ2LiVI1PSTLsvqf2FL6S4CpF+E/CfxL+0/khcmYvJyVmWAd7IIreWlb8H5XD5sHr8++Mt32bv7ZVNqZIG/W49YyqwDiR5jXvBBhZtDLQ1XBMDTz5DOVvH780nneGPsz+LZssZw6U2Gni5pIhlTtgQ4vK5l0jfIqHQrV8L85p1+/BqQbxfN/4DHbZKGygzhCbFlWmlOL1qAesM6Ws72RgPgXIcjnZ68sFzEGpcL29PplCd6jAukBwPbBlyxYWLlzIvn372Lx5M/379wfQnZzLTYUKFfjiiy/o1KkTGzZsuCI2CAQCAxcjRmGlcWQ4LBk8H8VSQ/MKcRVpSpkw7tgs+X2uc3kBf8gZp5XrCKFzgeB8Ef6T4FpBZEpdafQavMAhrZxONj7QZTUoJXkoKCgAnBw+fJhE6uB2uyEuBtNAUqAoz+3xceB0MTcACqEBHymCj2MsF4wkEAoEMqUMQSm7zQY+yD1z0nS5ge4Ryve0gBASXsUfiEuNTeNU0W/4FB9eXVPKrgfM7FpGljtU6Hz7gTyqUxkAn2Lj1VW7OX6uCEmCXs2r0UDTvfJ4NUNQFAWvInHaLXFGjiVG8lrcA0ACGxIysDm2kNEV0sGdDUBekUJihN33FEWh5+x1/Hz0HIPb1aJGhXj+eNsNONUgWX6xl5f/u4smVVO4sVoKN6TGkxgj/nQF1xbTpk0jKysLl8vFrbfeypo1a3ShyCtBamoqzz///BWbXyAQlAYL/8TikFf2sd6RRUGOF9npJb24ItWV5PAdzouSMsOvQQKRvcAhC3/HZlOwyR58dv9+N1qnojz/YmChsxyQj893FQXfBIIrjPCfBNcC4l+2VwRrR0UJ9mOMmUuKP2DitBXrD/qYmBjI1bKajAJTfnKLPbiAk7nF/HwkhxvsICvhgyMl2WvZxXBQUjOCfEoge6pR+zvZ//WyCNnlVqLhQUEwBbyyPxjksvl3n5AVmWKPf544VyBTyq7qWuFRQoTOv9+fQ3X12KZDubz+5QH93Jc/n2BxVf8YWvmerMDKX718WNwCdgI0BWC77EOSa1DZK1GAwko8FMqAYgfJxxFbEQCJOCj0VOH0mfIkqvMUe83ZUAVuLwdOF/Dz0XMAvLNmPwCxDjut66SyeNMh5qzeh9uwI+ANFeL54okOuBwi0VFwbXDzzTezaZN1NqVAIBCUNkQRrv2RvBPsdBwCN2CHA+6TpOHf4tvsMVxIUOTiBFQ0SQCJKDOlrmAcx7xRjnrMlG3mP+i0Kzi8RficsYEFSEni3Cm/3yTb/NlTHrcISgkE0SD8J8G1gghKlUWCJZUIlLk5bB79WExMLMEFdQHtTolCtw8XYJMkkmLs4A2MY3QgJMXv+hhL9qyEzk07Baq6USneE5xBdZxUxXVjplSJboVFfE7SdsFTg1uSJOklgTEOl9rKf65cvJPkWKeeKVU+0e/QxGLDq2WcIWPDhk2x69e/T3WAmtcoxy+/5XEit5jJn+9mBFBQWIwN8MoKH2YF7rfGzx47UIW0vDzO4WYOxeCFRNmBZHNzRnIBblqSymf7hiF7s0Hyz3c6303mPzbxUJsMqpePo9tr31JgKNu7LaMC32efZtbXe3j6422Wt+zA6QK2HjzLbbUqlHR3BQKBQCAQqGi7+iba4siTCwFC/CjgwgI8FytByirhykrpvIRdti4rYW21IpANrwWwbGpWvNCUEggEgusLkWpxGbHWII+06mXUgjIEpSTjkeA5Ah+pV82uSXDaaFNH3YVGy2ayWMFSLJwds38RcN0SvWf89qhOHUiGTCmrEjeT2FXk08G77xkypWId/jLFTo3TmNevIV91OYbLc053aLQN9JLsDl3oXJb8QZ+7m6Tr6Wj/2eEXRr+7aRUebVcbp13Cp9p/5lyhPvsNSRJOfPxfNS8PxGyhheMgzVx+W0557RxX3dmqDruezZavCqYfz3GjKGA3XK/X5+O/O47x2he72X44Rw9IuRw2/nJHHcb3agzAwdOFep/bMiowsnM9tk/oSoua5f1z5xVb3GOBQCAQCK5DShnDiLPFGPpo/s75BUIuefjkqtKUMu4UaLWhjqGlRamfpFiGCAUCgUBwjSMypS4VEf0GK4nNwPFIu4+4bAUh7Qu9ME8ppi42bjcMne/2kYoaFAkW7A7j2IS4EGF23ws4DoGgmU0LAhmcCi09W8u8CtWUCrVBCglaBTSltPK9auViuWP3ZPjfYtjzMYqc4Z+v2EP/NT5uOOzmdF11bpsMPsgon8hBdcQjeR6wOWlWvRytaqfyeKd6fDv7N9jiz5RK9RvC2BZOvlv/PbdUac6WU15udBwj1lWJbW4HZ312ctULuL98Mh8rTs4CNsmfXeWwSSTHOqhXOZGi42pJX4w/YHWmwE1Oob9d50aV+H8PtdSvdsGg2/n1VAFnCtzEOe083DZDvyflE/zXv2rncTyyQtfGlYl12kNvokAgEAgEVzFmV+DiB2O08jgLaU9TZvjlRlsA9Pl82LBR4HRg18+V0aCUcf3Uws+ULNPitZ+SlbyoQCAQCK4jRFDqChFxB1/9eR446VVyuCV+OdViv+OHvM6mrgU++H9KMRKwqDhQbpZf7A/k+KWH1NRoVQjcZsxM0qWbSvAGTA5GkAchBYJJPp/VLnJh0sstls/0TClDcMvj81+Xyx7QlOJ/i/0nf1mNIj8IQOreHFpuVFDwQl1taP84NkXShd7/cmd90quV53ZDCVzjauX4DYhXp3fYbTjtEpJkDpSl2v3jnfA68OG/1mSHjQTFwVnALrkBqF0+lgXDurH97RV8ddwv9K4FkM4Vejlb4L+mlDgXRtrWrUjbuta3Ky3Jnym2ZMthlmw5zF/vbsSgdrWtGwsEAoFAcD2i6P8XdDx4IdDofFiUxp333OdP/pkzOACv14PLFsPRpHjKuxwkuMNvtHIx5r1YRFpYBUXPYteT4pEMrmQZuQiBQCAQXFZEUOpyYln3b9wyN3ymVJF0gPbJn3OUGsiKv+4yuyCGG4JG2psXKKdLcGni6DZQfPpxAKc9YIu2gmXSlDKZGijvK9y2jcJt24n7rZBcUgx9AuV7xjI/7ZolPfIVLjhlIZheeBbZ8yuS7GFfzj4gEJTyKT6wx4DPX8amCZ3bVCHxnMqBX21FHdvmiNWP3d8yg8TUeJMJrhi/HlXlBAfec+B02AMp5caglE3GhoxbsXFUvf5KTgdOxT+nW21qs/i8tfuQW+ThTIE/eJWib4tcMn9um0FekZetB89y4HQBp/LdUfcVCAQCgeC6JUyWkeaxmEJUYWIjRbvPUJydA4DrhmTiGlpoO0ohL0qFz+vBgdPU2+OwQ7igVFnAQujcpENqlXFvCEopQalSIjQlEAgE1xdCU+qSE9kpkWQLJ0Mrg/PJaI/mGKf/WL7bxymPP/iRXejPmrFL0E2NL+7dulMfpmGVJP8LRTHkp4d+5JYWSsGriYDHy68PDeT4pEkkHj6qNlN3rEMKvC48Ezp2SUKchunsuYcAKD5zCE/ex6Sd8L9Pi0ujfvn6anMFnHGB7mpQSlKdoNzKgUCPpiklxZYHSQ1W2SxK3rRjXm+IzUaHKs4OHZ176ZCQy4O4GEUsLRPiAkEpmybYGTqFNkq+28f89dkA1KgQF9owDHUrJTHzjzfTpXHlqPsIBAKBQCAoiciZUopH5uT7O8j96iC5Xx3k1D92IrutMsMvDlrWuDlYZtoBRz9vOnAFMelEWbYwLkDqrwwllFf+GgQCgUBw+RFBqUtEpBCMMd7jzD/mf2G1yGRYZUqMdajNAiMn2f3OUKITUtUMpOWxFfRB7FqNniGNXetvfvBbCZ0bzwSCUkphYVALw+4vxbn+1/u+MgwgGVuFeClW7kftih4yEk4TY/cHiVIKJTb228iqP6yiXEw5AP9ufK6EwDhqIMymXoNiqE+UtfI9ArvvWcTmdJV0RSs/lKQw6ecSNew5dE3KZQix3Ks4sNskQ6aUGpSyEHeXgJtv8F9DsddvV/Ma5SzmiI6yKi8huLoZOHAgkiQhSRIul4u6devywgsv4PVe2Er96tWrkSSJs2fPXhxDo2D//v3069ePqlWrEhsbS/Xq1enduze7du0ytVu+fDkdOnQgKSmJ+Ph4WrZsybx580xtsrOzkSSJrVu3Rj3/hAkTaNiwIQkJCZQvX57OnTuzceNG05iPPPIItWrVIi4ujjp16jB+/Hjc7pKzIBcsWEDz5s2Jj48nPT2dP//5z5w6darEfocPH+ZPf/oTqampxMXF0bRpU3788Uf9vPHz1/7r3r27aYyMjIyQNi+99JJ+Pisri44dO1K5cmViY2OpXbs2f/3rX/F4zDuanj17lqFDh5Kenk5MTAz169dnxYoVEe1fsmQJXbt2JTU1tdSfh+AqwhDhuBTPulD1ygCWhWc+GbyGMz4FvJGEuS+B0VY3ogxtvmeiBNFy42JfqK8lnBvB1Ynwn4T/JPyn80OU711O9BiRcV3LECQK2v5X8QUe6HY17aZu5STSznmgKIaW5Qrx5sfisEE9i/iiXj5mzJSyEh+wfPZbbRVoccjodKglgqZmQRlS2h43ofMEeiUnxnLfDTv47Pg97D6dg4RCvNNfameX7Gprhe15Xdl1shH3VJiEnHcSiENSM6YUQ9RJkbSgVOQ1OMmuBv4sglJm8XXr4J0WlDoWI4dcpcY59zmq119Ms4bNuKVCV6okx3LLDeUjWCUQXBm6d+/O3LlzKS4uZsWKFQwdOhSn08nYsWOvtGkAuN1uXC5XxDYej4cuXbrQoEEDlixZQnp6OocOHeI///mPybGbNWsWI0eOZMyYMcyZMweXy8Wnn35KZmYm//vf/5g2bdp521m/fn1mz55N7dq1KSws5NVXX6Vr167s3buXtLQ0du3ahSzLvPXWW9StW5f//e9/DB48mPz8/Ijzrlu3jgEDBvDqq6/Ss2dPDh8+TGZmJoMHD2bJkiVh+505c4a2bdvSsWNH/vOf/5CWlsaePXsoX978PaR9/hoxMTEhY73wwgsMHjxYf5+UlKS/djqdDBgwgFtuuYVy5crx008/MXjwYGRZZvLkyYD/M+zSpQuVKlVi8eLFVKtWjV9//ZVy5cpFvKf5+fn87ne/4/777zfNL7iOsZYvKlVXSVLCLqCdD5bi3uc1UAnj6L7exZnuvNDnlgKLkXLAP7S8AitNKW1h8RKYKBBcLoT/JPwn4T+VHhGUusLIznhQA59K0GNbMWRKaVk3kmWKD3TCQTUcnMzL4gz1UJCwaY91RcGU0RSGsLu6aA5GGNFKtZHBesOrIJ2ssFgEfaxS0m2a3pTi49sjvQD4Ia8vClvVpqpDY9DM0oNSkt1wGyz0DdRMKbRItLF8zyolXZdA8AcUbyhO56eE3Xq7Y0pRyBxun5vVh7/AYVvN+I4P6ddTWgKhPOG6CS4NMTExVKlSBYDHHnuMTz75hGXLlpGZmcmIESP47LPPKC4upkOHDsycOZN69eoB8OuvvzJs2DDWrl2L2+0mIyODV155hcaNG9OxY0cA/QH+0EMPMW/ePHJzc8nMzGTp0qUkJyfz9NNP8+mnn3LTTTfx2muvAf6VpUceeYQ9e/awdOlS7r33XubNm8fatWsZO3YsP/74IxUrVuT3v/89U6ZMISEhgR07drBv3z6+/PJLatasCUDNmjVp27atfp0HDx5k9OjRjBw5Un/YA4wePRqXy8Xw4cPp06cPt99++3ndx379+pnez5gxg3fffZdt27bRqVMnunfvblpFq127NllZWcyZMyeiU7VhwwYyMjIYPnw4ALVq1WLIkCFMnTo1oj1Tp06lRo0aJoepVq1aIe2Mn384kpKSwrapXbs2tWsHNmGoWbMmq1evZs2aNfqx9957j9OnT7N+/XqcTn/JdUZGRsQ5AR580L+xRXZ2doltBQIzgYUmSS2MK6nMrExR1tOjw67fWfhc6k/Zp4RunlPGL1MgiITwn4T/JPyn0iPK9y4R0T5PgwNRAKfyi0OOmXYp0V8FQhMSEo2xc6M3n5CWCiGOjDFnSFKM4Z8I4SOTgHlg6GBrrEoRS1p91JPEJCmirVoQRzaswHkSawX0CHQ99cCvtqztPGj4dbeMzamaUoqaYisZM6VMIbLQfC8kiSHH+/D3M0NC5jVeYd1ydQDwyl6/WLtAcJUQFxeH2+1m4MCB/PjjjyxbtowNGzagKAp33XWXnlY8dOhQiouL+fbbb9m+fTtTp04lMTGRGjVq8PHHHwP+1OSjR4/y+uuvA/DEE0+wbt06li1bxqpVq1izZg2bN28OsWHatGk0b96cLVu2MG7cOPbt20f37t2577772LZtG4sWLWLt2rUMGzYMgLS0NGw2G4sXLw6zKygsXrwYj8fDk08+GXJuyJAhJCYmsnDhwotyD91uN2+//TYpKSk0b948bLucnBwqVLAQUDbQunVrDh48yIoVK1AUhePHj7N48WLuuuuuiP2WLVtGixYt6NOnD5UqVeLmm2/mnXfeCWm3evVqKlWqRIMGDXjssccs09pfeuklUlNTufnmm3nllVcilifs3buX//73v3To0MFkS+vWrRk6dCiVK1fmxhtvZPLkyWE/K8H1yKWvTQtkrBuIXHkWNMCljaBIYMiGugqiNRbOoNVCWlySQZZC9+FKc+MFgqsD4T9dOMJ/uvb9J5EpdYmwcqMkKfiFuaXmaxR5fPhjnhaCkJJkVA8PGeeX2JtA1+k2hoSCy/cCGEviQs3yryYqRgNNs8oh12TlUlhlJpkJFRi1hUS0DEEpwywKtoBTqZY8KvZAAMquvq6eUIPt5GiGh9roUO+DoXwvkv2K8ZUEdmzUl6sajobe82qJ1QLnL8C5LPF2CsoeigKegisztzP+vH9pFEXhyy+/5PPPP6dHjx4sXbqUdevW0aZNG8Bfl1+jRg2WLl1Knz59OHDgAPfddx9NmzYFMK32aI5CpUqV9BTj3Nxc5s+fzwcffECnTp0AmDt3LlWrViWYO++8k9GjR+vvBw0aRP/+/Rk5ciQA9erVY+bMmXTo0IE5c+ZQrVo1Zs6cydNPP83EiRNp0aIFHTt2pH///rpdu3fvJiUlhfT09JD5XC4XtWvXZvfu3SHnSsPy5ct54IEHKCgoID09nVWrVlGxYkXLtnv37mXWrFklpry3bduWBQsW0LdvX4qKivB6vfTs2ZM33ngjYr9ffvmFOXPm8MQTT/Dss8/yww8/MHz4cFwuFw899BDgTz2/9957qVWrFvv27ePZZ5+lR48ebNiwAbuq9Td8+HBuueUWKlSowPr16xk7dixHjx5lxowZpvnatGnD5s2bKS4u5tFHH+WFF14w2fLVV1/Rv39/VqxYwd69e/nLX/6Cx+Nh/PjxJd5XwbVN6b6xonuehk34lvCvapWpmI/RJwufse4uKgO78lnYZbY1sJKp7TSdWM5f0hKfHENSajLH95VdeSxBGeAq9KGE/yT8J+E/RY8ISl0i5MBWIqGY5JyMYthqX3W3OKWcE8ex4/jAUOYlEclrUoznTTGp8OV7WgaRYrDGFHCJIIRuNF7r6/Ol8N1tj5GR/R+DEXLwwOHRs5OC0rkxBKUUc1BKVrO9tJJFY6ZUjeTqnCkoCMqUsvhgtN33LIXOQ4sJA4L1Fo4Xpt2QDWcD5y9KplSZcqAFEfEUwORQR+Gy8OwR08YA0bB8+XISExPxeDzIsky/fv249957Wb58uSkVOzU1lQYNGvDzzz8D/oftY489xsqVK+ncuTP33XcfzZo1CzvPL7/8gsfj4bbbbtOPpaSk0KBBg5C2LVq0ML3/6aef2LZtGwsWLNCPKYqCLMvs37+fRo0aMXToUAYMGMDq1av57rvv+Oijj5g8eTLLli2jS5cuUd2LkrQXwO9cDhkSyJT8z3/+Q7t27QDo2LEjW7du5eTJk7zzzjvcf//9bNy4kUqVKpnGOHz4MN27d6dPnz6mWv/ExET99Z/+9CfefPNNdu7cyYgRI3j++efp1q0bR48e5amnniIzM5N3332XNWvW0KNHD73fW2+9Rf/+/ZFlmRYtWuip9jfffDP/+9//ePPNN3Wn6oEHHtD7NW3alGbNmlGnTh1Wr16tO75PPPGE3qZZs2a4XC6GDBnClClTTPoJixYtIjc3l59++omnnnqKadOm8fTTTwP+jNdKlSrx9ttvY7fbufXWWzl8+DCvvPIK48ePj3hPBdcZlzBDyJj9HHisn3+Q62JZGppnZB787PECHMCBHaep5rLhiyi6fmkxSkqFHgzjCqs3zxljJz5J2zFZ05QSzo0giKvIhxL+UwDhPwn/KVpEUOqScf4PVLsaMNnt8HFLwV6K4xMDWUNhIvVakCVGKQDiMBX3GTWl0LYYDjgvNqsqTsnijZXzZRSlVJsV57fFE1+ZnY0HUsN2KMjuaFYaotCUkn2Gs4FMKXyK1jBgvU0LqkWeVbIH3YcwmlIhH4FiddDgVIW55AvJlBIILjUdO3bURSurVq2Kw+Fg2bJlJfYbNGgQ3bp149///jcrV65kypQpTJ8+nccff/yCbUpIMDuFeXl5DBkyRNcFMHLDDTfor5OSkujZsyc9e/Zk0qRJdOvWjUmTJtGlSxfq1atHTk4OR44cCVlddLvd7Nu3j27dupVoW69evUzOZrVqgazIhIQE6tatS926dWnVqhX16tXj3XffNYmeHjlyhI4dO9KmTRvefvtt09jG3VGSk5MBmDJlCm3btuWpp54C/I5NQkIC7dq1Y9KkSbRo0cLUr3LlygCkp6fTuHFj0/iNGjXSSwOsqF27NhUrVmTv3r26UxXM7bffjtfrJTs72+QQ16hRA4DGjRvj8/l49NFHGT16NHa7nfT0dJxOp756qNly7Ngx3G53xHsqEEQkimhRyKM58prfFUWx8DEKcz0kGduUCdsD2fxGofMAhiVPo8ZntPqjAsFVgPCfhP+kIfyn6BFBqcuJMchhoeWoBVa0YMbJvGL9dYzDFjKG5RQWWlGSKVMqtI8W6FGUcIpSWlBHDj1mEFDXr0mJCW6mE37XXyV8I8N7rdQwpHxP1yNQg2QBES5squi5UTje8jYa/rC1RpE0pSwuItxL46D6qwvJlNKCkGXCBxVEhzPev9p2peYuJZojYKRRo0Z4vV42btyop5+fOnWKrKws04O6Ro0aZGZmkpmZydixY3nnnXd4/PHH9RUzY8177dq1cTqd/PDDD7ojlJOTw+7du2nfvn1EG2+55RZ27twZYmckJEmiYcOGrF+/HoA//OEPjBkzhunTpzN9+nRT2zfffJOCggIGDBhQ4rhJSUmm3VMiIcsyxcUB7cDDhw/TsWNHbr31VubOnYvNZg6QW11fQUEBDof5Ea45J4qiEBcXZ9mvbdu2ZGVlmY7t3r1bFzK14tChQ5w6dcoyRV9j69at2Gy2kNVLI7Is6yvHdrudtm3b8sEHHyDLsn7Nu3fvJj09HZfLhcvlivqeCgSlx/wclYI8sos1/sXBQs9AJSbBAZ4rrMVkSiq3EjW3uBeqTxluAx+BwMRV5EMJ/0n4TxrCf4oeEZS6RFjuqhZBC8qIT48fKXrwwWaRaWT1kJeMQaJAqpR+3irsJGGhKWWYTS+iM4wjS+DzZFPsOxpoGd5nMtlt6ZuoPw+cKmDB3l/pD9j0+jhzplRigR3Za50pZZNDg1LaPZR9SsgxI85q1cDhAFVszqVGqNUOoddiVbVnaCZb3gjDPRSCntcXklTqErqyRr169ejduzeDBw/mrbfeIikpiWeeeYZq1arRu3dvAEaOHEmPHj2oX78+Z86c4euvv6ZRo0aAfwcRSZJYvnw5d911F3FxcSQlJfHQQw/x1FNPUaFCBSpVqsT48eOx2WwlatGNGTOGVq1aMWzYMAYNGkRCQgI7d+5k1apVzJ49m61btzJ+/HgefPBBGjdujMvl4ptvvuG9995jzJgxgH9F8OWXX+bJJ58kNjaWBx98EKfTyaeffsqzzz7LpEmTuPHGG03zBjslAE2aNNF3QNHIz8/nxRdfpFevXqSnp3Py5EneeOMNDh8+TJ8+fQC/Q3XHHXdQs2ZNpk2bxm+//ab3j7R7S8+ePRk8eDBz5szR089HjhzJbbfdZqknoTFq1CjatGnD5MmTuf/++/n+++95++239dXFvLw8Jk6cyH333UeVKlXYt28fTz/9NHXr1tVXPDds2MDGjRvp2LEjSUlJbNiwgVGjRvGnP/1J3xlowYIFOJ1OmjZtSkxMDD/++CNjx46lb9+++n167LHHmD17NiNGjODxxx9nz549TJ482XLl1sjp06c5cOAAR44cMX0eVapUKXHHG8FVRCliOtFnCYUWxSmKZHJhwLyIdcUwOmAW/lxZJaDJXpKPEyorITKlBGG5yn0o4T/5Ef6T8J/CIYJSl4zzdxwSXHYohrTEGL2Uz1okXTtmPa8eoDJmSmmC4MbsI8VqlSo0CGMMSrmlAjx5S/DoTYxZRsbxIkaqdPLd/kBQgdvHr6fywfTdFOhbfOAEf1hdncKfjxnO2vS8Ke2ajZpSgfK9yAIHzkqVqLtqJZ5Dh0CSiG3cmB1ff+1vbrjvgeBd4KfVVZqvWEtNN2pOnX9QSjhugivF3LlzGTFiBPfccw9ut5v27duzYsUK/UHp8/kYOnQohw4dIjk5me7du/Pqq68C/vThiRMn8swzz/Dwww8zYMAA5s2bx4wZM8jMzOSee+7RtzQ+ePAgsbGxEW1p1qwZ33zzDc899xzt2rVDURTq1KlD3759AahevToZGRlMnDiR7OxsJEnS348aNUofZ9SoUdSuXZvp06fz+uuvk5/v38V04cKFJn0ADatjBw8epHr16qZjdrudXbt2MX/+fE6ePElqaiotW7ZkzZo1NGnSBIBVq1axd+9e9u7dG9I/UonvwIEDyc3NZfbs2YwePZpy5cpx5513lrilccuWLfnkk08YO3YsL7zwArVq1eK1116jf//+us3btm1j/vz5nD17lqpVq9K1a1f+9re/6VoHMTExfPjhh0yYMIHi4mJq1arFqFGjTDoJDoeDqVOnsnv3bhRFoWbNmgwbNsx032vUqMHnn3/OqFGjaNasGdWqVWPEiBG6wxuOZcuW8fDDD+vvtc9j/PjxTJgwIWJfwXWOxZ+UT9uBOIweUsRjl5gTUg7H4jw4q99Afm4uGV6v2T0yUOb8ghLul56JbvRrLaoIBIJrBeE/Cf9J+E/hEUGpy4jZYdC0mIzOkP91UqyTolz4/c3VOLDX3B7JFibjyozpT9GkKRXqfEnGIJL2R3zsp9CBTJlS/iCSJDmQHBnkpVTEgZo1ZRXkChObCmRhhTa1BeoB9XO5m/cAEHfcDeW1MWz+lU5A0jWlbLq2upY0ZfyCCreC4ExPx2lIsQyU71lgNF5fGjSejuxWXYxMKaFLJbgUzJs3L+y58uXL8/7774c9P2vWrIhjjxs3jnHjxpn/wE/yAAEAAElEQVSOJSUlmcQ28/PzmThxIo8++qh+LDs723K8li1bsnLlSstzFStW1LdNLonevXvrq5WnT5+mU6dOzJkzh169ehEf70/dz8jIKNXfXGxsLEuWLInYZuDAgQwcODDqMY08/vjj56U1cc8993DPPfdYnouLi+Pzzz+P2P+WW27hu+++i9imb9++unMbidatW5c4VjAXcs8EVyfn9agL42+A+ZleLNvBHtgopbTzhWuqnG+USB3QjYflrk3IMQqoYsdJP/9Ma/UfX1KwH3klsZCIKDHbzKgpZT50VWSECQRWCP9J+E+REP5TeEQh92Uk4sKbEnBgtFK9GIdN/wM+fdgvGF6Ym2tM0AGCc5rCZUqpAZBAXrXezqgphazlPhm2XdX0i0wOhv+13ZaAK7EXvjhDIMdgkUeWKa6YzlnFZuhlgazw4Jc+xi49Sat128n5NdbSzbI5LOKokqTPKcnq5WqRKMmgv2Qo3yutD2fKcFJF1s+e9KeJeiXwetwhA1uX71nvICgQXM9s2bKFhQsXsm/fPjZv3qyvOmlOzuWmQoUKfPHFF3Tq1IkNGzZcERsEAsFFooTnvVPd8TjBUWQ4GuU/ni5h8MSNF1lSQIHYAr9PVlBYGNqwDMSkTOhuZujCopnQTCkp2vsuEAgA4T8Jrh1EptQlIrKfUpJYuT6KPpDP4w8W5Z/LCcmUUszpOfo5myklOqh8z9BH08xb/8le2niqQQyoMlO4XRIOC6Fzy5U5PRsqIHR+6PRZ3GnVKDjnCbLPjD2/kJ7fK0ARUMSJc8lIbUMuCrsrkLjuzv0IbIn4fE3xKXZA4UDyU5xpkUOybZHfJEkyOEihppaEYrH653W7A+ckv3UF53JwYK6utPwdUBRs2JCRLywoZXFNAsHVzLRp08jKysLlcnHrrbeyZs0aKlaseMXsSU1N5fnnn79i8wsEAoiVoBBw7ztLzn/3k9i2GvakkrcYt0L2eQ0ukqQvNpWLKQRfORxSYCmpLGUh24C0337jYM2aZTdkY3SVgjLRJYwLewqyev7ntav95yWpRP0bgUAQHuE/Ca4FykRQasqUKSxZsoRdu3YRFxdHmzZtmDp1qmlbxGDmzZtnqokEf51mUVFRmB5lldC6toCeZeCYQ6039h+K4JZIhnFMWVHBapkBCtRdW874fCFDy4aywrC57+oBuzsZ8Jka+tTsKmdJ/kZQmrfikwyBM0NWlyFTSvYeBCAv3yjMJpGXWJ04tbZPMmRKybLFvYkS8+57fhwOp/9yjUcNlyGHuWE2yQaKyJQSCDRuvvlmNm3adKXNEAgEZYw0h40zgOdYPrmHDiG57CTfeUOJ/QB8Pr/MgCzL2CQbJ/b/grdJSnQTWwWlSh2ouniBFiXUVYzg1V1BjKV4Ye6XrOp8Zm/djA1wxZd+d1iBQOBH+E+Ca4UyUb73zTffMHToUL777jtWrVqFx+Oha9euulhaOJKTkzl69Kj+36+//nqZLD4/rDbkM2oOmPWlACWQAyXpu8kZO1jpQxkCL4ohUKIEuy+GQI/sT4vKs8mGXeRCjZUJH0SRFLD54kzHHN4CfZZYPWgjmbOs1JeyXv4WcsrkCDoMmVKSrRwAJ9we/XokRc3Isjn0QXxev93ffrjbYvDImJwqxfxCLwtEKdWqql6+F+F+loTl9soCgUAgEFxD6J6PS5UAcId5bgY/ghXwFAWXuim4DX6lxdpaoOV5pCSFyn1eWF6TMQtesjhWJjGJxYfa6rff36jWzS247f/6cOfDmSHdy/hVCgQCgeAiUyYypf773/+a3s+bN49KlSqxadMm2rdvH7afJElXfPvCsESKGZgjUWG7mvJsjIk4UT61A5pShkwpSQrp57RpQRKDWTaLHfRK9NI0USy/IxhbeIpzqgPoyzkTGFtRQny2cycD23hqxyULx87u9qcm1Th1jkOVqgJnKfbo1YbYFC8yIEv+X21Jkji+/5zfBo/hCi8gpqM5hcbcKX9QSjIdlfXglbm/HpSSL4LQ+QWPIBAIBAJB2UZy2U1Sl1FhobtZ9L//QTVAloObWfaNhBcfxcXFyJIXSbGX3OFScyUdAgt9BMvFOsOhhm3ac2PrtqFtBAKBQHDdUSaCUsHk5OQAfrG0SOTl5VGzZk1kWeaWW25h8uTJ+jaRVhQXF1NcXKy/P3fu3MUxOCKh0Q97oURBfCUgz1KbyVh2Z7EnScSxjcEnybgjXISAkk1di5Ql2bDSZ+FgGcrf9LianqxlyN1Ry9IUyYZckA/xLhSfbHkVeoAnKHKjEKZ8Ty2XsxmuJ9ZbHo/eURN0t6vjhl6G1XzhCOy+578+YyFkQNPLWpzTKuSkKAp21bYLyZQSCAQCgUAQhPagNhDIzTGcMi0KBS80UeIi3EHbKb5wbsM3azVUArsnHrmoJcYChEuS0WxlV1lInLasdrS4r0asygciDSgQCASCa5YyUb5nRJZlRo4cSdu2bbnxxhvDtmvQoAHvvfcen376Kf/85z+RZZk2bdpw6NChsH2mTJlCSkqK/l+NGjUuxSWERYrxByPsboniGIuAW9CTu8hbFHgsq5+UYvS49Io8qxRvw/bGJh0qm9pOCQRw1B8+SQ4JuBhfmzWQpNB2+stAUEpzoKQQj9CM3a4FagLtjIEer9vNho8XciYr238VsmI5qKTPrZXvWbtDpfbhjNpaIYE0c/leuzN+ofdB9uqWM2r9fIqP88ViE0WBQCAQCK4ZrBePwj30Ij0MDQtbCQmGI0Hjl7hTSYDjtrP4pIBP5HMWUCxpMgQX58FsncEV+To9J06guEPlEC4bEmEclNDP0mb5LxDh1AgEAsH1SJkLSg0dOpT//e9/fPjhhxHbtW7dmgEDBnDTTTfRoUMHlixZQlpaGm+99VbYPmPHjiUnJ0f/7+DBgxfb/MjUiGN5i3gKqxmCERZOl3Zk4c8fGErFLIJAkTKlgqW5Izgyirpi6LEXBfpo3kI4ofNImVuSIShlYWMk/SXZ8BtpM2hrZW/bwvp/LSD32HEAnD4fkhrUOWffarBAy8iKnClVWk0pK6FzUzvDwP2PJbD210PcZrMQVDVkSpWl3X0EAoFAILiWCH7CSki6U2AstlcCDcJ3DsOtzW8xSzJcYqz8BnfRKcBv/t72HdjbtRvyRdr0Ry7wcGrhLn57exu/vb2NUx/uojDrNMXZOSjG7HlrY3W7rJAi/BNEeEcCgUBwfVGmyveGDRvG8uXL+fbbb6levXrJHQw4nU5uvvlm9u7dG7ZNTEwMMTExF2pmdCghL0CS2FInltbOHJJ2hZzVS/msAinxPmNGUlCmlGV+kxTU3KApFYReTmY4JReqZY5KICNJUcJrMEgYtaq0oJQ91BsJ52loO+QZvUQ9A0zBU+gXk0ioUJ4btu8h/Uwue6r7Gxfa9hJHrHkCrXwvaJr+E1ths0e//bB1+rk5UOXXyDJemI0UWSZXsfpcLlKm1Hn3FAgEAoHgOsBy7ayERTb1pRzlopHNMt3nYj2hg309M55iv2Zncd5BSCqHgoLHZoNjx/AcPUpMrVoXbEFR1hkKfzJrfhZu9b8v17sOia2rBtkoIefnAVCwdRtUCwQBQy7G4jZJIholEAgE1yVlIlNKURSGDRvGJ598wldffUWt83iQ+nw+tm/fTnp6+iWw8OKgPX+N2UCRhM5BIhYXAHZFCm1usTqnB0ekoA1gQnbfC4xmI1A6F8iUigmZQongTEhG0QZj+V5I+2Cbze9lyXCdWrBMsbPp82wAkiumUetkDg5DgMxu1C9Xr1NR462SzTx+ucrxJFc07xIYDbvWr9Ffh65URr/7ngIXNVOqzO/EIxAIBALBxeJ8qvcMBLKerZyvCwsmXe6nsexVy/QkTZZBwmvXtR4uCorPP5AzPYG4m9JwVk/ElujfBdl7pji0gwQetQrBc+yo9ZhaU0tNKeHTCAQCwfVImQhKDR06lH/+85988MEHJCUlcezYMY4dO0ZhYWA73wEDBjB27Fj9/QsvvMDKlSv55Zdf2Lx5M3/605/49ddfGTRo0JW4hNJhA0tNJswrSpJi1UrSM5YKcs4C4PN6DGf9KEhIekZVQJ5bMbZQT9sUdatlgyUmAXbNUZONLSI4b+rAimQLZFkZRjcFY4ICM3rAToFcpap2lNOH/StvDpsDWXJQEJeKpAZ37Aa7JD376OLshFNc4F+JLDx3Vr/ionxzWrz/7qrXbIjimQNGF1dTSiC4lAwcOBBJ3SzB5XJRt25dXnjhBbxe7wWNu3r1aiRJ4uzZsxfH0CjYv38//fr1o2rVqsTGxlK9enV69+7Nrl27TO2WL19Ohw4dSEpKIj4+npYtWzJv3jxTm+zsbCRJYuvWrVHPP2HCBBo2bEhCQgLly5enc+fObNy40TTmI488Qq1atYiLi6NOnTqMHz8edxS6MAsWLKB58+bEx8eTnp7On//8Z06dOhWxj8/nY9y4cab5/va3v5m+l5csWULXrl1JTU0Ne7379u3j97//PWlpaSQnJ3P//fdz/PjxUl/Xtm3baNeuHbGxsdSoUYOXX365xOv+9ttv6dmzJ1WrVkWSJJYuXVpiH8FViBTR0wjbJxjTs9hm9KbMjU0a6Re0aHTxNaUCagahWV2SzXnJbNDGsSe7SH2gIZWH3Uz8LZUizqFJQsQ2aOC3zxlkn6b0YAv9sIzXeWTvWfLPWgS+BIIyjPCfhP8k/Kfzo0wEpebMmUNOTg533HEH6enp+n+LFi3S2xw4cICjRwOrLmfOnGHw4ME0atSIu+66i3PnzrF+/XoaN258JS4hKrTfWUUyBi5UzPVdoecN72WfP5ghqzvaeT2GX1JD7rNNC5CEzZQyT65YHLOy32iZ2b3Tc8H8LUw7+BmuyRc+GBMoIZQoUFL1uTSn0ibZ2djyWX5s+YI+pilTSm0n43eCbPYLW/n0ql8ATkPZp0+7/6bNe6J0AC+SppQQOhdcarp3787Ro0fZs2cPo0ePZsKECbzyyitX2iydaJwOj8dDly5dyMnJYcmSJWRlZbFo0SKaNm1qcuxmzZpF7969adu2LRs3bmTbtm088MADZGZm8uSTT16QnfXr12f27Nls376dtWvXkpGRQdeuXfntN38JzK5du5BlmbfeeosdO3bw6quv8uabb/Lss89GHHfdunUMGDCARx55hB07dvDRRx/x/fffM3jw4Ij9pk6dypw5c5g9ezY///wzU6dO5eWXX2bWrFl6m/z8fH73u98xdepUyzHy8/Pp2rUrkiTx1VdfsW7dOtxuNz179kRWvxijua5z587RtWtXatasyaZNm3jllVeYMGECb7/9dsRryM/Pp3nz5rzxxhsR2wmuHaJ/1JUgDGUZtLqgCS0GtVp0vEAsyw6Dm1jtA3yBWA5oYYuFM+KsWVO3y3K3G2NmWnCWmgKfTNvMP/66gaI8DwLB1YTwn4T/JPyn0lMmNKWi+cf56tWrTe9fffVVXn311Utk0aVB9ykckR0VkztjGUtSAzR2J/gwOQPmlTVD4EhrI4U6bDZTOrvVhKGaUoEMKGN2V3BQSiLJUYNCjpkDcaZojnk2f/meAgrEu9RMOWOmlwKF8ZVNfW3GDC7dRv+vts1iJS4aDv6yl6//s4Ijp84A4IqLtzJWm9T6dzjM77VNTVkXmVKCskxMTAxVqlQB4LHHHuOTTz5h2bJlZGZmMmLECD777DOKi4vp0KEDM2fOpF69egD8+uuvDBs2jLVr1+J2u8nIyOCVV16hcePGdOzYEYDy5csD8NBDDzFv3jxyc3PJzMxk6dKlJCcn8/TTT/Ppp59y00038dprrwGQkZHBI488wp49e1i6dCn33nsv8+bNY+3atYwdO5Yff/yRihUr8vvf/54pU6aQkJDAjh072LdvH19++SU11X8g1axZk7Zt2+rXefDgQUaPHs3IkSOZPHmyfnz06NG4XC6GDx9Onz59uP3228/rPvbr18/0fsaMGbz77rts27aNTp060b17d7p3766fr127NllZWcyZM4dp06aFHXfDhg1kZGQwfPhwAGrVqsWQIUPCOkIa69evp3fv3tx9992A/74uXLiQ77//Xm/z4IMPAv7VOivWrVtHdnY2W7ZsITk5GYD58+dTvnx5vvrqKzp37hzVdS1YsAC32817772Hy+WiSZMmbN26lRkzZvDoo4+GvYYePXrQo0ePiNcpuLYosbIuZAUvTBaP5cYt2iTG7qENLIe8FAtDEccsYcJAqtFFMkYb1xhAimCKFJjbMtPLNGToh2pT/NkkWqK9zyuTn1NMbKJVNphAUDYR/pPwn4T/VHrKRKbU9YZiCJSYFpq0lGaLPoFFssBZm56JZCWoLSEd9P+RSF6F//wcx9HCpGBL1JZa+Z5kCDaZZlebRyvaoOeU6wEY00X5QoNSGlr5nqJA/fQdANil4oCtXmMqt39QmyHIJSna7nuqptR5Zkp9+q9F/PLbaYrUgFdcbJyeCRa8YOlPRAt/TcGOrnZP5Eh9SiC47EAguNTExcXhdrsZOHAgP/74I8uWLWPDhg0oisJdd92Fx+NfzR46dCjFxcV8++23bN++nalTp5KYmEiNGjX4+OOPAcjKyuLo0aO8/vrrADzxxBOsW7eOZcuWsWrVKtasWcPmzZtDbJg2bRrNmzdny5YtjBs3jn379tG9e3fuu+8+tm3bxqJFi1i7di3Dhg0DIC0tDZvNxuLFi/UMx2AWL16Mx+OxXNEbMmQIiYmJLFy48KLcQ7fbzdtvv01KSgrNmzcP2y4nJ4cKFSpEHKt169YcPHiQFStWoCgKx48fZ/Hixdx1110R+7Vp04Yvv/yS3bt3A/DTTz+xdu3aUjkpxcXFSJJk2jgkNjYWm83G2rVro76uDRs20L59e1wul36sW7duZGVlcebMmajtEVz7GJ+3hT+f4re3t3HizZ/47b3/4VbL+4ESk5OMgZBITUtyd8p8kvIlTKOOdN9MvklYE1RfylIk3t8pJtZGbJLL4rxAcPUh/KcLR/hP177/VCYypa5tLB7ftuDzQSGgiGnahvb6rnjWgp0Obw6ypGBTJHYej6Ew4QZuSAhfvmfa9kQxhbfUeQJjh85oHFcLDIUJvpmCUv42Ltn/x2ncAVBJrgwcNk/jCd3muPpJhePJ2mja3Gr5nlE/ohRxHI/Hv1qXgEzl1PJ0vL0H+//9L/846udnkyS9NFLWA2NS4D6FcQr13Q4vICgluPpQFIVCb2HJDS8BcY64qHecDEZRFL788ks+//xzevTowdKlS1m3bh1t2rQB/Ks1NWrUYOnSpfTp04cDBw5w33330bRpU8C/wqOhPVArVapEuXLlAMjNzWX+/Pl88MEHdOrUCYC5c+dStWpVgrnzzjsZPXq0/n7QoEH079+fkSNHAlCvXj1mzpxJhw4dmDNnDtWqVWPmzJk8/fTTTJw4kRYtWtCxY0f69++v27V7925SUlIsN8lwuVzUrl1bd0DOl+XLl/PAAw9QUFBAeno6q1atomLFipZt9+7dy6xZsyKu8gG0bduWBQsW0LdvX4qKivB6vfTs2bPElOxnnnmGc+fO0bBhQ+x2Oz6fjxdffJH+/ftHfT2tWrUiISGBMWPGMHnyZBRF4ZlnnsHn85nK7Eu6rmPHjoVsbFK5cmX9nLYiLLg+CfeNlfvNIdzZ5/T3+RVisUcVwJCCHIFQzUudCwjqlNTT81sBhdtOou1uHNckFWeVhOjGLsGuyxIss8rGMiXZKxTi5qTP/7wL9+yxXlwTC24Ca65GH0r4T8J/Ckb4T+ERQanLiPZ15jNlShkDUOYiOMn4hkCzQEZV+BxqBXCkZbCy0nFaHa1EuQM2vIrNJMStl+8p0SXMmZyhoKwuvyi72R5Fslm6F1r5niJb2G0IyMlq9MeNkxgtgGNyyPxty+cbglJBu+/Z7IFrO58HSr3atfm/AQNxH8wN2KjO4bBLIKuKVxbXEg7NDhGUur4o9BZy+wfnl8J8oWzst5F4Z3zJDQ0sX76cxMREPB4PsizTr18/7r33XpYvX25KxU5NTaVBgwb8/PPPAAwfPpzHHnuMlStX0rlzZ+677z6aNWsWdp5ffvkFj8fDbbfdph9LSUmhgSqSa6RFixam9z/99BPbtm1jwYIF+jFFDRLv37+fRo0aMXToUAYMGMDq1av57rvv+Oijj5g8eTLLli2jS5cuUd0L40pUOBYsWMCQIUP09//5z39o164dAB07dmTr1q2cPHmSd955h/vvv5+NGzdSqVIl0xiHDx+me/fu9OnTx6RtkJiYqL/+05/+xJtvvsnOnTsZMWIEzz//PN26dePo0aM89dRTZGZm8u6777JmzRrT6t1bb71F//79+de//sWCBQv44IMP9HTvkSNHUrVqVR566KGo7kdaWhofffQRjz32GDNnzsRms/HHP/6RW265BZtF9kO46yqJcNcguM5Rn7f2CrH4ThcFbcJigaIYfKnwfpOFukGJmKvaout0Zsle3Ptz9PdFWaep9JebLFoGa3eWgouVKWUpIRHZomJ8LIpZhzfH7+OYfC+THykCUILouZp8KOE/BRD+kxnhP4VHBKWuAEpIphSmZ3zEtSNTXCj0l1dWPPpZKTaFY4lnyFVkyh3QyuhCHTKboh0J58SYtaJKJpA1pJttdD4sNKWQ/Md8+iVJQbaqzpmFo3Uu1vBGK99TtKCUYd6LVKxqdZ/kUohNaJlSj3/1ONWTqvNOl3coF1uuVDYEhM7LfBGB4CqlY8eOzJkzB5fLRdWqVXE4HCxbtqzEfoMGDaJbt278+9//ZuXKlUyZMoXp06fz+OOPX7BNCQnmbIK8vDyGDBmi6wIYueGGG/TXSUlJ9OzZk549ezJp0iS6devGpEmT6NKlC/Xq1SMnJ4cjR46ErC663W727dtHt27dSrStV69eJmezWrVqJrvr1q1L3bp1adWqFfXq1ePdd9817Sh75MgROnbsSJs2bUKEKo27t2gaBFOmTKFt27Y89dRTADRr1oyEhATatWvHpEmTaNGihamftoL21FNP8cwzz/DAAw8A0LRpU3799VemTJkStVMF0LVrV/bt28fJkydxOByUK1eOKlWqmFZ2S7quKlWqmHacAfT3VapUISMjw/IaBNcTFitzKrZ4B77ThA8gKaYfIcNFDolcyLM1cl/faX/Gt6tmMu5fzyEXlWJXLiutK6uFySvoG+RLHrySjASklCtHs2bNyF/1a0i7SLvvCQRXM8J/Ev5TJIT/ZI0ISl0JLHWOrNLHpZDDiqncL7Tszu3LBaqoh7WsIYPopBTIxpL8euJIii1w3nLXmKDyPQv8WVLhM6VMC5BWQSl1cNliRU0yCrBbGJFr1CCPEJQqnQ6TuUTSfEazK3C9kTKlguetX74+e8/uJc+Tx67Tu9h2chvtq7cvhW2Cq5E4Rxwb+20sueElmru0aI6AkUaNGuH1etm4caOefn7q1CmysrJMO5/WqFGDzMxMMjMzGTt2LO+88w6PP/64vmJm1CeoXbs2TqeTH374QXeEcnJy2L17N+3bR/67uOWWW9i5c2eInZGQJImGDRuyfv16AP7whz8wZswYpk+fzvTp001t33zzTQoKChgwYECJ4yYlJZGUFKzbZ40syxQXB/TxDh8+TMeOHbn11luZO3duyGqZ1fUVFBTgcJgf4XZ7YGfPuLi4sP2Cx7fb7YYS5NKhpdF/9dVXnDhxgl69ekV9Xa1bt+a5557D4/HgVLeNX7VqFQ0aNNBTz0vz2QoE2uNWLi5GySu2OF9SKEr1X0oT1FEIE00xHzzz6V6Kf8nBd85vV8LtVXD/es6qY/ipSrRLE+Ys1bDh54u0g6FJl0ExnwNiJSeP3tmfmJrJrLAKShlVUDXf9OJWUgquIa4mH0r4T8J/igbhP5kRQanLiPVzPDT4E3XKttrXtDOcKZhS0ghmoXPjMcu8H63czEKTwbz8GAhKmcaVFL/NEf54FVNMSk8HMrQI1aMyFfSpO9op+L+8z1dTKrBZoUUnLYDmcevzBxzFku/7lHZTGNJ8CE9+8yR7zuw5rzI+sZp49SFJUqlL6Moa9erVo3fv3gwePJi33nqLpKQknnnmGapVq0bv3r0BGDlyJD169KB+/fqcOXOGr7/+mkaNGgH+nVskSWL58uXcddddxMXFkZSUxEMPPcRTTz1FhQoVqFSpEuPHj8dms5VYcjtmzBhatWrFsGHDGDRoEAkJCezcuZNVq1Yxe/Zstm7dyvjx43nwwQdp3LgxLpeLb775hvfee48xY8YA/hXBl19+mSeffJLY2FgefPBBnE4nn376Kc8++yyTJk3ixhtvNM2blZUVYkuTJk10x0AjPz+fF198kV69epGens7Jkyd54403OHz4MH369AH8jscdd9xBzZo1mTZtmr7VMaDv3mNFz549GTx4MHPmzNHTz0eOHMltt91mqSdh7Pfiiy9yww030KRJE7Zs2cKMGTP485//rLc5ffo0Bw4c4MiRI6brrVKlim7T3LlzadSoEWlpaWzYsIERI0YwatQovWwgmuvq168fEydO5JFHHmHMmDH873//4/XXXy9xZ928vDz27t2rv9+/fz9bt26lQoUKphVewVWOMWHaMoU8/PdDwXcbKfjtfyQ3/aNxOEOacaCtlb9T/MMZju76gZRuGcQ3SwtvY5QBE7nAQ/6GgF6ILdFZog6WWawguqd+mYjfaDsLyxKnP9iFI836H/SRdkcOn7kvuF652n0o4T/5Ef6T8J/CIYJSVwIrTSmMARmrlGYlpL3Wzma3h7RXgCpv7WNyqsKXd0UOmOhC5haaAYpR2CpaH0EPXvmDUlJxEXZvISeS46mQWxQQOrdYZZMNcSzFFJwLnyllLA3UthNWFJdqgrF87zxCOYYyOT1kqAbVJFlRFyUV69XLMMt7NslG7ZTaxNnj9LHPF+G2CS43c+fOZcSIEdxzzz243W7at2/PihUrdIfC5/MxdOhQDh06RHJyMt27d9cfktWqVWPixIk888wzPPzwwwwYMIB58+YxY8YMMjMzueeee/QtjQ8ePEhsbGwkU2jWrBnffPMNzz33HO3atUNRFOrUqUPfvn0BqF69OhkZGUycOJHs7GwkSdLfjxo1Sh9n1KhR1K5dm+nTp/P666+Tn58PwMKFC/U0bSNWxw4ePEj16tVNx+x2O7t27WL+/PmcPHmS1NRUWrZsyZo1a2jSpAngX9nau3cve/fuDekf6bth4MCB5ObmMnv2bEaPHk25cuW48847S9zSeNasWYwbN46//OUvnDhxgqpVqzJkyBCef/55vc2yZct4+OGHQ653/PjxTJgwAfA7WmPHjuX06dNkZGTw3HPPme5pNNeVkpLCypUrGTp0KLfeeisVK1bk+eefj7idMcCPP/6ob48N/t2HILBFtuDqJqc4hw9+/gDFK1ERdYeiSAk7ihJ43pZYSq/28riRnDbzeUkiz6e+dsv4ThVRsPlE5KCU1Szh17IAqPjIjTirJOD9rSDUPMsDgQz5Et0FK62HC0F3H0PrHo3fT4rh4mV3Nv5/XvgPek4XGDL2DYtwJfyjWSy+Ca41hP8k/CcQ/lM4RFDqUhHRHwg8ar1yqKOhyP5VJsnCjwo9ETytQSvKo1D3GPyQ4wXCr8iZhc4t3ADNcbAqUZM1rSdj30A737kUEo/vArz8mFGVqqdzqeW13loUzLvv6encFppSTm8Bp2LOkOAFcAeuRfZrasmyuvuesXzvPDwcxe3h9IIF+M4GAnp6sMzh8AudK4q5JDFaX1CP9YnQkqBsEenBVL58ed5///2w52fNmhVx7HHjxjFu3DjTsaSkJJPYZn5+PhMnTjQ9XLOzsy3Ha9myJStXrrQ8V7FiRX3b5JLo3bu3vlp5+vRpOnXqxJw5c+jVqxfx8f7V2YyMjFIFkWNjY1myZEnENgMHDmTgwIFRj2nk8ccfL7XWRFJSEq+99hqvvfbaBdn00ksv8dJLL13QGOB3jNesWVNiOyN33HGH0NO7hsl15/L3n/6OXXbwLH69E6+i6S5F97mfKd+A4/FVuTHouOTy+wb+Z7YqXeD16c/jrEIPhz0K3dqn4dl6NvwEEfywQBvrwzF1yiHZpEBQKpqOFnqgEblMfx+e4yco2rkD32kbYEORfRR7TgJVKFZ335M9Prw2v2/m9p5D3RwZSQoV+hR/1YKrHeE/Cf9J+E/nx0WSfhZEg+ZSyIaUpGJPaOnWmaOHw45hypRSQsvX9Hc2B74kh3rEGPgyBlbM2kglBUdMq2JawEhdVUwslMCmZmwZnDWlMAYIiHgWuRwczA8IswXPKBuymcxVfsG77ymcjj+q2hJoJalC74qslu+ZglKRo1K5aw9z4q2fOPHWTyR4/WJ4xbt2cfxvkzj9z3+G2Gx0qE4dyQbgxOmThhbhoorakejuuyVSyTpfAsHVwpYtW1i4cCH79u1j8+bN+g4hmpNzualQoQJffPEFnTp1YsOGDVfEBoHgeiXBmUDfBn35Q70/6MdMZe7G5O8wyDYHXltMyHG7qrVhi4/Xxyn0+oNDbq/ff8iVQUq0WLO1FBm/EKKTWCjJBlO7y7GjnaEEMrtPHw499heKduwEIO/rr3EHSTRINpvB3/EZjlv5RfrQAoEgCoT/JLhWEJlSlxHL4JEJQ5lcRL8i2CMLjGUIwaDYrIJWoeNYL/gZxw6aR5LwJsZCLrpzYpfBa1NzmuyBuuDggIsiwTcnttAozBXJpus2CUypDbRAmhy4XcYKPS0opWiZUoHAUUm+2rnPs1HUIKHD6Q9qKaqYnj052ZAVH7gP+iE1uy0n7xxSbHROoWT8vAWC65xp06aRlZWFy+Xi1ltvZc2aNboI5JUgNTXVlJItEAguD+Vjy/PXVn/F55H5+D/z1aOlC7ZIikyi+ySQaDyqP7dtTheS159lnefJAyf8evo3JCr5H8lR1slZSl1d5sIzS0sv1opVpGFkGe+JEwBILn8A0Hf2rN5Juws2yYadUJmJoBKA8zRCIBAI/0lwLSCCUlcA/+qQ/wGcGOuksMBczlYxz8vRJIgzbBxjuXqklOD4WHYKHNSCUZrQefjHvpaVYyjLi3VBLigl7iQYHIqT9ACOacc6badAUxzK2Ddo5U0JhLtkgzNj18v3AkLn9VpUYs+PJ7ilW80w16fOp2pdxTZOhT3qPKqNTsP2pJqNejDPXo4qdZvDSbAMpIX5mGxqppWMEDoXXN/cfPPNbNq06UqbIRAIyiyK6Uc07fVFKouzhXm5+k7IdvVZ7JV9odpU5xHcMW98cnHQdUVLsEc/e7HTqE3SCuoUWkaUZMdRuTKK2z+vZmPAFrDSpLLKlAokmotAlEAQDcJ/ElwriKDUZSQQDgqUzjnULR4lQFYXkhxqcKTiOYvOpdiBpaRwUXD5num8ZedIToKxQ/iglNfuQvH5OH6uiIpx5p0WAHyWO/sZxDH1OI8SkimloOiaUoqqKSXZJDo93Jibu9akYg3jiqkF6tjOyvGwJxDyApAchuyvkEwpGycOFFM+Pg5ZkUpdE3thQufCcRMIBALB9UPAT4k229ggKWAqLfP3j3OE7mAc7ZPV72tJYdsrilKidEBYwmWOm2a/1JiznkzICva0RsTdPhTFHapbavbmQrPvS8woE6tvAoFAcN0gNKWuBJIUWjInwbkE/8dRFOvUDhlOBxwlPRARkrKjtbAmnGsRyJQyOG5WadVG2YKgeSTDeXOgxNwuP6Ey2b/lc/vkL3nr219C2hl33zNnggXPF5jF2MzuKzLZ7IyxY7fbSLshKaJj6N+9R31jXL3TdtpzhMZvreN2VjZbz6vZIwJLAoFAIBBEoIQARfDaTjTxDK2NXbKHHLsgLniQCH5clGWFl1TIVg8GKthT6yI5VLkDdz5w1uidGawyykmoQakIOyILr0ggEAiuL0RQ6lJjmZ0shb5WFD244nPYtJPWA0rBwQ5jMMmKyI93W4m/Bv55ZD1VWyJiwCVikEzhwEn/dqEvr9odNAO6gLq/pbG8L6h8z3jNhj7lz26m6pG1xCVnU69lZW7uckO4iwo2KzC2KSilnrAISmlWV6iaQGr1JP8RpURBMEPv8w9KGXxCgUAgEAiuPaQSnqYXLdHGYjHJarfhi4UU9DMs0QWgzA7MRdaqjODqKbIc0BVNOkPef55EUvJCuloPiOXuewKBQCC4PhFPhMtISf6HVSpzyEPdIt5TlB/Y3U4y6hNZZuIYnRh1zcq0i5//taZyZUz88fkC80SyPmKQRVGwKeE1lGQL39D0xlC+p+8qaOjj9ObScPdCUjO+oesjTUi7ISmCzWGwheoySA67foU2NWjlUHcblCQJ3bcyBuysdupRjA6ZEDoXCAQCgaAkTPpEkVZjoo5EhVk8K610lTmFvLRGRBzSZIOlRmjoIUVzRi5pppQ2mWERzgYoPkDR43mmfHsrf8dCp0pU7AkEAsH1iQhKXQEUY61bhECUZDhrkCcPtLASOo+kG2kaMXBGiuANSMYTFj6O3kUJM0BIJ9l6tz9tcdIWckjv5z+oWSSTIodqP+hj20opl2Z04Ixlflr5njOgKRVr9+8yo2dUScY+YVwqi8NahpocIUgXjsu9u49AIBAIBFcj4RbKgp+j/kWjKIM5ER/BxiBXFONFM6US8sKa89WvKgkLoXL/ZjVm/1FRlEguo+mYzSpTysqHFQt3AoFAcM0jglJXHMMT2MLpUCyahYxg+hRLKOUzOgvaapaeKWVyFwxjWGkUBGUpBdknKWquVYg3IYeRBFU1pYzle6ZYTWj53k1uv6h59fjKhjFUi+1W2w9HIEz5nqQZYSjf0++TrwQdipI8Kf2zOH+PS/hqAoFAILguMWXsRIfV89acvKP6NlGOad4oJmix8WIGiKwCPVYmSpFOXmRjDOV7RgO1eydZ9TGV70W6P8K7EQgEgusJEZS6jFjrJoVvZ5UVrli0DPtctzphme1kka1lzMIKNkiSLKSigjKwdIfO3FBBodGRPBqc/tXSZHPylzFgF5rPHqMGjBz2QBaTpMWuSh2UMgxsM2SjqdlYNtPue1rATS3jS4tDkTQnTEKJFEE0cCGaUgKBQCAQXNOYHqXnob0Y8v7SZhhH9uwidoi+qWWwzEpT6iL5FZGcVMXKSVUi+5mmmr7w/wQx5GAJBAKB4DpABKWuEIESNtMT2vRTQsKheEz9FKPQuVWGk6W/Yl2apq0IWmtZGX81otM+Ml2JnuYU1EmR+b8ff+O1b2dR++xhQ2mhRYaXqatsOmTWzrIZ5ldMx6LFdItsgVwuxSB0rl2frBQAYE/Op9LQm6jQt4G+4hdvT0TSSwcj3zA9KHUezqMQOhdcSgYOHOjXSpMkXC4XdevW5YUXXsDrjaQrVzKrV69GkiTOnj17cQyNgv3799OvXz+qVq1KbGws1atXp3fv3uzatcvUbvny5XTo0IGkpCTi4+Np2bIl8+bNM7XJzs5GkiS2bt0a9fwTJkygYcOGJCQkUL58eTp37szGjRtNYz7yyCPUqlWLuLg46tSpw/jx43G73SWOvWDBApo3b058fDzp6en8+c9/5tSpUxH75ObmMnLkSGrWrElcXBxt2rThhx9+MLXJy8tj2LBhVK9enbi4OBo3bsybb75pajNkyBDq1KlDXFwcaWlplvf0wIED3H333cTHx1OpUiWeeuqpsL9D69atw+FwcNNNN5V43UuWLKFr166kpqaW+vMQXJ2EK8ALNIgQrAkjHxUYRQl5/cvOXACKCw2/r6V43soonHAWkb1/PwcOHMB3Xt+dYQSYIhl0qcr3rDCU75mCZhbBKsvFVhF1ElyDCP9J+E/Cfzo/RFDqimAt3qSnjVusDhpDSSWNE3itahaZh9Lf+HynKc5dRPr+I9y9rgoVc4si22tRvhduIdMQ1gkaS6HA5bercsGZkJkUg+xVcI6V8Yc/H8m4G6D6Uut0QZlSgZdaGaJksfue5JBx1UhCstt0G6rE1URyBYmrh3G8LPUUBIIyQvfu3Tl69Ch79uxh9OjRTJgwgVdeeeVKm6UTjdPh8Xjo0qULOTk5LFmyhKysLBYtWkTTpk1Njt2sWbPo3bs3bdu2ZePGjWzbto0HHniAzMxMnnzyyQuys379+syePZvt27ezdu1aMjIy6Nq1K7/99hsAu3btQpZl3nrrLXbs2MGrr77Km2++ybPPPhtx3HXr1jFgwAAeeeQRduzYwUcffcT333/P4MGDI/YbNGgQq1at4h//+Afbt2+na9eudO7cmcOHD+ttnnjiCf773//yz3/+k59//pmRI0cybNgwli1bpre59dZbmTt3Lj///DOff/45iqLQtWtXfD7/d6bP5+Puu+/G7Xazfv165s+fz7x583j++edDbDp79iwDBgygU6dOUd3T/Px8fve73zF16tSo2guudyKHtIxnnV7/otOpY8UAnPut8Dzmk9js+IV/px5i/j/+wXvvvcd/v/z8PMaxwLhZiuXUFztTSne6LKZQLDVJTTPrcgihA1iV70lWgUSB4CpD+E/CfxL+U+kR/yq+jFgGWQzY9D3vShoj+KFtzDIKrymlQEAAXFHwen9B8R7GVewhLSeG2ifzI1sdSczAVJKoGAShQjWlfq0YB4BL9hj6qD8l9PI3xTR1sKaUoZct8GusBaUk6fw1pTBoSunbyNgtNKUMTlZ+OThemE2u5wzWQTwLNFmG8xI6FwguLTExMVSpUoWaNWvy2GOP0blzZ5YtW8aZM2cYMGAA5cuXJz4+nh49erBnzx6936+//krPnj0pX748CQkJNGnShBUrVpCdnU3Hjh0BKF++PJIkMXDgQMC/+tS/f38SEhJIT0/n1Vdf5Y477mDkyJH6uBkZGfztb39jwIABJCcn8+ijjwKwdu1a2rVrR1xcHDVq1GD48OHk5/u/y3bs2MG+ffv4+9//TqtWrahZsyZt27Zl0qRJtGrVCoCDBw8yevRoRo4cyeTJk2ncuDF169Zl9OjRvPLKK0yfPt20Mlda+vXrR+fOnalduzZNmjRhxowZnDt3jm3btgF+53Xu3Ll07dqV2rVr06tXL5588kmWLFkScdwNGzaQkZHB8OHDqVWrFr/73e8YMmQI33//fdg+hYWFfPzxx7z88su0b9+eunXrMmHCBOrWrcucOXP0duvXr+ehhx7ijjvuICMjg0cffZTmzZubxn700Udp3749GRkZ3HLLLUyaNImDBw+SnZ0NwMqVK9m5cyf//Oc/uemmm+jRowd/+9vfeOONN0Ic4szMTPr160fr1q2juqcPPvggzz//PJ07d46qveDaxDLTplQPxyChcxSa7X2funuXkFY11n/sPIM7uZI/mGVXF8jO5uQEZj2PFKGorbjIQamI4Tzj7nvh9L20AJRVCNBmkZEfvRECQZlF+E/CfxL+U+kRQanLSOCRHE55IIIzYbllXQnp3JozYOyq7hyH7AudPeyD3z+OV/GGnTVEuyGMphQoFMf6M7JcvmJDqCk03Vs2RaWCd99TLO+nPkxpM6XkwFySZEjm13bfczgChhmktTR88bD62CJ+OP1F5HlMq5wXQ1NKeGtXC4qiIBcUXJH/zvcfVkbi4uJwu90MHDiQH3/8kWXLlrFhwwYUReGuu+7C4/EHmYcOHUpxcTHffvst27dvZ+rUqSQmJlKjRg0+/vhjALKysjh69Civv/464F9ZWrduHcuWLWPVqlWsWbOGzZs3h9gwbdo0mjdvzpYtWxg3bhz79u2je/fu3HfffWzbto1Fixaxdu1ahg0bBkBaWho2m43FixfrK1DBLF68GI/HY7miN2TIEBITE1m4cOEF3z/wr06+/fbbpKSk0Lx587DtcnJyqFChQsSxWrduzcGDB1mxYgWKonD8+HEWL17MXXfdFbaP1+vF5/MRGxtrOh4XF8fatWv1923atGHZsmUcPnwYRVH4+uuv2b17N127drUcNz8/n7lz51KrVi1q1KgB+J2+pk2bUrlyZb1dt27dOHfuHDt27NCPzZ07l19++YXx48dHvF7B9YfJr1Cfxfnr1+MxrEoD0T8Gg6QvrXyZxKIT3HDoSypUckVvaMg8AYO03/8L1Y4MxHxCFx7NEqDnLwtQamNkq5uomK5VSwgP+DuGYSyzxYXWpsCaq9mHEv7ThSP8p2vffwqtSRJcGWyBIIqsVaVZlsNheKpbCEca0BfMjJk9jljDsdAvWT1LyfBTcybOuf0rfebMHs0BMhvh853E7d6B7DkYMoNb1QyPtZ8w9FfPGsr3zKuJ2pxaxMobCKlKhvCUNo6tdL/apviXMcZVqKbum8r31NVBi9VO83Mrsh7EZXEeBWUGpbCQrFtuvSJzN9i8CSk+/rz6KorCl19+yeeff06PHj1YunQp69ato02bNoC/Lr9GjRosXbqUPn36cODAAe677z6aNm0KQO3atfWxNEehUqVKlCtXDvCv8s2fP58PPvhATz+eO3cuVatWDbHlzjvvZPTo0fr7QYMG0b9/f31FsF69esycOZMOHTowZ84cqlWrxsyZM3n66aeZOHEiLVq0oGPHjvTv31+3a/fu3aSkpJCenh4yn8vlonbt2uzevfu87p3G8uXLeeCBBygoKCA9PZ1Vq1ZRsWJFy7Z79+5l1qxZTJs2LeKYbdu2ZcGCBfTt25eioiK8Xi89e/bkjTfeCNsnKSmJ1q1b87e//Y1GjRpRuXJlFi5cyIYNG6hbt67ebtasWTz66KNUr14dh8OBzWbjnXfeoX379qbx/v73v/P000+Tn59PgwYNWLVqFS6X/x/zx44dMzlUEPgH+rFjxwDYs2cPzzzzDGvWrMFhUSItEGjPSanAX05XvHsP9tS62MunoMihWcZerwcHThQl3/oZHe3E4dbVStH1QjGNE0VyVT5FFMTHEZOfd5EsMBhhuXGObDAsjD9jC/ZTFcOpEi5KiE4JDFyNPpTwn4T/JPyn6BGZUlcAf9Aj1G3Rg1CGaJQWHLJpwRZFwiabPzYrkc6wc2vBGrvL0oaQ9gSiRHbs6jElOPri9x0M2VEez0/I7p9BCXKOFBm3Gn+rW854HRYBMhnkwJKceT5vYcDHMZXvqVpXpc2UMiCfPqXbo6iicvak5JDkc6NAvGQo+VNCWlpzPin8gb7qDCKeJbhELF++nMTERGJjY+nRowd9+/Zl4MCBOBwObr/9dr1damoqDRo04OeffwZg+PDhTJo0ibZt2zJ+/Hg9zTocv/zyCx6Ph9tuu00/lpKSQoMGDULatmjRwvT+p59+Yt68eSQmJur/devWDVmW2b9/P+BfeTx27BgLFiygdevWfPTRRzRp0oRVq1ZFfS80RyESCxYsMNmxZs0a/VzHjh3ZunUr69evp3v37tx///2cOHEiZIzDhw/TvXt3+vTpY9I2MI6bmZkJwM6dOxkxYgTPP/88mzZt4r///S/Z2dn6+TVr1pj6LViwAIB//OMfKIpCtWrViImJYebMmfzxj3/EZvgenTVrFt999x3Lli1j06ZNTJ8+naFDh/LFF+ZM0P79+7Nlyxa++eYb6tevz/33309RUThtQjM+n49+/foxceJE6tevX+p7Krje8D/sHJUrhRwDKMrz+xqaoLgsn8GnuINaRRpZpbTPZavEdisV0AsNbuk+oPVAPzr2sTB2Havbt2Pp7/+Pw6dOl37CaNH8D4PQudHtkS18IytdVKPfpCN8GsE1gPCfAgj/SfhP0XJthNauEozlZqGOirUjpB1NlP3i2XacIU2DVRECr8zp0qZnvSsB3MG1/5belU56bDpwzNJOFGNmFsQUncJr+dsl47U7gWJcXh9uNS7q0zOlJD1TyTLrSPeBFIhLgXOYssx0SpkpZZxM8QS0ruJvvZXqw4YjFydCdlBbk26nlXMV2buyqdd+PppSgqsPKS6OBps3XbG5S0vHjh2ZM2cOLpeLqlWr4nA4TEKN4Rg0aBDdunXj3//+NytXrmTKlClMnz6dxx9//HxMN5GQkGB6n5eXx5AhQxg+fHhI2xtuuEF/nZSURM+ePenZsyeTJk2iW7duTJo0iS5dulCvXj1ycnI4cuRIyOqi2+1m3759dOvWrUTbevXqZXI2q1WrZrK7bt261K1bl1atWlGvXj3effddxo4dq7c5cuQIHTt2pE2bNrz99tumsY27oyQnJwMwZcoU2rZty1NPPQVAs2bNSEhIoF27dkyaNIkWLVqY+mmrbHXq1OGbb74hPz+fc+fOkZ6eTt++ffWVz8LCQp599lk++eQT7r77bn3srVu3Mm3aNJMOQUpKCikpKdSrV49WrVpRvnx5PvnkE/74xz9SpUqVEH2G48ePA1ClShVyc3P58ccf2bJli14uIMsyiqLgcDhYuXJlxHsquN5Qg1JpaXiOhYr0Wu1uF6xF6T8YmsFsWkaSolhUCnncB/exykIPHDs2eTLOylVIuOP/LGyKYrqQwRVOSucCb202TpzLoV5J/c4bg5MWLHQesvteqG5X4FQJEhQCgYGryYcS/pPwn4T/VHpEUOoKY6UpJVme9ztXDpwhvcJSgnNlIQWgH/RGaKlIkoVPFjiSq7hJzztAfrlEi1kVPA5/W5fPi1vxR9B9ega4ZoSCIitqYE0xaEr5NQwkFKSqt8DxHeB06V3Pf/c946UG7ldcs2Ykde5MzgoLoT7jrn+mGxJdplRAoqr0TtiFZFkJrgySJJ13Cd2VQHMEjDRq1Aiv18vGjRv19PNTp06RlZVF48aN9XY1atQgMzOTzMxMxo4dyzvvvMPjjz+ur5gZ9Qlq166N0+nkhx9+0B2hnJwcdu/eHZLuHMwtt9zCzp07Q+yMhCRJNGzYkPXr1wPwhz/8gTFjxjB9+nSmT59uavvmm29SUFDAgAEDShw3KSmJpKSkEtuB33koLi7W3x8+fJiOHTvqO7LYbOZsWKvrKygoCEnZ1kSVFUUhLi4u4n1JSEggISGBM2fO8Pnnn/Pyyy8D/h13PB5PiA12ux3ZolxKQ1EUFEXRr6t169a8+OKLnDhxgkqV/Nktq1atIjk5mcaNG+N0Otm+fbtpjL///e989dVXLF68mFq1apGQkBD1PRVcg5zHcy7wbJQiBI/M75QIwaTwE5XSMF/gb+fM+/8AoGp643CtS4Wl1aVIoz7z4SLyvvkGACkmhoqZQ4ht2DB8B2MAynJeNWMdxVCPYXHDTD5UuOVVgcDP1eRDCf9J+E/BYwv/qWREUOoKoEhSCU9ci9I+NdqiICG7cpEK07ApDhR8yK5coIrFOKHCksZTVsEQ7cgByUYMWhq2lS5DULaQEjjmi3hxMh67/4/VafhidajOjd0wpqJIhnvlbyvJ+J0ciYBDE+sXb5cMMlmS0yxEVyLG7CfDxxPwbwNfMNp1SmGDUnrDiFwMoXNRvie4nNSrV4/evXszePBg3nrrLZKSknjmmWeoVq0avXv3BmDkyJH06NGD+vXrc+bMGb7++msaNWoEQM2aNZEkieXLl3PXXXcRFxdHUlISDz30EE899RQVKlSgUqVKjB8/HpvNVmLwdcyYMbRq1Yphw4YxaNAgEhIS2LlzJ6tWrWL27Nls3bqV8ePH8+CDD9K4cWNcLhfffPMN7733HmPGjAH8K4Ivv/wyTz75JLGxsTz44IM4nU4+/fRTnn32WSZNmsSNN95omjcrKyvEliZNmuB0Ok3H8vPzefHFF+nVqxfp6emcPHmSN954g8OHD9OnTx/A71Ddcccd1KxZk2nTpulbHYN/RSwcPXv2ZPDgwcyZM4du3bpx9OhRRo4cyW233WapJ6GhbT/coEED9u7dy1NPPUXDhg15+OGHAf9KYocOHXjqqaeIi4ujZs2afPPNN7z//vvMmDED8JcMLFq0iK5du5KWlsahQ4d46aWXiIuL04VCu3btSuPGjXnwwQd5+eWXOXbsGH/9618ZOnQoMTH+7+zg+1qpUiViY2NDjgdz+vRpDhw4wJEjR4DA51GlSpWI90xw9RJIKo/8nWDKxDmfSS5gwSfSzEb9K3taRXy/nUQuKiSyG27MONIOWfiHpbQz2K5jL74IhgxxW2ICVSdNMptgKSllnSkVKDGUsMU4kHONOy0H7oP193uUi3oCwVWG8J/8CP9J+E/hEEGpy0joqhyRM8QVydAg8JBXXOc4VWk9DeR0smxHSaYc6EHj0NR0s4p3mNch3UOdIelCU8x1/AEe4/dlol6+Z2EKBkdGix1Jir5zi+Ty/4HaFPBqVsQmR20NGG6FvvOeFnjSt44pgfPQlBJC54KrkLlz5zJixAjuuece3G437du3Z8WKFbpD4fP5GDp0KIcOHSI5OZnu3bvz6quvAv704YkTJ/LMM8/w8MMPM2DAAObNm8eMGTPIzMzknnvuITk5maeffpqDBw+G7HISTLNmzfjmm2947rnnaNeuHYqiUKdOHfr27QtA9erVycjIYOLEiWRnZyNJkv5+1KhR+jijRo2idu3aTJ8+nddff13fEnnhwoU88MADIfNaHTt48CDVq1c3HbPb7ezatYv58+dz8uRJUlNTadmyJWvWrKFJkyaAf/Vr79697N27N6R/pO+GgQMHkpuby+zZsxk9ejTlypXjzjvvZOrUqRHvWU5ODmPHjuXQoUNUqFCB++67jxdffNHkEH744YeMHTuW/v37c/r0aWrWrMmLL76o6y3ExsayZs0aXnvtNc6cOUPlypVp374969ev11f17HY7y5cv57HHHqN169YkJCTw0EMP8cILL0S0LxqWLVumO4EQ+DzGjx/PhAkTLnh8QdkhKr/CkJ0TpoHFK+uxjU/yCMNEYY86nsU/DJ1V0vH9djLKwcyW+fLycB86jKt6NdOpENOi9CvkggI9IJXUpTO5q74wBaisUNx+h7Nw60+6XYHrNKTco1Du93Up3H6Soh2HwAMeuRhQs11ExrfgOkP4T8J/Ev5TeERQ6kogGYNNVuetDvmDMr68fEhGz+hBMv/hKZISkF8KGsfotilBxyXAZ5BJj1NM61kWnYLttyjpC4PW1W7SFjAE3ewSeEDx+gIBHkXNqpINjo8WlHLYA4fUYSrGp0VpTZBRwRehBeQkmyGIpButN7Op2V+KsZNhtdAwUWDoi+CQiW2TBZeCefPmhT1Xvnx53n///bDnZ82aFXHscePGMW7cONOxpKQkXUgS/CtkEydO5NFHH9WPZWdnW47XsmVLVq5caXmuYsWK+rbJJdG7d299tfL06dN06tSJOXPm0KtXL+LVkoGMjIxSBZFjY2NZsmRJxDYDBw5k4MCBUY9p5PHHHy+11sT999/P/fffH7FNlSpVmDt3btjzVatWZcWKFSXOVbNmzajaaUyYMCEqp+hC7pngasc6ezsS5up801NabWCRNe613gI9eMyS0J7zpvaawLeaPRXNWJq9+d9tZN8bf6fq1JeAhLDto7VPVgXicTiIu+lmcld9YfYp1dcF3/9A4bo3qDBgAJ6DBYANpagIq8/CuONzbJ1yxNYpR8HxbXDU3FySbCF9jYiYleBqRPhPwn8S/tP5IXbfK5NY/NFq0RZTAlMJNWO6M2SMUlkHSPT3ah+bqUWo1lWofWZ7Iq5Zqo6IzTiiwURZDfDgkQ1ZR34H0XPGL3AqSUrAsbM7VBMUYlSB85sq3xzJ2lDUCJykBgy1gJ5moyKF3rdwQaWQcF2YG2eThNC5QACwZcsWFi5cyL59+9i8eTP9+/cH0J2cy02FChX44osv6NSpExs2bLgiNggE1zvRJiif/9KMRcBIfWDnqrtLKRYC6uHRU7lLmLX0WdLOGjX8fdVFuOK9ewN+k6UpUWZKqVkN9oQEk925X33F4aef5rT6jyvv8WPkrvqCk2+9rdttS0wkSRPu1dfiwi2Vhd6TYN0VgUBQeoT/JLhWEJlSlwMtFUkyv9Vea0TKNdIypTCkCFq3NugcWYoABOdIBShnkDe3HNtC3sB4JFGWOQ24oox12kLytdRsLlUIHY9hpVIN3ChuLUwWKN/Tdt+TFHCo0aRSOzuGTCnTtel6CRbjGR1P/WX4+xt26vMSOi91F4GgTDNt2jSysrJwuVzceuutrFmzhooVK14xe1JTU3n++eev2PwCgcDABWkpRf8sTmjXjnOffRY4WELGVNSzRdiRLpI9GjF1asPuvbjq1oWN30f05fzTRb7mU+/N5eQbb+i7DdsSE012HZs0Ce+RozjrdsFR2TCu2x3INnM4cKRVpPgXw67MirU9Dpe/lEgy7IxsM25IEypNJRAIokT4T4JrARGUupxYPGS9EWr3/Tk72iNaS+WxmRuE9An/JA97Rq0mNPbVy+kkw0SRnATJRrZSnWR+o6orHaRfw9uhZUpJgQG1q5IlBVnLgPL6DELnXtUcg+eiOVBqAEoCpCKvdgERjI2EOSolEfraKoikfSyK0cYSNbguXFNKOG6Ca4Gbb76ZTZuuzFbPAoHgaiJMRrb+MDQcLeH5aOUlVHvlZdJfmMj2Z/91AZaFYi7fUx0GuTQPcHPbkvyGknyDc//9r54lBRB3syG7XAGlyK8bFd/yNuRCiG3ShKJN2sCGjLBgOQPFuOwaQMssT05rwKmCI6ZjJSF0NwWC8Aj/SXCtIHJnrwCyFgUisLWnYsifskuhsUIpUF9mMWKYB3bEB75RYcqqPM+Y1m6V1xWslyShaL9OxkCW5cxqNlNA/koP9HhtCrJdndsbKN9T9BI31VZJNmRKBX6NNTF2Sd06NVrM8k+hK5qSzXA9FppSkiEqpYQ0tEYKLq8UCAQCgUAQgv6ULIULFEp0QRBbXFxAHqAUE0VvhpVPVdJAkvlnmIykqK1RnZ70SX+j7ldfUvWVly3PxzX17+Rki4tVDxvlBqTQaRTFUqJTOxasdSoQCAQCAYhMqctKIC05ELmQpNDcJodFUErPlEKKGMRQLEIi4TfZCz+OC3BbdzJ5GlYjSGGOB/pomVLGowHBT0UNSrmyjuB0qbu0qJpSNrV60RXnNWSN+Wfz2MFzc23SW3fDmZ4ewQIro4wrf0rgPurle6HiqpIpKGWdUxUJ2wXEhCVT0FAgEAgEgmsPqxhGkeRjt30/vnM2fA43jQptlIuPA7AMiBiJuOnwhRgVdN6ioC5w2pRVFKUBES7MuMQYaB7dVdlTU3FqW6Bb1c6FZEL5z5+R8tkXfxbnsa0o9iKaKMmGvsIzEQgEAkHpEEGpK0HYYEZQM1PCjha0KUEzyjyC2iecgxDixugjOkwOjRTUijC54dHqJKiZUoZjRn0p2eU/E/PzIeKaZOB22NGCUgmV/OWOkl1Bshlq5oDceCh+YTRpNe+Myo4go/zjBsWJ9CuyEDo36XdZBepK8svUPkLoXCAQCASCIKwkCiTYHX+OTc6TkA844NjxXH5fq13YYcIFaDQf6lJqNAb7eIoiB5W6RT2Qv0tgoMCp8wkCGRfiIp63Pr7BsZsj9rPw21lwgq8onfr6eQuJg1Kq0hf4ijnm3IycYqOgoBH+bacFAoFAcK0iyveuAMb0ZUXRtvS1XFoz9gq0C3PGTyDAoSf5lGSQVqJmaGv+xVDPW9gX8GdK49X528baQyM5siRxqlEK5Wrn4yuXYEj38l+XVL6WOq8S4tgpgCOufCnsMGB0wIyaUjbNaQ3cEYvqPcNrxRAsDA02mbROL0BTSgidCwQCgeB6odjnX5A6mXsOj7pIF2eLAcAtG7U5S/881ROWLoF2kV6mbxw6aEEtfGfLlwQGDJ8xXeK1WAnHWwXLLDWjwCP59TvjHf6yPjc+fsm4m6/ozi9xzSNNHNGsGJ/fF5ZRKLSdojjuN345sDfytQgEAoHgqkcEpS4jRqfCpqhaUpI/5VyW4g0NQ7OUJH1nPCnoTPg5tI83vG9ilWAeIdpRirT3SLoBCXH+GrwEl0ELyvDCm+Ik/bYc3DXSDDOoO+CUuyHQRw0UKXIg+GNd+hgFJsfLmFsW4UJMGW/GoYJXBENL//x9LlxTSuh/CgQCgeDaxSw2kFdcqJ9JssdF1bfkYxeZEoNN0ZX4m85baDcZBgxzvGSiFRs3jx+QOEh2JqqHFQ7U6EyelIxbMpdSQhipB6MPpV5DvGyjt7slXdKaESOnACDLpd8BUSAQCARXFyIodQVQkEjIP6K+0YJNNoNOkFE8XHvl015Yjhj6ChSb+aiCpHsJv7lzQpwX0zs9rhLISDKHwyKkZ5eA0+EPHEkmjyVU5Uqx2wwjqplSNrs6l6KvNmpBKYfdQaPURlHZEIyi7YITdGm6zyQFbAmIohvuiGaLYcySUuqjvV8CgUAgEAhUotIgL+n5alyCK0ll02KOSJno0SkrRDNjaJ+wm90E+XPRZkpZp3yHBrdMDlDgnOYZKRL6zsoupZALIU1JpkFiVRxK7AWNIxAIBIKrB6EpdYVweIuARCQ8YQUxzZpSXvWMdRwxRyogy36EY4keOKf3Mozmx2vSLwpfEmgmOKW7BD2pkpwhtanNNJLqFBqHsdj9RrK7Au21TCl1vsoJlXHYLkKmlEmz3MrztHLmjGeDVkHD3F5bkP2lITCDSJUSCAQCwbWHdRaPlYTB+T4JQwSTSt1PCWNTMMbnvC4HIF+InmQYnSxF9aMuJI06gmaoghK0cGcoT1Rf20zllMbeAoFAIBBYIzKlLicRV7qMWKVlW6QvGxyaHx372Ob4lRPxgXZeT2SHJ5IclB70OB/xohL6KMExLsxZRTY9QGXDJpudI5vdaZgmKKhzIUJL6hhGbSi/XVpQykJTytDdave9aH1C2UJ7SiC4kgwcOBBJkpAkCZfLRd26dXnhhRfwer0ld47A6tWrkSSJs2fPXhxDo2D//v3069ePqlWrEhsbS/Xq1enduze7du0ytVu+fDkdOnQgKSmJ+Ph4WrZsybx580xtsrOzkSSJrVu3Rj3/hAkTaNiwIQkJCZQvX57OnTuzceNG05iPPPIItWrVIi4ujjp16jB+/Hjc7pD9T0NYsGABzZs3Jz4+nvT0dP785z9z6tSpiH2+/fZbevbsSdWqVZEkiaVLl4a0WbJkCV27diU1NbXE61UUhR49eoQda968eTRr1ozY2FgqVarE0KFDTec///xzWrVqRVJSEmlpadx3331kZ2dflusUXN1YZRubwlMWLsElLeizWLyy9EpsJUkrGEcIcy5s5+iyvkJ2GA43d/B5JSjApv6UJUVfkJOsBEhDR44aIVMguJoQ/pPwn4T/dH6IoNQVwPL5GiEwBGDDE3JUKS72/5RlitXzTkPsyudTnRNDaZz54W62xDyfxZlS6SREChCpjosha0vSA1GG67NJ1Dt+GocUh81eDburCQkpVQPtgzSlLk45nLl+Tw82SVLo+BaaUuECbdYzCaFzQdmle/fuHD16lD179jB69GgmTJjAK6+8cqXN0onG6fB4PHTp0oWcnByWLFlCVlYWixYtomnTpibHbtasWfTu3Zu2bduyceNGtm3bxgMPPEBmZiZPPvnkBdlZv359Zs+ezfbt21m7di0ZGRl07dqV3377DYBdu3YhyzJvvfUWO3bs4NVXX+XNN9/k2WefjTjuunXrGDBgAI888gg7duzgo48+4vvvv2fw4MER++Xn59O8eXPeeOONiG1+97vfMXXq1BKv77XXXgurSzNjxgyee+45nnnmGXbs2MEXX3xBt27d9PP79++nd+/e3HnnnWzdupXPP/+ckydPcu+9916W6xRcnQQCKqaDJRLeR7gcUQ8rXYDSdA8KNpVYnXc+Ea8IWld69Ek2je0p9AXM0xbvLOaOlGdvbZ+IRAmuXoT/JPwn4T+VHlG+dwUwZx9Z5N0YVpkCq1Wy+t4oDh6IhMg2f8sExSKgYoUpvTtUcNuur/JZBJgkQ+DGIt3KWnEqeHJU+W813dtQvqcHqGw2qp/J41CtdAoT70GxOVRNKR+g6DpOuad+CzYhauT8fHI++wzvSS9QE8VdDLhC7Le6l8Zjrjj/n5LxHsq+EjLVLoLQuajeE1wqYmJiqFKlCgCPPfYYn3zyCcuWLSMzM5MRI0bw2WefUVxcTIcOHZg5cyb16tUD4Ndff2XYsGGsXbsWt9tNRkYGr7zyCo0bN6Zjx44AlC9fHoCHHnqIefPmkZubS2ZmJkuXLiU5OZmnn36aTz/9lJtuuonXXnsNgIyMDB555BH27NnD0qVLuffee5k3bx5r165l7Nix/Pjjj1SsWJHf//73TJkyhYSEBHbs2MG+ffv48ssvqVmzJgA1a9akbdu2+nUePHiQ0aNHM3LkSCZPnqwfHz16NC6Xi+HDh9OnTx9uv/3287qP/fr1M72fMWMG7777Ltu2baNTp050796d7t276+dr165NVlYWc+bMYdq0aWHH3bBhAxkZGQwfPhyAWrVqMWTIkBIdoR49etCjR4+IbR588EGAkBW3YLZu3cr06dP58ccfSU9PN507c+YMf/3rX/nss8/o1KmTfrxZs2b6602bNuHz+Zg0aRI29fv8ySefpHfv3ng8HpxO5yW9zmuJN954g1deeYVjx47RvHlzZs2axW233Ra2/dmzZ3nuuedYsmQJp0+fpmbNmrz22mvcddddl9Hq6FFMrkh0D3vrMvdAcCfy0lkpHq4Rmlr6YZo0gZbtHk0AJiBwaTG9OXNJKcGmoIGtD+tbEmrTB/zNc/mBu+PzKOAAtykJJLrJTffGUvxdrL4Jrk6E/yT8J+E/lR6RKXUZiZjR7G8R4ZzmSBnaOAKlbD61BMyv02QuPTOurFk5Z5FmNwWlFKu+Usgho/PoSG6KZEvFEXeHYVDNITOE2LS+QUEpAJsvkP6lCWlKQO6Z0wCcOXpEHbZ0DsypU6fY/v77bHt3Ace//gkA78mTyAUFBlND/0SsygWTK/p3m3HaAxevyBYfuCntXThc1xOKouAp9l2R/y7GVudxcXG43W4GDhzIjz/+yLJly9iwYQOKonDXXXfh8fizNYcOHUpxcTHffvst27dvZ+rUqSQmJlKjRg0+/vhjALKysjh69Civv/46AE888QTr1q1j2bJlrFq1ijVr1rB58+YQG6ZNm0bz5s3ZsmUL48aNY9++fXTv3p377ruPbdu2sWjRItauXcuwYcMASEtLw2azsXjxYnw+6x2cFi9ejMfjsVzRGzJkCImJiSxcuPCC7x/4VyfffvttUlJSaN68edh2OTk5VKhQIeJYrVu35uDBg6xYsQJFUTh+/DiLFy++bEGFgoIC+vXrxxtvvKE730ZWrVqFLMscPnyYRo0aUb16de6//34OHjyot7n11lux2WzMnTsXn89HTk4O//jHP+jcuTNOp7NMXOfVwKJFi3jiiScYP348mzdvpnnz5nTr1o0TJ05Ytne73XTp0oXs7GwWL15MVlYW77zzDtWqVbvMlkdB0FeXuVDemMUdZSDE6rFsNZeFP1HyDBb5QEbNJe1QpIykktC7hukbfSqVyT7ja+PzImQURcG4GZ6mjSlH8C1LZZfwiwRhuJp9KOE/XTjCf7r2/SeRKXUFiPbLzb/i5X/g+5SKFPmqcNTTEGJCRtR1iWyGoZVon+1S2DfmI5Y+R2iQxeQ0OuOJSXkIRXHjLVytHrSF9DWOFhyUcsi+QFvDatqpw4f1fjHxCTRse0fIeOH47bffAmmJbW8lRnHwx2IfkuxFLjQGpdQXNoOmVFERJMYFle/5XzvsxsBh5M9Zd+aU0mtKhQQcBWUer1vm7RHfXJG5H329A84Y+3n1VRSFL7/8ks8//5wePXqwdOlS1q1bR5s2bQB/vXqNGjVYunQpffr04cCBA9x33300bdoU8K9caWiOQqVKlShXrhwAubm5zJ8/nw8++EBfEZo7dy5Vq1YNseXOO+9k9OjR+vtBgwbRv39/Ro4cCUC9evWYOXMmHTp0YM6cOVSrVo2ZM2fy9NNPM3HiRFq0aEHHjh3p37+/btfu3btJSUkJWakCcLlc1K5dm927d5/XvdNYvnw5DzzwAAUFBaSnp7Nq1SoqVqxo2Xbv3r3MmjUr4iofQNu2bVmwYAF9+/alqKgIr9dLz549L1u69ahRo2jTpg29e/e2PP/LL78gyzKTJ0/m9ddfJyUlhb/+9a906dKFbdu24XK5qFWrFitXruT+++9nyJAh+Hw+WrduzYoVK8rMdV4NzJgxg8GDB/Pwww8D8Oabb/Lvf/+b9957j2eeeSak/Xvvvcfp06dZv3697rxmZGRcTpPPg/MpRwtfRmbM1PZJCstdmzhV2cOOadOoVKkSzSKmP5Vkq3GxLnygquQMKW2BkdBLURRT/5DTJZlYWgyZ3Uaz7bbwGpoivCS4mFyNPpTwn4T/ZIXwn6wRmVJXCINykuFY+PTlAl83Tnr+Rr6cGpKjpEjmTKnQWQxZVibHIbh8L7K1kUMtkp6FdbLwZKCNo4jimJN4bBYrtqathY36UuppNRBk93kC98uV7G+TkIpsiNwPm7uINn3MaZ6ROHPmjH9s/CunxZKXvJzduHd9FuRdqeWFiYmBbC7t0lJSLEY2RgWjcwsvRhaLQHCxWb58OYmJicTGxtKjRw/69u3LwIEDcTgcplTs1NRUGjRowM8//wzA8OHDmTRpEm3btmX8+PH8f/beO86vqs7/f537qdNbMsmkV0oSCCWhZcEEkAAaYHfFskpxBcUFpImIu8KiuPmpIBZYFEXAr6CuiIqICFKDRHpogUB6T2YyvX3Kvef3x23n3ntu+cx8PlPfTx5hPp97T7ufmcx55X3e53XefPPNwH42b96MXC7n2GpUU1ODgw8+2FN2yZIljvdvvPEG7r33XlRWVlp/Vq5cCU3TsGXLFgD6yuPevXtx//334/jjj8dvf/tbLFy4EE888UTkzyKZTIaWuf/++x3jWLNmjXVvxYoVWLduHV544QWcfvrp+PjHPy7NYtm1axdOP/10nHvuuY49/2K7l1xyCQBg/fr1uOKKK3DDDTfg1VdfxWOPPYatW7da99esWeOod//990d+3jAefvhhPPXUU9bWABmapiGXy+GHP/whVq5cieOOOw6/+tWv8MEHH+Dpp58GAOzduxcXX3wxLrjgArz88st49tlnkUwm8bGPfcz6vTiczzkayGazePXVV3Hqqada1xRFwamnnoq1a9dK6zz88MM4/vjjcemll2LSpElYtGgR/ud//sd3NRwAMpkMOjs7HX+GgoBlMp+gR+Hbv9piGexV2pGLAd3d3di8eTO6mfcEuWjjc16UZnCzMM0VtSNZMTFlPQArU8o7rsD6HNAkNhHOT724h7eQRCJGG6SfbEg/OSH95A9lSg0hdhAporoISSUXUcUVNWvLnXcFy96+JwaEAjoXDaKyKtrKUyhXhcwlRw39Wl48Dphp6KxbD7RtRJV9Uf+iaVZWkdRTysw+UnPWQ5jb9zBrGdR1/wgYfzTqmYJenkAPMuj84Peo27UV4B+3R2qMgcXi1vcvddBBQGuzHqhylXM8X5iz1iA8pcjofPQRTyr4/A8+NGx9F8qKFStw5513IplMYsqUKYjH43j44YdD61100UVYuXIl/vznP+Pxxx/H6tWrceutt+Lyyy8fyNAdVFRUON53d3fjC1/4grVfXmTGjBnW66qqKqxatQqrVq3CzTffjJUrV+Lmm2/Ghz/8YcyfPx8dHR3YvXu3Z3Uxm81i06ZNDnNJP8466yyH2BS3QlVUVGDevHmYN28ejjvuOMyfPx933303rr/+eqvM7t27sWLFCpxwwgm46667HG2Lp7dUV+uB+dWrV2PZsmW49tprAeheAxUVFTjxxBNx8803Y8mSJY56kyZNCn2GqDz11FPYtGmTtVpr8q//+q848cQT8cwzz1grpwsWLLDuT5w4ERMmTMD27dsB6D5INTU1+M53vmOV+eUvf4np06fjxRdfxHHHHTeszzkaaGlpgaqqnueeNGmS54Qkk82bN+Opp57Cpz/9aTz66KPYuHEj/uM//gO5XA433nijtM7q1atx0003FX38g8M7h8pn0+A5NqPowbjyHKBVpdHf31+k8QkjEIdgZl7LtvhLkUz4IZGacKNzQzPKxESgNDQzpUzNKdMxgodDAU0TRBCjSUORfiL95AfpJ38oKDUM+GUaib5K+mu5y5P3FaAxe/uetdYpSxF3mZuHjo3D2m7HOzJYO38amjq6JeXt8afjZZ4Wxa2EsqBcAn3GkO0VNmv7nmo7aIr9aQHHq+abm7H3mzdDNTKikrNmYfJ/3wgWc6ffcqR4Aj0sgzcPnovahmosV3OQnu5j9pwKj/rrTYcEpaRirjAoy2r0wBgb8Ba64cAUAiKHHnoo8vk8XnzxRSv9/MCBA9iwYYNj8pw+fTouueQSXHLJJbj++uvx05/+FJdffrm1YiZmZMyZMweJRAIvv/yyJYQ6Ojrw/vvv46STTgoc41FHHYX169d7xhkEYwyHHHIIXnjhBQDAxz72MVx33XW49dZbceuttzrK/vjHP0Zvby/OP//80HarqqpQVVUVWg7QV8EyxumpgL7Ct2LFChx99NG45557LNNKE9nz9fb2Ih53TuEx4/cb5xxlZWUFfS6F8NWvfhUXXXSR49phhx2G2267DatWrQIAywx1w4YNmDZtGgCgtbUVLS0tlmlqb2+v51nNZ9AME+jhfM6xiqZpaGxsxF133YVYLIajjz4au3btwne/+13foNT111+Pq6++2nrf2dmJ6dOnD9WQLZzLaUH53bJ8dHmV5rgehEqqDFkl4B+fsu78E4r8cftCRZjGvcqvxHO/GbTydOvcvmd+zg5PKacrvbthu67Mz0pISae1N0JkNGko0k+kn/wg/eQPBaWGBDHdCOFpLtJ4iNevScTcvheUSu7NjTI7MtqWxK44A5T4dCixKdDi+4CMir6E8GPDvC9jojm42bcskUjT4Da+UqBZmVKaGZRyBJ+MsSpwbN9z0/XU0+h6/HHrfe/LL6P24x9H2WGLjOfj1jNX8jRa0Y29Eydg78QJmNXbLvQmG7g/+mdcmKcULR0So4X58+fj7LPPxsUXX4yf/OQnqKqqwle/+lVMnTrV2ht/5ZVX4owzzsBBBx2EtrY2PP300zj00EMB6Ce3MMbwyCOP4Mwzz0RZWRmqqqpwwQUX4Nprr0V9fT0aGxtx4403QlGU0MMLrrvuOhx33HG47LLLcNFFF6GiogLr16/HE088gdtvvx3r1q3DjTfeiPPOOw8LFixAMpnEs88+i5///Oe47rrrAOgrgt/5znfw5S9/Gel0Gueddx4SiQT++Mc/4mtf+xpuvvlmLFq0yNHvhg0bPGNZuHCh5c9j0tPTg29961s466yz0NTUhJaWFtxxxx3YtWsXzj33XAC6oFq+fDlmzpyJW265xTrqGIDUANNk1apVuPjii3HnnXdi5cqV2LNnD6688kocc8wxUj8Jk+7ubmzcuNF6v2XLFqxbtw719fWWqG1tbcX27duxe/dux/NOnjzZ8cfNjBkzMHv2bAD6Uc5nn302rrjiCtx1112orq7G9ddfj0MOOcQ6RegjH/kIbrvtNnzjG9/Apz71KXR1deFrX/saZs6ciSOPPLLkzzkWmDBhAmKxGPbt2+e4vm/fPt+fn6amJiQSCUucAvo/mPbu3YtsNivdbpFKpZBKeQwthwzpNBmaMhw8uaa4/ve1N6ZrjKQKWAelDyChXYb9O8zeVue5FqUfM1tcfO8Yo61pxPIBDZoDFAbruidiHVCjOeWs1P5BUj+yySlBjE1IP+mQfiL95AcFpUqGvyAIm7w54/7VHT5MOlmWtY3OxRuSX0hqj79PglMzCOtySgXSFf+C7LzfIf/anoD6Zh1766DdiLi2KQZjDKNRnrLGYHtK6a9iWt4s7HDBUgMypbiRXZVefDjyu/cg39wMns14y4HjhNzBmKLV4Z3MOnRVViCnCX4Iivcz5EFp7xJPqTDdrA3Cf4HiWcRQc8899+CKK67ARz/6UWSzWZx00kl49NFHLUGhqiouvfRS7Ny5E9XV1Tj99NNx2223AdBTsm+66SZ89atfxWc/+1mcf/75uPfee/G9730Pl1xyCT760Y9aRxrv2LED6XQ6cCyHH344nn32Wfznf/4nTjzxRHDOMXfuXHziE58AAEybNg2zZs3CTTfdhK1bt4IxZr2/6qqrrHauuuoqzJkzB7feeit+8IMfoKenBwDwq1/9Cp/85Cc9/cqu7dixw1rRMonFYnjvvfdw3333oaWlBQ0NDVi6dCnWrFmDhQsXAtBPWdm4cSM2btzoqR/0D8sLL7wQXV1duP3223HNNdegtrYWJ598cuhRv6+88oolagBY2S/m8dKA7nlgmmaLz3vjjTfiv//7vwPbF/nFL36Bq666Ch/5yEegKAo+9KEP4bHHHrN+Vk4++WQ88MAD+M53voPvfOc7KC8vx/HHH4/HHnsMZWVlJX/OsUAymcTRRx+NJ598Eueccw4AfZX0ySeftE5RcrNs2TI88MAD0DTNWml9//330dTUFMn/Y3jw/l0ID3NI5m8hE+fY/HzUqZXI5dtRnqhHrmsr3p846IGGY2afh56gJ1QxhUSRgmWhJdxZ9UIgTeN2frdi2UQ4fCIIgpBA+on0U1TGo36ioNRQImQsBRYQsGSBI+Cjk+D6Kmfe8EMAB+LCX8K4pb2EgFCeC9/14K18fsgXvJzJ8tz1rI5nDjl5xp0pFcvnhNwjWyBpqn9Qymw7MbkJWk8P0NwMnvOWZxyoRBqL1BnY1vsCuiorIH5i1udeUCq5f0nxe8FkYo4gRgBBk05dXR1+8Ytf+N7/0Y9+FNj217/+dXz96193XKuqqnIYLPb09OCmm27C5z//eeva1q1bpe0tXboUjwtZkSITJkywjk0O4+yzz7ZWK1tbW3HKKafgzjvvxFlnnYXy8nIA+gllhfx9TafTeOihhwLLXHjhhbjwwgsjtyly+eWXF+w1sXz58tBnGMiYZG1WV1fj7rvvxt133+1b75Of/KRUpIqU6jnHCldffTUuuOACLFmyBMcccwy+//3vo6enxxLG559/PqZOnYrVq1cDAL74xS/i9ttvxxVXXIHLL78cH3zwAf7nf/5H6i0y/MhyxoOIvseumpdhsTYbmd6tqKychTe1bdGGpKrgLK9rqRBfKJkRuEwDdWQ6cM/b96Aj24Ez+g/FFDQFx3Y8mVKS+1GQbKELqss5d/y9kuV86TYMrm1WA0mUCsrcIogRCukn0k+knwYGBaVKRqEzsCuFOsLPQq2Wxkm5Q7E134GGRBINWhU28RetymbmUt7IxGlXYpgRYHTOOPzTejzX/QNaTFKKCylcXCZ8LCNzb1Aqrsqzu7S8//Y9x3jielSZyzKrZOJKcvqeq5J/Z1L/Lnk7gzM6p1R4Yuzw+uuv47333sMxxxyDjo4OfOMb3wAA3+NyS019fT3+9re/4Y477sDatWuto5YJYiTyiU98As3Nzbjhhhuwd+9eHHHEEXjssccs09Lt27c7vCemT5+Ov/71r7jqqqtw+OGHY+rUqbjiiiusLRmjDQ4EBy4iTrFhhulmtjUXglJ5YbuItK7MN0pY7DL5y5a/4O639X98nJjVsxA0Lmgc9/P5vLUOiglNhApZlAzI4pJ5SnHBuCCk50ilCIKIBuknYqxAQalSEXnejSqkZPv2GQ5Sp4D1V2E+0w3iNgkl4tzpFdXPmKu+u++oWw7hI1i8Y3RnTInlZEEbcfseRKNzl7BjDOA8YNubneoEZpi88bwd3AqMAAv31MdbsefvL6FiySTZbR+i+UUUI1OKFhCJscItt9yCDRs2WNuR1qxZgwkTJgzbeBoaGnDDDTcMW/8EUQiXXXaZ73a9Z555xnPt+OOPxz/+MfgTbEtNkE8mk9wNmhIHu5jjyLY221JVMLi1FbzlnEZMxiVbw/Tl9cNeDq47WB8nly9YWVeEyZ/LC/iNyJfAz0fIWnIqN1v3WbVl2kySNi/2J/9O0uIbQUSB9BMxFqCg1BBizemhwsg7oXM/AQLJtG1lWul3TmHTsMVsU7Y6JhmPKTuEjWxSjePNM3InepkZUA4l4hqLe/hGphQzt+8JnlID2HFoBqUQlillvo6p1golUwG1PYP+je1WuY7OduMxChPEbhQWcMoPQYwjjjzySLz66qvDPQyCIEYjDi0RNgtH224Ximz+j1zVnPu9Yzm4/mDLp8lZKVrbkREW7rz3vAuGVgCQc3DB61x+irC/UKN1NIIoLqSfiLECBaWGkI79++CyInfgPsWEOe55r8nbEN/o76QCx9GTtLarY3lQiknDUrKe7HJaV5dx0StiZNv3EnnboNwyGQfDUWeejdce/SMOWXI8dl5xJbSuTgBAeuFCxBsnWYOyM6UCPKgAqIq+zW/9rnJ08m1ALA02OQnsBqBxpJAA0Ie+Pn1F089EkPPgoJsbLSjjy4douVgEQRAEMfaRHhg39MPw9CzP9PJqBHf+kX/TfvrC1Ebm7dD9e4Fd2YlNrnKuTCkt2wMkAVXN6S5SXAsRJoWrloFYHBAEQRCjCwpKDQkaAIbXHv0jsPyfkc1m7VuBqT9M8jJY7GgQ9/ZHlWSSlS5XVe42ujLGnddUxOGWQxKEU+y0fuP5Vc3eW2gGcoTte1ZQKmd/XuLHddKnP4v5x56AxFPPofWvv7TK9LywFvWf+3e774QRlJIYnfertmdDJq5vgezuj8E4DBAsYZySo3KclDsU76IZDSdPR2V1ORYvXmw3FHYSn4TBeEoRBEEQxHhGaiLugIfcLwLSxiXWBEGeUlEG6PVQcHfhuj2Ap5ZtNXTf49xo2iij6boqn+9D0hyKLecCh0gQBEEQJhSUKhneSd2clPPZXMgE7d2qZ3sncHHjfvAQTGEg3frHPfULycIyzdOzCoc0X8jKsDL6EExWrRT3kNNjzG2OiVzGzsjidvgrFo9j2iEL0fz4kwCAihOOR+8rr4Jns+A53T+KMQZWPhdlxy1B79tlyHe9i+SJE/Dyn9YCAHrVrDUGlakA4kgnVPSaw7ciZBx1vBIH58tx0HHHo6wq6Nhs08sroqcUBaUIgiAIwpcwE3IPjoWigcyxETONwurINI5iB3hkuLWBwmJIr1eAhJ2JLTsBL2QkrgKGlvLbruhZMLX7FYetKLoW4g5dGuCFJRC4VZJkEUEQxLiCglIlw3+ylfkOcGF5ySm+jIwkmBk9wV5QMuNP6564ugUEpm97FvCYIggRhrynhLxfq1RETylx+55qBLJimgpXTMrRHVf1AFly7jz0rXsDPJt1LiKWH4l4VTXUDqDvzRa89OzvsUtdD0yb52hIY2bAq8ceueIVgOFLfgGrjY5mJG1HxP4ISbkRBEEQ44WQrXEh2FOmqIWi1i1EB5jFvHqABWggJqSL9ypd3ga1mHxsxleVJQFo0AakDQI0ibh9T7ivKHFH/76W7yRVCIIgiADIaXkY4Kq4jcy78U0WtOplRuaPUFJ+MovMoNLdm1tPiW26OhdjYGZgSLitGD9CzDEUewOhbZguSeQWvQkcWs/0l/KO3BJD4j3NMCUXsrHE6BVjhohL6t5USSVlFUsp5XDT2fmyPSDrhJ3oiiroM3RcNtr+vw3/F7ltgiAIgiDcSARKRNPywoNbYXpApl1k94UFSEkgqI/pQams2gfuTs72MXc39YfoEiFFpqV824crKGVfVjxbKOWZUrKxOttnUUoRBEEQYxQKSg0FrshLZvMWyQoZEzRV1GU7q6ajGU8xudMmCp72g3yTQjLlxUwpO8vbL1NKR4t5fzxlyV1mphRiMXkWlnktrqu0GEugbtrHjNf6Kp/GNWiw/aXMHpJlZXpzmhlcC85Gkw7Wh7K43vbM6pnR2vOMjoQbQRAEMc6wtIh3LpafAlcCojYt003GAhqPfMgJt3ScbCHP0Z15O7LReXD2vcjWGSvx5OwrsavVNm1gxj8jVIUjk2qGpuR8xhbm/xU01oFUIgiCIEYTFJQaBlhcdGGSpUkXusrkzo4yM40U721pxrpsG6AXtdM+Nc8tpvTVOdPESsy8Mr+K62jmuPxUlX5dY+KPpztTShyYnnnGYpJMKWaPK7N1EwAgriTtWJrk81CUMrBYg37fzL7SgtP2meOZowWtFk9cbJQnxUUQBEEQA0E2hzLp/eiLcdzazh/eu6dPaSWZhYGkDZ/AkOcqd+u+IiKRO4wx7J18LPKxMmjCJr2YoedyMYbOunfRXrsBg4oiFflRCIIgiNEBBaVKjWSCjVVVRyrMxEuyiTqyp4EM7r/334/e/sA2xQwo20vK+dXx2mHUaQbS7HFpwnY8q4oRC3MEgWSZUuKzxY1sqD49qJZSyqCYdazthfLPgilu8RgMF0NSlim7n8gcuKcUQZSSCy+8UD8kgDEkk0nMmzcP3/jGN5DPe0+wLIRnnnkGjDG0t7cXZ6AR2LJlC/7t3/4NU6ZMQTqdxrRp03D22Wfjvffec5R75JFH8KEPfQhVVVUoLy/H0qVLce+99zrKbN26FYwxrFu3LnL///3f/41DDjkEFRUVqKurw6mnnooXX3zR0ebnPvc5zJ49G2VlZZg7dy5uvPFG5ymtPtx///1YvHgxysvL0dTUhH//93/HgQMHAus899xzWLVqFaZMmQLGGP7whz8UPGYA+Na3voUTTjgB5eXlqK2tlfa1fft2fOQjH0F5eTkaGxtx7bXXOn6GxJ8z8c/ChQutMqtXr8bSpUtRVVWFxsZGnHPOOdiwYUPoZxNlfMTIxzN7soB7A27fXj5zM9jZ2TdRfaCN+wa8XEG0EF1haZ6o2/cAqEoCAHDolE7rWgOqcVC+CWVZQ7fFsj7Z+ZLAYcTtlQQxmiD9RPqJ9NPAoKDUEGJ5MokTscQGQZoLZV2MltWk33AHVFjkrBxZhpOzw4BomZg0JQSbPCPmgveA8MVsUWWSzCdZppTlKRUTituCS6mo0F+m9PtN5XNwiJH5xFRzy558pdI6cjqqpxT3fePF+vYUrkyZ53tLEMXl9NNPx549e/DBBx/gmmuuwX//93/ju9/97nAPyyKK6Mjlcvjwhz+Mjo4OPPTQQ9iwYQN+85vf4LDDDnMIux/96Ec4++yzsWzZMrz44ot488038clPfhKXXHIJvvzlLw9qnAcddBBuv/12vPXWW3j++ecxa9YsnHbaaWhubgYAvPfee9A0DT/5yU/wzjvv4LbbbsOPf/xjfO1rXwts9+9//zvOP/98fO5zn8M777yD3/72t3jppZdw8cUXB9br6enB4sWLcccddwx4zID++Z977rn44he/KG1DVVV85CMfQTabxQsvvID77rsP9957L2644QarzA9+8APs2bPH+rNjxw7U19fj3HPPtco8++yzuPTSS/GPf/wDTzzxBHK5HE477TT09PQEPmfY+IjRQsC2L6ltQAknRU0i2CKSzQhaw5q/7YxzUQdEillxLi1QZp6GlwsJ+Mg0pWTB0E4yY+CGqXlZQrVuxLiCk/IL0NQuLvT5j7yzL/gffQQxFiD9RPqJ9FPhUFBqxCDPPYqURFNAIMQZ/BJT2geLEImS9ME9ZeEQPtYxx8wOZGmSVTTZiO1MKUXuKWW8zGf3oDff5bqYN4q7hJTZgfk3RMzqCtV60ZZB3cc+E8RIIpVKYfLkyZg5cya++MUv4tRTT8XDDz+MtrY2nH/++airq0N5eTnOOOMMfPDBB1a9bdu2YdWqVairq0NFRQUWLlyIRx99FFu3bsWKFSsAAHV1dWCM4cILLwQAdHV14dOf/jQqKirQ1NSE2267DcuXL8eVV15ptTtr1ix885vfxPnnn4/q6mp8/vOfBwA8//zzOPHEE1FWVobp06fjS1/6kjXhvvPOO9i0aRP+93//F8cddxxmzpyJZcuW4eabb8Zxxx0HANixYweuueYaXHnllfif//kfLFiwAPPmzcM111yD7373u7j11ls9q1yF8G//9m849dRTMWfOHCxcuBDf+9730NnZiTfffBOALl7vuecenHbaaZgzZw7OOussfPnLX8ZDDz0U2O7atWsxa9YsfOlLX8Ls2bPxT//0T/jCF76Al156KbDeGWecgZtvvhn//M//POAxA8BNN92Eq666Cocddpi0jccffxzr16/HL3/5SxxxxBE444wz8M1vfhN33HGHJYhramowefJk688rr7yCtrY2fPazn7Xaeeyxx3DhhRdi4cKFWLx4Me69915s374dr776auBzho2PGG3ItugNQLuErRVZC2rFabq/R9cYPR36YTWcxYAwC4OA3u3Ym2iJwJBVex01eS7SkP2RjE1TzAO77WBa0jgNkLnUpTgWAKhM1zlS5idNmgRFzIZ3CyuSRcQohvQT6SfST4VDQalhgMuX92yBJYtpOJKrwmZrdwjIb3VPknXkJkyZye6L8SDJ9j1ZOfG2OV5V8R59bC0sOrbvmZ5SotG5WM4IcuU68acd/4uHdnzf7isRh92Qt20UminlGKxkK4AjuDXw7Xv2Y5JyGy1wzpHr7x+WP8XYIlpWVoZsNosLL7wQr7zyCh5++GGsXbsWnHOceeaZyOX0fwVdeumlyGQyeO655/DWW2/h29/+NiorKzF9+nT87ne/AwBs2LABe/bswQ9+8AMAwNVXX42///3vePjhh/HEE09gzZo1eO211zxjuOWWW7B48WK8/vrr+PrXv45Nmzbh9NNPx7/+67/izTffxG9+8xs8//zzuOyyywAAEydOhKIoePDBB6Gqqqc9AHjwwQeRy+WkK3pf+MIXUFlZiV/96leD/vwAffXprrvuQk1NDRYvXuxbrqOjA/X19YFtHX/88dixYwceffRRcM6xb98+PPjggzjzzDOLMtZCx+xm7dq1OOywwzBp0iTr2sqVK9HZ2Yl33nlHWufuu+/GqaeeipkzZ/q229HRAQChnw8xRgjav2ch+/0mzyqX/iYs4TSq5ozGFYmukGgz5qMPvc/jHHRvRs9AypsiKVQmSvSfbFFPuJdHH3K9T2HDzres5uNc/2dEVjXsHZg8g6syXYuG/cfjxEPOwZVXXonPf/7z8u17krqkcwhgdGso0k+Dh/TT2NdP8fAixOAxN6VF/aUmmIgPZJeW0dULc69A+eQ9qOO/ByD/heLoRHgt608LOSiGCS/E+u/UvoP9qZ2YtqEhvEFhKL3VVXh26hE4vG+vbWJu+TQJiJ5SJj7p5+Z7S1DV1AKdhuhxNGr0Y9YxT9/jQGiqVIGZUsT4IJ/J4IcXfGxY+v7SfQ8ikU6HF5TAOceTTz6Jv/71rzjjjDPwhz/8AX//+99xwgknAND35U+fPh1/+MMfcO6552L79u3413/9V2uFZc6cOVZb5kTY2Nho7VPv6urCfffdhwceeACnnHIKAOCee+7BlClTPGM5+eSTcc0111jvL7roInz605+2VgTnz5+PH/7wh/jQhz6EO++8E1OnTsUPf/hDfOUrX8FNN92EJUuWYMWKFfj0pz9tjev9999HTU0NmpqaPP0lk0nMmTMH77///oA+O5NHHnkEn/zkJ9Hb24umpiY88cQTmDBhgrTsxo0b8aMf/Qi33HJLYJvLli3D/fffj0984hPo7+9HPp/HqlWrAtPKSzVmGXv37nUIKgDW+71793rK7969G3/5y1/wwAMP+LapaRquvPJKLFu2DIsWLYo8FmKs4T+3ysM4BSioyDv1C/tHaiwGwMhe4ozhjekTkX/jJSyfNB89He3QuvqssvJ1SWmeeEFjKAhuZrnb/eWyb0PNrMM7e4BMxZGAEsOB6jw2vf97tLEDACrlWfHGUBUeR3mqkjzeiAExGjUU6SfST6SfokOZUkOKEfBRgoMRMpkhXQeUu0kil9C3qGlKAt1VM5DVaiUjkQTJQlaobMcAmY+U+5r+vj/Wj/fq3kNrebfnnnszIWBu37P7+f+Wfga/vPQWxOrq9GsyXSZ6SgkrfSoDWrN90IwIv+XlxexgmD1sLvftUuz2JHc9cHD55yOBjM6JkcwjjzyCyspKpNNpnHHGGfjEJz6BCy+8EPF4HMcee6xVrqGhAQcffDDeffddAMCXvvQl3HzzzVi2bBluvPFGR8qyjM2bNyOXy+GYY46xrtXU1ODggw/2lF2yZInj/RtvvIF7770XlZWV1p+VK1dC0zRs2bIFgL7yuHfvXtx///04/vjj8dvf/hYLFy7EE088EfmzSCaToWXuv/9+xzjWrFlj3VuxYgXWrVuHF154Aaeffjo+/vGPY//+/Z42du3ahdNPPx3nnnuuw9tAbPeSSy4BAKxfvx5XXHEFbrjhBrz66qt47LHHsHXrVuv+mjVrHPXuv//+yM9byJiLxX333Yfa2lqcc845vmUuvfRSvP322/j1r39tXbvkkkscz0mMLeSzqfOqe/e9m6gzLAe8WibUHiFkvpfcVhnHrvpqZPL6NgxNVZHfLvNaCgi++egGmS2UTwN6eYmHprQ4AEDPSp9UNxFKVg+idVUr2NX7vqvDgWsaUkPEWID0kw3pJ9JPUaFMqZJR6NQadU0vLKDF0Fn7DqY09yDWfxz6k859/Nz6aqs4eQq1NELl98a3rmYEgBQtJE3bzGIXPaUkoolLMqUcnlJCgy/PmYLWvVtwdrIL6VgFWhQOaM6thM7dft50dtPygGvCYAO/BXZIqrevG/d8//s4pFv+F525U/gLILLwJEYM8VQKX7rvwWHru1BWrFiBO++8E8lkElOmTEE8HsfDDz8cWu+iiy7CypUr8ec//xmPP/44Vq9ejVtvvRWXX375QIbuoMI4tMCku7sbX/jCF/ClL33JU3bGjBnW66qqKqxatQqrVq3CzTffjJUrV+Lmm2/Ghz/8YcyfPx8dHR3YvXu3Z3Uxm81i06ZNWLlyZejYzjrrLIfYnDp1qmPc8+bNw7x583Dcccdh/vz5uPvuu3H99ddbZXbv3o0VK1bghBNOwF133eVoWzytprpaP7119erVWLZsGa699loAwOGHH46KigqceOKJuPnmm7FkyRJHPfeqWxhRxhzE5MmTPf4M+/bts+6JcM7x85//HOedd56vgL3sssvwyCOP4LnnnsO0adOs69/4xjcGbaZKjE4Glmscddmv0Dacd4PmdWmWtCk/GIP9ZN4s9ohDCNcVwmEwsnvu2u2teavOpNoG7Mtq6IetY6yzbHgOGfQCcJ0yLVv0C4WyyQmb0aShSD+RfiL9VDgUlCoRbfUpJJuBvpSYvuxNh5YmmzMOz2RsTvwh/bJ4XC+Ua0fMcrr0S4iTpR0FtB3QgidUZHlJ6XcUR2DMeBZNEpWCHZTKG8EmUaLZmVJCX0KmlF2OozuVMOrrV3uY3Z7H5N0vE8o8AVALFnhi4KwcRoov19De3o5d+zoA+P9CI7+E8QFjbMBb6IYDc1IVOfTQQ5HP5/Hiiy9a6ecHDhzAhg0bsGDBAqvc9OnTcckll+CSSy7B9ddfj5/+9Ke4/PLLrQlT9CeYM2cOEokEXn75ZUsIdXR04P3338dJJ50UOMajjjoK69ev94wzCMYYDjnkELzwwgsAgI997GO47rrrcOutt+LWW291lP3xj3+M3t5enH/++aHtVlVVoaqqKtIYNE1DJpOx3u/atQsrVqzA0UcfjXvuucdhAAxA+ny9vb2Ix51TeMzYwsw5R1lZWUGfS6FjDuP444/Ht771Lezfvx+NjY0AgCeeeALV1dWOnxVAPyFm48aN+NznPudph3OOyy+/HL///e/xzDPPYPbs2Y77jY2NVvvE+MCOb/irEt8MK5ldUtTgh+9U7dZrvncMMweJJlOBc9+4DvUvTkZ5qg9IyfuzLoVlJhVJVmiGn+bu7fbffacNlXNxjSOHftYjKVkgMgsGYlwzmjQU6SfST0FjDmO86icKSpUa6QlyYRLIG5Ti8Dd0EkvG6+qAzh4k584Fe89MP7L/gnJLsDE7E0mrAEdH4Ij0yrJte/YL8alMDaE5ChpbBq3PROb+YIfszKCUwsQ9fd5sJp43fkHH5Z5SzPxFI6w+usNxXDoW4WWIn5bIwepUIAZUllcCvf56alDb90J9rQii+MyfPx9nn302Lr74YvzkJz9BVVUVvvrVr2Lq1Kk4++yzAQBXXnklzjjjDBx00EFoa2vD008/jUMPPRQAMHPmTDDG8Mgjj+DMM89EWVkZqqqqcMEFF+Daa69FfX09GhsbceONN0JRlMDtJABw3XXX4bjjjsNll12Giy66CBUVFVi/fj2eeOIJ3H777Vi3bh1uvPFGnHfeeViwYAGSySSeffZZ/PznP8d1110HQF8R/M53voMvf/nLSKfTOO+885BIJPDHP/4RX/va13DzzTd79t9v2LDBM5aFCxcikUg4rvX09OBb3/oWzjrrLDQ1NaGlpQV33HEHdu3aZR3bu2vXLixfvhwzZ87ELbfc4jg22L0iJrJq1SpcfPHFuPPOO7Fy5Urs2bMHV155JY455hipn4RJd3c3Nm7caL3fsmUL1q1bh/r6esyYMSPSmAFg+/btaG1txfbt26GqqrWqOG/ePFRWVuK0007DggULcN555+E73/kO9u7di//6r//CpZdeipRr1fnuu+/GscceK/U5uPTSS/HAAw/gj3/8I6qqqiw/hZqaGpSVlfk+Z9j4iLFNlqnIKCr6kI0Q1AjKagqrGm3+dpRSvEEprTuGhl7n31vVay9aYEdB5SSZUhKj83xOswaQyrSil4kKSlyQs68leRr9AJJpO1vK0ljhH2jEByCI0QXpJx3ST6Sf/KCg1HAQMik7c3bcE7R9TTp1G7+E4hMnQnsvyNwcYIb5OdN0c0qFe4WSY6sb4rCcOr2DlY+IeVctk8pp2DD/KExW13jqcPG0PEEzBcSkwKWeUuK4nc/CmBCUEjylZONnEvEY9ove7DGmBP/1Cm8nHNq+Rww199xzD6644gp89KMfRTabxUknnYRHH33UEhSqquLSSy/Fzp07UV1djdNPPx233XYbAD0l+6abbsJXv/pVfPazn8X555+Pe++9F9/73vdwySWX4KMf/Siqq6vxla98BTt27EA6ZFX08MMPx7PPPov//M//xIknngjOOebOnYtPfOITAIBp06Zh1qxZuOmmm7B161Ywxqz3V111ldXOVVddhTlz5uDWW2/FD37wA+tI5F/96lf45Cc/6elXdm3Hjh2OtGhAX3l77733cN9996GlpQUNDQ1YunQp1qxZg4ULFwLQV782btyIjRs3euoHBawvvPBCdHV14fbbb8c111yD2tpanHzyyfj2t78d+Jm98sor1tHSgH5yDwBccMEFuPfeeyONGQBuuOEG3Hfffdb7I488EgDw9NNPY/ny5YjFYnjkkUfwxS9+EccffzwqKipwwQUX4Bvf+IZjPB0dHfjd735nnSTk5s477wQALF++3HH9nnvusY7ElhE2PmJ0Ee7mZOuid2I7sLZmI1ADAGuwgE3CCTzgtKGiJRpF85zysQMFAKhlGSvDXIoohoIGGfUB/HSI63ePojA0tK5Hb0O15zoAaEI2eQWvQScAJSZsJRnI2tvAqxLEiIT0E+kngPSTHxSUGkKY5JXjrhU1Caoc7IcgZvww42hgK0OIMz2ryNAJyXwHcvGY1bifcbo9hLg3ddy5100yMu9442w6dk09FJX7tgoF7WdnrqCU4vCUknQl85TiYraZM71cf23csVLPAVmAjQ3oKIAgKSWGHL3jIoiRwL333ut7r66uDr/4xS987//oRz8KbPvrX/86vv71rzuuVVVVOYwke3p6cNNNN+Hzn/+8dW3r1q3S9pYuXYrHH39cem/ChAm+k7Wbs88+21qtbG1txSmnnII777wTZ511FsrLywEAs2bNKiizMZ1O46GHHgosc+GFFwaKgyAuv/zygr0mli9fHvgMUcYM6D8jQT8ngL6y++ijjwaWqampQW9vr+/9gR4EEWV8xMgnytY69xy6X3Fmfh+I9Zoe3WENBV8awM+idPRBj6QIwaag/hz3Cl/gkusOiVaS7KLTlw71smVVMq8dM0tfstAXNjBKAidGOaSfSD+FQfpJDp2+Nww4Yz/eHxiZWOASs3J54/ZLZu05E7bv5XNWQcYNlSYGfWAHh9xjcWQnuUfhE70xV/wYZ9Z4NN4GAEg2dwPc9nnSyws75sS4lyut3LFV0Of0PQ/M+WyukdrfFyGTyr2KyH3ry5oMFo1WQGwQQpcCWsRY4PXXX8evfvUrbNq0Ca+99ho+/elPA4Alcoaa+vp6/O1vf8Mpp5yCtWvXDssYCIIQkQU4gifjmmzcqOldkPIj2vQ+kHlXFGeSXoqU9hx5scsWOWj7/QfYffM/0PN6AypOWw0kplrjkS0EiqOfclAdACARN8qLRu0som4lCGLAkH4ixgqUKTUM+CUkMc8Loc4A+jEzpZyeUmKbZkeSbXsR+3AGrbwCxHmfg4Mhp/QiBoBpXLjvLAcAmvFBMcaEWJMkQ8v0lHJnSlkxKCO93GhXVZnDW8tqV3KyX7wuDaDbet+tcblodYjMaLKWMqUIwuaWW27Bhg0bkEwmcfTRR2PNmjWYMGHCsI2noaEBN9xww7D1TxBEAUgyevzeF0IhiTuR+3Et4vn1Edwe93ld6GCAnpf2GuUVKOUN4JmZ3naEWJO4OGedvse8Gq7gLDFfSCMRRBCkn4ixAAWlhhQu/D+oVNC2L9tzST63230o7u17AgwMGvMPSjla55ohoowgCnOPxzlC8TqXeEppCgM4sOvDRwAfbHOUFw00rTwvcShCJx0PP4zc7j3I7tih143FheCQ9zM8EJsE5Jr1oJQZ2wrcFgkkp1Ri8nWzkWntx0O3voZODThBWtLbCosopAaUKUUp7sQY4sgjj8Srr7463MMgCGLUI1oYmFf851gh1jJoIrcjWZkU1tECW7d39rmz1SVZ3YFjEPSoUTg+sR/55rTeF3fqVQbxgBjbHoEpYqQqqD9zmPKnLIbHJkGMR0g/EWMFCkoNC36Tr1N0iK95wITt2FYnnjpnhHVMryh3C9Itau4gTVhWl+yaoK64JHhlhpsydRXWdUs8Mi5kSnHP8MznU1uasfsH1zn6VyrKPeXM4YABKrNP51O4seVP9JSyVZOj3XhdGmo6jk4zShagnRwhuMin8gx8FZCMzgmCIIjxgmzLnswEQS9rvpOoKr9Eo6LERkIaCVg8i9x2eNQp5LZkO2RCcsyw9HQZ+433FOHCs8ZDIZ1DEAQx5qGg1HDBPS9kN22izu1ifMnKlPLzezKDVUpgF9ZmN5mvlSNl2xAnWaGc5SkFMclLv6fI2hM9pfRXinD8nrUjMZMBAMRqa1H14VMRnzgRFcuWCZ5S3k8xzvsBAOkUA9PcrqfRVU+48apLcPpEjmhlkCAIgiAKxGtZ5CObnAt9jrnboUe8NgLSaZ5LAloB4wOAA7veB5JJcFFzSCWZX2jNaDKyl6XxhQOtv/gF2n/3EMA5kjNnYMqtt0JJJn2r2rsK9SXNvbWVyO/dgTrUgqu9cC64OTOlnAuisnFRZIkgCILwh4JSQ4gVqnCk/gQUFHBmHAVM7nZuNxSEeUqZTYasPJqZT1K9JrzidlBKIvE8aIpilxDEofv0PT0m5RQ+5pATU6ei6Zvf9DYuEUhJrU+o6xyZ6G4lDogLn2cQ0k2M0pVDsc7Ag1JusU2MXAZ6+gVBEEML/V0dHYSEPzx3ORPn5aD2BjKY4NqZvi4g2QBN67eulR1zDLBujVCKhbZjdRey2MWhL9hlcxkcuPs3yO/bp4/j/ffRt24dKo45xlHfGaizNcu+6nKsmzkJi7e9j7qaY5Dpe98u5vjYXZnhxVxro3W7cQ/9TiaI0UEx/q7S6XvDgNwqWwxr+KdBFzRHW54A8nRv7vaU8v15Cg6ueHD8VNmn61m1zeHE4IVBEpQS0qfcHhHugJr09D3mqKPH11xp6mLATezPHZwSxu8H93Oyd7XjTXsnxhKxmP4Dns1mh3kkBEFEwTxaOZFIDPNICD/8QjH2K++G+MJm2AFEQoI6kMzvFUuWDL4PV7txVXOUU9W8lVGuVFXp19raJQ3L7BuArHFwTCyWMLrLCWuH3M60NzOlgsYqXhpQoIk00njD/B0cdNw9QRAjh2LoJ8qUGiaC5mV5TEPMPfLPQ2rfuweoqEVfTw/SVnRImscjWW10hI6sMoxHdT0yc+rt0pp5SeYDIZxAYwVyxLqu0enlvNekSAM9QiDLtUrIhc9VcQSsJD0FfvM4PBE0H2w/q8IFF+38G/nE43GUl5ejubkZiUQCikJrAAQxEuGco7e3F/v370dtba0VUCZGEvaikkmgVIIoJ2zhEHW2lSqIkAWkqG2bCoPLBZn8mvthXWNJ5VT0AFBYEkAG4ADP5QAAicmTkenqQvtDv0P/+vUoP2apfCuie+UQQDJdZpeTfuAubwWxUCHSxi1quG+HxDggFouhtrYW+/fvBwCUl5eT5QVBjECKqZ8oKDXsREvB4Y7AkfnSWKkSmujtaAMqanFg7y7U8ymB7WrW9Yj/WJZEh8SAimNXopWcJfNg0N+oMdkmQG+mlMKYkADlas+TKeXsw9m2KGq9a6kxTc9oEYNSwTltg8MZEBsYlGQ1cmGMoampCVu2bMG2bduGezgEQYRQW1uLyZMnD/cwiELxmQcL3eZeQEJ0aMliTM0BSdfhdSEEpaZPR+aDD9Dz7HPoefY5tP6//welrMwzTmudkDkVGTwlhbuCj6fkrnNAiPC5kqYhDMzfxWZgiiCIkUsx9BMFpYYSI4KgKWGhDlkgJ7Bh69X0RYvxQWsnNE2zjM79gk7W9j0WFpSSeA9YBEsMzuzVM8tpilvRJrsVM8jl2L5nBN0Y0NOhB4z2bem0rjlfuPrVvPJSc2RAObckcj856p+U5kQi4vq7s0AsYHXVHWgjxhzJZBLz58+nLXwEMcJJJBKUITUCCQqJaMKUzn2MEcx7xWWQ7WkB9RlCdIfkE3FYDtiXzKDUhC9+Eam5c6F2daL9178B7+0FTMNzmfSRRsMEYwmhjuI+STA0lS0ESR1SSOMTc2GvsbEROeNnmSCIkUex9NOICEqtXr0aDz30EN577z2UlZXhhBNOwLe//W0cfPDBgfV++9vf4utf/zq2bt2K+fPn49vf/jbOPPPMIRp1CTCNwiVJUVGn5ZmHLcYHz+oGmmbGj1uqcZ4FVzsETynbr8rTC7MDRmFDCDqqWaZNNCGQU9HRZ9Uwr1ohNcag5pweUAnzJ9eTKGV7SnmHawTXGBMyrpxeFO425ZowotIyA20+AnQwmVLyDZnESERRFKTT6eEeBkEQxJhAY7r47W5rBdKApmnSqZAFSRfH1jlZZnUheG0PgrqTIwaZvNe8u/d8WjR1pF4IAJCcPg2N11wNtVMPSkG4J+oZxrwaKFSnmDYE4njyec8jcVf5giCZM66JxWK0YEAQ44ARYXLy7LPP4tJLL8U//vEPPPHEE8jlcjjttNPQ09PjW+eFF17Apz71KXzuc5/D66+/jnPOOQfnnHMO3n777SEceWkQJ3/zlRXA4UwSOJJP8mZJMSjFOUem8z5ke19xlAwbkV85f/8r5+qZuLJm3tJizsp5BWhpsN+rbj8IAP3xHnww7wVMmd5jNOVso7lqPl4+6it4OvshqPGUz3MAHk8pj8Dzz6QKtJQSnj1VHjyJ2gG0wGIEQRAEMU5xz7hMsAdQ9a+cQ21rg3nVXVN6eAyLNqf74x96ClVUmua9VmivIRXiSCI5/3QoNTPATONZxtBbNhHbpp+KLY0nYueUk5Dtd2Vc6S/kQSTTMgLiJbeGEoJcgwwkkIMQQRDE+GFEZEo99thjjvf33nsvGhsb8eqrr+Kkk06S1vnBD36A008/Hddeey0A4Jvf/CaeeOIJ3H777fjxj39c8jEPBHuLmmSrngwu3zAnKaj/n3uFjtmOMQJwaIDWBQBI53Oo7+rH/oqywNaZK7DE9YvRRsb8A1ritW2HTcE3Dm/GXJYH220+j36vX+2zyv191kP4YOIr+HR/LSoBT0BuZ93R6KqaCXCAsxjA88JKn3kSIAPcp+8J/UkT1AoKHOktSHdpiqXI6JwgCIIgBoQoL3pfew3V00906CDZbjT3AtTwTqXehTJAmigVvR3jdUJJIrXwX5CYfZIjKPXeQf+G9rqDrNLVb/VgqtVxkF4TexHGKjnxuGzx4UD3DpfRqJmpLn8CkjQEQRDjmxGRKeWmo6MDAFBfX+9bZu3atTj11FMd11auXIm1a9f61slkMujs7HT8KR3+akK+vsYEARUt+VsmXBxhLCsbSM7KPZtwxPb90rYdgRLjpcojZv4ILdqn7zlbt+4ZflaZihS6yvUW3Nv3ODj+tOAOvDLjL+Dz2o1HkwfgNBY3+gtYiWS2MNX6zC2Oft8v2Z4An6J+LThikKLwHHhQStIcQRAEQYxxfLbDx+PWbXNOlc2x1hJd6J6+wm9HLRZ92g5atJTfy2j61rk+tRsAwBIVgBGUYowhl6gAACRy+v1sxtBKCqQRI+nSKBcWVz2HzTAoae9CZ8FShbQNQRDEuGLEBaU0TcOVV16JZcuWYdGiRb7l9u7di0mTJjmuTZo0CXv37vWts3r1atTU1Fh/pk+fXrRxewg6NoVJ3ZtgbxUTmnF9HcxMzbhzK59PKclY3N4Dgml5SNKXmCnl0TuO8kLKtxm0Mo3OAeyqeR/vzHwWZQld7Giq5hqT2aT+I51AziPabKEK8Hy/fjGnX+tXe+QPYNZ1ZLhLhFvoaTX+nzsZnRMEQRCEF1mYRHY1JlnElAeeohF5sUhazKtngmCMRZd2lrzw85TSv3TmD5iN2/pE0Cll/S2O8k6zdO+WPfETsbdKyvXQYNKeim9KTxAEQYwGRlxQ6tJLL8Xbb7+NX//610Vv+/rrr0dHR4f1Z8eOHUXvQ0bMMOU8uPaYSOXlmVJGgEa6khXSXuS9dvI3zB0a8zECd0gXy/NBc1cRxBQX9sx5VzI1V3BHYYr+WXIgm8sgr3jzoczVuzgkJ3Vw+yRAddeLermGBJqn7seLzX/2zWArHFlQSlJqMNv3JAFMgiAIghiLRJ8n/T2lxOVAH7lTwHicfRTUUMSFKKe+cmkRz6Kb876WzRgVXQEm0xfKPQbmeuPuDra+yrz3nv+4xGscyPbnsfuDNvS2ZzzDkeMtQAt3BEEQY58R4Sllctlll+GRRx7Bc889h2nTpgWWnTx5Mvbt2+e4tm/fPkyePNm3TiqVQirlNr8uPQwKABWV8Trrio03rCNLIJIadfr0Zr8azEQu7LsztwHy0DCLXcW4wgPiM6LOcD6d/k41Tq3b8twafKxtKnorOPafoeAjayfj5fY1wGFzkNS6cEHLflRPaDT6EzKlrDaZpw+e132qYlUJ9FT0oE/tAlDtfaICxRAX+wmpG9UxjCAIgiAIf4IWagqZxbsOtADJFDJqBghyLJAmCEVbkBqMNAutynS9aaEID8HsLDNmLtJZSec+mVLC68T0aUBnGxJTpoCZWloxdZ+Qzy8k3D9y+xvYs7HDNQaCIAiCcDIiMqU457jsssvw+9//Hk899RRmz54dWuf444/Hk08+6bj2xBNP4Pjjjy/VMEsMg32Ur1d27Ey04f+SL2B/MuesE6XlMBXjECIuUeWzxc5E3KUok2Oa4O3gDZLZ7zWWta6Z5XJ5/VlzfX2o7IujsSWBmr0qJrbbgcUsOPZt2SQMwgxKZeFBCBI5PCYCRJJZhUtd0P2I+H0xRfRAVgFJ1xEEQRDjELdG4uBSxwQmkzHmvZA++vN9wQVkC20RyukLVyGrdJE647KXYDFdAykVuncUSySFm47QkbM9T3KUN1UqOWcOAGDC5z9vbZeUnSJs7/hjOLBLPym5emIZJs+pxpwjJnqfxRcSOgRBEOOFEZEpdemll+KBBx7AH//4R1RVVVm+UDU1NSgr0z2Ezj//fEydOhWrV68GAFxxxRX40Ic+hFtvvRUf+chH8Otf/xqvvPIK7rrrrmF7jkHhEAReAZJnGvqVPiCpwPy2DWSxLWiKd7pI2ZlS7mBSeL/iipn+OsGSQcWcFgbGV40b4qo8jv7uPNK5OBQhjlrT24+O8jSgCcEt434TdmIXV8GZGHTSVw91/wbBJ4u5w2kyP4Uw5CuLgTUGsX3PhNLaCYIgiPGCqqnS63ZwRMwrjzrH6vePPGgh3up9B1m/4qL1wCAQa2eRx3vxPejtA2IVO5BgNYChfYK64b7mAsYWuxjDa9iMaZgAa9+BI1NK/xytR2JMODJYyLgXNJCpN8RrTHrMsP25Z/t04/V/vfZolFdLdKBjbCKkbQiCIMYTIyJT6s4770RHRweWL1+OpqYm689vfvMbq8z27duxZ88e6/0JJ5yABx54AHfddRcWL16MBx98EH/4wx8CzdGHlgDTbN+YhRkI8tadmZsgtOy87wiHOM2bPBcHNM0HBD7kcSUuvNNzwxXm/VELi6eYkqu2uQsTuvR2Dnq9xbqvGMEox0l8xrOW8x4omtNXSvzcpMblXCxpe1Bk+/Po7cha78PxT+F3ngI0+KAUQRAEQYxV3Nvc8zxfQF0dr8uUnEQ8KVmkCkMSHAoz/xaafj+2G6+ktqG/P4aeqi3oS+yRFZN063oqax3RONFYUfBaYgueir0lDEtY/XQH2FyHtUiduSQZ48zSdt7R5jK2NkuVR10DJz1EEAQxHhkRmVJRsj2eeeYZz7Vzzz0X5557bglGVAwCxI/0ccWQjmnxbQuDcp4EkAs81C+qeWYUnLIsarveweWhm1uKq5uqwgAVyKs5yOSMdfqecTem2cJm/qv7sW7mZEdvmqZh48v/wNY3XkVn9gPk+ASoKa/RuSzfizGGCTNmOe4khQDagd09ePTW56Hm5af9eTsRewn53KyF3cK/b4XKZoIgCIIYswQcAiM/PCasvWjFomzZ8963lVUvc1oNcCYG3WQLW8HdVOQqoHVsRKqmEV2JODLIYXvndtz7zr3IZHoxD4sBCJ5SZpxJgbUgmmMpdFVOB+DcwsgtHSdJbRcws6dyRpZUIh1DLD6YNXBSOgRBEGOdEZEpNdaxE6IjmztFLCFpT6YVzEgWlwd/nM15zULNcrINag5PKeG13aUufDgXztJT9B+79p5uyfC5p1xfXRnaKvVrnXUVVtme8iajbY6/3HEr3njiL+hXN0Lt/wcOZNs9bTtO4LEekOGgY5fh4jvuwRwjRlsbs1PM2/b0WAEpJcYw7+hGT7vuXsRnCYIypQiCIAgiOmLmVOgcy716pvAAh48uC5VrAVv9hIWovGVKXuC4fIoriCHVvBv1/Xaw65fv/hK/ff+3+NOWR+ytjZZhpnkB6M/qD9WnVGHv5GP18WXtAJpmLBA6tux5Ms2B2knlAIB0ZRLTDqnDsn+dV9izEQRBEOOOEZEpNd7gjhU9yUoY4w7ZJX6RJ9WEBT8GySBiJtIVSuMhNCEDShYEM6+p6TS6yoD6LqClaRbQcwAAQy5ZA+Tbkc/mke3TV/QUVg6N90Iz/BJEAWuZrjs8pfQv1RMmIm3EaMUgkWZsEZx71ESc/vnD/B+Ued/E8534OP6EVj4Xr2Gq8TDeUwEH8vkGmbMTBEEQxFhHZmTg3CLvLemebt1Td6Ezq/QU3ZDMLFHH5S2vS+O6ZHFP2o9PhrW12GXoKw7btH1KxRSYh8HAlSkFxpDJMSThDPblcxqQMquYC3vMyvCWWTMk0vo/LZrm1uDsTx0pHWckSOYQBEGMGyhTapiQyQlrVY9psrsRWy5gFo+8w5BLLko29klWJcXsJBOFq44S7iElrOCQ+XkwQZx5f2TVnJ3urjDjxBmJYOPiC5lhp2NPnBE4Uw3hJTXzlKPxar2OlsECbMREtNo3ew8I/RXD6HzAVQmCIAhiVCDbtmZnG8O1fc+pO1TG8avU83ii7F3kTYNvv8b9LwnJT1x8g0KjJ+Kcn2fmAlp4Ledbv8nf+Ewsr03bC2pyVZPw2bl0JmPWmTEK1zB11zMAgFSZuXbNrUCX47O2U/KFoQ3AksC90EbahiAIYlxBmVJDSPDimX0qigaOGMLnZOkKnQN3wIcFtsrgzuIyrwv53e4eXCt5ZqjKrJGJ65lBKtM8tWWrnOIrzQpKCQLQWpUTPi9VDHIpxl3NGJvTqwuIYAsliitTg8WiiU4OQMVE7M98E72HduLtza+CQzgCWTBlp+17BEEQBCGHD8CjUSShMaR5Av0shx6WQU8sg7SWkBSPOgeHRa9ki3XylvIV1eisrAVjXbAG5DcM3+syCwfFcU9XT/rreCwB88lNTynLXoLZBxkzAOV9LQAmIF0eh2ENagW6HIt5Uh1a3BQnUkgEQRBjHwpKlQz/aTRsXS3P0vDKJjNgpQGIFTgWeW+y1HZpIZnw4WIBf3aUtwEA2tM9AGr9GnG8tkJbxrHIXPEZoSGM9nTuFq45rdMda6fOPYKONuAprVNwppTRR0Y7HPsnT8Irm/No8olGmmJO4xp2d+/G3p69AID6dD1m1cwK7IaMzgmCIIjxhmNxjQvzvJDqbM6LMc5wbuZ47MztxKsVe9Cp9Dmli2cCLSSYMvDAi6Zq6Js2F1BiMM3EFWYfcWMTMMM7jhC2M8tzmu4ldaCvBair0fszMpziShw5dRf62/8PO2IZoO05tO45HbOVRUamlBGwYsJSmXh6s+bN4rf8pYThWBnyxbIZIKFDEAQx5qGg1IhCn8BVIyQlXLLwBFa4s8hLe1/Uy4l1xFRxTcwqCkdc92OSUIjqTgF3I435SPwdHPeMrXOmyEowyamDDGZW1P3v/BJHQ3dC50bBnJoVyulobg8F6KLp/zb8H17Y/QKO6G8F0IC2GAOMLZRrd67FJCwK3ei6oXUDAKBP7TfGwfFG85tGvw61ZrFm1xq9Tr4PK3+30tHez1f+HEsnLw3ulCAIgiDGOf6ZSQwpJFCnlSFuLebJ7AgG3WsERC3CjYAUcEh+KtJaDBuqtiAfKM/c9gjy/jNqBjEAqhBAMrVPQkkgp+0GeL/RnIru9q1A/SKAAdbuPEevdkY3F2wP7NcycVScYBRZShEEQYwfKChVanxmVe4K0OjZU/6eUtYWOqE9VVMB5gw0rdm5BodhCVSuWnX6c/12vxGFlCypSMTeWucsxx3voiPrz1z5666KAfv961bEyoXKukDq6G/XA0ni52UIs65sJxrMACDX8P+9+C1oXMMhuTkAgOayCsAItrX3d2ASgN9vfAgP/PVWHD3paCybugwV8QrMrZ2LrZ1b8eT2J/HSO8/gYNeTPLPjGczHJMe1PT178ZGHPgIA2N613fEcE8smoi/fh+5cN9YfWB8YlCKfc4IgCGJMU1DcR2Y4HrHpImXi2PoqzCPA7vCY/DxwNYsN2CwZjH87fr5N3NBAqVgSGXNMRtmEYi94JrUKZJUee7FRYVBFmSnJJufW/j7Ri1OWt02pTQRBEERhUFBqGODW/2xE6aEprrJCCQWKlZvUm+sFkrZXEsAxrWoa0OWsY4W4eOErT9yxfc8eTS9PQXcn8HpBgcs7ch/fLPOU8lqV6q/M1wqLGeXskhccfB5eXH+/o52M2g8ocaffgdFIX74XQBoAsKFtA7RaDWXxMkzrbEdy2za0VaeQKTsEsXwlyiq7AQB5lsdLe1/CS3tfwp1v3Ol5turuOA7GVMQVe+PlzOqZQL8ZELSFmzsYlVSS+Men/4GEksAtL9+C+9bfh3vevgd/3vxnrJq7CuctOM/Tn/VI5HROEARBjHVM3wMW7I0pW3iTlZZqoZBT8wqJtbgzmsKqSu9ztwIMqOsq4LQuMDyllDhMRchcNhCMwQpKxZmCxmknoyvd52xHk5uy105uQtvePdb7eDIVMFo/BubyRRAEQYwNKCg13FgGU0Jqd5CEkmyHU4S9ZZ865FN4bPfTiDHbKj2lJO0qjFmzvWUozkO24Dm78wxfVsIbxpJUkgRUdPtyU8QZ2VhcM8zOgepkNdqx2yhr9NfHcVT9qUjEUmCsEm39m7G/5QX5A3CgIl4BGMcwN/c1A7V6AOmwqnL0rv0HypYcjb+UHQItlsThhzRg894DWDb1BDTXvYXeXC/yPG/5P5msmL4CwPuIm6nsTME/z/9n/Hn/rxzp7Q1lDfjFGd8DALT0teDqZ64GY8xawTy04VAAwIH+AzjQfwD7evcFBqUIgiAIYuzj9Yl0ECBQxHUyt+oYsO9RYNQkOKTCJZpLPvwgT6ngQJVpZM4BlL3TjvntlUg2ObPbZ1cehknpeQCAno4stmQVTFCAuBJD08wz0ASgU20Txu3NlAKAz6z+PvZv24K7f/OgfjtmLB4OJqVb7npAEARBjFEoKDWERJ2evf5JzjbMCboqWQVwIKZ4jc/FDKGYYn+bFRazG7D8KSWm4JKxcLGEJTZCnkq68igGnbzp7u6MKjF4pVjPyqw6Zc1pzKo52iozs2IWNuY68GbvZodxqP25VQLoAABMq5qGCxdeiNNnnQ48+F29gGb7WjEjbW1O/Rz87qzfWW315nrRme0EADSkG9C1bx/uuf8ShH0eSSWJIxuPBADs6d5jPJ79fGfOPhPTq6Zja+dW/Ofz/6lnw0mg7XsEQRDE+EGf9OIsDiDrex+w5/qYsfg0EHMi6UY8l7n4QAnNcDba7sh0AuXl8jK+bRhZ58Lt2jX7sQwNyGX2AsZpwPXJSThm4plWmb7+PHZ3M7ydUtHEW1GXqoESSyLOTf3IfYNSqfIKTD90EYAHoz1fABSAIgiCGJ9QUGoYyMRiEkEjZEpJPKW8Jpd+eJWSc4tdmMmCLIXaGbTioiBh3JN5FX1kcg8CT6YUNCs4xiWm4Wqf/nm19O9EOl6HyngF5k3+Z8zlHG+2Pet9mkzWGsy8uvn45JJ/AwBsM59Ls0NZal6v4z59rzxRjvKEKBYLV6jmKqK4GsoYw+ETD8fUyqkAgH61H5zz4p1iQxAEQRCjDTNZ3G8udPl0AoBiBKUUrlkF5AETedZ2yfB05+xNsVcMPSWiBm24lSnFkW1IIn6gD0pf3rqfiOlb7DJqH9orq7Bhfz/mz1KRePRelE/KIz/tk0jGkmDCyqR5ip/u6hCwhbLYtgIUqSIIghjzhJwpRhQXfWbdWlnhugI4Vvm8eiR6prjDeDyqi0FAuTC/TkdRe4thhJZ9m465TvRTmC2k7KwuZq/WGQKoNbMP+1vXWtsRGWOYVDbT077a2moFvBwC12pOs9rUDJMFJVY6iSpL0S+Ll1mvM2rGcz8wuEgQBEEQ4wQOLp0TvblTITgCXkF1fO4VKXtKMbb816RrgyoEjoH3Z6333YtqjJfMqmd+Xr1qN7ZVJNGmcjQ1ApP3v4y4lgW3Tu9TrO4sTynF/qcDk5iei6f0EQRBEEQUKFNqCJh7yHPI5FKYv/EEHNypYkdZcLhJdvqeeXywXIf4iSc/x6coSMw5mfe+vGqw2YFsxU/cGlhp3JlT2Y18725Ul20TMqWEdoyL5okwHBy72l7GKz2v40PVSzCpYYVUqCplZYhXTjDeSMQVt0enqUaAS4n66cnS++WflTU2ye1UzDYK7c/3Ix1Py3ujFUSCIAhiLMKDF2CY7wTovj40E6V0pJKuo2YSOWI6xutuNYsP5s3D1ERCKuC5kgTAHL5VqrGopoAJ9qRCprZ7Vx7n1gE64udvB6rk3xPGGDjnRcyUKjQ/jCAIghitUKbUEDBx0mZMm/YuanIc96/txdfXvSUpJW7fMy/55To5A0aFb5sLx+o3xFXU6X8l2aAnDWQZ4xeEi/gsMcMMYUl9G45K7EKM5axsIvukQdHsyg5K6Z+ZBg7zlBj7R9xso2bpUkz4jy/q9yWqL7ttm3XFypSKGJQKl07OrXriuERiSgxJw6D+uV3P4c3mN+mkPYIgCIKQTceuLB1APh8XtK5XILbCCdYL0adyux2F61qmI9eP15YcjcemToEG2QJmGsmqf0PZ0qVCf0aAyY4/WVsEOThUVYOW34fW1h04UJFGDpqdFcXtwJCdARU86gFpFUqqIgiCGNdQptQwkFTVwPtcYg4efFKx3K3JlhLMe1EgpnHk4TRRt8cSrBX8M6mi4FdBF1Bl3XpQhmnyLY1WYEzIlNLVnr1KKJ58d9SZ50CJMyw46RRs2r0HbmINDXrvHR3WCmxvp54CH7Z9byBZ6o6VSgnliXJkM1n85/P/CQC45UO3YOWslY7+Ak/nIQiCIIhRi2x+Y0LwR3ZXTpStfCygvl51IPOtNFWqsPIAmlgtFuWno7emF5t7DiCnKNA0MQBnKz4lPgnpmQxofw8AoDm27LmWMzlHT+tbyHY9hJdfAjBvKhq0PJZxWaaUnVIlCzyZC22vvPKK4z1BEARBhEFBqSHEDCDENRVBYSnVEYHyT18OFFkRtICZ/FOWyaMLQCKnAZ6D/ITMnoL0mMTfwXPJb1ubLoYqO1JAHJja14g+7NRrmOLKsY3PzhxzexooQqbUSf92AVhcf79x125Pv5O+eh3Kjz4aPJ9H/MU08jmgfZ9++l0sPpCkwrBAVpDxKvD5wz+PP236E3Z170JnthN7e/YOYAwEQRAEMfZgkndhMkXlsoNkCsdaEOLekQxUk9llvYXjSgzH5Q9CfFIvfrx5bUBd/YvCvFniDt0k3Mv1t+p1lBg0TUUv4+DcnSkleEqJh+cIY50wYQL27duHTEb3wWwwFvoKgxbaCIIgxiMUlBpS9Mk2qWro89wTt+/JAlBBJp5m8zwkY4cBQrp37dxe5DOKlYUUV2EFpcxACS9ooctrdC4n2FMrzzliDMjH9aynhBZHryczSPhErEcS2hLMzt3Dc4xYuB9vaEDdJz8BADh+9m68/9I+AEC6Io65RzUGPlHQ84RJLL9sp/MWnIfzFpyHr635Gv60+U8R+ycIgiCIsUbITGolAXF3LpBjjs2pWUPnRFcpnnujIG4iZolrXLQ9MBfs7ExtM7O8unoi2tv3gsO2SjAtEDi43Y6PLvzc5z6H/fv3AwBisRgmT55cvAciCIIgxjQUlBoG4qoauGimKZLlrIjBIWfwSuY6Zb+umdWHylkZqJsU2Klbzswsid25Aw6mB4CY4rhqvQoYt79FqX4nl+ZAv/OaM6tIyDRibi8Jp6ASy0dhwbIpWLBsSuTyVr/hZlzCaAaf2j4axDFBEARBFAyXvpTSlmlHU2JaaDuBGVVDtN1M1Cp2mEiyWDeg/Yl6pRiz094tJeiQlrbWy6s5AECfai+Xij5UJgd6D6AMMXTneqRDSCaTmDbN53swCEjmEARBjH0oKFVinFpId5nM9LdLSoqb8WShILlvlPxOxPEEXpUZmUtQAM9eRKG5Cf2V6C5vF1oMH5e5fU+W5cThDUoxwytLHKu1fU8Mlo0wewPx+Tjn5L9AEARBEAXCAfTkeoCE5IZBMRaBAgdQSPFBrSaFmKhbxexyeWMrXowpyLuUo8Y1dGTakQTQke1E2hifbPueGaDa1b0r0kg557hj3R14r1X3tppeNR1fXvJlxBSPT4RU/6hcBRjw7oH12LFuE86acxamV0+P1DdBEAQxuqCg1DDQ1XsAKfdFYUKWbd/zWdbz78Sx6MbCSoc0EExMzUCNl8EOZHErQMQCU6WCPaXs44nt0bhXGMV2uOjkzmWZUmLXRV57kwgqWYyJ+4hkDh4qmh3PbvlRFThOgiAIghhjJBQ9IhU+JY68xR/m8jywtECI5UBgmw5PKeMaZ1bb1kEr3NYeMUVfZRS39Im6JM7iADiyajaShtrVvQs/efMnjmsrZ63EEY1HhD8A5+jN9QJJ4P229/HSG3/HxraNuG3FbeF1CYIgiFEHBaVKhXS+1i+WK6kCjM4NxKwa65qkH0dyURR5FuKrIOnDXWPRxt/iQOUMdMVasS8NxNS8MMbCoyaM6WIoGSsDkAEDs4MwpmGn+KBmpjsXNh9KTt8bjMArBY6glDh4giAIgiB88G5vS8SSxjXv4o2IfalwbRIeiOGSV7JSwXeljRQ4XPGQF3BgUtkslLF6qOlytPTtgxiyMmVaMp4Ch364i5UpZZW0y2W0jKOvN5vfRHeuG+lYGosnLrYyoXrzelsViQrUpeqws3snOjIdVr3W/lZ88pFPYk/PHpzwQQMOQqWjXfNzmlA2EQDQ3Ndc2IdAEARBjBooKDWk6BNsfboOza5rDqNz01OKsYgSR8R/hQ08wna8oBPhfIYw47BVyG77A8r2b8C+GY2OgvKYlMwvQUgRNw3hYwkAGX1VLVWBjfvWSj2lHIYJLsEpCrOhCUBxqy9ndzJx7N2yKUMqrAc8PoIgCIIYHchnP+kKk/BGzJ52zq9m9nbYQlCQdAk1u5KcrxJVwfnIogImfUP7xOwK/9S+FCdMPkp/MxHoyy/Gxv0vWferk1Xo7dEX8eysdO8phaaey2o569rftv8Nq99Zbb3/j8X/gS8e8UUAQM7wqqpMVGJa1TTs7N6JzmynVfbtlrexp2eP/Cm4nSI/u3oWAKA72+0os/7Aerxz4B0AQH26HidPP5lsEAiCIEYpFJQaQjgzfY6CP3ZZgEI6zUZeOfNmFYW2Y8Z7IszvSkUjOifNRFnzB557miBs3FlZvXnBVNMh4swTXoxTXzigKM5MKTHPSCb6pJlSI5jgldPi1yMIgiCIEU0B05ssGJHJZ4CUa5FNU4zT94YveOGM9xQYtgoJupitiAtyNXk9A6lP60GZUoGyeKVlhO7YqicsSpqZUmK7Zs+tmVZovAKA119qe9d263XOCF4llASqklUAgOd2PoeubBeOaDwCWTULACiLl3meQ+V563U6ngZUoCPbgR2dO5DTcujIduD8v5zvqDOjagZOmHICVs5aiSWTl/h/SARBEMSIg4JSQ4qxfS/hnYAdmVKS9CIuXRmEV8cMQGcFbuFjkHQS1p7PeA3Mk/EyakZ63xyPKJCYFaDyrlBq+SyQcAZoPH4IruEU21OKFbwe6hLRFFsiCIIgiMgw4YXMk1GSVy1PJneaPUpqRyNKDb8y7vG5C8usC/KtbUBllbQHJpy+Z27B25Z/D4ckj3a0owegXEEpALlMu6PVvnyXNZ6/bv0rjsp+GEkk0Z/Xj0iuTdWiPdPu0HVm0CkZS6IuVQcAeGzrY3hs62OoSlThq8d+FQBQnawGYGdfAcBbLW9bz5yMJQEVaOlrwZm/PxN+bO/aju0btuPFvS/i4XMe9i1HEARBjDwoKDWkGGJBCc7eEYNS7kylEAcoxzsruOO46DbU9DGMsszDo8MlMZaj9k3BtoYunNixCIDLD8AnMKQwcxnR9jJwuJ7DSOBnhrGpZqzoKXEhNKQZbQV/1iPGUyrCJ+3YgmBmslEwiyAIghgn+M3YMmPvuBI37gn2AIo7x9rmxX0voU/JgSlpx/W+fB/W7FwDZU8bDsGUwgYszU6Pao/gHWOsoQEwk9JN7cO5tRBoHTIj1FXMk/YgZq4L+oqb2tSus3vbY3hX2Yc5hx2F7Zvewc6ed6EoCjg4Yor9T4d+1RmUMgNRAJDV7KDUZxZ8Bv1qP/ryfXhi2xPoynWhrb8NAFCdqgZwQB+jESDrzHQAhsdUebwci2sWY/2B9UgoCSRiCcRZHMlYEhcuvBCr5q7C797/HXZ278RvNvwG7dITrgmCIIiRDAWlhhDOHNEgXyxPKZGA8qFhFev0Pb+S3nHZXgwFdChZlqzvL8c5W8/BYawC7fhbaEOOIJmQKXUgq6Jn1qHIxJJQa8tQuacZvGoyeuqW4Pl4M1Jox8yJM4G9xlBMWy5TeA1L7Cm400KDUgRBEAQxfigg81hSJ2EFT8TNZ/5tHug7ALW8AnEYQRHDO/1nb/0Md715Fxa1TsZ3cUNB44pK1BbjkydFKufMBNN1kGinYC7Y6dv3uOMaAHCex96+zZhYPhdtqims9C//Mv9fsGmdHlAyM6Xq0nXY2rlVnimlJDG7Zja+9U/fAgAc9f+OQk7LobW/FQBQk6yBGZQytVAqlkY5K0cvOqEwBb8885eBz3vhoguxs0sPSvUJ1hAEQRDE6GB0GO6MOWQb5mwJoTLNc122DU0W8lAKjL6Elg4x67bg/vcV96hsH/dIXXPOsbc/B62sAtlkAmpFNTLV1eit6YaWBHqUDFqVbjTHu4Q+jJNjrE6GJiolF5byqw6j8wJTnvwDjARBEAQxNuHwWcQRtp5FQTaD1qZqrNdZw9OIcw1bO7YCAOIhfqAy6lKTPddkJuJRxxgVMXPMXA8VfaJijkwpY/ueIob2BM1pLRDq5SqSFVY502i8NlULAI5MKdNTKq44P7fyRDkA2JlSyWrrnmZooXQ8jaSSNPqN9l01van61X5HAI4gCIIY+VBQqsQ4RYWw9SxgklUVezKNNBX7Fip0NU/uyWCHdcLa455XspgWc1wI8rMyV/JgJZ3Hc4bvAGOWMK2DLmj01HQjTd3ylJJnShXbU0oaYZP6VIiXBp8pRflVBEEQxFgnbM6OKYUFjGStza6dg4qEHnCJC0bg2zq3AQAmV3gDTPK2udXD5LJZAMKtBCI0CgA+JxpD4oVl6wszAKUJQSnbp1PzHAzjNoJw2xw0ltvZWh3ZDgDA7JrZAOztfD25HisTKhlLOupXxPXPeGvnVgDm9j2dnLHlL67EUCiiYbqZwUUQBEGMDmj7XolxGH6L2eOeIIWYKRXmHOW6H7Kc5jQdN8M7ogGUkboNVSjLPcW0yCEQSR6Yw28qml+VFbTh9hMrqgYkjAaN22kjx16DJqZX6eWH1VMqettFD5IRBEEQxCjGua5jZo3b/xcLlCcqgCxQmPOms+2miiYomd0AOFKxtNEFx4a2DQCAiWUTPXXzWg7uuV5FDpm+ZqBSQU7zHugizvcMAGfyBbroqiAo9x5g3LlYp983M8vs7XsVyQr0ocXRABMypUzm1M5Befxd5LN5XHHUFZgxaQZiSgw/f/vnaOltwXXPXYdHtzxqlXcHpcxMqdf3vw4AqExUosu4ZmZKlcfLAY0XtPKWjtteYFc+fSUmlk/El5d8GXXpuuiNEARBEMMCZUqVHO7z2v8aDzA6D0USZGEB7/Qrms8d5+jyLGIGFxfHYZpv2qLLuiOeLCPrXPCUsi5ZrxkSRqp5UrVNPLOJJHqnz8crMybgkeSr2BvrEIcxBHjNyP0YTEDM5ftOEARBEGOYYC3F4gnrliy8E3221UumjEAKYwwLGxZi5ayVOGzCIquUamQdvdv6nrSVbEb3SOrNdfiM2A+fkgEayVnb1FliTrqZAWVnRdkLdrbReVWqynXPaMnVD2MMMSOT7MMzP4wTpp6AyoRuSr6/b78jIJWKpbBi+gpH/QsWXoCD6g7CvNp5OHzi4fjonI9ixfTlAOzA0qzq2bJPIRCFKWiqaAIArN2zFg9vehhPbHui4HYIgiCIoYcypUqNbFcXmEQiCVu5ooYKueeFT4thcky870zf1oNFRtYRZ1AlNexmJAEv0ZbAGm00eabG9FRs/chis7JmNRgzTjGMQxdHqsLRVV0LtbIGXQC60I71sZ2YotV72i5VZlIhzYqi8drnrsWSSUvw2UWf9W+bIlAEQRDEOCRs9ovX1wO9AEsmhKtBS23BLZqnJMdYDL/+6K8BAGueesiqOhjPIrn+KHx+D9IEjhMHue0JZZ7Tx8CQh4p+5KEyPQ9emlnO5EEpN4c2HIrzF5yP7Z3bAQBVySpcu/RaaZbSOfPOwTnzznFc2xV/EgCsYJcywEW7n572U7y27zU89MFDWNe8Dj25ngG1QxAEQQwtFJQqMU5PJU1+3XXFmTXkMjqX9VFwOpUb0YPAmxZvkuJx9KKwNUcZ0mCZ0V0Xr8a6nuOwJz4JiXgDgG2CO4MzU8oUZJlEAtCAvMKhxAxBo2nQFAXZ4DDasJJQEqhKVqEr24Xndj6H53Y+h3+Z/y+oEcxW/Rh5T0MQBEEQxcZjRulTTM/GZrE43AGe0MWi0AxznWmV0wE4vYomlU/C7kLti4ZifUnQhTFu+kcZW/UYkI1zPJB6Htl0HmioAMsschidO/FfRDVRmIJrl15bpMEPnJnVMzGzeibebnkb65rXkbcUQRDEKIG2740wODRoYqymkOgD5y5xxR1fXC+jNRnqV+XsXr8md20IbMdYdWxDHf7e9e9Yn/8nezWOc6vNfK7f0xw3DUk5h2a8Tub0YFSemafwyfstlqeUrBkWdBNATInh3tPvxY3H32hdy2t5STv+Y6TsKYIgCGJcIc1AN7/yoGIFtOv1vpxUMckqZ54o568hCtwwGOKJ0NvZrr8KSdCyl+0k2/e47QzandSQZbbe4Kk0VMX+J4HVDmOYMH2GdT0Wj6N2ctOI98E0twH2qX3DPBKCIAgiCpQpNYTIAghu+cQBR1DKedevbkgQSBaocpQMCV7Ze+e8l0LGKLsnG21Lf4vrJhM8pcwWuOV/pfCE9Xkq1pZDFZohqhL5LPpTCeSgYrfSipeTm8H+9w0AwEEHHYSyMvuUlqHELeQOqjsIB9UdhJvW3qTfpyATQRAEQRS2ihZSlgkay6+ybAEoIEcdAKCEqRtZAC0koCPrM9vXB5QBz//fK0CgfPEeUhMTTiXmrsNuqnMJdMaygMIAn4Nhzv7yf+HAzu3gnKOyvgHl1eHZ3MVh4IuGZlCKMqUIgiBGB5QpVWL83J7c18UAk5id5A48ifUGMl1HXdzSzIydYu0TY/amP/OrfuSyK81eMENXhGtmqYaaOQCAFK+0DeG5sApo+kzl9BNvOrUOvDO9Gc1qB/bv34/9+/fj+eefL+Eqn+O4oJIhJJERBEEQxLjDGQ4q7mQYvbWoE724qBcaQXNUiWsamJGZ1dvV69O6s5LoD8VEjeSwazCztAx9qUgCd4xBicUwceZsNM6a4wlIFe0E4yKfhFwW1yN3Wzq24OntT6Olr6Wo7RMEQRDFhYJSQ4lw3JwnLGVmBTHXljnmDuUEtS++GZjzkzkqzQqC+aZPGV0G53AJe9g89830d2k7XMyUso8sTsTsI3/NXnJ9+queXCc6DcEUz+UAAGo8hm37dgIATjrpJLuu0V7RBJVrTIUStEXPapsiUARBEMS4xruo50vAYTAs4F1oe+KJwCFFB+X5aVSNadwyXg8s6LhiX0ur5fqYNE3QPub4bGmq+HpKDQOi9ByA9CmP68/8jz3/wJee/hL+/a//XqSBEQRBEKWAglJDiBjg8ZdIfplS/ljFuVuamIGl6MZQnKvIZ94GV3Ouxt1vXEt5EcfqW1J2tLGql+tqsz0BzK16YPbnGcukAK6vAmoxPdBV29GGWE8nWD6H8vIyTJs2DUcffbTddtEDPIM0fxcCcEPRH0EQBEGMbOTqJWz2CwoZec0IxIZlGie4Fybd8ubfr/4maJ73uydkNkWpLZwQY52+p9kqVOF5qz1mRKWUuPz0vdHIKTNOwUnTTsIh9YcAAPb17BvmEREEQRBBkKdUyQkRJxI0IaPKDFC5M2nyTLHadmzpM7d1OUwuRX8p2QDsCzl1M/KZZ633qu/KmTMF3K89a02T2cLHLhXk1sDQ162LplwuDyTs64DxuRiOn4uWzsYRkw5HVRPD2m9/A81aFtWd3SjPdQMALv35r5GuqERfnx3cGpqso2KZqAcZnRMEQRDEOIRz12vXXCmdOgcSEHL3J+qrIqEZQS5VA8+ruuaRJZ37aRfPQJgl92KK11PK1pb6fQ0oKABVMg1VpA90UsUk3HHKHdjRtQNnPnRmcRolCIIgSgYFpYYSx/Y9z00AevaP4/Q9SeDp3UnT8LdDj8Rj3Rkc18pw+jtxTJZ1Jx2ELJgkeh3oXkxMiePtGa3Y0xgHtga3qN9hxd8KZ8azYkI/Qh+mp9S0g+sx/ai5AIC3e7rRqqjOnC6jjqNuiQQVl4nICDDh+08QBEEQhE1wprmYAcU9JTgc8kvCwLULi7T53oVkLKnOPvRXlUPJa4CqWgtx3irBGsH25WQwVyHzLI+/x97DzvoUepIbMINPtBcFOaCpeSCehGPzhBm0CtF1xdZ9BEEQxPiEglIlI0g2BckKjv6k8M6Y7/80dyK21DUhH0vh7akzAQA7K1N4sBLoydXgiI1mDdlRL+Ibv3CYk1gyjZcXtKGxd6JQLsRmPUgrhVpPeT2lbB9zu6DisD83rgnZXNamQknQSRaUKrqgkga7ih9oso3OKYhFEARBjEGKNr2FeUqFX/ejrbkVWhpAoizyQTTSaVvVhIpceG2+9FomWO1JUqoYsxPjdyqteDe+C4gn0I1W7ORtOEqpAqCHoXheD0rFEgmfHkrPAEJ7BEEQxBiCPKWGFP+p3pIbDGirsidnzTC3fH5aPdbNOMgKSAHAES369rSd1bqQ2FXG8JqqYEfdRPQn7NzvvNBPdyyqWaYY6HGtOvp4XpmvM677b0ybi/vmLQzszWGMBecuQy5mmJmnyDAh5yvQANRuvJSZUoMNblmZUgHjoiwqgiAIYlwSNv3JrCol72SeUrLNeMHzrZhdrgnvNfu6sD3OfP9Aag0eTb6CTD7r3zJjdi3pM0XLlBKFWh4qACCRU41bHKohm1Jl5aioqQUANEycLLTDoMUTyKgqOjs7A/ssOUXQa6SfCIIgRjaUKTWUMDvgIrlpfHW5lTMF4BpmdvZBS3UAYJjW1oJJnS1Y0dWIdRMq8dbENL5+WAx/mVIFZAAcvgz1Xe34p41PAgB6haBOX5wBOWfPGvMKsb64vmeO+wVbjMt5RcEr9TH0t8dhJnipzP7Baqmqx9q5hwEAzhJ6cf/fgxB16uG9VjUuxFGtNHWZ75WPiNEAdJZVYhtX0F5WUXyZ4hubiha0iiqcaE2RIAiCIHQcC2SFTpCDzpj2n7cTXEGaJ9DPcuhlWfTGsmhpPeAegLC9UN6W/UxhvlfOdnVVoV+M51TkErq2U432yiqrgapKdO3a5dB7+2bMQs+c+XhpVzNe+t73cOKJJ+KUU06xuyl1ljbFkAiCIMYVFJQaBuRzLZPfN8y8v/T6drzQ8AbKVAU5hSHPVDSptVaxv0xxGhC0VtWiI2kGcOy2y/Iasq4+zGwsMWTWntJDTO3llVa5rJBlpRnlsjEFlywtxyHTjsdX3vyr56laqhvsJ3Qt/imq5ikvEmP6M/XD8LnicYAz9McTqGRZ7Kmpw98OPgK/P9CB8n+sxzfnT7M6kZm/M8bw+MJjsXVCE34NAMd8GErfAZwTOApgY28/nm/Ts9JmppNY0VAdUsPVcaSy8Pxg9Kka/tTcjnfUueirXIFuzfvXtVDd9nxbF97t7gdjwIr6KswtTxfYwujjvZ4+7OjTV6YXV5WjMZUIqUEQBEGMRAYUPuKhZxBHbqdQFA58PHMCPsh+gHcq29Cp9EXY5i/bbuhKvZKWsu+LXlfm4TmMa2BcD3DlDTmnMIZYTA9UvblvL/qmzEaqoxVqZZ2j2W3btgU+Z7EQg13+GxajQ9sCCYIgRgcUlBpCoqwsJXkCF2xfBeBNx3XnBjW9ncq8hpP35vBGDcPCLo6aTB6fOVjB1zfvw/uTZ1il07k8OozX5XnVem21renBITGckzCuZWP2j0hbOolKI4vbne6+aWK9dSWu2c/ZVV4BAPinfTvtzKdUOSr7gR7FDg6ohijaVduIH32kBpO6ynBoIoU3EqdhcWs7qna0oa1yAt6bBDw94whMaT2ApJZDe0UVoGlAXxb/s2k3jp+zAJmeA5i3ZSv2NTRh3cJjsGnjHmzM5LEvk8O+CU2OZ3+grAF73tgEjQNlMYb6RBzXzp6MilgMTx3oRI+q4RubdqMjr1p1nlp6MBZUlgEAPujpx02bdqOzrx8tZ5yHk958EUF05lX81wc78c+NdTi6pkL4FL3C6dtb9uDHO5oBHAHUH4E/d7fiS5zjmdYuPNOqfyM0ztGey+O+XQfQr2lQOceHJ9RgV38W17+/E/2ahqSi4KtzmrC8rgofX7fJ2mAQZ8CtB8/A7LIkltZUIKNxvNfTjxzn+Pe3t6A1p2/8PLuxDv+7wN42ujeTwzc37cbuTBYVsRiunjkJ08uS+Mybm7Enk0OCMSyoLENSYTikIo0vz5psbW/Maxz37m7B3kwOGgeW1pTjjIm10s9K4/r6bp+qYU1bF/IceLa1C/3Gz+aUVALXzm5CwsiUUznH7/a1YUdfFgmF4eOT6/F2dx8+8+ZmR7s/WzgLvodKAlhQWYZZZSn/AgRBEMSw4OvbJDt9r9BWB5kx5afwkoijWkshjphPieiEbd8TjA2EK0ZeOtegQIEKzQpUKUxBZWU5AGBvVzdQ04B8TQMSmX4AwLTqCuzs7HGcXuwYT7F9OSmGRBAEMS6hoNRQwsxwgGzW1a/FuIIjuxZgnSsoJavDAXznjX7s7zqAxqoG8Hw/mg+pxvINr2PxlndQnVNxoAyIhXgtKJodcGFG4Kwuo+/xywlBqZgmrmDpr8tzRrl43GpVDKC9MUv3kqrM58AMEaQamVltlXbG0brZRwPYjHwsho7KGNory7BB7wFbasqB2VMc499db2dgXVxZgZ9192B9Tz/Wr/w4AOCF3VuxecosAMCbLV2OurNa9uDy6jiujddDU2J4utV5v0/VEGMMD+5rc1yfkIijJZfHn/a3oz2nYnF1GX66sxl/O2BE6mYejM0zD8be3TnsTzN08B40Lz0Vy97chiM36gKvV9Xws50t+NnOFlw8bQL2ZHLoymvIGZ/7aS9vQDPfi6Ory7GhR6+TQA45JPBWth6XvbsdD+1rg7K/D0kAr3f2YvEL7yAjfG9+uH2/83k0Ff/f5j1QZ3OIuWl5Dlzx3nYAwPzyFD7ozUDGQ/vacEp9Fda292BPJocnW53+Es+0dmJRZTne6LJF6y7j5+fPzR1YXl+Ntlwe392yF291u4TtDuBDdVWYW57CnPIUdvVncSCXR1pR8Ivd7i0OXu7a2Yz6RByzylLY0pfBnoy9N3X15j1IGdGnipiCHiMz76J3tga2WRlT8PayRUgH+q8RBEEQJcVvd3/k6jLdVIx9YWG+TiG1HdlA/mEmae6UT9DG/ayM2w5XfWUxIAeUTZiLfF8zVGjWQqASi+H000/HzJkz0fr2W3hxx04AQC6lZ1FXJZMAenDgwAHccccdSKfTWLVqVcgTDgA/WUzb+AiCIMYFFJQqFVEn0kGsCvnN4Qo4GjvbENcSnpKyYUlP39O8W+tqM1lYYQvz9DoAH9uexYMz7CMDY9wZ/ACA6b2dlmdCUtMDB0nVtmA3x1Xd242PPtOJ96crqKyvwNN1RqCLczRkOCb09uPden1VL67mMbGrHZ+fOgnzptThiQOdVoDIDEgBwNXTGpBVYlhYkcbj9/8CDd2daDj2GJyzbg3KFhyOiQcfii4jE+ruXS34/f52q+7kZAJLaypw9axJuGP7fjy4rw23bduH27btQ4IxO5hUncYzze3IptJ4zNpKqQHlldAUe3U0zpils366s8W6PoHr11tyOfA48Eqn7qOVZAwfjT2Hh3IfAlgcDxmBssOsoB2sgNSxNRV4uaMHGoAEY5iWTuAnC2fho69+gI68iv/6YBcA4AvTJuLsSbW4dcs+HMjl8UZXryMgVWYEcq6aNRnvdPfhj/vbcem72+Hms1Mn4J5dLchzYF2XPt7LZzTimJoKbOvPWv2teu0DKIDjZ2JqKoHOvIouVcOzbV14tq3L076bhZVpHMiqOLa2Ah05Fc+0daFf49idyWG3EIw6qDyNnZkselUN/RpHVUzBmmMPxQvt3bh/9wHreybjpY4edKsaulWNglIEQRDDDPO8sHEGbWQn1kVoN6SSmm/HT/7jQihKDMcfvwq1aHAWABO24w0sgiIeuOdfxn8zm5isZGVFaXbyWH9NEmgBGItB4QrAADWhazZFUVBdXY1jjz0We1oP4I21z0KtrEFlfxY9iob6GZORTCaRzWbR3NwMAHjnnXcG9JwDhyJTBEEQYx0KSpUMmYAImlidSmgwieieFiOKNEAw0zS+TuyxgwVxDXDn0nAGfPXdDE5c+5iVZSU+59kv/RUd5U04isPaNpjgOaNtO+Pm0D3v4/l5QE1vB+bsy2NWVxb/NL0M332pF9maFJIdes8fKHvwbHI9GvrTOJDWM4mqjjgcF0ydgAumTsD/O/9T+M1Ry5BmCXQmYpi79V1c9Y1vIZFOQ9M0vNHVro+QczR2teOoXDfOmtNkXXu5owdvGtk8R1eX409HzYdiKL4Lpk7Alr4MelQNO/uz6DYybyYm4/jO9Fr85PabsHneETi44UPoizFMmFeNv7//Ig7aux8whOyEZAyPHDUff9zfDg0cKUXBzHQS39upnwh936LZaGN1YACqYjHMr0jhvtd/h+rmH2De9Aswv+4grKivQuWBLC5aswvzy9O46Yi5OLgijYnJBDjnnnT6S6ZPtLKnYgz4aGMtjqquwP2L5wAANvdm8I7xzPMrUjikosyqu7k3g+19WXTmVbTnVaycUI2lNRWYlkrixPoqnDmhBvfvOYA85zjI2Kpnfl6deRXf2bIXgB6QSisMdy2chep4DMfUVKArr+J3+9rQmVexpU8PImngSDCGhkQcccZwVmMtGlMJ1MRjqI47tz7syWTRks3j+bZu7MvqP1MTEnF8YXqjPva+DDTOMTmVQF0ijn+ZVId/meT0yXAz+el1gfcJgiCI4cOx1V0iqeSZUF5FFX23n4buA/oC0ua31uEonOJbUtVUQAF68r2BjcusHIK35Xmz1M13viU5s7OwzBVBzqAZIk8tY0AWSE4UbAQYQ6KrDanOVszY347Nk+oQj8Vw2WWX4cCBA3jxxRfx3nvvgXNeeqPzoqhggiAIYrRAQamSUeiEzYT/y+7ajk8FSwGhglxHeC9yI3BUls1GMvdM5/OQjb6hR4PCuoF0pW3AqZoCyS43Na8HeOJM/5GMZ1Jo29uLiczeUpjjHF2K5hmxGISpzPRhxdrHMLc7g02VTl8gsZwpqMRrjDH8+eiDsDujm2JPTSWtAAsALK2pwJ+PPggAkNU0bOjphwbd/FzpaEVlbxeWrn8F50w/AQDQMi+Btj1bUd+rImcEpTgHjq6pcPhJAcAPmQIVwMKqMkyprHfcY4wh1b8O/1L1IVx06KkAgL8d2Kc/bzyGf6qrkj6jyfVzmnDu5HrkOMfEZBwTk06j7znG1jkZc8pT+MuSg6T3AODE+iqcWF8lvfeppnqs7+5DYzKBaekkzmmsxZS0nVFXk4jj36dN9G07jKZUEk2pJA6rKpfeP7hi7Ju4EwRBjFl8tYeZqc3dlwJKR8BHgB12ykq89eRfoal52LZQ/q32q3L/pUCE5uzAmyzL3adf1+l83JGubvtMaVzPAO6r0YBmIF5pz8kO/SC8rK6uRnV1Nd599129NXH7YbE9pYrMSB8fQRAEoUNBqSGEsyBpZJ+sEnY6XxDyCTjsmjebS4O+nU3jKuS4kt99hqfFagFwR3AHqhlY4pboVIwtbjFFAWOApnJk+1WgLIaYUVfjsFK5euP2di2mhJiHCqfvmfit8iUUhpkRTK6TiuIIhnQGlI0iiO2gY/FXHxljmD8MAZqmVBI/WzR7yPslCIIgxhdceCGbR4MVVPDdmomTAACqqiLIq9zUGJomm8cLCY7464CwGItVUwxKiYn7RlDK3Ipnnrzn17gjTjUEAR4KIREEQYxPKChVciQnoDgvF9iKDD8/A6M/sTLjUaMkntfeDYbyUciuMkWw8zRNlSSLnAzAx766BG17exHf2Aa81YJkUkEeusZSuC6g+uOq8TgMcce2LiO447eYyFiJUs8lYq6E8srShiVPoR+flCI4SBAEQZQGmRG4bAaWBqySerZQcs4coPllz/1YXJfKmuCDGYT/Yl4Qpj4KtnyIOjc5MqWE7XvlPdPRV74bk2ZXIZVKYfHixX4jMSvbr5ipr4Z2fixGd0M9ZoIgCKIwKCg1pIihFzduU+XBHzuSZ0a2U4gHQWifAZO5vLWwcevPyn1SxRtnVqNxZjW6cio63moBN7b7aRyo47U4OjcHB7ItSCfKMBkTkEwm4UXMhXeKqqHxQyiMKGJvpI2ZIAiCIEqLbV3gvuZA6i8VhH03vWghtO1diFVXC0lFtl6LJYygVD5asEnzHPXi6tkzl0dZwDItHoIXBK1xa2K7mlUw3d+IdH8j/v2m5YglXLoz4jpaKTQUbbMjCIIY31BQaihh/kLFnJAHNC07tIE3M8vRqkRHFEsKyDWFHujStMJPMjPb4zn9c9MAgCs4Up2NA+0x1Nc0gsXTgBJg9umDzFOqGHB5LKzokH4jCIIgiCjwYJ0TIhhixkl1quTEYBnt/e3QkkEmV/4RNHGkuUwMqAC4uGgpyWLP5PsBc22OeT2lTC1o+LDryCSZTFi4FvX04Q/BAlmRuihlxjpBEARRPOjM85IRbcNd1OryNHTjXkiEQnHs3wsN15iN+ncoHZkQDFNVz12NC9LAb7ehp2mjhmoHpfqyRvCOMVg/vrKEK6lp6FCIqsG1K/fCCDjFZ1C9EQRBEMQoICCQI3nj30zQTWb9z0E8oR8OoqnBmVKKUVflmrQnbxaWbAi21ybP6xpHU8RscG/djJrx3JYFpfq7BC9Oad8hzltSzykK+hAEQRCDh4JSQ4p5Ykyw8bjcIjPixO8I0ARtF/SOK0KTRunCN+1xITAmexWUwmVmSnEO5FT9osI1O2jldOIMHM1weSIQBEEQBBEd+TQttxlo39tj1PEL+fjroDCFZGdKhWzfMxqaUT0jLDdLgj3quNoPAFASZmSJWY1ruVZ3d4gxYdODa8ceACTLdKkfi8eQKo/j4GMnQ4lJU6WE0YgLgHC8LqV+ImVGEAQxPqHte0OJmVYtvyn8v7BsGTiO5/U06VBcmrR3ieO4t6pP35LXsiQrLmuJS16JnRufRl5XV+X1KUzlXUBXDOWZVoBNFYv5MwSiSrpaWIAmtb6/EYdlndZHCo4gCIIYN8gnvVxGA9KAmhf0kFljkBNlzMiUUnN6plFWCOjIpvl0PA1knNcc5bjzOheucdgLirGY1w9Ay7UAKNNfG7cSsYTl0WmG5La/0A3UGIt4cf3r4Sum47TTTgp4Us/w5PeHXHgMvj86vIQgCGJkQ0GpUiO1c4oyObpXAwMiHJHPCI7CYCZuWWq30apkC2Fo9pcr6amyIY0qpQOZLlO0STKlnFUk43EGpYruKeXozPeN/7gCPn8SVQRBEARhYuuARDomXAurE6FlBvw58RqaUx1gf10Pdf5ilO/Vs5Q0xnwW+HSYdBHORhvAVB5P1gIqEEs1AWh39ifoi+5UGwBAzdqdaJoevlKU4M0RLOy+oJeG5gRjgiAIYrxA2/dKhDwvSAu4G7aVLXBznM9lMzPLmykUSpHVAOfMWv0LspQKiuOwmGLbSLEYmBKTlnO3LbXHGgpPqai7JwcCqbWSQB8rQRDESEZuTGDKAWfJ6AtWbjIKx55YG/JMQy6XgxZPYPKSYyIOcXCWCdZdU/cxBqboa8jp6sPsbiR1NzW9jF8v/h8s+9IUlFUaXlhGUGqwi3CyTPPSekoNvm0yOicIghgdUFCqRMjjJeHhmLiP0aa58ibLnbLiVVzIHioAeY2QIFmUe4JwcXhKWZf9tw0CQHpuLeITy6CUx6FUJlB+xERb64kKVGopNbo8pazteAVmQ1H2FEEQBEHoyBwFgGjKSBbAiHGG+bNnAQAqamqiDcK3M/3GXzY/6r0VVZNIsu8dGUzgaC/fh+qpScs3KmqmlN2HfCFzpOongiAIYvRD2/dKRpAHlPeexndjbkrBpLiGFnA/L0+9uplxVKD/kP/4/GScu5y8dW8foqeDBoBJPaXCVrDiDWWYfM0Sx7X+t9/SXyiisWe0MepFDV+GIq0cSroIu0gQBEEQRBhhIsf3tvtGWDtBp+ExpJJJV7Ew8RU897f0taAaDY4+BtKObBzd+R4g4drS192ttxaid5gSTbNQUIogCIIoNpQpNaT4G51r2IpFZTHUx1n03BfmeuHWE+77fr37H3znKhcysgA9o3Fv7CjI9t0Xc/tessLu1iGk/KzijbtDuNJXSEjKNi6PNq6QhDBikNDnShAEMZoonT9kVN1g3lVCxjKjema0QQgazupaEliKMefexSkVU9BU0YRYTL/e2qp7YcXj0dehrXVEn6ypIbFAsPoqQqs0qRMEQYxoKFOqxBTgdR1UU76SJjFWCMs+kh5TbGZlcdHLIGxE/hedwzLOkuGKpISsVgiGKIrVTA8ZmNzzYDSnn4/GMRMEQRDEQIkum8zj6wrf1B6qSAIPIglIa/ehKlGFPuTkNx1rbN52FUlQStR9/3vKHTho7iFIKAmcfPLJeOONNwAA6XQaixYtChxXaCZVKfVTSb2pCIIgiJEOBaVKjWOeDThZjYUWkbTnbsRdMKpwGIDAiLx1UC+YyyQ9P2yikBI3/AURq9OgHtgIVlarv69VoaTtlu2PMSQ4N4SrfJH6ZWbtiJlSJOBKQuH/vCAIgiCGB9tHM/TglAFmUjGx5qAsE0JGwsX7zL9cCNWpGiQU3eB88eLFWLx4cQG1ZQEvL0NndD54Rvr4CIIgCB0KSg0p+kQeOkUy2a7KMF8ob1/yAI1s+56Y2xSkurzbBB2lpcuN+sVMJh3phy3ss1GSQO+a71jv6z/7WZ8WuPcSvCt9xRIsMhFayKkvQUbnQWOk5CmCIAhi7BM82YXliFuvpFEWSSMy3VDCJQvbuEEeXuOSMRaqCkPHEOIpNZQBHsoMJwiCGF+Qp9RQwkwXJf89bxwckJyQEvyNkgdgAi75YxSOGSttzvaDDNG9z8XAEdcOAABSZX2S8oUPMjV3LiD4IqTmz3cWCMk4G83b9wiCIAhi3CD1u4wafnLX8y8RNdbCLZ0ma1e4U2jwxm+hT3JtqMJCtpXDSLA/IL1GEAQx1qFMqRIhFw5mdk5YBS5pwL+SKNIs0cBCsp78lI0hNmIRs7WCnhMciGl6MKq2rhU9OwcvLFJz52L+c89CPXAASnk5ElOn+oxA3BA4dKJqIIE2QFiBjLw9oKDiRIHQ50oQBDHyKCRbqTgHgrCCdcOAAkehTZsBL3kVbmqIop0oLNF7wxSUKorROc3qBEEQIxoKSg0h4mnC0hRyR1nneqCZ2h3t7BcXQoAp3Hch6KLYhrsAK0CJDU4cxOvrEa+v97kbHNwpuagqoVgjUUUQBEGMd7jnRUg56StpQcjWh5hkGcjZjjRfKiL+S0xWXIgp0NQBZmEVNBRvPplsyx5lmhMEQRDFhrbvDSUsSmApnOLLAf8WxcNfHNIkwjbBcOlUfFtpS1AyyUWUzlNKSgGPFuQpJS1P3p0lgT5XgiCI0UE0jRG1bEALpq4oVjAm9Lg/sXNAYwnkc5p+Sep7VZxxDeT0vaL5cso0Jc3HBEEQ4wYKSpUYHvAuWp3B9z7Yed0MTIW1Iz/xzl8UllRvhK2gFnulb5DqKcgnI+gerVgSBEEQ4wW/+TAkF2rg8IEFXmTZ8Fbik1QNeccdTxiBKJ5Hskzf2JCqi0laLBIh3hLkyUkQBEGUCgpKlQj5nO0/kYdN8QMRRXZSeCF1I4oNLjNtH5lChQVkShWbwW6xI7E3MqDvAkEQxMhBtsDnmG8dXkuRjQpkjQcUEw994eINT1/esFPhWVvMiD8lc+2YMq8WAKAwPiTH7ko/waFMXSp6bJFmdYIgiJEMBaVKhux0Or87CEzDZmCObXS+VeEUDc6z8oJ6lx5xE1LOfdKecFtyZDEHF/YCFmcbYxC+J/AM6Uqf+LwR0+Kjbt8bsjN4CIIgCGIY4MWZ68R5VTrHSrpwHJZi6Ybo/QQT9dAYWR8hLUtOb46MeMBNgG96KfUThY4IgiDGJxSUGkJ6D3sAzfP/z+eueyqWGgcUSNSEdu7z2ux7YDKBOVYTh0Zq2EE5eX9D6ilVZGilr/SMnp8GgiCI8Ypx8rAkUSr6LClmOgX4amJgi1n+y5I+/UkW9Ry3rL1/EuPxyKMKRrLU6LxSQk+pUkELeARBEKMDCkoNIVp5K1pnPwrOVN8y1lTvyjaK6ovphLm+yu5FaigaIXN/UDr7UFGqTClLmDmSyQbgQ0FG5wRBEAQRQNSM4oE0IVEqBWYyi2hcC+yOSXr0Gwl8WiqFlrK16FDZH5CoIQiCGM/Eh3sA4xLGvfOvw56AO4SAwuID8hBgbr8FnybkhxkXuu4YLCjaM51Ie/rw9jpYoo56KLbv2UK2dCboZEFFEARBjCXy7f1o/t83inraXaRZ2CdB3bPo5BiWXFwpQT2qkvVg7nkhR/hMij79R1ztIu9LgiAIothQUGqIyOfjiMfzxjvJhK441VCmcRrS7a2Yyidgavl8606oFHBoiojCQaapJO04RZYssMTcF6wrGbVfCEr5d1zq7KmSG50PsF3zuUnsjQxoqyRBEMQwoQFqZ1Z/bR42F+pzaV8LWvaK+ps9ast+MOYKPIlV96cBpd91O2JASOwj8miiwaRBuZFw+l4R+qMpnSAIYkRDQakhQ56P5EW/k6+uBy+rx4nqKQCAHd3rA2r7SBOJqJCKqoJX3qJJIUcIiwuSy/L9Ln0KuCcR3xBVu3btcrwvHgMMShU4DoeBPEEQBEGMEWLVSTRefiQA4OHvvQgknPdls15Si+pGETxnSs0OZNvzg+qETecqk5hnDE6L8CJoGb+Dctz3hy4oRVv6CIIgxgvkKTVEcC7mgvPIcSX7tuzEGNdmNTbQTKMwo/MIhBSTn7dXQsHhI9CmTJnieN/U1FS6IUiXWgch5ij+VHLIFJUgCGJ4YXEFyamVSE6tRB/P+pYz/ZoAoFxLAgBU4VpkjREwtzrzw70Fy+NVSCgpTy2ZP6jVTqgOkCyuhRziYpUdVHBKZm7ubXvIjc4HoX1GuhE7QRAEoUOZUsNCqOOR5JJELCTiQBZQyssBAEp5hc/uPVsgDcbfSF6Thdwf2tP3zEHITDoB4JxzzsGKFSvAOUcymURFRcXQjCsEa/teIVsuCYIgCGKc0pfvAtAAAGiL92F327vYr7UDKPOUtefYwpEFY8y5ujE9A5lYC/rREd5OkKV5xIHJNFzRMqZdNhK+YyhBphQFjwiCIMY3lCk1VLgzpYKKhjXleh+rrtabTSS8hSO0Lt1YGODfMBA5MlTbzMIyXRhjqK2tRV1dXUkCUiXZkBgg1siCiiAIghhXOLwAdDaVteKVlseQ1WSZVYM7sMXrc86RU9sBAP1qT7QWmfRq4QzRpC/kQtmvhslTimQOQRDE2IeCUkOEZ3VLEpjixn8ygnf6ewp5yw7sbOSCiKnOdlJa3qdk6RltIoaMzkcW9G0gCIIYibgPVOHGVe9BLEGyJ8i0wHvNOz+rmh6M2tn7ftBggzsZEKWbnByfoeTDGz6j88FD/psEQRAjGwpKlRrLBkBcbfJOjnlouDv9FP6Uft1n8pRt6QvqED5LdBHbltSUF7PFXzLPccym3ajIVWPhzmYct2+nw5DbG1gTxyr6QBBhDGYrAkEQBEGMeoTgiBaSge4mfKOarVOUiH5OXLIQKI3fyCxCowZ6WLTA0YBQvHVl7Q2JpxSJG4IgiHHFiAhKPffcc1i1ahWmTJkCxhj+8Ic/BJZ/5plnwBjz/Nm7d+/QDHgAeFfl3BO5frVN6UWPkvFtIHSeLkAfyNsyt++JXlGuEfuloTNgQncf0vlyzDzQiap8TtqZWUPXkEVWHsNkS8Aiilb/BszapMSGE3K1IAiCGIFEnhqlx8IENxOWgB4UYAquGXlOyfGcMRQ1sNxQaYSRcfre4KHDSwiCIEYHIyIo1dPTg8WLF+OOO+4oqN6GDRuwZ88e609jY2OJRlgMhDwhyYpemZJEkuu+86Giw70T0Leg15RzIP/sLlR+yMbPwYf2X/zM/DJ8gqSQBcQoRufiPfIEJQiCIAid4K16skxtn7nWfVgKRB3hZ68Q0LvslmORTi+QM04Z1LReaTM7urcDAD5o/cB3HIOFMck/CUJO3yMIgiCIYjAiTt8744wzcMYZZxRcr7GxEbW1tcUfUKngzEgPkq5BhYRPCk/ttmWUfPseBwtZU4yCHeyypB73bsWTBqqYeL842MGdERC1ibrjcjBdkDgkCIIgxhUBqeOFORQ4C/gejldYMKbQWZmBIcVS6AMAaNJx7OrahYk4CDktV7rlZMeeRv+tfCXRHdKtiPrXYmSHURY6QRDEyGZEZEoNlCOOOAJNTU348Ic/jL///e/DPZxwuJnOHW1yLFZYJbwdieVn9MMCAQD1FYdKWxPbDX7uEgWRRkBsSif8VEAA5KMwQqBvA0EQxAhi0KfXDVwM2MEY+9qg5ghJ5SpWHanK/Lr5wjVhkbHI6dP2cmOwp1RpGTECjiAIgigxIyJTqlCamprw4x//GEuWLEEmk8HPfvYzLF++HC+++CKOOuoo33qZTAaZjO3X1NnZORTDFTD3lGmBZ+zJVnSkGeCD0gVez6iB1dZRWNzKTgofq2wrYfhpOSMamSAs4R67QTpYEQRBEMSIx1wUC/fTtPbsB2Jv3pMXlF21glIho5C2OJhJ2pFNrjdUHi8fRINhBK9Ty0zNS2Z0XiR1U7rxEQRBEMVkVGZKHXzwwfjCF76Ao48+GieccAJ+/vOf44QTTsBtt90WWG/16tWoqamx/kyfPn2IRmzA7VCCZ55kwYGGqCtTCvMGejiYY6uc7/Ai9eAiJL3aDHjJfLTkGViDFBCmeIymT0tLkT2liNJD+pUgiNHIHXfcgVmzZiGdTuPYY4/FSy+9FKner3/9azDGcM4555R2gAPFNZcziPOkbYfQr/VDTaXBOZdk+chCUMLJfT05z12xe6uVYqVHBW4xDJmEhnqOEi0hyFOKIAiCKBGjMigl45hjjsHGjRsDy1x//fXo6Oiw/uzYsWOIRmeKGVNdSVabQupHMuwuUKzIVwpl3goRBAgX60j8o3iIy1ORogFjeVXMaXQ+dp+TIAiCiM5vfvMbXH311bjxxhvx2muvYfHixVi5ciX2798fWG/r1q348pe/jBNPPHGIRjoAwk7GM9iW24XeOYvQWhm9adUIrvAuPSjF4jJJzAR9IjFJl7zc3lWHTKJKrx0100uGo+2Itg+D0AZM8drBy9ouZVBK+pwUBCMIghjzjJmg1Lp169DU1BRYJpVKobq62vGnVEizgMz0HckEq8d0XNky0i1vkr5878j7iV4fDjfyqHEq+Zrk0IiK9CGHAABYKq1fUGJD0q/JQJ/T+t4XKr5IqxEEQYxrvve97+Hiiy/GZz/7WSxYsAA//vGPUV5ejp///Oe+dVRVxac//WncdNNNmDNnzhCOdmBIp0YOJFr3g+UyUAw5m43ruVSuYsJr+92b/Rp2ZjUkDq1H5bIpSB9SJ61jZ0oFu6ibmeEZNQGNxR0DV+CjpcxrIXN/kLYo1hoVSyQkbQ+Np1SpT0qm7C6CIIiRzYjwlOru7nZkOW3ZsgXr1q1DfX09ZsyYgeuvvx67du3CL37xCwDA97//fcyePRsLFy5Ef38/fvazn+Gpp57C448/PlyPEBEzUyqaZ5SM8G14Xq+o7uRMxDIJACrCohiivCq0c8tTSpz8JdsJo7wbKKl584DXX0T5sccA614d1owi4TzC8LIBnhWlFmuEF5KvBEGMBrLZLF599VVcf/311jVFUXDqqadi7dq1vvW+8Y1voLGxEZ/73OewZs2a0H6G1JMz2wNsflZ/zVXXTed8mN6/E6x5FyoWnY49+eaCMsZ35jm2ZzQsOmsuKuvSvuWi6og4UwEOTKnowPuu8SrMXgOWzi+Oi/79KbKxFGnCSs2fZ72ONdQDatZxn7bvEQRBEKViRASlXnnlFaxYscJ6f/XVVwMALrjgAtx7773Ys2cPtm/fbt3PZrO45pprsGvXLpSXl+Pwww/H3/72N0cbIw9mBXU4495VP5mnlMPkUkZQXjhDgncBAPKxCihcgR6U8m0lsCc/LO+GkGrO7XumqXkJgi1u84dhDUqVTjzSYX0EQRBES0sLVFXFpEmTHNcnTZqE9957T1rn+eefx913341169ZF7mf16tW46aabBjPU6PQ0A7/+lP46fxkAbwYPUMj85/AXkBDtdFwxGONricmB8kQWyAnXZMORtC/pWFKB2Y9TZH2jCJnlZUceBbzyD9dw9P5aWlo81wiCIAhiMIyIoNTy5csDV17uvfdex/uvfOUr+MpXvlLiUZUCfytz8ey5qKfveW86S9XmNuOIdT/E3jlHYavVttin67Q82zM0OAgWek/mSxUMd3wCg2fkruQNPEWfKD0krwmCGMt0dXXhvPPOw09/+lNMmDAhcr3rr7/eWjAE9Eypkh0WE0sB05bqmTot4cXBxWzjaLCQwlws57o2eAI0ns8kxLlWtN59EQJMsv4qK3XDLjNjLpVKIRYrkUUCSSGCIIhxxYgISo0XGLc3dLmFB5Pl1TjiPNHcoMRFKwaO+vYN6MnUFfCddm458/tHetA/3mXSiYM7Y3IBpuiDwfMpDmeUociiSgy0UfCEIAiCmDBhAmKxGPbt2+e4vm/fPkyePNlTftOmTdi6dStWrVplXdM0fdaOx+PYsGED5s6d66mXSqWQSqWKPHofqpuAi/4GdO8HvvoDz+3w7W/ee94lweizqDtTypPoHnG9LthVKngx0g6SDdHsL8k2nzFjBj7zmc9YWzenTp1agqCUzMOqyF0QBEEQIw4KSpWKgCASlygYSZ7R4LovpDBjngqaFjB+zxUzyUp/l1VkzxfVy2qQmOJRG4JVxVAKEL0DNDofuRlhBEEQRKlJJpM4+uij8eSTT+Kcc84BoAeZnnzySVx22WWe8occcgjeeustx7X/+q//QldXF37wgx+ULvtpQDDwgANiXEUtoh3xIlSVOo+L9yUFCtydz2QDFJ8p3DBUAvdUHdTpeyF1GWOYN29eYJlBdG68KI2moSx0giCIkQ0FpUqFmfrsEB2eFw4s0eL84mxWfB1xjmWAEHgKqyTbemdmTQVIPW7fLyQUUzpK6FslYbC+CkH1ybNh6CH5ShDEaOHqq6/GBRdcgCVLluCYY47B97//ffT09OCzn/0sAOD888/H1KlTsXr1aqTTaSxatMhRv7a2FgA814ebfGu7kHptaxO3P6V/wCFIRfnVkiy+FWjwHT5jS7Kiwnw5pfpK+CSKrBPMZx3ew2IIgiCI8QIFpYaUaFOsXCpFEEPu5gcxow9kVcnUaynBT10RRKP7NDqxj2KJD1s8FqnBwVBCRUVG5wRBEAQAfOITn0BzczNuuOEG7N27F0cccQQee+wxy/x8+/btUBQlpJWRh5a1T39jyaRxVoutJMRATlieTaA9QgDMEQIrJPgVgCQriklES8g6pqRgERkRImrw0OnFBEEQowMKSpUK8/hfcZXJFCKMozybgaJp0BQFibwKLWEIrILmz+DIRJigkRl5etoWr3DvffeKpV8fMn3TF8+ULqgyAk7fk+Evaf1N7omhY2T9tBAEQUTjsssuk27XA4BnnnkmsK77MJkRQ15c4VL8DhCW4MwqEudV6Qwb8ou/6ItdkrSoZI8egBNH7vSU8mZ/l0QtMAZwUiIEQRDE0EJBqRJhiRdJIAfgqMj147S3toAzBsY5/jZtFoLW+oJkiChcnKnWA/cocPgpSHt0ltMDal4hZb/WrNcJLQYouvG7q9eiMbIkVXFCHSPrmQiCIAiidHC1EG/IsHlWZgIVrKesa8bFjr5uvB7bgiptoFlnQQuJzPXVCZdoM/FusWBg4OAjxJeTIAiCGC9QUKpEWMEhY0VMN+u0rzEwKPoNu47xNWhTGw9451dHXkMYTwABTkehdcViYkAlZgi6uV1TAWxxFR9kAMe1r23IEqWK5CkV3bh8BG1THIOQgTxBEMTwwjXNmuQih5y857bI2w5pSMwkTyQSAICOvh68mtiMWFzBxP5B+SN42HLCTKA7G1ZM/jmUUOgMtaeU85kpd5kgCGK8MPpMBkYLcuVgfA3OeZHek9pM+VleOt/IDMr9ezYEYDIRbVyy+0HeCA6Y753BMpaCCuSJQBAEQYw3eD7yfj15IpTvm8LCHTOmTsXy5cuxaOpsAIDKNGhCsCaoraj2CKELikOlacyg3BBrqBHmtEAQBEEMMRSUKhWyCV3wlPLidA9wfnW/johflMrVoiJRAyydDm6uQLjsWUqgeZjnWOHRoXQK9ZSyE8LGTvCNIAiCICzy9hYy6YwedQFskAGWWCyG5cuX4+SDjwosF30+DijnI1ks+RiiaYp2EvAI9eUsFDq9mCAIYnRAQakhJfh8GDswERWJHwKT3BeKqfD6BMhETrZfte5GGRF3bEP0vuYcYIFnHhc3uMK14QvWcE5eDKMXErAEQRAjAa7amVLh2/fk7pfu16Gm5xHvFl6ucBzPFBhYK8nxeyVos4DexecdQ5nvBEEQhBzylBpKJMcAWwRu9wttWKgiq+MnwmSmm/qbns6srIK8T3d7oeVLf4qMdVLNEK2ShQlii5AHDUqZH0tbEgmCIAgiCK6qmNS8C6eteQVxVUUX7kdiwlxg+YeHcBR+/puFZztZNfPtBY8iMAurqNLA6Vc5lpZpOOeUOUUQBDFCoaBUiZCf6WJM9oxLg0dBjlPBOVZR8J6MZ9/iQlJVNHcEWRCGSwfp3Zbm6KPIcRZP6vkwUoj2sYzOo27fM76OgMcck9DHShAEMbzwvIqJrfsQFzKmYi2bwLSTzRKB9VlE5SQLVAzEACCoF1EzqZltAGZGqBtx8a+IgRZbQg1TxvcIiBl1Zbtw3zv3oSPTAQCYVzsPnzjkE8M8KoIgiLENBaVKjcMqyggMSbax8bDT8KJEH1zVuSQQJXOukmVKMUUob51+M/B/qvsbnZeI0WUpFQit7BEEQRDjDXH73ra5B2HmpveDSkdrs/AqAsUJUTElXWBz3EfS2P6jvNg6wepwyI4wdnVcrFYLH/9ftvwFP3nzJ45rJ0w5AdOrpxdrWARBEIQL8pQaBvwyoQq16A5Nrx6MlohYVx7YkpRzrLpJChdL9xSYcTQkMOt/AUUK+wAoUFUa6GMlCIIYGfC8BmYInZwSE274ZxDpZwg77+tb35lYbKAj8rke1brAKB2f7KlnvWIMbbF+ZJBz3B8yTWNqqBGQhj1c83Ffvg+AniFVFi8DAPTme4dnMARBEOMECkqViFz5Af1rosu6xgRPqX11Ceu1BqC9No0gYWMJkgFN0oMRUt48Ky78X36wsTlWp4+Uu2yhtu4FYWV3DWeUofR9jwDdSBAEQRBFQ8tm0f/uu8jt2I6Y2q9flFkeiHaaRR6D3I5AuC87ICafBwB09DRL64QtTQEAjyfwWO0W/Dr1d+QdtgeiT2aA/ipaJGdofTmDGC6Zc0j9IahIVAxT7wRBEOML2r5XInJl7UiDQU30CFft7Xu/Wz4RvzuuD1XZFPbUZLAwUYG63XqpIE+pgcMC3w66PchFmnj6nkdaSIzfBzusYfNacuyL5AU/iHXyIkWZCIIgiHFMfv9+bPnnfwEAxOtq9YuK1HzAe81n7nVfLmipTmbjJK2tt9rZ1wyecJYMy3RiChDr6YSWKgOPJZBjKrIhEr0UasHWIiVovBA4UOxQIwcf5oVKgiAIwg8KSg0RnMO59KYo2DaJoSKvoCfOgD6h7IDnTOaccMNOgAm4WrAeCdu+Jzl9ryQYq3o97a2O9yOdQlcjR8dTEQRBEERhMEVBvLFRf53PmFfDakW8ZqDZOoQ59gw46xQSxEjE4r7yJqwdxhSUb38fiJUhO+9wZJjquM8l2VElUVKew2JGgtoY7ggZQRAEUWooKDWkmJ4G3pRsp2SRTMCyS4HztOBVMAhnT6lJup09Lm9X2oVWoOvCwIgnUwCA7tYDxvtkkVoeGuRZciNBFBIEQRBE6UlMmYL5zz0LAGg+9Rig1blYxyTip+BZUmGon1KBprk1KKssXCeIIyi47yDB4yfsZEGiUp4VM9Sn75VoAXEg+omPCPsHgiCI8QUFpYYSTV+O40yzJjuNiatf7hW6EKTBoaDCA7kWMRdeCzYyl9uSFriyGYGDTzgR7Xt3oa9L9/Kaf+yyQbU3GGRPEpbCH9XMdJQkgI066GMlCIIYQQSeAuc1lZIHi7zmAolkDJ+64dgiDDCM4iy5CXldRWnPF5eX1njXGhSYIgiCGBooKDVkMIAbOeJMsyZ8LpEaUgkjO7BOts9PuCTzePIbGizPJ+/2PSbr3H30XzYXciRxiM9Skeb9ssoqLD//4uI0VgDDZQZKHlQEQRDEWMepZ6JlkxcDBmF+jzzfCqf9DbZzl1YUpUYpAiaWp9QI2jJXLJmzoXUD7lh3B/rz/VCYgs8s+AxOmnaSb3lR142kz4MgCGIsQkGpoUQISrkzpZzlBjj5DVCfSA4ltq/4+iOYL4xnSiY895wSkjtWLf36G6uEumFEOIaZRBFBEAQxnrAW68IWfiKllkenaLNtQEPSWyxspEOkA/jYS5V68P0H8ezOZ633WS0rDUqR1iIIghh6lPAiRNGwglKqZzUqlo/b16QJUP6nzTiORXYuoznKOV8x6dXoMMcXZdaMwNI0yQdT6Iqn/fNDlAL6XAmCIEYAkjUsa+3Gz37J52skBhGD2Rfrxnalxae/iF5QIYMNN0wfZBDJWiAbXDODJd+cxJS+HACAdWRCSkcjp+ntTa2cqveh5UPr0PY9giCIoYGCUkMJj+lfme2/ZAZr4mpMuBaxuaglou4HdPgzFG6IbtXg3tCX3FPKd3CjHDPNfgAGm2Py8yAIgiCIgSNmSkndKAdiHh6J8HlcMaT0xngLHk++gY7U4NvUkR+KIysWmkkWEbOZ1l07/PsrIb3Z/eBqzjmm3pxP6XBkOqwuVRdYR6bDyCqBIAiitFBQquQIQkoTtu9xc/ueHqDKpDLoy/cMtosiVBr8xCu2rEiOMba7GksrUIN7loIzpcbSRzeCoI+VIAhiJOL1lGKS27qsGLoAAucci/MzMS0/AWmuO2LkBqSsCwhUuR+viBNXZV0DACCX6QcAVNU3FK/xAMzgUU92N7ofvRoVSzvRGY+F1CoMd7CJFgEJgiBGDuQpNZRIPKXMuEymLINetRtAmXyiDFqlCU33tv9fuFiLFrziPit14iZB+RbEaL2NGwr89tDiHUEQBDHWcaxhFTjx5dR+qPmEQ/HmIN8S5lZKon4Ss7HE8UzmtfhQtgbPJV/Djni7b7uBi0/SRTqZpvK6cxaTc7/+Lex+/10AQFlVNaYduqgEvYSgZqAkObSCTpiOTtQsdtq6RxAEMXRQUGooMYJSvMCtcYUgn2zl/XFXuMqfgW++C/LCGrN4BDOXvhSxjM4DPhtKHycIgiDGE5ZcCgkkyEM65lUNLW1vAU1TrXsqwv2EBk7hp+9Jt4yJr+3TZeB5VURpUFnfgIOO+6fiNThgwnVTwS1yM8MuxEpe1FoUlyIIghgSaPteqZDGYoyPW1GlkyLjYf5Lrub8jm4xv0hEnLxt/3LMUU4ympCBKZai9PZc6hW/8QCln5cGiv8RBEGMHNwbr7wXQ45uGUm/1E3lzYKDH1KdOMaDJEP6XSqgM9JaBEEQpYUypYYKzhxG58ydqi0VV14PBZFcfx4oC+jS8aIYSiZ4e568hmwrov1ljOsrgbBVXv9MKTH77Zkdz+Dtlrexry0JYKqnLEEQBEGMOSJmSkU+1yWEUlpepmeq6OuM0kHE8wPHj5AaFFEDS2a5QZ9kSBAEQUSGglJDiWZmMWnee+Jxx1Gb0/SSSkzMjhrw6MLxWZU038vGHQsYz1ia7odCu3TnunHl01dC5SrU/iYAVyDnc6TxA+8+gL9u/SsAIKEk8IXFX8DSyUtLP8hRzlj6mSQIghgryE+XEzONvBnczK9sBBxZ4tKJQbZIN3DshUrJch23/ueD4N05BgMpRc9RKuAjIl8pgiCIoYGCUqXGkezkNTqXF/S74qRxZjXQApRXJ5HvDjoyl+uNcfdVf5Hn8C/g5ivRtJzZ9z3jtsslFP1H7JjJx4I1b/OUdPc7FpF/zj5lA7YY9OX7oHIVAFCVqEIvAI1LApwA7lh3Bzqzndb7mlQNBaUIgiCI0YU1JRauFwajKmT56s43ztY9s3zgtB/d+9NdXGp7MEblU6kCQlHbdX7WY/RDJgiCGCGQp1TJcB5ZzAGwwKAUtzwP5JOf91pVfVq/k1GjDMW3naBKTFi087NLt3E9EwMU435jeaNQVnKcs1VlfK5KRVndNANWcRbHhLIJgWXN4NXy6csd7wmCIAhitCHTH0o6HVygKB2KaeylDExE8wCNWJWQ4F70o0ATQRDEyIGCUkOJ4ClVk61x3JqK4CCDVAwZQkQ90K+/UJgzqONIYQ/KbJIgMSgfiO5hkGfyOFsea/gH3cJrBpy+59iqIDN6FcoaPy+zq2cPYBTE2P3ZJAiCGD04D51zrpDFGhqEgsHb2wo+9DhkAueOJcfCGhzIDrtxE0CxpGdxnle24DdeFz8JgiBGMrR9byixMqVUTOuZgSlbJqDhnefRVlGBD604Es/jPb2YpKpsElWnMqRRB61fz4KpWDoZGXRZNSLjn59u9Cw998aDbYkgnL4XENTSWx4jQkumMv093r3VA75fxRBQQdsCCYIgCGJkI57/639GcVSD8qAZF/DZvjcIHBJhEL7l8nvMx3NrrFBc/RKWmW7qJcbYmPToIgiCGIlQUGooMdWSsWRXrpZjQmcceSUB56TrzYJhHA7/S8YBVCmY8NlFji6aN3YJ75jjlbk50O5FttJX2Pa+sMyrwNP5xnicpJRaJixQZQX7SE8VBOlPgiCIEURwUrCFM+ZjZivbV6tb9qG9YQJi6TTU/j6Ua5noY2BmvvkgJgjHA0hMPqMOJbzxUYkV/BnCObigxbrR/xETBEGMaGj73lDivwMvlARnOCF/MKZkKzFHnYQj+6YiHotJGvQz0Aw3VncGrGSEmXPKAlT+2/dCmx5HmGI3kkgq4KRGSlMnCIIgRi/m4SuarW/MQFUBe/IqOjtQseUdzOX9qNiyHmkfn8XAhYmI3YUWC5RS8hRr2+IqeE6nzB5/Cs3MJ/1EEAQxdFCm1JDBAFlmEhcyjiyjc7uGUBAL1GmY0KehsWwG2nP7o3Xp6m5AxyJHqeJThjEzDVpWeIyebCI9LSiYSEbnPp/RjtZe3PL4BnT358EYcO6S6ZHrEnLo8yIIghgJ6HOjCg6NcygAetAPIOYISjHJgs5gQgqDngFoChlxyDLogspFKUsQBEEUBwpKlRipLpGu0IlZShHVzIBWxIoj02QTtSzPyvaUsjcLigbsY0W3FUu4BBqdO0S3EcDkwEOv7cIf1+227mw70AtMKu64CIIgCGKosYJNalb3LeBAnqsAYq6DXfznumiumOGE14w234blnAf1Pm7m9GIZnQd8XoUsPtFCFUEQRGmh7XtDiekppeaCi7m+At752XeClGQkKZ15T9v+Hbo7cjpEBTckGQ43tu917oleaazgf+ChpGh0o3P3+6yqBzmn1ZUBAHKqvWWSUvkJgiCIUUssoX8V5rJAr0qBYigOBlacQNAA5mJpv+NMRg0HdDAMQRDE0EOZUkOFOMcppmmmwNbnAUyAeEMaDgoTNsJkqlXo316myo3Mgw9Q9uK0b3CVyPVZoxTLMdUwE938tKSTEgRMOAdaNwNaHqiaDKRrgGyv3n8+AzAFmH0SUF5f/L7tQQy8ZoAY8gtEmlUaKlPY2dYHLrQzblZViwR9XgRBECOIZBWANkCJBc+sls9UiLYp0hkgA5nlbW0ULU88psQAVV9cqkpWF3cwIw1WwCreABFP1SMIgiBGFhSUKhWWbZJk8jNX/kT2vglUrDDqyhSGGWQQtsmSyAABAABJREFUUPPAo18BOnYCXbuB/e8CmVog9ikAQK6xDLNX7sf+vcnAoUqnZyYLZPkrH9a5W3gn+jwYWxXjCfujkAW3BqMRcn3A2w8BmS7g+e8B3fvseytXA//4X6Bjh7NOLAkkyoFP/BJomAtUTxnEAHyQfhuDM9wKTRHnQjdKwGc45lLP1RxwYKP+eVZMACobh3tEBEEQRLExvTaZ6cvJrWviIkLkOEPULJiB7bEbeNsBJJQETpl5Cnqb97mMPsfYvO6myB4PA9FBtFBFEAQxNFBQqtQYSomDgZu7JWVz3KTDgG4YZc0lP3sbljRz6bfnA1Wtzmuu0/DSdXlonQzol7UkjRIZlyRBMFnulhF04kyxEp8cmVLm6Xv184Geva7+fARCPgO0vK//+et/6llPAFA5CZh3CqAk9MBeLAkc8lHgg78Cj/+XvK2/Xi+/rmb1P/d9VH//kVuBpRfZ9zXN7rdtK9DfDrzxK6DX+LyTlUDT4UZAZBKQl3xTX/uF9xpXgb1vAWDCSUIa0L7TrrP5JWDZlXq5zU8DzWv1e1v/DkD32BBX+vi7jwA4FGzXqwDm6p+f+bOz61X9a+sW4PnvA7XTgQX/DGx8Atjzhn5v2hJg7snA7nVA1x6jVWN8sQQw43ggUWZ0xoGnvwXsfEXvg2vGzwoHUtXAUefpZcsnANkeoG2LHkCKJYEpR+iZa0zR23/zN8CBD/R242ngiH/TP1emAEpcL1tWK3x2HNjxItDXDvzhEqCvzfv5Vk0BPvlL/Wt1E/D+X/U/XAU0VW/Deq0anxMDlvw7MPtEuytvywRBEMSwIZljpQeoyCj8N/qAMqGsyoOqTbgp8oRsnXbsl31uLgKLOou29BEEQZQUCkoNKTEA7pM9DGafCLz5rnHfgHOJTpEIl4mHAsddAtTPAfoqgf972FmDDWC5SWLGLpVM5kSdrBQvWq9iTNMDZekab13NDrqhxwj2ZDqBm32yXnqagX1vO689eROQqNBfNx2hZz01LtADKc9/Tw88AUDdbD3wpKlA7wFg01PAEzcAfUa/f74GePEuI1DE9OyzbJd8HCbr/n/2zjtOkqO83091T96cbvdy1CXliDIICQSIHAw4AMZgm2AM2MbG/hmMA8JggsEYEWwTTU4GgQBJCCEhCemkU7jT5Rw259md1F2/PzrP9IRNdxvq0ee0M91V1dU9M11vf+t93/KfiwZcEzh/ceIhSFxkbXKMm+wY3HZtSVNieSck4sh9d8DE9+GeW72drc3Q1GgJRvV1lsgzetJuL43s3w9sQ9gimhw9hSxkQNMQB38JLU2WF91Tv7YbfGPpucQbrWtfjmXnWmLR8NHK5fb9tPy+avz2c6Xbll9kCVRDh63PrYSi7/bYKfj8s63Xesz7/Ksx3hMQpRQKhUIxH3C8qUNySs1Ex6kpFYIz0xaScqGSZ3I1/cwrWUtzZffJkHNQoWlBAp5OSldSKBSKeYsSpeYYrdJ4WLTBKToSmbA3iJLCAXPjuR+Eiy+Gji2e0XT4UGkndB0olByz3BwRhBs7oZ13yhV7tNhcl9rBeezncMNflxhWfmPBtD17Ass613dZgsRN74dYHZx42BJkjDzkxmHn16xy+bT195aPwapLvfrrrqEEPQpNKy2Pnkv+APr2wn9eaXnM9O8tc64CGldCJA4dW2H1FXDqUctTJ5eGdD8MnSqt1roJJkLaqu/0XSMrFEE4IZ2tG2BiV7DKsnMhexzZeS6kj1jbHGFIGu5noLWuh2LdpmMLFLqtc843WOKOQ6rNE3r8QtPKS63+Zcc8T6beoj7FGuBFn7BPSYND90DfHus6Tg5bn49zjMaV0LML0r2eZ5XjydWxBTrPhaMPWAKSWbCEQ0cQPL2z+AJC3TJoWgWbboJn/x1kRqCQg4e/AI99BTKjVn2/IHXD31n9FBpoOgjd+tu3B3Z80fIuQ81VKxQKxXzC8bz22ySmPWkWDK0qvXuHreQz1dWNaw3fqmX+sMad0zlaDTbbwsC1jHy24GynH6hVuBMIJfIpFArFGUKJUnOEzOeABDLrezB2p8/ClCGJPpGmUF9vGUMSGgtR9xMSYYpW2wZYtjW42e9u7Gzy/T+UsEFXOOZclQFZ0+2/vjxZRe21MEq3DAm1cuoCJJuAfog3wNsfscQZ/36ArbcE39/8QSu0DqwwuqZVlfsaRscW+LMdMHrKC0OTpnU+HVvsMME4RBOV28lm4HWvDG677l3ws88HtyWa4C/vKq3/kz+Avp3wnH+C5q2eqNOyDrHzP2DXFy1BLH0E9AjCyaEUSSDX3QD7QTR0wcAgsnkdMpIAM4fY/hJ44rPQdSH83qcsAccoWJ9RqtUSkI4/ZJ2zHoN111rim8PgIRg+botIjpgkYPUzIO7zjjvv5VUudAhSlp+tLuRg1/e869C60UpcH01By9pgWccL74b3Wv8Axno8oa1lXXgeN4C9P7VEKYVCoVDMQ7wJMKkJMCQFxzTIT5SUM3SYJOevWdRcZYGjnMWTnciTzfg8yKelkwStsbD0mlWR0z74kscNy3PC98p8F8JEsEWXl1OhUCjmGUqUmisqjV+lChMAsaEhokOnuGbFH9EVa2Rf5rfgPvdPcUAsY1nJKjOLxUepmlOqbNuwW66j3czQoI1XbV26yz7r0H5OacfDSDZD8qLaylaidYP1b5YR4aZneFm/ONO0snJZLQKJNqtlPYbs2gz7D4cuXlMyy1ccRplshs03lz/YHF0boHL4RCQGF75m+m03dFr/akYZnAqFQjHvcFfy0HEGN80w0SbGSUkDx8c3pulWSgBNQyLRpCBu6m4jU/d38cL3Dj3WywM/3E2bjrtIsvQXmxV84YkV7cfSTYth9BIlLxQKhUKxlFCi1FwRc0SWyhZESUibNIkSIVr2o5nKiD39FVqC6dCL4wxFxUVRnB4a6D5T0F9alm5a6GZV2Oc8XmM+Ix+VZuPKJuUsiqSUMmRGcKFf3zOMymmqUCgU8wHP59sJUWsdKUD6EJE1G91SEaFTd/BJUg3ncXnr5cQLkpw8HdKe01xlW8rvad57dGx2TZSKhw4/kAojmx6BZOVFdlFZ3JRl6porFArFmUKJUnOGCPwpv62GNqjdHgpt2u8542sp7JVvNJ7agfElZQ99oi/dVpoxa5Fgn7921zGoEvXnUIt45Hc1F75tnvEckvRUGVVVUNdHoVAo5i1uTilvk+dJ5E+FINEKeRIZWGG2kJFpQqeFqhobpWOCaVqVWtojlYpNod3aKod1deqtLGAW/QkuICaHYPf/ufk3AzStgi3Pr754gEKhUFRAiVJzTlim82lIMEVCj6Ta/V8QFMEc0aPiQcq0M338TvOVVp+RFf3VFxbZEw8SX30VMpmck/aLhSbnq6GFZXVVNsKUUJdLoVAo5g8iZJJLC7OlQjONh6UZmIbnuGFPNE3ZU73MtNAcmjuLxqNqLk3CGi9RmJfVrDJwEE4/br2O1cGGZwVzes4lYz3WitaaDu1byhiQPn55K/z2s+X3v/mXsPKS2e2jQqFYUihRaq5xXVrCDaSwkbfS4Ffd82Uq3lW1Gi+2y3NIgybWKmqmNF0BKqzVkhDAopKyZMvCZfLJb8DAr4n++9fh23dOqW5Y4s1wDyhfnZLknaXfIRW+VwUVr6dQKBTzFlN4K8y5tkjgvj0166GsLRWy2fGU0nTAcDfWUnVK+wHbGApbfKaWyouL2fb0duyrau2eEXupkIXP3QDZEW/bje+D6/5i7o/d/SR89npvFeSLfh9e+unKdcbsFaaXXwSt673tB++2FtCZGJyTrioUiqWDEqXmmtBZq5ABby4figNdqFX+kaWlQo01a1Ab8Q+sIUdTVKaW2c2AoeSfwZMlm7xiS9GSVSgUCsWiIu977XpKSZ8wZA+EgXFScxItUlKuGv6weNPxlPIPsma+tFJR3XKELUpSM4t1AuUMeHhNZ7JuzmyozIgnSDWvheGjMHxsbo5VTO/Twd9Oz5PV6+Qnrb9X/DFc/Hve9s9e73l7KRQKxQyo4q+pmC6uzaHr3kapBXcGKlRKHQ6aLJ2Va1m+qkw7RZSbeatAbVmhQAjrnMwQ49AuEdJQqTC20D15SgwXKadlzMzkOgSELZWoszbKGMIL+9uoUCgUi4OIfY+OCs9cdca1apNmWl2d9be+nsT5FwAVNJ0j98GjX4bsWMmugKeUw4zEoXB/csXsM51cm2F2WJgX+4xwRJ5IAq54c3DbXOPkhYo1hB83PQAH7rT+nXrM+q7nM9a+6NykpVAoFArlKTVnBN1XgqnESxNWB6uWD4NrX7MO2ZujY+16WlesrK0rZcbfikNsjd7junN+ZQZsfzJ1IZz8UaXl0trSNsimIh4JIdxwSIl37Zf4JZwhSoZSKBSK+YYzrnVqETDt2DnX3iidrHMQgNB0MEBvSJFasxZOHy0taBrQvw++eIv1PvMaSCy3j2HbN46n1BxO404lraaQxSPW4h6/Zm3ScvDw7LQzGxRskSeSsP4B5CfO7LGTzZAbKxWlvnAjDPmu1e99x+tbWVFqcX8HFQrF3KNEqTOKLTaFLTtXbRbG3h2JxsiTQ/N7YFWrFNKH4Ip8/iphoYVhzcmSTbLS7F8VwWTCtvYWQ5JO1w9sGudS6+p7occLaUdUEQ0VQRbB10+hUCgWDVKW2hruaOeIVADHHiitbNghdqOn4PHbgZVeSwL49Ufh7n/2QpnqOyHrTCR6RzSM4HhKSI8C/TENigMRah9aah+r88LgCf0oJxMZzDDF7LGvwhPftOy6WB10bIVEI2x/KbRtrPk4JZgm/O/vwOF7rfdrr4bf/94cqHazMCCn+73X3U9AXQpRo/gzp57mjhAUTVn//NvAusY/+1vo32u9b98CN39wdq6x4ymVbIaR40ExzCh4glSiyQoz7H7SE7KUp5RCoZgjlCh1JglRD+qf9Ux48rEyFSoYQOVydIZ5OAlvxi/YTnnBSAozZNf0B+hqic4bDMuYa4ks7q9kOW3INXZrXADRbyx5OaVKBSgVvlcNdX0UCoVi3uLN8vg22q8zw96m7HhpXSNXcovPnN5v1Zcm7PqBL7eOgGe+B/EDJz+Ol1fTyp2poWueZ5YMeeVR3oMLsB/wgxOLcuBgSbFAy47g5TvPI/FhjkWHIQqOCBaNRr06P/97mPQloN53h/X3rn+0VnprWA63fAxiKa/M7h9C3z6QhnVMaQACus6DRDOceAQm+uHAL7w6h34J4z3QuNx6P95rteOIguuvg67zK16SEvr2gtFZur37KXj6R9bnJjRYf70ltpkF6580oHGVJ96MdbtVpWZfG1tgKTvR57eh5mqmyhV5Ep7Q44TIAXQ/Dg99xnt/8G646LUwdBRO77S2Na6Ey9449dk059iJZvu4PjEsn/ZeX/i7Vh92/wBGTtr99X1XAGVDKRSK2WJxKwDzFm/Ai3Z0VNw/s6N4q7FVImzJ5Roat+qGtVcmI5U/g5RX13rdbhtcMbFA05wVGwVSuhdH1mAwTFc88q+0Fxa+txg8zxQKhUKxdJgcy3H/dw8AMNT5ImKpIXThE53sWDeRS+N6JDV0wsghAlaJNK23sXq02EoYgpFJa7/W/TjUPW2Ve+PPoPNciDfAD99h13UPhhwfBloRx34NrfZmv5cWOPGCRXUJN8D69kDi3DKmnix9bRrw2JeB58OJhyFubc4Lqw/JPKw8sp/W0VHq8gPwpddaYpQjSL34U9C/H4aOwNP/Z207dI/1t32zJVB1nmsJHt96XVinwum6wErQnRmB7Chgi1K/eD88/r9eufoueN0P4b6PeYLI+uvh8je5RVxbxbmu930cVrwXEgSv4Q/fGkys/asPlfZryy3wWvv4OV+OsEQjMIkwC9624w/DD94CuXFAwOV/BA2J6ueeS1uipx6zvNAyI1ZeMtOwwvHWXxfuVWTk4diDcOK31vtI0hN6ep6Eb/webHmBJxS2rLe+x8NHLY+lH76dwHfkrg/AmqtscUqHB/7DEueEsESlbS+E+//dWx3vnOda/QZItlh/85Nw70esfmx4lrVN6NCx2Xrtv96ptvDrobzxFQrFDFGi1BmlvEAgq8y7OeRPpyvsLW0Vij2livdWrFqUACqYC6u4fnGuKCmEJ0VVHa8W+4A2d+KQ9BnPYOeZmsYqM0saWXy9FAqFQnE2yGcN9j5oe7g0XQhN0MqT7n05k3W8gXx36roO4FCwIbNgaVZCcO4f/hMDX/kc+f6jiNwol7ScslbQizdaXjwxKym6KywZWRwT2ZwcAVrR8AtRFUYJGSIshTy0S79HVV07cASkz1oYOQX1zfZKfzFrW0jqhqaswaU7HkVEgCe/A4d/5e1s3wKX+ISmnl3Qs9sSjQ7ebYkad30AVl0Bz/gTuy/LYOstXmb3E49YnlAAqXZYdZl1vc5/lSViZUYgM2qdY27cEt0A1l0HR34N493wn88Idnr3D+Gp78PoSUvgOdEOtEHaPk4kTiBMc+f/WqF4ffusbRe8GnZ93xNYhGb9MwuW59bxhy0RKuvZzFKLgpwMCoq7vgcD+733938SecFzrSadtot5/BuWkOV42T3/I9b5HL3PK3PNn8Nz/rG07r3/FhTSYilosvPDZkZgz4+tfw4dWy0hb/goPHgbIC0xaXLIq7PvDhg+DvF6OP6QV3fgoPU9vvcj3rYnvgmX/aH1uq7dEp+kYYWxgiWIAcTq4YLXQG7CO1bHlpmFfSoUCkUFlCg1V5TYH8K3zecpVKMnS378tPXCXgUmuqzYhdY5iteekzhTj+phHSpDbeWKdJDilyH9qrw1LPn5wmVuTia41LV/u71pUV1DhUKhUCxF4nVRrn75JgCe/No9jCVXIXTPXJWmAA2iay6A3busjfXFoV7C8gCJAEKjY+vFvOJfPmPlzDn2gJdHp2OLJ0iBJYYUmUGFjBWGpnWeC/knrI16vPhoHrLIi6oIvWkNZIOHyUdTVhSevyEj671u3QB9wJpr4NT3gg26ywKallcMwIWvhfNeCSsuDpbtPNf617LOyrU1eNg6zonfet47qy6DF32i4jm4JBqtvz/6c0u4mvDlcHrOB+B7fxIUfS58LTz+deu1X8TJJ4E26/MBy9No0v7MC1n4wV/5zjdieX+97LOW55EWscL1Cjn4l07rs/2vm6yyehTW2B5cegQKWIntEzHk0GFI2F5RV74VHvosZEdg/8+hpQl2fAnRsszab+ThO2+0vJX69wWvwU//ihKe+LYlomk6IODUozDe5wk8Lesh1QpXvc0SRX//ezB8DH72d14IndBh881WXbA8qQBWXwmv/C9LjBo5Ab94Hwwe9L6T1/y59T1I98Oo/eyw4hLL4yk3Dk/boleiGV52m+XhNXTYyhF28G5rX6zOEsyufnvpuflR3vgKhWKWUKLUGSUsyXhYQqei8sDYiftIDh1k3Te+hdAEkTKilNuEHqEQ8JQqajq8lvcqJH2DCCsrSrYEVpEJPbJyQynLtBKduzmlvPdOWZVTqgrKoFIoFIp5RTwZ4eLnrgHg0H91M5ZchRbRXXtj7fmtDO+CZOcKT5QKQ7NNXL/opEcswaMcyRaYyLgroglg1OhC6KA3dICToikSL63rjie+sdrxvPKNNQ0tG+nu7iUiPK+ngnRCynxjktPvSBw2PBP6ur1z8qPHvNdOnq3zXgnn3FT+PFdfDm97yDIYvvpyT4zQorD1heXrFdO2yRJqeneVbu/YBq/+Khy8yzpOy1rY9iJLNHHyQiVbYc0z4PY74Re/hPplwDBsezE8NmC1ZeSsp5Vl58LyC2Djs73rH/GdeyQGV/+Z5bU0dMTa5g/VSzTD+CDCn5/r8I+s1ysuhhd+3BKkRp7ETTmRHYVoFPnFF0C2yHPqd78NP3wbpHut9yttMe+2a2HsFOz8Wvg102NWOGPLWm/bphutv5e+wcvxpOnWeY4+zxIRC1nr8zn/ldZ347xXWGXv/hfLm6qQsb5vl/2RJUoZWTi5w2pr47Mtsa5vj5fIvH4ZXPA71r+eXfCZq73wytb14X0vizLsFQrFzFCi1BxRq/gT3FQk9Phsk6ZXvJxVN7+A2Ir6ii3X1de5CSBdD5rQYLvaeisg1O3cbbGqi5Ow/x++Nl8tfVgIlKSUmuL5VBKPiveJks+zugClwveqoa6PQqFQzDe8HJUCx55oaCkVhELHuPoOyGN5y0wV3ypnycYoLcubaGqXnijlHjfYWyAoEgX22faQbTBEfeVC55zqO8FIUzwlGH5srPxEb/iJ5YGzbFtondJuCfiD73tJyRGWcFcrL/p3SwBz8hitfoa1apset67hsq3WPz/LtpX2r97KWyRtMRARCXqjRVPwgg/Dumsr9+c5/2j9M03Y/zOYGIAn/tVqu2UdjB9CrL0a+h7zHbvLWkGwaRVc+nrko5+EJz9veYwN7yNwpddfD8/8Gyupe+sG+Msirykh4He/ZeXwMgtW6KVRsNroOt8Sl+q7rO9mGEIEE8+Ddazr/iK8fDQJr/4KHL3fer/yUmheY107I+slpK9rh1d9yXovpeXhdv6rvHY6z4U/vsdKaC6EladKoVAoziBKlDpTSHwCjn8WrXwVv8jQ/JKXkDr3gqqHSaVSpA7txowlWNWWgFTxwsT+LoW6QJUnYAGVqDC+beUe8GXw72J3ngq9rtM/U7/R7Xw3LK8oa5umlZZVic4VCoVCsWBxvH5FySb8g+zseQWXJMfkVe+9nMb2ZRz91o7aaorSvE+VDlFmUw0U2ROaDuuumVZL0xLuwBKgtk3Bs2oqRBNgAMlm+JvjUxPLNA22PN/yDnJEKed6xazJXdl1Lvzx3vJtrLwUmISxY5ZX1LKLrL74CbOxNt9s/TtThB3vhr+1cm6BJVJue7GVu6pYIPSz4uLScM+qKBtToVDMDkqUOqOEhO/NgWig5zLouQyNTQnvGO5hqokisqhUuf453jnlvL6cl059L6FnmPG4KEWpaVAuRK9yHeuvK1SFiFeKcpSbgVbfSIVCoZgvyIC1USpUFVsRuoiQMhpmtQ8BYaxCuVpHj6D9FzYW+ScwbS8rc7GOTY5Xfdh1mKL3lr9miI1dq90thPDKJptKBan5zLXvtP4pFArFAqGcE41iDgl74A0XI0oNkjPGlA8nXUewUKHK16Z3/mHGwlSPO8+p2TqtpalS7ycZ2B7W7GK7oAqFQqFYOpTmryxJpOiVcnMzRbQo9WYTACaVE49XOCrVZKPqCN//KxyvxgmpumOjxPVkUWX/keYfUkr333xgOnbRfOn7vEVdH4VCMUOUKHWGcPyKSjkDZoQ2jcEikIy9Uv2wTOdV2jbGMQunigZ5NaBNBb9R5dnnIvA+gLq8lVGJ4RUKhWL+ERKqV+kBeNLI8NjQYxwae5yeyHH2DD9EX+Rk7cerNATMMCS/UtNhi8L4Tar4xmaILLzxqfsf/5E927Zb/847n4H/+WLNdWf7bGcz16dCoVAoZhcVvndWqOYBFZLpfE56UWEGL3TmTZQUCKaZEhRv9JtXTup1M3eMXO4Ymrxi6p2etwSvVOHUaU689W1w3ZbAdmN8nL2XB8+77sorwU7JEGY0uYZRYFe44VpSd9G5nikUCoViqRA2KSZNZ58ILXcgfQgzf4A1XRdybOhxVi0/b3b6Mo3JnVqFkGDYfSmp89tJbr+G/bc9Dr1OnfnP2F13e28Mg/Ff/pK2P3xD2fLOORljo0hp5bmSpkmhry+0vEgk0BtqDNMsumBlVzRWKRBqR9mYCoVillCi1BlDMKClaQGkL7+Sx+yYF2Xj8f0qUy2HcqyvMkJIoOmSTbKkgECyvamX3kw9JzPLQGbBHK+hIwsPrb4ORscwJyZKd0qJOTYW2DT2i1/AC6a50ok/0bmyDaaOumYKhUKxABCli/3WmONpNo498+JVOltD+JPQBXKhiQCmZe+2vv71DH7pS0iztlDK3g/9K8bz3grNYI6Nsf+668MLahor/+0jNL7gBaG7w2ziaYXvLQgJ8Gyiro9CoZgZKnzvDDKgpQEYExl3Wy32hZRyZrM1UzJibG+maRymWtRYV3Kc16x7Ai2xztspQzyuFjjrf/QjNvz0J6z40K0ln5pWV8eGn/6EDT/9Cev/74fTar/4u1Ccayr8c1hMV3guCF4flR5BoVAo5gEh+aPCLJREKmyOdeo38gq6V+ikXnA8rrYCcZmD1FKnYt35i2N7aI43UyFclHI+3tiqlYhYrDRfmBCl/wBMk8nHn5hapxbYNVQoFIqlgPKUOkOIQp6kjAHFnlIhK9HN8hOxmI7PuVc75JWHo2qWFaRkbUaaF4K28K0Fva6OeGcn0exgyT6hacTXrwfAzOWm1G7ApdwvQIXZ7E65RXA9FQqFQrE0CV/ht3TRj+bOFAArNzcDkuO7ZmtywWcDVRlOZzTaTqevpQs6zz/s1QJFxHrckEZlT6n45s1svfWjADzyT/8LxgB6UxPbnt5dUrb3ox9j4POfr7krNYdSqlmpKTCvv30KhWIBoUSpM4SWz9FMHQDSJxIJLSw5daWlcWvHE3okpQNHleWHQ1OzhwhoIUZRdQ2sxtnEBURo7qaQbdVsnUpGU7l9xYKe36BSOaWqUe0brlAoFIoziTE6ytA3vwmAyBd8exzvmPKZFJP1sRJRYTq21FiVOIKSUMIy1HrkYFhehVoVE7HPwxHMERCjdn4ow/s8pWky+KUvkz91itS+p9nYMwQF3+ftns7s2IquV7ka6WcfJeQpFIoZokSpM4iuWZfbsRsi0RjxVP3cH7iMq7isMDDLkHcizAoL0bsC0pYrWqkBqxKV7cxi4UQEvN+kO2tcvg0186dQKBSKhYAxOkrfRz8GgNj4cgCkrvtKhLkHl/eomgr18Rh96Um37Vazzh2DaxaYqpYIm7CqMWmCEN4EVI39Oau4opT9uFEwuOvYXXxjzzdYfnCE1/77kwAkgC3A4KEj0znIlEpXE6WKUyKAsqEUCoVirlGi1BlE12yjyh7oovF4wKYql4O8snxURNWCldZqq7Vu8WvL7pCu4Vaa6Lxae4sp55Gs8fxnMlfnN6qcozmJzv22k5oRrJHF8/VTKBSKBY2WStH0ckuMyp9sA8BMpdzbdK15wqdjV6xrbaL3oV+zbdV2NmrXE/M57jhzcGGtTm2krdSvRWYX2YnOPU8pg8898Tl2D+zmotPWvkxTkqgWRx8aRkwxrUE1KglLSmhSKBSK+YMSpeaYoPdxcQYm/2ossrIBMjMFo+RN9aE4TLyausDijflhQo1adreYSkZS2eWL3YUVQ1aZmY/u/AqFQqFQlCHS2sqKD/4LALkPfBdOgxSaz3So4B0sxIxDibRCjpSEBpkkh29hmhm1WoVauxx60vNXXHF7FnE8pQrkDEt4Wp7oBE4z0ZaiXm9GHxr2hWbWwDTtm1rtIssrXdlQFVHXR6FQzBJq9b05JiDFODfvMkmX5urWHmg3xFgTYR5QM/hmiNDVcip7Dy34GcHQJONTqV69dNg1ktLnKVXhM1vw13euKA6NVPaVQqFQzG/c4azMDbskheYs3dhDMxjUNraKkMnBgBdPjV0IS60wr3EExIjtKWWa7gRba7QJAFPgXiAhKy8EFH6IuQnfq7ZN4UddH4VCMTOUKDVXOAOx8xbQpGbvKiPQhOQOmkvcoMBKOTV9fZUiLKdDtYGoWi4GSbDAYlQFylyj6RrKxTm83M+o1AtOeaDVijKoFAqFYr4SHMlKc/6E55Sa7V7UmpogjMqjcc05vf0O9lPswVmhJHyvgCGtFfii9iOIqQlvVm0qnlJTRAlLCoVCMX9RotQc488N7pokoUKOJJawRJ+GtoRTYZY6Ebb6XpUq7iuvnini7uuMlrV3+/MfhHlAlSJCrS9lLJTDS2paefU9LeQjVq7nCoVCoVi4yJJX3Qf2hxSbQxsiMH831dWDZ+DtUyV5VUnL83G8dz2lvETnpu0NFZXWNlMjPClmNaZ4vsU2VFmRqkJKBEUx6hopFIrZQYlSZxBRZMyU8zCva4qFVK51/eHKOaBmkqBT+r4u3amespXD2wuZYZThexc80zCOpzusS/d/3kevkndOherfVoVCoVCcXYSmu5MsQ6dPAhBLpkIK+lank9Iaj00TWSjMfGysMlDP5PG85q6FhvzNY2GgaPU9afhEKdumNDQ7ZxhA2CqE1a5NxXSsM8u1qYSpGlF2p0KhmCFKlDpTSL/Hi8eZ8GSpJVtR8WsZMHdKk55XbNMf8lc1fG+pEOrGNM2WxJSrKrd1hUKhUCw0nKFOaDp1La0AbL/uBq59zeu45AUvdsuFPhObJtfsP8n53/ghe847n+N/8idTF6aE3+6pbeGX6lTuw2Kyl2SJp1TBJ0pZ0QHBnFIzCZGcXZSnuUKhUJw51Op7ZxAhNFfysTZ4+8INpbnOKTU1cqJUw6zUw/IJOSuHoy1EQmfTpvHxVbwm4VGfbh0txIBSs3w1UpQDTqFQKBTzi0g8Th648Kbnkbr00qK9pQNkdHKSpsms+z5976/BMLyV4OaKaZg2lYPzfVvE1AMIzyqObRvxeUrhhO95nlJu+N6UVt+bal+K35a76gviys4PlHCnUChmCeUpdQYR9gBcNTl40bLHc216VFr/JZhGVC/Z74XiydCcUl4WBq/tOj1eUkqqca0qZQ2oUo3TRYlSCoVCoVjoCHzjmX8Sr2SBGN/rkMk+WSjUeES/t3j1RWFqQxT99R+tvJ1X/gwXAMWr7xkGphnmKaUFyk/nGFWLTcOWVjaUQqFQnBmUKHUGEa6nkS8cLrCSSiWjZDoDYzXvjwpr4vl2ac5EV8WvS5XcPJr/3MobZIvBAPB7vQnCE8BbO8uFBVTHX94VpUSF8FA18ReOmuVTKBSKeY8Ef+LE0v1hQpVhbTN1z3apXZQqpcpaf2X21uiFG9pgiPdziBlWdRHks0nx6nu5HM+/e4Rzj5glnlLZiE7OyDM+OIBRyM/K4UNzSlX5NNyQw4CdNZ8v8nxAXR+FQjEzVPjeGSS2oh6/OaQlfZc/cD93pIxZW36vzOvyZUMFstDwMF89dzIxxOMq9OFf1tCfpcFUroIoSnTqCnoLyqd/vlE+2FShUCgUZ4vyXlHBYiF2h527yNR1NMN6LfOVxY5iW6WaFTZ7Vtp0POOLys7DSRZ3deC6Oqt/hsEt96S5MQpHX2PtM4XkgMxz9Nx1MNrPw295PfWtbSSXP8duo8w1mW5eTmcCTwlNCoVCMW9QnlJnkERXA+AZMdFkyCp7fqYx3pYXsmpbia+0kF8AqRC+V656SPaD4lUIFwVhgt10ckpVMJLK7fPC92a2yoxCoVAoFPOBwXSOO57q5nTO9rCRuINq0Bu5gi+47aUjdd0bkGfkKVVrmFiwVuX9zrYa2xYhbc7nYd7+rPTmJpbf+kGaX/1qABJ5iGWtz6egSQYJfi7jgwOY+YkpHaN6sakmuZ9a8aWJukgKhWJ2mBei1L333suLXvQiVqxYgRCCH/zgB1Xr3HPPPVxyySXE43E2bdrEF7/4xTnv50zpaO8AoK4+xXnnnceNN95YuYIM/JkyZcPGaqkbmkIhzG+89HheHofqYWth7Sw6yiW0D4TvVSewIqLwUua7M5GitFxYXYWfBZ2tQ6FQKBYlb/7yI/zpV3ewYzwJwKmMb1IsZDhzN/ntCztpthTCXf1tJuF7tbB57162PPkolz72MJv37PUJJpVHFxGSWDN83BalL+fz8G4LgwhB80tfStc/vN/dFcuaGEKQJkLWvk4XJBpJ1FsTuNPKL1WBWtNEBG0tZRXUhPI6UygUM2ReiFLpdJoLL7yQT3/60zWVP3z4MLfccgs33HADO3fu5J3vfCdvetOb+NnPfjbHPZ0Zmm4ZRR0dHbzyla9kw4YNwcFxju7poUNqlXE2XNjwvi5uDgMZLFG+wTAr0tvmHk+N/1URiGAIn5tTKrysQqFQKBQLidPDkwDotrGRMUXFnFIBRNEEmaaBk9NoOqKU056oPKLGx0a4+LGdLD9xlPVHD3Pxzp3EJkYrNDstd3iXBSEDOPmZfNcwZ2euiGYNnljdQb/RQM4+m2jAvql8htMVjKZjF6mJPYVCoZhb5kVOqec///k8//nPr7n8bbfdxvr16/noRz8KwLZt27jvvvv4+Mc/zs033zxX3ZwZUlQcQAMDnghJjz2D2ZryLuchA3/FpdxKNczqfiZhxoUSSsoRZvh4CczLfY7Wdi0055e61jWhZvkUCoVi3tGg2yF4Ep/p4LeX7Ldh93DTsEprAqHpVrH87HhKhY0Ymp2cuxCJIIFooYBm5KbR3iIat0NmzfIRiBUgnjMZS1irMUvyrBmYZGKlhtAag03UeowwppNGYREtvDPnKE8yhUIxS8wLUWqqPPDAA9x0002BbTfffDPvfOc7z06HamT6uZRm+MA8ozHDv0JgbWvP+EUwGbKtUo6FhWoEhAuOVc5lBqvvucjS6AClr8wclQBVoVAozh6hgWuVJvbCEp07yc2FhtCd8L0qq7pVesiuNqTbfShEophYolSt5lv4mFNjqgNn2zwTCPznZJgmO3/0PcaHhzjV2UZdxqQlq5GNWmGZerSf809MsH9F3ZwlIlce+XOJspkUCsXMWJCiVHd3N52dnYFtnZ2djI6OMjk5STKZDK2XzWbJZrPu+9HR8m7Vc4I70Jol28KY1i0+1FumTILsWtt0DQMvp0NYNiRZo+bm9UcNYtNB2P85VBL0qntZLXHmmRGvUCgUCv/kSsiEVgWxQgjhihmOSCQ1L6dUrYnOa5SIivb7vYKmNuaK0OIhaRQqroI8z/B9Tkd3P8mvvvrf1pvmZuvv+DBELLsypceBCYRJzeF7c33mQTtL2VAKhUIxl8yLnFJniltvvZWmpib33+rVq89sB9zwt9LBbc99vyI7WeNKI7VScQytbTAP+EaFhO9VOpaVhLuaB5Ea6P1UnBksd42lE75XWmyhep6deZS7vkKhUMwX3BCqkHHNL3aEeU+5jkPO6nuaNqNE5+4xwpUj95iuCBbwgq7ND1z6JutqHYVCdbv5hOlNwDr2bdOyTtrGR2hOZ6jL5KjL5NjU2unND0lp5QCz3gC1WKu1uqNht1d5sk55SisUCsWZZ0GKUl1dXfT09AS29fT00NjYWNZLCuC9730vIyMj7r/jx4/PdVcDlPq2QOuKlQDksxmQklgySSQWs8v7DJtZe1b2eymJon6FlfNvmcnXpThnVvgxFgUyKAvNWrNVPN6U049CoVAoFgMluoD0Ep2HiQan9+8p2SZMn+dSdLqilM8O8x02a0ZLizqiFD5pKWRVvRmxkMZ53+dk2gJV26o1jNcPcPWBkzxz73Geufc4z3rei32zaqYnAs5V+J5iFllIX0iFQjGfWZDhe1dddRU/+clPAtt+8YtfcNVVV1WsF4/Hicfjc9m1KpQOtJuvvJY3fuKzZNNpAJo6uxj+1gEMf7XpjqOi6G/Zcv4DODN9pc2EaZhhic6DOaWmPOe3ZBA15pQKDcvzvXYXGJpivg0FKINKoVAo5h9FqRLtN6VuU5FYnNzkBCf37Hbf5zOTdjm/p5QlIp348z8n0tLK8n/6R5IXXlj1+H60iNcbU4qScgFPKemfAKxOrdpVtRUA5xU+u2MiZ9m4Qtf57PM1vnMNfPuWb9HS3EmkrQ35ow9b+yVojqeU+3GXuYY1zMRVSmtQta6ovECRwoeyMRUKxQyZF6LU+Pg4Bw4ccN8fPnyYnTt30traypo1a3jve9/LyZMn+fKXvwzAn/7pn/If//EfvOc97+GNb3wjd999N9/61re4/fbbz9YpVMW6X5caMQAty1cG3g+fiQ6F9CN0n69QIHzPbzHWMBaVXwGwel8WLKLsmxBqvwIBI0mWGu9SelKgMqimx6L8PioUCsVCwz9pFjKePe+t7+TQo48AEIlFufh5L+Y33/qqXdXJKaUR37CB3MGDGH39GH39jN7xs4qiVNgo4J/40YTEKDaA/CvNha0UWIlaiwUuwfweqfyTYZ969FNcShuHRg9Dh2CgCWKrVhKJN1ll7WubHJtENuXt+lM/Ti244XtTqKcm9hQKhWJumRei1COPPMINN9zgvn/3u98NwOtf/3q++MUvcvr0aY4dO+buX79+Pbfffjvvete7+Pd//3dWrVrFF77wBW6++eYz3vdq+O0HYYs6k5NHefrp97J8+Stobr6sbN1GrXV2+uBbS9mXiaFKrdIcO2Hhe2EJt8ObCwtp83tU1darpUy1/AfhuTXUFa0JZXAqFArFvMHVd/wbQ8K6zrnias654upgZbucP3xv5cc+SmbPHoa++jVGfvhDMA3CqJ7MvHgmzh/e54XvhfuRT43wUclrSdeiwKRv1zwb7/25v2w1rT874G7TfBOdhm7tX3Ggn32RJMRjzHfRTcH8+84pFIoFy7wQpZ71rGdVnIX44he/GFrnsccem8NezQz3bHz362i0BYB8fpBTp7/FeHofl1/23ZK60bokBmk6k+sAMDFoWbGqpuNObXwIKxxmCZaWr5S+3J3YFOX8o+YmX8B8wf9dDveNK2XK4pFtywVMY19kQ3FrKpdCbSj7SqFQKOYDsuy7wf/5HyYe3UH7W96CZufgrNiSABGNkjz/fMa6uqxthlmlloUmNLJPDRNZVUtOTZ+nlLspbOyd+kIzDkZdFFk0yOdlrqb2zji+c1/fsBYYIyfz7jZdeCs679vayKp9/aweifmc4+Ymp1Q1e8tfTk3s1YqyMRUKxcyYF6LUYiRskZamxks479xPMjj0G06d+gaGkQ6t2/jMNQjAyFiDd/N5HSTrG+awtyGdlSFvQlbfC19Hr3QW0S9PVRzi1fhflnLCrTejPP3cCUsWdX0UCoVi3lHiKSVBb7ZCvdK/+Q3p3/yG1CWXUH/dddUb8SF0244xK4tSjjChiwgTPz7BBCdIXZSoWMefU8pdsK9Svsgq40/YiG/WRckYadAijOYGIREhT7ZiO2cN3zWO6wlgjCyegOY//4H2BP/v9RH+4vFNiINj1sZqE5dTHL+LbaipTNapiT2FQqGYW5QodQYRmkZn5y3EYm2cOvUNpAw3imLL62h7zbYZH89zWKq8alvY1rCkm7UnLa92tJDwvQpLLS8YAslNp+uuX9t1CCaTt15rIQ5oapavVhbB90+hUCgWCT6Ha5flH/gAY7+4k6GvfY38qVOYE5Ohdd02Qp2ULFFKlgnfcygwye7h39ASW87ylo2QNTHSITabf7x1w/cEYXZOJaYyVjtjviEN5rMZ77/+cc3yaMuanijl95Ryzj4f18OTmtZ6oCLUZN1co66lQqGYHebvaLaYsQdiKSsbRWeKcKf0Wl3OfTmlQgb6moWspaoJuEJW9dlUv2AVyOUVEjFQjErSOTXU1VIoFIr5gJenKbZmDW1/9EbGfnk3+VOnyooRzpjpTd74BkfXUypYN/3gg4z/6l5STz/Fhp4hxMoCTw79GoDf2/wBCicmkPkqI0NIIiwR1seQSbjFOYEk6em4hJ7Oy4kfHqTASXRpiVP10foiUco6/3xcJ2J/bu17H6HVGKNJHGDom000/86rZiQo1Trpp+wlhUKhOPMoUWqOMGUBiGCYmZJ9TsJzynhKzTbBzE7VBlvP/dyq60/q6c8pFWZUVdonSwuGVV7klL/60zeCPFFqiVzEWUVdM4VCoZhvuAt4hOybsg3lF4k0e1KwyFPq5F/9FUZfPylgK9B3userE7frFIptqeJk5qXhe6EJRmcN206brxqKaXJg48vJJlqQo/cBsC1yMVdcuo1LOi9B10o9pSZTURrt183HdtMxbnnDdb9/B6nLLiW+cSMllWpkOmLT4hQL5wAl5CkUihmiRKkzxERv0n0thHXZJXPhKVVuAJ3qwFo6wISvvuftLfa4lvg8pfwDliyx1mpOQLnYqcVoKr5G7rUTwffWtqV9PaeKuloKhUJx9okYWbaM7SdlFjByDSDXeDs1JwSvsiiVTY+XbtTCPaXMcSvHp1lfhzaeRisUXDdyEbNemBM1ekohyniJi2CxakzxQX/ejV9Sko/VA6Al8hgZ6Ewt59Xn/WFIYav3o20p2lasgKEBBtedS78xzjkHDhHJ5zAnJsocZ2rdEu7nUC6JhWNT+RPWT+0YCoVCoZgaSpSaI4TtlqzrdTz1lU0UJqI+l3LboDpD4XszN1RqaWEqR/EtE+dzzV/oCETQPbwWQcgO36tFjCtnQLmrXoflTph/Zur8RM3yKRQKxbzhvL6HOW/gUQDyQCT2TOAWa6cztprh9+1ILA5ANm0JTULzJtTcROdGkf1lC1xGcxPaeDqYK8oWpYxBA+LFR/NNAvkTnYfs97VYuim0mFjQxlEhZ2BqUQC0hH29QxbMAdDcNAUQaWmFoQEGNl7M8eQoG46dIpKf3gqDamJujlHXV6FQzBJKlJojHJNEIChMRIP75klOqfCZvKJE59IXehcyaxQUPUpX2gtfka/StkXOLJ1y4LrbbWoi+F4xfdQlVCgUirNDbnKCRC7o5SSMMe91lcHu8he/HD0SIb7zCTjxK1pWrPI15EwKFnlZOV5XIaJJ7PwWzN4cxvgk5CqMDtJnP7lDtPD9vzyXd13BiQM77LLFYYHl3sxPTFPyk/+8n94jxzHyOYSoQyQKQFAgDEMiy3++xZNH0xREahWqBEKJWjWjrKa54GsPHeWOp7oBiEc03nbDJi5e03KWe6VQzA1KlDoLnHlRqtqgGhaqV1v4XtgqfbX3p0qeKQUQYqAWGUnF4XuV6iqKUAanQqFQzCsmx0aRtieTiY6GgZB5r4AjHJUJ32tdsYqb3vRWhr/zHU7f+SviyZRX1fWUCtZ1rRGtdEyIrqmn6c9XMvn445jfKYCul5QBf1JzL3wvNNF5iH3VVdfFidBWKzBPh69T+06x99cfAX+KCltTFGU8pdyQOqTPxpn56nsVq5VbgzqkvVqTpCsUs8mtP9nDeLbgvk/GInxKiVKKRYoSpc4G5Wbq5upwUxhMi0uWm68TIfsdgarCHJ+1ZZ4aUrPFlJJplhGYpoLpekp57u9e84v8Ys8a5ZPqKhQKheLMEYnFvRyJWgzMSTR/Nm83p1Tl8VKGLU1bLkm66ykVkgezBvyjb9hKxP4+1DwuT6EPj20QfO+Zk0R+/BpaEi184OoPsCy1rOb6s8nQ6RNYgpROQJgiQmP7xtA6/gm0csLVTMPsVe5SxXzh248c5xsPH0dKSX0iyj+8aDsbOupLyuUK1n3puds7+fnuHiZz82PVdoViLlCi1FlA4Myyzf7NJWjsyKK/tVC8pLE/M0JYziKLTTQxodnJ3EMMh6AwVtrO0pmFKrOEdU01fbkrfDZbLSLY0rm+CoVCoVjI1DW3oNvCk4ilIDNZ5Cll/62S6Nwr7xth9TKClt2WLCeI1HIYX04pb1D3jdvOljkYju+4VLC3y4SBXQDce+JeXrn5lbN/oAqkh4e4/5tf4fSBQwBEEisoZI4DIKIJYnV/QmPnhtC6ft8oN3yvyoWa6qSbu6JjlXqhic4VlVF5OafEf/zyAEcHvMT9P9x5inc9Z3NJOdO+rheububnu3vIG2fGmUGhOBsoUeosIM6Yp5TtPh4YV/1Znson25zUJ8u258e0G08RRbfDEoOyWKVQvRoTgC4UBMHTdPO5z868XNVE5yEGlJoRrIa6PgqFQjH/sAc2PQaAGD/E/7z7LTS2d3BxcZmyTYRMkGllEp3L4gm5aeATpUJtH7cTIZtMaxEcyfTsQqMoorBgFsILzgBpmhx67BHSQ4MITWP9xZdR39Lq7n/6vnt48u6fu+8jsTZPlBKalbqijB3jLgCE9OWdKspxWrZj5b8HM7WBlA2lmAscj6etXQ3s6R4rKzY5olQ8Yv0mlCilWMwoUWquCfXiPhs5pcoPrGGi1XBiBADNbw2EiB5GDO4bKkBDb+miNAGqeEot+nG/zAlOI3yv2Egq2DO8Md1Z5rj6YRWVUZN+CoVCcfYQ9qSdTHZA+jRC5hk8eZzBk8dZXd9BA5ZIUltjvoFQc+wvr25gwscRREJTQVXOgynC9lcYS/wTSRsOTLBqzZ9x1+mv4aR4L7cgXxjFZc05mPQ8uWc3P/jwP7rv1198GS//m39w30+OjQLQuWE7A90raWjfTmZ0p7XTSS9Qplve5ZK+idsqic6nSa1CU3ANRWUUhKK8yaZFzhaXVjQn2dM9hlEmFNnZqkQpxVJAiVJzRMntJZBPoNQoOpuE3QqjRpSV6XZWjnX6ypXmlNIFDBiSDOOsD7HCXBvCd5DginyLcKD3GU7TMX7K7QuE7/nKFwxre0QvDTtw6yqVpTLq+igUCsW8wfEQOBxZxvbGNzDelKXL+DWDp04gnfCuKjmlQs0Lp67/4c4vbk01yXbgeGGeUsF9xW0PAG3265ieoDXeRXDdwdowiw83B7ZVemQ4+H5oKPA+O2GFI7WtPoeRoY1EoqVTleVskYaBNbzk+LNppY6BkQdq65ASRBQLlGzeuuckY9bzYCHkXialdG8b8YhVLmcoW1WxeFGi1Fzh3jfCptMc8WBuPaW8dWAqowXcxa1ayyY7OK/3ErRC2teSJ3rE9aLWpU8mCdwz7RDCkLwKwb6qG+10cWZcorrn/u6gXM8VCoVCsfDwBB5NbyWTiBCnzreH8m437v7SkDxhe0oFhKiAh5NWXKVmXDtHhG0TgZIOj2saE4NZbliZoC5t1DZmV8h8oAsdQxpz4ilVPJFqGsEQwdxEGoBIzMovqoWk5ypn6XWcOpeGsZUAZNJGUemq8XtV9jullJ2pmB84dnsqat2Pwjyl/LeleNT6MTmJzxWKxYgSpeYIaRpAhHwmA0QD+5xE52cufC+c0JxSNkKWiklhq+8F2nNX3wv6QhW/8oSsxWUgCDGVdQ7dSoG3tXg0iSKz1fGUiuphKx0qUaoi6vooFArFvMMNhXPCvqQ/15BnQ+RPn2b0p3cgCwUiba00vehFiFgs2FYgfM9JdF7GU8pNsj39Pkt8ic6rpKoSmsBgeikM/F108nvOpSjl2GxC05CmiVmUl2vwlOU5tfv+fiLxFYwN5UuaKJcyS5jW55JuOUJ0LHg87/Czs/petfbchOj+8L1FZq8qzh4Fw3RFqFSsvChl+r5zKnxPsRRQotQc4QxgjuHjTwbpX+5WSrP88rfTIcwxy2cF1DqsajKkT6HLHJdv11oW2VGqqq12ssSpQRwJGFS+4vkiT6mwi6lmCKuhro9CoVDMF5wpHs22j0zpJSl3wvekadLz4Q8z9tM73HpaXT2Nz7vZfheS6NwZJ83wnFKyxvC90L0h4XuhY+8cDDeOqKVrOphzk1PKuU56JEohly0RpcYGrfA9YT9a5LImm08PsG95G83n38TEwfLijpPoPFvfT7TStSuqVY3QBWDUZNQsoq7lVMn5hKVkzPqthIXv+Tc54Xu1iFLf3XGCX+/vA+Ci1c284Zr1M+muQnHGUKLUHOEYT5F4nBe+869ZvmmLt094l11KY3ZFKT9hK8+EFCtOtQ3hopT0he85tkJU+L3AKgxOodm3/X5UpTNTC5XR/j6MQoHxobGSfWVNrFpm4WT4m7yTU8ox1GvrpqIC6hoqFArF2cPxOtKccU2Ck06lP52jGUuUMoaGA/WMkRHvjTuuBuL3rF2mEVKO0AmiWkWMYu+u8gVr21lOvgl76YhSEc2yL+fSU0qPRCjkshhF4Xth4ZSbeofpGh7h4As32qJUeNNCOoJjwbd0cXGi83LdqnHEdr3WarQzF745euZQnmQ14w/B8zylSn87YZ5S6WyBHUcH2drVSF289BG+YJj8zfeecJ8LfrDzFC++aCWtdbGSsgrFfEOJUnOEIzTpkQhbrroudB/MdbLzkFXuaqypUVkoc1p2DKBzmjdhcG/Z4y2lsf3rf/+X3putV8y8wSoXz1l9L1oh0bmiHOr6KBQKxXzD8ZRy7KWRgsHD/aOsBo4MTrAJODGQprnIWyf04di/0IzrKeUrFwjfK2/71Cp+SOsE8P2pmcprJZfHSXQeEXMnSjlnr0etyUhZdO3d61M00aoj3ajIcuKFI0qZWgEnf+lE/9MkhyWPdzWiGUlO3PUTbrzoAjQnL9iU+y8rvg/brryqFLPFqeFJ3vnNnfSNZQErUtgRm8ITnXuv43buqf7xHK/4zANsX97IT/78upI6eUO6gpRDJn92U8UoFLUyRy46iko4q+9ZzOHNwh5MNVMPXVGmknnleUr5Z+3CRA+LVKzO2xbasN9Amr5YNp/Zdu2ziMTi7j8tEq1aZ1rmTlGlfKEo0Xkgyk8ZVFNB2Z8KhUJxdjGMCVeUimu27SClqx05Q9x4Jk/32KlA3Ue7d7ivQ0UkR3TyCSrS/0DoeumU612t1kqxt0/l0XgmNpCgKHyPORKl7A9Ai1jCl1EiSjnHDJ5pLuKJO+U9paz9hp5HiBQAhcwwkfERBupi9DXW8cQjD9B35LCv0vQG7OnYRSoFQhmU0VQz9+zt47eHBzncby0IsL69Dt1Wa80qOaW2dDVw87mdrGy2FhFw2igm7xPYnY/GVF5sigWC8pQ6K3ii1FwmO3fc0/UqH3N4+J4esr9GF/aA8FXNDFs8N8vnvfVdPO+t73Lf7/vt03zr9m/XVLcWI6nc7F3eHswiIYnOvZxfi+c6zwlq0FYoFIp5QS434IbCJY1uYBvtUY0BJ9eQI3CYkvHMKI1AQYOICUdHjngNhYXTOXmpAvd832vPpWfqHZdhk35TfGif5kO+K0rZk55muYzis4Bui1LFq++F+cY/cXETv1g3xvOEAGT5nFJ2ovPx0V46ky9Bi6xCSxxkOJ7j4sef5FBLilxUxyiEJE+f4vhdzftpMaWTUMwfnBC9Z6xv5V3P2cz2FY18b8cJoFxOKW9bRBN89g8u49TwJFd/6O7QxOgAhs9LKh7RyORNQiIDFYp5ifKUOgv4PaVOnfoWj+x4FZls9+y07RtER9NHADBEseHglfb+X7Qn7H4XOpCLKvsdKueUUlSnnDFXkujchzKqFAqFQrGQ0LSYL3zP9vjGcCe5XK8b0/RWvHNXzasSvhfiKRV4aptBjs+wCTwRIg5VzRU1jSM6bc5lTinHU0rXHVEqeAwZksPr269dxUNbNYQvN1gYzqrUmewYQkugx7chIikKze0sH8sSsY89k/mjYhuqlsk6ZUPVirLnq+EISR0Nca7c0EZjIopu2+3hq+95r51bmONZZZR7HrB/J0JAVHMWiVCfjWJhoDyl5ozyNwFNixCNtpHPD7D/wAcBOHbsv9h8zt/Nag8KhUkADD1XpWTpjKEIEY4CXk/FtkfZm55tRPr2Ozki/AaBuxzyUhv/i4S8WnJWFBtJTpVoiKeUMqiqUEZIVZ5lCoVCcXaIxzu91fd0O3+R9FIIuBF2pomwn9xMXUBBBpNtS8jpGgO5DPr+vdS3tYEd3hbI5xkQpULErRq8l0o8zmuepKu0LeQ4ZZot8ZSak5xSdqJzO6dUiadUSPie47ElyiUvt9Htz7lz8zmIHRJpCjDPp2HY4MC6OvLcDxQdT4WOKc4whinZeXyIbN5E1wQXr2khFvGE7Eze4MSQtQrliuYkqZj3mO04MWm+761uvy6YkpPDk9y5uwfDlHQ2Jrh6Y5tbzqnjilKm5XVY7PVXsA8S1TT351FOwFIo5htKlDpLJJOryOcH3PeamMuPovINKdT/KWywD8wgypCajudViAt7YMEY16L0lVt87tJiCo6Ilc467JqEbYs4YQlhjagxqQrqAikUCsV8wZnI8tsi7lyYzyvKSTllup443r28UMjzq61ryA8ch//3Fwih8erXvtHa6fPy8dfxPK5COiUtL3JZtK2kmPBtDnPc8nt8Fdla07KApHQTneuu6Db7Y5qTe8sN3yuUSXTu9+Aq+hzLekrZ4Xutq1dSfzDJ2GAGjA4SBvS1d1EYeRzM4Zn1v0Y70+3zIrJH546ldY3+/c59fPLuA+77V1+2mn995QWA9b154afu40DvOACdjXHufc8NxCO2UOz8fjTvmkV8OaX+5rtP8Ov9/e6+T//uJe5rV5Ty3S9MCcVz0Y4oFdGFe5y5uBcoFHOBCt+ba8rcrzesfxdtbTe472PxZXPYidBYvCmsjFd7ybKH8+92xS2/KDWlIyxcZuJ67qusaSYIL7dCLKJRF7fDQtUANG2UEapQKBRnH1E0WBYYR+qWB4KT96nEUwoCY2wmlyVvPxDq0ShSmgyNDFnFCj6vm1CvqFrH0WrlwlIXVGIaY5AQrqeUE75nzEm+Utt7LeJ4r5luSJ+9AYDOZVZnVmb2uh5bmqjygGxvlkLy/Lecz1Uv24geP854/SF02+vff4ywutV7XxS+p2yl2WOJXMujg9Y9yFk177jtFQWQM0xXkALoGc0yPOHZ6U4YXcBTSvN5Sg1N2vutfX1jGbecs033qVCFkGRRTvheRBPucQyVU0qxQFCeUmeJtrbraGu7jt2738Pp7u9imtVC7KaOnLL7uH97aV0ZkmvB/xDv1SwN+QuE7zlaqCwVpRaVLFWT/Vns9F/bwK5rJsnVX+RZ7X/ItrbtXLymmWS0dJlktZxxNdT1USgUinmHPRSOi2HagQntMHrqEIzUueOmNE0027YwXQ+nUpFEQ7Byy3aOPfU4eWmiAzKXKylnFZ7JXG2YuDX9XFFV7QEpifWfojAxyZaJNtqGTHKXnzlPKYA7/+s/0YTG5kuucEMil7dLzrnj72nZvs4VparmlLJdvaQw6VjdQMfqBnbc1c1kapK2gZYZ9Vsgyi4UU7GeEGqiShHAyf10/somHjk6FMjXFPbd9ueKMlxRytvvLFBkmJKRSUvAaq2L0z+eDSQ/FyGeUmF5qNzwPV1Dc7ywlohgqFj4KFHqLKPpCQBMI1OlZI2EDLZBw6a2hOPBgbi6cWXK0r3Blff8x9BKtjmzfIt3+K98ZrWct+t6LgRCCCJ1B3nuxSYvO+ccAHpHM3a58nUVCoVCoZjvaLYndUFY4pEmI750APYr00TYGpR0PaV8Y50bhgXxVJ3Vnr0qscz4bC7H48BvP/n1pSlbJj5P9JAHwtAxOixjQpWjaLkJ4n2nMIGV6QZW9sPBFRIa5ianlNPzaDxOJBqjkM/xxJ13AHDoh9/DTHVZxYwCycwgWvScgN3ia6IUR5TSKvdbBj+YaTEdoUl5VZVhiU18OgKPIyb5daEwkci/LSx8z3l9qG+cYVeUitI/niVnOF6GlJQvdzxn4SP/atzlVupTKOYbSpQ6y2haHADTtAykQmEcKQ00LY5uC1YzJmTMkKJa+J4nRBW70Zdru7JnlkdGOm7zYeF7S2uAmwpVjSJR/FZdy5opvrZqDFcoFIqzhjtlZgtQUbPdfe0lOpdoTvie4+Hk91zwNRZLpgDYvfMRYmuWsbZgsAmvHcDykprJQ3ZFU8lrN13Q+G72fNKZODDIynqNZ8qEW67mHjhimqaTjmWoy0SJ2OKOGbLq33T5+I6Ps6t/Fy1PT9AF5ESBl7zn7zm5ZzdDT+9i7+4nKOgazgWQo6PWucRitYfvOaLU3tvhyI+h63yg1d5Z3WNMcbZZGp+B3xMJgt9nf0LxqC7IGzLw1fRuM94vvCFhhcKeGsm49drr4+zrGXePFRbuB2U8pextEU1z+6Z+HoqFghKlzjK6LUoNDt7PffddTTbXA1hi1cUXfZnm5stm4SiSSlNKgT3OzGJIls5A+F7NMfyl3lgZZwYvNNH54kHUkpuihvC9mYhLSphSKBQKxULDmQxzx0SpeR7Vrv4kXU8kN6eU/0HN9zTW0N4OQH/3KWhpYCKT52qvoPXHF7onqthNRTVDTqD8+H8qG2VMepOOxyMmg6akuUzb1Xoh9AjpRJ66TBQNZxn42RGletI9/PdT/w3A1pF6umjjdLqbdRdczLoLLubgt7/F3t1PQCxmdVQChuWNJqJRL3yvTKLz3fef4sSeITDs/enT0HMIjv2GBvEWwLlOM7dligWxch7k/oToKgWCwo/jKeWIUoHbje8nF9E08oYREKocEckfgnf1xjb+3y3b6LZFqcvXt/LtR04AntdT2Gp9/vb8FOw6lihml1OqlGKBoESps0wk0gjA2PiuwHbTzDI0/NAsilJBhO//tSpMMtQoKN0W5q4eLODU8YlSbjNL0wCYypAhqsylOpdfGVM1MBsrHykUCoVi1jBN0x3IpB2fly0I12LwPKVCEp37cHIcCeCyF76chrZ2unc9xZP334PhH3VNrxxlxBO7xZBtwveqNMdmeCtWuVY9w5iRIA/kp+FpElZDn2VRKm9aIUVRLcqGpo3AcDA/k30c6cvbJAzLG15EIt5KdiErgWXSeX751T0grVyjhiggO7og2wP5tBvCGcCfn3SaNs506qkUCOVYWlaT4XoileZr8os/EV1APrjfS3TutRfVNd503YbAMb7/6EkA8kbQMxQsLytNWGKYX5TqH8/y1QePuonWI7rm3gNUTinFQkGJUmeZrq6XMTDwKyYzJ5BmntWr30C+MMLRo7eRy/XNyjGmNv6GZySyW5p+HwJ5AEJySi1CTylE7X5K0/VoChiHFYUqNShVRl0fhUKhmA8YEjTHJtCcEBQN6TzNuQv4mm74nnRFD99kly9+L55KccGNz6OxrpEn778HE1vU0jRfGJzGjKyQKa4MpyOJIMgj8dboqn58xyEpcBi7mi7s5ednSZRybIyoFqUt0QoMB/JfCfvaWdvsz8Je2XDv6AFGciOAz9tDWuGSPUdGOX1wBCTUNcUYafo+tzcc5KbONdC9B/JpRK0hiFXsGyFEwAaq1d5SE3uKYmydKNRTyi8SuaKVP9G5/dofvheGuyJfiKeUs980ZEAE+9JvjvCpuw+475uSUQbGsyV9UCjmM0qUmitqvAfE4x1ccsnXAtuOH/8iALncwCx1RQbeOdtcqSlkQA8dtIXftT34N1T5ElW8q2Spp9SSCzebA6NHDT8KhUKhWKgY0pvI0nTLTljdJNk9btsgAU8p+7X9kCgC8TSlbesJKxxMCsHeiy8hdemldH3gH6ydmua2HRiZKw7T/gk3e4vw5disIpg4Rvh0PKUCvbBzLmg4HhyzJEq53h2a7zL4BB5HlPL9f3BygGXAwdHDpPOWSBaPxIFxpJQ88csT3Pft/W4bKza3MKzdz2ktjaTLtTVD85nO4DKVeDuVaUtN4k2DJXLNHIHHSSTu/644r3VNuMKS/3bkvNar2P2uKGWWeko5+/OGdHNOAQymrQUhLlvbwmXrWnnRhcv5s68/VtIHhWI+o0SpeUgs1gFALjt1T6nwmR3pzqz554rCLa0wr6gKN9AQyy1gSDgvA8lH3WnOys0tcKajN1Uyhqp5RRUfT+VDqIXw66PGcIVCoTg7mEjXZnDElUZzDE0U55nyJTrXQzywfeF7DpE6axU+U4DMZkn/5jcU+mxbS/jtotkZBQKhN/kc648eQosO8NyJVnav2UxB1AGSXEj5au35trq91cTshu8F8ivZs4f+K+OGT/rrGJbfV128nj889zWsb1pP+6k2YAApYaR3AoBkQ5TG9iQXPHsVT//SyTsA309GORxvZm/DPnKynVWcF965M2DfLLmJUkVFDF8icQgP39OFZ3sHVt9zBN4aPaXCcko57RcfO1uwyt64rZO3PGtjoF611fd2nxrlQ3fsYTJneThevbGddz1nc8U6CsVcoESpOWY6A1osZiXkTE8c4MDBj9DZ+SIa6rfOpBNVCLlhla1T7DheufGwROdNyw8xOBDcZjqvl6iIUul7UiwsTWs5YyWzKBRnlbGx3YyN7UbTYtTVbaKhYfvZ7pJCMS8xTImmT0ABxkwrBCU+NkhMt/MbSWubNE3X09sL3wtp0Ddk6lFrtSutrQ0RPY3M55E5q10hhBeaVmbIPP+JJ1nW14eQknw0yr61a6GpwgF9LN//OKt3PQzAZcC3czfxo3NeAEBeSkonC6uEpflLOpGN0l4VbJbGfH+icsf2CIbveT5Snlho1WlKtPB7l70bgKdOn7R3SQz7AfqCG1Zz2QvWWe3cbdU9PNnPVxujQBQ4AhzhGl6Ac7ah51Wjl06tHlBhx1DeU2VYYja7Izx54Xm+fT7PpjDhyA3fq3LNnP2OKBXmKQWeJxVAxs5qHo94ES1OH6p9d7+94zj37vOcIB4+MsSfPHMDqZiSCBRnFvWNm4ckEisByOeHOHr0No4evY3lXS8nkz1NZ+eLqEttRGhRGhvO49Dhf0cTUSYnj9HTezuJxAq2vOIU+ckI8cExGAGEEXoc1ycqPPIupKQfE9DRYw+z6vqnkYOvLzHmhGYQbxyGSae8RV1zH4PFfQlzmV8KTGFADxtYKg02aoZvCniTtArFjJFSUiiMYcocmohRKIzwyI5XYtoP2ACbNr2Xnp4fMz7+NCBpab6Siy76H4SdE2Y+k8+PkM31ookIicRqNE2ZEorZw0CiiSz4Ul0n8ELrCtKguzFFwci74XtOonN/+J6bZNt3Z9d0O+cS1upwMp9H5m0/pSo5pczJSbbu2xfYlo7HYZV7QO/YJeF7gmh2MlC3ITdBRAiQkKtxtb8AIcUdTynDDLf7porrKWXnyAyIT4Cwj+MP33O2Cf9qhr6+GgXbo8T3AO0kTB8oWImaGwyTrIiS02bnPPy4KwGqybpZZGlcy+LwPTMQvmf91e1k5MX73dX3fAuZhxFxc0qFi1iOKGUERCnr95OIevaDU63a6ntO3Rec38VPnuy2jq1i/hRnAWVJzkOSyVVs3/5RRkcf58SJLwNwuvt7AAwNPVCx7sTEYZLtkCSLTt4SpZJ9wNqydcIEqHjdMA3NMcYm68vUMQAdIUap7zqGGbnDl2fKcVE1SDUPwiQYWr9XOfSGXGo8Lngcw6cm4akoLGE6h5t2zcWNaeaRsoAQETQtGtgnZXjWs0r099/N6OgTSExamp9Ba+s1s9fZecTw8COcOvUtJAaRSAMb1r+TaLR5Sm1IaXLkyKcZHX2CQmEMhEZL8zPQ9QS6Xkck0kA83kVz8xX0D9xNZvIEup6krm4zTU0Xle3XwMA9mLKAriVZvfoNTEwe4eCBD2PKHLpex6aN7wn1RMrlBjl67HPkcv0IodPacg11dZuIxdqIxzuncZVKKRTG2LHj1Yyn91Ysd+DArYH3g0P3MzzyKC3Nl89KPxyklExMHMY0J9G0BKnUBkBimjl0PWH9BoTAMLIcPvJJcrkBjMI4TU2XUFe3id6+OzAKaYSI0N5xI8nkGnbseBWmaT3INzZezOWXfYdCYYxstgfQSCbXTEuoyudH6en5EYY5Wb0wEI0209X5IjQtPuVjKeYvhYJ3X74satkgkWgC0x5LJ6Tk0fXLaRg+Srqtmb6GOgoxjf1b6zFHfQ2FPIxpuvW9NAsFsL2mZM4WpYTwiSc+4cXZ6HOLOLFyFatOnqi+2rDbRml/hLQSnQO+ROdTICCCWX+1Sh5F0zqEk6tKQzjWnT8k0b4mpi9BhHATx3sFXSFIguGEJUV8YqFdN2Ov9tdlFOgRySqiVG2jt5jmNREIZVgpAjhiTTREWXJFJyHcED0jRCSvllPKqZt3PauC+3Vb7B3LFJjIFUjFImQL1u8kEfV5SoXktQrDsH+v27oaXVFqlqJ/FYopoUSpecryrpeyvOulrFr5Bxw7/l8YRpqenh+VLZ9KbUQIjXM2vZfv3vp+IgmDFfXHgYmi7FBukidisQnIAaJQ0l7Lqv1s2/AEXACjn3t9yBFtEcXsBIYhcYJ83DIehfCWCDYNe1ZSG3Zr5iba0aLNmIUjVo+ineQjj9v9q47zEDVTRkefIJvtRdMTtDRfgabF3H2FwhjDw48gtCjxeCf1defM+HiVqEWM889YViv+utYsR3MmUkriQrJKG+bw4U8xPLIDKQ10PcmmjX9NXd1Gt86Bg/9Gb+9PkNIklVzD1q23EomkiESay15vKU0KhRGGh3fQ138nSJNItIkN699BJNLgljPNLPn8KIXCGAVjjFRyHbqeqOlh0vE6yWRO0Nt3B7FYB6YxQSZzGomBpsXpXPYCenpup6f3dkwzj6bF2Lz5fehanCeefBtS5tD1FOvWvo1Uah0HDv4r2WwPppmjY3sDHekC+WP/RaFwLpDg4OFPkIgNMTLyKJFIA/n8CEII6uu20Nf/C7dvR/g0a9a8maGhB8jlBhAigq4nqK/fRnp8Lw2N59PUeDHJ1FpaW66qeq7+c87lejHNPLqeIhZrZWjoQY4e+xymkSWe6OKcTX+HlHmGhh4CQGhR6uo2IdABEykN6zsjTSQm8Vgn8XiH7xgGY+NPI9DRtDip1HpA0tPzYyYnj3L8xJfJ5z2fxhMnvkI83kU02kJd3SZ6en7EiuW/QyTaSH3dZiKRRjKZk+QLoxiFcSYzJ8lMHmdsfFfg3IaHH6rpGlxw/mcYHtnBiRNfAwzisS6SyTUMDt0XKHf4yCdL6v528Nfoej3xeBe6Hgc0dD3J8PBvA+VOn/6O+7q+bgvRaAsrVvwOy5bdwvET/2PdH7Q4K5a/gkRiBadOf5fJiSOYMkdry7V0dNxUcuyBgV+VFaTOO/eT1NWdw/4DH6RQGLPbfhXHjn+B8fE9ZCaPc3DgV5zu/j5ISUPDuZx33r+j66martnExBF6e3+CYUwgRJRkchV9/XfR1/ezopIaYJKIryCXH6K+fjOJxEp6e3/ilujt+2lJ+909PyjZNjr6GA/99kWMj+92tyXiK2hoPJ+IXkdd/WY0EWV4+BEMcwJdr2fjhr8glfImSgwjQy7Xz4GDH6a39/aaztU9ExGlq+slU6qjmN+cHJl0NSFjwrANVcHpFWli6Sjr+5PkJeTMPMdam9zQvVxcR6T9T2ClT2N6xLZJTANRJEoJ4a33djo+zv5VEVb3JEP7mLZzU5XLzJmJWF6Rd6z+Lf90zlNcOXwuL3g6WE5DeonOQ7y6quOVNYUnHsHsJzoXQqDlTUyg7vQoQ9/8FsnzzwPDS3Tu2peOp5RvcRw3CbyUGLZnRtBTyqo7YVifRdKUhDqNhoqA0xCbKqBC9abC0lLtHM8nN3wvJKeUEJ53U2B1Pt9vqRJO2/lCudX3rL+v+MxvAPjDa9YxmXNEKe9H4/ahiirleGRFfb9HU/0GFGcBJUrNc+rqNrBt678AcO72j2OaGQCGR3ZQKIyiaXFaW661H7wsxo5b4lCubhDWDMGE70HU/qvpBsnUqCVKhcxESX/SgAoDvjRXAHvR6vdjRu3EeI7xYWrks0kgjaF1++roxOpvRiQGkZlW0tERJpf9ErI6A8kd/Pq+q2hrvY7169/hPpD39NzO6dPfwTAmGRvfxerVb2TjhnfZfTXZufMP3YfV+vptXHbpdwPXpJjhkR3s2PE77vt1697Gxg3vdt8//vibGR552H1//nmfprX1WsbGdiOEZj+Yb2SmFGfoqoREsi5mcG2yjxbyxBvzRCZ3cejQCcbTexmZ1IDnA3BxyuCSOoPC/jfyr6sA9nPo8CcC7eVy/Wzf9m+ASS43wNGjn3H3ZTLH+c0D1wMQjbYihEYstowVy19BLNZBJNJINtvNkaO3MTl5pKSv3d0/oK7uHGLRVjQtRk/vT5EyV1RKkEyuJRZrJxppJBZrZ2T0MSKRBiKRJgxjglxugFyuj0JhpOK1OX78f0q2PfXU2wPvDWOCg4c+UlKurz1OX3sODnyQPJ8G0cXg4H10s6+k7OTkMQA6Om52H/SPHft8Sbl02lpZaDy91xU+IpFG4vEuGhq2k04fIJcbIBKpR9dTpFLr0fV6YtFWVq58DU8++TZGRh9z24tEGjHNjOudAtY1niotzVeiR+oRIsLExEG3nwCp1CY0LRYQF1KpTbS1XsvxE18GTLLZbrLZbjvkDE6d/lZNx21svJBly57P+PhedC1BJnsKw5hESpPR0ceRMu+ep5QmhjHOE0++JdDGZOYYkxnr+mtako6OmwJCvabFWbf2rRw6/HEADGOciYkDhLFyxWuZmDzCxMRhslnr3uQISUPDD3Lg4Ifd7WAJcoYxHmjjxImvkEisJBbroKPjuQwO3sfo6OMYRhqA5V0v55xz/o6xsV0IoROJNru5AS++6IuBtoaGH2J8fA+7n/6rwPbsQA+P7Xw9LS1XEY8tI5VaT1//nZhGhuGRR8nlegCBaWaor9/G2NgupCydZCjFMnYz2VMAjI4+zuioNTGwfPkrGR193F79VZJKbaCj/SYGBn7F0PCDAAihc/FFX+HI0c8wOPhr33dGQwhBJnuKTN+pskfv7b2daLSNfH6AaLQ1IH6C9Vku63h+xTMYHnnYEkHzwzWcr2IhYUrvUdcN4BOCTH2BOy/v5T13rqM3F4y57pJZukVwzPfC9zw8TykDEbFe+z2leuQg64GD9YPcf4HOphN1oX0MW13PfxxHlMpqOYYiBX7e9hAvkMHkwcLnqVtzkFq5B1p7s24LQXcfu5tbvncL65vW8/EbPk60yEu4VkycZPGClqdP0Qe07e+l+5fvR6uro/4N3qSlm1jeya2j+0OJbG8l0+dREiJKTdohzgkpEe4c6ix5fc3AI1+F+inA++46Ak5gsc/Q1ff84Xu4+yvh5Yzy8rn5efbWZXz9t8fd9/9z/xH3tT+nlObrw3i2QN+Y9dtKxXQ6GxNuOccjK+bz/qoW8qdQzAVKlFpACCHQdWvWrq312qrlXXNHVr4BCul3Q7VuRH17ruCxkRRadoINsnS6SkrLq0gazYyfPo+6lkGEaRs9pqPO62THG4H+QF3HeyoSyXku684Em8iRy6U53f1dTnd/F4DWlmsYHLo/0MaRI//B0NBvSCbXUJc6J+A9MT7+NEND9zM69hQDA78CBJoWpbPzRcRj7SB0jh//YqC9/v67WLXqdRw98hnG03tdQSoSaaRQGOWpXe9AyqDZKESEWKydrs4Xs2nTX9PT+1MmJ49hmllSqfUIttPYdJpWfYzBY+da5ycN+vrvoqnxYmKxVretnDFk9+Nujp8wWLniNa7nlt+AenVrjuXRLDDMxiZg4EscHrD2jeXqcESpe8aiXNuQJ2pXzUmNjuZLiETqqUtt5Njx/2J09HEefOg5BNHYuOEvOHzkU64A6jww5nL97Nu/m3JYHksvpLvnB+TzgzV4xEgmJ4+EilqVaGq6xBZ4Oono9QwM/toVixKJ5Wzf/lF27Xqnu62p6VLOP/8/2bXrXYyNPYWu15FKrWPjhnczdPT7DO37IkQTaOufTWQ4BQbU1W1lZfPlZDIn6Vz2QoaHf0s02kI02kyqbiPtbc9m7773c/Lk12lvfzb1defQ2no9hcIIA4O/plCwwpAaGs4nnd6PaWYoFEYpFEZJpz2xK2unGHIEAQj3/CkUrJiU1tbraGt7JgcOfCggPjQ3XU6+MEwmc9qendYQQnNf53K9AK6o4EfTEkiZDwg4ra3XkUquY/Xq15NKrWfdureSzfUxMryDycmjmGaOk6e+SUfHTUQijaTTB9wQyVRqHbqWJBprIx5rJxptob39xpLQSQfDmKRgpNG1OJFIA+n0IZ548k+ZmDiMEIL29hvZtPGvGR19wvIA0iK0tz2bWKyVdWvfwsTEEfs3t47GxgtYs+ZNZLPdFApj5HL91kOclBjGBIYxQTK5mpaWKwPHHxj4FaaZY9/+fySfH3IFqfb2G8nlBhn1CYQNDecyOXnM9t47SSZzktHRnYFzikSaWLnytUSjzTWFd3Z1vpju7u+595iW5itJJFZwuvt7jIw8ysjIo1Xb8H+HVqx4NdlsN0ZhAqFFaWjYzqaNf22H2HWD0DCNSaQ06LE9q5Am8cQK1q19S2jo3Zo1byaX67U9LeuJRhtpbDyf/oF7LGFISpYvfxlSGvQP3EMhP8ro2JNMTh4FBE2NFxKJNHHo8CeQMk8+b924/IKUpsVJJtdy6SX/SzTaUvF8n3rqz8lkTrJUcplU49Of/jQf+chH6O7u5sILL+RTn/oUV1xxRWjZz3/+83z5y1/mqaeeAuDSSy/lgx/8YNnyZ5rOprgrSDjPbxKISOe188KTCuJOcqkqXwc3p5RRAFuUMrNZMvFmxpvPY0ik6KgbR8jTAEzGfOP+FB7UnJJrxpcB/Xafra2mEGhS2qKUCJQHn7g1ha+2U7Q1btkVE4UJjo0d49jYMQ4MHWBb27baG/O36/PuiGQsiy2fioKuY6bTmP1++84Rpeyxyfcw7Q+LdHNKRX37bUFr0vaUikvphiLaJez++DfNzEunnNAU8EpX1MYSETFcUaqK6ORF/IaE71URpRwPp5ybUyq4/9aXX8D7X3QuOcPkZZ++n4N91kRYe32c81c2+dqx/g6kc1x1612MZTybcUVTgo6GODef1+WG70V14ZhLylNKcVZQotRSIOT+Zxo6IyPLaOMkmhmeWHd8vA19Mo4I7A/69gh0Tvz6z9mwsZHoxOeA/d7sFoJ8JgVRSOQuBSxhqZCzQlGEV5DoYBPUj9OWuYjly9fR13eHlYMGAoLU5s3vZ9++DwCUPKytWvV6e8Z/J48/8eaS8ykO3QEr2fCBA7cyPr6H++57RmBfU9OlrF3zZp548k8DglQ83kU2242UBbLZbo4e+xxHj30u9BpuvwgKe1YxaOkjSDPHE0/8MWDlYsn/QZr4oyYjk48DGgOD97Evfw9Hj36WhobzyGZOs3Kyl7/qnCQtjtJuW+XHWEkuc5p1DV00xerQ9RRdTa+Ee6zj/GA4xp3jST587T/yt/f9DSuatvOtG7/p9ktKwxX9rNxgGpoWZ/M5f8+yZTezdu2fIIQgnx+1vFOk5PTp7zKe3oc0c+TyQ2halFisg21bP2gn57eWwd248S8ZG9tFoTBGOr0fw5xE1+tYu+ZNbkifaeYtT5X0IUAymTlOIT9KJnPSzvHTYYVOxpYhhEZ9/RZ0vQEh9BJDMSyw8qor73Yfeh1Pr0su/kpJuaY2WPfUJ6GpCV7yWWIP7obJHNu2/jNbm7wZ8uXLX1ZSd+uWf2TL5n8IhigAHR2W0HfeuZ+wr7UkkzlBPj/MZOYE6bQl/iTiy0kkVpDPDzExcZiJycMMDNxLPj+IpsXZuPGvWL3qDfb3VqDrCRoazkMIjdbWa5mcOAJYnoHJ5CoqYZp5+gfuppAfRcoCUppIWaCx8UKami5icvKE9TuTJvUN22lqvDBQPxZrIxZrC6wCumXLP1Q8Zq3oetIV28HyDr3qyp+XlEul1pVsq6/fQn39lqL2EqFlKx1/2bLnAdDSciWDg/chMWmoP5eGhm2YZo6BgV9RKIwRiTbR3nYDIJiYOEguP0Rv7+2k0wcBSUP9dtas+SMikcbAOVWjtfVqrr3mAQqFMYTQSCRWYZp5Uqn1ZLO9jI495XpqmWaO+rrNNDZeQH39NhKJlQwNP4gQETtP1tUkk6tDjxONNhGNNgW2NTVdXFMfhRAlebd0PUXnsheUlO3qfFHZdlas+B2yuV6kmSdfGCEe60DXkyQSq9VD4DT55je/ybvf/W5uu+02nvGMZ/CJT3yCm2++mb1797Js2bKS8vfccw+vfe1rufrqq0kkEvzrv/4rz33uc9m1axcrV648C2cQxES4doQwHTlHI+qu/mZSnJxSaMK/nopVznmw8n2vtIhn9g7Vr+Pxq96CeU8jhav+xd3+8KUvJDLxAWCk2pxekS5SmuMpUYi6e9yVAoUG0kDDDFmfWJAaG+UZ9/+CZDbHJUj6Vqyo3Anf8TY0beD/nvt/jGRH+PNf/jmDmcFph/Kd3Ps0R/c+xDnH6tFbI67wMN7ZQGTEoNDTQ2b3bt9HYYftOauGaaVJl6UE096v66WeUgXb1kpMId9jtXA7V/ibxoP2ospzqpgxbvie/d31f6W81feEmzfKCIhWjshUJXzPTqJeMMLD98AK00tEde589zPJFhxRSQsIXk69A73jjGUKruAEcGokw6mRDE+fHuOZW6xoGl3T0ITAkHKpaIyKeYYSpeYI5/dsmJIj/WnWtYe7gJ8Jwm9/Aml7QAX3O0acZyx0jTzOYHIdRjRGpnhmKfTmKkteadJzq08PrkQHclnfQ5ttUUXNerZv+xBs+xCFwjiHj3yKQn6UycxxGhsvYvWq19He9izGx/cwNr6XkeGHMYwJorFW1q97G319P3e9NpxcQ3X1m62EzbJgPfShoUfqaG6+nNWrXk9f388ZGdkBWCsfrlr5+8Tiy2hvu4FIpJHt2z7MxORRBLq1+mHdBnK5QbK5XvbufZ9bF8LDrLLZlO8qe9drdPQxuBAmLwQGdEAjlVwLHHTDpADiwMoYwDAAhoSd4gLu7hvifZvewc2bXwXAUDoHePmOclIgIs2MGBorij7lzZv/ns2b/z7ks7N7aX+u0Wgj0eh5ADQ2nl+2vJ94fBnxeOmDkB9Ni1Jfd86c5eoSQhCLtc9J28HjVFlGxe5LMrmaZHJ11WsopURKw1rpyE6o0dLyjJJyU712mhZlWcfNZfcnk6tYmXx1ze0tVuLxZSxf/vLANk2LuUKjn7q6TdTBrCUmd4Q/B12Ps27dW2uqW1+/uXqheUIs1hrwEp02agUtl4997GO8+c1v5g//8A8BuO2227j99tv57//+b/7mb/6mpPzXvva1wPsvfOELfPe73+Wuu+7ida973RnpcyX8C1BowpU6iMngZx50min1OJLOQ6Jvm+4LKXssFSVjPo1uXO7dy2UOqcWIaGuAJ+1cTaWihhe+R8kxEF4/XEHENwknbQHNH77n73db9wkax8bc9yuPHEHm824OrDC81Y8l65vWA5DQrRCd6YhSEyPDfPMf/hppmlyDdV/KRR1RDSIdHRR6esg99RRc4KQycDzYSlffc36vfUfHXO8Rf/hee1Hem85CAREJuzozp1bx2y9IqftMGZbYRIJRYfU957UuhCsIBUQrZ9GAKpfMqVso4ynlRwgRyCPlxxHGRiYsD8dtXY3c/o5refjIEN2jGd7x9cfIGaYrakV0S0wzkMpTSnFWUKLUHOHcuMayBZ71b/fw6d+9hFsuWH6WelPORbnCgO+bHmwbP8iVv/1HZDvcsWIDUgifN5S/iZA7Z5gfuh0uWDCi7hfQOZy/hUiknnM2vbekyWRyDcnkGjo6nluyb+XK17Jy5WtLtq9eVd7QvvSSb7peCLpeVyI0LF/+ipI6zoPVJRd/lfHxPUhpomkx22tDI5s9zbHdh/nhT/+PaHcUZ8jQtDjXXHM/42O7yeb6OPx/78OMG0Qbm4A0q1e/nvPb2nzhaCv5xfH7OX76O7TF6hjPpzkt25B1NYghtueSogaKBuCzNRxbYpS6LSsUitrI5XLs2LGD977XGys1TeOmm27igQcqr9brMDExQT6fp7V1FsTCWcDw5RPSkBhYIlC0ROCRnjhZJBKVQ4/GiMTjFLJZxo1jYBxjTVuCyRMJOnLHOLRsDQWxDZ1mu93wdqqOEU7i8YBK5oTvafa+0gk8AUTz1kNk/5q1tJw4jm6anP5/f0988zmwsdTuCdb3h8zZD87FLmQVyBt5jo4eZeTESaRpokUiZGWOqKG5uWekEHS8488Y+t+vW2GQo6eDp+7kwvGJUqkmKx1BJu2tM1jX4k1Wvjhj0Dg+yOiz/prYY1/jhqERfr7c8cz0fwi+CzpN+2YmnlOKciyNa+lop1HNySkVIkppwdX3TFNSMKUrMlUL33MSnR8fmgCmH0bqVBuetCbJGxIRhBBcsb6ViZwXyjeRtV474Xv+81QoziTq6WeOKPaLOdA7Xq7oHBxcBB+yhb8nYeWrbCq2B8o1FSIsVXLADjMzzoartBAisFLcVNC0GI2NF5RsTyRWENWz5LL1RAkm+E7Eu0jEuwAY//xHMNNpWj5+KYzfi5TSDSVymOw5xf8OxtnUvI4DwwdYWd/ElrrS66T0J4VCoVha9Pf3YxgGnZ3B0MrOzk727NlTUxt//dd/zYoVK7jpptLVJB2y2SxZJwkeMDo6Or0O10DB9HlK+bY7nlKuyOI3c0Ie9LxE594+PRLhZe95Pyf37OKh7/wQQ44TF2m2PvEFBhtgouOPiIE7kVQ2fK8k0bkIzr3ZxwxO4HmijlVDWl4QMhi+J+zE6/sSy9hYN0bn2CAjP/yhtftv15W0B8IT6nzH04QTYlT7E+Ybf/ZGdvbtpGMoxi0sh7oYaWOC5vGY244UUH/99dRffz25yQL6m1+PkR+xW4gSNewHXp8otWpzCy98+4WkR6zvUENbgo7Vnt0VNQ2eMzEJq2+EHd8FX76tqoLHHD5Aq/A9hZ8STymzdJ+1+p61bTxb4IaP3sPRgQm3XLXwvfqE9Wh+esTK65qKhXtCVcMRv3YeHwYsUcohHvHaHLdFKSd8D6qv2KdQzAVKlJojnJtBNKKBeXaTxlUbUkONJkqFNUrKiRkO2CGu0YtMWan9bCqId0XXJOBSXvZ7tbiu45xRcm0VCsXCQP1aZ4MPfehDfOMb3+Cee+4hkUiULXfrrbfygQ984Iz0yQRfonPrqU/ieUrlRQGIBSuF2Q5O2FrRrjXnXcCa8y5gx/d+iWGMk9ljrSZqrdFiHbjecLya/EpTdTvOFDqmiGNoMSQZhE/VcnUjW6wRfi8LXxsTeavOfr2Nr116Lbd0P8yLendjDA5CJhNyVBkI33NwRKmphO/tG7IW4oia1uNBTjPcB2/p9t8r33tsjEjqtWiGtZhGvBAlMf5f1vH9OaU0wdrzvPDk0lOw83ZquvtZlnjkMzPvJi/HWG3llCBVC0vjGj11coSDfeOugOPllAr3lHKeAfecHg0IUsmozkVrmise61WXrmJ4Is9YJo8Q8KILqueUC6MlZd0je0YtIbirybu/65ogqgvyhnTPKaoJb2EJpUkpzgJKlDpDnNX43MCx/e7ijmtTad9EyKtyJcCZTaz1bla63wzxsloSTEGEqzWZp9f0kruaM0CNwAqFYuHR3t6Oruv09PQEtvf09NDV1VWx7r/927/xoQ99iDvvvJMLLij1+PXz3ve+l3e/+93u+9HRUVavDk+oP1P89pLuTpQJYrYa0s8wSVIYeCEoYZ5S7r5y2/UIGGDmLc+kU62CFqmTBupMJyywjN7lejt5TEba+PW1H8HQrbC03ywbBL7kr2XX9cL3Sib9BOiFvN1enEPNK/lBUx0vM3stUco0KK5ieUqVnqtjE0xFlHImCM9jJZCjqXeceinJxLwDSgHd6W5+dfxXZI7oCK2V1uVbueDR/0A7+BRDa+vtDkzBBnHOS+huTlNP+yozPtfavAg24a14OIVxX5kIlVnEKkbvaIYX/8d9gZC2pJ3Hyb/Nee3PKTWetb7XGzrq+P5bryEe0crmgHJoq4/zN8/fWrFMLfzdLdu4aHUzedMkHtF5yUVBcSse0ckbBSZyVh8jus9TahF/nor5ixKl5hhnzDwbP3DXxqkycIftFkWmjfP/orHdq10cLVhc12cUVboSi2lmamqikGN41/Y9mU6iToVCoVgsuPe2JW48x2IxLr30Uu666y5e+tKXAmCaJnfddRdvf/vby9b78Ic/zL/8y7/ws5/9jMsuu6zqceLxOPF4vGq52cDylAqKPtl8iu2D53G4aTcCS7SR0nRLeGNiLZ7EFlqqDnJQf8P1fCX7BD9dHeddD2qBVuQUPKUmox2uIAWQTbQSybQCRwL1TcdTypfgwLGQBJ4HlXNKeXQvFK5MH2TIz8EN35uGorLy2CQSnViugCkEmZjTjkAKwQce+AD3nbyP1UPbuIU/Zf/4PrqGHmelaZLPW95cQp9C2JHfU0pzFuHx2S+VbJ4Z3ANGc6O84Y43cGr8FALB67Z7+UfVxJ4CoHcsiykhFtG4Yl0rGzvq2NplryQdsrqeP3zPyd1UH4/QlCy/UMFcsKI5yZuv31B2fzyiMZ71wvcimj+n1NIeVxVnByVKzTnWL9yY3oq8ZwQRYrCUik9FG2TpruKUnVKUsxWKB3qJiQzds1SoRTxyDEu1csxsEn4tVQJUhUKxUHj3u9/N61//ei677DKuuOIKPvGJT5BOp93V+F73utexcuVKbr31VgD+9V//lfe973387//+L+vWraO721rptb6+nvr6+rN2Hg6WMGO97jBGGQNG0ssg/fu8VBuiIG5jrKSSz6/GNK0k2/58T2HHsVc41RtTnIhAIRJIE2615a8akpi8tOfQMPY06eRyzEhzcQN2m85kXRmByf4bsaWqPJr3lFvG6ynsTKcTvkfBJJnR0XNQAAoxHT1nh1DaeR2kgIHJAQBWpFbY52Ri2P3N5iatvmhTEKWcGEGheZ5SYZdnBkOza0P5rtKu/l3sH9rvvr/98O2c3+6tkquEqSosgevjrE7X2Rjnq2+yVkPe023l1HO8oyZyBcYyTm4mL3zPEXyqeUedDZw+5Xyr7zkJ2pUopTgbKFFqrpkHqnOY6AT+JORh+0XoS39tENWL1ZqoclGH71U499kc0BfnxVMoFIoQahxblgCvfvWr6evr433vex/d3d1cdNFF3HHHHW7y82PHjqH5kk5/5jOfIZfL8cpXvjLQzvvf/37+4R/+4Ux2PZQV8Zj76W6KPIaMP8RQfD3Do8uYNFuIUfqA5180V9phcZUlKVyRSR76JYXN4fkFzXKVSxKd+zHsf6D5j24XNX05pdwQO9+RHbFKt5W5PLor8Ahphn7lHY8uaZYKULWKUtmJNC+5s4NETncDI82oRsQOQZJSghCYAvKm5a32ik2v5NCjOba1b6Ux0QSMoNuHq5bQOXgC/pxSQW+1ckxVMAqbnCuegCo3IaUm9pYujmgT072bjPPdllLykydP846vP0bBVqg04a187YTGJeehKHVOZz0nhy0BWdcE69rqfOF7Z7NniqWKEqXOEGdyJQOBCBlAyw/e2pTUDH8K9KI9Rckpg95W/uwHpZjVzcfFjZOroYJ4Wc4ouvPonfzPrv8hm9OA19hbrUFRhe/ViEpsqlAoFjBvf/vby4br3XPPPYH3R44cmfsOzQTp2RF76lrYsvlTTG5/E/d9YRkAmpttyGePaBqOtGOaJpquV09sba8SZ6YHKJTkiHI8pYLj7nDTRk53XcVIQysH128gmtlhlRbeRJ9AIqWBafRhGgZN4xFG6gr4PaUGW7aSb72czROCrK4h46X5PiN4olTF8L0y5zfV8L2h06dI5Nx1B9FMSTxheAnaHRFPg4JpXTvNtMonogni0SR+USoRTUFuArqf8PrduR3698OP3wX5CYgm4fkfCc8pFSa+zYI4VEnMUuLTdFm81y1nh7rEfCvWOY6LppQ8dGjAFaQAnr11GY8dGwZgf6/l0zkfRanP/cFlPH16FAksb0rQ2ZhQOaUUZxUlSs0VRb9n42z8wMOSc4aWqxC+VzW5dsXDVR6mfG7tniS1iESBOTwV/3X6yu6v8ETfE0ijfL4PFY6mUCgWFW46Q3VvW2yYpumOcTtT60itGqEl6svH4neLcjb5hAZpGkC0JNQtnzUwCiZCQDwVdevI+i7yzQWY7HUdoFwhRhDwijq44SWMNG0E4OjaLaw4PuT1wZ1dguzkXZjGaXLAy+5dye51o+5+U0R44rw/xtTjnJOBjcRIp0qvQ8xeeXBSRDk+NEkH4Z5Qbj8B6Xs4dkWpGsd/aV+vsWSBdS2CZ/z0CDuv7SLjeoV4x3JFKVsg1HRBU7yJHN20RZuBYda1bICvvRKO3u8dpHUDbHqOJVQ5/M/zvNeabglT+CdMq/S/xkVgwq5D8f3DlGZg26KySRXTIu94SkW8+47weRQ5otU7bzqHt9+wiYiu8aYvPQLA8UHLE6k5dWbzSdVCLKJx4ermwDZXbJvHKWcUixclSp0hzq4mEO6lVNE3SYbITaHJzMOEJel7Xzl3gnMoZzZyMQ3/NbmWO7OzUzjxQK4oKTGkUVpIPafVxhLIh6BQKBQLCUN6q+pJO1m21LxxTjjTZn7HbU3DCZkrFm4Egv2P9PCL/97tijYX3rgaZ303GaujEE3BJBhmltzE7ZyQ3Tz3oWVMxA1M34p3Bd1eVt0JZdNjXl/dVd3ANB2xyupr81jUNQRNLYppJ0SXSEt8cZIk+3zM48Kkjixp4vSm83QA3eOTodfMNdlkqaDiD98zhodJP/RbS7ATGnXPuAK9udm+bo4nlyRixy0WdE+4cVqRGhTsz0iTtoCkCzQ7xLBeT5FnGF2LQPdTVqWm1TByHAYPQWbY2rbqCjjxW+8kYvWQaPbsosAZVgqXnBqV8m2qCbypsvhtKEd0ioeE75lSujmnklGdiF3mL2/ezKqWJAV75bvXXbX2DPd6eihPKcXZRIlSc4xzuzbmTYBuuFdUKZWTRdV2NlUTTpW0t2RnpdwJ1gri3XQGiSV6OaeOrPBOoVDMP1ROqcWKUfBEIBkQI0xAQwhPgHIQWnCyxq1ic/rASMCL6OS+IRxRyvRN7uQKfZj5vUwAKwaSAPQfPcKqbechpUS6uZ1ySBFHCr8Z7YXvOST0OjLGePD8fKvS5QXESr7CnijzrNhBBrL16LqTlNgnzkn72GaKFSObASthfW6yQHokS126Bc3UAnbFyfe8h/S9v3bf1z3zetZ89rOB6wYQsQ+T131eWM4DqxCup5SQtqeUJtwQQ2k4oXhAdsR6/Qffh/+wV3mcGLT+XvS7cMtHYey09b5jK8RSNeeUmumkkpSyNKcU3ja1WMwUWMQihpNTKhrxvg+a77aUDfGk2trVyD+8+Nwz18lZQps97VehmDJKlDpDnI3wPekzbEr2Cf+eCkJVmUG/0la/QSZDZ7dKa5tLZMCfrbMMhCoskWunWHgcH5zg737wFKOTVlLcLZ0N3Pry890VXhQKhaIYwx925wgdmFZMnQRLTDICI5/wJXI3bU8p6Vui3bFBOtc30nN41KlklZPSFVmcELYEcYZiEyRzOkbB89wybRFKyDySYlHKjz/+DzTfcsSmb1W6gi1KBSINXVFE0qGl2U4/ETufjV9EieZa7PIxWieXY9BNIW/wpb/9DbnJApfxalY0XIp5k9d4obsHgMiK5RROnaZw6rTvsKbbZUeUMjQYTznnbv2drI944Xu2KCU04dqLspCztp16DBxHslSbd34T1sp9JBph+QXWPz/29QldfS+MWbSvp7RSoWJJ4OaUKuMplQsRpRYqQnlKKc4iSpQ6Q5xRl+BghvFgP2re6r+5VpLOy8fql5YKexPcNrWk6/Obmibx3AQWtZ93iSAVnihMzfLVRGiAwKJmMmfQO5YBoK0+Tn3cGwYyeYM7nupmPFsgEdW5+dxOGhKluRCklPx6fz/Dtti0fXkjm5aVLiX/oydOce++Pvf9zuPDvO7qtZyzrIGcYWIYkr09Y2QLBpoQXLS6md6xLLf+5GnSuQKJiM67n7uZc1c0BY49kM4hJSRjeqD/iiWIMp4XHYVC3n0tccQYEJhIdNtTqgifKOWF7/mSCtgvNd22WUwQTvie9HIkOXViRMlGTZI5HWl4QoUUnqeU9d5/f/RN9DnHk94mZ6OpefesQlEOq3KjkLNinzSLwxidytbr/IRBbtIT0drTq4JCi/26+RWvoP9T/4HM+661I+YBumF1KK9JDi4XrO8GU9dBSuqPb+aFQ7/D8ca9iE4vp5QY2Gc1NN4P6LD/DjgXiDdCrM7rw6TtKRVvDD1XN9G5e56+3/gMfu+OHRQ2qacJrTSflArvr84ivkY7jg7x3/cd5nB/GijOKWX99YtS8cj8S2Y+VZzbqBKlFGcDZc3PNfaN66yG74kyiTGd3RX3ltkkQ3a5yUBrbM+3z+nhojUCZnBatYc0qkFEUZmJXIHrP3wP/eNZAFIxnXv+8lksa7TypHz1waP88+1Pu+UP9W3krTds4r79feQMyQMHBzg5PMnjx4cZmcwH2o5FNDRhfV91TfCm69YzaS+HfPO5nezrGedwf5pP//IAP3myO7R/yajOtee084vdPe62ZY0Jbn35+e77t37tUX76lFU/qgv+6/WXc/3mjlm4OoqFxJIN9V4CGP6cULojHHmeUqGfvT98z6nvehx5E2eejSFxZI/TvQNc9GCUPV1JvGyYws116eaUktL1chLSuv85IpXVonTLOe20Dk0w0QzNafBEKWclPRPDbzfZzkaubRZI7VkpA7FPNCt6mBRogW2O95gWt3Na+b3AHFFKSCKGL6eUK6xZL/RCjES2hW19V1KYsNvTBOTGgBjSifdrWw+bV8H2F4NPiCNnPeQTSYScCyXhe+Utm9ruAeXuFX4BSkPDxLRC+kKOqHJNLT3+85cHuGtPr/u+s9H7vnqeUiwqTymVU0pxNlGi1BzjDIXzJqVUACcJeciesJnIsBZCxvpg+F7pq3A5rLJEtiCZZYGtnLdTue1CCPXgVitLZAA+NjjhClJCwETOYH/vuCtKnRiykuhGNEHBlJweyfAvt+/m6789XrbNmK6RM0zXMHP49iMnXLHo3BVNFAzJ4f50iSCViGokojrDE3km84YrSK1vr+Nwf5p0thAo/+ChAfd13pA8cnRIiVIKxSJCmj7vHVv0kUjbUwqg1CNBaBpCSqQQPNH7OJ978EtcfuIYkKQgC6WeUhI03YpLG5+YZOVElIahlqD94uhAhi/HlRO+h+Up5fd6KsmjKb0tDRO4C764daSJlGDkjiHGshzVIuTNXFhrSNdTqlx4mQjs1yICsyDRpCW2uNj7RcyKq/N7SjniW8s4dPRY3kw5TZbYr/nEJJoooMsIhYwvRNK5dpF6yE0gLnsD/O6bivooPVHKlyQ+eCrW55uwr7HwZbSv3du/PGF2kSY028FtadgCs8/iu25jGcv2+N1nrOGSNS08Z3unu88Vb0zJZN763fjD+xYqfrFNoTjTKFFqzvFuXPOJ4JBsUj7mb+r9rh4QFZJTSpTbs7gRRX+nSiApZwURTBlaU2OxXK0f7jzpup5v7mygvd6aHV/fXkdTMsrO48MB0Wfcft3ZmODk8CQTuQI9owW7fj1tdXG6mhJcu6mduniEG7ctQxOCntEMppRICX3jWV7+n7+hezTDQ7aA1JCI8AdXraVnLEO+IEnGdP7lZeexsaOeqG55WH3sF/v47WHrQaijIc4Fq5r44E/2kMkHExpP2N5XL7xgOT9+4nSJaKVYKqhE54uVgj+kTPPlUnJX6S0d64Smud5GPz7wIx7pe4RNmSgJkmSNnDdOao54I0nVb2Yi00Dr8sfoOdhNxBAI3zFM+7Xf86rYU4qQROf2yIwAejtaIN8f6LHpeldJ9Oxu8um7iKThQSCh19PlfqV9323Xo6qcneadF0AkopErGAipYfpX6C0WpXyeUrlTpwBomJQ0dY8BMJ4SGJPBY5oRk5zIkCzUe55SwvAyPTjXq3hyU4+CkYP8hPU+UkaU0q1r2ihGgCQa5YS4qRFmKznbNOEkvTfdyy4Qi9d7X1EVR2x6zvZObtiyLLDP+VoUTMnO48MAxBeBp5TnkKnGVcWZR4lSZ4izkejco9RLSVLFlBchsdGeTegVqyCnBI7hX6ZYrwsrXrW9hcaUzqWGr0fYijB+NBGSB0xRmUVscB7oHefPv7EzsO1dN20GoDERoS5u/cYnfaLPeMYRpeK2KGW4QtXfPH8rz97aSRgrmpPu6+VNCVIxnYmcwSFbEOtqTPCsLct4VpFh5+cvnrsl8P57j54o6Z9hessvdzRYAls6W+Dnu7p5/MQwAKlYhNdesYbWujIPPAqFYl5jGJPua9dTSko3FUGoJ7cQCFsKKhiWYNSebGc8A6Y0+O2ph2lgFSfTJ4AUeTNPjAh6fBvH2h8jfhAiUvdNFAmkE2XXtxc+//9InO5Hio/aG61jmCGJzkWImGSllHI8pRxhy0QrDFv7tQTCzFDwe0r5Juuk8HlKudqX3zMrKErpUQ0yhhWWZnrCk2tHxOzwPZ8AaKTT9jnB7hefx4OTu9l/bpLhnl66Cs10FDopDMfJNHQRm8ySLNSTm7Duz5owvW4Z9vG0os9Js0Uph3KeUlf8MUwOk0sf8a5dGFMcv4sn5yReqJ4Sn6bL4r1uju2RjJY+D7XXx9m+vJHdp61FE9rqYpy7okyOtAWErjylFGcRJUqdIc7kD1yIgElEMDo/xG05rA2fu3rtA3/YTF7pbLYWIngtwuA9pnM2lfIWBBJwhiQxLxar1CzfVPCHICwOnDC9pmSUupjOqZEMH7/TSkTbmIy6STnTWYNP3Gl5KTkG1rIGK5zPL0rVxWobLiK6xhdedxkP2F5S7fVxbtwWLmZVImEbgtm8N0vuF6gcUWpfzxjf3nEikLcvWzB593M2T/mYigWE/2FfsaiQhXBPKVHFU8qZNHMSe7cl2hhnDCklp8ZPsoVVHBw9yHrOp39iAGc9uN/m+7kOS5SSjvDl85Qyj9wH/TtgQnP7o+EIPeUGDbuvjrIlPG906Yb8FTCF5R1qJFYTmdiPfzovNHxP+kSpsNxHflHKxjQqhO/5c0rZr00N9r7iYu7Ys4eVUclAc46Dz6nn/Nzv0PszjVHtcRp1a7GMU7tH7b56nlIUrPu0KF5lVSsaQ/R4Sf8BWH89rL+e3k/dAhxDSp+VGmIjVV1oR5TaRsUEPKVC6ilv8yoswhQITk7MMFFK1wQ//rNryRS80L3IIgrfUznUFGcDJUqdIeaPK2SYYFRKYaIHmtrK7hfFKlKVp3lRYUCX4CYUXVSyVNi1Kb4M9r5K4lHFsDxfUk6tSjnF0sIRcFa3Jvn9Z6zln368m7whieqCF5y/nAcOWqLRlx84wh47VMNh6/IG7tjVzeH+tBs+V5+ofbi4elM7V29qn1H/HUPQOY+B8Sw9o14+rPY664Hm0WPDALTXx1jVkmLn8WGG0rnSBhUKxYLAMPyilLW6nbUcijN5EL76njMC1j82yLLGOHHbEycZSbK1ZRuyD1qTLTBkJfUu2GNmXNOBAhGpeZM8UriOSHk711J+2XVgaTAIGRY27GYR9W3yrdjliGZCw8juxswfJGJaOfayUZMIYXKUU9mX6LxI7LF2BR8mI74H6cDqe44oFQ/JKeWKgRLdnjx0VyUUsLZ+Lb0cpz5ex0RLDxxcCVh5ulau1X1zkE78W3H4XtEYUi58zzmvkhezQ2BSzwnfwxOllAC1tHnq5AgnhiYZzVi/h2QsfFU9TROkapysWyh4qwqe3X4oliaL69c0D/EvG3r2qJwaMkww0kQMA4jH60srlDtKUV6oYJaqsMqiZO8ikqSAM3s+uhYcOBdTKOTcsXivUdbnev6aK9bwmivWBPbvsb2i/ILUJ197MZ0NcRqTUT5x534GbXFHCOioLzOrPUfE7Zn+XadG2Pr3PyXj85hKRnWu39zBuSsa6R/PogvB2569ieGJPDuPD5fkoVIsRirl2FEsZIy8nUTct0JeIHzPTXrtu39rGropKehQv3uU6xPtOK5Q8UicNc3nsI8e1resZ/BUHilxPaG6oikgizRM0L1wLmd/3hZyCvHl7uEEhvuqBOn+r2gcttvTBPmJnwHSTdleiCa8MjJEmvIlOhdaHZB1Swi/97njKRXxe0r5LDFHhLE9pcjnbS80EUjoHh2r45rDr6BOq2fCSGPEB4i1W2PAtauv4TlvPJd8zkDmJtF+8CdEntrNsWI7Lyx8z0+58D0b59qZbt7TIo+lqYbvhXlZFYXvFQtSyo6qwmJyLwcO9Y3zwk/dF9hWF186j8pq9T3F2WTp/NLOMsZZlZ1rOXZQQmpf8Rx6zMOk6luo9OAunOA/GSYxOe2GHavINb1MCNriocp5SSfXV23fk7BEneFXerFez7llMQzHjodRIsT1HOBN121wy+ma4FWXreaSNS2A9Z36xKsv4uiAlZB22/IGd4W+M8WmZfUkohqZvOkKUrrtIfCiC1bQ1ZTg9ndcF6jzX/cdBnDzTikUioWHdDylBGBPtpwYmsDLQF16TzNlAppfiZ7fh5HbRV02gd/WcJ6xdM0/dlp/IxEnRNC0wuMo9pSytknfcYXjDeUfi+3Xmqa5zlLCNbMF2G3ndcfe0kg3b6c5t4rJuixN/bsC5yQEaJkJsr3HOR3PML6+i8jkICSaig/tnqsjQAXC98zy4XsAFAoQjQZC+SI7uzi/e7v7flA7itliC1r2CobRmA4ndsCBH9tdaA30v9ijC31qolRd3lodsapdVOOAXZJTyvfgrftyl4UdT3lPVWNxXJ+Tw1Y+u2RUZ/uKRi5Y1cSKpjNr+5xNHB1ZiVKKs4ESpc4Q89sVMsxTKuSrUeEc/LKI46IuRaWgvaL6RV5Wi4HZzudULQRPJTqfAYtwAJ7MWQ8f5USp1a0pPvCS80L3CSF46cUr56xvtbCsIcFDf3sTfWNW7pJljQkaE9GKdRL2g5jylFr8eIL74vvtLnUMO9m3FBCxhY2nT4+wvEKYf4F6RGw9ut6KkdsVXJRFCPcer2neRJoj1cR17x4p8e4dTlqBfGg4mjOR5O+L9VrXdDCCdfzdMZzcWCJFpnEL+thapNhplZNB+SM61Is5MUZGh0xjHcmxo9BygV3W75nuiFLWWUWi4Z5SYaLUf/zzyxFdy7iUc+2+SrS8dU3GE4PUZ1rR81G3bc2fOydre9p2bEWsXw/dj7u7tHiRd22RN3c1Ueq63kuIFxrRfDmlDHMW7u2BjAqVPaUUS4u8/R3ftKye777l6rPcmzOP4ymVK5gUDHNR5MlSLByUKDVnBAe2+ac6e6NymHaiydn+alQ6f+nLwLDExJQacko5lJu9c7cXt7HELuVssBgu2W8PD/KlB45wqM9aSSksSedCoSkZpSlZWYjy4yRvV55SCsXCRdrhexLJNed0wDi01cdckciQTUBvUS3LZnE9mJBoviHT9ZRyBCjpTYbFI56941gjwpfYoOB4Gvkjx8KSDoSYOX5vZWF3ouDmPvfubaarokmf0OTViUiNgvA8ucKOBL5E55FSjzDrtX0NYxFMAZqEm755ADjA/hsm3KaEtK7TSLKP+kwrmtRdcUvze0DlrHGGhi7a3/letJYvIfMF9NZWGm68MdjFRLP3OpKw/lWgPV/HZePnBRbjyflX76txwA5bBMbFvjahic7VYjFLjrz9HY/qS/Nzd77vf/yVHcQiGh//nYu45YLlFev8849388jRIQBWNif5t1ddWDYPl0JRCSVKzTnWD/zMhu/VcjOVPtOnJPu2NdNnum/Dqlu7qg7YTt6P6v2prb2Fw5TOpcL1KTGoyrSrh4Q0qPC9Kiyi75vDv9+1j/sPDLjvly8h13PlKbUUmW8TPoqZYrjhcrB5WSMHx+GiVU3sto2SYXkVsJ9A0gB7ZbdIIYe1HIJn41jhe7ZY48z8S4EprRIJ3Z8U3F45LiBK2VUCvSwN3/NeS1/p0pxSUmi+t8I9V18J7/9Ov9EpEC5I+ROdO6F6mq7ZV0AEV99zUgVEdL50o8aFhyXndAsa0ibayLh7XGFa7eU1O6+gqXmilC7g+MPww7dB/16r3Vya5IUXsvJjHwvtIwAv/Bjs+r7Vh3XXlSY+L0JDcI6xnKN4ydjzRsgiFtOc9PVP9Gk+6UstDLN0cTylokvUQ+jqjW08fnwYsLyl7jvQX1GUGhjP8gU7bQLAzuPDvPry1Vy/uWOuu6pYhChRaq6xDY2+sSx37u5hWWOcC1Y1n9kuSEklocpaZtm/v8zNuFL4XugMot8s869GU1rfXIThe9Oh5pxSYavH+EMLpBKkpkZxromz1I1ZYGTSMuDfcPU6zlvZxHPP7TzLPTpzOJ5SO44Ocfm/3Mlla1v4z9+7ZFGJ3QrFoqd9DTs3DWOi8Ro3JA6irXtJdpuMGd6KcA4T56yGPhDSETBMXwFR6imFLb4ACT2KoWlI08R0V9UTbvW8LE1qHuopFbLFS0Iu3GHGtG0sAazvTpOrK7MoTOC+ZYtXgcEpxHvaJxxJzUSYetBT3xatTAE/vVzjp5fDP/24gS1PDiFyeVcoEqaGBHKaFT6tySJRatf3PEEK4MTDJX0pYeWl1r8pUHx1c2Gi1BQJ2E/O6sVaqadUgAVsE5wRFrLR5GOpi1J//bytvPVZG/n8rw/zybv2UzAqe507Xum6JljbluJQX3pReao/emyIP/nKDkYn8wgBf3DlWv7ulu3VKyqmhRKl5grHk8h+u/v0KG/68iMAtNXFWN9ex/tfdC7nr2qawy5UcHEqodT4KX0/k0EnzIALM+YW98NjyRV0wvdm1Gb5ROdumUViMCiqM5G1HqBecP5yrljfWqX04mJzZz0RTVAwJX1jWX76VDc9o1m6lpC32FJD5YBZfOipFDs3jyDNmDtG6pog2r6H15n/xpdPvY2+ojr5FsuWGm40iVi5ipGmEyfnC2vz5ZRyhsW4FiGrRyiYOTKFYWujqdGUtsPtvIhAl97EMEnKWUWVPaVy8TgUrD2Nk3n66yBiC20SkFoC0/WmKh7fA8myvK12+N/g8QNI8xSHHs6TzxQQWhtm/kqvis8Lzd0U1cnGGikYUdAlUkiEacluec3yOxOmL3xP12ByOHjKneH5CWeb0+luDo9YnhkjDJJNQkONdd1FYUSIKOVb5bE4z5Ri6bDUw/cAGhJR6uOWmF4tyqdgX6+YrtFWF+NQX9oV9hYD9+7ro28s677/4c5TSpSaQ5QoNcdEdcFzt3fSO5Zlp+0SOZDOMZDO8e0dx+dUlKpGuGgFZT2lqkhGzsozTg4EvynlziqGDfJC2ks/L11qOXtvlb3wT6E40bkyqGph8V2jiZwlSqWWYEz/2rY6HvzbG+kdzfKq235DOme4qxACjGby/HJPL9mCSVQXPHtLJ02pKN0jGWsVQiFY3ZpUv52FgPqMFi1JvY7cwPXoQnfv0LrmszFE6Yjp5EAq6HnXsDVd+6PUU0ogMJHoQELorLjkMvY/9Bu7ZozEZIrtIyYnW+Hk4Qy/jGzgghbvYSutZ0gaYAQclP2eVA5eonPHNkqn6mEU8po39kcN3W2lZ8tbGV47iDR+g9dg5Qm9XAR0wMgNAoNkbYcvaQyQ693s9dHuQy5v8ty9b6Qh20p3Qxunr05hZJ+GiZ9iRlpc93VPlNJ8ic4FpEesBq//K8iMwhV/XNKn2cXqz22P38aJ7o97m98Z4ab+XVy191s8b/3zaIw1lm2hRMAOOKXZ4Y9FIZKLfaJ0xiyy+/BS95RyiNjifb6KKOWsTBrRhVdnEYlSjuh2xbpWfntkcFF5gc1HlCg1xwgh+NzrLgOgYJjsODrEj584zVcePMrQRL5K7VnqgxXLNYUK1cP3PKf4yl5U7lbXUye8I97exTXATZVaPZrC3M/DHqTVw/XSYyJnPY0s1UST7fVx2uvjpOIR0jnDvR4AH75jD1998Jj7/hWXrOLiNc38vx885W577RWrufXlF5zRPisUCo+meDPZ3hfYizRYv1dd88LexnMhtpPt+mNq/vxJPlvG9kSKDO4FWgFBQUIUSOoRXvzuvyWfy3L7+7/EicENJDO/IDdh1UmPmjzKSlaMeaFjjmeSDB1iw7yZSgtajlxW2XihzqstJdlEK2IiBcUeV2XC93677i6u3NvJytRyoskkW1/4LH72X58HM43puwfmkZxoa2T/Hb9kzak8WrQBqaecHtnnlELY166gW+esmRr5vP0AGtNgwBallm2D814RdhFmjBCi5AKnIikaY1aC+NHcKAB3tndz54P/RHe6m3dc8o7wdvzvK6Q/8NtgYXaWohyL4/rkC0qUAktkAqqG7zmeVBFNEI3Y9wxjcXwXwBPY2uqtlUJVvtK5RYlSZ5CIrvGMDW2cGJrkKw8e5fjgBDuODrG2LUV7fbx6AzVSSYeo5VbhT/Bp5VWoIDyJ0jfFw79FSFJQf7+cJZJr6N+CoRZByA3fq5Dzy8klEZY/QsrwnFLF5RaJwTBnzFJ44+5To3x7x3EMUxKPaLzuqnWsbk1Vr1jEjx4/xT17rQCVpmSUdz93M/Xx0tt13jA53J/m3n193ParQximyWjGegCpiy3t27vjKeY3Io4NWnE9HQ1x+sayHB+ccH8bTtjfw0eGznxn55AfPHaSX+2zvkvNqSh/8dwtod+lhUfYQ7piMeB8pELgTpJFNbwxNSTvj7NisCG8fabhtSOHjgDNRA7fC7wUIQWG3VyjZoX3RmNx9EQcITSibZI1+4cYbMgz0dJJLiPJB75qYSvBlOZ9Eo7nufA8pULP2deMlh9Fxpqsc3evhZWTKjYxyjX3/Zzu5e2cavbCSG55+DRX7j0FPAbAihufASIGpAOJzg83JtnX1gAP/8K6XsZeuupjXHD/Y+xds4kTdVjHtav4E53nJ62xJZaIQG7MKhCrNXhu6oRdrQ8/81/ZeOkzAHj6f2/jtoc/xZHNjRxKjTOYGayp3dDwPUeUUrbSkqZgqvA98DylCtU8pQzHU0ojaq/K6a5WughwwjkdmylbMJFSqgn/OWIxWKYLjpY6a5Zn5/FhXvEZyz37U6+9mGRUp2Ca5A1JIqpz49ZlgaV3cwUTU0p0TaALEdg3MpHnUL+1ckptC/2JoKu53oY0rCWWhdYaLqhIQXBtGN+uMu+cvvSOZmigfMigOxdYdFzTlJhSki2YHOpLI5F0NSZY1ujliBnN5Pnag8eYyBV4+Mgg+3rGMUxJUzLK5193GVu6PKPp6EDa9VBb05qitS4W2p+FiF4kStXidWaakr09Y0zmDQSwubOBumk+sGbyBlKCpnkJp+cK05T0jmWRSAbGc0zkDO7Z28tjx4YxpSQe1fmL52zmwtXN02p/uobpP9++m98c9Fa+OzWc4T3P20JHQ5xUjSJRwTD5i28/Ts7nJvzf9x+mszGOYVoPPOPZAnnDLPtbX96UWFTf7elgeVl44YwAo3YS+Bec18WXHjjKaCbPyIT1ufz+lWv54m+OMDCeZTAdTKbr/JKSMZ1E1BO7NCHQhJXvxn/v2nF0iN5RK0HwOZ31bFpW+4Nb/3iWgXHr+M2pKJ2N08+HlS0Y/NV3HncNK4D7D/Tz+1eu5Rnr2wL3xt8c7Ofvf/AUmbxJRBe8/qp1XLG+lda6GCuak9Pug0IxVVJxnZdetIJYRENwErBMkmg04r4uxvHsMXRfynDf917mrd9UxBatEkLHsTwuSvlWl3J0LyGImJJUfpx8rItcRgbEJm+MqJa7szSnlAxstSfk/J7o0k5oILwpQiMShfwkeiHP8p6TdPWc4NQzt7l1Ul7aE6v82BjYSdaHxwd4euBpNrdsJmN7gEQTdeQzaaScJBLvJp4bQSvk7R5pjhuX6yklTI3chHWQWEKHvHV/Izq39wZnSs7Br+t1iSb+9KcmP2vr5FBqnLxZOfqg0rju2EvFic6Xuvd+dRbX9cn5RJalTK2eUo5XVFQTbp38IvKUcgS2+oRnv2cLpmsHKmYXJUqdBa5Y38ZVG9o4OTzJscEJAP7s64+Flu1sjNOSipEzTI4NTARUayEs9barMcH+3nF3+1sNEx1PEEpn85QOHMGbRqzh1USyJ8hH6ojIOiZyEyBgaCIXXsd+OZ4p0AiMZQo4vl5+Z3WnvxPZAsQtV8+CYVpfPF9zTk6pU8MZPvKzPezvGWdkMs9TJ0dI50rdJWMRS5Vf3ZpiT/dY6LUbmcxz8yfu5coNreia4OTQJEcGJgJlLlzdTFQTvPLSVbzi0lU8fnyYoYk8pu2BZEqYzBmMZwsYtkBWMKX12pQYUnLhqmauO6edD/9sLyeGJhAI1rfX0T45WdIn05R879ETaEIgBGwoGESAJ04MQxy+/ttj3PnAg0gs8fGSNS30aZaLuvNAPZTOc6Bgfd6nRybd1daKw0HzhskOn9fHgd4xPnfvIQzTmgWK6ho/faqb/vGgNbu6NUkiovPPLz2PlS1JpJ0Q9sTwBOOZAqaUGCYMprP8+InT5AyTvrEsJ4as89U1wa0vP59nbelg96lRjvSn+fKDRzHt78LKliSffM3FfPmBo/SPZzGlJz5KYEVzklTMWjHI2k7g2mfzJl958EjVge/efX38zfO3sqY1xbO3LrMS5eoao5k8P3uqm5xh0jHZy3Ox4uZ7hnzfDQk9oxnueroXw7aCV7ckGcsU+If/20XeMNE1wQ1blvH7V60lHtHY1tXIqWHrGly1oY0HDg1w+5Onuf3J07SkotzzVzdQH4+4njvxiBYwfHIFk309Ywykc+QKVvsXrW5mx1HrM+wZLXrqsIlogqZklERU5yOvuoBlDXFWNqeIRZa2UeWEL/7Tj3fTVhfn965c4yasXNViea/1jmXde9SGDit8ZmgizyX/9Iuy7b7g/C5+c3CA4aLfW1QXbFrWQDpbcO/rDh948bl0NSVoq4sxkM6xt3uMgmEihHCFrcvWWQLQCz7560By0SvWt7J9eSMdDXFMU3JscIJMwSSiWXV1zUrerGtwdGCC/T3j5A2Tgn2vzRuSVEwnFtEYnsizr2ec9/1wl9u+rglec/lq9veMc7Av7W7/xx/vdl//wZVruWxdC8/avIxUXOehQ4PufWNtWwpNCD78sz1k7fCeFc1JtnQ1kIjqvPKSVTSlom5bpildwz+ma4HJlalQLXRcsXBpr4/ziddcDMCxYzvsrdKd1BJFeX+Q0s2BVNA8e2E43wWcAjQvYbitaCXQ0ZFMAFG99AHD+XZpPgUpcFQ3fK/UU8q/JRvZDDxl9d2Xb9OZ4pNFdS0Me4tXZ7R9BYnTo4w3dwAnEUBUFnAC87Tin4Fhul5mj5x8mC/9+Hu8esurOcfeXde8jOHuw4DEtCdMNEfUETpJLck4OVY0W4JdNKcxtP8Q0E50eBcUbPsmcvYXkYjYbmZVRakiTzWJl9RcF3pJOSVInVmGJ3Lc8sn7OGnbUResauK7b7n6jITS3frTp7n/QD+9tp215MP3XK8n7zdTMEz+9Ks73Geu9e11vPVZm6zyumfPVhOyFhLOc0aDb7I+m1ei1FyhRKmzQH08wtf/2FoN5UePn+Iz9xxECM/98cTQJN32LHvPaLbsw6iUlhg0lhkP3e88TBuBgTjcgBciiq63Y0QaEIVJekYyRJptManCwHygN80lwKG+NNuK9vm9olIxexZTWipzJFDOE9AeOTzEE0cPhh4rFdOJ/H/2zjtOkqrq38+t6jTTk/PG2bxsZGGB3SUnRUkCJnxVkuBPXzOG1yyIiu+rAiomzIooiooJAyAiSFgyS9qcw+zk3LHq90d1V1d3V/f0zM7OTk+fh88y3VW37r1VXeHU955zrqboC8WIxAwikCZIHdVSydp59dQFfZgm3HzfJgAe25bbpfu5RPL5J3d28/HfbchZbixMi4S5xh+kj5SwFzMMrv31c/b3X4Ti1AEHekPQBLu6htjSmfK0+c+WTrx1ewk0Q384iuaFjsEwBzv78FbDbf/ehrd2GN0Pg2GneKfoD8X5yj82Ut5qCVJn3/Tvgvq9OxHi9ObbHhvTfscNk4/d9XzO9Ts6h1j9hfvGVHcmSlkeMU2VfjSlqAh4WD6jmjset/KQfPmvr6SVP2Z2Dc/s6rG/L1R7eLUf+oYjnPy/DxA+qQkqvFz6/cfQu0eeevp3z+zld89YI/keTdlTb3/y3CX8z2+fZ2fnIMPRON1DUa752ZOs355+Lp63chotVQFm15Vz419fJhRNPcwbK/zc9a51bG0fZCgSS4gXCl1TlPt0/F7rmqoP+tHH+GI/lWmtK+eZXT1sahsABnh0W+q6ml1viVJdgxHbK2pBYwVr59XlvV8A3LPhgOvyaNzk5f19rus+98cXXZcXwvrtXVnnzWg546gmrr9wGV/9+0Z6h6Pc+1KbbWzGDZNfPJ7Ks/XeMxbwx+f2EYkZ9nPo54/t5OeP7Sy8wZ3dkLjN3fDnl5heHbAEOA3a+8P2ea5ritMWNdI3HKV9IEzcMDETIrRS8O7T53PZujmHtO9CkWOH7Jn2Zx+x7GIJz564Q5TqN2oBCMc9KaEh4cVrmg5ByTUUIyEwmdhzvzidaJTpFr6XxOn2ZHmsmsrrWObct6SnlMNz3YwnanH4U+nW9uGylHfjbPayDfAQQUsaUR4PxGKY8Ri67iUehQpVAcC23m3MT7ahJa0wk92rplH3+CZi/qS3mW6LfO9f99/85ZnnMfExYDQAUN7zHMQSdql3AkQpy20s8dl5bK1lnmT+KyP7vCis7nQv/UxvKatZEb/zMg7HZ8PeXluQAnh+Ty97u4eZ0xDMs5VbV0xe2t9HfyiGApbPqM4bAdAfivK9B7elLZs9hrQLU4mUwJT6XTcfHOC+lw/a3/d0D3PSgoZEeWWH700lT6lkeGLAp6Mp61319sd3MrO2jHNXTCt58XK8EVHqCHPB0dO54OjpWct3dQ7RF7JGfdr7LWO9uSrAnIZyDMMSmqJxgz3dQ4RjBgrF0mlVVAQ83PzW28BI2T3eEV5YlYtQpRLxxBUBhyHlNJoSf8sSL8YBK+FDolyqvmRccmOFDwZJvJhkJ/5M5pRqCPo4cXo9C5oqOKqlippyL2vn1aMrRVWZB6VU4qUmTsdA2BJzgLqgjzXz6u36DMPk+Lm19AxFbS8bwzTxe3TOXtLMYDjGkzu7iRsG7//lsymXXU2xoKmCoN+DAjSl8HoUNWU+NE2hq5RXgq4pfrl+d9pxm14d4Pyjp7OjY5Cy3gGO2RrmEbMvlX1CKU5Z2GAN7JomvoS7a125j/3A+SuncXrLMURiBr9+YjfhWJweb4AuLFEuZFo5hsoDZRw0LW+QpGFdFfDh9M9QWHmF0kdj4c3HzWJWXRnRuHUO1QV9XHnSXPqGo2zvHOSpHd187d6N1szRyqonKf7Mrg/i1SxhJOl5dOL8euY1VjC/MchQJM7533w47Zgsm16FR1Nctm4O/9nSYYs4YM1ocfLCBjQFmqboHYpysD+cFhalaYnPiXMn4LVmZDphbh2nL24iE8MwmVYVYGfXEE/s6GKnwzvOKUjNqS9nvh6EPut3zsVZRzXRF4raYp1HV3z0nMX8cv0u9vWE6B2O0jsctV/ya8q9LGyu4J4PnALAh+58lt8/s9dVWPjL8/uzlvk9Gg0Vfi4/sRWlrPNRGD03XLSc166Yxiv7+/nz8/tscX5xcyVnL2nm6pPnsmFvLwCz6so5fm4dv7wmNXV68jaWvHZ6hiJ84/7NDCTE3zXz6njN8hbLY9Iw2dE5yNaDlqeR36vx6qUtPL69kx8+vJ24YdIXitrCcV3Qx5JpldYMYKbJb57cY9+DAG5+89GctaSZOx7fxVAkTjgapzMhnpX7dGbVlqMUaV6bscR9bn5jBUumVaFrCk/CpX5GjTWj4JdfbyVwNwyTrqEI3YMR/u/vG23vvRk1Zbz/rIV85JzFgBXu/OW/vkLnYCTt/PXqisUtlcTiZiIvl3Wtvum4WUyrDrDl4ADbOwZ5PLHNvsR9OpO4YfLPVw66rgO466k9uUUplRnYI0xlTEziCW+WBrrJvJsmdQRDM20By2cOEMNKkJ68nrWkV5Tjwaicoe92+F7ia0oLy/HenRmIl15QN3oT9emOmYmzvfwMzSGomElhTbPLJG0yv5HyZjTtUnGS+d2V14sZi0HcsEQp4Ixpp/E4LxOJR5JaE0pPiVI9M6v5n6s8XNExH9a/iMJPqN+yP4M1fs6s/wHtw9Ohbh6VvY/SHGxIhe95DmP4nutjOftH8CY9peKFTR7k5gHlzMkpeaWODMOJqIgVM6pp6wtxsD/MQHj0QuMfnt3HB+981v5+XGstd737xJzl+xN5OL264vuXHUe5z8Pq1tpRtzuVcMsPlfwtZtSU4dUVOzqH7EgNy9ZIzthXuKeUaZq09VmpOKrLvAWnuZgoYg6v7sqAl97hKF/5+0bAus1fdMyMI9m9Kcfk+vUFm+RI/ki45Rvx6BpxI257T+SaGj5XfieAOQ3l7I5YAkiqWLaj+ZLpVdBr5SKKbsusxbQNu2TOQJ9Ht3K9ZDqhJOyBUxY1cuVb1pKPxkorUDBfAmlNU5w4vyHnep/Hx6uWNgPwyg0ttgAY8Oqjcsv89HlLeW53D/GE4HXM7BpbOd+35QBtt+5HR7NFKa+m+Pk71tjbb/qpj/gQHD+3jj+2w9LpVVy4whIp37B6JgA/fXErX33S+i1CQ9BSVcai2jru2Q4fPWcxd23awLZeaKoIkPLhUNQFfdx03vFc+XeYWVPGF/7fOqZVB3Iet9qgj9qgj2Nn13LNqfMKPgaZ/ONDp7I3Ecq3YmZ1WhL/16+eyecvWk40ZuDzaGPOX5UPTVO876yF9vdQNE4kbnD/y20MR6xfYmZtGacuaoSDr8C3obbcy7MfexXnPreFbaEI33v7atZVV1AR8OQcCXndqtTDaHNbPx2JPEALmirSzqFPnbeEY1triSZC8k5b1IimFH98bi+RuMmeriH7YX/cnFreeep8hEOnMuDlnGUtnLOshQ+cvTBr/afPX+qyVYpMnbK+ws/1r1ues3x9hZ/VrXVpy05f3OQqnGZyw+uW09YfwjQt8bc2kQ/sXacdnnNB05Q9S+H3E7PDutFaH+Q7b1sNWOGlyZcGv1cr6D55oDdEx0DYFuGTORFb64L0haI8tLmDuGni0RSzassp9+voSvH0rm6u/9NLtuehULo4wzTvbzqNE9sfwXCZTiWZUNxQBsq0RKUys9saqDEVppH0lPIkanMOisGGPb30h6JpOegANNNMCVVpYoVbTimVVc5ndDCcVt5926g+6Fjv8MJKFC2PW4Nb9bE9We1Z/Uws8fkwh4cxjTha0hsqCnit8DZblHJ4SiVD1+LeGDqgmTqxqDWyWVbhYYnvbyzxxuH498Kjf4TIG1PhexPhKTUCeqHhe1nZT0cI31NqqqVMGn/GMeHzcGJwpDLgYTjq5WB/2BaMRsPmg1YERYXfw0A4xkv7+zBNk8e2ddE7HMWjKdbMq6MyMeietL8qA96CntelgO0p5QjfG0j8FrVBL15dY0fnkJ1WxKNptq08mtn33v+rZ/nTc/sACPp07vvwaUyrnjw5LKOO2QVvuGg5f3/xAC/s7WVn5xC7M9I0CIeOiFIlgcsNwuVBkk+kSmyUf5VyK5X8ls/V3dmtibcANE1RUz62pNBBv4cTF7iLX6lZ86xvOQodMpmzx9hVO46l36txwtz0F+bDxaLmShY1507sXOH3wPhNNjkiSaHx4mNm5i1XU+6zPfuqyry2MFAIC5srWdjsvq6hws/b17ZmLX/vmdlCiVCaaJqaVIaYGz6PNuo8ZS3VAVqq3V9aq8u9/Nea2a7ruoZGDp1NIcLV1Cb1HHu+ZgWnHv8zPr/xR0BPWinNTD5vDVQi/1Q4YoWYGaScl7SkKGWCmdhm08EB/usBy8P33X1DVDjaVc6cUs7IsWTScqfN4jKAp5khxzIz0R+Fbi9LhKAZqeskGRpo2JmnoL+vmyAw7BBPnKe+7SnlS3i3xw20pDdUzCoYiUdsQS/lKQWRxEtkWBumHOgM7mVO8GGqKwepCNenPLcqEwnhD7wA8cQ1Ok45pba1D/D7Z/YSM0xqyrxccdIcq5+OYwAQjsayZr/yGIWJUm6hemkCVAIjYa/+48UDbB+2xMKfPLKde594lsvWtXLM7PH3oonGDVsQrfB7xhSS3zsc5eeP7qA/HEOhOGdZc1pfH97cwV827LMGP3w67z59Pk2VR15UTJLMSVjm1e3Zzv75ShvdQxFOXdTIUDjG757Za+fcvPDo6a6DrEmP5DesnslPHtnBUCTOed94mJcywuvfcsIsdE2xOGGvTo1ZaccHO6eUQ2BKincVfo9tKyc9paw8tdY2XYMR9nQPMb26bMSckQ9tbrc/D0bivLC3j81tA/w8kYc24NX5wNkLKffpdqSDV9c4eWHDmH6vre0DPL6ti7hpDQgPRSwHjktPmMVRLVVZ5WOOxPcXHj2dC4+ezo1/fZnvPbiNnuHCPDOFwpErUHAl3cx3+K5n2f/ZNxxnOKCZucxVdDJTo3clOixVyF67uZSnTT0teYXGjnhkCMKkwfaNyXtZyv2uJHCLncu0I0zoG44BHkuOShSNRiOgw1DEoD/hDd0fs7Y1zJQXwAMb24E5NFb6UX12lVZTiRxnQFoouGnGCff+iJDRy6+3/42AXk6ldnx29xxfkuF7w9E4lnSkbJunMpQSaM2ECBQzsL3IjcQseNu8OicqyzPKeXnYic693sS+x1CJUMXwcAyqYFt7L0bCTtjaEaIay67403MH8NVAaGiAcqAvcJCrK79m1fe979pt3Lffx9kA7S9bfULna//cTW1NH1ecOOeQZiz74l9e5n5HKO/N923iE8NRarzp5d73y2fY9ed+3n36fOa80s5SgFgy1CjGs7t72Ns9TNdQhK0HB4jEDXsm22RY0a/W7wbd8qK+/+U2ICVQAgyErXPlwU0deKpCeILw9K4e1vft5ffP7OWDZy9kek0Zb1w9E8O0Qru9Hg2fbnmLOAWlNBstx6Drvp5hXvv1h+wX/HkNQe75wCm2N+ruriE7fNqjW97WQ5E4D21uxzBBU3DqokZ+/8xevvqPTXa9/3jxAP/8yOn29//57fNpOZt+/J8dKIU9o7VPV5bHi0dj1awaPnT2wkMaKF6/vYsdnZaoV1Pm5cyjmtLOEcNIWbWaSnlKBby6FaUBfP+h7cB2LlvXSiRm8KsnUikzntzRxY+vPCGr3cGEeNJY6acq4KEvFMsSpICs9BuHw3O/WEnOpBeOxbnsR+t5aHO7fQuu8HvslBe7u5NpLTRbqPrJIzv4ySM7qPR7+NR5SxJ5g62N18ytR1Nwzc+epHc4ak8Yc8KcOtbv6KJ7MMLPHtvBC3tTv5ffo/Hwlg4O9qfyK7/lhNnceMkK+/uB3hDdQxE8idQiHk3DoyumJfJZ9gxFiMZNLvzmw66TZ21tH0iLYkmSzI+VFNwAasqsAeu7ntrDf7Z00FjpJ+izhOTTFjeydFoVmw/2W3NNACcuqD/kQcc93UP2/s+uK0+LQHHy0r4+e4KyluoA8xuLK/2HXIGHicn0iuv+SBkpar7QB1G263rKmku5nqcMyvzu0FPqNcORxHRcyFFV0ujRGLtBKFgcAUc9QRAOBRGUpzipkLikgOPTs2/UD7zSzsnMSni5JEIuiBPGEgPiiZeLtgHrJcg0U/7bQwlPolvevIqnbt0MjhRomgmDkRgaOl2DUUg4lniiEcxkvihMhuMD+OgGrBe5zP7neoCn8lA5PKCU9fIR84TwJAQxwxuxazNU5mx7pv09onR04Nb7NuKv9hEEXtncx0z/Uez3dWAkPKrDcc3eNplnoW94mDqsr3+In8jr9EfsFg6aNbzniUY+5DmfZmXt56PGUn79n33APmbXlXP2kma6hiLEDZO2vpAt5i1oqsAw4E/P72M4EidupnLh+b0ab1w9y569N0komvIcUhn/jxkm3/znFl67vY2lwMu7+2AxPL27g4se/E/WMa5YZKL0lFixvWOQQLPlBfGH5/ZRNgNe2NuHnnhvPNBr9aUy4KG2uoyDMTh1UQP/fNJaf8t9mwHrBfAnj+zIak9TVujz2nl13PnEbtvD7twVLXz7ravpGYrQH4rxrQe2cM+G/fRlhKht6xjkhw9vp6UqgGGafDRj4pjzVkxjf+8wTztyZAJ2HqQVM6rZsLeXPd3DiT5uJxo3bUHqNcta+NuLVrIH04T9vSH2Z+T9+/emdhY2VTCztowVM6rZfHCAR7dak4V4dMW8hgpqyr3MDsWpAjoHwtQapu0Zs71jkDd979G0Om958yr2dA/xy/W7iRnWrM3JYzOjpoxzlrUAlij19nWtaMqaIffFfX38e1O7LYQcPauG53b38NDmDk75v39y6sJGvnhxSqBInjdBn87X3rSKe1+y9rUq4OV9Zy1k/fYuXtnfx77ekJVv0jDRleKiVdn5fUuVpMC0qW0gMVlMirXz6nlpnyUaJSeL8uqKs5Y08cfn9tqpLPrDsYImkDqqpZJZdeWs39HF//39FXsm8QuPns4fn9uXlod2UXMFm9oG+O3TliBUG/TxtjWzs64RZ93NVQEe3NSetvy0RY1Ul3nxezR+89Qent3Vwwd/9Yzlz5o4J6dVB9jaPpDYv9T71eIWS+hJ5pN1Trj1lw3ZeWIB1sytI26YRA2T3qEI+3qs660y4OEHlx9HTbmPhze3Y2J5Cp63chob9vRyx/pd7OketmfhBuu8fuQTZ/Ho1g42HhhgS/sAL+7rpb0vTH9GDra/f/BUFrfkjlyZbIgoNZWx7TaDguQeZ5GRDH0z71eXSpO+5YcQIjgFyfQMK3SGF7fRq8zwvVzlBAdyfARh0pG8b4mnlKDswRbDvl1XB3109mSXBGvmtOSZUeGFQQO8um69VMQgEPBbk65gzWZqmHDpcbO44pRTWdhcybOJl+pkWJ5mpiZiqfB77ATrSe9vXVVT76/mYGgXSRct00zNNOP0wEkaSklPGiugL83fCctWsl7KQuWdVCTed8q9yXqUnavTSMw6Z5omesLE6gobNAK6aRBP2AQzIj5mPH0s4eh6esutF8am6vLEcYD6oRhnPT+d4PCwfSg/EH0vv4+fzBtbB3lmVw87KlcTDvv4cuy/7N7OawxylK7xyoF+vvfvbbzz509l/igF8aV7XsGfCA2++z0nsWGvld/L86uNWWXfd8Z8ntJaiRkm4b3rAdATrvZxMxVOc8LcOhoqfCxqruQHCYeYUDSO5rVeqp8dtLw7FjYH2QNpE/ns6hrEU2F5JDQ2Bjm4H15/7ExeNXsFL+zttWcrdROkwPLC294xyPaOwbTl92w4wMXf/k/ahCtOrrtgKX/ZsJ8ndnTbyZSdJMUm54vv8hlVtldJ8sX1snWtfPSu54nEDc79xkNpdTRU+PjO245lOBpnMBxnOBJnR+cgkZhBNG4QiRt8/f7NbGsf5H2/fMa1n05u9bZzvg5fv38TDz/zIB875yj+s6WDXYl8O3VBH5UBDzs7h/jdM3t5akeXq6fK3p5hfvSf7YA1cdLaefWsnVfPC3t7Of+bD7PD4aX4idcexbtuf4qeIWsCml88vosl06r4v7+9QjRu2qJwud/Dq5Y22/ljkziXOb1thBRLplUyrTpgi5VnL2nixktW4tM1qsu9PLatky3tA4SicXRN4+1r53DSggae/PSrAPjBQ9t4dGtn4p5tXVv3JbwSk3z0nMWcvaSZ1vpybk/M7psUtOqDPj7+2qN4eEuHPUPyhUdP53MXLOXk/32A4WicXV1D7OoasoUxsPLDxgzTzkX2yoH+NNEI4E3HzeT/3nA0YImpv39mL/3hGHc/uy/n8ah0TPp1xuIm/vy+k+kZijIcjdPWFyISM7j1gS228D29pozmKr89m/PjOWZQ7hyMcPG3H8lafvtjOxkIx9jann4P8eqKwUicB145mJbM34nPo6GwZrrf0z0kopTgYNLZzU4DyDn+5PyeEbznGOgrZHdcw/ecnlJ5t506JF+sxmufXMP3nMnnnQKLqbIELyEf4m0hCJONwq5KuXanNI7wveQTTc8IE1OYHD2jBnotAcm2NxJhcJrSCHh0esMwb+5cdlsOH7bnxayGCmoSeWUaKv10OPLXKtPy3IhivdB3DWJN9ZfI+6Twodl5nqz6vLpKuWHZp2fKg8vOs+J0pjZT2yfDDy2dJBk+YtrrkukO+hLZr1CpnFK9UWgETplfx38M4AAMaRH8oU3oRtQS20yo8bUksnKZnGh6qBlMvXT1VUSp0Dz8K7yKf1k6Ae87dgHfPWshe7qH7dH8luoA33pgC68c2Jg2kg9QFfBQGfCmhYuBFZp2zOxadA2e3d1je2GEYwY+XWNuQ5BVs2oAuOe+IMpIO4gsm17NRWutCSe6oy9z4Ak4YVYtv2c3M2p9fP7staxurU3Lf/eTn2o4ZZB18+p5doMVFvTfJ8/nkw/D8hk1vNxtiU0VAY0QsG5+A1sGEzNtYfKWE6wQyzcfP4sb73mF4WgcTcHb1rZy/srpROOWsPPL9bt5epd1PAJenfefuYD/9/On2NYxmCZIlft05jdW8I23HGMfz0XNlXz/oW3EDCtvlsK6BF67vIXXrZrBObf82w4jPXpmNXe/5yR+uX43j22zTuqGCj8XHD2dr9+/Oc377G1rZ9NaF2Td/HqUUpT7PPZMZ5kTK+ma4pv3byFqGOzsHLI93nRNce6KaezqGqK9L2RN8BPV7J9nW/sg77o9XZg8Z1kLR7VU8rk/vsi/E94qPl3j1+9aR1XAQ13Qx23/3savn9yDaZqU+XTOXTHN8XtX8aGzF9nJy+c3VrBmbh3//PDp7Owc5L9/8TT7e0N8+u4X0tr16RorZlQjjI2ach//+Z8z7RDnzHySa+fV88f3npxz+6tPmcfVp6RPmBSKxu1ztzLgYXpNKqTtqpPmsmZuPUMRS9RZ0FRBfYWfxz95FkOROEpZnm4AD370dHZ3D/On5/bxmyd3EzNMKvwevvXWY1nrmIX947993j7nls2o5jtvPTYrxLi+ws9PrzqBl/b12Y8apRT9oSgdA5bHalNlgFMXpXIHK6VY7nJuXXXy3KxlWw7288LePjx6YjZkTUPXFbNqy3hhb19OYem5Pb3254+es5jach/nrZjG1T97gid2dNvbNVf5OWtJM2VenVctbabC72HZ9Cou+vYjPLe7p+gcyUWUOuxMvDBgJ9g287ed71xNd7pRGX/T23K6O2aXynBdT0+2kNWPqSakZB7jw3F/cJs9RhAEoVgpbPBjaj0rhPykDcq4eLj6PbpdzhOPE/V4iJjhxDJl2yiqerpjWbZdEvR76MAxqGRCwKcRxbRe4hMD1yoZd6T0rHNRc9TnfAlK7oEz51Cy6CAmlUlRys6onnrhT6gzlo6V9JRKlNeUssP3KivKoBeOagpy155+KoE9nmHmmdbLXjWrCNUcx1BnUrAwaUhM9DLc6uOvrdsxymNcUD2dO5+wRJqqMi9nJPIBzWkIpu3r29e14tO1RHJtOPOoJo5OiEpgCU//2ngQ07RmTH79sTPSBtDuf7nN9sZYOr3KziUEUDc9SNg52SDYYqATLXEcynwa6+bXZ633ezSGYtBU5adjuJ+g35vY89Q5Ve5LtbtyZjXrD1ieYFsGs6pj5cwafvnO7Fmiky/u7z49e9bU2y47jn9vSoXnXHLsDNcZTE9c0JBz8hyA+689zfYCqS7zopTiv9bMzpo04o6r1/LkTss7Y05DkGNHkZz9/JXTOX+ldZ1E44bdXk2ZNztx9W9uhxfhuNY6/t1riVseXeOUhQ1Mqw5w8TEz8eqKTW39dv6gs5Y02cIjwMdecxQfe81Rrn1RSrnOnlsX9FEX9PHBsxfyk0d2YpomHl1xzSnzOHZ2LVVl3rRzSRg9mqbwjWOu2oBXz+m1o2mKFTOzhR6vrlFdli4kNSVyoK1ureW6C5flbO/Lr19ZUL9OWtDASXmuuUNhQVMlC5rc93lBUyUnLqi3ZzCcUVNOzDD48K+fs/NHnTC3jv8+fb59zzx9cRNP7EgNAFy2bg7vOWNBzvaLTJMSUaoUyPR8yi4wPqet6RjRdFlr90bl6dGUetFQWR9cymSE7xVwC7FGz1LbpWaPcdaTXU5wQ46PIEw2Uo+SYjOphPHG+QxLPVKz79vRmIkPMJWBPxZj2O8nYkZAJWcWTjwn9aR45RSGXPIxpoXvWYvSB99siYnt/r0Ehp3rDMfnlPBguDxu3Gbp9RImSjLHeVL8SohSJhiJ7ib3QTlySrVOqyG0F9T+ffiiVgKs+Q1lmP0JXyHPNJRWRaB5iEg/xLUInpAV/hUPKPoqYlSaVlhTIaFNVQEv15w6L+f6VbNq0gSITM5akmPa2jEw0v0i33pn+gPD9oIbPxtqQVMFC5oOPemwR9cKmhl4dn15lgfUWPDqGnUFtHfh0dO5cM0ZOdc7cz6NJ28+fjZvPt59FldBmOw0VQYyZsDUue2y43KWf88ZC3jrmtlE4yZePffM8cX6ZjOpMiN/61vfYs6cOQQCAdasWcP69etzlv3JT35ivXQ7/gUCk2dq08mEe9ocxahPWxdvKNfZkB3FswL5RmyyWC+l3BzO8D0n+RKdFyJ2CVPx7BOEKUpSKJB72xQnw9saXGeaNez4LKflkRSHUp5Smu25pNne5MrFc8n+buI41yAe3UZk4A94hxOJoZVOu7c70VpaLF6i5ZQolZ3YwEqKDVCnNLshPRF26FOOoDM74k+5ilvJ8D0zbI2w9//jH5y16WEAAprXDmVEs8aih+clkgebMVTHlsTHYbuNSYedZy7bEB1pXDVfbs3k/cNpPxku3lgikI+EHB9BmAhqyn00VvpzClJQvAN7k0aUuvPOO7n22mv53Oc+x9NPP83RRx/NOeecw8GDB3NuU1VVxf79++1/O3funMAe58ebOCPKtElziLPIDi1zWF55QvbScXjsuG6RdIEvvZxSQMEzQxViBOa6udhGldtor1AYRXbjFoSpzKR8KRaODC4e2FkhREAsMbuelZTckXAcME0tJUp5HCJR0gUqj6eUU/AwTZPY8OMYse2ouFW3TjDD2ymzmmwbyXQ5v/1ptpRVt2ZW2RuZKlvScj62konOY/tSSbC1RBighziQmJVJWSFN/dFUXJpSllBlGFZC4UljSSj7f/mLjfLx7XZ/Sf+dxB4QBKH4KbY72aR59tx0001cc801XHnllSxdupTvfve7lJeX86Mf/SjnNkopWlpa7H/NzePnBnyoeBIPuMCkEKWcxkyBp2ha6ienWJWrCTczy81TaiRRauq8jGgj7KsbbsJT5jHJdClPhe+p7FIyu5wgCEVG3kjwVKnE32Izu4TRkBJ8zJT5kBn2rjzEbeeWNBUJsGap6w43WZvqqawVrlZLRt1ahqcUiZTZZb4g3uD5lGtHObxsXDyllMIOxMvzPFbOtg1rZ6qi5+CJJSIAVDLAT9nhe05DLRm+Z8ZTM9BpCXErEO4l6TVmJrJ2dIUH7WqVv8pqNuFNNZmshqy+5LkpjEVMStpPzpycaeF7YkONgBwfQZhsFOtVORkUEyKRCE899RRnn322vUzTNM4++2weffTRnNsNDAzQ2trKrFmzeN3rXseLL744Ed0dHUfizMh6iObO4JR//agbBkBzq880HGVyp/8uOQPgEPfXKWLl85QqNhfOCSPH8ZfDJQiCMBlI2SlJgao8MJBWwlQa8Xjys+nYxLCriJuWh1BVnVOUsp6ZqsUtWa7DU0olxa2UF5bP40X3LQLlzRo4SoojJmaiuCV4GBkuPQ69K62G6oEX0WPDjlIOT3RHjquQmdqXZPheNDF7FYCemLHPGOhx7JYV8hEilGhX2d5TZnKOOhOe3NHFwb4QR5YR7KNMcXKknFIutqm9zJmTUwyA0SPHTBAmHcV2WU6KROcdHR3E4/EsT6fm5mZeeeUV120WL17Mj370I1auXElvby9f/epXOfHEE3nxxReZOXOm6zbhcJhwIt4eoK+vb/x2IoMiOw8SpIw/1xEn0+1zbrd153o7KegIIsxMrW7kbhYLoxCcCnE/zzUKaM++l+GVN5W8zg4/xXnFCsJUxPkkGpFis7qEUeIUpSw0b+Zvruxp603MVGLyhOxTXxbi9GnfoDK6ifLGO0hOoWcmxCJV15q7daenlGlt5ewVStmzv7kNtykFKB3MaJZnlvXNcHy2/l8xtInTHv4IPz6/nObexKxkpheIo0glTI+auvWdlKdUJBIjOdF6cpwqNNRvt9kXLCNgQJ/RY3dSUx4MoranVNwwecN3H8Xv0Xj0E2e5Jrr++aM7+M6/thI3TZqrAvzw8uNprPRnlXt4cwf3vLAf0wSPprj0hFksm16dVa5wXLzJRxu+52KbpXmfJ3/jUhskFQRhSlCs965JIUqNhXXr1rFu3Tr7+4knnsiSJUv43ve+xw033OC6zY033sj1118/UV0EJocLnXtY3QjmfkYoWGENZZZzzrLnzCmVNL8Sebdi5Xxlw3L8Dz/L8o9NnVk0AuXW5XU4xCG3G45bonMRpkaHHC1BmDwUFr4nTGlsQSiVfDoWbAa2pBWyPaUctk3yUzQeptn7LH6zm4juNk18dqLzpICkmRDv6wWqrfPRPimdM+ylZ9yuN/eyJ1GthxApT6n0filMfFheXzqRVHdMjQ0zG6k7EACjFwBv+4nEeQjd8Nr16Bh2L5KilOY4TnqiP4PhpGeZZntFtcfaAB8KGAgblANxu18KXVOEYwY7OwddRalfPL6Lfb2WJ1VbX5hHt3Vy4dHTs8p9/HfPs6c7NTXhrq4hfnrVCfb3v794gEe3dgKwcmY1lxybGlQ2TNhhps/WnM+LKZdV65YCIVmXnf4AhaY0DNNgR++OnG0IGRTpy68gTGWyMxkWB5NClGpoaEDXddra2tKWt7W10dLSUlAdXq+XY445hi1btuQs84lPfIJrr73W/t7X18esWbPG1umRmATnQXK0MD1xeRLlsixz/chLNeU0zXJvYSc6d3mA6abO0r5KBnvyVlR0BCpHnkY3y/28gBPHbUQPXML3xFYoADlIgjDpGNVlOQketsJhQzkGW2yTxh/MKKQwImGgIiEMpYe8tfVZXvJ+Bdt7ImRj8rNHd7CtfZBgn065ozEFhBPP1sFIjKTA5BSvUn1MJj8P2+0HtU7LZcmErnIfgWF/2vmdlFx0M2o3OuzxsLuuCm8yPZRWiU4LccAT99u2XZoolfigOUSbhugw07r7GW5qps+sI6BNJ5II36vQq4FhvAZ0huKUkx5euLCpglcO9NMXSoUDOukatI5jY6Wf9v4wQ+HscqZpcrDfOhavWdbC3148QHt/KlohGjd43y+fIRJLWZEnL2igqcrKo/Xr3gB3mwE+aQ659uE37R4eOv7thPwx4LlEeKU7RrSSKFUY0bir2K2UoiHQwMHhg/RHLc+yukCdDOwJglC0FJsj+aQQpXw+H6tXr+b+++/noosuAsAwDO6//37e+973FlRHPB5nw4YNnHvuuTnL+P1+/P5s9+KpT/6z0jV5qOlSwLEsf1Lz1JLUMmdOqdIg3ZgZab/zJEB1mwrZQa5E52ll5MVNEIQiId9sZpllhKlOKnYuZau45E8cGgLqM8L3LDyawqMsV6oD/dGsTbd0DPLZP1g5Sc8Layx1tKtMGNb9+IFdXYNAJQAh0xKnwoFG6vtagd12i1F8dtc1Yii8mMCOukp21FXii/ba6w2SCbZTcYJGQuQyNIPQ9EXUGRWE9I0wAJqpEfbXYChn+gkzlVPK48UbsfbVo+CYXQcZnrGcR/2vxx/vI2bqgElL99nAn9DN1ItLn261qwFVZZZHVddgmFjcQNcU0bjJ9x/aRudAxBalWuvKae8PM5hoM8nB/hDt/WFbcHrb2lb+9uIB+kKp498fitnr64M+Ogcj/Pcvnqa6zMuFq6azM5J9bGKJjPa9Q1Fu3OXFnHE0mmcXQWA4ow9JBjuOZ3DfOSTnG/ybzz1X1vfP+T7PtD0DWILUKTNO4Vev/CrRA7Gh8iPHRxAmC8XqwDgpRCmAa6+9lssvv5zjjjuOE044gVtuuYXBwUGuvPJKAC677DJmzJjBjTfeCMDnP/951q5dy4IFC+jp6eErX/kKO3fu5Oqrrz6SuzE5UFkfHGQH1GWvM0co59pYYa8ISjlTREx5JsKQSbZheUoZTJL5C4oLM+9XQRAmKXKtTnFUYQZDTSJ+zVSpAL7kFkG/F18iiXd/NNtS2bjfEniaKv14IgOJelLhe6Y/BvjQdD05+R4RwngBU/PiMfwYgKFZg55GwrQ2MdFVDE/ZWozhJyDWRlzT0ONDTh/nrP4YibYNZRCvrEEbHibu7UMHPHEfm5Z9kb0De4GX7G08iX79+eRX87YnfkdwlYe27VbdsW27YYmVED659539w8zB8vRqrakkfLCfQU0ljqWHqoAlSn3ozuf40J3PuR5zn64xq66cJ3d2p3lKPby5g7f/6HFb7PLqipZqy/uprS/ENT97kpMXNHD64kYAyn06a+bVcc+GAzy5sxuA5/b0UJeIU9QdR+v5PT285ysPMBCOYaKojAxS5RuiD+gYCHPxt//DihnVXH/hMnugLjKYDAm07KPtBzzQnAz1TIXvzauex7zqea77KgiCUCwUMrA3GZk0otSb3/xm2tvb+exnP8uBAwdYtWoVf/vb3+zk57t27UJzJHLu7u7mmmuu4cCBA9TW1rJ69WoeeeQRli5deqR2YRJT2GnpTMKZU2U1M/6mkb2RXaxQH8JilXfdyHYwcykzhvC9HMcoM6eUeBIIglCM2M65+Z4bU+lZIeQkZVw7LBQXT6l5NRV0DiRKJs+fpLCkKTxYosme/igRzEQ2JSuP0p3P7AFgUXMl/h4rv1FyFmFlgsc7DJSnSV0+eljz+HW80riUtqZAYo1K+wsQ1LrQfUdRHg9gDP2K/oDPtofSE5+nvIHs5Y7VseA+dFI2wmDFDAi/bBdLHpHulmnMP+8gPYEZRA548BGBwUROJ92DjiXNvHZ5Awf3WovnBhp4hX5OCA1zUncvpzeu4tkFTTyw8aCdQN7JsulVnLaokePn1PHQ5g4AntjZzc8f28lRLZU8s6sb0wSfR6Pcp3PRqhk0V/nxeTQiMYN7X2rjvpfbuKV8FQAVfg9fuGgFZy9pZjga51O/f4GOgQjDWiJUMnFETOBvG/axw07lDsce3MTzlZX292d29fDMrh5etbSZH/9nB33DUUK91uyKwfrnGOw8hp5BDaP3aPTyjrScUq7IbWYE5AAJwmRFwvcOgfe+9705w/X+9a9/pX2/+eabufnmmyegV8WPiru7NKdwJiF32T6zmFsNLussgzCZ1Dx/G1OZwvZ45DtHrumMk8u9GQlcPZpj6utiuzNNFBkvtqV3dgrC5KXQ4RRhKpPylEolFM8UpRTJ/N7O56QzfC/Jz5/cDxXlLNa8tNaX88+Dvezcb4Vz1ZR7MVRygpKUKJVMHh4xUrVWqhDlw+0EBnZAU3KGvJSAlvzqVSG7I6adxsCZC8FtMC+9HoCYbwg/foZ9PQRcjk0ST8ALQ2Caiq7lNSyq38vBhjUwAJSVYw5bfXj10kZu/7tVh57Y57WhEGt6eqG5gqVrZvOG1TOJxA3icZOoYRCLm3h1RX1FKg3G83usUMR/b2rn35vaAWwPqHecPJf/ec1Rdtnf/L91vLivj6/9YyOdgxE+8KtnrWMZ8FAX9NlJzm+5b7MVEmhkH5uOgTBUwA0XLWfR5qcI/uGXfGju5RxIHIc59eXs6Bzi7T9cn7Wtx98FwFBYg31vIayFGTxB7h/jgtiYgjB5KNKXGYnzOUys0q2Rm1VlzUe4J2CE3ePnM6cnTpIckUpfkoNkviMcidXT2kh+MNLKj1hviVGIV1MuL6qk4HTe3PNIHtPjmo7jvccUlo9NAHmxFYTJQ2FPBnl+lBIDA68QCScmw3HxlDKTs+8pp6eU9bemLDVg0xM22esx8K6o4ZK3LkOfXkZTpZ9ZdWW8/tiZhPVyqxw1gBW+5zEtL6u4Y1YXTyIpeEO8P7VQZT9HQmZ1ciXJ50wcl+ThjglpkuF7pjIztnTbJvXXAHy+xEx/KAa95VTPGaY+8IRVLDJsawd6og+pFkBL9j8RleDzaFT4PVSXe2mo8NNSHUgTpADedPxM3nTcTF67PDUp0b82WuJUfcasfUfPquG/1szmqpPnUl3mpTLgobrMy+tXz0wr98PLj+Oj5yzm0toQH1QRnPPvHT2rhmtOmctbjp/F4nIT3TS4fHgTAE1VftbNr0+ry9kv3duPr+F+5k9L7LvhZ3dHtleaGzKwJwhCsZAariiu+9ak8pSaSugkY+GPnO6n19QC2xPhXnkSaY/qpM2UqwpN4J3ylNLQyPLdKq7rpjDcwksy9zOziNusMC7H2G0GvmkV09DUdgwTvnLaV2iqCvBcu3suCEEQhMmKcplcQyhNfH7L6yYa7SbOIKgaUJlz/ip7LhUT0yEOWeeRJ5lYHPjJ1SehPH6Wz6gm4NX554dPT6vpD4lT70VzJiuxqvLGo4SBCg8MRZITizgUIUcez3h0B+2mlVLbVBA2KkEDj6nZgpCbN5cRciyzRSkcy5zyUXLbhJiUTLDugTKfx1730/hrCJpDHFdpQgfE46k21J/eAyzHNC0BK61upVMo06rL+L83HA3Azx/dwf/+bSPRuEFd0Mepixpdt3nPGQt4zxkLcta5cmYNK2fW8Pim9UR7/WxWqd5dtraVo05Lpumwlk0zrfBEn67xuQuWccHK6UQNk+oyL0fPrGbuJ+6xjomh4W+8l6vXHM+nftWHEZppz9gn6Q7GiIRRC8Kkpdi0dBGlpjB6TTXEQHldfubRPEdc8oyOEOhnkzINE5+Uwks5ceK2EaAbchqO5u0rTZDKuOMopVzvQsWmlh9p5GgJwpEn33Vo3weLzeoSRkVtzRqOXvkDhod3webkUhdbIylKKSMl9CSdYHr3wAxA6Rw/rwm03KLLrHITulJtKBP+0RzgtH2g9JQYZof3Oc7SuDFIdOB3dCS/a2ZitjsrLEGzVSnHOVtu5UeyBKb05LSmw/PK3qu00z09PULEA2V6Ki/VBmMO/y9+LQ9cuAy+vo24mfIY082oXc5MqF+20Jbn+OTj7evm8PZ1c8a0rSuuA6q57RsTk4BX58QFDTnqy05lkbJRc1m1IroUhtyHBWGyUKxasYTvHS6SZ8QRODOyH6Jmjs+ZpQr1esq3JFflzke/ddolR8OVcziwSC8kN0ZjzBQUvpfr5Sup96V5TwmCIBQnxWpQCeOPUhoNDWcwbdob8np1mw69wTYpkieS5oF5Z8CrvzCi4LKo0hKeFnissDzNhHiimmFitgDSnJCeKtUQtphkWqkSFIqt0wZ5bFkXUVLtKTNbyDIarHAzrVzZ/TXsZ7lJRIvQHuhlINu/HG8kmuiYVT7ihYAnVYdtdXn9idpSfdGnLU/14RA8pSaEEQwalZHLK5PKln+hl28mUL3RKu8IiHTJ456jC2JVCYJQHMjse0I6s9fC9vuh9cQj3ZOc5BShTJP05OeH8oaQ3NYtp1QpkP+WMBrhymkUOWfgs6c0djm2MspXIMmXBTlcgnDEsV/JC/KCKjazSxgLac+8rPu0woxZoo2JmbVeBSrhsrsLbCj9Q0XcYFVv1FHAOt88ygA0gtqwI7WT1QcPHh5a1QnKJL7VKUolCzrD95JjwympJBm+F9PgT61/AqChx8cMKtLSVvkjEYZ1MGNW+c5KqNCtvhoouxnNl54HCkDVzQb2W33wBhM9MBMC3ul5DtAEolyGWAtVkRxUNv8HavtRmpXrNa1W24lfHv5jQ46bIExWii0XnohSwtiwNav8icvtYknfehdjYMoyBiNntKNxmeVTL3OjbloQBEEQJikaDgUha60RsvIKmcok7DHT7AvN680qPxLJzTUT/IaRWphYscOcQT1tCZEoGUpqlVMoW4Ey0kSnjPA95RSlUvXYs+85FKiqRBigbrp7Md16vsYLrXDz0GNWuw5lrqy6jGbvJtqiiwBo9T+JXlZJUpQyEp5R2rn/C2e/FjzpCcqPPDkMmozzYHQvYKbj/xK+JwjC1KFYNXYRpaYwWfmcRsFoz2czxzYpb6yUEeZewRRWUVxmCsoqkm/dCHcX21NKjKfRk+PYiqu+IBw5RpPnXK7VUiH1hFNa5jNVYaqkN5DBy7MVS3am1vqaqwtvJSP0zzRVhhVj/X+YgMvW8YyeQtwRMmfnlHLWlLAP0jzXE21rpklZrIx1bQt4hz/OvQyiuU1zDPx7hYZmmlSHhhwtWHg8Oq9vug5iw7DwHNSWvxMu+5C93ohZs9Epj3+SCVLOvcjwuneuMVM5pQqpTqmUaDgWzyvBhalswwuCMCFITqkSIz27VKaPey5RQ2V9ShpdaTPBuGxvt+H0lEoaewX1uLjJJdbZjEbOTks0757sPLM6EaoKpRTORkEoLvK+5xTrUKAwJpRKnzAlE9NfY/0FIp709Zp39EJLKFbHS0ddRlvdqozHQ+4BNtNFlIolRCkTlTd8z/qbnlOqNapx7u5zWdI7C13LbjCW2C/T47G7pCdsLcNh3isFyuuz/g4dtJaVpYQ6I+EJli32HVkKvcILtXPcRCvbMh1p8E9EF0EQioRiNY/EU2oq4no2ju4MHc1ccPnrSYpXheWUmkpx/W67MtJxHa9R/wtufRiPpojGowyEPs4WpbNu0/3MqQ/y4yuPJ+CdZIlMJwki4gnCZGA016G8LJYGzjyKLuF7RirkzRn2BqCqZxbcisdnbRszghxoWUNH/TIUn8nbn1THcotSVkSfVbfmKkpl58zSHOd2XbllrnschkXEVwkhiJdX2ss0krm1HD1VCjwBoBcG2q1lAYcolfSUKgb7y+nZlNnfXFF+Ofz4hXGgGM4ZQSgx7ETnRXabm1zDIlOIyTWqkn/2PaVG6GuBz5y8xdxySpUU47ffmYajM9H5/MYKANr7w+zvDdExEMeM1RCLVrK/N8Sj2zp5aX/fuPWl+CnV81EQJi+p8L28rlIT0hdhspCaMc3tPdgwkuasi41T1VxwK7UtUSKDf6OmwpqpLa770ZLmi5mq3y2Kzs1TyjBTZnZKjEqFoBmJsWGnp1RqMC+1L0lHKb+eqs/2TtdSnutaQhiLOzqoFKAnwhv7rTxSpHlKJfo9yTylrETnBVznyVRdIwhNTlspeWxHstWLQqibFEymdx5BEKD40huIp9Rh5og+0Ozph3OszvewVzm/jNRcWv1mwjCyE52X1AO+gH1VSWNy5LK5Zt9Ltaa4+z0nseXggL1sc/cWPvXwJ2ksayS2/yr29gwTlxwK2UwqEVkQhIKRa7dEcDwls/I0Ksw0T6mMtQXkdUyia2BEXqKiQqdnYDGm0lOilNWCVWdSbEpLdJ4tSm1U5ST9tGwhJFHCQCOk6oGoLU5Z+5Dsd2F9duZF0hN9MBx90JSCikbo3ZXqY22rvb57/z6r3GQTpWxGGFgttBaXe4Vh28mlZJsKgjCVKdZXbRGlpjD287dQwyYzKXn+wlbVzjPfdeQwI3wvR2dinZ2FdXKKk2/UrhDFO+DVWT7DkdTV70cv20cgCDGvZXAaIkqNiLznCsKRw34S5bkO5SWytHDaGm6nRXK2ORPDRZQaw7mikgNpWoYolehDWl7y5NPZEnw0R3th5U30Kz38UCXrSJSNESDlKZWoN20f3DqZELkSMw9CylPK2Z4CuOg7sOnv4C2D+gVoM4/B6w8QDYcY6u0BwB+scGvkiJH+uyXDUczMRTaFegU4Z0dMTSQt95OxIcdNECYrxfYuI6KUUABjf+i4JVPPqs00Cb/8svVZK9FcR6O4c2QmOTcLGOkzMW1DOV5sdylBEEoSuVUJKVIhV9meT8rOEJAuNSTWuiQJH7E1RxOa4Wwv32hfsvWUHTPfiNmJMlKJzl1bTNVpe1A7Cpoue6Yn20mF7yms/FCGQzXTlILGxda/5DLgdR/9NHte2gBAsKaO1pXHuHXsiDPSr6eMwkLx3DBNiA3N4eUtrdwa30xjpZ9Ljp2JNxEmKeK3IAjFSrHZUCJKTUGyZ2AbOb32qCrMWUt2uYIcrZWi7Jhj8DQ0EDz5pILaKgZGN/J2KMJfKk9CPpKz9xguo74lS8YxE/NTEI48hd075WotLVI5pbJ+egVGPCnouPjLjCJ8L4lT4NANDYOkgZ/RB6duZP9NtecxtYRM5OzuSLmP0psAR+5P56YeS5TyNDXZi1KeUs5t3dtpXbGK1hWr8vblSOP41fOUyX8vSN5PbFvJUatpwvDuK3jRCPDi5k0ANFb6OfOowvOQCRTf268gTGGK1fNTRKmSIduCKjSFbN7cU8kyJoT8lWnL+gIVVBDOqNglF5LHw5xf3jFiG8XJ+Ah+kG4kuxlhIy1LekoZYjy4IMdEECYLxWlOCYcTZ3Jqd5EpJTyMR/iecwIYb0TLtGQKfmIoV4nJ2U72MlcrzUx9MDFQaCkhIKXHORKdp45Rkb6fMNKdINekL4VhlY3GACMAQEOFn46BML3DUZfSYiMIglAcjCIZz6RCRKnDxaR68c/VF5fhxgJKOZc5RY+9M47lsz4fVZFBIrqHg83TeBf/KKiNKYlK+zMCSdf80eWUMhP/jVy7aXtKSfieIAjFQN5wnAzvB6EUsH7zbaG463IAU41PTinTMUPe0me9PDMHPBGDaIYQlL6RmwCl2cucLwqZm1v50pPJ2hPheKnM7mneVdnbp8L93DyltOJVpbJxuyeM0qaxzgdrm5jDc3xBU5COgbB4k4+GqXRuCcIUYywhzUcSEaUON0V6wy54FNCZfFTTeaJlif19jupxzSklZDOavAWZZc18RrKDZFoNSXTuxP2gyREShCOHPCYEN/REIvG/dA9zqmO583SJ6MMEMnNKjeaEsss6M5lbwpIeM4lq2atTZCeNUsoKsTMLiUPLSnSePetcemYplwQJSU+pzETnxYiy/2fj9pJV6P6l5d9MbBR3CFC+RDikMYJXuuCGWE2CMFkoVhtqss7/KowDBWeScrHB0rZ2TBOsRvncyQ79U0VsIR0GCrhzFGoUuZZzLNKSnlIiSmVTZKMJgjCVURkv5/mRa7dUOF/9kUXmy9R4vWnLtdgQRx0/zBOtv2Z73YasM0Jpozd1lQINK4yrbbq1zCkIJR+t8QEN3UgPlkjLBWVmC0vuoRUqo1QOA90tos9RQ9JTKivReVGT4xrPDN/L8Rx3t6ESnlLxZBkTj5b7vlNsHgeCIJQuxRq+J6JUCZA7qWaOcL2Mh69/zjyC00J4miJEkr51mVUW25k/ASiUi9YxQoLTURo+pllY+B6AbueUGlUTJUWxm+6CUDrI1VpqrOVxPsenObnan7Zcjw+z7MQYe5sexNDiWafGWJO+aokQPlNlz74XCvisb3HlGKxLylZOgSk7fC/9ka2yP7sULNSnVzMTs+85ay3aS8V5JHO/ZqVywI8+p1QskSBfaabtTS4C1Ggo2pNLEKY+RXYrk/C9KYn9ZHVZly9nkfvDxVNTy4zTumjTdfq3QDDkeAzlsXaUW53Fax2NmfF2/84ysO3ovdztmKYpic4FQSgKVL5HWCZyPyshrBNDz/B8UgCaly+1d/JA3TRUPGO8dQyz7xkmKBVPJntyrLHOt8EqP61nddDXXwbx9HXpGaVU5qY4HtqujBS+lwwFTKWwSuaUSoXvGWmJzovU7nLNAn/o17vzeCRzSmmaQfIHSRu4K9JDN+HIfVgQJg3Fes8XUaoEcD03lfu0wzlqyF5UgBBiFSssmfqUpJCbgsr6kJO02ffcZjEcob2kHS/hew6K9MYtCKVAPs8HuXJLEetX11zC8ap8lRwfCnP8kMkzUZN/Orcay33eNNGSapPL9qapUd4YIV6nwzZ7qbObacvMgoankuFjmYnOHXVbslTGMkcNSVEq+X0KXCg5d2GUs++ZLiJfMqeUppyeUqPvoyAIwmSj2CaCkfC9w0TNtOlMX7yUirr6I9iLcfbQcfus3NcnybocpoKFNCrSj0BuY6ewGfTcluV/cUsd7+Tse+Ip5YaZ55sgCJOVYjO6hLGTFJeUpuGNpWbgK0Oj3FdufYkOo4yI63ajaQMUmkq2oecu7zqXXnoJ+6/LqZpr0DBVt/VX5dah0jdNJjpP5JQq7nxSbmKgmxBn5lzntq3TLorHk0Jnfm9yuc/koKjPL0GYmhTrVSmeUoeJda9/C+te/5Yj3IuRrJh8qdBcJSjHkqTVlD+dWil7So2X++RI9ZhkG1puZSR8TxCEYqCw8L3SeZYISazfPDxnNiv2dBL2WN/nrTkRtETy88GDENaB5tRWY84pZQk8Ee9MMDoTS5PeUKmQuRQZJ6yZ/lzOTGWeax451/A95Qjfy7LtUn3RjGT4XmabxUx+m2Wkfcy0jZRS9vGMOTylUvcdsZEEQSheRpUCYRIholSJke287MAlmWe+7SHzYe82upSZU2qqGEnjg7KNyVGM5Cb+y1VXLpKilHMKZCH7/BQEoZgoMqtLOASsG3Ssvo7LP38rbyjX+d/Fs/A0NoIRh0WvhfZXUOFg+lZjmH3PBHRlzb7XV34GDNyFiU7WnHkqt1WlUJiueZGc27usdhG8MiegyVWhSiQ6nwqeUko57Rq3t6xDD99LOtw5PaXSWyje4zexyH1YECYbxXZVSvjeFCRzVFBhZnk0FX6ijjwGlY9S9pQaHcnfJU8i+hwu5flG9VzD9ySnVDbFNpwgCFOY5H0rv6OUPEtKjaRtoyuI+Hz01dbhbWqyluse+K9fwQeeRXv159K3G4MoBXBs8Hc0eTfZQo+pskWpEfvsSEaePROyIlBhzeKn+wy8sWGrHXuTXG1ZyyNYYYpGIoOUApSREKWyZvKbKrgckwJDG50kD0sqfM+wbyluNpKE7wmCUDwU541fRCmB7Ce5Y9SN3LPyQfp7QUEuzyX5IjE++5zLKLKX52vGdHhKiQAjCEIRUNitSu5npUNCQEgmqc7x08875njmHnMczfMW0rryGBatOWnULZkmLCu/lzfW/w+eeFda+87P2UKTs4SybZ5cpTxeywwP1kFw6EDaunQD3Uz9SXQjqkIA9MS77R4p0xKokrqKNlVMrqSj1CFUkZ7qIDvRubJTHBxCIyXHVDnBBGHqIOF7QtEyHo8U04R9kS4IVNnLDDMunlIjYbvpj+K4KPfyI9WhJyxcySnlIIdIKkdIEI4chY1dyLOk9LB+80QqqZwDLMGaWi75+HWH1EbaEmUpF2nBXxnJyF1JW+VMdO4YSMqITstVd/KziYlmWKa7blp/42bcsXHCqyshaRVz+J7rNe78zUc5+1561enCplIpAU/C98aA2JWCMOkoNg9P8ZSayow0E0nOh62Z8Sn3iKBy5KHqj4ey6snOKSUPeFfy/FSHYhQ5QzntROcyDCgIwiQmdduSe5WQjWaLUhPUoOmWiNFpF7k/o1WG6pRZKkv8sJ2h8nthaQnT3Wv6EuUTlpoJKpHoPD0FevFSSP+Vfdzcj5dtB7msNoxkGUdOKRFYBEEoYor1vi+i1BTGdQaXAsifUDOz8Eh9cPGUKtarZQyMVqXOZwy51mU6pjnOI/iZmGhaMtG5GFzZOOVXQRAmAwU9iuR2VjIkn3HJ8D3jMP74TttFJWbhM9MeEKlk5FnPjfy5zfNKWM4CzpxStqdU2i67DBQmPKWMKeAppVyOt9tNIWfqrZz1psL3ktUph2nq5k0uQlUOivf0EoQpS7GG74koJbiQfhbHzdrUl0zHJ8cppOuV6euUEk8pRnhmJ8P3xuGwjBi+J/kSBEEoAgrxDpWwmlLEsjf0xLfY4bS40+qOZ693EY4yV6bNk6tU/gE/hxHg7uXkls1bZS1L5pTSNUWl38PrV8/M3eYkJxXtWNjvPJJw5JZTyjAd4qLtKTXangoyOiAIk49iuyolp9RUJK+t7gzNyzZoUnWklg0bK2iPXE+bvhN4OWdbSq+GxGwwAJp7wN9IHZxSKNszbESXspGx01CoNK+odEPLpf0EyZAHySnlpHTORUEoNgq7Lcr9rHSw7td6Rj6gw0Ga9DNi+F7ere1PXbXLgf0Ft+1MUp53HhOXHFSvWjaNDW86Z8S2ioKUhpQuPNn7nUwmP5oTIiFKpYXvWZ+dA3f5PNAFQRAmI8U6aCeeUiVAvpwHruVNM22kzkQjbKym3xjdDDbKTYwpsQf8qMP38pR3W2diFuxWngzfG464jPqWOhnHUFz1BeHIIYnOBTfs8L3DOMDiln7IDt9zK++yolvvcy0ZDtSnLRn2DtmfTVRqLNC+AByxZTmG+HL1CzUFzPtCBvSgcE8qsgUtw3GI1WE8rwRBECaK1COkuO5lU+CpJUwYZrbx4xxFyjIdzBw5pUqMQsL38m+fv4ztKTVCTqlk+N7X7t1E50B4xHYFQRCOBCl7SpJKCU4SnlIcfk+pdLI9pdI8zbPMHGtBy1BLhldzekGnKOV0B8oXvud+SbjkRPSWuxUsOlJO+3kluNHV6Qzfc0l0LowGOWaCMFkpNutIwvdKAvfT0jaQ3NQk2x06P8nZ93K9O2QtVsXqVHh4Gc0xGesRPH1xE795ag8AW9sHqa/wj6meKUWGESpnpyBMHvI+f+QFsmRJjqYe1pxSaYnO3cL3HKUyuqGbiou3vBlNj9nLLHsrexzYFq2c4lXio+as2G1fzbQ/KE8ZrHobeHyw5t05+1wsKNfgSEf+rGROztHW6zjW6Z5Sibybjvg9sQkKpMg8MgRhKlOs5pGIUlMYM6EtpT/WR8p/YDEu57MC08ysSWVXXqQXz3iSSmE6hvC9ArXw81ZO42v3BtnWPijhaYIgTFpGZ1DJvax0yMgpNUG/vTKzQ96TYoWmzKwT1gQ8pgeDWMZGuU9sZ1L05ICh2+x7eW04Xzlc9K2cbRQtI5iwyQTyIyY6N7MrSk90TmLZGPspCIIwiSi2Vz0J35uCZI3sjFL0cU/cWajvVDpus+95vNZpV17lAyBQ7h1dB4uJjN0/lPtDToPLkQB9pG3HzwF+qmHm+SYIwsRSyCxYMppRaiQ9WZKz7+0JRfjYxt383/b9DMdzezONBWdeoaQ45BwAyndqqrTPyv6Unc4gfwVJW8w5a18eh6mp59XjJuLluSmMNEDnOvueS6Jz1wHAYnu7myiK1SVDEKYwxfosEFFKcIney/XwdTnJ8z2QcuSUUokn/4rTramKfWUl7LA3Vvdzt5n2CjAOkjkTxL4SBGFKIDezEsJ6ftV4rN+8KxrnZ/s6uWlHG//o7B2nJgp9Gucp51xl5lqRjjPRuZlM6O4MVXPfyK2RKUXewVA7K33+38x1oDa5qTN8L7FQPKXGghw0QZg02Pe34rouS1gNKAWc7t7ZD+38o3aFncgq88k+UhslOKqiDvGekCk2pSVONfOH72Vvm9pOgMzrovTOTkGYfBRyn5JrtfRQiXHU5eXwzSWz2R2K8MeDPbwyGKIzkgqV64rG+MzmvXRGYuhK8e7ZjZxcWznq1lK4hc45c05lnKdmqmzyGWw648Ncm0t577h2Iasv2UsKGZgqflzSTRQYvudWT1KA0lRqVkczzUtubMc0YhgYJniUwqMV7+/yUFc/W4etiXGqPTrnNVbj08SfQRCKgWJ70xNRagpjumtRFnmfkaYjp0GqoKa0rAEplWaYudWUv51SoGCXfatwnlW5hD+nS3r+bVX+ccfSRUQ6QZh0FHJVFppTT5gC2EnB4Y0tdYAVwvfKYIgBR/jenw/28Nu2bvt71DRYEizjig3bORCJAjDD72VZRRmNPg//PbvJ5UU7f6jeS9Pnwl67Yzm7nJ4VKn9Oqcx2PMR4Ff/mhbKVDMZjgAfDhGGvoixq4iJjAdATjTGYOB61Xg/l+sgiwnDcIJKIZQvqepqQsm0ozIPd/ZimNYvvqxuqmOb3jVjnoaJUtv3kJjzFEhPuRE2DS5/dypun1XFxc21BbRhGKn+XyuNJbmISN032hCKYQLmm0eR3Tz3xnV0HuWHrPgwgqGvctWoBx1Qd+dkQ94UiPNE3CICOYn65nwqPTq1Hp8Kjp5V9ZXCYf3X2c93WfWnL/9/MRt4+oz61QFVD2Swwy2EoRJmmMSNw+M8NQRByU6wyuIhSJYoJDBMARtSn8jPCCJBb+J69Tt4lHLkjRncLcRu9K2REL+WBMKrmBEEQJoxiNaiECcJMCVCVuvUy3RaO8o2dbXRFY3x3dzsATT4PByMxOiIxHujqs1/IAXaHIjzWO5go56U7FueJ3gH6vA10vOpSIvVNvPm571vNacnBnNSDc0vTDIcolY6hKR6ft5D+Mh9L1QAr9gMus+9FNJ0uL8SVewSargzW8hQ9DeW8MjAMVKKAmA5EU+aZkfgUNkze/eIOfn+wJ62enyyfS5PfQ7PPi6bgmb4hOiIxDkZiHAhHeWlwmKf7htK2eU1DFUFdZ5rfy627Dqatu36rxk+Wz2VRMECL30vYMBiIWb9Jma4R0BSf37qPzYOWh828ch/XLZiBnjbrndXn+zr77Lb9muK/ptXTnBB72nQPXzm+iTcd6ABLS+R3bd384OWdfGzuNKoT9T3fPAPYgGHCv7r72TwU4uLmWvpjcfpjcaJaDYYaQjOHMbQq1g8EiHsaARg0rNegQTNAbyye1rckcb2GtpiPM5/YyMbBkL38Q63NXNxci0li0pnEZr9t67bnaxyMG3zg5V0JAUjj0/Om2/vnJGwYtIWjbB0K8+Xt++mIxFAKTqyp4PS6Kj6zea8tGlZ5dJr9Xso0jYXBABW6Rovfi19TfHHrfntWyuUVZfxs5TwuenozLw+GcprzAU3xz+OPosXv5UA4yrbhMG97fptr2e/taed7e9pTCyreACe8AQzg8VcA+Mrimbx9ekOO1gRBONzkE9gnMyJKTUWyprl352mWE48aNETngN9R3sw/QpgLLaOwrgyGjDIGKSPIsLWweSnsKq1XjoL2dhQH2ilgWYZQvhAX99bFuyBBSYQ7CEJxYQvskuhcSCP7N6/wWELPD/d2ZK0LJ2KzXhoM8Y2dlrDy6voq3jytjpcGhnmgq5+n+4a4duPu1EZ6OcxfnsOad9pGuc+/uNJ4au4CAMrbdiREKVxn6fvUCg21rJbagSifeCi9nm3+GaxlN02RLoaUJ31DIKpZRnwksaA/ZmQJUgBXvLA9Z19z8beOvqxlc8p87BiOMBQ3eNNzWwG4+ahZfOiV3WnlLmis4U/tqX7c3wU/2tvB8VVBTq6tJGqafHNnG26p6b+xs40mn5cDkSjhltnW7qpUEqhNgyEeONBNzDA54K3l8VtvB7OX+n1/s33N9oajXPzMZh7tSYiQDdcBEOi/l1Dlq/h2O3gCR+FhiLDhQRHnoFnDb9q68AA/2NPObx81qPbqbDcvon/GZdzYDhBK6+vNO9u4eWdbzmP4jhkN/HBvB5uGQmwasrb9zYFuTq6pYH65n4CmsSsUIWqa3NeZfbwBfn2gm/s6++iKpmaA7I8b7A1bKt1/egZytv9Y7yDXbdnLSw4hTQNOqA6yNxylPRIlYpiEDJPLN2xj81A4q44TqoN8bG4L0/xe3vb8NrqjGTNRRocgFgZvGSHNR8gweaF/OGefBEGYOIrtTU9EqRJAKfdZaSL4eMpYxtrYjDRRajSnsVP0WBL30BaOU141wMHoEMdo+4nHPXydq/ivVfOZc9Ip0LAQnlg/xj2Z+oxFLBrNNslE55LIUxCEyU5htym5mZUKqfDz1G9+QnUFHtVGLLHozLpK/tnVD8A7ZjZw0w5LNEiKAutqKjivsYbzGmtYV1PB5Ru226FuMwNeXtffxsbHHqaqaZrdhm5mvIgD5z7/aM5+aqbJsj278BkhlneEgSpLWMkcBEmOZmuK7oBGU98gHZXlGJrCF4vzVP0q/ovHqAv3saxmJk8mNvNkmHRJMcarKc6ur6LGo3Pdghk83TfIDVv3ETZMoqZJeyJ0sVzXWBoso97nYVbAR7VHp9qj85Zp9XRGY9zb2UfcNOmMxGzvodPrKnlVfRX/s2kP63sHeSUhdGQKUoAtSK2sKKMtEqUtEiNuWiJJ0jvNSZVHo8nnZctQmGHDZGcokrbeE0/lC1tZGeABsMQ3zTJctcRqp+O+LUg5CFW+yv6sxXsBL17ixLAGUeMJ4W8oZtAXiiQ0qCp7m1qPzqsbqvmfuS28+bmttEdiOFOFqcQZqhSsqCjjM/Ons7amgp5YjL+193F/lyU8PdwzwMM5xKQyTaPKo/HZ+dP54rb97AtHbUHq+8vmsCgYYF8owpBhsHEwRG8szpO9g2wfDmOaENA1vnHUbL664wCP9w5yx/4uAE6treDWJa3U+zxpHmvf3NnGF7ftTxOkqjwafk3jxoUzOb+pJnVM1y7N7vAf3w9P/xTO+DRfnf12vrrjgNyRBeEIU6xDdiJKlQRjeUQUuI3j4RZE45xhH2vndPOn7r1UJFyNI/iIBGdD46Ix9GOKkZnHdBw9dQoJAZRE57lIJqU9wt0QBKEwg0ou1tLDJf78tLpKXj55BcNxg3Jdo8KjMxiL85+eAc6qr0JHsS8cYXVVkKBH45z6anvbk2sr2XLKCkf1iqf/uo3yF9czPbbUEW2Xnejc43yYZ3qJmyanbXwRwxNmwcEmeu160sP3Akacbz9j8MzBfsqb/czu6md2Vz9RTcdrxPl36zyoguZQF6iZqX52/YaYdzZezWrakzgutV4Pt6+cZ5d7dUM1r26oZjTM1H1cOSN36NX/LZ4FwM/3dfC93e0YphV29/kFM5hV5uPTm/cyEIvj0xTXzmnh6MpyHukZYDBu8JXt+20BsMajc9vyOdR7PdR4dOImfG7LXluQWlsdZOEjj+F/SWeHQ5Q6vbaSZ2srORiJYvT3M+Op9bxj55N88ATQHHeOk2oqOK2ukmtmNvKq31/MzvLXY3gaiXunUaPHiYWeIcYJ+IgRw8M8Txtnz17NbTsGuKS5lrccM48D4Sg/e+l2Xmx/ks+teA1vXfIWu/6H1iwp6HhekBB13jatnv/0DNAVjbN1KMSBhKdTs99Lk8+LAk6tq2SWIx/TNL+Pb+xsI2KaLCj3c25jNbpSLA5aqTfOa8zdrq4Ut+5qI2aaeJXGB1qbXHNg/b9ZjSypKGMobqCANdXBnLmyXHHch5OfxLoUhCNLsb7riShVAmSnzxwJ9/JurwCuoooj8kLZ5Up5to7xf3lyE6BGlVNqvDskCIIwzhRkUBWZ0SUcCu6vvZUenUpHouZgwqMF4MNzW/LXmOu5mfe8KmBWYZVdMjPkz6cZaEBLT5zqKsfLfaJtPW7ZTX7CKM3Eq8WIGh7M2C5isV1oZasSR2LkyU7Gm7dPb3DNG+QUxZKcVW95G13o8LrJxKPgi4tmpi17+mEDM5aegLtMU9y5aj4AfX/7O3t/dCvDJ64ELA+6Hy+fQ3skxmUOYc1r9FHT/hUAYp5pfGbNx/lccvY9O9F56mds8npYV1MBwEMvb2fL8NNo6jU5+14ISqlRzwB5Ym0FJ9ZWjKm9Qrf1aRpn11eNWG5kTMfsheNQnSAIJUcpKwVTHnuaYMz8xkqmfXWYHyilOcBd2E6PVtUeqXzm764QVSqdkjwZBWFSU8gzYiJfwIXJwsT6YiQfr84sjtl9IestXKV9TllibjmlUuUURmJLLVFfDEuQ0THw6CZvnfMc605aC1ieLKYx6NZ8yWJi8trGmjRBKhNPbD9NXoPk0bd/Y+We3kDuM4WTujrlhBSEI0mx3rVElCoJDs1TKu94YeIhPtwfxYglEx0U6+VweMh/NCYmfC8pXiVHsjJnlyl5zMLPeUEQDi+p3EGCkMKeUWgCzgzT2YruMouwY7q8woSL7Nn3FCpd20r81ZJePAlRSlMGmAb1/iHmzpuD0hIeMMZQ2pZTTkBRzj1yccNJnA+HstdJAUpz+LG5nV/FFgYzcaSOvi3qHamuCIIAFO/seyJKTUUy8i5oIz4iMh/phZ/Fum6dQqHBKEY84XKeI7F6JsV2sYyZQsLqRl1ltnFekEFapDcqQRBKj/z3qSn2Ai4UwJGJD3I70/IOY7hsYAJmnjQGpkmWrWA4TfR4Mvm3Aq3c2iYhSplT/lIY4fdOrM4lHLl7jCc9pVLhe5rYR2PHdIh6cvwEYVJQbF6LklOqBBh9TqncZNYUrA6w7pL59LVbU8A2zq5Ee3FTgZUV18VypMjMeeH8PmL4Xua2ye3GpWdTgBzHRxCEI8doQryLzegSDoXD7ymlXN+sXdpLE5hyP0dsQWSEk7pjd39WK0lPKQDiUbsepYJWWWMg0busOMMpS75fvuDzQmHnqYgZqUlO3DzJx3MymqlO8kgZck8WhCNKsd61RJQqBdwzlOcpXvgDRWmKY1/dmrbs5RedGRgKT75dkmTlmBhlTikKM56S5Yp1RgZBEEqP/PfDUn5wlCYqwwv8cGM6PGoyekLB55/t1eziJaVg+oIa9m7ssVpSKq25uHLxlFIKpQUTHYwm6k5WV2LXhEsy+UII6AE8moco2G5mAY9fPMnHgnP2PftcFwRhMlBs9zIRpaYydgLHUUZ45zyJS8zgOQzkOrSjDt8b44ixWyJPAcSMEoRiRa7d0uHI+PqO3tvcmQkpESamdNye9CdcMI+VZ84iHImz46TMQSq38D3QfcswYgeACOCloz4+yv4VI7kFydGauD7dx6taX8UfO3tJZjFZXLcwb85N8cgcmeTZWmwvwoIw5SjS13URpUqCsSQ6d3nwZyTltBYWOlo4yi4IOXGOhm7r2VZwWet7ErEa8iFGlSAcOSbYIUYoGiZQlDKTeZ7c2suQqfLYN/YAkqbnLBMIetH8evZeKUUMHQ9xiKVySmmeJvxVb8HQ42hxnYGKXyWKTy1Dy9qfjH0a4aZgmqZL2oLs41IXqAV67e8+3SuDdoeEeYQkY0EQMinWyWJElJqCZD4Y1CFY9iO5g5ecu/h4M8bwPY9mXboP7nkwa5kb2eF7o+nkVEbOX0GYrOTPcy43s9Jj4mbfG5nCnh3pUlP+bUwXUclKdh5P85Sya7MTfJfofGeHIMJpGdtqjjHXfT3DPLipHYC29jpiAwvZvNfDI94OVs+pxe/JLTCWMslDKrM7C8LkoNguRRGlSgK3JJ3K/TOjdFU/BKOgyK6VMVLgXuYp5ib8XbTgInb07WA4aiWYX92ymqA3OGIzxaqeTxQiUQnCkWeqeXwI48OE5JRymdnWzVMqPZl5bspVYX210kllD1LFk0FRjpxSmS2biTam3CCh2yyGI3lKYRZ0HDy6yviuoSeWPbip3Ral4GjgaH6yG37C47zlhFnceMnKQnpfIqSOoyb2pSBMCorVhBJRqgTQyD+KlvUAGYXB5/byUPDFUCJPrsNxb5hfM59vnvnNUTcuzgWCIEx27NtWXrG+gELCFGNiA4SSic6zdaVRTQfj+JjjgZwoFdE9lDk8ogxdJ56cgS8Wdq8DMBI23pQTpWxGmGXYYdCYplmQ0XXh0dN5dlcPg5EYQZ+Hi4+ZQdDv4eHNHfQOR+1yewf20hfuo8ozjZ5BjV1dQ2PeiymNaabsyyPbE0EoeVJPyuK6GkWUmtIkR88MMp/SI56mLg9110n8xtCrYlVwx4RS+QWgzPC9AtSiQ/EiEPfqDErqZBQEQShexjrBx6E3nGsGvnFsQiluW/46Ttr3PDomW6umo1VUpTyljKRQUlrPLJX1yS3f6WjrVCyfUc2v37Uua90d16xN+/6xBz/GX3f8ldc0fYZfPRgkFhfbKRfJ30FycgnC5KDYXvVElJrCmGaBo4pZZ63p8ikHeV7q7RyhJcxkUamTYpeE7xXGZPndBKEUSY2451X0J6QvwiRiIl19HW1k+kVZz9Hc599Y1/xz9mr+OXs1PjNKRHm5XG0kbqbnL0oL8cs4DFMt7FVl/M1a77K/rveMcTgsyZn5YqK4pKPcZEM5RoJwJCnWR4GIUlORzBxRI56cuWZoE8aHkY/oRLndp2x6MRqykGMiCJOKQi5JeQEqJSYufC/93Budp5RKejfl3HYkUnUbaXVRvG8b44XLTUE5MlQcrvvBH7b+Dng7zx18geNv/0DW+jJPGV865UucPOPkw9J+MaApGfQUhMlAsYZyayMXEUoO08z5VMlK96myTyH3PFPFeYEcKuOx15k3l9HcbDLLZs44I6RTrDdyQZhKFHQdyr2sBLF+8527vs+WrV/BMLJnpDv0FtyylWXm5cwIy88wjLS087ew89R5Ojurs3NKudY2sTm2JnrkIYMAAQAASURBVBxleaSN996Nxh5d1rAMAAPrXDMMRSgeyvrXHe7mwd0P5qtqipPy4ZPxPUGYHBSbA4J4SpUA1iM908873xapRJGHx+wvrZcJy6zKsc8T9GI1HBvm+kevZ1vvQqCa3276Hc8Od6WVOabpGC6cf+GE9GfyUFrnoiAUA6NLmFtcRpcwdrzeGgC6ux+hu/sRaqpX09Bw5uFr0E6B4DLQ5pLtKIlmpgbrPMQoG2pjuLw5u3pnfcophqU+x7PGjvOE75XE88yx02720zjfDi5fdjnnzj2XR7d28v5fbKW1ah63v/5vaWVuf+l2bn/59pL32kyGOBolfhwE4UhTrGN2IkqVCi6zxxS8aZ7ni6aN3dmu2BTcsVDoHh6u+0eFtwKAqBHlrk13MTR0FVDN+gNP8MzwM2llf7f5d5w1+yyC3uBh6s0kpwTOR0EoJvI/I4rU6hLGzJKjvkh7+73s3fdrhoa2MBzaw5NPvoGh4V0A+Hx1HL3yNsrKZo9Le8mzL9tXJ32JpirT1vqVP1VSwZonvkDMU87emgAvT6921OJ+DjvbzfSUypf6e0bFjFy7Upyo7CPkdktIm33vMAgijeWNtFTowFaUqWcd52q/9ZsaZv6ZrqcmzvNRwvcEYTJQrDOtiyg1henraINpI5fLdmV2P4sVKmsWmtIYmSteGssb+cYZ32BT9yYAftXdwPZBOHv2q1gx9yS73K3P3ophGoTj4dIVpRwU2X1cEKYUo3qqyMVaMpSVzWb27HfQ2/ccQ0Nb6Oz8N719qcGVaLSTzq6HmTnjvya0X+X6dCLll4EZBlVGU/RxDiRXKoVmGviiA3jiGWd25ldFVlhgXk+pxOdLGi9l4avfxcqGlYe+M5OQNAnQLafUiNsfup3q0a06oka28KQl0liUpiiVwJTwPUGYbBTbpSii1BSkZd4Ctj/7VMbZmH5qptk9rpF9pstWLhzKs77YrpYxoEYyhzJWFjLKN1oD64zZZ3DG7DMAePTp9Ww/0M7ps87gDUfPtMt869lvYWKWnlFVrD6ugjCVGVX4nlBqeDyWZ9Lg4BYAqquOweOtobPzAYz48Li00bZ9CyxMfFHZz0XTIRYpTDS9wf6uxQw83hCRMT5OHa/3WYnOTZdn1pzAPNZOWzS2xoqZQmffy9xsDIarNxEVEItn1y+ilEXy5yjtoyAIk4HifLcRUWoKcvH/fI7e9oP4Xr4L/vWpkTcoxD+64I1JNxQKuS6msDBQuCv5xLx+JY+0kfEba0ojbsbFqJq6p6IgTCmU48VdKC2SolQotBuwPKg0PQBA3AgdUt2Nc+ah6TpGPO4Io8sg80GR8TwNNj/PmpO30dk5Aw6+0VEuf9sqUSRfonPXh9SUfW45bcnc17szzPdwpYXQEwmTYoabp5a1riTtJ8f5KJ5SgjC5KLZrUUSpKYjSNGqaW2Bv9ciFR0n27Hu5raGc18KUNaBykTsxaapEnumlx1EpUTkyCIsoBfJyKwiTAzs3iVySgguNDWdzsO0vxOIDaFqA5ubz6er6D8Ahe0rNWLyEd9/2C8JDg/h/eByE+1znf8v/VLbK19QcSEtaPmKYWSJ+Lz3ReWZOqWxCsWfZv/9FauvW4fVUsWfvHUSjPQDU159Gbc3xI9ZRNLiG7x1+o9KbCN+LxbNtJF1Zv1Gp20/JWScl0bkgHFmKdYBdRKkSwW3umBSZD5BD9JRyK1WsV8hhJtOYKmiU7xAOZWqsMdtTCkrdqEohJpUgTHaSgeZytZYaNTXHcdJJD6Ut6+l9GijMUyoWGyAa7QXA662yPa+SBCoqCFRUgEqGzmU+F1VesSnUO4cA29H1OHEVy9MT5f5NOUWpkSeTGYj8lpdefpKqqlVMn/ZGtmy50V63f/9dnHLyYyPWMRlRysVGSi+RtY3b/eD0Wadz58Y7ASsZ/ILaBaPui0fPHb6XtG+NEg9cEzNfECYHud71JjsiSpUqaZ7QmYZRjkTnpou05fIUkueSCyMdlAm6b+SakSEpSsXN+MR0RBAEIQfyciOMFl2zwvf6+19i3/67UAkxZ3h4N3FjCIBg+ULKylt5+ulL7e2U8nLccXcRCbcTjw9adelB6utPxTBCCT+lkcSG9AdqdLiWQLJ+PZaznFIxBgY2JWaZUy7nvZElSsWMblABMFPmu8IHwNDQVkLh/da+BhcyOLiZSKSdSKSLTZuuJxLtBCDgn8bixV8gFuslHh9GKUUgMAOlRvbKShKJdDA4tB0An7eeYHBeqo+xAXbt+gHRmCX8NdSfTn39aQXXnU3quPX1PceBA3+kufkCe5kawX769NpP8/ETPo5hRNm/9xcc3P09DgI11cfR0HCG6zbh8EHH+VCBR7MmgOkPx7jj8V288dgqDCMMaCkPocSgnmma9raa5kXT/NkNjAOh0L5EHxSBwEw0Lf8rXSw2QDjcltinMgKB6XnLG0aY559/F4NDWwEoL5vLypXfZefO2+gfeBEAv2c7ixRoYJ+pLhGOtB28h6FBqx6vr56qyuXoejnl5fPHNGgdiXQRCu21rx2S/xLfvd46/P7GrP2Jx4cxjCimGcU0Y4TCbfZvFSxfQFnZzOzGRkk8HgYMNM2PUmOfoXw8iMeHiEZ7UMqDz9eY81h3dz9Gf7/1m1ZWrUzzrjSMGH19z2IYEbbv+KZ1z8IKo16x4laqKpcf9v0wjBg9PY9jGBGU8lBTcxy6XjamuqLRbgwjhq4H8HgqicUGiUQOJtYq+6/f3zTqNkx7YF+hlMIwwgwMbMTExOuporx87pj67CQWG8BMvKt5PFWYZpTe3mcxzAgKjYqKo9AI4dPDYIaIx4dy1qXr5Yfcn/FERKmS4fCoHofiAVVc+u3YKegITdBLmD2il0OUOlz5GIoC0xRBVRAmAWl+vKbp/pzJk2NGKD08ngoAenoep6fn8QK30jDNKE888TrXtaca4RzBc4qjljwEL7rXqlDE4x50PYa+7B74R3J5Ol5fL4+vf6393TBuwmmWt676Mw37d0Jbapv2wc/gr76BcM8se5lHt16kY7F+duy4FYDGhlcxOLgZgL17f0HbwT+ntd3Xv8FeD6BpPhYs+CTDQzuIRrutZXoZLc0XYA1VGphGlMGhrUTC7ezc9b20+pqbL6S6+ljAZNeuH9n5vqz27+CUkx+nv/9FwuE2TDOOacYwzBimESUWH0DXAvj9zVRXH4um+VBKJ64dJDpjG94DNRCzjl5PzxO8+NK9vPjSh9Apw/vOKHrYnuuQnTtvY1rDaVRVHZ1YYrJ1200MDmyks+tB+2UOYJfysXLFt3nhxQ8mXtxyi4/Vta8Gzgfgzkf/TfPg5+x104GzKr0cE3uY9U+8jv7+F9K3rT6OQGBaQrxbSHfi5XpwcAvhhIiolI7P14RSCq+3Fq+3FtOM4/c1EqxYhK4FCARmEol2Eol0sH//bxkYeNnRiqKh4UxCw3swMYjF+vF665g9+x0oFNFYH5s2XZfWr6qqY6iqWkloeDeGGSUU2o9pRIgbw0Qi7Uyf/mY6u/5tlw+F9vKvBzMECA+0raujkr+yadNB4Co6ux7m0cfehd/XxHBoN6HQ/pzHtqJiidXv0D7AOocjkU6U0u1/ul5GWVkrHj2IYYQJR9o5cOD3OX+rJJYo5KG8fB41Nceze/ePRtzGEve8BMsXUF4+DzCJG2E6Ox4gblihwR5PBZWVK/B56xJ99ODxVKBpAfbuu4OhhFgL1m/v8QSpqVmDx1PJ/v2/AzOeeH5pKKXQ9SAVFUeh60E05cXnb2D//t9hGhEAdE8Fs2ddSW/f80QiHdYyvYxg+QJ0Tzl+XxORSAfdPY9hxMMYZoRopIuh4V0MD++w++LzNdBQf6blPWMamBiUlc2mpno1zz53FaaZEtBratbQ3/9CQsCLuB6rWKyHrVu/SkP9GSjlwTSjDIf2YhgRjPgQkWg3sVg/w8O77LrLymbj89YRjrRjJLxak9fFgba7MQx3z1LDSA/L9vkaqa4+lu7uR4nF+gCoqlxJReVSDhy4O3GdK2bNupwF8/+H/oEXiUX72L3nJ3R03G/XUxFczMDgxrznhKb5KCtrTQg4lvgZCu2x75N+/zR8vnqikS6GQ7vs7bzeOqLRrrS6Zs++GtOI0dn1YGJfrSyCSnmoqDiKssBMdu3+IR5PJV5PLUqzzi9dL7fuHd2Pp91bNc2HYWT/PqdXw+lnWZ//9WDufWtqOo8Vy7+Rd/8nEhGlhGwOWZgo8NVe3iWyXALcXC1bq1rTvs+pmjP25nK0I55SgiAIQrHS1Hw+/f0vEo32WAKKGQfTRNP9lAVm0dH5L0Kh3Zimia6XsWzZzYTDbWzc+Bm7Dq+3Dq+3lqGEZ0iuROcKqKpqdyzJfm5Ho350PYaq3wkJT6bsYiZebx1gEo12Z7ejTA40+6gciKLHTYbLdPoqPVkVebQmNC1gv+QB+Hz1eDxVxGJ9bNt+CwCNja8hFuulu/vRNEEKwDAiWaIFwL59v8pa5kZb2x9pa/tjRv99mGYE04zx74dWF1RPGrXWP+2Zd9qLrBfDHgDiDBNfBRFjH+y1Rvy3bf8Ge3fmf8nS9QqU0onFennu+avzlovHBwDo7f4H71jezQ9feDvD4c6sshfURIE2+vvbstb19j5Jb2/eLgHYL9djw0x72QYIhw/w0ksfzrlFX98z9PU9k3P9vn1WyGNd3SmYZozu7kftdR5PJZrmJxLpIObR6OYA8VgvKGv2yKGhbQwNbUurz+OporZ2LYODm23hZmDg5QxxbXT4/S2JPGzJKQJM4vEQ8fhAwossTH//Bvr7N6Rtp5QPTfOgaQH8/hYGBl4CIBTaA5AmLGUSibTnXe+kt/dJADo78ygDQFfXQ4e0vhAikQ727f91zvVlZbMZHrZElWxhXxEMLgAU1VWrKCubzdZtX6Wr66FR9S1TpAEYZDPdPYWFGJeXz2NoaBuRSDvt7X9PW9fX/zx9/c+nLdu16/vs3v2jNDHaiVOQ0vWKxCczTYyzBOTNLltbhEK704SiJG77umvXD3LWMzy80/4ci/UTi/Wnre/rey5rG6cgZd3XVNZ2+RiP82o8EVGqVBlBNyo0DnUsrqmZg94SqkFegW5182r+eslf6Qp14dE8LK5dPOZmcoXvJRN1lpynlJx8gjDpcHpGmaZcpsLI+H0NLF36lZzrF/GZrGWmGScYXEg8NoDXW53w9LHCO+LxYbxPnAixblRWfJhi8+Y1wD2Jb9ls23gS9S1baOkMAFtc+xSJ1HPqKX8AYHh4D+q+p9NsgV3Pv5b+mi3sbN7FUccfT7BiEbM7XsOWeLr4EPAcy1FLvkxnxwPEYv1EY300NJxNd896+8VN1yuYP+9DRGO9bNzYQzw+hN/XxIoV36bt4J/p6voPmvKi6QHKy1oZGNzEwMBGrA5ZHh0KDU0vo7x8DroeZFrLRfh8zWzbdhNxY9gKmVTK8oIywhy1+AscbP87W7f+H4YRQdP8VAQX4/M12B4mSunongoikQ76+p4jFuuzPakAMDQMI+WvNmP6pSw/6fXEYv1se/xGBh5/CF91DQRDif0MgjmYdawrgouZNetKdE+Qxoaz2L3nZ+za9UNMM45SGvPnfYRgcAH9/S9RX38qHk81Xm8V0WgPm7d8mVisl9r+RKiLKqO2dh0rV3yH3bt/wsv77+P5zpepDs7nDSuuJRxuo6pqJeXlc2lr+wtxY5hwaD8DA68QN0Io5aG6+ljKAjOoqFiC11uLYYSIRLssT6DQfuJGiK6uh9GUF5ROKLSbeHwYTfNTXj4PpXQC/hbmzbvWehnvs17Gfb4G/L5GNm3+AtFIF8HgQiyL3kShMbv1GmprjmfHju8QDrcRN0IE/C2Ul89H9wQJ+JvZtv0bdHU9RE3NGoLBhcyaeRllZa0MDLyUCJ/SqaxcimFEOHD/lRi7HoJ5Z7Bn9pWwB7y+JubP+hg+bz0+Xz2BwIxEuOBM+94ej4fZvv0WIokXd5+vAa+nGjDx+1vQtEDCmy7KwMDLRKM9aFoAXfOjaX50vZzm5vMpK5uV9Vtb11YH8fgQ+w/cTV/vM4kwVZ2jjvoiZWWtWd638fgwAwMvY5oGA4ObEoKaVUahQGlUVx9DwD+N3t6nLfHbjCXO1TiRaBemGUPTAlRWLqW6ahUdHQ/gD7TQ3/8S/f0vYpoRFDotLa8jUDYLTIN4fNj24gmF9zM0uBV/YBpKeaitWUMkal0XhhFF07xUBI/C529kcHAL8dgAsfiAPamBpgVobDgLr68Wr6eaeHyYwaEtzJp5Of39L1qCk9JQ6CilaG+/1w731fUylhz1ZcrL59DR8U9iiZDG2po1eL21+Hz1aJrPPl6x2CDRaDeRSAdGIhTSNOPoejllZa1oyovf3wwofP4GAv7pRKKdhIZ3J/rqx+drpK/vOYaGd1iRCkqnZdolBPzTXH9Tn68RXffT0fFPOjofsJdNn/ZGXn7lE0QiHWhaAI+ngoULPsnzG97N8PAOW5AqK5uNacYpK2tl5Ypvs3fvHURjfSg0WlouIhicb7dlmmbCE8pgOLSXaKTLuo5Mg6RnU3n5XAwzyvBQQkxSivKyVgwjwt59v0z8Vg0Ey+fj97fw4osfYjghXnn0CubP/6gd2tvX/7wVjmqaRCIdVFQspqbmeAwzjmlE6O9/gUjCMytYPp+WlosZGHyFnm5LPAyUzaSp8RxM08QwQnz+Ty/xy/W7ePfp83j/WYuyjuXw8C4eX3+uI9xwciCi1FQm7aY7GrGh8LKuLwsjTzZXUhQyM8xIJWZWzmRm5aHHutuzWmUsF0+pdEpNmxOEycqIl6JcrMIYUUp3nZkuGT5FYrDGLWdRV9dsx7fsAt1ds+jsbabxYBPwzVw9sD+Vlc1E0zaAkXpJMOM+OjtnE9jbxJLLrOTl2zrbifSnv7R5tOm0NJ+WCLVLsWL5txLhPiYeT6WdH2XNCemhfLNmXsasmZfl6OPILFv2tZzrZs+6kpkz3m6LP5rmLahO0zR57rd/RntKZ090m32oTNMk4G8Bfwtz1dvZ89NH0Y5uhXMtj4eTTnqEgGYSjw8RiXTh9zeilBevN3026tbZ19A6+5qsdqurj0n77vXWsHTJlwFo09vg0ScJVizj2GMs7625c9/Hk9EWfrH585wZXERj46vStp8x41LGyuxZVxZUrqZ6NTXV6Z5omb9xJvPmfTDnumNW/cQWQZxUVa1M+65pfmYa82HvvTBvGdVVRwM7KQ8uYE7ra/K2r+t+Fiz4n7xlUlxUYLkUPl8DAPPmvr+g8rpeZovSNTXH5S2beRwOtVwLFxZU7lCwvJzSaW39f65lp09/04j1eTxBFi785Og7Ursu7Wtd3YmjrqKh4UwaGs5MW3bMqp9klVu39l7C4QMYRhS/vzErf1Ku/QdrYMznqwNS51IuKoILs5YdtfiGrGVHH/39nHVUV6/K20Zd3UlZy6oql2fl87LCQcswlZ+I4cMk4JoXS9etHHnOkM3JgIhSpYJLknKbDGUpV6Jz900PJYlfabxMmPlEugl2AdASP1emR5TMvgelcj4KwmSnkLviREwDLwgApks+nLxaqFPFynuaZtheBZ/Shc96nJns+UhgJeAe3etG0jMr73We44B5PJV4PJUJT43xIzEBH/GMpJwaU89+KlQ8TGGi2TlLxZYSjjxKaSMm85+qjJRxU9nRMZPrnnVkpwUQJpBs9/OCi9pbuCWbdS+ZvahEXyBGuduHO3zO9pTKTHQ+BY2qsVCiZ6kgTCqcj4uR7onFNuWxUEQkTkS38L10eyj3OWh4AqD7EluNsvlEvSNuN0UfXOlmY+6dVBMkgiRFlyxRKjmoN+IsjVObKXoaCkLRkuvWmBKlxFNKmASkvHfczljnsoxE3Jn5oETXLJBJ8rh2uMA70bRSNaomye8iCIIrIjkJR44CPZLyrDM8PoKnf5p4316eKPsHXmfC6yx7qoBQf5cilXWBgvpZnCjS7gJub1kOw/RwitSehJ2UU5QqyUG91LHXEh9L8SgIwmTCdcbitPXJPH1G7hmOjwCiKAgFJD0f3baFntri4UtqJHaimkv8zcoplfSUMkrYnJATUhAmBYWF5o3koC4Ih4jKdY5lJjnIECnK0nN4aJUteGesZl9zek6TkcP3cp/bjbMraJpTCUCw2p+zXLGTz0Jye5E6nKKUlit8r6RFqRT21SK3ZEGYFOS6H6ZEKXLOTHgkEFGqRMh8dGtm6qdXms5Y0fLklJLnkkVBgpOZ/HN4j1oq5j9zeal6Srkj564gHEHSwveOXDeEUicpibidhHme7Jq7XTSS2KqNYrRa0zV0zxQ34V1EQbdw3okK37M9pTLaU7ZdVcL2k2miJc5vQywoQZgUjBS+Z5URUUqYYDKNqopYpf05Gs08a3MoqwUvLBB5bk04SRtPEp0nmCQuq4IgjBK5doUJIluUUuQ3ftyNm5FMnjcdN4u6oI9yI0yL1kedChXWv5K6FFxEKefawyhQ5Up0rtv5WUrbqLXtyyPbDUEoeUZ6JijlzN4kopQwIeRLDJn7p8816hQ0yvAY6WnIAppLLoPSspAOjQk+VrlaK1lRShCESUdaonN5xRGOFDnD98BEEUmkZc0fzOeoboRRvM9esJSnP/MqPtz3D17j22jn6ClVnMfLfaKdCZ69OEei86SnVHwSeRxMGMr5G1lkeuILgnBkyD37XkoDEE8pYcLJfHQ7vzfOqshYa+I8lYeN5AwwimAsmF5PnvC9nH0R0eqIkTz2WbPviSiFjO8JwuQjt/OBGqmAIBwieTMacRfn8nxsKSbe9DUOGyfuDIkfD9OnxOynLDHKNdH5xPQlZ6Jzmb0YS6ZNfpJ7siAcSUYaAHF6Sk0mUUpm3ysZcj8kVI78B0nWD8ap16Ms7/kLZKafKtQ+KjFDyklhSXsnhuTPYEj4niAIk5TJc8cUSprkA1NlPhet5ZuYT3e0gVozd6LxQTPCYwMxWmPbMWsGSBsLlhM9PwUeH6d3/+EMoRsp0XmpizH2oOcR7ocglDpqxDE7p6dU7LD3p1DEU6pEUJlqUh4Pp0xX9BhwMGrA4I7ssgV6SontlZ+JEq6S7WTNvqeSCTwnj2I+MbgfdzGqBOHIUYg3bepeJlercHgZ6WxUKndeTgW0xUx6BtswY+GMesUyKgyn6DRSycOZUyqZ0NxdlCo9+wmcV0fybUCcVwVhcpB79j1lJzsXTylhwvHrC4lqOqYZRWmVaJ7Re8R443F8UTMtJdqs2bPH3Ketz7aPedspQ5Zn+uF9mudSzyVRJ2JJCYIgCA6sB2bm0JsClJmW+KwATAKhMFBmLwkEXHJypm2Rm4HuMFpJJp1yHBWVL7xy/PEkjncsl6dUKdsQpjN8TxCEI0lh90QdiE8qUWpSeUp961vfYs6cOQQCAdasWcP69evzlv/Nb37DUUcdRSAQYMWKFdxzzz0T1NPiQ9cq8AZfja/iPLzlp6aNRGcNSud4sCpg1dbdzGqdR+vKYzj5LZdTXVvrXjAPZZVW/oW+9uHEd1+hu1GkFHJ7mJjHeK6Y/5JO1OmghKNMBWHSkD6bViGlBLGfDgOJB8L0eBTNuwBUGahyvHorelYug7QNXZd6o4Np3yum1Y+6Sx6fZbYP9oTp7wolluXrSxEzhkv8cHpK5Up0LukPLJLHJ9OTTBCEiSXPHB2OMuIplZM777yTa6+9lu9+97usWbOGW265hXPOOYeNGzfS1NSUVf6RRx7hLW95CzfeeCPnn38+d9xxBxdddBFPP/00y5cvPwJ7MAmpaLY/5n22j+JNvLlviOMv+S+Ca9eOuVtnXraEnS90YhomSlPMXjp6w6xYmGyhJVqOROcl6yklKpQgTGpGvoeW2D3LBbGfDhMJscGnwFdxob24fGg3sD1VrCx9cG5g5kwYOJhVXf1AmD+duJ9gSCeqm1x+yqXuzebp0vSFNZxwwVwGuq1QwGCNn5mLXQYHpwLK5ViMYKMcThsmZ6LzUhalXGbfkzuyIEwO8l2Lk1GUmjSeUjfddBPXXHMNV155JUuXLuW73/0u5eXl/OhHP3It//Wvf53XvOY1fPSjH2XJkiXccMMNHHvssdx6660T3PNJzPwz4a2/hYu+45L7yXGq1jWnrRmoyJyNb3wJVvtZetJ0lp0yg6UnTaeiNneS0GJHqfxZI5JrJyynlB2+JzkRBEGYnIhWPDrEfjpMnPBOqJuPClTlLaYFKtO+D/i9mInk6IZjlsjXPmXyyY2tfO6yW7npih/zX8vemrfeWCiUtUzXNY4/by5nvO0oznjbUZxw/lx076Qx5ccZleNzvmWHj5yJzmX2PQCS0aSlfRQE4chTUF7OSShKTQpPqUgkwlNPPcUnPvEJe5mmaZx99tk8+uijrts8+uijXHvttWnLzjnnHO6+++6c7YTDYcLhVKLJvr6+Q+v4ZEfTYOHZACys+Qab2yOYKPzhbnbPjgBWPoNAwIOVztyiu66M4YEtAPR1R6kGwCSyY8eomg9pGvinruA0FuIGfOvSK6wvSuFVdZyyrJGh9evhKHhgwx/Y/ti9KJ+X5pVr+NIpXxrX9pP3qd89vZend/UAMKc+iOaxjKrvPf89frv5twCc0HICly+7fFzbn9Tc+VZouAz8rXzz5Rf59YFp9qqvLJ7JNP9UDzMVhMmBU6R/1+1P27lcrjllHuvmJzxrEzez3t6nePa5qwGorFzK/HnpdsFUR+ynw8iJ74UT34v6wd/hydzFrBeAlFBxoGM/pseyqdoijXiA2MGDKGBRXzlzpp2Qv93EIFG3L/HMGWGG5KlN+svVY399jCf/dgVJN6ppR7+a1R33o0yFqeCDt70Or6HhnTmTt5/435w84+Rx60ky0XkkbnDVT56wl595tPVSt7t/N++5/z328utPvJ6GsoZxa39S89Ld0DMEDW9ld38fb3tmI+hWqo51NRW8Z3a2x6YgCIeH5F3zry/sZ8vBAQCaq/zceMnKVJmEKPXKxk+j60EAFi74OMHgggntq5NJIUp1dHQQj8dpbk732GlubuaVV15x3ebAgQOu5Q8cOJCznRtvvJHrr7/+0DtchKy76X0ct3cfXR3t/ODXvybmswQpLRqhcWUzp2w7yGDU4FnPNgYDu0mOdXii1ola2b8bMxq1hJQZM/K21XjMsXi3biXq9YJS6PE4DUuWHNb9m6zEvQY+I4AydZJJ5UJmh7XShLDeQqy8guD2HXCUTrs/TLvfMvyb9j8+7v1prLBEwm0dg2zrsPJbHD2zmvnLLcPppc6X7LI1/ppxb3/S4QmAvwrCfbDlPhq9J0FTKxuMIBs6Uy9dw3FxSBeEicKrK6oCHvpCMf69KTUhxutWTbc/+3yWOBWJdNDZ+QAAphGd2I5OAsR+OvzMWLsI/6PPEvZUokwDZe4BQMUizF98FNWeJg4+kjh2nijV9UH6ezRUuAw9FkSPh6np3QpAcN26EdtbsmYNe7dvw8AKZ1hy3HGHac8mN4H6KjCGgDBo5QDEGCJmDlkFTOj2LEQzB6keDNJToXi2ptdaN9TNqwZzn89joSrgxe/RCMcM/vlKKjzzrOWWTTwUG+Lfe/5tLw/Fsj3dphzBRutv9w6awn+HhrcypPm4r2cYsPLGVnmmaM4zQZikNCTe9XZ3DbO7y7oO5zYE08r4/U1Eo1309KTyT86Z8+6J66QLk0KUmig+8YlPpI0O9vX1MWvWrCPYo4lDKYVv5gxaZs7gPbNnc2D3LpRSzJozh2BVNU3HLcCMmRzHOrr7ewAID8apDFZj9Pbg665E036Od9q0EUWpmmNWce38efR0dQFQ3dBA+WEOCZysLHvfuVQ+8DyeZzcRiy4kavQn1ijKqsrxe7zUzWrhLa2X0xrfxIBpGTHK66P22BFGU8fAu06fz4LmSkKRlLtmbdDHcfM+w+mzTidupJbPqiyBa0P3wlV/g71PA3CjoXN2bDexihaon2cXa/CV1K1SEI4oHl3jrnefyLMJb84kq2bV2J8bG85m5crbiEa67GV+v4zGHy5K2X6qXz6Xd3y/FQxrsC5mnI5pGChNw5vwZjrm9Qsx4ib+oAddPwfTMInHrPJmPIpungaahjbCjHsA6664nJGlq6nP/BPXsGP4CWZvmEnVy1uJmLMwkwOmXg/+inKa/QNUnf8JvuUx2RDfZW/rbW1ldfPqce1P0O/ht+8+kZf2pXsJnryggYUzfsjegb1py2sDUzTXl5M1/w9qWyE8wCLgt7Ft7DR8MOM48FieUq0B8TIXhInk7etamV5TxmA4FQVVEUh/j1m54nt0dz+G08u3rKx1orroyqR402poaEDXddra2tKWt7W10dLS4rpNS0vLqMoD+P1+/BJORm1dHbV1dWnLlFdHea1RuaayDMO+qRyYzmgoq6qirCp/HoZSoHrmNFa8fRor3n7OiGVfNwH9Kfd5uPBo99/ywvkXui6f8jQvs/4B9cCbjmxvBEEAFjVXsqi5Mud6pXQaG86awB5NTsR+mhiUptlhdF6X9YGgN6O8csyKJ54iY0HTdOa9ai3zXjXyxDorE/8ON8tnVLN8RnXW8uk14z+IWBR4y2DZxfbXkxL/BEE4cgS8OuetnJa3TFnZTMrK3jBBPSqMSRGo7vP5WL16Nffff7+9zDAM7r//ftblcHVet25dWnmAe++9N2d5QRAEQRCEqYTYT4IgCIIgFDuTwlMK4Nprr+Xyyy/nuOOO44QTTuCWW25hcHCQK6+8EoDLLruMGTNmcOONNwLwgQ98gNNOO42vfe1rnHfeefzqV7/iySef5LbbbjuSuyEIgiAIgjBhiP0kCIIgCEIxM2lEqTe/+c20t7fz2c9+lgMHDrBq1Sr+9re/2ck4d+3aheaYgeTEE0/kjjvu4NOf/jSf/OQnWbhwIXfffTfLly8/UrsgCIIgCIIwoYj9JAiCIAhCMaNM0yzZaaX6+vqorq6mt7eXKsl/JAiCIAiCC2IvpCPHQxAEQRCEkSjUXpgUOaUEQRAEQRAEQRAEQRCE0kJEKUEQBEEQBEEQBEEQBGHCEVFKEARBEARBEARBEARBmHBElBIEQRAEQRAEQRAEQRAmHBGlBEEQBEEQBEEQBEEQhAlHRClBEARBEARBEARBEARhwhFRShAEQRAEQRAEQRAEQZhwRJQSBEEQBEEQBEEQBEEQJhwRpQRBEARBEARBEARBEIQJR0QpQRAEQRAEQRAEQRAEYcIRUUoQBEEQBEEQBEEQBEGYcESUEgRBEARBEARBEARBECYcEaUEQRAEQRAEQRAEQRCECUdEKUEQBEEQBEEQBEEQBGHCEVFKEARBEARBEARBEARBmHBElBIEQRAEQRAEQRAEQRAmHBGlBEEQBEEQBEEQBEEQhAlHRClBEARBEARBEARBEARhwhFRShAEQRAEQRAEQRAEQZhwRJQSBEEQBEEQBEEQBEEQJhwRpQRBEARBEARBEARBEIQJR0QpQRAEQRAEQRAEQRAEYcIRUUoQBEEQBEEQBEEQBEGYcESUEgRBEARBEARBEARBECYcEaUEQRAEQRAEQRAEQRCECUdEKUEQBEEQBEEQBEEQBGHCEVFKEARBEARBEARBEARBmHA8R7oDRxLTNAHo6+s7wj0RBEEQBGGykrQTknZDqSP2kyAIgiAII1Go/VTSolR/fz8As2bNOsI9EQRBEARhstPf3091dfWR7sYRR+wnQRAEQRAKZST7SZklPOxnGAb79u2jsrISpdS41t3X18esWbPYvXs3VVVV41p3MVDK+1/K+w6lvf+lvO9Q2vtfyvsOU3//TdOkv7+f6dOno2mS+eBw2k8w9c+nfJTyvkNp738p7zuU9v6X8r5Dae//VN/3Qu2nkvaU0jSNmTNnHtY2qqqqpuQJViilvP+lvO9Q2vtfyvsOpb3/pbzvMLX3XzykUkyE/QRT+3waiVLedyjt/S/lfYfS3v9S3nco7f2fyvteiP0kw32CIAiCIAiCIAiCIAjChCOilCAIgiAIgiAIgiAIgjDhiCh1mPD7/Xzuc5/D7/cf6a4cEUp5/0t536G097+U9x1Ke/9Led9B9l8YX0r5fCrlfYfS3v9S3nco7f0v5X2H0t7/Ut53JyWd6FwQBEEQBEEQBEEQBEE4MoinlCAIgiAIgiAIgiAIgjDhiCglCIIgCIIgCIIgCIIgTDgiSgmCIAiCIAiCIAiCIAgTjohSgiAIgiAIgiAIgiAIwoQjopQgCIIgCIIgCIIgCIIw4YgoJQiCIAiCIAiCIAiCIEw4IkoJgiAIgiAIgiAIgiAIE46IUoIgCIIgCIIgCIIgCMKEI6KUIAiCIAiCIAiCIAiCMOGIKCUIgiAIgiAIgiAIgiBMOCJKCYIgCIIgCIIgCIIgCBOOiFKCIAiCIAiCIAiCIAjChCOilCAIgiAIgiAIgiAIgjDhiCglCMJhZceOHSil+MlPfnKku3JY+de//oVSirvuuutIdyUnSimuu+66casvuc//+te/xq1OQRAEQSgFSsU+Gg1XXHEFc+bMSVs23rZLIVx33XUopejo6JjQdgWhVBFRShCmOI888gjXXXcdPT09Y9r+29/+thhMDu644w5uueWWI9qHoaEhrrvuOlcx6J577plw400QBEEQig2xj44M+/bt47rrruPZZ5890l3hS1/6EnffffeR7oYglDwiSgnCFOeRRx7h+uuvF6NrnJgsotT111+fU5S6/vrrJ75TgiAIglBEiH10ZNi3bx/XX3+9qyj1/e9/n40bN05YX0SUEoTJgYhSgiAIk4ChoaEj3QVBEARBEIQjhtfrxe/3H+luTBhi+wmChYhSgjCFue666/joRz8KwNy5c1FKoZRix44dxGIxbrjhBubPn4/f72fOnDl88pOfJBwO29vPmTOHF198kQcffNDe9vTTTwegq6uLj3zkI6xYsYKKigqqqqp47Wtfy3PPPTcufQ+FQlx33XUsWrSIQCDAtGnTuOSSS9i6dSuQysXw1a9+lZtvvpnW1lbKyso47bTTeOGFF9LqOv300+1+O3HLXZCP008/nb/85S/s3LnTPh6Z2xuGwRe/+EVmzpxJIBDgrLPOYsuWLVn1LF++nKeeeopTTz2V8vJyPvnJTwJw8OBB3vGOd9Dc3EwgEODoo4/mpz/9qb3tjh07aGxsBOD666+3+3HddddxxRVX8K1vfQvAXq6UyrtPe/fu5aqrrqK5uRm/38+yZcv40Y9+lFVuz549XHTRRQSDQZqamvjQhz6Udq4IgiAIQrEg9pHFeNlHYB2TK664Imu5s41//etfHH/88QBceeWV9rFLepyNpV03BgcH+fCHP8ysWbPw+/0sXryYr371q5imaZdRSjE4OMhPf/pTux+Z/e/p6eGKK66gpqaG6upqrrzySlch6fbbb2f16tWUlZVRV1fHpZdeyu7du7OOQy7b78knn+Scc86hoaGBsrIy5s6dy1VXXXXIx0EQigXPke6AIAiHj0suuYRNmzbxy1/+kptvvpmGhgYAGhsbufrqq/npT3/KG97wBj784Q/z+OOPc+ONN/Lyyy/z+9//HoBbbrmF973vfVRUVPCpT30KgObmZgC2bdvG3XffzRvf+Ebmzp1LW1sb3/ve9zjttNN46aWXmD59+pj7HY/HOf/887n//vu59NJL+cAHPkB/fz/33nsvL7zwAvPnz7fL/uxnP6O/v5/3vOc9hEIhvv71r3PmmWeyYcMGu6/jxac+9Sl6e3vZs2cPN998MwAVFRVpZb785S+jaRof+chH6O3t5f/+7/9461vfyuOPP55WrrOzk9e+9rVceumlvO1tb6O5uZnh4WFOP/10tmzZwnvf+17mzp3Lb37zG6644gp6enr4wAc+QGNjI9/5znd497vfzcUXX8wll1wCwMqVKxkcHGTfvn3ce++9/PznPx9xf9ra2li7di1KKd773vfS2NjIX//6V97xjnfQ19fHBz/4QQCGh4c566yz2LVrF+9///uZPn06P//5z/nnP/85DkdVEARBECYWsY/G1z4qlCVLlvD5z3+ez372s7zzne/klFNOAeDEE08ctzZM0+TCCy/kgQce4B3veAerVq3i73//Ox/96EfZu3evbb/9/Oc/5+qrr+aEE07gne98J0Da8QN405vexNy5c7nxxht5+umn+cEPfkBTUxP/+7//a5f54he/yGc+8xne9KY3cfXVV9Pe3s43v/lNTj31VJ555hlqamrssm6238GDB3n1q19NY2MjH//4x6mpqWHHjh387ne/G7djIgiTHlMQhCnNV77yFRMwt2/fbi979tlnTcC8+uqr08p+5CMfMQHzn//8p71s2bJl5mmnnZZVbygUMuPxeNqy7du3m36/3/z85z+ftgwwf/zjHxfc5x/96EcmYN50001Z6wzDSKu3rKzM3LNnj73+8ccfNwHzQx/6kL3stNNOc92Hyy+/3GxtbS24X6Zpmuedd57rNg888IAJmEuWLDHD4bC9/Otf/7oJmBs2bEjrD2B+97vfTavjlltuMQHz9ttvt5dFIhFz3bp1ZkVFhdnX12eapmm2t7ebgPm5z30uqx/vec97zFy39sxt3vGOd5jTpk0zOzo60spdeumlZnV1tTk0NJTWr1//+td2mcHBQXPBggUmYD7wwAOu7QmCIAjCZEXso/G1j1pbW83LL788a3lmG0888UTO/XZrN5e9k4u7777bBMwvfOELacvf8IY3mEopc8uWLfayYDDo2ufPfe5zJmBeddVVacsvvvhis76+3v6+Y8cOU9d184tf/GJauQ0bNpgejydteS7b7/e//70JmE888UTB+ygIUw0J3xOEEuSee+4B4Nprr01b/uEPfxiAv/zlLyPW4ff70TTrFhKPx+ns7KSiooLFixfz9NNPH1L/fvvb39LQ0MD73ve+rHWZ4WgXXXQRM2bMsL+fcMIJrFmzxt7HiebKK6/E5/PZ35OjgNu2bUsr5/f7ufLKK9OW3XPPPbS0tPCWt7zFXub1enn/+9/PwMAADz744Lj10zRNfvvb33LBBRdgmiYdHR32v3POOYfe3l77d7znnnuYNm0ab3jDG+zty8vL7ZFFQRAEQZgKiH1U/Nxzzz3ous773//+tOUf/vCHMU2Tv/71rwXX9a53vSvt+ymnnEJnZyd9fX0A/O53v8MwDN70pjel2VEtLS0sXLiQBx54IG17N9sv6Un15z//mWg0WnDfBGEqIaKUIJQgO3fuRNM0FixYkLa8paWFmpoadu7cOWIdhmFw8803s3DhQvx+Pw0NDTQ2NvL888/T29t7SP3bunUrixcvxuMZOcJ44cKFWcsWLVrEjh07DqkPY2X27Nlp32trawHo7u5OWz5jxow08Qqs32XhwoW2MZtkyZIl9vrxor29nZ6eHm677TYaGxvT/iUNpoMHD9rtLliwIMvgXbx48bj1RxAEQRCONGIfFT87d+5k+vTpVFZWpi0fiy01kk23efNmTNNk4cKFWbbUyy+/bNtRSdxsv9NOO43Xv/71XH/99TQ0NPC6172OH//4x5K3UygpJKeUIJQwIyXBzseXvvQlPvOZz3DVVVdxww03UFdXh6ZpfPCDH8QwjHHs5aGjlEpLbpkkHo+Pe1u6rrsuz2y/rKxs3NseDcnf6G1vexuXX365a5mVK1dOZJcEQRAEYVIg9tHo7aNcxywej+e0jSY7I9l0hmGglOKvf/2ra9nMvKNutp9SirvuuovHHnuMP/3pT/z973/nqquu4mtf+xqPPfZYVh2CMBURUUoQpjhuRkJrayuGYbB582Z75AisxNc9PT20trbm3R7grrvu4owzzuCHP/xh2vKenh47YehYmT9/Po8//jjRaBSv15u37ObNm7OWbdq0KW32ltra2qzwORib59GhGKoj0drayvPPP49hGGneUq+88oq9fqQ+FNq/xsZGKisricfjnH322SP264UXXsA0zbT6N27cWFBbgiAIgjDZEPtofO2j2tpaenp6XOuaN2+e/f1w2lFg/Yb33Xcf/f39ad5SmbbUePRl/vz5mKbJ3LlzWbRo0SHVtXbtWtauXcsXv/hF7rjjDt761rfyq1/9iquvvvqQ6hWEYkDC9wRhihMMBgHSDIVzzz0XsGaPcXLTTTcBcN5556Vt72Zk6LqeNbr2m9/8hr179x5yn1//+tfT0dHBrbfemrUus8277747rc3169fz+OOP89rXvtZeNn/+fF555RXa29vtZc899xz/+c9/Rt23YDB4yO73uTj33HM5cOAAd955p70sFovxzW9+k4qKCk477TTAyucEuP4ubr+3G7qu8/rXv57f/va3WVNEA2nH6txzz2Xfvn3cdddd9rKhoSFuu+22gvdNEARBECYTYh+Nr300f/58HnvsMSKRiL3sz3/+M7t3704rV6idMlbOPfdc4vF41jG6+eabUUql7X+u37BQLrnkEnRd5/rrr886/qZp0tnZOWId3d3dWduuWrUKQEL4hJJBPKUEYYqzevVqAD71qU9x6aWX4vV6ueCCC7j88su57bbb6Onp4bTTTmP9+vX89Kc/5aKLLuKMM85I2/473/kOX/jCF1iwYAFNTU2ceeaZnH/++Xz+85/nyiuv5MQTT2TDhg384he/SBsNGyuXXXYZP/vZz7j22mtZv349p5xyCoODg9x3333893//N6973evssgsWLODkk0/m3e9+N+FwmFtuuYX6+no+9rGP2WWuuuoqbrrpJs455xze8Y53cPDgQb773e+ybNkyO1lloaxevZo777yTa6+9luOPP56KigouuOCCQ95ngHe+851873vf44orruCpp55izpw53HXXXfznP//hlltusUf8ysrKWLp0KXfeeSeLFi2irq6O5cuXs3z5cvv3fv/7388555yDrutceumlru19+ctf5oEHHmDNmjVcc801LF26lK6uLp5++mnuu+8+urq6ALjmmmu49dZbueyyy3jqqaeYNm0aP//5z21xTBAEQRCKDbGPxtc+uvrqq7nrrrt4zWtew5ve9Ca2bt3K7bffzvz589PKzZ8/n5qaGr773e9SWVlJMBhkzZo1zJ0799AOToILLriAM844g0996lPs2LGDo48+mn/84x/84Q9/4IMf/GBaf1avXs19993HTTfdxPTp05k7dy5r1qwpuK358+fzhS98gU984hPs2LGDiy66iMrKSrZv387vf/973vnOd/KRj3wkbx0//elP+fa3v83FF1/M/Pnz6e/v5/vf/z5VVVW2SCoIU54Jn+9PEIQJ54YbbjBnzJhhappmT38cjUbN66+/3pw7d67p9XrNWbNmmZ/4xCfMUCiUtu2BAwfM8847z6ysrDQBe1rfUChkfvjDH/7/7N15XI1p/wfwz2k5dapTKaVVSpuSxjJkbZI2pGfGWKae1IxMzWNfw5iJJgyKQcYyP+J5JsYwxjRhSGMJTbaSEUVqIlmynLRoO9fvj3Tr6HQ6JSW+79frvDj3ue7r+t530rfrvhZmaGjIBAIBGzhwIEtOTq639W9ztjxmjLHS0lL25ZdfcvEZGBiwjz/+mGVnZ0vUu2rVKhYVFcVMTU2ZiooKGzx4MLt06VK9+n788UdmYWHB+Hw+e++999jhw4ebteVxcXEx8/X1Zdra2gwAd/6xY8cYALZnzx6J8tKu39nZmdnb20ut/969e+zTTz9lHTt2ZHw+nzk4OEi9d2fOnGG9e/dmfD5fYrvkqqoqNnXqVKanp8d4PB6r+988pGyrfO/ePTZ58mRmamrK3WdXV1e2ZcsWiXL//PMPGzVqFFNTU2MdO3Zk06dPZ3/88QcDwI4dOybXvSOEEELeJJQftVx+xBhjUVFRzNjYmKmoqLCBAwey8+fP17tuxhj77bffmJ2dHVNSUpK4B9LalZa7NObp06ds5syZzMjIiCkrKzMrKyu2atUqJhaLJcpdu3aNDRkyhAkEAgaABQQEMMYYCwsLYwDYgwcPJMrHxMRw/07q+uWXX9igQYOYuro6U1dXZ7a2tmzy5MksMzOTK9NQ7nfx4kX2ySefsM6dOzMVFRWmr6/PRo4cyc6fP9+kayakPeMxJmV1O0IIecPl5ubC3Nwcq1atavQpFCGEEELIu4DyI0JIe0NrShFCCCGEEEIIIYSQVkdrShFCWk1FRQW3TlFDtLS0pG6Z+7o9evRIYnHOlykqKkJPT68VIyKEEELIu4Dyo8ZVV1dLLMgujYaGBjQ0NF57LISQlkWdUoSQVnPmzBmJRUKliYmJQWBgYOsEVMdHH32EEydONPi5mZkZcnNzWy8gQgghhLwTKD9q3K1btxpdDD0sLAyLFy9+7bEQQloWrSlFCGk1jx8/xoULF2SWsbe3h6GhYStF9MKFCxfw+PHjBj8XCAQYOHBgK0ZECCGEkHcB5UeNe/bsGU6dOiWzjIWFRYvsckgIaV3UKUUIIYQQQgghhBBCWh0tdE4IIYQQQgghhBBCWt07vaaUWCzGnTt3IBQKwePx2jocQgghhLyBGGN4+vQpjIyMoKBAz/MofyKEEEJIY+TNn97pTqk7d+7A1NS0rcMghBBCSDtw69YtmJiYtHUYbY7yJ0IIIYTIq7H86Z3ulBIKhQBqbpKmpmYbR0MIIYSQN1FRURFMTU25vOFdR/kTIYQQQhojb/70TndK1Q4519TUpKSKEEIIITLRVLUalD8RQgghRF6N5U+0MAIhhBBCCCGEEEIIaXXUKUUIIYQQQgghhBBCWh11ShFCCCGEvIFOnjwJb29vGBkZgcfjYf/+/RKf83g8qa9Vq1Y1WOfixYvrlbe1tX3NV0IIIYQQIt07vaYUIYS8bmKxGBUVFW0dBiFEBmVlZSgqKrZ1GPWUlJTA0dERn332GT766KN6nxcUFEi8P3ToECZOnIjRo0fLrNfe3h5Hjx7l3ispUTpICHnzVFdXo7Kysq3DIIQ0oKXyJ8pCCCHkNamoqEBOTg7EYnFbh0IIaYS2tjYMDAzeqMXMvby84OXl1eDnBgYGEu9/++03uLi4wMLCQma9SkpK9c4lhJA3BWMMd+/exZMnT9o6FEJII1oif6JOKUIIeQ0YYygoKICioiJMTU2hoECzpQl5EzHGUFpaivv37wMADA0N2zii5rl37x4OHDiAHTt2NFr2+vXrMDIygqqqKvr374/ly5ejc+fODZYvLy9HeXk5976oqKhFYiaEEGlqO6T09fWhpqb2Rj0sIITUaMn8iTqlCCHkNaiqqkJpaSmMjIygpqbW1uEQQmQQCAQAgPv370NfX/+NnMrXmB07dkAoFEqd5ldXv379sH37dtjY2KCgoABLlizB4MGD8ffff0MoFEo9Z/ny5ViyZMnrCJsQQiRUV1dzHVK6urptHQ4hRIaWyp/o0T0hhLwG1dXVAAA+n9/GkRBC5FHbedxe1y/Ztm0b/Pz8oKqqKrOcl5cXxowZgx49esDDwwMHDx7EkydP8PPPPzd4zoIFCyASibjXrVu3Wjp8QggB8OL/YHqgR0j70BL5E42UIoSQ14iGnBPSPrTn79WkpCRkZmZi9+7dTT5XW1sb1tbWuHHjRoNlVFRUoKKi8iohEkJIk7Tn/5MJeZe0xPcqjZQihBBCCGnHtm7dit69e8PR0bHJ5xYXFyM7O7vdrqVFCCGEkPaNOqUIIYRICAwMBI/HA4/HA5/Ph6WlJcLDw1FVVfVK9R4/fhw8Hq9Vd9PJycmBr68vt6iziYkJfHx8cO3aNYly8fHxcHZ2hlAohJqaGt5//31s375dokxubi54PB7S0tLkbn/x4sWwtbWFuro6OnTogGHDhiElJUWizokTJ8Lc3BwCgQBdu3ZFWFgYKioqZNZbUFAAX19fWFtbQ0FBATNmzJArnpMnT8Lb2xtGRkbg8XjYv3+/1HJXr17FqFGjoKWlBXV1dbz//vvIy8vjPg8ODkbXrl0hEAigp6cn9Z6eO3cOrq6u0NbWRocOHeDh4YFLly5Jbe/GjRsQCoXQ1tZusWt4GxQXFyMtLY37N5eTk4O0tDSJr0VRURH27NmDoKAgqXW4uroiOjqaez9nzhycOHECubm5OHPmDD788EMoKirik08+ea3XQgghbzvKnyh/ovypeahTihBCSD2enp4oKCjA9evXMXv2bCxevBirVq1q67A4jSUdQM3cdjc3N4hEIuzbt4+b3uTg4CCR2K1fvx4+Pj4YOHAgUlJSkJ6ejvHjxyMkJARz5sx5pTitra0RHR2Ny5cv49SpU+jSpQvc3d3x4MEDAMC1a9cgFouxefNmXLlyBWvWrMGmTZuwcOFCmfWWl5dDT08PixYtatLomJKSEjg6OmLDhg0NlsnOzsagQYNga2uL48ePIz09HV999ZXEWkW9e/dGTEwMrl69isOHD4MxBnd3d24tteLiYnh6eqJz585ISUnBqVOnIBQK4eHhUW/NgcrKSnzyyScYPHhwi13D2+L8+fPo2bMnevbsCQCYNWsWevbsia+//por89NPP4Ex1mCnUnZ2NgoLC7n3t2/fxieffAIbGxuMHTsWurq6+Ouvv6Cnp/d6L4YQQt4BlD9R/kT5UzOwd5hIJGIAmEgkautQCCFvmbKyMpaRkcHKysraOpQmCwgIYD4+PhLH3NzcmJOTE3v06BHz9/dn2traTCAQME9PT5aVlcWVy83NZSNHjmTa2tpMTU2N2dnZsQMHDrCcnBwGQOIVEBDAGGOsqKiI+fr6MjU1NWZgYMBWr17NnJ2d2fTp07l6zczMWHh4OPP392dCoZA7NykpiQ0aNIipqqoyExMTNnXqVFZcXMwYYyw1NZUBYLm5uQ1ea15eHlNWVmazZs2q99m6desYAPbXX38xxhh3DampqU2/qc/V/tw5evRog2VWrlzJzM3N5a7z5XslLwDs119/rXd83Lhx7N///neT6rp06RIDwG7cuMEYY+zcuXMMAMvLy+PKpKenMwDs+vXrEufOmzeP/fvf/2YxMTFMS0urRa6hOWR9z1K+IInuByHkdaH8ifInaSh/ervzJxopRQghrYAxhtKKqjZ51fzseTUCgQAVFRUIDAzE+fPnERcXh+TkZDDGMHz4cO7pzeTJk1FeXo6TJ0/i8uXLWLFiBTQ0NGBqaopffvkFAJCZmYmCggKsXbsWQM3oj9OnTyMuLg4JCQlISkrCxYsX68UQGRkJR0dHpKam4quvvkJ2djY8PT0xevRopKenY/fu3Th16hSmTJkCANDT04OCggL27t3LPYF62d69e1FZWSn1iV5wcDA0NDSwa9euV75/QM3TyS1btkBLS0vm0zmRSAQdHZ0WabOpxGIxDhw4AGtra3h4eEBfXx/9+vWTOcS7pKQEMTExMDc3h6mpKQDAxsYGurq62Lp1KyoqKlBWVoatW7eiW7du6NKlC3fun3/+iT179ryZT+0IIYS8EdpzDkX506uj/Ontz59o9z1CCGkFZZXVsPv6cJu0nRHuATV+8/67Z4whMTERhw8fhpeXF/bv34/Tp09jwIABAIDY2FiYmppi//79GDNmDPLy8jB69Gg4ODgAACwsLLi6ahMFfX19bu7706dPsWPHDuzcuROurq4AgJiYGBgZGdWLZejQoZg9ezb3PigoCH5+ftx6AFZWVli3bh2cnZ2xceNGGBsbY926dZg3bx6WLFmCPn36wMXFBX5+flxcWVlZ0NLSkrrIM5/Ph4WFBbKyspp172rFx8dj/PjxKC0thaGhIRISEtCxY0epZW/cuIH169cjMjLyldpsrvv376O4uBjffvstIiIisGLFCvzxxx/46KOPcOzYMTg7O3Nlv//+e8ybNw8lJSWwsbFBQkIC+Hw+AEAoFOL48eP417/+hW+++QZAzdfn8OHDUFKq+bf48OFDBAYG4scff4SmpmbrXywhhJB2oT3mUJQ/Uf5E+ZP8aKQUIYSQeuLj46GhoQFVVVV4eXlh3LhxCAwMhJKSEvr168eV09XVhY2NDa5evQoAmDZtGiIiIjBw4ECEhYUhPT1dZjs3b95EZWUl+vbtyx3T0tKCjY1NvbJ9+vSReH/p0iVs374dGhoa3MvDwwNisRg5OTkAap483r17F7Gxsejfvz/27NkDe3t7JCQkyH0vahMFWWJjYyXiSEpK4j5zcXFBWloazpw5A09PT4wdOxb379+vV0d+fj48PT0xZswYTJo0iTtet96QkBC5Yk5KSpI4LzY2Vq7zxGIxAMDHxwczZ87Ee++9h/nz52PkyJHYtGmTRFk/Pz+kpqbixIkTsLa2xtixY/Hs2TMAQFlZGSZOnIiBAwfir7/+wunTp9G9e3eMGDECZWVlAIBJkybB19cXQ4YMadFrIIQQQtoK5U8vUP5E+ZO8aKQUIYS0AoGyIjLCPdqs7aZycXHBxo0bwefzYWRkBCUlJcTFxTV6XlBQEDw8PHDgwAEcOXIEy5cvR1RUFKZOndqc0CWoq6tLvC8uLkZwcDCmTZtWr2znzp25vwuFQnh7e8Pb2xsRERHw8PBAREQE3NzcYGVlBZFIhDt37tR7ulhRUYHs7Gx4eDT+dRs1apREsmlsbCwRt6WlJSwtLeHk5AQrKyts3boVCxYs4MrcuXMHLi4uGDBgALZs2SJRd93dauR9ItanTx+J8zp16iTXeR07doSSkhLs7Owkjnfr1g2nTp2SOKalpQUtLS1YWVnByckJHTp0wK+//opPPvkEO3fuRG5uLpKTk6GgUPP8a+fOnejQoQN+++03jB8/Hn/++Sfi4uK4p5qMMYjFYigpKWHLli345JNPmnUNhBBC3i7tKYei/Inyp7oof5IPdUoRQkgr4PF4zZ5C1xZqE4G6unXrhqqqKqSkpHDDzx8+fIjMzEyJH8KmpqYICQlBSEgIFixYgB9++AFTp07lnpjVXZ/AwsICysrKOHfuHJcIiUQiZGVlNfgEqFavXr2QkZFRL05ZeDwebG1tcebMGQDAxx9/jNDQUERFRSEqKkqi7KZNm1BaWooJEyY0Wq9QKIRQKJQrBrFYjPLycu59fn4+XFxcuB1ZapOQWk25vloCgaBZ5/H5fLz//vvIzMyUOJ6VlQUzM7MGz2OMgTHGXVdpaSkUFBTA4/G4MrXva58mJicnS/xb+O2337BixQqcOXMGxsbGzb4GQgghb5f2lENR/kT5U12UP8mnfXx3E0IIaXNWVlbw8fHBpEmTsHnzZgiFQsyfPx/Gxsbw8fEBAMyYMQNeXl6wtrbG48ePcezYMXTr1g0AYGZmBh6Ph/j4eAwfPhwCgQBCoRABAQGYO3cudHR0oK+vj7CwsHo/kKUJDQ2Fk5MTpkyZgqCgIKirqyMjIwMJCQmIjo5GWloawsLC4O/vDzs7O/D5fJw4cQLbtm1DaGgogJongitXrsScOXOgqqoKf39/KCsr47fffsPChQsRERGB7t27S7T7csIBAPb29lBWVpY4VlJSgqVLl2LUqFEwNDREYWEhNmzYgPz8fIwZMwZATUL1wQcfwMzMDJGRkdxWxwBgYGAg8/prn4IVFxfjwYMHSEtLA5/Pr/eUrq7i4mLcuHGDe5+Tk4O0tDTo6OhwSe3cuXMxbtw4DBkyBC4uLvjjjz/w+++/4/jx4wBqpgzs3r0b7u7u0NPTw+3bt/Htt99CIBBg+PDhAAA3NzfMnTsXkydPxtSpUyEWi/Htt99CSUkJLi4uAMD9u6h1/vx5KCgo1LvfzbkGQggh5E1B+VMNyp8of2pQi+wD2E7RlsaEkNflbdvSuFbtlsZaWlpMIBAwDw8PiS2Np0yZwrp27cpUVFSYnp4e8/f3Z4WFhdzn4eHhzMDAgPF4PJlbGvft25fNnz+fO8/MzIytWbOmXjxnz55lbm5uTENDg6mrq7MePXqwpUuXMsYYe/DgAZs2bRrr3r0709DQYEKhkDk4OLDIyEhWXV0tUc/+/fvZ4MGDmbq6Orfl8q5duyTKSNuWufZ169aterGVlZWxDz/8kBkZGTE+n88MDQ3ZqFGj2NmzZ7kyMTExDdbZGGnnmJmZyTzn2LFjUs+r/VrU2rp1K7O0tGSqqqrM0dGR7d+/n/ssPz+feXl5MX19faasrMxMTEyYr68vu3btmkQdR44cYQMHDmRaWlqsQ4cObOjQoSw5ObnB2OTd0ljea2iqltjS+F1B94MQ8rpQ/kT5E+VP717+xGOsBfYKb6eKioqgpaUFkUj01qxcTwh5Mzx79gw5OTkwNzeHqqpqW4fTrpSUlMDY2BhRUVGYOHFiq7f/6NEjuLq6QlNTE4cOHYKamlqrx0Ban6zvWcoXJNH9IIS8LpQ/NR/lT6QttET+RLvvEUIIaVOpqanYtWsXsrOzcfHiRfj5+QEAN6S9teno6ODo0aNwdXVFcnJym8RACCGEECIL5U/kbUFrShFCCGlzkZGRyMzMBJ/PR+/evZGUlISOHTu2WTy6urr4+uuv26x9QgghhJDGUP5E3gbUKUUIIaRN9ezZExcuXGjrMAghhBBC2g3Kn8jbgqbvEUIIIYQQQgghhJBWR51ShBBCCCGEEEIIIaTVUacUIYQQQgghhBBCCGl11ClFCCGEEEIIIYQQQloddUoRQgghhBBCCCGEkFZHnVKEEEIIIYQQQgghpNUptXUAhBBCCCGEkIad/f0m0o7egpKKIjwm2sPYpkNbh0QIIYS0CBopRQghREJgYCB4PB54PB74fD4sLS0RHh6OqqqqV6r3+PHj4PF4ePLkScsEKoecnBz4+vrCyMgIqqqqMDExgY+PD65duyZRLj4+Hs7OzhAKhVBTU8P777+P7du3S5TJzc0Fj8dDWlqa3O0vXrwYtra2UFdXR4cOHTBs2DCkpKRI1Dlx4kSYm5tDIBCga9euCAsLQ0VFhcx6CwoK4OvrC2traygoKGDGjBlyxbNx40b06NEDmpqa0NTURP/+/XHo0CHu80ePHmHq1KmwsbGBQCBA586dMW3aNIhEIq7M9u3buX8fL7/u37/PlSsvL8eXX34JMzMzqKiooEuXLti2bZtEPN999x3XlqmpKWbOnIlnz57JvIZ9+/bB3d0durq6Tf56ENJeXT1TgMryapQVVSAv42Fbh0MIkYLyJ8qfKH9qHhopRQghpB5PT0/ExMSgvLwcBw8exOTJk6GsrIwFCxa0dWgAgIqKCvD5fJllKisr4ebmBhsbG+zbtw+Ghoa4ffs2Dh06JJHYrV+/HjNmzEBoaCg2btwIPp+P3377DSEhIfj7778RGRnZ7Ditra0RHR0NCwsLlJWVYc2aNXB3d8eNGzegp6eHa9euQSwWY/PmzbC0tMTff/+NSZMmoaSkRGa75eXl0NPTw6JFi7BmzRq54zExMcG3334LKysrMMawY8cO+Pj4IDU1Ffb29rhz5w7u3LmDyMhI2NnZ4Z9//kFISAju3LmDvXv3AgDGjRsHT09PiXoDAwPx7Nkz6Ovrc8fGjh2Le/fuYevWrbC0tERBQQHEYjH3+c6dOzF//nxs27YNAwYMQFZWFpfQr169usFrKCkpwaBBgzB27FhMmjRJ7msnpL26mfoAxY/L2zoMQogcKH+i/Inyp2Zg7zCRSMQAMJFI1NahEELeMmVlZSwjI4OVlZW1dShNFhAQwHx8fCSOubm5MScnJ/bo0SPm7+/PtLW1mUAgYJ6eniwrK4srl5uby0aOHMm0tbWZmpoas7OzYwcOHGA5OTkMgMQrICCAMcZYUVER8/X1ZWpqaszAwICtXr2aOTs7s+nTp3P1mpmZsfDwcObv78+EQiF3blJSEhs0aBBTVVVlJiYmbOrUqay4uJgxxlhqaioDwHJzcxu81ry8PKasrMxmzZpV77N169YxAOyvv/5ijDHuGlJTU5t+U5+r/blz9OjRBsusXLmSmZuby13ny/eqqTp06MD+7//+r8HPf/75Z8bn81llZaXUz+/fv8+UlZXZf//7X+7YoUOHmJaWFnv48GGD9U6ePJkNHTpU4tisWbPYwIED5Yq7Jb4edcn6nqV8QRLdj9Z1PPYaiw5O5F6nf7ne1iER8tpQ/kT5kzSUP73wNuZPNH2PEEJaA2NARUnbvBh75fAFAgEqKioQGBiI8+fPIy4uDsnJyWCMYfjw4aisrAQATJ48GeXl5Th58iQuX76MFStWQENDA6ampvjll18AAJmZmSgoKMDatWsBALNmzcLp06cRFxeHhIQEJCUl4eLFi/ViiIyMhKOjI1JTU/HVV18hOzsbnp6eGD16NNLT07F7926cOnUKU6ZMAQDo6elBQUEBe/fuRXV1tdTr2rt3LyorKzFnzpx6nwUHB0NDQwO7du165fsH1Dyd3LJlC7S0tODo6NhgOZFIBB0dnRZpU5bq6mr89NNPKCkpQf/+/WXGo6mpCSUl6YOr//vf/0JNTQ0ff/wxdywuLg59+vTBypUrYWxsDGtra8yZMwdlZWVcmQEDBuDChQs4e/YsAODmzZs4ePAghg8f3kJXSMjb4dX/ByeknWvHORTlT6+O8qe3P3+i6XuEENIaKkuBZUZt0/bCOwBfvVmnMsaQmJiIw4cPw8vLC/v378fp06cxYMAAAEBsbCxMTU2xf/9+jBkzBnl5eRg9ejQcHBwAABYWFlxdtYmCvr4+tLW1AQBPnz7Fjh07sHPnTri6ugIAYmJiYGRU/14NHToUs2fP5t4HBQXBz8+PWw/AysoK69atg7OzMzZu3AhjY2OsW7cO8+bNw5IlS9CnTx+4uLjAz8+PiysrKwtaWlowNDSs1x6fz4eFhQWysrKade9qxcfHY/z48SgtLYWhoSESEhLQsWNHqWVv3LiB9evXv9KQ98ZcvnwZ/fv3x7Nnz6ChoYFff/0VdnZ2UssWFhbim2++weeff95gfVu3boWvry8EAgF37ObNmzh16hRUVVXx66+/orCwEP/5z3/w8OFDxMTEAAB8fX1RWFiIQYMGgTGGqqoqhISEYOHChS17wYQQQtq3dphDUf5E+RPlT/KjkVKEEELqiY+Ph4aGBlRVVeHl5YVx48YhMDAQSkpK6NevH1dOV1cXNjY2uHr1KgBg2rRpiIiIwMCBAxEWFob09HSZ7dy8eROVlZXo27cvd0xLSws2Njb1yvbp00fi/aVLl7B9+3ZoaGhwLw8PD4jFYuTk5ACoefJ49+5dxMbGon///tizZw/s7e2RkJAg971obO0FoCa5rBtHUlIS95mLiwvS0tJw5swZeHp6YuzYsRILWtbKz8+Hp6cnxowZIzHXv269ISEhcsWclJQkcV5sbCz3mY2NDdLS0pCSkoIvvvgCAQEByMjIqFdHUVERRowYATs7OyxevFhqO8nJybh69SomTpwocVwsFoPH4yE2NhZ9+/bF8OHDsXr1auzYsYN72nf8+HEsW7YM33//PS5evIh9+/bhwIED+Oabbxq9p4S8U14eqUFDpwh5Y1H+9ALlT5Q/yYtGShFCSGtQVqt52tZWbTeRi4sLt2ilkZERlJSUEBcX1+h5QUFB8PDwwIEDB3DkyBEsX74cUVFRmDp1anMil6CuLvmksri4GMHBwZg2bVq9sp07d+b+LhQK4e3tDW9vb0RERMDDwwMRERFwc3ODlZUVRCIR7ty5U+/pYkVFBbKzs+Hh4dFobKNGjZJINo2NjSXitrS0hKWlJZycnGBlZYWtW7dKLHp6584duLi4YMCAAdiyZYtE3XV3R9HU1Gw0FqAmAa17XqdOnbi/1+4IBAC9e/fGuXPnsHbtWmzevJkr8/TpU3h6ekIoFOLXX3+FsrKy1Hb+7//+D++99x569+4tcdzQ0BDGxsbQ0tLijnXr1g2MMdy+fRtWVlb46quv4O/vj6CgIACAg4MDSkpK8Pnnn+PLL7+UeU8JeZdQHxR557WjHIryJ8qfKH9qOuqUIoSQ1sDjNXsKXVuoTQTq6tatG6qqqpCSksINP3/48CEyMzMlhi+bmpoiJCQEISEhWLBgAX744QdMnTqVe2JWd30CCwsLKCsr49y5c1wiJBKJkJWVhSFDhsiMsVevXsjIyKgXpyw8Hg+2trY4c+YMAODjjz9GaGgooqKiEBUVJVF206ZNKC0txYQJExqtVygUQigUyhWDWCxGefmLnbTy8/Ph4uKC3r17IyYmBgoKkoOYm3J9tQQCgdznvRxPUVERPDw8oKKigri4OKiqqko9r7i4GD///DOWL19e77OBAwdiz549KC4uhoaGBoCaof4KCgowMTEBAJSWlta7VkVFRQA10x6ack8JIYS8xdpRDkX5E+VPlD81HXVKEUIIkYuVlRV8fHwwadIkbN68GUKhEPPnz4exsTF8fHwAADNmzICXlxesra3x+PFjHDt2DN26dQMAmJmZgcfjIT4+HsOHD4dAIIBQKERAQADmzp0LHR0d6OvrIywsDAoKCuDxeDLjCQ0NhZOTE6ZMmYKgoCCoq6sjIyMDCQkJiI6ORlpaGsLCwuDv7w87Ozvw+XycOHEC27ZtQ2hoKICaJ4IrV67EnDlzoKqqCn9/fygrK+O3337DwoULERERge7du0u0m5mZWS8We3v7ek/DSkpKsHTpUowaNQqGhoYoLCzEhg0bkJ+fjzFjxgCoSag++OADmJmZITIyEg8ePODONzAwkHn9tU/yiouL8eDBA6SlpYHP5ze4vgEALFiwAF5eXujcuTOePn2KnTt34vjx4zh8+DCAmoTK3d0dpaWl+PHHH1FUVISioiIANQuf1iY9ALB7925UVVXh3//+d712fH198c033+DTTz/FkiVLUFhYiLlz5+Kzzz7j1k7w9vbG6tWr0bNnT/Tr1w83btzAV199BW9vb4l2Xvbo0SPk5eXhzp2ap+a1Xw8DA4NG7xkh7RLN3iOkXaP8qQblTzUof5KiRfYBbKdoS2NCyOvytm1pXKt2S2MtLS0mEAiYh4eHxJbGU6ZMYV27dmUqKipMT0+P+fv7s8LCQu7z8PBwZmBgwHg8nswtjfv27cvmz5/PnWdmZsbWrFlTL56zZ88yNzc3pqGhwdTV1VmPHj3Y0qVLGWOMPXjwgE2bNo11796daWhoMKFQyBwcHFhkZCSrrq6WqGf//v1s8ODBTF1dndtyedeuXRJlpG3LXPu6detWvdjKysrYhx9+yIyMjBifz2eGhoZs1KhR7OzZs1yZmJiYButsjLRzzMzMZJ7z2WefMTMzM8bn85menh5zdXVlR44c4T4/duxYg/Hk5ORI1NW/f3/m6+vbYFtXr15lw4YNYwKBgJmYmLBZs2ax0tJS7vPKykq2ePFi1rVrV6aqqspMTU3Zf/7zH/b48WOZ19DQPQsLC5N5XmNaYkvjdwXdj9b1538zWHRwIvc6tfd6W4dEyGtD+RPlT5Q/vXv5E4+xFtgrvJ0qKiqClpYWt10jIYS0lGfPniEnJwfm5uYNDt8l0pWUlMDY2BhRUVH1FoBsDY8ePYKrqys0NTVx6NAhqKk1fU0u0v7I+p6lfEES3Y/Wdex/V5FxuoB7/55bZwwc3fRpKYS0B5Q/NR/lT6QttET+RLvvEUIIaVOpqanYtWsXsrOzcfHiRfj5+QEAN6S9teno6ODo0aNwdXVFcnJym8RACCG16j09fnefJxNC6qD8ibwtaE0pQgghbS4yMhKZmZng8/no3bs3kpKS0LFjxzaLR1dXF19//XWbtU8IefsV3HiC25mPwRigqMSDbX9DqGup1C9IfVCEkAZQ/kTeBtQpRQghpE317NkTFy5caOswCCGkVR34Ph3lpVXc+xJRBYaMs270POqjIoQAlD+RtwdN3yOEEEIIIaSV1XZI6ZrUbPtdUVYltRx1QhFCCHmbUacUIYQQQgghbaRzNx3ZBWgNKUIIIW8x6pQihBBCCCGkFTVr82te7cktGgohhBDSpqhTihBCCCGEkLbCa+RzJl8xQgghpD2iTilCCCGEEEJaU53RTrxGepu4oo0VJIQQQtoh6pQihBBCCCGkFUmdgdfItDyuS4qm7xFCCHmLUKcUIYQQQgghbUXeoVI0UIoQQshbiDqlCCGESAgMDASPxwOPxwOfz4elpSXCw8NRVSV9u3J5HT9+HDweD0+ePGmZQOWQk5MDX19fGBkZQVVVFSYmJvDx8cG1a9ckysXHx8PZ2RlCoRBqamp4//33sX37dokyubm54PF4SEtLk7v9xYsXw9bWFurq6ujQoQOGDRuGlJQUiTonTpwIc3NzCAQCdO3aFWFhYaioqJBZb0FBAXx9fWFtbQ0FBQXMmDFD7phqffvtt+DxePXOzc7Oxocffgg9PT1oampi7NixuHfvnkSZpUuXYsCAAVBTU4O2trbU+mv/DdV9/fTTT9zn+/btg5ubG9dO//79cfjw4Ubj3rdvH9zd3aGrq9vkrwchb4w6C503vqQULSpFSHtA+RPlT5Q/NQ91ShFCCKnH09MTBQUFuH79OmbPno3Fixdj1apVbR0Wp7GkAwAqKyvh5uYGkUiEffv2ITMzE7t374aDg4NEYrd+/Xr4+Phg4MCBSElJQXp6OsaPH4+QkBDMmTPnleK0trZGdHQ0Ll++jFOnTqFLly5wd3fHgwcPAADXrl2DWCzG5s2bceXKFaxZswabNm3CwoULZdZbXl4OPT09LFq0CI6Ojk2O69y5c9i8eTN69OghcbykpATu7u7g8Xj4888/cfr0aVRUVMDb2xtisZgrV1FRgTFjxuCLL76Q2U5MTAwKCgq417/+9S/us5MnT8LNzQ0HDx7EhQsX4OLiAm9vb6Smpsqss6SkBIMGDcKKFSuafN2EvCmaMwOP97xXitH8PULeWJQ/Uf5E+VMzsHeYSCRiAJhIJGrrUAghb5mysjKWkZHBysrK2jqUJgsICGA+Pj4Sx9zc3JiTkxN79OgR8/f3Z9ra2kwgEDBPT0+WlZXFlcvNzWUjR45k2traTE1NjdnZ2bEDBw6wnJwchprfw7hXQEAAY4yxoqIi5uvry9TU1JiBgQFbvXo1c3Z2ZtOnT+fqNTMzY+Hh4czf358JhULu3KSkJDZo0CCmqqrKTExM2NSpU1lxcTFjjLHU1FQGgOXm5jZ4rXl5eUxZWZnNmjWr3mfr1q1jANhff/3FGGPcNaSmpjb9pj5X+3Pn6NGjDZZZuXIlMzc3l7vOl+9VY54+fcqsrKxYQkJCvXMPHz7MFBQUJH4uPnnyhPF4PJaQkFCvrpiYGKalpSW1HQDs119/lTsuxhizs7NjS5YskatsS3w96pL1PUv5giS6H6+uqqqaRQcnsujgRJa8/waLDk5kCduuSC17ZOvfLDo4kW2ccoxFByeyk7szWzlaQloP5U+UP0lD+ZNs7T1/opFShBDSChhjKK0sbZMXY6/+VF0gEKCiogKBgYE4f/484uLikJycDMYYhg8fjsrKSgDA5MmTUV5ejpMnT+Ly5ctYsWIFNDQ0YGpqil9++QUAkJmZiYKCAqxduxYAMGvWLJw+fRpxcXFISEhAUlISLl68WC+GyMhIODo6IjU1FV999RWys7Ph6emJ0aNHIz09Hbt378apU6cwZcoUAICenh4UFBSwd+9eVFdXS72uvXv3orKyUuoTveDgYGhoaGDXrl2vfP+AmqdjW7ZsgZaWlsyncyKRCDo6Oi3SpjSTJ0/GiBEjMGzYsHqflZeXg8fjQUVFhTumqqoKBQUFnDp1qlltdezYEX379sW2bdtk/lsUi8V4+vTpa712Qt4YErvvyZ6XV/ttQ7P3yLuqPedQlD+9Osqf3v78SamtAyCEkHdBWVUZ+u3s1yZtp/imQE1ZrVnnMsaQmJiIw4cPw8vLC/v378fp06cxYMAAAEBsbCxMTU2xf/9+jBkzBnl5eRg9ejQcHBwAABYWFlxdtT8s9fX1uXn0T58+xY4dO7Bz5064uroCqBmybGRkVC+WoUOHYvbs2dz7oKAg+Pn5cXP6rayssG7dOjg7O2Pjxo0wNjbGunXrMG/ePCxZsgR9+vSBi4sL/Pz8uLiysrKgpaUFQ0PDeu3x+XxYWFggKyurWfeuVnx8PMaPH4/S0lIYGhoiISEBHTt2lFr2xo0bWL9+PSIjI1+pzYb89NNPuHjxIs6dOyf1cycnJ6irqyM0NBTLli0DYwzz589HdXU1CgoKmtRWeHg4hg4dCjU1NRw5cgT/+c9/UFxcjGnTpkktHxkZieLiYowdO7bJ10VIuyPl94tGp+XV9krR7D3yjmmPORTlT5Q/Uf4kPxopRQghpJ74+HhoaGhAVVUVXl5eGDduHAIDA6GkpIR+/V4khrq6urCxscHVq1cBANOmTUNERAQGDhyIsLAwpKeny2zn5s2bqKysRN++fbljWlpasLGxqVe2T58+Eu8vXbqE7du3Q0NDg3t5eHhALBYjJycHQM2Tprt37yI2Nhb9+/fHnj17YG9vj4SEBLnvBZ/Pb7RMbGysRBxJSUncZy4uLkhLS8OZM2fg6emJsWPH4v79+/XqyM/Ph6enJ8aMGYNJkyZxx+vWGxISIlfMSUlJEufFxsbi1q1bmD59OmJjY6Gqqir1PD09PezZswe///47NDQ0oKWlhSdPnqBXr15QUGhayvDVV19h4MCB6NmzJ0JDQzFv3rwG19XYuXMnlixZgp9//hn6+voAZN9TQt4q8g6BamyXPkJIm6P86QXKnyh/kheNlCKEkFYgUBIgxTel8YKvqe2mcnFxwcaNG8Hn82FkZAQlJSXExcU1el5QUBA8PDxw4MABHDlyBMuXL0dUVBSmTp3anNAlqKurS7wvLi5GcHCw1CdHnTt35v4uFArh7e0Nb29vREREwMPDAxEREXBzc4OVlRVEIhHu3LlT7+liRUUFsrOz4eHh0Whso0aNkkg2jY2NJeK2tLSEpaUlnJycYGVlha1bt2LBggVcmTt37sDFxQUDBgzAli1bJOquuzuKpqZmo7EANQlo3fM6deqExMRE3L9/H7169eKOV1dX4+TJk4iOjkZ5eTkUFRXh7u6O7OxsFBYWQklJCdra2jAwMJB4atsc/fr1wzfffIPy8nKJ4e0//fQTgoKCsGfPHokh8bLuKSHtXd1RUY12NT2ftlHbJ0UDpci7pj3lUJQ/Uf5E+VPTUacUIYS0Ah6P1+wpdG2hNhGoq1u3bqiqqkJKSgo3/Pzhw4fIzMyEnZ0dV87U1BQhISEICQnBggUL8MMPP2Dq1KncE7O66xNYWFhAWVkZ586d4xIhkUiErKwsDBkyRGaMvXr1QkZGRr04ZeHxeLC1tcWZM2cAAB9//DFCQ0MRFRWFqKgoibKbNm1CaWkpJkyY0Gi9QqEQQqFQrhjEYjHKy8u59/n5+XBxcUHv3r0RExNT74laU66vlkAgqHeeq6srLl++LHHs008/ha2tLUJDQ6GoqCjxWe0Q+T///BP379/HqFGjmhxHXWlpaejQoYNEQrVr1y589tln+OmnnzBixAiJ8k25p4S0O83oWaJxUuRd1Z5yKMqfKH+i/KnpqFOKEEKIXKysrODj44NJkyZh8+bNEAqFmD9/PoyNjeHj4wMAmDFjBry8vGBtbY3Hjx/j2LFj6NatGwDAzMwMPB4P8fHxGD58OAQCAYRCIQICAjB37lzo6OhAX18fYWFhUFBQaHTx39DQUDg5OWHKlCkICgqCuro6MjIykJCQgOjoaKSlpSEsLAz+/v6ws7MDn8/HiRMnsG3bNoSGhgKoeSK4cuVKzJkzB6qqqvD394eysjJ+++03LFy4EBEREejevbtEu5mZmfVisbe3h7KyssSxkpISLF26FKNGjYKhoSEKCwuxYcMG5OfnY8yYMQBqEqoPPvgAZmZmiIyM5LY6BgADAwOZ11/7JK+4uBgPHjxAWloa+Hy+RIJbl1AorHct6urq0NXVlTgeExODbt26QU9PD8nJyZg+fTpmzpwpMSUgLy8Pjx49Ql5eHqqrq7lYLC0toaGhgd9//x337t2Dk5MTVFVVkZCQgGXLlkksiLpz504EBARg7dq16NevH+7evQugJiHU0tJq8Lpr271z5w6AF18PAwODRu8ZIW+kxhY6b6UwCCGvB+VPNSh/ovypQS2yD2A7RVsaE0Jel7dtS+NatVsaa2lpMYFAwDw8PCS2NJ4yZQrr2rUrU1FRYXp6eszf358VFhZyn4eHhzMDAwPG4/Fkbmnct29fNn/+fO48MzMztmbNmnrxnD17lrm5uTENDQ2mrq7OevTowZYuXcoYY+zBgwds2rRprHv37kxDQ4MJhULm4ODAIiMjWXV1tUQ9+/fvZ4MHD2bq6urclsu7du2SKCNtW+ba161bt+rFVlZWxj788ENmZGTE+Hw+MzQ0ZKNGjWJnz57lysTExDRYZ2OknWNmZtboeXVJ2w45NDSUderUiSkrKzMrKysWFRXFxGKxRJmAgACp7R87dowxxtihQ4fYe++9x31dHB0d2aZNmyTuu7Ozs9Q6av9dNKShexYWFtaka39ZS2xp/K6g+/HqKsqrWHRwIosOTmRn42+y6OBEdmTr31LL/rHlMosOTmQ/zDzBooMT2Yldma0cLSGth/Inyp8of3r38iceYy2wV3g7VVRUBC0tLYhEIrnnmRJCiDyePXuGnJwcmJubN7goIpGupKQExsbGiIqKwsSJE1u9/UePHsHV1RWampo4dOgQ1NTax5QB8mpkfc9SviCJ7serqyyvxpbpJwAAfb3Ncfb3HFj37QS3z+zrlT38w9+4ceE+VNSUUF5aBYcPTDBkvHVrh0xIq6D8qfkofyJtoSXyJ9p9jxBCSJtKTU3Frl27kJ2djYsXL8LPzw8AuCHtrU1HRwdHjx6Fq6srkpOT2yQGQkj7UvX4MSpu3ULlvXtNPrexTfXe3cfHhBBZKH8ibwtaU4oQQkibi4yMRGZmJvh8Pnr37o2kpCRuoci2oKuri6+//rrN2ieEtB8lZ84gL2gSIBYDAPRmzULHzyfJPEdyokJjS5jX7r5Xu/0e9VIRQmpQ/kTeBtQpRQghpE317NkTFy5caOswCCGkWZ5dvcZ1SAHAsytXXk9DtP0eIaQOyp/I24Km7xFCCCGEENJW5BsoRQghhLyVqFOKEEIIIYSQ1lSno6mxWXns5XKvLShCCCGk9VGnFCGEEEIIIa2oWR1Lja2ITgghhLRD1ClFCCGEEEJIs73a2CVeo9vvPS/XMs0RQgghbxTqlCKEEEIIIaQ1NWEHPW6nPhooRQgh5C1EnVKEEEIIIYS0oib0SXGoT4oQQsjbiDqlCCGEEEIIaSvy9jY9n+ZHs/cIIYS8TahTihBCiITAwEDweDzweDzw+XxYWloiPDwcVVVVr1Tv8ePHwePx8OTJk5YJVA45OTnw9fWFkZERVFVVYWJiAh8fH1y7dk2iXHx8PJydnSEUCqGmpob3338f27dvlyiTm5sLHo+HtLQ0udtfvHgxbG1toa6ujg4dOmDYsGFISUmRqHPixIkwNzeHQCBA165dERYWhoqKCpn1FhQUwNfXF9bW1lBQUMCMGTPkjik/Px///ve/oaurC4FAAAcHB5w/f577vO7Xv/bl6ekpUUeXLl3qlfn222+5zzMzM+Hi4oJOnTpBVVUVFhYWWLRoESorKyXqefLkCSZPngxDQ0OoqKjA2toaBw8elBn/vn374O7uDl1d3SZ/PQh5LZoz7KkOXiO9UtzsPRoqRcgbjfInyp8of2oepbYOgBBCyJvH09MTMTExKC8vx8GDBzF58mQoKytjwYIFbR0aAKCiogJ8Pl9mmcrKSri5ucHGxgb79u2DoaEhbt++jUOHDkkkduvXr8eMGTMQGhqKjRs3gs/n47fffkNISAj+/vtvREZGNjtOa2trREdHw8LCAmVlZVizZg3c3d1x48YN6Onp4dq1axCLxdi8eTMsLS3x999/Y9KkSSgpKZHZbnl5OfT09LBo0SKsWbNG7ngeP36MgQMHwsXFBYcOHYKenh6uX7+ODh06SJSr/frXUlFRqVdXeHg4Jk2axL0XCoXc35WVlTFhwgT06tUL2trauHTpEiZNmgSxWIxly5YBqPkaurm5QV9fH3v37oWxsTH++ecfaGtry7yGkpISDBo0CGPHjpVon5B2izqbCHlrUP5E+RPlT83A3mEikYgBYCKRqK1DIYS8ZcrKylhGRgYrKytr61CaLCAggPn4+Egcc3NzY05OTuzRo0fM39+faWtrM4FAwDw9PVlWVhZXLjc3l40cOZJpa2szNTU1Zmdnxw4cOMBycnIYamadcK+AgADGGGNFRUXM19eXqampMQMDA7Z69Wrm7OzMpk+fztVrZmbGwsPDmb+/PxMKhdy5SUlJbNCgQUxVVZWZmJiwqVOnsuLiYsYYY6mpqQwAy83NbfBa8/LymLKyMps1a1a9z9atW8cAsL/++osxxrhrSE1NbfpNfa72587Ro0cbLLNy5Upmbm4ud50v3ytZQkND2aBBg2SWkfb1f5mZmRlbs2aNfAE+N3PmTIm2N27cyCwsLFhFRUWT6qnVEl+PumR9z1K+IInuh6TCH35gGTa23OvW1GmNnlP2tIJFByey6OBElprwD4sOTmSH/+9vqWXjN1xi0cGJbPuCUyw6OJEd+/FqS18CIW8Myp8of5KG8qe3O3+i6XuEENIKGGMQl5a2yYu94tQSABAIBKioqEBgYCDOnz+PuLg4JCcngzGG4cOHc8OKJ0+ejPLycpw8eRKXL1/GihUroKGhAVNTU/zyyy8AaoYmFxQUYO3atQCAWbNm4fTp04iLi0NCQgKSkpJw8eLFejFERkbC0dERqamp+Oqrr5CdnQ1PT0+MHj0a6enp2L17N06dOoUpU6YAAPT09KCgoIC9e/eiurpa6nXt3bsXlZWVmDNnTr3PgoODoaGhgV27dr3y/QNqnmxt2bIFWlpacHR0bLCcSCSCjo5Oi7T5sri4OPTp0wdjxoyBvr4+evbsiR9++KFeuePHj0NfXx82Njb44osv8PDhw3plvv32W+jq6qJnz55YtWqVzOkJN27cwB9//AFnZ2eJWPr374/JkyejU6dO6N69O5YtW9bg14qQtwlryspQz/8Pb2yaHyFvq/acQ1H+9Ooof3r78yeavkcIIa2AlZUhs1fvNmnb5uIF8NTUmnUuYwyJiYk4fPgwvLy8sH//fpw+fRoDBgwAAMTGxsLU1BT79+/HmDFjkJeXh9GjR8PBwQEAYGFhwdVVmyjo6+tzQ4yfPn2KHTt2YOfOnXB1dQUAxMTEwMjIqF4sQ4cOxezZs7n3QUFB8PPz49YDsLKywrp16+Ds7IyNGzfC2NgY69atw7x587BkyRL06dMHLi4u8PPz4+LKysqClpYWDA0N67XH5/NhYWGBrKysZt27WvHx8Rg/fjxKS0thaGiIhIQEdOzYUWrZGzduYP369a805F2WmzdvYuPGjZg1axYWLlyIc+fOYdq0aeDz+QgICABQM/T8o48+grm5ObKzs7Fw4UJ4eXkhOTkZioqKAIBp06ahV69e0NHRwZkzZ7BgwQIUFBRg9erVEu0NGDAAFy9eRHl5OT7//HOEh4dLxPLnn3/Cz88PBw8exI0bN/Cf//wHlZWVCAsLey3XTwghpP1pjzkU5U+UP1H+JD8aKUUIIaSe+Ph4aGhoQFVVFV5eXhg3bhwCAwOhpKSEfv36ceV0dXVhY2ODq1evAqj5YRsREYGBAwciLCwM6enpMtu5efMmKisr0bdvX+6YlpYWbGxs6pXt06ePxPtLly5h+/bt0NDQ4F4eHh4Qi8XIyckBUPPk8e7du4iNjUX//v2xZ88e2NvbIyEhQe570djaC0BNclk3jqSkJO4zFxcXpKWl4cyZM/D09MTYsWNx//79enXk5+fD09MTY8aMkZjrX7fekJAQuWJOSkqSOC82NhYAIBaL0atXLyxbtgw9e/bE559/jkmTJmHTpk3cuePHj8eoUaPg4OCAf/3rX4iPj8e5c+dw/PhxrsysWbPwwQcfoEePHggJCUFUVBTWr1+P8vJyiTh2796NixcvYufOnThw4IBEsigWi6Gvr48tW7agd+/eGDduHL788ksuFln3lJA3SbNGUtQ5hdfICua1RXkK9U4lhLxhKH96gfInyp/kRSOlCCGkFfAEAthcvNBmbTeVi4sLt2ilkZERlJSUEBcX1+h5QUFB8PDwwIEDB3DkyBEsX74cUVFRmDp1anNCl6Curi7xvri4GMHBwZg2bVq9sp07d+b+LhQK4e3tDW9vb0RERMDDwwMRERFwc3ODlZUVRCIR7ty5U+/pYkVFBbKzs+Hh4dFobKNGjZJINo2NjSXitrS0hKWlJZycnGBlZYWtW7dKLHp6584duLi4YMCAAdiyZYtE3XV3R9HU1Gw0FqAmAa17XqdOnQAAhoaGsLOzkyjbrVs3bmqANBYWFujYsSNu3LjBPY19Wb9+/VBVVYXc3FyJhNjU1BQAYGdnh+rqanz++eeYPXs2FBUVYWhoCGVlZe7pYW0sd+/eRUVFhcx7Skh7J7Ufq6HOLeqFIu+49pRDUf5E+VMtyp/kR51ShBDSCng8XrOn0LWF2kSgrm7duqGqqgopKSnc8POHDx8iMzNT4ge1qakpQkJCEBISggULFuCHH37A1KlTuSdmdee8W1hYQFlZGefOneMSIZFIhKysLAwZMkRmjL169UJGRka9OGXh8XiwtbXFmTNnAAAff/wxQkNDERUVhaioKImymzZtQmlpKSZMmNBovUKhUGL3FFnEYrHEE7H8/Hy4uLigd+/eiImJgYKC5CDmplxfLYFAIPW8gQMHIjMzU+JYVlYWzMzMGqzr9u3bePjwodQh+rXS0tKgoKAAfX39BsuIxWJUVlZCLBZDUVERAwcOxM6dOyEWi7lrzsrKgqGhIfh8Pvh8vtz3lBBCyNurPeVQlD9R/lSL8if5UacUIYQQuVhZWcHHxweTJk3C5s2bIRQKMX/+fBgbG8PHxwcAMGPGDHh5ecHa2hqPHz/GsWPH0K1bNwCAmZkZeDwe4uPjMXz4cAgEAgiFQgQEBGDu3LnQ0dGBvr4+wsLCoKCg0OiUltDQUDg5OWHKlCkICgqCuro6MjIykJCQgOjoaKSlpSEsLAz+/v6ws7MDn8/HiRMnsG3bNoSGhgKoeSK4cuVKzJkzB6qqqvD394eysjJ+++03LFy4EBEREejevbtEuy8nJQBgb28PZWVliWMlJSVYunQpRo0aBUNDQxQWFmLDhg3Iz8/HmDFjANQkVB988AHMzMwQGRmJBw8ecOcbGBjIvP7aJ3nFxcV48OAB0tLSwOfz6z3Jq2vmzJkYMGAAli1bhrFjx+Ls2bPYsmUL93SxuLgYS5YswejRo2FgYIDs7GzMmzcPlpaW3BPP5ORkpKSkwMXFBUKhEMnJyZg5cyb+/e9/c1sjx8bGQllZGQ4ODlBRUcH58+exYMECjBs3jrtPX3zxBaKjozF9+nRMnToV169fx7Jly6Q+ua3r0aNHyMvLw507dwC8+HoYGBg0es8IeSM1sn557QAq7v9EGjlFSLtC+VMNyp8of2pQi+wD2E7RlsaEkNflbdvSuFbtlsZaWlpMIBAwDw8PiS2Np0yZwrp27cpUVFSYnp4e8/f3Z4WFhdzn4eHhzMDAgPF4PJlbGvft25fNnz+fO6+hLXTPnj3L3NzcmIaGBlNXV2c9evRgS5cuZYwx9uDBAzZt2jTWvXt3pqGhwYRCIXNwcGCRkZGsurpaop79+/ezwYMHM3V1dW7L5V27dkmUkbYtc+3r1q1b9WIrKytjH374ITMyMmJ8Pp8ZGhqyUaNGsbNnz3JlYmJiGqyzMdLOMTMza/S833//nXXv3p2pqKgwW1tbtmXLFu6z0tJS5u7uzvT09JiysjIzMzNjkyZNYnfv3uXKXLhwgfXr149paWkxVVVV1q1bN7Zs2TL27NkzrsxPP/3EevXqxX1d7Ozs2LJly+p9P5w5c4b169ePqaioMAsLC7Z06VJWVVUlM/6G7llYWFij1y5LS2xp/K6g+yHpweYtLMPGlnvdmjqt0XOKnzxj0cGJLDokkaUl5rHo4ER2+IfLUsvGrUtl0cGJ7H9fnWHRwYnsz/9dbelLIOSNQfkT5U+UP717+ROPsRbYK7ydKioqgpaWFkQikdzzTAkhRB7Pnj1DTk4OzM3Noaqq2tbhtCslJSUwNjZGVFQUJk6c2OrtP3r0CK6urtDU1MShQ4eg1k6mDJBXI+t7lvIFSXQ/JBVu+QEP6uycJHR3h8m6tTLPKRGVY3voaYAHDBpjhVM/X4dVH324B3WvV/b39WnIu/II2p3U8OReKewGGsLFv1uLX0dDxNXV+Pt4AsqePoXdEBcIdaTvfkVIS6D8qfkofyJtoSXyJ9p9jxBCSJtKTU3Frl27kJ2djYsXL8LPzw8AuCHtrU1HRwdHjx6Fq6srkpOT2yQGQsi7oZGZezXa+PHxP5fTkLAlGqd27cCWLwJx6qf/tm1AhBAAlD+RtwetKUUIIaTNRUZGIjMzE3w+H71790ZSUhI6dmy7p/G6urr4+uuv26x9Qkg7Js8khNoiddZ+aegsKUVbVXlJscT7vCuyt6onhLQeyp/I24A6pQghhLSpnj174sKFttnqmRBCXlkrr4TR2gOn6rX37q78QcgbhfIn8rag6XuEEEIIIYS0Im5HPcgxAurF9nuvMyT5UZ8UIYSQFkSdUoQQQgghhLSqOr1SjZVs6z6pl0ZGMeqVIoQQ0oKoU4oQQgghhJD2gvqECCGEvEWoU4oQQgghhJBWxA0+qjv6qZHOpjdlpBStKUUIIaQlUacUIYQQQgghzfUKnTQ8Oebvvaj+zVhTivqkCCGEtCTqlCKEEEIIIaTNyNnZ9LxYm+++R/MHCSGEtCDqlCKEEEIIIaQVMSb/Que1nUBvyuZ7hBBCSEuiTilCCCESAgMDwePxwOPxwOfzYWlpifDwcFRVVb1SvcePHwePx8OTJ09aJlA55OTkwNfXF0ZGRlBVVYWJiQl8fHxw7do1iXLx8fFwdnaGUCiEmpoa3n//fWzfvl2iTG5uLng8HtLS0uRuf/HixbC1tYW6ujo6dOiAYcOGISUlRaLOiRMnwtzcHAKBAF27dkVYWBgqKipk1ltQUABfX19YW1tDQUEBM2bMkCue6upqfPXVVxLtffPNNy9+QQawb98+uLu7Q1dXt8Hrzc7Oxocffgg9PT1oampi7NixuHfvXpOvKz09HYMHD4aqqipMTU2xcuXKRq/h5MmT8Pb2hpGREXg8Hvbv3y/XtRPyRml6n1Sd9608Uunl3fdo/h4hUlH+RPkT5U/N02qdUhs2bECXLl2gqqqKfv364ezZszLL79mzB7a2tlBVVYWDgwMOHjzYYNmQkBDweDx89913LRw1IYS8mzw9PVFQUIDr169j9uzZWLx4MVatWtXWYXEaSzoAoLKyEm5ubhCJRNi3bx8yMzOxe/duODg4SCR269evh4+PDwYOHIiUlBSkp6dj/PjxCAkJwZw5c14pTmtra0RHR+Py5cs4deoUunTpAnd3dzx48AAAcO3aNYjFYmzevBlXrlzBmjVrsGnTJixcuFBmveXl5dDT08OiRYvg6OgodzwrVqzAxo0bER0djatXr2LFihVYuXIl1q9fz5UpKSnBoEGDsGLFCql1lJSUwN3dHTweD3/++SdOnz6NiooKeHt7QywWy31dRUVFcHd3h5mZGS5cuIBVq1Zh8eLF2LJli8xrKCkpgaOjIzZs2CD3dRPyetXrNXotrfDelKFS1CdFSIMof6L8ifKnZmCt4KeffmJ8Pp9t27aNXblyhU2aNIlpa2uze/fuSS1/+vRppqioyFauXMkyMjLYokWLmLKyMrt8+XK9svv27WOOjo7MyMiIrVmzpklxiUQiBoCJRKLmXBYhhDSorKyMZWRksLKysrYOpckCAgKYj4+PxDE3Nzfm5OTEHj16xPz9/Zm2tjYTCATM09OTZWVlceVyc3PZyJEjmba2NlNTU2N2dnbswIEDLCcnh6HmVxnuFRAQwBhjrKioiPn6+jI1NTVmYGDAVq9ezZydndn06dO5es3MzFh4eDjz9/dnQqGQOzcpKYkNGjSIqaqqMhMTEzZ16lRWXFzMGGMsNTWVAWC5ubkNXmteXh5TVlZms2bNqvfZunXrGAD2119/McYYdw2pqalNv6nP1f7cOXr0aINlVq5cyczNzeWu8+V7JcuIESPYZ599JnHso48+Yn5+fvXKNnS9hw8fZgoKChI/O588ecJ4PB5LSEhosO2Xr+v7779nHTp0YOXl5dyx0NBQZmNjI9e1MMYYAPbrr7/KXV4WWd+zlC9Iovsh6cHGjSzDxpZ73ZoypdFzRA9KWXRwIts09Ri79OctFh2cyA5trp/nMsbYvsgLLDo4ke1eepZFByeyo9uvtPQlyPT38aMscuwIFjluJIscO4LtmDe1Vdsn7xbKnyh/kobyp7c7f2qVkVKrV6/GpEmT8Omnn8LOzg6bNm2Cmpoatm3bJrX82rVr4enpiblz56Jbt2745ptv0KtXL0RHR0uUy8/Px9SpUxEbGwtlZeXWuBRCCGkWxhgqy6vb5MVaYKqFQCBARUUFAgMDcf78ecTFxSE5ORmMMQwfPhyVlZUAgMmTJ6O8vBwnT57E5cuXsWLFCmhoaMDU1BS//PILACAzMxMFBQVYu3YtAGDWrFk4ffo04uLikJCQgKSkJFy8eLFeDJGRkXB0dERqaiq++uorZGdnw9PTE6NHj0Z6ejp2796NU6dOYcqUKQAAPT09KCgoYO/evaiurpZ6XXv37kVlZaXUJ3rBwcHQ0NDArl27Xvn+ATVPJ7ds2QItLS2ZT+dEIhF0dHRapM2XDRgwAImJicjKygIAXLp0CadOnYKXl5fcdZSXl4PH40FFRYU7pqqqCgUFBZw6darB816+ruTkZAwZMgR8Pp875uHhgczMTDx+/Lgpl0VIu8P9t9yE0U9c0TYaqcTtFEjT90gra885FOVPr47yp7c/f1J63Q1UVFTgwoULWLBgAXdMQUEBw4YNQ3JystRzkpOTMWvWLIljHh4eEvMexWIx/P39MXfuXNjb27+W2AkhpKVUVYixZfqJNmn787XOUFZRbNa5jDEkJibi8OHD8PLywv79+3H69GkMGDAAABAbGwtTU1Ps378fY8aMQV5eHkaPHg0HBwcAgIWFBVdX7Q9UfX19aGtrAwCePn2KHTt2YOfOnXB1dQUAxMTEwMjIqF4sQ4cOxezZs7n3QUFB8PPz49YDsLKywrp16+Ds7IyNGzfC2NgY69atw7x587BkyRL06dMHLi4u8PPz4+LKysqClpYWDA0N67XH5/NhYWHBJSDNFR8fj/Hjx6O0tBSGhoZISEhAx44dpZa9ceMG1q9fj8jIyFdqsyHz589HUVERbG1toaioiOrqaixduhR+fn5y1+Hk5AR1dXWEhoZi2bJlYIxh/vz5qK6uRkFBgdRzpF3X3bt3YW5uLlGuU6dO3GcdOnRoxhUS0v68KbPyGsUDTd0jbaI95lCUP1H+9DLKnxr22kdKFRYWorq6mrtRtTp16oS7d+9KPefu3buNll+xYgWUlJQwbdo0uWMpLy9HUVGRxIsQQkh98fHx0NDQgKqqKry8vDBu3DgEBgZCSUkJ/fr148rp6urCxsYGV69eBQBMmzYNERERGDhwIMLCwpCeni6znZs3b6KyshJ9+/bljmlpacHGxqZe2T59+ki8v3TpErZv3w4NDQ3u5eHhAbFYjJycHAA1Tx7v3r2L2NhY9O/fH3v27IG9vT0SEhLkvhd1n0Q1JDY2ViKOpKQk7jMXFxekpaXhzJkz8PT0xNixY3H//v16deTn58PT0xNjxozBpEmTuON16w0JCZEr5qSkJInzYmNjAQA///wzYmNjsXPnTly8eBE7duxAZGQkduzYIVe9QM0T1D179uD333+HhoYGtLS08OTJE/Tq1QsKCvXTioauq7nXQMjb4fmOevKU5Hbqa9veK25NKxopRUiDKH96gfInSZQ/Ney1j5R6HS5cuIC1a9fi4sWLTVr0cfny5ViyZMlrjIwQQqRT4ivg87XObdZ2U7m4uGDjxo3g8/kwMjKCkpIS4uLiGj0vKCgIHh4eOHDgAI4cOYLly5cjKioKU6dObU7oEtTV1SXeFxcXIzg4WOrDic6dO3N/FwqF8Pb2hre3NyIiIuDh4YGIiAi4ubnBysoKIpEId+7cqfd0saKiAtnZ2fDw8Gg0tlGjRkkkm8bGxhJxW1pawtLSEk5OTrCyssLWrVslRhDfuXMHLi4uGDBgQL2FKuvu3qKpqdloLEBNAlr3vNoHPXPnzsX8+fMxfvx4AICDgwP++ecfLF++HAEBAXLVDQDu7u7Izs5GYWEhlJSUoK2tDQMDA4knu41dl4GBgcSOMwC49wYGBujSpYvUayCkLTwrqcSTe6VQVFKARgcVCIR1ftlqRifNi+l78p/D9Qk1ubVXw14KlrqkSGtrTzkU5U+UP8lC+ZN0r71TqmPHjlBUVJR64wwMDKSe09CNri2flJSE+/fvS3zTVFdXY/bs2fjuu++Qm5srtd4FCxZITAssKiqCqalpcy6LEEKahMfjNXsKXVuoTQTq6tatG6qqqpCSksINP3/48CEyMzNhZ2fHlTM1NUVISAhCQkKwYMEC/PDDD5g6dSr3xKzu+gQWFhZQVlbGuXPnuP/TRSIRsrKyMGTIEJkx9urVCxkZGfXilIXH48HW1hZnzpwBAHz88ccIDQ1FVFQUoqKiJMpu2rQJpaWlmDBhQqP1CoVCCIVCuWIQi8UoLy/n3ufn58PFxQW9e/dGTExMvadlTbm+WgKBQOp5paWl9epXVFTkdn1pqtph9H/++Sfu37+PUaNGcZ81dl39+/fHl19+icrKSm5dyISEBNjY2HBDz5tz7YS0tOpqMXYuSUFZUc2uVQqKPIz/qi86GKg3cmb7cPy/P+D62WQoKfMh7KgHzy9mQENHt145ngIPqAaNlCKtrj3lUJQ/Uf4kD8qfJL32Tik+n4/evXsjMTER//rXvwDU/INKTEzkFlN7Wf/+/ZGYmMjNcwVqbnT//v0BAP7+/hg2bJjEOR4eHvD398enn37aYCwqKioSC4sRQgiRn5WVFXx8fDBp0iRs3rwZQqEQ8+fPh7GxMXx8fAAAM2bMgJeXF6ytrfH48WMcO3YM3bp1AwCYmZmBx+MhPj4ew4cPh0AggFAoREBAAObOnQsdHR3o6+sjLCwMCgoKjY6EDQ0NhZOTE6ZMmYKgoCCoq6sjIyMDCQkJiI6ORlpaGsLCwuDv7w87Ozvw+XycOHEC27ZtQ2hoKICaJ4IrV67EnDlzoKqqCn9/fygrK+O3337DwoULERERge7du0u0m5mZWS8We3v7ehtulJSUYOnSpRg1ahQMDQ1RWFiIDRs2ID8/H2PGjAFQk3h88MEHMDMzQ2RkJLfVMYAGH9zUqn0KVlxcjAcPHiAtLQ18Pl8iwX2Zt7c3li5dis6dO8Pe3h6pqalYvXo1PvvsM67Mo0ePkJeXhzt37khcr4GBARdTTEwMunXrBj09PSQnJ2P69OmYOXMmN21Anuvy9fXFkiVLMHHiRISGhuLvv//G2rVrsWbNGpnXXVxcjBs3bnDvc3JykJaWBh0dHYmHVYS0lMpn1S86pBR4EFczPLlX+mqdUrUz8qQdbKjsa5q9l3b4AKqrqgAAj+7cRk7aBTgMda/Tfu1Uw/ay+BUhbxbKn2pQ/kT5U4NaZB/ARvz0009MRUWFbd++nWVkZLDPP/+caWtrs7t37zLGGPP392fz58/nyp8+fZopKSmxyMhIdvXqVRYWFsaUlZXZ5cvSt8plrGa7yzVr1jQpLtrSmBDyurxtWxrXqt3SWEtLiwkEAubh4SGxpfGUKVNY165dmYqKCtPT02P+/v6ssLCQ+zw8PJwZGBgwHo8nc0vjvn37SvxcaOj/+LNnzzI3NzemoaHB1NXVWY8ePdjSpUsZY4w9ePCATZs2jXXv3p1paGgwoVDIHBwcWGRkJKuurpaoZ//+/Wzw4MFMXV2d23J5165dEmWkbctc+7p161a92MrKytiHH37IjIyMGJ/PZ4aGhmzUqFHs7NmzXJmYmJgG62yMtHPMzMxknlNUVMSmT5/OOnfuzFRVVZmFhQX78ssvJbYVbiimsLAwrkxoaCjr1KkTU1ZWZlZWViwqKoqJxeImX9elS5fYoEGDmIqKCjM2Nmbffvtto9d97NgxqfXW/ntqrpbY0rilnThxgo0cOZIZGhpK3b45ICCg3n3w8PBotN7o6GhmZmbGVFRUWN++fVlKSkqT4nrX8qey4goWHZzIooMT2c/LzrLo4ER2M+0+9/mD779nGTa23OvWlCmN1vn4bgmLDk5kW2acYOnHbrHo4ER2aHO61LJ7V5xn0cGJ3J8J26602LUxxtjqT3xY5NgRbOv0z1nk2BHs0tFDEp9f/vMIixw7gn33749Y5NgRLGbWFy3aPiF1Uf5E+RPlT+9e/sRjrHXG4EZHR2PVqlW4e/cu3nvvPaxbt46bP/rBBx+gS5cu2L59O1d+z549WLRoEXJzc2FlZYWVK1di+PDhDdbfpUsXzJgxQ2J0VWOKioqgpaUFkUgk9zxTQgiRx7Nnz5CTkwNzc3Ooqqq2dTjtSklJCYyNjREVFYWJEye2evuPHj2Cq6srNDU1cejQIaipqbV6DKT1yfqebat84dChQzh9+jR69+6Njz76CL/++is36hwAAgMDce/ePcTExHDHVFRUZO68s3v3bkyYMAGbNm1Cv3798N1332HPnj3IzMyEvr6+XHG9a/nTs5JKbJ1ds/iuvpkQ9/95iuFfOMDcUQ8A8OD771G4bj1XXug2DCbr10utq9aTe6WIDfsLfIESnHwscPKnLHTtpQfPzx3qlf1l5QXcvSmCYVctFGSLYNPPAMM+bfiJflOt8f0XxNVV6GRhhXs3r8Pt8yno4erJfX752BEc2bQOSioqqCovh65JZwRGfd9i7RNSF+VPzUf5E2kLLZE/tdpC51OmTGlwut7x48frHRszZgw3PE8eDa0jRQgh5M2WmpqKa9euoW/fvhCJRAgPDwcAbkh7a9PR0cHRo0exYcMGJCcnc1stE9LavLy84OXlJbOMiopKo1MV6lq9ejUmTZrELXewadMmHDhwANu2bcP8+fNfKd63VhMf38rzvLe2jHxT8qTO9WtBTObbWjxezbomrfQ8mxDSCMqfyNuiXe6+Rwgh5O0SGRmJzMxMbh3CpKQkbhHItqCrq4uvv/66zdonRF7Hjx+Hvr4+OnTogKFDhyIiIgK6uvUXqQZqdkS6cOGCxM5FCgoKGDZsGJKTk1srZNJEL/cBsde0/12DHWQvr2lFnVKEvDEofyJvA+qUIoQQ0qZ69uyJCxcutHUYhLQ7np6e+Oijj2Bubo7s7GwsXLgQXl5eSE5OhqJi/Z2qCgsLUV1dXW976E6dOuHatWsNtlNeXi6x41FRUVHLXQSRW2OLF7+qirxbAICyv68AwzyllKCFzgl5k1D+RN4W1ClFCCGEENIOjR8/nvu7g4MDevToga5du+L48eMtOm1i+fLlWLJkSYvV195IG5kkMVioGSOHuFPq9vM0Us2LkUpNbq6RWGoqrH7yBFBXxdMjh4EZs6W0z3sdzRNCCHnHKbR1AIQQQggh5NVZWFigY8eOEls+19WxY0coKiri3r17Esfv3bsnc12qBQsWQCQSca9bt261aNzvMp4co4+kdmC1pJeWrBJXV7/Ufu36V7yXAiKEEEJeHXVKEUIIIYS8BW7fvo2HDx/C0NBQ6ue1a44kJiZyx8RiMRITE9G/f/8G61VRUYGmpqbE653VUlPo6vTrvOZZeU3XUJ/T6xqqRQgh5J1GnVKEEEIIIW+g4uJipKWlIS0tDQCQk5ODtLQ05OXlobi4GHPnzsVff/2F3NxcJCYmwsfHB5aWlvDw8ODqcHV1RXR0NPd+1qxZ+OGHH7Bjxw5cvXoVX3zxBUpKSrjd+IgU8nYgNaF3iTVlR72XRiq1/EClxip8eaVzQgghpOXQmlKEEEIIIW+g8+fPw8XFhXs/a9YsAEBAQAA2btyI9PR07NixA0+ePIGRkRHc3d3xzTffQEVFhTsnOzsbhYWF3Ptx48bhwYMH+Prrr3H37l289957+OOPP+otfk5aR2v28zCxGKiuBhQVwVNo+nPpF5vv0UgpQgghLYc6pQghhBBC3kAffPCBzA6Aw4cPN1pHbm5uvWNTpkzBlClTXiU0Uldz+mhauV+n6I8/kD9nLlBVBSU9PZjv+wVKenoSZXhcUC8FVztQqrYji/qkCCGEtCCavkcIIYQQQkgba6ivh7XA7LmHW34AqqoAAFUPHuDZ1av16peXtN0ICSGEkOaiTilCCCESAgMDwePxwOPxwOfzYWlpifDwcFQ9/4WmuY4fPw4ej4cnT560TKByyMnJga+vL4yMjKCqqgoTExP4+Pjg2rVrEuXi4+Ph7OwMoVAINTU1vP/++9i+fbtEmdzcXPB4PG59H3ksXrwYtra2UFdXR4cOHTBs2DCkpKRI1Dlx4kSYm5tDIBCga9euCAsLQ0VFhcx6CwoK4OvrC2traygoKGDGjBlyxfP06VPMmDEDZmZmEAgEGDBgAM6dOydRpri4GFOmTIGJiQkEAgHs7OywadMmiTLBwcHo2rUrBAIB9PT0pN7TvLw8jBgxAmpqatDX18fcuXMb/Dd0+vRpKCkp4b333mv0Gvbt2wd3d3fo6uo2+etBSHPI3WnD7U7XhMp5PPl7m16hV0pcXi55QNZFvfRZvd33CCFSUf5E+RPlT81DnVKEEELq8fT0REFBAa5fv47Zs2dj8eLFWLVqVVuHxWks6QCAyspKuLm5QSQSYd++fcjMzMTu3bvh4OAgkditX78ePj4+GDhwIFJSUpCeno7x48cjJCQEc+bMeaU4ra2tER0djcuXL+PUqVPo0qUL3N3d8eDBAwDAtWvXIBaLsXnzZly5cgVr1qzBpk2bsHDhQpn1lpeXQ09PD4sWLYKjo6Pc8QQFBSEhIQH/+9//cPnyZbi7u2PYsGHIz8/nysyaNQt//PEHfvzxR1y9ehUzZszAlClTEBcXx5Xp3bs3YmJicPXqVRw+fBiMMbi7u6P6+Vby1dXVGDFiBCoqKnDmzBns2LED27dvx9dff10vpidPnmDChAlwdXWV6xpKSkowaNAgrFixQu7rJqRVNGWh82YMNnqlLiGxuPEytTE1dB1cpxuNlCKkIZQ/Uf5E+VMzsHeYSCRiAJhIJGrrUAghb5mysjKWkZHBysrK2jqUJgsICGA+Pj4Sx9zc3JiTkxN79OgR8/f3Z9ra2kwgEDBPT0+WlZXFlcvNzWUjR45k2traTE1NjdnZ2bEDBw6wnJwchppfebhXQEAAY4yxoqIi5uvry9TU1JiBgQFbvXo1c3Z2ZtOnT+fqNTMzY+Hh4czf358JhULu3KSkJDZo0CCmqqrKTExM2NSpU1lxcTFjjLHU1FQGgOXm5jZ4rXl5eUxZWZnNmjWr3mfr1q1jANhff/3FGGPcNaSmpjb9pj5X+3Pn6NGjDZZZuXIlMzc3l7vOl+9VQ0pLS5mioiKLj4+XON6rVy/25Zdfcu/t7e1ZeHi4zDIvu3TpEgPAbty4wRhj7ODBg0xBQYHdvXuXK7Nx40amqanJysvLJc4dN24cW7RoEQsLC2OOjo6NXketlvh61CXre5byBUnv2v0oEZWz6OBEFh2cyPauOMeigxNZdup97vP769azDBtblmFnzzJsbFnefyY3WueDW0UsOjiRbZubxC6fuM2igxPZwU3pUsv+FJHCooMTWdy6VBYdnMgO/3C5yddww8OzJsbnr6Jjx7jPIseOYJFjR7Ctw4eyyLEj2OFhH0icm3bkAIscO4JtCpnAIseOYFsmf9bk9gmRF+VPlD9JQ/nT250/0UgpQghpBYwxVD571iYv1gJPtQUCASoqKhAYGIjz588jLi4OycnJYIxh+PDhqKysBABMnjwZ5eXlOHnyJC5fvowVK1ZAQ0MDpqam+OWXXwAAmZmZKCgowNq1awHUPFk6ffo04uLikJCQgKSkJFy8eLFeDJGRkXB0dERqaiq++uorZGdnw9PTE6NHj0Z6ejp2796NU6dOcQs46+npQUFBAXv37uWeQL1s7969qKyslPpELzg4GBoaGti1a9cr3z+g5unkli1boKWlJfPpnEgkgo6OTou0WVdVVRWqq6uhqqoqcVwgEODUqVPc+wEDBiAuLg75+flgjOHYsWPIysqCu7u71HpLSkoQExMDc3NzmJqaAgCSk5Ph4OAgsaObh4cHioqKcOXKFe5YTEwMbt68ibCwsJa8VEJeoxaewtak6prfNmNyjJRqtHlu/71Xr4uQJmjPORTlT6+O8qe3P3+i3fcIIaQVVJWXY13Ax23S9rQde6H80g9SeTHGkJiYiMOHD8PLywv79+/H6dOnMWDAAABAbGwsTE1NsX//fowZMwZ5eXkYPXo0HBwcAAAWFhZcXbWJgr6+PrS1tQHUzNHfsWMHdu7cyQ0/jomJgZGRUb1Yhg4ditmzZ3Pvg4KC4Ofnx60HYGVlhXXr1sHZ2RkbN26EsbEx1q1bh3nz5mHJkiXo06cPXFxc4Ofnx8WVlZUFLS0tGBoa1muPz+fDwsICWVlZzbp3teLj4zF+/HiUlpbC0NAQCQkJ6Nixo9SyN27cwPr16xEZGflKbUojFArRv39/fPPNN+jWrRs6deqEXbt2ITk5GZaWlly59evX4/PPP4eJiQmUlJSgoKCAH374AUOGDJGo7/vvv8e8efNQUlICGxsbJCQkgM/nAwDu3r0rkVAB4N7fvXsXAHD9+nXMnz8fSUlJUFKidIS8BV51+l4jv/vyXmXzu5dPkhJAQ11OLxZa5z1/T51SpHW1xxyK8ifKnyh/kh+NlCKEEFJPfHw8NDQ0oKqqCi8vL4wbNw6BgYFQUlJCv379uHK6urqwsbHB1ec7OU2bNg0REREYOHAgwsLCkJ6eLrOdmzdvorKyEn379uWOaWlpwcbGpl7ZPn36SLy/dOkStm/fDg0NDe7l4eEBsViMnJwcADVPHu/evYvY2Fj0798fe/bsgb29PRISEuS+F7WJgiyxsbEScSQlJXGfubi4IC0tDWfOnIGnpyfGjh2L+/fv16sjPz8fnp6eGDNmDCZNmsQdr1tvSEiIXDEnJSVJnBcbGwsA+N///gfGGIyNjaGiooJ169bhk08+gYLCi3Rg/fr1+OuvvxAXF4cLFy4gKioKkydPxtGjRyXa8PPzQ2pqKk6cOAFra2uMHTsWz549kyu+6upq+Pr6YsmSJbC2tpZaRtY9JaTdq+3okfLRvZxs/PXLT0j59Wecj/8VVRVFDZaVmzxrSnGxSe90ooXOCWkc5U8vUP5E+ZO83o6uNUIIecMpqahg2o69bdZ2U7m4uGDjxo3g8/kwMjKCkpKSxEKNDQkKCoKHhwcOHDiAI0eOYPny5YiKisLUqVObE7oEdXV1iffFxcUIDg7GtGnT6pXt3Lkz93ehUAhvb294e3sjIiICHh4eiIiIgJubG6ysrCASiXDnzp16TxcrKiqQnZ0NDw+PRmMbNWqURLJpbGwsEbelpSUsLS3h5OQEKysrbN26FQsWLODK3LlzBy4uLhgwYAC2bNkiUXfd3VE0NTUbjQWoSUDrnlf7lK1r1644ceIESkpKUFRUBENDQ4wbN4578llWVoaFCxfi119/xYgRIwAAPXr0QFpaGiIjIzFs2DCuTi0tLWhpacHKygpOTk7o0KEDfv31V3zyyScwMDDA2bNnJWK6d+8eAMDAwABPnz7F+fPnkZqayk0XEIvFYIxBSUkJR44ckXlPCWlNrT0y6OD6SDzKv8W9F2jZAwqN/z8k04vhTjV/b8olcdffjN0FCWkB7SmHovyJ8ifKn5qOOqUIIaQV8Hi8Zk+hawu1iUBd3bp1Q1VVFVJSUrjh5w8fPkRmZibs7Oy4cqampggJCUFISAgWLFiAH374AVOnTuWemNVdn8DCwgLKyso4d+4clwiJRCJkZWXVG+78sl69eiEjI6NenLLweDzY2trizJkzAICPP/4YoaGhiIqKQlRUlETZTZs2obS0FBMmTGi0XqFQCKFQKFcMYrEY5XW2Z8/Pz4eLiwu3I0vdp24AmnR9tQQCgczz1NXVoa6ujsePH+Pw4cNYuXIlgJoddyorK+vFoKioCLGMkRaMMTDGuOvq378/li5divv370NfXx8AkJCQAE1NTdjZ2UFZWRmXL1+WqOP777/Hn3/+ib1798Lc3Bzq6upy31NC2tSrdFpJGX1UXlIMANDr3AUP8nIhrioBj1+nbDOa49aUUlAAqqubVcmL5qlXirSu9pRDUf5E+VNdlD/JhzqlCCGEyMXKygo+Pj6YNGkSNm/eDKFQiPnz58PY2Bg+Pj4AgBkzZsDLywvW1tZ4/Pgxjh07hm7dugEAzMzMwOPxEB8fj+HDh0MgEEAoFCIgIABz586Fjo4O9PX1ERYWBgUFhUanioSGhsLJyQlTpkxBUFAQ1NXVkZGRgYSEBERHRyMtLQ1hYWHw9/eHnZ0d+Hw+Tpw4gW3btiE0NBRAzRPBlStXYs6cOVBVVYW/vz+UlZXx22+/YeHChYiIiED37t0l2s3MzKwXi729PZSVlSWOlZSUYOnSpRg1ahQMDQ1RWFiIDRs2ID8/H2PGjAFQk1B98MEHMDMzQ2RkJLfVMVDzREyW2id5xcXFePDgAdLS0sDn8yUS3JfVbj9sY2ODGzduYO7cubC1tcWnn34KoOZJorOzM+bOnQuBQAAzMzOcOHEC//3vf7F69WoANVMGdu/eDXd3d+jp6eH27dv49ttvIRAIMHz4cACAu7s77Ozs4O/vj5UrV+Lu3btYtGgRJk+eDJXnT51fvq/6+vpQVVWtd/xljx49Ql5eHu7cuQPgxdfDwMCg0XtGyCup+1/SK/bL1I6+kvXfXNc+/fAgLxeMicFrpGzjDT7/k+uUkoxD9qm1sdYuakWdUoQ0BeVPNSh/ovypIdQpRQghRG4xMTGYPn06Ro4ciYqKCgwZMgQHDx7kEorq6mpMnjwZt2/fhqamJjw9PbFmzRoANcOHlyxZgvnz5+PTTz/FhAkTsH37dqxevRohISEYOXIkNDU1MW/ePNy6daveLicv69GjB06cOIEvv/wSgwcPBmMMXbt2xbhx4wAAJiYm6NKlC5YsWYLc3FzweDzu/cyZM7l6Zs6cCQsLC0RFRWHt2rUoKSkBAOzatQvjx4+v1660Y7du3YKJiYnEMUVFRVy7dg07duxAYWEhdHV18f777yMpKQn29vYAap5+3bhxAzdu3Kh3fmO/LPbs2ZP7+4ULF7Bz506YmZkhNze3wXNEIhEWLFiA27dvQ0dHB6NHj8bSpUslEsKffvoJCxYsgJ+fHx49egQzMzMsXbqUW49BVVUVSUlJ+O677/D48WN06tQJQ4YMwZkzZ7ineoqKioiPj8cXX3yB/v37Q11dHQEBAQgPD5d5TfKIi4vjkkDgxdcjLCwMixcvfuX6CWm2FlpzqfZ7X0FR6fn7Ftg5j+sE49V0MTVhofN6BQghTUb5E+VPlD81jMfe4S00ioqKoKWlBZFIJPc8U0IIkcezZ8+Qk5MDc3PzRpMDIqmkpATGxsaIiorCxIkTW739R48ewdXVFZqamjh06BDU1NRaPQbS+mR9z1K+IOldux8lonJsDz0N8ABDCy0UZIvgFewAi556AIAH69aj8PvvAWVloLISGkOHwvT7DTLrvP9PEfYsPw+NDiro7dUFJ3ZmwtyxI4Z/0QMbP/83SkVPMGj8BJz66b9QFhhBUXU8LN7Tw820B+jaSx+en8t+Iv6y60OcUXX/PniqqmDPnsFkQzSErq5gjGH1eG8AgG5xGR5qCGD/sBieR49z56b+8Tv+jNmMDoZGeFxwBxoddBC86b9Nu4mEyInyp+aj/Im0hZbIn2j3PUIIIW0qNTUVu3btQnZ2Ni5evAg/Pz8A4Ia0tzYdHR0cPXoUrq6uSE5ObpMYCCHtyfNRSE0546W1w6VRUKodKVXdaFm5G1R4aQpek55N1wTwzj7NJuQNQ/kTeVvQ9D1CCCFtLjIyEpmZmeDz+ejduzeSkpLQsWPHNotHV1cXX3/9dZu1Twh587yu2WsNzfpTUFCs+UsLTN9jL0/fa9K54M6VOEAIaXOUP5G3AXVKEUIIaVM9e/bEhQsX2joMQgiRTt4+mKasKVXb0SOjq0tBqaZTqnZNqRfVN2v7veeVKjx/24w6ngfwDq/8QcgbhfIn8rag6XuEEEIIIYS0IvaiV6pBis8XOn8xUuoVxmrVbkn+0nblrE4H14s+r5c7nV6MspIXq66G+Pmix4QQQogsNFKKEEIIIYSQxtTplKnbmdPSI4dq66vtR2Li6pcKNKtSAI1MweO1zJpR4mfPcHOUDyrz8qCgoQHFDh1gsvY7qMrYbp0QQsi7i0ZKEUIIIYQQ0pq4dZoaLpK8PwcAIH7eKaWo1PyRUqzeQudyBPfiZAAAT86pf5X5+ajMywMAiIuLUXnrFopPnW5qyIQQQt4R1ClFCCGEEEJIAyT6YF7XaudSVD6raVhBEbAbbAT9Lg1vp92olzuluOMv/trYpTU8va+BtpSUIOjZU84ACSGEvKuoU4oQQgghhJBGNNof1ZSFzuVSk6Yrq/Dg4mcLRcVXmF4nz/Q9juR1cEWbeH2KGhrgm5vL0R4hhJB3GXVKEUIIIYQQ0opkdvRwH9ak6RVlFSgvq3q1Tq8GFjqXHdxL5F1zijVh+BUhhJB3Hi10TgghhBBCSIPknK7W0HsZZPbZ8J6v4SSuxP6VEdDqZAego9x1S42J65Rizw/LMzexKaOs6lZXpz4aKUUIIaQBNFKKEEKIhMDAQPB4PPB4PPD5fFhaWiI8PBxVVVWvVO/x48fB4/Hw5MmTlglUDjk5OfD19YWRkRFUVVVhYmICHx8fXLt2TaJcfHw8nJ2dIRQKoaamhvfffx/bt2+XKJObmwsej4e0tDS521+8eDFsbW2hrq6ODh06YNiwYUhJSZGoc+LEiTA3N4dAIEDXrl0RFhaGiooKmfUWFBTA19cX1tbWUFBQwIwZM+SK5+TJk/D29oaRkRF4PB72799fr8y+ffvg7u4OXV3dRq+XMQYvL68G69q+fTt69OgBVVVV6OvrY/LkyRKfHz58GE5OThAKhdDT08Po0aORm5srUSY2NhaOjo5QU1ODoaEhPvvsMzx8+PCVr5OQFteUkUxydNLweAIAigAYbmecR8aJ2JpOpGb077CXp+81g7ydUhIdXS0+pZGQNxflT5Q/Uf7UPNQpRQghpB5PT08UFBTg+vXrmD17NhYvXoxVq1a1dVicxpIOAKisrISbmxtEIhH27duHzMxM7N69Gw4ODhKJ3fr16+Hj44OBAwciJSUF6enpGD9+PEJCQjBnzpxXitPa2hrR0dG4fPkyTp06hS5dusDd3R0PHjwAAFy7dg1isRibN2/GlStXsGbNGmzatAkLFy6UWW95eTn09PSwaNEiODo6yh1PSUkJHB0dsWHDBpllBg0ahBUrVjRa33fffdfgL7mrV6/Gl19+ifnz5+PKlSs4evQoPDw8uM9zcnLg4+ODoUOHIi0tDYcPH0ZhYSE++ugjrszp06cxYcIETJw4EVeuXMGePXtw9uxZTJo06ZWvk7w70o/dxn+/PIO9K84jYdsViB6UNq+iuv/UpfXL1E5vYwylRSKUFoka3KmOOyplMNGLz/jga/pBSTC05vjzXfiapd7ue/Xjaqj/6MU1yNnBJHVqIo2UIu8Gyp8of6L8qRnYO0wkEjEATCQStXUohJC3TFlZGcvIyGBlZWVtHUqTBQQEMB8fH4ljbm5uzMnJiT169Ij5+/szbW1tJhAImKenJ8vKyuLK5ebmspEjRzJtbW2mpqbG7Ozs2IEDB1hOTg5DzW8l3CsgIIAxxlhRURHz9fVlampqzMDAgK1evZo5Ozuz6dOnc/WamZmx8PBw5u/vz4RCIXduUlISGzRoEFNVVWUmJiZs6tSprLi4mDHGWGpqKgPAcnNzG7zWvLw8pqyszGbNmlXvs3Xr1jEA7K+//mKMMe4aUlNTm35Tn6v9uXP06NEGy6xcuZKZm5vLXefL90peANivv/7a4OeNXW9qaiozNjZmBQUF9ep69OgREwgEMq9zz549TElJiVVXV3PH4uLiGI/HYxUVFYwxxlatWsUsLCwkzlu3bh0zNjZu/AKfa+w6a8n6nqV8QVJ7ux+7wv9i0cGJ3OvMrzeadH7RwzIWHZzIvv/Pn+yXVedZdHAiu3HhHvf5vTVrWIaNLbv6Xk92ondPtn6cN4scO4JFjh3B9kQsklpn/vXHLDo4kf34dTL7++RtFh2cyOI3XGKMMRY98RMWOXYEWxf0M4sOTmTrJ8Vz9a3/PIEd3Jje5Htw1aEHy7CxZdfd3FmGjS0THTzIGGOsqrKCq/u/I4exyLEj2AGXwRLnnvt9H4scO4L9uGBGTQyfjpXZVtm1THampyOLGeXONnziw773cWOZK79tcszk3UT5E+VP0lD+9MLbmD/RSClCCGkFjDGIK6rb5MVaYC0PgUCAiooKBAYG4vz584iLi0NycjIYYxg+fDgqKysBAJMnT0Z5eTlOnjyJy5cvY8WKFdDQ0ICpqSl++eUXAEBmZiYKCgqwdu1aAMCsWbNw+vRpxMXFISEhAUlJSbh48WK9GCIjI+Ho6IjU1FR89dVXyM7OhqenJ0aPHo309HTs3r0bp06dwpQpUwAAenp6UFBQwN69e1FdLX2Ewd69e1FZWSn1iV5wcDA0NDSwa9euV75/QM3TyS1btkBLS0vm0zmRSAQdHZ0WafN1KS0tha+vLzZs2AADA4N6nyckJEAsFiM/Px/dunWDiYkJxo4di1u3bnFlevfuDQUFBcTExKC6uhoikQj/+9//MGzYMCgrKwMA+vfvj1u3buHgwYNgjOHevXvYu3cvhg8f3mrXStq/l/8LrK4St3ADL/56W0eIcvai/vyrVxo9p6lT6pr1f7pcu+81OFTq+ce15zbaGP7R1cJDVWWUVVehVIWP/If3mxoxIZz2nENR/vTqKH96+/MnWuicEEJaAasU487XZ9qkbaPwAeDxFZt1LmMMiYmJOHz4MLy8vLB//36cPn0aAwYMAFAzX93U1BT79+/HmDFjkJeXh9GjR8PBwQEAYGFhwdVVmyjo6+tDW1sbAPD06VPs2LEDO3fuhKurKwAgJiYGRkZG9WIZOnQoZs+ezb0PCgqCn58ftx6AlZUV1q1bB2dnZ2zcuBHGxsZYt24d5s2bhyVLlqBPnz5wcXGBn58fF1dWVha0tLRgaGhYrz0+nw8LCwtkZWU1697Vio+Px/jx41FaWgpDQ0MkJCSgY0fpixXfuHED69evR2Rk5Cu1+brNnDkTAwYMgI+Pj9TPb968CbFYjGXLlmHt2rXQ0tLCokWL4ObmhvT0dPD5fJibm+PIkSMYO3YsgoODUV1djf79++PgwYNcPQMHDkRsbCzGjRuHZ8+eoaqqCt7e3jQtj6C8tARpRw5CS78TbAcMkescfTMh7v/ztPkzyeTpO3recePg6oHLiYdlFJQRxGtYFJy9NH1P2i/ajV0er870xMaIX6qM0fQ98graYw5F+RPlT9JQ/iQdjZQihBBST3x8PDQ0NKCqqgovLy+MGzcOgYGBUFJSQr9+/bhyurq6sLGxwdWrVwEA06ZNQ0REBAYOHIiwsDCkp6fLbOfmzZuorKxE3759uWNaWlqwsbGpV7ZPnz4S7y9duoTt27dDQ0ODe3l4eEAsFiMnJwdAzZPHu3fvIjY2Fv3798eePXtgb2+PhIQEue8Fn89vtExsbKxEHElJSdxnLi4uSEtLw5kzZ+Dp6YmxY8fi/v36owby8/Ph6emJMWPGSMz5r1tvSEiIXDEnJSVJnBcbGyvXefKIi4vDn3/+ie+++67BMmKxGJWVlVi3bh08PDzg5OSEXbt24fr16zh27BgA4O7du5g0aRICAgJw7tw5nDhxAnw+Hx9//DH3S29GRgamT5+Or7/+GhcuXMAff/yB3Nxc7j68zuskb7Yrx4/i1K4dOLB2JU78uA1lT4saPYenIO9In2aqM+JJRU29qafIKlXn780Mvt7ue5KHZR18scYV7+UjstuSWgkhbzfKn16g/EkS5U8No5FShBDSCnjKCjAKH9BmbTeVi4sLNm7cCD6fDyMjIygpKSEuLq7R84KCguDh4YEDBw7gyJEjWL58OaKiojB16tTmhC5BXV3yl7zi4mIEBwdj2rRp9cp27tyZ+7tQKIS3tze8vb0REREBDw8PREREwM3NDVZWVhCJRLhz5069p4sVFRXIzs6WWFyyIaNGjZJINo2NjSXitrS0hKWlJZycnGBlZYWtW7diwYIFXJk7d+7AxcUFAwYMwJYtWyTqrrt7i6amZqOxADUJaN3zOnXqJNd58vjzzz+RnZ3NPa2tNXr0aAwePBjHjx/nnpza2dlxn+vp6aFjx47Iy8sDAGzYsAFaWlpYuXIlV+bHH3+EqakpUlJS4OTkhOXLl2PgwIGYO3cuAKBHjx5QV1fH4MGDERER8Vqvk7zZysteLFZ+/vd9EFdXwyVA9gKub4pHBSXITn0gR8lm7lyXfQzI2A9UlQN8DcA59MX0PXk65hpolteUeF7qbaORUuRVtKccivInyp8aQvlTw6hTihBCWgGPx2v2FLq2UJsI1NWtWzdUVVUhJSWFG37+8OFDZGZmSvzwNDU1RUhICEJCQrBgwQL88MMPmDp1KvfErO76BBYWFlBWVsa5c+e4REgkEiErKwtDhsiektOrVy9kZGTUi1MWHo8HW1tbnDlTMw3g448/RmhoKKKiohAVFSVRdtOmTSgtLcWECRMarVcoFEIoFMoVg1gsRnl5Ofc+Pz8fLi4u6N27N2JiYqDw0kiGplxfLYFA0Kzz5DF//nwEBQVJHHNwcMCaNWvg7e0NoGbYOFCz/oWJiQkA4NGjRygsLISZmRmAmnUVXr5WRcWa7xGxWMyVUVJSklqGMfZar5O0L8/kGClVqy07SB4VlGDXkhfbmisoSfmF91Wn7/0+HXjyz4v3OhbA8+8p8GT8gt3QQKiX1pRqNDwm5Q5TnxR5Be0ph6L8ifKnhlD+1DDqlCKEECIXKysr+Pj4YNKkSdi8eTOEQiHmz58PY2Njbm78jBkz4OXlBWtrazx+/BjHjh1Dt27dAABmZmbg8XiIj4/H8OHDIRAIIBQKERAQgLlz50JHRwf6+voICwuDgoJCo4v/hoaGwsnJCVOmTEFQUBDU1dWRkZGBhIQEREdHIy0tDWFhYfD394ednR34fD5OnDiBbdu2ITQ0FEDNE8GVK1dizpw5UFVVhb+/P5SVlfHbb79h4cKFiIiIQPfu3SXazczMrBeLvb09t7hkrZKSEixduhSjRo2CoaEhCgsLsWHDBuTn52PMmDEAahKqDz74AGZmZoiMjOS2OgYgdQHMumqfcBUXF+PBgwdIS0sDn8+XSHBfVlxcjBs3bnDvc3JykJaWBh0dHS6pffToEfLy8nDnzh2J6zUwMJB4vaxz584wNzcHULOVs4+PD6ZPn44tW7ZAU1MTCxYsgK2tLVxcXAAAI0aMwJo1axAeHo5PPvkET58+xcKFC2FmZoaePXsCALy9vTFp0iRs3LgRHh4eKCgowIwZM9C3b1+p62Y05TrJu0fe2WcNnl9npJBEx4yMXpqXu2eePnrG/d3iPT10G2iI0qJGtmjnSU7fa7RTqPL5KDJNE6DoNlhFyYvPan+Rqa1EorLnnU4NhiFrkfS6IVIPFCF1Uf5Ug/Inyp8aQp1ShBBC5BYTE4Pp06dj5MiRqKiowJAhQ3Dw4EEuoaiursbkyZNx+/ZtaGpqwtPTE2vWrAFQMyR7yZIlmD9/Pj799FNMmDAB27dvx+rVqxESEoKRI0dCU1MT8+bNw61bt6Cqqiozlh49euDEiRP48ssvMXjwYDDG0LVrV4wbNw4AYGJigi5dumDJkiXIzc0Fj8fj3s+cOZOrZ+bMmbCwsEBUVBTWrl2LkpKaX+B27dqF8ePH12tX2rFbt25xT7RqKSoq4tq1a9ixYwcKCwuhq6uL999/H0lJSbC3twdQs8vKjRs3cOPGjXrnN7aYcG3iAQAXLlzAzp07YWZmhtzc3AbPOX/+PJfUADU79wBAQEAAtm/fDqBmzYNPP/203vWGhYVh8eLFMmOq67///S9mzpyJESNGQEFBAc7Ozvjjjz+4fytDhw7Fzp07sXLlSqxcuRJqamro378//vjjDwgEAgBAYGAgnj59iujoaMyePRva2toYOnQoVqxYIbNtea6TvDteDPSR3enS8PnyndGUyXZ6nYXwCqlZ0Djj9J0mRtSI2ni1ajqlIK6ze5aCPFG+tKbUSzv3NWekWUvsAktIe0b5E+VP8noX8ycee4d/ShQVFUFLSwsikUjueaaEECKPZ8+eIScnB+bm5o0mB0RSSUkJjI2NERUVhYkTJ7Z6+48ePYKrqys0NTVx6NAhqKmptXoMpPXJ+p6lfEHSm3A/kn/ZhTM/v1iY1W6wC7ymzJZadueSFDwuKIGhpRYKbojg8IEJhoy3lrutoodl+N+XyVBUUkAnc03cuf4EHpO6w7K3PgDg/uo1eLhlCxTU1XG+owbuamugj/dHOP/7PigqK2PGj79ydf1z5SHi11+CXmchxi58H0BNp9Sx/11Dlx4dMeI/PRD92TiUl5SArxkIBUUdMFaO8ic1OyapaE+DuaMBRvynR8MBr+wKlBYCZoOAf06BDZ6La5Nr7pWqvT2eXbkCo1UroeXtjaqKCqz1/wgAYFBWibsCZdjef4IRx05x1Z39bS+Sdm6HiV133M74G0oqKpj+318abL7syhXsmzUZd7U1uGOOnS0xbNV3ct9z8u6i/Kn5KH8ibaEl8ifafY8QQkibSk1Nxa5du5CdnY2LFy/Cz88PABrcLvd109HRwdGjR+Hq6ork5OQ2iYEQ0ohXeaTa3OexTVrnu+mLlFehEmN/H4unFU9llJIn9pd22pMYKfXS7ntNuJHc9MVm3L53+Bk4Ia8N5U/kbUHT9wghhLS5yMhIZGZmgs/no3fv3khKSkLHjh3bLB5dXV18/fXXbdY+IaRpZHZ5vDT9rGUrR4utoVTIK8DVR1fxHqudisJ76c8mUnie5osr6xyTsS5UI2tu8WSdWxejdc0JaS2UP5G3AXVKEUIIaVM9e/bEhQsX2joMQsg7olU7TJrRYcWTtUNeU9rkOqVejJTi6pYSF6+Bzq8Xo5yavqYUD8/vN42UIqTFUf5E3hY0fY8QQgghhLz1Xn33PXkbkEGOtl/aa09KHY0O3ar5Q0qn1MvT92SeXy+w5u++R11ShBBCGkKdUoQQQggh5O3X/CWRmtFWM6fcSa+seacpKNb8WV1V59jz0U61HUfyjGBq8vRHxoXMe9WeQEIIIW896pQihBBCCCHtSnMWzubJO9KnlYmLiwEA1c+3U5fsv3k5Vvk7kV6MlHrRKSVzamAjnXa190++2yfZgfWG3XJCCCFvEOqUIoQQQggh74yW7x9pfo3FJ07g3rffAgCeXcmQ65yqutPxZHneKcWYuM6x2jWl6hdvaE2pFwXkHPVUpwfqRY3UK0UIIUQ66pQihBBCCCFvvVeeUdeSM/Kee3Yt80V/jZT6pXXlnM4/jZ8zf5ZR60sjpaql7L4HoLSyFIEHA7n3qUblMmN9MVKq8Q6ml7ulaKQUIYSQhlCnFCGEEEIIad9k9Hq82DyueYtKyd2hUqfXixtT1JS2FOXfFPubv75B5LlIXCm80nCh2jWlmPTd9zIeZiDj0YvRWaV86cGypq4pVXekFHcK9UoRQgiRjjqlCCGEEELIW+9F/8hr6iCRo9NG+igjWfEwvLwfX60dGTuwNGVpw9XxnndKNbD7ntSd/eTRpNNac3V5Qggh7RF1ShFCCJEQGBgIHo8HHo8HPp8PS0tLhIeHo6qqqvGTZTh+/Dh4PB6ePHnSMoHKIScnB76+vjAyMoKqqipMTEzg4+ODa9euSZSLj4+Hs7MzhEIh1NTU8P7772P79u0SZXJzc8Hj8ZCWliZ3+4sXL4atrS3U1dXRoUMHDBs2DCkpKRJ1Tpw4Eebm5hAIBOjatSvCwsJQUVEhs96CggL4+vrC2toaCgoKmDFjhlzxnDx5Et7e3jAyMgKPx8P+/fubHDMALF26FAMGDICamhq0tbWltpWXl4cRI0ZATU0N+vr6mDt3rsS/obr/zuq+7O3tuTLLly/H+++/D6FQCH19ffzrX/9CZmZmo9cpT3zkHfSq/SMNdTpJ62hqpIOKJ9dQKl6jUwZLK0ulhFOzhlTR48c170tLXnyoIMdi7w2vdP7846avKUV9UuRdQPkT5U+UPzUPdUoRQgipx9PTEwUFBbh+/Tpmz56NxYsXY9WqVW0dFqexpAMAKisr4ebmBpFIhH379iEzMxO7d++Gg4ODRGK3fv16+Pj4YODAgUhJSUF6ejrGjx+PkJAQzJkz55XitLa2RnR0NC5fvoxTp06hS5cucHd3x4MHDwAA165dg1gsxubNm3HlyhWsWbMGmzZtwsKFC2XWW15eDj09PSxatAiOjo5yx1NSUgJHR0ds2LCh2TEDNfd/zJgx+OKLL6TWUV1djREjRqCiogJnzpzBjh07sH37dnz99ddcmbVr16KgoIB73bp1Czo6OhgzZgxX5sSJE5g8eTL++usvJCQkoLKyEu7u7igpKZHWrNzxkbdBc7o5mtsrVf+E5uz+1yiefHXywIO9rn2Dn1eWPwMA3LhwHgBw72zyi3O53fekXFNDFXLT9xQk3jdcnIHxattrtHZC3iqUP1H+RPlT01GnFCGEkHpUVFRgYGAAMzMzfPHFFxg2bBji4uLw+PFjTJgwAR06dICamhq8vLxw/fp17rx//vkH3t7e6NChA9TV1WFvb4+DBw8iNzcXLi4uAIAOHTqAx+MhMDAQAPD06VP4+flBXV0dhoaGWLNmDT744AOJp1ddunTBN998gwkTJkBTUxOff/45AODUqVMYPHgwBAIBTE1NMW3aNO4H7pUrV5CdnY3vv/8eTk5OMDMzw8CBAxEREQEnJycAwK1btzB79mzMmDEDy5Ytg52dHSwtLTF79mysWrUKUVFR9Z5yNYWvry+GDRsGCwsL2NvbY/Xq1SgqKkJ6ejqAmuQ1JiYG7u7usLCwwKhRozBnzhzs27dPZr1dunTB2rVrMWHCBGhpackdj5eXFyIiIvDhhx82O2YAWLJkCWbOnAkHBwepdRw5cgQZGRn48ccf8d5778HLywvffPMNNmzYwCXEWlpaMDAw4F7nz5/H48eP8emnn3L1/PHHHwgMDIS9vT0cHR2xfft25OXl4cKFCzKvs7H4yLuJ1/DGcy3UQMushF63b+p5d1CdA5LRSxu1VNthJn7eM1ShrACesjKEXp4SMTbUsdbQSKjmXd5rWB2ekDcY5U+UP1H+1HTUKUUIIa2AMYaKioo2ebXEE32BQICKigoEBgbi/PnziIuLQ3JyMhhjGD58OCora3Z3mjx5MsrLy3Hy5ElcvnwZK1asgIaGBkxNTfHLL78AADIzM1FQUIC1a9cCAGbNmoXTp08jLi4OCQkJSEpKwsWLF+vFEBkZCUdHR6SmpuKrr75CdnY2PD09MXr0aKSnp2P37t04deoUpkyZAgDQ09ODgoIC9u7di+pq6Vuo7927F5WVlVKf6AUHB0NDQwO7du165fsH1Dx92rJlC7S0tGQ+nROJRNDR0WmRNl+VvDG/LDk5GQ4ODujUqRN3zMPDA0VFRbhyRfrCzFu3bsWwYcNgZmbWYL0ikQgA3pj7Q9qXttl8rxn//0o01EAHkYxoaj/R1ekIAFDkK8P2cjpM1qypU23jcT398xjyJgbhMfdLnrwLndePhbbfI6+iPedQlD+9Osqf3v78Sf5tPgghhDRbZWUlli1b1iZtL1y4EHw+v1nnMsaQmJiIw4cPw8vLC/v378fp06cxYMAAAEBsbCxMTU2xf/9+jBkzBnl5eRg9ejT3hMXCwoKrq/YHob6+PjdP/enTp9ixYwd27twJV1dXAEBMTAyMjIzqxTJ06FDMnj2bex8UFAQ/Pz/uiaCVlRX+n70zj4uq3v//8www7IugKCCCKK6puS+kRi6gV7TNJb0upSZd98ytbi5FmSWWZlezr6nf3xfNq5WS2UKL5nbNjTQXFNwQV0SRRRiYOb8/hjnMmQ1Q06t+no8HMud8tvc5I/Ce13m/35/FixfTtWtXli5dSkhICIsXL2batGnMnTuXNm3aEB0dzZAhQxS7Tpw4ga+vL0FBQVbrabVaIiIiOHHixG3dOxObN29m0KBBFBYWEhQUREpKCtWrV7fZNz09nY8//pgFCxbc0Zp3SlVstsWlS5dUDhWgHF+6dMmq/4ULF/juu+9Ys2aN3TkNBgOTJk0iKiqKxx57rNK2CB4NqvTB8Q4+ZNqKFrK1dqV3qrttOypRVL3s2bOrUwlcPgI1GqsjpSwEL9lsSkNBAef/8Q8ASgKrQZC/ak1Zlit3jUodKoHg9nkQfSjhPwn/SfhPlUdESgkEAoHAis2bN+Pl5YWbmxu9evVi4MCBjBgxAmdnZ9q3b6/0CwgIoGHDhhw7dgyACRMmkJCQQFRUFLNnz1aFLNvi1KlTlJSU0K5dO+Wcr68vDRs2tOrbpk0b1fEff/zBqlWr8PLyUr5iYmIwGAycPn0aMD55vHTpEklJSXTs2JH169fTtGlTUlJSKn0vKuOMJiUlqezYvn270hYdHU1qaiq7du0iNjaWAQMGcOXKFas5srKyiI2NpX///owePVo5bz5vfHx8pWzevn27alxSUlKlxlXV5rvF6tWr8fPz4+mnn7bbZ+zYsfz555988cUXyrn4+HjVdQoEtlBEI5OIUkWF5PY0rMqKUrJ1MXCr9Wzvvmc8sr+bn1y2+16g+w1Y2gm+m1reQ5ZtjJWVb6XXrlkvby5CObwp1oXORaSU4FFB+E/lCP9J+E+VRURKCQQCwT3AxcWlwuKLf+XaVSU6OpqlS5ei1WoJDg7G2dmZ5OTkCseNGjWKmJgYvv32W3788UfmzZtHYmIi48ePvx3TVXh6eqqO8/PzGTNmDBMmTLDqW6dOHeW1t7c3cXFxxMXFkZCQQExMDAkJCfTo0YPIyEhyc3O5cOGC1dNFnU5HRkYGMTExFdrWt29flbMZEhKisrt+/frUr1+fDh06EBkZyYoVK5g5c6bS58KFC0RHR9OpUyeWL1+umtt8txofH58KbQGjA2o+zvKpW0VUxmZH1KpVi99//1117vLly0qbObIs8/nnnzN06FC7Duy4cePYvHkzv/32G7Vr11bOv/XWW3dcTFXwYHI7GsdtalKVn/+uzyBxO+l7JnKog2vhCQK0t3B3LoGraSCp0zvs1la3Ff1ldk42E9Nso24VkpTgTniQfCjhPwn/SfhPVUeIUgKBQHAPMG0P/KBg+qNqTuPGjSktLWXPnj1K+Pm1a9dIS0ujSZMmSr/Q0FDi4+OJj49n5syZfPbZZ4wfP165fvP6BBEREbi4uLB3717FEcrNzeXEiRN06dLFoY2tWrXi6NGjVnY6QpIkGjVqxK5duwB4/vnnmT59OomJiSQmJqr6Llu2jMLCQoYNG1bhvN7e3nh7e1fKBoPBQHFxsXKclZVFdHQ0rVu3ZuXKlWg06iDmqlyfCXd399saZw9LmyuiY8eOvPPOO1y5coXAwEAAUlJS8PHxUf1fAeMOMenp6YwcOdJqHlmWGT9+PF9//TVbt26lbt26qvbAwEBlfoGg0tyuQnIfanbLttaUJYe2mJp0eLLubAva+F6na/CfaqFJlh2kPMrlfTW3kVRhNm95ip+QpQS3z4PkQwn/SfhP5gj/qXIIUUogEAgElSIyMpJ+/foxevRoPv30U7y9vZkxYwYhISH069cPgEmTJtGrVy8aNGjA9evX+fXXX2ncuDEAYWFhSJLE5s2b6d27N+7u7nh7ezN8+HCmTp2Kv78/gYGBzJ49G41GU2G9kunTp9OhQwfGjRvHqFGj8PT05OjRo6SkpLBkyRJSU1OZPXs2Q4cOpUmTJmi1WrZt28bnn3/O9OnTAeMTwffff5/XXnsNNzc3hg4diouLC5s2beL1118nISHBKv8+LS3NypamTZtaPU0tKCjgnXfeoW/fvgQFBZGdnc0nn3xCVlaWsm1vVlYWTz75JGFhYSxYsEC1bbDlEzFLTE/y8vPzuXr1KqmpqWi1WiunxZz8/HzS09OV49OnT5Oamoq/vz916tSplM0A586dIycnh3PnzqHX6xVb6tevj5eXFz179qRJkyYMHTqU999/n0uXLvHPf/6TsWPH4urqqrJpxYoVtG/f3madg7Fjx7JmzRo2bdqEt7e3Uk/B19cXd3d3u9dZkX2CRxNJqW9U1fy9O1zYoIeCbCgpxDnvKmCo4kL2fxdWuQizg3AxWwKY5Gz2UUElajlYQy6/w+Xpe5U3USB42BD+kxHhPwn/yR5ClBIIBAJBpVm5ciUTJ06kT58+6HQ6unTpwpYtWxSHQq/XM3bsWM6fP4+Pjw+xsbF8WLbjU0hICHPnzmXGjBm8+OKLDBs2jFWrVrFw4ULi4+Pp06cPPj4+TJs2jczMTNzc3Bza0rx5c7Zt28Ybb7xB586dkWWZevXqMXDgQABq165NeHg4c+fO5cyZM0iSpBxPnjxZmWfy5MlERESQmJjIokWLlC2R165dy6BBg6zWtXUuMzNTFRYN4OTkxPHjx1m9ejXZ2dkEBATQtm1btm/fTtOmTQHj06/09HTS09Otxlf0YbNly5bK6/3797NmzRrCwsI4c+aM3TH79u1TtpYG4849AMOHD2fVqlWVshlg1qxZrF692sqWX3/9lSeffBInJyc2b97MK6+8QseOHfH09GT48OG89dZbKntyc3P58ssvlZ2ELFm6dCkATz75pOr8ypUrlS2xbVGRfYJHDCuF5K+a31YVdAMsjYKrxroxtYGnfJ7iT8pSkcxT4mzadydqjmQxb2XqUZnMMrZJzs62q1ZVJIZJ6hdCkxI86gj/SfhPIPwne0jy3dgr/AHl5s2b+Pr6kpubW+k8U4FAIKgMRUVFnD59mrp161boHAjUFBQUEBISQmJios2Q5L+anJwcunXrho+PD9999x0eHh733AbBvcfRz6zwF9T8N9yPnf9O4j9flm833iiqK3+bMNVm3/97cze5V29Rr2UNMg5epUG7mvR4qanNvra4cbmQpNn/QevmRI063mSduEHPUU2JbGOsNXL5/Q/I+fxznPz82OvryiU/L9o/M5A9X6/D06WU+Pq7jRM5aUGv47KuPr95L6P/zLZkL13KoS/2cKzxMErkHazotJ6//1AHZ72E1mckBhd3nPQuFN8wfjh19Y3nfLWznO+6mz+u/kG4TzjfPPONyt6SWdVw0RjYyTD+c+w0rX2v82TwnxAWReb+CPJ/+plac+ZwrEso47bEMyTFmPqTHpJP/SwvGly8Rs9VazjVuzcaHx+OuzuRXsufhm06kLbvPwD843/WoHX3wMnZ+vl24d69rJ89nWxvDzy1rhToimkYGEyfj5db9RUILBH+0+0j/CfB/eBu+E9i9z2BQCAQ3FcOHjzI2rVrycjI4MCBAwwZMgRACWm/1/j7+/PTTz/RrVs3du/efV9sEAgEd4bh1i0Kfv+dnP/3f/heSDWeNGWu3XnwkZ02yUHQlAQD/6/KS9yRqZK1m69K66nM5JIETk5l/csH/GvUYJaNGUrulcuVsuXRfQQuEPx1CP9J8LAg0vcEAoFAcN9ZsGABaWlpaLVaWrduzfbt26levfp9sycgIIBZs2bdt/UFAkFF2Fc5DMXFpPfsif5qNgD1gWtt3gDuYVFXRzVd7DTZviLZRn0YyeHue+W1xWXTDKpj89XsC2DWxcpdtK74BtZUhKii/DyunMnAN1C9O5Wsqil1H6rDCwSPEMJ/EjwMCFFKIBAIBPeVli1bsn///vtthkAgeEgovZqtCFImXEoLUAKHbjdsx57QdDvzmYquq8aq57ct6JSJSZUp2m7T3vJz9sbKSGAwlPcu29FKAoYv+IT86zl898lCLp44XmG0lSKoiVApgeCuI/wnwcOCSN8TCAQCgUAgEDx0SO7uaOvVMx7ISrzQvS26rcrnq2TUkH2dqopYDjbfPc/GXVCFTZW1S5IiSiHLuLi6Ua1WMBqNU9kpGzsJ2trZr9I2CwQCgeBRQ4hSAoFAIBAIBIKHE3OhpYJt0u1hc08gWyqLjfklGx1tnTM22NznThlVPt5x+p5ZR9UMljYaI6XMj81WNb9mRZQqF6Akja1IL2Ww9XIiUkogEAgEdhCilEAgEAgEAoHggcbeZtLW9ZioUtiObJApOnHd+LrUgFxS2cFVEcCshSfTYUWr2bpuSfkuWXZ2OE41gVmEl2QSpQzmYpPxnGywESmlmsqUZigQCAQCgW2EKCUQCAQCgUAgeIiwHZ10O+WNik/lcuObU8aDUgOl2YW3aZNkO1KrssYoQ+9Q3jG7CdbClHUhdPP0Pd2ZsxSlpSHLZvfS5iLqCCxHPQUCgUAgEKKUQCAQCAQCgeDBojJijmUdp9sQdgwFJeoTesfpatY22DpZdYHGMurJZgSY5fxKMXUH1bTs1a8yT8Fz1QJQdPQIp/s9Te5XX6NUjbcTKWVaUnKsXgkEAoFAIEQpgUAgEAgEAsHDjlwu7PxVAkkValbZDJqyqillnkdnG4e77zlaWK5grFmhc88nnjC+1BrFKd3Zs+W7/1VUU+p27RQIBALBI4Pz/TZAIBAIBAKBQCD4SzATYW4vaKcKvc2UpvK1zKOWKida2ewlmQpMyWV9Kp7LVPdJQZYdmqC6UjNhyaVWLQBc69WDMxeNOxmWpfRdybnO5V9/RaPR4OLiQvPmzZHMharbLC4vEAgEgkcHESklEAgEAhUjRoxAkiQkSUKr1VK/fn3eeustSktL72jerVu3IkkSN27cuDuGVoLTp08zePBggoODcXNzo3bt2vTr14/jx4+r+m3evJmuXbvi7e2Nh4cHbdu2ZdWqVao+Z86cQZIkUlNTK73+nDlzaNSoEZ6enlSrVo3u3buzZ88e1ZwjR46kbt26uLu7U69ePWbPno1Op6tw7qSkJFq0aIGHhwdBQUG89NJLXLt2zeGY3377jbi4OIKDg5EkiY0bN9rsd+zYMfr27Yuvry+enp60bduWc+fOKe1jxoyhXr16uLu7U6NGDZv3dO/evXTr1g0/Pz+qVatGTEwMf/zxh8310tPT8fb2xs/Pr8Lrruw1CASAWhS5HX3kTks4VXSugvllWxPIUgXpe5VANolb9prLxTRZthTCZCTJuIfgzsNH2bZtG7/++is//vgj27dvV80jNt8TPEoI/0n4T8J/uj2EKCUQCAQCK2JjY7l48SInT55kypQpzJkzhw8++OB+m6VQGaejpKSEHj16kJuby1dffUVaWhrr1q2jWbNmKsfu448/pl+/fkRFRbFnzx4OHTrEoEGDiI+P57XXXrsjOxs0aMCSJUs4fPgwO3bsIDw8nJ49e3L16lUAjh8/jsFg4NNPP+XIkSN8+OGHLFu2jNdff93hvDt37mTYsGGMHDmSI0eOsH79en7//XdGjx7tcFxBQQEtWrTgk08+sdsnIyODJ554gkaNGrF161YOHTrEm2++iZubm9KndevWrFy5kmPHjvHDDz8gyzI9e/ZEr9cDkJ+fT2xsLHXq1GHPnj3s2LEDb29vYmJiKClR1+gpKSnhhRdeoHPnzg5tr8o1CAQKpUUANHZPoe71z3CTcu9K+p4qHc2m4nK3IoQqSN9ztPtemXBlUOaQKyVmyVC+0555dzOFyTRPSdnPfK2yaKpbt26pbZLKhSyB4FFA+E/CfxL+U9UR6XsCgUAgsMLV1VX5kPHKK6/w9ddfk5ycTHx8PBMnTuSbb76huLiYrl27snjxYiIjIwE4e/Ys48aNY8eOHeh0OsLDw/nggw9o0qQJ0dHRAFSrVg2A4cOHs2rVKvLy8oiPj2fjxo34+Pgwbdo0Nm3axOOPP85HH30EQHh4OCNHjuTkyZNs3LiRZ599llWrVrFjxw5mzpzJvn37qF69Os888wzz5s3D09OTI0eOkJGRwc8//0xYWBgAYWFhREVFKdeZmZnJlClTmDRpEu+++65yfsqUKWi1WiZMmED//v1p3779bd3HwYMHq44XLlzIihUrOHToEN26dSM2NpbY2FilPSIigrS0NJYuXcqCBQvszrt7927Cw8OZMGECAHXr1mXMmDHMnz/foT29evWiV69eDvu88cYb9O7dm/fff185V69ePVWfl19+WXkdHh5OQkICLVq04MyZM9SrV4/jx4+Tk5PDW2+9RWhoKACzZ8+mefPmnD17lvr16yvj//nPf9KoUSO6devGrl27HNpW2WsQPPxYbxxnRyS6mQVApPtOvG78whWPInLketwuty+tSJXXqWwsYopMKpvpzrG5+54dI8yipoyHZbmQZgJXw4YNuXTpktVokbwneNQQ/pPwn4T/VHVEpJRAIBDcA2RZRq8vvC9fjj94VA53d3d0Oh0jRoxg3759JCcns3v3bmRZpnfv3srTm7Fjx1JcXMxvv/3G4cOHmT9/Pl5eXoSGhvLll18CkJaWxsWLF1m0aBEAr776Kjt37iQ5OZmUlBS2b9/OgQMHrGxYsGABLVq04ODBg7z55ptkZGQQGxvLc889x6FDh1i3bh07duxg3LhxANSoUQONRsOGDRuUJ1CWbNiwgZKSEptP9MaMGYOXlxdr16694/sHxqeTy5cvx9fXlxYtWtjtl5ubi7+/v8O5OnbsSGZmJlu2bEGWZS5fvsyGDRvo3bv3HdloMBj49ttvadCgATExMQQGBtK+fXuHId4FBQWsXLmSunXrKg5Uw4YNCQgIYMWKFeh0Om7dusWKFSto3Lgx4eHhythffvmF9evX/1c+tRM8+EgAemNUQGGpHwBa6VbVJqnKr89KKzAVFS8vxyDZTvtxXFPKVsF0ysQl++NUqYJWKXvmRsnGelVmopSTk1PZMNlieSFLCe6cB9mHEv7TnSP8p4fffxKRUgKBQHAPMBhusXVbs/uy9pNdD+Pk5HFbY2VZ5ueff+aHH36gV69ebNy4kZ07d9KpUyfAmJcfGhrKxo0b6d+/P+fOneO5556jWTPjtUZERChzmRyFwMBAJfc9Ly+P1atXs2bNGrp16wbAypUrCQ4OtrLlqaeeYsqUKcrxqFGjGDJkCJMmTQIgMjKSxYsX07VrV5YuXUpISAiLFy9m2rRpzJ07lzZt2hAdHc2QIUMUu06cOIGvry9BQUFW62m1WiIiIjhx4sRt3TsTmzdvZtCgQRQWFhIUFERKSgrVq1e32Tc9PZ2PP/7Y4VM+gKioKJKSkhg4cCBFRUWUlpYSFxd3x87JlStXyM/P57333iMhIYH58+fz/fff8+yzz/Lrr7/StWtXpe+//vUvpk2bRkFBAQ0bNiQlJQVt2e5c3t7ebN26laeffpq3334bML4/P/zwA87ORtfj2rVrjBgxgv/7v//Dx8fnjuwWCGwiy2DQAxqu62sTyGXldKWnQK2xVFlisYgysttud32rkLAyOyQ77dY22l5BrvTue0rUk1QubkkWhds1GsfPuUVNKcGd8CD6UMJ/Ev6T8J8qj4iUEggEAoEVmzdvxsvLCzc3N3r16sXAgQMZMWIEzs7OqlDsgIAAGjZsyLFjxwCYMGECCQkJREVFMXv2bA4dOuRwnVOnTlFSUkK7du2Uc76+vjRs2NCqb5s2bVTHf/zxB6tWrcLLy0v5iomJwWAwcPr0acD45PHSpUskJSXRsWNH1q9fT9OmTUlJSan0vTA5Co5ISkpS2WFe7Dc6OprU1FR27dpFbGwsAwYM4MqVK1ZzZGVlERsbS//+/VW1DcznjY+PB+Do0aNMnDiRWbNmsX//fr7//nvOnDmjtG/fvl01LikpqVLXajAYAOjXrx+TJ0/m8ccfZ8aMGfTp04dly5ap+g4ZMoSDBw+ybds2GjRowIABAygqMtbvuXXrFiNHjiQqKor//Oc/7Ny5k8cee4y//e1v3LpljFQZPXo0gwcPpkuXLjZtud1rEAi4eNj4vaQAJKMaojO4lzVWUR0xU1NkZK6W5gLw4w8/smnTJus5y3Qak4CjFogcS1qmSCV1L1uiViWlMcvd91RbEFZUYd2xYCVpJGS7kVKy1X0QNaUEjwrCfypH+E/Cf6osIlJKIBAI7gEajTtPdj1839auKtHR0SxduhStVktwcDDOzs4kJydXOG7UqFHExMTw7bff8uOPPzJv3jwSExMZP3787ZiuwtPTU3Wcn5/PmDFjlLoA5tSpU0d57e3tTVxcHHFxcSQkJBATE0NCQgI9evQgMjKS3NxcLly4YPV0UafTkZGRQUxMTIW29e3bV+VshoSEqOyuX78+9evXp0OHDkRGRrJixQpmzpyp9Llw4QLR0dF06tSJ5cuXq+Y2363G9ERs3rx5REVFMXXqVACaN2+Op6cnnTt3JiEhgTZt2qjG1axZs8JrAKhevTrOzs40adJEdb5x48bs2LFDdc7X1xdfX18iIyPp0KED1apV4+uvv+aFF15gzZo1nDlzht27dysRFGvWrKFatWps2rSJQYMG8csvv5CcnKw81ZRlGYPBgLOzM8uXL+eFF164rWsQCMjJMDswFfs2urySdPviiB4DxbIOLZ7k5eVx8OApunfvbruzA91IqopAYy/sydH8NsUtayxT7WTLNtNkVtFesjFSq+zYOkqqfKbKamACgSMeJB9K+E/CfzJH+E+VQ4hSAoFAcA+QJOm2U+juByZHwJzGjRtTWlrKnj17lPDza9eukZaWpvojHBoaSnx8PPHx8cycOZPPPvuM8ePHK0/MzOsTRERE4OLiwt69exVHKDc3lxMnTth9AmSiVatWHD161MpOR0iSRKNGjZSCkM8//zzTp08nMTGRxMREVd9ly5ZRWFjIsGHDKpzX29sbb2/vStlgMBgoLi5WjrOysoiOjlZ2ZLH8gGfr+goLC5UwbhPmkQru7u5Vui8mtFotbdu2JS0tTXX+xIkTSrFTW8hlRZNN11VYWIhGo1Ht9GU6Nj1N3L17t+r/wqZNm5g/fz67du0iJCTktq9BIFAUEI0zUtBjcP2oWhSpav5eJXFc58l+m32RSlJS7Byl61WEMkIuj5SyWSdHsqFQ2YjQkmUZNE4qUUqyO6+oKSW4cx4kH0r4T8J/Mkf4T5VDiFICgUAgqBSRkZH069eP0aNH8+mnn+Lt7c2MGTMICQmhX79+AEyaNIlevXrRoEEDrl+/zq+//krjxo0B484tkiSxefNmevfujbu7O97e3gwfPpypU6fi7+9PYGAgs2fPtvqDbIvp06fToUMHxo0bx6hRo/D09OTo0aOkpKSwZMkSUlNTmT17NkOHDqVJkyZotVq2bdvG559/zvTp0wHjE8H333+f1157DTc3N4YOHYqLiwubNm3i9ddfJyEhgccee0y1rqXDAdC0aVNcXFxU5woKCnjnnXfo27cvQUFBZGdn88knn5CVlUX//v0Bo0P15JNPEhYWxoIFC5StjqF8i3VbxMXFMXr0aJYuXUpMTAwXL15k0qRJtGvXzmY9CRP5+fmkp6crx6dPnyY1NRV/f3/FqZ06dSoDBw6kS5cuREdH8/333/PNN9+wdetWwJgysG7dOnr27EmNGjU4f/487733Hu7u7kqh0B49ejB16lTGjh3L+PHjMRgMvPfeezg7Oyu7CJn+X5jYt28fGo3G6n7fzjUIHgVkB0dmKL9Hyn+f/GVBOzZ/Z8mO228jhMhYzenOxR7HApdZ2qKp6LlpSYO6ppRVpJQsI5e1lV+yCJUSPLoI/8mI8J+E/2QPIUoJBAKBoNKsXLmSiRMn0qdPH3Q6HV26dGHLli2KQ6HX6xk7diznz5/Hx8eH2NhYPvzwQ8AYkj137lxmzJjBiy++yLBhw1i1ahULFy4kPj6ePn36KFsaZ2Zm4ubm5tCW5s2bs23bNt544w06d+6MLMvUq1ePgQMHAlC7dm3Cw8OZO3cuZ86cQZIk5Xjy5MnKPJMnTyYiIoLExEQWLVpEQUEBAGvXrmXQoEFW69o6l5mZSe3atVXnnJycOH78OKtXryY7O5uAgADatm3L9u3badq0KQApKSmkp6eTnp5uNd7Rjj8jRowgLy+PJUuWMGXKFPz8/Hjqqacq3NJ43759ilMDxp17oHx7aYBnnnmGZcuWMW/ePCZMmEDDhg358ssveeKJJwBwc3Nj+/btfPTRR1y/fp2aNWvSpUsXdu3aRWBgIACNGjXim2++Ye7cuXTs2BGNRkPLli35/vvvbRZFrQqVuQbBI4R5epmCjZ8dUwYalrvDVcB911JsG1AZUUqJXjKfS8mnM81jc3LbBdotCp2bako5OTnZjZQqj/ASCB5thP8k/CfhP9lHku/GXuEPKDdv3sTX15fc3NyHpnK9QCD476CoqIjTp09Tt27dCp0DgZqCggJCQkJITExk5MiR93z9nJwcunXrho+PD9999x0eHg9GyoDgznD0Myv8BTX/Dfdjxxf/y56v/62IUg06diZukvEJvu67RWRMXoZGq0HboAlFf/5JUduGtKz3K6kFcWTWmUrcePvbiptTsO8SZ9ed4Ne8UiRJT7HLTbS6atz0PUax+1WmTp1K3qJFXP/f/4dzYCB7PCQu+3rRacAQdv07CW/nIl6O3AvObvDCWvh/z5BdEs5WnxU8P70NVxd/zJ9f7uVo4xEUaXawqv16hn1XB40s4er7MoVuOjx1/pTkf4K+pBitz0guVbvC1e772X1xN8Gewfzw/A/lBssyzPUDYK/rK/yW+idNfXKJDTkEwS3JSm/HzeRvCJw+nV2RoWz8aTNNjp0E4HidfBqd86L+5Rx6fLCIs0OH4RwcxIWX/s6+b76iSXAY4d/9QrXBgzng78Gfv/+HwoimeHp60qVLF7777juaNGlC75o1WffB29zwdKOmTzUu37xOmI8/z3/2v3f1/4Dg4UT4T7eP8J8E94O74T+J3fcEAoFAcF85ePAga9euJSMjgwMHDjBkyBAAJaT9XuPv789PP/1Et27d2L17932xQSAQ3AFlz1tlWabkSiEA1ZzNY4Lu3vPYpNdfJV9XZHXediRT+Tnb2TXWJ60tlcu36QMeO1bI5fnvc3n+++R+s9mir3VanfLSIHN+PbS80E05VyO/ovQN80LnVKqmVEVpRAKB4PYR/pPgYUGk7wkEAoHgvrNgwQLS0tLQarW0bt2a7du3U7169ftmT0BAALNmzbpv6wsEgjtALv8u64yFYd1vVxypQL/KvXqZq1oP/MCe0lT5BUyFxs3XtLNboCRJBF6XeWlNNjnySuW8Z4d2Vs69LEuqcaYlDMWSajEXg7asTSqvI2X+2kx4kjQaTCKVqUhw+Xrl1arupEC7QCCoGOE/CR4GhCglEAgEgvtKy5Yt2b9///02QyAQPEA4rj5R3iZp1YKJqabUjcuXcHJxxtv/bn94UwtTZmWY7Jdat1+l3Wwei3mRCMgDjWmsiwuUlGC4dUvpc+6yMY1Cr0RMmS1ksLWoZN2uqill/FZkkPkjJ4+ikAjARqSU+XsjAqUEgr8M4T8JHhaEKCUQCAQCgUAgeCCRkIxROPZEKllveYKbV/9gxYR/AuDm6UXs2MnUa93ezvhKGGFT31GrMXJxMedeGklYtI2+lkNVU9sv4q4pu2Zt/XqUXriIoaREdR+y84wFlHWyq9XsFUcumbVbFD2/IsvcKjWA1jivzboxUvkLvdaNW04uFBYWihozAoFAILBC1JQSCAQCgUAgEDyY2IrEMRNmDLeKrDrqCsu3Di8qyCd97567tPBfiWR1KClakZk77yiCTNVWgf02dt+TLNuABrVq0K9fP4tIKWObwcWV9JqhFNZ7jFO16rBw4UJu3rzpeF2BQCAQPHIIUUogEAgEAoFA8JBiUXgbx7qN9WizVMCKOleyppRkNqd5GqJts2SrVlOdJqXclEZjoz/4eemt5zWJRzbT98ynMRel1AKV6Z5obuVTt4Y/NWrUsDlFqZcPBo2TMl9paSk5OTmO1xUIBALBI4cQpQQCgUAgEAgEDxGOIoIqr0gV7t1L9tJllc7g05vNbnPXuYp0IFtjlA3v1Ol0nmeLCLzmw5nqPmQ52R5bboO1sGV7IbOqVzaVO2O7QelULm6pd98zylayk7FKiPONbLSlJQ7mFQgEAsGjjKgpJRAIBAKBQCB4+JDKIqMq0fXk3stkHLwCgJOLhse71aH0m82UXrwEFdRCP3Mjm0vN6mLQaJDs1rayYZydRslcHDLbx86EU0kuwT9mAwEcDQEopZ2HluoFBdiKqFJPXiYsyRUIVeXqWrkeZksgszE+/do1rodFUurlDYCmTJASCAQCgcAWQpQSCAQCgUAgEDxYVLp2kumcedSQut3zTCnb/jxCcWn5OYNeprlsQI31vP7aWlzOv4ihLIXOFLFUcKMYUKfqOZrH8Xl1H0mvA0Cv0eNeLKNzcUZnSuFT7XxnY5c/JQWvsjWlzM6poqGM16a8Nmv7+eRJCqvXLB9WqhMRUgKBQCCwi0jfEwgEAoFAIBA8kNhMk1N3UB9aCD9eztUIpy36MkGqurOxv77EUCkhJdKnNSblxtelPKTq8NbzFY4FFPFHlvTkehVYGo8joUrnUopPkc5iPsvxdmaw1NvM+ltNpIhQkvmhKn3PnFKDcXKXnMvUzL+By41rZlMJcUogEAgEaoQoJRAIBAIVI0aMQJIkJElCq9VSv3593nrrLUpLSyse7ICtW7ciSRI3bty4O4ZWgtOnTzN48GCCg4Nxc3Ojdu3a9OvXj+PHj6v6bd68ma5du+Lt7Y2Hhwdt27Zl1apVqj5nzpxBkiRSU1Mrvf6cOXNo1KgRnp6eVKtWje7du7NnT/lOX2fOnGHkyJHUrVsXd3d36tWrx+zZs9HpdA5mNZKUlESLFi3w8PAgKCiIl156iWvXrjkcs3TpUpo3b46Pjw8+Pj507NiR7777TmnPyclh/PjxNGzYEHd3d+rUqcOECRPIzc1V+qxatUr5/2H5deXKFaVfcXExb7zxBmFhYbi6uhIeHs7nn3+usuejjz5S1goNDWXy5MkUFRXhiK+++oqePXsSEBBQ5fdD8DBSJqTYSymz1EAsdB6txlXV0c/JUuRyLHppJKfynmWv9Vp3Slxl7FhkkyK3K+T6Flqdd1T83FYB84rT9yq2RwYrIUo9tlyVksuiycwjpUzCk/b6FWrcykeyijgTCB5OhP8k/CfhP90eQpQSCAQCgRWxsbFcvHiRkydPMmXKFObMmcMHH3xwv81SqIzTUVJSQo8ePcjNzeWrr74iLS2NdevW0axZM5Vj9/HHH9OvXz+ioqLYs2cPhw4dYtCgQcTHx/Paa6/dkZ0NGjRgyZIlHD58mB07dhAeHk7Pnj25etW4Jf3x48cxGAx8+umnHDlyhA8//JBly5bx+uuvO5x3586dDBs2jJEjR3LkyBHWr1/P77//zujRox2Oq127Nu+99x779+9n3759PPXUU/Tr148jR44AcOHCBS5cuMCCBQv4888/WbVqFd9//z0jR45U5hg4cCAXL15UfcXExNC1a1cCAwOVfgMGDODnn39mxYoVpKWlsXbtWho2bKi0r1mzhhkzZjB79myOHTvGihUrWLduXYXXXlBQwBNPPMH8+fMd9hM8uphH4+S5GHegu8rN8nbHo8vmKPunchvqAVAgGVP2SqrVID9YR6l3NZv9bE1Zx9WxVeXiUAWJd7K1KGXQGL8XFxeV3wUbEUuqOKmyaCckSRGhJFuRVxVFPlVyR0KB4GFB+E/CfxL+U9URNaUEAoFAYIWrqyu1atUC4JVXXuHrr78mOTmZ+Ph4Jk6cyDfffENxcTFdu3Zl8eLFREZGAnD27FnGjRvHjh070Ol0hIeH88EHH9CkSROio6MBqFbN+EFt+PDhrFq1iry8POLj49m4cSM+Pj5MmzaNTZs28fjjj/PRRx8BEB4ezsiRIzl58iQbN27k2WefZdWqVezYsYOZM2eyb98+qlevzjPPPMO8efPw9PTkyJEjZGRk8PPPPxMWFgZAWFgYUVFRynVmZmYyZcoUJk2axLvvvqucnzJlClqtlgkTJtC/f3/at29/W/dx8ODBquOFCxeyYsUKDh06RLdu3YiNjSU2NlZpj4iIIC0tjaVLl7JgwQK78+7evZvw8HAmTJgAQN26dRkzZkyFjkZcXJzq+J133mHp0qX85z//oWnTpjz22GN8+eWXSnu9evV45513+Pvf/05paSnOzs64u7vj7u6u9Ll69Sq//PILK1asUM59//33bNu2jVOnTuHv7w8Y30Nzdu3aRVRUlHKPwsPDeeGFF1RPQm0xdOhQwPiUVCCwiWz6JlPoZMATuKkxPkGWLGpK1fa4iKvLImRpJMiuHHY6hzuht7WswULukl204PjBtYKnxjwCyQxTXSiVYlRe08kKlShlRBcQAMD1G9f5wsWFXt7eeNsqvG5dU92qi3GJ8sG2akoprbK1JiXS9wQPO8J/Ev4TCP+pqohIKYFAILgHyLJMgV5/X77uxocAd3d3dDodI0aMYN++fSQnJ7N7925kWaZ3796UlBh3Vxo7dizFxcX89ttvHD58mPnz5+Pl5UVoaKjyxzotLY2LFy+yaNEiAF599VV27txJcnIyKSkpbN++nQMHDljZsGDBAlq0aMHBgwd58803ycjIIDY2lueee45Dhw6xbt06duzYwbhx4wCoUaMGGo2GDRs2oNfrbV7Xhg0bKCkpsflEb8yYMXh5ebF27do7vn9gfDq5fPlyfH19adGihd1+ubm5iiNij44dO5KZmcmWLVuQZZnLly+zYcMGevfuXWl79Ho9X3zxBQUFBXTs2NGhPT4+Pjg7236O9b//+794eHjw/PPPK+eSk5Np06YN77//PiEhITRo0IDXXnuNW7duKX06derE/v37+f333wE4deoUW7ZsqdI1CB5dqv5bzfZuc50Df6eGUwqasiJLLpLOYohke7FK/l61q++osu3spxvaEqpMYpSN8lHqsWXnDC4uqi75Xl6olCNbKIXOzcUqi1RJs1Q99VDzcyJSSnDnPMg+lPCf7hzhPz38/pOIlBIIBIJ7QKHBQL3fDt+XtTO6NMPTyanijjaQZZmff/6ZH374gV69erFx40Z27txJp06dAGNefmhoKBs3bqR///6cO3eO5557jmbNmgHGJ1cmTI5CYGAgfn5+AOTl5bF69WrWrFlDt27dAFi5ciXBwcFWtjz11FNMmTJFOR41ahRDhgxh0qRJAERGRrJ48WK6du3K0qVLCQkJYfHixUybNo25c+fSpk0boqOjGTJkiGLXiRMn8PX1JSgoyGo9rVZLREQEJ06cuK17Z2Lz5s0MGjSIwsJCgoKCSElJoXp123vMp6en8/HHHzt8ygcQFRVFUlISAwcOpKioiNLSUuLi4vjkk08qtOfw4cN07NiRoqIivLy8+Prrr2nSpInNvtnZ2bz99tu8/PLLdudbsWIFgwcPVj39O3XqFDt27MDNzY2vv/6a7Oxs/vGPf3Dt2jVWrlwJGJ+CZmdn88QTTyDLMqWlpcTHx1cYfi4QmFNRdphs0UE25Kn0JGdJXevFCcsPYJYLqD+gViU7TVcmDsmaUgxyVWvMmKlYNoKnFOvM6jdJUllcWNnOfBqNBgxg0GgUscsyustsItMkVjaY3z9Tmp95pJSpU8DNfPwKSwm9eZPzIbfQaV0RCG6HB9GHEv6T8J+E/1R5RKSUQCAQCKzYvHkzXl5euLm50atXLwYOHMiIESNwdnZWhWIHBATQsGFDjh07BsCECRNISEggKiqK2bNnc+jQIYfrnDp1ipKSEtq1a6ec8/X1VeXOm2jTpo3q+I8//mDVqlV4eXkpXzExMRgMBk6fPg0YnzxeunSJpKQkOnbsyPr162natCkpKSmVvhdarbbCPklJSSo7tm/frrRFR0eTmprKrl27iI2NZcCAAaqCliaysrKIjY2lf//+qtoG5vPGx8cDcPToUSZOnMisWbPYv38/33//PWfOnFHat2/frhqXlJSkzNewYUNSU1PZs2cPr7zyCsOHD+fo0aNW9ty8eZO//e1vNGnShDlz5ti87t27d3Ps2DFVzQQAg8GAJEkkJSXRrl07evfuzcKFC1m9erXytG/r1q28++67/Otf/+LAgQN89dVXfPvtt7z99tsV3lOBoOqUiSZ66589MJeaLHadk6Cw9AalRQcoKf4D+dYJZEO+oyVsI8OedsbfnQanYs4VH6ykzZWN0rBe/Jx7AYURTRVhyalMnDJoyt1/WTKb31yAspmiV3ZsZtPVc2c4+tsv5OfklPcHgi5cpOOJcwQfPUGz81dpcTgNgBtbTpG3rZI7EwoEDyDCfypH+E/Cf6osIlJKIBAI7gEeGg0ZXZrdt7WrSnR0NEuXLkWr1RIcHIyzszPJyckVjhs1ahQxMTF8++23/Pjjj8ybN4/ExETGjx9/O6ar8PT0VB3n5+czZswYpS6AOXXq1FFee3t7ExcXR1xcHAkJCcTExJCQkECPHj2IjIwkNzeXCxcuWD1d1Ol0ZGRkEBMTU6Ftffv2VTmbISEhKrvr169P/fr16dChA5GRkaxYsYKZM2cqfS5cuEB0dDSdOnVi+fLlqrnNd0fx8fEBYN68eURFRTF16lQAmjdvjqenJ507dyYhIYE2bdqoxtWsWVN5bdoRCKB169bs3buXRYsW8emnnyp98vLyiI2Nxdvbm6+//hqXsggPS/7nf/6Hxx9/nNatW6vOBwUFERISgq+vr3KucePGyLLM+fPniYyM5M0332To0KGMGjUKgGbNmlFQUMDLL7/MG2+84fCePir89ttvfPDBB+zfv5+LFy/y9ddf8/TTTwPGQrT//Oc/2bJlC6dOncLX15fu3bvz3nvv2XxSbmLOnDnMnTtXda5hw4ZWOyo9MJgidFRiko3d3mSztsqk4yh9JA7nbKG0uFxIKXG+AH6NHQ22YSeUmH1A08mFVu2VnMl2q2R9rtC5FINz+RN4SgwggcHNy+wW2dkZzyREufpT7bo/kT6tcVFqdZX3OXc4lXOHU9H714Saocrue+5mqSYAWp0xRankYgG5F07j9UQIktVOhwKBbR4kH0r4T8J/Ev5T1RGilEAgENwDJEm67RS6+4HJETCncePGlJaWsmfPHiX8/Nq1a6SlpanCl0NDQ4mPjyc+Pp6ZM2fy2WefMX78eOWJmXl9goiICFxcXNi7d6/iCOXm5nLixAm6dOni0MZWrVpx9OhRKzsdIUkSjRo1YteuXQA8//zzTJ8+ncTERBITE1V9ly1bRmFhIcOGDatwXm9vb7y9vStlg8FgoLi4WDnOysoiOjqa1q1bs3LlSmOKjRm2rq+wsNCqRoFT2f8vWZZxd3ev9H2xtOfmzZvExMTg6upKcnIybm5uNsfl5+fz73//m3nz5lm1RUVFsX79evLz8/Hy8gKMof4ajYbatWsr12B5rebXUJV7+rBSUFBAixYteOmll3j22WdVbYWFhRw4cIA333yTFi1acP36dSZOnEjfvn3Zt2+fw3mbNm3KTz/9pBzbq3fxwGMe+GM6ZRF8VB4cZHyhL7xI6Y1fSP+PlhxNKVciblGS54wLgJMv6HORZbXgckfIcpmgZk9+UlcfD3GReNy9KU41gkgr3gecdDi9y61C2jlHgotZAqBHgNXs1mYZW5zrxBF4NYjAgCAwQJ7LZqXNp0Yg4UHVSd+3B0NpiWq8ZRF2lfxk2tlQ1JsSVJIHyYcS/pPwn4T/VHUeUi9EIBAIBHebyMhI+vXrx+jRo/n000/x9vZmxowZhISE0K9fPwAmTZpEr169aNCgAdevX+fXX3+lcWNjREFYWBiSJLF582Z69+6Nu7s73t7eDB8+nKlTp+Lv709gYCCzZ89Go9EoNUrsMX36dDp06MC4ceMYNWoUnp6eHD16lJSUFJYsWUJqaiqzZ89m6NChNGnSBK1Wy7Zt2/j888+ZPn06YHwi+P777/Paa6/h5ubG0KFDcXFxYdOmTbz++uskJCTw2GOPqdZNS0uzsqVp06ZWT8MKCgp455136Nu3L0FBQWRnZ/PJJ5+QlZVF//79AaND9eSTTxIWFsaCBQuUrY4BZfceW8TFxTF69GiWLl1KTEwMFy9eZNKkSbRr185hlMzMmTPp1asXderUIS8vjzVr1rB161Z++OEHwOhQ9ezZk8LCQv7v//6PmzdvcvOmcRP5GjVqKE4PwLp16ygtLeXvf/+71TqDBw/m7bff5sUXX2Tu3LlkZ2czdepUXnrpJaV2QlxcHAsXLqRly5a0b9+e9PR03nzzTeLi4lTrWJKTk8O5c+e4cOECUP5+1KpVy+E9exDp1asXvXr1stnm6+trlUaxZMkS2rVrx7lz51RPuy1xdnZ+6O6Vmoq2kbOP4dZFkG9RqrvFFWBv+HUaFfjhgoTBtQ6aQnVdGwfSi22TbHAiIJ9Qe9FbFlNGumqo5hIILoHU8WrEzssLATNByCLwSVNqoLqTT9mBsWi5wckJg7KenaLkpkgpJ3WEhZNvqDIiMKwu/V54gY+GPK1YoNp9zwYy8L3LQfI/3o+rmyve3t4899xzqpoqAsHDhvCfjAj/yYjwn6wRopRAIBAIKs3KlSuZOHEiffr0QafT0aVLF7Zs2aI4FHq9nrFjx3L+/Hl8fHyIjY3lww8/BIzhw3PnzmXGjBm8+OKLDBs2jFWrVrFw4ULi4+Pp06ePsqVxZmam3SdMJpo3b862bdt444036Ny5M7IsU69ePQYOHAhA7dq1CQ8PZ+7cuZw5cwZJkpTjyZMnK/NMnjyZiIgIEhMTWbRoEQUFBQCsXbuWQYMGWa1r61xmZqbyBMuEk5MTx48fZ/Xq1WRnZxMQEEDbtm3Zvn07TZs2BSAlJYX09HTS09Otxjva8WfEiBHk5eWxZMkSpkyZgp+fH0899VSFWxpfuXKFYcOGcfHiRXx9fWnevDk//PADPXr0AODAgQPKlsKWTwpPnz6t2pZ4xYoVPPvss0rRVXO8vLxISUlh/PjxtGnThoCAAAYMGEBCQoLS55///CeSJPHPf/6TrKwsatSoQVxcHO+8847Da0hOTubFF19Ujk3vx+zZs+3WbnhUyM3NRZIkm++JOSdPniQ4OBg3Nzc6duzIvHnzHIpYxcXFVk+D7zs2fj6uf7GOm99+i7vb6fJuVh/O7BX2tv0hTnKksBh7OG6teAIKXcqjH6ytVddzsryc2tXbc75gh815ZSRV8VjTUIOTk3IbZHsCnqldksjUZFMk6XCSNfg7O5nVmDI3yroGlS1KKOW8Uw7kArlw+fJlzpw5o3z4FggeVoT/JPwnE8J/skaS78Ze4Q8oN2/exNfXV9muUSAQCO4WRUVFnD59mrp161boHAjUFBQUEBISQmJiolUByHtBTk4O3bp1w8fHh++++w4PD497boPg3uPoZ/a/wV+QJElVU8qSoqIioqKiaNSokaowqyXfffcd+fn5NGzYkIsXLzJ37lyysrL4888/7Yb726pDBdzX+/Fb0kr2Jn+Js4uW0hIdke070ejr79BfzcYnrICbZz1BK3HZrwY1r1whp1MNour8wZ+54ezWv8DNy0YhZ1KjnThJBj699AWluKIrWmuMlipjf8PrNMj0w7tQwuDRDE3hYSSnmhTXbkWxx1W63whj36VN6OVSnNz80BfdoKhmKCX+NXG9nEnN/NO8VG8/ep3E/2qf50XWk001/kczgRmzXuXKwg/5v//8TMP6A/jO+3d+C9rG8O/CAHD1fYXrXtfwL6yNofBTdMUFxIS8iKeLPzlFWdR0DyMzew+78rby+NU8gi9cIWLTBlzXGtOD3mEcLnk6XnQNp4b2dXKlWnwov8Djp6/R4vFmbEmrT7F8FfnG/wOcyPMNxjs3k4gr1+k2fRZZkyZxo98cfnA/ptyPOpdvUNvThV1enjRu3JiBAweyaOhz3HL1oKh2PcLCwjh39iwRJ9Nps3+/Mu5azWB+iu5MtO4xftX+CRh3FMvJyWHAgAF2d7ASPHoI/+n2Ef6T4H5wN/wnsfueQCAQCO4rBw8eZO3atWRkZHDgwAGGDBkCoIS032v8/f356aef6NatG7t3774vNggEVaGkpIQBAwYgyzJLly512LdXr17079+f5s2bExMTw5YtW7hx4wb//ve/7Y6ZOXMmubm5yldmZubdvoS7Q6kx4kjjbcPxreARrM3d9yrR2xzHm+8Zqyxd1kWSWdQapyJvSkvKI6TsD1avJcugN8hkF9nbwc5+QqGpzlNq3QB25uXbWNdUNL488umWplQ1X6Gri9JWHinlyAL79omUPYHgzhD+k+BhQaTvCQQCgeC+s2DBAtLS0tBqtbRu3Zrt27dTvXr1+2ZPQEAAs2bNum/rCwSVxSRInT17ll9++aXKkUt+fn40aNCA9PR0u31cXV1xdXW9U1P/GkzCiJkSonF3BdS728llyolWoyUQf7zc63G1qBLimmyewmdbOXJcRakcQ0k1NuS8D4AHsGbOHnpWq2CsZPUCvVnhKGuLzOU1CQkJuSw10aDXK4+jT+t0+DuyvSyRQrZYQZYkDBailGTWR0ntszOvqoJVBXVvBAJBxQj/SfAwIEQpgUAgENxXWrZsyX6zNA+BQFA5TILUyZMn+fXXXwkICKh4kAX5+flkZGQwdOjQv8DC/z5C3OvgUdoYajUmr+Q68GtZiyOB5O6IJ7LevWy2UmScybtWRImvqSithCzJVmFGyqGh/EypbF7NvIKaVmbtLrJEfX0truguUuCiVJgq72te59xgPG8oO6eRJQySrCq9JdkodGWvKoij0lqPcCURgeCOEP6T4GFBpO8JBAKBQCAQ/BeSn59PamoqqampgLFYampqKufOnaOkpITnn3+effv2kZSUhF6v59KlS1y6dAmdTqfM0a1bN5YsWaIcv/baa2zbto0zZ86wa9cunnnmGZycnHjhhRfu9eXdE2TLSCpJplQ2ps15u1Qr76eIN7cvkNgaKdk48nOubPpjeRqdbJbpV2LQK2vpNRbPlw3q7feMolRZRJMs8WRJU0LyzJUlO0sr98vYQVPW0SBJVoXOJbNC5xUJTOaRWSJSSiAQCAQgIqUEAoFAIBAI/ivZt28f0dHRyvGrr74KwPDhw5kzZw7JyckAPP7446pxv/76K08++SQAGRkZZGdnK23nz5/nhRde4Nq1a9SoUYMnnniC//znP9SoUeOvvZi7jC3xw4CGfM8gXCQtMmft6i0FhkJ8nYxF3e2lmdnERv2lvxrL9Lozta5y+NouWhFoxw51f42qXTY7JylnbF6JLIPkpKyvkSWQjCKfKVBLLUqZhjm+n4Y7EP0EAoFA8HAiRCmBQCAQCASC/0KefPJJhx/yK5P2dObMGdXxF198cadm/XdhpqgciBjOde96ANSJ+In65zfaGCCj18vgZKOprN3O9BWb4ijyRy6fTVLlslVNpPmj0VkOHtpNq1yLQsY21pYBDydvizPgLDspy8qSofwaZYs6xefDAAEAAElEQVQ5NE5Kcp8TGkBfFnlmv9C58n/SXqkqVbqgiJQSCAQCgUjfEwgEAoFAIBA8BOS711Jen6vTvRKltitHlaUTO2LhncQISWbphSpNqwJhx19b08qCcI9GlbDKIlKq7KxBkhRZSVXo3KRFVSSUmjWbxouaUgKBQPBoI0QpgUAgEAgEAsEDiUmsMQobaoHmlqu/UlPKfBc5ZxeNDSHEnrhjlppmo0+lBStVx6qkDMrq8TJIsoY8Fz3ZUp717nmq65IoKi0gu/gSAIYyOamaS3XK0/eU4lHqeQwGMqv7qtP3MAZTma+Qs/4Enfz60cSvY9kwQ9lslhFnpt38hAAlEAgEAjVClBIIBAKBQCAQPPBYyh2lzp5mjeWtzlq7uXuVm7iq7ZXtg60KUeqBcr5ME7k7R6qXsNH1d855FFkMUPe/dOs0h69vA6DEUMTe66lcLEgnRO9vw7Dy1fPy8zgZHKisbxL/DBpJWUMuKKVw/2VqaGsT4BpUtnzla0qJ9D2BQCAQgBClBAKBQCAQCAQPBZUROeyl1tnZfa8KgT2VTdpTB02pRR91Rxt1oq7Jqr63nPU2JjVbWZbRKDvjwdnCi1y+dYZ2pZHGc5INq13cMJwMpF+dcYr1ri5uZXOWx0DZGmpflLKMzBIIBAKBwIgQpQQCgUCgYsSIEUiShCRJaLVa6tevz1tvvUVpaekdzbt161YkSeLGjRt3x9BKcPr0aQYPHkxwcDBubm7Url2bfv36cfz4cVW/zZs307VrV7y9vfHw8KBt27asWrVK1efMmTNIkkRqamql158zZw6NGjXC09OTatWq0b17d/bs2aOac+TIkdStWxd3d3fq1avH7Nmz0el0Fc6dlJREixYt8PDwICgoiJdeeolr165V2rb33nsPSZKYNGmS6nxGRgbPPPMMNWrUwMfHhwEDBnD58mVVn3feeYdOnTrh4eGBn5+fzflN/4fMv8yLbH/11Vf06NFDWadjx4788MMPFdr91Vdf0bNnTwICAqr8fggeQsyFG4ealKn+0d0QRW53DjvCl8OVKi+SycCNa8U2ZjAVJjfWiSo16JRztkQijUcAmiJ3Vbuzk3FvJLk8UEoV6aROo7RhpyJWWUdKiZpSgocF4T8J/0n4T7eHEKUEAoFAYEVsbCwXL17k5MmTTJkyhTlz5vDBBx/cb7MUKuN0lJSU0KNHD3Jzc/nqq69IS0tj3bp1NGvWTOXYffzxx/Tr14+oqCj27NnDoUOHGDRoEPHx8bz22mt3ZGeDBg1YsmQJhw8fZseOHYSHh9OzZ0+uXr0KwPHjxzEYDHz66accOXKEDz/8kGXLlvH66687nHfnzp0MGzaMkSNHcuTIEdavX8/vv//O6NGjK2XX3r17+fTTT2nevLnqfEFBAT179kSSJH755Rd27tyJTqcjLi5OqRUDxvvfv39/XnnlFYfrrFy5kosXLypfTz/9tNL222+/0aNHD7Zs2cL+/fuJjo4mLi6OgwcPOpyzoKCAJ554gvnz51fqWgWPDlY1nyTsClX2InasayHdRqFzm+vZX8NuR5MB6hc2u8vAqbpxfLP2inqwleCjocRgLlypKo+XnTF+v3zrLBm5xg+BTmUfGWRJKt+kz0ZxcyuBySLaS0RKCR52hP8k/CfhP1UdIUoJBAKBwApXV1dq1apFWFgYr7zyCt27dyc5OZnr168zbNgwqlWrhoeHB7169eLkyZPKuLNnzxIXF0e1atXw9PSkadOmbNmyhTNnzhAdHQ1AtWrVkCSJESNGAJCXl8eQIUPw9PQkKCiIDz/8kCeffFL1BCo8PJy3336bYcOG4ePjw8svvwzAjh076Ny5M+7u7oSGhjJhwgQKCgoAOHLkCBkZGfzrX/+iQ4cOhIWFERUVRUJCAh06dAAgMzOTKVOmMGnSJN59912aNGlC/fr1mTJlCh988AGJiYmqJ3NVZfDgwXTv3p2IiAiaNm3KwoULuXnzJocOHQKMzuvKlSvp2bMnERER9O3bl9dee42vvvrK4by7d+8mPDycCRMmULduXZ544gnGjBnD77//XqFN+fn5DBkyhM8++4xq1aqp2nbu3MmZM2dYtWoVzZo1o1mzZqxevZp9+/bxyy+/KP3mzp3L5MmTadasmcO1/Pz8qFWrlvLl5uamtH300UdMmzaNtm3bEhkZybvvvktkZCTffPONwzmHDh3KrFmz6N69e4XXKnjUsBRAJEVgsajMVOW5KnNOo9dXaoQ9bAs2ViFHtgdLEgWeQdbtsmxR+9yZq8XnyS3Js1pTSccrE5KK9YUYZGOEh5Nk/MhgkMqFLlOkkwGDcp32Cp2XWy9EKcHDjfCfhP8k/KeqI0QpgUAguAfIskyhrvS+fN2N1Ah3d3d0Oh0jRoxg3759JCcns3v3bmRZpnfv3pSUlAAwduxYiouL+e233zh8+DDz58/Hy8uL0NBQvvzySwDS0tK4ePEiixYtAuDVV19l586dJCcnk5KSwvbt2zlw4ICVDQsWLKBFixYcPHiQN998k4yMDGJjY3nuuec4dOgQ69atY8eOHYwbNw6AGjVqoNFo2LBhA3obHxYBNmzYQElJic0nemPGjMHLy4u1a9fe8f0D49Ox5cuX4+vrS4sWLez2y83Nxd/f3247QMeOHcnMzGTLli3Isszly5fZsGEDvXv3rtCOsWPH8re//c2mU1JcXIwkSbi6uirn3Nzc0Gg07Nixo8K5ba1VvXp12rVrx+eff+7w/6LBYCAvL6/CaxcIbofy+kcV1ZS6HYxzeucY0zTqp6cjmT0Zd7RGRb+fK/rtbdDYt9s41rTnnhEJJ0oMxey7frCsj/Xue6UajdKmKROenCRjcXjz3fdM91Q2W8He9ZQHV6kFLYGgMjzIPpTwn+4c4T89/P6T8/02QCAQCB4FbpXoaTKr4nzvv4Kjb8Xgob29X/eyLPPzzz/zww8/0KtXLzZu3MjOnTvp1KkTYMzLDw0NZePGjfTv359z587x3HPPKU+AIiIilLlMfywDAwOVPPq8vDxWr17NmjVr6NatG2AMWQ4ODray5amnnmLKlCnK8ahRoxgyZIjyRDAyMpLFixfTtWtXli5dSkhICIsXL2batGnMnTuXNm3aEB0dzZAhQxS7Tpw4ga+vL0FBQVbrabVaIiIiOHHixG3dOxObN29m0KBBFBYWEhQUREpKCtWrV7fZNz09nY8//pgFCxY4nDMqKoqkpCQGDhxIUVERpaWlxMXF8cknnzgc98UXX3DgwAH27t1rs71Dhw54enoyffp03n33XWRZZsaMGej1ei5evFi5Cy7jrbfe4qmnnsLDw4Mff/yRf/zjH+Tn5zNhwgSb/RcsWEB+fj4DBgyo0jqCR5tybUOupLBU2Q+YknXfSuooXvn5+Ny8SZFqTOWeA9uQrRwurreYVueaYzHcQnaSLHYetDHtTQ9TUfPyourmkVKyRUSVUZSyUx/K4jaaC1iippSgsjyIPpTwn4T/JPynyiMipQQCgUBgxebNm/Hy8sLNzY1evXoxcOBARowYgbOzM+3bt1f6BQQE0LBhQ44dOwbAhAkTSEhIICoqitmzZyth1vY4deoUJSUltGvXTjnn6+tLw4YNrfq2adNGdfzHH3+watUqvLy8lK+YmBgMBgOnT58GjE+aLl26RFJSEh07dmT9+vU0bdqUlJSUSt8LrVZbYZ+kpCSVHdu3b1faoqOjSU1NZdeuXcTGxjJgwACuXLliNUdWVhaxsbH0799fVdvAfN74+HgAjh49ysSJE5k1axb79+/n+++/58yZM0r79u3bVeOSkpLIzMxk4sSJJCUlqcLAzalRowbr16/nm2++wcvLC19fX27cuEGrVq3QaKrmMrz55ptERUXRsmVLpk+fzrRp0+zW1VizZg1z587l3//+N4GBgRXeU4HAppDhQDSqWPaoqkssW72SJes5WlR7EgBJ61ElayqxrAXGiy/wPqU6pynRWYyxEKUs4qjK/wWPYh3VykQsTdm1yRqJNB9vVT+DXJ6+V6rTW9hpmVJpOisipQQPJ8J/Kkf4T8J/qiwiUkogEAjuAe4uThx9K+a+rV1VoqOjWbp0KVqtluDgYJydnUlOTq5w3KhRo4iJieHbb7/lxx9/ZN68eSQmJjJ+/PjbMV2Fp6en6jg/P58xY8bYfHJUp04d5bW3tzdxcXHExcWRkJBATEwMCQkJ9OjRg8jISHJzc7lw4YLV00WdTkdGRgYxMRW/b3379lU5myEhISq769evT/369enQoQORkZGsWLGCmTNnKn0uXLhAdHQ0nTp1Yvny5aq5zXdH8fHxAWDevHlERUUxdepUAJo3b46npyedO3cmISGBNm3aqMbVrFmTn3/+mStXrtCqVSvlvF6v57fffmPJkiUUFxfj5OREz549ycjIIDs7G2dnZ6WugflT29uhffv2vP322xQXF6vC27/44gtGjRrF+vXrVSHxju6pQFCOZOe15anKiSCWYpckU7XgKjOcNVqCPCLMGqu6A6CEXJYjV2kJRyoXmZ4ubsf2/P8FF/N2098DYz9HllTLL8TV3fhhSis5I8nG9L1iJ+Mcfh4+ZXOUr3krX2ete5khakoJbocHyYcS/pPwn4T/VHWEKCUQCAT3AEmSbjuF7n5gcgTMady4MaWlpezZs0cJP7927RppaWk0adJE6RcaGkp8fDzx8fHMnDmTzz77jPHjxytPzMzrE0RERODi4sLevXsVRyg3N5cTJ07QpUsXhza2atWKo0ePWtnpCEmSaNSoEbt27QLg+eefZ/r06SQmJpKYmKjqu2zZMgoLCxk2bFiF83p7e+Pt7V0pGwwGA8XF5btfZWVlER0dTevWrVm5cqXVEzVb11dYWIizs/r/k1PZB0VZlnF3d7ca161bNw4fPqw69+KLL9KoUSOmT5+ujDdhCpH/5ZdfuHLlCn379q3U9dkjNTWVatWqqRyqtWvX8tJLL/HFF1/wt7/9TdW/KvdUIACzmk2yAUyRPVZyjuXuevZEEvuJdBUjWXwvs8kWsoSkssKe/GS6NjtL2RgbIHtTIzcf55pl0U4aN8ojwspS5yRbV2VKyyuXkFw1LnQuacLlq7sIlQqpO3s2fldduL4nTVW1SqkZZRppufueSfSTbJwTCOzwIPlQwn8S/pPwn6rOg/HTLRAIBIL7TmRkJP369WP06NF8+umneHt7M2PGDEJCQujXrx8AkyZNolevXjRo0IDr16/z66+/0rhxYwDCwsKQJInNmzfTu3dv3N3d8fb2Zvjw4UydOhV/f38CAwOZPXs2Go2mwkK406dPp0OHDowbN45Ro0bh6enJ0aNHSUlJYcmSJaSmpjJ79myGDh1KkyZN0Gq1bNu2jc8//5zp06cDxieC77//Pq+99hpubm4MHToUFxcXNm3axOuvv05CQgKPPfaYat20tDQrW5o2bYqLi4vqXEFBAe+88w59+/YlKCiI7OxsPvnkE7Kysujfvz9gdKiefPJJwsLCWLBggbLVMUCtWrXsXntcXByjR49m6dKlxMTEcPHiRSZNmkS7du1s1pMAo5NieS2enp4EBASozq9cuZLGjRtTo0YNdu/ezcSJE5k8ebIqJeDcuXPk5ORw7tw59Hq98lSxfv36eHl58c0333D58mU6dOiAm5sbKSkpvPvuu6qCqGvWrGH48OEsWrSI9u3bc+nSJcBYFNbX19futZvWvXDhAlD+fph2qBEIJFvxOIrwYfkd1e50ld1zr2r76lmOrIoIU9VC6Kqt9miReQX/Rg2AA2icXQEJJ9fH0biE2exvzg3f+lx31gOlSEg0MARR+1QO2loGQkJCKLx6pWyG8tpTZhXNLcySlb7GbpIodi54ZBD+kxHhPwn/yR5ClBIIBAJBpVm5ciUTJ06kT58+6HQ6unTpwpYtWxSHQq/XM3bsWM6fP4+Pjw+xsbF8+OGHgDF8eO7cucyYMYMXX3yRYcOGsWrVKhYuXEh8fDx9+vTBx8eHadOmkZmZaTdv30Tz5s3Ztm0bb7zxBp07d0aWZerVq8fAgQMBqF27NuHh4cydO5czZ84gSZJyPHnyZGWeyZMnExERQWJiIosWLVK2RF67di2DBg2yWtfWuczMTGrXrq065+TkxPHjx1m9ejXZ2dkEBATQtm1btm/fTtOmTQFISUkhPT2d9PR0q/GOogdGjBhBXl4eS5YsYcqUKfj5+fHUU08xf/58h/esMqSlpTFz5kxycnIIDw/njTfeUN0vgFmzZrF69WrluGXLlgD8+uuvPPnkk7i4uPDJJ58wefJkZFmmfv36LFy4UFXrYfny5ZSWljJ27FjGjh2rnB8+fDirVq2ya19ycjIvvviicmx6P2bPns2cOXPu5NIFDzoOP4hVVgBxJAJVMIes+lb5aW/TGhV2TJNlgxItZhSCPHH2eEppL3XSWU0gIZFPEee8nbju5APkUFxojNA42uRFdHkZ6L/9nRoefmU2mkeBWYh+lpFSWEdKCQSPAsJ/Ev4TCP/JHpL8CMfM3rx5E19fX3Jzc5U8U4FAILgbFBUVcfr0aerWrVuhcyBQU1BQQEhICImJiYwcOfKer5+Tk0O3bt3w8fHhu+++w8PDo+JBggceRz+zwl9Q899wP7b+7/+w/9uNuHp4UlxYQL02HchK7wCSBo1cikFypvWh98l3KyHkwgWutq1Fl3oHKNR3IpNJuOtc0UhOhLj2AST+dfkrAEpurUJflIPxuW0pqfVv0DDTD/diKPV6HOf8VCSn6hTXbkexxxW63wjn94tfIWOgWkEx1z1daXjhGidbt6e0RMcwnw7UdB1Pqd6b/9HFo8/tRKDLMa6UGCMg4sL+4MuDv9IgcgDfeu9iV+AOhv5gTMVx9RvHJd/TBN1siHxzJcX66xS2b4j+ZnlaRqDOjVsZO2hxvZBrPn3JbHKZ1zT/AuB80WbyNk/AP6YpNb2/odSzNv8vYzyFNABDITecU9kdsZvovRKgpcA3FM/cDPxca3Ghbh30ZvWpHiutT4fSMPYVlJJVIuN7I532Of/BvdWL3DTkkO8MW7QHkWRnZKmUhseO8fgfh8DZGUpLya1ei++7d6V5UTCH3C7g7OREWHg4GRkZPPPMMw63eRc8Wgj/6fYR/pPgfnA3/Cex+55AIBAI7isHDx5k7dq1ZGRkcODAAYYMGQKghLTfa/z9/fnpp5/o1q0bu3fvvi82CASCSmIz4sY6H8/eE1i9BL+5lzvRBslRJM9fEN5TwbNhq9b8koomtJ6/zGxnZw3BvrcA0JTkkKP5lhyPC1YzGCTQSwYkGZxLvAiuGUqwvgYALhjXN5SlAhqXMF/TIlzM6pbZSDh8dJ+PCwR3hPCfBA8L90yU+uSTTwgPD8fNzY327dvz+++/O+y/fv16GjVqhJubG82aNWPLli1KW0lJCdOnT6dZs2Z4enoSHBzMsGHDlPxIgUAgEDxYLFiwgBYtWtC9e3cKCgrYvn27UijyfhAQEMCsWbPo1q3bfbNBIBBUkbLi5uZFtq0LnRsxySBbvDwZXytQOa/TmAoJS8q/NmuBK70kZTbVPoCyrDojm+2+Z2mSfalLslrcKSvPbldzZNms6LsZbmU1aiStC07+/jYnkctS7rSyK9WutaJ39DN4ysaIh7BWxporGg8PJKWYvMHMAItC5xaGyWbnRU0pgeDOEf6T4GHgntSUWrduHa+++irLli2jffv2fPTRR8TExJCWlkZgYKBV/127dvHCCy8wb948+vTpw5o1a3j66ac5cOAAjz32GIWFhRw4cIA333yTFi1acP36dSZOnEjfvn3Zt2/fvbgkgUAgENwlWrZsyf79+++3GQKB4GFGCYBSizxXnf7q57PWipa1FGMUtmRkhwJYZVYxn/sTijjacRQNnW/yPt8gY0Dj5gGUImm1ZaJU+QNdS7s0svHeGPQyJo1NozEJVxplhAGDYrdd88saDGaRVKU5RVW+ToFAUI7wnwQPC/ckUspUnOvFF1+kSZMmLFu2DA8PDz7//HOb/RctWkRsbCxTp06lcePGvP3227Rq1YolS5YA4OvrS0pKCgMGDKBhw4Z06NCBJUuWsH//fs6dO3cvLkkgEAgEAoFA8F+COgPMkbIjWxyZRTCp2k2RRn9FNI9s41VFfSX190qIV2vRkR5Qj7OGGuSU1qZQ52QWnSTbTZszi2UCwGCQlfurbLkuSeR5hwJQWqpXxYQZv1VQ6FwvU3r1VsUXIRAIBIKHnr9clNLpdOzfv5/u3buXL6rR0L17d7u5prt371b1B4iJiXGYm5qbm4skSfj5+d0VuwUCgUAgEAgEDx6qaKi7qilVcrKqrGlW88lms9WUlQ+lalnsxD9uutPlZiRrsz9m0/lpSmqeUR4yS+0zF4/KXqojpYzrapzKxbEbfsZtzg0G8/Q9x1wtyrS4HlFTSiAQCB51/nJRKjs7G71eT82aNVXna9asyaVLl2yOuXTpUpX6FxUVMX36dF544QWHVd2Li4u5efOm6ksgEAgEAoFA8KBhql2krmWkfu1IKJGVf22nzP2V9Y6qIMLYyeezvGoJy4gkiVqlZaJSmfh0vSRY6VdcWMj1ixcspldHY2koF6WUHkoAmQSmqCkncxHQwl6LSKnckmzjaRfNX3qHBQKBQPDg8MDvvldSUsKAAQOQZZmlS5c67Dtv3jx8fX2Vr9DQ0HtkpUAgEAgEAoHgriNZpLVRHiklS6b0PHNkZJ3O7Eg9Vq6KYHSXsBSUzFHssb5MG30lq5pZAFddLyuvXdw8lN4Vpu+ZIqUMhvJIKY2pWHt5TSkke+XksVvM3BhdJRAIBALBPRClqlevjpOTE5cvX1adv3z5MrVq1bI5platWpXqbxKkzp49S0pKisMoKYCZM2eSm5urfGVmZt7GFQkEAoFAIBAIHijk8heyrrjSwyS7B1YT2zljfiSZ/Xt7SDZeVdTT3AKf6sZMhIDaobR7ur/NkUVORsHIPFJKqSlVlr4nm+2eJ0vqnQYBNAZ1TSlLuw2lJRXYLxAIBIJHhb9clNJqtbRu3Zqff/5ZOWcwGPj555/p2LGjzTEdO3ZU9QdISUlR9TcJUidPnuSnn34iICCgQltcXV3x8fFRfQkEAoFAIBAIHh5sRQuVx/Ko0/zs1zGvvPxzR1S6nlLlRShH6M4aH8h6VauGd4DltvHGOW456wFwkp0A0JcYOOx1jPeDV3LEcLSsa3mBeNlGPJq1NWUxaU4B5ofGl6KmlEAgEDzSON+LRV599VWGDx9OmzZtaNeuHR999BEFBQW8+OKLAAwbNoyQkBDmzZsHwMSJE+natSuJiYn87W9/44svvmDfvn0sX74cMApSzz//PAcOHGDz5s3o9Xql3pS/vz9arfZeXJZAIBAIBAKB4L8B2VxEclzoXCdLnLklY0CPPqcHWq+j5hOVjZOML2XTJCoVxaYJjmUhWzv8qducJL3VKHvphBYWOcS839Xl/wMNX6DwP3uoUZJGx3Nm9aLKvnvonQnV18KrKJgsoFRn4H9DviDb9Rq/3tpL87An6Xi5E5Leza6Ndkph4aSNBEw7ZYuqUgKBQCC4RzWlBg4cyIIFC5g1axaPP/44qampfP/990ox83PnznHx4kWlf6dOnVizZg3Lly+nRYsWbNiwgY0bN/LYY48BkJWVRXJyMufPn+fxxx8nKChI+dq1a9e9uCSBQCB4aBkxYgSSZEzN0Gq11K9fn7feeovS0tI7mnfr1q1IksSNGzfujqGV4PTp0wwePJjg4GDc3NyoXbs2/fr14/jx46p+mzdvpmvXrnh7e+Ph4UHbtm1ZtWqVqs+ZM2eQJInU1NRKrz9nzhwaNWqEp6cn1apVo3v37uzZs0c158iRI6lbty7u7u7Uq1eP2bNnozOreWOPpKQkWrRogYeHB0FBQbz00ktcu3atwnFZWVn8/e9/JyAgAHd3d5o1a8a+ffuUdvP33/QVGxurmiM8PNyqz3vvvae0p6WlER0dTc2aNXFzcyMiIoJ//vOflJSoU3Zu3LjB2LFjCQoKwtXVlQYNGrBlyxaH9n/11Vf07NmTgICAKr8fgoeXigWa8h4XSl05pYMzOhn5yt9pmdWjkquYiSiVDu6RzV6ZUtlsD27Fn9brWao7ej2aoltWwpgMeGrdcZGsRSaVDaZ0On0pISt+YOBv1rWdAnSuPFnSFO9SY/2p0hI9t5xuKe2HgrdyKPB3yiOlHNSHUiqjW9siEDxsCP9J+E/Cf7o97kmkFMC4ceMYN26czbatW7danevfvz/9+9vOdQ8PDxehvgKBQPAXEhsby8qVKykuLmbLli2MHTsWFxcXZs6ceb9NA0Cn01UYFVtSUkKPHj1o2LAhX331FUFBQZw/f57vvvtO5dh9/PHHTJo0ienTp7N06VK0Wi2bNm0iPj6eP//8kwULFty2nQ0aNGDJkiVERERw69YtPvzwQ3r27El6ejo1atTg+PHjGAwGPv30U+rXr8+ff/7J6NGjKSgocLjuzp07GTZsGB9++CFxcXFkZWURHx/P6NGj+eqrr+yOu379OlFRUURHR/Pdd99Ro0YNTp48SbVq1VT9TO+/CVdXV6u53nrrLUaPHq0ce3t7K69dXFwYNmwYrVq1ws/Pjz/++IPRo0djMBh49913AeN72KNHDwIDA9mwYQMhISGcPXsWPz8/h/e0oKCAJ554ggEDBqjWFzxaKG6gqa6RbC7GyGavyiuEX9NomFf9BsVOe2l0qavS36Ok/P+u7cWsTymCj51C3lVBiVDillWbbHYtANqbOWhv5lDq7c+t2hHlpkng6+Fly0KV+R5PRsMF0Ph4UxQcANfMdqJWgsRM99QAaPjPxlN4t/SmwLlQ6VqiKSkrdg76ggLwtUwFlJW5bO2LqLZQIHh4EP6T8J+E/1R17pkoJRAIBIIHB1dXV2VziVdeeYWvv/6a5ORk4uPjmThxIt988w3FxcV07dqVxYsXExkZCcDZs2cZN24cO3bsQKfTER4ezgcffECTJk2Ijo4GUP6ADx8+nFWrVpGXl0d8fDwbN27Ex8eHadOmsWnTJh5//HE++ugjwPgwYuTIkZw8eZKNGzfy7LPPsmrVKnbs2MHMmTPZt28f1atX55lnnmHevHl4enpy5MgRMjIy+PnnnwkLCwMgLCyMqKgo5TozMzOZMmUKkyZNUv7YA0yZMgWtVsuECRPo378/7du3v637OHjwYNXxwoULWbFiBYcOHaJbt27ExsaqnqJFRESQlpbG0qVLHTpVu3fvJjw8nAkTJgBQt25dxowZw/z58x3aM3/+fEJDQ1UOU926da36mb//9vD29rbbJyIigoiICOU4LCyMrVu3sn37duXc559/Tk5ODrt27cLFxQUwvs8VMXToUMD4lFQgsC1s2FCRZPi3jxc/eBfT9nqRRZutWe68KLl95LI6TKYkvPJ6V/bS3vzc6nOl4Dp62WCU2nRFNvuZZjKoopfMo7WMdaI8W7XkeuhjeH9dnmGgRFGVzaLRl2D6qGASxxo7N+RYaRq1XZwJ9/EzthlK8ZM9CDT4kF2aDQYZ/5y8ytwI43jxoFnwECH8J+E/Cf+p6tyT9D2BQCB45JFl0BXcn6+74PC7u7uj0+kYMWIE+/btIzk5md27dyPLMr1791bCiseOHUtxcTG//fYbhw8fZv78+Xh5eREaGsqXX34JGEOTL168yKJFiwBj3cGdO3eSnJxMSkoK27dv58CBA1Y2LFiwgBYtWnDw4EHefPNNMjIyiI2N5bnnnuPQoUOsW7eOHTt2KFG5NWrUQKPRsGHDBvR661otABs2bKCkpITXXnvNqm3MmDF4eXmxdu3aO75/YHyytXz5cnx9fWnRooXdfrm5ufj7+zucq2PHjmRmZrJlyxZkWeby5cts2LCB3r17OxyXnJxMmzZt6N+/P4GBgbRs2ZLPPvvMqt/WrVsJDAykYcOGvPLKKzbD2t977z0CAgJo2bIlH3zwgcP0hPT0dL7//nu6di2PTklOTqZjx46MHTuWmjVr8thjj/Huu+/afa8EAsc4qtlk5JZUGbfX/u/Lv1o6cTR/kPcTRLcZRomfMSLJXgqgrblUmpum7B5IErLGvEH9usRQjP767/gV/YfgyCJl1z1FsJLAqUzEyi26hBMa+ura8sytlvQpaklw2GPKOurZre0+uvMCy8Zt5dPxW1kxZTsZB644vDbBI8gD7EMJ/+nOEf7Tw+8/iUgpgUAguBeUFMK7wfdn7dcvgNbztobKsszPP//MDz/8QK9evdi4cSM7d+6kU6dOgDEvPzQ0lI0bN9K/f3/OnTvHc889R7NmzQBUT3tMjkJgYKASYpyXl8fq1atZs2YN3bp1A2DlypUEB1vfq6eeeoopU6Yox6NGjWLIkCFMmjQJgMjISBYvXkzXrl1ZunQpISEhLF68mGnTpjF37lzatGlDdHQ0Q4YMUew6ceIEvr6+BAUFWa2n1WqJiIjgxIkTt3XvTGzevJlBgwZRWFhIUFAQKSkpVK9umepiJD09nY8//rjCkPeoqCiSkpIYOHAgRUVFlJaWEhcXxyeffOJw3KlTp1i6dCmvvvoqr7/+Onv37mXChAlotVqGDx8OGEPPn332WerWrUtGRgavv/46vXr1Yvfu3Tg5GaMsJkyYQKtWrfD392fXrl3MnDmTixcvsnDhQtV6nTp14sCBAxQXF/Pyyy/z1ltvqWz55ZdfGDJkCFu2bCE9PZ1//OMflJSUMHv27Arvq0BgD3uFzssT4SSL/rYkk6rvvufoo6ujtDVTPfUqRWXZXUy20V5+YDAYI6ik09vg2g5sXqfkwo9Xksg3XIVbwO+7CG7hxMUQ0JQ9z5aRSXN24vS1IkpzDxNRvQPeLv5UczU+/S/WeGGzsouNi7xy5iZupca/UaUlBk79cZV6rQLtX7vg0eMB9KGE/yT8J+E/VR4RKSUQCAQCKzZv3oyXlxdubm706tWLgQMHMmLECJydnVWh2AEBATRs2JBjx44Bxj+2CQkJREVFMXv2bA4dOuRwnVOnTlFSUkK7du2Uc76+vjRs2NCqb5s2bVTHf/zxB6tWrcLLy0v5iomJwWAwcPr0acD45PHSpUskJSXRsWNH1q9fT9OmTUlJSan0vajMjq5JSUkqO8zDrKOjo0lNTWXXrl3ExsYyYMAArlyxjgTIysoiNjaW/v37q3L9zeeNj48H4OjRo0ycOJFZs2axf/9+vv/+e86cOaO0b9++XTUuKSkJMH4gbdWqFe+++y4tW7bk5ZdfZvTo0SxbtkxZb9CgQfTt25dmzZrx9NNPs3nzZvbu3auq//jqq6/y5JNP0rx5c+Lj40lMTOTjjz+muLhYdU3r1q3jwIEDrFmzhm+//VblLBoMBgIDA1m+fDmtW7dm4MCBvPHGG4otju6pQGBFlYIZ7ItSDieyoxqZRuil8qfdFzyyrFapajKgsYC4hT2SukdjzSGiapyhTtBlJPTYjn0yO1tsrCEl6fKQS/ItVjT2+8PnBFcMxg2ISjVGEcutrNxVuSgFxRIUy8ZRP1/4P45lriMtd6+xo95sF0M7KEmLZV2bdg42XZZA8MAi/KdyhP8k/KfKIiKlBAKB4F7g4mF82na/1q4i0dHRStHK4OBgnJ2dSU5OrnDcqFGjiImJ4dtvv+XHH39k3rx5JCYmMn78+NuxXIWnp/pJZX5+PmPGjFHqAphTp04d5bW3tzdxcXHExcWRkJBATEwMCQkJ9OjRg8jISHJzc7lw4YLV00WdTkdGRgYxMTEV2ta3b1+VsxkSEqKyu379+tSvX58OHToQGRnJihUrVEVPL1y4QHR0NJ06dWL58uWquc13R/Hx8QFg3rx5REVFMXXqVACaN2+Op6cnnTt3JiEhgTZt2qjGmXa7DQoKokmTJqr5GzdurKQG2CIiIoLq1auTnp6uPI21pH379pSWlnLmzBmVQxwaGgpAkyZN0Ov1vPzyy0yZMgUnJyeCgoJwcXFRnh6abLl06RI6nc7hPRUIFCXDhughqWooSUp3JY3NUvS4AxHEnuRyzfUagdRUTW7zlWxeUcrSkPLZCw0yzreckGWN0rsm2XRz/haqA9WhZtHH/Ennslbz6C8ZZANIGgymWlmu9v8u5DsX4i0b65Rc9y6hRm55oV6NqQi6JGOQy6Oyig23yMk5gqzV0tC3Legtd+STLb5b4+rpYrdN8IjzAPlQwn8S/pMJ4T9VHiFKCQQCwb1Akm47he5+YHIEzGncuDGlpaXs2bNHCT+/du0aaWlpqj/UoaGhxMfHEx8fz8yZM/nss88YP3688sTMPOc9IiICFxcX9u7dqzhCubm5nDhxgi5duji0sVWrVhw9etTKTkdIkkSjRo3YtctY3Pf5559n+vTpJCYmkpiYqOq7bNkyCgsLGTZsWIXzent7q3ZPcYTBYFA9EcvKyiI6OprWrVuzcuVKNBp1ELOt6yssLMTZWf0n3OScyLKMu7u7zXFRUVGkpaWpzp04cUIpZGqL8+fPc+3aNZsh+iZSU1PRaDQEBtpPuTEYDJSUlGAwGHByciIqKoo1a9ZgMBiUaz5x4gRBQUFotVq0Wm2l76ng0UVSRKlKRjthK33PVuLAX1Hi3M6cVnWXjMiAoazy+VmdDFk+uBkaIXMZZHBD/WTdzy2NSNn2z6mEARlN+SpOziDZvlMSesBFZbJ16qOMoUzlkzRS2bEBvaEsac8kStmJlJJsJCyauoq65wIrHiAfSvhPwn8yIfynyiNEKYFAIBBUisjISPr168fo0aP59NNP8fb2ZsaMGYSEhNCvXz8AJk2aRK9evWjQoAHXr1/n119/pXHjxoBxBxFJkti8eTO9e/fG3d0db29vhg8fztSpU/H39ycwMJDZs2ej0WjMPmzaZvr06XTo0IFx48YxatQoPD09OXr0KCkpKSxZsoTU1FRmz57N0KFDadKkCVqtlm3btvH5558zffp0wPhE8P333+e1117Dzc2NoUOH4uLiwqZNm3j99ddJSEjgscceU61r6ZQANG3aVNkBxURBQQHvvPMOffv2JSgoiOzsbD755BOysrLo378/YHSonnzyScLCwliwYAFXr15VxjvavSUuLo7Ro0ezdOlSYmJiuHjxIpMmTaJdu3Y260mYmDx5Mp06deLdd99lwIAB/P777yxfvlx5upifn8/cuXN57rnnqFWrFhkZGUybNo369esrTzx3797Nnj17iI6Oxtvbm927dzN58mT+/ve/KzsDJSUl4eLiQrNmzXB1dWXfvn3MnDmTgQMHKvfplVdeYcmSJUycOJHx48dz8uRJ3n33XZtPbs3Jycnh3LlzXLhwQfV+1KpVq8IdbwQPMWZKhr3fHPa0Dsnm7numtkotbnFkRyCTbZyzXM/i+ILvMRplR6Jx9qTQAM5yDUoASS5/Ql5Q5Iy7cykaZ/Dglu15ZRlZArms2LtkZSdmoWR6q+gt03fz9D3Tvy5BQXDtAs7h4RQXlYlSujJRSq+p6JKVxop+5wsEDyrCfzIi/CfhP9lDiFICgUAgqDQrV65k4sSJ9OnTB51OR5cuXdiyZYvyh1Kv1zN27FjOnz+Pj48PsbGxfPjhh4AxfHju3LnMmDGDF198kWHDhrFq1SoWLlxIfHw8ffr0UbY0zszMxM3NzaEtzZs3Z9u2bbzxxht07twZWZapV68eAwcOBKB27dqEh4czd+5czpw5gyRJyvHkyZOVeSZPnkxERASJiYksWrSIgoICANauXcugQYOs1rV1LjMzk9q1a6vOOTk5cfz4cVavXk12djYBAQG0bduW7du307RpUwBSUlJIT08nPT3daryjbdJHjBhBXl4eS5YsYcqUKfj5+fHUU09VuKVx27Zt+frrr5k5cyZvvfUWdevW5aOPPmLIkCGKzYcOHWL16tXcuHGD4OBgevbsydtvv42rqzGFx9XVlS+++II5c+ZQXFxM3bp1mTx5Mq+++qqyjrOzM/Pnz+fEiRPIskxYWBjjxo1T3ffQ0FB++OEHJk+eTPPmzQkJCWHixImKw2uP5ORkXnzxReXY9H7Mnj2bOXPmOBwreHixKwQ5+GwmI1tFTTlWT+61aCJT6n2E/v47cXZ24n+z38dQ5rprDM7IBicKrmg591sAGCRcq+lwiioGL1t2G6/LUCYqSVYlriwFqrJvkrrVvNC5oayPk7c3XANtgwZkHzxiPFkWKSUb7Oy+Z6Oyu9CkBA8zwn8S/pPwn+wjyY7etYecmzdv4uvrS25urpJnKhAIBHeDoqIiTp8+Td26dSt0DgRqCgoKCAkJITExkZEjR97z9XNycujWrRs+Pj589913eHhUvSaX4MHD0c+s8BfU/Dfcj19XLefAd8l4+PpRmHuDsBaduHyuAwBecjb5UnVa/pnITc9Sws6e41LLYPZ2TOf/+frQ4WxfHr/QDRkDEhpOVztM3evGHa9yi/+Fa2ERaLzBkMefdXNpkOmHtlRG59MG7c19SJoAdLXbU+R5hZ65ddl9YT0AfoUF3PDwJPJSDpuiXWl8tQlDfVpR0/VVdPpqfJo7GP11mZpeLlyTuyIh8bfg/SQf/Q8R9Z4mz2cBCwJkBqcYU3Fc/MZxosUkllwxFh2/XFKf/TebcuxKDpLGB79IX+KOfEP2kfI0jVttfWlV7xjFBidevf4FTUqcOe+WRVhhdfQaVxpWzyItO4RI/yNw4UP8DnqxvVEdkNy55R2O+81jnKp9k5BLnriWOnGpWhG1rruR1qCY3fUv0V7bhj26ffTJ6ULbKy9w8boOH78tXDl9nIjW7Ti1/3dqe0fRyqmY0m3rkNz9kW/lkF8tkG9jonErCKbI8wJOpXpqS7U463QVr9z6uN8Kpm1MCHt/yCKyTSA9R6kjLASPDsJ/un2E/yS4H9wN/0nsvicQCASC+8rBgwdZu3YtGRkZHDhwQHnqZAppv9f4+/vz008/0a1bN3bv3n1fbBAIBHcBSVIiqDTmKXqONrSzVaLK8SIVtJcvVnLtBHrdYS7f+NNiBvNoIrOYIgmcMNaQKTY8Rk2XdIJdDpTNKgMaDKXq9TWyZYFx02TqwvDWkVLqWlvKa4s+SqSUJCuXZopwMpTVu7lQdAG5ujs2JzC7H5Yt1z77zKKHQCBwhPCfBA8LIn1PIBAIBPedBQsWkJaWhlarpXXr1mzfvp3q1avfN3sCAgKYNWvWfVtfIBA4xmqnOmVzNwO2ZI1QfXX+w0nAXHAxCiuSXP6Mtjx/oFyduu2sMsuMuNIiAPQGHU6GW0iaiqMINBhFpkL9E7hq/kQyFbkq207QUpQq33lQLW5JZfMo6XtlcWIVYVluy3Q3ZCjffa/snEEpwqxBV1iKk9oMS7OsKS2t0B6BQKBG+E+ChwEhSgkEAoHgvtKyZUv2799/v80QCAQPMS44mR2ZhBWrUt9gQ9SxGGazt/FAtv3a1M9JC3pjIXBd7nK0PuqdqVyvG1jwtYEDZZs5acymMMjGnccUUcpUI6rEQpQyi5RSt5SVJpctakrZ2x1PKf1kVgMK0Kh23yvrW7b7k0FvEpUk9KX6sjteFUnPoFpLIBA4RvhPgocFkb4nEAgEAoFAIHggKd9lqiwtzbJUqi1tSS4XVoxdJLv9be++V3nVxNw6SWO+w5QBWZ9TJl4Ze3lfNOCfp15bBvQGZ2SMdTrMHffwvae4eU4dbaVR7YtXbq/pviiSlWQdBaWIdbI6ysr43bT7nnmkVNkoJX3PNLsG2WB5j2SL79aYbHx0q90KBALBo4kQpQQCgUAgEAgEDwl2FA0bpw1KOJD9elNqKoj6cbjTn+NhV2WJWwYXq7ZcvEnP6VU+ubKGAb+LueUdnU0Cm+2Vys9r7PQrN94nH5zK9CVnU0aeSYAy233PMtXxypkM5dhgJUrZssle6qFAIBAIHiWEKCUQCAQCgUAgeEiwihFSzppeW4shtqgo7cyyLLk9C0wnJZstpjN/ylpVhJKp9QI1uVbY2GxVs4gjSSKo3XWqdb2Jk19Zu40wo8isM0pYk6mOlCSBrLEtA7U6JStiVP0LBtPCAGik8kLnpppSXv41ACgtLjZ2dfJF1lsUVq9IlQOzECkhTgkEAsGjhKgpJRAIBAKBQCB4sLCqc25fJLLEtBNfebF081F3WxBxNF/5+rbLs1tTXgJK5nK9WrSKOMy1YvfydrNZtIZSwJnQaxc56/mY8aTGvLaWfavksoW0ZWWiZNkyfa88Uqrj8y/RvFs0yDK7kzO5luWFbPhNsch6dvPvZtdmUb9KIBAIBI8GIlJKIBAIBAKBQPBgYlJpFK3DvqJRLgE5qCll0adKO++ZLX07qWi2ooksdxk0n1eWzHYNtGiXkXA2GMOdDJKEk7Mx4knyMNamkiSr/QvxNAY6ke8VgqHsvho0bqo+GiV9DyVFz8XVlfAWrQh/vDUePmFIkgZZb8AWstULswPZ9hiBQCAQPNwIUUogEAgEAoFA8JBQiULnpmgfWzWlbA28o8rbss2XqrklY5MtaczCEorMUt1klRtvbNCYCTuaMrtLnZxwctGXDStP37Pcec+1xPg9zztMuUe33AMtLLK1+55Zu0kjNN0zy939HOTxqaVCgUAgEDwqCFFKIBAIBAKBQPBAYlmOSJ2Ipy5grkQTWaTvSRajzHHS22u5HewVIVeUHAf9JTKdnZhUx01pu+paZH8NuVygkiVJiaAymEpEOdh9z1SBC0DWlFf6kGQJn4t1aJMZS7UrzdCVlkVfmQlPptem3ffsRZrZPG8S1IQqJRAIBI8UQpQSCAQCgYoRI0YgSRKSJKHVaqlfvz5vvfUWpaWldzTv1q1bkSSJGzdu3B1DK8Hp06cZPHgwwcHBuLm5Ubt2bfr168fx48dV/TZv3kzXrl3x9vbGw8ODtm3bsmrVKlWfM2fOIEkSqamplV5/zpw5NGrUCE9PT6pVq0b37t3Zs2ePas6RI0dSt25d3N3dqVevHrNnz0an01U4d1JSEi1atMDDw4OgoCBeeuklrl275nCMXq/nzTffVK339ttvl0c1AF999RU9e/YkICDA7vVmZGTwzDPPUKNGDXx8fBgwYACXL1+u8nUdOnSIzp074+bmRmhoKO+//36F1/3bb78RFxdHcHAwkiSxcePGCscIHiFk2SzFTVILU9adjb1sREpp9EY1KuaAoXwHOptUKcHPIfZmMl1NhouWYqfysznaYqs+GjNFxxQppZc0SJJR8DGYZ8ipFqxIPpIJulmP6mmtaHO+F/7XHqNEb0MJLHtdvvue/ftj2SJ23xM86Aj/SfhPwn+6PYQoJRAIBAIrYmNjuXjxIidPnmTKlCnMmTOHDz744H6bpVAZp6OkpIQePXqQm5vLV199RVpaGuvWraNZs2Yqx+7jjz+mX79+REVFsWfPHg4dOsSgQYOIj4/ntddeuyM7GzRowJIlSzh8+DA7duwgPDycnj17cvXqVQCOHz+OwWDg008/5ciRI3z44YcsW7aM119/3eG8O3fuZNiwYYwcOZIjR46wfv16fv/9d0aPHu1w3Pz581m6dClLlizh2LFjzJ8/n/fff5+PP/5Y6VNQUMATTzzB/Pnzbc5RUFBAz549kSSJX375hZ07d6LT6YiLi8NQ9om3Mtd18+ZNevbsSVhYGPv37+eDDz5gzpw5LF++3OE1FBQU0KJFCz755BOH/QSPKg5qSpWpIEpkkgM9ybxJI9s6e9tm2O/uKFDK6pSMQWOdvmfafU82e23sV3beLKvOfqSUOeU1pLSlHgAUutyk1PlW+ajSW5B1ALIO4GEwfriSDWYLqSy3vwOhEuR1R+mSAsH9RfhPwn8S/lPVEbvvCQQCgcAKV1dXatWqBcArr7zC119/TXJyMvHx8UycOJFvvvmG4uJiunbtyuLFi4mMjATg7NmzjBs3jh07dqDT6QgPD+eDDz6gSZMmREdHA1CtWjUAhg8fzqpVq8jLyyM+Pp6NGzfi4+PDtGnT2LRpE48//jgfffQRAOHh4YwcOZKTJ0+yceNGnn32WVatWsWOHTuYOXMm+/bto3r16jzzzDPMmzcPT09Pjhw5QkZGBj///DNhYWEAhIWFERUVpVxnZmYmU6ZMYdKkSbz77rvK+SlTpqDVapkwYQL9+/enffv2t3UfBw8erDpeuHAhK1as4NChQ3Tr1o3Y2FhiY2OV9oiICNLS0li6dCkLFiywO+/u3bsJDw9nwoQJANStW5cxY8bYdYRM7Nq1i379+vG3v/0NMN7XtWvX8vvvvyt9hg4dChif1tli586dnDlzhoMHD+Lj4wPA6tWrqVatGr/88gvdu3ev1HUlJSWh0+n4/PPP0Wq1NG3alNTUVBYuXMjLL79s9xp69epFr169HF6n4OHHnnBRmWgbR+l7ldCFKmwxt6ZCzK5DqkCMkSXzKWWlGLk5flJuWauEkyllz2b6nnWh8/KZzSu2a5RLNa2W65aNb6kXzqXGXf88/t0brh0DoBuQ65KAbKhM0XLLul1CjBI8+Aj/SfhPwn+qOiJSSiAQCO4BsixTWFJ4X77uxlNnd3d3dDodI0aMYN++fSQnJ7N7925kWaZ3796UlBgr5I4dO5bi4mJ+++03Dh8+zPz58/Hy8iI0NJQvv/wSgLS0NC5evMiiRYsAePXVV9m5cyfJycmkpKSwfft2Dhw4YGXDggULaNGiBQcPHuTNN98kIyOD2NhYnnvuOQ4dOsS6devYsWMH48aNA6BGjRpoNBo2bNiAXm87/2bDhg2UlJTYfKI3ZswYvLy8WLt27R3fPzA+nVy+fDm+vr60aNHCbr/c3Fz8/f0dztWxY0cyMzPZsmULsixz+fJlNmzYQO/evR2O69SpEz///DMnTpwA4I8//mDHjh1VclKKi4uRJAlXV1flnJubGxqNhh07dlT6unbv3k2XLl3QarXKuZiYGNLS0rh+/Xql7RE84ijCjMUufFicNq8phVqUMhdHbL2ypoLfqTaGGtMIbY1TKU0WPeTyYuxW7TKyqX6TeZpiWQfdTSd8dPkAGCQNEur0PWOhc3sfA8xX0Shmlt83A3rzNMGctLIXLgD4OV8w20jPFMFlZynVmkKUEtjmQfahhP905wj/6eH3n0SklEAgENwDbpXeov2a23tadKfsGbwHDxeP2xoryzI///wzP/zwA7169WLjxo3s3LmTTp06AcanNaGhoWzcuJH+/ftz7tw5nnvuOZo1awYYn/CYMP1BDQwMxM/PD4C8vDxWr17NmjVr6NatGwArV64kODjYypannnqKKVOmKMejRo1iyJAhTJo0CYDIyEgWL15M165dWbp0KSEhISxevJhp06Yxd+5c2rRpQ3R0NEOGDFHsOnHiBL6+vgQFBVmtp9VqiYiIUByQ22Xz5s0MGjSIwsJCgoKCSElJoXr16jb7pqen8/HHHzt8ygcQFRVFUlISAwcOpKioiNLSUuLi4ioMyZ4xYwY3b96kUaNGODk5odfreeeddxgyZEilr6dDhw54enoyffp03n33XWRZZsaMGej1ei5evFjp67p06RJ169ZV9atZs6bSZnoiLBBUCsscMCjb1c7BznqSdU0pq/ghG9FIt2mYxfqy1ZGlcCNZrC1jtmMgMgYzUemWTos7ReTI1Si65M7NrVpqN7nKVfdQVaTU5SvlH4ZsbjpoabNZpJS5eFZqbqvpQ3utZnDhABIyxbdKLIdYLKF+Z8wj3ET2nsCSB9GHEv6T8J8sEf6TfUSklEAgEAis2Lx5M15eXri5udGrVy8GDhzIiBEjcHZ2VoViBwQE0LBhQ44dM6ZuTJgwgYSEBKKiopg9ezaHDh1yuM6pU6coKSmhXbt2yjlfX18aNmxo1bdNmzaq4z/++INVq1bh5eWlfMXExGAwGDh9+jRgfPJ46dIlkpKS6NixI+vXr6dp06akpKRU+l6YP4myR1JSksqO7du3K23R0dGkpqaya9cuYmNjGTBgAFeuXLGaIysri9jYWPr376+qbWA+b3x8PABHjx5l4sSJzJo1i/379/P9999z5swZpX379u2qcUlJSQD8+9//JikpiTVr1nDgwAFWr17NggULWL16daXvR40aNVi/fj3ffPMNXl5e+Pr6cuPGDVq1aoVGY+1W2LuuirB3DQKBCiVayERl0vcq09eGmnKX9Cn7yYLWlEqlXHK/iU4yRiuYC0kGs5kMsrEC+kFa8Et+x7KFjO3XfPwJ1h5R+mooIdj3sv2aUmaqkGwmfCn3TZJVCpoiKJn1LbmlV1rV2Lpmxzv1CQQPEsJ/Kkf4T2qE/2QfESklEAgE9wB3Z3f2DN5Tcce/aO2qEh0dzdKlS9FqtQQHB+Ps7ExycnKF40aNGkVMTAzffvstP/74I/PmzSMxMZHx48ffjukqPD09Vcf5+fmMGTNGqQtgTp06dZTX3t7exMXFERcXR0JCAjExMSQkJNCjRw8iIyPJzc3lwoULVk8XdTodGRkZxMTEVGhb3759Vc5mSEiIyu769etTv359OnToQGRkJCtWrGDmzJlKnwsXLhAdHU2nTp2sClWa795iqkEwb948oqKimDp1KgDNmzfH09OTzp07k5CQQJs2bVTjTE/Qpk6dyowZMxg0aBAAzZo14+zZs8ybN4/hw4dXeJ0mevbsSUZGBtnZ2Tg7O+Pn50etWrVUT3Yruq5atWqpdpwBlONatWoRHh5u8xoEAnNkWYPGpQGFecaf38rs9WaZvifdJTnEJM7Idma0jo0qOytJ5ZFSFtFR2e7ZzG63hYiiakzIVUs6ss30u/I8xWtuxt8X52qEMNZ3Hm2qfY1ztzdw/vE1nGvEcCitMldlWkMGs/tmU04rs6dWhA/51yXIBMt3xF50loQsQqQEdnmQfCjhPwn/yRHCf7KNEKUEAoHgHiBJ0m2n0N0PTI6AOY0bN6a0tJQ9e/Yo4efXrl0jLS2NJk2aKP1CQ0OJj48nPj6emTNn8tlnnzF+/HjliZl5fYKIiAhcXFzYu3ev4gjl5uZy4sQJunTp4tDGVq1acfToUSs7HSFJEo0aNWLXrl0APP/880yfPp3ExEQSExNVfZctW0ZhYSHDhg2rcF5vb2+8vb0rZYPBYKC4uHwr96ysLKKjo2ndujUrV660elpm6/oKCwtxdlb/CXdyMkZKyLKMu7u73XGW8zs5OSm7vlQVUxj9L7/8wpUrV+jbt2+lr6tjx4688cYblJSU4OJirEWTkpJCw4YNldDzqry3gkcNkwBUF61XFIV5Ffc3SR4aTFFH1ul7VbaiwmJJsp3X1lgXOi8/Pu163dTJbG2bxatU4pj5dzdNAfsPHuXsuUYYruaTczMED/d8hzYbNC6gB7+CmuT4lUelSWV21KrrDaaN+MrsadyxFpeLXMj5j62rrITwJMQpgQUPkg8l/CfhP1UG4T+pEaKUQCAQCCpFZGQk/fr1Y/To0Xz66ad4e3szY8YMQkJC6NevHwCTJk2iV69eNGjQgOvXr/Prr7/SuHFjwLhziyRJbN68md69e+Pu7o63tzfDhw9n6tSp+Pv7ExgYyOzZs9FoNFb1VCyZPn06HTp0YNy4cYwaNQpPT0+OHj1KSkoKS5YsITU1ldmzZzN06FCaNGmCVqtl27ZtfP7550yfPh0wPhF8//33ee2113Bzc2Po0KG4uLiwadMmXn/9dRISEnjsscdU66alWYcXNG3aVHEMTBQUFPDOO+/Qt29fgoKCyM7O5pNPPiErK4v+/fsDRsfjySefJCwsjAULFihbHQPK7j22iIuLY/To0SxdupSYmBguXrzIpEmTaNeunc16Eubj3nnnHerUqUPTpk05ePAgCxcu5KWXXlL65OTkcO7cOS5cuKC63lq1aik2rVy5ksaNG1OjRg12797NxIkTmTx5spI2UJnrGjx4MHPnzmXkyJFMnz6dP//8k0WLFvHhhx/atR+MT3jT09OV49OnT5Oamoq/v7/qCa/gUcHN+E3S46K7Ra1Le7hRu1l5s5KRVl5LSZIsC/eWF/C2rJ/0l8gj9mqeW5zTyBKxmbF8H/q9EmGkjpRSV2VS/rVjtE6vYcf2o4AfFOoBD877m82hzGdeU8r4YS30WlNu+BWWnZNx83KBQmgeXRu2mPqWfXBSVZV39HvcvE0IUYKHF+E/GRH+k/Cf7CFEKYFAIBBUmpUrVzJx4kT69OmDTqejS5cubNmyRXEo9Ho9Y8eO5fz58/j4+BAbG6v8kQwJCWHu3LnMmDGDF198kWHDhrFq1SoWLlxIfHw8ffr0UbY0zszMxM3NzaEtzZs3Z9u2bbzxxht07twZWZapV68eAwcOBKB27dqEh4czd+5czpw5gyRJyvHkyZOVeSZPnkxERASJiYksWrSIgoICANauXauEaZtj61xmZia1a9dWnXNycuL48eOsXr2a7OxsAgICaNu2Ldu3b6dp06aA8clWeno66enpVuMd7fgzYsQI8vLyWLJkCVOmTMHPz4+nnnqqwi2NP/74Y958803+8Y9/cOXKFYKDgxkzZgyzZs1S+iQnJ/Piiy9aXe/s2bOZM2cOYHS0Zs6cSU5ODuHh4bzxxhuqe1qZ6/L19eXHH39k7NixtG7dmurVqzNr1iyH2xkD7Nu3T9keG4y7D0H5FtmCRxN3j6t0+s8C5Fu32GsSpaTyXen0cg1ydA2Ai0pklJ0kNAdYf9CrOPXP9g5/prMFuuKyY+NMxS7qiAEng5N6NvOaUlK5UqWcl+XySCmLD6YlhvJUvAYhWk5kldhJpyu/L54FF7lZ9nnRrdSjrLX8zql+TZmnE9qJ+rK34Z+5BCjkKcHDiPCfhP8Ewn+yhyTfjb3CH1Bu3ryJr68vubm5Sp6pQCAQ3A2Kioo4ffo0devWrdA5EKgpKCggJCSExMRERo4cec/Xz8nJoVu3bvj4+PDdd9/h4fFgpAwI7gxHP7PCX1Dz33A/fv58Kak/fIuHf1cMcmvcPS/R6ZcyUarrLPKkmjx+bBE5XnrqZ2SgbdSXxKizbA88Qq+TAwjLjiLf9RpexQFc9cykRkEoBgzkFn2M+y09zgRQyjXqZOeSGeCLLEFxtfa4Xt+DpKmGrnZHijyv0PNmPXZnrQOgWkEe1z29qXf5Ot92dqbh9WYM825KoOsMikqr88mpx0FfjEZywiDrcfHsQ0vf0/x5+RxHwp4l6vxurrlHU5z7KQAePmM5G7qNb8O+BeDDy1d5rXogQ38wPtHWefgysHoqPk45nP6lNl438/mzWQt0zhpaHTzIL21eA6+6nHPPYr7vOK4Z/FiV1gwXSU+bRl7sPnYLv4Iibni6geSFh6Y+hfpUNC71MJRkABCanUtmdV+c3NqRHqah8ZVOZPoeI8C1Oh5XatDjxUY0+M4YzUHYE3B2B/wtkcu/5JCzciUa31AMuZkU+gbwTa/u1Ampy7ms0zjrSgh3CiXd6RKeNyPwLggkMm0dxxsNJeyxAPqMs7/tu+DhRvhPt4/wnwT3g7vhP4nd9wQCgUBwXzl48CBr164lIyODAwcOKNvrmkLa7zX+/v789NNPdOvWjd27d98XGwQCwV1CFQmk3uVNKXR+BzWlqoad58CShIxMsXOo6rTPzcNWXQ2SDBijp7SFuXx9LpK0W0+p1pBsRGcBlJZFSjlrDEp6j/ml27JOlSAoa5R+5RsYmqf6me3eJ6ttMJXCcvNUp+kAlBbtRtbfFLvvCQRVRPhPgocFkb4nEAgEgvvOggULSEtLQ6vV0rp1a7Zv364UgbwfBAQEqEKyBQLBfyvmqor94P/Sy4fQFnuWjbBM37NRS8kGNstAVSXhoCq5CbJM0OVv+bNpJ/VpDXgbfChyrkaJ4RRQSo4+hFqcAMrEH4t1lBRGg/G7s6THLPPPoaHqqlVlz7IlWVGZVNdvKzfPIoXQ1F+V9ijr0OsvKe/fo5vDIRBUHeE/CR4GhCglEAgEgvtKy5Yt2b9///02QyAQPEBUVrjQa7Rcq9YIgJFrM3DuZkAylW1yuPueo7idqqsmpRWMk8vNqXBVn/yDdD6tZ0uLemVn1AXDJbPaTOYt6kgpjY2xjsW58kgpM+XLnihl5w0yiVJOsjrFQ8J8ByuhSgkElUH4T4KHBSFKCQQCgUAgEAgeSCSlarit6B6JzJD+ZAXXVM60PfUJf7RQR0opkVM2dKjbkUdkUClM552deCHUnb+d1uNigFJJQmNWKbw8csvCAAthx3SksTDKepxpeAEl+d9SLT+bZVfaUVBq3IHQWTKUR0rZ0t7M1pVUr8s7V5i+V37SxgLWLbKsR4hRAoFA8GgiRCmBQCAQCAQCwQOKUdqoaThDg7jT3MhwV1pkwKDxRqMv733TPxaJK3bmku1G+Nw+Mke1Wm44mws61kKNbOOVvT6OIqokGSVSqkS/B1m+gRYowFXp4+5UUl5TyqZoZDNR0Uy8M7PW5u57ZpFUVjqbnSgs80gpoU0JBALBI4UodC4QCAQCgUAgeKDQFrsS7tWU6k7FALhRiMZJxjfsls3+NfT5AMiSsxIeVC6umMdWlX03Rf3YDfSpellujex4TluJdObIZTY5GSxbJLPaTbJZpJTx3uhcqvN07SO0rX6Btq3rEl3zlI3rk8wObKTmARrZqaxVLq/HZSd9T5at7635eY2rq6pNlsovSmhSAoFA8GghRCmBQCAQCAQCwQOBoaiUyx8dIOJcJO1r9KGWi7FAlHkdJVv4yEXGfpJKCjGeu0u77+X5tAAg1zfCTg9L6xzLL/assoyUsox2kizmzfNtRT3vHKJqnuf/s3ffcVJV5//AP2fa9l12abvA0pGmoGKhiEqRoiImSCxExNjwCyqKDWNAFGMsSCzE9lPQiH79aogSYlQ0iiiIiiIKUgXpHXaXrVPO74+ZuXPrzJ3ZOrufd17IzL3nnnNmNsCdZ57znHMHdUWL1DIIRzhTymw22l0Kw4ci75Oq0Lmmh2jL97SF0YXTqZm/kH7DvImIqGlgUIqIiIiIkkLV7hJ495eqjgSDHhUILtsTMeJLUhOSMgm+6PqNfSwi4AwukSvJaq+0F0KahFr0/QiLZXTaXeokgLQKidQqXSMZCecIKU1iXeosqtBrDi/fi5WeZTmX0CABs0wp1Rxs1ouXCESec/s9IqImhTWliIiIiCg5hGMhIgARsJ/hpF6gp6+NJKDaVc4yoBOb01+uVEYyrftkEWsRMc6H5X6VilfX+w3H9ZdFQlTWkzCUhRfqFlJpGnkdMrL7nrqmFMyCUtrZqAc0rSklgPD+hME2Jt0QEVGjxUwpIiIiIkoqVe5KBNTZNWECMC+yHUndEUrMRWpPGTuKjwxYd6duluBqwdR9ke+StWWl1DWljBOIlLIKZkqtSEvFE5XbTeaiXWqnX06nBKXUhcytdt8LZ2TpXoNUZWppzwWMEycioiaBQSkiItKYNGlS8AODEPB4POjatSsefPBB+Hy+2BdH8dlnn0EIgePHj9fMRG3Yvn07rrrqKrRp0wapqalo164dxo4di40bN2raLV26FOeddx6ysrKQnp6OM888EwsXLtS02bFjB4QQWLt2re3xH3jgAfTo0QMZGRnIzc3F8OHDsXr1ak2f1113HTp16oS0tDR06dIFs2bNQlWVfn2O0aJFi9C3b1+kp6ejoKAAf/jDH3DkyJGo15SUlGDatGno0KED0tLSMHDgQHzzzTeaNidOnMDUqVPRrl07pKWloVevXnj++ec1bW666SZ06dIFaWlpaNmypel7unPnTlx00UVIT09Hq1atcNddd1n+f+jLL7+Ey+XCqaeeGvN1L168GCNGjEDz5s3j/nlQYxYMcVgt3zPLlFIfCaqdoIg0TMpQ1crW7nthrw/PxJT/0dZkUnqWMnqmlAxgZVoqvDAJoClvg/kcHIgsz1MH9HyVAofXZ2LX/27D3q9z4C9VFZvXvXar3feCAT0GpSi58f6J90+8f0oMg1JERGQwatQo7Nu3D1u2bMH06dPxwAMP4PHHH6/vaSns3HR4vV5ccMEFKCoqwuLFi7Fp0ya89dZbOOWUUzQ3ds888wzGjh2LQYMGYfXq1Vi3bh2uuOIKTJ48GXfeeWe15nnSSSfh2WefxY8//ogvvvgCHTt2xIgRI3Do0CEAwMaNGxEIBPDCCy9g/fr1mDdvHp5//nncd999Ufv98ssvMXHiRFx33XVYv3493n77bXz99de44YYbol53/fXXY9myZfj73/+OH3/8ESNGjMDw4cOxZ88epc0dd9yBDz74AK+//jp+/vlnTJs2DVOnTsWSJUuUNv369cOCBQvw888/48MPP4SUEiNGjIDfH1xa5Pf7cdFFF6GqqgorV67Eq6++ioULF2LmzJmGOR0/fhwTJ07EsGHDbL2npaWlOOecc/Doo4/aak/Jz+f1Yvnrr+D9Z+fiu/8sUZ2RMMnFUT02yR5SBUkiO74Zd98zy5Sqbj1008tNi4JHdyTbiSM5UYpBWS1BlMH/nHA4VK9F6H437SDYQrVroSw7HHxcegQ7lrXEoR+zUbypFBtLh+CbTx3YX56j6dcQltMFq7xVv2Br7gn4qzZz+R4lNd4/8f6J90/xY1CKiIgMUlJSkJ+fjw4dOuDmm2/G8OHDsWTJEhw7dgwTJ05Ebm4u0tPTMXr0aGzZskW57tdff8WYMWOQm5uLjIwM9O7dG++//z527NiBIUOGAAByc3MhhMCkSZMABL99mjBhAjIyMlBQUIB58+bh/PPPx7Rp05R+O3bsiIceeggTJ05EdnY2brzxRgDAF198gcGDByMtLQ2FhYW49dZbUVoaLIK8fv16bNu2DX/729/Qv39/dOjQAYMGDcKcOXPQv39/AMCuXbswffp0TJs2DX/+85/Rq1cvdO3aFdOnT8fjjz+OuXPnar6Zi9dVV12F4cOHo3PnzujduzeefPJJFBcXY926dQCCN68LFizAiBEj0LlzZ1xyySW48847sXjx4qj9rlq1Ch07dsStt96KTp064ZxzzsFNN92Er7/+2vKa8vJy/OMf/8Bjjz2Gc889F127dsUDDzyArl274rnnnlParVy5Etdccw3OP/98dOzYETfeeCP69u2r6fvGG2/Eueeei44dO+L000/HnDlzsGvXLuzYsQMA8NFHH2HDhg14/fXXceqpp2L06NF46KGHMH/+fMMN8eTJk3HVVVdhwIABtt7Tq6++GjNnzsTw4cNttafk9/q9t+Hbfy3Gzys+xS/ffRO9sa1MKfNzUr30L3zMcMTYJjrz/e3MWmmWy5k1VZbhaV/BplQXSj3hAJtE1F3sJFCqCkpJTdxOt3xP10143H5bA+j4a/Bx5cYf4D0RzNo60Koffu55DdYc6Ysvj/TCr4XGP6NWmVKBQDGKU33wlX9hPXeiJMD7J94/8f4pfgxKERHVASklAmVl9fLLcrlEHNLS0lBVVYVJkybh22+/xZIlS7Bq1SpIKXHhhRfC6/UCAKZMmYLKykp8/vnn+PHHH/Hoo48iMzMThYWF+Mc//gEA2LRpE/bt24ennnoKQPCbpS+//BJLlizBsmXLsGLFCnz33XeGOTzxxBPo27cvvv/+e/zpT3/Ctm3bMGrUKIwbNw7r1q3DW2+9hS+++AJTp04FALRs2RIOhwPvvPOO8g2U3jvvvAOv12v6jd5NN92EzMxMvPnmm9V+/4Dgt5MvvvgicnJy0LdvX8t2RUVFyMvLi9rXgAEDsGvXLrz//vuQUuLAgQN45513cOGFF1pe4/P54Pf7kZqaqjmelpaGL76IfBAcOHAglixZgj179kBKiU8//RSbN2/GiBEjTPstLS3FggUL0KlTJxQWFgII3vSdcsopaN26tdJu5MiRKC4uxvr165VjCxYswC+//IJZs2ZFfb3UdFWcOIEju3fGbGeSCGVR5lsokZjIEjSHyUX2spaMIS4bk9T3EWXLQKGJGgnlmNvvVg4fdDmxt5k3MoZFptTXqW68eHwdNnncymu3/69DpNB5ShXg8gWvrNhxQOkfrbR/b+1qNxSe9tnBGaQEA1dKTSkI5TqnpztS004PjcJlfGSUzPdQvH+qPt4/Nf77J+6+R0RUB2R5OTad3q9exu7+3RqI9PSErpVS4pNPPsGHH36I0aNH491338WXX36JgQMHAgiuyy8sLMS7776L8ePHY+fOnRg3bhxOOeUUAEDnzp2VvsI3Cq1atUKzZs0ABL/le/XVV/HGG28o6ccLFixAmzZtDHMZOnQopk+frjy//vrrMWHCBOUbwW7duuHpp5/Geeedh+eeew5t27bF008/jbvvvhuzZ8/GGWecgSFDhmDChAnKvDZv3oycnBwUFBQYxvN4POjcuTM2b96c0HsXtnTpUlxxxRUoKytDQUEBli1bhhYtWpi23bp1K5555hk88cQTUfscNGgQFi1ahMsvvxwVFRXw+XwYM2YM5s+fb3lNVlYWBgwYgIceegg9e/ZE69at8eabb2LVqlXo2rWr0u6ZZ57BjTfeiHbt2sHlcsHhcOCll17Cueeeq+nvb3/7G+6++26Ulpaie/fuWLZsGTweDwBg//79mhsqAMrz/fv3AwC2bNmCe++9FytWrIDLxdsRMidlpKR3v4t/gz2frFWdNLlAmIeThCrtJ7JyTV+MO9aHz+gBKLvhqUiNKbPlh+qGxqyt8Egjdg0BsEkZN2B4LZErJATKhcCU1s1RdXwt4Hajq7JqL7K8TjqCf35loDh0zLzQuYBEVUpoBL+q5Hpo9710ZynK/BkIONwQLod6mMgHfNVEhbMlPJ4WqCj/Tv9CiQAk5z0U7594/8T7J/uYKUVERAZLly5FZmYmUlNTMXr0aFx++eWYNGkSXC4Xzj77bKVd8+bN0b17d/z8888AgFtvvRVz5szBoEGDMGvWLCXN2sovv/wCr9eLs846SzmWk5OD7t27G9qeccYZmuc//PADFi5ciMzMTOXXyJEjEQgEsH17cGepKVOmYP/+/Vi0aBEGDBiAt99+G71798ayZctsvxfhG4VoFi1apJnHihUrlHNDhgzB2rVrsXLlSowaNQq/+93vcPDgQUMfe/bswahRozB+/HhNbQN1v5MnTwYAbNiwAbfddhtmzpyJNWvW4IMPPsCOHTuU8ytWrNBct2jRIgDA3//+d0gp0bZtW6SkpODpp5/GlVdeCYcjcjvwzDPP4KuvvsKSJUuwZs0azJ07F1OmTMHHH3+sme+ECRPw/fffY/ny5TjppJPwu9/9DhUVFbbeU7/fj6uuugqzZ8/GSSedFPd7Sk2TeUZRZFe9YJuYnSjZTVJZphbOQAJcSlJAjI6k4YHJWDHOq64PlnuKVtFKq1VFS1VbEblUSgiTzI4KIVAVenMuKy7BcE9r1ehBAWdGqI8yAIDLH9AEptQF4f2hOusyEAlKSUfwfJqjPPIiLH4g+nLz9gODRA0b758ieP/E+ye7GkdojYiogRNpaej+3Zp6GzteQ4YMwXPPPQePx4M2bdrA5XJpCjVauf766zFy5Ej8+9//xkcffYRHHnkEc+fOxS233JLI1DUyMjI0z0+cOIGbbroJt956q6Ft+/btlcdZWVkYM2YMxowZgzlz5mDkyJGYM2cOLrjgAnTr1g1FRUXYu3ev4dvFqqoqbNu2DSNHjow5t0suuURzs9m2bVvNvLt27YquXbuif//+6NatG15++WXMmDFDabN3714MGTIEAwcOxIsvvqjpW707SnZ2cCnMI488gkGDBuGuu+4CAPTp0wcZGRkYPHgw5syZgzPOOENzXfhbti5dumD58uUoLS1FcXExCgoKcPnllyvffJaXl+O+++7DP//5T1x00UVK32vXrsUTTzyhqUOQk5ODnJwcdOvWDf3790dubi7++c9/4sorr0R+fr6hPsOBAwcAAPn5+SgpKcG3336L77//XlkuEAgEIKWEy+XCRx99FPU9JTLQxD6MgQ2zcI+EttB5ig9wVUhUuEOHYiQyVWuKujPVCsWoLrYaQ70AZ9aRY9jQvCX+g/1KMMvlLUPzqiPY1aEHDvh34mD2Xtz8UTEOpWdF+g4vc5SRIdWZUkKEs6LCO/sJVVAqFHwzyZTSP2ehc9JLpnso3j/x/on3T/FjUIqIqA4IIRJeQlcfwjcCaj179oTP58Pq1auV9PMjR45g06ZN6NWrl9KusLAQkydPxuTJkzFjxgy89NJLuOWWW5RvzNT1CTp37gy3241vvvlGuREqKirC5s2bDenOeqeffjo2bNhgmGc0Qgj06NEDK1euBABcdtlluOeeezB37lzMnTtX0/b5559HWVkZJk6cGLPfrKwsZGVlxWwHBG8eKisrled79uzBkCFDlB1Z1N+6ATB9fWVlZYaUbaczUrMlLS0t6vuSkZGBjIwMHDt2DB9++CEee+wxAMEdd7xer2EOTqcTAVVGhJ6UElJK5XUNGDAADz/8MA4ePIhWrVoBAJYtW4bs7Gz06tULbrcbP/74o6aPv/3tb/jvf/+Ld955B506dUJGRobt95SaBk2mlLKhXLxRIxGp02RyafiUzyEA/f/l4xhKXSQ80RhLtOHCMbPws0jillSNHQoECYFA6L1zKLvhhbPFgr+7fOUo3Ps2vpoyHJ/tCmZuZC+t0gallGslZGgQGVC9Okck4yxykXZ3v71790Z5VWCiFJlKpnso3j/x/knfN++fYmNQioiIbOnWrRvGjh2LG264AS+88AKysrJw7733om3bthg7diwAYNq0aRg9ejROOukkHDt2DJ9++il69uwJAOjQoQOEEFi6dCkuvPBCpKWlISsrC9dccw3uuusu5OXloVWrVpg1axYcDkfU4r8AcM8996B///6YOnUqrr/+emRkZGDDhg1YtmwZnn32WaxduxazZs3C1VdfjV69esHj8WD58uV45ZVXcM899wAIfiP42GOP4c4770RqaiquvvpquN1uvPfee7jvvvswZ84cnHzyyZpxN23aZJhL79694Xa7NcdKS0vx8MMP45JLLkFBQQEOHz6M+fPnY8+ePRg/fjyA4A3V+eefjw4dOuCJJ55QtjoGgt+IWRkzZgxuuOEGPPfccxg5ciT27duHadOm4ayzzjKtJxEW3n64e/fu2Lp1K+666y706NED1157LYDgN4nnnXce7rrrLqSlpaFDhw5Yvnw5XnvtNTz55JMAgksG3nrrLYwYMQItW7bE7t278Ze//AVpaWlKodARI0agV69euPrqq/HYY49h//79uP/++zFlyhSkpASL0ejf11atWiE1NdVwXO/o0aPYuXOn8uE2/PPIz8+P+p5RcjIWGVZnOkWqepvHMszyo9SL0KT2iJQQDicAP7wuwOWLvXdeijhqnLPpXBBJAVL93SalVfDJOjpjTDKyKKSlah/+SKQEpUIfnNR11P2OyPvtUC8JDF8rncrclHPqmlLKhzHVkkoRPqX9oJbqTlO1iz+0SJRMeP8UxPsn3j9ZYVCKiIhsW7BgAW677TZcfPHFqKqqwrnnnov3339fuaHw+/2YMmUKdu/ejezsbIwaNQrz5s0DEEwfnj17Nu69915ce+21mDhxIhYuXIgnn3wSkydPxsUXX4zs7Gzcfffd2LVrl2GXE70+ffpg+fLl+OMf/4jBgwdDSokuXbrg8ssvBwC0a9cOHTt2xOzZs7Fjxw4IIZTnt99+u9LP7bffjs6dO2Pu3Ll46qmnlC2R33zzTVxxxRWGcc2O7dq1C+3atdMcczqd2LhxI1599VUcPnwYzZs3x5lnnokVK1agd+/eAILffm3duhVbt241XB9tx59JkyahpKQEzz77LKZPn45mzZph6NChePTRR6O+Z0VFRZgxYwZ2796NvLw8jBs3Dg8//LDmhvB///d/MWPGDEyYMAFHjx5Fhw4d8PDDDyv1FlJTU7FixQr89a9/xbFjx9C6dWuce+65WLlypfKtntPpxNKlS3HzzTdjwIAByMjIwDXXXIMHH3ww6vzsWLJkiXITCER+HrNmzcIDDzxQ7f6pAdMEc6Kl1GhSdbRn1H2Ei4NHCjLFNZ1h+AKnZX2DzzA4ruvMypdLAE6fsa3Z7n5SGLO4pJLFBFVNqUih80Com3BYSfnQGvot4JR4r78jEqgz+VAr/FUI+PaiEiXwSW/wZ6AqRC9FpBB6qBOln7TUVEyYMAFlZWVwOBzIrmiGVe/9J3guy4NC7Mfx46F+uH6PGiHeP/H+ifdP1oRswn/zFxcXIycnB0VFRco6UyKimlBRUYHt27ejU6dOMW8OSKu0tBRt27bF3Llzcd1119X5+EePHsWwYcOQnZ2N//znP0hPkiUDVD3R/szyfkGrLt+PsuIiPHfDBADAmWMvw66PvsN5+eNR7imDu8KNXd4NWFfeCx3Sv8LF2cEPFa/vm48i0QZ9Nj6L73pfB5c/Db18B7DB1RpO71EcabEDzYpOx97szWhTfBLKXSeQ5suE01cOf9GLqHD44UttB1fFbrQ9Wow9udmAAMqaD0D6kVUQjhxUtT0Hv8ucj45yF+ZtDAalPI72qArshMvdFxs6rkC3olNxTVY3fJv7Z9zdqgWueb8DBIAqTxo8VeVwZ1yIvpm/AGtWo9WRw/jh5Mk4nNcBlUX/D45AAKftL8HHw8/Dex3fAwC89kIlUo868cxvm+OkwMXwbw9uRX6g/WD03PYm+m+oxJZuJyHgALpv2oz3+3YH4MPBVhdjauv7cGFhW6QJJ77+ZTs2t74K//psFxwIIAAHREolFgzbj3PanoMv9nwBl3Bi4VPl+CW7BX5plQtnyqnweTdCBCLFeB2enjg94ESrNcH57Tv7MvycNgSt3XtxwNsGDn8lLvK/g9KVK+Hp0AFdPvxAudZ7qAz/eOp1bHQF68G0/O/H+M/G7wGRiU5n3IXf3lk/O61R/eP9U+J4/0T1oSbun7j7HhER1avvv/8eb775JrZt24bvvvsOEyYEP4CGU9rrWl5eHj7++GMMGzYMq1atqpc5EJGRQLRVajG+Y1WyodQ96Jbv6U/XCBkz/6r50SM2e7ISfdLB+lO6mlIObU2pyBiRUaqyVFlQskoJSDlkcKGF9B/W1pQS4ZpS6uV7sSpj2XsNRGTE+ydqLLh8j4iI6t0TTzyBTZs2wePxoF+/flixYgVatGhRb/Np3rw5Zs6cWW/jE1EMQv8gVmBGVRY8FKAKL98zj/ao+jWMZSFG9MlY4Up7QVGBACoRm24cAW1tKMPyPeGAP1zbKRyUCi21M1RzUjbHE9g+sgzf7BTIP6odtGVVFxxICdYiUYJSQkaWRgpjoCpaaE7qC2s12TUcRPHj/RM1BgxKERFRvTrttNOwZk39bPVMRI2Dealss4pMkXwrfaFzUe1oiNkcjIEvdQBJU0hdCFsBmQq4UA4XPKpxldwkKQ0FygF1ofNQO12b8NNAqEaUEALwAAebGYNS6lLzx3wVUMrjKplSAdVzexlQsQozE5ER75+oseDyPSIiIiJq+EwCF2YxHKFkCKmPRfpQB1V0Z01DL9FHMzkvtG0lgOxS6+LrsbrTOyFT8BHaRnrTRaGESbnYQGhMp78q2MYiCGTYkdCkmXJISlT6faH+EAlKmTU2bKKoj4ppdyQkIqKmg0EpIiIiImrwjIEU+9GL8KVSlT2l7L4H5WRclY0MbS0uztrswUvP+JXnLr86bSqOAVVKNHlSVmMHO6+EG8UIbiXuCIQyoXLMtz4P738UzHFSz1O9/DFy2CkjwSupi0BJIGpNKW1FKfW1jEoRETUlDEoRERERUZKIUuo8aixDlRUVehgQoQCNKtMoejgkkSVmEp7DTk2/zkAkCKZdeCgNtZfMFiACgE+XHaXEhqQ0ZEoF4MRU71QAgCO9OTD5S4huI7QdKlMKBaVCGWXm70ekZpUjEK5RJU0LnVvNX1NCSsqowSsiImrcGJQiIiIioiSlKuptK8EmEijxOXwWfUFVoDvamDVNVQrdbAjVMb86rGNWREp9gRA4gDwAgMOdCuSfDDjMPwKEa0oBwnwOuv7DbcqcAuF3UyDSRyRFLVYVeC7fIyJqqhiUIiIiIqIkYJV3Y+fKiIxAeHlZKCvILKijWpYWOVSNaIlZfauYl1iFxIQmKGXIaDK9LBgocgonAMDldusG070nwgHRqqdpp5G3QcIRep+8QqAUfm1bVZ0pA/1hJkoRETVZDEoRERERUcNkmTYTKcltaCoiy8egfyQccIeuLCgPbpse2Yo6VlEps0Lr9qIpdtvZ5dfcwgtlambL94Lng8ccInhdQbceOK3Qh04ZR9GxuURqu33BeYZrSgkBMWCqycja15Eig/0FHJHXGB5fqjOlTHsSkTG5fI+IqMlyxW5CRERERFS/hGnmjboYt3UVpEjrYAlvAPAEgtlCDhlZcBYZzNB7HGSMpW/qot4mgTNtV6Z8muusc6rC/YZbhINSTpcLQ3sGgF3rgcL+eKW4CECuZvc9bWF58/WE4ULnAQFIZfc9w7sZc02e4PI9IqImi5lSRESkMWnSpOC35ELA4/Gga9euePDBB+Hz6euvxOezzz6DEALHjx+vmYnasH37dlx11VVo06YNUlNT0a5dO4wdOxYbN27UtFu6dCnOO+88ZGVlIT09HWeeeSYWLlyoabNjxw4IIbB27Vrb4z/wwAPo0aMHMjIykJubi+HDh2P16tWaPq+77jp06tQJaWlp6NKlC2bNmoWqqqqYfS9atAh9+/ZFeno6CgoK8Ic//AFHjhyJes3nn3+OMWPGoE2bNhBC4N133zW0Wbx4MUaMGIHmzZvHfL1SSowePdqyr4ULF6JPnz5ITU1Fq1atMGXKFM35Dz/8EP3790dWVhZatmyJcePGYceOHXXyOikJqQMXJqejBTM0AR+pDgqZt7G3UND6+ijNLM/FE4vxC9UtvBSaslLGTCkAoaLuDqHLsAIAGQkiRXbfE+jXuh+yU7KNXan6Dz/UroAML99zxJEBpV4nyagUJSfeP/H+ifdPiWFQioiIDEaNGoV9+/Zhy5YtmD59Oh544AE8/vjj9T0thZ2bDq/XiwsuuABFRUVYvHgxNm3ahLfeegunnHKK5sbumWeewdixYzFo0CCsXr0a69atwxVXXIHJkyfjzjvvrNY8TzrpJDz77LP48ccf8cUXX6Bjx44YMWIEDh06BADYuHEjAoEAXnjhBaxfvx7z5s3D888/j/vuuy9qv19++SUmTpyI6667DuvXr8fbb7+Nr7/+GjfccEPU60pLS9G3b1/Mnz8/aptzzjkHjz76aMzX99e//lWXTRHx5JNP4o9//CPuvfderF+/Hh9//DFGjhypnN++fTvGjh2LoUOHYu3atfjwww9x+PBh/Pa3v62T10mNgVQti4sVyFAFSgxn4rsdjidkEs5Q0gaNovVlb/e9YEtjkM4sIBVsp60pFWwcCUqFewqEs5wEUJhViCt7XKEfQfWOS8hQfa6AA5Ch91YzB6Wxbl76vze4fI8aCd4/8f6J90/xY1CKiIgMUlJSkJ+fjw4dOuDmm2/G8OHDsWTJEhw7dgwTJ05Ebm4u0tPTMXr0aGzZskW57tdff8WYMWOQm5uLjIwM9O7dG++//z527NiBIUOGAAByc3MhhMCkSZMAACUlJZgwYQIyMjJQUFCAefPm4fzzz8e0adOUfjt27IiHHnoIEydORHZ2Nm688UYAwBdffIHBgwcjLS0NhYWFuPXWW1FaWgoAWL9+PbZt24a//e1v6N+/Pzp06IBBgwZhzpw56N+/PwBg165dmD59OqZNm4Y///nP6NWrF7p27Yrp06fj8ccfx9y5czXfzMXrqquuwvDhw9G5c2f07t0bTz75JIqLi7Fu3ToAwZvXBQsWYMSIEejcuTMuueQS3HnnnVi8eHHUfletWoWOHTvi1ltvRadOnXDOOefgpptuwtdffx31utGjR2POnDn4zW9+Y9nm6quvxsyZMzF8+PCofa1duxZz587FK6+8Yjh37Ngx3H///Xjttddw1VVXoUuXLujTpw8uueQSpc2aNWvg9/sxZ84cdOnSBaeffjruvPNOrF27Fl6vt9ZfZzKI9Y2llBIzZ85EQUEB0tLSMHz4cM2fRyvz589Hx44dkZqairPPPjvm+5k0pO6BZXFxi0CWlIB65zggvmBJQgk+qgLiCbcUytK54NJBaRns0n4ICj3ev84wiDC8flWPDuPyw4BZppTpXI2klKq3mVlSlNx4/8T7J94/xY9BKSKiOiClhLfSXy+/ZA0shUhLS0NVVRUmTZqEb7/9FkuWLMGqVasgpcSFF16o/CM4ZcoUVFZW4vPPP8ePP/6IRx99FJmZmSgsLMQ//vEPAMCmTZuwb98+PPXUUwCAO+64A19++SWWLFmCZcuWYcWKFfjuu+8Mc3jiiSfQt29ffP/99/jTn/6Ebdu2YdSoURg3bhzWrVuHt956C1988QWmTg0W523ZsiUcDgfeeecd+P1+Q38A8M4778Dr9Zp+o3fTTTchMzMTb775ZrXfPyD47eSLL76InJwc9O3b17JdUVER8vLyovY1YMAA7Nq1C++//z6klDhw4ADeeecdXHjhhTUy11jKyspw1VVXYf78+cjPzzecX7ZsGQKBAPbs2YOePXuiXbt2+N3vfoddu3Ypbfr16weHw4EFCxbA7/ejqKgIf//73zF8+HC4QzuD1ffrrG+xvrF87LHH8PTTT+P555/H6tWrkZGRgZEjR6KiosKyz7feegt33HEHZs2ahe+++w59+/bFyJEjcfDgwdp6GTUoeoBDhtKRyio2oqr0A+zI9MJf9i1kQP1+GCNVEqrsodAOcuG/NdV/e8b7N6mwvKp6WUHZogKnysgSDE1FKatJhtKzNJlSeZ2Cv/sjmRPSNHillX7KKaHGkcE0NaWkuqaUzdfKmlIURTLfQ/H+qfp4/9T4759Y6JyIqA74qgJ48bbl9TL2jU+dB3eKM3ZDE1JKfPLJJ/jwww8xevRovPvuu/jyyy8xcOBAAMH16oWFhXj33Xcxfvx47Ny5E+PGjcMpoQ8tnTt3VvoK3yi0atUKzZo1AxD8lu/VV1/FG2+8gWHDhgEAFixYgDZt2hjmMnToUEyfPl15fv3112PChAnKN4LdunXD008/jfPOOw/PPfcc2rZti6effhp33303Zs+ejTPOOANDhgzBhAkTlHlt3rwZOTk5KCgoMIzn8XjQuXNnbN68OaH3Lmzp0qW44oorUFZWhoKCAixbtgwtWrQwbbt161Y888wzeOKJJ6L2OWjQICxatAiXX345Kioq4PP5MGbMmDpLt7799tsxcOBAjB071vT8L7/8gkAggD//+c946qmnkJOTg/vvvx8XXHAB1q1bB4/Hg06dOuGjjz7C7373O9x0003w+/0YMGAA3n///QbzOuvb6NGjMXr0aNNzUkr89a9/xf3336/8HF577TW0bt0a7777Lq644grT65588knccMMNuPbaawEAzz//PP7973/jlVdewb333ls7L6Qa9B8Ioy5nCwiUeD0oLv8RAHAoDUDZN/CnZUA4C5QelPamERyHoV3cc9Y9P+LIwqrebU3btk4dASE+AqRJzRmLz8Ipwofhcj+UUJuqplQwQCVNcpVMakpd/Ffg9InBNns+AzYvwo+HfwxdIzRXq3tL6dgJ2BIeOni+OF3dVr18Lxz5M74YTc4Wl+9RFMl4D8X7J94/meH9kzlmShERkcHSpUuRmZmJ1NRUjB49GpdffjkmTZoEl8uFs88+W2nXvHlzdO/eHT///DMA4NZbb8WcOXMwaNAgzJo1S0mztvLLL7/A6/XirLPOUo7l5OSge/fuhrZnnHGG5vkPP/yAhQsXIjMzU/k1cuRIBAIBbN++HUDwm8f9+/dj0aJFGDBgAN5++2307t0by5Yts/1eeDyemG0WLVqkmceKFSuUc0OGDMHatWuxcuVKjBo1Cr/73e9Ms1L27NmDUaNGYfz48Zo1/+p+J0+eDADYsGEDbrvtNsycORNr1qzBBx98gB07dijnV6xYoblu0aJFtl9vLEuWLMF///tf/PWvf7VsEwgE4PV68fTTT2PkyJHo378/3nzzTWzZsgWffvopAGD//v244YYbcM011+Cbb77B8uXL4fF4cNlllymBiPp8nQ3d9u3bsX//fs0ygZycHJx99tlYtWqV6TVVVVVYs2aN5hqHw4Hhw4dbXtNwGXOZlhzKwx9ah795diLNGw6IVKmyoiK775n1KUXw+1rT4FeCcZMjjiwEHKF6S858Td8uR5pq9MSGMsxVvyrRIZRMKYf61t/lAdr3B9r3R04L7d+5bTPNg2jayUlk9mqJLwb7Mf9ipypTSlUI3aSGl7aP8HMGpahx4P1TBO+ftHj/ZI2ZUkREdcDlceDGp86rt7HjNWTIEDz33HPweDxo06YNXC4XlixZEvO666+/HiNHjsS///1vfPTRR3jkkUcwd+5c3HLLLYlMXSMjI0Pz/MSJE7jppptw6623Gtq2b99eeZyVlYUxY8ZgzJgxmDNnDkaOHIk5c+bgggsuQLdu3VBUVIS9e/cavl2sqqrCtm3bNMUlrVxyySWam822bSMf6DIyMtC1a1d07doV/fv3R7du3fDyyy9jxowZSpu9e/diyJAhGDhwIF588UVN3+rdW7KzgzthPfLIIxg0aBDuuusuAECfPn2QkZGBwYMHY86cOTjjjDM017Vu3Trma7Drv//9L7Zt26Z8Wxs2btw4DB48GJ999pnyzWmvXr2U8y1btkSLFi2wc+dOAMG6Rjk5OXjssceUNq+//joKCwuxevVq9O/fv15fZ0O3f/9+AMbX3Lp1a+Wc3uHDh+H3+02v0e+opFZZWYnKykrleXFxcaLTrgVC+e+HrVOxxxW+tXXC45cod0tVKwBCQEihPQbA790Ov38fArqIjvpZapU2E8jW/nxS4ogj+Oc2r6o1SltdCV/Ry5oBpKrQuC1SaIqlAwIVHg+ACkCGsqUMdcSDmVgOh/m/B6M7jUZABlBUVYS2mW0xqM0g/aCRvlR9pLXNwg8ZAexLjwxYGqhEeEWkeTZaZN5AOBtOvXyP6/dIK5nuoXj/xPsnK7x/ssagFBFRHRBCJLyErj6EbwTUevbsCZ/Ph9WrVyvp50eOHMGmTZs0/3gWFhZi8uTJmDx5MmbMmIGXXnoJt9xyi/KNmbo+QefOneF2u/HNN98oN0JFRUXYvHkzzj333KhzPP3007FhwwbDPKMRQqBHjx5YuXIlAOCyyy7DPffcg7lz52Lu3Lmats8//zzKysowceLEmP1mZWUhKyvL1hwCgYDmA/6ePXswZMgQ9OvXDwsWLDB8aDR7fWVlZXC5tP+EO53B/39JKZGWlhbX+xKPe++9F9dff73m2CmnnIJ58+ZhzJgxAIJp40Cw/kW7du0AAEePHsXhw4fRoUMH5TXoX2v4NQQCAaVNfb1OinjkkUcwe/bs+p5GjGQaY/hDmjzSRmtCO8f5i+A98U/ttaGMKfWuec1LJIpszzboQMVxBELZQi6kBLeLN5m5cR+9YHDJKmMruyoV5ZGn8IX+nHT8dQcAwK+6bF+rj5HW5hsAuppSKqmuVIw7aZxxKLMC5Ori51IqmVHhV7HPV4rQH1PsKz+AHJj8dJgpRXFIpnso3j/x/skK75+sMShFRES2dOvWDWPHjsUNN9yAF154AVlZWbj33nvRtm1bZW38tGnTMHr0aJx00kk4duwYPv30U/Ts2RMA0KFDBwghsHTpUlx44YVIS0tDVlYWrrnmGtx1113Iy8tDq1atMGvWLDgcjpg1Ru655x70798fU6dOxfXXX4+MjAxs2LABy5Ytw7PPPou1a9di1qxZuPrqq9GrVy94PB4sX74cr7zyCu655x4AwW8EH3vsMdx5551ITU3F1VdfDbfbjffeew/33Xcf5syZg5NPPlkz7qZNmwxz6d27t1JcMqy0tBQPP/wwLrnkEhQUFODw4cOYP38+9uzZg/HjxwMI3lCdf/756NChA5544gllq2MApgUww8aMGYMbbrgBzz33HEaOHIl9+/Zh2rRpOOuss0zrSYSdOHECW7duVZ5v374da9euRV5ennJTe/ToUezcuRN79+7VvN78/HzNL7327dujU6dg4eSTTjoJY8eOxW233YYXX3wR2dnZmDFjBnr06KHsInTRRRdh3rx5ePDBB3HllVeipKQE9913Hzp06IDTTjut1l9nsgv/DA4cOKCp6XHgwAGceuqppte0aNECTqcTBw4c0Bw/cOBA1P+/zZgxA3fccYfyvLi4GIWFhdWYfc2Qqv+aMdlnzvQZZDi840b7zBbY6+8Jr7MEALCljUBOaeiqOBJ4hAzWWyr3RYqIe2S6euLV4lBHy6RApSGbQxXmcniVx+cXnp/YgMqcBTwpLuWgOtgkhQhlakUKnZf5KpBj2qEu3KYKdPmOHEXl1q1IaUAfmIiqg/dPQbx/4v2TFQaliIjItgULFuC2227DxRdfjKqqKpx77rl4//33lRsKv9+PKVOmYPfu3cjOzsaoUaMwb948AMGU7NmzZ+Pee+/Ftddei4kTJ2LhwoV48sknMXnyZFx88cXIzs7G3XffjV27diE1NTXqXPr06YPly5fjj3/8IwYPHgwpJbp06YLLL78cANCuXTt07NgRs2fPxo4dOyCEUJ7ffvvtSj+33347OnfujLlz5+Kpp55StkR+8803TYtFmx3btWuX8o1WmNPpxMaNG/Hqq6/i8OHDaN68Oc4880ysWLECvXv3BhDcZWXr1q3YunWr4fpoS1gmTZqEkpISPPvss5g+fTqaNWuGoUOH4tFHH436nn377bfKTQ0AJdBwzTXXYOHChQCCNQ/CRbDVr3fWrFl44IEHovav9tprr+H222/HRRddBIfDgfPOOw8ffPCB8v+VoUOH4o033sBjjz2Gxx57DOnp6RgwYAA++OADpKWl1frrTHadOnVCfn4+PvnkEyUIVVxcjNWrV+Pmm282vcbj8aBfv3745JNPcOmllwIIfqv6ySefKLsumUlJSUFKSkpNv4QEGQtvAxZxHrPPZcIRuUaJMgVCp9LRp3kPHCw+FfAF65oUZUaCUokVlQqO0bykDEiJvgxImGRx2SEg8H23DJy5twOqAiU43iwbv1QJZOFouAHKd/8ej4y8EuNPjvdDRXBOeW3ScXgn4HAKdO3XGt+8G5qjZqWgsaZUVaDK1stx5uYqj30HD2L3tGfRZenSOOdK1HDx/on3T3Y1xfsnIZvwwu3i4mLk5OSgqKhIWWdKRFQTKioqsH37dnTq1CnmzQFplZaWom3btpg7dy6uu+66Oh//6NGjGDZsGLKzs/Gf//wH6enpdT4HqnvR/szW1/2C+hvL0047DU8++SSGDBmifGP56KOP4i9/+QteffVVdOrUCX/605+wbt06bNiwQXkNw4YNw29+8xsl6PTWW2/hmmuuwQsvvICzzjoLf/3rX/F///d/2Lhxo+2aEnX5fpQeP4bnb7oaADDgsquw8/1vcU7r36A05QTc5W7s8m7CT+U90T59JZak/C/WF7oxbnlbQKQgp9yLotQAXKkDMMDdEd+4ghll7rQN8Jb3QlX6r/CUdUDAuxtVJ/4PwpGLi9udimUlp6HEtwLukm+ws1UZ2h8M/h2QKwbimFwJOLLgbXsursh8FoVyD/668RwAQIpoj0q5E05PH2wqXIEuJ07HeTIFnx/cgOYlZUhNOQNHWo+C/9j/gxfFcKePwqgWfeBdOhkOKfH5iCmoKi9AVfECuPx+nLavGJ9cMByLOy0GACx8rgrpxx145rctMejEeOw78BEEJIoLRuGbbu9j7M6ROJB6HAEhcfzX/Sgs2w0A+LJfLtaWDcLjYy7GuH7t9G9xVCvffgOr3nkDHU/thx1r18CVkoLfP/JXLLzjZkCk4JzTBuONrGfw34x0zFg9EccC/SArPoFIDe4G5jl4B87ZUImiZm70WfEV0t3B99JXVIl3H38dP7l2YdCgQTi1Sye8NmMaINLQwjUGA3a8hJO+WBFlZtRY8f4pcbx/ovpQE/dPzJQiIqJ69f3332Pjxo0466yzUFRUhAcffBAALLfLrW15eXn4+OOPMX/+fKxatUrZapmorsX6xvLuu+9GaWkpbrzxRhw/fhznnHMOPvjgA81N4bZt23D48GHl+eWXX45Dhw5h5syZ2L9/P0499VR88MEH9V7kNKbwzm66w1J72nSJXXCJmfqEQ3c+oO3EdCSTQeMk1XNUdR9v/pV+eCHt9ZDItJVlQDJc3F1olwbJSD2sotKtqKhcDUgfRNU+uDMuVgrHewNebDq2Cae1Os18HN3yHTTd78yJbOP9EzUWDEoREVG9e+KJJ7Bp0yZledGKFSvQokWLeptP8+bNMXPmzHobnwgAzj///KjLEIQQePDBB5UPImZ27NhhODZ16tSoy/WSRhyBC83COEMQJ1wDyQl9iCh6uEdaTsGscHnAETzq8gNVruA5f8kek5axxZqltFjmmCj1/w81gSrV8fLK/YAMFmKW/oMIeHfg/PZDENjwYagmurqIu3ZO6kCXhGBQisgm3j9RY8CgFBER1avTTjsNa9asqe9pEFEjpg3JhDOlQoEPGYgcD2dkCW2TRKkvP5bthADgVd19B8qORg0Xme2+pz9mukOftkFwLokEekx2yRMikmkm1TWlZLhJCqSsBCCR6k5DmXLazvgMRhHZxfsnaiyiV1wkIiIiImoAgtk0FgEYKWG9ik0b6Aj4gkW1pbMcQvoB+EP9xwqbRA/+xMpF8ocypY5nxGhoweYqPeN1AGoyU0obsYvkZIXfPY8vcsRyFzARmZFpsIyZUkRETQaDUkRERETUINXGfjwBX3Bpi3RWYujWe9Hll3cBAMJRYdhJrk1x1zh6lqpHNZhiZXZMlaEkTBcL6i6s7tsYyiYTQr3UTuqCVaHf1IfSM5VT0X+W6iJb1QugERFRcmFQioiIiIgaNOMStfiiLC5IpJfuU55nOg8h4D6ONO8xpFQEC8GbZfW4/Z5IH95S1djR6jhZzU17TcxXYNHAkDFl0k4Yy6EnVug8NOdIPEloglKQgNAFm0rSIo+zRlygmqa6XYzAEzOliIiaDNaUIiIiIqKGTxfHCECiRJQDAHwAfE79ba2mvDnO+vYR7MhvhrILd+GiEwLPisuDZ5SUI/XyQGPQpMOuj3Gok3UBYU2WVZSYiuGUKuBjdqGQxkCUDIV4zPckNDtWzewj0+V70Oy+F1blBtze4GNHWjBCZbYrovX0WOiciKgpYaYUERERESUFdTbTMUcpykQVAMAHgcMt8qyvk4BD+uGpOgKH8GrOSWEMRJktiHP5K7V92pqxaRpTTMHwWJSdF2EMn1ktGQw4Qq0SSpUSmr6FEIble9FejuWQmriWbl0iERE1KcyUIiIiIqKk40dA8zzgcBgSbkwfIxzwCQZAAsqOe1EKqdeyAABfxX74yreanDXPoIqcFdWvYRVLuHtdTSmzTCntRarwns3sp8hPhoiImgJmShERkcakSZOUb8M9Hg+6du2KBx98ED6fr1r9fvbZZxBC4Pjx4zUzURu2b9+Oq666Cm3atEFqairatWuHsWPHYuPGjZp2S5cuxXnnnYesrCykp6fjzDPPxMKFCzVtduzYASEE1q5da3v8Bx54AD169EBGRgZyc3MxfPhwrF69WtPnddddh06dOiEtLQ1dunTBrFmzUFVVFbPvRYsWoW/fvkhPT0dBQQH+8Ic/4MiRI1Gv+fzzzzFmzBi0adMGQgi8++67cc8ZAB5++GEMHDgQ6enpaNasmelYO3fuxEUXXYT09HS0atUKd911l+b/Q+r/n6l/9e7dW2nzyCOP4Mwzz0RWVhZatWqFSy+9FJs2bYr53tiZHyUffV0p+4EYbTull7IybMhsgV+b5+jPJCiuNWqa9vuaZaKy6HsEvFsAAC5/AFaM9bVizcRk/Z9N4QCU+e57FvXYbQ6lfh3ael4sdE7JifdPvH/i/VNiGJQiIiKDUaNGYd++fdiyZQumT5+OBx54AI8//nh9T0th56bD6/XiggsuQFFRERYvXoxNmzbhrbfewimnnKK5sXvmmWcwduxYDBo0CKtXr8a6detwxRVXYPLkybjzzjurNc+TTjoJzz77LH788Ud88cUX6NixI0aMGIFDhw4BADZu3IhAIIAXXngB69evx7x58/D888/jvvvui9rvl19+iYkTJ+K6667D+vXr8fbbb+Prr7/GDTfcEPW60tJS9O3bF/Pnz094zkDw/R8/fjxuvvlm0z78fj8uuugiVFVVYeXKlXj11VexcOFCzJw5U2nz1FNPYd++fcqvXbt2IS8vD+PHj1faLF++HFOmTMFXX32FZcuWwev1YsSIESgtLTUb1vb8KIlYZNdIwwMgamqUCceundiQ1Qon0kLFzIVDuU5KVTaQ6VjRJxWsoWQ/uFLlciqPy9KzcdqvB2xfG60OVvCwdgleIsJBKWEodB6tT6k5Hdf4rClFSYr3T7x/4v1T/BiUIiIig5SUFOTn56NDhw64+eabMXz4cCxZsgTHjh3DxIkTkZubi/T0dIwePRpbtmxRrvv1118xZswY5ObmIiMjA71798b777+PHTt2YMiQIQCA3NxcCCEwadIkAEBJSQkmTJiAjIwMFBQUYN68eTj//PMxbdo0pd+OHTvioYcewsSJE5GdnY0bb7wRAPDFF19g8ODBSEtLQ2FhIW699VblH9z169dj27Zt+Nvf/ob+/fujQ4cOGDRoEObMmYP+/fsDAHbt2oXp06dj2rRp+POf/4xevXqha9eumD59Oh5//HHMnTvX8C1XPK666ioMHz4cnTt3Ru/evfHkk0+iuLgY69atAxC8eV2wYAFGjBiBzp0745JLLsGdd96JxYsXR+131apV6NixI2699VZ06tQJ55xzDm666SZ8/fXXUa8bPXo05syZg9/85jcJzxkAZs+ejdtvvx2nnHKKaR8fffQRNmzYgNdffx2nnnoqRo8ejYceegjz589XbohzcnKQn5+v/Pr2229x7NgxXHvttUo/H3zwASZNmoTevXujb9++WLhwIXbu3Ik1a9ZEfZ2x5kdJyEZ8xxD0sIhrCAB+CYhAMBsps7wSLocbKZmtqznH6JO0DrNEzjg8PVCalYtm5ZH6VbFeek5FCwz/+X/gL20PEXCFrjHuvlcjhIBwRD4+BALG5XtWcULNz8eyplToHINSlKR4/8T7J94/xY9BKSIiiiktLQ1VVVWYNGkSvv32WyxZsgSrVq2ClBIXXnghvN5g4eApU6agsrISn3/+OX788Uc8+uijyMzMRGFhIf7xj38AADZt2oR9+/bhqaeeAgDccccd+PLLL7FkyRIsW7YMK1aswHfffWeYwxNPPIG+ffvi+++/x5/+9Cds27YNo0aNwrhx47Bu3Tq89dZb+OKLLzB16lQAQMuWLeFwOPDOO+/A7/ebvq533nkHXq/X9Bu9m266CZmZmXjzzTdr5D2sqqrCiy++iJycHPTt29eyXVFREfLyrAs2A8CAAQOwa9cuvP/++5BS4sCBA3jnnXdw4YUX1shc452z3qpVq3DKKaegdevIh/yRI0eiuLgY69evN73m5ZdfxvDhw9GhQwfLfouKigAg5vtDjVkiwRVtbSMA8Acit8CDtuxBRloeXClZqiVlxkwpdaAnmAkVJXAilJyruGcebzhGQCDVlwH4cuCpNP7ZCNZoEtWL81hebFJTSrs5X/CQjFVTisv3qHHi/VP18f6p8d8/sdA5EVEdkFLCV1kZu2EtcKWk6Op12CelxCeffIIPP/wQo0ePxrvvvosvv/wSAwcOBBBcl19YWIh3330X48ePx86dOzFu3DjlG5bOnTsrfYX/IWzVqpWyTr2kpASvvvoq3njjDQwbNgwAsGDBArRp08Ywl6FDh2L69OnK8+uvvx4TJkxQvhHs1q0bnn76aZx33nl47rnn0LZtWzz99NO4++67MXv2bJxxxhkYMmQIJkyYoMxr8+bNyMnJQUFBgWE8j8eDzp07Y/PmzQm9d2FLly7FFVdcgbKyMhQUFGDZsmVo0cJ8W/mtW7fimWeewRNPPBG1z0GDBmHRokW4/PLLUVFRAZ/PhzFjxkRNK6+tOZvZv3+/5oYKgPJ8//79hvZ79+7Ff/7zH7zxxhuWfQYCAUybNg2DBg3CySefbHsu1Iho/h5T9oMLnZMxM5XUfDIUlJISDlWwpHr5OeqrzeaSYLAlHFOTkecCkWPv9XoWYzfeC4HI8sNqj6mfggzVuNJlSqHkAIQuwUyqJxpF1JkxU4pUkvEeivdPvH/i/ZN9DEoREdUBX2Ulnr7msnoZ+9ZX34E7NTWua5YuXYrMzEx4vV4EAgFcddVV+O1vf4ulS5fi7LPPVto1b94c3bt3x88//xwc69ZbcfPNN+Ojjz7C8OHDMW7cOPTp08dynF9++QVerxdnnXWWciwnJwfdu3c3tD3jjDM0z3/44QesW7cOixYtUo5JKREIBLB9+3b07NkTU6ZMwcSJE/HZZ5/hq6++wttvv40///nPWLJkCS644AJb74XH44nZZtGiRbjpppuU5//5z38wePBgAMCQIUOwdu1aHD58GC+99BJ+97vfYfXq1WjVqpWmjz179mDUqFEYP368prZBZmam8vj3v/89nn/+eWzYsAG33XYbZs6ciZEjR2Lfvn246667MHnyZLz88stYsWIFRo8erVz3wgsvYMKECbZebzxzrimvvvoqmjVrhksvvdSyzZQpU/DTTz/hiy++UI5NnjwZr7/+uvL8xIkTtTI/ajgSCrGoV42FHvtCMRZnePc4y3SfeOogqcexKK4e+9IYB42FxEtSD+Ng1i9oXdJVdakwXJRQmCf8YTyc8QRtgXKf9MDhD/0daRpIEsp/rWpKSSk18URp2Rc1Vcl0D8X7pwjeP/H+yS4GpYiIyGDIkCF47rnn4PF40KZNG7hcLixZsiTmdddffz1GjhyJf//73/joo4/wyCOPYO7cubjllluqPaeMjAzN8xMnTuCmm27Crbfeamjbvn175XFWVhbGjBmDMWPGYM6cORg5ciTmzJmDCy64AN26dUNRURH27t1r+HaxqqoK27Ztw8iRI2PO7ZJLLtHcbLZt21Yz765du6Jr167o378/unXrhpdffhkzZsxQ2uzduxdDhgzBwIED8eKLL2r6Vu9Wk52dDSC4q8qgQYNw1113AQD69OmDjIwMDB48GHPmzMEZZ5yhuU7/rVssduYcTX5+vqE+w4EDB5RzalJKvPLKK7j66qstb2CnTp2KpUuX4vPPP0e7du2U4w8++GC1i6lSw2ZZHFsEz+pbayI2QnVcvdMbIplSTuh3uROq/1rFhdSZVfGEyey0VadEhY9oj9nZfS9af4lQ/xyEIzL++vIRKNgwEid1eQNAsJiv1AeYzJ5YZZ5I41JLomTC+yfeP/H+KX4MShER1QFXSgpuffWdehs7XuF/VNV69uwJn8+H1atXK+nnR44cwaZNm9CrVy+lXWFhISZPnozJkydjxowZeOmll3DLLbco/2Cq6xN07twZbrcb33zzjXIjVFRUhM2bN+Pcc8+NOsfTTz8dGzZsMMwzGiEEevTogZUrVwIALrvsMtxzzz2YO3cu5s6dq2n7/PPPo6ysDBMnTozZb1ZWFrKysmzNIRAIoFK1DGHPnj0YMmQI+vXrhwULFsDh0JZ7NHt9ZWVlcLm0/4Q7ncHdu6SUSEtLi+t9iXfOsQwYMAAPP/wwDh48qHw7uGzZMmRnZ2v+vwIEd4jZunUrrrvuOkM/Ukrccsst+Oc//4nPPvsMnTp10pxv1apVrX37SA1LeMtrRayaThYkgOLDefj2cDMAwUwp3Uia3xKpCVXtIJCdpUK2h4ixM1/MqYQzpcKpUkLXl4SAE22KuyEclNJMUp/WZRczpUglme6heP/E+6doc46lqd4/MShFRFQHhBBxL6FraLp164axY8fihhtuwAsvvICsrCzce++9aNu2LcaOHQsAmDZtGkaPHo2TTjoJx44dw6effoqePXsCADp06AAhBJYuXYoLL7wQaWlpyMrKwjXXXIO77roLeXl5aNWqFWbNmgWHwxGzhsM999yD/v37Y+rUqbj++uuRkZGBDRs2YNmyZXj22Wexdu1azJo1C1dffTV69eoFj8eD5cuX45VXXsE999wDIPiN4GOPPYY777wTqampuPrqq+F2u/Hee+/hvvvuw5w5cwzr7zdt2mSYS+/eveF2uzXHSktL8fDDD+OSSy5BQUEBDh8+jPnz52PPnj3Ktr179uzB+eefjw4dOuCJJ57QbBus/0ZMbcyYMbjhhhvw3HPPKenn06ZNw1lnnWVaTyLsxIkT2Lp1q/J8+/btWLt2LfLy8tC+fXtbcwaAnTt34ujRo9i5cyf8fr/yrWLXrl2RmZmJESNGoFevXrj66qvx2GOPYf/+/bj//vsxZcoUpOhu8F9++WWcffbZpnUOpkyZgjfeeAPvvfcesrKylHoKOTk5SEtLs3ydseZHjYMxTyp2sewKTwoObW+nhE9cAX2mVOKE6bNo9aqkreBLXAsJlWV2xnGrE+eJxKSEJlNq4G+7YNU/f4Xbb/4tvVQ9MGa9hUrBS109sARrIFLjlez3ULx/CuL9E++frDAoRUREti1YsAC33XYbLr74YlRVVeHcc8/F+++/r9xQ+P1+TJkyBbt370Z2djZGjRqFefPmAQimZM+ePRv33nsvrr32WkycOBELFy7Ek08+icmTJ+Piiy9GdnY27r77buzatQupMW5A+/Tpg+XLl+OPf/wjBg8eDCklunTpgssvvxwA0K5dO3Ts2BGzZ8/Gjh07IIRQnt9+++1KP7fffjs6d+6MuXPn4qmnnlK2RH7zzTdxxRVXGMY1O7Zr1y5NWjQQ/OZt48aNePXVV3H48GE0b94cZ555JlasWIHevXsDCH77tXXrVmzdutVwfbSdqiZNmoSSkhI8++yzmD59Opo1a4ahQ4fi0Ucfjfqeffvtt8rW0kBw5x4AuOaaa7Bw4UJbcwaAmTNn4tVXX1Wen3baaQCATz/9FOeffz6cTieWLl2Km2++GQMGDEBGRgauueYaPPjgg5r5FBUV4R//+Ieyk5Dec889BwA4//zzNccXLFigbIltJtb8qPGKFc7wi8g36TIzE71/3RV8DAEhYwS1VH8kmx0/BmHvy31jN7qEL/OaVtrAkkUTs6lZqG6gR5UxpvrA60kLZhi4A5EPS1bJUZZLMU1GYp4UNTa8f+L9E8D7JytCRt+ftVErLi5GTk4OioqKlHWmREQ1oaKiAtu3b0enTp1i3hyQVmlpKdq2bYu5c+eapiTXtqNHj2LYsGHIzs7Gf/7zH6Snp9f5HKjuRfszy/sFrbp8P0qOHsaLN0+Cw+nEwPETsOtf36J/qzE4kVKMwxWl2OPdhsNlZ6N1xpf4f52WoxRHcemKNoBIQ05FFYpS/HCm9MOQlG7wrHgYGwvS8EurNmieUo5DnU/H+I//gfLDKfhi0CA4mnXCYGculhX3QKn/aziLv4BwtoH07wUAtDixB4cz2wIiA63RHef2eBsFgf14etMgAEAaClGOXXB6TsaWtl+ic1k/DJYOrDi4GS6RD2fObyFEKg75XkJWSQlc6RdgmM8Jxzfzsb1lDja2aQGHpyf25ZXi2g8/xZHcZvh45Ei81+Gf8DkCWPC3KmQUOfD0uHwMLvoN9h1eBkiJt4fsxgXb/gf5JV1RkrEBgcp1qDpWhCxfKQAXPjs7Az8dHY05YwZjwtnWW4ab+fq9d7DijYVo1bELDu7YhvScZrj+2Zfx9NXjAAAX3T4fnyzchgOZO5Cz658AJI5np6BZcSVcqefg97eOxcEJv8XxdMD/r5dwTttzAACBMi+W/HkR1rp24KyzzsKA00/FK7fdCMCDZqmXY9C6R9Hje+PW9tT48f4pcbx/ovpQE/dPDsszREREdeD777/Hm2++iW3btuG7775TdjkJp7TXtby8PHz88ccYNmwYVq1aVS9zIKIYqpn4E6mMpK0hFS4iLky+sl0wIpHb5mBHAWcKhAjerHud9uqLmJRxV1i9fFG2DymH9oYCUgBEaujFVLOmlOZY5H3497wpqCx5C61KIsGugPLmRXKeBKJkL0h98XYu3yOyg/dP1Fhw+R4REdW7J554Aps2bYLH40G/fv2wYsUKtGjRot7m07x5c8ycObPexieikCj5/JFwR+iZEPGv+4rZPpEFBeEgkIAXkcLEVd5/4NDJX6H0lxzkIVoGgXYHQBFHsXAhg+NVOdzwpp6FXGdnAO/FNXsz4aV3Qgi43G50O3sgtqwOFjyWvj2ALFPalrtLAKSErjP2obd7926sCvgRcLnh8IXaNN2FHERx4f0TNQYMShERUb067bTTsGbNmvqeBhE1aPrAjET1qg8lcF0CCTy7HUciI8ojCHiOAcjRzCPeboWNK6ocHlSlnwmH34FwkKxacZ5wQfhQ5tQld9yHitITmP+HYI2YLzr9A2euDWWFOSKBuGiZZy4ZrEe1d99e7N23F+7m+Ug9sL8akyRqWnj/RI0Fl+8RERERUcNnuqNU5Jgh7iHNWpk/D4eGIiEi41jxxHTCQRifKlPK6fPaCkDZLQhudXWNEuH3xSg1I1M5/0vz701mEOWVCIGT/AXo7StUihRLhzMyJjOliIiaDAaliIiIiCg5aIIk0QIX6vCPVTUmO4EPafE4+vVmwSeXz2djPBthK9PYXKzXot/LL05Su1jSPlXQUBdoSkcKBvhOwim9Q9uZO4IfSyQYlCIiakoYlCIiqkVNeINToqTCP6vJJ2apJdPMqvC5UB+q58EqUNaZUjVBGzuK8f85GZ5J9eYiARtvljmlYlf4z4fuPVXmpu7fIu4nLVLXnE6Xad/UtPHvZKLkUBN/VhmUIiKqBU5ncBlCVVVVPc+EiOwoKwsWana73fU8E1LT3+zGDFtY3BvbD+yY1a6KX9RKUTGnEnuu6uBWzCSpsDr6kK9Zvrf29ZjtXa7gv5dShOtfgZlSTVj47+Dw38lE1LDVxP0TC50TEdUCl8uF9PR0HDp0CG63Gw4HvwMgaoiklCgrK8PBgwfRrFkzJaBMDYsQwZ3faqy/8INYyUr+oyYX2bjQ0B6AkAktorOeq7Cch3F5Y4LvXXi5pEWmVJQpBP24ODIni0CTMVOKGVNNmdPpRLNmzXDw4EEAQHp6eo3+2SeimlGT908MShER1QIhBAoKCrB9+3b8+uuv9T0dIoqhWbNmyM/Pr+9pUMKiRUYi59QfbaPmRDkzQg+8wf+6HTHDSdq+zVpH+2Btds5qxHiLsNdA1pFSU8r8NWhX7Enld5nXBcBWCGm9fM/lVGdKAZWpudjWfjRydxSjdcfs6s+dkk747+JwYIqIGq6auH9iUIqIqJZ4PB5069aNS/iIGji3280MqaShVDlCQGozgaSIEvYxnJC6Z7oG7jaoanE+MsozsanVN0CaD8DuRCddC+INNFWv0LlleEyY9Kt+K9v2A7A1at/Knz1H5MIdhSNx9P/9hKvnDIxzptQYhL/Ya9WqFbxeb31Ph4gs1NT9E4NSRES1yOFwIDU1tb6nQURE0QjdAyEgU1rB6W+H4mY/ISNwQtXYfCc6dYaQVXgs1mo3AAjEmqtpB8ZaTEr4TiSeK6Usm1KW78Wek2Ysh1O5TJMpperI5Qp+HJEuD7ytWiOz/Bt4Xf1QVe5PcNbUWDidTn5hQNQEsMgJERERESUhdfBHwrqGkjQ8sl5Ip65rpA7I6Hedi62beztaiQOaK2xVxtGXbTLZOc8yyKQPrikXiGrWDg8F4gy1faK9IgkpnOqnpsJf3EiXGxXNC7CvXTmqUo7oglhERNRYMShFRERERA1U4oEJWwEg8zJH9q+3aJ8qq3BJ5qdoo1nyZ/JapOWZuCtQ2Z9d/NfF2vJbWD1xWizKULVp3ao1hp47GO6jB+DwVgIAAg4u2SIiaioYlCIiIiKihk0ICCE0hbaNYRJt4EVGORcPKeINGUUqOFUgsnw7IKzKhKuviz1PY+JUrGuslxPaFQlK6TLGTLpVv1tSuFTHzQNbQgic2ucUpB7YBWdFeeggs6SIiJoKBqWIiIiIKKnEF7KI3TpS6Dy0zE5CFf2RcCCQUM5WCSK7x3kddXHbbR18ipXtZNqb8hZI7XN9O8tK6JHle7aW48lApC3jUkRETQKDUkRERESU9OwEPeLLFwr21xJHMNr9kdmpqNeZNYtrfIsxomdTqQudW9XYip9lPEtog3mAOpNLKoXOg31YdBKtcDsRETV6DEoRERERURLSFzq3H3gRIrxTXviAvg+ByD54AZOe46ixFOL2m/VjVK1AVpROEwrzCPX7C+tUKf1g4UehTCl9JpWxG6FtVyMvmoiIkgGDUkRERETU8OkiGfFXetK3jdVD8LFPWG9Jbx3osRu8STAjKO7LaqqmlL5XXTAJuppXNmpKaV+MavkeERE1CQxKEREREVHDZIhN6DJ3ElyhFllhJsyPG0eqGTKRgEvsYFz0IYMZYAmUlDIMaqcQu/qiCm8KKj3ZENC/bn3BdKEZB5DVmy8RESUNBqWIiIiIqEEzD4bEiloI1aPqrQsTiV8ag/E11ESWkKyxyYpQf1L9VHU6yjgSeP/LdvhywMM41qx31HaRx+FxGJEiImoqGJQiIiIiogZPQBsTsV0fW8qYtZD0u+8FD+oCMppB7AZ99JlYdoIt5tlb1cuvqmaQKkbakmb5nuGkA2XpbWxmtYVrfcmYYxIRUePAoBQRERERJbfqJgYJ7QNNZpat4t6a/eeUZ/q4ir4nB44a+vFb3J4L1RI6fT/Rs6tkwoXOI3XOZei5bmSztyZ0rHfmx+hQcEI5GHWOunG4+x4RUdPhit2EiIiIiKhhiX//u9hXa4+GM6XMd80zZj1Fm5GInFfHu+A3HAvoglKGlWwJBeBqqtB57H7CLT3OSiAlELWt5cVcvkdE1GQwU4qIiIiIGiTDrm8iHCgyaWtrd7dQN5antPlO8Yh/YR6wNhyUSrhH+5dY7aAXVfj9jrX7nuZgqK0nU9PScnypaWV2mIiIGjEGpYiIiIioYRMixjK6WJk81sEsbReRXeCqhI0sH83ufbGziPQttsNnPg3TqxLZXjA8xRoqfG5jKaMy/16XappLbfRJcXzpL/BuLAkGuKQ0tiUiokaNy/eIiIiIKMnFH3TRZuVor3cCcEsnAODkCkCk2ehQVf9cyBoKAqm7t9WlOjhnq7J4VOFMqHCWk6GXcNTJZHLSk6GbmTooJSBSXZAVPpStOQCsAVqndcROVIbOJ1gEi4iIkg4zpYiIiIgoyUhIod4FL8oSPfWxGIGO8DWZAaB9VTCockq50/acgr/ZjKbI6EvV9PlRVnO3PK7pvZZ337O8xjzLSzgEWl5/MrKGtVeOpTjSVG8EI1JERE0FM6WIiIiIqMEz7PxmO3BhI2Cl231PfYU+i8q8g3hKgKuvMatiHv11WeVC1SZlHN3PwGw1nzppSn1aX1PK0y4LnnZZqNpVgsrNx0I/38juewnVwCIioqTDTCkiIiIiSgqaIIfqsV86DPlApiGNmJEjk2VoZkfjjZeI4CV+v0dz2GNaU0o/mi5QJmHMXIqWAhZnApe23/DyvNDyPauaUqZ9S1sJWkIdEJTBOl4VaQdR7jmAoqKieGZLRERJiEEpIiIiImqgrCMpEkBxIBUAcFhmYH8g2363oSCOdaAmksMko+z4p7skpv1FJ2meO5JlmZrlG2XcfU953zQlraK8OSLch1ClgUkcz/wZf//73xOYLBERJRMGpYiIiIioYVN2kIsEiPbACb8qHBLQhEbUu/XFE/gxz5SKdUR/2KzQeXBxmv7WO3aGkz4JStiJfpm+jvgDYEqiVDzXClVqltXue5r24d8EXCeK0OxYEZzeYD2vkpKSOGdMRETJhkEpIiIiIko6laoglZLXZBX3UAJUxsye4GXW2VCmNaWUc9EZK0YZq0gZWAwXT6ny4qxjcHqOBOcQq7q7DTJgvnxPCOtMKW0HwrpGVLhPIeDwVuLc5V8j+3iv6k2YiIiSBoNSRERERJR0anThmy7i45UpKPYHlwMG4goHVWvYqCLLCa3PhZWnlwEikOCs1GJkm5mdVmVX6WKB5l2oMqWIiKjpYVCKiIiIiJKMRNSwlLCIg6iX2Jlc7xESDvgg4Qy18cPtLIYwyfKxkfNkbK2LKMXXhx3S8LBVSe/g02oMpVxrWRvKKlImVE8tJuBQ15SSmvro3IGPiKjxq7Og1Pz589GxY0ekpqbi7LPPxtdffx21/dtvv40ePXogNTUVp5xyCt5//33NeSklZs6ciYKCAqSlpWH48OHYsmVLbb4EIiIiIqpD6phEtFrZcVR+CvZlcTbFIfGbvPtwXvbLGJT5Ba5qMRVu54nQRXYX60nzdCbDuPYCLolnEAWva11ycoLXq5brWQSHwnMzL3SuXvgYbfme4QERETUhdRKUeuutt3DHHXdg1qxZ+O6779C3b1+MHDkSBw8eNG2/cuVKXHnllbjuuuvw/fff49JLL8Wll16Kn376SWnz2GOP4emnn8bzzz+P1atXIyMjAyNHjkRFRUVdvCQiIiIiqiOR4Ic68yYi61gZ2h2tgMMk8CFVWVWGs4YDAvmeLeiZ9jm6pG5FM9f+OJbvRW9nN/Ziuc9dHElD5rWxEhfOcrKcevTN+aIL16VS6lMxO4qIqCmpk6DUk08+iRtuuAHXXnstevXqheeffx7p6el45ZVXTNs/9dRTGDVqFO666y707NkTDz30EE4//XQ8++yzAILfvPz1r3/F/fffj7Fjx6JPnz547bXXsHfvXrz77rt18ZKIiIiIqF5JOH3Bukkt9hzH04t+wZ3vxFtHKVzgPLg3nrZIUrCvABwJ5PDEsczNJmn5xGok86Lu1Rpcn65mkr4WSRKzGVyKUlOKy/eIiBo/V20PUFVVhTVr1mDGjBnKMYfDgeHDh2PVqlWm16xatQp33HGH5tjIkSOVgNP27duxf/9+DB8+XDmfk5ODs88+G6tWrcIVV1xR8y8kTvNnToe3qLi+p0ENloBwBgCHAyXtnDjQLFdzVjoAZGQgx9Wy1mfidkq0yPIajqc6UpHjyqz18RuigDsTvrQ85XlHdwAeriogqlcF2anISnNbnnc5M5GR0aUOZ0R1ThUAkTKYu+Pwq5bMAcgtVRrH6iL6UJAQoaBUtN337PQUYacn1YK3KEvmYmcsSdWhUJZYIvGdSHGnOC4yG09Y1pSKZEjFKKpORESNUq0HpQ4fPgy/34/WrVtrjrdu3RobN240vWb//v2m7ffv36+cDx+zamOmsrISlZWVyvPi4toLGvm3HIM/YL48kShMOPNx0HEcn+V+oT0hgcCxbJRuva/W5xDIdqNqQCuTEwB8tT58w1QBoCTydK6cinzsq7fpEBEQ61/svNxzcNppr9bJXKgBUFbkBQMYPrcTJSkOY5uQv7RZAPW/qIagjmFtnTpTyl5QKtayM7OzZkvy9Ifs1ZSyHrsmvlNRAkoWmVKa0JswnA4ej1VTSoSz1oiIqCmp9aBUQ/LII49g9uzZdTKWcABCNs0sE7LPCTdcDh8C3lzDOenPhEit/Tm4U3zIkgcMxwXiq1/RmEgISNXq5hJvFlJkVT3OiIiapXmQ5nFanvd4WtThbKj+aAMXfn85vJX/xZ7UPShrmYv2R06omkYCTFWOYEawsChAru9foBxpzi9DV8cX1gl4NyPzaCq2Ic940jB+bf5DWxPhKG2h87iKrkv1ckhAVHkhAwEIhy54aMiUIiKipqTWg1ItWrSA0+nEgQPaD70HDhxAfn6+6TX5+flR24d/P3DgAAoKCjRtTj31VMu5zJgxQ7MssLi4GIWFhXG9HrtuWWReL4uIktHw2E2IiKjmWS4bkwj4ylFS/CUAiVIXUNq8GVqcCGbE68MbbataAdiPjEDo2x6LTeX8Mgcy4IRw+OEM5ecdQw6yTPeX03IgRXmcWubBR5XdcFLLcuVYokGX8BdE2qut3xeTxqEziQfArLKclCQn09NSaeCQQM/LZmNry7+h0z8Xw9VCFUQ2rSkloo5LRESNR60XOvd4POjXrx8++eQT5VggEMAnn3yCAQMGmF4zYMAATXsAWLZsmdK+U6dOyM/P17QpLi7G6tWrLfsEgJSUFGRnZ2t+EREREVEDJwTUkZayoioEfKXQB2cCFnEfd8De97ASmdi9YxIOV/0Rh6sewOv7zsWP6GHZfoc70m8KsuHJvALOlFMBAF5pvM2ukaV0uuVu1g2rP2a43pMSHLLobGjhUOXxqa1PU65xpHrCPQEAfIcOoez777VjOISmDRERNS11svveHXfcgZdeegmvvvoqfv75Z9x8880oLS3FtddeCwCYOHGiphD6bbfdhg8++ABz587Fxo0b8cADD+Dbb7/F1KlTAQT/gZw2bRrmzJmDJUuW4Mcff8TEiRPRpk0bXHrppXXxkoiIiIiojgklwymShSMcOXAoASDVcjHlkTSsmhOhhdpKC1WAx1vVAhWBAagInIEDVc2CPZkk7Hye4cCVbdRZ/wIOVz6cKaerRtaxs4WeRbDJXs6QdV2maiUdKSWlzGtKXXvyH5RD/Vr3U50Onv/XWQ4U9+8JADj05Dz8OulalHz8sXrKkYLnUrKwFBFRE1InNaUuv/xyHDp0CDNnzsT+/ftx6qmn4oMPPlAKle/cuRMO1frygQMH4o033sD999+P++67D926dcO7776Lk08+WWlz9913o7S0FDfeeCOOHz+Oc845Bx988AFSU+ugCA8RERERJY1YRci1je1l7Ox2a9ulBJzqPTKMpOa30LyiNLRgVher1mI4dpOXVBEvJXClKinlcwmUd85H9lc/o2r7dlRt345AeRmyhg9nTSkioiauzgqdT506Vcl00vvss88Mx8aPH4/x48db9ieEwIMPPogHH3ywpqZIRERERA1UMHYRDFy4PE7IqDvE2gxD2YzmCBtNHVGLqEcCL9qglLFXGUgxHEtETQZ5IvWotH0qy/tgDEpJdVRKAod+Mwj9Bo1D+dofcOSllwCfX9elSbCNNaWIiBq9Olm+R0REREQUL6vi3MIRPGtsb8V6WVv0CcjQdcaAiTA9qhoh5k5/kdbqnnyl3XTjhANadtRSECe8+57VJNTBI1UjdfOA24WsYcOQftaZuj6ZKUVE1JQxKEVEREREDZrNFXXmkZs4s23UwZEE98uzPOP2a2+9j2cc0LUQgHSaXit1vytXxHh51Sp0bvdqzRxUWxua7qxnGCT4m0nWFRERNX4MShERERFRw6eLTMUTvJC6R/plc9J21Musz4joC/gkztrVAem+NOVYubs07nHNVME8kKWeVI0shbMswi4NTfTD6ZcAKs+jZEpx+R4RUePHoBQRERERJTE7AaXE8oVUoZYa6A3IrUhH88oWkX4SjLkIqZ2Dv7aWvgn96zavKaUtdB7+eKGdpCGIaChTpe6bS/mIiJoKBqWIiIiIKCmogyLS4rjFheZM050ijdNzchLuUN+1jTropteFT+kDWFFyo4ydIu5VjHGR2h+G4Ynm56PPtnKE2iSQrUZERMmPQSkiIiIiSjpHU9T1mIwRl2iBKgF7uTgX3XZ33POqbXaCNzZqrCc2lr5f5bxJ0XmpKt8uTZbi6Yqns9A5EVHTxKAUERERETVM6mVhqqDFfs8RfJX/SaSZ7nddJ8oZQ/ZSgtOqdFSZn6jBdCQRDtrIBHcOrA1WNaXMlu9JmC/fswhsKbsMqvpiTSkiosaPQSkiIiIiauC0kYwiV6nlOdOrdalDQrcWTgphGlAKx2Ba+gKa4xWuCttjq0aB1LU3vbqmspx0r7k2wjvqTCjlmGn2lMmLkhZBKiIialIYlCIiIiKipJNYLCOxoug9q7x4/OBhzTE7QR59EMqkQYIsLjQLrIV+f/2rX/HG6p04UFxhaGNXvEvszNoblwTqa0oxO4qIqClhUIqIiIiIGj4RqQQlEbBqpDwyLzlu9Vg/jr4/gR5V3hgTjDeYEl97w6o3G20AwBnKCjtYUon7/vkj/vjPH+MaN/qkwj8PaTwmI7vvCYjIUjzdjn2GmlLMnCIialIYlCIiIiKiRsZmZCNmRfDIeWXJn2WdI5Od5uIlhMnue7GX4UndUfWzwZ4SXHhKPk5v3wwAcPiERT0s0+mYZzUZJ6CuKSUMx2IMAgDISylAz5wBcKTkKK+ZNaWIiBo/BqWIiIiIKCkI9QOTeIVVjKmmdqNTz8Q8U6n2gijhnuMNerVzePG3Cf3wP+d31fSTCENMyiQApQ5kqdtHCp3rMqXcwY8jeSkF6JN3LtK7DqvGDImIKNkwKEVEREREDZJVooyMVURbJ+GYVDh+oi9QnmAGj50leDVCSEPwKlKyKY65W2VG6Zhnb6m6US/f00k/rRXSzmqJIxV7g21dqfbnR0RESY9BKSIiIiJq0IQQofhIuIZRPAEdY3WpSHWq0HHTOlJ2e42H9ioRtZMayroKl2pSAmxxXKoLSjmcLl3XUTKlpH5Jofrdj8zEmeVB1uj22Fn6s+48ERE1Ba7YTYiIiIiIkos2zKQPdNgLzQiLTCnzbsLL02x1bdmNsaZU6HcbU66CE1Z5RpE6Tfbn1eGUU9Ghz2koLymGJzUNZ1z8G9N21oXOE4mExdGWiIiSHoNSRERERJRkqpdFpMQ9arQElLHQVWKr/KJHZayCVgBwQnoMQSmhe6Avih5Nek4zXPbHh6wbaJOegodMlvxpgoLqoJVVp6pTUkrTPomIqHHg8j0iIiIiSgIiElgRuuMh5mGO6keeqt+DRVAlavqT6Yu1IEP/jbTV3+QnUlLKLqsAk6bQebSB1Q0ZfyIialIYlCIiIiKiBsoqzCRjBGuqURcqgfpSMXq0OBc9OhStmLpVLCsgIz0bN8qLf/leLJEMJmPhecsglNklsC5eHzWYRURESY9BKSIiIiJq2ITmt/guApQojhLHEoCmAHrMQJRx37xYoRLLOlSa9CGz62KNHGcwTvfe1UaIR4kbKQXpoYt+iTiWDTJVioioKWFQioiIiIiSjEXoRh3vsVjiF49E6nTHM1bi4RfzGQWiXOGIWcspESY77amCbtr4mwwdM9mxT/VOMCRFRNS0MChFRERERA2euti12fK0UCt7fdndfU/1KFblqlin9D3aFT0zKsowuuWNJrGgGmOWBaXJk7I1plT9l4iImgoGpYiIiIgoScS3M134qOVVNiMgUfaJq6YaygsKdeOXDv0hhGcfWb5Xc2Ef/VK9YABNHf0yqQ1lFh3TrJ7UviesKUVE1LgxKEVEREREycVe6o3CrLWhVpOqLpKxVfUzsOyGn6x6iD80I0yf1kqMx3z1nmoKJjWldBNh7ImIqGliUIqIiIiIGiRpkU2jqZ0kbIR7ou7UpydMH9aIagRe/JqCWdplfSnwAQByHWUAgGblrZFRlQtAHVYT1Z2CUbhOVbhX9ftlUTMq9s+LVaWIiJoSBqWIiIiIqEFTBzXKUYVilCYUXZEmsRMguPtetGVttZXEYwy/GI+0LcvVPM+tzAs9Ugd9go/TRDA4VXi8R+RcKAgUWTVXyylJoYE2r/4SOzd/iYD/uHk7Q3F0GXlotuyPiIgaJVd9T4CIiIiIyA4BgZXuTdjkOWqjZZg0ifXYDHTEkbQTq9i38Yi9SlWTtp6P7CIvcgOvQMKJFpXNbcwm0ofb4dccqdm997RrAoUQECLynffOLV/B4T4GIMdYUypKr0RE1HQwU4qIiIiIkkAwWLHdeRDSoni5acBFqs4I3YkYEZrIkrdEK0JpCyzFG7YKzyGzKheOOKNJP7Vdht4bXkGWpzLYj5IqFV8/dqiTmTr2OQ0tO3RSnawCAOw+sRur961Gpa8yNA1mQBEREYNSRERERJRE8gPNdEfirwEVtZmdGlUmHLpepQSqlN3wIsvT7E5IxLNszaTw+97c9Wh9cE2kSW3EpJR5K1Xi0Sy/ABMfewYjJ9+mOieweMtiXP/R9Xh5/csm3aiWTyb4/hMRUXJiUIqIiIgoSXXs2DG0ZEr7a8qUKabtFy5caGibmppax7OOg0kEJf4MG6kttK1hLxNKf94sxJQi3YajRfBE7ddu+CUQ7aSmiHvs3f9qo0aTaZ+q4FJ2QKBFWgsAwOGyI6GLqtE3ERE1GqwpRURERJSkvvnmG/j9fuX5Tz/9hAsuuADjx4+3vCY7OxubNm1SnotkyExJYI7qQJIhrKHPLBKmyUbVLm8U83KzXQH1h3SvXQrrEJuuc831tZEpFVkSaOxV/f+rkT4HLuh/P6Z9Og3S7I1Ohv8PEhFRrWBQioiIiChJtWzZUvP8L3/5C7p06YLzzjvP8hohBPLz82t7ajUuGOQIZzZpAxvC5JH2vPk+d+YBGqs+wq2tr9Jf6UwgBGT/imiBHGHymkPvXW3UlAqPYDolCWgChKHWlhNhgIqIqCnh8j0iIiKiRqCqqgqvv/46/vCHP0TNfjpx4gQ6dOiAwsJCjB07FuvXr4/ab2VlJYqLizW/6p1ILHQRqXwU73X1GyixUyBdf9gQuBPmx6vHOlPK2FIoj8xF+rCbC0ZERMmPQSkiIiKiRuDdd9/F8ePHMWnSJMs23bt3xyuvvIL33nsPr7/+OgKBAAYOHIjdu3dbXvPII48gJydH+VVYWFgLs7fHPNZmlsNkr85SzN33LIN7cS2gUz0zv666QS87YaZITalqDWUxAWORcs17J00CTaqJaN5m/XJF1pQiImrUGJQiIiIiagRefvlljB49Gm3atLFsM2DAAEycOBGnnnoqzjvvPCxevBgtW7bECy+8YHnNjBkzUFRUpPzatWtXbUw/Nn3cJoFYhVWmlCYoZBKIMgxlObY28BR/qMlmECyB1+4QtbB8L9xnjGbq8wGL1olmsRERUXJjTSkiIiKiJPfrr7/i448/xuLFi+O6zu1247TTTsPWrVst26SkpCAlJaW6U0yQ+cI1e0vQ1IEms/bx9FEDETFDL/bzo6q35E5X6LxWikrJ0EjWwT1D1pnVPBiVIiJqUpgpRURERJTkFixYgFatWuGiiy6K6zq/348ff/wRBQUFtTSzGiKsgkO6o5YBjRhBpRiBkKiJUYl3WyNb4dmN4YQDRrVQUSpGoEu/iDHWNodCWxuLy/eIiBo1BqWIiIiIklggEMCCBQtwzTXXwOXSJsFPnDgRM2bMUJ4/+OCD+Oijj/DLL7/gu+++w+9//3v8+uuvuP766+t62jUogUVyJpdElo/VTKpOonWiaisEE8mUqqUB9OOpHkvNboAWE2HwiYioSeLyPSIiIqIk9vHHH2Pnzp34wx/+YDi3c+dOOByR7yCPHTuGG264Afv370dubi769euHlStXolevXnU55YTog0VmwSOrakWW4SHbcRD7C+3UbaX+VIIhJ6nLHjIfV8t6j7saDP4odaqMhc6tlu+ZjS+iXEdERI0bg1JERERESWzEiBGWS5w+++wzzfN58+Zh3rx5dTCrhs/WSr96jI+oy2Cpf7rRM7Csy4XXaqZUrOV76tcSemH64JRVD/7SUqDeapoREVFt4/I9IiIiImqQ1MG20m+/0WZHxRVciR5dkhaRqEh2j+56ISBNuhSqSUk44PXl6voUMZf1yVrKFKqVmlL67CfN25jg8kW/X9PRIQZRiYgaNQaliIiIiKhBEwDKv/k29EzGtQRNygq4yrzwC2GdRyQsNuhTRlTHWOyP7Q3kRD0vbKUtCZShwvaYkavCD/S778XdVUL073E4KBYIH5D6xsEDzsxMzXW+w0dqYXZERNRQMChFRERERA1fgtEU6T+InF+L8GNhSxh3gkt0LmZXS+QfXw5PZZHpJfHnDUX6rxBe5XFa6QnklDnj7i2RoJptSqKU2auU5tlhFj/PlF69bbUjIqLGgUEpIiIiImr4bAQn1MEPT8AN4WoDiAwAQJnHrYrMSM1SOy2zAurmISX90fZH/oWz1jxqMTf9bnMWw5teK5TRen3/LdyB+G/hleV7tRGTMutUqJYLSqktZh6FcPDjCRFRU8K/9YmIiIgoCaiCHMJ4XNtUwCmccGeNhzt9eOQ6vZrciM40cBU5FrA1mP18KnVL43LGKIXObY9gYw6qIJ/1ueB8IjWtQm1VgSwBYbkkk3lSRESNG4NSRERERNTwSQmoAhuxwjfB1iISjYlyQbA3s2yfBOZpmEU09gaoicCMEj6qlVSp8CDmy/e0z2KNH297IiJKZgxKEREREVHDpAqg2ApOmMZ4IjvoqQudWy7fUwVWrHbfSyRWJWEMLkUrrm7F1h56Jrvg1UamlLJEzzTQFZmEEiBUU19TSzsOEhFRw8egFBERERE1bNUKWsTOlKp+RpQZbaBmd0Y+5rXpoT1vEiiyChrJWA1iqr2aUuFJWf+YVMsY7aS4qX8gLHRORNSoMShFRERERA2SlBL+lDR43amodLljlhs37ocXOW/IUvIHIP32boVjLxY0TAUA4NSMKrApLQeBGH2ZL4Czfo12OUJdBGowyBNZEmhyTlv0yvjCDBcx+ERE1BQxKEVEREREDdKaH9ahrHNvHGtViK969Ea5MwAgVFPK9mo+9RK84EUn9qZi8DvLNW2l7iogsnzvh0BPXb/2AiguBAwjxApKVY96gaKWqJX1e+FhTcYV2kCaodC52dzMuq6J+RERUYPlqu8JEBERERGZ2fbrzsgTIVCRwJ2rMFm+569wKEEtT54P5WlpQJV1H6vladjh7w/gK+VYvMESZyAYoPKrvhOOuqLQ7gDSvHEAfm1/quY1RlgHmhS6jKhw/Sn9NdKiPRERNW4MShERERFRg+Tz+xK8Ur2bnvnyvZK8LJx5wSaUIxNSqBYPWGTtBKp12xyZz75ANrKwH6aTAiB140sB3SLA0HUx1jtUeCu0MwgnStXK7nvhmlKqLDN9cfhYuyBazYsxKiKiRo3L94iIiIgoKXgcKSZHYyyHC2fzCG3b4ubZmvhT7Syqi/TqDgQDbFVwRmtmzU5wJsomeMIiOFctyu571uNGRtfvvleTEyEiomTFoBQRERERJYWC9M7Rl4oZgjtCdVBYtLUREaqBJs0rjuGWvRvj6KVmozaRTKka7TYkWqfacwGLVpZXczkfEVGjxqAUERERESUFb6AKEhLSouCSZpc8oQ1GSajDI7arpCdy0nQUByR6lBXbui7R8TTtLd+jmtx9TxfpUk/TotB55KBuHqpC7Ia2RETUaDEoRUREREQNky5u8dWhf6FUHoeQDqRVZdnsRL18z7xfs/aAtkaSrPE4iTQNvViFkuy0iqY2M6Vi9ikj76VVUMwyWMZMKSKiRo2FzomIiIgoaYiAG322j4OjYie8WGrnCt3vNptbqm6QJPoACeRE2ZpRJChUg5TJhgqdqwN6Fvv9KcEnBpuIiAjMlCIiIiKiJCEBOHwZcAdSlWMebwkQqDRtL1Q1paSybV3oSChm4q9GmMY0gBQl2KI/Y7HCziBgO1Rl0mEoGCWiNKku07pPmuV71akoz+AVEVFjxqAUERERESWdE+4iAEB62UEIQ/lsY20pY2gjHKwKnnH7a36O5iNGFysEYzfvKxzwKq4sxomqE6qSTTVYU0q/JlBYz0rZ/S/U1uuvwtJflmLZr8tQ7itX2ikBLu1vRETUSDEoRUREREQNklkARTlikmYkNY/14RsBqQqatA3kAQBSpBv9j7dFtpJsVVtFthMNr9ivPGXmfze+iaFvD8XR8qPBK2sjU8rkmLBIzQr/XE5UncCMFTNwx2d3YOFPCyPXscg5EVGTwqAUERERESUNq2BH8KTpFcHWuuJLqdINAHDBgWa+VE01JDsSje1or4uWWVQ9Dkf4Nl+g3FeO3Sd2mYxfXdGqp2tfgYiSRXWo/BDslngnIqLGhUEpIiIiIkoSElK3DV7s4I0jdKVVjxa7wkXtOP6QUTWqQtm42lCtCmnONABAXlowI8wnfcGWtZAqJWMt31MNGV4uqU5007z3LIBORNSkMChFRERERMkj0RQi/XVW/WjKUcU5mLDu1iEcMOZJ2QvAVCdMExwXCISCUoEajPlEe3uErtB5tGV5UkpbAS0iImp8GJQiIiIiooapRgIS4Uwo/QI9G1EpZRq67CzLecmoT+M4GUPsa8PZS0pQKqAvBl9zwmNFCTspQapAjLaRV8baUkRETQGDUkRERESUdOzvIqeqKWUZTYpdE8n8MnWbGk7pkaYPbV8Tnlk4KOWHL9KsppbI6Xff05xTT0qVNWX1M1DvuifUh5kqRUTUmDEoRURERERJQZ+xFPV8KGAihMXtbo0m4ph3Zjecon1dNZshpASlAuqgVI0OESHU2Wjq5XvRd9WTcYQYiYiocWFQioiIiIiSmjGgYazWJCEiwR9NVEbYC9IoARerxrW83EwaHlhSB4DCQTm/9Bu7qqZogSYrZmNrs6F0oUdmShERNWoMShERERFRElJVH7KxU15wpZ26YlGMmlK1EGOK3aVxOaBpBSZdoEaadRw6Fs6UCu++F7y8ZgM9pv2pg3hSnTUVY/c9fd81MUEiImqwGJQiIiIiogbJzqIu66LjSovQb/pC51bN1VlGNRSZ0u1EF3lSU5Ev6zdBWb6nDkrV0KjKSwkXL7d4j6XqnHrs8NyklNaJaMyUIiJq1BiUIiIiIqLkIY3RC/PglVLq27wfQzyomsGPmJfLGokGxaqqpX8o6qCmlK3goX4HQwCO0M9G6qtKqYOB3ISPiKhRY1CKiIiIiJKDaYBCFZyKEcDYmZdlt1OTUeKP5MS6wm68JVo/sfpwmNSUmv2v9Xhh+TZ4/QGbM7AaPFyjK8o53Un1+6jNRNO/kih9ExFRo+Gq7wkQEREREcXPZrRCuEK7vwFelxMAkFblg1U4x/SoMB63N3r0HefsXhl/XCaSl+QMBaWE8CIr1YWSCh8Wrd4JAOjVJhuDu7WMu3e96DWl9DMKX6Rdvqc+zuQoIqKmg0EpIiIiImqYamK5m3CjrF0z9P5+B7IqfChoeRzOwwJobnmFWSfVn4hJ16Y70dXMSErQKxz4eWrtk+hz6ih0dV2Gj348gX1FFSit9EXrIqZIoMlYU8rQMnROnZulBKU0r5qpUURETQmX7xERERFR46MKkHhz0tBr7xEUHjuBlv6yYChFxAiE1EG6jlmR9pobNth5hjtDObKu6AO0aPs12uWmBVvUUPzHNFFK9UqsKn6F20ht+XfNmxBgkIqIqFFjUIqIiIiIko6Mue2e2QI460VzSmBFXWM7jgwpUdN5T9WMxYQDPn1bnorHz30c57c7HwDgC/giWUvVjfdYbpmnImVoSV4oAKX6uamX7xl+MoxFERE1CQxKEREREVHDVu0AhTG4FE/Ayd4QwrT2VPRZ2KcvFx77gmAbj9ODUZ1GoUN2h9CVUrXoroZTpSx3zVNlTYXaChn5GWjmIWEeTyQiokaJQSkiIiIiSj4mwQrLBXmxghzuSJlVT4eOJhfFGDguQvVI35cw7iAogECMpXDRxghTZyUpm+ZVNxsrSj/aoJ+qernqcHhOms6IiKhJYVCKiIiIiBokkxV10Z8Jk8iH4Zn2qJQSB8VR5aijWbM4Z2ktZszHVhwmRiNp9UR3XehpQAbgUJbv1VxZdZMRVWeFpn5UZErhqJaqrWFKTJUiImrMGJQiIiIiogbOLNgUR7DCJFrya9luAECZvwwH/Yfj68+6W+sWwt4VEdHnoy0kHnvuDkR2uqu5pKRIYM/qnGHhoVS3UAeqtMGqyDlmUBERNWau2E2IiIiIiOpDdbJkLIIZoS5j7eqmD9zEChFFGwsQJilAUjmvXrJnLwijDeJEHTz0QjTL95Rgko2h7DCpKaV//4TudVnVlCo+dADe8u3GvomIqFFiphQRERERNQrW4QuzQudWnagyduJKKZKa30xnIWGsGRVn97HGUI9lJiADymuv7vK9SFApuiNVhdjy72LkF3dWdt8T0AbK3GlpAIDKslJUnfgQEoFqzY2IiJIDg1JERERE1DDZiZlYtFEHfw4rAaMa22/OJLhkN8MpyhVWu/dpU6lsEIaGSgAIMhJMqsVMKfXjUn8udq0sxeiNN2rGVC8p7P/by/WdavsmIqJGiUEpIiIiImrQzMM99oMVP0p/1KvjT14yBn1iXxHfKDVdSSkclArIgEW1pwTYmGS64yj6Zn8AAEjxp0H5+CG1mWjN8tsAAFIzsqo7KyIiSiIMShERERFR0rKVn2RSH71hlM82zsJs0VpC9awMrSJFycOxIPMC5fEz6yc8nsdRhjNzlkTaql6gevme8Xql8xqZIxERNUwMShERERFR0pFWRZMABEMaQvdc/9g8mOM7UJbQfKogY8SHTOabaLxF6p9K7Qn1MsDQA3VRcUcNLd8LB56+/ddizXP1uMGHAcNxTU0p3c57agnX4CIioqTAoBQRERERNWjCMsAEqCM0MSo26TrVti7zFQf78AYDKM6clNgTU3Xhl3b2zdMHy4znIxlC1j3oH5lOzWL3O+3yvepFpRwu7Ube7tRUi5bq/C/1K4hkb1n/WBmVIiJqzFyxmxARERER1b24QyaW8Qtp+hCIZAvtLd+Gg72PoGe/wQAAT2EWSvyJZU3ZZTpdkx3/9OGuZuJY3GOFs5LUQ1Q3U+rMMeMgHA44XW40a90aJ/U/J3JSycYSEJr3P3hcSPNMKb2aK01PREQNEYNSRERERJRE4o+omLZ0pKvOB1t4s7xI69U8MlJRuXFcyzFqKqMn+utqMXkyOpx9CVb+5X+iX6rrJrx8LyADqsfVmSfQoc+p6NDnVNNz6uw2B/zmx9U7AlZvKkRElKS4fI+IiIiIklokmyaO0IbwRB7GOZ5Ve32MxzzmU71IkLttGzjSdMvkbLyA2li+Z59qiaVqSGX3PYlI+pY+U4yJUkREjRqDUkRERESUHDTxiniiFZEwTORIvNEOu+2jt0skvyv4KPQaHGYRKH2v6irjInSZKiuphpbvRaUUVgeEKlNK08QkmqavX8+YFBFR48agFBERERE1UJpwTJzMd4IzBmJUhbdN6jnZF2s3wMSPahe3ac9bzVgfdFOCUlK9+17thXyE5u2Po6aUoeA5w1JERI0Zg1JERERE1DDZ3YFNtQosfCBWKEMKYzZRzGmEn8vEFr6Z5AWZ9h9vL/EIIABheL9ql0Bkdz0pjB8/or6bLDZFRNSoMShFRERERElCHUiS6t+qp4aycaLFT8zyn+z0ZViYJwQgYsbRDBeqM6XCy+ZqNwlJl9EVfhqInFXPKdKcNaWIiJoSBqWIiIiIKHlI3e+2GCM4p2Suin2V7eV8dtvJmG31L8vn1N2uJ5g5FAlEqbKW6mBpXHDpoSropHpPTZfvGa4nIqLGjEEpIiIiImrQzOIwrY/Hahh5ElAdlSJNc8nu8ha2ZhB7OaBxCtprEguvVLqdCVxuslAwFAwKIKDUlArUYsRHH9AzBPikKlAW7cWxphQRUaPmqu8JEBERERGZMQ9HGBe2+R32l/FVZQ4A8BW+KzkfmzcfRgXaINtOXKo2RCm6rkot0hUCj28hoNDvviel5dLAGqWbZmT5XuQ78fCcmA5FRNR0MVOKiIiIiJLWntYSR7JMCoZbpiwFv5Mt8eeh3O9JbFBpkomUWE9RLrboUYiERlNnJYm6XL4nQ/9RMslCQTLolu+ZZJqFeqj1ORIRUf1hUIqIiIiIkk8oVlGcCcgYd7SasIYMWDWrnsRiRSb9xNmJtHhiUeg8ICPL92ozJiV0b4ZwGAOHQpmHutYWt9sjImpKGJQiIiIioqSwL6cYG5ptDj2LhDcij8LpNvrAhkmgwyT4Y7+wuUl3NopiSH2gRjkexzhxFVU3OapZvlerRaU0cxG6TCkAcMBOoXMGqYiIGjPWlCIiIiKiBioYrAgHMn5qfwCZvkxtE8uYhcWJUHqQnXBMrCCVeYipesLzEtHSmGIOJQxFtpRMKQTgVJbvJTTFuEjdujz1mA51oXP9a5KGB0RE1AgxU4qIiIiIkkJAqJd5qVU3cFH9wEf8PUS/Qqp+V2cLCQF42mbGDEwJXdaYuqh4ne++J2XkuRTGNtE236uFuRERUcPBoBQRERERJQn1Qr3gYx+cFi1VQRHNSjJpcrBm56ZnueTORsTF7EpHqguOVPWCB5OOdGlQ4TkEEKib5Xs6kRhVfMv3GJUiImrcGJQiIiIiogZNXXtJtyoNVTKyg56d+EUkAGIStIq2XE93ztZYMRvZC5DVRFxGKNlRAdXuezXQsS3S9FOHWbCOFaSIiJoWBqWIiIiIKKnJeCIZDT7zJlxHy+wo4EpJS6jX8PI9CRlHsfRqUAfx/FUQvsrwTFRzitSUMsukAoCPO3fCv//9bwQCtbRrIhER1SsGpYiIiIioYdIHkITyH5OTsJlmEwxuSE3No/imlVhIR0Z9arf31l262hjLLAMpFACSEo7QJ4BAbRaVClFywSqPBX+XJsv3pLFWmMMXfF7hduObb77Bvn37an2uRERU9xiUIiIiIqIGLtqyOqvjkRMxQy91tGZMX7Q8Go+vCk6fL3Sdqji4I9rte5S6Vqrle+EXXJshKaWIuSsNSMuFQDjTSfVa1Lvv6WTtd6HfNz8h1esFAGZKERE1UgxKEREREVGjYBVkkdEaqQor6cNFIlqNKbuD6/pW9yhM1h2qj1z2zj/Q7qv30KysOMbQ0QYXof8al8rVSU2p1Bxg2o9Q3iCT3feklIY3X0igYN8RuEPBKFl3BbCIiKgOMShFRERERA2aeWgoniCFeqleAhk3JhOokeLj4b5U/R9NzcbG3ELledqhHTh19+b4+9ZNUKkpJSUcofECdRDoCQacnBD6CQFwmv5kdccYiyIiatQYlCIiIiKiBsmQ1ATzHdti9mN6iTpQFTvyET0bSVU7yaKZ8bB5w4Bw4PbzbsNrF92EKrcbAOAM+OMOzujnq9l9ry6X7wGAwxVZvqeuKaUqvh7+cRh/VIxKERE1ZgxKEREREVFysB2PEtrG6rhGKAAV1459NSh6iCUyKZ/bg53t24euEaZt4mG2fK9W1+9ZBKU6HTkTvxYOh9eVoSm+ridD+wQSEVHj5qrvCRARERER2aaLJtkJq5hfYRLwsF1DyqJdLcVQRLQC5uonqmbRlu+Fr6mDzfeCASeHAy5RCQDofOQsbOsCBBwuOBAu5G4jU401pYiIGiVmShERERFRkpAmj81DNpYhDLPgRh0k5CSy7DBSdCqREUMXhQJtjtBtf0AGIgXGa3FpnP7VntJsEX5u+RWOpu0BAPhc6cqcgsv3zIKEtTY9IiJqIBiUIiIiIqIGTR3QiVpzyCLTKdFlYPHsvmfWMlbIpzoxF/XUjEsRTQJ1oTYbj27Ev7cvDV5XF8lHoUFapm/B8q5vYm/OhuBh4VQtIzS9EN/0uxcVzqw6mCQREdUXBqWIiIiIqGHSRU2k1TmhPR812BOuKRVnSKg0tPxMTb1EznZ8R1g+iXJJ/NEjfc/tMtsBACr8FTheeRwAUOmvirtf+xPQFlMXwgkACAh/8LgQcKoLnUcuVB5JhwsBwWojRESNGYNSRERERJRERNSnkeOqE5roUXhZm9kl2oNutxtOZzCYUiG8UecUCO8uZ0la7swX5QqzoRLSPa87lly6BC8MfwHhUJE/EGvOidO/l1UBN7JKXXB5KyClhBTOyPI9k5St3FztxxTWlCIiapwYlCIiIiKiBq36pYVU2Tf28qkAAB6PBxMmTEBbpxN9vR2ito2VdeRMJKYS9wuPPkinnE44q+CsmO1qlJQ4snsn3lnXA+OWt0XnLb/AV/YJpH5ppO5p+/ZOFOxbVXfzJCKiesGgFBERERElLXvhlRjRnSiddO7cGQVuN/r6O8a4wOSY6pAxKCXNmsU9v5jX6II/wfpcoSWMtRqbCq+plDj463YEZORjR8B/MJQpZV1wnYlRRERNA4NSRERERNQgReIS1mXEhSYLSt3eoji6NDkad0aSSZUnW1EUkXDR9Wg8FSXwV26A8JUq4wiLtYJCRM4FajPyoy7E7vfrTkpIOLS77xkuk6jTjC4iIqoXrBxIRERERElBCm0QCrAXttDsTicDUa6r+YCR0q9p11LXSmgymcxmpa/VlFHuQsHOdfBiXaRdqKh4LLUalAqRkPD7fcHxIEPZURJSOJTXoq0XpflhKc9ZU4qIqHFiUIqIiIiIklqscIU0BDqAmg5AxcqAsjuqOoAW6dPsFQbPpVWGA1BOyNTWcMqWcLq7WvavWb4XYy7VoQ6eSX8wEBhwSDgCofGFQxNg1AfbGIQiImoauHyPiIiIiJJHtFiFnTiTaXQoegBEHzAxG9AZSIvaT7whMBnnRcKRgUCLAXCnD4VwpFlORf1a9h2vwBdbDqO00hfn7OIgoWRK+R1SOSiFA06T5XuaeXIFHxFRo8egFBERERE1UOG6UWanVNGKUIMDzSItj2dY1JSqkUypxCMlCV2ZwEVRLxHBzKVPNx7D719ejRv//m0is4ohsuwu4AvWlAqEP3nIYFDKYbp8D5bHiIio8WFQioiIiIiSgoQ01JRS29kycm5dZ7MC6FCCWXHsfRekz5aynEakv50efYFvy6YxupUmbc0DdkK/5M+kQ1f2D3Cm/4LCvBQAwO5j5dHnmQD12xUIBN8HbaaUQLs1e1BwRAYzpUzmqS4nzyAVEVHjxKAUERERETVoZoGo2HlO6uJM9q63XKVnSh8kMQZWvKod8DoedRqWqcWsL2UaqbE3SYvN9wAArpRDSO/wImZf2iU4Tq3GeyQCPrPle06c/fJq/GWhH06vMXjHEBQRUdPAoBQRERERJQeh/EcTtDDWJBLWz2Qiy/eqXxS9eZn1bbdZAGY30vGLPw8A4JVRdtNTLhYodZXamku4rlR4+Vyt7MKnLM0DAv7w8r1IUKokLfh+pFUBKeWRoFS0YBoRETU+DEoRERERUcMUiBahSCx6EV4GpkmeitGVIehlknlV07YiC+XwhMa3Hs+hmtrOzJ3KY1lREXxg4z2slZiUas5my/d2tHYi4Ai2EZoJCLRO7YicivwoBeaJiKixcNX3BIiIiIiIzISXfUECEKpC2RasQhhSaPOqDK1rIPYh4U+8K5OpSFVFpTaOEuMloYDNhGMZ2Gw6oVDNKZfxdl8JGIlw01pMT5Kq5XvOSFBKSAHpEEBAQvilklnl8rlwfsHlwAmgPMsLoLj250hERPWm1jOljh49igkTJiA7OxvNmjXDddddhxMnTkS9pqKiAlOmTEHz5s2RmZmJcePG4cCBA8r5H374AVdeeSUKCwuRlpaGnj174qmnnqrtl0JERERE9cifqr51jT/jKSaLzBwhjMEmk/3izK6MPpzhEmHaS56oNPYVaphtEalzNstF5pAhyLpguMmshGZ2tRLuEepMqeBuf+GpSkg4pDMYlAIAKeFulQ5PYRYCjshSPpeT358TETV2tR6UmjBhAtavX49ly5Zh6dKl+Pzzz3HjjTdGveb222/Hv/71L7z99ttYvnw59u7di9/+9rfK+TVr1qBVq1Z4/fXXsX79evzxj3/EjBkz8Oyzz9b2yyEiIiKieiRsLp3Ttos89u39xXCsJoi4M3mit5eAEtjRhKoMgTOhehR57C5si8Ln/gZP+/Ymk9VeWSs1pUK8lRUoO34sOE44CiclmpW3wk89bsSO9iPhCEgItwOtppyKX0/egR0n1gfnx9V7RESNXq1+/fDzzz/jgw8+wDfffIMzzjgDAPDMM8/gwgsvxBNPPIE2bdoYrikqKsLLL7+MN954A0OHDgUALFiwAD179sRXX32F/v374w9/+IPmms6dO2PVqlVYvHgxpk6dWpsviYiIiIjqWGKxichVXpcTuzNaoF3pYSBU36gsNVfVNr6gjP29ACNLBSP1kcyDZXoBVSiq1kJGovZqSrk8HuXxhhWfAtDWlEr1Z+Bo3sk4mncyDh6bgf5v9EePvB64Vp4Lp9kSSyIiapRqNVNq1apVaNasmRKQAoDhw4fD4XBg9erVptesWbMGXq8Xw4dHUo179OiB9u3bY9WqVZZjFRUVIS8vr+YmT0RERNTAPfDAAxBCaH716NEj6jVvv/02evTogdTUVJxyyil4//3362i2iaiZ4ERACPzP0OkoHvon5P3PXKw8ezZOZLau/vRUzOI6Hp/2uYjjdUjLJ/ZEG0lZvhdqFLUWeoIyc/PQf9yVSM9pBqfLhbTsHHTvNwAA4HeWYX/HfwEyuKzPGXCi1FuKNQfW4KgoUdWPikyMNaWIiBqnWs2U2r9/P1q1aqUd0OVCXl4e9u/fb3mNx+NBs2bNNMdbt25tec3KlSvx1ltv4d///nfU+VRWVqKyslJ5XlxcbONVEBERETVcvXv3xscff6w8d5kUtg5buXIlrrzySjzyyCO4+OKL8cYbb+DSSy/Fd999h5NPPrkuppsQswBLOI9IqL5jjQR9jFd4nW74s9vAXdgOFRt2At7dNkeKdlzHAU0AKb3C3mVmgplS2tpPNSVSU6pWq0ph0O8mYNDvJijPD+/cgVf/MxWZshJ3t/kFz/3iR0A48HD/Obhu170o95Xrir4zU4qIqLFLKFPq3nvvNXwrp/+1cePGmp6rqZ9++gljx47FrFmzMGLEiKhtH3nkEeTk5Ci/CgsL62SORERERLXF5XIhPz9f+dWiRQvLtk899RRGjRqFu+66Cz179sRDDz2E008/veHW5TSJlegDFRK6YuemVHWXDG1rJg1JAqjsXY6vetgPpBgLnetmZRqN0++cZ3s4VRfhTKngxbWRKWU6rsMJILizIPw+iFCmVOuUfLhEMJgqZbAQevACLuAjImrsEgpKTZ8+HT///HPUX507d0Z+fj4OHjyoudbn8+Ho0aPIz8837Ts/Px9VVVU4fvy45viBAwcM12zYsAHDhg3DjTfeiPvvvz/mvGfMmIGioiLl165du+J74UREREQNzJYtW9CmTRt07twZEyZMwM6dOy3brlq1SlMiAQBGjhwZtURCQ2cnt6nGAxvSGMoSAALN/XhqrNP2uNHOS9VZu4EnoQm+2XnV4ZpSdROVEspuewB85RAyWN8r4PdHgmyq/0YL2hERUeOQ0PK9li1bomXLljHbDRgwAMePH8eaNWvQr18/AMB///tfBAIBnH322abX9OvXD263G5988gnGjRsHANi0aRN27tyJAQMGKO3Wr1+PoUOH4pprrsHDDz9sa94pKSlISUmx1ZaIiIiooTv77LOxcOFCdO/eHfv27cPs2bMxePBg/PTTT8jKyjK0379/P1q31tZSilYiAWj45Q8C8CuPtUEMdVBGHeqoL9ajq88oO+IBquV7dmYeR4ZWHdSUMh03NKCEAPasgZDBoluByio4ROi7ciEjQTIhEH5drClFRGTPhr3FuPsfP6Ckwod2uWlYdH3/+p5SVLVaU6pnz54YNWoUbrjhBjz//PPwer2YOnUqrrjiCmXnvT179mDYsGF47bXXcNZZZyEnJwfXXXcd7rjjDuTl5SE7Oxu33HILBgwYgP79g2/mTz/9hKFDh2LkyJG44447lBspp9NpK1hGRERE1BiMHj1aedynTx+cffbZ6NChA/7v//4P1113XY2M8cgjj2D27Nk10ldNUkph2wpW2AvYWCUXWWUd6TN5Es/IUmVFKb8LTbaUlURCNcKwBLCOMqVCgadAaGBHOFOqrASO0AKOANfrERFVy4fr9+OnPcEvkBy2smbrV63uvgcAixYtQo8ePTBs2DBceOGFOOecc/Diiy8q571eLzZt2oSysjLl2Lx583DxxRdj3LhxOPfcc5Gfn4/Fixcr59955x0cOnQIr7/+OgoKCpRfZ555Zm2/HCIiIqIGq1mzZjjppJOwdetW0/P5+fk4cOCA5phZiQS1hlv+IJT9FMf9dkPLtYk6n4Q+SKiW79kIaCllzuusplQo68mdDtx/UKkpJf0BTeAvXFOq4X+UIiJqeMJfNPRuk41nrjytnmcTW61mSgFAXl4e3njjDcvzHTt2NHw7k5qaivnz52P+/Pmm1zzwwAN44IEHanKaREREREnvxIkT2LZtG66++mrT8wMGDMAnn3yCadOmKceWLVumKZGg1xDKH4hEKkSZBFrsLaCznkXNMsuDUgVmhIgE3NT3yrpgVUW11t7V7bLGcKYUAhJwpShBKb/Pr/yMZeh/wQvqaGJERI1I+O/0fh1ycXLbnHqdix21nilFRERERLXjzjvvxPLly7Fjxw6sXLkSv/nNb+B0OnHllVcCACZOnIgZM2Yo7W+77TZ88MEHmDt3LjZu3IgHHngA3377LaZOnVpfLyFhflQajqmX01lmCoUPiwQCXVHEzNhS6inZ7C94Ucx2AZv9aaYSXj4X7qPOCp0HR5ShYJQjVA8s4PMrNaWkkIi8S+pi7w0tz42IqGFLlrh+rWdKEREREVHt2L17N6688kocOXIELVu2xDnnnIOvvvpKqbG5c+dOOByR7yAHDhyIN954A/fffz/uu+8+dOvWDe+++y5OPvnk+noJUZmFIYQU8FdtRoVjd6RdrDtvaTMgZFlUKuaB2GwGVZRC5zGaC5NHphXTza5VakqJ0Fh1VVNKW7RcvfuecCrRwsj5OpkVEVHjkmwxfAaliIiIiJLU//7v/0Y9/9lnnxmOjR8/HuPHj6+lGdU+l9cPb+kHyvNdLfzoerAeJ6RnGkkxhpD8ld8DAihK85gG1dT5QnYHtlNHKtwSAEQotazuakqFipkHAqF5BH8PeAMQLmPgkEEpIqLEWW3S0dBw+R4RERERJY2Ou44D8AEAjqUVYG9eIgvY9Orua+Uid7by2C+BH9u1Mm2nzpQStRY1quOgVPgDkpSQUkZ231MVOtfUlIKIr5I9ERGp/g5NDgxKEREREVGDpg5LuL3BQIZDulHmzoFDmgWlzAMZ1blNt1OBKuYqQglsyuyOzNThcLjaAwB8Tqu5CtNS6DVBn1FVZx9g1N/aS6kUOg/4A3DArKaUunlyfcgiIiJ7uHyPiIiIiJJObuAktC39Bd/7SgFkAdAGW4TJkjkJs+UMUtXOPAhkdoU0tLBYg2foTMDtag2XuzmqSnaajmc5cDyiXastKRWzflVNcTicymMpJUSo0PnKH7IwKOMqfFb4f0CaquZUPSdJvbb+News2Qm3w4322e1xRfcrkmY5DBE1XckWw2dQioiIiIgaOLNAgMAp5XvhQMBGpk8dBBJMPgVEH1XYahXsO6FTUUbW15Sqq933Iq9108rP4ajcCJneGZVeJ5ofL0Qf13moRA5+QRvsKfbC7WwOp68MPk9JncxPbX/pfjz+7eOaY6e3Oh3d87rX+VyIiBKRLDF0Lt8jIiIiogYt2tI5zXNpfiYchLEMvdRgTMayK6HO17I3oJ3le+p4kt1C53p1linldCrvw/vPzsUesQUFW59A93bFAIBuh89A2Y+d4UUqTgSAY450pJa3rpvJ6VT6K5XHWZ5gJl65r7xe5kJEFI8kS5RiUIqIiIiIkpCU0Ieo1M9SfSmR4ydO1rTrObBAk7WTmumOPpawHqdmCbQw6V2olxiG5xJjEtECVOE+1C3qIlvKnZKK8yZci459T0dO63wAgF+UIW/dvw1tU70nQnN01Nn8zGS5s5CbkhucQ9J91COipizRLyrqGoNSRERERJQcBJSvgAVE1K+DO57oqDx2VuZrzg2d2BOX3n4aACCnZTqyW6SGOrVRiAlATX4Pre/pXqTh8ja/4A+dTqCn80Acw9n/8BFZvqeaRx3FW84Y81uMu+9B9L3gQgBAQDjgWfclWux5D1mHlyOz8hv0/PlVdD2wKjSxupmXnlkQjMXWiSgZJNtfVawpRUREREQNkroEubnogSnr/tQZRzVz926rFxuN0iDQIb0UOWk+eBz+6k7LlPLtuTooVSsjWXO5g9lp7jwftvfoj90HtwVPlAGdS/cC6cElc4ViF67F/4Pzs5VAl/cAd1rdTlSYFccnImr4kuWvLmZKEREREVEDFWfxcGneyvQaUfMRmVj3/1LTwEa9qGhtzOasri9l49OIellgoI6/Wne6PcHfMwMozdQGmso8bjgDBwEE36UclCBz/2pg79o6nWNYpCZZkqUfEFGTlGx/VzEoRUREREQNju9wOUQgeKtqvvee6kTM+kpBid6myxr4ulnYGV01jDaoZHfm9uYphPEdqevlHi5PMCjlkw5UVQSLinudgeBcBCB9wTmWykwcQ3ZokoE6m1+yfagjItJLkkQpBqWIiIiIqOE5sWovIE1uVbVr8DSnYmYqxThvN/Z0HFuQtr2lvcaxOheIb+I1uB5D3VVdZ0qFl+/5pQPeymBQqsodCkoBCFQEH1eVuOFTKo7UfaBIXSiYNaWIKCkk2V9VDEoRERERUYMjvZGsmFJfSfS2tT0ZAE7hQoojAwAQgBepe/KQ4rV5K20aSAovCYt2XVxT1GnYn0rCy/fKfG5UlJUDAKpcwZ+5My0AEcqKcvlqp65WLGaZUsyeIqJkwppSRERERETVEgwCeANVyhHNPbaMkn2kahm1lJO0lwEjhEBhRk94sq6MHLMa36oPs+GFExUpeXH1E5yPWf/C9LFVu/qsKeUKBaWOVqWjorwCQCRTKq/nCaSfdhkAQApHZJb1kKkkhGChcyJKKskWPufue0RERESUFDSZKhLBndFsXGV8FN83yErpKiEgHPmR42Z3/nGWgqr05MCX0R6oWg8AcGrqr4eCR7aCMfZfUGTnQdVYdfwppuCk7miXU4XSch9cLTrhp8wjOHHCh9bHghMTDhfg19fzqp+PWtECfE1WIAB8+zJw4gDgTAEKzwI6n1ffsyIilWQJqDMoRURERESNWhzhmtgtauwm39iPO60M6Y74+o+6Q5/lyMFr1EPVdaaUJzUNl/ctAg5tBK6ZjSvX/w3N/nscQCjeKJyhyTogZSj6WJdzTLZUg7q2cxXw/p2R584U4J4dgCe93qZEREHJVv+OQSkiIiIiSiLBm20BY9xAnbmUXlpocWV1xL9cLzYJh78CfgCutGBtpcKSVjjur4JT1SZedrJ7pMXjOiNClUSkH0IIZTVmQAolKCWFMxiLqqFY4ImqE1j26zJISAgI9GreC93zultPMfQ/IPk+6NWqyuLg7+ktgLLDgL8S8FUwKEXUgCRHnhSDUkRERETUEFl9/lfXcRJCWcYXOqD7HXAhoDyr6ULVkWGFZXmreIRnd9qBbvjQ/QM8Qncinr6izMesppQMWLWuRUpQKhAMSinzERAi+DFFCofqxVT/5/fmxjfx9PdPK8/TXGlYccUKpDhTYl7LQucmmrUPBqWIqMFItvg5C50TERERUdIQtgIDwTZVnmM4w7E3asvjB/Zh25rVMQaNHXGqEvF+12vssySjHF9lrlPO2lmap6mTZfd7cSV2p663VQ+fYsLvqwzAAYcqUwqRoBQckRdZA5+0jlUe0zwv95WjwldhaKd+P5KlLkudMvtZJNsnYaLGLkn+6mJQioiIiIiSlLB4tg+HWq9AUe46tHSUK0fVH5kz81pAhDJ1ZCAAh9OJFu07xjd8jXwGj3RS5fZiduHz+EeP5ZoWCX2usJMppakplcgg1aRkSknN8j0J9fI9hyrWUf1JhpfgXdv7WsMx0ymq3khmSqmF3gvBj5NEDU2y/U3F5XtERERE1OBoAgUWQQOBYNDANGYhZORzs8m12S1aYtKTz6HkyCFk5jVHenYO0rKyE55vjq8sRgsbHxOUoIz2ee1loKgypeojyyVczFwGND/HYE2pUMAwXOi8xseu+S6bpAawOyIRmUuWnUMZlCIiIiKipHSo/DCAVJMzVhlUWnlt2iKvTduY4yjLt3QdCc3jeD6Qa9vGvtbmBwtp+UTbmwjXlIr0W7+ZUgE4hAMytJxQQsDhcAAIwOvJwhFvZ2Q7/ciswcBZrA9r6iBd+P1ioXMV5b1Ijg+9RE1Jsv1VxaAUERERETVI+vtqCVX2kwS8AV/U64Xuzjzx+/TIjn/VJUweGUeLI2gl1T2aPzbOQSjjCBH8AFM/NaW0hc7DUw5Ih2b+n5fciy9KfPh9sURWTQ1tc1meup4Ul++phf8gMihF1FAlyx9PLgImIiIioqQR7R47t8RtcU04CFO7Er3/N3yrraqtFPy9ZqkDMg4lC6iGB7E1EVWmlAQC4aAUBNKdApkndivbAgbgQklR9YcMB5biKV6eLEtg6ofqvUm29AyiRirZAujMlCIiIiKipCOU/wCB0LIvV8DG9601+dVxjdQ6kiaPtGyNksDrkjKyv99VL32FzBQX7hnVAwO7toi7r4SEg1Irn4Hw/gKgIDQvBxxC4MzvHgcCfnw79D6UBNrUSMwjvAQvVqaUZvc9Q7EvUn4YyZKKQdQEJcufTmZKEREREVHDowoAxLqx3tihJN4ua0Q8NaUM2TZRXlTUQuc18ClDqZEEiXa5aQCAbYdK8cPuIvzft7uqP4Bdnozg77tWQyAS4yvxpsEf8EGIcPnzUK0pZuI0IPxZEDVUyfZXJTOliIiIiCh5qOMzgQCEBA60qMSeFuVoezjN9JKa/7ZYwN6HcrM2dgpEJ7BTn+G0vVe9+H8G4ac9RXht1a/4+OcD8NVlxfNhfwLyOgEONxxF30LuLAcAbK9ojh07n8EwGYATgEBwCV9oJV+1mGZFxfgEpw7iUYhpoXO+P0QNSbIkMjIoRURERERJQ32P7ZR+pPtSAFRgV6tyFBxOhYCA8KRqLmjY9+WRTCDlSC1PWF3oPC/Dg3NPaonth0vx8c8H6jasUNA3+Av4/+zdd4BcVfn/8feZur23JJtseg8EQgKEDpHQuwiCdGyABdSfqCigwhdRsIuoYEFERUEFAUPvLYFACunJpu0m2V5np9zfH1N2Zne2b3bvZj8vDTtz55Zz72y555nnPAfz7OewWAXAvJOWkpeeRejDO3BCLAAymJlSPdWU6mlIn0SMlF6viNiWhu+JiIiIyIhgdQjgpLkzcFjh29mPJjbw56Xb2TlvMq7UrC62H2qmw9dkz9p1jLlYfa5l1LcAQXyQx2E6LxtKBoMVqQ327LZnWRsqj51/dGikNQhZXPHnFx+c665dKnSeTPw10/URsaOR8rtLQSkRERERGZGK04sTngedFpajw+2tFVeaqZ/H6TKrZj8VqYoFSUz0S98P1F0mUNLXIstCgzBErj8mZU+KZYjta97H88H34rJwoplSg3e8njpryYJzqmkVJ9nwPV0fEVsYab+rFJQSERERkZHHgq4yNKxeZiYNVF/2a7A6BLG6CZX1Zsc99Tm62UeygIyjY0BsiN102E18fMbHATAWBAnGglRmEINSGoI3yDR8T8S2RsqPp4JSIiIiImI/ltUeQIjGETrGE7qu8p18l4PQrC5Z4WDKfjliN7tJGIzWy8MlK9wdDVQNZZ3zeA7joDi9JNIWCGHFgouhunCjfLv3DdrxjDE91pXquJ4CWvHiZxwYaC6iiAymkfaTqKCUiIiIiIwY0cCLgd59DDxknxQn6wb09uDJC513zPjqi97UEkleU6rfhxwwExl6aSxDCIvajPTw88iYwpYN24etbdLBCBseJDIajZBEKc2+JyIiIiIjQ2JmT+8N+Ma8i+DXwPabLLuk9ylhyZvUuxYlK/DtiGYDDWOwIZqRZKxwptSaieMpP+pM3HsHcfheZCfxBcy7O2cVOu+BMYycrq/I6DDSYsbKlBIRERGREciE/9+Hm+/+3qf3Zrtk3fKOy3p7fCu6bbSmUvxIqf0VAIjsNjScQam4IvWhSMisLTWj/QIMYaHzZOuOtOLBQ0OFzkVsa4QUlVKmlIiIiIiMQLHQTZJXuil0Ppj36P3og3d3+N7trvusntha3UTrTJKsqFimVK/asH84IkGpvHoP3k1BQlZ42J4h/HWwC50nyxhLtp4koQCUiG2NtN9fCkqJiIiIiM1Fhm91vNHu5afAg1+G2XTaW4+dgISmdh1Qg2QBpf3TwUgcvhf+OlyFzgHcKakA5DV4yFsDfnyEl4QbNaht62Vw0qBC590yJvxPl0bEdkZGnpSG74mIiIiIHXXRyTW9ydAY5Nn3TIevg62r/fau0HnfW5ds6Fo0vjecQ9RmHHk0RSctYvOYpsiS8BUwgxjxSAgs9fGcNXwvXvRamCTLRGQ4jbRfVQpKiYiIiMiI5Qq0DtuxjZUYEOoU6ulNx6C73kOyFK9Ac58P0Xm3nYNS7YXO+7HDQeJNS2fs0qN4d2ZNwvJoUGow29ZTTan4AJQKnScx0nq9IqPQCCkppeF7IiIiIjICRfrE7kAT8Z+ztgeKollVoYTNHF7ngA/defDeQLOoOg4F7MY9s2Dq0RBK6Xbl3gRSkmX+DGehcwCHcRBytLch3JxBrCnV153ETS6n4XvxItcifvY9BapEbGGk/SQqU0pERERERiTTReglftib1bweZ0r4c1jv7HzSjxzbjwMlHsUiHNjyBFN63dK+Ha9jkKrD9ltfgUBLeNWEu/le1thKUiPJDplSAE6Hk1CH+lux4XuDnCnVXaFz6a0RkoohMgqNlCxPBaVEREREZMQJZyv14oY7WIcrNxw8+ml1Lfe9vQ1/MNTDRsk58cUdHebvPKnX2+5Mn0NdztS4JUnG5pnEJd2fX3itlAx3r9vQeQ+dg1J2y5QKR8kihc6HsIPV21n6Ri0rLlNqpIwREhklhvvDhb5SUEpERERERgQLK5ZEZNoXdhJyJN7iTixIA+CjigbufmYdb26u6tfxS63lTNryn9hBUwJpCa3rTlXqRJrTSro/QMIuTPLl4xYmLHO5kw9H7O4TcpMkiGBsMgLLYRyJsw9aFmYQh+9FGdNVnl2H9bp6H0a9ZBdDF0jETkZKvFhBKRERERGxn17Nspf8jrsuNyf2OPXgg7nz3IP41umzGJeTCkBDa6BfTXLTwqRtT2Msf7LGJFmWeA6lO15Iujy2dsfaRSbJnmPj9QYeAIivr+SwSd0kp3ESSuihhIid62DUlIrspC/DWkbKEJjhoWsjYj8jK0CsoJSIiIiI2JLV6UEHSfrDPocPDDidTubMnk3Rl79Edpqba46ZTFl+OLMpEOrbDXuyzKLw4XvqkCe+Pm7ny3HL+5LJFNdeR1fbmcRSVKbrc0w2HM3Ehu91udmQCGdKxbXNaq8pNdiFzmO1tZLsONm1Ge6Ana3ED99TYErElkbKT6Zm3xMRERGRESEcFEgMDHS86X5l7CtcO+9avnDoFzpt74wEdAL9rCnVuUEdh5l1H7RI3kHoPiDSaZXEyuZdXo2uAmnhtToUr4rbss+z0w0yR+T8LAeYEGC1v1eD2bLurk9/1ht9krwbwz32U0SAkfejqEwpEREREbGd3t1TJw8YBKzkw/PczvCtbyDY3zv2jsXJu85a6ijcSejquF0M59tPn3MnC7Q4bJIp5TThGlnRGfgsy8JY0UypgV+PXhcwTwjYKVOqawraidjVSImpKyglIiIiIiNGrNC5BV0GpULJg1KuaKZUnyMvg7F+7/fRbfAjkkkUzcoaSJ8jcYhaZJmNMqXCLIwZvOF7AzHc18ZWNPueiAwSDd8TEREREfvpNrMoyiRdpcuglDMalOrr8D0T++9Ac6zag0kds66Srhz+Eh8MMR0/U+57QCBZ5o8jVjdpeLVnSlmAoWXPWvb4IOQqxRqEnktfA0sqct4Vzb4nYlcjLX6uTCkRERERGTESggRdxAu6zpQa6PC9xMOaZAu71OGYSdePZAR1mymVuGFCuamExz0HUxKLfoe/hmySKdWaEm5HoLmKplAVgda32qcnHAQG020BcxU670Hs+0SFzkXsaqTUxFNQSkRERERGBGMZjBV/+9rf4XuDVeh8/+wmWYgkJpYplezg/S/e3T4TXa92sd9Eg1LPHlLB9qIWGgpSwy9YwUEJCimwNMjiv5eG+5tHRICR93tOQSkRERERsb20xglc/ebdsZpSeTXrwCQPw/Q0fM8/wEyp9vv9Hgqdx61nTHs9rPAL3QSQYpsnW6fzzHn9lTh8L/x1uAudR4NSDekBnjtsDytKyyOvWKwOHsaql3bQ2ugf8HHiA3PdDekzkf+FWzCyOnr7l66FiAwOBaVERERExPY8vjxM3K1rdv1m+jr7nisy+16wj5EXy2HhD/k6LTfED2HqYa48CxyWhTdpSdfwfkJpkeF7sWrukS8JY/R6d/ve3fC9ZK/FakoNc7bLuIxx5Kfkd/n6S39Zz/N/Wjvg4/Q0vDHpdVAcpl388L0RMkRIZLQYaUmLCkqJiIiIiC3F31c7InfZQYc/8jyEZQzZTZ23e3v326zat4rq1uqE5bHhe8G+Dd+zjMXzux8mEGrt8Er3nfFkrzpxdtx7+yN3Vz2JuOWOxOF7CcGTXtZcimX+xNeUiu5imDszae40nrngGX495Q6m7ciMnXlKy17chAODzfVtg3Ks3mRAGWNGTF2WYZFwbUZYT1jkADdSfnVp9j0RERERsZ8O0ZE0WvGRnZA1ZAU9XPpCiPJ5hWx0VsWWV7VWcfGTF+NxeHji3CdYXbWafS372FTnBTz4+zFGrbZtD81WFRlxt8+mTxGc3q/bl0LncS/0ev/d1ZQa7kLnAF6nl0J3Po4QRGN4Kb4aDuJF3mTpgPYdDcT1ZVY9Dd9LRtdCxK5G2k+nglIiIiIiYmvh+b3Ct9nOIMRqnTudZLTCvY1n8rvVD1Dg97Lp0qPZUreF3U278QV9XPrUpexp3gNAa+WpwHH86sVNtAVCnH7QGA6dkNvz8QchENTt/rtYkHxAYNcDHfo2G2DHGebCX+0QlIoylunQuRrcQuex9zXpSD37XAdbSvg+GSHpGCKjTF+C78NJQSkRERERsb8OQ9Mcn7se8/abAKTj5pMvhXBme5h+4k8BuOW1W3h84+OxgBSAy+UnWiL7d69u4bGV67jilN3srZxCoXcyrf4gx00v5PDJXdc0GuBJxD02nZdZndeCDjWlBkGy4XuxmlKDe6j+M4mZaFb0P2Zwhhj2ZUhesuslEZp9T8R2RtqPooJSIiIiImJvloUJEE2ZAsB1zHEQCUolCxZcNfcqAHwBH2nuND5z0Ge49ukbWR96lpA/j0DdoVQ3uLjn72VAAFgPwCPvlLP8Wx9LGrQYyH2+6fC125WiR+r4HOIKnSdrTdyMct0OAey8TnT2Pdt0ZozBdKyRZYUGnJQzkAwoZU/FU6FzEbsbKT+aCkqJiIiIiO11HMqWtAB13PNJ2ZP47lHfTXj5snnn8ht+QzAUYsuHE7H8ebHXHN7dhHzFVDf5Oex7z+ILBLnsyIkcVJpNlT98y9zT7Ho9nUHvdRh0kVDxvePwveSt6uvse7GRbLaJSoUlzEQYbdogtbG7WlEJy0ZIx25IJX0P7PW9IzJajbQAuoJSIiIiImI7e7Y1dFiSOLwsMWjTuxvwC2dcyIUzLgSg5vQ21u6uZ8WeFTy74z94UitZ/t4xBJsnU9UUnt3tly9uAiDNjOHKZIGcft73m+g4tHDjO71uddhxYq2oxDpI/WlCS6AFgDvfvpNNtZu4fM7lcYXO+7HD/cBgOl/fQQhG9TXoZiL/g5HX0RsSIyUVQ2QUGik/nQpKiYiIiIjttDS0gTv82BAduxfHMbDb7dx0D4unFrB46slcz8lUNlVySvUZ+FqzCfnz8e0+B+NqIuQrotny8kbu4cxv3UEGrXEt6UsbQrFHnQuYJw92WMkCV5Hhex1LgPdFjjcHgIqmCn763k+ZnDOZPA4Nt9JGmVKdg36D1zYFmwZL3JhaEbGHEfYrTUEpEREREbG1HWRTYDkifd9wlpFjkDvDxenFPHLmQ1S1VuFxeChOK6aiuYJP/OoDQr4SVuQcQl3V/yilNe5+v+93/r1pcWyvSZOpup4JMP6V0szSLvf/2YM/y/jM8bxT8Q7lDeXU++opSIkW8+5FA4eCMQlnZGHas8MG0MbeBqDiM6pU6DyJZNdC10fEVkZKIqOCUiIiIiJiO/H923JTyMEdgjFp3rjb2EHqC8/Im5HwvCSjhBnT/kDjB2PJanSRHgwPe2svWh4fNOlOYhVxk7CXdu0Bk66H7xnTsaZU/A7a1/zSgi91udrCkoUsLFnIl1/4MuUN5bQF29pn37NRYMFYVodJF0Ndrdr3fRsT97Z0fc59maVvdInW+tL1EbEb+/wW751u/qqJiIiIiAyX+EyV9v9Gpbidcavun1twt8PNU5f+nG9NyeDEqpfJb6tLbFtCNk2vwlLJddi046RzicP3uq5FNaFxQuyx0+Hs9HpHHqcHAF/Q17FU1bAzhs4XYjDe51jd9N4HUxSY6o5m3xOxq778nhtOCkqJiIiIiK2FgwIm+qT9azez7w3q8fvxymDoXHuKWE2pZPraAfE6vQC0hdpil66qsY3LH3ibv727vU/72h8SJtyDQYmY9TjTXtJ2qPZUJ5YypUTsyk4Zr72h4XsiIiIiMgJ00/kdATfg0Uyq+EBLu+7bn1ddHbejxKDUQE49minVFmyjIMOLMdAWDPHS+r2sKK/hwsPG93/nA9Zh9j1D7GQH2uEKtpTyxlovTXsX4Td7uy3uPlIyDYae/X/mREa7kRIzVlBKREREROzHas9MiWYMJRSfHo677S4P2VWVqK7WthLWbs8GsjqumMBKlh3WbYu6Fz98rzgrhX9+bjGrd9XzrcdX0dAawBcI4nWFhwE+tOYh/rTmT/j8FnU7zqY0dS4uh4tDxudyyxmzBv39MMZgLJNwIqaPwag6Xx3PbH2GlkC4FlhpZik19Wk0b72eJ7cCfAyAD8qbmZKTuG3Ce9GL2lOjl2bfE7GbkfabSkEpEREREbE3y6K16VmCwYr2ZQkBmv18C95FwCV51lNy3a+X+KoVSRGqzssj6EnF2dbC3oIC8lJTMS5n0m36Izp878N9H7Ktfhs+925Kx/lwGAhZcMt//8f80gI+eehC/rT6L5TvySDYPJm2qonU0AjAe+W1XHnURMbnpQ24PR2Fr280MNn3oNB9K+/jobUPJSzLDZwYe+xwNREKpFPbEujV/jR8L06y4XsK2olIPygoJSIiIiK2ZqwgwcDW2HPL4cDtTaE1tmCYOsN9OKzpRxMbMzPZueQa3k6vJOg0nL96DV1XJO97tko0KPVOxTuc8dgZseWW8xsQyOJvr4f4G3t4cO1lbNs9lbZ9J8fWcaZ/RKitCMufx3F3P4cxhosXlfG9c+YBUNFUwRefu4kdTdswBk4YfwLfPeq7tARaaGwLB7SyvdmxbC2AXbUtfPtfq2jyBfE3N7A3pYxU1sWdX98uYmVzJQBz8+eytX4rjf5Gmnx+AKaN81Netw9fY3q33z7GGA3hS6pzJpmI2MNIiw8rKCUiIiIitmO6eJYabGP3lDm4vd6hbtIA9b6XkLCmcWA5HOGlxsTVlIqu1f+IwMkTT+blHS+zsXYjIStEtjebgtQCakIfsG/vJGrqMrGCWWxYfTZY4W7DmBxDVWA9rsKn8NctxF99NCHLARY89GY5D71ZjsflIDM1QFXDJ4EgxtnMQ6t9HJa9ktveupnGmukEW8oINk0lPQXcTsO47ExW72pMaJ87bxxTzLr2BbGaUu2LHln7KD//XzWNzSlgQiyYYnH+oaWs3VLMexsm4Gs8hdK8Y6jwLaOubS2hUDjTzONsv4ahUJIqXwkzK3YePipR8d9/uj4idjJSZg5VUEpEREREbMfq4pnb8lOdU8Cb9c3kpaaRSlywYKhuwAe9791xh92l7vRy8uxeXIvJ2ZN5+PSHu3z9gKMu8wABAABJREFU+0+/xW9e3AehFACcDvjLNcdRln8q8EVWVK7g1W2r+femf7N57VlY/nwA2gIhqhqi7XRiBTMhmMlt/1lNdd11CcdoiqS71Ta1B6Q+NruQV9evJRArDw8Y2Nu0B9JhXdVGjv3TXdx82B18+/F1tNXNj2373PIgr2x9mraqE4FpwDT+/hrAKcApmPz3AHC72q+xYk39oNn3RGxrpP1KU1BKRERERGwtIRfDWPxzwfH8Y90u0s/4JI+++OIQHH/gHW/TqZvQeZ+xguddHc4k325/+cbSRVxyWDNtwRAGKMjwkpvePtxuQckCFpQsoDQ3nZ84fkZzi4eWYDNWMB0rmAZYXDb3fP61ag0V5UdTXZcd2/aQSbAvsI7M3I1sqd3JuNRZLCk7AYermc2+B0nZXEhj3IWwgNa2cN2qkK+I8tVX8bnVG4H5AKR6LFraDOCMBKQgPbMSn9lNWeoCtuxrIRT04GsaC4DHBSYypjLUTRfOYEZMtsHQ6jg1oojYzUj5yVRQSkRERERsLX7YlBVXnKnJ46UuI5OxQ9weE/e11wXM+xDYSKgd3WlGvsRMqcRXB38GvIkF6T2ud/708zl/+vkAPL3laZ4vfx6ALG8Wn5l/OgePK+Se51bha/Pgcri4/NCjuOKIg4HTeWv3W1zzv2uoZDN/3v5kbJ8ladmU1hfjy4k7kOWItMsCRyvG0YJxtJGS2shzn7+WJz/YzR3/XUvIAowfR/6/SU3dxN2nnMpVf3yN2qrJBFoLAXC7IHr1kmVKJStqrkLncWIXTYXORexmpA01VlBKRERERGzNiuv4hrDIaWqgNTuDlpBF0OkkWFU9VA0Zko27WtNYdA5u2azvccqkUzhl0ikJy06bcgqnTTkl6fqHFh3KaZNOY0fDDkJWiKrWKvJT8ikJeWjcu5Vtcaebm+JkJ1BW4GbmQb+h2d+MMYZLZ13KmOxUrjlmMpcdOZEL/3MxG2vXgyOAwzgYmzGW9Ix91FZNBsKBraLsEGzvuqZUPBU674ayyERsa6T8eCooJSIiIiK2E72XbnA1UDvmQ9gRWW7AFXLhNOE8pZBxUPf440PTmBgrsjixyLOJe9Uk3TC6jtWht9A5KNJlICSSKdVpOOBI6X104Ha6uevYuzot3/r+cr6/5saEZRnh6uSkOFN5+vynk+7P43Lwu1N+ycq9KwGYkDmBkvQSSsaupsa8ideRic+q5/DpV/P06vA2PcSkVOg8qf5lAYrI/jfSflMpKCUiIiIitmQBWzO30pq6ERgPQKEpxAk4I+uY8aU4CWC1+ck+66z926BOMaY+3Pp3u26Hsu6mm3U7FjrvKnbVu1bZlzE44i6DBbQ2tkF2l1vE5Kfmc+KEExOWORwGZ+ou3K5UAoGWSBzFov2/iRSA6kGy4XsjrisscmAbKX8HFJQSEREREdsKmmDCjbVxOHFYViRTCsbdfz/TM1KHp3F9uOUfSOegfQY602lPB3SdIys+zGEI+EP93lU02ylkhfdhjImMh4RQNwGo8HrR5hzA17q/knxPisgwG2G/qno5p6yIiIiIyFCKD0fEMQZHyMIZWRgckRktyTvyVixzJ/k5hSffGyUBAGPCgaRo1phhUAppJ2ZAWUmWdbPtSOvp7VcqdC5idyNl5lAFpURERETE3qz2+e4sBxgrFMuUCg7B4aM39oNxez+gfRgzeoJSQEZz4qCOCm8T0L/YR/Q9tJIEO5NlSiWuN3quea8pACViWyMtgK7heyIiIiJiP/F1lOMWhxzgtCyiA7mCPVWpHswmdawtTuesm+RMD693V7S8Yw2pxOdWV7fzIzyOYjCMqU6hpPJ44CMsoM0x8BBkQmfNdF1TKr4dKnTeDcOoCpSKjCQGC7+/HgCXK9O2mVMKSomIiIiIbbkCQRZuiYagDBYGY1m4hjBTKqbT/bxJ+NpdzMJYdIh+dNc5iMvS8WbEbWI6BaXa8qbD1hXd7Gtkyw3kUNtxYT+CQx0DS8a05z+FhjCweeBQoXMRu4r+isxv+zovv/IuAG53HgsOfYT09CnD2LLkNHxPRERERGzr4v/t5spn2zvAfreTgpwc3M7wbWxgGLJXnF3U2x7oZ9DRM2nytBItmhX+ZDvuHKedDJljwITnH7RcKQM8qk0luZhmAO91LCgVuZbx9ap62q1dswuGlbLGRGzPG2r/wMLvr6a8/LfD2JquKSglIiIiIraV2+DHissOWj9/EhNKx+GIBBmGptB5JKDhDT9z9PqYXa3X/fZ+Z5CUGXkA+Db8r319Y6BsMdz0ERTPjuzqwAwOdAwEWQYmV4TPNVBT0+/9RWffi+w1sqyb7eKiYxq+l4Rm3xOxnfZfVeEH2dkLAAiGWoenQT1QUEpEREREbMtYYMUNk2vKTsdlDK7Y7HtD15ZgJtx2sYOG1P50wqMZOl2/Fs9EMqWs5qp+HOvAFqyuIdTW1qdtOhYrN3FLkn0LxQegVOg8Gc2+J2J30bqHOTkLI0vs+TOqoJSIiIiI2JRF0HhoTi+OLQkRDkjFZt8byo6wgdUTHbR4os2LO/agNGOgO2kPEIz8IWfRGQ/DX/dkGx78mKP9pVAXYyi7312HZdHhe91f92Qz94168ZdixH+viRxYwr+rRk5gXYXORURERMSeLMOmGV+nzWmg/gHAYDnAbUwsKDUcNaV6HzwySR4lW9LL/SXpV7Sfvr07HQMVcsCuPIv5+yIL+vi+d8qUiqvV1e3wPQVcuhA3pLTjMhEZdgmzw0aHwNs0m1GZUiIiIiJiS8ZyEvDkEu3sOk2AoBOyV/4Rpy88zfWQTJwWzZTp4VidX+5n47qIgyQv9G3PTsZAtcc6IhlTvZ65sIv9JQ0Ldp0plSwrSplSyShoJ2I3HX+lmUjYx66/wxSUEhEREZERwWX8WMC1G36Dq2EXMDyZUlasH96XYycOp+ifuADAaMngiQtORa+7BX3PlOpwvcKz74Uf9zawaVkWX3npKxzyx0OY/8f5fHbZZ0dv8XMrPlNqlHwviowgDpMkU8qm7N06EREREZFYMMfi865dFPprcPibAQgO4Se/PXW9OyT39LB+3KxuAzlo3GrmQIqPmGhNKWJfEz7lH+DwvchOIrvqoaZUZNuGtgae2foMAStA0Ary2q7XaA4096kdB44k12y0BuhEbMaK+y/E//6z58+oglIiIiIiYj8Js+61z1w3q2QiAK5QePa12zfu4uKVm6j0+fdbUwY/KSl5x6Cr7kJ72ahkRaUGoz0jgJXYxRqU+IfpuqZUfADMxOqXBTqvN+oDMcqSErEjo0wpEREREZFBZgB3KgBTm7YCsNPn54XqBp7cW7vfD999zajughM9zX3UedtkBbZHU/ffJORIdX7Y12hcp+F7pv0IoV4GloKhYJ+OeUCLH743WoaSiowQlpVY6NzYPOxj79aJiIiIiMRlSuFOA+B76+/lqVmFnF6QDcBrtY1DlrXS26MkNifuHLrYYb+K0HYcM3igSFK3q9uMsR53193wvW62Mya2bcgKJdnDaM2UGj1F90VGoo5V9OxMQSkRERGREerOO+9k4cKFZGZmUlRUxDnnnMO6deu63eb3v/99uKMd9y8lJWWIWtxHVuIDgxXLlHIS4pD7ZjNv1QMAPLm3jh9sqdi/7RnU+/r4nfWyM590+N6BHQiIDuE0kFg0axAKnUcXJZ1pL8n+FZRK5DdOGnETUpdSxGashOF7sd9/Nv17od8gIiIiIiPUSy+9xHXXXcebb77JsmXL8Pv9nHzyyTQ1NXW7XVZWFrt3747927Zt2xC1uI+S1WZ1umHGabGnp27/V+zxvdsq+aBhfxSejgRGou3od0Xx3m3XKasn0qFw5uX17jD2/lC8dyLn7CAWOYord8/gFDrvpqZU/HbRbYNWePiew+b1Wfa3On+Aj1uLmHz0M0xNu4hTZ36f0AHxTSdy4IgfvodxDl9DesE13A0QERERkf55+umnE57//ve/p6ioiOXLl3Psscd2uZ0xhpKSkv3dvEEUP/TNwMV/gVAIfjCRGc3beNq5nFOCCwA4+d31THVbjMvI4voJRRyTl7nf2xXXuC71qsueZCV3WVnscdHXvhq36ugIApQF86kimikV98IAg1LhYXk9D98j7rjRTCmHccQej8ZC56/XNvKKKYhdl5XpU6hxZZE/Cq+FiB1ZVmKh8+jvP7tmdo7uML+IiIjIAaSurg6AvB4yahobGykrK2P8+PGcffbZrF69ust1fT4f9fX1Cf+GSiyQEAkAGGO1zyLkcMChlwNw0Gu3cdmu9oypjX7DSzUN/HhbJQBv1TbyzL46Xq1pYF1TK8v21bGirqnfAYWutuougcrRaea2zkGlZM3J+9SnYo9dOTk9tOzACVRF3/ssKy22LL6L1Y8ddinZdU/WeYtmSjltnnWwv/kiqWWpwZbYslanZ7iaIyJJJZt9z55BKWVKiYiIiBwAQqEQX/rSlzjqqKOYO3dul+vNmDGDBx54gIMOOoi6ujp++MMfsnjxYlavXk1paWmn9e+8805uu+22/dn0vomvDVQwHQCHr44fbLiHWzf9gtcLF7PKO47/m3Qt25sa+V15Bd/clLzW1D/nT2VxbgYQznh5r76Zvf4AActifmYa41I6drS7C4Z0OwaMMa0butlD/zsKB3qmTvTtNpbBGkhNqU5lf9trSnU3+1788L1odtRoD0r5I9fr8LoPWZ47nwbjodXhxa4dXpHRxiLxb43dM2sVlBIRERE5AFx33XWsWrWKV199tdv1jjzySI488sjY88WLFzNr1ix+/etf893vfrfT+jfffDM33nhj7Hl9fT3jx48fvIb3Slyh8/h6PgdfBCnZ0FoHTg9p009myb9vYNLWF/m/SddS7ichIDXGt4fd3qLY8yffeBTvrAWUjZvF27vLuWpzexbY+BQP7xw5O/zEGJ448QLSg08A8YXkEzvhiZk8ia9lBqtiS/Z398De3Y9eigUfuwjjDUZNqd4O34sIhMLZbvFBqQM9KJhMNCjltgKkEKQBIkEpEbGL+OF7ypQSERERkf3q+uuv54knnuDll19Omu3UHbfbzSGHHMLGjRuTvu71evF6h7fDaQglPItxumH2WYkrH3IZkyrXcmrNW6xIm0LQOEgN+vjZujs4ou4DAL4/6Vp+NuFSfpc6n99tDcLWVYzx7QFvESW+vVR4C9ne2sbjlTUUeFxs9aSxduI8Ahv+B4DVdXyj9+eUMBuc1eFrf+yfUJQvFMITmaVxKLUfrr2emNXvAvOdZ9+L33fSTKn4/pxJzJRyOBxxq9mzk7c/+SPD99yhAClWEIyCUiJ2YllWQqFzY/OqTQpKiYiIiIxQlmVxww038Nhjj/Hiiy8yadKkPu8jGAzy4Ycfctppp/W88hBzkliHyRggs4cC7dNPxjH9ZB4E2P0BVG0EVwrM/j8omgVNe7lwy3ssr6+gqrWZdemTAWIZVDdv+Q3fn3kje0jhs2sisxKOnQeA2++DLvre1Tnd1/F6ZsZBnFT5Yvdt76lY+hAHhr62bjt/3FUFgNdhGOf1kOo0HJubyXemjhuaRkQjgPGxH2MGZfa93sySHi6Injj7nobvRTOl/KQQviYtTq9tp5sXGY2SZkrZ9GdUQSkRERGREeq6667j4Ycf5l//+heZmZlUVISHqmVnZ5OamgrAZZddxrhx47jzzjsBuP322zniiCOYOnUqtbW13H333Wzbto1rrrlm2M6jKxPYRT3EbqR9rkwYe0jvdzDmoPC/eGl5TCucwT/3bYSfH8Z2bxH/KjoRpzEUjZnFWXuexWSU8EjeMbT5fWxOK6XanQNAbl0VZECyzKZWbwqWI/HT6PgwyP9mziO3orLb2h5WLCuoD8Gn/djJWFbVPpzRF7LY3OIDYHVjKxlOJ0flZrAwOx3nfgmWddynwTLRGaQGXug8HOCLDN9Lku2UbFn87HvdrXegi2VKWUFSI0GpCw7+MT+qhfOKQ6Q67Z2VIXKgC9eUGjm/mxSUEhERERmhfvWrXwFw/PHHJyx/8MEHueKKKwAoLy9PGG5UU1PDtddeS0VFBbm5uSxYsIDXX3+d2bNnD1Wze8UArkimVLTj7/NkJRY6H4iCqXDNc4yvK+d6pwfyp8Gu98AKcuGmP3Dhpj/EVn22YgrL6ydQWrQDxqV20dqezgbuvfASGlYFu1wrgDv2uNLp5r3x09joc7J9+iEcvGMj/l8dCxmpcNm/kx6y1e3B64MQcOvGndwyZWyvA0Z/2rWPdU2ttIUsMpxOvjSxmOZgOAjzn0OnUehxsavVz1fWbWdzi4+7t1Zw91b45uQxXDehiD1tATKcDjJc4Syi7a1t/HlXFY3BINX+IIuy08l3u5ibkcqktOTpZndv2c2/99TiC1kE/H5yTzifiTuccVdwsAudR4fv9W7baKZUfFBqNIplSoX8lFlNfEA4S/CmStiVWslXJ40ZzuaJSIL23312DaIrKCUiIiIyQvWmyPKLL76Y8Pzee+/l3nvv3U8tGjxWwvxBkfMc7GBA6YLwv6jcMmhrBF99eMhf3hQomonjR1/DVdNIktBITFHVHkwP0Y1dBYV4nMlnAgRYZRZTNe5y/mVS+GduCuQCQWBMGevGlPE3TmJx7Xs8uunF9o3iYi0VWflkN/qxgPu27+X+7Xs5KjeDz40v4sT8rC6Pu7axha+u25GwbEKqh6ZgOAhT+s7PGGP8TBw7nzunHsOfynfyRJ0fgDVrnufsjYW84ygAoBgfp1HBMquAHSY9tr9/VtbEHj9y8GTqA+GA17t1Tfy9opo2y6IpGF87DHbNOIRbivZw9YbObd7Q2MKs/C5PqZPuCp3/Z0Ujx0zezqySLOaVZsdeDbaMZ8fWBTSn5OCrW8K+/DRCJq3LQuchy2JdUyuNwRCWZTE/Kw2PI/n3bI0/QI0/iAEmpnoShmZW+wOsamih0ONiVkayIGjcGVgWu3x+3MZQ5HV3en1jcysbmloZl+LhoMw0AFbUNbGmqZVUh+HUwhzS+pjZ1J4pFeDe4Lss2v0Ct5ReBsCetkB3m4rIELAscMSG75m+Zd8OAwWlRERERMSWTIdhcvv9ttrlhYVXd14+5QRY/x+IFovtUIQbwE0ejm6ChJ954XHOfe0lfjnpvCSvRoaRGUPImZPwyrya9azOnkooEtx4PecQDt++m7Pra0kF2PIa4El6zBDwSk0jzYEgh1tV+IJBGhxemlILmJ6WgtPAh40t/HtPLQBjvW5KvG5W1Dezo7WNQOR00t74GQQbATjutB9yXP1O/rH+Q66bdQuPpcxKOGYlXh6kLHaNxrVWUuSvwWSNZYUVDoxdtHJzl9cplSCPlMK9+9x8sLuSrj7l/9R763jFv4nUqcd1ua94HetxGQxOV1vs+dce/QCP08G7tywhK8WNhUXrro/T3FbEbgDGs2x9Cv5DzsHR8jJW028JusfzfkMref5mZqSn8H+bd3P/jr2xfS4tyOLqcYWMT/EwKc1LUzBIUyDEsqp6vrJue+xsvjdtHNeUFgJQHwhy9FtrqfaHA4JZLgf/nD+V9c0+flFeyYYmH05jOKMomxp/kNdrG2MZbXdMG8ei7HQe2LmP8pY2Nrf42OXzd39h1pZzc5GL86ZMZ3yKB5qr4eW7oa0p/PNQPAcWXJGwSXumVIAMQly79xka/W3cNekau5asERmFIn83jQO7z8mqoJSIiIiI2E9C7zaaKTU8N9YmliHV/+PPqG9mWkU5D05IFpRKNKvuCc7dl0blribODD3H0xxP0BiWL17MClch21PHUGe8pAKvZs9mQk3izIlOK8iy5dfwVP7R3DPxCpY3tDDlw5bIq41AFWcUZvOx/Gy++FF5bLs5la8zr3UHK0rO5Z1d2yAc9iIt1NK+862vghWkqK064ZjTQ7U80PoCX/EcQS0egg4XZfUb+e0HXyfFCgd/7iu9kPunfxYLwxhnEG/1JrBCuAPNfKH8IVKDPmY0byEj2MK9Sx7g4b8+SNthkSBhQrDD0ISTO974H7NWLOMTxdk4D70MMou7vKbx72HAXca2NhepRZWYwA6KHVOo3OWjLRiivsVPVko448gKpiTuJBKlq/EuIDR2DiFXPpes3guEA1F57sQC6M/sq+eZffW4DDwwdxLXrt6KL0k23bc27ORn2yrxW1YsGBVVHwix5N31iRtYFn+vqKGjb2zY2eX5d+fOPQHu3LOGOaEaPA7DpVu3MbllO1Oad1Dkvx9W/hXGL2L3wut4tdXFE3trgXChc4gOr+y6PpeIDK3EmlLJZnq1FwWlRERERMSmTNx/GbagVG+4Ai3dr2AseuoQFIW2k1a7mWmZjYzxH0P1jtUw80z4qAGnZfHAeC8fvPFjalxZvBvZptEdHSKXeG3mBauYXv4QjxUtYUtaaadjPbG3jif21iUsW1DzPpmBJiiBtwLhgFRqsAW3FYTTfgj//QqseRyAw42LT3pr2ZMxgVnpKXy8ZCZT04/n8fgdBo6AvGqo3wnLH+SzO/7GZ3f8resLMON0WLcm/Pg/XwAO4ZQdTTzf6ezCHa7flH4cgIwPv0Pm+89wz8wvssY9Blwebh+fySUtHxDy+1jV2Mzeeou2lLk0Z56OP3Uut+0GCr4ABbAV8FbswgQtrIY90FBB/Z71hBwFmCAEJmfi2txALnvZY+UScKSDI52Oqv1BHMCLi2Zy8cpN7IxkKQUsuOzDLZ3W/78JGdyyvQm/ZVHZYdjbpWPyOT4vk2tWb40tSyXIz1d/h1UZ03g7ax5bU8fitgJ8d+PPuHzuHYTihhVes+NRjqp9j3mN6ylsq+Gd7Hn8vfhkNqWO5yvbHuQ4aw/PzL2Ox6uaeLzoJABWO3IBeG/G12L78YZ8zG7cxD/e+BLXuE9iudU+DNRjBcC4Iu+HiNhJtGaeMcbWfztBQSkRERERsan2UXKRWkPDfGPt71B6J71xF3VOcAeayWjc1Y89hmeACxIOaI21NpFevxJX5jGx4WZW2WL46BkAMscv4OSZxwLQ+OEXqN0HB3mdRMMZma3NgBvjcMLXNuPd/havNFVTb+3GWzgDb8X7ND1+AzOOfjKhFf+3/h6OSTdMXngWleXLebZ+JS0hSAu2cMa+lyBzLMw+G1b8AWrLwd+CJy2fe+ZMhezOAa8YlxeO+2r4celh8PZvINgW/hdoC7+vC66AaUsgezykF8Dz34dVj2IaOtdHir9sl+Sn8py/jjUmm0/PuS3x9WCIm7bWcWsgnwZXRnhZzvwudzfOA/sij3/19P20pafy0Ngz8Vq7ACv2jegKNJO17yekpx9CbTCACTXy6pLrqCWTd+qaaA2FmNa4hen/uZq3QkF8+zbyo9yT+WXphbFjfa/1DRp3ryLPX8enXnqCM695hT3p4whWribYVEVO0y7K0lJgRzl8tIe1GePw4SLNBMlc+zhm3zpOb9sCbe/B/Etg3VNQ/SavvvMpVmTOZkdKMbMCVSwNlMPY2fDhqwAcXbuCo2tXgNMD+VPhqG9xysGf4JTGPXxubyUrXv8DrS11PJN/NE3uDPZmT6EiAD6Hl/eyZvODiVfFAlIGixlWPaftfRnGLE34ubRnHobI6GJZ8Xm9Jv6FYWhNzxSUEhERERF76nAD3bEu0FAxXRSrLt7zDnVj8nEG2/o5/bYDCGIRHt4W8oaP05vz9EaKU49xOdgeWZbfVA/kA5FPxiccgQsic6MBWUVkTz2Ob1Q9yYtpMylxweKCPC4+7mKck48DTxol887nL5YFm56DllqYcT6U/h9kFMFnX+3HOUYccmn4X09O/Gb436YN8MGXsSLX3lhgmfZr/LXpkzjSlcpVq7bQGjck7p51d/HNmV+jxTLtASkg019Bs+XDWAEcwSruqf4Pv3YH2O3bxcdm/oC/RC75g2PPw0pP7CKNb3yX3czAamvA2/IeE+veYrPHSwgL9ws1zA6FmL3pBQj6oCk8lM8V+fe1mm0cXf0OHstP2ZyljF/7ENS3F5XP/+3RdFevPTfZwvPuh4lHhR8vvAaqNzPZ38xk44TCGeCIG0Z41Bdhw7Lw45wJMO+CxH1lFHFwRhEHT/ohhIJ8Lny1weGgxh/gM6u38nJNI/eNvwgAhxVk6ysnh7OkAFga3sKKDt8TETswKnQuIiIiIjJYktXGGDqzjjmBik0b8NaFazdZg9SMdMd0Wt1ePG31PD/7HQomjIXKrtcfcFDOmwEXP8wXgC90t54xMHXJwI41SNo7U/HZOAYsixPzs9hwzEH4LQvLskj509k4K17hgn0vsclTxKrM6Yy98H4W5mbxlRcf4IXtL8T2kbFnH57cbIzbzakvf55/hn5EG27mm0bG5o6hsOYtHgllAW5KWj5iNzNi2zosMFYIjMF6/yEIJtaBAuDk70N6ASklB3Himn/BS/8H75VDS6QW1HFfDy+LVzAdGiph4tGw4x1orYODPg6eTMAKB2lzxkPZ4rgLZCB/StcXsGRe+F9vOBJrYuW6XVw1rpCtzT6Mr5YxgXpO3vZYXEAK8LZnT4mIncQXOo8usefPqYJSIiIiImJT0UBEe6FzywoRCNTjducMWSuKJ03hotvuYst1j3W7XseQUbLb//h1PI4CgmkLSQ+sZV3ZC+QlT8jqnk2HYwxU59nyknM7DO7oq2VHwrZX8ASamBXYwqyiUsjPiWzfYQ9pBeHoEpCVmkF6TRttuPnZrAlMnTyZl3dU8sj/wsXcHem5UA+W0xt+3nG42hHXgScdxh8OWWMhbxK4U9uP1VITDkA1V0WOnQ/HfhUO/gS0NYcDS5ljIC0PuzmlMJtTCrPbFzQcAu9OAn8zeDLgsKtgxR9jLx+g344iI44j4cMcZUqJiIiIiPRZyEoMShljWLv261RUPs7Cw/5FZuasYWqZet7DLln044RvwKGXQcgPxhGuUxXRKch1+g8x7/0M6rfBhb/H8et90NRGKL0w7hiRQvt5ZbAbLFd4Nj5H8RxM7SawgnDDcsiZ1H1bJx4Fn38L6rZDWyOUHAROF+RN7t+5D6fMEjjh5iQvaPieiK2YZEEpe/6EKiglIiIiIra0x0pPuFn1t+1md0W4Ps6u3X9nRua3h6dh/WBc3RTuHuyOgr0/FO+T6HCTcP8q7jolC0oZEx7elkRPNVWiQatgKH6/4dQ1RySjKnpIh8MTPpYFVnxGVHeKZob/HYjMAfUtJzLiWe3zMwxbLca+UFBKRERERGypzXKFb1Yj0QC3yx97LcVbPAwtisyI14/tcs47D9/aDZHnyWtkJav3YfUwHsqen3sPnvK2tUmWmj6PE+s8HLC9+K9lWTgiL4eiBbsti1hQKpJxELSCOABHF4Xvxb41a0RGGxP/d6Z9Ktthak339BtVREREROzJsvA3v0Rba3TWNwvjSAegpXUXzc1bewza7NfmxU+63cNddcqsmYy57db9kFFiz07GgEWCSLv9W2KLrLjXWvwtg3q4aJ2o6LdTfMJUNGDVGmgFwGmctp/Naqhp9j0R+7Cw4mbfs3/Ix/4tFBEREZFRyVTuJOhbjmXVAuDMsNhYHa75s3PnQ7zx5kmUb//t0DWoY487Li4xfqI3yQpxz7sbQmFFv0SGqvUq4DFagiLJh+/9e9O/+7SXjtfUJBQr75wpFR+UOqhoLgBup4dxGeM4d+q5CVlWYjT7nojttNdijP3+s+nvKwWlRERERMSGLPD7Ys/ePqiMzBNbebviECqaCmkJhGdCq679YLgaGMfC7el8W91jcCn5KL5+MrHC3AdCvCoaNGr/rN/BosZJsWX1vvp+7a8rjkhUKhqMCgbbO28z8qYCMCd/Lk+f/zTnTju3T8ceDaJBKZv2eUVGFctqH3Yc/wfBrsNrVVNKRERERGwtJfUs9uZvxrgtLjjiFNZVf4YnVj/ENfMe4vX1W/ntqhV4HTUUpzdzyaJiSvJn43JlJOzDsiz2NvqwLPC6HOSkefreEJP4tafbe9PrHvoAOgr27GMMosgMeJbh2n3HsCyy1LKCfdxL55pSUeGaUtGgVOdMKWeSGlLtQbMD/g0QkREtfvY9e1JQSkRERERsJ7GrHwlMYLF4WglL0qawanMOAB5nE5t3vMiNC36Jw1isWw0rmURT1oPMHZvN1//5ATtqWmj0BWgLhGJ7/MH5B3HhwuQztQ1So3EkmyAu4UnfOgo9ZfvYu9vRT7FaRaG4LBxDKBTqcpNkkmWtxV9PR2x0S6SoeVxUyuXoPFQvNnxPQSkw7VdXV0Nk+IVn32sfvmd3CkqJiIiIiO2YhMfhrr8BHMaNy+ngtnOOYO2qnzM5extHlX6Aw1j4gh68zjZS2MIX/7GcgOXutF+HCWfB/GvlTsry0xiXm8qY7FSckcBDXbOf7z65htrmNowxnDSziIsWTcCyLFr94eycZB3vfc0BvJHHIQc4OyTyuMeN7eEse3bjX9/nR59cSJrnwL+FT9aRenr7o4Scpbg8x/djhx2fdqwplTh8LzFTqr+zLo4evc8KFJGhkFjo3N6BqQP/L5qIiIiIjEgmLjPGMg7Awpjw7WtBzrTYekeWvAJARfBiSh0P4zR+vnXkz2nxp/DK7o8xufRErlg8kbE5qby2oYIvPfI6K7c1culvd+MPhYfxOQwsmpTHokn5PLp8R2zfL3y0h3MOGcctj6/ismDyjnfI4eDnofHcFHkeLe3U5DW4I2Wx/AUluLvqt1sdvsZpaPXHHj/30R5e2bCPpXNKkmx84CpoaWNfqoeAFYDAVoKuPVjWADOlTOKyaAzMF2gjZIU6zL7XdZaVCp1DYs0aERluFlZ7phSm/RecTX9fKSglIiIiIiOCiQtKeTwFlJZ+ir17w1WG3O4cLpp7GavXvE99/UrGZ2wB4LAyLzNnLmXf3t+zdd92HJX/4KcnhPfnD7n53ps3sqNxHCELPtq5hcOz7+Brh/nISM3ir2uOYU3VZL7zyA9pbNoNZW1AWqw9/zvUweRd0JiSzrbMkm6nELrt8ef5whF7CLpS6arr/lFluHj38m015NbX4QT+uWIHY+LW+eyf3uF/Xzoci3AqVjR7K14wZFHX7Gfljloef28nzW1BAqEQlx05kWOnF/Z8oe0g0okyxnDkngZqD7ue5TX/oTnQCJZFMNjHmlLdDGFpbGtke8N2IJ9r//cZpo21uGTa5yOvhtqHpiV52zR8L6y90Lmuh4gdxGbE1PA9EREREZF+sGL/iX01gMPRPiRvxvRbmTH91oTN5h/8O2prl9PauoP1G75Lff37vP326UkP4Xb4uW3xXaSkTGZfYxMZrsqE18+d1owxJ3DyuPvDC5yRrKXIPX5DJD6V7m3gGxfeDW91fTpTvfeyYesGgt5vkGwohRsLd1sdY9JCVDe3sK2qiclO2F3bypjIHfu8wtVcc9AfKV/jp6FhIpDKe+W1dKyMFQxZ/H35dv7wxla2V7fElu9tbCNkWVz35xW0BUOMz01jYkE69S1+mtuCBEMWgVCIc+aP44aTptHqD/Lhzjo27WlkWpEHX9MbPPruRqpbUllfM4O2oCEQCuFyGL5/7jyWzimh1R/E5TC4nOEIXbTAvNMYvG4nGd6+dz8sY8hyF+Ay7tj137y3sU/7SFboPLpsU90mAtH0Ngxb6jazu3EPkI8xFvsaw+lu9a1+mnwB0vtxDr3V6g/y57fKafUHWTqnhEkF6bHhg3ZmFJwTsQ0rOt4dIO53nV1zGRWUEhERERGbi84e1J4p1RW3O5fCwiWEQn527X6Uxsa1sdfGjrkQpzON8eOvoKbmDdZ+dDMAra2byYjbbVbWIdTXv8fErC1ce1B11weLBjK6jBm0dwAmZ29K3KbDemfl+Dkmc2P4aclK1mcGSAtaZJlVFNCCP+Bl5pg2PJHAWOcBU4bU1HqCbXkA3LNsPc1t4WyiTx87mftf3oy/ZRXvfvBHzp3SQm5KLW5HgBxvHSlOH/6QC1/Qy+qqmbyyahJHjBnP5X/JpNnvBODMyU9xztSnOD0SAXvko3NZVn5CrBX/WbmL8qpm7nxqNVfMfpgJWbspzs7g3X1n87t32+tpfea4ydxw4jQeW7EDLIvsNCeTCtJJcbsxxoEx4dkRo/W5/IEgrf4QXsBytkEkLpgefIHNm3/M5MlfSnrl9zS0cvM/PqSivhVfIISnpC72WrrD4sOPnmGy2UtJuh+nfw9QBECaKw1fMJU/v74XyMcixNf/+SEAW/Y2cMjt/+a46WPxWSEw8LmHlnP4+Aa+dfqshGwsv7+ezVvuwd9WQ2vrTsZPuJriolM7t7O+lUZfgNoWP6t21vG9J9fGCvLf/cw6jpycz18+fUT4nbbig7Smy+yvUCha4HiIihyb0Tl8r9UfpLK+FYcxGAPVTW00+gLMHZdNVkrnenZ94Q+G2FXbwpZ9TeSkeTi4NHtEFKy2g+jPyWi/Xo744Xs2p6CUiIiIiNichWVMwvC9njgcbhYt/DfBYDOhUBsuVxYOR/u2KSnjSEufQijYijEujHFiHG487lxcrmxefW0xoVArGa69AEyffivNb3wLSpN1vA0LCn7HzsAFXbcHixBj8DSXABWx7eIFLAcuEw5ITB+7GoDSJPta17AEQziANTnfh78pek5NNNWBw4QYm7aewvwq8jPSuPSQVB581eKCqQ9TlrUD8ru+bmVZ4Xpa9RVw9uRjKcvaQZa3nkx3YmbSp+Zv5rMnHsr6PSG+/XQ6K3fU8v72WkozdnLUuLfDK4Wg1FXPwuKPkeVtwEGITVte4KS7ZlPZXMSNC37J2Px17KmG8vpxfO+tmwha4ffoC4dmAlDX4qepzY/b+Ai5WoHwkDkLizVbHufl3WeTl+Fl674m6lr8OB2GqUUZNLYGeO6jPbH2pjibcOeEH1+S52O261HmZkZerP0d4zxfY7sPnG1umrZ+ncZQOCzmMO31pSZmbedbR/yItqCbun0e1rbB6l31rNq2hXUVDRw/o5CM1rvIdbyCy/gSrtfat3/Cf3bk4HE5SPM48QVCrNpZR1VTG8eMe53Z+esIWQ6OHTuBZ+OCfW9tqcIfCGDwsXzFJ2JBVreniNdq72JvUxYup2FMdipjc1L44xvbWFfRQCBkMbUog39ff1SsMP47W6v53pNraWkLYDAcN6OQ8w8txcJiQ2UjTb4AqR4n+eleHnmnnCZfAAs4dW4JS2YV89h7O6lvDc9ieVhZLktmF8faGZ+H8drGfeysbWHZmko2721kT70PY+Drp87ik4dPiG2zvbqZFeU17KhpoSDDw8cXjMexn7PCamrfobLyCbBCVLdmEUo5hUMmzcJhDO9sraa5LYgxcMy0AkIWvLGpikCwvX5Z9Ge/1R/kxr+t7PI4VyyeSH66h2uPncyGykZ+9dJGdtWGA6S+QJBxOaksnlLAZ46dHDvn+lY/6R4X9S1+PnbvS+xrbIvt7+efPIQzDgoHdxta/WzY04g/ErycXJhBqsfJ9Q+voKKulbE5qWSmuJhRksm6igbaAiHSPK7w+xj3nnWluqmNVn84c3JsTmrSTL3t1c1c+ru3qG5sY0xOCp8/firnHDKux33vT8GQxdrd9Vzym9dJdVaQlT6Rs+aXcv2J03reeBBYlkVFfSuWBWkeJzlpniE5btK2QHtRRhP9UMe+w40VlBIRERER+zHxD0377HuO3mcgGOPA5cro8rWc7AVdbrto4X9obt4ExoHLmUlOzgLKd34/aZQoFMrC6yzEJM2Ciuxv0ROkmrF8/3+vdW4LFk/WuSlPWcT2qre4qLiQMW3j2Lu3jrKyGWzdup7UlEamTZtIatpYjp92C/cvCw9JTHNupI4soL3D7HQEuXnRT2L737D2fu5b0n68fdZ5LJoylZSUYhzGjdcb7qhWVDzOys0vUZCyC4AlZS93amvR2C+wZ9dP8beupHbXSoqALxwynS11ZUzI2k66OzxcsDXgJcXlY0LWTj578O8T9nExj1Hdmk1eSnv20oSsnRxcvJ1djQW0Bfz894ONnJXux+Hz0Pq1BnaP/TLWX6cC0fff4Gur49Zla2L7WDLhRQ4rfp+67UFcJsDti0Nkp1j4gwFWNbpocrXxcqObokjF+Y0tXial+HCa9qyCQ9xpPBPyYgiR7a3niDHvYnkW8sz67Nj19Tj9HJVlaKo3rHf4cbma+VjhTZT6d4Mz8Xq1Bd14nH68Zh9rd23j8wf/jixPAxaGxTlprKmayVlTno6tf8SY5XzskAs4d+Ei5nznaQpTdvHUc4eS7m5K2K+/bQ+pzXeR0lLEe3vm8bfqGZ3eq417Gjnr56+xcGIue+p9CUE6gHWVDfz+tbU4sPCH3AQtJ4YQRWl7cZgQtb5sWgJpvL6pijv++xF1Le1F9z2ONi6Ys5nizABLcpsIRF5aub2WS15cnXCc/JRqsr11vLJmF2fMPYO1lQ6qmtr4/J9XJKxXlJnCrDFZ7KxtIRiymFyYTkGGl2T+9MZWVpTX4nE6yE5zc/XRk8jwunhnazUhyyLF5WTBxFy8rsQ3ZN26W2hq2hC35D5e3J5NfWAC33jpaqxIYbgMdwMz8jbiNCEa2jLYUDO5w2ye7eOj0jxOQpZFMGThj0yG8PvXtwLwo2Xrk7Z/894mXtmwjyc+2MXuulZa2oK0+IO4nYYrFk9MCEgBXP/we3zr8VW0+sOZg11JdbXQ2rwHf8jNy2tTqfHlxl57dm0FL395LC+vXcOemg00hSaQmn4Ely2ewm9f3cLeBh//en8nNc3t7/MJMwp58MpFsef/XrmLf7+/k2fXtn8vNVQ2cv/Lm7sNSvkCQZp8QfLS90+g5h/Ld/DKe3eztOwZ7jk23P4VlQfxw/9dw8+e38j04ky+cvJ0jptRFNtm1c46tuxrIt3rZEJeOlMK0/nnip3U1n1ANk+R6mqlJKOJKZNvJCfnMCA8O6svECRkQVGmNyGI+o3HVvGXt8uBcBzoB+fN45z52VRU/ouG+g+ZMOEaMjI6/5x2dOdTa3lp3V7aAiEyU93c/6kFFGel9PmatA+pjS92OEqDUtXV1dxwww385z//weFwcP755/OTn/yEjIzkNwgAra2t3HTTTTzyyCP4fD6WLl3KL3/5S4qLO0d2q6qqOPjgg9m5cyc1NTXk5OTsx7MRERERkWFhACyczrSe1hwU6emTSU+fnKQN4XZ0fMH0MIQpI2MGtAY67iimNRLQqvA7eJ955DQfz5bNHzJl8hK2bnkWgLPP/jopKeHOSWraRJqJq4FloL6uKHJzb3C5svB6iwmFfLS0lMdWy8yYw4kL78KYzlXZc3IOo7DUx8trluNt+CouGvC4XRTmH09Jybl4PHmkp0/D46ijtXUH+/Y9B8Ds/PXMzk/sfJcUn0pLW4Bg2zq8bjepKWNpanPR3PAqxmqMBaQyMmZhjIOGhtVcd9C9ndrU1uzCSutY1NyABZmeFk6e6aTAvQavq5XFBf/GYQKd9oELjonENo7LDMTiRsuaS1m3bxdH5ZxLYyQdymvCr+al1PCDY28D4IO9G3mGz2JhmDb1m2zY+H3mprYxNxUovoM6TiCb3bHDtVoT2O38Psak4XVXMcb/afJTa/jx8d/s1LSpOVtjj73eEny+CsbzTd56s5kLZp/Hnrq9CQGpF7YfRTDkYknZS8wr+Aj4iJMmvMyWpqMpTX0HhwniMIamQD7v7p5MW9DD0ytP4NRJz3LrkZswWORmTeDdXWM5KPclclPCw1NbA6n8Z+ctnFj8U/JTKmLHu+Ptb7O1Loe6gBMwHDq2nnzXcs6Z+iQprnDgpCIDamrDAZsU60PuPPpnOIyFx2mR6mrF7Wiva/bOW99je8NYAiEXi0pO4O2K9sDw9x//K/kpVeF9NhWzrWECmSku3E4HRZleLlo4nnSvi1Z/kFv+tZop2Vu4bPYjZJpG3n8nxMam07n79aNj+5tUkM7/O2UGZfnpzCzJ5MHXtjLOtxOXgQ/3zYxcP0hx1pHi/JD7ltxIja+QkBWkOG1fp/dqd8t0cjy78JhWnI4A25sOomTiLzllXvtUBK9v3Mebm6t45J3t7GlIzJb7/tljKc3yU9cS4MZ/7CFguVm9qz5hHX/Q4jevhCdpWDKriM8dP5VLfvsmrf4QtXHBIq/LwYKxlTiDG3A7AjS0ZfBu5Xy+d9Td5Hjb276+5QpMxif5v6c+ojTtQ9599/OkAROjsaEgPPp0EX9871oqm9v72seVvsbBhauwgC8+eBQ7W4/hiMn5/PyFjQntPbg0m5U76lhXUc2P/vMgaW6LsoJcPtwzgT2NLsCi0efnmdWVgGFaQYDrFzzO2CwfDuMku+Bi/rthGhX1raS4nHz62MmUZCcGYEKhAE1NGzDGgcPhJSWlNCHrFeDXL2/ik5NXxIY3A0zN3YzL+Ll6zh8pTttD3dY6Xqw9lt98+Ckq631s3JOY/Xn01AJe3biP/7fwJ+TmboIA1NbCX168l/s/uBxfIBQbEg2wcGIuf//s4tjztzaHv3eNCdd0sqqu4+VX2oPmIcvP3Dk/pqO6uvfZvP1xVu/ci99fR91eDycU1bGtoZT/bjmZw+94jsMn5XHuIeO4aFF7puETH+zi8fd24XRAZoqbL39sOuNyUsMvWu1BKQ3fAy655BJ2797NsmXL8Pv9XHnllXz605/m4Ycf7nKbL3/5yzz55JP8/e9/Jzs7m+uvv57zzjuP117r/MnS1VdfzUEHHcTOnTv352mIiIiIyFCKj+xYFhjDpLLPY4yzy02GWl9u9cMVsZLvIVYpqA8zl7ldWUAl6WlHUEe44xMKhW/tHQ4vxx37XmzdpqZN+P01OBweMjJmJw1IReVneDl30WKg83131Izp3wYgEGhk5QfX0tKyHaczhays+eTmLAIcFBaehNud22lbn28vNTVvRDqYHnJyFrJr9z9obPwIywpicBKwHDhNuHPpSQsHmbx7ZuFuzQbCwSwLcBo/n5hwXcL+Xa5sxk68A4dxkeb1YkI1NDauZV35Q6TQTGrs1A0OTwo0G+ZMKOKF98NL64Ph3rrlSuePVR4+kReMvc8ORypjxpzLvqoXKN/3JpnOcMZKNi8AUFx8JpMnfSmh0xwM+njzrXG0trb3VQoLl5KddTCNjeuwCOF25zKm5Dy27/gDFRWP0dKyFYDTJ/4Hny+8XUbuBRSM+wqfmZ+O09TTUPVPHLRSXv4LACalv5pwHTJcFRw/PhxcOnnii4lvgrWb48YkLkpxtfDxsm90er++seh2AAIhD6uavsz8zLs6rQPQnBa+sNneBoqo6vx6IIM0VzgIMD4znIn3iZnPcOWxR7JuXzZ/f3slNy/6ccI25fXjaGjLoKK5mN1Nxbz8fgiHCWHhYGbeGI4rfY3SzPZgYIHzWaA9KLVlXxOffWgFThPkyDFvk5dSS9nUZgDu/+AK/vqpKp7/YBlz898HwOUIUZjaHug1jnRSUyfT3BSuKTYmNTHwOj79AyakPMj7Kzfjb6siZAXISC3l1Al5nFC8lz114WGUbWYCk0tPYd+2Cwi0QDrw4JlTWbb3hxRaD5Lp2sG43Bxqg/P47fKDwsP8giHOOGgsC8py+fDWpWyvbg5PRND8Cvt2/R+hYBOBQG1CeyxHHiZUTTgonUEg0MDszMdxu1/gG4dnUl6fDUBDWzqZnvZAZ0n6Ho4Z9yZvV13MGQeNYc6YdFKrb8Kywj+Dk3zl3PjSXHxNr7K0rIJsbwMnTVyNw7TgdhhWFJayrb6U+enPhHdYD6lNM3hy5VV8+4gfUlywl3NK3Dy99UQcxiLDepn6SJJkbe3reGonURLy8NfV5/LAa1s4fkYhs4rdHDt+Oe9t3c7k1H8kBDZbgrm0ZX6fKVnv8tHuaoIhBy3NU8mIBG9nzvgeH637FlmeRn79sZsSrlGw6Wle23gq0d+9LoefuflryfI0UuYuZ97BTZRlbQegujWHvJRaJqS9xxcO2k5byM2buxeSl1JDvS+TktRKXnz5SzhchYRCQSamHckOx0H8v+N38uqG7eR71iQce9ee19lVeRBtlOJxZ+B1Z5FacCPBqm/Q3LSOMW7ADRPKwusfVvI+Z015ih0N49hWP55HX5vO+5un4k2dy8wxWXzjnyvxOn3MyV+H31vHLX82VPgOA2cJa3bXMyM3EqCPr61l09kx92tQau3atTz99NO88847HHZYOOXtZz/7Gaeddho//OEPGTt2bKdt6urq+N3vfsfDDz/MiSeeCMCDDz7IrFmzePPNNzniiCNi6/7qV7+itraWb3/72zz11FP781REREREZMhFh6mEa2Kkp08ZzsbEokfdjNLrlcGcqcyYnocz7q/r5nJlsODQv/RpG6+3kJKSsxKWlU24hgnjryI+46xi60pef/4y3GmG/L1+MisuxISej23jduVCJFPM5cokM3MuTmcaxcVnUlJ8SoejnsWfKuoJ7HuUDGf42h8x6TL8DcuBcDDQH3lPljeHO+4Oh5MVzS6C6Qu4Zv498N47pKdNxu3O5tBD/sT1Dy9muruGz8/4GNnePJyudErHXUJKSmL/xun0cuQRz+L31+AP1ONrrSA394ikw1BnTP8OhYUfo7HhI7Zs/WksIAVQnDeZiUWFkWdpkPt5AHKy51K+/UEsK0Ra2kTKJlxLU/Mmmho3EAw2sX3HHwmFwrW4cnIOp3TcJ6mv/4A2fzhwlJk5F4ANG74XO1ZR0WkUF53BR+u+hd8fzqRyOdoSAlK5uYtJTSmlsPBkVn5wDW2e9kBnXt4xTJ785XCdNpy4Pbl4PcU0tFRTXfMhXkc9a9Z+mRxPBdR+lnkumHpECQBN/izS3eHsoQlZ4fOfw7pO1yre/7adwMllL5DjreOCGc9x7bHTeP6jfVQ2wGNrpjAjbyNXzm3/Pg1aqfzsk8cwb0YJpaVX8fL67WyvXM6UgnSOmFIYDpg6U8jMmIMxhubmbdTVvQuA25NPRvp03nv/SpqbN1K+/XcJbWlsbA9EuCL/UniHfdv+kbBeW+tGjss8p32BD/J4jtuPmkVx8ZlkZx9KefntPP/Ci1hWKDIJgINQKHFYnzFOLCucvRMOSEFm5mzmzP4xb771MQKBWgKBWqZkw5TwtzZpOZ/gsIO/Srrbx5p1P2Bv5cNceGgqPzj4WOrqV1Bd9QRbq9ozjrK9DXznqPuYkJ4YZMGCYBAOLqzj4MLEIZsTs3dx7tw6itPDNfk8Tj9nTXkm9vq7lQdzWHG4Jte03HBm2LHj3uAv687nxXV7cba8xGEp/2BGOp2kOmtIbf48+5qhwABOuPVICIbC34N5eceS4h1Lq29XbJuWYB6pzvD1OX3S//jYnPHkpLqxGn9HKNjc6RgWHn6y4jN858gfxIYhQ2JmI0AwAMFA+GfpkpkbuGRm5Pxnhb9WteTyk/c+w+2L/w+nFV4vlXXgh4Afnnu7lkUl4e/v9/bMpTQ7gHGXUeAIXyu3I8ik7HImZZdz/PjwBwU7G0tgj5/7P1aNwyT+LVm1bxX/23YCvzjxAVJc4Uw9h8OTGJiyof0alHrjjTfIycmJBaQAlixZgsPh4K233uLcc8/ttM3y5cvx+/0sWdI+8H3mzJlMmDCBN954IxaUWrNmDbfffjtvvfUWmzdv7lV7fD4fPl97GmV9fX03a4uIiIjIcAj4/VihxKEVFobc7EOHqUVdGOQPnWNFaHvTf+jUybB3p6MnHbO33K48tjwznpSMTGas30FwQWHcyhZZWYdywvH3RIrUd535FeNw8e+69no2Rx1yLMaEaxqFrBDRN9Oywpl4DkfnoS9WYqEzlje7KCz7MpOyJ3V/aIcHr7cYr7eYjPSuiy67XJkUFS6lqHApaWmTaGraQGvrLkKWn5KSs5NuU1h4MoWFJycsS0+fCoVLASgr+xxtbXvweotxucKV3YuLz0hY37JCZGfNJxBswuHwkp01H4fDTWHhyYRCbezd+wxbt/2SUMiPy5VBSck5TBh/ZWTbIJP2pJCd4ofscNBm8qQvkZ11cKe2ZqXlk5V2PJZlUV39ErV178QyyFId4ayuOdMuo3TcJezdFx6yWl39GpYVCAe4Iv+am7fg81USCrXh8RRy/RnfYv2qV3E5/Jxa9i92bIPpqeF/xxSB8czHagOndwYlhUdRWHAc+XnhIFhuuoezD5kCdB24TUsrIy2tLGHZ7Nk/oKLiXwSDzViWn+zsBRgMPt8eMAanIwWPp4Dy7Q/EitMb4+Tgg35H+fbfUV39Smxf2VmHUN/wAZYVpLFxbcKMofHvUXySy8EH/RZvyhjS0yYTCvmp3PMEwUATFiEK8k8kPX0yhx76CC3N29i16xH8gXosy4/Tmcac2R8nI9UDeCjMO4S9lQ/TXP88L7w4vcN5T8bvr8Pvr0oISJWUnENq6kSKik5h48b/o6rqRSCcpXjI/N/zzrvnku5qYEnxHeFrnLuYmprXE/YdTP8c42dMxBNaSXPje+ze/QhLp3zACVMaeK+yjLa2GgAqmifQZqaTnTWDZtd5ZAV+TajpSUKWg0DIRUVTEXMKwkEdpyOE05mGx5PPwoWP0dCwhtbWXQRDLZQUn8mbb52G31/FedOehDYIxsX3jHFRWLiUzIyZuFzZZGbO4R+HzaS2fjEmVIEz8AF1dStiAcJNe1upaqglxeXj+e3Hc/nsxFFgPibTFMjm1T2Hs7NxLL/+4HIOK36PBcUf0BzIYV3tbA4peJ1FJeGM1ragm1+tvIqnv3Qi04ozCYXaaGxcRzDYwrbyX9PQtIe21vB7MC6jIuFYTmc6Ts9E2lpWMzN/O+Oyn48FpADGl14R+z02KgudV1RUUFRUlLDM5XKRl5dHRUVFl9t4PJ5OtaGKi4tj2/h8Pi6++GLuvvtuJkyY0Oug1J133sltt93W9xMRERERkSGz9f3lhEJ1nYa8OXoTfNiPOk4x3lMYyCR5FC+9FVoyk74U05chfd0fbYRJWug+/syscAZAr3fX9VUJEWrPXosMgXQ62q979H0fypEvHbPJ+svtzsLtzup2HWMcZGcfkmS5wen0UlJyVpftMcbJ5L0pjPH6IBuycxaR3UOQzhjDnDk/AqChYTUVlf8Gy8LrLWbcuE/idKZSOu6TALGvPfHO+TFV1a+AFcKyAgRDPvbseRIAq+19AKaUXcz40k/1an89yc46OGngraMxY86jrW0fISuAy5mOy5VJbu4iGhvDgRSvdwxebyF+fz27dj1Cq28XNTVv0da2F4cjhdycRUyZ+rXwzqwQlmXhdufgcrWnEDkcHsaN/USnY+fmLCQ3ZyFjx3Y9K2hm5hwAgnHZQm53Pnm5RzJ+/OUAVFWFA2jG4aKk+BxSU9sLms8/+HeEQm3hobfGjTHOWG20qPy8o5k543vU1oZn5czOXsBJsXp906irn8bu3Y8QDNTgpIbD8tsL4B87/0rGl14W1+I7afJ9l7W768lL91CSnUJb8/s0NIQztbKyDsbpTMHpTCE//9iEc5018w727I0fXWUIBhpxOtOZOfMOnM7EovrZQHHWXGAusCThtUMJ/24OhiwuBbC+RkvrTgwGtzsPrzccRP848MNAiHUVR5PudTKpIBVjnCxp2ckHH36aVl8VIZNDVvaVPHfTEiYWhN9Xh8NDVtY8AHJzF0Xeo1Zqa98hEGwkFGwhI3M2aakTcTi8BAL1vPzKYbhME7nudZHzvZPi4jNwOtPCM07aWL+CUl//+te5667k44mj1q7tHOEdLDfffDOzZs3i0ksv7fN2N954Y+x5fX0948ePH+zmiYiIiMgAtLUkGU5hbD8CoVeS15bqf7TDpiVCBk/0BK3ERaFQ1zOQ9VYse8CyYtOnd8qUMu3hLCvZtjbNPBhaBtPPb8TMzDmxwMhAFBWdQlFR4rDNvfvOpqrqRZyOVDzeQsaOOX/Ax+kPj6cg4bnD4SUr66CEZW53FmVlnx7KZgHhCRgWH/kSrb7dWFYAtyubzMzZCetk95Ch2jE4vPCwx2loWIVxuElNGR/LMuuYbRbbf9bBHLbgH7T6drFu3XdiQ0bBQXbW/E7rp3tdHDYxL/Y8zXNYbHa87hQWLqGwcEmP6/WWMQaXM/rbIZPMjJlJ1/O4HMwrzU5Ylpo6jsMXPdmn44UDbcckfc3tzmbOnHuorX2bUNCH251DSck5ce+Nvf949isoddNNN3HFFVd0u87kyZMpKSlhz57EqUcDgQDV1dWUlJQk3a6kpIS2tjZqa2sTsqUqKytj2zz//PN8+OGHPProo0D7J0gFBQV885vf7DIbyuv14vUmn1ZUREREROyhY3ZQOJDjsP0sQt22Lv5FLxCCxtTwwr3Z9j6v4RDLTsKKRCPDuVLtBi8YFD98DytaLD4+U6rr9ikmZV+FBSdRWHDScDfD9lJTS0lNLR20/Xm9hXi9J/Rpm+zs+WQzn8KCJTQ2rsMYJx5PYSzjSHpWUnwmJcVnDncz+qVfQanCwkIKC3v+BjnyyCOpra1l+fLlLFgQnu7z+eefJxQKcfjhhyfdZsGCBbjdbp577jnOPz8czV63bh3l5eUceeSRAPzjH/+gpSVuatF33uGqq67ilVdeYcqUYS6AKSIiIiIDlmyg3IgL3XQRsLAcBkKwdrxhUg1UdJ6kThLG73V8560+D2vsPPSy/XlCTanoDIZJvtn6M5RytDCxmlzD3BAZ0eKHrckgMsnyPe1jv9aUmjVrFqeccgrXXnst9913H36/n+uvv56LLrooNvPezp07Oemkk/jjH//IokWLyM7O5uqrr+bGG28kLy+PrKwsbrjhBo488shYkfOOgad9+/bFjtexFpWIiIiIjCzRzn/77bOFZeyQJxXN3umtntZMPKP+BT2SbDP8F2rwJIyZiys6bvVt+F6y756EIXidhu+FYuv0uO1oZwyDOaOkiOwnNo0a79egFMCf//xnrr/+ek466SQcDgfnn38+P/3pT2Ov+/1+1q1bR3Nze+2Ae++9N7auz+dj6dKl/PKXv9zfTRURERERO7CiM591GZMYFh1m3yatdWC30n09nY7ZPkCHTsaBE41KOFXTOVOuz5lSHXPvTPJMKV9zMdCL4Xvx9agkRldDxI7s/bdhvwel8vLyePjhh7t8feLEiZ1+maekpPCLX/yCX/ziF706xvHHH68/CCIiIiIHCCtaPyi+uPWwtSaJyP39lF3pcctMkkZ26AhEsr1Mx+hWhw17kxPWvk7HrweW9qy5DjWl+njvPzF7YuyxwVCaURoLTIWsEMYEwo+DKUCH2ff6d8hRpX1wkC6SiN3YPbNzvwelRERERET6JMl9s2XsU+i8MtdHSXU4eBF0QnZZzzVNjWkf4NQ53NG1nj94tWcnY8Di05M6BvxMNLup9y6ddSmLShbREmihJL2EkvT2SZcsy8JT8DwZrlxa2hz4Q23MmWTYvTdxH/EduoRC7KNe/2ffExFRUEpEREREbKU9ENN5Fj47eG9GLRkle3gj3cui2llMLutqyvS+ddQV4EgmPoQ3gJpSxjAjb0bissj+QoRwpu7goLKXqWyqZFfTLsYXXwl7YytGjtn31o82ukQidmTvQueO4W6AiIiIiEhHptNjM+w1pay4VgXdIQIuC6z2ZX2uEWV1vUXS+lG93rFdwnf9116zibgL256dNJiZOVashln88MDObUm6rU07eUMqrtC5Anci0lcKSomIiIiIzXSYfS8SmLBrqKVTAKmbhg72ORywQYDINfW3tuAznUreY4X6linVnWhgyRjTaVhe/Hub2AIVOo+n2fdEbCz2a8yeP6cKSomIiIiIvSStKWXfoFRPeqqFZZlolkl/Ogx2rQY/MA5HezfllVwvEH8drT7XlOpOdF+JwwM7z76nAFTPdIVEpK8UlBIRERERW7ESx2yFl+GwWVCqc/e7xw55LKYSG5DY81G6CoTY62IMusyCQuYcvwSAZqeDVlO73845GpRyxBXTD9Ee9EpWjWVAwysPOMmzyUTEHmJ/a2waWFdQSkRERERsJjJ4qsP9s8NGgYCB3Np3NdQpNmRsgNEX+1yl/jPGcMrnvsS0RYuB6LWJC374GqGldsDHgLiaUvHD9+LqTCULQNl9ivWhptn3RKS/FJQSEREREVuxQh07uMZ2NaWsbgJk0da7g95BPWbS7JwDPBhw5o034+r0/QDWnrVQ/sagHCOaFWUi/+vSgX2pB0SFzkXsLBpEtycFpURERETEVjpmn5hIlsxwB6V6f3yrw1fpL2MMqbGglLP9BYcbXAML+sWG6sUP3zOJy8JtCH9VofMuJBSD1/UQsZ9kg5DtQ0EpEREREbGXZIXOYdhTpbqtI2Tag2ZBhz/hJXeKs/P6vdRT0MPECoIbhv0C7VdWwpA5q3guTDlxcPYcP1Svw7A8Y7oIhsYCVfbs5A01zb4nIv2loJSIiIiI2EqnQIwFVlwR6pFiX/oOAGYtHpN8BWvgdYk8bnfscXp6evjByLpMPTKYTsPCrEGYfa9jplR80FGz7/WFsXkehsgoZ+z9E6qglIiIiIjYimVFs2I6DuOzj95khoRMEABvmruHNcMGmnVTUJA/oO3treOMjIPXuYovMB8rdN7D7IoqdC4iMjgUlBIRERERm7GodzuxYkEIgzHgGubZ93xNmbHHochttA9vp2F93YUpTNLHVs8bdtqRnUJ0+5fp8BWSFcPvx3471I9yxGXjxQ/pixUJtjpvK2GafU/EvmK5jDb9OVVQSkRERERsxQpZrCxMi1/CkowM3I7hDQS01LVnIm2mNPJoIG1Kvq0CHl2JH1438OF7UbHhe0lqSkEP8T979vGGljGafU9E+k1BKRERERGxGYtgh0jAiWPzhqkt/WASviQxiEPP4qMAB2hAIDyQ00q4oIM5bC6WFWVMp+wpk5DPFheo0vC9pHQ1ROzI3r+vFJQSEREREVuxrFgNcCByO30g37X2MjGqpwyqaHzqwM+zstjXvJeWQMuA9hIrdE7nAFTiepGj2rM/ZwuafU9E+utA/vMuIiIiIiORFfk8N9bPNV0GDOzEdNUv7xhgi/23Yy2qJMW1ex0Jsf/16S/jckJchTELQ72vnkV/XsRPV/x0wPtPqCnVIVMK2oOBCTWlOtSeGt3iZ9/T9RCxL3v+fCooJSIiIiK2YlkWVkJWkGWPwt4DbYMNTmEk8oyfEHnUeVrzF7a/0P8dx2r/xg3f6/gmmeRvW3ez9I1muhoiNmQ6/+60EwWlRERERMR2rIRIgMWBHNGJBjbis256W+x8NGTqOFK8nb4D/t9hXwUG5/x7qh8lPTDts++Ngm9HERlkCkqJiIiIiK1YoWgIItrDNfafkS5J+1J9zvBL+yGglnyf0aJSNr9WfWSMIxLtiB/Al1gPql/77VhTKi5TKnH4XuSoSSIuCl6FqaaUiH3F/l7Y9MdUQSkRERERsZ1Qwkxn9tYxYBZyhNue3uoCwOl2t68bv2JiOlgswNHfINYBm6XSMcgWFzwajEyp6D4cODq9l6aLemaqKZWcroaI9JVruBsgIiIiIpLI6hivCWfLjBAfzqhm6q40Gh0O8tqKmXXMCUnXG5Rg2ygIihhjsOKyoyA+Z2rwhu+F60d1DjYZeycZ2EB7VqOukYgd2bsGnoJSIiIiImIrlpWkhpQd0qV6OSyuoqiFUH49Gzwejtk9i4zcvA776X3HQJk4yetrDUamUseheo64wGeyYYEJs+8dYEMkB0pXQ0T6a+R85CQiIiIio4JlWYTiZz2z9k9dpr6KjyX19Ilz8leTn8PgfHo9/Ndnf+kcALJiZxtf+6m/otc/fvhebEa+LoqfG5tnHgwXXQ8RO9LseyIiIiIivWd1+AojpHh3F6GoLtvet3NKvp/OxxwRl6ovTGR4WPyJWdEvA8iUMomZUvGFzhMCUAfa9Rxsxmj2PRE7s/kvMQWlRERERMRWrEgFoWjkwd6304Onvq2+z9uMhiBAuKZUfOacNSjD99p3154VlbSmVGxZYpsG6/gHAs2+JzIS2PPnVEEpEREREbGXyPC9eLao4TPIbei4t+0N24HE2kZ9acsBGx+JnWtcofPIuSar/dTr3Ub2t7luc+Qwpj3YFA2Imvjhe523FRg9YWORkSn2+8qmfyRU6FxEREREbKXjfbMBGEGz7/Va3BSDEzInkO3Nxu1wc+GMC9n15q7wKj11IuJft2mHY6CigaH48FCsQsognHOjvxEIBwO7nX0vyaFUQyksmimlqyEifaWglIiIiIjYi02DKybJk2QZM31uvbG4au5VnD/9/Niix3isr3s5YBnTPpQztiwy4GMgQamzppzF9obttAZbSXGmcNKEk9hYuzG8317WlNLwvTAN3xOxP7sG0RWUEhERERFbsfZ+RMgclbDMOOw7RCgcNElsX9Jbf9P1QKeBD0+07/UZKGNMJE7ZPoOU9ci/YcnAhu+dP/38hEAgwP0f3B8+QpLZ90gIVB2417vPuhjiKCLSGwdgHrSIiIiIjGRW9ZbEzq1dslH6EYjY37WH7PrJ96CKZEolXMltO4HBz1RKOvtekkLnUaPi+vdCtMaXXX5URSRee0DfjhSUEhERERF7sawOASATG65lZ/0NPw2om2DPPsagSpaV5Lg0nOE02EGh6LFCVihuWZL1DuDMtP7Q8D0R6S/7/3UXERERkVHFsqxOg7LsNnwvaTCkj/3y3gQ2usoEGlWjx5LMvuc6/3QgMXg0KIfqmCll7J5jYAcmrtC5rpKI7dj8D4aCUiIiIiJiL5bVYfiUPTq6yW7rvV4vM2fO7LTc6iLglHxp786vpzpGsfiVvfsffWaMwUq4olbSYXaDKlnM0Uo2pM8e35t2oashYj92z+xUUEpERERE7MVKEmqwwye9cU1whMIZOqeddlrSoFRfd9ix09DbQtqjISgSuxam8/Ua7EypqOh3oMHEDht/paNtUmZQmF0CxyLSNbv+vVBQSkRERERsxQKshJiMsd0nvXlV1QPex2CfUd3elkHeo12EC523szDGEX04uEdKGmyy1/ee7RijIY4itmbv32EKSomIiIiIrVhWaMR3bvvS/sHKtmlrCQC9z7IaKYwjnIcTH5hc8699AIQ6VR8b4LGSZGDFMqU0+16PbJqIISKAXcPGCkqJiIiIiL10vG+2LIzDZretA4j7xIY6WYMRPOrcyTh0adkg7Nc+ooGi+JpStTt8wH4odN4hUyo+EJZQU+oAC/wNjFE0SsTW7J3LaLO/7iIiIiIi9syUSghQJFnWu310XQS9P6KxgNRMD4UTMjnj+oM55GMTBm3/tuBwEB6yF75uxdUrmbW0YL8cKvZ+WvHLOi2KsWuNlqHWPvueiEjfuIa7ASIiIiIi8axQks6tscFnqd31uDvEmfrUOe9XjCpxo/Gz8jj9Cwv7syPbM5BwQTObdjB2dhas3Q+ZUkmH73V+g/b77H8jlK6HiA0ZZUqJiIiIiPSBhWXihkph9zKtXTNJhuj15VyUiQPG4UgMdlhxw+wG+/rEEqUiw/fiA1IJ2VMj9TtyPzBGs++J2Jjdf18pKCUiIiIitmJZHfMtTNwnvQeiAXToR1HQKpadZFntGU37qdB5/HdgtzkGo+fyd8veeRgiAvb9kENBKRERERGxlb2uNl5O+W7cEssehaXj2tDrGuVx63U8hT7Xo7LDNRgGnYrcW9Z+y5SKD3zFliW57B0LokuELoeI9JGCUiIiIiJiK1tTW2gzDe0LLJhXcNDwNajXooGK+CWdIxr7o99+IAesTIdHlgFHpMbYYAeFks2+lzRQZfPhMEPLYGyagSEi8ez5c6qglIiIiIjYSjDJkKw0T9owtCTRYIUhOtbfseg6qNRTJtBoyNSJ1pSKXaH44Xv7qdB5suuedPa9UXD9e0Oz74nYmM0/tFBQSkRERERsJQSYhKLSI0Nf25msCHqfjYoMlch1inasrMThnIM6hC+y28TZ92KH7cSuNVqGVPx7MYzNEJGe2PMnVEEpEREREbGVYOcy5/b4pLcPbegq3jRYw746ZVbZ4frsJ8ZhSOhMWVZCQG8ws5U6vj9dvV8H8nDJ/tDseyL2Ffs9ZtMfUwWlRERERMRWOgal7GgwkpwGZc4y+1+qQZB4sa0OoaLBHMKXdPa9WH8u2ZC+UfEG9Kj9O1nXQ0T6RkEpEREREbGVUKeOrWW7TKD+db2jAY/en0tTU1O/jnQgMSZSdys2jC9xeOegZkqZrmtVWQlDSu31/Ti84odSDmMzRKQL9p4tVEEpEREREbGVEFZC0CEchRj+IECyFkSDGCYaOYnoy61/hnGysGRh0v2uXLmy3207UBjj6BTt2Pnpz8QeD2Zdp06ZUiZ+Rj7pimbfE7Eze/+FUFBKRERERGwlZDp0cO3S4e1lYKy3rS1tyQLgY+4CxmWMS3ht7ty55Ofnk5mZSUZGBgsWLMDhGJ237mk5uZFH7cGh1g8+jL2+Xz7976HQfnez9I1Gmn1PZCSw50+oa7gbICIiIiISL1mFIHt/ztt7BnDgB6AtlAOAy9n5jKdMmcINN9zQ4/7sOhxjMC086zx2Vr1D7fJlAGSdegrmkb/FXh+qmlIJgSobZO7ZhmbfE7E3m/++UlBKRERERGwl2KeqS8MkSQPjF3XXOR+X8SxjWnZSbWVS5NjHQWUDaMcoyNTxpKSSUzKG6BX2TJ6M0+sF2oBBzlaKvIm1vtrI0+5n+Xtz95tkeDKYnD2Z3JTcTq+PFpp9T2QksOfPqYJSIiIiImIr4eF77cEAA7b7pLe3t/aOJNUyMtzlLPIuY2VoMgc7NkP6pX1vQMfLYbPrs1/EMpYsHN4UYkGpQexobanbAsD2hu1xh+18bd0ONwAPrX2Ih9Y+RJYni2c//iyprtRBa8vIoUwpETuz+8QMo3NguoiIiIjYVgiL/LoO3VtbBF063zr36WY/smqnPLABnNooSJQKMybhWjs93tjjwRy+d8y4Y2KPM9wZnDjhxNi3Xvy1vnre1RxSdAhTc6biNE7q2+rZ1bhr0NoxUlmhwXsvRGSQ2fQPhjKlRERERMRW8qsC3P3fIM/OjVtoi6DUwB0YZzG8LItIplTk+SDm53xpwZc4Z+o5zMibEVtWWd8KQCBk8b0n1uB2OXA7S/jOYb9kSmEGZz1+FlvqtvDXdX+lNKOUc6edS6Ync9DaZHvuFIzVDIA1iAFCERlcdq1BqKCUiIiIiNhKXnUgcUG2C+N0Dk9j+mmob/0P+MLbcaf31mN/5VhX+/fDZ+86GgcOTFoKztJxXHXUFzm29Nh+Hcbr9CYEpABSPU6cDkMwZPHbV7fElh8yPocphRkUpxWzpW4Lf/noLwCcOOHE0RWUOvEWzPtPhx8f6N+HIjLoNHxPREREZAT7xS9+wcSJE0lJSeHwww/n7bff7nb9v//978ycOZOUlBTmzZvHf//73yFqae85QrN44/Bb25+n2O/T3c1juu58hww0OHq+zS4wdYPZpANemqs90OPPySKzOfx98eEEi5UTgrxf0MTy1vXsad4zqMfNSnFz/6cWcMOJU/nMcZO5+uhJXHZkGaW54fpRXzjkC5w15SxOm3Qap006bfTVlRp3KCz+QvixUfdSxH6STCFqI8qUEhERERmh/vrXv3LjjTdy3333cfjhh/PjH/+YpUuXsm7dOoqKijqt//rrr3PxxRdz5513csYZZ/Dwww9zzjnnsGLFCubOnZvkCMPDOOYTcLZ37KfkvQJcM3wNikifN4+MljU0prYHpLzOcG0j43bHljU7DBDO5HHHLYdw16DNCt+CjzNV4YWuFPqrcvOGfm87kqTNL2JR0SeY2HwkqeNyyQyG+NlrT7A+J4grIxPjawOfH+/4CcwvOXzQj3/SrGJOmlWc9LV5hfOYVzhv0I85ksTqbg1vM0QkGZtnMCooJSIiIjJC3XPPPVx77bVceeWVANx33308+eSTPPDAA3z961/vtP5PfvITTjnlFL761a8C8N3vfpdly5bx85//nPvuu29I255MKBSitqEWQ1rC8kzv4Ga+9NfYb36LH31zJyv2vkd5IeQccRSLxy4GwF1WxhhXCfNafXyYEglUARecckH7DhyGpd4UfuU/h0ZSCWEoyCvk8MM/1+e2jJk2kx1rVoWfGMPY6bMGenq25i3LwluWRRbjY8sWzJnLgmFsk7Szd5dXROxMQSkRERGREaitrY3ly5dz8803x5Y5HA6WLFnCG2+8kXSbN954gxtvvDFh2dKlS3n88cf3Z1N77Q+/uJva197Hcnixgk/Flu/0zmTOMLYryhjD4jvuY3EXr6V/410e3rMW0gtY3VKJx5vFtNxp7es4DJ+78UguLJ+Nz3EFnsJUigrT+/Up9rGfvIIFp50NgMvjwZuW3t/TEhmw6Hfw3rYAt2zYgcMYDspI5fySvGFtl4i0zxLr81Wwdu3NeDwFGIcbY5w4jIvi4rNISRkzbO1TUEpERERkBNq3bx/BYJDi4sQhRcXFxXz00UdJt6moqEi6fkVFRZfH8fl8+Hy+2PP6+voBtLp7zTt3EbIaINgQW7bbW8xJ88/Zb8ccVC4vjJ0PwJzs0qSrOLO9FM3rPLSyP9JzcgdlPyIDlRUpPF8XCPKbHfsAOK84V0EpERtwu9v/Vuza/bdOr2dnL1BQSkRERETs6c477+S2224bkmMddNRiVu+rwhlykGoCvDxnKkcumMf8444bkuOLSP/MTE/hp7MmsKXZR9CyCAJzM0ZZwXcRm0pJGcshhzxEU+M6Wn0VhEI+LCuIFfJjWQE8nsJhbZ+CUiIiIiIjUEFBAU6nk8rKyoTllZWVlJSUJN2mpKSkT+sD3HzzzQlD/urr6xk/fnyX6w/EMWd+gmPO/ETs+aX75SgiMtiMMVyorCgR28rLPZK83COHuxlJac5OERERkRHI4/GwYMECnnvuudiyUCjEc889x5FHJr/xPPLIIxPWB1i2bFmX6wN4vV6ysrIS/omIiIgMBmVKiYiIiIxQN954I5dffjmHHXYYixYt4sc//jFNTU2x2fguu+wyxo0bx5133gnAF7/4RY477jh+9KMfcfrpp/PII4/w7rvvcv/99w/naYiIiMgopaCUiIiIyAj1iU98gr179/Ltb3+biooK5s+fz9NPPx0rZl5eXo7D0Z4Yv3jxYh5++GG+9a1v8Y1vfINp06bx+OOPM3fu3OE6BRERERnFjGVZ1nA3YrjU19eTnZ1NXV2dUtFFREQkKd0vJNL1EBERkZ709n5BNaVERERERERERGTIKSglIiIiIiIiIiJDTkEpEREREREREREZcgpKiYiIiIiIiIjIkFNQSkREREREREREhpyCUiIiIiIiIiIiMuQUlBIRERERERERkSGnoJSIiIiIiIiIiAw5BaVERERERERERGTIKSglIiIiIiIiIiJDTkEpEREREREREREZcgpKiYiIiIiIiIjIkFNQSkREREREREREhpyCUiIiIiIiIiIiMuQUlBIRERERERERkSGnoJSIiIiIiIiIiAw5BaVERERERERERGTIKSglIiIiIiIiIiJDTkEpEREREREREREZcgpKiYiIiIiIiIjIkFNQSkREREREREREhpyCUiIiIiIiIiIiMuQUlBIRERERERERkSGnoJSIiIiIiIiIiAw5BaVERERERERERGTIKSglIiIiIiIiIiJDTkEpEREREREREREZcq7hbsBwsiwLgPr6+mFuiYiIiNhV9D4het8w2un+SURERHrS2/unUR2UamhoAGD8+PHD3BIRERGxu4aGBrKzs4e7GcNO908iIiLSWz3dPxlrFH/sFwqF2LVrF5mZmRhjBnXf9fX1jB8/nu3bt5OVlTWo+x4JRvP5j+Zzh9F9/qP53GF0n/9oPnc48M/fsiwaGhoYO3YsDocqH+zP+yc48L+fujOazx1G9/mP5nOH0X3+o/ncYXSf/4F+7r29fxrVmVIOh4PS0tL9eoysrKwD8hust0bz+Y/mc4fRff6j+dxhdJ//aD53OLDPXxlS7Ybi/gkO7O+nnozmc4fRff6j+dxhdJ//aD53GN3nfyCfe2/un/Rxn4iIiIiIiIiIDDkFpUREREREREREZMgpKLWfeL1evvOd7+D1eoe7KcNiNJ//aD53GN3nP5rPHUb3+Y/mcwedvwyu0fz9NJrPHUb3+Y/mc4fRff6j+dxhdJ//aD73eKO60LmIiIiIiIiIiAwPZUqJiIiIiIiIiMiQU1BKRERERERERESGnIJSIiIiIiIiIiIy5BSUEhERERERERGRIaeglIiIiIiIiIiIDDkFpUREREREREREZMgpKCUiIiIiIiIiIkNOQSkRERERERERERlyCkqJiIiIiIiIiMiQU1BKRERERERERESGnIJSIiIiIiIiIiIy5BSUEhERERERERGRIaeglIiIiIiIiIiIDDkFpUTElrZu3Yoxht///vfD3RTbuOKKK5g4cWLCMmMMt95667C0R0RERPpH9zmd6T5HZHRSUEpEknr99de59dZbqa2t7df2v/zlL3Wj1Q+7du3i1ltv5f333x/upoiIiBywdJ8zPHSfIyIdKSglIkm9/vrr3HbbbbpZG2K7du3itttuS3qz9pvf/IZ169YNfaNEREQOMLrPGR66zxGRjlzD3QAREekdt9s93E0QERER2S8OtPucpqYm0tPTh7sZIranTCkR6eTWW2/lq1/9KgCTJk3CGIMxhq1btxIIBPjud7/LlClT8Hq9TJw4kW984xv4fL7Y9hMnTmT16tW89NJLsW2PP/54AKqrq/nKV77CvHnzyMjIICsri1NPPZWVK1cOSttbW1u59dZbmT59OikpKYwZM4bzzjuPTZs2Ae01HH74wx9y7733UlZWRmpqKscddxyrVq1K2Nfxxx8fa3e8ZDUPejJx4kSuuOKKTsvjj/Hiiy+ycOFCAK688srYtYt+Etuf4ybzyCOPsGDBAjIzM8nKymLevHn85Cc/GfB+RURERgLd54QdiPc5L774IsYYXnzxxYTlyWp4VVRUcOWVV1JaWorX62XMmDGcffbZbN26NWHbp556imOOOYb09HQyMzM5/fTTWb16dcI6V1xxBRkZGWzatInTTjuNzMxMLrnkkl612e/3c9tttzFt2jRSUlLIz8/n6KOPZtmyZf25BCIjjjKlRKST8847j/Xr1/OXv/yFe++9l4KCAgAKCwu55ppr+MMf/sAFF1zATTfdxFtvvcWdd97J2rVreeyxxwD48Y9/zA033EBGRgbf/OY3ASguLgZg8+bNPP7443z84x9n0qRJVFZW8utf/5rjjjuONWvWMHbs2H63OxgMcsYZZ/Dcc89x0UUX8cUvfpGGhgaWLVvGqlWrmDJlSmzdP/7xjzQ0NHDdddfR2trKT37yE0488UQ+/PDDWFuH2qxZs7j99tv59re/zac//WmOOeYYABYvXjxox1i2bBkXX3wxJ510EnfddRcAa9eu5bXXXuOLX/zioB1HRETErnSfc+De5/TF+eefz+rVq7nhhhuYOHEie/bsYdmyZZSXl8eCY3/605+4/PLLWbp0KXfddRfNzc386le/4uijj+a9995LCKIFAgGWLl3K0UcfzQ9/+EPS0tJ61Y5bb72VO++8k2uuuYZFixZRX1/Pu+++y4oVK/jYxz62H85cxGYsEZEk7r77bguwtmzZElv2/vvvW4B1zTXXJKz7la98xQKs559/PrZszpw51nHHHddpv62trVYwGExYtmXLFsvr9Vq33357wjLAevDBB3vd5gceeMACrHvuuafTa6FQKGG/qamp1o4dO2Kvv/XWWxZgffnLX44tO+6445Kew+WXX26VlZX1ul2WZVllZWXW5Zdf3ml5x2O88847XZ53suMC1ne+851et+OLX/yilZWVZQUCgV5vIyIicqDRfc6BeZ/zwgsvWID1wgsvJCzveL1ramoswLr77ru73FdDQ4OVk5NjXXvttQnLKyoqrOzs7ITll19+uQVYX//613vd1qiDDz7YOv300/u8nciBQsP3RKTX/vvf/wJw4403Jiy/6aabAHjyySd73IfX68XhCP/qCQaDVFVVkZGRwYwZM1ixYsWA2vePf/yDgoICbrjhhk6vGWMSnp9zzjmMGzcu9nzRokUcfvjhsXM8UOXk5NDU1KSUcBERkQ50nzN6pKam4vF4ePHFF6mpqUm6zrJly6itreXiiy9m3759sX9Op5PDDz+cF154odM2n/vc5/rclpycHFavXs2GDRv6vK3IgUBBKRHptW3btuFwOJg6dWrC8pKSEnJycti2bVuP+wiFQtx7771MmzYNr9dLQUEBhYWFfPDBB9TV1Q2ofZs2bWLGjBm4XD2PTJ42bVqnZdOnT+9UR+BA8/nPf57p06dz6qmnUlpaylVXXcXTTz893M0SEREZdrrPGT28Xi933XUXTz31FMXFxRx77LH84Ac/oKKiIrZONEh04oknUlhYmPDvf//7H3v27EnYp8vlorS0tM9tuf3226mtrWX69OnMmzePr371q3zwwQcDO0GREURBKRHps46fxvXFHXfcwY033sixxx7LQw89xDPPPMOyZcuYM2cOoVBoEFs5cF2dZzAYHNZ9DURRURHvv/8+//73vznrrLN44YUXOPXUU7n88suHtB0iIiJ2pfuckXuf05d2fOlLX2L9+vXceeedpKSkcMsttzBr1izee+89gNj79ac//Ylly5Z1+vevf/0rYX/xWXJ9ceyxx7Jp0yYeeOAB5s6dy29/+1sOPfRQfvvb3/Z5XyIjkQqdi0hSyf6ol5WVEQqF2LBhA7NmzYotr6yspLa2lrKysm63B3j00Uc54YQT+N3vfpewvLa2NlZotL+mTJnCW2+9hd/v73Fa4WQp0uvXr08oWJmbm8vmzZs7rdebT0o7ys3Npba2Num+Jk+eHHs+kBvh3vJ4PJx55pmceeaZhEIhPv/5z/PrX/+aW265pdOnwyIiIgci3eccmPc5ubm5AJ3a0tU5TZkyhZtuuombbrqJDRs2MH/+fH70ox/x0EMPxQrHFxUVsWTJkv3a7ry8PK688kquvPJKGhsbOfbYY7n11lu55ppr9utxRexAmVIiklR6ejqQ+Ef9tNNOA8KzzsS75557ADj99NMTtk92c+J0OrEsK2HZ3//+d3bu3DngNp9//vns27ePn//8551e63jMxx9/POGYb7/9Nm+99RannnpqbNmUKVP46KOP2Lt3b2zZypUree211/rctilTpvDmm2/S1tYWW/bEE0+wffv2hPWSXffBVFVVlfDc4XBw0EEHASRMdy0iInIg033OgXmfU1ZWhtPp5OWXX05Y/stf/jLheXNzM62trQnLpkyZQmZmZux+aOnSpWRlZXHHHXfg9/s7HSv+ug1Ex3uzjIwMpk6dqvsyGTWUKSUiSS1YsACAb37zm1x00UW43W7OPPNMLr/8cu6//35qa2s57rjjePvtt/nDH/7AOeecwwknnJCw/a9+9Su+973vMXXqVIqKijjxxBM544wzuP3227nyyitZvHgxH374IX/+858TPkXrr8suu4w//vGP3Hjjjbz99tscc8wxNDU18eyzz/L5z3+es88+O7bu1KlTOfroo/nc5z6Hz+fjxz/+Mfn5+Xzta1+LrXPVVVdxzz33sHTpUq6++mr27NnDfffdx5w5c6ivr+9T26655hoeffRRTjnlFC688EI2bdqU8Clc1JQpU8jJyeG+++4jMzOT9PR0Dj/8cCZNmjSwixPXjurqak488URKS0vZtm0bP/vZz5g/f37Cp8IiIiIHMt3nHJj3OdnZ2Xz84x/nZz/7GcYYpkyZwhNPPNGp/tP69es56aSTuPDCC5k9ezYul4vHHnuMyspKLrroIgCysrL41a9+xac+9SkOPfRQLrroIgoLCykvL+fJJ5/kqKOOShog7KvZs2dz/PHHs2DBAvLy8nj33Xd59NFHuf766we8b5ERYXgn/xMRO/vud79rjRs3znI4HLFpk/1+v3XbbbdZkyZNstxutzV+/Hjr5ptvtlpbWxO2raiosE4//XQrMzPTAmLTAbe2tlo33XSTNWbMGCs1NdU66qijrDfeeKPTlMH9mSrZsiyrubnZ+uY3vxlrX0lJiXXBBRdYmzZtStjv3Xffbf3oRz+yxo8fb3m9XuuYY46xVq5c2Wl/Dz30kDV58mTL4/FY8+fPt5555pl+TZVsWZb1ox/9yBo3bpzl9Xqto446ynr33XeTTsf8r3/9y5o9e7blcrkSrsFgTJX86KOPWieffLJVVFRkeTwea8KECdZnPvMZa/fu3X0+HxERkZFM9zkH3n2OZVnW3r17rfPPP99KS0uzcnNzrc985jPWqlWrEo61b98+67rrrrNmzpxppaenW9nZ2dbhhx9u/e1vf+u0vxdeeMFaunSplZ2dbaWkpFhTpkyxrrjiCuvdd9+NrXP55Zdb6enpfWpn1Pe+9z1r0aJFVk5OjpWammrNnDnT+v73v2+1tbX1a38iI42xrA65niIiB7CtW7cyadIk7r77br7yla8Md3NEREREBo3uc0RkpFFNKRERERERERERGXKqKSUittfW1kZ1dXW362RnZ5OamjpELWpXXV2dUNSzI6fTSWFh4X5vRzAY7LHgZkZGBhkZGfu9LSIiItJ7us/p2Ui8z2lpaaGurq7bdfLy8vB4PEPUIhF7UlBKRGzv9ddfTygumsyDDz7IFVdcMTQNinPeeefx0ksvdfl6WVkZW7du3e/t2L59e49FQr/zne9w66237ve2iIiISO/pPqdnI/E+569//StXXnllt+u88MILHH/88UPTIBGbUk0pEbG9mpoali9f3u06c+bMYcyYMUPUonbLly+npqamy9dTU1M56qij9ns7WltbefXVV7tdZ/LkyYMy+4+IiIgMHt3n9Gwk3ufs3r2b1atXd7vOggULyM3NHaIWidiTglIiIiIiIiIiIjLkVOhcRERERERERESG3KiuKRUKhdi1axeZmZkYY4a7OSIiImJDlmXR0NDA2LFjcTj0eZ7un0RERKQnvb1/GtVBqV27djF+/PjhboaIiIiMANu3b6e0tHS4mzHsdP8kIiIivdXT/dOoDkplZmYC4YuUlZU1zK0RERERO6qvr2f8+PGx+4bRTvdPIiIi0pPe3j+N6qBUNOU8KytLN1UiIiLSLQ1VC9P9k4iIiPRWT/dPKowgIiIiIiIiIiJDTkEpEREREREREREZcgpKiYiIiIiIiIjIkFNQSkREREREREREhpyCUiIiIiIiIiIiMuQUlBIRERERERERkSGnoJSIiIiIiIiIiAw5BaVERERERERERGTIKSglIiIiIiIiIiJDTkEpEREREREREREZcgpKiYiIiIiIiIjIkFNQSkREREREREREhpyCUiIiIiIiIiIiMuQUlBIRERERERERkSGnoJSIiIiIiIiIiAw5BaVERERERERERGTIKSglIiIiIiIiIiJDTkEpEREREREREREZcgpKiYiIiIiIiIjIkFNQSkREREREREREhpyCUiIiIiIiIiIiMuQUlBIRERERERERkSGnoJSIiIiIiIiIiAw5BaVERERERERERGTIKSglIiIiIiIiIiJDTkEpEREREREREREZcgpKiYiIiIiIiIjIkFNQSkREREREREREhpyCUiIiIiIiIiIiMuQUlBIRERERERERkSHnGu4GiIgMpTp/gG9u2EmVP9DtegUeF9+bOo5st35NioiIiDxeWcNfK6p7XO+iMXmcXZQ7BC0SkQPBoGdKvfzyy5x55pmMHTsWYwyPP/54p3XWrl3LWWedRXZ2Nunp6SxcuJDy8vLY662trVx33XXk5+eTkZHB+eefT2VlZcI+ysvLOf3000lLS6OoqIivfvWrBALddzJFRP5aUc2jlTW8UN3Q7b+/V9TwfHXDcDdXRCTBzp07ufTSS8nPzyc1NZV58+bx7rvvxl63LItvf/vbjBkzhtTUVJYsWcKGDRsS9lFdXc0ll1xCVlYWOTk5XH311TQ2Ng71qYjICBKyLL6xYUeP908vVDfwg80Vw91cERlBBj0FoKmpiYMPPpirrrqK8847r9PrmzZt4uijj+bqq6/mtttuIysri9WrV5OSkhJb58tf/jJPPvkkf//738nOzub666/nvPPO47XXXgMgGAxy+umnU1JSwuuvv87u3bu57LLLcLvd3HHHHYN9SiJyAFnb1ArAlFQvX5pYnHSdX5bvYW1TK37LGsqmiYh0q6amhqOOOooTTjiBp556isLCQjZs2EBubntGwg9+8AN++tOf8oc//IFJkyZxyy23sHTpUtasWRO717rkkkvYvXs3y5Ytw+/3c+WVV/LpT3+ahx9+eLhOTURsrsLnp9ofBOCemeNxG9NpnS0tPu7ZWqn7JxHpE2NZ+++3hjGGxx57jHPOOSe27KKLLsLtdvOnP/0p6TZ1dXUUFhby8MMPc8EFFwDw0UcfMWvWLN544w2OOOIInnrqKc444wx27dpFcXG4U3nffffx//7f/2Pv3r14PJ5eta++vp7s7Gzq6urIysoa2MmKyIjw2dVbeXxPLd+dOo5rxxcmXefilZt4obqBn86awIUleUPcQhGxG7vcL3z961/ntdde45VXXkn6umVZjB07lptuuomvfOUrQPi+qri4mN///vdcdNFFrF27ltmzZ/POO+9w2GGHAfD0009z2mmnsWPHDsaOHdtjO+xyPURk6GxsbuXotz4i2+Vk3THzkq6zoq6J01ZsYEKKh7ePnD3ELRQRu+nt/cKQFjoPhUI8+eSTTJ8+naVLl1JUVMThhx+eMMRv+fLl+P1+lixZ8v/Zu+84uat6/+Ov6TPb+242PSEJSUgoAULoCBIQEQULgoiKoFywwFW5KHoFC4r+RFEU9VquCrZ7r6ioFOkltEBCEkJ6z5ZsnZ3evr8/vjOTRFI2m5n5Tnk/Hw8ue2ZmZz6Dd2bP93M+53Oytx155JFMmjSJJUuWALBkyRLmzZuXTUgBLF68GL/fz6pVqwr2fkSk9IRTKQB8Dp3zICKl5S9/+QvHH38873nPe2hra+PYY4/lpz/9afb+TZs20d3dvdccqr6+noULF+41h2poaMgmpADOOecc7HY7L7zwwj5fNxqN4vf79/pHRCpLOJmeP9k1fxKR3Crot0pvby+BQIBvfOMbnHfeeTz88MO8613v4uKLL+bJJ58EoLu7G7fbTUNDw16/297eTnd3d/YxeyakMvdn7tsfTapEZPek6s1l5yIixWzjxo386Ec/YsaMGTz00ENce+21fPKTn+S///u/gd1zoH3NkfacQ7W1te11v9PppKmpab9zqNtvv536+vrsPxMnTsz1WxORIpedPzk0fxKR3CrosVKpdIXCRRddxA033ADAMcccw3PPPcc999zDGWeckdfXv/3227n11lvz+hoiUtzCSXPHsiqlRKTUpFIpjj/++Gz/zGOPPZaVK1dyzz33cOWVV+btdW+++WZuvPHG7Njv9ysxJVJhQilVSolIfhT0W6WlpQWn08mcOXvvMZ49e3b29L2Ojg5isRhDQ0N7Paanp4eOjo7sY/71NL7MOPOYfbn55psZHh7O/rNt27bDfUsiUiKiqRSvB8IMpU/p1KRKRErNuHHjDjqHAvY5R9pzDtXb27vX/YlEgoGBgf3OoTweD3V1dXv9IyKVwTAMnhkc4elB84TOKi3qiUiOFfRbxe12c8IJJ7BmzZq9bl+7di2TJ08GYMGCBbhcLh599NHs/WvWrGHr1q0sWrQIgEWLFrFixYq9JlWPPPIIdXV1b5qs7UmTKpHK9b5lG3jLS2tYF4oCqpQSkdJzyimnHHAONXXqVDo6OvaaQ/n9fl544YW95lBDQ0MsXbo0+5jHHnuMVCrFwoULC/AuRKSUPLBrmHcv28DdW83rrmqHw+KIRKTc5Hz7XiAQYP369dnxpk2bWLZsGU1NTUyaNInPfvazvO997+P000/nrLPO4sEHH+Svf/0rTzzxBGA25Lzqqqu48cYbaWpqoq6ujk984hMsWrSIk046CYBzzz2XOXPmcMUVV3DHHXfQ3d3NLbfcwnXXXYfH48n1WxKREtcXS/D8cBCAGoeduTU+5tdWWRyViMihueGGGzj55JP5+te/znvf+15efPFFfvKTn/CTn/wEME89/vSnP81Xv/pVZsyYwdSpU/niF79IZ2dn9iTk2bNnc95553H11Vdzzz33EI/Huf7667n00ktHdfKeiFSWR/t39+A9taGGayft++RiEZGxynlS6uWXX+ass87KjjM9CK688kp++ctf8q53vYt77rmH22+/nU9+8pPMmjWL//3f/+XUU0/N/s6dd96J3W7nkksuIRqNsnjxYn74wx9m73c4HDzwwANce+21LFq0iOrqaq688kpuu+22XL8dESkD2yMxADrcLpadMtfiaERExuaEE07gT3/6EzfffDO33XYbU6dO5bvf/S6XX3559jGf+9znCAaDXHPNNQwNDXHqqafy4IMP4vV6s4+59957uf766zn77LOz86277rrLirckIkWuOxoH4HtHTuJ945osjkZEypHNMAzD6iCs4vf7qa+vZ3h4WFv5RMrYo/1+Ln9tI0fV+PjnCbMO+vj3L9/A4wMjmoCJCKD5wr/Sfw+RynHOS2tYGQhz3/xpvKX5wJ/3V4aDvO2VdUz0unlp0f5bqohIZRjtfEFNVUSk7PXFzObmLa6CHjgqIiIiUtKycyi35lAikh9KSolI2euPmxOq5lFOqGz5DEZERESkBBiGQV/c3L43qoU9TaBEZAyU8haRsuZPJNma7imlSikRERGRg1syFODBXcMk0o1eRruwJyJyqPTtIiJl67nBAO9dvl4TKhEREZFRMgyDq1dupi9dad7qduKxa4ONiOSHrtBEpGw9PThCwjCryVvcTs5qqrU6JBEREZGiNpRIZhNSH5vYylsP0uBcRORwKCklImVrW3rb3uenjeMTk9stjkZERESk+O2M7u4jdesR4y2ORkTKneowRaRs9e9Rdi4iIiIiBzccTwLQ4HJYHImIVAIlpUSkbI0kzElVnVOTKhEREZHRGEma86dah+ZPIpJ/SkqJSNnyJ1KAJlUiIiIio+XXop6IFJD2tIhI2QpkVvo0qRIRERE5oETK4PEBP7/c0QdAjVP1CyKSf0pKiUjZ+em2Xfx111C2UWfTGHsiGBi5DEtERESkaP1qZx+fX7cjOz6y2jum59H8SUQOhZJSIlJW/Ikk/7l+B6n0eJrPw0Sv29KYRERERIrdk4Mj2Z8vaK3nQ+NbLIxGRCqFklIiUlbWBCPZhNQP50zmxPpqbDbbIT2HjUN7vIiIiEipG0qfuvfTuVO4sK3hkH9f8ycRGQslpUSkrISSZkpqTrWXi9sbLY5GREREpDRk5lBVDvWSEpHC0TeOiJSVcHpC5dOESkRERGTUwiklpUSk8PSNIyJlJTOh8tn19SYiIiIyWplKKc2hRKSQtH1PRMpKWKXnIiIiIqP25MAI2yIxhhJmTynNoUSkkJSUEpGy0B9L8PiAn+eGAoC274mIiIgczOuBMO9bvmGv2+qdDouiEZFKpKSUiJSFz63dxt92DWfHtQ5NqEREREQOZEckBpiJqEUN1RxbW027x2VxVCJSSZSUEpGysD09qTq61scEr5uPTGixOCIRERGR4hZJGQAcWe3ll/OmWRyNiFQiJaVEpCxkJlVfmNbJ6U21OXlOIyfPIiIiIlKcInk4IMbQBEpEDoGSUiJlaMOuADf8fhnD4fh+H+Ow2fi3s47g3QsmFDCy/ImmJ1Veu83iSERERERKQyYp5XVo/iQi1lBSSqSMPLiymyfW9PK7l7aN6vG/fXFr2SSlIklzWc6bgwbnNs3LREREpAJk5085qJTS9ElExkJJKZEyYRgGN/5hGaFYMnvbpSdM5D3Hvznp9MKmAe54cA1GGdVXZ1f6clh+LiIiIlKOUobBqkCY9aEIoPmTiFhHSSmRMhGKJbMJqRvOmUlLrZv3LJiI2/nmSUZ/IFbo8PImZRgEk6k9klJapxMRERE5kP/avosvrd+ZHftyUGkuIjIWSkqJlIlM/yiXw8Ynzz4CWwXsQUukDM5fupYVgXD2Nk2qREREZKye39jPk2t3HfAx4xt8XHbiJOwlvBD2cJ8/+/NRNT4ubm+0MBoRqWRKSomUiUxSqt7nqoiEFMBrI6G9ElLH1VXR7NLXmoiIiIxeJJ7kr8t3MhiK8fW/vzGq35nTWcdxk0o3kbMrngDgf46ZzqmNuTm1WERkLHT1JlLitg2EuOOhNTy4sguAlhqPxREVTlfMTMQdXevjL8fNwG2zVUxCTkRERHLjjy9v44t/XrXXbR86eQr2fcwp7l+2g4FgjEAkUajw8iKUNNseVKmXlIhYTEkpkRL36+e38Nflu3sCnDy9xcJoCiucnlA1Op14NKkSERGRMdg6EAJgRlsNczrreNu8cSye27HPxz6/sZ+BYOn35swkpdT2QESspqSUSInbuCsAwLsXTOC0GS2cM7vd4ogKJ5zShEpEREQOz0DQrLy++LgJXHvmdIujKYxspZTmUCJiMSWlRErUcDjOxl0B1vaYSamLjunktBmtFkdVWFrlExERkbHqHYmwpnuEv68wWyA0Vbssjij/NoWirA1Fsgt7SkqJiNWUlBIpQYlkinPvfJIefzR725TmagsjskZm+54vT6ffGHl5VhEREbFaMmXw9rueoXdk91xqVkedhRHl32A8wTkvryGYnj8BVDscFkYkIqKklEhJGokksgmpCY0+Fk5tZkKj75Cfp1STLitHQnxzUzdvBCOAVvlERETk0OwcCtM7EsVug5nttcyfUM/88fVWh5VXzw8Fsgmp4+qqOKOxVnMoEbGcklIiJSiWnlA47DaeuektFkdTeN/d0sMj/f7seILXndPn1/l9IiIi5W1TXxCAaa01PPjp0y2OpjD640kAzm2u41fzp+X8+XUAsoiMhZJSIiUoGjeTUu4xrm7ZSnzWsDpgVkhdNq6J81rqObOp1uKIREREpBSs6xnhG/94g839ZlKqktof+BNmUqrOqS17IlI8lJQSKUGxpDmp8Lgqs+R6JP3+r5rQytyaQ9+2KCIiIpXpDy9v49E3erPjoyeU95a9PY2kk1K1SkqJSBFRUkqkBEUOs1Kq1I0kzPdfU6HvX0RERMYmFDMTMxfMG8fFx43n1BktY3qeUuzLmVnUU6WUiBQTJaVESlCmp1QlVkolUkb2GGOt9ImIiMihiKYXtuZNqOfs2e0WR1MYm0JRHh/w88KQuWWxza1LQBEpHvpGEilBsUTlVkplVvlAlVIiIiJyaDJJKY9zrH05cxlNYXxs1WZeC4Sz45lVXgujERHZm5JSIiVo94SqciqFUobB4wMjrEpPqhqcDtx2JaVERERk9KLpE+gqaQ61IxoH4KymWubU+Di5scbiiEREdlNSSqQEhWOV1+j8sYERPvDaxuz4iCqPhdGIiIhIKTrcSqlSFEq3ffjGzAlM9mn+JCLFRUkpkRLUF4gC0FJTOROL7ZEYYPZBOKa2iqsntOb/RUuxi6mIiIjsVzRRWQt7KWN3L86qArU90PRJRA6FklIiJeTJtbv4/P+tYCCYTtDUHl5SyiihWUM4vcp3emMtP5gz2eJoREREpBRVWguETEIKoEptD0SkCCkpJVJC/rGiix1DuxtVLpjcaGE0hZWZVPnU3FxERETGKBQ1K6V8rspISmW27oHmUCJSnJSUEikh4XRzzo+dMY0PLprC+AbfmJ6nBA+OyU6qCrHKV4r/fURERGT/hkIxNvYF6Ro2F/fa6sq7BYJhGPxgay9/7R0CzK179jwfHaj5k4iMhZJSIiUkkk5KTWisGnNCqlRltu9plU9EREQORSSe5KxvP8FgKJ69rb3Oa2FE+fdGMMLXNnZlx4vqdeKeiBQnJaVESkgknk7MVEjJOUDSMFgZCPPMUAAAn/ohiIiIyCHoD8ayCalJTVWcPrOFep/rsJ7TKPLGnOtD5qE4U3xuPjqhlbe3NlgbkIjIfigpJVJCMpVS3go5MQbg9o1d/GBrb3Y8yee2MBoREREpNeGYOX+q8zp56nNnWRxNYfTEzCTc/NoqPlqIE4tFRMZISSmREhJJnxjjrZATYwBeHA4C0OZ2MrfGx7ktdRZHJCIiIqUks6jncx/+/CnPbZlyJpieM9ao7YGIFDklpURKSDRbKVU5Samt4RgA/z1vGsfWVVkcjYiIiJSaaKLy5k/BpPmeq5WUEpEip28pkRISiuVupa9U+NOTqqYKmkiKiIhI7oRjldeTM5g+IKbaUTnvWURKkyqlREqIP2L2B6j3VcZHN2UYhNKTqiqt9ImIiMgYZLbveSogKdUVjfGX3iGW+kOAKqVEpPhVxpWtSBkwDIORSAKAWu/hnRiTfc6cPEv+hFOp7M9WJKWK/b+PiIiIHFw40/7AWf4JmlvX7+T+3qHsuMGCRJzmTyJyKJSUEikBdz++nuXbhkimzD/zdTlKShW7TJUUgM9e/hNJERERyb1ANLeLesVsQygKwJmNtcyu8XJRW6PFEYmIHJiSUiJFbudQmG89tCY7bq5243UdXoKm2E+OSaQMPrNmG68Hw4BZJWUvYNDF/t9HRERERs8fNtsf1FVA+4OuqPleb5k+jqNqC3tAjKZPIjIW5f/NLFLiMlv2ajxObjr/SE6Y0oitzLMmr46E+F33QHY81ee2MBoREREpRamUwetdftb2BIDyrzSPpVL0xc15Y4dHcyeRSrNx011s2vR9IHXQxwL4fFM48YS/4HRW5zewg1BSSqTIZZpz1vtcXHHSZIujKYyd0RgAR1Z7uWlqB8fXW/tFKSIiIqXnB4+v5zuPrM2O63y5S0oVY9+knpiZkHLZbDRXQFN3Edlbb+/fGW1CCiAc3kwwtJ76uqPzF9QoKCklUuR2nxhTOT2VutKnDB5Z7eX81gZrgxEREZGStLZnBICmajfjG3y8bV6HxRHlV3d66167x1n2VfUi8maxWD8Axx17L9XVRxzwsS++9E6i0a5ChHVQSkqJFLlIwsx2e52Vs+LVFTMnVR2e8i6zFxERkfyJxM051GcXz+L9J07KyXPairRz0pZwlKcHzSTcOLe27olUkt7eBxkcepF43Gx/UlU1Fbe75YC/Y7MVz7WlklIiRS5TKXW4zc1LSWalb5ySUiIiIjJG0YQ5h/KV+Va2zeEoJz+/OrtpR4t6IpVjaHgpK1Zelx27XE24XM0WRnTolJQSKXK7k1LlPaHa0+6klFb6REREZGzCscpY2FvmD5HCPK34CJ+HK8eX1gWpiIzdiH8lYFY+TZ70MdrbL8RuL600T2lFK1KBMkmpcl/lA3NS9audfawOhgFVSomIiMjYRRKVsbC3NWIeEPO2lnp+MKcyDsURqXSxWB9d3fezceN3AZgw4YNMn/7v1gY1RkpKiRS54bBZNZTLE2OyjOI6O+YrG3by7JB5bLMdmOJTpZRIJYrHB7PNOg/GZnPi801WU18ReZPdlVLlnZQajJun7rW4dWknUik2brqLHTvuzY7r646xLpjDpG8ukSKXSUrV5yMpVWQ2hqMAXD2hhbc01dHqtvY9F1fKTqQyhEKbeP6F8zGM+Kh/Z/Kkj3HEEZ/LY1QiUooyjc7LPSk1kj4Up65IDsUpsjVPkbI0MvI6AE1Np9FQv4C2tvMtjmjslJQSKVJLtwzyw8fXs7rLD+S2UqoYCwqShpHtJfWJSe20aeueSEXy+1dgGHFsNidOZ+0BH5tKRUkmQwSCbxQoOhEpJf5IutrcW96XPP6kWRFWLEkpEckPwzAIBFYTjw8SCq0H4Igj/oPamiMtjuzwlPc3tEgJ+8Wzm3j0jd7seEpzlYXR5F8wmcpWJtVbvKJZhDk7kYoRi5vb9lpbz2XeUd8/4GO7uv6X11erQkpE3iyRTDESMbe1NVSVZzuAgXiCpwdH+EvvEAA1Dmsbumv+JJJf/f1PsPy1j+5xi40q39TDe9IiKG1UUkqkSIXSfRDef+JEzp3bwWlHtFgcUX75081I3TYbHnt5n5IjIm/W3/8069Z/jWBwHQBut06PEpFDZxgGd/5zHa/vHM7elpdKKeuv4/jU6q080u/PjmdUeS2MRkTyLRBYDYDT2YDX20Fr62IcDo/FUR0+JaVEilQs3R9g4dRmzprVZnE0+TeSTkrVqvRcpCJt2PjtbEIKbLS0nGNpPCJSmjb1Bbnr0XXZ8fgGH06LK4jyZflICIDj6qo4uaGG4+rKu6pepJJFoz34/a8BMH78pRwx/bOH+YzFU9uopJRIkcokpTzO8pxI7emRvmH+p2cQgNoKeL8isjfDMAiFNgEw+8jbaWg4gaqqwyxHF5GKFIiaW/bqfS4+u3gWJ01ryunzF0tfzmgqRW/MfK+/mT+NJpcu60TK1YaNd7J58w+yY4+71cJock/fXiJFKprZzlbmSZqlw0GuWLEpO55b47MwGhEpJMMw2LjpTvr7nyCZDAI22tvfgcOhLSgiMjbR9KJeU7WbD5w02eJo8idz4h5AvarMRcrarl0PA2CzuamtOZK29rdbHFFuKSklUqQyk6pyT0q9HgwD0OF2saihmk9P6bA4IhEplHB4M5s3350dNzYuUkJKRA5LpVSaB9Mn7vnsdhzFUr4lIjmXTIYJBs2T9k4++XG8nvK7VlJSSqRIxZKZSVV5r37tSB/XfF5rPd+YOcHiaESkkIKhjQD4vJOYOu1TNDedZnFEIlLqMpXm5Z6UCqXnidVl2i9LpNIlk2FWrPwEAwNPASnc7hY87narw8oLJaVEilSsAJVSRXBwTLbBeWOZJ99EZLdItJuhoZcY6H8KgNq6eYzreKe1QYlIWYjGy39Rb10wwgvDQUBJKZFyNTD4HP39j2fH7e3vwFamVZFKSokUqez2vTKfbATTK31VRfg+jaJI24mUn+XLryIQeCM7rq6adnhPaOizKiKmzPzJ4yq+eUUuLB0OcsEru08XrCnCijDNn0QOX2ae1Nx8BlOnXE9t7TyLI8qfnH+LPfXUU1x44YV0dnZis9m4//779/vYj3/849hsNr773e/udfvAwACXX345dXV1NDQ0cNVVVxEIBPZ6zGuvvcZpp52G1+tl4sSJ3HHHHbl+KyKWCqVPj6ly536lz1ZER4CGUsWblBKR3DMMg2BwAwD19QtobT2Xzs73WhyViJSLct++989+f/bnI6u9XD2hvE7hEql0/f1P89qKa9m48TsANDacRH39cdjtLosjy5+cV0oFg0GOPvpoPvKRj3DxxRfv93F/+tOfeP755+ns7HzTfZdffjldXV088sgjxONxPvzhD3PNNddw3333AeD3+zn33HM555xzuOeee1ixYgUf+chHaGho4Jprrsn1WxIpqGA0wY6hMMGYOalqrfVYHFF+BRPFl5QqpqSdSDlJpaKEwlsxDLOX3HHH/hq7/XC+4/RZFZG9Rcp8+15vzPz+vGlqBzcU2eEw5bq1SKSQ1q67jVC65ybYaWo6Nc+vaH1lY86TUueffz7nn3/+AR+zY8cOPvGJT/DQQw9xwQUX7HXf6tWrefDBB3nppZc4/vjjAfj+97/P2972Nr797W/T2dnJvffeSywW4+c//zlut5u5c+eybNkyvvOd7ygpJSVtMBjj9G89zkhkd5VUtac8d9n+YkcfP9++i+2RGADVjvKcPIqIKRbr4/kXziceHwDA5Wo6zISUiMib9QeiADRW57eqwKotakE1OBcpW4nESDYhdcT0m2huPoOamlkWR5V/Bf82S6VSXHHFFXz2s59l7ty5b7p/yZIlNDQ0ZBNSAOeccw52u50XXngh+5jTTz8dt9udfczixYtZs2YNg4OD+X8TInmyfleAkUgCm81MSL33+IlWh5QXhmHw7U3drAtFCafMSd2MKl2cipSzvr7Hswkpm83F5ElXWxyRiJSTp9ft4r0/XsJvX9oGQFut1+KI8iOQTkrVaDFPpGwYhkFf3+Ns3HQXAC5XI5MnX5PXhFQx7QwpeAnGN7/5TZxOJ5/85Cf3eX93dzdtbW173eZ0OmlqaqK7uzv7mKlTp+71mPb29ux9jY2N+3zuaDRKNBrNjv1+/z4fJ2KVYLqP1Jxxdfztk+V7NHp/PEl/3Hyvfzh6OpN9bib7lJQSKWcjgdUATJp4FTNmfN7iaESk3PzsmU28uGkgO57VUZuX17H6Mi6Q7plVXaY9s0QqUXfPn3n99X/PjquqplsYTeEVNCm1dOlSvve97/HKK69Ysuf49ttv59Zbby3464qMVijdR6raXZ5b9jKCSfN9+ux2Tm/Kz6RRRIpDT8/f2LL1x4yMrAKgunqmxRGJSDnKtD74tzOnc9aRbRw/ed+L1KVqJJFkxUiY54eDgCqlRMpJX9+jANjtblpbzmXKlH+zOKLCKmiK/emnn6a3t5dJkybhdDpxOp1s2bKFf//3f2fKlCkAdHR00Nvbu9fvJRIJBgYG6OjoyD6mp6dnr8dkxpnH7MvNN9/M8PBw9p9t27bl8N2JHL5MpVSVp7wnGuqHIFI5Nmz8TjYhZbd7aW4+3eKIRKQcZeZQi6Y3c8KUprJrun35axu5eNn67HiaKsxFSl4iEWRw6CX8/hUAzJ/3Y4466nsV0UdqTwUtx7jiiis455xz9rpt8eLFXHHFFXz4wx8GYNGiRQwNDbF06VIWLFgAwGOPPUYqlWLhwoXZx3zhC18gHo/jcplNDB955BFmzZq13617AB6PB49HX+BSvCqnUkpJKZFKkEgECYc3A3DUUd+nrnYeHk/bgX9JRGQMMnOoqjKcQw3EE7yYrpAa73Fxfms9U9WLU6TkLX/towwNvZgd19TMtjAa6+T8WzsQCLB+/e4s/qZNm1i2bBlNTU1MmjSJ5ubmvR7vcrno6Ohg1iwzGzh79mzOO+88rr76au655x7i8TjXX389l156KZ2dnQBcdtll3HrrrVx11VXcdNNNrFy5ku9973vceeeduX47IgWVmVD53IWplDIsOgE0s32vRv0QRMpSKpVg06bvMTT8MgBOZz3tbW/L2+tZdQqWiBSPTKVUTRmeWtwXM99bg9PB0pPffFCUiJSeWKw/m5DyeDpobV2Mx9NqcVTWyPm39ssvv8xZZ52VHd94440AXHnllfzyl78c1XPce++9XH/99Zx99tnY7XYuueQS7rrrruz99fX1PPzww1x33XUsWLCAlpYWvvSlL3HNNdfk9L2IFFooPemoLlBSqtBCyRTf3NjFb7r6AahVPwSRsrSr72E2b/lhdlxff5yF0YhIJQim51BVZTiHGkloMU+knCST0WxrA49nHKee8ozFEVkr50mpM888E+MQyi82b978ptuampq47777Dvh78+fP5+mnnz7U8ESKWjCaLj3P9yqfRW0W/tA9wI+378qOFzXUWBPIKFlVSSZS6vzDywCw2VzMnPklOtovzNMrlVfPGBEZm0QyRSSebg1QhpVSI+kK87oSWczT9Elk/4aGXubVZVeQSsUA8HknWByR9Z/Y8vvWFilh5V4ptXwkBECTy8HN08ZxcXt5nYwjUuni8UGGhl6iq/tPAMyY8XkmjL/M4qhEpNyF4snsz+VYKeVPmAm3Omf5vTeRSrNj5++yCSmHo4aJEz9scUTWU1JKpAikUgZre0foGo4A5dmkE8CfLj//zJQOruhssTia/VPthcjYrFj5CQYHl2TH1VXTLYxGRCpFKF1p7rTb8BRoi1shqqkNw2BVIMwLQwEAWop8fqj5k8jBRaPdAMw+8puMG/cubDaLks1F9IEt7m82kQrxxT+v5N4XtmbH1Z7yXAkLplf6arXSJ1J2kskQQ0MvAVBfdyx19cfQ2LjI4qhEpNxt6Q/y8uZBwKySstmK6ErrMD3YN8yHV27Ojqf5dOKeSKnatOkHdPf8lUjEvObzesdZl5AqMkpKiRSB17v8ADRUuZjQ6OO0GeV58kKmJ0KNQ406RcpJIjFCf/9TGEYCj2ccxx//P1aHJCIVYGt/iDO//US2aqkgJ+8VMOn1977h7M8n1FXzno6mgr22iOSOYSTZtPluDMPctmezuaiunmFxVMVDSSmRIhCOmcmaH7z/OE6dUbzb2g7XiCqlRMqO37+Cl5e+B8OIA9DQcILFEYlIpdjYF8AwwOO0M6W5mssWTrI6pJwaSM8PvzNrIpd1NlscjYiMVSSyA8OIYbe7OeboX+DzTcLjabM6rKKhpJRIEQilJx2+MmzOCRBLpdgYjtIbMy9am1z66hEpFz29D2QTUi5XI53j3m1xRCJSKTLzp6MnNPCHj5ffduFAusJci3kipSmRCLBjx70EgusA8Pmm0Nh4ksVRFR9dGYoUgcype+V4YgzAe5dt4PnhYHY8RT0RRMpGKLQJgFkzb2PChMstjkZEKkkwmp4/lWkvzswBMTp1T6Q0bdx4J9u2/zI7rqmeaV0wRUxJKZEikFnpqy7wqSoG+T86Zlcsnk1IVTnsvLu9kSr1lBIpeZu3/Jje3r8xMrIKAK9vvMURiUilsWr+VCiZpFRtgU4UFJHcGhp+GYCa6lk0NZ3K+PGXWRxRcSrPb3CREpJKGYTj5bt9rztqbutpdztZfspRFkcjIrkQje5iw4Y7smOXq4n6uuMsjEhEKlGwTCvNXxwK8OjACD3ptgcdbpfFEYnIoRgefpXBoRcZGVkJwNy5d1JTM8viqIqXklIiFoskktlTYwo1qSrkYcml3Nw8/3VkIqUpEtme/fmYo39Odc0sXK66wgdSRke/i8ihC0XTlVKFOHWvgK5ZtYXudEKq0elgnKe0klKaP0klS6WivLrsSpJJc6eI09lAVdU0i6Pav0LsnDmY8voGFylBmdJzAJ+r9BI3BzOSadLpKL/3JlJpkskQ27b9N/70yl9d3dE0N59hcVQiUqkC0fKrlIqlUtmE1JWdzVzQ2oBNCXiRkhEIriOZDOJwVNHWeh5t7Rdgt5dWYrnQlJQSsVg4nZTyuuzY7eU36SjFJp2a+4nsW1fXn9iw8dvZsderPlIiYp3MQTFWVEoZeSouGEi3dHDY4PaZE7CX0KSkdCIVyb14fJAdO37Prl0PAVBXdwxz5nzL4qgOpHg+sUpKiVisnJt0bg5HWTESBqCxDKvARCpNILgWgPr6BTQ2LGTcuEssjkhEKlkwO4cqnzlGf9xMtDW5nCWVkBKpdFu2/owtW36UHTfUH29hNKWl/K6CRUpELJHimw++wRvdfqD8mpz/s9/PB17bmB0fUeW1MBoRORypVIJYbBfBdFKqs/O9dI57t8VRiUileqPbz1+W7WTljmEAqgpYKZXvNFF/uvqr2aXLNJFSEgi8AUBT4yk0NZ3KhAlXWBxR6dC3nYhFHnujl589syk7HldfXkmbFSMhAKoddqb43FzU1mBtQCIyJqlUjJdefld2sgVQ5ZtiXUAiUvH+439XsGzbUHbcUuO2Lpgc64srKSVSSqKxPiLhbdmFu8lTrqWpcZHFUZUWfduJWCRTIXXilCYuPKaTM2e2WhxRbg2kJ1UfGd/CF6Z3WhyNiIzVsH95NiFls7mpqZlJbe08i6MSkUqVTBm8vtOcQ33gpElMbqrmtBmlP4faHolx6/qd/HXXEAAtZdjWQaTcRKO9PP/CYhIJf/a26iI+aa9Y6dtOxCL+sJm0WTClkStOmmxxNLmXadTZpJU+kZIWCW8FzHL0Y4/9lcXR7Ee+Og6LSNEJxhLEkikAvvj2OXhK6CCVA/nptl3ZhBTAWU211gUjIqPSP/BUNiHl806isWkRbnebxVGVHrvVAYhUqljSTNq4HdZ9DPN5HZeplFKDc5HSNDj0Ek8/s4jXV38OAF/VFGsDEr785S9js9n2+ufII4/M3h+JRLjuuutobm6mpqaGSy65hJ6enr2eY+vWrVxwwQVUVVXR1tbGZz/7WRKJRKHfisiYxRKp7M9WzqFybVXAPBjm1IYafjVvKu/taLI4IhE5mHBoCwDjx1/GySc/zuwjv45NBxQcMpUwiFgkM6lyO8tnQrWnPU+PEZHS09P9Z2Kx3vTITkfHRZbGsy+2IjrOuFDmzp3LP//5z+zY6dz9HXvDDTfwt7/9jT/+8Y/U19dz/fXXc/HFF/Pss88CkEwmueCCC+jo6OC5556jq6uLD37wg7hcLr7+9a8X/L2IjEV0j/lTOV38BdPVX1dPbOXclnqLoxGRA9mw8U527LiXeHwQgOqqIyyO6DAUQbW5rhZFLJKZVHksSEoVYhI3mN6+p0adIqUp00dq5owv0dFxES5Xg7UBCWAmoTo6Ot50+/DwMD/72c+47777eMtb3gLAL37xC2bPns3zzz/PSSedxMMPP8zrr7/OP//5T9rb2znmmGP4yle+wk033cSXv/xl3O7yaRYt5SuzqOcpoyop2J2Uqi6z9yVSjnbsuC+bkLLb3bS0nGVxRKVN33oiFinXSqmfbOvlwqXr2BaJAdBawo06rV83ECm8jRu/y8tL38uw/1UAGhsXKSFVRNatW0dnZyfTpk3j8ssvZ+tWs+fX0qVLicfjnHPOOdnHHnnkkUyaNIklS5YAsGTJEubNm0d7e3v2MYsXL8bv97Nq1arCvhGRMYomzEUvj6u85k/BdFuHakfptz0ogsILkbxJpaLE4wMAHL/gfzn1lCX4fJMsjmosiqfStHSvFkVKXDYpVUYrYgPxBP+5fmc2mXNElYeJXq28i5SKWKyfTZu/nx1XVU2lunq6hRHJnhYuXMgvf/lLZs2aRVdXF7feeiunnXYaK1eupLu7G7fbTUNDw16/097eTnd3NwDd3d17JaQy92fu259oNEo0Gs2O/X7/fh8rkm/FMn/Kdd4lpEopkaKWSsVZu/ZW+geeAsBu91JXd3RZbSO2ipJSIhbJnBxTTpVSa4OR7CTtR3Mmc2J9tb6oRUpIKLQJALe7lVmzbqWhfgE2W+mv2peL888/P/vz/PnzWbhwIZMnT+YPf/gDPp8vb697++23c+utt+bt+UUORbTMKs3/a/su/tnnZzBdAVajpJRIUerd9SA7dv42O25uPlPXOTmibz0RCwyFYoRi6fLzMjnKGHb3Q5hX4+Nd7Y2MV5WUSElIpaL09T9B766HAKipnklb62Lc7haLI5MDaWhoYObMmaxfv56Ojg5isRhDQ0N7Paanpyfbg6qjo+NNp/FlxvvqU5Vx8803Mzw8nP1n27ZtuX0jIqOQShn8edkO7n91B2Dd/CmX16A90Ti3rNvBE4MjgFlhPs7jyt0LiEjOhEObAfB4Oph31N3Mmf0NawMqI6qUEimwW+5fwW+e35odl8tKH+wuPa/SKp9ISVm77qvs2HFfduyrmmphNDJagUCADRs2cMUVV7BgwQJcLhePPvool1xyCQBr1qxh69atLFq0CIBFixbxta99jd7eXtra2gB45JFHqKurY86cOft9HY/Hg8fjyf8bEjmAJRv7+dTvlmXHNd7Sv4xZHQxnf/5/syZyamONKi9Eiozfv4Lt23/FsH8ZAOPGXUJb23nWBlVmSv/bXKTEPLehP/tzR52XoyeUz7G/mSadSkqJlJa+XY8C5ra9mupZTBh/mcURHarK6Kr7mc98hgsvvJDJkyezc+dO/vM//xOHw8H73/9+6uvrueqqq7jxxhtpamqirq6OT3ziEyxatIiTTjoJgHPPPZc5c+ZwxRVXcMcdd9Dd3c0tt9zCddddp6STFL3ekQgAbbUeTp/ZyvtOmGhxRIcvkN6KuLC+mss7my2ORkT2Zd362xkaeiE7rvJNsS6YMqWklEiBRePmBORP/3Yyx0xsKKsVMTXpFCkthpEikRghGjO3cJ208GFcrjqLo5L92b59O+9///vp7++ntbWVU089leeff57W1lYA7rzzTux2O5dccgnRaJTFixfzwx/+MPv7DoeDBx54gGuvvZZFixZRXV3NlVdeyW233WbVWxIZtUh6/jR/QgPffs/RFkeTG4HsiXuaN4kUI8Mw8PuXA9DZeSkN9Qtob3+7xVGVHyWlRAosEjcnID63w/KEVK6O7I2mUjza7+dXO80qMFVKiRS/YHA9Ly99H4nEEAAez7gSTEiVT1J/NH73u98d8H6v18vdd9/N3Xffvd/HTJ48mb///e+5Dk0k78Kx3fOnchHILuaVz3sSKReh0BZC4U2kUhHAxqyZ/4ndrn65+aCklEiBZZJS3jJqcP6Tbbv42sau7HhmldfCaERkNAYGns0mpAA6Oi6yLhgRkYMIZ+dP5bPwlakwrymj9yRSDnp6HmDlqk9lx17POCWk8khJKZECi6T7B3hd1iWlcl1b8OTASPbni9sb+YD6IogUvWisFzDL0Wcc8R84nbUWRyQisn/RePlUSr0yHORza7ezMmA2Oq8vo4VKkXLg978GgMNRg9vdwvRpN1gcUXlTUkqkgOLJFMmUuWfO6yqfVbGhhDlR/O38aZzVXGrbf/avMlonS6Xp63+CzZvvZnj4FQCqfJOUkBKRopetlLJwUS9Xfts9kE1IAVzQ2mBdMHmg+ZOUqlQqQSSynaH0HGna1E8yadJVFkeVH1a3kdmTklIiBZTZugflManKCKpRp0jJWLv2NsLhLQDYbA6am8+yOCIRkYMLxYorKWUcRmPObeEYADdMbuc9HU1Mq9LplyLFYMXK6+jr+2d27PG0WxhN5VBSSqSAMk067TbwlFH/gGyjzjIpPy+edQOR3DKMFJHIdgBmzbyNhobjqamZaXFUIiIH548kAKj3uSyO5PD1xuIALGyoLquEVBEVXogcskRiJJuQcjiqaGg4QQt3BaKklEgBDYfNSUidz1VUJZOHK5hp1KlKKZGiZBgG27b9gmBwHYZhJsc7O9+L3V76F3ciUhmycyivtZcvuZi9BXXqnkhRSaWijATeAMDprOOM01+1OKLKoqSUSAHtnlCVx4Xg9kiM10ZC2dNjqpSUEilKQ0Mvsm7917Jjj2ecElIiUhL+vGwHv39pGyu2DwPlUSkVSmWSUpo3iVgtFNrEiy9dRDIZBMyT9qSwlJQSKYDu4Qgf+/XLbB80m1rW+Ur/oxdNpXjrS2sYTDc5b3I5aHaV/vsSKUfDw0uzP0+d+imam8+wMJrcM9RWV6Rs3fnIWjb3h7LjKS3VFkaTG1rMEykeu3Y9nE1IORzVTJp0tcURVR5dQYoUwDPr+1ieXuEDmDuu3sJocmNrOMZgIonTBvNrq/hgZzP2MtqSKFIOEokAweB6enc9DMDUKZ9k2tRPWhyViMjoBdP9OG8670gWTmtiZnvpnhYaSqbYEYllk1KqlBKxjmEYxOOD7Op7FIAjpt/EpEkfxWbT57LQlJQSKYBoupropGlNfPHtcziyo87iiEyHU1uwPWKeHHNElZe/L1CjZJFiYxgGL750EeHw5uxtvqrJ1gUkIjIG0fTJxefObWd6a43F0YxdNJXilBdW0xWNZ2+rsuviV8Qqr6/+DN3d92fHDY0LKzIhVQzV5kpKiRRANG6uiLXVepnbWfpVUgDD6URbY5EczSwie0smA9mElNc7nurqGbS1LrY2KBGRQxRNmHOoUj+1eEs4lk1I1TsdvKWptmxOLRYpNYZhsGvXI9lxY+Mi6mrnWRhRZVNSSqQAMhMqd5FMqHKxy253k05NqESKTSqVIBzeDpj9EU45+SmLIxIROXSGYeyRlCrt+UYmITWr2suTJx5pcTQilS0a6yGZDGKzOTjzjJXY7W6rQ7JA8bRdUVJKpAAy2/dKfZVvT2rSKVKcgsGNvLz0PSQSQwC43a3WBiQiMkaZhBSAx1Xa842dUbPtQaen9E8PFClV4fAOVq76FLFoDwA+36QKTUgVFyWlRAqgXFb59lQJTToNw/o91iKHqqv7/7IJKbAxccIHrQxHRGTM9kpKFdnC3qHOEDKVUpWQlCqGHjUi+7Kz6w/4/a9mxw31J1gYjWQoKSVSAJmeUqW+ygewJRzl7q29vDxsHp2qJp0ixSUa6QLMk/amTPk4drvH4ohERMYmU2lus4G7xBfBMkmpcR5VZYhYZXDwOQCmTLmeluYzqK09yuKIBJSUEimIzKSq1CdUAD/atotf7ezPjjvKcMXPVkR7rEVGq6/vMXZ2/ZFdux4GoKpqihJSIlLSApEEAFUuB7ZcNMTMgUONI2UYrAlGWBeMAOVdKaX5kxSrVa9/hp6ev2AY5jXZ+M734fV2WhyVZCgpJVIA4Zj5Behzl/72vW1hsyfCO9saOKWxhne1NVockYgYRorVb3yBWKwXAJvNSV3dMdYGVVDaKiJSTgzD4PUuP0s2mItg7XVeiyMau29v7uY7m3uy43JczBMpZolEgO7u+8nMFRoaFiohVWSUlBLJo3g0woZlrxBb9wZHBEbwbY+zZslO6lrbGHfELKvDG5PumJmUek9HE2c311kcjYgARCLbswmpmTO+RF39MVRVTbY4KhGRsXly7S4+9IuXsuO2utKt+nyobzj786KGahY2VFsYjUjlGRl5HTDweDo44fg/4Xa3WB2S/AslpUTy6BtfuZOqdc8yFZgK9P0FHkjf96H/9yOaJ0y0MLqx2d0TQSt9IlZLpWJs3fpzunvuB6C6eiYTJ15pbVCFVCTbeUQkt7b0hwCo9TqZ2lLNVadOsziisdsRMedNT554JLOqS7fiS6TUBIMbeGPNLQwNvQhAXd18PJ42i6OSfVFSSiSPhnduowrodzWScFdz9MQG+jatIxGNsnzTizS5+/f5e7ObZ+Nx5H9V8FBPl4umUgzEza2IKj8XsV7vrofYsPFb2XFj4yILoxERyY14+oTfs49s47uXHmtxNGOXNAyG031Fm1yl38JBpJRs2frTbEIKoL3tAgujKWJFcNq4klIieVQVN0+om3fMxUycehQOu40dW2/BQZRvvPgNujZG9vl7CzsW8l+L/6uQoY5Kd7pKymO30ejU5ErEasHAGgDqaufT0nI2EyZ8wOKIREQOXyydlHKV+AExw4lktuNdg1OXXSKFFAisBmD8+MsZ13ExdXVHWxyR7I++HUXyIDg0iL+vl9r4CAB9a+IMrN8GgDPqxSBAs7cZV+3eiZ1oMkpPqIetI1vzGt9YTkdZPhLK9kXocLuK5hQckUqUSIwwEniDYf8yANo73sGkiR+2NigRkRyJJcyklNtZ2kmp/ph5emCtw47LrnmTSCHs2vUwff1PMjKyEoDx4y+jtuZIi6MqRsXznaSklEiOhYaH+K9PfJRELIo5lbLTNNxDbXA5g42ziKYf96WTv8TsY0/e63dX9a3i0r9dWuCID64/luDtS9cRT5d3dnq1dU/ESq8uuxK/f3l2XFU11cJoRERyK17ilVKGYbAqEOaZwQCglgcihRIIrOW1Fddmxy5XI1U+zZGKnZJSIjm2a8tmMyHlcEDSjc07jzb/Wozhf1LreC/9NebjqpxV1gZ6CLaEo8QNA5/dzqmNNXxsYqvVIRWE9TusRd4sFuvLJqSqqqbj802kseEki6MSEcmdeNL8C+wp4kqpA7VheaTfzwdXbMqOdTiMSGEEg+uyP0+b+mmaW87CUYA+vXJ4lJQSybGRgT4Axk05gvjmufh9U3jq1Ee43+3k838r3snVgXTFzF5Sc2q8/Hp+6Z6AI1IOhoaXAuZJeyct/IfF0YiI5F5m+16pVkqtC5l18fVOB5O9bj46oTIW80SsEg7vYOvWnzISeB2Atra3MXXqJyyOSkZLSSmRHAv0m0kpr9tLxOEGIDi0AtrAkUrtfmAJleFkGpxXSvm52mVJMRoeXsay5R8ikTB71TU0HG9xRCIi+ZFpdF6MPaVGM0UIJs0T997V3sg3Zk7Ib0BFRNMnscqatf9Jf//j2bHPN8nCaORQKSklkmP+7p0AONauI1h3NgDLfeZ9rr3+XJdOViqblHJXRlJKpBjt7PpjNiFls7loa3ubxREVkSI4zlhEcqfUK6WC6firSzR+kVITDK4FoLXlrTQ0LmRcx7ssjkgOhZJSIjk2vNb8Ukx2j0CdeZvf20dHdQcOd83uB5bQRVR3rLIqpUSKUWDELEmfNesrjOt4Jw5H6fSly5exnCQqIsVvd1KqND/jgXSlVI2SUiJ5NTj4PP6RlUQiOwCYMeMWfL7KqU4sF0pKieRYNBIBYOvkC3AAI+5e/vKWr9M+9Uz+9qc7S6lACoCkYWQrpdSoU6TwNm78Lr27Hsw272xsOFEJKREpS//v4TXcv2wH2wbCAHQ2+CyOaGwCSVVKieRbPD7Iq8s+hGGY1ykORw0ej/q3HTrrL06VlBLJsUgsYf5gM096eL39RVrqPo7dNvqJiVEEXw4An1q9ld93D2THqpQSKaxotJdNm7+fHVdXz6CqarqFEYmI5M/Pn9lEMGZWGXlddo6f0mhxRIdmQyjCb7sGeHk4CECHx21xRCLla2TkdQwjjtNZT2vL2bS3X4jdrpP2SpGSUiI5Fk5vdUslI/z6+M9jc4zg8txkcVRj8/ddQ9mf29xOjqopzRVLkVIVCKzO/nzM0b+kru4obOrELyJlyDAMQnEzIfWLD53A3PF1tNV6LY7q0Hxlw04e7PNnx3NqSit+kVKQSiUIBFazY+fvAWhsXMicOd+yOKpSVDzzSSWlRHIsmTInVDZ7iogrSHsiBe70VpuD9ZEq0HfDaK5pDcMgmC4/f/LEI5nm8+CyF8+Xl0g5i8eH2bHjXrq67wegpeVsmptPszYoEZE8iiZS2WnS8VMaqfWWXnX2+lAUgHe3N3JGUy1HVCkpJZJrGzbcwdZtP8uOa2vmWBiN5IKSUiI50rVuDa8+9ADJVAwAV/rTVZ9Mgav0+r9EUgap9M+dHpcSUiIFtH79N9jZ9YfsuLb2KAujERHJv0i6SgrA63JYGMnY7YiY1fL/PqWDqVXaRiSSDz09D6R/stHQcALjx7/f0njk8CkpJZIjS/7nPjYtW5oe2YBhAOoMwO7YfXO2WKo4+kbtT6ZKCqBKjTpFCso/sgKAmpo5tLacw+RJV1sckYhIfoXTSSmXw4arJOYde8/jEimDcMqcO9U5SzOpJlLMotFewpFtRGM9AJx26vO43S0WRyW5oKSUSI5EggEAqmytxKvPZNi1BYCWEm24F0wfZ+yz23BUaA+b4k4bSjmKRnsJhTYTjZoTrjmzv0Ft7VyLoxIRyb9wtsF5aSZ0MvMmgBpnKSTV8udg3SpEDlUwuJEXX7qQVMo85dzhqMblarY4KskVJaVEciQeMb8kvdSTck0kaVvPpU1H8/55H93n44v9D/ZQwpxc1Wi1T6QgYrF+nn/hPBKJ4extWgEcnWI5sVRExi6UTkr5XA4ia9ey7eprSA7v/j60ORy03nADTR+43KoQzTj2s06XqTB32sBdoYt5IvnS1/9YNiHl801i8uSP6+CXMqKklEiOxKPmF6U9ZX6s6pw2Pnnhb6wMaUwCiSQXvLKO9SHz/UzzlWal1+HQnzixwuDQi9mEVFXVdBoajsftbrM4KhGRwvCn+zHV+Vz4//EPEj09e91vACMPP2x5UupfhZMp/rZriI1hs8l5jcNRsRfLlfmupRCi0W4AJk26mhlH/IfF0UiuKSklkiPxqDkZcaTM02KSrtR+HnnwP9mGhWVUS/0h1gQj2fE5zXWWxSJSKVKpOJHwVgDa2t7GvKO+b3FEpUKXQCLlYjhkJqUafC5ir68HoOlDH6Lpig8w8sQT9Hzlq1aGt1/3dfXzhXU7suN6VZiL5Ex//1Ns2/YL+geeAsDrGWdxRJIPSkqJ5EgsHAbAmTA/VoanNLeTbIuYpwee1ljDj+ZMocWtrwmRfOru/guvr/4chmFekGnCJSKVZEt/kC//ZRWb+oI4UwmmB3uIbTeTPL4Fx+EaPx5nU5PFUe7fzqj53T3d52FurY93tzdaHJFI+Vi9+j+yjc3BTlPTaZbGU56sv2bV1aZIDhipFImYWSkV85g9YJLVh76Cbyvwqv++CrL6YubkaqLXrYSUSAH09v49m5DyuNvp6HiXxRGJiBTOA6918fiaXQB8+5l7mDuwmWj6Pldrq3WBjVIo3UvqHW0N3DRNiwoiuZJIjGQTUjNnfpm62nlUV0+zOCrJB11xiuRALBzK/uxvONJMLflKc1tJplFndUkcxyxS+gLBdQDMn/8TmptOx253WRyRiEjhRONmg/OzZrUy5+87AXDU1+OZORPPnDlWhjYq4fS8qUrzJpGcSCbDrF33FYaHXwHA6axj4oQrLI6q/BRT7zslpURyILbH6TBRp59dNb10dnS/6XHF8tE/UByhbFJKPRFE8sUwDDZv/gH+kZWEw5sBqKs7WgkpEak4saRZtj29pRpbzGwhMPWBv/LKM4/z2g/vBCDR1UV4cjvO+AiON1Yx4ci5lsX7r0Ipc97kU1JKJCd2dv0PO3f+PjtubDzZwmikEJSUEsmByFAmKeViYOo/+FvrS3yqbuFBfsv6/bv7okopkfwbGHiajZu+mx3XVM/C7Wq2LiAREYvE0/MOj5HI3jY0PMQzv/vV3g9sqIFUjCV/vI/3fPFrhQzxgDKLeVV2zZtEciEU2ghAVdVUpk75JC0tb7E4Isk3JaVEDtP2N1ax6cXnzIHNhcNtTqrcDveBf9HCE/b25ZnBEZ4ZDPCK39yKqDJ0kfwJBNcCYLd7mXHE52lpOauoyqhFRAolk5TypuLZ20aGBwHwuL1M7JxGwh9hqGsXQ54RktGwJXH+q5UjYX6/YhP/7PcDmjeJHK54fJih4Zfp7f0HABPGf4COjndYHJUUgpJSIodh19bN/P4/b8qObTYPq+1m1ZTbWWVVWIfMMAw+tGITgfTEEKDZpa8HkVyLxwfZtetRtm83KwAmTLiCCRMutzgqERHrZCulEnEMIFjlZfOTj5j3GZ1sHz4PgGTTOgj+FQI9+3uqgvpTzyAbImarA7fNxsKGaosjKh7FtewqpWL5a1czPLw0O/b6JloYjRSSrjpFDsNIv3lajMvtIZVowe47ll32+wFore0c8/MaBf5zHkkZ2YTUBzub6fS4WNxSX9AYRCrBqtf/nf7+J7Pj6iqdIiMilS2WMOc8nlScNeOa2NjWCC8sAcDhaODIqb1EdoXZMJD+BSO1n2cqjMxJycOJJODghsntnNtSzzjPQSrkRWS/4vHhbEKqtmYujU0n09x0hsVRSaEoKSVyGJIxs9S8vrmVSODtJJxVXBQYYG5gF2ecc5bF0Y1eOLV7gvf1GRNw2it7G1Flv3vJF8NIMThoXmjV1c6nrv5YOjousjiqEqctjyIlL1Mp5U4mGKj2mT+73cQTtdTXTOTsmy6l988PsuHPW6wM800CSfPUwPePa2KSz2NxNMVBX8kyFpHITvoHngbA5WrkxBP/YnFEUmg53/z81FNPceGFF9LZ2YnNZuP+++/P3hePx7npppuYN28e1dXVdHZ28sEPfpCdO3fu9RwDAwNcfvnl1NXV0dDQwFVXXUUgENjrMa+99hqnnXYaXq+XiRMncscdd+T6rYgcVCJunhJjw0bSbq6QvSM4yLnOJpyts6wM7ZBkjjN222wVn5ASyYdUKk4otIlUKgbYWLDgD8ya+SXsdl3IiEhly/aUigYJu8318lNOOxNP/ZVUVdVZGdoBxdLrec1urfGLjNXIyCqefe403njj8wB4veMtjqjyFHqHzr7kPCkVDAY5+uijufvuu990XygU4pVXXuGLX/wir7zyCv/3f//HmjVreMc79m5gdvnll7Nq1SoeeeQRHnjgAZ566imuueaa7P1+v59zzz2XyZMns3TpUr71rW/x5S9/mZ/85Ce5fjsiB5RNShlg2M1JSd3F34dPLgP3ofeUsllUo5M5OUbHGYvkXiSyk2eePZnnXzgXAJ9vEna7y+KoRESKQ7ZSamSQaLqfZShUY97mfvPFUsxI0hXo2uc/I7GRwgUO+Ox2qh2Ogr6mSDkZGMxs1a2munom06bdYHFEYoWcp/bPP/98zj///H3eV19fzyOPPLLXbT/4wQ848cQT2bp1K5MmTWL16tU8+OCDvPTSSxx//PEAfP/73+dtb3sb3/72t+ns7OTee+8lFovx85//HLfbzdy5c1m2bBnf+c539kpeieRbMm6etJfaY/tb7fi54CyNvgKZzHhm+55PxxmL5FxPzwPE42YzFJvNwcQJV1ockYiI9b7055U8vqaXvqEQx/WupXbtC+ACJzZ29Zt9Le2ONy/WrYwN8K3/PXefz+myu/j1237N3Oa5eY09o0VVUiJjZhgGgcAbAEyadDXTpn7C4ojEKpZfgQ4PD2Oz2WhoaABgyZIlNDQ0ZBNSAOeccw52u50XXngh+5jTTz8dt3v3hf/ixYtZs2YNg4OD+32taDSK3+/f6x+Rw5FMV0oZeySlPL4aq8IZk5eGg9y7sx8A3z4mfyJyeCJRc4v6pEkf5cwzXmfiRCWlRKSyReJJfrVkC9sGwpy26SW+9txPcW5eA0DSXsfOXY0ATJ84yCs9r/Bfr/3XXr/vcXje9I8NG/FUnLUDa/MWd18swcpAKDse51HVq8hYrFn7ZR57/Ai6u/8EQE3NTIsjEitZmt6PRCLcdNNNvP/976euztwz3t3dTVtb216PczqdNDU10d3dnX3M1KlT93pMe3t79r7GxsZ9vt7tt9/Orbfemuu3IRUsETOTUrFIFFyAEcPm9lob1Gikc0+RlMGFr6zL3jy9qgRiFykR3d1/Ydu2X+AfeQ0Ar3cCdrtW1UVEIvFk9ufrZvngVTCam80bbOais88+yPSpYT700reoH9nGnPTjJzprePkD/3zTc1736HU8tf2pvMb99OAIgWQqu6p/YWtDXl9PpBwZRoqurv/Ljmtr5tLUeKqFEYnVLKuUisfjvPe978UwDH70ox8V5DVvvvlmhoeHs/9s27atIK8r5Wvti+bFZu12M2GKEQPHKBsXG9Y3lYulK7wanA7Oaqrls1M7LI5IpDwYRoo1a7+UTUjZbG6aGk+xOCoRkeIQiZvzD4fdRofHnA+5T8zsknDx1vrvcGXrNUTra1jZv3Kv3222W7eA1p9u2wBw24zxfHRCi2WxiJSqSGQ7yWQQm83Nqae+wAkn/Bmns9rqsMRClizZZhJSW7Zs4bHHHstWSQF0dHTQ29u71+MTiQQDAwN0dHRkH9PT07PXYzLjzGP2xePx4PHopCPJnegOM7EZrJkCQNIRhxLqy5RM58VOa6zlp0dNsTQWkXISjw+SSJgNd+fP+xHV1TOoqpp6kN8SEakMmUopr9NOKhTGAOLp+ZPN5qZ+6lS655zKK3Vv3v1g1aEwAAN7JKU6PS5sNrU9EBmtcHgbq9/4PH7/MgBqqmfgcSuxKxYkpTIJqXXr1vH444/TnCnVTVu0aBFDQ0MsXbqUBQsWAPDYY4+RSqVYuHBh9jFf+MIXiMfjuFzmXu5HHnmEWbNm7Xfrnkg+xBLmSl+wdiZOIOoNjuK3RjGBKVARVTJdrdXk0skxIrlgGAbd3X+if8DcQuJyNdHauu+GvJJL1leeisjoRRJmUsrndhDpH+GJ2ZMIr11h3mlz88aCc7j+9Ztgk3nTpLqJ0GdRsHsY2GPboYgcms1b7mFw8LnsuLVtsYXRSDHJeUlHIBBg2bJlLFu2DIBNmzaxbNkytm7dSjwe593vfjcvv/wy9957L8lkku7ubrq7u4mle/PMnj2b8847j6uvvpoXX3yRZ599luuvv55LL72Uzs5OAC677DLcbjdXXXUVq1at4ve//z3f+973uPHGG3P9dkQOKJkyV8xsdifLxz3Ozkm/sziiQ5OplGpyqc/NvhTBDkspMT09f+H11Z+lp+evANTUzLI4IhGR4hOOmckdj9PBQMBP2J1pGG7D7prEhohZie5z+phQM4ETx51oUaR727NSSvZP0yfZl0hkBwBtbW/juGPvZcrkay2OSIpFzq9EX375Zc4666zsOJMouvLKK/nyl7/MX/7yFwCOOeaYvX7v8ccf58wzzwTg3nvv5frrr+fss8/GbrdzySWXcNddd2UfW19fz8MPP8x1113HggULaGlp4Utf+hLXXHNNrt+OyAElDTOZarMbLJlyP+dGUwf5jQMrdBl4Ip11adaRxiI5MTS8FACbzUXnuHczadJVFkdU7rR1RqQUZXpKeV12YpEwAM2NzQSMy7DZXAzzKgDvnvluPnfC5+j980O8zmarws0aiCkpJXKoQqEtDA+/TChklj6OG3cJjY0nWRyVFJOcX4meeeaZGAcoLzjQfRlNTU3cd999B3zM/Pnzefrppw85PpFc2P76SlY+8YiZlLJB1G7+/3W17SDb4GwU1fJRPLt9T0mpPekyVw5VMhnG719BX9+jAMyc+SUmjL/M4qhERIpTKJ3cqfY4iceiALjdbmwxs2JqyDB78jV6iqMtxyN9w/xvzyDPDAVwWx1MEdP8Sf6VYRi8uuyDRCLbs7d53K0WRiRvUgRbQ3QlKjIGT977c7rXr03/9XVgOFwcEYtxoXfaITyLdV8AP9m2C4BI+vS9iV5NsUQOx4qV19Pf/0R27PNOtC4YEZEiNxSKA1DvcxGPxcANTpcHYgApBuL9ADR4G/bx24WfP928bjvbI2bMdqVeREYtEtmRTkjZaG4+neqqI6ipmWN1WFJklJQSGYPQ8DAAtYlqog0X4GSQP+3ogQtvtjiy0VnuD5k/GHBCXTXH1VVZG5BICTOMFENDLwLg802hvv5YGhsXWRyViEjxMQyDFTuGeW37EAANVW5iiTi4nThd5gKZ0xZnKGrefyiVUvk6lS+cTGUTUl+c3snfXw+wajCal9cSKSfh8A527DB3P9XWHsUxR//c4ohkb8WTYFdSSmQMoqEAALWJKuKuCeAagf/YAt76UT/HaLay5stI0mwwOtXn4S/HHaEjjUXGKJVKEAptIJkMYbe7OWnhQ9jt+tMqIrIv//3cZr7819ez4wafi3giCTjpG/CCHaL2OGsH15r3exr2+G1r5iq9MTMh5bPb+LeJrTzp3GBJHCKlpLv7L6x6/YbsuE0nEcsBaOYscoiMVIpoyKw0cqbSp8U4bIeUkLJSPGUQShm4McNWQkpkbILB9by89N0kEmbvk+rqGUpIiYgcwMa+IABN1W4u7F3Oex59jNfwABCKenD5YMA7SCgRwm6zM6F2gpXhAuBPmAt5dU6H5kwio9Td85fsz1VV02lrO9/CaKTYafYscoji0Ui2IZwjZQfAfpD+5ofKyGO/hME9jjN2aHIlMmZ9/Y9nE1JgZ+LEj1gaj4hIsYslzF6WV500gbfc+O8Qj5OYPgNI4bEneWbar9jQsIEr5lzBuZPPpaO6A7B2AW3PpJSIHJhhJInGdjE8/AoAxx77G5rU0kAOQkkpkUMUDIWzP9sN8yNkd1kVzaHrj+s4Y5FcCATWADBlynVMmXwdDofH4ogqWBGcHCMiB5dJSvkSMYx4nKDbRbK9EYL9eO1hVre9TNxm44NzPphNSFltJB1z7b8kpfS1I7I3wzB48aV3Egjs3qJb5ZtiXUBSMpSUEjlEIwEzKZWwOXCkP0IOZ+lUHA3Gk1aHIFLSduz4Lb29DzIw+AwAdbVHKSElIjIK0aSZ4PEmYqwa38LWlnoImiftudwe4umKKE8RfKcOxRN8fWMXv9qZPgkwnZQqnRmfSGFFo13ZhJTN5mJcx7vwesdZHJWUAiWlRA5RJGKeuJLCjs0wJyh2V26mKPk6OQYgmEzyzY3d/KarP2+vUW7yuY1SSlMs1s+atf+JYZjJXYejhvr64y2OqnLl8ztTRHIvUynlScUZrDITTw6Hk5RRT3XjxOzjDicplau/3X/qHcompABOa6zNyfNWAs2fKo9hJLMV5NXVMzhp4YMWRySlREkpkUMUDpqVUrWxMIbN3LfncNmtDGlU/r5rmJ9s3wVA8UcrUpzC4W3ZhNScOf+Putr5uN1NFkclIlIaskmpRIxkuipq3pwTeWP7SXh827OPczvc+32OQm2b2xQyFyHPaqrl3e2NvL2toTAvLFJiurr+l9VvfB7DMFuEVFcdYXFEcmisTyIrKSVyiKKDgwAYNjeDDdMBcNdb/2E+mM1hc3K1sL6a46vr+NlLfRZHVLx0uo78q1QqRk/P3xgeXgpAXe18xnW809qgRERKTCYp5U5ESdnNJbJU5tAYt3mfw+bAOYaTTHNdObkjGgPg7OY6LunQ4sNoqHq1Mm3b9t/ZhBTYaW19q6XxSOlRUkrkEEWDAQDi7gZG6sykVE3dGJJSBe6Q2RWNA3BmUy0nJV38rKCvLlLaurr+jzfWfCE79njaLYxGRKQ0xdI9pdzxKKn0ApCRSicy0lclB6qSKqRMD85mly6XRA4kEu0GzJP26mrn43RWWxyRjEYxJZH1LStyiOLBoPmDzUl/7Ua6q7o4dVrxr6ANp480bnA5Id3rvPjru0SKw8DgcwDU1MyhpmYWkyZ+2OKIRERKz+5KqRhJu3lBlEqYlyOrUmaLgWJocg4wmD6tuNHlOMgjRSpPKpVg1es3MDKyknjc7L1WXXWEElIyJkpKiRyiaGAk/ZOT5yb/Hztqt/EftV844O/s7eBZ6Xw0iBxJJ6VqHXaUjhIZnXh8mEBwLX19jwIwc8YXaWw80eKoRERKy1+X72T5tiG29JsLe9WpeDYpNZReKFsWN3tK1br30VDcgmaYA+mkVINTl0si/2pg4Gl6e/+eHXs8HeqxKWOmb1mRUQr5h/nbXd+ia/06AGyOekKOTdgMg4Zxx1kc3cGNpFcn65wObLbEQR4tIoaR5MWXLiIS2QaA3e6joUEn7YmIHIqhUIxP/e5VUun1MLfDTpsrle0pNZIwD42pctt536z38dbJ1vajebhvmAf7humJmXOlid7i2E4oUkxC4c0A+HyTmDPn21RXzcBmU1WhjI2SUiKjtGXFMrauWJYd252dzLO9yqnNJ1DXMtO6wA4imEyyaiTMqyMhAGocDkBJKZGDGRlZlU1I+XxT6Bz3Hmw2nV0pInIoRiIJUgY47TY+eto0Fk5twnjq/uz9Uf8sbDaYXN3A50+6xbpAAcMw+OTqrQylq8s73C6a3bpcEskIh3ewY+dv2bbt5wC0tryVhvoFFkclpU7fsiKjFI+EAfDUNmNwLjZHBzec/1aOmHzUqJ/DinZyly7byEv+YHY8rcrD5sGoBZGIlI5UKk4guBaAhoYTWXDcby2OSA4kH1ueRSQ3oulK7WqPk8+c0MLgfffRtcTs04fNi83mIugaxjspN0l/4zAOkhlJprIJqf+Y2sFZzXX7fx1970gF2rT5Lrq6/ic7rq2bZ2E0Ui6UlBIZpadXdwHQF0zSWj8OgOam8VaGdFCGYbAiYFZITfa6eVtrPR0eF5utDUukqPX3P8lrK64llTKTtz7vBIsjkv0rnpNjRGTfoukkj8dpZ+DXv6H/xz9mqNYH0zqx2WsYmvlf/K55BddNuG6Uz5i/ZNDOaAyABqeDT0/p2OdjbPrakQoWDJgLdm1tb6OxYSHtbRdYHJGUAyWlREZp12CAWsC1x2Sk1rePZpyjlv8VtmAyRSTdxOGxE2dR7dBeb5GD6d31cDYhZbd76ex8n8URiYiUrkyllMdlJzk4SMJuI3LENEhFsNlqiIxrh9iKfTc4PxQ5SBZ1ReIAjPO4Dv/JRMpILDZANNpFMLQRgKlTPkFNTfG2L5HSoqSUyCilEubqWWu1mzhAKoqzyE9k2ZVu0lnlsCshldHzOjz5TUhE3nxf7ThY/PXsUIX5lSkU2gTAkbO+xrhxF2O3q8mtiMhYRePppJTTwfDIMP+cO4VUyvwbbLPXEMT8udp1sKPk01mnPP5x7ooqKZULh7GDUopQLNbHc0veQjKZaQdio6pqsqUxSXkp7itqkSKSjJtJKYdhEAdsRuywnq8Qf7B3xczJVatLH/WsF38Cr9+///tnngfMLlQ0UiQMw2Djpu/i9y/H718OQG3tHCWkREQOUyyZSUrZ6Q/4s6fu2Wwe7O4ZBFMrAKh1HWalVA7sTCelOj367hfJGBx8IZuQ8ng6aGs7H7vdY3FUUk50pSoySkbCnKjY0skkg8NLShVCX9yslGrVyTG7RYbNf897D0w9Y/ftz3wHBjZCMqYuNRVoeHgpmzf/IDt2OKqoqppuYUQiIuUhGt/dUyoaM7dGTxnXiT92LqFUE6HUEgBq3DX7f5I8N3J6xR/kFzv6WDps9uFUpdTYaP5UnoaGlwIwYfwVzJr1ZWuDkdwpogZ5ulIVGaVMUspumB9gWx6TUodzcsyeutMrfq3ufU+ucvU6JSWWLj2eejocd8Xu25fdayalpCKFwpsBsNlczJ79DWprZuN0HmwriYiIHEwk3VPKvUdSyutxMxg15yYjyRGwQY3rAEmpPPv2pm4eGxjJjo+oVhWIyNp1X6Wn52/E40MANDQcb21AUraUlBIZJXvUXD1zjUShubgrpTaFoly3egubQukVSZ/K0LPi5v+OuJVwEIjHh+np+Sv9A08D0N7+dsZ1vNPaoEREyshAwJyLNFW7iSXiYAeP10Pcbyal+mN94DlIpVSe+dMnBF42romTG2q4oKXBslhEioFhJNm+/VcYhvnZcDhqaGxcZHFUUq6UlBIZpda+7SSBkH0iAIZtOOevYctRGeVfdw3xij+UHS+s33uiVzzFmgWUjJv/RP3m+KANVaUSvLHmFnp7/54dezz7PgJcREQOzdItA3z7obVs7jcrlNtqvSSSSbCDy+MkgRM7ECeKz+mjxdeSk9c1xtAJPZwyq7ne0dbAmU11OYlDpJTF4oPphJSNE064H593PC5Xo9VhSZlSUkpklJxJg6QDwlXjcQDd7d1Wh7RfmUad7+1o5LpJ7cysqvAy9O4V8Iu37U5IgSqlBIChoZcBqK2dS13tfCaMv8ziiGRsKnArskiR+83zW1mysT87nj2ulmQyCS4HDqcDu2Fehnz6xE9x4tQFozh9z5SPT3so3Yy9Kt2EXaRSxeN+li27Ev/IawC4XE3U1R5lcVRS7pSUEhklm2FOWByOKEsm/Rl754rDfMb8XUT1pJNSx9ZVM6vaC0DKSLFhaAOxVIzNfvP45Wgyxqr+VXv9rtfhZVr9tJxVbRWFLUv2TkjVjoP2udbFI5aLRLsJBTcQi/UCcPT8n+HxtFoclYhI+QhGzcNWPnDSJC6Y18mJU5v4fSoJOBjcvhOAFCkumHk+tVWHv3XPdhh14OGkOSfzOUaflKrEtpxS/vr6/plNSAFqaSAFoaSUyKiZSSnD3s/y8Y9xZhFv8+lKJ6WanCl+vvLnDEWG+NP6PzEUHQIgEZoKfIydgR1c+sC/v+n3b1xwIx8+6sMFjDjPYunmpfMvhbd/B5xesDv282DNMstdPD7M88+fmz3e2OGowu1utjgqGZMyyp2LlJtMg/NjJjayaLr5HRu1mX2kNo4ci9MDI54Bqn1VlsWYkdm+N5qk1OEkv0SKXSDwBgCNjScz+8iv4fNNsjgiqQRKSokcQCplcMs3fopj/Ys0OsxET5/LnLCMb5t/eE+exyW2zKl7W/pf4adL73zT/c3eJrYDDruTjurdybVALEAgHmDT8Ka8xWaJzIl7vgZt2xMCgTdIJoPY7W6qfFOZOPFD2GzasiEikkuRuNkg2ecyF4EMwyBudwEJHDaD3uotvNH5HHbbey2JzzAM/tA9yKZwlOF0o3Oftu9JhRoceomunX+kq/t/AWhtOUcJqQoxlj58uaaklMgBbB0I4V75KLXJIEZ6Ycxwu5ndNJsLj/6ItcHtRyJl0Bszk1LE+wCYXj+d0yacxvia8bxv1vt4cdMA71vzPJNqJ/LIux/J/u5/rfgvvvfK96wIO7+iAfPfB0xIvXnlU6X55SkUMpOujY2LOObon1scjYhIeYqmk1Jelx3/Qw8TWfEaqXRrgJq6CD+e/zNq3bWjei57HloKvOoP8ak3tmbHrW4nHR5Xzl+nEmn6VHreeOPzhEIbs+P6+mMtjEYqjZJSIgcQiiXxpGIAdITbGGg/n46aXdx64R/y+rpjyVgbhsEPt+3ijWCYFOCwgSNlbls7rv04/v34N2/TK3tPfANe+z0EdpljC4+bFuv19P6d9eu/STw+BECVb6q1AYmIlLFwOilVFRhix6c/DYZBcu6RANjdZvWU1+G1Kjy60wt4bW4n57fU8462Bhzl1E9TZJTi8eFsQmrK5H+jqfl06uoOc0eIlIDi+b5TUkrkAMKxOG7DnLRUJesYcjTjcPUf5Les8VogzFc27MyOp3g9RJIhAKqc1vdrsMRz34dYYPe4bfaofq14vqIll7Zv+xWRyPbsuLFxoYXRiIiUt0jc7NPk3baZNe2NbGprIGUz51SuarNy2eOw7nTgQPrEvTnVPr45a6JlcZQT5fRKi2EY9O76B/39TwLgdrcyfXoFLmKL5ZSUEjmAYDCY/dmGOXFyOIuz38BQekWyze3kw+NbeGtzHfevCgNQ5dp3Uqqsy6tTqd0Jqff/HpqmQussa2MSyxhGkpHA6wDMn3cPNTWz8fkmWByViEj5CsXM0/e8gSF2NtRkt+7Z7M04asx5ideZ+0qp0VabB9NJqeoindeJ5NvA4LOsXPmJ7Lim5kgLo5FKpqSUyAGEAmZSKmVzYLO5AbC587cMdHjHGZuTq0leN4ldv+ZTLz6IP+YHwOf05SS+khLfnVBk6ungrtBqsQoXjw+zZcuPGRpeSjIZxOGooqXlLdhs+zt9UUREDpdhGAyHzaoony1FIn2q3czJC9gyfBpJ1xaAUfeU2uu5cxRjMN3cvHoUJ+6JlKORkVUA+LyTqG9YwNQp11kckVQqJaVEDiAcjgCQcrhI2c2Pi8N1GBezeSxrzhxnTCrKb1b/hpSRyt43q3HvCiFbJdRXZ07cs9nBVYFJOQGgq+t/2bL1x9lxU+MpSkiVpbKu+xQpKYZh4I8kiCfNz6XH2J2UctprsNnsRJ1mwqrB05Cz1z3Uhb2RTKWUQ38TpLIYhkEiMUwwsAaAjnEXM23qJw7yWyL5o6SUyAFEI1EADLuDlN2slHJ4i/Nj0xseBuC13peoN1L4nD5+df6vqHfXM65m3CE9VzEcDTpmhgFP/z/oWm6O3TWH1uTAMNRUqoxEol0ANDScSHPzmXR0XGRxRCIi5SsST/K2u55m4y5zYchpt2FLRjHSf4cjKXMu9XDgNaiGRm/jITx75hjkw4tx+UiIW9buYH3IXHic6HUf3hOKlBDDMFi+/CP0DzyVva26Sge/iLWK8+papEiE00kp7A4S6WacTl9uPjaGkdvEz9ZAD+DBRow6dx2XzLiEI5sqcG941zJ47Cu7x7WHlpCT8hCLDTAw8Azd3fcD0NJyNpMnfdTaoCTnDmfLs4jk3vreQDYhBXDGzFbioc2AmVLqTyelInaz5+UxrccUOEL4zc5+XvLvjvGkhuoxPU8JL99JBQuHN++VkPJ4OmhsPMnCiESUlBI5oEB6Fc3ucJLMJKWqimtFLZ4yWD4S4sWAOT1q9dTz7PufHdNzlcUFXmjA/HftODjpWjjinNH9XiVsaawgq1ffRF//Y9mxz6uTlURE8i2W3hI3vsHH3z95GnU+J5u/9wwADpudRNK89JjVOIGfvPdbtPhaRvfE9tz9jd4ajgFw3aQ23t3eyOyaQ9vir+mClKpkMsrQ0FIAamrmcOIJfwZsldHWQ4qaklIiBxAOhnAA9f3dJKrNSYu76nCPL87tF/8FS/7Ja7FWwDzBpskRzenzl5xML6mGyXDKp6yNRSyRSiXoHzAvgny+KXS0X0hLy9kWRyUiUv5iCTMp5XXZqa9yAZCIpuclqRSJeBM2oKmhafQJqRzrjpn9rE5vrD3khJRIqRoeXsYrr15GKmV+Hmtr52Kzqcm/YLYusZiSUiL7sHTLAD94bD22FeuZCwSrJ5KomwKAqyr3xxcfqqe2P8Vnn/wsoUSIwY7bwN2KPTGAPbGLM9sqPCkVD5n/1ml7FSmVihEMrsMwYthsbhad9IgmXSIiBRJNJ6U8zt3NwxPBQfPf9hqcCbOHlG+cdXOpkfSpe/VONTiXytHT+7dsQsrhqGJcxzutDUhkD0pKiezDz5/ZzONrdnFKIHOCm/lRCbqGqBvfbmFkpqe2P0UoYSZfDJs5sbtpgsH86jYWdVZoI+dkHPw7YXibOXaPrUfEnqxfN5BDEQ5v5cWX3kEiMQKAzzdBCSkRkQLKVEq5nbu/e5NRs3+UzeYg3jzIy9VPcUbNUXmL4WA9O/1KSuWd5k/FZ2joRQDmzvkO7e0Xan4kFNPJTkpKiexDMJYAYME4H8Z6sOHgyTlf5426Xs6t/9WYn/dgH/3R9nQKJ8wJ3seP/jg/DkygN57kLRMWMa+2QquDDAN+chb0rNh9m+vwk1JSWnp7/5FNSNlsTiapsbmISEFF0wkfzx5Jqez2PZz0L1zN8sHHONex4DBeZewpj6RhEEj3vapVUkoqwBtv3EJP799JJMxTuhsaFyohJUVHSSmRfcis9HX6YAeAzcFObwzDZtBR3ZGjVxn7pCoYNyu4Wn2thP3m81Q5xvAHZj8h5PpkwLyLh3YnpJw+cPlg9oVjfLISe++SFQyuB2Dq1E8xdcp12Gy64BARKaTM/MnjchDbsoWBX/+G4NoNUOsFm5MYZoLK4zjc/pxvdqBmzSnD4Oa123mozw+A06ZKqXwonroLAYjF+tix87fZcV3dsXg9ubqOEckdJaVE9sHm38X7t/+RrlS66sJeT9Qeo8pZRauv1eLoIJTum+R1+AilzAlgtaOCJ1dR838nbHb4QpeOxqkwO3b8lu3bf00guAaAKt8UJaRKWCyR4ut/X033sHn6aXudh/84fzY+t/43FSl2mZ5Sboed7p/8mKXPPcmwL52AsjmJEknfP4aTjA/jT/trI2H+e2d/dnxWUx2uHJ7oJ1KMAoG1ANhsbhae+Dd8Pp1ELMVJSSmRfWjoeYOW+ACp9NjunMT7j7yYU6afgcNe2AsjwzB4uedlBiIDvND1AttGtrGqbxUGNoK2WpLpwp5a5+grpfaXsynZI2GjAfPf7trDSEiV6HsXNm+5h0hkOwBOZy2NjYssjkgOx1Nrd/HL5zbvddspR7Rw7twDrO6WWnWnSJmKxNPb91x2tvZ2sbGtMXufzVZFBLP9QD4qpQ5kfchMhtmBe+dP4/h6bfGX8jU09DIrVl5HPG5WBjY2LqS6eprFUYnsn5JSIvvgCg8B0NQ6jkD0bdgd9XzipNOxOXP4kRnlNdQzO57h3x79t3/5VRuDHV/lhq0NAIzzuCq3Uqp/A2x5xvzZU2NtLFJwyWSESGQHAPPn/ZjauqPweKyvZpRDF4ol+OfqXp54oxeAeePrGYnE2dwfIpZMHeS3RaQY7Boxt+e11ngIR81EUFOVF79xIg73TKL8FRhDUuowF83C6aryc1vqOKu57rCeS6TYbdv+38RifdlxU+PJFkYjcnDqciayD86Y2bPJ53Rjd9SDEc9tQuoQ7AzsBKDR08jx7cdz7uRz+cxJd5B0TwLM+p53tzce4BnKWM8q+P5x8NdPmWNPrbXxSMEYRoqu7vvZvOWHgIHTWUdLy9nqlVDC7nlyI5/87av836tmkvGEKU201x3s2PjKrnD8xje+gc1m49Of/nT2tkgkwnXXXUdzczM1NTVccskl9PT07PV7W7du5YILLqCqqoq2tjY++9nPkkgkChy9lJNfP7+FI7/4D3705AYA2uo8xGIxAFrrqnB6j8dmryNkmPMrl8NV0PjC6cS2z567S5+S678pFSMYXAfArFlf4dRTnmPy5GssjkjkwFQpJbIvKbP83J5MT9KNeEFffs+JTjRprjqe1HkSd5x+BwDPDI7Azg1M83l4duGRpbvt7nD1mXvlcVVB4xRY+HFLw5HC2b79V6xd95XsuKpqeuV+DkpcJJ6kLxBlxfYhAI7sqGVGey0fXDSZm/73NWuDK2IvvfQSP/7xj5k/f/5et99www387W9/449//CP19fVcf/31XHzxxTz77LMAJJNJLrjgAjo6Onjuuefo6urigx/8IC6Xi69//etWvBUpAw+t7CYSNxM/LoeNhVOb2JZIgANcTgdmf3ODnSEz6dzsbS5ofOF0rwPfWA6F+Rf6UyPFyDAMVr1+I0ODLxCNmQsRTY2L8HjaLY5Mip/1CXYlpUT2JZ2UIpHZMlLYpNSeYilzpXHPUve+mJksa3M7K/tCPF3RxpTT4PI/WBuLFNTA4BIAnM56WprPZPz4yyyOSMYiEk9y1refoCvd1BzgxrfOPHD/KCEQCHD55Zfz05/+lK9+9avZ24eHh/nZz37Gfffdx1ve8hYAfvGLXzB79myef/55TjrpJB5++GFef/11/vnPf9Le3s4xxxzDV77yFW666Sa+/OUv43aPoQG1VLxA1JyXfOvd8zl/3jhqPE42JBPgsOFMtxeIOaIMxYYAmFhX2IbLme17YzqpWKQE+P2v0tPzl+y4rnY+Pt9kCyMSGT19M4v8i1TKIJXMVEqZkxibhUmpTKXUnkmpkXR8dXk6ztgogoz5qGSSUm41LK0UqVSCYHAjAwNPA3DU3O8xd+53aGg43uLIZCw29QWzCSmvy8701mpOnNpkcVTF77rrruOCCy7gnHPO2ev2pUuXEo/H97r9yCOPZNKkSSxZYiZylyxZwrx582hv3716vnjxYvx+P6tWrSrMG5CyE0ovlo1v8FHjMde8k+kFPlvSXFyLOSIc13YcnzruU9S5C9PXyZ9I8sfuAV71m6cW53L7nkgxCYW2AOBxt3PiCX/huON+i82m/3+X/bMVUQsEVUqJ7OHBld280e3HlplIpYx06rYwSal9VT1lklJ7Hp88kq7gyldSqmTEMqfu5TApZRjZNjUlkpqrKMuWXcng0PPZcU3tbAujkbFatXOYHz+5ke50Qmr2uDr+8anTLI6qNPzud7/jlVde4aWXXnrTfd3d3bjdbhoaGva6vb29ne7u7uxj9kxIZe7P3Lcv0WiUaDSaHfv9/sN5C1KGglFz3lTl2X1pkUwmACfRkR1gh7gjys8X/zxvpxjv6wLrtvU7+U1Xf3ZcW+nzpgLR/KlwAoE1bNz0Xfr6ngCgselkamvnWhuUyCFSUkokbcOuAB//zVIA3mOkK6SCCagHbPloADu6P9nxpJkQ26tSKmFO/nI9uSqmjPkBvfBjeP5HEB4wx26dulcJYrGBbELK6ayjtfVcPO4Wi6OSsfjhExv422td2fH01gMnltVP2LRt2zY+9alP8cgjj+D1HqwJfO7cfvvt3HrrrQV7PSk9mUqpGs/ueUlm5tRjHGeOHdGcJKQO5fvg6cERAJpcDt7SVFe5B8NI2Vq37usMDD6THTc2nGhhNCJjo6SUSFqP31yxr/M6mZjwEwccvWGoB8NW+O17hmEwFB3CHzNXpN0ON08NjHDLuh2sDZmxtrgO7yNcstd5L/4EBjftHrcdefjPWcm9uUrE8PDLAFRXz+CkhQ9aHI2MxXA4Tq8/wuY+c+vt5QsnMW98PefMUSPW0Vi6dCm9vb0cd9xx2duSySRPPfUUP/jBD3jooYeIxWIMDQ3tVS3V09NDR4fZp6ujo4MXX3xxr+fNnM6Xecy/uvnmm7nxxhuzY7/fz8SJhe0JJMUtGEtXSrnNeYmRTBJ1VQNJ/MnpOBwQ8QQKHtdg+lTJvxw3gyOqCpfIFSmUUHgzAJ2d76O9/UIaG06yNiCRMVBSSiQtlC49n9pag3dNijjQM878Yo9Upw7wm2NzsKOEb3jiBh7d+mh27La7uWdbbzYhZQfOa63PeVwlIWqufPKun8C4+dCag6TUHpSfKi5+/wqWv3YN8fggAA316h9VivoDUU6/4/HsxSvAxcdNYMHk/VcujPazWLIJ9kN09tlns2LFir1u+/CHP8yRRx7JTTfdxMSJE3G5XDz66KNccsklAKxZs4atW7eyaNEiABYtWsTXvvY1ent7aWtrA+CRRx6hrq6OOXPm7PN1PR4PHo9nn/eJxJMpYum2AtXppFQqHCFpswNJvN4Yz3X+nV0TNgDXj+k1xvJn2TCM3e0OHNq2J+UlGt1FJLKNWKwPgMmTrqGqaoq1QYmMkZJSImnBdOl5lctBPGU2Box4WnAAifpQweN5sWv3Snatu5YTO07kpxvMnh5fnN7Jha31TPKN7SKh5HMumQbnE0+ApmnWxiJ5t3Pn74nFetMjG61t51kaj4zNG90jBGNJHHYb9T4XR7TVcNT4wjQ7Lhe1tbUcddRRe91WXV1Nc3Nz9varrrqKG2+8kaamJurq6vjEJz7BokWLOOkkc5Hl3HPPZc6cOVxxxRXccccddHd3c8stt3Ddddcp8SRjEtoj0exzO4jv3El45UpS6cmGrz7K0okPMa56XGHjSqayCesa9ZKSMhKN9fH8C28lkRjJ3uZ2N1sYkcjhUVJKJC2cnlRVexykjBTYwHDs4MFZD3HatNocvtLBU0IGRrbB+YOXPEhndSc2m43w2pUAnNFYM+aEVMlLpfY4dU+9pCpBMLgegOnTPsP48ZficqknSCl5efMAv3h2M9uHwgCcNK2Jez+aq+0FJZ9iz7k777wTu93OJZdcQjQaZfHixfzwhz/M3u9wOHjggQe49tprWbRoEdXV1Vx55ZXcdtttFkYtpSzTT8rtsGP3D7F+8XkY8Tipo8wqZpvbkb7fvd/nyKVMJfpI+gRlhw18dn1XSPkYGHgmm5Dy+SbR1HQ6Tmcur1VECktJKZG0zJYSn9tJCnMi0+/xs7lpBRdN+UTB44mlzCOUvQ5v9lS+cMqMy+eowCNeYyF47i4Y6SK7WUdJqbK2fftv6Ot/gpHA6wDUNxyvhFQJ+n8Pr2XJxt2nX01v1ec2l5544om9xl6vl7vvvpu77757v78zefJk/v73v+c5MqkEO4bCvLzZPHSkyuMgvnUrI3bob2sk7jD7cdrTJ/K57K6CxbU1HOWpQbOHVbPLuc/TjUVKVTSa6QP4LubO+bbF0YgcPiWlRNJC0QQYBjXEzVU2GxgOWNC+gMVTz8/Ja4x2SmTs0SFlz1P3wknzdp+9ApNSa/4OT9y+e+ypA5cvDy9UKd1pilssNsCatbdCOkFsszmpqppqbVBySB5d3cPOoTDres0Lw4+dMY0jWms4d+6+m2mLSGnZNhDijG89Tir9Z7Pa7SQ5EuDlqeMIeTIJKAfOOrP/ZaEqpUaSSU578Q2i6cCm5biyvGROKpay0939Z9ZvuINotBsAj7vN4oikPFh/7aOklEhaKJ7kHT1/o+X+bSTTOZ9Wr4+vnPfL3L3IQeYx2YnOHt8NmaRUPGUQT5ekV2SlVChdadE6G+a8A6aero7kZWxkZBWZhNTsI79BdfUMPO4Wa4OSUVu+bYir/vvlvW770MlTGFc/tkSy9dMlEflXG/uCpAxwO+1MaPTxgYWTCfctzyak6qtaCHE8eM3LDbc9v0mpTDXUjkicaMrAZ7dxRJWXayfpwl3Kw4aN38kmpOx2D62t51ockUhuKCklkhYKhpgc3pYd2+xNuGvz2YR3/5dZmUopGzacdicrRkKsDISz9+erUqqoV/8yJ+5NOB7O+ry1sUjeJJNhenr+xs6uPwLQ3HwWnZ3vsTgqOVSb+sy+b621Hk6Y0sjRExrGnJASkeIUiZttD47qrOP//u0UADb+9GEA3DY7E5rnsSEwh6S7C4xcVEqNbo4ymDB7XJ3ZVMcv5qnCVspDKhUlEtkBwLHH/Ira2rm4XA3WBiWlrYgu+5SUEkmLDppHquL2Mn1wJtvHn43Ht9bSmDwOD13ROG9bui5bJeWy2fBUYsPOmLkFSH2kytv6Dd9k+/ZfZ8c11TMsjEYO1YMru/j181vYORQB4JTpzXz30mPH/HxFnSgXqXCZpJTXtftku3jA/FvttNtJ9z/ntfBG8EJbVWEqlsLpBueNLp24J6UvmYywevVNDAw+Cxg4HNU0Np6sPmlSVpSUkornj8R5bn0/XbsGaQUcbh/Y3NhsNpyuPH5E9lEotXVkKwAjMbMqyO1w8+xQIJuQOrWhhsUt9ZX1h2hoK2x+FnYuM8fu6oK9tLYMFd7Q4IsAeL3jaWo6lcmTP2ZxRHIo/t/Da7M9pABmtOs0IJFyFY2byZ89k1KJoPn5txtJejHbD6wOrAUvTK0/jKqlQ5j2RNJJqVqnklJWMTSBypmengfo6X0gO25tfWtlXQdIRVBSSireLX9ayV+W72RiaJD5gK+vh5R9JgCOfCal9uHFLvOCPLN974iGIxhKr0S+s62Be+ZOKWg8ReHe98Ku1bvH3nrrYpG8SSQCRKPdBIJrADh6/k+pqZllcVQyGolkivte3ErfSJStAyEA/vPCOUxsrOK0meoDJlKuIolMpdTulgKJgLl115EME8KLA+iob+f0oz7Me2YWZit2JN3gvM6hpJSUvnB4CwDV1TOYMeMWGuoXWByRSO4pKSUVb9ugeRF1nG0IAHvKwHCYHw2nqzAnxWTEUjHAPDb51+f/mhmNM/jBNvOo5Xys+BmlsJQ1ZFaPMflUqO2Aee/O+0tq/amw4vFhnn/hPGKx3vQtNjyecZbGJKP36Bu9fOnPq7Jjl8PG+0+ctFf1RP6VwHeZSJnJbt9z7lkpZSalsNlJUYcDWDjxBD684H15jyeVntO8EQyDD+pUKVVwmj/lzq6+R+nve5wdO38PQEf7O2huOtXiqETyQ0kpqXiRdPn5W6fWsabbrI7aPN6JNw4uT26PET6YWNJMStlsNua2zAVgJL0SWZPDE/cOVvVbNMmqVAriZtKQ9/wCanSCTjkaHHw+m5ByuZro7HwvLlc+DxmQXNqWro6a1lrNqUe0sGhac+ESUtrCIGKZcMycP3lcDsIrVjDwq18TeP55mDYOv2MinohZKelOn8aXb6vSB8IMp+dN06sKO4cTyRXDMFi16kaSyd3b4Wtrj7IwIpH8UlJKKl40vdJnj5mNeR0uFyNVbrzD4C5wUiqeigN7N/cNVHJvhESYbAVEoXpJFUtCroLEYrsAaG1dzPx5P7Q4Ghmt7z+6jt+9tA1/2PzeOmtWG198+5y8vFbRJMpFJCsQNT/7NR4HfT/8AYHHHydVl/lb7SDpiNPv7WJ8e2OOX3nf3wf+dDKq3ung7NZ6Tm3M78Eo+lqSfEmlwtmE1JQp11NXN5+mptMsjkokf5SUkoqXKT+3x6MAOOwOHAlzUuWrL1xTbdhdKZXhTyTpSk/66guQlCq6xomx4O6fnTpOvtwMDr7Iho3fzh5x7HY3WxyRHIqfP7uJwVA8Oz56YoN1wYhIwQ2nE9INVW6Sfj8AvuPmwmA/Npud189+gGdHnmCR91s5fd39JYOi6V5S7x/XxH8cdRhN1UUsFA7vIBg0T/+22dxMm/rp4pufS1kxiqAFgpJSUvEiCbMSKZOUGrG3UBs2+9n4GvO5hejNXwB7Vkr9aGsvt27Ymb1vmq+CytC3PAfPfg+i5imEuKrAnrvti/ukP/gFt37DN/D7l2fH1dUzLYxGRiOeTLF82xCReCqbkLrvowsZ1+Bjakvuk/j6WIoUn4FgjGfW97Gmx6zkqPO5SIXMbbyuIybCS/2Agwjmdjq3ozD9OWMpAwdQncN2B/ui7yXJl6Ghl3nl1cswDHPB3OVqUEJKKoKSUlLxMtv3iJkTqoitFnfKh0GKhraGgsayZ6XUQ33D2Z+n+TwcX+CqLUs9811Y99DuccMky0KR/AmFNgFwxPSbqKs/lob64yyOSA7m639fzS+e3Zwdux12Fk1v1qRZpIJ89o/LefSN3uy4qcpNKmRWNmdX3G0OoobZFsHr8OY9pkgyRcIwk1I1OnVPSlRP7wPZhJTXO4EJ4y+zOCIpb8Uzd1NSSipeplLKFjBPucPm4IWJD9Bfs4WPTfhdQWK465W7eHzb4+wImNuYbDYbWyJmgupvx83guLqqyrroiwyZ/174cRh3DEw5xcpoJMe6u//MsH85iYS53WP8+PfjdNZaHJUciGEY+MMJXt06BMD4Bh/VHgdvn99ZWd9NIsLW9OEG8yfUc0RbDWfOauWNWIRXjxhPbMXq9KPsRAzzcTmplLIf+HumP57I/uw9yGNFilUgYG7bmzP7DsaNu8TiaEQKR0kpqWiReBJvLMAJQy+zOWompWy2al7v+Advm/VWXI78nRiTadybMlL814r/2ms/r91mZzA9wWp1Oyvvoi+aPm1k5mKY/hZrY5GcGhx6iVWv35gde73jcTjy24xWDt8Hf/4iT6/ry45/cNmxHDsp182LRaQUhGJmJcdXLjoq20tuuxOGq72QXlCzORqJGGsA8Djy135gJJHkt139PD4wkr2t4uZMUtIMw2D5a1czMPAshmF+fqprZlkclUhhKSklFc0fjjNnZDXzRl7Hn77N7uzg2cufxuMtUA+EZCybkPriSV/kK89/BafNSSTdsLPOglP3LG94F0tPLt2qnik3/uFXsj9PmngVHR0X6QKiyEUTyb0SUke01TB7XD777YlIMQtEzUWzao85PzFSKYLp6qQ5MyexvusU7I42BuP/AKDGnb+Fh3t39vPldP/NzLeS5XMYkUMQjw/Q3/94duzzTqKmeoaFEYkUnpJSUtH8kThVSbMRZ7PTid/9VuyuI3C781ch9a/7d6PJaPbnY9qOASC1x4SqonojPPcDWPsg+LvMscfaChodQ587qVSU4eHldHX/CYApk69l+vTPWByVHMjOoTAPrepmKN3Q3OWw8fpt5+G024owkajPqkghGIZBMJuUMi8jjEiEeLq5eGtTNRt3jQN7nGDc7DPV6mvNWzy70lXlc6q9uIIedobz9lJySPSdPFqxWD8ATmc9C098ALe7Bbu9MAvjIsVCSSmpSH2BKJf86Dl2DIZ5S8pMCtVjJ+iZjUECWwH7Eex54p7Tlp7gpe+rcthx5jGWopoypFLwyJcg3eARhwdqO6yNSXJm9erP091zf3ZcUzPbumBkVG65fyWP7dHMeFy9D1eeT7USkeIWS6ZIpCu5q9zmnCUVCpFMJ6rtCbOPVNRmzm1qXbVUu/J3UEskafYFfWtLPbtCPnb25+2lRHIqmQyxdu1XGBh8FgC3uxWvt9PiqESsoaSUVKRXtgyypd+cOLWHzW0pzp4RqAWIFzSWzIl7boebeLoyx58wEzMtrnx9RIutygGIBXYnpC7+KXTMA18he9bY9vipCP/7lDDDMNjV9zAALlcTDfULaGk5x+KoZH9iiRTdwxHWdJvbaM+c1UpTlZt3HFP4yfLBCrL0WRUprGA0mf252m1WcqfCYVLpBTRjxyvAJcQdMc6fej6LpyzOa2VlJGUmpXx2m74PikDxVdEWr56ev7Oz6w/ZcWPDCRZGI2KtnC95PvXUU1x44YV0dpon8tx///173W8YBl/60pcYN24cPp+Pc845h3Xr1u31mIGBAS6//HLq6upoaGjgqquuIhAI7PWY1157jdNOOw2v18vEiRO54447cv1WpIwFY2a59wlTGpmWMrtJOczcECl7cn+/dvj28bc6s33P7XDzRiCy133nt9bnL5ZiEzPL/LE5YN57oE2VNOUglYoSjXaRTJpJ4FNOfpr58+/BkcfGtzJ2yZTB+d97itO/9Tg7hsx9MF+56Ci+875jOHNWm8XRiYjVMlv3PE47Dgx6v/tder76NVLpZMSw0QJAyOXna6d8jbMnnZ3DV3/zJCqcrtry2gtfxaneVXI4/CPLAWhpOYe5c+5kxoxbLI5IxDo5/wYPBoMcffTR3H333fu8/4477uCuu+7innvu4YUXXqC6uprFixcTiey+GL/88stZtWoVjzzyCA888ABPPfUU11xzTfZ+v9/Pueeey+TJk1m6dCnf+ta3+PKXv8xPfvKTXL8dKVOZlb7GKjep9CpbZHY7AElnYr+/lw/ZSim7m6F0hZQDeHDBTL44rYLKeGPpxLO75uDlEVISBgdf4MmnjuPZ504DwOVqxOHwWhyVHEhfIMqGXWaCuMrt4PSZrYxv8FkclYgUi8yiXo3HSXj5cvrv+TGBJ58k7jQXGlYF3wtA3BPO6QnG+5sVZLbvebW1WEpET88DvLbi39ix4z4AOjouoqPjHZofiXWKoIduzvcGnX/++Zx//vn7vM8wDL773e9yyy23cNFFFwHwq1/9ivb2du6//34uvfRSVq9ezYMPPshLL73E8ccfD8D3v/993va2t/Htb3+bzs5O7r33XmKxGD//+c9xu93MnTuXZcuW8Z3vfGev5JXI/oRiu5t0powUYCPcVAWDYDgLu30v01PK7didlLLbbBxTV1XQOCzj3wnPfg+Gtplji5ubS+4MDi4hlcosONiYOPHDlsYj+7eme4SHV3XTO2JWbrbXeXjh89piKSJ7yyzqVXkcJIeGAXB1dpJyO8FIAA4Stjg97esO8CyH7l+3ha0OhHnVH2JT2PzO8hawF6jIWCUSI7y++rOkUuaCtMNRRVPjyRZHJWK9gvaU2rRpE93d3Zxzzu6Jbn19PQsXLmTJkiVceumlLFmyhIaGhmxCCuCcc87Bbrfzwgsv8K53vYslS5Zw+umn43bvPplg8eLFfPOb32RwcJDGxn33oYlGo0Sju0868/v9eXiXUgoyk6pqj4OkYQA24jZzlc1wFCYp9dyO5/j4H75OJGletLsdbobTSamKmlq9/At44Z7d49px1sUiORWPDwEwedLHmDbt0zpNpoh99n+W89r24ey4U9VRIrKHHUNh3nX3s9nEdbXbSSps9p1zTZyIER+EJLTMiPL1js8wqXZS3mIxgIteXYc/kcreVuusoJOKpWSFQpuyCalZs75Cfd0xuFwN1gYlFax4rjgLmpTq7u4GoL29fa/b29vbs/d1d3fT1rZ33wqn00lTU9Nej5k6deqbniNz3/6SUrfffju33nrr4b8RKXnZSim3k1S6J0Ai/cG0uQqzfe/lnpfprdt9stXMxpkMpY82tnr3WkH7JITSR+VMOxOmvwVm7rvSsmCKoIS11Pn9r9HV9X8MDD4DoOONS8DmPnPL3juO7qShysXFx02wOKK96WMpYq1XtgxmE1IAJ09vIRXqAcDu85GKDgBguMzkkMeZv76BhkE2IXVOcx3jPC7ObKrlsez9+sKQ4hKP+9m48Tv09T8OQF3dsUwYf5nFUYkUj4o6fe/mm2/mxhtvzI79fj8TJ060MCKxSjCWLj93O8m0NQ+Ha7EDDldhJjOZbXu3nXwb81rmMbV+Ktcsex4oprx1AWQanE9/C5zyKWtjkcNmGCleW/FvRKNd2dt0xHFx2jYQ4iO/fImBYAx/xEyIf+WdR1Hvy10fGBEpD7F0EmjRtGZ+ePlxNFa7GfjVy+yq8bE2NkLSMO+3ec0FCG8e++NkZmlum43fzJ+Wt9cRyZWdO3/L9h2/zo4b6o+zMBqR4lPQpFRHRwcAPT09jBu3e4tOT08PxxxzTPYxvb29e/1eIpFgYGAg+/sdHR309PTs9ZjMOPOYffF4PHg8OvFJdp8eU+2CEbsTMCBwIjjA5S1MSiiRMmOY3jCdXjr405ZeHuzz00QeTiAYJUuOU842OK8u/GvvyerytDIRDm/NJqQmT74Wr2ccLS1vsTgq2ZfH1/Syrnf3ybZHtNVQ5y2utapRfyepMkIkr2LphuLVHieN1WbiKREM8cqUDpLBIfNB9jqoMufZbkf+qmMzlVA+NTeXEjHsfw0Ar3cCUyZfS0fHuyyOSKS4FHT2OXXqVDo6Onj00UezSSi/388LL7zAtddeC8CiRYsYGhpi6dKlLFiwAIDHHnuMVCrFwoULs4/5whe+QDwex+UyV3QfeeQRZs2atd+teyJ7yvSUqjGS+NPXPBFXiKHqAY48oaEgMcST6QbndjdXrtjISDJFpiOCoxISJP0boGclDG4xx+5aa+PZB13mjl48PkxX1/8wMvI6ALW1R3HE9M9YHJXsy3Pr+3hoVTfL0j2k3nXseD5+xnQmN1e9qZmwiAjsrpTyOHcngiL+YZLpxFBLdTt++1kknUAyv5VSGT773kkpfX8VD82fTNFYH4GR1YRCGwCYMePztLUutjgqkeKT86RUIBBg/fr12fGmTZtYtmwZTU1NTJo0iU9/+tN89atfZcaMGUydOpUvfvGLdHZ28s53vhOA2bNnc95553H11Vdzzz33EI/Huf7667n00kvp7DS3gFx22WXceuutXHXVVdx0002sXLmS733ve9x55525fjtSZgLRBEu3DLJzKAxAtRHDsJl/Ole1P88rU57hfUf/piCxJNOVUtg9jKSbnV/Y2sCzXVCoQ2QsKy6IR+AnZ0J0j8MGPMWXlJLR27b9v9m06XvZcV3tPAujkQO54Q/L6PHv7g1z9IR6ZnWU6udPF6EihZBJSrn3TEoFzEpLl8NBW+10AtFOki4/JMHjyGNPqfS/fQ59/qV4JZNhXnrpIqLR7uxtHs/+d/SIVLKcJ6VefvllzjrrrOw408Ppyiuv5Je//CWf+9znCAaDXHPNNQwNDXHqqafy4IMP4vXuXlG59957uf766zn77LOx2+1ccskl3HXXXdn76+vrefjhh7nuuutYsGABLS0tfOlLX+Kaa67J9duRMnP9fa/wxJpdABw9/Brdf/tn+h4HZ3VM49vvvY0WX0tBYsn0lLLZd0/cPjO1g2dfy/9rW76YGOpPJ6RsMGkR1HXCtDMsDmo3q//zlKJIeDsA9XXHUld/LJMmftjiiORf9Y5EGAzGswmpj58xnZYaN+85Xr0VReTAMtv33HtsmQuHzKSUx+kkirld74FtD0Ar1Hnq8hZL5oCaf62UEutp/rSb378im5CqqZlNdfUM6mqPsjgqkeKU86TUmWeeecBTL2w2G7fddhu33Xbbfh/T1NTEfffdd8DXmT9/Pk8//fSY45TKtLU/BMDMBienb3oWv3lYDDZHG+PqmwqWkAJIGuYWwlT6Y+iwgdPybFGBZPpI+RrgI/+wNBQ5PKlUglBoI0PDSwHo7HwfnZ3vsTgq+VePr+nlw794KTv2OO3cdN4sbXcRkVGJ7qNSKh4251Tu6CDdthrzcXazEn1O85y8xTKSjqXTa+2prmplJ/uTSATxjywHoKnxFI499lcWRyRS3Iqro6lInmVW+r54RhsvvgpuhxO3cTTxmuPweQMH+e38MGxmXzRvEa345f045Wxz85r8vo7k3YqV19HX98/s2ONptzAa2Z+lmwcB84LS53JwyXETSiohZahDiYilMtv3XA47RipFbONG4kNDADhsKeJGFXags6md846+loumX5TbAP7l+8pjt3HZuKbcvoZIDvT1Pc5rKz6GkV58rqo+wuKIRIqfklJSUTKTquTq9CkYI0FcDTNI2GvxuuN5f/09kz2N3kbePfMUbHZz62oxJaXyxjBg1xvQZa4eFWdSShe/o5VIBOjrewwAm81Fc/PpNDaeZHFUsqc/vbqdJ9bsYvm2IQA+dfYMrjtLE2QROTR79pTq+vwXGL7/fkINNTC5HafNIOVoxg6cOOkEPnLM+/MaS5XDzobT5uPcTwPOfCexSymhL4W3a9fD2YSU01lP5zhVj0txsuTU9f1QUkoqSqZSyjZk7ttzOBwEvWalUpU3/yfFGBjZ1b7PHf9ZnEefziv+IADePSdXFuVF8j7Reu4ueORLu8fu6vy+nuRVKLQRSOF2t3Laqc9bHY78i3gyxU3/syL7vQcwtaW0PnO69hOxViSeZNXOYbYOmHOVKreDyKpVABg+c97Uaz8KV8gHQENt/g9NsMF+E1IiVhsZMT8f8466m7a28yyORqQ0KCklFSWeXumzRc3T7hxVVQS9LqrjUOX15f3191y9e8RTKEcAAQAASURBVG44wE0vrM6OfY4KqJTqXmn+21sP3gZY8CEro/kXmuCOViCwltdWfJxweAsA1SpNLzrPrOvjjW4/sWQKl8PGf5w/m+ZqN+fO0fZKERm9q3/1Mk+v68uOZ7TVkAyaW/Br3v4WeHFptg3BiHuQmc0NVoQpYqlUKsGKFdcyMLiEVMrsq1arU4hFRk1JKakomYoBI52UsjscOIx0pVRVASoI9ti+tyMSg2qodthpcDq4orMZCOU/BivFzJVWzrkVjtfpbKVq2/ZfZhNSAB0d77QuGHmTFduH+cDPXsiOOxt8XHXqVAsjEpFStb7XTECNb/AxtaWa02e2sj1g/i2PJs05jc1m59mz/ptVoeWc7v1h3mPa3xJSMW1FkcoyNPQiff2PZcdNTafh8423MCKR0qKklFQMwzCIpydQxMwj0XE4caTSjcY9haiU2i2WMkefmNTGp6d0ALB5eHPeY7BUPJ2U0ra9khYJ7wBg0qSrmTD+Ck28isyGXeZFZHO1m2MmNvDeEyZaHFH+qRG6SH5kTt375YdPYEZ7LYZhkAoE0veZnzunHQadvaTsSaqcVXmMxrbH/xUpHqHwZgBqqmcxb94P8XonWBuQSIlRUkoqxp59VVLpSqm+RBvulHmksLNQPaXS4umqqT237ZV988yYklKlbMf/Z++8w+Oorj78zmyv6t2Se+8YY0wHA6aEEkiAQOghkEASEkIghY9AICEJIUBCaCFAKCmE3nu3Ddi49yJbLuptpe07O98fd3clYdlWWe2upPs+j5/VnZ2Ze1bWzpz5nXPP2fMfamtfprl5MQC5uUdIQSqDePTTSpZub2Z7o/ieHTE+n3vOm51mqyQSyWAmGBYFm81G4avoPh8RdKpzXaxdLZrGGA0G/BGxZMlmTH6A7x+76lm1dTdjYuMh7ilJBhF1dW+wYeOvCIdFh9vsnEOx20el1yiJZBAiRSnJsCGRJQVowXinPQMAjY5KbFljU2BFhw3xTClbGrvu7Su7IOlZBx/fBTWroWGTGJsGMpIqGQg0LcimTbcQjYosQ6PRhds1Lc1WSeI0eUPc8vK6LtsGW1Hz/aHLRCiJJC3EM6UsRuEvae1eKvOz2VySC1EhWFktWfgiovxAsjOlQtEot22rZoYvlBCl1KEewBsCDJdLduX2vyQEKUUxUSLLGUgkfUKKUpJhQyAW7QPQAiKih6Ly8LzrKI34UU2nDtjc71a9y8tbX2Ze2BHXwQhFhaOXjgLnKXXnmirh3Vu6bnNncHaNfPrtFp9va0KQmjrlz7jdMzCZstNrlARd1/m8somVu1oAcFuN/HThRGwmA6dML0mvcRKJZFAT0aJEYgE0SyxTKuptx2MTGebZOXm0+SpwOkckMqXcFndSbdgVCOPTouidHBeD1KQkaSYc9uDzbaW9fQMAB81+GqdzEiZTVpotk0gGJ1KUkgx5tjd4OfehxdR6xAN1WbaNYFVr7F0FTY0wVjGBPW/AbLhr6V1UtVVxkHZKJ1FKOHr2DOq6NyBFQgMt4tWaDcf+AnLHQMGE5M+TRGQQtgNdj9LcvJiWli8AcDmnUlx8epqtksRZtLWRC/7eUdR8dL6Di+aPSp9BEolkyNC57IHFFBOl2tsJmMXjw9hxU1m75WCCRtH4wqgYcZuTK0q1hCMA5JmNQHj/O6cYGcPam+HgPkUi7SxesoBwuAkAs7mA7OxDhn4JDskQJv0XMylKSYY8n29vSghSACdNKya0NBIThxSeOOKPTBlxOBhMA2ZDe1gUBXWYHDTQAkClT9iUb9r7azikivbG60g5C2Helem1ZX9IZ6Jbdu58lM1bfpsYWyxFabRG8lU21LQBkO+0MKHIyWWHyy57EokkOQTDHaKU2dAhSkVj90ufJjLQv1RaAMi2Zif9wbw5IuZwGQxkmiglGZ60ti4jHG5CUUyYzfmMHPldKUhJJP1EilKSIU+8HsKxEwv4w9nTcTdU82JbALJNoCjMGnvSgNsQ0kIAWIwW6FhFyEirmdnuIV5fSRY3H9Q0NIgWx4piJDvrYMorLkuzRRKABz/cyn+W7qTJK64tZ8wq5aavTUmzVRKJZCgR95+MqgKeVrZf8wP8y5YRnSg6erY0VgLz0NQwDpODM8edmXQb4plSnetvpjtDScoPw5uWlqUAFBV9jalT7kyzNRJJP8ggMVWKUpIhT7xzjNtmYvuN17KotopIlvjT11P0ZQxootuf3smVuWlsCQfPm4Q5jYXOB5SwH+rWQe0aMTY702uPpFfouo6m+fD6tgIwe/aT5GTPTbNVkjgPfLiVZl9H1sD0MlnHQiKRJJdGr8jozrKZ8H32Gf5lywDQDMKHammdAQpkGQ0sOX/JgNhQExKiVE43WeVfZUBKEEgkMXbv/jdbtt5BJCJWP2RLn0giSRpSlJIMeeI1EcwGlao9O4lYYkWdUMCSP+Dza1GNSFQ4VZ1X5RWYTViGqiAF8OjJsGd5x1hmSg0adF3ny+UX0NLSUavIbhuZRoskAGEtyoqdLQTCWkKQevTSuRS7rUwqdqXZOolEMlSobPDynce/oC5eizPHRjTQAIBt5kw0QxC0MJqWj2oEPdewv9P1iU3eABet3kZ1rFtyttFA8ADHSCQDSeX2vxCJiCXzBoOTvLyj02yRRDJ0kKKUZMgTr4lgMalE9Cig4i7JJeg7j7DdO/Dza53cqC6ZWXvnnw+ZKJ+uQ00sQ8pVCiYrzLogvTZJeozPt7WLIFVYeCoWS2EaLZIA3P7qeh5btD0xNhtUjplQIGtZAJlQpFMiGSp8srmerfUd/tG80bno7XsAMOTnozftAsBY1sbLOc8yeWrygxbP1DSx3R9KjCc6rKxK+iwSSc/QdY1gsA6AuQc/j8MxHoPBlmarJJKhgxSlJEOeeE0Ei9FAJF6IwGRAUa0oqmdA5/aGvWxp2TKgcwwI/X2+iwQhGltadPUSsMqlRYOJtrZ1ALhc05hz0H8wGKxptkgCsGa36Bpalm3DaTFy2sySYSNIpbuGjEQynIj7TcdNKuSmr01hVJ6d5ifE0j3VYiaqi/d1d4CdORuYY52UdBu2+UVA79KyfK4dWYR1sUeKUpKUEwo1sHnz7/D5twMisO1yTUVRkp8dKJEMZ6QoJRnyhGLOldmoosXUlogau5kYtH0d1m+8YS8Ln11Ia1A8SJpU0/CJ5QfbOn4edLWkhs3/0l54PKvYtOlWWj1i2aXLNU0KUhnAT59ZyWurq/HH6uPd+63ZzBmZk2arUsMBRbdhIspJJKkkXvYgz2FmdL5Yeq+HhEikmC3oMZU4YhKvdmPyG7b4YjbMdtspsphoHSqZ5JJBRU3ty9TUvpAYZ2XNloKURDIASFFKMuQJxtoJW4wqkZjgoOlm4d6Y/QM27+723QlBymXOYmz55QSi9R07ZEDo/6smJCXrYt2LsPtL8bPZCergvXmn/38otWzddldCkAIoLBj4zpSS/RPWovxv2a7EOM9hZkLRYBN6JRLJYKJzMC9ONBgrRWA2o8fujmFV7Gc3JV+U8sZEKYeh97U39Qzwr4Y7Q+W/IBRqBCA390hKis8iP/+4NFskkQxNpCglGfLEswssRgNBgxXQiTbOxmAC1Rba/8H9IKyJ5WtF9iKuOeoZrlq3gwXaG5ABtc0HbMlP3Xr470UdY3vuwMwzIMgorM8rOu2NHvUD8guOx+2almaLhi+t/jCLtzYkCpobVYX3rjuGApcFm3nwCr0SiSTz6U6U0oMhthVk0V5d2bGfUTRxGYhMKa8mfLe+iFISSX/xerewp/oZmpo+ASA7aw7Fxaen2SqJZGDQMyAML0UpyZCnoV0IT/l2A9VGCxBAwQKAo8Q3YPOGomJei8HCopb2Xh2bCReHPtFWLV6t2TD5azD162k1p68MN3mqtvYVmpuXEAiKQrZlZd/CYilKs1XDmxufXcXra2oS40KXhYq85D/4SSQSyVcJd+paHCfg9bKhNB88TbEtZoJGIRwNbKZU5orwg9RTG1CGiv+0efPtNDZ9lBhbraVptEYiGfpIUUoyZPnF86t5+rOqxLjIZmC3IpycTflLWTL+fm6dc9mAzR/vumc2mGkIiWii22igKTpgU6afUEzkyx8PZ9yXXlskPaKtfQNr1v4oMbZZKzCbZae9dLOxRtRlm1rqxmU1cs7B5Wm2SCKRDBe6y5QKekVwTVUUcpyTaeMgqsNLwZTcTKmn9jTyYl1zovOeszeZUkNFEZGkFV3X8bSJDtKlpefhsI+hsPDUNFslkQwEmXPRlKKUZMjyRqcsg1yHmSl5VpYiHK02qxe7Q2X2+NMGbP6QJhwqk2qiOSJEqSGfhB6OiVIDEDWVDAytLcsSP48ceRVFhacMm45umYY3GOG6/66kxhOgqkl8l+791mzGFsgaUhKJJHWEOmVK6bpOpKaGQI3IpDUrUbzO8aiBQvYEdoMd3BZ30ua+ectu2mPzl1pMTHB0braRGfcmeYscmui6RtXOf9DWto5wuAlFMTBh/E2y4YtEkgKkKCUZsoRjkb5nv3cY08rcKNV70BGp5meNOoJTz30IwwAW4Y7XlLIYLDTE6lqpg8SR6fPywZBXvJodyTNGMiBomp/Gxg/ZVnkPABXllzNu7PVptmp48+Gmet5Y2yGmu6xGyrJtabQoc5DLZCSS1BHslCm157rr8Lz2Om12C4wfgUkP0h51YwECRh8XT7mYI8qOSMq8Pi2aEKTumljO4TlODFIBkqSI6prn2bLljsTY7ZohBSmJJEVIUUoyZAnGHJtCu4HAm2/gWbECFPFo43A6B1SQEvN3LN9rDItMqQNloCgZEgXsNV8+Adveh8YtYjyYRamh0jLmAGyrvIeqqocTY7d7ZhqtGd7sbPLx0EfbWLNHdOucPyaPy48YzcRiF1ZT5tZTkUgkQwstqrO72Z9YPmw2qviWrxDvmUwABA2FmEJ5APz82Os5blpyBCkg4StZVIVvleTKrF1JSmlvWw+A0eiiovw7lJScnWaLJJLhgxSlJEMSXdcThTr1zz7lPw/dTZvNknjf5h440cQX9rGxeSNbWrYQVey0GEZSH6spNSQfLyMheOVaiEY6trlK0maOpGc0NX0MgMs1DadzEvn5x6fZouHLwx9v44klOxLjQ8fkcfwUWWgeerNYZ3iIyRLJQHLB35ewZFtTYjw634EeFAE217dPgU+WEdadWFAJGLy4cpK3bA+gMeYr5ZmMewtSUqCSDBAezyo8nlW0tn4JwOjRP6Ki/NI0WyWRDC+kKCUZkkSieiLhJVC9u4sgpRrLsTkGrubRxW9czIamDQC0Fv+GTw2jADAookDokCPU3iFILfytqCc1GLvuDcX/m26IRNrxB3bR3r4RgJkzH8Fizk+zVcOTHY1etta3s2qXyJA6dXoJ88bk8vXZZWm2bPAwaLNLJZIMZMXOFgCsJpUJRS4OGZ3LzpCojxkMxmpjKkY+n/4cW4xrOMmS3IYm8UypXFP/Hk8GbQfjwcD6l2HP8r23K6rw/bLGp96mfqBpQb5c/m00zZvYJrsPSySpR4pSkiFJPEsKQIkIh8qoKERyL8OkuXFkDZwotbVlKwCFrknUm0cBUG41c25xbpfHpyHjMsXrSBnMMP/q9Noi2S+BYA2ffXYqkUgLADbbKClIpYlWf5iFd39EINxxrTpnbjlHTyhIo1USiWQ4E++699H1x1LoFrV04plSwVgWk2owUJm3Ek+wGYvB0v2J+khclMrrpyglGSB8TfDfi0DfRxvpyo/hgpdTa1M/CYUa0DQvimKgIP9EzJYC8vOOS7dZEsmwQ171JUOSuGMFoMeifKqiYo1mgQIO18B0s4rqUcJRUeD81qP/wtmraigyG/li/hQA3gR6siBFT1Fdo6RME++4N5jrSA0TGhreSwhSRmMW5eUXp9egYczOJh+BcBSzQWVyiYsROXbmjc5Nt1kSiWSYEtGiRGM+gdkoegXruo4eFj5NMCYYGVQjAS0AgMWYHFFqWauXf+xu4NnaZgDyzft/PBkmpR8zD2+9EKSMVphzScf21l2w4RUItqXNtN6i6zrNLUvwtK4EwGwuYPr0v6bZKolk+CJFKcmQJN7OWFGAsBClNEyosfedbteAzBsvbg4Q1sXXy2HIvEpSSVvwEvAIZwTAPPTa1g81xzcYFJ3dysq+zaSJt6TZmuHJsh3NvLehll3NfgDGFTp58ZrkFQqWSCSSvhDqlGGeEKVighRAKJEpZUz4OtYkdSb7Y2UNHzR3CBpH5PTNn5DLeQeYuOjkLISTf9+xfdsHQpTqRKa7T83Ni1m+4sLE2GzOS6M1EkmayYAHHilKSYYkYU18uUwGFX9AOFqabsIENNh3YbHNHpB5Q1qo42ddiFFOg9ppj/R/6XtCj+oxrHkWnv1ORxq3aeCWREr6x7bKv1BT8wJ+/3YArLJeQtq45ukvqW4NJMZlObY0WjN4SFX2qEQyXOmcYW6O+S16MEit287qEQVEtm4DwGgwEo3d95OVKdUUy8K6uDSPQ7IcnFmUk5TzDjTD7roU9IhXS3IL3KeDltZlAFgsxTgc4xkx4sIDHCGRSAYSKUpJhiRx58piUAkGNAAURWVd4adsKFzCTebzB2TeQEQ8bBoVIwFdROys4SjbP9/Ep6uWYPf5wRTbebA7M9s/7RCkFBWmnJ5ee5LIUIu1VlU9hKaJZZaKYiYv79g0WzT8WLO7lcoGb0KQumj+SKwmA+ccXJ5myyQSiaTDb1IVMMZFqVCImiwHIZMx4bNYHTmx/VTsxuQEo9o04aedXZTDIdndZ0kNk14kmcn7v4Uvn+go12DZ92qDTP9/ikYj+PyV1Ne/BUBF+WVUVFyeZqskknSROV9YKUpJhhSeQJi/f1zJ2+tqAXDbTIQbxDIZBfho7H9x6iL9fCCIZ0oZjS62tYqbt2mXl09XL2WzoYYpEb1DlOqONF8bepX6HmoXryfeBof9YGAMSguDXCz8CpoWSAhSs2Y+ht0+GpttRJqtGl7savZx+l8/SdRrcVmM3HL61L1bnkv2Qv6KJJLUEIyJUvGlewB6IIAe+xKWF5ZSFzyNqiyRMZVvy8eoJseX8sTmdhkzr9xBdwy7y9IXfwdfY8e4eHr6bOknK1d9h6amjxNjp2tKGq2RSCRxpCglGVK8tGIP9767OTGeWZ5FeLeofRAXXLKsyV83rus6j659lLUNawlZJlFfeAN37KoDoDig4zNHQEv6tOklGBOlhmAtqaGAruvsqHoIb/tGABTFSG7uEVIISQOb69qJ6uC0GJlS6uaMWaXy/0EikWQU8ZpS5k4lByLNLWiKGNf7ilBMDrYr9QCMdo9Oyry6rtMWEQ6Sc3+iVC8umcNuWd1AousQaBU/f/s5cJdC/sR97Zwys/pCNBqkuXkxACZTLjnZ88jJPiTNVkkkEpCilGSI0eoXRTmnlLg5eVoxZ80ZwYoPRKaUFnNosp3FSZ93XdM6/rzszwCE3WeAIr5alnAI6hexW2tJ+pxpI+QTxc29QnTbXxr34GJoiQStni/ZuvUPibHVWiaFkBTz3Je7uOfdzbQFRL2UuaNyePRS6QAPCJn9LCSRZDyhRKaUgWggQPNTT+FfswavowhoJxLNxwgYs8P8bO7POK7iuKTM2xrRCMVEpHyTfCzJOMI+iIp7GOXzwDI4A5G6HqW1dTm6HsFkyuXIIz6XPpFEkkHIq79kSBGORfpmV2TzgwXjAfg0EC8qLG4+hxQn/6HQEyv+mG/LZ1zxESwOwJkBH8WfvbXvY956i7rlGzs2KBA8elbSbUsqkSD8ZQ607enYJjOlMpK2tnUAOBwTKC46jby8Y9Jr0DDkySU72NHoS4xnlQ+O4r0SiWT4sLm2jZ89u4rlVS0A5DpMtL35JnV/vBOAyPSDAVDNGpU5qzBNCnLhlOQUhb5x0y7ebhBZOLkmA7YujWEkacVTDW/cAO2xAKRiALNjHztntrjT2rqc5SsuRtO8ADJrXCLJQKQoJRlSxEUpUyfHJhoS2xQFPjjnA/JsyV++F68lVWwvJtc1CQItWOqaARjpszLrw9dZd+L5QIeY4/3wQxob/V3O0/LlBFjQw+536aC9tkOQsmZDVjlUzEurSZKuhEJNNDcvYufOfwCQn38co0Z9P81WDR+iUZ01e1rxBjV2t4jv9x+/MYPpI7KYWDRUsgozCflgIZH0h9fX1CQEKYDjJhUR2bMFAMv4cWBSQQPTiAberHiZEy0nJmXe1nCEx3Y3JMYzXb0pmp6hPtJQYu3zsO7FjnHumEFb5G/X7icTgpSimCgpPivNFkkkkq8iRSnJkCLRdc+oUv/X+2h59llUWxm4AFUZEEEKIKiJulVmg5m6PW1gAmt7zBbFQPFpp7ExIG7mCsKdsh82n5ycMgAitXW0vfkmUa+vu9NnDiFxU8eeBz/bll5bJN2yctUVeDwrEmO3a/AWJB2MPPXZDm56cW2XbYeOyaM8NzldqoYr8hFUIhkYAmFRz+mU6cVcceQYppdl0XyfyPK2z50Lm7eCBrpZ+DBmgzkp8+4KinIL2UYDT88Yw1SXrd/nlNkvScQvAquMXQCzzoeKQ9NrTz8IBKoBmDDh15SWfAODof9/axKJJLlIUUoypAhr4tHFZFBpfvJJtJYWIuNEy3XdOHDOSigqMqUsBgu7NU2IUmGRJREweKmbMRc+393lmKxTTqX42FMA8C1bRtubbw6Yfb1ln0VCQzHRzLSvFG5JOolEvAlByu2ejds9g4KCE9Jr1DBj1S6xFCXfaSHHbmJ2RTYjcqQDLJFIMpN4172KXAezK8QS43iATHU4iOrifS2mRVkMlqTMWxsTpcqsJg7KynyfotZbyx6vyBT3hETJhqq2KpbXNXTZb6R7JLnW3JTbl3RiZSkomQnTv5FeW/pIXd0bNDV9gte7CQCHfawUpCSSDEWKUpIhReeWxnvUKOsnleOztUAUsFoHbN748j2LwUJTJAIY8bfvwg5Ut9Xw6b+fIHfMApQMiff3OZgYinfcy3wHss90EuQydhllN4TDrfh8IntNVa0cPOcZGTVOIfe+u5kHP9yKP5Z1cOPJk/jGnBFptmrwI/+CJZKBJdTJb4oT9YmsaCFKiftgNJYpZVJNSZnXE+u4595fx70089T6p3hp60uEtBBbWrYktvvqLgEm8fCqh3msalmXY1wmF++e8y424yAVP9pqYP3LsGupGFvdPT82g/ynQGAPa9b+EF3vaH1ts8l7skTSPel/3pGilGRIEa8pZSZKVZYdn8UMUXFDUl29uLH2kqAWJGA/lA3qHPbYxNfK6fcRNUGW3QnN7QM2dzLZp4jRXg9r/gc1q8XYLJciZRI1tS+zdu2Pid9UzOZ8KUilmP8t24U3JK41ZqPKnJGyqLlEIsl8gjFxyNJZlPLGRCmbPZE5HYlpUcnKlGrTMl+UemjVQzQFmrpsG+keyXaTjXYgz5ZHjntk4r0dnh20hdtoDbYOXlHqjZ/D2uc6xvb89NnSD9ra1iUEqTGjr8XhGI/NVpFmqySSzCKTnhSkKCUZUsRFKasWos0qhBOD6wgMynjI37K/Q/s4X5jVDav5rKmOtvyriUk2uMM6pZ5WduU5wDYDlNYenS+TLg5d+OgP8PlDHWPbEEhN/yqdRBwlc/8nuqWl5XOEIKWgKEaKi05Lt0nDAl3X+WRLAw3tQWo9osvnf757KJNL3bityckmkEgkkoEk2KkWZ5zE8j2bKSFKhS2xoEeSakp5YvO6DD0TpXoTaElGlo6u64nOyr894rfkWfOYVTgLu8nOpY9+zvst9fzooGs55+DyxDFznpiTKOcwaGndJV5HHg7F02HK6Qc+JoP8p2CogR3b72fnrscAKCw8hdGjf5BWmyQSyYGRopRkSBFPQ7eGAzSbzEAYgzIG1ZCDwenf/8F94KZFN/HqtlcJW2ZC0dHYgj6Oqw5zcoOJ9uJSCLfib9Nx9NQ/2lctp3TjiXXcK58HBZPg4MvSa4+kC+GQKEg6YcL/UT7iojRbM3z4aHMDF//j88RYUWDGiGxs5syN/EskEklnQt2KUl525bioWvMl0ajImvLaNPCDo581Jav8Qd5q9HDvjloAXBmaKRXQAkT0CADHVRzX5XMP6UzkQCyIesyNMPqo9NrSB7ZuvZPq6mcS49ycw9NojUQi6SlSlJIMCfa0+Fmxs4XX19QAYNNC6AhHqy37cz4s38pFE8Ynfd7trdsBKNJKaAHyG2o4avMu1pta0BQxv8lkxObcO2si3evte0W8ltTBl8PMc9NriyTBjqqH2bnzccLhRgBMJrlkLBXouk6NJ8DS7WJZR7HbyvgiJ0dPKJCCVJoYVNdTiSSD6MiU6rh2tXrbWVVRCBvXx7aY2WmuBz/97mL84w07+bSlo6TBdGdmLXMLa2He2vEWNV7hTyoo2I3DoGSBtxHCXgi0iLFl4EpeDCRtbaL7bXb2PIqKvkZJydlptkgikfQEKUpJhgTfuH8Re1oDifFop4EtinhI2Zi9iz1ZWyiuuDjp8wa1IADzy45jow4OBXZ2EqTQFeymHIxmdT9noR+Vx1NEMOZAWpzptUPShaqqvxMKic4/imLA5ZyaZouGB1f8cxnvrK9NjM+cXcaNJ09Ko0XDAKk5SSQDQiDcUQsvUl+Pf+VKWtqaIc+JQbGAeQaqaSTLWu4ChX53lquJdd07OsfFJKeVs4t7H0wZyKTyF7a+wK2Lb02Msy3ZQzszCmDdS/Dfi+hyoe1NgfMMoL7hXVpaPqe9fR0AEyf8GqdzQpqtkkgkPUWKUpJBTzSqJwSp2RXZzByRzRh7O8QypVrMwgEaVTg96XPHu+4FdRFhtOtRtNhN/aSSg/hihRVncRZal6My37lJZB3UrIaGzaIbC4BZilKZQijUGBOkFA6e8z+s1jIsloJ0mzUsWLJNZKaZDSpum5ETphSl2aLhTOZfTyWSTKbJK/yYHIeZHRdfQmjbNlqKywDQjSMw24+kzdKI3WynwlXB7MLZ/ZovEBW+2Y1jSpjt7m0G0v6/7/2pZ/Tkuif587I/J2pCTciZwEj3SE4cdWKvz6VnaimGfbHzM0AHxQAGE5TNgeyRBzxsb9LzuUOhJlav/j56bLml0eiSRc0lkkGGFKUkg55QrLg5wBOXz8NpMdLy7juJbfMKxnDtsdcwNnts0ueOZ0p5Y18lhxZGj2Vo2c0OVF3BaFK/IkoNEtpq4cGjoVM7XaxZ6bNHAoCm+anc/leamj4BwGYrJytrVnqNGgYEwhpb6toJaVHag8LxXXrT8bKg+QAz5DMUJJI08cTi7Xy0uYHKBlEzqtBlIbxzJwB6fh7gxagqLJr8DJXWdTx1ylNJ8aP8MVHKZsis7/br219PCFJG1cjN829mRsGMNFuVIuJL9o77JRx5XVpN6Qsez4qEIFVRcQUF+cdjMFjTbJVEIukNUpSSDHri9RBAZC4ARNo76hUsKJvJvIpjB2ZuXcXvXMDaqB1UmO6vIMpGABTVCGgYjCqDJZrfJcrYuksIUkYrjJgLeeOgeDg4aJkd4aypfYkdOx5IjHNy5qfRmuHDOQ8uZtWuji6aZqOKyyJvoRKJZPARikT59cvr0KKxjnpGlVK3mT1hkVlunTURVn+JUdXZnL8Mf8SPxWBJytyB2Jw29QBlDVJAUAvyXtV7BCIBdrWJrnN/Pe6vHFx8cJ8Kug86EV3XwVsP7XVi3OfAY3o+t6b58XhWUl3zAgAF+ScwftyNabFFIpH0D+lRSwY9wUhHJo+2eSObr74af3MzTBDp5w7XwGX31FsOo919JnEJrDigE+tTh26JiVKmDseri9zRTXp3qov17jfFPF7cPGc0XPJKagxKK4PDmfS0rgAgN+cI8vKOprT0nPQaNMTRdZ1aTzAhSBW5LSgonDG7dPA9gEgkEgngD2kJQeq2M6cxrSwLV6ec7lBMnDIYFAIRUR7Baux/5omu6/hj2e3pFKV+//nv+bzmczY1b9rrvYm5E/vdYXDQ8Nr18MXDHWNrdtpM6Qtr1vyQhsb3EmObvS9LDiUSSSYE5KUoJRn0xNsZm40qvkWLiOypJmKM/2kr2LIGrlhjwChqyUwMBZm/C+Y0NLMnNnV1rAyTwdhzxytVj7g9qrsQEin9mIdB15lBgN+/k9bWL9lT/V8AysrOp7BwYZqtGvp86+ElLNkmuuzZzQaW/HyBFKMkEsmgJhAL5qkKXDCvAkVRiDQ1Jd6PhMVSKINBSQTLzAZzv+Z8tb6FZa2+xKOP1dBLUSpJ192WQAtPrn+yy7YKVwWjs0YzLX8axY7ipMwzKNj+sXhVVHCVQsXgyrz2tK0BwGYbhd1WQfmI5Dc0kkgkqUGKUpJBT1yUshhUokFR48l87PFQtxkwYHMmN1Nqed1ybl18K/6In4j9UgDOam/n7M1m6g2xSKMOWzYIW0yWnrSIz8CH3IQoNUwiht2Q/riBQNMCLF32TUKh+tgWlezsOWm1aTgQCGsJQQrgjFkyO0oikQx+4h33rCZD4pqmB0RGlGI2EwkJUUrtFFSz9qNGT3M4whVrthMvtmBVlbRlSrWGRNarzWjj7mPvJs+ax8TciX07WaY4CX0l4BGvV7wHpf0rYP9VBvJXo2lBQqFaQiGx7HDOnP9gMecP4IwSyRAlg3xaKUpJBj3xQucWk4oeCNKQM5EWSoHNoBixJFmUeqPyDba0bAFAd4osouywsCHi80AWoKvkFZrJHpHF7BMreGtNRspO+2bTm9DwH/Gz7LiXdry+LQlBKjfncPLzj8MsHbABo9YT4K/vbaGhXQjLVpPKultOQlUH1bd4SJHqpc0SyVAmEPNZrKaOoFk0LkpZrYlMqbgopaBgUvve1KEuFCEK2FSFi8ryOTzbiSlN11NPUAgx2ZZsDis9bEDmGDTXq9jvAkuSVhSkoOtgONzCks9OTghSRmMWZlPugM8rkUgGFilKSQY9wZhzZTaoNLeG+XykFeo+BEA3uDEneY18vOPeNyd8k/9p5dSFwdrSCljRNFGHQUFl9okVTDxCtKTt1kHJZJ8lEuioKZXk6NlgIIMCB+i6RjBYC4DTOYXZs/+ZZouGPk8t2cETS3YkxmPynVKQkkgkQ4Z4ppStsyjlFdnRqtVKOPa+EquJ6TA5+pUl6oktFyw0m7hlXFmfz9MXPtz5Ia9VvkZQC7K5eTNNAZH96jb3XYgZ1HeDYJuoJdVW0+HnJbGz8kD/bhoaP0gIUqpqpaLichQl/UXzJRJJ/5CilGTQE+xUU6q2zQu6uMnqwJayNkwmW1LnC2miZXCFq4JAowLo6E3NNCkOaiw+sZOuYHJ2zNujGk6d2G8B8lRxyp0wboEodC5JC42NH7Fq9VVEo7Flqea8NFs0tPGFIuxo9LGuug2A4ycXcuiYPI6ZWJhmy4YvPb9yZsA1UyIZJPhjopPFpBL1+2l95RWaHn+cqGLAM/ZQgkFxDaxB+DRF9qJ+zdcSy7zKMvWknMG+OdD1oDtf647P72BX+669tk/Ln9YvW3o6f8ax+W1Y+a+OsTW7/6JUCiN5wUA1ACXFZzFlyh9TNq9EIhlYpCglGfQ0eYVIlOMwE4jVlDIa8njkhC/RVfqVct4dQS2IDhgw4tGioCi01O7huZzdEOuYrKB26brXY9L8XNXFocqfALlj0mdMusgEQTDGzl3/TAhSoJCXd3Ra7RnKRLQoJ9z1Ebtb/IltJ08r4ew5I9JoleSAZFJao0QySPB3ypRqee45an9zGwArJ55ITbARXROdWqoMQpwqd5X3a77mWKZUtrF/olRfaAuLz/Cd6d9hhHMEk/ImYTfaGekepp3a/LE6iWVzYN5VIhvekFw/eSCor3+HzVtux++vAsBi6Z9QKpFIMgspSkkGLbWeAPd/sJU1u0XRygKnhUBARPUMqOiqiKoZ1OQ6QS1RI02l93J9fQ4oYNAiZFtt1ODDoCuYlCyM7QW96rqXkVhkLal0E3e+pk/7G3l5R2IwyE6IA0WNJ5AQpPKdFgpdFo6aUJBmqyQSiST5ePyi1ECWzUSkTtQrNI8dS7OzDT0ilkbpqFSPaeLbk7/N2ePP7td8tUExX5Gl7+JHX/XnQETUyjpnwjmUOEv6PP+QISB8Zgomw4xz0mtLL9i1+8mET6SqNvILTkizRRKJJJlIUUoyaPnX51U8tmh7Yjwyz04wJLJK4kJUsrOkAGqjuUSNOYnx1E0rGF8+mg0Na8nSTORwCB5/oAeiVKeMnHQH+yNBeP4q8GzouCoMtwLnGZJxoes6mzffRmPTh/h8lQC4XFOlIDVA7Gzy8fePt7GnVTy4lGXb+PTG49JslUQikQwcrZ1EqWi9COa5jjuO6PIvAbBPHMMTxR9zyMSjueGQG/o8T3UwxOIWLw/vEsJXsTm1GTlRPZqoA2o19r174JCgagmsewmqFotxEutIDTS6rtPWthaAqVP+TG7uEZjNsri5RNIdr66q5rFFlWhRHVVR+PahIzlzdmpr+fUFKUpJBi1xp2r+mDwWTsrnayUqb7Z5wQL+mCBkMpiTPm8oChhgktHPCQ/9CVs4RHT++QCogBYRYpOxL8v30kXVElj7HLickJ8LigFcxem2aljS1r6WnbseS4xdrqlYrZl/MxmsPPzxNv65uKOo+cg8Kf5JJJKhyaKtDVz/zCoavUKoybab0P1CkFftNiIxAccwsoQ2YwRzP32oi1ZVsrq9Y0n0VGc/anz2InAUr8sZz5KC1IpSGdl978VroHFzx3hAfLzkfm5NC7Bu/c9ob19HONwEqBQUnIDBkNxasRLJUOKedzexqbY9MW4LRKQoJZEMJPGWxoeOyePov/6S+lWriEyYA0CbSbxXYEve8pumQBM7PDtoj4TBBDZFxxWOUuKaRCRe3xwjQZ8Qy1RjZmTe7I+E+xBvC+wsAsIw9phBFUUbSvh9QiBRVRszZzyEyzWtX12PJN0T1qK0+sNUNoiOU6dML2bmiGxOmibF2Ewkg0q9SSSDljfW1HSpmzerPJvoYiHcKFYb0aio0ak7zRAAs9o/UWqLT4hc87IcjLNbOLkgdX7F7vbd7GzbmRhbDJaUzZ2RtItlmRx8GWRXwEEXpdeeHlBb9wp1da8mxvn5x0lBSiLphmhU57tPLGPZjiaaY8+hlx4+ikc/3Y7WAwcqE4R0KUpJBi3BWKFOq0EnsGoVAJpBZCepJpVfz/81hxQfkpS5/BE/pz1/Gp6QB59rIdjAis7cgpMpd0xiW1stmEHDRCQkBDGLrdPXK8M0hb00jlinHWw5oNcNv6V7GUAwWMv2HQ9QW/sKAPn5x5Kbe1iarRqaBMIax9/1IbuaOx7OvjFnBMdNkoVTJRLJ0MUbFH7TFUeO5pLDR1OWbWPn4yKqpphNgHg/YkWIUv3IlPJpUfxR4Q89OWMMrhQWOd/u2c5Jz56UGNuMNlRl4LPXMzaAFI12BB+P+Tk4k91RdmA+t9+3HQCHYzzjx/+K7Kw5AzKPRDKYqW71s73BxzvraxPbynNtLJhUxKOfbj/A0ZlzzZKilGTQEoh1c7HrWmJbe7EDmpqwGlXOntC/wpydafA34Al5UFDIthbiBfLNLhxGEfWLGES741AUZh5RSkG5E2fO/lPFu1Wl05EOEGyHNtFpB6MVwh2p78OdVP4WKrf/jd27n0yMs9yzUjj78GJbvbeLIDUix8bs8pz9HCFJF5n6jCeRDEZ8IeGrVOTaKcsWGSfx5XvRTppRxAa09E+UagqLuUyKgtOQ2nIGDf4GAKwGK1mWLE4Zc8qAzJMJ2QX7JRqFyg/Bs4eER2Nxp2Tq/riRbW3r2b3nX+ze/TQAxUVnkJd7RJIsk0iGDo98UslvXlmXGI8pcPDQhXMYkWNneVVL+gzrA1KUkgxagrHle7ZoOLEtGovKKUkOyAUjIgU9y5LF1yZdyJ931GJXVNTYRAFLO0QAPcqx357U7/lS5uiE/XBHBcSFPaMFwvs/RDIweFqXA+B2z6a05BuUlHwjzRYNPXY1+/hiexObY2vtJxW7eOPao9JslUQikaQGbygWzDN3uP9au8iUjnYSjsIW4Uv1p1lMXJTKMxmTmEEkzrOvwFl8nnDML/za2K9x8/ybkzT3IGTDK/DfCzvGJjuYMr/g+5atv6ep6ePE2OWenkZrJJLMo74tSFWTjzfXiKQCi1HFajLw7XkjGVfoSrN1fUOKUpJBSzxTyhYN0+4ooXrEkejBZgBUU3LD60EtSMgylR35l/NQrIuMWY+iIkQp/9YtMNKK0qM0yL33SVvKtxYCJS5I2VAKJ8OOzfs/ZsijpzSZ1eerJBisp61ddJaZPOl2nM6JKbRg+HDRPz5nW703MS5yZ75zLukpGZ6xIJFkAL6gEIoclo7IXbRVLOsKqh13vrBJiDp9FaV0Xac+lpWVa0rdsr04kaiY22oYmGv8oMngbNomXp3FUDABJp8+4FMm41fj9W4BYETZheTlHyOzpCSSTrT4Qhz9x/fxhTpWCj180cEcNaH7OsqDZfWLFKUkg5Z4oXNLNMza0UfQbGkgGhCFHFVLcr+AAS1A0DGfkKGAkCbmNaz6AlUR6/K1WIaWatj3V6pnglWK0aPCgzj2V3DUT2HTM7DjpXRblSZS///jaVvDF1+c0WGBYsRqHZFyO4Y61a1+djT6EoLU4ePysBgNXHnUmDRbJpFIJKkj/hBjMxsJVlYSWL2aSGMjEYOVli/fiO1lJKQIUaovy/e8msaJX2xiq19kmOeZU/+oERelbMb0FMXOmIfAUKwD15TT4ZQ/Dvx8/fzcXu82fL4tBIPVAIwZ8yNMJrm0XiIBiGhRVu9uZc3uVnwhDbNBpTjLysg8O4eMzk23ef1GilKSQUtbQDhNTjQ8hiqikYbEe8ZSX1LnCkaCRFXRKv5iaxTTP+4mx9OEofz7Yr5JEyG4E4Nt/w6Q0jmanwk+S9yBsLgGUehv6NDmWQ2AweDEYimmrPRcjEZHmq0aWtR6Ahz1h/cJa+Jv3WYy8OTl8zK3IK2kV2Sk2C+RZCjxmlIOA+z41vloLS0EzW4+mXspkZ0NQAMoBup8IsDXF1FqQ3sgIUgBHJObmhpGnYkv3xv2HffiTWwsmb+cp6VlKcu+/BYQK81hGyUFKYmkE7e9up7HFm1PjOeNyeWJy+ftc//B5uZKUUoyaPH4Y86VFkJDOECBEo0Pyhu4YEzyMiDC0TCesAddFWJBRSRAwNNEVmERptjyPd1qgSCoavfFPHv8AJxyoSo2oVkKIalG0/x4fVsBKCr6GpMn3Z5mi4Ym66s9hDUds1GlNMvK2QeNkILUICQTNHyJZLCTqCkVCaK1tADQOnkSQf9biX1CJp2Pdn0EgFntvSjVGKslNc1p44XZ43Amrevega/bO9t2ArC9dTsAVuMwXKIdjcLbN0HjFqhZI7YNtCiVhHtqff1bxAUpp3MSY8f8tN/nlEiGAuurPexq9vPRZlE+pthtxW0zctH8Uek1LMlIUUoy6Nhc28aaPa00+0IAOMIBoohOWr4SqMkPYCmdlZS5NjZt5JI3LqE93I5efCsA9qhGAMguLuVj/xZ2GZoJe2LL9/rZclhJ1ZPXZw8BUyASBANSlEoxVVX/YPOWDhHKbh+VPmOGKO9tqOXBD7dR3yYE6/lj8nj8skPSbJVEIpGkj3hNKVskQABQTCaU2RWwvBGDwcbuUQFW5u4k35ZPob2Qo0b0vhFEXJQqMBuTKEj1jNX1Ivu4LSwyhIocRSmdPyOoXg6L/9p1W3ZFemzpAZGIl7b2ddTVC2F0/PhfUVF+aZqtkkgyg2317Zxy78ddVsY+eulcJpekPgN1oJGilGRQEQhrfP1vi2iPOVYAlkAbovUdLLKJ1sZOe/fF3nrLyvqVtIfFmvyo6gTAHgnTBChGI1uNQrWOh/Gdlj6mGqcyc8PbCCueBH7bsXwvt2tmWca3OR7k7Nr1ROJnkymPosJT02jN0OT+D7byxfbmxHhSSeYvX5B0h8xqk0iSga7r+MIiU8oSEqKU6nDQ3i78Jpu9kA+nfoE/EuCVk/7HSPfIPs3TGOroupdKonqUiC7mPqrsKM4YdwbHVRyXUhsyAl+TeM2ugKN+BvY8GH9iem3aDytXXUFLy2eJsd02Kn3GSCQZwqKtDTy5ZAd7WgLoOritRsYUOJlS6mZS8QD4sxnw2CdFKcmgotUfTghSpxQpnLX2Lbz/3QGxBjF+SwCb0cb80vlJmS+kiWys4ytO4Dm1kGBUxx0OMtY1i8LAaFYjOpscXXYUq5cHKC3vjROXpitAsLXDAnsuXPYeJCmzTHJgdF0nEBQtXOcf+g4220iUfmbYSfamLpYhdf3CiUwpcTN/bF6aLZJIJJLUo+s61/xrOV/uaE7EoazhAK2A6nQSCAg/x2y2EIgIgcph6nv2dDxTKtUFzuO2A8womMGJozJXiBlQ/C3iNWcUHHRhOi05IKFQU0KQstkqyHLPJjf3yDRbJZGknz+8sZEVO1sS43MOLudXX5vSp3NlgN7UI6QoJRlUxDvHOC1GbjFsouGTN2kz22FyCQC/OPIG5lbMI9+Wn5T5QtEQmqGAJsMogrFCyXlNUUrzFxLwh8EqRKlQuw1DFAyGQRDVD3lJXKKMNhgxJ63mZBwD1DUnGo2wes3VtLZ+ia6HAAWrtUwKUklk0dYGfvTvFfiCkUTtlJOnFTOmwJlmyyQSiSQ9VLcGeHVVdWJckWvHFBQCjupwEIp1MjYYDYks6f4UCE+IUinOlApoHaKUSTWldO6vkpZs8/pN8OpPoKlSjK3ZqbehF587EKyhqfETAMzmAg6b//5AGSWRDAq0qM4/F2+n1hNkS51YpfPDBeOpyLWzcOpALUXOnOdWKUpJBhXxzjF2swGtVWT8qLNmQ7AGMHDEqCPJtScvI2JjwEpT2V28KZ5vKbOYsPqFAxcyxLrL6LBlo6hpZTB3Xz+ht+7JgLYTDnkH7tySfdLWtoaGhncS44L841H7UERWsm9eX12TqCEFUJZtoywnPS3BJRKJJBPwx5bsOcwG/v3d+YwpcKB98B4gRKlwXJTq5L9YDb0vEP5KXQt/2l7Deq8Qh0otqRWGOmdKpaqZxUC6ar1mzf9g+8cd44KJ6bPlALS2Lmfpsm8S945ttvL0GiSRZAAfbqrjlpfXJcYGVeHyI0aTZevbtTRz5KaeIUUpyaAinillNxuINvkA0MeOgnU1oBiwmpL7ALo7LKKFJiKU2ez8aGQR+uotAPhNcQdIIafQgivfwdQjSvs54wB6OG21opZU3YaBm2Mw040Tm0yHs927EYCsrIOYMP7/cDonJO/kw5xdzT4+2FjP8p2ihtRPTpjAmbPKKHRbsKS40K5EIpFkEv6Y3+SwGJk+IguAFq8ITqkOB5FIV1HKoBgwqr1/PHhwZ31CkLKpCkfmJLfuyf6Epp2enWxs3pjU+fqCks7HwPiyvWlnw8GXQfmhKZy8G/9pP3vX1r2W2MNqHcHoUT8YGLMkkkHA3z7YwuOLtuMLimv1pGIXR4zLZ87InD4LUoMRKUpJBhVxUcpmNhL1emk3m6lvF86VrhgwG5KbeeKNiqVV00zVvH7oaQAsD4r6C2FPM7gBXeGwr41g1CF9KwqaMj65Cz57IDbIcFuHEJ62Neze9RQ1tS8AkOWejds9Pb1GDTF+8t+VfF7ZlBhPKXFTkWdPo0WSZHNAgTijUhYkkswhGIn7TR0CfbRdLA1RHQ4ibSLAp5rE+xaDpU+ZRlv9QpC6Z1IFh+c4KUpRptTrla/zs49+lpK5OsjAHISgR7wWz4BRR6TXlgPg920HYOLE3zCi7Pz0GiORpJlHP93eJcv/ssNHc87c4Zc9KEUpyaDCH1u+5zAbqGsP8tHkcqgSLYCjqtKn6N7+aI+JUnY1ysbFn7D6vTdx7LFQ4CpGC3jBDQoqRkfPHoD3+diUilTz9lrxOvJwcB4GywZ+SgmsX/ezRJYUQE5OcorwSzqobBDC9JHj8xlX6OSoCcnpvimRSCSDHX9IZELZTAa0lhZann8B78cf024votKbQ3us0HmLSbxajb1fuheO6jTFlgmekO8mdyDqSe3DT9rUvAkAm9EmGologeHVQXjzO7DjU9i1VIyt6W0Vvz93tnL7fezZ818CgV0A2KzD78FbIgHY3uDl0se+oLE9iCcgnm3/e+V8Cl0WRuX3vdFEtwySy6EUpSSDCm+wI+K3Jxj/8zWC6mJXaThp88RrOvmiYg6XQWfRv5+kac8uxrtFYXAlXtRcVzDakpOhpQzkhSNeS2rW+VB4Giz7ZJ+7DmhNq2FENBqh3bsZgPIRl5CdPZe8vGPSa9QQIRDWuP+DrTS0B2lsFxGmO785kyJ37x+oJJlLikrDSCRDlkBMLLKaDDQ+/jiN94uM6aUzF+DzfJ7Y772IEDWK7L0vqNsay8YCyErxkul4LakLJl9Ana+Ol7a+lNL5uyVVLlQkCP+5ADrV08I5UAWR+4eua+zY8QCaJjLzLJYSsrMPTrNVEkl6eGd9bSKgCmLJ3txROSmrh5eJpLztk6Zp3HTTTYwePRqbzcbYsWP5zW9+0+UhWNd1/u///o+SkhJsNhvHH388mzdv7nKepqYmLrjgAtxuN9nZ2Vx++eW0x9KRJUMXX6Jgp5FArBue1ZLDP09cxfKp6/Z3aI8JRAKc+eKZzPjnDKq8okaNywDhkHjwLS8RS9+ssXbHCgoG4yDooBYXpcxJVuAl3dLY+DHbKv8MRFEUI+PH/5LCwpOG9Q0nmby9rpZ73t3MU59VEdVFnblchywcLxna3H///cyYMQO3243b7Wb+/Pm8/vrrifcDgQBXX301eXl5OJ1Ozj77bGpra7uco6qqilNPPRW73U5hYSHXX389kUgk1R9FkiL8CVFKJVIj/hZsM2cSVGPLvRQVv0WlpqydUe5RfG/m93o9R0vs78dtVDGk+B4X77rXn46Bg5ZAa4cgdej34fhfw7gT0mfPfgKa7e2bEoLUwXP+x7xDXsNgkI1IJMMHf0jj1Hs/ZsKvXue3r60H4Px5Fbx73dG8dM0RSX8+GGzPGynPlPr973/P/fffz+OPP87UqVNZunQpl156KVlZWfzwhz8E4A9/+AP33nsvjz/+OKNHj+amm25i4cKFrFu3DqtVRMEvuOACqqurefvttwmHw1x66aV897vf5emnn071R5KkEH+n7nsBTQMVDISIqlHManIckm2t29jaWknEPIaoMReAKdnlRGNOV7bDDSHQEzqUgmo4wBc/nReGQCu07gZfoxibnfvcdbBdwAaG/oc429s3smLlJYmx3T4GRRkEwuUgorpVdLycUuJm4dRi5o3JxWSQv2PJ0GbEiBHccccdjB8/Hl3XefzxxznjjDNYvnw5U6dO5cc//jGvvvoqzzzzDFlZWVxzzTWcddZZfPrpp4AIDJ566qkUFxezaNEiqqurueiiizCZTPz2t79N86eTDARtsaUhLqsJzSOEKPeZXyf60gsAWE6ZymP6K3xjwje4ef7NfZqjIeab5RhTvwAjGBEBw750DEw2KfehAjFh0eKGk36X2rl7SDDUwKZNt+LziiZBeXlHk5U1O81WSSSpQ9d1Vu9u5Yvtzazd40lsN6gKJ08rZmzBvp/LhhMpv3ssWrSIM844g1NPPRWAUaNG8a9//YvPPxcpxLquc/fdd/OrX/2KM844A4B//vOfFBUV8cILL3Deeeexfv163njjDb744gsOPlikfv7lL3/hlFNO4c4776S0tL8d0CSZSufle2Fd/KzGUsUttrykzBHSQnizz8XvPjWxbV7BJBbHRCk1KpwOPeZ7KLrat0yp7iJKyV42F/DA3dOFMBVHZkoNOB6PqHNmMReRnT2X8vJL02zR0OHxRdvZUONh5U7xNz1/bB4/On58mq2SSFLDaaed1mV8++23c//997NkyRJGjBjBI488wtNPP81xxx0HwKOPPsrkyZNZsmQJhx56KG+99Rbr1q3jnXfeoaioiFmzZvGb3/yGG264gV//+teYzTLbcKjR4he1orJtJqIxUQqnGz0qMmxCWSq0iJpMvSUc1blt6x6WekQmdrl1gP9+YqJPZ1cpkSlltKS3+12qad4ONSvFz5b01pHaX+B1165/Ulf3amKcn7cgFRZJJBnDSyv38KN/r0iMDx+Xxx++MROn2UiWPVO666W/bEvKw8qHHXYY7777Lps2icKEK1eu5JNPPuHkk08GoLKykpqaGo4//vjEMVlZWcybN4/FixcDsHjxYrKzsxOCFMDxxx+Pqqp89tln+5w7GAzi8Xi6/JMMDt7bUMvc29/h/g+2AqK1cUQXxTt3msXNsMxdkZS5AlqAiEks0Ss0G1mY72a6y44WE6WUqE6AMD6DmB9dQTX2xhE68L5JK9LZsiMmSCngKIDyeVAyK/nzDAmS48xqWgBPm3AUCwpPYtq0e8jKmpWUcw93djR6ufmltfzr852sqxbX7/Icmf4vGZ5omsa///1vvF4v8+fPZ9myZYTD4S7+06RJk6ioqOjiP02fPp2ioo66MwsXLsTj8bB27dp9ziX9p8HH7hY/d721kbfWiiV7WbaOTKmIyQSIOpwhm7j39SXT6PWGVh7cVc8yj1iWNdWZuutxva+edY3raPSLLPBMyJRKGV88AvfMhP9dJsZpLm6+P9piQbrsrLnMmP4gpaXnptkiiSQ1tPrCbK1v55PNDQDkO83MGJHFVUePpSzblhGCVCYJ+SnPlLrxxhvxeDxMmjQJg8GApmncfvvtXHDBBQDU1NQAdHGY4uP4ezU1NRQWFnZ532g0kpubm9inO373u99xyy23JPPjSFLEG2tqRLtMXedHK55hweJdLC4QIlTIJL5UJ406KSlzhbQQukGkUv55UgUL8sTNvtA4gjnlJ7DV28aHlo86aRhJqCk1UCnf8TpSuaPhh8s7Tde6jwMk/WHjplvZtevxxNjpmJBGa4Yee1pERDzfaeaSw0bhtpn4xpwRabZKkgqkgN7B6tWrmT9/PoFAAKfTyfPPP8+UKVNYsWIFZrOZ7OzsLvt/1X/qzr+Kv7cvpP80+Pjre1v41+dViXFxlhWtTYhSQS2U2B6wCf+lLzWZ1raLZdQ2VeV3E8o4pSC7Hxb3nChRjv/f8URjwUnoW9fAQcueL8WryQEWFxx0UXrt6Rad1Wt+QKtHBOlGjbqavLwj02yTRJIadjb5WHDXh4QiHdeoHxw3nosPG5VyWwaL95RyUeq///0vTz31FE8//TRTp05lxYoVXHvttZSWlnLxxRcP6Nw///nP+clPfpIYezweystlO9LBgD8svtQ/PqSIE18USz21wjIAiqx2Fp+/GIcpOcvSApEAUdUFkGhrrOs6Jdax2Iwu6tTdQpDSAVQsgYLMLXQeihX/T9LvRrJvotEQu3c/mRjbrBUUFi5Mo0VDh6Xbm3jwo22JOlJj8p1cc5xcsicZnkycOJEVK1bQ2trK//73Py6++GI+/PDDAZ1T+k+Dj3hX0iPH53PIqFy+eXA5Na0xUSrWuAXFTDCWMdUXUccT67p3VXkB55Ukp4RCT9D1KFE9ikk1kWvNpdBeyCHFh/Dp7k9TZgPs+2FvwEX0eEmGE26BQ64Y2Ln6jE5d3WuxnxXs9jFptUYiSQWBsMa76+tYsq2RUCSKUVWwmw3kOy0cO7HwwCcYxqRclLr++uu58cYbOe+88wCYPn06O3bs4He/+x0XX3wxxcXFANTW1lJSUpI4rra2llmzZgFQXFxMXV1dl/NGIhGampoSx3eHxWLBYhmG3TmGAPGWxmWm2BI6u52AVYcQGG3mpAlSAIFIkKgqIse5JlGvKqppGBTxc0ARaer29lE4vBUUjnRhsR34q5TQseIku35Ud4SErbKOVN/ozf9QMFiHHqtzdszRq1FVqyxuniTue38L72+sT4zHFsq/5+FCT3NIh1MmldlsZty4cQDMmTOHL774gnvuuYdzzz2XUChES0tLl2yp2trahG9UXFycqOHZ+f34e/tC+k+Dj3jXva/PLuOsg0agRyLs8Yrs6UBQvKqKhaAmBKq+ZEq1xUQpV6y254DS6WIQd5/mFs/lwRMe3GtXPRX+VToI+8GzB9piHTWt2Wk1Z286dVKPVYiZMOFmHPax2Gxl6TJKIkkZj3xSyR/f3JgYf2POCO44e0ZabBlsvatSLkr5fD5UteuDmsFgIBoVmTCjR4+muLiYd999NyFCeTwePvvsM773PdGmdv78+bS0tLBs2TLmzJkDwHvvvUc0GmXevHmp+zCSlBEXpWxBIbIY3G50XaSfm5JUWFPXddY3rWdN0yZQRQQ4L5YppUXCqLGvS9jbBm5wGkN85+6jMFkMB+y4oqT6gWnpP2Dt89AeE297KUoNpwe8/hIKNbJu/fW0torlkVZrOQaDPc1WDQ12NHr5sqqZTbUi4++qo8cyucTFMTLaJJEkiEajBINB5syZg8lk4t133+Xss88GYOPGjVRVVTF//nxA+E+33347dXV1iTIIb7/9Nm63mylTpqTtM0iSjy8k/Ca72UBg/XraP/xIvKEoBDa/B4CqWghEYoXC+yBKtWtxUSq1AZi4j9KX4uzJYF8u34DWZwkH4N7Z0FbdsS3Dakn5zFHWrrseuASAgoKFlI/IxKWFEkny0HWdzyubqG8P8mEsgDqxyMW4QieXHzE6zdYNHlIuSp122mncfvvtVFRUMHXqVJYvX85dd93FZZeJYn2KonDttddy2223MX78eEaPHs1NN91EaWkpZ555JgCTJ0/mpJNO4oorruCBBx4gHA5zzTXXcN5558nOe0OUYGz5ni0cYEfROKpKyiAsbswmZ3IEgDe3v8n1H12PZsiDsgWoaDgMKp6GelrrahKZUlqshoHJbMZsTe5XKGli0Ns3Q7BTIdqckck57zChN27lrl1P0tjYsXQmP/+YpNszHNF1nXMfXEKNJ5DY9o05ZYwrdKXRKknmMchCgf3k5z//OSeffDIVFRW0tbXx9NNP88EHH/Dmm2+SlZXF5Zdfzk9+8hNyc3Nxu9384Ac/YP78+Rx66KEAnHjiiUyZMoULL7yQP/zhD9TU1PCrX/2Kq6++WmZCDTH8cVEqEmT7Bd9CDwbRFCPrJx9NyxYR1NOMNj7e/TEATnPv25K3xjOlDCnIlOqGdIlSaaF1V4cgZXFDVrloXpMRiOvw7twQTU0fgnIJAAX5x+/nGIlkaLBkWxPfenhJl20/PmE8J00r2ccRku5IuSj1l7/8hZtuuonvf//71NXVUVpaypVXXsn//d//Jfb52c9+htfr5bvf/S4tLS0cccQRvPHGG1itHevdn3rqKa655hoWLFiAqqqcffbZ3Hvvvan+OJIUEYg5PtaAl9XFOUSiu2LvGLDkJ8eR3tpahSfvGoIOcZPPNyns3riO/9x8AwBHFX1T7JiTBdFmTNk5SZk36USjHYLU1+4Gex6MPa5Hh2ZSF4a00cu0f59/OwC5uUcycuSVZGcdvP8DJD3CF9ISgtQR4/KZWupmbEHvH5okkqFEXV0dF110EdXV1WRlZTFjxgzefPNNTjjhBAD+/Oc/J3yiYDDIwoUL+dvf/pY43mAw8Morr/C9732P+fPn43A4uPjii7n11lvT9ZEkA0R8+Z69rRk9GASTiZqZh1EV3g4xrd8XK1GgoDA9f3qPz72yzcf/appY1y5OVJakjPWeosWWyg8rUSpeRyqrHH68Jr227IM2q9ZlXFz89TRZIpEMPA3tQZZub+L9DSI7qsBlYWyBg2K3laMnyIz+3pJyUcrlcnH33Xdz991373MfRVG49dZb9+sk5ebm8vTTTw+AhZJMJB7xMwd8aEoEdAhlZ7O+JMzZ45JTX2ZryELQMTMxPq2wkMYdqwAwmEyYYplSUaMBQsK57w9dpY8kikFhX8fPM84Fs1xKNhA0NS+mtuYlamtfAqCk+Cxyc+an2arBTygS5cNN9exsEn/HVpPKk9/JlGiwRJJeHnnkkf2+b7Vaue+++7jvvvv2uc/IkSN57bXX9vm+ZGjg8YsC5raQaBBhKihAmzIKVu5CUc00uQx8PnkNl027jOn50yl27Lum2Ff5xaZdLPOIa7RRgXH21GbZaVFRX/Sr9UQPVEph0OJrguZK8bM1K722dMP25pdomeqm2dlVlBqy/x8SCXD540tZubMlMT77oBHcePKk9Bm0DwZLjb2Ui1ISSV+I10Yw+n3oCGdk95iNLC8OcH7ut5MyR2PEBECJ2spfZxzEwVkO1m4VbXfHHXwoORt1sIGGWL5nNPb269Pzm3O/lvGFvB3zmYZRFLG/9MJ50vUo69ZeRzAUKzaKitvd8yizZN889dkObnl5XWJc4JJLiiSp6QshkQx2IlqU7z6xjE21bTR6xRK9QiVMA6C63fi8oqi505nDo4eLgvfXHnRtr8WD7X5x7otL8zg+z02OKbWPEwoqh5cezhljz0jpvD0lqXU5l9wPb9zYMc4wUcrjWcXWxn9DnsiWs5iLiDV0lEiGHBEtyhtra2jxhVm3R2Qvzq7IJsdu5ty5g7cjbSbUEpailGRQ4AmIO5zBHwJd/OzJzwZqsFmSU+ixNSpEqSKDj8NzRN0aLRyb12SCeKZU7OnImKYaCvskGoXdS6E+1vXB7Bx8rRcGCYHAnoQgNXrUD8nOPhi7XRYzTAab60RR81F5dspz7Zxz8OC9yUskEkkq2VTbznsbOrpTTy5xYwmKa6rB6SQU86WMsWV7FoOl14KUX4vSGBbBwRvHlKRWkIr5XyaDiQdOeCB186aT7Z/EflDAaIEpmSXEtbdvAECJ6kzaY0M782FY1phmqySSgeHV1dX86N8rEmOzUeV/Vx2GQc28563Ms2j/SFFKkvFEozq+QIjJjVVEVn4MbuFUbUco1L1JOd8f3qjoHuM0RDs2tuucXPYd7Luz+DJnO/Xql3gibQAYepEppcecvgHtwrfq3/DC9zrGlgPX35HZB71D13U8npXU1YmlLzbbSMaM+VGarRoavLa6mi+2N7F4q3BmLz9yDBceKgv0D3ekri6R9Jx4/c1Cl4WHLjqYCUVOgs8/B4hMqVBIZDipMSGpLx33qoOxZYGqSrYxw4JzaWZA6nLGa4Se9TDM+Gbyz99H/P4qtu94kD17/g1AaU2A0mY39dZiQIpSkqHFsh1NfLSpgSXbxN/2mHwHE4pcHD+lKCMFqR6TQU6WFKUkGUs0qnP101+yencr39j4Ppesf51WRzG4RQ0BjxLAqBopc5YlZT5/VDhXzk4+lrnFiNuchy8aZKV1h9gYE3Ls1v4WXe5GEeqPSNSwWbw6CiBrBMy6oM+nyoQ0zkykqekjVqy8LDF22Mem0ZqhgzcY4Yf/Wk4k2vF3NyJHLj2VSCSS3hCKiKCa02pkVnk2AP42IWoYXC4irWL5nsHSd1FqT1AIW2VWU0prBnWe60CzDikfJigCoVgyq/Pstm33UFP7QmKc2yzX7EmGJrquc8U/l9EUWxINcMnho7ho/qj0GTUEkaKUJGOpbPTy+poaACraxFKpSF4B4ENH4YyxJ3PcmFP61Ma4O/y6WL7nVDu26TEHr83mEYKRruBqnYhBs5I1Kzcp8yaNkEjR56CLYcFN+91VdtnrG03NiwAwmwux20cxZux1abZoaFDfFiQS1TEbVa44cjRFbitHjS9It1mSQcUQegiVSPpIXJQyG4QjE2lsJFwt/CjV7SbSuAcAxRyr/9MHUWp3bAlgqcXUb3v7Tmb4MAOWbe5rgg9/D/5maNwqtlmTU6oiWbS0LgMgL+8Yio3TKPjo15ChTaklkr7QHozw3y920uQNJQSpC+ZVkGM38/XZyUmISAWDxTuSopQkY4l33MtzmDm6zAa7QF1wJHz5JihGbj78N6jG/rchXtFUxWt1DTTqLlCgwNTp66uJnyNGDcKg6AbybeXYXGbGHZTEdp+J5X39IFY3oifL9vZpRoY4euml+8u3rmt4WlcCMHbMTygtzZw0+sHK5to23lpXS02raCte6LJw/cLM61wikUgkg4G4KGUxqjT985/U/vZ3AGiqiSZDIaHwLgAUa+8zpepDYS5eXck2n8i2KrX03//qCY3+Rn756S9xrd1JBecCGbXiZGBY/Qx89pWaWe7S9NjyFdrbN9LcvIRAYCcAkyfdgaWuMs1WSSTJ56klO/jd6xsS47JsG7d/XTY1GiikKCXJWOId99w2E2YNls78Ie07RPqyrhiSIkjtbNvJaUs+ImybBoqIQpVZOrydaEgU8ww3NYAL0BVOuWoaBSN73/1EYYDU6mA7VC2Gpm1inKTMMUnHEoA1a6+ltvblxHa3e2a6TBpS/Pi/K1iz25MYF7utabRGMigZ8k+nEknPCWmxTCmjim+Z6B6MwcCaGVfSuH0MochyACKWWA3NXvgLbzd6+NLjS4znZNmTZPX++Xj3x3y6+1Mme3QqYtsU1P0eM9AccPlgf1Oo2mPF6isOg0mnQP4EyBnVv3Mmgba2dXz+xenEvVmrpRSzOR+QopRk6PDBxjr+uXgHG6qFfzpnZA6Til2cMr0kzZb1jsHmHklRSpKx+MNClLKZDNRG8mnOmUg0KKJ8UUNyvmnbWncQtorMDJtWzYjoVs6oEJE4LRJBa/YApYTbWsElMokM5iR9bZKV9/3SNbD2+Y5xhrULHuyEQg1dBKns7ENwOMan0aKhw44G8YDztRkluG0m2WlPsk8GS/q5RJJOEsv3jCpRv7i+lvziJ3z8Xh2htmfRtWoAnot8BMAI14gen3uHXyxfOb0wm5+OKma8vfdL//qCN+wFYELuBNgutu2rltWQyfb2N4vXUUfAYT9Iry2daG75jPjVuCD/BMrKzv/K/4W8UksGP3e9vYlVu1oT4x8tGM9RE2RJiYFGilKSjMUfy1Kymw14Q0GCnn+CLgo+tltb93doj/GEQ6CISOH6YxdijdVheO2vf2L9x+8zPecoSrJBj7VPRlcxGHsfoRtQtTpebyBvPOSPh3HHD+Bkw4POTpbPtx0AozGLw+a/i9GYndLirkMNLarz/aeWsWa3h7ag+I7/7qzpuKzprE8ikUgkg5/ONaV0n19sNECb9wvQg4n9mp0+FBQOLz28x+euD4laUlMcViY4UpfV6o+Iz1FoS2LJhIGiv67BmufggzvAI2p/Ycvur0VJIRJpp7HxA6p2PAxARcV3GD/u593uO2SEQcmwoq4twJOLd+APa2ytE+VQfnbSRKaWZnHk+Pw0Wzc8kKKUJGOJL9+zmQ3U683oWkPiPU9WaF+H9YqWsHDSFF3D0qml59alSwBQFSFGmexWwCsypfogSvWYePZUb4JNIRFF5PR7YeRhSTdpOFNb+xob618AwOEYj8kkq3j2l8qGdt5cW5sYj8l34LTIW5Gke+QDjkTSc4Ja50wpIeb4tHBCkIocO4m3/B9wxKyTuOGQG8iy9Dyz2hMRPpnLaDjAnsnFFxYZXxaDheR4fhnMskehYWPHuGhq+mzpxJatf2T37icTY5fzq3bJ67RkcPPQh9v4+ycdy1CNqsK3Dx2JWwZMU4Z8EpBkLC0+EZVzW4wEET87rG6emrsBW5LKJnkiIlPDRLhL9osWFvONK6qAAJhMsa+KrmI0pbeWwV7EHDZMSazvIDOwAfD5ttDOOgCczglptmZo0NAeayeebeNvFxzEuEKnzDyTSCSSflDZ4OXZZbu474MtADgtpoQoFU6UCjDjn+KmrjJIhbuiV4IUQHssCyvVolQ8U2pYiFKBWI3FE2+DCSdD/rj02hOjtVXUJ3O7ZuByT6Ow8KQ0WySRJId/f17F059Xsb1BBPiPn1zI2EInB1XkDBlBqmfVYtL/4CdFKUnG8caaGn73+noa20MUexs5eE8DIVUIQZasfFpcYbKcyWnF2RqOiVJKOLFN13W0mFhliBXTjMZ0KAUF1ZikB+jO3//+nDKeKSULnA8IeXnHUFJyNnm5R6XblEHNfe9v4fnlu/HGluyVZFmZWZ6dXqMkEolkCPCHNzbw+pqaxHhWeVaHKBXrIoxiIKyIjCmzofeNYjxarPmMITWi1EtbX+LWxbcS1ITNFqOFtpTMnEaCsU9YdnBGCFKaFiQUaqC9XQTnpk27B5ut4gBHSSSDhz+/s4laT8fS5usXTmJisSuNFqWazAkKS1FKknE89+UudjT6cIT8PPDuH7FEI3wwbS4AqlMILyajrd/zRKI6DWHxZbTSIUpFQmEOyj0etzkPJZgNQICOTClDPzKlkqZDN2yB928XWVJxJ8bs6Lc9MmMFmiNVeFpXAkL4HDvmJ7hcmZFCP5i57/0tiSW5AJNL3Gm0RiKRSIYOjbEM1OMnFzG7IptvzBnBjmZRLDsUu68rioFQVOxnVnsuSj2xp4Gn9zSxvE1kZWeZUiNKfbDzg4QgZVSNjMsZT8P+D8kY9N56e807INQOgRYxtqT/oTgcbmHxkhMIh5sAMBicWK09L4wvkWQqO5t8fPeJZTR7QwlB6m8XHMSYAscQE6QG1zOdFKUkGUcwliJ+7axsLK9FwGhEj3Xba1XFxcOk9i+l8q3dq7hso5eIMgqAHLWjzXFoj4fxWXMAiOgaqw2VbIqKiKOCgqpmwJd82aOw9rmOscmRMQUxBzNRBVb6/oMHCyhlqKpVdtpLAr5QJCFIPXbpXJwWo8ySkkgkkiQR71Z8wbwKDmmpxP/vReiBAADhWG1MVTEQ0mKiVC8ype7YVkNjLKs832RktiuJpQL2Q3zZ3g1zb+Dr47+OsnI9S2LL6YcUq56B577TdZsl/ZnvrZ4VCUFKVa2MHn0NinKAoGyyukpLJAPIm2trWF/tSYzHFjg4eVqxDMynGSlKSTKOcKxQZ7lDXBxMhYUErQoEYF1EpKdbDP1rRfz37RuIKLEaQXqEQ13RxHtarO1xQPOy3ljFMtOexHtZua4BvWgpPb2fx6Npk0+H8SdAySww9Tx7TF53u8dnM6ARQlHEpbGw8GTUXkSUJV1ZvauVq55cRotPfKcsRpWjJxTIG79EIpEkkbgoZfc0UnXppQlxQHU6CcUCAoqiJjKlehrYaw1HEoLUP6aNYqbLnuhSPNDEs6Tybfk4TA58nd/MEO3jqxlRfWrMsGe5eDXZRcZ72cGQlf4lcj6v6OxcUHASM6bfl2ZrJJL+EQhrXPSPz9la14431t39nINHcNH8UYwtkLVNMwEpSkkyjkRL41ixccVmIxpzsIxmhRn5M7ho6kX9mqNZE0LDDMNm7poynal5pyXeiwTFvKFogDZd1GuyRC0ceuyhzJgxo1/zHpCeOlrxOlKjjoSD+ve7kAiChjANueLvwmTKhjDYbOXpNWqQ8/b6Wna3+BPjuaNy5Y1f0jf2EYGX3fkkEvDHuxW3NIGuo9hsqEccz5eGebQs3g2AqqqENeHf9DSw1xATpFwGlVMKspNv+H4IRESmV2+CkIPy/hJoFa9H/RSOvC69tgC79/yHysp7CYeFXQ7H2AMfNBh/75Jhga7rbKlr57PKJj6vbOry3snTSphW1ruGD4ORXi8nThNSlJJkHKF4S+NIiMbcKTQULEAJf4EOTMsu46pTf9/vOXy6iPSNsFqZlj+pY+6An/b6BlQgGo0QrK6G0Xac2Dj22GP7PW9n+nWRCLaL1z7UkZLszc5d/2RT3jLIE79PkykHwhkTjB10RLQoa/d42Fgj0qMvPXwUF88fRXluapZ9SIYO8llHIjkw8UwpixYiCpjKSmmYMZ3d7/4XYsE1s7kjU6qny/e8MX/MmeKOewABTYhSVqM15XMfiKRel4IxUcqSGXUWt2+/n2Cwo2h+Ts78Pp9L1/XBKRRKhgyvrq7mmqeXJ8bzRufymzOn4baaKM7KvGvLcEaKUpKMI54pZYoEWTn2JPxKO7omsi2MzuTc3PxR8afvMnScz+dp5ZEfXkG+UsqRRWcTjUbQVLGfwZrMC9fen+GrN+19Clatu6F+A3hiSwqlKJUU9ux5JvGzVXHjdE4En7afIyT745fPr+E/S3cmxmMLnIzKl3+rEolEMhD4YstRzJEgAUC12anbuS0hSAHsGONjc3OV2K+XopQjRUv2QNSSCkaC+MJiwV4milJJ4ZUfQ+VHHf6cNf0ZG5FIO4GAuHcfdNC/sVlHYLWWpNkqiaT3tPrC1LcH+WBjPQBuq5FCt5Urjx7DhKKhVMx83ww2PViKUpKMI54pZQyH8EY+IRpqTLxnyUvOHAHdBEpXUaq5eg8hvw+DwxibP4hp6lRo34zRkYwH6n5eHUJe+NuhEOwozjdQxTAHS6pnsog7YfOWNuM89he8YsqBQdPnJ/NYtVtEfgtdFspybBw/uSjNFkkkEsnQJBDWCISF32SLhmOilI1gQATzsrJH8OCcxQQsUeKNhovsPbsmx0Upe4pEqaU1S7ny7SsTGV3QtxqiepoLbh/Qh/I1wdJ/dN1WMKn7fVOApvlZv+EXtLaKjBKTKZec7Ll9Otcgew6WDEF2NvlYcNeHiSQHgJ8unMhF80elzyjJAZGilCTjiBc6NwZ8RKNCgPFnB9mSG+D08uQ83PoRkbcCc0dKuharYZWVWwiA3e8nasgWthj6l7qelPTlthohSCkqFE2FrHKoOKz/5+3EcKrPousay1dcQnPzIgAUXcEWkNlRfUXXdf7zxU72tAbY2SQi3I9eOpeppemP/kokEslQJKJF2dUcyyRXFSwRIeYoNivBWPc9k9VGwBLFrJr59WG/psRRwsTcifs9b0Mowv9t2c1mrzhHqjKlVtSv6CJIjc4azeis0WIwCML+Pfb1/M3i1eSAbz8LriLIHTNwhh2AurrXqK19KTHOyz2qj2caXgFNSWYRjGis2+Phk80NhCJRjKqCw2Ikz2nm2ImF6TYvs8mAzplSlJJkHAllu7WZeFivemI9y/I0vpHbg4KL++EvO2p5aGcdfkWkbhaaOxwtLRLGqJixqSL7qM1ejKe5BVQw9LOeQlK+6sE28eoshqs+ScYZhzUez6qEIAVQFMzDEK1HOlV9Y8m2Jm58bnVirChQktXzjpASiUQi6TkN7UFOuvsjGtqFiJPjMKPHxA7VZicUEN3rjBbRac9qtHLa2NO6P9lXeGJPA8/VNifG5dbUdKGNL9k7b+J5/Hzez1FQhl5NomhUZEoB2HNhZN9rNiWLVs9KAOz2sYwbdwO5OYen2SKJpPdc++8VvL6mox7aGbPK+NM5M9NokaQ3SFFKknFU1Gzju6veImzwQr4Qg3xlFRCoxGTsfRp3HC2qceeWjQRVUUxSjdRRaOpoi6y1hzi94vuYVDGHz5JDwN8ADrBYe9Y+uf/sRxCJi1KW4bEWeqBpa1sHgNM5iZkzHsby4vXAhqTPE41GCYVCB95xkFPb7KHMZaDQZWX+2Fwml7ixG6IEYtF6iaQvZJmhzGXAjNbt31IoBKpaCuT362/NZDJh6GdGrESSStbu8SQEKYATpxSh7dkIgCErC61d1CpSzcLVN6k992PWtovsq2lOG9+vKOS43NT4Hf6ImNdusqMqHUHDHTt20LBufUpsGFDWvgDPXwmxzoJYs9NpDR7Pajxtq9m9+ykARo28ioL8BX0408AJh5qmEY6tZJBIuuOLyiY21bWxtaY54Yc6LAbOPahoWPugeiREmctAgU3d9+9Bz0VVSwmHDX3+XSXLf5KilCQjCEY0rnpiGat3t/LdNe9yWM1amh05kJ8LmAhZTRDonVP1VWr9TQQVkQWVXfsb8mlhav5Tiff11ggm1YKOTiiqsyccpWC0g6pGyCtNkRDUnSblb4F3bobatWKcRFEqA7I1U47PV0nVzkcTTlhuzuFYraVA8pcnhEIhKisriUajB955kBKKRPGHNfKiUX59bCF2s4FchwnwU1lZmW7zJIOcr402smBEIdk2X7d/T9Goleysm1EUY7//3rKzsykuLh56mRmSIYk/JJabz67I5t/fPRRTKEjt758FwJCdTaRK1EpMiFKGnvtP8VpSV4wo4KyinGSavV/iopTN2JFl297ezqOPPkp+fT0wL2W2DAib3+oQpADGHpM2UzQtwJfLz0fTfIltWVmz02bPV9F1nZqaGlpaWtJtiiSDiUZ1gq0BKkxw/WG5KEBJthVVUSDcTGVl8wHPMVQxRoRfblSVffpHRuO5ZGedSUtLLm1tffehkuE/SVFKkhGs2e3h/ViHBHvshm0+5hjYtQpFMRJRYh35+iNKBQOiHpMeYdlZ/8RitGBUO74C0VAEMOJX2nmn1YSuGCgtsVPVCCbzAGdK7e9LvPE1WPZYxzi7YmBtGeKs3/ALWlo+T4xzc48YkHl0Xae6uhqDwUB5eTmqmrruRalke6MXwho2wA3kOswUuIZotyRJyjE3+2gPRih0Wclx7L2EKBLxEgioKIoJh2N0n+bQdR2fz0ddXR0AJSWy25Qk8wmEhSjltBhpe/Qf1P/prsR7hpxsolHxvmoRfo5Z7fkSPF+Ku+7pus7u9t00+kVjG5vRRk1NDVu2bKG1tTWx34EedzKmLua+An7xRjUn3AoHXQy27FRZtLcpwWo0zYeimMnPP5asrIOw2/t2DR0I4oJUYWEhdrtdBgskXfCHIjR5Q0SiOgUODVVVcJmN2CwGsmypWW6c6fhDEWjyYVJVRhd23xjL5zMSjfqxWIoxmdy9niOZ/pMUpSQZQTziNzLPzqxCG9SBOmpUTJRSCUZjBTt7Een7Ki2xJVSqHsBh3rubXlyU0okSMYTRjB7avCKClIy0xL1upz1NU/K3iNeyOTDnUph4cv9tGab3dl3XaWsTGWclxWeRk3MYublHDshckUgEn89HaWkpdrt9QObIBKJKCMVoIMduxmRUyXOYMaWwfbhkaGM0ayiaisliwWrde/l2JBIhGlVQVQNWa9/FUJtNZGbU1dVRWFgol/JJMh5fzG+ymgx43+uoj6i6XDjmzUN7510AFIv4W+5NUM+bYlHqT0v/xOPrHk+MbUYbzzzzDI2Njfs5Kv30Ots8XobBVZI2QSoajdDqWU5jw/sA2GwjmDH9b2mxZV9ompYQpPLyktR2WzKkqPP58Gri+qQYDbhtJkbmJaNT+tAhqkRQjBFUg7pP/0jTDGiagtVqxmTqmw+VLP9JilKSjMAfi/jlOsw49AgBIKyJbRHFwNbWbQAYlb7/yTbHutIY9O7XzAa2bMPFFLy+ZpoKtoGi0xrLZOz3A0ovVaAu7YRDXvFaNBUOurB/dvRl/iFCff07NDV/gqaJ3+fEibdh6EOr6Z6ixf5+zeahF7HRojo1rX4iUZ1IbGlicZZVilGSQU1cPA6Hw1KUkmQ8cb/JbjYQ9YsAWtk99+A6fgGKwUBUF+8r1r4s3xPHpkqUWt0gmmTYjDYK7YXML5nPE21PADB58mQ0TaOpvj7j+5DsM1Ordi3Ub4CWKjFOY23QHVUPsm1bR1adwzEhbbbsi3gNqaEc0JP0Hi2qU98WRNN1vMEIAPlOC3azAadFShrpJBn+k/wflGQEcefKZjIQDQrRKBQRFxw9tuypxFHChNy+3zw9YXE+g9616PSn/3mCrcs+x9lgoaBwCu1KABQddIWCwnxsNhuTJk3q87yCHnpS3YXdwjFRytx96qXkwPj9u1i1+srE2OWcOqCCVGeGYsq5xx+m0dvxPTKoCkZ16H1OyfBiKH5XJUMXf0j4NDaTAd0najEZ3C5evOXX7NiygYgWL6bd80LnK9t8fNzURqVfXN8d/ew83FMCMVvvPPpOjhpxFCCyIAFOPvlkFEXh8U8/7fH5Bjqw1qtlgr4meOgY0Dr5ntaspNvUU9rbRMF4i6UYq7WUUSOvSt7Jk/xrl9dkSWdafCHq2romFuTYzdjMMoiUbpLxXZWilCQjCIQ6RCk91sa4LSQif7qisvTbSzGppi7dWHqKN6Lxu8pqntgt5jB2ypSKRjWWPP9f0HVsjslio02IFQbNyve///2k3hSV3tyxo1Fo3QlttWLczZJDSc9oa1sDgNlcSEHBCZSWntOj44ZjIfieEI5lR9nNRnLsJuxmo3QeJRKJJIV4Q/FMKSNRn/CXVKuNrZvWQiL4ZmRTVhN4DixKabrOt1ZupSkeJFRVxthSE7wJRoTfZzWI5SOapiUahBiNxkTm8aDEs1sIUgYzlM+DnFEwYm7azAmGhE85YfxNFBaelJyT7uP2r+/7LYmkxzS2B6luDaDHnHKHxYjDYsRiVKUgNYSQay0kGYEvFvGzmg34wipLJ59E5dYGAHRVwWKw9EmQAnipvoW/72ogGBMYsrUdife0cDihPIxHOF8ml8hIUjAM8IP2ARSPp86Ge2bAyqfF2CTTmHuLrmt42tZQXS06EuXlHsmkibfidk3b30Epsi5zueSSS1AUBUVRMJvNjBs3jltuuYVdje1sb/DSHMuSclgM5DktPXYKPvjgAxRFSWk3ncrKSs4//3xKS0uxWq2MGDGCM844gw0bNnTZ75VXXuHoo4/G5XJht9uZO3cujz32WJd9tm/fjqIorFixosfz//rXv2bSpEk4HA5ycnI4/vjj+eyzz7qc8/LLL2f06NHYbDbGjh3LzTffTCgU2s9Zobq6mvPPP58JEyagqirXXnttj+z56KOPOO200ygtLUVRFF544YVu91u/fj2nn346WVlZOBwO5s6dS1VVVeL9K6+8krFjx2Kz2SgoKOj2d/rFF1+wYMECsrOzycnJYeHChaxcubLb+bZs2YLL5SI7O7tXn8FkcvHKK+/16LNLJEOJVr9Y4pRlMxH1i0ypcDgAutheNPsg3pof5mnPSwDYTLbuTxRjsy+QEKTOLsrhvikV2FK0fC+eKWU1ClEqvnwLRLvxQU0gVqg9eyRc8gqc8VfoR33UvqDrOqvX/IB33xtLa+uXAFhtI1Jqw3ChO//p1ltvTWT+9ZXh7D+VF+Zy2NSRXPGtM1m9fBlFbivFbiutdXuk/8R+/KduHmG/+hlefvmtHn32VCBFKUlG4Ou0fG+ju4w682YC7SLFWDP2TyTY5hMRuKm2CM7GvzMy8kXiPS3ccZPIiohvbzgmFimp/Hp0J37tjHWIM1rBXQbjFqTOniHC5i138MUXZ9DQKB5aXa4p+9650/+BjOzBSSedRHV1NZs3b+a6667jlltu4Y9//AOeQJhgRESwzcb03UIO5HSAeLA54YQTaG1t5bnnnmPjxo385z//Yfr06V0cu7/85S+cccYZHH744Xz22WesWrWK8847j6uuuoqf/vSn/bJzwoQJ/PWvf2X16tV88sknjBo1ihNPPJH6etFtdMOGDUSjUR588EHWrl3Ln//8Zx544AF+8Ytf7Pe8wWCQgoICfvWrXzFz5swe2+P1epk5cyb33XffPvfZunUrRxxxBJMmTeKDDz5g1apV3HTTTV0KZc6ZM4dHH32U9evX8+abb6LrOieeeGIio6G9vZ2TTjqJiooKPvvsMz755BNcLhcLFy7s8sAJ4v/pW9/6Fkce2bOmAz35DBLJUMcTE6XcNmNClPI1NxAPeDUenc2enCrKnGUcW34sl0+7fL/nq43VaJnksHLflJGcUpA9YLZ/FX9E2G81WmnctZMtX3b4aTtWfsnOtatSZksy0NFFgKthC9SuExvTuGQvENhFXd1ribHLNR2Xcz/+UD+QSdN7+0+//vWv+eMf/5husxIMBv9Ji+pkFVVw/S2/59m3F/HYs68zYewYvv/ts/B7mgHpP8HQ8p/k8j1JRhCP+GWbFXwGcUdTjQ7qXBpV4yr7de7lTTsBC5bAamzeD7HaZyTe0yJiXhUDXkMe2UBDSwTsYltaiRc4/9EqcBWl15ZBSkuLyEgxmwtxOsZTXHxWmi0aPFgsFoqLiwH43ve+x/+efY4P3n6Db118OX/+zS948/XXCAWDHH300dx7772MHz8egB07dnDNNdfwySefEAqFGDVqFH/84x+ZMmUKxx57LAA5OTkAXHzxxTz22GO0tbVx1VVX8cILL+B2u/nZz37Giy++yKxZs7j77rsBGDVqFJdffjmbN2/mhRde4KyzzuKxxx7jk08+4ec//zlLly4lPz+fr3/96/zud7/D4XCwdu1atm7dyrvvvsvIkSMBGDlyJIcffnjic+7cuZPrrruOa6+9lt/+9reJ7ddddx1ms5kf/vCHfPOb32TevHl9+j2ef/75XcZ33XUXjzzyCKtWrWLBggWcdNJJnHRSxxKKMWPGsHHjRu6//37uvPPOfZ531KhR3HPPPQD84x//6LE9J598MiefvP8Onr/85S855ZRT+MMf/pDYNnbs2C77fPe73+1iy2233cbMmTPZvn07Y8eOZcOGDTQ1NXHrrbdSXl4OwM0338yMGTPYsWMH48aNSxz/q1/9ikmTJrFgwQIWLVrEgejJZ5BIhipPfbaDBz7cSp1HBNyyiKDHRKlA0JvYryYkWnSfM/EcLpt22QHP2xgL0uWbUvNooOs6r1e+zh7vHtpD7QAE6zw8+Ne7iBpNkJWHqsOeR5cSVKJfOTYlJvaP938LH3VcQ7H2vt16sggEawAwmXI5dN4bmEw5KH1cfSA5MF/1n55//nleeuklrrrqKn70ox/x8ssvE5T+037xBiMsOK3DZzeoCvfcfRdPPP6o9J+GqP8kr0iSjKDZG0LVoxSHPIRjac1OO7wyfyPeAl+fz9vob+SLOtHVZVPjCgBc5o6uJ5FwiKOKvsk3R/8Ud9FB7FabaDaKVGtXdvKWy/U0cNR1v5jXZZbL9vqCruv4fNsBOGj2k8ye/U9MpvQ5hYMVXzDCjkYvitFMOBziVz/5PqtXLOfll15i8eLF6LrOKaeckojeXH311QSDQT766CNWr17N73//e5xOJ+Xl5Tz7rFhGuXHjRqqrqxNOwU9+8hM+/fRTXnrpJd5++20+/vhjvvzyy71sufPOO5k5cybLly/npptuYuvWrZx00kmcffbZrFq1iv/85z988sknXHPNNQAUFBSgqir/+9//9lmT5H//+x/hcLjbiN6VV16J0+nkX//6V1J+l6FQiIceeoisrKz9RudaW1vJzc1Nypy9JRqN8uqrrzJhwgQWLlxIYWEh8+bN22eaOojI26OPPsro0aMTDtTEiRPJy8vjkUceIRQK4ff7eeSRR5g8eTKjRo1KHPvee+/xzDPPZGTUTiLJRJ5cUsXOJj9aKMR1y/7FpDt/DoBqtxPxtcT2MuCPiiVxDmPP6lE2hMQ1PM+cGlFqTcMabvj4Bu758h5CUZG5sXX1JkJ5xUSy8gBw6FbGuGYw0hmr+ZnhecxdCqDvWS5eLW6R7T7z/O4PGkDa2tbx0ccH8+WX5wFgt4/BbM6TglSKsdlshEIhLrnkEpYuXcpL0n/qFl3X2dXkY0O1h53N4tnPaTEyvtDJ6BwLj/z979J/GsL+k8yUkqSVf3xSyV1vb0Jpb+Ox9+6k4MVWPpouogGKKpwUs6nvBb5bg61EFTMAhxbNYlp5CV8f9/XE+1owTIl9DABb1Ro+NK9LvFc8KqfP8/aVRMeYzlHAAa0l1X24UR8UYcjuiUTaWL7iEvz+KjTNi6IYsNnK020Wuq4nukymGpup7/XRaj0B3n7nHT7+4F0OP+Z43n3jVT799FMOO+wwAJ566inKy8t54YUX+OY3v0lVVRVnn30206dPB0TkKk7cUSgsLEysfW9ra+Pxxx/n6aefZsECsUT10UcfpbS0dC9bjjvuOK677rrE+Dvf+Q4XXHBBoh7A+PHjuffeezn66KO5//77KSsr49577+VnP/sZt9xyCwcffDDHHnssF1xwQcKuTZs2kZWVRUlJyV7zmc1mxowZw6ZNm/r0u4vzyiuvcN555+Hz+SgpKeHtt98mPz+/2323bNnCX/7yl/1G+QaSuro62tvbueOOO7jtttv4/e9/zxtvvMFZZ53F+++/z9FHH53Y929/+xs/+9nP8Hq9TJw4kbfffhuzWVxvXS4XH3zwAWeeeSa/+c1vAPH/8+abb2I0CtejsbGRSy65hCeffBK3WwrGEklPaAuIB9h7pxkY/dKyxHbLhAm0tzYBoKqmRJ0mi7FnxcobY/envBRlStX7xRLmXGsux9oOobRSobpqA6BiQ2eGayolDQ5aHQHam+tSYlNSideSOvNvMPm0tJhQX/824XBzYpyXe8QAzzhwvuNg9KF0Xefdd9/lzTff5OSTT+aFF16Q/tM+CGtRguEoTb6uSwsXv/8WV152kfSfhoH/JEUpSVp5dXU17cEIU1urKfCLG3hUidV0chcAW7Bkj+zz+QNaAF0V63jPn/j1vWokaMGOi9/WxnVQAmbVQvnoERxyyCF9nrcndKv7JDbGXo02UGVnid5QX/82Hs+KxDg7ay6qak6fQTH8YY0p//dmWuZed+tC7L2Mfr/yyis4nU5C4TB6NMqZ3ziXM848k4/ffbNLKnZeXh4TJ05k/XpRA+6HP/wh3/ve93jrrbc4/vjjOfvss5kxY8a+pmHbtm2Ew+Eu37esrCwmTpy4174HH3xwl/HKlStZtWoVTz31VGKbrutEo1EqKyuZPHkyV199NRdddBEffPABS5Ys4ZlnnuG3v/0tL730EieccEKPfhdxR2F/PPXUU1x55ZWJ8euvv55Y43/ssceyYsUKGhoaePjhhznnnHP47LPPKCws7HKO3bt3c9JJJ/HNb36TK664IrHd6XQmfv72t7/NAw88cEB7Pv744y4p2g8++CAXXHDBAY+Ld7w644wz+PGPfwzArFmzWLRoEQ888EAXp+qCCy7ghBNOoLq6mjvvvJNzzjmHTz/9FKvVit/v5/LLL+fwww/nX//6F5qmceedd3LqqafyxRdfYLPZuOKKKzj//PM56qij9vkZTjr5ZHRd1Cl5qIefQSIZyrQFxDK7cU4FDTCPHEnBdy/AXv8Mq7YtAUBRTYQ04d/EO9rti3BUZ1Wbj41esQQwVaJUICJEs/HZ45m50sW2ZZ8TLCiF/FKyHDYmeMux6BEW7dpGjikm8Ayg6JF0gh7xaknfA6PXtwWA0aOvpXzEhZhM2QM008BnsA0mHyruP4XDYaLRKOeffz5nnXUWr7zyivSfuuHRx5/g6u9/LzF+8Kn/cfYpx6MqCmNOOZF50n/qk/908sknE9XFt/OhhzLff5KilCSt+GItjX90xAj4BCwTJ6I6VfACNpEhZTb0TVBoi2gs9QTRVeEQOAx7izuRQEfBuLAeBVSK3CO48MIL+zRnz+jm5h2PwMTqKuh6rH7CANUgUPbhQAxst8HU0N4uOljk5BzGhPE3YbePTrNFg5NDDjuSX9z+J0xmEwVFJUwpy+Gt11894HHf+c53WLhwIa+++ipvvfUWv/vd7/jTn/7ED37wg37b5HB0zZpsb2/nyiuv5Ic//OFe+1ZUVCR+drlcnHbaaZx22mncdtttLFy4kNtuu40TTjiB8ePH09rayp49e/aKLoZCIbZu3crChQsPaNvpp5/exdksKyvrYve4ceMYN24chx56KOPHj+eRRx7h5z//eWKfPXv2cOyxx3LYYYfx0EMPdTl35241PY2IHXzwwV2OKyrqWV26/Px8jEYjU6Z0LYI7efJkPvnkky7bsrKyyMrKYvz48Rx66KHk5OTw/PPP861vfYunn36a7du3s3jxYlRVLBV5+umnycnJ4cUXX+S8887jvffe46WXXkpENeMOsdFo5KGHHuJb3/oWr72/iLZAhEK3lclj0p/xKJGkE13XaY8VJLdGw3gBY0kJbvcWWP0hocB8wIhqMBOMiJpTFsP+M6Vu3LSTp6qbEuP8FC3f69xxL9AufJ+cknJqwxqFoRJMvlgjGqsCvUyQSVW2996zxLY8shDaG8XPKS5wrmkBVq66Ar9vO8GQ6GKd5Z4xgIKU5Ksce+yx3H///ZjNZkpLSzEajbz00ksHPG64+U9RXScUiXLU8Sfx3zc+QlUUVBWmjhvdIQKanNJ/om/+0+LPl7Kj0YfJoHDY9HFkOlKUkqSVQCwVtyDWYU91OIhqwhHRrUKM6qsoddbyLaxuV8Akig06OrU21qNRmqp301xVhRsrUV1Dyc0BWjFaepbqPiBENUSpNwXGnwjTv5k+WwYZra0r2FP9X/bs+Q8ABfkLcDonpNmqDmwmA+tuPbC4MVBz9wZd17Ha7FSMHoPDbMRmNmAxqkyePJlIJMJnn32WSD9vbGxk48aNXW7C5eXlXHXVVVx11VX8/Oc/5+GHH+YHP/hBImLWuT7BmDFjMJlMfPHFFwlHqLW1lU2bNu0zAhTnoIMOYt26dV2KPh4IRVGYNGlSoiDkN77xDW644Qb+9Kc/8ac//anLvg888AA+n4+LLrrogOd1uVy4XK4D7gcimhYMBhPj3bt3c+yxxyY6ssSdkDi9+XxxbDZbn44zm83MnTuXjRs3dtm+adOmRLHT7tB1HV3XE5/L5/OhqmoXoTs+jkcTFy9e3OVv4cUXX+T3v/89ixYtoqysDJvNxqgxY2n1hynNtuFypvHaLJFkAP6whhYV/pIlHMILqFYr1IlMi6B7LNTswGCyEdDE8rgDLd9b0y4ypIrNJipsZk7MT01mT+eOe1pYZHVl55dRW12Fwa+jApquUzjNRXhlS0ps6jfRmP8aaAE9CpYsyE1tYKyldSnNzR0Fjw0GOy7X9JTaMBAMJh8qHojqjPSf9qaq0YcnEAZMVIweQ77TQmm2bb82SP+p5/7T2HHj0N3tmA1qj/3TdCJFKUla8ccypcwR4ZCoVitarANMxCwKntuNva+pVB0MsTrmaKmRBnJoZoarIwX2zQfuYe2H7+IwZvG18quI6hpqYQG0tWLoJqMqWej7GYlNsW2KAhc8M2B2DEU2bPwV7e3rE+OsrIPSaM3eKIrS6yV0qSaiRWloDyUyGA2KwtjCjtTn8ePHc8YZZ3DFFVfw4IMP4nK5uPHGGykrK+OMM84A4Nprr+Xkk09mwoQJNDc38/777zN5sihSO3LkSBRF4ZVXXuGUU07BZrPhcrm4+OKLuf7668nNzaWwsJCbb755rxtyd9xwww0ceuihXHPNNXznO9/B4XCwbt063n77bf7617+yYsUKbr75Zi688EKmTJmC2Wzmww8/5B//+Ac33HADICKCf/jDH/jpT3+K1WrlwgsvxGQy8eKLL/KLX/yC2267jWnTpnWZ96sOB8DUqVMxmUxdtnm9Xm6//XZOP/10SkpKaGho4L777mP37t1885tCcN69ezfHHHMMI0eO5M4776S+vj5xfLx7z76IR/La29upr69nxYoVmM3mvaJ0nWlvb2fLli2JcWVlJStWrCA3Nzfh1F5//fWce+65HHXUURx77LG88cYbvPzyy3zwwQeAWDLwn//8hxNPPJGCggJ27drFHXfcgc1m45RTTgHghBNO4Prrr+fqq6/mBz/4AdFolDvuuAOj0ZjoIhT/u4izdOlSVFXd6/d9oM+wY8duVq1az4gR1i4RXolkqBFfumdQFYyxTCjFZkUPtlMfHkuzeQKwA9VoIaiJ9w+0fK85Fhx8eNoo5mb1vYZnb4kv37MZbWhhkakVTxI3WsysbmtlT8hOzv/+hWv8EehKR4531O9jw/Suy5qMBQVEfzEnJbbv89YU9+Fyx8DZj4O7NOWZUv5Yg5fs7HmMH3cjVmsZZnN6Cj8nk8HgQ+0P6T8J1q/fQFN7kIiu0+oPo+swcdIUrBYTWbYOH0r6T6nyn3axatUGSkpg7Njs/R470Azeb7dkSOALCQfLFAmhEXeuREvjoFlcUHOsvS84Xh87b7ZBw1T1Y+YUzcGsdmQd1VVuBcBqjT1wa2G0mPocLyKXVHq8LG4Q1UvIICKR9oQgVV5+Gbk583G7970Ov3sG/9LF/tLoDVHXFiAUEd8Fk3HvDj2PPvooP/rRj/ja175GKBTiqKOO4rXXXksIMpqmcfXVV7Nr1y7cbjcnnXQSf/7znwGxpO2WW27hxhtv5NJLL+Wiiy7iscce46677uKqq67ia1/7WqKl8c6dO7Fa9/8wNWPGDD788EN++ctfcuSRR6LrOmPHjuXcc88FYMSIEYwaNYpbbrmF7du3oyhKYhxf7w/w4x//mDFjxvCnP/2Je+65B69XXIP+9a9/cd555+01b3fbdu7cyYgRI7psMxgMbNiwgccff5yGhgby8vKYO3cuH3/8MVOnTgXg7bffZsuWLWzZsmWv4w+0BGX27NmJn5ctW8bTTz/NyJEj2b59+z6PWbp0acKpAdG5BzraSwN8/etf54EHHuB3v/sdP/zhD5k4cSLPPvssRxwhiuRarVY+/vhj7r77bpqbmykqKuKoo45i0aJFiToPkyZN4uWXX+aWW25h/vz5qKrK7NmzeeONN7otitobvvoZfvGLPwJ/7PIZJJKhSFyUclqM6H4h6qg2Oyt3juD97WPQo58DYDBZEplIB8qUaomIc+b0MhukL0T1KN956zt8UfNFYpvVYCUSy5TSYtc8k9lEdVMzAYcdRQt1ey49HO4yDu/ZQ6Rh1MAY3kOUuA9nz4PCyfvfOck0Nn7M2nU/ThQ2z8o6qA9+UHKRHm1XpP8E55//rb22VVVVUV7cdXm+9J9S4z/deOPtAFx44bf45z+f7te5+4sUpSRpJRCOPfyGgmiA2rwBTRG1WL5sWwdZojNLb9nQvB2AtkAduexdUyESc8KOOfsC+AhULUw0GssOMaTha/HhH8VrVEN+LXuOrkfxtK2mpVkUdzWZ8pgw/pdptmrwEhej/vy3h7CbDV2iVnFycnL45z//uc9z/OUvf9nvHDfddBM33XRTl20ul6tLsU2v18stt9zCd7/73cS2fTkKc+fO5a233ur2vfz8/ETb5ANxxhlnJKKVTU1NLFiwgPvvv5/TTz8du11ka44aNapXtUqsVivPPffcfve55JJLuOSSS3p8zs70pW7KMccc06PjLrvsMi677LJu3ystLeW111474DlOOOGEHhdDhZ7/Ljp/hkjEi8+3DVW1ZNRyXYlkIIh33nNajERjD3+qzcbWmijRyPbEfiXjKmgJvAtAjmXfgb1IVMcTu+7nDERA7iu0BFu6CFKqojK7cDbbotsJFI6g3iMypgyqgagi7Mn75lkEVzV3iRspVivjPng/Md79k+vwf/nlgNu/Tza/A4v/AppPVGCwOA94SLKpqvp7QpBSFAMF+cen3IbuO/gML/YXGBnO/lNJWTneYJgmb4gmbwibyYDTasRpMeKy7u1rSv8pef5TZ4u/+hm83m1omjcjupTLp19J2ghrUUJaLDupvYWw0U5D0EzUIra1K8LhmpQ7qdfnXtW0GRiJoov09Xkl87q8r4VDWA0OVG/MFtWM3xsCFYzdZIcMKFoE1j0PFMpcnV6yc9fjbN58W2LsdienbsJw+3+obvXTHowkRKlsu4lcR+rq9yxfvpwNGzZwyCGH0Nrayq233gqQcHJSTW5uLu+88w733XcfixcvTrRalkgkknRQ3ern3AeXUNMawKSFmdFcS6BFZAcbCwsJ7aoEIKdwLAVnHMRS8xZClSLDKM+Wt8/zNscCdADZKciUii/ZM6km3v7G21gMFpxmJ7+1v0fY5iQcEE6Zv0HDZxfFhU0FuQRp7nIeRVExdVqeo1hEvZ203bs//hNULYKKMsAAWal/wAsEqwGYPPn3FOSfiMmUwq5/nVYDDDf/Kd0MBv+p1R9mR6O3y35um4ki9/6zuSTDCylKSdKGxx+mwlPDgp3LCEW38fnsq/CZNHSfiO4dVD6XO0+/n9FZvS8S6Y0Vf8s121l8/hIcpq51Eoqo4KCKBbBMjEMGG6FQGKxgsfatsHqfCXe6UFtzAF9q5+8GfZAkXbe1rQXAbC7AYilm1MjvHeAIyVeJaFHq24JdtllT8HDyVe688042btyI2Wxmzpw5fPzxx+Tn56fcjjh5eXn83//9X9rml0gkkjifVzZR1SR8g18ufZojqlcT9xxMxUVEYvVundlF/KHh77QEWwAotBXus/veZm+Atxo9AGQZDRhS0H033nHPZrSRa82lafdO2vy7icakjAprAWVtOWRH8tmBjlnz4nBbaU+cIUN9E1+s057JDtEgHNx9lsRA0Ny8hEBgDz6fKEuR5Z6VWkFKknYy1X+KaFER9OxUC8+gKBhUpdtMfEkayCAVWYpSkrThCUT4ztpXmFu7gSDgcX+AHmpNvD9qzMg+CVIAvlgGllXV9xKkANyKiBzqis4OGtmg1mNwByAE+eUpupnHfatQJxFqAIus9wQlk65O+0GknkYJBPYAMG7sDZSUfD29Rg1SIrFOTgZVoTzHjsmgYEtxMdHZs2ezbNmylM4pkUgkg4V4p+LDx+Vx5OJ6dMA0YgSmESNwHHkU4RdeBECxmBKC1NWzruaIsiO6PV8kqnP6l5tpjqlZ+abUXPPjmVJWo5W1H7zDmw+I5UHqaFH7aHywmNFaIbWan7OOD5Mz7yC2Ve7dWCJj0HUIecEvlh1itEAoiH6AOl7JwuNZxZfLL0iMVdWMxdK/mjOSwUUm+09N3lCXoGdplo0cR4oD/5JBgxSlJCknFIlyx+sb2FTbxjeDIv5lO+wgdK8QpAIFFrbZ6xlb2HuVf1cgxM837eJtr2jlaVe0bvdTdSG+ePMjvNO6GtQoxGppOp0D030mIfh8VfcJ+7rsBanLVBqMy/+j0QjLvjwHj2dlYpvNLjtu9Za2QJg9LYFEe3GjquKWkSuJRCLJOOL1N3MsRvQG0WFq5FNPYVp2J/xtMpGo6NqkxTK9c625XDXzqn2eryEcoTmioQDH5Lq4oGTfS/ySSeeOgA07dwBgttlRTE5ChDAFRWAuHNUo+cap4qDtm3o9T8qyvRf9Bd78e6cNqQ3stbeL343JlIvLNZXi4jMxGlPXQVEi6Y76tiDtwQjBmJjusppwW41k2aWPKdk3UpSSpJxFWxv4x6ei/sG3NVG00370IfDa2wDsWJjF502bONvQezX9sd0NvB1LRwcYZ2rZax9d11F0UTfKt2UzFAlnb968eWRlZTFhQvKL5er781NC3v28KfkqgcDOLoKU0zmZLPes5E0wGJW6PtDiCxOMdIi2dnN6s/QkEolE0j3++MNdNAix8gRGtwM+fxAALeZkqDbhN+1ryV6cupDwvQrNRv41c+yA2NwZXdepaqtiS4toRW41WomERCRwzqln8PmGatBCRJ2wqkaj3dfMob04v5KCpYfd0ry940mqZCaoqbFD13UCgV20tIhui/n5C5gy+Y6UzC2R7A8tqlPd6u+yLc9hlkFPyQGRopQk5bT4hDM0tsBBsVWBNhIFzwFCilh7bDL0/gK2tl1cCCvUOlqrH+Ggicd0ef+9xx5k1/q1jFVEO9FgazOIWpqccMIJGFPQfSbB9o/gtz+Bzu2OUySIpMt/SwbBYC0ANtso5h78LEajG0VJQnH6wfxL6QVRXUeL6onvXJHbittqwmpKcYF/iUQikfSI+PI9B7HC5AYDSrTjwU8z2ABQLCK4YD5AUK8+JM5TYE7Ng+IT657gj0v/mBh3FqWMZguaLu5HEbNOZShKPpFuz5ORGK3ws0ow2eC/x6RkynXrrqOm9sXE2GEfk5J5D8zwCOpJ9iYU0ahrCxLRxN+AqiiUZdswGhScFik3SA6M/CuRpJy2oHA2xhe6sOsRNMTFTKAQjjkjRqX3f56NYXHsBDayMrgOi/HExHs+TyvLX39ZvF8o6hcYRo0CNoifU13PqXoVGOPlO+VX8UD4/btYt/5ntLR8BoDNOgKTKTu9Rg0yolGdTbVtXURgu9mATWZJSTKU4SEVSyT7J54p5dDFq2qxQCBWg9PsIhoVvo9iNYAmutvtj3imVEGK6gduaBJ+lsPkwGFycOa4M4ls2gaA0WxGi32u9ljiuFGNdnuejMTiBrM9pVM2Ny8BQFVtWK3FFBenp9NaB/JKPdxpaA/R5O0IsltNBlk/StIr5JOwJOV4Y6KUw2JE94tIXyhWL0FRjIT1vmdKbW2rB5ws3fMuJrqmsIcDosCmwWQiLyKyQpTCAmjZgIKa+vTvSFB8A899EnxZ8MaVqZ1/kLGj6uGEIAVQUHBCGq0ZnAQjWhdBymxUsaWh055EIpFIek4gJEQbmx4Xn6wQaGVbYB57AoegRUTTD8VmgPYDZ0o1xDKlClOUKeWLiNqZP5nzE86ZeA4AL7z4GwCMJjNaNAoK1DYKe4xqR8ZNd56Zvs+s8hRk6tSuRdn5GTBSjK2p7XQXjUYIhkRdscPmv4fFUpjS+SWSzniDEQJhLfFsl20zYbcYcVmlxCDpHfIvRpJy4q1BXRYD0ZhQFPSJiJ+iGAhHRQTvQJG+7vBFTaCCGm3DbrQzq3BW4r14qrjJYsUcq78Qjnk7ajKWf/WW+LK93LFgEF9FJUMyn1NWJLQXBPxVABQVfo3y8otxJ7OO1BAnEo3SFoh0PNiYDIwvcqXZKolEIpH0hHiGuUvVCJqz2Fl+GhufaqGq5UYA9OijYke7IkQptXtRqiUcYXFLO0taREpSiSVFolSsoYvNaEtsi4RC6ChgMKAR65gc9WNprmJ0YX2X4zt8kv0HD1PSQXjpo9BmJyFK5e69dG4gfKhoNMiyZefhaVsFgMFgx2xOTYF6iaQ7ItEo2xq8XUTibLusHyXpG1KUkqSc9phzlUUkUbAzsnMpYEJRjYSjQqjqrSjljWjoqsiMevaUfzDOXdol2yoSDpFrKaHEMQaFbAB8wfja54HNFunWUYrE2qRanEBgQOcfzNTUvERt3au0elbw/+ydd3wU5faHn9m+2Wx6QkIICYGEJiBNaYqRFlTgKoJeEMErKgoiiBdE5SKI2AAVVCw/BLwX1GsDRCxcFaWJVEGQBEIngRDSd7N9fn/MZpMlvWwIMM/nE9iZeeedd7bMfOec854DEBl1J4GBXRrk2I3PNFc7zuVZvMKqVUo5f5SMjIzMlUKeOxdngODiTPTNnAq+AaTZb6gVVlxaF7YiwF+EzIojpR49dJKfsws8y4kGna+HDkCRQ4qK91P58fvaz/l9zWeYFGqKWnfmy1+2emxNkcd/IjJtE0H33FPDIzRgpHtRNuCertflfki+qUEOm5f3h8cgBRAVdTeCj7VrXRFF5Jl9VyE2h5OLJht2p4goiigEAaNOhVqpwF+OkJKpJfKTiUyDU2BxkJBzmvj9WwBQqFzYFHr3ay12Z80jpfblm/lvRpa0IDpo6hdUZvqf3WQlKfLvXOfXB4VfGABnz0reO4Wi4X8KojuHAhr/Bj92RVy2CjYVIIoiKan/IivrfzgcUlVFP33c5R3UFYjVPT1Wr1YSoFMTYay8MtO4ceMQBAFBENBoNLRq1Yq5c+ficNQt+eymTZsQBIHc3Nw69VMTjh8/zqhRo2jatCk6nY5mzZoxbNgwDh8+7NVu/fr19O3bF6PRiJ+fH927d2fFihVebU6cOIEgCOzbt6/ax3/++edp06YNBoOB4OBg+vfvz44dJdNQT5w4wYMPPkiLFi3Q6/W0bNmS2bNnY7PZKukVMjIyGDVqFImJiSgUCqZMmVKt8SxdupSOHTsSEBBAQEAAPXv25Ntvv/Vsz87O5vHHH6d169bo9XqaN2/O5MmTycvL87RZsWKF5/tx6V9mZqanndVq5dlnnyU2NhatVktcXBwffvih13jeeOMNz7FiYmKYOnUqFkvlRvovv/ySgQMHEhoailrtz/79hyttLyNzpfLn2Txe35jKmRPpvLr5beLefQmbRopybd7MQmvVe7QM+D9cbqOP0/08WFH6g1NF0nWlnUHH0IggBoX6durZptObmP7rdNLy0gDQq/X8tflnrGYTDj9/KKW9Qlz+BMbFEvbYY4RNaMTpDCwlFZ6J6gR+IZ5FX0Zq5ebtBCAsrD839fmd1omzfXYsmdpzLeinbbv2c6HASq5Zup78tukH7r/rNlrHROBvMMj66QrRT4IgsP+PQ9U694ZANmfKNDh+J1JZ/MubJSsMGkxhPSFjM0qVpmT6XjVzSqWZLSTvTvUsK5z56FRlvX8ukxWVQo0oimQUFXJSW0i2v2SU0uovUzK+8DagCwKKDWpXS2xO/WCzZeFwFAACrVvPxc+vBX5+cT4+qnhVFOITRZGsQhtWhxOLu5BAVJC+2lVQkpOTWb58OVarlQ0bNjBx4kTUajUzZ8705bCrjc1mQ6Op/Hdrt9sZMGAArVu35ssvvyQqKoozZ87w7bffegm7JUuWMGXKFGbMmMHSpUvRaDSsXbuWCRMm8Oeff7JgwYJajzMxMZG33nqL+Ph4ioqKeP311xk4cCBHjx4lPDycw4cP43K5eO+992jVqhV//vknDz30ECaTqdLjWq1WwsPDee6553j99derPZ5mzZrx8ssvk5CQgCiKrFy5kmHDhrF3717at29Peno66enpLFiwgHbt2nHy5EkmTJhAeno6n3/+OQD33HMPycnJXv2OGzcOi8VCRERJfpORI0dy/vx5li1bRqtWrcjIyMDlKslptnr1ap5++mk+/PBDevXqRWpqqkfQL1q0yHvgpS6NJpOJPn36MHLkSB566KFqn7uMzJXGU5/9weFzBfQ9c4AOF48D4IiUnHjR4ef55UABrgtuw44g4NRKryuavmd2//5eb9ucTkbfJ+d++feXOVt41rMc6RfJX+4Hxhbtu5F67gwdHM3p4miBCiW23i7CR91S+wO6NZRPUhBsXQxnd0P6HqBd/fdfAbm5uzh+fAkFhX8BEBLcs/FO2xNFOTCKq1M/RUZGcuTYSb7//jsys7MJadaCQL2a/yx7j3/N/KesnxqzfipFY9ZPslFKpsEw2xzsO52L6rjkMXMajBQ0v449EaNwHpPWKVQabC53meBqVt9LM0vT4AxKAZvpEDrTZtSKW7za5F/IJO/ceYIx4HTZ2CYeJ9dQkrNA79cwIewS7lt2n6lw53gvT6GMhMvloKDwIAUFBwHQ6ZrRLHrUZR7VlYXF7iQjr8hrnUZZfbmo1WqJjIwE4NFHH+Wrr75i3bp1TJgwgSeeeIKvv/4aq9VK3759Wbx4MQkJCQCcPHmSSZMmsWXLFmw2G3Fxcbz22mu0a9eOpKQkAIKDgwEYO3YsK1asoKCggAkTJrBmzRoCAgKYPn06a9eu5frrr+eNN94AIC4ujgcffJAjR46wZs0a7rrrLlasWMGWLVuYOXMmu3btIiwsjDvvvJOXXnoJg8HAwYMHSUtL48cffyQ2Vsr/ERsbS+/evT3nefr0aaZNm8aUKVOYP3++Z/20adPQaDRMnjyZESNGcOONN9bwE5AYNcr7e7to0SKWLVvG/v376devH8nJyV4CJT4+npSUFJYuXVqpqIqLi+PNNyXj/qXes8oYMmSI1/KLL77I0qVL+e2332jfvj3XXXcdX3zxhWd7y5YtefHFF7nvvvtwOByoVCr0ej16fUlumAsXLvDTTz+xbNkyz7rvvvuOX375hWPHjhESEuIZc2m2bdtG7969Pe9RXFwcf//73708oeUxZswYQPKSliAb9GWuPrIKJT10o9sQpe/aBXXbG+GMHVPeGVzuCQ/dhgxHGRXID0X7ANApy9c0ZnehC78G0h35Nimq6KEOD9EpvBPxQfFstEmaTSVID8VqhZpCu0iW00V8QDnOyMbgJcpPh42zLsuhT556n+ycLe4lgZCQPpdlHJXSGD6jRsTVqJ9yzTaaqIK4P7GT5zwtOZnMee5pWT81Uv1U3q+yfP3UOJCfhmUajImr9jDqgx1YMs7xZ9sH2Np9Lnua3AeCApDCWgtVheRZpTDHcL/wavWb644C6WhQE5Q5H2PRb16Jy3d/s4YPJv2D3z77BACX6MChl36qgcYgEhMTufXWW+vrNCtFKP3gpAsCdzTY5Zo211gf444cmceuXXeRkiKJQN9HR8HVlvjA5pQ+XY1SQZMAHbGhfmhUtc8/odfrsdlsjBs3jl27drFu3Tq2b9+OKIrcdttt2O1ShOPEiROxWq38+uuvHDhwgFdeeQV/f39iYmI8N+uUlBQyMjI8ouDJJ59k69atrFu3jo0bN7J582b27NlTZgwLFiygU6dO7N27l1mzZpGWlkZycjLDhw9n//79fPrpp2zZsoVJkyYBEB4ejkKh4PPPP8fpzl93KZ9//jl2u52nnnqqzLZHHnkEf39/Pv7441q/b6Wx2Wy8//77BAYG0qlTpwrb5eXleYSIL3E6nXzyySeYTCZ69uxZ6XgCAgJQqcp3FHz00Uf4+flx9913e9atW7eObt268eqrrxIdHU1iYiJPPfUURUUlhtJevXqxe/dufv/9dwCOHTvGhg0buO2220r1fnX9LmVkaoLVLl23BraQpuypI6MocpixFX5DSuoBAOJjQ/gtMZNHz8zmq6NfAdAisEW5/RW5jVL6BsoraHXnzrw78W76xvQFSorOuNxRTZpAHb/lFXLI4kKpLT96o8qrgK81lPmi9L82AAa/Bs1r95BdGwoLUwBoGf8U3bt9icHQqsGOLVM/XMn6adUn/yXtfD7n8qVpYRqlAoNWRYhBwzfrvpL1U6PWT1cWcqSUTINxPEuq9hKtEskM6+ZZr1fkEdH9LCmb4KziNABNDU0J1AZWq98cu7sqjft5+9IEn+ePHZXWayTPoeC0I2okQda29XUk39G/didUG+Tnq2qRly/dULXaSFQqI82ajbnMI6oHRBHcFYh8ycVCK4VWJ3anC8HuRK9U08RorLVoF0WRH3/8ke+//57BgwezZs0atm7dSq9evQBYtWoVMTExrFmzhhEjRnDq1CmGDx9Ohw4dAMlzVUyxUIiIiCAoKAiAgoICVq5cyerVq+nXrx8Ay5cvp2nTpmXGcuuttzJt2jTP8vjx4xk9erQnH0BCQgKLFy+mb9++LF26lOjoaBYvXsz06dOZM2cO3bp1IykpidGjR3vGlZqaSmBgIFFRUWWOp9FoiI+PJzU1tcy2mrB+/XruvfdezGYzUVFRbNy4kbCwsHLbHj16lCVLltQp5L0qDhw4QM+ePbFYLPj7+/PVV1/Rrl3501GysrJ44YUXePjhhyvsb9myZYwaNcrL+3fs2DG2bNmCTqfjq6++Iisri8cee4yLFy+yfLlUKWzUqFFkZWXRp08fRFHE4XAwYcIEnnnmmfo9YRmZK5Qit1FKabNiBxR+fuSd+RWXPYU86TkWc6iGT1M+BcCoNhKqDyW5RXKZvhwuEZvbEOTXAEYpl+jyRL6XTqngMUq5pLEolUpc7sh41eVKpVAVxXmk/JvAjQ/D0d3AuQqbi/WQiiEnZwf5BQewWM4AEB39d9TqoDr3e8XSQBqqXNR+tdJQV4N++uf06cyf9wLtOl5P95438dADY2jTvg0AR44ckfWTrJ/qDdkoJdNgWNzJlnvGhPBbESgEF/1bvcG2vJP8djaeYECj1TPp+knc1Kz61UyKjVJFNilBnFbpncTZ6fZAdBk0FPaC0m7DpZPGommgcsjYChEaUYXUKm+tlymEShRdOByFFBZKN7FOnZZh9G9zeQZT39jNML+sUKhvQt1/XjyTDhpDjfpZv349/v7+2O12XC4Xo0aN4q677mL9+vVeodihoaG0bt2av/6S8l1MnjyZRx99lB9++IH+/fszfPhwOnbsWOFxjh07ht1u54YbbvCsCwwMpHXr1mXaduvWzWv5jz/+YP/+/axatcqzThRFXC4Xx48fp23btkycOJH777+fTZs28dtvv/HZZ58xf/581q1bx4ABA6r1XlSVewEkcfnIIyXJeb/99ltuukm6jiUlJbFv3z6ysrL44IMPGDlyJDt27PDKHwBw9uxZkpOTGTFihNdcf3//kmII9913H++++26V49m8eTODBw/2LL/33nuMHj0agNatW7Nv3z7y8vL4/PPPGTt2LL/88ksZYZWfn8/tt99Ou3bteP7558s9zvbt2/nrr7/497//7bXe5XIhCAKrVq0iMFByMCxatIi7776bd955B71ez6ZNm5g/fz7vvPMON954I0ePHuWJJ57ghRdeYNasWaxatYqHH3kEUZSeB74r9Z7KyFztOJwuHMWGG6vkIVf4+WGzSs67qAATn8SbOR12ytPu86Gf09S/7H3m1+wCNpWquqdvgOl7VqfV87p4OqEoijjsklHK6Y7aKsiy4lAGAaD2q7wIR4NTcA72fwrn3cmAdd6J4S+VSvUV9W4yHWXP3tGeI+j1za9tgxQ0mIYqlxpqqCtdPx05moYmLIabh93Hj/2GsnP7Fo4d3Mf/vl/Hh28vkvXTFaKfHnnkEdy3Br7/rvHrJ9koJdNgWN3T7ESH9AtRK0WW510kNCWWYKRtYQERPNKpZlVX9mQdBQLYnf4zBsoapRwOySildFfzE10OXO7Kd9W5WNYLRTlQM5vANYfLZWPX7hEUFPwJgCCo8dOXPwVBxvckJSV5klY2bdoUlUrFunXrqtxv/PjxDBo0iG+++YYffviBl156iYULF/L444/XeUwGg/ePqLCwkEceeYTJkyeXadu8eXPPa6PRyJAhQxgyZAjz5s1j0KBBzJs3jwEDBpCQkEBeXh7p6ellvIs2m420tDQGDRpU5diGDh3qJTajo6O9xt2qVStatWpFjx49SEhIYNmyZV5JT9PT00lKSqJXr168//77Xn2XrlYTEFC9alndunXz2q9Jkyae18UVgQC6du3Kzp07efPNN3nvvfc8bQoKCkhOTsZoNPLVV1+hVpdvVf+///s/rr/+erp27eq1PioqiujoaI+gAmjbti2iKHLmzBkSEhKYNWsWY8aMYfz48QB06NABk8nEww8/zLPPPsvQoUOJSexIvsVOhFFHh9by9UDm2sHiKElqq7BYyPePIc8WjdMpVZtUdu/Kce33GNQG2gW1ZEDzAeUapLLtDkbtT8MtvWih1zTI9D2Lo6QKlEpUsu/7byjMuehZZ7NKDkV3wWVUdhP6ID11od6r3216CXavKFk2hPvmOJdw8eIvgIhWG0VAQEdiYh7w6fFk6pcrXT8FhUeRXiD9MA3+RgYk307i2HtRvPayrJ+uIP3UqXNXTlw0o1IKdOvc+B38slFKpsEojpRyFRulVCLCxRIB4ozy546/VRzieCkOl8hveYUct0j9+itE2oa2Y3jCcK92xZFSxYnT7Qo1LqGBI6XE8vPZlG13ebM8+VpoVUZe3h6PQQogMvJvKJWNzGtaF9R+krfNBxTZHBy9YPIsa1UKEpsYvY9dQ4qFQGnatm2Lw+Fgx44dnvDzixcvkpKS4uUliomJYcKECUyYMIGZM2fywQcf8Pjjj3uMwKXzO8XHx6NWq9m5c6fHkJSXl0dqaio333xzpWPs0qULhw4dKjPOyhAEgTZt2rBt2zYA7r77bmbMmMHChQtZuHChV9t3330Xs9nM/fffX2W/RqMRo9FYZTuQvGBWa0kUwdmzZ0lKSqJr164sX74cxSVRDDU5v2L0en2197t0PPn5+QwaNAitVsu6devQ6cpPmlxYWMh///tfXnrppTLbevfuzWeffUZhYaHHU5mamopCoaBZs2YAmM3mMueqVErzsEVRxGg0EhffktwiG00D9ej1V9H1QEamCopsJddJZ5GVXZ0ewnkyD9EpVeu1hBsgH3pE9eCNpDcq7OdEkRWHCP5KBUMjgvh7lG8rt+0+v5v397+PyS7dk9QKNacP7OPHD5d62mg0ehzua47SYafL3kX4mc+jCfi2bIeCQElMUgNrpHz3PTu2D0S0ga6+NQ5l52wnJ3srF7L+B0DzmAdo3vxBnx6zfvHh5+NDDVWtY9eAK1E/iaLI2dwiCi0OMk3utCg6Nc2C9SgVAgp3FKCsnyofT2PSTy1btcIVUIhaqfCaHthYkY1SMg2CKIqeSCmnQwAlaNQi6nzpK9jz0fvodcu9NepzZXoWzx45CwQB0D28Nct6zi3TTrBB74g70f6lpAgb5/U6REG64Gp1DRQpVaqMp0z5WCwZAAQFdqdz55UoFFfZA6gg1HgKXXUpstsQ1SJKhYBOpSTEXwM+iAJMSEhg2LBhPPTQQ7z33nsYjUaefvppoqOjGTZsGABTpkxh8ODBJCYmkpOTw88//0zbtm0BqfKdIAisX7+e2267Db1ej9FoZOzYsfzzn/8kJCSEiIgIZs+ejUKhqHIqxIwZM+jRoweTJk1i/PjxGAwGDh06xMaNG3nrrbfYt28fs2fPZsyYMbRr1w6NRsMvv/zChx9+yIwZMwApourVV1/lqaeeQqfTMWbMGNRqNWvXruWZZ55h3rx5XHfddV7HTUlJKTOW9u3bl/GGmUwmXnzxRYYOHUpUVBRZWVm8/fbbnD17lhEjRgCSoLrllluIjY1lwYIFXLhQUhW0uHpPRRR78goLC7lw4QL79u1Do9FUmN8AYObMmQwePJjmzZtTUFDA6tWr2bRpE99//z0gCaqBAwdiNpv5z3/+Q35+Pvn5Uj6V8PBwj+gB+PTTT3E4HNx3331ljjNq1CheeOEFHnjgAebMmUNWVhb//Oc/+cc//uERR0OGDGHRokV07tzZE34+a9YshgwZ4nUc8H7Uyc7O5tSpU6SnSw8oR46cQKFQEx8fWOV7JiNzpWBx55PSqRWYc+xYTJ+AKD38CEB+gA3yIVRXuZEpwyo55lobdCxq07zStvXBfw79h23p2zzL0f7RmPOlAjYB4RF0bXY76jw/frX+BQpQiC6ir4tEf30yqgpyxVSJrxKdF+eSuvFhaDfMN8dwI4oiBw48isNRMs2yUVbaK5cGcGj6UEM1BI1dP2l0ejZu3c32zT/zzLzXOHzwAMsXv8qDD4yV9ZObK1U/leZS/ZR65BhOZxGxsRpiYoIqfc98jWyUkmkQ7E7RM6/VYRexFa0hI/cURlF6cI6MaVvjPlNMUmi4v1CEzXSQtoGOctsF2kJpZkjkormANdqdiELJ402DGaXE8oxSpR6zruFyuuczN3D69HLy8qTk5jp99OU1SJWKVmus1QmLySywYLY6sblzcwTo1MSE1DwqqiYsX76cJ554gjvuuAObzcbNN9/Mhg0bPILC6XQyceJEzpw5Q0BAAMnJybz++uuAFJI9Z84cnn76aR544AHuv/9+VqxYwaJFi5gwYQJ33HGHp6Tx6dOnK/QwFdOxY0d++eUXnn32WW666SZEUaRly5bcc889ADRr1oy4uDjmzJnDiRMnEATBszx16lRPP1OnTiU+Pp6FCxfy5ptvYjJJHv6PP/6Ye+8taywvb93p06c9HqxilEolhw8fZuXKlWRlZREaGkr37t3ZvHkz7du3B2Djxo0cPXqUo0ePltm/qmS5nTt39rzevXs3q1evJjY2ttJSv5mZmdx///1kZGQQGBhIx44d+f777z35Ifbs2eMpKXypp/D48eNeZYmXLVvGXXfd5Um6Whp/f382btzI448/Trdu3QgNDWXkyJHMmzfP0+a5555DEASee+45zp49S3h4OEOGDOHFF1+s9LzXrVvHAw+URCz84x/TAZg9e3aFuRtkZK408i2SMcmoU2MqsnoMUlGGIjoHnuQzpN9nqL5yo1S6u5+mFVS2q28K7YUAjGozis5NOnN9+PWc27IbgIgWLfmp8CiF2pIqUlaXk+bL/q9+B1HXm7fNDPYiKfUCSFX3fIzTWegxSDVrNgajfzv8/cvmBrqSaOwaqqFpjPrpmWeeoU+fm3CJIjGxcQwedhetIvwJUSaypWULWT+V4mrUT+PGPuHubwYvvPBypfv6GtkoJdMgWB1OmhVk0jPjT8wuBy7tMc+2Ar2d6JjEGveZZZOMUJ0UKaRmvUlQ8yfKb+gCBMgyFEr5rEQBvZ+OwMBAr7wz9Y7LBWsfg3N/gr3mYZOiKNZb0szGzIkT71BY+JdnOTT0lsszkCvsvbY7XZzLs3it06rqJ0/IihUrKtwWHBzMRx99VOH2JUuWVNr3rFmzmDVrltc6o9HolWzTZDIxZ84cr4olFQmF7t2788MPP5S7LSwszFM2uSqGDRvm8VZmZ2fTr18/li5dytChQ/Hzkwx9cXFxNaqqpNPp+PLLLyttM27cOMaNG1ftPktTmwpPy5Ytq3T7LbfcUu1+i0P4K6JNmzZs3Lixwu0qlYrZs2cze/bsah2vmNLvmcNhwmw+hkKhueIf4GRkSpNfJGmcQL0ai0VKDi4o9PRv8ycrdSK/ZR8EIERXefnzs1Zp36a6hklXUJxL6obIG+gXK1UEO+NObo5KTaEoVVDToMJl14K1/u69Yn2YQU5shX/fCaUStV+a4Ly+kQq8SBEkCoWO1onP+/R4Mr7jStNPn675hjM5JVUNg/Qa/DQq/KKasHjx4krHU4ysnySuNP0EYDYfx+EoRK+PqVE/vkA2Ssk0CEV2J1P3fkq77JP81aIPaEFQqPns5uOoNS6e19TcaJPlrrqnEiWvnEbh7QW0mAopuJiFaLGDHiz5F8APtJYA/vnsRBS+TnKelQp/fAyAQLcqGl+7WK1SWeXExOcJMLYnMLDLZR5R48YliuSYbJ6pHSqFgiaBWpSCQEADPXTUN3v37uXw4cPccMMN5OXlMXeuNA23WOQ0NCEhIfzvf//j7bffZvv27Z5SyzIyMjK+xuZw8cWeM+w5mcPdR37mzp92UGgIhQhQKDQsNaj53F8HZuneGe0fXWl/6e7pe9ENlEOzyCFFQelVpXKGunN7CippDEpRwQBdZ34/p0crnKq0v2KTlSg0UNbLU9u8DVKhCRBevWj+2ozQbD7Ojt/vwOWSjHnXfJU9mRpRW/2Ua7aRbbJhd0pGlEC9mgijDp26bs5NWT/J1BbZKCXTIOQXOdCqw9nW40GKhHNgzsCs1VLo56SlsXbW2eJIKZVLMkrpVCWhqlazif+b9CBWs4m2gT1AD/YiE/iBIAoIFVRCqFds0rjwbwIh8cAlecyv4bhml8vB6dPLMJmPYbdL4fGRTe5ArQ6+zCOTaMwxUwVFds7mlkx90KkVhBqu/PxbCxYsICUlBY1GQ9euXdm8eTNhtc0vUg+Ehobyr3/967IdX0ZG5triwJk8thzN4ss9ZziSKemHf6dtJsSST7a/dC1UqHQccj80tgtK4O62f6dX017l9vdngZk3T2ayNVeaEhbVQNP3LE7JuFJakznckVIeoxQKnMWORWXVd9wq5VJ9RjoX55Hq8RgMfFHq24eR1JmZ33oMUgqFnsjIO312rIagMeunq5Xa6KdzeRZP6gcAg0aFXlNxLqKaIOsnmdogG6VkGoQCi53C4NaYlAU4LFKFtUK9nb7N+papllddzlktgMD5fKk8skZZIrjyMs9jNZtAEDwRVAqDATCj0mgbZlpcsVHKLxS01asq0dCGqorCTOslBL4SLmb/wtG0Vz3Lfn6tGo1BqrFjdYsIrUqJv05FiN+VGR1Vms6dO7N79+7LPQwZGRmZy8bD/95FRqkp2a0i/Al0R+xo+w2A/RtQqnUUufXLU50eo3tc/wr7W3wqk68v5HqWWxsqzzFTV3af38229G1kFUnVAUtHSjlsxUYp6bFDhYKUc1LS6kpy8laITxWK1Z1oXBcIivqZEl8RLpedvPw/AGjV6mlimz/k0+P5nMtcQfpapKb6yeZw4hLB7k702zRIj1qpwKiTTQIylxf5GyjjUyx2J8u3nmD/mVy6KjOwF/7m2eYMu8hb/b6oVb/5ditmlyTMMvL+QgEEagI92+0WSdgFRUTSWhUEgMugAycolA30EG+Tkv1dydVCfIWl6DQABkMC4WH9iWhyx2UeUePnfL6FHLMNp1tIBOhVRAU2/hKvMjIyMjJVk1kgGaDu6BhFu6YBPNIjhtT3pXVFaklHaHQ6rG6jlE5dubY4bpb2fbhZOAPDAkj0sVHqyU1Pkm3J9iwHaYM48cceUrZvIeOI5DwUBMkCpRSV2EXJ4BOks5TtrAKqmh5Xpwl+O96HlA2QeUha9nFy8yNHX+bUqQ88y0b/iqt+NXqusJyc1yqZ+RbO5Xv/3kIMGhTy5yfTCJCNUjI+5afDmbzy3WEE0UUnhSSQlFodacEXscVZq9i7LAUOJ0/8dYpjRdL0JcFZyMhWtxNpaELv6N6ednab1LdaqwWbdLF1uKvuKRX1E55aITYznNgCJ91J7NTVqIbmviE01G3hct1/XC4beXl7SM+QjJEhwb1p2fKpyzOYK4ysAivOUl5IvdrH32MZGRkZmQbB7nR5HA7z/nYdQX4aHNnZ5BnjOBY/lAuHpFLneo0Li0K6gWu1gRX2ByW5pP4eFUJbf986MFyiy2OQuivhLjqGdSTKP4ply/5F7vkMAEK0URiKgoCzqFCQcHgVxuzDxP/ryfobSG0DdVwu+P4ZcNlL1oW0qPpwFRyvOtHm586t9bw2GBIICupe5T4yMnWh0CpNmVUIAoIAgTq1bJCSaTTIRikZn5JjlkK22wSpcbqNQvqYaDYlpnCLouZeqM05BWzIyvMsq21H+Ve/WWWm49mtFrqE9KelsjN2nYuLQg4FFM/Z9/HD/A/Pwq4PS5arO3XvGuDY8cWcPLnUs2wwJFzG0VRE4wk/d4kiBRYHDpfLY5CKD/NHpRTQyUYpGRkZmauC4sIVgOfa7jKZOBt9EznBraFIijIPKNiLxa139JqKtYUoiuQ6pAfQYLXvpb61VGLwGd1n4Od2xllMUhqDxKTbyUi38cf5E6CQckrF/GM4MQO6oI6MrLxzQcDn92VbQYlB6m/vgn8ExCdVMqa6Hc5uz8NmywSgd68taLVNEATfThWUuTZxiSInL5qx2p2eKXtxoX74X6GFcWSuXmSjlIxPsdil/DcdwnS4BOm16E79pBVq/vUzufPptPVTcfbEyxjsJxCEcd5tcnMovJhFjH9bFCjYqNlLhjIXJH2GUuHjr332Men/0FZgjIIbJ8C+NVyqYmpTjvRK5+LFnwHQ6+MwGFrRRJ62Vym5ZrtXqV6lQsBfnvcvcy0hO3FlrgGKShmltCrJOCFarZhVIjbTt2hcaTiAAFUuVrfxQququMBFgdOFu6gWQSrfOzCsjhKjlFZZMq7iXFJW/yDSFSme9U67Dn2LZlUbpNxUeRm4pEGN82Ja3M5OlQ6u/3vN9vUaRuUjdbkcnD27iosXNwGg1Uai00XV+ngyMlVhtjkpsJREACoEAa3s1LymuFKeNuWnGxmfYnVIQsvfZcWFZFByqqR12loYh4rcRqkItUCW5Q/0am9P4W9ffMLW//4HgLtipwBwASm3k8KhQ+FS0zIhseYnUhOKc0kNmAttbgdAZE2pBtV7yhIR65YfoRHhdBZhLjpJYaEkSrt2/RSt5vJVViufxvdeF/9+NCoFWpWSQL3s2ZKRkZG52rC6HXg6tcIT+e2yWClQnsVlO0VxFhhD0mM4i5YA3safS8l2V7bTKxTolL6PwCmuuKdSqDwpEkRRxOFOpeBw38sSaUrmRQMKRzgqP9/muKoWDiusmwwXpJxX6CqfEllXMjM3kHpkrmc5KLCbT48nc+1itjk4lW3G4bZO+2lUNA3SoVYqUDfANUGmMdD4nmsqQzZKyfiUYqHl57IjCk4QwaV2G6VqESlV5JL60yik/9WXJC0/m/oXAIJCgdLdf3GE1h0dutI6+WYMgRULuXqhLgnOr8LoKYejgG3bb8Vul/JN+PnFN0KDVOPBJYqcySnC5nBhc0jf3RCDhghjIxDwMjIyMjL1TvH0vdLTskWbFafgAhGat+5Edlstr6i/gyJQK9SeKXKlEUWRFekX2ZojVZBr1kBTdIqn7+mUJfcpp3v6IIDTrd0iVMHk2oIQBSUanyRer6GGOrkV9n9Sshzaqn6Hcwl5eXs8r2ObP0xMzD98eryG5+rTsFcqeUV2j4YECNCp8NPIj/0yjRf52ynjU6zuC6LeYcfqjpSy66QcA1pFzcVScaSU2t3XpZ5CpztU/LZJT6H42u1tdBulAsOMvjdIAdik80PjX0XDxnvzrs+phfn5+90GKQGVyp9mze6vt759zeWYYmm2Osh152IrRtcA0y9kZGRkZC4PZptklCpdwEK0WCT9IkJ469bMtb0G7lvD9RHXoy5HQ+3NNzMz9YxnuY3BtwnOT+ef5rsT33HefB64dOpeyZQ+p1sLKhQKRHcFPpV/9YxSl+YMrVeKcqT/I9pB3xkQ18dnh3I6iyg0pQLQps18opve47NjNTzlf0bSNMorK1rjSud8voUCi8NjkAo3agkxaNDI0VEyjRz5GyrjUyx2J63sCpSntYhIc5p3KE8AEKqquVgqcifpUwvlG6UcdkmxqdwRVC5c4E6wHtDWh9P2zh+E9/rC4s6Q5xaENYmUuoqrX5hMRwAIC+tH35v3EdNszGUeUePE5RIptDo81VH0aiVxoQZahvtjbOA8UuPGjUMQBARBQKPR0KpVK+bOnYujlOe7NmzatAlBEMjNza2fgVaD48ePM2rUKJo2bYpOp6NZs2YMGzaMw4cPe7Vbv349ffv2xWg04ufnR/fu3VmxYoVXmxMnTiAIAvv27av28Z9//nnatGmDwWAgODiY/v37s2PHDq8+H3zwQVq0aIFer6dly5bMnj0bm81WSa+QkZHBqFGjSExMRKFQMGXKlGqPqZiXX34ZQRDK7JuWlsadd95JeHg4AQEBjBw5kvPnz3u1efHFF+nVqxd+fn4EBQWV23/xd6j03yeflEQlfPnllwwYMMBznJ49e/L9999XOe4vv/ySgQMHEhoailrtz/79h6vcR0amsWJ1ODntzh0Y5u/WNPYiXFkncLmTYbr8pWScepWeOb3m8FKfl8rta09BSQ7C6S0imdXSt/mKXt75Mov3LubTlE8BCHRXBLRZiijIkioGIghYTdL0Pkt+Se4sdU0MZpf6hy5drq2GKs4lFdwC2v8NDPUTxV3aoSWKIvv3T2DTL9eRmytd+3W66Ho5jkzj43LqJ6dL5Hy+BbNNKpADYNSq0KqUtTLuyvqpYq4G/SQIAn/8cajG5+4rZKOUjE8RMnO4s1CNM18HonSROKWQwso7+VX/pnzBZuetk+d586T0w/755LdA2el7TnceBZXbg+igJHRV58v8BYfWQsY+Kcm56JKipAKuPNFRnx7J3Nxd/LH/EVKPvACAf6OstFc+lyOX1+kcM8cuFJJZ4J4GoVYSoFdj0Kp86ymugOTkZDIyMjhy5AjTpk3j+eef57XXXmvwcVREVaIDwG63M2DAAPLy8vjyyy9JSUnh008/pUOHDl7CbsmSJQwbNozevXuzY8cO9u/fz7333suECRN46qmn6jTOxMRE3nrrLQ4cOMCWLVuIi4tj4MCBXLggPbAdPnwYl8vFe++9x8GDB3n99dd59913eeaZZyrt12q1Eh4eznPPPUenTp1qPK6dO3fy3nvv0bFjR6/1JpOJgQMHIggCP/30E1u3bsVmszFkyBBcrpLrqc1mY8SIETz66KOVHmf58uVkZGR4/v72t795tv36668MGDCADRs2sHv3bpKSkhgyZAh79+6ttE+TyUSfPn145ZVXanzeMjKNia1Hs+j4/A9MWi195yMDdWDOhtevw7H2KUS3UcrpL0UXhenDuCvhLpoYmpTbX747d9OYpqE8GRdJc71vo8MvmKXr2M3Nbuae1vfwXI/nOHv4EO88+Hc+mv44EbrmdAsfhD3PbSwTpXtZWOERVMay0w8rpnr3wGrfu09uh21LIPUHaVlX82rQ1aWo6AQXsjZ6lgMDOhMU2N1nx7vcXA690thoaP3kcLnIKrSSWeCuMi4IxLqdmgZtWaemrJ+uMf1UyojfmPWTPH1PxqeEp/yJi5Yo7NmAJJZ62swMKsin2/W9qt3P4pPn+eBMVskKixR90z60vVe74kgphSiQpjhPpiLXs02n19TuJKqDVTK00fEe6PYghMR7iRxBaJwBzL6cnJaWtoDcvJ2e5ZDQvj48Wj3SwFP2RFHE4RIpspUkNVcpBEIMPvy+VgOtVkukuzLSo48+yldffcW6deuYMGECTzzxBF9//TVWq5W+ffuyePFiEhIko+PJkyeZNGkSW7ZswWazERcXx2uvvUa7du1ISpJKbAcHBwMwduxYVqxYQUFBARMmTGDNmjUEBAQwffp01q5dy/XXX88bb7wBQFxcHA8++CBHjhxhzZo13HXXXaxYsYItW7Ywc+ZMdu3aRVhYGHfeeScvvfQSBoOBgwcPkpaWxo8//khsbCwAsbGx9O7d23Oep0+fZtq0aUyZMoX58+d71k+bNg2NRsPkyZMZMWIEN954Y63ex1GjRnktL1q0iGXLlrF//3769etHcnIyycnJnu3x8fGkpKSwdOlSFixYUGG/cXFxvPnmmwB8+OGHNRpTYWEho0eP5oMPPmDevHle27Zu3cqJEyfYu3cvAQHSNWzlypUEBwfz008/0b9/fwDmzJkDUMYbeilBQUGe79GlFH+2xcyfP5+1a9fy9ddf07lz5wr7HDNGirY8ceJEpceWkWns7Die7UlzoFIIDGjbBPuOr8j4RqTAEonYQtI0Np10fwjUVJ6Iu9goZVQ2zJTvIkcRAA+0f4BukVLS7l27vvLkk+oWloxRHcwB1++gAKXLzgPjA9Am3IuigcZYBpsZ/n0nuMcOgF9o/fRdjtArjhb382tJ925foVT6yYabq5yG1k9jH3yIb9d/jb/RyLgJk/l147f0vKGrrJ8qQNZPjVM/yZFSMj5FUZCPLX8FRYUrPOtutpoYFNQWIaF/tfs5XiQJs6ZCJn65/2V8XHs23LmBub3merVT2CHWvz3mlAJ+1vzJQZU0lU5wqVD5sgSqNV/6PywRmt8I/uGXNKieoUNovGmmaoTTWURe/h8AJCQ8R5cunxAcdPV6BquDKIqY7WavP5PNxIGzF9h75jz5NhMWZxFRQQqaBisRFLYy7Wv7Vx+5sfR6PTabjXHjxrFr1y7WrVvH9u3bEUWR2267Dbtdmp47ceJErFYrv/76KwcOHOCVV17B39+fmJgYvvjiCwBSUlLIyMjwiIInn3ySrVu3sm7dOjZu3MjmzZvZs2dPmTEsWLCATp06sXfvXmbNmkVaWhrJyckMHz6c/fv38+mnn7JlyxYmTZoEQHh4OAqFgs8//xyn01mmP4DPP/8cu91erkfvkUcewd/fn48//rjO7x9I3rH333+fwMDASr1zeXl5hISE1Msxy2PixIncfvvtHoFUGqvViiAIaLUlERY6nQ6FQsGWLVtqdaywsDBuuOEGPvzww0q/iy6Xi4KCAp+eu4xMY6I478vYnrEcnHUrw4KtXPj3eo4It7A3/lFPhHm+Qoo0CtFX/tsodPdnVDWMvDc7pHGVTrrusErRvh36DUITEMBxRSZmQTqPHIcZv27dUAb6qsqd6P63knue+aJkkBKUkiOx6wNww8P1PpLCwhS2buvL/gNSNERgwPWoVAbZIFVLytNQDfVXVw3la/2087ftLP5wNSv/u44/9+zgrz//KDMGWT/VD7J+8h2XJVLq7NmzzJgxg2+//Raz2UyrVq1Yvnw53bpJXhZRFJk9ezYffPABubm59O7dm6VLl3osyQDZ2dk8/vjjfP311ygUCoYPH86bb76Jv39VyaVlGhKjKR2TK8+zfKqJmS73/hua31qjfs5ZpQt2W+Eg+/O/Jqr1dGICYsq0S1R1JSa8NVl/FYAWVKIStbkJWkcogsJHQsCSD0W50mutsU5dNZxNyjfvhdWaybHjb2CxpCOKNrTaSGKajbsyRJiPx1jkKOLG1bXzFtWVHaN2lFupqTqIosiPP/7I999/z+DBg1mzZg1bt26lVy8p0nHVqlXExMSwZs0aRowYwalTpxg+fDgdOnQAJM9VMcU3y4iICM88+oKCAlauXMnq1avp168fIIUsN23atMxYbr31VqZNm+ZZHj9+PKNHj/bM6U9ISGDx4sX07duXpUuXEh0dzeLFi5k+fTpz5syhW7duJCUlMXr0aM+4UlNTCQwMJCqqbO4VjUZDfHw8qamptXrvilm/fj333nsvZrOZqKgoNm7cSFhY+blLjh49ypIlSyr18tWFTz75hD179rBz585yt/fo0QODwcCMGTOYP38+oijy9NNP43Q6ycjIqNGx5s6dy6233oqfnx8//PADjz32GIWFhUyePLnc9gsWLKCwsJCRI0fW+LxkZK5ErO7IJj+tivRxY7H8sZ8iXQiHezwuPYDkSsaci65cACL9yveaF1Pgfng0NlBxjCK7FG2kL5Uj1O5OcK7WaPnOtYcLmvySHWrleavne3OxE1EfDHe9X6euKntIPHf+ayyWkqTzERHJFba9avBhpPmVqKF8qZ+sDic7U8+yYuVKXl7yATf26UvzED96/+cjWT/J+umKpMEjpXJycujduzdqtZpvv/2WQ4cOsXDhQk84IsCrr77K4sWLeffdd9mxYwcGg4FBgwZhsVg8bUaPHs3BgwfZuHEj69ev59dff+Xhh+vf0yFTOxxOF6ezzeDO8aQQdGwc6eCnrhcI0gVXsXdZMtxGKZVLEhOlE5y7XE5++c+HrFs4H7VLWm91G8IULjUBpgSu69S2TudTIf+bAy/HwOH10nIdjVKluRyV3+pKRsYXpKd/Snb2ZgBCQm66MgxSMmVYv349/v7+6HQ6Bg8ezD333MO4ceNQqVReodihoaG0bt2av/76C4DJkyczb948evfuzezZs9m/f3+lxzl27Bh2u50bbrjBsy4wMJDWrVuXaVvsuCjmjz/+YMWKFfj7+3v+Bg0ahMvl4vjx44DkaTp37hyrVq2iZ8+efPbZZ7Rv356NGzeW6b8iNJqqp1KuWrXKaxybN2/2bEtKSmLfvn1s27aN5ORkRo4cSWZmZpk+zp49S3JyMiNGjOChhx7yrC/d74QJE6o15s2bN3vtt2rVKk6fPs0TTzzBqlWr0OnKz7EXHh7OZ599xtdff42/vz+BgYHk5ubSpUsXFIqaSYZZs2bRu3dvOnfuzIwZM5g+fXqFeTVWr17NnDlz+O9//0tERAQgvadtm0fQo3Uz4qJCvd5TGZmrgeJIKY0Alv0HAHAGhCCKNlSc9bTLdGQDEOEXUW4/aWYL89PS2ZVnAiDcx6XfF+1exMivR1Jgl1IXlDZKOdz5alRqDQVIRit/UYfW3IQAsXY5riqNfKIGuaSKciDnpPS6DnmkqnO0gnzp82wZP40+fXYQFlYzZ+wVhazzvGgI/VRocXDixDEcdjvXXd8FpSDgp1HJ+knWT4D0noaHBNKjdTO6JTS9IvRTg0dKvfLKK8TExLB8+XLPuhYtWnhei6LIG2+8wXPPPcewYcMA+Oijj2jSpAlr1qzh3nvv5a+//uK7775j586dnh/ZkiVLuO2221iwYEG5FmKZhiHfYqfQ4mDsh79zJLOQuU4XKEAhKMkqknJChesvndpWOVaXi4vFxi2nVL63tFHq3NEj7Pr6SwBioqT5x3mndkFrIy6XyKPvJNX5vCok7aeS136hEFNbL07juqFXJQArwmqTkg+GhNxERHgyERGD6nNYVzR6lZ4do6SqIefyLGSZSsplGzQqWoTVoFpjLY5dU5KSkli6dCkajYamTZuiUqlYt25dlfuNHz+eQYMG8c033/DDDz/w0ksvsXDhQh5//PHaDN0Lg8H7PSosLOSRRx4p13PUvHlzz2uj0ciQIUMYMmQI8+bNY9CgQcybN48BAwaQkJBAXl4e6enpZe4dNpuNtLQ0Bg2q+ns8dOhQL7EZHV1S6MBgMNCqVStatWpFjx49SEhIYNmyZcycOdPTJj09naSkJHr16sX773t770tXqynOU1AV3bp189qvSZMm/Pjjj2RmZtKlSxfPeqfTya+//spbb72F1WpFqVQycOBA0tLSyMrKQqVSefIalPba1oYbb7yRF154AavV6hXe/sknnzB+/Hg+++wzr5D4oUOHEtO6I/lFdsKNOjq2blFetzIyVyzFRimD0+KJMgm5vw/W//0fVtHtiFUIHMyVKiRVlOD8hbR0vssqiUi6zr/m1/zqYrKbWP5niYY3aowEl3I2Fk/fU2m0ON3FZtrYojmZH406IN1n46qSPR/BulL3Ia1vkptfr3eQc2oRRTnSdJ2Q0JvRauqnqt+1TGkNdTmOXRN8qZ+KbA7yLpqw2EsSZ7eKMNIiKgBFJTNCZP107emnTp27ceKiCaVCoFuXNpX2X9vnvvqkwY1S69atY9CgQYwYMYJffvmF6OhoHnvsMY9V8/jx45w7d87rjQ0MDOTGG29k+/bt3HvvvWzfvp2goCAvq2///v1RKBTs2LGDO++8s9xjW61WrNaSB8H8/Pxy28nUjm1pWdy/7HccrlJfbEGyDCsVSqxO6b0P96uZUSrTJhmkNIIAzrKRUjaz5Bn0Dw3DqJDWK6KbAXkoL6nOV++4Q9cZ8xW0uAWqtISXem+uwEioirDb88jN3UFhoVQmNiSkD9HR917mUTUuBEFAp9LjdIkgutApFfhrVejUSoL91OjVjavuRLEQKE3btm1xOBzs2LHDE35+8eJFUlJSaNeunaddTEwMEyZMYMKECcycOZMPPviAxx9/3OMxK52fID4+HrVazc6dOz1CKC8vj9TUVG6++eZKx9ilSxcOHTpUZpyVIQgCbdq0Ydu2bQDcfffdzJgxg4ULF7Jw4UKvtu+++y5ms5n777+/yn6NRiNGY/UiJV0ul9e96OzZsyQlJdG1a1eWL19exqNWk/MrRq/Xl9mvX79+HDhwwGvdAw88QJs2bZgxYwbKSxIPF4fI//TTT2RmZjJ06NAaj6M0+/btIzg42EtQffzxx/zjH//gk08+4fbbb/dqbzQaiYtvSa7ZRlSgHr2PK4nJyDQ0xUnO9RYpN5Og1ZKTbwLRAgigU3I4IofUXClSKspQdpoMwGmLFJ00NCKI/qEBtPRhtWGz3T1WBN7p/w6tglqhVWqxWyycOrif7AxpyppapfMYpU7nBQGgaqBcV+VyvDhSQAClGtr/rd4P4a9wMCbIRlGO5LDUaMIw+vsoUv8aQxCEWqchaGh8qZ8y84sQdJJebNY8DrVazb49u2nZIg6Q9ZOsnySMRiMtW7XCFVCASqFAr/edo6K+aPCnoGPHjrF06VKefPJJnnnmGXbu3MnkyZPRaDSMHTuWc+fOAZJVsjRNmjTxbDt37pwnPK0YlUpFSEiIp015vPTSS56M9zL1z77TuThcIoIAQ1S7mOf/Gd8KfQBQKKQfq1Fj9DIoVUW+w8lOdzh6sEokN69spJTDnSDQGBKKtkj6SiuiIyEvD4XC10Ypd5ljbWDlBqni0ObGFRBVhmqHwF/CwUNTuXjxF8+yRn3lJtrzFS6XSOr5AmzOEu9WmFFLgM7H39F6JCEhgWHDhvHQQw/x3nvvYTQaefrpp4mOjvZEtk6ZMoXBgweTmJhITk4OP//8M23bSqI8NjYWQRBYv349t912G3q9HqPRyNixY/nnP/9JSEgIERERzJ49G4VCUeXUzxkzZtCjRw8mTZrE+PHjMRgMHDp0iI0bN/LWW2+xb98+Zs+ezZgxY2jXrh0ajYZffvmFDz/8kBkzZgCSR/DVV1/lqaeeQqfTMWbMGNRqNWvXruWZZ55h3rx5XHfddV7HTUlJKTOW9u3bo1Z7f5Ymk4kXX3yRoUOHEhUVRVZWFm+//TZnz55lxIgRgCSobrnlFmJjY1mwYIGn1DFQYdWVYoo9eYWFhVy4cIF9+/ah0Wi8BG5pjEZjmXMxGAyEhoZ6rV++fDlt27YlPDyc7du388QTTzB16lSvKQGnTp0iOzubU6dO4XQ6PWNp1aoV/v7+fP3115w/f54ePXqg0+nYuHEj8+fP90qIunr1asaOHcubb77JjTfe6Ll/6/V6AitJhFx83PR0KeriyJETKBRq4uMDq3zPZGQaE8WRUn42SUsoAwIwuaNotbowUsca+e10GonBiXRr0o2uTbqW20+x825y8wiuM/r2wb244p5epadPdB/P+p9Xvs+Bn34AQIECjUKLy51DyoEaBRDo7/Dp2CrFkiv9P3QJdBnjk0NEKu0o3betlvFPERJ6E4JwmaoMyjQq6qKfXKJIQHgUgiDw7YZv6NG3P01DA4lt3oT7779f1k+yfipfP5XzFSirn47hdJppHqumeUzN0+vUJw1ulHK5XHTr1s1TOrJz5878+eefvPvuu4wdO9anx545cyZPPvmkZzk/P5+YmLLJsmVqR3Eo6X03xvJC5muQfhqbO21ZkSBFRkToy8+HUB4FDic3bD9ErjsR6MXCVFy5RwHQqkoZpdxJNVVqDRRJN3+7e1tN5/DWmGKjlKaeROAVGD3ldFrIzpbC1PX65hj92xMW1u8yj6rxYXE4vQxSGpUCP19WhPQRy5cv54knnuCOO+7AZrNx8803s2HDBo+gcDqdTJw4kTNnzhAQEEBycjKvv/46IIVkz5kzh6effpoHHniA+++/nxUrVrBo0SImTJjAHXfcQUBAANOnT+f06dMVztsvpmPHjvzyyy88++yz3HTTTYiiSMuWLbnnnnsAaNasGXFxccyZM4cTJ04gCIJneerUqZ5+pk6dSnx8PAsXLuTNN9/EZJIM4R9//DH33ls24q+8dadPn6ZZs2Ze65RKJYcPH2blypVkZWURGhpK9+7d2bx5M+3btwdg48aNHD16lKNHj5bZv6q8cqXL/u7evZvVq1cTGxtb51K/KSkpzJw5k+zsbOLi4nj22We93i+Af/3rX6xcubLMWH7++WduueUW1Go1b7/9NlOnTkUURVq1asWiRYu8cj28//77OBwOJk6cyMSJEz3ri0tdV8S6det44IEHPMv/+Md0AGbPns3zzz9fl1OXkWlQihOd69yRUorAAMxmKepJo9GTZ5XyYz7S8REGxg0stw+nKHLRbZSK0PjeyVHaKFWavEzpoahjsyTaqLvj3O4C9yX8uiMfE6ooJGFizR3DNUlXVG7Tohw4vRNyT0nL+qAaj6EqrLYsTp58l6H+Uq4bbWBP4uIerffjyFzZ1FY/5ZrtuPTBPPrkTBa++DwXpzzGqPvu4z8ffcTrr78u6ydZP3nW11Q/jR0rTd987rnpvPDCK3U697rS4EapqKioMlbItm3bekpdFls2z58/75XN//z581x//fWeNpcmOXM4HGRnZ1dqGdVqtV5hbzL1i9XuFldqBVnnnOzNnUK+VgXWU1jc5YBbBrWsdn9/FRaR63CiFEBw5qEv3ESkIZIWAS24Pvx6T7viSCmVRkOO0kqG8jTpNknIKRU+fuh3ezdRN/6wSF9gt+dwMXsLouhErQ6mZ4+froLE5mI5r2pPkc1BptmMvdgjrlHSKqL+EuL7gspuaMHBwXz00UcVbl+yZEmlfc+aNYtZs2Z5rTMajaxatcqzbDKZmDNnjlfxioqEQvfu3fnhhx/K3RYWFuYpm1wVw4YN83grs7Oz6devH0uXLmXo0KH4+UlG57i4uBoVINDpdHz55ZeVthk3bhzjxo2rdp+lqY9iCJs2bSqz7uWXX+bll1+udL8VK1ZU+j1JTk4mObnyalPlHftSyrualH7PHA4TZvMxFAoN/v5lk7vKyDRmiqfvaS3Sg5xS5cCc5Z7+pvUjxyq9DtIGVdjHRZsDF1LlolAfJziHio1SdneC88SYGxHOibhK3UGvW/As4Z0SfTeoynTHqpFw5veSZX39RwOcPfMfTp9ejs7tB9Uarqt8h6sWsZKla4P61E9OlwuL3UW2SfptTX7qaWY88yxalYIIo/Q8K+uncdXuszTXgn4qj0vfM7P5OA5HITp9s4p3aiAa3CjVu3fvMqF7qampxMbGAlLS88jISH788UePESo/P58dO3bw6KOS16Fnz57k5uaye/duunaVQpl/+uknXC6XV6I0mYbF4jFKKdmbO5BUS28cwnYAnBoLr938Gj2b9qx2f8U5Em4M9Cc7dQoXLRd5a8jntA7xfvBw2m10DR1IbH57vtDvpFCw4C74glJRddWHGnNsE3z1KNhN4BZnqOuYpPoKtOMUmo7w++93IIqSh9bo3/4KN0j5ZuzZJhsmZ0nEnraBSnVfSezdu5fDhw9zww03kJeXx9y5cwE8IqehCQkJ4X//+x9vv/0227dvp18/OfJPRkam/tGcPs74A5sIOy4ZpchPxRws5UvV+Yd4IqWCdEEV9pFpkxxzoRoVSh/eg/dl7mP+jvnkWKU0CvpLnHHFVfcElwCI+A1uDj9L2/SB/j4bV3l4PXBmuUvSR7SHiDbQ7Ibyd6oDhSbpGCk2P/4otDO54+1V7CEjUzVHM02eaEqAEIOacKN3BJSsn2SuFhrcKDV16lR69erF/PnzGTlyJL///jvvv/++J1u+IAhMmTKFefPmkZCQQIsWLZg1axZNmzblb3/7GyBFViUnJ/PQQw/x7rvvYrfbmTRpEvfee69cee8yUjx9T6tSYHVKF029LZ0CQNA5SW5RudX3UrLcFfeaaFScc7rD2ZXeRia7xYKl0ERL4/UIooAJdy4GSwiIKpqF+8BzfmgdFJSqIBMc5xPPW0NQF0dBTvY2RNGBIKhRq4OJaf5A1TtdIdSHrM8127A7XeCU3uRQfy16teKKyiHVkCxYsICUlBQ0Gg1du3Zl8+bNnkSRl4PQ0FD+9a9/Xbbjy8jIXL18sfsM29Iucuvmz+meIVXWOx4WyOGwUESzFIGtC4sh15oLlB8p5XCJbMktYFtOIQBNtb69t6w/tp6/sv/yLMcHeleTKjZKZdsLOKA+jutPtzFIFNAGNFCC6ks1jSiCtUB6fd8XEFB+ovjaYrVlcu7cAQoK/gRgn8XIdlMBk4XLmND9siCU80qmtjhdLmxO0WOQ0qgUqBQKAvXl/8Zl/SRzNdDgRqnu3bvz1VdfMXPmTObOnUuLFi144403GD16tKfN9OnTMZlMPPzww+Tm5tKnTx++++47r/mxq1atYtKkSfTr1w+FQsHw4cNZvHhxQ5+OTCks7ounXimSY87FUvAeVpdJKnSiq3nEUq478ipIrcLmksRO6QTnWz75Nzu++hSFoGRE3FO4cCG6k2pG0Y7gqFC6D4yr41mVg9VdtbHPVLh+NATGgLLyn1JtE4g3Zoo9g7HNx9Oy5VNVtL62OJ9v4e/v/8YzN4cR4e9EUCkJ8VOjb4CpFVcinTt3Zvfu3Zd7GDIyMjI+p8jmZPoX+3G6RHpa3Qao/gPIvnAIsVgrCEaC49rhMknOvvKMUv/JuMjTqWc8y76suAcl0/ZGJo7kjpZ30D60vdf24vye+6zHOaE8D+6cwwqnBqWhDikO6hL9ZTeD6I400db/tPlTp/6Pg+JPnuUsp+x0kqkbNoeL1PMFuNxeY6VCoE1kQIXtZf0kc7VwWZ6Q7rjjDu64444KtwuCwNy5cz0hiOUREhLC6tWrfTE8mVpSPH3PT+nkovk8iCZEt5ZQhtR8eluO28gVpFJidUpip3Sk1Ik/9kh9C9LXuLj0MEDXHoF0+FtJErt6xeI2SoXEQ1hCtXerqawSfTgbvyqNV9mxT558jzNnV2OxSGLYYPBhnogrlEMZ+dicLgQBVAoFfjo1uiswqbmMjIyMTP1yPt+C0yWiVSlo7q+CbAgfficFyzLBXojabzAKTWuWnVwJYRCoDSwTJQ5wvEjSRdFaNYkGHQ81C/fpuC0OCwDxQfF0jijRV1azGYfNit1dpt3qtIMAAUWRuGz+BOTZETR1T6UgViZcLt1mzYd/3wmFbsuYoABNHdMslIPLJUX0hwT3JjCwCwXZ39T7MWSuDURRxOESKbDYcYkiAgIKAUIMPkhDInNNcKWFQ8hue5l6I7/IgcFWREjuOc47pRwH8Reh+fkT/G/MbTXuL8udJyFIVfKzKh0p5XRI22/7x+PwIzgpmXet1vvAY5j5Fxz+Bi4cdg+mYs/FpRSbeISq7EyXufpeVRFdLpeN4yfewumUvLtqdSihoTc1xNCuCHaeyOY/v53k5EXp/dGqFLSM8K+yCoqMjExVXIspc2WuNs7mFrE1LQuAqEAdYVoBKyAoRexuL54qUslOvx84GLQNgD7Rfcrty+ROkn5f01CmxlVe/rw+KHYO6pQl97O03b+zdsE8RJcLgyqI9kF9SBMdIEBoroP4A2sItJ9DEOo2vb/GD1dZRyCtJIKJ0IS6RVyVwmo9j9VyBpAcTVGRw2nX7lVp4x7ZKCVTO9Jzi7joTmgOEOinpnlIA017lZFpBMhGKZk6k3KugJ0nstEe2M0n/3sH1QYXB6/vBEDmLYks9TtBclT1BdMPWXksOHGOIyZJAEVpSoREaW+h0111z77nD3R0we6UvHiIArqA+veI8dUEyNhXsmyo+XztK/2xqqjotMcg1a3r5/j5xaFWX5n5tHzBa9+l8PuJbACijUpUymstr4SMjIyMTHl8/PspZn55wLPcKsIfsTg5uELE5ZKMTGIbM7v4ll5NezG67Wi6NelWbn8FTskR569smChci1tjaVUlzsH01L8Q3ePuGNKX5oY2pPAbAJqiPCKsJwgcNrTex1Jl5Sx3VBcJg+CGh6Bpl3o79p8Hp5CX3xaQCi0ZA67VSnvlcJkdq1cyhVbp9ywIUoRURfmjZGR8QiP46cpGKZk6M/r/fiOr0MbfTx9BJboQBQFRlHIPbAo9Q4afQKAmsNr9LTpxnv0F0v6C6GT57mc92zSlquk57G4xZ5b+dwruC7qoQBMWUreTKo/CTOn/tkMgshM0r34lwapo7FXrXC4bZ8+uJvOCVDrWYEgkMNBH0yMvNzUUVaIoknahELPNyclsqYLSIzfH0zpcS4DO4osRysjIyMhcYew9VVy1Tkmwn5qxveJwrSw2SrlwuXMfWXQ2sEBCUAI3N7u5wv4K3ZFS/qqGcX5YHWUjpYqTm98w7G5aFXQm9/gFrILkMFRHhNH6o10NMrYyuMdKRBtIGFCvXRcWpgBtAQgM7EzTqLvrtX+ZawenSyQjtwi7S8TmlH7PiRH+aOV0DzLXILJRSqZOOF0iWYWSKGkbIAkjY1cjuPNLnRTOApAQXP3cS0fM0oP8jcIujqR/zFGHZAxqamjqZbwR7S6a+bXGZQ9mt+oYBYK7pLKoQOkLkWZ393/rvyD82sqjdO7cGlKPvOBZDjDKnsFiVu04xXNr/vRad3+vOEJ1AsePH79Mo5KRkZGRaUzkmiVjzbO3t+W+HrEApLrTFIiiC1GUXpu0JrCAv8a/0v7y3Xk3jT6MlDqed5yPDn2EzWnjeL50PyudRqE4ublSrWFt1mbO6rI82zT1NC6vtAJV+YysBdKsOpPbiViDNAtVkZe3j9y8nTgceZ51TZoMQaksZ4pVI4g6aFAauWO1sVJgsZNtLpmypxQE1HKEvcw1imyUkqkTdmdJcvGkkCL+DA0g26Z3JwBQExIcyvWhnbgh8oZq9ecURUzuPiNdqRxzZDIycSS9onvRIayDV9vm6tZ0CLmJ/cJJ9qqOetYrXGqUal8YpaToLTS1mON9hd+vs3Ok3BaBgd0IDLye2OYPX+YR+YBaiqo9JyXvd4BOhb9WRbe4EJoG6rC6k77KyMjIyMgUG6WC/Eqm5RRP37Oe2AnuvJgF6gIAjJryq8V9di6bD05f4LBJcuA11/suEfLKgyv54sgXXuvC/UoSqhenUVBpNKTbL0orRVA5/PFX16Hi3iVUWfil+P6dvhdi9Ig5p6RlfVC9HN9my2L3nr8jitLnpVSWnyLiaqy0LFP/mKwO8orsFLkd+AaNimCDBr1GiUIhf4dkrk1ko5RMnbA6SoxS+VnpHCpV/UWhimb5Hc8TXoPcS4WOkmTlLlchAB3DO9Kveb8ybbVIxqEipBxHersRwRqExhKGqr6NUk4HON3eDHVtEw9WfaNpbLcikymNnNwd5ORsByA+fgohwfU3bbGxU5kMXvB9Ch9sPuYJuZ477Dr+1jm6YQYmIyPjprFdNWVkvJm/4S92n8xht9uBEeavxZmbi/XIEURLES5BycXfvwWk/IwFSknT+KvLj5RafPI8R8yS0yNIpaSVn+8KaeRacwHo37w/ncI7EW2MpnVwa892u9uoplBpPIajG/Kv43hRCJqmF+pvIDWNPApuDtGtoG395LPKzz+AKNpQqQIJDrqBAGMHwF4vfV/NyCmmyudMThHWUs87Rp1KrrInc80jxwjK1AlbKaOU2SQJKYWgRqXriWC4mQBd+Z6+iihwP+BrBAFncVLNUqHiAPkXMklPPYxClL6+FrfxCmsQhsIWhAVHYAypJ5FmLYADn8OelSXramWUKntnLjdRZ2O5g4sgik727ruflJRZ2GxZCIKGwICrNI9ULfhq71msDheiKOUI6Rp79SR8HzduHIIgIAgCGo2GVq1aMXfuXBwOR5363bRpE4IgkJubWz8DrQbHjx9n1KhRNG3aFJ1OR7NmzRg2bBiHDx/2ard+/Xr69u2L0WjEz8+P7t27s2LFCq82J06cQBAE9u3bV+3jP//887Rp0waDwUBwcDD9+/dnx44dXn0++OCDtGjRAr1eT8uWLZk9ezY2m62SXiEjI4NRo0aRmJiIQqFgypQp1R7T2bNnue+++wgNDUWv19OhQwd27SrJ/VL68y/+S05O9uojLi6uTJuXX37Zsz0lJYWkpCSaNGmCTqcjPj6e5557Drvd+0EuNzeXiRMnEhUVhVarJTExkQ0bNlQ6/i+//JKBAwcSGhqKWm1g//7DlbaXkblcZOZbeP/XYx6DVLCfmk7RARz7252cHHM/VlHD1p4v8l3RdPceCgockqYpb/qeUxQ5WSRdG95pF8tP3Vvj58PpPkUOKUI8qXkS464bx4DYAV5pFIqn7wmqkql6F21BAKg0lzEvTsd7YMQK8I+oc1cul5XcvN0AhIUm0bHju2i04VXsJXOtUpl+crpEHE6Xx5kZ5q8lMlBHiH/VBilZP8n6qb71kyAI/PHHoWqfu6+RI6Vk6kTx9D2NUkG+ywA4EBXBqPQ9yddleSUmrw7FORL8VQqsbk9g6Yp7F04e56PpjwPQPWwwAE6X9KDsp4YHF96ERq+qv/DXn+fDb++ULCs1oNJW3L5aVG9sVYar1wOVVbApLEzFaj0HQFhYPyLCB6FU+s4j26io4CNyuUT+99d5LppsZBZIRtM1E3uT2MQfP83VdTlNTk5m+fLlWK1WNmzYwMSJE1Gr1cycOfNyDw0Am82GRlP59cVutzNgwABat27Nl19+SVRUFGfOnOHbb7/1EnZLlixhypQpzJgxg6VLl6LRaFi7di0TJkzgzz//ZMGCBbUeZ2JiIm+99Rbx8fEUFRXx+uuvM3DgQI4ePUp4eDiHDx/G5XLx3nvv0apVK/78808eeughTCZTpce1Wq2Eh4fz3HPP8frrr1d7PDk5OfTu3ZukpCS+/fZbwsPDOXLkCMHB3kbV4s+/GK227HVv7ty5PPTQQ55lo7HECaFWq7n//vvp0qULQUFB/PHHHzz00EO4XC7mz58PSJ/hgAEDiIiI4PPPPyc6OpqTJ08SFBRU6TmYTCb69OnDyJEjvY4vI9PYKJ6eo1UpePPezrRvGoDGbsVxTrq3Wpq3ociViqtIyoGk1GrJseUCYFSXderlOZzY3PftIeFBqH081afYKKVXlUzFc9jt/PLv/6Pg4kUyjqRI685nerYrbWb8i3Jp1qLmFYprRc5JadqeDzh9egWpR14EJK0bENCh8h2ueUQ5dpXy9ZPNJTBy/ONe7SIDdSguQz4uWT/J+qkx6qer6ylKpsEpjpTSqBQUOdWAA4Wg4Lfma8mNOIsgjKxWP6IosujEeXbkSR7CZjoNthzJ0l06Uio7/QwAKrUGnTtfgd1qAT0olQp0hnouoZpzUvo/oj0ENIXWg32T0LGRJIks9oAqcZKXL4m8wIDOdOr4/uUcVqPhp8OZPPzv3Z5lpUKgbZQRrerqq5Si1WqJjIwE4NFHH+Wrr75i3bp1TJgwgSeeeIKvv/4aq9VK3759Wbx4MQkJUjGDkydPMmnSJLZs2YLNZiMuLo7XXnuNdu3akZSUBOC5gY8dO5YVK1ZQUFDAhAkTWLNmDQEBAUyfPp21a9dy/fXX88YbbwCSZ+nBBx/kyJEjrFmzhrvuuosVK1awZcsWZs6cya5duwgLC+POO+/kpZdewmAwcPDgQdLS0vjxxx+JjZUSC8fGxtK7d2/PeZ4+fZpp06YxZcoUz80eYNq0aWg0GiZPnsyIESO48cYba/U+jho1ymt50aJFLFu2jP3799OvXz+Sk5O9vGjx8fGkpKSwdOnSSkVVXFwcb775JgAffvhhtcfzyiuvEBMT4yWYWrRoUaZd6c+/IoxGY4Vt4uPjiY+P9yzHxsayadMmNm/e7Fn34Ycfkp2dzbZt21Cr1Z7zqooxY8YAkpdURqYxU6yR/DRKkq+TfiuOrJJk4Oo7e+DY+J1n+aI6j9MFGUD5kVIFbsedXqHwuUEKwGyXIuD9VCUR4qcP7mff99+41wfQM3wohtOhwEmUooK+HXIxRBsIHNK/fgZR1Wn+8TEUpAP1l8OqmDNnP6bYIKXRRBDR5I56P4bM1Ud5+mnD+q9JvnsMrzz/NL/87zvsNhu3yPqpUmT9JFF3/VQSgNCY9ZM8fU+mTlgLCnhz0xss/+oZLHbp66RUCeyL/gl7cGG1+9lbYOa1E+f4NUfap4O/Hps7h1PpSKni8sPN2ncg2hgKgNMtzNT62uZ6qgRrvvT/zdPgvs+h+4P11/dlnKpXmcbroHdwt2ozKSmzADD4t66k9bXF0QvS9zM6SE//tk2YO6x9tQ1SoijiMpsvy19lEXHVRa/XY7PZGDduHLt27WLdunVs374dURS57bbbPGHFEydOxGq18uuvv3LgwAFeeeUV/P39iYmJ4YsvpIS5KSkpZGRkeETBk08+ydatW1m3bh0bN25k8+bN7Nmzp8wYFixYQKdOndi7dy+zZs0iLS2N5ORkhg8fzv79+/n000/ZsmULkyZNAiA8PByFQsHnn3+O0+ks0x/A559/jt1u56mnniqz7ZFHHsHf35+PP/64zu8fSJ6t999/n8DAQDp16lRhu7y8PEJCQurlmJeybt06unXrxogRI4iIiKBz58588MEHZdpt2rSJiIgIWrduzaOPPsrFixfLtHn55ZcJDQ2lc+fOvPbaa5VO7zx69Cjfffcdffv29RpLz549mThxIk2aNOG6665j/vz5FX5WMjJXGtZSjrtiXBYpylbQ6cjPlgxUKpWRAwkFbO50ET+VH9eHX09CUNmqxcXR5AG+qDBcinf2vcOAzwdwNFcqIlM6UspqlioRBzdtRr++D9Lcvy0USjpNiYLwcfcQNHw4QhWRGPVGUW7J6/A29daty2XDbD4GQM8e/6NP7y1oNd7RXxXdWhsi0r1x4XsD6ZWooURR5HS2GZdCjcVmY9aTj3Hk4B98vW4dv8n6qUbI+unq109ypJRMnbAfOkRirhS9ZFdpABOCWnpIryhJZ3lkWKULcnOdhgHGfJraf2WHRfoRe5cfloxSKrUa0SnixIXL6AcUoNb5YGpZsVGqrmWFG0kkVHXo7e9AIUg3YKXSn+im91zmETU03uLD6RKZ9t99pJwv5IJ7yt4dHaOYeVvbmvVaVERKl671Nsqa0HrPbgS/2hltRVHkxx9/5Pvvv2fw4MGsWbOGrVu30qtXLwBWrVpFTEwMa9asYcSIEZw6dYrhw4fToYM0zaG0t6dYKERERHhCjAsKCli5ciWrV6+mXz+poMHy5ctp2rRpmbHceuutTJs2zbM8fvx4Ro8e7ckHkJCQwOLFi+nbty9Lly4lOjqaxYsXM336dObMmUO3bt1ISkpi9OjRnnGlpqYSGBhIVFRUmeNpNBri4+NJTU2t1XtXzPr167n33nsxm81ERUWxceNGwsLKn9py9OhRlixZUqeQ98o4duwYS5cu5cknn+SZZ55h586dTJ48GY1Gw9ixYwEp9Pyuu+6iRYsWpKWl8cwzzzB48GC2b9+O0l3mffLkyXTp0oWQkBC2bdvGzJkzycjIYNGiRV7H69WrF3v27MFqtfLwww8zd+5cr7H89NNPjB49mg0bNnD06FEee+wx7HY7s2fP9sn5y8g0JMW5Y0obpcQiaUqcQqfDVCBV2tPpm7A74U8ANt31A6H60HL7KzFK+TY6d/Xh1eRZ8wDQKDQ0D2ju2Wa3SvfB4MgojBFR/H5qJwUaE7jA6VKgNjZwwmZrgeelYIgA58k6dedyWdm/fwK5ebsAFwqFDr0+ziuXVkWKTq6+5zuuRA1lsjr49vsf2LzpR3rf0p+fv/+GX37dzM039QFk/VQdZP107egnOVJKpk443GXv04MiUbeQQkoFd+U7g7r8krnlccEmWYjjdbBu90O8u+cVjyAqbdxyFdm5uckI2uZ2Y4PyBMt1P3NOkASJSlWPNtYtr8PbPSDzL2lZW7OE7VcyYSrJKNO583/oe/NeAgI6XuYRNRTli8lD6fms2ZfOXxn5ZBVKRtF2TetopLwCWL9+Pf7+/uh0OgYPHsw999zDuHHjUKlUXqHYoaGhtG7dmr/+kn4rkydPZt68efTu3ZvZs2ezf//+So9z7Ngx7HY7N9xwg2ddYGAgrVuXjdDr1q2b1/Iff/zBihUr8Pf39/wNGjQIl8vF8ePHAcnzeO7cOVatWkXPnj357LPPaN++PRs3bqz2e1FV7gWQxGXpcZQOs05KSmLfvn1s27aN5ORkRo4cSWZmZpk+zp49S3JyMiNGjPCa61+63wkTJlRrzJs3b/bab9WqVQC4XC66dOnC/Pnz6dy5Mw8//DAPPfQQ7777rmffe++9l6FDh9KhQwf+9re/sX79enbu3MmmTZs8bZ588kluueUWOnbsyIQJE1i4cCFLlizB6r4nFPPpp5+yZ88eVq9ezTfffOMlFl0uFxEREbz//vt07dqVe+65h2effdYzllWrVtGmeQQ9WjcjLirM6z2VkbkSsLsjpdTK0pFS7uTgen2p6nUlqQcuLe4CcNHm4J59aQzflwZAqNq3PuUiu2Q4e+vWt/jh7h8I05c8BBbrPpVGy5/nj7BXdZyjLul6JrhUXsab+qeciJVi52E9kZe3l4vZv+J0SlMXI5sM9fE5yVxtrF+/HoPBn5BAfybeP4Lbht7FQ/94AJVKRe9eJRWsZf0kIesn3+insOBAerRuRreE6CtCP8mRUjJ1wl5kRQtYNXqKJ+udRwrtrolRKtMmRUoZBEmg6VV6+jXvR3xgPC0CS+brKrMEwv3isTkcpOtyPesFl5JAv/I9i7Viy+tgkYxiKNQQEl95+/riMk7pO/Dn46gzv/UYpQx+rRCEa9tufTA9j9xzUlnrluEGZg9pT4BeTadmgTXuS9Drab1nd9UNfYCgr3mujaSkJE/SyqZNm6JSqVi3bl2V+40fP55BgwbxzTff8MMPP/DSSy+xcOFCHn/88Sr3rQqDwfuaUlhYyCOPPMLkyZPLtG3evMSzbzQaGTJkCEOGDGHevHkMGjSIefPmMWDAABISEsjLyyM9Pb2Md9Fms5GWlsagQYOqHNvQoUO9jHXR0dFe427VqhWtWrWiR48eJCQksGzZMq+k8enp6SQlJdGrVy/ef987h1vpajUBAdUziHbr1s1rvyZNmgAQFRVFu3btvNq2bdvWMzWgPOLj4wkLC+Po0aMeb+yl3HjjjTgcDk6cOOEliGNiYgBo164dTqeThx9+mGnTpqFUKomKikKtVnu8h8VjOXfuHDabjaFDh9K8dUfyiuyEG7V0bN1A12EZmXrCVqoYTDGixR0ppdV6qtcplKWMUuUUU1mbmcMvOSURQYPCan4Pqi5OlxObS9JiHcM7EqzzTuJrdz84qbVaiqzSuYQ6NZiLmmCw+GBcFRmE3u0D+elgyQe8I/PrMmXd5J6yFxjYjcTEWfgb5BQGjYErSUP1vqkv/5z7GmqNmvAmUTQN8ef3TT9UuZ+snyRk/SRRV/10fZduHM8yoVQIdOtSf1ObfYVslJKpEyaTBX8gRjjHUYtkPCpSSmImIbhsPoSKyHJHShmVUmh6pCGSl256qUw7l7udSWvyrAs93xNBVBLaqZ4qvYgiWN0mthErILprvZQVrg7CZbJJ2e25ZGZu8MQKpbtC0Molj/k1NQv1EckL2yYqgJsTa/+eCIJQ6yl0l4NiIVCatm3b4nA42LFjh2f63sWLF0lJSfG6UcfExDBhwgQmTJjAzJkz+eCDD3j88cc9HrPSc97j4+NRq9Xs3LnTI4Ty8vJITU3l5ptvrnSMXbp04dChQ2XGWRmCINCmTRu2bdsGwN13382MGTNYuHAhCxcu9Gr77rvvYjabuf/++6vs12g0elVPqQyXy+XlETt79ixJSUl07dqV5cuXo1B4G4Nrcn7F6PX6cvfr3bs3KSkpXutSU1M9iUzL48yZM1y8eLHcEP1i9u3bh0KhICKi4muly+XCbrfjcrlQKpX07t2b1atX43K5POecmppKVFQUGo0GjUZDXHxLcsw2ogJ16PXXSPVPmauG4kTn2vJySun1OOySpimOlFIIClRCWWmeYpL2ud7oxwsJ0XQJ8N29xOK0eF7rVCW/OVEUyTp9ktxz6YAUKZWbKTnvDKYAFOYW6BTenv764xJxJLrg3IGS5XqIZDqfuYGLF38lI0N6wAwK7EqA8bo693tN4UPH6pWgofKL7BTZnKh1epq3iCfMX0uwnwadWiHrp0qQ9ZNv9FPLVq1wGgtQKQT0tXBONzSyUUqmVuQV2fls12lyj5ynffNBHIsfisv8I3CSgEAj/73jv7QOqb53qXj6nr9CipjSKb0fPtJTD3Ph5DEKzmUSRhg2tR0cgCjQMkokqkcibXpWXumg2jhtILov+vFJoA+qn34r4zKHhpvNUqiuqAxk7mkrCeEdGHNZR3T5cLpECi0lCQfbRQXQJTaIcb3iLt+gGgkJCQkMGzaMhx56iPfeew+j0cjTTz9NdHQ0w4YNA2DKlCkMHjyYxMREcnJy+Pnnn2nbVsq/FRsbiyAIrF+/nttuuw29Xo/RaGTs2LH885//JCQkhIiICGbPno1CoahyysSMGTPo0aMHkyZNYvz48RgMBg4dOsTGjRt566232LdvH7Nnz2bMmDG0a9cOjUbDL7/8wocffsiMGTMAySP46quv8tRTT6HT6RgzZgxqtZq1a9fyzDPPMG/ePK67zvvB5FJRAtC+fXtPBZRiTCYTL774IkOHDiUqKoqsrCzefvttzp49y4gRIwBJUN1yyy3ExsayYMECLly44Nm/quotxZ68wsJCLly4wL59+9BoNGU8eaWZOnUqvXr1Yv78+YwcOZLff/+d999/3+NdLCwsZM6cOQwfPpzIyEjS0tKYPn06rVq18ng8t2/fzo4dO0hKSsJoNLJ9+3amTp3Kfffd56kMtGrVKtRqNR06dECr1bJr1y5mzpzJPffc43mfHn30Ud566y2eeOIJHn/8cY4cOcL8+fPL9dyWJjs7m1OnTpGeLj0cHzlyAoVCTXx8YJXvmYxMQyCKIqeyzZy8KE0BK51TypkvOTqU/v443AmOBbdRSqvUlnvdM7kjroZGBNE9sPpR6LWhyFHkeV1ai+3ZsI5NH0lJfRUo0An+WB1mUIFDJUUqGcOrn0u0briNH7F94PaFcG4RnKn99BSXy8GhQ0/hcpU87IaF3Vr70V3GqHeZy4PLJXIy24zF7sTlcs840CjRa6RIFlk/Scj6qeH1U+mrUVn9dAyn00zz5mqaNw8us29DIhulZGrFR9tOsHBjKgPOZBMVLIUEiqIkrjQRGtqGVi8JdKHDSarJQppZEgIBirIV96xmE/+d8zROh4PEgG4Q2g5r1nkIAkFU0qoFJA5sXl73tcNWEoWFxrfir1IaRNOIHDn6MiaTlIhQVDchx3mGhqik0lhZue0En4SfgjjJa3N312b8o0/Zkq/XKsuXL+eJJ57gjjvuwGazcfPNN7NhwwbPjdLpdDJx4kTOnDlDQEAAycnJvP7664AUkj1nzhyefvppHnjgAe6//35WrFjBokWLmDBhAnfccYenpPHp06fRVVG8oGPHjvzyyy88++yz3HTTTYiiSMuWLbnnHik5f7NmzYiLi2POnDmcOHECQRA8y1OnTvX0M3XqVOLj41m4cCFvvvkmJpN0Dfj444+59957yxy3vHWnT5+mWbNmXuuUSiWHDx9m5cqVZGVlERoaSvfu3dm8eTPt27cHYOPGjRw9epSjR4+W2b+qB5vOnTt7Xu/evZvVq1cTGxtbaanf7t2789VXXzFz5kzmzp1LixYteOONNxg9erRnzPv372flypXk5ubStGlTBg4cyAsvvIBWK00r0mq1fPLJJzz//PNYrVZatGjB1KlTefLJJz3HUalUvPLKK6SmpiKKIrGxsUyaNMnrfY+JieH7779n6tSpdOzYkejoaJ544gmP4PV6L0q9XrduHQ888IBn+R//mA7A7Nmzef755yt9z2RkGoJ3NqXx2vclD19eOaXcyc0VF3bhbCI57wStdK0rL58UQJFLMkrplb6bUp9jyeGdfe9wznxOOpZK7/Vgm3X6hDRGg4EB4fdjOBLAcbWUnN2otnP9/W1o1sY3Va/KUHxBCIyGiDagqltydZstE5fLiiCoiG8xBYOhJUFB3areUUbiGs655RJFTFYHNodLumcLkhE6KlCPUe9taJH1k6yfLod+Ks2l+mnsWMmI9dxz03nhhVcq3dfXyEYpmVpxKlvy/sUHabDm5GEr/AaX8gQAqksuwhUhiiL9dqZw0mLzrAtxh36XFmZF+fk4HQ4USiVhodK8XmV+jtsopUATVo+5pADcCT5RqEFZvXOpisZakcXpsnDqVEk5U1ETDZy5fANqBKTnWcA9S8+oU9G39bU3jXHFihUVbgsODuajjz6qcPuSJUsq7XvWrFnMmjXLa53RaPQkkgTJQzZnzhwefvhhz7qKhEL37t354YfyczWEhYV5yiZXxbBhwzzeyuzsbPr168fSpUsZOnQofu4pA3FxcTXygOt0Or788stK24wbN45x48ZVu8/S1NYbf8cdd3DHHXeUu02v1/P9999Xun+XLl347bffKm1zzz33eMRtZfTs2bPKvi6l9HvmcJgxm9NQKDT4+8u5X2QaB3+edU9r0yjx16m4s3M09nPnyFm1GvNeqVy7UjBhF93aQCc5wCoySpndkVJ6he+0xIbjG/gk5RPPcoSf91QSu3vaYe9hozFsl3Kz2JHGZfCz0rZX2YpfPsPljmbW1S2HlSi6uJC1kbNnpbL1Wm0UcXGP1ro/OSG6N9dCvFhWoZVzeSVTXl9d/B6tI8ufiibrJ1k/NSb9BNJMGYejEJ2uWcU7NRDXdhZjmVpz0SQZkrpHGykUD+Oyp4C7ooyqmqHlRS7RY5BqplMzJDyIEIVkYS8dKeWwS220fgZaNpPm+ArFhi9RgV+7enoQ+eMTWNROSp4JoKnfuetSvqjSF8HLf7sWXdI0xZCQm2gZ/xSuoKoTEl6NFFjsZORLxkgBEZVb+I/uEUvLBpuOcO2yd+9ePv74Y9LS0tizZ4/H61QschqakJAQ/ve//9GvXz+2b99+WcYgI1MeL730Et27d8doNBIREcHf/va3MtMhLBYLEydOJDQ0FH9/f4YPH8758+e92pw6dYrbb78dPz8/IiIi+Oc//4nD4UCmfjDZpHvrnGHXsW1id+7Q5nF09Gi+/XE93xVksqlNc/5rbE+eVdI3FoOkacL15TtBitxGKb9SSW3rm3x3FbvOEZ2Z3n06byZ5P5DardKDt0qlw4KNdGUO59wV6tRq342rPKeeCKDUSikWqL0xKCPjSw4ceIzsbGnqX2Bg5yr2kJGRcLpELHYnZqv0W9eoFBg0KpoElG9Y9hWyfpK5WpAjpWRqxP9tPsbvx7P56XAmaqedANGGE0mUOFo1ZbPxD+5IjK6iFwlTqWR9Lzc9z7b0Law9LZU7Lu0tdNrtROnjuSHkNs6kW9im2U9RqHRMQVSgqi8xtG8V5J8tWY7sWD/9lqYq3dQAeQhEUaSg4JD02u3lbNvmJXS6KA4f/87nx2+MTPvvHwxKu8hw91dJr1Hiq3StMuWzYMECUlJS0Gg0dO3alc2bNxMWVk/FC2pBaGgo//rXvy7b8WVkyuOXX35h4sSJdO/eHYfDwTPPPMPAgQM5dOiQp7rS1KlT+eabb/jss88IDAxk0qRJ3HXXXWzduhWQpojcfvvtREZGsm3bNjIyMrj//vtRq9XMnz//cp7eVUORO0+mQXSQNigZZ24uGYEGssLK5jkRFIH8YpWipyIN3tvTzBZ+yS7gtNuB58tIqeIE59eFXceYdmWzShZX3VOq1Hyh3U6RUBLlrtH49nGiWBl5DFRKDcw8U+dpe7l5uwBQqQJp0uQOmsc8WKf+ZK6N5A8ul0jq+QLsbmMxQFSAjkC/un0fa4usn2SuBmSjlEy1yTPbmffNXwDccO4Qz/2+ErXLiatTIgCWlhGcVJrRqauX4d/s8fwpeG7rM5jsJbmcQnQleQkcNhvNDK3RKQzsUaSQpSgpi6x0+qFU19Mt0Oru97YFENsbwqpfPfBKIi9vNwcPTgakEGC1OgSttsnlHdRlwupwcj7PyoGzeQxyS6noYD1dmofwk62oir1l6ovOnTuze/flKfUsI3Ml8d133o6DFStWEBERwe7du7n55pvJy8tj2bJlrF69mltvlRI1L1++nLZt2/Lbb7/Ro0cPfvjhBw4dOsT//vc/mjRpwvXXX88LL7zAjBkzeP755z1VnmRqj9kdKWUw5+HMzQXAFSolkW3ashVFWS0widEIghoEPwoMHxJpiGRIyyGePkRRZPT+Y5woKjH+BKp8F5FkdUpGp0sLzeSeP8fFM6cozMmWVrgUHoOUyq5HcGlpHhjks3FVSB0MUoWFKeQXHCAj4zMAEhP/RVTk32rcz+WPd29sXBvviM3p8hikVAoBtVKBQXt5Hqll/SRztSAbpWSqTZZJEix+GiWPBeVJBikAJPFl0wrgAHU18zAVV5MxKBQeg9T4DuMxaowMiS8RZg67DaW7RLJLawYntHE4OF/QDaXVH6WqnmahFhulmrSHJhVXX/AJDZiHoLDwcKnDqkhM/BeCcO3N5LU7XQxY9KsnPxrur+24nnGcaOLPT6dlo5SMjEzjJi9Pyl0UEiI5cnbv3o3dbqd///6eNm3atKF58+Zs376dHj16sH37djp06ECTJiXOiEGDBvHoo49y8OBBrwSwMrWjyG2U8nNX8lUGBhL46KPwnw8xBgaSnd0BBeDfs4g1F1YR2z6Ut/p/7NVHutXuMUgNDA0g0aCjqw8r71kcUqSUTlVilLKazaz850QcpUqwO92FaZSiQEhWF0RBicHfgs9w2spG39RBMzmdFnbtHoHTWeIIDQzoVKM+qjq8eI0YZ641imwOMgus2J3S56tTK0lsUn7+KBkZmZohG6Vkqk2uWRJHYf5a2qi05ACB942AA1LYuVXlBId3PqjKKHRIYk2vhOLH/8c6PVbGqOW021EJ0joHUkh8vrUpKquUaFOprqNBxZQF5w6A+aK0rL16bzBWWxZ5eXs8y0qlH5FNyuaRuhYEVUauxWOQ8tMoiTTqwFTFTjIyMjKNBJfLxZQpU+jdu7en7Pa5c+fQaDQEBQV5tW3SpAnnzp3ztCltkCreXrytPKxWK9ZShon8/Pz6Oo2rEpN7+p7OJVUlFrRarO6qVEqFpFk0iiKKrj/N0X276eQ3vEwfOXapjwiNio86xvt8zMXT90pHSplyc3BYrQgKBdEt2hJraIc91W2UQoUoKBFEJ/5tfDg+U1a9dmezXcDpNCEISkJCbiIosBt+fnKF3bpxLUzagwsFNvKK7J5lbX0c4r+qAAEAAElEQVQ5xWVkLhuN57crG6VkqsRid7LlSBZr/0gHIMhPjctdaUIsNXWuUCwEIEATUGWfF2x2DhRKpiijUqAIUApKVIqSr6TTYefQrz9z+uB+IhRSFZgih1RuNd8RgB5QaZVo6hIyK4rwXl/IL1Vxro7VXMpFEC57VPOp08s5cmSee6mCinKN59rkM35JvcCavWfJdifrbx7ix6/Tk+CrNfDH5R2bjIyMTHWZOHEif/75J1u2bPH5sV566SXmzJnj8+NcLRQ/uPoLTooAQafDnJcLwLFDDtCCXmXiRJFkcAnVl60inOd23Plyyh7Akr1L+Pn0z2QUZgDekVIOmztCPiCQ5L6PUvDzaTKFPNCCSlRwXbcAohJDCejgQ6OO3VSNfJvVEy92ez6FhVJhAI0mnOs7Lavj4GSuBQosdqwOF0VuQ3GYvxa9RonxMk3Zk5G5GpF/TTJV8s6mNBb/eMSz3CbSiHhcEiouipOVqzhTdAYUEKavPLneEZOFW3Yexh39SoxWIBNJCJWuoHJ05w5+eG8xAFFRowCwmQrBH/RKJzffm0hEXEDdIqXs5hKDVEQ7aNYNAmNq318NaICc5l5cuLARAEFQo9Nf/tKfl4t/rf2TkxfNnuUWYb6bDiEjI9NQXP3RnaWZNGkS69ev59dff6VZs5LreWRkJDabjdzcXK9oqfPnzxMZGelp8/vvv3v1V1ydr7jNpcycOZMnn3zSs5yfn09MTMPcK680LHYnFrs7Z6bbKKVQK8k5uA8Ah2hEBTSNKGB3kRShXZ5uKnBIfRh9aJRyiS4+2P+BV3R0bECs53WxUUql0XD2XDqHVKkUKCSHouiCvuO7+WxsuFyQsQ+yjgBGxDqmOSgoOMjOXXchipJhQa0OqWIPGRmwOZwcz/IOow/yU+Pn4+T+MjLXGvIvSqZKzuZIAqR5iB8JEf480rclrp+ldc5TWwEDCCou2jNBC038Kk+avTPPhFMEjSAQrlEQTxq7KZtc05yXA0BIRDQGlZQ83YELEPDTK+lwSz0YVmzFNxoBJmwFhY9CcYUKF7wQvV7X30OWKLooKDgIQPfua8iyxMD/NtVb/1cCB87kcSSzwPN9nto/kQC9ioHty38Ik5GRuQK4BqI7SyOKIo8//jhfffUVmzZtokUL7wiVrl27olar+fHHHxk+XJoSlpKSwqlTp+jZsycAPXv25MUXXyQzM5OICCkKeePGjQQEBNCuXfn5FLVaLVptw5Y6v9JwukRmfLGfvzKkqY1KhYDeKRlAhJwUzHmSxgnWF9K3136aDbmH5ds2ARCuLxu9nOOQ9vVlpJTFYfFojbf7vU2kIZLE4ETPdofNndBco2VT+k4yVTmebUrRx1OXfnoBtiyCghDgsertU4m370LWT4iiA0FQoVDoiIwcVj/jlLkqEUURm9OFyerOC6cQ8Neq0KqU6Our6reMjIwH2SglUyU2d0Lysb3ieLCPJIBP5Up5J5z5p4C2gIqOTTrQo2U3mhkrNxaddJc2/ntUCLv2j+MzcyYAfmo/r3YOq53B0eMJ0ISSI5g4J5zH5qcB7GjDI+rn5IqTm2sMvjNIlcL7+cn3nn2Xy8bBg09yMftXnE4TCoUOg18rsizWqne+irhQYOXOd7bicEnvuUohMDGpJSpleZ/5tRVxISMjc+UwceJEVq9ezdq1azEajZ4cUIGBgej1egIDA3nwwQd58sknCQkJISAggMcff5yePXvSo0cPAAYOHEi7du0YM2YMr776KufOneO5555j4sSJsuGpDqScK+Dz3SWpAFqGGxBtFgr8YzgZ1YEcRyFwloiOnWg6aigZ5vOcN0sRaqUjpc5YbDz+10mOuhOKx+p995kUOUoKevSJ7oPikqInJUYpDUUOaTzNzH5ku8KI9bVR6rzkSEMXWKd8j6LowuWykpvzGwAJrZ4hJmZsPQxQpgwNPQXAh5zLt3ChoEQr+2lUxIbKkfUyMr5CNkrJVIndHUKucSf0c7mcOM0F2BUKcnSxYJOmhE3q8SgdmlxXZX/FyTuDVQKZboNU25C23NP6Hq92QoGLAE04Nhys0fyOU3B5tmnV1avwVymWfMhzC0iNf937qwZiRW59H1Xfy87ZRuaFbz3LTSJuQ6FQAdeWUerERRMOl4ifRknX2GAGtmtSjkGq7GdwFekrGRmZq4ClS5cCcMstt3itX758OePGjQPg9ddfR6FQMHz4cKxWK4MGDeKdd97xtFUqlaxfv55HH32Unj17YjAYGDt2LHPnzm2o07gqMbuTm0cYtbx0VweujwnC9e06did0wSyeAIeUd3OlbTnT/zPHKxq6dE6pDRdy2Z5bYoXp4cOKe8VGKZ1S52WQEkWRi6dPknX6JCAZpexOKU9WWH4EVpoTEJbrs3EBYJUizoRu/4Dvq9Asbg0lXHIfdzot/L5zCGbzMc+6wEDfV5e8ForFVIcr+V0ojpBSCAIKhUCwXz08d8jIyFSIXDZApkqKI6W0SgVbPvmI10f9jS81GjZ2aMH2fCm6SVQFEu5feS6pYgrd/ekVJber/9z2H4YnelefcblLKhcqzTgFF4LLRZDCiNbchBBj5VMEq+TgGnglDj4aKi1rrk7vR2HBXwDodc3p2vW/tGkzz7vBlawYqsHXf6TT++WfeHDFTgCuaxrIvx+8kTE94y7vwBo548aNQxAEBEFAo9HQqlUr5s6di8M9naS2bNq0CUEQyM3NrZ+BVoPjx48zatQomjZtik6no1mzZgwbNozDhw97tVu/fj19+/bFaDTi5+dH9+7dWbFihVebEydOIAgC+/btq/bxn3/+edq0aYPBYCA4OJj+/fuzY8cOrz4ffPBBWrRogV6vp2XLlsyePRubO0KhIjIyMhg1ahSJiYkoFAqmTJlSrfE4nU5mzZrldbwXXngBsZQF9ssvv2TgwIGEhoZWeL5paWnceeedhIeHExAQwMiRIz15iWpyXvv37+emm25Cp9MRExPDq6++WuU5/PrrrwwZMoSmTZuiVhlYv/6nap371YAoiuX+FRukAHQ6HW+//TbZ2dmYTCa+/PLLMrmiYmNj2bBhA2azmQsXLrBgwQJUKtlPWReK80gF+2lIijWi3v4rhb/8RJErFdyFYCwagUMBJz1GC71KT4+oHjQ1NPX0k+k2bt0eHsj33RIZFhHkuzE7LJ5xlGbbZ6tY+c9JbF69ApCm79lFSZMVaaVI9cDO7X00qDzIPAyFktMSjaGUVKmZaDGZjngZpIICu2M0dqiXYcqUwkeO1YbG7nRxNreI09lmrHbp+x4fZqBdVABBftWrLC7rJ1k/XSn6SRAEvv76h2qde0MgG6VkqsTuNiKpVQJHft9+SfiICgQdVkMMwbrgavVX6K4oo1OURD6pFWU9EE53RJXD3U7pFIg0dSQgvzVqXR09Fie3gVicpF2AdkPr1l8VNPT9Oj9/PwcPPknasQUAREYOIyiwKwpF9aYBiFdJiNB/d53mbG4R+Rbpu9Q5Nqha+10d8qpuJCcnk5GRwZEjR5g2bRrPP/88r7322uUeloeqRAeA3W5nwIAB5OXl8eWXX5KSksKnn35Khw4dvITdkiVLGDZsGL1792bHjh3s37+fe++9lwkTJvDUU0/VaZyJiYm89dZbHDhwgC1bthAXF8fAgQO5cOECAIcPH8blcvHee+9x8OBBXn/9dd59912eeeaZSvu1Wq2Eh4fz3HPP0alTp2qP55VXXmHp0qW89dZb/PXXX7zyyiu8+uqrLFmyxNPGZDLRp08fXnnllXL7MJlMDBw4EEEQ+Omnn9i6dSs2m40hQ4bgcrmqfV75+fkMHDiQ2NhYdu/ezWuvvcbzzz/P+++/X+k5mEwmOnXqxNtvv13t85aR8TUW90OsTq3gwuIlnH18MlmbNiMiXav0w5P4ou9JkuL6sfZva9k3Zh+/j/6dDwZ+gFJRkqPmgtso1cnoRyejn1cBmPoivTCdf239F6/slH7jpSvuAWSekAw5OoM/zaOuo3N4f0+0usFlpsugWDr0j6v3cWG6CIvawTs3QnaatE6tr3yfcig2+lmt0oOe0dieW/oeoEuXj33yfhZzaaTWNckV/BZcLLRxsdBKjtmGUxQREFCrav6oLOsnWT/J+qnmyG4xmSqxFk/fUyqxWaRQ7xhbPJkRtyEIGlLCfudU5B9oldUzeBQ43cLNLXA0Ck25IkF0CzynUvrfpdByMU8Sbnr/OhqlihOc9/sX3DStbn1Vk4YUK8eOvc7F7F89y0FB3S8Zy9XN2n1nOZFl5vA5KWfYy3d1oFtcCC3Dr86IOF+g1Wo90RWPPvooX331FevWrWPChAk88cQTfP3111itVvr27cvixYtJSEgA4OTJk0yaNIktW7Zgs9mIi4vjtddeo127diQlJQEQHCwZsMeOHcuKFSsoKChgwoQJrFmzhoCAAKZPn87atWu5/vrreeONNwCIi4vjwQcf5MiRI6xZs4a77rqLFStWsGXLFmbOnMmuXbsICwvjzjvv5KWXXsJgMHDw4EHS0tL48ccfiY2VKkrFxsbSu3dvz3mePn2aadOmMWXKFObPn+9ZP23aNDQaDZMnT2bEiBHceOONtXofR40a5bW8aNEili1bxv79++nXrx/JyckkJyd7tsfHx5OSksLSpUtZsGBBhf3GxcXx5ptvAvDhhx9Wezzbtm1j2LBh3H777Z5+Pv74Y69qbGPGjAEkb115bN26lRMnTrB3714CAgIAWLlyJcHBwfz000/079+/Wue1atUqbDYbH374IRqNhvbt27Nv3z4WLVrEww8/XOE5DB48mMGDB1f7nGVkGgJLscNNrcSeng6AomlxAnM1eaEi9iKR+MB44gPjK+wn0yZNkwv3YXWvL458wVdHv/IsX1qgxlYkVajt/9BEtNtU5B/PBbfEC1Vk0/POlr4Z2MUjYCsEQQH6YAhvA0GxwNlqdiAZo2y2i2zZ2gerNQOQosWVSr/KdqwVV4sD71on12wjq9CGzf0bDtSr8dMo0amVqMvNPVo5sn6S9dOVp58u/7VMjpSSqZLiSCmNSoGtQJrj78KIIGho3iqVnxNWYY3KqawLAL46n8Pde496ciXoFdLFX6P0DonNOn2SPRvWkpcuiQmnIP1QBFFByzi4cWg87W+KrttJ2aRQejTGuvVTzwj1JHAKTakAxDZ/mE6dlhES0ruKPdzHvwrMVYfS83nik328/r9UT5LKHvGhtIrw96mHtCpEUcRudV6Wv/oQznq9HpvNxrhx49i1axfr1q1j+/btiKLIbbfdht0uPUhNnDgRq9XKr7/+yoEDB3jllVfw9/cnJiaGL774ApCqgWVkZHhEwZNPPsnWrVtZt24dGzduZPPmzezZs6fMGBYsWECnTp3Yu3cvs2bNIi0tjeTkZIYPH87+/fv59NNP2bJlC5MmTQIgPDwchULB559/jtPpLNMfwOeff47dbi/Xo/fII4/g7+/Pxx9/XOf3DyTv5Pvvv09gYGCl3rm8vDxCQnxTrrxXr178+OOPpKZK14g//viDLVu21MjIY7VaEQTBKym2TqdDoVCwZcuWCve79Ly2b9/OzTffjEZTcg8YNGgQKSkp5ORUfU+RkWlMFE/f06mViFbp3uOf1EXaKCixIDn1Li3qcilZ7kipcI3vctgU2CSHTe/o3jx343O8fPPLXtttRdJY84usrCz4gS+1JVNmXMqqoyxqTXHxmcgOMP0YPLABlDU3zplMRz0GKYCoqLvqa4TA1e/Ya4z4UkNlXDRTUGjFanHgtDkJVKsI0qjRCYp60VCyfqo7sn66+vWTHCklUyU2hwutw4r+zz3YrVYQBFxKyZhjM0oXqhBd5RcAURSZdeQsWe4peUalgta64ggsb6PU2tfmkXs+g2i/BGgCTqUIDkBU0r69ipjb4urhpNyRUpczl1Q9G6VFUcRkOoLFcharVarIFBv7KGp1QP0eqBFjsTs5kimJ2iYBWvq1bULbSCNxYZc/Qsphc/H+E79clmM//GZf1NralTAWRZEff/yR77//nsGDB7NmzRq2bt1Kr169AMlbExMTw5o1axgxYgSnTp1i+PDhdOgg5e2Ijy+JCCi+oUZERBAUFARAQUEBK1euZPXq1fTr1w+QkjY3bdqUS7n11luZNq0ksnH8+PGMHj3akw8gISGBxYsX07dvX5YuXUp0dDSLFy9m+vTpzJkzh27dupGUlMTo0aM940pNTSUwMJCoqKgyx9NoNMTHx3sESG1Zv3499957L2azmaioKDZu3EhYWPk5+I4ePcqSJUsq9fLVhaeffpr8/HzatGmDUqnE6XTy4osvMnr06Gr30aNHDwwGAzNmzGD+/PmIosjTTz+N0+kkIyOj3H3KO69z587RokULr3ZNmjTxbCv2CMvIXAmUnr7nsklGKYez2ICjwoIUfXRp/qZLaYhIKatTGl/XiK7c06akyMyJfbvJzjhLYfZFAHLNZkREBFFAgQKVJQxt9VLr1HJgkuMTbWndIlClYLrE4WSzXQAttIyfRtOm96DRhFawo0z94rtoi4bUUNsuWa6thpL1k6yfLkXWTxUjR0rJVMjPKZks3ZRGq32/8sU3swiaPQ3RfePPDpWs1CfV2QBV5pPKsjs8Bqk32zTn226JqJCE16X5pApzs/FXBdE8ui0AzkzpRyqIClS6Oqqhn+bBijvgtDvUstEkOC9n+mINb+7nz3/Njt8H88f+8QDodNHXlEHq9Y2ptJn1HU98sg+ArrHBzL+zQ82Tmsvh+IAkBPz9/dHpdAwePJh77rmHcePGoVKpvEKxQ0NDad26NX/9JSXVnzx5MvPmzaN3797Mnj2b/fv3V3qcY8eOYbfbueGGGzzrAgMDad26dZm23bp181r+448/WLFiBf7+/p6/QYMG4XK5OH78OCB5Hs+dO8eqVavo2bMnn332Ge3bt2fjxo3Vfi9Ke6IqYtWqVV7j2Lx5s2dbUlIS+/btY9u2bSQnJzNy5EgyMzPL9HH27FmSk5MZMWIEDz30kGd96X4nTJhQrTFv3rzZa79Vq1YB8N///pdVq1axevVq9uzZw8qVK1mwYAErV66sVr8geVA/++wzvv76a/z9/QkMDCQ3N5cuXbqgUJSVFRWdV3XOoU3zCHq0bkaLqDDPOcjINEbyLZKmMWhViFbJGGWzS/8LghKzO9m5Tqkrd//PzmUz/s/jnHdHSsXWVe9UQnHVvdJpF3LPn+OLl2bz84r3MeflSivdua5auprQLqs9AXmtUapr5+ColP3/hS/Gw3Z3lUht7bSLRSnlmikqOg1AcHCvy2KQkqf1XdvI+qkEWT9505D6KSw4kB6tm9E9IfqK0E9ypJRMuWQWWPjHip2IIkw9cxil6MKqKi1E1BRocvhM/BqoOlLK7Km4p6BfkIutZ7/nZL5UavjSXFRt/G6gfVAvCpxF7FAdIVuXB4CAAr/45rU/KdNF+PWSRIPBcbXvr0aUF+xdv6Ilv0C6ealUgWg0YbSMf7Je+2/s/HCopHKFSiFwa5s6VmisZ1QaBQ+/2feyHbumJCUlsXTpUjQaDU2bNkWlUrFu3boq9xs/fjyDBg3im2++4YcffuCll15i4cKFPP7447UZuhcGg7cRubCwkEceeYTJkyeXadu8ecm1wmg0MmTIEIYMGcK8efMYNGgQ8+bNY8CAASQkJJCXl0d6enoZ76LNZiMtLY1BgwZVObahQ4d6ic3o6JIpxgaDgVatWtGqVSt69OhBQkICy5YtY+bMmZ426enpJCUl0atXrzKJKktXbynOQVAV3bp189qv2IP2z3/+k6effpp7770XgA4dOnDy5Eleeuklxo4dW62+AQYOHEhaWhpZWVmoVCqCgoKIjIz08uxWdV6RkZFeFWcAz3JkZCRxcXF8t2k7eUV2wo1a2rWsw/VfRsZHHD6Xzye/n+a3Y1J0UdNAPaJJ0i22sweAEARBRZFLMgRdmlQcwORw8uTh09jdxozmOg1Bah9GSjmsZcZSmCONX6PX0+L6boTFxFKIpPtUopL8IgVoQKWr53G5XLB2ErijtwAIrDxFQ3k2H0eISL42DezS+DSaMIxGH1UIlLkE309orC8NdT6/iGyTDZdLcv6GGLTo1VL+KL2mfINrTTWUrJ9k/VQZDaWfft+5m2NZJpQKgT4dW1V7fJcL2SglUy5ZBTZEUQpDb2t050m4ziXZUQQtX3RciMMvixahsehVeoYnDq+0vyJ3RQG9UuC5Lc+xNX2rZ1vp/Aoul5MgjVRueK/qGKnKc55vqeBSo40M5//ZO+/wKMrtj39m+2az6b2QEHoHKVJUQJAiAlcRC0rxiooXC14LYgO8YEGwIXYFvD8sV1REbGCji3QQSCC0hJDes8n2+f0xm01C2iakwnyeh4fMzPu+885mM/Odc857Tr0pDQtXauHGd8E3CiJ613+8+tCI3rPSKjNt2z5Im+i7Gu08LQlRFFl/8Dxp+WbO5UhLI77+12C6RfigVdXRm9vI+aYEQaj3ErrmoFQIlKdLly7Y7XZ27drlDj/Pzs4mISGBrl27uttFR0cza9YsZs2axbx58/jggw948MEH3R6z8vkJ4uLiUKvV7N692y2E8vPzOX78ONdcc02Nc7ziiis4evRopXnWhCAIdO7cmR07pAD9m2++mblz57Js2TKWLVtWoe27775LcXEx06ZNq3Vco9GI0ehZjjqn04nFUvYClpKSwvDhw+nbty8rV66s5C2ry/WVotfrq+xXXFxcaXylUumu+lJXSsPof/vtNzIyMpgwoaySaW3XNWjQIJ5++mlsNhtqtRQxu2nTJjp16uQOPY+Na0dusZUwXx1GY9URJjIyzcmyjcfZVM4pEhdswFkgGXjMonTPUyhVmO1moGqjVEKx2W2QerFjFFf5eTfqnEuX75Wfi911T/INCeOGOXNxmu18+eHnAKhRkqORXuj8h/SnQbEUlBmkRi2Wqu11u7GaxtU/p22xTgTXAhB//0H07j0XRRWVnRuT5sxbeanTUBqqwOYAlQIFoBAEwgO90NSjwl5NyPpJ1k+e0Nj6qV379tiNhSgVgsefb3MiG6VkqqTElRshxKijvd7OX91nkekdCIWf41So+XzGKkINnkeilDgksaVXKDhvkqrS9Aruhb/Wn5s73uxu57DbUQrSQ8eiKQQHRDlFckyx6MwhKNUX8eCwSUYLtEbo3rBJL5uTxJOvkJT0MaLoKjuti27mGTUdf57KcS/XA8mu1DbQUHeDlIxHdOjQgYkTJ3LPPffw3nvvYTQaefLJJ4mMjGTixIkAzJkzh7Fjx9KxY0dyc3P5/fff6dJFWoobExODIAhs2LCB66+/Hr1ej9FoZPr06Tz++OMEBAQQEhLC/PnzUSgUtQr8uXPnMnDgQB544AFmzpyJwWDg6NGjbNq0ibfeeosDBw4wf/58pk6dSteuXdFoNGzevJmPP/6YuXPnApJHcMmSJTz22GPodDqmTp2KWq3m22+/5amnnmLRokV07969wnkTEhIqzaVbt25uYVCKyWRi8eLFTJgwgfDwcLKyslixYgUpKSlMnjwZkITHsGHDiImJYenSpe5Sx4C7ek91lHryioqKyMzM5MCBA2g0mgoC90LGjx/P4sWLadOmDd26dWP//v28+uqr/POf/3S3ycnJISkpifOuCmKl1xsWFuae08qVK+nSpQvBwcHs3LmThx9+mEceecS9bMCT65oyZQoLFy7k7rvvZu7cufz999+88cYbvPbaazVed1FREYmJie7ts2dTOHToGFFRXhU8vDIyTUF+ibRsb1zPcK5sG8C4nuEkW8w4BQUmvx5QdBpUKg5mSmkDqsopVeSqctzZoOOuyKrzpTQEL+56kT3pe0gulJa3lV9KaHPlwVJptZzaE89v6zeRIxSBIEVK9bg2Cp9APdFDoxp2UiWupLwqPQx+oOa2Vfj1zOZU0nofJD/GAbmSRvT17Y3Ru3PDzlOm1WK1O0nOLcbhFLE7pS9RhxAjGpWAsoolU42BrJ8kZP3UsvTTmTPJHDrkT1iYSPv2jZMg3lNko5RMlZRYJaOUXq0k1RlChq8vDvN+6ZjGSpC+bqKpxLV8z0upcHsLnxzwJN2DKt6sHDYbCkH6WtpcDw61JQyDSSpHqrwYb4ZNCp1H0/BlgT3BoxxRdYykcjhKSEr6AFF0JVjVRhAQMLg+06s4jRZQGrQ28oqtHDkvLZGI9NMzMC6QfrH++BsaMwurzMqVK3n44Ye54YYbsFqtXHPNNfzwww9uQeFwOJg9ezbnzp3Dx8eHMWPGuB+SkZGRLFy4kCeffJK77rqLadOmsWrVKl599VVmzZrFDTfc4C5pnJycjE5Xc2RMz5492bx5M08//TRXX301oijSrl07br1VStwbFRVFbGwsCxcu5MyZMwiC4N5+5JFH3OM88sgjxMXFsWzZMt544w1MJqkQwmeffeYO0y5PVfuSk5OJiqr4sqZUKomPj2f16tVkZWURGBhI//792bp1K926SctKNm3aRGJiIomJiZX615aXpE+fPu6f9+7dy6effkpMTEy1pYgBli9fzrPPPsu//vUvMjIyiIiI4L777uO5555zt1m/fj133VUWbVl6vfPnz2fBggWAJLTmzZtHTk4OsbGxPP300xU+U0+uy9fXl40bNzJ79mz69u1LUFAQzz33XNXljMt9FHv27HGXxwZ46ilpWXZpiWwZmabE4jIo3dQnkhFdJGddgTKY3UMewpJzBjhNIUXu9u39Knvgi1zRD971KD/vKXnmPD6N/7TCvhifGPfPpZFSao2WXbt3c06R7T4mmB1cfUvHhp2QpRA+ux1yTknber8qm9X2cn026QPyY5Iq7JNzOsmUJ7/Ehslid29rVdUv1WtMZP0k6ydoWfrpyScXATB16m188knDVEqsL7JRSqZKSiOl9BolOQ4ztqK17mOpQXkoFZ7fzAvtDlJcST/1CoU7wWZV3kKHzeaOlCq2C6CELEsAOkBrUKFQXERodGnFvVrKMbcmSszn3AapIUO2o1EHoFB4bpS58JYttJJCx09+dYjPdye7t4d1CmbxjT0a/DytwTjXGNT0Yu/v788nn3xS7fHly5fXOPazzz7Ls88+W2Gf0WiskITRZDKxcOHCCg/X6oRC//792bhxY5XHgoKC3GWTa2PixIlub2VOTg4jRozgnXfeYcKECXh5SfeM2NjYOr3s6HQ6vv766xrbzJgxgxkzZng8Znnq8+JlNBp5/fXXef311y9qTi+99BIvvfRStcc9va6ePXtWSGp6IVXdkYYNG+a+doejGJPpJAqFGm85MkKmGbC49FL5CN1UQxtMpi8RnVLagGxjERGGCEbHjibEK6TSGCaX485b2Xgvyia7pIHUCjUrRqwg1BBKnG9ZDhObpSxSqtgm/dxOiCQr2x8xJ6nygBdL0p9wptzfflj9nuG5udJSIq/NCnw6dQDOXPzcZOqHeOFm82qo9AIzecU27K7lVf5eGvy91OgaI1m/C1k/yfqppeinqiivnwCKi89gtxei09Wcx68pkI1SMlVS7Kr+4qVRUug0gwKUSj2nA7M52dFaS+8y9uWbmLD/BHbX91+nVJBTk1HKbkfpipSyux5mgRozXa6NJbpLPctbHvgUUg9CnktUtUCjVKkjUPDwHpmXt4f4hGcxmaRSq0Zjd3TamkNVLyX+SCgLZfXSKBnZtWUlNZepG/v37yc+Pp4BAwaQn5/P888/D+AWOU1NQEAAv/zyCytWrGDnzp3uUssyMjIyF2J1RUppXekFRIeDXLUN0VkWaXQ2Ooefb67+5aHIZZQyNHBum/KURql7qb0YFDHIvf/Az9+z9bPV2K2StlNrtNgdkgYMwocCawBqRSMYpSyF0v9hPeGG1+pslEpMXEJ+wX5MphMggs8GJbp2QchGKRmQjA4ZBZYKhjEfvRpvXdPmGWtsZP0kc6kgG6VkqqT88j0L0s9G3zh+6xdPsN7zZOPfZua5DVJaQSTceYLTVSTYLMVht6FwVXtxiJJIC/WxcuWEuEptPaIgFdbdX3Gf4SKSpdeTqsLPLya8PC39W7dBCiA0ZFwd51PvUzcbNoeTA8l5WGxOsoqk79C2ucOJ9NM3eHLR1hIxdimxdOlSEhIS0Gg09O3bVypnG9R4uVVqIzAwsEJItoyMjExVlC7f07oMSk6TCYvStcQirBMfdvkVVTWJyw8WFnP/kbOcKpGeaf6qxpPlpUapCx2C8Tu2YC0pdm+Hd+hM8lEpEtnVBaWyESJeSqPXjeEQ1a/GppWfyE7OJr3n3tLnBKAwFVVq1dRcttqhnAZr7s8gt9gqGaNEERERQRBoG2RApRDcf6OXGrJ+krkUkI1SMlVSYJYSd/ro1bhylCO4xJJWqfV4nFSLNM6zccF8vGUCO5ySJ04pKDGoy8qT5qWlsunDFZhycxigGEOWUIAdqa/mYsoim1wRNRpvuPI+UKigxy31H68JqcloZbNKiUHbRN9NWNiNeHt3aqppNRuv/3KcFb+frLAv2KhthGo3l+eSveakT58+7N27t7mnISMjI1Nnupw5yGMHf0R96F1OCiKixYLNV4pc1voFYtI7CFFUrZt+yMx3G6QA/hHq12jzLLZLhqcLjVI2i2R5Gj3rYWJ798XbP4Atu5cCYLFJUSUXI8OqpdQopTHU3K6qR7xLHymV3nTt8jLFy9ZTwu8NO7+aptQaPXuXCdlFFiz2sgp1Xmol3tpL93VX1k8ylwqX7l+pzEVRWk3GV6+mtNBlqVGqqgin6ih0PRiUzhKsTisqQcV1MddxZfiVFYxbCTu3EZoajlHdjd99EslUFLiPeXe+iOSapeHhxjAY0VKs9jWImVqip3JydpCe/h35+fsAadme0dilISfXIim22jmYXJbU3KhTMbJLaANX2ZNFpoyMjIxM3RgRv5nOucmQC6XJDRz+0pJypV7SORpl1bkes12pEv4ZGcSDMSGEaxu+UEexrZg3979JfE48ULHiHpQlOPcNDYPjFnIyE3E47aAAlc1CiOk4XSY2oM448g0k/wUpko5BW3UUWXkuzE3kdOXSDAsdT0jIGM5Zf264+cm0OuwOJ2eyTVgdIg7XUtjoAC+0SkWj5o+SkZFpOGSjlEwFEjMK+e/Os+w8lY3eZiYyL5XSehWiS1xdKGhqotQopXJJNR+tD0uGLqnUTpEHccaeAOQJUqlKpVONwuZNRMeLiAIqNUppjfUfoyG5SLvHsfgnMZtT3Nt6fQOXZm6BPPDpPjYcSnVvvzypJ1d1aL6wZBkZGRkZGZAimnVWKdJId+/9hFw1EEGpRFy2FBygNEhRSdVFmGfbJIXV0aBrFIMUwJaULaw5VpYIOdRQMQdjaYLz7JQ8Ptm2DpvgANcqp0BdCVf/d1bDTcZcAGvvBrEskgVD5cTvnhIQePUFe2Tn0uWEKIoUWx0UWuwUW8u+UyqFAl+d+uKKI8nIyDQpslFKpgJv/JrIdwfPo7NbWL3xBXy+L+a37lLZzEMWqWxvgD7A4/EKXR4LpSgZpbxUVScZF13Va+wqGw5XDiv/nD4Idh0aXT2Emt0CH42CtMPSttan7mM0JR6EglssmS6DlEC7uH+j00Xh49On1n71oaWUUxZFkY1H0t3bEb46ekT5NuOMZGRkZGRkJPJLbGjtkr7x638FNtsJUvbvweKQHGKCj7Q0rbpIqRyXUSqwUdbHSRRapbl08O/AbZ1uY1j0sArHS5fvpWZmSQYpFxqnFp3aQoNiypQMUkotDJotLd3rO6MOA0jaRBCUDLxyIwZDuwsOtwztcvnStJ9/VpGV1PwS97avXk2IUYdGJcgGKRmZVoZslJKpQOmyvUmRKnxsUv4Bp+vGblFLx0a2GenxeKWCS+GUcgd4VVP5TrSXGqUc7uWColOBUiHgHeB5Dis3WScg9UDZdsyQuo/RQrDZ8snM3Eh6xvcAGAztiY39V6Ocq6XkScgoMPPSj/HkFFuxOpwIAhycPwqDRoVSFhoyMjIyMs1IsdXOvZ/s5XSWif/YJcON1lnAmvdWUmArjSYXUAb6QXbtkVIBjbjEyOKaXzvfdtzSScqpaS4q4sv/PE1BVgbmIsloVbrsqYs2huLzfphsPuhjzjbcRMwFkJkg/ewdCiPne9TNKVpRjlhHn5JMjvx2BQCCoKhskCrHhcv9mprmPv+ljlMUcThETBbp70etVKBWKgg2atFr5OV6MjKtEdkoJVMBsytiaXiMZDxS6RxYNQLYICwojJ8m/USkd2St4yw6eZ7PU3PIcgmuJTseQUH1kVJOV/Wa8g/yK/so6DB+AAbfehilXAY1fKPhnt/Bu+kr7lXgIuwop06/xrlz/3Vv+/sNbIAJtWy+2pfC1/vLlim2DTTgc4mV8ZWRkZGRaZ3sO5vHtsQsAHQOKVKqKD+dApsOBSIqbRucyo7gq4Hs2nNKBWoaseqew7W8sFw+0PMnjpFxpqxwiLd/AE6XUUrMt2Ix6xCUAhqvBlpSmH4E3h8Grs8KL3+Pu5ptfyMEZsC56oVUS3GotZR5XMo4nSLH0wuxOpzufRG+Onwb6rsqIyPTLMhGKZkKWFxGKWNJOk5BRaFPJIJTjQiEBYZ6ZJACWJWSRZHrgaGynkYhSuG1gyIGVdledBmlHAooDZWKaqPFP6yWqizVUVrVRWtsfoPURWIyScLRx6c3Bq92xMTc18wzajzS8s0cTslnz5kcAEZ2CeW6riEMjAts5pnJyMjIyMhIFLuMSR1DvbEaffi5Uxucn64DQKkOQOE1GQVQopUqAPtoKqYQePVMGt9n5pHrihIP0TSe08XicEVylYvWKk1uHhrXnrGzH8UnKJi1b0t5p0RBh8PV1rdzbMNM4vx+l0FKALUX9JjscVebU8opWVTkeeoImUsPURQpsTmw2Jxug5QgCKiVAoZLuLqejMzlgvxXLFMBi8s4pLWXcLDnv8j17wT5KwFQByg8GqPE4XQbpEbxA/vSvuTRvo8yudNkDOqqjUyly/ecCqfbKKXVX4TXw9NSw02IR/6zcvkQHI5iCoqPk5u7A4B2cY8SEDC4cSbXAhBFkRvf3k5qvtm9b1inYG7t36apJ1L2Y9OeWUZGRkamFVDicuBFaJwkBUThELLdDwxRKVWq8wpUkWg7BkCArsygkmezs+R0mnv7Ch8vAhoxp5TZLj1T9Sq9e5/dKkUs6byN+BqDyVl/GmuhtE/phCuvNhIQ7UvoNRdR/bg8pUVnut0Ik1d61CUl5TPS0r6l0CzlMzUV+TXMXGSajgYUUekFFjIKy/Shl0ZF+5DaKzfKyMi0DjyzMshcNpQu39Pai8n3MmA370MUiwDQB3h28y9dsqcRBIzO8wjY8dX6VmuQAhAd0pPLWfqNFEFdH6OU0wn5KVBwXtquJodVi6CWhJz79k9l954b3ds15U+o/xRajtmloMTuNkj1ivZjROcQxnQPa+ZZXZ7MmDEDQRAQBAGNRkP79u15/vnnsdvttXeugT/++ANBEMjLy2uYiXrA6dOnmTJlChEREeh0OqKiopg4cSLx8fEV2m3YsIGhQ4diNBrx8vKif//+rFq1qkKbM2fOIAgCBw4c8Pj8CxYsoHPnzhgMBvz9/Rk5ciS7du2qMObdd99N27Zt0ev1tGvXjvnz52O1WmsYFVJTU5kyZQodO3ZEoVAwZ84cj+ZTWFjInDlziImJQa/XM3jwYHbv3l2hTVFREQ888ABRUVHo9Xq6du3Ku+++W6HNfffdR7t27dDr9QQHB1f5mSYlJTFu3Di8vLwICQnh8ccfr/Y7tH37dlQqFb179671Gr7++mtGjRpFYGAgKpWBQ4fia+0jI9OQWAsKWbJ1BbNXPoVNJUU5+QV0ZHS0jRv6FdF2spp3Y+fxVeJXQMUCMWfN0t92gFrJh91iWd2jbYPPTxRFlu5eysyNM/nx9I9AxUip0op7Ko2WNav/j7ePfsFp0VVUxCnS747+xDWUQQrAIunIulRCTjy5lLz83TjEbABKzC2kirJMk2KxOyg02yg0S3lt1UoFWpWSIO+WuVxP1k+yfmpp+qn8m155/SQIAgcPHvXo2psC2SglUwGzrXTJnZkS8ybsJX+AaMOhEDGEBHk0RqZVenAEa1RYXWHjamXNoemiK7LKIZSuERdQ6eqRS+q/E+G1rvDj49J2C4qUqpEq8hAUFUk3KI0mhOjof6LVhlZqU+/TtaCyyUfO57P4+6P853vpxuijU/Ht7CF8NKM/Qd71+A7Ul3IfiZwWAsaMGUNqaionTpzg0UcfZcGCBbzyyivNPS03tYkOAJvNxnXXXUd+fj5ff/01CQkJfPHFF/To0aOCsFu+fDkTJ05kyJAh7Nq1i0OHDnHbbbcxa9YsHnvssYuaZ8eOHXnrrbc4fPgw27ZtIzY2llGjRpGZKS3riY+Px+l08t5773HkyBFee+013n33XZ566qkax7VYLAQHB/PMM8/Qq1cvj+czc+ZMNm3axH//+18OHz7MqFGjGDlyJCkpZTnc/v3vf/PTTz/xf//3fxw7dow5c+bwwAMPsH79enebvn37snLlSo4dO8bPP/+MKIqMGjUKh0NybDgcDsaNG4fVamXHjh2sXr2aVatW8dxzz1WaU15eHtOmTWPEiBEeXYPJZOKqq67i5Zdf9vi6ZWQaEvXfB+mRfRrvojzsCimxsp+PQHfvP2nXJp99hs0Uawrw1frSNbAro2NGu/umWySNFK3TcEOIH8GNsHQvuTCZ1UdXsyt1F+nFkrGpfPqF0kgplUbD6Zxz7v0KUUlJUQM6q/KS4ORvkOF68fHQKOV0WrHb8wAI9voXjj+uJyenXPqISlNsnod2C/LrtQxEsUF/EzaHk+PpRZzOMrmjE9sEeNEpzIhfC84hJesnWT+1CP1UxR9jS9ZPslFKpgJm1zI6pcWM6MwDoCBax/Ye2Wi1+hp6lpHlyrUQpFFhdSW1rK7yzE9vv8bbM6eQfVaq8GLNkTxigqhAoanjA0cU4ay01A2FCjTe0PmGuo3R6NRNwRiN3bj6qp107PB0I82n+Zn/7RE+2HqatXslYRzl34Kj2y4jtFotYWFhxMTEcP/99zNy5EjWr19Pbm4u06ZNw9/fHy8vL8aOHcuJEyfc/c6ePcv48ePx9/fHYDDQrVs3fvjhB86cOcPw4cMB8Pf3RxAEZsyYAUjepzvuuAODwUB4eDivvfYaw4YNq+C9io2N5T//+Q/Tpk3Dx8eHe++9F4Bt27Zx9dVXo9friY6O5qGHHsJkkpbvHjlyhJMnT/L2228zcOBAYmJiGDJkCIsWLWLgQKlgQHJyMo8++ihz5szhhRdeoGvXrrRv355HH32UV155hWXLllXwzNWVKVOmMHLkSOLi4ujWrRuvvvoqBQUFHDp0CJDE68qVKxk1ahRxcXFMmDCBxx57jK+//rrGcWNjY3njjTeYNm0avr6+Hs2lpKSEr776iiVLlnDNNdfQvn17FixYQPv27XnnnXfc7Xbs2MH06dMZNmwYsbGx3HvvvfTq1Yu//vrL3ebee+/lmmuuITY2liuuuIJFixaRnJzMmTNnANi4cSNHjx7l//7v/+jduzdjx47lP//5DytWrKgkiGfNmsWUKVMYNKjqnIMXMnXqVJ577jlGjvS8EqyMTIOSK+U9TIvpjBAo5TzUmtMQgXxDEHvT9wKwYNACvrjhC9r7t3d3NbmccEZl41UJK7JJkUk+Gh9evvpl3h7xNuPbjXcft1slh6GgLtNZN2kHEpA+CL2tgZYSluTCWwPgvzfCEdf9TOtTYxdRFDmb9AGH/35Amp+gwlt7DWJGJKCoNZF4U5mmajtPS4pCb42k5ZdQaLaRVWhBFEUUgoBOrcRXr24V1fVk/STrJ1k/1R3ZKCXjxmp3kl8iefAsJWYkA4qCk1drORVpQqPwzEjkNkqp1VUm2HSfz1zCkc2/UlJYQJ5W4BvNX2zWJgEgiAJKP89uFG7sFnC6QhufOAVPpUCfO+o2RiNRFplUs5SxxjorbBsMHRppRs1Pan4JfyRkcDJTEs+39Y9m9vB2LLm5ZzPPrHEQRRGb2dws/xpCIOv1eqxWKzNmzGDPnj2sX7+enTt3Iooi119/PTabdO+YPXs2FouFLVu2cPjwYV5++WW8vb2Jjo7mq6+kpSwJCQmkpqbyxhtvAJJnafv27axfv55NmzaxdetW9u3bV2kOS5cupVevXuzfv59nn32WkydPMmbMGCZNmsShQ4f44osv2LZtGw88IL3QBAcHo1AoWLt2rdsDdSFr167FZrNV6dG777778Pb25rPPPrvozw8k7+T777+Pr69vjd65/Px8AgIaPqmv3W7H4XCg0+kq7Nfr9Wzbts29PXjwYNavX09KSgqiKPL7779z/PhxRo0aVeW4JpOJlStX0rZtW6KjowHYuXMnPXr0IDS0LMJz9OjRFBQUcOTIEfe+lStXcurUKebPr6Y8vIdvmfIroExTIuRKDjSVrwKHORcAtTWTe8JCuCrlaxLzEgG4IvSKSn1LjVIGVeNJ8FLt5af14/q467k66mpUChU7vvyUN+68ie1f/B8ACrUUpSWIYDMrEVCgVDirHbdO5J4Fewko1BDaA2Kugu431dglL283iYkvkZX1KwDe3p0QhPKfk2d/6WIz3RFaUhR6k9LA4eVv/3GS/BI7Ba4lez46FR1CvIkwKHFYLK1OQ8n66eKR9VM99FMrQ050LkOJ1cEdH/7JqSwToggalQK7WRI0CDrMgvRzdSWNSymyO/jwXCa/50gJLaN0ak44rdX2LSnIB0DhFCnUq8lWFLrNpCpRjzq0jsvVSpObA9SQv6olUzjMCpQa8ATCw2oWcA1NUwkqs83BmNe3uo2gAI+P7kRgUy7Xa2LsFgtvTr+5Wc790Oq1qC94kHqKKIr8+uuv/Pzzz4wdO5Z169axfft2Bg+Wku6vWbOG6Oho1q1bx+TJk0lKSmLSpEn06NEDgLi4OPdYpUIhJCQEPz8/QPLyrV69mk8//dQdfrxy5UoiIiIqzeXaa6/l0UcfdW/PnDmTO+64w+0R7NChA2+++SZDhw7lnXfeITIykjfffJMnnniChQsX0q9fP4YPH84dd9zhntfx48fx9fUlPDy80vk0Gg1xcXEcP368Xp9dKRs2bOC2226juLiY8PBwNm3aRFBQ1cuhExMTWb58OUuXLr2oc1aF0Whk0KBB/Oc//6FLly6Ehoby2WefsXPnTtq3L4vkWL58Offeey9RUVGoVCoUCgUffPAB11xzTYXx3n77bZ544glMJhOdOnVi06ZNaFwRrmlpaRUEFeDeTkuTkjyfOHGCJ598kq1bt6JSyXJEpvXgLJJ0TkfLXxzUXg9AYWgsu/Sp7jbXxVxXIcF5KUWuiHTvRoyUKrFLFY+1qorP1ISdW7HbXJ52QSAwpi2kZKJCSXquGnCiVDaQQcecJ/0f2B7u31Zj01Ly88teptu3m0to6HhS4883zHxkWjROp8h7W05xLreYw+fyuC46AG+tCr1eS4BB0yo1lKyfZP0k6yfPkSOlZDhyPp99SXnkFUsGgn4x/pSYpITTCkGNtQbDUnk+TsnipdNp7MqXjEOHzn3LuUJpSVb5SKkjm3/lkyceZO3iZ+niO5Dh4VPAtTSwozWO9obBjB9djweP1ZVIU6UHZev8A3WElnkoBw/eQkDAkGacTeORmm8mv8SGUiHQLcKHe65ue0kbpFojGzZswNvbG51Ox9ixY7n11luZMWMGKpWKK6+80t0uMDCQTp06ceyYVGXqoYceYtGiRQwZMoT58+e7w6yr49SpU9hsNgYMGODe5+vrS6dOnSq17devX4XtgwcPsmrVKry9vd3/Ro8ejdPp5PTp04DkeUxLS2PNmjUMGjSIL7/8km7durFp0yaPPwuNB0uJ16xZU2EeW7dudR8bPnw4Bw4cYMeOHYwZM4ZbbrmFjIyMSmOkpKQwZswYJk+ezD333OPeX37cWbNmeTTnrVu3Vui3Zo1U7v2///0voigSGRmJVqvlzTff5Pbbb0ehKJMDy5cv588//2T9+vXs3buXZcuWMXv2bH755ZcK57jjjjvYv38/mzdvpmPHjtxyyy2YzWY8weFwMGXKFBYuXEjHjlUnVF6zZg2dokMY2CmKthFBFT5TGZnmRFcovRgIShGHK4riF2UeAP1C+7Fv6j5eHfZqhT7HTWbu/vs0n5yXoqwMykaMlLJLzkS9smLaBZtF+vv8xxPPMeXmF1Dvl7SSCiWC3YRPwWnaalK4KCyF8MfLsPNtaVvvX2uX4uKznDnzNllZ0j0mNnY2MTH3otNVftmVuTT583Q2L/8Uz5pdSRSY7QhAiI+OCD89OnXLX7JXHlk/lSHrp+bTT4F+vgzsFMWAjpGtQj+1zjd3mQbFYpcMIbGBXnwwrR+x3nZ2/FsyLAmCmmJbMVCxnHBV7HEZo7wEB0LuVyQX/owgSgatYH2wu92+H9aTefY0CkHJqJipCIKAXSGJoDD/cK59/Lq6XUDGMVj/EJikxHetJrl5OZKyPiHjKRuOABFcelCjqV3ItTa2HM/k2wPnyTFJgjnaX8/3D13dzLNqGlRaLQ+tXtts564rw4cP55133kGj0RAREYFKpaqQqLE6Zs6cyejRo/n+++/ZuHEjL774IsuWLePBBx+sz9QrYDBU/NsuKirivvvu46GHHqrUtk2bNu6fjUYj48ePZ/z48SxatIjRo0ezaNEirrvuOjp06EB+fj7nz5+v5F20Wq2cPHmS0aNHXzh8JSZMmFBBbEZGliXlNRgMtG/fnvbt2zNw4EA6dOjARx99xLx589xtzp8/z/Dhwxk8eDDvv/9+hbHLV6vx8ak5J0sp/fr1q9Cv1MvWrl07Nm/ejMlkoqCggPDwcG699Va357OkpISnnnqKb775hnHjxgHQs2dPDhw4wNKlSyvkIfD19cXX15cOHTowcOBA/P39+eabb7j99tsJCwurkEMBID1dSrgcFhZGYWEhe/bsYf/+/e7lAk6nE1EUUalUbNy4kQkTJtCmc0/yi20Ee2vp2TkOGZnmZMfJLD7/K5nh+bmcaTOa/YE9cZgksZ+hkPJMDQwfiFpROXn5J+ez+D4z370drWu8RM1mh/Ryo1NVjO4orbqXVVTCz4d/xClIBjWVqCTo5PfEnv2doH/96+JO/vdX8McLZds+laM2LuTosSfIz9/j3tbryu7fHsVvy9VJWi2vbkxg56lssouk94UOId7c3DuEAG8H6nKG29akoWT9JOunlqCf+vTtx6lMEwpBoF/fzh5de3MiG6VksLhCyX30ajokrqTgh0Vk5vYDQYFSUJNvkUSUn9avxnEKXOP8w5jEprPf0Tu4Nzd1uIkYnxiijFHudlazZOQaOn4KHAab04pZ5QQnWEI9u2FU4Mg3cK7cH29QA5YxbgKs1izOZL4PUUADpXJoqTz77d+czS52b8cGtUQDYuPkohAEod5L6JqDUiFQni5dumC329m1a5c7/Dw7O5uEhAS6du3qbhcdHc2sWbOYNWsW8+bN44MPPuDBBx90e8zK5yeIi4tDrVaze/dutxDKz8/n+PHjlcKdL+SKK67g6NGjleZZE4Ig0LlzZ3bskIoi3HzzzcydO5dly5axbNmyCm3fffddiouLmTZtWq3jGo1GjEZPK0s5sbheDkHy8A0fPtxdkaW81w2o0/WVotfra+xnMBgwGAzk5uby888/s2TJEkCquGOz2SrNQalU4nRWf4MSRRFRFN3XNWjQIBYvXkxGRgYhISEAbNq0CR8fH7p27Yparebw4cMVxnj77bf57bffWLt2LW3btsVgMNA2rh05JithPjr0+tbz9yNzafLKzwnsT8rjWquZxOgrcNrOIzoLAAiPjOSWK2cyqcOkKvuW5tu8OdSfscG+jAioh96phS+Pf8kLu17A7sqvWckoZZaW9aVlZLkNUgCCOYDAWYMJbzcLXffuFzeJIpeDMKynVGym1201Nnc4LOTnS4nhAwOHYfTuSmjo9RXatLaccc2V06r58fy6LXYH53JLePO3xAr7b+gZwfTB0e5onVJak4aS9ZOsn8rTXPqpXfv22L0LUQgCer1nxcqaE9koJYPF5qRL9hmuNJk4fHQTG7MHuF1TolLv9rj562qO3Cl2Je9UuKKj2vm148YON1Zq57BY6eY3hOCscH5Q7ydVmes2xngS5ln5AqTcDvSYDH1nQHjvuo/RDJSKlrw8yTuozICAH7TgWVX0VsWJ9EJyTFbO50mC+KERHfDRqRjTPayZZ1Ye2dNaGx06dGDixIncc889vPfeexiNRp588kkiIyOZOHEiAHPmzGHs2LF07NiR3Nxcfv/9d7p06QJATEwMgiCwYcMGrr/+evR6PUajkenTp/P4448TEBBASEgI8+fPR6GovdLS3LlzGThwIA888AAzZ87EYDBw9OhRNm3axFtvvcWBAweYP38+U6dOpWvXrmg0GjZv3szHH3/M3LlzAckjuGTJEh577DF0Oh1Tp05FrVbz7bff8tRTT7Fo0SK6X/CSlpCQUGku3bp1Q62uGB1hMplYvHgxEyZMIDw8nKysLFasWEFKSgqTJ08GJEE1bNgwYmJiWLp0qbvUMUgesZoo9eQVFRWRmZnJgQMH0Gg0FQTuhZSWH+7UqROJiYk8/vjjdO7cmbvuuguQPIlDhw7l8ccfR6/XExMTw+bNm/nkk0949VVpOdKpU6f44osvGDVqFMHBwZw7d46XXnoJvV7P9ddLL5OjRo2ia9euTJ06lSVLlpCWlsYzzzzD7Nmz0bq8zhd+riEhIeh0ukr7LyQnJ4ekpCTOn5dyzZw4cQZBoaJdnF+tn5mMzMVQ4MqDGOal4mTROqCsElLvjv25rXP1BphcV0n7awKMjAv2a5T5/ZH8h9sgBdJSQoDignzsFgsOV0Jlh8uJ2MfZlvRzPtg0vhj79UYf7dmLYY1YJCMdba+BYXOrbSaKIqlpX5GXuwsQUSoN9Or5Ya33/Zq5XI1BrYuTmUVMWL4Nk1X6Hob6aFkwvhs6jZLB7QIR7bZaRmh9yPpJQtZPLU0/ncLhMNGmjYo2bRo+QXxdkI1SMogp53h161sAHIkMgiAtCqeAqPLDopX+qI0aI14qrxrHKa0oI4iSEau6HFS+YjDt/AeQnVZIqjbXvV9p88JLXw9BVJpLKrgTxF5V9/5NQRUPB7u9iITjC9yJPbVHFej+VrqNUpdKSeHNxzOZ/nFZJJsgwIPXtq8Qli3Teli5ciUPP/wwN9xwA1arlWuuuYYffvjBLSgcDgezZ8/m3Llz+Pj4MGbMGF577TVACsleuHAhTz75JHfddRfTpk1j1apVvPrqq8yaNYsbbrgBHx8fnnjiCZKTkytVObmQnj17snnzZp5++mmuvvpqRFGkXbt23HrrrQBERUURGxvLwoULOXPmDIIguLcfeeQR9ziPPPIIcXFxLFu2jDfeeMNdEvmzzz7jttsqv2RWtS85OZmoqKgK+5RKJfHx8axevZqsrCwCAwPp378/W7dupVu3boDk/UpMTCQxMbFS/9ruAX369HH/vHfvXj799FNiYmLcZYWrIj8/n3nz5nHu3DkCAgKYNGkSixcvriAIP//8c+bNm8cdd9xBTk4OMTExLF682J2PQafTsXXrVl5//XVyc3MJDQ3lmmuuYceOHW6vnlKpZMOGDdx///0MGjQIg8HA9OnTef7552u8puoo/0msX7/eLQIB/vnPJwCYP38+CxYsqNf4MjKeYLZJOkenVFBqkCrsaOBvdRK3B9Wc/yjXLhmL/FWNlx/HbJf01/xB8xkVOwofjQ8HN/3ALx++XaGd3WWUUolKHC5tp9Y20LxKHYXamvVcRsYPHDtWZrQyGrt7bJC6NNTRpYSHvzdRpKDEzu/xGW6DlCDA5L7RjO1R9vdjvgSNUiDrJ5D1U3Pop/JcqJ+mT5eWhj7zzBP85z8vX/T4F4NslJJBTE8jPrIDaX7eWFTFgB0fw0DMukGc9t/NvT3vZWD4wFrFQqlRSuF0VetTVG2UKtJoWKMrS7jmZbHRp8ttJOzIQF2fZIYWl1FK0wAevkZHpPThnZO9lcJzB91HtAlNb6Sp7pbdUKHnxVY7u09LeTZ8dCqCjFrGdAtrNQapy1X4rlq1qtpj/v7+fPLJJ9UeX758eY1jP/vsszz77LMV9hmNRnciSZA8ZAsXLuTee+9176tOKPTv35+NGzdWeSwoKMhdNrk2Jk6c6PZW5uTkMGLECN555x0mTJiAl5f00hYbG1snY7FOp+Prr7+usc2MGTOYMWOGx2OWpz6G61tuuYVbbrmlxjZhYWGsXLmy2uMRERH88MMPtZ4rJibGo3alLFiwwCOjUvnPzOEoxmQ6iaBQY/Ru+TkTZFontvQM7JmZRKaexLfYgrnYBj5qQMOJQSoSMovw0/nVOEZppJS/uvGkd2nVvSB9ED4aaXlgSoKURFlQKFAolXTsOZiMfFdCXYcSp0INohOdoXIeLI+xW+DzOyDnZNnyvVqMUnnlckhFRt5Jm+gZ1battTKwS582VQVhGc+48An1yBcHWHegrJri9EExPHtDV1StRBN6gqyfZP3UWvQTQHHxGez2QnS6yOo7NRGyUUoGu6mYU0EKwBVyjUCJuhsC4Ai38GCf6sOvAf7KK2JLbhFpVpdnwymJogsjpZL+PsSRzb9QopG+doIISruN9hnpKDopERBQ1OXBtOMtOPU7nD8gbbeyBOdWWzZqIChoBP7q/hQdWoaliZb8VmdfbEhB98GWU7zw4zFK7/v/vKotc0a2rnxfMk3D/v37iY+PZ8CAAeTn57u9QaUip6kJCAjgl19+YcWKFezcudNdallGRubyo+TIEc7cPBlEkYWufan+YeCjRlDoyDPnAbXn3cyzuSKlGrGSWKlRqnxhGrsrT8m1d82iTWF78nancK7wEChB4RSIOvcH/uoCdIaRVY7pEef2QOIFFblCulTZ1OEowWxOcacu6NhxPtFRNeSdEYS6e4iayKN0+eaO8hxRFDmeXoTN4WTj0XT3fi+Nkuu6hl1SBqnmQNZPMpcKslFKBrupBJDEUkhAGKcMOs4EHCSXHNr3CqyxryiK3Hn4FAWuCn5+KiVaUUqMfqFRavN/PyIvKQVlVC/AQc9sFZ1/+QLDVVcR75Ae7EqVhw8nWwlsfIYKysM/xrO+LQS7XQpx79jhWVT5ahLFV2vp0br4NT7dbZDy1qoY2jG45g4tCNnX2vQsXbqUhIQENBoNffv2ZevWrQQFBTXbfAIDA3nuueea7fwyMjItA/OhQyCKCDodaQo9WsGGw0fSNwqFljxLHgD+2qrzbr50KpV9BSYKXdHkTREpVT7Buc0iRUWpNBo+PbKBLF2B+1hxiYmuiV/if+edF3liVyqGkK5ww2vgFQhBHSo1czqt7PzzOiyWVPe+luChrzOySKiWCz+aV35O4O0/TpYdF+DIwtHoVEoUCvmDbAhk/SRTFa3tr0s2SslgLShx/3yg6x9s9CnzsN0Z80qNfQvsDrdB6s7wQMaH+LHxqGv5XjmjlOgQ6SeOwBjjz2bVUTJIRePjTdSKt/Dq14+jnycBoFB6+CdkLsC9FG7iCjCGQezVnvVtRhSCo8K2UumFVhuCQ8hrngk1MKIo8uXec5zNNnEiXVpW+d+7BzC4XRBKWXzIVEOfPn3Yu3dvc09DRkZGphK2jAwAjP/4BxtsyTym/pKd2T0hwxeFSk+hVXIw+Wp9K/U9W2Lh9bNl0SEBaiW+DZxTKrUolVf2vEKhtZCMYmmuOmVlo5RDEMhylhmkBIeakvR8Oh3Yj+JiqpqZCyA/WfrZJxLaDKy2aUlJkssgJaBW++HnN4AA/4bLBSqKYot4E7tUcoLWmQuu+6cjafxyTPr++3up0amVXN8jHC+N/PrZUMj6SeZSQb4ryFBSWGaU2miUDFL/7DaD0W3H0iWg6vDrUnJcORIMSgUDhJ089sMr7mp9WqXW3c5psmJUSF5Ep+DKPeWtRrjiKkx2J5YSKVLLY6NUaXJzjTf0ucOzPi0ApdIOSILUSx9D1y6zUCi0OGru1mo4cr6AJ9YeqrAvNtDQugxSl6uYlJFplbSie4tMq8SeLhl6HP6BDMiSlqiVOKT8Swq1wb2Eqyqj1MliyUkXrdMwLy6c3kYvlBdVXa4yG05tYNPZsqVzKkFFiFcIotNJQVYm5iKXXlJKkl8lKhnXYRzbt+WidRy8OINUwo9SLinRpWL0ftU2NZvPk5HxIwBG764MGLC+/ueVaRU8+r+DCK6VEKv/OYCeUX7NOyEZGZkWi2yUuoxZueU4e375kitSXR4ulCCAIIrc2XUawV61L7fKdeVICFCr2Hh2o9sgpVao6RbYzd1OdFWssTmtFNjTQQlHMn05NW97hfE8Xr5XWnJY6+1Z+2ZGUDhQBJxEpbYAUtK/kJDrCQkZ3bwTa0AcTpHTWVLVjXBfHWO6h9ElzIfogJqrNrYYGvhFQUZGRkam9eIoKKDkwAEsJ06QYfQiPz0Ze47AensXThRKzzWLS7IYNUZUisqSujTXZgcvLTeFVr2872IpsEp66Jqoa7i+7fXE+cbhr/PnmyXPc2pvucq3rvmpUOCw2hEQULmchPXm7I4yg5TaAJ2ur7JZVvYfHDw4k9KUC97Gmh2eFfDk2dxCnt+eVg+85HBdtwh8tfdchUMD2gbQKdRI94jKRlsZGRmZUmSj1GWM+NcHLBffZ5vjGnYrAUFBF4WBsVHDPDJIAWS7jVJKdwj7C1e9wLVtrsWgLks8LrqW+DlEOxZRhZTDSoFCISAoBRRKAYOvloiOfjWf0FwA6+6HrOPStqZ1GKX0MYfQRR7HcmgEZWFRlSNyhFYapPPmryd47Zfj7iCjK9r4M398t5o7ycjIyMjItFCS7/8XJXv3YlMo2Ns9FvHkEaDii3W+RooyCjOEVTlGkV164Df0kr3ymGySM6h7UHfGxY1z7089Hg+ASqOlbXhP1BlSdJdaVHL0UCEgoFRcpOgwSzlEGf4MDH282mbp6Rso1Tx6XRsiwifX8UStVBxdZtidTp5adxiuk/KEhRi1/O++Qc08KxkZmdaAbJS6jOn51zYSDkVQGOENwYWIKPnsju0oFZ6Lp9Lle/4qJfmu6KUoY1QFgxSA0xUp5RTtOF3LLWKCbUx+anjdJn3qD4jfULZdRSLNlogmwFUCtzZd1UJ0V13zIfxwONVtkFIItKqk5jIyMjIyMhdidZVRt8bGIgoCDhR090/HT1nMqag7yTkRSJExj3t63MPImKor1xW6HHLGRjRKFdmk5XkGVUXdZbNKSwenL36TgvdOcf6v86ABJUqKzJIOMwhF9Tup0ylFrBdnS9u6mqNgLJY0ALp1fZWwsOapCibTeOxPyqMPUsR8eZ67oWvzTEhGRqbVIRulLmMMyZIRyaaSvgaiUlEng5TV6STRJI2x89zP+BRJIbs+Gp9KbZ0WG05ErKIVpyu6WVUfkWaRorGI6APDnoKYlu2BkYw7IgptMQCmYl/QXWS4fGNSh8hzm8PJ8l9PkFZg5ky25Kn96v5BdA7zwaCVby0yMjIyMq0XZ4mUb/PMlPvgu/dBocesuZ0MoCS3G0qNEoN3PA9d8a9qxyhwSI47b2XDG6UOZx5m7ta5pJkkg493uchxURSxWySj1PETp/lJ9RtOVyi21amg65l1+JjTiLutamNajTid8OEIOL+vbF81RqkTiS+RmroWm02qzqfVhtf9fBWoWaQIco65Judgch4Pfr6fbdrKRqnhnUOaaVYyMjKtDfnN8TKmWAgmodet5PrYoeBnHGpN7Z1cbMzKZ+bfZ7C6wmOU9iwAoryjiDJGudvZzGZO7d9N/slcftUexqKzuY+p1eq6T9oqGT/wi4GOo+revwkpLDzGvv13YrfnIbjyTohidYKp9QmpLcczefO3RPe2RqmgY6hRNkjJyMjIyLRqRKcTsdjlTDJLaQpUaEm19pQaWKX/bN6mKvufKrawMiWTD85J2sjH03yZdeD35N9JLpRygioEBZ0COrmP2V1RUgBnz59zG6QAMPvR/ckRRAzrXb8Tl+RWNEh5BUGbKys1czqtJCevRhSlD8vLqy2+vr3qd06QIsmri+K+QEKJzRx23tznbwpOZRbxxq8nSMwoi7ZTKWBir0j+14zzkpGRaZ3Ib4+XKaIokuLbm0x9Ic4SKcLJofXck7cxq8BtkBKcxXRTZ/DfW7firfGukOxz51efse+7bzEEdcYSVFbhRXCq8PeqHFFVK668Va0hwXlOzlbs9jz3tiOnLS3N+FSfQnPFVjuHzuWzPVEK2+8cZmR8rwh6R/th1NXD0NiSufR1pYyMjIzMBYhms/tns9nlTFNoGOn7OgIO9g+ZyarTnxLVqerk5f85eZ4fs/Ld2/19DVW2uxhK7FIk100dbuLBPg8SpA9yH7NZyoxSdrtkVBuo6cLJs94g6NH46Ot/4tJCM2oveDIJBCUoKhvdioriEUUrKpUv/fp+iU4XiUKhrdSuNuTop5bJqh1n+PaAlJoiyvUr0qqULLm5J//bIlVhliWUjIyMpzS860amdWCzkastwl6yBaftFAAloSUedz9rlgTPtIAcAs/dT7jahp/Or1L1GVuaiYltHqSdbx8AQi062iUEE5gxkIAOdcgHlXoIfn8BTvwibbeCBOdWq+QhjYy8k9xdN2LZf2czz6hhmPV/+7jt/T/5ePtpAAbGBTJ7eHuGtA+qpWdrQZZRM2bMQBAEBEFAo9HQvn17nn/+effLTX35448/EASBvLy8hpmoB5w+fZopU6YQERGBTqcjKiqKiRMnEh8fX6Hdhg0bGDp0KEajES8vL/r378+qVasqtDlz5gyCIHDgwAGPz79gwQI6d+6MwWDA39+fkSNHsmvXrgpj3n333bRt2xa9Xk+7du2YP38+Vqu1xnFTU1OZMmUKHTt2RKFQMGfOHI/ms2XLFsaPH09ERASCILBu3bpKbb7++mtGjRpFYGBgrdcriiJjx46tdqxVq1bRs2dPdDodISEhzJ49u8Lxn3/+mYEDB2I0GgkODmbSpEmcceXyKeX7b/7HtUMG4OXlRXh4OP/85z/Jzs6+6OuUkakOpytKCsBSauBRaOmk30xH/TZUHW2c84tHp67ayLK/QOo/PMDIm13aMNiv4TWL1SHdI8K8wtwGqfyMNL5Y+CSfz58LgFKtxu4qSKNBDYJkjNL6XERVXHf1Yx9QqisZpMzmVA4euo/de24EwMenJwZDO5RK3YUjeUxLfSpf6Ni71A1oVruTD7ee4qUf49l6QtK4N/eN4rkb5MI2pcj6SdZPLU0/TbpuSA36qfI9q7n0k2yUukxxmPKxKaRcBwrvQP5um4+1f9XVY6oi15Xg3AsTAk681FULHJ3FC7VCg9MlKUSHgC28KwIKtP51KA/77WzY/DIk7ZC2vVquASQ9fQM7/xxFUvJHAOh1kYh27SUjVo6kSN7f2EAvekf7cXPfqFp6tD4ujd/UxTFmzBhSU1M5ceIEjz76KAsWLOCVV15p7mm5qU10ANhsNq677jry8/P5+uuvSUhI4IsvvqBHjx4VhN3y5cuZOHEiQ4YMYdeuXRw6dIjbbruNWbNm8dhjj13UPDt27Mhbb73F4cOH2bZtG7GxsYwaNYrMzEwA4uPjcTqdvPfeexw5coTXXnuNd999l6eeeqrGcS0WC8HBwTzzzDP06uX5khiTyUSvXr1YsWJFjW2uuuoqXn755VrHe/3116stg/7qq6/y9NNP8+STT3LkyBF++eUXRo8e7T5++vRpJk6cyLXXXsuBAwf4+eefycrK4qabbnK32f3nTp6Zcz9Tpk7nyJEjfPnll/z111/cc889F32dMjLVUWqUEvR6HMXS8iRFqdNNH4BFdBl6lFWnPch3vYC+3DGKW8ICqv0buRjMDimaS6sqM4wl7t7FuaN/k3v+HNGGzkyMfIDic9Izu7ig7KVYXR+jVMYx+OJO2PBvabuaPFLnU9eSlfWLezskeEzdz1Vf6hP+XQ8uFT1XV346ksai74/x7uaTnM6Slq5OuiKKUV1D3W0a4ave6pD1k6yfWoJ+2rF9O8/MuZ+bbpvaKvSTvHzvMqU4Ox2HICXcFsLbsKfDPm4OCvS4f2pJHqDlj7M/AlSqtleK6JAEQrHWAk7IF7wRi6V9OmMdlnoVpUv/d78Z/GOg7wzP+zYxp8+8RXHxSQAUCg2BgcOA1Z65+kSRlmgSKTTbWLbxONkmK9km6WH21f2DCfSueyh+y6Xlfe7NiVarJSxMMlTff//9fPPNN6xfv55Zs2bx8MMP891332GxWBg6dChvvvkmHVyRj2fPnuWBBx5g27ZtWK1WYmNjeeWVV+jatSvDh0vVNv39pSUv06dPZ9WqVRQWFjJr1izWrVuHj48PTzzxBN9++y29e/fm9ddfByA2Npa7776bEydOsG7dOm666SZWrVrFtm3bmDdvHnv27CEoKIgbb7yRF198EYPBwJEjRzh58iS//vorMTExAMTExDBkyBD3dSYnJ/Poo48yZ84cXnjhBff+Rx99FI1Gw0MPPcTkyZO58srKOVM8YcqUKRW2X331VT766CMOHTrEiBEjGDNmDGPGlL20xcXFkZCQwDvvvMPSpUurHTc2NpY33ngDgI8//tjj+YwdO5axY8fW2Gbq1KkAlTxuF3LgwAGWLVvGnj17CA+vmMA4NzeXZ555hu+++44RI0a49/fs2dP98969e3E4HCxatAiFK9riscceY+LEidhsNtRqNXt37yIiqg0zZ80m1EdH27Ztue+++2oVfJ5cp4xMdThcL11KoYjOKes5igo9rogpY5g7SkmrrPwMtDlFSlwJn30aseqexWGpNIfSXFJte/elv98YhLN27EhORLMNvEypBOYcQeM7pPKAtbH7Izj2Xdm2f2yVzQoLDwMQGXE7ISFj8fdv2QVpZGrn9/gMFv9wjKwi6fvVI9KXK9sGEOGn58q2AZBfzyqOlyiyfpL1U0vQT3/u+pOIqDbccfcs2kb6tnj9JEdKXaYUZWe4jVIOtfQ1qKpqXlWY7WZyrdJSv/SiMwBEeEdU2VZwGaXslCZEt9BnoA/D7uhEeFwdIqUsrgfetc/AiOfAO9jzvk2I02nHZJIMUj26r2DQwF/x9u7ocf+WYha5MEnnj4fTWLXjDN8dlPIH+Hmp8ffyPDG+jBSm67Q6muWf2ADeY71ej9VqZcaMGezZs4f169ezc+dORFHk+uuvx2aT8q7Mnj0bi8XCli1bOHz4MC+//DLe3t5ER0fz1VdfAZCQkEBqaqpbFPz73/9m+/btrF+/nk2bNrF161b27dtXaQ5Lly6lV69e7N+/n2effZaTJ08yZswYJk2axKFDh/jiiy/Ytm0bDzzwAADBwcEoFArWrl2Lw1UF60LWrl2LzWar0qN333334e3tzWeffXbRnx9I3sn3338fX1/fGr1z+fn5BAQENMg5G4vi4mKmTJnCihUr3OK7PJs2bcLpdJKSkkKXLl2IiorilltuITk52d2mb9++KBQKVq5cicPhID8/n//+97+MHDnSXQijb/8rSUtN4ZeNPyGKIunp6axdu5brr7++ya5V5vLCUViI9cwZrGoDyRHDSLdKL2QlapGXQyOYFRLA/45LqZyripQqsJfda4yNaZSyV2+U8g0N46jlPL+pD5OnlKK+CjNOcVXSB/Tvq0ahrYdDyezKkdX9ZrjxfZhY5kUXRZHz59eSePIVsrJ+BSAs7B8EBAxBEBroVaOGEJzGiESTAbvDSX6xjVU7zpCYUUResfScn3l1W565oSv/vKotCkXTfPatWUPJ+unikfVT3fXTwCsHkpaawpZfN7YK/SRHSl2GlPzxGppt3+AUogGwqKSbja/WMyNRib0EpyDlBnj0itm00am5OurqKtuKLm9h6fI9ja2YfsOC0MRGej5hpwNsrgo3WqPn/ZoQUXSSlPyRyyDlRBCUBAePqlmMlX/ItVA9lVFgZu/ZXLackEJlB7QNYGz3MPrHBjSZELlUEG1Ozj+3o1nOHfH8YARN/V6ORFHk119/5eeff2bs2LGsW7eO7du3M3jwYADWrFlDdHQ069atY/LkySQlJTFp0iR69OgBSJ6rUkqFQkhICH5+fgAUFhayevVqPv30U7dHaOXKlUREVDZ0X3vttTz66KPu7ZkzZ3LHHXe48wF06NCBN998k6FDh/LOO+8QGRnJm2++yRNPPMHChQvp168fw4cP54477nDP6/jx4/j6+lbyVAFoNBri4uI4fvx4vT67UjZs2MBtt91GcXEx4eHhbNq0iaCgqpcgJyYmsnz58hq9fC2BRx55hMGDBzNx4sQqj586dQqn08kLL7zAG2+8ga+vL8888wzXXXcdhw4dQqPR0LZtWzZu3Mgtt9zCfffdh8PhYNCgQfzwww/ucfoPHMSLb77PfXdNZcbtZux2O+PHj5eX5ck0CsX79nN2+nSw2TjZ/h8kB4dgN0lGllSdhR+8VGBKcrcPN1S+b+S5lu4ZlAqUDWwscTgdfHn8S9KL0zmRdwKoaJSyuZbl2AQlf+YdBiXuKG2dU6DD5j/qf3KryzkYexX0urXCoaKioxyLn+veVqmMGI096n+u8ghwYah5E63Su6wpMNsY9eoW0grKkv4/P7Ebg+ICaR9STY60RvzFtEYNJesnWT9VRVPpp8FDhvDim+/z+L/+ycN3T2nx+qnZI6VeeuklBEGokGTMbDYze/ZsAgMD8fb2ZtKkSaSnp1fol5SUxLhx4/Dy8iIkJITHH3/8opPIXQ4kJZ1F/8cCvLOO4BCkz+tkiSSwPImUevL4OcYdSAGFZJSaGDeKUbGj0KuqqeQiBWNhF6UflA4ngtrDZXt2K+xdDVvKrcNuoQnOs7M3k5j4EqmpXwKg00VXNEhVJUxreXg3R0nhC/MkTP3oL+5fs48Nh1IBGNoxmLuGtKV7ZB2i3GRaJRs2bMDb2xudTsfYsWO59dZbmTFjBiqVqkIodmBgIJ06deLYsWMAPPTQQyxatIghQ4Ywf/58Dh06VON5Tp06hc1mY8CAAe59vr6+dOrUqVLbfv36Vdg+ePAgq1atwtvb2/1v9OjROJ1OTp+WEvHPnj2btLQ01qxZw6BBg/jyyy/p1q0bmzZt8viz0Ghqjwpcs2ZNhXls3brVfWz48OEcOHCAHTt2MGbMGG655RYyMjIqjZGSksKYMWOYPHlyhTX/5cedNWuWR3PeunVrhX5r1qzxqJ8nrF+/nt9++829NKAqnE4nNpuNN998k9GjRzNw4EA+++wzTpw4we+//w5AWloa99xzD9OnT2f37t1s3rwZjUbDzTff7PZMH48/xpL58/j3E/PYu3cvP/30E2fOnHF/Dlu3bici4krCw/o2+HXKXH6YDx8Cmw0EgUx9HvbiX93HEiPPcXvn2/l333/zwlUv8Pqw15nRfYb7eInDyfV7jzNyt/QS1lbf8Mvb96TvYfGuxXx4+ENSilIA8NP6uY87bJJRSnQt59CIKrrrO+OT0x2D/SINZKVGqSqcg8UlZ6VD2jCio2bQo/vbKKtY2nix1HYFze0quxRyTTmdIglphfxwKLWCQSom0Isb+0TSIdQoR6bVgqyfypD1U0WaUj8dO3qUJfPnMWvOE9Xop62EhHQlIuJKAgLaNLt+atZIqd27d/Pee+9VWCMJkgXx+++/58svv8TX15cHHniAm266ie3btwPgcDgYN24cYWFh7Nixg9TUVKZNm4Zara6wplWmMmmJ+2gDZNl9cCIZpaxqJwa1gd7BvWvsm2W1syoly72tdBTgp6rlK3RBpJTgdICnRqmE7+G7h8q21QZQtcwcRvn5e90/t419iKCga6tp2Xrce3aHk+MZhQD0aeNHoEHDP/rUIcJNpgKCWkHE84Ob7dx1Zfjw4bzzzjtoNBoiIiJQqVSsX7++1n4zZ85k9OjRfP/992zcuJEXX3yRZcuW8eCDD9Zn6hUwGCrmrisqKuK+++7joYceqtS2TZs27p+NRiPjx49n/PjxLFq0iNGjR7No0SKuu+46OnToQH5+PufPn6/kXbRarZw8ebJCcsnqmDBhQgWxGRlZ9rdiMBho37497du3Z+DAgXTo0IGPPvqIefPmuducP3+e4cOHM3jwYN5///0KY5ev3uLj49ky6379+lXoFxoaWn3jOvLbb79x8uRJt7e2lEmTJnH11Vfzxx9/uD2nXbt2dR8PDg4mKCiIpCTJEbJixQp8fX1ZsmSJu83//d//ER0dza5duxg4cCArXl9K7/5XMvvhfxPqo6Nnz54YDAauvvpqFi1aRL9+V7B165cIChXehnYNep0ylx9OV2Vh30k3ISalggXMel8SIpIwxQXy1JXVJ9DdV2BiX0FZ1b6RgZ79rdaFzBIpajncEM6INiMI9gpmYMRA93F7aQJjhRTVoRc1tFFFkm61oVScrPsJC87Dvv+C3QxZUmQWmrL7sMNRQnr6Bs6cfRcAX98r6Njx2XpcWcPSEEvWL1cWfHeET3aedW8P6xTMh9P6oVQI1RujmsBI1Zo0lKyfZP1UHU2pn5a8/DK9+1/JjPsfokekbxX6qR87d/6A3V6EVhtKdHRlY2ZT0mxGqaKiIu644w4++OADFi1a5N6fn5/PRx99xKeffsq110ov9itXrqRLly78+eefDBw4kI0bN3L06FF++eUXQkND6d27N//5z3+YO3cuCxYs8Mgqe7lhPXuWoj/+QH34T7KTvSks8UXUS0apUZ3G8vHkW1ArazYWlYakeylAnbqYEGUJasU1NfYR7SIowGqzgwqUTofnkVIFUnQO/m2lcPEO17W4sh42Wx55eX+RmvYNAO3bzSUm5t5qWgs0vx/PM46lFjD0lT8QRVApBL6aNVherneRCIJQ7yV0zUGpEChPly5dsNvt7Nq1yx1+np2dTUJCQoWHZ3R0NLNmzWLWrFnMmzePDz74gAcffNB9by6fnyAuLg61Ws3u3bvdQig/P5/jx49zzTU131+uuOIKjh49WmmeNSEIAp07d2bHDmkZwM0338zcuXNZtmwZy5Ytq9D23Xffpbi4mGnTptU6rtFoxGj0bHmx0+ksKzOP5OEbPnw4ffv2ZeXKle6klaXU5fpK0ev19ernCU8++SQzZ86ssK9Hjx689tprjB8/HsCdDDUhIYGoKKlCZ05ODllZWe6kqcXFxZWuVamU/kacTim6tqS4pNIy6NI2oii6ykC3QVCoMXo3zvXKXD44zVK+TIVWh931HUzyC2F/p0P00Hepse+ZEskgNMjPwPIuMURq61DMxUNMVimVQbfAbswdULZcLuf8OVLij5KbdI7RkXdRcEwBmrOoUJJ4WtJuKlU9DDVbXoE9FyQCLlf9OPncJ5w8WfZSZDR2r/s5GgRZn1ws6QVm0vLNbEuUnM8BBg3eWhW3D2iDStnsC2talYaS9ZOsn6qjKfVTcUmxB/opFru9AJ0uEo2meVPkNJtRavbs2YwbN46RI0dWMErt3bsXm83GyJEj3fs6d+5MmzZt2LlzJwMHDmTnzp306NGjguVy9OjR3H///Rw5coQ+ffo06bW0Bo498RhH8jKxKwT2KzpTolEjuiqy+AUE1WqQAsizSe19lOCwxGPwrjpqxmw2s3nzZoqLi0lT5pKkOkoGeQCobFYEtYdGQ5f4ou01MOFNz/o0MQcOzqSgYL9728vQrobWHgjCFlJ9r8TqIDtPEuc9onwvL4OU7GCtlg4dOjBx4kTuuece3nvvPYxGI08++SSRkZHutfFz5sxh7NixdOzYkdzcXH7//Xe6dJFe5mJiYhAEgQ0bNnD99dej1+sxGo1Mnz6dxx9/nICAAEJCQpg/fz4KhaLWJQJz585l4MCBPPDAA8ycORODwcDRo0fZtGkTb731FgcOHGD+/PlMnTqVrl27otFo2Lx5Mx9//DFz50ovdG3atGHJkiU89thj6HQ6pk6dilqt5ttvv+Wpp55i0aJFdO9e8UUrISGh0ly6devmTi5ZislkYvHixUyYMIHw8HCysrJYsWIFKSkpTJ48GZAE1bBhw4iJiWHp0qXuUsdAlQkwy1PqySsqKiIzM5MDBw6g0WgqCNwLKSoqIjEx0b19+vRpDhw4QEBAgFvU5uTkkJSUxPnz5ytcb1hYWIV/F9KmTRvatm0LSKWcJ06cyMMPP8z777+Pj48P8+bNo3Pnzu4qQuPGjeO1117j+eef5/bbb6ewsJCnnnqKmJgY93N85JixzJ3zAKs+fJ/J/7iB1NRU5syZw4ABA4iIiMDhKKn3dcrIXIhYIi1XUuh1OERJ8zgM0kMh1j+kxr45Nsn400anJUrXOM7RIpu0hO7CisdfLnqGouws/DWh+EWGkIuU8kIpKih0iCA68Sen7icskO4BtLsWgjuDXwxElS0Dys+XEir7+PTCx9iTqMg763FVNVP2HLiMdEgTcybLxIhXN+NwlgmgL+4dSIfQlpnHtTUi6ycJWT81nX4aN+4G7p91H1988hGGW/9RST9dzHU2Bs1ilPr888/Zt28fu3fvrnQsLS0NjUZTKawtNDSUtLQ0d5sLQ+lKt0vbVIXFYqlgXS0oKKjvJbQ6EgtySPWrnI9JoYrGy9+zh05igSRySqyZaACdUldluyNHjrBz505pQwvppLqPBWWfRNB46D20FrrGaJkPRZutwG2QMhp74OvTm6DAYc07qTpSPm/V3yn5/HasLHfblCvbcEu/aDqHtczPv8FpYVF4LZWVK1fy8MMPc8MNN2C1Wrnmmmv44Ycf3ILC4XAwe/Zszp07h4+PD2PGjOG1114DpJDshQsX8uSTT3LXXXcxbdo0Vq1axauvvsqsWbO44YYb3CWNk5OT0emqvseU0rNnTzZv3szTTz/N1VdfjSiKtGvXjltvlZLwRkVFERsby8KFCzlz5gyCILi3H3nkEfc4jzzyCHFxcSxbtow33ngDk0kyiH/22Wfcdtttlc5b1b7k5GS3R6sUpVJJfHw8q1evJisri8DAQPr378/WrVvp1q0bIFVZSUxMJDExsVL/2paglHfA7N27l08//ZSYmJgaSxHv2bPHLWpAqtwDZeWlQcp5cNddd1W63vnz57NgwYIa51SeTz75hEceeYRx48ahUCgYOnQoP/30k/u7cu211/Lpp5+yZMkSlixZgpeXF4MGDeKnn35Cr5fyFN4yZSoZOfl8/MG7LHzmSfz8/Lj22mtrLWnsyXXKyFxIaaSUoNXidLqMTG307AKCvQJr7FvkkLzT3o0QVbIvfR8v/fUSqSZJT3mXy68piiJF2VJ0i3+7TvzPuYNihRS1VWBxMHrHMygdFvyHDqr7iUtypf/73gVdJ7h3FxUdp6gonqysXwApStzfv35l32WaD6dT5HS2id+OZeBwimhVCoK8tfSM8qVdcMvM4dqakfWTrJ88pSH007TpM0g8n8Xnqz7g1f880+L1U5MbpZKTk3n44YfZtGlTrX8wDc2LL77IwoULm/ScLQGn1YrVIYmrwFB/+iv+JM23KwfSbkBNG3R6zzx6PydvB3pQbE5HAwR5VV39ID9dMgwqSkzEOoII0kZSUHAO71NbiTlzFqG2PFTWYsg4CrlnpG2NocbmzYHTaaPEldhTpfJjQP91FzVeUyeNvPB0TqfIHR/uwqRMRi8VZaRPtB+9o/2adF4tjcs1aKqmh46/vz+ffPJJtceXL19e49jPPvsszz5bMeeI0WiskGDRZDKxcOFC7r23bClsdUKhf//+bNy4scpjQUFB7rLJtTFx4kS3tzInJ4cRI0bwzjvvMGHCBLy8vACIjY2tU64SnU7H119/XWObGTNmMGPGDI/HLE998qYMGzas1n71mVNVY/r4+PDRRx/x0UcfVdvvtttuq1KklmfKXffyyMMPEepTg2a44PyeXKeMzIWURkoJahVOUTLsmHSSoSpAV3OZcZNrWY23quGXGK0/uZ5jOcfc23G+ZVW5HOWK/Pj16EXB4Z3uba1ZTdiNo1AFBOA7ocyoVCvHvoOfnyqLlPIqu3az+Ty79/wDp1Ny8gqCGqOx+uiCS5nq7jCt5d7z6JcH+WZ/int7XM9wXr2l90WMKNawdXkg6ydZP7U0/XTHP++jRx0KVDWXfmpyo9TevXvJyMjgiiuucO9zOBxs2bKFt956i59//hmr1UpeXl6FaKn09HR3uFtYWBh//fVXhXFLq/PVFK43b948t7UPpEip6OjohrisFo0jOxuzRropmG1dSFANpLDAH60QioDgsVEqzxWaHqLz4uF+j3Ntm4rJvE/t383OtZ9xNq8IgiMIchroZY8lUBVBttmENwLGf96FoKjFi7j6BkgpSxze0iruZWT8xN9HHkF0CVadruYQUWh6o1NdyTZZyS+xoXIFRQUbtYztUbnEq4xMY7B//37i4+MZMGAA+fn5PP/88wDVlsttbAICAvjll19YsWIFO3fudJdalml6WvadU+ZSw2k2IyJgcTjA9YzPUGWDvWajlMnucKc4MDRCpFShK3L8zi53MqHdBDoHdHYfK624B2X5ZmKVYRSktcEvJ4Wgp29DXddEvQc/hzwpoS4qPQSVJcDNz9/nNkj5+w8mPOxGVKrLJKLaRfX5vlv+HcvpFPn+cCqZhRZ+T5CqmPnoVHhrVfyjt1zMprUh6yeZS4UmN0qNGDGCw4cPV9h311130blzZ+bOnUt0dDRqtZpff/2VSZMmAdJ6zKSkJAYNkkKPBw0axOLFi8nIyCAkRFrjv2nTJnx8fGpcC6rVatFqW2b1tsZCtNuxpaRQrPMFirBa/EgVO4NNEvsWZTEGY80Raya7g03ZBZxzSqHrbbz8mNbtpkrtDvz8PVknT6MJa4sVCNW2IVAprVn1GTGMtrfd59mk049K//tEgSEIOl3v4dU2DZmZm9wGKRCIipxar3GqtEE3sWHa6YR+i36hyGIDwEenwQZEBejx1jZrcc5mpeXLykuPpUuXkpCQgEajoW/fvmzdupWgoKqjMZuCwMBAnnvuuWY7v4yMTNNjz8vizwHPUnwoAPgJgIPFB0ED/jr/Kvu8cSadF0+XpSloDKNUaS6pLoFd6BJYMeG6u+IeYCmWnuUKqxKlQ4faYUHhilSoE1bpfIx4Tlq65xWAKIqUlJyhsCgegJCQ6+nRvebIjiajFRiDWgqbT2Ty4GdluVAFAbbOvRZf/cUk5heq+EmmqZD1k8ylQJO/dRqNxkpJzwwGA4GBge79d999N//+978JCAjAx8eHBx98kEGDBjFwoFT2dtSoUXTt2pWpU6eyZMkS0tLSeOaZZ5g9e/ZlZ3SqCcuJE5yZcgfOwkKcPXoB4G3MZZj+JRL9r+Z9r5Oc15xmkq76UFKAV8+msyIpA5CSm/mqqhZcIUURDIgdwTZVPPGkoHI4yFArKSi0EhvnYdig0wl2V+La+zZLRqkWRolZ8h527bKEkJBxKKvJrXWxNEXopEMUySoqy7PWOczIYXsNHWRkGoE+ffqwd+/e2hvKyMjINCKFxU5KAkPBKRllRECt19PeN4bewb2r7PNbTll+Ul+VkkFV5O+sL1vObSE+J57T+acB8FZXHtths+GvCaWDX1/SkvOleTsknaYvyUThyi9SJywuo1RwZ/fSvaTkD0lMfMndRKOpOcdWwyFUyH9Zc0uZ6ohPKyAxo4jf46Vk0G0CvOgd7cegdoEXaZCSaU5k/SRzqdAiQyFee+01FAoFkyZNwmKxMHr0aN5++233caVSyYYNG7j//vsZNGgQBoOB6dOnu0MWZSSK9+/HWSiFfDsEKQGnQZtDtG4XyWE9OKU4hM1pQ6OoefnekULJSOTjzMBSksiIyA5VtnM49Pyu/pt0hSSKlMXnSQjsSY7ZSTujh5VobMVlP6vr4d1rRBKOLyA19WscDimJn9HYvR4GKbGcR68KkdVEa3j3nJGSlzpdlVYeva4jN14RyfHCP3n49yaZgoyMjIyMTIvCbpOeiVqysQAWtYP/jvsvHf07VtuntOreF73acZW/N8oGitrJMefw4G8P4hSd7n1VLSG026x08xtCpKEDqZYEUIHCbqPXoRX4F59FUNUjl2pppFS59Anpad+5f9br2hAackPdx21sxNL/LsdsRtWTXWRhwlvbsdrLvks39AzniTGda+glIyMj03S0CKPUH3/8UWFbp9OxYsUKVqxYUW2fmJgYfvjhh0aeWetGLJGMScZhgxALi8AOv3ul8lJsNHY2guvZpFbW7CE5aZIMW/4Fayku2Em0vupw7eOqLFKU+e7tc2I4ZEpzUKk9DGd3G6UEUNfDu9dIWKxZnDv3X/e2l1c7DIb2zTij+lNotvH4lweBMrNY90hfovy9OFEo+xkvz9ScMjIyMjIOm4DDdhqrXUoqXqxzoFbUrJFyXLmkgjWqBjNIAeSZ83CKTjQKDePbjSfKGEXP4J4V2pjycslNPY9aIa0SMKtFEMGcl05gzlF0NaS0qET6UfhyBpjzwOQqra71RhRFRNGOqfgUAAOv3ITBEFftMDIth7xiK0t+TuBstgmr3YlBo6R7pC9GnYpb+1/6OXVlZGRaDy3CKCXTODiLpJByRdIvOH2k0peZOgv2cqKpZ1DPWivKpJmLQOFNQUkKKip76hwFVpwWOw7Xy3yMykhOVhR2ayACTgQBvANqiSiyWyB5F+S7qoCovVpUjgCLWapAIwhqBg3ciFYbhiA0YIWdJrzWtHwzNleElFIhMHtYO67u0PKWScrIyMjIyDQlJqcTW9E32Eq3dXZUiuqlsiiK5Lmq3wWoG1ZSlzgkp56/zp8FgxdUOp6wcxsbXpeW040IvxMAi9IBdlAoRGI+/RRd506V+lVLwg+QlVC2rTFi8wlmz65RFLsMUgA6XUTdL+Yyo6VEaq3bn8Knu5Lc29d2CWX57X0a74StpOqgjIxMy0M2Sl3COHNTMWv9sRhiQZQ8eb1thdyapKfLHV/QOSYKlUJVa7UQuyAtvbsuejCDg6fSI6iH+1jJ31lk/5/kURQ10ji+x89Q7NUHDRZG3t8Pn2A9xtqMUj88BvvK5bbSGOp4tY2DzVbAyZNLyM7eDIDR2A29vk0zz6p+rNufwpd7kykoKUsapVYK/HtUHUTrJU3LMYLKyMjIyDQdaYtfoOD77yl0VdMVBA0JkbnEx+TXGClVYHfgcL2H+6sb0FEFmO1mAPSqqqPGzx2TigYpVCoOeqVjVqaRZZfSC6gEAa8r6mh8sLhyY/W8DQY/CL6RZOX9XsEgFRU5tdHyaF4ULciJ2RL43+5kfj6SRmKmtAxzaMdgRncLY1S3OlZhlJGRuUxofoOybJS6hLHmF7JrwLPYFUCetBSysOsUOg34Bz2i/Twaw+4UEV1Gqbu63kqfwIpL1goTpXKyDtGO3WX4cubngBdo1CJtewV7NtnM49L/fjGg84Xed3jWr5E5f/4zUs5/5t728+3bjLO5OF7+KZ7UfLNnjZv/3iQjIyMjI9Mk5H3+OaLNhjXaFQWk9GVHzxMA1UZK/V1YzEFXzk0vpQKtomGr7pUapXSqMiOQzWrh91XvU5SdRcZZKfl5z3/cxtYj8RX66h31OaHLKBXQFsKkwkOW9HQAgoJG0q3rUlQqYz0Gvjhke1PdcDpFnv32byzl8kfddEUkE3tHNt5J5V+SjIzMRSIbpS5hiooclJRsxGmThJVDoWBglzh6eWiQAihylCmbwCoSj5vzC1AAJwr3ke+TCUo9/ldeRXoSaILrUJmlNKnm+Neh3bWe92tk8vL3AVIOqZg29xIaOv4iRvPgod0Ioc+/xacTn1ZIWoEkcF+4sQd2p5Pnvj1S6XS1Rc3JyMjIyMhcSohWK6JNWrBna+8HOSUI5QxBVUVKxZtKGLnnuHs7oIGjpKCcUapcZFLS4YMc/vXnCu00fn4A+Dq98CqKodiuItR82PMTJfwIJ3+DM9ukba0PqanfkJ7xHSaTFCVl8IprFoNUBcrJk+qWx13O/rS0fDOvbkogx2TDYneiVAi8cGN3/Lw0jOgc0tzTk5GRkakR2Sh1CZNfYsNpK1tLfjq8gMEGzwxFdqfIQ/FJ/JwlJS4XnCV4ayqHbIs2yROj8zGiF7IoBNShEZBUh+TmUBY2rvXxvE8jYjKdJDdvF1lZvwDQqeN8AgKGXOSotculhjYJnc8r4e7Ve9zGJ71ayW39o0ktMPPct0ca+GyXHi0lL4SMjIyMTOPgLC6r+utQSbpFqSozRFVllDrsipDyVSlp76Xlzog6OOFq4YVdL/DNiW+wi9JS+/KRUhaT5MALio6h3/ibcKjUZFsl56GPqCdSH0jx37uI8E/17GROJ6z9Z8XKx8YwTiS+gM2W497l5dXuIq/q0qQlpVD67K8k/rfnnHu7fbA3t/Zv3nQTYkv6gGRkZFo0DRtrLNOiKLZIBiOFoGX9kFS298gmxMsz4fRXvomv03MxOaQxNCV7K3jrShFLw4MVUBpTpVBJy/2Unhiljm+En5+GotJKL83siUN6iB44MIOEhGcBEAQVRmO3RjhRbYcv7mEuiiJnsk2IIvjq1UzuG8Wrt/RCoZCjoWRqZsaMGQiCgCAIaDQa2rdvz/PPP4/dbq+9cw388ccfCIJAXl5ew0zUA06fPs2UKVOIiIhAp9MRFRXFxIkTiY+vuNxlw4YNDB06FKPRiJeXF/3792fVqlUV2pw5cwZBEDhw4IDH51+wYAGdO3fGYDDg7+/PyJEj2bVrV4Ux7777btq2bYter6ddu3bMnz8fq9Va47ipqalMmTKFjh07olAomDNnjkfz2bJlC+PHjyciIgJBEFi3bl2d5wywePFiBg8ejJeXF36uSI0LSUpKYty4cXh5eRESEsLjjz9e4TtU/ntW/l+3bmX327dee4Up466lXWQwISEh/OMf/yAhIaGq09V5fjIyAE6TlIdJ0GpxuDSPoCiLfKrKKJVilv4+xwT58n3fjtwe3nBGqQ2nNmB2mLE7pb+V3iG93cesrqrK/uGR2HwD+XrTb2zeLOW81KKmd4diuiT8H1qthyezFpYZpK5+DMa+grPjKLdBqlPHhfTs8R5hYRMb5NoaDVeUd1Opm9rO01QOLVEU+d+eZN789QS/xUvpNEZ3C+U/E7vx7tTWm26iNSPrJ1k/tRT9tOTll5gy7loGdopqFfpJNkpdwpht0kNRodCS42vFKSgI9vL3qO+hAilCSoMF3/TFGHM+ruCtK0W0O3Ei4lCKOEqXfqkkNaTS1BLO7nTAl9Nh51tgLwFBAV7NXwXObD6P2XIeQVARHDyKLp1fQK32a4QzlRMtDbxs7pOdZ+jw9I9M+UC6EXaL8OGVyb0Y2yO8Qc9zqSIvY4QxY8aQmprKiRMnePTRR1mwYAGvvPJKc0/LTW2iA8Bms3HdddeRn5/P119/TUJCAl988QU9evSoIOyWL1/OxIkTGTJkCLt27eLQoUPcdtttzJo1i8cee+yi5tmxY0feeustDh8+zLZt24iNjWXUqFFkZkqG+Pj4eJxOJ++99x5Hjhzhtdde49133+Wpp56qcVyLxUJwcDDPPPMMvXr18ng+JpOJXr16sWLFinrPGaTPf/Lkydx///1VjuFwOBg3bhxWq5UdO3awevVqVq1axXPPPedu88Ybb5Camur+l5ycTEBAAJMnT3a32bl9G7dOn8n3v2xm06ZN2Gw2Ro0ahcllSKiO2uYnI1OKw/VdUnh54bRLz2WhXCW9qnJK5dokN1yQpuEXHJQu2/vv2P/y6+Rfmd17tvuY1VyC3duXNIfAnzt2AqBRqjE69bR3hJG3ZrV0LRoPrVJmSeuh1CJe+wxnwwWOJS5wHVQQGXk7wcEjUdSQ7L3Rqcfz+HKJct55Kpsn1h7i1U3HOZwi/S4n9Ipk6qBY2gY1R8EgEUEuGiPrJ1k/tQj9tGXLZm6dPpP/W7+pVegnefneJUjG0qXkrf2KYr/24AuCUjIOiQ4v9B4KqIPZxwF/hKJdaCzxBOgCUAiVbZgl5hI2aPdSLFhBKUVIHT9iBTQoVbXYPG3FZR66QQ9AVD/wcHlhYyCKIhZLGhmZPwDg7d2Jnj3eaZCxm9rI8cPhVOzOMlE2tKOHCedlWlY8fjOi1WoJC5MqUd1///188803rF+/nlmzZvHwww/z3XffYbFYGDp0KG+++SYdOnQA4OzZszzwwANs27YNq9VKbGwsr7zyCl27dmX48OEA+PtLxvHp06ezatUqCgsLmTVrFuvWrcPHx4cnnniCb7/9lt69e/P6668DEBsby913382JEydYt24dN910E6tWrWLbtm3MmzePPXv2EBQUxI033siLL76IwWDgyJEjnDx5kl9//ZWYmBgAYmJiGDKkbClucnIyjz76KHPmzOGFF15w73/00UfRaDQ89NBDTJ48mSuvvLJen+OUKVMqbL/66qt89NFHHDp0iBEjRjBmzBjGjBnjPh4XF0dCQgLvvPMOS5curXbc2NhY3njjDQA+/vhjj+czduxYxo4de1FzBli4cCFAJW9oKRs3buTo0aP88ssvhIaG0rt3b/7zn/8wd+5cFixYgEajwdfXF19fX3efdevWkZuby1133eXet2btt2SbrIT46Ajz0bFq1SpCQkLYu3cv11xzTbXXUNv8ZGRKEV3L9xQGAw5XKb1ilZRjSiVUXaG4wJVv00fZsLmk7E47Nqd07lifWPx0fgDYzGZ+X/0+ycf+piSyHSXFFiiWkpBfU9KZWKeUM6gwPRkATWxszScqyYW9qyH3jLSt8yU/fy+JiS+5m+h0EQhCw+fKqh+t47ncVFrvWGoBL/8UT1K29N1tG2RgYFwgwUYtI7vK+aOaG1k/yfqpujlD0+mnDd//SHxaAQICPaJ8W7x+kiOlLkHyvlyLIy8Pm1IyQFmV0kNSdBjQ1mYocpHvChEM1Oh4rN9jvDOyauNMVlG2ZJByobR5UZwjndcYWEvZYGtpDgMBRi2Cbjd6NLfG4uSppWzfcZVblPn6XNGs86kroiiyavtpFn53hIS0QgA+mNaPQwtGcd9QOR9ErTSymBRFEavV2iz/GiKvg16vx2q1MmPGDPbs2cP69evZuXMnoihy/fXXY3MlCp49ezYWi4UtW7Zw+PBhXn75Zby9vYmOjuarr74CICEhgdTUVLco+Pe//8327dtZv349mzZtYuvWrezbt6/SHJYuXUqvXr3Yv38/zz77LCdPnmTMmDFMmjSJQ4cO8cUXX7Bt2zYeeOABAIKDg1EoFKxduxaHo+pyVGvXrsVms1Xp0bvvvvvw9vbms88+q6Jn3bFarbz//vv4+vrW6J3Lz88nICCgQc55sXg65wvZuXMnPXr0IDS0rAT56NGjKSgo4MiRqvPZffTRR4wcOdItgKsiP1+KBmgpn49M68dhMpESfhWb4h6lwCo5cNKFbAC0qqojjgrs0v3E6KGm8hSLw+L+uXx0+pmD+zj820ZyMjLAVeWvB6EMsLUnLKuQkxYH+4ostPnwLWI//4zgOQ/XfKK/PoRf5sPeldK2dyh5ebulazJ2I67tI/To/laDXluT0DpsVxfNJzvP8kdCJqeypIiHW/pF8+JNPfj3dR3RqprDkNj4xrjWrKFk/XTxyPrp0tdPcqTUJYjTLIV+m2J8IDuTIpV0M1U6/D324phc959QnYHp3e6odNyaXIhpTxqiVQUa0FmVeOcMBBQMmdQB32A90V1q+dLbXOGDaq8WUU42N2cHAAqFBrU6gMjI2xt0/Ma+woPn8lnw3dEK+7pG+OCjq3vY/eUS+t6U2Gy2Cp6kpuSpp55Co9HUq68oivz666/8/PPPjB07lnXr1rF9+3YGDx4MwJo1a4iOjmbdunVMnjyZpKQkJk2aRI8ePQDJc1VK6YMwJCTEvU69sLCQ1atX8+mnn7q9SCtXriQiIqLSXK699loeffRR9/bMmTO544473PkAOnTowJtvvsnQoUN55513iIyM5M033+SJJ55g4cKF9OvXj+HDh3PHHXe453X8+HF8fX0JD6+8tFWj0RAXF8fx48crHasLGzZs4LbbbqO4uJjw8HA2bdpEUFDVS5UTExNZvnx5jV6+pqAuc66KtLS0CoIKcG+npaVVan/+/Hl+/PFHPv300wuOlN05nU4nc+bMYciQIXTv3t3zi5GRqQGnyURWUE+cCg0ikkOuyKuAIRFDGBkzsso+Ra58mj4NbAAosUs5owQEtMoyg5ilRHLiBUa1wQQoRIErLdLfQLFiF3+XtEGjVWIYMMCzExWkSP9H9sMW1ZOcmDgyXYVdwsJupE30XTV0lmkO8ktsLPzuCNlFVo6cl14uZwyO5ZqOQVzV/tKPhm+NGkrWT7J+ak79VP69szXoJzlS6hJDdDopQc/pmLEU26T15IJKwJI1HGPxTR6PY3JKX2WdomrjRO6GREy70lAgCTKF6ODaqd24+Yl+9LmuDXG9g1FraxFrpZFSGi+P59VYiKIDs0WqVtP3ii+4ash2vL07New5GnS0MoqtdraeyGTjEelGFR2gZ/bwdiy/vQ+RfvpGOqvMpc6GDRvw9vZGp9MxduxYbr31VmbMmIFKpaoQih0YGEinTp04duwYAA899BCLFi1iyJAhzJ8/n0OHDtV4nlOnTmGz2RhQ7mXK19eXTp0q//3169evwvbBgwdZtWoV3t7e7n+jR4/G6XRy+vRpQPI8pqWlsWbNGgYNGsSXX35Jt27d2LRpk8efhSdidM2aNRXmsXXrVvex4cOHc+DAAXbs2MGYMWO45ZZbyMjIqDRGSkoKY8aMYfLkydxzzz3u/eXHnTVrlkdz3rp1a4V+a9as8ahfXefcUKxevRo/Pz/+8Y9/VNtm9uzZ/P3333z++efuff/614NERFxJeHhfvL29G21+MpcuzuJiTIpMLPkf47RKCXztwUreve5dbu54c4W2S0+n0XbzITbnStHIYdqGy7X0/anv+ejwR4AUJVXeiWi3SBFU3sHSi4kKJVCCLes4YpxkkFDWZS7mPOn/HjdzKCSVv9Nep6DgAAB+vv2q7dZiaX6/ZqPz4+FUvt6XwubjmWQVSSsUbu4bxbWdQ9E0cMSezMUh66cyZP3UcvXTrFmzCAnpSkTElQQEVB9h1VTIkVKXGKLFwunY60kNH4KjZJu0TwnWzNH4R/jU2n9vvokVSRmctEnrVAOUtirb5aek4YU3qeazoAGnw0LXIZUt81Vybi8c/AyKpHwIqJvPKCWKIgcO3kVOTtkNUKeLavqJXESk2ONrD/H9obLyz/1iAnh8dOf6TeNyUHbNhFqtrjX5YmOeu64MHz6cd955B41GQ0REBCqVivXr19fab+bMmYwePZrvv/+ejRs38uKLL7Js2TIefPDB+ky9AgZDxcStRUVF3HfffTz00EOV2rZpU1YK22g0Mn78eMaPH8+iRYsYPXo0ixYt4rrrrqNDhw7k5+dz/vz5St5Fq9XKyZMnGT16dK1zmzBhQgWxGRkZWWHe7du3p3379gwcOJAOHTrw0UcfMW/ePHeb8+fPM3z4cAYPHsz7779fYezy1Wp8fGq/j4MkQMv3u9DrVhuezLkmwsLC+OuvvyrsS09Pdx8rjyiKfPzxx0ydOrVaAfvUY3PY9OP3bNmyhaiosnv0ggXPMmvWjQiCEm/v9nW5RJnLHFt6BllvvYX56FGKVT6Izjxpv9KJI6pyURinKPLBuUxKnFKUVBudhn4+DZNM+lTeKZ7c+qR721frW+G43SoZpQSVCrChRMFvBSoKVW3hlNRGqfLg+Z32Nxz5Bs7vB8Ch9SIvt3TZXg/8/QZgNLYsL7qAgCiCUN6P3sKDuRtiyXwpK7ef5ut9KWQUSqsgrukYzMReEUT46eke6VtL70uH1qShZP0k66eWpJ9eeOZxtv36YyX99PzzzzN79u3Y7UVotc2fi042Sl1iOM1mbGrJWywopS9wsrYIgHDf2qNmXjubzi/ZBYAaRCeR6pIq24k2JwiQbc8EtGgFT+sPAz/Pg+Ry5TG96/bH3pBYrRkVDFIhIdej0TTfWluhHjomPrUAgLggAwEGDXcObFNLD5nmoLQ8cGuh9KFani5dumC329m1a5c7/Dw7O5uEhAS6du3qbhcdHc2sWbOYNWsW8+bN44MPPuDBBx90X3/5/ARxcXGo1Wp2797tFkL5+fkcP368xkSMAFdccQVHjx6tNM+aEASBzp07s2OHtFz35ptvZu7cuSxbtoxly5ZVaPvuu+9SXFzMtGnTah3XaDRiNBo9moPT6cRiKcsdk5KSwvDhw+nbty8rV65Eoajo9a7L9ZWi1+vr1a86LpxzbQwaNIjFixeTkZFBSIgkdjZt2oSPj0+F7wrA5s2bSUxM5O677640jiiKvPDM42ze+D1bNm+mbdu2FY6HhIRgMLRBEFQYjbJRSsZz8r/5hrwvvwTA2UuKNDgVHM1fPXcw0L9npfZ5dgf5rlxSfw7sQoRWjUbRMBEqKUXScroAXQDXxVzHiDYjKhwX8x0MDpmIPd/IEeJRigqsF+iF2B4eLA/Z8Aick1527EqBfLW0DEypNNC/3zeXQOXZFm6tqgMFZhvp+WaW/pyAyVr2zJzYK4JJfZvBeeoJjVgopjVpKFk/yfqpPM2tn37/6Xu2ba1aP3l7l2C3F6DTeRhY0ojIRqlLDNFiwekq3VtssKExgVWv4YnrOjG+Z+1fuNPF0h9NX1UiJ1M+I8R/eJXtFKICBNB6RQJZaOtSLtjkKovZ507wbQNdJ3jet4EpKpJC9b284ujXdy0qlWdW9DpThdCr7dldU16nrCILa/5Mothm53ye5D17f1pf2od4dlMvO4eMjOd06NCBiRMncs899/Dee+9hNBp58skniYyMZOLEiQDMmTOHsWPH0rFjR3Jzc/n999/p0qULIFVuEQSBDRs2cP3116PX6zEajUyfPp3HH3+cgIAAQkJCmD9/PgqFotYXpLlz5zJw4EAeeOABZs6cicFg4OjRo2zatIm33nqLAwcOMH/+fKZOnUrXrl3RaDRs3ryZjz/+mLlz5wKSR3DJkiU89thj6HQ6pk6dilqt5ttvv+Wpp55i0aJFldbfJyQkVJpLt27dKnlTTSYTixcvZsKECYSHh5OVlcWKFStISUlxl+1NSUlh2LBhxMTEsHTp0gplgy/0iF1IqSevqKiIzMxMDhw4gEajqSRaylNUVERiYqJ7+/Tp0xw4cICAgADatGnj0ZwBkpKSyMnJISkpCYfD4Z5L+/bt8fb2ZtSoUXTt2pWpU6eyZMkS0tLSeOaZZ5g9ezZabUUnxkcffcSVV15ZZZ6Dpx+fww/f/I9Vn63FaDS68yn4+vqi11fvaKltfjIyjgLJoeM1cCBYbOCEYh8NZq2TWL/KOXpMDilCSqcQiNXXwRFXA/mWfHae38me9D0AdPLvxDMDn6nUzitVj9YQSJo1DzSgRMGVW58A0U7EC4vxu34sSrUHBrIi6e/H1PN6/vLbizNDSpas17dpFQap2hx3zR3t3VDnzy6yMPSVPyiySDnOlAqBD6f1w0evok905Sg+mZaPrJ8kZP3UdPrpoQcf4Idv/scbH37aKvSTbJS6xBBLSnAKrl+rK9xb4a3lX8M8s/imWaV16pGOIyRZjqNVjqlwPDMzk8LCQs4r8rErC8h1JeVUCnXwFlqkyC2unAVhPTzv14AUFP5NYuLL5ObuBMDbuzNqdVOFQZc+KOpvEvpg6yne23zKva1SCIT41FLtsIoZyFSFbKqriZUrV/Lwww9zww03YLVaueaaa/jhhx/cgsLhcDB79mzOnTuHj48PY8aM4bXXXgOkkOyFCxfy5JNPctdddzFt2jRWrVrFq6++yqxZs7jhhhvcJY2Tk5PR6Wr+Tvfs2ZPNmzfz9NNPc/XVVyOKIu3atePWW28FICoqitjYWBYuXMiZM2cQBMG9/cgjj7jHeeSRR4iLi2PZsmW88cYbmExSEYbPPvuM2267rdJ5q9qXnJxcISwaQKlUEh8fz+rVq8nKyiIwMJD+/fuzdetWunXrBkjer8TERBITEyv1r20JSJ8+fdw/7927l08//ZSYmBjOnDlTbZ89e/a4S0uDVLkHyspLezJngOeee47Vq1dXmsvvv//OsGHDUCqVbNiwgfvvv59BgwZhMBiYPn06zz//fIX55Ofn89VXX7krCV3IJx9/AMCkcaMq7F+5ciUzZsyo9jprm5+MjLNY+jvX9eqB6Foq0SZCyx4gUB9Yqb3JFaHgpWy4/D2L/1zMj2d+dG+XP68oimx6fzlppxKxKqM5pzO5j5ntoLKbUAUH49O/j2cGKQCzZIjL6NQJZ7p0zSqVL7ExnuVaabFc8ALekMvnaqKhi8KUWB3sPpPD4ZR8iix2lAoBH52Kib0jGd65+ZfXVEsrMGi2BGT9JOsnaDr99N577wLwz1tuqLC/peon2Sh1ieE0FWEWcrAUfIpKzJX26TwLd80152GyO0BQsD15IwpAoyzre/78+bK1uqX3Opdhu04laK0uYaVpmFwM9eHkyaXk5u5wbwcHXdcEZ734h3ZmoYU/T2Wz61QOAFd3CKJTqJG+Mf71qrInUzOXq3lq1apV1R7z9/fnk08+qfb48uXLaxz72Wef5dlnn62wz2g0VkgkaTKZWLhwIffee697X3VCoX///mzcuLHKY0FBQdU+rC9k4sSJbm9lTk4OI0aM4J133mHChAl4eUl572JjY+v0sqPT6fj6669rbDNjxowaxUFN1OfFa9iwYTX282TOIH1HavqegOTZ/eGHH2ps4+vrS3FxcbXHz+UUk22yEGLUEebrueHdk/nJXN6IJZJTzaFWIyIZnMwqKTLFqKkcdVzsqrhnUDZcxb2kwiQAugR0IdQrlDu73uk+VpCZweHfpHubo2M5g4QImmIjXeKPeX4iqwkshdI/oMQhaYi4to/Qtu0DF3kVlx+NZYN59tu/Wbv3nHt7eKcQPpzeChPPu7gcNZSsn2T9VBtNpZ+sdgfHUgsQEOgR5XngRXPpJ9kodYkhlhRSzBlERxoKwCmIWHw9SyR+Ij8JXBFPeqVAgD6cgeED3cezs7MBUKtUGKxa9KKaIpsVrVrJiMljqhzTjdMJR76GwjSwlRql6rbUrCEpLpYqS7SJvpvg4FH4+TXFQ//iH8+z1+zjrzM57u0Zg2MZ0aX5cnJdWsievuZi//79xMfHM2DAAPLz893eoFKR09QEBATwyy+/sGLFCnbu3OkutSzTDMh/ljKNhNMl5h0aNU5RMkaZVVJxF4O6stOsyFFqlGq4SCmTSw/NHTCXvqF9KxyzuyLXNXo9ZpUSRDvjo6/hz93gZc6sNFa1pB+FD64FewknY7zI81VjytsOgFbbCvSDAJe6eSMpu5jU/BL2uPRdXLABfy8Nd1/VtpaeMpc7sn6SuVSQjVKXGE5TEU4kIZMVG8PmmB1EeHu2RC7PZqE0wflft29F4XIFiU4Re1YJOaekRJy6Qgs3C0MBMPW00mmKBzecU7/DV+WSsAlK0DZ9Xo/MzI0UFBzGYpFKc0ZF3Yle3wISg3vodjueIXk5+7TxIy7Im6s6eJDYtB40Veh7S0V+D256li5dSkJCAhqNhr59+7J161aCghrn++0JgYGBPPfcc812fhkZmcbFWSxFStmVCnAZpYqVUo5Gr3JVgYvsDp46cY7/pUnR5351iQyvhUKr9Ez3VlfWQw67ZCBT6/QUiZJBLOFwMeCF0jVfjzi3G+wlWNQCZ2Jc12XPA8Dg3bHec2+RtBDtUpdlfSczixj56uYKU/9gWj/aBbfO3Heyfmp6ZP0kcykgG6UuMcTiIpxIuaTy/L0pNNjRKGtf1vVXXhG/5EqiR4nNbZACyFh1CNvxAizKXFBDoCYMJK2Ewd/DaKeC89L/xgiIHQJth4K69mqADUlJyTkOHf4XpR43QVCj0VROZtoYXMxD+kyWiVU7zmCxO8krlj74j6f3x9/Q8FVIWkOiU5lLjz59+rB3797mnoaMjMxlhNO1fM8mCJTqgiKFFD2lV5Xpk03ZBW6DFMDQgIuL8v4z9U8e3/w4JpsJm1N6pntrKhsg7FYr/ppQ4rz6sE3MBQFEpxSlFWBJ9vyEZqnCnrn7GGA3anUAnTo9j04biq9Pr4u6Fpn6k1FoZtuJLPYl5SKKYNAoCfPV0Svaj7ig5ktvcXG0DKPg5YSsn2Rqp3X8XcpGqUsMZ3EhoihFSpldv11NLZXxThdbmLA/EZAy+qtckValFJ/KRo0aq1MydglKyDDZyXQI9PE0x4fVldy8zUCY9KFnfRqYvLzdlP5hRkVNx9/vSpTKpjWM1YflvyXy1b6yHANGnQpfvZw/SkZGRkZGpr6ULt8rraoHcNpxGpQVI6XSLJLh6EpfA/dGBzMy8OKq9G45t4U8S557O8o7ihB95STWDruNAcHX46cJYTO/AdDBdgDdtrV4x0XXfiJRhOJsSgpPci7OQJr3IQC89DGEhoy9qGtoDmp6rWopDrW6VN/79xcH2ZaY5d6e2CeSF25snuI/MjIyMs2NbJS6xBCLTe6EnSUK6X+duuZf85kSydikF5w4ig/TVZ0OXO0+Lrj02jnVWQCynEp2FouAyABPjSOlRqlmSG5utxeRlf07yckrAYgIv4VOHVt+WGlmgYXjRTnEp0nVcsb3iqBDiDeD2gWiULQMASYjIyMjI9MacZYUY9b6k55bqpFUmBSFqBVqwg3h7nYZVsko1cfHi3HBfhd93mKbZAyb3nU6d3a9k0BdIOoqItodNhtahR4nTkRBMsk49/yM2l6CKtiDKO8vZ8DRdZxtbyAlSg+uKHo//4E1dmtxtBCDU0MgiiLbE7PJLDJz6FweAANiAwgwaLhrcGyzzu3iuHR+RzIyMs2DbJS6RLCcOkXKY49hO5cMbaXElblKKQeUl7rmZV55dsl4Fa2xkHt2KXFR11Q4LohSuLjGGADF2dhLXNvWAnTG2Jon5nRCwTkoSJW2qwhRb2zi458mPWODe9tg6NDkc4C6P7Kvf3MrFqvWvT1tUAz9YwMadlIyMjIyMjKXIYVWNX/0GIC4fwsAoqDiucHPMSBsAAG6smdtplXK3xSiaZgI5RK7tGwwxCuEMENYlW2cTid2mxVBUGKnLJLLEBZEyOy7MI70oGLw6c0AWLRSDqwgr774RYwiMuLWi7yC5qR1LEOpju2J2dz50a4K+z6Y3k+OfpeRkbnskY1SlwiFv/6K5egx7IqyX2m+9hQAPrqaDUG7Mo4CBtIKjqMFtMoyQ4goiiQq0klQppBnlrx7Xj46rvhzBV55Z1Hqvq15Yv+bCvFlBqHmiJTKyd0BgF4fi7/fACIjb2vyOVRJLQk5LXYHGpWCSD89cUEGekX5Nc28LndaSKJUGRkZGZmGx5aejvnYMc6rDDhtie79Ji+RoVFDCfGquJQu3RUpFaJpGMlcbHflraomr+a6des4cOCAtHGBZDJERxLoSQl0USRPYyIr1IvCsCiwZRDRbibBwaPqP3GZepNRYGb3mVx+i5eK7IT56OgQ6s1V7YNkg5SMjIwMslHqkqE0N4J6QC8oyQPAZA/GmhPOqGvG1Nh3Z/phUA7EastBC8T4xJQddIgcVJ6hQFFCqbPOW++DX3Y8OJ0ItXkOk10eIaUW9H7QcXTdL66e2O0mHI4ibDYpQWnfvl+g1TRfNYr6cGXbAP5795WNdwLZ/lLGJbREQEZGRkamMqLDwelJN+PIyqK4bT/AhFJp5McrEsn0szCnnFOulHSLFCkVfJGRUqfyThGfE8+5QilHpJfKq8p2R/7+u8r92hI9Wp1nst1pzuVQF29sGgXYJEOIVhteS6/WTAt7fl+grf65ejd/pxS4tyf1jeTx0Z2beFIyMjIyLRfZKHWJ4Cws4linKZgUQcD3AHQw/IMhkVczKDamxr4lovQ1uCKwI08PWEWvYKkaiz27BHuuBYcrqVREtgUT/TGez5WW5QEKTS0V4CxSuWMe3AN+bep5dXUnP38fe/fd4U76Dgo0av8mO38l6mnwGNqxcaoD1jadupQzlpGRkWk+WtjLqEyLxmky4ciSkkubDXogF1HtxflgMwA6VVnxll+zC/guI8+dd7ONrv4Vb812M7d/f7s7SgrAqCmr4ieKIn99u5aclHPYbDYQBAwnj3Bj5P0AWEOScfxvKcKEG2o+UUY8fHEnJjELW3dp2V5U1HQMXnEYjd3rPX+ZqrkwsLp8wvViq52Ptp4mr8TGsVRJC/eP9cdXr+HWfk2nh2VkZC5vWssbnWyUukTIzSwgNXw0TodU+lcUlMy5tjfXxHSqta9FlLx/sd5B9A3tC4D5ZB5ZHxwGwKGVDFD681nYgv0g8wQACqMRhVfVnj4A7FawS0KvqXNJ5eXtKWeQEggNHYcgKJt0DnUhMaOo0r6tT1xLtF9gM8xGphR5JZ+MjIzMpYOzxKVJlEoswV6QA1qtZGwSENAopJ+dosiDx86SY5NybvqoFERfhFEq15xLsb0YhaCgf1h/Qr1CGRA2wH08K+kM2z5bjahQQKcrAOg5eAy6s5I+81GbyHbaEbSVI7kqXN/xH0lXJZEepAWU+Ji1raKwS00ICIiILcr87EmVvW/2p7Bs03H3tq9ezf/uG9RiKgU2CheIJllCycjIeIqiuScg0zDYTCZEpxmVXcojZVXZCPWuOSn2e8kZtN9yiHSVVILWT11mtLFnSN48Qa3A6Vq3pw6LBMC7b28iXllC7BefI1QXKXV6C+x6p2xba6y6XSNRumQvOvqfjLg2ke7dXm/S89cFh1Pknk/2VNrvo5dtxjLNw4wZMxAEAUEQ0Gg0tG/fnueffx673X5R4/7xxx8IgkBeXl7DTNQDTp8+zZQpU4iIiECn0xEVFcXEiROJj4+v0G7Dhg0MHToUo9GIl5cX/fv3Z9WqVRXanDlzBkEQyvK9eMCCBQvo3LkzBoMBf39/Ro4cya5dZYluz5w5w913303btm3R6/W0a9eO+fPnY7VaaxhVYs2aNfTq1QsvLy/Cw8P55z//SXZ2do19tmzZwvjx44mIiEAQBNatW1dlu2PHjjFhwgR8fX0xGAz079+fpKQk9/H77ruPdu3aodfrCQ4OrvIz3b17NyNGjMDPzw9/f39Gjx7NwYMHqzxfYmIiRqMRPz+/Wq+7/DWoVHo2bPit1j4yMgBiiaRtFDodTocrJ4FKksJapdZtMEg2W90GqXltw/m8ZztUF1H1tsgmOZ58ND58OOpDFl+1uEJUVklhIaJCiSpQKlQjAF0HlkVFiVYpWkvQ1mwYO23dytFORrIDpXbesePrPWeZ+vPF7mTW7pWWaV7Rxo/7h7Xj3Tv7XroGqUv1uuqBrJ9k/dRa9JMgCHz33c+19mkqZKPUJUJJSQmW/A8oLv4dgDxvKyFeNS9X+zw1hyKHEwQFiDa6epUZQUS7JNbs4WAVpSSfaj8pH5MuLhbf8ePRxsVVPXDBeVg9ATa5vHNaH6ii3HFjkJX1G7v33MT51C8BmnfJnodkmyzkldiaexoy5ZDlFYwZM4bU1FROnDjBo48+yoIFC3jllVeae1puPBEdNpuN6667jvz8fL7++msSEhL44osv6NGjRwVht3z5ciZOnMiQIUPYtWsXhw4d4rbbbmPWrFk89thjFzXPjh078tZbb3H48GG2bdtGbGwso0aNIjMzE4D4+HicTifvvfceR44c4bXXXuPdd9/lqaeeqnHc7du3M23aNO6++26OHDnCl19+yV9//cU999xTYz+TyUSvXr1YsWJFtW1OnjzJVVddRef/Z+/M46Kq1z/+nn0GGPZFNkEEcd81l9TQFLTUNpeb16XUpOuepVmZWZYtamV6LfuZ1r1a3czUzCyz3M3cd0FQFFFQdhhg1vP748DgBALiAuh5v1684HuW7/d7DjNzPvM8z/d5Gjdm27ZtHDt2jFmzZqHVln6JbteuHStWrOD06dP88ssvCIJAnz59sFrFL/L5+fnExMRQv3599u3bx65du9Dr9URHR4vLk67DbDbzj3/8g27dulU495u5BgmJ8rAViZFSMp0Om604jkNRbJRSlkYhFRQbrLxUSiaH+tHW7daKtBjMBgCcVeX3k5ebTX5ES7K9ReefSlDAt+KXFJsgULBXLNgiryRSKscmVjpWC1r8/QcR1nDaLc27VnHdg7nWRuAUT2zj8cscvpgNwFPtgpkR05jODe+PyHfJPiXpJ0k/SfqpOkihGPcI+WYzyMyADIPGzOn6+bhqXG94vCAIXCwSP5RCs/9NXt5RmrVaad+fcTEZJXDx5FHwFp8wsmKvnkJZyRMn7woggMoJIvpA40pyINxGzp1fRF7ecXvb2Tniro19s5y8nMv4d37DZLFVfrCExF1Go9FQr55Yrvz555/nhx9+YMOGDcTGxjJ58mR+/PFHjEYjPXr0YNGiRUREiO+1CxcuMGHCBHbt2oXJZCI0NJQPPviApk2bEhUVBYCHh2gsHjlyJCtXriQvL4/Y2FjWrVuHq6sr06dPZ/369bRu3ZqPPvoIgNDQUEaPHs3Zs2dZt24dTzzxBCtXrmTXrl3MnDmTAwcO4O3tzeOPP868efNwdnbm5MmTJCYmsnXrVkJCxNx6ISEhdO3a1X6dycnJTJs2jSlTpvDOO+/Yt0+bNg21Ws2kSZMYNGgQDzxQvYIDTz/9tEN74cKFLF++nGPHjtGrVy9iYmKIiSktRhEWFkZcXBxLly5l/vz5N+x37969hIaGMmnSJAAaNGjAuHHjeO+99yqcT9++fenbt2+Fx7z66qv069eP999/376tYcOGDsc899xz9r9DQ0OZO3curVq1IikpiYYNG3LmzBkyMzN58803CQ4OBmD27Nm0bNmSCxcuEB4ebj//tddeo3HjxvTq1Ys9e/ZUOLeqXoOERHnYCgsBkOt0CCVGKVVppFQJJUYpJ8Wt+W6tNiubkzZzKO0QcGOjVGZGNsgVyATQoqaRNQBZsd84z1iAvDj5ueIGnnBLyp8UpB+kyJoNcmiq7INXk3dvae51ihq2hKTlFvHx1rMk5xZH4slkPPNgAzyc1TzWJqBG5yZx95H0k6SfJP1080iRUvcI5mIBpVC48V2vFJL8bSjkN86hVGgTMBSfIzedQy4UOAiyrBTRCm2VCfaHfXqO+GBVKCt52RiL8yO5h8DgL6HloGpd081iseSTn38KgObNPqZD+x/w9n74roxdHU6n5pKWaySrwGzPliCrte6/+4k7808QBAGrtaBGfoTbkBxLp9NhMpkYNWoUBw4cYMOGDezduxdBEOjXr5/dezN+/HiMRiM7duzg+PHjvPfee7i4uBAcHMz3338PQFxcHFeuXOHjjz8G4IUXXmD37t1s2LCBLVu2sHPnTg4dOlRmDvPnz6dVq1YcPnyYWbNmkZiYSExMDE8++STHjh3j22+/ZdeuXUyYMAEAHx8f5HI5a9assXug/s6aNWswm83levTGjRuHi4sLX3/99S3fPxC9k8uWLcPNzY1WrVrd8LicnBw8PSteft25c2eSk5PZtGkTgiCQlpbGmjVr6Nev3y3N0Waz8dNPP9GoUSOio6Px9fXlgQceuGGYOoietxUrVtCgQQO7gIqMjMTLy4vly5djMpkoLCxk+fLlNGnShNDQUPu5v//+O999912t9NpJ3HsIhYUY1W4ke3XEaBYNRFal+PnooSmNrC603R6j1O7Lu3l558v8L/5/ALhr3B32Wy1mLp05Se75NHG/4MIwYzc6WBqyI8/Cllwz8XIDns8+i8+Uybg/9VSZMWzpcfx1ZCj7MxZSqBKdjWrNnSmSUtspMU3d7WIt//3zAqv3XSS3SHwOBrhreO3RpoyPCsdJLfn/bwd1WUNJ+unWkfTTva+fpE/KewSLVQAlyIoNUXJBW+Hx6cbiCjCCQF6RaIBSK9ScO7SfhP17USQr8HH2wCpzA8T9RqMSOeDqrat4MiYxTB31rYW7VxWbzcS584vIzz+FIFjRaoPw87t70VlVobw8AnlFFlDBF6PaEyA3I2yqgYlJXMed9bTabIVs297ijo5xIx7qcRyFooKiBBUgCAJbt27ll19+oW/fvqxbt47du3fTpUsXQFyXHxwczLp16xg0aBAXL17kySefpEUL8VrDrlvmWyIUfH197Wvf8/Ly+PLLL1m9ejW9evUCYMWKFQQElPUu9+zZk2nTSpejjBkzhmHDhjFlyhQAIiIiWLRoET169GDp0qUEBgayaNEipk+fzpw5c2jfvj1RUVEMGzbMPq/4+Hjc3Nzw9y9bLl2tVhMWFkZ8fHyZfTfDxo0bGTp0KAUFBfj7+7Nlyxa8vb3LPTYhIYFPPvmkQi8fQNeuXVm1ahVDhgyhqKgIi8VC//79b1mcXL16lfz8fN59913mzp3Le++9x+bNm3niiSf4448/6NGjh/3Yf//730yfPh2DwUBkZCRbtmxBXZxnUK/Xs23bNh577DHeeustQPz//PLLLyiVovTIyMhg1KhR/Pe//8XVtfzIXmkliMTtxFZUxJlG/yDDvQWCQXzoJmkuA+CtK31PlkRK6eS3ZpRKNaQCUM+5Hh3rdWRQI0cn3W//929O/LEFV68m4OuMXCZwNCuZFHk93Nxt1G8cQMuoDvjUv3Fezty0PyjUidpPY1Git+pxbj/yluZdq7Drpyp8Gtxlx97mE6ms3neRrALRGOiqVWMAJvasvVH6dZW6qKEk/STpp5rUT3UNKVLqHsFcsgKsuMKcnIqTYf51VQwFlwkFgA0npROeWk9++fRjjv/+K4JZDHFXGkurwj080I/Hprah6YM3CEW2WiD5L7h8WGxr7k7FvStX1nLhwlIyMrYD4OnR5a6MW31EYWWz2dAo5XRp6E2E792tTlgZd9vLKFH72LhxIy4uLmi1Wvr27cuQIUMYNWoUSqXSIRTby8uLyMhITp8+DcCkSZOYO3cuXbt2Zfbs2Rw7dqzCcc6dO4fZbKZjx9JKVG5ubkRGlq0c2r59e4f20aNHWblyJS4uLvaf6OhobDYb58+fB0TPY2pqKqtWraJz58589913NGvWjC1btlT5XqhvVNDhOlatWuUwj507d9r3RUVFceTIEfbs2UNMTAyDBw/m6tWrZfpISUkhJiaGQYMGOeQ2uL7f2NhYAE6dOsXkyZN5/fXXOXjwIJs3byYpKcm+f+fOnQ7nrVq1qkrXaiuOEBk4cCBTp06ldevWvPzyyzz66KN8+umnDscOGzaMw4cPs337dho1asTgwYMpKs7ZU1hYyOjRo+natSt//vknu3fvpnnz5jzyyCMUFi+hGjt2LE8//TTdu3cvdy47d+4kIsiHTpFBNAz0rvI1SEjcCFtBIabi1AYKmVit+IIqBYBAl0CMNhv/d+kaa9LEYim3GilVaBFf6+382vH2g2/T2re1w37tRRU96g2hvmszAFQqNXlmM2YBGkcq6DWyaYUGKUEQMBaI83cr0vFgnzha9T2A3DXwluYtUTWOp+SQkl1IgUmMJPF2EZ8V/m6VOG/vWSTtCJJ+uh5JP9WcfvJwc6VTZBCdIoPqhH6SIqXqOJb0dIpOncJS/EagOFJKKas4GWaWyQhoUWFm6cNLaejWEJ1SR0FeLjaFEpmzHwUYUdiK7OdE9mmBvCKv4S+vwF+flbbVd8fQkm8Qk4FqNPUICYnFz/eRuzJu9RAoMUq1re/B8MEd0KoUlB8YK3EvIZfreKjH8coPvENj3yxRUVEsXboUtVpdXOVMyYYNGyo9b8yYMURHR/PTTz/x66+/Mm/ePBYsWMDEiROrM3UHnJ0doy/z8/MZN26cPS/A9dSvX9/+t16vp3///vTv35+5c+cSHR3N3Llz6d27NxEREeTk5HD58uUy3kWTyURiYiLR0dGVzm3AgAEOYjMwsPRLobOzM+Hh4YSHh9OpUyciIiJYvnw5M2fOtB9z+fJloqKi6NKlC8uWLXPo+/pqNSUesXnz5tG1a1deeuklAFq2bImzszPdunVj7ty5tG/f3uE8Pz+/Sq8BwNvbG6VSSdOmTR22N2nShF27djlsc3Nzw83NjYiICDp16oSHhwc//PAD//jHP1i9ejVJSUns3bvX/txYvXo1Hh4erF+/nqFDh/L777+zYcMGu1dTEARsNhtKpZJly5bxj3/8g193/EmWwYSXi4bm4fWRkLgVhKJCbDIlgmAGVQoY5bhpPJjcdjQDGw7kv5czeO1siv14D9WN0yBUhQKLGJXupCwbZSHYBBpYmyHXyclViNFaWmcnrDbx/aJyrljHJZ1dQGLyUkoMARqqFw17T3AXc0rtOpvOj8cu29s+eg3/N6I9Xi5qXtj15V2bR+3izt//uqShJP0k6afrqSn9tP/gIRKvisElPVrX/uhNyShVhxEEgfODB2O5fAVLmLi+1iar2ChlEwRWXclgxTXxA1aNlQcDHwLE3AYFgWFYXdzZSSKQCEHieTKZrGKDFMC14nKWen9w8oZ2o27l8iqlsPAi165tISVFXK8cEjKO4KDhd3TM6nI+3UCkyvGh3bq+Ox0alh+Cerf4e0SUTFosc8eQyWTVXkJXE5QIgetp0qQJFouFffv22cPPMzIyiIuLc3gIBwcHExsbS2xsLDNnzuTzzz9n4sSJdo/Z9fkJwsLCUKlU7N+/3y6EcnJyiI+Pv6EHqIS2bdty6tSpMvOsCJlMRuPGje0JIZ966ilmzJjBggULWLBggcOxn376KQUFBYwYMaLSfvV6PXr9jSMarsdms2E0Gu3tlJQUoqKi7BVZ/v5ZW971FRQU2MO4S1AoxM9/QRDQ6XQ3dV9KUKvVdOjQgbi4OIft8fHx9mSn5SEIghi1UXxdBQUFyOVyh6XLJe0Sb+LevXsdXgvr16/nvffeY8+ePQQGBqLT6WgQ1hB9vhFfvRa9vuJl6RISlWErLMJgO44x+xQliwWCPcIY02IMAH+dT7If+2ygNyMCb61iWmFx1Hm5RimzDZtMIEWewdV6BsgAW3IcFktLANROFRulrl76DntkiiDgKZeMtneDdUdS7JFRAF0aetEq2L3mJnSfUJc0lKSfJP10PTWln8LDwzE75wJU+f7WJJJRqi5jNmO5LJb/tWpVABQVvxc1ivLF+5aMXF6KuwTFy/s8uYZgtlFw/BqmbAM2J7fSg0vsFTLKWH3LpSSX1CMLoPGdj1Y6cfIFcnMP29suzo3u+JjV5VJWAZE+tSesWTI+SVSHiIgIBg4cyNixY/nss8/Q6/W8/PLLBAYGMnDgQACmTJlC3759adSoEVlZWfzxxx80adIEECu3yGQyNm7cSL9+/dDpdOj1ekaOHMlLL72Ep6cnvr6+zJ49u8wDuTxmzJhBp06dmDBhAmPGjMHZ2ZlTp06xZcsWFi9ezJEjR5g9ezbDhw+nadOmqNVqtm/fzhdffMGMGTMA0SP4/vvv8+KLL6LVahk+fDgqlYr169fzyiuvMHfuXJo3b+4w7t8FB0CzZs1QqVQO2wwGA2+//TYDBgzA39+f9PR0lixZQkpKCoMGibllUlJSeOihhwgJCWH+/Pn2UseAvXpPefTv35+xY8eydOlSoqOjuXLlClOmTKFjx47l5pMoIT8/n4SEBHv7/PnzHDlyBE9PT7uofemllxgyZAjdu3cnKiqKzZs38+OPP7Jt2zZAXDLw7bff0qdPH3x8fLh06RLvvvsuOp3Onii0d+/evPTSS4wfP56JEydis9l49913USqV9ipCJa+LEg4cOIBcLi9zvyu7hgsXUjh27DTBwc4OHl4Jib9jzM/HZCuNcilSWXEK8bW3cy2iyF/UpD6D61WcLLciPjz4IWvi19iX7zmpyjNKWdmlOkOCIhUyxG3yjGvY5OLniKZexU4rky0PZNDmsi+u9Xqi7Px8tedbm6nhwnoA5BSYeX3DCTLyTZy6kmvf/kzXUF57pAr6WOK+R9JPIpJ+ql36KSkpmWPHPKhXz0Z4+K05YW4VyShVh7EVlS6tK6qnhQwwqkQLamO/8iuv/JVjsP+ty91Ea9d8DId6kP1DAgICglb8EBtW1A0danKv7KHplzOqNiFzcfL0csTX7cZqLbAbpDw9u+Hl2Q139+qVHL1TFJmt/O9AMpkGEyZLJQap2qC6JCSqwIoVK5g8eTKPPvooJpOJ7t27s2nTJrugsFqtjB8/nkuXLuHq6kpMTAwffvghIIZkz5kzh5dffplnnnmGESNGsHLlShYuXEhsbCyPPvqovaRxcnIyWm3FkTEtW7Zk+/btvPrqq3Tr1g1BEGjYsCFDhgwBICgoiNDQUObMmUNSUhIymczenjp1qr2fqVOnEhYWxoIFC/j4448xGMTPya+//pqhQ4eWGbe8bcnJyQQFBTlsUygUnDlzhi+//JL09HS8vLzo0KEDO3fupFkzMYfMli1bSEhIICEhocz5FVX8GTVqFHl5eSxevJhp06bh7u5Oz549Ky1pfODAAbuoAbFyD5SWlwZ4/PHH+fTTT5k3bx6TJk0iMjKS77//ngcffBAArVbLzp07+eijj8jKysLPz4/u3buzZ88efH3FL/iNGzfmxx9/ZM6cOXTu3Bm5XE6bNm3YvHlzuUlRb4a/X8Mrr3xQ5hokJK6nKD6eaws/pCA+HsFHrLKX0yOSdbpfGedXKsRLEpw732IuqXUJ68g1icYLGTKaepU1XAgmG7kyUTe5atTYrhUhU7WhSOMHVtB4e5Q9R7CRkPgeOTlHMMpEDehUvy/K7q/f0nxrP1V16t0Z599Px6+w/sjlMtu9XTQo5GX1m5SXU6I8JP0k6afapp9efnkuAMOHD+Wrr25PpcTqIhml6jC24mRnKJUYisP5bHIZLX1aMqrFP8o9p8QL2Mc5lcMXv8bDox/WbDFc0KAqsB931STDZjXhk3eq6hO6S1X3TKZ0DIZEABQKZ9q0XnlHx6suPx69zOvrTwJQu2oBSlSV+1VWVvTF3sPDg6+++uqG+z/55JMK+541axazZs1y2KbX6x2SMBoMBubMmcNzzz1n35aUlFRufx06dODXX38td5+3t7e9bHJlDBw40O6tzMzMpFevXixdupQBAwbg5CQa2kNDQ2+qNLRWq2Xt2rUVHjNq1ChGjRpV5T6vZ+LEiTeda+Khhx6q0jU8++yzPPvss+XuCwgIYNOmysuF9u7dm969e1d5bhXfi9I5X38NVmsRBsNZZDIlen2TG5wrcb+TvWYN+du2IQCCj5i+QOGpQzCCRlG6TM5wm4xSJRFSy3ovI8IjwqGyH0DGpYvkJaZhRhxPkRqAxliffCVgBWTg7FZ2+V5W9j4uXvw/e9vJYEHje+OIAIlb448zV5n382mu5ok6OSrSh8faBLLhyGW2nimbbFnCkftRQ0n6SdJPtU8/lfL3aygouIDFkotWe+MIsbuFZJSqwwjFRim5VovFKr7AVEoFq/rdOMN+iRfQZBE9eBqFhoJMscpMYsYx8AUEAY92MszvzkATGVrxJEwGOL4GjLlQkCluu4ORUpcvr+H0mdLILY3Gt4KjawZBEEjOLOTopWwAGtfTE2i8Xyux1EFu4qEpcXs4fPgwZ86coWPHjuTk5PDmm28C2EXO3cbT05PffvuNJUuWsHfvXnupZQkJibpJiV4SenSDbDHipUgjgBG016U7MBTn6HCqLIdmRWMJAkaraMQIdw8vY5C6djGJ32d/grc2EIuPOJ7NIhqglIKJrk83x8PfGWf3skapgiyxGpfKAo0TCnHPKkD2qFuZ4+5VbhhTLnP842a+/FbEf/+8QHxaaRXqJ9oG0b9VAHsTM25L//cckn6660j6SeJeQTJK1WFshYXkugRzIbQDsqJrogewkv9oYm4K4MSBy7vQAWqFGnO+kSxZHvna4gp+ghxvNysZ5nxkf1vjW4ZDX8Hmlx236cqGnN8usrL3AiCTKZHL1dSr9/gdG6u6zP81jiV/JNrb/VsFEGDUQ/bfDizn2X294LpdokqiikhLKGuU+fPnExcXh1qtpl27duzcuRNv75orBODl5cXrr9/rS2IkJO4PbMUJZG3B/qVGKZkJAK1Sy6UiE0dyCzhfKG5zVla/6p7ZZsYm2Ox9/52ck5fo6vcYAAdkYunzsKQ/cMs1ENohiNAeMWX7NOdy9epPJFwQIxfqpRbie9UAyMCvWbXnKlEWs9XG5G8Ok3jVwIVMcQXA6482pVuEN+G+d6eqdJ3jOv0kKam7j6SfJO4FJKNUHcZWWMShsHAKZEfBVLxNa63wnAxjAeCEEjNeWi96Bvdk7/aTnNYkQ7FTTiYokVnEDis1SuUWl072aQL+rSCgNbgFVnjKrWA0pgHQtMn71KtXM16AyvjznBgx5qxW4K3X0LupHyf/KufAWmx0kgxiEneTNm3acPDgwZqehoSExD2KYBQ1jcVWLJaQUVSck0mt0DDw0FlSjGaxLZMRolVXe6wia2m+z+ujsMxmM5cvX+bKlTQEuUCRzIgRCwCBRefwcFHj/XhsuX3Gn51Dauo6e9tVEwbjloCzL7jeWo6R2o+s6svAboN0OXwxm03HU+1ttULOoy398XWVqn9K1D4k/SRxryAZpeowQlEhRnk+CCDIlRRoIK2Ja/nHCgIpRjOZNjHfU0zIQ3wQsoCCI1c5ViRaTJSCDJtNjbagHjKTKKoqNUqV5JFq9hg89HKFh1YXQbBx9NhYcnOPYjaLSw212jtn+KoOBSYLo1bs52JGAdfyRY/sf8Y8QNv6YtTYyeLjarupp7JqHRISEhISEnUNoThSymItMUopyLFkA5Br09gNUh1cnXnczx2XakRKWW1WTmWc4lqhWAFKIVOglJfK7DVr1pRWnvqbzav+q6/i2zOKG5GdJeo0J5kH3hdT8NU3Fh2BEreN5bvO897mM5iL01y0CnZnRnQkwZ5OkkFKQkJC4g4jGaXqMDZDATZEIXW8VQCH/HfSzatTucdOOH2R79OyADG3kbfSRs5P5yiKy8KmFkAOoelF5Fi7AZA2eyJyqmCUMhavtVffuZDmwsKLZGRss7d12vq4utYuMXYgKYu/zmfa23qt8ubCvCVjkISEhMQtUNtN/hI1ic1kJNMjkow8T3GDTEGi4SwASpW4zKWRk5Yf20VUe4wFBxfwn1P/sbe1Sq2Do+fKpUsAaGwynHBGaYMcixptoRIX9/LzQgmCDau1EJNRTKrd+mgmuuwC6Hjn0iTUSW5BQ+UUmsk0mPjuQDImi82+vX9Lf7qEV28JlBRtLiEhUZsQBOEGgQe15/unZJSqw1jychEEMaIpWyN6/5xUZRNjAuzOEo1HcqwoC48T4qvEahANWha5+Dsv6zy4AoINuWADmQznzuUbuSjMhqRdkFmcO+kOVtwriY7SaOrRuvVKdNog5PJKjGV3iZxCM3sTM/jznJj0sl2IB3MGNCPYwwlX7XVzlIxOEhISEhISNUKGxZ0jrf6JLfcasBdBJqNAMKBRaFCr/YBruCpvreJeYraoh7x13rioXOgX1g+AhAP7SDt3lrzsLFCpCUsX6Or6ABcLr3LY6IFbTiJyXdliKFZrIX/tH0BBwTn7NnVucYJtn8a3NFcJkeTMAnot3O5gjPr2uU408tPj4XzzSzilaHMJCYnaQl37NJKMUnUYY24uFEdKZSvF33pN2cp3NkEg3Szuf5Tv2XvtRzQNZ4FF9OSYZSYQQKFSYgMUSjmNDuxHJpcjd7pBJb314+HMxtK2tvxlg7eC0ZROXNzrFBZeBECt9sHFufpezDvB9DVH+eVkmr0d5u1M88C6UwlHcuZJSEhISNzrFJjk4AQqcjEBRUoj0ztMp51fO46ZxKVZ+ltIbg5QaBEr/L3ywCv0DhFLeRfm57F90WdoZE7IQjwRgBCfVmAEhdqdyDNr8Ew7ilxXtvR3Ts4hB4OUZ5YJxYCl4Nv0Pl26d91XrFvULharjQyDiW1xVzFZbCjkMpzUCloHu9MuxAOl4tYMlPcvkqiUkJCoHpJRqg5jzDXY/zbIxHwJek3Zde/ZFmuJ/Ql5YRYP7/cl7eCPZKsH46x0p8hYBGolSo0WM6BQK1G4VLL0LPO8+Nu3Gfg0gvCHb8clOZCSsppr136xt52dGt72MW6VuNQ8AJr6u+LlomZE59CanVAVkZx5FSGJKgkJCYl7CWNBEbiDm3AOA2BSmRgcORiNQsPuZDEH1O0ySumUpVFPhrirRAc8g4BAouwPQMDDKOorITeDwAt/ACAvR3MZipcXenp2o+XGjcgtZni4O7gF3dI86xoymewmHsuVH2i22oj5aAeJ10o19GOtA1kw+OYNfdIyvRIkUSkhIXFrSEapOkjh8RNcmTWLjEwT+IsPgiIKkAEe2rLC5qpJjJJyVyrQpuQRdE2HiSwIEs+1FT9LsglBAyiUVXi4mIpzSfX/GII73OollUte7nEA3N0fIDhoJJ6eXe7IODfL6Su5vPvzGQpNVi5liSL038PaEupd8RJGmfTQruVI/x8JCQmJe5EiqwxT/k+k2sSKwTaZACj56Vo2O7JE55Kv+tYkcXlGKfPVApLlGeQJ+Qgy0YBRqIWrOVayc1Px79wJpzZtUF5Xvj075yAXLy7HkC8mRXfOykFhEXUcmtsflV6nqMQGVKKzhHIOtNkENp9M5Wxavt0gpZDLcFIp6Nu83k1NQ3LsSUhISNxepPjUOkju5p8xnjlDUXG1GAC5RnzANvYJKHN8ukksOeyuFCgqKgBA6++DQu5ccrL4S9UCAN/QKoieEqPUHcgllZNzmKSkf5Oe8TsAoSHj8PWNRqnU3/axqsN//7zA9vhr/JWUicUmoNcqqedWeWWWv4uk8kSTFKRTu5D+HRISErWNHTt20L9/fwICApDJZKxbt85hvyAIvP766/j7+6PT6Xj44Yc5e/aswzGZmZkMGzYMV1dX3N3dGT16NPn5+XfxKu4ueQoTNnMcNqt4jQVONv57JZPRJ5LYkpELQIRT9SqsxWXGsfXCVnKMOYCjUeritcv8oj7CHk2CuEGAXakyjhXakDkrCVmxAp9Jkxz6O336Fa5d+4WCwiQAXOJ2izuU2jtaVKYuU5VcTtvPXuNfqw7x4W/xALQMciPxnX4cnxPNw039but8ytV39yFSIJmEhERVkYxSdRChsJA850AyWvcV28gR1GJlFm+nspVCjmSKOZlSsk+QlnsZALWLC3KZGKouL46MGjCxHcPnduaR51veePCiHMhKKq26p7m9AslszubwkREknlsAgEymwNm50W0do7okXM1n2Y5E9ieJVfZGdA5h6bC2/DjhQbSqWwv7L8/tVhOiRormkgAYNWoUMpkMmUyGWq0mPDycN998E4vFckv9btu2DZlMRnZ29u2ZaBU4f/48Tz/9NAEBAWi1WoKCghg4cCBnzpxxOG7jxo306NEDvV6Pk5MTHTp0YOXKlQ7HJCUlIZPJOHLkSJXHf+ONN2jcuDHOzs54eHjw8MMPs2/fPoc+R48eTYMGDdDpdDRs2JDZs2djMpkq6FVk1apVtGrVCicnJ/z9/Xn22WfJyMio8JylS5fSsmVLXF1dcXV1pXPnzvz888/2/ZmZmUycOJHIyEh0Oh3169dn0qRJ5OTk2I9ZuXKl/fXx95+rV6/ajzMajbz66quEhISg0WgIDQ3liy++cJjPRx99ZB8rODiYqVOnUlRUVOE1rF27lj59+uDl5YVSqePYsTMVHn+vYTAYaNWqFUuWLCl3//vvv8+iRYv49NNP2bdvH87OzkRHRzvc12HDhnHy5Em2bNnCxo0b2bFjB88999zduoS7RtGZM2SvW4dFJspdhcad39te5WD7Qk7ki5FNEU4aBtXz4DFf95vuPzkvmad+fIop26aQbcwGwEVVqovyC0StpBbkOAneOOc1RKWQoTFmEaC4UqY/szmXggLRgBWu7EbzU7nUM/lD63/CY0tBLsn2myUtt4i/zmey7Yz42RTkoaN/qwBm9m1SwzOTuBeR9JOkn+qKfpLJZBw9erLSe3W3kJbv1UGy85Xs7/AKNms2AEKxQSPcPZwQ1xD7cZlmCzPjL7E3swBQobSk44ILJg9fjCoPTghJyJFhQ6w64u7rjKtn2Qowdq7Fw6cPgtVYuu02e+3yDWexWsVorgD/wXh6dUer9b+tY1SXKd8e5kRKrr3dp2k9HoyoWrng6714kuGn9iOF5kNMTAwrVqzAaDSyadMmxo8fj0qlYubMmTU9NQBMJhNqdcXVkcxmM7179yYyMpK1a9fi7+/PpUuX+Pnnnx2E3SeffMKUKVOYMWMGS5cuRa1Ws379emJjYzlx4gTz58+v9jwbNWrE4sWLCQsLo7CwkA8//JA+ffqQkJCAj48PZ86cwWaz8dlnnxEeHs6JEycYO3YsBoOhwnF3797NiBEj+PDDD+nfvz8pKSnExsYyduxY1q5de8PzgoKCePfdd4mIiEAQBL788ksGDhzI4cOHadasGZcvX+by5cvMnz+fpk2bcuHCBWJjY7l8+TJr1qwBYMiQIcTExDj0O2rUKIqKivD19bVvGzx4MGlpaSxfvpzw8HCuXLmCzVZa5Wr16tW8/PLLfPHFF3Tp0oX4+Hi7oF+4cOENr8FgMPDggw8yePBgxo4dW+n/4F6jb9++9O3bt9x9giDw0Ucf8dprrzFw4EAAvvrqK/z8/Fi3bh1Dhw7l9OnTbN68mf3799O+fXtAfA/069eP+fPnExBQNuK6LmLNyyNpyFAEoxFLk54AyHUuXKxXiJfWieRC8YvLpBA/BtXzrNYYl/NFR59OqaOxZ2MaezYmWB9s328ujlT3sGlwsrQhv8BIz9bpWD6ajb5PH/txNpuZ9PSt5OWfAkCj8SfEGAHpJujwMDyyoFrzuyeQQXXjlrMLTETN30aByWrf9mjLAF7ue2eqF0r6TkqEAJJ+kvSTpJ+qg2SUqoMYjMUev+Lk5haFhfWPraeBawMH48fqyxmsv5oNqABo4qykt+vjnKt3DaMA6ariqi7Fz3qNRlPxwKnHRIOUTA5KHTToDjqP23JNgiCQk3OQrEwxTN3NrS1Nmsy7LX3fLpLSRWNZ3+b1iPB1oXNDrxqekYTEnUOj0VCvnphn4/nnn+eHH35gw4YNxMbGMnnyZH788UeMRiM9evRg0aJFRESIlTEvXLjAhAkT2LVrFyaTidDQUD744AOaNm1KVFQUAB4e4ufGyJEjWblyJXl5ecTGxrJu3TpcXV2ZPn0669evp3Xr1nz00UcAhIaGMnr0aM6ePcu6det44oknWLlyJbt27WLmzJkcOHAAb29vHn/8cebNm4ezszMnT54kMTGRrVu3EhIiGuxDQkLo2rWr/TqTk5OZNm0aU6ZM4Z133rFvnzZtGmq1mkmTJjFo0CAeeOCBat3Hp59+2qG9cOFCli9fzrFjx+jVqxcxMTEOAiUsLIy4uDiWLl1aoajau3cvoaGhTCpe+tOgQQPGjRvHe++9V+F8+vfv79B+++23Wbp0KX/++SfNmjWjefPmfP/99/b9DRs25O233+af//wnFosFpVKJTqdDd10J+2vXrvH777+zfPly+7bNmzezfft2zp07h6en+IU/NDTUYew9e/bQtWtX+z0KDQ3lH//4h4MntDyGDx8OiF5SCUfOnz9PamoqDz9cWnzEzc2NBx54gL179zJ06FD27t2Lu7u73SAF8PDDDyOXy9m3bx+PP/54mX6NRiNGY6lDKjc3t8wxtQ1LaiqC0YhMpcKmKU6WrRJlr0ahIas4csFbVX0pXGQRvdLh7uF81fcr+/ZLGw9iOHwVs7EQlCCXybCYxC8UCosRCyDTlmqu1NR1nD7zsr2tL1JAQnGhF617ted3L1Elg0/xerH8IgsfbonnUlYhBSYraqWcIA8deo2Sx9sE3uGZStzvSPpJ0k8g6aebRYoDroNYjaJ3z8UqJuw0K6x467zLrKk/YxDFkr+yCNerC2giT8KQIW7ztumJtATQyOJPy9AG9O/fH2fnSvJDleSRahQDr16Gp7+5bSElF5OXc/DQEM4nfQKAWu1zW/q9VXbEXyPmox30nL+NfKMoYN9/qiUv9IlEIZf8QRJVRxAEDFZrjfzcjgpBOp0Ok8nEqFGjOHDgABs2bGDv3r0IgkC/fv0wm8Ucd+PHj8doNLJjxw6OHz/Oe++9h4uLC8HBwfaHdVxcHFeuXOHjjz8G4IUXXmD37t1s2LCBLVu2sHPnTg4dOlRmDvPnz6dVq1YcPnyYWbNmkZiYSExMDE8++STHjh3j22+/ZdeuXUyYMAEAHx8f5HI5a9aswWq1lukPYM2aNZjNZl588cUy+8aNG4eLiwtff/31Ld8/EL2Ty5Ytw83NjVatblzpKScnxy5EbkTnzp1JTk5m06ZNCIJAWloaa9asoV+/flWej9Vq5ZtvvsFgMNC5c+cK5+Pq6opSWf6X96+++gonJyeeeuop+7YNGzbQvn173n//fQIDA2nUqBEvvvgihYWF9mO6dOnCwYMH+euvvwA4d+4cmzZtKvcapNQkVSM1NRUAPz/HHDl+fn72fampqQ4eWQClUomnp6f9mL8zb9483Nzc7D/BwcHlHlebsBYbzlQBAeAkvoIEtWgIUivUZJvFzwT3WzBKlSQ31yod81EV7riKs8EFmSAu7Zdhw1IcNSVkiEs05NdVSy4oECsa63T18TH70uDwCbhyVNypv7kk3BJw8GIWH289y/eHLgHQo5EPv097iPUTHiSyXu3IT3pPcRfCy+uyhpL0060j6afq66cKqUVfZaVIqTqINS8Hi/okBWYx74BNLqBVlE3QWWAVvXIdNGkcyj2Gi9wbq9kCKgi2etLgsgnFpX2Ej3oFTXh45QMb71xy8/T0rfa/XV1bExT4z9s+RnVYte8CZ1Lz7O0QLydcNNV729Si971EDVBgs9Fwx/EaGTuxewucFdXLeyYIAlu3buWXX36hb9++rFu3jt27d9Oli1gNc9WqVQQHB7Nu3ToGDRrExYsXefLJJ2nRQiycEBYWZu+rRCj4+vri7u4OQF5eHl9++SWrV6+mV69eAKxYsaLcJUQ9e/Zk2rRp9vaYMWMYNmwYU6ZMASAiIoJFixbRo0cPli5dSmBgIIsWLWL69OnMmTOH9u3bExUVxbBhw+zzio+Px83NDX//ssuE1Wo1YWFhxMfHV+velbBx40aGDh1KQUEB/v7+bNmyBW/v8pf+JiQk8Mknn1Qa8t61a1dWrVrFkCFDKCoqwmKx0L9//xvmGbqe48eP07lzZ4qKinBxceGHH36gadOm5R6bnp7OW2+9VWG+oeXLl/P00087eP/OnTvHrl270Gq1/PDDD6Snp/Ovf/2LjIwMVqxYAYhe0PT0dB588EEEQcBisRAbG8srr7xS6TVI3F1mzpzJCy+8YG/n5ubWesOUtTiPh9xyFZsgvt8FjbhkRa1Qk2URv2h53EJOyOsr7hXk5rDnf/+lMC+PZkI7APKcc8EEqvOnKHDuCED+mm9RAzKtFkEQMBpTycsT83oE+A8iNH4z5J+CRn0huCO0Glrt+d1TXCeiypoIxJ0p2YVQD5Izxcj2R1r4E+ShY0iH2v1alaicuqihJP0k6SdJP1UdKVKqDpJtMWAp+AWDWfQAmVQCKrmqzHGFJWtPrUU8viMAr7UXsRaHmlvlVtRHlyFP3ousknXFdkxihb/bmUdKEAQEQcBkugZA2zar6ND+ezw9u9y2MarDn+cymLfpNEeTRVE7I6Yx/xvXmQ0THqxSlReJOoxULgYQhYCLiwtarZa+ffsyZMgQRo0ahVKpdAjF9vLyIjIyktOnTwMwadIk5s6dS9euXZk9ezbHjh2rcJxz585hNpvp2LGjfZubmxuRkZFljr1+uRHA0aNHWblyJS4uLvaf6OhobDYb58+LkQfjx48nNTWVVatW0blzZ7777juaNWvGli1bqnwvKsu9AKK4vH4eO3futO+LioriyJEj7Nmzh5iYGAYPHuyQ0LKElJQUYmJiGDRokMNa/+v7jY2NBeDUqVNMnjyZ119/nYMHD7J582aSkpLs+3fu3Olw3qpVq+z9RUZGcuTIEfbt28fzzz/PyJEjOXXqVJn55Obm8sgjj9C0aVPeeOONcq977969nD59mtGjRztst9lsyGQyVq1aRceOHenXrx8LFy7kyy+/tHv7tm3bxjvvvMO///1vDh06xNq1a/npp59466237Pc0IsiHTpFBhAf6ONxTifIpWTKSlpbmsD0tLc2+r169emVefxaLhczMTPsxf0ej0diTu5b81Has2dlcCH6Y30NfwWARo2POmsUEvfm42x13PreyfM8qaiqtQkvc3p0c3fIz8X/uQiET+zSqxXELnUrzfar0OlQBAeh7P8yp0y+xe8+DZGbtAoqjxIuKk+K2fwa6vQAaKbKnqqRki58tVpuARilnzsBmzOzXhDAfqWqhxN1D0k+lSPqp5vSTu5srnSKD6BQZVCf0kxQpVQcpsppAAXK5llNB1zjvbyzXUFJYLLhkRQU8qO9HQ9fWbFYdIYsMNDpnhOLqBJUapf5cCvv/DwzpYvs2RUqZTBn8tX8gRmNpBRqVunbkaZr49WGu5ZXmz+jVxJdGfrciDCsxZNWQoetG5pf7spzxHf4fOMnlJHZvcUfHqGjsmyUqKsqetDIgIAClUsmGDRsqPW/MmDFER0fz008/8euvvzJv3jwWLFjAxIkTqzN1B/6+xDg/P59x48bZ8wJcT/369e1/6/V6+vfvT//+/Zk7dy7R0dHMnTuX3r17ExERQU5ODpcvXy7jXTSZTCQmJhIdHV3p3AYMGOAgNgMDS/OWODs7Ex4eTnh4OJ06dSIiIoLly5c7JD29fPkyUVFRdOnShWXLljn0fX21mhJjwLx58+jatSsvvfQSAC1btsTZ2Zlu3boxd+5c2rdv73De9cu5SioCAbRr1479+/fz8ccf89lnn9mPycvLIyYmBr1ezw8//IBKVdbxAfB///d/tG7dmnbt2jls9/f3JzAwEDc3N/u2Jk2aIAgCly5dIiIiglmzZjF8+HDGjBkDQIsWLTAYDDz33HO8+uqrDBgwgNAmrcgymPB0UdOmccNy5yBRSoMGDahXrx5bt26ldevWgCiOSwQ0iEsXsrOzOXjwoP3/9vvvv2Oz2aqd+6M2Yr12mZSAbhSpPLEVJ7rO04gR3/GCmMMl3EmDs/LmIyBWnFjB4sOLMdvEZTdapZai9DxsKg2e9RuSIRgQEEhNzwUt5Osb4JwPSpWcxjv/QK6QY7UaSd1emjPFVeaHz1+/QmZxvk+tW3lD33fIkFWoSOLT8thzMpUHAFnxgb2b+jGjQw+8XSrJlSpRZ6hLGkrST5J+qg36qV37DiRcFZ957dvdmeIOtxPJKFUHMdmsoACV2pM/m8ehEMo3EuVaRKPT5cwEXJ3akS7LpUgmbrOcOQ7FST5lN3iz2Pnz35B9sbTte3vK6ObkHHIwSOl0ITjp6ldwxp2nwGQhp9BsN0g927UBkfVcbtEgVfu4kflFqhxz55DJZNVeQlcTlAiB62nSpAkWi4V9+/bZw88zMjKIi4tzCF8ODg4mNjaW2NhYZs6cyeeff87EiRPtHrPr8xOEhYWhUqnYv3+/XQjl5OQQHx9P9+7dK5xj27ZtOXXqVJl5VoRMJqNx48bs2bMHgKeeeooZM2awYMECFixwrHD16aefUlBQwIgRIyrtV6/Xo9dX7XPCZrM5JI1OSUkhKiqKdu3asWLFCuR/E8DlXV9BQUGZHAWK4teXIAjodLoq35e/zyc3N5fo6Gg0Gg0bNmxAqy27PBxEUfu///2PefPKFqXo2rUr3333Hfn5+bi4iFEK8fHxyOVygoKC7Nfw92u9/hr0ej0Nwhqizzfio9c4hLffz+Tn55OQkGBvnz9/niNHjuDp6Un9+vWZMmUKc+fOJSIiggYNGjBr1iwCAgJ47LHHAPF9HBMTw9ixY/n0008xm81MmDCBoUOH3juV9/LzsVy5jFUpfqZc1VzF2wQ+vkFk1RuPTVWfZwO9edyvesVatlzYgslWWna8jW8bLp9IxRDeAgOQzAGH4z2KrtD04W4ERnogV4iveaPxMiCgUDjRo9FqZJ89CFxXntv13vhf3GnWHLyEItexDLq/m5ZgT6c7PvbfA6slDXXnqEsaStJPkn6qDfopPNwZk7OYW7Eu6CfJKFUHMSN+INlkojFJIXOMdDpfYGRvdj4XCvIALYWpmax3PuZgiZBlJiFTqXDq0AFFJQnh7Lmknvgc/JqBb/lrZ28WkykDAE/PbjRrugCl0g25vOZekrsT0hm14i/MVlFl6FQKZj3a5M4t1ytnmdj1I92X0UoStZqIiAgGDhzI2LFj+eyzz9Dr9bz88ssEBgbay89PmTKFvn370qhRI7Kysvjjjz9o0kQ0ZIeEhCCTydi4cSP9+vVDp9Oh1+sZOXIkL730Ep6envj6+jJ79mzkcnml770ZM2bQqVMnJkyYwJgxY3B2dubUqVNs2bKFxYsXc+TIEWbPns3w4cNp2rQparWa7du388UXXzBjxgxA9Ai+//77vPjii2i1WoYPH45KpWL9+vW88sorzJ07l+bNmzuMGxcXV2YuzZo1K+MNMxgMvP322wwYMAB/f3/S09NZsmQJKSkpDBo0CBAF1UMPPURISAjz58/n2rVr9vNvtJQKxCowY8eOZenSpURHR3PlyhWmTJlCx44dKzQszJw5k759+1K/fn3y8vJYvXo127Zt45dfxEpfubm59OnTh4KCAv773/+Sm5trr7Tm4+NjFz0A3377LRaLhX/+s2wOwKeffpq33nqLZ555hjlz5pCens5LL73Es88+axdH/fv3Z+HChbRp04YHHniAhIQEZs2aRf/+/R3G+TuZmZlcvHiRy5cvA3D2bBIymZyGDT0rvGf3CgcOHLBXYgLsuZ5KqjFNnz7d7jHNzs7mwQcfZPPmzQ7ieNWqVUyYMIFevXohl8t58sknWbRo0V2/ljtB5qpVpM19GwQBS/ceAFgQlzy4u/lhUYfiqVLwTqOgao9Rkkvqgx4f0Nm/M24aN1b8+D4gVtpztmpEA4WQjzI7m/Y52bR5SozOMpuzOHzkGfLyxPw4Om0wskJRD+HiB52eB5/G4F6zTrraTu+F20nNLaLIbGVMsXqKrKen7KfznUAyPt0QKQVCuUj6SUTSTyK1Rz+dw2rJp359BfXr1+xqJckoVQexFOeKMiO+6NTy0vBkQRAYdDSBS0VmQBSgvbOaUijLQCHIUVgFnAQZPVd+got3FV98Jbmk6ncG91tPFpmXd4rEc/PJyNgOgFbjj7oWLNvbnZBuN0gB9G/lf9sNUhUHoUtI1H5WrFjB5MmTefTRRzGZTHTv3p1NmzbZBYXVamX8+PFcunQJV1dXYmJi+PDDDwExJHvOnDm8/PLLPPPMM4wYMYKVK1eycOFCYmNjefTRR+0ljZOTk2/oYSqhZcuWbN++nVdffZVu3bohCAINGzZkyJAhAAQFBREaGsqcOXNISkpCJpPZ21OnTrX3M3XqVMLCwliwYAEff/wxBoP4mff1118zdGjZJMPlbUtOTrZ7sEpQKBScOXOGL7/8kvT0dLy8vOjQoQM7d+6kWbNmAGzZsoWEhAQSEhLKnF9RxZ9Ro0aRl5fH4sWLmTZtGu7u7vTs2bPSksZXr15lxIgRXLlyBTc3N1q2bMkvv/xC7969ATh06JC9pPDfPYXnz593KEu8fPlynnjiCXvS1etxcXFhy5YtTJw4kfbt2+Pl5cXgwYOZO3eu/ZjXXnsNmUzGa6+9RkpKCj4+PvTv35+33367wmvYsGEDzzzzjL397LPTAZg9e/YNczfcSzz00EMVvjZkMhlvvvkmb7755g2P8fT0ZPXq1XdiejVOwZ9/giBgkykQivNtamWibhKKow08blAJqaoUFefn9Hf2J+t0Ar+v20BmXh7oXQnQeBCT3QabIGBYPw4Al5497eemZ2y3G6QA/PwGQIH4xQWPUHiw9LNJonwEBM4WL0uB0tX3brpKIv8l7hCSka4qSPpJ0k8l1Bb9NHLEhOL+XuKtt96v8Nw7jUy4HbXC6yi5ubm4ubnZyzXWFVY8NoxMTQ7ow1nZbSuRHk1ZM+BbAC4UGnngTzFhXrOrKbQ1+PBwYiJ7VXHUt3rxzJwJyOQ38fCwmuGt4ioH08+DUyVRVVXg8OERZGbttrebNf2QevUG3HK/1UEQBDYcvcylrEJ+PZnK0Us5vNinEf96KBz5zdynSlj3wVzUmcHknz3OZZ0Cq+kk3R55mI4jpgDiUoP49h0QgCEzRbG8fch2PLW3fr/L42puER3f2YpCLiPxndLyoXtS9jDut3E09mzMd/2/uyNj11p+ngH7PoVuL/J+2BgWJqUxKtCbd6vpTS8qKuL8+fM0aNCgUnEg4YjBYCAwMJAFCxaUSQB5N8jMzKRXr164urry888/4+R055eBSJTP5exC0ouX7/m7lQ0/t1qLMBjOIpMp0OtvLYq3ovdsXdULd4rafD8uPvsshj17kY97ht/ixOS++cJilNkmcp7qxDLvR2nr6sSmdo2qPUbU/6JIL0xnTf81WBecwdXqyR5lHKeUl2hjCaWdpSEWmxV5+ldom7fA7bHH0IQ1AOBswrtcvPg5fn4DCGswCZ2mPrJjX8P68RD+MPzz+9tyH+4VUhPPsv/d1ZxzLUB3rQl5xjXIZLAo9HkebenPC70boVi8gIJvv+HHqR34j/YwQyOH8mqnV+/YnGauPc7Xf11kWu9GTOwVYd/+j43/4ETGCZb0WkL3oIqXT91TGDLgg+IKl69n4b9dTNB9omtzvNU3bwCW9FP1kfSTRAkWq41TV0SHR4tAt3IDLQoKL2Ix56DVBtxSgMjt0E9SpFQdwpqXhynpArbiaBuTUvT8+Tv72o/JNItL+wI1Kt7YupUGno9zhAJQQY4xo+oGKVOBmEsqrzTn0+2qupdvEMuD1g8ejZfXQzVaae9IcjaTvznisC3QQ3dbDVJVQ/IySdy/HD58mDNnztCxY0dycnLsER4lIe13G09PT3777TeWLFnC3r177aWWJSQkaj/WYk+9WanBXLANq/GQXewWeIiC2L0ayc2vp2T5nk6uJUWwkaxI5ppcFP9KQYFNEMjOSiH0kUdxf/IJAK6kruNyyjdk5+wX5+DeAad1MyH+59KOpUp7N6Cs/9zTWc2QDsGE+biQqlRQUO5RNcN97O+XuMtI+kniXkEyStURBLOZc/0ewXLtGkKTtgDky8XEan7OpVUBCooT4KmsFow2MUw9xyYKpSJbQdUHPP0j/P5WaVvrDsrKy3pWxLVrv5Gd/Rcmk7jmNzT0eVSq6iUZvR3kGy2cvpIHiEkxu0f44OWiJqaZ/20fq4aK60lUC0EyEdYA8+fPJy4uDrVaTbt27di5cyfe3t41Nh8vLy9ef/31GhtfQkKietjyRaOURabAajpj357uauSyWgNW8FBVT/7+cPYH9qfup8As6qmCawZ+UR91OCbdy52c4z+g3vsLsoEfACAINs6efRuzORMAuVyNp2sHiH/+ujNlENqtWvO6lzl/zVBmmww4NKv33Z9MJdyxHKR1COke3H0k/SRx69S8IV0yStURrDk5WIoTuFmKK7egUvBExBOMaFpa2SCr2ENYdDmZQpm41MGCWGVPIb+J0riG4mRxPk0gsi80jKr4+ErIyzvNsePj7G0npwY1apCau/EU/7frvL3duaEX7z3VssbmI1EbkIRUTdGmTRsOHjxY09OQkJC4B7CVREoZC0AQjUd7H/Ui3nqInBwjuFQvUqrAXMAbe9/AJohR6hqFBmueqK9UggJXJw8M6WqCGzVAvz+NQgRkGtGZZzSm2Q1SzZt9jKtrG3TW6xx9L54FpRa0tWspZE1SZLZyJjWP3+PS+Ls6K2P3kAwhEvcpkn6SuFeQjFJ1BMFk4nxIXy7U70NR4WYwZ6HRaXm9yxyH4zKzcwBQWcwo5E5YsWGVOwEG6oU1L6fnG1DsBaT+A/Dw7Fuef27eMfvfgYH/xL/e47fc562w9cxV+99qpZyHm/hVcPT9hxR6LiEhISFRF7HlijpId34T4ALISdKaRPuUTElrvROD6t18vsYCSwE2wYYMGdNav0CXo43I2pYCgN6mpZFncxLO29DptAjFJcJlGg3X0reSl3cKAI3GHz+/R8UOMxLF32oXcPEtM979ztOf/8mhi9n4Gq+WMUrdyIlUslWqXlyDSPpRQkKiGkhGqTqCzWgkzbcdNoUaEL10FndLmePyzWYAlIKZCx4u/KX9w74vqJFP1Qc0FVc1UTlXe84AgmAlN+8EubmiUcrffxCNI+dUctadwWYT+PVUKtfyjKTmiJVzfp3anTBvZ5Ql0Wf3O5KzUUJCQkKijiIIAmajjQuhj5BvdgIOgcIJsyDqpZlhwcQ2rV6C8yJLEQ0vOdPivDvux5PQKRuSKjeAGhBsCIIKMKJQKbAVG6XS5Xs5d2yZvQ+tph5YTLDldbh6UtyokaKjric1p4jkrAKOJGcD4KPXQn7F59iR7CE1gxSpJiEhcYtIRqk6gmDIxqoQl99ZtOeQm0GmL/33XSg0MiPuEtuyi5fqGfPIVGfa9ysUCkJCQqo+oKk4Ukp9a0apc+cXkZS02N5Wq2tujfPOhHRi/3vI3pbJIMBdV2MGqfKcSTKH/XdeXUkRURISEhIS9wpCYSHXvFuSFNoPqykOAIvSDastDRngrLyJNAZ/w2g10jRJj3uekgJrNvhBvlXMS5lvSseamg3oKPpzjz3dQg7FhidkeHtFERw8CpJ2wr6lpR2716/2nO41ruYW0f2DPzBZROerWiln+cj27H83roZnJiEhIVF3Eaj9cQeSUaqOIORlYlWoEWyFFCLDGQG1trTM5vJL6WzLyrO3g1PjscpEg9KTHh1p/K/eqFSqigexGOG/T8K1ODCKydFR31opz5wccZ2zRu2HRluPen79b6m/6lJktnKmuCxmoLuOVsFudG7ojYumJt8CpQahu+5kqu2fTBISEhISEjdB/q7dFJ04Tp5GTVH2p/Z8Upc8L4HxEgDOquoXbCmyFKGyiE6sFt2jIQ4EJy0IoDY7k5poAJ2Oor27sBbkYAkUyLOKidabN1+En28/saNL34m/vRtBp39BuFSd6lqeka2n0ziTmofJYkOjlFPPTctjrQOrlji7hiJ1buTWk5YPSkhISNwcklGqjiAU5FJo+gur6TglsUtajda+P84gLkdrZ8ul0YZvcTFfwObbHgAXta5ygxRA2gnRg3c99Vrc0rwLCsRk4i1aLMHNrc0t9VVdpq85yv8OXLK3Y5rXY9ajTe/yLETBJMkUCQkJCQmJ24s5JYXkMWMAyA/vaDdI2WQCZwOvIsOGgIJG7mHVHqPIWoTSKj7LzQY9IGAotIEWzGofinRiJLhH+2ZkdzlCof4qWDMA0GmDSjsyijmv8G4E7Z+p9nzuJWatO8Hmk6n29sNN/VjytFhpOu1cQk1N64bcyAYmkzx+EhISEtVCMkrVEaz5edgsKfa2QWOhXoi/vZ1ntQLQyXwVp9QLKBU2sorzZmo0VfQMGosjrTzDYMh/QesOboE3P1drESdPTaOw4DxGoygynJwa3HQ/t4ufj5cKHY1STo+bya0lcf8hLWmUkJCQqFOYr4rFS+ROTgjOYjSTUVOf7x78E4vGTLbPdCzqUBq6BlXUTbnsuLSDH87+QEZhBuE+EeTrXPk5fTtyDZgRtZdL/mU6dOuEvoE/9VtG8udfHwKgVLrh7RWFXt9cTGwe9zOc3yF2rHW7DVdet/n9TBop2UUcupgFQKcwT3z1WmJ7NKzhmUlISEhI3E0ko1QdoSDHgICYxHxDKzWZAReY7Vuanym/eP29LC0dTcMHsSpkQCEyATSuLlUbxFicSdLJG/yaVXuuaWkbuHZts73t5NQAlcq92v1VB6tNYPI3hzmTmkeeUcyzdeC1h3HVqlArpaTmEhISEhIS9wpCkRgtrgoMROlqhVwwyzVYNKJuMmsa4aVxRiu/+UiWhQcWcj4rEbVFTZheTEFgwuywDD6s8AodBrVAplaTlb0fAJ2uPl06lxabYf0EuLintO1cczk2awOHL2bx7MoDDtsWDG5NoLuuzLHC3zKiSPkwazPS/0ZCQuLmkb6d1xHycwtAEMWVsxsgA/11y/eyCsRQ9fyEq6Sri8hSFALgKjihaxxQtUFKKu5pqmjEugG5eccBcHNrR5vWX9G+3Xe31F91OJOay8ZjV0i4Kl5TQx9nvF00kkGqityX+RDKice/X4XvqFGjkMlkyGQy1Go14eHhvPnmm1gsZSt+3gzbtm1DJpORnZ19eyZaBc6fP8/TTz9NQEAAWq2WoKAgBg4cyJkzZxyO27hxIz169ECv1+Pk5ESHDh1YuXKlwzFJSUnIZDKOHDlS5fHfeOMNGjdujLOzMx4eHjz88MPs27fPoc/Ro0fToEEDdDodDRs2ZPbs2ZhMpkr7XrVqFa1atcLJyQl/f3+effZZMjIyqjy3d999F5lMxpQpUxy2JyYm8vjjj+Pj44OrqyuDBw8mLS3N4Zi3336bLl264OTkhLu7e7n9l7yGrv/55ptv7PvXrl1L79697eN07tyZX375pdJ5r127lj59+uDl5YVSqePYsTOVniNxb2MrFI1SMlMmtuLPbZ2rmBNTkKlp5OLGqw39q5af6G+4JBYw7Jf6DN4mFouRCzKeND7Ak8YHiMmqz8Rx4+j3f/+H0ZbO0aNjiYubBYBa7evYUU5xGoGIaOgwBjqMrc6l1nl2J6Sz5I8EPt95DgA/Vw0xzerxct/G5RqkJOou96OWlPSTpJ/qin6SyWQcPXqy0nPuFtI39DqCKddgN0q5e4jbdMrSh3eeRQwhVxd/6NWzuhGQ0wz37FY4Na9kuVryfni/Iax7Xmyrq2eUunbtN06feZX09N8BCAr8J56eXVGpPKrVX3UQBAGD0cKlLNEo18DbmdVjH2Dt813v2hzqMlI+BIkSYmJiuHLlCmfPnmXatGm88cYbfPDBBzU9LTtVER1ms5nevXuTk5PD2rVriYuL49tvv6VFixYOwu6TTz5h4MCBdO3alX379nHs2DGGDh1KbGwsL7744i3Ns1GjRixevJjjx4+za9cuQkND6dOnD9eKq3OdOXMGm83GZ599xsmTJ/nwww/59NNPeeWVVyrsd/fu3YwYMYLRo0dz8uRJvvvuO/766y/Gjq3aF939+/fz2Wef0bJlS4ftBoOBPn36IJPJ+P3339m9ezcmk4n+/ftjs9nsx5lMJgYNGsTzzz9f4TgrVqzgypUr9p/HHnvMvm/Hjh307t2bTZs2cfDgQaKioujfvz+HDx+usE+DwcCDDz7Ie++9V6Vrlbj3sRU75uSFl7HYRGlrKXZCaVTu7HigMU/7e1Wrb/dUAYUgQyiu1KtGiZvNGReLFt/Ci3j5+yOTy7mUspr0jN8xGM4C4OIS6dhRUbb4O/odeGQBuAdXaz51mdwiM8+s2M8Hv8SxqTi1wiMtAvh0eLsqLNmrQKHIHH5JSNQokn6S9JOkn24eafleHcGYkw/FuQvi8xNBAyGuIezLzmdnVj5FSjGRubNMRiHgbHMmt9ALjUcVyh8n/g4F6aXtkC43PT9BEDh5ahpWa759m6vrrSVJrw5jvjzA1jNX7e0gDx1dGtaBEPkaqhwjUT6ScQ40Gg316tUD4Pnnn+eHH35gw4YNxMbGMnnyZH788UeMRiM9evRg0aJFREREAHDhwgUmTJjArl27MJlMhIaG8sEHH9C0aVOioqIA8PAQDdUjR45k5cqV5OXlERsby7p163B1dWX69OmsX7+e1q1b89FHHwEQGhrK6NGjOXv2LOvWreOJJ55g5cqV7Nq1i5kzZ3LgwAG8vb15/PHHmTdvHs7Ozpw8eZLExES2bt1KSIgY5RASEkLXrqVG6uTkZKZNm8aUKVN455137NunTZuGWq1m0qRJDBo0iAceeKBa9/Hpp592aC9cuJDly5dz7NgxevXqRUxMDDExMfb9YWFhxMXFsXTpUubPn3/Dfvfu3UtoaCiTJk0CoEGDBowbN65KQiM/P59hw4bx+eefM3fuXId9u3fvJikpicOHD+Pq6grAl19+iYeHB7///jsPP/wwAHPmzAEo4w39O+7u7vbX0d8p+d+W8M4777B+/Xp+/PFH2rS5cWGM4cOHA6KXVEICQMgUo5DkSoFcXICM4jQGoFK63lLfCgs0de+CJiSUHaZ4VIICl1ZZpL35Ms7du9mPy8sVo8S9vHoQFPhPPDw6gc0G8T9DflppVeP7MJeUyWJjxe7znL2aj8lqw1mtoH+rAHRqBWO61VzO0TvF/RplLSEi6SdJP9UK/VTOV5narJ+kSKnajiDAxT+xZJUaWixKgba+bfF3DmLYsXPMTxK9Ta55WVAcMSUXoPPjDen3fMtyu3WgZNleu2fgpXPQqWLLbXlYrfl2g1SDBpNp0fzfdz25ucliczBIyWXQu6nfXZ3DjajOkgGJewtBECgwWWrk53YIZJ1Oh8lkYtSoURw4cIANGzawd+9eBEGgX79+mM1iJOf48eMxGo3s2LGD48eP89577+Hi4kJwcDDff/89AHFxcVy5coWPP/4YgBdeeIHdu3ezYcMGtmzZws6dOzl06FCZOcyfP59WrVpx+PBhZs2aRWJiIjExMTz55JMcO3aMb7/9ll27djFhwgQAfHx8kMvlrFmzBmtxMYi/s2bNGsxmc7kevXHjxuHi4sLXX399y/cPRO/YsmXLcHNzo1WrVjc8LicnB09Pzwr76ty5M8nJyWzatAlBEEhLS2PNmjX069ev0nmMHz+eRx55xC6QrsdoNCKTydBoSh0aWq0WuVzOrl27Ku27vLG8vb3p2LEjX3zxRYWvRZvNRl5eXqXXLiHxd2y5mQDItDqyBDHa26IQPdPaW8hpabaZCVa24LyfjmNFYrEZJUp7dT+5RoPBkMiVK2vJzBLfH/Xrj8XbuycKhZPo9Pvmadg4VexQpgDtrRnJ6iK/nU5j3s9nWHNQNB42D3Tj3SdbMrt/MwIqW7J3M/qppo1BktS7Y9RlDSXpp1tH0k/3vn6SIqVqOVk//oet314jR9EdWAvA70P/wEPnSXKRiXyrDZVMRqPEAzQ7eRSNxpdCLCiAttEhVRvEZBB/u/iB882Ht2dnHyAzay8ACoUTYQ0m3XQft8KVnELm/xJPpsEIgFoh5+jsPsjloFEq7upcbopKHnL341r8e5lCs5Wmr1e+3vtOcOrNaJzU1fu4FwSBrVu38ssvv9C3b1/WrVvH7t276dJFjKhctWoVwcHBrFu3jkGDBnHx4kWefPJJWrQQIyXDwkpLsJc8LH19fe3r6PPy8vjyyy9ZvXo1vXr1AsSQ5YCAsrnwevbsybRp0+ztMWPGMGzYMPua/oiICBYtWkSPHj1YunQpgYGBLFq0iOnTpzNnzhzat29PVFQUw4YNs88rPj4eNzc3/P39y4ynVqsJCwsjPj6+WveuhI0bNzJ06FAKCgrw9/dny5YteHuXH8GZkJDAJ598UqGXD6Br166sWrWKIUOGUFRUhMVioX///ixZsqTC87755hsOHTrE/v37y93fqVMnnJ2dmTFjBu+88w6CIPDyyy9jtVq5cuVK1S64mDfffJOePXvi5OTEr7/+yr/+9S/y8/Pt3sm/M3/+fPLz8xk8eLB9m/QdT6IqCAaxerBcrURuFb/gmdTiFymtunqRSV+d/Ipj6cfw1LiSL8+xb5fJnRHMot6wOcs5cPApLJbckr04O5V+5pF1XvytD4DAttCwJyirEMF+j3DsUjZn0/L5I050GDbxdyUq0ofH2tx8ZWeJ+5u6qKEk/STpp5rUT3UNKVKqlhO3/jhp+jYUaMRwTQE5HjpPZDIZl4pE4RWsVRO1fwMhKedQK0SxoxBuQsqXGKXUzjc9v4yMnRw8NITz5z8CQKe9+zkSvvkrme8PXeKPOHGNcZiPMzq1onYapASoTV+zJLOXxI3YuHEjLi4uaLVa+vbty5AhQxg1ahRKpdIhFNvLy4vIyEhOnz4NwKRJk5g7dy5du3Zl9uzZHDt2rMJxzp07h9lspmPHjvZtbm5uREZGljm2ffv2Du2jR4+ycuVKXFxc7D/R0dHYbDbOnxe/DI4fP57U1FRWrVpF586d+e6772jWrBlbtmyp8r1Qq9WVHrNq1SqHeezcudO+LyoqiiNHjrBnzx5iYmIYPHgwV69eLdNHSkoKMTExDBo0yCG3wfX9xsbGAnDq1CkmT57M66+/zsGDB9m8eTNJSUn2/Tt37nQ4b9WqVSQnJzN58mRWrVqFVqstMz6I3tHvvvuOH3/8ERcXF9zc3MjOzqZt27bI5TcnGWbNmkXXrl1p06YNM2bMYPr06TfMq7F69WrmzJnD//73P3x9fe33NDzIh06RQYQH+jjcUwmJ67EVFmBRaMh0ikBpE5OeZ3IZAKdqREqlGlL567ff6b4tHLlcTI8QURREoLUlnTz9KTwk5u0o8smzG6S8PLvTrOkCNJrrIrSLio1Z4T1h6CroMLqaV1j3uJpbxBP/3sO0746y8Zj4hax3Uz+mxzSmkZ/+pvurSDlJ0ei1iJqOVqsFSPqpFEk/1Zx+cnd1pVNkEJ0ig+qEfqqRSKl58+axdu1azpw5g06no0uXLrz33nsOb6KioiKmTZvGN998g9FoJDo6mn//+9/4+ZU+7C9evMjzzz/PH3/8gYuLCyNHjmTevHkolfdOAJip0AoqcLFeIhMwqiz2h29WcVJzL5VSzFsAlDy25ZUZPgQBjn4N2clw5Yi4rRpGqczM0he5p2c3QkP+ddN9VJdMg4n4tDyOp4iiL7qZHz0a+fJgeB3IIVXDSDmTKuLOCCqdSsGpN6PvSN9VGftmiYqKYunSpajVagICAlAqlWzYsKHS88aMGUN0dDQ//fQTv/76K/PmzWPBggVMnDixOlN3wNnZ8TMqPz+fcePGles5ql+/vv1vvV5P//796d+/P3PnziU6Opq5c+fSu3dvIiIiyMnJ4fLly2W8iyaTicTERKKjK/+/DRgwwEFsBgaWRgI4OzsTHh5OeHg4nTp1IiIiguXLlzNz5kz7MZcvXyYqKoouXbqwbNkyh76vr1ZTkqdg3rx5dO3alZdeegmAli1b4uzsTLdu3Zg7dy7t27d3OM/Pz4+tW7dy9epV2rZta99utVrZsWMHixcvxmg0olAo6NOnD4mJiaSnp6NUKu15Da732laHBx54gLfeeguj0egQ3v7NN98wZswYvvvuO4eQ+AEDBtCgSSsyDSY8XdS0aVxZImSJ+xVbgYHDraeQp6+PMncVApCjFHNlejiV9eLfiLTziRz4cS2ZOVeZkP0ELioPjmu2AeCXnkngrgUA5AFWNwGjn7hs0MuzO61bryjtKPcKXNwDKQfFttb9Fq+w7pBlMPHBr3Gcv2bAYhPQa5W0re+BXqtkSId7K7m7ZH8p5i4YBeuShpL0k6SfaoN+atehAwlpYmqd9u0a39L4d4Masd5s376d8ePH06FDBywWC6+88gp9+vTh1KlT9jfN1KlT+emnn/juu+9wc3NjwoQJPPHEE+zevRsQXwiPPPII9erVY8+ePVy5coURI0agUqkckq3VdcwW0bIq1xaAQcwnVUK2WQxNd1MpwCpuL9lbqVEq5WBptb0SnKq+dE8QBEzmDHJyRW9ho4hZBAePqvL5t4rFaiPmox1czTPat/Vq4sfg9veW4Kkp7s+lg3dWVMlksmovoasJSoTA9TRp0gSLxcK+ffvs4ecZGRnExcXRtGlT+3HBwcHExsYSGxvLzJkz+fzzz5k4caLdY3Z9foKwsDBUKhX79++3C6GcnBzi4+Pp3r17hXNs27Ytp06dKjPPipDJZDRu3Jg9e/YA8NRTTzFjxgwWLFjAggULHI799NNPKSgoYMSIEZX2q9fr0eur5v232WwYjaWfXSkpKURFRdGuXTtWrFhRxqNW3vUVFBSUccAoFKJwFgQBnU5X5rxevXpx/Phxh23PPPMMjRs3ZsaMGfbzSygJkf/999+5evUqAwYMqNL13YgjR47g4eHhIKi+/vprnn32Wb755hseeeQRh+P1ej0Nwhrikm/ER69Bp5PKxUuUj62gkCzFBSw5vyDY8pEBV11N5HmOpnPwo1XuZ/+G74nbswMAZf1eCAiYi4vMmJNOlI43ohFpnU4A4vtJq6vv2NHqwZB6XZSDzr06l1UnWXs4hdX7LtrbvRr78tHQGxcuqItIbr27T13SUJJ+kvRTbdBPEc7OmJzESN66oJ9q5N29efNmh/bKlSvx9fXl4MGDdO/enZycHJYvX87q1avp2bMnIK6RbdKkCX/++SedOnXi119/5dSpU/z222/4+fnRunVr3nrrLWbMmMEbb7xRpXDBuoDZKv6LrApxqZ5FXmosyDKLkVLuSgWCzpcCLw+KZOJSPEVlj8y84rWtLn4Q2U/83ajqHoi4+DdISfmvve3kdPc82FabQHJWIVfzjMhk0NDHBR8XDb0a+961Odx2aknouRQCL1ERERERDBw4kLFjx/LZZ5+h1+t5+eWXCQwMZODAgQBMmTKFvn370qhRI7Kysvjjjz9o0qQJIFZukclkbNy4kX79+qHT6dDr9YwcOZKXXnoJT09PfH19mT17NnK5vNLX44wZM+jUqRMTJkxgzJgxODs7c+rUKbZs2cLixYs5cuQIs2fPZvjw4TRt2hS1Ws327dv54osvmDFjBiB6BN9//31efPFFtFotw4cPR6VSsX79el555RXmzp1L8+bNHcaNi4srM5dmzZqhUqkcthkMBt5++20GDBiAv78/6enpLFmyhJSUFAYNGgSIguqhhx4iJCSE+fPn20sdAzesugLQv39/xo4dy9KlS4mOjubKlStMmTKFjh07lptPAkSR8vdrcXZ2xsvLy2F7yfPWx8eHvXv3MnnyZKZOneoQzXzx4kUyMzO5ePEiVqvV7lUMDw/HxcWFH3/8kbS0NDp16oRWq2XLli288847DglRV69ezciRI/n444954IEHSE0Vi3bodDrc3G6cB6hk3MuXxeVZZ88mIZPJadjQs8J7JnHvUlRoxWI8DFiQARa5Da/GjzG65VAe9/Oocj/GAlFDeTRqQqq5AKMix26BCOjbh9A+L6Fp1IhTCS9D2gnkch0ajS/BQX/74pWVJP4O6gh6P2g55Javsbbznz8v8OvJVM6ni/cwKtKHh5v6Ed3s1t6T4nNA4GayUtQ096djT6IiJP0kIumn2qafzmG15FO/vpz69Wt2pVGtMDnn5IjLr0qSuB08eBCz2ewQhta4cWPq16/P3r176dSpE3v37qVFixYOy/mio6N5/vnnOXnyZIXlpOsSZqv4Js0tTqppVYLRZuOPjDz2ZosPfl+1CqtnIMgVWIsfhM4yp4o7Lskj5dcM+n900/NKvyauJ5bJFLjqW+LhUb1ynzdLcmYB/RfvIrtANNIFeej47YUed2XsW6IOiSkJiYpYsWIFkydP5tFHH8VkMtG9e3c2bdpkFxRWq5Xx48dz6dIlXF1diYmJ4cMPPwTEkOw5c+bw8ssv88wzzzBixAhWrlzJwoULiY2N5dFHH7WXNE5OTr7huv0SWrZsyfbt23n11Vfp1q0bgiDQsGFDhgwRvwAGBQURGhrKnDlzSEpKQiaT2dtTp0619zN16lTCwsJYsGABH3/8MQaD+Pn49ddfM3To0DLjlrctOTmZoKAgh20KhYIzZ87w5Zdfkp6esKtSKwABAABJREFUjpeXFx06dGDnzp00a9YMgC1btpCQkEBCQkKZ8yuqtDJq1Cjy8vJYvHgx06ZNw93dnZ49e1appHFlxMXFMXPmTDIzMwkNDeXVV191uF8Ar7/+Ol9++aW9XfLM/eOPP3jooYdQqVQsWbKEqVOnIggC4eHhLFy40CHXw7Jly7BYLIwfP57x48fbt5eUur4RGzZs4JlnnrG3n312OgCzZ8/mjTfeuJVLl6hjGHZsI+PfH5ORnANBou75sTXke6XwUsMwhgTcXPEWc5GYj8qs8eE3xXWRToKMyNjBaJxUCIKJ3NyjALRosRhvr4ccO7HZwCgmXmfoKnCpww6zKmKx2njzx5OYraWfWU+1C+aRllVfOlk1Kjb2yIp3346Ks9VBSo0gURGSfpL0E9Qu/TRyhFht8bXXXuKtt96/pWu/VWrcKGWz2ZgyZQpdu3a1WxpTU1NRq9X26gIl+Pn52S2BqampDgapkv0l+8rDaDQ6hPzl5uaWe1xtwiKoEAQjBZY8NIBFJWPFpXTeSLxsP0Z28iDIxHDFyDxfwtVBeHhU4pkqEUxql5uek9mcjdGUBkD3bgdRKm8+YWV12Xc+026QAohuKnnFJe4c96uvs6IHmoeHB1999dUN93/yyScV9j1r1ixmzZrlsE2v17Nq1Sp722AwMGfOHJ577jn7tqSkpHL769ChA7/++mu5+7y9ve1lkytj4MCBdm9lZmYmvXr1YunSpQwYMAAnJ/HLbmho6E192dFqtaxdu7bCY0aNGsWoUaOq3Of1TJw48ZZzTWzbtq3MtnfffZd33323wvNWrlxZ4eskJiaGmJiYmx67Klx/z6zWIgyGs8hkCvT6phWfKHHPkf7eKxQkZpHv2aB4i4K0ekaUchs+2pvXN4WFYv6NzMJcUCnRCWr8QwOJbNoYtU7OgQNPkJtXaqzSu5TzmjPlY396aFxveg51iT/irvLFrvMYzTbMVgG1Qs67T7bAw1lN9wifuzgTyRgkUTuQ9JOkn+qKfgIoKLyIxZyDVnu7HQg3T40bpcaPH8+JEyfYtWvXHR9r3rx5zJkz546PczswJiRgjI+nUGHGmP0pmuKcBiY3OecKRcNaoELA7dQRFLs2Yg0Xy4d2VDVGI6gw3qjynLkIEn6Di3vF9k0YpczmLE6cnGr3EGq1gXfNIHXycg6/nEzj8MUsAAa2DuDdJ1qiU9fCCnsSEhI3xeHDhzlz5gwdO3YkJyeHN998E8Aucu42np6e/PbbbyxZsoS9e/faSy1LSEjULixZohFJFuYE5iIEuRaZOh8s4Km5eX1yLTcVBVBoLkKuciHE6sPgYf9ErlaQk3PIwSBVz28gGs11UVAJv8G2d8FUILblKlBquJf56LezHE3Otreb+Ot5om3QjU+QuA+4X915NYOknyRuhdpkzq9Ro9SECRPYuHEjO3bscAi7q1evHiaTiezsbIdoqbS0NPsa0Xr16vHXX3859JeWlmbfVx4zZ87khRdesLdzc3MJDq59ibEtWVmcf/wJBLOZwhb9oNggVaS2khmiQmcR283yT9Hqj+8pVJc+ABTIsQkCBNzA2LTvU/htdmn7JpJvXrnyg0O1PV/fvlU+91aZ9r+jnEnNs7dDvZzvAYNU+Q9uGTIpH0ENU5s+pO8X5s+fT1xcHGq1mnbt2rFz5057osiawMvLi9dff73GxpcoptI3o/RuvZ/JN+mJa/YE2W7ukP4DNjkoLGK5cC9t1Zfundm9nczLKQgFZqw6ZzQqF8yABiUyhRiJbig4B4Cra2vatP4SpfJvOuuvz+HS/tK2d0StyRd5OykwWXjpu2Ok5hZx+rK44uCVfo2p56ajUwPPGp6dRM0gK9OSVOzdQ9JPEpUiUOvlUo0YpQRBYOLEifzwww9s27aNBg0aOOxv164dKpWKrVu38uSTTwLiGs2LFy/SuXNnADp37szbb7/N1atX8fUVPVVbtmzB1dXVoYrB9Wg0Goes9bUVy5UrCGYzMpUKi9IKNlAEhPJN6+1EekRiKq66pzCLHkLBrXTdcBIFeEW3oEm38hO12ZNveoaBb1NoN6rK88rPPw2Au/sDhDWYgrt7u5u+tpvFahOw2GxcyBA9j0+1C8JXr2F455A7PvZtR3pC1w2kGs93nTZt2nDw4MGanoaEhEQdwmYwcNmzHdd82mAtEqu9WRTF+kgdQJC+ahE7mZcv8dOiDwAQwlpRqClNuKsSFGRkbeNK6loKio1Szk4NyxqkAAqzxd/dp0PwAxDYtuwx9wDb4q7x0/Er9rZeo+SfnULuaGW0uvZYlhyLEncLST9J3CvUiFFq/PjxrF69mvXr16PX6+05oNzc3OxZ40ePHs0LL7yAp6cnrq6uTJw4kc6dO9OpUycA+vTpQ9OmTRk+fDjvv/8+qampvPbaa4wfP75OGJ4qwlacJE6lLURQG6EIDGpRaKnkKrKLI6WU5kIAdCpn8gGZIMPH3UyznhVEf5lEQxbtR0OXCVWaT07uUdLTfyc7R/zQC/B/Eg+PjtW4spvj9JVchny2l9wii33bWwOb1+0IqRtZqe9Bb6qEhISEhMSdwnLtGlaFWOZa6WrAnA95mlyyfabzgG/zKleTLcgVi+1onJwpUKsBARdBi1ZQEWBy42zCO3aDFICT8w2qDReJ/RDaFcIequ5l1Vr+OHOVNQcvkZQhatROYZ4807UBkX76O2qQqhKShpKQkJCo09TIU2Tp0qUAPPTQQw7bV6xYYU++9eGHHyKXy3nyyScxGo1ER0fz73//236sQqFg48aNPP/883Tu3BlnZ2dGjhxpX0tbl7EaDJwLfZTLgV0pLBKr3CUoxcTmaoWanGKjlNaQgww5HhdyyW8JcmTINPKKOzcWG6U0VcslZbUWceTIM1gsOfZtWu3dWfK4OyHdwSDVpaFXnTVI1daKLDfyPtZU5ZoaRRK1EhISErUem8FA8vgJFPz5J9ZwMZq+UC0aSiwKGWqXVjwRGFjl/iwmEwB6bx8yiiNcWuS0ItuiJcd8HJlRdJyGNZiCVhuEr+/fEtCe3ghnf4WcZLGtvXE57rrMnB9PklQctQ7QLcKH6GZSsZnrqa1aT0JCQqK2U2PL9ypDq9WyZMkSlixZcsNjQkJC2LRp0+2cWq3AlpPF5YCumFSuCIWiADC4FtHGtw0jm41kwkXRUOOZls+A+v+iSAkX+RMFcjShNwhXvxYPaScg+4LYrmIC0MLCC3aDVFDgcLS6INzd29/aBVbCiZQcdiWksz3uGgAjO4cwLToSvabG8/LfM9zI/iIJKgkJCQmJ2kzB4SMU/PknAFa5GBlvFExoAKtcRmL3ljfVn9UsGqXMchtC8SMw36YkS5FJ5INWMqyiDgsOfqbssj1BgB/GlUahIwOXe8dQk5JdyPP/PUhGvomUbDE6f2bfxni7aOjb4t65zuoiLdOTkJCQuD1I3/JrIbbsNExWE6b8cwhW0TDjE9yEps1e4T85BrLNopHIq1BDvtJKulxMAC4T5Ggi65ft0GSAZQ+B2VC6rRJPniAI5OQcJDVtAwAuLo2JjHzjlq+tKjz31QEu5xTZ2yFezrhqVRWcISEhISFxTyN995MoRjCK+kATEY5TiBLMYLKa0QA2xc07VrINYlXfuLxEnHVijtL6oSl4tV1Ihk3UTWq1NwqFc9mTLUWlBqnu0yGgDbjWfGntW0UQBBKvGVh76BLHLpVGyod4OfFc97AqL428HTiOVbVx77SxSAqsroD7MdJeQkLilpGMUrUQW9Y1jMZTCIJobCpSW7G4e/FW4mX7Mc4KOTKzlXWa0kovZpsMRXnL2wzXRIOUTA4hXcE1EEIerHAOV69u4sTJSfa2TnfnE4tbbQIFJovdIPVEm0A8ndU80bbqYfgSEhISEhIS9y6C0QiAwsMTm1KJYLJgLk5NUB2jVFqumLRbKK6yJxPA1T+dXJsBuVyDVhtISMi48g0xxpKqwDJ4aCbIK0mhUEf48LezLNp61t4e3D6Ipx8IIdzX5a4apEqRDB21GslKJyFRC6lb70vJKFULsWalIyCGk5+p78qZ+mcIl5d66Ia6X+XQhW8oMnuAUoPaJkfACU2BH3JlOYLIVBwh5eQFozZWaQ7p6b/b//Zw70RY2NTqX1AV+Ot8JqNW/EWBScyXpVMpWDC4VQ2JnzvDvXMlEhISEhISNYPNKOojmUZDTmE+xuwleCJqB4PzzRuFCgsNmF090TmLSdMVKDC7iIYqX58YmjVbWP6JhnTIPC/+rdHfMwYpgANJmQC4apX46DU807UBTfxda3hWFVDbtKJkQ5OQkKhD1IaPLMkoVQux5GaDIAqsuHo2sl3NqJSiGOjpqSc1+V2ys04iF8Rkm6EmN4y2dhQUmFAoy3kwlxil1OWEnpeDzWamqCgFgObNPsbP79Fbu6Aq8EfcVbtBCqBnE997yiBVnmByyK123X4ZMgSE+zPZuISEhISERAWURErJr/xFns/DUGyQMiltZDbQVbmfgpxsEg/9RUrcJYoCw1AAXl4XaRB6hDRnccma3rVF+Sf/+hrs+aS0ranFBpsqcuxSNmO/OkBuoYWi4oI6n49ozwNhXjU8MxEp56WEhITEvcu949a5BxBMJgx//onhUjogJjMvUIgh6S4uHgA4KxT4HS5gxOb6qK1qQHxQW4oNOopyI6WK8x2oK6+4d+z4v/hjW2Oyc8RlgWqN361cUqX8dOwKM9ce59eTYnWbKQ9HcOyNPiz+R5s7Om7NIgmr2o1kDBw1ahQymQyZTIZarSY8PJw333wTi8VS+ckVsG3bNmQyGdnZ2bdnolXg/PnzPP300wQEBKDVagkKCmLgwIGcOXPG4biNGzfSo0cP9Ho9Tk5OdOjQgZUrVzock5SUhEwm48iRI1Ue/4033qBx48Y4Ozvj4eHBww8/zL59+xz6HD16NA0aNECn09GwYUNmz56NqbgiWEWsWrWKVq1a4eTkhL+/P88++ywZGRmVnpeSksI///lPvLy80Ol0tGjRggMHDtj3X///L/mJiXGsOBYaGlrmmHfffde+Py4ujqioKPz8/NBqtYSFhfHaa69hNpsd+snOzmb8+PH4+/uj0Who1KhRpQVM1q5dS58+ffDy8kKp1HLs2JkKj5e4txAMOeS4NuCsrjNGq5hv8lxIBF/3TsbqV3Wj1NYvPuXXTxeRf6X4PWMz0bD+aXTFBim5XI2Pd+/yTz6/o/RvmRyaPVadS6kVmK02kjMLWHPwEmm5RgrNVgQBPJxUNK7N0VHlUcPOvHvKmXobuB99q5J+kvRTXdFPMpmMo0dPVnrNdwspUqoWkfbma2St+ZEitR6aiMk2LWrRoKRzcodCMZeU+yWrGE0jEw1QAlpMRaJRSq64zih1eiP89AIYS4xSFUdKFRlTuXbtF3tbo6mH3qXxbbq6spgsNqZ+ewST1Wbf1rieXkpqLiFRC4iJiWHFihUYjUY2bdrE+PHjUalUzJw5s6anBoDJZEKtVld4jNlspnfv3kRGRrJ27Vr8/f25dOkSP//8s4Ow++STT5gyZQozZsxg6dKlqNVq1q9fT2xsLCdOnGD+/PnVnmejRo1YvHgxYWFhFBYW8uGHH9KnTx8SEhLw8fHhzJkz2Gw2PvvsM8LDwzlx4gRjx47FYDBUOO7u3bsZMWIEH374If379yclJYXY2FjGjh3L2rVrb3heVlYWXbt2JSoqip9//hkfHx/Onj2Lh4eHw3El//8SNBpNmb7efPNNxo4da2/r9aVVXVUqFSNGjKBt27a4u7tz9OhRxo4di81m45133gHE/2Hv3r3x9fVlzZo1BAYGcuHCBdzd3Su8pwaDgQcffJDBgwc7jC9xf2DJSOFIy/FYlTqshl8ByFSDIAO9UlvlfvIy0wFQuIoOu4YFrmicxW3hyun4dRyAVnuDpOVFxcm/R2+B4I7VvJKaRxAEHluym5OXc+3bJvYMZ3D7YLxdNOjKy1N6t5EMPRJ1DEk/SfpJ0k83j2SUqkWYTh0EQLguJ4Kz3kiuDWxyUTQ5K+TIzQIgQ6dzBQzI0ODkpsY3xBVXr+sE2ckfID+ttB3QtsLxDYYEQDRGPdDxZxQKJ+TyO/cSyTAYMVltKOUyJvWKwNtFQ68mdzYyS6JipPB4EUkDiw/RevXEkt/PP/88P/zwAxs2bCA2NpbJkyfz448/YjQa6dGjB4sWLSIiIgKACxcuMGHCBHbt2oXJZCI0NJQPPviApk2bEhUVBWB/gI8cOZKVK1eSl5dHbGws69atw9XVlenTp7N+/Xpat27NRx99BIiepdGjR3P27FnWrVvHE088wcqVK9m1axczZ87kwIEDeHt78/jjjzNv3jycnZ05efIkiYmJbN26lZAQsVhDSEgIXbt2tV9ncnIy06ZNY8qUKfaHPcC0adNQq9VMmjSJQYMG8cADD1TrPj799NMO7YULF7J8+XKOHTtGr169iImJcfCihYWFERcXx9KlSysUVXv37iU0NJRJk8SCFA0aNGDcuHG89957Fc7nvffeIzg42EEwNWjQoMxx1///b4Rer7/hMWFhYYSFhdnbISEhbNu2jZ07d9q3ffHFF2RmZrJnzx5UKtEZERoaWuGYAMOHDwdEL6nE/Ycl34BVKUZEZcuN6AG5XjSeuKvKiv8bYSgUDTFWNxfqecTj63kN5DZkFg3+TYeirqhKcYlRqpJKxrUVQRA4fSWPq3lFdoOUTqXA01nN420CCfZ0quEZVsx9GIBThxCQcX//jyT9JOknST/dPNLyvVqEYBCruNgebG7flmsVo5y+vSaG7Dkp5CiKI0CFYgOCEoFn3nuQR/7VEpn8um/TJbmkol6DSUcgZl654xYWJnP8xEROnJgIgItLJCqV6x0zSP3nzwv0+OAPHl+yBwBvFw2TekXw9AP1USmkl6TEPYogiO/Jmvi5DTH0Op0Ok8nEqFGjOHDgABs2bGDv3r0IgkC/fv3sYcXjx4/HaDSyY8cOjh8/znvvvYeLiwvBwcF8//33gBiafOXKFT7++GMAXnjhBXbv3s2GDRvYsmULO3fu5NChQ2XmMH/+fFq1asXhw4eZNWsWiYmJxMTE8OSTT3Ls2DG+/fZbdu3axYQJEwDw8fFBLpezZs0arFZrmf4A1qxZg9ls5sUXXyyzb9y4cbi4uPD111/f8v0D0bO1bNky3NzcaNWq1Q2Py8nJwdPTs8K+OnfuTHJyMps2bUIQBNLS0lizZg39+vWr8LwNGzbQvn17Bg0ahK+vL23atOHzzz8vc9y2bdvw9fUlMjKS559/vtyw9nfffRcvLy/atGnDBx98UOHyhISEBDZv3kyPHj0c5tK5c2fGjx+Pn58fzZs355133in3f3U/f8GRcMRSYLT/nSsTdU5rb9HLrFJULdJaEAQuZScDoFFdISJiH0qvcwCorS1R1yvH2CQI8J8n4E0vKMwSt9VRo9R/912k36KdjFohpmqo56rl9Fsx7H65J2E+lad6qBkq8BYVe5JKHGuC9Ilxl7kLnrw6rKEk/XTrSPqp+vqpriBFStUibCbxQylHEwCkIqCwf84XCDqQQTMXHfFmGTqFHqw2UID8Rg8Dc7FRyrOB+HMDEhI/4OrV0jWoHu7Vs2hXlRW7znMho8Debh5YN0XdzSOJpPsacwG8E1AzY79yucqFDv6OIAhs3bqVX375hb59+7Ju3Tp2795Nly5dAHFdfnBwMOvWrWPQoEFcvHiRJ598khYtxATB13t7SoSCr6+vPcQ4Ly+PL7/8ktWrV9OrVy8AVqxYQUBA2XvVs2dPpk2bZm+PGTOGYcOGMWXKFAAiIiJYtGgRPXr0YOnSpQQGBrJo0SKmT5/OnDlzaN++PVFRUQwbNsw+r/j4eNzc3PD3L7tMR61WExYWRnx8fLXuXQkbN25k6NChFBQU4O/vz5YtW/D29i732ISEBD755JNKQ967du3KqlWrGDJkCEVFRVgsFvr378+SJUsqPO/cuXMsXbqUF154gVdeeYX9+/czadIk1Go1I0eOBMTQ8yeeeIIGDRqQmJjIK6+8Qt++fdm7dy8KhRiRMmnSJNq2bYunpyd79uxh5syZXLlyhYULHSuVdenShUOHDmE0Gnnuued48803Heby+++/M2zYMDZt2kRCQgL/+te/MJvNzJ49u9L7KnF/YsovwlL0FzbTOepZxSp5600/ghJU8qoZpYxWIzKLDVDg455v3x5a/18EBA4u/6SCDEjcWtr2bgRO5b+PaytHkrNZdziF3QniMkUvZzVuOhUjOofU8MyqSu3SUTeyVUhGsTtAHdRQkn6S9JOkn6qOFJZSi7AVJyvPtokvWkEu/jbq2uGmVPLg2cMkvjiWjh59GFD/XygVYni1/EZrjUoipVQVh2EXFIgljX19+9G8+WLq178za0zf2XSaJ5fu4UKmaJBaNrwd68d35d/DKl5WeE9Q2Xqwu7xeTFqdJlEZGzduxMXFBa1WS9++fRkyZAijRo1CqVQ6hGJ7eXkRGRnJ6dOnAfFhO3fuXLp27crs2bM5duxYheOcO3cOs9lMx46leVnc3NyIjIwsc2z79u0d2kePHmXlypW4uLjYf6Kjo7HZbJw/L36ujR8/ntTUVFatWkXnzp357rvvaNasGVu2bKnyvags9wKI4vL6eVwfZh0VFcWRI0fYs2cPMTExDB48mKtXr5bpIyUlhZiYGAYNGuSw1v/6fmNjYwE4deoUkydP5vXXX+fgwYNs3ryZpKQk+/6dO3c6nLdq1SoAbDYbbdu25Z133qFNmzY899xzjB07lk8//dQ+3tChQxkwYAAtWrTgscceY+PGjezfv59t27bZj3nhhRd46KGHaNmyJbGxsSxYsIBPPvkEo7E0igXg22+/5dChQ6xevZqffvrJQSzabDZ8fX1ZtmwZ7dq1Y8iQIbz66qv2uaxatYrwQB86RQYREeTjcE8l7k8Ek4mifCOWwl3YrJdRIJDhaiTHSXzdtfRpWaV+Ci2FBGiCadmkLa7O2QAUJXalYfg0dLrgG5wkHofaBV44A8/vBUXd8u2+svY4K/ckcfaqaIhbMLgVv7/4EKO63thxKVF1pBQIEiDpp+uR9FPN6Sc3Vz2dIoPoFBlUJ/RT3Xqa3uPky7040v4Zcq9Zgf0IciXyhv8l1yywVJbNua1i6KaXJhADRZiKK/RZXf9mdEo9AenxkFecT+oG1v2c3KPkZB8kP/8UAKEh/0Kvb3JHri01p4hlO87Z257OaqIa+0rL9STuH1ROoretpsa+SaKiouxJKwMCAlAqlWzYsKHS88aMGUN0dDQ//fQTv/76K/PmzWPBggVMnDixOjN3wNnZ8bMsPz+fcePG2fMCXE/9+vXtf+v1evr370///v2ZO3cu0dHRzJ07l969exMREUFOTg6XL18u4100mUwkJiYSHR1d6dwGDBjgIDYDAwMd5h0eHk54eDidOnUiIiKC5cuXOyQ9vXz5MlFRUXTp0oVly5Y59H19tRpXV7Ea1rx58+jatSsvvfQSAC1btsTZ2Zlu3boxd+5c2rdv73Cen5+Yr8/f35+mTZs69N+kSRP70oDyCAsLw9vbm4SEBLs39u888MADWCwWkpKSHARxcLD4Bb9p06ZYrVaee+45pk2bhkKhwN/fH5VKZfcelswlNTUVk8nEgAEDaNC0FZn5Jjyc1bRt0vCGc5S497m68EMyli0jxzUIGoi5o7Y2s3Gt3lWeb/4iQ5o+ipfOq0p9FZoL8e6VgNz7D0rSy1oL9Dc+wVwEeWJUFjoPcL1BAvRaSKHJyvxf48jIN5JQbIwa1SWUhr4udI/wqeHZVY6Yn6h2RR5JxqcaoA5pKEk/SfqphJrUT+07dORsmpgaqH3bO1e47HYhGaVqEWn65uS7BCGYROONWSmjSJADVq5kJQKQ7lrEcV0G8eoT9vNcG1+XKC0vDZb1ANt1a1M1ZYWWzWbk8OHhWK1iNJVcrkanC7rt12SzCaRkF3L6iphI08tZzTtPtKCpv6tkkLofa+XWBe7U/0Umq/YSupqgRAhcT5MmTbBYLOzbt88efp6RkUFcXJzDgzo4OJjY2FhiY2OZOXMmn3/+ORMnTrR7zK5f8x4WFoZKpWL//v12IZSTk0N8fDzdu3evcI5t27bl1KlTZeZZETKZjMaNG7Nnj5jT7qmnnmLGjBksWLCABQsWOBz76aefUlBQwIgRIyrtV6/XO1RPqQibzebgEUtJSSEqKop27dqxYsUK5HLHz8byrq+goACl0vERXiJOBEFAp9OVe17Xrl2Ji4tz2BYfH29PZFoely5dIiMjo9wQ/RKOHDmCXC7H19f3hsfYbDbMZjM2mw2FQkHXrl1ZvXo1NpvNfs3x8fH4+/ujVqtRq9U0CGuIS55RrASm092wb4l7n/zt2wEwK0uW6Cm44J+LXG2jhU+zKhukLp05SXzSEdy8xZxSJqMOU5ErhZeal3/Csf/BuudLdZXW/Rau4u7z84krLN913t520Sh5pV8T1Mp7SINJNqJ7nzqkoST9JOmnEmpSP4U7u2B0EotyaOuAfpKMUrWIPIUCY86XCIgGnByXfAqtNgBsJtG7pdZouKYQ98tlclzd3HigZ4vSTnIuicJJqYXA9uAdDv5lE8IZDAlYrQbkch2+Pn3w8Y1GqazaB8LN8Nx/DvLb6dIKgIEeOqKbVVyR4H5HJpOBULOeQeF+NJhJJfcqJSIigoEDBzJ27Fg+++wz9Ho9L7/8MoGBgQwcOBCAKVOm0LdvXxo1akRWVhZ//PEHTZqIEZghISHIZDI2btxIv3790Ol06PV6Ro4cyUsvvYSnpye+vr7Mnj0buVwuvhcqYMaMGXTq1IkJEyYwZswYnJ2dOXXqFFu2bGHx4sUcOXKE2bNnM3z4cJo2bYparWb79u188cUXzJgxAxA9gu+//z4vvvgiWq2W4cOHo1KpWL9+Pa+88gpz586leXPHL6t/FyUAzZo1s1dAKcFgMPD2228zYMAA/P39SU9PZ8mSJaSkpDBo0CBAFFQPPfQQISEhzJ8/n2vXrtnPr6h6S//+/Rk7dixLly4lOjqaK1euMGXKFDp27FhuPokSpk6dSpcuXXjnnXcYPHgwf/31F8uWLbN7F/Pz85kzZw5PPvkk9erVIzExkenTpxMeHm73eO7du5d9+/YRFRWFXq9n7969TJ06lX/+85/2ykCrVq1CpVLRokULNBoNBw4cYObMmQwZMsR+n55//nkWL17M5MmTmThxImfPnuWdd94p13N7PZmZmVy8eJHLl0Wv+dmzSchkcho29Ky04o1E3UWwikahgq6RcPEsyFTIlKI2CnG/sZi/nrRzCXw7ewYqNwvNhoLVqsDr6Fz2J7kS2uIGRq3EPxwdfZEx5R9Xy/hqbxLfH0rham4RAB0beNKnqR/tQjzqpEFKekLXEe5H/VgFJP0kIumn2qafzmGx5BNcX05I/ZrNkSgZpWoRuSojgq00Q3+euxJT8Ye7zFSEq8qLQHUgl2WioerRbgNp2/NvBieTGKaHRwN45qcyYwiClby8k1xKWQ2Aq2tLmjVbWOa428W+c+L1aFVyVAo5T7QJrOSMe53a/bCu7CEmIbFixQomT57Mo48+islkonv37mzatMn+oLRarYwfP55Lly7h6upKTEwMH374ISCGZM+ZM4eXX36ZZ555hhEjRrBy5UoWLlxIbGwsjz76qL2kcXJyMlqttsK5tGzZku3bt/Pqq6/SrVs3BEGgYcOGDBkyBICgoCBCQ0OZM2cOSUlJyGQye3vq1Kn2fqZOnUpYWBgLFizg448/xmAQI0i//vprhg4dWmbc8rYlJycTFOQYbapQKDhz5gxffvkl6enpeHl50aFDB3bu3EmzZs0A2LJlCwkJCSQkJJQ5vyLj8KhRo8jLy2Px4sVMmzYNd3d3evbsWWlJ4w4dOvDDDz8wc+ZM3nzzTRo0aMBHH33EsGHD7HM+duwYX375JdnZ2QQEBNCnTx/eeustNBpxyZRGo+Gbb77hjTfewGg00qBBA6ZOncoLL7xgH0epVPLee+8RHx+PIAiEhIQwYcIEh/seHBzML7/8wtSpU2nZsiWBgYFMnjzZLnhvxIYNG3jmmWfs7WefnQ7A7NmzeeONNyo8V6IOYxYNQ7kmsWmTy5HJzciQU8+5asbIM4m7iHzqHDov0dNuMukw2twBGwqVovyTjKIjkL7vQ7tRoNRU/xruIgt+jSen0GxvP9UuiMHtb5AvS0LiVpC0Y5WQ9JOkn2qbfhoxQqy2+OprLzH3rfcrPPdOIxPuy5AIkdzcXNzc3MjJybGvM60pBKORz/85lTz5RQyuAfzaej/Onk05Wk9c7/pG0o9En+6MSq5hlWYnhTITg/s9TdOOjRw7Or0Rvh0GQR1gzG9lxrlw4TMSEktfdPWDRxMR8cptvRaD0cKyHefINJj4z58XADj+Rh/02qpVxbkX+fGj91Cm1iM34RhXdGqspuN0je5Bp2fF/6/NZCKupWhg/McrGqyCla2DtuLrVDXv782SkW+k3Vzx9ZH07iP27ftT9/PsL8/S0K0h6x5bd0fGrrX8+hrs+QS6TGJho/G8fz6V4QFefBBZPRFfVFTE+fPnadCgQaXiQMIRg8FAYGAgCxYsYPTo0Xd9/MzMTHr16oWrqys///wzTk43n5NL4vZwJaeQa8XL9wLcy4afW61GDIZ4ZDI5en2zWxqrovdsbdILtYGauB9xD0eTWuTJuWbhZGYfxqR2YfXDJ2nl04r/9vtvlfpY98M49G6l2uhiUivUByeSbRVo3LkevUY2LXvSykchaSc8uRxaPHW7LueOcO5aPpO+OUyWwUxKdiEAnw1vh6ezmnb1PZDL657xID35ArvmfE6yu4D2aji5xu+RAS98u9F+TNoHH5C5/As2TWjHSv1Rnmr0FLM737kKVLPWneA/f15gcq8IpvYu1eEjfx7JoauHWPjQQnqH9L5j49c6jHkwr9go8GoaAbvOYAOOdmmGn+bmtb+kn6qPpJ8kSrDaBE5eFpfvNQtwQ1HO539hYTJmczYarT8adfUjpW6HfpIipWoaqwV+egFbShwWuVhiM8MlixwXCzmW0n+q0mhFJRetrGbE9cTa6xOcGzIg/me4uFdsq13KHe7atdKKCe7uHQmu/+ztvBoAfjicwsdbz9rbns5qXDT390utMhlY92SihMTt4/Dhw5w5c4aOHTuSk5NjL3tbEtJ+t/H09OS3335jyZIl7N2794bJKSUkJO4eF3RNORveH6spHjiMTSHjo6iPaOtbeQXftPOJxO3ZgbEgAb0bXE3z4nxSDyhyo6mbAld/N5r3uM7TLgiwfgJcOQIZYk5PtG535LpuB4IgUGi2su7IZU6k5Nq3N/V3vWdSJgg3IZTuY3+7xH2GpJ8k7hXub0tBbeDKETj0JbZCOVZZKAhQoBHDrfP0Yq6oCCcNgsnCRXk6+RRiKTFK6a4LIf/1VTj6dWlb51HucEVF4hrSDu3X4eraotxjqktabhGbjl9hyykxh1T7EA86N/SieyMfaVmYRJ1CerXefebPn09cXBxqtZp27dqxc+dOvL1rbn27l5cXr7/+eo2NLyEh4UiRQnS2KUjHDORqC+lVv2pfeHaseQur9gT6AHFpSW6RGyajMzrktO3mTv2+LR1PyDwHR66PvpKBV9UTAt9tRq3Yz/b40nwqIzqH8ETbIBr5le+grKvc6NksaczahUwsmShxl5D0k8S9gGSUqmlMBvbl/YOEou5YFLvBAgonH3J8BuLp1p7PmjWgqYuOlTsEflUfLT1PAJ3TdeFxOZfE3wFtwSMUuk627zKa0jl+/F+YTNcwmkSDkUbjd9sv5e2fTrPhaGm51oGtAxjeOfS2jyMhIXFv0aZNGw4ePFjT05CQkKjFCIg5n3J1OagNUKixVnJG8XmCgGvj/Sidi+zbfLM6cgX4f/buPC7Kan/g+GcGGBhgABFQNlkEF9wqd8ktF1BTK3NJcyk1LU0tNc0Wl7RuuZVmmvdX6r2R15uVeW0xMjO3NFfMBVcUFXdZZGfm/P4YGJ1AQGVTvu/Xi3ubZ85znnMekPnyPec5x0Zp0bkU8HhQhvmRBxw9oNc/wS0A3IPutQslLu5KKldTs6wSUk46G3o39qeBX8Wd2XV3JPEkxN9J/CQeFJKUKmc5iYnsTumF0tpA7gwoXDzJ0j9MJw833Ezn+OKvX0m/dgPsq2Cv7FCZLthlueHodEsglWUe/aPta1C7i9U1rl7ZSFLSzV9Y9vbV0emKt3XynTh91dyG8JCq1K7mQo+HKvui5vcHpZSMMgohhKjQTBpzUsqozLPJc4q5g1xW1mVLQio9/iHi0x24mGwOf22xwdGrgG3mM3M3jXHygJqP3WPLS8c3e87y6n9vDlZWcbRj2+QO2NposLO5/3bXux/JZKCCyF0RoiK43/6yk6RUOUs9fBKlNS9wrU89R6o9ZOUuCuhqa8ObW9/kyLUjDE7rCPZQ1ehMdmI9qjqmo3O45duXnWb+f7v8C8plZppnR3l4dCQg4AWcHEPRaG6zy8wdunIjk8W/neBGRg4nL5uTUhM61+bhGgU/PigqBklCFUYCKiGEqGhMuTOllMm8/V6OXdGJl+zsZK5f/wOArBRbruxtyEU3hc5ki2OaBr+UdAzBt6y5ZMyBc7vh7E7za3tDyXaiBBy/lMLF5Ex+OJAAgMHeFmcHW55tEYBeVzKxXUWisTwLJnFLxSXfGyHEvZGkVDnLvJxk+e/zVRSuaZBtezMp5XA0ic4nvNDZmH/h26DhuY/aYqvTWicWsnKTUrqbI35paac4E/855859CYCzcx3cXBuXaPu/3HGGz7acsrzWasC3Sv4dkkR+t1uIU1PE+2VBVcrEjARVQghRUZnQYMw6ho3RHDdlFrGjb3LyAXbtfhqlcgDITtFjq3UA0nEzOTPynRFoHBysY6kN08y7sOaxr1g7Lf51LonHF26xOja1Rz2ebux3mzMqiTIeaCvqcrLQuhBC3BlJSpWzzKvmKeIaZbSkATK15kDL3c6W0IM2OKXqwMv8nlZpsbPPHQnLvGFe3DwzGdKumo/dMlPqxMn5XLr0veW1e5WWJdbuS8kZ/BZ7mS3HrgDQrrYnTQPdqettwMsg27fmYxXBFBDNyMwlIYQQokDKZCLJJoHs1K3kbfGSrdcVes7169tQKgeNxgZjug21E4ZzSu/GcY5hp7FFqy9gAO3iIfP/G3zAsSo0Lfst1QtyLjGdz7ecsmzvbXCwxcdVj5eLPR3repVz60QemYUuhLgvVYA8uiSlylnmdfMjbzbkYGMyH7uS+6FWzd6Osxnm/3bUunANsNXc8i3bvdy8696tbtl1LyXlAAC+vgOo4taMKlValFi7X/s6ht9iby6s+eTDvvSUNaSEEEIIUcJUTg5GjfmxvWydA3GeV0iqXvjsoLS0OAACAl5i74IcthkUiTbnADBxm0f/MhLN/99tDtTpVhJNLxFLfjvBv/84bXn9XHgQr3aqVY4tEkIIIUqOJKXKiSkjg/S9e0nafwbqga0mG63J/Mx8otb8bfHT2bI/RwMasDWv64n21kAqxbyeANXqg8/D4PMQuHiTlhZHyo1DpKefAaBm8CvY2ZXsGk/HL90AoHmQOzW9nOkUVvK7+QkhhBBC5GRmYcqdhJLlUZ2tjWIJ1NkXWPbcuZVcuryelJSDAOgdAolzPsANmxuWMra2f5tldW4PXDsJybk7CDu4lXQX7lhyRjb/+PEI11Oz2H36OgDdGnjzcA03ejfxL+fWlZfCZyJpKsBovxBCiDsnSalykvDmWySvW0e2i3mLYRtbI7a5M6VCXA10unGBU1GbqFWlBVXcQjlhdxW4jK3tLWsoZOUGWGE9zbvuARkZ5/ljRxeUMo8oOjoGl1hCal98Iu+sO0R6lpHziekAzOndCH/3/IurCyGEEEKUhNTMTMtahzm5Y3M6m/xJqczMyxyJfRswWY7F77tETm4uwyfdn5RMJ/yr3bKA+fXT8M/HsHp+wdG9hHtw536ISeDLHWesjr3Yrib1fV3LqUXlRXPzOyNrNVV88j0SQtwF2TO2nGSdNk/DNrlXJTttM9eursI+R4NC8ahtDl5ffMyhjdGc9XTiF/0RTtnmPipnd8voXmZuUuqWxc2vXP3NkpAyGBoQUnNiibX5PzvPsPv0dQ4lJGNS4O6ko5qLrB8lHlyVNbYaMmQIGo0GjUaDTqcjJCSEGTNmkJOTc0/1/vbbb2g0GhITE0umocVw6tQp+vfvj4+PDw4ODvj5+dGzZ0+OHDliVW7dunW0bdsWg8GAo6MjTZs2Zfny5VZl4uLi0Gg07Nu3r9jXnzZtGnXq1MHJyYkqVarQsWNHduzYYVXn0KFDCQoKQq/XU7NmTaZOnUpWVlaRdUdFRdGoUSMcHR3x9vbm+eef5+rVq4WeYzQaeeutt6yu984771gtzPvNN9/QuXNnqlatetv+njhxgieffBJPT09cXFzo06cPFy9evON+xcTE0Lp1axwcHPD39+eDDz4ost+///473bt3x8fHB1tbB9at+7XIc8T9LTM9HZU7DeaK9hIAng4++cqlp58mLyFl0A3l2HcBbFmxFlPuue7pVXC7riGoxi0DfIlnAAV2ThDYGpqPBM86pdqfwny79yzDVvzJ0s0nAXg0xIN3nqjPsueaVsKEVHHJWk7l6jZraVXGEEriJ4mf7pf4SaPRsHbt+iLPKSuSlConKi2ZTJ0LmgA7jJm7USZzgumyWyaOJiMA9tXcuaHNBMABPfbZBlwDQiExHnYshUu5C3LqnM11KhOpN44CUKPGMJo1XYOnZ+d7buu++ET+s/MM+8+aF9gc3jqIfz3fjB/HtkZnKz9CxVfIx7MsjllxVNZM1N9ERkaSkJDAsWPHGD9+PNOmTWP27Nnl3SyL4gQd2dnZdOrUiaSkJL755htiY2NZtWoVDRo0sArsFi5cSM+ePQkPD2fHjh3ExMTQr18/Ro4cyYQJE+6pnbVq1eLjjz/mwIEDbNmyhcDAQDp37szly+aBhiNHjmAymfj00085ePAg8+fPZ8mSJUyZMqXQerdu3cqgQYMYOnQoBw8e5KuvvmLnzp0MHz680PPef/99Fi9ezMcff8zhw4d5//33+eCDD1i48OaOY6mpqTz66KO8//77BdaRmppK586d0Wg0/Prrr2zdupWsrCy6d++OyWQqdr+Sk5Pp3LkzAQEB7N69m9mzZzNt2jSWLl1aaB9SU1Np1KgRixYtKrSceHDkZGRYZkoZtSaUsqG26yNWZTIyznPt+nYAXF0f4cgpSL3gyA2HHIy5H7G+57bTasc0/Ordsjh4pnnDGbzqwpB10OX9cvlMNpoUKRnZvL3mIL8cvsTJy+Y1R7s38mZgiwDa15YFze8XlXMHY5FH4ieJnyR+unPy+F45ScCbfa1eQ6lswPzD/EPLdK4ZLuOVfBYtNiTYpGLQ5I74XQ2DbCfc3Tzhf2PhxIablTm6c/r0Uk6cnINS5oSWs1PtEmlnYloWfZZsJ8t4cyp8m1qetA71LJH6K4v7bUeWShlQ3fI9ur++W6XD3t6e6tWrA/Diiy/y7bffsnbtWkaOHMnYsWP53//+R2ZmJm3btmXBggWEhoYCcPr0aUaPHs2WLVvIysoiMDCQ2bNnExYWRvv27QGoUsX8SPHgwYNZvnw5KSkpjBw5kjVr1uDi4sJrr73Gd999x0MPPcSHH34IQGBgIEOHDuXYsWOsWbOGp556iuXLl7NlyxZef/11du3ahYeHB08++STvvfceTk5OHDx4kBMnTrBhwwYCAgIACAgIIDw83NLP+Ph4xo8fz7hx43j33Xctx8ePH49Op2PMmDH07t2b5s2b39V97N+/v9XrefPm8dlnnxETE0OHDh2IjIwkMjLS8n5wcDCxsbEsXryYOXPm3Lbe7du3ExgYyJgxYwAICgpixIgRtw2E8mzbto2ePXvSrZt5EefAwEBWrlzJzp07LWUGDhwImEfrCrJ161bi4uLYu3cvLi4uAKxYsYIqVarw66+/0rFjx2L1KyoqiqysLD7//HN0Oh316tVj3759zJs3jxdeeOG2fejSpQtdunQptJ/iwZKdfjMppbI8uXG0LzUfDrG8f/Hi9/x1cIzlta2NJ+nXEgFIq6FHnzd7qlED/EZ3xaFRo5uV5yWl7G95pK+MJaVnEzH/dy4kZwBgo9Uw64n6uOrt6ChrdgLF/Vwu39hFI9EDIDGUxE8SP0n8dOdkmks5SbTzBkCrzGszKSChajY5torMtFS6+Y/gRftxmHI/YD1rOBHSxIs6LarfXIgzqA20HA0hHTl79t+WhJS9rhoeHh3uuY1pWTnEnE0iy2hCb2dDx7peDG4ZQIvgqvdct6DIGTlllRi6tRkSUJUepRRp2Wnl8qVKYPaXXq8nKyuLIUOGsGvXLtauXcv27dtRStG1a1eys827MYwaNYrMzEx+//13Dhw4wPvvv4+zszP+/v58/fXXAMTGxpKQkMBHH30EwKuvvsrWrVtZu3Yt0dHRbN68mT179uRrw5w5c2jUqBF79+7lrbfe4sSJE0RGRtKrVy9iYmJYtWoVW7ZsYfTo0QB4enqi1WpZvXo1RqOxwH6tXr2a7OzsAkf0RowYgbOzMytXrrzn+wfm0cmlS5fi6upKo1v/KP6bpKQk3N0LX9OmZcuWxMfH88MPP6CU4uLFi6xevZquXbsWel6rVq3YsGEDR4+aZ9Xu37+fLVu23FGQkpmZiUajwd7+5po+Dg4OaLVatmzZUux+bd++nTZt2qDT3XwsPSIigtjYWK5fv17s9ogHX05GOir348mktSesWnVa1bwZiyRc+Mby36ZMA9v+GcuNbYcw6hxwcqxu+SvZ9eGGGNq3Nw8U7VoGK/vDttxR7nJISimlyMwxsvv0NUtCCqBrA2/6NatBlwbe2NlU8lC9IoclMrO6zNzPMZTET/dO4qd7jZ8q/u8qmSlVToy5t97D6yLxSZBjY4MmN0HlkKnD0daQW848utfhmVpU9cvd/jjLPKWbDtPArzFGYwYZmeZEVcsWv+Dg4IdWe8t6CXdhf3wivT/dTlaO+fp1vA383+Cm91SnKK7Sj8Aqcoz3oErPSaf5l3c3WnSvdvTfgaPd3W1IoJRiw4YNrF+/ni5durBmzRq2bt1Kq1atAPNojb+/P2vWrKF3796cOXOGXr160aBBA8A8wpMn7wPVy8sLNzc3AFJSUlixYgVffvklHTqYk+nLli3Dxyf/ejGPPfYY48ePt7weNmwYAwYMYNy4cQCEhoayYMEC2rZty+LFi/H19WXBggW89tprTJ8+nSZNmtC+fXsGDBhgadfRo0dxdXXF29s73/V0Oh3BwcGWAORurVu3jn79+pGWloa3tzfR0dF4eHgUWPb48eMsXLiw0FE+gPDwcKKioujbty8ZGRnk5OTQvXv3IqdkT548meTkZOrUqYONjQ1Go5FZs2YxYMCAYvenRYsWODk5MWnSJN59912UUkyePBmj0UhCQkKx+3XhwgWCgoKsylWrVs3yXt6IsBA5aamYNBpQUCvAlf8b09rq/YyMcwA89NAKVr32CekpyeBUhbQaNSHzZjm9u5v5P4w58MMEMN2yzotbjVLuhTWlFIM+38nmY1csx9rV9mTJs41xsLMp07bc9+6z2ejizt2PMZTETxI//Z3ET7dXyYdfyo8Rc9IoXZmz41l2mWiVeZTMNndrmVRSLUkpO4dbFhTPMk81N9racOjwJPbtfw4ArdYBvT7wnhNSADtOXbUkpOxsNDzeMP8vOCHEg2vdunU4Ozvj4OBAly5d6Nu3L0OGDMHW1tZqKnbVqlWpXbs2hw8fBmDMmDHMnDmT8PBwpk6dSkxMTKHXOXnyJNnZ2TRr1sxyzNXVldq18z+C3KRJE6vX+/fvZ/ny5Tg7O1u+IiIiMJlMnDp1CjCPPF64cIGoqChatmzJV199Rb169YiOji72vbh1JOp2oqKirNqxefNmy3vt27dn3759bNu2jcjISPr06cOlS5fy1XHu3DkiIyPp3bu31doGt9Y7cuRIAA4dOsTYsWN5++232b17Nz/99BNxcXGW9zdv3mx1XlRUFAD//e9/iYqK4ssvv2TPnj2sWLGCOXPmsGLFimLfD09PT7766iv+97//4ezsjKurK4mJiTzyyCNotfnDitv1qyibN28mxNeTFrX9CPXztPRBVB6mnBy+fXM9m/6TiSk372CjvxnjnD69lF27+5KaegwAvYMvObnrpXj51QPATtlQxeREw5wAHP1zR5ozk28mpLrNgyeWQNtJZdMpYNvxK0TtOGOVkNJqoHNYdUlIFUN5j/lLCqww5f3dKX8SP90k8ZO1soyfXFwMtKjtR4vafnx5H8RPMlOqnGRrbTBmHuLilYPYADf0OWTqm/KQZxiuCckAmJTR8slnq9ebd9vLSLLMlDqfvImEhNWWOp2cQu957aJtx6/w65FL/Bl3DYARbYJ5vWvde6pTCAF6Wz07+u8oumApXftOtW/fnsWLF6PT6XJ3ObNl7dq1RZ43bNgwIiIi+P777/n555957733mDt3Li+//PLdNN2Kk5OT1esbN24wYsQIy7oAt6pR4+asB4PBQPfu3enevTszZ84kIiKCmTNn0qlTJ0JDQ0lKSuL8+fP5RhezsrI4ceIEERERRbatR48eVsGmr6+vVbtDQkIICQmhRYsWhIaG8tlnn/H6669bypw/f5727dvTqlWrfAtV3rp7S94aBO+99x7h4eFMnGjeYbVhw4Y4OTnRunVrZs6cSZMmTazOyxtBmzhxIpMnT6Zfv34ANGjQgNOnT/Pee+8xePDgIvuZp3Pnzpw4cYIrV65ga2uLm5sb1atXtxrZLapf1atXt9pxBrC8rl69OoGBgfyy+Q+u3siiipOOhqEBxW6feDBc/XU756/kJaHMj5DYOpsH6dLSTnP8xM01QBwdg9DrA8nJNielTFkGcMjAM8cdz+QwcnQ26P1yH9HLMG/cgp0jNB1aJn3Jsy8+kf7/d/OzwNdNz0/jWmOr1aLXSULq9oqOb/OWIKiU62KWq9JP091PMZTETxI/Faas4qc9e/Zy9KJ5IsujDWsW0ary/50pSalyoHJySNZeJjttGzZp5mNnvPTMbTePx9wNfL35bXO5zEzI/T1om3wGPmsPOemWelKzzdPVnZxCCQx4iSpV7n1a68sr93I19eauDP7ud/fIjyhIIR/aMvX8gafRaO76EbrykBcI3Kpu3brk5OSwY8cOy/Tzq1evEhsbS1hYmKWcv78/I0eOZOTIkbz++uv885//5OWXX7aMmN26PkFwcDB2dnb8+eeflkAoKSmJo0eP0qZNm0Lb+Mgjj3Do0KF87SyMRqOhTp06bNu2DYCnn36aSZMmMXfuXObOnWtVdsmSJaSlpTFo0KAi6zUYDBgMxVuTxmQykZl585mic+fO0b59exo3bsyyZcvyjZYV1L+0tDRsba0/wm1szH/QKqXQ6/W3Pe/v9dvY2Fh2fblTedPof/31Vy5dukSPHj2K3a+WLVvyxhtvkJ2djZ2dOfEQHR1N7dq1LVPPg4Jr4pSSiYezPQbDnSdXxf0t+3oi4IRGGdHmJGDU2GBvb/7jKi3tpKVcvbD5uLk1QZlMuNl6UtetBRe05n8fypRDSK9Qqtd0NX/U7l4B5/eaT7R3KbO+/HHyKgfOJhFzzpwQ8zTYU9/Hhb5N/TE43PsM98qhiLU4K8gaT5IUK3n3Uwwl8ZPET8VR2vFTSEgIGY7mz5vi3t/yJEmpcmC6cYMcrTnxk+XgyEmvi5z296O7lxsANunmKeU53PzFY3vpQG5CSkOqsz0XQ0I4d9G86J2f70CqV+/BvThzNY3LNzIsCakX2gTj7qTjyYd9izhTCFFZhIaG0rNnT4YPH86nn36KwWBg8uTJ+Pr60rNnTwDGjRtHly5dqFWrFtevX2fjxo3UrWuebRkQEIBGo2HdunV07doVvV6PwWBg8ODBTJw4EXd3d7y8vJg6dSparbbImZ+TJk2iRYsWjB49mmHDhuHk5MShQ4eIjo7m448/Zt++fUydOpWBAwcSFhaGTqdj06ZNfP7550yaZH5Up0aNGnzwwQdMmDABBwcHBg4ciJ2dHd999x1Tpkxh5syZ1K9f3+q6sbGx+dpSr149S2CQJzU1lVmzZtGjRw+8vb25cuUKixYt4ty5c/Tu3RswBx7t2rUjICCAOXPmWLY6Biy79xSke/fuDB8+nMWLFxMREUFCQgLjxo2jWbNmBa4ncet5s2bNokaNGtSrV4+9e/cyb948nn/+eUuZa9eucebMGc6fP2/V3+rVq1vatGzZMurWrYunpyfbt29n7NixvPLKK5bHBorTr/79+zN9+nSGDh3KpEmT+Ouvv/joo4+YP3/+bdsP5hHe48ePW16fPn2OmJgj+PsbrEZ4xf3PlG2OhzSYuOFoRJ9ug4O9OTmZlX0VAHf31pYYKCsjnVouTfB3qsNljTlppdPk0KBd7pqcp7fB/26ZGeDsVSb9SM7IZtBnO612Mu7e0Ie3u4cVcpaA3N2LK0iyqSj3207LouxI/GQm8VNFi5/iiYlxpVq1HEJDPQs9t7RJUqocGFNSMGnMH7BXParwR/3DGKhneT/LCF/qN5NunzdjSYM2O3dx89pdOVzLSFLSLkt5Z+f8zw7fiR8PJPBi1M2dGgz2tkyRR/YqtYoy2igqnmXLljF27Fgef/xxsrKyaNOmDT/88IMloDAajYwaNYqzZ8/i4uJCZGSk5UPS19eX6dOnM3nyZJ577jkGDRrE8uXLmTdvHiNHjuTxxx+3bGkcHx+Pw61r6RWgYcOGbNq0iTfeeIPWrVujlKJmzZr07dsXAD8/PwIDA5k+fTpxcXFoNBrL61deecVSzyuvvEJwcDBz587lo48+IjXV/Pt25cqVlmnatyroWHx8PH55m1HksrGx4ciRI6xYsYIrV65QtWpVmjZtyubNm6lXz/w7Pzo6muPHj3P8+PF85xf273DIkCGkpKTw8ccfM378eNzc3HjssceK3NJ44cKFvPXWW7z00ktcunQJHx8fRowYwdtvv20ps3btWp577rl8/Z06dSrTpk0DzIHW66+/zrVr1wgMDOSNN96wuqfF6Zerqys///wzo0aNonHjxnh4ePD2228Xup0xwK5duyzbYwNMmTIbuLlFtnhwGJOvAK5oTdnkbb9nb6fl+InZxMeb1/HQ2d3chS8nKwtbrXlGQbIyx1Aa7S07R+XtXuziC3Uehwa9S7X9l1Iy+GrXWc4nppNlNOGksyGiXnX0OhuefzSwVK9dqUgySNwHJH6S+AkqVvw0adIMAJ59ti///vd/Cj23tGlUJf7rMzk5GVdXV5KSkizPmZa2zBMnSPvzT7747neyTGc4EmTDH3VPUsO+P0/9dZ6UhAvYOQVx+ZbH5pxsqjKxgwZ+fgPVoDebPP7EaLxB9WpP4FalGb4+fe+pTe/+cJilv5/ESWeDwcGOPk39ebVTrXvtqrjF9wtmoz3vRfLxGBL09hizYmjVqTUth5lHG5TRyJF65tGE/lMcyFE5RD8dTXWn22f678X11Cwefse8UOHJd7ui1ZoDut0XdzPkpyEEugTyvyf/VyrXrrCip8LWD6HlaD6s/TL/OHWBAd7uzK1zdzMvMjIyOHXqFEFBQUUGB8Jaamoqvr6+zJ07l6FDy3a9FzCPdHXo0AEXFxd+/PFHHB3vj0cGHkQXktK5lPv4no9b/sf3jMZMUlOPotFoMRjqFVBD8RX2b7Y84oWKrKzux6mZU/nhbFt0xhQuZSzGIcsWz/4N8DX811Kmdq3p+Pk9S8rVKyRfvsT5T/7E2zGYHzR/cd7+IiEYeHZa7q5Tf34G378KtbvBM1+WWrvzvLnmAF/8ccbyunmQO6tGtCz16z5Irp0/y6a3PuGsuw36C0EkZX0DwPhV6yxlLs3/kKuffsqPLz3CMtcYngp9iumtppdam6Z+9xcrtp9mzGMhvNr55sDw8+uf588LfzK77WwiAyNL7foVTlYavJu7A9uU8/htO0aOgr2twvC2L3qh67+T+OnuSfwk8piU4q/cx8Xr+bhgU8BC6unp8WRnJ2JvXx17+7ufKVUS8ZPMlCpDGbGxnOr5BACmh9uaj9lmY8qqSr1qdUg8thUAO2fzc60+2VXJuB5Czfo+kPUTOTYa0h2MGI03AA11676LVmt/V20xmRRLfj/Buevp/HHSPAV+TIdQRrQtaiE0IYQoWXv37uXIkSM0a9aMpKQkZswwj9zkTWkva+7u7vzyyy8sWrSI7du3W7ZaFkKULVP2LbOccmdK2WnMI/HuVcLx8HgMH59+bP1vFH98vRIAv4AItui2cwPzjsZ2tjaQnQ7n9sCFA+a6HEo3sfjt3rN8t+88MWfNfxC0r+1JoIcTTzf2K+JMIe5zlXeuQ7mQ+Ek8KCQpVYYy405zsO4QrrnXwZjxA5ggVd+Eq0FPUtM2nhtAsnMODs5uQDoOSketgKvUV6tIObyTP1u6o7S/A+Dg4HfXCSmAHaeu8cFP1s/1BlR1uk1pURpuN0nRvH5CGTdGWNHIhs9lbs6cOcTGxqLT6WjcuDGbN2+2LAJZHqpWrWo1JVsIUfaMOeY1mDSYsDGZfy/rNObdhKpX74m3dy8AzsceBMDGzo4TDolk3fLIXlUPL/hqCBz96WbFDq6l2u531h3m2i2bxrzRLYwQL+dSveaD6z78PK5sMdzfHp80x1CV7SaUH4mfxINAklJlKOtGOherNTW/SDcHK1cddWCjwSEtEVfHWjxSpRYXbWy5zFl0JkW79FGQDicCHVFa8xRIrdYBH++n77odSenZHLtkDuqCPZ3o2cgXD4OODnXLZsHPysi84KDKe1FQgTJtz60kbBDl7eGHH2b37t3l3QwhRAVjyslbGNyENjcplZUZC07g5HRzmYHU5GQAPPq158Sf1wHwS65HapYDTV7qAF++Zy7oVgMcPaDhvS17UJBrqVnMXn+ExLRsS0LqH081INjTWRJS96jIOKWcQiiJn0R5k/hJPCgkKVWGjAlHAHNSKsPuIvZGLR4GR+qcPULKjmhCvbqTZmsikQsAaPNm0ti7khr6MGT+Ra2aU/APuPtnhKetPcjybXGW100CqjC2Y+hd1yfuT7ImqBBCiIruZlLKiE3u43u2NhnY2DhhMNTn4KYNnNi9gyvnz6ABPj/2BW00XQFoUN2AT49muHk5QoY5acWA1eB5b5vD3M7Xu8+ycme85bWvm55+zWQ3yBKj0VBU9inv3dJeLvd2O5vJLGshREV0PyTQJSlVhozp6QBolBGVG2c1zUjBLvoL0u10/OxxyKp8dmYip0P0nPPTkZ75FwAOToH31IZfj1yy/LeDnZYOdavdU31CCCGEEKVBGfNC6WzLMVubHAwG88Ygv/zfJ+RkZaJz9MC5RgP6JGm5QBIapSEoSIdXoA3cuAyZuUkp+5JfS2rRxuP8fOgi5xPNMV7Hul60reVJy5pVizhT3ClJ+QghxINJklJlyJhlXuNAgwnbHPNHq03uaIu+ejVSAVtlg02mGxqTHbX9bTjtrydbZw7KdDoP3Fyb3PF1s3JMfL71FFdSMrmQZF7487cJ7ajh7mjZdU0IkUsW6RRCiAohJ3emlFI3k1J16k4hqEY7TMYccrIyAciqUZMzuWtNATgqHQ5Jf8A/nsJqjLiE15LKyjEx9+dYTLdcol/TGnQMkwG/ciEf30IIcV+SpFQZMmXnAKAxZWObuzaCrdYWE6DVmbdMdVF6HusQgWv8V3ipDWzRmbdvfOThKJycamFnd+cB1YbDF/nHj0csr3W2Wqq7OkhCSohbyTONQtx35J/tgy0lywhaMCnzLKRsG0VAwNM46GzJTEu9WVDZgcaIT3Y1crIccbmajq3bBqyyFKERYKcvkXZtjL3Esq1xZGQZMSmwt9WyqP8jVHHS8UgNtxK5hjAz/xuXbNP9Q75XQog7J0mpMmTM3dpYo24AYNIobmRex4CWa2lJoKuCDVpqOm/jWtZHnHG0BfTYm+ypUqXFHV8v22hiz+nr/H7sCgB1qhtoV9uL5kHuONjZlFi/xIND1kMQQghRUeQYFUbjKYxZhwHI0ClstebBuuxM8ywpNBo0JhNowTvJBp+tn6FPv4LtwzXN7/dcBA8NKNEM5ofRR9l/Nsnyuq63i8yOKk8VLDutKl1ipmLdfyHE/UeSUmXImG0kO30bWVnHAEjXGbFPteGpgLHE2V7jNw5io2xIyNzAqVoGy3lObo3u6nof/nKURRtPWF4/VseL1yLr3FsnxN3RaNAUFqNUsIBKCCEqBvndWJnl5BjJzvgOMD/Gl2qvsLMx/0zkZGWh0zpQxdGbhNwfEzt7OwJGDsDeuwq6hI/NB/VVSuQzNivHxNzoWC4mZXD0onlwcXKXOni7OtAiWNaPEjKwJ4QQd0uSUmUoKzMHY8YflteJhmzqZ1chU6tI1ZjXejKatCSbzLu32CkdHj498fMdcFfXO3TevLCnr5sevyp6nnrE7x57IEpW4SNppb17jBBCCFGRZRtNmBNSGg7XSOaYl4Nl57PszAwCAyLJstWSpT0HgM7dDQ/DKtjz481KSmgdqd9iL/HpppOW1zpbLc+2CMDZXkLpikPiJiGEyOc++NWoLe8GVCY3snIs//3rI5fY9NAVklQGKx228KedeUZTSg5k5T7eF2ZqQVjdf+Di0qDY17h6I5NX/7uPocv/ZPfp6wC880Q9Vo1oSYiXcwn2Rtydon8ryEhbxXEf/A4vFUOGDEGj0aDRaNDpdISEhDBjxgxycnKKPrkQv/32GxqNhsTExJJpaDGcOnWK/v374+Pjg4ODA35+fvTs2ZMjR45YlVu3bh1t27bFYDDg6OhI06ZNWb58uVWZuLg4NBoN+/btK/b1p02bRp06dXBycqJKlSp07NiRHTt2WNU5dOhQgoKC0Ov11KxZk6lTp5KVlVVk3VFRUTRq1AhHR0e8vb15/vnnuXr1aqHnpKSkMG7cOAICAtDr9bRq1Yo///zTqsyNGzcYPXo0fn5+6PV6wsLCWLJkiVWZESNGULNmTfR6PZ6engXe0zNnztCtWzccHR3x8vJi4sSJt/0Z2rp1K7a2tjz00ENF9vubb76hc+fOVK1aFRsbB2JijhR5jrg/ZZtyFzrX2LCj/jWuGeyJ3b6FqCmv8PVHs9ntcJYDtmfI1piXR3DwcIEz28wn2+jAqx54P3RPbdh45BKjvtzDRxvMs9wb+bnyZre6fDG0uSSkylJl/UC+j1XGsVWJnyR+ul/iJ41Gw/79B4s8p6xIUqoM3cjI+0diw5nq6WTaajHl7sKnUVCnzmYad/yYFI05mWRve+fTwdfuP883e86x4cglkjPMP7zBHpKMEkLcmcjISBISEjh27Bjjx49n2rRpzJ49u7ybZVGcoCM7O5tOnTqRlJTEN998Q2xsLKtWraJBgwZWgd3ChQvp2bMn4eHh7Nixg5iYGPr168fIkSOZMGHCPbWzVq1afPzxxxw4cIAtW7YQGBhI586duXz5MgBHjhzBZDLx6aefcvDgQebPn8+SJUuYMmVKofVu3bqVQYMGMXToUA4ePMhXX33Fzp07GT58eKHnDRs2jOjoaP79739z4MABOnfuTMeOHTl37pylzKuvvspPP/3EF198weHDhxk3bhyjR49m7dq1ljKNGzdm2bJlHD58mPXr16OUonPnzhiN5uSA0WikW7duZGVlsW3bNlasWMHy5ct5++2387UpMTGRQYMG0aFDh2Ld09TUVB599FHef//9YpUX968cY95ftVqyrrVCl9iJXeu+4cKJY6RcN6/p5KDscEn2xCvBndCGnpCZuwvfuAPw0jawv7cYaPr/DvJ9TAIHc2efd65XnWGtg2kW5H5P9YpiKsajl3mz5/IG9Srfmk6iIpH4SeIniZ/unCSlylB6Zm6GU2O+7Zp0H/LWy6inbPH0ikNrYy5jSMnGya74j9ulZuaw98x1DuQuvNm2lifv92rAqhdaEOjhVHKdEA8ceUzw75Qs8QXY29tTvXp1AgICePHFF+nYsSNr167l+vXrDBo0iCpVquDo6EiXLl04duyY5bzTp0/TvXt3qlSpgpOTE/Xq1eOHH34gLi6O9u3bA1ClShU0Gg1DhgwBzKNPAwYMwMnJCW9vb+bPn0+7du0YN26cpd7AwEDeeecdBg0ahIuLCy+88AIAW7ZsoXXr1uj1evz9/RkzZgypqeZduQ4ePMiJEyf45JNPaNGiBQEBAYSHhzNz5kxatDBvHhEfH8/48eMZN24c7777LmFhYYSEhDB+/Hhmz57N3LlzrUbm7lT//v3p2LEjwcHB1KtXj3nz5pGcnExMTAxgDl6XLVtG586dCQ4OpkePHkyYMIFvvvmm0Hq3b99OYGAgY8aMISgoiEcffZQRI0awc+fO256Tnp7O119/zQcffECbNm0ICQlh2rRphISEsHjxYku5bdu2MXjwYNq1a0dgYCAvvPACjRo1sqr7hRdeoE2bNgQGBvLII48wc+ZM4uPjiYuLA+Dnn3/m0KFDfPHFFzz00EN06dKFd955h0WLFuULiEeOHEn//v1p2bJlse7pwIEDefvtt+nYsWOxyov7lynvPzRaMi/2wMHkTXqyOc4JatkGAIPS0+nnz2i/aTGuXvagcs+yN+SvsJiUUsxcd4hnlv7BmWtpAEyKrMOc3o14LjzwrusV96pixSsSPhVAqUo/31/iJ4mfJH66c5KUKkPZeUkpbEg/1we/2CaWj1edwTxl0CHDSPiOazQ5YoM2uF2x637qk208+ck2vtlrztY+GuJB36Y1aC6Lb4oCFPWIoIwyljylFKa0tHL5KonEo16vJysriyFDhrBr1y7Wrl3L9u3bUUrRtWtXsrOzARg1ahSZmZn8/vvvHDhwgPfffx9nZ2f8/f35+uuvAYiNjSUhIYGPPvoIMI8sbd26lbVr1xIdHc3mzZvZs2dPvjbMmTOHRo0asXfvXt566y1OnDhBZGQkvXr1IiYmhlWrVrFlyxZGjx4NgKenJ1qtltWrV1tGoP5u9erVZGdnFziiN2LECJydnVm5cuU93z8wj04uXboUV1dXGjW6/QYWSUlJuLsXPgujZcuWxMfH88MPP6CU4uLFi6xevZquXbve9pycnByMRiMODg5Wx/V6PVu2bLG8btWqFWvXruXcuXMopdi4cSNHjx6lc+fOBdabmprKsmXLCAoKwt/fHzAHfQ0aNKBatZs7kkVERJCcnMzBgzeniy9btoyTJ08yderUQvsrKifjzawUALYqi7Qkc1JK7+aee0yLoX4I7o+FYvdX7uLmGhuwc7zr6564nMr/bTnF9pNXMSnwNNgzok0wTzf2w1Enj+yJwlW6wb4yGMm7n2MoiZ/uncRPD378JJ+sZSDz1Cnif9hGhvIArqM0Gp47sI/A4AAu2zsRHLgHR99YAFyynHB4Pe6O6k/LyiH2onm6ul8VPe5OOiLqVS/hXoh7oaHw8T1NBZmaU1HaUT5Kt+8qPZ3YRxqX6jVup/ae3Wgc7+4PNKUUGzZsYP369XTp0oU1a9awdetWWrVqBZify/f392fNmjX07t2bM2fO0KtXLxo0MK+FFxwcbKkrL1Dw8vLCzc0NMI/yrVixgi+//NIy/XjZsmX4+Pjka8tjjz3G+PHjLa+HDRvGgAEDLCOCoaGhLFiwgLZt27J48WJ8fX1ZsGABr732GtOnT6dJkya0b9+eAQMGWNp19OhRXF1d8fb2znc9nU5HcHAwR48evat7l2fdunX069ePtLQ0vL29iY6OxsPDo8Cyx48fZ+HChcyZM6fQOsPDw4mKiqJv375kZGSQk5ND9+7dWbRo0W3PMRgMtGzZknfeeYe6detSrVo1Vq5cyfbt2wkJCbGUW7hwIS+88AJ+fn7Y2tqi1Wr55z//SZs2bazq++STT3jttddITU2ldu3aREdHo9PpALhw4YJVQAVYXl+4cAGAY8eOMXnyZDZv3oytbeHhSCX7E0/kynt6T+XOMLfNvEp2pnljmJzcJQq02BDwpB7N4fWwN/dEQ/W7+kP5sy2nWLvvHDdyBxFruDsyMaI2D/m7odVW5s/H+0R5J4PkR6TU3I8xlMRPEj9VhPjpfiEzpcrA1mkrWX/AmytVHgLApFU4mDJJ4BreNf/E1+8IGo35g7RKVvHXPjh4PomuH22m07zfAXDU2bD5tfasHf0oNare/QihEEKsW7cOZ2dnHBwc6NKlC3379mXIkCHY2trSvHlzS7mqVatSu3ZtDh8+DMCYMWOYOXMm4eHhTJ061TLN+nZOnjxJdnY2zZo1sxxzdXWldu3a+co2adLE6vX+/ftZvnw5zs7Olq+IiAhMJhOnTp0CzCOPFy5cICoqipYtW/LVV19Rr149oqOji30v8gKFwkRFRVm1Y/PmzZb32rdvz759+9i2bRuRkZH06dOHS5cu5avj3LlzREZG0rt3b6u1DW6td+TIkQAcOnSIsWPH8vbbb7N7925++ukn4uLiLO9v3rzZ6ryoqCgA/v3vf6OUwtfXF3t7exYsWMAzzzyDVnszHFi4cCF//PEHa9euZffu3cydO5dRo0bxyy+/WLV3wIAB7N27l02bNlGrVi369OlDRkZGse6p0Wikf//+TJ8+nVq1at32ntb09aBFbT9q+Xla3VNROZjycgwaDd2C1vO484941q7FjYer8Nc5cwbKRmnRpOb+e6rbA1qPh6eX3fG1lFLMWR/L/rNJnLhsfoSlVc2qdG/kg7+7xFTlRYMGhTwSJu4fEj/dJPFT+cVPLgYDLWr70aK2H1vug/jpwUitVXDJWfagB63JvKteui4T5xxwPngKfdN0AEzX/ah75Qg+jg2LXe/a/ec5lJBsed3Iz62Sz3QRouLS6PXU3rO73K59p9q3b8/ixYvR6XT4+Phga2trtVDj7QwbNoyIiAi+//57fv75Z9577z3mzp3Lyy+/fDdNt+LkZL0+3o0bNxgxYgRjxozJV7ZGjRqW/zYYDHTv3p3u3bszc+ZMIiIimDlzJp06dSI0NJSkpCTOnz+fb3QxKyuLEydOEBERUWTbevToYRVs+vr6WrU7JCSEkJAQWrRoQWhoKJ999hmvv/66pcz58+dp3749rVq1YunSpVZ137pbjYuLCwDvvfce4eHhTJw4EYCGDRvi5ORE69atmTlzJk2aNLE6L2+UrWbNmmzatInU1FSSk5Px9vamb9++lpHP9PR0pkyZwrfffku3bt0sde/bt485c+ZYrUPg6uqKq6sroaGhtGjRgipVqvDtt9/yzDPPUL169XzrM1y8eBGA6tWrk5KSwq5du9i7d6/lcQGTyYRSCltbW37++Wd69OhBcNhDXL2RiZuTjsZ1axb5fRAPlryclNJo6O77E/HHAvCwtcMxoyWXdelctE1Bq7SQYX6kjybPQ832d3SNYxdTePW/+0lMzyI924hWA0sHNkFnq5XFzO8bEvs+6O6nGEriJ4mfKkL81KxZM2IvmJ+kavxw/kRlRSNJqTJgyn1WWG//B5lpkGWbQzOP7vg5BHFENwkA3YFH8GMfhBW9MOexiynEnE1i7+lEAIa0CqTHQz6EebuUVhdEKSjqGXVZ1+nBotFo7voRuvKQFwjcqm7duuTk5LBjxw7L9POrV68SGxtLWFiYpZy/vz8jR45k5MiRvP766/zzn//k5ZdftoyY3bo+QXBwMHZ2dvz555+WQCgpKYmjR4/mm+78d4888giHDh3K187CaDQa6tSpw7Zt5m3jn376aSZNmsTcuXOZO3euVdklS5aQlpbGoEGDiqzXYDBgMBRvYWWTyURmZqbl9blz52jfvr1lR5ZbR92AAvuXlpaWb8q2jY0NYP7dotfrC70vTk5OODk5cf36ddavX88HH3wAmHfcyc7OztcGGxsbTCZTQVVZrqmUsvSrZcuWzJo1i0uXLuHl5QVAdHQ0Li4uhIWFYWdnx4EDB6zq+OSTT/j1119ZvXo1QUFBODk5ERRcE6eUDKo626O/i+SquD9lnTnDjS1bwJSbbNBoOPjvWtg7OnHVI5ATThctZW2UDSSfNb9wcC32NUwmRWJ6Nqv+jOfAuSTL8QZ+bnQMq1bImUKIsnY/xVASP0n89Pe6yyN+cnZ2Jl2fuwbjfRA/SVKqDJgw/6Cn5s5iyrCxwz78d055LkRnY15FX2dMBRvA+/aLtwFk5hh5avE2UjJyLMceruHGIzWqlE7jRYkqTppJxvtERRUaGkrPnj0ZPnw4n376KQaDgcmTJ+Pr60vPnj0BGDduHF26dKFWrVpcv36djRs3UrduXQACAgLQaDSsW7eOrl27otfrMRgMDB48mIkTJ+Lu7o6XlxdTp05Fq9UWOfNz0qRJtGjRgtGjRzNs2DCcnJw4dOgQ0dHRfPzxx+zbt4+pU6cycOBAwsLC0Ol0bNq0ic8//5xJk8wDAjVq1OCDDz5gwoQJODg4MHDgQOzs7Pjuu++YMmUKM2fOpH79+lbXjY2NzdeWevXqYWdnZ3UsNTWVWbNm0aNHD7y9vbly5QqLFi3i3Llz9O7dGzAHVO3atSMgIIA5c+ZYtjoG84jY7XTv3p3hw4ezePFiIiIiSEhIYNy4cTRr1qzA9STy5G0/XLt2bY4fP87EiROpU6cOzz33HGAeSWzbti0TJ05Er9cTEBDApk2b+Ne//sW8efMA8yMDq1atonPnznh6enL27Fn+8Y9/oNfrLQuFdu7cmbCwMAYOHMgHH3zAhQsXePPNNxk1ahT29vYA+e6rl5cXDg4O+Y7/3bVr1zhz5gznz58H4NixODQaLTVrVi30non7x7lxr5Bx6BDaWu0AULm/Cmzs7MiyzV3uwOiCa7aJR/jfzZlSzl7Fql8pxdNLtrHnTKLl2PPhQXRr6E1d77vftU+UHaWUPB1QIcmAakEkfjKT+KmixU8nyMlJwd9fQ0CAZ6HnljZJSpUBY+5tvmDrTFWuYbSxJaX6n5b3r1+vjqFqIAzcA+7Bt6kFLiVncPB8MikZOdjZaGhZ0wNPZ3s61pURvfuBhE7iQbBs2TLGjh3L448/TlZWFm3atOGHH36wBBRGo5FRo0Zx9uxZXFxciIyMZP78+YB5Svb06dOZPHkyzz33HIMGDWL58uXMmzePkSNH8vjjj+Pi4sJrr71GfHx8vl1O/q5hw4Zs2rSJN954g9atW6OUombNmvTt2xcAPz8/AgMDmT59OnFxcWg0GsvrV155xVLPK6+8QnBwMHPnzuWjjz6ybIm8cuVK+vXrl++6BR2Lj4/Hz8/P6piNjQ1HjhxhxYoVXLlyhapVq9K0aVM2b95MvXr1APPo1/Hjxzl+/Hi+8wubTTlkyBBSUlL4+OOPGT9+PG5ubjz22GO8//77hd6zpKQkXn/9dc6ePYu7uzu9evVi1qxZVgHhf/7zH15//XUGDBjAtWvXCAgIYNasWZb1FhwcHNi8eTMffvgh169fp1q1arRp04Zt27ZZRvVsbGxYt24dL774Ii1btsTJyYnBgwczY8aMQttXHGvXrrUEgQDPP/8aAFOnTmXatGn3XL8of6mJGZz170Syixtkx5NjC7aZGhztXcnUmEecPZx0DMh4w3zCI4PA5xFw9bt9pbmSM7K5nJJplZCq4mjHM838Ca0mCamKSqEpdr6jvHe/q3wz3SXCLQ6JnyR+qmjx06BB5sf/3nhjAjNnzr7n+u+FRpX3b+5ylJycjKurK0lJSZbnTEuaMhr5T79PuFa1HmfsVuJ1KYHTXnp6PrmH7Cx79u3rQlaaO31rulN78Iu3redwQjLdFmy2LPoZ7OnEr+PblUqbRcn7cdE8NGfcSTwRwwVHPcbM/bTo0IrwF6ZYyhyuYx4NGfiGI5mmLNb3Wo+P8+0z9vciKS2bRjN+BuD4rC7Y2pinmu69tJdBPw6ihqEG3z/1falcu8L6ZTpsmQfNX2RB2Cu8ezKBZ7zdmV+nRtHnFiAjI4NTp04RFBRUZHAgrKWmpuLr68vcuXMZOnRomV//2rVrdOjQARcXF3788Ucc75NHBh5EF5IyuJT7+J6vW/7p5yZTFjduxKLRaDEY6t3TtQr7N1sW8cL9pLTvx9re7xJftQU5mTHkpP1CqsGAe/VHuGKbaikT5lKVPslvml+8fR20Re/dsy7mPGNW7rXEUl4Ge/54vQMaTWXffbbiSrx4gQ1TPuS8uz2OCQEkZn8DwKv/+Z/le3Z5wUKufPIJ60c+zGdVDtCzZk9mPjqz1No0be1Blm+LY3T7ECZE3FyrZfjPw/kj4Q/+0fofdAvuVmrXr3BysmBm7iyLyWeo8UccWUqxu2UYvg5FL3T9dxI/3T2Jn0QepZTl0fQwbxfL33q3Sk+PJzs7EXv76tjb3/1MqZKIn2T3vVKmMjJQWvNMKRPmR+5MNuYP0bQ0N8Iy6tDuxmWCA7ILrWd/fCImBTpbLdVdHBjUIqB0Gy4qJU1lHu2SP0jKzd69e1m5ciUnTpxgz549DBgwAMAypb2subu788svv9ChQwe2b99eLm0QojLL1poTkDZa89pRqbpkq4SUrbJBXy13GQOdociEVGJaFj8fvMB/dsZbElJaDTz5sC9arUYSUvc7+f6JSkriJ/GgkMf3SpkpKwtTblIKkznxpBzMgVTi1Ro8H/gdxG0Gp7kFnr8r7hrfH0jgwFlzpvPJh3x5/+ni79AnRFEq7VTJQkh4W/bmzJlDbGwsOp2Oxo0bs3nzZjw8PMqtPVWrVuXtt98ut+sLUZkZcz+Y7G1PkAlkaU3oATtlQ/NN+6iSeB7TU9dyCxX9yN3oL/ey5fgVy+uP+z/M4w1LZyayqDwq32N6xaPRIMFlGZL4STwIJClVylRGBhlcISPxF7wwj/IZnRRKaUi56gsZ/2cuqHMu8PxJX8dw4vLN0cEaVWUapCgBknURFcjDDz/M7t3ls9WzEKLiUbkT+W9ozWt15GjM/2+nbPG9cAiAmqmXQA9Ub3Dbeq7cyCQxLYu/zpsH9hr4ulKjqiOP1SnegujiPlNGK5LIxCxRUUj8JB4UkpQqZaaMDDLUeVCpaAGjVpGoc2XHH0+jTXEA7yBwrgbB7fOdq5Qi/no6AENaBVLNxYH+ze9ufRshhBDiQSWD8g8Ok9GISWMOT5O0egwkYdSaswA6Zd7NWGtrwvaJORDQGKoVvJbY/vhEnvxkq+VxPYCo4c1xcbArsLyo2CQPdJ+ovEsVCyHugSSlSpnKzMSkMYKC4/4adtY5Q81rodhdr0XDxL/gH/vynfN9TAIz1h0kM8dEVo55l5nJXergYGdTxq0XQgghhCg7KVcvY9KY45281TZVbkbCYLKn+qM56J2uoQ1qVuAsqWyjieT0bH4/etm8FqeNFkd7Gx6r7SUJqfuQeVZSEYmOCjZ1qdI91lfB7r8Q4v4jSalSlpmSggkjADf0RjKUOzWSXGm/MYqApgV/aH2z5ywXkzMtr+v5uEhC6j5X4CKqfx9N0mhAKcti45UuqBFCCCHAMlPKqDF/DmrQ0jmrEU5pN6hS4zqYcsA+/y4+qZk5dJy3iYSkDMux5x8NYnKXOmXTcFF2lKpwyZBKvVmMEELcA0lKlbKTf+1D5e66l5lem9QTHfHQ7iYk7BAubbpYlV27/zwnL9/g4PlkAN59sgHNgqpQw92pzNstSonG8j+iwpJkoBBClBcXz2q37Fqcm5TSaKlh8uC88aR50xiNFvRVLOcYTYpD55P563ySVULKYG9Lh7qyftQDoRgJKBnUE0KI+5MkpUrZjatXLEkpZ6cUetdYQ9AZE1VqpoGLm6Xc8Us3GLNyr9W5TQOrEOJV9K4yQpS0yhnQSbJQiAqrMv5KqqyMRsuuxXlJKQWkbZ7NpkfiaPbQsxDQEhxuzpSa+f0hlm2Ns7wOD6nKF0ObA7eZqSweUPKLQggh7keSlCol2UlJXPloAXa//w6e5lG6mp4naRF0muT4lqC1haDWACRnZHMwd2cYD2d7IutXI9TLQGg1SUgJIYSoxCSfUOkok8myplReUgqNhtceP4mvnys8schSduepa8RfS2PjkUsAeBnsMTjYMrBFoCSjHhgaSTUJIcQDTpJSpWTbm6+TdLIKyZ59UGoDAHb2mWSnu+DasCU8vhR0jsyLPsqCDccs5z3k78bMJ26/vbEQQgghxAMrJweT1rwguUlzMx0xQHeNtq5tLK+PXUyhz6fbrU79YlhzasmAXuUj+ccKRFKIQog7py3vBjyojNl2xPt3IMm1JuQudO4W+xA5/2uBTe2qoHMEsIzugXmHmIh61cqjuUKIAlTWnY2HDBmCRqNBo9Gg0+kICQlhxowZ5OTk3FO9v/32GxqNhsTExJJpaDGcOnWK/v374+Pjg4ODA35+fvTs2ZMjR45YlVu3bh1t27bFYDDg6OhI06ZNWb58uVWZuLg4NBoN+/btK/b1p02bRp06dXBycqJKlSp07NiRHTt2WNU5dOhQgoKC0Ov11KxZk6lTp5KVlVVk3VFRUTRq1AhHR0e8vb15/vnnuXr1aqHn/P7773Tv3h0fHx80Gg1r1qzJV+abb76hc+fOVK1atcj+KqXo0qXLbetavnw5DRs2xMHBAS8vL0aNGmX1/vr162nRogUGgwFPT0969epFXFycVZnvv/0vnVo3L/F+iopJGY2WNaWMeWtKoaF3Sipe7qGkZeXw1a54/m/zKQDcnXS0reXJyLY1CfVyLrd2C5FHVbrgoeCsYGW7CyDxk8RPFS9+6t35UVwMzhU+fpKkVCnxDzXv9GJnvIFRkw7AJtfjvNliM0FVa/PJb8fpt3Q7Ry+mALB2dDhH3omkdxP/cmuzKE3FGMYrp0cNKl3sJIolMjKShIQEjh07xvjx45k2bRqzZ88u72ZZFCfoyM7OplOnTiQlJfHNN98QGxvLqlWraNCggVVgt3DhQnr27El4eDg7duwgJiaGfv36MXLkSCZMmHBP7axVqxYff/wxBw4cYMuWLQQGBtK5c2cuX74MwJEjRzCZTHz66accPHiQ+fPns2TJEqZMmVJovVu3bmXQoEEMHTqUgwcP8tVXX7Fz506GDx9e6Hmpqak0atSIRYsWFVrm0Ucf5f333y+yfx9++OFtH5OaN28eb7zxBpMnT+bgwYP88ssvREREWN4/deoUPXv25LHHHmPfvn2sX7+eK1eu8NRTT1nK7PxjG2+Oe5F+zw4u8X6KiikzLs7y+B7KBOQuYP34fGg6nH9tP83E1TGs2hUPQMe6Xqx4vhmTu9SRR/YquzKOZ/Jvoiw/f0LiJ4mfKkb8tHXrVt4c9yJP9BvI/pgDFT5+ksf3SonxhnkHPZ0pNfdTS8PTaVf5MP4cToYQPvjpd0tZvZ0NgR5OaLXyYSbKhsRNoij29vZUr14dgBdffJFvv/2WtWvXMnLkSMaOHcv//vc/MjMzadu2LQsWLCA0NBSA06dPM3r0aLZs2UJWVhaBgYHMnj2bsLAw2rdvD0CVKuZdswYPHszy5ctJSUlh5MiRrFmzBhcXF1577TW+++47HnroIT788EMAAgMDGTp0KMeOHWPNmjU89dRTLF++nC1btvD666+za9cuPDw8ePLJJ3nvvfdwcnLi4MGDnDhxgg0bNhAQEABAQEAA4eHhln7Gx8czfvx4xo0bx7vvvms5Pn78eHQ6HWPGjKF37940b978ru5j//79rV7PmzePzz77jJiYGDp06EBkZCSRkZGW94ODg4mNjWXx4sXMmTPntvVu376dwMBAxowZA0BQUBAjRowoMhDq0qULXbp0KbTMwIEDAfKNuP3dvn37mDt3Lrt27cLb29vqvevXr/Pmm2/yv//9jw4dOliON2zY0PLfu3fvxmg0MnPmTLRa8xjZhAkT6NmzJ9nZ2djZ2bF75w58/GowdMRL+FbRF9JP678Oi9NPUTGZklIxarSYchJwzskEIMfehoTQZ7hyOYtdcdcBCPN2IczHhRFta5Znc0UlpJHnBQtV2e+OxE8SP1WE+Gn79u34+NVgwPMjCPJ2ITSkZon1szTITKlSkpWaBoBGZWKjzL+ea7kY8Gj6IpfSzbfd3lbLwmceZu3ocFwc7MqtraKcFDGiV/mmfz/YlFJkZxrL5askfpb0ej1ZWVkMGTKEXbt2sXbtWrZv345Siq5du5KdnQ3AqFGjyMzM5Pfff+fAgQO8//77ODs74+/vz9dffw1AbGwsCQkJfPTRRwC8+uqrbN26lbVr1xIdHc3mzZvZs2dPvjbMmTOHRo0asXfvXt566y1OnDhBZGQkvXr1IiYmhlWrVrFlyxZGjx4NgKenJ1qtltWrV2M0Ggvs1+rVq8nOzi5wRG/EiBE4OzuzcuXKe75/YB6dXLp0Ka6urjRq1Oi25ZKSknB3dy+0rpYtWxIfH88PP/yAUoqLFy+yevVqunbtWiJtLUpaWhr9+/dn0aJFluD7VtHR0ZhMJs6dO0fdunXx8/OjT58+xMfHW8o0btwYrVbLsmXLMBqNJCUl8e9//5uOHTtiZ2f+TGzcrDkXEs6xIfqncumnKHupenuys/aQlbISjxTzTPM0Ry2t/vEr3T/ewi+HLwIwvE0Qc3o3oqanPLL3INNoNAVO6bbaJVhG2h5493MMJfHTvZP46c7jp5YtW3Ih4Rybf/25kH5WnN+dMlOqlGTEJ4AraFS65diaoMk8vikH9dtvAHga7OneyKecWijKQ7H2kKkAwVWlToiVUt9zskwsHbupVOouygsftcXO3uauzlVKsWHDBtavX0+XLl1Ys2YNW7dupVWrVoD5uXx/f3/WrFlD7969OXPmDL169aJBA/OGDcHBwZa68gIFLy8v3NzcAEhJSWHFihV8+eWXlhGhZcuW4eOT/3fjY489xvjx4y2vhw0bxoABAxg3bhwAoaGhLFiwgLZt27J48WJ8fX1ZsGABr732GtOnT6dJkya0b9+eAQMGWNp19OhRXF1d841UAeh0OoKDgzl69Ohd3bs869ato1+/fqSlpeHt7U10dDQeHh4Flj1+/DgLFy4sdJQPIDw8nKioKPr27UtGRgY5OTl07969zKZbv/LKK7Rq1YqePXsW+P7JkycxmUy8++67fPTRR7i6uvLmm2/SqVMnYmJi0Ol0BAUF8fPPP9OnTx9GjBiB0WikZcuW/PDDD5Z6mrVoxXsLlvLS0EEMHVD2/RRl77KdEZPJvOZFhp2Gy26pJBjcUangYKfF3VGHp4sDbUI9y7mloqyVf3Qkysv9GENJ/CTxU0HKKn4KDw/nvQVLee2loYwbOqDCx08yU6qUZJn0AGjIsByLjku1+nu3XW0JqETFUqnXQ6jMfS/AunXrcHZ2xsHBgS5dutC3b1+GDBmCra2t1VTsqlWrUrt2bQ4fPgzAmDFjmDlzJuHh4UydOpWYmJhCr3Py5Emys7Np1qyZ5Zirqyu1a9fOV7ZJkyZWr/fv38/y5ctxdna2fEVERGAymTh1yrwI8qhRo7hw4QJRUVG0bNmSr776inr16hEdHV3se6HT6YosExUVZdWOzZs3W95r3749+/btY9u2bURGRtKnTx8uXbqUr45z584RGRlJ7969rZ75v7XekSNHAnDo0CHGjh3L22+/ze7du/npp5+Ii4uzvL9582ar86Kioord36KsXbuWX3/91fJoQEFMJhPZ2dksWLCAiIgIWrRowcqVKzl27BgbN24E4MKFCwwfPpzBgwfz559/smnTJnQ6HU8//bQlMX70yGE+mPo64yZMvk0/t+Dj0xwf72Yl3k9RPoIxgjI/tvdXsAMbml4m3by0FAOaB7Dt9Q58Nyqcqs725dhKIUSBKvOgZi6Jn26S+MlaWcZPhw4d4oOprzNi3ER27PyzwH56etbGx6c5VasGlnv8JDOlSonRzpyUMpJtOXY2xRxV/TCmNb5uelwd5ZG9SkMDRT6vJ0mRB5qtTssLH7Utt2vfqfbt27N48WJ0Oh0+Pj7Y2tqydu3aIs8bNmwYERERfP/99/z888+89957zJ07l5dffvlumm7FycnJ6vWNGzcYMWKEZV2AW9WoUcPy3waDge7du9O9e3dmzpxJREQEM2fOpFOnToSGhpKUlMT58+fzjS5mZWVx4sQJq8Ulb6dHjx5Wwaavr69Vu0NCQggJCaFFixaEhoby2Wef8frrr1vKnD9/nvbt29OqVSuWLl1qVfetu7e4uLgA8N577xEeHs7EiRMB81oDTk5OtG7dmpkzZ9KkSROr86pVK7mdXX/99VdOnDhhGa3N06tXL1q3bs1vv/1mGTkNCwuzvO/p6YmHhwdnzpwBYNGiRbi6uvLBBx9YynzxxRf4+/uzY8cOWrRowcJ5s3moaXNeHPMKvlUcC+hnYzZv/go0GgzOtUq0n6J85Fw9h8pNSmXYmT83bTRa2tX25JlmNQo7VYhyVWnXmiqD+PV+iqEkfpL46XbKMn76xz/+wUNNmzNk5BjqertgZ6PN188//viJ7Oxk7O098PcPozzd9zOlFi1aRGBgIA4ODjRv3pydO3eWd5MAuGFrR9aN77iaZl7Q/IZDDjkmWwwOtoR4OUtCSohKRqPRYGdvUy5fdzMDLi8QqFGjBra25vGLunXrkpOTY7Ul79WrV4mNjbX68PT392fkyJF88803jB8/nn/+85/AzRGzW9cnCA4Oxs7Ojj///NNyLCkpqVhTvh955BEOHTpkCVhu/brd6JxGo6FOnTqkpqYC8PTTT2Nra8vcuXPzlV2yZAlpaWkMGjSoyLYYDAar6+v1+tuWNZlMZGZmWl6fO3eOdu3a0bhxY5YtW2ZZtDLPrfV6eXkB5jUJ/l7Oxsb8eIFSCr1eb3WewWAosg/FNXnyZGJiYti3b5/lC2D+/PksW7YMwLIYamxsrOW8a9euceXKFcuiqYX1wWQyD+Kkp6Wh0RTez5o1a1CzZo0S72dlUBFjqDQHB8tMqXRb8zbqBqcqLH+uGSFesn6UEJXR/RRDSfwk8dPtlGX8lFas+CkoN4YKLvf46b6eKbVq1SpeffVVlixZQvPmzfnwww+JiIggNjbW8oNXXpKz0zHlnLC8Pu+ZzoweDWkcUBWd7X2fCxRCVEKhoaH07NmT4cOH8+mnn2IwGJg8eTK+vr6WZ+PHjRtHly5dqFWrFtevX2fjxo3UrVsXMO/cotFoWLduHV27dkWv12MwGBg8eDATJ07E3d0dLy8vpk6dilarLTIQnDRpEi1atGD06NEMGzYMJycnDh06RHR0NB9//DH79u1j6tSpDBw4kLCwMHQ6HZs2beLzzz9n0qRJgHlE8IMPPmDChAk4ODgwcOBA7Ozs+O6775gyZQozZ86kfv36Vte9NVDIU69ePcviknlSU1OZNWsWPXr0wNvbmytXrrBo0SLOnTtH7969gZsBVUBAAHPmzLFsdQwUuABmnu7duzN8+HAWL15MREQECQkJjBs3jmbNmhW4nkSeGzducPz4ccvrU6dOsW/fPtzd3S2jo9euXePMmTOcP3/eqr/Vq1e3+vq7GjVqEBQUBJi3cu7Zsydjx45l6dKluLi48Prrr1OnTh3LLkLdunVj/vz5zJgxg2eeeYaUlBSmTJlCQEAADz/8MACdunRjwpiX+Nfn/6Tvk93z9dNkKnhr6+L0s7KrqDHURcfaKGVe+iDD3jzb3NHGtdzaI8qZJu//bv95UKmXHhD3BYmfzCR+Krv4Ka+f//3XZwzs3ZMrly6WWD9LhbqPNWvWTI0aNcry2mg0Kh8fH/Xee+8V6/ykpCQFqKSkpBJv2xf9XlZz+nRTH/brpVoveFg1+OyhEr+GuH/8+Ml89eNrn6v/PD1OzR/4hprTp5vasnimVZlDYfXUodp1VJN/N1H1l9dX8cnxpdaepPQsFTBpnQqYtE5lZhstx/dd2qfqL6+vIldHltq1K6wN7yg11UWp7yeqBXEXVLVf96qxh07fdXXp6enq0KFDKj09vQQbWTYGDx6sevbsWeB7165dUwMHDlSurq5Kr9eriIgIdfToUcv7o0ePVjVr1lT29vbK09NTDRw4UF25csXy/owZM1T16tWVRqNRgwcPVkoplZycrPr3768cHR1V9erV1bx581SzZs3U5MmTLecFBASo+fPn52vPzp07VadOnZSzs7NycnJSDRs2VLNmzVJKKXX58mU1ZswYVb9+feXs7KwMBoNq0KCBmjNnjjIajVb1rFmzRrVu3Vo5OTkpzM/aqpUrV1qVOXXqlOW9v3/Fx+f/95qenq6efPJJ5ePjo3Q6nfL29lY9evRQO3futJRZtmzZbessyoIFC1RYWJjS6/XK29tbDRgwQJ09e7bQczZu3FjgtfK+F4W1aerUqbetF1Dffvut1bGkpCT1/PPPKzc3N+Xu7q6efPJJdebMGasyK1euVA8//LBycnJSnp6eqkePHurw4cOW9y8kpatJM95XtWrXLbCfRmOmSkqKUUnJB+64n39X2L/Z0owXysu9xFCleT8OHrmk5vTppub06aaaftJc1V9eX73w77klfh1xf0i6fFF99dxE9fHEaeqzAZ9ZfjaMxhxLmcuffKIO1a6jPpzbT9VfXl9N2TylVNs0fe1BFTBpnXr/x8NWx0f8PELVX15frT2+tlSvX+EYc8zx01QXpVKvqoDf9qlqv+5V8emZd1WdxE8SP0n8dO/xk1JKTZrxvgquVee2/UxLi1dJSTEqI+PSHfXz70oiftLk3oz7TlZWFo6OjqxevZonnnjCcnzw4MEkJiby3XffFVlHcnIyrq6uJCUlWZ4zLSkfvTCBnKQjXHcz8F2rv9BkehDzwsYSvYa4f/y0+EOIcyXpZAwJeieMmfvwcHWl0UOtqdW6IY4NWnG4Xn0wGhk0xZEMlcWctnOICCz6Wey7kZyRTcNpPwOwdnQ4Df3cANh/eT/P/vAsAOueXEeAS0CpXL9C+nUm/D4bvB9iYdslzErIpIO7C+MCq1HfWY/e5s5mOGZkZHDq1CmCgoJwcHAopUY/mFJTU/H19WXu3LkMHTq0zK9/7do1OnTogIuLCz/++COOjo5l3gZhdjE5g4vJGTjY2RDs4YTt3/4dmkxZ3LhhHol0cgrFxubu/60V9m+2NOOF8nCvMVRp3o/YoydY99ZYAP4VcRqTDTzpPIkZvZ4t0euI+0PylUv8/NocLno4oT/vz/XsbwBoE94Zz+peBD7emSsrVnH5owX8NCCUz2ucwt/Rl389/gUe+oJ36bpXM/53iM+3nqJ5kDtLBzaxLMkxMnokW89vpU+tPrzW7DXsbSrJYvwmI8ww7w7HM6sIvOBNhknxWf1A6jg5UNPxzn4vS/x09yR+EreKOZsIQJCHEwaH/EsHpaefJTv7Ora2Luj1fmg0d7dTd0nET/ftc2RXrlzBaDTmW3ysWrVqXLhwocBzMjMzSU5OtvoqLVcxb2ec4mh+rlOXHlhq1xIVn0ajBZW31Ll5Su2VpCR+3bKL08uWmAvlPRucYX5WeuKmiaXWHu0t03onfX3g5vFbfiUsjbFeLPCBl/fcdcI+tKe3ArDhWjLd9xwjITO7kBPFvdq7dy8rV67kxIkT7NmzhwEDBgDcdrvc0ubu7s4vv/xChw4d2L59e7m0QVjLyDZyIzOn0DKZmQll1Jr7353GUGUZP607uAaAHK2JrPRapJ99Bl99JRogEVY0Gi0KhdJorHZ2+33rz2z47iTE77B8fmcfMz9yEp92jt/ifyu1NmlzQ6gdp66x58z1W9pqfuO/R//L5bTLBZ364FvZ1/Kg5dC/4pgbd7Fcm/Ogk/hJFEf8tbRC38/JScZozCij1hTsvl5T6k699957TJ8+vUyudblqJmnabOINzrifH0gHv/Jd0V6Ur7qPtuPgyQ1kVXXAJdmJZE0VFDnYKB12zubMddUhg0n++We6H01mS80sqgfWK7X2ONvb0r95DbYdv0KA+81RjNrutWnt25rTyaep6lC11K5fIdV5HI6uh8xkOtvd4H8GR5JyzH8E28pyFaVuzpw5xMbGotPpaNy4MZs3b8bDo3RGuYujatWqvP322+V2fWHm4mBHcno2JqWskul5NBo77OzcMBrT0GgqVUhTpsoyfmrmU48vq/+CVtnjdb0TzkZ7+rR+qEyuLSoeZ/equDTwxfaiA8as46TZ1STbZN4S3kGTAXaOGDo8Rsovv9A87Rp/XLlOejVXnO1Kb1H8bg292XbiKmlZOTjY3ZxZ8FToU5y/cZ4cUw622kr0+0hrAy1GwdEfARhR3cB3181/4HraVaL7UE4kfhK342mwJzk9G7vbPO1hjp/SAVO+RdHLWqV6fC8zM9Nqxf7k5GT8/f1LZfp5tikbFNjZyC57QlRGMv1ciPuLPL53+xiqLOMngJSsFJztnGUBayEqIYmfhLi/VOrH9/KywRs2bLAcM5lMbNiwgZYtWxZ4jr29PS4uLlZfpcVOaycJKSGEEEJUOHcaQ5Vl/ARg0BkkISWEEEJUEvf1nMpXX32VwYMH06RJE5o1a8aHH35Iamoqzz33XHk3TQghhBCiwpIYSgghhBAVwX2dlOrbty+XL1/m7bff5sKFCzz00EP89NNP+RbuFEIIIYQQN0kMJYQQQoiK4L5OSgGMHj2a0aNHl3czhBBCCCHuKxJDCSGEEKK83bdrSgkhhBBCCCGEEEKI+5ckpYQQQgghhBBCCCFEmZOklBBCCCGEEEIIIYQoc5KUEkIIYWXIkCFoNBo0Gg06nY6QkBBmzJhBTk7OPdX722+/odFoSExMLJmGFsOpU6fo378/Pj4+ODg44OfnR8+ePTly5IhVuXXr1tG2bVsMBgOOjo40bdqU5cuXW5WJi4tDo9Gwb9++Yl9/2rRp1KlTBycnJ6pUqULHjh3ZsWOHVZ1Dhw4lKCgIvV5PzZo1mTp1KllZWUXWHRUVRaNGjXB0dMTb25vnn3+eq1evFnrO77//Tvfu3fHx8UGj0bBmzZo7bjPArFmzaNWqFY6Ojri5uRV4rTNnztCtWzccHR3x8vJi4sSJVj9Dt/6c3fpVr149S5n33nuPpk2bYjAY8PLy4oknniA2NrbIe1Oc9gkhhBAlSeIniZ8kfro7kpQSQgiRT2RkJAkJCRw7dozx48czbdo0Zs+eXd7NsihO0JGdnU2nTp1ISkrim2++ITY2llWrVtGgQQOrwG7hwoX07NmT8PBwduzYQUxMDP369WPkyJFMmDDhntpZq1YtPv74Yw4cOMCWLVsIDAykc+fOXL58GYAjR45gMpn49NNPOXjwIPPnz2fJkiVMmTKl0Hq3bt3KoEGDGDp0KAcPHuSrr75i586dDB8+vNDzUlNTadSoEYsWLbrrNoP5/vfu3ZsXX3yxwDqMRiPdunUjKyuLbdu2sWLFCpYvX87bb79tKfPRRx+RkJBg+YqPj8fd3Z3evXtbymzatIlRo0bxxx9/EB0dTXZ2Np07dyY1NbXQfhbVPiGEEKI0SPwk8ZPET3dBVWJJSUkKUElJSeXdFCHEAyY9PV0dOnRIpaenl3dT7tjgwYNVz549rY516tRJtWjRQl27dk0NHDhQubm5Kb1eryIjI9XRo0ct5eLi4tTjjz+u3NzclKOjowoLC1Pff/+9OnXqlAKsvgYPHqyUUio5OVn1799fOTo6qurVq6t58+aptm3bqrFjx1rqDQgIUDNmzFADBw5UBoPBcu7mzZvVo48+qhwcHJSfn596+eWX1Y0bN5RSSu3du1cBKi4u7rZ9PXPmjLKzs1OvvvpqvvcWLFigAPXHH38opZSlD3v37r3zm5or73Pnl19+uW2ZDz74QAUFBRVaz+zZs1VwcHC+9vr6+ha7LYD69ttviyxXWJuXLVumXF1d8x3/4YcflFarVRcuXLAcW7x4sXJxcVGZmZkFXufbb79VGo2m0O/XpUuXFKA2bdpUZLsLa19BCvs3K/GCNbkfQojSIvGTxE8FkfjpwY6fZKaUEEKUAaUU2RkZ5fKllLrn9uv1erKyshgyZAi7du1i7dq1bN++HaUUXbt2JTs7G4BRo0aRmZnJ77//zoEDB3j//fdxdnbG39+fr7/+GoDY2FgSEhL46KOPAHj11VfZunUra9euJTo6ms2bN7Nnz558bZgzZw6NGjVi7969vPXWW5w4cYLIyEh69epFTEwMq1atYsuWLZYt7j09PdFqtaxevRqj0Vhgv1avXk12dnaBI3ojRozA2dmZlStX3vP9A/Po09KlS3F1daVRo0a3LZeUlIS7u3uhdbVs2ZL4+Hh++OEHlFJcvHiR1atX07Vr1xJp6522+e+2b99OgwYNqFatmuVYREQEycnJHDx4sMBzPvvsMzp27EhAQMBt601KSgIo8v4IIYR4cNzPMZTET/dO4qcHP36yLe8GCCFEZZCTmcmCwU+Xy7XHrFiNnYPDXZ2rlGLDhg2sX7+eLl26sGbNGrZu3UqrVq0A83P5/v7+rFmzht69e3PmzBl69epFgwYNAAgODrbUlfdB6OXlZXlOPSUlhRUrVvDll1/SoUMHAJYtW4aPj0++tjz22GOMHz/e8nrYsGEMGDCAcePGARAaGsqCBQto27YtixcvxtfXlwULFvDaa68xffp0mjRpQvv27RkwYIClXUePHsXV1RVvb+9819PpdAQHB3P06NG7und51q1bR79+/UhLS8Pb25vo6Gg8PDwKLHv8+HEWLlzInDlzCq0zPDycqKgo+vbtS0ZGBjk5OXTv3r3QaeWl1eaCXLhwwSqgAiyvL1y4kK/8+fPn+fHHH/nyyy9vW6fJZGLcuHGEh4dTv379YrdFCCHE/e1+jKEkfpL4SeKn4pOZUkIIIfJZt24dzs7OODg40KVLF/r27cuQIUOwtbWlefPmlnJVq1aldu3aHD58GIAxY8Ywc+ZMwsPDmTp1KjExMYVe5+TJk2RnZ9OsWTPLMVdXV2rXrp2vbJMmTaxe79+/n+XLl+Ps7Gz5ioiIwGQycerUKcA88njhwgWioqJo2bIlX331FfXq1SM6OrrY90Kn0xVZJioqyqodmzdvtrzXvn179u3bx7Zt24iMjKRPnz5cunQpXx3nzp0jMjKS3r17W61tcGu9I0eOBODQoUOMHTuWt99+m927d/PTTz8RFxdneX/z5s1W50VFRRW7v3fS5pKyYsUK3NzceOKJJ25bZtSoUfz111/85z//sRwbOXKkVT+FEEKI8iTx000SP0n8VFwyU0oIIcqArb09Y1asLrdr36n27duzePFidDodPj4+2Nrasnbt2iLPGzZsGBEREXz//ff8/PPPvPfee8ydO5eXX375bppuxcnJyer1jRs3GDFiBGPGjMlXtkaNGpb/NhgMdO/ene7duzNz5kwiIiKYOXMmnTp1IjQ0lKSkJM6fP59vdDErK4sTJ04QERFRZNt69OhhFWz6+vpatTskJISQkBBatGhBaGgon332Ga+//rqlzPnz52nfvj2tWrVi6dKlVnXfuluNi4sLYN5VJTw8nIkTJwLQsGFDnJycaN26NTNnzqRJkyZW5/191K0oxWlzYapXr87OnTutjl28eNHy3q2UUnz++ecMHDjwtgHs6NGjWbduHb///jt+fn6W4zNmzLjnxVSFEEJUbPdTDCXxk8RPEj/dOUlKCSFEGdBoNHf9CF15yPtQvVXdunXJyclhx44dlunnV69eJTY2lrCwMEs5f39/Ro4cyciRI3n99df55z//ycsvv2z5wLx1fYLg4GDs7Oz4888/LYFQUlISR48epU2bNoW28ZFHHuHQoUP52lkYjUZDnTp12LZtGwBPP/00kyZNYu7cucydO9eq7JIlS0hLS2PQoEFF1mswGDAYDMVqg8lkIjMz0/L63LlztG/fnsaNG7Ns2TK0WutJzAX1Ly0tDVtb649wGxsbwByk6PX6O7ovd9rmorRs2ZJZs2Zx6dIlvLy8AIiOjsbFxcXqZwXMO8QcP36coUOH5qtHKcXLL7/Mt99+y2+//UZQUJDV+15eXpb6hRBCPJjupxhK4ieJnwprc1Eqa/wkSSkhhBDFEhoaSs+ePRk+fDiffvopBoOByZMn4+vrS8+ePQEYN24cXbp0oVatWly/fp2NGzdSt25dAAICAtBoNKxbt46uXbui1+sxGAwMHjyYiRMn4u7ujpeXF1OnTkWr1aLRaAptz6RJk2jRogWjR49m2LBhODk5cejQIaKjo/n444/Zt28fU6dOZeDAgYSFhaHT6di0aROff/45kyZNAswjgh988AETJkzAwcGBgQMHYmdnx3fffceUKVOYOXNmvufvY2Nj87WlXr162NnZWR1LTU1l1qxZ9OjRA29vb65cucKiRYs4d+6cZdvec+fO0a5dOwICApgzZ47VtsF/HxG7Vffu3Rk+fDiLFy8mIiKChIQExo0bR7NmzQpcTyLPjRs3OH78uOX1qVOn2LdvH+7u7tSoUaNYbQY4c+YM165d48yZMxiNRsuoYkhICM7OznTu3JmwsDAGDhzIBx98wIULF3jzzTcZNWoU9n8bdf7ss89o3rx5gescjBo1ii+//JLvvvsOg8FgWU/B1dUVvV5/234W1T4hhBCirEj8ZCbxk8RPt1Wsff4eULKlsRCitDxoWxrnydvS2NXVVen1ehUREWG1pfHo0aNVzZo1lb29vfL09FQDBw5UV65csbw/Y8YMVb16daXRaArd0rhZs2Zq8uTJlvMCAgLU/Pnz87Vn586dqlOnTsrZ2Vk5OTmphg0bqlmzZimllLp8+bIaM2aMql+/vnJ2dlYGg0E1aNBAzZkzRxmNRqt61qxZo1q3bq2cnJwsWy6vXLnSqkxB2zLnfcXHx+drW3p6unryySeVj4+P0ul0ytvbW/Xo0UPt3LnTUmbZsmW3rbMoCxYsUGFhYUqv1ytvb281YMAAdfbs2ULP2bhxY4HXyvteFKfNSpl/RgqqZ+PGjZYycXFxqkuXLkqv1ysPDw81fvx4lZ2dbVVPYmKi0uv1aunSpQW293b3ZtmyZYX2szjt+7uS2NK4spD7IYQoLRI/Sfwk8VPli580uY2ulJKTk3F1dSUpKcnynKkQQpSEjIwMTp06RVBQEA73yZTziiI1NRVfX1/mzp1b4JTk0nbt2jU6dOiAi4sLP/74I46OjmXeBlH2Cvs3K/GCNbkfQojSIvHT3ZP4SZSHkoifZPc9IYQQ5Wrv3r2sXLmSEydOsGfPHgYMGABgmdJe1tzd3fnll1/o0KED27dvL5c2CCGEEEIURuIn8aCQNaWEEEKUuzlz5hAbG4tOp6Nx48Zs3rwZDw+PcmtP1apVefvtt8vt+kIIIYQQRZH4STwIJCklhBCiXD388MPs3r27vJshhBBCCHHfkPhJPCjk8T0hhBBCCCGEEEIIUeYkKSWEEKWoEu8lIcR9Rf6tCiFExSG/k4W4P5TEv1VJSgkhRCmwsbEBICsrq5xbIoQojrS0NADs7OzKuSVCCFF55f0OzvudLISo2EoifpI1pYQQohTY2tri6OjI5cuXsbOzQ6uVMQAhKiKlFGlpaVy6dAk3NzdLQlkIIUTZs7Gxwc3NjUuXLgHg6OiIRqMp51YJIf6uJOMnSUoJIUQp0Gg0eHt7c+rUKU6fPl3ezRFCFMHNzY3q1auXdzOEEKLSy/tdnJeYEkJUXCURP0lSSgghSolOpyM0NFQe4ROigrOzs5MZUkIIUUHkDex5eXmRnZ1d3s0RQtxGScVPkpQSQohSpNVqcXBwKO9mCCGEEELcV2xsbGTAQIhKQBY5EUIIIYQQQgghhBBlTpJSQgghhBBCCCGEEKLMSVJKCCGEEEIIIYQQQpS5Sr2mlFIKgOTk5HJuiRBCCCEqqrw4IS9uqOwkfhJCCCFEUYobP1XqpFRKSgoA/v7+5dwSIYQQQlR0KSkpuLq6lnczyp3ET0IIIYQorqLiJ42qxMN+JpOJ8+fPYzAY0Gg0JVp3cnIy/v7+xMfH4+LiUqJ13w8qc/8rc9+hcve/MvcdKnf/K3Pf4cHvv1KKlJQUfHx80Gpl5YPSjJ/gwf95Kkxl7jtU7v5X5r5D5e5/Ze47VO7+P+h9L278VKlnSmm1Wvz8/Er1Gi4uLg/kD1hxVeb+V+a+Q+Xuf2XuO1Tu/lfmvsOD3X+ZIXVTWcRP8GD/PBWlMvcdKnf/K3PfoXL3vzL3HSp3/x/kvhcnfpLhPiGEEEIIIYQQQghR5iQpJYQQQgghhBBCCCHKnCSlSom9vT1Tp07F3t6+vJtSLipz/ytz36Fy978y9x0qd/8rc99B+i9KVmX+earMfYfK3f/K3Heo3P2vzH2Hyt3/ytz3W1Xqhc6FEEIIIYQQQgghRPmQmVJCCCGEEEIIIYQQosxJUkoIIYQQQgghhBBClDlJSgkhhBBCCCGEEEKIMidJKSGEEEIIIYQQQghR5iQpJYQQQgghhBBCCCHKnCSlhBBCCCGEEEIIIUSZk6SUEEIIIYQQQgghhChzkpQSQgghhBBCCCGEEGVOklJCCCGEEEIIIYQQosxJUkoIIYQQQgghhBBClDlJSgkhhBBCCCGEEEKIMidJKSGEEEIIIYQQQghR5iQpJYQQQgghhBBCCCHKnCSlhBAlKi4uDo1Gw/Lly8u7KRXGkCFDCAwMtDqm0WiYNm1aubRHCCGEEOWrssRLv/32GxqNhtWrV5d3U26rpGOyvD7/9ttvJVanEA8ySUoJ8YDZtm0b06ZNIzEx8a7O/+STTx74AKk0nD9/nmnTprFv377ybooQQgghiiDxUsn68ssv+fDDD8u1DWlpaUybNq3AZNAPP/wgg4FCVFCSlBLiAbNt2zamT58uQVYZO3/+PNOnTy8wKfXPf/6T2NjYsm+UEEIIIQok8VLJqihJqenTp982KTV9+vSyb5QQokiSlBJCiFJmZ2eHvb19eTdDCCGEEOK+kpaWVt5NEEKUMklKCfEAmTZtGhMnTgQgKCgIjUaDRqMhLi6OnJwc3nnnHWrWrIm9vT2BgYFMmTKFzMxMy/mBgYEcPHiQTZs2Wc5t164dANeuXWPChAk0aNAAZ2dnXFxc6NKlC/v37y+RtmdkZDBt2jRq1aqFg4MD3t7ePPXUU5w4cQK4ufbCnDlzmD9/PgEBAej1etq2bctff/1lVVe7du0s7b5VQWs7FSUwMJAhQ4bkO37rNX777TeaNm0KwHPPPWe5d3kjqHdz3YL85z//oXHjxhgMBlxcXGjQoAEfffQRACdPnkSj0TB//vx8523btg2NRsPKlSsBSElJYdy4cQQGBmJvb4+XlxedOnViz549xW5LdnY206dPJzQ0FAcHB6pWrcqjjz5KdHT0PfdTCCGEKE0SL5mVVLzUrl07vv/+e06fPm25H38/32QyMWvWLPz8/HBwcKBDhw4cP348Xz3169dn9+7dtGnTBkdHR6ZMmQLApUuXGDp0KNWqVcPBwYFGjRqxYsUKy7lxcXF4enoCMH36dEs7pk2bxpAhQ1i0aBGA5bhGoym0T+fOneP555+nWrVq2NvbU69ePT7//PN85c6ePcsTTzyBk5MTXl5evPLKK1Y/K8UlcZWozGzLuwFCiJLz1FNPcfToUVauXMn8+fPx8PAAwNPTk2HDhrFixQqefvppxo8fz44dO3jvvfc4fPgw3377LQAffvghL7/8Ms7OzrzxxhsAVKtWDTAnPdasWUPv3r0JCgri4sWLfPrpp7Rt25ZDhw7h4+Nz1+02Go08/vjjbNiwgX79+jF27FhSUlKIjo7mr7/+ombNmpay//rXv0hJSWHUqFFkZGTw0Ucf8dhjj3HgwAFLW8ta3bp1mTFjBm+//TYvvPACrVu3BqBVq1Yldo3o6GieeeYZOnTowPvvvw/A4cOH2bp1K2PHjiU4OJjw8HCioqJ45ZVXrM6NiorCYDDQs2dPAEaOHMnq1asZPXo0YWFhXL16lS1btnD48GEeeeSRYrVn2rRpvPfeewwbNoxmzZqRnJzMrl272LNnD506dSqxfgshhBAlTeKlko2X3njjDZKSkjh79qxlcMzZ2dmqzD/+8Q+0Wi0TJkwgKSmJDz74gAEDBrBjxw6rclevXqVLly7069ePZ599lmrVqpGenk67du04fvw4o0ePJigoiK+++oohQ4aQmJjI2LFj8fT0ZPHixbz44os8+eSTPPXUUwA0bNiQ1NRUzp8/T3R0NP/+97+L7M/Fixdp0aIFGo2G0aNH4+npyY8//sjQoUNJTk5m3LhxAKSnp9OhQwfOnDnDmDFj8PHx4d///je//vrrHd9DiatEpaaEEA+U2bNnK0CdOnXKcmzfvn0KUMOGDbMqO2HCBAWoX3/91XKsXr16qm3btvnqzcjIUEaj0erYqVOnlL29vZoxY4bVMUAtW7as2G3+/PPPFaDmzZuX7z2TyWRVr16vV2fPnrW8v2PHDgWoV155xXKsbdu2BfZh8ODBKiAgoNjtUkqpgIAANXjw4HzH/36NP//887b9Lui6gJo6dWqx2zF27Fjl4uKicnJyblvm008/VYA6fPiw5VhWVpby8PCw6oOrq6saNWpUsa9dkEaNGqlu3brdUx1CCCFEeZF4qWTjpW7duhV4zsaNGxWg6tatqzIzMy3HP/roIwWoAwcOWLUHUEuWLLGq48MPP1SA+uKLLyzHsrKyVMuWLZWzs7NKTk5WSil1+fLl28ZXo0aNUrf70/fv5wwdOlR5e3urK1euWJXr16+fcnV1VWlpaVbt+u9//2spk5qaqkJCQhSgNm7cWOD1CiJxlajM5PE9ISqBH374AYBXX33V6vj48eMB+P7774usw97eHq3W/CvDaDRy9epVnJ2dqV279h099lWQr7/+Gg8PD15++eV87/19evUTTzyBr6+v5XWzZs1o3ry5pY8PKjc3N1JTUwudxt2nTx8cHByIioqyHFu/fj1Xrlzh2Weftaprx44dnD9//p7ac/DgQY4dO3bXdQghhBAVicRLpee5555Dp9NZXufNKj958qRVOXt7e5577jmrYz/88APVq1fnmWeesRyzs7NjzJgx3Lhxg02bNpVYO5VSfP3113Tv3h2lFFeuXLF8RUREkJSUZPk+/vDDD3h7e/P0009bznd0dOSFF1644+tKXCUqM0lKCVEJnD59Gq1WS0hIiNXx6tWr4+bmxunTp4usw2QyMX/+fEJDQ7G3t8fDwwNPT09iYmJISkq6p/adOHGC2rVrY2tb9BPFoaGh+Y7VqlWLuLi4e2pDRffSSy9Rq1YtunTpgp+fH88//zw//fSTVRk3Nze6d+/Ol19+aTkWFRWFr68vjz32mOXYBx98wF9//YW/vz/NmjVj2rRp+YLCosyYMYPExERq1apFgwYNmDhxIjExMffWSSGEEKIcSbxUemrUqGH1ukqVKgBcv37d6rivr69V8grM35fQ0FBLsi9P3bp1Le+XlMuXL5OYmMjSpUvx9PS0+spLll26dMly3ZCQkHwJwdq1a9/xdSWuEpWZJKWEqESKWtSxMO+++y6vvvoqbdq04YsvvmD9+vVER0dTr149TCZTCbby3t2un0ajsVzruhdeXl7s27ePtWvX0qNHDzZu3EiXLl0YPHiwVblBgwZx8uRJtm3bRkpKCmvXruWZZ56xCuT69OnDyZMnWbhwIT4+PsyePZt69erx448/Frs9bdq04cSJE3z++efUr1+f//u//+ORRx7h//7v/0qsz0IIIUR5kHip5GMcGxubAo8rpaxe6/X6Er/2ncj7Hj377LNER0cX+BUeHl7i15W4SlRmstC5EA+YggKMgIAATCYTx44ds4wqgXkhx8TERAICAgo9H2D16tW0b9+ezz77zOp4YmKiZYHQu1WzZk127NhBdnY2dnZ2hZYtaFrz0aNHrXZ5qVKlSoEzf+5mJK1KlSokJiYWWFdwcLDl9b0EsMWl0+no3r073bt3x2Qy8dJLL/Hpp5/y1ltvWUZ1IyMj8fT0JCoqiubNm5OWlsbAgQPz1eXt7c1LL73ESy+9xKVLl3jkkUeYNWsWXbp0KXZ73N3dee6553juuee4ceMGbdq0Ydq0aQwbNqzE+iyEEEKUBomXSjZeKs04KCAggJiYGEwmk9Ug25EjRyzvF9WG4rbP09MTg8GA0WikY8eORbbrr7/+QillVX9sbGyxrvV3EleJykpmSgnxgHFycgKwSqR07doVMO8Wc6t58+YB0K1bN6vzC0rC2NjY5BvN+uqrrzh37tw9t7lXr15cuXKFjz/+ON97f7/mmjVrrK65c+dOduzYYZVMqVmzJkeOHOHy5cuWY/v372fr1q133LaaNWvyxx9/kJWVZTm2bt064uPjrcoVdN9L0tWrV61ea7VaGjZsCGC19bCtrS3PPPMM//3vf1m+fDkNGjSwlAPz6OffHx/w8vLCx8fnjrYw/nt7nJ2dCQkJuattkIUQQoiyJvFSycZLTk5O9/x44u107dqVCxcusGrVKsuxnJwcFi5ciLOzM23btgXM6zlBwbFYceM0GxsbevXqxddff81ff/2V7/1b71XXrl05f/48q1evthxLS0tj6dKlxe5bHomrRGUmM6WEeMA0btwYMG/P269fP+zs7OjevTuDBw9m6dKlJCYm0rZtW3bu3MmKFSt44oknaN++vdX5ixcvZubMmYSEhODl5cVjjz3G448/zowZM3juuedo1aoVBw4cICoqymq20N0aNGgQ//rXv3j11VfZuXMnrVu3JjU1lV9++YWXXnqJnj17WsqGhITw6KOP8uKLL5KZmcmHH35I1apVee211yxlnn/+eebNm0dERARDhw7l0qVLLFmyhHr16pGcnHxHbRs2bBirV68mMjKSPn36cOLECb744gurbZfBHNi5ubmxZMkSDAYDTk5ONG/enKCgoHu7Obe049q1azz22GP4+flx+vRpFi5cyEMPPWQ1mgvm+7lgwQI2btzI+++/b/VeSkoKfn5+PP300zRq1AhnZ2d++eUX/vzzT+bOnVvs9oSFhdGuXTsaN26Mu7s7u3btYvXq1YwePbpE+iuEEEKUJomXSjZeaty4MatWreLVV1+ladOmODs7071793vuM8ALL7zAp59+ypAhQ9i9ezeBgYGsXr2arVu38uGHH2IwGADzo39hYWGsWrWKWrVq4e7uTv369alfv77l+z1mzBgiIiKwsbGhX79+BV7vH//4Bxs3bqR58+YMHz6csLAwrl27xp49e/jll1+4du0aAMOHD+fjjz9m0KBB7N69G29vb/79739bkmN3QuIqUamV38Z/QojS8s477yhfX1+l1Wot2x1nZ2er6dOnq6CgIGVnZ6f8/f3V66+/rjIyMqzOvXDhgurWrZsyGAwKsGwVnJGRocaPH6+8vb2VXq9X4eHhavv27fm2E76bLY6VUiotLU298cYblvZVr15dPf300+rEiRNW9c6ePVvNnTtX+fv7K3t7e9W6dWu1f//+fPV98cUXKjg4WOl0OvXQQw+p9evX39UWx0opNXfuXOXr66vs7e1VeHi42rVrV4HbKH/33XcqLCxM2draWt2Dgq7LbbYsvp3Vq1erzp07Ky8vL6XT6VSNGjXUiBEjVEJCQoHl69Wrp7RardV20EoplZmZqSZOnKgaNWqkDAaDcnJyUo0aNVKffPJJsduilFIzZ85UzZo1U25ubkqv16s6deqoWbNmqaysrDuqRwghhCgvEi+VXLx048YN1b9/f+Xm5qYAy/kbN25UgPrqq6+syhfU/7Zt26p69eoVWP/FixfVc889pzw8PJROp1MNGjQo8N5t27ZNNW7cWOl0OqtYKycnR7388svK09NTaTQadeufwQXFZBcvXlSjRo1S/v7+lvvcoUMHtXTpUqtyp0+fVj169FCOjo7Kw8NDjR07Vv30008KUBs3bizWvVNK4ipRuWmU+ttcTyGEqIDi4uIICgpi9uzZTJgwobybU+E9/PDDuLu7s2HDhvJuihBCCCHKiMRLQoj7jawpJYQQD5hdu3axb98+Bg0aVN5NEUIIIYQQQojbkjWlhBClJisry/Lc/e24urqWy/a/165ds1q8/O9sbGzw9PQs9XYYjUarRTML4uzsjLOzc5F1/fXXX+zevZu5c+fi7e1N375977g96enpRS5U6u7ujk6nu+O6hRBCCJGfxEsPLomrhCiaJKWEEKVm27ZtVouCFmTZsmUMGTKkbBp0i6eeeopNmzbd9v2AgADi4uJKvR3x8fFFLoY+depUpk2bVmRdq1evZsaMGdSuXZuVK1fi4OBwx+1ZtWoVzz33XKFlNm7cSLt27e64biGEEELkJ/HSg0viKiGKJmtKCSFKzfXr19m9e3ehZerVq4e3t3cZteim3bt3c/369du+r9frCQ8PL/V2ZGRksGXLlkLLBAcHl8iuPcWRkJDAwYMHCy3TuHFjqlSpUibtEUIIIR50Ei89uCSuEqJokpQSQgghhBBCCCGEEGVOFjoXQgghhBBCCCGEEGWuUq8pZTKZOH/+PAaDAY1GU97NEUIIIUQFpJQiJSUFHx8ftFoZz5P4SQghhBBFKW78VKmTUufPn8ff37+8myGEEEKI+0B8fDx+fn7l3YxyJ/GTEEIIIYqrqPipUielDAYDYL5JLi4u5dwaIYQQQlREycnJ+Pv7W+KGyk7iJyGEEEIUpbjxU6VOSuVNOXdxcZGgSgghhBCFkkfVzCR+EkIIIURxFRU/ycIIQgghhBBCCCGEEKLMSVJKCCGEEEIIIYQQQpQ5SUoJIYQQQgghhBBCiDJXqdeUEkIIIYQQQghR8RiNRrKzs8u7GUKI27Czs8PGxuae65GklBBCCCGEEEKICkEpxYULF0hMTCzvpgghiuDm5kb16tXvaTMYSUoJIYQQQgghhKgQ8hJSXl5eODo6ys6nQlRASinS0tK4dOkSAN7e3nddlySlhBBCCCGEEEKUO6PRaElIVa1atbybI4QohF6vB+DSpUt4eXnd9aN8stC5EEIIIYQQQohyl7eGlKOjYzm3RAhRHHn/Vu9l/TdJSgkhhBBCCCGEqDDkkT0h7g8l8W9VklJCCCGEEEIIIYQQosxJUkoIIYQQQgghhBBClDlJSgkhhBBCCCGEEPdgyJAhaDQaNBoNOp2OkJAQZsyYQU5Ozj3V+9tvv6HRaEhMTCyZhhbDqVOn6N+/Pz4+Pjg4OODn50fPnj05cuSIVbl169bRtm1bDAYDjo6ONG3alOXLl1uViYuLQ6PRsG/fvmJff9q0adSpUwcnJyeqVKlCx44d2bFjh1WdQ4cOJSgoCL1eT82aNZk6dSpZWVmF1puQkED//v2pVasWWq2WcePGFas9v//+O927d8fHxweNRsOaNWsKLHf48GF69OiBq6srTk5ONG3alDNnzljeHzFiBDVr1kSv1+Pp6VngPf3zzz/p0KEDbm5uVKlShYiICPbv31/g9Y4fP47BYMDNza3E+lAeJCklhBBCCCGEEELco8jISBISEjh27Bjjx49n2rRpzJ49u7ybZVFU0gbMC1Z36tSJpKQkvvnmG2JjY1m1ahUNGjSwSowtXLiQnj17Eh4ezo4dO4iJiaFfv36MHDmSCRMm3FM7a9Wqxccff8yBAwfYsmULgYGBdO7cmcuXLwNw5MgRTCYTn376KQcPHmT+/PksWbKEKVOmFFpvZmYmnp6evPnmmzRq1KjY7UlNTaVRo0YsWrTotmVOnDjBo48+Sp06dfjtt9+IiYnhrbfewsHBwVKmcePGLFu2jMOHD7N+/XqUUnTu3Bmj0QjAjRs3iIyMpEaNGuzYsYMtW7ZgMBiIiIjIt5B4dnY2zzzzDK1bty6xPpQbVYklJSUpQCUlJZV3U4QQQghRQUm8YE3uhxCitKSnp6tDhw6p9PT08m7KHRs8eLDq2bOn1bFOnTqpFi1aqGvXrqmBAwcqNzc3pdfrVWRkpDp69KilXFxcnHr88ceVm5ubcnR0VGFhYer7779Xp06dUoDV1+DBg5VSSiUnJ6v+/fsrR0dHVb16dTVv3jzVtm1bNXbsWEu9AQEBasaMGWrgwIHKYDBYzt28ebN69NFHlYODg/Lz81Mvv/yyunHjhlJKqb179ypAxcXF3bavZ86cUXZ2durVV1/N996CBQsUoP744w+llLL0Ye/evXd+U3Plfe788ssvty3zwQcfqKCgoGLX+fd7VVyA+vbbb/Md79u3r3r22WfvqK79+/crQB0/flwppdSff/6pAHXmzBlLmZiYGAWoY8eOWZ372muvqWeffVYtW7ZMubq6lkgf7kZh/2aLGy/ITCkhhBBCCCGEEBWSUoq0rJxy+TL//X739Ho9WVlZDBkyhF27drF27Vq2b9+OUoquXbtaZr+MGjWKzMxMfv/9dw4cOMD777+Ps7Mz/v7+fP311wDExsaSkJDARx99BMCrr77K1q1bWbt2LdHR0WzevJk9e/bka8OcOXNo1KgRe/fu5a233uLEiRNERkbSq1cvYmJiWLVqFVu2bGH06NEAeHp6otVqWb16tWUGz9+tXr2a7OzsAmdEjRgxAmdnZ1auXHlP9y5PVlYWS5cuxdXVtdDZTUlJSbi7u5fINe+UyWTi+++/p1atWkRERODl5UXz5s0LfUQuNTWVZcuWERQUhL+/PwC1a9ematWqfPbZZ2RlZZGens5nn31G3bp1CQwMtJz766+/8tVXX1XMWU93wba8GyCEEEIIIYQQQhQkPdtI2Nvry+Xah2ZE4Ki78z+ZlVJs2LCB9evX06VLF9asWcPWrVtp1aoVAFFRUfj7+7NmzRp69+7NmTNn6NWrFw0aNAAgODjYUldeosXLy8uydlBKSgorVqzgyy+/pEOHDgAsW7YMHx+ffG157LHHGD9+vOX1sGHDGDBggGU9pdDQUBYsWEDbtm1ZvHgxvr6+LFiwgNdee43p06fTpEkT2rdvz4ABAyztOnr0KK6urnh7e+e7nk6nIzg4mKNHj97xfbvVunXr6NevH2lpaXh7exMdHY2Hh0eBZY8fP87ChQuZM2fOPV3zbl26dIkbN27wj3/8g5kzZ/L+++/z008/8dRTT7Fx40batm1rKfvJJ5/w2muvkZqaSu3atYmOjkan0wFgMBj47bffeOKJJ3jnnXcA8/dn/fr12Nqafw6vXr3KkCFD+OKLL3BxcSn7zpYCmSklhBBCCCGEEELco3Xr1uHs7IyDgwNdunShb9++DBkyBFtbW5o3b24pV7VqVWrXrs3hw4cBGDNmDDNnziQ8PJypU6cSExNT6HVOnjxJdnY2zZo1sxxzdXWldu3a+co2adLE6vX+/ftZvnw5zs7Olq+IiAhMJhOnTp0CzDO3Lly4QFRUFC1btuSrr76iXr16REdHF/te5CVaChMVFWXVjs2bN1vea9++Pfv27WPbtm1ERkbSp08fLl26lK+Oc+fOERkZSe/evRk+fLjl+K31jhw5slht3rx5s9V5UVFRxTrPZDIB0LNnT1555RUeeughJk+ezOOPP86SJUusyg4YMIC9e/eyadMmatWqRZ8+fcjIyAAgPT2doUOHEh4ezh9//MHWrVupX78+3bp1Iz09HYDhw4fTv39//p+9e4+LMe3/AP6ZqZlmqmlSSkcpFSLWOWctnZB2Hxu2nmRXVvvkfAqLsGHZYp0eh/0Rz7OxHtbShiXn0OZUy4pSalGhxKTz1Fy/P0b3NjrTQfb7fr1mt7nv67ru733XZObb97ruwYMHN+g5NCeqlCKEEEIIIYQQ8k4SC9SQsMKl2Y5dH46Ojti6dSuEQiFMTEygrq6OiIiIWvv5+fnBxcUFR48excmTJ7F69WqEhoZi2rRpbxo6R0tLS+V5Xl4epkyZgunTp1dq27ZtW+5riUQCd3d3uLu7Izg4GC4uLggODoaTkxNsbGwgk8mQkZFRqTqrpKQEKSkpcHGp/Xs2evRolWSdqampStzW1tawtraGg4MDbGxssHPnTixcuJBrk5GRAUdHR/Tv3x87duxQGbvi3f7qWlHUq1cvlX5t2rSpU7/WrVtDXV0ddnZ2Kts7deqEixcvqmyTSqWQSqWwsbGBg4MDWrVqhZ9//hmffvop9u7di7S0NMTExIDPV9YP7d27F61atcKRI0cwfvx4nDlzBhEREVxVGGMMCoUC6urq2LFjBz799NM3OofmREkpQgghhBBCCCHvJB6P90ZT6JpDeSKlok6dOqG0tBSxsbHc9L1nz54hMTFRJYlhbm4Of39/+Pv7Y+HChfj+++8xbdo0ruKo4vpOVlZWEAgEuHr1KpdIkslkSEpKqraCplyPHj2QkJBQKc6a8Hg8dOzYEZcvXwYAfPLJJwgMDERoaChCQ0NV2m7btg0FBQWYMGFCreNKJBJIJJI6xaBQKFBcXMw9T09Ph6OjI3dHu/IkTrn6nF85sVj8Rv2EQiF69+6NxMREle1JSUmwsLCoth9jDIwx7rwKCgrA5/PB4/G4NuXPy6uxYmJiVH4Wjhw5gjVr1uDy5cswNTV943NoTi3j1U0IIYQQQgghhLQwNjY28PDwwOTJk7F9+3ZIJBIsWLAApqam8PDwAADMnDkTbm5usLW1xfPnz3H27Fl06tQJAGBhYQEej4fIyEiMGDECYrEYEokEvr6+mDdvHvT09GBoaIigoKBKCY2qBAYGwsHBAVOnToWfnx+0tLSQkJCAqKgobN68GfHx8QgKCoKPjw/s7OwgFApx/vx57Nq1C4GBgQCUFVVr167F3LlzIRKJ4OPjA4FAgCNHjmDRokUIDg5Gly5dVI77esIGADp37gyBQKCyLT8/HytXrsTo0aNhbGyM7OxsbNmyBenp6fD09ASgTEgNHToUFhYWCAkJQVZWFtffyMioxvMvryLKy8tDVlYW4uPjIRQKK1U5VZSXl4fk5GTueWpqKuLj46Gnp8clBefNm4dx48Zh8ODBcHR0xK+//opffvkF586dA6Cccrl//344OzvDwMAAjx49wjfffAOxWIwRI0YAAJycnDBv3jwEBARg2rRpUCgU+Oabb6Curg5HR0cA4H4uyl27dg18Pr/S9X6Tc2g2DXIfwBaKbmlMCCGEkNrQ+wVVdD0IIY2lptvLv+t8fX2Zh4dHlftycnKYj48Pk0qlTCwWMxcXF5aUlMTtnzp1Kmvfvj3T0NBgBgYGzMfHh2VnZ3P7V6xYwYyMjBiPx2O+vr6MMcZyc3OZl5cX09TUZEZGRmzdunWsT58+bMGCBVw/CwsLtn79+krxXLlyhTk5OTFtbW2mpaXFunbtylauXMkYYywrK4tNnz6ddenShWlrazOJRMLs7e1ZSEgIKysrUxnn8OHDbNCgQUxLS4sBYADYvn37VNqkpqZy+15/PHz4sFJshYWF7OOPP2YmJiZMKBQyY2NjNnr0aHblyhWuTVhYWLVj1qaqPhYWFjX2OXv2bJX9yr8X5Xbu3Mmsra2ZSCRi3bp1Y4cPH+b2paenMzc3N2ZoaMgEAgEzMzNjXl5e7O7duypjnDx5kg0YMIBJpVLWqlUr9uGHH7KYmJhqYwsLC2NSqbTW867rOdRXTa/Zur5f4DH2lve5bMFyc3MhlUohk8nem5XrCSGEENKw6P2CKroehJDGUlRUhNTUVFhaWkIkEjV3OC1Kfn4+TE1NERoaikmTJjX58XNycjBs2DDo6Ojg+PHj0NTUbPIYSNOr6TVb1/cLdPc9QgghhBBCCCGkBYmLi8O+ffuQkpKCGzduwNvbGwC4KYFNTU9PD6dOncKwYcMQExPTLDGQlonWlCKEEEIIIYQQQlqYkJAQJCYmQigUomfPnoiOjkbr1q2bLR59fX0sXbq02Y5PWiZKShFCCCGEEEIIIS1I9+7dcf369eYOg5C3RtP3CCGEEEIIIYQQQkiTo6QUIYQQQgghhBBCCGlylJQihBBCCCGEEEIIIU2OklKEEEIIIYQQQgghpMlRUooQQgghhBBCCCGENDm6+x4h76EieRn+d+0hZAXyatvw+TyM6moMC32tJoyMEEIIIYQQQghRoqQUIe+hA9cfYemR27W2u5qWg92f9WmCiAghhBBCCCGEEFU0fY+Q98jCQzfRddkJfB2ZAADoZq6LT/uYV3oMsmkNAMgtrL6SihBCCCGEEFI3EydOBI/HA4/Hg1AohLW1NVasWIHS0tK3GvfcuXPg8Xh48eJFwwRaB6mpqfDy8oKJiQlEIhHMzMzg4eGBu3fvqrSLjIzEkCFDIJFIoKmpid69e2P37t0qbdLS0sDj8RAfH1/n4y9btgwdO3aElpYWWrVqheHDhyM2NlZlzEmTJsHS0hJisRjt27dHUFAQSkpKahw3MzMTXl5esLW1BZ/Px8yZM+sUz9atW9G1a1fo6OhAR0cH/fr1w/Hjx7n9OTk5mDZtGjp06ACxWIy2bdti+vTpkMlkXJvdu3dzPx+vP54+fcq1Ky4uxldffQULCwtoaGigXbt22LVrl0o83333HXcsc3NzzJo1C0VFRTWew6FDh+Ds7Ax9ff16fz8aG1VKEfKeUCgYfrz6EIwpn/N4wCK3juhrpV+p7cnbjxF9L7uJIySEEEIIIeT95erqirCwMBQXF+PYsWMICAiAQCDAwoULmzs0AEBJSQmEQmGNbeRyOZycnNChQwccOnQIxsbGePToEY4fP66SGNu0aRNmzpyJwMBAbN26FUKhEEeOHIG/vz/++OMPhISEvHGctra22Lx5M6ysrFBYWIj169fD2dkZycnJMDAwwN27d6FQKLB9+3ZYW1vjjz/+wOTJk5Gfn1/jcYuLi2FgYIDFixdj/fr1dY7HzMwM33zzDWxsbMAYw549e+Dh4YG4uDh07twZGRkZyMjIQEhICOzs7PDnn3/C398fGRkZOHjwIABg3LhxcHV1VRl34sSJKCoqgqGhIbdt7NixePLkCXbu3Alra2tkZmZCoVBw+/fu3YsFCxZg165d6N+/P5KSkriE6Lp166o9h/z8fAwcOBBjx47F5MmT63zuTYL9jclkMgaAyWSy5g6FkLf2skjOLAIjmUVgJLudLmNZL4uqbXvij0xmERjJPt5ysQkjJISQloneL6ii60EIaSyFhYUsISGBFRYWNnco9ebr68s8PDxUtjk5OTEHBweWk5PDfHx8mK6uLhOLxczV1ZUlJSVx7dLS0tioUaOYrq4u09TUZHZ2duzo0aMsNTWVAVB5+Pr6MsYYy83NZV5eXkxTU5MZGRmxdevWsSFDhrAZM2Zw41pYWLAVK1YwHx8fJpFIuL7R0dFs4MCBTCQSMTMzMzZt2jSWl5fHGGMsLi6OAWBpaWnVnuuDBw+YQCBgs2fPrrRv48aNDAD77bffGGOMO4e4uLj6X9RXyv/dOXXqVLVt1q5dyywtLes85uvXqr5atWrF/u///q/a/f/73/+YUChkcrm8yv1Pnz5lAoGA/ec//+G2HT9+nEmlUvbs2bNqxw0ICGAffvihyrbZs2ezAQMG1Cnuhvh+VFTTa7au7xdo+h4h74m8ImVpMJ8HdDKWoLW2RjNHRAghhBBCyFtiDCjJb55H+RSENyQWi1FSUoKJEyfi2rVriIiIQExMDBhjGDFiBORy5VIaAQEBKC4uxoULF3Dr1i2sWbMG2traMDc3x08//QQASExMRGZmJjZs2AAAmD17Ni5duoSIiAhERUUhOjoaN27cqBRDSEgIunXrhri4OCxZsgQpKSlwdXXFmDFjcPPmTezfvx8XL17E1KlTAQAGBgbg8/k4ePAgysrKqjyvgwcPQi6XY+7cuZX2TZkyBdra2ti3b99bXbtyJSUl2LFjB6RSKbp161ZtO5lMBj09vQY5Zk3Kysrw448/Ij8/H/369asxHh0dHairVz057T//+Q80NTXxySefcNsiIiLQq1cvrF27FqamprC1tcXcuXNRWFjItenfvz+uX7+OK1euAADu37+PY8eOYcSIEQ10hk2Ppu8R8p7IK1YmpbQ11MHj8Zo5GkIIIYQQQhqAvABYZdI8x16UAQjrf6dqxhhOnz6NEydOwM3NDYcPH8alS5fQv39/AEB4eDjMzc1x+PBheHp64sGDBxgzZgzs7e0BAFZWVtxY5YkWQ0ND6OrqAgBevnyJPXv2YO/evRg2bBgAICwsDCYmla/Thx9+iDlz5nDP/fz84O3tza2nZGNjg40bN2LIkCHYunUrTE1NsXHjRsyfPx/Lly9Hr1694OjoCG9vby6upKQkSKVSGBsbVzqeUCiElZUVkpKS6n3dKoqMjMT48eNRUFAAY2NjREVFoXXr1lW2TU5OxqZNm95qymBtbt26hX79+qGoqAja2tr4+eefYWdnV2Xb7OxsfP311/jiiy+qHW/nzp3w8vKCWCzmtt2/fx8XL16ESCTCzz//jOzsbPzrX//Cs2fPEBYWBgDw8vJCdnY2Bg4cCMYYSktL4e/vj0WLFjXsCTchqpQi5D1RMSlFCCGEEEIIaVqRkZHQ1taGSCSCm5sbxo0bh4kTJ0JdXR19+/bl2unr66NDhw64c+cOAGD69OkIDg7GgAEDEBQUhJs3b9Z4nPv370Mul6NPn7/uoi2VStGhQ4dKbXv16qXy/Pfff8fu3buhra3NPVxcXKBQKJCamgpAWbn1+PFjhIeHo1+/fjhw4AA6d+6MqKioOl+L2tauApTJuYpxREdHc/scHR0RHx+Py5cvw9XVFWPHjlVZELxceno6XF1d4enpqbJWUsVx/f396xRzdHS0Sr/w8HBuX4cOHRAfH4/Y2Fh8+eWX8PX1RUJCQqUxcnNzMXLkSNjZ2WHZsmVVHicmJgZ37tzBpEmTVLYrFArweDyEh4ejT58+GDFiBNatW4c9e/Zw1VLnzp3DqlWr8O9//xs3btzAoUOHcPToUXz99de1XtN3FX16JaSFe/S8AOuikpCWnQ8AaCMVNXNEhBBCCCGENBCBprJiqbmOXQ+Ojo7cot8mJiZQV1dHRERErf38/Pzg4uKCo0eP4uTJk1i9ejVCQ0Mxbdq0N42co6WlWumVl5eHKVOmYPr06ZXatm3blvtaIpHA3d0d7u7uCA4OhouLC4KDg+Hk5AQbGxvIZDJkZGRUqs4qKSlBSkoKXFxcao1t9OjRKsk6U1NTlbitra1hbW0NBwcH2NjYYOfOnSqLxmdkZMDR0RH9+/fHjh07VMaueHc5HR2dWmMBlAm8iv3atGnDfV1+R0UA6NmzJ65evYoNGzZg+/btXJuXL1/C1dUVEokEP//8MwQCQZXH+b//+z988MEH6Nmzp8p2Y2NjmJqaQiqVcts6deoExhgePXoEGxsbLFmyBD4+PvDz8wMA2NvbIz8/H1988QW++uqrGq/pu4qSUoS0cP/97U8cupHOPe/RtlUzRkMIIYQQQkgD4vHeaApdcyhPpFTUqVMnlJaWIjY2lpu+9+zZMyQmJqpM/zI3N4e/vz/8/f2xcOFCfP/995g2bRpXcVRxfScrKysIBAJcvXqVSyTJZDIkJSVh8ODBNcbYo0cPJCQkVIqzJjweDx07dsTly5cBAJ988gkCAwMRGhqK0NBQlbbbtm1DQUEBJkyYUOu4EokEEomkTjEoFAoUFxdzz9PT0+Ho6IiePXsiLCwMfL7qJLD6nF85sVhc536vx5ObmwsXFxdoaGggIiICIlHVhQJ5eXn43//+h9WrV1faN2DAABw4cAB5eXnQ1tYGoJwqyefzYWZmBgAoKCiodK5qamoAlNNG63NN3xWUlCKkhUvNUlZIffSBCQbaGMClc5taehBCCCGEEEKago2NDTw8PDB58mRs374dEokECxYsgKmpKTw8PAAAM2fOhJubG2xtbfH8+XOcPXsWnTp1AgBYWFiAx+MhMjISI0aMgFgshkQiga+vL+bNmwc9PT0YGhoiKCgIfD6/1rVlAwMD4eDggKlTp8LPzw9aWlpISEhAVFQUNm/ejPj4eAQFBcHHxwd2dnYQCoU4f/48du3ahcDAQADKiqq1a9di7ty5EIlE8PHxgUAgwJEjR7Bo0SIEBwejS5cuKsdNTEysFEvnzp0rVRPl5+dj5cqVGD16NIyNjZGdnY0tW7YgPT0dnp6eAJQJqaFDh8LCwgIhISHIysri+hsZGdV4/uWVUHl5ecjKykJ8fDyEQmG160MBwMKFC+Hm5oa2bdvi5cuX2Lt3L86dO4cTJ04AUCaknJ2dUVBQgB9++AG5ubnIzc0FoFw4vjxpBAD79+9HaWkp/vnPf1Y6jpeXF77++mt89tlnWL58ObKzszFv3jx8/vnn3NpT7u7uWLduHbp3746+ffsiOTkZS5Ysgbu7u8pxXpeTk4MHDx4gI0NZdVj+/TAyMqr1mjW6BrkPYAtFtzQmLVlZmYLJCkvY8NBzzCIwkp29+6TOfU/8kcksAiPZx1suNmKEhBDyfqD3C6roehBCGktNt5d/1/n6+jIPD48q9+Xk5DAfHx8mlUqZWCxmLi4uLCkpids/depU1r59e6ahocEMDAyYj48Py87O5vavWLGCGRkZMR6Px3x9fRljjOXm5jIvLy+mqanJjIyM2Lp161ifPn3YggULuH4WFhZs/fr1leK5cuUKc3JyYtra2kxLS4t17dqVrVy5kjHGWFZWFps+fTrr0qUL09bWZhKJhNnb27OQkBBWVlamMs7hw4fZoEGDmJaWFgPAALB9+/aptElNTeX2vf54+PBhpdgKCwvZxx9/zExMTJhQKGTGxsZs9OjR7MqVK1ybsLCwasesTVV9LCwsauzz+eefMwsLCyYUCpmBgQEbNmwYO3nyJLf/7Nmz1caTmpqqMla/fv2Yl5dXtce6c+cOGz58OBOLxczMzIzNnj2bFRQUcPvlcjlbtmwZa9++PROJRMzc3Jz961//Ys+fP6/xHKq7ZkFBQTX2q01Nr9m6vl/gMfaW97lswXJzcyGVSrnbNRLSUigUDB/9+xJuPpJx287NHYp2retW2nzy9mN88d/r6N5WFz//a0BjhUkIIe8Fer+giq4HIaSxFBUVITU1FZaWltVOfyJVy8/Ph6mpKUJDQystoN0UcnJyMGzYMOjo6OD48ePQ1KzfelykZarpNVvX9wt09z1CWqDcIrlKQqqbuS7M9egXPyGEEEIIIX8HcXFx2LdvH1JSUnDjxg14e3sDADclsKnp6enh1KlTGDZsGGJiYpolBtIy0ZpShLRAJaUKAMp1H+9+7QqhWu3zxyuqT1tCCCGEEELIuyckJASJiYkQCoXo2bMnoqOj0bp162aLR19fH0uXLm2245OWiZJShLRAxa+SUkI1PjTUq1/QjhBCCCGEEPL+6d69O65fv97cYRDy1mj6HiEtUEnZq6SUOr2ECSGEEEIIIYS0TPSJlpAWqHz6ngYlpQghhBBCCCGEtFD0iZaQFqikwvQ9QgghhBBCCCGkJaJPtIS0QHKavkcIIYQQQgghpIWjT7SEtEBcpRQlpQghhBBCCCGEtFD0iZaQFqiYKqUIIYQQQgghhLRw9ImWkBYov7gUAKApUH+rcRhriGgIIYQQQgghhJD6o6QUIS1Q9stiAEBribCZIyGEEEIIIYRMnDgRPB4PPB4PQqEQ1tbWWLFiBUpLS99q3HPnzoHH4+HFixcNE2gdpKamwsvLCyYmJhCJRDAzM4OHhwfu3r2r0i4yMhJDhgyBRCKBpqYmevfujd27d6u0SUtLA4/HQ3x8fJ2Pv2zZMnTs2BFaWlpo1aoVhg8fjtjYWJUxJ02aBEtLS4jFYrRv3x5BQUEoKSmpcdzMzEx4eXnB1tYWfD4fM2fOrHNM5b755hvweLxKfVNSUvDxxx/DwMAAOjo6GDt2LJ48eaLSZuXKlejfvz80NTWhq6tb5fjlP0MVHz/++CO3/9ChQ3BycuKO069fP5w4caLWuA8dOgRnZ2fo6+vX+/vR2CgpRUgLEpXwBF2XncCKyAQAgL6WxhuNw2vIoAghhBBCCCFwdXVFZmYm7t27hzlz5mDZsmX49ttvmzssTm1JGwCQy+VwcnKCTCbDoUOHkJiYiP3798Pe3l4lMbZp0yZ4eHhgwIABiI2Nxc2bNzF+/Hj4+/tj7ty5bxWnra0tNm/ejFu3buHixYto164dnJ2dkZWVBQC4e/cuFAoFtm/fjtu3b2P9+vXYtm0bFi1aVOO4xcXFMDAwwOLFi9GtW7d6x3X16lVs374dXbt2Vdmen58PZ2dn8Hg8nDlzBpcuXUJJSQnc3d2hUCi4diUlJfD09MSXX35Z43HCwsKQmZnJPT766CNu34ULF+Dk5IRjx47h+vXrcHR0hLu7O+Li4mocMz8/HwMHDsSaNWvqfd6Njv2NyWQyBoDJZLLmDoWQOpl/4HdmERjJLAIjWbsFkeyX39PfaJyo24+ZRWAk89h8sYEjJISQ9w+9X1BF14MQ0lgKCwtZQkICKywsbO5Q6s3X15d5eHiobHNycmIODg4sJyeH+fj4MF1dXSYWi5mrqytLSkri2qWlpbFRo0YxXV1dpqmpyezs7NjRo0dZamoqA6Dy8PX1ZYwxlpuby7y8vJimpiYzMjJi69atY0OGDGEzZszgxrWwsGArVqxgPj4+TCKRcH2jo6PZwIEDmUgkYmZmZmzatGksLy+PMcZYXFwcA8DS0tKqPdcHDx4wgUDAZs+eXWnfxo0bGQD222+/McYYdw5xcXH1v6ivlP+7c+rUqWrbrF27lllaWtZ5zNevVW1evnzJbGxsWFRUVKW+J06cYHw+X+XfxRcvXjAej8eioqIqjRUWFsakUmmVxwHAfv755zrHxRhjdnZ2bPny5XVq2xDfj4pqes3W9f0CVUoR0oIUlZYBAKZ9aI0bi50wqqtJM0dECCGEEEJI42GMoUBe0CwP9pYLsIrFYpSUlGDixIm4du0aIiIiEBMTA8YYRowYAblcDgAICAhAcXExLly4gFu3bmHNmjXQ1taGubk5fvrpJwBAYmIiMjMzsWHDBgDA7NmzcenSJURERCAqKgrR0dG4ceNGpRhCQkLQrVs3xMXFYcmSJUhJSYGrqyvGjBmDmzdvYv/+/bh48SKmTp0KADAwMACfz8fBgwdRVlZW5XkdPHgQcrm8yoqoKVOmQFtbG/v27Xura1eupKQEO3bsgFQqrbG6SSaTQU9Pr0GOWZWAgACMHDkSw4cPr7SvuLgYPB4PGhp/zWIRiUTg8/m4ePHiGx2rdevW6NOnD3bt2lXjz6FCocDLly8b9dwb29utkkwIaVLFcmX5p6GOCK20aD0pQgghhBDyfissLUTfvX2b5dixXrHQFGjWux9jDKdPn8aJEyfg5uaGw4cP49KlS+jfvz8AIDw8HObm5jh8+DA8PT3x4MEDjBkzBvb29gAAKysrbqzyZIOhoSG3DtHLly+xZ88e7N27F8OGDQOgnPJlYlL5D9Yffvgh5syZwz338/ODt7c3tyaSjY0NNm7ciCFDhmDr1q0wNTXFxo0bMX/+fCxfvhy9evWCo6MjvL29ubiSkpIglUphbGxc6XhCoRBWVlZISkqq93WrKDIyEuPHj0dBQQGMjY0RFRWF1q1bV9k2OTkZmzZtQkhIyFsdszo//vgjbty4gatXr1a538HBAVpaWggMDMSqVavAGMOCBQtQVlaGzMzMeh1rxYoV+PDDD6GpqYmTJ0/iX//6F/Ly8jB9+vQq24eEhCAvLw9jx46t93m9K6hSipAWpLxSSqROL11CCCGEEELeJZGRkdDW1oZIJIKbmxvGjRuHiRMnQl1dHX37/pVY09fXR4cOHXDnzh0AwPTp0xEcHIwBAwYgKCgIN2/erPE49+/fh1wuR58+fbhtUqkUHTp0qNS2V69eKs9///137N69G9ra2tzDxcUFCoUCqampAJSVOo8fP0Z4eDj69euHAwcOoHPnzoiKiqrztRAKa/8Denh4uEoc0dHR3D5HR0fEx8fj8uXLcHV1xdixY/H06dNKY6Snp8PV1RWenp6YPHkyt73iuP7+/nWKOTo6WqVfeHg4Hj58iBkzZiA8PBwikajKfgYGBjhw4AB++eUXaGtrQyqV4sWLF+jRowf4/Pp9bluyZAkGDBiA7t27IzAwEPPnz692XbK9e/di+fLl+N///gdDQ0MANV/TdxVVShHSghTJXyWlBGrNHAkhhBBCCCGNT6wuRqxXbO0NG+nY9eHo6IitW7dCKBTCxMQE6urqiIiIqLWfn58fXFxccPToUZw8eRKrV69GaGgopk2b9qahc7S0tFSe5+XlYcqUKVVW3rRt25b7WiKRwN3dHe7u7ggODoaLiwuCg4Ph5OQEGxsbyGQyZGRkVKrOKikpQUpKClxcXGqNbfTo0SrJOlNTU5W4ra2tYW1tDQcHB9jY2GDnzp1YuHAh1yYjIwOOjo7o378/duzYoTJ2xbvL6ejo1BoLoEzgVezXpk0bnD59Gk+fPkWPHj247WVlZbhw4QI2b96M4uJiqKmpwdnZGSkpKcjOzoa6ujp0dXVhZGSkUvX2Jvr27Yuvv/4axcXFKtMDf/zxR/j5+eHAgQMqUwpruqbvKkpKEdKCFL2avkdJKUIIIYQQ8nfA4/HeaApdcyhPpFTUqVMnlJaWIjY2lpu+9+zZMyQmJsLOzo5rZ25uDn9/f/j7+2PhwoX4/vvvMW3aNK7iqOL6TlZWVhAIBLh69SqXSJLJZEhKSsLgwYNrjLFHjx5ISEioFGdNeDweOnbsiMuXLwMAPvnkEwQGBiI0NBShoaEqbbdt24aCggJMmDCh1nElEgkkEkmdYlAoFCguLuaep6enw9HRET179kRYWFiliqT6nF85sVhcqd+wYcNw69YtlW2fffYZOnbsiMDAQKipqX4uK59ieObMGTx9+hSjR4+udxwVxcfHo1WrVioJqX379uHzzz/Hjz/+iJEjR6q0r881fVdQUoqQFuSvSimavkcIIYQQQsi7zsbGBh4eHpg8eTK2b98OiUSCBQsWwNTUFB4eHgCAmTNnws3NDba2tnj+/DnOnj2LTp06AQAsLCzA4/EQGRmJESNGQCwWQyKRwNfXF/PmzYOenh4MDQ0RFBQEPp8PHo9XYzyBgYFwcHDA1KlT4efnBy0tLSQkJCAqKgqbN29GfHw8goKC4OPjAzs7OwiFQpw/fx67du1CYGAgAGVF1dq1azF37lyIRCL4+PhAIBDgyJEjWLRoEYKDg9GlSxeV4yYmJlaKpXPnzhAIBCrb8vPzsXLlSowePRrGxsbIzs7Gli1bkJ6eDk9PTwDKhNTQoUNhYWGBkJAQZGVlcf2NjIxqPP/ySqi8vDxkZWUhPj4eQqFQJUFYkUQiqXQuWlpa0NfXV9keFhaGTp06wcDAADExMZgxYwZmzZqlMqXywYMHyMnJwYMHD1BWVsbFYm1tDW1tbfzyyy948uQJHBwcIBKJEBUVhVWrVqksKL937174+vpiw4YN6Nu3Lx4/fgxAmVCTSqXVnnf5cTMyMgD89f0wMjKq9Zo1uga5D2ALRbc0Ji3NkLVnmEVgJLuS+uytxom6/ZhZBEYyj80XGygyQgh5f9H7BVV0PQghjaWm28u/63x9fZmHh0eV+3JycpiPjw+TSqVMLBYzFxcXlpSUxO2fOnUqa9++PdPQ0GAGBgbMx8eHZWdnc/tXrFjBjIyMGI/HY76+vowxxnJzc5mXlxfT1NRkRkZGbN26daxPnz5swYIFXD8LCwu2fv36SvFcuXKFOTk5MW1tbaalpcW6du3KVq5cyRhjLCsri02fPp116dKFaWtrM4lEwuzt7VlISAgrKytTGefw4cNs0KBBTEtLiwFgANi+fftU2qSmpnL7Xn88fPiwUmyFhYXs448/ZiYmJkwoFDJjY2M2evRoduXKFa5NWFhYtWPWpqo+FhYWtfaraMiQIWzGjBkq2wIDA1mbNm2YQCBgNjY2LDQ0lCkUCpU2vr6+VR7/7NmzjDHGjh8/zj744APu+9KtWze2bds2les+ZMiQKsco/7moTnXXLCgoqF7n/rqaXrN1fb/AY+wt73PZguXm5kIqlUImk9V5nikhzann11F4ll+CX2cOQkejN/+ZPZXwBH7/uYZu5ro4EjCgASMkhJD3D71fUEXXgxDSWIqKipCamgpLS8tqF5UmVcvPz4epqSlCQ0MxadKkJj9+Tk4Ohg0bBh0dHRw/fhyami1jyiV5OzW9Zuv6foHmABHSgrwsKgUASESCWloSQgghhBBC3ldxcXHYt28fUlJScOPGDXh7ewMANyWwqenp6eHUqVMYNmwYYmJimiUG0jLRmlKEtAAPcwpw9/FLlJQpFzqXiN7upVvLVHNCCCGEEELIOy4kJASJiYkQCoXo2bMnoqOjuYW2m4O+vj6WLl3abMcnLRMlpQh5x+UWyeG0/jx35z0+D9AS0kuXEEIIIYSQv6vu3bvj+vXrzR0GIW+NPtkS8o7LelmMIrkCanweOpvowKlTG6jxqdSJEEIIIYQQQkjLRkkpQt5xRfIyAIC+lhARUwc2czSEEEIIIYQQQkjDoIXOCXnHFZcqp+2JBGrNHAkhhBBCCCGEENJwKClFyDuuvFJKQ51eroQQQgghhBBC3h/0KZeQdxxVShFCCCGEEEIIeR9RUoqQd1zxq0opkYBeroQQQgghhBBC3h9N/im3rKwMS5YsgaWlJcRiMdq3b4+vv/4ajDGuDWMMS5cuhbGxMcRiMYYPH4579+6pjJOTkwNvb2/o6OhAV1cXkyZNQl5eXlOfDiGNrkiurJTSUG+ESqkKrztCCCGEEEIIIaQpNXlSas2aNdi6dSs2b96MO3fuYM2aNVi7di02bdrEtVm7di02btyIbdu2ITY2FlpaWnBxcUFRURHXxtvbG7dv30ZUVBQiIyNx4cIFfPHFF019OoQ0ukKqlCKEEEIIIeSdNnHiRPB4PPB4PAiFQlhbW2PFihUoLS19q3HPnTsHHo+HFy9eNEygdZCamgovLy+YmJhAJBLBzMwMHh4euHv3rkq7yMhIDBkyBBKJBJqamujduzd2796t0iYtLQ08Hg/x8fF1Pv6yZcvQsWNHaGlpoVWrVhg+fDhiY2NVxpw0aZJKoUtQUBBKSkpqHDczMxNeXl6wtbUFn8/HzJkz6xxTeno6/vnPf0JfXx9isRj29va4du0at7/i97/84erqqjJGu3btKrX55ptvuP2JiYlwdHREmzZtIBKJYGVlhcWLF0Mul6uM8+LFCwQEBMDY2BgaGhqwtbXFsWPHaoz/0KFDcHZ2hr6+fr2/H41NvakPePnyZXh4eGDkyJEAlN+Yffv24cqVKwCUVVLfffcdFi9eDA8PDwDAf/7zH7Rp0waHDx/G+PHjcefOHfz666+4evUqevXqBQDYtGkTRowYgZCQEJiYmDT1aRHSaF4WKX8J6YgEDTYmj9dgQxFCCCGEEEIAuLq6IiwsDMXFxTh27BgCAgIgEAiwcOHC5g4NAFBSUgKhUFhjG7lcDicnJ3To0AGHDh2CsbExHj16hOPHj6skxjZt2oSZM2ciMDAQW7duhVAoxJEjR+Dv748//vgDISEhbxynra0tNm/eDCsrKxQWFmL9+vVwdnZGcnIyDAwMcPfuXSgUCmzfvh3W1tb4448/MHnyZOTn59d43OLiYhgYGGDx4sVYv359neN5/vw5BgwYAEdHRxw/fhwGBga4d+8eWrVqpdKu/PtfTkNDo9JYK1aswOTJk7nnEomE+1ogEGDChAno0aMHdHV18fvvv2Py5MlQKBRYtWoVAOX30MnJCYaGhjh48CBMTU3x559/QldXt8ZzyM/Px8CBAzF27FiV478TWBNbuXIls7CwYImJiYwxxuLj45mhoSH74YcfGGOMpaSkMAAsLi5Opd/gwYPZ9OnTGWOM7dy5k+nq6qrsl8vlTE1NjR06dKjaYxcVFTGZTMY9Hj58yAAwmUzWgGdISMP69te7zCIwkgUd+aPBxjx95zGzCIxkozdFN9iYhBDyvpLJZPR+oQK6HoSQxlJYWMgSEhJYYWFhc4dSb76+vszDw0Nlm5OTE3NwcGA5OTnMx8eH6erqMrFYzFxdXVlSUhLXLi0tjY0aNYrp6uoyTU1NZmdnx44ePcpSU1MZAJWHr68vY4yx3Nxc5uXlxTQ1NZmRkRFbt24dGzJkCJsxYwY3roWFBVuxYgXz8fFhEomE6xsdHc0GDhzIRCIRMzMzY9OmTWN5eXmMMcbi4uIYAJaWllbtuT548IAJBAI2e/bsSvs2btzIALDffvuNMca4c3j98319lP+7c+rUqWrbrF27lllaWtZ5zNevVU0CAwPZwIEDa2xT1ff/dRYWFmz9+vV1C/CVWbNmqRx769atzMrKipWUlNRrnHIN8f2oqKbXbF3fLzT5fKAFCxZg/Pjx6NixIwQCAbp3746ZM2fC29sbAPD48WMAQJs2bVT6tWnThtv3+PFjGBoaquxXV1eHnp4e16Yqq1evhlQq5R7m5uYNeWqENKh7T17iq59v4cRt5c+0jrjhKqUIIYQQQghpCRhjUBQUNMuDveX6q2KxGCUlJZg4cSKuXbuGiIgIxMTEgDGGESNGcNOyAgICUFxcjAsXLuDWrVtYs2YNtLW1YW5ujp9++gmAcmpXZmYmNmzYAACYPXs2Ll26hIiICERFRSE6Oho3btyoFENISAi6deuGuLg4LFmyBCkpKXB1dcWYMWNw8+ZN7N+/HxcvXsTUqVMBAAYGBuDz+Th48CDKysqqPK+DBw9CLpdj7ty5lfZNmTIF2tra2Ldv31tdu3IlJSXYsWMHpFIpunXrVm07mUwGPT29Bjnm6yIiItCrVy94enrC0NAQ3bt3x/fff1+p3blz52BoaIgOHTrgyy+/xLNnzyq1+eabb6Cvr4/u3bvj22+/rXF6Z3JyMn799VcMGTJEJZZ+/fohICAAbdq0QZcuXbBq1apqv1ctQZNP3/vf//6H8PBw7N27F507d0Z8fDxmzpwJExMT+Pr6NuqxFy5ciNmzZ3PPc3NzKTFF3llbzibjcHwG99xEKmrGaAghhBBCCGl6rLAQiT16NsuxO9y4Dp6mZr37McZw+vRpnDhxAm5ubjh8+DAuXbqE/v37AwDCw8Nhbm6Ow4cPw9PTEw8ePMCYMWNgb28PALCysuLGKk+0GBoaclO0Xr58iT179mDv3r0YNmwYACAsLKzKZWw+/PBDzJkzh3vu5+cHb29vbj0lGxsbbNy4EUOGDMHWrVthamqKjRs3Yv78+Vi+fDl69eoFR0dHeHt7c3ElJSVBKpXC2Ni40vGEQiGsrKyQlJRU7+tWUWRkJMaPH4+CggIYGxsjKioKrVu3rrJtcnIyNm3a9FZTBmty//59bN26FbNnz8aiRYtw9epVTJ8+HUKhkMthuLq64h//+AcsLS2RkpKCRYsWwc3NDTExMVBTU96wavr06ejRowf09PRw+fJlLFy4EJmZmVi3bp3K8fr3748bN26guLgYX3zxBVasWKESy5kzZ+Dt7Y1jx44hOTkZ//rXvyCXyxEUFNQo59/YmrxSat68eVy1lL29PXx8fDBr1iysXr0aAGBkZAQAePLkiUq/J0+ecPuMjIzw9OlTlf2lpaXIycnh2lRFQ0MDOjo6Kg9C3lUvi5RZc7cuRlj1sT0+6m7azBERQgghhBBCqhMZGQltbW2IRCK4ublh3LhxmDhxItTV1dG3b1+unb6+Pjp06IA7d+4AUCYrgoODMWDAAAQFBeHmzZs1Huf+/fuQy+Xo06cPt00qlaJDhw6V2pavwVzu999/x+7du6Gtrc09XFxcoFAokJqaCkBZufX48WOEh4ejX79+OHDgADp37oyoqKg6X4va1q4ClMm5inFER0dz+xwdHREfH4/Lly/D1dUVY8eOrZQDAJQLkLu6usLT01NlraSK4/r7+9cp5ujoaJV+4eHhAACFQoEePXpg1apV6N69O7744gtMnjwZ27Zt4/qOHz8eo0ePhr29PT766CNERkbi6tWrOHfuHNdm9uzZGDp0KLp27Qp/f3+EhoZi06ZNKC4uVolj//79uHHjBvbu3YujR4+qJNsUCgUMDQ2xY8cO9OzZE+PGjcNXX33FxVLTNX1XNXmlVEFBAfh81VyYmpoaFArlbe8tLS1hZGSE06dP44MPPgCgrGiKjY3Fl19+CQDo168fXrx4gevXr6NnT2XW/MyZM1AoFCovdkJaspIy5WvCya4N/tHDrJmjIYQQQgghpOnxxGJ0uHG92Y5dH46Ojtyi3yYmJlBXV0dERESt/fz8/ODi4oKjR4/i5MmTWL16NUJDQzFt2rQ3DZ2jpaWl8jwvLw9TpkzB9OnTK7Vt27Yt97VEIoG7uzvc3d0RHBwMFxcXBAcHw8nJCTY2NpDJZMjIyKhUnVVSUoKUlBS4uLjUGtvo0aNVPr+bmv71R3gtLS1YW1vD2toaDg4OsLGxwc6dO1UWjc/IyICjoyP69++PHTt2qIxd8e5ydS1G6dWrl0q/8iWFjI2NYWdnp9K2U6dO3NTKqlhZWaF169ZITk7mqtle17dvX5SWliItLU0loVg+m8vOzg5lZWX44osvMGfOHKipqcHY2BgCgYCrviqP5fHjxygpKanxmr6rmjwp5e7ujpUrV6Jt27bo3Lkz4uLisG7dOnz++ecAAB6Ph5kzZyI4OBg2NjawtLTEkiVLYGJigo8++giA8qK7urpy2Um5XI6pU6di/PjxdOc98t4oLlUmpTTU1WppSQghhBBCyPuJx+O90RS65lCeSKmoU6dOKC0tRWxsLDd979mzZ0hMTFRJdJibm8Pf3x/+/v5YuHAhvv/+e0ybNo2rOKq4ZpCVlRUEAgGuXr3KJZJkMhmSkpIwePDgGmPs0aMHEhISKsVZEx6Ph44dO+Ly5csAgE8++QSBgYEIDQ1FaGioSttt27ahoKAAEyZMqHVciUSicve5migUCpWKovT0dDg6OqJnz54ICwurVPhSn/MrJxaLq+w3YMAAJCYmqmxLSkqChYVFtWM9evQIz549q3KKY7n4+Hjw+fxK62VXpFAoIJfLoVAooKamhgEDBmDv3r1QKBTcOSclJcHY2BhCoRBCobDO1/Rd0eRJqU2bNmHJkiX417/+hadPn8LExARTpkzB0qVLuTbz589Hfn4+vvjiC7x48QIDBw7Er7/+CpHorzV1wsPDMXXqVAwbNgx8Ph9jxozBxo0bm/p0CGk0Ja+SUkL1Jp9lSwghhBBCCGkANjY28PDwwOTJk7F9+3ZIJBIsWLAApqam8PDwAADMnDkTbm5usLW1xfPnz3H27Fl06tQJAGBhYQEej4fIyEiMGDECYrEYEokEvr6+mDdvHvT09GBoaIigoCDw+XzweLwa4wkMDISDgwOmTp0KPz8/aGlpISEhAVFRUdi8eTPi4+MRFBQEHx8f2NnZQSgU4vz589i1axcCAwMBKCuq1q5di7lz50IkEsHHxwcCgQBHjhzBokWLEBwcjC5duqgc9/WkDgB07twZAoHqzZzy8/OxcuVKjB49GsbGxsjOzsaWLVuQnp4OT09PAMqE1NChQ2FhYYGQkBBkZWVx/Wtazgf4q4IqLy8PWVlZiI+Ph1AorFQJVdGsWbPQv39/rFq1CmPHjsWVK1ewY8cOrjorLy8Py5cvx5gxY2BkZISUlBTMnz8f1tbWXMVYTEwMYmNj4ejoCIlEgpiYGMyaNQv//Oc/0apVKwDKHIdAIIC9vT00NDRw7do1LFy4EOPGjeOu05dffonNmzdjxowZmDZtGu7du4dVq1ZVWflWUU5ODh48eICMDOWaxeXfDyMjo1qvWaNrkPsAtlB0S2PyLnP77gKzCIxk5xKfNvjYp+88ZhaBkWz0pugGH5sQQt439H5BFV0PQkhjqen28u86X19f5uHhUeW+nJwc5uPjw6RSKROLxczFxYUlJSVx+6dOncrat2/PNDQ0mIGBAfPx8WHZ2dnc/hUrVjAjIyPG4/GYr68vY4yx3Nxc5uXlxTQ1NZmRkRFbt24d69OnD1uwYAHXz8LCgq1fv75SPFeuXGFOTk5MW1ubaWlpsa5du7KVK1cyxhjLyspi06dPZ126dGHa2tpMIpEwe3t7FhISwsrKylTGOXz4MBs0aBDT0tJiABgAtm/fPpU2qamp3L7XHw8fPqwUW2FhIfv444+ZiYkJEwqFzNjYmI0ePZpduXKFaxMWFlbtmLWpqo+FhUWt/X755RfWpUsXpqGhwTp27Mh27NjB7SsoKGDOzs7MwMCACQQCZmFhwSZPnsweP37Mtbl+/Trr27cvk0qlTCQSsU6dOrFVq1axoqIirs2PP/7IevTowX1f7Ozs2KpVqyq9Hi5fvsz69u3LNDQ0mJWVFVu5ciUrLS2tMf7qrllQUFCt516Tml6zdX2/wGPsLe9z2YLl5uZCKpVCJpPRouekUTDG8DwzA2WlcpXtWrqtoKkjrbHv8HXnkfw0D/smO6Bfe/0GjevM3Sf4fPc1dDWTImLqwAYdmxBC3jf0fkEVXQ9CSGMpKipCamoqLC0tVWbJkNrl5+fD1NQUoaGhmDRpUpMfPycnB8OGDYOOjg6OHz8OzRYy5ZK8nZpes3V9v9Dk0/cI+TuJPbQfl/73Q6Xtaurq+Py7HdAxqH7+ME3fI4QQQgghhFQlLi4Od+/eRZ8+fSCTybBixQoA4KYENjU9PT2cOnUKW7ZsQUxMTLWLexPyOkpKEdKIMpOVc3WFYk2ov1qksPBlLspKS/H8cUadklIajZCU4qHmueaEEEIIIYSQd1tISAgSExMhFArRs2dPREdHo3Xr1s0Wj76+vspa0YTUBSWlCGlEBbkyAIBrwCzY9O4HANgzbyqyH6TV2re4VHmHDaqUIoQQQgghhFTUvXt3XL9+vbnDIOSt0addQhpR4auklKak5vWjXqdQMMgKletQ6YoFtbQmhBBCCCGEEEJaHqqUIqQRZD9Iw/PMDLx89gwAoK1X94XKf3/4Ancyc6F4dQuCVlrCxgiREEIIIYQQQghpVpSUIqSBvczJxn8Cp4MplGtCqQuE0GltUKe+j54X4KN/X0L5PTFbaQogUKOCxob0sKgEE2/dR468rMZ2BgJ17La3hImIkoKEEEIIIYQQ0hgoKUVIA8tJfwSmUEBdQwOGFlbo0H8QePy6JZbSnxeCMUAsUEMPC114fGDayNH+/ezNeIbbeUW1tsssluPSizx4Guk1QVSEEEIIIYQQ8vdDSSlCGliB7AUAwNi6A8YuXVW/viXK6h1rQ22E+zk0dGgEwKPiEgDAR4a6CGhb9d0PFyWl42puPlhTBkYIIYQQQgghfzOUlCKkgeW/eA4A0JTq1rtveVJKLFRryJBIBQVlymmVfXW1YS/RrLKNNt3xkBBCCCGEEEIaHSWlCGlg5ZVSWrqtkC8rRuJvj1EqV3D7i/Lk1fctKQUAaDZRUor9DUuBCl8lpcR8XjNHQgghhBBCCCF/b1QOQEgDq1gpdTUyFTE/p+BqZCr3yJcVKxtWkRAqfLX4dlMlpf6OCl8tQC+mBeQJIYQQQkgDmThxIng8Hng8HoRCIaytrbFixQqUlpa+1bjnzp0Dj8fDixcvGibQOkhNTYWXlxdMTEwgEolgZmYGDw8P3L17V6VdZGQkhgwZAolEAk1NTfTu3Ru7d+9WaZOWlgYej4f4+Pg6H3/ZsmXo2LEjtLS00KpVKwwfPhyxsbEqY06aNAmWlpYQi8Vo3749goKCUFJSUuO4mZmZ8PLygq2tLfh8PmbOnFmneMrKyrBkyRKV43399ddgFf7Cf+jQITg7O0NfX7/a801JScHHH38MAwMD6OjoYOzYsXjy5Em9z+vmzZsYNGgQRCIRzM3NsXbt2lrP4cKFC3B3d4eJiQl4PB4OHz5cp3NvCvSpjJAGVpT3EgAgluigIFf5C8TERhedB5uilbEW1y7gdAB6/9Bb5bH+3hhod1iChzjYuEH+jYuEyqfvadZx8XlCCGluW7ZsQbt27SASidC3b19cuXKlxvYHDhxAx44dIRKJYG9vj2PHjlXb1t/fHzweD999910DR00IIX8/rq6uyMzMxL179zBnzhwsW7YM3377bXOHxaktaQMAcrkcTk5OkMlkOHToEBITE7F//37Y29urJMY2bdoEDw8PDBgwALGxsbh58ybGjx8Pf39/zJ07963itLW1xebNm3Hr1i1cvHgR7dq1g7OzM7KysgAAd+/ehUKhwPbt23H79m2sX78e27Ztw6JFi2oct7i4GAYGBli8eDG6detW53jWrFmDrVu3YvPmzbhz5w7WrFmDtWvXYtOmTVyb/Px8DBw4EGvWrKlyjPz8fDg7O4PH4+HMmTO4dOkSSkpK4O7uDsWrP5rX5bxyc3Ph7OwMCwsLXL9+Hd9++y2WLVuGHTt21HgO+fn56NatG7Zs2VLn824y7G9MJpMxAEwmkzV3KOQ98r8VC1nI2JEsIfosO7Ihjm2ecprdjclgjDF2bu9dFvqpLwsZO5I5hfRiXXZ3qfLRe8/QRo3xzN0nzCIwko3aGN2ox3mXfJ2czuwv3mImZ+NYmzNxLDont9q24+OTWZszcWx/5rMmjJAQ8q5qzvcLP/74IxMKhWzXrl3s9u3bbPLkyUxXV5c9efKkyvaXLl1iampqbO3atSwhIYEtXryYCQQCduvWrUptDx06xLp168ZMTEzY+vXr6xwTvX8ihDSWwsJClpCQwAoLC5s7lHrz9fVlHh4eKtucnJyYg4MDy8nJYT4+PkxXV5eJxWLm6urKkpKSuHZpaWls1KhRTFdXl2lqajI7Ozt29OhRlpqayqCcX8E9fH19GWOM5ebmMi8vL6apqcmMjIzYunXr2JAhQ9iMGTO4cS0sLNiKFSuYj48Pk0gkXN/o6Gg2cOBAJhKJmJmZGZs2bRrLy8tjjDEWFxfHALC0tLRqz/XBgwdMIBCw2bNnV9q3ceNGBoD99ttvjDHGnUNcXFz9L+or5f/unDp1qto2a9euZZaWlnUe8/VrVZORI0eyzz//XGXbP/7xD+bt7V2pbXXne+LECcbn81X+7Xzx4gXj8XgsKiqq2mO/fl7//ve/WatWrVhxcTG3LTAwkHXo0KFO58IYYwDYzz//XOf2NanpNVvX9wtUKkBIA5MXK6fnqWtooPTVwuU8ATDx14k4kHSAa7fYYTF+HfOrymOgZJ6y/d+4kqkxvCwtw9aHT/G0pBRlDNDg82CtKWrusAghpFbr1q3D5MmT8dlnn8HOzg7btm2DpqYmdu3aVWX7DRs2wNXVFfPmzUOnTp3w9ddfo0ePHti8ebNKu/T0dEybNg3h4eEQCARNcSqEEPJGGGOQF5c1y4O95QKsYrEYJSUlmDhxIq5du4aIiAjExMSAMYYRI0ZALleuNRsQEIDi4mJcuHABt27dwpo1a6CtrQ1zc3P89NNPAIDExERkZmZiw4YNAIDZs2fj0qVLiIiIQFRUFKKjo3Hjxo1KMYSEhKBbt26Ii4vDkiVLkJKSAldXV4wZMwY3b97E/v37cfHiRUydOhUAYGBgAD6fj4MHD6KsrKzK8zp48CDkcnmVFVFTpkyBtrY29u3b91bXrlxJSQl27NgBqVRaY3WTTCaDnp5egxzzdf3798fp06eRlJQEAPj9999x8eJFuLm51XmM4uJi8Hg8aGhocNtEIhH4fD4uXrxYbb/XzysmJgaDBw+GUCjktrm4uCAxMRHPnz+vz2m9M2ihc0IaWOmrsliBQIjSEmUpZrY8C9efXMdAhSXXrq2kLUy1TVX68hRS5f8pKdWgUguLUfbqPcWZ3h1gpCGAnoB+/RFC3m0lJSW4fv06Fi5cyG3j8/kYPnw4YmJiquwTExOD2bNnq2xzcXFRWTtCoVDAx8cH8+bNQ+fOnWuNo7i4GMWv/uACKKcOEEJIUyktUWDHjPPNcuwvNgyBQKP+a70yxnD69GmcOHECbm5uOHz4MC5duoT+/fsDAMLDw2Fubo7Dhw/D09MTDx48wJgxY2Bvbw8AsLKy4sYqT0gYGhpCV1cXAPDy5Uvs2bMHe/fuxbBhwwAAYWFhMDExqRTLhx9+iDlz5nDP/fz84O3tza2nZGNjg40bN2LIkCHYunUrTE1NsXHjRsyfPx/Lly9Hr1694OjoCG9vby6upKQkSKVSGBsbVzqeUCiElZUVl8B5U5GRkRg/fjwKCgpgbGyMqKgotG7dusq2ycnJ2LRpE0JCQt7qmNVZsGABcnNz0bFjR6ipqaGsrAwrV66Et7d3ncdwcHCAlpYWAgMDsWrVKjDGsGDBApSVlSEzM7PKPlWd1+PHj2FpaanSrk2bNty+Vq1avcEZNi+qlCKkgZUnpdSFf1VKXXx8AQCgq6HLteNVsbBT8auFzvl/50WfGkHWq7sadtYWwU5bXOeE1N/x7oSEkHdHdnY2ysrKuDeb5dq0aYPHjx9X2efx48e1tl+zZg3U1dUxffr0OsWxevVqSKVS7mFubl7PMyGEkL+HyMhIaGtrQyQSwc3NDePGjcPEiROhrq6Ovn37cu309fXRoUMH3LlzBwAwffp0BAcHY8CAAQgKCsLNmzdrPM79+/chl8vRp08fbptUKkWHDh0qte3Vq5fK899//x27d++GtrY293BxcYFCoUBqaioAZeXW48ePER4ejn79+uHAgQPo3LkzoqKi6nwtKlbyVCc8PFwljujoaG6fo6Mj4uPjcfnyZbi6umLs2LF4+vRppTHS09Ph6uoKT09PTJ48mdtecVx/f/86xRwdHa3SLzw8HADwv//9D+Hh4di7dy9u3LiBPXv2ICQkBHv27KnTuICyAu3AgQP45ZdfoK2tDalUihcvXqBHjx7gV7HWbXXn9abn8C6jUgFCGlh5UoovEOD54wIAwPOyHACAgF/1FInLydnYeTEVcU9eAEZUKdXQskqUpdEGNEWFEPI3d/36dWzYsAE3btwAr47/2CxcuFCl+io3N5cSU4SQJqMu5OOLDUOa7dj14ejoiK1bt0IoFMLExATq6uqIiIiotZ+fnx9cXFxw9OhRnDx5EqtXr0ZoaCimTZv2pqFztLS0VJ7n5eVhypQpVf5hom3bttzXEokE7u7ucHd3R3BwMFxcXBAcHAwnJyfY2NhAJpMhIyOjUnVWSUkJUlJS4OLiUmtso0ePVknWmZr+NYtES0sL1tbWsLa2hoODA2xsbLBz506V6uGMjAw4Ojqif//+lRb6rnj3Ox0dnVpjAZQJvIr9yv/IM2/ePCxYsADjx48HANjb2+PPP//E6tWr4evrW6exAcDZ2RkpKSnIzs6Guro6dHV1YWRkpFIZV9t5GRkZqdyxDwD33MjICO3atavyHN5llJQipIE8TbuPm6d+RWGuDADwMuev27/elSv/2mGrZ4unqHzXpM1nk3E55Rn4Ijm0AKjxKSvVkMorpVoL6/Yrj64+IeRd0Lp1a6ipqVX55tPIyKjKPtW9WS1vHx0djadPn6p88CgrK8OcOXPw3XffIS0trdKYGhoaKmtgEEJIU+LxeG80ha45lCdSKurUqRNKS0sRGxvLTd979uwZEhMTYWdnx7UzNzeHv78//P39sXDhQnz//feYNm0aV3FUcX0nKysrCAQCXL16lft9LpPJkJSUhMGDB9cYY48ePZCQkFApzprweDx07NgRly9fBgB88sknCAwMRGhoKEJDQ1Xabtu2DQUFBZgwYUKt40okEkgkkjrFoFAoVKaSp6enw9HRET179kRYWFilaqP6nF85sVhcZb+CgoJK46upqXF3zauv8mmIZ86cwdOnTzF69GhuX23n1a9fP3z11VeQy+XcmpBRUVHo0KEDN3XvTc69OVFSipAGcul/P+D+9fKEEw+Xf0oHoI5cjWdILk4EAGjmpFXZ92WRMmny8QcmOCkDRIKW8Q/vu06uYPg1W4ZLz/MAAAZ1TEoRQsi7QCgUomfPnjh9+jQ++ugjAMo35adPn+YWpH1dv379cPr0aW6tEED5ZrVfv34AAB8fHwwfPlylj4uLC3x8fPDZZ581ynkQQsjfmY2NDTw8PDB58mRs374dEokECxYsgKmpKTw8PAAAM2fOhJubG2xtbfH8+XOcPXsWnTp1AgBYWFiAx+MhMjISI0aMgFgshkQiga+vL+bNmwc9PT0YGhoiKCgIfD6/1irYwMBAODg4YOrUqfDz84OWlhYSEhIQFRWFzZs3Iz4+HkFBQfDx8YGdnR2EQiHOnz+PXbt2ITAwEICyomrt2rWYO3cuRCIRfHx8IBAIcOTIESxatAjBwcHo0qWLynETExMrxdK5c+dKN9vIz8/HypUrMXr0aBgbGyM7OxtbtmxBeno6PD09ASgTN0OHDoWFhQVCQkKQlZXF9a/ujzblyquI8vLykJWVhfj4eAiFQpUE4evc3d2xcuVKtG3bFp07d0ZcXBzWrVuHzz//nGuTk5ODBw8eICMjQ+V8jYyMuJjCwsLQqVMnGBgYICYmBjNmzMCsWbO4aZd1OS8vLy8sX74ckyZNQmBgIP744w9s2LAB69evr/G88/LykJyczD1PTU1FfHw89PT0VP5Q1RzoExohDaQoT5n4aPdBf6TfM0RBrvLlldbqFobmF8BGLofe00SklXdgf2XWC1+tJdWrnR5O/t6EQb/nfn76HNPvPOCeG2vQ9D1CSMsye/Zs+Pr6olevXujTpw++++475OfncwmkCRMmwNTUFKtXrwYAzJgxA0OGDEFoaChGjhyJH3/8EdeuXePK//X19aGvr69yDIFAACMjoyrXIiGEEPL2wsLCMGPGDIwaNQolJSUYPHgwjh07xiVkysrKEBAQgEePHkFHRweurq5cksHU1BTLly/HggUL8Nlnn2HChAnYvXs31q1bB39/f4waNQo6OjqYP38+Hj58CJGo5jtMd+3aFefPn8dXX32FQYMGgTGG9u3bY9y4cQAAMzMztGvXDsuXL0daWhp4PB73fNasWdw4s2bNgpWVFUJDQ7Fhwwbk5+cDAPbt28dNc6uoqm0PHz6EmZmZyjY1NTXcvXsXe/bsQXZ2NvT19dG7d29ER0dzN+eIiopCcnIykpOTK/Wv7Y6J3bt3576+fv069u7dCwsLiyorhctt2rQJS5Yswb/+9S88ffoUJiYmmDJlCpYuXcq1iYiIUPnjTvn5BgUFYdmyZQCUiaqFCxciJycH7dq1w1dffaVyTetyXlKpFCdPnkRAQAB69uyJ1q1bY+nSpfjiiy9qPO9r167B0dGRe14+Ld/X1xe7d++usW9j47G3vc9lC5abmwupVAqZTFbneaaEVOe/gTPwNC0Fg/45B1ePMkj0NfBfozV4qv0nzgttoNu6A87faI/rty6AlWVjzMLlaPdBTwDAgG/OIP1FIdb76GPptckw1jLGyU9ONlqsZxOf4rOwq+hiqoPIaYMa7TjNbcm9R/j+UTasNTXQS0cLX7U3hoGw9sSU1+8pOJPzEhs6tsU448a5tSwhpOVo7vcLmzdvxrfffovHjx/jgw8+wMaNG7k1OIYOHYp27dqpvKE8cOAAFi9ejLS0NNjY2GDt2rUYMWJEteO3a9cOM2fOVKmuqklzXw9CyPurqKgIqampsLS0rDW5QlTl5+fD1NQUoaGhmDRpUpMfPycnB8OGDYOOjg6OHz8OTU3NJo+BNL2aXrN1fb9AlVKENJDSEuUcZ1amDkAODYk6Huso72Ch1W86YDUYeHoTuHWhUt+CV2seaQiUc4YZ/ra54gb1sEi56LyfmQEmmlZ9C1lCCHnXTZ06tdrpeufOnau0zdPTk5viUBc1/XWYEELIuykuLg53795Fnz59IJPJsGLFCgDgpgQ2NT09PZw6dQpbtmxBTEwMhg0b1ixxkJaHklKENJBSuTIBwpgaADn4GsrEklihgEBLmRDhVfhvReXT9zTUm2Ytqb/LQt4vXl3XVrRGFyGEEEIIec+EhIQgMTGRW4MwOjqaW0S7Oejr66tMaSOkLigpRUgDkb+6G0RZ2atqJ4FyzSiJQgEIxNX2UygYiuTKtrTAecPKLVUmpXTV6VcdIYQQQgh5f3Tv3h3Xr19v7jAIeWv0SY2QBlJaoqyUAlO+rBRqpeiVpIBTAkP6rXWAQIy8AttK/YpK/7q9q0jAr7SfvDnZq2ur00QVaIQQQgghhBBC6o6SUoQ0AMbYX2tKvXpZlaEYU44rIC3gIffOKQBAic1YQKLat6Dkr6SUhholTxpCcEoGfnn6AunFcgBAa+Gb/aqjtb0IIYQQQgghpPFQUoqQBqAoKwVTKKfglTHlik03MmPRo0C533DubEBdgHuRGZX6Fr5KSokEfPCoUOqtPSspxeYHT7nn9tpimGnUfsc9QgghhBBCCCFNi5JShDQAbuoegKd5OcovigsBACUiBv1JfgCPB97JkEp9yxc5F9N6Ug0ipaCI+/rn7tborC0Gj1e/pd15f5ul4AkhhBBCCCGk+VBSipAGUL7IOY/HR26RDIAO2rxKVGlrKIAqkyIMJ24/xo0HzwEAmm84xYyoyi9TVqx11hahn652M0dDCCGEEEIIIaQ69CmYkAZQXimlLhSiNE+ZlDLOUq5npKajU2Wfu5m58D//1x0zJCJ6OTaEglfTKDX5VHlGCCGEEEIIIe8y+hRMSAMoX+RcXSiEMDMXpQAMniiTI+p2A6rsk5qdD4APs1ZifGCuC89e5gCeVtm2sbD3cB3vgleVUppqtEAXIYQQQgghhLzL6FMbIW9BXlKMIyErEbFuNQBAXUMDeLW8lFykgI67O1pPmVJl3xcFyoYj7Y2x2asHhtgacPvY+5gtaiKUlCKEEEIIIU1t4sSJ4PF44PF4EAqFsLa2xooVK1BaWvpW4547dw48Hg8vXrxomEDrIDU1FV5eXjAxMYFIJIKZmRk8PDxw9+5dlXaRkZEYMmQIJBIJNDU10bt3b+zevVulTVpaGng8HuLj4+t8/GXLlqFjx47Q0tJCq1atMHz4cMTGxqqMOWnSJFhaWkIsFqN9+/YICgpCSYV1fquSmZkJLy8v2Nrags/nY+bMmXWK5+XLl5g5cyYsLCwgFovRv39/XL16VaVNXl4epk6dCjMzM4jFYtjZ2WHbtm0qbaZMmYL27dtDLBbDwMCgymv64MEDjBw5EpqamjA0NMS8efOq/Rm6dOkS1NXV8cEHH9R6DocOHYKzszP09fXr/f1obPSpjZC3kJF4B8lXY/A84xEAoFQuQVFZOwBAvj4Ppt+uhcjOrsq+coUy8aSh3vQvw/ou/N0SHHicgwG/3cGa1EwAlJQihBBCCCFNy9XVFZmZmbh37x7mzJmDZcuW4dtvv23usDi1JW0AQC6Xw8nJCTKZDIcOHUJiYiL2798Pe3t7lcTYpk2b4OHhgQEDBiA2NhY3b97E+PHj4e/vj7lz575VnLa2tti8eTNu3bqFixcvol27dnB2dkZWVhYA4O7du1AoFNi+fTtu376N9evXY9u2bVi0aFGN4xYXF8PAwACLFy9Gt27d6hyPn58foqKi8N///he3bt2Cs7Mzhg8fjvT0dK7N7Nmz8euvv+KHH37AnTt3MHPmTEydOhURERFcm549eyIsLAx37tzBiRMnwBiDs7MzysqUN74qKyvDyJEjUVJSgsuXL2PPnj3YvXs3li5dWimmFy9eYMKECRg2bFidziE/Px8DBw7EmjVr6nzeTYU+tRHyFsrXkmplbArTzr5Q8EZAAS0AgDo/t+a+ZcqklLBCUoru+vbm/pP+DCmFxch5dTfDDlqiZo6IEEIIIYT8nWhoaMDIyAgWFhb48ssvMXz4cEREROD58+eYMGECWrVqBU1NTbi5ueHevXtcvz///BPu7u5o1aoVtLS00LlzZxw7dgxpaWlwdHQEALRq1ZKrBXEAAQAASURBVAo8Hg8TJ04EoKze8fb2hpaWFoyNjbF+/XoMHTpUpfqnXbt2+PrrrzFhwgTo6Ojgiy++AABcvHgRgwYNglgshrm5OaZPn478/HwAwO3bt5GSkoJ///vfcHBwgIWFBQYMGIDg4GA4ODgAAB4+fIg5c+Zg5syZWLVqFezs7GBtbY05c+bg22+/RWhoqEplU315eXlh+PDhsLKyQufOnbFu3Trk5ubi5s2bAJTJv7CwMDg7O8PKygqjR4/G3LlzcejQoRrHbdeuHTZs2IAJEyZAKpXWKZbCwkL89NNPWLt2LQYPHgxra2ssW7YM1tbW2Lp1K9fu8uXL8PX1xdChQ9GuXTt88cUX6NatG65cucK1+eKLLzB48GC0a9cOPXr0QHBwMB4+fIi0tDQAwMmTJ5GQkIAffvgBH3zwAdzc3PD1119jy5YtlRKK/v7+8PLyQr9+/ep0Hj4+Pli6dCmGDx9ep/ZNiZJShLwFxatSSrGOFEJNK/B4QmiXXcIHv2+EJv9+jX1LXy3ILWyGSqn3UYFCmYxaYW2CU71sMa2t4VuPSZMoCSGEEEKaF2MM8qKiZnm87ZIaYrEYJSUlmDhxIq5du4aIiAjExMSAMYYRI0ZALlfeGCkgIADFxcW4cOECbt26hTVr1kBbWxvm5ub46aefAACJiYnIzMzEhg0bACgrcy5duoSIiAhERUUhOjoaN27cqBRDSEgIunXrhri4OCxZsgQpKSlwdXXFmDFjcPPmTezfvx8XL17E1KlTAQAGBgbg8/k4ePAgV8HzuoMHD0Iul1dZETVlyhRoa2tj3759b3XtypWUlGDHjh2QSqU1VjfJZDLo6ek1yDErKi0tRVlZGUQi1T94i8ViXLx4kXvev39/REREID09HYwxnD17FklJSXB2dq5y3Pz8fISFhcHS0hLm5uYAgJiYGNjb26NNmzZcOxcXF+Tm5uL27dvctrCwMNy/fx9BQUENearNhhY6J+QtlJW+usOeujrK5Mokk6j0HvSeJ+Kles1JEfmrSikBTTNrEIWvrmdXiSa6SDSbORpCCCGEENIQSouLsdH3k2Y59vQ9ByEQ1b/6njGG06dP48SJE3Bzc8Phw4dx6dIl9O/fHwAQHh4Oc3NzHD58GJ6ennjw4AHGjBkDe3t7AICVlRU3VnmixdDQELq6ugCUVVJ79uzB3r17uelbYWFhMDExqRTLhx9+iDlz5nDP/fz84O3tzVVU2djYYOPGjRgyZAi2bt0KU1NTbNy4EfPnz8fy5cvRq1cvODo6wtvbm4srKSkJUqkUxsbGlY4nFAphZWWFpKSkel+3iiIjIzF+/HgUFBTA2NgYUVFRaN26dZVtk5OTsWnTJoSEhLzVMasikUjQr18/fP311+jUqRPatGmDffv2ISYmBtbW1ly7TZs24YsvvoCZmRnU1dXB5/Px/fffY/DgwSrj/fvf/8b8+fORn5+PDh06ICoqCkKhEADw+PFjlYQUAO7548ePAQD37t3DggULEB0dDXX19yOdQ5+GCXkLZa8qpdQEApSVKpNSvDJlaSVPUMUviQqz80rLqFKqIRW+qjwTU5KPEEIIIYQ0g8jISGhra0MkEsHNzQ3jxo3DxIkToa6ujr59+3Lt9PX10aFDB9y5cwcAMH36dAQHB2PAgAEICgripqlV5/79+5DL5ejTpw+3TSqVokOHDpXa9urVS+X577//jt27d0NbW5t7uLi4QKFQIDU1FYCycuvx48cIDw9Hv379cODAAXTu3BlRUVF1vhbliZaahIeHq8QRHR3N7XN0dER8fDwuX74MV1dXjB07Fk+fVr5TeXp6OlxdXeHp6YnJkydz2yuO6+/vX6eYo6OjVfqFh4cDAP773/+CMQZTU1NoaGhg48aN+PTTT8Hn//W5Y9OmTfjtt98QERGB69evIzQ0FAEBATh16pTKMby9vREXF4fz58/D1tYWY8eORVFRUZ3iKysrg5eXF5YvXw5bW9sq29R0Td9V70dqjZBmUrFSqrBQmRThv9pWZVKqgtJXC50LKYnSIApfJfnE/Le/nu/hOvCEEEIIIS2SuoYGpu852GzHrg9HR0ds3boVQqEQJiYmUFdXV1noujp+fn5wcXHB0aNHcfLkSaxevRqhoaGYNm3am4bO0dLSUnmel5eHKVOmYPr06ZXatm3blvtaIpHA3d0d7u7uCA4OhouLC4KDg+Hk5AQbGxvIZDJkZGRUqs4qKSlBSkoKXFxcao1t9OjRKsk6U1NTlbitra1hbW0NBwcH2NjYYOfOnVi4cCHXJiMjA46Ojujfvz927NihMnbFu8vp6OjUGgugTOBV7FdepdS+fXucP38e+fn5yM3NhbGxMcaNG8dVjhUWFmLRokX4+eefMXLkSABA165dER8fj5CQEJV1nKRSKaRSKWxsbODg4IBWrVrh559/xqeffgojIyOVNagA4MmTJwAAIyMjvHz5EteuXUNcXBw33VKhUIAxBnV1dZw8ebLGa/quoqQUIW+Bq5RSU0fpqwW2S0uLAQD82pJSVCnVIB4VlSApvwgFZVQpRQghhBDyvuHxeG80ha45lCdSKurUqRNKS0sRGxvLTd979uwZEhMTYVfhLt3m5ubw9/eHv78/Fi5ciO+//x7Tpk3jKo4qru9kZWUFgUCAq1evcokkmUyGpKSkStPFXtejRw8kJCRUirMmPB4PHTt2xOXLlwEAn3zyCQIDAxEaGorQ0FCVttu2bUNBQQEmTJhQ67gSiQQSiaROMSgUChQXF3PP09PT4ejoyN3Rjv/aH6brc37lxGJxjf20tLSgpaWF58+f48SJE1i7di0A5R0L5XJ5pRjU1NSgeDWboyqMMTDGuPPq168fVq5ciadPn8LQULkUTFRUFHR0dGBnZweBQIBbt26pjPHvf/8bZ86cwcGDB2FpaQktLa06X9N3BSWlCHkLZa8WJ1QTCJBbmAc1CFFQWggA4AtqLll9mqv85aNBSak3ll9ahuFXE/Gi9K9/pLUoKUUIIYQQQt4RNjY28PDwwOTJk7F9+3ZIJBIsWLAApqam8PDwAADMnDkTbm5usLW1xfPnz3H27Fl06tQJAGBhYQEej4fIyEiMGDECYrEYEokEvr6+mDdvHvT09GBoaIigoCDw+Xzwain5DwwMhIODA6ZOnQo/Pz9oaWkhISEBUVFR2Lx5M+Lj4xEUFAQfHx/Y2dlBKBTi/Pnz2LVrFwIDAwEoK6rWrl2LuXPnQiQSwcfHBwKBAEeOHMGiRYsQHByMLl26qBw3MTGxUiydO3eGQCBQ2Zafn4+VK1di9OjRMDY2RnZ2NrZs2YL09HR4enoCUCakhg4dCgsLC4SEhCArK4vrb2RkVOP5l1dC5eXlISsrC/Hx8RAKhSoJwtedOHECjDF06NABycnJmDdvHjp27IjPPvsMgLISa8iQIZg3bx7EYjEsLCxw/vx5/Oc//8G6desAKKdc7t+/H87OzjAwMMCjR4/wzTffQCwWY8SIEQAAZ2dn2NnZwcfHB2vXrsXjx4+xePFiBAQEQONV1d7r19XQ0BAikajS9tfl5OTgwYMHyMjIAPDX98PIyKjWa9bYKClFyFsor5Tiq6uDlSqn40lebbPRqfnF/Sy/GNAEJCJBpX2M7vtWJ9dyC7iEVFdtMRx0taFXS4UaIYQQQgghTSksLAwzZszAqFGjUFJSgsGDB+PYsWNcQqasrAwBAQF49OgRdHR04OrqivXr1wNQTr9avnw5FixYgM8++wwTJkzA7t27sW7dOvj7+2PUqFHQ0dHB/Pnz8fDhw0p3iXtd165dcf78eXz11VcYNGgQGGNo3749xo0bBwAwMzNDu3btsHz5cqSlpYHH43HPZ82axY0za9YsWFlZITQ0FBs2bEB+fj4AYN++fRg/fnyl41a17eHDhzAzM1PZpqamhrt372LPnj3Izs6Gvr4+evfujejoaHTu3BmAsnooOTkZycnJlfrXdsfE7t27c19fv34de/fuhYWFBdLS0qrtI5PJsHDhQjx69Ah6enoYM2YMVq5cqZJQ+/HHH7Fw4UJ4e3sjJycHFhYWWLlyJbeelUgkQnR0NL777js8f/4cbdq0weDBg3H58mWuKkpNTQ2RkZH48ssv0a9fP2hpacHX1xcrVqyo8ZzqIiIigkuiAX99P4KCgrBs2bK3Hv9t8Njb3ueyBcvNzYVUKoVMJqvzPFNCKoo5uA+XD4Sj63BX3LlhCzWmjv6pX0P052OYzhoDnSnBKu1/8Q7BPZYAVvYUD3t9inbde2OqozXUX1X3JDxLwLjIcTDUNMRpz9ONFvf5pCz47roCO2MdHJsxqNGO09iOPH2OKbf/RD9dLfzc3abBxv3nzfs49SwX6zua41Nj/QYblxDSMtH7BVV0PQghjaWoqAipqamwtLSsNblCVOXn58PU1BShoaGYNGlSkx8/JycHw4YNg46ODo4fPw5NTbob9t9BTa/Zur5foHkuhLyFUrnyTnt8NQHUmLJCR1ConL6nplv1LUvLfdTdFDOH23IJKVJ/5etIafLVmjkSQgghhBBCmk5cXBz27duHlJQU3LhxA97e3gDATQlsanp6ejh16hSGDRuGmJiYZomBtEw0z4WQt1CU9xIAoCb+KyvML1Te0pOvZ1hjXwG/8nxvHprmtm/vy83luKQUJfYIIYQQQsjfTEhICBITEyEUCtGzZ09ER0ejdeua/zDemPT19bF06dJmOz5pmSgpRchbKMzNBQCoVbhdLMsrBQ+AWmvjGvsKKJHy1ho7KfW3ndtMCCGEEELead27d8f169ebOwxC3holpQh5C4UvlUkpaLyqlGIK8FgZBLpCCOwH1thXSHfde2NPiuX4T0Y2op/nAaBKKUIIIYQQQghpiSgpRchbKE9KKV4lmPiKUrT58p/QHu0Fnnrlu+pVRJVSb25taibCM3O4560b+I5778v0RkIIIYQQQgh5l1FSipA3xBQKLilVPs2LryhFq08/Bd/Qstb+AjVKfbypq7ICAEBHLRFGGehiomnzzZ0nhBBCCCGEEPJmKClFyBu49L8f8Nuh/QBTpqPKFMr/8xVy8DSrv90lY3+tUqRexULnpG5yS8sAAJs6tYW9hG43SwghhBBCCCEtEc0fIuQNJF/9jUtICTWNkHJKDADgMTl4Ao1q+1VcOJtHOak3llumTErpqKs1cySEEEIIIYQQQt4UJaUIeQOlJcUAgEHec8ATjoc8X1l0KC58CqjVkJRidbyfG932rVpljHF33dNWo6QUIYQQQgghhLRUlJQi5A2UlpQAAAQiCXg8PgRaxegRtw42ydsBtcoLnOcXl2JZxG0UyRVNHep7J+/V1D0AkNAdDAkhhBBCyDtg4sSJ4PF44PF4EAqFsLa2xooVK1BaWvpW4547dw48Hg8vXrxomEDrIDU1FV5eXjAxMYFIJIKZmRk8PDxw9+5dlXaRkZEYMmQIJBIJNDU10bt3b+zevVulTVpaGng8HuLj4+t8/GXLlqFjx47Q0tJCq1atMHz4cMTGxqqMOWnSJFhaWkIsFqN9+/YICgpCyavPaNXJzMyEl5cXbG1twefzMXPmzDrFc+HCBbi7u8PExAQ8Hg+HDx+u1ObQoUNwdnaGvr5+refLGIObm1u1Y+3evRtdu3aFSCSCoaEhAgICVPafOHECDg4OkEgkMDAwwJgxY5CWlqbSJjw8HN26dYOmpiaMjY3x+eef49mzZ299no2BPtER8gbKk1J8vrJCiqdeAl1ZCsCXVzkv78zdp9h9OQ1lZTWXQPGaeE5fSyrIkisY9mY+w/o/nwAAWqmrQcinX2GEEEIIIeTd4OrqiszMTNy7dw9z5szBsmXL8O233zZ3WJzakjYAIJfL4eTkBJlMhkOHDiExMRH79++Hvb29SmJs06ZN8PDwwIABAxAbG4ubN29i/Pjx8Pf3x9y5c98qTltbW2zevBm3bt3CxYsX0a5dOzg7OyMrKwsAcPfuXSgUCmzfvh23b9/G+vXrsW3bNixatKjGcYuLi2FgYIDFixejW7dudY4nPz8f3bp1w5YtW2psM3DgQKxZs6bW8b777rtqP/etW7cOX331FRYsWIDbt2/j1KlTcHFx4fanpqbCw8MDH374IeLj43HixAlkZ2fjH//4B9fm0qVLmDBhAiZNmoTbt2/jwIEDuHLlCiZPnvzW59kYaKFzQt5AqVz5C533qiqqpLQQAKCoZjZZXrHyLyTvSg6lJa5nFfVMhtl3H3LPO2iJmjEaQgghhBBCVGloaMDIyAgA8OWXX+Lnn39GREQE/P39MWPGDPzyyy8oLi7GkCFDsHHjRtjY2AAA/vzzT0ydOhUXL15ESUkJ2rVrh2+//RZ2dnZwdHQEALRq1QoA4Ovri927d+Ply5fw9/fH4cOHoaOjg/nz5+PIkSP44IMP8N133wEA2rVrh0mTJuHevXs4fPgw/vGPf2D37t24ePEiFi5ciGvXrqF169b4+OOPsXr1amhpaeH27dtISUnB6dOnYWFhAQCwsLDAgAEDuPN8+PAh5syZg5kzZ2LVqlXc9jlz5kAoFGL69Onw9PRE37593+g6enl5qTxft24ddu7ciZs3b2LYsGFwdXWFq6srt9/KygqJiYnYunUrQkJCqh23Xbt22LBhAwBg165ddY7Hzc0Nbm5uNbbx8fEBgEoVS6+Lj49HaGgorl27BmNjY5V9z58/x+LFi/HLL79g2LBh3PauXbtyX1+/fh1lZWUIDg4G/9WHy7lz58LDwwNyuRwCgQAxMTFo164dpk+fDgCwtLTElClTak2Y1eU8G8M78hGZkJaDMcZVSmUVPQcAyOQvlPuqSfMWy5VTztRaYjboHfG4WA4AMBcJ8U9jfSyzNm38g7akUjJCCCGEEPJOEYvFKCkpwcSJE3Ht2jVEREQgJiYGjDGMGDECcrny/W1AQACKi4tx4cIF3Lp1C2vWrIG2tjbMzc3x008/AQASExORmZnJJVVmz56NS5cuISIiAlFRUYiOjsaNGzcqxRASEoJu3bohLi4OS5YsQUpKClxdXTFmzBjcvHkT+/fvx8WLFzF16lQAgIGBAfh8Pg4ePIiysrJK4wHAwYMHIZfLq6yImjJlCrS1tbFv374GuYYlJSXYsWMHpFJpjdVNMpkMenp6DXLMxlJQUAAvLy9s2bKFS15WFBUVBYVCgfT0dHTq1AlmZmYYO3YsHj786w/zPXv2BJ/PR1hYGMrKyiCTyfDf//4Xw4cPh0CgLJjo168fHj58iGPHjoExhidPnuDgwYMYMWJEk51rfVClFCH1VFZayt1570lBNgAdlBdISatJ85a8WpgblJN6Y+WLm/fT1UJIR/NmjoYQQgghhDQFxhhYM63LyhPw32h5DcYYTp8+jRMnTsDNzQ2HDx/GpUuX0L9/fwDK9X7Mzc1x+PBheHp64sGDBxgzZgzs7e0BKCt/ypUnWgwNDaGrqwsAePnyJfbs2YO9e/dyFTVhYWEwMTGpFMuHH36IOXPmcM/9/Pzg7e3NradkY2ODjRs3YsiQIdi6dStMTU2xceNGzJ8/H8uXL0evXr3g6OgIb29vLq6kpCRIpdJKlT4AIBQKYWVlhaSkpHpft4oiIyMxfvx4FBQUwNjYGFFRUWjdunWVbZOTk7Fp06Yaq6TeBbNmzUL//v3h4eFR5f779+9DoVBg1apV2LBhA6RSKRYvXgwnJyfcvHkTQqEQlpaWOHnyJMaOHYspU6agrKwM/fr1w7Fjx7hxBgwYgPDwcIwbNw5FRUUoLS2Fu7t7k0/LqytKShFST+V33gOAXHk+AB1I1IQAAC21qv/RKikt/4eUslJvqkChvIaaTXDHPfouEUIIIYS8G5hcgYyll5vl2CYr+oMnrPt7z8jISGhra0Mul0OhUMDLywv/+Mc/EBkZqTKVTV9fHx06dMCdO3cAANOnT8eXX36JkydPYvjw4RgzZozKlK3X3b9/H3K5HH369OG2SaVSdOjQoVLbXr16qTz//fffcfPmTYSHh3PbGGNQKBRITU1Fp06dEBAQgAkTJuDcuXP47bffcODAAaxatQoRERFwcnKq07UQCoW1tgkPD8eUKVO458ePH8egQYMAAI6OjoiPj0d2dja+//57jB07FrGxsTA0NFQZIz09Ha6urvD09FRZM0lbW5v7+p///Ce2bdtWazzR0dEq09e2b98Ob2/vWvvVRUREBM6cOYO4uLhq2ygUCsjlcmzcuBHOzs4AgH379sHIyAhnz56Fi4sLHj9+jMmTJ8PX1xeffvopXr58iaVLl+KTTz5BVFQUeDweEhISMGPGDCxduhQuLi7IzMzEvHnz4O/vj507dzbqeb4JSkoRUk9lr8psweOhqFQOAQC1V9O8eNXcDa74VVJK5Q8tjOaG1Ud5pZTmu7IwFyGEEEIIIRU4Ojpi69atEAqFMDExgbq6OiIiImrt5+fnBxcXFxw9ehQnT57E6tWrERoaimnTpr11TFpaWirP8/LyMGXKFG69oYratm3LfS2RSODu7g53d3cEBwfDxcUFwcHBcHJygo2NDWQyGTIyMipVZ5WUlCAlJUVlce7qjB49WiVZZ2r61/IcWlpasLa2hrW1NRwcHGBjY4OdO3di4cKFXJuMjAw4Ojqif//+2LFjh8rYFe9+p6OjU2ssgDKBV7FfmzZt6tSvLs6cOYOUlBSu2q3cmDFjMGjQIJw7d46rPLOzs+P2GxgYoHXr1njw4AEAYMuWLZBKpVi7di3X5ocffoC5uTliY2Ph4OCA1atXY8CAAZg3bx4A5ZpUWlpaGDRoEIKDgxv1PN8EJaUIqafySil1oZCbZ61WLAMA8MTiKvv8VSlF3lR5UkpcTTUaIYQQQgh5//AEfJis6N9sx66P8kRKRZ06dUJpaSliY2O56XvPnj1DYmKiSvLB3Nwc/v7+8Pf3x8KFC/H9999j2rRpXMVRxfWdrKysIBAIcPXqVS6RJJPJkJSUhMGDB9cYY48ePZCQkFApzprweDx07NgRly8rK9Y++eQTBAYGIjQ0FKGhoSptt23bhoKCAkyYMKHWcSUSCSQSSZ1iUCgUKC7+a8ZKeno6HB0d0bNnT4SFhXGLfperz/mVE4vFb9SvLhYsWAA/Pz+Vbfb29li/fj3c3d0BgFtMPjExEWZmZgCAnJwcZGdnc4vOFxQUVDpXtVczSRSvZpYUFBRAXV29yjaMsUY9zzdBSSlC6ql8kXN1oQZK8p8DsAS/TLmNr61fZZ/iqpJSNRRKMVphm3P6WS5W38/EH3nKOxzqqtOvLUIIIYSQvwsej1evKXTvGhsbG3h4eGDy5MnYvn07JBIJFixYAFNTU25toZkzZ8LNzQ22trZ4/vw5zp49i06dOgFQ3vmOx+MhMjISI0aMgFgshkQiga+vL+bNmwc9PT0YGhoiKCgIfH7ta2AFBgbCwcEBU6dOhZ+fH7S0tJCQkICoqChs3rwZ8fHxCAoKgo+PD+zs7CAUCnH+/Hns2rULgYGBAJQVVWvXrsXcuXMhEong4+MDgUCAI0eOYNGiRQgODkaXLl1UjpuYmFgpls6dO3OLc5fLz8/HypUrMXr0aBgbGyM7OxtbtmxBeno6PD09ASgTUkOHDoWFhQVCQkKQlZXF9a9qAfGKyiuE8vLykJWVhfj4eAiFQpUE4evy8vKQnJzMPU9NTUV8fDz09PS4pGBOTg4ePHiAjIwMlfM1MjJSebyubdu2sLS0BADY2trCw8MDM2bMwI4dO6Cjo4OFCxeiY8eO3F0YR44cifXr12PFihXc9L1FixbBwsIC3bt3BwC4u7tj8uTJ2Lp1Kzd9b+bMmejTp0+V647V5zwbA326I6Se/kpKCaH2Ih8AoJmr3Mczq/qOENz0vcYP773zf4+yuISUgMfDcP26ld8SQgghhBDyLggLC8OMGTMwatQolJSUYPDgwTh27BiXkCkrK0NAQAAePXoEHR0duLq6Yv369QCUU9qWL1+OBQsW4LPPPsOECROwe/durFu3Dv7+/hg1ahR0dHQwf/58PHz4ECKRqMZYunbtivPnz+Orr77CoEGDwBhD+/btMW7cOACAmZkZ2rVrh+XLlyMtLQ08Ho97PmvWLG6cWbNmwcrKCqGhodiwYQPy85Wfi/bt24fx48dXOm5V2x4+fMhVBJVTU1PD3bt3sWfPHmRnZ0NfXx+9e/dGdHQ0OnfuDEB5l7rk5GQkJydX6s9qWSKlPHEDANevX8fevXthYWGBtLS0avtcu3aNSwoByjsfAoCvry92794NQLlm1GeffVbpfIOCgrBs2bIaY6roP//5D2bNmoWRI0eCz+djyJAh+PXXX7mflQ8//BB79+7F2rVrsXbtWmhqaqJfv3749ddfIX41a2fixIl4+fIlNm/ejDlz5kBXVxcffvgh1qxZU+Ox63KejYHHavuuvcdyc3MhlUohk8nqPM+UkPS7CfgxaD50jYzBL26FArjC6PFvsLv7X+hPmQLDWTMr9Zm2Lw6//J6B0NQ/8KdaEljZE/xj3mJY9nJQaXc35y48f/GEgdgAZ8aeabRziL6XBZ+dV9DJWAfHZwxqtOM0hN4xCXhYVILVtmZw1JOgnVij0Y854eZ9nHyWi3UdzOFlUnX1GyHk74PeL6ii60EIaSxFRUVITU2FpaVlrckVoio/Px+mpqYIDQ3FpEmTmvz4OTk5GDZsGHR0dHD8+HFoamo2eQyk6dX0mq3r+wVaMZiQeqo4fY9Xqtwml6jB5Nu1aP3FZJW2JaUKJGTk4sEz5V8O+LWU0/KauJaqJeSkc+TKizy0VdMkpAghhBBCCHnXxcXFYd++fUhJScGNGze4u6eVTwlsanp6ejh16hSGDRuGmJiYZomBtEw0fY+QeiqV/7XQuVyhzOsqtPmQvlqgrqKJYVdwOeUZ97yWnBR5jYIxboFz7WrubNiY3v2UHSGEEEII+bsKCQlBYmIihEIhevbsiejoaLRu3brZ4tHX18fSpUub7fikZaKkFCH1kP/iOZ7cTwEAaEp1IUtXrnXEryZfcvfxSwCAnpYQ1obaUHvIfycyHU1dkfWmCssU3OXSVKPCTkIIIYQQQgDl2kjXr19v7jAIeWuUlCKkjp6m3ccPC2aCMWXljk5rQ7xgTwAAamqlVfaRv1rg/Kcv+8OytRYioy+9E0mpliK/7K8F4jWry/w1AqpoI4QQQgghhJDGR0kpQuoo+0EaGFOAr6YOiX5r6Bp1w321PwAA6oKiKvuUvEqqCNSqynJQdqo6eaVlGHnjHpILlNdVS63229sSQgghhBBCCGlZKClFSB2VyuUAgHYf9IBQ+yP8FpENCNsDADSEJZXaM8a4pJSwGdZDasniXxYgMf+vRJ+DrnYzRkMIIYQQQgghpDFQUoqQOiorVSal1NUFkGUp15JSL8lEK9ljGFhkVW6vYCi/uZ2wivWQGFVKVetRkTLJ119XG/+2s0AbIf2qIoQQQgghhJD3DZVvEFJHZSXKRImaUIgyeRkAQP/pXtjf/j9oagortZeX/ZV0ErxKStV1AtrfPWGVXqRMAFqKhTDSENDUPUIIIYQQQgh5D1FSipA6KitVLmaupi5AqVw5LY//qnpKLNKq1L7k1SLnwF9JKVI36cXKBKCpqHKyjxBCCCGEEELI+4E+KRNSR6VyZaJEXShAfmGB8utX28Tiymsela8nBVS30DmpTnmllKkGJaUIIYQQQggh5H1FSSlC6qjs1ULnauoCKJRFUxC+qpSSiHUqtZeXL3JOd46rsz8Li7HxzydIyFeu2WUqEjRzRIQQQgghhNRu4sSJ4PF44PF4EAqFsLa2xooVK1D6arbFmzp37hx4PB5evHjRMIHWQWpqKry8vGBiYgKRSAQzMzN4eHjg7t27Ku0iIyMxZMgQSCQSaGpqonfv3ti9e7dKm7S0NPB4PMTHx9f5+MuWLUPHjh2hpaWFVq1aYfjw4YiNjVUZc9KkSbC0tIRYLEb79u0RFBSEkpLKN5+qKDMzE15eXrC1tQWfz8fMmTPrFM+FCxfg7u4OExMT8Hg8HD58uN4xA8DKlSvRv39/aGpqQldXt8pjPXjwACNHjoSmpiYMDQ0xb948lZ+hij9nFR+dO3fm2qxevRq9e/eGRCKBoaEhPvroIyQmJtZ6nnWJrzFQUoqQOiqvlFJTF0BNoVx42+jVNDO1VsaV2pcnpahKqu4WJj3CqvuZyCpR/uK1EGs0azx/75W9CCGEEEJIfbi6uiIzMxP37t3DnDlzsGzZMnz77bfNHRantqQNAMjlcjg5OUEmk+HQoUNITEzE/v37YW9vr5IY27RpEzw8PDBgwADExsbi5s2bGD9+PPz9/TF37ty3itPW1habN2/GrVu3cPHiRbRr1w7Ozs7IylLeXOru3btQKBTYvn07bt++jfXr12Pbtm1YtGhRjeMWFxfDwMAAixcvRrdu3eocT35+Prp164YtW7a8ccyA8vp7enriyy+/rHKMsrIyjBw5EiUlJbh8+TL27NmD3bt3Y+nSpVybDRs2IDMzk3s8fPgQenp68PT05NqcP38eAQEB+O233xAVFQW5XA5nZ2fk5+fXeJ61xddo2N+YTCZjAJhMJmvuUEgLcHLHJhYydiSL/vEHtnnKabZ5yml2q4c9S+jQkRXGxXLtSssU7OK9LLbtXDKzCIxkvYOjuH2R3t+y0E8/ZyFjR7KUq5cqHePus7usy+4ubOj+oY16LhfvZTGLwEjmsv58ox6nvj649AdrcyaO+d1KZXseZTVbHBNuprA2Z+LYf9Ozmy0GQsi7g94vqKLrQQhpLIWFhSwhIYEVFhY2dyj15uvryzw8PFS2OTk5MQcHB5aTk8N8fHyYrq4uE4vFzNXVlSUlJXHt0tLS2KhRo5iuri7T1NRkdnZ27OjRoyw1NZVB+XdS7uHr68sYYyw3N5d5eXkxTU1NZmRkxNatW8eGDBnCZsyYwY1rYWHBVqxYwXx8fJhEIuH6RkdHs4EDBzKRSMTMzMzYtGnTWF5eHmOMsbi4OAaApaWlVXuuDx48YAKBgM2ePbvSvo0bNzIA7LfffmOMMe4c4uLi6n9RXyn/d+fUqVPVtlm7di2ztLSs85ivX6u6AsB+/vnnWtvVFHNYWBiTSqWVth87dozx+Xz2+PFjbtvWrVuZjo4OKy4urvI4P//8M+PxeDV+v54+fcoAsPPn6/bZr7r4qlLTa7au7xeoUoqQOiqTK6t3FBW28V/dYY8nNeC2HbuVCe//i8Xq48ryVts2kqoHpDIcFaUKhsxi5XTIVbammGDautliodo2QgghhBDytsRiMUpKSjBx4kRcu3YNERERiImJAWMMI0aMgPzV8iABAQEoLi7GhQsXcOvWLaxZswba2towNzfHTz/9BABITExEZmYmNmzYAACYPXs2Ll26hIiICERFRSE6Oho3btyoFENISAi6deuGuLg4LFmyBCkpKXB1dcWYMWNw8+ZN7N+/HxcvXsTUqVMBAAYGBuDz+Th48CDKysqqPK+DBw9CLpdXWRE1ZcoUaGtrY9++fQ1yDUtKSrBjxw5IpdIaq5tkMhn09PQa5Jhvq64xvy4mJgb29vZo06YNt83FxQW5ubm4fft2lX127tyJ4cOHw8LCotpxZTIZALwz1+d16s0dACEtRfn0vTJFeXKqDHwFHwwAX+OvaWYPnysXQW+trYGORhJM/dC6yWNtiV5W+EdPV51+NRFCCCGEEIAxxiVvmppAIHijtWEZYzh9+jROnDgBNzc3HD58GJcuXUL//v0BAOHh4TA3N8fhw4fh6emJBw8eYMyYMbC3twcAWFlZcWOVJxIMDQ25dX5evnyJPXv2YO/evRg2bBgAICwsDCYmJpVi+fDDDzFnzhzuuZ+fH7y9vbn1lGxsbLBx40YMGTIEW7duhampKTZu3Ij58+dj+fLl6NWrFxwdHeHt7c3FlZSUBKlUCmPjykuYCIVCWFlZISkpqd7XraLIyEiMHz8eBQUFMDY2RlRUFFq3rvqP1snJydi0aRNCQkLe6phvqz4xV+Xx48cqCSkA3PPHjx9Xap+RkYHjx49j79691Y6pUCgwc+ZMDBgwAF26dKlzLE2JPvkRUkflC52zMmVSisdKwV7Ny+ZVSEoVyZW1VG5djPD1R+/mC/9dlFuqTEqJ+TwI+FSrRAghhBBClGscrVq1qlmOvWjRIgiFdb8bdGRkJLS1tSGXy6FQKODl5YV//OMfiIyMRN++fbl2+vr66NChA+7cuQMAmD59Or788kucPHkSw4cPx5gxY9C1a9dqj3P//n3I5XL06dOH2yaVStGhQ4dKbXv16qXy/Pfff8fNmzcRHh7ObWOMQaFQIDU1FZ06dUJAQAAmTJiAc+fO4bfffsOBAwewatUqREREwMnJqU7Xoi7XLTw8HFOmTOGeHz9+HIMGDQIAODo6Ij4+HtnZ2fj+++8xduxYxMbGwtDQUGWM9PR0uLq6wtPTE5MnT+a2a2v/dXf0f/7zn9i2bVut8URHR8PNzY17vn37dnh7e9far1xdY24oe/bsga6uLj766KNq2wQEBOCPP/7AxYsXuW3+/v744YcfuOd5eXmNEl9d0fQ9QuqorLxSqkSZnBK+es4TCMDX1OTaFcuVyRWRoJaXF6t+/h6rYd/7qjwppaOu1syREEIIIYQQUn/lSYl79+6hsLAQe/bsqVOllZ+fH+7fvw8fHx/cunULvXr1wqZNmxokJi0tLZXneXl5mDJlCuLj47nH77//jnv37qF9+/ZcO4lEAnd3d6xcuRK///47Bg0ahODgYADK6iqZTIaMjIxKxyspKUFKSgpsbW1rjW306NEqcVRMoGlpacHa2hoODg7YuXMn1NXVsXPnTpX+GRkZcHR0RP/+/bFjxw6VfRXHXbFiRe0XCsoEXsV+o0ePrlO/+sRcEyMjIzx58kRlW/lzIyMjle2MMezatQs+Pj7VJgCnTp2KyMhInD17FmZmZtz2FStWqJxnc6NKKULqqKxUmYxSvKqO4ivk0P/SH5rdu4MvFnPtirikVFXJlb9fsqk2+WVl+FfCnziRnQsA0BPQryVCCCGEEKIkEAhqvataYx67PsqTEhV16tQJpaWliI2N5abvPXv2DImJibCzs+PamZubw9/fH/7+/li4cCG+//57TJs2jUs4VFzfycrKCgKBAFevXkXbtm0BKNcNSkpKwuDBg2uMsUePHkhISKgUZ014PB46duyIy5cvAwA++eQTBAYGIjQ0FKGhoSptt23bhoKCAkyYMKHWcSUSCSSSatbffY1CoUBxcTH3PD09HY6OjujZsyfCwsLA56sWBNTn/MqJxeI36led12OuTb9+/bBy5Uo8ffqUq66KioqCjo6Oys8KoLzDXnJyMiZNmlRpHMYYpk2bhp9//hnnzp2DpaWlyn5DQ8NGq956E/Tpj5A6Ki1f6PxVRQ9fIYfhjBmV2pVP39NQp0LEujiX85JLSAGAS2tpM0ZDCCGEEELeJTwer15T6N41NjY28PDwwOTJk7F9+3ZIJBIsWLAApqam8PDwAADMnDkTbm5usLW1xfPnz3H27Fl06tQJAGBhYQEej4fIyEiMGDECYrEYEokEvr6+mDdvHvT09GBoaIigoCDw+fxaK7MCAwPh4OCAqVOnws/PD1paWkhISEBUVBQ2b96M+Ph4BAUFwcfHB3Z2dhAKhTh//jx27dqFwMBAAEDbtm2xdu1azJ07FyKRCD4+PhAIBDhy5AgWLVqE4ODgSusXJSYmVoqlc+fOlRJ/+fn5WLlyJUaPHg1jY2NkZ2djy5YtSE9Ph6enJwBlQmro0KGwsLBASEgIsrKyuP6vVxS9rrwyKC8vD1lZWYiPj4dQKKyU9KkoLy8PycnJ3PPU1FTEx8dDT08Pbdu2rVPMAPDgwQPk5OTgwYMHKCsr42KxtraGtrY2nJ2dYWdnBx8fH6xduxaPHz/G4sWLERAQAI0Ky8UAygXO+/btW+U6UQEBAdi7dy+OHDkCiUTCrUcllUohrlBM8bra4msslJQipI646XuvklI8VvWCi0WlNVVK1exNFlJs6f4sVF7XQa20McvCCL2lWrX0IIQQQgghpOUICwvDjBkzMGrUKJSUlGDw4ME4duwYl5ApKytDQEAAHj16BB0dHbi6umL9+vUAAFNTUyxfvhwLFizAZ599hgkTJmD37t1Yt24d/P39MWrUKOjo6GD+/Pl4+PAhRCJRjbF07doV58+fx1dffYVBgwaBMYb27dtj3LhxAAAzMzO0a9cOy5cvR1paGng8Hvd81qxZ3DizZs2ClZUVQkNDsWHDBuTn5wMA9u3bh/Hjx1c6blXbHj58qDKtDADU1NRw9+5d7NmzB9nZ2dDX10fv3r0RHR2Nzp07A1BWDyUnJyM5OblS/9qWQenevTv39fXr17F3715YWFggLS2t2j7Xrl2Do6Mj93z27NkAAF9fX+zevbtOMQPA0qVLsWfPnkqxnD17FkOHDoWamhoiIyPx5Zdfol+/ftDS0oKvr2+l6YcymQw//fQTdyfG123duhUAMHToUJXtYWFhmDhxYrXnWVt8jYXH/o6L17ySm5sLqVQKmUwGHR2d5g6HvKOSYi/hTvRZPPjjJkoKC2DTawgepvSEVl4qJv5QuVxyyn+v4cTtJ/j6oy7wcVC9NefRf36LRMVdsLIn+HjOQlj1GaB6rOdJGBMxBvoifZwbd67RzulScja8/y8WHY0k+HVmzSW+jW1Zcjq2PczCv8wNsdS68h1DmsPEW/fxa3YuQjqY458m+s0dDiGkmdH7BVV0PQghjaWoqAipqamwtLSsNblCVOXn58PU1BShoaFVTulqbDk5ORg2bBh0dHRw/PhxaFZYc5e8v2p6zdb1/QLNLyKkFhd+2IXkq7+hpLDg/9m787io6v3x468ZYFiGTVAUEAUE19TcF3IhF9BE21zS61Jq0nXDzLWbqJFmgeV2NfuZeL8XzauZkplGVoZK5prmgoKiiLgrsgjDLL8/BkYnEFBRUN/Px4OHc875nHM+5+AMM+95f94fALIzjMPLrPJvFts+O8+YKaVWFZcpVbkyoSpDSDpbZxzuaF8JhzsapAaYEEIIIYSohA4ePMiaNWtITk7mwIEDplniCocEPm4uLi789NNPdOnShYSEhArpg3gyyfA9IUqRV5CK2rjLa5zYo+D6VWMxQav8a8W2z8w1DutztLm/wojPqsKglNqi8gWlhBBCCCGEqKwiIyNJTExEpVLRokUL4uPjqVq1aoX1x9XVlRkzZlTY+cWTSYJSQpRCk5sLgJtvG04duIiFRT5VLh3H+cbuYttn5hoLojvYlPb0qrgsnMqUr5VVUINLbXH/NbgeFUWlukNCCCGEEEKYa9asGfv376/obgjx0CQoJUQJdNp89DpjkEmhMGY+qdXXaPLXF6RXNw9cfP7TSbb+dZFz143D/BwkU6pEu29ksf7Sdf7MNN4ve8mUEkIIIYQQQohnigSlhChBfm6e6bFCaZyKVq8zzhZnsDQPSi35JYl8nTH7ydbKAs8q955uU8CEE+c4m6sxLVe3liCeEEIIIYQQQjxLJCglRAny84xD95QWluTrjMPMrhYUOFda3hluptcbTAGppYOa08TLGSfb4oIshmIeFdfq6S6wfTNfawpITahdHT87a9o6qSu4V0IIIYQQQgghHicJSglRAq3GmCllqVJx8vIxwI5cvXGdtdWdoFO+Xm96HOBfVYqclyKjoI6UrVLJFF/3Cu6NEEIIIYQQQoiKIEVchCiBTmusJ2VhaUlG+l8A2OuMs+t52FUxtdPq7mQ2WSlLe1pJEe2sghn37C3lJUgIIYQQQgghnlXyiVCIEtwdlMrWGIfyORbEnyyr+Zna5evuZEpZWTx40OlZmfWtcMY9h0o0454QQgghhBBCiMdLglJClKBw5j2lpRVavTFgZGllY1xn72Rql39XppSFsqTA0rMRdCqJzmDgar7xvlb2TCnD013aSwghhBBCCCEqVOX+RChEBbuTKWWBoSAZSlnwQKFSmdppC2pKWVkoUCgk8HQvJ7JvUz/+CMP/SgHAXWbcE0IIIYQQT4Fhw4ahUBg/C6hUKvz8/Jg9ezbags8TD+rXX39FoVBw8+bN8uloGZw5c4aBAwfi4eGBjY0NNWvWpE+fPpw4ccKs3ebNm+nUqRMODg7Y2dnRqlUroqOjzdqkpKSgUCg4dOhQmc8/c+ZM6tevj1qtpkqVKnTt2pU9e/aYHXP48OH4+Phga2tLnTp1CA8PR6PRlHBUo5iYGJo2bYqdnR3u7u689dZbXLt2rcR9fvvtN0JCQvDw8EChULBx48Zi2x0/fpzevXvj5OSEWq2mVatWnDt3zrR91KhR1KlTB1tbW6pVq1bsPd27dy9dunTB2dmZKlWqEBQUxJ9//lns+ZKSknBwcMDZ2bnU6y7rNVQECUoJUQJ9wR8RpYUlBr3x6WIKSlndCUrla40pNVYW9/GUqgRpOI97lr+Nl26SWTDU0Uqh4I0aro/1/GUlYUUhhBBCCHG/goODSU9P59SpU0ycOJGZM2fy6aefVnS3TMoStMnPz6dbt25kZGSwYcMGEhMTWbt2LY0bNzYLjC1atIg+ffoQEBDAnj17OHz4MAMGDCA0NJT33nvvofpZt25dFi9ezJEjR9i5cyfe3t50796dK1euAHDixAn0ej1ffPEFR48e5bPPPmPZsmVMnz69xOPu2rWLIUOGMHz4cI4ePcq6dev4448/GDlyZIn7ZWdn07RpU5YsWXLPNsnJybzwwgvUr1+fX3/9lcOHD/PBBx9gY2NjatOiRQtWrlzJ8ePH2bZtGwaDge7du6MrmOU9KyuL4OBgatWqxZ49e9i5cycODg4EBQWRn59vdr78/HzeeOMNOnToUGLf7+caKorMvidECe5kSlmhNE66h+21LAAU1tamdoWz71mWOHRPpOYa/xBO9K7O2FrVsbmfIJ4QQgghhBCVmLW1NTVq1ADgnXfe4dtvvyU2NpbQ0FDGjx/Pd999R15eHp06dWLhwoX4+/sDcPbsWcaMGcPOnTvRaDR4e3vz6aef0rBhQwIDAwGoUsU4ydLQoUOJjo4mMzOT0NBQNm7ciKOjI5MnT2bTpk08//zzfP755wB4e3szfPhwTp06xcaNG3n11VeJjo5m586dTJs2jX379lG1alVeeeUV5s6di1qt5ujRoyQnJ7N9+3Zq164NQO3atQkICDBdZ2pqKhMnTiQsLIw5c+aY1k+cOBGVSsW4cePo27cvbdq0eaD7OHDgQLPl+fPns2LFCg4fPkyXLl0IDg4mODjYtN3X15fExESWLl1KZGTkPY+bkJCAt7c348aNA8DHx4dRo0Yxb968EvvTo0cPevToUWKb999/n549e/LJJ5+Y1tWpU8eszdtvv2167O3tTUREBE2bNiUlJYU6depw4sQJrl+/zuzZs/Hy8gIgPDycJk2acPbsWfz87tQ0/te//kX9+vXp0qULu3fvLrFvZb2GiiKfCIUowZ2aUha4XjQGnFQ3sgGwcLpTU6pw9j1VaTWSKkvMqoL6kVlQ4NzDWiUBKSGEEEIIUSqDwYBOl1MhP4aHHNlga2uLRqNh2LBh7Nu3j9jYWBISEjAYDPTs2dOU/TJ69Gjy8vL47bffOHLkCPPmzcPe3h4vLy+++eYbABITE0lPT2fBggUAvPvuu+zatYvY2Fji4uKIj4/nwIEDRfoQGRlJ06ZNOXjwIB988AHJyckEBwfz2muvcfjwYdauXcvOnTsZM2YMANWqVUOpVLJ+/XpTBs/frV+/nvz8/GIzokaNGoW9vT1r1qx5qHtXSKPRsHz5cpycnGjatOk922VkZODi4lLisdq1a0dqaipbtmzBYDBw6dIl1q9fT8+ePR+qj3q9nu+//566desSFBSEm5sbbdq0KXGIXHZ2NitXrsTHx8cUgKpXrx6urq6sWLECjUbD7du3WbFiBQ0aNMDb29u0788//8y6desqZdbTg5BMKSFKcPfse1b5VuSpQFvNhqq9x+Dcv5+pXeHse5bKJ2v43uOWWfCHrbIXOBdCCCGEEJWDXn+bX3c0rpBzd+50BAsLu/vez2AwsH37drZt20aPHj3YuHEju3bton379oCxrpGXlxcbN26kb9++nDt3jtdee43GjY3X6evrazpWYaDFzc3NVDsoMzOTVatWsXr1arp06QLAypUr8fDwKNKXF198kYkTJ5qWR4wYwaBBgwgLCwPA39+fhQsX0qlTJ5YuXYqnpycLFy5k8uTJzJo1i5YtWxIYGMigQYNM/Tp58iROTk64u7sXOZ9KpcLX15eTJ0/e93272+bNmxkwYAA5OTm4u7sTFxdH1apVi22blJTEokWLSsySAggICCAmJob+/fuTm5uLVqslJCTkoYM7ly9fJisri48//piIiAjmzZvH1q1befXVV/nll1/o1KmTqe2///1vJk+eTHZ2NvXq1SMuLg5VQa1iBwcHfv31V15++WU+/PBDwPj72bZtG5aWxtDNtWvXGDZsGP/9739xdHR8qH5XFvLJUIgS3B2UUmqNRbk1Dd2oNno0llWqcOHmbaZ+c5iPfzAWqLO0KDkFSfGYazhVNplaY/DOwcKignsihBBCCCFE+dq8eTP29vbY2NjQo0cP+vfvz7Bhw7C0tDQbyubq6kq9evU4fvw4AOPGjSMiIoKAgADCw8M5fPhwiec5ffo0+fn5tG7d2rTOycmJevXqFWnbsmVLs+U///yT6Oho7O3tTT9BQUHo9XrOnDkDGDO3Ll68SExMDO3atWPdunU0atSIuLi4Mt8L1V2TQt1LTEyMWT/i4+NN2wIDAzl06BC7d+8mODiYfv36cfny5SLHSEtLIzg4mL59+5rVhrr7uKGhoQAcO3aM8ePHM2PGDPbv38/WrVtJSUkxbY+PjzfbLyYmpkzXqi8o5dKnTx8mTJjA888/z9SpU+nVqxfLli0zazto0CAOHjzIjh07qFu3Lv369SM3NxeA27dvM3z4cAICAvj999/ZtWsXzz33HC+99BK3b98GYOTIkQwcOJCOHTsW25cHvYaKJJlSQpTAVOjc0goUxhdWpe2dp83aval8vTfVtFzNwRpRPIPBwI184/10tJSglBBCCCGEKJ1SaUvnTkcq7Nz3IzAwkKVLl6JSqfDw8MDS0pLY2NhS9xsxYgRBQUF8//33/Pjjj8ydO5eoqCjGjh37oF03UavVZstZWVmMGjXKVFfpbrVq1TI9dnBwICQkhJCQECIiIggKCiIiIoJu3brh7+9PRkYGFy5cKJKdpdFoSE5OJigoqNS+9e7d2yxY5+npadZvPz8//Pz8aNu2Lf7+/qxYsYJp06aZ2ly4cIHAwEDat2/P8uXLzY5992x/hRlFc+fOJSAggEmTJgHQpEkT1Go1HTp0ICIigpYtW5rtV7169VKvAaBq1apYWlrSsGFDs/UNGjRg586dZuucnJxwcnLC39+ftm3bUqVKFb799lveeOMNVq9eTUpKCgkJCSgLRuCsXr2aKlWqsGnTJgYMGMDPP/9MbGysKSvMYDCg1+uxtLRk+fLlvPHGGw90DRVJglJClCAvx1g/ysraGn1BUMrS+k5AJTPXGGTp4F+Vrg2qE1jP7fF38gkw/vg51l68blr2sZXgnRBCCCGEKJ1CoXigIXQVoTCQcrcGDRqg1WrZs2ePafjetWvXSExMNAtieHl5ERoaSmhoKNOmTePLL79k7Nixpoyju+s7+fr6YmVlxd69e02BpIyMDE6ePHnPDJpCzZs359ixY0X6WRKFQkH9+vVNBbVff/11pkyZQlRUFFFRUWZtly1bRk5ODkOGDCn1uA4ODjg4OJSpD3q9nry8PNNyWloagYGBphntlH8ro1Lc9eXk5JiGwRWyKBjBYTAYsLW1va/7UkilUtGqVSsSExPN1p88edJULL44BoMBg8Fguq6cnByUSiUKxZ3RN4XLhdlYCQkJZv8XNm3axLx589i9ezeenp4PfA0VSYJSQhTj2vlUNkV+SObVqwDo9Y5oVM4AWKjuPG1yCwp3t6ztwtD23mU4cmnD+ypLJfTyc0urY91dAam2TmpcVfLSI4QQQgghnn7+/v706dOHkSNH8sUXX+Dg4MDUqVPx9PSkT58+AISFhdGjRw/q1q3LjRs3+OWXX2jQoAFgnPlOoVCwefNmevbsia2tLQ4ODgwdOpRJkybh4uKCm5sb4eHhRQIaxZkyZQpt27ZlzJgxjBgxArVazbFjx4iLi2Px4sUcOnSI8PBwBg8eTMOGDVGpVOzYsYOvvvqKKVOmAMaMqk8++YT33nsPGxsbBg8ejJWVFZs2bWL69OlERETw3HPPmZ337wEbgEaNGmFlZWW2Ljs7m48++ojevXvj7u7O1atXWbJkCWlpafTt2xcwBqQ6d+5M7dq1iYyM5MqVK6b9C2c/LE5ISAgjR45k6dKlBAUFkZ6eTlhYGK1bty62HlehrKwskpKSTMtnzpzh0KFDuLi4mIKCkyZNon///nTs2JHAwEC2bt3Kd999x6+//goYh1yuXbuW7t27U61aNc6fP8/HH3+Mra2tqdB6t27dmDRpEqNHj2bs2LHo9Xo+/vhjLC0tTbMwFv6/KLRv3z6USmWR+/0g11BR5JOhEMU4feAPbqRfMC2fO26DhbWxsJ6l7Z1Mqdx8Y1DK2krKs93L+VwNesBKoeBQ+0a4WD05Q/ee7QpgQgghhBCiPKxcuZLx48fTq1cvNBoNHTt2ZMuWLaaAjE6nY/To0Zw/fx5HR0eCg4P57LPPAOOQtlmzZjF16lTefPNNhgwZQnR0NPPnzyc0NJRevXrh6OjI5MmTSU1NxcbGpsS+NGnShB07dvD+++/ToUMHDAYDderUoX///gDUrFkTb29vZs2aRUpKCgqFwrQ8YcIE03EmTJiAr68vUVFRLFiwgOxs4wiTNWvWMGDAgCLnLW5damoqNWvWNFtnYWHBiRMnWLVqFVevXsXV1ZVWrVoRHx9Po0aNAIiLiyMpKYmkpKQi+5c0Y+KwYcPIzMxk8eLFTJw4EWdnZ1588UXmzZtX4j3bt2+fKSgExpkPAYYOHUp0dDQAr7zyCsuWLWPu3LmMGzeOevXq8c033/DCCy8AYGNjQ3x8PJ9//jk3btygevXqdOzYkd27d+PmZhxtU79+fb777jtmzZpFu3btUCqVNGvWjK1btxZbVP5+lOUaKorC8LDzXD7Bbt26hZOTExkZGU9N5XpRPnb89yv2fbeBRp26cj6pHnk51qizUnDMTMN9nCfturwFwOiYA3x/JJ2ZIQ0ZFuBT6nG3DI7khO4EBt1FXp4wmTptzdNrk24k8UrsK7jYuLCj/45Hcm0Au5OvMvDLPdStbs+PEzqVvsPDnOtGFq8eSsLPzpqdbRqUvkMl8NaRM2y5msG8ujUZ6ln8LB9CiGeHvF8wJ/dDCPGo5ObmcubMGXx8fEoNrghz2dnZeHp6EhUVxfDhwx/7+a9fv06XLl1wdHTkhx9+wM7uyRhyKR5OSc/Zsr5fkPQOIYqRk3ETABfPmoCxOGDdk9E0SFyNle2dF9jCTCmbJyj7526PIyR9q2CI45NU3LyUrGchhBBCCCEq1MGDB1mzZg3JyckcOHCAQYMGAZiGBD5uLi4u/PTTT3Tp0oWEhIQK6YN4MsnwPSGKoSmYclNla4cu31hUTqk3BlesbOxN7QprSj2pQanH4WbBDIZOT1BQSgghhBBCiMouMjKSxMREVCoVLVq0ID4+nqpVKy7L39XVlRkzZlTY+cWTSYJSQhRDXxCAUlpYoNMag1KWBcGVqo53pirNLQhY2TxhNaUeR0H1G/laIs9c5I8M4/hyD2urUvYQQgghhBBClEWzZs3Yv39/RXdDiIcmQSkhimEomGZToVCahrgVBqVcHO7M6JCVa1xn/wABF0MJZbSfhlJvGy7dYEXaVdNyM0d1BfZGCCGEEEIIIURlI0EpIYqh1+sL/r2zzlJvDEBZqe4UcMu4nQ+Ak21Zg1JPfrCprC7lGe9NO2c1/Wu48Er1KhXcIyGEEEIIIYQQlYkEpYQohr4gUyozPwtwAkBhMAalFBYWHEq9yaFzN7ieowHuJygFPIahc5XBtXzj/epQxYEB7q4V3BshhBBCCCGEEJWNBKWEKEZhUEqjMwZWDOhRGoxpU3kGBW8s/53b+YVD/MBZXT71khRP0bRvhUEpVyt5mRFCCCGEEEIIUZR8WhSiGIWFznVa4xA0nSLftO22XmEKSL3UxJ22Pi442pQ1KPX0BJ1Kc73gHrk8wUGpZ2ewpRBCCCGEEEI8fk/up0UhHqHCQuc6rXF4nkGpNW3LLwgsWSoVLBnY/PF37glxTSOZUkIIIYQQQggh7k0+LQpRDL3OOFRPl28MStnk3QlKaQqKn1tZKB/uJE/BDHvFib+eya83Mkm+nQeAq0peZoQQQgghhBBCFPWQn6qFeDqZhu/dvAWAldYYlLKsUYN8vTGYZGXx7AzFK6scnZ4hR86w5NxlAKpYWuBra13BvRJCCCGEEOLRGjZsGAqFAoVCgUqlws/Pj9mzZ6PVakvfuQS//vorCoWCmzdvlk9Hy+DMmTMMHDgQDw8PbGxsqFmzJn369OHEiRNm7TZv3kynTp1wcHDAzs6OVq1aER0dbdYmJSUFhULBoUOHynz+mTNnUr9+fdRqNVWqVKFr167s2bPH7JjDhw/Hx8cHW1tb6tSpQ3h4OBqNptRjx8TE0LRpU+zs7HB3d+ett97i2rVrJe6zdOlSmjRpgqOjI46OjrRr144ffvjBtP369euMHTuWevXqYWtrS61atRg3bhwZGRmmNtHR0ab/H3//uXz5sqldXl4e77//PrVr18ba2hpvb2+++uors/58/vnnpnN5eXkxYcIEcnNzS7yGDRs20L17d1xdXe/79/GoSQqDEMUoLHSuyzVm+2DQ4hEVid3zz5NckEWlsnzyY7rlnat1POs2t/XG+/N2zWoEVXXESinBOyGEEEII8fQLDg5m5cqV5OXlsWXLFkaPHo2VlRXTpk2r6K4BoNFoUKlUJbbJz8+nW7du1KtXjw0bNuDu7s758+f54YcfzAJjixYtIiwsjClTprB06VJUKhWbNm0iNDSUv/76i8jIyAfuZ926dVm8eDG+vr7cvn2bzz77jO7du5OUlES1atU4ceIEer2eL774Aj8/P/766y9GjhxJdnZ2iefdtWsXQ4YM4bPPPiMkJIS0tDRCQ0MZOXIkGzZsuOd+NWvW5OOPP8bf3x+DwcCqVavo06cPBw8epFGjRly4cIELFy4QGRlJw4YNOXv2LKGhoVy4cIH169cD0L9/f4KDg82OO2zYMHJzc3FzczOt69evH5cuXWLFihX4+fmRnp6OvuDzFcDq1auZOnUqX331Fe3bt+fkyZOmgOj8+fPveQ3Z2dm88MIL9OvXj5EjR5b6O3icJCglRDEMBZlShoK6SAqDFqeXXgIg/7wx4q162OF7JZ3/CS2xfUtrvG+N7G2Y7e9Zwb0RQgghhBDi8bG2tqZGjRoAvPPOO3z77bfExsYSGhrK+PHj+e6778jLy6NTp04sXLgQf39/AM6ePcuYMWPYuXMnGo0Gb29vPv30Uxo2bEhgYCAAVapUAWDo0KFER0eTmZlJaGgoGzduxNHRkcmTJ7Np0yaef/55Pv/8cwC8vb0ZPnw4p06dYuPGjbz66qtER0ezc+dOpk2bxr59+6hatSqvvPIKc+fORa1Wc/ToUZKTk9m+fTu1a9cGoHbt2gQEBJiuMzU1lYkTJxIWFsacOXNM6ydOnIhKpWLcuHH07duXNm3aPNB9HDhwoNny/PnzWbFiBYcPH6ZLly4EBwebBXh8fX1JTExk6dKlJQalEhIS8Pb2Zty4cQD4+PgwatQo5s2bV2J/QkJCzJY/+ugjli5dyu+//06jRo147rnn+Oabb0zb69Spw0cffcQ//vEPtFotlpaW2NraYmtra2pz5coVfv75Z1asWGFat3XrVnbs2MHp06dxcXEBjL/Du+3evZuAgADTPfL29uaNN94wyyQrzuDBgwFjllll8+SnegjxCJgypQpmkFMY7sy+pynIlLJ6gEwpxd3BpgqMOykeUfJSdsG9UVtYPJoTCCGEEEKIZ4rBYCBbp6uQH8ND1oC1tbVFo9EwbNgw9u3bR2xsLAkJCRgMBnr27El+vvEzxujRo8nLy+O3337jyJEjzJs3D3t7e7y8vEzBjsTERNLT01mwYAEA7777Lrt27SI2Npa4uDji4+M5cOBAkT5ERkbStGlTDh48yAcffEBycjLBwcG89tprHD58mLVr17Jz507GjBkDQLVq1VAqlaxfvx5dwWeiv1u/fj35+fm89957RbaNGjUKe3t71qxZ81D3rpBGo2H58uU4OTnRtGnTe7bLyMgwBXLupV27dqSmprJlyxYMBgOXLl1i/fr19OzZs8z90el0fP3112RnZ9OuXbsS++Po6IilZfF5QP/5z3+ws7Pj9ddfN62LjY2lZcuWfPLJJ3h6elK3bl3ee+89bt++bWrTvn179u/fzx9//AHA6dOn2bJly31dQ2UjmVJCFKPwBVifX/hCfNfse4VBqUeYKfWkuhOUknsjhBBCCCEeXo5eT53fjlTIuZM7Nn6gL1sNBgPbt29n27Zt9OjRg40bN7Jr1y7at28PGOsaeXl5sXHjRvr27cu5c+d47bXXaNy4MWDM/ClUGGhxc3PD2dkZgMzMTFatWsXq1avp0qULACtXrsTDw6NIX1588UUmTpxoWh4xYgSDBg0iLCwMAH9/fxYuXEinTp1YunQpnp6eLFy4kMmTJzNr1ixatmxJYGAggwYNMvXr5MmTODk54e7uXuR8KpUKX19fTp48ed/37W6bN29mwIAB5OTk4O7uTlxcHFWrVi22bVJSEosWLSp1yGBAQAAxMTH079+f3NxctFotISEhLFmypNT+HDlyhHbt2pGbm4u9vT3ffvstDRs2LLbt1atX+fDDD3n77bfvebwVK1YwcOBAs+yp06dPs3PnTmxsbPj222+5evUq//znP7l27RorV64EjFlkV69e5YUXXsBgMKDVagkNDWX69OmlXkNlJZ8chfgbnVaLoSAolZdjB4CCO98SaLQSlLqX7IL7JkEpIYQQQgjxrNm8eTP29vbY2NjQo0cP+vfvz7Bhw7C0tDQbyubq6kq9evU4fvw4AOPGjSMiIoKAgADCw8M5fPhwiec5ffo0+fn5tG7d2rTOycmJevXqFWnbsmVLs+U///yT6Oho7O3tTT9BQUHo9XrOnDkDGDO3Ll68SExMDO3atWPdunU0atSIuLi4Mt+L0mpXgTE4d3c/4uPjTdsCAwM5dOgQu3fvJjg4mH79+pkVBC+UlpZGcHAwffv2NauVdPdxQ0NDATh27Bjjx49nxowZ7N+/n61bt5KSkmLaHh8fb7ZfTEyM6Xj16tXj0KFD7Nmzh3feeYehQ4dy7NixIv25desWL730Eg0bNmTmzJnFXndCQgLHjx9n+PDhZuv1ej0KhYKYmBhat25Nz549mT9/PqtWrTJlS/3666/MmTOHf//73xw4cIANGzbw/fff8+GHH5Z6TysryZQS4i6xUXM49cdu03LGTX+UFqDgzvC9/IcqdF7yuDlFKdsrq2ydjm8v3WRRwax7dhKUEkIIIYQQ5cBOqSS5Y+MKO/f9CAwMNBX99vDwwNLSktjY2FL3GzFiBEFBQXz//ff8+OOPzJ07l6ioKMaOHfugXTdRq9Vmy1lZWYwaNcpUV+lutWrVMj12cHAgJCSEkJAQIiIiCAoKIiIigm7duuHv709GRgYXLlwokp2l0WhITk4mKCio1L717t3bLFjn6XmnJq1arcbPzw8/Pz/atm2Lv78/K1asMCsaf+HCBQIDA2nfvj3Lly83O/bds8s5OjoCMHfuXAICApg0aRIATZo0Qa1W06FDByIiImjZsqXZftWrVzc9LpxREaBFixbs3buXBQsW8MUXX5jaZGZmEhwcjIODA99++y1WVlbFXvf/+3//j+eff54WLVqYrXd3d8fT0xMnJyfTugYNGmAwGDh//jz+/v588MEHDB48mBEjRgDQuHFjsrOzefvtt3n//fdLvKeVlQSlhCig1WjMAlIKpSNKC2scM07jnLuLpMtvseSXJL49mAaAi13xLzLPoiXnLjM/5ZJpuZG9bQmtnxxPZrl5IYQQQoinh0KheGLqlRYGUu7WoEEDtFote/bsMQ3fu3btGomJiWbDv7y8vAgNDSU0NJRp06bx5ZdfMnbsWFPG0d31nXx9fbGysmLv3r2mQFJGRgYnT56kY8eOJfaxefPmHDt2rEg/S6JQKKhfvz67dxs/K73++utMmTKFqKgooqKizNouW7aMnJwchgwZUupxHRwccHBwKFMf9Ho9eXl5puW0tDQCAwNp0aIFK1euRPm3AGJx15eTk1OkxpNFwf8tg8GAra1tme/L3/tz69YtgoKCsLa2JjY2Fhsbm2L3y8rK4n//+x9z584tsi0gIIB169aRlZWFvb09YBwqqVQqqVmzpuka/n6td1/D/dzTykKCUkIUyLx+FQBLlTVt+33I3s0XUFgdoeXB5Vyua8d/ElJMASmAFrWrPOQZn56Qx+4bWQDYKhX8w8OVf3i4VnCPhBBCCCGEqHj+/v706dOHkSNH8sUXX+Dg4MDUqVPx9PSkT58+AISFhdGjRw/q1q3LjRs3+OWXX2jQoAFgnPlOoVCwefNmevbsia2tLQ4ODgwdOpRJkybh4uKCm5sb4eHhKJVKFKXMaDRlyhTatm3LmDFjGDFiBGq1mmPHjhEXF8fixYs5dOgQ4eHhDB48mIYNG6JSqdixYwdfffUVU6ZMAYwZVZ988gnvvfceNjY2DB48GCsrKzZt2sT06dOJiIjgueeeMztvYmJikb40atSoSDZRdnY2H330Eb1798bd3Z2rV6+yZMkS0tLS6Nu3L2AMSHXu3JnatWsTGRnJlStXTPsXzn5YnJCQEEaOHMnSpUsJCgoiPT2dsLAwWrduXWw9rkLTpk2jR48e1KpVi8zMTFavXs2vv/7Ktm3bAGNAqnv37uTk5PDf//6XW7ducevWLcBYON7irqDq2rVr0Wq1/OMf/yhynoEDB/Lhhx/y5ptvMmvWLK5evcqkSZN46623TLWnQkJCmD9/Ps2aNaNNmzYkJSXxwQcfEBISYnaev7t+/Trnzp3jwoULwJ3fR40aNUq8Z4+DBKWEKHC74IVD7exMas5lFAolt3Q5AFiorMjKMxY7D2pUnaBGNejxXNHCfs+qW1rjNzcrG/vQ2cWxgnvz8J7MQZRCCCGEEKIyWrlyJePHj6dXr15oNBo6duzIli1bTAEZnU7H6NGjOX/+PI6OjgQHB/PZZ58BxuFXs2bNYurUqbz55psMGTKE6Oho5s+fT2hoKL169cLR0ZHJkyeTmpp6zwydQk2aNGHHjh28//77dOjQAYPBQJ06dejfvz8ANWvWxNvbm1mzZpGSkoJCoTAtT5gwwXScCRMm4OvrS1RUFAsWLCA7OxuANWvWMGDAgCLnLW5damqqKQOokIWFBSdOnGDVqlVcvXoVV1dXWrVqRXx8PI0aNQIgLi6OpKQkkpKSiuxf0oyJw4YNIzMzk8WLFzNx4kScnZ158cUXmTdvXon37PLlywwZMoT09HScnJxo0qQJ27Zto1u3bgAcOHCAPXv2AEUztM6cOYO3t7dpecWKFbz66qumovV3s7e3Jy4ujrFjx9KyZUtcXV3p168fERERpjb/+te/UCgU/Otf/yItLY1q1aoREhLCRx99VOI1xMbG8uabb5qWC38f4eHh96x99bgoDA87z+UT7NatWzg5OZmmaxTPtvPH/mLtrKm4eNQkz68VuiM+3GYnL/26BotWtVnYYw6bD6cTHtKQNwN8HugcPwyO5LguEYMunT7jJ+LXPtBs++mbp+mzqQ/O1s7ED3h0Rel+P32NAct/x8/Nnp/e7fTQx2uTcIyzuRo2N/enpZO69B0quRF/nWHzlQzm1q3Jm57Fz/IhhHh2yPsFc3I/hBCPSm5uLmfOnMHHx6fU4Iowl52djaenJ1FRUUUKaD8O169fp0uXLjg6OvLDDz9gZ2f32PsgHr+SnrNlfb8g1YiFKKDTGjOhLCwt0dzOAMBVayxwbl/N1zTr3oMVOK+cyismnVVQ/F1m3RNCCCGEEOLRO3jwIGvWrCE5OZkDBw4waNAgANOQwMfNxcWFn376iS5dupCQkFAhfRBPJhm+J0QBnc4YgFJaWpGn02EHWFpYG9c510BTOOveYwi8GJ6welPZBYUXJSglhBBCCCHE4xEZGUliYiIqlYoWLVoQHx9P1aoVl+Xv6urKjBkzKuz84skkQSkhCphlShUEpawKMokUKutyypQy3PWo4gJP5VUzaeuVDLZfv0Wu3ngtjpZPxswoQgghhBBCPMmaNWvG/v37K7obQjw0CUoJUUB/V1BKXzDjqkVhUMr6TlDK+qGH7z0dZbQztTpGHD2DtiC25mdnjbOVvKQIIR6eXp+HTne7TG0VCgssLZ+sqY+FEEIIIYSRfIIUokBhppTS0hKD1hg4sigYsqewVt0ZvvcwQalSpmh9FG5rb3Nbe5u4lDgWHVqEVq9Fk1ULGErKrbO0Xd3WrL21hTUz280ksFZg8QcscPp2HloDOFgoGepZld5uzo/uIoQQz4zbt9P4Y+9LaLWZZd6nju8kvL1DH2GvhBBCCCHEoyBBKSEK6AqKmltYWuJ63higskkzFjxXqlRosgprSj3CIWrlHLP66+pfDNs6jDxdntl6rS4XAINBT3Z+ttm27Pxsfkn9pdSgVHqu8X752dnwrzoe5dhrIcSzLCNj/30FpABuZvwBSFBKCCGEEOJJI0EpIQoUDt9TWliizlKQrQaFQYfSyQm7Nm3I3XoVAGurJ6eY959X/jQLSDlYObC021LOXlIx7uxpajp48d9Xvjdt/1/i/1h1bFWZjp1VUNz8aa4jVV6zEwohSqfVZnLp8hbOn/8vADWq96Fhw09L3Cc9/VuOn5jyOLonhBBCCCEeAQlKCVHg7kLnioLC3ZrWtaj74QIUCgXXvtkGQBU7Vfmc8DEEPAoDUr3r9CYiIAIAhUJBbuY14DRWSktqOdYytXe2cS7zsbMLhjPKjHtCiPJwInEGly7Fmpbt1HVQKEoOeisqYEi0EEIIIYQoPxKUEqKAWVDKYMwCsrC24t+/JnP4/E0yc43bqzlYV1gf71ee1hiUsrGwKfcPb4VBKbunMCileEqK0QvxpDAYDFy/Hg+Ag0MjXKoE4FVzaAX3SgghhBBCPGoSlBLPPIPBwOWU01w+kwyAjb0DCoOxnonW0pJPtyWa2rqqVTjaPDlPm9yC2lHWluUXSMvS6vjhagYJN7MAsH+Kh+8JIR4tvV7LkSPvcP3GbvT6XBQKC1o0/x8WFjYV3TUhhBBCCPEYPH0pDkLcp2O//cx/p47nxK4dADi7e2BQ2Bk32hoDUPbWlnz48nPEjGzzRA0XKRy+Z1OOH/AWnr3E2OPniLt2CwBnCUoJIR5QVvYJrl77Gb3eGEB3c3tJAlJCCCGeSMOGDUOhUKBQKFCpVPj5+TF79my0BaMxHtSvv/6KQqHg5s2b5dPRMjhz5gwDBw7Ew8MDGxsbatasSZ8+fThx4oRZu82bN9OpUyccHByws7OjVatWREdHm7VJSUlBoVBw6NChMp9/5syZ1K9fH7VaTZUqVejatSt79uwxO+bw4cPx8fHB1taWOnXqEB4ejkajKfXYMTExNG3aFDs7O9zd3Xnrrbe4du1amfv28ccfo1AoCAsLM1ufnJzMK6+8QrVq1XB0dKRfv35cunTJrM1HH31E+/btsbOzw9nZudjjF/4fuvvn66+/Nm3fsGED3bp1M52nXbt2bNu2rdR+b9iwge7du+Pq6nrfv49HTYJS4pl37fw5AGwcHKnZ8Dn8W7dHr7Q1brQ11o9ysrVicNva1K/h+JBnMxT7sEircqo3lastyJSyKD5T6kHOkphjPGYTe1v61qjCQHeXB+2eEOIZZTDoyc29wM0bfwDg6NiMNq230LBByYXNhRBCiMosODiY9PR0Tp06xcSJE5k5cyafflp5/raVJWiTn59Pt27dyMjIYMOGDSQmJrJ27VoaN25sFhhbtGgRffr0ISAggD179nD48GEGDBhAaGgo77333kP1s27duixevJgjR46wc+dOvL296d69O1euXAHgxIkT6PV6vvjiC44ePcpnn33GsmXLmD59eonH3bVrF0OGDGH48OEcPXqUdevW8ccffzBy5Mgy9Wvv3r188cUXNGnSxGx9dnY23bt3R6FQ8PPPP7Nr1y40Gg0hISHo9XpTO41GQ9++fXnnnXdKPM/KlStJT083/bz88sumbb/99hvdunVjy5Yt7N+/n8DAQEJCQjh48GCJx8zOzuaFF15g3rx5ZbrWx+nJGYckxCOiuZ0DQLOgXnjU786+Hy6Ta1MVAIWDMWPK5gmacQ9g/r75bDmzhVsaYzaTjeX9ZR4YSghXpefmAzDJpwbdqjo9eCeFEM+sPw+P4Nq1HaZlJ6fnsbev9+AHlJkyhRBCVALW1tbUqFEDgHfeeYdvv/2W2NhYQkNDGT9+PN999x15eXl06tSJhQsX4u/vD8DZs2cZM2YMO3fuRKPR4O3tzaeffkrDhg0JDAwEoEqVKgAMHTqU6OhoMjMzCQ0NZePGjTg6OjJ58mQ2bdrE888/z+effw6At7c3w4cP59SpU2zcuJFXX32V6Ohodu7cybRp09i3bx9Vq1bllVdeYe7cuajVao4ePUpycjLbt2+ndu3aANSuXZuAgADTdaampjJx4kTCwsKYM2eOaf3EiRNRqVSMGzeOvn370qZNmwe6jwMHDjRbnj9/PitWrODw4cN06dKF4OBggoODTdt9fX1JTExk6dKlREZG3vO4CQkJeHt7M27cOAB8fHwYNWpUmQI1WVlZDBo0iC+//JKIiAizbbt27SIlJYWDBw/i6GhMYli1ahVVqlTh559/pmvXrgDMmjULoEg22d85Ozub/h/9XeHvttCcOXPYtGkT3333Hc2aNbvnMQcPHgwYs8wqmyfrk7YQj0BejjEopbK1ZctXhzj62wV0lsZglG1VDwBsrJ6cIWo6vY7/O/Z/XMq5xG3tbQD8nP3M2jzMEMS0PGNQysOmnGYhFEI8U4xFzRMAUCpVqFRVqe72UgX3SgghRGVlMBjI0Wgr5OdhRy/Y2tqi0WgYNmwY+/btIzY2loSEBAwGAz179iQ/3/i+evTo0eTl5fHbb79x5MgR5s2bh729PV5eXnzzzTcAJCYmkp6ezoIFCwB499132bVrF7GxscTFxREfH8+BAweK9CEyMpKmTZty8OBBPvjgA5KTkwkODua1117j8OHDrF27lp07dzJmzBgAqlWrhlKpZP369eh0umKva/369eTn5xebETVq1Cjs7e1Zs2bNQ927QhqNhuXLl+Pk5ETTpk3v2S4jIwMXl5JHcLRr147U1FS2bNmCwWDg0qVLrF+/np49e5baj9GjR/PSSy+ZAkx3y8vLQ6FQYG19Z3SKjY0NSqWSnTt3lnrs4s5VtWpVWrduzVdffVXi/0O9Xk9mZmap116ZSaaUeOZpco2BG5WtLbrbBpSAV+pPONw6gy70Q+AW1pblFb8tORj0MLO+GQwGVh1dRXJGMlqDFqVCSUzPGJytnanpULOMvSv5/Lk6PdfyjePiPaytHrivQohn082b+7h5cx8Gg3H4QKeOf6JUPkyA+8mp8SeEEOLB3M7X0XBG6TVzHoVjs4OwU93/R2aDwcD27dvZtm0bPXr0YOPGjezatYv27dsDxrpGXl5ebNy4kb59+3Lu3Dlee+01GjduDBgzfwoVBhvc3NxMdYgyMzNZtWoVq1evpkuXLoBxyJeHh0eRvrz44otMnDjRtDxixAgGDRpkqonk7+/PwoUL6dSpE0uXLsXT05OFCxcyefJkZs2aRcuWLQkMDGTQoEGmfp08eRInJyfc3d2LnE+lUuHr68vJkyfv+77dbfPmzQwYMICcnBzc3d2Ji4ujatWqxbZNSkpi0aJFJWZJAQQEBBATE0P//v3Jzc1Fq9USEhLCkiVLStzv66+/5sCBA+zdu7fY7W3btkWtVjNlyhTmzJmDwWBg6tSp6HQ60tPTy3bBBWbPns2LL76InZ0dP/74I//85z/JysoyZXf9XWRkJFlZWfTr1+++zlOZSKaUeObl3zYGpfSWSpQYM6K8z/5IjZsHyDYYh709CZlSx64dI2p/FBuTNgLg5eDFc1WfK3NAqiwuaozf5tgqFc9EgXMZECRE+cnOPs3+AwNIPm2srWFrU+shA1JCCCFE5bJ582bs7e2xsbGhR48e9O/fn2HDhmFpaWk2lM3V1ZV69epx/PhxAMaNG0dERAQBAQGEh4dz+PDhEs9z+vRp8vPzad26tWmdk5MT9eoVHQrfsmVLs+U///yT6Oho7O3tTT9BQUHo9XrOnDkDGDN1Ll68SExMDO3atWPdunU0atSIuLi4Mt8Llar0v/ExMTFm/YiPjzdtCwwM5NChQ+zevZvg4GD69evH5cuXixwjLS2N4OBg+vbta1Yb6u7jhoaGAnDs2DHGjx/PjBkz2L9/P1u3biUlJcW0PT4+3my/mJgYUlNTGT9+PDExMdjYFF8SpVq1aqxbt47vvvsOe3t7nJycuHnzJs2bN0epvL+QywcffEBAQADNmjVjypQpTJ48+Z51yVavXs2sWbP43//+h5ubW6n3tLKSTCnxzNNqjYGWvJyrgHHsrsKgxdJaQZ7WGJZ4NEGp8g15XMs1zhrhZudG37p96VizY7kef1XaVX65bqxR5WGteqJmIRRCVLzrN3YBBlQqNxwdm1DL682K7pIQQogngK2VBcdmB1XYue9HYGAgS5cuRaVS4eHhgaWlJbGxsaXuN2LECIKCgvj+++/58ccfmTt3LlFRUYwdO/ZBu26iVqvNlrOyshg1alSxmTe1atUyPXZwcCAkJISQkBAiIiIICgoiIiKCbt264e/vT0ZGBhcuXCiSnaXRaEhOTiYoqPTfWe/evc2CdZ6enmb99vPzw8/Pj7Zt2+Lv78+KFSuYNm2aqc2FCxcIDAykffv2LF++3OzYd88uV1jnae7cuQQEBDBp0iQAmjRpglqtpkOHDkRERNCyZUuz/apXr8727du5fPkyzZs3N63X6XT89ttvLF68mLy8PCwsLOjevTvJyclcvXoVS0tLU12ou7PeHkSbNm348MMPycvLMxse+PXXXzNixAjWrVtnNqSwpHtaWUlQSjzz9AXTtN6+lEJhUEqp12HtU5vMPOM2e+vK/1TJ1GQC4OPoQ2jT0HI9dmquhiknz5uWfe2Kn83vaSHxNiHKT1ZWIunp33AudQUANT0H4uPz8G+yhRBCPBsUCsUDDaGrCIWBlLs1aNAArVbLnj17TMP3rl27RmJiIg0bNjS18/LyIjQ0lNDQUKZNm8aXX37J2LFjTRlHd9d38vX1xcrKir1795oCSRkZGZw8eZKOHUv+Yrp58+YcO3asSD9LolAoqF+/Prt37wbg9ddfZ8qUKURFRREVFWXWdtmyZeTk5DBkyJBSj+vg4ICDg0OZ+qDX68nLyzMtp6WlERgYSIsWLVi5cmWRjKTiri8nJwdLS/P/SxYWxsCjwWDA1ta2yH5dunThyJEjZuvefPNN6tevz5QpU0z7FyocYvjzzz9z+fJlevfuXabru5dDhw5RpUoVs4DUmjVreOutt/j666956SXzupz3c08riyfj2S3EI6QrCErlX7tpWmdTtw4u497l1m1jFpWDTeV9qmRqMjl36xxJN5MAsFfZl/s5zt42/gGoamXJKK9q9HZzLvdzCCGeTseOTyIz86hpuWrVFyuwN0IIIcTj5e/vT58+fRg5ciRffPEFDg4OTJ06FU9PT/r06QNAWFgYPXr0oG7duty4cYNffvmFBg0aAMaZ7xQKBZs3b6Znz57Y2tri4ODA0KFDmTRpEi4uLri5uREeHo5SqSx1NMOUKVNo27YtY8aMYcSIEajVao4dO0ZcXByLFy/m0KFDhIeHM3jwYBo2bIhKpWLHjh189dVXTJkyBTBmVH3yySe899572NjYMHjwYKysrNi0aRPTp08nIiKC5557zuy8iYmJRfrSqFEjrKzM69RmZ2fz0Ucf0bt3b9zd3bl69SpLliwhLS2Nvn37AsaAVOfOnalduzaRkZFcuXLFtP+9Zq0DCAkJYeTIkSxdupSgoCDS09MJCwujdevWxdbjAmOQ5+/XolarcXV1NVu/cuVKGjRoQLVq1UhISGD8+PFMmDDBbEjluXPnuH79OufOnUOn05mysvz8/LC3t+e7777j0qVLtG3bFhsbG+Li4pgzZ45ZQfnVq1czdOhQFixYQJs2bbh48SJgLKrv5HTvmdELz3vhwgXgzu+jRo0aJd6zx6HyftIW4jEpDEppCwp4Y9BSZ9NGMnPzubb1BAAONpWrqLfBYODYtWNkaDIYFTfKbJvaSn2PvR7chYIZ9xrY2zC2dvVyP74Q4umk1WaZAlIe7v2oUqUdDg6NKrhXQgghxOO1cuVKxo8fT69evdBoNHTs2JEtW7aYAjI6nY7Ro0dz/vx5HB0dCQ4O5rPPPgOMw69mzZrF1KlTefPNNxkyZAjR0dHMnz+f0NBQevXqhaOjI5MnTyY1NfWedY8KNWnShB07dvD+++/ToUMHDAYDderUoX///gDUrFkTb29vZs2aRUpKCgqFwrQ8YcIE03EmTJiAr68vUVFRLFiwgOzsbMCYxTNgwIAi5y1uXWpqKjVrmte/tbCw4MSJE6xatYqrV6/i6upKq1atiI+Pp1Ej43uIuLg4kpKSSEpKKrJ/STPVDRs2jMzMTBYvXszEiRNxdnbmxRdfZN68eSXes7JITExk2rRpXL9+HW9vb95//32z+wUwY8YMVq1aZVpu1qwZAL/88gudO3fGysqKJUuWMGHCBAwGA35+fsyfP9+sVtby5cvRarWMHj2a0aNHm9YPHTqU6Ojoe/YvNjaWN9+8Uzqh8PcRHh7OzJkzH+bSH5rC8LDzXD7Bbt26hZOTExkZGaZxpuLZ8//GjSDj0kXqN/Il5cLLKPS5WA9pwIebj5naTAqqx+jAsqe43ssPQyI5rj2JQXeB3mPD8H/BfErRMxln6L2xNw4qB3a/sfuex/nvsf8yb6/5i2d1u+rYWtoyvc102nm0K7Eff5y5Tr8vEvCtpubniZ1N61ccWcHnBz6nT50+RLwQYVq/IOUSc8+k07+GCwsa1CrmiE+Xt4+mEHv5Jh/5ezK8ZrWK7o4QTxyN5jp//jmczKyjGAw6rKxc6djhj3I/T3r6Bo4dn4SLSweaPR9d7scvJO8XzMn9EEI8Krm5uZw5cwYfH59SgyvCXHZ2Np6enkRFRTF8+PDHfv7r16/TpUsXHB0d+eGHH7Czs3vsfRCPX0nP2bK+X5BMKfHMK8yU0hVkSikMOhKSr5m2O9pYEuBX/PSjFeVMhnFmDBcbF1xsXHij/hv0q/cA04CWMSSdlmecvt3DunJljAkhKqdLlzdzK/POzEHuNV6uuM4IIYQQT6GDBw9y4sQJWrduTUZGBrNnzwYwDQl83FxcXPjpp59YsmQJCQkJdOnSpUL6IZ48EpQSz7zCQuf6fGPxQAVaNDo9AJ++3oTXW9SsdDPN5epyARjScAjDG5ffNyH3us7C4XueNjJ9uxDi3gwGHbm5F7l65ScAqlXrjl+dKdjZeT+iM1au12YhhBDicYqMjCQxMRGVSkWLFi2Ij483FdquCK6ursyYMaPCzi+eTMrSm5S/tLQ0/vGPf+Dq6oqtrS2NGzdm3759pu0Gg4EZM2bg7u6Ora0tXbt25dSpU2bHuH79OoMGDcLR0RFnZ2eGDx9OVlbW474U8RTQaY0BF0NBUAqDDo3W+NjGyqJ8A1IKymVqtzydsfC4jeWDpTWXtQsLUi7xwp7j7LxhnNlPMqWEEPdiMBj48/BIdid05PqNXQBUr977EQaknh1LlizB29sbGxsb2rRpwx9/lDwUct26ddSvXx8bGxsaN27Mli1bTNvy8/OZMmUKjRs3Rq1W4+HhwZAhQ0yFT4UQQjwZmjVrxv79+8nKyuL69evExcXRuHHjiu6WEPftsQelbty4QUBAAFZWVvzwww8cO3aMqKgoqlSpYmrzySefsHDhQpYtW8aePXtQq9UEBQWRm5trajNo0CCOHj1KXFwcmzdv5rfffuPtt99+3JcjngI6U6aUMVKjQINGa8yUUlk+3qeIoozf+udpC4JSFo92rP3S1Msk5eSRqzdgpVDQ0N72kZ5PCPHkys29wLVrOwBQKm1wde1MVdfOFdupp8DatWt59913CQ8P58CBAzRt2pSgoCAuX75cbPvdu3fzxhtvMHz4cA4ePMjLL7/Myy+/zF9//QUYp8M+cOAAH3zwAQcOHGDDhg0kJiY+9JTVQgghhBAP4rEP35s3bx5eXl6sXLnStM7Hx8f02GAw8Pnnn/Ovf/3LNB72P//5D9WrV2fjxo0MGDCA48ePs3XrVvbu3UvLli0BWLRoET179iQyMvKe0zkKUZzC4Xs6bUFQSpFvGr73uINSZVU4fM/a0vqRncNgMJCpM2aMffWcN00d7KjxjGVKPbOzQAhxH/T6fFLPR5Oe/g0A9up6tGmzpZS9RFkVzrpTOGPOsmXL+P777/nqq6+YOnVqkfYLFiwgODiYSZMmAfDhhx+apvletmwZTk5OxMXFme2zePFiWrduzblz56hV6+mfzEIIIYQQlcdj/8QdGxtLy5Yt6du3L25ubjRr1owvv/zStP3MmTNcvHiRrl3vzErm5OREmzZtSEhIACAhIQFnZ2dTQAqga9euKJVK9uzZc89z5+XlcevWLbMf8WzT5uejLwi86LXGp4Pyrkwpa4tH+BR5gIkvs/OzOXT5ENdzrwNga/HoMpdy9QZ0BV3sUMVB6kkJIYqVnv4NSUkfk51tHGZfpUrJs3+KstNoNOzfv9/sPZFSqaRr166m90R/l5CQYNYeICgo6J7tATIyMlAoFDg7Oxe7Xd4/CSGEEOJReeyZUqdPn2bp0qW8++67TJ8+nb179zJu3DhUKhVDhw7l4sWLAFSvXt1sv+rVq5u2Xbx4ETc3N7PtlpaWuLi4mNoUZ+7cucyaNaucr0g8qXavi+H0AWMtMysbWww6C1CCUqmrsOF7xbmUfYkp8VO4nnvdNOteoQetKVUWWQXBOgD1owzOVUJSOlmIsrtx83fAOGSvVq0ReNUcWsE9enpcvXoVnU5X7HuiEydOFLvPxYsXS3wP9Xe5ublMmTKFN954457TNcv7JyGEEEI8Ko89KKXX62nZsiVz5swBjAXa/vrrL5YtW8bQoY/2jey0adN49913Tcu3bt3Cy8vrkZ5TVE55OdkkrF9jWnaoWovbN2sDoFRqK1VQamfaTvZf2m+2rpZDLTzsPWjm1uyRnNOAgeyCIYx2FkqUlWz2QSFExUtP/5ZLl2K5dv03AJ5r9DnVqnWr4F6J+5Gfn0+/fv0wGAwsXbr0nu3k/ZMQQgghHpXHHpRyd3enYcOGZusaNGjAN98Ya1HUqFEDgEuXLuHu7m5qc+nSJZ5//nlTm78X+NRqtVy/ft20f3Gsra2xtn50NXjEkyPrunH4m8rWFufm3cn4ywOFlXEonJXFnZpS1pYWFdbHQoX1o1rVaMU/m/4THycfXG1dH+k5U/QezDiVBoCLVcXfAyFE5ZKXd5ljxydRWHnNwkKNk9OjCZI/y6pWrYqFhQWXLl0yW3/p0qV7vt+pUaNGmdoXBqTOnj3Lzz//fM8sKZD3T0IIIYR4dB57GkhAQACJiYlm606ePEnt2sYsFR8fH2rUqMH27dtN22/dusWePXto185Yp6Jdu3bcvHmT/fvvZI/8/PPP6PV62rRp8xiuQjzpsm/eAEBdxZWTebkolLYo89PwTIuntuNxbt02Fj9XW5dvQEZR1jJSd7XT6DQA1LCrQcsaLR9pQEqBAq2lB9t1Afx4zVgz5DmZcU8I8Te3b5+j8IWqYYNIWrXcgEpV9fF35CnP4lSpVLRo0cLsPZFer2f79u2m90R/165dO7P2AHFxcWbtCwNSp06d4qeffsLV9dF+0SGEEEIIcS+PPSg1YcIEfv/9d+bMmUNSUhKrV69m+fLljB49GgCFQkFYWBgRERHExsZy5MgRhgwZgoeHBy+//DJgzKwKDg5m5MiR/PHHH+zatYsxY8YwYMAAmXlPlEl+3m0ArO3sqJFsfOyduo96p77GxcrGlClV1f7Rzm5XFoVBKZXF4yk0rrOqCUB1lSX/cHdlqq97KXsIIZ4Vt24dYcdvLdh/oD8Azk6tcHd/BbXar4J79vR69913+fLLL1m1ahXHjx/nnXfeITs72zQb35AhQ5g2bZqp/fjx49m6dStRUVGcOHGCmTNnsm/fPsaMGQMYA1Kvv/46+/btIyYmBp1Ox8WLF7l48SIajaZCrlEIIZ4Gw4YNQ6FQoFAoUKlU+Pn5MXv2bLQFM30/qF9//RWFQsHNmzfLp6NlcObMGQYOHIiHhwc2NjbUrFmTPn36FKlnuHnzZjp16oSDgwN2dna0atWK6OhoszYpKSkoFAoOHTpU5vPPnDmT+vXro1arqVKlCl27djWb0CwlJYXhw4fj4+ODra0tderUITw8vEx/x2JiYmjatCl2dna4u7vz1ltvce3atVL3S0tL4x//+Aeurq7Y2trSuHFj9u3bZ9p+9++/8Cc4ONjsGN7e3kXafPzxx6btiYmJBAYGUr16dWxsbPD19eVf//oX+fn5Zse5efMmo0ePxt3dHWtra+rWrcuWLSXPfLxhwwa6d++Oq6vrff8+HrXHPnyvVatWfPvtt0ybNo3Zs2fj4+PD559/zqBBg0xtJk+eTHZ2Nm+//TY3b97khRdeYOvWrdjY3CnqHBMTw5gxY+jSpQtKpZLXXnuNhQsXPu7LEU+owhn3lEoL7LKsyLEHS+1ttFZKJl2tDw7gYGOJTXkPXXuAL/XzdHnAowlKFRcW01kasx3aO9sTWV9qhggh7rhyZRta7U3Tsqtrx4rrzDOif//+XLlyhRkzZnDx4kWef/55tm7daipmfu7cOZTKO98xtm/fntWrV/Ovf/2L6dOn4+/vz8aNG3nuuecA45vq2NhYAFNZhEK//PILnTt3fizXJYQQT6Pg4GBWrlxJXl4eW7ZsYfTo0VhZWZl9eVCRNBoNKlXJnyny8/Pp1q0b9erVY8OGDbi7u3P+/Hl++OEHs8DYokWLCAsLY8qUKSxduhSVSsWmTZsIDQ3lr7/+IjIy8oH7WbduXRYvXoyvry+3b9/ms88+o3v37iQlJVGtWjVOnDiBXq/niy++wM/Pj7/++ouRI0eSnZ1d4nl37drFkCFD+OyzzwgJCSEtLY3Q0FBGjhzJhg0b7rnfjRs3CAgIIDAwkB9++IFq1apx6tQpqlSpYtau8PdfqLih77Nnz2bkyJGmZQcHB9NjKysrhgwZQvPmzXF2dubPP/9k5MiR6PV6U01ujUZDt27dcHNzY/369Xh6enL27Nl7zqBbKDs7mxdeeIF+/fqZnb8yeOxBKYBevXrRq1eve25XKBTMnj2b2bNn37ONi4sLq1evfhTdE88AU1DK0gKDwhjsvN2mGn30H2NpaUkdF1teb1E5AjKFmVLWFo+nnodBabwfTlYV8vIghKiEDAYDWu1NMrOOAVDHdxKengOwsnKu2I49I8aMGWPKdPq7X3/9tci6vn370rdv32Lbe3t7lzlTVwghxP2xtrY21fB75513+Pbbb4mNjSU0NJTx48fz3XffkZeXR6dOnVi4cCH+/v4AnD17ljFjxrBz5040Gg3e3t58+umnNGzYkMDAQABTAGTo0KFER0eTmZlJaGgoGzduxNHRkcmTJ7Np0yaef/55Pv/8c8D4mj98+HBOnTrFxo0befXVV4mOjmbnzp1MmzaNffv2UbVqVV555RXmzp2LWq3m6NGjJCcns337dlOJndq1axMQEGC6ztTUVCZOnEhYWJgpWAIwceJEVCoV48aNo2/fvg9cWmfgwIFmy/Pnz2fFihUcPnyYLl26EBwcbJaF5OvrS2JiIkuXLi0xKJWQkIC3tzfjxo0DjKWDRo0axbx580rsz7x58/Dy8jILOPn4+BRpd/fv/14cHBzu2cbX1xdfX1/Tcu3atfn111+Jj483rfvqq6+4fv06u3fvxsrKCjD+nkszePBgwJhlVtlU/NRiQlSAuzOlwPhkxtoKvUJJ3Rr2bJ/YmXc613ns/VIUUx9Foy//4XslJWwZFMYaUvYW8vIghAC9Po/9BwbwW3xLrl3bAYCT0/MSkBJCCPF4GAygya6Yn4cM4tva2qLRaBg2bBj79u0jNjaWhIQEDAYDPXv2NA3LGj16NHl5efz2228cOXKEefPmYW9vj5eXl2lCsMTERNLT01mwYAFgHN69a9cuYmNjiYuLIz4+ngMHDhTpQ2RkJE2bNuXgwYN88MEHJCcnExwczGuvvcbhw4dZu3YtO3fuNH35Ua1aNZRKJevXr0dX8Jnp79avX09+fj7vvfdekW2jRo3C3t6eNWvWFLPn/dNoNCxfvhwnJyeaNm16z3YZGRm4uLiUeKx27dqRmprKli1bMBgMXLp0ifXr19OzZ88S94uNjaVly5b07dsXNzc3mjVrxpdfflmk3a+//oqbmxv16tXjnXfeKXZY4Mcff4yrqyvNmjXj008/LXF4Z1JSElu3bqVTp05mfWnXrh2jR4+mevXqPPfcc8yZM+eev6sngaRCiGfSnUwpSwwK49PAYGUNuWCnqhxPi1M3TrH7wm6OXjsKPM5MKeN51BKUEkIAN2/uIyPjTs0EtdofR8d7vymsEJL5I4QQT6/8HJhTQXWDp18Alfq+dzMYDGzfvp1t27bRo0cPNm7cyK5du2jfvj1gLEXj5eXFxo0b6du3L+fOneO1116jcePGAGbZMoWBFjc3N9MQrczMTFatWsXq1avp0qULACtXriy2vvKLL77IxIkTTcsjRoxg0KBBhIWFAeDv78/ChQvp1KkTS5cuxdPTk4ULFzJ58mRmzZpFy5YtCQwMZNCgQaZ+nTx5EicnJ9zdi9aeValU+Pr6cvLkyfu+b3fbvHkzAwYMICcnB3d3d+Li4qhatfhJVZKSkli0aFGpQwYDAgKIiYmhf//+5ObmotVqCQkJYcmSJSXud/r0aZYuXcq7777L9OnT2bt3L+PGjUOlUjF06FDAOHTv1VdfxcfHh+TkZKZPn06PHj1ISEjAwsJYEmbcuHE0b94cFxcXdu/ezbRp00hPT2f+/Plm52vfvj0HDhwgLy+Pt99+22wE2enTp/n5558ZNGgQW7ZsISkpiX/+85/k5+cTHh5e6n2tjORTp3gm3cmUUlKYKWVQGf+1U5VzHakHFPZLGJH7Ijl85TAAaqv7/4N4P1Ju53EotwpaK08A7C0qx30QQlQMrTaL1PP/x4nEfwFQ1fVFXgw8RZvWP2BhIbNyCiGEEH+3efNm7O3tsbGxoUePHvTv359hw4ZhaWlpNpTN1dWVevXqcfz4ccAYrIiIiCAgIIDw8HAOHz5c4nlOnz5Nfn4+rVu3Nq1zcnKiXr16Rdq2bNnSbPnPP/8kOjoae3t7009QUBB6vZ4zZ84AxsytixcvEhMTQ7t27Vi3bh2NGjUiLi6uzPeitNpVYAzO3d2Pu4epBQYGcujQIXbv3k1wcDD9+vXj8uXLRY6RlpZGcHAwffv2NauVdPdxQ0NDATh27Bjjx49nxowZ7N+/n61bt5KSkmLaHh8fb7ZfTEwMYJz5tnnz5syZM4dmzZrx9ttvM3LkSJYtW2Y634ABA+jduzeNGzfm5ZdfZvPmzezdu9dsmP27775L586dadKkCaGhoURFRbFo0SLy8vLMrmnt2rUcOHCA1atX8/3335sF2/R6PW5ubixfvpwWLVrQv39/3n//fVNfSrqnlVXlSAkR4jHT64xpkgoLizuZUpaPNiiVn59ffGXxe7h6+yoAL3q9iLu9Oz19Sk4rfRgGg4HeB05xWeMNBQlZDpbPbsz66Z5kXoiyST2/itOn73xz5+zcCoWicr0uKOTZKoQQTz8rO2PGUkWd+z4EBgaain57eHhgaWlpmlyiJCNGjCAoKIjvv/+eH3/8kblz5xIVFcXYsWMftOcmarX5F9tZWVmMGjXKVFfpbrVq1TI9dnBwICQkhJCQECIiIggKCiIiIoJu3brh7+9PRkYGFy5cKJKdpdFoSE5OJigoqNS+9e7d2yxY5+npadZvPz8//Pz8aNu2Lf7+/qxYscKsaPyFCxcIDAykffv2LF++3OzYd88u5+joCMDcuXMJCAhg0qRJADRp0gS1Wk2HDh2IiIigZcuWZvsVTiri7u5Ow4YNzY7foEED09DK4vj6+lK1alWSkpJM2Wx/16ZNG7RaLSkpKWYBRS8vY23jhg0botPpePvtt5k4cSIWFha4u7tjZWVlyr4q7EvhLLol3dPKSoJS4plUmCmFAgxK49NAb2mMxtg+ggLfBw8eJDY2loZZBihjgkFhgfPpbaZTXV293Pt0t1y9gcsaY6DOKvcYtWzVBFV97pGeUwhRuWVk7AfA2bkNjo5NqFlzcAX3SAghxDNJoXigIXQVoTCQcrcGDRqg1WrZs2ePafjetWvXSExMNAt0eHl5ERoaSmhoKNOmTePLL79k7Nixpoyju2sG+fr6YmVlxd69e02BpIyMDE6ePEnHjiXPjNu8eXOOHTtWpJ8lUSgU1K9fn927dwPw+uuvM2XKFKKiooiKijJru2zZMnJychgyZEipx3VwcDCbfa4ker3eLKMoLS2NwMBAWrRowcqVK81mogWKvb6cnBwsLc0/6xUGdwwGA7a2tsXuFxAQQGJiotm6kydPmgrBF+f8+fNcu3at2CGOhQ4dOoRSqcTNze2ebfR6Pfn5+ej1eiwsLAgICGD16tXo9XrTNZ88eRJ3d3dUKhUqlarM97SykKCUeCYVBqUMCoMpUypfaXzBfxSZUqdOnSqY7ahsqVIGDGgNxiDR46gllaPTmx47Xf6YznVCqGLV55GfVwhR+aSlreHGjd9NRc39/KbgVNlqSAkhhBBPCH9/f/r06cPIkSP54osvcHBwYOrUqXh6etKnj/H9dlhYGD169KBu3brcuHGDX375hQYNGgDGGdgUCgWbN2+mZ8+e2Nra4uDgwNChQ5k0aRIuLi64ubkRHh6OUqksduKku02ZMoW2bdsyZswYRowYgVqt5tixY8TFxbF48WIOHTpEeHg4gwcPpmHDhqhUKnbs2MFXX33FlClTAGNG1SeffMJ7772HjY0NgwcPxsrKik2bNjF9+nQiIiJ47jnzL7j/HtQBaNSokWkGuULZ2dl89NFH9O7dG3d3d65evcqSJUtIS0szzSyblpZG586dqV27NpGRkVy5csW0f0mz34WEhDBy5EiWLl1KUFAQ6enphIWF0bp162LrcRWaMGEC7du3Z86cOfTr148//viD5cuXm7KzsrKymDVrFq+99ho1atQgOTmZyZMn4+fnZ8oYS0hIYM+ePQQGBuLg4EBCQgITJkzgH//4h2lmxZiYGKysrGjcuDHW1tbs27ePadOm0b9/f9N9euedd1i8eDHjx49n7NixnDp1ijlz5hSb+Xa369evc+7cOS5cuGD2+6hRo0apMwY+ahKUEs+kwqCU3qBHX5AplWdZ/kGprKwscnNzycjIKGbrvQNUhru2leese/eSozcGpSzRo7ifMYZCiKdKfv4NTiR+QOHrk0pVFQf7+hXbKSGEEOIJt3LlSsaPH0+vXr3QaDR07NiRLVu2mAINOp2O0aNHc/78eRwdHQkODuazzz4DjMOvZs2axdSpU3nzzTcZMmQI0dHRzJ8/n9DQUHr16oWjoyOTJ08mNTUVGxubEvvSpEkTduzYwfvvv0+HDh0wGAzUqVOH/v37A1CzZk28vb2ZNWsWKSkpKBQK0/KECRNMx5kwYQK+vr5ERUWxYMECsrOzAVizZg0DBgwoct7i1qWmplKzZk2zdRYWFpw4cYJVq1Zx9epVXF1dadWqFfHx8TRq1AiAuLg4kpKSSEpKKrK/oYTJT4YNG0ZmZiaLFy9m4sSJODs78+KLLzJv3rwS71mrVq349ttvmTZtGrNnz8bHx4fPP/+cQYMGmfp8+PBhVq1axc2bN/Hw8KB79+58+OGHWFsbEwysra35+uuvmTlzJnl5efj4+DBhwgTeffdd03ksLS2ZN28eJ0+exGAwULt2bcaMGWN23728vNi2bRsTJkygSZMmeHp6Mn78eFPA8F5iY2N58803TcuFv4/w8HBmzpxZ4r6PmsJQ0m/tKXfr1i2cnJzIyMgwjTMVz4Y93/6PnV//Bxfvpty+0RmD0gJFy8t8kuRAWFd/wrrWfehznD17lujoaLMXxkaHDaTaXsSgTSNk9FjqdjQfa3321ll6fdsLtZWa7HzjC/vBwQexVJZv/HhfynVeX5aAT1U1v7zXmcTsXDr9cQI7hRb12TfpXac3H73wUbme80kSejSFjZdvEuHvyYia1Sq6O0I8Njdu/MGBg2+gUlXFu/Y/qVatGzY2FTTjURlcvLiJo8fexaXKCzRrtuqRnUfeL5iT+yGEeFRyc3M5c+YMPj4+pQZXhLns7Gw8PT2Jiopi+PDhj/38169fp0uXLjg6OvLDDz9gZ3d/9bjEk6mk52xZ3y9UroqlQjwmWq1xaFzGBQMGpTEz6nbB06G8MqUuXryIwWBAqVTe9x/VwkCWpcKy3ANSxckuyBxTKfSltBRCPI1ycs5w7PhUkpM/AcDBoTFeXkMrdUBKCCGEeJYdPHiQNWvWkJyczIEDB0xZO4VDAh83FxcXfvrpJ7p06UJCQkKF9EE8mWT4nngm6fLyjQ8UCtwu78MuK5mva7UF1NiqyudpUViM8LnnnuPVV1/lu+++I/fwvhL3KZxJSm8wBoesLKxKav7wfSyYde+PDGNWlq1Ch5aS016FEE+f5NOfcfny96ZlR8cmFdibByGvWUIIIZ49kZGRJCYmolKpaNGiBfHx8VStWrXC+uPq6sqMGTMq7PziySRBKfFMybp+jYNbv+P0n/sL1ljQ6Fg0WWo9aZktAajhWD6pwoVBqbun6yzNH+l/AJCrywUeXZHzwvqHt3V6ThYEpACaWN/gwCM545NJYnPiaafT5aLTZXH9+m8A1K79Dna2tXBze6mCeyaEEEKIkjRr1oz9+/eX3lCISk6CUuKZsn/LJvZ9t8G0rFCoUGDAXqmne+Oa1GvQmMB65VNDqNSgVDERj9O3Tpseu9i48Kr/q+XSl3vRF3ShrZOaj+vVJOHMnxKUEuIZkZl5jH37+6LXG4PgVlYu1PGdgEJR/jOQPjolzzAkhBBCCCEqNwlKiWdKblYmAA5Vq3I7uwFWlvUAsLPW8mKjmrRuWrOk3e9LYd2q+8mU0ug0AFgprdjRf0e59eVedAWBMW9ba+qrbdkjn+8A+Zgrng3Xb+w2BaRASc2aQ56wgJQQQgghhHjSSVBKPFO0GmPQx8HehnxdKxS627g1y8DBI5cb1uU7w8eDDN/T6rTl2ofS6ArqsLiWUx0tIUTll519mgvpazl37v8BULt2KHV8J6JQyNwnQgghhBDi8ZJPouKZotXkAWDIyytcw9X6bsTm16WlvVu5nutBglIavaZc+1AaXcHwPVcreSkQ4llx9FgYmZlHTcvOTi0lICWEEEIIISqEfBIVz5TCTCl0xtntFOh4Q/kp17UafrQq3w9lxQelSq6cXTh873EpHL5XVTKlhHgmGAx6srISAahR42WcnVrh6tq5YjslhBBCCCGeWfJJVDxT8gsypBTawuCQjrx8Y/DI2vLRBKUsLYt/mhUXnsrX5xv794irGm24eAOA23pjcM5dZfVIzyeEqFh6fR7Hjk8hJ/s0BoMWUNKg/jyUSnkbIIQQQgghKo68GxXPlMJMKYPOAEoAHblaY2DG2rJ8CvwePnyY48ePk5aWBvw9U6rkYNPjGr637eot02MPaytaOanNthtKyeh6omVfhUOrQZtbdJuDOzw/8PH3SYhH7MrV7Vy69J1p2V7t/1QFpJ7q1ywhhBBCiKeYFJEQz5TCmlKKgmJKCoUend742NaqfIJSP/zwA8ePH+fWLWPgJ+/r/5E66p9k/7azoIUxMHV91X9IHRVK6qhQfh/Umy2vv0D+7/vvbvLI3CyYGbCGyor41vWxsXiGXgp2fgZxH8AvHxX9iR0DKTtLP4YQTwiDwYBWm8WNG78DYGvrTdMm/49mzf5bwT0TQgghni7Dhg1DoVCgUChQqVT4+fkxe/Zs04zcD+rXX39FoVBw8+bN8uloGZw5c4aBAwfi4eGBjY0NNWvWpE+fPpw4ccKs3ebNm+nUqRMODg7Y2dnRqlUroqOjzdqkpKSgUCg4dOhQmc8/c+ZM6tevj1qtpkqVKnTt2pU9e/aYHXP48OH4+Phga2tLnTp1CA8PR6Mp/Qv+mJgYmjZtip2dHe7u7rz11ltcu3atxH10Oh0ffPCB2fk+/PBDDIY7X4pt2LCB7t274+rqes/rTU5O5pVXXqFatWo4OjrSr18/Ll26dN/XdfjwYTp06ICNjQ1eXl588sknpV73b7/9RkhICB4eHigUCjZu3FjqPo/LM/RJVAjQ5huf0AptQdRHoTNts7cpn6yBwheNdq7V6JxRE1/bl1FUeQOs/cza5SYmkrVjB1k7duC0/xQ+f10jcHcmAMpH+NTU6PVkF9TUslYqUJdThtgTI/Oi8V+vNtDizTs/6oJC97kZFdc3IcrZwUND2PFbU9LSYgDw8hpG1aqBqFQuFdwzIYQQ4ukTHBxMeno6p06dYuLEicycOZNPP/20ortlUpagTX5+Pt26dSMjI4MNGzaQmJjI2rVrady4sVlgbNGiRfTp04eAgAD27NnD4cOHGTBgAKGhobz33nsP1c+6deuyePFijhw5ws6dO/H29qZ79+5cuXIFgBMnTqDX6/niiy84evQon332GcuWLWP69OklHnfXrl0MGTKE4cOHc/ToUdatW8cff/zByJEjS9xv3rx5LF26lMWLF3P8+HHmzZvHJ598wqJFi0xtsrOzeeGFF5g3b16xx8jOzqZ79+4oFAp+/vlndu3ahUajISQkBH1BSZWyXNetW7fo3r07tWvXZv/+/Xz66afMnDmT5cuXl3gN2dnZNG3alCVLlpTYriI8Pbn7QpTBneF7BTWUFMbMKbXKAgtl+aQnFb6o1NXbYGVd957tnF99FXfvBuTr8/lyyyxeSTBQ1coZyMJC+egCRdfy73xbo3zUKVmVkSbb+O/zg6DF0Dvrr5yA7MtmTWVIkHiSabWZ3Lix27SsVvvj5tajAnskhBBCPN2sra2pUaMGAO+88w7ffvstsbGxhIaGMn78eL777jvy8vLo1KkTCxcuxN/fH4CzZ88yZswYdu7ciUajwdvbm08//ZSGDRsSGBgIQJUqVQAYOnQo0dHRZGZmEhoaysaNG3F0dGTy5Mls2rSJ559/ns8//xwAb29vhg8fzqlTp9i4cSOvvvoq0dHR7Ny5k2nTprFv3z6qVq3KK6+8wty5c1Gr1Rw9epTk5GS2b99O7dq1AahduzYBAQGm60xNTWXixImEhYUxZ84c0/qJEyeiUqkYN24cffv2pU2bNg90HwcONC+nMX/+fFasWMHhw4fp0qULwcHBBAcHm7b7+vqSmJjI0qVLiYyMvOdxExIS8Pb2Zty4cQD4+PgwatSoewaSCu3evZs+ffrw0ksvAcb7umbNGv744w9Tm8GDBwPGbKfi7Nq1i5SUFA4ePIijoyMAq1atokqVKvz888907dq1TNcVExODRqPhq6++QqVS0ahRIw4dOsT8+fN5++2373kNPXr0oEePyvk+UDKlxDNFW1DoXGcoqKGkyAHKL0tKr9ffSePMKfgmQpFL9XdbFGlr17IFzq+9inWfHhyoY3wq2lmpi7Qrb9c02jvDA5/BmBSaLOO/qkd/r4WoCAaDgatXf+b0mQUAWFjY07nTUdq03oK1qmoF904IIYS4PwaDgZz8nAr5uXt41oOwtbVFo9EwbNgw9u3bR2xsLAkJCRgMBnr27El+vnGSo9GjR5OXl8dvv/3GkSNHmDdvHvb29nh5efHNN98AkJiYSHp6OgsWGP++v/vuu+zatYvY2Fji4uKIj4/nwIEDRfoQGRlJ06ZNOXjwIB988AHJyckEBwfz2muvcfjwYdauXcvOnTsZM2YMANWqVUOpVLJ+/XrTxE1/t379evLz84vNiBo1ahT29vasWbPmoe5dIY1Gw/Lly3FycqJp06b3bJeRkYGLS8mZ4O3atSM1NZUtW7ZgMBi4dOkS69evp2fPniXu1759e7Zv387JkycB+PPPP9m5c+d9BXny8vJQKBRYW1ub1tnY2KBUKtm5897lQ/5+XQkJCXTs2BGVSmVaFxQURGJiIjdu3ChzfyoTyZQSz5TC2fduqrugALR6Y9aMs62qhL3KrjBLCkBxu2CooIUBpfW9M580ujtptI961r18vYFzuY+nmHqlo9OCPh/yjEMkUdnfs6lC8SxG68TT4tLlzRw9GmZaVqvrYGFhU3EdEkIIIR7Cbe1t2qx+sIybh7Vn4B7srOzuez+DwcD27dvZtm0bPXr0YOPGjezatYv27dsDxmwXLy8vNm7cSN++fTl37hyvvfYajRs3BowZMoUKAxJubm44OzsDkJmZyapVq1i9ejVdunQBYOXKlXh4eBTpy4svvsjEiRNNyyNGjGDQoEGEhYUB4O/vz8KFC+nUqRNLly7F09OThQsXMnnyZGbNmkXLli0JDAxk0KBBpn6dPHkSJycn3N3di5xPpVLh6+trCuA8qM2bNzNgwABycnJwd3cnLi6OqlWL/3ItKSmJRYsWlZglBRAQEEBMTAz9+/cnNzcXrVZLSEhIqUPapk6dyq1bt6hfvz4WFhbodDo++ugjBg0aVObradu2LWq1milTpjBnzhwMBgNTp05Fp9ORnp5e5uu6ePEiPj4+Zu2qV69u2laYUfckkUwp8czQ63XodYVD1yxR6jQolafpWLcaE7r5l8s57v424fYuYzqnopTQb74uv1zOXZrE7Fwa7jzCW3+lPJbzVSoXj8AnPvBRDUg/ZFwnmVLiKXXzhrEQqEJhSY3qfWhQf24F90gIIYR4NmzevBl7e3tsbGzo0aMH/fv3Z9iwYVhaWpoNZXN1daVevXocP34cgHHjxhEREUFAQADh4eEcPny4xPOcPn2a/Px8WrdubVrn5OREvXr1irRt2bKl2fKff/5JdHQ09vb2pp+goCD0ej1nzpwBjJlbFy9eJCYmhnbt2rFu3ToaNWpEXFxcme/F3Zk89xITE2PWj/j4eNO2wMBADh06xO7duwkODqZfv35cvny5yDHS0tIIDg6mb9++ZrWh7j5uaGgoAMeOHWP8+PHMmDGD/fv3s3XrVlJSUkzb4+PjzfaLiTHW5Pzf//5HTEwMq1ev5sCBA6xatYrIyEhWrVpV5vtRrVo11q1bx3fffYe9vT1OTk7cvHmT5s2bo1QWDcvc67pKc69rqMwkU0o8E9ISj3Mp+U60vsaFrTRI/oXEXo34z1utS9jz/tydKWXt8yIAFs73zsgB0OiLZi49bKpwceJvZJJZUODc6lkbt3d2N+TdurPs4A7VG1Vcf4R4BK5f30X6xW+5ePFbAOrX+wgPj9cruFdCCCHEw7G1tGXPwD2lN3xE574fgYGBLF26FJVKhYeHB5aWlsTGxpa634gRIwgKCuL777/nxx9/ZO7cuURFRTF27NgH7bqJWm3+RWxWVhajRo0y1VW6W61atUyPHRwcCAkJISQkhIiICIKCgoiIiKBbt274+/uTkZHBhQsXimRnaTQakpOTCQoKKrVvvXv3NgvWeXp6mvXbz88PPz8/2rZti7+/PytWrGDatGmmNhcuXCAwMJD27dsXKfR99+x3hTWc5s6dS0BAAJMmTQKgSZMmqNVqOnToQEREBC1btjTbrzADadKkSUydOpUBAwYA0LhxY86ePcvcuXMZOvSuGrWl6N69O8nJyVy9ehVLS0ucnZ2pUaOGWWZcaddVo0YNsxn7ANNyjRo18Pb2LvYaKjMJSomnXl5ONv+bNe2uLCkljjkalAY9+dV9S9z3ft0dlLKqasy+svK8O820aLApT5dXrn24l9SCYXvDPavS28eW/nuu3LPtU1fgu3DIXpMB8FIUWNnCPYvJP2XXLp4JBoOOo8feRaO5WrBGiZPT8xXZpcdMnrdCCPG0UigUDzSEriIUBlLu1qBBA7RaLXv27DEN37t27RqJiYk0bNjQ1M7Ly4vQ0FBCQ0OZNm0aX375JWPHjjVlHN09IsPX1xcrKyv27t1rCiRlZGRw8uRJOnbsWGIfmzdvzrFjx4r0syQKhYL69euze7dxApXXX3+dKVOmEBUVRVRUlFnbZcuWkZOTw5AhQ0o9roODAw4ODmXqg16vJy/vzuemtLQ0AgMDadGiBStXriySbVTc9eXk5GBpaR4CsbAwfiYwGAzY2trec7+/H9/CwsLss9/9KByG+PPPP3P58mV69+5d5utq164d77//Pvn5+VhZGSfviouLo169eqahe/fzu60MJCglnnq5WVnodVoUCiVWhqro7ZpiYX+A6s0zuO1cdBz0wyj8Y6EwKLCqqkXdrh52TaqBvpgPTAXZUGbD9x5BhlShqxpjUK6mjQpLwzM2crewuLltFbAuOXNNiCdRTs4ZU0CqTp3JODo2Qa1+st6QPBCp/yaEEKKS8/f3p0+fPowcOZIvvvgCBwcHpk6diqenJ3369AEgLCyMHj16ULduXW7cuMEvv/xCgwYNAOPMdwqFgs2bN9OzZ09sbW1xcHBg6NChTJo0CRcXF9zc3AgPD0epVJZaG3XKlCm0bduWMWPGMGLECNRqNceOHSMuLo7Fixdz6NAhwsPDGTx4MA0bNkSlUrFjxw6++uorpkyZAhgzqj755BPee+89bGxsGDx4MFZWVmzatInp06cTERHBc889Z3bexMTEIn1p1KiRKbBSKDs7m48++ojevXvj7u7O1atXWbJkCWlpafTt2xcwBm46d+5M7dq1iYyM5MqVO1+2F85+WJyQkBBGjhzJ0qVLCQoKIj09nbCwMFq3bl1sPa679/voo4+oVasWjRo14uDBg8yfP5+33nrL1Ob69eucO3eOCxcumF1vjRo1TH1auXIlDRo0oFq1aiQkJDB+/HgmTJhgGnZZlusaOHAgs2bNYvjw4UyZMoW//vqLBQsW8Nlnn92z/2DMkEtKSjItnzlzhkOHDuHi4mKWIVcRJCglnnqFGVJWNjY45rciy7oeCp9dpDlV44Jzy1L2vs9zFUTLlSi4qbxIlrUaEs/DbUORAXOnM07z5Y73uJ57vVz7cC8ZWmPAzMnSAu5RxupRF1p/7HRauHkWbhn/OGBd0jcxT9m1i2dCTk4K+w+8gUZjrLHg5NgM79qjKrhXQgghhLjbypUrGT9+PL169UKj0dCxY0e2bNliCsjodDpGjx7N+fPncXR0JDg42BRk8PT0ZNasWUydOpU333yTIUOGEB0dzfz58wkNDaVXr144OjoyefJkUlNTsbEpeXKTJk2asGPHDt5//306dOiAwWCgTp069O/fH4CaNWvi7e3NrFmzSElJQaFQmJYnTJhgOs6ECRPw9fUlKiqKBQsWkJ1tnEBqzZo1pmFudytuXWpqKjVr1jRbZ2FhwYkTJ1i1ahVXr17F1dWVVq1aER8fT6NGxvIbcXFxJCUlkZSUVGT/ksqgDBs2jMzMTBYvXszEiRNxdnbmxRdfZN68eSXes0WLFvHBBx/wz3/+k8uXL+Ph4cGoUaOYMWOGqU1sbCxvvvlmkesNDw9n5syZgDFQNW3aNK5fv463tzfvv/++2T0ty3U5OTnx448/Mnr0aFq0aEHVqlWZMWMGb7/9donXsG/fPgIDA03L7777LgBDhw4lOjq6xH0fNYXhURSveULcunULJycnMjIyTONMxdPn2vlUoie+g429A3Z5Xcix98W6xgEichswqpMv03o0KL9zXbvGokWLsDJY4HfuJudzjBFyWwt7XH27oDyWynnby+i150kPULHN6RQA9c4b+PD/dFxr5Mk7vS9hZ2nHnkHlO3a+94FT/JGRzf9r5I37bQOvLd1NbVc7dky68+L0n6P/4dN9n/KS70t83OHjcj1/hVj5Epy9a4rVbrMhYHzxbb/qAed2Q7//8E+eZ8OlG8z28+BtL7fH01chHsDZc/+PpKQ7hcwbNozCvcbLFdehx+zipe84ejSMKlXa0bzZfx/ZeeT9gjm5H0KIRyU3N5czZ87g4+NTanBFmMvOzsbT05OoqCiGDx/+2M9//fp1unTpgqOjIz/88AN2dk/GkEvxcEp6zpb1/YJkSomnnl5vzBBSWlhgUBjHZOcpjd9K2FmV71Pg7kwpWztb3D2MqZi3zl0s0jZPbxwT/Y8G/6CRkwWwAsUjCBEbDAauaLQk5xjP52RpAWhL3ulpcd44AyIqe7BzBb9u97X7MxuxF5WeTpdLdk4SN2/uBaB2rbepXTsUKyunCu6ZEEIIIR6HgwcPcuLECVq3bk1GRgazZ88GMA0JfNxcXFz46aefWLJkCQkJCXTp0qVC+iGePBKUEk89ve5OUEpvYQ2AxsI4VEttfa9i1/fv1q1bpKenG8+FkvqNn6duqHHmq/8bN6ZIe21BLakg7yDqWuo5y4py68vd3vorhR+uZpiWPW1U3Mg0BqWe6jxJrQZ0BTMbhh0BO5eK7Y8Q5ejgwX+QceugadnJqbkEpIQQQohnTGRkJImJiahUKlq0aEF8fLypiHZFcHV1NRvSJkRZSFBKPPUKa0opLSzQWRindb2tMP7Xt1WVT1AqIyODzz//3DTWV4kCK1tr03ZNrh7V3zIWtXpjv2wsbYCccunH3xkMBn69bpx5TgEEV3XC186aA4pHc75KpbC4OZRSS6ooqS4lKrPbt9MKAlIKrK1rYGtbiypV2ld0t4QQQgjxGDVr1oz9+/dXdDeEeGgSlBJPPb3OOKROoVSitTQGpbILZqWwK6egVEricWNAyqBHbbChoc4LG3u1absuX1dkn/yCoJTKQsWjCkpl6fTcLhhSmNSxMWqLsl3vE19qLusypB0wPra0AQurktvfzWCQqJSolHS625w//x8yMowZUk5OzWnZ4n8V3KtK4kl/zRJCCCGEeEZJUEo89QwFw/dQKEBhDMocupYHlmCnKp+nQG6WMSvHIl/DK7ktsVFVwc7Rlt++Psm1tCy0Wn2RfbQGY1DK2uJORpWhnKsYXdIYhwjaWyjLHJB64mVehM8b3xm6p7Kv2P4IUU7S0taQlPyJabmqa2AJrYUQQgghhKj8JCglnnq6guF7ty5rsHYCS20O2VjjbGdFY8/yqcGiLQh8WVhYojIoAcjJVXLk1/MAxRYwz9cbA0Z3B6UKlVdw6lKe8RzVVWXLFFIonoIUoasnjQEppSU4eEDzwWXb72m4dvFUu35jNwAuVV7Ayak5NWuW8f/2U0whaY1CCCGEEE80CUqJp172zVzjA4UxWFT16hHmvNODVs83wcpCWS7n0GuNgS+FAhQF59Epjf9a21miNNz7qWYMSj2aD1aXNcZ+uVk/Q0/1vIJaUu5NYeTPFdsXIcpB4slZXL3yE7l5FwDw85uMg0OjCu6VEEIIIYQQD+8Z+qQqnlX5ucZsIYVCScv987DJOY+V4xvlFpCCO5lS1liDUgWAoSA4pbK1RKEtOnROYQB3tTt2lnbklVtPjAwGA39m3mb3TWOAxtNaVc5nqMQ02cZ/ZdieeArk5Jzl/Pn/mJbt7Rtib9+wAnskhBBCCCFE+ZGglHjqafMLg1IKHDPPcdMeXG1syvUcuuvGQIgdDigsjcPx9JbGoJSFpRK9WSaU8fHbTd6mTfBALJTlX+vp+ysZjDiaYlr2sys6RPCpYzCANg9ybxqXJSglnnA6XQ43bv4OgFJpS/Nm/0Wt9n86htkKIYQQQgiBBKXEMyD30hUAFFpjNlO2nYHqVuWbOaS9lml8YDCQn34IhUUWSvfhwGUsLBUULXMOHvaeqK3UZuvK66Pm4UzjbH6uVpbUV9vwavUq5XTkSspggP/0gTM77qyzlqCUeHKlp2/g2PHJUFBfzq1ad5ycnq/QPgkhhBBCCFHeym/8khCV1OXTicCdgrhnaoOVVflmDukKhu8Z9Dq8vxxF7RVT0XMnU6p4j24K8wsFBc7f8arGN838qGX7lGdK5d82D0gpLMC38wMe7M7vRWaZFxUlLW01hf8XVSo3atb8R8V2SAghhBAlGjZsGAqFAoVCgUqlws/Pj9mzZ6MtqD37oH799VcUCgU3b94sn46WwZkzZxg4cCAeHh7Y2NhQs2ZN+vTpw4kTJ8zabd68mU6dOuHg4ICdnR2tWrUiOjrarE1KSgoKhYJDhw6V+fwzZ86kfv36qNVqqlSpQteuXdmzZ4/ZMYcPH46Pjw+2trbUqVOH8PBwNBpNqceOiYmhadOm2NnZ4e7uzltvvcW1a9dK3CczM5OwsDBq166Nra0t7du3Z+/evWZtsrKyGDNmDDVr1sTW1paGDRuybNkyszajRo2iTp062NraUq1atWLv6blz53jppZews7PDzc2NSZMm3fP/0K5du7C0tOT5558v9bo3bNhA9+7dcXV1ve/fx6MmQSnx1MvOzgBArzAweSzcamKHyqp8h8zpdcZcKCWgUKlQKBTotcYPlMr7qV1VTkGQwqCUh03JGWH3muWvvGb/e2zyCjLVUMDUczA9DZ4fWKFdEuJB5OZe4Nq1eG7npgLQssU6XgjYjZNT8wruWeX2xL1mCSGEeCoFBweTnp7OqVOnmDhxIjNnzuTTTz+t6G6ZlCVok5+fT7du3cjIyGDDhg0kJiaydu1aGjdubBYYW7RoEX369CEgIIA9e/Zw+PBhBgwYQGhoKO+9995D9bNu3bosXryYI0eOsHPnTry9venevTtXrhhHwJw4cQK9Xs8XX3zB0aNH+eyzz1i2bBnTp08v8bi7du1iyJAhDB8+nKNHj7Ju3Tr++OMPRo4cWeJ+I0aMIC4ujv/7v//jyJEjdO/ena5du5KWlmZq8+6777J161b++9//cvz4ccLCwhgzZgyxsbGmNi1atGDlypUcP36cbdu2YTAY6N69uynBQafT8dJLL6HRaNi9ezerVq0iOjqaGTNmFOnTzZs3GTJkCF26dCnTPc3OzuaFF15g3rx5ZWr/OElQSjz18vOMZcSVWNA7/Xniro9EVY5FzgH0emNQ6u7hdzqtcZ2F1eOv/3Ihz/gHx8Pa6rGfu0IUBqWsHcHGCaxsH+AgimIeCfH45OVd4vc9PTj05zA0mqsAWNt4SA0pIYQQ4glhbW1NjRo1qF27Nu+88w5du3YlNjaWGzduMGTIEKpUqYKdnR09evTg1KlTpv3Onj1LSEgIVapUQa1W06hRI7Zs2UJKSgqBgYEAVKlSBYVCwbBhwwBj9s6gQYNQq9W4u7vz2Wef0blzZ8LCwkzH9fb25sMPP2TIkCE4Ojry9ttvA7Bz5046dOiAra0tXl5ejBs3juxsY43co0ePkpyczL///W/atm1L7dq1CQgIICIigrZt2wKQmprKxIkTCQsLY86cOTRs2BA/Pz8mTpzIp59+SlRUlFlm0/0aOHAgXbt2xdfXl0aNGjF//nxu3brF4cOHAWPwb+XKlXTv3h1fX1969+7Ne++9x4YNG0o8bkJCAt7e3owbNw4fHx9eeOEFRo0axR9//HHPfW7fvs0333zDJ598QseOHfHz82PmzJn4+fmxdOlSU7vdu3czdOhQOnfujLe3N2+//TZNmzY1O/bbb79Nx44d8fb2pnnz5kRERJCamkpKSgoAP/74I8eOHeO///0vzz//PD169ODDDz9kyZIlRQKKoaGhDBw4kHbt2pXpng4ePJgZM2bQtWvXMrV/nCQoJZ5aqceO8HX4FDJuGCPYSoWKj7T/4IShFlb3HFL3YExBqbu+rNcVZE9ZWCoxYDANHyxWOX7mNBgMpBdkSrnfIyh1r9OV2MfK6sIhOLXN+FjqSIkn2I0bv6PTGWfMtLdvQM2ag7FWVa/gXlV2T+BrlhBCiPtiMBjQ5+RUyI/hIWs52NraotFoGDZsGPv27SM2NpaEhAQMBgM9e/Ykv2BCptGjR5OXl8dvv/3GkSNHmDdvHvb29nh5efHNN98AkJiYSHp6OgsWLACMmTm7du0iNjaWuLg44uPjOXDgQJE+REZG0rRpUw4ePMgHH3xAcnIywcHBvPbaaxw+fJi1a9eyc+dOxowZA0C1atVQKpWsX7/elMHzd+vXryc/P7/YjKhRo0Zhb2/PmjVrHureFdJoNCxfvhwnJyeaNm16z3YZGRm4uLiUeKx27dqRmprKli1bMBgMXLp0ifXr19OzZ8977qPVatHpdNj8baIsW1tbdu7caVpu3749sbGxpKWlYTAY+OWXXzh58iTdu3cv9rjZ2dmsXLkSHx8fvLy8AGPQrHHjxlSvfuf9X1BQELdu3eLo0aOmdStXruT06dOEh4eXeL1PCil0Lp5aB7ZsIu3EnSevpdLO9NjKonw/yBh0dzKlju++wM51SWg1xhfx+xq+95C2XLnJiexc8vQGFNw7KPXUSP8Tlne6s2zjVHF9EeIB3b6dytlz/49Ll74DwN39dRo2qHyp1Y+LwWDgmwNpXMy4DYCbow2vNa+JhVICUEII8Swy3L5NYvMWFXLuegf2o7CzK73h3xgMBrZv3862bdvo0aMHGzduZNeuXbRv3x4w1jXy8vJi48aN9O3bl3PnzvHaa6/RuHFjAHx9fU3HKgy0uLm54ezsDBizpFatWsXq1atNw7dWrlyJh4dHkb68+OKLTJw40bQ8YsQIBg0aZMqo8vf3Z+HChXTq1ImlS5fi6enJwoULmTx5MrNmzaJly5YEBgYyaNAgU79OnjyJk5MT7u7uRc6nUqnw9fXl5MmT933f7rZ582YGDBhATk4O7u7uxMXFUbVq1WLbJiUlsWjRIiIjI0s8ZkBAADExMfTv35/c3Fy0Wi0hISEsWbLknvs4ODjQrl07PvzwQxo0aED16tVZs2YNCQkJ+Pn5mdotWrSIt99+m5o1a2JpaYlSqeTLL7+kY8eOZsf797//zeTJk8nOzqZevXrExcWhUhlLrly8eNEsIAWYli9evAjAqVOnmDp1KvHx8VhaPh3hHMmUEk+tzGvG4S/2dh6oHPqjsjC+oFsqFeU/fK/gWxQFCpIPXkFzW4teZ1xX3ceRjLyMcj1fcU5k3+atv1L45IzxBcvd2gqV8il/il9LMv5r7QhebaDDxJLbC1EJpaT8m7S0/6LVGl8nnvX6Ub+fvs576/4k8seTRP54ksnrD7M7+WpFd0sIIYQo1ebNm7G3t8fGxoYePXrQv39/hg0bhqWlJW3atDG1c3V1pV69ehw/fhyAcePGERERQUBAAOHh4aZhavdy+vRp8vPzad26tWmdk5MT9erVK9K2ZcuWZst//vkn0dHR2Nvbm36CgoLQ6/WcOXMGMGZuXbx4kZiYGNq1a8e6deto1KgRcXFxZb4XhYGWksTExJj1Iz4+3rQtMDCQQ4cOsXv3boKDg+nXrx+XL18ucoy0tDSCg4Pp27evWW2ou48bGhoKwLFjxxg/fjwzZsxg//79bN26lZSUFNP2+Ph4s/1iYmIA+L//+z8MBgOenp5YW1uzcOFC3njjDZR3fdZatGgRv//+O7Gxsezfv5+oqChGjx7NTz/9ZNbfQYMGcfDgQXbs2EHdunXp168fubm5ZbqnOp2OgQMHMmvWLOrWrXvf97SyejpCa0IUI/vGdQCUFlVQWnqC1vgi6+dmX241WrQaDRmXL5Kv1YIFKDGgyzdmTb3Q1x+/lm6onaz55ZtiXmjKeWq3S3nGWRmcLS0IqupEbzfncj1+pZRnHOpE7QAY+HXF9kWIB3Tr1p8AeLj3w9W1M9WqdavgHlUMg8HAiYuZxJ8yFjH1crElN1/Plcw8Mm7nV3DvhBBCVBSFrS31DuyvsHPfj8DAQJYuXYpKpcLDwwNLS0uzQtf3MmLECIKCgvj+++/58ccfmTt3LlFRUYwdO/ZBu26iVqvNlrOyshg1ahTjxo0r0rZWrVqmxw4ODoSEhBASEkJERARBQUFERETQrVs3/P39ycjI4MKFC0WyszQaDcnJyQQFBZXat969e5sF6zw9Pc367efnh5+fH23btsXf358VK1Ywbdo0U5sLFy4QGBhI+/btWb58udmx755dztHREYC5c+cSEBDApEmTAGjSpAlqtZoOHToQERFBy5YtzfYrzFKqU6cOO3bsIDs7m1u3buHu7k7//v1NmWO3b99m+vTpfPvtt7z00kumYx86dIjIyEizOk5OTk44OTnh7+9P27ZtqVKlCt9++y1vvPEGNWrUKFLf6tKlSwDUqFGDzMxM9u3bx8GDB03DLfV6PQaDAUtLS3788ccS72llJUEp8dTSFozRNugLZ9rLp2lNJ0Z1qlMuxzfo9Syf/h43b+eicqgBFkoUBoUpQ0rtbI3aydrY9jHMDJVTMObbz86aBQ1qldL6KaEpCEqVZy0pg0HK1IhHTq/PJ/HkTLKyEsnKTgTA1zcMa+tnt4bUip1niPj+uGm5c103Tl7K5EpmXgX2SgghREVTKBQPNISuIhQGUu7WoEEDtFote/bsMQ3fu3btGomJiTRs2NDUzsvLi9DQUEJDQ5k2bRpffvklY8eONWUc3V3fydfXFysrK/bu3WsKJGVkZHDy5Mkiw8X+rnnz5hw7dqxIP0uiUCioX78+u3fvBuD1119nypQpREVFERUVZdZ22bJl5OTkMGTIkFKP6+DggIODQ5n6oNfrycu7854gLS2NwMBA04x2yr+NECnu+nJycooMebOwMH5WNBgM2Nralnhf1Go1arWaGzdusG3bNj755BPAOGNhfn5+kT5YWFiYag8Xx2AwYDAYTNfVrl07PvroIy5fvoybmxsAcXFxODo60rBhQ6ysrDhy5IjZMf7973/z888/s379enx8fFCr1WW+p5WFBKXEU0unNWYOGTAGLJRKLZvGvFBux9fk5XLZzgnsXSicC8EGpWnWPeVddavKXCTxIbKncgrqWtk+xhpWFSbzEpzZAed+Ny6rpMC5eLJcufIjFy7cye5zdHz+mQ1I5ev0ZNzO5/fTxuxWF7UKNwdrXmnuybwfTlRw74QQQoiH4+/vT58+fRg5ciRffPEFDg4OTJ06FU9PT/r06QNAWFgYPXr0oG7duty4cYNffvmFBg0aAFC7dm0UCgWbN2+mZ8+e2Nra4uDgwNChQ5k0aRIuLi64ubkRHh6OUqksdUTIlClTaNu2LWPGjGHEiBGo1WqOHTtGXFwcixcv5tChQ4SHhzN48GAaNmyISqVix44dfPXVV0yZMgUwZlR98sknvPfee9jY2DB48GCsrKzYtGkT06dPJyIigueee87svImJiUX60qhRI6yszGvgZmdn89FHH9G7d2/c3d25evUqS5YsIS0tjb59+wLGgFTnzp2pXbs2kZGRXLlyxbR/jRo17nntISEhjBw5kqVLlxIUFER6ejphYWG0bt262HpchbZt24bBYKBevXokJSUxadIk6tevz5tvvgkYM7E6derEpEmTsLW1pXbt2uzYsYP//Oc/zJ8/HzAOuVy7di3du3enWrVqnD9/no8//hhbW1tTofXu3bvTsGFDBg8ezCeffMLFixf517/+xejRo7G2NiY7/P2+urm5YWNjU2T9312/fp1z585x4cIF4M7vo0aNGiXes8dBglLiqaXVGDOl8i0bFiS+aMv1+Jq8PFAaI+sNrFywvG1PI50VhwsypSwKZvgzGAzFZ0oVs+phEnRyCqLwduURlHr0iV0PZ/1bcPbObBfYOj/8MctpSKcQZZGdcxoAGxsv6vpPx9m5TSl7PJ1y83V0/+w3zl3PMa2b80pjgp+r2DdHQgghRHlauXIl48ePp1evXmg0Gjp27MiWLVtMARmdTsfo0aM5f/48jo6OBAcH89lnnwHG4VezZs1i6tSpvPnmmwwZMoTo6Gjmz59PaGgovXr1wtHRkcmTJ5Oamlpklri/a9KkCTt27OD999+nQ4cOGAwG6tSpQ//+/QGoWbMm3t7/n737jo+izh8//ppt2U2y6T2EhBJ6lSJFRUQMoICnoqiHcIcofkFEsWFDFI9TQQXlUO+HgHdYTlRE5FAsIAgiIAiChBo6hBDSk63z+2OShRwhdZNNwvv5eMTszM7OvGezuzLvfX/enySmT59OWloaiqJ4lh9++GHPfh5++GGaN2/O7NmzmTNnDvn5+QB8+OGHjBw58qLjlrXu6NGjNGnSpNQ6vV7Pnj17WLx4MRkZGYSHh9OjRw/WrVtH+/btAa16aP/+/ezfv/+ix5dXDDBmzBhyc3N56623mDJlCiEhIVx33XW8/HL5E8xkZ2czdepUjh07RlhYGLfeeisvvfRSqYTaRx99xNSpU7n77rvJzMwkMTGRl156ydOvymw2s27dOt544w3OnTtHdHQ011xzDRs2bPBURen1elasWMEDDzxA7969CQgIYPTo0bzwwgvlxlcZy5cv9yTR4PzfY9q0aTz//PM13n9NSFJKNEqqqqK6tRJXxe0goPAEFuM+rx7Dabd7bl9likXNjQHluKdSSm8oToW5K06GeaPHVUmllH9jb24OkHVY+92kJwTFQtdRtXKY+p6bEw3PyVPLOHjwDYqKjgIQF3srkZFlTxV8OTiUkV8qIRUfYqFHUqgPIxJCCCGqZ9GiRZe8LzQ0lPfff/+S97/55pvl7vvZZ5/l2WefLbXOarV6GnGDVmE0ffp07rvvPs+6tLS0MvfXo0cPvvnmmzLvi4iIYM6cOeXGU2L48OGeaq/MzEwGDBjA/PnzGTZsGP7FQy6TkpIqP2oELXnz2WeflbvNmDFjGDNmTKX3eaEHH3ywyr26br/9dm6//fZyt4mJiWHhwoWXvD8uLo6VK1dWeKzExMRKbVfi+eefr1RSqSbPWW2TpJRolFS3m5KUgjF/BVdu+4V913h3aIzDeb7xrn3vfozhMaBwfvhecaWUzVW7/VDWZObwz6MZfJeZA4DVoK/gEZfmrQbwtc6Wq/0e/hZEXjzLiBD11b59L+FwFE/CoPMjMrLiJqCN0fp9Gbz6TSpZBVpyv31cEF9NurrqO2oon1lCCCGEl23bto09e/bQs2dPsrOzPdU0JUmiuhYWFsa3337LvHnz2LhxIwMGDPBJHKLhkaSUaJRcrvPVScbixnFGs3f7Drns55NSugBtDK/iZ8TtKB6+p9ex88xOdmSUP6VrTb2WdppfsvM9y9eEVr6xnZcnAKwbqnpBg/OG1cRPXL7s9kzy8/d7ElLduv0Hi7kpfn6RPo7MNxZvTOO3o1me5Y7xweVu3yA/q4QQQohaNmvWLFJTUzGZTHTr1o1169YRERHhs3jCw8N57rnnfHZ80TBJUko0Sm7n+aRUZJ72TXxwQLhXj+FwaPtVVAW9OQSAgCs74FqrNdrLdeUw6r+jcKku7ibZq8e+ULZTG6b4YNMoeoUEcl1YxYmaBlMRdSG3Gw7+ALmnoGRIpDQ4Fw1Afv5Bftk8DLe7EACLpSkhwd18HJVvrNx5koNn8th1PBuAx1Jac0XTULo2DfFtYEIIIUQD07VrV7Zu3errMISoMUlKiUbJdUFSKixbSx7lhzb17jEcWqWUDgVzG4Xs2Cakq2Av1I6d48zCpbow6oz46ctvOPi/qjLuOr94etjBkcFcERRQpeM0KAe+gyW3nV9W9LWUlJKSDOFdZ86s8iSk/EzRNEua5OOIfOPAmTz+b8mvpdZd3zaa1jGXTqQ3xPy5EEIIIYSoPElKiUbpfKWUgiEgD0uonaMdBnv1GM4LklJFJoVVnx8sdb9q1JJFEZYIIixalVaF6Y5qjFHJL+5hFaCvfi+pBiHzkPY7IApiOkByClwOTd1Fg+Vw5JCVvZkTJz8FoFmzh2je7PJMSJ3JtbH9SBYAEYEmBraLpmWUlVbRUu0ohBBCCHE5k6SUaJTOV0rp2X5dV2bnTeKZ0DivHsNZfAwFBbuqJUdMFgPNu0YSmRCIM1AbxmfSm8p8vOqlipz84ln3AvWNPEFjL25u3uoGGD7Pt7EIUQk7f/8/zp3b6Fn292/mw2h85+VVe5i/5oBnuUtCKDNv6eTlo0iFoxBCCCFEQyRJKdEoOYsKi2/pOGQ3Y8NEpLVqQ+gqPEZxpZSCglpcsWMNMzPgnrYA/HzyOABGnbHinVVjjIqqquQ4XdiLq6tqMuveRfuujxd4JTPumaS5uaj/XK4CT0IqMKA1oWF9iLpMZ9pbt09L0Ot1Chajnps6xfo4IiGEEEIIUV9IUko0Osd2/86BTcXVCTo/Tji0ZE18iMUr+3fa7az993scTTsEOgs6FFSddgyd/nxyye7SelldXClV8yYpblXl5m37PbPuhRsNBHkxKVWvHP0FUv8LB9doyzLjnqjHVNXF8RMfexJSBkMwV1650sdR1b18m5MHlvzKiaxC0jK0z6nlE/vSPq78WfYu5dJpcmk6JYQQQgjRkElSSjQq2emn+Xj6k55lnS6C1s2iuKpNWzrEB3nlGEd+/43tX6/A5WeB5u2LK6UuTko5XFollUlnusRsd2VdZlXuAutYkd2TkAIYGhVS2fAbnk/HQtaR88sBkXV26HpYLybquRMn/kNq6rOe5aAgbw9Taxg2HDjLj3vPeJatZgNJ4Y14IgYhhBBCCFEtkpQSjUrOmdMA6A1+qEoiRlNXhvSOpXXH5l47hsNWBIA1MpoCtEbnbkUbvleqUsp9qUqpmjtSpO27ucWPr7u38urQvXonL1373XUUBCdA5zt8G48Q5cjO2Q6A0RhKTMzNJDQZ7duA6tjpnCLWpp7h50NnAeiZFMbDA1vRIjKAAL+q/5NDkUooIYQQQohGrZF3RhaXm8yTmQC41TBMgTdhVKz4mb073Kukibp/SAgAOlXBrS+plNLhcrs4mnuU0/lagsyor0RPqSrKsGsxxPgZG3dCyuUEp5YEZOALcO0TYK7e8J9KU1WZhl5U2YkTS/ll83BOnlwKQHLyM7RKfgaLJcHHkdWthz/ezuOf7uCzX7Weem1jrfRuEU5UkHd7+gkhhBD1zZgxY1AUBUVRMJlMtGzZkhdeeMEzOVJ1rVmzBkVRyMrK8k6glXDo0CHuuusu4uLiMJvNNGnShOHDh7Nnz55S261YsYJ+/fphtVrx9/enR48eLFq0qNQ2aWlpKIrC9u3bK338559/njZt2hAQEEBoaCjXX389mzZtKrXPsWPH0qxZMywWCy1atGDatGnY7fYK971kyRI6d+6Mv78/sbGx/PWvf+Xs2bPlPubHH39k6NChxMXFoSgKy5Ytu2ibzz77jBtuuIHw8PAKz1dVVQYPHnzJfS1atIhOnTphNpuJiopiwoQJpe7/+uuv6dWrF1arlcjISG699VbS0tLq5DxrgySlRKOSm5kDgE7vR1T6FmKO/Qc/Lycx3MX/Y9HptW/9L2x0rtcrjP1mLEM+G8LsrbMBbfhepamVGzCW7XQBEFLDhFQlD+c7jvNDFDHJ0B9Rfx08+Bq5ub8DoNcHEBpypY8jqjuqqrLrRDZr955h1wntM7hPi3CGdo5jdJ8k3wYnhBBC1KFBgwZx8uRJ9u3bx5QpU3j++ed59dVXfR2WR2WSNg6Hg4EDB5Kdnc1nn31GamoqH3/8MR07diyVGHvzzTcZPnw4ffv2ZdOmTezYsYORI0cyfvx4Hn300RrF2apVK9566y127tzJ+vXrSUpK4oYbbuDMGa01wJ49e3C73bzzzjvs2rWL119/nbfffpunnnqq3P3+9NNP3HPPPYwdO5Zdu3bxySef8MsvvzBu3LhyH5efn0/nzp2ZN+/SM4Dn5+dz1VVX8fLLL1d4fm+88cYl2rvAa6+9xtNPP82TTz7Jrl27+Pbbb0lJOT9ZzqFDhxg+fDjXXXcd27dv5+uvvyYjI4NbbrmlTs6zNsjwPdGo2PLyADAYTXTYvZDDkWD2925SqqRSSi0sBH1xo/PiDxVFr7DzzE4ALAYLJr2JG5JuIItvqnSMima/yylOSjXaKimnDY78fH7ons4AtTAMshQpjxLV4HTmkpe/F5v9NIqip1PHdwgISMZsvnxmmNucdo7b39lYat38P3cj2OL9KlEhhBCiPvPz8yMmJgaABx54gM8//5zly5czfvx4HnroIb788ktsNhv9+vVj7ty5JCcnA3D48GEmTpzI+vXrsdvtJCUl8eqrr9KuXTv69+8PQGhoKACjR49m0aJF5ObmMn78eJYtW0ZQUBCPP/44X3zxBV26dOGNN94AICkpibFjx7Jv3z6WLVvGLbfcwqJFi1i/fj1Tp05ly5YtRERE8Kc//YmZM2cSEBDArl27OHDgAN999x2JiYkAJCYm0rdvX895Hj16lClTpjB58mT+9re/edZPmTIFk8nEpEmTGDFiBFdeWb0v6e66665Sy6+99hoLFixgx44dDBgwgEGDBjFo0CDP/c2bNyc1NZX58+cza9asS+5348aNJCUlMWnSJACaNWvG/fffX2EiafDgwQwePLjcbUaNGgVwUcXS/9q+fTuzZ89my5YtxMaW/vfiuXPneOaZZ/jyyy8ZMGCAZ32nTud7lG7duhWXy8WMGTPQFRdGPProowwfPhyHw4HRaKzV86wNUiklGhV7kQ0AnaIla2xGMFu8m5RKP3AYfXJfTqPtV0FBLa6a0ukUTy+pVbeuYv3I9dzU/CZUVBRAuVSyqZIJEbeqsiuvkB8ycwEIrmZSqqKjVZQUq3X/fQLeHwaf3ast+1klaSTqnZzc3/lxXXe2br0dgICA1kRE9MdiaeLjyOrWrhPZAARbjLSPC+KBa1vUfUKq3pd9CiGEqC5VVXHYXD75UWv4/xeLxYLdbmfMmDFs2bKF5cuXs3HjRlRVZciQITgc2sRIEyZMwGaz8eOPP7Jz505efvllAgMDSUhI4NNPPwUgNTWVkydPMmfOHAAeeeQRfvrpJ5YvX87q1atZt24dv/7660UxzJo1i86dO7Nt2zaeffZZDhw4wKBBg7j11lvZsWMHH3/8MevXr2fixIkAREZGotPpWLp0KS6Xq8zzWrp0KQ6Ho8yKqPvvv5/AwEA+/PDDGj13Jex2O++++y7BwcF07tz5kttlZ2cTFhZW7r569+7N0aNHWblyJaqqcvr0aZYuXcqQIUO8EmtFCgoKuOuuu5g3b54neXmh1atX43a7OX78OG3btqVJkybcfvvtHD161LNNt27d0Ol0LFy4EJfLRXZ2Nv/617+4/vrrMRqN9eI8q0oqpUSj4iwuSS1pjms3gtHk59VjnEzPJctg8yxbVT/c5uJ+Kbrz/+Py0194XO8kVOYcPs3Lh055lhMttVw95CsZ+7TfIYlaD6nOd/o2HiHKkHHmW1TViaLoMRrDaN5skq9DqlPv/niA/2w5xtk87fPwlivimTa0fa0cq6YXBUIIIRoup93Nuw+t9cmx75vTD6Nf1b8EVlWV7777jq+//prBgwezbNkyfvrpJ/r06QNo/X4SEhJYtmwZI0aM4MiRI9x666107NgR0Cp/SpQkWqKioggp7mmbm5vL4sWL+eCDDzwVNQsXLiQuLu6iWK677jqmTJniWb733nu5++67mTx5MgDJycnMnTuXfv36MX/+fOLj45k7dy6PP/4406dPp3v37vTv35+7777bE9fevXsJDg6+qNIHwGQy0bx5c/bu3Vvl5+1CK1asYOTIkRQUFBAbG8vq1auJiIgoc9v9+/fz5ptvllslBdC3b1+WLFnCHXfcQVFREU6nk6FDh9bZcLWHH36YPn36MHz48DLvP3jwIG63m7/97W/MmTOH4OBgnnnmGQYOHMiOHTswmUw0a9aMb775httvv537778fl8tF7969WblyZb05z6qSSinRqNjPZQGg5GrD+BwG0Ou9+zJ3ubWLo2b2EO5KuY07p4zFXXzBpF4yKVWGalxjrTyT7bl9ZXAAf4oOrfpOylFvZrqya5Vg3Dgbxq+D3v/n23iEuEBeXipHji7kyNH3AGiV/BxXX/UzkZEDfRxZ3Zq/5gD70/M4V6B9y9sxvpYnIShDvfnMEkIIIdASKYGBgZjNZgYPHswdd9zBmDFjMBgMpYayhYeH07p1a/744w8AJk2axIwZM+jbty/Tpk1jx44d5R7n4MGDOBwOevbs6VkXHBxM69atL9q2e/fupZZ/++03Fi1aRGBgoOcnJSUFt9vNoUOHAK1y69SpUyxZsoTevXvzySef0L59e1avXl3p58JkqvjL8yVLlpSKY926dZ77+vfvz/bt29mwYQODBg3i9ttvJz09/aJ9HD9+nEGDBjFixIhSPZMu3O/48eMB2L17Nw899BDPPfccW7duZdWqVaSlpXnuX7duXanHLVmypNLnW5Hly5fz/fffe4ZWlsXtduNwOJg7dy4pKSn06tWLDz/8kH379vHDDz8AcOrUKcaNG8fo0aPZvHkza9euxWQycdttt3m+xPPleVaHVEqJRqXgjPZBpS9OHKXFKJdsIlddbtUNCgS69LTq3QFbgQN7YXGfKZ0bAINiwKDz/tsr06EdZ1W3VnQJ8vf6/usNW3FSys+7MycKUVNOZz5bf70Tp/N8gjgkpIcPI6pb6TlFrNhxEpvT7UlGLfxLD6KtZtrGev/9KqN2hRBCGEw67pvTz2fHror+/fszf/58TCYTcXFxGAwGli9fXuHj7r33XlJSUvjqq6/45ptvmDlzJrNnz+bBBx+sbugeAQGlJwvKy8vj/vvv9/QbulDTpk09t61WK0OHDmXo0KHMmDGDlJQUZsyYwcCBA0lOTiY7O5sTJ05cVJ1lt9s5cOBAqebclzJs2LBSybr4+PhScbds2ZKWLVvSq1cvkpOTWbBgAVOnTvVsc+LECfr370+fPn149913S+37wtnvgoKCAJg5cyZ9+/blscceA7ReTQEBAVx99dXMmDGD7t27l3pcdHR0hedQWd9//z0HDhzwVLuVuPXWW7n66qtZs2aNp/KsXbt2nvsjIyOJiIjgyJEjAMybN4/g4GBeeeUVzzb//ve/SUhIYNOmTfTq1cun51kdkpQSjUpRkTZbW6HJzZT7FZrovP/NvVtVQdEG5G38fD+/fn3Ec5+qaEkpU6Wacl9cKlXR9VeBS9u/v5erv+qNnUth/3eQc1JblqSUqGfyC/Z7ElLRUTcRETGAwMCLv5VsrGb+dw+fbzvuWbb6Gbi2VaTXk/9CCCFECUVRqjWEzhdKEikXatu2LU6nk02bNnmG7509e5bU1NRSyYeEhATGjx/P+PHjmTp1Kv/85z958MEHPRVHF/Z3at68OUajkc2bN3sSSdnZ2ezdu5drrrmm3BivuOIKdu/efVGc5VEUhTZt2rBhwwYAbrvtNp544glmz57N7NmzS2379ttvU1BQwD333FPhfq1WK1Zr5f6973a7sdnOt1A5fvw4/fv3p1u3bixcuNDT9LtEWedXUFCAwVA6BaLXa68tVVWxWCxVel6q4sknn+Tee+8tta5jx468/vrrDB06FMDTTD41NZUmTbQepZmZmWRkZHiazhcUFFx0riXn4Ha7Pdv46jyrQ5JSolFxurRv7vWKSo+M6/nZfLXXj1EyVE+nwrHUrPN36FV+9VsHTjAbzNXbeQV9UwrcjTgp5XbDFxPAWaQtK3oI9G3WXrrYiBI2Wzr79r1EQWEaAEFBXejQYY5vg6pDvx/P5ueDZ/nlUCYAVydHEGU1M7BdlCSkhBBCiHIkJyczfPhwxo0bxzvvvIPVauXJJ58kPj7e01to8uTJDB48mFatWnHu3Dl++OEH2rZtC2gz3ymKwooVKxgyZAgWiwWr1cro0aN57LHHCAsLIyoqimnTpqHT6Sr8//ITTzxBr169mDhxIvfeey8BAQHs3r2b1atX89Zbb7F9+3amTZvGqFGjaNeuHSaTibVr1/Lee+/xxBNPAFpF1SuvvMKjjz6K2Wxm1KhRGI1GvvjiC5566ilmzJhBhw4dSh03NTX1oljat2/vac5dIj8/n5deeolhw4YRGxtLRkYG8+bN4/jx44wYMQLQElLXXnstiYmJzJo1izNnzngeX1YD8RJDhw5l3LhxzJ8/n5SUFE6ePMnkyZPp2bNnmf24SuTl5bF//37P8qFDh9i+fTthYWGepGBmZiZHjhzhxIkTpc43Jiam1M//atq0Kc2aNQOgVatWDB8+nIceeoh3332XoKAgpk6dSps2bTyzMN544428/vrrvPDCC9x5553k5uby1FNPkZiYSNeuXWv9PGuDJKVEo+IsriQCN4tdKfSNDffavjcu/ZCtK5fhiGwDFgWdAu7i43W6J5T/2zsanFoaI9TPu72eAJxuFVvxsMSAxpiUcuSfT0gNeA5iu0BA2c0Ma4dcWItLO37iI06nr/AsBwa08mE0dUtVVcYs3ExG3vlvJ6cNbUfLKKlkFEIIISpj4cKFPPTQQ9x0003Y7XauueYaVq5c6UnIuFwuJkyYwLFjxwgKCmLQoEG8/vrrgDakbfr06Tz55JP85S9/4Z577mHRokW89tprjB8/nptuuomgoCAef/xxjh49itlc/pfjnTp1Yu3atTz99NNcffXVqKpKixYtuOOOOwBo0qQJSUlJTJ8+nbS0NBRF8Sw//PDDnv08/PDDNG/enNmzZzNnzhzy87URKx9++CEjR4686LhlrTt69KinIqiEXq9nz549LF68mIyMDMLDw+nRowfr1q2jfXttQpXVq1ezf/9+9u/ff9Hjy5scZcyYMeTm5vLWW28xZcoUQkJCuO6663j55ZfLfc62bNniSQqBNvMhwOjRo1m0aBGg9Yz6y1/+ctH5Tps2jeeff77c/V/o/fff5+GHH+bGG29Ep9PRr18/Vq1a5XmtXHfddXzwwQe88sorvPLKK/j7+9O7d29WrVqFxWKp9fOsDZKUEo1CQU42h7ZtweUq1FYoKlcnRzCxv/fKEnev+x5bfj5KlLZsREe+S/vQK3Dng6ISZg5jRKsR9G/av4w9lJP0qOAbjYXHM/gtp8Cz3CgrpWxac3oUPVz1iE+byUh6SpRQVTcORybHjr0PQFBQVxISRhMe5pveFr6QU+T0JKSGd4mjbWyQJKSEEEKI/1HeRXtoaCjvv//+Je9/8803y933s88+y7PPPltqndVqLdWgOj8/n+nTp3Pfffd51qWlpZW5vx49evDNN9+UeV9ERARz5lSuGnz48OGeaq/MzEwGDBjA/PnzGTZsGP7+Wv/bpKSkKs2iazab+eyzz8rdZsyYMYwZM6bS+7zQgw8+WOVeXddee22F51CdmMraZ1BQEAsWLGDBggWXfNzIkSPLTPJdqLbOszZIUko0Ct+/9zapG8/P1qDTw7/GXlnOI6rO5dSajFv8zORgw2IwklmclHIr2hjv2IBYJnadePGDa5Bg+S23gKl7j3mWgw16TLWcsPHJ9Oue5uaB0t1Y1Auq6mbL1tvIyfkNAEXR06Xz/8NoDPFtYHXk/607yOur9+Io/pwLMhuYM7Krj6MqmyqDbYUQQlxmtm3bxp49e+jZsyfZ2dm88MILAJ4kUV0LCwvj22+/Zd68eWzcuJEBAwb4JA7R8EhSSjQKx/dq05cq+lh0+nAMplyvH8PtaS6oJUx0iuIZvufADlS2wXnFLkwK7cg9XyH1eLMYrgoJbFw9XM7shW+ehtxT2rJJKjBE/ZCTu9OTkAKIjbn1sklIASzdeox8+/mmqn1a1OVwWk1j+qgTQgghvG3WrFmkpqZiMpno1q0b69atIyKi7v9/XSI8PJznnnvOZ8cXDZMkpUSjUJijzYZl9L8OgxKCQX/pcsfqchdXSrmLv5HXKwru4h5STrQG695KSl0o26FdFI6ICeWRpEs37quKS13o+STZtX0J7LugfDisWd3HIMQFnM5cTpxcyunTWg+p0NA+XNH1Xz6Oqm6oqspjS3fw0/4MTudoPd4+uPdKkiICiA2u5gQOtUqyVkIIIS5PXbt2ZevWrb4OQ4gak6SUaBRcTq2xXljWSjrv/o1fr/d+o/EidNhDInG7bGAAvV6Hy1aclFK0pJSf3q/yO6zkaJPc4mqsIH3DmAq3yoq0hCLtb4EOt0BiX9/G44uhi6JeOXp0EQcPveFZDgrq5Ltg6lhmvp2lW88PF44I9OOKxFDMxkb6+SOEEEIIIXxKklKiwXO7XKBqiZuIs1no3Q6KQvy9eoyioiJy4pqDTkfJ/FNGkxl3bsnwveJKKV3NKqXK6ouS49QqpYIMjfSi0F7c4Dy+G7Qd6ttYhEAbtgcQEnIlYaG9SUj4q48jqn1pGfl8vyed9FztEy7U38j7f72SpuH+kpASQgghhBC1RpJSosFzOuye20F5Nhx6yE7wbqVUUVER6HSgQpI7jEA1gGZdr2DrD6e1GKrUU6pkuEnlKnLOObRhg402KVUy655foG/jkOY1lzVVVTly5F2yc3Zw7twmAJo3m0xoaE8fR1Y3Hv7PdrYdyfIsNw3zp2OTYN8FJIQQQgghLguSlBINnqOw0HM732Tju44KcWbvNvhzFTc5N6Lneoc2+5Qx3IrDcRxQWLh7IRjLS0pVlIDSEiLKBZt9k5HN3w+e5FChlvBKtHi/X5VPff8SHP4JTv+uLZt8nJQqg09mIRQ+kZ3zK/sPvOJZ1un8sFrb+jCiumF3urG73BxI15LD17eNJshs4PYeCT6OrDR5KwohhBBCNE6SlBINniOvZKY9Pf+4w0aSwcZVRu9eUDkd2vA8BQV9gp7gq5OxtA1H/fcfKCgUqtoMeW3Dyr6IVYp/qnJdteBYBrvztUbDRkWhi9W7QxJ9qiATfnyl9Lqw5r6JRQggP38/AIpipFXys1it7TEYGvdMkHtO5XDrPzaUmmHv9Ts6YzUbfRiVEEIIIYS4nEhSSjR4tuzzSalncoqw2yM51vYarx7D6dSSUjoUDNF+HMi0kbfiEAo6AKb0fIS+LXoRHxjvtWMeLNR6u/y9VROuDw8izlx3lVJl9bbyqqIs7bfBDH96G4LiIf6K2j1mFSgyo9dl48TJpezdOx2XS0sAx8XeRpMmd/s4qrqxYf/ZUgmpq1pG1LuEVOXfi1JKJYQQQgjREElSSjR4BZk52g3FwP+LfIqVhwL4e0CsV49RUimlQyEvH378dq/nPpfipGloglcTUgAZdu2Y/cOsNKnDhFSdKOkjZQ6G9n/ybSzisnb48Du4XAXFSwqhob19Gk9d+NfGNJZtP8GJLG3o85g+STw5uA1+Bp2PI6sGyR8LIYQQQjRoDfBfoEJo3G4XP/3n3/z8308BUNCz/rBW7dA03HtD3Qpzc8g+rTU016HDpWpvm4AQPw423cJ3ye/jbzF77XigVSoVurVv/kPqsMF5nVUIlcy4Vw/7SEnFxeXB4cgmJ/d3CgoOAtDtio+55uqtREff6OPIat8rq1LZevgcJ7O1z8uO8cGYjXoUafYvhBBCVNuYMWNQFAVFUTCZTLRs2ZIXXngBp9NZo/2uWbMGRVHIysryTqCVcOjQIe666y7i4uIwm800adKE4cOHs2fPnlLbrVixgn79+mG1WvH396dHjx4sWrSo1DZpaWkoisL27dsrffznn3+eNm3aEBAQQGhoKNdffz2bNm0qtc+xY8fSrFkzLBYLLVq0YNq0adjt9nL2qlmyZAmdO3fG39+f2NhY/vrXv3L27NlyH/Pjjz8ydOhQ4uLiUBSFZcuWVTlmgJdeeok+ffrg7+9PSEhImcc6cuQIN954I/7+/kRFRfHYY4+Veg1d+Dq78Kd9+/aebWbOnEmPHj2wWq1ERUVx8803k5qaWuFzU5n4aoMkpUSDdfyPXfz86UecOKi9wRTFjMPtR3yIhS4JIV45xsl9qcy/78+sevsNAHSqgqrXkkShMf782vK/HAz/DT+9X6X2V2G64382UABrLSal6ryR96F1ML8vLP2rtuzrGffEZcnpzGXDxv5s3jwc0PpIBQV1xmhsvLPNZRc6eGXVHqZ+toNcm/YPm3l3XcGH43pxc1fvVnkKIYQQl6tBgwZx8uRJ9u3bx5QpU3j++ed59dVXfR2WR2WSNg6Hg4EDB5Kdnc1nn31GamoqH3/8MR07diyVGHvzzTcZPnw4ffv2ZdOmTezYsYORI0cyfvx4Hn300RrF2apVK9566y127tzJ+vXrSUpK4oYbbuDMmTMA7NmzB7fbzTvvvMOuXbt4/fXXefvtt3nqqafK3e9PP/3EPffcw9ixY9m1axeffPIJv/zyC+PGjSv3cfn5+XTu3Jl58+ZVO2bQnv8RI0bwwAMPlLkPl8vFjTfeiN1uZ8OGDSxevJhFixbx3HPPebaZM2cOJ0+e9PwcPXqUsLAwRowY4dlm7dq1TJgwgZ9//pnVq1fjcDi44YYbyM/PL/c8K4qvtsjwPdFgFeZqw/YsAUE43F3wI4z/PpJCfHgQRr138q3paQdR3W7QaYkhBQVVp+1bp1ewu7QPdqPeu31YiouksBp06BpT9cJvH56fbQ8gqp3vYrlII3qeRblycnbidGajKAb8/KJpmvBXdLr61UvJ25ZuPcY/1hzwLMcGm7mxk3eHOQshhBCXOz8/P2JiYgB44IEH+Pzzz1m+fDnjx4/noYce4ssvv8Rms9GvXz/mzp1LcnIyAIcPH2bixImsX78eu91OUlISr776Ku3ataN///4AhIaGAjB69GgWLVpEbm4u48ePZ9myZQQFBfH444/zxRdf0KVLF9544w0AkpKSGDt2LPv27WPZsmXccsstLFq0iPXr1zN16lS2bNlCREQEf/rTn5g5cyYBAQHs2rWLAwcO8N1335GYmAhAYmIiffv29Zzn0aNHmTJlCpMnT+Zvf/ubZ/2UKVMwmUxMmjSJESNGcOWVV1brebzrrrtKLb/22mssWLCAHTt2MGDAAAYNGsSgQYM89zdv3pzU1FTmz5/PrFmzLrnfjRs3kpSUxKRJkwBo1qwZ999/Py+//HK58QwePJjBgwfXKGaA6dOnA1xUTVbim2++Yffu3Xz77bdER0fTpUsXXnzxRZ544gmef/55TCYTwcHBBAef/yJ12bJlnDt3jr/85S+edatWrSq130WLFhEVFcXWrVu55ppL916uKL7aIpVSosEqytf6wNjt4RjM3TG4dcSEWr2WkAJwu7SKgrhW2qx6OhTcSklSSudJSlVUKVVWPVKpKqXixFNGoDbbl7P4vhZeHhboOZyvEjC24qb0vSfCvd/BsDd9E4e4LDmdeaSf+ZrTp78EICLiOvr2+ZGEhDG+DawWncwu5Jtdp9h4QCtLv7JZGJOvT2b+n7v5OLKqqfXJF4QQQtRbqqriKCryyU9NRxVYLBbsdjtjxoxhy5YtLF++nI0bN6KqKkOGDMFR3Ld2woQJ2Gw2fvzxR3bu3MnLL79MYGAgCQkJfPqp1qokNTWVkydPMmfOHAAeeeQRfvrpJ5YvX87q1atZt24dv/7660UxzJo1i86dO7Nt2zaeffZZDhw4wKBBg7j11lvZsWMHH3/8MevXr2fixIkAREZGotPpWLp0KS6X66L9ASxduhSHw1FmRdT9999PYGAgH374YY2euxJ2u513332X4OBgOnfufMntsrOzCQsLK3dfvXv35ujRo6xcuRJVVTl9+jRLly5lyJAhXom1qjH/r40bN9KxY0eio6M961JSUsjJyWHXrl1lPmbBggVcf/31ngRiWbKzswEqfH58RSqlRIN15kgGACpaE3CjPc2rCSkAd/EHsaLTAS50KLiK8zmZ9rPY3ZVLSlHJaqdj4ZHAYQA6WS082iymOmHXXyW9pKI7QJPuvo1FXHb27XuJEyf/41kODGjtw2hqn6qq/GneBk7lFHnW3dQ5jlG9Lv2PFiGEEKK+cdpszB19m0+OPWnxUozmqn9JrKoq3333HV9//TWDBw9m2bJl/PTTT/Tp0wfQ+holJCSwbNkyRowYwZEjR7j11lvp2LEjoFX+lChJJERFRXn6/OTm5rJ48WI++OADTxXOwoULiYuLuyiW6667jilTpniW7733Xu6++24mT54MQHJyMnPnzqVfv37Mnz+f+Ph45s6dy+OPP8706dPp3r07/fv35+677/bEtXfvXoKDg4mNvbjq2mQy0bx5c/bu3XvRfVWxYsUKRo4cSUFBAbGxsaxevZqIiIgyt92/fz9vvvlmuVVSAH379mXJkiXccccdFBUV4XQ6GTp0aLnD8mor5rKcOnWqVEIK8CyfOnXqou1PnDjBf//7Xz744INL7tPtdjN58mT69u1Lhw4dKh1LXZJKKdFgFWRpCQ6DQUervR9jyvsKvc67FUAuh5NocyL+uVrSSYeO1Kx9AGw9swW36gYqkZSqpByz1qBdp8A33VszIDzIK/utN+zF45ill5SoY6qqcvbsWgCCgjoTGXkDcXG3+ziq2nM8q5C1e89wKqcIRYErmoZwfdtoBndoWInuyo9elkoqIYQQvrdixQoCAwMxm80MHjyYO+64gzFjxmAwGEoNZQsPD6d169b88ccfAEyaNIkZM2bQt29fpk2bxo4dO8o9zsGDB3E4HPTs2dOzLjg4mNatL/7CrXv30l8E//bbbyxatIjAwEDPT0pKCm63m0OHDgFa5dapU6dYsmQJvXv35pNPPqF9+/asXr260s+FyVTx7OFLliwpFce6des89/Xv35/t27ezYcMGBg0axO233056evpF+zh+/DiDBg1ixIgRpXpDXbjf8ePHA7B7924eeughnnvuObZu3cqqVatIS0vz3L9u3bpSj1uyZEmlz7cqMXvL4sWLCQkJ4eabb77kNhMmTOD333/no48+8qwbP358qfP0NamUEg1WwdlzAPgV5dPkxI+cbOv9YyipWVwbO5I01xnQ70BBIcuZB1gxGY10CO9Aj5geWE1Wrxwvxz/AK/upd36aC6d2wpniWR9MDeM85TK34bPbz3Lw0Bzy8v7AZj+Nopi4ousH6PW1MzS2PjhwJo/rX1tLyYiDaKuZz/6vb/kPEkIIIeopg58fkxYv9dmxq6J///7Mnz8fk8lEXFwcBoOB5cuXV/i4e++9l5SUFL766iu++eYbZs6cyezZs3nwwQerG7pHQEDpf3fn5eVx//33e/oqXahp06ae21arlaFDhzJ06FBmzJhBSkoKM2bMYODAgSQnJ5Odnc2JEycuqs6y2+0cOHCAlJSUCmMbNmxYqWRdfPz5yVcCAgJo2bIlLVu2pFevXiQnJ7NgwQKmTp3q2ebEiRP079+fPn368O6775ba94Wz/QUFaV/0z5w5k759+/LYY48B0KlTJwICArj66quZMWMG3bt3L/W4/61aqkhlYi5PTEwMv/zyS6l1p4tngS/pVVZCVVXee+89Ro0adckE4MSJE1mxYgU//vgjTZo08ax/4YUXatyM3pskKSUarMLTJwEw2rQhdJm1MHGWkuvAiYsCt9YLSa84OGMoIBBoFprEKzdN9urxcixapZSvWm7XSq+pc2mw+tnS64Lq8WxfdT0joahVJ09+yvHj57/lCg+/plEnpAB+P56NqoLZqCMmyMw9vZN8HVKt8Vl/PCGEEHVGUZRqDaHzhZKkxIXatm2L0+lk06ZNnuF7Z8+eJTU1lXbtzk/6k5CQwPjx4xk/fjxTp07ln//8Jw8++KAn4XBhf6fmzZtjNBrZvHmzJ5GUnZ3N3r17y21kDXDFFVewe/fui+Isj6IotGnThg0bNgBw22238cQTTzB79mxmz55datu3336bgoIC7rnnngr3a7VasVor9+W+2+3GZrN5lo8fP07//v3p1q0bCxcuRKcrPQisrPMrKCjAYCidAtEXz6yuqioWi6VKz0tVY65I7969eemll0hPTycqKgqA1atXExQUVOq1AtoMe/v372fs2LEX7UdVVR588EE+//xz1qxZQ7NmzUrdHxUV5dl/fSBJKdFg2R1an5Qis445w3TkN6ngAdWQ7bbzX78fcSnaMD1z82icedoHi97L/asAsi0l32Q0ogutAq3BMuYQuOYxCGsOkfW7l08jevYve0W2EwCEhV1NRMQAoqPKnzmlIXv16z38ciiT0znaZ1RK+xjmjOzq46iEEEKIy1tycjLDhw9n3LhxvPPOO1itVp588kni4+MZPnw4AJMnT2bw4MG0atWKc+fO8cMPP9C2rTYMJDExEUVRWLFiBUOGDMFisWC1Whk9ejSPPfYYYWFhREVFMW3aNHQ6HUoFY9+feOIJevXqxcSJE7n33nsJCAhg9+7drF69mrfeeovt27czbdo0Ro0aRbt27TCZTKxdu5b33nuPJ554AtAqql555RUeffRRzGYzo0aNwmg08sUXX/DUU08xY8aMi/oXpaamXhRL+/btMRpLz4Ccn5/PSy+9xLBhw4iNjSUjI4N58+Zx/PhxRowYAWgJqWuvvZbExERmzZrFmTNnPI//34qiCw0dOpRx48Yxf/58UlJSOHnyJJMnT6Znz55l9uMqkZeXx/79+z3Lhw4dYvv27YSFhdG0adNKxQxw5MgRMjMzOXLkCC6Xy1OV1bJlSwIDA7nhhhto164do0aN4pVXXuHUqVM888wzTJgwAb//qdpbsGABV155ZZl9oiZMmMAHH3zAF198gdVq9fSjCg4OxmKxXPI8K4qvtkhSSjRYdkchALl+bn5qr+OGbO8PCcvC4UlI6XQ6WrVqxdHN2hhvvcF7SaljLpW1XXuytl0ngk43sqSIrbi5uTUG+kz0bSzlqXzzGtEAnDq1nCNH/h+5edpMJRER15HQZJSPo6o96blFzPvhQKl1rWO8M6y4PpACRiGEEA3ZwoULeeihh7jpppuw2+1cc801rFy50pOQcblcTJgwgWPHjhEUFMSgQYN4/fXXAW1I2/Tp03nyySf5y1/+wj333MOiRYt47bXXGD9+PDfddBNBQUE8/vjjHD16FHMFVWWdOnVi7dq1PP3001x99dWoqkqLFi244447AGjSpAlJSUlMnz6dtLQ0FEXxLD/88MOe/Tz88MM0b96c2bNnM2fOHPLztd6xH374ISNHjrzouGWtO3r0aKlhZaBVLu3Zs4fFixeTkZFBeHg4PXr0YN26dbRv3x7Qqof279/P/v37L3p8eTMmjhkzhtzcXN566y2mTJlCSEgI1113HS+//HK5z9mWLVvo37+/Z/mRRx4BYPTo0SxatKhSMQM899xzLF682LPctav25eEPP/zAtddei16vZ8WKFTzwwAP07t2bgIAARo8ezQsvvFAqnuzsbD799FPPTIz/a/78+QBce+21pdYvXLiQMWPGXPI8K4qvtkhSSjRYbrcTAIviZvbpM2x1e78Cwl38mRbnsDBuxuPYC518u2EnUNVKqUt/OKqqyq1ZTtLvexidM7PC7Ruckhn3TL5voicuD6qqsn//37HZtTH4imIiNKSXj6OqHUUOF29+v4/96dr7LCLQxIvDO2Ax6enTovKzvQghhBCiZhYtWnTJ+0JDQ3n//fcvef+bb75Z7r6fffZZnn22dDsMq9VaqhF3fn4+06dP57777vOsS0tLK3N/PXr04JtvvinzvoiIiEsmO/7X8OHDPdVemZmZDBgwgPnz5zNs2DD8/bW2JElJSeUmiv6X2Wzms88+K3ebMWPGlJtcKc+DDz5Y5V5d1157bbnnUJmYQXuNlPc6Aa0ybuXKleVuExwcTEFBwSXvr8rzfaHKxFcbJCklGiy36gDAbDDwWOYcmjf1/vi9kje0DljzQSq7150gDG2ccVWSUloZrYJSRrLJ5lZJ14qxaHPiMGdoJEU7Oz6BP76A7OPassy4J+qAzXaGvLzdnoRU507/xGptj59f1RpVNhTf7D5dqkKqbWwQgztePD2zEEIIIRqXbdu2sWfPHnr27El2dranmqYkSVTXwsLC+Pbbb5k3bx4bN25kwIABPolDNDySlBINjsvpJD3tAG5Va3Du0OvJJpCIwKrNjlEZ7uKBdDoUjv2R6Vnv0NkIbOadt0+R2+25/cIni3lgRDkbe1mt1mOtfBSKss4vByfU5tGEIDdvD5s3D0NVtUag/v4tiIi4zsdR1Q6XW+VIZgG7jmcD0KlJMEM6xjKkgySkhBBCiMvFrFmzSE1NxWQy0a1bN9atW0dEhO8qpcPDw3nuued8dnzRMElSSjQ4K9+cxd6f13uWC4vLiuJDLt20rapSN65j78b12LQRgiiA3aEtbLzyA35TfuHNlnNrdpDiKqzC4qSU3uVEf0GCqjZVVIlV3ZJPD7frfEJq4ItgCYE2N9Vsn0JUIP30Ck9CymJJomWLx30cUe3566LNrN17vqln35YRjO/XwocR+Zg0nRJCCHGZ6dq1K1u3bvV1GELUmCSlRIOTcfQwADr8UEzJqKYCJvRvwZ97JXrtGN8vfIeC7CzCEvoCoFcUzhacw4KVI0VHwF/FbKjp1LTFSSmX9ttstzeeCytb7vnbV94PBu9XsdWeRvI3uIwUFBwiI+N7jh7TejW0Sn6OhITRPo6q9qiqyqZD2qyWVj8DQRYjKe0vPdOMEEIIIYQQ9ZUkpUSDU5irNXUzBtyIYkpCF/AVD6S08eox7EXazH4WowmwYTTo0bn1ALQKb0lYdBe6RnlnqvWSSimT3e7zWfcqmkK2UhxFcO6QdltvamAJKdEQ7dr1CDm5OzzLVmv7crZuuLYezmT+mgPYnG6KHNrnxuZnrsds1Ps4Ml/y9aemEEIIIYSoCUlKiQbHlq8ljFR9oHY54l/o9WO4ndpQPZNee4voFNCp2u3XrptNUETNhwrmON1M33+cI0Vabyyzw1bjffpc/ll4qzsUFvff8mtIU9LLxW1D5HbbyM3bDUB01E2EhV1FcHA3H0dVO/7xwwG+25PuWU4Is1w2CanGUkQqhBCicmrcSkIIUSe88V6VpJRocNxubda9pkdWEXv2GNvax3t1/6rbTaxfc4KMERQ4dNq7RAF9caWU3lj5WffK80t2HvOPnu8JE5Kb45X9+lT6rvMJKUUP7W/xbTyi0XI4zrF//ysU2U6iqk4MhiDat3/DO9V+9cwPqemsTT3Db8eyAHjg2ha0jAykR1KYbwMTQgghvMxoNAJQUFCAxeK9frFCiNpRUFA8iqn4vVsdkpQSDYrL6QJVS0rFnN6FtSgHxdLKq8ewncnnqmgtmfKzYS9wFgw6dBQnpfTVS0oplO5WlO/Sht/0DQmkl6OQ9v96F2rapsrX7Pna77gr4L4ffBtLDTTCvEajk5Y2nxMn/+NZDg7u2igTUqqq8uAH28grmXUBuKtnUxLC/H0YVd1pjH9TIYQQl6bX6wkJCSE9XasM9vf3l/8XCFEPqapKQUEB6enphISEoNdXv3pfklKiQck7lem5bXbkYzeAOci70546c4sAcLjtuHV5ANiaBcER7X6dwTv/Y7S7tRTVgPAg/ppn59DJY2Q3890Url5RkpQyBfg2DtHoZef8BkBY2NVERQ0mIry/jyPyLlVVOZFdxLl8uychNaF/C9rEBF02CSkhhBCXp5gYbfKOksSUEKL+CgkJ8bxnq0uSUqJBKTh92nP7sz4qe5vouC3cu02NXTatEqvIlYdf+xj44xxOv/OJKL3BO8P3HKpWKeVfVuVVQx1G70lKBfo2DtFopaX9gxMnP6WwMA2A5JZPERjo3WrJ+mD6l7tZtCHNsxweYOIxL0/oIIQQQtRHiqIQGxtLVFQUDofD1+EIIS7BaDTWqEKqhCSlRINSkJFVfEvPZ1fpiHK6CYzs7tVjuO3a//zcqot8u1Y1dfTXHEpqmHR6b1VKab8DLkxK1ZNklFrVQHZ8AgfXwJk92nJDrpSSxpr1ltOZz8FDc1GLh/BaLE0JCGjp46hqx8YDZwHwM+gw6BRGdE/wcUT1m7xrhRCi8dHr9V654BVC1G+SlBINSvbZksbgegZlXM2qjN4E9w/y6jEceYV8bdzOWVMOhQddAPgXhADg8i/y2rj2o0XabHtlVkrVEa/kX1wOWPYAuC/4JstasxJOIf6Xw5FNRsZ3qKoDszmedm1nERjYCkXx3fvH2+xONy+v2sOpnCLSzmpVhysevIrk6IY0i2XtkKSTEEIIIUTjJEkp0aAUZmcDoCgGDhdcQa4aRpC5+p3+/9exPbs4sGMbR/ValULJlZDD4iAxxUjPzld47Vi24p5SCWZTw+6sbcs9n5AaMA2M/tDpdt/GVB0N+W/QyGVk/MBvO8ZR8oYMD+9PaGhP3wZVC9akprNg/SHPsp9BR2yIzDxUPnnfCiGEEEI0ZJKUEg1G3rkiss4UFi/pOVukvXytZu+8jLPTT/HxtCcID2kLsQGY3Xqs8Yk4d4Rha5rFTSlXV3/nxQkP7ZJau+2nwG3RoXQMtGCrcfQ+ZNeawaP3g6sf8W0solE6cfITSt49JlMEcbG3+TYgLzuaWcD/W3eQnce1pHvnJsH8qWs8HZuEEOh3ef9vWlJOQgghhBCN2+X9r13RYJzcn8HHL85HdWmzcCiKjmyXCUWBEH/vVErlZWoz+ylGbX8ml4LeaAGXP3Z9lleOoV5QjfNMizjat0ssdX+DvACzFSel/Bpfc3MZMuRb2dm/kpW1mZzimfY6d15ARPi1vg2qFvxz3UHe33jYs9y/TRRj+jbzYURCCCGEEELUDUlKiQZhx/ff4Sra5FlW1EKu6ZBI15ZNsHpp+J7LqU277mcJABwYVHA5tbSEzuCddFGjSnIUZMKvi+Hsfm1ZZtwTXuR05rJt+2hcrgLPOn9LYjmPaHg2HMjgj5O5bDqoJcRv7BRLj8RQbunWxMeRCSGEEEIIUTckKSUahHMn0opv6Wl1Mp20+Dxeu6s36LzX5Njt1PoiKTo94ECvgsvpRg/ovPVOaUx9i36eDz++cn45INJ3sXhZI/orNVjZ2ds8CanYmFsItLbD37/xVA9l5NkYteAXXO7zqeq7r2xKnxYR5TxKCCGEEEKIxkWSUqJBcDnsAAT7JdMyfS97W+LVhBRA9rdrGNJkHOl6O3+wC72qYHeo6AG9wTvHqrBSyivT4dWRvFPa7yY9If6KhtncvEwN6G/QCBUUpHHw0BzOnv0RgIiI62nX7lUfR+V9RzMLcLlVAkx6rm8XTZNQC1c2C/d1WEIIIYQQQtQpSUqJBsF25gwAhlytf9GZMO8fw/HHMcIje3JSOQGATq9AgfYW0RtrVjujAvtCAonX6Su5vW8TI2plkmO2XO13h1uh1/jaDUhcNvbtn0lGxree5dCQxjXL3mur9/LZr8cocrgBSI62MmdkVx9HVf9V/JkkyWQhhBBCiIZIklKiQXAVFQGgQ2V/DOxN8v4AqyIUNhpSOaWcAyDDZSX4sFa5oDdULpl0KX9ENeG9bq2Y8euBsjeoJ8P6lKrE0eganNePv8HlSlVVVNVFbu7vAMTE/InoqCGEN6LG5qqq8u6PBzwJKdBm2hM1UE8+O4UQQgghRPVIUko0CC6XCwBnuB9P3Wwgye79YxzzN7LHcMyzrHObKDTkUWjMI6F5zS589kTG1zS8+uO3j+DYFjitJQ/ws/o2HtHguVyFbN16B7l5uzzrWrZ4HD+/KB9G5T1FDhdjF29mf3oeRQ43igJLx/fBz6CjbWyQr8Or1yTnJIQQQgjRuElSSjQIbpfWhNzl1qqYdHi3nxSAs/jiJ9ztT0FeFP6FMewc+CWWEAPjrphao33nmP0BsDhs5JqKVzbE0SYFmfD5eEoFHxjjs3BE45CZ+VOphFRM9PBGk5AC2HYki5/2n/Usd0kIoVtiqA8jEkIIIYQQon6QpJRoEJyqNtzlsFnLHOXpvT/Tm7t4+Fao2wIFTdCh4/UBrxEQ7FfjfRcYtX0opTJRvs9KVbl3VeE5QAWDGfpMguAmkNC4ev6IuqOqKoWFh8nJ3QFAaGhvOnWcj8HQOKrvfkhN558/HiQ91wZA16YhvDi8Ay2jGsuQVyGEEEIIIWpGklKiQShJnrgNblxFMYT53+y1fW/+8jMO/bqZPN35cSIllVg6vXfGjuSbipNSDWl2vbLYi/tIWcLguqd9G4to8A4enE3a4fme5YCA5EaTkAL4xw/72Zx2zrPcIymMDvHSQ0oIIYQQQogSkpQSDUqk0UrBoTtpekUTr+xPdbtZ98EiVLcbU3xnAHTK+aGBer13hgnm+lmASiSl6ihpVe0+LSXNzU0BXoul3rngb9DQc4j13clTyzy3zeYmREfd6LtgvMTmdLE29QwFdheHMgoAeHxQa1pHW+nbMsLH0QkhhBBCCFG/SFJK1Gs/f7ac33/4FidaMsRpUkAFf1PNZsMr4XI6Ud3a0MBAl5uzgMHP5LlfZ6hZpdTi4xl8fvocBSaztr96MGSvMi4a1udywJGNcORnbbkxJ6VErcvN20N+3l5stpMAXNV3Y6PpIbV4Qxp/W7mn1Lo/dY0nNtjio4gah4o/ORvGZ6sQQgghhChNklKiXtv46Ye4nbme5ROqNgufxYtJqRJGl3ZRo1w4jK8GlVI2t5vn9x+n0K3tN7zQdunrpvo+xdSambBu9vnlxjjj3gV/g3r+12jQ8vP3s3nzcFRVe+/p9YGYTA2/gsjpcrMvPY9fDmUC0DwygPgQC10TQiQhVQPyXhRCCCGEaNwkKSXqNbezEIAQdxtC8wrZZD0HudAq2jtJEZfTcf5Yxckjd3FTdVVxo9NV/5IordDuSUjd8+sPtCqo/xfeyqUuATP2ar+DmoA1Gno9UHdBiUblbOY6T0IqJORKmjT5M4ri/dk069qkj7axcucpz/JDA5IZ3iXehxFdHi75mSWEEEIIIRoESUqJeqvoyBFAu3jtcGATKhkkNxnIzCH9aBHpndmrXDYbwcYIIv3iybb4Aw7OOrMAUHU1Gw6S59SquhLMJjqfOozZLxh3JYeYVHlWvNpW0ktqwHPQ+Q7fxiIaJLv9LGfOfMOhQ28CkJg4npYtHvNxVN6z7UgWAOEBJuJDLVyd7P0ZQoUQQgghhGhsJCkl6q3CjDOe2xt6uPiuhZ5rAvy9lpACcBYV0T/2Tvz0/nxn3Amk41JUdNS8yXmeq7hXVfF+GvQ3+rbiIZR+MpW9qJ5du6eQmbnOsxwU1MmH0XhHns3JjBW7ycizcTqnCICvJl1NTLDZx5EJIYQQQgjRMEhSStRbhVnZxbcMbO3s5HCAglHv59VjOAsK8dP7A1BgcoALlCxtyI2fyVTeQyuU59IqpQL13ul/5ROp/4UzeyDriLbcGHtJiVrndjs5d05rkh8c3J2QkO5ERlzv46hqbtXvp/ho81HPcrDFSERgzT43hBBCCCGEuJxIUkrUW0U52nTqKAYcOjsAJoN3k1KugiK269M4os/gjFurBipSdViAuJYhNdp3nrO4UspQdsWVqpYxRK8+jdrLOgofjiy9zj/cN7HUqfr0R2jYCgoO8ceepygsPIKqOtDpTHS74sMG30Nqf3oe6/adYf2+DAB6NQ/jT13j6ZIQiqGGFZbiEuRtKYQQQgjRKElSStRbtoLipBQGFKUA8MPgF+TVYzgLithqOICq4Lno0cU6+Mv4q7BYjdXa587cAv684yCn7Vo/rAhTA32b5RY3bTZZod0wiEiGqHa+jUk0KKdPryAr6xfPckT4gAafkAJ44N9b2Zee51m+qmUEd/Ro6sOIhBBCCCGEaJga6NWyuBzY87UeLQo6nIrWj8kdlOTdYxQWagkpwM8aiSUtDkOEE/+g6g/B+e5sjichpQNGRIdxtNQWZfWW8k2/qbKKtaC40bq9uI9USFO4+R91F5TPXPw3qHcN5xsYu+MsADHRNxMffyfBwV19HFHNqarK4bNawvyGdtFEWP24vUeCj6NqvBSlkp+Nl/owE0IIIYQQ9VrD/8paNFr2guKklKLjsEGrkLKYvNNA+OS+VL5dMJ+d69Z61il6C0ZHMAZjzXpAZTq0XlKj48LZfVUHrgmzQmUvrOpIpZqu2/O136aA2g1GNDqHD7/LuvW9OXHiP4DW1DwkpDuK0nD7q/2Qms4zy3by1Oc7sRdPYjD3zq787U8dibJKY3NRu+bNm0dSUhJms5krr7ySX375pdztP/nkE9q0aYPZbKZjx46sXLmy1P2qqvLcc88RGxuLxWLh+uuvZ9++fbV5CkIIIYQQZZKklKi3HEVaUkpFT5Feux3k550Eydp/L+C3b77ixMGDnnVul/ZNu6GGjcnPOrQqqUSLHyHGhlWM6ElWFZ6DE9u025fhjHsNeqZEH3M68zlwcDZ2ezputw1QCArq6OuwakRVVR76cBv//vkIH/6i1T1GWf0w1zCBLbyh8b9XP/74Yx555BGmTZvGr7/+SufOnUlJSSE9Pb3M7Tds2MCdd97J2LFj2bZtGzfffDM333wzv//+u2ebV155hblz5/L222+zadMmAgICSElJoaj4/7tCCCGEEHWlYV0xi8uKLa+4UgcFY34b8gpj6RTZ3jv7ztf2nZjcltPuIhQVnMWz5ekv0Zi8ss4WD90Lb2AJqVIOb4T0L7XbpssvKSWqzuUqIuPs9+Tl/oGqOlEUEz17LMNoDMXPL8rX4VXbl7+d4Jvdp8kpcqIoMOm6ZBQFrmkV6evQxGXitddeY9y4cfzlL38B4O233+arr77ivffe48knn7xo+zlz5jBo0CAee+wxAF588UVWr17NW2+9xdtvv42qqrzxxhs888wzDB8+HID333+f6Oholi1bxsiRIy/apxBCCCFEbWnAV82iscvPydZuKAqFR+/ArloItnhn9j2X0wFAWJMmcGQ/OhRO52YQTkv0Bu9USoXXoMF5mTPz1bWgeG22vW5jfB2JaACOHlvMgQOveJajowYTGNjahxHVnNut8tjS3yhyaMP1moUH8PDAVj6OSlxO7HY7W7duZerUqZ51Op2O66+/no0bN5b5mI0bN/LII4+UWpeSksKyZcsAOHToEKdOneL666/33B8cHMyVV17Jxo0by0xK2Ww2bDabZzknJ6cmp1Wuha8+T87WQ7W2f9F4GE1RvN93O7mK/0X3uQp6o9pr//9BQS0K8Qt2XrTez62guwwqOctSpDOjFp97S9chBjh+9HFEQlzeTAYdydHWcrdplfwsgYG++zeuJKVEvZP+80ZWvf0GWQWF2sgMRUeRqiWjrGbvvGQd+fmY9QHYNu+CaD90qoKh+O2QEBxfo31nOmpQKVUfklElhs6B5IG+jqLu1ae/QQOSn6/1owkISCbAvyWJieN9HFH1udwqW9IyOZVTRJHDjU6Bp4a0leooH7pcJx3IyMjA5XIRHR1dan10dDR79uwp8zGnTp0qc/tTp0557i9Zd6lt/tfMmTOZPn16tc6hqory8nCqZ+vkWKJhM7rbkG8+VWYvEntmFxxZ1Z+0prKOJ8Xi1pfRV1BGdwMQpTtOnHGXr8MQ4rJ37lz59ztduXUTyCVIUkrUO78v+CdnCvM9rULRiDbRAAEAAElEQVRUgwUVHcEWI341HFpXItrVhO5NbyJTyQM2oUNhcOIQ9p9JJzwwrMr7K3C5ueu3A6TmF3HOqQ0DjPFr4G8vGbYnKiErawun07/i1KnPAUhseh+xsbf4OKqa+fCXIzyz7Hz/nSirmXuvbu7DiITwralTp5aqvsrJySEhoXZmnUzu1oPfj0tSSlREpdB/L23zupOns5S6x23SY4oxYoo5eInHek+E8TcshY6L1kfqregv08xUfkACFE9sEq7EUqR/zscRCXF5Mxt1tI8LLncbf0tS3QRzCQ38qlk0RudsRgB0hmYYLFeSHprOIwNb0bdleOWnB69AsJ/2DbFL1aqaXHo3bqf2TbxOX/XE1685+fycne9Z7hEUQKxfFb6hqw8V3n98CWnfn1/2K7/Ms9GpZzMkNgSq6mLn7w9it59vuBwY2NaHEdWMqqq43Cq/H9eGDscGm4kKMnNnj9q5+BYVu9zflREREej1ek6fPl1q/enTp4mJiSnzMTExMeVuX/L79OnTxMbGltqmS5cuZe7Tz88PPz/vDJ+vyPXD7uD6YXfUybGEEEII4Xsy+56odwrcWq5Upw8kI9jB4ZiNTBqQTLfEqlcwXYpS/NJPD9Uupt1OE2k7MgDQG6p+GZRTXB3VPtDMt91b8UmXFqXuV8vaZX0aJnbyN/j4z7Dr8/Pr/L33fIvGqaDgkCchldj0frp0XoTV2jCTUm63yh3v/EzLp//LR5u1GfYmX5/MFxP6MrJnUx9HJyrSWIf3mUwmunXrxnfffedZ53a7+e677+jdu3eZj+ndu3ep7QFWr17t2b5Zs2bExMSU2iYnJ4dNmzZdcp9CCCGEELVFKqVEvVNcsITJXMBnnV4j0e79i418I3xp2kJOUQEAiqrD7VbR6RTC46s+bK0kKRVlMtLBenHDzVLq41f/2ccAUEqG7EW1g6A4HwYk6rO8vL38vmuSp49UUFBXWrZ83MdR1Ux6ro1f0jI9y4F+Bno2C/dhREJoHnnkEUaPHk337t3p2bMnb7zxBvn5+Z7Z+O655x7i4+OZOXMmAA899BD9+vVj9uzZ3HjjjXz00Uds2bKFd999FwBFUZg8eTIzZswgOTmZZs2a8eyzzxIXF8fNN9/sq9MUQgghxGVKklKi3nEU56AUvXZD78UsjtPhIPfsGdLNdk7rCij5cl1RjNw9vRd+AQYsgVVvjJnr1GbnCipn5r7KnEVd56s86b6i4pmUgpsAZyA0qY4jqZ8aZ+1FzR09utCTkAIadA+pU9lF/OvnNI6fKwQgOsiPrydfg8Wkx6+GM3EK4Q133HEHZ86c4bnnnuPUqVN06dKFVatWeRqVHzlyBJ3ufOF7nz59+OCDD3jmmWd46qmnSE5OZtmyZXTo0MGzzeOPP05+fj733XcfWVlZXHXVVaxatQqzuYyGzUIIIYQQtUiSUqLecatagkfVa78NqndGmbqcThY9Mp7s9NOEJF0DgFUxoTvbGoJVQqIrqHAqR5ZT601VXlKq3so+BpkHtNtGC1zcr1MIAJzOfPLz95JxVus91rTpOOLj7sDi4+aINfH22gMs2pDmWU4MDyDEv/ZnbBJVU59GO/vCxIkTmThxYpn3rVmz5qJ1I0aMYMSIEZfcn6IovPDCC7zwwgveClEIIYQQolokKSXqHTdaMgpFy47ovdT6rDA3h+x0rfmru7iptdPtJNAeimrML++h5cp1ujhSZAcg2mSsWZB1dOXl6entKITX25+/w2CWpBSq9Dwvg6qq/LrtTnJzz0/tHB01BH//Zj6MqvrSc4s4fLbA09R8QJso2sUFMbSzDFsVQgghhBCirkhSStQ7blXrz2Sxawkkg+KlSimHljjSKzpMxZVNluIeSnFBsZd8XHlWnsni3t/TStJoxPiVn5Sqd1/2ux3adAcGCwREQPwVsH+vr6MS9VBh4RFPQsrPL4bIyBSs1o4+jqp6coscXDdrLXk2p2fdn3sn0r91lA+jEmWRBLEQQgghROMmSSlR76jFSSlncU8ph1/Z015XldOulQDpHA5cOu1KJ9AviELAz1i9Cqfvz+Z6ElJRJgNXhZbdJF2poFuU8j9XXnU2k1RJZVa/x+HqR2DfZ7C/bg5d/8jVb1lU1U3muQ1knfsZgICAZHpducrHUdXMoYx88mxOjHqFhFB/moT500uamgshhBBCCFHnJCkl6hXV7fYM3ztmDAMOEhLVwiv7djkd6BUDQYZgbCat95NOr70FdIbqVWOlFdoAeLNtU0bEhHklzjpVkpQylU6mNdbp1UXVHTr0JofS5nqWLeYEH0ZTM//88SDLth/3VEi1iwvmiwl9fRyV8A75zBJCCCGEaIgkKSXqFXd+PmpxUsoUZgEgITjCK/t2FNkY3GQcAYYgvlK2AqAoWnJKr69elUymQ7u4jTQ1sLeSSxvKSHFTefzKrvASIjNzHQBGYxhBQZ1JTLzfxxFVj6qqvLZ6L4UOl2ddu9ggH0YkhBBCCCGEaGBX0qIxK9i6lcKdO1HRLhpPG7Up2oP9gr2y/9wz2az0/51CxY6z+Bg2P61CqrqVUrkuLakTpK/6rHtqSUKorrkc8NHdwCQtOWXEUylV0TBDcfk4dfpLzp5dQ3bONgC6dFlIkLVDBY+qf5wuN098upMDZ/IodLhQFHhvdA9MBh3dEkN9HZ6oKWk6JYQQQgjRoElSStQL9qNHOXz3n7WFLp1AhWPKGQBC/bxz4Xji9ClydIWeZRdudE4rUP1KqVynltyyGqqelPKZ/DOQc1y7rSgQ3hKa9vZtTKJecTrz2L37UVRVqwQ0GsMJDEj2cVTVs/1oFp/+esyz3DraSv820tC8oZHBeUIIIYQQjZMkpUS94Dh5kl1x4ZwMteJW8wHwMwUwtPlQhjQfUqN9F+Rks+enHzl18CAA0a4gTjkUorLbYzulvQX0VayUOmN3cMbuJKtaSalyEmBqHVx62XLP3w6Mhge31v4xG5K6+BvUc1lZm1FVJyZTFE0TxhAWdg06nZ+vw6qSY+cKWLnzJLtP5ADQJsbKIwNb0bWpVEcJIYQQQghRX0hSStQLalERRyJCUEvyNYofLZv04oWrH67xvn9Z9h+2fvUF+vAkiIrA5NZjKgxDpxowBSkEhwTS6srKz/CXml/EdZv34CrOXVh0CqFG71RKKXWRD7Hl1cFBGofLLT2VcXYNe/54Cpv9NAAR4dc22B5Szy/fxbd/pHuWO8QHc0N778zkKeqSDM8TQgghhGjMJCkl6gVXQaEnIWUKvB23IZSAyEyv7LsgOxsAS2gYWYBehVBTOKoNhtzbhfhWVauc2JNfiEsFo6Ilo+5tEomfroJKq4quq+qiL4qqwplUOLm91CpRTHrTkJY2z5OQAh2xcbf5NJ6aOHy2AIDr2kQRH2Lhr1c183FEQgghhBBCiP8lSSlRL9jPnvTcPpH0X9ZFnuZW/796Zd8uhwOAwOhoyDyDwa0SaAgiFzt6Y9UbnBcUNze/OjSQDzq3qOSj6kH256c58O00ABQSfBxM/Xa5paccjiwKi46Rnf0rAB3azyU09EpMJu/MfFlX9qfnMXPlH+TbnZ6k1JOD29Aq2urjyIQQQgghhBBlkaSUqBfsZ84npb4LdVNoOYOf3uiVfbtcWrNm1a0lhnQqOIpvV7WXFEBhcVLKX1+9Gft85tRO7bc5GPSxcPbSm6r1IYkm6oTdnsHPmwbjcGiViTqdiYiI69DrLT6OrOo+2HSE7/acH7Lnb9ITF9LwzkNUh3xmCSGEEEI0RD6/qv773/+OoihMnjzZs66oqIgJEyYQHh5OYGAgt956K6dPny71uCNHjnDjjTfi7+9PVFQUjz32GE6ns46jF95SlF9w/rbeBoCfwUtJqeJKKXee1kBd71ZxOWuQlCpOaFmqkZRSfHnhZC/uJTXwRRj1qe/iEPVKxtk1noSUn18szZpNbnAJqRNZhXz4yxG2HNbO447uCbx5Z1eWT+xLoJ989yKEEEIIIUR95dN/rW/evJl33nmHTp06lVr/8MMP89VXX/HJJ58QHBzMxIkTueWWW/jpp58AcLlc3HjjjcTExLBhwwZOnjzJPffcg9Fo5G9/+5svTkXUkD03v/iWHgcuDIC/0eSVfRcdPoy/IQjlZDZEmtCp4HJq1U41qZSyVNRH6iI+HhRW0uDcL9C3cYh6weHI5nT6V+zf/3cAmjS5h9atpvk4quqZ/PF2fjl0vgfd9e2iGdgu2ocRCW+7VP87xdefq0IIIYQQokZ8VimVl5fH3XffzT//+U9CQ883ms7OzmbBggW89tprXHfddXTr1o2FCxeyYcMGfv75ZwC++eYbdu/ezb///W+6dOnC4MGDefHFF5k3bx52u91XpySqQXW7Kdq7l3PHSi4o9ShoSZ8oq79XjmE3RmBq3pvT4UEAOEzgrkal1M7cAu787QAfntTGvVWnUqpitVBJVZAJx3+F/DPaskn665Tv8hgGdODga6SmPovLpSWEQ4K7+zii6jt4Rku4XtUygtG9E7mmVcPqhSUuTeYfEEIIIYRo3HyWlJowYQI33ngj119/fan1W7duxeFwlFrfpk0bmjZtysaNGwHYuHEjHTt2JDr6/DfhKSkp5OTksGvXrkse02azkZOTU+pH+Nap6S9waNhwbAdPAKAoOgIt2lWIUe+dQr5TIYEc1Z8lT1cEwIHIs7hLekoZK3/Fs/j4WX7IzOW4TRsO2NRc00quOkh+FGXDG53gn/0hI1VbJ5VSlz1VVcnI+A6AsLCradp0HJGRN/g4qqo5l2/nvve3cMs/fiIjT/sy4vU7ujB9eAf8DHofRyeEEEIIIYSoDJ8M3/voo4/49ddf2bx580X3nTp1CpPJREhISKn10dHRnDp1yrPNhQmpkvtL7ruUmTNnMn369BpGL7zJtmcPAE6LGXCDoichzI+958Cg887L01X8VXsHVyRbXUXE7G/nua8qlVKZDq1n2ai4cG6MDKZvSOUrjiocYlJb5QDnDoM9FxQdBMVDWDOIuwLOSkXhxRp/SYaqujh48HXy8lKx2U6i05no1HF+g+shBbD6j9N8s/t8r8GIQD/CArwz5FcIIYQQQghRN+o8KXX06FEeeughVq9ejdlsrtNjT506lUceecSznJOTQ0JCQp3GIEpz27Sm5s7ubSBtN4qiw+nWkj9GnXcanbuLcw1BdoUm2V0960Nj/DGaKl9RkeV0AdA3JJBrw4K8EttFVC8nRuzFvbpCm8GkXy+8w7vHaaQu1cemoTqT8S1ph+d7lkND+zS4hFSezcmp7CL2nMwF4OrkCP7cK5EO8cHodY0/sSiEEEIIIURjUudJqa1bt5Kens4VV1zhWedyufjxxx956623+Prrr7Hb7WRlZZWqljp9+jQxMTEAxMTE8Msvv5Tab8nsfCXblMXPzw8/Pz8vno2oKbWwEACXW+sjxQVJqZpUSrmcTj6b+Ryn0w6iNmkDQJFLG76n6tyMmt6HwFAzShUuYrOLZ3cMbkhDg0pm3DMF+DYOUS/k5+0FwGgMo0WLR4kIv87HEVVNbpGDq1/5gawCh2dd5yYhpLS/9Oe+EEIIIYQQov6q86TUgAED2LlzZ6l1f/nLX2jTpg1PPPEECQkJGI1GvvvuO2699VYAUlNTOXLkCL179wagd+/evPTSS6SnpxMVFQXA6tWrCQoKol27doiGw12gJU0suQcBUBS9JymlV6qf/Mk8cYwjv+9A5XzxUURgJEfzwGg0EBxZ9SbqZ+1apVSosQFMMa+qWpVUgdaUHb9LDTUsuxRIbWwlQpe5g4fmcurUMgoLDwPaTHvxcXf4OKqq25eeR1aBA50CQRYjVrNBElKXCbWiHnzykSWEEEII0SDV+dW11WqlQ4cOpdYFBAQQHh7uWT927FgeeeQRwsLCCAoK4sEHH6R379706tULgBtuuIF27doxatQoXnnlFU6dOsUzzzzDhAkTpBKqgVGLk1K4tISPW2fEqda8UspZPCzQLzSE4iMQGxzHtlNgqEalk0tVOePQqjOi/aoXl+L5Tx34+M+wZ8X5ZamUumypqsrhw+/gdmuVgopiJDKiYVVIHTlbwNJfj3EgXXs3d2wSwhcT+vo4KiGEEEIIIURN1cuSj9dffx2dTsett96KzWYjJSWFf/zjH5779Xo9K1as4IEHHqB3794EBAQwevRoXnjhBR9GLarDXdw8/Jy5CeQcxq3z88rwPYfNhgoolvMVUXqdAXChM1Q+M5TndDE77RQ7cwtxqdp0lZFG7/S6KtMFFUqqqqJUtwH6vm/O31Z00HJgqbsv1Xi92sdrTBpRlZjbbcdmO+NJSHXt+m8s5gQsliY+jqxqXl61h692nvQsJ4Q2rD5Yovoq/kSSzywhhBBCiIasXiSl1qxZU2rZbDYzb9485s2bd8nHJCYmsnLlylqOTNQmVVUpUgI51GoI6TY/4DCK3ojNpVU5mXTVn0mrqKCAghYdyTNplXM6VQGDDnCh11d+xr0VZ7KYf/SMZ7lncACGmjRTrot8h9MOruJG5lNSwRIKBqkgvNzY7Wf5edMgHI5MAPT6AMJCe/s4qqrZcyqHXw5lsv1oFgBDOsbQNCyAkT1kggohhBBCCCEag3qRlBKXn7PH8zj1x2m2dZpEQUAMTttvANj1heQ7tBnjovyjqr3/c1nncJvOJ2IS3ZGoej3gqFKlVLpdq9rqavVneFQIN0WFVDOiCo7pzQqlkubmAP4RoJe3eaXUUpWY2+3Gbq/72Q7PnNmEy2VGp4sDICJiEEVFRXUeR3WpqsqUDzd7mprHW/VM7p9E0zBtKGpDOhdRfSEm7W9vwlnm39xuV4pf4+E1ek0YjUb0+gY0iYUQQgghRCMhV6uizrlcbj79+y84HKD6R6M607FzFB1w0qI1PI/yj8LfWPVm5Nnpp9i19jsO7d8HgL/qx+3n2qLYcnH3DITtRegNla+UOls8vLBXSADjm1Y/SVZmgVRtVE057ZBfXNllMEtCysfsdjuHDh3CXTK7ZB1QVRW3uwinM4CQ4Gno9QEYjcGAwqFDh+osjppyqyqTrwwFwGLUYzIouLLTOZTt48BEnRrWwsDAplGE+hWU+fp1uQIJCZ6Gohhr/PoOCQkhJiZGhjELIYQQQtQhuWIVdS57828U9wzHkvk1WbrdeNJEJj13tbmLAU0HVGvf6z/6F3t+WovTEghJbTCoOlblvEZumzBubz4EyKhSUupccVIqrBZm3PP6DHcH18IHd4CzUFs2BXp3/6JKVFXl5MmT6PV6EhIS0Okq/7qryTELC4/gdhsALaHj5xeD0RhU68f2FofTTWa+HafbTZS/E52ikBx9qdkjRWNnOldAns1JlNVMaMDFQ7qdznyKivTodCb8/ZOqdQxVVSkoKCA9PR2A2NjYmoQshBBCCCGqQJJSos7l7z8MBKFz29E7fgE/LXlyNsiGf5cWTL1yarX3XZibA4CpSQSFgB4d33cw0zH+Wk7sywJAp6/8t+CZDm1WQO8mpWrpW/i0decTUgCtBtXOcUSlOJ1OCgoKiIuLw9+/6lV/1eF2u3A47ICCXu+PTm/G7BfZoCo/srKLyHYA6FAMJsxGPWaz2ddhCR/RG10oLh0mPz/M5ot74zmdDtxuBb2+Zq8Ti0Vrnp+enk5UVJQM5RNCCCGEqCOSlBJ1zpaRDQRh1KscjjASmAvfdkvnWHQhz/W4r0b7dhWXYOkTo+C4Gx06bsx5hLz9Jn7lMAAGU3UqpermAqVGqQNbrva7zyTo/xQYqz9DmVonHdnrv5o8Cy6XltA0marfsL+y3G4HdnsGqqq9/hVFT0BAi1o/rje53CoOl5ui4kRwkNlIgJ8Bq1n+N3U5q2w+1RufWCXJY4fDIUkpIYQQQog6Iv/aF3XOlp2Pqqro9XYMdu0f/tc1uZabUv5C2/C2Ndq3y6ldlKsurYePHh26ogDAQXiTQPwsBroMaFrhfv5zKpNn9x0nx6ldIIfWwvC9stTowqokKeUfVu2ElCLTq+PtZl91UaVkt5/Fbs/wLOtqMHOlL6iqyr7Tudhd53tvBVuMZQ7XEqK2NKSKQiGEEEKIxkKSUqLO2Ysc2HM/wuY6ibn4JdgloXeNE1IAruLKJi0ppUOvKjhcWpLhhr+2JywuoFL7WXb6HNnFCakQg57WAd4ZPlQr9UeZB2HX53D8V23ZT/rv1FRDuzRVVW12P4PBil7vj8HQcHpIAThcqichZdDpMOgVAqVCSgghhBBCiEZP/tUv6lx+YRGq66RnOSPIRmxsslf2XVIppcu3ARb06HA4tVSQ3lj5YXsZxcmt11oncHN0KP76mjWprvgL+Is3UFErV7m08jHY/+355YDISsfl7V7rom7ZbOnY7WdRVS2BajSGYDSG+DaoKrA5XeQWOXEUJ6SMeh1tYxtWQk0IIYQQQghRfbU/HZQQ/yPfpjXj1usD+FfKEVb2OUl4RKJX9p3hVMhr0YG8c9qwQJ2q4HYUD+Wrwqx7Z+1aUqp1gLnGCSlNLWZ/ck9rv5NToN8T2u8KyCiVhk9V1eI+Uk6015eCTlf9PmIXGjNmDIqioCgKJpOJli1b8sILL+B0Omu03zVr1qAoCllZWQAczSzkRFYhZ3JtgJaU8rZDhw5x1113ERcXh9lspkmTJgwfPpw9e/aU2m7FihX069cPq9WKv78/PXr0YNGiRaW2SUtLQ1EUtm/fXunjP//887Rp04aAgABCQ0O5/vrr2bRpU6l9jh07lmbNmmGxWGjRogXTpk3DbreXu9+TJ09y11130apVK3Q6HZMnT65UPD/++CNDhw4lLi4ORVFYtmxZmdv98ccfDBs2jODgYAICAujRowdHjhzx3H///ffTokULLBYLkZGRZT6nmzdvZsCAAYSEhBAaGkpKSgq//fZbmcfbv38/VquVkJCQKp2D0RjEihXfV+rchRBCCCFE/SNJKVHnChzaBaiimHDpVayqitXinYvp/OBwVJMZu5/WiyZYteB2l1RKVWXWPe3iO8LUAIoJ7Xna76unFDc4l5nKGju324nLlVdcIaUQENCSwMA26PUXz05WXYMGDeLkyZPs27ePKVOm8Pzzz/Pqq696bf8AtguamodYTMQEV/61W1HSBrSG1QMHDiQ7O5vPPvuM1NRUPv74Yzp27OhJjAG8+eabDB8+nL59+7Jp0yZ27NjByJEjGT9+PI8++miVz+tCrVq14q233mLnzp2sX7+epKQkbrjhBs6cOQPAnj17cLvdvPPOO+zatYvXX3+dt99+m6eeeqrc/dpsNiIjI3nmmWfo3LlzpePJz8+nc+fOzJs375LbHDhwgKuuuoo2bdqwZs0aduzYwbPPPltqdrtu3bqxcOFC/vjjD77++mtUVeWGG27wNPjPy8tj0KBBNG3alE2bNrF+/XqsVispKSk4iiekKOFwOLjzzju5+uqrvXYOQgghhBCiYWgAV9yiMck7l0N20TkAbMWzGwU5FQJM3pnpSFW0POtAeyf8VT8C/SycKr6vspVS+S4XhcWJrPBabXDupeope77221S5flmiYXM68ykoOOhZ1uvN6PXeSepeyM/Pj5iYGAAeeOABPv/8c5YvX8748eN56KGH+PLLL7HZbPTr14+5c+eSnKwNwT18+DATJ05k/fr12O12kpKSePXVV2nXrh39+/cHIDQ0FIBht93Ji6//gxCjiwn/9wDLli0jKCiIxx9/nC+++IIuXbrwxhtvAJCUlMTYsWPZt28fy5Yt45ZbbmHRokWsX7+eqVOnsmXLFiIiIvjTn/7EzJkzCQgIYNeuXRw4cIDvvvuOxEStGjMxMZG+fft6zvPo0aNMmTKFyZMn87e//c2zfsqUKZhMJiZNmsSIESO48sorq/U83nXXXaWWX3vtNRYsWMCOHTsYMGAAgwYNYtCgQZ77mzdvTmpqKvPnz2fWrFmX3G9SUhJz5swB4L333qt0PIMHD2bw4MHlbvP0008zZMgQXnnlFc+6Fi1Kz+Z4333nZ0pNSkpixowZdO7cmbS0NFq0aMGePXvIzMzkhRdeICEhAYBp06bRqVMnDh8+TMuWLT2Pf+aZZ2jTpg0DBgxgw4YNXjkHIYQQQgjRMEillKgz3y9exjvj7+as4xgALoOBdnlmrOeuq9GsR/bCAt5/bCJz7rnN05rJ7sxgc/Bv7O2Z5dmuskmpkqF7fjqFAC8OJ/L6iDl7PhSeO18p5cWklFqbww0vU6qqUmB31vgnp+AcBXY3BXaVIqcelxJR4WNULzQPs1gs2O12xowZw5YtW1i+fDkbN25EVVWGDBniqX6ZMGECNpuNH3/8kZ07d/Lyyy8TGBhIQkICn376KQBfrN3Md1v38Pj0mfibDDz26BR++uknli9fzurVq1m3bh2//vrrRTHMmjWLzp07s23bNp599lkOHDjAoEGDuPXWW9mxYwcff/wx69evZ+LEiQBERkai0+lYunSpp4Lnfy1duhSHw1FmRdT9999PYGAgH374YY2fP9Cqu959912Cg4PLrW7Kzs4mLCzMK8esKrfbzVdffUWrVq1ISUkhKiqKK6+88pLD/ECrXFq4cCHNmjXzJKBat25NeHg4CxYswG63U1hYyIIFC2jbti1JSUmex37//fd88sknUvUkhBBCCHGZkkopUWeObN+GpzpI8cfln8Wmo8+TEFazKo/TB/dz5kiap0oK4A/TVta1KODhsJtJK66V0unLTwvlOV0M+3Ufu/OLAGjiZ6r7KcIrmzzY9Tl8ei+4L+jxYwqsnZguN7XU/b3Q4aLdc1/Xwp4PVbjF7hdS8K/mUFRVVfnuu+/4+uuvGTx4MMuWLeOnn36iT58+ACxZsoSEhASWLVvGiBEjOHLkCLfeeisdO3YEtMofAKfLjTlQa2IeFh5JZHgYzSICKCrIY/HixXzwwQcMGDAAgIULFxIXF3dRLNdddx1TpkzxLN97773cfffdnn5KycnJzJ07l379+jF//nzi4+OZO3cujz/+ONOnT6d79+7079+fu+++2xPX3r17CQ4OJjY29qLjmUwmmjdvzt69e6v13JVYsWIFI0eOpKCggNjYWFavXk1ERESZ2+7fv58333yz3Cqp2pSenk5eXh5///vfmTFjBi+//DKrVq3illtu4YcffqBfv36ebf/xj3/w+OOPk5+fT+vWrVm9ejUmkzZ02mq1smbNGm6++WZefPFFQPv7fP311xgM2mvx7NmzjBkzhn//+98EBUmDeyGEEEKIy5FUSok6Y0vXkkPRBWEM2v47uVbtQq95RM2SKc7iCo3Q+CaedYNbDufadWPZvEg7pt6oqzDB9Et2vichBXBbTGiN4irF28mtQz+WTkglXAn+4TXebZ0n4eq5y7libMWKFQQGBmI2mxk8eDB33HEHY8aMwWAwlBrKFh4eTuvWrfnjjz8AmDRpEjNmzKBv375MmzaNHTt2AHAwI5+T2effX0a9gsmg49ChQzgcDnr27Om5Lzg4mNatW18UU/fu3Ust//bbbyxatIjAwEDPT0pKCm63m0OHtGTdhAkTOHXqFEuWLKF379588skntG/fntWrV1f6uShJtJRnyZIlpeJYt26d577+/fuzfft2NmzYwKBBg7j99ttJT0+/aB/Hjx9n0KBBjBgxgnHjxnnWX7jf8ePHVyrmdevWlXrckiVLKvU4t1ubGGL48OE8/PDDdOnShSeffJKbbrqJt99+u9S2d999N9u2bWPt2rW0atWK22+/naIi7W9cWFjI2LFj6du3Lz///DM//fQTHTp04MYbb6SwUJvsYty4cdx1111cc801lzyHdonR9GrdhMSY8EqfgxBCCCGEaDikUkrUGZdLS6K4LAa+6gknmuhZOKAH3ZJqlvxxOrSGxwaLPwCKCm78cNrdKApYIywkd4+qcD+HCrUG7P3DrLzRpinRfsYaxVUlxbkgpbI5EFvxkL2BL0Cv/wOdQabUq6lafv4sRj27X6h4ZsSyOJ0FFBRoSRajMQSDIRCjMbhKx66q/v37M3/+fEwmE3FxcRgMBpYvX17h4+69915SUlL46quv+Oabb5g5cyazZs2i/y33eLbxN+mICKx6U/aAgNJDVPPy8rj//vuZNGnSRds2bdrUc9tqtTJ06FCGDh3KjBkzSElJYcaMGQwcOJDk5GSys7M5ceLERdVZdrudAwcOkJJS8d9t2LBhpZJ18fHxpeJu2bIlLVu2pFevXiQnJ7NgwQKmTp3q2ebEiRP079+fPn368O6775ba94Wz/VW2oqh79+6lHhcdHV2px0VERGAwGGjXrl2p9W3btmX9+vWl1gUHBxMcHExycjK9evUiNDSUzz//nDvvvJMPPviAtLQ0Nm7ciE6nff/1wQcfEBoayhdffMHIkSP5/vvvWb58uacqTFVV3G43BoOBd999lzvvvJOVP2wgt8hJdJCZNs0TKnUOQgghhBCi4ZCklKgzbrSeLtnxAfyri54eRQb6t6k4WVQRV3GllGLQLrx16FD0RsBJQKgfo17sXan9nCnuJdXc4le3CanqKOkjZQ4GfT2PVQBaFVpVh9C53Q5stlPoVTv+Jh16vT8BAYm1FGFpJYmUC7Vt2xan08mmTZs8w/fOnj1LampqqSRGQkIC48ePZ9x99/PIY4/z9jv/5Npb7sFo1F6riWH+BFm0282bN8doNLJ582ZPIik7O5u9e/desoKmxBVXXMHu3bsvirM8iqLQpk0bT0Pt2267jSeeeILZs2cze/bsUtu+/fbbFBQUcM8995S1q1KsVitWq7VSMbjdbmw2m2f5+PHj9O/f3zOjXUkSp0RVzq+ExWKp1uNMJhM9evQgNTW11Pq9e/d6msWXRVVVVFX1nFdBQQE6XekK1ZLlkmqsjRs3lur19cUXX/Dyyy+zYcMG4uPjsVgsJDVvQXahg/gQC9ZqJDKFEEIIIUT9JkkpUWfcqnbx4TRoFyRGL40eLUlKqXo9uECPDsWgJaUq29wcINOhJaVCa3XGvRoqPAeZhyD3pLbsV7mLYFE19WUYo812Gocjy7Os0/n2ojw5OZnhw4czbtw43nnnHaxWK08++STx8fEMHz4cgMmTJzN48GBatWrFweOn+eGHNSQ012bma9o0EUVRWLFiBUOGDMFisWC1Whk9ejSPPfYYYWFhREVFMW3atIsSGmV54okn6NWrFxMnTuTee+8lICCA3bt3s3r1at566y22b9/OtGnTGDVqFO3atcNkMrF27Vree+89nnjiieKYmvLKK6/w6KOPYjabGTVqFEajkS+++IKnnnqKGTNm0KFDh1LH/d+EDUD79u09SbcS+fn5vPTSSwwbNozY2FgyMjKYN28ex48fZ8SIEYCWkLr22mtJTExk1qxZnDlzxvP4ktkPL6WkEiovL48zZ86wfft2TCbTRVVOF8rLy2P//v2e5UOHDrF9+3bCwsI8ScHHHnuMO+64g2uuuYb+/fuzatUqvvzyS9asWQPAwYMH+fjjj7nhhhuIjIzk2LFj/P3vf8disTBkyBAABg4cyGOPPcaECRN48MEHcbvd/P3vf8dgMHhmYWzbtm2p2LZs2YJOp7vo+a7oHA4fPs6OHbtpEu9XqkJOCCGEEELUf/X46ls0NipaMspu0JJTRqXqQ4rKUlRYiD0kkqzil7MOBbdO23dVklJni5NSYdUY6lQbVFUtPWWfoxDe7AYFZ8+vM9UsKXX5dkxqGFxurfeOwRCEwWDFYPB9M+iFCxfy0EMPcdNNN2G327nmmmtYuXKlJyHjcrmYMGECx44dI9BqpXe/ATw34++EB/rRPKIF06dP58knn+Qvf/kL99xzD4sWLeK1115j/Pjx3HTTTQQFBfH4449z9OhRzGZzubF06tSJtWvX8vTTT3P11VejqiotWrTgjjvuAKBJkyYkJSUxffp00tLSUBTFs/zwww979vPwww/TvHlzZs+ezZw5c8jPzwfgww8/ZOTIkRcdt6x1R48epUmTJqXW6fV69uzZw+LFi8nIyCA8PJwePXqwbt062rdvD8Dq1avZv38/+/fvv+jxFc2a2LVrV8/trVu38sEHH5CYmEhaWtolH7NlyxZPUgjgkUceAWD06NEsWrQIgD/96U+8/fbbzJw5k0mTJtG6dWs+/fRTrrrqKgDMZjPr1q3jjTfe4Ny5c0RHR3PNNdewYcMGoqK06tc2bdrw5ZdfMn36dHr37o1Op6Nr166sWrWqzKbyVfG/5/DUU68Cr5Y6ByGEEEII0TBIUkrUCdXhwI2W9LGXVEp5KSl16MRJbLGJ2IpHgZhUA+7i4S+VTUrZ3G5O2bSKq0hTbQ2HU6hRGijnRHFCSoHgJtpP017eCk7UE6qqUlR0DKczF7W4utDPLwa9vu6qpMq7sA8NDeX999+/5P1vvvkmp3OKOJ1zvql5XIjF00Pq2Wef5dlnny31GKvVWqqJdX5+PtOnT+e+++7zrLtUoqVHjx588803Zd4XERHBnDlzLhnrhYYPH+6p9srMzGTAgAHMnz+fYcOG4e+v9atLSkqqMFF0IbPZzGeffVbuNmPGjGHMmDGV3ueFqhJLiWuvvbZSj/vrX//KX//61zLvi4uLY+XKlRXuY+DAgQwcOLDSsVX2ubjwHJzOXAoK0tDpzQQGJFf6WEIIIYQQon6QpJSoE66iIlTFDSoU+RUAYFJq9vI7fXA/v69ZzYlDR0DvR4g7gCh3MM0dobiKe/cYjBUnpf5+8CRvHD7tWU6yVDzTVu0p52LRlqv9tsbAw7/X6CgVDk67rEuofHvyLldBqSF7er0/Op0vX5NVl1Po8NzW6xQC/cp/r2/bto09e/bQs2dPsrOzeeGFFwA8SaK6FhYWxrfffsu8efPYuHEjAwYM8EkcQgghhBBCNHaSlBJ1ovBsHqqqVUqlWo8CEKzUrPJj7b/f4+iuHdiiEiA8mgR3OO03rIZzR3Bfo01drqugUkpVVRYez/AsJ/v70Sqg/CFD1aGUlQaqapWDLUf77ef7IVzC+1RVLU5IacMzdToTFksiOp2p3vS4Ko+qqpzNt+NwubE7tWrIFpGB+Jv0lYp/1qxZpKamYjKZ6NatG+vWrSMiIqK2w76k8PBwnnvuOZ8dXwghhBBCiMuBJKVErfvtu6Ok/XoM0KonjpqzAWimq1k/JFtx3xeT2YQdrcG5+9Tv5AdEohZpL+2Khu8VuN1kO7UhUtv7tCfKZEBXCwmAitJP5V60552BLydBxj5t2Vx7Sakyk2eXDd+eu92egc12yrNsMFjR672fIK0t+TYnJ7IKPcsK4GeouFk5aL2Rtm7dWovRicbrcv7MEkIIIYRo+CQpJWpVfpaNdR9txe06P6NUpMuf4ZlH6R4eXaN9u5xaksuoL25qruo4Pepldh82w2ptdjq9ofwLltziig69AtEmQ/2sSNn7X0i9oH9LeNWneRf1n9OZ7bltMARhMvmuSqg67C4t9Woy6Ag2G7GY9Bj03plhU4jLekSxEEIIIUQjJkkpUatyMnKw5SympEoKVaVVbiD3FeZwNN6/RvsuSUqhaokkHZAXEAdkYjLrMfkbaNWz/CnVc4urpKz6yg0xqnVlXXkVFQ/bS7wK+k6CpKvqNKTLWW1fCKuqG5v9DKrbgculVRkFBCQ3qAqpjDwbGXk2XG7t2Qo0GYgNsfg4KiGEEEIIIURDIEkpUauyz5xBS0gpBBUUYXbmE2fMg0KIS2heo327nFqPKpXzSSlHceXTtXe3IblHxZVYnqSUwTszAdYKe572OyIZWqX4NhbhVU5nLnZbumdZUQwNrqn52Tybp4cUgMVUj99LQgghhBBCiHpFklKiVhXladUfOp0/V+3bz8EYCLVnAqCPrNkwNHdxUooLklIup1atUVEvKQC7282RIjsAoXWVlKpOMVZJUsov0KuhiEurq5o5t1t7/en1ZgyGYAyGIBSlYQx5c6sqqgqO4mF7ieH++Bn0+FXivSeEEEIIIYQQIEkpUcvy9mnNuZXiQgq7AYwJA6Bpd2jev0b7thsC8U9oSa5JAdzoUXAVV2zoKugldbjQxsAtqeQUb9/Mv2YzAXrNBTPyqYfWQOrXkLZeW2GSpFSdqOqsiNXgcGRRZDuF6taGoOoNVvz8omr9uN5S5HBxID0P1wXPVaCfAb1OElJCCCGEEEKIypOklKhV+Qf3AKBTFWwG2NhGx+3XzIAaDt1zOp2ci4hGVVRKOv8YdeeTUnpj+RfHy9OzPAkpk6IwJDK4RvFUqDhHplQl3/HFg5Bz/PxyYN0lLVRpK1yrbLbTnoQUKBgNIb4Mp8rybc6LElK1MWulEJUmH1lCCCGEEA2SJKVErbIVFgGg0+sZ9Zj2cvu/gJrPKmZ32Ev6m9O6KISgzEyMrU/gym4BVDx872jxsL0Hm0bxRLNYDLravqCu4IqprAv6/Azt95XjIaQpdLrD+1HVQVVQg1EHSRWXy4bbXeQZtufv3wydzoxO1zA+ioscLmxON/k2behsWICJuGALikL9mChACCGEEEII0aDIWAtRq+x2rZF4SRWF6rIQYKz+UDmX08nPn37E6kXvaCtUaHXkJM1//IT4+KjzlVIVJKWyihucR/sZ6yAhVU0um/a73xPQewKYAry2a8kf1D2320F+wT4KC48AoCg69PqAepmQGjNmDIqioCgKJpOJli1bMu356fxxIovDZ/PJKtSqvIx6HTqdUumE1Jo1a1AUhaysrFqMvrRDhw5x1113ERcXh9lspkmTJgwfPpw9e/aU2m7FihX069cPq9WKv78/PXr0YNGiRaW2SUtLQ1EUtm/fXunjP//887Rp04aAgABCQ0O5/vrr2bRpU6l9jh07lmbNmmGxWGjRogXTpk3DbreXu9+TJ09y11130apVK3Q6HZMnT65UPPPnz6dTp04EBQURFBRE7969+e9//+u5PzMzkwcffJDWrVtjsVho2rQpkyZNIjs727PNokWLPK+P//1JTz/fuN9ms/H000+TmJiIn58fSUlJvPfee6XieeONNzzHSkhI4OGHH6aoqKjcc/jss8+44YYbCA8Px2i0smPHnnK3F0IIIYQQ9Vf9uxoSjYq9OPnjKr5mdTsDMdWgEfKR33/jp//8G7fRBC07oUdHUJ4dJxAaHl/pRufnHFqlR501OK8J6SXVKLhc+aCqKIoOnc6MyRRRr6uLBg0axMKFC7HZbKxcuZIJEyaQVeRi3INTsBj16HUKof5Gn8Vnt9sxmcqfqdDhcDBw4EBat27NZ599RmxsLMeOHeO///1vqcTYm2++yeTJk3niiSeYP38+JpOJL774gvHjx/P7778za9asasfZqlUr3nrrLZo3b05hYSGvv/46N9xwA/v37ycyMpI9e/bgdrt55513aNmyJb///jvjxo0jPz+/3OPabDYiIyN55plneP311ysdT5MmTfj73/9OcnIyqqqyePFihg8fzrZt22jfvj0nTpzgxIkTzJo1i3bt2nH48GHGjx/PiRMnWLp0KQB33HEHgwYNKrXfMWPGUFRURFTU+WHGt99+O6dPn2bBggW0bNmSkydP4nafn6nxgw8+4Mknn+S9996jT58+7N2715MQfe211y55Dvn5+Vx11VXcfvvtjBs3rtLnLoQQQggh6h9JSonakXkQti7yfNtfpGjJKdVprdHsXEX52kx0/mFh5AMGdOhDQ9l140v8ttFKUW4BAPoKGp1nliSljL57C1Rq6JzOCIbyL7xF/eZ05lNQcAqnMxcAozEUsznOx1FVzM/Pj5iYGIocLobfOYYP/rOUNatXcc9fx/HKjKf58ssvsdls9OvXj7lz55KcnAzA4cOHmThxIuvXr8dut5OUlMSrr75Ku3bt6N9fm9wgNDQUgNGjR7No0SJyc3MZP348y5YtIygoiMcff5wvvviCLl268MYbbwCQlJTE2LFj2bdvH8uWLeOWW25h0aJFrF+/nqlTp7JlyxYiIiL405/+xMyZMwkICGDXrl0cOHCA7777jsTERAASExPp27ev5zyPHj3KlClTmDx5Mn/7298866dMmYLJZGLSpEmMGDGCK6+8slrP41133VVq+bXXXmPBggXs2LGDAQMGMGjQoFIJnubNm5Oamsr8+fPLTUolJSUxZ84cgIuqj8ozdOjQUssvvfQS8+fP5+eff6Z9+/Z06NCBTz/91HN/ixYteOmll/jzn/+M0+nEYDBgsViwWCyebc6cOcP333/PggULPOtWrVrF2rVrOXjwIGFhYZ6YL7Rhwwb69u3reY6SkpK48847S1WSlWXUqFGAVmUmhBBCCCEaNhm+J2rF0Y/m8/EXCeToIwFw6+w4srtiO5OCSV/9l53LoQ0bskSEA6BHh6tZW47nh3D2RAGqCgaTjoDgsocIHi+y88HJsxwp1JJlsX6+qPQoJ2FWMmSvhBeH7AnfsNlOawkpVQVHIQa3Aez5dftTg95hp3OKyMizYTD64XDYmfrQA2zZsoXly5ezceNGVFVlyJAhOIrfmxMmTMBms/Hjjz+yc+dOXn75ZQIDA0lISPAkO1JTUzl58qQnqfLII4/w008/sXz5clavXs26dev49ddfL4pl1qxZdO7cmW3btvHss89y4MABBg0axK233sqOHTv4+OOPWb9+PRMnTgQgMjISnU7H0qVLcblcZZ7f0qVLcTgcPProoxfdd//99xMYGMiHH35Y7efvQna7nXfffZfg4GA6d+58ye2ys7M9iZza5HK5+Oijj8jPz6d3797lxhMUFITBUHYS//3338ff35/bbrvNs2758uV0796dV155hfj4eFq1asWjjz5KYWGhZ5s+ffqwdetWfvnlFwAOHjzIypUrGTJkiJfOUAghhBBC1HdSKSVqxa6DUWQ4W+CmePY4QxFFJ/6KxahHV4MeTiVJKVWnBzfoVR3u4guloEgL197ZmpAYf0yWsl/aD+w+zC/Z+YCWGoo3110VUmVm3lNcLuCCIYWtB9daPKJiNekDb7efxeUqQlX1gIJZH4bp9fZei61KnjpR5QSnW1XJKrBTYHPy87o1bPzxe64beAP/XfElP/30E3369AFgyZIlJCQksGzZMkaMGMGRI0e49dZb6dixI6BV/pQoSbRERUUREhICQG5uLosXL+aDDz5gwIABACxcuJC4uIurya677jqmTJniWb733nu5++67Pf2UkpOTmTt3Lv369WP+/PnEx8czd+5cHn/8caZPn0737t3p378/d999tyeuvXv3EhwcTGxs7EXHM5lMNG/enL1791bpuftfK1asYOTIkRQUFBAbG8vq1auJiCh7wof9+/fz5ptv1mjIYEV27txJ7969KSoqIjAwkM8//5x27dqVuW1GRgYvvvgi99133yX3t2DBAu66665S1VMHDx5k/fr1mM1mPv/8czIyMvi///s/zp49y8KFCwGtiiwjI4OrrroKVVVxOp2MHz+ep556yrsnLIQQQggh6i2plBK1osDmwFG4Hr3jDwAUo1alEOBXszyow24nKDQZvUsb/qNDh1unvYwtgUYS2oVhDTOX+Vi3qrKzeHjftaFWXkyOJ6iuekqVNHqvymOeOgF/ertWwhG1q7DwOL9uG4XDcRYARWfEZAr1cVRVs/Krr4iLDKNzsygm3DOC20bczv33jsVgMJQayhYeHk7r1q354w/tvT5p0iRmzJhB3759mTZtGjt27Cj3OAcPHsThcNCzZ0/PuuDgYFq3bn3Rtt27dy+1/Ntvv7Fo0SICAwM9PykpKbjdbg4dOgRolVunTp1iyZIl9O7dm08++YT27duzevXqSj8XFfWuAi05d2Ec69at89zXv39/tm/fzoYNGxg0aBC33357qYbgJY4fP86gQYMYMWJEqV5JF+53/PjxlYp53bp1pR63ZMkSz32tW7dm+/btbNq0iQceeIDRo0eze/fui/aRk5PDjTfeSLt27Xj++efLPM7GjRv5448/GDt2bKn1brcbRVFYsmQJPXv2ZMiQIbz22mssXrzYUy21Zs0a/va3v/GPf/yDX3/9lc8++4yvvvqKF1980fOctkuMplfrJiTGhJd6Ti8mM4kKIYQQQjREUiklasWZnDRcRSfwDJgxaS81q7lmL7lDB9M5HhMMqlbtZECPu3g4oMFYfo71rMNJoVtFAf7VqTnG+jTrXknD6wtLcwzVn6WwpirV76rRUcq4VT1ZWT+jqg5AQVGMmP1iwOCvJRp9wehfpc3dqkqPPlfz9EuzCQm0kNi0CU3CAvnyyy8rfOy9995LSkoKX331Fd988w0zZ85k9uzZPPjgg9WN3iMgoHS1V15eHvfffz+TJk26aNumTZt6blutVoYOHcrQoUOZMWMGKSkpzJgxg4EDB5KcnEx2djYnTpy4qDrLbrdz4MABUlJSKoxt2LBhpZJ18fHxpeJu2bIlLVu2pFevXiQnJ7NgwQKmTp3q2ebEiRP079+fPn368O6775ba94Wz/QUFBVUYC2gJvAsfFx0d7bldMqMiQLdu3di8eTNz5szhnXfe8WyTm5vLoEGDsFqtfP755xiNZQ91/n//7//RpUsXunXrVmp9bGws8fHxBAcHe9a1bdsWVVU5duwYycnJPPvss4waNYp7770XgI4dO5Kfn899993H008/zbBhw2jSqiO5RU6igsx0bNWsUucuhBBCCCEaDklKCe9TVRzFvZGsWIg7cYwfE7TeUgF+NatMyi/Upgr3V034Od20O52PrWPxjHsVJKWyi2cCDDLo61dCCuCXf2q/1fMzU6k++Oa/Ps8G1xA4HFlkZf3CkaOLANDrAwgIaIbRWFy9V897hBXanRzPKiS3yInF4k+zFi1oH1c6qeB0Otm0aZNn+N7Zs2dJTU0tNfwrISGB8ePHM378eKZOnco///lPHnzwQU/F0YX9nZo3b47RaGTz5s2eRFJ2djZ79+7lmmuuKTfeK664gt27d3sSLJWhKApt2rRhw4YNANx222088cQTzJ49m9mzZ5fa9u2336agoIB77rmnwv1arVasVmulYnC73dhs5/vHHT9+nP79+9OtWzcWLlyITlf6s6wq51fCYrFU+nH/G09OTg4pKSn4+fmx/P+zd+dxUVb7A8c/szIDDDvIKojimpprLrmQG5rKLdO8el0qF7qaS5ZLZWqZ3colNa9pv1K7qbermZFZSYvmlrnhmigqLogKoiwDzAwzz++PB0YndlSgPO/Xy5c8z5znnPMMA/V8/Z7viY1Fpys++zQ7O5v//e9/vP3220Ve69ixIxs2bCA7OxtXV3kH0dOnT6NUKgkODgYgJyenyL2qVPJ/IyRJwmAwEBZel4xcC4EeevT66gvUC4IgCIIgCPeHCEoJ954tH6tNrv3kbtFQN/UWG03+oAY/Q/EPN+WVbZIzpGrl63A6+H8EJklkP9wGAFUZu/plWm4HpWoUaz7s/TfgV2ZToeaSJIn4I6PIzDwMgFIZiFJZHYX0K+9mjoUcsxWbTQ6I6jWOPysRERFER0czevRoVqxYgcFgYPr06QQFBREdHQ3ApEmT6N27N/Xr1+fmzZv8/PPPNGrUCJB3vlMoFGzZsoU+ffqg1+sxGAyMGDGCl19+GS8vL/z8/Jg1axZKpbLMIOm0adNo164d48ePZ9SoUbi4uHDy5Eni4uL44IMPiI+PZ9asWQwbNozGjRuj1WrZsWMHn3zyCdOmTQPkjKp3332Xl156CZ1Ox7Bhw9BoNHz11Ve88sorzJ07l4ceeshh3ISEhCJzadKkSZFsIqPRyFtvvUX//v0JCAggLS2NZcuWkZyczMCBAwE5INW1a1dCQ0OZP38+qamp9uv9/f1Lvf/CTKjs7GxSU1OJj49Hq9WWWB8KYMaMGfTu3ZvatWuTlZXFunXr2L59O99//z0gB6R69uxJTk4On332GZmZmWRmZgJy4fjCoBHA559/Tn5+Pv/4xz+KjDNkyBDefPNNnnnmGebMmUNaWhovv/wyzz77rL32VL9+/Vi4cCEtWrTgkUceITExkZkzZ9KvXz+Hcf4oPT2dixcvcuWKnHl45kwSSqWW8HC3Mt8zQRAEQRAEoWYRQSnh3ss3YbXJ/+qutsi73DnpXJjUPYLoh4NKu7JEF48f4dr5s+TnmUADLjk2GlyUH5xtCvljXNbyvcJMKfeaFpSyGLHXQ9HoAFtpre+pB3GR3v1itWbbA1IGQ1PcDJHYbPoyrqoZ8m02zPk2TPnyZ89Jo8LmpCbMu2hm16pVq5g4cSJ9+/bFbDbTuXNntm7dag/IWK1Wxo0bx+XLl3FzcyMqKopFixYB8pK2OXPmMH36dJ555hmGDx/O6tWrWbhwITExMfTt2xc3NzemTp3KpUuXSszQKdSsWTN27NjBq6++SqdOnZAkibp16/L0008DEBwcTFhYGHPmzCEpKQmFQmE/njx5sr2fyZMnEx4ezoIFC1i8eDFGoxz8Xr9+PYMHDy4ybnHnLl26ZM8AKqRSqTh16hRr1qwhLS0Nb29v2rRpw86dO2nSRC56HxcXR2JiIomJiUWuL2sZbYsWLexfHzx4kHXr1hEaGkpSUlKJ11y/fp3hw4eTkpKCu7s7zZo14/vvv6dHjx4AHDp0iH379gFFM7TOnz9PWFiY/fjjjz/mySeftBetv5OrqytxcXG88MILtG7dGm9vbwYNGsTcuXPtbV577TUUCgWvvfYaycnJ+Pr60q9fP956661S7zs2NpZnnnnGfvzss1MBmDVrVom1rwRBEARBEISaSQSlhHvOZslDkuSglMoiFxY3uHgwqXv9SvWXZ8zmi3mvY7NaUYW1Bg2orTZyXGpzJbAjljQ9YC5x+d51k4V/nrzArlvZAHhpakhQqvCB05xz+5xSDZirZTpC5UiSxI0b27l5cy8AarU7bdtsJi8vz15suyazSRJnrmVjsd4Ohq78v4/xcC6+uLenpyeffvppif0tXbq01PFmzpzJzJkzHc4ZDAaHQtxGo5E5c+Y47PhWUqClTZs2bNu2rdjXfHx8WLx4canzKRQdHW3P9kpPT6dbt24sX76c/v374+ws1+QKCwurUL01nU7Hpk2bSm0zcuRIRo4cWe4+71SZ2m8ff/xxqa937dq13P0WLoEsScOGDUstKK9Wq5k1axazZs0q13iF7nzP8vOzyck5j1LphKtr5f4bIwiCIAiCIFQfEZQS7rm8jHT712qTHAjSayq/pCIvKwub1YpSpQK1ErChUULy314n5ZIJUuQgjt5Q/EP0ltRb9oAUQJSPe7Htqo3ZePvrKiswLmpHlaiC34Nr12I5cfJF+7Gzc/i9ntF9lW+12QNSWpUStUqJ613ukllRhw8f5tSpU7Rt25aMjAzeeOMNAHuQqKp5eXnxww8/sGzZMvbu3Uu3bt2qZR6CIAiCIAiC8FcnglLCPWPNz+frRf/i3EF56QcKZ/wybgDgpqt4od7b/cr1qbR6ZyxqOZiiUimwoAFMNGznj3ewKw3aFR/4Op8rZ239zc+D0cG+tHCr2E5k94KiuCCQLR8u7IW001U+H6EYlSzynl6QIaVQqPD1jSIsdOy9nNV9Y7HauGk0Y74jINUwoHw7u90P8+fPJyEhAa1WS6tWrdi5cyc+Pj7VNh9vb29ef/31ahtfEARBEARBEB4EIigl3DNpF5M4e+BX+7FKG4HOnIgNBfletUq5snT5Fgs+TsG08uzJL9J5UGShQsJmlTNaGrTzJ7ihV8nzMucD0MLNmVbuNWj3s9+/hmMFGTaKGrKksEB17Pz3Z3MjfRfXrn5FylV5eVajhm8TEDCgmmdVfqlZJtKyb++4piljo4D7qUWLFhw8eLDaxhcEQRAEQRAEoXqIoJRwz+QW7ISks1qxeQxFoarFoUGBrEtW0sm38kEpq8WCm1d9LjgZMSoK6y3lYi0oyqws42E6uyATxLWU3ZyqhTEVnAD3ENDqgWwUIhb0pyBJVk6ceBGL5Yb9nMGtWTXOqPwkScImSfai5q5OanQaFZ7Of66dAgVBEARBEARB+PMTQSnhnsmM+woAtUUiXx0IkpULD3fldE4S3e4iCyMnx8hR90wkRab9nGS7Yg9KqcoMSsm77rmoqi8TpFj5JjkoNehTsPnCpz2re0bFLzN8AJX1LuTmXrQHpOqGv4SHRxtcXSLu/8Tuks0mceZ6NqaCnSgBfFydcNOLgJRQM4nfSIIgCIIgCH9tIigl3DO5N9IAMLqE4ARY1BYsNjlwpLmLgFCOMQdJAQpJgbsph+AziXjX8SU5X04rUqmLf2yRJIlsq42swowQdQ3LlLIWZH05uUFuMa+LrKkax2K5yalTM7mVsR8AV9eGhIU9X82zKj9TvtUhIKVRKXHW1rCfC0EQBEEQBEEQHhgiKCXcMxk5cnBIoZA/Vte8z2HLDwbA6S4ypSwWue6NFjUBGTdocuIkqoeisWaXnik16kQS36Rm2I9da0Sm1B2RJmtBPR8nA+Sai28u1CgpKZu4nvqt/djL69FqnE355VttZOZZyLPIPzM6jYp6fq4oAEUlC7wLgiAIgiAIgiDcLRGUEu4Zs7xJHiqFlY/bTiXIM4BwU0egckEpm9VK4oFfuXDimNwvSh4+b8MGeBh8sN6SAzzKYoJN6ZZ8h4BUsE5DY1d9hedwLxW7NE6lBZ07kAqI5KiaoeTvwq2MAwAE+A/A17cn3t5dq2hOd+dqRh7pObcDn1qVEqUIRgmCIAiCIAiCUM1EUEq4Z0z58kOuUgEWlQlnjTPGTHmpkLO24h+1swf38fXCt7HqXKBOI1SSAqUpFxvgFBGB7XxhplTRh+srefIDuIdaxZGOTdAoFNX7EK5QFI11hDwC/f4OGl21TEn4o5I/HwmnZ3P1aiz5+XKgMzDoaTzcW1XVxO5aYVFzZ60arUqJj0FbzTMSBEEQBEEQBEEQQSnhHjJLcsaSQiU/3Durncm15MtfV6JuTfbNdJSocPGoRQ6gRIni0TYoO73GBY0bNusZoPjle8aCHfc8NSqclDVg2V5x8Y66j0GD3gWvV0/ATBKpWWUym9O4fPkzCqOKri4NcHdrUb2TKgdJkki+lYsp30auRQ4OB7jrcHESv/aFPyHxu0oQBEEQBOEvqQY8rQt/FSabHFjJVMhZSi4aF3LM8sOwvhJBKWuehcdDxvCwy2OAvHwvxxDAD5uusfNzOSClUIBKU/RjnF0QlHJV1dwiztUZECorBiaJJ0AAJMlKVtbvgIRCoaHdI3G0afMlCkXN/9WZY7aSbjRjNOVjkyQUKNCWcxntyJEjUSgUKBQKtFot9erV44033iA/P/+u5rR9+3YUCgW3bt26q34q4vz58wwZMoTAwEB0Oh3BwcFER0dz6tQph3ZbtmyhS5cuGAwGnJ2dadOmDatXr3Zok5SUhEKhID4+vtzjz549m4YNG+Li4oKnpyfdu3dn3759Dn0+99xz1KlTB71eT926dZk1axZmc+l15lJSUhgyZAj169dHqVQyadKkcs+p0L/+9S8UCkWRa8+ePcsTTzyBr68vbm5uDBo0iGvXrjm0eeutt+jQoQPOzs54eHgU23/hZ+jOP//973/tr2/atIkePXrYx2nfvj3ff/99mfPetGkTPXv2xNvbG43GwNGjp8q8RhAEQRAEQaiZav6TlfCnYSlIBzKr5AdXX21dbuXIhaYqkymlMNpwVrthpWCZntVKbkGQSW/QUK+1H50H10erK5r5UZgp5VIjipsD5uzqnoFQCRcuriT+yEgAPDza4OISjlLpVL2TKqf8gp8BJ7WK2l7O1PNzrdAumFFRUaSkpHDmzBmmTJnC7Nmzee+99+7XdCusrKANgMVioUePHmRkZLBp0yYSEhL4/PPPadq0qUNgbOnSpURHR9OxY0f27dvH0aNHGTx4MDExMbz00kt3Nc/69evzwQcfcOzYMXbt2kVYWBg9e/YkNVWuI3fq1ClsNhsrVqzgxIkTLFq0iA8//JBXXnml1H5NJhO+vr689tprNG/evMLz2r9/PytWrKBZs2YO541GIz179kShUPDTTz+xe/duzGYz/fr1w1awmyrI7//AgQN5/vnSd59ctWoVKSkp9j9/+9vf7K/98ssv9OjRg61bt3Lw4EEiIyPp168fhw8fvqOHohF0o9HIo48+yjvvvFPh+xYEQRAEQRBqFrGOQ7grks1G2r+XY7l0CZukBAXotWoMaa+x6ncXwAhULiiVl2fmlCqZq6qb8ombF8CvPgC+td3oNeqhYq/LsdpILqgp5VJTMqWyr4F74UHNLTBdbDH2B5hNKnwIV+Lr26Na51IekiRxMT2HzLx8+3InnUaJh3PFa0g5OTnh7+8PwPPPP8+XX35JbGwsMTExTJw4ka+//hqTyUSXLl1YsmQJERERAFy4cIHx48eza9cuzGYzYWFhvPfeezRu3JjIyEgAPD09ARgxYgSrV68mKyuLmJgYNm/ejJubG1OnTuWrr77i4Ycf5v333wcgLCyM5557jjNnzrB582aefPJJVq9eza5du5gxYwYHDhzAx8eHJ554grfffhsXFxdOnDjB2bNn+fHHHwkNDQUgNDSUjh072u/z0qVLTJkyhUmTJjFv3jz7+SlTpqDVapkwYQIDBw7kkUceqfB7CDBkyBCH44ULF/Lxxx9z9OhRunXrRlRUFFFRUfbXw8PDSUhIYPny5cyfP7/EfsPCwli8eDEAn3zySYXmlJ2dzdChQ/noo4+YO3euw2u7d+8mKSmJw4cP4+bmBsCaNWvw9PTkp59+onv37gDMmTMHoEg22R95eHjYP0d/VPi9LTRv3jy++uorvv76a1q0KHmJ7LBhwwA5y0wQBEEQBEH4c6shaSTCn1Xe8eMc/eIQW1Lbk6vzAuAWZq6kugIKfFy1tK3jRZNA99I7KsbpG9fYpTlFolJeNqK25CMp5Idrtbb4j+6um1k02HmMOWevAFCrptTPsRYsexIxnxrPaLuB0ZhoP27e/GMiux4nJHj4XfUrSRI5lpz7+ifbbORadia5+TnkWnPIs+aiVFmQ7sFaUb1ej9lsZuTIkRw4cIDY2Fj27t2LJEn06dMHi0XOihw3bhwmk4lffvmFY8eO8c477+Dq6kpISAhffPEFAAkJCaSkpNiDKi+++CK7d+8mNjaWuLg4du7cyaFDh4rMYf78+TRv3pzDhw8zc+ZMzp49S1RUFAMGDODo0aN8/vnn7Nq1i/HjxwPg6+uLUqlk48aNWK3WYu9r48aNWCyWYjOixo4di6urK+vXr7/r9w/k7KKVK1fi7u5eanZTRkYGXl5e92TM4owbN47HH3/cHmC6k8lkQqFQ4OR0OyNQp9OhVCrZtWtXpcby8fGhbdu2fPLJJ6V+Fm02G1lZWff13gVBEARBEISapYY8sQt/VrbsbK75tcaiNSAVFDW/4ZyLs1bF9N4NGd4+rNJ9Z5rkLCsPmx7SfqfJiTPw8ECg+OLmABuu3sRS8NDjolIyNMC70uPfSwqp+AfiIkTl8WplAw7mruNmrgSKx1EoVHi4t7onS/Zy83N5ZF3lsm3u1r4h+3DWOFfqWkmS+PHHH/n+++/p3bs3mzdvZvfu3XTo0AGAtWvXEhISwubNmxk4cCAXL15kwIABNG3aFJAzfwoVBhv8/PzsdYiysrJYs2YN69ato1u3boC85CswMLDIXB577DGmTJliPx41ahRDhw6110SKiIhgyZIldOnSheXLlxMUFMSSJUuYOnUqc+bMoXXr1kRGRjJ06FD7vE6fPo27uzsBAQFFxtNqtYSHh3P69OlKvXeFtmzZwuDBg8nJySEgIIC4uDh8fHyKbZuYmMjSpUtLzZK6G//97385dOgQ+/fvL/b1du3a4eLiwrRp05g3bx6SJDF9+nSsVispKSkVGuuNN97gsccew9nZmW3btvHPf/6T7OxsJkyYUGz7+fPnk52dzaBBgyp8X4IgCIIgCMKfk8iUEu6KZLFgIhOL8XtstgQAnDzcOPlG1F0FpAByLXkAhFg9qHNqH97p6diQl+OVlCl1IdcEwLJGtTnTqSmt3F3uag73THmDUndeIoqNVy2FghxnFRZy7YXMfbwjUasN1Tyx6rFlyxZcXV3R6XT07t2bp59+mpEjR6JWqx2Wsnl7e9OgQQN+//13ACZMmMDcuXPp2LEjs2bN4ujRo6WOc+7cOSwWC23btrWfc3d3p0GDBkXatm7d2uH4yJEjrF69GldXV/ufXr16YbPZOH/+PCBn6ly9epW1a9fSvn17NmzYQJMmTYiLiyv3e6HVlr38ce3atQ7z2Llzp/21yMhI4uPj2bNnD1FRUQwaNIjr168X6SM5OZmoqCgGDhzI6NGj7efv7DcmJqZcc965c6fDdWvXruXSpUtMnDiRtWvXotPpir3O19eXDRs28PXXX+Pq6oq7uzu3bt2iZcuWKCu4k+nMmTPp2LEjLVq0YNq0aUydOrXEumTr1q1jzpw5/O9//8PPzw+Q39NGoX60axBMaIC3w3sqCIIgCIIg/DWITCnhrkgWC1kkYDXffsAyu1R8qd6dcjJuceVMAlgBNWhVGsKcQ4BLWCUlYENdQqZUWkG2lr+TBmVZW8zdb5IEX0+Ea8ehYBfCkmck1vVVJ6s1j+vaa1wNl4OYGq0PmMHVtWhgpLL0aj37huwru2EF5OXbyLNYMeblczPXjKtWTS13HU5qpcPnX6/WV7jvyMhIli9fjlarJTAwELVaTWxsbJnXjRo1il69evHNN9+wbds23n77bRYsWMALL7xQ4Tn8kYuLY5A5OzubsWPHFpt5U7t2bfvXBoOBfv360a9fP+bOnUuvXr2YO3cuPXr0ICIigoyMDK5cuVIkO8tsNnP27Fl69epV5tz69+/vEKwLCgpymHe9evWoV68e7dq1IyIigo8//pgZM2bY21y5coXIyEg6dOjAypUrHfq+c7e/wjpPZWndurXDdbVq1eLHH3/k+vXrtGzZ0n7earXyyy+/8MEHH2AymVCpVPTs2ZOzZ8+SlpaGWq2214W6M+utMh555BHefPNNTCaTw/LA//73v4waNYoNGzY4LCns378/IfWbkZlnwdego1mDOnc1viAIgiAIglDziKCUcFckiwUbckZThr8nR2qdwS3o7pYobZj7GmkXk1DUeRjU4JRjJtPow5VG3TFdkrOHVCUUTk81F+78p7mrOdwTaafh0Br5a6lZ6W2FanUq4TWuup4C5IwYJ60vlL25W4UoFIpKL6ErjtUmce56JjZJAlToVHo89E54O1c8AFWcwkDKnRo1akR+fj779u2zL9+7ceMGCQkJNG7c2N4uJCSEmJgYYmJimDFjBh999BEvvPCCPePozvpO4eHhaDQa9u/fbw8kZWRkcPr0aTp37lzqHFu2bMnJkyeLzLM0CoWChg0bsmfPHgCeeuoppk2bxoIFC1iwYIFD2w8//JCcnByGDy+7npjBYMBgKF9Wnc1mw2Qy2Y+Tk5OJjIykVatWrFq1qkhGUkXur5Bery9yXbdu3Th27JjDuWeeeYaGDRsybdo0VH/YGKJwieFPP/3E9evX6d+/f4Xncaf4+Hg8PT0dAlLr16/n2Wef5b///S+PP/64Q3uDwUBYeF1u5ZoJcNej1/85dr4UBEEQBEEQyk8EpYS7cmdQ6oa/B+cCjTyiLX5ZSHnlpWUR4daKRLWWXCw45Zo4E/w4RpcAyCioF+VedDmN2WYjI19+2PXR1oCPdl6m/LeLH/g2LKZBDV6eV4Ondj/cvLkXAENWPp6e7XEzNIPszGqeVfEkSSLPYiPHko9NklAqFDhrVaiUCrxcKr7LXkVEREQQHR3N6NGjWbFiBQaDgenTpxMUFER0dDQAkyZNonfv3tSvX5+bN2/y888/06hRI0De+U6hULBlyxb69OmDXq/HYDAwYsQIXn75Zby8vPDz82PWrFkolUoUZWQ7Tps2jXbt2jF+/HhGjRqFi4sLJ0+eJC4ujg8++ID4+HhmzZrFsGHDaNy4MVqtlh07dvDJJ58wbdo0QM6oevfdd3nppZfQ6XQMGzYMjUbDV199xSuvvMLcuXN56CHHnT4TEhKKzKVJkyZoNI7BcKPRyFtvvUX//v0JCAggLS2NZcuWkZyczMCBcn285ORkunbtSmhoKPPnzyc1NdV+fUm71hUqzITKzs4mNTWV+Ph4tFqtQ4DwTgaDoci9uLi44O3t7XB+1apVNGrUCF9fX/bu3cvEiROZPHmyw5LKixcvkp6ezsWLF7Farfa51KtXD1dXV77++muuXbtGu3bt0Ol0xMXFMW/ePIeC8uvWrWPEiBEsXryYRx55hKtXrwJyQM3dveSM28Jxr1yRN7Q4cyYJpVJLeLhbme+ZIAiCIAiCULPUgCd34c/MZjYjFaSU5BQ8D2tVd/dg3NjlEeq4NiVJuQ+woNQokLxrQR606FEbr0AX6rbyc7hm361sjmfnAqBWgIe6+EyqKmXOlv928QFnT8iv3ukU5487YZUVBPgrkSSJk7+/xI0bO7BYboIELY5moOnRFeVdfobvJ6Mpn3NpRvuxTqMk3Ne1ysZftWoVEydOpG/fvpjNZjp37szWrVvtARmr1cq4ceO4fPkybm5uREVFsWjRIkBe0jZnzhymT5/OM888w/Dhw1m9ejULFy4kJiaGvn374ubmxtSpU7l06VKJdY8KNWvWjB07dvDqq6/SqVMnJEmibt26PP300wAEBwcTFhbGnDlzSEpKQqFQ2I8nT55s72fy5MmEh4ezYMECFi9ejNEov7/r169n8ODBRcYt7tylS5cIDg52OKdSqTh16hRr1qwhLS0Nb29v2rRpw86dO2nSpAkAcXFxJCYmkpiYWOT6snZNbNGihf3rgwcPsm7dOkJDQ0lKSir1urIkJCQwY8YM0tPTCQsL49VXX3V4vwBef/111qxZU2QuP//8M127dkWj0bBs2TImT56MJEnUq1ePhQsXOtTKWrlyJfn5+YwbN45x48bZz48YMYLVq1eXOL/Y2FieeeYZ+/Gzz04FYNasWcyePftubl0QBEEQBEGoYiIoJdwVq/n2GieTygaAk6ryS+ckScJJKS8/MiMvb7EoLyGpWkCehQbt/PEOcnwAP2PMI/pwov3YV1sD6kkBmAsCB9oSiq0/YNlINY3ReIarVzfbj70tXmisadU3oXLKtcg/ZyqlAq1KiY/rvV/SVFpAwNPTk08//bTE15cuXVpq3zNnzmTmzJkO5wwGA2vXrrUfG41G5syZw5gxY+znSgq0tGnThm3bthX7mo+PD4sXLy51PoWio6Pt2V7p6el069aN5cuX079/f5yd5WWXYWFhZQaK7qTT6di0aVOpbUaOHMnIkSPL3eedKjKXkmzfvr3IuX/961/861//KvW61atXl/o5iYqKIioqqsJjl8ed71l+fjY5OedRKp1wda1fqf4EQRAEQRCE6iN23xPuSn5urv3rXKX8sKxTV/4h2Wa1ck2bx8+a4+Qo5ICXQpWHtfBBvJgC5+cLdtxzV6uI9DIws27RreSr1K1L8Mt8OPpf+VjrSrkLmd+Dh8zyqAEhu2qXkXEQADe3h2ndehNNs5sUvFIzo4U3sk0kXs8mLVv+vHs5a4moZcDDueZmdZXX4cOHWb9+PWfPnuXQoUMMHToUwB4kqmpeXl788MMPdOvWjb1791bLHARBEARBEAThQSAypYS7kp+bbf86R5EDgI+zV6X7s+Xnc9w5DZPSSmHoRK9RY80tKHCuKRqUulGw415rNxfWNr+73aHuiR/nwLENt4+dve1fSmWEg0Sw6P5LvvI5p0+/ic0mB1S9vTrh7tYcKLrksyaFp65m5mG13Z6RTlMDlqjeQ/PnzychIQGtVkurVq3YuXOnvdB2dfD29ub111+vtvEFQRAEQRAE4UEgglJCpeSnpnJj1Woy9u0u+BSpyFXeBCDIrfIPkmaLiXyFnBXllXWDhw4ex9C1Ldb8kjOl0i1ycXPPmvKQniUX66XuY+DTANo8B8f+r9RLasJqwwdFUtK/7QEplcoZf/+/Ve+ESmG1SaQbTeTbJHtAKtTLGZVKiUsJO1D+GbVo0YKDBw9W9zQEQRAEQRAEQahiIiglVMrN//2P9E8+IVergUa1ARVWlRyUqucVUOl+E2+cxlbwtVtmGgFXr+Lk4ml/vbhMqfSCTClvTQ35OBcWOH8kBur3qt65CHbZxjNkZ50kL+8yAG3bfI2zcxgqlXORtjUlRngrx0xKRp79WK1U4v4XWK4nCOVWU34YBUEQBEEQhPuihjzFC382tsxMADQNwoF8UKhxVobS1OtxWgfXq3S/OXlGJIWcEfKQRz0gHr3+jqCUuugTSmFQqsZkSpVW4LwCNaOkalw8Vp1j3w8mcxq//dYfSZLrlDk5+ePq2qjG7zZoLsgQdNaqcNaqcdOJX9mCIAiCIAiCIPx1iCccoVJsBbvuqeqGwPnzoFDxaqd/0rVR27vqN890OytEOpFCQsRgVFduZ16pVLczpX7PzuXVM8mcyJaXYnlVZ6aU1QKJP0BeJhhT5XNa19KvEapMVtZxJMmMSuWKwdCY2iHP1tiAlNVm41yqEbPVRmEJKXe9Bl+DrnonJgiCIAiCIAiCcI+JoJRQKVKeHDyyXDkMeKBAjZfB/a76zLh+lVuXL9mPr7k/RLJ7M0iXj/UGDQrl7UDC51fT2XPrdqH1Bi7V+NB++DPYMsnxnM6tjItqXjaS4i+2ViY39yJXrmzgeup3APh4d+WhhxZX86xKZzRbyS2okwby6iVnrfhVLQjF+2v9zhIEQRAEQXjQiCcdoUJSEhP4fdd2spJPkxfii9HkJL+gdMXX3aPS/Z7Zt4ern8YTpHHjSEE3ypBwyITwFr7UCnMjqIGnwzXXzfKyvX8EeDMiyJuHXPWVHv+u3Twv/+1eG7zrQkBz8Kxjf7ncWTkVWN4nlO1M4tukpm6zH3t7dy37omr6HpgsVjJyLfaAlIuTmmAPPSqlArWqaC01QRAEQRAEQRCEPzsRlBIq5OdVK0lJTJAPvG5nAtk0XnjpPSrdb+apFOoYmpKHBUgEIF8jB7zqNPOhYfuixdOvmywAtPdwoamhaLHqKpUn19iixVDoOr165yLYZWYeA8Df/294erTH3z+65MbVvJwv+VYu2aZ8+7FOrcKpptRJEwRBEARBEARBuA/EP78LFZKTeQuAWgpX1LoOqJ27o3GOItsjHCe1U6X7laxyQedcZY79XF7BsozidtyD25lSflpNpce9Z0xZ8t9OhlIaOWbgSHdm5FRTQOSvmJdls5k4+ft0Dh4agsmUAkCD+rMJDHwKhaLm/crLMedzI9tkz5By12vwcXXC11B9u+yNHDkShUKBQqFAq9VSr1493njjDfLz88u+uBTbt29HoVBw69atezPRcjh//jxDhgwhMDAQnU5HcHAw0dHRnDp1yqHdli1b6NKlCwaDAWdnZ9q0acPq1asd2iQlJaFQKIiPjy/3+LNnz6Zhw4a4uLjg6elJ9+7d2bdvn0Ofzz33HHXq1EGv11O3bl1mzZqFuaBuX0lSUlIYMmQI9evXR6lUMmnSpHLPKTk5mX/84x94e3uj1+tp2rQpBw4csL9+5/e/8E9UVJRDH2FhYUXa/Otf/7K/npCQQGRkJLVq1UKn0xEeHs5rr72GxWJx6OfWrVuMGzeOgIAAnJycqF+/Plu3bi11/ps2baJnz554e3uj0bhy9OipUtsLgiAIgiAINZfIlBIqxJQrFxU3qMLI0LcDYH/wt5xzP8dsnqt0vzeNN/HHnxzk/pVWK5JNDiCoSwhKpZrlhxtfp2r8GB9cDb/Mv13c3KmsOlJQE2qg1NQi3/dCamocKSkb7McuLvVRq0sLFpZMus9L+aw2iXOpRmx3jBPkoa8Ry/WioqJYtWoVJpOJrVu3Mm7cODQaDTNmzKjuqQFgNpvRaksP3FksFnr06EGDBg3YtGkTAQEBXL58mW+//dYhMLZ06VImTZrEtGnTWL58OVqtlq+++oqYmBiOHz/O/PnzKz3P+vXr88EHHxAeHk5ubi6LFi2iZ8+eJCYm4uvry6lTp7DZbKxYsYJ69epx/PhxRo8ejdFoLHVck8mEr68vr732GosWLSr3fG7evEnHjh2JjIzk22+/xdfXlzNnzuDp6bg8uvD7X8jJqeg/OrzxxhuMHj3afmww3P4502g0DB8+nJYtW+Lh4cGRI0cYPXo0NpuNefPmAfL3sEePHvj5+bFx40aCgoK4cOECHh4epd6D0Wjk0UcfZdCgQQ7jC4IgCIIgCH8+IiglVIglV85kskpy/SY/130cDPkOzP531e/hlEM0ohF5klxAXWmzYbXJgRN1MUuY8qw2bubLmSXVmil16FPIKCzOroBaTe6qO8VfMXWpClmtOaTf3AOAThdEvbrTcPdoVc2zKp4kSVisNmyShEKhwE2nxsVJXSMCUiAHIfz95Z/r559/ni+//JLY2FhiYmKYOHEiX3/9NSaTiS5durBkyRIiIiIAuHDhAuPHj2fXrl2YzWbCwsJ47733aNy4MZGRkQD2AMiIESNYvXo1WVlZxMTEsHnzZtzc3Jg6dSpfffUVDz/8MO+//z4gZ+Y899xznDlzhs2bN/Pkk0+yevVqdu3axYwZMzhw4AA+Pj488cQTvP3227i4uHDixAnOnj3Ljz/+SGhoKAChoaF07NjRfp+XLl1iypQpTJo0yR4sAZgyZQparZYJEyYwcOBAHnnkkUq9j0OGDHE4XrhwIR9//DFHjx6lW7duREVFOWQhhYeHk5CQwPLly0sNSoWFhbF4sVy0/5NPPin3fN555x1CQkIcAk516tQp0u7O739JDAZDiW3Cw8MJDw+3H4eGhrJ9+3Z27txpP/fJJ5+Qnp7Onj170Gg09vsqy7BhwwA5y0wQBEEQBEH4c6sZTz/Cn4I134K1YPmOFTkoZdXIS0wUtsrXdLLarNiscr8KpRyAUkiSPSh15/K9zHwrw46eo9fB0wC4q1V4qqux7o7ZKP/d932YfAKCWlbfXO4h6U+4sO9M4tts39GUK1c+ByC09lhq1XocnVPFA6b3exfCWzlmjl/J5PQ1edmnk0pJqLcLPq6VXwJ7v+n1esxmMyNHjuTAgQPExsayd+9eJEmiT58+9mVZ48aNw2Qy8csvv3Ds2DHeeecdXF1dCQkJ4YsvvgDkpV0pKSn2oMqLL77I7t27iY2NJS4ujp07d3Lo0KEic5g/fz7Nmzfn8OHDzJw5k7NnzxIVFcWAAQM4evQon3/+Obt27WL8+PEA+Pr6olQq2bhxI1artUh/ABs3bsRisfDSSy8VeW3s2LG4urqyfv36e/Iems1mVq5cibu7O82bNy+xXUZGBl5eXvdkzD+KjY2ldevWDBw4ED8/P1q0aMFHH31UpN327dvx8/OjQYMGPP/889y4caNIm3/96194e3vTokUL3nvvvVKXdyYmJvLdd9/RpUsXh7m0b9+ecePGUatWLR566CHmzZtX4vdKEARBEARB+OsRmVJCuZkLlu4B5CtcAMhWmwBQSpUPSpmsJiSFC59r92BRFgS9VM5kpsuvq7W3g1I7b2YRdyPTftzG3aV6l6IVBqX8m4F70D3t+n4vHfsrsdksJCevsx87O9fBz69XNc6oKEmSkAp+hjLSc5Byb9fWcTU4YcvJKenSu6bQ6yv9cyJJEj/++CPff/89vXv3ZvPmzezevZsOHToAsHbtWkJCQti8eTMDBw7k4sWLDBgwgKZNmwI4ZMsUBlr8/PzsS7SysrJYs2YN69ato1u3bgCsWrWKwMDAInN57LHHmDJliv141KhRDB061F5PKSIigiVLltClSxeWL19OUFAQS5YsYerUqcyZM4fWrVsTGRnJ0KFD7fM6ffo07u7uBAQU3UxBq9USHh7O6dOnK/XeFdqyZQuDBw8mJyeHgIAA4uLi8PHxKbZtYmIiS5cuvaslg6U5d+4cy5cv58UXX+SVV15h//79TJgwAa1Wy4gRIwB56d6TTz5JnTp1OHv2LK+88gq9e/dm7969qFTyPwJMmDCBli1b4uXlxZ49e5gxYwYpKSksXLjQYbwOHTpw6NAhTCYTY8aM4Y033nCYy08//cTQoUPZunUriYmJ/POf/8RisTBr1qz7cv+CIAiCIAhCzSKCUkK53Q5KqUk3NAJgr0LeKU9J5YNSedY88tXOmJS3g14qqxz0cnJW4+ajt583FhREb2bQ80p4AK3dXCo97j1RGJTSlnH/5Y0HVHcg6k9WaspmM5OevpuMzHis1hyUSi2dOx1CqdTdRbDy/nwPpNxcElreXkp456LTjII/90uDQwdROFfsZ3TLli24urpisViw2WwMGTKEJ598ki1btjgsZfP29qZBgwb8/vvvgByseP7559m2bRvdu3dnwIABNGvWrMRxzp07h8VioW3btvZz7u7uNGjQoEjb1q1bOxwfOXKEo0ePsnbtWvs5SZKw2WycP3+eRo0aMW7cOIYPH8727dv59ddf2bBhA/PmzSM2NpYePXqU670oq3YVyMG5sWPH2o+//fZbOnXqBEBkZCTx8fGkpaXx0UcfMWjQIPbt24efn59DH8nJyURFRTFw4ECHWkmurq72r//xj3/w4YcfljmfnTt30rt3b/vxihUrGDp0KDabjdatW9uXKrZo0YLjx4/z4Ycf2oNSgwcPtl/XtGlTmjVrRt26ddm+fbs9cPjiiy/a2zRr1gytVsvYsWN5++23HepPff7552RlZXHkyBFefvll5s+fz9SpUwGw2Wz4+fmxcuVKVCoVrVq1Ijk5mffee49Zs2axdu1axowdiyTJe0F8d8d7KgiCIAiCIPw1iKCUUG7mgnpSKOQHNH1uKtfcziJZ9ejND1e6X1O+yb4rWitVHc5fNaC0utG7ryvB3Vui1d3+mOYUBKWCnbR09SpPUfH7JOsaWHLkPwDa8gTH/mQRnz+Bixc/4ey59+zHHh6PoFLpS7miNPf3+2Oy/LmWJEVGRtqLfgcGBqJWq4mNjS3zulGjRtGrVy+++eYbtm3bxttvv82CBQt44YUX7npOLi6OP2fZ2dmMHTuWCRMmFGlbu3Zt+9cGg4F+/frRr18/5s6dS69evZg7dy49evQgIiKCjIwMrly5UiQ7y2w2c/bsWXr1Kjvrrn///g7BuqCg25mTLi4u1KtXj3r16tGuXTsiIiL4+OOPHYrGX7lyhcjISDp06MDKlSsd+r5ztz83t/L93mvdurXDdbVq1QIgICCAxo0bO7Rt1KiRfWllccLDw/Hx8SExMdEelPqjRx55hPz8fJKSkhwCiiEhIQA0btwYq9XKmDFjmDJlCiqVioCAADQajT37qnAuV69exWw2079/f0IaNCMz14KvQUezBkVrXwmCIAiCIAh/biIoJZRbVsGyOYVCQ5v9b+KSc52W/SbxtwOBhAe7V7rfPGsehQEBD6ULKqsHAO4+WoeAFEBuQVBKX53FoA+vha/+6XhOc5cZW3/h3fDup6zsEwDo9WHo9SHUrVu0LlB1y7fauJljJldSYfn6JzQqJd6uTmjVCtx0VVOkX6GveKCuMJByp0aNGpGfn8++ffvsy/du3LhBQkKCQ6AjJCSEmJgYYmJimDFjBh999BEvvPCCPePozppB4eHhaDQa9u/fbw8kZWRkcPr0aTp37lzqHFu2bMnJkyeLzLM0CoWChg0bsmePXBD/qaeeYtq0aSxYsIAFCxY4tP3www/Jyclh+PDhZfZrMBgcdp8rjc1mw2Qy2Y+Tk5OJjIykVatWrFq1CqXS8fdbRe6vkF6vL/a6jh07kpCQ4HDu9OnT9kLwxbl8+TI3btwodoljofj4eJRKZZHsrzvZbDZ75p1KpaJjx46sW7cOm81mv+fTp08TEBCAVqtFq9VSJ7wuN3PMBLjr0etrbs01QRAEQRAEoXJEUEookynHwvbVR0g4eAQApaTE1XgVpVLigmcT4Cbu+so9XGeZsziaehSpICilVt7+F3O1tujHM9cmB6WcqzModWmf/LdKK/8J6wTO96cosVC85OT1ZGQe4fr1rQDUqzu1xtWQKpSWbSLTIm8IgF6PTqfBz6eal51WUkREBNHR0YwePZoVK1ZgMBiYPn06QUFBREdHAzBp0iR69+5N/fr1uXnzJj///DONGsnLfUNDQ1EoFGzZsoU+ffqg1+sxGAyMGDGCl19+GS8vL/z8/Jg1axZKpbLMJZjTpk2jXbt2jB8/nlGjRuHi4sLJkyeJi4vjgw8+ID4+nlmzZjFs2DAaN26MVqtlx44dfPLJJ0ybNg2QM6reffddXnrpJXQ6HcOGDUOj0fDVV1/xyiuvMHfuXB566CGHcf8Y1AFo0qSJfQe5Qkajkbfeeov+/fsTEBBAWloay5YtIzk5mYEDBwJyQKpr166EhoYyf/58UlNT7deXtftdYSZUdnY2qampxMfHo9Vqi2RC3Wny5Ml06NCBefPmMWjQIH777TdWrlxpz87Kzs5mzpw5DBgwAH9/f86ePcvUqVOpV6+ePWNs79697Nu3j8jISAwGA3v37mXy5Mn84x//sO+suHbtWjQaDU2bNsXJyYkDBw4wY8YMnn76afv79Pzzz/PBBx8wceJEXnjhBc6cOcO8efOKzXy7U3p6OhcvXuTKlSsAnDmThFKpJTzcrcz3TBAEQRAEQahZRFBKKNPRJas4efw4Nss5AJzMeXh0DuKEb31WnJLr71QmKCVJEgO/HkhydjKDFE/I51JvAHLWldKp6MezcPmeXlmNQSlTQaH1nnPhkbGlty1NddeP+pMymVI5lfCa/Vih0OLh0aqUK6qHOd+GzSZhyrcBKpy1KtRKJb6GP3e2x6pVq5g4cSJ9+/bFbDbTuXNntm7dag80WK1Wxo0bx+XLl3FzcyMqKopFixYB8pK2OXPmMH36dJ555hmGDx/O6tWrWbhwITExMfTt2xc3NzemTp3KpUuX0Ol0pc6lWbNm7Nixg1dffZVOnTohSRJ169bl6aefBiA4OJiwsDDmzJlDUlISCoXCfjx58mR7P5MnTyY8PJwFCxawePFijEa5Vtz69esd6isVKu7cpUuXCA4OdjinUqk4deoUa9asIS0tDW9vb9q0acPOnTtp0qQJAHFxcSQmJpKYmFjk+rI2O2jRooX964MHD7Ju3TpCQ0NJSkoq8Zo2bdrw5ZdfMmPGDN544w3q1KnD+++/z9ChQ+1zPnr0KGvWrOHWrVsEBgbSs2dP3nzzTXutKCcnJ/773/8ye/ZsTCYTderUYfLkyQ51ptRqNe+88w6nT59GkiRCQ0MZP368w/seEhLC999/z+TJk2nWrBlBQUFMnDjRHjAsSWxsLM8884z9+Nln5RpVs2bNYvbs2aVeKwiCIAiCINQsIigllOnyqcPYLJfsx+eCrrK+3/+x9KdEuHQLgCDPii8PstgshB5Q0TanJZK7nBGhzLld7NzJ9/buVPszjMxJTOZAplzDyVVdjUGpvIKglFM11rR6gOXmXQRAo/Gkdsgo3N1boNUWv5NZdUk3mhm2ci+T2nni52JFoVYR6KHHuZjsv5po9erVJb7m6enJp59+WuLrS5cuLbXvmTNnMnPmTIdzBoPBoVi50Whkzpw5jBkzxn6upEBLmzZt2LZtW7Gv+fj4sHjx4lLnUyg6Otqe7ZWenk63bt1Yvnw5/fv3x7mgSHxYWFiFdsXU6XRs2rSp1DYjR45k5MiR5e7zTpXdobNv37707du32Nf0ej3ff/99qde3bNmSX3/9tdQ2Tz/9tD04WJr27duX2dcf3fme5ecbyck5h1LphKtr/Qr1IwiCIAiCIFS/P8cTklCtci15AOi1tdj0cDymAD0ds+R6KF0b+NKtoR/9mweV1kWxso2ZBKhbgKcaW8E5Z4M7ZMkllrR+twMNa5LT7AEpBdDDu/I1rCpt7zLYtwKyrsrHukoEpWpa6agSnmkr+7B7P2Ubz3D8+AsYjWcAcHGpT1hYzH0ds7LvwtHLt7iVa7Ef6zQqdGpVKVc82A4fPsypU6do27YtGRkZvPHGGwD2IFFV8/Ly4ocffmDZsmXs3bu3xOLeQk1S835nCYIgCIIgCGUTQSmhTGZbPgBOWg+u+ZjxU3twK0d+4O7W0I9h7cMq1F9+fj5nz57l4oVEUKlBkgjJUhCoj8AnrB4cM6L8QyZUikkeb0JtP56o5Ukj18rusHYXflsJty7IXyuU4Nuw3JcqyhuNqqJgUEmzKfc8q8Gli5/YA1IA/v73KWBxF9+Dn09d5+Nd57maKQdydRol9WsZ0Ol0ZdZHetDNnz+fhIQEtFotrVq1YufOnfj4VF8GnLe3N6+//nq1jS/8kQg6CYIgCIIg/BWJoJRQJpsk5zEpCuo4OamduHlTLtzs7qytcH+//fabw3IbN8mZXtoOYAWr1hkwoiohKBXp7VY9ASkAs1xnhif/D8I6gltg6e2Fe8JqzcNoPE129ikAaoc8R1DQ39Hrw+7tQHcEjSobPlry0xkOX7wFQJBBhUYlF+sWAanStWjRgoMHD1b3NARBEARBEARBqGIiKCWUyVb4D9QFO95dumEh63w6ACGVqCWVclHONtIg4Wv1ppE1EEmnIseYz9EjafJQ6tsP8ZIkkWKSg2CBTpXb5e+eMMvLBwluXcmAlESJ/9pfTNBCEpkBABw6PJTMzHj7sY9PN5yd61TfhP4gI8fChoOXyDVbOXs9G4DpvRsS4e2EmzKzmmcnCIIgCIIgCIJQc4mglFAmW0FwRCrIlLJa5do4Ae46mgRWvLbTxd+Pg0KDNu0GfVy7Y7NZudbRn31fJ6FUKtDqVDRoF2BvfyvfSm5BZKyWtpqCUjYbWAqCUlqX6pnDAyg/P9sekHJy8sfZORw3t4erdU5/9H+7zslF/wsoFDCodQjOKhvnz2dV48wEQRAEQRAEQRBqNhGUEspkkwAFXLXeAkCl0LFtcmeCPfVoK7ELXr7FAloNnj7+kAe2/BxsBZXOGz8aSJchDRzaFy7d89Ko0KmqYdc9YxrkZWDPctI4V/0cHjA2m4WsrGNkF9SQ0mr9eLTj7mqelaObRjP7zqfz67kbALQJ86Senystanvi5aIlLy+vmmcoCIIgCIIgCIJQs4mglFAma8HfZqVc8FxvC6d+LUOl+1NKcqZVoCUMACk/B5tVDvgoVLeXsdkkiQm/X2RfhlzLKdCp4vWr7tqvy+G76Y7nRFDqvjt95g2Sk9fZj11dIqpxNsX759pD7C0ISAGM6hROryb+1TgjQRAEQRAEQRCEPxcRlBLKZCuIE1klNabrvahviLqr/pSSvARPiQIp34zx+gFstoflc3cEpU7n5LHx2k37cTNDNRQ4T9ol/61QgkIFjaNBWQ3ZWg+YjIxDAOicAlFr3AgJeaaaZ1TUqatyvahmwe6EebvQpb5vNc9IEARBEARBEAThz0UEpYSS2WyQcRGpYC8yk6TDfCOSLi1D76pbSSqoUZV5jey4uaTVckJtfQ4A1R1BqWsmOTMrVKdlcaPatHSrhgwlU0Gh6ic/gqZPVb6fP1kh8+qa2430Xdy8+at9p70WLT6thqLmJd/75Zs5jFpzgBtGMzdz5GWlnz7bFo9K7EIpCIIgCIIgCILwoBNBKaFk//07nP4Oib4AqNz1LB788N0vUVIUZBpJ+aT56VAN7Ht7+Z7ydvDmull+6A/Va2nn4Xp3Y1ZWXob8t67iBd3/SIECKBqcqkkU1Ti/3NzLHDnyLJIkLxjVan3Q6+8uAFoxxQUOHf106jqnrt4uXh7u64K7vhp3hBQEQRAEQRAEQfgTE+uQhGJJFhPJn/7G2a2+9uV7Wj9noh8OQqdRVarPq2fOsOuTT1Eo5OtVXm50+uUwnca/ia1gdz3lHYXMr5vlTCm/6thxL3YCzPGClCPy8T0ISt0OcBQT+Ckmk6oq1KRcrays4/aAVHDQMJo0eR+Fomb8ivrueApLfjzDt8euAhD9cCBbJ3Timxc6oaim7939NHLkSBQKBQqFAq1WS7169XjjjTfIz8+/q363b9+OQqHg1q1b92ai5XD+/HmGDBlCYGAgOp2O4OBgoqOjOXXqlEO7LVu20KVLFwwGA87OzrRp04bVq1c7tElKSkKhUBAfH1/u8WfPnk3Dhg1xcXHB09OT7t27s2/fPoc+n3vuOerUqYNer6du3brMmjULs9lcar8pKSkMGTKE+vXro1QqmTRpUrnmY7VamTlzpsN4b775pj2DFWDTpk307NkTb2/vEu/37NmzPPHEE/j6+uLm5sagQYO4du1ahe/r6NGjdOrUCZ1OR0hICO+++26Z9/DLL7/Qr18/AgMD0Whc2bLlp3LduyAIgiAIglDz1IwnPqHGsZzczwH1UL5/eBmSQn5YsXpWPjgkWW1kfZxI2Ok66DVuAKjvqM1ks8rb7ynvzJQq2HXPV1sNCX3HN0FBgARnH/CpX/VzuI9qUhzl6rWv2b//CY4dHwdArVr9aNBgNl6e7atvUne8Pxdv5BDz2SEWxp22FzZ/KNCdxoFu6LWVC9D+GURFRZGSksKZM2eYMmUKs2fP5r333qvuadmVFbQBsFgs9OjRg4yMDDZt2kRCQgKff/45TZs2dQiMLV26lOjoaDp27Mi+ffs4evQogwcPJiYmhpdeeumu5lm/fn0++OADjh07xq5duwgLC6Nnz56kpqYCcOrUKWw2GytWrODEiRMsWrSIDz/8kFdeeaXUfk0mE76+vrz22ms0b9683PN55513WL58OR988AG///4777zzDu+++y5Lly61tzEajTz66KO88847xfZhNBrp2bMnCoWCn376id27d2M2m+nXrx+2gq1Uy3NfmZmZ9OzZk9DQUA4ePMh7773H7NmzWblyZan3YDQaad68OcuWLSv3fQuCIAiCIAg1k1i+JxTLlpNFsncA5twdSDZ5uZLCx63S/eXdMnJQfZlchYl0RTYAKr3J/rpkLcyUuh0NSClYvlerqjOlJAnM8hwZu1MOSGl0VTsHcMhc+CtLSvo3RuNp+7G3d9fqm8wfnE8zsjZBXsLp7aKlZxN/3PRqBrYOruaZ3X9OTk74+8tLdZ9//nm+/PJLYmNjiYmJYeLEiXz99deYTCa6dOnCkiVLiIiQd0i8cOEC48ePZ9euXZjNZsLCwnjvvfdo3LgxkZGRAHh6egIwYsQIVq9eTVZWFjExMWzevBk3NzemTp3KV199xcMPP8z7778PQFhYGM899xxnzpxh8+bNPPnkk6xevZpdu3YxY8YMDhw4gI+PD0888QRvv/02Li4unDhxgrNnz/Ljjz8SGiovBQ0NDaVjx472+7x06RJTpkxh0qRJzJs3z35+ypQpaLVaJkyYwMCBA3nkkUcq9T4OGTLE4XjhwoV8/PHHHD16lG7duhEVFUVU1O3NI8LDw0lISGD58uXMnz+/xH7DwsJYvHgxAJ988km557Nnzx6io6N5/PHH7f2sX7+e3377zd5m2LBhgJztVJzdu3eTlJTE4cOHcXOT/7uwZs0aPD09+emnn+jevXu57mvt2rWYzWY++eQTtFotTZo0IT4+noULFzJmzJgS76F379707t273PcsCIIgCIIg1FwiU0oolpSXQ55pF1bzUUDCrLahNRgq3d/Zs+c4pU7mgioNs0JeAuR6R4zLekdQavO1mzyy9yTfpcrBgHBnp0qPWymWXOwL27zC73FA6sEINJWH2XyDbOMZe0CqUcN/8UjbrQT4/616J3aH745fZcUv5wBoGerJ2082ZUbvRg9kYXO9Xo/ZbGbkyJEcOHCA2NhY9u7diyRJ9OnTB4tFDiKPGzcOk8nEL7/8wrFjx3jnnXdwdXUlJCSEL774AoCEhARSUlLsQZUXX3yR3bt3ExsbS1xcHDt37uTQoUNF5jB//nyaN2/O4cOHmTlzJmfPniUqKooBAwZw9OhRPv/8c3bt2sX48eMB8PX1RalUsnHjRqxWa7H3tXHjRiwWS7EZUWPHjsXV1ZX169ffk/fQbDazcuVK3N3dS81uysjIwMvL656M+UcdOnTgxx9/5PRp+efuyJEj7Nq1q0JBHpPJhEKhwMnp9u9mnU6HUqlk165dJV73x/vau3cvnTt3Rqu9/fPUq1cvEhISuHnzZnFdCIIgCIIgCH8xIlNKKJYtNwdJkrOFztTWcibwIr3UlQ8OmU3yUht3mx7VpT08dD4T/1Ej7K9LtttBqcUXrnEhT26vVypoUdW77pmNBV8oQHNvxi52udwDHJ/Kzk7gt/397DWklEon/P37o1RWcQCyGDZJwph3u3ZSqLczDWoZ+GdkvbvqV5Ik8s22u51epai1ykrXvpIkiR9//JHvv/+e3r17s3nzZnbv3k2HDh0AOdslJCSEzZs3M3DgQC5evMiAAQNo2rQpIGfIFCoMSPj5+eHh4QFAVlYWa9asYd26dXTr1g2AVatWERgYWGQujz32GFOmTLEfjxo1iqFDh9rrKUVERLBkyRK6dOnC8uXLCQoKYsmSJUydOpU5c+bQunVrIiMjGTp0qH1ep0+fxt3dnYCAgCLjabVawsPD7QGcytqyZQuDBw8mJyeHgIAA4uLi8PHxKbZtYmIiS5cuLTVL6m5Mnz6dzMxMGjZsiEqlwmq18tZbbzF06NBy99GuXTtcXFyYNm0a8+bNQ5Ikpk+fjtVqJSUlpdhriruvq1evUqeO4+6atWrVsr9WmFEHD/SvS0EQBEEQhL80EZQSimXMyKDwMeBoXYksvQmtuvLZIcY8OcDlYnPC6XoSAVfN6PS3d9SzWW8XOk/KlZf1rWgSSgcPV3yravleWiIcWQc5ct0gtC6grOJkwhry5HW/lw7eyjiIJFlRKLSo1a7UDnmmRgSkANbsSWK9z0UIkzMDh7cP47lH65RxVdnyzTZWTtxx1/1UxpjFXdA4Vaz+1ZYtW3B1dcVisWCz2RgyZAhPPvkkW7ZscVjK5u3tTYMGDfj9998BmDBhAs8//zzbtm2je/fuDBgwgGbNmpU4zrlz57BYLLRt29Z+zt3dnQYNGhRp27p1a4fjI0eOcPToUdauXWs/J0kSNpuN8+fP06hRI8aNG8fw4cPZvn07v/76Kxs2bGDevHnExsbSo0ePcr0Xd2bylGTt2rWMHTvWfvztt9/SqVMnACIjI4mPjyctLY2PPvqIQYMGsW/fPvz8/Bz6SE5OJioqioEDBzJ69Gj7eVfX278r//GPf/Dhhx+WOZ+dO3c6ZD+tWLGCoUOH8r///Y+1a9eybt06+3K5SZMmERgYyIgRI0rp8TZfX182bNjA888/z5IlS1Aqlfz973+nZcuWKIv5nVnSfZXnHqJ690aS5MD+yoJ7EARBEARBEP46RFBKKJYxo6CmksIJkzoPAJ268sGhPFOu3J0EYS6BQBJqrQ5JkpBsEtaCQuc2BeQWBKg6exrw1FThR/SHWXBqy+1jl+IzGYTKy8/P4tq1LZw79z4AQUFP06D+7Gqdk11BJtGVW7lQ8K13dVLTtYFvNU6q+kRGRrJ8+XK0Wi2BgYGo1WpiY2PLvG7UqFH06tWLb775hm3btvH222+zYMECXnjhhbuek4uLi8NxdnY2Y8eOZcKECUXa1q5d2/61wWCgX79+9OvXj7lz59KrVy/mzp1Ljx49iIiIICMjgytXrhTJzjKbzZw9e5ZevXqVObf+/fs7BOuCgoIc5l2vXj3q1atHu3btiIiI4OOPP2bGjBn2NleuXCEyMpIOHToUKfR95+53hTWcytK6dWuH6wozkF5++WWmT5/O4MGDAWjatCkXLlzg7bffLndQCqBnz56cPXuWtLQ01Go1Hh4e+Pv7O2TGlXVf/v7+Djv2AfZjf39/wsLC+G77XjJyLfganGhctzaCIAiCIAjCX4sISgnFys2RA1EKNFiQazs5qSqfKWUymwr6k1DrGrKz4/Pkb9UjffOz47gqoGDllEFVxTubZV2V/27UDzzDoMHj97R7RalpUDVjO7zKLvEqr+PHJ3Aj/Rf7sZuh6X0dr7yOXr6F9dJNWhQca1RKrMCw9qHU9XUt7dJyU2uVjFnc5Z70VZmxK6owkHKnRo0akZ+fz759++zL927cuEFCQgKNGze2twsJCSEmJoaYmBhmzJjBRx99xAsvvGDPOLqzvlN4eDgajYb9+/fbA0kZGRmcPn2azp07lzrHli1bcvLkySLzLI1CoaBhw4bs2bMHgKeeeopp06axYMECFixY4ND2ww8/JCcnh+HDh5fZr8FgwFDOuns2mw2T6fZGD8nJyURGRtKqVStWrVpVJNuoIvdXSK/XF3tdTk5Okf5VKpV917yKKlyG+NNPP3H9+nX69+9vf62s+2rfvj2vvvoqFosFjUb+R4+4uDgaNGhgX7oXFl6Xmzlm/N11GAxVv+GEIAiCIAiCcH+JoJRQrMxMObMJhQarZEEJGJwq/0Bgtsg1ohTA9QxnLAGuRZaqOTmr0QW5wLlUnFVK1MoqDtSYMuW/H4mBsEerYMAaslavithsFtJv/gqAl2dHDG5NqVWrfxlXVY3ZsScYmmqkRUEc1E2nIe8ej6FQKCq8hK6miYiIIDo6mtGjR7NixQoMBgPTp08nKCiI6OhoACZNmkTv3r2pX78+N2/e5Oeff6ZRo0aAvPOdQqFgy5Yt9OnTB71ej8FgYMSIEbz88st4eXnh5+fHrFmzUCrLroM1bdo02rVrx/jx4xk1ahQuLi6cPHmSuLg4PvjgA+Lj45k1axbDhg2jcePGaLVaduzYwSeffMK0adMAOaPq3Xff5aWXXkKn0zFs2DA0Gg1fffUVr7zyCnPnzuWhhx5yGDchIaHIXJo0aWIPrBQyGo289dZb9O/fn4CAANLS0li2bBnJyckMHDgQkAM3Xbt2JTQ0lPnz55Oammq/vnD3w5IUZkJlZ2eTmppKfHw8Wq3WIUD4R/369eOtt96idu3aNGnShMOHD7Nw4UKeffZZe5v09HQuXrzIlStXHO7X39/fPqdVq1bRqFEjfH192bt3LxMnTmTy5Mn2ZZflua8hQ4YwZ84cnnvuOaZNm8bx48dZvHgxixYtKvW+s7OzSUxMtB9fuJDM0aO/Exysd8iQEwRBEARBEGo+EZQSimXMLQwiqdBqTeQDDwcVLQRcHjmWHHLzcuT+JJBs8oN509YG2jzdHIVSgVKlIF8Fv2bK7TzUVfjwnnkFUo6AseChyal8y2OE8rHZLBw7Pp60tB8AUKvdefjhNfc9K6s8Pvv1AvuT0jmZkmk/1znCl2sNfPlfesYDFjYsn1WrVjFx4kT69u2L2Wymc+fObN261R6QsVqtjBs3jsuXL+Pm5kZUVJQ9yBAUFMScOXOYPn06zzzzDMOHD2f16tUsXLiQmJgY+vbti5ubG1OnTuXSpUvodKUHwps1a8aOHTt49dVX6dSpE5IkUbduXZ5++mkAgoODCQsLY86cOSQlJaFQKOzHkydPtvczefJkwsPDWbBgAYsXL8ZolDc7WL9+vX2Z252KO3fp0iWCg4MdzqlUKk6dOsWaNWtIS0vD29ubNm3asHPnTpo0aQLImUGJiYkkJiYWub6s2m4tWrSwf33w4EHWrVtHaGgoSUlJJV6zdOlSZs6cyT//+U+uX79OYGAgY8eO5fXXX7e3iY2N5Zlnnilyv7NmzWL27NmAHKiaMWMG6enphIWF8eqrrzq8p+W5L3d3d7Zt28a4ceNo1aoVPj4+vP7664wZM6bU+z5w4ACRkZH241deeQ+AESNGsHr16lKvFQRBEARBEGoWhXS/KxrXYJmZmbi7u5ORkVHuOh0Pim8nxHDy2mXUylp80vsANsnGjwN/xM/Zr+yL77Bp12e4bckhXWXjpOYqtU3u1FKHk5RqoP0TdWnZKxSAG+Z8Ov32O+kWeVlPJ09XNjx8d7udlYskwcJGkHXHjlGTjoHHvf3X9g1vvoI+rwE5p06SrM/HZkkgckB/Wg6SH74s166T2KULJp2aYQXPdfuG7MP5Hu3+90cXbhjp8t52XJ3UHJ9zu15O3IU4Xtz+Ii39WrKm95p7MtatjIMcPDjIfhwYMIhGjd6+J33fjZtGMy3ejLMfv6/9kL8pf4EebzKr1gBWXEplXG0/ZtYtugtceeTl5XH+/Hnq1KlTZnBFcGQ0GgkKCmLBggU899xzVT5+eno63bp1w83NjW+//RZn5yreAVSwu5SeY1++51fM8r38fCM5OedQKrW4uhYtjl8Rpf3Miv9fcCTeD0EQBEEQylLe/18QmVKCA3PWTQ6uW0bC9WT5hEKNTZJrjRi05auXcqe8uHO0JZJDnAPAZjWDlxekWlCpb9cXOZadYw9I6ZUKBtTyLLa/e86SczsgFdgSgtuAe8h9GKj6s4KKUxUx6ewseVc2D/c2RES8iqtrw/s+ZmmuZ+ax99wNrtySF+i56dRM7F6fTud94KzcpmZ+t/66Dh8+zKlTp2jbti0ZGRm88cYbAPYlgVXNy8uLH374gWXLlrF37166detWLfMQBEEQBEEQhL+6Kt7vXqjpjq94iT0//Yq1IFihULoD4Kx2RqeqeLaHyiL/bVQU7OZ3/Xekgo+dSnP745dqlqubd/Z05XyX5gwO8K7sLVSMqWBeKGD0T9DnXfsubNWiihIXFVUQdklJ+YI9ex8j4fQsADw8WuPm1hSlsvK7ON4LYz87yMT/xvPOd6cAqOPjwnOP1sHb1amgxQObPFqt5s+fT/PmzenevTtGo5GdO3fai2hXB29vb15//XURkBKqVXp6OkOHDsXNzQ0PDw+ee+45srOzS70mLy+PcePG4e3tjaurKwMGDHDY5fDIkSP8/e9/JyQkBL1eT6NGjVi8ePH9vhVBEARBEIRiiUwpwcHVK3JdJTelmhyndqgUzjxV/yk6B3WuVA0ghU2+Jl8L2MA5z4TVKp9T3xGUul4QlPLVVnHAwlzwP/da16oJRj0g8Q5JsnH6zFvk58s7NyqVOnz9oqp1Tpdv5pCUlsPJK3L9qDZhnug0Kp7tWKeghciPqi4tWrTg4MGD1T0NQahxhg4dSkpKCnFxcVgsFp555hnGjBnDunXrSrxm8uTJfPPNN2zYsAF3d3fGjx/Pk08+ye7duwG5/pifnx+fffYZISEh7NmzhzFjxqBSqRg/fnxV3ZogCIIgCAIgglJCgd3/+4zTe3eRedUKKHByDsOsaYtkOcas9rMq3a9CUoACJIUcjVHabFgLdh6/M1MqOU8urB7kVIVBqYzLcO2E/LXW5f6PJ5US9Kgh8ZC7zaCy2cykpv1IZma8PSDVquXnODuHo9V63YspVsqtHDPdF+4gzyJ/+BQKWDuqHVq1SBYVBKFm+v333/nuu+/Yv38/rVu3BuRC9X369GH+/PkEBhatd5eRkcHHH3/MunXreOyxx4DbOyX++uuvtGvXzmGnRYDw8HD27t3Lpk2bRFBKEARBEIQqJ4JSAgC/bd6IzZoPKFAqFOQomgEgKXIq3JfFYuHgwYPk5ORwXWXlgPIs6TZ5N6s0n+boUuUA1J01pS4VBKWCddq7vJNyil8Hm5+/fezkWjXj/sVdSdlIQsJM+7GnZ3s8PFpX44xkZ1OzybPY0KqUhPu60LOJvwhICYJQo+3duxcPDw97QAqge/fuKJVK9u3bxxNPPFHkmoMHD2KxWOjevbv9XMOGDalduzZ79+6lXbt2xY6VkZGBl1fJ/3BgMpkwmUz248zMzBLbCoIgCIIgVIQISgnYbNaCgBRoXKJRqv2wKguKmitLr11RnBMnTvDdd9/JB1pIJcm+bC1XF4QiR85WcXF3wphv5UyOiXM58v/sVllQ6sph+W+1Xs6SavGPqhn3Ly4nRy5or9eH4eragLDQmGqdz1fxybz1ze/kmOUi+s1D3NkQ06Fa5yQIglAeV69exc/PccdbtVqNl5cXV69eLfEarVaLh4eHw/latWqVeM2ePXv4/PPP+eabb0qcy9tvv82cOXMqdgOCIAiCIAjlIIJSArmpafavw1JOo7b9Dkho8nM527Ti/RmNclaUj48PXEnHTxmIUW0iNVuPV5pE60EBuNf2xTfUlY6/neJ8rtl+bZUFpQoLnHedBo9Orpox/8KMxnNcu76Fmzf3AhAU9HdCa4+q5lnBhgOXuZ51+1/324RV3xJCQRAEgOnTp/POO++U2ub333+vkrkcP36c6OhoZs2aRc+ePUtsN2PGDF588UX7cWZmJiEh92OnWkEQBEEQHjQiKCWQefSU/es6SVtRS3ImU4aTE/oWb1e4P4tF3nIvNDQU67lsWmsbcEV7k/3ZrhiMh2nS0R+1pydGq9UekAp00tDCzZl6zk6ldX3vmLPkv7VVtGyvsIj6nSWbqminvarw+6lpZGQcsh/rdEVrnVQVm03ine9PcSEthyOXbwGwYGBzWod5UtvLudrmJQiCADBlyhRGjhxZapvw8HD8/f25fv26w/n8/HzS09Px9/cv9jp/f3/MZjO3bt1yyJa6du1akWtOnjxJt27dGDNmDK+99lqp83FycsLJqYr++ywIgiAIwgNFBKUEcjOMBV8pGfGSAptChSZpNJK2Cau7t6lwf0aT3N/ea3tpa5OXARaGX5RWCwq1/LEz5hcUnQYOtm9cqd39KsxmhbwMyL0lHzsZ7v+YFaCQJGpM1fNyys/PIjPzCACBgYPROfnj492t2uZz6OJNVuw4Zz9WKqBjPR/83XXl6+COYOFfKG4oCEIN4evri6+vb5nt2rdvz61btzh48CCtWrUC4KeffsJms/HII48Ue02rVq3QaDT8+OOPDBgwAICEhAQuXrxI+/bt7e1OnDjBY489xogRI3jrrbfuwV0JgiAIgiBUjghKCeRmFdaNUmFRK2idm8ffovsT3apOpfo7d0MOCJzLOscjPAyAEpU8gs1sD0plF2zD56JSVk1AypoPKzrB9ZO3z1VVptRfUH5+Nr+fmkFa2g9IkhWdLoRGDavv4eZGtolfzqRy6MItAOr6uvBMxzpE+LmWLyBVFZ9BQRCEcmrUqBFRUVGMHj2aDz/8EIvFwvjx4xk8eLB9573k5GS6devGp59+Stu2bXF3d+e5557jxRdfxMvLCzc3N1544QXat29vL3J+/PhxHnvsMXr16sWLL75orzWlUqnKFSwTBEEQBEG4l8T2UwLZt9LlLxQqtl5KZlFKNk5O5cwqKYbZIi/Ja5XihEd+QT8ZcuBLacu/IyglF582qFWVHqtCjNcdA1Ku/hBclTvDlZx2U1xQTiql/b1S0gjlGTs1dRvXr2/FZpO/3/61+t7DmVXcjE3HmPz5Ef7z6wUAmod48I92oTwS7l3hvh708NTIkSNRKBQoFAq0Wi316tXjjTfeID8//6763b59OwqFglu3bt2biZbD+fPnGTJkCIGBgeh0OoKDg4mOjubUqVMO7bZs2UKXLl0wGAw4OzvTpk0bVq9e7dAmKSkJhUJBfHx8ucefPXs2DRs2xMXFBU9PT7p3786+ffsc+nzuueeoU6cOer2eunXrMmvWLMxmcym9QkpKCkOGDKF+/foolUomTZpUrvlkZWUxadIkQkND0ev1dOjQgf379zu0yc7OZvz48QQHB6PX62ncuDEffvihQ5uxY8dSt25d9Ho9vr6+xb6nFy9e5PHHH8fZ2Rk/Pz9efvnlEj9Du3fvRq1W8/DDD5d5D5s2baJnz554e3uj0bhy9OipMq/5s1q7di0NGzakW7du9OnTh0cffZSVK1faX7dYLCQkJJCTc3un3EWLFtG3b18GDBhA586d8ff3Z9OmTfbXN27cSGpqKp999hkBAQH2P23aVDwzWhAEQRAE4W6JTKkH2YW9sPFZco7WBjQoUBKcb+Vza1tqaSoeKEpLS+PgwYPkXZOX79VLyEDpZwVXyM02gQJUShsUBKWy8uWglKuqimKj5oJlik7uMPUcKJSgrOq4bM1YD1ZSUpCiAuGYzKyjAPj69iQw8Gm8PNuXccX9dea6HPhsWdsDP4OOUY+GV+t8/uyioqJYtWoVJpOJrVu3Mm7cODQaDTNmzKjuqQFgNpvRakvfGMFisdCjRw8aNGjApk2bCAgI4PLly3z77bcOgbGlS5cyadIkpk2bxvLly9FqtXz11VfExMRw/Phx5s+fX+l51q9fnw8++IDw8HByc3NZtGgRPXv2JDExEV9fX06dOoXNZmPFihXUq1eP48ePM3r0aIxGY6njmkwmfH19ee2111i0aFG55zNq1CiOHz/Of/7zHwIDA/nss8/o3r07J0+eJCgoCIAXX3yRn376ic8++4ywsDC2bdvGP//5TwIDA+nfvz8gLxMbOnQotWvXJj09ndmzZ9OzZ0/Onz+PSqXCarXy+OOP4+/vz549e0hJSWH48OFoNBrmzZvnMKdbt24xfPhwunXrxrVr18q8B6PRyKOPPsqgQYMYPXp0ue/9z8jLy4t169aV+HpYWBjSH9YZ63Q6li1bxrJly4q9Zvbs2cyePfteTlMQBEEQBKHSRKbUg+z4Rsi6gtFamBWlopfhS6bnj0FXieyln3/+mb1792LJkZflaawWcHIBIE/rDoBnj67k2SQm/n6RmWeSAQh0qqId9wqDUloXUKmrISD1B3/SgkWJie+w45eHuXz5PwD4+fbGx7srSmXVF8FNN5p5fMlOWs+NI+mG/P1dMOhhPhzWisaBblU+n78SJycn/P39CQ0N5fnnn6d79+7ExsZy8+ZNhg8fjqenJ87OzvTu3ZszZ87Yr7tw4QL9+vXD09MTFxcXmjRpwtatW0lKSiIyMhIAT09PFAqFvdhzVlYWQ4cOxcXFhYCAABYtWkTXrl0dsn/CwsJ48803GT58OG5ubowZMwaAXbt20alTJ/R6PSEhIUyYMMG+A+iJEyc4e/Ys//73v2nXrh2hoaF07NiRuXPn2pcyXbp0iSlTpjBp0iTmzZtH48aNqVevHlOmTOG9995jwYIFDplNFTVkyBC6d+9OeHg4TZo0YeHChWRmZnL0qBzULQz+9ezZk/DwcPr3789LL73kkNlSnLCwMBYvXszw4cNxd3cv11xyc3P54osvePfdd+ncuTP16tVj9uzZ1KtXj+XLl9vb7dmzhxEjRtC1a1fCwsIYM2YMzZs357fffrO3GTNmDJ07dyYsLIyWLVsyd+5cLl26RFJSEgDbtm3j5MmTfPbZZzz88MP07t2bN998k2XLlhXJAouJiWHIkCEONY9KM2zYMF5//XW6d+9ervaCIAiCIAhCzSWCUg+yG4kA5LkEA6BQqsmVk5dw0lT8o5GbmwuAs6uNVonXqO3WFA8nPwC0eg31WvnRdEhHfryRyedX0zlpzAOglXsV7YhmD0qJHdgqy2LJ5OKlj8nPl3cv1DkF4u3dtdrms/NMKieuZJKWbUaSwN9NR5CHvtrm81em1+sxm82MHDmSAwcOEBsby969e5EkiT59+th33Rw3bhwmk4lffvmFY8eO8c477+Dq6kpISAhffPEFIBdeTklJYfHixYCcmbN7925iY2OJi4tj586dHDp0qMgc5s+fT/PmzTl8+DAzZ87k7NmzREVFMWDAAI4ePcrnn3/Orl27GD9+PCAXlFYqlWzcuBFrwXLhP9q4cSMWi4WXXnqpyGtjx47F1dWV9evX35P30Gw2s3LlStzd3WnevHmJ7TIyMvDy8ronY94pPz8fq9WKTue4PFuv17Nr1y77cYcOHYiNjSU5ORlJkvj55585ffo0PXv2LLZfo9HIqlWrqFOnDiEhIQDs3buXpk2bUqtWLXu7Xr16kZmZyYkTJ+znVq1axblz55g1a1bpk/9zxvAFQRAEQRCEMojlew+w3Ewjv97oTWpuwcdAqSbPImc5VSZTqvChz0Mj0SJ4iMNrniGuNB/9EADnL2QC0N7DhdHBvkR63eeMluRDcP332/WkNFUflKqSQu73mdWaR0bGQSTJCihp3y4OJ6daqFRVHwT6+sgV/rv/IlduyYHN7o1q8XKvBgR76tGqa2asXZIk8k2mahlb7eRU6c+gJEn8+OOPfP/99/Tu3ZvNmzeze/duOnToAMg1b0JCQti8eTMDBw7k4sWLDBgwgKZNmwLy1vaFCgMtfn5+9u3qs7KyWLNmDevWraNbN3nXxlWrVtkLOd/pscceY8qUKfbjUaNGMXToUHtGVUREBEuWLKFLly4sX76coKAglixZwtSpU5kzZw6tW7cmMjKSoUOH2ud1+vRp3N3dCQgIKDKeVqslPDyc06dPV+q9K7RlyxYGDx5MTk4OAQEBxMXF4ePjU2zbxMREli5deldLBktiMBho3749b775Jo0aNaJWrVqsX7+evXv3Uq9ePXu7pUuXMmbMGIKDg1Gr1SiVSj766CM6d+7s0N+///1vpk6ditFopEGDBsTFxdmXVF69etUhIAXYjwsLa585c4bp06ezc+dO1Ori/3fkz/+bUxAEQRAEQSiNCEo9wL49EMz53DSgYPc9lYpcsxxY0msrHpSy5MpLMoKv1wYgz2rkSs5ZzFYTPp2j7O2umuSMirburvTx9aj8DZRHTjp83BNsltvndOVb6lItauiSvozMIxw6NNhe1NzTsx3OzmHVNp+Fcac5n2a0Hz9Sx4sG/oZ71Pv9+R7km0wsGfHUfem7LBPWbESjq9jmBVu2bMHV1RWLxYLNZmPIkCE8+eSTbNmyxWE7em9vbxo0aMDvv/8ujzVhAs8//zzbtm2je/fuDBgwgGbNmpU4zrlz57BYLLRt29Z+zt3dnQYNGhRp27q148YER44c4ejRo6xdu9Z+TpIkbDYb58+fp1GjRowbN47hw4ezfft2fv31VzZs2MC8efOIjY2lR48e5XovyqpdBXJwbuzYsfbjb7/9lk6dOgEQGRlJfHw8aWlpfPTRRwwaNIh9+/bh5+fn0EdycjJRUVEMHDjQoVaSq+vtXUL/8Y9/FCk6XpydO3fSu3dv+/GKFSsYOnQo//nPf3j22WcJCgpCpVLRsmVL/v73v3Pw4EF726VLl/Lrr78SGxtLaGgov/zyC+PGjSMwMNBhydzQoUPp0aMHKSkpzJ8/n0GDBrF79+4imVjFsVqtDBkyhDlz5lC/fv1i26xdu5YxY8ciSXIdvO/ueE8FQRAEQRCEvwYRlHqAZRglUIISPU75StIaWMnOlHdG8jVUvD5QbqqcAeUpyRkAacazXA2qw/ULEj28by9FySgocO5WFbvuZSbLASmVE4R3AaUaHom5/+OW6Pa/+9fM8FPxUq5ssAeklEonaoc8Wy3zyLNYybdJXM2QM6Rm92tMbW9nHq13L7YxFzkZd4qMjLQX/Q4MDEStVhMbG1vmdaNGjaJXr1588803bNu2jbfffpsFCxbwwgsv3PWcXFxcHI6zs7MZO3YsEyZMKNK2du3a9q8NBgP9+vWjX79+zJ07l169ejF37lx69OhBREQEGRkZXLlypUh2ltls5uzZs/Tq1avMufXv398hWFdYNLxw3vXq1aNevXq0a9eOiIgIPv74Y4ei8VeuXCEyMpIOHTo47K4GOOz25+ZWvszS1q1bO1xXmKVUt25dduzYgdFoJDMzk4CAAJ5++ml75lhubi6vvPIKX375JY8//jgAzZo1Iz4+nvnz5zsEpdzd3XF3dyciIoJ27drh6enJl19+yd///nf8/f0dalAB9iLm/v7+ZGVlceDAAQ4fPmxfbmmz2ZAkCbVazbZt2+jfvz+1GzQjI9eCr6sTzRqKzQsEQRAEQRD+akRQ6gFmLcjKcfIM5rPmcaSbW0EmuGhVuDpV/KNhs1pBCddyk7h56yCK3N9Rh7+CQpmB+o4aVVnWwqBUFSyzypMDZbgHw9AN93+8UpUS9Khhy/sKd3NKTf2BtLQfuZ66DYDmzf4Pb+8uKBRVv0Ru/W8XefXLY9juiOYNbB2CSyU+q+Ul3cPQodrJiQlrNt6z/io6dkUVBlLu1KhRI/Lz89m3b599+d6NGzdISEigcePG9nYhISHExMQQExPDjBkz+Oijj3jhhRfsGUd31ncKDw9Ho9Gwf/9+eyApIyOD06dPF1ku9kctW7bk5MmTReZZGoVCQcOGDdmzZw8ATz31FNOmTWPBggUsWLDAoe2HH35ITk4Ow4cPL7Nfg8GAwVC+bD2bzYbpjqWcycnJREZG0qpVK1atWoXyD5swVOT+Cun1+lKvc3FxwcXFhZs3b/L999/z7rvvAvKOhRaLpcgcVCoVNputxP4kSUKSJPt9tW/fnrfeeovr16/bM8Li4uJwc3OjcePGaDQajh075tDHv//9b3766Sc2btxInTp1cHFxoU54XdJzzPi76dDrK5btJwiCIAiCINR8Iij1oMo3YS144M7VaclyViDl6VAqILpFUBkXF89W0F+W4iKt937HrRbhZBfUqFLdEYDKsFRRplS+CW5dkL/W1aCd2EoLQNWg9Kn8fCPHT0zCZpML2KvVbnh5daiWgBRA3MlrDgGpR+v53NeA1L2mUCgqvISupomIiCA6OprRo0ezYsUKDAYD06dPJygoiOjoaAAmTZpE7969qV+/Pjdv3uTnn3+mUaNGAISGhqJQKNiyZQt9+vRBr9djMBgYMWIEL7/8Ml5eXvj5+TFr1iyUSmWZdbCmTZtGu3btGD9+PKNGjcLFxYWTJ08SFxfHBx98QHx8PLNmzWLYsGE0btwYrVbLjh07+OSTT5g2bRogZ1S9++67vPTSS+h0OoYNG4ZGo+Grr77ilVdeYe7cuTz00EMO4yYkJBSZS5MmTdBoNA7njEYjb731Fv379ycgIIC0tDSWLVtGcnIyAwcOBOSAVNeuXQkNDWX+/Pmkpqbar/f39y/1/gszobKzs0lNTSU+Ph6tVusQIPyj77//HkmSaNCgAYmJibz88ss0bNiQZ555BpAzsbp06cLLL7+MXq8nNDSUHTt28Omnn7Jw4UJAXnL5+eef07NnT3x9fbl8+TL/+te/0Ov19OnTB4CePXvSuHFjhg0bxrvvvsvVq1d57bXXGDduHE4FQdI/vq9+fn7odLoi5/8oPT2dixcvcuXKFQDOnElCqdQQHu5e5nsmCIIgCIIg1Cx/nic64Z6S8rKwIQeMLAVZTN56N/a8/XiF+rHl5WPcdxVbXj6F/4buc1YuYotWgzX/dlDqX+dS+L/LqWRb5XM+mvv48TNlw9KWkC0vF8GpBgWlarI7YgBZWcfsAam64S/h6dUBpbLiGTd369Uvj7HhwGXMBZ+bj4a3plOED073MdNOIZbylWjVqlVMnDiRvn37Yjab6dy5M1u3brUHZKxWK+PGjePy5cu4ubkRFRXFokWLAHlJ25w5c5g+fTrPPPMMw4cPZ/Xq1SxcuJCYmBj69u2Lm5sbU6dO5dKlS2XWJmrWrBk7duzg1VdfpVOnTkiSRN26dXn66acBCA4OJiwsjDlz5pCUlIRCobAfT5482d7P5MmTCQ8PZ8GCBSxevBijUa5Xtn79egYPHlxk3OLOXbp0ieDgYIdzKpWKU6dOsWbNGtLS0vD29qZNmzbs3LmTJk2aAHL2UGJiIomJiUWul8qoMdeiRQv71wcPHmTdunWEhoaSlJRU4jUZGRnMmDGDy5cv4+XlxYABA3jrrbccAmr//e9/mTFjBkOHDiU9PZ3Q0FDeeustYmLkpc86nY6dO3fy/vvvc/PmTWrVqkXnzp3Zs2ePPStKpVKxZcsWnn/+edq3b4+LiwsjRozgjTfeKPWeyiM2NtYeRAN49tmpAMyaNYvZs2ffdf+CIAiCIAhC1RFBqQeUlJ2OVSE/8JgKnkU0iorvSmfcf5WMb8/LfTrJ/eVbsrgQUB+aDyYnRa5DZFMrWHEpldyC5R+hOi1t3F2K7/ReSD93OyClcYYmf7t/Y90nZT2Q3i+hWivR2sMcOjwUAB+fboSFPV8tc7HZJDYcvB2QctdraBXqiU5TBfXIHmCrV68u8TVPT08+/fTTEl9funRpqX3PnDmTmTNnOpwzGAwOxcqNRiNz5sxhzJgx9nMlBVratGnDtm3bin3Nx8eHxYsXlzqfQtHR0fZsr/T0dLp168by5cvp378/zs7y78awsLAK/VzqdDo2bdpUapuRI0cycuTIcvd5p8r8jhg0aBCDBg0qtY2/vz+rVq0q8fXAwEC2bt1a5lihoaHlaldo9uzZ5Qoq3fme5efnkJNzFqVSi6tr0eL4giAIgiAIQs0mglIPonwT0tXf7ZlS121y8EarrHhQypaTj5l88v1UmG+ZQQFZXZtz83w3OA0g73qXpcEekNrzSCMCnTRolfdxGZi5YGc2r7ow4dD9G6fCpBK+LjxVtYGo4obr6WbBU3m7dkyA/5NVOCPZhRtGpn1xlFs5Fsz5NhQK+OXlSHwNTiIg9Rd0+PBhTp06Rdu2bcnIyLBn0xQGiaqal5cXP/zwA8uWLWPv3r1069atWuYhCIIgCIIgCH91Iij1oLHmw7/bI6WcR1LIuyiZ1BKSpMKgqFPh7rJzslnntIv8TLnIOYBO4wkSqDRKwpr64OnvjM5PD0lgUCkJd66CJWCWgqCUtuKBtgdVXl4KGI/QRC8HpCLqvYqPTyTOzhX/XNytr+Kv8Ou5dPtxI383Qryq6HtZTRlqD7r58+eTkJCAVqulVatW7Ny5Ex8fn2qbj7e3N6+//nq1jS8IgiAIgiAIDwIRlHrQ3LoA6WeRrEpsyAXHa3u24ofTfXCPCK1wdzeMN8lXFOykZc1HlZeDISCQFMDZTUvUGLlg7fGsHAD0qioqkl2YKaV1rZrx/uQkycr+A0+C+ToAVklBYOBA1Ory7SZ2r/xw8ho7z6Sy77wckHqqVTDRDwfSLMjj/g8uykhVmxYtWnDw4MHqnoYgCIIgCIIgCFVMBKUeNDeTAJA8IpDIB0CjdQebM06V2A3PmJEBgLNFgSoxHoUkoW/ZCXDccS+noCaQ8/0OSiV8B6e/hRtn5WPtfaxbVUGK0rbWK2OXsfstN/ciZvN1QEmSCa4qQ+lZxQGpfKuN8esPkWe5vXSwU4QPnSJ8q3QegiAIgiAIgiAIQtUQQakHhDkvl8T9v5KfdIC8tGBuSF5ICvnh36aRl9NpK7GbWVZelvyFJBFx9To+WWbcPAIBIyr17UBLTkE9Kf39rCMFsDkGcm/ePnYV24OXTiIlZROZWcfkQ6cQ3r+USnPfqn3f0rJNXMvMI89iQ6VUMK5rXbxctPR+KKBK5yEIwp+VWHYrCIIgCILwZySCUg+I/bGb+PWL9QVHt2sEKZSeWJ30QOWCUvkmEwBqq42Ia3KASqNzB4woVUqumiyMP3mBC3nyLnz3NVPKmn87IPXoi6D3gKYD7994d6sGPEPZJAsnf3/59gltEJBapXOYHXuC1XuS7Me+rk682FPsoiUIgiAIgiAIgvBXJ4JSD4isNDnQ4O3jjpfpLDq9N4lpTbC6tCDHKkdHvFy0Fe7XZpZ311NIEromTdA1aUKOhxdwBZVayfqUG+y6lW1vf1+LnJtvj0PX6aCugoLq5aSo5uV5JZLkemDOznUwGJpyzak1EF+lU9ieINexUihApVAQ3SKwSscvTQ2IGwrCg62sX5019FerIAiCIAiCUD4iKPWAMOfJhcabhPrSLOU78vSeXMxqi0ntxZGrKYAHfoaKB3FsNpt91706X2wE4MyBawCo1ApOG/MAiPQyML62H63d72ONp8KglFJTowJSFVEVz1dWq4mkpGVAY6SCneZatliPk5Mv1y/+VAUzAEmSmPDfePafT+dalvwZ+eXlyKrbYU8QBEEQBEEQBEGodiIo9YDIjo8H4NaXezh30w9IwtpRDtyk5srZTnX9yr9TXe61TFIPJqGyakEJSul2Tok1X64fpVIrySz4up+fBx0971Ph7FuX4IfZkHVVPnb6a+y4J92nPJ20Gz9xJeV/wGwAXF0aoNX63JexSpKSkcfXR67YjwPcdfi766p0DiWTqrvuvCAIgiAIgiAIwgNBBKUeEDnZeaCBi2F9uB4WAAoF+Wq5llS3poH0bN6cLuXc5cwm2dj1yVc0yghDpZKX/EmSlaz0PM4cuMa1c5kAKNVKMvPl5WFuqorv7FduR9bD8Y23jz1C799Y90sVRkHyci/av1YqtTRr9mGVLS88eOEm3x5LIS1brkVWy82Jj0e0IczHBc393pmxTCISJQiCIAiCIAiCUJWq+ylQqAKSJJGrkrNQjM4h3HKP4JZbPVAoMalyad+wFt0a1UKpLPuh3GazkZWXhSpPQRa5XLWlAGC2mvjPa3vZu+ks5+Ll+lVavYpMa0FQSn0fg1KFxc0jekH0v+Hpz+7fWHehaN5T1VYsunnzNw4ceIrEs+/ePqlQodfXrrI5vLzxCP+36zyb4+Usqbq+rjwU5I6rk4iP1yQjR45EoVCgUCjQarXUq1ePN954g/z8/Lvqd/v27SgUCm7dunVvJloO58+fZ8iQIQQGBqLT6QgODiY6OppTp045tNuyZQtdunTBYDDg7OxMmzZtWL16tUObpKQkFAoF8QWZp+Uxe/ZsGjZsiIuLC56ennTv3p19+/Y59Pncc89Rp04d9Ho9devWZdasWZjN5lL7TUlJYciQIdSvXx+lUsmkSZPKNZ9ffvmFfv36ERgYiEKhYPPmzUXabNq0iZ49e+Lt7V3m/UqSRO/evUvsa/Xq1TRr1gydToefnx/jxo1zeP3777+nXbt2GAwGfH19GTBgAElJSQ5tvvnyf0R2bIuzszMBAQE8++yz3Lhx467vUxAEQRAEQah+Iij1ALBlZWErCIDUrpVNL493iWp9mO/rr+aLpvNxLWfx8Vu3brFgwQIWvbOIXxSJfK7bQ5KTXMfJotAj2eQxfEJceahLEK2iwki3yA+xHpr7GJQyyZlZhLSFFkPBI+T+jXVXqjcT58LFFWRkHq7yuVhtEj+fus6mQ5e5lC7XNhvZIYzxkfV4I7pJlc1DqJioqChSUlI4c+YMU6ZMYfbs2bz33nvVPS27soI2ABaLhR49epCRkcGmTZtISEjg888/p2nTpg6BsaVLlxIdHU3Hjh3Zt28fR48eZfDgwcTExPDSSy/d1Tzr16/PBx98wLFjx9i1axdhYWH07NmT1FQ5eH/q1ClsNhsrVqzgxIkTLFq0iA8//JBXXnml1H5NJhO+vr689tprNG/evNzzMRqNNG/enGXLlpXa5tFHH+Wdd94ps7/333+/xEzLhQsX8uqrrzJ9+nROnDjBDz/8QK9eveyvnz9/nujoaB577DHi4+P5/vvvSUtL48knn7S32f/rXl6b9DxDho3gxIkTbNiwgd9++43Ro0ff9X0KgiAIgiAI1U+kJzwArOnp2BRyxtJ55wt8651IprOR85pbALg6la+Wz+XLlzEajfZjpaQASUKymdEZrQQ19MAn2EDHp+ox7fRlhiacIb8gGaiO/j4UHrfZ5CypnHT52Mnt3o/xF2A2p5Gbl8yNG9sBaNhgLkapKey8UOI197Ke1bYTV3l+7SH7sUalYGbfxqjKkZknVB8nJyf8/f0BeP755/nyyy+JjY0lJiaGiRMn8vXXX2MymejSpQtLliwhIiICgAsXLjB+/Hh27dqF2WwmLCyM9957j8aNGxMZGQmAp6cnACNGjGD16tVkZWURExPD5s2bcXNzY+rUqXz11Vc8/PDDvP/++wCEhYXx3HPPcebMGTZv3syTTz7J6tWr2bVrFzNmzODAgQP4+PjwxBNP8Pbbb+Pi4sKJEyc4e/YsP/74I6Gh8rLe0NBQOnbsaL/PS5cuMWXKFCZNmsS8efPs56dMmYJWq2XChAkMHDiQRx55pFLv45AhQxyOFy5cyMcff8zRo0fp1q0bUVFRREVF2V8PDw8nISGB5cuXM3/+/BL7DQsLY/HixQB88skn5Z5P79696d27d6lthg0bBlAkY+mP4uPjWbBgAQcOHCAgIMDhtZs3b/Laa6/x9ddf061bN/v5Zs2a2b8+ePAgVquVuXPnolTK/0b20ksvER0djcViQaPRcHD/PgKDazMqZhy13HTUqVOHsWPHlhkwK899CoIgCIIgCNVPZEr9xVmzssg7cwYJueD4flLZ46znuOUWAJJVh5eufMEca8FSPP8Qf54wNmekqSsh5y/jeuYo3uZc/ja5JY8OlB9MN1xNtwek2rm7YLjXy/ckCf7vMXgvHBK2yuec7lMh9Xuhmipnm0zX2bP3MQ4ckDMP1Gp3AgMH4ewSXmx7xT3MoMqzWNlxOpXvTsgF6IM89HSu78vr/Zo8kAEpSZKwma3V8keS7j7IqNfrMZvNjBw5kgMHDhAbG8vevXuRJIk+ffpgscgbJowbNw6TycQvv/zCsWPHeOedd3B1dSUkJIQvvvgCgISEBFJSUuxBlRdffJHdu3cTGxtLXFwcO3fu5NChQ0XmMH/+fJo3b87hw4eZOXMmZ8+eJSoqigEDBnD06FE+//xzdu3axfjx4wHw9fVFqVSyceNG+++vP9q4cSMWi6XYjKixY8fi6urK+vXr7/r9Azm7a+XKlbi7u5ea3ZSRkYGXl9c9GfN+ycnJYciQISxbtswevLxTXFwcNpuN5ORkGjVqRHBwMIMGDeLSpUv2Nq1atUKpVLJq1SqsVisZGRn85z//oXv37mg0GrlNm0e4mpLMD9u+Q5Ikrl27xsaNG+nTpw9Q3fmngiAIgiAIwt0SmVJ/YbknTnBh8N+xWSxIzesBEKRR0unmLeo8NIQJ+/yw5PrjpnMuV3+F9WSUaiUukhNKlChtGpSaOvh5N7C3y7LayC1YyrevXSNCdNp7fGdAXgZcOXz72MUPare79+P8yaWl/YTVKme36XTBhIX9E4XiPi6lvMPcb07y2a+3i6r/o10oz3etWyVj10SSxcaV1/dUy9iBb3RAoa3c912SJH788Ue+//57evfuzebNm9m9ezcdOnQAYO3atYSEhLB582YGDhzIxYsXGTBgAE2bNgXkzJ9ChYEWPz8/PDw8AMjKymLNmjWsW7fOnlGzatUqAgMDi8zlscceY8qUKfbjUaNGMXToUHs9pYiICJYsWUKXLl1Yvnw5QUFBLFmyhKlTpzJnzhxat25NZGQkQ4cOtc/r9OnTuLu7F8n0AdBqtYSHh3P69OlKvXeFtmzZwuDBg8nJySEgIIC4uDh8fIrf8TIxMZGlS5eWmiVVE0yePJkOHToQHR1d7Ovnzp3DZrMxb948Fi9ejLu7O6+99ho9evTg6NGjaLVa6tSpw7Zt2xg0aBBjx47FarXSvn17tm7dau+nTbv2vL1kJWOfGcbIv+eRn59Pv379xLI8QRAEQRCEvwiRKfUXlnfsGJLFgk0hUVhUu1XOdZ6/lUn3Wu0wZzVEyvdAX856T/ZMAyUoCwIbnh7N0Lo+Qa0uPeztrpnkjAmDSkmo3gnl/cgSMmcXzEUDr9+El06DV517P859dA+SV0qUl3eFCxdWcD7pAwBCQp6lY4cdBAU+ff8G/YMTV+RaX+G+LnRt4Ev0w0WDDDXSHd+Yqi1FX7Ns2bIFV1dXdDodvXv35umnn2bkyJGo1WqHpWze3t40aNCA33//HYAJEyYwd+5cOnbsyKxZszh69Gip45w7dw6LxULbtm3t59zd3WnQoEGRtq1bt3Y4PnLkCKtXr8bV1dX+p1evXthsNs6fPw/ImVtXr15l7dq1tG/fng0bNtCkSRPi4uLK/V5otWUH1teuXeswj507d9pfi4yMJD4+nj179hAVFcWgQYO4fv16kT6Sk5OJiopi4MCBDjWT7uw3JiamXHPeuXOnw3Vr164t13XlERsby08//WRfWlkcm82GxWJhyZIl9OrVi3bt2rF+/XrOnDnDzz//DMDVq1cZPXo0I0aMYP/+/ezYsQOtVstTTz1lz+47fep33p01gxenzuDgwYN89913JCUl2d+HnTt3Exj4CP7+re75fQqCIAiCIAj3n8iU+guT0pPJ0xjIDXe3n/NSpQEajJ6NgUQAXJzKF5TKyM0A4JLxEkqFnPGi8PCBG6BxvZ1tdc0sB6X8nTT34C5KYMqS/9a5gfLPFlstJkhXELhT3KMoyOkzc0lN/d5+bHBtdG86LkNWnoUBy/eQdCMHc768ZHTBwOa0qO1ZJePflfu8xFKhURL4Rof7OkZpY1dUZGQky5cvR6vVEhgYiFqtJjY2tszrRo0aRa9evfjmm2/Ytm0bb7/9NgsWLOCFF16ozNQduLi4OBxnZ2czduxYJkyYUKRt7dq3d5U0GAz069ePfv36MXfuXHr16sXcuXPp0aMHERERZGRkcOXKlSLZWWazmbNnzzoU5y5J//79HYJ1QUFBDvOuV68e9erVo127dkRERPDxxx8zY8YMe5srV64QGRlJhw4dWLlypUPfd+5+5+ZWvuXWrVu3driuVq1a5bquPH766SfOnj1rz3YrNGDAADp16sT27dvtmWeNGze2v+7r64uPjw8XL8oZlMuWLcPd3Z133729I+hnn31GSEgI+/bto127dix7fz4Pt3mEcRNfpJabjmbNmuHi4kKnTp2YO3curVu3ZOfODSiValxc6t7T+xQEQRAEQRDuPxGU+gvLuXmTn5tEIElyMAmFgVpPjoXwjmTk6oBEnLUq1KryPbAeTDkIwMXsi/ZMqXxJ/lutvd1HYaaUn/Y+BKUkCS7uhaTd8rHW9d6Pcd9UTd6NJElkZMjfK1/fKNzdmlGrVv8qGfvwxVucvpZtP/Y1OBFRqwbX+qpCCoWi0kvoqkNhIOVOjRo1Ij8/n3379tmX7924cYOEhASH4ENISAgxMTHExMQwY8YMPvroI1544QV7xtGd9Z3Cw8PRaDTs37/fHkjKyMjg9OnTdO7cudQ5tmzZkpMnTxaZZ2kUCgUNGzZkzx55KeVTTz3FtGnTWLBgAQsWLHBo++GHH5KTk8Pw4cPL7NdgMGAwlO+zbrPZMJlM9uPk5GQiIyNp1aoVq1atshf9LlSR+yuk1+srdV15TJ8+nVGjRjmca9q0KYsWLaJfv34A9mLyCQkJBAcHA5Cenk5aWpq96HxOTk6Re1Wp5J8Rm00Oaufm5KJQFN9GkiT0ej1169ZGqdTg6np/7lcQBEEQBEG4f0RQ6i/sxk2jPSAloSDNxwWv0Ie5kOvEvnM3ADDoyv4ISJKEzWjBnCM/RNVV1bYHpa6nAUpQa5SYbTa+vn6LrWnymIG6+xCUurwfVt2xo5LOveS2NUxF83AqugOeyXSNc+feJzfvMmZzGgqFiiaN56NS6Ss4csWduJLBFweTOXNdzmBrF+7FgkEP4+2iRVfO5aE1iSieXLyIiAiio6MZPXo0K1aswGAwMH36dIKCguy1hSZNmkTv3r2pX78+N2/e5Oeff6ZRIzlTLzQ0FIVCwZYtW+jTpw96vR6DwcCIESN4+eWX8fLyws/Pj1mzZqFUKlGUkb02bdo02rVrx/jx4xk1ahQuLi6cPHmSuLg4PvjgA+Lj45k1axbDhg2jcePGaLVaduzYwSeffMK0adMAOaPq3Xff5aWXXkKn0zFs2DA0Gg1fffUVr7zyCnPnzuWhhx5yGDchIaHIXJo0aWIvzl3IaDTy1ltv0b9/fwICAkhLS2PZsmUkJyczcOBAQA5Ide3aldDQUObPn09qaqr9+uIKiN+pMBMqOzub1NRU4uPj0Wq1DgHCP8rOziYxMdF+fP78eeLj4/Hy8rIHBdPT07l48SJXrlxxuF9/f3+HP39Uu3Zt6tSRl1HXr1+f6OhoJk6cyMqVK3Fzc2PGjBk0bNjQvgvj448/zqJFi3jjjTf4+9//TlZWFq+88gqhoaG0aNECgO5RvZk2aTyr/28lA//Wl5SUFCZNmkTbtm0JDAzEas2p9H0KgiAIgiAI1U8Epf7CcnPNACgUetZEnUJSJDE4U8Pflm63t3ErR+Doxv9OkRKfRD1VAKfVV2h843btJgkVzu5a/MPdWZN8g5mJyfbXmrjch2BIulwnBr0nBDSHtmPu/Rj3lVTC13fvypX/cSXlf/ZjT492VRKQAnhzy0l+PZduP25Qy0CQR9WMLVStVatWMXHiRPr27YvZbKZz585s3brVHpCxWq2MGzeOy5cv4+bmRlRUFIsWLQLkJW1z5sxh+vTpPPPMMwwfPpzVq1ezcOFCYmJi6Nu3L25ubkydOpVLly6h0+lKnUuzZs3YsWMHr776Kp06dUKSJOrWrcvTT8u104KDgwkLC2POnDkkJSWhUCjsx5MnT7b3M3nyZMLDw1mwYAGLFy/GaJQ3B1i/fj2DBw8uMm5x5y5dumTPCPp/9u48Lqrqf/z4awaYYRt2UEAEWVxTc18oFTfQUitzSVMxNenjnqVpmUumWS6Zmi1fE/t9sPpopmaW0aLhkrlrKigqiogLguzMen9/XBicQEBFATvPx4Pg3jn33HPvIHHfvM/7FLGysiI+Pp5169aRlpaGu7s7bdq0IS4ujiZNmgDyKnWJiYkkJiaWOL68VROLAjcAhw4dYv369fj7+5OUlHTHYw4ePGgOCoG88iHAiBEjiI6OBuSaUSNHjixxvbNnz2bOnDlljul2X375JVOmTOGpp55CqVTSuXNnfvrpJ/P3SteuXVm/fj3vv/8+77//Pvb29nTo0IGffvoJOzv558fAIcO4np7JF59/wty33sDFxYWuXbuyaNGiMs9dkesUBEEQBEEQqp4ISj3CCnTy9AelwhpJAdYKa1LT5X22NkrquNozMrT84uDbEnaSpL5m3jZKOtK1qVzLv0jYM0/SoLe86l3c8VRzm6Hebgz0fgBLmusKa0n5h8LgmlPQ9mFk3uQXXAbAw6M7Hu5d8PKKuPfOKhgvO3klk+tZWhKvyw/xg9v4UcfVjoFt/O793EKVK+uh3dXVlS+//PKOr69YsaLMvmfNmsWsWbMs9mk0GosC1bm5ucydO5eXXy4OOt8p0NKmTRt+/vnnUl/z8PBg+fLlZY6nSL9+/czZXunp6XTr1o3Vq1fTt29f7O3lmnkBAQHlBopuZ2try6ZNm8psExkZSWRkZIX7vN3djKVIly5dyj3uXsZUWp9OTk6sWbOGNWvW3PG4wYMHlxrku92QkS8zZdJEajmVHaS8XUWuUxAEQRAEQah6Iij1CNPq5V/IFYVT7VxsXdAZ5X2t/d347+h2dzz2djdNWYVfmVDodFxM+Z3LBbmgsKWhpre5XaZBrhPzeZMA+ni5VM5F/JO2sF6RumLFfv8NrqRuJOVyDFnZ8ipnXp7heHs/V6Fj//nMVt50qdsdv3yLviv3WOyb0qP+XT04CgLAkSNHiI+Pp23btmRmZjJv3jwAc5DoYXNzc+OXX35h1apV7Nu3j27dulXJOARBEARBEAThUSeCUo8wrUGOOEiFRWJd1C4U6OXAkdq64qtxGSUTKMDjUgra3Gs4Nw5Ee6EBkqoOak3xFK2cwuLFmrvou8JunIEzP8J5eSlx1DWpwPmDYzJpSUiYjclUAICVlT1ubk+Ue9zdBJ9KnlPiYnoef5yRa98429ng725PmwC3RyQgJbIrqsLixYtJSEhApVLRqlUr4uLi8PDwqLLxuLu78/bbb1fZ+QVBEARBEATh30AEpR5huXoDALrC+IO7nTtaQ9H0vYoXnzYhH2M0GdBZm/Bp1ZGkFDdQWmNjrzK3yy7s29HqARS2/u5luHKkeNvevfLP8VAoqKygh8GQQ3b2KXNAqnmz/8PePhC12qtS+r+TCV8d4YcTxVM1+zb34Z1nHivjiJpClDevKi1atODQoUNVPQxBEARBEARBEB4yEZR6hOlNgBKwUtCrXi+GNBzCX/F3lyklmSTzKnBZwU64XhnGhW1KuV/Axs4Gg0niqk7PpQK5sLrjg8iUypJXgaJBb3D2g1aRlX+OGuTqte85efJVKAwYOju3xMMjrOyDKsn+C/LKjY5qazS21jzVzPuhnFcQBEEQBEEQBEF4tIig1CPo+pIl3Nr4LVKthqCWV4B6v9P7AMSdOAuA2qaCQSmDCVNhUCroWA4Z7kqQTFgZtbhlJGDr1IqnD5/laLa8LLcSqKUqf0W/u1ZUSyp8AbiVX5z9UZeevoeigJRSqcLPb2TZB9ynW3k65n5/ipu5OtJy5ODjrte74O6ofqDnrXJiJp8gCIIgCIIgCMID8wBSWsq3cOFC2rRpg0ajwcvLi2eeeYaEhASLNgUFBYwbNw53d3ccHR3p378/165ds2hz6dIlnnrqKezt7fHy8uL111/HYDA8zEupllK3/MIZl1DybOXV74zq4re5wFCUKVX2FDvJYCL34FWyd102B6Wkwkwo14wEOu9+jZZZP6G1szcHpOyUCkb4euBqU8mxTpMJ9PLqbqg1ldt3DaPTpXPjRiy5OfK/l4YN3qVL55PU8updzpH3Z/uJq3x3JMVcR8rDUYWbg6qcowRBEARBEARBEAThzqokU2rXrl2MGzeONm3aYDAYmDlzJj179uTUqVM4ODgAMGXKFH744Qc2bNiAs7Mz48eP57nnnmPPHnm1L6PRyFNPPUXt2rXZu3cvqampDB8+HBsbGxYsWFAVl1VtnPPoRKpXO/R5v4MWTLbF6R4Fejm7prxMqfxTN8nYKGdVmdTy8TaBgaAFx9YtCXzvB2x8fLhsLKxRpVRwvlOz+yqgXYK+AA78H2QX1y9CVUMLnN/DfSltOfPjx18mM6u4tpZaXQuFovJjy0VTNvefv8mv8dc5dDEDgE71PenX3IcWdV0q972uZh7dKxOER5NIahQEQRAEQaiZqiQo9dNPP1lsR0dH4+XlxaFDh+jUqROZmZmsWbOG9evX07VrVwDWrl1Lo0aN+PPPP2nfvj0///wzp06d4pdffqFWrVo8/vjjvPPOO0yfPp05c+agUv17szj0SnlKlUIpZ5bpXTPMr2UX6AHQqMt+6025cjuFsw2SVv5138peA1qwcXJEHRgIQFqWnMHkbmNd+UGK+G3w85vF22onsH7Ep4uVQa/PMAeknJxaYGvrg6trhwd6zolfH+Falta8HdbAk/6t6jzQcwqCIAiCIAiCIAj/DtWiplRmZiYAbm7ydLNDhw6h1+vp3r27uU3Dhg2pW7cu+/bto3379uzbt4+mTZtSq1Ytc5vw8HBeeeUVTp48SYsWLUqcR6vVotUWP2BnZWU9qEuqMpLBgKQofFtVWZAPCo/ileqyC+TpjRrbsus+FU2DvOR8Ha7L+6xs5ECf0ro4+HRTJ7fzUD2Ab6Xsq/JnjwYQ3B2Cu95TxlG1VUomVGlycs5w6dL/kZ6+GwAHhxDatN74QIakKMwRytcb2XsuzRyQGvVEPdwcVAxo7fdAzlutiJQLQRAEQRAEQRCEh6LKg1Imk4nJkycTGhrKY4/Jy8pfvXoVlUqFi4uLRdtatWpx9epVc5vbA1JFrxe9VpqFCxcyd+7cSr6C6kXSajEp5HpRJmVhtpiDPSaTxIWbuVzPloMMGtuy3/rEtLPURsXpW/HmfVaFGVhWVsXTxdL0clDKvbLrSAHoCoub+3eEiEd7SmZZWWZJFz/m2rXvzduenj0f+HgSrmYz5M/9ANirrHjrqUaP9HQ94NEKeAqCIAiCIAiCINQAVVLo/Hbjxo3j77//5uuvv37g55oxYwaZmZnmj+Tk5Ad+zofNpNORr0hDm7kOU+YtAJR2KiZ8fYRuS3aZawOVlymVr5OLl9vYFE+DVFjJQSmltYJco5GvUm+yJEkOALo/iEwpbbb8WV1D60hVkvz8SwD4+AymUcOFBPiPq7S+y0oKcrazoZ6HA//pEvToB6QEC5GRkSgUChQKBSqViuDgYObNm3ffC0ns3LkThULBrVu3KmegFXDhwgWGDBmCj48Ptra21KlTh379+hEfH2/Rbtu2bXTu3BmNRoO9vT1t2rQhOjraok1SUhIKhYKjR49W+Pxz5syhYcOGODg44OrqSvfu3dm/f79Fn6NGjaJevXrY2dkRFBTE7Nmz0el0ZfabmprKkCFDqF+/PkqlksmTJ1doPH/88Qd9+vTBx8cHhULB5s2b73rMAO+++y4dO3bE3t6+xB+QipS3GMnt32e3fzRp0sTcZuWyDxjyVFeCfD3vuDBKaSoyPkEQBEEQBKHqVWlQavz48Wzbto3ff/+dOnWK69TUrl0bnU5X4sHl2rVr1K5d29zmn6vxFW0XtfkntVqNk5OTxcejRirIJ49kJNNNMJkwKiWUHhr+TpGnSGrU1jTxcaJNgGuZ/Zj08ip9Dc4UT3dUWMmBLCsrJf+XnMaU+GQuF9aoaupoV3kXceEP+GkmnN8pb6selRX37i6wE5/wNr/93oisrGMA1KkzDB+fgVhZPZi6Wq9tOMbEr4uLqE/oGszvr3VhfNeQB3I+oXqLiIggNTWVs2fPMnXqVObMmcMHH3xQ1cMyKy9oA6DX6+nRoweZmZls2rSJhIQEvvnmG5o2bWrx/5cVK1bQr18/QkND2b9/P8ePH2fw4MFERUXx2muv3dc469evz8qVKzlx4gS7d+8mICCAnj17cuOGvJJlfHw8JpOJTz/9lJMnT7Js2TI++eQTZs6cWWa/Wq0WT09P3nrrLZo3b17h8eTm5tK8eXNWrVp1z2MG+f4PGDCAV155pdQ+ihYj0el07N27l3Xr1hEdHc3bb79tbrN8+XJSU1PNH8nJybi5uTFgwABzmz/37GbQiNH88MsuYmNj0ev19OzZk9zc3DKvs7zxCYIgCIIgCNVDlQSlJEli/PjxfPfdd/z222/Uq1fP4vVWrVphY2PDr7/+at6XkJDApUuX6NBBLuzcoUMHTpw4wfXr181tYmNjcXJyonHjxg/nQqohKT8XE4VFyh9rwLddUrDS2KEtXHXvq5fb88PEJ3GxL70Q/F9//cUXX3zB4fOn+V51kDivwgc/ScLK0QWQM6VO5uYD0Fxjx0u+Hgz1cS+1v3uyaSz8uQqu/S1vO3pVXt81yPXr25Ak+f47OT2Oo0ODSuv7n+GxHK2BjYcuk6MtzmJoUbfswKXwaFOr1dSuXRt/f39eeeUVunfvztatW8nIyGD48OG4urpib29Pr169OHv2rPm4ixcv0qdPH1xdXXFwcKBJkyZs376dpKQkwsLCAHB1dUWhUBAZGQlAdnY2Q4cOxcHBAW9vb5YtW0aXLl0ssn8CAgJ45513GD58OE5OTrz88ssA7N69myeffBI7Ozv8/PyYOHGiOWBx8uRJzp07x8cff0z79u3x9/cnNDSU+fPn0759ewCSk5OZOnUqkydPZsGCBTRu3Jjg4GCmTp3KBx98wJIlS0pkCd2NIUOG0L17dwIDA2nSpAlLly4lKyuL48ePA3Lwb+3atfTs2ZPAwED69u3La6+9xqZNm8rsNyAggOXLlzN8+HCcnZ0rPJ5evXoxf/58nn322XseM8DcuXOZMmUKTZs2LbWPosVI/vvf//L444/Tq1cv3nnnHVatWmUOKDo7O1O7dm3zx8GDB8nIyGDkyJHmfmI2bqHfwCE0bNSY5s2bEx0dzaVLlzh06FCZ11ne+ARBEARBEITqoUqCUuPGjeO///0v69evR6PRcPXqVa5evUp+vhzocHZ2ZtSoUbz66qv8/vvvHDp0iJEjR9KhQwfzg0TPnj1p3Lgxw4YN49ixY+zYsYO33nqLcePGoVb/e1dok/JzkZB/4Zc8ncmzNWKltKLAIGc+2dqU/Zb/9ttvXLp0iUyTlmvKTLJt5ONsAMlGLnJtZaXkcoF8jsn+tVhQvw4OVlaVdxG5hX+Nb/sy9JgHTQeU3b4GKG36W0XqaatVtQjtGEfrVv97IFPoJEli+Bd/8cJnfwJgbyO/j018nGjlL4JSlUmSJHQ6XZV8SBUsql8WOzs7dDodkZGRHDx4kK1bt7Jv3z4kSaJ3797o9XIwfNy4cWi1Wv744w9OnDjBokWLcHR0xM/Pj2+//RaQ/8iQmprK8uXLAXj11VfZs2cPW7duJTY2lri4OA4fPlxiDIsXL6Z58+YcOXKEWbNmce7cOSIiIujfvz/Hjx/nm2++Yffu3YwfPx4AT09PlEolGzduxGg0lnpdGzduRK/Xl5oRNXbsWBwdHfnqq6/u+/6BnL3z2Wef4ezsXGZ2U2Zmpnnhj6pW0TH/050WI8nKyuLkyZOlHrNmzRq6d++Ov7//Hfv958IogiAIgiAIQs1WJYXOV69eDUCXLl0s9q9du9b8l/Nly5ahVCrp378/Wq2W8PBwPv74Y3NbKysrtm3bxiuvvEKHDh1wcHBgxIgRzJs372FdRrVkys8zZ0qZCouZWyusKSicjqe2vnPwSJIk8+qEDQrcqKP0JSX/GldMHljrNZy/lg6AlY2SbIN8Dqcy+rsnBh2Y5L4JexPsXCq3/2rhzsGl/OYmi203907Y2vo8sJGYTPDHmeIpOXXd7bkEWCtFDSmo3IX49Ho9CxZUTcH+mTNnolKVnh1ZHkmS+PXXX9mxYwe9evVi8+bN7Nmzh44dOwIQExODn58fmzdvZsCAAVy6dIn+/fubM1QCAwPNfRUFEry8vMx1frKzs1m3bh3r16+nW7dugPz/Ah+fkt/3Xbt2ZerUqebt0aNHM3ToUHNGVUhICB999BGdO3dm9erV+Pr68tFHHzFt2jTmzp1L69atCQsLY+jQoeZxnTlzBmdnZ7y9vUucT6VSERgYyJkzZ+7p3hXZtm0bgwcPJi8vD29vb2JjY/Hw8Ci1bWJiIitWrGDx4sX3dc77dTdjLs3dLkZy5coVfvzxR9avX3/HPktbGEUQBEEQBEGo2aps+l5pH0UBKQBbW1tWrVpFeno6ubm5bNq0qUStKH9/f7Zv305eXh43btxg8eLFWFtX+YKCVUoqyEVCDkAZCmuZWyms0BrkYIe6jEwpo9FozqjwyJGoZ/LCQ2tPnVr1qF3HA8+6GnzruxDSuhY5Rrk/x8oOShWtuAegcqjcvmuAvC7F2RxWSgfq+A55IOc5nZoFgKnw/X6hrR+fDmvFuC7BD+R8NUtlhqJqrm3btuHo6IitrS29evVi0KBBREZGYm1tTbt27czt3N3dadCgAadPnwZg4sSJzJ8/n9DQUGbPnm0x5as058+fR6/X07ZtW/M+Z2dnGjQoOV21devWFtvHjh0jOjoaR0dH80d4eDgmk4kLFy4AcubW1atXiYmJoUOHDmzYsIEmTZoQGxtb4XtRkYBeTEyMxTji4uLMr4WFhXH06FH27t1LREQEAwcOtJh6XiQlJYWIiAgGDBjAmDFjzPtv7zcqKqpCY46Li7M4LiYmpkLH3e2YK8u6detwcXHhmWeeuWOb0hZG+c9/JuLj0w7v2q1wdPx3L4ohCIIgCIJQE/27IziPICk/DwqDUiZrExgArCiavWNrc+cgUtH0GwBrSQ5e2Wsz6D6zTYm2OYnyORytKjGuaTJCgTw1Ays1WJW9QuCj5FbOYbJ7G9EFS3BZ3tex4y6cbCt/Cl2u1sB/YuR6LEXhl7AGXvRsUps/Lt9fRkjNpijlq8pjY2NTbvHqB8XG5u7/LYWFhbF69WpUKhU+Pj5YW1uzdevWco8bPXo04eHh/PDDD/z8888sXLiQJUuWMGHChHsZugUHB8tAdU5ODmPHjmXixIkl2tatW9f8tUajoU+fPvTp04f58+cTHh7O/Pnz6dGjByEhIWRmZnLlypUS2Vk6nY5z584RHh5e7tj69u1rEazz9fW1GHdwcDDBwcG0b9+ekJAQ1qxZw4wZM8xtrly5QlhYGB07duSzzz6z6Pv21f4qukBH69atLY77Z9ZSeSoy5rLUrl2bv/76y2LfnRYjkSSJL774gmHDht0xADjjtcnE/vgDf/zxh8XCKHPmzCIq6lkUSmscHYLu5hIFQRAEQRCEakAEpR4xpvw8QM5iOpZxHOxAkooDR2rrkkEkSW8i7/gNMjNuFe4AVzu5+LzaZPl4/n+Xb7DvVk5xplRl1ZLauxJiZ4FUOH3tUcySkiTkMFDRPZVDQgZDDsfPTsD0tNEiSUeheDCJjFdu5aM1yCdSKmBoO386N/B8IOcSiikUinueQlcVioISt2vUqBEGg4H9+/ebp+/dvHmThIQEiwUm/Pz8iIqKIioqihkzZvD5558zYcIE8/XfXt8pMDAQGxsbDhw4YA4kZWZmcubMGTp16lTmGFu2bMmpU6dKjLMsCoWChg0bsnfvXgCef/55pk+fzpIlS1iyZIlF208++YS8vDyGDx9ebr8ajQaNpmIrhZpMJvNUaZAzpMLCwmjVqhVr165FqbT8t38311fEzs7uno67k3+OuTwdOnTg3Xff5fr163h5yYtV3Gkxkl27dpGYmMioUaNK9CNJEgveep1dP//AH7t2lVgYxcvLCweHuiiUNmgcRaanIAiCIAhCTSOCUo8YfV62+eurRvmv0s4qeWU8pQJUpWQ25Ry6StKWY2QrCkAFNljhYV20mlNx9tQtvYG3zqaYtx2slDhX1vS9hO3FASmAwC6V028NkJGxF5NUgDIL1MeVcOcav/fl8z/Os/6vS+TrigMC1lZK3nlG1GYRKiYkJIR+/foxZswYPv30UzQaDW+88Qa+vr7069cPgMmTJ9OrVy/q169PRkYGv//+O40aNQLkKdcKhYJt27bRu3dv7Ozs0Gg0jBgxgtdffx03Nze8vLyYPXs2SqWy3OL+06dPp3379owfP57Ro0fj4ODAqVOniI2NZeXKlRw9epTZs2czbNgwGjdujEqlYteuXXzxxRdMnz4dkDOq3n//fV577TVsbW0ZNmwYNjY2bNmyhZkzZzJ//vwS9YsSEhJKjKVJkyYlMtJyc3N599136du3L97e3qSlpbFq1SpSUlIYMEBewCElJYUuXbrg7+/P4sWLuXGjuMbbPzOK/qkoEyonJ4cbN25w9OhRVCpVmSvQ5uTkkJiYaN6+cOECR48exc3Njbp161ZozACXLl0iPT2dS5cuYTQazWMJDg7G0dHRYjGS999/n6tXr95xMZI1a9bQrl27UutEvfn6FLZ/9z/WfbXRvDAKyFM87ezs7nid5Y1PEARBEARBqB5EUOoRY8jOMn/ds344oQ064K16HNiLxtam1Ie8X4/FcVR92rytkCRSjFq0BmvstcUFadP0BgDslEreDvahhcYe28qavldQOO4B6yCwM9i6VE6/1Zi24DoHDj5Pfv5FAOwOKXHcaA1vPJjzffrHedJyKp7pIAilWbt2LZMmTeLpp59Gp9PRqVMntm/fbg7IGI1Gxo0bx+XLl3FyciIiIoJly5YB8pS2uXPn8sYbbzBy5EiGDx9OdHQ0S5cuJSoqiqeffhonJyemTZtGcnIytra2ZY6lWbNm7Nq1izfffJMnn3wSSZIICgpi0KBBANSpU4eAgADmzp1LUlISCoXCvD1lyhRzP1OmTCEwMJAlS5awfPlycnNzAfjqq68YPHhwifOWti85OdliWhnIC3LEx8ezbt060tLScHd3p02bNsTFxdGkSRNAzh5KTEwkMTGxxPHlrZrYokUL89eHDh1i/fr1+Pv7k5SUdMdjDh48SFhYmHn71VdfBWDEiBFER0dXaMwAb7/9NuvWrSsxlt9//50uXbpUeDGSzMxMvv32W/NKjP/05RefA/DcUz0t9t++MEppyhufIAiCIAiCUD2IoNQjxJSbS/7NdPN2x3odCavbhcOXMgBwsiv97U7LkV+3UVpj0OYh3UrjsCRP1whFZ26XUbiCn5fKmpG+FV+FqUK0hbWknHzBrvLrKFVHtzIPYpdVXMPJ9nDlT9eTJImVvyVy+mqWOSD15Utt0RpMjPnyYKWfT3g0REdH3/E1V1dXvvzyyzu+vmLFijL7njVrFrNmzbLYp9FoLApx5+bmMnfuXF5++WXzvjsFWtq0acPPP/9c6mseHh53DHb8U79+/czZXunp6XTr1o3Vq1fTt29f7O3tAQgICCg3UHQ7W1tbNm3aVGabyMjIMoMrZbmbsRTp0qVLmcdVZMwgf4+U9X0CxYuRlMXZ2Zm8vLw7vn45PZebuTpqOdlSy6nsIOXdjk8QBEEQBEGoeiIo9YjI3f8Xl0aPJsvaFup7AVY42jnw3ZHL/HVBDjpp1KUXOzaa5GDT455BxO+MAWwwuSpBMqG2Ks6sySjMlHK1qcRvm4NrIfEXyC7MyLKtWBHfR4FOn4YdUD9kFs6qx0k59wLGSq6wfe5GLktiiwNfHo5qngzxIDWzQN4hFpoTqoEjR44QHx9P27ZtyczMNGfTFAWJHjY3Nzd++eUXVq1axb59++jWrVuVjEMQBEEQBEEQHnUiKPWIyD96FB0qsjW+yHWgrDh9xcDsb4+Z27g7ll5k2VRYdDjj9Fl5h8KaFo30KGOWY9+4eMWmm+agVCXVkTIaYPtrYJL7xUoFjne3QlSNo7it0HlhDa3atZ9DmVe50aHMfD07E65zKlWeFunrYsfYzoG0reeGQqGgnFI9SP/maNU9ZJ8I92/x4sUkJCSgUqlo1aoVcXFxeHhUckbmXXB3d+ftt9+usvMLgiAIgiAIwr+BCEo9IvJvZbOn3SwMpiuQ+wMobcgtkDOjfF3s6BjkzovtS6+gbTDIQSHJKH9WWvsQUKuAzKwLKKyLlzUvmr7nVlmZUvrc4oBU78Xg/TjYuVRO39WUjbUOKJyCIinw83sJGxsnjIqsMo+7W+/+cIr/Hbxs3m5YW8PwDgGVeo5HTimRun91cO4hatGiBYcOHarqYQiCIAiCIAiC8JCJoNQjIv36TfKzd1O0Wl6OHdhJ8spErQNc+WBA8xLH5B66RtZvlzDpjaAAhcKI2nkMKBy5+eE7WAMKa2vi0rN582wK13Ry35WWKaWTiwmjsII2o0sNCjwqlLa3sG78PcqrGjDIQSk/vxHUD5lg0a6y7kDCtRwAmtVxxktjyytdgiqpZ0EQhIdPhIcFQRAEQRAeTSIo9YjIzslEDkgpyFPrORRykZ4GOVNKbV16Ae3cv65ivFmASSWBAgw5aShsNQBIOXLmjrp+ff6bepMzeQXm4x5zvPMy3HdFV1jcVuXwSAekANR+h7B2SUFHpwofc7dFjDPz9Tyzag8Xb+ZiKjz0nX6P0dzP5a76ESh1lUpBEKqC+LcoCIIgCILwKBNBqUeEXisHjayUTvyv23E0Nhp0BjkyYXuHzCbJKNc0ylfIwaEs7Q2sCmeW1fs6BpW9Lap6AVw4JBfKnhPkQ1d3J0Ls1ZU06MJMKZVD5fRXjVk5pgGg16uLn7EquXbR4UsZXEjLNW97O9sSUsuxUs8hCIIgCIIgCIIgCJVFBKUeEXqDHGBCIQeg7Kzt0Bbuu1OmlCm7MFPJYAAba6zVavMUCfuGDbAqPO6GTq771N7FkfoOFV+S+472roTdS8Ggk7dt7O+/z2ooN/ccx46/jF5/C6W1vIqhtsARKinRrMiOk1f5v7jz3MiWz/FkiAdLBjbHxU6F6g7vvSAIgiAIgiAIgiBUNRGUekQYC7OeFIVBKbW1moLCwuR3ypQy3ExHYe1iLtahtLHBWPia0qp4ykSWQd7rbF1JtaSOroe8m8XbPi0qp99qJi3tF/Lzk8zbpixvJKnyp6J8/Hsixy5nmrdb+LngpamE4KEgCIIgCIIgCIIgPEAiKPWI0BtNcrFyZWFQykpdbqYUhQESQ2EASlHLHdJAqVSYa+oYJYncwoCXprKCUtps+fPza6F2M3ALrJx+qwmjMY9btw5w9eoWAHx8BnHmZy02Vx8DTlXaea7cyidfb+RKpjx1862nGlG/loZ2gW6Vdo5/J1FSWRAEQRAEQRAE4WEQQalHhNEkgdVtmVJWavLyys6UAjlYZVLKASgrlS0GLLOksg1G89dOlTUVTFcYlPJqDB7BldNnNXL69AyuXd9m3nZyao6pIAFJUt453HGXhbW/+usSMzadsNj3dDMfajtXToaU9K8MzIiCyoJQbZX3I6mSa/QJgiAIgiAID4coOPOIMBT9Qq6U31K1lZqsAj0AznY25nbnE8+ycPYs3nlrJhscjrNBtQ8U8jFWVnKMUmmlQGsy8dyRRBru/lvuw9oKlfI+v11MJjAaQJsjb6sfvSLckmTiRlosAGpVLXy8B1K7Vp9K7F8iNTOfnQnXAbC1UeJka02PxrWo5XT3Bej/GXxSiMCMAERGRqJQyBmTKpWK4OBg5s2bh8FguK9+d+7ciUKh4NatW5Uz0Aq4cOECQ4YMwcfHB1tbW+rUqUO/fv2Ij4+3aLdt2zY6d+6MRqPB3t6eNm3aEB0dbdEmKSkJhULB0aNHK3z+OXPm0LBhQxwcHHB1daV79+7s37/fos9Ro0ZRr1497OzsCAoKYvbs2eh0unL7jomJoXnz5tjb2+Pt7c1LL73EzZs3yzzmjz/+oE+fPvj4+KBQKNi8eXOp7U6fPk3fvn1xdnbGwcGBNm3acOnSJfPrY8eOJSgoCDs7Ozw9PUu9pwcOHKBbt264uLjg6upKeHg4x44dK/V8iYmJaDQaXFxcLF8o5UfS7ddgbW3Ptm2/lXnNgiAIgiAIQvUlglKPCKNJDi7cnimVlS8HpZxuC0r9tWcPWoUVRmsVWcoCMpWFxc6NBkx58rQvpbWSPRk57L2VYz7uGS+X+xtg+gVYHALvuINJHheqRycoJUlGLlxYwanTr2MyaQElHTvuolGjhVhZVV4h98nfHKXDwt/YcfIaAEsGPM7xOeF8Pry1ecqlIFSGiIgIUlNTOXv2LFOnTmXOnDl88MEHVT0ss4oEbfR6PT169CAzM5NNmzaRkJDAN998Q9OmTS0CYytWrKBfv36Ehoayf/9+jh8/zuDBg4mKiuK11167r3HWr1+flStXcuLECXbv3k1AQAA9e/bkxo0bAMTHx2Mymfj00085efIky5Yt45NPPmHmzJll9rtnzx6GDx/OqFGjOHnyJBs2bOCvv/5izJgxZR6Xm5tL8+bNWbVq1R3bnDt3jieeeIKGDRuyc+dOjh8/zqxZs7C1Lc7EbNWqFWvXruX06dPs2LEDSZLo2bMnRqOcXZuTk0NERAR169Zl//797N69G41GQ3h4OHq93uJ8er2eF154gSeffLLMsd/NNQiCIAiCIAg1g5i+94gwFmZKFSjkzycu53IrVZ4m52RbHJQyFD4MOBoKeMLQASuFgr+yb2LQ25KPFwoFqO2tuZAvr+RW396WtU0DqGd391k4Fi79CXlpxdu+rcDW+f76rEau39jB+Qsfmrft7QNQKovvu0JRMgfpXqbI7UmU76GNlQJfFzva32P9KJERVTH/5glBarWa2rVrA/DKK6/w3XffsXXrVqKiopg0aRLff/89Wq2Wzp0789FHHxESEgLAxYsXGT9+PLt370an0xEQEMAHH3xA48aNCQsLA8DV1RWAESNGEB0dTXZ2NlFRUWzevBknJyemTZvGli1bePzxx/nwww8BCAgIYNSoUZw9e5bNmzfz3HPPER0dze7du5kxYwYHDx7Ew8ODZ599loULF+Lg4MDJkyc5d+4cv/76K/7+/gD4+/sTGhpqvs7k5GSmTp3K5MmTWbBggXn/1KlTUalUTJw4kQEDBtCuXbt7uo9Dhgyx2F66dClr1qzh+PHjdOvWjYiICCIiIsyvBwYGkpCQwOrVq1m8ePEd+923bx8BAQFMnDgRgHr16jF27FgWLVpU5nh69epFr169ymzz5ptv0rt3b95//33zvqCgIIs2L7/8svnrgIAA5s+fT/PmzUlKSiIoKIj4+HjS09OZN28efn5+AMyePZtmzZpx8eJFgoOLp26/9dZbNGzYkG7durF3794yx1bRaxAEQRAEQRBqBpEpVcPlHz/OzTVrMBRmSmkLg1LpWbbk640oFVDXvThTR2+Qg1L2CjU+kivekit6KxUZrgU06eJDi5516TaisXnFvTbO9gTZ26K83ywcXWHWVf1eMD0JRv1y13WUqrPMzMMAWFk5EBT4Oo89tuKObcsMCJUSBYm/msXkr4/wn5hDpOXI2SF/zujGztfDcHe8z2Ch8NBIkoTRmFclH1Il1Nuxs7NDp9MRGRnJwYMH2bp1K/v27UOSJHr37m3Ofhk3bhxarZY//viDEydOsGjRIhwdHfHz8+Pbb78FICEhgdTUVJYvXw7Aq6++yp49e9i6dSuxsbHExcVx+PDhEmNYvHgxzZs358iRI8yaNYtz584RERFB//79OX78ON988w27d+9m/PjxAHh6eqJUKtm4caM5g+efNm7ciF6vLzUjauzYsTg6OvLVV1/d9/0DObvrs88+w9nZmebNm9+xXWZmJm5uZQecO3ToQHJyMtu3b0eSJK5du8bGjRvp3bv3fY3RZDLxww8/UL9+fcLDw/Hy8qJdu3Z3nOYHcubS2rVrqVevnjkA1aBBA9zd3VmzZg06nY78/HzWrFlDo0aNCAgIMB/722+/sWHDBpH1JAiCIAiC8C8lMqVqMEmSuDTmZUyZmZjqNwNAaW2F/no/dLeasuDZpjzu54Kvi535GGOB/GAWZGpgDjT1HeSLT9v22FoXT83ISpSDSE6VveKevRvYuVZOn9VAUtInXEpeg16fDkBw8BvU8R1SzlEVU5RJtXrnObYcvWLe72pvg5uDqlLOIZTuQYRLTaZ8du5q+gB6Ll+XzifueRqpJEn8+uuv7Nixg169erF582b27NlDx44dAbmukZ+fH5s3b2bAgAFcunSJ/v3707SpfK2BgcWraxYFWry8vMy1g7Kzs1m3bh3r16+nW7duAKxduxYfH58SY+natStTp041b48ePZqhQ4cyefJkAEJCQvjoo4/o3Lkzq1evxtfXl48++ohp06Yxd+5cWrduTVhYGEOHDjWP68yZMzg7O+Pt7V3ifCqVisDAQM6cOXNP967Itm3bGDx4MHl5eXh7exMbG4uHh0epbRMTE1mxYkWZWVIAoaGhxMTEMGjQIAoKCjAYDPTp0+e+gzvXr18nJyeH9957j/nz57No0SJ++uknnnvuOX7//Xc6d+5sbvvxxx8zbdo0cnNzadCgAbGxsahU8s8mjUbDzp07eeaZZ3jnnXcA+f3ZsWMH1tbyrx43b94kMjKS//73vzg5Od3XuAVBEARBEISaSWRK1WCSXo8pMxMAnYMcPLK2UVFwswOS0ZGIx2rT2MfyF32jTg5KKYE8k8TlAi0+tetaBKQAsg0moJKCUgYtFMjjfJTqSBmNeZw7v8QckLKxccPDvUul9b//fDpf7kviWPItAF5oW5d5/ZoQM7q9qB/1IIlVvAA5kOLo6IitrS29evVi0KBBREZGYm1tbTGVzd3dnQYNGnD69GkAJk6cyPz58wkNDWX27NkcP368zPOcP38evV5P27ZtzfucnZ1p0KBBibatW7e22D527BjR0dE4OjqaP8LDwzGZTFy4cAGQM7euXr1KTEwMHTp0YMOGDTRp0oTY2NgK34uiQEtZYmJiLMYRFxdnfi0sLIyjR4+yd+9eIiIiGDhwINevXy/RR0pKChEREQwYMMCiNtTt/UZFRQFw6tQpJk2axNtvv82hQ4f46aefSEpKMr8eFxdncVxMTEyFrtVkkn/29+vXjylTpvD444/zxhtv8PTTT/PJJ59YtB06dChHjhxh165d1K9fn4EDB1JQUABAfn4+o0aNIjQ0lD///JM9e/bw2GOP8dRTT5Gfnw/AmDFjGDJkCJ06dSp1LHFxcdSv40n7BnUI8vWo8DUIgiAIgiAINYfIlKrBpIICTECWnZo8ewXkYPGO2qtKBpQMhdPycow5xGYZsC3IoKWqeAqYUZI4nZPP+cKaUq429/ktsnUiHF5XvP0IrLgnSUYyM4+QlXUMkB/g2reLxdbWBysr27IPvpNSgkyvxBxCMjqYt19o60ezOi731v9dqozpXjXOAw70KZV2dOl84oGeo6xz362wsDBWr16NSqUqXOXMmq1bt5Z73OjRowkPD+eHH37g559/ZuHChSxZsoQJEybcy9AtODg4WGzn5OQwduxYc12l29WtW9f8tUajoU+fPvTp04f58+cTHh7O/Pnz6dGjByEhIWRmZnLlypUS2Vk6nY5z584RHh5e7tj69u1rEazz9fW1GHdwcDDBwcG0b9+ekJAQ1qxZw4wZM8xtrly5QlhYGB07duSzzz6z6Pv21f6KMooWLlxIaGgor7/+OgDNmjXDwcGBJ598kvnz59O6dWuL42rVqlXuNQB4eHhgbW1N48aNLfY3atSI3bt3W+xzdnbG2dmZkJAQ2rdvj6urK9999x0vvPAC69evJykpiX379qEsXLl1/fr1uLq6smXLFgYPHsxvv/3G1q1bzVlhkiRhMpmwtrbms88+44UXXmDHH39yK1eHu6Oax4LrIgiCIAiCIDxaRFCqBjMVFHCyjifJ7k6QU5iJVFhbW6kAtXVxIlx6ejo5OTnka3WgAKlw8SMbXQ6K2wJP75y7wifJN8zbIfb3WbMoYXvx11Zq8A+9c9sa4tKl/yPxXHEBYCen5jg4BJZxxL1zsbchNMiDQE8Hmvo+OoXh/40UCkWlrsT4oBUFUm7XqFEjDAYD+/fvN0/fu3nzJgkJCRZBDD8/P6KiooiKimLGjBl8/vnnTJgwwZxxdHt9p8DAQGxsbDhw4IA5kJSZmcmZM2fumEFTpGXLlpw6darEOMuiUCho2LChuaD2888/z/Tp01myZAlLliyxaPvJJ5+Ql5fH8OHDy+1Xo9Gg0WgqNAaTyYRWqzVvp6SkEBYWZl7RriiIU6S068vLyzNPgytiZSX/IUKSJOzs7O7qvhRRqVS0adOGhIQEi/1nzpwxF4svjSRJSJJkvq68vDyUSqVFVmfRdlE21r59+yy+F7Zs2cKiRYvYu3cvvr6+2NnZUS8wiJs5Wrw0tmg09xj0FwRBEARBEKotEZSqwSStlizbwmklVioUuIObC2SCvcra/DCQkpLC559/LrcrfD5QGA34puyi9rUDKGz6mfv8KzMXAE+VNY852tHa2TIz4a4V1ZJ6ZR+4BYJNzX+ouFVY1Fyt9sbW1pfgoNcf2Lna1XNj1dCWD6z/fxLTAoWyhISE0K9fP8aMGcOnn36KRqPhjTfewNfXl3795J8jkydPplevXtSvX5+MjAx+//13GjVqBMgr3ykUCrZt20bv3r2xs7NDo9EwYsQIXn/9ddzc3PDy8mL27NklAhqlmT59Ou3bt2f8+PGMHj0aBwcHTp06RWxsLCtXruTo0aPMnj2bYcOG0bhxY1QqFbt27eKLL75g+vTpgJxR9f777/Paa69ha2vLsGHDsLGxYcuWLcycOZP58+fz2GOPWZz3nwEbgCZNmmBjY2OxLzc3l3fffZe+ffvi7e1NWloaq1atIiUlhQEDBgDyz+cuXbrg7+/P4sWLuXGj+I8CRasflqZPnz6MGTOG1atXEx4eTmpqKpMnT6Zt27al1uMqkpOTQ2Jionn7woULHD16FDc3N3NQ8PXXX2fQoEF06tSJsLAwfvrpJ77//nt27twJyFMuv/nmG3r27ImnpyeXL1/mvffew87OzlxovUePHrz++uuMGzeOCRMmYDKZeO+997C2tjavwlj0fVHk4MGDKJXKEve7vGu4eDGF48dP4+fnYJEhJwiCIAiCIFR/IihVg0kFBeTbagA9KrtnUNrUIc/+T8gEu9um7l1JSgLASlLiIKlxlGxxzLiFY8r/yGpcByvX4sLjF/Pl1d3WNwukqeY+szoMOjDI9UVw8q7xAalr137g2vUfSEv7BYDGjRbh5lbRzK+7D/Z0qu9JVOeg8hsKwkO0du1aJk2axNNPP41Op6NTp05s377dHJAxGo2MGzeOy5cv4+TkREREBMuWLQPkKW1z587ljTfeYOTIkQwfPpzo6GiWLl1KVFQUTz/9NE5OTkybNo3k5GRsbcv+mdGsWTN27drFm2++yZNPPokkSQQFBTFo0CAA6tSpQ0BAAHPnziUpKQmFQmHenjJlirmfKVOmEBgYyJIlS1i+fDm5uXJw/quvvmLw4MElzlvavuTkZOrUqWOxz8rKivj4eNatW0daWhru7u60adOGuLg4mjRpAkBsbCyJiYkkJiaWOL6sabSRkZFkZ2ezcuVKpk6diouLC127dmXRokVl3rODBw+ag0Igr3wIMGLECKKjowF49tln+eSTT1i4cCETJ06kQYMGfPvttzzxxBMA2NraEhcXx4cffkhGRga1atWiU6dO7N27Fy8vLwAaNmzI999/z9y5c+nQoQNKpZIWLVrw008/lVpU/m788xpmzvygxDUIgiAIgiAINYMIStVgpgIteqvCYIfSFq1VHkbXDEi1rCeVd+0qAL4mN3xTjNywtud/dU/yZ1drXmzUnZ6F2QiSJJFpMADgdr+1pA6tgytHirdVFZvWUl0ZDNmcPPUakiQH7aysHHF2blFp/X/4yxn+uZD7h4Mex9X20VmpUKg5ynqwd3V15csvv7zj6ytWrCiz71mzZjFr1iyLfRqNxqKIdW5uLnPnzuXll18270sqDK7/U5s2bfj5559Lfc3Dw4Ply5eXOZ4i/fr1M2d7paen061bN1avXk3fvn2xt5cD9AEBAXdVb83W1pZNmzaV2SYyMpLIyMgK93m7CRMm3HWtri5dulToGl566SVeeumlUl/z8fFh+/btpb52ux49etCjR48Kj62i9+L2azAa88nNTUShsEajaVTOkYIgCIIgCEJ1I1bfq8EkbQEScnGojAbfEd3mTXJ95L9S26usyf7td852CePGN98AYIWSpLr+ZCqDoJaGHv49GFB/gLk/rUnCUPisormfVffSL8D3E+HQWnnbwROsanb8My/vgjkg1aD+PFq1XH//9YEKH6rydUbWxF243yHezxAEoUodOXKEr776inPnznH48GGGDh0KYA4SPWxubm788ssvdOvWjX379lXJGARBEARBEATh36BmRwr+5Qx5eYAcVdD6+yDl/Y1JIQdK7FVWZP60Axv//ti6S8BNlCgx3pRfb+nbgle6vGjRX67RZP7aweo+4pW5afJnW2doMwaCu997X1UsNzeRY8fGkF9wCQAnpxbUqTO0Uvq+mavn3R9OkZmvr5T+7oYoHVWW4kidCNo9PIsXLyYhIQGVSkWrVq2Ii4vDw8Ojysbj7u7O22+/XWXnFwRBEARBEIR/AxGUqsF0mZnmr7VqA+RBZp78FG2vsgKjO9bezcEqCbiJZDIg6eW3XPWPWWH7b+VwJCsPADulEqv7iVroCoubO9WBbrPKblvNJV/+0hyQAiU+3v0rre/9528SfVHOkLIr3CdiRVVJ3P2q0qJFCw4dOlTVwxAEQRAEQRAE4SETQakarCA7x/z1Fa389U9/pwH1sLOxQjJKKGxAbyUXG0/Nu0heqJbdmb/zUq0XzMeez9PS70jxSkYuNvcxdQ9AJxcJRu14f/1UIa32GllZx0hJkevcBNabgo/PINRqz/vqV3FbFs6tfB04wpB2dfFUGuEHy7YSIk2nqojwlCBUD+LfoiAIgiAIwqNNBKVqMH12rvnr67oMAKxxwN1JTb/HfZEOSigAvcIIgFEycMv3EtdNF7FRFi9dfiFfC4DGSkkbZweer+12bwNKPw9H18PVE/K2yuHe+qlikiRx6PAL5OdfLNyjwNv7ufsOSP2T3mhCqYAZvRpib9BxplJ7vzcK8QgoCIIgCIIgCIIgPCQiKFWDFeTmF36lIE/KAiAspB6rn5drOF0yFq5OhKmwlQKdSS7WrbJSmfu5pZdX3HvcyZ71zYPufUC/zoOT3xVvO3jde19VKC/vAvn5F1EorHFyaoanR3dsbX3uq8/SZkMGezryQb/maGxtMObo7qt/QRAEQRAEQRAEQahpRFCqhpL0enQ5eYVbSrKN1wDQ2DiZ2+y1LyBe/at5/oMCJTpjYVBKWRyUyjDImVQu1vf57ZBzQ/5cPwK8GkHLEffX30N269ZBki+vIy3tNwCcnVvRquX6Sun77LUcGltjMRclNNiDtq3qVEr/giAIgiAIgiAIglDTiKBUDZSzaxeXJ07ipmMdqAMgr5RnzK+Dey0ffov+lLRLFzlnqyoOgkgmrPVGsnRyRtXtmVIZhZlSrvdbS0pfOJ2w9UtQP/z++qoC5y8sJyNjr3nby6tXpfWdnJFH48qd/ScIgiAIgiAIgiAINZoIStVAWXv/4kTQUG7Za0C/DUmhoJP9In44LUHtAo78+D0ApgatAWiZ4U5i+jnS3dyIT/8F+GdQSs6UcrO5z2+HogLnNayWlCQZ0enSyMo6DoC//ytoHBvh5RVxX/2m5WiZ+/0pMnJ1OBlF0fIaQxLvlSBUP+LfpSAIgiAIwqNIBKVqoBs5tlz3aoLJcB30YLAygdEByMEGExKg1jiRXZglpXEIINElg7O1/8LDzgNvB28e93qcGzo9v93M5ni2PA3QxfoeM6UkSf6ogUEpSZI4cOBZsnNOmvf5+UWiVnncd9/fH7vC98euANC7nLal1ZwSHjLxJgiCIAiCIAiCIDxUyqoegHD3jIWZTXbKbAC01gXoDXJAybqwqLmtvYN56p6tSx5xgRto1CCQ3wf+zvqn1uOkcmJqfDKT4i9xMEsOSnmo7iFGeSEOFvrBPFfISpH3qRzv4+oervz8JHNASqGwwdfnhfsOSCWn57Es9gzbjqcC0K2hF019nUq0Ewk51d+/9S2KjIxEoVCgUChQqVQEBwczb948DAbDffW7c+dOFAoFt27dqpyBVsCFCxcYMmQIPj4+2NraUqdOHfr160d8fLxFu23bttG5c2c0Gg329va0adOG6OhoizZJSUkoFAqOHj1a4fPPmTOHhg0b4uDggKurK927d2f//v0WfY4aNYp69ephZ2dHUFAQs2fPRqcrf/GDmJgYmjdvjr29Pd7e3rz00kvcvHmzzGNWr15Ns2bNcHJywsnJiQ4dOvDjjz+aX09PT2fChAk0aNAAOzs76taty8SJE8nMzDS3iY6ONn9//PPj+vXr5nZarZY333wTf39/1Go1AQEBfPHFFxbj+fDDD83n8vPzY8qUKRQUFJR5DZs2baJnz564u7tjbW3P8ePxZbYXBEEQBEEQqi+RKVUD5Rfkoc1cQ4FJrg9lVEroioJSJj16QH/5Mrj5ygcUJkDZWtla9PN3jrx6X3tnB+rZqwn3cL77wZz7DXTZxduuAeDsd/f9PGRGo5a0m79x/doPADg5taBN642V0vd7P8bzw4lU83ZYQy80aXZQ9rNilbhT0EX614ZjhCIRERGsXbsWrVbL9u3bGTduHDY2NsyYMaOqhwaATqdDpVKV2Uav19OjRw8aNGjApk2b8Pb25vLly/z4448WgbEVK1YwefJkpk+fzurVq1GpVGzZsoWoqCj+/vtvFi9efM/jrF+/PitXriQwMJD8/HyWLVtGz549SUxMxNPTk/j4eEwmE59++inBwcH8/fffjBkzhtzc3DLPu2fPHoYPH86yZcvo06cPKSkpREVFMWbMGDZt2nTH4+rUqcN7771HSEgIkiSxbt06+vXrx5EjR2jSpAlXrlzhypUrLF68mMaNG3Px4kWioqK4cuUKGzfKPyMHDRpERITl9ObIyEgKCgrw8ipedXXgwIFcu3aNNWvWEBwcTGpqKiaTyfz6+vXreeONN/jiiy/o2LEjZ86cMQdEly5desdryM3N5YknnmDgwIGMGTOm3PdAEARBEARBqL5EUKoGysy5gWQq/qv1DVctOQXyL/pS+g3y6gRToJTfWoWkQO9oA1jWkdKbJK5o9QB8/lgAniqbexuMLkf+3H4cPDkVbJ3Bqvp/W51NXEBKyn/N2y7OLe+7z2PJt0jOyONEivzeRDSpTUNvDc+28OWX3RWbGnZ7K+kBplLdaTSKO74i/Nuo1Wpq164NwCuvvMJ3333H1q1biYqKYtKkSXz//fdotVo6d+7MRx99REhICAAXL15kKqtKXAABAABJREFU/Pjx7N69G51OR0BAAB988AGNGzcmLCwMAFdXVwBGjBhBdHQ02dnZREVFsXnzZpycnJg2bRpbtmzh8ccf58MPPwQgICCAUaNGcfbsWTZv3sxzzz1HdHQ0u3fvZsaMGRw8eBAPDw+effZZFi5ciIODAydPnuTcuXP8+uuv+Pv7A+Dv709oaKj5OpOTk5k6dSqTJ09mwYIF5v1Tp05FpVIxceJEBgwYQLt27e7pPg4ZMsRie+nSpaxZs4bjx4/TrVs3IiIiLAI8gYGBJCQksHr16jKDUvv27SMgIICJEycCUK9ePcaOHcuiRYvKHE+fPn0stt99911Wr17Nn3/+SZMmTXjsscf49ttvza8HBQXx7rvv8uKLL2IwGLC2tsbOzg47Oztzmxs3bvDbb7+xZs0a876ffvqJXbt2cf78edzc3AD5Pbzd3r17CQ0NNd+jgIAAXnjhBYtMstIMGzYMkLPMBEEQBEEQhJpNTN+rgfQ6OcNJZeXKN92SOfh4FjkF8pS+vJxMjBoX9A7yFDonyQ6dWj5ObaU295FlMJq/drW+jyCStjAo5egFDu41IiAFkJGxBwC1ujY+3gPx9x97X/2du5FDv1V7GL/+CJfS5emQr4XXZ3L3+jio73RPRDbSv4kkSeQajVXyURkBTjs7O3Q6HZGRkRw8eJCtW7eyb98+JEmid+/e6PVykHvcuHFotVr++OMPTpw4waJFi3B0dMTPz88c7EhISCA1NZXly5cD8Oqrr7Jnzx62bt1KbGwscXFxHD58uMQYFi9eTPPmzTly5AizZs3i3LlzRERE0L9/f44fP84333zD7t27GT9+PACenp4olUo2btyI0Wgs0R/Axo0b0ev1vPbaayVeGzt2LI6Ojnz11Vf3ff9Azu767LPPcHZ2pnnz5ndsl5mZaQ7k3EmHDh1ITk5m+/btSJLEtWvX2LhxI717l1fBrpjRaOTrr78mNzeXDh06lDkeJycnrO/w/4ovv/wSe3t7nn/+efO+rVu30rp1a95//318fX2pX78+r732Gvn5+eY2HTt25NChQ/z1118AnD9/nu3bt9/VNQiCIAiCIAg1W82IIAgW9Eb54c/Kyo58tQl7KwfScuT6I9aFr3kbXXjMWBdPkxPnFPK8sdszpbILH9AcrJRYK+8hO8ZkhBvxxXWk1DWjjlTKlW/IzjpBQYE87pYtYrC3D7jvfs9clacwOtla09jHicbezgR51ox7IjwceSYTQX+cqJJzn+vUFAere1vIQJIkfv31V3bs2EGvXr3YvHkze/bsoWPHjoBc18jPz4/NmzczYMAALl26RP/+/WnatCkgZ/4UKQq0eHl54eLiAkB2djbr1q1j/fr1dOvWDYC1a9fi4+NTYixdu3Zl6tSp5u3Ro0czdOhQJk+eDEBISAgfffQRnTt3ZvXq1fj6+vLRRx8xbdo05s6dS+vWrQkLC2Po0KHmcZ05cwZnZ2e8vb1LnE+lUhEYGMiZM2fu6d4V2bZtG4MHDyYvLw9vb29iY2Px8Ci9dl1iYiIrVqwod8pgaGgoMTExDBo0iIKCAgwGA3369GHVqlXljufEiRN06NCBgoICHB0d+e6772jcuHGpbdPS0njnnXd4+eWX79jfmjVrGDJkiEX21Pnz59m9eze2trZ89913pKWl8Z///IebN2+ydu1aQM4iS0tL44knnkCSJAwGA1FRUcycObPcaxAEQRAEQRAeDSJTqgYymORiw8rCrKScfEjL0QKgLsyA0kh2+Js8sTapOGgnF/K+PVMqs7Cd872uuLd1AqzuCBd2ydvqkoW8q5vs7NPEx88k5cpXmEw6lEo1anXt++rz8z/O03T2DiZ9fRSAJ0I8+PrlDrzdpzEKsZpbDSUy2EAOpDg6OmJra0uvXr0YNGgQkZGRWFtbW0xlc3d3p0GDBpw+fRqAiRMnMn/+fEJDQ5k9ezbHjx8v8zznz59Hr9fTtm1b8z5nZ2caNGhQom3r1q0tto8dO0Z0dDSOjo7mj/DwcEwmExcuXADkzK2rV68SExNDhw4d2LBhA02aNCE2NrbC96K82lUgB+duH0dcXJz5tbCwMI4ePcrevXuJiIhg4MCBFgXBi6SkpBAREcGAAQMsaiXd3m9UVBQAp06dYtKkSbz99tscOnSIn376iaSkJPPrcXFxFsfFxMSY+2vQoAFHjx5l//79vPLKK4wYMYJTp06VGE9WVhZPPfUUjRs3Zs6cOaVe9759+zh9+jSjRo2y2G8ymVAoFMTExNC2bVt69+7N0qVLWbdunTlbaufOnSxYsICPP/6Yw4cPs2nTJn744Qfeeecd8z0NqeNJ+wZ1CPL1tLingiAIgiAIwqNBZErVQAbJBApQFNaNQrIm2NOB+i5KHK7I9Ywkk4Ett+SsqQ15W0AB9jb26E0SS5OusuFaOgBO9xqUSj0mf7ZzBZe6UK/zfV3Tg2Yy6cnI2GveDqw3GWfnVlj9o/j73fr28GWytcUrknUIdC+z/R3DHSKAVQ082PfAXqnkXKemD/QcZZ37boWFhZmLfvv4+GBtbc3WrVvLPW706NGEh4fzww8/8PPPP7Nw4UKWLFnChAkT7mXoFhwcHCy2c3JyGDt2rLmu0u3q1q1r/lqj0dCnTx/69OnD/PnzCQ8PZ/78+fTo0YOQkBAyMzO5cuVKiewsnU7HuXPnCA8PL3dsffv2tQjW+fr6Wow7ODiY4OBg2rdvT0hICGvWrLEoGn/lyhXCwsLo2LEjn332mUXft6/25+Qk/wFg4cKFhIaG8vrrrwPQrFkzHBwcePLJJ5k/fz6tW7e2OK5WrVrmr4tWVARo1aoVBw4cYPny5Xz66afmNtnZ2URERKDRaPjuu++wsSm97uD//d//8fjjj9OqVSuL/d7e3vj6+uLsXLyARqNGjZAkicuXLxMSEsKsWbMYNmwYo0ePBqBp06bk5uby8ssv8+abb9K3b18CGjUnI1eHu6OKxxsGlToGQRAEQRAEoeYSQakayGSSwAqkwgdNSbLhNdcETu74npu1G4CrBmXhA7aEibpOfoS4htC7Xm+2Xs9g2cVr5r7au9zjFDNt4Yp7Q/4Hfm3LblvFLiWvJTHxfSRJnuLoX/dl6tW79wfkq5kFrN17gXydkYs35fpR/29UWxrU1uClub8gl/DoUigU9zyFrioUBVJu16hRIwwGA/v37zdP37t58yYJCQkW07/8/PyIiooiKiqKGTNm8PnnnzNhwgRzxtHt9Z0CAwOxsbHhwIED5kBSZmYmZ86coVOnTmWOsWXLlpw6darEOMuiUCho2LAhe/fKQernn3+e6dOns2TJEpYsWWLR9pNPPiEvL4/hw4eX269Go0Gj0VRoDCaTCa1Wa95OSUkhLCyMVq1asXbtWpT/CCKWdn15eXklajxZFX5/SZKEnZ1dhe/LP8eTlZVFeHg4arWarVu3Ymtb+s+1nJwc/ve//7Fw4cISr4WGhrJhwwZycnJwdJT/P3PmzBmUSiV16tQxX8M/r/X2a9BoNNQLDEKTo8VLo7aYHigIgiAIgiA8GkRQqgYyFebbSIW1oCSjPdnXLwNgVfiQokT+xd6oMDLisREMqD8AgM+uyrWUbBQKZgV5M6B22cV076ho1T11xR7CqtKli5+bA1JqdW1qez93X/39X9x5/m/3BfO2jZWCx/1c0NjeeQXDmjaV70Gu/CfUXCEhIfTr148xY8bw6aefotFoeOONN/D19aVfv34ATJ48mV69elG/fn0yMjL4/fffadSoESCvfKdQKNi2bRu9e/fGzs4OjUbDiBEjeP3113Fzc8PLy4vZs2ejVCrL/Xczffp02rdvz/jx4xk9ejQODg6cOnWK2NhYVq5cydGjR5k9ezbDhg2jcePGqFQqdu3axRdffMH06dMBOaPq/fff57XXXsPW1pZhw4ZhY2PDli1bmDlzJvPnz+exxx6zOG9CQkKJsTRp0qRENlFubi7vvvsuffv2xdvbm7S0NFatWkVKSgoDBsg/k1NSUujSpQv+/v4sXryYGzdumI8vWv2wNH369GHMmDGsXr2a8PBwUlNTmTx5Mm3bti21HleRGTNm0KtXL+rWrUt2djbr169n586d7NixA5ADUj179iQvL4///ve/ZGVlkZWVBciF461uC6x+8803GAwGXnzxxRLnGTJkCO+88w4jR45k7ty5pKWl8frrr/PSSy+Zg0t9+vRh6dKltGjRgnbt2pGYmMisWbPo06ePxXn+KT09nUuXLnHlyhUAzp5NQqGwIijItcx7JgiCIAiCIFQ/IihVA5kKAwZ5yNkGCpMjkqmwcLmjFxlkA3JGgtY6z6KWVE5hhsJrAbV52c/r7k4sSXD5AGSnQoH8kIKqehbzNpn0XL/+I3p9BlqdXLulQ/vfsLX1Ram8t2/7Szfz2HnmOnvPyYXjuzeqRWMfJ1rULTsgJQiPkrVr1zJp0iSefvppdDodnTp1Yvv27eaAjNFoZNy4cVy+fBknJyciIiJYtmwZIE9pmzt3Lm+88QYjR45k+PDhREdHs3TpUqKionj66adxcnJi2rRpJCcn3zFDp0izZs3YtWsXb775Jk8++SSSJBEUFMSgQYMAqFOnDgEBAcydO5ekpCQUCoV5e8qUKeZ+pkyZQmBgIEuWLGH58uXk5uYC8NVXXzF48OAS5y1tX3JysjkDqIiVlRXx8fGsW7eOtLQ03N3dadOmDXFxcTRp0gSA2NhYEhMTSUxMLHF8WcHhyMhIsrOzWblyJVOnTsXFxYWuXbuyaNGiMu/Z9evXGT58OKmpqTg7O9OsWTN27NhBjx49ADh8+DD79+8HSmZoXbhwgYCAAPP2mjVreO6558xF62/n6OhIbGwsEyZMoHXr1ri7uzNw4EDmz59vbvPWW2+hUCh46623SElJwdPTkz59+vDuu++WeQ1bt25l5MiR5u2XXpoGwOzZs+9Y+0oQBEEQBEGonkRQqgYyFT6n5CgKV+EzOWEyGopfU4CVBKn1T7Df5jeaWb1iPjbHaALAwfoeatxfPghreljus62eBc6vX/+Rk6eKHzqVSjvs7OreV8bShK+PcCz5lnl7WAd/Otf3vJ9hVj81K6Hrgfu35otFR0ff8TVXV1e+/PLLO76+YsWKMvueNWsWs2bNstin0WgsCnHn5uYyd+5cixXfkpKSSu2vTZs2/Pzzz6W+5uHhwfLly8scT5F+/fqZs73S09Pp1q0bq1evpm/fvtjb2wMQEBBwV1mEtra2bNq0qcw2kZGRREZGVrjP202YMOGua3WtWbOmzNe7dOlS4WssmgJ5Jw0bNiyzoLy1tTWzZ89m9uzZFTpfkdvvmdFYQG7uWRQKazSaRnfVjyAIgiAIglD1RFCqBjIVflYqrdDfaoVjQRdMhoOFr8kPE1bAhQZ/cTXtPGplcaZUrqEwKGV1D0Gp9PPyZ1sX8GoM9TqBrXOZh1SVvDx5ep2dnT8aTRM8Pbrf9xS689flKYthDTwJ9nIkNKjsouZ3Vn0iP2KanlAdHDlyhPj4eNq2bUtmZibz5s0DMAeJHjY3Nzd++eUXVq1axb59++jWrVuVjEMoJn5SCYIgCIIgPJpEUKoGkgp/Pbe3saMgtRdebvYYCzOlimIMCkBrlAvX3j59L7dw+p7jvRRc1hUWN6/3JAz6770N/gFLT9/DxUufk5t7FoDatZ8hsF7JlbkqateZGyzcfhqtwWReZe+jF1pUznS9cgJC0oN8DKs+cbHqR5LEYohVYPHixSQkJKBSqWjVqhVxcXF4eHhU2Xjc3d15++23q+z8giAIgiAIgvBvIIJSNYjhxg20Z88iKQpX3bOSn5ztbKzIMCrIq1ufAknO5lFIcLNArn2ktlbz3ys3iU5J4++cfACcre8hKKUtLG5eTetIASSeW0R29knztoNDxVflKk3MnxeJv5pt3vZ3t8dRfR//bO4UZxJRkKon3oMq06JFCw4dOlTVwxAEQRAEQRAE4SETQakaQtLp2DN8Fhdd21GgdgZjJgZbCSRwtrMhw06DpLSiaKF1a0lJWn4aAPbW9nx0/hqXCuQV6NxsrGjlbF/xkxu0cPVvuJkob1fDoJTBkE1O7pnCgJSCxo3eR62uhatrh3vqL+7sDX45dY0jhTWk3ujVkJZ1XWlQW1PjVtITBEEQBEEQBEEQhOpIBKVqCGN2NknuHclxrIOULdePKtCYIAuc7GzM2VPBWU6E2AZRYGXiSd8nCXAOoL5rfa7p/gbg48b+dHRxxOFupu999QKc+7V4W129glJZWcc5fORFjEZ5xSwnp+Z4ez93X31O/vooN3N15u3ujbwI9tLce4cijiUIgiAIgiAIgiAIFkRQqoaQ9HoMhbWh9KpUrAxwNOsWAM521uapR54mJ3xNblywSefj7h8DkK43oC1csu8pT2fUyrsscn6tcDqcxgfs3aHxM/d9PZXp2vXt5oCUWlWLunVH31M/WoORn09eIz1XZw5IjQ8LJqSW4/0FpGqgB1rPShAEodKJn1mCIAiCIAg1kQhK1RBS9k20pivosv9AIWkBBQUKNQqgtb8LCacKGyrkAty3BxWuafWAPG3vrgNSALrCWlKR28A96N4vopJlZh4l9eomUlLWAxAS8hZ1/Ubec3/fHkph5ncnzNtuDipeC29w3+MsUhOSpRQ1YpSCIAiCIAiCIAjCo0AEpWoIKS8TreEYJlMaysLAQWA9H755sSdqpZH3fpTbOSrlWlGm22JPVwuDUrVV97BinMlUHJRSV59sIUmSOHlqKvn5SeZ9Tk7N7qvPxOvydQZ6OhDs6Uif5j731Z8gCIIgCIIgCIIgCHcmglI1hJSXi4QcXDoX6MgZr0Qa1/bk0P++4ObVVHM7P5tacnulnCl1pUDHwSx5apuPrariJzSZ4NI+yLpSvK8aFTjX69PNAam6dcfg6tIOF+dWd91PVoGeYWv+IiUjn+wC+f6+2M6fl56oV5nDFWoUqZSvBEEQBEEQBEEQhMomglI1hDE/B0mS19ZLqQXXXLU0ytdx5McdmKxtIKQ5Cgm0JhNak4LTjtdRZWTT/+g5cx9BduqKn/Dsz/DVoOJtpQ3Y2FXW5dyz9PQ9nI6fgcEgZzWp1bUJCX7jnvv789xNjhWusAdyaa7H67rc5yhLJ5UV4RAr+lUD4j0QBEEQBEEQBEF4mO6hwJBQFfQ5+YABAK2VFgCbwodoe3s5g0mJkuN5ErtyjCS7pbPtRqb5+CA7Nc/Wcq34CTMuyJ/tPaBuR+g+p1oETq5e3UJBQQoGg3xtLi5t76mf3+OvMyr6AEtjzwDwZIgHP01+kv0zutGy7l3cp/tSepRK1HWqev/2dyAyMhKFQoFCoUClUhEcHMy8efMwGAz31e/OnTtRKBTcunWrcgZaARcuXGDIkCH4+Phga2tLnTp16NevH/Hx8Rbttm3bRufOndFoNNjb29OmTRuio6Mt2iQlJaFQKDh69GiFzz9nzhwaNmyIg4MDrq6udO/enf3791v0OWrUKOrVq4ednR1BQUHMnj0bnU5XRq+ymJgYmjdvjr29Pd7e3rz00kvcvHmzwmN77733UCgUTJ482WL/uXPnePbZZ/H09MTJyYmBAwdy7do1izbvvvsuHTt2xN7eHhcXl1L7L/oeuv3j66+/Nr++adMmevToYT5Phw4d2LFjR7nj3rRpEz179sTd3R1razuOH48v9xhBEARBEAShehJBqRpCn18AkvxAmKOUHw4cC6wAUGZkyJ9RkKVM4Lfg/6Ktm0aaTm7/bogve9o34nEn+4qfsKiOVMPe8NKP0HF8JV3JvdFqr5ORsZ/rN+QHluCgabRvt4MmjZfcU38f7Ejg1/jrxF/NBqBlXVca1nbCy8m20sZ8u+oaaBLT04Q7iYiIIDU1lbNnzzJ16lTmzJnDBx98UNXDMqtI0Eav19OjRw8yMzPZtGkTCQkJfPPNNzRt2tQiMLZixQr69etHaGgo+/fv5/jx4wwePJioqChee+21+xpn/fr1WblyJSdOnGD37t0EBATQs2dPbty4AUB8fDwmk4lPP/2UkydPsmzZMj755BNmzpxZZr979uxh+PDhjBo1ipMnT7Jhwwb++usvxowZU6FxHThwgE8//ZRmzSxr8eXm5tKzZ08UCgW//fYbe/bsQafT0adPH0wmk7mdTqdjwIABvPLKK2WeZ+3ataSmppo/nnnmGfNrf/zxBz169GD79u0cOnSIsLAw+vTpw5EjR8rsMzc3lyeeeIJFixZV6FoFQRAEQRCE6ktM36sh9Ln5gDx9T2eTiyQpcMtVYQQUhSvqKVGS7J2CVYMcnm84mo9vyg8Qdlb3suKeXIeqOtSRMhhy2fdnD4zGHPM+V7dQHByC77qvv1MyuZGjJTkjD4DXwxvg725Pt4a1Km28NUF1DZIJ1YdaraZ27doAvPLKK3z33Xds3bqVqKgoJk2axPfff49Wq6Vz58589NFHhISEAHDx4kXGjx/P7t270el0BAQE8MEHH9C4cWPCwsIAcHWVsxFHjBhBdHQ02dnZREVFsXnzZpycnJg2bRpbtmzh8ccf58MPPwQgICCAUaNGcfbsWTZv3sxzzz1HdHQ0u3fvZsaMGRw8eBAPDw+effZZFi5ciIODAydPnuTcuXP8+uuv+Pv7A+Dv709oaKj5OpOTk5k6dSqTJ09mwYIF5v1Tp05FpVIxceJEBgwYQLt27e7pPg4ZMsRie+nSpaxZs4bjx4/TrVs3IiIiiIiIML8eGBhIQkICq1evZvHixXfsd9++fQQEBDBx4kQA6tWrx9ixYysUqMnJyWHo0KF8/vnnzJ8/3+K1PXv2kJSUxJEjR3BycgJg3bp1uLq68ttvv9G9e3cA5s6dC1Aim+yfXFxczN9H/1T03hZZsGABW7Zs4fvvv6dFixZ37HPYsGGAnGUmCIIgCIIg1GwiU6qG0OVrKcprURubU5D6PI5GG5QObig8AgCwQkGb+p34X5//0dG3I3lGOShlr7yfoJRDJYz+/uTnX8JozEGhsMbePhhf3xfRODa5634OJqXz9IrdjFx7gOwCOYvsxXb+PN3MBzuVVWUPuwSF+T/VnyRyqCqdJEnk6QxV8iGVWdCsYuzs7NDpdERGRnLw4EG2bt3Kvn37kCSJ3r17o9fLCwWMGzcOrVbLH3/8wYkTJ1i0aBGOjo74+fnx7bffApCQkEBqairLly8H4NVXX2XPnj1s3bqV2NhY4uLiOHz4cIkxLF68mObNm3PkyBFmzZrFuXPniIiIoH///hw/fpxvvvmG3bt3M368nNnp6emJUqlk48aNGI3GUq9r48aN6PX6UjOixo4di6OjI1999dV93z+Qs4s+++wznJ2dad68+R3bZWZm4ubmVmZfHTp0IDk5me3btyNJEteuXWPjxo307t273HGMGzeOp556yhxgup1Wq0WhUKBWF9cgtLW1RalUsnv37nL7Lu1cHh4etG3bli+++KLM70WTyUR2dna51y4IgiAIgiA8OkSmVA2Rk12cJWSdMwBDppIsksmqG0hR5SgrSYnytuBKflFQqqKZUkY9fD0U0hIgt7AuSRUGpfT6LBLPLSIvT65v5eAQTLu2P9xTXyaTxImUwjpU9jb4udrzRIgHzvY2lTbeR4GiGtQNe1Tl6400frv8ejkPwql54dir7u3HvSRJ/Prrr+zYsYNevXqxefNm9uzZQ8eOHQG5rpGfnx+bN29mwIABXLp0if79+9O0aVNAzvwpUhRs8PLyMtchys7OZt26daxfv55u3boB8pQvHx+fEmPp2rUrU6dONW+PHj2aoUOHmmsihYSE8NFHH9G5c2dWr16Nr68vH330EdOmTWPu3Lm0bt2asLAwhg4dah7XmTNncHZ2xtvbu8T5VCoVgYGBnDlz5p7uXZFt27YxePBg8vLy8Pb2JjY2Fg8Pj1LbJiYmsmLFijKzpABCQ0OJiYlh0KBBFBQUYDAY6NOnD6tWrSrzuK+//prDhw9z4MCBUl9v3749Dg4OTJ8+nQULFiBJEm+88QZGo5HU1NRSj7mTefPm0bVrV+zt7fn555/5z3/+Q05Ojjm7658WL15MTk4OAwcOvKvzCIIgCIIgCDWXyJSqIXJzioNSWQUqABSFRYdtJRvcTBoCdP6YnGzQmyQS8wrINMiZAXYVzZS6egLO7oCMJNDJtZbwbFRp13C3ki+v48qVr7l1Sy4KbG8fWM4RpXtr8wkCZ25n7venAHi2hS/fT3iC6RENK22swiOkErKKHgXbtm3D0dERW1tbevXqxaBBg4iMjMTa2tpiKpu7uzsNGjTg9OnTAEycOJH58+cTGhrK7NmzOX78eJnnOX/+PHq9nrZtixctcHZ2pkGDBiXatm7d2mL72LFjREdH4+joaP4IDw/HZDJx4YIczB43bhxXr14lJiaGDh06sGHDBpo0aUJsbGyF74VKpSq3TUxMjMU44uLizK+FhYVx9OhR9u7dS0REBAMHDuT69esl+khJSSEiIoIBAwZY1Ia6vd+oqCgATp06xaRJk3j77bc5dOgQP/30E0lJSebX4+LiLI6LiYkhOTmZSZMmERMTg61t6fXzPD092bBhA99//z2Ojo44Oztz69YtWrZsifIus25nzZpFaGgoLVq0YPr06UybNu2OdcnWr1/P3Llz+d///oeXl5f5nobU8aR9gzoE+3pa3FNBEARBEATh0SAypao5o9bAsQ2/cuGGF3AKsCKrQA42qQoLn9fVOZGsr83VHHcaqqzpfzSRvzJzzX1UOFNKmyV/dq0Hz30Odq7gcfd1m+6XyaSjoCCV69flrCiNpgm+Pi/g4VFyqklFbD16xfy1jZWCTiGelTLOSiUylKreA34P7GysODUv/IGeo6xz362wsDBWr16NSqXCx8cHa2trtm7dWu5xo0ePJjw8nB9++IGff/6ZhQsXsmTJEiZMmHAvQ7fg4GCZuZmTk8PYsWNLzbypW7eu+WuNRkOfPn3o06cP8+fPJzw8nPnz59OjRw9CQkLIzMzkypUrJbKzdDod586dIzy8/Petb9++FsE6X19fi3EHBwcTHBxM+/btCQkJYc2aNcyYMcPc5sqVK4SFhdGxY0c+++wzi75vX+2vqM7TwoULCQ0N5fXXXwegWbNmODg48OSTTzJ//nxat25tcVytWrX49ddfuX79Oi1btjTvNxqN/PHHH6xcuRKtVouVlRU9e/bk3LlzpKWlYW1tba4LdXvW271o164d77zzDlqt1mJ64Ndff83o0aPZsGGDxZTCvn37EtCoORm5OtwcVbRoGHRf5xcEQRAEQRCqHxGUquYu/vIb+3bbYDIFFO5RojdKKBWgluTglALAKAeesq1szAEpO6WSxo62NHa0q9jJCgqDUo61wK9NpV3D3TCZ9Bw4+Cw5OcVLfDdo8A7OTneuv1Iao0li0tdHiL+aTVZh/ai9b3TFxd7mnqcxCcL9UCgUNep7ryiQcrtGjRphMBjYv3+/efrezZs3SUhIoHHjxuZ2fn5+REVFERUVxYwZM/j888+ZMGGCOePo9vpOgYGB2NjYcODAAXMgKTMzkzNnztCpU6cyx9iyZUtOnTpVYpxlUSgUNGzYkL179wLw/PPPM336dJYsWcKSJZareX7yySfk5eUxfPjwcvvVaDRoNJoKjcFkMqHVas3bKSkphIWF0apVK9auXVsiI6m068vLy8Pa2vL7ycpKDj5KkoSdnV2J47p168aJEycs9o0cOZKGDRsyffp08/FFiqYY/vbbb1y/fp2+fftW6Pru5OjRo7i6uloEpL766iteeuklvv76a5566imL9hqNhnqBQWhytHhq1NjZVfD/ZYIgCIIgCEKNUXOekP6l8q8mA/WwNV1HXgBdx1PNvOkQ6I7xp78BUEqgkOQsjxyl/Jb6qm041LGCxcBNRkiKkz8A1BV7sHoQsrNPmgNSVlaOeHr2wEnT9K77OZ2axbbjxfVPgjwd8HGpwgeaUrJwxCyx6q8yCoQ/SkJCQujXrx9jxozh008/RaPR8MYbb+Dr60u/fv0AmDx5Mr169aJ+/fpkZGTw+++/06iRPA3Y398fhULBtm3b6N27N3Z2dmg0GkaMGMHrr7+Om5sbXl5ezJ49G6VSWW6Ns+nTp9O+fXvGjx/P6NGjcXBw4NSpU8TGxrJy5UqOHj3K7NmzGTZsGI0bN0alUrFr1y6++OILpk+fDsgZVe+//z6vvfYatra2DBs2DBsbG7Zs2cLMmTOZP38+jz32mMV5ExISSoylSZMm2NhY1qjLzc3l3XffpW/fvnh7e5OWlsaqVatISUlhwIABgByQ6tKlC/7+/ixevJgbN26Yj7/TqnUAffr0YcyYMaxevZrw8HBSU1OZPHkybdu2LbUeF8hBnn9ei4ODA+7u7hb7165dS6NGjfD09GTfvn1MmjSJKVOmWEypvHTpEunp6Vy6dAmj0WjOygoODsbR0ZHvv/+ea9eu0b59e2xtbYmNjWXBggUWBeXXr1/PiBEjWL58Oe3atePq1auAXFTf2dn5jtdedN4rV+Qs2LNnk1AolAQFuZV5zwRBEARBEITqRwSlqrn85BtAPeyyr5KlAAkDq4bIUy/W/iiBQs6UUpjkv6wbrWwAfcWn7AEc+xq2/Kd42/bODwMPil6fwaXkteTkyA97zs6taN3qf3fdT0aujpNXsjh2+RYAgZ4OvPtMUxr7OFXmcO+TmKon1Fxr165l0qRJPP300+h0Ojp16sT27dvNARmj0ci4ceO4fPkyTk5OREREsGzZMkCe0jZ37lzeeOMNRo4cyfDhw4mOjmbp0qVERUXx9NNP4+TkxLRp00hOTr5j3aMizZo1Y9euXbz55ps8+eSTSJJEUFAQgwYNAqBOnToEBAQwd+5ckpKSUCgU5u0pU6aY+5kyZQqBgYEsWbKE5cuXk5srZ5t+9dVXDB48uMR5S9uXnJxMnTp1LPZZWVkRHx/PunXrSEtLw93dnTZt2hAXF0eTJvIfDWJjY0lMTCQxMbHE8WUFRSMjI8nOzmblypVMnToVFxcXunbtyqJFi8q8ZxWRkJDAjBkzSE9PJyAggDfffNPifgG8/fbbrFu3zrzdokULAH7//Xe6dOmCjY0Nq1atYsqUKUiSRHBwMEuXLrWolfXZZ59hMBgYN24c48aNM+8fMWIE0dHRdxzf1q1bGTlypHn7pZemATB79mzmzJlzP5cuCIIgCIIgPGQiKFXNZV/MATUo9HmgAsNtsyu0Rj1Yg8lkQGGSAx0GKyvuOiiVIRcERuMNng2g7cuVdwEVdDZxEampG8zb9nYB99TP85/s5dyN4npaAe4OdAhyv9/hPSClP3AqUCAhiSydKqT4lwcOywoIuLq68uWXX97x9RUrVpTZ96xZs5g1a5bFPo1GQ0xMjHk7NzeXuXPn8vLLxT+LkpKSSu2vTZs2/Pzzz6W+5uHhwfLly8scT5F+/fqZs73S09Pp1q0bq1evpm/fvtjb2wMQEBBwV/8ubW1t2bRpU5ltIiMjiYyMrHCft5swYcJ91+rauXNniX3vvfce7733XpnHRUdHl/l9EhERQURExF2fuyJuv2dGYwG5uWdRKKzQaBqXfaAgCIIgCIJQ7YigVDWn1ytADSZnG8iHTAcFN1OSSdgbh16vB2sloMTaJNdqUaudgQIcrO6isLG2cGW/5oOh+5zKvoQKycmRV8Zzdm6Jm+sT+PgMuKvjC/RGMvP15oBUw9oaVNZKRnQMqOyh3qfqFWi60/O1CIgJD9ORI0eIj4+nbdu2ZGZmMm/ePABzkOhhc3Nz45dffmHVqlXs27ePbt26Vck4BJFXKgiCIAiC8KgTQalqzmCU3yKjPZAPBisFv33xCZf+PoaVf9EKSrbYmOTCsdrCBCmHu8mU0hUGpVSOlTPoCjIa8/n75GQKClLIzU0EoEH9OWg0FayFVWjXmRuMWXcQndEEgEZtzU+Tyy6Q/G93p1I9//YMIZkIyFWFxYsXk5CQgEqlolWrVsTFxZkLbVcFd3d33n777So7vyAIgiAIgiD8G4igVDWnM4I+bxdZXAQg11YiM/40AFaSHHhSKOwoaKjhv41VpF6+BoC7TQXeWoNODkjlZ8jbDzkolZGxj7S0X8zbVlaO2Nn533U/uxJumANSAE81866U8VU+iTv+3b+cgs7CwyDeg6rSokULDh06VNXDEARBEARBEAThIRNBqWouS8rCqE2gaAH1TEfQJeWC2gZrkwKQUCrhckQtUlPTzcf18XIpu+Psq/Bx++KAFID64QSlJEmioOAK6el7ALmoeb16E3GwD8TaumJjkCSJyd8cJe5sGjkFBgDefroxL7b3R2V9F1ligiAIgiAIgiAIgiBUCRGUquZ0heEoKzsn/gi6QEotFzqctsJVVZscRzsgD2ysuJivA2BcXS8ifT3ws1WV3fGVo5YBKXt38Gv/YC7iHy4l/x+JicVFdDWax3B3e+Ku+kjP1bHl6BXztlIBbeu5Vd+AlMiEEgRBEARBEARBEAQLIihVjUlGI0aFHJTSauw4WzcHO6MHj9fuhbtTMDulk6AAhUJJtkFu18HFsfyAFIA2W/5crxMM2wwK5UMLnFy5UrzKnqNjY+r4Dq3wsZl5esatP0xyRh4AHo5qvhrTDlcHFR6O6kofqyAIgiAIgiAIgiAID4YISlVDkiRxbf67FJw8iVHhAsBlm0z5Ra2B804GflHvNbfPUktkFQalnK0ruOqeNkv+rHYC5V2s1HcfsrNPkZHxJ3l55wAI7bgbW9u7q/+088x1diemmbdb1HUhpJamUsf54IhsKUEQBEEQBEEQBEEoIoJS1ZAuKYmMmBgAjM1DAdDaKDDkhOCS7EO6TT4ACkmB0mgLbk5kG+WglKa86Wv5t+D4N3A2Vt62dX4g1/BP2Tnx/HWgL0Urm6nVtVGra1f4+BOXM/nx71SOXb4FQKf6nozrEkRzP5fKH+zDIhZ5q/bEWyQIVUzE8gVBEARBEB5pIihVDZlyckmqG84Vn47odTvACEY0WF3oSUfdIUwucjvvW03JklzJ7+BBhl4OSpW76t7+T2DnwuJte7cHcxH/kJl5mKJHfC/PXvj4DkZxF9MFX9twjIRr2ebtlnVdaBfoXtnDfMhKD3koFAqQQKqCkIhCPAGCJEJRgiAIgiAIgiAID4MISlVDprxcLvt2QqtyRiqQaycp3NWMPPRf/ILqcxETAM6PqfmkgQdXjMVT9zzKC0plFRYH92kBfu2gXdQDuw6AzMwjnD//IXn5SQD4+r5IwwZzK3z8tawCbuXpSbqZC8ALbf3w1NgyvEPAAxjtw3CHQNRDHoVQituCpOL9EARBEARBEARBePCq6VJl/26mzJvk6f5Ee2sZSHJ2kNbVhhCnljQwtcWokINSJl87rhiNKIAQezVT/GuVn31UVOC82WDotQic6zzAK4GLFz8lPWM3BQWXAXB0bFDhY/+6kE77hb8S/uEfaA3yNc/p24RXe9THzaECxdwFQbgnkZGRKBQKFAoFKpWK4OBg5s2bh8FguK9+d+7ciUKh4NatW5Uz0Aq4cOECQ4YMwcfHB1tbW+rUqUO/fv2Ij4+3aLdt2zY6d+6MRqPB3t6eNm3aEB0dbdEmKSkJhULB0aNHK3z+OXPm0LBhQxwcHHB1daV79+7s37/fos9Ro0ZRr1497OzsCAoKYvbs2eh0unL7jomJoXnz5tjb2+Pt7c1LL73EzZs3yz0uJSWFF198EXd3d+zs7GjatCkHDx40v377+1/0ERERYdFHQEBAiTbvvVe8qmpCQgJhYWHUqlULW1tbAgMDeeutt9Dr9Rb93Lp1i3HjxuHt7Y1araZ+/fps3769zPFv2rSJnj174u7ujrW1HcePx5fZXhAEQRAEQai+RKZUNSTduo7BeMG8fdWtAGtrB1q4dUeBAgNnAbjlYAsm8LW1Ia5do4p1XhSUUj/Y4uAmkw6DIYfs7JMABAVORaNpiqtrhwr3cehiBpIEamsljmprwh+rjbqihdyrGZF5I9Q0ERERrF27Fq1Wy/bt2xk3bhw2NjbMmDGjqocGgE6nQ6UqOzit1+vp0aMHDRo0YNOmTXh7e3P58mV+/PFHi8DYihUrmDx5MtOnT2f16tWoVCq2bNlCVFQUf//9N4sXL77ncdavX5+VK1cSGBhIfn4+y5Yto2fPniQmJuLp6Ul8fDwmk4lPP/2U4OBg/v77b8aMGUNubm6Z592zZw/Dhw9n2bJl9OnTh5SUFKKiohgzZgybNm2643EZGRmEhoYSFhbGjz/+iKenJ2fPnsXV1dWiXdH7X0StLrm66bx58xgzZox5W6Mp/v+KjY0Nw4cPp2XLlri4uHDs2DHGjBmDyWRiwYIFgPwe9ujRAy8vLzZu3Iivry8XL17ExcWlzHuam5vLE088wcCBAy3OLwiCIAiCINQ8IihVDZky06Bwit6+1m4keB7hCaOafIWOfIUOA/J0vQK1GvKhlsqm7A4lCTb/B5L3Q1aKvM/W6YGNv6DgCn8deAa9vvgv9r6+L2JjU7Fzrt1zge+PXSHlllzQ/aUn6jE9ouEDGeu/lQiSCeVRq9XUri0vRvDKK6/w3XffsXXrVqKiopg0aRLff/89Wq2Wzp0789FHHxESEgLAxYsXGT9+PLt370an0xEQEMAHH3xA48aNCQsLAzAHQEaMGEF0dDTZ2dlERUWxefNmnJycmDZtGlu2bOHxxx/nww8/BOTMnFGjRnH27Fk2b97Mc889R3R0NLt372bGjBkcPHgQDw8Pnn32WRYuXIiDgwMnT57k3Llz/Prrr/j7+wPg7+9PaGio+TqTk5OZOnUqkydPNgdLAKZOnYpKpWLixIkMGDCAdu3a3dN9HDJkiMX20qVLWbNmDcePH6dbt25ERERYZCEFBgaSkJDA6tWrywxK7du3j4CAACZOnAhAvXr1GDt2LIsWLSpzPIsWLcLPz88i4FSvXr0S7W5//+9Eo9HcsU1gYCCBgYHmbX9/f3bu3ElcXJx53xdffEF6ejp79+7Fxkb+/1hAQEDpJ7tt5vOwYcMAOcvsUZeens6ECRP4/vvvUSqV9O/fn+XLl+Po6HjHYwoKCpg6dSpff/01Wq2W8PBwPv74Y2rVqlWi7c2bN2nevDkpKSlkZGSUGxAUBEEQBEGobGL6XjVkuJUOkhx4ylYVgAIUWgVfqXfznfovc0RBayP/5dq1vDpS2alwbD2knwNDAaAAj4pPo7tbV69usQhIeXpGVDggJUkSi36K5/ClW1zL0gLQyPvBBdAE4aGRJNDlVs1HJRRvt7OzQ6fTERkZycGDB9m6dSv79u1DkiR69+5tnpY1btw4tFotf/zxBydOnGDRokU4Ojri5+fHt99+C8hTu1JTU1m+fDkAr776Knv27GHr1q3ExsYSFxfH4cOHS4xh8eLFNG/enCNHjjBr1izOnTtHREQE/fv35/jx43zzzTfs3r2b8ePHA+Dp6YlSqWTjxo0YC2vv/dPGjRvR6/W89tprJV4bO3Ysjo6OfPXVV/d9/0DODPrss89wdnamefPmd2yXmZmJm1vZi1B06NCB5ORktm/fjiRJXLt2jY0bN9K7d+8yj9u6dSutW7dmwIABeHl50aJFCz7//PMS7Xbu3ImXlxcNGjTglVdeKXVa4HvvvYe7uzstWrTggw8+KHN6Z2JiIj/99BOdO3e2GEuHDh0YN24ctWrV4rHHHmPBggV3fK/+jYYOHcrJkyeJjY1l27Zt/PHHH7z88stlHjNlyhS+//57NmzYwK5du7hy5QrPPfdcqW1HjRpFs2bNHsTQBUEQBEEQKkRkSlVDhuxMKMqGspYLnUtZOiSFDUpJASZrbHSu6KxVgAFXm3KmtGlz5M8qDby4EZx8wKVupY87Pz+ZzMwj3Ej7FYDg4BnU9XsJhaL82OetPB2fx53nZo6OAr2cJfbJiy1xtVfRJuDhrBAoCA+UPg8W+FTNuWdeAZXDPR0qSRK//vorO3bsoFevXmzevJk9e/bQsWNHQK5r5Ofnx+bNmxkwYACXLl2if//+NG3aFMAiW6Yo0OLl5WXOyMjOzmbdunWsX7+ebt26AbB27Vp8fEreq65duzJ16lTz9ujRoxk6dCiTJ08GICQkhI8++ojOnTuzevVqfH19+eijj5g2bRpz586ldevWhIWFMXToUPO4zpw5g7OzM97e3iXOp1KpCAwM5MyZM/d074ps27aNwYMHk5eXh7e3N7GxsXh4eJTaNjExkRUrVpQ7ZTA0NJSYmBgGDRpEQUEBBoOBPn36sGrVqjKPO3/+PKtXr+bVV19l5syZHDhwgIkTJ6JSqRgxYgQgT9177rnnqFevHufOnWPmzJn06tWLffv2YWUl//9m4sSJtGzZEjc3N/bu3cuMGTNITU1l6dKlFufr2LEjhw8fRqvV8vLLLzNv3jyLsfz2228MHTqU7du3k5iYyH/+8x/0ej2zZ88u974+6k6fPs1PP/3EgQMHaN26NSBPNe3duzeLFy8u9d9IZmYma9asYf369XTt2hWQ/z01atSIP//8k/bt25vbrl69mlu3bvH222/z448/PpyLEgRBEARB+AeRKVUN6bJyKJqroLWSA0pqg/wgUNvojDqrHUfqtOD3PDkzwUddTtFvXWEdKVtnqNv+gQSkAA4fGcrJU1PIyjoCgLNziwoFpAC+OZDMqt/P8fWBZAD83OyIeMybdoHuKJVistnDJlVCZk3N9W++9mLbtm3D0dERW1tbevXqxaBBg4iMjMTa2tpiKpu7uzsNGjTg9OnTgBysmD9/PqGhocyePZvjx4+XeZ7z58+j1+tp27ateZ+zszMNGpTM5ix6MC9y7NgxoqOjcXR0NH+Eh4djMpm4cEGuyzdu3DiuXr1KTEwMHTp0YMOGDTRp0oTY2NgK34vyaleBHJy7fRy3T1MLCwvj6NGj7N27l4iICAYOHMj169dL9JGSkkJERAQDBgywqJV0e79RUfKKqadOnWLSpEm8/fbbHDp0iJ9++omkpCTz63FxcRbHxcTEAGAymWjZsiULFiygRYsWvPzyy4wZM4ZPPvnEfL7BgwfTt29fmjZtyjPPPMO2bds4cOAAO3fuNLd59dVX6dKlC82aNSMqKoolS5awYsUKtFqtxTV98803HD58mPXr1/PDDz9YBNtMJhNeXl589tlntGrVikGDBvHmm2+axxITE0OwryftG9QhuI6nxT39N9i3bx8uLi4W3/fdu3dHqVRaFMu/3aFDh9Dr9XTv3t28r2HDhtStW5d9+/aZ9506dYp58+bx5ZdfolSKXwUFQRAEQag6IlOqusm/hS4ny7yps8oFQKGVwAoUKDgUbM8fj9lBgRyUaupoV3afRZlS6jvXoLhfBkM2BQVyvSpX1w44ONTH2alFucddSMvl+OVb7E5MA6BjkDttAtzo1sjrgY21Wipv1cSHpNzVG4V7Z2MvZyxV1bnvUlhYmLnot4+PD9bW1mzdurXc40aPHk14eDg//PADP//8MwsXLmTJkiVMmDDhXkZuwcHBMtsrJyeHsWPHmusq3a5u3eLgu0ajoU+fPvTp04f58+cTHh7O/Pnz6dGjByEhIWRmZnLlypUSmSc6nY5z584RHh5e7tj69u1rEazz9fW1GHdwcDDBwcG0b9+ekJAQ1qxZY1E0/sqVK4SFhdGxY0c+++wzi75vX+3PyUmezrxw4UJCQ0N5/fXXAWjWrBkODg48+eSTzJ8/n9atW1scV1RPyNvbm8aNG1v036hRI/PUytIEBgbi4eFBYmKiOZvtn9q1a4fBYCApKckioOjn5wdA48aNMRqNvPzyy0ydOhUrKyu8vb2xsbExZ18VjeXq1avodDr69u1LvcbNSc/R4eagokWjoDuO8VF09epVvLws/19obW2Nm5sbV69eveMxKpWqRG2oWrVqmY/RarW88MILfPDBB9StW5fz58+XOxatVmsRcMzKyiqjtSAIgiAIQsWJoFQ1ov/zO24tmUj29dpQW36AMFgXAGClswE7E0qUZNvJf9Vs5+RAby9nIjycS+8w5RD8vlCuKQX3PH2nLEZjAYmJ75GZKdd/sbbW0LLFfyt2rEni+dV7uZlbvPT5M4/7MrCNX6WPs8qVEuz5Vycj/RspFA/k3+CDUhRIuV2jRo0wGAzs37/fPH3v5s2bJCQkWAQ6/Pz8iIqKIioqihkzZvD5558zYcIEc8bR7TWDAgMDsbGx4cCBA+ZAUmZmJmfOnKFTp05ljrFly5acOnWqxDjLolAoaNiwIXv37gXg+eefZ/r06SxZsoQlS5ZYtP3kk0/Iy8tj+PDh5far0WgsVp8ri8lksnjAT0lJISwsjFatWrF27doSmSulXV9eXh7W1pb/Cy8K7kiShJ2dXanHhYaGkpCQYLHvzJkz5kLwpbl8+TI3b94sdYpjkaNHj6JUKksEUW5nMpnQ6/WYTCasrKwIDQ1l/fr1mEwm8zWfOXMGb29vVCoVKpWKeoFBOGZr8XRUY2dXzh9gaog33nij3IL0RZmHD8KMGTNo1KgRL774YoWPWbhwIXPnzn1gYxIEQRAE4d9LBKWqkeurPiXrhCP5jsVZDVJhLEOts5KDUpICtb8jYOCZ2q6M9C29LgkAf30OibdNUXEtucLS/Uq58hWXU/6fedvFuU2Fj72Zq+Vmrg6FAkKDPHB3VBHepOzVnh4NRQGq0qNS5ldF1KrKiISx0oWEhNCvXz/GjBnDp59+ikaj4Y033sDX15d+/foBMHnyZHr16kX9+vXJyMjg999/p1GjRoC8AptCoWDbtm307t0bOzs7NBoNI0aM4PXXX8fNzQ0vLy9mz56NUqksN3Nv+vTptG/fnvHjxzN69GgcHBw4deoUsbGxrFy5kqNHjzJ79myGDRtG48aNUalU7Nq1iy+++ILp06cDckbV+++/z2uvvYatrS3Dhg3DxsaGLVu2MHPmTObPn89jjz1mcd5/BnUAmjRpYl5Brkhubi7vvvsuffv2xdvbm7S0NFatWkVKSgoDBgwA5IBUly5d8Pf3Z/Hixdy4ccN8fFmr3/Xp04cxY8awevVqwsPDSU1NZfLkybRt27bUWkNFpkyZQseOHVmwYAEDBw7kr7/+4rPPPjNnZ+Xk5DB37lz69+9P7dq1OXfuHNOmTSM4ONicMbZv3z72799PWFgYGo2Gffv2MWXKFF588UXzyooxMTHY2NjQtGlT1Go1Bw8eZMaMGQwaNMh8n1555RVWrlzJpEmTmDBhAmfPnmXBggWlZr7dLj09nUuXLnHlipx5ePZsEgqFkqAgt3JXDKwOpk6dSmRkZJltAgMDqV27dolpngaDgfT09DteZ+3atdHpdNy6dcsiW+ratWvmY3777TdOnDjBxo0bgeL/13h4ePDmm2+WGnyaMWMGr776qnk7KyvLnAUnCIIgCIJwP0RQqhoxZtySvwj0AbKR5Pl6GLVeOOlzyUeFAlB4qOGWAVfrcgqcF2TKn1tFQlBXCOxSueM1as0ZUhrHJtTxG46nR89yj9tx8ir/b99FcrTySk3uDmr+O/rellsXBOHhWrt2LZMmTeLpp59Gp9PRqVMntm/fbg40GI1Gxo0bx+XLl3FyciIiIoJly5YB8pS2uXPn8sYbbzBy5EiGDx9OdHQ0S5cuJSoqiqeffhonJyemTZtGcnIytra2ZY6lWbNm7Nq1izfffJMnn3wSSZIICgpi0KBBANSpU4eAgADmzp1LUlISCoXCvD1lyhRzP1OmTCEwMJAlS5awfPlycnPladNfffUVgwcPLnHe0vYlJydTp04di31WVlbEx8ezbt060tLScHd3p02bNsTFxdGkSRMAYmNjSUxMJDExscTxZQWmIyMjyc7OZuXKlUydOhUXFxe6du1abgZOmzZt+O6775gxYwbz5s2jXr16fPjhhwwdOtQ85uPHj7Nu3Tpu3bqFj48PPXv25J133kGtlld8VavVfP3118yZMwetVku9evWYMmWKRdDC2tqaRYsWcebMGSRJwt/fn/Hjx1vcdz8/P3bs2MGUKVNo1qwZvr6+TJo0yRwwtLgXt329detWRo4cad5+6aVpAMyePZs5c+aUef3VgaenJ56enuW269ChA7du3eLQoUO0atUKkANKJpPJYqro7Vq1aoWNjQ2//vor/fv3B+Qg6qVLl+jQoQMA3377Lfn5+eZjDhw4wEsvvURcXBxBQaVPkVSr1eb3XxAEQRAEoTIppH9xOkZWVhbOzs5kZmaa63RUpYs9W5F3KY8Lz/bl9PmTSAobPm7UA98MA89Ll8hwdSRQ78kX/boRn1vAN82D6OxWxnSR6KchKQ76r4Gmz1fqWBMT3+fipU/N282arsbTs/yAFECPpbs4ez3HvN0xyJ31Y9qXcUTNt235+1il1iIr8TipdmqMuuN07NmJDqPkhylJrye+qbws95CZagySkV+e/4VaDrUeyHhu5mhpNf8XAJLee8q8/8DVA7y04yWCnIPY/MzmB3LuamvHm7BvJYROYmnIf3j/wlWG+7jzfoN7ywYoKCjgwoUL1KtXr9zgimApNzcXX19flixZwqhRox76+dPT0+nWrRtOTk78+OOP2NvffU0uoXKkZuZzI1uLh6MaH5eS0/eMRi25uWdQKKzQaBqX0kPFlfVvtqp+X+jVqxfXrl3jk08+Qa/XM3LkSFq3bs369esBOdOuW7dufPnll+bFAl555RW2b99OdHQ0Tk5O5npuRVNW/2nnzp2EhYWRkZFRohbVnVS3358EQRAEQah+Kvr7gsiUqkZMernOSq5JnrIiKW0Y//ePmJQSyrpy0XCFwppbhe1cbcrJlNIVBn5UlVvgXJIkUq9uMm/b2wfh5lZ27RdJkpj6v2McupRBcnoeAPP6NcHVXkXHIPdKHZ9wdyRJEgXOhSp15MgR4uPjadu2LZmZmcybNw/APCXwYXNzc+OXX35h1apV7Nu3747FvQXhQYuJiWH8+PF069YNpVJJ//79+eijj8yv6/V6EhISyMvLM+9btmyZua1WqyU8PJyPP/64KoYvCIIgCIJQLhGUqkZylG4caTWMrHQ98DcmpTVWmLBWaVA4unLW04m/Hf24qZenvbnalPL2SRL8Oheun4a0s/K+Slx1T6u9Rnb2KXS6GygUVjwRug8bG1cUirKXlL6ckc+mIynm7dpOtgxpWxdrK7EUdVUQQagy/HuTR6vU4sWLSUhIQKVS0apVK+Li4vDwKKNm3gPm7u7O22+/XWXnFwSQA6RFWVGlCQgIKDHN09bWllWrVrFq1aoKnaNLly6ihqEgCIIgCFVGBKWqkWv2Tci012DSycEkvTU41XmCa7Zacmx0/NqwlVyBWZJQKxW4lxaUSjsDu5dZ7nOuU7LdPcjMPMrBQ89TVN3DwaEBKlXZWU6XbuaxOzGN5Az5r7i1nWxZNbQFwZ6af2FAqoxf+qtZkEgqa6yPqmr2HvybtGjRgkOHDlX1MARBEARBEARBeMhEUKoaSf//7N13eFTV1sDh30ySSSa9k0oKhCqg0okQQwsBAyqCXPjoIHjpAgKiNEEuXZogXgVUQC+oiIhCEITQawQpoYYaakghPTPn+2PIyJiQBEjDrPd5ojln9tl77RMCZ9bsYpZFZtKKv461iVhqDMmB23bOxjfNI/wqUN/BBuu8kjpp9wz/t3GHFhPApRI4+RdJfDdv/kROYsXKyptKge/kfwEw4OvDnIpLMh5XdLGmrp9zkcTzLJGRSUIIIYQQQgghhClJSpUhqWZ6wzcqc+7ZpHLO3YwKDwaspKk1AFRJyWBMoOejK8lINvzfzgNe7F4kcSUnnyI+Por4e4ZFUqtW/RAf7675XqMoCooC5x8saB5a1Q1rjTk9m/gXSUxCCCGEEEIIIYR4tklSqgzJejCaJtHBlh+bnMcmqTL6Ow+myikVAXC1sMm/kpyklGU+u/I9Bp0ujSNH/4/s7ATjOWutX77X/HktkW7/3U9iWpbx3Kfd66ExL2/T9QpQDmfIPWvkRySEEEIIIYQQxUeSUmWFXk/2g5xNuoVhIXOXjAD0GEZPpSqGnfYcNI/Yce/4Otg6GTISDcdFlJRKTb1gTEh5eryOlZUPTk6NHlk+MS2LTcfjTBJSTYNcJSGVp/xTHuVyXSchhBBCCCGEEOWGJKVKm6LA0a9QbpxC92DZoWxzczLvNqNG/MvoLaIBcKhu2EHPx/sRyaboVZB4+a9jj9pPFVZmZjxnz00jPn4XAPb2z1Ojxqx8r1m8/RyzNscYjweFVqLvS4E4WVs8VSz/FCpUFG7sjaw/VdrkJyCEEEIIIYQQxU+SUqXt1knYMAQlW4Ve1RkU0KmcybgVhh0WXLN34EBgDa6bGUZIOea14x5AZorh/2EfQeWW4FrlqcK6fOULbtxYbzx2dmpc4DU7Ym4bv3fQWhD+nCfONpqnikOIkicj1IQQQgghhBCiJEhSqrSl3eNyxvNczGiMXp0IOritGEYWWeiyOOJXleuObsbiLVzs864nJynlXh3cqj51WMnJfwLg6FAfb59uuLu1ybvZbD3bY25xPz2bS/GGGL55qxENA5xlx7m/MaQ6HnFPyti9Kp9TB8vWz0AI8TjK499ZQgghhBDPPlnop7TpMtmSMJI/U1ujqAwP1ZnmCkGoqa/Tcc/aMF2vj4c9m+tV4Xl767zryTTscofG9qnCOXHiHbZtr0Z8fBQAAQFD8agQgVqd9xS8NQcuM+Crw4xc+wc3kzIA8LC3koSUEM+wXr16oVKpUKlUaDQaKleuzJQpU8jOzn6qen///XdUKhUJCQlFE2ghXLx4ka5du+Ll5YWVlRU+Pj506NCB06dPm5TbuHEjISEh2NnZYW1tTf369VmxYoVJmdjYWFQqFdHR0YVuf9KkSVSrVg0bGxucnJxo2bIl+/fvN6mzb9++BAQEoNVqqVSpEhMnTiQzM7PAuletWkWdOnWwtrbG09OTPn36cPfu3Xyv0el0fPDBBybtffjhhyjKX0md77//ntatW+Pi4vLI/p4/f57XXnsNNzc37O3t6dy5Mzdv3nzsfh07doymTZtiZWWFr68vM2fOLLDfO3fuJCIiAi8vL8zNrdi4cVuB1wghhBBCiLJJklKlTJ+VRYZiSCRpMuIB8LdKYzm2eCo6sswMg9m6eLhQx+5vCan0JNi3BHbMhJQ7hnOaAnbny0d6+nVu3PwRRTEsUm5h4YydXc08yyanZ7Ht9E22x9wCINDNhpAqbgwKrYSfyyMSZ6JMeui96IN1r4SANm3aEBcXx9mzZxk5ciSTJk1i1qz815UrSYVJ2mRlZdGqVSsSExP5/vvviYmJ4dtvv6VWrVomibGFCxfSoUMHgoOD2b9/P8eOHaNLly4MHDiQUaNGPVWcVapUYdGiRRw/fpxdu3bh7+9P69atuX3bMN359OnT6PV6Pv30U06cOMG8efNYunQp7733Xr717t69mx49etC3b19OnDjB2rVrOXDgAP3798/3uhkzZrBkyRIWLVrEqVOnmDFjBjNnzmThwoXGMikpKbz00kvMmDEjzzpSUlJo3bo1KpWKbdu2sXv3bjIzM4mIiECv1xe6X0lJSbRu3Ro/Pz8OHz7MrFmzmDRpEsuWLcu3DykpKdSpU4fFixfnW04IIYQQQpR9Mn2vlGUl3QecANBkJJBurUGv1wGQTTbZD9aSstdY5r74yErY8r7pOa3zY8egKArJyce5desXQxwad+rX/wELcyfMzPJoFxj5vz/YcvKvT8X//XJl3qjr89hti9IhqSdREEtLSzw8PAB4++23+eGHH9iwYQMDBw5k2LBh/PTTT2RkZBASEsKCBQsICgoC4NKlSwwePJhdu3aRmZmJv78/s2bNokaNGoSGhgLg5GT4O69nz56sWLGC5ORkBg4cyPr167G3t+fdd9/lxx9/5Pnnn+fjjz8GwN/fn759+3L27FnWr1/P66+/zooVK9i1axfjxo3j0KFDuLq68tprrzF9+nRsbGw4ceIE58+f57fffsPPzw8APz8/goODjf28cuUKI0eOZPjw4Xz00UfG8yNHjkSj0TB06FA6depEw4YNn+g+du3a1eR47ty5fP755xw7dowWLVrQpk0b2rT5a3p0YGAgMTExLFmyhNmzZz+y3r179+Lv78/QoUMBCAgIYMCAAY9MJOXYs2cPHTp0oF27doDhvq5Zs4YDBw4Yy3Tv3h0wjHbKy+7du4mNjeXo0aPY2xumlK9cuRInJye2bdtGy5YtC9WvVatWkZmZyRdffIFGo6FmzZpER0czd+5c3nrrrUf2ITw8nPDw8Hz7KYQQQgghng0yUqqU3T91yfh9zvQ9vaLnf5o9bLA/RfaDkVI2Fma5L06KM/zfoxbU7Q0R88He87FjuHzlvxw89BqXLhs+nXZybICVpccjE1IAp24kAVDNw47WNSrQqkaFx25XiPJEURRSs1JL5evhqVlPSqvVkpmZSa9evTh06BAbNmxg7969KIpC27ZtycoyjLAcNGgQGRkZ7Ny5k+PHjzNjxgxsbW3x9fXlu+++AyAmJoa4uDjmz58PwDvvvMPu3bvZsGEDkZGRREVFceTIkVwxzJ49mzp16nD06FE++OADzp8/T5s2bejYsSPHjh3j22+/ZdeuXQwePBgANzc31Go169atQ6fT5dmvdevWkZWVleeIqAEDBmBra8uaNWue+v6BYXTXsmXLcHBwoE6dOo8sl5iYiLNz/h8wNG7cmCtXrrBp0yYUReHmzZusW7eOtm3b5ntdkyZN+O233zhz5gwAf/zxB7t27XqsJE9GRgYqlQpLy7/+jbCyskKtVrNr165C92vv3r00a9YMjeavDTHCwsKIiYnh3r17hY5HCCGEEEI8u2SkVCnLiDesBaXWZ3PTUYN1BuhVKpLUaWSp/0pEWZvlkT/MMCSGqNEBmo1+4hhu39ps/N7BoR7+/v/Os9z+C3cZv/5P0jJ1XE9MA+CzHvXwdZbpeuKfqQhyOUZp2Wk0XP1ko22e1v6u+7G2eLLfU0VR+O2339i8eTPh4eGsX7+e3bt306RJE8Aw2sXX15f169fTqVMnLl++TMeOHalVqxZgGCGTIych4e7ujqOjIwDJycmsXLmS1atX06JFCwCWL1+Ol5dXrliaN2/OyJEjjcf9+vWjW7duDB8+HICgoCAWLFhASEgIS5YswdvbmwULFvDuu+8yefJk6tWrR2hoKN26dTPGdebMGRwcHPD0zJ3Q12g0BAYGGhM4T2rjxo106dKF1NRUPD09iYyMxNXVNc+y586dY+HChfmOkgIIDg5m1apVvPnmm6Snp5OdnU1ERESBU9rGjh1LUlIS1apVw8zMDJ1Ox7Rp0+jWrVuh+9OoUSNsbGwYM2YMH330EYqiMHbsWHQ6HXFxcYXu140bNwgICDApV6FCBeNrOSPqhBBCCCHEP5eMlCplGQmG5I6aLHQ5c6oUFVtq1OeHui2M5bTqfJJSlg5P1HZi4lEuX/6cxKSjANSr9z316n6LrW3eu/etO3yVc7fucy0hDUWBCvaWeDhYPVHbgiIZvSKKgfxcAEMixdbWFisrK8LDw3nzzTfp1asX5ubmJlPZXFxcqFq1KqdOnQJg6NChTJ06leDgYCZOnMixY8fybefChQtkZWXRoEED4zkHBweqVs3991C9evVMjv/44w9WrFiBra2t8SssLAy9Xs/FixcBw8itGzdusGrVKho3bszatWupWbMmkZGRhb4XD4/keZRVq1aZxBEVFWV8LTQ0lOjoaPbs2UObNm3o3Lkzt27dylXHtWvXaNOmDZ06dTJZG+rhegcOHAjAyZMnGTZsGBMmTODw4cP8+uuvxMbGGl+PiooyuW7VqlUA/O9//2PVqlWsXr2aI0eOsHLlSmbPns3KlSsLfT/c3NxYu3YtP/30E7a2tjg4OJCQkMCLL76IOo9/qx7Vr4JERUVR2duNRlV9CPJxM/ZBCCGEEEL8c8hIqVKWlZwOgJkqGzPD+rAkWFlzwc3bWMYjXUH98G52exbCjlmQmWw4trR77HZ1ujSORvdAp0sFQKXSYK2tmGfZVfsvcfxqIrvPGRZTH9GyCi9XdSPAzQaLvEZwiUd4kOzIa2fCh86pVCrZ3bw0PPwzKIbqteZa9nfdX3DBYmr7cYWGhrJkyRI0Gs2DXc7M2bBhQ4HX9evXj7CwMH7++We2bNnC9OnTmTNnDkOGDHmS0E3Y2Jhu5HD//n0GDBhgXFfpYRUr/vX3mZ2dHREREURERDB16lTCwsKYOnUqrVq1IigoiMTERK5fv55rdFZmZibnz58nLCyswNjat29vkqzz9v7r73AbGxsqV65M5cqVadSoEUFBQXz++eeMGzfOWOb69euEhobSpEmTXAt9P7z7Xc4aTtOnTyc4OJjRow2jZGvXro2NjQ1NmzZl6tSp1KtXz+S6nBFIo0ePZuzYsXTp0gWAWrVqcenSJaZPn07Pnj0L7GeO1q1bc/78ee7cuYO5uTmOjo54eHiYjIwrqF8eHh4mO/YBxmMPDw/8/f2JjNpH/P1MnGw01A7yK3R8QgghhBDi2SBJqVKWkZwBZmBGNuoHiYh0K8M0G4e0DF7dm0H7kL89iB/7FjISDd+bacDz0WuTPEpy8gl0ulTMzGxxc2uJu1sbLCxyT5W4npDG+B/+NDnXtIordXwdH7vN8kyVVyKqDJNRXEVPpVI98RS60pCTSHlY9erVyc7OZv/+/cbpe3fv3iUmJoYaNWoYy/n6+jJw4EAGDhzIuHHj+OyzzxgyZIhxxNHD6zsFBgZiYWHBwYMHjYmkxMREzpw5Q7NmzfKN8cUXX+TkyZO54syPSqWiWrVq7NmzB4A33niDMWPGMGfOHObMmWNSdunSpaSmptKjR48C67Wzs8POrnAfEOj1ejIyMozH165dIzQ0lLp167J8+fJco43y6l9qairm5qb/hJs92BhDURS0Wu0jr/t7/WZmZsZd8x5XzjTEbdu2cevWLdq3b1/ofjVu3Jjx48eTlZWFhYUFAJGRkVStWtU4dS8gsBK2yRm42lpiZ/f4yVUhhBBCCFG2SVKqlGTfvcv9HTtJPHETfc0EdNmn0GQ/eM3G8El4zdv3+GhSa8z+Phopw7AOFZ1WQGAoaB0L3W5S8p+cO/cfEhIOA+Dk1IiaNebkKpeepePrfZc4FWcYjeVqq6F3cADejlpekITUP9azljwTJSsoKIgOHTrQv39/Pv30U+zs7Bg7dize3t506NABgOHDhxMeHk6VKlW4d+8e27dvp3r16oBh5zuVSsXGjRtp27YtWq0WOzs7evbsyejRo3F2dsbd3Z2JEyeiVqsL/PM4ZswYGjVqxODBg+nXrx82NjacPHmSyMhIFi1aRHR0NBMnTqR79+7UqFEDjUbDjh07+OKLLxgzZgxgGFE1c+ZMRo0ahZWVFd27d8fCwoIff/yR9957j6lTp/Lcc8+ZtBsTE5Mrlpo1axoTKzlSUlKYNm0a7du3x9PTkzt37rB48WKuXbtGp06dAEPi5uWXX8bPz4/Zs2dz+/Zt4/U5ux/mJSIigv79+7NkyRLCwsKIi4tj+PDhNGjQIM/1uB6+btq0aVSsWJGaNWty9OhR5s6dS58+fYxl4uPjuXz5MtevXzfpr4eHhzGm5cuXU716ddzc3Ni7dy/Dhg1jxIgRxmmXhelX165dmTx5Mn379mXMmDH8+eefzJ8/n3nz5j0yfjCMkDt37pzx+NKlaxw7dhpfXzuTEXJCCCGEEKLsk6RUKYmbOJH7W38jy70+mclryVSSUaMiw1xHpq3hE2KbLF3uhBRA5oOklEvQYyWkAGJjF3Pv3l7jcQX3vHdq+vlYHFN/PmU8ruXtwKDQwo9GEEL8My1fvpxhw4bxyiuvkJmZSbNmzdi0aZMxIaPT6Rg0aBBXr17F3t6eNm3aGJMM3t7eTJ48mbFjx9K7d2969OjBihUrmDt3LgMHDuSVV17B3t6ed999lytXrmBllf+adbVr12bHjh2MHz+epk2boigKlSpV4s033wTAx8cHf39/Jk+eTGxsLCqVyng8YsQIYz0jRowgMDCQOXPmMH/+fFJSUgBYs2aNcZrbw/I6d+XKFXx8fEzOmZmZcfr0aVauXMmdO3dwcXGhfv36REVFUbNmTcAwMujcuXOcO3cu1/X5jVjs1asXycnJLFq0iJEjR+Lo6Ejz5s2ZMWNGvvds4cKFfPDBB/z73//m1q1beHl5MWDAACZMmGAss2HDBnr37p2rvxMnTmTSpEmAIVE1btw44uPj8ff3Z/z48Sb3tDD9cnBwYMuWLQwaNIi6devi6urKhAkTeOutt4xl80pLHjp0iNDQUOPxe+/NAqBnz56sWLEi3/4LIYQQQoiyRaWU43k6SUlJODg4kJiYaFyno6SceOP/OKG8QIqtO/Hp3wJw3Tmb8z4J3PHvzTmvhoSdvcDKt17PffE0T8hKhaHR4ByQ+/U86PWZ6PUZ7N/flvSM61Ss2A+PCq9iZ1fdpFyWTs/l+FRW7only72XqOFpz0tBrnSq60NQhcdfu0oYbFo4G9U1V5LOHSfO2gpdxh80bvkSTfqPBUDR6zldw/Amtdt4LVn6LCLfiMTD5tEjJZ7GvZRMXvjQsNDzhY/aolYb3vodvnmYXr/2wt/en59e+6lY2i6zIifA7vnQeDAfVx3Cfy7e4P88XZhdzfeJqktPT+fixYsEBAQUmFwRplJSUvD29mbOnDn07du3xNuPj4+nRYsW2Nvb88svv2Bt/exMu/ynuZGYxq0H0/e8HHNP39PpMkhJOYNKpcbOruZTtZXf72xpPi+URXI/hBBCCFGQwj4vyEipUnJV5cdt1xdQlEwwrHXOzhfukW6ZirnGEgBL7UOjpO7fgq9eh+Q4Q0IKCr3AeUrKeQ4eeh2d7r7xXEXfvlhauucq+69l+zh06Z7xOPw5D4a0CHrM3om8lNWJceU2Ky3KjKNHj3L69GkaNGhAYmIiU6ZMATBOCSxpzs7ObN26lcWLF7N3715atGhR8EVCCCGEEEKIxyZJqVKSrTcknBzVZ7iJITGQZW5Y/PeujTMAtVz9/7rg4k64efyvY0c/0OZemDwv8ff2mCSkHB0boNG4mZRRFIVMnZ7Dlw0JKXsrc5xsNLSqWeHxOiaeCbJ0lChrZs+eTUxMDBqNhrp16xIVFWVcRLs0uLi4mExpE0IIIYQQQhQ9SUqVEt2DW683M4x6yjbTozMz7MakM7fATIFX6j+0hlPOOlL+TSF8Jjj5g9os3zays5O5c2c7l2KXAODj04OgymNRqTQmCwgfjI2nz/KDJGcYVlq3NFfzx8TWsuh1UctvSJLc6zJAfgal5YUXXuDw4cOlHYYQQgghhBCihElSqpTkJKVSVIa5e9lmCorKmixNAKP9axHh40qA9UNrWuTsuGfnARVq/L26PJ07P5tr1742HjvYP49abZmr3PbTt4wJKYDm1dwlIVXU5H4+kxSZ3CiEEEIIIYQQxUaSUqVEpzLc+nTSAMg2UxHv/Ql6tRnt3Z0JtP7bwsiZht2g0NgWuo34+F0AODjUxda2Ou7u4cbXFEVh84mbXEtIY++FuwAMDq1Mn5cCcLK2yLM+UdTyT3iU4z0IhBBCCCGEEEKUA5KUKiUZqkwyk9ehU26gAu7aqdE/mI7nqn2QFFIU+HEQXDsCKbcM5zQ2+darKApXrq4gIeEAaWmxgIo6tT/DwsLBpNwfVxMZ+LXpdJnK7rY422iKoHfi0QpONKlKcRpZabZdlsh9EEIIIYQQQojiJ0mpUnJfdRt99mXjW9/LboZpdWq9HluLB2tFJVyC6FWmF7pVzbfehIT9nD071Xjs6FAvV0IqI1tHzI0kACrYW9IwwAVXW0tay6LmQgghhBBCCCGEKCGSlCoFSnY2epVhxMx9Wzt21DpDgromAFZZ2ajVhp35SDckjtA6QecvwdIOPJ/Pt+74+N3G7wMD38GjgumW6tM3neLTnReMxy9VdmNO5zpP2SMhhBBCCCGEEEKIxyNJqVKgT0lBrwIUuOWYxm2nTLLv+wDgkKr7q2DOjntaZwholm+dV65+xYULH5OdnQBA1aof4uPdNVe5n4/HGb83V6sIreb2VH0Rj0OmhD0TZC0vIYQQQgghhCgRkpQqBfqUFHQqBRTIsNChz3ThvqYeAL73H/xIdFmQctvwvaVdgXXGxi42JqTMzR1wc2ttfO1eSiYj/hfNnfsZXE8wLKweOaIZvs7WWOVMFRTFypCDfHSyQ3Y7LAPkZyCEEEIIIYQQJUpd2gGUN4qikHkv2Th9LyM9gJTzo/FQO9IpVscYPw+I+wNmBMD/ehguyicplZZ2mfj43WRmGhJYDepvJLjJTiw1rsYykSdv8nvMbf68loReAVdbSwJcbSQhJYTIU69evVCpVKhUKjQaDZUrV2bKlClkZ2c/Vb2///47KpWKhISEogm0EC5evEjXrl3x8vLCysoKHx8fOnTowOnTp03Kbdy4kZCQEOzs7LC2tqZ+/fqsWLHCpExsbCwqlYro6OhCtz9p0iSqVauGjY0NTk5OtGzZkv3795vU2bdvXwICAtBqtVSqVImJEyeSmZlZYN2rVq2iTp06WFtb4+npSZ8+fbh7926+1yQnJzN8+HD8/PzQarU0adKEgwcPmpS5f/8+gwcPxsfHB61WS40aNVi6dKlJmQEDBlCpUiW0Wi1ubm553tPLly/Trl07rK2tcXd3Z/To0Y/8M7R7927Mzc15/vnnC+z3999/T+vWrXFxccHc3Ipjx04XeI0QQgghhCibJClVgvTZ2awds5kVC6+hqPQAZFlbktHEnVpZySzsXZfgEF+4vA8ykx9cpYKg1nnWl5BwiL37WnI02pC8srBwxs6uOubmtgAcvhRPl2V7+XjrGQBaVndnee/6/Dz0JczN5EcvDBSZriby0KZNG+Li4jh79iwjR45k0qRJzJo1q7TDMipM0iYrK4tWrVqRmJjI999/T0xMDN9++y21atUySYwtXLiQDh06EBwczP79+zl27BhdunRh4MCBjBo16qnirFKlCosWLeL48ePs2rULf39/Wrduze3bhg8STp8+jV6v59NPP+XEiRPMmzePpUuX8t577+Vb7+7du+nRowd9+/blxIkTrF27lgMHDtC/f/98r+vXrx+RkZF89dVXHD9+nNatW9OyZUuuXbtmLPPOO+/w66+/8vXXX3Pq1CmGDx/O4MGD2bBhg7FM3bp1Wb58OadOnWLz5s0oikLr1q3R6QxT0HU6He3atSMzM5M9e/awcuVKVqxYwYQJE3LFlJCQQI8ePWjRokUeEecewZiSksJLL73EjBkz8u2rEEIIIYQo+yQzUYISdh/idpIGAEXJAiDNxhzFzgKt/qEH75y1pOr8C96/CcFD86zv1u3NKIrhDYBW64dfRdM3I8t3x7LvQjzXE9MBaFG9AqFV3algb1WU3RLPIFUB61vlN9VQlA+WlpZ4eHjg5+fH22+/TcuWLdmwYQP37t2jR48eODk5YW1tTXh4OGfPnjVed+nSJSIiInBycsLGxoaaNWuyadMmYmNjCQ0NBcDJyQmVSkWvXr0Aw+idbt26YWNjg6enJ/PmzePll19m+PDhxnr9/f358MMP6dGjB/b29rz11lsA7Nq1i6ZNm6LVavH19WXo0KGkpKQAcOLECc6fP88nn3xCo0aN8PPzIzg4mKlTp9KoUSMArly5wsiRIxk+fDgfffQRNWrUoHLlyowcOZJZs2YxZ84ck5FNj6tr1660bNmSwMBAatasydy5c0lKSuLYsWOAIfm3fPlyWrduTWBgIO3bt2fUqFF8//33+da7d+9e/P39GTp0KAEBAbz00ksMGDCAAwcOPPKatLQ0vvvuO2bOnEmzZs2oXLkykyZNonLlyixZssRYbs+ePfTs2ZOXX34Zf39/3nrrLerUqWNS91tvvUWzZs3w9/fnxRdfZOrUqVy5coXY2FgAtmzZwsmTJ/n66695/vnnCQ8P58MPP2Tx4sW5EooDBw6ka9euNG7cuFD3tHv37kyYMIGWLVsWqrwQQgghhCi7JClVgrJvXjZ+r9JdASBTY0gQWT+cA8g0vKHCygHMLXPVczd+F8eOD+LKlS8AqFplCk0ab8PP7y30eoW95+/y659xnLlpGG01MKQSq/s3pHM932LolXhSZXGEkqxtZaoof0KKoqBPTS2Vr6L4s6bVasnMzKRXr14cOnSIDRs2sHfvXhRFoW3btmRlGRLtgwYNIiMjg507d3L8+HFmzJiBra0tvr6+fPfddwDExMQQFxfH/PnzAcPInN27d7NhwwYiIyOJioriyJEjuWKYPXs2derU4ejRo3zwwQecP3+eNm3a0LFjR44dO8a3337Lrl27GDx4MABubm6o1WrWrVtnHMHzd+vWrSMrKyvPEVEDBgzA1taWNWvWPPX9A8PormXLluHg4ECdOo/e9TQxMRFnZ+d862rcuDFXrlxh06ZNKIrCzZs3WbduHW3btn3kNdnZ2eh0OqysTD+Y0Gq17Nq1y3jcpEkTNmzYwLVr11AUhe3bt3PmzBlat8571G5KSgrLly8nICAAX1/DvzN79+6lVq1aVKhQwVguLCyMpKQkTpw4YTy3fPlyLly4wMSJE/PtrxBCCCGE+GeShc5LkO7mBcAVlaIjRQvaNEizNLw5sHk4F5CTlNLY5lnPuXPTuX8/Zw0NNY6O9Y2v/fLnDQatNn0z16qGO3X98n+DI8oS5cF/y17SSjw5JS2NmBfrlkrbVY8cRmVt/UTXKorCb7/9xubNmwkPD2f9+vXs3r2bJk2aAIZ1jXx9fVm/fj2dOnXi8uXLdOzYkVq1agEQGBhorCsn0eLu7o6joyNgGCW1cuVKVq9ebZy+tXz5cry8vHLF0rx5c0aOHGk87tevH926dTOOqAoKCmLBggWEhISwZMkSvL29WbBgAe+++y6TJ0+mXr16hIaG0q1bN2NcZ86cwcHBAU9Pz1ztaTQaAgMDOXPmzBPduxwbN26kS5cupKam4unpSWRkJK6urnmWPXfuHAsXLmT27Nn51hkcHMyqVat48803SU9PJzs7m4iICBYvXvzIa+zs7GjcuDEffvgh1atXp0KFCqxZs4a9e/dSuXJlY7mFCxfy1ltv4ePjg7m5OWq1ms8++4xmzUx3gf3kk0949913SUlJoWrVqkRGRqLRGEYD37hxwyQhBRiPb9y4AcDZs2cZO3YsUVFRmJvL44gQQgghRHkkI6VKkC7DMGVBpehAZ1hk/L61IfHkqFbDxhGw4hU4sd5wgcYmVx16fSYpKecAqFx5LHXrfoOtbRXj66fikgCoYG9JfX8nOtfzoY6PYzH1SDyOwo5BKmhqnShuimzEhyGRYmtri5WVFeHh4bz55pv06tULc3NzGjZsaCzn4uJC1apVOXXqFABDhw5l6tSpBAcHM3HiROM0tUe5cOECWVlZNGjQwHjOwcGBqlWr5ipbr149k+M//viDFStWYGtra/wKCwtDr9dz8eJFwDBy68aNG6xatYrGjRuzdu1aatasSWRkZKHvRU6iJT+rVq0yiSMqKsr4WmhoKNHR0ezZs4c2bdrQuXNnbt26lauOa9eu0aZNGzp16mSyNtTD9Q4cOBCAkydPMmzYMCZMmMDhw4f59ddfiY2NNb4eFRVlct2qVasA+Oqrr1AUBW9vbywtLVmwYAH/+te/UKv/ehxYuHAh+/btY8OGDRw+fJg5c+YwaNAgtm7dahJvt27dOHr0KDt27KBKlSp07tyZ9PT0Qt1TnU5H165dmTx5MlWqVMmzzKpVq6jk7Uqjqj4E+biZ3FMhhBBCCPHPIB9NlqCU+HjAkJQy1xne9aZZ2qBSFJyyUuHQF6YXOPkbv83KSuTU6XFkpMehKNmYmdlS0befcbrV4NVH2Hgszli+R2N/BoVWRpQRD35OMvapLCveTJRKq6XqkcPF2kZ+bT+u0NBQlixZgkajwcvLC3Nzc5OFrh+lX79+hIWF8fPPP7NlyxamT5/OnDlzGDJkyJOEbsLGxjRRf//+fQYMGMDQobnX3atYsaLxezs7OyIiIoiIiGDq1KmEhYUxdepUWrVqRVBQEImJiVy/fj3X6KzMzEzOnz9PWFhYgbG1b9/eJFnn7e1tEnflypWpXLkyjRo1IigoiM8//5xx48YZy1y/fp3Q0FCaNGnCsmXLTOp+eLc/e3t7AKZPn05wcDCjR48GoHbt2tjY2NC0aVOmTp1KvXr1TK7LGaVUqVIlduzYQUpKCklJSXh6evLmm28aR46lpaXx3nvv8cMPP9CuXTtj3dHR0cyePdtkHScHBwccHBwICgqiUaNGODk58cMPP/Cvf/0LDw+PXOtb3bx5EwAPDw+Sk5M5dOgQR48eNU631Ov1KIqCubk5W7ZsoX379gTWeJ679zNwtNFQt3qlAn8OQgghhBDi2SJJqRKUfPsOmAFKNhYPklLeifeol3AAX4cKcBew94HWH4K1M/g3NV57/fo33L692Xjs6FjXmJBKz9KZJKQ05moaBbqUSJ+EEIWjUqmeeApdachJpDysevXqZGdns3//fuP0vbt37xITE0ONGjWM5Xx9fRk4cCADBw5k3LhxfPbZZwwZMsQ44ujh9Z0CAwOxsLDg4MGDxkRSYmIiZ86cyTVd7O9efPFFTp48mSvO/KhUKqpVq8aePXsAeOONNxgzZgxz5sxhzpw5JmWXLl1KamoqPXr0KLBeOzs77OzsChWDXq8nIyPDeHzt2jVCQ0ONO9o9PGoJyLN/qampuaa8mZkZRuAqioJWq833vtjY2GBjY8O9e/fYvHkzM2fOBAw7FmZlZeWKwczMDL1e/8j6FEVBURRjvxo3bsy0adO4desW7u7uAERGRmJvb0+NGjWwsLDg+PHjJnV88sknbNu2jXXr1hEQEICNjQ0BgZWwSU7HxdYS7RMkV4UQQgghRNkmSakSpM9SwAzU/DW9odLdG1RQtNi7PFh7w94Tnns917VJyX8C4OBQD7+KfXF0bMipuCTGfneMhDTDAsNaCzN2vhuKjaUZ1hr50QohilZQUBAdOnSgf//+fPrpp9jZ2TF27Fi8vb3p0KEDAMOHDyc8PJwqVapw7949tm/fTvXq1QHw8/NDpVKxceNG2rZti1arxc7Ojp49ezJ69GicnZ1xd3dn4sSJqNXqAhfeHzNmDI0aNWLw4MH069cPGxsbTp48SWRkJIsWLSI6OpqJEyfSvXt3atSogUajYceOHXzxxReMGTMGMIyomjlzJqNGjcLKyoru3btjYWHBjz/+yHvvvcfUqVN57rnnTNqNiYnJFUvNmjWxsLAwOZeSksK0adNo3749np6e3Llzh8WLF3Pt2jU6deoEGBJSL7/8Mn5+fsyePZvbt28br/fw8Hhk3yMiIujfvz9LliwhLCyMuLg4hg8fToMGDfJcjyvH5s2bURSFqlWrcu7cOUaPHk21atXo3bs3YBiJFRISwujRo9Fqtfj5+bFjxw6+/PJL5s6dCximXH777be0bt0aNzc3rl69yn/+8x+0Wq1xofXWrVtTo0YNunfvzsyZM7lx4wbvv/8+gwYNwtLSsIHH3++ru7s7VlZWuc7/XXx8PJcvX+b69esAnD0bi0qlplIll3zvmRBCCCGEKHskc1GCFL2ComSiy7oGQKa5Hgu1GnWmBq36wSfQlqaftMecmcTVq1+TM/HLz+8t3FwNiwGvjz7FH1cTjWVr+zjgZpd7tz4hHldZ3BlQlA3Lly9n2LBhvPLKK2RmZtKsWTM2bdpkTMjodDoGDRrE1atXsbe3p02bNsybNw8wTGmbPHkyY8eOpXfv3vTo0YMVK1Ywd+5cBg4cyCuvvIK9vT3vvvsuV65cybVL3N/Vrl2bHTt2MH78eJo2bYqiKFSqVIk333wTAB8fH/z9/Zk8eTKxsbGoVCrj8YgRI4z1jBgxgsDAQObMmcP8+fNJSTFsNrFmzRq6dOmSq928zl25cgUfHx+Tc2ZmZpw+fZqVK1dy584dXFxcqF+/PlFRUdSsWRMwjB46d+4c586dy3V9fr+HvXr1Ijk5mUWLFjFy5EgcHR1p3rw5M2bMyPeeJSYmMm7cOK5evYqzszMdO3Zk2rRpJgm1b775hnHjxtGtWzfi4+Px8/Nj2rRpxvWqrKysiIqK4uOPP+bevXtUqFCBZs2asWfPHuOoKDMzMzZu3Mjbb79N48aNsbGxoWfPnkyZMiXf+Apjw4YNxiQaQJ8+7wIwceJEJk2a9NT1CyGEEEKIkqNSyvG7z6SkJBwcHEhMTDSu01Gc9v6rC3sUFSjJACRaZ6Fy6IFnhj2dXd7D2fwy1OgAnb8EQFH0/L6jNnp9GgB2tjWpW/cbTt3I4tjVRNYdvsKRywn0aOxHRB0vanrZywipMuqXxXNRXXYm4fwxblhr0WX8QaMWTQh+6z1jmVPVDKNJuo+3JkOfyeaOm/GyffSIh6eRmJpFnSlbADg3LRxzM8NUnehb0XT/pTsV7Sry8+s/F0vbZdbWybBrLjT6NwuqD+ejC3F09XRmbrWKBV+bh/T0dC5evEhAQECByRVhKiUlBW9vb+bMmUPfvn1LvP34+HhatGiBvb09v/zyC9bP0LTLf5obiencejB9z9sx9/Q9vT6T+/djUKnU2NnVfKq28vudLennhbJO7ocQQgghClLY5wXJYJQgnd4MMIxsum+VzWn/ZObXu4DbgfmYqwxT8PALBiA19SIpqRfQ69NQqy1p0ngHGo0LGdkKXZZFcT8j21hvfX9n6vs7l3R3xD9Euc1KizLj6NGjnD59mgYNGpCYmGgcTZMzJbCkOTs7s3XrVhYvXszevXtp0aJFqcQhhBBCCCHEP50kpUqQLpsHd9ycdc0voejNqWCWhlqVBfX6QvP3wdqZGzc2cOLkX1NLbGyqoNG4sv9iPKfikrifkY3GTM3LVd1ws7OkRXX30uqSeFYV70Zzz7aHBo9Kwq7kzJ49m5iYGDQaDXXr1iUqKgpXV9dSi8fFxYUJEyaUWvtCCCGEEEKUB5KUKkHJOr3hjqsMt13J8kCdlWp40baCYcc94Oatv6ZNaa0q4uvTk4Ox9+iybJ/xfKCbDct61Cux2MXTyXPB5r/PnFWp/pYQkZRIiSpgUW1RfF544QUOHz5c2mEIIYQQQgghSpgkpUpA2p8nSN78K9kZCliCojIjLSuCoFR3yDxhKGRpS1bWPe7dO8CdO1sBqFP7v7i6hgKwdW8sAK62Gqp52NOjsV9pdEUUifyTHyoZxlTq5CcghBBCCCGEEMVPklIl4NyUecRkBXHP6QXQRaFXq+h2oSq+9y6Cfg8A2RZm7N3XmqyseON11tYBzN96lq/2xZKSoQMg/DlPPnw1/+2yRRkm2Q4hhBBCCCGEEAKQpFSJiNX7c7NCfXSZMZACGRqFF69eo4nb/yDpGgCJmnSykgwJKQeHelRwD8fa2p+v9m3lzv1MY131/J1KpQ9CCCGEEEIIIYQQRUmSUiUgS68GwEJ9hiwgySqVDhVmgFMAmfXf57LqNFfilwHg5toK78D5/Hw8joyLF7ibkgHA2oGN8XLU5rklthBFTdazEkI8S+RvLCGEEEKIZ5MkpYpZ0p3bZKs0ANzRJGMNpJtZGF50DeKMwzVu3vzdWN7JOZjZW2JYc+CK8ZyVhZq6FZ1Qq2XulxBCCCGEEEIIIf4ZJClVzC4fPYRebUhKpahUWAO6nKSUxpbk5FMAuLiEYGsfQrrFK5y8blj8vGGAM54OVjSvXkESUkKUGBlzIUSZI7+WQgghhBD/SJKUKmYpd+6ie5CU0qkMa0Pp1WpOBdly1+kAGanpALh7j6H1wljuZ+wxXvtum6rU9XMu+aBFMShEUlGlAkXeeZUeSfwKUebIr6UQQgghxD+aurQD+KfKSk8nPeU+cVeukK5OIiNpFa7x9wDItlS47mlFhtqQkLKzq8XZu47cz8jGTK3C0dqC+v5O1PRyKM0uCCHKqV69eqFSqVCpVGg0GipXrsyUKVPIzs5+qnp///13VCoVCQkJRRNoIVy8eJGuXbvi5eWFlZUVPj4+dOjQgdOnT5uU27hxIyEhIdjZ2WFtbU39+vVZsWKFSZnY2FhUKhXR0dGFbn/SpElUq1YNGxsbnJycaNmyJfv37zeps2/fvgQEBKDVaqlUqRITJ04kMzMzn1oNVq1aRZ06dbC2tsbT05M+ffpw9+7dfK/ZuXMnEREReHl5oVKpWL9+fa4y33//Pa1bt8bFxaXA/iqKQnh4+CPrWrFiBbVr18bKygp3d3cGDRpk8vrmzZtp1KgRdnZ2uLm50bFjR2JjY03K/PzD/2jVtGGR91MIIYQQQpQ+SUoVk62ff8LiPl24euwoacoVFN1NzHV6FBR0HoaRU5Yad66Zf0KvDb3oufwQAE2DXIme0Jq1A5tgZWFWml0Q5YQMznq08nxv2rRpQ1xcHGfPnmXkyJFMmjSJWbNmlXZYRoVJ2mRlZdGqVSsSExP5/vvviYmJ4dtvv6VWrVomibGFCxfSoUMHgoOD2b9/P8eOHaNLly4MHDiQUaNGPVWcVapUYdGiRRw/fpxdu3bh7+9P69atuX37NgCnT59Gr9fz6aefcuLECebNm8fSpUt577338q139+7d9OjRg759+3LixAnWrl3LgQMH6N+/f77XpaSkUKdOHRYvXpxvmZdeeokZM2YU2L+PP/4YlSrv4Uxz585l/PjxjB07lhMnTrB161bCwsKMr1+8eJEOHTrQvHlzoqOj2bx5M3fu3OH11183ljmwbw/vD3+bLv/Xs8j7KYQQQgghSp9M3ytm5nodGapMUOC8D0RXus7z9noAXN1aMWOLDalZf40+CKniVlqhipJWQMJDKcaMyCPeQwphZGlpiYeHBwBvv/02P/zwAxs2bGDgwIEMGzaMn376iYyMDEJCQliwYAFBQUEAXLp0icGDB7Nr1y4yMzPx9/dn1qxZ1KhRg9DQUACcnJwA6NmzJytWrCA5OZmBAweyfv167O3teffdd/nxxx95/vnn+fjjjwHw9/enb9++nD17lvXr1/P666+zYsUKdu3axbhx4zh06BCurq689tprTJ8+HRsbG06cOMH58+f57bff8PPzA8DPz4/g4GBjP69cucLIkSMZPnw4H330kfH8yJEj0Wg0DB06lE6dOtGwYcMnuo9du3Y1OZ47dy6ff/45x44do0WLFrRp04Y2bdoYXw8MDCQmJoYlS5Ywe/bsR9a7d+9e/P39GTp0KAABAQEMGDCgwERSeHg44eHh+Zbp3r07QK4RS38XHR3NnDlzOHToEJ6eniav3bt3j/fff5+ffvqJFi1aGM/Xrl3b+P3hw4fR6XRMnToVtdrwGdmoUaPo0KEDWVlZWFhYcPjAfrx8KtJ3wL/xdtIWaT+FEEIIIUTpk5FSxSRs4DCGr1pPpYbB6DF8on/LKYMkLVSxTgJg8lYfTsYZvl/VryHRE1rROzig1GIWxU9VmNV6JWP0j6QoClkZulL5KooEp1arJTMzk169enHo0CE2bNjA3r17URSFtm3bkpWVBcCgQYPIyMhg586dHD9+nBkzZmBra4uvry/fffcdADExMcTFxTF//nwA3nnnHXbv3s2GDRuIjIwkKiqKI0eO5Iph9uzZ1KlTh6NHj/LBBx9w/vx52rRpQ8eOHTl27Bjffvstu3btYvDgwQC4ubmhVqtZt24dOp0uz36tW7eOrKysPEdEDRgwAFtbW9asWfPU9w8Mo7uWLVuGg4MDderUeWS5xMREnJ3zX0+wcePGXLlyhU2bNqEoCjdv3mTdunW0bdu2SGItSGpqKl27dmXx4sXG5OXDIiMj0ev1XLt2jerVq+Pj40Pnzp25cuWvnWXr1q2LWq1m+fLl6HQ6EhMT+eqrr2jZsiUWFoYNQeo2aMiNuGv8FvlrqfRTCCGEEEIULxkpVUzUZmZknDsH586jPEhKuZrZ85Z9Ni2rteDtH1y4lOwNKDhaW/BCRUesNfLjEGVDcY7SKq+yM/UsG7ajVNp+a34IFpZPNh1YURR+++03Nm/eTHh4OOvXr2f37t00adIEMKxr5Ovry/r16+nUqROXL1+mY8eO1KpVCzCM/MmRk2hxd3fH0dERgOTkZFauXMnq1auNI2qWL1+Ol5dXrliaN2/OyJEjjcf9+vWjW7duDB8+HICgoCAWLFhASEgIS5YswdvbmwULFvDuu+8yefJk6tWrR2hoKN26dTPGdebMGRwcHHKN9AHQaDQEBgZy5syZJ7p3OTZu3EiXLl1ITU3F09OTyMhIXF1d8yx77tw5Fi5cmO8oKYDg4GBWrVrFm2++SXp6OtnZ2URERJTYdLURI0bQpEkTOnTokOfrFy5cQK/X89FHHzF//nwcHBx4//33adWqFceOHUOj0RAQEMCWLVvo3LkzAwYMQKfT0bhxYzZt2mSsp0GjJkxfsIx/9+1B32759VP+zhJCCCGEeBbJSKliEjdjJr8O/5Ibd15AUQwjCKo4X6em02XOpTbnUnJFbDRmrB8UzPaRL0tCSpQJj1obplyRhBxgSKTY2tpiZWVFeHg4b775Jr169cLc3NxkKpuLiwtVq1bl1KlTAAwdOpSpU6cSHBzMxIkTOXbsWL7tXLhwgaysLBo0aGA85+DgQNWqVXOVrVevnsnxH3/8wYoVK7C1tTV+hYWFodfruXjxImAYuXXjxg1WrVpF48aNWbt2LTVr1iQyMrLQ90Kj0RRYZtWqVSZxREVFGV8LDQ0lOjqaPXv20KZNGzp37sytW7dy1XHt2jXatGlDp06dTNZMerjegQMHAnDy5EmGDRvGhAkTOHz4ML/++iuxsbHG16OiokyuW7VqVaH7W5ANGzawbds249TKvOj1erKysliwYAFhYWE0atSINWvWcPbsWbZv3w7AjRs36N+/Pz179uTgwYPs2LEDjUbDG2+8YUyMx5w+xcyJ4xg+auwj+rkLL6+GeHk2KPJ+CiGEEEKI4ieZkGJy90gsV33eMBzcMySltHZpAIzfcBmwo4K9Fc/7OpZOgKJkqaDAT/IlIVS6ivn+m2vUvDU/pFjbyK/txxUaGsqSJUvQaDR4eXlhbm7Ohg0bCryuX79+hIWF8fPPP7NlyxamT5/OnDlzGDJkyJOEbsLGxsbk+P79+wwYMMC4rtLDKlasaPzezs6OiIgIIiIimDp1KmFhYUydOpVWrVoRFBREYmIi169fzzU6KzMzk/Pnz5sszv0o7du3N0nWeXt7m8RduXJlKleuTKNGjQgKCuLzzz9n3LhxxjLXr18nNDSUJk2asGzZMpO6H979zt7eHoDp06cTHBzM6NGjAcNaTTY2NjRt2pSpU6dSr149k+sqVKhQYB8Ka9u2bZw/f9442i1Hx44dadq0Kb///rtx5FmNGjWMr7u5ueHq6srly5cBWLx4MQ4ODsycOdNY5uuvv8bX15f9+/fTqFEjFs2dxfP1G/L20BF4O1nn0c+6REWtBZUKO9sqRdpPIYQQQghR/CQpVUyyrOwAsMq6SxpZqAA7bTrp2Rpc7VzwMrekd7B/qcYohCg5KpXqiafQlYacRMrDqlevTnZ2Nvv37zdO37t79y4xMTEmyQdfX18GDhzIwIEDGTduHJ999hlDhgwxjjh6eH2nwMBALCwsOHjwoDGRlJiYyJkzZ2jWrFm+Mb744oucPHkyV5z5UalUVKtWjT179gDwxhtvMGbMGObMmcOcOXNMyi5dupTU1FR69OhRYL12dnbY2dkVKga9Xk9GRobx+Nq1a4SGhlK3bl2WL19uXPQ7R179S01Nxdzc9J9wMzPDny9FUdBqtY91Xx7H2LFj6devn8m5WrVqMW/ePCIiIgCMi8nHxMTg4+MDQHx8PHfu3DEuOp+ampqrrzl90OsNG4KkpaaiUuVdJqeflSpVBJUKe7vi6a8QQgghhCg+z3xSavHixcyaNYsbN25Qp04dFi5caDINpLRkmRseoi31t8kZf7HzejMuJj/Hd0NCcLYpeDqIEEKUJUFBQXTo0IH+/fvz6aefYmdnx9ixY/H29jauLTR8+HDCw8OpUqUK9+7dY/v27VSvXh0w7HynUqnYuHEjbdu2RavVYmdnR8+ePRk9ejTOzs64u7szceJE1Gp1gdNJx4wZQ6NGjRg8eDD9+vXDxsaGkydPEhkZyaJFi4iOjmbixIl0796dGjVqoNFo2LFjB1988QVjxowBDCOqZs6cyahRo7CysqJ79+5YWFjw448/8t577zF16lSee+45k3ZjYmJyxVKzZk3j4tw5UlJSmDZtGu3bt8fT05M7d+6wePFirl27RqdOnQBDQurll1/Gz8+P2bNnc/v2beP1eS0gniMiIoL+/fuzZMkSwsLCiIuLY/jw4TRo0CDP9bhy3L9/n3PnzhmPL168SHR0NM7OzsakYHx8PJcvX+b69esm/fXw8DD5+ruKFSsSEGDYrKNKlSp06NCBYcOGsWzZMuzt7Rk3bhzVqlUz7sLYrl075s2bx5QpU/jXv/5FcnIy7733Hn5+frzwwgsAtApvx6ih/+bLLz7jzdcicvVTr8984n4KIYQQQojS90wnpb799lveeecdli5dSsOGDfn4448JCwsjJiYGd3f3Uo0tAz2KPpV0fZzxXNSNMJoG+eFkbZHPlUIIUXYtX76cYcOG8corr5CZmUmzZs3YtGmTMSGj0+kYNGgQV69exd7enjZt2jBv3jzAMKVt8uTJjB07lt69e9OjRw9WrFjB3LlzGThwIK+88gr29va8++67XLlyBSsrq3xjqV27Njt27GD8+PE0bdoURVGoVKkSb775JgA+Pj74+/szefJkYmNjUalUxuMRI0YY6xkxYgSBgYHMmTOH+fPnk5KSAsCaNWvo0qVLrnbzOnflyhXjiKAcZmZmnD59mpUrV3Lnzh1cXFyoX78+UVFR1KxZEzDsUnfu3DnOnTuX6/r8Nhzo1asXycnJLFq0iJEjR+Lo6Ejz5s2ZMWNGvvfs0KFDxqQQGHY+BOjZsycrVqwADGtG9e7dO1d/J06cyKRJk/Kt/2FffvklI0aMoF27dqjVakJCQvj111+Nf1aaN2/O6tWrmTlzJjNnzsTa2prGjRvz66+/otVqDW13607cnXus+OxTPvxgXJH2UwghhBBClD6V8gxvs9WwYUPq16/PokWLAMNwf19fX4YMGcLYsWMLvD4pKQkHBwcSExON63QUBUVRWNttHFd0Z+DBznv3rbJ5f/nPmKmfnek7ouj8uuRjiHUg8cIx4rQ26DKiaRTamOCB441lTtV8DnQ6erxvS7ounV9e/wUfO59HV/oUktKzqD1pCwBnpoajeTCy74/bf/B/m/4PH1sffun4S7G0XWZtmwo7Z0GDASysOZJpF+Lo4uHMx9WfbFRFeno6Fy9eJCAgoMDkijCVkpKCt7c3c+bMoW/fviXefnx8PC1atMDe3p5ffvkFa2vrEo9BGNxMSudmUjouNhq8nXL/HPT6TO7fj3kwfe+5PGoovPx+Z4vreeFZJfdDCCGEEAUp7PPCM7v7XmZmJocPH6Zly5bGc2q1mpYtW7J37948r8nIyCApKcnkqzioVCqumycCmSgqFcnaLP4IyJaElDCxb/te5nbtx6mRvUzOK2mGBfHDvw8vkThe+2R3rnNX719l/K7xeZQuBw58Cqc3AvDNjXi8tkdzITWjgIvE0zh69Chr1qzh/PnzHDlyhG7dugEYpwSWNGdnZ7Zu3UqLFi0e+e+JKFl3UzJJSM17qh4AikJq6sWSC0gIIYQQQhSJZzYpdefOHXQ6Xa6ddipUqMCNGzfyvGb69Ok4ODgYv3x9fYstvrtWqQAcD3Tgf43MSHNoXGxtibLPq0o1SE8mzUaHudoNeGitHMWwoK/1gzVUql01DF5007oVWzy2GnOqeRgWZTZT/xWLv70/TpZOxdZumeZdF9SGGc0v6O5g8WA9I31pxlSOzJ49mzp16tCyZUtSUlKIiorC1dW11OJxcXFhwoQJtGjRotRiEKC1MEPFo9cWU6nMUatljUYhhBBCiGfVMzt97/r163h7e7Nnzx4aN/4r4fPuu++yY8cO9u/fn+uajIwMkx2PkpKS8PX1LZbh50cuRXP30iW8vCuj1ToQ6FU807DEsyMtOZnUO0ncu3STjDvXsK9gj6XGEkd/HzQVfFD0enR376IoCnezErBwdsFF61Js8WTr9MSnZmKhVuP00ML7mbpMkjKT0JhpsNeUs2kZ6UmQlQYWVtw3tyVVZ0hJOVuYY67Of9HtXFXJ9D0hioROr0evgJlKhTqP30NF0aMoOkCFWv3kS2XK9L3Ck/shhBBCiIIU9nnhmV3o3NXVFTMzM27evGly/ubNm4/cscjS0hJLS8uSCI8X/Z4Hv+dLpC3xbNDa2aG1s8MlwBt4MdfrKrUaczfD6CgPin+hfnMzNe52uZMlGjMNrtrSG6FSqqzsDV+ALWBrLlNuhShtZmo1+f0mqlRqVKpnduC3EEIIIUS59sw+xWk0GurWrctvv/1mPKfX6/ntt99MRk4JIYQQQgghhBBCiLLnmR0pBYYtnnv27Em9evVo0KABH3/8MSkpKSZbWQshhBBCCCGEEEKIsueZTkq9+eab3L59mwkTJnDjxg2ef/55fv3111yLnwshhBBCCCGEEEKIsuWZTkoBDB48mMGDB5d2GEIIIYQQQgghhBDiMTyza0oJIYQQQgghhBBCiGeXJKWEEEIIIYQQQgghRImTpJQQQggTvXr1QqVSoVKp0Gg0VK5cmSlTppCdnf1U9f7++++oVCoSEhKKJtBCuHjxIl27dsXLywsrKyt8fHzo0KEDp0+fNim3ceNGQkJCsLOzw9ramvr167NixQqTMrGxsahUKqKjowvd/qRJk6hWrRo2NjY4OTnRsmVL9u/fb1Jn3759CQgIQKvVUqlSJSZOnEhmZmaBda9atYo6depgbW2Np6cnffr04e7du/les3PnTiIiIvDy8kKlUrF+/frHjhlg2rRpNGnSBGtraxwdHfNs6/Lly7Rr1w5ra2vc3d0ZPXq0yZ+hh/+cPfxVs2ZNY5np06dTv3597OzscHd359VXXyUmJqbAe1OY+IQQQgghROmTpJQQQohc2rRpQ1xcHGfPnmXkyJFMmjSJWbNmlXZYRoVJ2mRlZdGqVSsSExP5/vvviYmJ4dtvv6VWrVomibGFCxfSoUMHgoOD2b9/P8eOHaNLly4MHDiQUaNGPVWcVapUYdGiRRw/fpxdu3bh7+9P69atuX37NgCnT59Gr9fz6aefcuLECebNm8fSpUt577338q139+7d9OjRg759+3LixAnWrl3LgQMH6N+/f77XpaSkUKdOHRYvXvzEMYPh/nfq1Im33347zzp0Oh3t2rUjMzOTPXv2sHLlSlasWMGECROMZebPn09cXJzx68qVKzg7O9OpUydjmR07djBo0CD27dtHZGQkWVlZtG7dmpSUlHz7WVB8QgghhBCijFDKscTERAVQEhMTSzsUIcQ/TFpamnLy5EklLS2ttEN5bD179lQ6dOhgcq5Vq1ZKo0aNlPj4eKV79+6Ko6OjotVqlTZt2ihnzpwxlouNjVVeeeUVxdHRUbG2tlZq1Kih/Pzzz8rFixcVwOSrZ8+eiqIoSlJSktK1a1fF2tpa8fDwUObOnauEhIQow4YNM9br5+enTJkyRenevbtiZ2dnvDYqKkp56aWXFCsrK8XHx0cZMmSIcv/+fUVRFOXo0aMKoMTGxj6yr5cvX1YsLCyUd955J9drCxYsUABl3759iqIoxj4cPXr08W/qAzn/7mzduvWRZWbOnKkEBATkW8+sWbOUwMDAXPF6e3sXOhZA+eGHHwosl1/My5cvVxwcHHKd37Rpk6JWq5UbN24Yzy1ZskSxt7dXMjIy8mznhx9+UFQqVb4/r1u3bimAsmPHjgLjzi++vOT3OyvPC6bkfgghhBCiIIV9XpCRUkIIUQIURSErPb1UvhRFeer4tVotmZmZ9OrVi0OHDrFhwwb27t2Loii0bduWrKwsAAYNGkRGRgY7d+7k+PHjzJgxA1tbW3x9ffnuu+8AiImJIS4ujvnz5wPwzjvvsHv3bjZs2EBkZCRRUVEcOXIkVwyzZ8+mTp06HD16lA8++IDz58/Tpk0bOnbsyLFjx/j222/ZtWuXcUdWNzc31Go169atQ6fT5dmvdevWkZWVleeIqAEDBmBra8uaNWue+v6BYfTOsmXLcHBwoE6dOo8sl5iYiLOzc751NW7cmCtXrrBp0yYUReHmzZusW7eOtm3bFkmsjxvz3+3du5datWpRoUIF47mwsDCSkpI4ceJEntd8/vnntGzZEj8/v0fWm5iYCFDg/RFCCCGEEM8G89IOQAghyoPsjAwW9HyjVNoeunIdFlZWT3Stoij89ttvbN68mfDwcNavX8/u3btp0qQJYFjXyNfXl/Xr19OpUycuX75Mx44dqVWrFgCBgYHGunISCe7u7sZ1fpKTk1m5ciWrV6+mRYsWACxfvhwvL69csTRv3pyRI0caj/v160e3bt0YPnw4AEFBQSxYsICQkBCWLFmCt7c3CxYs4N1332Xy5MnUq1eP0NBQunXrZozrzJkzODg44Onpmas9jUZDYGAgZ86ceaJ7l2Pjxo106dKF1NRUPD09iYyMxNXVNc+y586dY+HChcyePTvfOoODg1m1ahVvvvkm6enpZGdnExERke+0vOKKOS83btwwSUgBxuMbN27kKn/9+nV++eUXVq9e/cg69Xo9w4cPJzg4mOeee67QsQghhBBCiLJLRkoJIYTIZePGjdja2mJlZUV4eDhvvvkmvXr1wtzcnIYNGxrLubi4ULVqVU6dOgXA0KFDmTp1KsHBwUycOJFjx47l286FCxfIysqiQYMGxnMODg5UrVo1V9l69eqZHP/xxx+sWLECW1tb41dYWBh6vZ6LFy8ChpFbN27cYNWqVTRu3Ji1a9dSs2ZNIiMjC30vNBpNgWVWrVplEkdUVJTxtdDQUKKjo9mzZw9t2rShc+fO3Lp1K1cd165do02bNnTq1MlkbaiH6x04cCAAJ0+eZNiwYUyYMIHDhw/z66+/Ehsba3w9KirK5LpVq1YVur+PE3NRWblyJY6Ojrz66quPLDNo0CD+/PNPvvnmG+O5gQMHmvRTCCGEEEI8W2SklBBClABzS0uGrlxXam0/rtDQUJYsWYJGo8HLywtzc3M2bNhQ4HX9+vUjLCyMn3/+mS1btjB9+nTmzJnDkCFDniR0EzY2NibH9+/fZ8CAAQwdOjRX2YoVKxq/t7OzIyIigoiICKZOnUpYWBhTp06lVatWBAUFkZiYyPXr13ONzsrMzOT8+fOEhYUVGFv79u1NknXe3t4mcVeuXJnKlSvTqFEjgoKC+Pzzzxk3bpyxzPXr1wkNDaVJkyYsW7bMpO6Hd/uzt7cHDLvSBQcHM3r0aABq166NjY0NTZs2ZerUqdSrV8/kur+PWipIYWLOj4eHBwcOHDA5d/PmTeNrD1MUhS+++ILu3bs/MgE4ePBgNm7cyM6dO/Hx8TGenzJlylMvRi+EEEIIIUqPJKWEEKIEqFSqJ55CVxpykhIPq169OtnZ2ezfv984fe/u3bvExMRQo0YNYzlfX18GDhzIwIEDGTduHJ999hlDhgwxJhweXt8pMDAQCwsLDh48aEwkJSYmcubMGZo1a5ZvjC+++CInT57MFWd+VCoV1apVY8+ePQC88cYbjBkzhjlz5jBnzhyTskuXLiU1NZUePXoUWK+dnR12dnaFikGv15ORkWE8vnbtGqGhodStW5fly5ejVpsOYs6rf6mpqZibm/4TbmZmBhiSPFqt9rHuy+PGXJDGjRszbdo0bt26hbu7OwCRkZHY29ub/FkBww57586do2/fvrnqURSFIUOG8MMPP/D7778TEBBg8rq7u7uxfiGEEEII8eyRpJQQQohCCQoKokOHDvTv359PP/0UOzs7xo4di7e3Nx06dABg+PDhhIeHU6VKFe7du8f27dupXr06AH5+fqhUKjZu3Ejbtm3RarXY2dnRs2dPRo8ejbOzM+7u7kycOBG1Wo1Kpco3njFjxtCoUSMGDx5Mv379sLGx4eTJk0RGRrJo0SKio6OZOHEi3bt3p0aNGmg0Gnbs2MEXX3zBmDFjAMOIqpkzZzJq1CisrKzo3r07FhYW/Pjjj7z33ntMnTo11/pFMTExuWKpWbMmFhYWJudSUlKYNm0a7du3x9PTkzt37rB48WKuXbtGp06dAENC6uWXX8bPz4/Zs2dz+/Zt4/V/H1H0sIiICPr378+SJUsICwsjLi6O4cOH06BBgzzX48px//59zp07Zzy+ePEi0dHRODs7U7FixULFDHD58mXi4+O5fPkyOp3OOCqrcuXK2Nra0rp1a2rUqEH37t2ZOXMmN27c4P3332fQoEFY/m3k3ueff07Dhg3zXCdq0KBBrF69mh9//BE7OzvjelQODg5otdpH9rOg+IQQQgghRBlRzLsAlmmypbEQorjkt718WdezZ0+lQ4cOeb4WHx+vdO/eXXFwcFC0Wq0SFhamnDlzxvj64MGDlUqVKimWlpaKm5ub0r17d+XOnTvG16dMmaJ4eHgoKpVK6dmzp6IoipKUlKR07dpVsba2Vjw8PJS5c+cqDRo0UMaOHWu8zs/PT5k3b16ueA4cOKC0atVKsbW1VWxsbJTatWsr06ZNUxRFUW7fvq0MHTpUee655xRbW1vFzs5OqVWrljJ79mxFp9OZ1LN+/XqladOmio2NjQIogLJmzRqTMhcvXjS+9vevK1eu5IotLS1Nee211xQvLy9Fo9Eonp6eSvv27ZUDBw4YyyxfvvyRdRZkwYIFSo0aNRStVqt4enoq3bp1U65evZrvNdu3b8+zrZyfRWFiVhTDn5G86tm+fbuxTGxsrBIeHq5otVrF1dVVGTlypJKVlWVST0JCgqLVapVly5blGe+j7s3y5cvz7Wdh4vu7/H5n5XnBlNwPIYQQQhSksM8LKkUpgr3Cn1FJSUk4ODiQmJhoXKdDCCGKQnp6OhcvXiQgIACrZ2jaXlmQkpKCt7c3c+bMyXNKV3GLj4+nRYsW2Nvb88svv2BtbV3iMYiSl9/vrDwvmJL7IYQQQoiCFPZ5QXbfE0IIUaqOHj3KmjVrOH/+PEeOHKFbt24AximBJc3Z2ZmtW7fSokUL9u7dWyoxCCGEEEIIUR7ImlJCCCFK3ezZs4mJiUGj0VC3bl2ioqJwdXUttXhcXFyYMGFCqbUvhBBCCCFEeSBJKSGEEKXqhRde4PDhw6UdhhBCCCGEEKKEyfQ9IYQQQgghhBBCCFHiJCklhBBCCCGEEEIIIUqcJKWEEKIYleMNToV4puj1+tIOQQghhBCi3JE1pYQQohhYWFigUqm4ffs2bm5uqFSq0g5JCJEHRVHIzMzk9u3bqNVqNBpNaYckhBBCCFFuSFJKCCGKgZmZGT4+Ply9epXY2NjSDkcIUQBra2sqVqyIWi2DyIUQQgghSookpYQQopjY2toSFBREVlZWaYcihMiHmZkZ5ubmMqJRCCGEEKKESVJKCCGKkZmZGWZmZqUdhhBCCCGEEEKUOTJGXQghhBBCCCGEEEKUOElKCSGEEEIIIYQQQogSJ0kpIYQQQgghhBBCCFHiyvWaUoqiAJCUlFTKkQghhBCirMp5Tsh5bijv5PlJCCGEEAUp7PNTuU5KJScnA+Dr61vKkQghhBCirEtOTsbBwaG0wyh18vwkhBBCiMIq6PlJpZTjj/30ej3Xr1/Hzs6uyLeBTkpKwtfXlytXrmBvb1+kdT8LynP/y3PfoXz3vzz3Hcp3/8tz3+Gf339FUUhOTsbLywu1WlY+KM7nJ/jn/3nKT3nuO5Tv/pfnvkP57n957juU7/7/0/te2Oencj1SSq1W4+PjU6xt2Nvb/yP/gBVWee5/ee47lO/+l+e+Q/nuf3nuO/yz+y8jpP5SEs9P8M/+81SQ8tx3KN/9L899h/Ld//Lcdyjf/f8n970wz0/ycZ8QQgghhBBCCCGEKHGSlBJCCCGEEEIIIYQQJU6SUsXE0tKSiRMnYmlpWdqhlIry3P/y3Hco3/0vz32H8t3/8tx3kP6LolWe/zyV575D+e5/ee47lO/+l+e+Q/nuf3nu+8PK9ULnQgghhBBCCCGEEKJ0yEgpIYQQQgghhBBCCFHiJCklhBBCCCGEEEIIIUqcJKWEEEIIIYQQQgghRImTpJQQQgghhBBCCCGEKHGSlBJCCCGEEEIIIYQQJU6SUkIIIYQQQgghhBCixElSSgghhBBCCCGEEEKUOElKCSGEEEIIIYQQQogSJ0kpIYQQQgghhBBCCFHiJCklhBBCCCGEEEIIIUqcJKWEEEIIIYQQQgghRImTpJQQQgghhBBCCCGEKHGSlBJCCCGEEEIIIYQQJU6SUkKIR4qNjUWlUrFixYrSDqXM6NWrF/7+/ibnVCoVkyZNKtE4Jk2ahEql4s6dOyXarhBCCCHKBnlOe7QVK1agUqk4dOhQaYcihCiAJKWEKMP27NnDpEmTSEhIeKLrP/nkE3lQeQLXr19n0qRJREdHl3YofPTRR6xfv760wxBCCCHE38hzmsHT3gchRPkmSSkhyrA9e/YwefLkcv+wU9KuX7/O5MmT80xKffbZZ8TExJRYLJKUEkIIIcomeU4zeNr7IIQo3yQpJYQQj8HCwgJLS8vSDqPEpKamlnYIQgghhBCFkp6ejl6vf+bbEKI8kaSUEGXUpEmTGD16NAABAQGoVCpUKhWxsbFkZ2fz4YcfUqlSJSwtLfH39+e9994jIyPDeL2/vz8nTpxgx44dxmtffvllAOLj4xk1ahS1atXC1tYWe3t7wsPD+eOPP4ok9vT0dCZNmkSVKlWwsrLC09OT119/nfPnzwN/rYEwe/Zs5s2bh5+fH1qtlpCQEP7880+Tul5++WVj3A/La22ngvj7+9OrV69c5x9u4/fff6d+/foA9O7d23jvcj7JfJJ285KSksLIkSPx9fXF0tKSqlWrMnv2bBRFMZZRqVSkpKSwcuVKYxx/jz8hIYFevXrh6OiIg4MDvXv3zjOR9PXXX1O3bl20Wi3Ozs506dKFK1eu5LoPzz33HIcPH6ZZs2ZYW1vz3nvvAXDo0CHCwsJwdXVFq9USEBBAnz59HqvPZ8+epWPHjnh4eGBlZYWPjw9dunQhMTHxseoRQgghStuz+pz2+++/o1Kp+N///se0adPw8fHBysqKFi1acO7cuVzl9+/fT5s2bXBwcMDa2pqQkBB2795dqPvw+uuv8+KLL5rUFxERgUqlYsOGDSZtqFQqfvnlF+O5Cxcu0KlTJ5ydnbG2tqZRo0b8/PPPefblm2++4f3338fb2xtra2uSkpLy7Pu9e/do0KABPj4+hR71/qg21q9fj1qtZsKECSblV69ejUqlYsmSJYWqXwgB5qUdgBAib6+//jpnzpxhzZo1zJs3D1dXVwDc3Nzo168fK1eu5I033mDkyJHs37+f6dOnc+rUKX744QcAPv74Y4YMGYKtrS3jx48HoEKFCoDhH/r169fTqVMnAgICuHnzJp9++ikhISGcPHkSLy+vJ45bp9Pxyiuv8Ntvv9GlSxeGDRtGcnIykZGR/Pnnn1SqVMlY9ssvvyQ5OZlBgwaRnp7O/Pnzad68OcePHzfGWtKqV6/OlClTmDBhAm+99RZNmzYFoEmTJkXWhqIotG/fnu3bt9O3b1+ef/55Nm/ezOjRo7l27Rrz5s0D4KuvvqJfv340aNCAt956C8Dk/gF07tyZgIAApk+fzpEjR/jvf/+Lu7s7M2bMMJaZNm0aH3zwAZ07d6Zfv37cvn2bhQsX0qxZM44ePYqjo6Ox7N27dwkPD6dLly783//9HxUqVODWrVu0bt0aNzc3xo4di6OjI7GxsXz//feF7nNmZiZhYWFkZGQwZMgQPDw8uHbtGhs3biQhIQEHB4enuKNCCCFEyXpWn9Ny/Oc//0GtVjNq1CgSExOZOXMm3bp1Y//+/cYy27ZtIzw8nLp16zJx4kTUajXLly+nefPmREVF0aBBg3zvQ9OmTfnxxx9JSkrC3t4eRVHYvXs3arWaqKgo2rdvD0BUVBRqtZrg4GAAbt68SZMmTUhNTWXo0KG4uLiwcuVK2rdvz7p163jttddM+vLhhx+i0WgYNWoUGRkZaDSaXP29c+cOrVq1Ij4+nh07duR6nirI39to06YN//73v5k+fTqvvvoqL774InFxcQwZMoSWLVsycODAx6pfiHJNEUKUWbNmzVIA5eLFi8Zz0dHRCqD069fPpOyoUaMUQNm2bZvxXM2aNZWQkJBc9aanpys6nc7k3MWLFxVLS0tlypQpJucAZfny5YWO+YsvvlAAZe7cuble0+v1JvVqtVrl6tWrxtf379+vAMqIESOM50JCQvLsQ8+ePRU/P79Cx6UoiuLn56f07Nkz1/m/t3Hw4MFH9juvdgFl4sSJhY5j/fr1CqBMnTrV5Pwbb7yhqFQq5dy5c8ZzNjY2ecY8ceJEBVD69Oljcv61115TXFxcjMexsbGKmZmZMm3aNJNyx48fV8zNzU3Oh4SEKICydOlSk7I//PCDAigHDx4sdB//7ujRowqgrF279onrEEIIIcqSZ/E5bfv27QqgVK9eXcnIyDCenz9/vgIox48fVxTF8MwWFBSkhIWFGZ/fFEVRUlNTlYCAAKVVq1b53gdF+et5atOmTYqiKMqxY8cUQOnUqZPSsGFDY7n27dsrL7zwgvF4+PDhCqBERUUZzyUnJysBAQGKv7+/8d7k9CUwMFBJTU01aXv58uXGZ5e4uDilZs2aSmBgoBIbG1voe1VQGykpKUrlypWVmjVrKunp6Uq7du0Ue3t75dKlS4/VhhDlnUzfE+IZs2nTJgDeeecdk/MjR44EyDW0OS+Wlpao1YZff51Ox927d7G1taVq1aocOXLkqeL77rvvcHV1ZciQIbleU6lUJsevvvoq3t7exuMGDRrQsGFDYx//qTZt2oSZmRlDhw41OT9y5EgURTEZvl6Qv38S17RpU+7evWscuv7999+j1+vp3Lkzd+7cMX55eHgQFBTE9u3bTa63tLSkd+/eJudyRlJt3LiRrKysQsf2sJyRUJs3b5Z1qoQQQvxjlfXntBy9e/c2GVGUMzL8woULAERHR3P27Fm6du3K3bt3jc8PKSkptGjRgp07dxa4rtILL7yAra0tO3fuBAwjonx8fOjRowdHjhwhNTUVRVHYtWuXsX0w3MMGDRrw0ksvGc/Z2try1ltvERsby8mTJ03a6dmzJ1qtNs8Yrl69SkhICFlZWezcuRM/P7/HuEv5t2Ftbc2KFSs4deoUzZo14+eff2bevHlUrFjxidoQorySpJQQz5hLly6hVqupXLmyyXkPDw8cHR25dOlSgXXo9XrmzZtHUFAQlpaWuLq64ubmxrFjx556fZ/z589TtWpVzM0Lnh0cFBSU61yVKlWIjY19qhjKukuXLuHl5YWdnZ3J+erVqxtfL6y/P/g4OTkBhnUTwLCOk6IoBAUF4ebmZvJ16tQpbt26ZXK9t7d3rmHvISEhdOzYkcmTJ+Pq6kqHDh1Yvny5ydoYBQkICOCdd97hv//9L66uroSFhbF48WJZT0oIIcQ/Sll/TstRmOcHMCRj/v788N///peMjIwCYzEzM6Nx48ZERUUBhqRU06ZNeemll9DpdOzbt4+TJ08SHx9vkpS6dOkSVatWzVXfo56TAgICHhlD9+7duXXrFjt27DD5IPRxPaqN4OBg3n77bQ4cOEBYWNhjr7cphJA1pYR4Zv191NHj+Oijj/jggw/o06cPH374Ic7OzqjVaoYPH17mdhNRqVQmi3/n0Ol0T1RXXnQ6HWZmZo9dX1nwqLhz7plerzcuHppXWVtbW5PjvD5pVKlUrFu3jn379vHTTz+xefNm+vTpw5w5c9i3b1+uOh5lzpw59OrVix9//JEtW7YwdOhQpk+fzr59+/Dx8SlUHUIIIcSzoKw/pxXm+QFg1qxZPP/883mWLcy//y+99BLTpk0jPT2dqKgoxo8fj6OjI8899xxRUVHGdbQeTko9rkeNkgLD2l9ffvkl8+fPZ/r06UXeRkZGBr///jtg+GA2NTUVa2vrJ25HiPJIklJClGF5PdD4+fmh1+s5e/as8RMjMCwKmZCQYDIs+VEPROvWrSM0NJTPP//c5HxCQoJxgconValSJfbv309WVhYWFhb5ls35FO5hZ86cMdndzsnJyTiU/GGPM5ro4boSEhLyrCswMNB4/DQPkoXh5+fH1q1bSU5ONhktdfr0aePrRRVLpUqVUBSFgIAAqlSp8lR1NWrUiEaNGjFt2jRWr15Nt27d+Oabb+jXr1+h66hVqxa1atXi/fffZ8+ePQQHB7N06VKmTp36VLEJIYQQJe1ZfE4rrJyFwO3t7WnZsmW+ZfN7VmnatCmZmZmsWbOGa9euGZNPzZo1MyalqlSpYrLBjZ+fX5674+X1nFSQIUOGULlyZSZMmICDgwNjx44t9LWFMXHiRE6dOsXs2bMZM2YMY8eOZcGCBUXahhD/dDJ9T4gyzMbGBsAkkdK2bVvAsGvLw+bOnQtAu3btTK7PKwljZmaWa/TR2rVruXbt2lPH3LFjR+7cucOiRYtyvfb3NtevX2/S5oEDB9i/fz/h4eHGc5UqVeL06dPcvn3beO6PP/4w2Y64sCpVqsS+ffvIzMw0ntu4cSNXrlwxKZfXfS9Kbdu2RafT5bpH8+bNQ6VSmfT/UT/Dwnr99dcxMzNj8uTJue6/oijcvXu3wDru3buX69qcT00LO4UvKSmJ7Oxsk3O1atVCrVY/1jRAIYQQoqx4Fp/TCqtu3bpUqlSJ2bNnc//+/VyvP/xclt9zU8OGDbGwsGDGjBk4OztTs2ZNwJCs2rdvHzt27Mg1Sqpt27YcOHCAvXv3Gs+lpKSwbNky/P39qVGjxmP15YMPPmDUqFGMGzeOJUuWPNa1+dm/fz+zZ89m+PDhjBw5ktGjR7No0SJ27NhRZG0IUR7ISCkhyrC6desCMH78eLp06YKFhQURERH07NmTZcuWkZCQQEhICAcOHGDlypW8+uqrhIaGmly/ZMkSpk6dSuXKlXF3d6d58+a88sorTJkyhd69e9OkSROOHz/OqlWrTEYLPakePXrw5Zdf8s4773DgwAGaNm1KSkoKW7du5d///jcdOnQwlq1cuTIvvfQSb7/9NhkZGXz88ce4uLjw7rvvGsv06dOHuXPnEhYWRt++fbl16xZLly6lZs2axsW8C6tfv36sW7eONm3a0LlzZ86fP8/XX3+da1vgSpUq4ejoyNKlS7Gzs8PGxoaGDRvmu2bB44iIiCA0NJTx48cTGxtLnTp12LJlCz/++CPDhw83iadu3bps3bqVuXPn4uXlRUBAAA0bNix0W5UqVWLq1KmMGzeO2NhYXn31Vezs7Lh48SI//PADb731FqNGjcq3jpUrV/LJJ5/w2muvUalSJZKTk/nss8+wt7c3PnwXZNu2bQwePJhOnTpRpUoVsrOz+eqrrzAzM6Njx46F7o8QQghRVjyLz2mFpVar+e9//0t4eDg1a9akd+/eeHt7c+3aNbZv3469vT0//fRTvvfBxsYGa2tr6taty759+4iIiDCOqmrWrBkpKSmkpKTkSkqNHTuWNWvWEB4eztChQ3F2dmblypVcvHiR7777zrgI/OOYNWsWiYmJDBo0CDs7O/7v//7vqe5Peno6PXv2JCgoiGnTpgEwefJkfvrpJ3r37s3x48eNyTohRAFKZc8/IUShffjhh4q3t7eiVquN2+1mZWUpkydPVgICAhQLCwvF19dXGTdunJKenm5y7Y0bN5R27dopdnZ2CmDcdjg9PV0ZOXKk4unpqWi1WiU4OFjZu3evEhISYrI18ZNsNawohu2Cx48fb4zPw8NDeeONN5Tz58+b1Dtr1ixlzpw5iq+vr2Jpaak0bdpU+eOPP3LV9/XXXyuBgYGKRqNRnn/+eWXz5s1Kz549FT8/v8eKS1EUZc6cOYq3t7diaWmpBAcHK4cOHcrVb0VRlB9//FGpUaOGYm5ubnIP8moXUCZOnPhYcSQnJysjRoxQvLy8FAsLCyUoKEiZNWuWybbLiqIop0+fVpo1a6ZotVoFUHr27KkoiqJMnDhRAZTbt2+blM/ZAvnv2zJ/9913yksvvaTY2NgoNjY2SrVq1ZRBgwYpMTExxjIhISFKzZo1c8V65MgR5V//+pdSsWJFxdLSUnF3d1deeeUV5dChQ4Xu74ULF5Q+ffoolSpVUqysrBRnZ2clNDRU2bp1a6HrEEIIIcqaZ+05bfv27QqgrF271uT8o+o6evSo8vrrrysuLi6KpaWl4ufnp3Tu3Fn57bffCrwPOUaPHq0AyowZM0yuqVy5sgIYnw8fdv78eeWNN95QHB0dFSsrK6VBgwbKxo0bC9UXRfnreejgwYPGczqdTvnXv/6lmJubK+vXr8/3PhXUxogRIxQzMzNl//79JucPHTqkmJubK2+//Xah6hdCKIpKUfJYQVgIIYpRbGwsAQEBzJo1q8BROkIIIYQQQggh/plkTSkhhBBCCCGEEEIIUeJkTSkhRKFkZmYSHx+fbxkHB4d8t+UtLvHx8SaLl/+dmZkZbm5uxR6HTqczWfgzL7a2toXaQvlZUlbuvxBCCFFeleXntLJI7pcQZYckpYQQhbJnzx6TxTnzsnz5cnr16lUyAT3k9ddfz3enEz8/P2JjY4s9jitXrhS4GPrEiROZNGlSscdSksrK/RdCCCHKq7L8nFYWyf0SouyQNaWEEIVy7949Dh8+nG+ZmjVr4unpWUIR/eXw4cPcu3fvka9rtVqCg4OLPY709HR27dqVb5nAwMAS3T2nJJSV+y+EEEKUV2X5Oa0skvslRNkhSSkhhBBCCCGEEEIIUeJkoXMhhBBCCCGEEEIIUeIkKSWEEEIIIYQQQgghSly5Xuhcr9dz/fp17OzsUKlUpR2OEEIIIcogRVFITk7Gy8sLtVo+z5PnJyGEEEIUpLDPT+U6KXX9+nV8fX1LOwwhhBBCPAOuXLmCj49PaYdR6uT5SQghhBCFVdDzU7lOStnZ2QGGm2Rvb1/K0QghhBCiLEpKSsLX19f43FDeyfOTEEIIIQpS2Oencp2Uyhlybm9vLw9VQgghhMiXTFUzkOcnIYQQQhRWQc9PsjCCEEIIIYQQQgghhChxkpQSQgghhBBCCCGEECVOklJCCCGEEEIIIYQQosRJUkoIIYQQQgghhBBClDhJSgkhhBBCCCGEEEKIEidJKSGEEEIIIYQQQghR4iQpJYQQQgghhBBCCCFKnCSlhBBCCCGEEEIIIUSJk6SUEEIIIYQQQgghhChxkpQSQgghhBBCCCGEECVOklJCCCGEEEIIIYQQosRJUkoIIYQQQgghhBBClDhJSgkhhBBCCCGEEEKIEidJKSGEEEIIIYQQQghR4iQpJYQQQgghhBBCCCFKnCSlhBBCCCGEEEIIIUSJk6SUEEIIIYQQQgghhChxkpQSQgghhBBCCCGEECVOklJCCCGEEEIIIYQQosRJUkoIIYQQQgghhBBClDhJSgkhhBBCCCGEEEKIEidJKSGEEEIIIYQQQghR4iQpJYQQQgghhBBCCCFKnCSlhBBCCCGEEEIIIUSJk6SUEEIIIYQQQgghhChxkpQSQgghhBBCCCGEECVOklJCCCGEEEIIIYQQosRJUkoIIYQQQgghhBBClDhJSgkhhBBCCCGEEEKIEmde2gEIUd6cP3oLZ08bHCtYo1KpSjscIYQQQogyS8nWc/3QCW5fukLK/UyyUpIh9QpaJ2scGlZFZ26FTtGjU3ToFB042ONfoSquWtenbluvV4i5mUxmtt54LlOfSWpWKoqix8vJAq0l6BU9Or2ObCUbvaKnkkMlLMwsnrr9sk6fcIU/79wkXXnopEsQqM0AcNaYU9naqnSCE6IcUxSF87dTuJ+WhEp3iQBXm3zLW1tXwtw8/zLFSZJSQpQAvU5Pws00MtKy+fXTPwHoOb0Jtk7yD7UQQgghRF52/+9r7uy6xrmbUble01oEs8Tq3Tyvm9xkMq8Hvf7U7c/beoaF28498nWt73LMbWNynd/ccTNetl5P3X5ZlaHXM+vECVbFxXPPwsH0xasXjd++XsGJT2r4lXB0Qojvj1xj5NpopgVPw8PmFndi8y9ft+7/cHSoWyKx5UWSUkKUgF+WHif2+F3jsZ2LlSSkhBBCCCHycey3zaRZ5ox4MkOltgdUqBQdkIpdhoJap8JMr0KtgFoPGidnrM2tn7jNk9eT6PHFARJSM8nW/zUEyNtRS2p2KgnpCYYTKrBQg5W5FnOVOWq1GjOVGeYqcxSUvCv/h4i6d59Fd3TwUEIqIOOG4Rt7H1AbVohxs5C3mkKUtOt3Ysi4PYEx9ePxsLmFoqiwsvLI9xq1qnRHdsrfFEKUgJuxSQBY2VhgZqHmxdYVSzkiIYQQQoiyLSMlhWwLe8wAtSYIjU1bzLLTqRA7hrSF7dhT/cMib3PP+TvcuZ9hPHa0tuC3d0JwsbXkyxNfMuvQLML9w5kZMhP4vyJv/1mQnK0DICD1KqN1x3ktYiwq1fOlG5QQgkkbTpB8ewFtAw5RQWM45+jwPPXqrSvdwAogC50LUQIy0wz/eHd6rx69/hPMcyE+pRyREEKIkrRkyRJq166Nvb099vb2NG7cmF9++cX4+vnz53nttddwc3PD3t6ezp07c/PmTZM64uPj6datG/b29jg6OtK3b1/u379vUubYsWM0bdoUKysrfH19mTlzZq5Y1q5dS7Vq1bCysqJWrVps2rSpeDotxFPIzshAl5WJomQDoMIC91vbychcyBetFJysnIql3YwH60e9UtuTfeNasG9cC76M+YS+m/uy+vRqABytHIul7WfC1kmk//BvAALTrvC62R1ZI1WIMmLP+TvYWhieC6Lv1MfTfza1ai8t5agKJkkpIYqZLkuP7sEDjqVWBicKIUR55OPjw3/+8x8OHz7MoUOHaN68OR06dODEiROkpKTQunVrVCoV27ZtY/fu3WRmZhIREYFe/9cCy926dePEiRNERkayceNGdu7cyVtvvWV8PSkpidatW+Pn58fhw4eZNWsWkyZNYtmyZcYye/bs4V//+hd9+/bl6NGjvPrqq7z66qv8+eefJXo/hHiU1MQEjv76E/u+Xg6oULIejFpSaUhW7ee/La4S66EiwCGgWNrPWdTcQWuBh4MV9zJu8cWfX3DgxgGu3b8GgL+9f7G0/Uw4uYGMB1N9rPRZ4N+0lAMSQgBkZ6egVV3EVRsPwJtNIqgR+BqWmqff9KG4yTtkIYrJ/XsZbP/6NCmJfw0Bt7CSXzkhhCiPIiIiTI6nTZvGkiVL2LdvH9euXSM2NpajR49ib28PwMqVK3FycmLbtm20bNmSU6dO8euvv3Lw4EHq1asHwMKFC2nbti2zZ8/Gy8uLVatWkZmZyRdffIFGo6FmzZpER0czd+5cY/Jq/vz5tGnThtGjRwPw4YcfEhkZyaJFi1i6tOx/mir++XZ9+xXHf9uMWmUOKFgk3jG8oLJAr9Yz9+W5eFh7UM25WrG0n6l78EGiuWEHucTMRADsNfa83+h9bCxsaOzVuFjafiZkpZGhNcwLsqzeFmpWLuWAhBDX7iVx5ngbhtb+a4S1xd83ISjDZKSUEMUk9thtLp+4y92rhiGUjhWsUatleLMQQpR3Op2Ob775hpSUFBo3bkxGRgYqlQpLS0tjGSsrK9RqNbt27QJg7969ODo6GhNSAC1btkStVrN//35jmWbNmqHRaIxlwsLCiImJ4d69e8YyLVu2NIknLCyMvXv3PjLejIwMkpKSTL6EKC6piYm4WfmiURt+HxS1GpXaDjOLQBQzhVZ+rajlVqvY2s8ZKaUxN7xNSs5MBsDZypnwgHCa+TTDQl26iwKXqqxUMtQPklIWmgIKCyGK25/XEmn38U/osw0JqcQMO6xtauDk9Owkz4s8KeXv749Kpcr1NWjQIADS09MZNGgQLi4u2Nra0rFjx1xrJly+fJl27dphbW2Nu7s7o0ePJjs726TM77//zosvvoilpSWVK1dmxYoVRd0VIZ5KZoZhHSmfak5EDK1Dx3dLb5tNIYQQpe/48ePY2tpiaWnJwIED+eGHH6hRowaNGjXCxsaGMWPGkJqaSkpKCqNGjUKn0xEXFwfAjRs3cHd3N6nP3NwcZ2dnbty4YSxToUIFkzI5xwWVyXk9L9OnT8fBwcH45evr+3Q3Qoh86HXZ2Fu4kPVgLalU/+po7XugNvdAMSv+Xe0yHizibaZW+Pb0t3x39jsA7DR2xd72MyErjfScpJRaxjcIUdpOxSVhbZ4GQEqWLftTvqRxw5/QaFxKObLCK/K/SQ4ePEhcXJzxKzIyEoBOnToBMGLECH766SfWrl3Ljh07uH79Oq+//rrxep1OR7t27cjMzGTPnj2sXLmSFStWMGHCBGOZixcv0q5dO0JDQ4mOjmb48OH069ePzZs3F3V3hHhi2ZkP1iRwt6ZiDResbMrxp2pCCCGoWrUq0dHR7N+/n7fffpuePXty8uRJ3NzcWLt2LT/99BO2trY4ODiQkJDAiy++iLoMvOkbN24ciYmJxq8rV66UdkjiH0yv06FWmZGNISmlqFQoGKbSKebFn5TKGSl19f5Fpu6fys8XfgbAxerZeYNXXH64cZeJ/v3Y5twQAEuZASBEqdLrs0lPOUINl9MAuNq7MOON2qUc1eMr8gVu3NzcTI7/85//UKlSJUJCQkhMTOTzzz9n9erVNG/eHIDly5dTvXp19u3bR6NGjdiyZQsnT55k69atVKhQgeeff54PP/yQMWPGMGnSJDQaDUuXLiUgIIA5c+YAUL16dXbt2sW8efMICwsr6i4J8UR0WYZP2sw1pf+GQgghROnTaDRUrmxYf6Vu3bocPHiQ+fPn8+mnn9K6dWvOnz/PnTt3MDc3x9HREQ8PDwIDAwHw8PDg1q1bJvVlZ2cTHx+Ph4eHsczfR5/nHBdUJuf1vFhaWppMLRSiOOmzs1FhBYohAeV6wx5FY3jLoi+Bz/dyklJZSioAvna+NPVuSscqHYu/8TLs7qVD/PuCGYpPZ+M5FwtZK1WI0nIlPpWz5xfipVvGvx4ssWdh4ViqMT2pYn23nJmZyddff02fPn1QqVQcPnyYrKwsk7UMqlWrRsWKFY1rGezdu5datWqZDC0PCwsjKSmJEydOGMs87noIIGsiiJKV9WCklLlF3r9muvv3yb53j4wLF0iLjub+rt0k/LCehO++J+mhbcKFEEL8M+n1ejIyMkzOubq64ujoyLZt27h16xbt27cHoHHjxiQkJHD48GFj2W3btqHX62nYsKGxzM6dO8nKyjKWiYyMpGrVqjg5ORnL/PbbbyZtRkZG0rjxs7P2hPhn0+l0qFUqY1Kq0aFv/nqxiEdK7b9wlxembCFo/Cbj149/XDe8qDZ8uFjHrQ7jGo6jilOVIm37mZJ2j8Rv+6KgQqPPZMiV1bwX4EF3Lxk9JkRpSErPovW8new7cwiA+HQHUvWVqejbp5QjezLFmt5ev349CQkJ9OrVCzCsY6DRaHB0dDQp9/BaBk+zHkJSUhJpaWlotdo845k+fTqTJ09+2m4JUaC05EzS7xveFJhrDEPO9RkZ3Fm0mOzbt0k/8ScZZ8898noLLy/sw8NLJFYhhBDFb9y4cYSHh1OxYkWSk5NZvXo1v//+u3HpgZyR425ubuzdu5dhw4YxYsQIqlatChhGhbdp04b+/fuzdOlSsrKyGDx4MF26dMHLywuArl27MnnyZPr27cuYMWP4888/mT9/PvPmzTPGMWzYMEJCQpgzZw7t2rXjm2++4dChQyxbtqzkb4oQeVB0OlSogZwElJnxtbjnnIq0re0xt7mXmpXrvMZMjbtTOiSDxkwW8yblLukqw4esDkom42tUB/9Hj64UQhSv6wlppGXpsLUwrCV1LPFNerb4NxXcn82174o1KfX5558THh5ufFgqbePGjeOdd94xHiclJclinaLIHf41ln3rLxiPzdWQsm8/9775huRff819gZkZFhUqoLKwwLxCBVRaK8yd5ZMnIYT4J7l16xY9evQgLi4OBwcHateuzebNm2nVqhUAMTExjBs3jvj4ePz9/Rk/fjwjRowwqWPVqlUMHjyYFi1aoFar6dixIwsWLDC+7uDgwJYtWxg0aBB169bF1dWVCRMm8NZbbxnLNGnShNWrV/P+++/z3nvvERQUxPr163nuuedK5kYIUQCdLhtQYVytSPXXiPNuwUU7hS4lw7BuVZ/gAN5qFmg8b2NpxlenP4PLlO+d9nJkp5OmtgLAysYZ6vUu5YCEKN/u3FrPm1V2UNHeMLJzaKt6uLk+mwkpKMak1KVLl9i6dSvff/+98ZyHhweZmZkkJCSYjJZ6eC0DDw8PDhw4YFJXYddDsLe3f+QoKZA1EUTJiDuXCIBarcLaQYPN0V+5vGL+XwXMzXEfMQJzd3fs27WFBztUCiGE+Of6/PPP8339P//5D//5z3/yLePs7Mzq1avzLVO7dm2ioqLyLdOpUyfjBjRClDV6ne7hlBTnKr1h/L6KS9FOoctJSnk4WOLhYGXyWqYuE5CkFADZGaSZGd5DacvA5gtClFdX4lP5/uARnrOYTGv/v85bWlZ45DXPgmL7W2X58uW4u7vTrl0747m6detiYWFhspZBTEwMly9fNq5l0LhxY44fP26ymGdkZCT29vbUqFHDWEbWQxBllV5nWEuqec/q9JwejDbOsBuChZcXNk0aE7hhAy59++AQ8QoqtVoSUkIIIYQQD+izs+ChZ6Pbbi8CYKXJROVTt8jauZ+RTWKaYeqejWXuz+mz9IbXZPoekJ1OutpwH6zM5LlViNIyb+sZfjwSDUBKlpZTya9SrdpH2NnWLN3AnlKxjJTS6/UsX76cnj17Ym7+VxMODg707duXd955B2dnZ+zt7RkyZAiNGzemUaNGALRu3ZoaNWrQvXt3Zs6cyY0bN3j//fcZNGiQcZTTwIEDWbRoEe+++y59+vRh27Zt/O9//+Pnn38uju4I8Vj0OsMaCOoH/2jr0wy7t7gOGoRjx9dLLS4hhBBCiLIu83ocagd/47HN/Rtk+l4n4u1BoDZ79IWPYfovp/h0x19LLdjmkZSSkVIG8VnZfHDTjNMB/QGwlpFSQpQKRVHITj9JDeczhhNmPrQLnoK3q03pBlYEiiUptXXrVi5fvkyfPrlXf583b55xHYSMjAzCwsL45JNPjK+bmZmxceNG3n77bRo3boyNjQ09e/ZkypQpxjIBAQH8/PPPjBgxgvnz5+Pj48N///tfwsLCiqM7QjyWXEmpVENSSm1jXWoxCSGEEEI8C3RZWSgPDcaxSbsFrqdx97MvsjZ2nb1j/N7ZRsOLFXMvoC4jpQx+vZPId6lWYBsEgI9V+b4fQpQGRVGIvforHXw+MJ6r6OpJwD8gIQXFlJRq3bo1ipL3lq1WVlYsXryYxYsXP/J6Pz8/Nm3alG8bL7/8MkePHn2qOIUoDjpjUsrwSZKSatgVQZ3PemdCCCGEEAL0KsC4ppQKtaJHZVa0b1myHzyrrehdn2ZBbkTfPsq8378mW59tLHMq/hRQzkdK3T5DyvmTgD91k07QP+M4oS9NLe2ohCh3+qw4iFXGZt6oAsmZNjjZB+Dj27O0wyoyxbr7nhDlUc6aUvc3/8qNjZfJvHYNALW1jJQSQgghhMjL719+xqldO8gwU/PXR9tqVIoelUXRJoay9IZnNa2FGWq1imXHlrH7+u48y7pZuxVp28+Ub7uRrq0HgQMISrnEq6pLYCFvH4UoSYqisPPsHToEGgY6nEpowvDmi9FqimY6c1kgf6sIUcRypu8lfbcO84QY43kzV9fSCkkIIYQQokz7Y+uvZGdkgEpFTOL+B2cNSSl1MY2UMn8wqj05MxmALlW7UNW5qrGco6UjIb4hRdr2MyUpjlRbw66EVk6+UFuWShGipKVkZKEiE1uNYUmYzg2q/aMSUiBJKSGKXE5SSqXosAwKwq5VSzSVKmEZEFDKkQkhhBBClE36bJ3xe51iWM9JZe6OStGhtijadYyyH4xqt3iw/mdqtuHNXvOKzWnsJbt5G2Wn/bXrXlBz8PYu5YCEKF9u3LvNqeMd+LTlTeM5C/OiW1+vrJCklBBFLGf6nlrRYVXnRdyGDjW+lnAjjvi4qyh6PZ5B1bC2dyitMIUQQgghygxFr0drZkeaLhlXbSBp9m5kZzRClbQLdRFPGcvSPxgp9WAnubRsw7QYrbms/2mkywJ9Nulqw+7nWtl1T4gSNePX02w/9guj6/2VkDIzs8HRsV4pRlU8JCklRBF7eKSUysKCC0cOsn3lMjLT0khNTDCW6/TBNCo+V6eUohRCCCGEKBsURUFR9FS0rU5M4gHuWidxx94V7ztmqBQ9ZubFO1JKklK5HbuXwNJq73PQ/jkAtGaSlBKiJO09fxdbi/sAnE8I4Kb5dMa/Uge1+p+3A6YkpYQoYsaklF6HWqPh2G+bSbgR91cBlQqPSkFYWFmVUoRCCCGEEGWH8mDhcTWGdVJO2VxE0XjhDagUPdbaoh1ZnrOm1KidI9BYJZKQkQCAtblsSpNj8bW7/FihlfHYw7Ic70IoRAlLSTlPhM807MxvAdAoqAq1a9Uv5aiKjySlhCgimWnZZGXo0GUbHqzOuZmxK3q3cQeZFn3/jXe1Gjh7+WBmLr96QgghhBAAep1hPSkFwzOUS5IemzTDyByVoqOJb9MibS9n971ziTGoUxMAsLGwwUXrUqTtPLOuHCQ5IRlw5o1bW2n5cl/ausmSE0KUhO0xt0i69SX+dn9tmGVjE1SKERU/eWcsRBG4dOIumxYfQ6//axPjW7bmxoSUrZMz1Zo0w8rWtnQCFEIIIYQoo3JGSukUQ3Kq/lkFc2sVV30MSSlrm6JLiCiKQuaDDxBBx8TGE/Gy8SLQMRBrCxkpRcIV+LwVmbXngJMzLe4f59UKTqUdlRDlwrGrCfRefpBu1WJpXhH2xdWl68tD8PNsVNqhFStJSglRBG5eTDIkpFRgZqbGXokn7sHU+15zPsHJ05u09HQuXbqETqfD0tISb9nBRAghhBACvd6QjIpT3wNArShkPNjy3NpTg2W1akXW1pGbR8j5DFGlUmjl1woHSxkFZJQcByhkmBmWmbCs1al04xGiHIm9a9gJ1NEqE4BKXnUJ8C7akaJlkSSlhCgCyoOnm1ov+9DszSpcfncMa+8YFs+0c3ElW6dj4cKFpKenA+Dn50fv3r1LLV4hhBBCiLJC/2CkVBbZAKgUSLA1fLpnX9kWVRHs/Hbh9n1+O3WLk3dvGc+NazhaElJ/l2VY9D3DwjC637JSs9KMRohyQ6fLgISPGPHiRSo7XQegWdWAUo6qZEhSSogikLO4uf5ePHc//4KUs2fgwcYI5paW3Llzl/T0/2fvvuPkqsrHj3/unT7be0l2s5veC2kktACB0EEQRIKgolgARawooGL7Kopig5+i2ECa9B46hBBCSEjvPdt7mX7v+f1xZ2azIaTtZGd35nm/9JU9d+6cObMvZvbc5z7nOQE0TaOwsJC8PEmDFkIIIYQAUIaBho5SVnDK1B2gW5k6WkZi5kzffnQVy3e2xtuaZnLJmAsT0ndKiQQBCEZ3+HLpWjJHI0RaWLajhb8u+jefGvE8Ewt7jns8lckbVD+SoJQQCRCrJdX28vO82voqfqcdnBnYbXZCoTA1NVa0Oz8/n+uuuy6ZQxVCCCGEGFBM00TTtHih890VC7C7ZwCgj12QkNdo6rKCLWOHGmzpXMnEoU7cjvMT0ndKiVhZ/UHd2m3PlYAsNSHEwT25ci8+fyMAuzqGkFX4GU4bP57c3NlJHln/kKCUEAmgoplSnZEaGgp70sCdpUO44447MKK7ymRkZCRlfEIIIYQQA5VpGOjoKBUv9gTKxJPtYsjYxOyIFytufvpUH3u3PsLIysQEu1JJ2FSs9GuEc6bQGc1Uk0wpIY4tpRSEt1CRtReAcRVTmX3cF9C09PnsSVBKiAQwo5MoU4UBKBsxivHzzqBNd/D624vRNA2Xy8WkSZOSOUwhhBBCiAFHmSYaGiaxXfFsuIKP8fk7/pyw1wgb0aWB0bmay+ZKWN+p4geb9/CvjgqY+vv4MbdkSglxTO3efR+nFvwMovH3/KyitApIgQSlhEiIWKZULO28ZFg1U888h3feeQeAiRMncskllyRtfEIIIYQQA5VpGmiaDioWlNLQbYl9jVimlIG1q5XT5kzsCwx2nXVsbqoBXJQFG8i02RhfPoKRXgneCXEstHaH+PajHzIl6w3G50JnKINMbxklpRcke2j9TkLfQiRArKZULChlc1p/wCMRaxcZu13iv0IIIYQQB7Ltg2WEzSBGV5N1QLOhaSqhrxGMllLY1rERkEypj7h3PsGmLQD83+bf8lbnw/y/CVXoaZaxIUR/eXVDAy+vbyAYagPgsc3nUTnmUXKypyR3YEkgV8pCJEAsKEU0KGV39Q5KORyOZAxLCCGEEGLA2/Tu2ygURMshaHoe6IkLSnWHuwmGDUBnSe3b6A7w2D0J63/QM8LQvpuAbs1f3YWjYMYVSR6UEKlLKZNA11ucUL6O6txmAG48czqjS7KSPLLkkKCUEAmw//K9WKZUOGzVLZBMKSGEEEKIAzMjVhbTzmE6o5rmoTsqgXcT1v/ujr3EFojMLD2OvAwHF428KGH9D3rRHffiQamzfw65mckckRAprbbhNUqNW/j8xJ5jVcXlyRtQksmVshAJsP/yPbvTqlMgy/eEEEIIIQ5MmSbLnn6MtoZaALbl1zOq1coUcCVg7tQebOeOZXewtXUncDkAf5j/W7LcksHeS3i/oJRNKrwIcax88+EPaWt6kSvGQmsgB905mgkVY8nNmZHsoSWNXCkLkQBmPFPK+jdoKlasWEF9fT0gQSkhhBBCiP3Vb9/KWw/8I95WmsKubJjA6MyyPvf/5p43eWLzc5jB4vgxp10CLh8Ry5SK1tmSHfeEOHYWratjXrkPgDXNEzlzzp2MGVmY5FEll1wpC5EALbvfJdT1IRFHEIB3N26ha+Wa+OMulxTTFEIIIYTYV8jvB0DTNJRSmBrYlI4JuOx9z2bqCPjp3vIdlNFTp8UhAZeP+Oq2Nl484Xm67V4A3LoUNxfiWKipfYqrxv6d8kwrO/SK4ycxOs0DUiBBKSH6TClF3eanUcrAjG5fHAhZtaSqq6vJyclhwoQJSRyhEEIIIcTAY5pWLSld0zCUQmmKWO0nzW7rc//NXQbKyAYgx+NgwYQSdAm49BIyTR5rNyAakCp3OShxyvJGIRJJKcXvX9nCCPVjphW3xY9nZFQmb1ADiASlhOgjZZooZU2qhnZkMCRYx2vRxy688EJyc3OTNjYhhBBCiIFKmVYtTg0dMDE1iAWl9ARkNIUMa37mdIT58Ifn9rm/lNO0hcDLP4WSGwF4c8P3qLz2OakpJUSCbW7o4rcvb+Qv8zsAeHHXJ/nmOadQVDg/ySMbGOQbR4g+2LaikTf/uz7eLvA5KYmAGZ1k2Wx9v8snhBBCCJGKlGkyOW8eXluu1db3zZTq+2VKMLrhjK6rPveVklbeT3Dr6/HmKI9dAlJCHAPNXSHctgA23bpG/PyCb1FSfA667kzyyAYGyZQS4igZhslLf1tLJLpjCYAj0g0uO0pZk59E3OUTQoh0Fgo1s2PnPUTC7dEdTlX0f9bPSln/ZmaOpbrquiSPVghxJEzDIN9VyvauVQDMW2Wia9bcyZaA5XuhaFDKJiv2DizUjT+24x4m2ifvS/KAhEg9Pt92uvfewI/mWhtgaZqTMaVSR2pfEpQS4iiZEYURMUGZ8WNFRj1ZF38ampoAyZQSQoi+qq19lN27/37I8yLhDpCglBCDijJNNLRocBlOXWWyfrI1d7J5+r5JTDASrVklmVIHFvH37Lhnd0BmUZIHJERqeXT5Hnbv+juTc9ZT5LGOZWWORdMkUr4vCUoJcZRMMzbB6QlKjXvnLULhMPziF4BkSgkhRF+FQs0A5ObOprBgHmhatP6MFv1ZAzTc7vJkDlMIcRRM08qMMqNzKU1BxGHNnTJnTulz/2EjWk5BpmMHFg4QiC4fcsucVYiEUkpxyxOruaC6jsk58G7tdJzZl3LTKVLfbn8SlBLiKJlGLBgV/VeBpusY0aKaIJlSQgjRV+GIVRS0IP8khg27NsmjEUIkkmkamEAQPwAteeOI2F2gwF5Q2uf+Y4XOJSj1UY2hMPe5jmP70DEAuGWNoxAJ1d7VwIzixQzP2QHApKrjOGXaRdhssrvl/iQoJcRRMo1YplS0flT0b3msyDlIppQQQhytxqZXaG19l7a2ZQDY7dlJHpEQItGUadJuD2JGl+9tG34RuvICYMvue82VUCxTSu4RfsR9e5u4M2MOZFjtfIdcFgqRSJu33M7nJrwQb8+oHkGOVwJSByLfPkIcJRVdvqdhRP+1xDKldF0/4HphZZgYbUHsBZ5+GacQQgw2hhFkzZrrMc1Q/JjLVZLEEQkhjgVlmii02P09dNNAK+lk8sTx5BQf/TxpU+smFu9dzM723cAI7LpkAfXS1UhL827Ayaz2VRxfOpQLRo9O9qiESAnbGrv4yTPrOL1oE2Ve2NExnLljZ1FUtCDZQxuwJCglxFGKZUpp0a099WhYKpYptW+WlNERovn+9RhdIczuCLZMByXfmI4mqdJCCNFLONyOz7cN0wyhaU6GVX4Bl6uEgoJTkj00IUSCmaYRvatnzamcoU4853Vz4swL+9TvTa/fxM6OnYQ7JgLgkPV7PSIh+PNs/BVfhNKzOaP5HW4Yez5keZM9MiFSwv8+2MNrGxuZX9gFwMr2K7hm7OeSPKqBTYJSQhyleFAqVpwzejyWKbVvPanAhhZCOzt6nmvXiDT7cRTLBEAIIWJq655g3bpvEbtAdbtLGTHim8kdlBDimDHCYSJmGKVicyoN3dH35S0t/hbMcBajsmawGij2FvS5z5ThbwVfc7zAuSdvGFSdmORBCZEaTDOCCr7P1KLd5Hu6AfjeOTOTPKqBT4JSQhyl2O57mmYFoUyHkyVLltDRYQWf9g1KGZ3WEhT3uHyyT6vEUepFc0iBAyGEAGuHmlCoicbGRYBC02xompPS0ouTPTQhxDHia2/jzfvvIxwIxI9pKOwJKALcXj+L7vozWB1tuxMQ6EoZEauovN9uFZPyHH8tuHOSOSIhUoI/ZLBs7V+Znvlrpk/rOV6QJUHxQ5GglBBHqaemlPWvr3goL774Yvxxp9NJ29Nb6X6vDhWxsqkcJRk4K7L6f7BCCDGArVv/berqHo+3J4z/LSUlsmWyEKmsceeO3gEpWzE25UK39z2AFPKVA2DXNTwOG+dMKutznykjbP3O/TarZpdHljYKkRA3PrSCQuNdTquEZn8euVlDqCqbhdst3z+HIkEpIY5Sz/I9K1NK2a2PU1VVFfn5+YwfPx7ffxtQ4ehufDq4hsudKCGE2F9z85sAaJodt3sIeXmzkzwiIcSxpkxr/tScHWLT8Gzm7ViI3rWb0qy+XcCZysRUVqDl++cN5/Nzx/Z5rKnk4WYf9027m00Z1QB4pAi8EAmxub6LyjIrE3Gb/zy+ctoPyPFIlubhkKCUEEcpEopghHegUQuA0qwJ0KxZsxg/fjwAe0P1ABR9ZQqOEi+6Wz5yQggBEIl0s33H7wmFmgiHmwE48YTFOJ193wZeCDHwxTaGMTVFpuG0dixWJicM6Vt9o4gZAWXNt9wOmXft78/NsCF7fLxd5XElcTRCpIY9ex/g7KFPU5W9BYCrT5gkAakjIN/UQhyljUteItz1GOHYAc260xSrJaVMFc+Sshe4JSAlhBD7aGh4nl277o237fYcHI78JI5ICNGfzOjGMEpTuA1r7qRhWsGpPgibYVBWf16pJdVb40b84SDg4Uf1j3HKeTczLtOT7FEJMWgFIwZ3v/ohE223cVyxih93u4cmcVSDjywiFuIodbU2AaDrmRR0+nBHC3PGg1LROlKAFDUXQoioSKSTrq6NdHRaJYhzcqYzauQPmDb1n2iaTEuESBemGQtKgc20PvuaUgd7ymEJG2GUGc2USkB9qpSxayn8aRbBoLVN/QmhnRKQEqKPXt/YyANLVqFpipDh4H9bPsHosb8lN3dWsoc2qEjqhhBHyDRMara009XiA8DjHcPsFR/y0gwr8KTr1sRKhYz4czSHXGgJIUQ43Mrid+ZhGF3xY/n5J1FZ+fkkjkoI0d9e/cf/Y9O7iwEwNbDHglKYB3vaYdk3U0qW7+2jZSsAId0JgHOS7G4qRF81dQXxOqxrQs2Wy2dOv5mKctlt70jJN7UQR+jDV/bwzmNbCPvaANCw0szNWLp5e5jWxzdj+iJW266jSRFJIYSgs2sDhtGFptlwOPJxOHIpLjoz2cMSQvSjcCjIiuefjreVprApa56UiKBUxIwAVlDKKTvL9YhYu+4ForvuuceelczRCDHotba+R273LXx1SgsAeZkFzB4hAamjIUEpIY5QR7O1q4JNhTCA7No1QE9Qyv9BI87NPenntmxnv49RCCEGks7O9axecx2hkLXsOS/3eKZN+1eSRyWESAZlGL3apg4uM7aj8dEv31NKsbZ5LVvatsSX7zntEpSKiwQBCGnRgJ3cMBXiqD3y/m7CzX+lxLEVd3QVbGbGmOQOahCToJQQR8g0rAmTp3MPIRdkde4FTcO02yESQQuYgIZ3ahGOIVm4R+UmdbxCCJFsjY0v4vfvjLel1oIQ6cs0rGwop+YmpAIoFN5ooKovQamXdr7EN1//DiqcB+pLADgkU6pHJICBTiQWlJIafkIclfqOAN9+dBVfm1ZPSRE8t30+k0ecy6njJPvwaElQSogjZJqxCZP1b+G11zLqvItQf/2rFZSK3gD0TCrCM0FSOIUQ6aujYxV+/y7a21cAMHTo1VRWfB6PR3alESJdmaZBpj2XMTmzWN78EtO2KYb67GwYS5/KHezu3I1/1xcwfMPjxyRTqkcoHMJv88bbbsmUEuKo1DRt5LSKNxiSWQ/AtBFzueD4s9F12VjhaElQSogjFLvDR7TugaMgH3teHqZptfWw9ajmlImQECJ9dXVtYtn7n+h1LCtzrASkhEhzyjTJdOTF23ZDoaJZO468/KPuN2yGMfzW90uG08bYsmxGFGX2bbAp4jsbd/MvFsCJC+LHnLrMU4U4Gq17v83CcVvj7fOnTSLbLQGpvpCglBBHKLZ8T0Uzpdr9Qd566y1CoRAAWkQBmuy4J4RIW0opuro2AGC355CVNR6ns5CiIyxqHjFMGjqtOii5Xgdep0xbhBjsTNNAQ8dU1s08TSm2D7Hqb3omTTjqfsNGz657r3xzHqU57r4PNkW81NTRqz0nNwO7JEoJcUQeX7GHHz65lp/P3YvHDju7p3HK+DlkZ09N9tAGPZndCXGEYkGpWFhqybqNhFeviz9uD0Z3kHHY+n9wQgiRZNu2/54dO/6IUtZa5sKCeUyYcOcR96OU4hN/fofVe9sBuOvyqVw4dUhCxyqE6H/KNNE1HRXNONeAiM2aM2na0UdKwkbPrnsOm0RcADDC8I9z8VXeBvZMXlh+LdXTLyN76jf79LsWIh09u6qWzkAIj93aybLT9R1GjJAamYkgQSkhjlBPppQJmkY4WpxzjKOCYl8mTiMalJLle0KINFRf/3Q8IKVpNvILTj6qfoIRMx6QsvqSCyghUoFpmGhoqHimFPHle3ofgklBIxL/2S4Fzi0t22D3UnxVVtZYcbiVnCGTQL5PhTgihhEgW1vOzNKG+LEb5k9N3oBSjASlhDhCPTWlVK8/6nO6RmBXNmzZThwVWdgLPMkZoBBC9DOlDGpqHyUYbCAQqAFgxvT/kZk5Gts+hXWPRCDcs2385p+dLbtoCZEilGmgaXq8DELImYWyFQPQlw3hgpGeoJRTvi8sYR9hzUZEty75vNctgezCJA9KiMElYpis3/gzzh36AETLYtpsXnTdmdyBpRAJSglxhHrXlOoJSunK+rnkxuPQvVLsTgiRPpqb32TDhu/H25pmJyNj1FEHpAD80aCUw6ZJQEqIFBLLlDKUFURqyZ+EwzEHAL0Pn/VQpCeQbZfle5awH5/ec5PUk3n0heSFSEft/jALfvsmV456n3EFUNddxNCCUqorLkz20FKKBKWEOELhoA8zshdDN+Pp5gBaLEAlF09CiDShlCIcbqGzcy0AXm81eXknkJc7C7s9o099+0PWBaZb6vMJkVK2LFtCnX87ewLR3as0HWU24MwrYOzxpUfdb9DYJyilS1AK4HfNiv/MuBcAmwZOWbYnxBHZUNtBXUcAr8MHwGu1C/nDgq/iccrcJJEkKCXEETAiYXav+gNmpAscgGZ9Iem6Hg9KaXJ3TgiRJtauu4n6+qfi7YKCUxk96gcJ6TuWKeWRoJQQKWX9268TMgPxtqbnoBn3cMaX72NIdd5R9xsKW5lXNl1JDbqoezvdNLmtGwRjvG75vQhxBJQy6Wj8E1+avIqyzEYA7rjsRAlIHQMSlBLiCAR9PisgBbjDGm4NugGbbZ8vJ7k7J4RIE83Nr0d/0rDbcygqnN/nPne3+Pjjq1vY3WrdlZTJnxCpxYwWJLcXjEQPzUCzlZGb8w7V1dVH1Z8/4md7+3ZaAh2AJKwDEAnBuicJGMNAs3Fv04OcevLPkj0qIQaN5q4gb659k+zufzIrnsCp4/XILsDHggSlhDhMK17axYqX1kdbGlNqHXhLFLsBmx69aNI1NAlKCSFSWDBYz/oN3yccbiUSsS4CTzl5JXZ7ZkL6/+c7O3jo/d3xdmm2OyH9CiEGhtiGMc3ZYUrayq2D9qOPJH36mU+ztX0rZrAQWCBBKYB1T8BjXyR40sugwXTaybBJgF+Iw3Xrk2vYU/sBXz8Omvz51BsXc+VJ83C5ipM9tJQkQSkhDtPat/fi64ilm2t4/fUohzWZ0nVrBiRL94QQqa6+4bl9MqTA465MSEBqR1M3r2xo4J2tzQBcOLWc44cXMG9MUZ/7FkIMHMq0glLv53/IuW2XAKAdZSTJVCZbWvYQ6Z5ABpV0A26HbDZDRw0GOmHd+l24jv9SkgckxOCyo8lHtsMPgKEPYf6068jPy07yqFKXBKWEOEymoVDKmkjZbBqeQAtd9mFAT1AKCUoJIVJUd/dW9tY8SFvrUgCKi86mtOwTZGdNSkj/33h4JSt2tcXbF00dwqlj5Y6kEKnGjIStH6KbxWjKYHLRuKPqK2JGCNRdSKTjOGK3Db0SlIJIgKDe83twlSfme1qIdNDQ8AKfqv41HlsbAJMqKhhfLgGpY0mCUkIcJmUqwApKaSFrQqXs1kfIFptYSc64ECJFbd32GxobX4y3CwpOpqjw9D73GzFMwoZiW2M3AAsmlDCqOIuTRhX2uW8hxMBjhkIAaFjLyTRlMiR76FH1FTbDqEguAKOKMyjMdPPJ6UfXV0oJ+wnornjTpcn8VIhDUUrx9QdXMsXzG6qyt8ePZ3hHJHFU6UGCUkIcJtNUgIq3bQUFeE86CWr2yvI9IUTKCwT2AFBachHZOVMpKbmwz31uru/kkrvfoSMQiR+749IpZLsl00GIVGWa1s6aKrZrsWmgOZxH1VfYCKOUFdz65pmjOWtieWIGOdhFAgR163dq18Au9U6FOKTOYISnPqzh+BM6AXh+5yf59vkXUJQ/K8kjS30SlBLiMO2bKWXm5vPSvHNoqtlrPdhtTbD6UqhTCCEGmo6OVaxZ+3XC4fZ4UfOKis+SnZ2YpSBLtjX3CkidMLKALJdMTYRIRdtXvM9zf7qTcNAH6GjElu+Z4M46qj7DZhiiQSmXXb47AN5u7eQu+yl0TpgKgEuXuakQh6O+aQWnVbxJjsua79z8ic9TkDsmyaNKD/LtLcRhMk0FysqUCmXm0N7UFH8sL+QFwJZ9dHf6hBBiIGpoeB6/f1e87XAU4PUO73O/y3e2sLm+izc3NQLw6VmV/PD88bjsOpomd/SFSEXbViwj0NkRL79Z2WD9qykDzen6+CceRMSMxINSDimhAErxlx17ecteDtlW1liFW+amQhyMaSo+3N1I09bPs3CcP348O0PqWvYXCUoJcZiU0ZMpFSvOWZ07lGn1QygdNZTM40pwjchN2viEECJR6uqeorV1Ca1t7wEwrPJLlJdfhstVgs3m6Vvf7QEuvWcJZs9qaIbmeXA7ZLtyIVKZaRg4dBcaYQxlctnbOuumRINS9qNcvrdPppRdSijAvy+iO/NCyDuOa/c8zMwRxzFrSt+XWguRyv6+eDt/fPldfnOKH1NpbGqfwQUzz8bhyEv20NKGBKWEOEzWBVS00Hn0Tn6xJ598lYmrPAvvVImmCyEGP8Pws279t1GqZ1ldTu50vN6qPvdd3xHgzc2NmAqy3HaOH15AjsfBpVKYWIiUp0yTUdnT2dxu7eAZm0vpDjve448/qj7DZhilrBuFDglKwfa3CEy9DIA5/m2cPWIhuKRGnxAHs7m+C4/dB0DQ8FJceQcVFRVJHlV6kaCUEIfJypSK3tqPTaRUdAIkEyEhRArw+XbQ7duKUhF03UV19ddxOQspLJjX575f29jA5+5bFm9Prcjlr1fN6HO/QojBwTRMXLoHFd80xgom2QrysOcdXUaClSllXc6k/fI9IwzKIKhZWWfuS/4CBbKNvRAHEwjWka+/xPFlWwHIzyxg7gwJSPU3CUoJcZismlK9l+/FQlGa7GoihBjk9uy5n42bbou33e5yqoZ9KWH9v7+jxerXoZPvdfKpmTLpEyKdKNNA1+yoaH3O+uKZAOh9uLEXNsIQzZSyp3tB70gAgIAtGpRK9yCdEIdhzZqvMyP3fci12g5HbjKHk7YkKCXEYVBKoUzVc3cvmimlSaaUECJFtLd/AIDdnoXdns3QoVclpN+/v72dl9fXs7WxC4AbThvFdaeOTEjfQojBwzRNNPRYdU4ai6ejAQ7XkdeTW1KzhJtev4mucBdwKyDL94gEAfDrVtF4d7oH6YQ4iJo2P5//xzK+NHYz2U7Y0DKSMWXlDB/++WQPLS1JUEqIw6DiBXmjNaX03sv3tHSfCAkhBiWlFJs2/Zj2jhX4fDsAGDP6dkpLL0hI/6GIyc+eW4+xT1XzMSVHt/W7EGJwM00TTdPjN/jsoW5aCps4/bz5R9zXkpol0YAUKNl9D4Dl7Z3sLJ5Ph936jnVLFr8QH+vNTY1sqOvEPcGqJfXv9VfyyGmXUJDvTfLI0pMEpYQ4DFY9KYgFpVRs+V4scUr+8AshBiG/fxd79v6717HMrHF97rczEOaxD/ZS1xHAMBVOm86dn5pCQYaL2dX5fe5fCDH4KMOIl+YEcAdbacvZSfGwTxxxXyEjjBEsYkHlhTyzyUMYlda77231BTh3YzuMuzV+LCPNg3RCfJxwuB1n10/5xnF7cdrCADz1tXMozpGAVLJIUEqIw2DGU6Wsf7WPLN87wj/829+EJ6+DkA9KJsDVTyVopEIIcWiG4WPHznvo6toIgNtVztixP8PtLicjo+9L6/61ZCd3vLgx3q7I93De5PI+9yuEGLxM04yXPwDQlEJDi8+pjsTaHVn4tn2Tx7dBbG7mTNcgjGmyt84q0pwR8THdt4VJE+dT4XYmeWBCDDzrazt4dunfmJb9CjmF1jGHo4CibLlhlkwSlBLiMIT9QcxIDcposg7sF5Q67OV7gQ5o2UbgrftYv3caEeVklKspVltPCCH6RUPD8+zY8ad4OzNrPAUFJyes/+1N3YC1w9748mwumCIBKSHSmRGJ0NXagi0U6XVcUxr6UdQ+aumw6ia5HCZFmRlMH5ZHUZYrIWMddJ79BoEdm2DiLxjt28HD2+6ACxNTE1CIVPOXN7fha93DtGzY1Dqc4pLLOPu4+UcVHBeJI0EpIQ7DM3f9nFDnyp4D8aBUtH04y/fCAT64/WZquyvYEfxM/HDRjCIJSgkh+o1SCr9/DwDZ2VMpLj6LkuJzE9LvDf9dwbvbmunwWxeeC2dXcqlsrSxE2nv/6ceo37qJ+n2OacpERz+qi8FwtKzCrDE+/n3l+Qka5SBVt5qAZtWRcmnA9KuTOx4hBrDW7m6KnJ0AVJUex2mzP4/LfuSbLYjEkqCUEIcQ9IVpqbEu4NCzyOxuxszKoTsQRI9uIXM4mVK+ml0sabmk17GCcg9ZVdWJHrIQQnyEYfh4b9kn8Pm2xI8V5J/EsMovJqT/+o4gz6yqjbdtusbUityE9C2EGNzaG61wlM9loGkuMpmOFtSPOlMqYlj/pntxcwAiQQI2ax2SZ9hsmDIiyQMSYmDas/cBFg77IbpmXcCNKR8iAakBQoJSQhzE6tf38OaDmwi0BQBwes/n5A9/wTtzMoAgZrtVHI/DCEoFW1sBsGtBTrpyCll5birGy/plIUT/6Oxc1ysgpesu8vLm9rnfNl+Ipz6sYUeTtYNNUZaL+78wm4IMJwWZabqcRgjRizKti8D1wzrIVuOY1HQCenA1DuU4qkypSDRTymmXoBRhPwGXVT/KJRvvCPERbb4Qv39lCyPsT1HqimUUuMjLPT65AxNxEpQS4iBqt7RFf7K+wApaN+AYMZOIT4ENCFq36myZBykm2dUAT3yV0J4g8A3c9gDjT5D6KkKI/tHVtYma2kfw+bYBkJM9jSlT7kXX3dhs7j73/8dXt3Dv29vj7WH5XkaXZPW5XyFE6jANa75k6qBHrMCJTSlsNhsOh+OI+zNMqw8JSgGRIEGPNQ91H0XWmRCp7smVNfx98Xa+M6OFUhfcu/pK/u+Km8jLy0n20ESUBKWEOAjTtO7E2cwAhganXHs8eaXTUY/9F4DMGaUUjB6Hsyr74zvZ/BJsWUQ4OAkAh1PuYgkh+s+Wrb+iufm1eNubMQKHIzdh/ceKms+symNEUSafmik1pIQQvcWCUkpT2ExruYyuTBYuXIjTeeS7xMWW76XtjntRi5ra+dvwb7HTUQSAS4JSQnxEQ6e14qUgIwTAF06ZzrAiCUgNJBKUEuIgzGh6eKyeuS0rCzQNM3rEO64Qz7jCg/bRXBdmedtNdNisNf6OQsmSEkIce8FgI8FgLT6ftVV4WenFeLxVlJVe3Oe+tzR0cdXfltLUHSIUsTJJvzJvBKeNLelz30KI1GNGl++ZGtiiOxfrmmL48OFH1V8sUyrd68H8fmcDy3KmxdtD3UeedSZEKtvbsILx+he5+/QunDar7MqM4cOSPCqxPwlKCXEQyoyFo6x/TTTqW5to0joADqs458rVWWwOnBRvZxd5Ez5OIYTYl9+/iyXvnoFSPduvDxv2FTIyju4CcH+vb2ygpj0Qb2e77UwakpuQvoUQqUf1ypSy5k59SepJ++V7Rhje+BVd5vFgK+DGnf9i6mk3MG+I3BgQIuZ3L29i89b7uHhUa/yYw5FPhjcxcyGROBKUEuIgYsv3FAqFxv1vvU13IADRFXiHE5QKBq1/xwzZTcUZZzJs4sEzq4QQoq86OtegVARdd+J0FpOdPRmvt6rP/b65qZGX19fzwS5rgnfF7EpuOG0keV4nbkd6ZywIIQ5sz4a1tNbuBaxMKXs0U+pIixl0hDr47uu3sL0eOv1TAHDZ0/RSZvub8Oav8M+6HzxwetsHzCwthjRfzijEvhZvaaLaaW3CsqT2ZD5x8s2MLa9MSD1NkVhp+k0uxOHZd/mestutgBTgVU6y3JkMHTr0kH2Ew9a0q6K0jTHHlx2zsQohREPji+zZ/S8CwToACgvnM2niHxLW/40PraSlOxRvTyjPpizHk7D+hRCpJdDdxSO3/wDTsLI2q+pNyvwaOEA7wlSp92rfY9F7FUS6xsePlWYWJHS8g0ag3frHngGA56yfgjMjmSMSYkAJh9vJ0tdQmtEAwJUnzKKqYnSSRyU+jgSlhDgIZSqUUtHbedHdYnQbV/hOwjOyAI/n0BdjEWv5Mg6nZBEIIY6tbdt+R3f3png7MyMxE7CuYISWrlA8IHXDaSMpyHBy8bRDB+aFEOkr2N2NaURw6C7CZpCzl5tEsmxsGw7aERY4DxpBzJAVhCrO1qgq9PDJKVOOxbAHvoh1k9QfzfhwV85I5miEGDAMU/H+jha6dl/EwpE18eN2hxQ2H8gkKCXEQViZUlZxzviSPS16Z892kMRzfxu89WvobibsOwHIw+GSj5sQ4tioqXmEtvbl+P07ABg96jY8nkry8+f2ue83NjVyzT+WEYkuZ85w2vjmmWP63K8QIvUp08SuOclzltAQ2IWmoMtjzaO848cdUV9hM4zCeu6frzieGVX5CR/voBENSgU0q7C5R3bdEwKA/763i9uf+oC751sBqbruYqqLh1JYeFqSRyYORq6ShTgIq6ZULCgV2y0mHp362OcZqx7jsacqaIqchIk1YbBn5x7DkQoh0lUo1ML6DTcT25BB1z2Ul38qYTUTFm9pImIqNA3susbFx0l2lBDi8JimgUN3oWLfT0qxq9iGG3AOHXJEfYXNMCjr0sWexrWTlFJ8oXsYb899hqBm/T7cEpQSArB2B/Y6rDpSptLZaP6FK2ZNRNOOtIqd6E8SlBLiIKxMqVhdqVhQyvrDrx0kKNVS56ch0nMH0O02yDvhvGM3UCFE2goG6wCFzZZJddVXycmZnpCA1D/f2cHvXt5EZ8CqBXPLueO55sTqPvcrhEgfpmGgaRpKWTf4NEBpVjkD/SDzqAMJG2FQ1nMdB8tWT3FtEYNnzQKi9zwZ5naSKxtNCEE43IbXeINZpVsBcDlzuP3CSUkelTgcEpQS4iBMU4E68kypSMCqu5Ll8XPJD+fjyrBj32/CYAaDmD4ftoyMI66rIIRIb0oZrF7zNTo7V2MY1jIOj2cow4Z9KWGv8dCy3bT6rKJ4DpvGrHReKiOEOCrKNNHRMaNZ57uHnIZDmwwc/ObegViZUlbA3ZHGmVJBn7X7qU1FeCPwLENPvhWbZIGINLd8Zys1225ges4SpkfLRzkcuUkdkzh8EpQS4iDUAZfvHTpTKhaUcjpNMnJdvR4zQyFC27ax49LLUOEwQ++5m6x58xI+diFE6uru3kJj4wu9jmVnTe5zv4GwwY+fXkdNm58tjV0A/ONzM5lWkUeO19Hn/oUQ6cXKlLJZm8YAbXmjsWulAHiyjuw7JWJGUNHle2kblHr6RoJrX4DZD+IyQ4y0hSBdfxdCRAXCBlfeu5RbZm3BmwE72isYVlTC8OrPJHto4jBJUEqIg4iEgyijpdcxjcPIlApa2QX2/T5hdT//Oa3/+ndCxyiESB+hUBObNv0En387AF7vSCaMvwNNc5CZ2fed9t7a3MR/39sVb3udNmZW5ZMhGzUIIY6ClSmloWI3+NDx8RYVU2Yzad6R1aezMqWsAIz9CLOsUsa21wnqVna92wzDiFOTPCAhkq+py0eBaxfZTutmWrv7+5x0/Om47LKsdbCQWaYQHyMU8NO45Q8o0w/0BKMOmim14j/w0q1EWicAc7HvdxOw6+VXehoOB0N+82syTznlWAxfCJGC6uqfpr7hmXg7J3sK2dl9z5BSSlHTHmBDbQcAU4bmcPXcKiaU50hASghx1Jr27CRg+PY5ouPTV5JbPRun+8i+W6yglHWR6bSnaXZQ2E9QzwLAmVEAIycmeUBCJN/OLd/hx3NfirevP306TglIDSoy0xTiAGo2t7JrzZZ4QMoRUeR0+NjOwWtKhVc+zp7W4dSErCLn9ozsXo8bnZ0AVD/2P1wjR0otKSHEYfH791JX9xjNzW8AUFg4n7LSi8nPn5uQ/r/x0EqeWFkTb08emiu77Akh+uzdxx4iaPYEpTTNiakp9KPYLS5khAHrQjNtM6UifkIOq76fS3bcE2lufW0Hv3lpE2eXrCTXCd3hLEZUnI7DITUwBxsJSgmxn67WAI/fuQIz0mQd0DzM2d5M99BStgNayKqLwAF2fnl76wmsa5sabzvyCgArfV2Fw5hdVlqpvbhYAlJCiMO2Zev/0dDwXLxdUHAKxcULEtb/4q3NALgdOtluB2dPLE1Y30KI9BXyWzf3vJlDMcLlYCvB1Ey8Xu9h97G+eT1/Wvkn1jdvAcYA4EjjTKmAy5o/OtM1MCdE1L/f3cnL6+u5oNS6vnq96UdcsOCi5A5KHBUJSgmxH19HCBToytoG3WaEyPDVEhpxBbAHwlZQSvd89OPTHrAyo/IKFFmlhUw5rYLgli3svPIzGG1t8fP0rKxj/j6EEKnD77fqPBUVnUl21iTKSi/qc5+NnUFuengljZ1BGjuDACz+7mkUZLoO8UwhhDg8yrRqSWXkDyfYOpKQpuF0O5g5c+Zh9/HghkdYtCqIivRs7e5IwyyhTZ3drM8/gXUZIwBwp+HvQIgYpQwyzVc5o3I3Xru1C/H3zjn87xUxsEhQSoj9mKYVdHISIAA47VB800201xWCuQd7hpOc+dVkzPxoJkEkYqWVzznVRfX8KQC0Pvh8r4BUxtw56C656BNCHFxn51rWrvsm4XA7oZCVuVk17KtkZ086xDMPz6J19by1uSneLs9xk58hGZxCiMSJBaXARBEtUu5y4jqCedD2Wg/B+ovibZddx3GAbPVU1tW6lwUfNuAf/6P4Ma/suifSWHPzm8zO+z2z86y2ptkpzClM7qDEUZOglBD7MY3o8jwMAHSPh64zz6D534sBcGS7yDr5ALVWlCJiRmsdeNw9/XVbtRSyzzmHsp/cjnYEKetCiPRVX/8s3d2b4227PQevt7rP/bb5Quxp9bOmph2A+eOK+dwJ1Ywry0bT0utCTwhxbJnRoNSzJa8zr22CdVBXB3nGR/mDVvAlN8PkwsnVzB1ZiD2dAjLBThrvuxD/tHuxqQiz2tdgqzqRL1UUJXtkQvQ7pRTff3w1mu9NTi+HZn8eBfkzGVt1OrouN/0HKwlKCbGfWFBKi25f3FJcwT/+8Y/44zbbfrs5+Fvhr6dByzYixp8AsHs8Pf11d1vPy81Bz8g4hiMXQqSCzq4NBAJ72bP3fgAqKj5HWdkn8biHYLdn9qnvNl+IE3/5Gl3BSPzYhPIcThgpdxeFEImnlDWX2uOpj2dKZXiO7HssbFh9DCkw+fGFabjbXGc9AcO6UZpn+Hg8aydM+2xyxyREkmxv6ua/7+3m7KpWADa0jObq439NeYFcYw1mEpQSYj8qFpSK1pQy7NZyliw8OE07MyZO6/2EmhXQsg2AiLIi9Pb8nqV9saCULhlSQohD6Oxcz3vLzut1LCtrIlmZYxPS/8a6TrqCEey6RnGWi2yPg3MnlyWkbyGE2F9s+Z7SQNN0FHDu8LOPqI9wdF5mT7Mle3GRAP5oBognsxDm/DDJAxIieZraaxmRs53heY0AnDV5FMMkIDXoSVBKiP0Y0TtymopNpKxJ0BlMIz/koWRk74tDI+Dn9fbraddH4sPabc/h8dD+9NPU3f6TnqCUZEkJIQ4iHO6grW0pYC3Vy8gYgctVSmHBaX3u+7UNDfz+1c00d4UAmD4sj4e+NKfP/QohxMGoiHWDT2mqJ1MqI/eI+ohE52WOdFqyt699glJu2XFPpKlQxOTZDzfibfsk358diB8vzC5I4qhEokhQSoj97F9TimhQSose1vabENTtCrHBf3q8bXfoeLOdNLz0EmZnp3XQ4cAzbb8MKyGEiKqtfZx1678NWF80xUULGDfuFwnr/69vbWPFrrZ4e0J5TsL6FkKI/SmlqF+6ARWdO5kaKM0KKukuxxH1FYnWSnemc1DKFs2UStffgUh7z6+p5Xcvvs5txweImDp+o4jy/CKKixYke2giASQoJcR+lBlbvmf0Oq7HNpDZLygV9luZBznuduZ+9kTyyzNweuyYfiuKX3Lz98i55BJsmX2rBSOESF0tLW8TC0jZbJkUFZ2ZkH6fW13LGxsbWbPXKmp+y7njmFCew/RheQnpXwghDuSdRx4g792eDPEf/ifC9olWTU6b3fZxTzugSHQ6lo6ZUgHD5J+t8F7puQB49PT7HQgBsLvFR5ajC4Bus5JREx5j0lC5wZYqJCglxH7imVKx5XtEM6ViQan9ahqEg2EAMtx+hk/t2QlFBayglL24+JABqfZgO/6IH1/YR6O/EVOZOHQHM0pn9PXtCCEGsN17/sWePf8hEKgBYML431JaekFC+jZMxTceWkkwmmaga3DBlHKKs92HeKYQQvRNS80eirRJqGiwvbRNY3v0McfQIUfUVyR6szAdg1LPN7Xzw7ZMKDoFgDzHkQX0hEgFnZ1rGaGu4uvHWTfYqouGSEAqxUhQSoj9mPtnSkVjULGgVHz53ronYcmfiewaAlyJfb9sdDMYtM53H/gC8N7V93Lv6nsJG2FCZugjjxd7i3nl0lf69F6EEAPbzp3/j2CwLtrSyc6elJB+lVI0dQUJRkx0Db61YAzjy7IlICWE6BdmJIKm9dzE0+gJKLkrhh5RX0Zs+Z49zYJSLdtpXv0m2KYwwreLBZGdXD7ri8kelRD96k+vbaGh5t+cXNYWP5aXJzUxU40EpYTYjxmb/UR334tlSukqOrmKBaXe/h3UfEDEfxYADrerVz8q4LdO3ycoZZgGz2x7hkZ/I/9e92+6w93xx+yaHV3TKckowWP3kO/OT/RbE0IMAKYZoaHhOULhZkIha/eYKZP/SmbmWNzu8j73//tXNvO7lzcRja9TmOniq/NG9rlfIYQ4XKZhxLOkLPsEqA5zF73l9cvZ3LoZX9i6ceewpVmW0Bu/wt+iYPgUZnSs5Tb7Rsi4IdmjEqLfKKW465XNnF/dCsAbe+Zy0nG3UFU1JskjE4kmQSkh9hNbvhfbfS9Giy3jiwaljECA+tA4mksugQ6wl1m78inThEgkXlNq30ypJbVLuGXxLfG2ruk8ev6jlGSUkO3MPnZvSggxYDQ2vcTadd+It3XdSUHBKWhaYi64nly5Nx6QAjh1THFC+hVCiMMVCoTZNxCF1pPlpGuHDko1+5v5/AvXYBh2gqFzAPDsn5Ke6vwtBPRSANyl42HK5UkekBD9q8vfRlXWRsoyrIzyc6ZMZvaE0UkelTgWJCglRJRhmOxc1UzN5jbrgDKse3zRyZNO70ypl3dfwpbO46DFOmx32/GvXMmuL3wRs6sr3u++mVK7O3cDMDRzKLPLZjOjdAaj8kYdy7clhBhgfN3bAPB4qsjJnkJBwbyEBKTuenkz725rZleLD4AnrjuB6oIMcrxpdiEnhEg6M9J7s5h3Z/84/vPhZEq1Blrp3vtJIh09OxeXZaZZgD3sJ6BbWfjuihmQf2S1uIQY7FauvJTvztwebw8pKOm1LFikDglKCRG1aWkdr/5rQ7ytq953+fbPlGoNWkXNs3J1vHmZjD2+lO6XHuwVkHJUVOCsqmJV4yoW7VzEyoaVAMwtn8utc249xu9ICDFQmGaID1ddS3f3ZiKRDgBKSs5jxPBvHOKZh6epK8hvX94Ub2e77YwtzcItRXGFEElgmsa+eVIYNjcakFlo53CuKSMqgtHds+w402VnzojChI9zQIsECDitoJTsuifSybqaDr79yHJummQFpBr9xYwsraSocH6SRyaOFQlKCRHV3WbVLMjMd1E6PAfj2W3U71MmStsvUypiWh+f+ZeWUD59HAANQWvJXu5ll1Hy3e+gud1oNhu3vngr29q3xfsqz+x73RghxODR2bmGlpa3eh3LyZ6akL53t/hYW2MFunI8Dn72iYlMKM+RgJQQImlMo3emlG6E6ch+lVM+deVhZTqEjTBKWd9hL9x4EqOKs7Dp6ZMh4TNM3naOYHPGMADcafTehXhudS07mhrj7adr7uD+c09M4ojEsSZBKSGiYrvuDZtQwLyFY3n1yXZw9yx7iS/f8zdCVwOGaT1m93ji56hoHSlbdhZ6Rkb8eKPf+mK9dPSlDM0ayidHf/KYvhchxMAQDrfS2bmOtvblAGRmjmP8uDtwOHISUtT8b29v5yfPrIu3h+R6OG+yBL2FEMm1f1BKUybKFsB+mMHyiIpANCjlddjTKiAF8JOtNdw39Evxdka6FXkXaa0jEMZjtzaMQnPz98/JbnupToJSQkSpaFAq2FXPy/e+ym6Hhl3vSZXS0LDbdqL95kJQBhH1TwDs3p6glBndcU9z73NMmXSFrCV9X5nyFYq8Rcf8vQghkk8pxbJlF+MP7Iof83gqycoal7DXeG97MwAZThsZLjufnl2ZsL6FEOJoKdMALbbjgoaOQsN22PVgwkY4HpRy2NMrIEX9OnY3tQMehvt2M6poKOcW5SR7VEIcc0opVq+5nhMzX2XuXGvDKacjG5ddgrKpToJSQkTFMqVqNi2iZc9KcOh4dW/8cfewHLIL18NaA2xOIlgBK3tmz655KhAEQPe4CUQCLK1dSnuoPb4tcpYzq5/ejRAimZQyCAYb4gGpzMzx2HQXQ4d+ps99G6biy/9ZzrqaDho7re+c310+jTPGl/S5byGE6Kv2hjq6W5tZoy+OHtGtTCldRz/M2khhI0zsMsVhS6N6Su174Z4TCE66A/Jm8K2d/+DimT8FtzPZIxPimOoKRrjh/sVcWfUCNg1iyYG5uTOSOzDRLyQoJUSUMqzAkRmxLvLKAhHyurqoH2E9XvKVqfDBKoKrvQQqziNSYwWlbA6dwKZNhPfsIbTLugDVXG7u+uAu/rP+P/H+XTYXLts+RaqEECkpGGxk6XvnEg5bWUwORz6zZz2dsP431nWyaF19vO206Uwozz7IM4QQov8sefRBAt3tbOND64DmQkOBph92plQgEo7/nF5BqT2gTAI2K+PeXTUXCsckeVBCHHtLtjazcudurqyCiGnj+2/fwv/7zEwmDh+b7KGJfiBBKSGiTGUFpcKNDQAUN7RQEK19ECty3tJo8HDDfRgNPXesVO1etl90Ya++dK+X3Z27AajOqabYW8z8yvmyjakQaaCt/f14QAqguPichPTb2h1i0fp61kWLmo8oyuCuy6dRmuOmMFMC3kKIgSHo6wagptCPz+1iXNu5YJooTTvsTCn/PkEpZzoFpSJWbdKgIxMA1+wvguy8J9JAa8ceKrP3AGC35/DQVy9mZHFmkkcl+osEpYSIimVKqaAf5bSxbcxYdmQWAD1FzpsaNAycaCgcHgcV4/JRDdYXqOb14h4zBnthIZmnzsP3npUZ8dWpX+WsqrP6/w0JIfpVTe2j7N71d0LhFgCKi85mwoQ70fXELLv4+XPreWT5nni7ujCDiUOkzogQYmAxTavI+fYyH91ZLiZ2V6AFWlCadtg354LhSPxnhy2NbuhFs/UD0b8brjQr8C7Sz+4WH0+88xfGe//A16ZZx7zuXAlIpRkJSgkRFasppVCEs/OoKauKP+bRrCwEIzpJqixu4LzbPw1Ax4svAeAeO5aqB+6PP8cX9gHgtVt1qVpr9/Lek/8jHAwQ6Oqku7WFgophnPf17xzbNyaE6Be7dt1Ld/fmeDs7Z2rCAlIAWxqtDROmD8tjSK6HL5xUnbC+hRAiUVR05z2lKTwR61JDUyalQ4ZQXn54u4MGIhFAB1R67bxnWEGpYPRvh0eypESKu2/xDiKty8ELIcOBrrspK5NdytONBKWEiIrtvke07gFAaX4xVXED3ZsAAQAASURBVPW5VGaVQNMWIl3tANj3+eSo6I57usezb3d0h6309VhQ6v1nHmfNay/1OsfmkMKVQgxmSila294lFGwkEKgBYML4O/F6h5OVNaHP/XcHI3zqL0vY3tiNL2xd6N1y7jimVeb1uW8hhEgkpRRLH3+Yhh3bADA18JrWDlqaMvnsF76A7jr4UuP719/PY+veoqFNB85F1820KX3gM0we6XTRUXEFLbYMQDKlROpr6goyxGFdMwU8X2H+jK+S5XYkeVSiv0lQSoiofTOliE6ACnLymVgzhGz1LPzxbozuC4Bp2PbZntj0W0EpzeMmaAT5ystfYWvbVloDrQB4HVZQqqvFqjEz9oRTKB8zjpyiEjJy5cJSiMGstXUJK1b23lGvsPA07PbE7LT5wa5W1uzt6Ok708WoEtnFUwgx8LTs3cPih/4dbytN4TSt+ZKGiXYYWT+/eeMFWnZcHm+nUzmph+ta+F53MQz/UvxYtt2WxBEJcWx1dKxiuPuflDmtOrxzRlZLQCpNSVBKiKhYTSlQqGhQSo/+61BbAIjYrB2u7AUVVruxkXBNrXWux8v65vUsq1sW7zNPy2bnY4vY0vkENZs3AjBm7smMnDH7mL8fIcSxo5QiGKylre09AJzOYjIzx5Cff0JCAlJbG7t4cmVNvKj5rOp8fnPpFIqyXLgdcpEihBh4QgGrbIGm6yjTxNQA07rA1JTq2eP9IPx+q06e067I9uh88rgRx2y8A4pSNEYLxI/q3sEMvZMJk8+i0iObWIjUY5qKL/7rfU7J/zaTcnbHj7tcpUkclUgmCUoJEWXuu3yP2J09PfqvVUvKGDYP2sCWU0T7M89S861vxZ+vezz4ItaErCq7it+d+jtal63jjXv/X6/XySstO5ZvQwjRD1av+SqNjT3LcUtLL2DUyJsT1v+PnlrLW5ub4u1RxZlU5HsT1r8QQiSaaVhL9XTNhoHJ7I0m2aYGHkAdOlNKKUW0C86aWMzvL591jEc8gPz7IoJqNFQu5LSWpfw4oxGGfubQzxNiENrT6ueVDQ2cN89aVbK4Zg4XzTyF3NwZSR6ZSBYJSgkRpXot37OOxXbd6whnsLH7PGobrDX+dodOYPUqADSnE1t+Pllnnhkvbp7rymVE7giW+VcCUDZyDBPmnU5uSTkFQyv78V0JIY6FlpZ3ANB1Fw57LkVFZya0/53N1nfJBVPKqcz3svB4+d4QQgxsyjAodA3BVCYtRi0nrTWx2xQfTomX6jyosBkGZV2aONNp2ZoRgW2vExgxCQC3isCI05I8KCGOnY5AGFBk2K25zrXn/oLSvIrkDkoklQSlhIjqqSlFvKZUbPnea83n0BQqg07rXKfXjhmwdkgpuPZaiq6/DgDf1qeAnjpSoWgR9OLhI5lyxjn98TaEEMdIKNTEps0/JRRqwjCsnfBOPul9bLbEZDA1dwVZeO9SatsDtPvDAHzzzNEMK8hISP9CCHEsGUaEfFcZjYE9AGgKtgy1LjVcQw69617ICIGyolduexpdokSsuWJsxz3XSTfC8CFJHJAQx04gUEPD9i9wx8l12HQrNbIouzDJoxLJlkbf+EIcnBmrKaXtu3zP+tdnWBeFVVVhsodXM25uGe2vBwDQ3S7WNK3hvxv+y9a2rQBkOKzzQz7rDoBrv535hBCDT13909TXPx1vu90VCQtIAbyztZkNdZ3x9pBcD2U58t0hhBgclGGgoaOI7bineH+ck3ENYMvJOeTzQ2YIsDKkXOkUlApb88lALChll0LPIjX9b/ke1m39F3MLN5Lvto55vSPQdXdyByaSLo2+8YU4OBWNSal9Cp3HglKGsiZJx59kUHDCaABag1amlOZy88cVf2RxzeJ4X6VrQvzzmevobLFqwjg9UgtGiMEqGGygoeE5GhsXAVBYOJ/S0gvJyZ6WkP7X13awrqaDt7dY3xenjS3m1vPGU5bjxmlPo62nhBCDmmmaaJqGqaJBKUBp1vxJ17WDPNMSMkKo6HzLcRhF0VNGLFPKbt2EcB/G70qIwegXz29gVlE9FMKKhkl0Oq7itlPORtPkv/l0J0EpkdZCgQjP/mkVHU1+/J3h+PFsRwHNQGhTG1CIGa1xYHM64+eogHVnS3O76AhZO2RdMuoSJhVOYu/PH6TJ74+fW1Ax7Ji/FyHEsbF588+ob3gm3i7IP4mS4sQsx+0MhPnEnxcTCJvxYyOLM6kulCV7QojBxTAi6FrvTCktWkzq8GtKWcEopy09LlKVUvy9rpPdw7/Cqkzrpqf7EAXhhRiMAoEmKrzLqMreBcDEYROYM/V8bDbJDBQSlBJprmFHBzWb2/Y5okAZZDjy6KCVMbxCjv01DHUlAHZXz9a8ZjC2fM+NP3qX66zqs5hdMos7/fcBcOG3byWvrJyCIVK8T4jByuffDkB+3olkZo6htPTChPQbCBusrekgEDZx2XXmjCggw2XnillS1FwIMfjEl+9FU881BSoajTpUplR7sJ3l9cvjQSmHLT0CM8vbOvlBbRgqLo8fy3OkUZaYSAut3SFWrriS66dujh8bW1ZBjkcCUsKSHt/4QnyMWB2p3BIv5143nLmj16I0EzQYxxYm2J4m0/YUZjR+q2fmseeGG9g4aza+95YBoLlcBCJWgMptcxMOBeP9D5s0RQJSQgxC7R0f8s47p/LGm8fR2bkOgBEjv82oUd/Hbs/qc//rajqYdvsiLv/LuwCMLsniH5+bxZ+uOI4qyZJKSXfffTeTJ08mOzub7Oxs5syZw/PPPx9/vK6ujs985jOUlpaSkZHBcccdx//+979efbS0tLBw4UKys7PJzc3lmmuuoaurq9c5q1at4qSTTsLtdlNRUcGvfvWrj4zlkUceYezYsbjdbiZNmsRzzz13bN60SCumYaDtkym1s3IB5W1zANAOEZS68rkruXXxrfHle/Z0CEp11tHy8BcBKAk2cV3jc/x4ZDmnF2QneWBCJE5Ld4i5//cKwcA2AHZ1VlBQcAolJecleWRiIEmDb3whPl5sxz1d7+axn3+NV5e+RMRmQwFurECTUTCu5wmeUjoXvYzZ0QGGgeZy4R4zhqBhBaI8dg+h6LI9TdOxO10IIQafhobn8Qd2EYm0AwqHowCvpzph/S/Z1ow/bABg0zXOm1yWsL7FwDR06FD+7//+j+XLl/P+++9z2mmnceGFF7J27VoArrrqKjZu3MhTTz3F6tWrufjii7nssstYsWJFvI+FCxeydu1aFi1axDPPPMObb77JtddeG3+8o6ODM888k2HDhrF8+XLuuOMOfvSjH/GXv/wlfs4777zDpz/9aa655hpWrFjBRRddxEUXXcSaNWv675chUpJpGOjoqGhNqebCyeT6hwPgzjx4RsSuTmtJT6bdKojuSIflezUrCESLnFf793BrVjtfqijGJcv3RArZ1tiFYQRw6Nacp8l1J1On/B2PZ2iSRyYGElm+J9JaLFMq0r4XZZpopiIjFMam69iid/qMkuPASpRANyPRH3RGPP8cWl4u3U6FP+JHU7D2v4+xvNYqVuxwu6VwnxCDTH39M7S0LqGtbSkAw4Z9mfKyT+JylfR5pz2lFHe9spmNdZ1sqrd22bvmxGpuPW98n8ctBr7zzz+/V/tnP/sZd999N++++y4TJkzgnXfe4e6772bWrFkA3HLLLfz2t79l+fLlTJs2jfXr1/PCCy+wbNkyZsyYAcAf/vAHzjnnHH79619TXl7O/fffTygU4u9//ztOp5MJEyawcuVK7rzzznjw6q677uKss87i29/+NgA/+clPWLRoEX/84x+55557+vE3IlKNEYlgKANTGdEjOrvyFzM8YxwnXDL3Y59nKpNQ50giXaMp0ybRRiA9NnkI+wnYrJuX7qq5MO2zyR2PEAlmGH7amx/ivOEfAqBpNr61IDGbxIjUkgbf+EJ8PBXNlDKDVnZTRjjCaZ0RHB4PujJoDA9nV0tPJF+LBqU0pxNHZSWfffurnPTQSXSFuyhod7L9zcXUbt4IQG6JZD4IMZgYho+1675JTc2D+HxWHancnOl4vdV9DkgBbKrv4ncvb+b5NXVsbewGYFRxZp/7FYOPYRg8+OCDdHd3M2eOtbxp7ty5PPTQQ7S0tGCaJg8++CCBQIB58+YBsGTJEnJzc+MBKYD58+ej6zpLly6Nn3PyySfj3GdTjgULFrBx40ZaW1vj58yfP7/XeBYsWMCSJUs+drzBYJCOjo5e/xdifx88/yRr294mYPqsA5rG3oL3cZZ3kpn38Vu+G6aBf+/lhFtPZFeLlTmUFrVmIkGCuvVZddslT0CklrBhsnrzg9D+a84dbu1e7HQUyg17cUDyDSjSWmz5nha9q2fPzmHUEw/z3v/di983jIdbvwXN1rl2h45mRINSdjv+iJ9VjavifY3PHA10kl1UzMkLP8eQsRP69b0IIY6ez7eDjo5VKBVB1z1UV30Vp7OYgoJT+tx3KGKyYlcr7++0ggJD8zx8+ZQR5HgcLJhQ2uf+xeCxevVq5syZQyAQIDMzk8cff5zx461MuYcffphPfepTFBQUYLfb8Xq9PP7444wcORKwak4VFxf36s9ut5Ofn09dXV38nOrq3stMS0pK4o/l5eVRV1cXP7bvObE+DuQXv/gFP/7xj/v25kXKa9m7N/6zpueh6XmAQj/EcrSQEQLTCvxfefxQqgqy0uO7MeInEAtKyZI9kWIu/vM7jPS8x3nDYU9nGSF9HJ+YsjDZwxIDlASlRFqLLd/Tokv1wm4Pjz32GDWhZkZErLoGLkeInCGFjDiuCBUOWec7HNbWxVEffOYDdi5fzpMv/ZSM3DzGzDmpn9+JEOJodXSuYdmynh313O4hVFV9NWH9//jptdy/dFe8PbY0myuPH5aw/sXgMWbMGFauXEl7ezuPPvooV199NW+88Qbjx4/n1ltvpa2tjZdffpnCwkKeeOIJLrvsMt566y0mTZqU1HHffPPN3HTTTfF2R0cHFRWyiYewbHl/KUsfexAzeuPupVl7uHDD9SjNzuTuEvTigwdcAkbPfOrG+aMozOx7ZupgYIQC+HUrg0zqSIlUEowYrN7bzuSxVtbkhrZpnDjt+xQWyCoScWASlBJpLbZ8j2imVEduIXWrrOwnDSu9tLKkhTO/dxYAgfXrrcf2CUppaNg1O+GglXLucH18iroQYuDp7LQKTdtsmbjd5VRWXpPQ/tfsbQegMt9LfoaTz86tSmj/YvBwOp3xzKfp06ezbNky7rrrLr7zne/wxz/+kTVr1jBhgpVlO2XKFN566y3+9Kc/cc8991BaWkpDQ0Ov/iKRCC0tLZSWWlklpaWl1NfX9zon1j7UObHHD8TlcuFyycYd4sBWvvgMdVt7tnpHKdCsXfQKwh7c7oPPiwLhnqCUx5EGy/aAX26r5XfBOajhVq0t9yF2JxRiMNlds4hPj/kf4/Kt74WvnDqNykoJSImPJ0EpkdbM/YJSSrPuVI1xVZDXWUsNYLP1nK+iEyfNbrfSzQGnzYmmaT1BqUNMvoQQA8OOHXfT3rESn28HACUl5zJu7M8T0ncgbPC1/65gV4uPbdH6UX+8YhqTh+YmpH+RGkzTJBgM4vNZd5P3X+Zks9kwTSuTd86cObS1tbF8+XKmT58OwKuvvoppmsyePTt+zg9+8APC4TCO6MX9okWLGDNmDHl5efFzXnnlFW688cb46yxatChe20qII2VGIr3a5U0mSrcmT2PHT2Dsaacd9PmBSE9Qymm3HeTMFLHhWZ7f5UA5rOW4NmUyJ1fqC4rBL2KY/Pql9UxzfIP5w0Lx4y5XyUGeJcQxKnS+d+9errzySgoKCvB4PEyaNIn3338//rhSittuu42ysjI8Hg/z589n8+bNvfpoaWlh4cKFZGdnk5ubyzXXXENXV1evc1atWsVJJ52E2+2moqKCX/3qV8fi7YgUFlu+R3T5HtHie0PtRTiUtc5f3+fulYpOvDSHIx6UKu7wsOgvf2TNq1YRP7tT7iYLMdD5/XvZuu3XNDW9jM+3BYAM78iE9b90ewsvratnQ10nIcPE67RRVZiRsP7F4HPzzTfz5ptvsmPHDlavXs3NN9/M66+/zsKFCxk7diwjR47kS1/6Eu+99x5bt27lN7/5DYsWLeKiiy4CYNy4cZx11ll88Ytf5L333mPx4sVcf/31XH755ZSXlwNwxRVX4HQ6ueaaa1i7di0PPfQQd911V6+ld1//+td54YUX+M1vfsOGDRv40Y9+xPvvv8/111+fjF+LSAGmafRq3/i0iv88fcZxFBQUHPT5/n0ypezpkDH0+i8IRKw55H9Wf4dNjsVcVJKX5EEJ0Xfv7Wjh34vXYtet/76XNZ7P6FG3UlQ0/xDPFOku4ZlSra2tnHDCCZx66qk8//zzFBUVsXnz5vgdOoBf/epX/P73v+ef//wn1dXV3HrrrSxYsIB169bFU3wXLlxIbW0tixYtIhwO87nPfY5rr72WBx54ALDqGZx55pnMnz+fe+65h9WrV/P5z3+e3Nzc+LbHQhxKPCilonf5okEpzdRQ0Yd0+z5BqVB04uSwEzKtL9xJ6zNY1fBC/JzMvPxjO2ghxFELhztoalpEV7d1I8TpLGL48G9gt2dRWHB6n/uv7wjw2oYGlu2wippPq8zlW2eOYXhRBtnu9FiWIg6soaGBq666itraWnJycpg8eTIvvvgiZ5xxBgDPPfcc3/ve9zj//PPp6upi5MiR/POf/+Scc86J93H//fdz/fXXc/rpp6PrOpdccgm///3v44/n5OTw0ksvcd111zF9+nQKCwu57bbbes2L5s6dywMPPMAtt9zC97//fUaNGsUTTzzBxIkT+++XIVJKLJsv3tZ67nlrtkNnPgXCsTlYJD125gp1E9CtG5gl875Jxri+b6ghxEDQ1NlGsbcJABMvl5/+Myrkhpw4DAkPSv3yl7+koqKC++67L35s351glFL87ne/45ZbbuHCC63Csv/6178oKSnhiSee4PLLL2f9+vW88MILLFu2LL718R/+8AfOOeccfv3rX1NeXs79999PKBTi73//O06nkwkTJrBy5UruvPNOCUqJw7Z/TalYUEpXEInWlNJtB8qUchKOFuZ0ha3J18RTz6CkeiRjTji5P4YuhDgK27bdyZ69/463MzNGM6T8Uwnr/1uPfMhbm5vi7fFl2ZwwsjBh/YvB629/+9tBHx81ahT/+9//DnpOfn5+/Obcx5k8eTJvvfXWQc+59NJLufTSSw96jhCHS5kmJ5dcypv1jwDQkt0TlNJzDr2LXmz5nqaZhzgzRUSC8aCUe8Qp4JCyD2Lwa2h4EW/L9dxyvPU59rrzJENcHLaEL9976qmnmDFjBpdeeinFxcVMmzaNv/71r/HHt2/fTl1dHfPn96Tx5eTkMHv2bJYsWQLAkiVLyM3NjQekAObPn4+u6yxdujR+zsknn4zT6Yyfs2DBAjZu3Ehra+sBxxYMBuno6Oj1f5HeejKlrC9QpWmcwZvMCFyHTbO2NtZt1scktHs3oZ07gOjyvWimlN2wglbjTzqVqQvOxZOZ1Y/vQAhxJLqjS/Wys6dSUnwew4ffmJh+gxHW13awvrYTgBNHFnLxcUO45sTqQzxTCCEGN9MwyHX21Iwx9sl20rMPJygVveGnGYc4M0VEAvhtVlDKY5Nd98Tgd9fLm/n98w/FdzNXSqO4+Owkj0oMJgnPlNq2bRt33303N910E9///vdZtmwZX/va13A6nVx99dXU1dUBUFLSu+BZSUlJ/LG6ujqKi4t7D9RuJz8/v9c5+2Zg7dtnXV1dr+WCMb/4xS/48Y9/nJg3KlJCPOU8limFxgxW4SSMGY3Z6lkFtPzzn9T/4v/iz6sNNvDw2n8CYIsGpaSWlBADUyBQw8ZNPyIcbqerax0AI4bfRH7+CQnpPxQxOf03b1DXEYgfu/NTUyjOkrvfQojUFwlFet3mNvZZsqfZDr0cLxgPSqV+ppShFK24CMYypXQJSonB75lVNZxSbG3q8vCmizhz5jcYNXJokkclBpOEB6VM02TGjBn8/OfWDkbTpk1jzZo13HPPPVx99dWJfrkjcvPNN/cq9tnR0UFFRUUSRySS7UDL92zRKH+3YW3TayuoIvD2SwDoXi/dHp0HRzTw2q5XgFimlMIu22ULMSDV1T1JU9Mr8bam2fBmjEhY/7Xtfuo6AmgaFGe5mDuikKJM+T4QQqSHQHcIsmLzKYW5T6DlYCWivvnqzby8tp1QoAA4Hk1P7aBUxFScumwDm2f+N37Mkw6F3UVK6+7eQlXGYsoyrcSRb581g5FVEpASRybhQamysjLGjx/f69i4cePidRJKS6003vr6esrKyuLn1NfXM3Xq1Pg5DQ0NvfqIRCK0tLTEn19aWkp9fX2vc2Lt2Dn7c7lcuCRwIICmPZ289dBm2uqtbbhjy/fQwIYVoIooaxmebtNR0Z1him78Ov8duY3XNv+PWaWzmFE6g9ArLxMhiEMypYQYUAKBWrZs/SXt7SsAKCk5n+Kis/F6q3C7Dr2k5FA+3N3G82vqqI9mSFXkeXnzO6f2uV8hhBhUTIWK3tDTFRjRoJSm87GFy4NGkGdWthFsOC9+zONM7QBNYzjMZl8w3p6X48Yry/fEIBYO+1n2/sVcPqo7fiwnoyiJIxKDVcK/CU844QQ2btzY69imTZsYNmwYYBU9Ly0t5ZVXeu5ad3R0sHTpUubMmQPAnDlzaGtrY/ny5fFzXn31VUzTZPbs2fFz3nzzTcL7bCO7aNEixowZc8Cle0Lsa9N79dRsbsPXYdWFcqoAXns2Ts0DCsKmC0P1FDqPBaU0h4OAEaC4xcXEx7tQf3iLSNCaYEimlBADS23to9TXP00gsAeA4qKzKS5eQGbmmIT0/81HPuSeN7by+Aqr/lxFvich/QohxKBiKszYzT0Upm4t39MOkgUUNsIoIxOAygInZ03K44+XpXBQv30PwTd/B0BGxEfNG/N4cGJFeuw2KFLSs6tqOeWXj2IY3Rimzvrm0RQUXpiw0ggivSQ8U+ob3/gGc+fO5ec//zmXXXYZ7733Hn/5y1/4y1/+Alh3TG688UZ++tOfMmrUKKqrq7n11lspLy/noosuAqzMqrPOOosvfvGL3HPPPYTDYa6//nouv/xyysvLAbjiiiv48Y9/zDXXXMN3v/td1qxZw1133cVvf/vbRL8lkYKMiDV5GjWjmMmnVbD6J/eRkTGWrWi82PZttgbnxs/tFZRyOglGglTVeTFbu/FHz8kqLMKTld3fb0MIcQA+3046OlfR1rYMgKKisygvu4SCgsRsux02TAxTsavFyrRcOLuSHI+DT0wbkpD+hRBiMNHQ4plSmoKIzWH9fJB4S8gMoZQVvDprwhC+f874jz85FSz+PYE1L8LMM3GbQXSHB+xSd1AMXq9sqMehdQHQHsripfofcN0nT5BAqzgqCQ9KzZw5k8cff5ybb76Z22+/nerqan73u9+xcOHC+Dnf+c536O7u5tprr6WtrY0TTzyRF154Abe758v5/vvv5/rrr+f0009H13UuueQSfv/738cfz8nJ4aWXXuK6665j+vTpFBYWctttt3Httdcm+i2JFKSiu+7t3fAAa19di2kYjM+1oxFhZ2h6/Dynx075qFwC+2RK+Q1/fMe9486+gClnnkNWYRE2e8I/TkKII6SUwfvLP0k43BI/VlhwKoWFpyWk//uX7uS2J9dixOrRAbedPx6X3XaQZwkhRAozTZSyvhMNm4f66m8BB8+UChkhiAal0uL709dMIFbc3OGCy+8HPQ3et0hJkUgXY9x/YvTY7QCU55XwxFclICWO3jG5ij7vvPM477zzPvZxTdO4/fbbuf322z/2nPz8fB544IGDvs7kyZN56623jnqcIn2ZpkIpg5bdq+LHNDR0zYjfuVv4w5lkl2Si6xo7Q9YyP83hIBgJ4o1YK1+zi4rJL5difkIMFKFQczQgpZGfNxens5CiojMT1v8La+p6BaTmjSlKjwsqIYT4OApMYrU5eyqDFFV9/JLmsBEGZZ1rT4cd6CIBgroTAJc3D0aMS/KAhDg6de0BNu18kpGZr8aPZWUMQ5ei/aIPJLVDpCXTUEDPLi/z1u8ke+RktpTqmFgXmA6PI/4FG1u+95/ND7K1eDvTTOujY5fi5kIMCLW1j7N7931EDKvYptNZxLRp/0pY/0+s2MtPn11PS7dVQ+7vn53B7OoCvE4JSAkh0ldXSzPhiI83Q4uiR3TcXcvYMzzEhZd+7mOfFzbDKGXNpRz2NLiYDft6glJy8S4GqY5AmNN+8zpzS1fw6bGwtW0YY0dcxdixH5+MIsThkKCUSEum2TsoNez7P0B1VaDtehoVDUrp++yIEg5Z1aPebXyf1hwdm1EMgMMt9QCEGAh27Lwbn29rvJ2VNSGh/f/vgz00dVkBqTyvg+mV+WS45E+oECK9vfaPvxAKd0GjVVtG0xygQijdwGb7+KB9yAzFM6UcKZ4ppZRiu8pgi9eqPepK8fcrUteeFj++kEGW07ouMu2jmTX+MzgdcoNO9I3MqEVaMg0FqicolXvBBXS9Woe2yyS2MGffWghmdPmeO+zhK80nEQ7VEKEbh2RKCZE0phmhpuYhgqGG+A5748f/BrerlOzsKX3uXynF5oYu2v1hdkeLmt952RTOnliGRzKkhBCC7pYmAOrzAhT6inE75uH11QKgHyT4EjJCEMtMt6V25tCfdzfyk4pvxdtuyZQSg5BSBg07v84vT1pDltOaE50xYSRuCUiJBJCglEhLylRAT10Y3eEAU6HRE5TSbRot/7mftsf+h7lzNwAVdQX4t2+OP8+bk9t/gxZC9NLc/BobN90Wb2uak+KiBdhsH1/H5Eg89WENX39wZa9j48uzJSAlhBBRhs+6OF1b3cG8HcdhU8NxqFpKS0spKCj4yPlKKVY3rWZJzZJ4oXO7LYUzhzY8y5odXeAaQ0bER7bLzWWl+ckelRBHxBeK8Pa6pdj8b1K4zxQrMyvFd80U/UaCUiIt7VtTynBn8Jvf/pY83w7KaWZP9Bxd12j+61+J1Ndbz9FAi6aaTzrtTMrHjKd8jBSqFKK/KaUIhRrp6FwDgNc7kvz8E8jLm52wgBTAh7vbAcj1OsjPcDK+LJtRxVkJ618IIQYzZZqYEQOA6jqTbL9OxA2ZGR4++eUvH/A561rWsfA5a0dupa4GwJnKQakXvod/yLXgGsOPtv2Zz1zyQyj8aLBOiIHs/57fwLsblvHdmdDoz+f99m9y+0Wz8Xqrkz00kSIkKCXSkrlPppSRkc1o33Iu4QUCZPA3vgSAZtPiBc7Vd7/CDR1/4fQPrInTlDPPpaR6RFLGLkS6W7PmBhoan4+3CwtPZdTI7yWs/x8/vZY3NjbS0GnVkPr66aP43Aky8RJCiBhfRzv//s4NdLW2AHDp24r2Yp3dFXCwkkm1XdbSvkxHJnZHHq2APZWX7wU78etW/VHP7GuhcFSSByTEkVHKpKtjGRMLNgBgaoVcMvsMvF4JrorEkaCUSEumoVCxmlIa5GNlRIRVbvwcXdPAsO4AhieOpHGdhi36FLvT2Z/DFULso7nlTcAqqOtw5FBUdEbC+u4IhLlv8Y5exyYPzUlY/0IIkQoatm+NB6QANKXo9lrRKM+EiR/7vEA4RLDpVLIdo3Aaw4AgjlTOlIoE8dus+qPu8slJHowQR66h8QXOHfLTeHvC0AqmjJCAlEgsCUqJtKRMk57d9zT06M9+Y451RLMKnatoUMrQrMd1w7qbZ3dIUEqI/hQKNbNlyy8JhZsxjG4ATj5pOXZ7RkL6r2sP8Le3t1HXYWVHZbvt/P2zMynMdFFVmJjXEEKIVGGa1vxI02woZaABq0a4GdoGzhGjP/Z56/cahBoXsBcA6/s2PyOF51SRIAHdCkp5Ujn4JlLStx75kHD7i1wwHNqDWRTmjqZi6GeTPSyRgiQoJdLSvsv3NK0nKGUqBwB6dOJgBa8grJmgQJdMKSGSoq7+KWrr/hdvu13lCQtIAfzt7W389a3t8fbI4kxmVEkxWiGEOBDTMMl3lhEy/XRF2tCUAs0qXK4fZHe5rqAB6Hjcfr584hRKc1wcPzw1sy42dHTx+pBLqHUVArLrnhhcTFPx2Ad7uGSUtZnByqbj+c5pfyTTJeEDkXjyX5VIS/sWOt83U8rECkppsfoG0UypCCaaAi26NZ/N4ejH0QqRviKRLlpb36G19V0ACgrmUVx8Nrk5MxPSf2t3iPd2tLB8ZysAZ4wvYVplLgsmlCakfyGESEXKMCj3jmBHl7XhhIY1mwJr9+KPEzIMwEGG18fX56d2faUvrNvJlhHXxds5dtm5VQwebb5Ocl0t5LqsEiefmTtBAlLimJH/skTaUErRsLOT7tYg/s4wxGtKaejRrCmT3nf5lGliaBpNW3YwvKYnK0OW7wnRPzZt/gm1tY/G2/n5J1Je9smE9f+V+5fz7raeuiifmlHB/PElCetfCCFSkWkaaJoer8+pKQXKmkNpB8kICkV360uHlWz1oQgAZzW9xeTplzAhM3G7wwpxrATCBi+tXoe7bSF3nNwdP+52ZidxVCLVSVBKpI26bR08dsfyfY5YgSinzRPPlFLK+kjEU88jETaX5LHtsZc5CSv9WtN1bHb56AjRH7q6rN1eMjPH4fVWU1JyfkL7X1/bCcCUoTkML8rkxFGFCe1fCCFSkWkY6OgoYkGpfTKlDhaUMqzz0yFpKGha88yfb/kD5ZfekOTRCHF4HnxvF4+88yI3TbcCUhHTToankPz8E5I8MpHK5MpapI3OFj8ATo+dgiEZ4Gti+1rIcZcRjmSzPHAxzeExgLV8TykFSuF3WUv12r1h7LkZnHfG1WgH2+9YCNEnnZ1rWbvuW0QiHYRCjQCMG/sLsrMnJaT/uvYAX/vvCpq6grT7wwD86/OzyfHKslwhhDgcpmGgazZrrgSYmkKPZkodbPleOBqUSulMqZduwVj1CKHpDwHgklpSYhDZ1eInw2HVkWoITqCg8i+cKCUNxDEmQSmRNmKr9Uqqs7nga1PZ9sxetq+1do7Z3XkmLcEJ8XNdHnu8npShWZOJhkluLr74yxxXdWa/j12IdFJX/zTd3Zvibbs9B6+3OmH9L1pXx3s7epbsDSvwku2RP4dCCHG4rOV7GmY0U6ojuxJXJAs4eKZUOBLNlErlQM2yvxM0IvGmu3BkEgcjxOFrb/+AYbY/U1q5DYAJQyuYLAEp0Q9kFi7ShlXc3NptD8CMWBkSSoOI6QWgsryDvPETGDGtGBULSkWzom6cfRNjq07p72ELkTZaWpfQ3vY+LS2LAaisuIbS0gtxuyuw2zP73H+7P8zqPe18sKsNgLMnlvKFk6oZXZIV/14QQghxaMow0bHFa0ptGXUVed3WLnr6QdKgUn75nlIQ7iZg76m/47rqsSQOSIjD8+jyPZhNP2Koey24rWMe95DkDkqkDQlKibQRSzFXKsjKF59l75qVVhtQ0ToIE0a3MfyT1m4wps9KXTWid/PsLnf/DliINGIYAT788BpMMxg/lpMznaysCQd51pG54q/vsramI96eUJ7N9GH5CetfCCHShWlEC51H63OCRrezmZL8IionFHzk/CZ/E+/WvktDdzNQkLqZUmGrVERAdwFg18DucCVzREIckj9k8N3/reJHxzeBA17ddSLzJ8+hquryZA9NpAkJSom0EcuUatn6KpsXvx0/rjRQsToI+9y6U6ZJRNeIRO/4OVwyqRDiWIhEuun2bcE0g+i6k7KyS3E5iyksPDVhrxE2TNbVWgGpsaVZ5Gc4OX9KecL6F0KIdGKaBhHdwMCIHtFYMfw+vjH3h2TmfXS+9O03vs379e8TbJ8PjMaRokWlXm9q5bdT/0CXzdppzy01SMUg0OYPYZgKr8MKqs6acDUnTz0VW6oGj8WAI0EpkTZUdBeUUFMNAFn+ILm+AB2jejKlbPsU53zxr39k/aTh8bYEpYRIvLq6J1m77lsQrUvidg9h7JjbE9b/2pp2vvKfD2jtDqEUOGwaz33tpIPWPBFCCHFwpmFwf/UbjGkMY0MHdNBA/5ggTG1XHWY4m3xHBXXA6PzhBzxvsPtbbRtLcybH28M8ziSORohDC4fb2LPnfs4bvoHMaIHzMyeOkoCU6FcSlBJpw4wGpTCt4pPDhlYxY+YJPLG7a59MqZ7J1LbVK+I/ZxUXU1gxrP8GK0SaaG5+k1hAStPslBSfn9D+X1pbz64WX7w9qzpfAlJCCNFH4cZGXO3N6CoDAE3TGd1V/LFBqT3bTqW7ZQLd0Xa+J6efRtqPNr6ArzkCjqF8teYxjl/wTaZnZyR7VEJ8rDV723lhye1My3+ST8Tr8es4HLlJHJVIRxKUEmkjlikVuwD2jhuL+7JL6fr13WTx0eV7ZsQKXp24YRdj/3U/Tpe3X8crRCrbs+c/dHR8SGvrEgAmjL+T0tILE9b/il2t7G71s3xnKwCfnVvFZ+dWUZEvn2MhhOiLoK+blc8/xYSwm4AzFuTXKApl4/F4DvicQJe1XNquQ7bHySljivpptP3osWsJjvs55AxlVqSGMwtTMPAmUsqDy3bhDuwFYEtbFco+kgtnnoXdnpXkkYl0I0EpkTZiNaWI7RTjD9Fxx5WcxQ6WqJsBsO0TlDIiVp0EHROH7ujfwQqRwgKBGjZu+mGvY15vdcL631zfySf+/E6vY2NLs6gqlDvWQgjRVzWbNuDTAGf0MkLzgubm5FNOZdSoUQd8jhnNSP/TVcNZMHZcP420H5kGBNvjBc5dc69P8oCEODilTELB3ZS52wAYVXUFsyZcTaZLwgOi/8l/dSJtxHbfiwWl2kMhruY1dBTvRGtK6VkF8XNNIxI9Hxw2CUoJ0VemGaGzcxUdnWsAcDjyGTbsS3jcFWRnTz7Esw/fxvpOAHI8DiYOyaYw08VZE0sT1r8QQqSr5c8+yTuPPgBApj9IbqCLxurr0DQ7k6ZMRrMf+NJCmdY8y+tM0RpLkQAAQd16f67CkQc7W4ikW7P2RhYUPRtvT6qolICUSBr5L0+kjVimlIou39Mx0KNbGRsq0zpWORMzFMK/aVP8eUpT2DX5qAjRV9u23cnOXf8v3s7IGMWwyi8krP9nV9Vy3+Lt1HVYFwcnjirkT1ccl7D+hRAi3a198xUMXxAAh2niUApNc6ETQTvIDTylrHmUx5GiN/nC1t+dQDQo5bZJ7UIxMEUMk4X3LuXSisXkuSFoOHG5hpCbOzPZQxNpTPYpFWkjXug8mimlayr+mKGsSYRu19n1mavYdtll8ceUptA0mVwI0VcdnasBcLnKyMqaQGXF5xLa/x9e3cz7O1vZ02ptaTyuVGoiCCFEIpkRgykFpwGgKTBs1qWEhgnuA9dQipgRiC7fy3Cm6E7G0UypgM16f+6PKfguRLLtafWzdHsLXoe17cAvlv2A8VOeluLmIqkk/UOkDbVvUEqzakU1hyupC4/BiJ6j2zQCmzZh7hOEenW6ndn9P1whUoJhBFn54efo7t5CJNIGwITxvyYv7/iEvcbjK/bw/o5WtjdZE6yff2ISVYVeZlblJ+w1hBBCgGZouKJ1kzSlMPRoLU67A9zZB3xOyAjFg1JeR+ot3/MZJgs3trBr9sM0RS/sXbLLqxig6uv+y9XjX8NlCwPwzNfPJSfjwBsUCNFfJCgl0kYsKKWimVIog8dbfkpQ9WRTOFw2VDiMigalFIqnT8/k5n4frRCpobNzNW1tS+Ntmy2TzMwxCeu/tTvENx/+kFjM2WXX+cS0IXictoM/UQghxBGLBMOYNusLVwPMaFBKsx34O3d3525WNawhtjgjw5V6mVIr2jtZ0m2AuwSAHLuNUmeKLlMUg1ogUEtXwy84eajVttuzyPbmJnVMQoAEpUQaMc3YT9ZkSlfEA1Kldo2qMytxZzggEsF0WB8NpWt8ZepXkjBaIQa3YLCBxsZF8SV7WVmTGD/uV7jdZQnbarimzc+ave2YCrJcdq49eTjTh+VJQEoIIY4RZSiUbk2orEyp6EYxB1it1hXq4uInL8YfNoHbAfDaUyxTautrBF74LYy/nVHdO/jjnnsZds0TZNjl75AYWH7x/HreWf82N04FX9jDmvZz+cqZl0qJEjEgSFBKpA1l9K4pte9X8IwMG0NPGUqwq4stxbl0u6w7XG6Xh8+M/0w/j1SIwW/jph/R2PhivJ3hHUFm5uiE9f+3t7fzk2fWxduVBV5uOP3AW5ELIYRIEBNMYkEpMGM1pQ6wXK050ExXWzXh9hnxYy5HigVrtr9BIDqvzIt0MKWsChxyeSUGngeW7qLC2wFASyAXw3s1ubnjkzwqISzyrSlSXqArTFuDj662QPSIiV1zYg9DJHpEB9A11r/9GpvKCuLPdWceuD6CEOLAgsEGOrvW0dlhZUjl552Iy11GZeU1CX2dZdtbAPA4bGS67Vw+qzKh/QshhDgAU8XLIPTKlDrAbnNhI0yg4RxUqAiAggwntlSrtRQJEozW2HJVzoLjrkrygIT4qIbGN/nalF+S5ewEYGRpGVfNGpfkUQnRQ4JSIqWFgwb/uW0JQV8kfkwpk0L3UIKxIjSY2DKd6B47wU7ryzrLH2TdNBffvfI7SRi1EIOTUgbvLbuQUKghfmzMmNvxeoclpP9A2ODh93fT1BVi9d52AO68bApnTypLSP9CCCEOQSlUNFMqYvcScVrfvwfKlIqoCJhWwOYr80ZwwZTy/htnfwn7CejWkkR3qi1NFIOeUop/LdmJo+MehufsjB8vyBkjy/bEgCJBKZHSutuDVkBKg5xCDy6vnfaaLnRNR4vVlsKk9JvT0ew6ZjgEQK4vwJ6pmZSNSlxBZiFSXSjUFA1IaWRnTSI7ZyoeT+IymJ5dVcttT67tdWxonjdh/QshhDg4zVQoZc2fWvPG4cw8F/j4TCmUlUn1iWlDGF2SmHqCA0okGA9KyY57YqDZ3NDFD59ay7dnNFOSD6/vPYdvnHcFuTnHJXtoQvQiQSmR0sxoHSmX186VP5mDGQjwj8UhdHS06J0+XTPQvVYNKSNiZVRpCnSbfDyEOBytre+ybv33iESs7CWXq4SZMx9P+OvsbPEBMLY0i+OHF1BV4GXiEFliK4QQ/UUpCGFtJY+mg9FO2Gln5OyPZqxGVASlrBpS9hQM2IRMk1rTQb2zEAD3gaq9C5FEDR1BALJdVgmT82acTX7enGQOSYgDkqtukdJiQSld16j76c8I19Sg0NA03ZpZAbpm9pwfjk60lMKmy8dDiMNRV/80gcDueDs3d1ZC+//Zs+t4cmUNHQHr83n2xDK+Pl+KmgshRH/rcAV5oOBZprRkoaFD93+orxjNmLkfvdC1MqWsoJTDlloBG1Mp5i/bxKb8z0O+dUwypcRAEgjU4Ku/hW9Nr6XIY5VVGFuegktoRUqQq26R0lS0bpQWCdHyn//gd9opmJDBqaWP0kUBT3AuumbEzzfD0dpTGtglKCXEx1JK0dzyBqFgQ7yo+fDqGykpOQ+PJzE1pAAMU3Hf4h1E4jXgYFplbsL6F0IIcXiMSJiWTD+GFqvTqeFW4DSd6AfIEgqbPUEp+wGW9w1mXU3b2eSzsk88hh+v3cFZhTlJHpUQlpfW1rFk1R84seQNxkX3b9I0O273kOQOTIiPIVfdIqUZRnSHGBQfVhZTk5fFvMKt5DhbCYWtyYO2z907M2JlYigUNj3Fti0WIoFaWt7mww9776iXlT0Jr7c6If2bpuK3L29ic30XEVNh0zWeueFE8rxOSnPcCXkNIYQQhy/S1o7SQVOxAJNORdDFbrQDB6WMMJCCmVL1awncex7MfRxNmWx7+yy0y/4FhTOSPTIhALhv8Q4q7I0ArGiYSHbeOXx67om4XEVJHpkQByZBKZHS4sv3NEWb19oBxmG3JkZr1VgANE/Pna1YTSlQkiklxMdQStHVvREAl6uUrKyJuN1DyM+bm7DX+GBXK394dUu8Pbwwg3FlUj9KCCGSYcmj/2X36pWM2d7C5A6TPQVYNaW0WJmEjwadAtEbfQCOVKq31LQJvy26454Ko1WfDFUnJXlQQlgikU4K7EupzN4DwOwxp3D85C+mVmBYpBy56hYpbd+gFFh39kZMnwFb9tCtMqzHbDpGWxvN//wnvlUfWk/UwK7Jx0OI/W3YeCt79z4Qb5eUnMeokTcnrH9/yOCDXa0s3tIEwIiiDD47t4oTR8ndPSGESAZfRzvvPHI/AFkRO51ZrugjGqFMBzabDZfL9ZHnBeM3+lJs+V44QEC33q/H5YWrn07ygITosWHjbXyi6ql4e0RJhQSkxIAnV90ipaloUEpDEcs215RVQ8qIBp10m0bbE0/QfPc9BIcWQUE2Qbss3xNif0op6uqejLc1zUl+3okJfY1vP/ohz6yqjbenDM3lM3OqEvoaQgghDp8R2wQGjU5PT/BJ07MpPXUmV827oFdQ6rHNj/Hctueo6+wArgZSLCgVCeDXrWXksuOeGChW7Grlm498yGdHrWRIJuztKmNU+QQKC09P9tCEOCQJSomUFqsppaNQ0UyprQ3DWd90B23K2sJXt2mYnV3Wz/l5gMHi8RouyZQSAgClTNZvuJmurg0YRjcAJ5ywGIc9F5stsfWd1tZ0ADC8KIOCDCcLj09c0XQhhBBHzjQiZNrz0FB0RtoYVdfC9pFXYLOPoXq8m4Jhvb+n7/rgLloCLZiRjPixVFq+Fw4HaXNkARKUEgPHs6tq2dbYjXOMNU97fNtn+O/ZX8DpkJvsYuCTq26R0mLL9zTNypSKeDJZsWM0nZGeLVGzCz2oaIp5i9uAILRmwxDJlBICgM6uddTWPhpve70jcLtKE9Z/RyDMDQ+soK49wM5mazL196tnUlWYcYhnCiGEONaMiEGeq4TWoJXFWtDpZ4ezGk3ZsA2d9pHz/SEIt0/h1PILeR6w6aDrqZEptdMfZEFgOm2TjwfAnSLvSwxuphkhX93PVeN3UeCxbu7dc/U83BKQEoOEBKVESlPRbeStTCmIZOdhGNYXdF7WW9S7i1nwhS/Q9seXAegId6GTialBvjs/WcMWYkBQShGJtOHr3gaAx1PFmNG3kZU1KaGv8+amRt7Y1Bhv52c4KcuVHfaEEGIgMI0IGhoKq/yBrhQoay6lH+Cit732FIIts3m+xmp7HKlzubGiw0cbjnh7foFswCGSa3N9J6+vfo4xGQ8yJnovT9Ps5GeWJXdgQhyB1PkrIcQB9GRKmaBpoGkorFTrCZqN0yedgtPtIBIKEbLpxIqhnzX8LC6eel2yhi3EgLBy5WdpaX073vZ6qygoOCVh/ftCEWra/KyLLtmbO6KAG04bxaiSTFx2ubsnhBADgWkY6JqOqaySCBoKjWhQ6gC1ooywtbRtZLGHyvwsFkwo6b/BHksbniXw9iMw4kbmtbzHPzN34xrxk2SPSqS57z++Gj2wnmsnQ313EaWlFzNl+PE4HBIwFYOHBKVEytqyvIFNy+oB666egl5BKQ8unA4Hvo52HlvzHsGJ1ejWfIuZ5bPJc+clZ+BCDACGEewVkNJ1J8VFZyWs/0DY4NRfv059RzB+bHRJFnNGFCTsNYQQQvSdaRho2KI554ACPR6U6l1TyTANlGkdu3JOOZ+dM7Zfx3pMbXqRQLRWaYYRwFUxI8kDEgJq2wOMzvQD4MkYw8nHfQu77LYnBhkJSomU1NUa4MW/rom3HXoEpWEVO1fWF7WOBrpG064dBI2ebYu9ubkMGTu+38csxEDg9+9my5ZfEgo1AaDrbuadshpNS+wEZ1eLj/qOIJoG+V4nmW4750+RVHMhhBhoTCOCrmmY0d2LV03qySTfP1MqoiIQDVi57Q5SSiSI32btMugedzaMH5XkAYl019i4iE+N+AP5rgYAxpaVS0BKDEoSlBIpKeizgkx2h86kU4dSsnUR27Zp6JoNMzpZ0tDRdI1IOARAti/I7rIabrx7FTYpci7S1N6ah2hofD7ezswck9CAVGt3iNueWsv2JmvHyzElWbxw48kJ618IIURiWZlSOkpZmVJBdwE64PBqON2950sRMxKvN+Wyp9hlRiRAQI/uuudwJXkwIp0FwgZ/fm0LI7SfMz5/V/y4x1uVvEEJ0QcSShUpyYwWOHd57cy9eCRZuh80nTLvCFQ0U0rTNLBpGKEwADZlYto1CUiJtNTRuYZNm35CY+NLAJSWXsTECXcxedL/S+jrPLemlqc/rGHNXquO1JjSrIT2L4QQIrFMw0DTdEyiNQ7QWVP8H6Zdlv2R5XthI4yKBqXcKVTgHIBIkIAezZTS5RJKJM/rGxv4/atbMCKtADy17QLGjf8TFUM/m9yBCXGUUuyvhRCW2K57WjStXBkGTpsXTbehoplS9mw33klFRHZadxh0U4FNAlIiPW3a+CPaO1bE2yXF51JYeFrC+q/vCPD+jlYWb7GWBc4bU8SnZ1UyV2pICSHEgGZGIujomKpnR+MuTx1Oz0cvIyJqn0wpW+pcZjzT0MbXSm7CpzsB8MgSKZFEzZ0NlGXUken0AfCpk79IeamUHhGDV+r8tRBiH7Fd93Q9WuvAMNA18NJCQA0HIPeMapwVWUS2WMv3dCVBKZF+wuE2wuFWfP6dAAwZspDMzLEJ3WUP4Mp7l7K5oSvenlWdz4IJpQl9DSGEEIlnmiaapqOimVKaqTA1HdsB5kxhIxwPSjnsqRO4ebm5Ix6QsqGYkZ2R5BGJdNXRsZoS/yf56Qlm/NjsEVXJG5AQCSBBKZGSYsv3YmnlZjjIp6vfIsf2InfzsPVYtNZBfPmeqSDV6h8IcRBdXRt5b9mFKBWOH6uu/houZ2FCXydimGxptAJSM6vyKMx08YlpQxL6GkIIIY4Nw4ig0VPQXFOgdB39AEvY9q0p5UihbKKgaQUAvrP9b3xhznlkF01L8ohEOlqytZk9e18nH5OIaUNpXirK5mOzeZM9NCH6RK7ARUpS0UwpTdcwQyEItZLj9KEUmFi7wehDJgGwpy26fE8psEumlEgf7R0rUSqMptmx2TLJz5+L05G45XQb6zp5YOlOOoMRlAJdgwevnYNN1w79ZCGEEEm1+KF/U799K12tLTw6YTWnvGNlB2kolKbhdDrj5+7p3MNP3/0pDf4GlLoISJGglK8FnvsWAc988I6nMNxK9j7vW4j+0tgZ5Mq/LWV+5XYuGw1L66ZTMOQnnDV+ZLKHJkSfSVBKpKRYppTq7GDjcdOxuQKUnQ8h1TORaGvv5tE7r6Nhx1Y07OimwuaQiYZIfXV1T9LRuZqOjlUAlJVezLhxv0j46/zyhQ28uqEh3h6a55WAlBBCDAIdjQ28+9hDAJhagC8urWdTiVX+QFNwXOUsqqqq4ue/vPNlFtcsthrxTKkU+L7f+Bys+R+BSbPBCy4zBDkVyR6VSEN72/wYpiLbFQSgoqCIc6cPTfKohEgMCUqJlBQPSvm6IBIBjzUxitATdNq89E0ad+xEi34MvKEwp034ZP8PVoh+FAjWsXbdTb2OeTyVCX2NrmCE5q4gO5q6AfjUjAoqC7zMG1OU0NcRQghxbISD1oWv3ekiP6TR6SqOP6aj+NalN6Pts3yvMxiie+tNmKGe81IiUypoLT0PeqwsYte870KhZKaI/rW5vo1dW67nlydtJCta3PzkMVUUZ7uTPDIhEkOCUiIhTFPx8+fWs62pG6UUF04dwkVJrBkTW76nR4ty5n3uahr2/o/doYnxcwzDqqNT2taFkWsw98tfI/8SCUqJ1KSUor3jA9ra3gfA4chjSPnl2O1ZlJd/OmGvU9PmZ/6db+ALGfFjXzipmlElWQl7DSGEEMeWaUQA0O02GkIKcjOtBzQXjgytV0AKoK5V6xWQKs12U5mfAnVuwtbNlaDD+hvmloCU6GevbWjg1kef4Mdzl5Dh6TmemTkueYMSIsEkKCUSYsXuNu59e3u8vaGuM6lBqVimlBbdvjii6TzZ/HOMaKaUpoOKFq3MCIZZPiuPgisSd2EuxEDT1PQKq1Z/Kd7OzBjDiBHfSvjrrNrThi9k7XaZ4bQzuSKH6kLZpUgIIQYT07BuLGTYcgnhIyMQAruTcN4lB9yoOBCxglg5GSFe+cY5ZLsdOFNh972wH4CgbtUjdckSdNHP1tV2kOGwgqNtwUIyy37BSaOr8XqrkzwyIRJHglKiTwJhg2dW1bJ0WzMAWS47ncEI4WimUrKYsULn0UypsGmLBqRMgq5mpp08GqPVmnBpSqHJrnsixXV1rQfA6SzC6x3OsGFfTmj/72xp4v73dsWX7C2YUMrdV05P6GsIIYToH0Y0yDTUMZJWasgIhsHmosNeik1r+sj5oYg1p3LYFYWZrn4d67Gywx/ks+okmufMoUXLBcB1gB0HhThWIpFObMHXmFq8BoBhxcOYMfW0JI9KiMSTK3HRJw8s3cXtz6yLt6sKM1i9tz2JI7KoeKaUiQIaAtHaCFqIxrz1VE6dwdZXrAmULkEpkaJMM8zatd+g27eFYLARgCHllzN8+I0Jf62fPbeetTUd8fao4syEv4YQQoj+EVu+p2lWEEZTClO3UqQ010eX5QUj1k3AlNnE2NfC6x8uYYM+hFg5UreuMcKbGgE3MfBtaehk/YbvM8r5HKOGWcecjvzkDkqIY0SuxAeRYKiJFSuuJBLpYsL4O8nLm5XsIbE9mhUxtjSLqRW5nDy6iK/e/0GSR9WzfM8X3MqLk6rJrq8HQMMKRHm9XsxILFMKkKCUSEEdnatoaHy+17GsrIkfc/bRWbK1mZW72+IZUt+YP5phBV7OGF+S0NcRQgjRf2LL91CxzHOIaNYSNj27+CPnh41oUCpVlre9+hOCtZ0w8npOb17CLeVeSmYuJN8h80XRP6689z0+M3oTY/Nhd2c5RTmVVFZ+IdnDEuKYkG/WQaS1ZTHd3ZsBaGp+NalBqXvf2sbbW5pYF82MuGJ2JVfNqWJDXSxTYmAs3wuEazB1PX6nT8dgQdZMSktLWWH2LN9LnVt7QkA43EpT0+t0dHwIWMUwR4+6FYcjj8zM0Ql7nY5AmKv//h6h6MWITde45qRqMl3yp0UIIQYzM7p8L5Z53pYzCi37VAD0A+yqF0q1TKmOWgI2a8e9kqx8xk0+DSQgJfpJMGJQ1xEgw2HttNfAF7lo1uXkep2HeKYQg5N8uw4CPt8Odu78f3R2re05qMykjaczEOanz67vdWxk0cBYqqNMRdOeLtrqfdEjsRoHdvyATTMZ4RmCpmnxCZcOaA5HUsYrxLGwYeNtNDQ8F29nZIwiL292Ql/DMBU7mroJGSYeh43zp5Rx/PACCUgJIUQKMKKZUiqa+BRy5eK0lwKQlf/RJWzhiBW8cthSJFMqEiCgWwEAV/UJkFmU5AGJdKGUyaYtv+ULE5dR5LHqt3351KlkS0BKpDC5ehgEdu3+OzW1D/c6ppKUibS7xcem+k4AvE4bP71oIsVZbuaMsO4maSR3MvLOY1tY+fLungPKJM9Zgk1Z/6nrmBBNLY+lpluFziUoJVJHLKMyJ+c4XK5ShlVem9D+n1ixl+88uiqeIVVVmMGvPjkloa8hhBAieWI1pXqW7+nogfdRY0s57aqT4+eFzTC1XbV0hQNAagWlgvZoUCpVliSKAW97Uzd/fPEJzim7mznlsaM6LldZMoclxDEnQalBIBisA6Ck5HzaWt8jGKpPSqbUf97dyS1PrIm3y3LcXHzc0H4fx8G01lkZUp4sB54sJ4H1XWS7KwlGf1+aZpIx3ap1Y5qy+55IHaFQCx+suIJAoBbD6AJg7Nifk5kxKuGv9dK6unhACuBMqR8lhBApJXbjrucmqIZm7MWWn4vT3TNnWvjsQtY1byLcMgeYiuMAS/sGpUiAgNPKCPPIjnuinzz+wR621u2CMmj057Ox8yxuOPMsXC7J1BOpTa7EB6hgqIkNG75PKNREd/cWAEqKz8XjqWTHjj+h6P+g1Ps7WgDIcNrIdNu58vhhH3uuSlJJqViB8xM+OYoxs0u5/3IfOjpEf182hyJjppV+Hl++p2T5nhj8WtuWxjOkAFyuUjzuyoT1b5qKxVubaO4KsbHOypb8zaVTOGdSGR5nqhQREUIIAT1zpCCh6BEdhYnN1vN9b5gGq3eH8O/+ISgrq6g4c/DvDhY0TTbZiqhzFgKSKSX6T5s/HK8jVZAzmhvm3Up+hizbE6lPglIDVGPDizQ1vbLPEY2MjFF0dkbrSvVj1OfZVbWs2tvG8l2tAPz0ExP5xLSBlSEVEytwrkcnEJmOLqbkv0azKuNdQNd6fm+mGc2ekkwpMYj5/XvZufNuOjqtLMaCglMZPeoWXK5SbLbEbV394to6vrLfzppVhV4JSAkhRArpbmvltX/+laZdOwjaDd7JXElxG6BpKBQVFRXxcyMqguGrjgek7LrGmWMTdzMkWS5esYXlw38Qb7slU0r0g507/8KJmb/lpAlhAMrzSiQgJdKGXIkPMIFgHe1t79PSuhiAwsLTGVL+adyeoXi9VRDdRa6/MqUaO4Nc/98PesXAKvK8H3u+luSbSbFdYrRoUGp8/m6q/j979x0nV1k9fvxz79Sdme19s5tNNr13Uug1UgURxQJ8RVQU1B/4FcvXhn4tXxURFUUFxQIioKIUpffQEiCV9LJJtvednX7v8/vjzszukp7M7Mxszvv1UnLv3JnnJJnsPHPuec7jbYGwGwDdpqFiMTp//3tCW60KNA2FLpVSIkft3nM3e5v+kjwuKJht/axIsU3xXnI1hW4mVPgYX+Zlbl1xyscRQgiROVvfeIVNK14AYG9NmH6XnwoKAR2Pw8E555yTvDZmxkBZ89IPL67lmxfOxJXL2+8pBS/dyoboKaDZKYt0Ue4r4czSgkxHJkaxUNTgq39fy+L8v1LmjiTPFxUtymBUQowsSUplmbfeuopAYGvyuLBwAWVlpyePk43ER6inVFNPEKUg323nQyeMpbY4jwX12ftFNJGUSlRK2XWrJ0Kjad3ZM33lvP3H39Fy9130lxeBy4GhAW53JsIV4qgppVAqRii0F4CKivMoKz2N8vL3pHSc37ywjUfWNNPUEwTgsoV13HD25JSOIYQQIjvEItaX4upJU+nWOhiIbYs/ojPeXTXs2qgRRSkrCeVx2nM7IQXQuh719M0ET30egGdXXk359S+DV+aIIn1e2tLB39/ay6KTrJt/P3/rGr580QcYM2ZChiMTYuRIUiqLmGaMQMD68C8qWozTWUpV1XuHXzRClVJ/WLGTv725h/6Q1VNgfJmXr5437bCfn6GWUsmeUlp89xeFzp7wTBqjMwEY6FnFM+88D7WDDQP/fiJM9hWOfLBCHKVAYAcrV32AaLQrea6i4jwqK85N6Timqfjx45uHNTWfXiN3jIUQYrRKNDgvLChE370XzZsogddxebzDro2aUcBKRDltOZ6QAgj1EtYGl0u5L/0NFI7JYEDieNA1EMSuRcl3WjtY3nT+2Sye2JDhqIQYWZKUygLRaDc7d91BJNKBlc7RmT/vT2javh/wGvF17WnuKXXLE5voiyekAKZV5cYX0Xf3lNoSvYCtwQuGPD4AgC8UwdQj7F1YzYQzTubD0z488sEKcZS6ul8ZlpByOEooLJyXstePxEye3dRGS2+IiGGiafC7qxZR6nMya4wkcIUQYrRKJKU0TcPUNfTk5nsadu/w9g3W8j1rrmofDbvuxUKEbEOSUpPPzmAw4ngQCjVR1H8pvz67J3luwfh6tEz3QxFihElSKgs0NT9IY+OdyeM8d+1+E1JA2iulnt3UxuaW/mRC6jdXLMDnsjP/MJfsZfpHqPmu5XtBZe2cYtP7CdlMKqrc9LdBTXc/A55eFlz9Q06oPiFj8QpxJAKBXXR1v0xn53MAVFe/n8mTvoau56Hrqftx/teVu/n6Q+uSxxX5Lk6fWpGy1xdCCJGdTNNKSumaRk24GVt/4hEd3T488RQ1o8meUo7RsENdLExItzYIsWmj5PckstZPntjEqk33c/WMnuS5/PwZOJ25v4OlEEdKklJZIBRqBqC4aAklJSdSWnraAa9NZ0+pXZ0DfOz3bySPizwOzplRdZBnHJgawd0Bh4377uV78SSex7uaFq/JxHyr9FxXYOhgT+EXeSHSbc3aaxkY2Jw8znPXYbfnp3ycbW1+ABrKvDSU+7hknixfEEKI44FpmLhtXqpbx2Bb4yevuIAun1Wp/+5NYWJmLNlTajRUSpnREAO2PEB23BPp99DbTUzwWis43mqbyeQpP+KMuRPRNHnvieOPfCPPoI0bv0Z7x1PEYn0AlJWfxdi6jx38SWmslNrRYf1gLPY4OH1qBcuPMiGVSYPL96xjFb+Dh6bij8fL0pXCsElSSuQGpUyUihIIbAesXTmdjlJqaj6Q0nHufnkHL27pYH2T9TPpyqX1/NeJ41M6hhBCiOxlGjFqPBPZ1baeLXWVgw9odnwnLBx2rVUpZSWlHLbcrip6rcfPRzrq8Z9wDyBJKZFeweBephU8w8TCTQCcNWMac2fJJjLi+CXfyDPEMALDtnEHjcKCuYd8Xjp6Sj28uonbnt5CTyAKwOzaIn7ygUPHsj+ZXgKdrJTSE8m7xH/jjw9JSpk62PRR0JhTjGp9fWt46+0ricUSayh0Zs38ZUqX6wEMhGPc/MiGYT9aJlT4UjqGEEKI7GYaBjbNTtDsAcATDuMvmorNOQVHedmwa4f1lMrxpW4vdfvxMzgnPKlYPv9Eemxv97Nr83V8YPLa5Ll8T9lBniHE6CdJqQwIBHbS3f0qADabh4ULHsThKMHlKj/EM0lmfZQyUhbPn17Zxdb4ch2AObW528g40VNq17WfZEfXFtSSK6zzWuLxeK8Epazle5r8ExDZrbPz+SEJKSgrOyOlCalAJMaTG1pp7AygFHidNr550QwqC9ycNFEmSUIIcTxRpoGGjoq3iajo66Ov/kS0cD56vBoqbIR5fvfzbOzaOFgpZc/hyqIXfkSoQ4fiM7my6Z981d1K4Wm3ZzoqMQq9tr2TD/7mVX5y6k4KXbChczKnTZtOTc3lmQ5NiIySb+QjzO/fzGuvD27b7naPweebctjP10j98r0OfxiA71w8k/lji1Ky015mOkoNVkqt8fTTX1LD2ORyx3cv37N6Sjl0x/5fSIgMa2q6n/b2J/HHe0jV11/LuPprsdlSe/f2Ny9s56dPbUke15V4+MDCupSOIYQQIjeYhomu6Zjxm589xfNwxazehYlNZO7beB8/XvljABRXAeDI1eVupgHPfo9Qw2egGIpi/RQVVWW+9F+MSu809wEKryMAQNj7FWbNPCWzQQmRBSQpNcL8/o0A6HoeXk8DDQ3/78heQEvN8r1Vu7q58f638YdidAUiACxtKGFiReqbJo+kRE+poEMjludDaVbSSWHtJGMa1q6CiUopWb4nspFSBhs3fROlIslz+fkz09LUPFElOa26gIYyLx9cJAkpIYQ4XpmGga7pxOI3P/0FM3AYVvNvl9f62tA80Eqk82S8Wi3O2DiCgD1Xe0pFg6DM5K57rpnvgzkLD/EkIY5cNNqHJ/gTrpuzB7tuJX1vWC7vNSFAklIjLhrtAqCs7HRmzfz5ET9f06wkyrFWSj28uoldnYHkcXm+i9pizzG9piWzk5LE8j0FRIvLUTEriWdqkO/yYYbbAdBQsvueyDqmGaa942nCoWaUiqBpNqZO+R5OZymlpam7k6aU4st/W8ubjd3s7QkC8JnTJnDhnJqUjSGEECL3mEYMDRtm/Oanpkx2l77BonELKR1jVeruaXMSbjuf8JDnFXlytPI8FgIgpDsBcJdPBLszkxGJUeitxm4efe1OlpY+Rml8/wCHoxRdz8tsYEJkCflGPgKUMlm9+uN097yKaVqVDw5H8VG9lpZI+qijS0ptaOrjn6v38sJmKznz2TMmctGcGmqK8nA7crdqqKc1QDgQw4hZfy5KAzQt2eh8klHN1Dmn8eyKOwHQ48v3pKeUyCZ79t7Lli3/mzx2uaqoqXl/ysdp7Arw15W7k8eaBtNrjn3ZrhBCiNxmLd/TMOM3P3UVY2fFCt4zaTFafElbvMAeX57BVUsmU5Hv5uRJh9EXNRtFrRszIZuVHHDneMN2kZ3ufGkHRl8TlMLWnnFUV13CGbPPTv6bEuJ4J9/IR0AotIfOrheSx5rmpLTk5KN7sXf1SDpSX3toLW829iSPF40rYVJl6pcEpXBzwEPasrKVJ+5cP+zczOJmKj1+3umZBUCR8uFxe5LL9zRZvieyiFImsVgv/f3rAPB6J+HxNFBddXFKx4kaJit3drO+qReA6kI3t35wLjWFeYwtTUWlpBBCiFxmbQij089gNb2Ghj6kZ1Q0fgOwJN/gi8unjnSIKfWPDj/PT/4SbxZMByAvV3tjiazWPRChym79m5o45gROXfgZ7DZ5rwmRIEmpNNm79z56e1dhqhjRSCcAbncdJyz6BzabBz2+dv1IJRqdH22l1J5u647QhxePZU5t4ajYXau7eQAAh9tGns9BVXg1Z3u3AbCBKwEIxGK80/gS/i7r7yLRU0oanYtMU8rgjZWX0N8/mFgdW/dxamouS/lYtzyxmTue35Y8rivxsKShNOXjCCGEyC2xSISupj0E+/tw2n3JSimUwqY7qK+vT14bMazHHLnaRyouZio+vydMpPq85Lkyp3w1EqnV1PwgZ1T8mQL7HgDGl1dJQkqId5GfvGnS0/sGLS0PDTvn80056mV7SfEyzyPpKeUPx/jWv9bT1h9O7rT3uTMmUVXoPrZYDhzeiEr0kZq2tJqTPziZjv/9K8Qgolz4sfofbGQl3Y/tSD7HbphWpZQmlVIis8LhtmEJKaezguLiZWkZa0NzHwB1JXmU+1x88uSGtIwjhBAit9z3zS/Rut3aiXVyxeloQ0reT1x2yrCkVDSelLLn8lI30yD00s+JqNMA+FLzg9ScfiNnlMhSdpEaoajBFXe9xpXjb2Z8/mDlYV7e2AxGJUR2kqRUmlRWnI/XOxlds6PpDnTdRVnZmcf8ukdTKfXkhhYeXLUneVzkcVDqGz1NHFU8KaXF79gpMwpAGDcDyosdCAesL+MVvQMUBsIUBcL0FDlx2Y6uYk2IYxUI7GDHzl8QDrcCVv+oE5e9lPL+Aqap+Po/17Gl1Z9ctve9S2blbv8PIYQQKdexeycAefkF9LqjGFi7g2koHO9q/B1NVkrlcLXHrpcJvfgTWHYaAJ8PvIZeXZLZmMSosr6pjzd3dXDtZCsh9cCWD/LlC06lsvLYvw8KMdpIUipNysrOoKzsjNS/8BH0lOoJRHirsYeXt1pL1haPL+HyE+qYXVuU9omEGsGmUqZhjaXH79iZsSjoYKInG8Mr05pcTW7p4vmT8+hecB7nnX4BDpss3xOZ0bj7d8OqKb3eSWlpeLmuqZd7XmtMHtt0jYkVvpSPI4QQIneZhjVPWhiO8Knp9/HBpjoc8fufdv3dSSlr3pXTy/eCPYTjvy8nJvpFP8twQGK06e3fwrTSTfEjjf+78hsU5qV+lYoQo4EkpXLMkVRKfezuN3hrSFPzE8aXcMm82jRFljmJ5XuDSakIL4U+RktsErphVUINbXDunzuBm/7rlswEK457/f6NDPg30de7GoDqqkspKlpIaempKR2nrS/Ef9a3sH6vVSU4scLHf58zhfFlXqoLZQtiIYQQFqUUyrTmlZ0tO7jshQiuKJga6JicXj/8JmsyKWXP4UqpWCiZlHLb7VAxLcMBidGkte0xVNtnuWG+dWy3F0hCSoiDkKRUrjmCnlIbm/sBmFFTQKnPxfvmpz8hlYl7ZsoYvnyvP+JldeCiwXi0xG4yVoNz7NJHSmRGNNrNypWXYJqR5LmqqvdSUnJiyse6+eENPLq2OXk8vbqA98ysSvk4QgghcluiSuqEsvPw9D7LJa+s4+kZELaDR5nUF9SjlOLap65lZctK+vuWAnNw5vLyvWiQcHzTIZfsuCdS6KYHV6P7H+XssRCI5mFoBcxp+EimwxIiq0lSKsckKqXUASqlghGDP726kw5/hGDUmmTc/6mleF2j96/63ZVSsXiSyqkN0FGwi3OWn8pLv0skpUCzj94/C5HdAsFGTDOCrrspKlpEXl4dRUUnpGWs7R3WrpQnTSyjtjiPj580Pi3jCCGEyG2JG3e13snsVn+hqzifSPz+ndNjzTe7w92saFphnVTWPKo0r3DEY02ZWJhQvFLKlcsN20VWiRom96/cw0em+gF4uvEUpk7+AhePm5DhyITIbvLtPNdoibs5++/Z9K/Ve/neYxuTx8UeR0YSUiPXUWowKWW0trDn//2McNNeKAG7FiKc10FhtQsjNrh8T7dLHykxsto7nmbr1h8QjVqNxn2+qcybe3fKx+kLRbnirtfZ0xWgK2BVY33tgmlMrZLdhIQQQuyfildKhWIDvFFYAEUaiZmcvcBq/h01osT8k4n1LKbGOZ9dhCnOy83Pli0DIb4XbKBp4g0AuKVSSqRIc/sqzql/hobCXQBcfcosZk+RhJQQhyJJqRxzqEqp3V1BAGaOKWDZhDJOmzL6d9hKLN8LvvE6/c/+B2OStUxR08z4f7Xkn5e1fE/e9mJk7d37FwKB7cnjgoI5aRnn1W2drN7dkzwu8zmpL/GmZSwhhBCjgxnfTS9ihuJtImzo9rFothLyxi0DIGpGCbefgxmqZRdhAMrzc3AHY6W4Z8cO/q3KoKAMgFrX6NmRWmRO90CILRuv4YNT/MlzFYU1GYxIiNwh385zzODuXINJKcNUfO+xd9jRMcCmFquP1DnTq/jcmZMyGN/ISVRKEbUqQ5xTpoIftP303ZJKKTGSmpv/xkBgO/396wGYPPmbFBctxutN7b/NHR0D/PiJTWxttSZCJ08q4xsXTKemKI88p/RQE0IIcWCJ5XuJxqCa7kUrOAWHx8OcM+oAiJkxMK3kzSdPaWBGTQHnTM/BPoUPfYaBQDXUXMQF7c9xQaGTk6Z/MtNRiRz32Npmbrr/RW473ZqHre5YzIXzZlJWdlaGIxMiN0hSKuckKqUGF8i9vbubu17aMeyqCeXHz5bviaSUpqxJla2qGrYOJqWGtgqQnlJipPj9m9nwzk3DzpWWnIzHk/reTve8uotH1ww2NV9QX8ykyvyUjyOEEGL0MQ0DDW1IFb5Ot+tJ6qYsoW5afPmeGUUp6ybHuTOrmDe2OEPRHqM9rxMs+wAA80ONXLzwInDKvFAcm9d3dOFxWL08QzEXsYJvMGnS1AxHJUTukJ/COUZL9pQyMU3FljY/K3d2AzCh3Mu1p06g1Ofk1MkVmQsSRrSpVGL5HqZBW76HWLf154Fm7BOMrhS6QyqlRHoZRgD/wCYAXM5KKisvwOudnPKElGEqooZJU6+1bPd988ZwzoxKTpuS4X//QgghcoZpxNA0HTN5w1NH6SYOx+DXhKgZTTY4d+T0rnshQjZr2aH7jK9A7ehvcyHSKxLpZJ77WpYsbQOgyFfGTcskISXEkZCkVM6xyn6UMvmfh9bxl9cbk49MrS7gsoV1mQosYxKVUl3RVnY0VFMTjQKgzDCu1t28+dBfrAuVQgM0m7ztRfps3/Ezduy4LXmcXzCLSZO+mvJxdnYMcPEvX6YnEE2eO31qBe+ZWZ3ysYQQQoxepmGio2OSuJmnYWom9iHLv2NmDJSVjMrppFQsmNx1z53Lvw+RFVbv7mHzrv9QYm9KnisqWpTBiITITfLTOIe91WhVBJV4nYwv83LZgtoMR5RsRzCiEkmpqBmyYtCsSVQ00oSzq5Wdb74BgCtmTbakUkqkU0f7U8lfa5qd8jT1E1ixrXNYQqrU62ThuBxdTiGEECJjTMNA03SatC7rhKZjaiaOIfMla/leolIqE7O9FImGCOlWpVSe7LonjkEwYnD5b17loTetyviNXRNR5f9g+rQfZzgyIXKPlIzkmERhdac/wt4ea8nOnz++mOk1ubktbyoklu8pBnfbA9BUDIDyseOYtuQkzO983zovPaVEihlGiI0b/4dgaA/+gS0ALFr4D3y+qeh6anf1Wbe3l589vYUtbVYzzQ8urONbF83Aadex6Tn8RUEIIURGKNNAQycU31UPdGxOWLJkSfIaa/meddMvVyul/tbSxar6a9jiqQfALZ+Z4hh0+MMEowZeh/V9rCS/hpOmzsjIpk9C5Dr5dp5jEl9Em3oC9IespEtlQfZtyTsSLaXWv7iXlf/eSaAvvuueFmRmYQsOKuhgsNG5xz9A9Quv0h+yrrM5ZOtfkVpdXS/R0vpQ8thm8+LxTEh5Qgrgrpd28MSG1uTxjDEFssOeEEKIo2YaBrqm49cD8TMa3kIvY8eOTV5jLd/L3aRUdzTG9e80osa8L3muzCmV8+LoKKVo3P5lfnDSq/icVlJq3rg63A6ZjwlxNCQplUPCMYPdXQHKsCYEF8yuZmF9MaW+7EtKjYR3VjTj77Lu6mm6xoLyN6kvamJzsJJ3gERqLLp1O/27reaDvR6w6fK2F6kRjnSwd8899Pa+CUBh4QLqx34Cr3cydrs3pWO91djNljY/a/f2AvBfy8Zx0sQyTp0iTVqFEEIcuf7ODra8voK+9lZ2lw2wruIxTt9bAejJbwitA608uOVBNndtAc4GcnD5Xk8jffd9EjXlBzjMKNfvvpfaM7/EwgJPpiMTOeid5j5+/cyrXFj9KOVD3kI+nzQ3F+JoybfzHPHw6iZuvP9tphQ3csN8yHfb+cVF8zMd1j5GsmLVjC/bO+XyyUyYX4H/ZutORSfW9sWmygNARxEZV80r8/N4pGgXy3W5iyFSo7HxThobf5s8LipaRHn52Skfp7UvxPvveAXDHKxBvHBODQvqpYeUEEKIo/PM7+9g6xuvArCgp5kz39BYMxbQdGaWTADg9+t/zz3v3INSNpJJKXuOVUrteJFgXzMA+cYAXwq8CrWVIztpFaPGH1bsZOWOnVxYDf0RL6/0fIWvX7AAr3dSpkMTImdJUipHPLupjagx+IU03y0lx4kG54UVeXgKnAxo1nK9LarBusBm/RlpCla5W7h9ig3QcNvcmQhXjCKmGcU0QwQCOwAoKTmZoqJFjKm5PC3jbWv3Y5iKfJedE8aXML7My7y6orSMJYQQ4vgQ6LUqb2unz2Tq/dtpzbcqfDV05k9YAEBPqJfYwATqPfPYGH+eI9cahMcGm5u7PcXwyeclISWOilIGHuNZTh7zNgAedxk3XfA+fMfpqhUhUkWSUlmusTPA5tZ+trRavaQ+tmwchKAgL7urfZRKf1cpFU9K6fFGlZqWaHhu/dnYixzQB5pSmBrMLZ9LXX4dF064MO2xidFrYGArb6y8FMPwJ8+NqfkQFRXLUz7Wn17dxXce2UAkZiVcZ9cVctd/yVbDQgghjp1pWL1JF5xzPpH7/jlkC2UNm89KUDW15xNs/EQyIaVrObh8LxYiZIsnpexOsEtvUXHk2vpCrNz0MCeW/QzKrHNlBdXHbRsVIVJJklJZrD8UZflPXyAYNZLnSn0ujFAGg8oiyaRUfHIUUy62BJcRiVRaF8Qrp3SlMHT4+tKvM7l4ckZiFaNHd/erwxJSLmclhUUL0jLWI6ubkgkpgFMnS/8oIYQQqWEY1vzSWPEomgIzkZXSdPQ8HwD9QeurgtelmD+2nFMnl2PPtUbnsRCh+MYjebmWUBNZ45o/rqRMW8lHpkFnsJjK8qVMmPCxTIclxKggSakstrsrSDBq4LBpzBxTSG2xh6lVPazvyHRkB6Yxch/2iZ5SWryM/M3wR9kRPWUwlsTcSoFhA7smb3dx9Lq7X6Ot/XH6+t4GYMyYDzN50jfQNBualtoJ+ktbOtjVNcCOjgEAfn3FApY0lFKYJ8t2hRBCpIYyDAocpeS1l/H0oq/Rb2uD4NOAjl5YBUDUsG6MNFQp/vTxxRmM9uh0RWP8M1bJmvIzAHDn2tJDkTV2dAxQV231rw3pCzhxwW25l6AVIkvJt/QsFIoavNPcx5o91lr/8WVe/vGZEwHo7Hzeuij9q+Oynvmu5XtBZTV91u1dBG0G4+u8dOwEDatSyi677oljsGHDfxMKNyWPPZ4GdD31SaJNLf189K7Xhp2bWpUvCSkhhBApZRgGYzyTGYgUEPBWo8LWTsWaTaeg1NosJhaz5lr2HK0wunVnC79lJlTPBKDAnt3tL0R2CgbbqHRvptrbCsDSifWSkBIiheRbehb68G9f5c3GnuRxqXfoWuXcmBSMRM7s3cv3lLI+HBze9bTlgdtr3eXTFBga2GTXPXEUBga2EwhsTyak6sd+CqernJrqD6RlvK1t1tLAUq+TReNKmDmmgPpSb1rGEkIIcfwyjRg2zcZO/3ZCvf8BogAU1tpwuKw5UzQ+13Lm4hdw06TVb93gndv3DlPyvVw1/swMByVyTV+gk5Wvn8FXTggmz9ntBRmMSIjRR5JSWcYwVbJCakxRHm6HzkeX1Gc4quw0uHwvnpSKNzhXGuiahhnvlaApJcv3xFEJh1t57fVzUcpqBqvrLiZM+CJaGnbt+e0L2/nZM1sIR62lEksmlHL7h+enfBwhhBACwIwZaJpOa6AZiCTPF9TUJn8dn0rhyMWk1F8uJ+w8BcpO4qPNj/DRojlQcFGmoxI55M4Xt3PPS//ha4uDxEydrlAJEyqrKE/D5jZCHM/kW3qWCEUNrrjrNTa3+omZCl2D5794Ws6Vho7kDruJ5XuJdj4mevy/oGl6cleZRKNzqZQSR2pgYCtKxdD1PHy+qVRWnp+WhBTAg6v20B+KJY+XNpSmZRwhhBACwDQNdM2GoaybIV59Pi/O28hJC5cmr0nsteG059Z8FIC9qwhPOAsAt8sLE8/KcEAi1zy/uR2PPQBAk7+alYGf8qEL5IahEKkmSakssW5vL2/s7E4eLxxXctCElJKmUsnlez3NjTSu2TZYKUWiUsqaSWkKTB0caej/I0anltaH2b79p8RifQAUFc5n3rw/pnyc7oEID67aw0Akxu5ua9Lzp4+fwNSqAsrzZYthIYQQ6WPGYugOnSBhAHScmA4bNtvgTbxYvFIqJ5fvxcLJXfdc5/8QKooyG4/IKQMD25mZ/0ecvkYAZtXV8bEFkpASIh0kKZUFIjGTpt4QADNqCvj5h+YxtsRzgKtzpKfUCOTMTFOhlOLft3+H8EA/1WWXABANdOPo6WNPuzWB0lDEpNG5OAJ79/6FYHBn8rigcG5axvnNi9v51XPbksc2XWNOXREFbkmgCiGESC/TMNCdOma8UkoDHLqLcePG8U7nO2zr3UYwavWZcuRig/BYiJBu3eBx6bkxfxbZ4d7XGgm1fY2FZYMbz+S5qzIYkRCjm3xLz7BfPreVHz2+KZnEGVOUR0O5L7NB5QhlKEARHuhHaRrEK6UiHbvQjSi98etcMQNTB5uWgxMqkRGRSAcAU6Z8h6LCBXi9k9Myzq7OAQBOGF/ClMp8Fo0vkYSUEEKIEWEYMaxU1OCdxAUzlmDz2fjw/R8mpmKEohcC4HHk2FcG0wAzSjheKeXWc7DSS2SEUoqbH17PF+ZbO+2tbJ3H+fOW0VD/wQxHJsTolWOfMKPPE+tbkwkpm65xxtSKw3ymLN+zekpZfw7hyrGYsXjSybRqzU+4+DLUihWUrNmGoetSKSUOaufOO9i+46coFU2eKypahM87KaXjmKbi2j+v4q3dPfQErMay/7VsHOfNqk7pOEIIIcTBKMNA02yoZHm7oqK2kM5gJyF/PWb/bJyRaUSBau/hzk+zw4NN7Wwc/0maXeWAVEqJw9cfClHkbKHA2Q/AmQs+w8zJZ2Q4KiFGN/mWniHt/WF6g1Fa+6xle/des5gF44pxHao8eiQ7iWc5Kyll4tRjuF0hVCIpFZ9c1fvDhFs6iCmsRudSKSUOorX1X8MSUnl59XjyxqZ8nO0dfp7Y0Jo8dtg0Zo0pTPk4QgghxLtFwyGe+PXP6e9sx4xGifS8gzKt5Xu6slodRM0ooeb3oaKl8W5TUOLLnT6HjcEw129pgbEfSZ4ryrVKL5ERXQMR1rz1fr530sbkualDdqMUQqSH/ITOgIdXN/HZv7w17NyY4rxDJ6RySLobsStTgQKv3slHJ72GQzf5o//sYdd03vYz3PEOnVGnnrZd00Ru27b9J3R3rWAgsB2ABfP/isczHru9ED2F1XVt/SG+8re17OqyGpo3lHv55UfmU5HvpsTrTNk4QgghxIHseWc9G19+HoCxnX3U7n2ajTMnYdhAaeCyuYiaUTDdAFy5tJ7xZV4unZ87X8w7o9bcLz/m58Mt/2bimTcwxevOcFQi2/1nXQvX3/savz7LSkiFYm6qy+bi8TRkODIhRj9JSmXAq9s7AXA7dArcDhbUF1NXfKDG5rkl3XmfgZ4wf/vhKvq7rQqzYttuHLqJqTQMEiXoVkIsZlO8PEmjPw9enyFf+sW+IpEudu68PXlstxeQnz8Tmy31k9f/rGvh6Y1tyeP5Y4uZWlWQ8nGEEEKIA4lFrWXjxdVjGNdhzaWM+NwtUKBx8piT2dG7A6WsG6VXnziecWXejMR6VFb+ntCKP8OsW6iMdHLz7ruh5ruZjkrkgDcbu3Hbgsnjtcb9nD9/RgYjEuL4IUmpEbRyZxcPrtrDi1usJspfv2A6H1lcf5Svdnz2lGrZ0Ut/Vyh57DW7AWhTZfjJR8NMPtafB7df4iLPnsd5DeeNeKwie5lmmJ0772BgYAsADkcJ06b9AJ93SsoTUm19IRq7AqzebbXeP2taJVcurWfRuJKUjiOEEEIcijKsKiJPYRGemDWXNOI9wOsK8yl2F7O5ezPEk1IOe441CN/0GEFlxew2IjB2aYYDErliINhLaZ71vcJm8/HlcyUhJcRIkaTUCLr54Q2s3dubPG4oO/Jd9jSybwmaaSpMw8Q2AhMX07AmUFUNBZx77Ww6Pn8zAJrmsOrOhySlTE1xzrhz+L9T/i/tcYnc0tHxHDt2/ix57PNNobzszJSP094f5uQfPks4Nvi+nDe2iFMml6d8LCGEEOJQzHhSqphyvPmtBAdbHGKzWXPMqBmFeGLHkWsNwiMBQrrV/yqvajpc+ECGAxLZzjQVW7f9H2cU/5YzlljnHHapZBdiJElSagQ191oloZ86pYHZtUUsacj9Som9m7p55JdriIUNSsf4WPZp666CSlMhlzKtF7Y7bXgKnGDGADDQsbY1NpLXmpqSHffEfoVCewHw+aZTVXkh5eXL0zLOltZ+wjETp02ntjiPQo+D82WXPSGEEBlimiZFzgpmhBfSZ7uD9sIxJKrvdW8pAOFoBIhXStlyrFIqGiBos+bXbqdLNggSB9XSG+LCX7zEdTMfpS5/8HxZ+dkHfpIQIuXkG3uadQ9E+OKDq2ntC9Pht9bxf/zk8VTkj46Gi3s3dxMLW4mgzr1+wv7oIZ5xbBJJKS1+566HCl7u+CkBsxBd2YftnmbKjntiCNOMsXrNNfT1rcU0rQRxcfFi6us/mfKx1u3t5Z7XdrG9fQCAheOKufcTS1I+jhBCCHEkTMMgz+Zjp38tr7mnwjhIJKVspeMBCBux5PV2W+4kdTojMW4pvYjV9goA3HqOJdTEiFu5q4v2/jA+hzVf+8mbN/Hzqy6noVx2RRZiJElSKk16AhECEYOHVzfx1DuDzY3L812UelOwrW66SpGO0EiHYcaTUno8KdVim0ZXbLAvl8MN4V4rMKUjlVIiKRDYRlfXi8POFRYuSMtY//efjcnecUBuNYkVQggxapmGga7Z6IskPqMcoLnQHJVMWToRgFB08AZfLlVK/aOtm9+VnJ48rnI5MhiNyAXR3nu5fu5LFLr6Abj32vdQ6JOElBAjLXc+aXLMzQ9vYNkPnuH7/7a2FT13ZhV/uPoEHv3cSdhybX3+QSSSREn+KGPQ0pasSvSUSlRKmfEeWzXuVXSVruLEK2usx5XVuFMqpUR//wbWr7+RTZu+CYDXO4mlS57ipBNfpbLi3JSOtbWtn/tX7mZTizW5uWppPTdfNIMvnD05peMIIXLPr371K2bPnk1BQQEFBQUsXbqUf//73wDs3LkTTdP2+78HHhjsidPY2Mj555+Px+OhoqKCL37xi8RisWHjPPfcc8yfPx+Xy8XEiRO5++6794nl9ttvZ9y4cbjdbhYvXszrr7+e1t+7yB7KNNDQUcp639hccwgWKozZtTTMtSqMQkPeUzmTlNr+HP0bnwBgYe86vl+p86Xxslxe7F+nP8yvn11NQfRXzKtYi66Z2GxefHmVmQ5NiOOSlJGkiV3XcNp0NA3y3Q4+ftJ4Fo7C3bbUkKRUhV0j788b+Sv53KXCaR1Pj5eTq3hSyqX3Yzh0HE7rWENhSKWUAHbsvJ329v8kj/N90/F4xqd8HMNUvP+OV+gJDN5h/sQpDdQWe1I+lhAi99TW1vKDH/yASZMmoZTiD3/4A+9973t56623mDp1Ks3NzcOu/81vfsOPfvQjzj3XSp4bhsH5559PVVUVK1asoLm5mSuvvBKHw8H3vvc9AHbs2MH555/Ptddeyz333MPTTz/NNddcQ3V1NcuXW73z/vrXv3LjjTdyxx13sHjxYn7605+yfPlyNm3aREVFxcj+oYgRZ1VK6ZiJHpyajqmZ2Gw2/r7l7/zg9R8QDDuArwIqd26k3n8V4apLoX4Gc/s38rHaM8Apc0Cxf795cTv/eP0tvn8yRAwHLXya9y86K+U7MAshDo/8tE6TH102hx9dNidtr6/IkuV7Q5JSBUP6DoxX6bmzZsY3MUss31PxYj+FCejJ9YS6kqTU8S4W6yccbiUY3AVA7ZgryM+fSVnZGSkfKxQ12NMdoCcQRdfgjKkVzKktkoSUECLpwgsvHHb83e9+l1/96le8+uqrzJgxg6qqqmGP/+Mf/+ADH/gAPp+1U+8TTzzBhg0beOqpp6isrGTu3Ll85zvf4Utf+hLf+ta3cDqd3HHHHYwfP55bbrkFgGnTpvHSSy9x6623JpNSP/nJT/jEJz7Bxz72MQDuuOMOHn30UX73u9/x5S9/Od1/DCLDTMNE13TChOJnrKSUrus80/gMgWgIZeQBYM+VYnPTgFAPId0JgGvi6VBQk+GgRDZr7e2n0NUHgNKLOP+ET5E/Svr9CpGL5Bt7zsmuO1ZqcKf7YZF5oqF9rk3NeMOX7yUqpdDiybF4UspavqfJ8r3jVCTSwYpXzsAwBpLnqqovobAg9Yni/6xr5rN/eYtofGlpdWEed161KOXjCCFGD8MweOCBBxgYGGDp0qX7PL5q1Srefvttbr/99uS5V155hVmzZlFZObi8ZPny5Xz6059m/fr1zJs3j1deeYWzzjpr2GstX76c//f//h8AkUiEVatW8ZWvfCX5uK7rnHXWWbzyyisHjDccDhMOD1ZA9/X1HfHvWWQH0zTQsNGH9fmoYUPpBgUFBXT0ePFv/iaY1pdztz1HejLFrPdmOJGUqpqeyWhElmtp+Rfnlf83F1ZY1YKl+eWjZgMqIXJVjiwUF9nKHNI8amhSqiA8sO/FqRjPGN7oPJGUisbCuPdu57X7/mjFEq+UsumSlDoe9fs3YhgDaJoNh6OE4qIl5PumpWWs5zd3JBNSABfMkR4WQoj9W7t2LT6fD5fLxbXXXss//vEPpk/f9wv0XXfdxbRp01i2bFnyXEtLy7CEFJA8bmlpOeg1fX19BINBOjo6MAxjv9ckXmN/vv/971NYWJj8X11d3ZH9xkXWSC7fU4PL97DDBz7wATq6ipIJKYATJ5ZmJsgjFbNuhCaTUpp8vRH7isRM/vjKTl5c9wg2zUieLys9NYNRCSFAKqXEMRq6fE8bgSIuM75+T7MNb3TeF+zB0ddFe18XAO6oIcv3jkPt7U/S2fUigYFtABQXL2Pe3LvTMlZLb4gOf5idHVYC9jvvncFHFtcnE6ZCCPFuU6ZM4e2336a3t5cHH3yQq666iueff35YYioYDHLvvffy9a9/PYORDveVr3yFG2+8MXnc19cniakcpeJJKZUsddfR7Bo+n49YfE63eJLObz58FgXuHJlDJSulrN2tXfI5LPbjiQ0tfOOf67l+bislFXDPO5fymfNuYII0xBci43Lk00bsK/t6Sg2dAqRrOqD26SllVUKZ8QeqJk9jSlEZtt//iXXjwK7JW/x4YZpR1q3/PKY5uMTEkzcuLWOt2dPDe29/edguk+X5bklICSEOyul0MnHiRAAWLFjAG2+8wW233cavf/3r5DUPPvgggUCAK6+8cthzq6qq9tklr7W1NflY4r+Jc0OvKSgoIC8vD5vNhs1m2+817+5pNZTL5cLlch3h71Zko8TyPRKVUugo3fowM+KnPE4bhXk5snQPeK67n8bqC9niHQeAK1d2DBQjqqknCEBpXgSAs2ZMY8G4A//cE0KMHPmpnWtGohzpCBwoKZUuZny88p6HCd0yD5cvsW2xdb6wsJixNhfumIFhk+V7x4ve3rdpan4A0wyjaQ4mNHyByZO+wfjxn0v5WJGYyWvbu1AK8hw2agrdLKwvZumEHFnmIITIGqZpDuvVBNbSvYsuuojy8vJh55cuXcratWtpa2tLnnvyyScpKChIVlotXbqUp59+etjznnzyyWTfKqfTyYIFC4ZdY5omTz/99H57W4nRJzYwQIAues0e64RmI9F+M1Ep5cihpM7GgSCXbw9w0+T/Zo1vEgC+HIpfjIwdrVuoCH+KH53ydWp9VjX98lkT0bLse5UQxyspIxHHZGilyPAf6+mp5EokwSpbfo3b3p5seB6J51fDjz1GZ1MnAIYODqmUGvX6+texctWlyWO3u4Zx4z6TlrEeWLmbr/x9bXLi/uHFY/n6BdJQVQhxaF/5ylc499xzGTt2LP39/dx7770899xzPP7448lrtm7dygsvvMBjjz22z/PPOeccpk+fzhVXXMEPf/hDWlpa+NrXvsZ1112XrGK69tpr+cUvfsFNN93E1VdfzTPPPMP999/Po48+mnydG2+8kauuuoqFCxdywgkn8NOf/pSBgYHkbnxidOppbeH1fz5Ax0svMueNtYTHVdFe4AV0dKdVFRWLV6PnTFKqdy/N618CplAQ6+ck/zuUTT+X5WWFmY5MZJHbn93Kyg138tFpO4gvsEDTnHi9EzMbmBAiSb6xi2Ny4OV76bnzkKiUIhYGO7Qoq1lrD/nYsJYjhO3Q7YMXZ2icLZVSo5phhOnrWwOAw1GMzzeNMTWXp228p99pSyak3A6d06dUpG0sIcTo0tbWxpVXXklzczOFhYXMnj2bxx9/nLPPPjt5ze9+9ztqa2s555xz9nm+zWbjkUce4dOf/jRLly7F6/Vy1VVX8e1vfzt5zfjx43n00Ue54YYbuO2226itreXOO+9k+fLlyWs++MEP0t7ezje+8Q1aWlqYO3cu//nPf/Zpfi5Gl7cff4S1Tz9OVV8/ugIzXiGioXPqudcAYMaX77nsOTJ3evRGQp1+mPldJgUa+d3eO+GST2Y6KpFlVu3qxusIALChaz4nzfsCM+om4nSWZTgyIUSCJKVyTLqSPUdr6O57I9FORyV238OaOQXJA6DE9NAL6ErxwiyN377HhlN38v9KZ6Q/KJERrW2PsX79jSgVBaC87GymTft+yscxTMVzm9roGoiwubUfgNsun8t5s6pz526yECLj7rrrrkNe873vfY/vfe97B3y8vr5+v1VUQ5122mm89dZbB73m+uuv5/rrrz9kPGL0iIZDTC5YxCxXK1uCDfT6/EAQNJ2F008DILGRrNOWI0mp/mbCurV03p1XAMsP/G9HHJ8MI4TL3ESVx1r2fO7chUycsCTDUQkh3i3l36i+9a1voWnasP9NnTo1+XgoFOK6666jtLQUn8/HpZdeuk/DzcbGRs4//3w8Hg8VFRV88YtfJBaLDbvmueeeY/78+bhcLiZOnMjdd9+d6t+KOAzJzVtIb0+pLW+08tIDW9i9sSs+ljVzUvG3cJ6ySs81BTEd7jv/Pl64/AXmVsxNY1Qikzo7nksmpHTdRVnZGWkZ59G1zXz8Dyv54oNr2B7faW9siUcSUkIIIXKGaRiMz5/JqliINZXtxDSr6TOahsNpJaEM05rJOXOlUioWJpjYca9yOkw6K8MBiWzSE4jw8muX8/5x32RpzUoA7I6izAYlhNivtFRKzZgxg6eeempwEPvgMDfccAOPPvooDzzwAIWFhVx//fW8733v4+WXXwbAMAzOP/98qqqqWLFiBc3NzVx55ZU4HI7k3cMdO3Zw/vnnc+2113LPPffw9NNPc80111BdXT2sRF2k30g0Og8NRHnid+uHtanStfiBSiQGzHgMClOHSm8lXoc3TRGJTFFK0d29gnCknX7/OwBMnfK/1NR8AE1L7SRaKcW2dj+vbOsAoK4kj0kV+TSUeZlTW5TSsYQQQoh0Mg0DHRvtZn/ynNKdjFtaz6/euZ3GvkbCMasXU85USsVChPKspFSe3CgSQ3T4w5z8f8/w01M3YNehO1RIeWEl5WWSuBQiG6UlKWW32/e7tXBvby933XUX9957L2ecYVU1/P73v2fatGm8+uqrLFmyhCeeeIINGzbw1FNPUVlZydy5c/nOd77Dl770Jb71rW/hdDq54447GD9+PLfccgsA06ZN46WXXuLWW289bpJSSqWnkfiRGp6U0ob8OnUioRgo0HSN+eeMxWaE0FdaSSiVLPaz4khUStmlwfmo1NX1Am+vvnrYObd7TMoTUgDf//dGfvPC9uTxRxbXc+2pE1I+jhBCCJFupmGgazZUfL7kci1m85Q2pk4xuXPtndY15gcAKHB5MhbnEYmGCHmdALh1SUqJQVvb/BhGCLtutft4uPkW7lx+qlS5C5Gl0vIvc8uWLdTU1NDQ0MBHPvIRGhsbAVi1ahXRaJSzzhrMUk+dOpWxY8fyyiuvAPDKK68wa9asYQ03ly9fTl9fH+vXr09eM/Q1EtckXmN0y7KeUkOTUmkKLZH4sjt0llw8gblLi9kcPpM/tP0GFbG2zHaOy7diUArDBjZpcD6qKKXwD2yhs+tFAFyuKkpKTqam5nKKi9PTG2DlTmupaGGeg6lV+SyfsW+iXQghhMgFiaTUYC9QHV2zEVVRlLJRwGQa8mcDUOj2ZS7Qw3T33g7mz7ydH9dbu0a6RqKxqcgJSpn09r7Bgsq3AdA0G3dffZokpITIYikvJ1m8eDF33303U6ZMobm5mZtvvpmTTz6ZdevW0dLSgtPppKioaNhzKisraWlpAaClpWWfHWASx4e6pq+vj2AwSF5e3n5jC4fDhMPh5HFfX98x/V4FKAURZzcB727esCmaKGBxbFJqx4j3rdLiEw5lGGwNn47fLI8/oHB6rSSUBhga2NJQOTPaRGIm7f4wDptGRb470+Ec1I6dP2fHjtuSx9VVlzBhwn+nfBzDVPzg3++wqzPAxhZricPvP7aI+WOLUz6WEEIIMVJMw0DTNEwSzUAVmtJQKAI7P40/VJu81m7L/gTPvc2dNLkGd0+b7tv/3F8cX9r7w7y05k8UhL/PNbOsc3Z7IVq67pwLIVIi5Umpc889N/nr2bNns3jxYurr67n//vsPmCwaKd///ve5+eabMxpD6mTP8r2AdzdRVw/dQDe9zIyNTekYZmLHvURSKhpDJd66BW8xddFcIm3W3Q9NgWHTcOiOlMaQy7oHItz88Ho6/BECkRiNXQEiMZO+kLV5wJzaQv55/UkZjvLg+nqtnaQcjmJcrkoqKy9Myziv7+jity/uSB7bdY36khxZxiCEEEIcgGkadOgDyaSU0hQ6OtjBDNUAVmVwmc/JiRPKDvZSmRUNwdM3E7SdBfZSbtn0Q5a+/8c0lJVnOjKRBb75r3W4gqu4oAF6wgUovYolkz+a6bCEEIeQ9sY7RUVFTJ48ma1bt3L22WcTiUTo6ekZVi3V2tqa7EFVVVXF66+/Puw1ErvzDb3m3Tv2tba2UlBQcNDE11e+8hVuvPHG5HFfXx91dXXH9PsbedmV6VemQunDd0ZUWmoTZon+WVqi6taIYcZXnpq2AE6PTsiw1oxrSmHosnxvqH+va+Ght5sO+Hi2ljNHoz1s3/EzYtEe+vrXAjBj+i2Ulp6a8rEiMZO1e3uTTc0nV/r42InjmVKVT6nPlfLxhBBCiJEUi8QI60bylqbSFBNrp+Op8AHWTrbPf/E0ijzOjMV4WHa8AK/+ktAJp4AdpoabaSiUamZh2d0VZE5BAIDW2HLOWPRVaqsKMhyVEOJQ0p6U8vv9bNu2jSuuuIIFCxbgcDh4+umnufTSSwHYtGkTjY2NLF26FIClS5fy3e9+l7a2NioqKgB48sknKSgoYPr06clrHnvssWHjPPnkk8nXOBCXy4XLJV8wU0kphdKM4edIbepsn0opwyDRDs3UQNd1lDlk9z2bhq5lZ6IlE9r7rSWrJ00s47KFtRTkOagv8aBrGmNLPMk/12zT3PIP9uz5w7BzeXnj0jLWFx5YzcOrBxN3s8YU8aETUlvxJ4QQQmSKGYuhNJKNztFMLnn/+by+963kNdl6k2qYUK/1H7tVxey+4MfgkKV7Ajo6nmFy/rPUF1i9jC+YO4WxkpASIiekPCn13//931x44YXU19fT1NTEN7/5TWw2Gx/60IcoLCzk4x//ODfeeCMlJSUUFBTw2c9+lqVLl7JkidWs+JxzzmH69OlcccUV/PCHP6SlpYWvfe1rXHfddcmE0rXXXssvfvELbrrpJq6++mqeeeYZ7r//fh599NFU/3bEATRt7WH9i3vp3ePHlWcSSONYg5VS8aRUzMDEqoRSgM1uwzQTlVKgcmFSNQJWbOvgtqe2sKNjAID5Y4t479wxGY7q0KLRPvz+d+jtfROAkuKTKC07Da9nAh5PfVrGXLunB4AxRXmUeJ1cfkKuVVAKIYQQB6b3D+Db8jS4FWjWTT2bZiMYi5G40ZcTSalYEICQzfpO4K6ekcloRBboC0X51+vPUh37NOcNuZ/odJRkLighxBFJeVJqz549fOhDH6Kzs5Py8nJOOukkXn31VcrLrbXet956K7quc+mllxIOh1m+fDm//OUvk8+32Ww88sgjfPrTn2bp0qV4vV6uuuoqvv3tbyevGT9+PI8++ig33HADt912G7W1tdx5550sX7481b+dLJbZnlKvPLSZnXu24bEbRLToPo+npVIq0XjTiKFUvFIK0G1DKqWUkqRU3J0v7uC1HV3J44mV+RmM5vAopXhj5SUEgzuT58rKzqCu7qqUjxWIxPjWv9bT0hdmT7c1yb33E4upL/WmfCwhhBAik8o2b8O3ZRtq9kQADF1h1+2EYzHAWrLnyIEG50TjSSnN6h3q1mXOd7z744qdPLf6dT49B/oiPjZ3TeQ9s6dTVnZmpkMTQhymlCel7rvvvoM+7na7uf3227n99tsPeE19ff0+y/Pe7bTTTuOtt9466DWjUpbsHtEa3E5/0Sb69/tointKme+qlIpGUfFKKVPT0CNhIvEeYxqA7fjuJ7W5tZ+dHQM8s7ENgM+fOYllE0pZNC777xjFYv3JhJTXOwmHo4Ty8nPSMtazG9u5f+We5HG+y05lQXbvQiiEEEIcqVhPGE8kUWFuzamaSqykVCielNI0M+t3KBuIGXwpWE/L7J8Qje+yLEkp0dLTTYWnHYAQMxk/6QfMmSkV70LkkrT3lBKjU1RZC/YKcFJmFJEfzWeNcydKNw7xzCNnmsN7SpnRSLLRuTINev98Fz29reBxoSmIOY7fCcrurgDv+ekLmEPygu+ZWcW06uxeUx+N9rDqzcsJBncBYLcXsWTxf9IyVjBi0NQbZH2T1ZdiQX0xH10ylpk1hbgdx3dCUwghxOhiRgxab11FsTZADJKl7LpN4bF7iMSszWp03cxYjIfr+e5+HlRVUGxtfFRot5FvP37nfAKCwUZOKbwSW5G1amNu/VimTZOElBC5RpJSOStzy/f6OtoIDuyCPI3Ctl7OKDiZ7miMNc6daYksWSmlgbl7JebeV1A0WA+2beftaA94rN4CW2oUGyYfvw0vN7X0YyrwuexMrcpnWnUBU6uyf9leT89KBga2JI9LSk5MyzjBiMGpP3qWtnjzd4C5dUVcMq82LeMJIYQQmRIJBXn93vsZF25ApwljyCYwp4UKsOk2QjHrZqJNz2xbiENqfI3Ayw9A1UeZ7t/K59wdzFr8XzilUuq4pJTiK39fS1/341zaEMVUGuiFlFccT61chBg9JCmVY7SUdms6Oq899ghR0w/kE4v3H1Bp3O0uUSk12fgz+l1/ogAw1R+tB2NWcsEXitBUFuXepRGKfYVpiyVb3Xj/2zy1oZVwzLrTuXRCKb+9cmGGozq0UKgZv38jXd0rAKup+bRpP8DlqkrLeNs7/LT1h9E0KMxz4HPZOW9WdVrGEkIIITJp+5tvsO7pJ6irvYaXCpfQs7AcIusBGIi5uPmVm3lzTytwPnq2J6VW30u4tx2qoC7UwsXVXvDIkvvjVYc/wn1v7OaUMd0ArG6fwfmn/omy0uxeGSCE2D9JSokj8uabb/Ly9kbwWtU3tni1t9KHJ8tSmTpT8TG80U3gggHThRF/68Y35mNKUycvzw4RcejMrZibwtGzXzBi8Pc39w47t6ShNEPRHD7TDPPa6xcQi/Ukz+Xl1eF2pz5JtKc7wPX3vkVTj9UgdUZNAY989uSUjyOEEEJki2gohIZOS3AnnbRBpC3+iJ3d/Su4b5VJLDAOyIEm59EgQd2qineNPxEWzM1sPCKj2nt2MKd8LVNLrbYPp0xpyPpWFUKIA5OklDgirfGG4hgGeiRIfrxxZjo7ESR7Simr78Er+kKiONEALb5YUEdx+fSP8KOLPk6FpyKN0WSf7kAEsCaUT9xwKh6n7ZANu0OxEM/veZ7ecC9be7bSG+5FodjTv4fesNVr6cyxZ3LjwhvTFnco1Ews1oOm2cj3zcBm81Az5vK0jPXE+lbe3t2TPJ5bV5SWcYQQQohsYRoxNE0nalpV5ZpeSCBvgOpIPg/XNRPcc0Py2nJvln+hj4UI61Z7Bpe3JGs2/hEjyzAVj6zejrvrMj43L5A8X+wrz2BUQohjJUmpHKVUZsqsTdNKPzm7WnF1NOHwzbbiSeOYiZ5SOlbfAxMdlDUZKTDd+BlAU1DgKaLSW5nGSLLLW43d/O3NPXT0W0mpYo+T8WXew3ru3evv5va3D7wDJkBnqPOYY9zv63a+wMZNXyMW6wPA7a5j0aJ/pGWsrW1+XtnWwbObrLvD751bwydOlrtpQgghRj/TMNDRUPGSc00vxp/fQ8mZ72PT7j/Dbihw2zltSgWXzB+T4WgPIRoirFvtGWTHvePXC5vb+e6/XuT7JwcwTJ2O8Him1lRSXX1ppkMTQhwDSUqJI5JISllpKB093ktKpbHXlWkMT0oZ6Lx7gaCmFDaHM20xZKPvPLKBNxt7kse1xYff4H13/24AJhROYFLxJBqKGvA5fLhsLury63Db3RS7ilMdMgAtLQ8RCg0uNywuOiEt4wD81+9fZ093MHk8u7aImWOOv55jQgghjj+mYaJrNlSinl3TUZoCHVBWpfv4ch8/+9C8zAV5uGIhwro1z3PpUiV1vNrTHcDrsCqkwqqEKTPvY359SYajEkIcK0lKiSOSTEqp4UmpdC3fi0YMYhErGaVr8aSUsg02fLcDUdAUaPbj6+3c4bcqpD66ZCx1xR7OmXH4zcETS/SumH4Fl04embtLnV0v0dr6CN3drwIwaeJXKSs7g7y8cWkZLxQ1kgmpc2dWUepz8r55WX4nWAghhEgR0zTQ0NmlJXpJ6Ri6Ag1UPCnlyIEEz292t/F28SWs1a3kg0sqpY5LsVg/ecFb+cCUdwCoKKxggSSkhBgVjq9v8aNKZpbvJZcNKgAdDduQaOI78aFSskvg03/YwMZXWpLHOlZPKTM+JoDutUPQ6iml2xzHPGYu6QtFAbhq6TgmVeYf8nqlFN997bus7VjLzt6dABS6Rq5qaOPGrxEK7U4eFxcvweMZn/JxXtzSzh3PbyMQT2Y6bTq//Mh8NOk/IYQQ4jhiGgaaptOm9cbP6JiaSVF5EWyzEjsOW3YneFoDA3xjaxPkD1ZzVTjl68vx5rXtnby58T4mux+hOF7In5dXm9mghBApIz/Vc02Gv1gnKqU0FGhDl++l3q51gz2NNA00XefFvqtpN2YMicdKPGhKoR8ny/fW7ullfVMv/SErSZfvPrxkXNNAE3/d9Ndh5xoKG1Ie3/4oZRIONwMwftxn8fmmkZ8/4xDPOjq3P7uVV7d3JY8nV/kkISWEEOK4YxoxdM3qKWV9Cmqg26ibVAevWjf47Nm86140RN/v3wvTf0yeEeTLO+4if/HHeW9N9u8wLFLriw+uYWr+diZPge299RSUXMJJkz+Y6bCEECkiSSlxRMLNfgAm5c9joquSMre1ZCwdSanErnsf+OoiSmq8bPhaA2sCFyYfd+bZiQUSSSnQ7aO/UmogHOOyX68gFLWSg7oGhXmH9/vuCHYAUOou5dsnfptqbzUNRelNSjU1PcCmzd/CNMNY7xKNceOuQ9dT/3fV1h9ifVMfOzusXgNfXD6FCeU+Fo5LT28sIYQQIpuZhomGHq9gBzQbyqYRNaPJ5XvObK6U6t1NKNgDQGFsgE+F3oLJ08FmO/jzxKiilKKlL8T8YqslQ0nRbM5ZfC0u1+if9wtxvJCklDhsZihGpMUPNsh3lFCmD/YwChzkeUdLxRucO1w2bHYdw7Q+fGy2HgY8XXzw8x/k/m8NVkrZjoOkVHt/mFDUxK5rnDalghMnlpLnPPjkbMXeFfxo5Y/Y2rMVgGpvNafUnjIS4dLa9iimGUoelxQvS0tCyjAVF/zsJdr6w8lzF82poa7Ek/KxhBBCiFygdXczbd1KfIVutpcXoKGh7FZSKtHoPKsrpWIhQvHm5u6iGvjsqgwHJEaaUiZr13+JLy14g2J3DwBzx9Yd9ioBIURukKRUzhr5nlIqamLGx93Rv4Zu/3oMs5+6aVPY2TF72LVaCuJLVErp8QlTovhct/kxve2U1eYPLt+D42L5Xm/Q6iNVke/izqsWHtZzHtr6UDIhBTC9dHpaYktQStHUdB8Dge30968HYOaMn1FcvBiHIz0l950DYdr6w2iatcPevLqiI9qNUAghhBhtbNu24x3ox+ZN3LzSCdZ5hyWlsrqnVCxMUHcD4Jbm5sedDU19fPmv/+Dzc/7OuCEtUL3eSZkLSgiRFpKUyjGpaCB+NMxwGP+LL6PiyabucAuBoIEyu6ksnQIdg9cObXp+TGPGk1JafGcYpeKvqSl04rv+GfEeV0phc4zeuyaRmMm9r+1i9R6rWWnBYS7ZAwjGrHLn9016H5dPuZzJxZPTEmOC3/8OGzd9bdi5goJZOJ1lKR/r7d09fP2hdXQHrJ0IK/Jd/PO6E1M+jhBCCJFzotaNLL/PZx1rOmsde7jmiWtALQWyPSkVImRzAZKUOh69sKWdcKQbgM5gMW90X8PXLlxMQcHczAYmhEg5SUqJw9J555103vUX1PlWU0FNKYgnhpI78r2LUuqYGkwnlu8lKqXUu3b3M3p6MA2r2bc+yntKPf1OK996eEPyuDzfddjPDRnW8rlFVYuYVjot5bENNTCwnc6uFwFwu2qoqroYn28KeXlj0zLeg6t2s3Zvb/J41piitIwjhBBC5BoVs6rJu/NCgAvQCasQMTOGUond97Jz+V7YNPlrN6yoOAsAt56dcYr0UEoRDO6l2mvtwl1bVs/7z/0UurwPhBiVJCmVq0Z49V6spRU0W3L5HkqBdqBeRuqY66SUqUjkuvRQGzS+hq7M5OtXN+5k87ITMWeOA02L95Qavcv3WvqsxFJDmZfTp1Zw2cLD3wY3FLOem2dL73K2lpZ/sn7DjcnjgsK5TJjwhbSMtb6pl/VNfby9uweAT53awDnTq5g5piAt4wkhhBC5pP/53ZS3O4gAppaoMtKJGS5Kou+j3HcyK9v7sWdppdS/23u5qccHFWcCUOSQ5ubHk+3bb2W283ZmxztOeNzFkpASYhSTpFTOycwPZGUa7CktTC7fs8QnMgo4hoqo/TGHVF+5/vkxaHoDm3Y+AAYGWk8LjUVeVHzcDXWwpKwkpTFkk/6QVRG2uKGEr19wZD2hEpVSbrs75XEN1de3BgC7vQCXq4qamvRs1dsfinLprwZ3IARYMr6UBfWyy54QQggR6Oul6+nt2Iw2dteejukMgtEO6Aw0f5De4ER20Q9AvisLvwpEQ7S17wB0xgX3cFpsD1cuuirTUYkRct09bzLN+STTSiFiOLDZPFRVXnjoJwohclYWfhKJbBQJR9hZUYqpDVZKaboPZbQOuSp1ianE0j0Azd8EwIBhVcEEB3aw1xFhb12FdS2KWy7VeSgNu7plmj8cY82eHja3WpPHgiPYbSQUC9ER7GBL9xYAXLbDX/J3uJQyaNz9e0KhvXR1vQTA+PGfY2zdx1I+VsKe7iChqInLrnPSxDJqivI4cWLq+1UJIYQQuWjFA/cyLthAp72OLRPfgwo8C0Y7GgrT8AJw+pRyxpf5uGrZuMwGuz9/uJCQNgkaPsmSnjX8wHwTfNdmOioxAgxT8ejaZuYvsfb1/u26a/jm+6+hqqoos4EJIdJKklLisESNGLqmJyul7O4luGx+gj3b4j2e9qXU0RdQmUOSUmY0gg3YOFBl5b1Mq3G3NxShdEwtD1VvI+pQ2PTRV9r90TtfSy5Rg0M3OH9k+yP88u1fEjWjtAy0DHssHZVS3d2vsnXr94edS1f/qBc2t/OdRzbQE9+BsKHcx13/tSgtYwkhhBC5KtjbAwpWm7sIdf8MsHpLFakdQD0AnzxlAksnpGdH3GPWtoFgzUwA8pwumPaRDAckRoo/vjIgz25V+f/qilOpLCvKYERCiJEgSakcpUa4qZRpxNA1W3Lcky5bSqx5I6/9Y1hQqRvPHHyxWDiADQjml4IflDLRgOoeP8vOWcAPClaDCbYD9rjKXVvb/ACML/NS5nNy7syqg17/wKYH2N2/e9g5n8NHQ2EDk4pTt4WuUopotJN+v9V83eNpoKLiPFyuSkpLTk3ZOEPd90YjW+J/HgBz6woPcrUQQghxfDJNk5Dhp5+B5DkFmGePR23J7gbnKAXRIEE9vuve3Mth4pgMByVGwu6WFWzZ+Fl+fVYfdt1q0eDNK8psUEKIESFJqZyTmUmEXykiLicRrDsYJdU+ujqHJIGGhKU49iiHVkppyQbn1kTKBpiArhQvt75K1GdVzoy2pJRpKvxh68/7gWuXUuY78PK7vf69tAy08GbbmwB8a+m3mFU+i0lFk45pB8QD2bjxqzQ13588Li5azISGG1I+DsCzG9vY3Nqf3GXvy+dO5aSJZUyrlqbmQgghxLuZpjF481JzYfPMpWlsF+Xzx8MWa66UrQ3OMaKgDEKJpJSepXGKlPr+v9+hfe8fOL+hB3v8r9zlqibPXZfZwIQQI0KSUuKQ9u7dy8MlpfG1eNYab33oJEHtv0TqWAqnVLxSStM1NMz4MDoakG+66AU0BW+0v4maoGPTbOTZ07u73EgbiMSSv/YdpBHp9p7tXPKvSzDVYOPvhVULqS+oT1tsnV0vxn+lY7fnU15+TlrG2d0V4GN3vzHs3EkTy5g5RqqkhBBCiP1RpkksvmQP7GBzgc2BgQHKagNgz9KdzN7p6+WlMZeyJn8yAJ5sTZ6JlHpxcwcLiqzvGP/ecSallR/lS6ctQddH787aQohBkpTKWSO3fG/1y1tA09CUwqvyyLd7qKuro2PNqgM+55grpeJJKV3XkpVSCj3+utaxrhSGDldMv4IFFQvwOX3HOGp2aOoJ8s+3m+j0hwGrxN5lHz4pU0rxuWc+xyvNrxA2wsnz4wrGMatsFmPzU9/XKRxuZW/T/ZhGkEikHYATl72A212d8rEAegKRZD+tYo+DM6dV0lDuZUaNVEgJIYQQB2LGDIJaYm6gY2Iwe+ZsBowBUFajc0eWJnuufKeF3RM/lzzOt4+uKnixr1CoiSn5/2F8YSMAn19+MnW1p2Q4KiHESJKkVK5Jw1KsQ9m+ph3s4AnGuFw/Eb3Yg8vlSi4LUyq1iwojoRg9bdbdEs2mgWmAblVKAaj43T8NhanBDQtuwDGKdt77wb838q/VTcnjUq9rnyV4veFentvz3LBz31r6LS6dfGna4tqx8xfs3Xtv8ljX3Tid6dn17mdPb+EnT25OHs+uLeLHl81Jy1hCCCHEaKIMMFR8rqTpKM3g/HPP596N96JUYvleFlZKhf20RWOAxns6V1Az+yIuqijKdFQijW59cjNFoZu4YNza5Ll0zS2FENlLklLikDzRGNihzFUNUbC70nfXKhyI8qevvUI4YC1d03UN0AgYhah4yblmjy/tU2Doo6+XVEuvtePIaVPKGV/m5ezplftcE4hZSTun7uTR9z2Ky+ai2F2clniUMgiF9uL3W0mi0tLT8XoaKC5eip6mZODzm61KLE2DPIeN82enpxpLCCGEGG3ydjejWnaBF8CGqZnYdTsxMwbxG3yObOvVtP05zD9fRvjkJwH40a5fU/7+z2Q4KJFOfaEotz29hf89sRWAjV1TOWPWUspKT89wZEKIkSZJKbFfSimat/Uy0BPGk1guF2807pq0n+THkEoeFW91rtSRtzzv6whZCSkN3B4HkxdX8pfnf06fUZ18s+qFTvBby/eUTUPXsmxidYz6Qlbj9qtPHM8pk8v3e81A1NpRx+f0UeU9+I58x2r16mvo7HoheTy27mOUlJyY8nFMU/Gr57fR2Blgc0s/AA9eu4wF9elJtgkhhBCjUe2bb9GvK5hQA5pO1GZy9eNX0xZoA24EsrBSavcbhIcc5k0+K2OhiJHRG7Dmu15HEICzFv8vU+rmZTIkIUSGSFIqZ6W3p9SudZ08evsaAEqKrLH6Ih083fcHrjr7zv3GoqEdc1SJXffyi91c+b1l9LYNsOaZPfFRTHSbwuWxklCaUih99FRJ9QQiNPWE6A5EACjIO3AVUqJSKt3N3ZVSdHW/CoDN5sPraaCwMD0ThlWN3fzo8U3JY12DupLR1bxeCCGESDdbNIrpTswhbOwpM9nYtdE6jFdKZV1SKhYkPKSptev8H2cwGJFusdgAjdu+yE0Lt+Jz+AGoL0/vTVYhRPaSpFSO0VLavenA/F3WEjK314HDFe/lpEw0fUja6SD9rY42ykSDcy0+WVJRaxmfS/PTUbmChupZaG3WY7oCsrRR55Fq6Q1x6o+eJRwb3EGvwL3/f54/f+vnvLDHqlzyOrxpiScUamLT5puJRjpRykqSnXLyG2nZBUUpRWtfmLV7egFoKPPy/oW1TK8uoCLfnfLxhBBCiNFMM01UciKmE7VZ/aW+uOBLfOOdLF2+Fw0lk1I6YM+ynJlInc2t/fz1hT+yrPRxppRY5+z2ApzOkswGJoTIGElKif0y47mR6oleQp1BiAFKodv2rUxSSqWs/7qKD6zHtyo2DCsppWFgoqPrOrFYvHmnUrCfeHLRptZ+wjETh02jssDNnNoixpXum3BqHWjlN2t+kzwe4xuTlnhaWv5FR8dTyWOvd1LatuX9+j/X8edXG5PHc+uK+MxpE9MylhBCCDGaxbpC6EphJiZmmo7STIxgHXpoGtACZGelVEh3AeDS9X02eBGjxx9W7GRv626WlcK2nnqaopdw04UXosf//oUQxx9JSuUqld7leypeseTv2ki4rxc8VhIoz+M5rOdrHN0Cw8TyPT1RKRWLNzzX4kkpTcM0raSUPoqSUn1Ba139/LHF/PVTS/d5fHvPdjb3bGZ3324AStwlfHXxV1lSvSSlcYTDrbS1/YfOzucAqKg4n6rKCylI05I9gBXbOgFw2nXyXXZpai6EEEIcBcMfoe2Wp9GUkUxKadhQmAR2XsfXdrYkr3VkUaV5f8zgT/oUdtYVAZCXbQkzkTKGEcIVe4kpxdsAqKuYxaVzP4nHIwkpIY5nkpQS+5VYRmcaoeQ5TzjCstPPTh4n72KlMD+WXL4Xr5QyE0kpTPTebpqaH8cI9lnXKMA+SpJS8ebm++sj1Rvu5bKHLyNiRpLnxuaPZfm45SmPY9Pmb9Pe/p/kcWnJSZSXn32QZxwdfzjGY2ubCYRjyd0GH/vcyUys8KV8LCGEEOJ4YPRF8Id28MKkOkLO5PYwOMIFABR7bFTkezhlchluR/bMn/7a0sW385ZAvI1k4SiZ24nhOvxhNm6+hRNLf5c8N7m6jlKfJKSEON5JUkrsV6JSChVDxZNP3nCEgpL0rvdOVkolk1Lxqigthr2jlXBkMEmWF4mCLbcbYf/mhW3c9tQWglHr91ng3jcp1TLQkkxInVB1AjbNxlUzrkpLPMHADgBKSk7G551MRcV5aRnnjue28YtntyaPNQ0qCmRSIoQQQhw1U9Ec2Is/b/DzVLOVEQnWgBM+tKSCm86Zn8EA92PLk3SsXw+FpzHDv4WlJUWcN2XfinGR2/zhGKf/6Dk+POUtTqiCJn8lY8qnUl39/kyHJoTIApKUEvuVqFgKbd6IXlcHgGYqONBud0MqrY+lcEodoFJKw0RTVr+pqU0dlPcFyA9HCfgOvENdLvjn200MROI9sjRY3LBv0q8vYlWGjS8cz13L70p5DP3977Bx09eJxfoJBncCMHHil8n3TU35WAnb2q2dVmbXFjK2xMPSCaX7TcgJIYQQ4vAoU6FMq/Jat4/D7jkVTS8hqG8HwGnPwmn/y7cR1GdBIZzavZJvTF8OxVI1Pdrs6Q7QH47hcwQB2Bp8H+9fcAN5TqmKE0JIUipnqVSumdvf6yeW7wUHkvkmm92Oa/Kk/Uaz39c4ihATyTCbZsKGf2JuagYmo2NYSTGgxB/C/fHLuKX5PlrqD6/HVbZKLNv77ZULOWFcCYWewcRM1IzyTOMzvN78OgD5zvy0xNDc8jf6+t5KHtvt+eS561I+jmEqPv6HN1i9u4f+kJVs/MxpE3jPTOkhJYQQQhwzBUpZn6/oeWyqWs/UnkLW+CIQqsGdjUmpyACheD8h96z3Q8PCDAck0qGj9T6umPYiYwuaAPjsmQskISWESMrCTydxcOlv/tjX10d7bzMRZzeqwIFui/c7OvUU7MXFg5EccGcUddRRJpbvjVEvw/3fQoVnAzejaSaJ5JdutxG6bDmvPXE/E/Tcrq5JJGfGl3mGJaQAntr1FDe9cFPyuMSV2qWT/oEttLX9m66ulwGoq/sY5eXL8XjGY7fvu/Pfsdre7ue5Te3JY5ddZ+aYwpSPI4QQQhyXDIWprDmbhs6miteZW/8+wi1dALiyMSkVCxOyWUmpvJKxpGw7Z5EVegNRnl6/msL+/+O0Ifc7XW65ISmEGJSFn04ikwKBALfddhuGYUAJUFIGBABwOJ37fY5SCi1FyTIVL69yY02goo5SKy7lS5ZeGZj8fu1vAbAdaDlhFvOHY3zpb2vY0x2kJxBP+O1n6dpe/14AxvjGMLtsNldMvyKlcWzc+FV6e99MHpcUn0hx0aKUjgEwEI5xx/PbeKfZWobYUOblN1cupNzn2icRJ4QQQogjF+jr5e3H/olSRvyMjtJAs2koZc2VnLYsnPbHQoR0a37p1rNnR0CRGj98fCMrNr7G1xbDQNTD1oEL+PCypWltESGEyD1Z+OkkDk96lu/19fVhGAYaGnrEiR7todBVSr7mY/q49H+AqHilVCzUBsDeHmsiFdJcJH7PMWXwavOrAJS409t4PR1e3NzOo2uak8dFHgdFnn0Tfv2RfgDOGHsGNy26aZ/Hj5ZpRjCMEIHATgCqKi/G55tMScnJKRtjqEfWNPHzZwabmk+uzJdd9oQQQogU2rTiBba/8RoV9vjyPU0HVLwvpZXscduz60ZQRyTGhryJNLkqAHDbpEpqtGnsCuB1WDe3I1Ry2sKbqKoqPsSzhBDHG0lK5Zo0lzWbptVMnGgEz7Y3ADi15iqKXVUU5hfsPxal9ruq8Gj6XiV6SqmYH+wQc/sgAlHNQEu8nKZYVrOMU2pP4fS60494jEzrjldHaRrcddVCplYV4LQP3h0MxUK82fomm7s3A6ntJTUwsJ03Vl6CYfiT5yZN+ipOZ2nKxkgwTUVbf5iNLVZybf7YIs6ZUcWFc2pSPpYQQghxPIsEg7jCIcKx/vgZDTTY1LMJ1HQAnPbsqS43leLslZtonvjV5DmPVEqNKu3tT/DempuxjbHmnA0VVcwfKwkpIcS+JCklhkkmpeI73dlNB3bik5hDzhWOPWGW6CmlYZWfm5pVQWRXGqayaqVMDRZULuAj0z5yzONlQm/QSkq9b14tZ0yt3OfxH73xI+7ffH/yuMBZsM81R6un57VhCani4mU4HOmpNrvyd6/z0taO5PEZUyu49tQJaRlLCCGEOJ7p699h5tsr2FhdAhXFWJM2RcQWIc+ejx9wZFElUtAwaQ5b86Gp/u1UVU3i1JLUzXdE5iiluPWpLVRGf0uVuyV5Pt83PYNRCSGymSSlxDDJpBQKn6OaaZHJ+GxuADR9+GRm6NHQAi7FwZqgH1xi1z9dM4maLiLKarhdZDhoS8SoKWxa9tztO1yvbu/kW/9aT0tfCIDCvP2X0e/s2wlAXX4d9QX1nDn2zGMeu6trBf6BTXR1vQhATfUHmDr1fwH9qP+uDsYwFSu2WQkpp02n2Ovg9KkVKR9HCCGEEKC3tAJgJudqGiFbgJ1VO5nQ+3FW9/Vgz5ZKpJ5Ggi/8DPI/CsAzq65Gv2E9OOVryWiwvqmPnz29hS8v6qHKDQ9uuZAvXngV46vnZDo0IUSWkp/+YphEUkpXGstrPoxdH/IWse9/MpOK7lYDvWFef3gHrTutZtj+aCl39fwBA2tHFg1QWLEpneFx5YgHV+1JLmUDmFq1/2V5A9EBAL58wpc5pfaUYx43HG7nrbevAszkObd7DFoaEnu9gSjPb2mnJxDBVFaycsO3l2O3ZclEWAghhBiFXIEmAJwFgz2lwnoIu8NDzIhXv2dLpdTK3xNa/09Y8lGcZgTd5gS37MY7WnQNRAAocFk3YT+0bDkNNfMyGZIQIsvl3jf741yqdrnbH2UYBLdbkxq3zYtd2TGNGJrRjfeE6TjHvKs59SEqbNQRZKs2v9bKhpeakscDsbJkQkppBmV6mEQBsNJUTial+uLL9j55SgPvmz+GKZUHT0p5Hd6UjBsM7gJMbDYf5WVnYbfnU1PzwZS89rt9/Z/r+Nfqwb/Hcp9LElJCCCFEmjnCPZiAqSU+c3VMbAR7phOJJwkc2fJ5HOolpFtzPLeuw1UPg0s2QBkNBga2Em75At9Z1k5ZnlUxP3dcXYajEkJku9z7Zi/SpvHqj9PpnAJjwKVbS/b6+5rJ53lKLn/fgZ94JNmnAwjFm3/XTi1mypIq9j74JACl7jVsLOrh1NAJrIu3JzIBu5Z7b93+kHX3ckZNAVOrhvdN8Ef8/G3L3+iL9NEebAfA5zi2CVpLy7/YvOV/MQwryZXvm8aMGbcc02seyuZWqxJs3tgiSr0uLp4nTc2FEEKItItZ1VBhzQOAhk40UkXnnvMBq2LF7ciSpFQsRFi3eoa6nW4YOzPDAYlUWLe3l01b76HIWEdNfAqr627y3JKUEkIcXO59sxeWFCSC3i24Zg1qyVwgTMwMs65nJXl9AequOkhCan+hoQZ3yjtM0bDV2LyqoZCpS6rZfX+iCsuaZNk8g29VpStseu70lPrzq7tY39SbTNgUuPftJfW3LX/jxyt/POxcsfvYdihpbv4b0Wjn4OsVLzmm1zuQgXCMT9/zJnu6A+zqtLb9/cH7ZjPlAMsThRBCCJFihnXjy0xWseuYaIDJ4vFl1Jd6mF1blKnohosGh1dKiZxnmoqP3Pka543dxVn18ErTQnTve7nxvDNwOGRpphDi4CQplXPSt3wvpuwM5NcAPUSMEBt6N3HGx/+XgrPG7j+S+MRHKbXvUr4jDDMaryJyuGzx19TiY1jJqopPzobPW9caObR8b29PkK89tG7Yueoi9z7XtQasBqUzSmcwr2IeU0umUuE5usbgLa0P09H+FH39a6zXnP4TiooX43ZVHdXrHcrLWzt4YXN78rgwz0FdSV5axhJCCCHEfsQrpZLL9zQNhYbdEeKvn1qawcCGe7qzj0+XfAp/qXWDTpJSo0NfKEC5ayNVXms+W1w4neWLL8TtkhuUQohDy41v9mJEDLjLUfHJjKYUms3GmMlHUK1zFMVbPa0BWnf00tVsVdgkklJmPCmliGHv6WD14w8nn2Pq5Mzue11+q49DvtvOtadOYFypd5+lewD9EauK6qz6s7hm1jVHPZ5SJu+88xVMMxg/o1NUtCgtCaneYJS/v7mHV7ZZ1VhLGkr4wjlTGF/mxSM76AghhBAjx7Bu4g2vlLJ2M84mT3f20acP3pxbUpSa/pkiszZv+h++csLgXP2SBTOoqZCElBDi8Mg3R5FkaLZkgZNCUTomn/KxB/tAOXA51OEUSiml+PuPVxHsjybPOfOst6RpWsmxUKiTvK6dvN28EwCbYaJ0cOj7LoHLRv1h6/dWWeDmutMn7vP42va1rOlYw8aujQAUOPdNWB2ugYFthEJ7kwmpyZO+gdc3Gbc7PX2d7nxxOz9/ZmvyeGZNIYvGlaRlLCGEEELsn9HbS08gTGdZIT26Fr9JqAM6up5FSam1DxLa3gUFJ3B94z18csFplE+ek+moxDHY3RXg1ic3s6RgDaUu6A6XML5yEqVlp2U6NCFEDpGkVI5SR1OWdLDXUwoTO1qiGZRS6EfQt0kb8v+Hy4iZyYRU7dRifMUuxs0us4bHSkqZZrzSqLScuopq8h59nJ4CcOdIT6mBeK8sn2vff2pRM8onnvxEcrc9gCJX0VGN09zyEBs2fCF57HCUUld31VG91qEYpqI3GGVTi1XdtbC+mLl1RXz85PFpGU8IIYQQBxbetp2VRdWE7I5k1brSbChlR9dT34P0qL14C6GS90EBlEe6qSgbe8idnEV2u+e1Rv7+1l5OONmaEz7b8lnef+6VGY5KCJFrJCmVc9L04W2amLpjMNmlTPQ0r/M3YoMTpQuum4NtyK4wSiV+bd3h8+zYxbhnXgWgqzD7d9/78eOb+PubexiIWEmpfPe+8faF+5IJqXPHnUtpXikn1558VOP19Vn9o+z2AhyOEsaMufwoIz+4SMzk3NteYFv7YCLt6pPGc96s6rSMJ4QQQogD2/i9/8W49wEi08YAEHJF8bIIzTmBSJcLjy2LKqUi/mSDc9ey66FqVoYDEsfCMII4I09xyphmil3WvPAL5y7McFRCiFyU3d/sxYiJdQZwFdcTSm6bZ/WUOpjEzS2r0Tn79JQ61AaBRnRwoqTbNVQsRtNXv0pk6zaMilnxKKxr9HivBIA143XOyPJKqd+9vINAZDDmGTX77jzij/oB8Dq8/PDUHx7xGEop2toeIxTaS2/PSgDGj/8cY+s+dpRRH9ru7sCwhFRNoVuW7AkhhBAZ0v/4E/hiEVR8UraxPsSS9jMwdYUZrMdW0JXhCIeIhgja4rvuldRlOBhxLJRS7Nz1e+bk38qcGYPn60rlJqUQ4shJUipnpa4c2+gN0/rTtxkz80L8epP16so8ouV7RzVufKcY3a6haRrBjZvo+5fVJNGsmBu/yrpGA/56mp2HFyoiDo1zsnj3vahhJhNS931yCWU+FxPK923kOTQpdTR6eleybv3nhp1zu9IzGegJRHh0bTNbWq2YG8q8PPPfp6VlLCGEEEIcHhUzCDvyk0mpjuJ8aAcDax6SVcv3YmFCuhOQXfdymWEqLv3VCubkv8wptbDXX0VVyUSmjD0Jh+MINkgSQoi47P1mL/YvDWvvu7b2gAmmMhkwrSSQYUbQbYdIlgyWSqENiUsB2mEsM0wkpWx2a2KiwiF2jl1Oe/UiQloRqMFKKU0pBhwmEYeOz+FjYtG+TcOzRX8olvz1gvpiHLbhE6/ndz/Pl178EoGoteOgz+E7qnGCgR0AuFzVlBQvw+mqoKzs9KOM+uB+8uRm/vjKruRxTVFeWsYRQgghxOHbOP5j9HnHQc9PATh/46dBByOei8pzZMdU/4mOXv4y6Sbe8U4AIM8mSalc1doX4u3dPSybY81jVzSfxtdO/h9qiz0ZjkwIkauy45NKZNS65/bg07pZZd9JO9bObSiFNkKVUkop7rzxBcKBGDRcFB/f+o+uWfHoCsYWj+ep999FoasQt929v5fMqK6BCHc8v423G3sAyHPY9klIATy357lhzc0XVS06onF27Pg5jbvvwjDCAJSWnMy0ad8/+sAPQimFUrCt3aqQWjSumPpSLx9dUp+W8YQQQghxeJRS9PsaQA3eDEOz5h2b45sUz6yYkIHI9vXdbU1sKj0peVztyo1dlMW+mloe5osL72JsgbW64usXLmGMJKSEEMdAklKCUH+E7fZdtNgG+w5o0ehhNDo/UDWUiv//wUvGzXijczOmiIWHTKhMP4s8dzDBu5tHe6zkh6YUDoebSm/lIWLKnL+t2sNvXtiePK4p2n/izB+xEjzXzb2OyyZfRmle6RGNs7fpr8Ri/cnj4uIlRxHtoQUjBhf94iW2tPmT5244azLLJpalZTwhhBBCHD4jmuhdOTjfuuuEL9G39xrKbZO5cmZ95m8iKQW7XsYfcgEO/t+uP7Lk3C8zO1+SGLkmEInx48c3M8PxM6aWNCfPF+RnR+JTCJG7JCmVs46tR4AyFWue3UNfZ5Bgb4SYz6pamrRpM6XvvYB1D72JVluVlkiUUvi7w/R1WFVQiZV/i+crKtZ9nrriPWjxhutKjQMUmlJoWVKCfiAdA+Hkr//nvGmcMrl8v9f1R62EUpW36ogSUo2Nv6OvbzXhcCsACxc8QF7eWJzO9CSJNjT3DUtIVeS7mDFm34btQgghhBh5gbUb4r8a3DjG1BQoG9Or8vj2e2dmJrChtj8Hf7qY8NJ/gLOE97Y/x7TyH2U6KnEUntzQyu9e3sGtp1nz2FXdV/Cpsy4mP396hiMTQuS67P6WL/ZxOL2aDkfrzj5eemALABV2DVOzJjRtTpPuJ/6Jpkz0Q+y+t29sFsWBa6gAnr93E+tfbBryRGvrvjxHjJpCKyEVwoUfD90UAL3oCjR7dr9d/fFeUp8/cxKfOKVhn8cf2voQa9rX8PLel4Ej6yUVCjWxZet3k8d2ewEFBXPQtNQvsdzbE+RfbzexqaUPgDl1RfzhY4vwuuz7XY4ohBBCiJHTsnUz//nVTwn2DIDjKlCDSSmlg1J2nEc4h0ubnkYAwnp8172l10KW76As9q/DHwEUXrt1U/nyU66ksHDf+a4QQhyp7P6WL9ImNBAFwFPgZNK0Ytp2WJVJEbsN098LQFndwUu+k73NlTqi/uutO61kh82hY3fo2Bw6gd4IumkkX+eXXEG+dwIVsUaa6UVDZW1SyjQVXYEInf4IAPnufePsDHby9Ze/PuxcpefQSxFNM0Zf39v09a8FwOksY9y46ygqXJCWhBTAdx/dwGNrW5LH40o9FHmcaRlLCCGEEEdmy+sr6NzTiKbl4SqCoZVSCkDZcNizJPETs6rIwzYrKeVa+F8ZDEYcrf7+dygK/4DPz+vCplvLRmuKKzIclRBitMjOb/ki7cz4tiz5pW6mnFDJCzviExqlOOPqaxk7YzYlY+qO8FWHZ6bUAdb1Jca+4LrZ1E4t4S/ffo1AbwTNiKHHl+2Z6BQ4vOQpaxKjKdDs2dcUUynFpXes4K14c3PYf1KqKzTYr+v6uddT46thZtmhy+q3b7+FXY2/SR57PBOoq73y2II+gEjMxB+OsTW+ZO+saRXUlXi4ItP9KIQQQgiRZMSsyuwJDZPZ0wWaad0UMzUFGijTgcflymSIg2IhTDQimjU3ch2yX6nINl9/aB1O/3dZVvM6RfHOFA5HCbZD7dIthBCHSZJSOUodKONzmBKJId2msX3VSszEXTZlUj1xCqW1Yw/9IkdSHjWEMgfHHhqLZoSTL2miowYMzHhJuqYUuiP7klKBiJFMSOkaVBa4WdKwb58of9RK9NT6avnUnE8d9uv3968HwO0eg9NZxtixHz/2oPejrT/EObe+QE8gmjz3xeVTmVKVn5bxhBBCCHF0TMOqVMlz5QGgmVaSSmmg+xtQ0VK87izZpTgWIqwPzt/cemraUIiR8/CaJq6aYs1jX9q7hFNmnsGCyaeiHeX3ACGEeDdJSh2nTCOe7NE13nnhWYyaEgB0w6Sw4gh3uDvCBFkyCRW/W2ZErERI3z//AfGN5EwFRv8AUdMq+9ZVdi7f6w1asTttOpv+9z37fEDHzBi7+naxqWsTAPnOQyd5IpEutu+4jWi0m77+dQBMnfo9SktOOsQzj95bjT3DElKzawsZXyZ3wIQQQohsY8SijC2cxU5lJXs0ZX1+23UHgYGpgIbDlvmEwdt9AX5szGZg1g+T56RSKrcYRhgV66LAaTU3/9iZVzC25j0ZjkoIMdpk37d8MSISiSGbbmKYKtnofF5LN3n5BYf1Ggduuq4O2ug8WaUVv1sW7e4D8lDdHclr9D27afGvHxxLgZ5ly/e2t/tZubMbgII8+37vGH36qU/zavOryWOf89DNzVtaHmLv3j8POaPhyRt3rOHu1xs7u7jv9d1sa7fugJ0zvZLfXLkwLWMJIYQQ4tiZhsGT03aw2dXNZS2L0JRVOaU0rE7ngD0LklJ37W3nKa0KiqzdnKucDuxSKZUzYrEBVrx6Fj85rS15Lt9z+LtGCyHE4ZKkVM5KzfI9NANN0zDiy/fyo8ZRRKL2s5RPO2CE5ruW7ylTgQ6aa/DtqAcG4tfYsEcilPkDdGVRUmpjSx/v+emLyePCvP3HtqZ9DQAl7hLy7HlcOunSA76mUgrDCBAI7rKeU3IyZWVn4vVMIC+vNoXRD/ruo+/w9u6e5PGEisPfEVAIIYQQI8+MRJjzViNzo4WoQtBMq1IqRBiU1eDcnumKpF0rGGgPA8V8uPkRTq6uZf78D2U2JnHYHlvbzB9f+A+fmDaYkPLkjSffNy2DUQkhRitJSuWc1NxhSizfi6oBgk5bMimlp2B9uBry//sd20ws34v3lMKaOL1WV8Sid73KyXs6yGvvQldgs2fPDnBbWq3KIo/TxtgSD/+1bNw+10TNKIFYAIB/vvefFLmLDvqab6/+GF1dg4mu0tJTqau9ImUx709LbwiAT57SwPgyL+fPrk7reNlKKcW9zV3sDkVQgKkUJtbKVBPFZ8dWUuqUH5dCCCEyr2+bF/K+jfJY86fE8j2lQ4Wnmr09ZHb5Xn8r3H0+wZk/gJLFLO5dwyXjCiEvS5qvi0P66xu76R2wVgPs7q/hH7u/zz+vT18bCSHE8U2+ZR2HYrEYPf09hF2drO1ZD5VOwKqQsh9Jf6hEAms/hVIHXtoHynhXpVT8yZo2pEorHofW3YeuIOSA6Jiyw48tzfpDVlPRZRPKuPOqfZe7rW1fy9ONTyePD9VLKhbzD0tI2e0FlBQvS1G0w61v6uWH/9lEIBKjrd9KSl21bBxjivLSMl4ueL13gC9s2n3Ax6+sKZOklBBCiIxThkmPP0o0+lLynFttB0DXbSyuWsbfm/Ziy2SllL8FlEnQZs0r8saeALMuy1w84ogopQiE+yhy9QLQUFHJX89bmuGohBCjmXzLOs6YpsmvfvUrOjs7oXjwfKHpoWwghicSGYEYhveUSlRK6fHEmKn0ZFJKV4rbPuSlf2odN884L+2xHa7+kHVXssC9/39CNz5/Iy0DLYC1dM+m2/Z7nd+/ic2bv00k2gWA3Z7PySe9hqbZ0bT9P+dY/fnVXTy/uT15XORxUO47vu9e7g5Z7/sxLgfnlReioaFpoGMlWAvs6fm7EEIIIY5Ex33v4Pc/Q+JmIkBP/L9Ru52uAevzLKOVUlHrhlfIYW2Y4l78CcgvzFw84rA19QTZsvFarp0ymPQs9Jbgdsg8SAiRPpKUOs5EIhErIQVoBuiaor5LcYZvKdG2lcSO4M7aQVf6adadlv1JJKUe+cVq/D1hTM3qx6RjVR+ZSk/WWWnAe066movP/Mxhx5VOtz21hTtf3E4oZk0G8/eTlFJK0Raw1uC/d8J7ec/4A+9S0tz8N7p7Bhuh5+fPRNfTkyDa0x1ga5ufd5qtHVT+a9k4ljSUMqOmAKf9+NwNZ/NAiIfbeljZZ/UwO6HQy3cmpad/lxBCCHGswm39JBJS3iiU1DRTErNxt3E2W7wNtG6ybjo5bBn8XI9ZSamg7gbAk8lYxGHb2xPk1B8+za/OfJnBfvQ2SktPy2BUQojjgSSlcs0x9nwyTTP5a+/mVWgoigsWgg9QJtiO/E7IYPLp8GJLLN/rbQ8OxmV0o2MlBmIMxqArhd2RPb2k/vHWHvrDseTx/Prifa4JxAKYyvpz/p8l/0Oefd9lceFwG37/Jvr7rR0Gx4z5MOXlyyksmJuWuPtCUc659QUCkcE7q6dNKee0KRVpGS9X/Pem3bzeO5A8rnFnz3tNCCGEeDczNjgHyY8qpoxppCGYxzWRZYBJRb6LEq+TUyaXZyzGn3XrPLDwj+x0VQLgznTTdXFYtrb5cekBdM2ap/+r9Y/cctlC7Pbju5peCJF+kpQ6zqx+ZmjfHIVbL6SsPwilgDLJmzPnCF5t/0koa0viAz8rUSkFUFbnY+Jrt/BcXhCv00rkxNTg21JTClsWJaX8YSup8/v/WsTMMYWU5w//oG4LtNE80AyATbPhtrn3eQ3TDPPa6+cRjXYnzxUXLaa0JH0NJHd1BAhEDJw2nSlV+dSV5LGkQbb13RtftvfeiiLG5bm4Oov6lgkhhBBDdTXtYX3P5viRhtJi2BVoujWv8nj6ef1/LsxcgHG/6vfQ7bV6aTo0jbFywyfrKaUY6LqHD055DQCbzcdtHzoxw1EJIY4XkpTKWUfQkHyIbW+2xp+uqM4bz6zCEykyrclC/jlnU3rlkSSlBmPZp9G5tv8IlVKoIUkph8uGPdoDeQ4c8b49hhq8o6YpsGfRrnv+sNVLamKFb5+E1M/e/Bm/Xfvb5LHP6UPbT2VbKNRMNNqNptnw+abiclVRWnpqWuJds6eHXz67jeY+q5R+SlU+D39Wdk9J6Ikvw/zy+GrGe+ROoBBCiOz11G9vJxRO3FDSMTUDO4qY2wUh0PWjmxumlGkQUtbc546O+1l04beocDkyHJQ4mL09QZ5d8yzVsZ9z4hjrnNt9fO7GLITIDElK5ZiD7Wp3OKKxGOigaRrTCpdQkjcm+Zijumi/SZTDpvb5xT6GVklBotl5hEn5PRQXWMmoiBqMwVq+l/lkQddABH8oRihqVXP5XPv+01nVugoAp+7EaXNy8YSLhz3uH9jCzp23Ew5biUG3ewwnLPpXWuP+1XPb+M/6luTxxApfWsfLBZ2RGNe/s4vWcJQBw/r7LJIGnkIIIbJc0N+PpiXaBtgwtRg2BVHdunlny3RS6vXfov79JUInPwUaLDVaqZQqqaz3tX+spadrNdfPg65QEb2czQcWfiTTYQkhjiOSlDrOGFETXNbCO3t8EhPe9BglHz2PgjPGHtFrJRJYVkupQyez/N0hWnf0DTun2zRqx+9kTkVX8lxEi78tlUIDbBmulPrTKzv5+j/XDzvn3U9Syh/1A/DzM37OsjHL9nm8sfEuWlsfHnwNz8QURzpoW7ufnR0DbG61mppffeJ45tQVctrk47uHFMBTnX0829WfPK52OWR3PSGEEFnPiMWw2eK9QTWrUso27mSess2EriyolNr8H6JoKM26yegae0Jm4xGHpbErQJUjAIBpa+DMBV+noMCb4aiEEMcTSUodZ2IxA+KFR/b4rndG2wacY96LlsYd2GJRg798+3Uiwdiw8007tjJQ4qAUaFFl9Gs+2qInAbuI91nEkeFKqVd3WAkzu65ht2mcM71qv7vV+SNWUsrrHP5B3t+/gY6OZ+jpeR2AmprLKSqcn7Yle829Qc659QWMIVVpF8+rYXZtUVrGyzWdUes9eGpxPp+tr2CaNw/bMW4gIIQQQqSbMkxMW+Kz3aqUclz0c9a+FO8DlOl+4tEQEX1wqZ5r8ScyGIw4FNNUNLev4NzaOyhxWf1QZ9SOYXyZJKSEECNLklI5anDHuyNjxHvoaBrY4hVJyoig2Y/irXCQ7/EaGkNDDAdiyYTUmCnFuDx2tr/VTjAWTSbDntOWslmfzEWxGcDv0eMvkOlG5/0hK+4fXDqb9y+oHfaYqUz+tOFP7O7fTdNAEwD5jvxh16xb/3kCge3J45rq91NYOC9t8W5u9WOYCo/TxuTKfKZU5jOzpjBt4+WKB1q6WOcP8nqPtdveFK+bk4rzD/EsIYQQIjuYpomWuOEUr5Sy63YihjW3y3hSKhYkpA/O2Vy63PDJVqapuPiXL3N+zTeZV74zed7trj3wk4QQIk0kKZVzju0D3oiZ8VfRsOnxv34zenRJqSR1yLBUvNpc1zUuvmEea5/bw/a32lEodKwHp4ypp8I1nuaXN8VjtCZemW503h+ympvnu/f9M1rdvpofr/xx8tim2ShxlySPlTIJBhsBqK6+DJ9vCgUFc9MS57Mb2/jVc9to67eami8aV8IfrpbSeYDdoQiffadx2Lkxbmm8KoQQIndEY4sJha25iIYNQze44O8XMNA1G7gUe6aX70VDhONJKYemoUsVctbqCkRYs6eXD42z2hm81fUeLl96ClWV52U4MiHE8UiSUseJQF+EQF8YlcgOMaRSKhYB+9F8Qd//ZONAu+4BaPG7ZqaRuNM3mJTau6uHTVv+mnyOPX5NJpbv9Qai3PrUZtr9Yba2Wcvy8vfTR6o90J789XVzr2N66XSK3EW0tD7M1q0/wDBCKBUDNKZO+Q66nr5EyK+e28brOwd7c02tliqghD2hCAAlDhsfrS6l0GHnw9Wlh3iWEEIIkR1CA1FMNR5l7gas3YlNLUTY1DDjuxYX5xVkLL5dwTD3l5xDRzwEqZLKbr2BEA49gs9p9ZK69j034POlr9epEEIcjCSlctbh3w3r2NPP/d9biTIVXqeiG3CaDhx6PNljRtAcR/9WUEpxqJthykwkpeJDJpJSKGzxpFTvHutuTVtRmJAzysWvWcd5rpHfMe7hNU3cvWLnsHNjivP2ua4/YsV4Wu1pXDvn2uT55ua/EQ4P7npXWDA3bQmpXZ0DrNnTy/YOa1naV8+byrTqAk4YX3KIZ45+hlJct2EXb/RafzaTPW6+OqEmw1EJIYQQR2bbylcJ9/wcsJbqeQNt5DkUke4TmOR8L+uAhqL6jMX33e3N/Kvy4uSx7GqbvYLB3eza8F7uOKs3ec7pLMpcQEKI454kpXLOkd956moaQJkK3aZR47GxB9Djd9WMWBAVGTjG5XsHiG1I3sw031UpZVqJKDWkUirRmHtdQy+RfJNrnwygNI0JxSN/56bDHwZg0bhiLppTQ0O5j/rSwcaP23u28/iux1ndthqAfKdVldTR8SyBwA4GBrYAMG3qDygsnE9e3pHtbHi4YobJxbe/THcgmjx3wewaaor2TaAdj9b7gzzU1pM8npkvfy5CCCFyz+71q0kkpADK+gMU5uUTbrmUdfFz+9sZeEQ88790BCaBdwpndL7KhEkn8p6x6Zn3iGPzvcfeYe2W+7hm1mBCqqBgDg6H3MgUQmSOJKWOA4mEUO3UYuoLnLy+A5Rm8kLLg1Q1b6PajB1VUkpLlEftp+n6u1NniUopPZ6UivVZlSvDklLxpYWGTVGfXwtsQrfbB8cZQb1BK8mzoL6EK5aO2+fxb7/6bVa1rkoel+aV4h/Ywuo11wy7rrBwAV5vQ9ri7PBH6A5E0TRYNqGU+WOLJSE1REfEalLfkOfi59PGMiffk+GIhBBCiCNnhK1+kXbnAs5Y9QB2U7FjorUMvaZY5/TJtVxzcvrmGwekFLz4E8Jzfw7AlW2P854LPgRuaSGQjR5Z3cT0QmsOvrJ1DrH8r/LV0xdkZK4thBAJkpQ6DiSWyum6hhH/kq40k+bgNsqCVg+i1FRKHdjQvNXeTd10bG1LPLJvUkpX5NviyQPbyJZ/7+oc4IsPrGFTq7Usr8iz/yV3iV5SZ9efTa2vlssazqKr6yUAnM4ySkpOwuebmraE1H/WtXDPa7voi+8MWJHv4p5rlqRlrFz0l+ZO/tPRS3O8SX2t28GCQtniWAghRG6KtWwEQMdOqDRGhR5j29gKAOaNc/HdS2ZlJjAjCspI7rrnvuhWcMuOv9koENjBe+r+wNj8HQC8Z9Z05sxcmOGohBBCklI57PB7SiWSUqqvj0DbJigEFbaWpxG1khpH1ej8ADdVFGqfBxOVUoZh8tCtbw2e16yeUivy3LTZ+nBFNT74vEE9u6whRjgp9e91LcOahU+u3H8/K3/Uan7+6TmfpiCyiXVvX5J8rKjoBGZMvyWtcd7yxCa2xBuwW3HKHckEpRRf3byHoDn4b6TB485gREIIIcRRMk3Y/G/MXutmnga8drGNS3eZPOuZAoBzhOdKw8SsCq5QvE+py1eWuVjEAT28ugl/6485sebl5Lmigsz1IBNCiKEkKZVjjqa8VpmKmW6dCb2wJ68CaIJ4VZKOwjlxAvbSY1tLvr+41JDEWWL3vXhRFJ48xUDPDsJFbeiY/LEgnzHKAOzM2mVSELISQ/aKimOK60j1xZftnTuzis+dOYmpVftP9vgjVkLI5/DR0/4mADabB4ejlOqq96Utvq1tftr7wzT1BAH4+gXTqS50s7RBdpJL8BtmMiH1oym1+Gw2zirN3I5EpmkSiUQyNr4Q4tAcDge2TH6xF+JAdjwP930YI7QA8ICC11jIhC3dDMyxbrg47ZlMSlk3ORNJKbeuZy4WsV+tfSE++5e3uG5OExWV8FbbPC4/6VKqqi7KdGiHZBgG0Wj00BcKITIiVfMnSUodB0xD4XGGeNHeSK9ubf2K03rzVH3rWzSc9Z6jqkjSjqDpejwHliygGlvdz5rdf8dhL+dJNZ6KdieesPV21JWi5As34Cotx3PCCUcc17Hwh63KsUkVPqZVD09k7PXv5cp/X0lnsBNDxZjsMgl0PUlf3xoAGhpuZGzdx9IW28qdXbz/jleGnfvgojp8mWpsmmVMpXirL8C2oDVBztM1rqjJ7B3bSCTCjh07ko39hRDZq6ioiKqqKumtIrKLvxUAQ1nL4zSszWr0WJSYpoECpy2DiaB3VUq5dfn3k23a+qx5Ub7LuqE5f8r7qK39UCZDOiSlFC0tLfT09GQ6FCHEIaRi/iTfZnPWESzfMxVbHHvZbG9KntN16/mOgoJjXiKn9tvofPibMtFsPXG6vXUNpk3H3tfJNkop7I/HZSpcMYPSiy/BXl5+THEdia6BCM29QfZ2Wx/YPve+/zRWtqykLWCVz49zmnymIszOrTcnH3c501vVtXavtVNKvttOdaGb06dUSEJqiHubu/jvTbuTxyWOzP7ZKKVobm7GZrNRV1eHLnePhchKSikCgQBtbdbP9+rq6gxHJMQQpnWzLKbygCiaAh0dTZnEsD5XHBmq8uuJxli+vovGU55FaVYsUimVXZQy6Gj8PD88eR1Frj4A5oyty3BUh5ZISFVUVODxeORmgRBZKJXzJ/lGexxQpiKKVfpa1OMHcwDV24UJ6HrqJjIH+7hI9JRKJKtMw1rOZHq8nJ6/ljuLvbTZbdz09yAOw0RzHEWPq6PU3Bvk1B89RyQ2WM3ic+07fqKP1Ll1i7mydhKte36D01lOQcFsXM4KysrOSEt8f32jkb+9uZc9XVaV2/sX1PLNC2ekZaxctt5vJRQrnXaqXU6uqMnsksZYLEYgEKCmpgaPR3b9EyKb5eVZu5a2tbVRUVEhS/lE9jCs+Zsx5P6frnR0ZWLE51SZWr63pj/IroiCeEJqrNtJjXvk5m/i4FZs6+Du55/jg+NepDS+MbOmOfB6J2Y2sEMwDCOZkCotlfYUQmSzVM2fJCl1HDANhaHFEy6xKEZ7vJpE0yiqrjn6Fz7EXYuhBVTKHF5NZRrWnb+lee+wsGQv36itpgU7hUHDuuBoGq8fpU0t/URiJg6bRrnPRXm+i9Om7Ful1RfpY5k3ynKepXXPswCUl5/N1CnfSWt8P/z/7J13fBRV14Cf2ZZN2fReSIHQe2+KASEBBV5FQFEEFQRFUCwUG4LYQRRBFF+a3wt2RYqKgII0kRY6CSVISwLpfev9/phkkzWhmiUE5vm5krlz594zs7szZ8895ZckMgvLcxI1Cq65/Eg3IqdLTPxyIZcduXKJ47GRQYwIv35edhfDapU/yzqdroYlUVBQuBLKjMdms1kxSincOJR6SplKk3JKQshGKWu5p1SNJDrfuYiSxPVQ93ma5Sez7NSHeD+5Ga0SvnfDsHjLSY6np0IUZJV4ccz8Ms8m3IaLS83rSJeiLIeUsqCnoFA7qA79STFK3QLYbAJbmTJjs6HVarn35ekYfP3xCgz69xMIUWqfurgiYg/xKwvfK5a9jiRJToduVLugMVnt/SXd9TNK5ZfICl/rOj58NapTpf2LDyzm6+SvOZ1/mod85etYltQ8KMh5SSJPXCjg+IVCu0Hqg8EtCfR0oUO0smpUkeeOnOKP7PJKhCFVeLnVJIrLuYJC7UD5rirciNgsFg5amlOAC1CEBLgV6gm4cJ4irQQmcNHUgDq/5/8oNsmLZB7WQgL86oBikLqhyCky46qRc375GoIY37E/LtraY3BX7skKCrWD6viuKkapWkpVeZwuRl7GKaySpfRAG656N8Ib/vvwr4t9AKuS7J95noUoq6Qh8a1lBkaXJWhKcsrHvo4KVplRynARl/MvDi3BW6TT0lUQopVPpEH9aYSE3OM0mc7nlRD/wR+YS/31XTQq+rcMVR7QVXC6RDba9fD1pImHvkYr7SkoKCgoKFQnuxI9+StjKjbbV8hGKQFmH8aOkijKU4MJXLU14JFrLqZEJRcT0Ye1gjZDr78MClVitFg5efpbmnpuRu91BgBvdx/0tcggpaCgcGuhGKVqHVdvlDj255fYAkrjx2023N09qlWiqoxQ/7SdlBnRyppVwooV+M7TnSN1vibPnId3maOUWo10HRJlfr/7DPP/OEFGgWzU8KwiuTlAB/15unkYHdpcXJyb1Dw5vQCzVeCqVdMg2EDfFopB6mLkmOUPzqv1Qmngrq9haRQUFBQUFKqPC+flRTyBrKt4Zx/AFt2SwOjGWI6GcaYADLoaCHMyF2PUy8YwvasXqJWfFDcCOUUmBn/8FRNav0aX4PJ2F92NHbKnoKBwa6OUyLjJyc3NpRALJZKs1ATkFdL5th5OnlWU/VfeUppTykVkAxCMnKX/nE7FaZc0BAIvlTtw/bykFm05yZG0fDIKZINTbJDBYb/NZiYz60+idbIiqHeNwce7IyEhA/H2bucUmf5v20kavvIzDy/cDkDbKB+Wj+nCY12jnTJfbeXrtCz67Eqm184ksi2yUcqnhhK93owMHz4cSZKQJAmdTke9evWYNm0aFovlX427YcMGJEm6riWeU1JSGDJkCKGhoej1esLDw+nfvz9Hjhxx6Ldq1Sq6deuGwWDAzc2Ndu3asXjxYoc+J0+eRJIkEhMTr3j+1157jYYNG+Lu7o6Pjw933nkn27dvdxjzscceIzo6GldXV+rWrcuUKVMwmUyXGBVSU1MZMmQI9evXR6VS8cwzz1yRPH/88Qd9+/YlNFQ2dC9fvrzKfocPH6Zfv354eXnh7u5Ou3btOHXqlH3/qFGjqFu3Lq6urgQEBFR5TXfs2EGPHj3w9vbGx8eH+Ph49u7dW+V8x44dw2Aw4O3tXW3noKBwM2ArLcJiUskVeH1zT/GLu43U5MHk5cnh/Fp1DajzlhJKVC4A6JWwvRuGI2n5aEQ6AHkmD3Ze6EVY+EhiYsbXsGS3Bor+pOhPiv50bShGqZsYo9HI3DlzyA8OI08lx5SHZWQTEFbNpWCFqOwa9Y9tURq+5yJy5O1Sk5WQBLfntmFB189Y0GO+fOh1qryXUyzftF7/T1OWj+nCqNtjyuUVgu0HJpGY+CB1dLLw9eu/RuvWS2nc6G1UKue4yv+YeI4Ss42yvPDd6isrW1Ux62Qau/OK2JcvV9zz02rw0SqrtNVJQkICqampHD16lOeee47XXnuN9957r6bFsnM5pQPkhIs9e/YkNzeX77//nqSkJL766iuaNWvmoNh99NFH9O/fny5durB9+3b27dvH/fffz+jRo3n++ef/lZz169dnzpw57N+/n82bNxMVFUWvXr24cOECAEeOHMFms/Hpp59y8OBBZs2axSeffMKLL754yXGNRiMBAQG8/PLLtGjR4orlKSwspEWLFsydO/eifY4fP07Xrl1p2LAhGzZsYN++fbzyyivo9eWeiG3atGHRokUcPnyYNWvWIISgV69e9gT/BQUFJCQkUKdOHbZv387mzZsxGAzEx8fbk9iWYTabeeCBB7jtttuq7RwUFG4G8jIukPL3ekpyPkFbes+zSSrMea05fUFPXmn6gVBv1+sq147cQp4Nf4xvg3oCoK8Jo5hCleTmH6Wh71EAIgObMnHwPBrWn4SbW1TNCnYLoehPiv6k6E/XgLiFyc3NFYDIzc2taVGumMLCk2Ld+hjx+4bml+379/FzYsqUKWLKq6+K2a+8Jxa/PFekPDNZWEtKqkWWAxvWiRmD7hLfvvGK+PqtHeL1F98TU6ZMEVsnfy/2P71CZBYY7X1T9l4Qc0atF1+OXSTmjFov5g0fLGYMukvc91onMW3Gs8JSYBIlR4+KQw0aiqQOHatFvsvR/LU1InLiKnE0Pb/Svt/+/k3MXV1PrFsfI75eU1fMWtVAWK3GKkb599hsNvFj4lkx57ejotW0X0XkxFVi7cE0kV3onPluBupu3CuCftsjlp7LEL9l5Iq0ElNNi1SJ4uJicejQIVFcXFzTolw1w4YNE/3793do69mzp+jYsaPIysoSQ4cOFd7e3sLV1VUkJCSI5ORke7+TJ0+Ku+++W3h7ews3NzfRuHFjsXr1apGSkiKQHSjtr2HDhgkhhMjLyxNDhgwRbm5uIjg4WLz//vuiW7du4umnn7aPGxkZKaZNmyaGDh0qDAaD/dhNmzaJrl27Cr1eL8LDw8XYsWNFQUGBEEKIPXv2CECcPHnyoud66tQpodVqxbPPPltp3+zZswUg/vzzTyGEsJ/Dnj17rv6illL23Fm3bt1F+7z77rsiOjr6isf857W6UgDxww8/VGofPHiweOihh65qrL179wpAHDt2TAghxI4dOwQgTp06Ze+zb98+AYijR486HDthwgTx0EMPiUWLFgkvL69qOYdr4VLf2dqoLzgT5XpcH8r0rLLXzPv6iA3t2onIiatE6+nLxcq9Z8VfKZnCZrNdV7n67UoWQb/tsb/ePH7uus6vUBmbzSaSziaJtevrinXrY8S69TFi3/6xNS3WNaHoT4r+VBWK/nRz60/K0sZNzMYvSl0BbTb6GdvSw9yMiNemoHJxqZbxL53jyDHTlK3M9ae03VaaXUpIArdIHzI/ncOpxx+XuzjZ4+WlH/bTY+YGcotla7Ona/l8FksBJ09+QvbZzwgtTWq+1VwPQ50XnOYdte9MLuO+2MN7a5LIKq201yTME2+3GkhcegMjhODF5DP03plMgVV+b+7y9yLOz5OgG6ziXlUIISgyWWrkJa6iMMLFcHV1xWQyMXz4cHbu3MmKFSvYtm0bQgj69OljX70ZM2YMRqORP/74g/379/POO+/g4eFBREQE3333HQBJSUmkpqby4YcfAvDss8+yZcsWVqxYwdq1a9m0aRO7d++uJMOMGTNo0aIFe/bs4ZVXXuH48eMkJCQwYMAA9u3bx1dffcXmzZt56qmnAAgICEClUvHtt9/aV6D+ybfffovZbK5yRW/UqFF4eHjwxRdf/OvrB/Lq5Pz58/Hy8rrk6lxubi6+vr7VMufVYrPZWL16NfXr1yc+Pp7AwEA6dOhwSRfvwsJCFi1aRHR0NBERsidugwYN8PPzY8GCBZhMJoqLi1mwYAGNGjUiKirKfuxvv/3GN998c2Ou2iko1DBWi3xfVWnCSQ/2p/uhk2hLC6AY3AR3Nw+lXZTv9c05+ctkcs7LnjgPnVvJG3W8eCJC8equaV5bcZDxS1cgITBadWSaGhIe9lBNi1Vt1GYdStGf/j2K/nTz609KvMtNTHG+EfQgCRuqskhNJ8T9CyEqR+8hOdzEy/4uaykrxmdTgXusP5lTP4bSm7JL3XrVLmMZWYUmlm4vj+v193DBp4LxJzX1O46feA8vgNIURW/EzcPNzXk5nU5mFgIQ7KknrmEAzcK8CfG6vq74tYGTxSYWns2wb4e6aPGsRXmkis1WGr+6pkbmPjQtHjfdtd3uhRCsX7+eNWvW0Lt3b5YvX86WLVvo3LkzAEuXLiUiIoLly5czcOBATp06xYABA2jWrBkAMTHlYbFlikJgYKA99j0/P58lS5awbNkyevSQ890tWrSI0NDQSrJ0796d5557zr49YsQIHnzwQXs+gNjYWGbPnk23bt2YN28eYWFhzJ49mwkTJjB16lTatm1LXFwcDz74oF2u5ORkvLy8CAkJqTSfTqcjJiaG5OTka7p2ZaxatYr777+foqIiQkJCWLt2Lf7+/lX2PXbsGB999BEzZsz4V3NeK+fPn6egoIC3336b6dOn88477/DLL79w77338vvvv9OtWzd7348//pgJEyZQWFhIgwYNWLt2LTqdfD81GAxs2LCB//znP7z++uuA/P6sWbMGTWnewMzMTIYPH87//vc/PD2VqpkKCv/EWpaHRnLDqjXjYrVRUKrHadU1kMepOAf+/Bhj+y4ADM7dSrvIiXAdKyYrVM2e0zm4a4sAOFMQTXSDhfj4BNWwVNVHbdShFP1J0Z8U/enKUTylai2Xt9rbyhI5CVG+iladRqmLrMxVlCz1eC7fv7eTpO9WE+2yHUlYy0SS/5UEGkltN0hFfDafiPmfVp+M/6CgNP+Ci0bFl4935Nfxt6NVq7Bai8jI3EBW9lYA8lWBrMvTcNYt3mkGqa92nKL7zA1MXXkIgPbRvrx1b3OGdKjjlPlqO+km+TMS4qLlf81j+KVNfaUioRNZtWoVHh4e6PV6evfuzeDBgxk+fDgajYYOHTrY+/n5+dGgQQMOHz4MwLhx45g+fTpdunRhypQp7Nu375LznDhxArPZTPv27e1tXl5eNGjQoFLftm3bOmzv3buXxYsX4+HhYX/Fx8djs9lISUkB5JXHtLQ0li5dSqdOnfjmm29o0qQJa9euveJrUaYoXIqlS5c6yLFp0yb7vri4OBITE9m6dSsJCQkMGjSI8+fPVxrj7NmzJCQkMHDgQEaOHGlvrzju6NGjr0jmTZs2ORy3dOnSKzrOZpOfG/3792f8+PG0bNmSSZMmcffdd/PJJ5849H3wwQfZs2cPGzdupH79+gwaNIiSEjl/YXFxMY899hhdunThzz//ZMuWLTRt2pS77rqL4mI5F9zIkSMZMmQIt99+e7Weg4LCTUFxDrZ8OXcKkorue2X9xSrJqrumJpKLm2WjR4lKzo+iH/AZaBSv7pomP/8QHf0+p1v4FgA61ouiZ+ObxyBV21D0p3IU/UnRn64UZWmjlnE1P8LLvhyOx1enNP9AVB780JZzcGobffxeBh/4JvNdWbZSo5RNAm2Fj6G+aVNUV3ADu1YKjLJSZ9Br6RjjZ28/kvQqaWk/2Ld/yy7i9zwdDeq1rzRGdbFgcwonLhTat5uHezltrtrM8aIShu9P4ZxRNkqFu+i406/2rQq4atUcmhZfY3NfLXFxccybNw+dTkdoaCgajYYVK1Zc9rgRI0YQHx/P6tWr+fXXX3nrrbeYOXMmY8eOvRbRHXB3d3fYLigoYNSoUYwbN65S3zp1yo27BoOBvn370rdvX6ZPn058fDzTp0+nZ8+exMbGkpuby7lz5yqtLppMJo4fP058/OXft379+jkom2FhYQ5y16tXj3r16tGxY0diY2NZsGABkydPtvc5d+4ccXFxdO7cmfnz5zuMXbFazZWuiLVt29bhuKCgK/uB4u/vj0ajoXHjxg7tjRo1YvPmzQ5tXl5eeHl5ERsbS8eOHfHx8eGHH37ggQceYNmyZZw8eZJt27ahUsk/opctW4aPjw8//vgj999/P7/99hsrVqywr2oKIbDZbGg0GubPn88DDzxwTeegoFDrObMLFsZjPR8ERCOhxs0oL+pleXgANVRxzyz/ICpRl1bd86jaY0Hh+iCEYMXec6iyXqVD0B57u4tLcA1K5Rxqkw6l6E+K/lQRRX+6MhSj1E2MKDVKSRVjoatxZe1KRrJZbBhU5/kxawpp5kZYhJz7x4QaFbKnlJbym72kdm44VqFJNkp5uDjOU1ggu5emmiUumFXsKLACErE+sdU6v9lqY0dKFoUmK6k5skV89gOtqB/kQYMgQ7XOdbOwPjOPo0VG+3YHb/dL9L5xkSTpmkPoaoIyRaAijRo1wmKxsH37drv7eWZmJklJSQ4P4YiICEaPHs3o0aOZPHkyn332GWPHjrWvmFXMTxATE4NWq2XHjh12RSg3N5fk5OSLrgCV0bp1aw4dOlRJzkshSRINGzZk61bZK/K+++5j4sSJzJw5k5kzZzr0/eSTTygqKuLhhx++7LgGgwGD4cq+wzabDaOx/DN99uxZ4uLi7BVZypSQMq7m/MpwdXW9puN0Oh3t2rUjKSnJoT05OZnIyMiLHieEQAhhP6+ioiJUKpXDQkrZdtmCybZt2xw+Cz/++CPvvPMOW7duJSws7JrPQUGh1pOaiLCZSVWV5UtUsydG4NHwdvbp5GdgjYTvWeTvd0lpjk2XmvDWUrCz+1Q2T3+ZyLTOqbh5wJaz7bmvY1eiIgfXtGjVTm3SoRT9SdGfKqLoT1dG7fh2K1TB1YXv2XFSTql/DitRWh7CJhCShjPGlhX2WRGSLJtNAk0FDytnGKWEELy+6jB7Tmfbk5u7u2gwGi+QmbkRIcwUl5wFYGmmCzq3esyLn4q3izdRXlHVKssnG44zc61jfHW32AC83G78RN01RbZZvukOCPJhUkwI4bUgqfnNSmxsLP3792fkyJF8+umnGAwGJk2aRFhYGP379wfgmWeeoXfv3tSvX5/s7Gx+//13GjVqBEBkZCSSJLFq1Sr69OmDq6srBoOBYcOG8cILL+Dr60tgYCBTpkyp9ECuiokTJ9KxY0eeeuopRowYgbu7O4cOHWLt2rXMmTOHxMREpkyZwtChQ2ncuDE6nY6NGzeycOFCJk6cCMgrgu+++y7PP/88er2eoUOHotVq+fHHH3nxxReZPn06TZs2dZj3nwoHQJMmTdBqHT+bhYWFvPHGG/Tr14+QkBAyMjKYO3cuZ8+eZeDAgYCsUN1xxx1ERkYyY8YMe6ljgODgS692l62CFRQUcOHCBRITE9HpdJVW6SpSUFDAsWPH7NspKSkkJibi6+trV2pfeOEFBg8ezO23305cXBy//PILK1euZMOGDYAcMvDVV1/Rq1cvAgICOHPmDG+//Taurq706dMHgJ49e/LCCy8wZswYxo4di81m4+2330aj0RAXFwdg/1yUsXPnTlQqVaXrfS3noKBQq7FZ+dTbk60mAy3SAUlFlocNtc6TYrO8uKapAU+pc8XFpBsaUqKSPaVca8JbS8HO2dLFTQ+d/G+Duo/ROPbOmhRJ4SIo+pOMoj8p+tPFUIxStY6rCN8rNUpVPEK6zqtaNhuoSuVQUYBLwf8otEmobHJeAptKoK1YBNIJRqmzOcUs3JLi0Bbt787hwxPIzPrDoT3PCo3dAmkZ2LLa5QA4lJoHQISvK/4eLnSt568YpC7CmoxcjhaWsDm7AIA6eh0ReieEdqbug31fgdUMWcflRK6N+kLXZ6p/rpuARYsW8fTTT3P33XdjMpm4/fbb+emnn+wKhdVqZcyYMZw5cwZPT08SEhKYNWsWILtkT506lUmTJvHII4/w8MMPs3jxYt5//31Gjx7N3XffjaenJxMmTOD06dPo9fpLytK8eXM2btzISy+9xG233YYQgrp16zJ4sLxKHB4eTlRUFFOnTuXkyZNIkmTfHj9+vH2c8ePHExMTw8yZM/nwww8pLJTDar/44gvuv//+SvNW1Xb69GnCw8Md2tRqNUeOHGHJkiVkZGTg5+dHu3bt2LRpE02aNAFg7dq1HDt2jGPHjlU6/nIVf1q1amX/e9euXSxbtozIyEhOnjx50WN27txpV2pArtwDMGzYMBYvXgzAPffcwyeffMJbb73FuHHjaNCgAd999x1du3YFQK/Xs2nTJj744AOys7MJCgri9ttvZ+vWrQQGBgLQsGFDVq5cydSpU+nUqRMqlYpWrVrxyy+/VJkU9Wq4knNQUKjNCKuJFK0Wlf0WoMZgMaDSQL5NrtKr01xfg9DBgmLuTFEhWpfn/dSrFKNUTVFUdBJVzluMaXEegzYfgH6tKucSUrhxUPQnRX9S9KeLI4nqqBVeS8nLy8PLy4vc3Nxak7m+uPg0W7fdgVrtxh3d9l+0X1FuDvMmfUJ+UAk6k4WHbXJMb9ibXavNMHV48wZ++mgGHrF1yLR2xSalYtHl09PUHJ8iLYHTe7Hjf8moj3zD0ZI7kCyHKc7/2WGM5bedY0LXF6h3/zQAGu7fh6StXiPNgbO53P3RZrzdtMwc2AJJFNM4MJOjR8ZgMl3A1dCK4/nnOF4s+C6jgJ6RPXn/jverVYZPNx5n6fZTpOWVYLLYmPdga3o3+3c3lpuZE0VGOm8/7ND2Tv1whoU5IX/Fwt5waqtjW9tH4e5Z/2rYkpISUlJSiI6OvqxyoOBIYWEhYWFhzJw5k8cee+y6z5+VlUWPHj3w9PTk559/xs3N7brLoHD9udR3tjbqC85EuR7OZe/cR/g/NpJ9KpzGJz1R69vjrjZidMvnNy8Du62dGdQuhHcHtL4+AuWn8/2uNTwpmuNiM+JvLaRbnXq831DxTKwJ8krMHDg8neLs/9nbVCpXbr/tL9Tq2v+8UvSna0fRnxRqgurQnxRPqZuUrd9+gZvtHPn44qnxAROyy5QTHKXSC9Mwa4pwjKqSJ7LZBJrSUENJKq18p/UkOzSEXeEHyDGY0TjZUyqvRA7Z8/dwIa6BD1u29uNgWoZ9/351B+ac/ty+XcdQ/UrWZ5tSyCiQY4U1KommYUpS80vxd7F8rXy1auL9vfDTargnyMc5kxWWuvu2eAD86oJPNAQoq43Xkz179nDkyBHat29Pbm4u06bJRuoyl/brja+vL+vWrWPu3Lls27bNXmpZQUFB4XqQlXEBlc4Nj6IyNV2FRRKsC1ITEn0vHEjD9XpWvds6m5KUE9CgObdn7+L/Cn+BXpdP3KxQ/RgtVrrP2Mh/oo7QKRR2pLXE27szQ7r2uikMUgpXh6I/KdwsKEapWsrlHNyK8nLRa+SkcZIAszELn57Nrqp632UpHct2EVmEkOWU7Pmv5DC+LL2RjdGJ5OhzAMqNUpKEVI2u4LnFZmb+msSRVNmt2aDXUFKSismUAUi4ukbi69OJv3Jko1XPyJ70q9uPjiEdq2V+IQRHzxdQZLKSWSgbWT5/tD0Ngw0EeiorP1VRYLGyObuAzTnye9bEw5VZzl6JNZVWQOwwGkJbOncuhYsyY8YMkpKS0Ol0tGnThk2bNuHvX3OVnfz8/Hj11VdrbH4FBYVbl7NpEJQVZd+WJA379cUkFt5J4oE0APTXUFX1minKokgl6y16nwjo+ub1m1vBgfTcErILC/HQyWkwzpta0rPJI3h6+tawZAo1haI/KdwMKEapWseVGZVsFqvdwCOZixHHF+I960enSCSE7aJp14WtglFKyJ5S+boCzrudt/cJcim9cWqq9+P48/5UPt/2t33bS/M3J058DYCrPoLOndYDULD5JQCa+Tfjjog7qm3+mb8mM+f38mRyKgm61PNHrVSruSgTks/wfXq2fTtAdx3ybZUZpXQezp9LoUpatWrFrl27aloMBQUFhRuCwhIPoAAkdyS1NyptPfLUsod3mLcrsUEeDGgTfulBqhNLCSVqObm5PrQ5BF+8kpSC87DZLKQcGcz8nuXpDSbd1Z7AAMUgdaui6E8KNwuKUeomxWaxUGbAkgROCYsrM62IS1QCtFkF9kqBVtlbqKzY3vCAB+nRNoGGJn+OQ7V6SQFkFsrJQFvX8aZL2B6idf8l/bzsgaN3DWdH2g72XtjLocxDAHhUs1Fi19+yccXPXYebi5q7moUqBqnLkFwoV5Bp4qEnWKdjZHiA8yaz2cCYC+Yyo5S78+ZSUFBQUFC4DKaSYvb8vLJsDQ8PVUOi0jNwLfmGL7uFgRUGt4tgXI/Y6yuYxUiJSva+d1WSm9cIe05l8/G6zdwfVW6Q0mp98PRsUYNSKSgoKFQPilGq1nJxQ1BBQQHnzVaMrrLioLIJJCcYpeySVBG+J1XYJ0mO4XuidLu9Z2taBrbEdOqUfEw1y5hXLIflNQ0RdAvfRG5uPv7+d2LwaIxvQDy9VjxMsaXY3t9XXz0rTS/9sJ8fE89RaJK1yo8fbE2HGL9qGftm5UB+ETvzijhTIhsSZzWsQ3ODE3MjWC0wvxukHyhv0ym5GBQUFBQUao7kbZvZ/OXnuGnlRRK1OY+CBnpCHn2E87/+Cblc98UtIQQ5Nonc0pQQSsW9muH//vybpNSzEAU5JZ5szvuImYM6oFIpFZwVFBRqP4pRqtZxeWXk999/J82mgtLf2FqbALXzlAjZKCUcZZNkDyphgzIDmsAKgK20xrFaJX/8hFVury5vrl1/Z/Hx78c5lJoHQF7GMnK9dgIQHvYQfn63kVGcQbGlGAmJe2Lvwd/Vn9vCbvvXc9tsgi93nMZqk8/Rx01LwxClMtGlMNsE9yYeI89is7cFOztsL++so0Equhu4KO+TgoKCgkLNYSwqwqegGKOHrMBZ1JAXFo05PACBrMddb6PU00dO8XXoC/ZtveLxfd0RwoabbRsdQnYD4O0RwPQeHVGplJ9xCgoKNwfK3ewmpKhITn7oYYI6qnDqXkhDUjvhrS5NdC6wOZjKROn/TNv/pPjAabzsheZko4OttLOm7GFaapSqLk+p+X+cYP2R8pxVAW4ZaLV+uLlF4+3dBoA8k2ywMugMTO089V/PKYQgJaOQrEKT3SD1+/N3EOypx1V3HZOR1kJyLBa7QapfoDdtPd0IdHGyUaooU/7XEArjD4Cksn+eFRQUFBQUagKRnU3H4+fY0MQHNGBVCyTUmG1me+4DzXU2Cm3OLrD/7S7ZuN3XcF3nv9UpNFrYe2wVcYEz7G0+hkDcXZSfcAoKCjcPyh3tJsRikY08AUUaOusbYDKmImmvh6dUBSQJ4+pVWI2NKoTv/cNTqtQIJaylHjLVZJTKLpQVqF7RiTTy/pOm/ofp0vkgarULQgj+TP2TXelyUkCDrnqUq9dWHGRJhaTqPm5aov2VHEVXQo5Z/lx4a9TMbxLl3Mn++gx2LZFzSQG4+4FKMRoqKCgoKNQ8Ii8PifLcm6k+gnCNBpPVBDXhKWWzUmKTdbTfdj5Cw/7vofJRjFLXk6ELtuPLFh5oCFklXgT6tiI66vGaFktBQUGhWlGMUrWWqnNKpZ3I5e+DGaADVZn/krA5J9F5qWeJTQgcRy+VzWK2u5tDuTxlypamzHvLKudeqi5PqdzCbEBHQ+8/aR5wCA/3BqhLq8bsOb+Hkb+OtPf1dvGuljm3p2QBYNBrcNGoebBDnWoZ92bmpeQzbM0poKjUKOl9Pcpb/zEDCtLKt4OaOn9OBQUFBQWFK8Es60NlelK+q+CYOZtN+z4FIT+vrptRas9SWPk0JZ1XgNoNd2sxKq3L9ZlbwU5yegFxYXL+0yxLW/q1nYeLRllMU1BQuLlQjFK1DOkyIUbpJ/MQciInVGUGIZsVlV7vPKEulujcaiLYPQlXVU5pa1n4ntzfNdxbPryackpZrUYsllwKjPJ4oQFtad36VQwejex9zhScAeSk5s0DmjO4weBrnk8IwXPf7OWP5Av2Sn/fPdGZ+kHKKuLlOG80s+BshkNbI3dX505qs0HhBfnvQZ+DeyCEtXHunAoKCgoKCleIV+YerJQXhLGpBPnmAvZd2AdCrrJ23YxSx9aCzYxRpQNA7+IOgY2vz9wKABQVp+OhPou/q7zw2b1xjGKQUlBQuClRSmjcZAhbeShdmWeSLiYa/zFPVvtcp/LkqnlWYa1yv69bIp2Dv0KnKiltKTVKqUvl2/IXqa+9RsannwL/zlMq5fw5Bs2ezd2zviQ9X85H5O8VhY93OzQaD3u/ApMc2tc2qC0fdf+IrmFdr3nOvGIL3+8+S0aBCSEg0OBCHV+lgtuVcKF0NdhHo+bblnVZ3qoe8xpHOmcyixHmx8H0QCj7rDboA5GdQKNzzpy1nOHDhyNJEpIkodPpqFevHtOmTcNisfyrcTds2IAkSeTk5FSPoFdASkoKQ4YMITQ0FL1eT3h4OP379+fIkSMO/VatWkW3bt0wGAy4ubnRrl07Fi9e7NDn5MmTSJJEYmLiFc//2muv0bBhQ9zd3fHx8eHOO+9k+/btDmM+9thjREdH4+rqSt26dZkyZQomk+mS46ampjJkyBDq16+PSqXimWeeuSJ55s2bR/PmzfH09MTT05NOnTrx888/2/dnZWUxduxYGjRogKurK3Xq1GHcuHHk5uba+yxevNj++fjn6/z58nx+RqORl156icjISFxcXIiKimLhwoUO8nzwwQf2uSIiIhg/fjwlJSVciu+//55evXrh5+d31e+HgsKNiLAJcladwDfzpLxdqsdZVbLe1DOyJw18GwLXMaeUuQSzpMYqyevXLk9skUPeFZyOzSbYc3Qt27Z14Y2ub9A1TH5maDTKoueNjqI/KfqToj9dG4qnVK2l6vA9m1XYV9jKPKUMPeJwbR5VrbMnZyfz4Z7ZxBFQpWQCwXkRwLoLr1Nm+zSW/mtVCVQ2gXnKe+SYzPbj1N7e1yzPtzsOsiu9fAVPo7LQIKJ9pX6F5kIAPHQelfZdKRarjZ1/Z3PigjyWQa/h+yc6E+bjiv56hKDVYtKNZh49kMKpEvmBEeyipauz81OcPwzndpdvR90GaqWE8uVISEhg0aJFGI1GfvrpJ8aMGYNWq2Xy5Mk1LRoAJpMJne7SRkWz2UzPnj1p0KAB33//PSEhIZw5c4aff/7ZQbH76KOPeOaZZ5g4cSLz5s1Dp9Px448/Mnr0aA4cOMCMGTMuPsllqF+/PnPmzCEmJobi4mJmzZpFr169OHbsGAEBARw5cgSbzcann35KvXr1OHDgACNHjqSwsPCS8xqNRgICAnj55ZeZNWvWFcsTHh7O22+/TWxsLEIIlixZQv/+/dmzZw9NmjTh3LlznDt3jhkzZtC4cWP+/vtvRo8ezblz5/j2228BGDx4MAkJCQ7jDh8+nJKSEgIDA+1tgwYNIj09nQULFlCvXj1SU1Ox2cqrbC5btoxJkyaxcOFCOnfuTHJysl2hf//99y96DoWFhXTt2pVBgwYxcuTIi/ZTUKgtmNMKydt0ml25rmTEhmNG1o2spTk42wS1ISslGLiA6noV5bAU272kAPRaZRHnevHWz4c5e2YVA2IFZpsak1WPv6cf/n7da1o0hStA0Z8U/UnRn64BcQuTm5srAJGbm1vTolwxxcVnxbr1MeK33xtWuX/H6hTx+uQZYsqUKeKbp98Vpyf+IXJ+PVntcmw8vVHc9VZ7MWPQXWLauHvEnNdWitcnzxRTpkwRf0z+Vnwzcb5Y+8JoMWfUejF31Brx4ZOrxDsjnhIzBt0lHp3UTbSZ30QcatBQHGrQUJz/8ENx4ZNPRcnRo1ctR1HRGZGe/ot44X//FZETV4k2U78WP+8/J5LT8hz6fbDrAzH85+Gix9c9RNPFTcU7f71zzef+yYZjInLiKvvrzpkbrnmsW42l5zJE0G977K9nDv/t/EmPrRdiiqcQH7UVIvesEFar8+cUQhQXF4tDhw6J4uLi6zJfdTJs2DDRv39/h7aePXuKjh07iqysLDF06FDh7e0tXF1dRUJCgkhOTrb3O3nypLj77ruFt7e3cHNzE40bNxarV68WKSkpZW6c9tewYcOEEELk5eWJIUOGCDc3NxEcHCzef/990a1bN/H000/bx42MjBTTpk0TQ4cOFQaDwX7spk2bRNeuXYVerxfh4eFi7NixoqCgQAghxJ49ewQgTp68+D3w1KlTQqvVimeffbbSvtmzZwtA/Pnnn0IIYT+HPXv2XP1FLaXsubNu3bqL9nn33XdFdHT0FY/5z2t1tfj4+Ij//ve/F93/9ddfC51OJ8xmc5X7z58/L7Rarfj888/tbT///LPw8vISmZmZFx13zJgxonv37g5tzz77rOjSpcsVyV0d70dFLvWdrQ594eOPPxbNmjUTBoNBGAwG0bFjR/HTTz859Nm6dauIi4sTbm5uwmAwiNtuu00UFRXZ92dmZoohQ4YIg8EgvLy8xKOPPiry8/Mdxti7d6/o2rWrcHFxEeHh4eKddyo/777++mvRoEED4eLiIpo2bSpWr159VedSG/WnG5mSk7li2/ilYsaguyq8+ophrz0pRrz2ovjy8Jfiof/+KSInrhLf7z7tdHmKLFYx75vXxcufv2h/XttsNqfPqyAz+NOt4oUFj4l162PEa/8bLd775UhNi3RdUfQnRX+qCkV/Kudm1J+U8L2bDJtNwD88pSQnuHqbreUeTvV96hPqEeqwP1dVRJmHlIv2JEWqn/C0GmUZJYG63NiL/+jR+I96HJd69a5KBiGs7Nh5D/sPPElGThIAPepeIKFpCLEV8jqlFabx3/3/ZWf6TtKL0gGI8oy6qrkqcjg1D4Awb1da1/Hmqe5XJ/etTKZJdl/u5efJ+nYNmNEgwnmTndgAv7wIf34ib7sHgmcoqGroticEmApr5lVF3rerxdXVFZPJxPDhw9m5cycrVqxg27ZtCCHo06cPZrN8TxgzZgxGo5E//viD/fv388477+Dh4UFERATfffcdAElJSaSmpvLhhx8C8Oyzz7JlyxZWrFjB2rVr2bRpE7t3764kw4wZM2jRogV79uzhlVde4fjx4yQkJDBgwAD27dvHV199xebNm3nqqacACAgIQKVS8e2332K1Vh1m/O2332I2m3n++ecr7Rs1ahQeHh588cUX//r6gbw6OX/+fLy8vGjRosVF++Xm5uLr61stc14Kq9XKl19+SWFhIZ06dbqkPJ6enmg0VTtXf/7557i5uXHffffZ21asWEHbtm159913CQsLo379+jz//PMUFxfb+3Tu3Jldu3bx119/AXDixAl++ukn+vTpU01neGNRtsq6a9cudu7cSffu3enfvz8HDx4EYNu2bSQkJNCrVy/++usvduzYwVNPPYWqwj3rwQcf5ODBg6xdu5ZVq1bxxx9/8Pjj5ZW48vLy6NWrF5GRkezatYv33nuP1157jfnz59v7bN26lQceeIDHHnuMPXv28J///If//Oc/HDhw4PpdDAVHbIJUqTTPouSK1uNedJ7DiSnwJzFsPRqVBqutVLe7Dp5Sqy/k8Jrf3XwWPhCQQ+0vl9NUoXooLj5Fz6A36Rwq3xeHdWnB8/ENaliqG4BarEMp+tO/R9Gfbn79SQnfu8k4f2IXLpIRCxDiGiPb09VOMErZyo1SQggkCSrOIiSpzDaGMe8A2pK/KSzdZ5FsDkYpLvJFvRwmUwZmcyYggToMgCC/5pX65RrLY3k/iPsAT50nrQNbX9VcJWYrH284zoV8I3+VVtp7Pr4+97QKvybZbzXmnjrPsnOZZJTmkop119PEw8mJzb95BIqzyre9wpw73+UwF8GboZfv5wxePAc692s6VAjB+vXrWbNmDb1792b58uVs2bKFzp07A7B06VIiIiJYvnw5AwcO5NSpUwwYMIBmzZoBEBMTYx+rTFEIDAzEuzRcNz8/nyVLlrBs2TJ69OgBwKJFiwgNrXytunfvznPPPWffHjFiBA8++KA9H0BsbCyzZ8+mW7duzJs3j7CwMGbPns2ECROYOnUqbdu2JS4ujgcffNAuV3JyMl5eXoSEhFSaT6fTERMTQ3Jy8jVduzJWrVrF/fffT1FRESEhIaxduxZ/f/8q+x47doyPPvroX7m8X479+/fTqVMnSkpK8PDw4IcffqBx46oTGGdkZPD66687GD7+yYIFCxgyZAiuruXf6RMnTrB582b0ej0//PADGRkZPPnkk2RmZrJo0SIAhgwZQkZGBl27dkUIgcViYfTo0bz44ovVe8I3CH379nXYfuONN5g3bx5//vknTZo0Yfz48YwbN45JkybZ+zRoUP5j9PDhw/zyyy/s2LGDtm3bAnLoRJ8+fZgxYwahoaEsXboUk8nEwoUL0el0NGnShMTERN5//337e/jhhx+SkJDACy+8AMDrr7/O2rVrmTNnDp988omzL4NCFQirwFaad1OSdHgWniUs/Q/ONk+nRFuIRqXBUmqU0lyHhZWs0md1vaK/6R4cTPfoRpc5QqE6mPlrEjkXFnBHyCF7m7tHbA1KdANRC3UoRX9S9CdFf7pyFE+pWsrFjPYndn2HRiUbedSSClSgC7/2/EkXo6JRqgrpEJKKMjOVzSYnXXNVGwj2iOZEaEG5UUqlQrpKBctszmHnrkHs2HEPAC4uQbh63gaAj6Gy4aHALCc3j/SMpEedHrQLbodadXW5n9YcTGP2+qN88dcpzuXK51PH99p+5N+KzD2VzvFiI7kWebWlmbMNUqaicoNU53EQ9xJ0f8W5c95krFq1Cg8PD/R6Pb1792bw4MEMHz4cjUZDhw4d7P38/Pxo0KABhw8fBmDcuHFMnz6dLl26MGXKFPbt23fJeU6cOIHZbKZ9+/IccF5eXg4/xsso+yFext69e1m8eDEeHh72V3x8PDabjZSUFEBeeUxLS2Pp0qV06tSJb775hiZNmrB27dorvhaXy70AsnJZUY5NmzbZ98XFxZGYmMjWrVtJSEhg0KBBDgktyzh79iwJCQkMHDjQIda/4rijR4++Ipk3bdrkcNzSpUvt+xo0aEBiYiLbt2/niSeeYNiwYRw6dKjSGHl5edx11100btyY1157rcp5tm3bxuHDh3nssccc2m02G5IksXTpUtq3b0+fPn14//33WbJkiX21b8OGDbz55pt8/PHH7N69m++//57Vq1fz+uuvX/aa1nb+ucp6/vx5tm/fTmBgIJ07dyYoKIhu3bqxefNm+zHbtm3D29vb4Xtw5513olKp7Mlft23bxu233+7wmY2PjycpKYns7Gx7nzvvvNNBnvj4eLZt2+bMU1a4FDaBVZQpRhK6khMEXThgT3SuVqntnlJOr753dB3GgysBaJt7kGmBKu7w9XTunArYbIK5vx/DaJS/p7vPt6JRs2+UPFK1EEV/KkfRnxT96UpRPKVqHZdWRmwWkz0Fevahb2i9cB4a3+pPJO1olBKVxCpLtg7lrub1PdtQP7ITb3tswK/UeUm6Bi+prKzN5ObuAuD/Dg3iQFYb8k1yWJ6brtzYZLKa2Jm+k8TziQB4aK/eOJdbZGbNoTTWHpLHbxHhTa/GQfbQPYXLYxOCHLNsjPq/ZtFEuboQ6653zmQWEyQbW9DAAAEAAElEQVT/Armn5W2VFnpOgxsh7EDrJq+21dTcV0lcXJw9aWVoaCgajYYVK1Zc9rgRI0YQHx/P6tWr+fXXX3nrrbeYOXMmY8eOvRbJHXB3dzQEFxQUMGrUKMaNG1epb506dex/GwwG+vbtS9++fZk+fTrx8fFMnz6dnj17EhsbS25uLufOnau0umgymTh+/Djx8fGXla1fv34OymZYWLmB3N3dnXr16lGvXj06duxIbGwsCxYscEh6eu7cOeLi4ujcubNDqBXgUB3F0/PKfhy2bdvW4bigoCD732UVgQDatGnDjh07+PDDD/m0tBIqyCuwCQkJGAwGfvjhB7TaqosD/Pe//6Vly5a0adPGoT0kJISwsDC8vLzsbY0aNUIIwZkzZ4iNjeWVV15h6NChjBgxAoBmzZpRWFjI448/zksvvXTJa1pbudgq659//gnI1YZmzJhBy5Yt+fzzz+nRowcHDhwgNjaWtLQ0h0SoABqNBl9fX9LS0gBIS0sjOjraoU/Ze5+WloaPjw9paWkOn4eyPmVjVIXRaMRoNNq38/Lyrv0iKFRC2AQC+2odQrIiCQtWSW6r6CnldKPUj2Mo9usNUW1wsZmUinvXiezCbGK8ThDsLuubCS1vJzTg6rz6b2pqkQ6l6E+K/qToT1ePYpS6yRDCZi8l7J6bgdrDxSnzVMwpVU65omRDIJVtlxqo/vDazed+cuyr3VPqKoxSubmJpJ9fRX6+nH/D0zuODWe62mcEqF8hl9Ts3bNZcmiJfdugu3rj3Ptrk1iy7W/79p0NAxkTp+SQuhIKrVYWn80k3Wi2q9rdfA3onBl6sHsJ/FQhtt0j8MYwSIEsxzWG0NUEZYpARRo1aoTFYmH79u129/PMzEySkpIc3JcjIiIYPXo0o0ePZvLkyXz22WeMHTvWvmJWMT9BTEwMWq2WHTt22BWh3NxckpOTuf322y8pY+vWrTl06FAlOS+FJEk0bNiQrVu3AnDfffcxceJEZs6cycyZMx36fvLJJxQVFfHwww9fdlyDwYDBcGX3GJvN5vAD/+zZs8TFxdGmTRsWLVrkkEMIuKrzK8PV1fWKj/unPHl5ecTHx+Pi4sKKFSvQ66s2IhcUFPD111/z1ltvVdrXpUsXvvnmGwoKCvDwkBcEkpOTUalUhIfLYc9FRUWVzlWtlhcWhBBXdU1rC2WrrLm5uXz77bcMGzaMjRs32qvqjBo1ikceeQSAVq1asX79ehYuXFjlNb6evPXWW0ydOrVGZbipsQps9iVFCbChspmxlOpPWkkr5wwFNM42ShVn26vu6evFgW/MZQ5Q+LcIITi4914mtz9tb/M1VK5ufUtTi3QoRX9S9CdFf7p6FKNUraXq+D1hsyFK9RWV1QIXsc7+W8w2s4M31D8lE4gKIsp/HHE7yWGXfAB8NAYg56o8pY4kvURBwRH7ts61PNHd9092JthTT6h3eVjYybyTAIR5hBHoFsjDjS9/Y/wnxy/ImbBa1fGmYbCBwe2cmJj7JuOH9BxeP16+qhWg0zjXIAWQURq77lsX/OpBi8HOne8WIzY2lv79+zNy5Eg+/fRTDAYDkyZNIiwsjP79+wPwzDPP0Lt3b+rXr092dja///47jRrJ+UgiIyORJIlVq1bRp08fXF1dMRgMDBs2jBdeeAFfX18CAwOZMmUKKpXqsol1J06cSMeOHXnqqacYMWIE7u7uHDp0yJ4fJzExkSlTpjB06FAaN26MTqdj48aNLFy4kIkTJwLyiuC7777L888/j16vZ+jQoWi1Wn788UdefPFFpk+fTtOmTR3mTUpKqiRLkyZNKq2GFRYW8sYbb9CvXz9CQkLIyMhg7ty5nD17loED5QTCZ8+e5Y477iAyMpIZM2Zw4cIF+/HBwcGXPP+ylbyCggIuXLhAYmIiOp3uovkNACZPnkzv3r2pU6cO+fn5LFu2jA0bNrBmzRqgPFF2UVER//vf/8jLy7N7xQQEBNiVHoCvvvoKi8XCQw89VGmeIUOG8Prrr/PII48wdepUMjIyeOGFF3j00UftuRP69u3L+++/T6tWrejQoQPHjh3jlVdeoW/fvg7z/JOsrCxOnTrFuXPy/aXs/QgODr7sNatpLrbKWpZH6p/vXaNGjTh16hQgn98/wxYsFgtZWVn28w4ODiY9Pd2hT9n25fpc6tpNnjyZZ5991r6dl5dHRITyPKwuhM2GEKU/NiUVQrKgEjay8KAkvTVfbLZyNkcO23Cqp5TNClZjuVEqsL7z5lIA4MDZXF78bidPN5UNUpklAcQEReDnd0fNCqZQrSj6k4yiP8ko+lNlFKNUbeMSN5ljx45REhSOSSop7SucVi3FMdE5/DN+T/bWqtwWY4lgdPexNMpxp3jOqCsyStlsRqzWYoqL5Qd2ePjD6PWhqN37AztQSdAqwrvSueabZAPY+DbjiY+6vPtoGVab4KUf9pOcns+RNHmM53o2oGts1Yn1FKrmTIkJgOYGV27zMXCnnxNzUpzdBXuWwonf5e32j0PHK4sdV7g6Fi1axNNPP83dd9+NyWTi9ttv56effrIrFFarlTFjxnDmzBk8PT1JSEhg1qxZgOw+PHXqVCZNmsQjjzzCww8/zOLFi3n//fcZPXo0d999N56enkyYMIHTp09fdIWpjObNm7Nx40ZeeuklbrvtNoQQ1K1bl8GDZWNkeHg4UVFRTJ06lZMnTyJJkn17/Pjx9nHGjx9PTEwMM2fO5MMPP6SwUDZGf/HFF9x///2V5q2q7fTp0/YVrDLUajVHjhxhyZIlZGRk4OfnR7t27di0aRNNmjQBYO3atRw7doxjx45VOl5cpuJPq1at7H/v2rWLZcuWERkZycmTJy96zPnz53n44YdJTU3Fy8uL5s2bs2bNGnr27AnA7t277fmJ/rlSmJKSQlRUlH17wYIF3HvvvfakqxXx8PBg7dq1jB07lrZt2+Ln58egQYOYPn26vc/LL7+MJEm8/PLLnD17loCAAPr27csbb7xxyfNesWKF3ZsIyt+PKVOmXDR3w41K2SprVFQUoaGhlRT25ORkevfuDUCnTp3Iyclh165ddnf/3377DZvNZnfT79SpEy+99BJms9n+nVy7di0NGjTAx8fH3mf9+vX2BLdlfS5VQcjFxQUXF+d4XitA0Z8b8T66g1R3AJU9lG+Hui3mrFasyyrXubxcnbPYCIBF1h/LjFIuzvbKUmDlvnP8nSEbiW1CYlXah3zep8NljlKojSj6k6I/laHoT5WRxOXetZuYvLw8vLy87OUaawMlxjS2bOmCJGnpHnfEYd+MGTMoKCiwb/ddu542W5yT2Gz+vvn8+PN/6b47kNAGjXH1eYCDFzZg1uXS3dSU/erTNCo+yeGC/kglyyguTmNbk0x8Qurx2cj/o+TQIVLuHYAmIIDYTX9cdJ78/MPs2j0Iq7XI3tbt9n1oNO78nVlIt/c24KZTc2haQqVjB6wYQHJ2Mp/e+Smdwzpf8bntO5NDvzlb7NtqlcSWid0J9nJSHqSbjKOFJWzPLeS79Cy25RTyfFQwz0c72fq+qA/8Xf6e8cBX0KDyZ+J6UlJSQkpKCtHR0ZdVDhQcKSwsJCwsjJkzZ1ZKAHk9yMrKokePHnh6evLzzz/j5nb1ObkUah+X+s5Wh75Q1SrrO++8Y1dqP/jgA6ZMmcKCBQto2bIlS5YsYcaMGRw4cIC6desC0Lt3b9LT0/nkk08wm8088sgjtG3blmXLlgFy6EaDBg3o1asXEydO5MCBAzz66KPMmjXLXgFo69atdOvWjbfffpu77rqLL7/8kjfffJPdu3dXWtW+GLVRf7qROdyyHek6G7uiQ5DUwXjaCuheYuTBdreRmt+AZhFa7oiNJNzHlUFtI5y24PjLmTP88sfnbPdqTopbOK/UDWVMncDLH6hwzbz4/R42HtrJtM5vI6k86dxlJ3rt1RXjudlQ9KdrR9GfFGqC6tCfFE+pm4iSItlwU98SQoTNHw/Lmmqf40DGAVadWMXe83vLG4WQHbgqmDdtCOxxhGVtEmhLP3KiLCZae+mPYHbOnw4GKX//Hmg0ckx5iVleSaz48C6xlDDsl2Gk5KZQbJFd3d2vMAY9v8TMlmOZ7DktVz6pG+DOpN6NiPJzUwxSV8HAxOOkmcpXdYNcrsNtJj9V/rfNcAhtDfXuvGR3hRuLPXv2cOTIEdq3b09ubi7Tpk0DsLu0X298fX1Zt24dc+fOZdu2bfZSywoK/4bLrbI+88wzlJSUMH78eLKysmjRogVr1661G6RArqjz1FNP0aNHD1QqFQMGDGD27Nn2/V5eXvz666+MGTOGNm3a4O/vz6uvvupQkrpz584sW7aMl19+mRdffJHY2FiWL19+xQYpherFYjYjjEUIXVn6ARWJjV0ZOPFTCj9cDEDbGD3P9apcUau6eTYlk6yQPvbtQJ3yM8GZHD8xi+5ec+nRWVagXXSet7xBSuHqUPQnhZsF5WlTa6ns4FaWKLW1JQZ3ocN9zBPVPuvbf73N3guyQaoOrlX2kXNKWeyJzqVSWYUk0EilRimzRd6nqdoNPTt7Oxcy1tmr7IWHD6N+7CsOq4MlpRXd9JryPEXJ2ckcyiwvzent4k20l2MloosxZcVBvt991r7dINhAz8ZBlzhC4Z8UWW12g1S8vydBOi19A7ydN2HBeTAVQFGmvN3hCQhs6Lz5FJzGjBkzSEpKQqfT0aZNGzZt2oS/f82FzPr5+fHqq6/W2PwKNx8LFiy4bJ9JkybZ80tVha+vr90r6mI0b978suWfBw4caM/LoVCznD96EElYy9fxJIlU92y6ftmVYrOcb8RF42RDRVYK4qcXyAl9ESQVz5z9mojuzzn3+X0Lk1NkYtT/7aJ/2A8EuZXr836+t9WgVAq1FUV/UrgZUIxStQyJql22UxIvYCtN46RCAo0a3yuoeHC15JnkhG396vYj3F1P0e7t9mp/FbFVaJNKk1uLip5SFtlwIV0kGdvBQ89iNJaXp3Zzi7IbpI5fKGDGmiTOlSb9rLiqVGCWwxejvaKZd+c8fPW+uGqqNp79k+R0OX9U4xBPgjxdGHGbUnHmahBCkFFqkNJKEoubRjstxACQc0j9+KRjm5uv8+ZTcBqtWrVi165dNS2GgoKCwnVHnXEYkBBS2UKeinydvHAnhKzfhHg4OYTu0HLMx3/HFvYyAE8U78Yr1M+5c97CbDmWyfaULO6LkHXWd3c8xcwhg2gYceOXbVe4sVD0J4WbBcUodZOQvfKYPa+4hAQa51Q5M1nl5NWDGgzCzaWIFWyv1MdPSqSttA8bslFHVbrCJyTQ2dRkfPIJxXsSZVn/kejcai3CbM61G6Tq1BmBiy6QkOAB9j5f7zjNzwfKDVZhPuVGpyKzHOrn7eJNmMflH+4mi41XfzzA6ewijqaXKgf3NadpmNdlj1Uo58OT6byTklqamhV8tGrnGqSgPIeUWgcaPUTfDu5KCWUFBQUFhdqDsMh6VYWlPCwqQXxUPGmWrmw+momH7soW164ZUyHFqvI0Ba73/8+5893CCCEoLNhB++BEPHWyzjrv4buICVEMUgoKCrcuilGq1uLonaQz26DUDpVnukBQny5OmdVslT1hdCodEsWV9nuRR1OtHKKwRUTJkhplU4WQBOGn87jwzYf2/urSakAAWdnbSEx8FCFkBU2l0lGv7qRKxo1Ck7yCmNAkmLtbhNClrj9mm5mz+Wc5mXcSADftlSXW256SyZc7Ttu3XTQqInyVpHxXy8oLOXaDFEAPZ1baEwIsRjl0D6DPDGgzzHnzKSgoKCgoOIGs308j1uUA2D2lQIVNsqJVaSlPv+mchUY75mKK1XJ1RbUEWg/FS8oZmCw2DqT8gV/JeEY1L2+vExBSc0IpKCgo3AAoRqlaR9XeJ0KUmwQ2pH5Bm9srl9ysDsy20vAsVYVcUGWJzpFwRS4nbBZa0pDdzYVVVqZsEriWyq8NDcX7gfvxLE3wCpCdtdVukJIkNcFB/6nS28Zkkc+1WbgXdzcPBWDwqsEOuaTcNZdObi6EwGwVnM2WDWuNQzwZfUddGgQZnFtu+SajxGrjjNFEemnY3nct69LM4Ians/JfWM0w/w5IP1De5l5zcfMKCgoKCgrXyvmNZ/C1WsnwbUKmjxuQBZKETbKhklRYSnOFalVO9jy2GO2eUq4qlfM9nW9RnvjfLkry1vNoU8g3uWNT16VV7J1oNIaaFk1BQUGhRlGMUjcJQlR0/HYeJptsNNKpdZiqUFpUpf4yRbhygkjcwJ5zSkgCtyD5wauNiMB/5EgA0tNXkZm5kdy8PQDUjXmOqKgnK41tl6HUKOVSunJosprsBimDzoCrxpU+0X0uerzNJhg8fxs7Tmbb2xqFeNKvRejlL4CCHasQxO04Qkqxyd4W4+biPIMUQPZJR4OUmz+EtXHefAoKCgoKCk5CWGzkWzTsa/4kFuM+KFoHqLCojGhUGkxWWX/SqJ3nKZVvsdLH5S5S2smLmXqVk72ybmH2nc2lpY+8GHqqoBm3d5hLdIR3zQqloKCgcAPg9CfP22+/jSRJPPPMM/a2kpISxowZg5+fHx4eHgwYMID09HSH406dOsVdd92Fm5sbgYGBvPDCC1gsFoc+GzZsoHXr1ri4uFCvXj0WL17s7NO5YamYbNyZK1xlOaV0al3FySl1lbIbpWyo7EnZszSy8UdIoCn9yJUlOLfZzBw6/AKpad9TVJQCgJvbpROMm6zyHLpSo1S+SU5QLiGx+f7NrB+4nh6RFy9Bmp5f4mCQ0qgkujVQchFdLZkmi90g5atVc1eAF8E6J3uZFWbI//pEweQz8FwSGIKdO6eCgoKCgoIzEGC0lepPViMANg8j+fos2VOqVN/Rqp2n1x0oKOao2geLSl6n7uB9aU9zhWsjP/8wsYat1PM5AUCvZvVoqRikFBQUFAAne0rt2LGDTz/9lObNmzu0jx8/ntWrV/PNN9/g5eXFU089xb333suWLXLiYqvVyl133UVwcDBbt24lNTWVhx9+GK1Wy5tvvglASkoKd911F6NHj2bp0qWsX7+eESNGEBISQnx8vDNP64agomeUsNkQNqt921le3kIIh/C9qmxfZUYpqyTZ017ZStsEEOpSWkFGo6a4+CwFBYew2UxIkoa6dV9Ap/XD3//OS8pR5imlU6sosZRwNOcoAB5aD1TSxe2sJWYrb/98hOMX5ITmIV561oy/HZ1a5VDBT+HKyLbInzlfrZpDXZs5d7Lzh2Hx3VBUapRyDwQXxd1dQUFBQaEWIwRFlmKspmOozOfkJg/ZOKWW1FhKPaW0zvKUMuZj/PsvwI/6hSl8FZBPcJOhzpnrFsVmE0z6bgs9fB7jsabli+tarXfNCaWgoKBwg+E0o1RBQQEPPvggn332GdOnT7e35+bmsmDBApYtW0b37t0BWLRoEY0aNeLPP/+kY8eO/Prrrxw6dIh169YRFBREy5Ytef3115k4cSKvvfYaOp2OTz75hOjoaGbOnAlAo0aN2Lx5M7NmzbrJjVKVLUGnHnkUm/9gKHVeki5hmPk3WGwVHqbqco+Yil5aqtK/bahQo7b3AJh+2xvEnMkhDbBhZOu2bvZ9Li5BRNYZcUVyGEuNUsXWArp/fT/5ZtlTykPnccnj1h1OZ/HWk/bt2CADnnolf9TV8mdOAd+lZ5NulA2U3prrEAV8YmO5QQqgbpzz51RQUFBQUHAiVmFlS+afWKzlYfBCJWE1BnA61YfcYvk5q3HWauPKZzCmnoOmb+FhLSJEr6PKFUeFayYls5CtSYeI72zBbNVwujCWDnUjCA0ZcPmDFRQUFG4RnBa+N2bMGO666y7uvNPR62XXrl2YzWaH9oYNG1KnTh22bdsGwLZt22jWrBlBQUH2PvHx8eTl5XHw4EF7n3+OHR8fbx/jViJ9/15sorQSnhBodLpLH3CV2ISN4b8Mp93SdvY2ncpxjgo1YwBwt7kTLcnVRKRSry4/Nz/KSslYRBEgUKlccXOrR2Sdx69YnjKj1IXic3aDlF6t5+6Yuy96jMVq40xpUvMWEd68eU8z3ruv+UX7K1ycicln+L9zmfyamQdA+PUw7BVnyf+2fBAmpEDci86f8xZm+PDhSJKEJEnodDrq1avHtGnTKoVQXy0bNmxAkiRycnKqR9ArICUlhSFDhhAaGoperyc8PJz+/ftz5MgRh36rVq2iW7duGAwG3NzcaNeuXaWQ8JMnTyJJEomJiVc8/2uvvUbDhg1xd3fHx8eHO++8k+3btzuM+dhjjxEdHY2rqyt169ZlypQpmEymS4wKqampDBkyhPr166NSqRxC5K+UqsLrAY4fP84999xDQEAAnp6eDBo0qFKI/RtvvEHnzp1xc3PD29u7yvHLPkMVX19++aV9//fff0/Pnj3t83Tq1Ik1a9ZcVu7vv/+eXr164efnd9Xvh4LCjUQm2XaDlAYfcj1VlNQPpyjladZsjyItTy4e4+Isb+7skxglWZ9z0XtCbC/nzHMLk11YSJC7XC1Yp6/DwF7f07zZPFxd69SwZArOQNGfFP1J0Z+uDacYpb788kt2797NW2+9VWlfWloaOp2u0psQFBREWlqavU9Fg1TZ/rJ9l+qTl5dHcXFxlXIZjUby8vIcXrWX0uThQpAU6I1NKv8Cunp5V+tM54vOsyt9F1YhG5Qa+TbCRe1CRa8tVWl+JxU2Thubc7gojkJ7RKEsq6RSUVIou6cbrRcA8PePo1PHNYSHP3RZOXb9nc2CzSn8lSIbKCzILu4dQjqw46EdjGs9rsrjXvphP/Ve+pm3f5Zvou0ifRjSoQ5BnvorvwgKdlKN8mdtdEQAr9YN5b0GEc6ZSAjY+hEsHwOHfpTbPEPBzdc58yk4kJCQQGpqKkePHuW5557jtdde47333qtpsexcTukAMJvN9OzZk9zcXL7//nuSkpL46quvaNasmYNi99FHH9G/f3+6dOnC9u3b2bdvH/fffz+jR4/m+eef/1dy1q9fnzlz5rB//342b95MVFQUvXr14sIF+R545MgRbDYbn376KQcPHmTWrFl88sknvPjipQ2vRqORgIAAXn75ZVq0aHHVcl0svL6wsJBevXohSRK//fYbW7ZswWQy0bdvX2y28iqvJpOJgQMH8sQTT1xynkWLFpGammp//ec//7Hv++OPP+jZsyc//fQTu3btIi4ujr59+7Jnz55LjllYWEjXrl155513rvq8FRRuJCyi/D7mI3XFMPw2csKDQWjQqG20ruPNgNbhNA31dJIARoyli4z64MbK87WaScvOIiulP0+2WASAl3sA3m7Vu3CscOOh6E+K/qToT1dPtcfdnD59mqeffpq1a9ei199YP/rfeustpk6dWtNi/Dv+6VZttWLWqCgzEKkkFX3GvVCtU5blkdKr9ay6ZxX+rv6OydSFoE1CJH8uKQSrnhXZZdfYZt8vy27h9MkFGICS0twJepeQK5KhwGjhgc/+tOeTAkAlGx/dNZdOyrlqX6r9b51GxW31laTm18Jnpy+wJ7+IvNL34OnIIHy0TgzdO38Yfn3Zsc1bWVm8Xri4uBAcLCeRf+KJJ/jhhx9YsWIFo0eP5umnn2blypUYjUa6devG7NmziY2NBeDvv//mqaeeYvPmzZhMJqKionjvvfdo3LgxcXFy2KWPjw8Aw4YNY/HixeTn5zN69GiWL1+Op6cnEyZM4Mcff6Rly5Z88MEHAERFRfHYY49x9OhRli9fzr333svixYvZvHkzkydPZufOnfj7+3PPPffw1ltv4e7uzsGDBzl+/Djr168nMjISgMjISLp06WI/z9OnT/Pcc8/xzDPP2HMWAjz33HPodDrGjRvHwIED6dChwzVdxyFDhjhsv//++yxYsIB9+/bRo0cPEhISSEhIsO+PiYkhKSmJefPmMWPGjIuOGxUVxYcffgjAwoULr0qmi4XXA2zZsoWTJ0+yZ88ePD3lH8JLlizBx8eH3377ze6hXPYsvVyBEW9vb/vn6J+UvbdlvPnmm/z444+sXLmSVq1aXXTMoUPlnDcnT5685NwKCjc6llL9Skaw/VQxZ07L96pAbyPfP9ml6gOrTYASjFrZSKJzVojgLcrc34/x1dZ1TOkk/4C2Cg2BATdzehGFMhT9SdGfFP3p6ql2T6ldu3Zx/vx5WrdujUajQaPRsHHjRmbPno1GoyEoKAiTyVTJ/TA9Pd1+4YODgyu5upVtX66Pp6cnrq6uVco2efJkcnNz7a/Tp09XxynXKMJqxVKhfK9arSEoum61zmG2ykqTTq0jyD0ItUp2I69omAqO8SLXIx1ssiFSJYoxqA9zVvsVKptskTeZL2CzyH/r3cIIDR1MePjDVyRDXrHZbpDq2yKIfm11FKr3AlXnkioxW1m8JYWZvybZczJsmdSd/a/1optilLpqzpSYeOXYWb5Pl6sW+mrVeGmcnBw+94z8r2cY3DkV+n0EzQY5d04nIoSgyFxUI6+KhRGuFVdXV0wmE8OHD2fnzp2sWLGCbdu2IYSgT58+mM3y92zMmDEYjUb++OMP9u/fzzvvvIOHhwcRERF89913ACQlJZGammpXCp599lm2bNnCihUrWLt2LZs2bWL37t2VZJgxYwYtWrRgz549vPLKKxw/fpyEhAQGDBjAvn37+Oqrr9i8eTNPPfUUAAEBAahUKr799lusVmul8QC+/fZbzGZzlSt6o0aNwsPDgy+++OJfXz+QV8fmz5+Pl5fXJVfncnNz8fV1nsfCxcLrQV5BlCQJFxcXe5ter0elUrF58+Zrmsvf35/27duzcOHCS34WbTYb+fn5Tj13BYUbCYutzGNBgwob+87kkZYlL7T5epovfmC1CVBCSamnlIvK6QW5byl2nMzCTSsvnqYWhpBlWEtExLAalqr2Upt1KEV/+vco+tPNrz9Vu5tDjx492L9/v0PbI488QsOGDZk4cSIRERFotVrWr1/PgAFykr+kpCROnTpFp06dAOjUqRNvvPEG58+fJzBQrta2du1aPD09ady4sb3PTz/95DDP2rVr7WNUhYuLi8MH5abAYsGqUtk9qCQnJKg0lSpNOnXVLsd2RygkpNK/1ZZDXMjZiB9QZvtMOvYcAaX3NR//zoQ2fOOKZTCXlkX2cNFA4BJ+P7MB5Kq6eGgrG6VW7j3HaysP2bcNeg2hXnqnXJ9bgbTSpOa+WjXPRgXT2dsDlbOuZepe+HoYFMqriwQ2hq7POGeu60ixpZgOy65ttejfsn3Idty0btd0rBCC9evXs2bNGnr37s3y5cvZsmULnTt3BmDp0qVERESwfPlyBg4cyKlTpxgwYADNmskVGWNiYuxjlT0sAwMD7SHc+fn5LFmyhGXLltGjRw9AdlkODQ2tJEv37t157rnn7NsjRozgwQcftMf0x8bGMnv2bLp168a8efMICwtj9uzZTJgwgalTp9K2bVvi4uJ48MEH7XIlJyfj5eVFSEhlr02dTkdMTAzJycnXdO3KWLVqFffffz9FRUWEhISwdu1a/P39q+x77NgxPvroo0uu8v0bysLrd+zYUeX+jh074u7uzsSJE3nzzTcRQjBp0iSsViupqalVHnMxpk2bRvfu3XFzc+PXX3/lySefpKCggHHjqg61njFjBgUFBQwaVHuNzwoKV4M9fE/SgrAihIoAn0LyXH7hjpbtnTr3D+nZbAobzmEX+V7ronhKVRsmUxZhunVEBB0GoGFoGG3bKJ7e/4baqEMp+pOiPyn605VT7csiBoOBpk2bOrzc3d3x8/OjadOmeHl58dhjj/Hss8/y+++/s2vXLh555BE6depEx44dAejVqxeNGzdm6NCh7N27lzVr1vDyyy8zZswYu1Fp9OjRnDhxggkTJnDkyBE+/vhjvv76a8aPH1/dp3SDIhBCUJyfJ3tKlRoIVE5Y6bJ7Sv0jufk/CwFKQrI3CSEn58x3NZMUkY9fh3T0vkZ7RJ+kvjp7aJlRSquWOJV/CoAYrxjaB7fnnth7HPqWmK0cu1AAQKMQT4Z1iuSjB1opBqlr4O9iI28cP8ecU7JXYh29CyPCA2jsUbU3YrVwZDVkp4BJfg+JqBkl5FZn1apVeHh4oNfr6d27N4MHD2b48OFoNBoHV2w/Pz8aNGjA4cOy8j1u3DimT59Oly5dmDJlCvv27bvkPCdOnMBsNtO+ffkPMC8vLxo0aFCpb9u2bR229+7dy+LFi/Hw8LC/4uPjsdlspKSkAPJKU1paGkuXLqVTp0588803NGnShLVr117xtdBdQfGIpUuXOsixadMm+764uDgSExPZunUrCQkJDBo0iPPnz1ca4+zZsyQkJDBw4EBGjhxpb6847ujRo69I5k2bNjkct3TpUnt4/dKlSy8aXh8QEMA333zDypUr8fDwwMvLi5ycHFq3bn3Vz5dXXnmFLl260KpVKyZOnMiECRMumldj2bJlTJ06la+//tq+GHWpa6qgUFsRQrDy/beYPWwgx8+WLq5KWiRhBVR4G4rQ+ezAoHeezmK2CZ4+fIplAXeyx1Ne7PV3Zjj+LYTNJjh67G26hyzgjoitAOh0fjUslcL1RNGfylH0J0V/ulJq5Ak0a9YsVCoVAwYMwGg0Eh8fz8cff2zfr1arWbVqFU888QSdOnXC3d2dYcOGMW3aNHuf6OhoVq9ezfjx4/nwww8JDw/nv//9L/HxN3e8dkUV5etpL3Lm0H7QqmvUU8qeyFxISPYE7LIhK8PbxLZmWdwdWkTjRm+j3n+KLP6LpLm6j57JIo+rVasoscgGr9e7vE7zAMckc6P+bydrDpaHdd7dPIQxcfWuai6Fct5LSePb0pA9uE6V9ooy5X/bPgadx4JPlPPnvA64alzZPmT75Ts6ae6rJS4ujnnz5qHT6QgNDUWj0bBixYrLHjdixAji4+NZvXo1v/76K2+99RYzZ85k7Nix1yK6A+7ujvnjCgoKGDVqVJUrR3XqlK9KGwwG+vbtS9++fZk+fTrx8fFMnz6dnj17EhsbS25uLufOnau0umgymTh+/PgVPVf69evnoGyGhYU5yF2vXj3q1atHx44diY2NZcGCBUyePNne59y5c8TFxdG5c2fmz5/vMHbF6ihleQouR9u2bR2OCwoKYv369fbw+jKsVit//PEHc+bMwWg0olar6dWrF8ePHycjIwONRmPPa1Bx1fZa6NChA6+//jpGo9HBa/nLL79kxIgRfPPNNw4u8Ze6pgoKtZWSwiKSt29xaFOpg5EsVhAqJElehCtLlVDtZP9N8R8fYPKUQ8kmpCzA47ZxDKgTdJkDFS7HzpNZDF+0gyea7aWhLxzPiaJJREOiIq/sx7DCxalNOpSiPyn6k6I/XT3XxSi1YcMGh229Xs/cuXOZO3fuRY+JjIysFJ73T+64447LZpm/mTlzaD8WNwMmvyC2u5wEnOQpVZqIU6O6+MelpLAA12IVkj3eVVaqyrbUEri718UozsoNV5mPyGT3lFJRYpWNUnqNo6XaYrXx66Fyg5S7Tk2XelW7eCpcGWdKZIPkXQFeNHZ35b5gH+dNtmcpHFsHZ0rdYv1jwTfaefNdZyRJuuYQupqgTBGoSKNGjbBYLGzfvt3ufp6ZmUlSUpI9tBogIiKC0aNHM3r0aCZPnsxnn33G2LFj7StmFfMTxMTEoNVq2bFjh10Rys3NJTk5mdtvv/2SMrZu3ZpDhw5VkvNSSJJEw4YN2bpVXsG+7777mDhxIjNnzmTmzJkOfT/55BOKiop4+OHL574zGAwYDIYrksFms2E0Gu3bZ8+eJS4ujjZt2rBo0aJK9/GrOb8yXF1dKx13ufB6tdrxvlzmIv/bb79x/vx5+vXrd9VyVCQxMREfHx8HheqLL77g0Ucf5csvv+Suu+5y6H8111RBobZw6mCpHoSK0MiekH+STFsfMO4CoYYyo5TkJKPUrkUYD/wAnWWj1PhzXyNFvg06xVPq37LpaAYFRgvu2iIAtqT356G7n8RNubb/mtqkQyn6k6I/KfrT1aPcJWs5Jr9grB5eZCKHOnk64QNoslbtKSVV8Ns6vOl39MUSkj0ngXzTtKlks1R0nZF4erbkvGW9fOw1hu+5aFQUlnpKuarllYucIhObjmaQU2RCCFBJsHdKL/RaNVq1krjzWlibkcuxIiMniuUb/yNh/nT1ceLNzWKClePAZilv87l5DFI3C7GxsfTv35+RI0fy6aefYjAYmDRpEmFhYfTv3x+AZ555ht69e1O/fn2ys7P5/fffadSoESAvNkiSxKpVq+jTpw+urq4YDAaGDRvGCy+8gK+vL4GBgUyZMgWVSnVZz8+JEyfSsWNHnnrqKUaMGIG7uzuHDh1i7dq1zJkzh8TERKZMmcLQoUNp3LgxOp2OjRs3snDhQiZOnAjIK4Lvvvsuzz//PHq9nqFDh6LVavnxxx958cUXmT59Ok2bNnWYNykpqZIsTZo0Qat19CQsLCzkjTfeoF+/foSEhJCRkcHcuXM5e/YsAwcOBGSF6o477iAyMpIZM2bYSx0DF626UkbZSl5BQQEXLlwgMTERnU7noOBWpCy8viIVw+vLWLRoEY0aNSIgIIBt27bx9NNPM378eIeQgFOnTpGVlcWpU6ewWq12WerVq4eHhwcrV64kPT2djh07otfrWbt2LW+++aZDQtRly5YxbNgwPvzwQzp06EBaWhogK4ReXl4XPe+yec+dk6u4lr0fwcHBl71mCgo1icg/j+a7u4AG6NVmOqi/IUnVhSwhgbAhZ9WQ9SenGaWM+fbk5npsSMNWgu7SVYwVLo8QAoP1K4Y2SibEQ/Ywn3X/7YpBSgFQ9KcyFP1J0Z8uhnKnrOWIUvfuJqYQAvGleZ9u1Te2EGQUZ3C+SI7drZRTqkI/Y2Eh/lIOPlozGYCklpWqMk8pn+UqjixuBjbZuCRdpaeU2VKeU6rMU8pFI1uLX/rhAKv3lyeQCzToMVyPMLOblONFJQzdn+LQFqRz8vUszi41SEnQ+10wBEFsT+fOqXBNLFq0iKeffpq7774bk8nE7bffzk8//WRXKKxWK2PGjOHMmTN4enqSkJDArFmzANl9eOrUqUyaNIlHHnmEhx9+mMWLF/P+++8zevRo7r77bntJ49OnT180br+M5s2bs3HjRl566SVuu+02hBDUrVuXwYMHAxAeHk5UVBRTp07l5MmTSJJk366Yf3D8+PHExMQwc+ZMPvzwQwoLCwF5Fer++++vNG9VbadPnyY8PNyhTa1Wc+TIEZYsWUJGRgZ+fn60a9eOTZs20aRJE0Au0HHs2DGOHTtW6fjLVfypWPZ3165dLFu2jMjIyH9d6jcpKYnJkyeTlZVFVFQUL730UqV8ja+++ipLliypJMvvv//OHXfcgVarZe7cuYwfPx4hBPXq1eP99993yPUwf/58LBYLY8aMYcyYMfb2slLXF2PFihU88sgj9u2y92PKlCm89tpr/+bUFRScypYlH/HX3/UBMAp/fs5+wb5PwoIQEn/nn0Dn6sTwPXMJJSpZf9JrtBDR+jIHKFwOm01w7sJuonWLiY4oa5Vwd6ucAFrh1kXRnxT9CRT96WJIojpqhddS8vLy8PLyIjc394rjTGsakymTTZvlhHYH5reAeh3I1hQTb2pBhM2f4BfaovGrniTUz214jl///tW+3S64HQvjF9q3UxJ38f1bUwiMrkuPsDOEZq7jREl7fs6ZjNa6mvy8JJLD89naPIvvlwRiKbXKotUS/uGHGLrHXbEsG5LOM3zRDgK8iykJmQrA5vs346LyoM/sTZy4UEiLCG+8XbXc2zqM/i1v/NjZG5X1mXk8uO8Evlo1d/p50sjdlSfqBDpnMnMJ5J6G9APwzXBw9YGJJ50z13WmpKSElJQUoqOjL6scKDhSWFhIWFgYM2fO5LHHHrvu82dlZdGjRw88PT35+eefcXOrHSEDCv+OS31na6O+4EyU63FtzB/5MPl5WQCoXVqgdeuB2pSKm9FEQOr3jOl6LxrDQdyC1vFZr89oF9yu+oX49jEOpCRyZ9sFBOk07O3S9PLHKFwUIQT3fbINS9EfjGv1GZnFPrh4/ofODTsQEKAsrl0Liv507Sj6k0JNUB36k+IpVYvxdQkmq3QlTYUKtacOtafLZY66cnal77L/bdAZSIhKqLqjAFfjcQBMKtnaXyTkf4Ukh/mJUst55LJl6Bs1ROV6dYazPKMcn59pPI874KJ2YeTiffyVkmfvM2tQC2ICPK5qXIVyCi1WvkzLYluOHArawuDG7EaRzpvQaoGPO8qV9spw9XXefAo3LHv27OHIkSO0b9+e3Nxce1GLMpf2642vry/r1q1j7ty5bNu2zV5qWUFBQeHfYDaXpiJw7Y2rCKDh3o/wzT4CwFE/b2ymQPrWjeTlPi/ho3dSDkdLCcay8D0n5CG91Sg0WdlzKoPOobLudKEklIT2zxCg6KMK1wFFf1K4WVCMUrUYlaTGVppQ3HLoC4K/WYakrT4FoyyX1Mr/rCTKK6rS/rJoZbVbAahPA3A22A2yoMDmgitgk0AtqbCWGqW0YaFXZZD69WAaLy8/QH6JnGxdkqwMazyMBt4tGbug3CDVOMSTCF/FGv9vWJqayavHztm3Q1ycHLKXn1pukHL1BbUW2j5y6WMUblpmzJhBUlISOp2ONm3asGnTJnuiyJrAz8+PV199tcbmV1BQuLk4f+gMZrOsVwVdOEiu2w7S6tXDy9SPb33XcSTiXsiDSK8Ipxmklp3LZL7vMAq85BQLLopR6l9z7PhsPr3zY1SSHHjSrWFd6ioGKYXriKI/KdwMKEapWkd54jq1pMZaapRSmfOr1SAFYLLJypOL+tLeV1qPAkqfxRSXyMmwbZocAAJybdx+ELDICaxV7lf3oP75QBrn88urLOjdLlCHkRw+Xggcx9ddx+aJceg1alSqSyf1U7g0fxfL73dzgyudvD14NMyJD7TkXyGptLqmZzg8e9B5cync8LRq1Ypdu3ZdvqOCgoJCLeXUjqP2PCeSsHEiKpihmkdQCxsrGvzK7W7dYU8aGrWTdBkh+Ox0Oke0gVC65lTXrfq86281jBYrb6w+TBPtavz1ZZlQVPj6dqlRuRRuLRT9SeFmQTFK1WJUkhpbaelglVS9BikhBEarbAzSqqv2mMkzbqDh4ONo3QRSqU3hQkZZxTRZrrbHBI3PlRqVNBpUblcXtmexyQ/6Bzr5sOL8ZFxdrEz4roN9f6i3Xqls8i9JKixhT14hiflyiOSAIB9GRTgphxRAcQ58+UB5pT3viEt2V1BQUFBQqO3IpdxlnUYlBP5FPqgT5/B2/AXMKjnJOYDGGQtsNit8FkdRxERwDeOto7No2PFhWjVuXv1z3SJsPZ7J59v+5u2u+QCsPjuR94Y8hFqteO0rKCgoXC3Kr/laTEVPKc1lSn9eLWab2f73xTylckt+Ru8te9eoSo1HNuQcV6JULkmALioKTXAwhu7dka7SVdxaWq3P201CpcsCIeccahbmRWygBwPbKgaNf4PZJui/+yg5Fqu9zemV9grSZYOUxhVaPwwtH3DufAoKCgoKCjWMzWoDUWaUsmGxCqyZR8lRqwGprDgxGmeE1BWch9S9lETK+lw742maRjUCtRK+d61k5ufg45KNwUVe0BvXs7NikFJQUFC4RhSjVC1GJWmwla66ufj5VevYZfmkoLJRKi9vHyXGVCy2DACy9rYgv+gsh/JbYjaXJcaWjRwSAr+RI/AeMOCa5LBY5fP76+R50IHJIitQI26LVirsVQNZZgs5FisS0NPPk2AXLT39nFRJyWqG84chda+87RkKfd51zlwKCgoKCgo3EFabFVHBU0ol5EU8mwp0Kh3WUoOVU8L3LCUAFKvlqkj64SvB4F7989wi5OSfwCvvP8zoVp5eIsQnqAYlUlBQUKjdKEapWoZUwSNqf6gGmyQbf0KnTa3WecpC9wC0qnLPmby8fezYeY9j30x/dhd04u+SNvY2qySHZkkCJJdrL+dqLfXA2n06E4+6YLHISlwdJan5v+ZksZED+cUA+Go1fN48xrkTLhsEx38r33arXkOqgoKCgoLCDUneOaSChQhR6kVusyHZ5EW2v0vuIedIc9aSDoDaGeF7pUapEpW8yOiqdbJH9E3M66sOsf/Yt4xqbsQmJECDv19HdLqaSyytoKCgUNtRjFK1GFup4mLQuuMZGlotY+Yac5m3dx5phWmAvHpX0RBWUCCXLtZovNEQwsnt57EZdZTY5ATnuJxmn/cpVAWn8MrRIQmBSn/tiTTLckqVeV4Fe3rwzAOtaBnhfc1jKsCSsxlMTD5j3/bVqp0/6ZnSRIweQaDRK5X2FBQUFBRuCYzb5vCc7yEGUA8VcviexqYDINvYDlBjRqCSoGGwofoFsJRgRYWpdJFRr1Tdu2bWHkonxk0O2dt7oTnNmn1MqybBNSyVgoKCQu1GMUrVYrytLvSytMW/cQQaTfW8lWtOrmHp4aX2bX9XeeUnPX015859RXHJaQACA3rhZh7MnztfJqAOWISsXGW4rmFLWBadk42ADolr95R6fdUhNh9LB1SoXc8CEOZloF+L6jHA3crsyZMVKoNahadGzSPOrLSXlwpZx8GYK2+P2Q6uzil3raCgoKCgcKNRUJxFoUqFVBa+ZxNEZPqVbsmLQl+P6kS0vzsBhuqtiCeEYOxZGzvb/5+9Te+sCn83OSZTBr7aQ0QYzgEQ3yyWZopBSkFBQeFfoxilah3lioSL5IKncEVfjaFs+Sa5ikgz/2YkRCXQIUSudHf8xAyKi0/Z+7l71Edklx9nsclKlFllRBJW9KUpqa7VU0oIwRd/ncKmzgKbPxqPo/K8WiUHQnWQbZHDK1+tF8rQUCcapIqyYHYrsMhhgqi0oPd23nwKCgoKCgo3GMbT2byyyspp7/JE55JZYKug08UGeuDjrqv2uVONZr4tUINrOADhei2uiqfUVZOanc3hvXcytkW+vU2v86pBiRQUFBRuHpSnUi2mxFLArvQfMXQLr7YxyxKcN/JtxMNNHqaOqzu5eXsxGuVwvgb1p9GyxULCwx6yHyMo95QyS2YmLc+gy2FZ8ZIASX/lnlJCCOb+foynv0ykyGQFSc6/EOIeTO+o3oxuMboazvLWJNNk4cG9J7hzRxKbsgsAOZeUcyc9LhukVFrwqwddx0M1V4pUqH6GDx+OJElIkoROp6NevXpMmzYNS6kx81rZsGEDkiSRk5NTPYJeASkpKQwZMoTQ0FD0ej3h4eH079+fI0eOOPRbtWoV3bp1w2Aw4ObmRrt27Vi8eLFDn5MnTyJJEomJiVc8/2uvvUbDhg1xd3fHx8eHO++8k+3btzuM+dhjjxEdHY2rqyt169ZlypQpmEymS4wKqampDBkyhPr166NSqXjmmWeuWKazZ8/y0EMP4efnh6urK82aNWPnzp32/RXf/7JXQkKCwxhRUVGV+rz99tv2/UlJScTFxREUFIRerycmJoaXX34Zs9nsME5OTg5jxowhJCQEFxcX6tevz08//XRJ+b///nt69eqFn5/fVb8fCgo1QfbGYzT9W0Cpb5QAVDYL1grGIZUzcknZrJSclYuLuFqLWXF6NuvbNkClPIevij2nsrlnznKELR+bkEgrDMTdoylBQX1rWjSFGwxFf1L0J0V/ujYUT6lajMlaTHrxUaRqzAdUluBcp9aRnf0Xu/c84LA/JOQ+bBYNZ/aeJf3g33h4dMJWYKBEyBXbzCoT9c8ZOR4ob2uDgnCpX/+K509Kz+e9NUn2bZUkYQVuD+/M1G7XVsFPQWZtZi7rs/Ic2uq7XXsS+iuiKFP+N6gJjNro3LkUqpWEhAQWLVqE0Wjkp59+YsyYMWi1WiZPnlzTogFgMpnQ6S7tVWA2m+nZsycNGjTg+++/JyQkhDNnzvDzzz87KHYfffQRzzzzDBMnTmTevHnodDp+/PFHRo8ezYEDB5gxY8Y1y1m/fn3mzJlDTEwMxcXFzJo1i169enHs2DECAgI4cuQINpuNTz/9lHr16nHgwAFGjhxJYWHhJec1Go0EBATw8ssvM2vWrCuWJzs7my5duhAXF8fPP/9MQEAAR48excfHMaS27P0vw8WlssfrtGnTGDlypH3bYCjPhaPVann44Ydp3bo13t7e7N27l5EjR2Kz2XjzzTcB+T3s2bMngYGBfPvtt4SFhfH333/j7e19yXMoLCyka9euDBo0yGF+BYUbEVuRGUtxiYPCfSIymg6Ja7FJ5UYpjTOMUn+8R8mOr6DtItytxbS3poOzF6NuQg6czcVVI6c9yDX5sN/0KQ+2b17DUincqCj6k6I/KfrT1aM8mWoZhzb9XmFLOCQhrw7KjFIuahfy8hIBUKvd0Wn9CAjoiVrtwq/vr+HEcS1gAG0nLKW5yFVYsFiLSfc0UOAiJ9P0GzYMVRVfxotxLkcO8wrzduXRrtHM2rCFAiPoqiln1q1MhklepenmY+DJOoGE67XUdZZRas1LcOB7MBfK226+zplHwWm4uLgQHCznynjiiSf44YcfWLFiBaNHj+bpp59m5cqVGI1GunXrxuzZs4mNjQXg77//5qmnnmLz5s2YTCaioqJ47733aNy4MXFxcQD2B/iwYcNYvHgx+fn5jB49muXLl+Pp6cmECRP48ccfadmyJR988AEgryw99thjHD16lOXLl3PvvfeyePFiNm/ezOTJk9m5cyf+/v7cc889vPXWW7i7u3Pw4EGOHz/O+vXriYyMBCAyMpIuXbrYz/P06dM899xzPPPMM/aHPcBzzz2HTqdj3LhxDBw4kA4dOlzTdRwyZIjD9vvvv8+CBQvYt28fPXr0ICEhwWEVLSYmhqSkJObNm3dJpSoqKooPP/wQgIULF16xPO+88w4REREOClN0dHSlfhXf/4thMBgu2icmJoaYmPKKnpGRkWzYsIFNmzbZ2xYuXEhWVhZbt25FW1oNLCoq6rLnMHToUEBeJVVQuJExnSsgfc4eilQGLB7lq/cNjx3BrSSHQk25fuSUqnsZyfaKe3pJQPsR1T/HTY7RlIGq6EvuCN8HQIRfMPf1VgxSChdH0Z8U/UnRn64eJXyvlpFxujyvk9pmo66LR7WOb7KaiNJZiSlayZkzclLM8LAH6dz5d2JjXwQgL0M2HHmrzxKi3U9j15W0dVtCS90sAk+7khQaQK67bOzQXqFBauK3+2j+2hqeXLobgPpBHjzWNZqyHFouasUoda1syMrj+SOn+eG8nASsoYeebr4G5xmkbFb4cx7kn4OS0uTmYW2cM1ctQgiBraioRl5CiMsLeBlcXV0xmUwMHz6cnTt3smLFCrZt24YQgj59+tjdiseMGYPRaOSPP/5g//79vPPOO3h4eBAREcF3330HyK7JqampdqXg2WefZcuWLaxYsYK1a9eyadMmdu/eXUmGGTNm0KJFC/bs2cMrr7zC8ePHSUhIYMCAAezbt4+vvvqKzZs389RTTwEQEBCASqXi22+/xWq1Vnle3377LWazmeeff77SvlGjRuHh4cEXX3zxr68fyCtb8+fPx8vLixYtWly0X25uLr6+zjHkrlixgrZt2zJw4EACAwNp1aoVn332WaV+GzZsIDAwkAYNGvDEE0+QmZlZqc/bb7+Nn58frVq14r333rtkeMKxY8f45Zdf6Natm4MsnTp1YsyYMQQFBdG0aVPefPPNi75XCgq1DXNqIUey/mSrmz9/1S0v0mL20HAiGE73Kr8POMUoZS6mRCV7RLh6hUKTe6p/jpuYH/acYcFPLxEsfUbXMDlsyEXnxDycChelNutQiv7071H0p5tff1J+6dcybBaz3ZLoWWQh1sO7Wsc3Wo3EGSy4m09SUtrm7tHAoY+Q0zzR2n8lPx0pIsW+R41OJd+4A/KKMHdpS2yHLlwOo8XKVztPO7S1j/YDwFb6HHDRaK/hbBQAnjtymrPG8jjkSH31J1K1Y8yHC8kgrIAEj28AnbucT+oWRxQXk9S6ZoxzDXbvQnK7toIIQgjWr1/PmjVr6N27N8uXL2fLli107twZgKVLlxIREcHy5csZOHAgp06dYsCAATRr1gzAYbWnTFEIDAy0uxjn5+ezZMkSli1bRo8ePQBYtGgRoaGVq2x2796d5557zr49YsQIHnzwQXs+gNjYWGbPnk23bt2YN28eYWFhzJ49mwkTJjB16lTatm1LXFwcDz74oF2u5ORkvLy8CAkJqTSfTqcjJiaG5OTka7p2ZaxatYr777+foqIiQkJCWLt2Lf7+Vf+wOXbsGB999NG/cnm/FCdOnGDevHk8++yzvPjii+zYsYNx48ah0+kYNmwYILue33vvvURHR3P8+HFefPFFevfuzbZt21Cr5XDxcePG0bp1a3x9fdm6dSuTJ08mNTWV999/32G+zp07s3v3boxGI48//jjTpk1zkOW3337jwQcf5KeffuLYsWM8+eSTmM1mpkyZ4pTzV1C4rghBjjlL/ltyRZJcUWkj2faMnu/S9zOicTeQf2uidkaeJ3NRuaeUktz8qnlj9RGGxKYCcCSrHlFBTahb97EalurWpDbqUIr+pOhPiv505ShPqFqG1VxuSVXZrEjV5EG08vhKPto9mxXHl+Otli1BkXUep1XLzwmumMgx+yS2YjkvkbvpDCGueYS75XJ74AkOtC4uy+FJ0zPnCe3VHTfPi1cmEUKwYu85PlgnV9bTaVT89lw3tk3uzhN31AXAZiv1lFLC964JqxCklhqkxkcG8V6DcO4P8XPOZHmpMKMB/Le7vO3mC6EtwT9WSW5eC1m1ahUeHh7o9Xp69+7N4MGDGT58OBqNxsEV28/PjwYNGnD48GFAfthOnz6dLl26MGXKFPbt23fJeU6cOIHZbKZ9+/b2Ni8vLxo0aFCpb9u2bR229+7dy+LFi/Hw8LC/4uPjsdlspKTI5vIxY8aQlpbG0qVL6dSpE9988w1NmjRh7dq1V3wtLpd7AWTlsqIcFd2s4+LiSExMZOvWrSQkJDBo0CDOnz9faYyzZ8+SkJDAwIEDHWL9K447evSVFXvYtGmTw3FLly4FwGaz0bp1a958801atWrF448/zsiRI/nkk0/sx95///3069ePZs2a8Z///IdVq1axY8cONmzYYO/z7LPPcscdd9C8eXNGjx7NzJkz+eijjzAajQ5yfPXVV+zevZtly5axevVqB2XRZrMRGBjI/PnzadOmDYMHD+all16yy3Kpa6qgUCuwYfey0Li0psgrjci7OmB0l4uNqCVZt5Gk6k90Xmi1skpXl42+7QBwcYYn1k2MEIKcIhNuGjk6oH7MI/TqPAODoUkNS6Zwo6PoT+Uo+pOiP10pyi/9WobVYqHMZ0hlsyGp/70H0dHso8z/ayKjAozMiihvDwiIx8urpWPn039hE7ItUyPZGNLsvOwJk3mWtAh/mu52lWUToNZe+kaUeDqHcV/ssW+H+7gSE+AYjljmMatVwveuCpsQTEo+w6GCYmzIQZDPRQU7J5FqGWn75RxSkhr0XtD2UefNVQuRXF1psHtXjc19tcTFxdmTVoaGhqLRaFixYsVljxsxYgTx8fGsXr2aX3/9lbfeeouZM2cyduzYaxHdAXd3d4ftgoICRo0axbhx4yr1rVOnjv1vg8FA37596du3L9OnTyc+Pp7p06fTs2dPYmNjyc3N5dy5c5VWF00mE8ePHyc+Pv6ysvXr189B2QwLC3OQu169etSrV4+OHTsSGxvLggULHJKenjt3jri4ODp37sz8+fMdxq5YHcXT0/OysoCsgFY8LigoCICQkBAaN27s0LdRo0b20ICqiImJwd/fn2PHjtlXY/9Jhw4dsFgsnDx50kEhjoiQHyqNGzfGarXy+OOP89xzz6FWqwkJCUGr1dpXD8tkSUtLw2QyXfKaKijUBoRNYEZeGJIEWEnDxU2D2Sa3qUrVcGd4Sb2XksYnQQ/btz0qfM8ULo0QguMp8xnaaCOhHnL16TZRddCqlbX8mqI26VCK/qToT2Uo+tOVo/zSr2VYLOWJMlU2G1SDknGh6AKN9FZcKzxrXVxCcXePLW8QAk5vhxMbEHSV52/3KNzzOHz+H8g8hlQh5loSAlSX/nj9nSlXMgnx0nNHg0D6tyy/oX2+LYX9Z3MxlsieVi7VYHy7lThQUMzn58pjmOu5uTjXIAXllfZiusHQH5w7Vy1EkqRrDqGrCcoUgYo0atQIi8XC9u3b7e7nmZmZJCUlOTyoIyIiGD16NKNHj2by5Ml89tlnjB071r5iVjHmPSYmBq1Wy44dO+yKUG5uLsnJydx+++2XlLF169YcOnSokpyXQpIkGjZsyNatWwG47777mDhxIjNnzmTmzJkOfT/55BOKiop4+OGHqxrKAYPB4FA95VLYbDaHFbGzZ88SFxdHmzZtWLRoEap/hNlczfmV4erqWuVxXbp0ISkpyaEtOTnZnsi0Ks6cOUNmZmaVLvplJCYmolKpCAwMvGgfm82G2WzGZrOhVqvp0qULy5Ytw2az2c85OTmZkJAQdDodOp3uiq+pgsINiRBckGTvcklSIVSg1Wmx2GSvd7Uk6zbVnk9q3zecPmMF14bEFv5NhH84T0Ze/LupUM6RtDy+/2szHTzepWuF33F6/cXvfwrOpzbpUIr+pOhPZSj605WjGKVqCTarjQN/nCPrTB4epUU/JJsV6V8apUqMaRTkbKGOTk4UFRk5msg6o1Cr3VBVNCqd2gaLesuyCPlGJ/1jxUglpAp/C1QX8ZR6b80Rth7P5EK+fFNpH+3LW/c2s+8/ej6bV3885HCMr7sT8yDdhFworbQXqdfxWr1Q2ni6X+aIf8Gq8XBsPRhlxRs3J4UHKtQ4sbGx9O/fn5EjR/Lpp59iMBiYNGkSYWFh9O/fH4BnnnmG3r17U79+fbKzs/n9999p1KgRIFcQkSSJVatW0adPH1xdXTEYDAwbNowXXngBX19fAgMDmTJlCiqV6rLVRSdOnEjHjh156qmnGDFiBO7u7hw6dIi1a9cyZ84cEhMTmTJlCkOHDqVx48bodDo2btzIwoULmThxIiCvCL777rs8//zz6PV6hg4dilar5ccff+TFF19k+vTpNG3a1GHefyolAE2aNLFXQCmjsLCQN954g379+hESEkJGRgZz587l7NmzDBw4EJAVqjvuuIPIyEhmzJjBhQsX7MdfrnpL2UpeQUEBFy5cIDExEZ1OV2klryLjx4+nc+fOvPnmmwwaNIi//vqL+fPn21cXCwoKmDp1KgMGDCA4OJjjx48zYcIE6tWrZ1/x3LZtG9u3bycuLg6DwcC2bdsYP348Dz30kL0y0NKlS9FqtTRr1gwXFxd27tzJ5MmTGTx4sP06PfHEE8yZM4enn36asWPHcvToUd58880qV24rkpWVxalTpzh37hxQ/n4EBwdf9popKFxPcs8XYxWlaRcECNS0bNmCHw/ICzcqZB2u2o1Sa1+hJPJpcIUnT3/BA13eBp/a9QOlpvhg7VFOpibRoS3kGD356/ydPN+nJ25ulatsKShcKYr+JKPoT4r+dFHELUxubq4ARG5urlPn2ZiZJ8YcPCnGH/5bnCk2XtMYpw5mijmj1osPho8Q69bHiHXrY8Tnjzwqzr700jXLZbNZxaZNnezjrVsfI86c+aLqzjsXCzHFU4i3o8SiJ78Tc0atF+dXL5L3ff4fIaZ4ip6LOokZg+4SMwbdJfY3bCR+S9pZaZiM/BIROXGVw2vu70cd+qw8mGjfFztjjGj/6eMi35h/zed5K7HmQo6YcOSUuG/PURH02x4xaM8x505YlCV/Liq+tnzk3DlrCcXFxeLQoUOiuLi4pkW5aoYNGyb69+9f5b6srCwxdOhQ4eXlJVxdXUV8fLxITk6273/qqadE3bp1hYuLiwgICBBDhw4VGRkZ9v3Tpk0TwcHBQpIkMWzYMCGEEHl5eWLIkCHCzc1NBAcHi/fff1+0b99eTJo0yX5cZGSkmDVrViV5/vrrL9GzZ0/h4eEh3N3dRfPmzcUbb7whhBDiwoULYty4caJp06bCw8NDGAwG0axZMzFjxgxhtVodxlm+fLm47bbbhLu7u0DOjie++MLxfpiSkmLf98/X6dOnK8lWXFws7rnnHhEaGip0Op0ICQkR/fr1E3/99Ze9z6JFiy465uWo6pjIyMjLHrdy5UrRtGlT4eLiIho2bCjmz59v31dUVCR69eolAgIChFarFZGRkWLkyJEiLS3N3mfXrl2iQ4cOwsvLS+j1etGoUSPx5ptvipKSEnufL7/8UrRu3dr+vjRu3Fi8+eablb4PW7duFR06dBAuLi4iJiZGvPHGG8JisVxS/otdsylTplz23C/Fpb6z10tfqC0o1+PyFOUZxZ/PzhWfPHKvmDHoLvHR0LfFlNFthNViFY//+rhourip+GznjyJy4irRdMov1Tv5G6Hinu8XiqDf9ogfDvxZvWPfxNhsVjFm0SIx/rPHxbr1MWLF+n5i/5mcmhbrlkPRnxT9SdGfbj39SRKiGmqF11Ly8vLw8vIiNzf3iuNMr4VOfx4ipVgOu5sQHcyzUVdviTy6M53Vi/+kyHszHbp/D0D6ktuIi4oiZOprVz2e2ZzHgdS1ZB2bgE3ASZMKd30w93X5EZ2uilKamz+AdVOgxQMs/O1uis1u3H/PGfziH4b/uweO/0b7sGgGrwsHoPfe4+SvWUmHSNn9UQjBlmOZ7D6Vzftrk/Fx0/LefS1w06lpF+3rEKf/zd6dvPBFOhpdLokv90Ov0aO5TCiggnyN623aT6HVZm97KMSPGQ0jLnHUv8BUBKmJsgediyc8vBy07hDQQElsDpSUlJCSkkJ0dDR6vb6mxalVFBYWEhYWxsyZM3nssetf6SgrK4sePXrg6enJzz//jFstCRlQ+Hdc6jt7vfSF2oJyPS5Ncb6J5D+SaPZXN7451ZIzRW7odd3I9vuOlz/4k8fWPMZfaX8xvtk7TPta4O2mJfHVXtUnwFRf+rT8iN2eTVjSLJp4/4sXnVEoJy1tBQcPjbdvBwTE07zZxzUo0a2Joj9dO4r+pFATVIf+pPzSdxKTk8+w8nwOViHItpTH/5ZUMBhcKUIItn/3IYVSLjaXcsXCUFBwTeF7xcWn+HN7PDabbCjLtUrMPq/n2TaPVjZIbf0Izu2B9IPytqsPojTRufTPinhl9k0hsEkS/m7lxrdtxzN5aMF2+3aknzt3Ng6qUr4SS2kCUJXAQ+dRZR+FyuRYrHaD1PNRwbipVdwX5OOcyTKPwye3yYnNAQzBEFYzpXoVaj979uzhyJEjtG/fntzcXHvZ2zKX9uuNr68v69atY+7cuWzbtu2iySkVFBQUqmLVnL2UnDlKiwArVlG26CbIoZBOyzpRZJFzakqoAUv15ny0WkBYKVbJPwxcVUpy7sthswne+zUJD+NmGhog12jA37seEeGXz4ejoFCTKPqTws2CYpRyEgVWKxlmS6V2axV9L0dRbg7pJ/ZBUB2H9ron/kZ3zz1XPV5ubiI2mwkbEoVWQa6+FT/+5x2iPf8RL59zCn592bHNOxJbae4old0gJiEAyVbaLsAqORrLjl+Qyx8He+ppE+XDQx0unhSuxCJfN5V09Qa8WxGrELybksbhArlssZdGzfPRTo4LPv1XuUFK7QLNBjp3PoWbnhkzZpCUlIROp6NNmzZs2rQJf3//GpPHz8+PV199tcbmV1BQqL3kZ5WgE8Wc1Gg4rdGiASQhYcFKgVnWh7QqLeEedYATqKrRu3h7Vha/Ro8i1SUAAL2zi5zcBOw5nc28DccZ0vA8DQ2w6WxnXrptFj4eLjUtmoLCZVH0J4WbAcUo5SQmRofwZEQgaklCLcGisxn890wGtmuIlrTZSk1Z/1BaIv9vMW5NLp6Q7Z/k5R8gPX0V+Xn7AUiXwnnnXCYvtO1LjFdMFQfISdBw84duE0HvCY37Iz7fKIujLv/4WChPdC4JgVWSV+Y2Hb3AoXN5bDkuV2br0SiQN+4pT2peFRU9pRQuz585BXz4d7p9O8rVyUnhS/Ig94z8d7NBMOAz586ncNPTqlUrdu2qmVLPCgoKCtWNzSZAFPA/LwPFkgpfZBXOJsFDjR7i/ob34+3izd8XBHCiWj2lnkxO52ydIfZtX52i6l+OC1kH6B7xBw39ZN3m3jYN8VcMUgq1AEV/UrhZUJ5UTiJc72gYcCl1n7Zdg51FlIZkBbpGkkZO+Zgx0ZetrlCRI0deJj9/v317f04qoMOg+0dFlvw0WP0cZByVt31joMPj9t12TyltqTeUJGGWJFSljk2SEFhUas7nGRm28C+Hcw7xunxsuLHUU0qtGKWuiPOllfbqurowIiKA7r5OrLCzYizs/rx8273mVmIUFBQUFBRuRIRVoBImClUq1PYFOwm1VUIvgtGJQIpK4HyeXLVWVV1GqdwzZJktgMSDaT/Rqtso6rkpOXkuRVZBCarscTzYKN/eVi/YSbk4FRQUFBSqRDFKXSfKgtlsXIunlA0XlRtuWi+oYJSSdFeXJ6CkRF4B2lagJdMC2wrltz/EI8Sx46EVcGRV+XZgQ/nf4hywlJTnlCr1lBJCkJLlzUN7XSjSyuF7NknF9pRMbAIMeg3xTYIx6DUMbucYglgVRrPsGaZ4Sl2aHLOFo0VGEvPl3BQNPfQ8EuZkI1Hyr+V/a90htqdz51NQUFBQUKhl2GwCCSMWQFuqykgCcnL7MOsHf2bxm0N/dXUYpY6uRSy9D+Ptv4GkZsK5rwgKffHfj3sTM33VIf637RBze8gGqVRjJ9rVrUdAgKLbKCgoKFxPFKPUdaIsX4D1GuwsNqsVjUqL+KdB6wq8pLKytnL06HSs1mLM5mwAVuVqKLRJTGg3gUC3QNoHt3c8qChD/rdeT+gwCiK7wN4v4YfRgMDGd/I5lRqlDp6xsSatKWhLz1XYOO/qzQfrZE+rJqGezBjY4orPt8RqAVRorj6H+y2D2Sbo9tf/s3fmcVFW++N/PzPDwLALgmyKuO9mLrmVWSouqXVNK430ll7tq5bZorZhXr3dDLNcrma31N+9ZpaVebEyXHJP01DMBTcQRVAQAVlnO78/nmEQAWUZxOW8X695wfPMec7ncx5m+fA5n+U4F43Fdct8nWr47SwE5KlpmLx8CLwagCygKpFIJBJJCcymbBSRhVlRUIqcUoDZ6g2Ak7bYflNQGNg2sPQklSX1MGZFi9VW09O5/Yjqz3mXs/NUOq5Oaj1Ok0WHT8iHNG/mgL+FRCKRSCqFdErdIoo2wapSultYLegUvS3KqnK7aRcurCEnN95+rNMHkGfNwkPvQUSriJKD005AxhlIOaQeB7YvjoRJ2gMIW5SU6ojQBKuOpvRs1eJyMZqxakyc8AxlWUO1tXFddz3D7g+pkK5mq5nD6YdJzk4FgtDK2pzlkmY02R1SjQ3OuGk1jAjwuclVVSTpN9g6B0z5YFXrfeHmLx1SEolEIpFcx74f1lKQsQKrSzZm1LQ9ECgCrGjQagQn5wxyvGCLkUJNcekI594zHC/jLqKg4ALNPGJo6a5uxLoZvHnQEc5BiUQikVQa6ZS6RWhszqSqFTq3otPoS0dK3YCcnHjSL/9KdnYcAI0bvUadOt1IKjAhTj+Pm5NbyQuyzsO/uoK4pj/gtfWCbMXWrQ+/DWvUU3lWHSmx+0mzOaVC07M4VT+L6EaPY8n3oF+reix7rlOFdX7714/4LjYZY0YPALQyUqpcLts6O/rrdezq2rJmhf22BBK2Fx97NwC9a83KlEgkEonkDiT1tBolnmN2JmR3U7Qm1UZSUEsb6HU1tONmLqDgWqeU7LpXLgs3n8Qr/zWGhv1pP+fkVEMbexKJRCK5KdIpdYuwR0pV0idlzijAdDibBm4tOFvKKVX+ZIf/nEheXoL9uEAfxvtxX3H+qlpXyk13nVMq/aTqkHJyhXqt1Y57rYbanzYaYWfW/5GzvYkqWQi+nvkquZkZ9jHOZguWa4JnGvm5V2qtvx70wpjW2n7czDe4UtffC/z99AU+PXcJs+1P71PTKXsAuWnqzx4vQ/2uEHx/zcuUSCQSieQOpKhjcq7FgE4Uxcdr0QpXrEoONdYMz1wcKaVXFHvZCElJsvJMzIs5wT96pgIQf6UFPZo1JiToyVrWTCKRSO5dpFPqFqEtipSqZKHzjNXHsZ67SjOvTiRyiIoEWglhIT8/CYCAeo/j7t6MVUkH2HBmg31MkHtQ8QXGPMhOVn8P7ghjorme8+l+HMt/ENTUe5xdBdkXVIdUPS8FcSUL/+xcLBoY91AjEs8H8HyPhpVaa6FJNabcXeDZBxozssvNi6Lfa3x38YrdIQXQu6Y67QkBm99TUzpTbR0bGz8KjXrVjDyJRCKRSO5wrl69So7RQqFPAM4ZqtMjtqWBrhfGoMtJxark1kikVFJ+Id8pTUkLeQaQUVI3IiO3EI1iwcMpF4DeXf5Jy/pta1kriUQiubeRRWFuEUX2QWULnVuuGgFIzU8k15Jzw7EFBSkcihvP/gMjEMICKLRs+U9CQ8eTWZgFQLM6zZjTcw6zesxSL9o2F/4RCD9MVI9dyw5fNpnUBfh4F9Lnr63o/kJx3v3OHmmYnS6it1ixaODRlv4sjeiIv2fl2hBbbJmDEQ85MX1ACxr4yhSxIixCcMVkJt1WRyqmUzNOPNiWyCY1FE2WGgc750P8BijMBhTwCasZWZLbjjFjxqAoCoqioNfradKkCbNmzcJsNt/84hvw66+/oigKmZmZjlG0AiQkJDBy5EiCgoJwcXEhJCSEoUOHcvz48RLjoqOj6dWrFx4eHri6utK5c2dWrFhRYkxiYiKKonDw4MEKy585cyYtWrTAzc2NOnXq0KdPH/bu3VtizhdeeIGwsDAMBgONGzcmMjISo9F4w3lTUlIYOXIkzZo1Q6PRMGXKlArpY7FYeOedd0rI+/vf/464Zsfju+++o1+/fvj6+pa73tOnT/PEE0/g5+eHp6cnI0aM4OLFi5VeV1xcHA8++CAuLi7Ur1+fuXPn3nQN27dvZ/DgwQQFBaEoCuvWravQ2iWSmiQ3K4ePo6JIvJSGcCpOo7vq7oSiMaAIK1ZFg7OT403v2WdS+Ke+A5+HDAPAy0nWPygLISwknYzgs76v2AucN64XdJOrJJKKI+0naT9J+6lqSKfULaIojLqykVJF+X6HMraSacq44dCLF/9HevomsrMPAuDq2hiNRm2Jd9Wktrt9tuWzDGk8hLoGW72oEz9fo6QTNOtfthq2CHQPdzNNOvvx6j7ViWXSWtlFLlds3V4s1XhFWazqxXrZdq8EBRYrD+49Tsudf2KyffA1cXXBsybvU44tZc+rAQz+BMZsUGtJSe4Z+vfvT0pKCidPnuTVV19l5syZfPjhh7Wtlp2bGR0AJpOJvn37kpWVxXfffUd8fDxr1qyhbdu2JQy7hQsXMnToUHr06MHevXuJi4vj6aefZsKECbz22mvV0rNZs2YsWrSIw4cPs3PnTho2bEi/fv1IS1PfY8ePH8dqtfLpp59y5MgR5s+fz9KlS3nzzRu3ci8sLMTPz4+3336b9u0r3t30gw8+YMmSJSxatIhjx47xwQcfMHfuXBYuXGgfk5ubS8+ePfnggw/KnCM3N5d+/fqhKApbtmxh165dGI1GBg8ejNX2ZVGRdWVnZ9OvXz9CQ0M5cOAAH374ITNnzmTZsmU3XENubi7t27dn8eLFFV63RFLTpP6eiFPKOQwpibhcVKPVhaKh9SU1wlgRVoSi4O3idqNpqkSaUW1C8nDGPkZrUpjfXH5fX8+moxd59MNvMRfE2c95eLTByalOLWoluRuR9pO0n6T9VAXEPUxWVpYARFZWVo3L+tfZi6Lelljxf0cSK3Vd8t/3iHPTtovPRo0Ws157Q7z33pti0+ZGYtPmRsJszhNCCGEy5YjMzD/E4cMviU2bG4lDcf8nLl36RRQUpon4jHjxv9P/E49995hos6KNiEmMKSng4/ZCRHoKcWa7EGZTuXr8Oe89sWj8ZrHhH/8TOcYc0WNhBxE1YpB4P+IxMWZFF7Ht8UbiaPMWYuYLrcS+lH2VvT1CCCFazFopQqdFi3/t+rVK19+tHLmaJ+ptibU/xsSdqTlhGYlCbI8S4qtn1dfFyqE1J+suJz8/Xxw9elTk5+fXtiqVZvTo0WLo0KElzvXt21d07dpVZGRkiIiICOHt7S0MBoPo37+/OHHihH1cYmKieOyxx4S3t7dwdXUVrVq1Ehs2bBAJCQkCtRCe/TF69GghhBDZ2dli5MiRwtXVVQQEBIiPPvpI9OrVS7z88sv2eUNDQ8WsWbNERESE8PDwsF+7Y8cO0bNnT+Hi4iJCQkLE5MmTRU5OjhBCiNjYWAGIxMTyP3eTkpKEk5OTmDp1aqnnFixYIADx22+/CSGEfQ2xsbGVv6k2ir53Nm3aVO6YuXPnirCwsArPef29uhGDBg0Szz//fIlzf/nLX8SoUaNKjS1vvRs3bhQajabEd2dmZqZQFEXExFz3HXMN16/rX//6l6hTp44oLCy0n5s2bZpo3rx5hdYihBCA+P777ys8/kbc6D17K+2FOwF5P0pzbN1+MXf08yJqxCAx75kx4qNRL4lPxiwQi8ZvFovGbxZr/hIlhj4/X8z9+ZjjhOakCxEzU/SPiRH1tsSKnxf0F2LvMsfNfxfxyppY0f3vy8SmzY3Eup/aiMjvdwmr1VLbaknKQNpP0n4qC2k/3d32k4yUukVo7YXOqxYpZUVAOUUrf9//F/YfeJKLl9RaUHW8O+Pn15dC9DwT/QwzdswgMTsRAC9nL7CYYONbsCaiuJaUez3Qll9irChSSqMBs9WMzmJL5/Ooy3KnhjQpVHfpLNUI3rFa1TmdZaRUCS7bUvaaujqT8nB7lretwTS6jW/C5llwbL167CnD2h2FEAJToaVWHqIKXT+vx2AwYDQaGTNmDPv372f9+vXs2bMHIQQDBw7EZFI/AyZOnEhhYSHbt2/n8OHDfPDBB7i7u1O/fn2+/fZbAOLj40lJSeGTTz4BYOrUqezatYv169cTExPDjh07+OOPP0rpEBUVRfv27YmNjeWdd97h9OnT9O/fn2HDhhEXF8eaNWvYuXMnkyZNAsDPzw+NRsPatWuxWCyl5gNYu3YtJpOpzB298ePH4+7uzurVq6t9/0DdnVy2bBleXl433J3LysrCx6dmOkF1796dzZs3c+LECQAOHTrEzp07GTBgQIXnKCwsRFEUnJ2d7edcXFzQaDTs3Lmz3OuuX9eePXt46KGH0OuLU53Cw8OJj4/nypUrlVmWRFLrmIxGhK2wubsIpeVFK83On6Dx6e9pcupbmp5ayxcTHuT18BaOExr7H9j5EQX5aokGF6sRXH0dN/9dRHa+GYNOTdmr416XyKHdUBT5b9Cdwp1sQ0n7qfpI++nut59kofNbRHH6XuUQNqeUENYynVJmcy55eacAMBgaoHfyxc+vHwBpeWkYrUZ0Gh0PBDxAiEcI9/nfB2e2wZ5FxZPoXMAj4IZ62JrJIDCzafECeh5RjR4nvTOQBzaHkkVDlT+8hVV1Rrncio5ydwBrUzN4+2QyuRb1VePrpEOp6W46V86qP5sPBJ9G0Hlszcq7hzAbrSx7eVutyP7bJ71wcq6as1cIwebNm9m4cSMDBgxg3bp17Nq1i+7duwOwatUq6tevz7p16xg+fDhJSUkMGzaMtm3VwrGNGjWyz1X0herv74+3tzegFgZeuXIlX375JY8++igAy5cvJyiotEP0kUce4dVXX7Ufjx07llGjRtnrATRt2pQFCxbQq1cvlixZQnBwMAsWLOCNN97gvffeo1OnTvTu3ZtRo0bZ9Tpx4gReXl4EBgaWkqfX62nUqJHdAKkq0dHRPP300+Tl5REYGEhMTAx169Ytc+ypU6dYuHAhUVFR1ZJZHtOnTyc7O5sWLVqg1WqxWCzMmTOHUaNGVXiOrl274ubmxrRp0/jHP/6BEILp06djsVhISUkp85qy1pWamkpYWEkne7169ezP1akj02okdw5z8j+ipVbBHTDkZ5DLJi56q9/Z5pwWFPR5lPs6dnCs0Hy1rEOBsxcALl3GQotBjpVxhyOE4NTpuTwZvBKC1U0+F2evmrenJA7lTrShpP0k7afrkfZT+cgtgltE0VefpYqRUqKMalTx8ZEcj38LAK3Wle7dttKp01pcXNQPoxyTWhi9nms9lvZdyttd38ZJ4wRXbcXU/FrCY/Phrz+Ci+cN1bD5RcjPuUDi3r3UyVE9s171VGdW0bKqU1PKagvcMzg5VX2Su4jvL2aSabbY60j1rFODnfb++A9smQOZNqdUr2kQPkcWN7+HiY6Oxt3dHRcXFwYMGMBTTz3FmDFj0Ol0PPDAA/Zxvr6+NG/enGPHjgHw0ksvMXv2bHr06EFkZCRxcXHliQDgzJkzmEwmunTpYj/n5eVF8+bNS43t1KlTieNDhw6xYsUK3N3d7Y/w8HCsVisJCQmAuvOYmprKqlWr6NatG9988w2tW7cmJiamwvfi2p2o8li1alUJPXbs2GF/rnfv3hw8eJDdu3fTv39/RowYwaVLl0rNkZycTP/+/Rk+fDjjxo2zn7923gkTJlRI5x07dpS4btWqVQB8/fXXrFq1ii+//JI//viDlStXEhUVxcqVKys0L6g7qN988w3/+9//cHd3x8vLi8zMTO6//340mtJfAuWtq6prkEhuR06KM2hstpDWamVjRy1fDFRY30/LR/dFkDxkBEoZ749qYcwDoECn1qlyaTMUdM43uuKewmi2MnDBTuJOfIWTphAnjbrD6u3d6SZXSiRVR9pPxUj7qSTSfiofGZJyi9DadmQqG0NksVo4rk0m28cH4aRDuWaGlNRv7b8bDKGlrs01qu1u3Z3c1ROZ5+DkRji9VT0OaAudnq+QHkURWyiqdyrT3Uhc63wmv/gGfP884ppIqapitRU6d9bJlyXAZZO6o/dRi/r09fXET19Dzrrzv8P6SdecUGTaXg2g02v42ye9ak12ZenduzdLlixBr9cTFBSETqdj/fr1N71u7NixhIeHs2HDBn755Rfef/995s2bx+TJk6uiegnc3EoWCM7JyWH8+PG89NJLpcY2aFBc6NfDw4PBgwczePBgZs+eTXh4OLNnz6Zv3740bdqUrKwsLly4UGp30Wg0cvr0acLDw2+q25AhQ0oYm8HBxZ0x3dzcaNKkCU2aNKFr1640bdqUzz//nBkzZtjHXLhwgd69e9O9e/dShSqv7d7i6XnjDYQiOnXqVOK6oh20119/nenTp/P0008D0LZtW86ePcv777/P6NGjKzQ3QL9+/Th9+jTp6enodDq8vb0JCAgosbN7s3UFBASU6DgD2I8DAgJo2LBhmWuQSG47kg9gFYVoikodCAvzMy/idtbIDhoTIfQ410AUeJJZQ7JXO3IU1T5wcbTT6w4n8XIux1KycWulOu8Wx73G4ucGElBHFoK/07iTbChpP0n76UZI+6ls5H//t4iij7PKRErlZWdxzprObn08+KrpcgolW4oGB4/CxTmIunUfsZ87k3WGVUdX8cPpHwBwc7J9EH0/Hs7uKr74Jil711JU7wlF1T9fbyU90Ire4KqevyZSSlTS9XY6LYcDZ68grKpR5XoPR0oZrVb+diSRk7mFJBWo3TGaubrUnEMKIFPtEoRniBr2H9wR3P1rTt49iqIoVU6hqw2KDIFradmyJWazmb1799rDzy9fvkx8fDytWrWyj6tfvz4TJkxgwoQJzJgxg88++4zJkyfbd8yurU/QqFEjnJyc+P333+2GUFZWFidOnOChhx66oY73338/R48eLaXnjVAUhRYtWrB7924AnnzySaZNm8a8efOYN29eibFLly4lLy+P55577qbzenh44OFRsWhGq9VKYWGh/Tg5OZnevXvTsWNHli9fXmq3rDLrK8JgMJR5XV5eXqn5tVqtvetLZSkKo9+yZQuXLl1iyJAh9udutq5u3brx1ltvYTKZcLJ97sfExNC8eXN76HlV1i6R3Gosxzbzwb8txAeCUQNaiwWNk2oL7UfdNHRx8Ibb2fxCuno8g7hvpP2cQSNT0q4lM/ssjb0ScNKqtvN/J4zE1cWrlrWSVIU7yYaS9pO0nyqCtJ9KIp1St4iiSClrJfw1e79dA3gDoDEZ0eVYCGvzAFBcNC60wVgMhpI7Pp/FfUb0mWj7cT1Xm3f08mn1Z5O+4BUCXSoeBmh3StmqYlk1AieNE9bCQoxpBVgK1TdLZSOlUnJSGLToNwoK9YD6gevmfPNQz7uVg9l5/JyebT82aBQaudZQKH7mOTjxc7Gjsn5nGDi3ZmRJ7gqaNm3K0KFDGTduHJ9++ikeHh5Mnz6d4OBghg4dCsCUKVMYMGAAzZo148qVK2zdupWWLVsCEBoaiqIoREdHM3DgQAwGAx4eHowePZrXX38dHx8f/P39iYyMRKPR3LTmx7Rp0+jatSuTJk1i7NixuLm5cfToUWJiYli0aBEHDx4kMjKSiIgIWrVqhV6vZ9u2bXzxxRdMmzYNUHcE586dy2uvvYaLiwsRERE4OTnxww8/8OabbzJ79mzatGlTQm58fHwpXVq3bm03DIrIzc1lzpw5DBkyhMDAQNLT01m8eDHJyckMHz4cUA2Phx9+mNDQUKKiouytjkHd7boRRbtgOTk5pKWlcfDgQfR6fQkD93oGDx7MnDlzaNCgAa1btyY2NpaPPvqI558vjprNyMggKSmJCxculFhvQECAXafly5fTsmVL/Pz82LNnDy+//DKvvPKKPW2gIusaOXIk7733Hi+88ALTpk3jzz//5JNPPmH+/Pk3XHdOTg6nTp2yHyckJHDw4EF8fHxK7PBKJLcCY0oul3ecxeT+GGZtsm2TzkrsgSB8cwpZPEzdNHRoaQJjHmf+3IxQ6uNsLaSBTnCffyD1Xe5d++l6MjJ2cfXcc7xpC8BQFC0G54pFSkgkjkbaTyrSfpL2U7k4pA/gHcqtbGm86kK6qLclVow8eLrC10R/PFdsevMrERkZKd6fOkMseGG12PV9vNi2vbPYtLmR+HVbe2GxFJS67m+//E20WdFG/OWHv4j/Hv2vuJT0mxB/fifEe75CRHoKkXmu0vrvfneWWDR+s/gu8mMRNWKQmDLxEfHomkfEqQEDxdHmLeyPiVNbiT0X9lR43iWxn4rQadEidFq0aDTrI9E8aqrILMistH53Cz9euiLqbYkVvfYeE3uvXBUXC4w1J2z5IPX1UPT4cVrNyboHudtaGhdR1NLYy8tLGAwGER4eXqKl8aRJk0Tjxo2Fs7Oz8PPzExERESI9Pd3+/KxZs0RAQIBQFOWGLY27dOkipk+fbr8uNDRUzJ8/v5Q++/btE3379hXu7u7Czc1NtGvXTsyZM0cIIURaWpp46aWXRJs2bYS7u7vw8PAQbdu2FVFRUcJiKdkKfN26deLBBx8Ubm5u9pbLq1evLjGmrLbMRY9z50p/rubn54snnnhCBAUFCb1eLwIDA8WQIUPEvn377GOWL19e7pw3o6xrQkNDb3hNdna2ePnll0WDBg2Ei4uLaNSokXjrrbdKtBUuT6fIyEj7mGnTpol69eoJJycn0bRpUzFv3jxhtVorva5Dhw6Jnj17CmdnZxEcHCz++c9/3nTdW7duLXPeotdTVXFES+N7BXk/iklbeUTsmBApFo3fLOY9PVJEjRgkPnrm/8S2jh3E0eYtRKPIxSJ0WrTYEFd526tcdi0UPy4YKOptiRWDvv+PEEfWOW7uu4C5Px8Tr33xhti0uZHY8EsLsW5jZ3HixJzaVktSQaT9JO0naT/de/aTIoQDeoXfoWRnZ+Pl5UVWVlaF80yrypqUDF4+nkRvHw9Wt29coWvWf/g+rplh7HQ6jnOBL56Zrek0qCH39XPjas4x3N1b4OJc2hM86sdRxKXF8XHvj3nUvzNENQNzvu1ZBd5KBSeXSum/853ZHErrTlBgHGeObiLJP4/znbXM/sd5ALQuFpK8nZk9TPDPJ/9N18CuFZo3at8nLPpODS/8R0Qh7eo1o03dNje56u5jy+Vsdly5yvHcArZmXKWPryf/bdfo5hdWh3kt4eoFaNRbrSH10Gtqxz2JQygoKCAhIYGwsDBcXCr3frvXyc3NJTg4mHnz5vHCCy/ccvkZGRk8+uijeHp68tNPP+Hq6nrLdZDcem70nr2V9sKdgLwfxaR9FsefB9ZzlO4UXlmCIB/Q0OX0eXzzCnhsxMtYC0L4YkwnHmnhoLoeG99i3amjTGgVSQ9LKt8+9CDo3W5+3T1Cy3d+ZkDoOgY1imHT2V64+7/GW4PKj4CQ3F5I+6nqSPtJUhs4wn6S6Xu3iKI0/60ZV/lL7CnqOGlZ0KIBbrry86NN+SZ7zz2duQB/XytNO9bD2dkNZ+fSho1VWDFajKTlqWF+7k7ukHVedUhpnKBBV2jSp1IOqdQzWZyJTSM5p6HtjKpPyyQrjx+6DIDWVUezIReY3uJ+LhemV3huAKOlOA93WPOhON/gftytmK2CF/5MJP+anORg5xqsIfX753BuH+TYCuQNXaSmc0oktURsbCzHjx+nS5cuZGVlMWvWLAB7SPutxsfHh02bNrF48WL27Nljb7UskUgk12O1WDiffxaj5TJCFNjaLVs57+bPL8GNESa1hpGLI+0bUz4FGjVVz8WvmXRIXUN6xiEeDv6Z5j4nAXiiYws6tWlZy1pJJDWDtJ8kdwvSKXWLuLbU0u7MHACeCsihX93yCy5azRa7U8on4zjhT7XHM6hswyPXlMuT65/kfM55+zl3J3fIyVAP6jSEMdFlXnsjYpbtJztTAdSuCpkiCwDPAgi4pBbidgk0lLimMsF3RnNxwT6ne7RrTIbJTL7VigaY2MAfg1bDyEDfmhGWmw4bphYf693BTRY1l9Q+UVFRxMfHo9fr6dixIzt27LAXgawNfH19effdd2tNvkQiuTNIy0rmUkGKeqCoW3cK8K82wznnEQA2M8fdxYEmt7mQAo1ab9JFK4ubA1isgt8TM7h69m882ax4gzTINwSNLAAvuYuR9pPkbkA6pW4R2jIKzplu4ryxms0IW7c7jdWKcoNdtpNXTpZwSIVoDIQt6QUWk3rC1afCuuZlG9nx9Qnysow2hxS0d/2BjV5mTlv+pCMeKEKweWAgf31yNoaTCyAhnqp85RfanFIaRdxzRkOBxcqbJ89zIrcAAB8nHW81DrrJVdXkqs1wdvaEh6dD/QdAJwujSmqXDh06cODAgdpWQyKRSCrN5ULb5p/iiruoy1WvfMhK45K7uonYv3UA7ep70TbYgV3fzAUU2iKlnO/RDb3rWRebzBtr/2BZX9UhdeDSAzzRqS31/B+rZc0kkppD2k+SuwXplLpFlNUEwXKTgCKrxYrQqYMUYQVt+U6pPFMeAMHuwXw/9HucP2yOpsghBWrdoApy5mAap/Zfsh97alPp0d+LD67sxP2I2aaPoG3vJ3Hr3h2SFpe4XlD5SCmt5t4rbbbjylW+TMmwHzd3q8G8+cwkNW0vw9aB0SsEuk2sOXkSiUQikdwDmG0t2hXFgEH4YVUSyQNMGi0IeLVfM5rWq1i784pwLCefH5w7sbeuajO43GMbeuVx8lIOrk6qLSyEQlDobJo2kXUyJRKJ5E5AOqVuEdoy4ois5URKCYuVtE/j6EE4cZwDQLEKFG35f648s/pF7Gfww4AWCtU0Oyb+Dm51KxUpZTaqBlZgEy86XJ2Nv/UPlPt+xrJzP4ooVPUR0Dm4W4nrbtZ+tCyKakrdwN9215JmUh18bd0NTA6tR3dv95oTtj0K/lhZfOxVv+ZkSSQSiURyj2Cx2jYAFS0CK9hsO2Er3OCkdWwk01snk9ntXmx/eeukKW8259JM+zL/6KFmDDg5efJsN+mQkkgkkjsF+U12i2jm5oJOAfM1fihrOWPNlwswJl1Fo2jtUUcaceP0vVxTLgBu6adgUSf1pKIF3yZQydBuqy2Ey8vflTDTAdXBpXHCbDWjEarjSRECxamcl08lgp5MRU6pe2ijLz63gA1pmezLVP9mLdxdGOLvXbNCs2ypnc0HQdB90PbJmpUnkUgkEsldzsFPI8nPPWE70gBW8rLUCGghVJvNSedAp1Tc11zO8ANNHQZf2kqThu0ZU7+14+a/A1m67TTR+9bzSsdT9nNeXvfVnkISiUQiqTTSKXWLaObmwqHubci3Wnn1+Dm2XbmKpbxIKbPqqCm05HEsdx/41kURosxwomVxy9iatJU/L/8JgGvOJci0FXis17rSDikAi7koekkBi1rMHG2RU0o91ACK03Ud4ipR4LwI0z0YKTX1eBIHsvPsx4H6Guy0d+gruPin+gDoOAaa9as5eRKJRCKR3ANkxP1BwKWFvOPfhIeT/QGNGikF4OEM2JxSjkqvK8yB7yeQ3/m/YKjDhPNf07FLR6jJbr13AD/9mYqLTt3kO5vdgM73LaBNaKta1koikUgklUE6pW4hvnr1dhfZJ9YyfDhCCH5ft5ZQGmO2mjAL1Smk8/TEpVXJL1mL1cLig4uxiuKYq1CTCXybwtBFUK9NlfQsckppdBooCku3OaUU6zWRUteFjFcmfc9ssbI3IYOUNG8AHLmReLuTVKD+TZ/w9ybERc/YEL+aEZSRAN+PL3nOK6RmZEkkEolEco+wLzqBC79sp36gDqUoglzR4oILL/77Sz7+czH84OD0PWMuCEtx172HXoHQno6Z+w7FYsmjri4Wf1e1XmaHhk1p27BtLWslkUgkksoinVK1gMZWX8pSRp7blZRkTv22h9CgxlixgG1snccfR+tesuZQrjnX7pBaUPdB3DLP0eHKdmh0PzToWmX9rLYcQ61WAata9ygl8RytD+nxSVONK0VQ7JS6zhlVkULnq/YmEbn+CNAUgPIyAe8WTFbBV6mXuVho5rJRvaczmwRTryZ3OItS9lx94b5RULcp1JO7hxKJRCKRVIekI5fRY8WiYN+sAw11XD1w9fCkwGK2j9U5qj6BWe3UW6C1OaVaD6lSNPzdgsli5c8/32Bk05/s55ydK14/VSKRSCS3D3e5K+D2RHuDSClTYSEapSiXzQWNc2sgA00ZhkeOMQcAPQq9f19V/IRncLX0sxSl1F3TEW/Tf/9Dk7PF3eGczWbQlXSoVMbsSs7MB8DFOR+T9gLhHUKrrvAdQMzlLF6PP28/dtYo+NSUJy7rPJzbC+dtLWLrNoN+f68ZWRKJRCKR3GNYzFY0WDCjoC1ySilarIqFBX8s4ODFw8D9gAMjpcxqo5n8okipe9ghdSEzn4ELdjCl/SHqe0Bqrj+N6tUnOOjp2lZNIpFIJFXg3v1Gq0W0tsiisrrvWS1mu1PKohhQNAaAUk6ps9ln2XNhDwDuRdO0HAwPvgYPT6uWfkWRUhptsX7GfNWJdKzBVdqeT6fB5exrCp1XPlIqPe+KKst9D66hn9Gl6d1dVCopX03Za2xw5q/BdVnaKtRxdSauZ/lAWPs8/LZYPXarofRAyV3LmDFjUBQFRVHQ6/U0adKEWbNmYTabb37xDfj1119RFIXMzEzHKFoBEhISGDlyJEFBQbi4uBASEsLQoUM5fvx4iXHR0dH06tULDw8PXF1d6dy5MytWrCgxJjExEUVROHjwYIXlz5w5kxYtWuDm5kadOnXo06cPe/fuLTHnCy+8QFhYGAaDgcaNGxMZGYnRaLzhvCkpKYwcOZJmzZqh0WiYMmVKhfS5evUqU6ZMITQ0FIPBQPfu3fn9999LjMnJyWHSpEmEhIRgMBho1aoVS5cuLTFm/PjxNG7cGIPBgJ+fX5n3NCkpiUGDBuHq6oq/vz+vv/56ua+hXbt2odPpuO+++266hu+++45+/frh6+tb6b+HROIIrBaBoliwKqCxV1DQkGW+ymeHP+NM5ln7WEc5pX65ks8/wsZh0qgbgveyU+rguUwy80y46lTb9NeLL9Kl0xpZ4FxS60j7SdpP0n6qGvfuN1otUuSLsJTxnDH9st0ppVgK8L0cp/5+TYrcmcwzPPb9Y8zcMxMAD1tkEz2mwKPvgHeDaulnL3R+TaSUxaqeOxV8lfqXs9BZS9eUqmjXPbPVzMaETeqBos5r0BqqpfPtSpbJzJqUDLZfuQpAb18P3m8WwgA/75oRaCqAImO44YPQrD90f6lmZEnuavr3709KSgonT57k1VdfZebMmXz44Ye1rZadmxkdACaTib59+5KVlcV3331HfHw8a9asoW3btiUMu4ULFzJ06FB69OjB3r17iYuL4+mnn2bChAm89tpr1dKzWbNmLFq0iMOHD7Nz504aNmxIv379SEtLA+D48eNYrVY+/fRTjhw5wvz581m6dClvvvnmDectLCzEz8+Pt99+m/bt21dYn7FjxxITE8N//vMfDh8+TL9+/ejTpw/Jycn2MVOnTuXnn3/mv//9L8eOHWPKlClMmjSJ9evX28d07NiR5cuXc+zYMTZu3IgQgn79+mGxqN9sFouFQYMGYTQa2b17NytXrmTFihW8++67pXTKzMzkueee49FHH63QGnJzc+nZsycffPBBhdctkTiKwrxcLp3+HEvej1jA3pUYNJhtHqpOAWoJBY0CWgdsQOWYLTyfbGVBg2cB0CsKbo6KwLrDEEKQl3OEpt6n8XRWm8Z8/MyDDrnPEokjkPaTtJ+k/VQFxD1MVlaWAERWVtYtlTv2cIKotyVWfHbuUqnnjiz4WHw1Zqr4c/rP4ofXPheLXnlFREZGiq1bt9rHxCTGiDYr2ojOX7QSwz9tJr77MFCISE8hLp+ull5ZaXni2O4LYu0Hv4tF4zeL2Ogj6ryRnmLJ+AgRNWKQeHh+B3G0eQtxtHkLYc7MVC/86lkhIj3F8K96izYr2ogd53fcUE6OMUc0ef8dETotWvReOlfM3D1T5Bpzq6X77cqM+HOi3pZY+2NBYmrNCLJahUj+Q4g/v1P/Zu/5qOcktUZ+fr44evSoyM/Pr21VKs3o0aPF0KFDS5zr27ev6Nq1q8jIyBARERHC29tbGAwG0b9/f3HixAn7uMTERPHYY48Jb29v4erqKlq1aiU2bNggEhISBKrr2v4YPXq0EEKI7OxsMXLkSOHq6ioCAgLERx99JHr16iVefvll+7yhoaFi1qxZIiIiQnh4eNiv3bFjh+jZs6dwcXERISEhYvLkySInJ0cIIURsbKwARGJiYrlrTUpKEk5OTmLq1KmlnluwYIEAxG+//SaEEPY1xMbGVv6m2ij63tm0aVO5Y+bOnSvCwsIqPOf196o88vLyhFarFdHR0SXO33///eKtt96yH7du3VrMmjXrhmOu59ChQwIQp06dEkII8eOPPwqNRiNSU4s/85YsWSI8PT1FYWFhiWufeuop8fbbb4vIyEjRvn37m66jCEf8Pa7lRu/Z2rIXblfu5fuRELtfRI0YJL79a1fxeUQP8eFT/UTUiEHio2dfE188+7Zo9N4noueH/xOh06JFs7d+dIjMCwWFot6WWBG4eb9465soEX3pikPmvdMwmS3i2MnPxKbNjUo8CgvTa1s1iQOR9pO0n8pC2k93t/10b26z1DJFNaXKyN7DYixEq2jZ5HSYP9ySSPP0BMDJqbh+U45JrSV1f0EhX1/M4AmtL7R+AuqEVUuvH+btZfPKY6SeyQZAl/iL+oTGCautaOeclcXxXeUWOi9rYddgERaEUKPB/tJ0KJHdInF1cq2W7rcrCflqDYj7PFwZFejDUwE1VITz4CpY9jB8M0Y9dvMr9XeR1C5CCEwFBbXyuNl7siIYDAaMRiNjxoxh//79rF+/nj179iCEYODAgZhMaqfOiRMnUlhYyPbt2zl8+DAffPAB7u7u1K9fn2+//RaA+Ph4UlJS+OSTTwB1Z2nXrl2sX7+emJgYduzYwR9//FFKh6ioKNq3b09sbCzvvPMOp0+fpn///gwbNoy4uDjWrFnDzp07mTRpEgB+fn5oNBrWrl1r34G6nrVr12Iymcrc0Rs/fjzu7u6sXr262vcP1N3JZcuW4eXldcPduaysLHx8HP9ZYTabsVgsuLi4lDhvMBjYuXOn/bh79+6sX7+e5ORkhBBs3bqVEydO0K9fvzLnzc3NZfny5YSFhVG/fn0A9uzZQ9u2balXr559XHh4ONnZ2Rw5csR+bvny5Zw5c4bIyEhHLlUiqTGstsjxq2YPrhR6owjVPlM0HuRaXbDkNeZcuvr9G1zHAVHgWecpjPseAFdLAbPT1zGopqKtb2NMFivhH2/nq91bAbhqdCPPGkxQ0NPo9b61rJ2kprmTbShpP1UfaT/d/faTLHReC2hszgLLdR9yhWezcc1sRkvvJpxQjgLQpEkTvLy8aNeunX1cUYFzD6sVGj8KI79yiF65mYWAE8H6ODy0aTS+uFJN8DTUwWrLY3WyVWd3btUSxbWkI0mpYKlzq9UKwsGtkm8zjFYrBVZBuq3T3tSG9ehX16vmBKYeVn+61gV3f7h/dM3JklQJc2EhC0Y/WSuyX1q5FqfrvkgrihCCzZs3s3HjRgYMGMC6devYtWsX3bt3B2DVqlXUr1+fdevWMXz4cJKSkhg2bBht26ptuRs1amSfq8hQ8Pf3x9vbG1Bz9FeuXMmXX35pDz9evnw5QUFBpXR55JFHePXVV+3HY8eOZdSoUfZ6AE2bNmXBggX06tWLJUuWEBwczIIFC3jjjTd477336NSpE71792bUqFF2vU6cOIGXlxeBgYGl5On1eho1asSJEyeqdO+KiI6O5umnnyYvL4/AwEBiYmKoW7dumWNPnTrFwoULiYqKqpbMsvDw8KBbt278/e9/p2XLltSrV4/Vq1ezZ88emjRpYh+3cOFC/va3vxESEoJOp0Oj0fDZZ5/x0EMPlZjvX//6F2+88Qa5ubk0b96cmJgY9Ho9AKmpqSUMKsB+nJqaCsDJkyeZPn06O3bsQHd9OrhEcptitVjw1vtTx6mQ9MIs/LNyyaj3AFqXBzjscQmAR9tqeeq+++jQoE71BX7zVwoyLkHnleitJtC73/yau5DUrAJOp+XSP0hN2duQOJhRvV+mZXP/WtZMciu4E20oaT9J+0naTxXn7vQI3OYU3fTr/c45O87jbPLFU18XE6ozY8iQIQwePBgPDw9izsYw9ut+/HfP+wC4WQW4Om53yGpzFPXtmsCj/cwYeo6BnlNZ1X00BUa1mKRA0HDbFsK++eaaOleVK3RuERaK7oKT9u4rcP57Vi7Nd/xJsx2HOZyj3jffmuq0l58Jx6IhRa09xoNT4f/2QNcJNSNPcs8QHR2Nu7s7Li4uDBgwgKeeeooxY8ag0+l44IEH7ON8fX1p3rw5x44dA+Cll15i9uzZ9OjRg8jISOLi4m4o58yZM5hMJrp06WI/5+XlRfPmzUuN7dSpU4njQ4cOsWLFCtzd3e2P8PBwrFYrCQkJgLrzmJqayqpVq+jWrRvffPMNrVu3JiYmpsL3oshQuBGrVq0qoceOHTvsz/Xu3ZuDBw+ye/du+vfvz4gRI7h06VKpOZKTk+nfvz/Dhw9n3Lhx9vPXzjthQsXe2zt27Chx3apVaofW//znPwghCA4OxtnZmQULFvDMM8+UaKaxcOFCfvvtN9avX8+BAweYN28eEydOZNOmTSVkjBo1itjYWLZt20azZs0YMWIEBQUFFdLPYrEwcuRI3nvvPZo1a1bmmBvdU4mkthBWKyFuze3R7p55haQEBqMoTuTo1c54TQOc6Nc6AD8P5+oLzE6mUKN+BrloNdVuZnOnkpr6A880/5ZG3ucAmP1Edx6WDinJbYi0n4qR9pO0nyrK3eFau8Mor/ueMKkh4SezDyJs37POzsUGzdJDSzmRnwI69cVf32yC0O4O0UlYrQhsBdZ7vwGBwQCk56fzz697E2GtjxYNQgMu/gElCq8XUdFkMYuwgC19z0l796WY7bpylXyrvR0PjQ3OtHCvWpTKTVn3fxC/ofjYvV75YyW1is7ZmZdWrq012ZWld+/eLFmyBL1eT1BQEDqdrkShxvIYO3Ys4eHhbNiwgV9++YX333+fefPmMXny5KqoXgI3N7cSxzk5OYwfP56XXipdzL9Bg+KGDx4eHgwePJjBgwcze/ZswsPDmT17Nn379qVp06ZkZWVx4cKFUruLRqOR06dPEx4eflPdhgwZUsLYDA4OLqF3kyZNaNKkCV27dqVp06Z8/vnnzJgxwz7mwoUL9O7dm+7du7Ns2bISc1/bHcXTltJ9Mzp16lTiuqJdtsaNG7Nt2zZyc3PJzs4mMDCQp556yr7zmZ+fz5tvvsn333/PoEGDAGjXrh0HDx4kKiqKPn362Of08vLCy8uLpk2b0rVrV+rUqcP333/PM888Q0BAAPv27Suh08WLFwEICAjg6tWr7N+/n9jYWHu6gNVqRQiBTqfjl19+ueE9lUhqg+TkZH7a9Ru5fgX4ncsCQChWNLZNPYvNrHNx5M61KY9CJzXiytm9LjRq5bi57wAKzRZW7T5EA9M79AkttpudXQJqUSvJreZOsqGk/STtJ2k/VR7plKoFihqEWK8LKLKarVxWrpKgXABUJ8a1taSyjWqtp5czMmnWfSpdWz4FnqVDNKuC9Zo2k5prZF41ql3jFKuqtF6nL9MhVSlZwmp3SunuwvS9KyY1Bu7F+n683TgIDVT7npVLmrq7QmB7qNsMmpadsyypfRRFqXIKXW1QZAhcS8uWLTGbzezdu9cefn758mXi4+Np1ar4H6X69eszYcIEJkyYwIwZM/jss8+YPHmyfcfs2voEjRo1wsnJid9//91uCGVlZXHixIlS4c7Xc//993P06NFSet4IRVFo0aIFu3fvBuDJJ59k2rRpzJs3j3nz5pUYu3TpUvLy8njuueduOq+HhwceHh4V0sFqtVJYWGg/Tk5Opnfv3vaOLJrrWr1XZn1FGAyGG17n5uaGm5sbV65cYePGjcydOxdQO+6YTKZSOmi1WnstnbIQQiCEsK+rW7duzJkzh0uXLuHvr+6yxMTE4OnpSatWrXBycuLw4cMl5vjXv/7Fli1bWLt2LWFhYbi5uVX4nkokt4JN328jNymBgJQUTBYTaJ0QGqu9a7LF1onPWefAKHBTAUZn1S5z1tx9NtPNiDl6kc+3H2BWd0GBWc+JnIGMeKATXp7317ZqklvInWRDSftJ2k/XIu2niiGdUrWA1hZTZLkmzU1YrZzKTOQX5z/AT/3Q1Wp0xS9sYx65tlpSfXLzaNjsCYc5pACspuL2oJprQi2NFiMI0Nh01urKCMOspMNFLXSurkt3F7XwXX8pk02Xs/g9KxdQU/a0NeGMEgJO/AzZF+CqmlvMsC+gbuU/eCWSytC0aVOGDh3KuHHj+PTTT/Hw8GD69OkEBwczdOhQAKZMmcKAAQNo1qwZV65cYevWrbRs2RKA0NBQFEUhOjqagQMHYjAY8PDwYPTo0bz++uv4+Pjg7+9PZGQkGo3mps7cadOm0bVrVyZNmsTYsWNxc3Pj6NGjxMTEsGjRIg4ePEhkZCQRERG0atUKvV7Ptm3b+OKLL5g2TU2BadCgAXPnzuW1117DxcWFiIgInJyc+OGHH3jzzTeZPXs2bdq0KSE3Pj6+lC6tW7cusYkAagHLOXPmMGTIEAIDA0lPT2fx4sUkJyczfPhwQDWoHn74YUJDQ4mKirK3OgZ1R+xGFO3k5eTkkJaWxsGDB9Hr9SUM3Ospaj/cvHlzTp06xeuvv06LFi3461//Cqg7ib169eL111/HYDAQGhrKtm3b+H//7//x0UcfAWrKwJo1a+jXrx9+fn6cP3+ef/7znxgMBgYOHAhAv379aNWqFREREcydO5fU1FTefvttJk6caI8Avv6++vv74+LiUur89WRkZJCUlMSFCxeA4r9HQEDATe+ZRFJVjAVmLu3fgj4/lQwArfp+z9fr8HBRd+AtAlDARe9U7jyVkmmxcNwlhONu6k68811kM1WU1KwC3JzUOlJo6vJYj5kE17uz/tmSSKT9pCLtJ2k/lYd0StUCZUVKbVu1nLT0AjCAxmIFs6BpY3UXyHJwNdn/m0xu/QBQFNyEFVwcWzTbarzGKXWN46nAUoByjZ4aTfm7fxVO37MW15TS3SXpe1YhePnYWfKv+aM2MDiglkRZJO6E1U9fc0JRi5tLJLeA5cuX8/LLL/PYY49hNBp56KGH+PHHH+0GhcViYeLEiZw/fx5PT0/69+/P/PnzATV8+L333mP69On89a9/5bnnnmPFihV89NFHTJgwgcceewxPT0/eeOMNzp07V6rLyfW0a9eObdu28dZbb/Hggw8ihKBx48Y89dRTAISEhNCwYUPee+89EhMTURTFfvzKK6/Y53nllVdo1KgR8+bN45NPPiE3V3Usr169mqeffrqU3LLOnTt3jpCQkBLntFotx48fZ+XKlaSnp+Pr60vnzp3ZsWMHrVu3BtTdr1OnTnHq1KlS19+s40+HDh3svx84cIAvv/yS0NBQEhMTy70mKyuLGTNmcP78eXx8fBg2bBhz5swpYRB+9dVXzJgxg1GjRpGRkUFoaChz5syx12NwcXFhx44dfPzxx1y5coV69erx0EMPsXv3bvuunlarJTo6mhdffJFu3brh5ubG6NGjmTVr1g3XVBHWr19vNwKh+O8RGRnJzJkzqz2/RFIWpkILilndHFQ03qA4o2jcyAj9P9xT1c8qIRTVKeWg9L3RcafZ2vHf9mOXeyxSKjNzP37G2TzXSk1d8ff2o6l0SEnuUKT9JO0naT+VjyIc0Sv8DiU7OxsvLy+ysrIqnGfqCKafOM+K5HQMGg3/18CP/nW9OP7JPxA5QRx1uYTXVSPaK2H0GNGXdv2C+cuq7iRai4uf7SUU1+f+V+kIpRtRcOkin7+rtpl8cdFDaGwG1b6Uffztp7FEbFTDQgemZNNy+/aSF3/zVzjyHc+07MSfBZdY9MgietXvVa6shKwE+nzyPyx5jVn4TAcGt3dcxFdtkWky02LnnwC80zgIf72Ox/3r4FQTu5oHVsD/XgaPQKjfBRo+CF3G3fQyya2loKCAhIQEwsLCbmocSEqSm5tLcHAw8+bN44UXXrjl8jMyMnj00Ufx9PTkp59+wvW6TqOSu5MbvWdry164XbkX70d2ej7LXnoOxZKP3mMkGl3JXeVCXR5femSTLrz4eFR9Hm/brpyZKsixaO5L8SVVMeBnvIzBM4CpDQN4OtBxDW5uZxZvPYXl8ju09imurRIQ8AStWzm+s5bk9kLaT1VH2k+S2sAR9pOMlKoFimKN8q1W5iVeZNPlbEbn51MUNKTTBKHRN0aj1ZCam1rCIdUjqAeGR//lUIcUgMVksv+uXNMRr9BSiOaaNFhFW/5LpiIaXbpawG+ns7HkNQbu/PS9fIuVn9OzSMhX84DdtRomNqihqCVjLmQlQ/pJ9bjxI/D4v2pGlkRyC4mNjeX48eN06dKFrKws+25QUUj7rcbHx4dNmzaxePFi9uzZY2+1LJFI7l3yftuLzpSPRQMoTrQ3fseZ1v9jno83AFZFkHNqGpghwKPsluUV5upFWPMs+d3/B07w/ZE3aTJ1b7XXcCexbPsZxrbKBODnxEd4pN1AWjS/edFkieReQtpPkrsF6ZSqBa6vM5RltmAsyMfFljVnVZzRAK5HlpF39Dvw1uJjsbC1xzw0zQfUiE7CrKbvaTBTaCnEaDVispg4k3SUulnFaWha7c2LdwrKDr4zmq2Ez9/OlbxiB5iz050dir4yOZ2Zpy/Yj/0dVEeiFMY8WNABci4Wn3P1qRlZEkktEBUVRXx8PHq9no4dO7Jjxw7q1q3mP3bVwNfXl3fffbfW5EskktuLY//ZhEVRAIGiOOHhnIpVsWDVWDHnNsSaNgzF4o0AvF3cqycs7zIgyNeq9pch/L3qqn9HkZeXTEvv3fgZLgPw7EPDaN+kfy1rJZHcnkj7SXI3IJ1StcD1QU5WAaaCAoo6jrpfTaa9byFNrizhkIsWvOvhbhVo6t24eFl1KKopZdRY6LyqMwABl53pvzeAcNRWmAiBpiynVAWjtnIKzXaHlMYlCVdDHg+E3dm7XkURUs1cXWjh7sLwenVqRtCVBJtDSgFDHXDxhJa1swsikTiaDh06cODAgdpWQyKRSMrkz61biNVeslUyB3AiJsiXWGtdwIIw+VKY7weAXqchwLOaKUfmfMxoMWrU3UpDsz43ueDuIvbQXxnX9rT9OKxeyA1GSyT3LtJ+ktwtSKdULaC9LtEt+0oGVzPScbXVLve8eoEGQXmkKoJjXmoqmJtfC/CuX2M6Wc1mACyKlVYJHjQ5746LUY1iMumsuDq7EpKQCm7e5c6h3CSBz2xrh6lRwC3sXwS4BeDm/KpjFnCLMVsF+VYrl4zqfXsu2JexIX6OF2S1QtJuSNihHvs1h4n3Vgi/RCKRSCS1RX6OkR1frUZYUgCwaDRsafo1J/3+sNctEFYX9PpcPo/oTVhdN7xdy+hUXBlMBRRoi+cw3CMFzjfEpRD1y3Gm35eITgMnMxvTu013PNzL74glkUgkkjsf6ZSqBa5v6Wu2WNAJHcJ2WmMx8uP5zczrHmwf4+rs2G57JTi1GeuxP4COWBULnRL80BRY7E8//n/TqK84kfT8CyjNywoHLbme8mrnm207jEW2lVa5eSrg7UhSfiH9D5wgw1R8j3ycauitdOJn+OqZ4mP3ejUjRyKRSCQSSSkO/nIW69UsAHTO3UgK+xIvDyP3nfEg6HIhV7wCidE8hEFv4sGmjtmc+jJTcKDxJPuxyx1ef7OifPV7EuczMtFpVPtq88U3mPCXeytKTCKRSO5FpFOqFng60Icz+YUg4Ie0TJx17vyl4Sv8qlG732ktFi5Y8yj68/i4+DC40eAa0UVciidt+WukmRoDHRGKFcXmPBow6VV8Qxrg37ARuTt3AiWLoFcWi1Wdt6im1p3qlPo9K7eEQ8pPr6OLl1vNCEuPV3+6B0C9VtDj5ZqRI5FIJBKJpBSa1Dy0ihrprdMG0aPQE81RD8zHCmh/Lp+dAzrxi7MXGpcrDpF3vsDI1CvuEPgYAL5OOhQHN7e5XcnILcBVl287Uvh/L5TfyVkikUgkdw/SKVULhBqc+bR1Q/7MyuGHtEysisKf2nNkKDkAKAXZ5Puq4UQxvZcS0KBHjekS/1sqmy/Psx9bFDM6m/Oofqu2ePiqkVHCpKapobv5S6a8QufmIqeULVJKo9yZ4ehFDqnH/LxY0qohOgXHG4xWi9pt72qqetz2SQif41gZEolEIpFIbohitmIVqlNKERCntMG9wMh9g9vQNGIsP8Tuhl9Ao5Rt+1SWTJu95WbOY1zuPh5+eKxD5r2diU26wtlTU5jaZqf9nFbrhqGmmsdIJBKJ5LZCOqVqEcWW5laoWPjN6YT9vJPRiNnm4zDUYHFzgPRLqoPFoMshz1tLrHsMXS7anEc6HZarV8k/FEf+4ThV52oUOrcU1ZS6Q9P3Pj13iS/Op3PFVn/LT++EU02E1Bdkw5LukHWu+JzstCeRSCQSya3HKrDaNtsUBEKjA1GI1mBAV6cORqsF0OKQsk8x72I8uR9a/gNfUybTc3aC9xQHTHz7IoTg+eW/EfXgzhLnfXx61pJGEolEIrnVSKdULaKx7bxZbX6NUM7jfT6DkPPnsTRRz7k51UxamNUqKMgxkZstAIX7/Haz/bEAjsXtpguhqn46HefGjSf/jz/s1yn68ot33sw9UxQppVFAAJo7rHDnsnNpJBea7MftPQw1I+jinyUdUs5e0OjhmpElkUgkEomkXIRV2GtlKsLmlAJ7N2KT2Qpo0WocECm1fzkFLmEAOFtNEFCzG5O3A3lGC2ZLlv34gvNanu7SEJ3Ou/aUkkgkEsktRTqlapGiSClhizQK2pdI4NlknCxgVTQ4a53RaRz/JxJCsPaf+0lLukqRK8mgL8AiLGitxa4ljVZLwbFjADi3aIHG1RWf0aPLWknJ+ctJ37uYkw6ASRSiA3TKnfHyE0JQaBWk2Trt/adtGI1dXWjk6lwzAnPV+0RwJ3j+Z1C0OGYLViKRSCQSSWXQx/2M1WIGBTQCUJxACBTb97LRom4wOsQpZcqn0Na5z9m3IXQdUv05b2OsVhPH49/h/9qrm586nRcRPTrUslYSiUQiudXI/3RrEcUWOWS1HWsKUR1SwDk/6BrYtUbkmgosNocUKIrAXZNOsOd5zFYzGlHsYDrzSB9EvlpwsuGar2j45So8Huld/npuIvfjAwsAKDDnAmDQ1VCkkQMptFrp/Xs8DbfHYbQ5ER+s41EzDqk9i2GWL3wdoR671wOtk3RISW45Y8aMQVEUFEVBr9fTpEkTZs2ahdmWulpVfv31VxRFITMz0zGKVoCEhARGjhxJUFAQLi4uhISEMHToUI4fP15iXHR0NL169cLDwwNXV1c6d+7MihUrSoxJTExEURQOHjxYYfkzZ86kRYsWuLm5UadOHfr06cPevXtLzPnCCy8QFhaGwWCgcePGREZGYjQabzhvSkoKI0eOpFmzZmg0GqZMmVIhfbZv387gwYMJCgpCURTWrVtXasx3331Hv3798PX1vel6hRAMGDCg3LlWrFhBu3btcHFxwd/fn4kTJ5Z4fuPGjXTt2hUPDw/8/PwYNmwYiYmJJcasWrWK9u3b4+rqSmBgIM8//zyXL1+u9jolkpthvnIFl9/+i7Woq7AQCI0TIKhbvyEARotaBqHaX9VWC1hNGDVqHSVnvaHC5RHuRK7kGln56w9kpn9DszqnAXB1DatlrSSS6iHtJ2k/Sfupasj/dmsJYbZiPqbWkSqKlCp0tzJ1rJYvP+jNp2/sYuEjC2tEtqlQNaAUjcKLE68y2n8cnoZcLMKCpshDJgTWjAwAXNq3Q+NcCSdMOZuFVwrU8GwnrYZhTYfxSsdXqrqEW8aZvEKO5xbYj3v7eOCiraG3zZF1YL3mS0um7Elqkf79+5OSksLJkyd59dVXmTlzJh9++GFtq2XnZkYHgMlkom/fvmRlZfHdd98RHx/PmjVraNu2bQnDbuHChQwdOpQePXqwd+9e4uLiePrpp5kwYQKvvfZatfRs1qwZixYt4vDhw+zcuZOGDRvSr18/0tLSADh+/DhWq5VPP/2UI0eOMH/+fJYuXcqbb755w3kLCwvx8/Pj7bffpn379hXWJzc3l/bt27N48eIbjunZsycffPDBTef7+OOPy2308NFHH/HWW28xffp0jhw5wqZNmwgPD7c/n5CQwNChQ3nkkUc4ePAgGzduJD09nb/85S/2Mbt27eK5557jhRde4MiRI3zzzTfs27ePcePGVXudEsnNMOeom2hFdtoVD9AoOvqNm8SfQZd5cdOL7EvZD4CuujUmzaqtUaBR7S19TdSsvI34z29n2XBI/ef2Qk49fjw3jrZt5ftVcucj7SdpP0n7qQqIe5isrCwBiKysrFsu+/JXx8XvkTtEvS2xInDTAREZGSm+fbqPaLOijZj3+7walX0lNVcsGr9ZLJuyTYi4b4SI9BRi+SAxa/cs0WVJexE1YpD46MkBIr5nT1Fw+oywGo03nvDbcUJEeoqIr1T9NyVuKnNYt88jROi0aNHjg401sKqaYVfGVVFvS6zouueIyDGZhdVqdbwQs1GIK2eF+KiN+reI/1mIvCuOlyO5peTn54ujR4+K/Pz82lal0owePVoMHTq0xLm+ffuKrl27ioyMDBERESG8vb2FwWAQ/fv3FydOnLCPS0xMFI899pjw9vYWrq6uolWrVmLDhg0iISFBoLqs7Y/Ro0cLIYTIzs4WI0eOFK6uriIgIEB89NFHolevXuLll1+2zxsaGipmzZolIiIihIeHh/3aHTt2iJ49ewoXFxcREhIiJk+eLHJycoQQQsTGxgpAJCYmlrvWpKQk4eTkJKZOnVrquQULFghA/Pbbb0IIYV9DbGxs5W+qjaLvnU2byv6cFEKIuXPnirCwsArPef29qiiA+P7778t9/mbrjY2NFcHBwSIlJaXUXBkZGcJgMNxwnd98843Q6XTCYrHYz61fv14oiiKMtu+dDz/8UDRq1KjEdQsWLBDBwcE3X6CNm62ziBu9Z2vTXrgduVfux8mPp4qjzVuIqOGDRNSIQeK9l5aKt2e+Lc6dOyfar2wv2qxoI5p99DcROi1a9Fm4ulqyzDnp4uqseuI/S0aKeltixdMHTzloFbcn07+NExELZohNmxuJrzc+I/44m1HbKkluE6T9JO2nspD2UzF3o/0kI6VqCfPlfIrKDxQFFpk8vQEwONVsWltRpJSTs1YNFwfQ6ErUlNII0Lq549woDMWpoi15bTWyygmVMtlC3Ku9m3gLOF9gZF5CKl8kq954XycdbjptuR7tKiMELHsYPm4LWUnqOd8mYPB2rBxJrSOEwGq01MpDiLLfk5XBYDBgNBoZM2YM+/fvZ/369ezZswchBAMHDsRkUpsATJw4kcLCQrZv387hw4f54IMPcHd3p379+nz77bcAxMfHk5KSwieffALA1KlT2bVrF+vXrycmJoYdO3bwxzUNFoqIioqiffv2xMbG8s4773D69Gn69+/PsGHDiIuLY82aNezcuZNJkyYB4Ofnh0ajYe3atVhsnz/Xs3btWkwmU5k7euPHj8fd3Z3Vq1dX+/6Buju5bNkyvLy8brg7l5WVhY/P7d1xMy8vj5EjR7J48WICAgJKPR8TE4PVaiU5OZmWLVsSEhLCiBEjOHeuuIlDx44d0Wg0LF++HIvFQlZWFv/5z3/o06cPTrbvnW7dunHu3Dl+/PFHhBBcvHiRtWvXMnDgwFu2Vsm9S0HiZgr0Xvb6BC5oGfPsGOoG1KXwahiFl8KprxkEQHOfJlWWc9VsoXNsMk16/sxrzV8H7t5IKSEEF1I30N4wg4GNYgBoFRJEhwZ1alkzye3MnWxDSfup+kj76e63n+6MStN3G4U5iMLcYqeUrRDB/kZq7pyrzrVGxOZmFRK35TyZF/OAIqeUmi6WnqPB9f8d5rGr6ptDEQLFxaWCM1fMcCp2St3+vtB/nklh7cUr9uNA5/K7DlaLgky12x6AzgVCOkOdhjUjS1KrCJOVC+/urhXZQbO6o+i1VbpWCMHmzZvZuHEjAwYMYN26dezatYvu3bsDar56/fr1WbduHcOHDycpKYlhw4bRtm1bABo1amSfq8hQ8Pf3x9vbG4CrV6+ycuVKvvzySx599FEAli9fTlBQUCldHnnkEV599VX78dixYxk1apS9HkDTpk1ZsGABvXr1YsmSJQQHB7NgwQLeeOMN3nvvPTp16kTv3r0ZNWqUXa8TJ07g5eVFYGBgKXl6vZ5GjRpx4sSJKt27IqKjo3n66afJy8sjMDCQmJgY6tatW+bYU6dOsXDhQqKioqols6Z55ZVX6N69O0OHDi3z+TNnzmC1WvnHP/7BJ598gpeXF2+//TZ9+/YlLi4OvV5PWFgYv/zyCyNGjGD8+PFYLBa6devGjz/+aJ+nR48erFq1iqeeeoqCggLMZjODBw+WaXmSW8J5U1dOdfsLZKo1MRvWa0Hjxo3JLrhK/vkIEM6cso31cauozVSa+MxMLpis9mOtAg/7eFZH9dsSq1Uw/NM9DAqcS6jneft5N9dGN7hKIrkzbShpP0n7qSyk/VQ2t7934G7DaoEl3eHSCbTXON4FsM9b7brma/CtEdFxW8/zx8aznDmoRv+4eurtTqkz6aC9UoizWf3Q9cwvRFNhp5TKzVxTZluHGl1N1WRyIMmFar51X19PXmrgz5uNSn/gOoQ8tW4Xend4+yKMiQZN1ZwHEokjiY6Oxt3dHRcXFwYMGMBTTz3FmDFj0Ol0PPDAA/Zxvr6+NG/enGO2Tp0vvfQSs2fPpkePHkRGRhIXF3dDOWfOnMFkMtGlSxf7OS8vL5o3b15qbKdOnUocHzp0iBUrVuDu7m5/hIeHY7VaSUhIANSdx9TUVFatWkW3bt345ptvaN26NTExMRW+F3r9zZ3Sq1atKqHHjh077M/17t2bgwcPsnv3bvr378+IESO4dOlSqTmSk5Pp378/w4cPL5Hzf+28EyZMqJDOO3bsKHHdqlWrKnRdRVi/fj1btmzh448/LneM1WrFZDKxYMECwsPD6dq1K6tXr+bkyZNs3boVgNTUVMaNG8fo0aP5/fff2bZtG3q9nieffNK+M3306FFefvll3n33XQ4cOMDPP/9MYmKi/T7U5DolkmxrfYrb0UDTTqotkGcyglBrP0V0bcDE3o2Z0Ktx1YSc2UbBl8+o8+cmkrj/aRIeasdfg8v+x+tOJj2nkANnr+ChzwFg3em/ENzoUxo0GFvLmkkkjkPaT8VI+6kk0n4qHxkpdaspyILMs4AWzTVpbgKFIU2G4B/oT58GfWpEtClfdUAFNfWmfksfGt/vB+diVfm2TM7EgFx6h95H82U/o3QNrZKc69P3zBYrl3PzMZncAXDS3r5OlysmM9lmC2lG9V6NC/HjIR8Pxws6fwB+fA1yVUckrrd3qKmk+ihOGoJmda812ZWld+/eLFmyBL1eT1BQEDqdjvXr19/0urFjxxIeHs6GDRv45ZdfeP/995k3bx6TJ0+uiuolcHNzK3Gck5PD+PHjeemll0qNbdCggf13Dw8PBg8ezODBg5k9ezbh4eHMnj2bvn370rRpU7Kysrhw4UKp3UWj0cjp06dLFJcsjyFDhpQwNoODg0vo3aRJE5o0aULXrl1p2rQpn3/+OTNmzLCPuXDhAr1796Z79+4sW7asxNzXdm/x9KxY9ESnTp1KXFevXr0KXVcRtmzZwunTp+27tUUMGzaMBx98kF9//dW+c9qqVSv7835+ftStW5ekJDVVefHixXh5eTF37lz7mP/+97/Ur1+fvXv30rVrV95//3169OjB66+rKU3t2rXDzc2NBx98kNmzZ9foOiX3NlarhdzCK1gsf9rPtXtE/VzJNxUXCn5rUCtcnKph1yT9Rp5tj9jVUoBL8353bdfd9OzztPY9hoeTWkB+9tMT8fJoWLtKSe4I7iQbStpP0n4qD2k/lY90St1q8tWUMAsu9vQ9UDu7jGw1sswQSEdhtaoCQ1rUodPAhurJs2pKndVmEDVJsdDgTBwaqHjHPXudpdKxUkazlT4fbSUpowAYBty+6XtbLmfzbNyZa/ZEoU51DM0bcWg1XLgm57te25qRI7ltUBSlyil0tUGRIXAtLVu2xGw2s3fvXnv4+eXLl4mPjy/x5Vm/fn0mTJjAhAkTmDFjBp999hmTJ0+275hdW5+gUaNGODk58fvvv9sNoaysLE6cOMFDDz10Qx3vv/9+jh49WkrPG6EoCi1atGD3bjUN4Mknn2TatGnMmzePefPmlRi7dOlS8vLyeO655246r4eHBx4eFXNgW61WCgsL7cfJycn07t2bjh07snz5cjTXfUZWZn1FGAyGKl1XEaZPn87YsSUjG9q2bcv8+fMZPHgwoIaNg1r/IiQkBICMjAzS09MJDVU3PPLy8kqtVWvbtLBarfYxOp2uzDFCiBpdp+Te5mzcQTJyjgO29ueKgsYWyZx3jVNKX93ob3O+veOeof79cP/T1ZvvNsRqFRw+f5FLp4YxtWOO/bxbDWUGSO4+7iQbStpP0n4qD2k/lY90St0qrBa4dAwu/okQClct/iU2wqyKYn+h1BTC5pRSri2eaTWT4KTjiFGtMxV0WeCWfAEAXRU9ptcWBDxz+YrNIQVgBcVKv1ali7rdDuzNysUKOCkKLhqFVu4GmlejRsQNybus/nxgArT+CwTdVzNyJBIH0rRpU4YOHcq4ceP49NNP8fDwYPr06QQHB9tz46dMmcKAAQNo1qwZV65cYevWrbRs2RKA0NBQFEUhOjqagQMHYjAY8PDwYPTo0bz++uv4+Pjg7+9PZGQkGo3mpo0Fpk2bRteuXZk0aRJjx47Fzc2No0ePEhMTw6JFizh48CCRkZFERETQqlUr9Ho927Zt44svvmDatGmAuiM4d+5cXnvtNVxcXIiIiMDJyYkffviBN998k9mzZ9OmTZsScuPj40vp0rp1a3txySJyc3OZM2cOQ4YMITAwkPT0dBYvXkxycjLDhw8HVIPq4YcfJjQ0lKioKHurY6DMApjXUrTDlZOTQ1paGgcPHkSv15cwcK8nJyeHU6dO2Y8TEhI4ePAgPj4+dqM2IyODpKQkLly4UGK9AQEBJR7X06BBA8LCwgC1lfPQoUN5+eWXWbZsGZ6ensyYMYMWLVrQu3dvAAYNGsT8+fOZNWsWzzzzDFevXuXNN98kNDSUDh06ADB48GDGjRvHkiVLCA8PJyUlhSlTptClS5cy62ZUZp0SSXmYTRaO7bK9fhRXXE0CY8OGKDbDrcBsto20oKluQXJTPvlam1PqNo4krw5Ltp1m+fZdfPBgDlahcLmgPh2bh6PT1UAkukRyGyLtJxVpP0n7qVwq2hLwbuSWtjRe85wQkZ5CRHoK07t1xfHXtomTM7aLeltiRb0tsSJ8xRrx5amkGlVh08qjYtH4zeLAz9e099z5iej97xYiYkZPETVikFjbu4f4bfwzIuPrr4Upo4Lteb+bIESkp3juqz6izYo2YmPCRvtT20+fFKHTokXDN78Sj697XHx84GMHr8oxZJnMYtLRRFFvS6yIOpNSM0LMJiH2/VuILXOE+Li9+no4+FXNyJLUOndbS+Miiloae3l5CYPBIMLDw0u0NJ40aZJo3LixcHZ2Fn5+fiIiIkKkp6fbn581a5YICAgQiqLcsKVxly5dxPTp0+3XhYaGivnz55fSZ9++faJv377C3d1duLm5iXbt2ok5c+YIIYRIS0sTL730kmjTpo1wd3cXHh4eom3btiIqKqpEG10hhFi3bp148MEHhZubm73l8urVJVu8l9WWuehx7ty5Urrl5+eLJ554QgQFBQm9Xi8CAwPFkCFDxL59++xjli9fXu6cN6Osa0JDQ294zdatW8u8ruhvcSOdIiMjb6jL9W2Ds7KyxPPPPy+8vb2Fj4+PeOKJJ0RSUsnvudWrV4sOHToINzc34efnJ4YMGSKOHTtWYsyCBQtEq1athMFgEIGBgWLUqFHi/Pnz1V7n9TiipfG9wt1+P47sPCOixkwXUSMGiY9GvSS+HThO/OufC+3Pb084qto2M76rtqzsH6aKhf8eL+ptiRVj4s5Ue77bkZdW/yEemvMvsWlzI/HtT53Ed3+U/ryUSIqQ9pO0n6T9dO/ZT4oQDugVfoeSnZ2Nl5cXWVlZFc4zrTIft4XMJHAPoNDJn4Tk2fzpfJZJj7SzD1GAuB6t8dM7lT9PNdi04ijxv6XS/S9N6NA6Dc7vR5zaTDvzMToe96btGS8apmXSY9JkAv7yVMUn/v5FOPQlY1p24UBBKvN6zaNfw34AbDx+nPErTqN1yuL030fWyLqqyz/PpPDx2Yv24w+ahTC6JgqMHv8Rvnqm5LnR0RD2oONlSWqdgoICEhISCAsLw6WSTQPudXJzcwkODmbevHm88MILt1x+RkYGjz76KJ6envz000+4utZMR1TJ7cWN3rO31F64A7jb78fnL7+EMc9EXvY5NE5NaZCZg/ewoTz618cAiDkZx7jPz6HR5nNmzpNVlrPlcjbPHTqJWVEjpJ7w92ZJ64aOWMJtQ27uaf67eQ4m4wVa+pzE3b0FD3TZUNtqSW5jpP1UdaT9JKkNHGE/3Z7Ffe5G8jPVn2M2YH1+MxmabA7pEkoMEUCuxVrqUkdhtdjS94QJVgyGn97AfHKj7Rz2nwZn92rJubbQeZ6tYLiiMZc3vNbZcjnb/rufXkfPOtVbf7lknlV/+jaBLuOh32wI7VEzsiSSO4jY2FhWr17N6dOn+eOPPxg1ahRAue1yaxofHx82bdrEo48+yp49e2pFB4lEUnvkZ1/GXVfHdqRBQdC1Xefi501Ftk31bLb9V7LsDikDFvrV9arWfLcjSUn/pon7Nlr6nATAxSWkljWSSO4epP0kuVuQNaVqmvifITUOCm2OD0MdLEYrZsxoyghSq8m4NWFSaztpfv07OOeCkxumZn0h7w8UoeYeK0KgaCv5srDlLZeVvZxvMqnP3YZOKbNVkGe1km4zLn/s2JT7Pd1uclUVyDwHB1ZAwnb1uPGjMHDuDS+RSO41oqKiiI+PR6/X07FjR3bs2EHdurXXEt3X15d333231uRLJJLaw2q1FG+wKQooFlzv9wfgYu5FzmenAKBRquGU+vUDCs9ehgYjmXDuK2a2bQP1OlZX9duGn/9M5e/RR3mqSTytfeC3lI70bPkIzZs/XtuqSSR3FdJ+ktwNSKdUTZFyCJL2wk+vF5/TOoOLF/mXM7Eq5jKdOFZqzislci4DOhRLvnqi1RBMAz+Ar3oWR0oBiq56hTavjZTKN6ldIjQaS3nDa4XkAiN998eTYSrWq65TDb0ddkSpTqkivOQuoURyLR06dODAgQO1rYZEIpEAIITVbo8paEERKIrC+lP/440N32LJDwW6VC9S6tQmCp3VNuguGgVCOt/kgjuL7/44T3JmPk6K2m3vcHp7xjYZg4uzTMeSSByFtJ8kdwvSKVVT7FkMcWuKjzuOgUa9MV/J5KeXn6d+C7W+ks5sxnxNu8aaLPBltaUGKnUawIQ48G6AqUDtAqe5JlIKTdWcUtc62ZIu5zHhvwc4mqJGiGlvM6fU/uzcEg6p+z1dCXbR14ywbLUDA03DoX4XuP/m7VElEolEIpHUDsJqRVDkcFIoss62nkykIGW4fZyvq6HqQsz5FBpUu8O5+2TwK78b0p1GoTGdjp7zaNcxkyZ1VBvog+E9qOcpHVISiUQiKY10StUUPo0hpAvonKHHy9C0LwCXN0aTbzXbo4me2fUzgd2786GTj61dQM2pJKyqgaVxcoE6oQCYrWrqmtZWXkwRVYmUKh3zte3EJbtDCsDF7XIVNK45LttqXQ2o68Wy1g3RKdy0fWqlMeaBMRdyLqnHHUdDi0GOlSGRSCQSicShCGFFiCKnlAZhS9PLUasg4Opi4S/3hfFEh+CqCzEXUqCxOaV0d485vvtUOr/s/xcP+u+75qyCf53GtaaTRCKRSG5v7p5vwduNh6epj2swW83M3f0PGmvqYLX5P0L83Xi53yN8tuMwV8wWaq7MebFTStEWO51MVrXmk90phQBt9dL3EJBnVKOQGvrpuOTxAUF1a6BWUxXYcjmbl48nkWmLkvLT63DSONgZBXBuH6wcDOaC4nMGH8fLkUgkEolE4lCSfK+S63qQ5ldcQNGAzSllskWc+3qamf142+oJMRdQWOSUqgk7pJb4YlciLgXp4A/HLjejb+dxBPo0wWCoX9uqSSQSieQ2RTqlbiE5xhxy87OwKnXsaXrermp3l6IgHVGDCXxF3fc02uKmi0VOKY24JlKq0oXOS/wAip1SzQJ0XDan4aS9PTrKRKdlklbUERDo5l1DnfYSdxY7pBQN1G0GAdU0YCUSiUQikdQ4rc5dwifLnUQ/F0CDs0a1kYw2p5RDNrNMxU4pF83d0ww7M89II2e1dmmXZl1p3vAvtayRRCKRSG53pFPqFpJ9+SoPmsZSxzcPWwknnJ2cAVBsLp2aTd+zFe28JhKqVPoewiGFzosKnDvpBJhBq1Qz+spBZNg67c0IC+TZIF989TX0FsizpSt2nwz9ZteMDIlEIpFIJA7FajZz31kj57yKHE8aggLVKJ+iSCmdtupOqTSjiYEHTpLc8SusNtvoboiUslisnEv+L53q7CTQcAwAP6/a6wAmkUgkkjsH6ZS6haR/e4Fezp3AGf4kCQCdreNbkTlSk4XOi51SpSOltBQVOqcahc6Ljap84zVOKUBbxTkdQZ7FyidnL5JaaOKP7DwAGrk6O94hZSqA1U/B5TOQn6Gec5UGmUQikUgkdwo5P3+NVgj75iGKBq/eDwJgtkWc66rqRDIbiT22i3MFdcDmkDJooK2Ha3XVrlWy8k38ddlqJrZ9j87+xeed9fVqTymJRCKR3DFIp9StJE+N0sksvESa9gI4gbbIKWVP36s5rLYwrNXGC1zZ+gqFlkL2X9wPXJu+V5VIqWLjzJTZkYU/Wjl67ixQ7JTSKbX3Uvs5PYtPzl4sca5+TXTaS94PZ34teS6wnePlSCQSiUQicThWq5WdR+MItIKwNz9RcG7dBQCTzSnlVNVIqb1LyT+4BVrNpGP2Eb448jbuk3/Hze3O7kp35EIWRqNqZ2UWehJ3+UGe69GOevVkcxeJRCKR3Jy7J4n9NsdsNGLOvUIehcSZj3LWrDpttLZUuqI/hLUG8/eEzZj63XKZTUmb2JG8g3yzmvdv0KoGkaIqVVUJFF4ayNFzxWd8bCWbajNS6mKhGg3Wzt3AO42D+Kx1Q9p7VKONc3nkpqs/A9rCuC3w0kFo/Ijj5UgkNcyYMWNQFAVFUdDr9TRp0oRZs2ZhNpurNe+vv/6KoihkZmY6RtEKkJCQwMiRIwkKCsLFxYWQkBCGDh3K8ePHS4yLjo6mV69eeHh44OrqSufOnVmxYkWJMYmJiSiKwsGDByssf+bMmbRo0QI3Nzfq1KlDnz592Lt3b4k5X3jhBcLCwjAYDDRu3JjIyEiMRuMN501JSWHkyJE0a9YMjUbDlClTKqTP9u3bGTx4MEFBQSiKwrp16yqtM8CcOXPo3r07rq6ueHt7lykrKSmJQYMG4erqir+/P6+//nqJ19C1r7NrH61bt7aPef/99+ncuTMeHh74+/vz+OOPEx8ff9N1VkQ/ieR6MjIySLhq5kjLl7jo3wEABQ0aJ9WGMRfVlNJW0XzOTLJ33PN0cqJet3G4edz5EdXZefl4Oasdl+v7t+LdkZ/QOGwsWm0N2FoSyW2MtJ+k/STtp6ohnVK3iD3rv6YgI4nvnPdywteC2Vs1QnS6ovQ9W02pmhD+6z/h/QZYr16yybDybMtnmdV9Fv988J/Mf3g+bX3aqHoIgVLZ1sTX7CYKqxMAr/Vrxsrnu3BfmGrA1UZNKZNVcCwnn1N5asHxLt5uTGzgz2B/bxTFgfUbErbDmgjYEaUee4dCcEfwCXOcDInkFtO/f39SUlI4efIkr776KjNnzuTDDz+sbbXs3MzoADCZTPTt25esrCy+++474uPjWbNmDW3bti1h2C1cuJChQ4fSo0cP9u7dS1xcHE8//TQTJkzgtddeq5aezZo1Y9GiRRw+fJidO3fSsGFD+vXrR1paGgDHjx/HarXy6aefcuTIEebPn8/SpUt58803bzhvYWEhfn5+vP3227Rv377C+uTm5tK+fXsWL15cZZ1Bvf/Dhw/nxRdfLHMOi8XCoEGDMBqN7N69m5UrV7JixQreffdd+5hPPvmElJQU++PcuXP4+PgwfPhw+5ht27YxceJEfvvtN2JiYjCZTPTr14/c3NwbrvNm+kkkZWGxWLBe0XKR7RRY1c1DFC0ePurGnT19r6pOKXM++Rp1LkP9ztD7xu/zO4HE5F/RpoXzfJsvATA4+6C9C2pkSSRVRdpP0n6S9lMVEPcwWVlZAhBZWVk1Kif6dLQY91ovsXnyv0RkZKSIfDdSRL01Q6xcuVJcuHBBCCFEh11/inpbYsXB7FzHK/DJfUJEeoo1Ez8Vi8ZvFgPnjxD7U/eLgtxcsertV8W/xo0S80cOFVEjBomN3TqLghMnKjf/D5OEiPQUL3zVR4ROWydCp0WL5Cu54tSVU+Kfe/8p2qxoI17Y+ILj13UThv1xUtTbEmt/RJ1JqRlBn4cLEelZ/Nj4ds3IkdxR5Ofni6NHj4r8/PzaVqXSjB49WgwdOrTEub59+4quXbuKjIwMERERIby9vYXBYBD9+/cXJ675zEhMTBSPPfaY8Pb2Fq6urqJVq1Ziw4YNIiEhQaD63e2P0aNHCyGEyM7OFiNHjhSurq4iICBAfPTRR6JXr17i5Zdfts8bGhoqZs2aJSIiIoSHh4f92h07doiePXsKFxcXERISIiZPnixycnKEEELExsYKQCQmJpa71qSkJOHk5CSmTp1a6rkFCxYIQPz2229CCGFfQ2xsbOVvqo2i751NmzaVO2bu3LkiLCyswnNef68qCiC+//77m467kc7Lly8XXl5epc7/+OOPQqPRiNTUVPu5JUuWCE9PT1FYWFimnO+//14oinLDv9elS5cEILZt23ZTvW+kX1nc6D17q+yFO4W79X5cuHBBzB8zRkSNGGR/HPzpV5F8NVlsO7dNPLBwpgidFi2eXfFT1QSsfUEs+WysqLclVvzfkfJf53cK/9hwVLzy2d/Eps2NxKbNjcQvm5qI5OSva1styR2OtJ+k/VQW0n66u+0nGSl1C9ibshevHIHFtnOkt8AogzvPPfccgYGBQHFVJmsNhEr9ltqP7y//nStKY1WGYkGn0XHu6GFSThwnLysTi9kMQuBRYARt1eo/qdFe6ktq1fH/8PgPj/PfY/8FQKe59TWlDtiKmtd10tHczYWBfl41Iyj7gvqz51R4Yhk89HrNyJHc0QghMBqNtfIQDkgLNhgMGI1GxowZw/79+1m/fj179uxBCMHAgQMxmdQ02YkTJ1JYWMj27ds5fPgwH3zwAe7u7tSvX59vv/0WgPj4eFJSUvjkk08AmDp1Krt27WL9+vXExMSwY8cO/vjjj1I6REVF0b59e2JjY3nnnXc4ffo0/fv3Z9iwYcTFxbFmzRp27tzJpEmTAPDz80Oj0bB27VosFkuZ61q7di0mk6nMHb3x48fj7u7O6tWrq33/QN19WrZsGV5eXjfcncvKysLHx8chMqtLRXW+nj179tC2bVvq1SsudBweHk52djZHjhwp85rPP/+cPn36EBoaWu68WVlZALfN/ZHcXVitVnsbZE9LA4LCOtHsoc48uf5JJm6eSEZBJgB6XdXM5/MWHcnOaiVwg+bON8F3n76Mu161tX5O7E9h3V8IChp+k6skkspzJ9tQ0n6qPtJ+uvvtJ1no/BaQZ8wj0NyAQ76XAXCygM637BeEcHACX25WIQcywkuc0xZmsW/uvzBnqeF7da/m0fLCZfRmC85mCxrXytYAsKUeCihySp3NTrA/G+oZyhNNnqjqEqpEnsVKvlVNHdzTtSUelS7eXgH2fQY7P4bsZPX4/gjwaeR4OZK7ApPJxD/+8Y9akf3mm2+i11etuL8Qgs2bN7Nx40YGDBjAunXr2LVrF927dwdg1apV1K9fn3Xr1jF8+HCSkpIYNmwYbdu2BaBRo+L3RNEXob+/vz1P/erVq6xcuZIvv/ySRx99FIDly5cTFBRUSpdHHnmEV1991X48duxYRo0aZa8H0LRpUxYsWECvXr1YsmQJwcHBLFiwgDfeeIP33nuPTp060bt3b0aNGmXX68SJE3h5edk3CK5Fr9fTqFEjTpw4UaV7V0R0dDRPP/00eXl5BAYGEhMTQ926ZdeROXXqFAsXLiQqKqpaMqtLZXQui9TU1BIGFWA/Tk1NLTX+woUL/PTTT3z55Zflzmm1WpkyZQo9evSgTZs2FdZFIqkol85m251SOqsevZMb2aZsrlwJxJQ5GJ1ZNfiD3CvfVW7Vhcu86jfBfuxS1WLptwk5uSe5v87XNPE8DcBL/bpSP0SWLZDUDHeiDSXtJ2k/Sfup4tz52zR3AOY0M1eDG5OjUz3hbi6e1Hn22RJjNDXUfs9iUh0zGkyEP+VNTKdl1L1SQHZSMnlZmYDqlPJ288AvvD/+06bhFBBQNWHXBN4J1GJs73R9h+gnoglvGF7eVQ4l+lImPfceo+feYwA4KQruVa39cDP2L4fs84AAj0DwDKkZORJJLRAdHY27uzsuLi4MGDCAp556ijFjxqDT6XjggQfs43x9fWnevDnHjqnvuZdeeonZs2fTo0cPIiMjiYuLu6GcM2fOYDKZ6NKli/2cl5cXzZs3LzW2U6dOJY4PHTrEihUrcHd3tz/Cw8OxWq0kJKiO8YkTJ5KamsqqVavo1q0b33zzDa1btyYmJqbC96IixuiqVatK6LFjxw77c7179+bgwYPs3r2b/v37M2LECC5dulRqjuTkZPr378/w4cMZN26c/fy1806YMKHUdWWxY8eOEtetWrWqQtdVVmdHsXLlSry9vXn88cfLHTNx4kT+/PNPvvrqK/u5CRMmlFinRFIdTsVeRLEZYhoh0ChOmISZwkv9MV9tR0G+GnEd5FX511rcVTWiyGApIERjYmBdb4fpfas5ezmX2MPv8lDQBoLc1a57Ls6Vd9RJJHcj0n4qRtpP0n6qKDJS6hZgLCwuKNfJ1Jjgdq3RXvfHt6fvOVi2tagop2KkSVsP0lLPUdes/tlDrVoaZubgmpaFa79+BM+romdZKSrSXuz8sdqcUrc6be8/Fy5zKq/QftzOw+DYoubXkmsrWjd8JTTpA7qqRaJI7g2cnJxuWnyxJmVXlt69e7NkyRL0ej1BQUHodDrWr19/0+vGjh1LeHg4GzZs4JdffuH9999n3rx5TJ48uSqql8DNza3EcU5ODuPHj+ell14qNbZBgwb23z08PBg8eDCDBw9m9uzZhIeHM3v2bPr27UvTpk3JysriwoULpXYXjUYjp0+fJjz85k71IUOGlDA2g4ODS+jdpEkTmjRpQteuXWnatCmff/45M2bMsI+5cOECvXv3pnv37ixbtqzE3Nd2q/H09LypLqAaoNded/2u282oiM43IiAggH379pU4d/HiRftz1yKE4IsvviAiIqJcA3bSpElER0ezfft2QkKKNwBmzZpV7WKqEglAbuYVLp6KsUdKKQg0ihazMCGs6uvybw81olWgJ+GtK7l599M0CgvDwKsrU8+uZHKPx6BOZ0cv4Zawel8SM747zN+7nyXIHfaldmBIx974+j5c26pJ7mLuJBtK2k/SfpL2U+WRTqka4rO4z9iZvBOAVsmh5AMhljrcZ2mIyb1OqfFFbhNHl5QqckppsIBGh9lqRmdRP1xdUi/hlpap/t6yRbVlXVuizIIaFXaru+5dNqnOsNlNg+ni5UYzVxfHCshJg9VPw9UUyLV5ves/AM6172GW3N4UtQe+Uyj6Ur2Wli1bYjab2bt3rz38/PLly8THx9OqVSv7uPr16zNhwgQmTJjAjBkz+Oyzz5g8ebJ9/dfWJ2jUqBFOTk78/vvvdkMoKyuLEydO8NBDD91Qx/vvv5+jR4+W0vNGKIpCixYt2L17NwBPPvkk06ZNY968ecybN6/E2KVLl5KXl8dzzz1303k9PDzw8PCokA5Wq5XCwmLneXJyMr1796Zjx44sX74czXW1ZiqzviIMBkOVriuP63W+Gd26dWPOnDlcunQJf3+1hk5MTAyenp4lXiugdog5deoUL7zwQql5hBBMnjyZ77//nl9//ZWwsJLpQf7+/vb5JZLqcHLvbnIzz+AiVLtFI0CDE0ZhBNu5QW0DaV/fu3IT51yCvUspaKl2TnKxFkKdOzfNLe68WpfEzSkfgKvakbRq9kTNbQBKJNxZNpS0n6T9dC3SfqoY0ilVQyRkJfDHpT/wz/fn2av92eUUj9Z2uxXP0h+qRd1zHVGQ+FqstsrpGsUMWifVKWVVhWmFoN6bM3Bp3RrDffdVW5YQyjW/25xSmlvjlPrvhctsTM/idF4BAJ083Wjn4ep4QWe2QvL+4mOv+uDm53g5EsltSNOmTRk6dCjjxo3j008/xcPDg+nTpxMcHMzQoUMBmDJlCgMGDKBZs2ZcuXKFrVu30rJlSwBCQ0NRFIXo6GgGDhyIwWDAw8OD0aNH8/rrr+Pj44O/vz+RkZFoNJqb/pMzbdo0unbtyqRJkxg7dixubm4cPXqUmJgYFi1axMGDB4mMjCQiIoJWrVqh1+vZtm0bX3zxBdOmTQPUHcG5c+fy2muv4eLiQkREBE5OTvzwww+8+eabzJ49u1T+fXx8fCldWrduXWo3NTc3lzlz5jBkyBACAwNJT09n8eLFJCcn29v2Jicn8/DDDxMaGkpUVFSJtsHX74hdT9FOXk5ODmlpaRw8eBC9Xl/KaLmWnJwcTp06ZT9OSEjg4MGD+Pj40KBBgwrpDJCUlERGRgZJSUlYLBa7Lk2aNMHd3Z1+/frRqlUrIiIimDt3Lqmpqbz99ttMnDgRZ2fnEjp9/vnnPPDAA2XWOZg4cSJffvklP/zwAx4eHvZ6Cl5eXhgM5dc/vJl+Esn1mE1GNfK7KFJKCLRaHSZhtjulnKpSDsCkpu0VatVNMucHX4F65b9Hb2cKCy8SolvBM82v4Oms1iV9Z8gD0iElkdwEaT+pSPtJ2k/lUqE+f3cpNdnSOO5SnNiYsFFs+HqT+OnNVSIyMlJEvTZDLBn3udgee0EUmiwlxnfbc1TU2xIr9ly56lA9LiZmiUXjN4sVL64RIjtV3Pd5G/HK//UWUSMGiY3dOouCU6eqL2T9y0JEeorR/xkiQqdFi9Bp0eKvPz0v2qxoI34882P1578JZqtVhGw9KOptiRX1tsSKkK0HRXqhqWaE7V4kRKSnEP/5ixAXDglR4Ni/l+Tu4W5raVxEUUtjLy8vYTAYRHh4eImWxpMmTRKNGzcWzs7Ows/PT0RERIj09HT787NmzRIBAQFCUZQbtjTu0qWLmD59uv260NBQMX/+/FL67Nu3T/Tt21e4u7sLNzc30a5dOzFnzhwhhBBpaWnipZdeEm3atBHu7u7Cw8NDtG3bVkRFRQmLpeRn8Lp168SDDz4o3Nzc7C2XV69eXWJMWW2Zix7nzp0rpVt+fr544oknRFBQkNDr9SIwMFAMGTJE7Nu3zz5m+fLl5c55M8q6JjQ09IbXbN26tczriv4WFdFZCPU1UtY8W7dutY9JTEwUAwYMEAaDQdStW1e8+uqrwmQq+dmcmZkpDAaDWLZsWYXXCIjly5ffcJ0V0e96HNHS+F7hbrwf+35YK/7512fE/FHPiKgRg8SqwRPFT7OWi9iLsSL0zTUidFq0OHkxu/ITXzouRKSnePq7f4t6W2LFmpTLjlf+FrAu9rxY/tOrYtPmRvbH5i0thNmcW9uqSe4ypP0k7SdpP9179pNiU/qeJDs7Gy8vL7KysiqcZ1pZjv5wmsR9e9jndApN5mW+8wgn06QwqG0gi0fdbx/X47djnM4v5PsOTejm7TgvZOrpK3z7YSye2lSGv9KWuCdHcDQokMserrQ/e5GHo39CV4mOAGXyvylwYDljGj/Cr0fGolEEDz70DX9c+oN5vebRr2E/h6ylPNKNZtrs+hOA+S3q08rdQHtHR0nt+0wtbJ5zEfLSoct4GDjXsTIkdxUFBQUkJCQQFhaGi4uD00jvcnJzcwkODmbevHllhiTXNBkZGTz66KN4enry008/4epaA1GXktuOG71nHWEvLFmyhCVLlpCYmAiou8PvvvsuAwYMAODhhx9m27ZtJa4ZP348S5cutR8nJSXx4osvsnXrVtzd3Rk9ejTvv/8+Ol1x4Puvv/7K1KlTOXLkCPXr1+ftt99mzJgxJeZdvHgxH374IampqbRv356FCxeWKJZ7M26F/XSr2bvuG3ZEb0CbX4DVnENgfkP8unTBe2xLhi84B1Zntr3+MKG+bjef7FpSDsGnD/HE/UvY49GKT1uHMtS/dBmH25kruUbunx3D2DYr6Rp4gD/TW3B/4+60DO1O3bq9a1s9yV2GtJ+qjrSfJLWBI+wnmb5XQ6R/9hm5u3aT6fwA1rqqAVOIjkyTGk55Oi2nxPji9D3H6mE1qWl0Zmse/5n7PgWNGmLSqeHnhrAwtLYWo9XiukLnWg1YhMX2e82l76UZTfz7fDrnCtRC8t46Lc8E+taMsJ3zITu5+Digbc3IkUjuQWJjYzl+/DhdunQhKyuLWbNmAdhD2m81Pj4+bNq0icWLF7Nnzx57q2WJpDqEhITwz3/+k6ZNmyKEYOXKlQwdOpTY2Fhat24NwLhx4+yvf6CEQW+xWBg0aBABAQHs3r2blJQUnnvuOZycnOyt0hMSEhg0aBATJkxg1apVbN68mbFjxxIYGGgvOLtmzRqmTp3K0qVLeeCBB/j4448JDw8nPj7+tqovcasRhYVYiEexFhXZFegNLpgspmql7+2/WsifgUNJ1qsbgC6aO6/xddrVAtx0OdRxuQpASNBQet4/TqbtSSS1jLSfJHcL0ilVQ2SeuEJOigtKsBsWRe2pVyiK82XLcz5ZHVzq3GpWnVIpIg3nrGxwshXw1GppGTUfxYHGUVGhc40GrEJds06puZfYiuR0Pjl70X7cwKWGCiAKAbnp6u9PLgffJtIpJZE4mKioKOLj49Hr9XTs2JEdO3ZQt7pRnNXA19eXd999t9bkS+4+Bg8eXOJ4zpw5LFmyhN9++83ulHJ1dS23FsYvv/zC0aNH2bRpE/Xq1eO+++7j73//O9OmTWPmzJno9XqWLl1KWFiYvehsy5Yt2blzJ/Pnz7c7pT766CPGjRvHX//6V0AtSLthwwa++OILpk+fXlPLv+3RHfqTITsz2dQ2GKMGhGKl3aje7M0/AEK1ZSrrlMo2W/hLshPGZlPt59yrUpeqlklNeodPekfbjx9q0Vg6pCSS2wRpP0nuBqRTqoYocO1G3Q7dAEjlFLnCiVPa4naZluu8Ugo18+UubN3oBGrkknduAQHOFh759w8YPBwbcm+1FTrXKGC2qnJrMlLqfIHqcOtVx4Nu3m709/NyrIDCHNj5kZqyZ7F1TWgWDvpKhu5LJJIb0qFDBw4cOFDbakgktwyLxcI333xDbm4u3bp1s59ftWoV//3vfwkICGDw4MG888479mipPXv20LZt2xLtqcPDw3nxxRc5cuQIHTp0YM+ePfTp06eErPDwcKZMmQKobboPHDhQojW1RqOhT58+7NmzpwZXfPuj5KqFuy2Kap95+SkM2jKUbGMuoEai6XWVcyhlmMwYUdAKM/1zjxDSog8PeN05hfbPXs4l4vN9vNRmJ3VsGRkuzkF4ed5Xq3pJJBIVaT9J7hakU6qmqONGdmoOZmMaV7jKD+Y2GPXFt7uoK14RDk/fy0mDw99gOW0BWtudUjqLlXZ1mzvYIWVL3xNlpO8pjndK/ZSWyfLkdP7MUdsRD63nzciaSNs78j3suKbFqasvOMncaIlEIpFUjcOHD9OtWzcKCgpwd3fn+++/t3f7GTlyJKGhoQQFBREXF8e0adOIj4/nu+++AyA1NbWEQwqwHxd11SlvTHZ2Nvn5+Vy5cgWLxVLmmOPHj5erd2FhYYmW1tnZ2VW8A7cvilm1KawaQIDGYOWq6SpcE+Wur0yU07FoCjbNgzbz8TLn8Hnaahg82sFa1yw7TqaTlJGHq5PaQfBA/jLeeESm40gkEonEsUinVA1xwG0/CS4XwAWyrM4Yjeqt1moULFaB2Xp9pJSK1VEKbPsn/P5vREFnrnVKKQhwcuyf/WiOOy8XzuXsKbU+lUYDFqvNCaZx/EssKjGVIzkF9uMWrjVUBPFqivozuCO0eAzCetnrZ0kkEolEUlmaN2/OwYMHycrKYu3atYwePZpt27bRqlUr/va3v9nHtW3blsDAQB599FFOnz5N48aNa1FreP/993nvvfdqVYcaJ+c86e4GhG1TzazoyDn9KlpLcVFyJ20lbICjP1BQqEZfuViMENTBoerWNEIICvJPE+qRhLNWrd05pe/9N7lKIpFIJJLKc+cltt8hnL54lXMWL85avDlrVZ01QZ5OrJ2ghulbynFKCUfVlLLVQLL6tlTnVWxOKQGKzqncy6rC5it+nBQhGM1qFFGAt6jRSKl0o5oa+G7jIDbc35T7vRycTpd5DhK2w0W1ox9hD8GDUyGko2PlSCQSieSeQq/X06RJEzp27Mj7779P+/bt+eSTT8oc+8ADDwBw6tQpAAICArh48WKJMUXHRXWoyhvj6emJwWCgbt26aLXaMseUV8sKYMaMGWRlZdkf586dq8Sqb39yM6/wa4GOfY2DANXGOK00QBj9MFvUzbWWgZ5oNZVwSpnyKNSotS5dvAIg/B+OVrvGEEJw9MQnhIlxvNstyn7eyenu6LQokUgkktsLGSlVQyS6NWd7TknjJbCOOzpbYXGruD59rygFzjHyCwo0nM7rS6pHX3VeWwyWIgSKk2OdUiarqnug9wmy6vzE+N7/x78PO7amlEUIDmTlkme1csWkOrwG+3tT39HFza+mwoIOYDUVn3OtoY5+EolEIrmnsVqtJdLiruXgwYMABAYGAtCtWzfmzJnDpUuX7F3yYmJi8PT0tKcAduvWjR9//LHEPDExMfa6VUWFcDdv3szjjz9u12Hz5s1MmjSpXD2dnZ1xdnau8jpvd65eTrdtCWpQtD4oGl9ynb0BqFf3CmvGPEFwHUPlinub8inQqvfMRae/oyKtx//nAM30W+ngD3kmF5x0BsJCHkOpgY1GiUQikUikU6qG6NCmGVn6NLSKmrKn12kY27MRRc3uajp9b19Cew5ntwNb2QerojpZNICic+yf3WQrcO7slIvWJaVETSlHdd9bcPYiHySkljjno6sB4yj9hOqQ0jqDb2Mw+EDLIY6XI5FIJJJ7ihkzZjBgwAAaNGjA1atX+fLLL/n111/ZuHEjp0+f5ssvv2TgwIH4+voSFxfHK6+8wkMPPUS7du0A6NevH61atSIiIoK5c+eSmprK22+/zcSJE+0OowkTJrBo0SLeeOMNnn/+ebZs2cLXX3/Nhg0b7HpMnTqV0aNH06lTJ7p06cLHH39Mbm6uvRvfvUjaJTVyTNF4oHVtg8bdwFXDFSgMxsXJSsO6VYjINhfYI6WcHdjp+Faw42Q6He5T60h9ffJZXhkygeYN6tzkKolEIpFIqoZ0StUQr/Rtxit9m5U6fzxV9RJdX+i8OH3PMeQZ1TpLfn5mTrqd51zWUVpf1qiRUg52SpltBc41iupSm/PbHPtuoqMipY7aakgFOzvhq9fxiI8nbjXhlMq7rP4M7gjP/+T4+SUSiURyT3Lp0iWee+45UlJS8PLyol27dmzcuJG+ffty7tw5Nm3aZHcQ1a9fn2HDhvH222/br9dqtURHR/Piiy/SrVs33NzcGD16NLNmzbKPCQsLY8OGDbzyyit88sknhISE8O9//5vw8HD7mKeeeoq0tDTeffddUlNTue+++/j5559LFT+/l/jll19svymYrIdx14eRHRAIZ0FbBVNj0+VsIoOmcAVb+l5lalHVMsmpG3k4+Gf8XdUyEJ+MfAgfH+mQkkgkEknNcWdt3dwF6Gz1CCzX5ekp9u57jnFLWW0pda3amDjXaR95+ixVjgDFwYXOiyKl0q1qQc8CSwH5ti42nvrq1R9IKTSy88pVEvLV9IZ3GgfxS6fmTG8UWK15S7F3GfwjGL4dqx67+jh2fonkDmLMmDEoioKiKPYaOLNmzcJsNldr3l9//RVFUcjMzHSMohUgISGBkSNHEhQUhIuLCyEhIQwdOrRUp7Ho6Gh69eqFh4cHrq6udO7cmRUrVpQYk5iYiKIo9rSqijBz5kxatGiBm5sbderUoU+fPuzdu7fEnC+88AJhYWEYDAYaN25MZGQkRqPxpnOvWrWK9u3b4+rqSmBgIM8//zyXL1++4TXbt29n8ODBBAUFoSgK69atK3PcsWPHGDJkCF5eXri5udG5c2eSkpLsz48fP57GjRtjMBjw8/Mr857+/vvvPProo3h7e1OnTh3Cw8M5dOhQmfJOnTqFh4cH3t7eN113Rddwu/H555+TmJhIYWEhly5dYtOmTfTtq6bY169fn23btnH58mUKCgo4efIkc+fOxdOz5HdoaGgoP/74I3l5eaSlpREVFYXuuo2mhx9+mNjYWAoLCzl9+jRjxowppcukSZM4e/YshYWF7N27116/6l6lMD/f9psGoVjp0qYvOV4GoNhuqzBCsPZ8Cqf1/mTovQFo4WZwnLI1xOWcQub8sInjR/+PJ5v9D29ndRNVr/erZc0kkjsHaT9J+0naT1VDOqVuMUW1oywWgdUqyMxT3ziKLVbKUZFSVlseoEanw2K1oLFNrAgBNRQp5XqN4fZi+xf5sNeHBLkHVXneLJOZHnuP8+TB0/yZoxqMdfU1FNx3+Gsw5oDV9qUR2qNm5Egkdwj9+/cnJSWFkydP8uqrrzJz5kw+/PDD2lbLTkWMDpPJRN++fcnKyuK7774jPj6eNWvW0LZt2xKG3cKFCxk6dCg9evRg7969xMXF8fTTTzNhwgRee+21aunZrFkzFi1axOHDh9m5cycNGzakX79+pKWlAXD8+HGsViuffvopR44cYf78+SxdupQ333zzhvPu2rWL5557jhdeeIEjR47wzTffsG/fPsaNG3fD63Jzc2nfvj2LFy8ud8zp06fp2bMnLVq04NdffyUuLo533nkHF5fiTqcdO3Zk+fLlHDt2jI0bNyKEoF+/flgsaup2Tk4O/fv3p0GDBuzdu5edO3fi4eFBeHg4JpOphDyTycQzzzzDgw8+eEPdK7MGiaQyWIuMJkWDRbHg5+aLyaKeq7RT6usI8k/EADDl7P9jc30Tc5oGO1LdGuH72GS2H1cbvOSaDBxM70GTxtNwc2tay5pJJHcW0n6S9pO0n6qAuIfJysoSgMjKyrplMhPTc0TotGgROi1adH9/swidFi2+2ndW9P89XtTbEit+Tst0iJwfXlsmFo3fLI6vixH/t/ZZMWt0dxE1YpBY8+iDInXuXIfIKGLa/GUidFq0eO1fH4kXfn5B7EvZ55B5D2bninpbYkXI1oOi995j4vnDZ0SBxeKQue1YLELkXhZifhshIj2FOLpeiKsXHStDck+Sn58vjh49KvLz82tblUozevRoMXTo0BLn+vbtK7p27SoyMjJERESE8Pb2FgaDQfTv31+cOHHCPi4xMVE89thjwtvbW7i6uopWrVqJDRs2iISEBIHqd7c/Ro8eLYQQIjs7W4wcOVK4urqKgIAA8dFHH4levXqJl19+2T5vaGiomDVrloiIiBAeHh72a3fs2CF69uwpXFxcREhIiJg8ebLIyckRQggRGxsrAJGYmFjuWpOSkoSTk5OYOnVqqecWLFggAPHbb78JIYR9DbGxsZW/qTaKvnc2bdpU7pi5c+eKsLCwG87z4YcfikaNGpXSNzg4uMK6AOL7778vdf6pp54Szz77bIXnEUKIQ4cOCUCcOnVKCCHE77//LgCRlJRkHxMXFycAcfLkyRLXvvHGG+LZZ58Vy5cvF15eXpWSW94aqsKN3rO1YS/cztxN98NqtYpZr04RUSMGiXnP/FXMGfuUSP7+hBi24gsROi1aDF7238pN+H59Mfzbz0S9LbHim5UvClFwtWYUdzAf/HRMPD5vjti0uZGI3vKYiE/Nrm2VJPco0n6S9lNZSPvp7rafZKTULebadsLJmWr0z8FzWWjs6XuOkVOUvqfRaem06TztEtSJFSHQeji2pa/J9jJqrHfj3+H/pnNA52rPmW+xklygevKbuTmzpUsLPm8T5thioULA531hbhhk2sIq/VuBu7/jZEgkdwkGgwGj0ciYMWPYv38/69evZ8+ePQghGDhwoH33ZuLE/8/emcfHeO1//P3MZCYz2YlEFoQQS2y11BaqocTScLugl1palF5rtRp622rV0iXqV9VaepXeXrSlraqlBKW2osRSISmiSGKJkD2Z7fz+mGRkZEUilvN+veaVPM9znnO+55lk8sn3fM/3O4bc3Fx+++03jh07xgcffICLiws1a9bk+++/ByA2NpakpCQ++eQTwJp4effu3axdu5aoqCh27tzJoUOHCtkQGRlJ8+bNiY6O5q233uL06dP06NGDZ555hqNHj/Ltt9+ya9cuWxUxLy8vVCoVq1evtq1A3czq1asxGo1FruiNGjUKFxcXVq5cWS7P0GAwsHjxYtzd3WnevHmx7VJTU6lateQtxO3bt+f8+fNs2LABIQSXLl1i9erV9OrV645stFgsrF+/nvr16xMWFoa3tzdt27YtMcQ7MzOTpUuXUqdOHWrWrAlAgwYN8PT0ZMmSJRgMBrKzs1myZAmNGjWidu3atnu3bdvGqlWr7s1VO8lDgcVsKSC+VAiVGZVGjdFkPae51XxQplxy8hKc63rMAkeXcrS2Yrh6dQd1VZPpV/8nAPyrVqd+dddKtkoieTCQ+unOkfrpwddP0il1l1EXGQYuClTfK6ecUnl5nlQaB3SZRkTetkF9kyZ49O9XLmPkY8pzgDmoysf2/1y4Qt3fjvLin2cBqFrOObBs5KRCwh83jv1agkdAxYwleegRQmA2Z1XKS9yBt1sIwZYtW9i0aRO1atVi7dq1/Oc//6FTp040b96c5cuXk5CQYPuje+7cOUJCQmjatCmBgYE8+eSTPPbYY6jVaptQ8Pb2xsfHB3d3d9LT0/nqq6+IjIyka9euNGnShKVLlxYpgrp06cKrr75K3bp1qVu3LrNnz2bQoEFMnDiRoKAgOnTowLx58/jvf/9LTk4O/v7+zJs3j7fffpsqVarQpUsX3nvvPc6cOWPrMy4uDnd3d3x9C+ep02q1BAYGEhcXd9vPD6z5FlxcXNDpdMydO5eoqCiqVatWZNtTp07x6aefMmrUqBL7DAkJYfny5QwYMACtVmt7nncqTi5fvkxGRgbvv/8+PXr0YPPmzTz11FM8/fTT7Nixw67t559/jouLCy4uLmzcuJGoqCi0Wus/466urmzfvp3//e9/6PV6XFxc+OWXX9i4caMtB9LVq1cZNmwYy5YtK5Q7SSK5WyT/eQWFAk4pxcyOlN0kZVi3iGjUtyCVhQBTDjkqazVE/a3cWwkIIVgTncCuw5/i4RBD9bzk5s5OgZVsmURiz/2ooaR+kvpJ6qeyI6vv3WWKckpZLOWYUyorBVLPYzbnR0o5oJgtNqeUS6uWOJTiQb5VTHkOME05OdS2JKeRl90BtQJh1dzLpd9CZKdYv2qcYOoFUFQ3Ms5LJOWMxZLN9h1NK2XsxzsfQ612uqV78oWA0WjEYrEwcOBAnn76adatW2eXFNnT05MGDRpw4sQJAMaPH8/LL7/M5s2beeKJJ3jmmWdsJe2L4syZMxiNRtq0aWM75+7uToMGDQq1bd26td3xkSNHOHr0KMuXL7edE0JgsViIj4+nUaNGjBkzhiFDhrB9+3Z+//13Vq1axaxZs1i7dq0tyXRp5AuFkli+fLmdENq4caNtj39oaCiHDx8mOTmZL774gv79+7Nv3z68ve2jMhMSEujRowf9+vWzy23g4nIj0uL5559n4cKFxMTEMGHCBN5++23CwsJISkpi8uTJjB49miVLlrBz50569uxpu2/RokUMGjSo1Hnk59bp27cvr7zyCgCPPPIIe/bsYeHChXTu3NnWdtCgQXTr1o2kpCQiIyPp378/u3fvRqfTkZ2dzfDhwwkJCWHlypWYzWYiIyPp3bs3Bw4cQK/XM3LkSAYOHMhjjz1WpC23OweJ5FZIOHn1RqSUomBWLMzJ+YxrOV0A0GtK//23YbIWZcnOc0rpbjUf1V3meGIaE789zLR2l3Fxg59O9aTbI10JDLyziAGJpLy5nzSU1E83kPpJ6qeyIp1Sdxl1EU4PixDls30vKwX+rykYMrCY51jH0+Q5pfLeakV1G7WNS8GQt32vvCKlUozWZOPLmtThCU+3W08yWhrnfofDKyDTuiKIvipUwHORSO5nQkNDWbBgAVqtFj8/PxwcHFi7dm2p940YMYKwsDDWr1/P5s2bmT17NnPmzGHcuHF3bJOzs7PdcUZGBqNGjWL8+PGF2taqVcv2vaurK+Hh4YSHhzNjxgzCwsKYMWMG3bp1IygoiNTUVBITE/Hzsy/MYDAYOH36NGFhYaXa1qdPHzux6e9/I7Gxs7Mz9erVo169erRr146goCCWLFnC1KlTbW0SExMJDQ2lQ4cOLF682K7vgtVq8lfEZs+eTUhICJMnTwagWbNmODs706lTJ2bMmEHr1q3t7qtevXqpcwCoVq0aDg4OBAcH251v1KgRu3btsjvn7u6Ou7s7QUFBtGvXjipVqvDjjz/yz3/+kxUrVnD27Fn27t2LKm/b9YoVK6hSpQo//fQTzz33HNu2bWPt2rVERkYCNwSxg4MDixcv5p///OdtzUEiuRWMadfwSLlGLqCgwqIyYVK7U8elKXHXoJFn/TL1Y7IIRsWcI671fzmrt36W6Msz5UAFkHAtHZ06BzfHLACCa3fjiUeeRK2WmkgiuV2kfpL6qSBSP5UN6ZS6yxQZKSUosH3vDrh+zlpBTlFhUVmz/Ks8ayPMAlPeuKpyFBpCCEwWgcFi/YXRKLfvlMq1WHjhWDyns3JJyLXmkvJ2dCh/hxTAxghIOnzj2KNWsU0lkvJCpdLzeOdjlTb2rZIvBArSqFEjTCYT+/bto0OHDoA1hDg2Ntbuj3DNmjUZPXo0o0ePZurUqXzxxReMGzfOtmJWMLQ8MDAQjUbDgQMHbEIoNTWVuLi4YleA8mnZsiUxMTGF7CwJRVFo2LAhe/bsAeDZZ58lIiKCOXPmMGfOHLu2CxcuJCsriyFDhpTar6urK66uZcvBYrFYyM3NtR0nJCQQGhpqq8iiuukf2aLml5WVZQvjzif/H0khBHq9/paeSz5arZZHH32U2NhYu/NxcXEEBBS/vVkIgRDCNq+srCxUKhVKgYWY/OP81cS9e/fa/Sz89NNPfPDBB+zZswd/f//bnoNEcitkfPcuDTOucySgOqDCpAhS4saTF0uNs1ZX0u02TmZmsz4lC5ytvydaRaGm/hairO4yuYZkVFf68lnX67ZzQzo2Q6+VDinJvcf9pKGkfpL6qSBSP5UN6ZS6yxTllBIFtr2JO9kCZ7FGGOFeA7O5LlzOZt7iUVRXeUHe9tubf1lvlcvpOfRfuJfz17IxW/JttW4HdFBu36V2MDWLbSnptmNntYpAveOdmFo86RetX9u+DO7+0ECGqUsqHkVRbnkL3b1GUFAQffv2ZeTIkSxatAhXV1emTJmCv78/ffv2BWDixIn07NmT+vXrc+3aNX799VcaNWoEQEBAAIqisG7dOnr16oVer8fV1ZWhQ4cyefJkqlatire3N9OmTSv0B7koIiIiaNeuHWPHjmXEiBE4OzsTExNDVFQU8+fP5/Dhw0ybNo3BgwcTHByMVqtlx44dfPnll0RERADWFcEPP/yQ1157DZ1Ox+DBg9FoNPz000+88cYbzJgxgyZNmtiNe7PgAGjcuDEajcbuXGZmJjNnzqRPnz74+vqSnJzMZ599RkJCAv36WXP7JSQk8PjjjxMQEEBkZKSt1DGAj49PsXMPDw9n5MiRLFiwwBZ+PnHiRNq0aVNoxbIgGRkZnDp1ynYcHx/P4cOHqVq1qk3UTp48mQEDBvDYY48RGhrKL7/8ws8//8z27dsB65aBb7/9lu7du+Pl5cWFCxd4//330ev1tkSh3bp1Y/LkyYwZM4Zx48ZhsVh4//33cXBwIDQ0FMD2c5HPH3/8gUqlKvS8b2cOEklZMRlTUJR8R4yKs34aSAMnrZoqTlo61/cqvZO0RLKORgHN8c29zGd/RRIwch1eWk2pt1YGm49fZOvhH+nue912zsWlITpdjcozSiIpgftdQ0n9ZEXqJ6mfiuXOiwDev1RGSePMXKMIiFhn95r4TbR46tBfovq2aPHjxZTb7/zsHpH9lp+4/lFX8Z/Xd4j5o7aK9wb3FpH9ra9PBvYV5/48ckf2bzyWVMj+gIh1olnEN+L0T+/fdr8/Xbomqm+LFl33nxQHUzPElVzjHdlZCItFiMQjQsRtFuJdTyGmuQlx7Vzp90kkt8mDVtI4n/ySxu7u7kKv14uwsDC7ksZjx44VdevWFY6OjsLLy0sMHjxYJCcn265Pnz5d+Pj4CEVRSixp3KZNGzFlyhTbfQEBAWLu3LmF7Nm/f7/o1q2bcHFxEc7OzqJZs2Zi5syZQgghrly5IsaPHy+aNGkiXFxchKurq2jatKmIjIwUZrPZrp81a9aITp06CWdnZ1vJ5ZUrV9q1Kaosc/7r/PnzhWzLzs4WTz31lPDz8xNarVb4+vqKPn36iP3799vaLF26tNg+S2PevHkiODhY6PV64evrKwYNGiQuXLhQ4j2//vprkWPlvxf5LFmyRNSrV0/odDrRvHlzsWbNGtu1hIQE0bNnT+Ht7S00Go2oUaOGGDhwoDh58qRdH5s3bxYhISHC3d1dVKlSRXTp0kXs3bu3WNvKWtK4rHO4VcqjpPHDwoPyPNJ//11s6tRC/NL+URHZv7f4eNB48c7UCSIgYp2Iv5JR9o5WDxc75oaK6tuiRee13wsR2bDijC4Hwj/dKQb83zSxZWug+HRVmPi/qGPCYrFUtlkSiRBC6iepn6R+ehj1kyLEHWUxKsSCBQtYsGABZ8+eBazez7ffftuWbCsnJ4dXX32Vb775htzcXMLCwvj888/t9jqeO3eOl19+mV9//RUXFxeGDh3K7Nmz7ULttm/fzqRJkzh+/Dg1a9bkzTffZNiwYbdka1paGu7u7qSmpt61zPUWi6DrxzuIT860nev7iB8XGriy+3oGC4IDeKp6ldvqO2HHdtauNGApEACXmvkxjgYIiTtPw2nv4vGPf9yR/T8fSWTcymha1vJg8ZDWOKgUHLa+i+6Pz3HoNBGemHZL/Z3IyGbSyfNcyDVwxWCit5c7S5rUuSMbi+TvPbC0p/25N5JAe/+uukjubXJycoiPj6dOnTrodGXb/iGxkpmZib+/P3PmzGH48OF3ffyUlBS6du2Km5sbGzduxMlJfk48DJT0O1sZeuFe5kF5Honz5hP1u5lskUKm5SAqTT0yazjyHx5j95Qu+HuUcdvOV+FsTjMxpMlsHjFd5pcAAfVLz6VSWTz+4Ubqu25hQIM1oAulY5tFODrIbXuSewOpn24fqZ8klUF56Kdyz8BYo0YN3n//fQ4ePMgff/xBly5d6Nu3L8ePHwfglVde4eeff2bVqlXs2LGDxMREnn76adv9ZrOZ3r17YzAY2LNnD1999RXLli3j7bfftrWJj4+nd+/etoz8EydOZMSIEWzatKm8p1PuqFQKGyd0YvMrj/FCSG3APqfUnXgIrySZseCAghm1o8JFl3hbmWOVRaA43HkYudFs3aLn7OhANRdHPJy0uDiYb3vr3o+XrhGdnsUVg3XrYROXW899UyYuWX/+0HmAXwt47HXpkJJI7hGio6NZuXIlp0+f5tChQ7YKIfkh7XebqlWrsmXLFrp27crevXsrxQaJRFLxXEpVkap3JsfBmstSBRgVIwAa9S3ktDTm3Ki451nnnnVI/XE2hR+2T+Wt1mOtDinAr4qXdEhJJPcpUj9JHhTKPadUeHi43fHMmTNZsGABv//+OzVq1GDJkiWsWLGCLl2spXaXLl1Ko0aN+P3332nXrh2bN28mJiaGLVu2UL16dR555BHee+89IiIieOedd9BqtSxcuJA6derYkqrlZ7WfO3dumbL8VzY6jZr61V2pVdXqFBF21fdu3y1lMVsANQ2qHqP6pO78c/14BiVZ94eqhEApB9FhMFmdT44OBfyZpexbLomreZX2Bvt5MtTPk8bl7ZTKTYfEaOsLoMnT8OTc8h1DIpHcMZGRkcTGxqLVamnVqhU7d+6kWrVqlWaPp6en3WKIRCJ58Dhx/hDGjIu24zq6P7ikagNm0KpvYd3WlE2Oyhrlrr+V++4iWQYTg/6zjzfb7MA9r0q6omio6llyQmSJRHJvI/WT5EGgQhOdm81mVq1aRWZmJu3bt+fgwYMYjUaeeOIJW5uGDRtSq1Yt9u7dS7t27di7dy9Nmza1284XFhbGyy+/zPHjx2nRogV79+616yO/zcSJE0u0Jzc31y5jf1paWvlM9DZR5TlzhAAlL1bqTqrvWUxmQI2iAqPFutKnyvNxqQQoDnf+dudHSmmKFF1lc6iZheDzc5e5kGNg17UMwBoh1cS1AiKX/vcMnN9349i5DAlLJRLJXaVFixYcPHiwss2QSCQPGTkGayoFFS4o2ssEBVp4P605UJzOKcxVg4l5nn04pPEFQHeHBWUqiuR0A7kmCy5a65yv6j7n2XahqFT3boVAiURSMlI/SR4UKsQpdezYMdq3b09OTg4uLi78+OOPBAcHc/jwYbRaLR4eHnbtq1evzsWL1pWqixcv2jmk8q/nXyupTVpaGtnZ2ej1RUfbzJ49m3fffbc8plgu5EdHWYQol+17Iq9MpEoFprxKfCqLtWdFCFCXQ6SU2WqhvVi7tUipXdcymHkmye5cDV0FiCIhIOmo9XvPIHDyhCbPlP84EolEIpFI7iuEEOSKvJQEqqb8XX0Px596lcSvrNfL6pRafSmFRdW62469tPdmYetLl9YwsOFmnDVZAPRp1Vw6pCQSiURyT1AhfzkbNGjA4cOHSU1NZfXq1QwdOpQdO3ZUxFC3xNSpU5k0aZLtOC0tjZo1a1aaPfnlOi1C2HbA3UnaeUteFJNKsUZKKQIUW6RU+eSUyt++p3UoQqyV0fikXGvuhkC9I89Ur4Kvo4bHq7resW12nP4VLv0Jpmzr8agdoHUu3zEkEolEIpHclyQmJpKbJ1sUBIrKgVyzNeIcyphTKvsa16/EA460SjtO36BmPFWn+FLklcGpy+ks3n6Ybp5v07VWXp5RlSMah9srqiORSCQSSXlTIU4prVZLvXr1AGjVqhUHDhzgk08+YcCAARgMBq5fv24XLXXp0iV8fKx/xH18fNi/f79df5cuXbJdy/+af65gGzc3t2KjpAAcHR1xdHS84/mVF4otUupGrJHlDmKlRJ5TSlErmCwmVAX2AirllFOq5O17pdxrEZzIzCYmIweAFm5OvFoR4u36efj6KWxxZ47u0iElkUgkEokEgKy0VA7+ss5WDEYRgmrqqlxISwJqoCgW28JhiSx+nNwqPaDmP2md+icv+XQA7Z0vAJYnS3ad5beTfxHWUZBr1hCX0YfBnfugVt87elgikUgkDzd3ZeO7xWIhNzeXVq1aodFo2Lp1q+1abGws586do3379gC0b9+eY8eOcfnyZVubqKgo3NzcCA4OtrUp2Ed+m/w+7heKyimVlJzF7lPJWCw3nFOJ17PZeCyJXJO5xP5skVIqMF+8zLTlN9qrBOWyfS/fKaUtuIJYxkTnLx0/S/c/4lh84QoAVTUVVO3l+t+AsDqjmjwLfeZVzDgSiUQikUjuO/78NYoTu3fYIrwVAYkmwZK91kq9KlUZMnyaTXDtLDl5Vff0XvWgSu2KMvm2uZZpwClvy56DgycDu07Hs2rHSrZKIpFIJJIblHuk1NSpU+nZsye1atUiPT2dFStWsH37djZt2oS7uzvDhw9n0qRJVK1aFTc3N8aNG0f79u1p164dAN27dyc4OJjBgwfz4YcfcvHiRd58803GjBlji3IaPXo08+fP5/XXX+fFF19k27ZtfPfdd6xfv768p1OhFKy4p1KAXDPzlltzIC0a3IqwxtYooheXHeDkxXSm9mzIqM51i+4sJxWLIQdwQ6VS0Bz4k8CLCmfyii+oHRzQBgTctq1LdsVz6Nw1TiZZk8MXuX2vlCivw+lWUeTrqKGqRs1T1cs5dFwIq0PqklVU4t0Inl1SvmNIJBKJRCK5r8nNyrRbUFMQHEOL4Yq1grNzWfJCma2Fc3Ly8jLpGvW+o2rEFcGlyxtp4/ElLZ1TAPBw9sTbTVfJVkkkEolEYk+5O6UuX77MkCFDSEpKwt3dnWbNmrFp0ya6desGwNy5c1GpVDzzzDPk5uYSFhbG559/brtfrVazbt06Xn75Zdq3b4+zszNDhw5l+vTptjZ16tRh/fr1vPLKK3zyySfUqFGD//znP4SFhZX3dCqUgjml1AooOTcim5KuZ9u+P3kxHYA9p68W7ZQ6/SssfxZxfSjwJIpKITczC5NzvvBQCNr+Kw6enrdlZ0qmgffWxdid83Ite9h3Yo6BZKOJZIM1+fq6lkH4V0Ri8y3vwO7/u3HsdHvzlUgkEolE8uBiMZsRKIgCkVIW1Pi4a2leowq9m/mV3okp3yll1UP3UtU9o9nCuqOJOF17jwDnG+kudPrKy6MqkUgkEklxlLtTasmSkiNTdDodn332GZ999lmxbQICAtiwYUOJ/Tz++ONER0fflo33CrY8UgLUKNZv8jAXEXTkoCpmBS7hIFhMWPKSc661XKPqH8dR6ljLEztoNLftkALIzLU6kzRqhTd7B+Ps6ECvpkXkgioi0fkfqZmEH/rLLobKU1NBlWnO77N+1bqAoxs0618x40gkEolEIrlvERYzAS5NuJRzALAWg7GoHAipV4U5/VqXqY+03CxOujUhydELAN1t5NqsKH758yKvfHuEz7um4KCG7+L68kKnFjQM6lXZpkkkEolEUoh75y/oQ4gtpxTWrXxKgRQGBXNK5aMuzimVV9LYUq0RAMnZyShCASHQKoLWfZ65Izvz80jpNGqGdqjNs61q4FTGkseH07MQgF6lUEOnYbh/tYoTbllXrV8HfguvnoDG/6iYcSSSB5xhw4ahKAqKotgKV0yfPh2TyXRH/W7fvh1FUbh+/Xr5GFoG4uPjGThwIH5+fuh0OmrUqEHfvn05efKkXbt169bRuXNnXF1dcXJy4tFHH2XZsmV2bc6ePYuiKBw+fLjM47/zzjs0bNgQZ2dnqlSpwhNPPMG+ffvs+hw+fDh16tRBr9dTt25dpk2bhsFgKLXv5cuX07x5c5ycnPD19eXFF1/k6tWrJd6zYMECmjVrhpubG25ubrRv356NGzfarqekpDBu3DgaNGiAXq+nVq1ajB8/ntTUVFubZcuW2X4+bn4VzAeZm5vLv//9bwICAnB0dKR27dp8+eWXdvb83//9n22smjVr8sorr5CTk1PiHH744Qe6d++Op6fnLb8fEglYc3C6aD1sx4oQmBU1WnXZtI0Qgm4xV+nT4jP2ejwCgP4eipS6cPUKtVzP46g2AtAocDBtGj2PVisjyCWSikTqJ6mfpH66PSooZEVSFvL1izWnlH2klKkIp5RDceWJLea8fvIFUV4ycpOZp+o/Qo3+g+7ITkOeU8qxyDxSlJhD4ZrR+iHcz6cqHzaogLDxpCOw5l+QkwppCdZzctueRHLH9OjRg6VLl5Kbm8uGDRsYM2YMGo2GqVOnVrZpABgMBrTakrcBG41GunXrRoMGDfjhhx/w9fXlwoULbNy40U7Yffrpp0ycOJGIiAgWLFiAVqvlp59+YvTo0fz5559ERkbetp3169dn/vz5BAYGkp2dzdy5c+nevTunTp3Cy8uLkydPYrFYWLRoEfXq1ePPP/9k5MiRZGZmljju7t27GTJkCHPnziU8PJyEhARGjx7NyJEj+eGHH4q9r0aNGrz//vsEBQUhhOCrr76ib9++REdH07hxYxITE0lMTCQyMpLg4GD+/vtvRo8eTWJiIqtXrwZgwIAB9OjRw67fYcOGkZOTg7e3t+1c//79uXTpEkuWLKFevXokJSVhsdxYfVmxYgVTpkzhyy+/pEOHDsTFxdkE/ccff1zsHDIzM+nYsSP9+/dn5MiRpb4HEsnNWMxm/nQ7iyrJjAOgCAtm1DiWsQCLQQj+Nlh1Wu2cJKpXr8fjVV0r0OKyIYTgr4uJ1LE8z7T21jyeiqJmQrdHylZNUCKR3DFSP0n9JPXTbSAeYlJTUwUgUlNTK2X8NdEXREDEOjHwi71i9J/xwnflHhEQsU4ERKwT87f9ZWuXf27sikNFd7RluhDT3MSWGV+J+aO2ihH/HiUi+/cW8/8RJhLffPOO7Tx6/roIiFgn2s3aUnSDTf8WYpqb9WseX164Inr9ESua7jomqm+LFrNOJ96xHUWP/aZ17PzX+wFC5GZUzFgSyS2QnZ0tYmJiRHZ2dmWbcssMHTpU9O3b1+5ct27dRLt27URKSooYPHiw8PDwEHq9XvTo0UPExcXZ2p09e1Y8+eSTwsPDQzg5OYng4GCxfv16ER8fL7AGhtpeQ4cOFUIIkZaWJgYOHCicnJyEj4+P+Pjjj0Xnzp3FhAkTbP0GBASI6dOni8GDBwtXV1fbvTt37hQdO3YUOp1O1KhRQ4wbN05kZFg/A6KjowUgzp49W+xcz507JzQajZg0aVKha/PmzROA+P3334UQwjaH6OjoW3+oeeT/3dmypZjPUyHEhx9+KOrUqVNiPx999JEIDAwsZK+/v/8t21SlShXxn//8p9jr3333ndBqtcJoNBZ5/fLly0Kj0Yj//ve/tnMbN24U7u7u4urVq8X2O2bMGNGlSxe7c5MmTRIhISFlsrs83o+ClPQ7W9l64V7jfn8evyyYKwa+01R88M8+IrJ/b/H102+JDq+/KWaujynT/anZmaL6tmhRfVu0yJ3TuIKtLTvvbzwhOs/8TGzZGig2b6krftnaQpyMfaeyzZJIbgmpn6R+Kgqpn27wIOqneyfW+CHGYqFwpFReUimT+YZXtNicUsIaKWUReSt8efsAFQQ43HkwXH6kVNEV96wj3cyHZ5I4mJbF5bzk5g2cK6Dai8UCGXmhjm1Hw0s7YHw0aJ3LfyyJ5CFHr9djMBgYNmwYf/zxB2vXrmXv3r0IIejVqxdGo3WbyJgxY8jNzeW3337j2LFjfPDBB7i4uFCzZk2+//57AGJjY0lKSuKTTz4BYNKkSezevZu1a9cSFRXFzp07OXToUCEbIiMjad68OdHR0bz11lucPn2aHj168Mwzz3D06FG+/fZbdu3axdixYwHw8vJCpVKxevVqzGZzof4AVq9ejdFo5LXXXit0bdSoUbi4uLBy5cpyeYYGg4HFixfj7u5O8+bNi22XmppK1apVS+yrffv2nD9/ng0bNiCE4NKlS6xevZpevcqeM8ZsNvPNN9+QmZlJ+/btS7THzc0Nh2L+nvz3v//FycmJZ5991nZu7dq1tG7dmg8//BB/f3/q16/Pa6+9Rnb2jSIeHTp04ODBg+zfvx+AM2fOsGHDhluag0RyOzjsP8qbK404Wj+2UAlBbk4QmuIi0guybSa5c4IBa4SVpoxb/u4Gxy6k4qyxRkhdyalB3SY7aFB/WiVbJZE83Ej9dOdI/fTg66d75y/pQ8iNnFIiL6dUwUTn1u9zTTecUsXmlLLkO6VUef1ZjxUBSjmIJUOeDZoy5oIyWgTXTFYbFgYHUFOnpaWb0x3bYcevs2DHh5CfQt2nGfg9Ur5jSCTliBCCrAKht3cTJ5XqtrduCCHYunUrmzZtomfPnqxZs4bdu3fToUMHwLovv2bNmqxZs4Z+/fpx7tw5nnnmGZo2bQpAYGCgra98oeDt7Y2HhwcA6enpfPXVV6xYsYKuXbsCsHTpUvz8Cle/6tKlC6+++qrteMSIEQwaNIiJEycCEBQUxLx58+jcuTMLFizA39+fefPm8frrr/Puu+/SunVrQkNDGTRokM2uuLg43N3d8fX1LTSeVqslMDCQuLi423p2+axbt47nnnuOrKwsfH19iYqKolq1akW2PXXqFJ9++mmpIe8hISEsX76cAQMGkJOTg8lkIjw8vMQiIvkcO3aM9u3bk5OTg4uLCz/++CPBwcFFtk1OTua9997jpZdeKra/JUuWMHDgQPR6ve3cmTNn2LVrFzqdjh9//JHk5GT+9a9/cfXqVZYuXQrAwIEDSU5OpmPHjgghMJlMjB49mjfeeKPUOUgkd4Ip+TopHvWxKCrAjEWvJllXtWw6569NZOdX3LMYUOp2qVhjy0hOThJ1nX5Cqz8FQANfP+p5V/6W1eQhFwABAABJREFUQomkPLgfNZTUT1I/Sf1UdqRTqhLJd0pdSc8lI+YqqqQbHtDE69nM2/oX17JuJGtTF/OBaDRCQm5L0hVrNJLIyymlCIGiLlt+hJLIT3SuLUWsXRFaZp08x8Vcq8dfBfTx9rDNs1yJ+QmbQ8rRDWq1K/8xJJJyJMtioe5vxypl7NOPNcX5Fj8L1q1bh4uLC0ajEYvFwsCBA3n66adZt24dbdu2tbXz9PSkQYMGnDhxAoDx48fz8ssvs3nzZp544gmeeeYZmjVrVuw4Z86cwWg00qZNG9s5d3d3GjRoUKht69b2VbGOHDnC0aNHWb58ue2cEAKLxUJ8fDyNGjVizJgxDBkyhO3bt/P777+zatUqZs2axdq1a+nWrVuZnkVpuRfAKi5HjRplO964cSOdOnUCIDQ0lMOHD5OcnMwXX3xB//792bdvn13+AICEhAR69OhBv3797Pb6u7i42L5//vnnWbhwITExMUyYMIG3336bsLAwkpKSmDx5MqNHj2bJkiXs3LmTnj172u5btGgRgwZZ8ws2aNCAw4cPk5qayurVqxk6dCg7duwoJKzS0tLo3bs3wcHBvPPOO0XOe+/evZw4cYKvv/7a7rzFYkFRFJYvX467uzsAH3/8Mc8++yyff/45er2e7du3M2vWLD7//HPatm3LqVOnmDBhAu+99x5vvfVWic9UIrkTcnU1OfVIXyzXPwdhxOAhQFHK5pQy5pCrsn4mODo6wRPF5++4W2w6fpHsy2/xmM+vtnOOWq9KtEgiKV/uJw0l9dMNpH6S+qmsSKdUJZIf+HT6SiZcyaTgx93qgxfK3M/OI0GcuBZqOxZYt8wpgKK587c43ymlKSXR+feqWqxMSrGdDnRyrBiHFNyotPfCL+DfChxK/9CTSCRlJzQ01Ja00s/PDwcHB9auXVvqfSNGjCAsLIz169ezefNmZs+ezZw5cxg3btwd2+TsbL81NyMjg1GjRjF+/PhCbWvVqmX73tXVlfDwcMLDw5kxYwZhYWHMmDGDbt26ERQURGpqKomJiYVWFw0GA6dPnyYsLKxU2/r06WMnNv39/e3srlevHvXq1aNdu3YEBQWxZMkSu6SniYmJhIaG0qFDBxYvXmzXd8HqKG5ubgDMnj2bkJAQJk+eDECzZs1wdnamU6dOzJgxg9atW9vdV716ddv3+RWBAFq1asWBAwf45JNPWLRoka1Neno6PXr0wNXVlR9//BGNRlPkvP/zn//wyCOP0KpVK7vzvr6++Pv72wQVQKNGjRBCcOHCBYKCgnjrrbcYPHgwI0aMAKBp06ZkZmby0ksv8e9//7vEZyqR3C45sbGoHPJ+nvOqFxscTwNtyrZ9z5Rtc0rpVHe+8Hen/HUpnVFfHyTi0XO4VoGYq/VpX78Fdeq8WNmmSSQPJVI/Sf0k9dOtI51SlcjN/hrhqELJtQ9N7VDXkz2nrQ6Y/C19N5OWZY2Q8nDNJs45gcv6v2mMG4oQcAfb965nGVj1xwWiz18DQFuKWLucF6kVWtWVcG8PQjxcSmx/y2Rfh5/GQFoiZCZbz1WpLR1SkvsCJ5WK0481rbSxb5V8IVCQRo0aYTKZ2Ldvny38/OrVq8TGxtqtEtWsWZPRo0czevRopk6dyhdffMG4ceNsK2YF8xMEBgai0Wg4cOCATQilpqYSFxfHY489VqKNLVu2JCYmppCdJaEoCg0bNmTPnj0APPvss0RERDBnzhzmzJlj13bhwoVkZWUxZMiQUvt1dXXF1bVsW2UsFgu5ubm244SEBEJDQ2nVqhVLly5FddP7VdT8srKyCuUoUOet5Aoh0Ov1ZX4uN9uTlpZGWFgYjo6OrF27Fp2u6JyAGRkZfPfdd8yePbvQtZCQEFatWkVGRoZtpTIuLg6VSkWNGjVsc7h5rgXncCvPVCIpKxkJCQgl35lkXcRb5lQLTOBQymflxVwj29w7EK+y/lw6FpdW4S6ScN0aZe+itZYCr+L1Iq2b96tMkySScud+0lBSP0n9JPXTrSOdUpXIzfuTjQ09aKdoOXT4ou3ck838CG3gzcwNJzBbinZKWSzWfto2u8B3rhswncoG3PJySt3+Kt7cqDi+2vu37dhdX7Sn9zI6DnmGcEypAkB7DxcG+nre9rjFcmoLnFx349ipGjgXva9YIrnXUBTllrfQ3WsEBQXRt29fRo4cyaJFi3B1dWXKlCn4+/vTt29fACZOnEjPnj2pX78+165d49dff6VRo0YABAQEoCgK69ato1evXuj1elxdXRk6dCiTJ0+matWqeHt7M23aNFRlyOEQERFBu3btGDt2LCNGjMDZ2ZmYmBiioqKYP38+hw8fZtq0aQwePJjg4GC0Wi07duzgyy+/JCIiArCuCH744Ye89tpr6HQ6Bg8ejEaj4aeffuKNN95gxowZNGnSxG7c2NjYQrY0bty40GpYZmYmM2fOpE+fPvj6+pKcnMxnn31GQkIC/fpZ/2lMSEjg8ccfJyAggMjISK5cuWK738fHp9i5h4eHM3LkSBYsWGALP584cSJt2rQpMp9EPlOnTqVnz57UqlWL9PR0VqxYwfbt29m0aRNgFVTdu3cnKyuL//3vf6SlpZGWlgZYE5+qC/wMf/vtt5hMJp5//vlC4wwcOJD33nuPF154gXfffZfk5GQmT57Miy++aMudEB4ezscff0yLFi1s4edvvfUW4eHhduPcTEpKCufOnSMxMRG48X74+PiU+MwkEoDD586RKXIwG8+QnwbAz70tF69SaqTUKyfP8Wvtl23HLsUWgLk7WCwmMtJ/p6X3n1RxTAegT8vCW3ckkvud+11DSf1kReonK1I/FUY6pSqRQlvblMLRU1oHFdlG68nSnFIqlYLJYkLJO1aEuKPte8mZ1nxWDiqFYR1q0//RmoXaCCHoqX6chCY3sv1XK4ctg0WSmfdhE9AROk6E6o1BXbSjTCKRVAxLly5lwoQJPPnkkxgMBh577DE2bNhgExRms5kxY8Zw4cIF3Nzc6NGjB3PnzgWs4cPvvvsuU6ZM4YUXXmDIkCEsW7aMjz/+mNGjR/Pkk0/i5ubG66+/zvnz54tdYcqnWbNm7Nixg3//+9906tQJIQR169ZlwIABANSoUYPatWvz7rvvcvbsWRRFsR2/8sortn5eeeUVAgMDmTNnDp988gmZmZkArFy5kueee67QuEWdO3/+vG0FKx+1Ws3Jkyf56quvSE5OxtPTk0cffZSdO3fSuHFjAKKiojh16hSnTp0qdL8oJjoWYNiwYaSnpzN//nxeffVVPDw86NKlCx988EGJz+zy5csMGTKEpKQk3N3dadasGZs2bbLlhzh06BD79u0DCq8wxsfHU7t2bdvxkiVLePrpp21JVwvi4uJCVFQU48aNo3Xr1nh6etK/f39mzJhha/Pmm2+iKApvvvkmCQkJeHl5ER4ezsyZM0ucw9q1a3nhhRdsx/nvx7Rp04rN3SCRAFhyzSQcPUWy+TRknLadP3nJAA4OOGpK/qc3KS9nZpvUo3gFtOaftYr/B6aiOZ+SRcyp/6LP+Igxj9w47+DgXuw9Eomk8pD6SeqnfKR+KowiSnrXHnDS0tJwd3e3lWu822w9cYnhX/1hOza09KQ9Gg4euhEp9clzj3At08A7P8fQu6kv4c398PPQ0ayGh63Nd69/z5W0Kjz5+GlecliNw+lrdDnkTZXMbPr0eY5qL43kdhj53z+IirnErKeaMrBtrSLbZJrM1N1pTTwYYrmEn19Dptfzp0p5OqZO/wp/fg9JR+DiUXh0JPQuubKCRFLZ5OTkEB8fT506dUoVBxJ7MjMz8ff3Z86cOQwfPvyuj5+SkkLXrl1xc3Nj48aNODmVc/VQyT1JSb+zla0X7jXu1+dxaVcCa/8XSdq1v0BxQqgsHHWuR3qLcHzcdMz4RxM8XRwL35iTBmvH0t5jCPGaavwc/S8eHfUzOFdAVHgZMFsEbWZu4Yka39A9YDtXs6ugcvChaZ021A9667arrUok9wJSP90+Uj9JKoPy0E8yUqoSKaQZFFCwP6lVq1DnVYPZ+dcV1h9LQq1SiH2vBw55522RUg4K4RuuUicOTvoDAhSH23+Lc015VfeKCU83WCycz7VGU+nMuaw27UBpVHpCu1tm/SRIOXPjuEpA+Y8hkUgqjejoaE6ePEmbNm1ITU1l+vTpALaQ9rtN1apV2bJlC5999hl79+61lVqWSCT3NwfW/oolL7m5WhtMri6d36p24uiLbXDTlRB5fWY7xPxEbtvnQQOOGh04Vl6+jrRsIymZObhqMqzmZfegV7vXaFBgwVIikTz4SP0keVCQTqlKpNBKlkrh5rg1rYMKdV67tBxrQk6zRWAwW2xOKbPF+vW/qUcJO5RJqs6aFE0F6Bo1vG37DCazzYabiUpOZcTxs+TmbSn0NF5HUSog6E4ISEuyft9xEnjUgmb9y38ciURSqURGRhIbG4tWq6VVq1bs3LmTatUqL2ecp6cnb7/9dqWNL5FIyhdjbg4ZVw4htHlaRVEhyFt8U5eSG8pg3ZKS42DN5+H47H8qtcjKmfh5LO62EFWe7hrSoTl+fh6VZo9EIqk8pH6SPAhIp1QlcnNOKaHAzcFTGrWKorRSwfxSFmG969fseHqZ89N2gvOjj+Lcvv1t22cwFS/Wtqek2xxSAL2SfwOv2x6qMMZs2L8YMi6DyVpZhk6TKnVlUiKRVAwtWrTg4MGDlW2GRCJ5gDEZjagUFULkVzlWYVFZdYymNKeUMQuAXJV1a5/Oo3LKa2fmmnj1uyM8VnUd1fVW29VqZ9zdW1aKPRKJpHKR+knyoFC5ZUMeJv6Kgm8Hw8YpYLYmyixUSVhVONO51SlV+G2yWAp+b73HopjRChUirw+1YxF5EW4Bg9k6iGMRkVLJRmvU1lt1/ThvXst7p+ff0ViF+PMHiHob9ub1q/MArUv5jiGRSCQSieShwGIyoeJGdJSCCgsWFMWCupAguwlTDgC5ijURuuMtlogvL3b+lcwvxy+ixhq5teXSVDp1PICzc91KsUcikUgkkvJARkrdLaLehssx1u8b9oI6jxVZfe/mUCmtQ9GRUqYCXimLsDZQmc1cdHEixdmaYEy5w9KphptySlmEoN/h0+y+nmFr4+uoQZMfm1WeOfPTEqxffZpC3S5Q74kiknBJJBKJRCKRlI7FbEYpGCmlqBCKQKUqWbsIIdhh0JFUvScmm1OqcvTI9cxUnB0ycdVaI8hf6fEYavWdLUBKJBKJRFLZSKfU3SL9RkU9TLlA4a161tAp+7OODkVHSpkLOIDyc0o1OqNwOKC67byD9vaEitFs4cyVTDJz7XNKXTaY7BxSrmoVrdycytdZlH39RpU9gHrd4Ilp5de/RCKRSCSShw6zyYRZgTR1OtZsUCosirDlZSqOvdczec7SChq2AqwqTXeXI6XMFsGfp1ZTLeMN5nW5sSjp4Vz1rtohkUgkEklFIJ1SFUX8b5AcByaDNSdSdsqNa3kOpUKJzhUFnxputArIIiXTQF0vFxr4uOKu11DNRUtyhsHW1GIBkk9BznXb9j2d1deFa3Yu1UM60frJf9yW6c//Zx/74m/Ym59T6mrelj1PjQO/tWmIi4PqphD2coiUWtrzRkQZgFPllFuWSCQSiUTy4GAxm/jD728y0i9S95ozoMKCQK22FH/TyfVc2LUa6k6gquE6jzjk8FhQS/Sl5aAqZ8atPISXeQ2P1SjgkPJog0YjnVISiUQiuf+RTqmKIvp/cPTboq/llyO+KfxbqMDJRcP3L3ewO1+zqhP733gCixA0evsXjGaB9vi3/PLdOeJz2mDBGhGlynN2BV65Tpfxk1Hp9bdlekxiGgAeThrqV3fF6OLAc4dPc8lgzYVVTeuAp7bgj045RUqZTXD5hPV7r0bg4g3Bfcqnb4lEIpFIJA8tFpOJNMccHNLyzyiocj3RqEvQMCfXk5OXB7Rt2jGWNg6AWt4VbuvNHDmfSt8A65a9DX8/x4DHJ9KydrXCi5sSiUQikdyHSKdUReHX0lqtRe0Iai04OMLBpXkXrc6jZjXc6Vzfi3MpWWirOHJEp+a/iVfZnpLOtHp+9PbysHWnUimoUNCoVRjNZlRXTnI6p5vteqrjFcgxAxoUcWf5pHLzEpyvH98Jfw89r5w8x/Zr6bbr9Z10t913ieRcxxZtNXoXqOWPp0QikUgkkjvHbDZjUQlUedHlKCqEyYMqOrfibzJmk62yah5d/TAIrn8XLLXHZErHWXUWD8frAEzu2RYfn/IsdyyRSCQSSeUi/+uvKNqNtr4KcvEYJPxhi5TSadR89WIbAD45e4kj8UkAnMsx8OOla3ZOqXzUeatiFuONrXz/eLMpvaKeoOdeq0hRhACN5rbMFkLYEpznV91LNli37b3gX40uVV1p71FMFbzbTXR+YAlsm2HLtYXOXTqkJBKJRCKRlBsWswmNyQNHozHvjAoHDQx4tFbxN5lyyVFXAUDvWEELciWQkZ3JwQNdiGh9I6WCg6YEJ5pEIpFIJPchlVPT9mFFyXvconD+giyL/TlzMf4ddV6YuTDk2s7p3B2wqCzkF5BRFNVth3QbzDfsOJtjYM2la8RnW8fqWMWFbtXccXG4KQrrTsPHj3xjzblltJY4plaHkttLJJIKZdiwYSiKgqIoaLVa6tWrx/Tp0zGZTHfU7/bt21EUhevXr5ePoWUgPj6egQMH4ufnh06no0aNGvTt25eTJ0/atVu3bh2dO3fG1dUVJycnHn30UZYtW2bX5uzZsyiKwuHDh8s8/jvvvEPDhg1xdnamSpUqPPHEE+zbt8+uz+HDh1OnTh30ej1169Zl2rRpGAyGEnq1snz5cpo3b46TkxO+vr68+OKLXL16tcy2vf/++yiKwsSJE+3Onz59mqeeegovLy/c3Nzo378/ly5dsmszc+ZMOnTogJOTEx4eHkX2n/8zVPD1zTff2K7/8MMPdOvWzTZO+/bt2bRpU6l2//DDD3Tv3h1PT89bfj8kDy+no9MIThiCX1qdvDMq+raswZjQesXfZMomR2VNi363k5uv3H+O7pHfYjKlYBEKqbmuuLg2w8O91V21QyKRlB2pn6R+kvrp9pBOqbuJzSlV2ON0zWj/YWUpJml4fqSUMN5wSpmx3qvOC0lX3UGp4lzTDafU00dPMzrmb05lWceqpikteuk2I6Wy8j4Env0SJhyB51bcXj8SiaTc6NGjB0lJSfz111+8+uqrvPPOO3z00UeVbZaNsogOo9FIt27dSE1N5YcffiA2NpZvv/2Wpk2b2gm7Tz/9lL59+xISEsK+ffs4evQozz33HKNHj+a11167Izvr16/P/PnzOXbsGLt27aJ27dp0796dK1euAHDy5EksFguLFi3i+PHjzJ07l4ULF/LGG2+U2O/u3bsZMmQIw4cP5/jx46xatYr9+/czcuTIMtl14MABFi1aRLNmzezOZ2Zm0r17dxRFYdu2bezevRuDwUB4eDiWAosnBoOBfv368fLLL5c4ztKlS0lKSrK9/vGPf9iu/fbbb3Tr1o0NGzZw8OBBQkNDCQ8PJzo6usQ+MzMz6dixIx988EGZ5iqRpKenc3BvXs5KYdVMTtnJ+PgVH1WelGtgtbYhR1waAHffKfVb3BX0DlkAXM2pwk9Ji2n76I84OLjeVTskEsmtIfWT1E9SP90G4iEmNTVVACI1NfXuDLgkTIhpbkL8+WOhS6uTrorq26Jtr0FHThfZResZUSIgYp249MVQMX/UVjF/1FZxKf2SaLKsiXj7hW4isn9v8VtI+9s28XJajgiIWCcCItaJ6lsPidrbD4t+0X+J10+eE0azpeibtr5nndf618o+kDFXiPWThVjxTyGmV7Pef/nkbdstkdxrZGdni5iYGJGdnV3ZptwyQ4cOFX379rU7161bN9GuXTuRkpIiBg8eLDw8PIRerxc9evQQcXFxtnZnz54VTz75pPDw8BBOTk4iODhYrF+/XsTHxwusnmvba+jQoUIIIdLS0sTAgQOFk5OT8PHxER9//LHo3LmzmDBhgq3fgIAAMX36dDF48GDh6upqu3fnzp2iY8eOQqfTiRo1aohx48aJjIwMIYQQ0dHRAhBnz54tdq7nzp0TGo1GTJo0qdC1efPmCUD8/vvvQghhm0N0dPStP9Q88v/ubNmypdg2H374oahTp06J/Xz00UciMDCwkL3+/v6l2pCeni6CgoJEVFRUoee8adMmoVKp7P4uXr9+XSiKIqKiogr1tXTpUuHu7l7kOID48ccfS7WnIMHBweLdd98tU9vyeD8KUtLv7F3XC/c499vzOPDbDvH5+IVi/qit4vOn+4nI/r3F7/9oIswpScXe0+NArJ0umxNffNvyxmTKFFOWzxOvfPGS2LI1UOz9/UlhsRSjwSSSBwypn6R+Kgqpn0rmftdPMlLqbpIfKVVERNFT1auwpkU93q7rB4C5mPxM+ZFSmPJzIggsitX7atu+dwerefnb9xzUCigKQU46vnukHh80qIlDsRFYtxGZFf8b7F8EsevBbLAmhHf1vW27JZJ7HSEEWQZTpbzE7eZ7K4Ber8dgMDBs2DD++OMP1q5dy969exFC0KtXL4x5eVrGjBlDbm4uv/32G8eOHeODDz7AxcWFmjVr8v333wMQGxtLUlISn3zyCQCTJk1i9+7drF27lqioKHbu3MmhQ4cK2RAZGUnz5s2Jjo7mrbfe4vTp0/To0YNnnnmGo0eP8u2337Jr1y7Gjh0LgJeXFyqVitWrV2M2m4uc1+rVqzEajUWu6I0aNQoXFxdWrlx5x88PrKtjixcvxt3dnebNmxfbLjU1lapVSy713r59e86fP8+GDRsQQnDp0iVWr15Nr169SrVjzJgx9O7dmyeeeKLQtdzcXBRFwdHR0XZOp9OhUqnYtWtXqX0XNVa1atVo06YNX375ZYk/ixaLhfT09FLnLpHcCke3/MLu5StxMFzDlHsck2L9rDrToBGqKj5F33Toay6kWaO4W6f+SbiTgWerV7kr9ialZrM7eiZP+PwfvQO3AOCorSor7Ukeau5nDSX1050j9dODr59kNum7Sp6gKCKnlEpRaOfhwoUca0hlcT937cVhemrWo71yzXqfCkyGHKZ8Z+a6FnK0oLqNynup2UaW7Irn+xPWZOvGPFOrlLplrwC38qGdcdH61bsxtBkJPs2gpAo4Esl9TrbRTPDbpe/3rghipofhpL29j3shBFu3bmXTpk307NmTNWvWsHv3bjp0sOZ+W758OTVr1mTNmjX069ePc+fO8cwzz9C0aVMAAgMDbX3l/7H09va27aNPT0/nq6++YsWKFXTt2hWwhiz7+fkVsqVLly68+uqrtuMRI0YwaNAg257+oKAg5s2bR+fOnVmwYAH+/v7MmzeP119/nXfffZfWrVsTGhrKoEGDbHbFxcXh7u6Or29hp7hWqyUwMJC4uLjbenb5rFu3jueee46srCx8fX2JioqiWrVqRbY9deoUn376KZGRkSX2GRISwvLlyxkwYAA5OTmYTCbCw8P57LPPSrzvm2++4dChQxw4cKDI6+3atcPZ2ZmIiAhmzZqFEIIpU6ZgNptJSkoq24TzmD59Ol26dMHJyYnNmzfzr3/9i4yMDMaPH19k+8jISDIyMujfv/8tjSORlMSl+FMEuDTh9IXNIMyQJ5F+8+jJP4u6ITUB1o4lJ2Q9OMAnsbOp2+5b0DsW1bpcuZqRS+ePtvNy06M084KEDB8CvOsQEPBShY8tkdzL3I8aSuonqZ+kfio7MlKqgsg6FM31NWu4uuRLLs6YSc7JkzcSgpfgvMmPhDIXk59phPkbuqsPospNt3algPFEHC1PC1uklGMRH0alsSY6gXlb/yIhMQMARavGW+tAf58yrAzeyupdwiH45Q2IXm499mkCrV+AGjJxp0RyL7Fu3TpcXFzQ6XT07NmTAQMGMGzYMBwcHGjbtq2tnaenJw0aNODECWu+lvHjxzNjxgxCQkKYNm0aR48eLXGcM2fOYDQaadOmje2cu7s7DRo0KNS2devWdsdHjhxh2bJluLi42F5hYWFYLBbi4+MB60rTxYsXWb58Oe3bt2fVqlU0btyYqKioMj8LrVZbapvly5fb2bFz507btdDQUA4fPsyePXvo0aMH/fv35/Lly4X6SEhIoEePHvTr188ut0HBfkePtlZ1jYmJYcKECbz99tscPHiQX375hbNnz9qu79y50+6+5cuXc/78eSZMmMDy5cvR6YquJObl5cWqVav4+eefcXFxwd3dnevXr9OyZUtUtxiF+9ZbbxESEkKLFi2IiIjg9ddfLzavxooVK3j33Xf57rvv8Pb2LvWZSiRlxZhjRIVidUgBzkYdMZ6e5HrXLvqGnOvWLyqrE0r3xNtQvfFdsBTOXMlAo6Tj4ZgGwOmcIXR49L9UrRpyV8aXSCR3jtRPN5D6SeqnsiIjpSqIa9+sJG3tz7Zj44UL1GxffKLzfPLdO8VV39NhTTq+3GwNGzSjwmKwJsI0522v8/n3v2/Z3pTMG0nvjPXcmNmhLsOCb925VSrrX4XEAmGl7jXLfwyJ5B5Er1ETMz2s0sa+VUJDQ1mwYAFarRY/Pz8cHBxYu3ZtqfeNGDGCsLAw1q9fz+bNm5k9ezZz5sxh3Lhxt2O6Hc7OznbHGRkZjBo1qsiVo1q1bpR5d3V1JTw8nPDwcGbMmEFYWBgzZsygW7duBAUFkZqaSmJiYqHVRYPBwOnTpwkLK/1969Onj53Y9Pf3t7O7Xr161KtXj3bt2hEUFMSSJUuYOnWqrU1iYiKhoaF06NCBxYsX2/VdsDqKm5s1onT27NmEhIQwefJkAJo1a4azszOdOnVixowZtG7d2u6+6tWrs3XrVi5fvkzLli1t581mM7/99hvz588nNzcXtVpN9+7dOX36NMnJyTg4OODh4YGPj4/dqu3t0LZtW9577z1yc3Ptwtu/+eYbRowYwapVq+xC4kt6phJJWTGbzIgCaQb8sqqxo6YPXbVF/2OBKRczKowqaxJ0XdNn7rzKcBlJTZzEvNAb2zwmhbVBo5brxxLJ/aShpH6S+knqp1tHOqUqCF2DBpg7XiMzbw+pJTOzQKRU4e17+eRHSlmKcVw5YF3p228JpjWACsxGq0PJkueUcijGg1sS6y9atwOaartgrutKi5oet9xHmarvpV6wfm31AlSpDS2H3MY4Esn9h6Iot72FrjLIFwIFadSoESaTiX379tnCz69evUpsbCzBwcG2djVr1mT06NGMHj2aqVOn8sUXXzBu3DjbilnB/ASBgYFoNBoOHDhgE0KpqanExcXx2GOPlWhjy5YtiYmJKWRnSSiKQsOGDdmzZw8Azz77LBEREcyZM4c5c+bYtV24cCFZWVkMGVL655SrqyuurmWrimWxWMjNvVFBNSEhgdDQUFq1asXSpUsLragVNb+srCwcHOx/ntR5W7eFEOj1+kL3de3alWPHjtmde+GFF2jYsCERERG2+/PJD5Hftm0bly9fpk+fPmWaX3EcPnyYKlWq2AmqlStX8uKLL/LNN9/Qu3dvu/a38kwlkuIwm03c0CcqhGIGoUbrUMw/mqZcW5QUgE5d8Q6p+ORMXl99hOH1fkeT9+vv5BSIi0vhiAeJ5GHkftJQUj9J/ST1061zf/x234d4Dh+O5/DhpG3eTML4CQizucRE5/nka5/i3FbqvCsWkffLo4AlL+m5TXLdYk4pixDEpmVb0yyoFXy0GurdUu6EUgSbyQB/fAmp5yEr2Xru8SngWkyCUYlEck8SFBRE3759GTlyJIsWLcLV1ZUpU6bg7+9P3759AZg4cSI9e/akfv36XLt2jV9//ZVGjRoBEBAQgKIorFu3jl69eqHX63F1dWXo0KFMnjyZqlWr4u3tzbRp01CpVKUm9o2IiKBdu3aMHTuWESNG4OzsTExMDFFRUcyfP5/Dhw8zbdo0Bg8eTHBwMFqtlh07dvDll18SEREBWFcEP/zwQ1577TV0Oh2DBw9Go9Hw008/8cYbbzBjxgyaNGliN25sbGwhWxo3boxGY19ePjMzk5kzZ9KnTx98fX1JTk7ms88+IyEhgX79+gFWQfX4448TEBBAZGSkrdQxgI9P8Z+R4eHhjBw5kgULFhAWFkZSUhITJ06kTZs2ReaTAKtIuXkuzs7OeHp62p1funQpjRo1wsvLi7179zJhwgReeeUVuy0B586dIyUlhXPnzmE2m22rivXq1cPFxYWff/6ZS5cu0a5dO3Q6HVFRUcyaNcsuIeqKFSsYOnQon3zyCW3btuXiRWuuQb1ej7u7e7Fzzx83MTERuPF++Pj4lPjMJA8nFpO5gEpR5RWHUaEtRitlG3I441TDdqy/g+IxZWXDsSSiz11GU98EwMGclUwOfVQmN5dIHhCkfrIi9ZPUT8VSLnUA71PuRknjtC1bREyDhiK+/wAh/vuUENPchIheXmz7jZevi+rbokWvP2KLvJ70bpAQ09zEoNespY0/Gf+rOLZmmTjaqJGY+2wPEdm/t0g+//ct2XjNYBQ1PtkmAiLWidlRJ0WO2XxL94tts6zz+vmVoq/HrLVez3/N8BXCZLi1MSSS+4wHraRxPvkljd3d3YVerxdhYWF2JY3Hjh0r6tatKxwdHYWXl5cYPHiwSE5Otl2fPn268PHxEYqilFjSuE2bNmLKlCm2+wICAsTcuXML2bN//37RrVs34eLiIpydnUWzZs3EzJkzhRBCXLlyRYwfP140adJEuLi4CFdXV9G0aVMRGRkpzDd9zq1Zs0Z06tRJODs720our1y50q5NUWWZ81/nz58vZFt2drZ46qmnhJ+fn9BqtcLX11f06dNH7N+/39Zm6dKlxfZZGvPmzRPBwcFCr9cLX19fMWjQIHHhwoVS7yvIzSWNhRAiIiJCVK9eXWg0GhEUFCTmzJlTqBz90KFDi7T5119/FUIIsXHjRvHII4/Y3pfmzZuLhQsX2j33zp07F9lH/s9FcRT3zKZNm3ZLc7+Z8ihp/LBwPz2P72a8I3549VMR2b+3iOz/lPi+11BRd8Ys8daaY4XaZhhNovH2P0T1bdGi+rZoUfPXw3fFxpnrY0TTt1aILVsDxZatgcJglBpJ8vAi9ZPUT1I/PXz6SRGiHGqF36ekpaXh7u5OamqqbZ9peZO+fTsXRr+MrmlT6vS1wKko6Ps5tBhUZPvNyakMORbPI65O/NK6fqHrV6fXxdOSzMDMSELS65JJDMr1DajEjZW8F+Yuoqpf6XtHs8wW1py5zMG/r7Fq/3lUaUam923MkPa1b22S29+H7bOh9XB48uPC1/d+DpumglcjCO4DtTtBnU63NoZEcp+Rk5NDfHw8derUKTYpoqRoMjMz8ff3Z86cOQwfPvyuj5+SkkLXrl1xc3Nj48aNODk53XUbJHefkn5n74ZeuJ+4n57HikkTMGp8ST67CxQdtTL0TG3flI96DeSpFjXs2sZkZNPlgHXlWGcx8pR/deY2rFVUt+XGpUvr+P3oh+QYsqmmT0GtduHxzkcqdEyJ5F5G6qfbR+onSWVQHvpJbt+rYJT8PapmEyh5j/sOckq561SQBWrFGuYojEmoCzikqtUMwD0v835pTDrxNxu/O4lisNjKMLo4luOPRGYy/PkD/JVXwrXOYxD6Rvn1L5FIHgiio6M5efIkbdq0ITU1lenTpwPYQtrvNlWrVmXLli189tln7N2711ZqWSKR3F+Y09OpfXAH6lTBrgY1sW7fMzNvQGt61atRqH2Oybp9rmZ2EgeuLICupScnvl2yDWZe+voPQqt9ToBrAi5663mZR0oikZQVqZ8kDwrSKVXR5OciMFvKmOjc+rW4Fg7CKpi6NfEjfQ+A9bhWciqtawRS+6P5Zc5BcCItG8VgHcnFx4kGVZ3p2qh6me4tmpscab/Ogj+W3DiWOaQkEkkxREZGEhsbi1arpVWrVuzcudOWKLIy8PT05O2336608SUSyZ1jyczELT2XDCW/LLmKTG894QHtCjf+4SWy/46FRz5BZ8kFh4qN0Pjj7xR2/pVMN680AJafeJbhoT1o0aAI2yQSiaQYpH6SPAhIp1QFo6itj9gaKZW3DFZConNVXjpOczGRUolZddlyZTbpV/L6FdYqDGqLQO2guaWkmNeyrQnSFeDYhMfvIKFmMfdd/9v6tVZ78G0OLQbfZv8SieRBpkWLFhw8eLCyzZBIJA8Qpuu5JH/9N9lONbngXg84B4qKus+/jZOmiC0lJ34mx7UpADqLocLTDKRd28zzjTbhpU8B4PXwATSs1bKUuyQSieQGUj9JHhSkU6qCUdQFIqUoPVJKldfEXIzf6kzmI6RbbmzPy9akoQFUQqA4lP52HkrLZErsBdLNZpKzjWgBJ0d1+VR4yXek5aSBIQMyLlmPQyZAg5533r9EIpFIJBJJGcg9fR3zVQMnaz/HdZ0W0s+hoODopCncWAgwZpObF1Gl82sKrftXiF1CCE4kpaBNf4/QmnmLg4qaQJ/aFTKeRCKRSCT3OhVf5/ZhJz+nlMVs276Xe+EKVz6dT04RZTHzc0qJYqKpLMJ6XVtHxdeN55PoZu1DEQI0pTulvrt4jWMX0zj3ZzKqs+kAuOqKEGi3QkGH1tnd8GEgfNwILh6zntNXvbP+JRKJRCKRSG4Fi+C8KhmjgxPkRZVnKSq8arsWbms2AIIctSMAOoc71EUlsHL/efov2IJKsTqkTmc/R7OmC9FqpVaSSCQSycOJjJSqYPITnWMyg2L1ASbM/5ncC1dJ27CBuhs32LXP9xKaBZCWBGd3Qc1HoUptACx5Sc1VejXpuquo8nxXKiFsWwVLItlgxOHEddQpBts5T2dtCXfcIuf2gMUIKKByAK8G4NO0/PqXSCQSiUQiKQVhEex3OIULAbaFvkyVglajLtR279VrfNrkA87rrLkvdaqKW7ONSUrFySEbgFyzjkeCX6VaNemQkkgkEsnDi3RKVTSq/EgpS4FIqasAGOLjCzXPj5QyCwHL+8GlY+BUDV4/DRaLzSmFSgWKGZXF+haWtn3vvwnJLElI5ly2ASXXun0wrHF1fNx09HnEv3zmioBM69wImQDd3i2nfiUSiUQikUjKjsVowYQZi6Imv3yMUFRoHQo7nBYmXmOb540E4zV05bhYV4D09Bj8VV8SXjcJADenKrSpIx1SEolEInm4kU6pCuZGTqkbkVIlkZ9T6u8cg9UhBZCVbP0qzFhE3lumVvPE0SzqJbhhcACVAMWh8OpfPp+fv8zZbGt0lKPJKs7GdQmiib/7rU+qEHlGH1wGSp4NzpVX9UEikUgkEsnDixCCP3/dgVDAJNIQJmuOSwsqNOrCWizTZK1kPDzpJzp0m8DjVYrY4neHLNpxGvesV6nvEkd9F+s5R0fvkm+SSCQSieQhQOaUqmhs1ffMFKpSV0R4uLq4hOOH/gs7PsCS/5YpCiO2ZFMlI+9QCBy8ixc3Vw1WwbUwOACnvLxUrroK8EkKs9UxVaNN+fctkUgkEolEUgrpV6+Qcu4UluxUsrK/x5SzGwCzokKjLqCzrp6Gr58i5/JfAHRMj6G3lwfOJSzy3Q7XMg3M3ngSLNZFxt2JbXD0GEbDBjPKdRyJRCKRSO5HZKRUBZMfKSVMJlKPXMUY52K7ptLrC7Uv1ku4dhwAFl6z9qtScLCAyHNiVe3Xj2ojR9vdkm22sOj8ZS4ZTKTnmnA4mcp3p3PINlgTfjo7ltPbX9CP9vQXUO8JcJLh6BKJRCKRSO4+ZqMRlaIiM9eEGwAaMvQGjro0sY+UOv4jnN5Grvs/AdC5VIx2ScmyRqo75+WSeqzFq4QEtyqfyscSiUQikdznyEipiiYvp5QlNZXE1X9x5ajbjUsuLoWaFxspBeDqh8WjLgDGK7HsredHiosOAJeWLVE5O9s1/yU5lffjL7I0IRlVci4OCVnsOWXN+eSqc8DtTqvuFYV3sHRISST3OcOGDUNRFBRFQavVUq9ePaZPn44pb4vL7bJ9+3YUReH69evlY2gZiI+PZ+DAgfj5+aHT6ahRowZ9+/bl5MmTdu3WrVtH586dcXV1xcnJiUcffZRly5bZtTl79iyKonD48OEyj//OO+/QsGFDnJ2dqVKlCk888QT79u2z63P48OHUqVMHvV5P3bp1mTZtGgaDoYRerSxfvpzmzZvj5OSEr68vL774IlevXi31voSEBJ5//nk8PT3R6/U0bdqUP/74w3a94Puf/+rRo4ddH7Vr1y7U5v3337ddj42NJTQ0lOrVq6PT6QgMDOTNN9/EaDTa9XP9+nXGjBmDr68vjo6O1K9fnw0b7AuA3MwPP/xA9+7d8fT0vOX3Q/JwYDFbUBQVGWarBlNparG/sYEqzZviWDCnlDELgBy9JwCOXd8qd1vM5mySzs1idLMvcdJYnVIdgmpLh5RE8gAi9ZPUT1I/3R4yUqqCuTnPk4OTCZW7F4aka6h0ukLtVSVpFO+GCF1juHiVq2c24Oh8I9LKzbt6oeaJudYf3sYuOmq6q9lOCk383XgxpA7NargXmezztnDxufG9e43y6VMikVQqPXr0YOnSpeTm5rJhwwbGjBmDRqNh6tSplW0aAAaDAa225GTERqORbt260aBBA3744Qd8fX25cOECGzdutBN2n376KRMnTiQiIoIFCxag1Wr56aefGD16NH/++SeRkZG3bWf9+vWZP38+gYGBZGdnM3fuXLp3786pU6fw8vLi5MmTWCwWFi1aRL169fjzzz8ZOXIkmZmZJY67e/duhgwZwty5cwkPDychIYHRo0czcuRIfvjhh2Lvu3btGiEhIYSGhrJx40a8vLz466+/qFKlil27/Pc/H0dHx0J9TZ8+nZEjR9qOXV1v5OHRaDQMGTKEli1b4uHhwZEjRxg5ciQWi4VZs2YB1vewW7dueHt7s3r1avz9/fn777/x8PAo8ZlmZmbSsWNH+vfvbze+RJKPxWxCq+TgKfJycqLGzdWRlSO72jc05gCQo7bqMZ1TeeTZvMFvcVf45rdlPBP4LY/mSSW12gUHh/IdRyKR3DtI/ST1k9RPt4F4iElNTRWASE1NrbAxcs9fEDENGtpeF7rVEpnLpoiYBg3FX926F2qfaTKLlrv/FNW3RQsxzc3+9b9nxZr/Oyjmj9oqpg/tKyL79xbfP95enDsVY9eHwWwRJzKyxCsn/hbVt0WLN+POi8U7TouAiHViwspD5T9Jk0GIkxuESDpa/n1LJPcp2dnZIiYmRmRnZ1e2KbfM0KFDRd++fe3OdevWTbRr106kpKSIwYMHCw8PD6HX60WPHj1EXFycrd3Zs2fFk08+KTw8PISTk5MIDg4W69evF/Hx8QKwew0dOlQIIURaWpoYOHCgcHJyEj4+PuLjjz8WnTt3FhMmTLD1GxAQIKZPny4GDx4sXF1dbffu3LlTdOzYUeh0OlGjRg0xbtw4kZGRIYQQIjo6WgDi7Nmzxc713LlzQqPRiEmTJhW6Nm/ePAGI33//XQghbHOIjo6+9YeaR/7fnS1bthTb5sMPPxR16tQpsZ+PPvpIBAYGFrLX39+/xPsiIiJEx44dS2xT1Pt/MwEBAWLu3LkltrmZV155xW7sBQsWiMDAQGEwGG6pn3zK4/0oSEm/s3dDL9xP3OvP4+LJo8LwlpfY/69GIrJ/b/Hx86+JAYt7FWqX8vPr4sQHzUSjbftE9W3R4nh6VrnaMfGbaPHC/NfFlq2B4j8/PiY+XTtLpKZKrSSRlITUT1I/FYXUTw+2fpLb9yoY5aYqLypt/ucJYLEUau+kVvF7u2DiOjUtqjNMZus9irD24Z5jpmbdRnbNBhw5zeP7Y1mRlAKAh4OatBxr1JRrRWzZU2ugQU/wKcJmiURiRQgwZFbOK+/z4k7Q6/UYDAaGDRvGH3/8wdq1a9m7dy9CCHr16mULKx4zZgy5ubn89ttvHDt2jA8++AAXFxdq1qzJ999/D1hDk5OSkvjkk08AmDRpErt372bt2rVERUWxc+dODh06VMiGyMhImjdvTnR0NG+99RanT5+mR48ePPPMMxw9epRvv/2WXbt2MXbsWAC8vLxQqVSsXr0as9lc5LxWr16N0WjktddeK3Rt1KhRuLi4sHLlyjt+fmBd2Vq8eDHu7u40b9682HapqalUrVryNuj27dtz/vx5NmzYgBCCS5cusXr1anr16lXifWvXrqV169b069cPb29vWrRowRdffFGo3fbt2/H29qZBgwa8/PLLRYa1v//++3h6etKiRQs++uijErcnnDp1il9++YXOnTvb2dK+fXvGjBlD9erVadKkCbNmzSr2vZJIyoqSeRmNKhdj3vY9BTVCbx+dfjHXSAunfjz+6FekYI0a0BVRgOZOSMvKwlVrrUgTXKstL/eegpub1EoSyS1zH2soqZ/uHKmfHnz9JLfvVTDKTVv0HBwtN/KCF/Mhp1EpaFRFVH5RqbHc5JQSiv1bKITgUFomANU0DignrvPppgTbdZeKqLgnkUhKx5gFs/wqZ+w3EkHrXHq7IhBCsHXrVjZt2kTPnj1Zs2YNu3fvpkOHDoB1X37NmjVZs2YN/fr149y5czzzzDM0bWr9xyswMNDWV75Q8Pb2toUYp6en89VXX7FixQq6drVurVm6dCl+foWfVZcuXXj11VdtxyNGjGDQoEFMnDgRgKCgIObNm0fnzp1ZsGAB/v7+zJs3j9dff513332X1q1bExoayqBBg2x2xcXF4e7ujq+vb6HxtFotgYGBxMXF3dazy2fdunU899xzZGVl4evrS1RUFNWqVSuy7alTp/j0009LDXkPCQlh+fLlDBgwgJycHEwmE+Hh4Xz22Wcl3nfmzBkWLFjApEmTeOONNzhw4ADjx49Hq9UydOhQwBp6/vTTT1OnTh1Onz7NG2+8Qc+ePdm7dy9qtfVv0/jx42nZsiVVq1Zlz549TJ06laSkJD7++GO78Tp06MChQ4fIzc3lpZdeYvr06Xa2bNu2jUGDBrFhwwZOnTrFv/71L4xGI9OmTSv1uUokxSGMuQBki7xtE4oabkqncCorhxzFAbUw4aEImlWtSoC+5C0tZSXHaOb4iX8zMGCV7ZyXuxfqEnM0SCSSYrkPNZTUT1I/Sf1UdmSkVAXjUKUK1adOwa1XLzza+eNRNxOUPIeSKBAp9VskLAiBH0dbnVU3RVEZLHpSc90x5lo9oHldIG5yXmWZLeRYrBf3tWuE/nKO7ZrWQUW7QM/ynqJEInkAWbduHS4uLuh0Onr27MmAAQMYNmwYDg4OtG3b1tbO09OTBg0acOLECcD6x3bGjBmEhIQwbdo0jh49WuI4Z86cwWg00qZNG9s5d3d3GjRoUKht69at7Y6PHDnCsmXLcHFxsb3CwsKwWCzEx8cD1pXHixcvsnz5ctq3b8+qVato3LgxUVFRZX4WpeVeAKu4LGjHzp07bddCQ0M5fPgwe/bsoUePHvTv35/Lly8X6iMhIYEePXrQr18/u73+BfsdPdpaZTUmJoYJEybw9ttvc/DgQX755RfOnj1ru75z5067+5YvXw6AxWKhZcuWzJo1ixYtWvDSSy8xcuRIFi5caBvvueeeo0+fPjRt2pR//OMfrFu3jgMHDrB9+3Zbm0mTJvH444/TrFkzRo8ezZw5c/j000/Jzc21m9O3337LoUOHWLFiBevXr7cTixaLBW9vbxYvXkyrVq0YMGAA//73v222lPRMJZKSyDlxnMR9HqQn5C8MqhEFA8WvxJLz1zYAGmec4rjbcVY2r1tysZkykplrotOHv3IucWOBs1qqeLS7474lEsm9j9RPN5D6SeqnsiLDZu4CVfO8p6wdB4cOYMoPkLIUiJTa+TEYM+HSn1xrNBFcfclPm5ZiqsF3yZGYLzsC1sot+ZFSljynVKbZTJ9DfxGXaf2B1qkUnNQq0nOs4YDrx3ekrpcLOk0REVgSiaTi0ThZV9sqa+xbJDQ01Ja00s/PDwcHB9auXVvqfSNGjCAsLIz169ezefNmZs+ezZw5cxg3btztWG6H800VRjMyMhg1ahTjx48v1LZWrVq2711dXQkPDyc8PJwZM2YQFhbGjBkz6NatG0FBQaSmppKYmFhoddFgMHD69GnCwsJKta1Pnz52YtPf39/O7nr16lGvXj3atWtHUFAQS5YssUt6mpiYSGhoKB06dGDx4sV2fResjuLmZq3gOnv2bEJCQpg8eTIAzZo1w9nZmU6dOjFjxgxat25td1/16tZiGL6+vgQHB9v136hRI9vWgKIIDAykWrVqnDp1yrYaezNt27bFZDJx9uxZO0Fcs2ZNAIKDgzGbzbz00ku8+uqrqNVqfH190Wg0ttXDfFsuXryIwWAo8ZlKJMUhhMCw9yhZ8U4Y/R3AGVDUKPnFXSwW+LIHuc6NofEMdBYDaAtXQ75d4pMzuZKeg7ODtbLfFydnsviFcNz0txetKpFIuK80lNRPUj/lI/VT2ZFOqbuJki+I8jyhBbfvma3lK8/lPsLP/5cIJNLboxW1dQdJNtbGjCMKFtQaFWQk4JxtwuigtkVK/ZmezfGMG1FRj1VxxWwRZButkVV+7nrpkJJIKhNFue0tdJVBvhAoSKNGjTCZTOzbt88Wfn716lViY2Pt/lDXrFmT0aNHM3r0aKZOncoXX3zBuHHjbCtmBfe8BwYGotFoOHDggE0IpaamEhcXx2OPPVaijS1btiQmJqaQnSWhKAoNGzZkz549ADz77LNEREQwZ84c5syZY9d24cKFZGVlMWTIkFL7dXV1taueUhIWi8VuRSwhIYHQ0FBatWrF0qVLUd2U16ao+WVlZeHgYP8nPF+cCCHQ6/VF3hcSEkJsbKzdubi4OAICAoq198KFC1y9erXIEP18Dh8+jEqlwtvbu9g2FosFo9GIxWJBrVYTEhLCihUrsFgstjnHxcXh6+uLVqtFq9WW+ZlKJPmk/nqOvddzudqsARbFAlgANar8rXOmbMhOIcfVurVP51wVgkr+rCkrQli4dm0fbX0OolZZI96Xj/oHanXhassSieQWuI80lNRPUj/lI/VT2ZFOqbuKVRAph78GvCHXmvvJul3PmuTuuumGpznVbP0BFlh/UWp6XiZYdwJD1Gq2Blt/AdJcrfFU1/KcT81c9HweVJOvtp9h7JFoW18yl5REIrlTgoKC6Nu3LyNHjmTRokW4uroyZcoU/P396du3LwATJ06kZ8+e1K9fn2vXrvHrr7/SqJG1GENAQACKorBu3Tp69eqFXq/H1dWVoUOHMnnyZKpWrYq3tzfTpk1DpVKhlLKVJiIignbt2jF27FhGjBiBs7MzMTExREVFMX/+fA4fPsy0adMYPHgwwcHBaLVaduzYwZdffklERARgXRH88MMPee2119DpdAwePBiNRsNPP/3EG2+8wYwZM2jSpInduDeLEoDGjRuj0dgXksjMzGTmzJn06dMHX19fkpOT+eyzz0hISKBfv36AVVA9/vjjBAQEEBkZyZUrV2z3+/j4FDv38PBwRo4cyYIFCwgLCyMpKYmJEyfSpk2bIvNJ5PPKK6/QoUMHZs2aRf/+/dm/fz+LFy+2rS5mZGTw7rvv8swzz+Dj48Pp06d5/fXXqVevnm3Fc+/evezbt4/Q0FBcXV3Zu3cvr7zyCs8//7ytNPLy5cvRaDQ0bdoUR0dH/vjjD6ZOncqAAQNsz+nll19m/vz5TJgwgXHjxvHXX38xa9asIlduC5KSksK5c+dITEy0ez98fHxKfGaSh4Nrp/7mCllQ4OPD6OiKKr/wjMn6D02uyvpPnmP1YNC53fG4RrOFP07+gOFyBC81s55TqXTSISWRSKR+ykPqJ6mfiqVc6gDep9z1ksY/vyLENDeRPb6qiGnQUMS2bmY9bzYJMc1NiGluIvq1QWL+qK1i/qit4tBrzwsxzU3ETP6HmD9qq/j5zf+JuKmvipgGDcWcfj1EZP/e4rnZ34rppxLEwMOnRfVt0WLg4dNixb6/RUDEOtvr0RlRd2d+EonExoNW0jif/JLG7u7uQq/Xi7CwMLuSxmPHjhV169YVjo6OwsvLSwwePFgkJyfbrk+fPl34+PgIRVFKLGncpk0bMWXKFNt9xZXQ3b9/v+jWrZtwcXERzs7OolmzZmLmzJlCCCGuXLkixo8fL5o0aSJcXFyEq6uraNq0qYiMjBRms9munzVr1ohOnToJZ2dnW8nllStX2rUpqixz/uv8+fOFbMvOzhZPPfWU8PPzE1qtVvj6+oo+ffqI/fv329osXbq02D5LY968eSI4OFjo9Xrh6+srBg0aJC5cuFDqfT///LNo0qSJcHR0FA0bNhSLFy+2XcvKyhLdu3cXXl5eQqPRiICAADFy5Ehx8eJFW5uDBw+Ktm3bCnd3d6HT6USjRo3ErFmzRE5Ojq3NN998I1q2bGl7X4KDg8WsWbMK/T7s2bNHtG3bVjg6OorAwEAxc+ZMYTKZSrS/uGc2bdq0UudeEuVR0vhh4V5+Hkc+WSci+/cWkQOeFvOHfSL++c7LotPnT4ghG4ZYG1y/IMQ0N7Fk8Qui+rZoMfzYmXIZ9521f4qXF44XW7YGitUbHhEr1vcU584tLZe+JZKHCamfpH6S+unh00+KEOVQK/w+JS0tDXd3d1JTU237TCuU9a/BgS/Iue5A/C/eqF201P/jCBhzYKZ1v+qhzH+wN92ag6q9y1e0dFnD8axubE/7F3WqJ1E3Yy+W9VtZ/0gdFKHif42HkNSpvm2IwX6e1EnK5cNfYmlRy4M+zf1oF+hJI9+7MD+JRGIjJyeH+Ph46tSpg04nV8pvhczMTPz9/ZkzZw7Dhw+/6+OnpKTQtWtX3Nzc2LhxI05Ot56TS3L/UdLv7F3XC/c49/Lz2P3BCn4/tAIUJ3T6lix83Jqktm/dvszoOIOMy6f46+tB/ODbiy98+/Js9SrMDy5++0VZGfjF7/irl9Cj9jb+uNKDNs2nEdqw+O0YEomkaKR+un2kfpJUBuWhn+SerrvJzaGU+f5Ai6nAqRt7YUVeccT8ryoFRI59Zn5jXnz66JpeOKlVPO/ryf/izwDQvIYHL4TUKdcpSCQSSXkTHR3NyZMnadOmDampqbayt/kh7XebqlWrsmXLFj777DP27t1bbHJKiURy72Gy5VxRobWYyDo7imda1GBah95YhODxuAwutFxka++ouvOKe5cub6R91RVU1f4FwIC2jaldWzqkJBJJxSL1k+RBQTql7iZ5ic5tvilbFT6jrYmFG8nI851RFqHOu10gbMndFFsbZ7WKd+rdyKqfkWt1crnKPFISieQ+ITIyktjYWLRaLa1atWLnzp1Uq1at0uzx9PTk7bffrrTxJRLJrbN50TyuX7AmGFcUNWpMmLPr0KFGMzQqDekmMxfyJJe/IRknD3+eql6lhB5LxmS2sPNUMubE1wmukmU7r9Pd+5WOJBLJg4HUT5IHAem1uKsodl9sOyctNyop5DugCn6f76hSqRRETq719vxbFRVV8qrqvb76CD8cSsBksV50cZRvr0Qiufdp0aIFBw8erGwzJBLJfU7cgb0Y3GrnHSmoMfKU9hhPNguDzKtk/7EceAxFWPgjLgJl3J197qw6eIG31xxk4RNWh9TquHBGd3kUb++ed9SvRCKRlAWpnyQPCqrSm0jKDd/med/keZSK2r5XVKRU3jlD0nWMCUlka9Qo+ZFSiop/eFtX+dYcTrQ5pBwdVLQKuP3VP4lEIpFIJJL7iavu59hYIyrvSI0KE+6qHGvJ7H0Lyd77GQA6iwFFf+ca6cyVVKrqrgHWhUT/GiNpFjQQVV5lP4lEIpFIJKUjQ2nuJo/8E+p2QflpFmzYfGP7nrng9r0bfsK//TrSNn0lZrPVKXU1MY6TXq7gfSNJWHM3F96s64fRbMFgsoasb321M77uOpy08u2VSCQSiUTycOBfLQXv9IaAERQFt7z8UoqiQFYyOSpHAHQqBXp9dEdjZeck08JxGO06XgfAUevBm10b31GfEolEIpE8jMhIqbuNa3Vw9bF+X0SkVMHte8mezUhw9MKS55TKVaWDoiAQmFSCeH0ARrVVYGXm3uijVlUn6ZCSSCQSiUTyUGG8+Cptz/XOO1KThROKolidUsZsm1NKr3MBvxa3Pc6nW/+i3/ylOKqu2855eT1xB5ZLJBKJRPLwIj0XlYHK6mTKD5QqbvueIgQW1DZHlcAaCXWo/nWig1zIjunFI3nb+DIN1tVArYMKjVr6GiUSiUQikTxcWIzeIC4B4GDOBVMCWm09AFJMglNOtQDQqe5MJ22KuYiTQzYAf10Pokv7/1Hft/ISC0skEolEcj8jnVKVgTrvsVuKiJSyc0pBhoO+gFPK6ngyqwW+jjrOAMcSUgmN3E5KpgEAZ+2N+yUSiUQikUgeBsxmM4rFAfK0kktGEjXrN6PFU08Rl5lDV8+XMFazaiSdSimhp5IxmTLx0hzG1/UMAO3q1pEOKYlEIpFI7gDplKoElLxIKQSQcRmSjtquCVFg9U7AG/UmMiDlOlwDi2KNlDKrBI55fZgtgvjkTNstTfzdK9p8iUQikUgkknuKr7/+GsXiQ34cukpA4w4dqNKwIT9dvoZRUeNgMeGmVujvU/W2xsgxmvnzz9d4vv5m2zlHR1lURiKRSCSSO0E6pSqD/EgpBMxtDGaD7VLBROcqAXs9HsFPf5Hgaze27wm1QvOqIZwo0OVzj9bkxY51CKzmfBcmIJFIJBKJRHLv8Pf5s1RT/EFYI6Uuunvh/uSTsG8RuZdSwbU7na4fZGWwP9Rqdcv9n0/JoucnO3m91VH8XSAxozpBvrXw93uuvKcikUgkEslDhUw+VBnk55SyCKtDSq0Fr0bWcwUSnecnQlfnfc3fvjej8yx61Rxi12XNqk7Ur+6Kg8wnJZFI7pBhw4bZkgNrtVrq1avH9OnTMZlMpd9cAtu3b0dRFK5fv14+hpaB+Ph4Bg4ciJ+fHzqdjho1atC3b19Onjxp127dunV07twZV1dXnJycePTRR1m2bJldm7Nnz6IoCocPHy7z+O+88w4NGzbE2dmZKlWq8MQTT7Bv3z67PocPH06dOnXQ6/XUrVuXadOmYTAYSujVyvLly2nevDlOTk74+vry4osvcvXq1RLvMZvNvPXWW3bjvffeewhhy3LIDz/8QPfu3fH09Cx2vqdPn+app57Cy8sLNzc3+vfvz6VLl255XkePHqVTp07odDpq1qzJhx9+WOq8f/vtN8LDw/Hz80NRFNasWVPqPZIHH0tuDsbsXZgMxwC47uqJypIFG18nNy8i3dFiAFff2+r/8PnrZOSabLmk9qSMo02rlbi5NSufCUgkkvseqZ+kfpL66faQHozKQHVT3ifvYBjzO9TuZJdTyngwhZd+SaX2FQ0AFsX6Q++g1aLclA7BTSeD3iQSSfnRo0cPkpKS+Ouvv3j11Vd55513+OijOyuhXp6URXQYjUa6detGamoqP/zwA7GxsXz77bc0bdrUTth9+umn9O3bl5CQEPbt28fRo0d57rnnGD16NK+99tod2Vm/fn3mz5/PsWPH2LVrF7Vr16Z79+5cuXIFgJMnT2KxWFi0aBHHjx9n7ty5LFy4kDfeeKPEfnfv3s2QIUMYPnw4x48fZ9WqVezfv5+RI0eWeN8HH3zAggULmD9/PidOnOCDDz7gww8/5NNPP7W1yczMpGPHjnzwwQdF9pGZmUn37t1RFIVt27axe/duDAYD4eHhWCyWMs8rLS2N7t27ExAQwMGDB/noo4945513WLx4cYlzyMzMpHnz5nz22WcltpM8PFhyTOjSUjHnHkSYEgBQHF3BkA5ArloHgGONVuDf8tb7txjIydhNK+/DuDpmAfDxgI6o7iA3lUQieTCR+knqJ6mfbgPxEJOamioAkZqaelfHNe74UsQ0aChiGjQQYpqbEP/pLuKPXhFb3/pEfPXySjF/1Fa719wh74nI/v8Qkf17i8j+vcWZQwfEvjNXRUDEOtvrp8MJd3UOEomkZLKzs0VMTIzIzs6ubFNumaFDh4q+ffvanevWrZto166dSElJEYMHDxYeHh5Cr9eLHj16iLi4OFu7s2fPiieffFJ4eHgIJycnERwcLNavXy/i4+MF1mQvttfQoUOFEEKkpaWJgQMHCicnJ+Hj4yM+/vhj0blzZzFhwgRbvwEBAWL69Oli8ODBwtXV1Xbvzp07RceOHYVOpxM1atQQ48aNExkZGUIIIaKjowUgzp49W+xcz507JzQajZg0aVKha/PmzROA+P3334UQwjaH6OjoW3+oeeT/3dmyZUuxbT788ENRp06dEvv56KOPRGBgYCF7/f39S7yvd+/e4sUXX7Q79/TTT4tBgwYValvcfDdt2iRUKpXd387r168LRVFEVFRUsWPfPK/PP/9cVKlSReTm5trORUREiAYNGpQ4h4IA4scffyxz+5Io6Xe2svTCvcq99jwy46+J6f8aJSL79xZz/vmCGDKxv3hxfpQQl2OFmOYm5i+bIKpvixbjYor/LCgOs9kiYk99KrZsDbR7GY1pFTATiUQi9ZPUT0Uh9dODrZ9kpFRloM6PhspbYXNwZOtXJzhxuQnpFm+7pllahUxxHDBam+ocqVarNi1qeTC0fQBdGnozoHVNujS0v08ikdxbCCHIMmZVyksUCC2+XfR6PQaDgWHDhvHHH3+wdu1a9u7dixCCXr16YTRaP6PGjBlDbm4uv/32G8eOHeODDz7AxcWFmjVr8v333wMQGxtLUlISn3zyCQCTJk1i9+7drF27lqioKHbu3MmhQ4cK2RAZGUnz5s2Jjo7mrbfe4vTp0/To0YNnnnmGo0eP8u2337Jr1y7Gjh0LgJeXFyqVitWrV2M2m4uc1+rVqzEajUWu6I0aNQoXFxdWrlx5x88PrKuTixcvxt3dnebNmxfbLjU1lapVS07E3L59e86fP8+GDRsQQnDp0iVWr15Nr169SryvQ4cObN26lbi4OACOHDnCrl276NmzZ5nnkZubi6IoODo62s7pdDpUKhW7du0q87z27t3LY489hlartZ0LCwsjNjaWa9euldkeieTvP69w1eQEgErtxfHqLuiqVAVTDgC5DtZrOtWtyV6j2UKveTv5dq/15/pKliep5mDq1B6Hg4NrOc5AIpGUxP2soaR+unOkfnrw9ZPc81UZqG48diFAcdBhyLHuNX7UZSUXcpuTZAwGwMNViyETcnKh1tUkWq38FldPa+nhd/s2ufu2SySS2yLblE3bFW0rZex9A/fhpHG6rXuFEGzdupVNmzbRs2dP1qxZw+7du+nQoQNg3Zdfs2ZN1qxZQ79+/Th37hzPPPMMTZs2BSAwMNDWV/4fVG9vbzw8PABIT0/nq6++YsWKFXTt2hWApUuX4ufnV8iWLl268Oqrr9qOR4wYwaBBg5g4cSIAQUFBzJs3j86dO7NgwQL8/f2ZN28er7/+Ou+++y6tW7cmNDSUQYMG2eyKi4vD3d0dX9/CeWa0Wi2BgYE2AXK7rFu3jueee46srCx8fX2JioqiWrWiS8ifOnWKTz/9lMjIyBL7DAkJYfny5QwYMICcnBxMJhPh4eGlhmRPmTKFtLQ0GjZsiFqtxmw2M3PmTAYNGlTm+bRr1w5nZ2ciIiKYNWsWQgimTJmC2WwmKSmpzPO6ePEiderUsWtXvXp127UqVWRVM0nZyEjNgrytD6DC203H+C5BYLTmPrFt37vF7XYJ17I5eTGdbr7WLXub/g5jcNexBAZWLzfbJRJJ6dyPGkrqJ6mfbkbqp+KRkVKVgbqAL1AADo6IPC3VWB9FXd0e22U3Jw2qPKGlwoReL6vrSSSSimfdunW4uLig0+no2bMnAwYMYNiwYTg4ONC27Q1h6OnpSYMGDThxwloPdPz48cyYMYOQkBCmTZvG0aNHSxznzJkzGI1G2rRpYzvn7u5OgwYNCrVt3bq13fGRI0dYtmwZLi4utldYWBgWi4X4+HjAuvJ48eJFli9fTvv27Vm1ahWNGzcmKiqqzM+i4EpUcSxfvtzOjp07d9quhYaGcvjwYfbs2UOPHj3o378/ly9fLtRHQkICPXr0oF+/fna5DQr2O3r0aABiYmKYMGECb7/9NgcPHuSXX37h7Nmztus7d+60u2/58uUAfPfddyxfvpwVK1Zw6NAhvvrqKyIjI/nqq6/K/Dy8vLxYtWoVP//8My4uLri7u3P9+nVatmyJqohIlOLmVRrFzUEiuRljrgmHAk6pzo/4EVTdhf4XFOqGbORzL+sKuOMtRkolJn7Ni03+R1338wDMfKYDXRpKh5REIikeqZ9uIPWTPVI/FY+MlKoElJsSnQu1o7USH6BgQYXFdk3jqLaFTQoEDir5lkkk9yN6Bz37Bu4rvWEFjX2rhIaGsmDBArRaLX5+fjg4OLB27dpS7xsxYgRhYWGsX7+ezZs3M3v2bObMmcO4ceNux3Q7nJ3tnfIZGRmMGjWK8ePHF2pbq1Yt2/eurq6Eh4cTHh7OjBkzCAsLY8aMGXTr1o2goCBSU1NJTEwstLpoMBg4ffo0YWFhpdrWp08fO7Hp7+9vZ3e9evWoV68e7dq1IygoiCVLljB16lRbm8TEREJDQ+nQoUOhRJUFq7e4ubkBMHv2bEJCQpg8eTIAzZo1w9nZmU6dOjFjxgxat25td1/+CtrkyZOZMmUKzz1nLWPftGlT/v77b2bPns3QoUNLnWc+3bt35/Tp0yQnJ+Pg4ICHhwc+Pj52K7ulzcvHx8eu4gxgO/bx8aF27dpFzkEiuRmT0YCDyN9ioqBSO3Ahx8BvOQ7g4JB3Fpq7li3a4VJaDm+s+pWBdT4ipMDHgotTjfI1XCKRlIn7SUNJ/ST1U0lI/VQ00sNRGdwUKSXywsoBVP/8GuVvd/gpxXri2hXMeVUSLCrplJJI7lcURbntLXSVQb4QKEijRo0wmUzs27fPFn5+9epVYmNjCQ4OtrWrWbMmo0ePZvTo0UydOpUvvviCcePG2VbMCuYnCAwMRKPRcODAAZsQSk1NJS4ujscee6xEG1u2bElMTEwhO0tCURQaNmzInj3WiNRnn32WiIgI5syZw5w5c+zaLly4kKysLIYMGVJqv66urri6li3HjMViITc313ackJBAaGgorVq1YunSpYVWy4qaX1ZWFg4O9n8P1Hn5CoUQ6PX6Yu+7uX+1Wm2r+nKr5IfRb9u2jcuXL9OnT58yz6t9+/b8+9//xmg0otFYq8xGRUXRoEEDW+j5rby3kocXk9GEOu9nWEFBZcgg59iPQEPcTOlEJczHaeD/8NJqytTflhOX+Ovi31AHMo16zhv68WzbR3F1lWkTJJLK4H7SUFI/Sf1UFqR+skd6OCoDlxveSgFY3G54pFV1QqjlbaTaoWPkJCXjueNr/vY1g0ohVwMaVdkElUQikZQ3QUFB9O3bl5EjR7Jo0SJcXV2ZMmUK/v7+9O3bF4CJEyfSs2dP6tevz7Vr1/j1119p1KgRAAEBASiKwrp16+jVqxd6vR5XV1eGDh3K5MmTqVq1Kt7e3kybNg2VSoWilJz/JSIignbt2jF27FhGjBiBs7MzMTExREVFMX/+fA4fPsy0adMYPHgwwcHBaLVaduzYwZdffklERARgXRH88MMPee2119DpdAwePBiNRsNPP/3EG2+8wYwZM2jSxP4f0djY2EK2NG7c2CYM8snMzGTmzJn06dMHX19fkpOT+eyzz0hISKBfv36AVXg8/vjjBAQEEBkZaSt1DNbVruIIDw9n5MiRLFiwgLCwMJKSkpg4cSJt2rQpMp9EwftmzpxJrVq1aNy4MdHR0Xz88ce8+OKLtjYpKSmcO3eOxMREu/n6+PjYbFq6dCmNGjXCy8uLvXv3MmHCBF555RXbtoGyzGvgwIG8++67DB8+nIiICP78808++eQT5s6dW6z9YF3hPXXqlO04Pj6ew4cPU7VqVbsVXsnDgSU3F93aLwhyzOKqkzUiSh27kezrv0CrL3A2ZxOgNkAZHVIAaZkp+DpfBMDVyZ+RXd9C6yAzXkgkkttD6icrUj9J/VQs5VIH8D6lskoam9IzREyDhiKmQUNhPrpW5GZkifmjtor5o7YKQ47J1u7C5MnieIOGIrJ/bxHZv7d49t2mItt4/5VHlUgeRh60ksb55Jc0dnd3F3q9XoSFhdmVNB47dqyoW7eucHR0FF5eXmLw4MEiOTnZdn369OnCx8dHKIpSYknjNm3aiClTptjuCwgIEHPnzi1kz/79+0W3bt2Ei4uLcHZ2Fs2aNRMzZ84UQghx5coVMX78eNGkSRPh4uIiXF1dRdOmTUVkZKQwm812/axZs0Z06tRJODs720our1y50q5NUWWZ81/nz58vZFt2drZ46qmnhJ+fn9BqtcLX11f06dNH7N+/39Zm6dKlxfZZGvPmzRPBwcFCr9cLX19fMWjQIHHhwoUS70lLSxMTJkwQtWrVEjqdTgQGBop///vfdmWFi7Np2rRptjYRERGievXqQqPRiKCgIDFnzhxhsVhueV5HjhwRHTt2FI6OjsLf31+8//77pc77119/LbLf/J+n26U8Sho/LNxLz+PI15vE/FFbxdznp4rI/r3F/w1+S3wyv774fU6IqL4tWrTbvE2Is7vL3N/lqwfE5i1BYsvWQLFla6D44+A/K9B6iURyM1I/Sf0k9dPDp58UIcqhVvh9SlpaGu7u7qSmptr2md4NLFlZxLZsBUCDQwcxKlr+88pvAIz+9HHUGutq3OkJY8nZvJVfmtUFYEW3c+x/MRr1TTmpJBLJvUdOTg7x8fHUqVMHnU5X+g0SG5mZmfj7+zNnzhyGDx9+18dPSUmha9euuLm5sXHjRpyc7o8tA5I7o6Tf2crSC/cq98LzMORks+2nHzFvP8RZ0QtTxgZMxpMkVfekdtAumlpqM6DZHBo56/i1TcMy9Tnxm2gyU5bzXMMfMVtUoOgJbjiFGv4DK3g2EokkH6mfbh+pnySVQXnoJxmLXBkUCKkUFoEw3/ALKuob15IzLmEp0LaGey3pkJJIJA8c0dHRrFy5ktOnT3Po0CFbed38kPa7TdWqVdmyZQtdu3Zl7969lWKDRCIpmS3/+ZxDO35Fnbe2qsu1bnG4UOUUarOBHJU1B4teXXapu+n4JZw02QDsTgqhSt3t0iElkUjuWaR+kjwoyJxSlYFdsjKBxVLAKZXngxJCkGE0YtQ72q4tD195lwyUSCSSu0tkZCSxsbFotVpatWrFzp07bUkgKwNPT0/efvvtShtfIpGUTHryFarpayDS0xGKkfz0v0IRLKrRn0z3pwDQFVFmuyiycq5T2zUGf5ckAAa2a0yD2lUrwnSJRCIpN6R+kjwISKfUXeJqwnnUDho8qvvYJ5+zWLDkRUqpVIrt2v41qzica4J61rKYiqLC2dHlrtstkUgkFU2LFi04ePBgZZshkUjuIyxmM84OHpzPOkmu8VNb7L9FEaQ5uJPlYNVMTVxKL+eeYzRz8NA/ea11nO2czrFKhdgtkUgk5YXUT5IHBbl97y6Q9Fcsyya9zJLxI7h2MdFu+x4WC/lpvRTVjfNXzp0FwMFsRqVV0bJXn1IrKUgkEolEIpE8DJjNZgyKinRjhu2cQa1wuYoBoah49dx/2dmmIe/WK76aEsDe01dp9u4msrOsFYkuZVbHw6MN3l5hFWq/RCKRSCQSK9IpdRe4FH/a9n3q5UugvpEXShSIlCqYT8piNgFQPymF6i19eHzIiLtkrUQikUgkEsm9jcVk4pBwwVo8CKoZm/L1o1VIcTcACnXUZoKcdaUu6O09cxVEDmqVBYDD2XNp1XIlen3NCp6BRCKRSCQSkNv3KowjURu4cOI4FouFq+f/tp0XFgtKwfwGZjPCcmP7HkCWMYuMnHTrOSHQONzIKyWRSCQSiUTysGOxWMgskMTc0WyhXto54qsCqHB8/PUy9GEiN/s8NVwS886o+aBfmwqxVyKRSCQSSdFIp1QFkRh7gpO7dxQ6LyzWlTgcHMBkQpjNtkTnKpVCpjGTsO/DaJ2opSZOKAIcNNIpJZFIJBKJRJKPxWzGrDLbjt3ddNStcoF49ICCTldyHs7tsZdJPT+ENi5/0aat9ZyDg6tMlSCRSCQSyV1GOqUqiIYdH8e7Tl1UajUqtZot//kcsK7sASgqlTXg3GzGIm5s30vISCA1NxWV8AZAhaBRtcaVMQWJRCKRSCSSe5IMcyYnGn5Bs789AThvvMoWd2tSc6Go0KuLz1BhsQjGrdjH/3X+C4Bcsxatgxo/32cq3nCJRCKRSCR2SKdUBVHnkVbUeaSV7fj4b9tIijuJsOSt6qnVGDQunDh0jQxDNgAqBYwWIwA6RQuAIsDfQ+Y1kEgkEolEIgEwnD/PpawLWFRZgNUpJZS8SHRFh8mxPjpV8U6p9FwTaqxpEoRQcUH7M0ND6uDooC72HolEIpFIJBWDdErdJVR54kgUiJSKDRrAlfWXbW00OgdMFmuCc5WwtleEAJUUSRKJRCKRSCQAuafP4Zep5l8/W7hmDY5C0VTnSs2lgAoUFc7FREpZLCbOnPmIIcG/A6DVevBSp3p3yXKJRCKRSCQ3I6vv3SXyk5tbCuSUynX0AMC3njsN2/vw2ID6GM3WSCm1sOY0UAmBIlfuJBLJXWTYsGEoioKiKGi1WurVq8f06dMxmUx31O/27dtRFIXr16+Xj6FlID4+noEDB+Ln54dOp6NGjRr07duXkydP2rVbt24dnTt3xtXVFScnJx599FGWLVtm1+bs2bMoisLhw4fLPP4777xDw4YNcXZ2pkqVKjzxxBPs27fPrs/hw4dTp04d9Ho9devWZdq0aRgMhlL7Xr58Oc2bN8fJyQlfX19efPFFrl69WuI96enpTJw4kYCAAPR6PR06dODAgQN2bTIyMhg7diw1atRAr9cTHBzMwoUL7dqMGjWKunXrotfr8fLyKvKZnjt3jt69e+Pk5IS3tzeTJ08u9mdo9+7dODg48Mgjj5Q67x9++IHu3bvj6el5y++H5P7HdD2H65tMtL4sqHO1dt5ZFVlOenQWM4+lHmZEjWo0dNYVutdotnDwr22kXFpCc6/jALLKnkQiKTekfpL6Seqn20M6pe4SRUVKCZU1UK1lWABdhwZTM7iqbfueKs8ppQhkpJREIrnr9OjRg6SkJP766y9effVV3nnnHT766KPKNstGWUSH0WikW7dupKam8sMPPxAbG8u3335L06ZN7YTdp59+St++fQkJCWHfvn0cPXqU5557jtGjR/Paa6/dkZ3169dn/vz5HDt2jF27dlG7dm26d+/OlStXADh58iQWi4VFixZx/Phx5s6dy8KFC3njjTdK7Hf37t0MGTKE4cOHc/z4cVatWsX+/fsZOXJkifeNGDGCqKgovv76a44dO0b37t154oknSEhIsLWZNGkSv/zyC//73/84ceIEEydOZOzYsaxdu9bWplWrVixdupQTJ06wadMmhBB0794ds9m6Rd1sNtO7d28MBgN79uzhq6++YtmyZbz99tuFbLp+/TpDhgyha9euZXqmmZmZdOzYkQ8++KBM7SUPFqbL2ShCxbGAl/gz+IW8syp2Nm9FzZyLfHdqNjOCahSZsHzSd0f4cIP1n5qLmV5sOv9PGgd/fBetl0gkDzpSP0n9JPXTbSAeYlJTUwUgUlNTK3ysVTPeFJH9e4vjO7YKIYSIDekolj7/tZg/aqs4d+Kqrd1v538TTZY1EdNfelJE9u8tfmvVQmTs2VPh9kkkkvIlOztbxMTEiOzs7Mo25ZYZOnSo6Nu3r925bt26iXbt2omUlBQxePBg4eHhIfR6vejRo4eIi4uztTt79qx48sknhYeHh3BychLBwcFi/fr1Ij7+/9m787goq/2B458ZYGDYRUUQEEFwwa1y3zLcAA25ZWrpxSU1vT+XzN0WV8wy0DRNswytq2ZamallaC64m0p6XVMhDHdNkH2Z8/sDmZxABBVQ+b5fr7nXeZ7znOd7Hhjm23nOc06sAkxeffv2VUoplZSUpHr16qWsra2Vi4uLmj17tmrbtq16/fXXjfV6enqqadOmqdDQUGVnZ2c8Njo6WrVu3VpZWVkpd3d3NXz4cJWcnKyUUurw4cMKUHFxcXdta3x8vLKwsFCjRo3Kt2/evHkKUHv37lVKKWMbDh8+XPyLelve987mzZvvWmbWrFnKy8ur0Ho++OAD5e3tnS9eNze3ux6TmpqqzMzM1Pr16022P/PMM+qtt94yvq9bt66aNm1aoWX+6bffflOAOnPmjFJKqY0bNyqtVqsuXbpkLLNw4UJlb2+vMjIyTI7t2bOnevvtt9XkyZNVw4YN73qOf3oYP487FfaZLc184XFQltcj9cR1FT9uu5o/eIuaN3C1Cu/RRX3Q81+qxoaDqsNPG5U6vOKux/qHb1V9PpqgNm/xVvO/6aaW7ootvcCFEEUi+ZPkTwWR/OnJzp9kpFQp+efjexqtFoMmd6SUmfnfP4a8kVIa40gpBWYyUkqIx51SCkNqapm81O0VPh+EXq8nMzOTfv368euvv7Ju3Tr27NmDUorOnTuTlZX7t2vo0KFkZGSwY8cOjh49yvvvv4+trS0eHh588803AJw6dYqLFy8yd+5cIPfO0q5du1i3bh1RUVFER0dz6NChfDGEh4fTsGFDDh8+zDvvvMPZs2cJDAykW7duHDlyhFWrVrFz506GDRsGQOXKldFqtaxZs8Z4B+qf1qxZQ1ZWVoF39AYPHoytrS0rV6584OsHuXcnFy9ejIODAw0bNrxrucTERJycnAqtq0WLFpw/f56NGzeilOLy5cusWbOGzp073/WY7OxscnJysLIyfaxJr9ezc+dO4/uWLVuybt06EhISUEqxdetWTp8+TadOnQqsNyUlhcjISLy8vPDwyH0Uas+ePdSvX58qVaoYywUEBJCUlMSxY8eM2yIjIzl37hyTJ08utL1C5FHZORwyi7397vadZTNFsl6LZaUa8NQrBR6XcGEVgW6LedZ9NwD+tb3p27J6KUQshHhQj3MOJfnTg5P86cnPn2Si81Lyz8f3MDfDoLUA4Na678gOfR7zypX/nug8bxEZBRrplBLisafS0jj1TKN7FywBtQ4dRGNtfV/HKqXYsmULmzZtIigoiLVr17Jr1y5atmwJ5D6X7+Hhwdq1a+nevTvx8fF069aN+vXrA+Dt7W2sKy9RcHZ2xtHREch9Rn/ZsmWsWLHCOPw4MjKSqlWr5oulXbt2jB492vh+4MCB9O7dm5EjRwLg6+vLvHnzaNu2LQsXLsTNzY158+Yxbtw4pk6dSuPGjfH396d3797GuE6fPo2DgwOurq75zqfT6fD29ub06dP3de3yrF+/npdffpnU1FRcXV2JioqiUqVKBZY9c+YMH330EeHh4YXW2apVK5YvX07Pnj1JT08nOzub4OBgFixYcNdj7OzsaNGiBdOnT6dOnTpUqVKFlStXsmfPHnx8/p7o+aOPPuK1117D3d0dc3NztFotn376Kc8++6xJfR9//DHjxo0jJSWFWrVqERUVhU6Xu3LspUuXTBIqwPj+0qVLAPz+++9MmDCB6OhozM0lHRFF89sv8WzmMr5ZCmX4K3fj7Uf1ClpxLz0rh1kbf6Wl7Vs0cv77Py6trPL/jRFCPJoexxxK8ifJnyR/KjoZKVVKNPnmlDLDcHtOqaTl/+X6Z0sAuHHsd16ItsPqVm6vtFYp6ZQSQpS69evXY2tri5WVFUFBQfTs2ZN+/fphbm5Os2bNjOUqVqxIrVq1OHHiBAAjRowgLCyMVq1aMXnyZI4cOVLoec6dO0dWVhZNmzY1bnNwcKBWrVr5yjZu3Njk/W+//cbSpUuxtbU1vgICAjAYDMTG5o6kGDp0KJcuXWL58uW0aNGC1atXU7duXaKioop8LfIShcIsX77cJI7o6GjjPn9/f2JiYti9ezeBgYH06NGDK1eu5KsjISGBwMBAunfvbjK3wZ31DhkyBIDjx4/z+uuvM2nSJA4ePMhPP/1EXFyccX90dLTJccuXLwfgyy+/RCmFm5sblpaWzJs3j1deecV44wRyk6q9e/eybt06Dh48SEREBEOHDmXz5s0m8fbu3ZvDhw+zfft2atasSY8ePUhPTy/SNc3JyaFXr15MnTqVmjVrFvuaivIpIzWVq/HHsb4cS1byGrJTtwBgps3tbLIqYMW9rSev8EPMCTQaRVaOOWvPvkgNn6lUqzagVGMXQpQPkj/9TfInyZ+K6snoWnsMaDT/WH3PTGvslNIasslJSiLxymUSvvgRB5zIu5dnbjBgdrtHXAjx+NLo9dQ6dLDMzl1c/v7+LFy4EJ1OR9WqVTE3NzeZqPFuBg4cSEBAABs2bODnn39m5syZREREMHz48PsJ3YSNjY3J++TkZAYPHsyIESPyla1WrZrx33Z2dgQHBxMcHExYWBgBAQGEhYXRsWNHfH19SUxM5MKFC/nuLmZmZnL27FkCAgLuGVvXrl1Nkk03NzeTuH18fPDx8aF58+b4+vqyZMkSJk6caCxz4cIF/P39admyJYsXLzap+87VUezt7QGYOXMmrVq1YuzYsQA0aNAAGxsb2rRpQ1hYGI0bNzY5Lu8uW40aNdi+fTspKSkkJSXh6upKz549jXc+09LSePPNN/nuu+/o0qWLse6YmBjCw8Pp0KGDsU4HBwccHBzw9fWlefPmVKhQge+++45XXnkFFxcX9u/fb9KOy5cvA+Di4sKtW7f49ddfOXz4sPFxAYPBgFIKc3Nzfv7550KvqSifYjatJ/WvI1hlpeRu0NqTprvJoWeeA8BKm39y82vJGdhYpAKgMXfitaC3qe7uUFohCyEegscph5L8SfInyZ+KTzqlSsnfj+/lkJ6SRbJlFWOnlMaQjcrJYc2h3J5Y8xwDzrdScGvUjJr9hqKrXr2swhZCPCQajea+H6ErC3mJwJ3q1KlDdnY2+/btMw4/v379OqdOncLPz89YzsPDgyFDhjBkyBAmTpzIp59+yvDhw413zO6cn8Db2xsLCwsOHDhgTIQSExM5ffp0vuHO//TMM89w/PjxfHEWRqPRULt2bXbvzp1X5qWXXmL8+PFEREQQERFhUnbRokWkpqbSp0+fe9ZrZ2eHnZ1dkWIwGAxkZGQY3yckJODv729ckUX7j0eQCmpfampqviHbZrdH1Sql0Ov1hV4XGxsbbGxs+Ouvv9i0aROzZs0CclfcycrKyheDmZnZ3zdVCqCUQillbFeLFi2YMWMGV65cwdnZGYCoqCjs7e3x8/PDwsKCo0ePmtTx8ccf88svv7BmzRq8vLywsbEp8jUV5UNqUiJotWhu37qz0D/HwVrfsbvBcwDUtPl7vg+lFKcSTlMh5VXGN8ld6tvRpiL1pUNKiMfO45RDSf4k+dM/65b86d6kU6qU5D2+l5qUwdLxu8ip2s+4z8yQxa20m6w69gsBVMEqM4saaak0fXdWGUUrhBD5+fr6EhISwqBBg/jkk0+ws7NjwoQJuLm5ERISAsDIkSMJCgqiZs2a/PXXX2zdupU6deoA4OnpiUajYf369XTu3Bm9Xo+dnR19+/Zl7NixODk54ezszOTJk9FqtQUu6X6n8ePH07x5c4YNG8bAgQOxsbHh+PHjREVFMX/+fGJiYpg8eTKhoaH4+fmh0+nYvn07n3/+OePHjwdy7wjOmjWLMWPGYGVlRWhoKBYWFnz//fe8+eabhIWFUa9ePZPznjp1Kl8sdevWxcLCwmRbSkoKM2bMoGvXrri6unLt2jUWLFhAQkIC3bt3B3ITqueeew5PT0/Cw8ONSx1D7h2xuwkODmbQoEEsXLiQgIAALl68yMiRI2natGmB80nkyVt+uFatWpw5c4axY8dSu3Zt+vfvD+TeSWzbti1jx45Fr9fj6enJ9u3b+eKLL5g9ezaQ+8jAqlWr6NSpE5UrV+bPP//kvffeQ6/XGycK7dSpE35+foSGhjJr1iwuXbrE22+/zdChQ7G0tATId12dnZ2xsrLKt/2fbty4QXx8PBcuXAD+/nm4uLgUes3E4y8nKws02txFYACtgmwzLW+dW0Q7v9b4Vf97AtxF28+x88h/ebXeJeM2R4fG+eoUQoiSJvlTLsmfJH+6qwdcAfCxVppLGq+fO0uF9+ii1s35WH3Yd6b6aMAK9Vmfr9Q3XaerY7Vqq9+G9FFB7zdR4T26qM+6tFennu9c4jEJIUrOk7akcZ68JY0dHByUXq9XAQEBJksaDxs2TNWoUUNZWlqqypUrq9DQUHXt2jXj/mnTpikXFxel0WgKXdK4adOmasKECcbjPD091Zw5c/LFs3//ftWxY0dla2urbGxsVIMGDdSMGTOUUkpdvXpVjRgxQtWrV0/Z2toqOzs7Vb9+fRUeHq5ycnJM6lm7dq1q06aNsrGxMS65vHLlSpMyBS3LnPc6f/58vtjS0tLUCy+8oKpWrap0Op1ydXVVXbt2Vfv37zeWiYyMvGud9zJv3jzl5+en9Hq9cnV1Vb1791Z//vlnocesWrVKeXt7K51Op1xcXNTQoUPVzZs3TcpcvHhR9evXT1WtWlVZWVmpWrVqqYiICGUwGJRSSiUkJKigoCDl7OysLCwslLu7u+rVq5c6efKkST1xcXEqKChI6fV6ValSJTV69GiVlZV119iKuqTx3a7Z5MmT73lsYR7GksblRVldj58WzlUrX3tTTe3dS4X36KLm912kXozoqjbP7ajUoS9Nyv7f8oPqtYVvqM1bvNWCb15Sh8+dMP4OCyEeXZI/Sf4k+VP5y580Sj2EtcIfU0lJSTg4OJCYmGh8zrSk/Dg/guPRW43vzTW2dIr5zfg+vfXTTPE+x7O/VaLirVTa2lbG6+tVJRqTEKLkpKenExsbi5eXV74lZEXhUlJScHNzIyIiggEDSn8y4hs3btC+fXvs7e358ccfsX5MHhkQD6awz2xp5guPg7K6Ht8O6U+K1pXYW2exyUxBr+/Kpmd+YmxlN1o//xbY5d7pTU4+zfItM7DW/E5V28t4ePSnpu/bpRanEOL+Sf50/yR/EmXhYeRPsvpeKfnnCnrZKtn47yQrHcdSU/CLzX3208yg0N4enieEEE+6w4cPs3LlSs6ePcuhQ4fo3bs3gHFIe2lzcnJi8+bNtG/fnj179pRJDEKI/NKuXeGzBltBm5tDaRTkaM2x6vwe2LmglOLExSR+PTYfH7udVLXNnRxWr69WWLVCCPFYkvxJPClkTqlSYsi5+77fXZy4nJNDpaTcjijrzCw0cmdACFGOhIeHc+rUKXQ6HY0aNSI6OppKlSqVWTwVK1Zk0qRJZXZ+IYSpNafXcDMnhRv6ZDTKCQCNUih9HeOqe9tOXaX/0gO8/nQsDSrD7gtNaNfweaq6di/L0IUQosRI/iSeBNIpVUqu/Jl0133ZtydBd7+eRKXkNJyTUtDWlZFSQojy4emnn+bgwbJZ6lkI8Xg4c+MMhipVCfz1Kvrbiy9pAIPeF8vbedTJS7cAsLdMA0BZPkuTOr0wM5MHA4QQTx7Jn8STQr6lS0lWZv6lIB179OCWgwWG2wskVL6VinuWQl/VDfuuXUs5QiGEEEKIR1Pm9Uz0ZhXoeKItZip3pSatMpBqZY2lVoPBkE2lrEm822o61ezOAzC8wzPozCXVFUIIIR5l8k1dSpTWJt8212lT2dylKur2sp1apXCZOhWfzVHYd+xY2iEKIYQQQjxyft+3G/Md59Fnu/O7z0sYtLnzdFpaZmDh4MjRc3/Rb/FXOJntpYrNVbSabDQaHdbW3mUcuRBCCCHuRR7fKyFHtv7JhdN/kZyayvXrSWSm1sfCtiK/O6ynekImFhVyJzXP0hgw3NEppTGXH4kQQgghRJ49336FS2oVLFUWNzWAyp2os0mFNbzYvB9DV53mcuJVAK6mVqSyx7u0ql0fS0vnMoxaCCGEEEUhPSAlJPrwATjtcPudGVrMUBbVOOeaSPUEPSon93G+bHIwaHIHrGkUaHQWZRSxEEIIIcSjJzszk0r6aiSlX729JbdTKsH9KerYOHIzLQsbi9x5pNwqutOmYYcyilQIIYQQxSWdUiXkusc5jmedIUeTTbLlTepXqYvWPof0c7cAPUopALI0OShN7jB0rVJoLKRTSgghhBAijyE7h/M6CywNWhRJQG4OldygL6fPzOHl6t9irkkBwM66QhlGKoQQQojikjmlSki3doEMfqUHI3v348vXFjLr5Sm813k6dZ3r5xYw5I6UylQ5xsf3NPL4nhBCCPFEWrhwIQ0aNMDe3h57e3tatGjBjz/+mK+cUoqgoCA0Gg1r16412RcfH0+XLl2wtrbG2dmZsWPHkp2dbVJm27ZtPPPMM1haWuLj48PSpUvznWPBggVUr14dKysrmjVrxv79+x9mUx+6nOxsbmRnkJi8h4ykz4zbI3ZcIDbuY5z1F3CySgTAxsa3rMIUQgghxH2QTqkSUrdiXfyr+dPKrRWV9JWM27W3J+dUtzulckdK3TGnlIyUEkIIIZ447u7uvPfeexw8eJBff/2Vdu3aERISwrFjx0zKffjhh2hu5wV3ysnJoUuXLmRmZrJ7926WLVvG0qVLmTRpkrFMbGwsXbp0wd/fn5iYGEaOHMnAgQPZtGmTscyqVasYNWoUkydP5tChQzRs2JCAgACuXLlSco1/QAZDDiorEchbyVhDlldtrmVmYq7N3bbi9zeo3/AraniPKbM4hRBCCFF80ilVyjTa3EuuDLcf38OA4XbuqVFIp5QQosz169cPjUaDRqNBp9Ph4+PDtGnT8o3IKK5t27ah0Wi4efPmwwm0CGJjY+nVqxdVq1bFysoKd3d3QkJCOHnypEm59evX07ZtW+zs7LC2tqZJkyb5RpjExcWh0WiIiYkp8vmnTJlC7dq1sbGxoUKFCnTo0IF9+/aZ1DlgwAC8vLzQ6/XUqFGDyZMnk5mZec+6ly9fTsOGDbG2tsbV1ZVXX32V69evF3rMjh07CA4OpmrVqgWOxAH49ttv6dSpExUrVrxnewsb1QOwdOlSGjRogJWVFc7OzgwdOtRk/6ZNm2jevDl2dnZUrlyZbt26ERcXVyrtLG3BwcF07twZX19fatasyYwZM7C1tWXv3r3GMjExMURERPD555/nO/7nn3/m+PHj/Pe//+Wpp54iKCiI6dOns2DBAuPvy6JFi/Dy8iIiIoI6deowbNgwXnrpJebMmWOsZ/bs2QwaNIj+/fvj5+fHokWLsLa2LvCcjwKDwUB2jiLn9uTmWnN3bC3cSQzpQiOX33K3aa34dNBQnCs2QauVEedCiLIh+ZPkT5I/3R/plCpleSOlyJtTimyTkVLI43tCiEdAYGAgFy9e5Pfff2f06NFMmTKFDz74oKzDMipK0pGVlUXHjh1JTEzk22+/5dSpU6xatYr69eubJHYfffQRISEhtGrVin379nHkyBFefvllhgwZwpgxDzbqombNmsyfP5+jR4+yc+dOqlevTqdOnbh6NXfC5pMnT2IwGPjkk084duwYc+bMYdGiRbz55puF1rtr1y769OnDgAEDOHbsGKtXr2b//v0MGjSo0ONSUlJo2LAhCxYsKLRM69atef/99+/ZvruN6oHczo+33nqLCRMmcOzYMTZv3kxAQIBxf2xsLCEhIbRr146YmBg2bdrEtWvXePHFF0ulnWUpJyeHr776ipSUFFq0aAFAamoqvXr1YsGCBbi4uOQ7Zs+ePdSvX58qVaoYtwUEBJCUlGQcbbVnzx46dDCd5DsgIIA9e/YAuZ+bgwcPmpTRarV06NDBWOZRYjAYWPTRR1xz9+ai7s/bW83I0RiwSvuC/nVXAmBhUQGttuDfQyGEKE2SP0n+JPnTfVDlWGJiogJUYmJiqZ1z7LrhKrxHFzXr5S5qzn8nqlFDW6nZL3VW4T26qAP166m0U6dKLRYhRMlJS0tTx48fV2lpaWUdSrH17dtXhYSEmGzr2LGjat68ubpx44YKDQ1Vjo6OSq/Xq8DAQHX69Gljubi4OPX8888rR0dHZW1trfz8/NSGDRtUbGysInd2YuOrb9++SimlkpKSVK9evZS1tbVycXFRs2fPVm3btlWvv/66sV5PT081bdo0FRoaquzs7IzHRkdHq9atWysrKyvl7u6uhg8frpKTk5VSSh0+fFgBKi4u7q5tjY+PVxYWFmrUqFH59s2bN08Bau/evUopZWzD4cOHi39Rb8v73tm8efNdy8yaNUt5eXkVWs8HH3ygvL2988Xr5uZW5FgA9d133911/73ae/jwYeXm5qYuXryYr64bN24ovV5faDtXr16tzM3NVU5OjnHbunXrlEajUZmZmUqp0mlnnsI+sw8rXzhy5IiysbFRZmZmysHBQW3YsMG477XXXlMDBgy4a9yDBg1SnTp1MqkvJSVFAWrjxo1KKaV8fX3Vu+++a1Jmw4YNClCpqakqISFBAWr37t0mZcaOHauaNm1617jT09NVYmKi8XX+/PlSyZ/+unRdTZ48WY15Z7Ca1reZCu/RRc3uPUJ91GeAmrGlt/p6w9Nq9U9BKiFhVYnGIYQoPZI/Sf5UEMmf/vYk5k8yUqqU5Y2U0hogZ90Rql51xKDVgFJY5Bjk8T0hnlBKKbIycsrkpW6PzHwQer2ezMxM+vXrx6+//sq6devYs2cPSik6d+5MVlYWAEOHDiUjI4MdO3Zw9OhR3n//fWxtbfHw8OCbb74B4NSpU1y8eJG5c+cCMGrUKHbt2sW6deuIiooiOjqaQ4cO5YshPDychg0bcvjwYd555x3Onj1LYGAg3bp148iRI6xatYqdO3cybNgwACpXroxWq2XNmjXk5OQU2K41a9aQlZVV4B29wYMHY2try8qVKx/4+kHu3cnFixfj4OBAw4YN71ouMTERJyenQutq0aIF58+fZ+PGjSiluHz5MmvWrKFz584PJdZ7udeonqioKAwGAwkJCdSpUwd3d3d69OjB+fPnjWUaNWqEVqslMjKSnJwcEhMT+fLLL+nQoQMWt78Ly7qdD1utWrWIiYlh3759/Oc//6Fv374cP36cdevW8csvv/Dhhx+WdYgFmjlzJg4ODsaXh4dHqZw3cXfu6Kjap+NofCbv75gZZjpbqnOOreefw8x5MVWr9iiVeIQQZeNxzqEkf3pwkj89+fmTPCtWyrRmpv2AGktzqp+/hmNqOrocA2Z2dmUUmRCiJGVnGlj8+vYyOfdrc9tiYWl2X8cqpdiyZQubNm0iKCiItWvXsmvXLlq2bAnkPq/u4eHB2rVr6d69O/Hx8XTr1o369XNXGvX29jbWlZcoODs74+joCMCtW7dYtmwZK1asoH379gBERkZStWrVfLG0a9eO0aNHG98PHDiQ3r17M3LkSAB8fX2ZN28ebdu2ZeHChbi5uTFv3jzGjRvH1KlTady4Mf7+/vTu3dsY1+nTp3FwcMDV1TXf+XQ6Hd7e3pw+ffq+rl2e9evX8/LLL5OamoqrqytRUVFUqlSpwLJnzpzho48+Ijw8vNA6W7VqxfLly+nZsyfp6elkZ2cTHBxcasOt33jjDVq2bElISEiB+8+dO4fBYODdd99l7ty5ODg48Pbbb9OxY0eOHDmCTqfDy8uLn3/+mR49ejB48GBycnJo0aIFGzdufGTa+bDlzTECuUnlgQMHmDt3Lnq9nrNnzxo/F3m6detGmzZt2LZtGy4uLvlWybt8+TKAMbF1cXExbruzjL29PXq9HjMzM8zMzAosU1BynGfixImMGjXK+D4pKalUOqZuXr4JgKW2FheqGIBY0Jjh6ZOAJZcZ37kJnh7uJR6HEKJsPY45lORPkj8VRPKngslIqVJmnFPqNrcadWgbOoC6/+qG2+wIzO/yQRNCiNK0fv16bG1tsbKyIigoiJ49e9KvXz/Mzc1p1qyZsVzFihWpVasWJ06cAGDEiBGEhYXRqlUrJk+ezJEjRwo9z7lz58jKyqJp06bGbQ4ODtSqVStf2caNG5u8/+2331i6dCm2trbGV0BAAAaDgdjYWCD3zuOlS5dYvnw5LVq0YPXq1dStW5eoqKgiXwudTnfPMsuXLzeJIzo62rgvbyW03bt3ExgYSI8ePQpc6SwhIYHAwEC6d+9u8sz/nfUOGTIEgOPHj/P6668zadIkDh48yE8//URcXJxxf3R0tMlxy5cvL3J776Uoo3oMBgNZWVnMmzePgIAAmjdvzsqVK/n999/ZunUrAJcuXWLQoEH07duXAwcOsH37dnQ6HS+99JLxznRZtrM0GAwGMjIymDBhAkeOHCEmJsb4ApgzZw6RkZFA7l3Po0ePmvzuREVFYW9vj5+fn7HMli1bTM4RFRVlnLdKp9PRqFEjkzIGg4EtW7YYyxTE0tISe3t7k1dpuPFnCjpDDol2wSTb5v6HlgYzrCvlzilib+td2OFCCFHqJH/6m+RPpiR/ujsZKVXKtGamnVI6Kysqvtq/jKIRQpQWc52W1+a2LbNzF5e/vz8LFy5Ep9NRtWpVzM3NWbdu3T2PGzhwIAEBAWzYsIGff/6ZmTNnEhERwfDhw+8ndBM2NjYm75OTkxk8eDAjRozIV7ZatWrGf9vZ2REcHExwcDBhYWEEBAQQFhZGx44d8fX1JTExkQsXLuS7u5iZmcnZs2dNJpe8m65du5okm25ubiZx+/j44OPjQ/PmzfH19WXJkiVMnDjRWObChQv4+/vTsmVLFi9ebFL3nau35HUGzJw5k1atWjF27FgAGjRogI2NDW3atCEsLIzGjRubHHfn5NgP6pdffrnnqJ68O6d5nSWQ+zhApUqViI+PB2DBggU4ODgwa9YsY5n//ve/eHh4sG/fPpo3b16m7XzYJk6cSFBQENWqVePWrVusWLGCbdu2sWnTJlxcXAocqVStWjW8vLwA6NSpE35+foSGhjJr1iwuXbrE22+/zdChQ7G0tARgyJAhzJ8/n3HjxvHqq6/yyy+/8PXXX7NhwwZjnaNGjaJv3740btyYpk2b8uGHH5KSkkL//o9eLmLIziFTa4bBkIgy3ALAwuYPtusaMPypMBwdm96jBiHEk+BxyqEkf5L86W4kf7o76ZQqZf8cKWVhaVVGkQghSpNGo7nvR+jKQl4icKc6deqQnZ3Nvn37jMPPr1+/zqlTp0y+PD08PBgyZAhDhgxh4sSJfPrppwwfPtx4x+zO+Qm8vb2xsLDgwIEDxkQoMTGR06dP8+yzzxYa4zPPPMPx48fzxVkYjUZD7dq12b17NwAvvfQS48ePJyIigoiICJOyixYtIjU1lT59+tyzXjs7O+yK+Ph13uiYPAkJCfj7+9OoUSMiIyPRak0T4ILal5qaivk/Vms1u33TQymFXq8v1nUpjgkTJjBw4ECTbfXr12fOnDkEBwcDucPGIXf+C3f33Merbty4wbVr1/D09DS24Z9tzWuDwWAwlimrdj5sV65coU+fPly8eBEHBwcaNGjApk2b6NixY5GONzMzY/369fznP/+hRYsW2NjY0LdvX6ZNm2Ys4+XlxYYNG3jjjTeYO3cu7u7ufPbZZyb/YdCzZ0+uXr3KpEmTuHTpEk899RQ//fRTmSekBVEYyLp0gcyUX43bLttpqO4RgpNTyzKMTAhRmh6nHEryJ8mf7kbyp7uTTqlSZqY1veQWVtIpJYR4PPj6+hISEsKgQYP45JNPsLOzY8KECbi5uRmfjR85ciRBQUHUrFmTv/76i61bt1KnTh0APD090Wg0rF+/ns6dO6PX67Gzs6Nv376MHTsWJycnnJ2dmTx5Mlqt9q5L5eYZP348zZs3Z9iwYQwcOBAbGxuOHz9OVFQU8+fPJyYmhsmTJxMaGoqfnx86nY7t27fz+eefM378eCD3juCsWbMYM2YMVlZWhIaGYmFhwffff8+bb75JWFgY9erVMznvqVOn8sVSt25d4+SSeVJSUpgxYwZdu3bF1dWVa9eusWDBAhISEujevTuQm1A999xzeHp6Eh4eblzqGCh0jp/g4GAGDRrEwoULCQgI4OLFi4wcOZKmTZsWOJ9EnuTkZM6cOWN8HxsbS0xMDE5OTsak9saNG8THx3PhwgWT9uaN5inKqJ6aNWsSEhLC66+/zuLFi7G3t2fixInUrl0bf39/ALp06cKcOXOYNm0ar7zyCrdu3eLNN9/E09OTp59+usTbWdqWLFlSrPIFTa7r6elpMmdEQZ577jkOHz5caJlhw4YZJ7R9lCmDAZv0v26/MyfbLItafmd5qUW9Qo8TQohHieRPuSR/kvzproq0HuAT6mEt8VwcYbumq3d7BanwHl1UeI8uatfXy0vt3EKI0vOkLWmcJ29JYwcHB6XX61VAQIDJksbDhg1TNWrUUJaWlqpy5coqNDRUXbt2zbh/2rRpysXFRWk0mkKXNG7atKmaMGGC8ThPT081Z86cfPHs379fdezYUdna2iobGxvVoEEDNWPGDKWUUlevXlUjRoxQ9erVU7a2tsrOzk7Vr19fhYeHmyyjq5RSa9euVW3atFE2NjbGJZdXrlxpUqagZZnzXufPn88XW1pamnrhhRdU1apVlU6nU66urqpr165q//79xjKRkZF3rfNe5s2bp/z8/JRer1eurq6qd+/e6s8//yz0mK1btxZ4rryfRWExTZ48+a71UsCywYmJierVV19Vjo6OysnJSb3wwgsqPj7epMzKlSvV008/rWxsbFTlypVV165d1YkTJ0qlnf/0MJY0Li9K43r8b9tm9emU5eq9l/+lwnt0UZ/8e5H6z9td1I7opionJ7PEziuEKFuSP0n+JPlT+cufNEo9hLXCH1NJSUk4ODiQmJhYapN2vrf/PX7c+zWVb1rS0KMRE14Jl9FSQjyB0tPTiY2NxcvLCyv5jBdLSkoKbm5uREREMGDAgFI//40bN2jfvj329vb8+OOPWFtbl3oMovQV9pkti3zhUVYa12P18MGsatSN5j9+hAaFo3kwMXW3ETFmPjpdxRI5pxCi7En+dP8kfxJl4WHkT7L6Xikz05hxwyGLU57JaOq4SIeUEKLcO3z4MCtXruTs2bMcOnSI3r17A9x1udyS5uTkxObNm2nfvj179uwpkxiEKK8iZ03hw5f7kHA1nTY/LUdD7r1Tc4OGhpUqS4eUEELcJvmTeFLInFKlrKrt389wVrevXnaBCCHEIyQ8PJxTp04Zl6yPjo6mUqVKZRZPxYoVmTRpUpmdX4jyKj0lmRx1w3SjxgZ9+nVsauZf6lwIIcozyZ/Ek0A6pUpZj5o9qFmhJtbm1vhV9Lv3AUII8YR7+umnOXjwYFmHIYR4BPg1a86hC38BihwzhcFC4VzRHJfO3rRo/GJZhyeEEI8MyZ/Ek0I6pUqZhZkFTVyalHUYQgghhBCPnLadX6Jt55fKOgwhhBBClBKZU0oIIYQQQgghhBBClDrplBJCCCGEEEIIIYQQpU46pYQQQgghhBBCCCFEqZNOKSGEEEIIIYQQQghR6qRTSgghhBBCCCGEEEKUOumUEkIIIYQQQgghhBCl7qF3Ss2cOZMmTZpgZ2eHs7Mz//rXvzh16pRJmfT0dIYOHUrFihWxtbWlW7duXL582aRMfHw8Xbp0wdraGmdnZ8aOHUt2drZJmW3btvHMM89gaWmJj48PS5cufdjNEUKIcqdfv35oNBo0Gg06nQ4fHx+mTZuW729wcW3btg2NRsPNmzcfTqBFEBsbS69evahatSpWVla4u7sTEhLCyZMnTcqtX7+etm3bYmdnh7W1NU2aNMn3nRIXF4dGoyEmJqbI558yZQq1a9fGxsaGChUq0KFDB/bt22dS54ABA/Dy8kKv11OjRg0mT55MZmbmPetevnw5DRs2xNraGldXV1599VWuX79e6DE7duwgODiYqlWrotFoWLt2bbFjBpgxYwYtW7bE2toaR0fHAs91r+/xO3/P7nzVrVvXWKYoOUVBihKfEEII8TBJ/iT5k+RP9+ehd0pt376doUOHsnfvXqKiosjKyqJTp06kpKQYy7zxxhv88MMPrF69mu3bt3PhwgVefPFF4/6cnBy6dOlCZmYmu3fvZtmyZSxdupRJkyYZy8TGxtKlSxf8/f2JiYlh5MiRDBw4kE2bNj3sJgkhRLkTGBjIxYsX+f333xk9ejRTpkzhgw8+KOuwjIqSdGRlZdGxY0cSExP59ttvOXXqFKtWraJ+/fomid1HH31ESEgIrVq1Yt++fRw5coSXX36ZIUOGMGbMmAeKs2bNmsyfP5+jR4+yc+dOqlevTqdOnbh69SoAJ0+exGAw8Mknn3Ds2DHmzJnDokWLePPNNwutd9euXfTp04cBAwZw7NgxVq9ezf79+xk0aFChx6WkpNCwYUMWLFhw3zFD7vXv3r07//nPfwqsoyjf43PnzuXixYvG1/nz53FycqJ79+7GMkXJKQpyr/iEEEKIkiD5k+RPkj/dB1XCrly5ogC1fft2pZRSN2/eVBYWFmr16tXGMidOnFCA2rNnj1JKqY0bNyqtVqsuXbpkLLNw4UJlb2+vMjIylFJKjRs3TtWtW9fkXD179lQBAQFFji0xMVEBKjEx8b7bJ4QQBUlLS1PHjx9XaWlpZR1KsfXt21eFhISYbOvYsaNq3ry5unHjhgoNDVWOjo5Kr9erwMBAdfr0aWO5uLg49fzzzytHR0dlbW2t/Pz81IYNG1RsbKwCTF59+/ZVSimVlJSkevXqpaytrZWLi4uaPXu2atu2rXr99deN9Xp6eqpp06ap0NBQZWdnZzw2OjpatW7dWllZWSl3d3c1fPhwlZycrJRS6vDhwwpQcXFxd21rfHy8srCwUKNGjcq3b968eQpQe/fuVUopYxsOHz5c/It6W973zubNm+9aZtasWcrLy6vQej744APl7e2dL143N7cixwKo77777p7lCos5MjJSOTg45NtelO/xf/ruu++URqMp9Of1z5ziXu4WX0EK+8xKvmBKrocQoqRI/iT5U0Ekf3qy86cSn1MqMTERACcnJwAOHjxIVlYWHTp0MJapXbs21apVY8+ePQDs2bOH+vXrU6VKFWOZgIAAkpKSOHbsmLHMnXXklcmrQwghHiVKKbLS08vkpZR64Pj1ej2ZmZn069ePX3/9lXXr1rFnzx6UUnTu3JmsrCwAhg4dSkZGBjt27ODo0aO8//772Nra4uHhwTfffAPAqVOnuHjxInPnzgVg1KhR7Nq1i3Xr1hEVFUV0dDSHDh3KF0N4eDgNGzbk8OHDvPPOO5w9e5bAwEC6devGkSNHWLVqFTt37mTYsGEAVK5cGa1Wy5o1a8jJySmwXWvWrCErK6vAO3qDBw/G1taWlStXPvD1g9y7T4sXL8bBwYGGDRvetVxiYqLxO/NuWrRowfnz59m4cSNKKS5fvsyaNWvo3LnzQ4m1uDH/U1G+x/9pyZIldOjQAU9Pz7vW+8+cQgghxJPvcc6hJH96cJI/Pfn5k3lJVm4wGBg5ciStWrWiXr16AFy6dAmdTpfvGcUqVapw6dIlY5k7fxB5+/P2FVYmKSmJtLQ09Hp9vngyMjLIyMgwvk9KSnqwBgohRBFlZ2Qwr+9LZXLuEcvWYGFldV/HKqXYsmULmzZtIigoiLVr17Jr1y5atmwJ5D6X7+Hhwdq1a+nevTvx8fF069aN+vXrA+Dt7W2sK++L0NnZ2fgdcOvWLZYtW8aKFSto3749AJGRkVStWjVfLO3atWP06NHG9wMHDqR3796MHDkSAF9fX+bNm0fbtm1ZuHAhbm5uzJs3j3HjxjF16lQaN26Mv78/vXv3NsZ1+vRpHBwccHV1zXc+nU6Ht7c3p0+fvq9rl2f9+vW8/PLLpKam4urqSlRUFJUqVSqw7JkzZ/joo48IDw8vtM5WrVqxfPlyevbsSXp6OtnZ2QQHBxc6rLykYi5IUb7H73ThwgV+/PFHVqxYcdc6C8ophBBCPPkexxxK8ifJnyR/KroSHSk1dOhQ/ve///HVV1+V5GmKbObMmTg4OBhfHh4eZR2SEEI8ktavX4+trS1WVlYEBQXRs2dP+vXrh7m5Oc2aNTOWq1ixIrVq1eLEiRMAjBgxgrCwMFq1asXkyZM5cuRIoec5d+4cWVlZNG3a1LjNwcGBWrVq5SvbuHFjk/e//fYbS5cuxdbW1vgKCAjAYDAQGxsL5H4PXbp0ieXLl9OiRQtWr15N3bp1iYqKKvK10Ol09yyzfPlykziio6ON+/LmPty9ezeBgYH06NGDK1eu5KsjISGBwMBAunfvbjK3wZ31DhkyBIDjx4/z+uuvM2nSJA4ePMhPP/1EXFyccX90dLTJccuXLy9ye4sT88OybNkyHB0d+de//nXXMgXlFEOGDDFppxBCCFGWJH/6m+RPkj8VVYmNlBo2bBjr169nx44duLu7G7e7uLiQmZnJzZs3TUZLXb58GRcXF2OZ/fv3m9SXtzrfnWX+uWLf5cuXsbe3L3CUFMDEiRMZNWqU8X1SUpJ0TAkhSoW5pSUjlq0ps3MXl7+/PwsXLkSn01G1alXMzc1Zt27dPY8bOHAgAQEBbNiwgZ9//pmZM2cSERHB8OHD7yd0EzY2Nibvk5OTGTx4MCNGjMhXtlq1asZ/29nZERwcTHBwMGFhYQQEBBAWFkbHjh3x9fUlMTGRCxcu5Lu7mJmZydmzZwkICLhnbF27djVJNt3c3Ezi9vHxwcfHh+bNm+Pr68uSJUuYOHGiscyFCxfw9/enZcuWLF682KTuO1ersbe3B3JvsrRq1YqxY8cC0KBBA2xsbGjTpg1hYWE0btzY5Lh/3nW7l6LEXJiifI/nUUrx+eefExoaetcE9m45xbRp0x54MlUhhBCPtscph5L8SfInyZ+K76F3SimlGD58ON999x3btm3Dy8vLZH+jRo2wsLBgy5YtdOvWDch9PjY+Pp4WLVoAuc96zpgxgytXruDs7AxAVFQU9vb2+Pn5Gcts3LjRpO6oqChjHQWxtLTE8j7+40wIIR6URqO570foykLel+qd6tSpQ3Z2Nvv27TMOP79+/TqnTp0y/m0G8PDwYMiQIQwZMoSJEyfy6aefMnz4cOMX5p3zE3h7e2NhYcGBAweMiVBiYiKnT5/m2WefLTTGZ555huPHj+eLszAajYbatWuze/duAF566SXGjx9PREQEERERJmUXLVpEamoqffr0uWe9dnZ22NnZFSkGg8Fg8ih5QkIC/v7+NGrUiMjISLRa00HMBbUvNTUVc3PTr3AzMzMg93tYr9cX67oUN+Z7Kcr3eJ7t27dz5swZBgwYkK+ee+UUzs7OxvqFEEI8mR6nHEryJ8mfCov5Xspr/vTQO6WGDh3KihUr+P7777GzszM+++jg4IBer8fBwYEBAwYwatQonJycsLe3Z/jw4bRo0YLmzZsD0KlTJ/z8/AgNDWXWrFlcunSJt99+m6FDhxo7lYYMGcL8+fMZN24cr776Kr/88gtff/01GzZseNhNEkIIQe6cAyEhIQwaNIhPPvkEOzs7JkyYgJubGyEhIQCMHDmSoKAgatasyV9//cXWrVupU6cOAJ6enmg0GtavX0/nzp3R6/XY2dnRt29fxo4di5OTE87OzkyePBmtVotGoyk0nvHjx9O8eXOGDRvGwIEDsbGx4fjx40RFRTF//nxiYmKYPHkyoaGh+Pn5odPp2L59O59//jnjx48Hcu8Izpo1izFjxmBlZUVoaCgWFhZ8//33vPnmm4SFheV7/v7UqVP5Yqlbty4WFhYm21JSUpgxYwZdu3bF1dWVa9eusWDBAhISEozL9iYkJPDcc8/h6elJeHi4ybLB/7wjdqfg4GAGDRrEwoULCQgI4OLFi4wcOZKmTZsWOJ9EnuTkZM6cOWN8HxsbS0xMDE5OTlSrVq1IMQPEx8dz48YN4uPjycnJMd5V9PHxwdbWtkjf43mWLFlCs2bNCpzn4F45xd3cKz4hhBCitEj+lEvyJ8mf7qpI6/wVA/9YsjLvFRkZaSyTlpam/u///k9VqFBBWVtbqxdeeEFdvHjRpJ64uDgVFBSk9Hq9qlSpkho9erTKysoyKbN161b11FNPKZ1Op7y9vU3OURSypLEQoqQ8aUsa58lb0tjBwUHp9XoVEBBgsqTxsGHDVI0aNZSlpaWqXLmyCg0NVdeuXTPunzZtmnJxcVEajabQJY2bNm2qJkyYYDzO09NTzZkzJ188+/fvVx07dlS2trbKxsZGNWjQQM2YMUMppdTVq1fViBEjVL169ZStra2ys7NT9evXV+Hh4SonJ8eknrVr16o2bdooGxsb4/fWypUrTcoUtCxz3uv8+fP5YktLS1MvvPCCqlq1qtLpdMrV1VV17dpV7d+/31gmMjLyrnXey7x585Sfn5/S6/XK1dVV9e7dW/3555+FHrN169YCz5X3syhKzErl/o4UVM/WrVuNZYryPX7z5k2l1+vV4sWLC4y3KDlFQYoS3z89jCWNywu5HkKIkiL5k+RPkj+Vv/xJczvocikpKQkHBwcSExONz5kKIcTDkJ6eTmxsLF5eXlg9JkPOHxUpKSm4ubkRERFR4JDkknbjxg3at2+Pvb09P/74I9bW1qUegyh9hX1mJV8wJddDCFFSJH+6f5I/ibLwMPKnEl19TwghhLiXw4cPs3LlSs6ePcuhQ4fo3bs3gHFIe2lzcnJi8+bNtG/fnj179pRJDEIIIYQQhZH8STwpSmz1PSGEEKKowsPDOXXqFDqdjkaNGhEdHU2lSpXKLJ6KFSsyadKkMju/EEIIIcS9SP4kngTSKSWEEKJMPf300xw8eLCswxBCCCGEeGxI/iSeFPL4nhBCCCGEEEIIIYQoddIpJYQQQgghhBBCCCFKnXRKCSFECSrHC5wK8ViRz6oQQjw65G+yEI+Hh/FZlU4pIYQoAWZmZgBkZmaWcSRCiKJITU0FwMLCoowjEUKI8ivvb3De32QhxKPtYeRPMtG5EEKUAHNzc6ytrbl69SoWFhZotXIPQIhHkVKK1NRUrly5gqOjo7FDWQghROkzMzPD0dGRK1euAGBtbY1GoynjqIQQ//Qw8yfplBJCiBKg0WhwdXUlNjaWP/74o6zDEULcg6OjIy4uLmUdhhBClHt5f4vzOqaEEI+uh5E/SaeUEEKUEJ1Oh6+vrzzCJ8QjzsLCQkZICSHEIyLvxp6zszNZWVllHY4Q4i4eVv4knVJCCFGCtFotVlZWZR2GEEIIIcRjxczMTG4YCFEOyCQnQgghhBBCCCGEEKLUSaeUEEIIIYQQQgghhCh10iklhBBCCCGEEEIIIUpduZ5TSikFQFJSUhlHIoQQQohHVV6ekJc3lHeSPwkhhBDiXoqaP5XrTqlbt24B4OHhUcaRCCGEEOJRd+vWLRwcHMo6jDIn+ZMQQgghiupe+ZNGlePbfgaDgQsXLmBnZ4dGo3modSclJeHh4cH58+ext7d/qHU/Dspz+8tz26F8t788tx3Kd/vLc9vhyW+/Uopbt25RtWpVtFqZ+aAk8yd48n+fClOe2w7lu/3lue1QvttfntsO5bv9T3rbi5o/leuRUlqtFnd39xI9h729/RP5C1ZU5bn95bntUL7bX57bDuW7/eW57fBkt19GSP2tNPIneLJ/n+6lPLcdynf7y3PboXy3vzy3Hcp3+5/kthclf5LbfUIIIYQQQgghhBCi1EmnlBBCCCGEEEIIIYQoddIpVUIsLS2ZPHkylpaWZR1KmSjP7S/PbYfy3f7y3HYo3+0vz20Hab94uMrz71N5bjuU7/aX57ZD+W5/eW47lO/2l+e236lcT3QuhBBCCCGEEEIIIcqGjJQSQgghhBBCCCGEEKVOOqWEEEIIIYQQQgghRKmTTikhhBBCCCGEEEIIUeqkU0oIIYQQQgghhBBClDrplBJCCCGEEEIIIYQQpU46pYQQQgghhBBCCCFEqZNOKSGEEEIIIYQQQghR6qRTSgghhBBCCCGEEEKUOumUEkIIIYQQQgghhBClTjqlhBBCCCGEEEIIIUSpk04pIYQQQgghhBBCCFHqpFNKCCGEEEIIIYQQQpQ66ZQSQgghhBBCCCGEEKVOOqWEEGUuLi4OjUbD0qVLyzqUR87SpUvRaDT8+uuvZR2KEEIIIZ4g95t/Xb58mZdeeomKFSui0Wj48MMPSyS+spCXd8XFxZV1KEKUG9IpJYRg9+7dTJkyhZs3b97X8R9//PET0aH0oNfhUXbhwgWmTJlCTExMWYcihBBCCB7f/OuNN95g06ZNTJw4kS+//JLAwMBSj0EI8eSQTikhBLt372bq1KmPXVL0sD3odXiUXbhwgalTp0qnlBBCCPGIeFzzr19++YWQkBDGjBnDv//9b2rXrl3qMQghnhzSKSWEEI+g9PR0DAZDWYchhBBCCGHiypUrODo6lsq5JB8S4sknnVJClHNTpkxh7NixAHh5eaHRaIzP0mdnZzN9+nRq1KiBpaUl1atX58033yQjI8N4fPXq1Tl27Bjbt283Hvvcc88BcOPGDcaMGUP9+vWxtbXF3t6eoKAgfvvttweOe9u2bWg0Gr7++mtmzJiBu7s7VlZWtG/fnjNnzuQrv2/fPgIDA3FwcMDa2pq2bduya9euIl2HF198kWeeecakvuDgYDQaDevWrTM5h0aj4ccffzRuO3fuHN27d8fJyQlra2uaN2/Ohg0bCmzLV199xdtvv42bmxvW1tYkJSUV2Pa//vqLpk2b4u7uzqlTp4p0rZo0aQJA//79jW1bunQpJ06cQK/X06dPH5Njdu7ciZmZGePHj79n/UIIIYQonscx/8qbb0kpxYIFC4znBcjKymLq1Kn4+vpiZWVFxYoVad26NVFRUUWu/1750L1yOYA//viD//u//6NWrVro9XoqVqxI9+7dC5wj6tixY7Rr1w69Xo+7uzthYWHSASZEGTAv6wCEEGXrxRdf5PTp06xcuZI5c+ZQqVIlACpXrszAgQNZtmwZL730EqNHj2bfvn3MnDmTEydO8N133wHw4YcfMnz4cGxtbXnrrbcAqFKlCpDbIbN27Vq6d++Ol5cXly9f5pNPPqFt27YcP36cqlWrPnD87733HlqtljFjxpCYmMisWbPo3bs3+/btM5b55ZdfCAoKolGjRkyePBmtVktkZCTt2rUjOjqapk2bFnod2rRpw/fff09SUhL29vYopdi1axdarZbo6Gi6du0KQHR0NFqtllatWgG5E4G2bNmS1NRURowYQcWKFVm2bBldu3ZlzZo1vPDCCyZtmT59OjqdjjFjxpCRkYFOp8vX3mvXrtGxY0du3LjB9u3bqVGjxj2vUZ06dZg2bRqTJk3itddeo02bNgC0bNkSb29vpk+fztixY3nppZfo2rUrKSkp9OvXj9q1azNt2rT7+8EIIYQQ4q4ex/zr2Wef5csvvyQ0NJSOHTua3NCaMmUKM2fOZODAgTRt2pSkpCR+/fVXDh06RMeOHYt1noLyoaLkcgAHDhxg9+7dvPzyy7i7uxMXF8fChQt57rnnOH78ONbW1gBcunQJf39/srOzmTBhAjY2NixevBi9Xn9f10YI8QCUEKLc++CDDxSgYmNjjdtiYmIUoAYOHGhSdsyYMQpQv/zyi3Fb3bp1Vdu2bfPVm56ernJycky2xcbGKktLSzVt2jSTbYCKjIwscsxbt25VgKpTp47KyMgwbp87d64C1NGjR5VSShkMBuXr66sCAgKUwWAwlktNTVVeXl6qY8eOhV4HpZQ6cOCAAtTGjRuVUkodOXJEAap79+6qWbNmxnJdu3ZVTz/9tPH9yJEjFaCio6ON227duqW8vLxU9erVjdcmry3e3t4qNTXV5NyRkZEKUAcOHFAXL15UdevWVd7e3iouLq7I1+rONhR0jXNyclTr1q1VlSpV1LVr19TQoUOVubm5OnDgQLHOIYQQQoiiexzzL6WUAtTQoUNNtjVs2FB16dKlWPX8093yoeLkcv/Mo5RSas+ePQpQX3zxhXFbXo62b98+47YrV64oBweHAnNBIUTJkcf3hBAF2rhxIwCjRo0y2T569GiAfI+gFcTS0hKtNvfPTE5ODtevX8fW1pZatWpx6NChhxJn//79TUYU5Y0COnfuHAAxMTH8/vvv9OrVi+vXr3Pt2jWuXbtGSkoK7du3Z8eOHfccqv30009ja2vLjh07gNwRUe7u7vTp04dDhw6RmpqKUoqdO3cazw+517Bp06a0bt3auM3W1pbXXnuNuLg4jh8/bnKevn373vUO3Z9//knbtm3Jyspix44deHp6FuMqFU6r1bJ06VKSk5MJCgri448/ZuLEiTRu3PihnUMIIYQQ9/a45F//5OjoyLFjx/j9998fuK5/5kPFyeXuPC4rK4vr16/j4+ODo6OjSds3btxI8+bNjSOsIHeUWu/evR84fiFE8cjje0KIAv3xxx9otVp8fHxMtru4uODo6Mgff/xxzzoMBgNz587l448/JjY2lpycHOO+ihUrPpQ4q1WrZvK+QoUKQO68S4AxOerbt+9d60hMTDQeVxAzMzNatGhBdHQ0kNsp1aZNG1q3bk1OTg579+6lSpUq3Lhxw6RT6o8//qBZs2b56qtTp45xf7169Yzbvby87hpDaGgo5ubmnDhxAhcXl7uWu181atQwzm9Rr1493nnnnYd+DiGEEEIU7nHJv/5p2rRphISEULNmTerVq0dgYCChoaE0aNCg2HX9Mx8qTi6XlpbGzJkziYyMJCEhAaWUSZk8d8vRatWqVex4hRAPRjqlhBCFypvA8n68++67vPPOO7z66qtMnz4dJycntFotI0eOfGgTSZqZmRW4PS8JyTvPBx98wFNPPVVgWVtb23uep3Xr1syYMYP09HSio6N56623cHR0pF69ekRHRxvncbizU6q4CpvH4MUXX+SLL75g7ty5zJw5877PUZiff/4ZgAsXLnD9+vUS6fwSQgghxL096vnXPz377LOcPXuW77//np9//pnPPvuMOXPmsGjRIgYOHFisuv6ZDxUnlxs+fDiRkZGMHDmSFi1a4ODggEaj4eWXX5ZJzIV4REmnlBCiwMTH09MTg8HA77//bhzZA7mTd9+8edPk8bG7JU5r1qzB39+fJUuWmGy/efOmcULPkpY3Ebi9vT0dOnQotGxhCWCbNm3IzMxk5cqVJCQkGDufnn32WWOnVM2aNY2dU5B7DQtaHe/kyZPG/UU1fPhwfHx8mDRpEg4ODkyYMKHIx8K9k9tFixYRFRXFjBkzmDlzJoMHD+b7778v1jmEEEIIUXRPWv7l5ORE//796d+/P8nJyTz77LNMmTKl2J1S/1ScXG7NmjX07duXiIgI47b09HRu3rxpUs7T07PARw2LsqqxEOLhkjmlhBDY2NgAmHxhd+7cGchd3eVOs2fPBqBLly4mx//zyx5yRzHdOWwaYPXq1SQkJDyEqIumUaNG1KhRg/DwcJKTk/Ptv3r1qvHfBV2HPM2aNcPCwoL3338fJycn6tatC+R2Vu3du5ft27fnGyXVuXNn9u/fz549e4zbUlJSWLx4MdWrV8fPz69YbXnnnXcYM2YMEydOZOHChcU6trC2xcbGMnbsWLp168abb75JeHg469at44svvijWOYQQQghRdE9S/nX9+nWT97a2tvj4+JCRkfHAdRcnlyuo7R999JHJI4yQe5337t3L/v37TepZvnz5A8crhCgeGSklhKBRo0YAvPXWW7z88stYWFgQHBxM3759Wbx4MTdv3qRt27bs37+fZcuW8a9//Qt/f3+T4xcuXEhYWBg+Pj44OzvTrl07nn/+eaZNm0b//v1p2bIlR48eZfny5Xh7e5da27RaLZ999hlBQUHUrVuX/v374+bmRkJCAlu3bsXe3p4ffvih0OtgY2ODtbU1jRo1Yu/evQQHBxvvTj777LOkpKSQkpKSr1NqwoQJrFy5kqCgIEaMGIGTkxPLli0jNjaWb775xjgJaXF88MEHJCYmMnToUOzs7Pj3v/9dpONq1KiBo6MjixYtws7ODhsbG5o1a0b16tV59dVX0ev1xo6uwYMH88033/D666/ToUOH+146WgghhBB39yTlX35+fjz33HM0atQIJycnfv31V9asWcOwYcMeuO7i5HLPP/88X375JQ4ODvj5+bFnzx42b96cby6tcePG8eWXXxIYGMjrr7+OjY0NixcvxtPTkyNHjjxwzEKIYijLpf+EEI+O6dOnKzc3N6XVao1L4WZlZampU6cqLy8vZWFhoTw8PNTEiRNVenq6ybGXLl1SXbp0UXZ2dgowLk+cnp6uRo8erVxdXZVer1etWrVSe/bsUW3btjVZwvh+liTOWzZ49erVJtvvVtfhw4fViy++qCpWrKgsLS2Vp6en6tGjh9qyZcs9r0OesWPHKkC9//77Jsf4+PgoQJ09ezZfnGfPnlUvvfSScnR0VFZWVqpp06Zq/fr1RWqLUkpFRkYqQB04cMC4LScnR73yyivK3NxcrV27ttDrdKfvv/9e+fn5KXNzc+M1mjt3rgLUN998Y1I2Pj5e2dvbq86dOxe5fiGEEEIUz+OWfymlFKCGDh1qsi0sLEw1bdpUOTo6Kr1er2rXrq1mzJihMjMzi1xvYfmQUkXL5f766y/Vv39/ValSJWVra6sCAgLUyZMnlaenp+rbt69JfUeOHFFt27ZVVlZWys3NTU2fPl0tWbIkX/4nhChZGqX+Mb5RCCGEEEIIIYQQQogSJnNKCSGEEEIIIYQQQohSJ3NKCSEeKZmZmdy4caPQMg4ODvmWCy6v5HoJIYQQ4kGVZD4huYoQojDSKSWEeKTs3r3bZBLPgkRGRtKvX7/SCegRJ9dLCCGEEA+qJPMJyVWEEIWROaWEEI+Uv/76i4MHDxZapm7duri6upZSRI82uV5CCCGEeFAlmU9IriKEKIx0SgkhhBBCCCGEEEKIUicTnQshhBBCCCGEEEKIUleu55QyGAxcuHABOzs7NBpNWYcjhBBCiEeQUopbt25RtWpVtFq5nyf5kxBCCCHupaj5U7nulLpw4QIeHh5lHYYQQgghHgPnz5/H3d29rMMoc5I/CSGEEKKo7pU/letOKTs7OyD3Itnb25dxNEIIIYR4FCUlJeHh4WHMG8o7yZ+EEEIIcS9FzZ/KdadU3pBze3t7SaqEEEIIUSh5VC2X5E9CCCGEKKp75U8yMYIQQgghhBBCCCGEKHXSKSWEEEIIIYQQQgghSp10SgkhhBBCCCGEEEKIUleu55QSQgghhBBCCPFoUUqRnZ1NTk5OWYcihLgLMzMzzM3NH3jOTemUEkIIIYQQQgjxSMjMzOTixYukpqaWdShCiHuwtrbG1dUVnU5333VIp5QQQgghhBBCiDJnMBiIjY3FzMyMqlWrotPpZOVTIR5BSikyMzO5evUqsbGx+Pr6otXe3+xQ0iklhBBCCCGEEKLMZWZmYjAY8PDwwNrauqzDEUIUQq/XY2FhwR9//EFmZiZWVlb3VY9MdC6EEEIIIYQQ4pFxvyMuhBCl62F8VuXTLoQQQgghhBBCCCFKnXRKCSGEEEIIIYQQQohSJ51SQgghhBBCCCHEA+jXrx8ajQaNRoNOp8PHx4dp06aRnZ39QPVu27YNjUbDzZs3H06gRRAbG0uvXr2oWrUqVlZWuLu7ExISwsmTJ03KrV+/nrZt22JnZ4e1tTVNmjRh6dKlJmXi4uLQaDTExMQU+fxTpkyhdu3a2NjYUKFCBTp06MC+fftM6hwwYABeXl7o9Xpq1KjB5MmTyczMLLTeixcv0qtXL2rWrIlWq2XkyJFFimfHjh0EBwdTtWpVNBoNa9euLbDciRMn6Nq1Kw4ODtjY2NCkSRPi4+ON+wcPHkyNGjXQ6/VUrly5wGt64MAB2rdvj6OjIxUqVCAgIIDffvutwPOdOXMGOzs7HB0dH1obyoJ0SgkhhBBCCCGEEA8oMDCQixcv8vvvvzN69GimTJnCBx98UNZhGd2r0wYgKyuLjh07kpiYyLfffsupU6dYtWoV9evXN+kY++ijjwgJCaFVq1bs27ePI0eO8PLLLzNkyBDGjBnzQHHWrFmT+fPnc/ToUXbu3En16tXp1KkTV69eBeDkyZMYDAY++eQTjh07xpw5c1i0aBFvvvlmofVmZGRQuXJl3n77bRo2bFjkeFJSUmjYsCELFiy4a5mzZ8/SunVrateuzbZt2zhy5AjvvPOOyeTfjRo1IjIykhMnTrBp0yaUUnTq1ImcnBwAkpOTCQwMpFq1auzbt4+dO3diZ2dHQEAAWVlZJufLysrilVdeoU2bNg+tDWVGlWOJiYkKUImJiWUdihBCCCEeUZIvmJLrIYQoKWlpaer48eMqLS2trEMptr59+6qQkBCTbR07dlTNmzdXN27cUKGhocrR0VHp9XoVGBioTp8+bSwXFxennn/+eeXo6Kisra2Vn5+f2rBhg4qNjVWAyatv375KKaWSkpJUr169lLW1tXJxcVGzZ89Wbdu2Va+//rqxXk9PTzVt2jQVGhqq7OzsjMdGR0er1q1bKysrK+Xu7q6GDx+ukpOTlVJKHT58WAEqLi7urm2Nj49XFhYWatSoUfn2zZs3TwFq7969SillbMPhw4eLf1Fvy/ve2bx5813LzJo1S3l5eRW5zn9eq6IC1HfffZdve8+ePdW///3vYtX122+/KUCdOXNGKaXUgQMHFKDi4+ONZY4cOaIA9fvvv5scO27cOPXvf/9bRUZGKgcHh4fShvtR2Ge2qPmCjJQSQgghhBBCCPFIUkqRmpldJq/c/36/f3q9nszMTPr168evv/7KunXr2LNnD0opOnfubBz9MnToUDIyMtixYwdHjx7l/fffx9bWFg8PD7755hsATp06xcWLF5k7dy4Ao0aNYteuXaxbt46oqCiio6M5dOhQvhjCw8Np2LAhhw8f5p133uHs2bMEBgbSrVs3jhw5wqpVq9i5cyfDhg0DoHLlymi1WtasWWMcwfNPa9asISsrq8ARUYMHD8bW1paVK1c+0LXLk5mZyeLFi3FwcCh0dFNiYiJOTk4P5ZzFZTAY2LBhAzVr1iQgIABnZ2eaNWtW6CNyKSkpREZG4uXlhYeHBwC1atWiYsWKLFmyhMzMTNLS0liyZAl16tShevXqxmN/+eUXVq9e/WiOeroP5mUdgBBCCCGEEEIIUZC0rBz8Jm0qk3MfnxaAta74/8mslGLLli1s2rSJoKAg1q5dy65du2jZsiUAy5cvx8PDg7Vr19K9e3fi4+Pp1q0b9evXB8Db29tYV15Hi7Ozs3HuoFu3brFs2TJWrFhB+/btAYiMjKRq1ar5YmnXrh2jR482vh84cCC9e/c2zqfk6+vLvHnzaNu2LQsXLsTNzY158+Yxbtw4pk6dSuPGjfH396d3797GuE6fPo2DgwOurq75zqfT6fD29ub06dPFvm53Wr9+PS+//DKpqam4uroSFRVFpUqVCix75swZPvroI8LDwx/onPfrypUrJCcn89577xEWFsb777/PTz/9xIsvvsjWrVtp27atsezHH3/MuHHjSElJoVatWkRFRaHT6QCws7Nj27Zt/Otf/2L69OlA7s9n06ZNmJvn/h5ev36dfv368d///hd7e/vSb2wJkJFSQgghhBBCCCHEA1q/fj22trZYWVkRFBREz5496devH+bm5jRr1sxYrmLFitSqVYsTJ04AMGLECMLCwmjVqhWTJ0/myJEjhZ7n3LlzZGVl0bRpU+M2BwcHatWqla9s48aNTd7/9ttvLF26FFtbW+MrICAAg8FAbGwskDty69KlSyxfvpwWLVqwevVq6tatS1RUVJGvRV5HS2GWL19uEkd0dLRxn7+/PzExMezevZvAwEB69OjBlStX8tWRkJBAYGAg3bt3Z9CgQcbtd9Y7ZMiQIsUcHR1tctzy5cuLdJzBYAAgJCSEN954g6eeeooJEybw/PPPs2jRIpOyvXv35vDhw2zfvp2aNWvSo0cP0tPTAUhLS2PAgAG0atWKvXv3smvXLurVq0eXLl1IS0sDYNCgQfTq1Ytnn332obahLMlIKSGEEEIIIYQQjyS9hRnHpwWU2bmLw9/fn4ULF6LT6ahatSrm5uasW7funscNHDiQgIAANmzYwM8//8zMmTOJiIhg+PDh9xu6kY2Njcn75ORkBg8ezIgRI/KVrVatmvHfdnZ2BAcHExwcTFhYGAEBAYSFhdGxY0d8fX1JTEzkwoUL+UZnZWZmcvbsWQIC7v0z69q1q0lnnZubm0ncPj4++Pj40Lx5c3x9fVmyZAkTJ040lrlw4QL+/v60bNmSxYsXm9R952p/RR1R1LhxY5PjqlSpUqTjKlWqhLm5OX5+fibb69Spw86dO022OTg44ODggK+vL82bN6dChQp89913vPLKK6xYsYK4uDj27NmDVps7fmjFihVUqFCB77//npdffplffvmFdevWGUeFKaUwGAyYm5uzePFiXnnllftqQ1mSTikhhBBCCCGEEI8kjUZzX4/QlYW8jpQ71alTh+zsbPbt22d8fO/69eucOnXKpBPDw8ODIUOGMGTIECZOnMinn37K8OHDjSOO7pzfydvbGwsLCw4cOGDsSEpMTOT06dN3HUGT55lnnuH48eP54iyMRqOhdu3a7N69G4CXXnqJ8ePHExERQUREhEnZRYsWkZqaSp8+fe5Zr52dHXZ2dkWKwWAwkJGRYXyfkJCAv7+/cUW7vE6cPMVpXx69Xn9fx+l0Opo0acKpU6dMtp8+fRpPT8+7HqeUQillbFdqaiparRaNRmMsk/c+bzTWnj17TH4Xvv/+e95//312796Nm5vbfbehLD0en24hhBBCCCGEEOIx4+vrS0hICIMGDeKTTz7Bzs6OCRMm4ObmRkhICAAjR44kKCiImjVr8tdff7F161bq1KkDgKenJxqNhvXr19O5c2f0ej12dnb07duXsWPH4uTkhLOzM5MnT87XoVGQ8ePH07x5c4YNG8bAgQOxsbHh+PHjREVFMX/+fGJiYpg8eTKhoaH4+fmh0+nYvn07n3/+OePHjwdyR1TNmjWLMWPGYGVlRWhoKBYWFnz//fe8+eabhIWFUa9ePZPz/rPDBqBu3bpYWFiYbEtJSWHGjBl07doVV1dXrl27xoIFC0hISKB79+5AbofUc889h6enJ+Hh4Vy9etV4vIuLS6HtzxtFlJyczNWrV4mJiUGn0+Ub5XSn5ORkzpw5Y3wfGxtLTEwMTk5Oxk7BsWPH0rNnT5599ln8/f356aef+OGHH9i2bRuQ+8jlqlWr6NSpE5UrV+bPP//kvffeQ6/X07lzZwA6duzI2LFjGTp0KMOHD8dgMPDee+9hbm6Ov78/gPH3Is+vv/6KVqvNd73vpw1l5qGsA/iYkiWNhRBCCHEvki+YkushhCgphS0v/6jr27evCgkJKXDfjRs3VGhoqHJwcFB6vV4FBASo06dPG/cPGzZM1ahRQ1laWqrKlSur0NBQde3aNeP+adOmKRcXF6XRaFTfvn2VUkolJSWpXr16KWtra+Xi4qJmz56tmjZtqiZMmGA8ztPTU82ZMydfPPv371cdO3ZUtra2ysbGRjVo0EDNmDFDKaXU1atX1YgRI1S9evWUra2tsrOzU/Xr11fh4eEqJyfHpJ61a9eqNm3aKBsbGwUoQK1cudKkTGxsrHHfP1/nz5/PF1taWpp64YUXVNWqVZVOp1Ourq6qa9euav/+/cYykZGRd63zXgo6xtPTs9Bjtm7dWuBxeT+LPEuWLFE+Pj7KyspKNWzYUK1du9a4LyEhQQUFBSlnZ2dlYWGh3N3dVa9evdTJkydN6vj5559Vq1atlIODg6pQoYJq166d2rNnz11ji4yMVA4ODvdsd1HbUFyFfWaLmi9olHrAdS4fY0lJSTg4OJCYmPjEzFwvhBBCiIdL8gVTcj2EECUlPT2d2NhYvLy8sLKyKutwHispKSm4ubkRERHBgAEDSv38N27coH379tjb2/Pjjz9ibW1d6jGI0lfYZ7ao+YKsvieEEEIIIYQQQjxGDh8+zMqVKzl79iyHDh2id+/eAMZHAkubk5MTmzdvpn379uzZs6dMYhCPJ5lTSgghhBBCCCGEeMyEh4dz6tQpdDodjRo1Ijo6mkqVKpVZPBUrVmTSpElldn7xeJJOKSGEEEIIIYQQ4jHy9NNPc/DgwbIOQ4gHJo/vCSGEEEIIIYQQQohSJ51SQgghhBBCCCGEEKLUSaeUEEIIIYQQQgghhCh10iklhBBCCCGEEEIIIUqddEoJIYQQQgghhBBCiFInq+8JUYqUwfD3G40GjUZTdsEIIYQQQgghhBBlSDqlhChhqYk32bJwITnnDVy+dRYFZGWDwaAw09hxq8rv/M8xnhwNGLQacrSgLC1weaoFH3f4+IHPn5VjYMiXBzlxMenvmLLTSM1KQQFW1tepVnMDOSon92XI/f+A6gG82ezNBz7/oyxHKX6P+YH58VeIt3D6e4feCRzcjG8X+nniZqUrgwiFKN8WbT/LoXNHaFnpC6pVAHv93dMWe7sG1Kz5TilGJ4QQQgghHpQ8vidECTt7cD9//ZHE74mHSM64QkrGFTJzrpCtrpKpSeWizo4jXlqOVddyopqG0+4afq+czckbJx/ovBuPXmTYikM898E2tpy8woXEdOPrZoqGzExbsjJtSUnXEn8rnoTkBC6lXOJq2lVupN8gOTP5IV2BR9fwE/E8d7Maa+wbs1/v/fcLR/YnphhfGQZV1qEKUe78lRTPzwdX4W35XzxsjqAyj5CYeOiur5SUM2UdshBCiHKsX79+aG4/CaHT6fDx8WHatGlkZ2c/UL3btm1Do9Fw8+bNhxNoEcTGxtKrVy+qVq2KlZUV7u7uhISEcPKk6X+frF+/nrZt22JnZ4e1tTVNmjRh6dKlJmXi4uLQaDTExMQU+fxTpkyhdu3a2NjYUKFCBTp06MC+fftM6hwwYABeXl7o9Xpq1KjB5MmTyczMLLTeixcv0qtXL2rWrIlWq2XkyJFFimfhwoU0aNAAe3t77O3tadGiBT/++KNx/40bNxg+fDi1atVCr9dTrVo1RowYQWJiorHM0qVLjb8f/3xduXLFWC4jI4O33noLT09PLC0tqV69Op9//rlJPB9++KHxXB4eHrzxxhukp6cX2oZvv/2WTp06UbFixWL/PEqajJQSooRlpCSTZWGBJif30T1z/bNotHbY3fqDq9anadu2NR3cX8RMa4aZxgwzjRYzrQU2jpUe6LyTvj/GteQM4/vqFa2Z98rTAAz6+TVuZSYxuMEQPBwa4lX5i9xzG2Mww15n/0Dnfxz871YaAE5ZN3naEno73t5hXQkc3Y3lqujkT6UQpSUrx0DEzyeob/5vhj719whPx0qvUM312bseZ3HnaEchhBCiDAQGBhIZGUlGRgYbN25k6NChWFhYMHHixLIODYDMzEx0usJH/2dlZdGxY0dq1arFt99+i6urK3/++Sc//vijScfYRx99xMiRIxk/fjwLFy5Ep9Px/fffM2TIEP73v/8RHh5+33HWrFmT+fPn4+3tTVpaGnPmzKFTp06cOXOGypUrc/LkSQwGA5988gk+Pj7873//Y9CgQaSkpBR63oyMDCpXrszbb7/NnDlzihyPu7s77733Hr6+viilWLZsGSEhIRw+fJi6dety4cIFLly4QHh4OH5+fvzxxx8MGTKECxcusGbNGgB69uxJYGCgSb39+vUjPT0dZ2dn47YePXpw+fJllixZgo+PDxcvXsRwxxQwK1asYMKECXz++ee0bNmS06dPGztEZ8+efdc2pKSk0Lp1a3r06MGgQYOK3PZSocqxxMREBajExMSyDkU8wbbOeV8tGTlFfdAjWIX36KLmD/haLenzpfoiOFA9H9mixM5b6+2NynP8ejUn6pT6ck+c+v3qJfXFsS/Up0c+VQ2WNVD1ltZTV1Ovltj5H2lZGUpt/0A13bxDVfnlsDoQ0UKpm+fLOiohhFJq26krqu7bX6nNW7zV5i3e6osfAtRvR4aozMybZRaT5Aum5HoIIUpKWlqaOn78uEpLSyvrUIqtb9++KiQkxGRbx44dVfPmzdWNGzdUaGiocnR0VHq9XgUGBqrTp08by8XFxannn39eOTo6Kmtra+Xn56c2bNigYmNjFWDy6tu3r1JKqaSkJNWrVy9lbW2tXFxc1OzZs1Xbtm3V66+/bqzX09NTTZs2TYWGhio7OzvjsdHR0ap169bKyspKubu7q+HDh6vk5GSllFKHDx9WgIqLi7trW+Pj45WFhYUaNWpUvn3z5s1TgNq7d69SShnbcPjw4eJf1Nvyvnc2b9581zKzZs1SXl5eRa7zn9equCpUqKA+++yzu+7/+uuvlU6nU1lZWQXuv3LlirKwsFBffPGFcduPP/6oHBwc1PXr1+9a79ChQ1W7du1Mto0aNUq1atWqSHE/jJ/HnQr7zBY1X5DH94QoIVf/iOXUnp1cjDmMAQ0acnu4KyT+wXd+7zGr259YO1QukXMrpcjMzj1fr6bV+HdzT745t5RZB2Yx99BcDMqAhdYCB51DiZz/kXd2C/wynYys3GGulhpyR0cJIcrctVsZ2FikAmDAhmdbfEOD+guxsCinf6+EEKK8UwoyU8rmpR5sCge9Xk9mZib9+vXj119/Zd26dezZswelFJ07dyYrKwuAoUOHkpGRwY4dOzh69Cjvv/8+tra2eHh48M033wBw6tQpLl68yNy5cwEYNWoUu3btYt26dURFRREdHc2hQ4fyxRAeHk7Dhg05fPgw77zzDmfPniUwMJBu3bpx5MgRVq1axc6dOxk2bBgAlStXRqvVsmbNGnJycgps15o1a8jKymLMmDH59g0ePBhbW1tWrlz5QNcuT2ZmJosXL8bBwYGGDRvetVxiYiJOTiU/ajonJ4evvvqKlJQUWrRoUWg89vb2mJsX/MTFF198gbW1NS+99JJx27p162jcuDGzZs3Czc2NmjVrMmbMGNLS0oxlWrZsycGDB9m/fz8A586dY+PGjXTu3PkhtbD0yTMpQpSAlJt/8eWE142r7Vnwu3Gf1gBOegcqOXnw7wYlM3Qy26DImwZJZ57b93w59TIAT1V+Cm9Hb5q7NsfCzKJEzv/IS70BQIaZHgDLwHfBwqosIxJCAMnJp7G8NZVB9S8AYG3lhGdFmzKOSgghRJnKSoV3q5bNud+8ALrifw8ppdiyZQubNm0iKCiItWvXsmvXLlq2bAnA8uXL8fDwYO3atXTv3p34+Hi6detG/fr1AfD29jbWldfR4uzsjKOjIwC3bt1i2bJlrFixgvbt2wMQGRlJ1ar5r1O7du0YPXq08f3AgQPp3bu3cT4lX19f5s2bR9u2bVm4cCFubm7MmzePcePGMXXqVBo3boy/vz+9e/c2xnX69GkcHBxwdXXNdz6dToe3tzenT58u9nW70/r163n55ZdJTU3F1dWVqKgoKlUq+CbymTNn+Oijjx7okcF7OXr0KC1atCA9PR1bW1u+++47/Pz8Cix77do1pk+fzmuvvXbX+pYsWUKvXr3Q6/XGbefOnWPnzp1YWVnx3Xffce3aNf7v//6P69evExkZCUCvXr24du0arVu3RilFdnY2Q4YM4c03H98FqmSklBAlIOXmXyiDARdrLwCy0v7K3aGxxkxB53o9iQz+ivae7Uvk/HmjpODvTqlbmbcA6FGrB1NbTiXIK6hEzv1YyModhZFuZgmAZfW73+UQQpSOH367wGc/f4jesBcvh3gArK2rl21QQgghRDGsX78eW1tbrKysCAoKomfPnvTr1w9zc3OaNWtmLFexYkVq1arFiRMnABgxYgRhYWG0atWKyZMnc+TIkULPc+7cObKysmjatKlxm4ODA7Vq1cpXtnHjxibvf/vtN5YuXYqtra3xFRAQgMFgIDY2FsgduXXp0iWWL19OixYtWL16NXXr1iUqKqrI1+Jec1dBbufcnXFER0cb9/n7+xMTE8Pu3bsJDAykR48eJhOC50lISCAwMJDu3bubzJV0Z71DhgwpUszR0dEmxy1fvty4r1atWsTExLBv3z7+85//0LdvX44fP56vjqSkJLp06YKfnx9Tpkwp8Dx79uzhxIkTDBgwwGS7wWBAo9GwfPlymjZtSufOnZk9ezbLli0zjpbatm0b7777Lh9//DGHDh3i22+/ZcOGDUyfPv2e1/RRJSOlhCgBhturbFSy8uBSaiwaS1vMrd3QZDdFcz0WCyvHEj3/nZ1S2YZ0fr100jhSyk5nV6LnfixkpaGADMwA0Gulf16IsjZ3y+8853wdHGH3hSbU8AigjV9IWYclhBCirFlY545YKqtzF4O/v79x0u+qVatibm7OunXr7nncwIEDCQgIYMOGDfz888/MnDmTiIgIhg8ffr+RG9nYmI70Sk5OZvDgwYwYMSJf2WrVqhn/bWdnR3BwMMHBwYSFhREQEEBYWBgdO3bE19eXxMRELly4kG90VmZmJmfPniUgIOCesXXt2tWks87Nzc0kbh8fH3x8fGjevDm+vr4sWbLEZNL4Cxcu4O/vT8uWLVm8eLFJ3XeuLmdvX7QFnBo3bmxyXJUqVYz/zltREaBRo0YcOHCAuXPn8sknnxjL3Lp1i8DAQOzs7Pjuu++wsCj4qZTPPvuMp556ikaNGplsd3V1xc3NDQeHv6csqFOnDkop/vzzT3x9fXnnnXcIDQ1l4MCBANSvX5+UlBRee+013nrrrUKv6aNKOqWEKAEGQ+7z1zc1KQBkWurQ27hjSKmMxnAGnbVtiZ4/8/ZKf2ZaDcO2/h+Hrxw27pNOKbiZmUWypTMGTW5nlKVWU8YRCSFupmYa55Jq5deBNg37YmEmHcZCCFHuaTT39QhdWcjrSLlTnTp1yM7OZt++fcbH965fv86pU6dMHv/y8PBgyJAhDBkyhIkTJ/Lpp58yfPhw44ijO+d38vb2xsLCggMHDhg7khITEzl9+jTPPnv3lWoBnnnmGY4fP54vzsJoNBpq167N7t27AXjppZcYP348ERERREREmJRdtGgRqamp9OnT55712tnZYWdXtP82MRgMZGT8vbJ4QkIC/v7+NGrUiMjISLT/uMlcnPbl0ev1RT7un/EkJSUREBCApaUl69atw8qq4KlBkpOT+frrr5k5c2a+fa1atWL16tUkJydja5v734unT59Gq9Xi7p67Mnhqamq+tpqZ5d5oV0oV65o+KqRTSogSYMjO/dLIIvf/NcoMXaY16YBW5aCzKtkv1oys3E4pnZmWuMQ4ANxt3fFx9KF+pfoleu5H3fIL1xlNe2j+96OTOhkpJUSZUUpx4uSbjGgQTSX9dQDquXtIh5QQQogngq+vLyEhIQwaNIhPPvkEOzs7JkyYgJubGyEhuSOCR44cSVBQEDVr1uSvv/5i69at1KlTBwBPT080Gg3r16+nc+fO6PV67Ozs6Nu3L2PHjsXJyQlnZ2cmT56MVqtFoyn8Zuv48eNp3rw5w4YNY+DAgdjY2HD8+HGioqKYP38+MTExTJ48mdDQUPz8/NDpdGzfvp3PP/+c8ePHA7kjqmbNmsWYMWOwsrIiNDQUCwsLvv/+e958803CwsKoV6+eyXlPnTqVL5a6devmG02UkpLCjBkz6Nq1K66urly7do0FCxaQkJBA9+7dgdwOqeeeew5PT0/Cw8O5evWq8XgXF5dC2583Eio5OZmrV68SExODTqe76/xQABMnTiQoKIhq1apx69YtVqxYwbZt29i0aROQ2yHVqVMnUlNT+e9//0tSUhJJSUlA7sTxeZ1GAKtWrSI7O5t///vf+c7Tq1cvpk+fTv/+/Zk6dSrXrl1j7NixvPrqq8a5p4KDg5k9ezZPP/00zZo148yZM7zzzjsEBwebnOefbty4QXx8PBcu5I46zPt5uLi43POalTTplBKiBOTk5D6+p1Ru51CVy5epaIgl3sMXjcrB0urhjpT6+tfz7Dj99x/j5Izc8+vMtWQZclf1+KTjJ1Szr1bg8eXG8e/Z978zULk9GmVAC3So7IiVjJQSokzsPnuNeT/vZFCtr3G748+ijU3x724KIYQQj6rIyEhef/11nn/+eTIzM3n22WfZuHGjsUMmJyeHoUOH8ueff2Jvb09gYCBz5swBch+/mjp1KhMmTKB///706dOHpUuXMnv2bIYMGcLzzz+Pvb0948aN4/z583cdoZOnQYMGbN++nbfeeos2bdqglKJGjRr07NkTAHd3d6pXr87UqVOJi4tDo9EY37/xxhvGet544w28vb2JiIhg7ty5pKTkPiGycuVKXn755XznLWjb+fPnjSOA8piZmXHy5EmWLVvGtWvXqFixIk2aNCE6Opq6desCEBUVxZkzZzhz5ky+49U9Vkx8+umnjf8+ePAgK1aswNPTk7i4uLsec+XKFfr06cPFixdxcHCgQYMGbNq0iY4dOwJw6NAh9u3bB+QfoRUbG0v16tWN75csWcKLL75onLT+Tra2tkRFRTF8+HAaN25MxYoV6dGjB2FhYcYyb7/9NhqNhrfffpuEhAQqV65McHAwM2bMKLTd69ato3///sb3eT+PyZMn33Xuq9KiUff6qT3BkpKScHBwMC7XKMTDEhtzkG9nTqayU32u3jiKx/VE9LpWxFfrhMP1LfjMC6a5a/OHcq7sHAN1Jv1EVk7+j7Kvsy03Ko8i05DJz91+xtU2/woZ5cq3gxmUVZsfnP0JOzOPgW26Qe0uZR2VEOXWyK8Oc/Dsfqa0mMWtTBvWnB3MJ/06Y2PjVdahmZB8wZRcDyFESUlPTyc2NhYvL697dq4IUykpKbi5uREREZFvAu3ScOPGDdq3b4+9vT0//vgj1tbFm49LPJ4K+8wWNV+QkVJClADD7ZFShtsjpTQKssxzh1PG1IWuFe8+PLS4UjJyjB1Sk573I2/Qj0ajoZVPRV78MXeklIVZwRPtlSvZ6cYV96w7ToHq5XzkmBBlLDXjL5ytc0d52ts4M7//IGys771ajxBCCFHeHT58mJMnT9K0aVMSExOZNm0agPGRwNLm5OTE5s2bWbBgAXv27KF9+5JZZVw8eaRTSogSYDBORJjbWZRjZk22Lrd3uLvWGnvdw7uznJx5+1E9My2vtjYdXZBlyELdjsFCK51SZKeTZpXbKaXXP14TAArxJMnMNnA2LpKeHu+CR+42e2snHKVDSgghhCiy8PBwTp06hU6no1GjRkRHR1OpUqUyi6dixYpMmjSpzM4vHk/SKSVECTDk5KBBaxwpdcmlORbWTQDQuj68UVIAKbfnj7KxzD+xXVZOlvHfOjP5jz2y00nX5nZKyTxSQpSNlIxs2kdsp5vXep4xrrRsgbNzUFmGJYQQQjxWnn76aQ4ePFjWYQjxwKRTSogSkB73B1qN1jjRORotZtkpWLk4Uj2gw8M5R1YO76z9H6evJANga5X/45w3yTmATlu+O6USs7I5bFGNazpHAPSyspcQZeLMlWQuJaVjq8v92/XNuf8wK3QktpaSkgghhBBClDeSAQpRAtLPnUODFsXtTim0eP0+hwYfLqey7cN5bGxf7A1WH/zT+L6aU/7JBDNzMnPPrtFipr37EqHlQe8j5/jV5e9JH6210iklRFm4fnkJ01p+R5Xbc0nN6NZaOqSEEEIIIcopyQKFKAEGQw4ajQbD7U4pDVpyNAbMtQ/vI5eWmTtvlVclG0Z28KWVTyW2xG/hz1t/d1QlZiQCMkoK4FxaBgC+KXHUrlyVp+xlRRAhStNfKZnM++V3mlgtxc02FQCNxgJra+8yjkwIIYQQQpQV6ZQS4iFKvHKZzZ8t4OqZk2i54/E9zFAaw0OdbDzbkFu3s50lIU+5ceavM4zcOrLAstYW5bgD5vJx+PIF0p9aCmZ6/vu/CXj2WgYyUkqIUrU2JoGlu87RsmMaAIdujWNYp+extHQu48iEEEIIIURZkU4pIR6i3/fvJu63QwCYa3So2yOV0GjI0eY81JFS2Tm3V9W7PTfSlbQrANjr7Gnr3takbPtq5XhJ1tgdqORLpOVNcG5hBZV8yzgoIcqf68mZWJmno9Xk/u3q89wr6PUPbyVSIYQQQgjx+JFOKSEeopys3InFzbRasg2ZkJE7pxMaHUqTg4XZwxsplZWTO1LK3Cx3Fbm07NzRB14OXrzb5t2Hdp7HXnYamRoLlCa3887q/3aC3raMgxKifElJOUMlw2J61rwEgFaro4qDdEgJIYQQQpR3xXp+ZebMmTRp0gQ7OzucnZ3517/+xalTp0zKpKenM3ToUCpWrIitrS3dunXj8uXLJmXi4+Pp0qUL1tbWODs7M3bsWLKzs03KbNu2jWeeeQZLS0t8fHxYunRpvngWLFhA9erVsbKyolmzZuzfv784zRHioTMYcud5MqjckQBW1i6YWT6FmUVNDBgw1zy8fuCsf4yUyuuU0pvrH9o5nghZ6aTfHiUFYGVZjh9lFKKUGQyKDzad5Lvtb+NhuZY27nsB0OmqlHFkQgghhBDiUVCsTqnt27czdOhQ9u7dS1RUFFlZWXTq1ImUlBRjmTfeeIMffviB1atXs337di5cuMCLL75o3J+Tk0OXLl3IzMxk9+7dLFu2jKVLlzJp0iRjmdjYWLp06YK/vz8xMTGMHDmSgQMHsmnTJmOZVatWMWrUKCZPnsyhQ4do2LAhAQEBXLly5UGuhxAPRBkMVLJ0Q6NyP1qqqgcW1u3QaPUYtOqhroCXN6eUxT9GSkmnlKkrWTnsc2wA5P7B02k0ZRuQEOXI4fN/sWDrWTIyckdI7b3YiBzrPtSr+2HZBiaEEEI8ZP369UOj0aDRaNDpdPj4+DBt2rR8gy+Ka9u2bWg0Gm7evPlwAi2C2NhYevXqRdWqVbGyssLd3Z2QkBBOnjxpUm79+vW0bdsWOzs7rK2tadKkSb7BJHFxcWg0GmJiYop8/ilTplC7dm1sbGyoUKECHTp0YN++fSZ1DhgwAC8vL/R6PTVq1GDy5MlkZmYWWu/Fixfp1asXNWvWRKvVMnLkyCLHlOe9995Do9HkO/bs2bO88MILVK5cGXt7e3r06JFvcM6MGTNo2bIl1tbWODo6Flh/3u/Qna+vvvrKuP/bb7+lY8eOxvO0aNHCpJ/kbr799ls6depExYoVi/3zKGnF6pT66aef6NevH3Xr1qVhw4YsXbqU+Ph4Dh48CEBiYiJLlixh9uzZtGvXjkaNGhEZGcnu3bvZuzf37ujPP//M8ePH+e9//8tTTz1FUFAQ06dPZ8GCBcZfokWLFuHl5UVERAR16tRh2LBhvPTSS8yZM8cYy+zZsxk0aBD9+/fHz8+PRYsWYW1tzeeff/6wro0QxWbIMVDRsirq9qp7/3X/3rhPaXIe6rnyRkr9mRxPxK8R/BT7EyCdUne6kZVNM/NA+tSbCYDeTItGOqWEKDVXb8bzjPNvVLLOnV+vQa1BtGvyDg4OT5VtYEIIIUQJCAwM5OLFi/z++++MHj2aKVOm8MEHH5R1WEb36rQByMrKomPHjiQmJvLtt99y6tQpVq1aRf369U06xj766CNCQkJo1aoV+/bt48iRI7z88ssMGTKEMWPGPFCcNWvWZP78+Rw9epSdO3dSvXp1OnXqxNWrVwE4efIkBoOBTz75hGPHjjFnzhwWLVrEm2++WWi9GRkZVK5cmbfffpuGDRsWO64DBw7wySef0KBBA5PtKSkpdOrUCY1Gwy+//MKuXbvIzMwkODgYg8FgLJeZmUn37t35z3/+U+h5IiMjuXjxovH1r3/9y7hvx44ddOzYkY0bN3Lw4EH8/f0JDg7m8OHDhdaZkpJC69atef/994vd7pL2QMtPJSbmJplOTk4AHDx4kKysLDp06GAsU7t2bapVq8aePXsA2LNnD/Xr16dKlb+H7gcEBJCUlMSxY8eMZe6sI69MXh2ZmZkcPHjQpIxWq6VDhw7GMgXJyMggKSnJ5CXEw6RuP76nyO0wsk7/+yNW6SFP6Jt9e06p4zeOsvTYUvZfyn181cnK6aGe53H2Z3omaRpzzFQ21UllsEflsg5JiHJDKYX2xmsMfWoJtha537cd6tbG3ExWvhRCCPFksrS0xMXFBU9PT/7zn//QoUMH1q1bx19//UWfPn2oUKEC1tbWBAUF8fvvvxuP++OPPwgODqZChQrY2NhQt25dNm7cSFxcHP7+/gBUqFABjUZDv379ALh16xa9e/fGxsYGV1dX5syZw3PPPWcygqd69epMnz6dPn36YG9vz2uvvQbAzp07adOmDXq9Hg8PD0aMGGF8+unYsWOcPXuWjz/+mObNm+Pp6UmrVq0ICwujefPmAJw/f57Ro0czcuRI3n33Xfz8/PDx8WH06NF88MEHREREmIxsKq5evXrRoUMHvL29qVu3LrNnzyYpKYkjR44AuZ1/kZGRdOrUCW9vb7p27cqYMWP49ttvC623evXqzJ07lz59+uDg4FCsmJKTk+nduzeffvopFSpUMNm3a9cu4uLiWLp0KfXr16d+/fosW7aMX3/9lV9++cVYburUqbzxxhvUr1+/0HM5Ojri4uJifFlZWRn3ffjhh4wbN44mTZrg6+vLu+++i6+vLz/88EOhdYaGhjJp0qR8/SyPgvvODA0GAyNHjqRVq1bUq1cPgEuXLqHT6fINRatSpQqXLl0ylrmzQypvf96+wsokJSWRlpbGtWvXyMnJKbBMXh0FmTlzJg4ODsaXh4dH8RsuRCEMBgMa/h6JE/753z3j1W0f7rLnmTm5HWAaDHjae9K/bn/+0/A/9K/X/6Ge57H12yoy/tsDAPf0y+y1Osw4L9cyDkqI8uHTHedoMn0dZuo6ADeyauPh8SpWVu5lHJkQQojHjVKK1KzUMnmp2/PE3i+9Xk9mZib9+vXj119/Zd26dezZswelFJ07dybr9iJJQ4cOJSMjgx07dnD06FHef/99bG1t8fDw4JtvvgHg1KlTXLx4kblz5wIwatQodu3axbp164iKiiI6OppDhw7liyE8PJyGDRty+PBh3nnnHc6ePUtgYCDdunXjyJEjrFq1ip07dzJs2DAAKleujFarZc2aNeTkFPykx5o1a8jKyipwRNTgwYOxtbVl5cqVD3Tt8mRmZrJ48WIcHBwKHd2UmJhoHCxTEoYOHUqXLl0K7NTJyMhAo9FgaXnHPLZWVmi1Wnbu3Hlf56pUqRJNmzbl888/L/T30GAwcOvWrRJte0m771mXhw4dyv/+97/7ushlZeLEiYwaNcr4PikpSTqmxEOlDDkY7nw6TPP3HFJ2TRrkP+ABbIrdDHiCJpvGVRozqvGoex5TrhxdTUZGMgCWhkxwKfyOhBDi4fn2cAI5ObcAyDaYkemwgJq+1cs2KCGEEI+ltOw0mq1oVibn3tdrH9YWxV8kRynFli1b2LRpE0FBQaxdu5Zdu3bRsmVLAJYvX46Hhwdr166le/fuxMfH061bN+MIGm9vb2NdeZ0Nzs7OxsEft27dYtmyZaxYsYL27dsDuY98Va1aNV8s7dq1Y/To0cb3AwcOpHfv3sYRVb6+vsybN4+2bduycOFC3NzcmDdvHuPGjWPq1Kk0btwYf39/evfubYzr9OnTODg44Oqa/4avTqfD29ub06dPF/u63Wn9+vW8/PLLpKam4urqSlRUFJUqVSqw7JkzZ/joo48IDw9/oHPezVdffcWhQ4c4cOBAgfubN2+OjY0N48eP591330UpxYQJE8jJyeHixYvFOte0adNo164d1tbW/Pzzz/zf//0fycnJjBgxosDy4eHhJCcn06NHj2K361FxXyOlhg0bxvr169m6dSvu7n/f9XRxcSEzMzPfJGyXL1/GxcXFWOafE37lvb9XGXt7e/R6PZUqVcLMzKzAMnl1FMTS0hJ7e3uTlxAPkyHHQLrZHT3ZmryPmIGK3QIfyjn+Ssnk7NVkLiWl3j6Hgee9n38odT9RstPJ0OoAsKpcE7yeLeOAhCgfcnIycNAep07F3GTUUudA7+bVyzYoIYQQohSsX78eW1tbrKysCAoKomfPnvTr1w9zc3OaNfu7Y61ixYrUqlWLEydOADBixAjCwsJo1aoVkydPNj6mdjfnzp0jKyuLpk2bGrc5ODhQq1atfGUbN25s8v63335j6dKl2NraGl8BAQEYDAZiY2OB3AEoly5dYvny5bRo0YLVq1dTt25doqKiinwtdDrdPcssX77cJI7o6GjjvrxFz3bv3k1gYCA9evQocFGzhIQEAgMD6d69O4MGDTJuv7PeIUOGFCnm6Ohok+OWL1/O+fPnef3111m+fLnJY3R3qly5MqtXr+aHH37A1tYWBwcHbt68yTPPPINWW7wul3feeYdWrVrx9NNPM378eMaNG3fXeclWrFjB1KlT+frrr3F2zn0qp7Br+qgq1kgppRTDhw/nu+++Y9u2bXh5eZnsb9SoERYWFmzZsoVu3boBucMM4+PjadGiBQAtWrRgxowZXLlyxXjhoqKisLe3x8/Pz1hm48aNJnVHRUUZ69DpdDRq1IgtW7YYJ/0yGAxs2bLFOOxQiLJgMBhQJhNpa2//bw7oKxR8UDGcvJTE8/N2km1QQB0Agrw70dilceEHlkfZGWRocofQWprf+0tRCPHgDsTd4ELsaAbV3WHcprOQG0BCCCHun95cz75e9z8/0YOeuzj8/f1ZuHAhOp2OqlWrYm5uzrp16+553MCBAwkICGDDhg38/PPPzJw5k4iICIYPH36/oRvZ2NiYvE9OTmbw4MEFjrypVq2a8d92dnYEBwcTHBxMWFgYAQEBhIWF0bFjR3x9fUlMTOTChQv5RmdlZmZy9uxZAgIC7hlb165dTTrr3NzcTOL28fHBx8eH5s2b4+vry5IlS5g4caKxzIULF/D396dly5YsXrzYpO47V5cr6mCUxo0bmxxXpUoVtmzZwpUrV3jmmWeM23NyctixYwfz588nIyMDMzMzOnXqxNmzZ7l27Rrm5ubGeaHuHPV2P5o1a8b06dPJyMgweTzwq6++YuDAgaxevdrkkcLCrumjqlidUkOHDmXFihV8//332NnZGedvcnBwQK/X4+DgwIABAxg1ahROTk7Y29szfPhwWrRoYZwUrVOnTvj5+REaGsqsWbO4dOkSb7/9NkOHDjVe5CFDhjB//nzGjRvHq6++yi+//MLXX3/Nhg0bjLGMGjWKvn370rhxY5o2bcqHH35ISkoK/fvLfDqi7KicHOMk5yg44/MSAFpzc6hY44HrP3nxFtkGhblWg0GThtKk0crn7qMDy7XsdDK0dgBYamXFPSFKWlpmDv/+bB+Tmp3E1gaupTnh4eREtWp9yzo0IYQQjzGNRnNfj9CVhbyOlDvVqVOH7Oxs9u3bZ3x87/r165w6dco4KAPAw8ODIUOGMGTIECZOnMinn37K8OHDjSOO7pzfydvbGwsLCw4cOGDsSEpMTOT06dM8+2zhTwc888wzHD9+PF+chdFoNNSuXZvdu3cD8NJLLzF+/HgiIiKIiIgwKbto0SJSU1Pp06fPPeu1s7PDzs6uSDEYDAYyMjKM7xMSEvD396dRo0ZERkbmG5FUnPbl0ev1+Y5r3749R48eNdnWv39/ateuzfjx4zEzMzPZl/eI4S+//MKVK1fo2rVrseO4U0xMDBUqVDDpkFq5ciWvvvoqX331FV26dDEpX5xr+qgoVqfUwoULAXjuuedMtkdGRhpXAZgzZw5arZZu3bqRkZFBQEAAH3/8sbGsmZkZ69ev5z//+Q8tWrTAxsaGvn37Mm3aNGMZLy8vNmzYwBtvvMHcuXNxd3fns88+M+lt7dmzJ1evXmXSpElcunSJp556ip9++inf5OdClKbcJT9vd4BozLha+WkArOwLHupZXJm3V9xr41uJc9ZjuZF+g2eqF77KRLmVnUGGmQUAlsUcNiuEKL7rKRlkZBuwtchdvUfjFE7LFm3LOCohhBCibPn6+hISEsKgQYP45JNPsLOzY8KECbi5uRESEgLAyJEjCQoKombNmvz1119s3bqVOnVyn4rw9PREo9Gwfv16OnfujF6vx87Ojr59+zJ27FicnJxwdnZm8uTJaLVaNJrCb8aOHz+e5s2bM2zYMAYOHIiNjQ3Hjx8nKiqK+fPnExMTw+TJkwkNDcXPzw+dTsf27dv5/PPPGT9+PJA7omrWrFmMGTMGKysrQkNDsbCw4Pvvv+fNN98kLCzMuBhanlOnTuWLpW7dulhYWJhsS0lJYcaMGXTt2hVXV1euXbvGggULSEhIoHv37kBuh9Rzzz2Hp6cn4eHhXL161Xh8YdP5wN8jqJKTk7l69SoxMTHodDqTDsI72dnZ5WuLjY0NFStWNNkeGRlJnTp1qFy5Mnv27OH111/njTfeMHmkMj4+nhs3bhAfH09OTo4xFh8fH2xtbfnhhx+4fPkyzZs3x8rKiqioKN59912TCeVXrFhB3759mTt3Ls2aNTMOFMobJHQ3eee9cOEC8PfPI2+FvzKlyrHExEQFqMTExLIORTwhflwwW638vykqvEcXFd7jX2rhgPVq+fwf1JU/kh5K/f/dG6c8x69Xg5YdUM2WN1P1ltZTfyT+8VDqflJk5hjUoP/Fqg7rv1PPbPxJVfnlsOp/5FxZhyXEE29vzHvqo68D1c+ba6jNW7xVevqlsg7poZF8wZRcDyFESUlLS1PHjx9XaWlpZR1KsfXt21eFhIQUuO/GjRsqNDRUOTg4KL1erwICAtTp06eN+4cNG6Zq1KihLC0tVeXKlVVoaKj6f/buOz6qKn38+GcmyaQXEhLSICQQqoBUKQpGSgIC0UWKsBQXkLh0kGoJsCiCBKQtiD8p311AFlTEoGJASigiJRGkJAQTgdBbQvokc35/DBkZAikUB8jzfr3mZe6dc8997sVJZp55zjlXrlwxPT9t2jTl7e2tNBqN6t+/v1JKqfT0dNW7d2/l4OCgvL291Zw5c1SzZs3UxIkTTccFBASouXPnFonnl19+Ue3bt1dOTk7K0dFR1a9fX33wwQdKKaUuX76sRowYoZ555hnl5OSknJ2dVb169dTs2bNVQUGBWT8bNmxQL7zwgnJ0dFSAAtSaNWvM2iQnJ5ueu/Nx5syZIrFlZ2erV199Vfn6+iqdTqd8fHxU165d1S+//GJqs3z58nv2WZK7HRMQEFDicbdr06aNGjlypNm+CRMmqEqVKikbGxsVHBysoqKilMFgMGvTv3//u55/27ZtSimlvv/+e/Xss8+a/l0aNGiglixZYnbf27Rpc9c+Cv+/uJd73bPIyMgyXfudinvNlvb9gkapB1zn8gmWnp6Oq6sraWlpMum5eCi+WzCb9OOZpF7dDxpbXO1ep/5Ed5rVeumh9L9idzJTvj3Gy/V92FMwkHxDPlte20IlR6kQLLQ/LZMuh06a7ftnZS/er150NRIhxIO7fDOXvUlJOF7/szzd2tqVF57/Ga326ZjPTd4vmJP7IYR4VHJyckhOTiYwMPCek0qLu8vMzMTPz4+oqCgGDhz4l5//2rVrtG3bFhcXF77//nscHJ6MIZfiwRT3mi3t+wUZ0yLEQ5R54zqZeVdubWnRKAM2OttijymLwuF7Cj35hnwAbK0eXv9PvItHyfpmJABVss+x5vDbfBlox6SgosvVCiEejn+uOsiM6J8ByMm3ZXPqP2na5MunJiElhBBCPI7i4uJYs2YNp06d4tChQ/Tp0wfANCTwr+bu7s6WLVto27Yte/futUgM4slUpjmlhBD3duPiBU7/9utte6zRqAKsrR7eB7NfLx0FrIj543vsbhX+6B5i/0+8YxvJTUuFyuChv0FIVgL4+IFMdC7EI5N8JRNX6ywA8pQrHZv2xcHBy8JRCSGEEE+/2bNnk5CQYFqdPjY21jTRtiV4eHjw/vvvW+z84skkSSkhHpLM69eMP2i0GOx12PI8mnwD1jYPL2mUfOMMUBU0xiqpVr6tyrxU7VMtP5tsrbFyzM6rFrSLA9sna/UJIZ4kvycvYHLjZVhr9QD4uXvSrJYkpIQQQohHrWHDhhw8eNDSYQjxwCQpJcRDkHbpIkd3/gRAhr2euDrWtD9VG40+FRvdgyeNUtJS2JW6i8tZ14CqPO/fguV/n/7A/T519Dnk3BoyZOfgCo6W+6ZIiKdZVl4+S7afoqb2/3C1TTftd3Gub8GohBBCCCHEk0aSUkI8BNv/7/+RtN84dlqvNWBlME7XplEFBLpXe+D+x+8cz/Frx8nJeRkAVzvHB+7zqZSfTc6tSil7rUyZJ8Sj8t2RC8z/KYnFbW8C8OmR4Swb+DKOjg/++04IIYQQQpQfkpQS4iHIybhp+llp1G1JKQNWWqsH7v/0RQcyz4xCm+8BgL+z9wP3+bRJzy9glVUtdlY0/lqzlXmkhHhkrqWlUM31d3RWxmF747r8DSenKhaOSgghhBBCPGkkKSXEQ2AwGP78WauwMhgTUVoM9zqkTNKv1sKQ623qrbqXzJN0p/+eu8o0h1Zwa/VZNxv59SbEw2YwKOJPxVCNt5j8nHGfRmNFk8DKlg1MCCGEEEI8keRTmxAPgSooMP1s0ICV+rNS6mEw3Kq86t7Ugzefr0twJUlKmbmewuXzfwCuPHPzJM97uDGwSh1LRyXEU2fm5hOkpPxAj5qQW6BDa+VKNf+uaDRSmSiEEEIIIcpOJl0R4iFQBYpqzs8af759+N5DqpQyKON/q3jYS0LqToYC+Owlck9uBaDdtb1Mcb1JZbuHt+qhEMLo2Ll0HG2yjD/faE1wvS0EB0+2cFRCCCGEEOJJJUkpIR4CJ+WKl51xPhXrAoXXjUdTKWVrLcWNReRlQNbVP1fdq1gNqre1cFBCPH2ysv7Az3Ybga5/APC3xrWp5ulk4aiEEEIIIcSTTJJSQjwMBlAYy5lqpCo6HjTufhiVUgWGApSSpNQ96XMATKvu2dXvDnauloxIiKeKUorfUtP4+cDfae/7GXU8EgGwsalg4ciEEEKIx8eAAQPQaDRoNBp0Oh3Vq1dn2rRp5OfnP1C/27dvR6PRcOPGjYcTaCkkJyfTu3dvfH19sbOzw9/fn/DwcE6cOGHWLjo6mjZt2uDs7IyDgwNNmzZlxYoVZm1SUlLQaDTEx8eX+vxTpkyhVq1aODo6UqFCBdq1a8e+ffvM+hw4cCCBgYHY29tTrVo1IiMjycvLK7bf8+fP07t3b2rUqIFWq2XUqFGljik1NZW///3veHh4YG9vT7169Thw4IDp+dv//QsfYWFhZn1UrVq1SJuPPvrI9HxCQgIhISFUqlQJOzs7goKCePfdd9Hr9Wb93Lhxg6FDh+Lj44OtrS01atTgu+++Kzb+r776ig4dOuDh4VHmf49HTT7hCvEwKDDcqorSKMizNk50rnN78JeY3qCHW0kpO0lKFZV/KyllbQ+AnZXk2oV4mDb+eo7Raw/yWftzABy9WpOmQdWpVOllC0cmhBBCPF7CwsJYvnw5ubm5fPfddwwdOhQbGxsmTZpk6dAAyMvLQ6crfooLvV5P+/btqVmzJl999RU+Pj6cPXuW77//3iwxtmDBAkaNGsWECRNYvHgxOp2Ob775hoiICH777Tdmz55933HWqFGDhQsXEhQURHZ2NnPnzqVDhw4kJSXh6enJiRMnMBgMfPrpp1SvXp3ffvuNwYMHk5mZWex5c3Nz8fT05N1332Xu3Lmljuf69eu0atWKkJAQvv/+ezw9PTl58iQVKph/QVf471/I1ta2SF/Tpk1j8ODBpm1n5z+nZrGxsaFfv340atQINzc3fv31VwYPHozBYODDDz8EjP+G7du3x8vLi/Xr1+Pn58cff/yBm5tbsdeQmZnJ888/T48ePczO/ziQT7hCPAwGRbbGmBzRoDjpZ4UWsPNyeOCu8w35oIwvVVtrmwfu72mTr8/mis6DNGsXAOy0MuGyEA9T4sWbpnmkAE7lT2NYw8Zo5bUmhBBCmLG1tcXb2xuAt956i6+//pqNGzcSERHByJEj+fbbb8nNzaVNmzbMnz+f4OBgAP744w+GDRvGrl27yMvLo2rVqnz88cfUqVOHkJAQAFMCpH///qxYsYKbN28SERHBhg0bcHFxYfz48XzzzTc8++yzfPLJJ4CxMmfgwIGcPHmSDRs28Le//Y0VK1awa9cuJk2axIEDB6hYsSKvvvoqM2bMwNHRkaNHj3Lq1Cm2bt1KQEAAAAEBAbRq1cp0nWfOnGHs2LGMGjXKlCwBGDt2LDqdjhEjRtC9e3eee+65+7qPvXv3NtueM2cOn3/+OYcPH6Zt27aEhYWZVSEFBQWRkJDA4sWLi01KVa1alXnz5gGwbNmyUsczc+ZMKleubJZwCgwMLNLu9n//e3F2dr5nm6CgIIKCgkzbAQEBbN++ndjYWNO+ZcuWce3aNfbs2YONjY3pukrSt29fwFhl9riRkgIhHgJDvoHfNRcBuO5WC419OABaz+oP3LfeoEchlVJ3Y1CK9kk5PNviK3a71gfATiu/1oR4WAoKsqimGcO/WhrfcFpbuzDv9SaSkBJCCPGXUUphyMqyyEMp9UCx29vbk5eXx4ABAzhw4AAbN25k7969KKXo1KmTaVjW0KFDyc3NZefOnRw5coSZM2fi5ORE5cqV+fLLLwHj0K7z58+bkipjxoxh9+7dbNy4kZiYGGJjYzl06FCRGGbPnk2DBg2Ii4vjvffe49SpU4SFhdGtWzcOHz7M2rVr2bVrF8OGDQPA09MTrVbL+vXrKbhthfHbrV+/Hr1ez9tvv13kuSFDhuDk5MSaNWse6N4VysvLY+nSpbi6utKgQYN7tktLS8Pd3f2hnPNOGzdupEmTJnTv3h0vLy8aNmzIZ599VqTd9u3b8fLyombNmrz11ltcvXq1SJuPPvoIDw8PGjZsyMcff1zs8M6kpCR++OEH2rRpYxZLixYtGDp0KJUqVeKZZ57hww8/vOe/1ZNAPuEK8TAYIF9j/IVisLLDWmOskKoQUHymvCSpGakkpyWDMg4HlDmlzN3ML+B4rvFnK1WAt50dzVwdLRuUEE+JM9ey+O33bbhaJ5j2ubjc+82gEEII8Sio7GwSGjW2yLlrHjqIxqHsIx+UUmzdupXNmzfTsWNHNmzYwO7du2nZsiUAq1atonLlymzYsIHu3btz+vRpunXrRr169QDMqmUKEy1eXl6mIVo3b95k5cqVrF69mrZtjQv8LF++HF9f3yKxvPTSS4wdO9a0PWjQIPr06WOaTyk4OJj58+fTpk0bFi9ejJ+fH/Pnz2f8+PFMnTqVJk2aEBISQp8+fUxxJSYm4urqio+PT5Hz6XQ6goKCSExMLPN9u110dDS9evUiKysLHx8fYmJiqFix4l3bJiUlsWDBggcaMlic33//ncWLFzNmzBgmT57M/v37GTFiBDqdjv79+wPGoXt/+9vfCAwM5NSpU0yePJmOHTuyd+9erKyMn+VGjBhBo0aNcHd3Z8+ePUyaNInz588zZ84cs/O1bNmSQ4cOkZuby5tvvsm0adPMYvnpp5/o06cP3333HUlJSfzzn/9Er9cTGRn5SK7/UZOSAiEeBgXKNKm5loK8TfR6rxnNuhQt6yytvef2EvZlGG9tecuUlLKR+ZL+dPYA2StfBcBK5ZN6YhgHW9bF1674cfJCiJIZDIpX/72bz3b+CsAf6f6kO62gQf3/Z+HIhBBCiMdXdHQ0Tk5O2NnZ0bFjR3r27MmAAQOwtrY2G8rm4eFBzZo1OX78OGBMVkyfPp1WrVoRGRnJ4cOHiz3P77//jl6vp1mzZqZ9rq6u1KxZs0jbJk2amG3/+uuvrFixAicnJ9MjNDQUg8FAcnIyYKzcunDhAqtWraJFixasW7eOunXrEhMTU+p7UdLcVWBMzt0ex+3D1EJCQoiPj2fPnj2EhYXRo0cPLl26VKSP1NRUwsLC6N69u9lcSbf3GxERUaqYY2NjzY5btWoVAAaDgUaNGvHhhx/SsGFD3nzzTQYPHsySJUtMx/bq1YuuXbtSr149XnnlFaKjo9m/fz/bt283tRkzZgwvvvgi9evXJyIigqioKBYsWEBubq5ZHGvXruXQoUOsXr2aTZs2mSXbDAYDXl5eLF26lMaNG9OzZ0/eeecdUyzF3dPHlZRdCPEQKKX+LO/VaFBcwcPvwZZKP3XjFAB2VnbkaGwxANZWMmTG5PD/yL5yCqqBfUEueDz4UEkhhFF6jp4rGXnUcjHOJWWr8+SlZ5qj1crbBiGEEH8tjb09NQ8dtNi5yyIkJMQ06bevry/W1tZs3LixxOMGDRpEaGgomzZt4scff2TGjBlERUUxfPjw+w3dxNHRfBRBRkYGQ4YMYcSIEUXaVqlSxfSzs7MzXbp0oUuXLkyfPp3Q0FCmT59O+/btCQ4OJi0tjXPnzhWpzsrLy+PUqVOEhoaWGFvXrl3NknV+fn5mcVevXp3q1avTvHlzgoOD+fzzz80mjT937hwhISG0bNmSpUuXmvV9++pyLi4uJcYCxgTe7cdVqlQJAB8fH+rUqWPWtnbt2qahlXcTFBRExYoVSUpKMlWz3em5554jPz+flJQUs4Ri5cqVAahTpw4FBQW8+eabjB07FisrK3x8fLCxsTFVXxXGcuHCBfLy8oq9p48reXcpxAO6cjqFa5mpFGgKM9xalObBxp8D5BXkk536OhpDMOgdAYWNJKX+pM8k28q4ooW9rQN0kwoOIR6WpFOzmNJiM866TAAaBFTG1UEWWhBCCPHX02g09zWEzhIKEym3q127Nvn5+ezbt880fO/q1askJCSYJToqV65MREQEERERTJo0ic8++4zhw4ebKo5unzMoKCgIGxsb9u/fb0okpaWlkZiYSOvWrYuNsVGjRhw7dqxInMXRaDTUqlWLPXv2APDaa68xYcIEoqKiiIqKMmu7ZMkSsrKy6NevX4n9Ojs7m60+VxyDwWBWUZSamkpISAiNGzdm+fLlaO+YV7Ys11fI3t7+rse1atWKhIQEs32JiYmmieDv5uzZs1y9evWuQxwLxcfHo9Vq8fLyumcbg8GAXq/HYDBgZWVFq1atWL16NQaDwXTNiYmJ+Pj4oNPp0Ol0pb6njwtJSgnxgHauWk5azp+lpBqNLWgfPCl14YYiP70B6QAorLUa/Cs8GX+Q/xL6bHK0t5JSNrZgXXTJVSFE2aTn6Bn23930D1pO5dvezzg6SiWiEEIIcT+Cg4MJDw9n8ODBfPrppzg7OzNx4kT8/PwIDzcujjRq1Cg6duxIjRo1uH79Otu2baN27dqAcQU2jUZDdHQ0nTp1wt7eHmdnZ/r378+4ceNwd3fHy8uLyMhItFotGk3xX2JPmDCB5s2bM2zYMAYNGoSjoyPHjh0jJiaGhQsXEh8fT2RkJH379qVOnTrodDp27NjBsmXLmDBhAmCsqJo1axZvv/02dnZ29O3bFxsbG7755hsmT57M9OnTeeaZZ8zOe2dSB6Bu3bqmFeQKZWZm8sEHH9C1a1d8fHy4cuUKixYtIjU1le7duwPGhNSLL75IQEAAs2fP5vLly6bjS1r9rrASKiMjg8uXLxMfH49OpytSCXW70aNH07JlSz788EN69OjBL7/8wtKlS03VWRkZGUydOpVu3brh7e3NqVOnGD9+PNWrVzdVjO3du5d9+/YREhKCs7Mze/fuZfTo0fz97383ray4atUqbGxsqFevHra2thw4cIBJkybRs2dP03166623WLhwISNHjmT48OGcPHmSDz/88K6Vb7e7du0ap0+f5ty5c8Cf/x7e3t4l3rNHTZJSQjygnCxjJUGKdybVrjXB2q4pBdo/HrxfvfHbEDudnhUDXqCyuwOVXOweuN+ngVKKfVRkp3tzQFbcE+Jh2ZN0ld/OnoEgyDdYEXtlAm+HNcDVtaGlQxNCCCGeWMuXL2fkyJF07tyZvLw8WrduzXfffWdKNBQUFDB06FDOnj2Li4sLYWFhzJ07FzAOv5o6dSoTJ07kjTfeoF+/fqxYsYI5c+YQERFB586dcXFxYfz48Zw5cwY7u+I/L9SvX58dO3bwzjvv8MILL6CUolq1avTs2RMAf39/qlatytSpU0lJSUGj0Zi2R48ebepn9OjRBAUFERUVxbx588jMNH4mWrNmDb169Spy3rvtO3PmDP7+/mb7rKysOHHiBCtXruTKlSt4eHjQtGlTYmNjqVu3LgAxMTEkJSWRlJRU5PiSVkxs2PDP9zQHDx5k9erVBAQEkJKScs9jmjZtytdff82kSZOYNm0agYGBfPLJJ/Tp08cU8+HDh1m5ciU3btzA19eXDh068K9//QtbW+MX57a2tnzxxRdMmTKF3NxcAgMDGT16NGPGjDGdx9rampkzZ5KYmIhSioCAAIYNG2Z23ytXrszmzZsZPXo09evXx8/Pj5EjR5oShveyceNG3njjDdN24b9HZGQkU6ZMKfbYR02jHnSdyydYeno6rq6upKWllXqcqRB3WvXOGC4kJbKl8SW6Jr6FwTqAas5bCfv4gwfqd8KPn7L2J3+cHfI48v6rDynap8MvNzLoGpdk2m7k4sB3jWtYMCIhng7r9u3ji91b+Oezy9BYedCq1V5sra1KPvApJ+8XzMn9EEI8Kjk5OSQnJxMYGFhickWYy8zMxM/Pj6ioKAYOHPiXn//atWu0bdsWFxcXvv/+exyekCGX4sEU95ot7fsFKS8Q4gEZbo3vVlqFrcFYLuvn6PnA/eblG/u1tiq3eeN7OpurB8BNn05rm2xGBlSycERCPNnyCwwcPL4c98ze/PPZZQDY21aQhJQQQgjxmIqLi2PNmjWcOnWKQ4cOmap2CocE/tXc3d3ZsmULbdu2Ze/evRaJQTyZZPieEA9I3UpKGfNRxjyv1urB8715BQYAHkJXT5efl5B78hj4/4Mm6b/x36rVoKKrpaMS4ok2bHUcldQWWvtDTr4OrdaBYN8elg5LCCGEEMWYPXs2CQkJ6HQ6GjduTGxsLBUrVrRYPB4eHrz//vsWO794MklSSoj7dPXsGXauWsb1C+cBbq24Z6yU0jyE6oLCSikbKVQw98un5NrWA8DWkA8eMgGzEA/qSGoaQQHZAGw7151eL46iShV3C0clhBBCiHtp2LAhBw8etHQYQjwwSUoJcZ+Oxf7E74f2m7YNGlAaYwZJa/UwklK3KqWsil9Bo9zR55Bnb5wUUlejHXhUs3BAQjzZ0m/+Ri3XnXg7XgTg7bAmeHtLQkoIIYQQQjx6kpQS4j4V6I3zGllbWZFfUPBQK6Vy8nPILcgHpFKqiPwccrU6AGxtnSwcjBBPtpTLFzn1W3d618wz7bPRSUJKCCGEEEL8NWS2GiHukzIYK5kKX0Rmc0o9QFJqzPYxNF3VlPiLRwGwlkopc/m55GpvVUpp5d4Icb+W7jxF7yXfgspDb7Di8OU6ePv0poJbM0uHJoQQQgghygmplBLiPhkMBVRxrM3lnFNAAf22FmDwuJWUsr//JbK3nTpK5plhKH0FADweoK+n0m2VUnZayasLcb/iTt/ASZcBwPUcD1K106lbu4GFoxJCCCGEEOWJJKWEuE/KYCDYpdGtpBTUPa047GGskLJ+gFUvstOrY8jxN2039Pd9sECfEtkFBhb9cYEr1Yaz3/UZQCqlhLhfWVnJhHr+Ezvv6wBU9/bj9SaSkBJCCCGEEH8tSUoJcZ8MBQVoNFoMSgGgUYo8G+OwMofGDe+rzwJDAQaDsfqnTY0KjAutSx0fqZQC2Hwljdl/XAK/V0373G3kVxEH3lwAAQAASURBVJgQZfW/A2dIu7KeIN0V074Kbk0tGJEQQgghhCivZOyLEPfJYDCgRYvCOLeURkGBlTFJcr9zSuWrfFDGY71d7XnGzxWtVAPB9RSuHdkAQM3M3xmbspyp1Xz4u6+HZeMS4glz+moW49cfJu6PswD8cqEhPsGbqV59goUjE0IIIYQQ5ZEkpYS4T8pgMK+U4s/V9+43kaQv0JuSUrYPuILfU2XnbLL+2AdAg5sJjLu4gSFVKuEi90iIMrl4MwcAd/tcAOpVDqZO5eqWDEkIIYR4KgwYMACNRoNGo0Gn01G9enWmTZtGfn7+A/W7fft2NBoNN27ceDiBlkJycjK9e/fG19cXOzs7/P39CQ8P58SJE2btoqOjadOmDc7Ozjg4ONC0aVNWrFhh1iYlJQWNRkN8fHypzz9lyhRq1aqFo6MjFSpUoF27duzbt8+sz4EDBxIYGIi9vT3VqlUjMjKSvLy8YnqF8+fP07t3b2rUqIFWq2XUqFGliqegoID33nvP7Hz/+te/ULc+BwJ89dVXdOjQAQ8Pj3te76lTp3j11Vfx9PTExcWFHj16cPHixTJf1+HDh3nhhRews7OjcuXKzJo1q8Rr2LlzJ126dMHX1xeNRsOGDRtKde1/BUlKCXGfDAUFaNCiMP4y0irQ3EpKaTT3mZQy6FG3klI6axmaZpJ9nSytHQD2lWpDz/9aOCAhnjwGQz7pqW8zvdV0WvjsBqCuzFn3RFi0aBFVq1bFzs6O5557jl9++aXY9uvWraNWrVrY2dlRr149vvvuu3u2jYiIQKPR8MknnzzkqIUQovwJCwvj/PnznDx5krFjxzJlyhQ+/vhjS4dlUlLSBkCv19O+fXvS0tL46quvSEhIYO3atdSrV88sMbZgwQLCw8Np1aoV+/bt4/Dhw/Tq1YuIiAjefvvtB4qzRo0aLFy4kCNHjrBr1y6qVq1Khw4duHz5MgAnTpzAYDDw6aefcvToUebOncuSJUuYPHlysf3m5ubi6enJu+++S4MGpZ9Lc+bMmSxevJiFCxdy/PhxZs6cyaxZs1iwYIGpTWZmJs8//zwzZ868ax+ZmZl06NABjUbDTz/9xO7du8nLy6NLly4Ybq3qXprrSk9Pp0OHDgQEBHDw4EE+/vhjpkyZwtKlS4u9hszMTBo0aMCiRYtKfd1/GVWOpaWlKUClpaVZOhTxBPp27kfq6OivVVSPzmp2j5fV56//Wy0YskUtHLJVpV3Ouq8+L2ZeVNVnTlQBE6LVzO+PP+SIn2D/94qasnK8qvRTnJpy8qyloxHiiXPk7A01/asv1ZatQWaPi5d+sHRoTwRLvl/44osvlE6nU8uWLVNHjx5VgwcPVm5uburixYt3bb97925lZWWlZs2apY4dO6beffddZWNjo44cOVKk7VdffaUaNGigfH191dy5c0sdk7x/EkI8KtnZ2erYsWMqOzvb0qGUWf/+/VV4eLjZvvbt26vmzZura9euqb59+yo3Nzdlb2+vwsLCVGJioqldSkqK6ty5s3Jzc1MODg6qTp06atOmTSo5OVkBZo/+/fsrpZRKT09XvXv3Vg4ODsrb21vNmTNHtWnTRo0cOdLUb0BAgJo2bZrq27evcnZ2Nh0bGxurnn/+eWVnZ6f8/f3V8OHDVUZGhlJKqbi4OAWolJSUe17r6dOnlY2NjRozZkyR5+bPn68A9fPPPyullOka4uLiyn5Tbyn8u7Nly5Z7tpk1a5YKDAwsdZ933qvivPzyy+of//iH2b6//e1vqk+fPkXa3ut6N2/erLRardnfzhs3biiNRqNiYmLuee47r+vf//63qlChgsrNzTXtmzBhgqpZs2aprkUppQD19ddfl7p9cYp7zZb2/YJUSglxn7JvpnMh5w9TpVSWkz8aNFjZaLFzsrmvPvWGP4fvWVvJyxNAb1B8pavBIZe6ANjLfRGizOZtPcmepN8BuJjpyS/pH/Bcs+/x8gy1cGSiJHPmzGHw4MG88cYb1KlThyVLluDg4MCyZcvu2n7evHmEhYUxbtw4ateuzb/+9S8aNWrEwoULzdqlpqYyfPhwVq1ahY3N/f3NEkKIv4JSCn1ugUUe6rbhWffD3t6evLw8BgwYwIEDB9i4cSN79+5FKUWnTp3Q6/UADB06lNzcXHbu3MmRI0eYOXMmTk5OVK5cmS+//BKAhIQEzp8/z7x58wAYM2YMu3fvZuPGjcTExBAbG8uhQ4eKxDB79mwaNGhAXFwc7733HqdOnSIsLIxu3bpx+PBh1q5dy65duxg2bBgAnp6eaLVa1q9fT0FBwV2va/369ej1+rtWRA0ZMgQnJyfWrFnzQPeuUF5eHkuXLsXV1bXY6qa0tDTc3d0fyjnv1LJlS7Zu3UpiYiIAv/76K7t27aJjx46l7iM3NxeNRoOtra1pn52dHVqtll27dt3zuDuva+/evbRu3RqdTmfaFxoaSkJCAtevXy/LZT02ZHyQEPfh8h/JnP7tV07fts/92jFO1bNhaMRgdHb399K6fU4pnZVMcA7w3ZUb/NPrddO2m8wjJUSZKGXAkHeSKs7Gyc1dnXwZ1ORVnJxsSzhSWFpeXh4HDx5k0qRJpn1arZZ27dqxd+/eux6zd+9exowZY7YvNDTUbO4Ig8FA3759GTduHHXr1n0ksQshxMOSn2dg6cgdFjn3m/PaYGNb9veeSim2bt3K5s2b6dixIxs2bGD37t20bNkSgFWrVlG5cmU2bNhA9+7dOX36NN26daNevXoABAUFmfoqTEh4eXnh5uYGwM2bN1m5ciWrV6+mbdu2ACxfvhxf36LD8l966SXGjh1r2h40aBB9+vQxzacUHBzM/PnzadOmDYsXL8bPz4/58+czfvx4pk6dSpMmTQgJCaFPnz6muBITE3F1dcXHx6fI+XQ6HUFBQaYEzv2Kjo6mV69eZGVl4ePjQ0xMDBUrVrxr26SkJBYsWMDs2bMf6Jz3MnHiRNLT06lVqxZWVlYUFBTwwQcf0KdPn1L30bx5cxwdHZkwYQIffvghSikmTpxIQUEB58+fv+sxd7uuCxcuEBgYaNauUqVKpucqVKhwH1doWVJyIMR9SLt8CQCtxhpra2esbBvjkJPG6//sinsl5/vuN9+Qb5pTSiqljC7lGCdk9s85zwDnPP5W6dF8AyLE0yrx5L/oHfQur9X4FoDKFb3xdJaE1JPgypUrFBQUmN5sFqpUqRIXLly46zEXLlwosf3MmTOxtrZmxIgRpYojNzeX9PR0s4cQQoiioqOjcXJyws7Ojo4dO9KzZ08GDBiAtbU1zz33nKmdh4cHNWvW5Pjx4wCMGDGC6dOn06pVKyIjIzl8+HCx5/n999/R6/U0a9bMtM/V1ZWaNWsWadukSROz7V9//ZUVK1bg5ORkeoSGhmIwGEhOTgaMlVsXLlxg1apVtGjRgnXr1lG3bl1iYmJKfS9ur+S5l1WrVpnFERsba3ouJCSE+Ph49uzZQ1hYGD169ODSpUtF+khNTSUsLIzu3bszePBg0/7b+42IiChVzLGxsWbHrVq1CoD//e9/rFq1itWrV3Po0CFWrlzJ7NmzWblyZan6BWMF2rp16/j2229xcnLC1dWVGzdu0KhRI7Taop/77nVd93sNjzOplBLiPqhbpaz2ugo4u9bmhr4J6tpmnByc7qu/+EvxjNw2kvTcdFCvAWB9nyv4PVW+epOc61oIiqDVjXg+qt8BdPJrS4jSSM/R033xXroF7KKaG9zMc6SCkzs+Pt0sHZqwoIMHDzJv3jwOHTpU6kU5ZsyYwdSpUx9xZEIIcXfWOi1vzmtjsXOXRUhICIsXL0an0+Hr64u1tTUbN24s8bhBgwYRGhrKpk2b+PHHH5kxYwZRUVEMHz78fkM3cXR0NNvOyMhgyJAhd/1iokqVKqafnZ2d6dKlC126dGH69OmEhoYyffp02rdvT3BwMGlpaZw7d65IdVZeXh6nTp0iNLTkKQK6du1qlqzz8/Mzi7t69epUr16d5s2bExwczOeff25WPXzu3DlCQkJo2bJlkYm+b1/9zsXFpcRYwJjAu/24wi95xo0bx8SJE+nVqxcA9erV448//mDGjBn079+/VH0DdOjQgVOnTnHlyhWsra1xc3PD29vbrDKupOvy9vY2W7EPMG17e3tTtWrVu17D40xKMYS4D4UrJKTaXeKIfdatvQVYae5vaNmec3u4mn0DfYEWDMa5PXTW8vLkxHfkao3fstha2UDFGhYOSIgnR9zpGyRcvImdtfF31NqTg2nWbCueFdtaODJRWhUrVsTKyuqubz69vb3vesy93qwWto+NjeXSpUtUqVIFa2trrK2t+eOPPxg7dixVq1a9a5+TJk0iLS3N9Dhz5syDX5wQQpSSRqPBxtbKIo+yrqhdmEgp/B0LULt2bfLz89m3b5+p3dWrV0lISKBOnTqmfZUrVyYiIoKvvvqKsWPH8tlnnwF/VhzdPr9TUFAQNjY27N+/37QvLS2tVEPmGjVqxLFjx0wJn9sf96pu0mg01KpVi8zMTABee+01rK2tiYqKKtJ2yZIlZGVl0a9fvxJjcXZ2Nju/vb39PdsaDAZyc3NN26mpqbz44os0btyY5cuXF6k2ur1fLy+vEmMB4xxgtx/n7GwcAZOVlVWkfysrK9NnwrKqWLEibm5u/PTTT1y6dImuXbuW+rpatGjBzp07TfORAcTExFCzZk0qVKhwz2t4nEnJgRD3wWAw/lHIss5Ba8rtGnC1db2v/m5mF5CZNBGV/2cW3/ouZZzlTn62KSll92xPsH38f6kK8bhITztEM++DeNjfBGDB39tgr5M52Z4kOp2Oxo0bs3XrVl555RXA+KZ869atpglp79SiRQu2bt1qmisEjG9WW7RoAUDfvn1p166d2TGhoaH07duXN95446592tramk3MKoQQovSCg4MJDw9n8ODBfPrppzg7OzNx4kT8/PwIDw8HYNSoUXTs2JEaNWpw/fp1tm3bRu3atQEICAhAo9EQHR1Np06dsLe3x9nZmf79+zNu3Djc3d3x8vIiMjISrVZbYiJtwoQJNG/enGHDhjFo0CAcHR05duwYMTExLFy4kPj4eCIjI+nbty916tRBp9OxY8cOli1bxoQJEwBjRdWsWbN4++23sbOzo2/fvtjY2PDNN98wefJkpk+fzjPPPGN23oSEhCKx1K1bt8hiG5mZmXzwwQd07doVHx8frly5wqJFi0hNTaV79+7An4mbgIAAZs+ezeXLl03H3+tLm0KFVUQZGRlcvnyZ+Ph4dDqdWYLwTl26dOGDDz6gSpUq1K1bl7i4OObMmcM//vEPU5tr165x+vRpzp07Z3a93t7eppiWL19O7dq18fT0ZO/evYwcOZLRo0ebhl2W5rp69+7N1KlTGThwIBMmTOC3335j3rx5zJ07t9jrzsjIICkpybSdnJxMfHw87u7uZhVyliBJKSHug7qVFVcacCwwvozsAZ1VyWOn7+b8dSuzhJSznTWNAtweNMwnW0E+GPJvq5SSD9NClEZ6jp4Nv8Til/9PhtT/c7+T/d0nBxWPtzFjxtC/f3+aNGlCs2bN+OSTT8jMzDQlkPr164efnx8zZswAYOTIkbRp04aoqChefvllvvjiCw4cOGAq//fw8MDDw8PsHDY2Nnh7e991LhIhhBAPbvny5YwcOZLOnTuTl5dH69at+e6770wJmYKCAoYOHcrZs2dxcXEhLCzMlGTw8/Nj6tSpTJw4kTfeeIN+/fqxYsUK5syZQ0REBJ07d8bFxYXx48dz5swZ7Ozsio2lfv367Nixg3feeYcXXngBpRTVqlWjZ8+eAPj7+1O1alWmTp1KSkoKGo3GtD169GhTP6NHjyYoKIioqCjmzZtnqqJas2aNaZjb7e6278yZM/j7+5vts7Ky4sSJE6xcuZIrV67g4eFB06ZNiY2NNS3OERMTQ1JSEklJSUWOL2nFxIYNG5p+PnjwIKtXryYgIICUlJR7HrNgwQLee+89/vnPf3Lp0iV8fX0ZMmQI77//vqnNxo0bzb7cKbzeyMhIpkyZAhgTVZMmTeLatWtUrVqVd955x+yelua6XF1d+fHHHxk6dCiNGzemYsWKvP/++7z55pvFXveBAwcICQkxbRcuitK/f39WrFhR7LGPmkY96DqXT7D09HRcXV1JS0sr9ThTIQB+276FzYs/4axnNl42bXHJbk5w6rd0+Lb4DPW9DP12AZt2B1HRNZfYseHYWGlkovPcmzDDn/HBY/g/33DerurN24HFf/MhhICFP51kW/z/+Oezy8jU26PXBNOgWkuqVxtn6dCeWJZ+v7Bw4UI+/vhjLly4wLPPPsv8+fNNc3C8+OKLVK1a1ewN5bp163j33XdJSUkhODiYWbNm0alTp3v2X7VqVUaNGmVWXVUcS98PIcTTKycnh+TkZAIDA0tMrghzmZmZ+Pn5ERUVxcCBA//y81+7do22bdvi4uLC999/j4ODw18eg/jrFfeaLe37BamUEqIMlFL88O+5/H7IOH7boFFYK2OJ7IPMS64vMFZeWVshw2tu+S0tnd8rvkiSg7Gc1E4mfheiVFJv5OBoY/y2MldTjxZNP8e/grwxfJINGzbsnsP1tm/fXmRf9+7dTUMcSqO4b4eFEEI8nuLi4jhx4gTNmjUjLS2NadOmAZiGBP7V3N3d2bJlC4sWLWLv3r20bStzWIrSkaSUEGWQk3GTYzt/Mm0rDRiUcXiZxub+59vIy7+VlJLECwCpOXm0P3oZVffP1Z4cynvlmBClcPVqLK1dhmLtapzcvG7lKpKQEkIIIZ5Ss2fPJiEhwTQHYWxsLBUrWm64voeHh9mQNiFKQ5JSQpSB4bZVLwAanjJgb6/hakXQPkBCSX9r4nRrK0lKcfMi53Z8inLsil1BLg0zE3Gv9jydPN0sHZkQj7X3v/kNp9z/0Lhipmmfm1tTC0YkhBBCiEelYcOGHDx40NJhCPHApPRAiDIwGArQoKGWa3MAbPUKza2Xkc73/uc70ucbp3azllckHPkfOUnbAKiancrXZxfx+TOBeNvalHCgEOXX1Yxc/m/vH+TlpQHw7alQvIK34evzmoUjE0IIIYQQ4t7kI7AQZaAMBqy1OuysjMNhNMB1F2OyxL1n6efvuFPhnFJWMnwPcm+SrTUOhbR1qQS9Vlk4ICEef+k5+QA46XIA6P9Cc+pVtuzyvkIIIYQQQpREhu8JUQaGAgMatChlTCIpjRUFVsY5paweoMxJbzD2ZyPzJoE+m1yt8Z7aO3uBRzULByTE4y0n5zx/HO/DgpCL2FrnAeDr7mnhqIQQQgghhCiZJKWEKANlKECr0aIwDre75NUUGytj0kRzH1VO8w/NZ/e53fyR5gnUx0bmlIL8XHJuVUrZaSVJJ0RxTl68yS/HvsFb/YHDrRGuWq0OZ6c6lg1MCCGEEEKIUpCklBBlUFgpZbhVKVU4AlZjY6BSoEuZ+sotyOWzI58BkFfQCgAnnaySRX4OOVa3klKSpBOiWKPWxuNjfYrXa8Gvl+tyIusNFv29LTY2Zft9JIQQQgghhCVIGYIQZaAMBWg0GhS3klIaLYa85Xi0vI6Lh32Z+soryDP93DXoVQA8Hd0fWqxPopWpV6jl2Jt3qw8HpFJKiOLk59/EQR2gqstpANxdKvPPdiGSkBJCCCGEEE8MqZQSogwMhltzShUmpdCgNAas7mMuqHxDPtmpvcjPqMFGrbE/XTmfU2rDpevc0NqZtp91lsoxIe7m0s0cjh4eQES9eNO+F2oEUa2ym8ViEkIIIYQQoqzK9ydgIcpIGQxo0KCUurVHi9IotPcxzCwjN5f89GfB4EBuvjEpVde3nFY45OfCl4PIuXAcgI8TZ3PI+TgRVbwsHJgQj5+0bD0vfryd9JuJAJzLqISrazO8vcMtHJkQQghRfg0YMACNRoNGo0Gn01G9enWmTZtGfn7+A/W7fft2NBoNN27ceDiBlkJycjK9e/fG19cXOzs7/P39CQ8P58SJE2btoqOjadOmDc7Ozjg4ONC0aVNWrFhh1iYlJQWNRkN8fHypzz9lyhRq1aqFo6MjFSpUoF27duzbt8+sz4EDBxIYGIi9vT3VqlUjMjKSvLy8YnqF8+fP07t3b2rUqIFWq2XUqFGliufmzZuMGjWKgIAA7O3tadmyJfv37zdrk5GRwbBhw/D398fe3p46deqwZMkSszZDhgyhWrVq2Nvb4+npedd7evr0aV5++WUcHBzw8vJi3Lhx9/x/aPfu3VhbW/Pss8+WeA1fffUVHTp0wMPDo8z/Ho+aJKWEKIMD0V+TXXCT5Izfbu3RoAAra6sy95V52y/NzaNas3viS/RtUfWhxPnEOf0zHFlHTr4egIDsc/i6+1o4KCEeT2euZZGdp8fBJhuAy7rZNGm8BkfH6haOTAghhCjfwsLCOH/+PCdPnmTs2LFMmTKFjz/+2NJhmZSUtAHQ6/W0b9+etLQ0vvrqKxISEli7di316tUzS4wtWLCA8PBwWrVqxb59+zh8+DC9evUiIiKCt99++4HirFGjBgsXLuTIkSPs2rWLqlWr0qFDBy5fvgzAiRMnMBgMfPrppxw9epS5c+eyZMkSJk+eXGy/ubm5eHp68u6779KgQYNSxzNo0CBiYmL4z3/+w5EjR+jQoQPt2rUjNTXV1GbMmDH88MMP/Pe//+X48eOMGjWKYcOGsXHjRlObxo0bs3z5co4fP87mzZtRStGhQwcKCgoAKCgo4OWXXyYvL489e/awcuVKVqxYwfvvv18kphs3btCvXz/atm1bqmvIzMzk+eefZ+bMmaW+7r+MKsfS0tIUoNLS0iwdingCZKbdULN7vGz2+KT/bBU1qJfauHFjmfs7lJqkAiZEq4AJ3yqDwfAIIn6CHN+kVKSLavH996rST3Hq54T9SpX3eyLEPeyI+7eKXNlbbdkapLZsDVIFBTmWDumpJ+8XzMn9EEI8KtnZ2erYsWMqOzvb0qGUWf/+/VV4eLjZvvbt26vmzZura9euqb59+yo3Nzdlb2+vwsLCVGJioqldSkqK6ty5s3Jzc1MODg6qTp06atOmTSo5OVkBZo/+/fsrpZRKT09XvXv3Vg4ODsrb21vNmTNHtWnTRo0cOdLUb0BAgJo2bZrq27evcnZ2Nh0bGxurnn/+eWVnZ6f8/f3V8OHDVUZGhlJKqbi4OAWolJSUe17r6dOnlY2NjRozZkyR5+bPn68A9fPPPyullOka4uLiyn5Tbyn8u7Nly5Z7tpk1a5YKDAwsdZ933qt7ycrKUlZWVio6Otpsf6NGjdQ777xj2q5bt66aNm1asW3u9OuvvypAJSUlKaWU+u6775RWq1UXLlwwtVm8eLFycXFRubm5Zsf27NlTvfvuuyoyMlI1aNCgxOso9DD+PW5X3Gu2tO8XpFJKiFIquFXFo1BsaXwJnX0oVrYN0ClrtPcxIXe23tgfGuPk6eVafg4AOVbG+aTsfOpAeb8nQtwhR19AfPJv6K/N5gX/nwGwsXFHq7W1cGRCCCHEo6OUQp+TY5GHMk3ZcX/s7e3Jy8tjwIABHDhwgI0bN7J3716UUnTq1An9rc8DQ4cOJTc3l507d3LkyBFmzpyJk5MTlStX5ssvvwQgISGB8+fPM2/ePMBYmbN79242btxITEwMsbGxHDp0qEgMs2fPpkGDBsTFxfHee+9x6tQpwsLC6NatG4cPH2bt2rXs2rWLYcOGAeDp6YlWq2X9+vWmCp47rV+/Hr1ef9eKqCFDhuDk5MSaNWse6N4VysvLY+nSpbi6uhZb3ZSWloa7+8NfNCo/P5+CggLs7OzM9tvb27Nr1y7TdsuWLdm4cSOpqakopdi2bRuJiYl06NDhrv1mZmayfPlyAgMDqVy5MgB79+6lXr16VKpUydQuNDSU9PR0jh49atq3fPlyfv/9dyIjIx/mpVqMTHQuRCmpAuO8T0oDZytlo0v0JV+jxU3vjJVV2Yfv5dz6I6TR3P2XfblSmJTS2ABgq5WElBB36rn0ZzLSDzH5ObiZ58iprE4MatvD0mEJIYQQj1R+bi7z+79mkXOPWLkemzuSEaWhlGLr1q1s3ryZjh07smHDBnbv3k3Lli0BWLVqFZUrV2bDhg10796d06dP061bN+rVqwdAUFCQqa/CRIuXlxdubm6AcY6jlStXsnr1atPwreXLl+PrW3T6i5deeomxY8eatgcNGkSfPn1M8ykFBwczf/582rRpw+LFi/Hz82P+/PmMHz+eqVOn0qRJE0JCQujTp48prsTERFxdXfHx8SlyPp1OR1BQEImJiWW+b7eLjo6mV69eZGVl4ePjQ0xMDBUrVrxr26SkJBYsWMDs2bMf6Jx34+zsTIsWLfjXv/5F7dq1qVSpEmvWrGHv3r1Ur/7n1AkLFizgzTffxN/fH2trY9HCZ599RuvWrc36+/e//8348ePJzMykZs2axMTEoNPpALhw4YJZQgowbV+4cAGAkydPMnHiRGJjY7G2fjrSOVIpJUQpGW59U6BM+RLjy8fZ2Zn69euXub9svXHCOq1WklLHcjX86N6CLK3xF7L9fVSeCfE0U0rxW2qaaR6pm3oPalUfiatrIwtHJoQQQohC0dHRODk5YWdnR8eOHenZsycDBgzA2tqa5557ztTOw8ODmjVrcvy4cZGfESNGMH36dFq1akVkZCSHDx8u9jy///47er2eZs2amfa5urpSs2bNIm2bNGlitv3rr7+yYsUKnJycTI/Q0FAMBgPJycmAsXLrwoULrFq1ihYtWrBu3Trq1q1LTExMqe9FYaKlOKtWrTKLIzY21vRcSEgI8fHx7Nmzh7CwMHr06MGlS5eK9JGamkpYWBjdu3dn8ODBpv239xsREVGqmGNjY82OW7VqFQD/+c9/UErh5+eHra0t8+fP5/XXXzcbLbNgwQJ+/vlnNm7cyMGDB4mKimLo0KFs2bLF7Bx9+vQhLi6OHTt2UKNGDXr06EFOTk6p4isoKKB3795MnTqVGjVq3LVNcff0cfV0pNaE+AsYDHcmpYw/1G/47F2/lShJ4aTeGo3hYYT3xDqRmc1LWbWh3kemfZKUEsLcucu/0DlwE75O5wGo6+9Ho/pFv50UQgghnjbWtraMWLneYucui5CQEBYvXoxOp8PX1xdra2uzia7vZdCgQYSGhrJp0yZ+/PFHZsyYQVRUFMOHD7/f0E0cHR3NtjMyMhgyZAgjRowo0rZKlSqmn52dnenSpQtdunRh+vTphIaGMn36dNq3b09wcDBpaWmcO3euyOegvLw8Tp06RWhoaImxde3a1SxZ5+fnZxZ39erVqV69Os2bNyc4OJjPP/+cSZMmmdqcO3eOkJAQWrZsydKlS836vn11OReX0q1w3qRJE7PjCquUqlWrxo4dO8jMzCQ9PR0fHx969uxpqhzLzs5m8uTJfP3117z88ssA1K9fn/j4eGbPnk27du1Mfbq6uuLq6kpwcDDNmzenQoUKfP3117z++ut4e3vzyy+/mMV08eJFALy9vbl58yYHDhwgLi7ONNzSYDCglMLa2poff/yx2Hv6uJKklBCldGellNIYh+xpS/EtwN38WSlVjpNShgL+OHcSAIeCLGqqDJpWrYuXrY2FAxPi8WAwKD7ZkkgNzVt0rZZm2q/T3b18XQghhHjaaDSa+xpCZwmFiZTb1a5dm/z8fPbt22cavnf16lUSEhKoU6eOqV3lypWJiIggIiKCSZMm8dlnnzF8+HBTxdHt8zsFBQVhY2PD/v37TYmktLQ0EhMTiwwXu1OjRo04duxYkTiLo9FoqFWrFnv27AHgtddeY8KECURFRREVFWXWdsmSJWRlZdGvX78S+3V2dsbZ2blUMRgMBnJzc03bqamphISEmFa0u3OO37JcXyF7e/tij3N0dMTR0ZHr16+zefNmZs2aBRhXLNTr9UVisLKywmC492c9pRRKKdN1tWjRgg8++IBLly7h5eUFQExMDC4uLtSpUwcbGxuOHDli1se///1vfvrpJ9avX09gYCCOjo6lvqePC0lKCVEK+Xl5/HEkHgCtaQ4o4y8drU3ZXkZxl+L49tS3HD2bB7RAU56TUl9HkH3hCtSJpGH6Cb60PQrBd58MUIjy6EhqGou2JbC0vTEhFX+1NV2erYa/Xx8LRyaEEEKI0ggODiY8PJzBgwfz6aef4uzszMSJE/Hz8yM8PByAUaNG0bFjR2rUqMH169fZtm0btWvXBiAgIACNRkN0dDSdOnXC3t4eZ2dn+vfvz7hx43B3d8fLy4vIyEi0Wm2JCyhNmDCB5s2bM2zYMAYNGoSjoyPHjh0jJiaGhQsXEh8fT2RkJH379qVOnTrodDp27NjBsmXLmDBhAmCsqJo1axZvv/02dnZ29O3bFxsbG7755hsmT57M9OnTeeaZZ8zOm5CQUCSWunXrYmNj/mV0ZmYmH3zwAV27dsXHx4crV66waNEiUlNT6d69O2BMSL344osEBAQwe/ZsLl++bDre29u72OsvrITKyMjg8uXLxMfHo9PpzBKEd9q8eTNKKWrWrElSUhLjxo2jVq1avPHGG4CxEqtNmzaMGzcOe3t7AgIC2LFjB//3f//HnDlzAOOQy7Vr19KhQwc8PT05e/YsH330Efb29nTq1AmADh06UKdOHfr27cusWbO4cOEC7777LkOHDsX2VtXenffVy8sLOzu7IvvvdO3aNU6fPs25c+eAP/89vL29S7xnj5okpYQohX1fr+Xnr9YaNzQKx2yF0hiTUhpd2b65mR67gEPxISi9KwA25Xmk2sXfyNYGAGBnbQ11X7VwQEI8Xq5k5OJgk2Xa7tr6E4IruVowIiGEEEKU1fLlyxk5ciSdO3cmLy+P1q1b891335kSMgUFBQwdOpSzZ8/i4uJCWFgYc+fOBYzDr6ZOncrEiRN544036NevHytWrGDOnDlERETQuXNnXFxcGD9+PGfOnCmyStyd6tevz44dO3jnnXd44YUXUEpRrVo1evbsCYC/vz9Vq1Zl6tSppKSkoNFoTNujR4829TN69GiCgoKIiopi3rx5ZGZmArBmzRp69epV5Lx323fmzBn8/f3N9llZWXHixAlWrlzJlStX8PDwoGnTpsTGxlK3bl3AWD2UlJREUlJSkeNLWjGxYcOGpp8PHjzI6tWrCQgIICUl5Z7HpKWlMWnSJM6ePYu7uzvdunXjgw8+MEuoffHFF0yaNIk+ffpw7do1AgIC+OCDD0zzWdnZ2REbG8snn3zC9evXqVSpEq1bt2bPnj2mqigrKyuio6N56623aNGiBY6OjvTv359p06YVe02lsXHjRlMSDf7894iMjGTKlCkP3P+D0KgHXefyCZaeno6rqytpaWmlHmcqyqcf/j2Xozu2AqDL19Pu6Gm2t/4Eg9aGbp3Bu/NLpe6r9ecjOH3yzzHWrzRy55MeLR56zE+E+Q1ZZlefycGj6ezpyv97JtDSEQnx2MjKSmHngcmkXkulqstZrK1daNM6ztJhlUvyfsGc3A8hxKOSk5NDcnIygYGBJSZXhLnMzEz8/PyIiopi4MCBf/n5r127Rtu2bXFxceH777/HwcHhL49B/PWKe82W9v2CVEoJUQoGg4FKdlW5mJOC9a3Re4WVUnZ3WeWiOPkFxjxwbV8dK994AU+nsk2g+FTR55DjYLx+O5ncXAiTKRuPUpD+GS/67qPqrb/hDg5BxR8khBBCiHIjLi6OEydO0KxZM9LS0kzVNIVDAv9q7u7ubNmyhUWLFrF3717atm1rkTjEk0eSUkKUgqGgADdbLy7mpKC5VVxYONG5rpJnmfoqTEo52lrh5Vx+vwG6oc/nfx7t2O7SAAAHK0lKCQGQoy9gxZ4UXq9pnEdq/4Vn8fEO5/X6L1s4MiGEEEI8TmbPnk1CQgI6nY7GjRsTGxtLxYqWWwzFw8OD999/32LnF08mSUoJUQrKYEB7a6CrRoFe++cEglpt8ZMJ3in/1rzmNuU8CbP07GXmBPxZWuxqbWXBaIR4fNzI0gPgpMsG4KV6ITR9pm+JE5cKIYQQovxo2LAhBw8etHQYQjwwSUoJUQqGggJMnwc1Vlx3q2Z6TmNVtg+KBQXG9jqr8p2EuZKXD0D9mydoUb0x//CXJe6FyMtL5+TxwXz4fAoVbNMB8PfwkoSUEEIIIYR4KpXvUg0hSkkpA9yqlMp09OW3+n+uPFH2SiljR+W2UkqfA1umkJu8G4Aul7czNdATH1udhQMTwrK2HLvI3xcvJi/rAJUcrqCzygPA0als89YJIYQQQgjxpCinn4qFKBuzSik0aAx55NikU6ulFza2Zat4Krg1fM+2vA5XS9oCu+aSd+MsAHYaDegcLRyUEJa3PfEStlpjdVTi9SDiMmfSssU2XG/NuyaEEEIIIcTTRobvCVEK+fp8dKqwkkeL083fORh8kH92X1imfgoMBRhUOR++l3MDgFx7dwB0Tf8BVjYWDEgIyysoyKGq9UJqBhwBoEWNBjxb7zULRyWEEEIIIcSjJUkpIUpwNfUMqcePYCgoMO7QaEAZ0CgNWm3Zig3zVT4o48tOZ11OX3564+TNubZuANhWlGXuRfl2+moWCX9EE+iwxbTPzblaMUcIIYQQQgjxdCinn4qFKL3ziSf+TEgBVtZVIM+ABg1WZah22vrHVuIvx4MyHqMrr8P3CpNSWmPlmW0ZE3tCPE2y8vLpND+WRhV/pX9d+CPdn4CACCpXftXSoQkhhBBCCPHISVJKiBIYDMaElKttJTwcHTmnWkDuYZ6p8wzWpax2SstNY/S28eizfTDoWwBgV84rpfK0xiF7tmWcKF6Ip8nF9FwycvNx0hlfF1hXo2XdHmVKeAshhBBCCPGkkhIFIUqgDMaZybVYodUUzn1UQMNnG5a6j5t5N8k804fsP94iP/1ZoHxOdL7j2k1aGFrRsPk64rQVAdBJpZQox86fmceil97mlWrfAvB8zSDsdeXvd4MQQgjxpBswYAAajQaNRoNOp6N69epMmzaN/Pz8B+p3+/btaDQabty48XACLYXk5GR69+6Nr68vdnZ2+Pv7Ex4ezokTJ8zaRUdH06ZNG5ydnXFwcKBp06asWLHCrE1KSgoajYb4+PhSn3/KlCnUqlULR0dHKlSoQLt27di3b59ZnwMHDiQwMBB7e3uqVatGZGQkeXl5xfZ7/vx5evfuTY0aNdBqtYwaNapU8ezcuZMuXbrg6+uLRqNhw4YNRdp89dVXdOjQAQ8PjxKvVylFx44d79nXihUrqF+/PnZ2dnh5eTF06FCz5zdv3kzz5s1xdnbG09OTbt26kZKSYtZm1apVNGjQAAcHB3x8fPjHP/7B1atXH/g6HwX5NChECQy3klI3bbK5YF34R0Wh1ZT+5aM36DHkeQLg52ZPA39XOtXzedihPt5SdvFV7GqSNU6ct/VCr7HCWgPBDraWjkyIv1xmbj7f/nqOG9c2Ymedh5XWAGhwdW1k6dCEEEIIcZ/CwsI4f/48J0+eZOzYsUyZMoWPP/7Y0mGZlJS0AdDr9bRv3560tDS++uorEhISWLt2LfXq1TNLjC1YsIDw8HBatWrFvn37OHz4ML169SIiIoK33377geKsUaMGCxcu5MiRI+zatYuqVavSoUMHLl++DMCJEycwGAx8+umnHD16lLlz57JkyRImT55cbL+5ubl4enry7rvv0qBB6Vc3zszMpEGDBixatKjYNs8//zwzZ84ssb9PPvkEjebuo0XmzJnDO++8w8SJEzl69ChbtmwhNDTU9HxycjLh4eG89NJLxMfHs3nzZq5cucLf/vY3U5vdu3fTr18/Bg4cyNGjR1m3bh2//PILgwcPfuDrfCRUOZaWlqYAlZaWZulQxGPs4HffqNk9XlZDR76oRo/7p1o4ZKta0fMj9cv5X0rdR8K1BFX1nVUqYEK0OnL2xiOM9jH21RA1+IsoVemnODV15Xj16/4v1cWcPEtHJYRF/OvboypgQrTa+EMdtWVrkBr9f/9P5eZesXRY4h7k/YI5uR9CiEclOztbHTt2TGVnZ1s6lDLr37+/Cg8PN9vXvn171bx5c3Xt2jXVt29f5ebmpuzt7VVYWJhKTEw0tUtJSVGdO3dWbm5uysHBQdWpU0dt2rRJJScnK8Ds0b9/f6WUUunp6ap3797KwcFBeXt7qzlz5qg2bdqokSNHmvoNCAhQ06ZNU3379lXOzs6mY2NjY9Xzzz+v7OzslL+/vxo+fLjKyMhQSikVFxenAJWSknLPaz19+rSysbFRY8aMKfLc/PnzFaB+/vlnpZQyXUNcXFzZb+othX93tmzZcs82s2bNUoGBgaXu8857VVqA+vrrr+/5fEnXGxcXp/z8/NT58+eL9HXt2jVlb29f7HWuW7dOWVtbq4KCAtO+jRs3Ko1Go/LyjJ+tPv74YxUUFGR23Pz585Wfn1/JF3hLSddZqLjXbGnfL0illBAlKJzk3KABW4NxWI2NUjzr+Wyp+9Ab9LdNcF5OX3b6LHK0xqqoak16Ub/xq3jZ2pRwkBBPp5SrmWgwYG+dC0C3515Ap/OwcFRCCCHE40cphSGvwCIP42fz+2dvb09eXh4DBgzgwIEDbNy4kb1796KUolOnTuj1egCGDh1Kbm4uO3fu5MiRI8ycORMnJycqV67Ml19+CUBCQgLnz59n3rx5AIwZM4bdu3ezceNGYmJiiI2N5dChQ0VimD17Ng0aNCAuLo733nuPU6dOERYWRrdu3Th8+DBr165l165dDBs2DABPT0+0Wi3r16+n4LbFnm63fv169Hr9XSuihgwZgpOTE2vWrHmge1coLy+PpUuX4urqWmx1U1paGu7u7g/lnI9KVlYWvXv3ZtGiRXh7exd5PiYmBoPBQGpqKrVr18bf358ePXpw5swZU5vGjRuj1WpZvnw5BQUFpKWl8Z///Id27dphY2P8bNWiRQvOnDnDd999h1KKixcvsn79ejp16vSXXWtZlNOZloUoPUOu8UOj0ii89MZfzA5KYWNV+oRKviEfdSspZV1eJ/bOzyXbzpiUsnMPgHuUrArxtLt+/QAvuE+jWbMsNBrjm90W1QMsHJUQQgjxeFJ6A+fe32ORc/tOa4nmPuZ6VEqxdetWNm/eTMeOHdmwYQO7d++mZcuWgHG+n8qVK7Nhwwa6d+/O6dOn6datG/Xq1QMgKCjI1FdhosXLyws3NzcAbt68ycqVK1m9ejVt27YFYPny5fj6+haJ5aWXXmLs2LGm7UGDBtGnTx/TfErBwcHMnz+fNm3asHjxYvz8/Jg/fz7jx49n6tSpNGnShJCQEPr06WOKKzExEVdXV3x8ik5HotPpCAoKIjExscz37XbR0dH06tWLrKwsfHx8iImJoWLFindtm5SUxIIFC5g9e/YDnfNRGz16NC1btiQ8PPyuz//+++8YDAY+/PBD5s2bh6urK++++y7t27fn8OHD6HQ6AgMD+fHHH+nRowdDhgyhoKCAFi1a8N1335n6adWqFatWraJnz57k5OSQn59Ply5d/vpheaVUTks2hCid/Lw8Ms5eBEBpQHsrsaSx0ZWpH33Bn5VSNlbl9GWnzzZVStmX13sgyr3x639lyfcf4e94jGpuKQDY2fqi1crcakIIIcSTLjo6GicnJ+zs7OjYsSM9e/ZkwIABWFtb89xzz5naeXh4ULNmTY4fPw7AiBEjmD59Oq1atSIyMpLDhw8Xe57ff/8dvV5Ps2bNTPtcXV2pWbNmkbZNmjQx2/71119ZsWIFTk5OpkdoaCgGg4Hk5GTAWLl14cIFVq1aRYsWLVi3bh1169YlJiam1PdCpyv589KqVavM4oiNjTU9FxISQnx8PHv27CEsLIwePXpw6dKlIn2kpqYSFhZG9+7dzeZMur3fiIiIUsUcGxtrdtyqVatKdVxpbNy4kZ9++olPPvnknm0MBgN6vZ758+cTGhpK8+bNWbNmDSdPnmTbtm0AXLhwgcGDB9O/f3/279/Pjh070Ol0vPbaa6bKvmPHjjFy5Ejef/99Dh48yA8//EBKSorpPjzK67wfUiklxD3oc3PYMDYS13zjtxP+lxUV9LbcdAWtzq5sfcnwPTIKFJlW9gDYy4p7opzadPg8/6x/E4Cd59rxxotd8a4ok5sLIYQQ96Kx0eI7raXFzl0WISEhLF68GJ1Oh6+vL9bW1mzcuLHE4wYNGkRoaCibNm3ixx9/ZMaMGURFRTF8+PD7Dd3E0dHRbDsjI4MhQ4YwYsSIIm2rVKli+tnZ2ZkuXbrQpUsXpk+fTmhoKNOnT6d9+/YEBweTlpbGuXPnilRn5eXlcerUKbPJue+la9euZsk6Pz8/s7irV69O9erVad68OcHBwXz++edMmjTJ1ObcuXOEhITQsmVLli5datb37avfubi4lBgLGBN4tx9XqVKlUh1XGj/99BOnTp0yVbsV6tatGy+88ALbt283VZ7VqVPH9LynpycVK1bk9OnTACxatAhXV1dmzZplavPf//6XypUrs2/fPpo3b86MGTNo1aoV48aNA6B+/fo4OjrywgsvMH369Ed6nfdDklJC3EP65ctY51ijrIwZ5xqpBhxt1K2kVNnKePUFeqD8Dt8bduwP1gf+y7RtJ5VSohy6fHU/Hap8g4+jsfryn6F9qOTZ2sJRCSGEEI83jUZzX0PoLKEwkXK72rVrk5+fz759+0zD965evUpCQoJZ8qFy5cpEREQQERHBpEmT+Oyzzxg+fLip4uj2+Z2CgoKwsbFh//79pkRSWloaiYmJtG5d/HuLRo0acezYsSJxFkej0VCrVi327DEOo3zttdeYMGECUVFRREVFmbVdsmQJWVlZ9OvXr8R+nZ2dcXZ2LlUMBoOB3FvTqoCxQiokJITGjRuzfPlytHd86V2W6ytkb29/X8eVxsSJExk0aJDZvnr16jF37ly6dOkCGIfdgXH+MH9/fwCuXbvGlStXCAgwTvWQlZVV5FqtrIyvj8JV47OysrC2tr5rG6XUI73O+yFJKSHuwWAoQIMGA8YXtxbItjO+ZBwbl62yISdfb/rZprxVSuVlsu3KDdOmn5WBOo5lqzQT4kmmLzCw9fhFNJeG0Tnoimm/k0PReR+EEEII8XQJDg4mPDycwYMH8+mnn+Ls7MzEiRPx8/MzzS00atQoOnbsSI0aNbh+/Trbtm2jdu3aAAQEBKDRaIiOjqZTp07Y29vj7OxM//79GTduHO7u7nh5eREZGYlWq0VTwrytEyZMoHnz5gwbNoxBgwbh6OjIsWPHiImJYeHChcTHxxMZGUnfvn2pU6cOOp2OHTt2sGzZMiZMmAAYK6pmzZrF22+/jZ2dHX379sXGxoZvvvmGyZMnM336dJ555hmz8yYkJBSJpW7duqbJuQtlZmbywQcf0LVrV3x8fLhy5QqLFi0iNTWV7t27A8aE1IsvvkhAQACzZ8/m8uXLpuPvNoH47QorhDIyMrh8+TLx8fHodDqzBOGdMjIySEpKMm0nJycTHx+Pu7u7KSl47do1Tp8+zblz58yu19vb2+xxpypVqhAYGAhAjRo1CA8PZ+TIkSxduhQXFxcmTZpErVq1CAkJAeDll19m7ty5TJs2jddff52bN28yefJkAgICaNiwIQBdunRh8ODBLF68mNDQUM6fP8+oUaNo1qzZXecdK8t1PhKlXhPwKSRLGoviXPg9SX0z6D21afB0NbvHy2p9SCu1stdktXDIVrVrXWLJHSilDAaDSr6RrD6NW6ECJkSrgAnRKjsv/xFH/hjJTlPqowAV9ONuVemnOHViZj1V8Mcvlo5KiL/U//afVlUnbFQ/bqmmtmwNUtNX9Vdnzq6ydFiiDOT9gjm5H0KIR6W45eUfd/3791fh4eF3fe7atWuqb9++ytXVVdnb26vQ0FCVmPjn54lhw4apatWqKVtbW+Xp6an69u2rrly5Ynp+2rRpytvbW2k0GtW/f3+llFLp6emqd+/eysHBQXl7e6s5c+aoZs2aqYkTJ5qOCwgIUHPnzi0Szy+//KLat2+vnJyclKOjo6pfv7764IMPlFJKXb58WY0YMUI988wzysnJSTk7O6t69eqp2bNnq4KCArN+NmzYoF544QXl6OioAAWoNWvWmLVJTk42PXfn48yZM0Viy87OVq+++qry9fVVOp1O+fj4qK5du6pffvnzM8Ty5cvv2WdJ7nZMQEBAscds27btrscV/lsUF1NkZGSxsXz99ddm+9LS0tQ//vEP5ebmptzd3dWrr76qTp8+bdZmzZo1qmHDhsrR0VF5enqqrl27quPHj5u1mT9/vqpTp46yt7dXPj4+qk+fPurs2bMPfJ13Ku41W9r3CxqlyrbO5c6dO/n44485ePAg58+f5+uvv+aVV14xPX+vzOysWbNMYxqrVq3KH3/8Yfb8jBkzmDhxomn78OHDDB06lP379+Pp6cnw4cMZP3682THr1q3jvffeIyUlheDgYGbOnFmmZQ7T09NxdXUlLS2t1ONMRflxISmR/TNXo9VYcSJtH1Uv3yDDO4QMlxAahVahxasllzwuPbyUBXELUAX2ZCRGApD0QUesy8vwtfOH4dMX8Gu9lQKNNXG/T8Gn3xqwsbd0ZEL8ZaJ+TODznYdZ8JLxb1xGha2EN6xq2aBEmcj7BXNyP4QQj0pOTg7JyckEBgZiZyeV9WWRmZmJn58fUVFRDBw48C8//7Vr12jbti0uLi58//33ODg4/OUxiL9eca/Z0r5fKPMn48zMTBo0aHDP5QTPnz9v9li2bBkajYZu3bqZtZs2bZpZu9sncUtPT6dDhw4EBARw8OBBPv74Y6ZMmWI2edmePXt4/fXXGThwIHFxcbzyyiu88sor/Pbbb2W9JCHuqqDAOHxPYczbprlUI9cuGABNKeeF+vV8Clmn/0HO6beMx6GwKk9zSuXnoNdYUaAxDnu067deElKiXMnK+oMqTGZckwUAWFk5SEJKCCGEEA8sLi6ONWvWcOrUKQ4dOkSfPn0ATEMC/2ru7u5s2bKFtm3bsnfvXovEIJ5MZZ5TqmPHjnTs2PGez985TvKbb74hJCSEoKAgs/3Ozs73HO+5atUq8vLyWLZsGTqdjrp16xIfH8+cOXN48803AZg3bx5hYWGm6qt//etfpnGwS5YsKetlCVGEKihAo9FiUMZJBdNdgrDRGSecs7W3Ke5Qk9SLbhRk1jBtV/FwLHGc91NFn03ObUvd28mqe6Ic+fXMDRJO/QcP63jcb3055OAQVPxBQgghhBClNHv2bBISEtDpdDRu3JjY2FgqVqxosXg8PDx4//33LXZ+8WR6pJ8QL168yKZNm+5aPvjRRx/h4eFBw4YN+fjjj8nPzzc9t3fvXlq3bm1aaQAgNDSUhIQErl+/bmrTrl07sz5DQ0MlKysemsKJzgsrpdBo0eWeBO9L1Hnep1R95BUYjw2qZGDFG0356i3LLGdrMfk5dySlylFCTpRrSin6LfuFA78bh6ofvNiATMePaPjsCssGJoQQQoinQsOGDTl48CAZGRlcu3aNmJgY6tWrZ+mwhCizR7r63sqVK3F2duZvf/ub2f4RI0bQqFEj3N3d2bNnD5MmTeL8+fPMmTMHgAsXLphmoC9UqVIl03MVKlTgwoULpn23t7lw4cI948nNzTVbRjI9Pf2Brk883Qy3KqXUraU1QYNtznHyK9XE1qF0lVL5t1Zu9XDW8GJNr0cT6GMq36AYeNmZo40WA2Cv1ZSvKjFRrmXmFZCWrcfeOhsAL/d6tH32VWxsZNFbIYQQQgghCj3Sd8fLli2jT58+RSa8GjNmjOnn+vXro9PpGDJkCDNmzMDW1vbObh6aGTNmMHXq1EfWv3i6GCultKZKKQ0alEahLcMQtPxblVI21uVv2FpCVg6b8xzAzjjJYbCDTFYpyge9Pp3klP8QXu0o1dxSAGhbJwhHW0lICSGEEEIIcbtH9kk5NjaWhIQEBg0aVGLb5557jvz8fFJSUgDjvFQXL140a1O4XTgP1b3a3GueKoBJkyaRlpZmepw5c6YslyTKmXx9PgaVT77S39qjBQxlqvbJv1VkpSsvq+0V+u0rstcYJ1v0zr1M9NX/8HWjklcrFOJJdyEth00/L+JS6hy6VtuMn9N5AHS2nhaOTAghhBBCiMfPI/uk/Pnnn9O4cWMaNGhQYtv4+Hi0Wi1eXsbhTS1atGDnzp3o9XpTm5iYGGrWrEmFChVMbbZu3WrWT0xMDC1atLjneWxtbXFxcTF7CHE3+twctny2kONpP/NHxlHjTk3ZK6UKymtSKn41OZnXAHDJz6BJBTccrawsHJQQj974Lw9z4PcTAPyeFsDBy20JChxNRY+2Fo5MCCGEEEKIx0+ZxxJkZGSQlJRk2k5OTiY+Ph53d3eqVKkCGOdqWrduHVFRUUWO37t3L/v27SMkJARnZ2f27t3L6NGj+fvf/25KOPXu3ZupU6cycOBAJkyYwG+//ca8efOYO3euqZ+RI0fSpk0boqKiePnll/niiy84cOAAS5cuLfNNEOJONy5eIDs97bY9Vmit/dHoz5StUurWnFLlbvhefg65WuNCBXYeQdD8FcvGI8Rf5I+rmdTyzQIgQ/MiTRtEEBhYvuaTE0IIIYQQorTKnJQ6cOAAISEhpu3C+aH69+/PihUrAPjiiy9QSvH6668XOd7W1pYvvviCKVOmkJubS2BgIKNHjzabZ8rV1ZUff/yRoUOH0rhxYypWrMj777/Pm2++aWrTsmVLVq9ezbvvvsvkyZMJDg5mw4YNPPPMM2W9JCGKKJzcXG8Dq9v+wRu7B6K19kVnsMJwX5VS5axKKD+XXI1xfjg7WweQCc7FUy49R8+xxH/zWuAW/J1OA9Drubr4+EhCSgghhBBCiHspc1LqxRdfRClVbJs333zTLIF0u0aNGvHzzz+XeJ769esTGxtbbJvu3bvTvXv3EvsSoqwMBcYSJ6UBpQU3g5YswFZpcXB3L3U/BQZjMsbWurwlpXLI1ToDYKuVhJR4uuXlG3j5k++Z0mw+dW779WBvH2C5oIQQQgghhHgClLMxRUKU7Nq5VA5Ef23c0BhLnTQYEyteXpXo3Llzscdn6jP57PBnfLz/Y3JuzYtW3pJSKj+XbCtjpZRtGSrLhHgSXbqZQ26ucQ61vAIbfr05nGcbrMTVtbGFIxNCCCHEX2XAgAFoNBo0Gg06nY7q1aszbdo08vPzH6jf7du3o9FouHHjxsMJtBSSk5Pp3bs3vr6+2NnZ4e/vT3h4OCdOnDBrFx0dTZs2bXB2dsbBwYGmTZuaRk8VSklJQaPREB8fX+rzT5kyhVq1auHo6EiFChVo164d+/btM+tz4MCBBAYGYm9vT7Vq1YiMjCQvL6/Yfs+fP0/v3r2pUaMGWq2WUaNGlSqenTt30qVLF3x9fdFoNGzYsKHMMQN88MEHtGzZEgcHB9zc3O56rtOnT/Pyyy/j4OCAl5cX48aNM/t/6Pb/z25/1K1b19RmxowZNG3aFGdnZ7y8vHjllVdISEgo8TpLE9+jIJ8WhbjD3vWrSdizEwCN1vgLQHPrpWLn6IBVCUPxvk/+nlnfnWbRV8FkXzdO9O+ks3+EET9eBv+Wgk/dpYypOQEAO6mUEk+565lpVHK8BICLgydjwkfh4fF8meafE0IIIcSTLywsjPPnz3Py5EnGjh3LlClT+Pjjjy0dlklJSRsAvV5P+/btSUtL46uvviIhIYG1a9dSr149s8TYggULCA8Pp1WrVuzbt4/Dhw/Tq1cvIiIiePvttx8ozho1arBw4UKOHDnCrl27qFq1Kh06dODy5csAnDhxAoPBwKeffsrRo0eZO3cuS5YsYfLkycX2m5ubi6enJ++++26pFmQrlJmZSYMGDVi0aNF9xwzG+9+9e3feeuutu/ZRUFDAyy+/TF5eHnv27GHlypWsWLGC999/39Rm3rx5nD9/3vQ4c+YM7u7uZiPIduzYwdChQ/n555+JiYlBr9fToUMHMjMzi73OkuJ7ZFQ5lpaWpgCVlpZm6VDEY+TLGZFqdo+X1eweL6sPB7RTz6x4Rv2/Nz5VC4dsVQenLS/x+M8Of6YCJq1XAROiVcCEaBU48Vu1J+nKow/8MWAwGJTPT3Gq0m2Pz85csnRYQjwSVzNy1cqd29TmLbXUlq1BasvWIPXzvs6WDks8AvJ+wZzcDyHEo5Kdna2OHTumsrOzLR1KmfXv31+Fh4eb7Wvfvr1q3ry5unbtmurbt69yc3NT9vb2KiwsTCUmJprapaSkqM6dOys3Nzfl4OCg6tSpozZt2qSSk5MVYPbo37+/Ukqp9PR01bt3b+Xg4KC8vb3VnDlzVJs2bdTIkSNN/QYEBKhp06apvn37KmdnZ9OxsbGx6vnnn1d2dnbK399fDR8+XGVkZCillIqLi1OASklJuee1nj59WtnY2KgxY8YUeW7+/PkKUD///LNSSpmuIS4uruw39ZbCvztbtmy5Z5tZs2apwMDAUvd5570qLUB9/fXXJbYrLubly5crV1fXIvu/++47pdVq1YULF0z7Fi9erFxcXFRubu5dz/P1118rjUZT7L/XpUuXFKB27NhRYtzFxXc3xb1mS/t+QSqlhLhD4XxSABqDIvCCwmAwTr+mKcVQNH2BHpSxmurLt1oS914oLap5PJpgHyc3L5L//URuze3Onl96k1jbnkH+nhYNS4hHZdG2JH6M24KVxvitY77BhkpeL1s4KiGEEOLpopQiLy/PIg9VwlzKJbG3tycvL48BAwZw4MABNm7cyN69e1FK0alTJ/S3pvoYOnQoubm57Ny5kyNHjjBz5kycnJyoXLkyX375JQAJCQmcP3+eefPmAcYFx3bv3s3GjRuJiYkhNjaWQ4cOFYlh9uzZNGjQgLi4ON577z1OnTpFWFgY3bp14/Dhw6xdu5Zdu3YxbNgwADw9PdFqtaxfv56C2z4X3W79+vXo9fq7VkQNGTIEJycn1qxZ80D3rlBeXh5Lly7F1dW12OqmtLQ03Msw9++jVNqY77R3717q1atHpUqVTPtCQ0NJT0/n6NGjdz3m888/p127dgQE3Hsu07Q046ryj8v9uVOZJzoX4mlnKCjA2y6QCznJuF/XMHN5AQcaGsizA41VycNx8gx5xtnRgcoV7HF1sHnUIT8e4leRe3AlPG9cddMn7xr2zhUtHJQQj875tGwcbLKNP+e1oV7dOVSt7GbZoIQQQoinjF6v58MPP7TIuSdPnoxOpyvzcUoptm7dyubNm+nYsSMbNmxg9+7dtGzZEoBVq1ZRuXJlNmzYQPfu3Tl9+jTdunWjXr16AAQFBZn6KkwkeHl5meb5uXnzJitXrmT16tW0bdsWgOXLl+Pr61sklpdeeomxY8eatgcNGkSfPn1M8ykFBwczf/582rRpw+LFi/Hz82P+/PmMHz+eqVOn0qRJE0JCQujTp48prsTERFxdXfHx8SlyPp1OR1BQEImJiWW+b7eLjo6mV69eZGVl4ePjQ0xMDBUr3v2zRVJSEgsWLGD27NkPdM4HVZaY7+bChQtmCSnAtH3hwoUi7c+dO8f333/P6tWr79mnwWBg1KhRtGrVimeeeabUsfyVpFJKiDsYCgqo6mycKE6jFHnWUHBrHimH+vVKPD4vXw8Y29tYlaOXWM4NcrR//tG2fX01OJaDCjFRLmVknqSKbgPPVDwOQNOgqjSQhJQQQghRrkVHR+Pk5ISdnR0dO3akZ8+eDBgwAGtra5577jlTOw8PD2rWrMnx48b3ESNGjGD69Om0atWKyMhIDh8+XOx5fv/9d/R6Pc2aNTPtc3V1pWbNmkXaNmnSxGz7119/ZcWKFTg5OZkeoaGhGAwGkpOTAWPl1oULF1i1ahUtWrRg3bp11K1bl5iYmFLfi9Ik81atWmUWR2xsrOm5kJAQ4uPj2bNnD2FhYfTo0YNLly4V6SM1NZWwsDC6d+/O4MGDTftv7zciIqJUMcfGxpodt2rVqlIdV9aYH5aVK1fi5ubGK6+8cs82Q4cO5bfffuOLL74w7YuIiDC7TkuTSikh7pCvz4dbq+1pFewP1nDd3QmHPNBV9i/x+Jx8veln61JUVj019Dnk3kpK2Wo1aKu/ZOGAhHj4lFLEnbnB9ZShNPU4Zdpvq5OqQCGEEOJRsLGxKXEC60d57rIICQlh8eLF6HQ6fH19sba2ZuPGjSUeN2jQIEJDQ9m0aRM//vgjM2bMICoqiuHDh99v6CaOjo5m2xkZGQwZMoQRI0YUaVulShXTz87OznTp0oUuXbowffp0QkNDmT59Ou3btyc4OJi0tDTOnTtXpDorLy+PU6dOERoaWmJsXbt2NUvW+fn5mcVdvXp1qlevTvPmzQkODubzzz9n0qRJpjbnzp0jJCSEli1bsnTpUrO+b1/tz8XFpcRYwJjAu/24O6uWSlKamIvj7e3NL7/8Yrbv4sWLpudup5Ri2bJl9O3b954JwGHDhhEdHc3OnTvx9//zc+y0adMeeDL6h6kclXEIUTr5uX8mlTQo8q3+XH1PW4qV5G5PSpWrSil9lllSSoin0U8nLvG3f+8hO+csAAcuNkDn0hMf3x4WjkwIIYR4Omk0GnQ6nUUeZV1JtzApUaVKFaytjfUftWvXJj8/n3379pnaXb16lYSEBOrUqWPaV7lyZSIiIvjqq68YO3Ysn332GfBnxdHt8zsFBQVhY2PD/v37TfvS0tJKNWSuUaNGHDt2zJQ8uf1xr+SGRqOhVq1aptXbXnvtNaytrYmKiirSdsmSJWRlZdGvX78SY3F2djY7v739vVcsNxgM5ObmmrZTU1N58cUXady4McuXL0d7x9y/t/fr5eVVYixgnAPs9uOcnZ1LdVxpYy5JixYtOHLkiFl1VUxMDC4uLmb/r4Bxhb2kpCQGDhxYpB+lFMOGDePrr7/mp59+IjAw0Ox5Ly8vs+u0NKmUEuIOBsNtE50rMGhBo4x/kEozp1Ru/p/Hl6ek1OUCDedsjb/wbUsxIbwQT6KkSxlYaQqwtza+wbisHUXzhs+Xq9e6EEIIIUovODiY8PBwBg8ezKeffoqzszMTJ07Ez8+P8PBwAEaNGkXHjh2pUaMG169fZ9u2bdSuXRuAgIAANBoN0dHRdOrUCXt7e5ydnenfvz/jxo3D3d0dLy8vIiMj0Wq1JSbSJkyYQPPmzRk2bBiDBg3C0dGRY8eOERMTw8KFC4mPjycyMpK+fftSp04ddDodO3bsYNmyZUyYMAEwVlTNmjWLt99+Gzs7O/r27YuNjQ3ffPMNkydPZvr06UXmL0pISCgSS926dYtUo2VmZvLBBx/QtWtXfHx8uHLlCosWLSI1NZXu3bsDfyakAgICmD17NpcvXzYdf2dF0Z0KK6EyMjK4fPky8fHx6HS6Ikmf22VkZJCUlGTaTk5OJj4+Hnd3d6pUqVKqmAFOnz7NtWvXOH36NAUFBaZYqlevjpOTEx06dKBOnTr07duXWbNmceHCBd59912GDh2Kra2tWUyff/45zz333F3niRo6dCirV6/mm2++wdnZ2TQflaura7GJv5Lie1QkKSXEHQwFBXBrpQ2NUuRrobCoUFvCL/l8Qz7ZeuNKXBqNwqqcVAxNTUplcYWBUMG4LZVS4mmUlfUHPvqhfPj8VdO+j3u0QqORhJQQQggh7m358uWMHDmSzp07k5eXR+vWrfnuu+9MCZmCggKGDh3K2bNncXFxISwsjLlz5wLGIW1Tp05l4sSJvPHGG/Tr148VK1YwZ84cIiIi6Ny5My4uLowfP54zZ85gZ2dXbCz169dnx44dvPPOO7zwwgsopahWrRo9e/YEwN/fn6pVqzJ16lRSUlLQaDSm7dGjR5v6GT16NEFBQURFRTFv3jxTFdWaNWvo1atXkfPebd+ZM2fMhpUBWFlZceLECVauXMmVK1fw8PCgadOmxMbGUreucd7fmJgYkpKSSEpKKnJ8SSsmNmzY0PTzwYMHWb16NQEBAaSkpNzzmAMHDhASEmLaHjNmDAD9+/dnxYoVpYoZ4P3332flypVFYtm2bRsvvvgiVlZWREdH89Zbb9GiRQscHR3p378/06ZNM4snLS2NL7/80rQS450WL14MwIsvvmi2f/ny5QwYMOCe11lSfI+KRj3oOpdPsPT0dFxdXUlLSyv1OFPx9Fs6dDB1aMS+K5uokJnPzQo2GFyGoCtw4NWxjfANdrvrcYcuHuKtLW+RkW1DZtIkrK0USR90/muDt4Q/9tIxMZ0460poVQFWGi2DK1fi/epFV/8Q4km1J+kKPx2cTwvPPye8dHKqxXPNNlkwKvFXkfcL5uR+CCEelZycHJKTkwkMDCwxuSLMZWZm4ufnR1RU1F2HdD1q165do23btri4uPD999/j4ODwl8cg/nrFvWZL+35Bvt4V4k4GhQEDAGmu1bF2HI2uwPhLVVvM8L0DFw+QlZ8Fyrjynq68DOfZOo3cnJsArDkynjNVrktCSjx1lu1O5nL6FQAOXHiWXNclNGm8zsJRCSGEEKK8iouLY82aNZw6dYpDhw7Rp08fANOQwL+au7s7W7ZsoW3btuzdu9ciMYgnkwzfE+JOBQaU9lYBoUaLUjnk2ejxr+KFZ5V7T3aXl59PfmY16rl04BdAZ11OXl45aeRojWOcbV8YA4EvWjQcIR6Fm9mZeNsby9Jb1mxEq4btSrXwgRBCCCHEozJ79mwSEhLQ6XQ0btyY2NhYKla03IrAHh4evP/++xY7v3gylZNPzUKUTnbGTXKyb3Iq99dbe7ToDUdJ8T3Dq91HY2V97+qn31LsyD49mMJFPO2srR55vI+F/GxTUsquegjIJOfiKXP4cARv1ogxbVfx9JKElBBCCCEsqmHDhhw8eNDSYQjxwCQpJcRtTuzegT4vm+tkA6DR2GGgAA2aIsuM3ulGhjEJ5WCXzzM+XnRr5PfI430s6HPI0RqXj7UrxeqEQjwpUm9k8+GmY7zivYXCHJRG40AFt+csG5gQQgghhBBPCSlpEALjinsxny3k4KYNAFxxycXK2h1r+1bYoHDRu5S4vKq+wDgPVQ3/DP43pAU9m1Z51GE/HvKzybEyJqXspUpKPEW+OniWrceS0WqMw3nf3vkh9RrvwcWlvoUjE0IIIYQQ4ukglVJCABd/T+Lwlh9M29dc8wjO9iRb64hfTgFXlRVWVsUPx9MbjB9crctJtVC+QfHp2cuc9x9Atta40oKtJKXEUyQt8yo+ThcBUNjwf4NC8XS597xyQgghhBBCiLKRpJQQQL4+DwBrGx35+jwMGtDcWkVPq1FUr16dSpUqFd9HgfG/1uVhrhml2JN0iH+lWoHvKwDYaMC5mDm3hHhS6AsMxCVG85zjGFo8Z0w22+pcqefvZtnAhBBCCCGEeMrIJ0ghAGUwDr2zvrVi3gu/GfC4btxnb2/D3//+d9Nz95J/q1LKxrocJKVSD3ItZjoA/jnnGfnHf/i8pjeOJVSTCfEkmPjlEf63JxqtRmFQGhQ2eFeyzPLKQgghhBBCPM2kUkoIjHNK3c4xV6G1NSZYrO1Ll2gp7MKmPAxhu55C9q0V92oY0phUpQL4eFs4KCEejmPn03muQiYA+690Y1CnqXg521k4KiGEEEIIIZ4+kpQSAmOllIOVMx7WfpzhBBoFV3yMlU86D4dS9XFrnnNsysOcUvm55FgZk1L2Ac/BM70sHJAQD8f581/S1vtrKjslAtDv+QaSkBJCCCGEEOIRKQclHUKUzGAooLJjbew1TgBolCLL1vhBVBvQrFR95BcmpcrDvEr5OaZKKVlxTzwNCgyK/7fjOEePTaSh514q2l8DwN7Oz8KRCSGEEOJJMGDAADQaDRqNBp1OR/Xq1Zk2bRr5+fkP1O/27dvRaDTcuHHj4QRaCsnJyfTu3RtfX1/s7Ozw9/cnPDycEydOmLWLjo6mTZs2ODs74+DgQNOmTVmxYoVZm5SUFDQaDfHx8aU+/5QpU6hVqxaOjo5UqFCBdu3asW/fPrM+Bw4cSGBgIPb29lSrVo3IyEjy8vJK7HvVqlU0aNAABwcHfHx8+Mc//sHVq1eLPWbnzp106dIFX19fNBoNGzZsuGu748eP07VrV1xdXXF0dKRp06acPn3a9PyQIUOoVq0a9vb2eHp63vWe7t+/n7Zt2+Lm5kaFChUIDQ3l119/vev5kpKScHZ2xs3NrcTrLu01WIJ8mhQCMBgMWGmtMGDMLGlRZGvsjT87upeqj8LhezqrcvCyys8lpzApVR6uVzz19py6wqKfDqLRGCgwaFmf+ApBwbNwd3/e0qEJIYQQ4gkRFhbG+fPnOXnyJGPHjmXKlCl8/PHHlg7LpDRJG71eT/v27UlLS+Orr74iISGBtWvXUq9ePbPE2IIFCwgPD6dVq1bs27ePw4cP06tXLyIiInj77bcfKM4aNWqwcOFCjhw5wq5du6hatSodOnTg8uXLAJw4cQKDwcCnn37K0aNHmTt3LkuWLGHy5MnF9rt792769evHwIEDOXr0KOvWreOXX35h8ODBxR6XmZlJgwYNWLRo0T3bnDp1iueff55atWqxfft2Dh8+zHvvvYed3Z8V940bN2b58uUcP36czZs3o5SiQ4cOFNz6IJmRkUFYWBhVqlRh37597Nq1C2dnZ0JDQ9Hr9Wbn0+v1vP7667zwwgvFxl6Wa7AYVY6lpaUpQKWlpVk6FGFhCXtj1fdvfqi+HviOmt3jZfVN6xZq9lsz1cIhW9XPG0/d87gz6WfUyJiJque6yarGtCUqYEK0mhC94S+M/K+XkpWjxm2LVi9uXK8q/RSn3k08Y+mQhHhg6w+cUS3/tVRt2Rqkvt/SSG3+7bylQxKPEXm/YE7uhxDiUcnOzlbHjh1T2dnZlg6lzPr376/Cw8PN9rVv3141b95cXbt2TfXt21e5ubkpe3t7FRYWphITE03tUlJSVOfOnZWbm5tycHBQderUUZs2bVLJyckKMHv0799fKaVUenq66t27t3JwcFDe3t5qzpw5qk2bNmrkyJGmfgMCAtS0adNU3759lbOzs+nY2NhY9fzzzys7Ozvl7++vhg8frjIyMpRSSsXFxSlApaSk3PNaT58+rWxsbNSYMWOKPDd//nwFqJ9//lkppUzXEBcXV/abekvh350tW7bcs82sWbNUYGBgsf18/PHHKigoqEi8fn5+pY4FUF9//XWR/T179lR///vfS92PUkr9+uuvClBJSUlKKaX279+vAHX69GlTm8OHDytAnTx50uzY8ePHq7///e9q+fLlytXVtUznvdc13I/iXrOlfb8gJQ5CYKyU0mi0KGXMUmuUQmGc4FyrvfccURuSvuGbHXX4+UBLcjP9Aahg5/LoA7ag/3f2Mv+n/DjuVA0AL52NhSMS4sFcu7YHp7SeTGg6DwBXR3c61JWJ+4UQQojHgVKKgoIsizyMn9/vn729PXl5eQwYMIADBw6wceNG9u7di1KKTp06mapfhg4dSm5uLjt37uTIkSPMnDkTJycnKleuzJdffglAQkIC58+fZ9484/uVMWPGsHv3bjZu3EhMTAyxsbEcOnSoSAyzZ8+mQYMGxMXF8d5773Hq1CnCwsLo1q0bhw8fZu3atezatYthw4YB4OnpiVarZf369aYKnjutX78evV5/14qoIUOG4OTkxJo1ax7o3hXKy8tj6dKluLq60qBBg3u2S0tLw929+BEuLVq04MyZM3z33Xcopbh48SLr16+nU6dODxSjwWBg06ZN1KhRg9DQULy8vHjuueeKHSKXmZnJ8uXLCQwMpHLlygDUrFkTDw8PPv/8c/Ly8sjOzubzzz+ndu3aVK1a1XTsTz/9xLp16x7Pqqf7IBOdC4Fx9T0tWgwUJqUAza2kVDETl2fkZqP0VQHwcFZ4OFkzoGnzRx2u5eRlkpZxHYB2V/cQ6mLDq37/sHBQQty/dQfOkH35P/jZXsD6Vn7Vxbm+ZYMSQgghhInBkM32HfUscu4X2xzByqp0ix7dTinF1q1b2bx5Mx07dmTDhg3s3r2bli1bAsZ5jSpXrsyGDRvo3r07p0+fplu3btSrZ7zOoKAgU1+FiRYvLy/T3EE3b95k5cqVrF69mrZt2wKwfPlyfH19i8Ty0ksvMXbsWNP2oEGD6NOnD6NGjQIgODiY+fPn06ZNGxYvXoyfnx/z589n/PjxTJ06lSZNmhASEkKfPn1McSUmJuLq6oqPj0+R8+l0OoKCgkhMTCzzfbtddHQ0vXr1IisrCx8fH2JiYqhYseJd2yYlJbFgwQJmz55dbJ+tWrVi1apV9OzZk5ycHPLz8+nSpcsDJ3cuXbpERkYGH330EdOnT2fmzJn88MMP/O1vf2Pbtm20adPG1Pbf//4348ePJzMzk5o1axITE4NOpwPA2dmZ7du388orr/Cvf/0LMP77bN68GWtrY+rm6tWrDBgwgP/+97+4uDwdxRBSKSUEUKAvQIPmz0opFIUvD00xlVI5+X+O7d01riM/jgyjkov9I43VYvQ5ML8huYk/AvDi9QP01abiZG1l4cCEuD/XMvMY/+Vhzl+/BED07x04xVLq1Hl85n4QQgghxJMjOjoaJycn7Ozs6NixIz179mTAgAFYW1vz3HPPmdp5eHhQs2ZNjh8/DsCIESOYPn06rVq1IjIyksOHDxd7nt9//x29Xk+zZn8uyOTq6krNmjWLtG3SpInZ9q+//sqKFStwcnIyPUJDQzEYDCQnJwPGyq0LFy6watUqWrRowbp166hbty4xMTGlvheFiZbirFq1yiyO2NhY03MhISHEx8ezZ88ewsLC6NGjB5cuXSrSR2pqKmFhYXTv3t1sbqjb+42IiADg2LFjjBw5kvfff5+DBw/yww8/kJKSYno+NjbW7LhVq1aV6loNBuO8xOHh4YwePZpnn32WiRMn0rlzZ5YsWWLWtk+fPsTFxbFjxw5q1KhBjx49yMnJASA7O5uBAwfSqlUrfv75Z3bv3s0zzzzDyy+/THZ2NgCDBw+md+/etG7d+q6x3O81WJJUSgmBsVJKo9Gibk10fqHSc9gYqgDFD9/LvW01DetiKqqeCjfPQ8ZFcrXGPzC2tk5Q88FKXYWwpEtpV6njfpxKjsYVV5oFN6ZTs9ZoNPJ9jRBCCPG40GrtebHNEYuduyxCQkJYvHgxOp0OX19frK2t2bhxY4nHDRo0iNDQUDZt2sSPP/7IjBkziIqKYvjw4fcbuomjo6PZdkZGBkOGDGHEiBFF2lapUsX0s7OzM126dKFLly5Mnz6d0NBQpk+fTvv27QkODiYtLY1z584Vqc7Ky8vj1KlThIaGlhhb165dzZJ1fn5/rnrs6OhI9erVqV69Os2bNyc4OJjPP/+cSZMmmdqcO3eOkJAQWrZsydKlS836vn21v8KKohkzZtCqVSvGjRsHQP369XF0dOSFF15g+vTpNGnSxOy4SpUqlXgNABUrVsTa2po6deqY7a9duza7du0y2+fq6oqrqyvBwcE0b96cChUq8PXXX/P666+zevVqUlJS2Lt3L9pbK5yvXr2aChUq8M0339CrVy9++uknNm7caKoKU0phMBiwtrZm6dKlvP766/d1DZYkSSkhgIL8fLT8OadUhlMVrJXxl5eDy72z/Lm3jbO2LiZ59VTQG7PzuTZOANh2mALepVuZUIjH0YWUUYxpfMC03eGZGrjayxxpQgghxONEo9Hc1xA6SyhMpNyudu3a5Ofns2/fPtPwvatXr5KQkGCWxKhcuTIRERFEREQwadIkPvvsM4YPH26qOLp9fqegoCBsbGzYv3+/KZGUlpZGYmLiPStoCjVq1Ihjx44VibM4Go2GWrVqsWfPHgBee+01JkyYQFRUFFFRUWZtlyxZQlZWFv369SuxX2dnZ5ydnUsVg8FgIDc317SdmppKSEiIaUW7wiROobtdX1ZWlmkYXCErK+OoD6UU9vb2ZbovhXQ6HU2bNiUhIcFsf2JiIgEBAfc8TimFUsp0XVlZWWi1WjSaPz9XFm4XVmPt3bvX7P+Fb775hpkzZ7Jnzx78/Pzu+xosSZJSQgAFBQbQaMjSGhMvaLSk6fbiHViTao287nlcrt5YKWWlVWa/PJ5K+cZ7k2NlXNbU9mlPwomn1q6TV5i+6Rhv1UrASQfXcn2o4VcXN7dmJR8shBBCCFEGwcHBhIeHM3jwYD799FOcnZ2ZOHEifn5+hIeHAzBq1Cg6duxIjRo1uH79Otu2baN27doABAQEoNFoiI6OplOnTtjb2+Ps7Ez//v0ZN24c7u7ueHl5ERkZWSShcTcTJkygefPmDBs2jEGDBuHo6MixY8eIiYlh4cKFxMfHExkZSd++falTpw46nY4dO3awbNkyJkyYABgrqmbNmsXbb7+NnZ0dffv2xcbGhm+++YbJkyczffp0nnnmGbPz3pmwAahbty42NuZfCGZmZvLBBx/QtWtXfHx8uHLlCosWLSI1NZXu3bsDxoTUiy++SEBAALNnz+by5cum4729771YTZcuXRg8eDCLFy8mNDSU8+fPM2rUKJo1a3bX+bgKZWRkkJSUZNpOTk4mPj4ed3d3U1Jw3Lhx9OzZk9atWxMSEsIPP/zAt99+y/bt2wHjkMu1a9fSoUMHPD09OXv2LB999BH29vamidbbt2/PuHHjGDp0KMOHD8dgMPDRRx9hbW1NSEgIgOn/i0IHDhxAq9UWud/3cw2WIkkpUe7lZmXyy4Y1ZN9M57acNJm2J7CrFIiV9b2H8hQO37MqD6N9Ciulbg3fs9OWh4sWT6O1B85w4kI6ds9kAfBb9jS613/JwlEJIYQQ4mm1fPlyRo4cSefOncnLy6N169Z89913poRMQUEBQ4cO5ezZs7i4uBAWFsbcuXMB45C2qVOnMnHiRN544w369evHihUrmDNnDhEREXTu3BkXFxfGjx/PmTNnsLOzKzaW+vXrs2PHDt555x1eeOEFlFJUq1aNnj17AuDv70/VqlWZOnUqKSkpaDQa0/bo0aNN/YwePZqgoCCioqKYN28emZmZAKxZs4ZevXoVOe/d9p05cwZ/f3+zfVZWVpw4cYKVK1dy5coVPDw8aNq0KbGxsdStWxeAmJgYkpKSSEpKKnJ8cSsmDhgwgJs3b7Jw4ULGjh2Lm5sbL730EjNnziz2nh04cMCUFALjyocA/fv3Z8WKFQC8+uqrLFmyhBkzZjBixAhq1qzJl19+yfPPPw+AnZ0dsbGxfPLJJ1y/fp1KlSrRunVr9uzZg5eXsQiiVq1afPvtt0ydOpUWLVqg1Wpp2LAhP/zww10nlS+L0lyDpWjUg65z+QRLT0/H1dWVtLS0p2bmelF2Z44d4X9TJ922xwqdcy8ynfZQtXmru/4CLdTvm3Hs3PsiDjrFsWmdH32wFvThgT38+sdRDrjVI1Nrx9oG1WjjXrpyWyEeF7l5V5jzzULOXrvG34I3AdDq+XjsdPL/srg3eb9gTu6HEOJRycnJITk5mcDAwBKTK8JcZmYmfn5+REVFMXDgwL/8/NeuXaNt27a4uLjw/fff4+DwZAy5FA+muNdsad8vSKmDKPcMt8bkZtkr1r50Flu3f6K1roSdwRZXV9e7HqOU4nLWZTLzjON/rZ7mSc6V4uzpeObfdGCHe1MytcZfNr62MveOePL8/vtcmnn8x5SQ0mrtsb01T5oQQgghxJMiLi6ONWvWcOrUKQ4dOkSfPn0ATEMC/2ru7u5s2bKFtm3bsnfvXovEIJ5MMnxPlHvq1qRxBq0i30qh0RiTLe07dqRGu7tPFPjBvg9Ym7CWgmxfIPT/s3fn8TVe+QPHP/cmN7nZIyESESFEiJKpfdfYEkukU7WUsRWVGTsl6FQwlqEJYxulvxYzE2qoaia0BKWxVFuitEiKpIhYIiSy3u38/rjJrdtEQpUrcd6vV17t8zzneZ7veZIr937zPedQzgi/yu/SQe7vnA6tNuGky+Xv2Xup02MW/g7yr1dS5aHRGRj24Qm6VD9DQDVIzqpPkzqBNKobUvXng5MkSZIkqUqKjo4mOTkZGxsbWrRoQWJiItWrV7dYPO7u7sydO9di95cqJ5mUkl5opz6PI3HrZgC8MjX8azkcLs5D+darW2rivRJJt5IAUGKcX8lOZfv0g7WUrMsUWhn75yw09H+pHbg4VHCSJD1fLtzI4URqFt09cgE4nN6DQaGTcHeswq9dSZIkSZKqrJdffpmTJ09aOgxJemIyKSW90JKPJaIrXoLTygBC8UvJk63Pw1dgKCi0QXOvJSG1hhOXlo9aVYVfSroiCpTGD+72Ll7QqHEFJ0jS8yfzegwxXeJxtjEmpZa/0VkmpCRJkiRJkiTJwqrwJ2lJqpjBoDf9vwLB4abWphX4rOwePjzt54udKcqpQ1yGcfUuexurpxmmZemLKLAyPgs7ueKeVMnkFGr5MDGVQMUnuNqWzAFnj0e1hhaOTJIkSZIkSZIk+QlTeqHpNDpcVMZx1woBhapfXhLlTTOj1RpXkwj0tiW0iSdv9wx4qnFakkFXRJ7SDgC1lfwnQ6pcPjl5jTUHz2OtNCakvs5eRIf2R1Cpqlk4MkmSJEmSJEmSZKWU9ELTFmlp6NKKbzM/RyEEhuJKIIVSUe7kx8JgPPZm5+q8HvSHZxGqRfyYW0B/0Z17TXoDslJKqnxu5BRiZ11g2h75Sh9UKicLRiRJkiRJkiRJUgmZlJJebAYDSoVx6J0C0BcnXaysyl+NyyCM59haV+2X0PF7udxT2Ji2O1ZztGA0kvTohBDcunOMuoqV/CXoHgBWVg54V5MJKUmSJEmSJEl6XlTtT9SSVAGhB6E0AMbhe3plcYKqgqSUEMbkVZWe4Bwo1Bufzau3DvCehwEn3xkWjkiSHs3Ijd/SwmkRTdyT8XAz7rOzq2PZoCRJkiRJkiRJMiPH4kgvNIVBIChJSglEcVJKqawgKWUoTkpZq55ugJZSlAtHV1J08SAAzrpcnKyr8GTuUpVSqNVzOOU2zjb3Adh/pSeutRYS1GyDhSOTJEmSJEmSJOlBMiklvdCEMA7zgeLhe8UTeSsrqJSiePieuqoO3zu7HRLmUnjtJABqQxHYyYmhpcrh9r00GrhewqU4KfV2eAQtGr2BWl3LwpFJkiRJklRVjRw5EoXCOC+tjY0NDRo0YMGCBeh0uie67qFDh1AoFNy7d+/3CfQRpKamMmTIEGrVqoVaraZ27dqEh4dz4cIFs3bx8fF06dIFJycn7O3tadWqFZs2bTJrk5aWhkKh4PTp0498/3nz5tGoUSMcHByoVq0a3bt358SJE2bXHD16NPXq1cPOzo769esTFRWFRqOp8NqxsbEEBQVhb2+Pl5cXb775Jnfu3Cn3nHXr1tGsWTOcnZ1xdnamXbt2fP7556bjWVlZTJw4kYCAAOzs7KhTpw6TJk0iOzvb1GbTpk2mn49ff926dcvUrqioiHfeeQdfX19sbW2pW7cuH330kVk8//jHP0z38vHxYerUqRQWFpbbh507d9KzZ0/c3d0f+/vxtFXRT9SS9GgUBoGhuFIqq1oj3DFO6K0op1LKIAyI4qSUncrmoe0qtfxMAAodjR/ibX1aQdPuloxIkipkMAhOXT7DvSv9md1amPbbq90sGJUkSZIkSS+K0NBQNm7cSFFREXv27GH8+PGoVCpmz55t6dAA0Gg02NiU//lFq9XSo0cPAgIC2LlzJ15eXly7do3PP//cLDG2evVqpkyZQmRkJOvWrcPGxobPPvuMiIgIfvjhB6Kjo39znA0bNmTNmjX4+flRUFDAihUr6NmzJxcvXqRGjRpcuHABg8HA+vXradCgAT/88ANjx44lLy+v3PsePXqU4cOHs2LFCsLCwkhPTyciIoKxY8eyc+fOh55Xu3Zt/v73v+Pv748Qgs2bNxMeHk5SUhJNmjTh+vXrXL9+nejoaAIDA/n555+JiIjg+vXr7NixA4BBgwYRGhpqdt2RI0dSWFiIh4eHad/AgQO5efMmH374IQ0aNCAjIwODwWA6vmXLFmbNmsVHH31E+/btSUlJMSVEly9f/tA+5OXl0bFjRwYOHMjYsWMr/B48U+IFlp2dLQCRnZ1t6VAkC9kwarQ4ELFCRA/sI5YPnSrWjDsg1ow7IOJWJZXZPrsoW1y+d1n4Ru4SvpHx4qfbt59twM9KwjwhopzFjH3bRc2DSSL6coalI5KkCv3rWKp4NXqx2H/AT+zZFyC27W4nfvhxmjAYDJYOTark5PsFc/J5SJL0tBQUFIhz586JgoICS4fy2EaMGCHCw8PN9vXo0UO0bdtWZGVliWHDhglXV1dhZ2cnQkNDRUpKiqldWlqa6Nu3r3B1dRX29vYiMDBQ7N69W6SmpgrA7GvEiBFCCCFycnLEkCFDhL29vfD09BTLly8XXbp0EZMnTzZd19fXVyxYsEAMGzZMODk5mc5NTEwUHTt2FGq1WtSuXVtMnDhR5ObmCiGESEpKEoBIS0t7aF+vXLkiVCqVmDZtWqljq1atEoD4+uuvhRDC1IekpKTHf6jFSn7v7N+//6Ftli1bJurVq1fudd577z3h5+dXKl5vb+/HjqlatWri//7v/x56/L///a+wsbERWq22zOO3bt0SKpVK/Otf/zLt+/zzz4WLi4u4c+fOQ687fvx40bVrV7N906ZNEx06dHikuH+P78eDynvNPur7BTl8T3qhKcQvc0qhUJKrPMntOl/T5y/NSrX96e5PvLLtFcI+7UdJkWFVnVPqG50DW2v24oKVcciebQVzbEnS8yD55n3sVAUApOc3wlD9Y5oExqBQyJ9fSZIkSaqshBDk6fUW+RJCVBxgOezs7NBoNIwcOZLvvvuOuLg4jh8/jhCC3r17o9VqARg/fjxFRUV89dVXnD17lqVLl+Lo6IiPjw+ffPIJAMnJyWRkZLBy5UoApk2bxtGjR4mLiyMhIYHExEROnTpVKobo6GiCgoJISkri3Xff5dKlS4SGhtK/f3/OnDnDtm3bOHLkCBMmTACgRo0aKJVKduzYgV6vL7NfO3bsQKvV8vbbb5c6Nm7cOBwdHdm6desTPbsSGo2GDRs24OLiQlBQ0EPbZWdn4+ZWfnV8u3btuHr1Knv27EEIwc2bN9mxYwe9e/d+5Hj0ej0ff/wxeXl5tGvXrtx4nJ2dsX7IdC//+te/sLe35/XXXzfti4uLo2XLlixbtgxvb28aNmzI22+/TUFBgalN+/btOXnyJN988w0Aly9fZs+ePY/Vh+eNHL4nvdCKlHp2uu3HL0sJKNAq7iNsFSitSudrL2RdQGvQolT8kohysrV/htE+G1cKiuhn2x0a/TJcz1FOci4954TQU1B4B1db49j9NvXr0PQludqeJEmSJFV2+QYD9b86a5F7X+rcFAerx38fLITgwIED7N27l169erFr1y6OHj1K+/btAeO8Rj4+PuzatYsBAwZw5coV+vfvT9OmTQHw8/MzXask0eLh4YGrqysA9+/fZ/PmzWzZsoVu3boBsHHjRmrVKj1/ZteuXZk+fbppe8yYMQwdOpQpU6YA4O/vz6pVq+jSpQvr1q3D29ubVatWMXPmTObPn0/Lli0JDg5m6NChprhSUlJwcXHBy8ur1P1sbGzw8/MjJSXlsZ/bg+Lj4xk8eDD5+fl4eXmRkJBA9erVy2x78eJFVq9eXeGQwQ4dOhAbG8ugQYMoLCxEp9MRFhbG2rVrK4zn7NmztGvXjsLCQhwdHfn0008JDAwss21mZiZ/+9vfeOuttx56vQ8//JAhQ4ZgZ2dn2nf58mWOHDmCWq3m008/JTMzk7/85S/cuXOHjRs3AjBkyBAyMzPp2LEjQgh0Oh0RERHMmTOnwj48r2SllPRCu+mYy12l8UOsAiXWGLCn7ERT5n0duZemk5cSZdpnU0byqrK7kfkzAPb6fLorsxjoWY0+NVwsHJUkPdzJnzP54lAIvT1G098/HgCVtbOFo5IkSZIk6UUTHx+Po6MjarWaXr16MWjQIEaOHIm1tTVt2rQxtXN3dycgIIDz588DMGnSJBYuXEiHDh2IiorizJkz5d7n8uXLaLVaWrdubdrn4uJCQEBAqbYtW7Y02/7+++/ZtGkTjo6Opq+QkBAMBgOpqamAsXLrxo0bxMbG0q5dO7Zv306TJk1ISEh45GdR0dxVYEzOPRhHYmKi6VhwcDCnT5/m2LFjhIaGMnDgQLMJwUukp6cTGhrKgAEDzOZKevC6ERERAJw7d47Jkyczd+5cTp48yRdffEFaWprpeGJiotl5sbGxpusFBARw+vRpTpw4wZ///GdGjBjBuXPnSsWTk5NDnz59CAwMZN68eWX2+/jx45w/f57Ro0eb7TcYDCgUCmJjY2ndujW9e/dm+fLlbN682VQtdejQIRYvXsw///lPTp06xc6dO9m9ezd/+9vfKnymzytZKSW9sO6cTqLOz3dpUGTDbWcABY2KBGlWtmW2T75uQGhqUFLE6u/hiK11FUtKnYujaN8KCFqBb0EG/3HNhsZdLR2VJD1UXpGOP29OYEnH1F92KtS4u79isZgkSZIkSfr92CuVXOrc1GL3fhzBwcGmSb9r1aqFtbU1cXFxFZ43ZswYQkJC2L17N/v27WPJkiXExMQwceLE3xq6iYODg9l2bm4u48aNY9KkSaXa1qnzS5W5k5MTYWFhhIWFsXDhQkJCQli4cCE9evTA39+f7Oxsrl+/Xqo6S6PRcOnSJUJCQiqMrV+/fmbJOm9vb7O4GzRoQIMGDWjbti3+/v58+OGHZpPGX79+neDgYNq3b8+GDRvMrv3g6nLOzsY/Vi5ZsoQOHTowY8YMAJo1a4aDgwOdOnVi4cKFtGzZ0uy8mjVrmv6/ZEVFgBYtWvDtt9+ycuVK1q9fb2pz//59QkNDcXJy4tNPP0WlKnuql//7v//jD3/4Ay1atDDb7+Xlhbe3Ny4uvxQENG7cGCEE165dw9/fn3fffZdhw4YxZswYAJo2bUpeXh5vvfUW77zzTrnP9Hklk1LSC+vglo1k29pBSQ5KocLGUUnHjh3LbF+kNaajarjdY8foV/FysUNZ1eZaunWOQqXxrxq21tZQv5uFA5Kk8mXmFmGjvA9Aod6ZU0WxRIY2wqaqJYwlSZIk6QWlUCh+0xA6SyhJpDyocePG6HQ6Tpw4YRq+d+fOHZKTk82Gf/n4+BAREUFERASzZ8/mgw8+YOLEiaaKowfnd/Lz80OlUvHtt9+aEknZ2dmkpKTQuXPncmNs3rw5586dKxVneRQKBY0aNeLYsWMAvP7660RGRhITE0NMTIxZ2/fff5/8/HyGDx9e4XWdnJxwcnJ6pBgMBgNFRUWm7fT0dIKDg2nRogUbN25E+asEYln9y8/PLzXHk1Xxz5YQAjs7u0d+Lr+OJycnh5CQEGxtbYmLi0OtVpd5Xm5uLv/9739ZsmRJqWMdOnRg+/bt5Obm4ujoCBiHSiqVSmrXrm3qw6/7+mAfHueZPi9kUkp64RTl5/P52hiup18BwC23gMzqdbCx+QPutdJLlbiaztMbJ0RX2+jxdXcos02lpy2gUGnM0qlrBkI1XwsHJEkPp9Pd5+rlOYxs8gMAbk4evNuj7LH9kiRJkiRJluDv7094eDhjx45l/fr1ODk5MWvWLLy9vQkPDwdgypQp9OrVi4YNG3L37l2+/PJLGjduDICvry8KhYL4+Hh69+6NnZ0dTk5OjBgxghkzZuDm5oaHhwdRUVEolcoKF3iJjIykbdu2TJgwgTFjxuDg4MC5c+dISEhgzZo1nD59mqioKIYNG0ZgYCA2NjYcPnyYjz76iMjISMBYUbVs2TLefvtt1Go1w4YNQ6VS8dlnnzFnzhwWLlzISy+9ZHbf5OTkUrE0adKkVDVRXl4eixYtol+/fnh5eZGZmcnatWtJT09nwIABgDEh9corr+Dr60t0dDS3b982ne/p6fnQvoeFhTF27FjWrVtHSEgIGRkZTJkyhdatW5c5H1eJ2bNn06tXL+rUqcP9+/fZsmULhw4dYu/evYAxIdWzZ0/y8/P5z3/+Q05ODjk5OYBx4nirB5Kq27ZtQ6fT8ac//anUfYYMGcLf/vY3Ro0axfz588nMzGTGjBm8+eabprmnwsLCWL58OS+//DJt2rTh4sWLvPvuu4SFhZnd59eysrK4cuUK169fB375fnh6epb7zJ4FmZSSXjjXzp/l0ncnTNv1b97ldv1XUGqqoVRef+h5JZVSVXrOb10RRSWVUo9ZrixJz9LPd/L439f/prHdHuoVVzjb29e1aEySJEmSJEll2bhxI5MnT6Zv375oNBo6d+7Mnj17TAkZvV7P+PHjuXbtGs7OzoSGhrJixQrAOPxq/vz5zJo1i1GjRjF8+HA2bdrE8uXLiYiIoG/fvjg7OzNz5kyuXr360AqdEs2aNePw4cO88847dOrUCSEE9evXZ9CgQQDUrl2bunXrMn/+fNLS0lAoFKbtqVOnmq4zdepU/Pz8iImJYeXKleTl5QGwdetWBg8eXOq+Ze27evWqqQKohJWVFRcuXGDz5s1kZmbi7u5Oq1atSExMpEmTJgAkJCRw8eJFLl68WOr88lZMHDlyJPfv32fNmjVMnz4dV1dXunbtytKlS8t9Zrdu3WL48OFkZGTg4uJCs2bN2Lt3Lz169ADg1KlTnDhh/Hz560qr1NRU6tata9r+8MMPee2110yT1j/I0dGRhIQEJk6cSMuWLXF3d2fgwIEsXLjQ1Oavf/0rCoWCv/71r6Snp1OjRg3CwsJYtGhRuX2Ii4tj1KhRpu2S70dUVNRD5756VhTiSde5rMRycnJwcXExLdcovRhSvj7C0bWb0YhCcrV3aX3pOt+0/yNqTQfaNrpAiyl/KfO84Vv+zVdn3PD3ySJh/LBnHPUz8r/JxKbfZnrATHq6O/OvZn4VnyNJFjDn07PcyvgXbzTaycV7dbmh68ecPw5Hpapm6dCkKki+XzAnn4ckSU9LYWEhqamp1KtXr8LkimQuLy8Pb29vYmJiSk2g/SxkZWXRrVs3nJ2d+fzzz7G3r3qrlEullfeafdT3C7IUQnrhGPR6fBwCUGIsbVUIgUFhLBpU+LZ56Hma4uF7KusqNo9UsSsFRaxWNuKL6sY5tdRVcGVBqWoQQqApuISXww0AalR7iTe7j5UJKUmSJEmSXhhJSUls3bqVS5cucerUKYYOHQpgGhL4rLm5ubF//366devG8ePHLRKDVDnJ4XvSC8eg16NUWCGEMcmkEKDBDntA6VSjzHMKdAUUanUA2FhVzaRU1MXrfG7fDor/qOFSpccpSpXZzz+vo5fnL5NqBtWpg4+b/GucJEmSJEkvlujoaJKTk7GxsaFFixYkJiZSvXp1i8Xj7u7O3LlzLXZ/qXKSSSnphaPX61AolBgwJqWUCEqKBpVlJJw+/elT5h+fT15mT8CzalZKJcVy+7YbqLx4Jesb6nvWY2ydxpaOSpLM5Gt0/F9iKjX1x6huDXlaOxzsPPHwCLV0aJIkSZIkSc/Uyy+/zMmTJy0dhiQ9MTk+R3rhCL0BJcoHKqUEYKwKUpYxZO3Y9W8ouNMKfX49AHycvJ5ZrM+EXgf/m0xR4X0Axl37L4tqCOra2Vo4MEkyF38mg+UJKdzOyQTgP+cHUst/J05OTSwcmSRJkiRJkiRJv4WslJJeOCWVUoJfhu+ZKqWUpaugrt1woehmR9N2oxp1nkWYz46uEAxaCpXGJJRtp6nQoJuFg5Kk0u5nf01Xn+/wdrwDwJC2gTT2kpMsS5IkSZIkSVJlJZNS0gvHoNOjRImhpFIKUBRXSinKSErlFxkTVtUcDQxp5c+AFj7PLNZnQlcIQKHSBgB1/VdAKeeTkp4fOr2B73/+CV9mU7fxLwvGdm3SyIJRSZIkSZIkSZL0pGRSSnrhGAz64kop44fbpGaTcCoyJprKmlNKpze286kOM0Kq4IfgkqSUlbFSSq66Jz1vFu+5wOEfDjCnjaBQZ4tO1ZaXfF/CyVEO25MkSZIkSZKkykwmpaQXjkGnQ4ESfXGllMbWFSXWgKCaZ+kVvHQGY1LKuoquuoeuCICi4kop2zKqxSTJks5n5GCnMiZPc3RetG+xGl93BwtHJUmSJEmSJEnSk5IlEdILx6DX84Prz2gVOgDsC27zY81/Ub3jPTx8S89PU1IppVJWvZfL5fwixqTm8kbTZeRaGRNytlWwn1LlVVBwDS+br2jqfg6AAC8vmZCSJEmSJEmSpCpCVkpJLxzNrVvs9jpBx4vG4WrWOg1a6xxU9mVXCOmMBVXYVMFhbR9n3CH+vgC3NgDYKZVUU8n5pKTnQ/yZ61hlDqRPnZumfSprV8sFJEmSJEmSJEnS76rqfcqWpAoUXLiAVqkvXnUPFMJA3bz6KB9SIaQvHr6nsq5iL5dT/+Z+0jYAQjMTWXXtQ3a38MfBSialJMu7cCOHyVu/xQZjQup8lj8Ozp2pU+dNC0cmSZIkSZJU2siRI1EoFCgUCmxsbGjQoAELFixAp9M90XUPHTqEQqHg3r17v0+gjyA1NZUhQ4ZQq1Yt1Go1tWvXJjw8nAsXLpi1i4+Pp0uXLjg5OWFvb0+rVq3YtGmTWZu0tDQUCgWnT59+5PvPmzePRo0a4eDgQLVq1ejevTsnTpwwu+bo0aOpV68ednZ21K9fn6ioKDQaTYXXjo2NJSgoCHt7e7y8vHjzzTe5c+fOI8f297//HYVCwZQpU8z2X7p0iT/+8Y/UqFEDZ2dnBg4cyM2bN83aLFq0iPbt22Nvb4+rq2uZ1y/5GXrw6+OPPzYd37lzJz169DDdp127duzdu7fCuHfu3EnPnj1xd3d/7O/H01bFPmVL0sPdu3mD/f+3lvSsW/T5KpuSuiiFMKBQWD80KaXTG/9b5YbvfbOeQk0+AM1zzjPQ+g6BjnYWDkqSjK7fK8BRlQeAEEqcvP5J25YbcXFpbuHIJEmSJEmSyhYaGkpGRgY//fQT06dPZ968ebz33nuWDsvkUZI2Wq2WHj16kJ2dzc6dO0lOTmbbtm00bdrULDG2evVqwsPD6dChAydOnODMmTMMHjyYiIgI3n777SeKs2HDhqxZs4azZ89y5MgR6tatS8+ePbl9+zYAFy5cwGAwsH79en788UdWrFjB+++/z5w5c8q97tGjRxk+fDijR4/mxx9/ZPv27XzzzTeMHTv2keL69ttvWb9+Pc2aNTPbn5eXR8+ePVEoFBw8eJCjR4+i0WgICwvDYDCY2mk0GgYMGMCf//zncu+zceNGMjIyTF+vvvqq6dhXX31Fjx492LNnDydPniQ4OJiwsDCSkpLKvWZeXh4dO3Zk6dKlj9TXZ0q8wLKzswUgsrOzLR2K9Awc3LRBRA/sIzb06Sb2tmslogf2EdED+4jYAdFiwTvviN27d5d5Xst/LBK+kfFi/LYDzzjip2zly2Lcx9Gi5sEksf77b4TQFlo6IkkSQgih1eaIvYdCxf/2Nhb7D/iJw1+1sHRI0gtOvl8wJ5+HJElPS0FBgTh37pwoKCiwdCiPbcSIESI8PNxsX48ePUTbtm1FVlaWGDZsmHB1dRV2dnYiNDRUpKSkmNqlpaWJvn37CldXV2Fvby8CAwPF7t27RWpqqgDMvkaMGCGEECInJ0cMGTJE2NvbC09PT7F8+XLRpUsXMXnyZNN1fX19xYIFC8SwYcOEk5OT6dzExETRsWNHoVarRe3atcXEiRNFbm6uEEKIpKQkAYi0tLSH9vXKlStCpVKJadOmlTq2atUqAYivv/5aCCFMfUhKSnr8h1qs5PfO/v37H9pm2bJlol69euVe57333hN+fn6l4vX29q4whvv37wt/f3+RkJBQ6jnv3btXKJVKs9+L9+7dEwqFQiQkJJS61saNG4WLi0uZ9wHEp59+WmE8DwoMDBTz589/pLa/x/fjQeW9Zh/1/UIVK/2QpIfTFBQAkOOg5qyPh2m/rbugYdOmtGzZ0rSvUFdI7PlY1p5eS77WuDqdTVUb1qYrpLB4xT21ez2wtrVwQJIE+368wdp9n2GlT8HO2vjak9VRkiRJkvTiEkKQr9FZ5EsI8USx29nZodFoGDlyJN999x1xcXEcP34cIQS9e/dGq9UCMH78eIqKivjqq684e/YsS5cuxdHRER8fHz755BMAkpOTycjIYOXKlQBMmzaNo0ePEhcXR0JCAomJiZw6dapUDNHR0QQFBZGUlMS7777LpUuXCA0NpX///pw5c4Zt27Zx5MgRJkyYAECNGjVQKpXs2LEDvV5fZr927NiBVqstsyJq3LhxODo6snXr1id6diU0Gg0bNmzAxcWFoKCgh7bLzs7Gzc2t3Gu1a9eOq1evsmfPHoQQ3Lx5kx07dtC7d+8K4xg/fjx9+vShe/fupY4VFRWhUCiwtf3l85RarUapVHLkyJEKr13WvapXr07r1q356KOPyv05NBgM3L9/v8K+P8/kROfSC8Og1+Fm40mW5gYqnR6s7BH2bbF3UdNr0CCztvt+3sffv/k7ABp9PwDsVVUsaaMtoFBp7JO6Ck7iLlU+RTo9E7YmEeSeyktBcDnblyzVLGY27Wbp0CRJkiRJspACrZ7AuRXPmfM0nFsQgr3N439kFkJw4MAB9u7dS69evdi1axdHjx6lffv2gHFeIx8fH3bt2sWAAQO4cuUK/fv3p2nTpgD4+fmZrlWSbPDw8DDNQ3T//n02b97Mli1b6NbN+D5p48aN1KpVq1QsXbt2Zfr06abtMWPGMHToUNOcSP7+/qxatYouXbqwbt06vL29WbVqFTNnzmT+/Pm0bNmS4OBghg4daoorJSUFFxcXvLy8St3PxsYGPz8/UlJSHvu5PSg+Pp7BgweTn5+Pl5cXCQkJVK9evcy2Fy9eZPXq1URHR5d7zQ4dOhAbG8ugQYMoLCxEp9MRFhbG2rVryz3v448/5tSpU3z77bdlHm/bti0ODg5ERkayePFihBDMmjULvV5PRkbGo3W42IIFC+jatSv29vbs27ePv/zlL+Tm5jJp0qQy20dHR5Obm8vAgQMf6z7PE/lJVHphGPR6vO0bAuBcUISTqIm1ugVKj4BSbe8V3sOgdaI6bfGybQJADfvKm33+tcSs+/yl3iTOOvoDxlX3JMnS7ubmU8s+lbrOVwGo7uzNqM6dUSiqWJWiJEmSJElVUnx8PI6OjqjVanr16sWgQYMYOXIk1tbWtGnTxtTO3d2dgIAAzp8/D8CkSZNYuHAhHTp0ICoqijNnzpR7n8uXL6PVamndurVpn4uLCwEBpT/XPDgaBOD7779n06ZNODo6mr5CQkIwGAykpqYCxkqdGzduEBsbS7t27di+fTtNmjQhISHhkZ+FjY1NhW1iY2PN4khMTDQdCw4O5vTp0xw7dozQ0FAGDhzIrVu3Sl0jPT2d0NBQBgwYYDY31IPXjYiIAODcuXNMnjyZuXPncvLkSb744gvS0tJMxxMTE83Oi42N5erVq0yePJnY2FjUanWZ/ahRowbbt2/nf//7H46Ojri4uHDv3j2aN2/+0HmLH+bdd9+lQ4cOvPzyy0RGRjJz5syHzku2ZcsW5s+fz3//+188PDwqfKbPK1kpJb0wDHq96cOtQoC+uDpIWa30XxTuF+rJuzSTVKEy7bNVVZ0Pxn+7dJ0zNYJN2zV/w1+AJOn3dC9fw4/nZvJu232mfQG1vPFwLvuXvyRJkiRJLwY7lRXnFoRY7N6PIzg4mHXr1mFjY0OtWrWwtrYmLi6uwvPGjBlDSEgIu3fvZt++fSxZsoSYmBgmTpz4W0M3cXBwMNvOzc1l3LhxZVbe1KlTx/T/Tk5OhIWFERYWxsKFCwkJCWHhwoX06NEDf39/srOzuX79eqnqLI1Gw6VLlwgJqfh71q9fP7Nknbe3t1ncDRo0oEGDBrRt2xZ/f38+/PBDZs+ebWpz/fp1goODad++PRs2bDC79oOryzk7OwOwZMkSOnTowIwZMwBo1qwZDg4OdOrUiYULF9KyZUuz82rWrMmBAwe4desWzZv/Mp2EXq/nq6++Ys2aNRQVFWFlZUXPnj25dOkSmZmZWFtb4+rqiqenp1nV22/Rpk0b/va3v1FUVGQ2PPDjjz9mzJgxbN++3WxIYXnP9HklP4lKLwy9TkdJcaACgaE4QaUsY+janfsChAqFQuBX3REXOxU9Ams+y3Cfnu+3kZ1TC5ROvHXtv7QOHk8rF4eKz5Okp+TS7VxC//EV77Y5g7cj3Ne64OlaEy/PP1o6NEmSJEmSLEyhUPymIXSWUJJIeVDjxo3R6XScOHHCNHzvzp07JCcnExgYaGrn4+NDREQEERERzJ49mw8++ICJEyeaKo4enN/Jz88PlUrFt99+a0okZWdnk5KSQufOncuNsXnz5pw7d65UnOVRKBQ0atSIY8eOAfD6668TGRlJTEwMMTExZm3ff/998vPzGT58eIXXdXJywsnJ6ZFiMBgMFBUVmbbT09MJDg6mRYsWbNy4sVRFUln9y8/Px9ra/GfJqnjeYCEEdnZ2pc7r1q0bZ8+eNds3atQoGjVqRGRkpOn8EiVDDA8ePMitW7fo16/fI/XvYU6fPk21atXMElJbt27lzTff5OOPP6ZPnz5m7R/nmT4vKserW5J+BzqNDoHxH3WlEAhlSVJKUaqt1mD8R99ereXA9FeeWYxPXcFd+HQchW13gK0TA+58RVOv+aAo/Qwk6Vn5IT0brV5gb21cjOCe7WJebRNq4agkSZIkSZKenL+/P+Hh4YwdO5b169fj5OTErFmz8Pb2Jjw8HIApU6bQq1cvGjZsyN27d/nyyy9p3LgxAL6+vigUCuLj4+nduzd2dnY4OTkxYsQIZsyYgZubGx4eHkRFRaFUKlFU8L4+MjKStm3bMmHCBMaMGYODgwPnzp0jISGBNWvWcPr0aaKiohg2bBiBgYHY2Nhw+PBhPvroIyIjIwFjRdWyZct4++23UavVDBs2DJVKxWeffcacOXNYuHAhL730ktl9k5OTS8XSpEkTVCqV2b68vDwWLVpEv3798PLyIjMzk7Vr15Kens6AAQMAY0LqlVdewdfXl+joaG7fvm0639PT86F9DwsLY+zYsaxbt46QkBAyMjKYMmUKrVu3LnM+LjAmeX7dFwcHB9zd3c32b9y4kcaNG1OjRg2OHz/O5MmTmTp1qtmQyitXrpCVlcWVK1fQ6/WmqqwGDRrg6OjI//73P27evEnbtm1Rq9UkJCSwePFiswnlt2zZwogRI1i5ciVt2rThxo0bgHFSfRcXl4f2veS+169fB375fnh6epb7zJ4FmZSSXhh63S8raOTbeaKzNf5Db6Us/Q93kVZffOzJVtx47hTdB8QvE5z3WgxWqvLPkaSnSAhBYe5JWtX8HmfbfAAGtWli4agkSZIkSZJ+Pxs3bmTy5Mn07dsXjUZD586d2bNnjykho9frGT9+PNeuXcPZ2ZnQ0FBWrFgBGIdfzZ8/n1mzZjFq1CiGDx/Opk2bWL58OREREfTt2xdnZ2dmzpzJ1atXHzrvUYlmzZpx+PBh3nnnHTp16oQQgvr16zOoeOGn2rVrU7duXebPn09aWhoKhcK0PXXqVNN1pk6dip+fHzExMaxcuZK8vDzAWMUzePDgUvcta9/Vq1epXbu22T4rKysuXLjA5s2byczMxN3dnVatWpGYmEiTJsb3iAkJCVy8eJGLFy+WOr+8lepGjhzJ/fv3WbNmDdOnT8fV1ZWuXbuydOnScp/Zo0hOTmb27NlkZWVRt25d3nnnHbPnBTB37lw2b95s2n755ZcB+PLLL3nllVdQqVSsXbuWqVOnIoSgQYMGLF++3GyurA0bNqDT6Rg/fjzjx4837R8xYgSbNm16aHxxcXGMGjXKtF3y/YiKimLevHlP0vUnphBPus5lJZaTk4OLiwvZ2dmmcaZS1bV17izcblbjh3uJKFUB2DgaSx1b9PKlbXh9s7ZT9vyTXV/5Us2piKR3XrNEuE9H5k+wpiW+nRIoUtrwXbtAaqsrnoRQkp6GQq2eUxe/oiBjjNn+Lp1PY21ducqOpapNvl8wJ5+HJElPS2FhIampqdSrV6/C5IpkLi8vD29vb2JiYhg9evQzv39WVhbdunXD2dmZzz//HHt7+2ceg/TslfeafdT3C3LJLemFYdDpERTnYBVK0KZS4H6VZsE+pdpq9QYAyphuqnLTFaJHSZHSmIhSy1X3JAt6698n+WfCAQDuaxzI0TfFr94UmZCSJEmSJEmqQFJSElu3buXSpUucOnWKoUOHApiGBD5rbm5u7N+/n27dunH8+HGLxCBVTvITqfTCMOj1UJyUUqBE6H5EW/M69s6lK4U0OuPwPeuqs+AeAP+5o2FawEzTtl0ZQxcl6VlJuXEfB5VxyF56fhD+gZupV+/JV5mRpKpm7dq11K1bF7VaTZs2bfjmm2/Kbb99+3YaNWqEWq2madOm7Nmzx3RMq9USGRlJ06ZNcXBwoFatWgwfPtw0x4QkSZJUeURHRxMUFET37t3Jy8sjMTHRNNG2Jbi7uzN37ly6detmsRikykcmpaQXhl6ve2CMsRKDwoC1suxp1bQGYzvrKpS0ydToePuWFds8ewHgaKVEXeVKwaTK4vr1HYxpvITuvocA6P6SPy95P3xyRkl6UW3bto1p06YRFRXFqVOnCAoKIiQkhFu3bpXZ/tixY7zxxhuMHj2apKQkXn31VV599VV++OEHwLjy0KlTp3j33Xc5deoUO3fuJDk5+YlXB5IkSZKerZdffpmTJ0+Sm5tLVlYWCQkJNG3a1NJhSdJjk59IpReGQW8+fE+gf3hSSlf1hu/lFi8ja2soYs7tOLY088NKrronWUB2vpaLl1dTzyUVN3U2AA4Oj74ssSS9SEomOB01ahSBgYG8//772Nvb89FHH5XZfuXKlYSGhjJjxgwaN27M3/72N5o3b86aNWsAcHFxISEhgYEDBxIQEEDbtm1Zs2YNJ0+e5MqVK8+ya5IkSZIkSTIpJVVtdzPSOfDR++xbv4rrhekccUoqPqLEoNBjpTQfn/dNxjcsP7mcqznpAFhbVZGkTV4mhT8dBMBRl8+knK9o7epo4aCkF9HmY2kELdhHdt4dAP51biDNgv6Dd61BFo5Mkp4/Go2GkydP0r17d9M+pVJJ9+7dHzpfx/Hjx83aA4SEhJQ7v0d2djYKhQJXV9ffJW5JkiRJkqRHVXaZiCRVEd/+bydnD+wFoMDlJrXSbCmydgWUoDAQ1CTIrP2Mr2aQVZiFNr8lALZVZVKpLYMoys6BFh+gNmhAZWfpiKQX1NGLmSgwoLYuBMC1WndquLezcFSS9HzKzMxEr9dTs2ZNs/01a9bkwoULZZ5z48aNMtvfuHGjzPaFhYVERkbyxhtvPHRlnKKiIoqKikzbOTk5j9MNSZIkSZKkh5KVUlKVpsk3TqLs26QpbZMNVMstycMqaezkSZdOXczaZ972Ju/yFMgyrlrh5ejxDKN9iu6mUai0BcDWygraycmkpWevqOgmvraf8GqDPSgVxqG0ywd3sHBUkvTi0mq1DBw4ECEE69ate2i7JUuW4OLiYvry8Sm9aq0kSZIkSdJvISulpCrNUDyPUs7t29z19PrlgEKJT1vzKimDMFB4rzmGIk8Ki/f5e1SRiZe1BRTZGFcZtHWtDQ0bWTgg6UWz7IsLGO4tpq3HUahh3Gdl5YiyOFkqSVJp1atXx8rKips3b5rtv3nzJp6enmWe4+np+UjtSxJSP//8MwcPHnxolRTA7NmzmTZtmmk7JydHJqYkSZIkSfpdyEopqUrT63UAFObmAmBfpEVp7YqVTQDWavMPwzqDDgwqAP78ii+fje/AzJCAZxvw0yAEaPMpVBYnpZTyZS89e5uPpWGvzATgQlYj3D0G06TJchRysn1JeigbGxtatGjBgQMHTPsMBgMHDhygXbuyh722a9fOrD1AQkKCWfuShNRPP/3E/v37cXd3LzcOW1tbnJ2dzb4kSZIkSZJ+D7JSSqrSDHo91W29yS8yrvD18s83ONshDI2uOgorg1lbrUELwjiHVGMvZ4J8XJ91uE/Fqbt3Sag7ihR7XwDUSpkEkJ4trd5AnkaPg8o4nLZP28nUrd3TwlFJUuUwbdo0RowYQcuWLWndujX/+Mc/yMvLY9SoUQAMHz4cb29vlixZAsDkyZPp0qULMTEx9OnTh48//pjvvvuODRs2AMaE1Ouvv86pU6eIj49Hr9eb5ptyc3PDpriqVpIkSZIk6Vl47JKJr776irCwMGrVqoVCoWDXrl1mx0eOHIlCoTD7Cg0NNWuTlZXF0KFDcXZ2xtXVldGjR5NbXMlS4syZM3Tq1Am1Wo2Pjw/Lli0rFcv27dtp1KgRarWapk2bsmfPnsftjlTFGXRanFRuCIwTtCoEKIp/7JUOrmZttXotQhjztHYq1TON82mamHydFb4j2F3jFQBcVVVk8napUsgrzOXrE2Gs6zadui5XAajmVN3CUUlS5TFo0CCio6OZO3cuf/jDHzh9+jRffPGFaTLzK1eukJGRYWrfvn17tmzZwoYNGwgKCmLHjh3s2rWLl156CYD09HTi4uK4du0af/jDH/Dy8jJ9HTt2zCJ9lCRJqgoe/BxsY2NDgwYNWLBgATqd7omue+jQIRQKBffu3ft9An0EqampDBkyhFq1aqFWq6lduzbh4eGlFtmIj4+nS5cuODk5YW9vT6tWrdi0aZNZm7S0NBQKBadPn37k+8+bN49GjRrh4OBAtWrV6N69OydOnDC75ujRo6lXrx52dnbUr1+fqKgoNBpNhdeOjY0lKCgIe3t7vLy8ePPNN7lz506F56Wnp/OnP/0Jd3d37OzsaNq0Kd99953p+KPkQerWrVuqzd///nfT8eTkZIKDg6lZsyZqtRo/Pz/++te/otVqza5z7949xo8fj5eXF7a2tjRs2LDCXMjOnTvp2bMn7u7uj/39eNoeu1IqLy+PoKAg3nzzTV577bUy24SGhrJx40bTtq2t+TCpoUOHkpGRQUJCAlqtllGjRvHWW2+xZcsWwDhXQc+ePenevTvvv/8+Z8+e5c0338TV1ZW33noLgGPHjvHGG2+wZMkS+vbty5YtW3j11Vc5deqU6Y2XJOl1eqwV1giMkyorgHwcsQKU7r5mbR+slLK1rgJFhNpC+L9u3Km/BFTOvH4rgeothvCGV/nDNCTp93L80h3mffIxM1tewKY4F6pSVcPevoFlA5OkSmbChAlMmDChzGOHDh0qtW/AgAEMGDCgzPZ169ZFCPF7hidJkiQVK/kcXFRUxJ49exg/fjwqlYrZs2dbOjQANBpNhRWxWq2WHj16EBAQwM6dO/Hy8uLatWt8/vnnZomx1atXM2XKFCIjI1m3bh02NjZ89tlnRERE8MMPPxAdHf2b42zYsCFr1qzBz8+PgoICVqxYQc+ePbl48SI1atTgwoULGAwG1q9fT4MGDfjhhx8YO3YseXl55d736NGjDB8+nBUrVhAWFkZ6ejoRERGMHTuWnTt3PvS8u3fv0qFDB4KDg/n888+pUaMGP/30E9WqVTNrV1EeBGDBggWMHTvWtO3k5GT6f5VKxfDhw2nevDmurq58//33jB07FoPBwOLFiwHj97BHjx54eHiwY8cOvL29+fnnn3F1dS33mebl5dGxY0cGDhxodv/ngngCgPj000/N9o0YMUKEh4c/9Jxz584JQHz77bemfZ9//rlQKBQiPT1dCCHEP//5T1GtWjVRVFRkahMZGSkCAgJM2wMHDhR9+vQxu3abNm3EuHHjHjn+7OxsAYjs7OxHPkeqXGLfmSZ2jf6rWD24n4ge2Ef8r/tIseLPu8SacQdE6pnbZm2v3b8m6r37kfCNjBfHL2VaKOLfUcYZIaKcRd2E46LmwSTxc+wIS0ckvWCW70sWYe8tFfsP+ImNuzqKd3bsEzpdgaXDkqTHJt8vmJPPQ5Kkp6WgoECcO3dOFBRUvvcLZX0O7tGjh2jbtq3IysoSw4YNE66ursLOzk6EhoaKlJQUU7u0tDTRt29f4erqKuzt7UVgYKDYvXu3SE1NFYDZ14gRI4QQQuTk5IghQ4YIe3t74enpKZYvXy66dOkiJk+ebLqur6+vWLBggRg2bJhwcnIynZuYmCg6duwo1Gq1qF27tpg4caLIzc0VQgiRlJQkAJGWlvbQvl65ckWoVCoxbdq0UsdWrVolAPH1118LIYSpD0lJSY//UIuV/N7Zv3//Q9ssW7ZM1KtXr9zrvPfee8LPz69UvN7e3uWeFxkZKTp27Fhum4ryIEIYvx8rVqwot82vTZ061eze69atE35+fkKj0TzWdUr8Ht+PB5X3mn3U9wtPZcbjQ4cO4eHhQUBAAH/+85/NyuGOHz+Oq6srLVu2NO3r3r07SqXSVJJ3/PhxOnfubJbFDQkJITk5mbt375radO/e3ey+ISEhHD9+/Gl0SaqkDHo9CoUSQ3GlVGrdvqgMxmy0ysZ8GJtx+J5xn8qqCkwGritCAAVWagDs+m+wbDzSC8VgKALNKRq4XgKgWZ16LOzfA6vin0dJkiRJkqRHIgRo8izz9YSVpXZ2dmg0GkaOHMl3331HXFwcx48fRwhB7969TcOyxo8fT1FREV999RVnz55l6dKlODo64uPjwyeffAIYh3ZlZGSwcuVKwDjn4NGjR4mLiyMhIYHExEROnTpVKobo6GiCgoJISkri3Xff5dKlS4SGhtK/f3/OnDnDtm3bOHLkiKkit0aNGiiVSnbs2IG+eCXzX9uxYwdarZa333671LFx48bh6OjI1q1bn+jZldBoNGzYsAEXFxeCgoIe2i47Oxs3N7dyr9WuXTuuXr3Knj17EEJw8+ZNduzYQe/evcs9Ly4ujpYtWzJgwAA8PDx4+eWX+eCDD0q1Ky8PUuLvf/877u7uvPzyy7z33nvlDu+8ePEiX3zxBV26dDGLpV27dowfP56aNWvy0ksvsXjx4od+ryqD332MUmhoKK+99hr16tXj0qVLzJkzh169enH8+HGsrKy4ceMGHh4e5kFYW+Pm5maaaPPGjRvUq1fPrE3J3Ak3btygWrVq3Lhxw7TvwTYl1yhLUVERRUVFpu2cnJwn6qv0/DPodChRYij5fSIg1zaNxoFN8GzgYtbWOHzP+JKwta4KSalCNIpf5saytZJzSUnPxtlr2Vy6OIdmdl/QzM+4T6VytWhMkiRJkiRVUtp8WFzLMveecx1sHB77NCEEBw4cYO/evfTq1Ytdu3Zx9OhR2rdvDxjnNfLx8WHXrl0MGDCAK1eu0L9/f5o2bQqAn5+f6VoliRYPDw/TEK379++zefNmtmzZQrdu3QDYuHEjtWqVfk5du3Zl+vTppu0xY8YwdOhQpkyZAoC/vz+rVq2iS5curFu3Dm9vb1atWsXMmTOZP38+LVu2JDg4mKFDh5riSklJwcXFBS8vr1L3s7Gxwc/Pj5SUlMd+bg+Kj49n8ODB5Ofn4+XlRUJCAtWrlz0v6cWLF1m9enWFQwY7dOhAbGwsgwYNorCwEJ1OR1hYGGvXri33vMuXL7Nu3TqmTZvGnDlz+Pbbb5k0aRI2NjaMGDECqDgPAjBp0iSaN2+Om5sbx44dY/bs2WRkZLB8+XKz+7Vv355Tp05RVFTEW2+9xYIFC8xiOXjwIEOHDmXPnj1cvHiRv/zlL2i1WqKioip8rs+j3/2T9+DBg+nXrx9Nmzbl1VdfJT4+nm+//bbMOQ+etSVLluDi4mL68vHxsXRI0lOmL66UEsV/5VAKAzddDxPwiitWxdVQ5+6co9+ufozeO9o0p1TVqJQqpFD5yzhmueqe9CwYDII/fXiC23fPA3C7wA29VWO8vd+wcGSSJEmSJElPV3x8PI6OjqjVanr16sWgQYMYOXIk1tbWtGnTxtTO3d2dgIAAzp83vl+aNGkSCxcupEOHDkRFRXHmzJly73P58mW0Wi2tW7c27XNxcSEgIKBU2wdHKAF8//33bNq0CUdHR9NXSEgIBoOB1NRUwFi5dePGDWJjY2nXrh3bt2+nSZMmJCQkPPKzeJTVXGNjY83iSExMNB0LDg7m9OnTHDt2jNDQUAYOHMitW7dKXSM9PZ3Q0FAGDBhgNlfSg9eNiIgA4Ny5c0yePJm5c+dy8uRJvvjiC9LS0kzHExMTzc6LjY0FwGAw0Lx5cxYvXszLL7/MW2+9xdixY3n//fdN93uUPMi0adN45ZVXaNasGREREcTExLB69WqzwhmAbdu2cerUKbZs2cLu3bvNkm0GgwEPDw82bNhAixYtGDRoEO+8844plvKe6fPqqc/m7OfnR/Xq1bl48SLdunXD09Oz1A+TTqcjKysLT09PADw9Pbl586ZZm5LtitqUHC/L7NmzmTZtmmk7JydHJqaqOINeh1Kh/GWicyEAK1O2GuDQ1UOcTwlEd/8lhN4eAJuqUCmlLaRIafxloABUCpmUkp6+XI2O7AItDtb5AGQwk7C2f8TBtgosHiBJkiRJ0rOnsjdWLFnq3o8hODjYNOl3rVq1sLa2Ji4ursLzxowZQ0hICLt372bfvn0sWbKEmJgYJk6c+FsjN3FwMK/0ys3NZdy4cUyaNKlU2zp16pj+38nJibCwMMLCwli4cCEhISEsXLiQHj164O/vT3Z2NtevXy9VnaXRaLh06RIhISEVxtavXz+zZJ23t7dZ3A0aNKBBgwa0bdsWf39/PvzwQ7NJ469fv05wcDDt27dnwwbzqUoeXF3O2dkZMBapdOjQgRkzZgDQrFkzHBwc6NSpEwsXLqRly5Zm55WMzPLy8iIwMNDs+o0bNzYNrSzLr/MgZWnTpg06nY60tDSzhGJJjiIwMBC9Xs9bb73F9OnTsbKywsvLC5VKZfZ5tnHjxty4cQONRlPuM31ePfVPCdeuXePOnTum0r527dpx7949Tp48SYsWLQA4ePAgBoPB9PDatWvHO++8g1arRaUyDj9KSEggICDANMN9u3btOHDggKnssKRNu3btHhqLra1tmTPgS1XPxe9O8NOJo+Tdvcs9Zw9KRu8pEQiFwvQPE4BGr0Wb1YGSwkEntTUeTpX75+RKQRHT77hxKygGALVSiUImpaSnTAg9ly+vYlSTk1RT3wNg7Ct/kAkpSZIkSZJ+O4XiNw2hs4SSRMqDGjdujE6n48SJE6bhe3fu3CE5Odks0eHj40NERAQRERHMnj2bDz74gIkTJ5oqjh6cM8jPzw+VSsW3335rSiRlZ2eTkpJC586dy42xefPmnDt3rlSc5VEoFDRq1Ihjx44B8PrrrxMZGUlMTAwxMTFmbd9//33y8/MZPnx4hdd1cnIyW32uPAaDwayiKD09neDgYFq0aMHGjRtRKs2LCsrqX35+Pta/WmW9JLkjhMDOzq7M8zp06EBycrLZvpSUFHx9fUu1LfHrPEhZTp8+jVKpLDW90YMMBgNarRaDwYCVlRUdOnRgy5YtGAwGU59TUlLw8vLCxsYGGxubR36mz4vH/qSQm5vLxYsXTdupqamcPn0aNzc33NzcmD9/Pv3798fT05NLly4xc+ZMGjRoYMqUNm7cmNDQUFO5m1arZcKECQwePNiUZR0yZAjz589n9OjRREZG8sMPP7By5UpWrFhhuu/kyZPp0qULMTEx9OnTh48//pjvvvuuVIZUejEd+PCf5GYZJ5b7T8BRut52BEApoFdIH7MXvkanpSQh9Z/RbWhSy7lyf4g2GPj8cjKJWntwMI77rmdXcfmsJD2J6/cKOPLjPtyL/knH4j/IKBTW2No8/JesJEmSJElSVefv7094eDhjx45l/fr1ODk5MWvWLLy9vQkPDwdgypQp9OrVi4YNG3L37l2+/PJLGjduDICvry8KhYL4+Hh69+6NnZ0dTk5OjBgxghkzZuDm5oaHhwdRUVEoH+EP0ZGRkbRt25YJEyYwZswYHBwcOHfuHAkJCaxZs4bTp08TFRXFsGHDCAwMxMbGhsOHD/PRRx8RGRkJGCuqli1bxttvv41arWbYsGGoVCo+++wz5syZw8KFC3nppZfM7vvrpA5AkyZNTEUoJfLy8li0aBH9+vXDy8uLzMxM1q5dS3p6OgMGDACMCalXXnkFX19foqOjuX37tun88kZOhYWFMXbsWNatW0dISAgZGRlMmTKF1q1blzkfV4mpU6fSvn17Fi9ezMCBA/nmm2/YsGGDKfeQm5tbYR7k+PHjnDhxguDgYJycnDh+/DhTp07lT3/6k6nwJjY2FpVKRdOmTbG1teW7775j9uzZDBo0yPSc/vznP7NmzRomT57MxIkT+emnn1i8eHGZlW8PysrK4sqVK1y/ft3s++Hp6VnuM3smHnfJvy+//LLUspQUL02Zn58vevbsKWrUqCFUKpXw9fUVY8eOFTdu3DC7xp07d8Qbb7whHB0dhbOzsxg1apS4f/++WZvvv/9edOzYUdja2gpvb2/x97//vVQs//3vf0XDhg2FjY2NaNKkidi9e/dj9UUuaVx1rR45UEQP7CO+3LBGdF7XXkQP7COiB/YRG0ZsFUU598zaLji6RPhGxgvfyHiRW6i1UMS/oy/miOUfjhc1DyaJN7avEwd3viOyNFWgX9Jz7U//97V4ffkCsf+An4j9X2vx7n9misw7iZYOS5J+F/L9gjn5PCRJelrKW17+eTdixAgRHh5e5rGsrCwxbNgw4eLiIuzs7ERISIhISUkxHZ8wYYKoX7++sLW1FTVq1BDDhg0TmZmZpuMLFiwQnp6eQqFQiBEjRgghhMjJyRFDhgwR9vb2wtPTUyxfvly0bt1azJo1y3Ser6+vWLFiRal4vvnmG9GjRw/h6OgoHBwcRLNmzcSiRYuEEELcvn1bTJo0Sbz00kvC0dFRODk5iaZNm4ro6Gih1+vNrrNr1y7RqVMn4eDgYMoLbN261axNampqmfkDQFy9erVUbAUFBeKPf/yjqFWrlrCxsRFeXl6iX79+4ptvvjG12bhx40OvWZFVq1aJwMBAYWdnJ7y8vMTQoUPFtWvXKjzvf//7n3jppZeEra2taNSokdiwYYPp2KPkQU6ePCnatGkjXFxchFqtFo0bNxaLFy8WhYWFpjYff/yxaN68uen7EhgYKBYvXlzq9XDs2DHRpk0bYWtrK/z8/MSiRYuETqcrN/6HPbOoqKgK+16e8l6zj/p+QSHEE65zWYnl5OTg4uJCdna22XAuqfJbNfx1tEWF9GsQxGifQ4R/acw+u6iH8ub6P6JU/7Is/btfLeLfe/4AQPLCUGytK/kqdf96lSWG+qz0HcbozAQWNQ2ERn0sHZVUxb3y3pf42u1jeOB/uV7YijoNVtOlYQ1LhyVJvwv5fsGcfB6SJD0thYWFpKamUq9ePdQPvF+XKpaXl4e3tzcxMTGMHj36md8/KyuLbt264ezszOeff469/ePNxyVVTuW9Zh/1/UIVmM1Zkkoz6HXG/97P5cG8q8JgQPGr8cZFul/GZ6uUVeAloSui0Mo4J5a6+VCZkJKeuqysY/T22cArtY8C0KKer0xISZIkSZIkPUVJSUls3bqVS5cucerUKYYOHQpgGhL4rLm5ubF//366devG8ePHLRKDVDlV4olzJOnhDHpD8X8Fbjm/TIinEMCvJrfTFk8aqFAIlMoqMBm4roCC4gn91VWhP9Jzq1CrJ3pvMo1VUbTwuGzar1Y//6t8SJIkSZIkVXbR0dEkJydjY2NDixYtSExMpHr16haLx93dnblz51rs/lLlJJNSUpUjDAaEMOBq44Ht9TSiviriy+KFLZSUrpTSFCelrKpK/kZXRKHSOLG5uipUfknPrUPJt/i/I6m81/kOqGD/le5EdHsFb6++lg5NkiRJkiSpSnv55Zc5efKkpcOQpCcmk1JSlWMwGKuk2lTvw/78D7kfWLf4iBIrp9JjmzXFVVVVIX+z6+Zd9nsO42u7egDYWVWBTknPrdv3C7BWanGyKQCgf6eJ+Pq8VMFZkiRJkiRJkiRJRjIpJVU5BoOx8kkntNy3/iUpo7Sug6p27VLtNcVzSlX2+c0BpiVfJb9ae9O2h42qnNaS9Nvl56fiUfAa67vfN+37g6+vBSOSJEmSJEmSJKmykWUUUpVjME1cbhyPp9LpuVvdEZXjH1E+MEZPa9CSkZtBnrYQgEpdVKTToDsXT35x1dfM1A9Z5a2iV3UXCwcmVUX/2J/C9P9sxppfElIuLi2xsnK0YFSSJEmSJEmSJFU2lfljuCSVqaRSCoyr7ilQYK30QKFQYFWceTIIA4PiB9Hzk56cy0wGwKoyTwqe9C8KPxlj2oy4to2BNV1QVeY+Sc+t2BNXMOhzAPgmozkFbntp0fxjFAr58yZJkiRJkiRJ0qOTw/ekKkcUT1wuirc1KhdqaF8FMFVKFeoKSb6dgT63BQptTQDsVTbPOtTfz72rpsnNAdQdJ4FL6aGKkvSkiooyqevwHX4uPwMQ0qwxzZs2sHBUkiRJkiRJkiRVRjIpJVU5huKkVEnNhkKhREc+WEGjdo0A0Og1FGa8hj430HSek63tsw7196MrpFBpjN9WqUDZ5a8WDkiqik7+fJdbqcOJaJZs2ufqWMOCEUmSJEmSJEmSVJnJ4XtSlWMw6FGgQGAo3qMkwy6e2x5f06itF2CcT0ronAF4uY4rPQNrMiMkwEIR/w60BaaklLoqLCMoPXdu5RQycP1xdEXGCqmfc+rg7h6MZ81+Fo5MkiRJkiRJkqTKSn56laocg06PUmHFbUV28R4leqUeK6xMc95oDVoQxkLBt3sGsGF4S7oH1rRQxE9GCMFZ4cg3Lk0BY6WUJP3e0u8VYDDosVcZFwZw8lrJH4L+D3t7ueKeJEmSJEnSyJEjUSgUKBQKbGxsaNCgAQsWLECn0z3RdQ8dOoRCoeDevXu/T6CPIDU1lSFDhlCrVi3UajW1a9cmPDycCxcumLWLj4+nS5cuODk5YW9vT6tWrdi0aZNZm7S0NBQKBadPn37k+8+bN49GjRrh4OBAtWrV6N69OydOnDC75ujRo6lXrx52dnbUr1+fqKgoNBpNhdeOjY0lKCgIe3t7vLy8ePPNN7lz50655+j1et59912z+/3tb39DCGFqs3PnTnr27Im7u/tD+3vp0iX++Mc/UqNGDZydnRk4cCA3b9587H6dOXOGTp06oVar8fHxYdmyZRX2+6uvviIsLIxatWqhUCjYtWtXhec8KzIpJVUp2sJC8nPuoUDJVcVt406FAr1Sj1s1N1M7jV6DEFYAqCr1snuw9UYWPZwHMi0gEgA7WSkl/c6E0HPv7iE61z5u2te/VSMLRiRJkiRJkvT8CQ0NJSMjg59++onp06czb9483nvvPUuHZfIoSRutVkuPHj3Izs5m586dJCcns23bNpo2bWqWGFu9ejXh4eF06NCBEydOcObMGQYPHkxERARvv/32E8XZsGFD1qxZw9mzZzly5Ah169alZ8+e3L5t/Hx34cIFDAYD69ev58cff2TFihW8//77zJkzp9zrHj16lOHDhzN69Gh+/PFHtm/fzjfffMPYsWPLPW/p0qWsW7eONWvWcP78eZYuXcqyZctYvXq1qU1eXh4dO3Zk6dKlZV4jLy+Pnj17olAoOHjwIEePHkWj0RAWFobBYHjkfuXk5NCzZ098fX05efIk7733HvPmzWPDhg3l9iEvL4+goCDWrl1bbjuLEC+w7OxsAYjs7GxLhyL9Dq788L1YMSRcRA/sI1YN7i/WT5krogf2ETFvvCkmzxgu8vLyTG1TslJE3b/+S/hGxotTP2dZMOonpNeL+d+fETUPJolGew+JToeOiw+v3rJ0VFIV8tPNHLF29zqx/4Cf6evLQ80sHZYkPVPy/YI5+TwkSXpaCgoKxLlz50RBQYGlQ3lsI0aMEOHh4Wb7evToIdq2bSuysrLEsGHDhKurq7CzsxOhoaEiJSXF1C4tLU307dtXuLq6Cnt7exEYGCh2794tUlNTBcb1m0xfI0aMEEIIkZOTI4YMGSLs7e2Fp6enWL58uejSpYuYPHmy6bq+vr5iwYIFYtiwYcLJycl0bmJioujYsaNQq9Widu3aYuLEiSI3N1cIIURSUpIARFpa2kP7euXKFaFSqcS0adNKHVu1apUAxNdffy2EEKY+JCUlPf5DLVbye2f//v0PbbNs2TJRr169cq/z3nvvCT8/v1Lxent7l3tenz59xJtvvmm277XXXhNDhw4t1fZh/d27d69QKpVmvzvv3bsnFAqFSEhIeOi9f92vf/7zn6JatWqiqKjItC8yMlIEBASU24cHAeLTTz995PblKe81+6jvF2RJhVRlXP8pGX1xeawCJQbT+nsKDFZ67O3tTW2Nw/eqQKVU3ESKvv8vACOuf8ZXbtd4s7aceFr6/SxPSOHctR8BuFNQjVuaP+DvX/5foSRJkiRJkn4vQgjytfkW+RIPDM/6Lezs7NBoNIwcOZLvvvuOuLg4jh8/jhCC3r17o9VqARg/fjxFRUV89dVXnD17lqVLl+Lo6IiPjw+ffPIJAMnJyWRkZLBy5UoApk2bxtGjR4mLiyMhIYHExEROnTpVKobo6GiCgoJISkri3Xff5dKlS4SGhtK/f3/OnDnDtm3bOHLkCBMmTACgRo0aKJVKduzYgb54Aalf27FjB1qttsyKqHHjxuHo6MjWrVuf6NmV0Gg0bNiwARcXF4KCgh7aLjs7Gzc3t4ceB2jXrh1Xr15lz549CCG4efMmO3bsoHfv3uWe1759ew4cOEBKSgoA33//PUeOHKFXr16P3I+ioiIUCgW2DyyupVarUSqVHDly5JH7dfz4cTp37oyNzS8rr4eEhJCcnMzdu3cfOZ7niVx9T6oyRPE/moEt23H5yo8k1PiS9tddACUGpcGs7YNJKRvrSpyUuvE9RU4hANjau0HdThYOSKpqbt8vws8237hh15Muzd+llqudZYOSJEmSJOmFUaAroM2WNha594khJ7BX2Vfc8FeEEBw4cIC9e/fSq1cvdu3axdGjR2nfvj1gnNfIx8eHXbt2MWDAAK5cuUL//v1p2tQ4R6yfn5/pWiUJCQ8PD1xdXQG4f/8+mzdvZsuWLXTr1g2AjRs3UqtWrVKxdO3alenTp5u2x4wZw9ChQ5kyZQoA/v7+rFq1ii5durBu3Tq8vb1ZtWoVM2fOZP78+bRs2ZLg4GCGDh1qiislJQUXFxe8vLxK3c/GxgY/Pz9TAue3io+PZ/DgweTn5+Pl5UVCQgLVq1cvs+3FixdZvXo10dHR5V6zQ4cOxMbGMmjQIAoLC9HpdISFhVU4pG3WrFnk5OTQqFEjrKys0Ov1LFq0iKFDhz5yf9q2bYuDgwORkZEsXrwYIQSzZs1Cr9eTkZHxyP26ceMG9erVM2tXs2ZN07Fq1ao9ckzPi0r8aVySzBkMxqSU4fYtUq3TqJNRBIBCocRdZWPW1jinlDEnW6krpXRFFCqNfbNt+xY4Vc7J2qXn008/LWZI3Ul0qX0MgDb168qElCRJkiRJ0kPEx8fj6OiIWq2mV69eDBo0iJEjR2JtbU2bNr8k1tzd3QkICOD8+fMATJo0iYULF9KhQweioqI4c+ZMufe5fPkyWq2W1q1bm/a5uLgQEFB6NfGWLVuabX///fds2rQJR0dH01dISAgGg4HU1FTAWLl148YNYmNjadeuHdu3b6dJkyYkJCQ88rN4sJLnYWJjY83iSExMNB0LDg7m9OnTHDt2jNDQUAYOHMitW7dKXSM9PZ3Q0FAGDBhgNjfUg9eNiIgA4Ny5c0yePJm5c+dy8uRJvvjiC9LS0kzHExMTzc6LjY0F4L///S+xsbFs2bKFU6dOsXnzZqKjo9m8efMjP48aNWqwfft2/ve//+Ho6IiLiwv37t2jefPmKMuYE/hh/arIw/rwPJOVUlKVYdAbUFs5UKcwkFEJ+8hwceR7XwAlQ90DAbicfZm1SWvJyMsAMRAAlVUlXq1OW0hRcVJKLVfdk34nd/M0fHjkEn+w3oizzS9Vhk5OTSwYlSRJkiRJLyI7aztODDlRccOndO/HERwczLp167CxsaFWrVpYW1sTFxdX4XljxowhJCSE3bt3s2/fPpYsWUJMTAwTJ078raGbODg4mG3n5uYybtw4Jk2aVKptnTp1TP/v5OREWFgYYWFhLFy4kJCQEBYuXEiPHj3w9/cnOzub69evl6rO0mg0XLp0iZCQkApj69evn1myztvb2yzuBg0a0KBBA9q2bYu/vz8ffvghs2fPNrW5fv06wcHBtG/fvtRE3w+ufufs7AzAkiVL6NChAzNmzACgWbNmODg40KlTJxYuXEjLli3NziupQJoxYwazZs1i8ODBADRt2pSff/6ZJUuWMGLEiAr7WaJnz55cunSJzMxMrK2tcXV1xdPT06wyrqJ+eXp6mq3YB5i2PT09qVu3bpl9eJ7JpJRUZRgMenwcAnDW2JMnQGtKNimx93QFYHvydvb9vM+4W7wBgE2lrpQqeCApVYn7IT1Xtn13lQ8Tf2RNV2NCavE3U9k0ujdubn4VnClJkiRJkvT7UigUv2kInSWUJFIe1LhxY3Q6HSdOnDAN37tz5w7JyckEBgaa2vn4+BAREUFERASzZ8/mgw8+YOLEiaaKowfnd/Lz80OlUvHtt9+aEknZ2dmkpKTQuXPncmNs3rw5586dKxVneRQKBY0aNeLYMWP1/Ouvv05kZCQxMTHExMSYtX3//ffJz89n+PDhFV7XyckJJyenR4rBYDBQVFRk2k5PTyc4OJgWLVqwcePGUtVGZfUvPz8fa2vzFIiVlXFKFyEEdnZ2Dz3v19e3srIyrZr3uEqGIR48eJBbt27Rr1+/R+5Xu3bteOedd9BqtahUKgASEhIICAgwDd17nO/t80AmpaQqw6DTYaWwJq3wJCeb+iFKKocUSqxcjRnifF0hmrtt8LUP4n7x6NXKOnzvp7xCzrq05araEwBbWSkl/U4yczLxcrgBgEGoeLtPf3xqlJ4zQJIkSZIkSSqfv78/4eHhjB07lvXr1+Pk5MSsWbPw9vYmPDwcgClTptCrVy8aNmzI3bt3+fLLL2ncuDEAvr6+KBQK4uPj6d27N3Z2djg5OTFixAhmzJiBm5sbHh4eREVFoVQqUSjK/0wQGRlJ27ZtmTBhAmPGjMHBwYFz586RkJDAmjVrOH36NFFRUQwbNozAwEBsbGw4fPgwH330EZGRkYCxomrZsmW8/fbbqNVqhg0bhkql4rPPPmPOnDksXLiQl156yey+ycnJpWJp0qSJKbFSIi8vj0WLFtGvXz+8vLzIzMxk7dq1pKenM2DAAMCYuHnllVfw9fUlOjqa27dvm8739PR8aN/DwsIYO3Ys69atIyQkhIyMDKZMmULr1q3LnI/rwfMWLVpEnTp1aNKkCUlJSSxfvpw333zT1CYrK4srV65w/fp1s/56enqaYtq4cSONGzemRo0aHD9+nMmTJzN16lTTsMtH6deQIUOYP38+o0ePJjIykh9++IGVK1eyYsWKh8YPxgq5ixcvmrZTU1M5ffo0bm5uZhVyliCTUlKVYTDoUaDkuvbOLwkpQGldG2WDVwC4dtOeoht/pGTaPZWVAjsbq2cf7BPSGAz0OZVCjv8vK144WFW+fkjPn9u3E2hr/xfatTH+5Udt60qnpjIhJUmSJEmS9Ftt3LiRyZMn07dvXzQaDZ07d2bPnj2mhIxer2f8+PFcu3YNZ2dnQkNDTUkGb29v5s+fz6xZsxg1ahTDhw9n06ZNLF++nIiICPr27YuzszMzZ87k6tWrqNXqcmNp1qwZhw8f5p133qFTp04IIahfvz6DBg0CoHbt2tStW5f58+eTlpaGQqEwbU+dOtV0nalTp+Ln50dMTAwrV64kLy8PgK1bt5qGuT2orH1Xr16ldu3aZvusrKy4cOECmzdvJjMzE3d3d1q1akViYiJNmhinkkhISODixYtcvHix1PnlrZg4cuRI7t+/z5o1a5g+fTqurq507dqVpUuXlvvMVq9ezbvvvstf/vIXbt26Ra1atRg3bhxz5841tYmLi2PUqFGl+hsVFcW8efMAY6Jq9uzZZGVlUbduXd555x2zZ/oo/XJxcWHfvn2MHz+eFi1aUL16debOnctbb71Vbh++++47goODTdvTpk0DYMSIEWzatKncc582hXjSdS4rsZycHFxcXMjOzjaNM5Uqr/0frkP7zV1u3z/Pbf1drO2CsbINRKVWM2JxR9QOKt74OJrjpxvjbK/ntT/Up1VdN/o0q2QfuDX53N63kKYOxjmxOt/9Dk//ziwJrC8TU9ITWXXgJ7R3V/IHt88xCAUKhTW+PsPx959j6dAkyaLk+wVz8nlIkvS0FBYWkpqaSr169SpMrkjm8vLy8Pb2JiYmhtGjRz/z+2dlZdGtWzecnZ35/PPPsbevHEMupSdT3mv2Ud8vVM5xS5JUBqHXo0SJAWOeVWnQk+yzn27jfVE7GP8KodUbj9V0Fczr16TyJaQALn9J4dkdANgaivjvhXmsalxXJqSkJ5Kv0bE8IYXcgiwAPr3YB8e6R2VCSpIkSZIk6TmUlJTE1q1buXTpEqdOnWLo0KEApiGBz5qbmxv79++nW7duHD9+3CIxSJWTHL4nVRkGgx6FQmkqbVRgQKfKx9bul3HKWr1xSJJ1ZV5xrzCHQqUtAGqlFYzaA9YVL7kqSeW5futbRgRupZHbTwD8qX0z2tRzs3BUkiRJkiRJ0sNER0eTnJyMjY0NLVq0IDEx0TSJtiW4u7ubDWmTpEchk1JSlWHQ61GhxIAx8aQAFEJhtmKB1mBMWKkqc1LqwRX3bNTg9VIFJ0hS+e4Xarn683t0rv29aV9ALf8KJ8qUJEmSJEmSLOPll1/m5MmTlg5Dkp6YHL4nVRkGvbFSqgitaZ9SKM2SUnp9SVKqEv/oawsptCqplKrE/ZCeC5+dTido/j4ysowrhZy8HUxg4/dwc+to4cgkSZIkSZIkSarqZKWUVGUY9HqUqEyVUkIIqrtVNythLZlTyqaSVkoJIbigVXLW0R8Au8qcXJOeC19fvoNBgL0qHwCHagPx8upp4agkSZIkSZIkSXoRyKSUVGWUVEpRsp6kQjDg9QGmpVYBdMXD96wraTJn/dXbzNO3Bf+2ANjJSinpCRRpMvFSbuW1Blk42hQAMLpzUwtHJUmSJEmSJEnSi0ImpaRKL/3CObJv3yTn9i2+9r6E2z0dSj2AwFph/BG/mXeTy9mXKdQah/bZVMak1M0fuXApDfDGVZtDNWsFw7x9LB2VVEmdu55DWuoKmjj/lybFK7QqFCpUKleLxiVJkiRJkiRJ0otDJqWkSu3Otat8HDUTALVGS6DuGndt66O1Mh73dPAkX5tP+Gfh5GnzKCo0DkuysbayVMi/3acRFFZ7FTy8mf7zJsYGBIJXJ0tHJVVCOYVa/vjPo4xsnEJrLzif5U+TOi1oUq8zVlZ2lg5PkiRJkiRJkqQXRCUsF5GkX9zPygRApbYj0N6Vlj8ZUBYP33NUgIutC1mFWeRqCjEU1MZRWQeAWo4elgr5t8u7TWHJqnt1O0LzERYOSKqsMu4VYGd1F1d1DgB62950aP43PGqEWDgySZIkSZIkSZJeJLJSSqrUDHodAG61vHnJy4/Mk2dMVVJqB2POVWvQUnB1GPq8RuQVn2ensrFAtE9IV0ihsnjVvaavgqObZeORKq2MnyOJ6bLPtD20fTNsrOXfKCRJkiRJkiRJerbkpxCpUjPojSvtKa2sKPh8nXFf8cJ6VsUr7GkNWgyamgBUd7QloKYTIU08n32wT0pX9EtSSk5wLv0GF2/dp+XC/dzJ+hoAvbDCzq4uLs5/sGxgkiRJkiRJldzIkSNRKBQoFApsbGxo0KABCxYsQKfTPdF1Dx06hEKh4N69e79PoI8gNTWVIUOGUKtWLdRqNbVr1yY8PJwLFy6YtYuPj6dLly44OTlhb29Pq1at2LRpk1mbtLQ0FAoFp0+ffuT7z5s3j0aNGuHg4EC1atXo3r07J06cMLvm6NGjqVevHnZ2dtSvX5+oqCg0Gk2F146NjSUoKAh7e3u8vLx48803uXPnTrnn3L9/nylTpuDr64udnR3t27fn22+/NWuTm5vLhAkTqF27NnZ2dgQGBvL++++btRk3bhz169fHzs6OGjVqlPlMr1y5Qp8+fbC3t8fDw4MZM2Y89Gfo6NGjWFtb84c//KHCfu/cuZOePXvi7u7+2N+Pp01+spUqtZJKqRrUJtvOl3ONhoPCmLixcjEmnnQGHQhj+dTmN1uxd2pnmtZ2sUzAv5FGrydD6ch9a3sA7CrjRO2SxR27dIfM3CLsrI0r7V3QfUD7dgfk5OaSJEmSJEm/g9DQUDIyMvjpp5+YPn068+bN47333rN0WCaPkrTRarX06NGD7Oxsdu7cSXJyMtu2baNp06ZmibHVq1cTHh5Ohw4dOHHiBGfOnGHw4MFERETw9ttvP1GcDRs2ZM2aNZw9e5YjR45Qt25devbsye3btwG4cOECBoOB9evX8+OPP7JixQref/995syZU+51jx49yvDhwxk9ejQ//vgj27dv55tvvmHs2LHlnjdmzBgSEhL497//zdmzZ+nZsyfdu3cnPT3d1GbatGl88cUX/Oc//+H8+fNMmTKFCRMmEBcXZ2rTokULNm7cyPnz59m7dy9CCHr27IlerwdAr9fTp08fNBoNx44dY/PmzWzatIm5c+eWiunevXsMHz6cbt26PdIzzcvLo2PHjixduvSR2j9T4gWWnZ0tAJGdnW3pUKTf6PyRQyJ6YB+RFnlQbB+xUqwZd0BEDxogogf2EXvWfSmEEOL0rdOi7pxtwjcyXqTcyLFswL9Bvk4vmh89K2oeTDJ9JWZVvn5Ilrfm4E/Cb9Yusf+An9h/wE9oNPcsHZIkVQry/YI5+TwkSXpaCgoKxLlz50RBQYGlQ3lsI0aMEOHh4Wb7evToIdq2bSuysrLEsGHDhKurq7CzsxOhoaEiJSXF1C4tLU307dtXuLq6Cnt7exEYGCh2794tUlNTBWD2NWLECCGEEDk5OWLIkCHC3t5eeHp6iuXLl4suXbqIyZMnm67r6+srFixYIIYNGyacnJxM5yYmJoqOHTsKtVotateuLSZOnChyc3OFEEIkJSUJQKSlpT20r1euXBEqlUpMmzat1LFVq1YJQHz99ddCCGHqQ1JS0uM/1GIlv3f279//0DbLli0T9erVK/c67733nvDz8ysVr7e390PPyc/PF1ZWViI+Pt5sf/PmzcU777xj2m7SpIlYsGBBuW1+7fvvvxeAuHjxohBCiD179gilUilu3LhharNu3Trh7OwsioqKzM4dNGiQ+Otf/yqioqJEUFDQQ+/xa7/H9+NB5b1mH/X9giy3kCo1g6F4+J6w4q7uKtq8BBDGKpCgrsZJzbV6LaK4UkpVCSuMrhdpSC8yVoRZG3TUt7OhmZO9haOSKptbt/dSzzCc9zpHmfZZWztaMCJJkiRJkqSKCSEw5Odb5EsI8USx29nZodFoGDlyJN999x1xcXEcP34cIQS9e/dGq9UCMH78eIqKivjqq684e/YsS5cuxdHRER8fHz755BMAkpOTycjIYOXKlYCxMufo0aPExcWRkJBAYmIip06dKhVDdHQ0QUFBJCUl8e6773Lp0iVCQ0Pp378/Z86cYdu2bRw5coQJEyYAUKNGDZRKJTt27DBV8Pzajh070Gq1ZVZEjRs3DkdHR7Zu3fpEz66ERqNhw4YNuLi4EBQU9NB22dnZuLmVP+duu3btuHr1Knv27EEIwc2bN9mxYwe9e/d+6Dk6nQ69Xo9arTbbb2dnx5EjR0zb7du3Jy4ujvT0dIQQfPnll6SkpNCzZ88yr5uXl8fGjRupV68ePj4+ABw/fpymTZtSs2ZNU7uQkBBycnL48ccfTfs2btzI5cuXiYqKKnXdykhOdC5VagadDiVK7mlukaM9b9ovAOcaroBxTqmS4XuqyjaZc34WRftXgFN/PIrucObr1yDqHigUlo5MqiSEECz5/AJeho+oY38TW+PoVhwdG6NQWFk2OEmSJEmSpAqIggKSm7ewyL0DTp1EYf/4fwwWQnDgwAH27t1Lr1692LVrF0ePHqV9+/aAcV4jHx8fdu3axYABA7hy5Qr9+/enadOmAPj5+ZmuVZJo8fDwwNXVFTDOcbR582a2bNliGr61ceNGatWqVSqWrl27Mn36dNP2mDFjGDp0KFOmTAHA39+fVatW0aVLF9atW4e3tzerVq1i5syZzJ8/n5YtWxIcHMzQoUNNcaWkpODi4oKXl1ep+9nY2ODn50dKSspjP7cHxcfHM3jwYPLz8/Hy8iIhIYHq1auX2fbixYusXr2a6Ojocq/ZoUMHYmNjGTRoEIWFheh0OsLCwli7du1Dz3FycqJdu3b87W9/o3HjxtSsWZOtW7dy/PhxGjRoYGq3evVq3nrrLWrXro21tTVKpZIPPviAzp07m13vn//8JzNnziQvL4+AgAASEhKwsTEuwnXjxg2zhBRg2r5x4wYAP/30E7NmzSIxMRFr66qRzqlkn9AlyZxBr0ehsEJrKB4frbBDZ2uLvl5jHKsZ/wHX6DW/JKWsKlky58JuCn9KAMDWoAGnWjIhJT2W8xn32fDVZQoK7wLw3+Rw7jt9SMsWn1g4MkmSJEmSpKolPj4eR0dH1Go1vXr1YtCgQYwcORJra2vatGljaufu7k5AQADnzxv/qD5p0iQWLlxIhw4diIqK4syZM+Xe5/Lly2i1Wlq3bm3a5+LiQkBAQKm2LVu2NNv+/vvv2bRpE46OjqavkJAQDAYDqampgLFy68aNG8TGxtKuXTu2b99OkyZNSEhIeORnUZJoKU9sbKxZHImJiaZjwcHBnD59mmPHjhEaGsrAgQO5detWqWukp6cTGhrKgAEDzOaGevC6ERERAJw7d47Jkyczd+5cTp48yRdffEFaWprpeGJiotl5sbGxAPz73/9GCIG3tze2trasWrWKN954A+UDi0+tXr2ar7/+mri4OE6ePElMTAzjx49n//79ZvEOHTqUpKQkDh8+TMOGDRk4cCCFhYWP9Ez1ej1Dhgxh/vz5NGzY8LGf6fOqaqTWpBeWXq9DqVCSTS4ACoU9OrtCVNVqmNpo9DpK8q82lW34niaXQqXxH3S1QzUY8T8LByRVNrfv/UzDaj9Rwz4HgNfbdiW4WWesKttrQZIkSZKkF5LCzo6AUyctdu/HERwczLp167CxsaFWrVpYW1ubTXT9MGPGjCEkJITdu3ezb98+lixZQkxMDBMnTvytoZs4ODiYbefm5jJu3DgmTZpUqm2dOnVM/+/k5ERYWBhhYWEsXLiQkJAQFi5cSI8ePfD39yc7O5vr16+Xqs7SaDRcunSJkJCQCmPr16+fWbLO29vbLO4GDRrQoEED2rZti7+/Px9++CGzZ882tbl+/TrBwcG0b9+eDRs2mF37wdXlnJ2dAViyZAkdOnRgxowZADRr1gwHBwc6derEwoULadmypdl5JVVK9evX5/Dhw+Tl5ZGTk4OXlxeDBg0yVY4VFBQwZ84cPv30U/r06WO69unTp4mOjqZ79+6ma7q4uODi4oK/vz9t27alWrVqfPrpp7zxxht4enryzTffmPXj5s2bAHh6enL//n2+++47kpKSTMMtDQYDQgisra3Zt29fuc/0eSWTUlKlJvR6lCi5qbhn3KGwwqAw4OZmLO3MLsrmdv5dwPgLpdLNKaUrpKg4KWVrXw2qN6jgBEky0uoNfHX+PIabrxPZ6pdlZNs0qIt1ZXsdSJIkSZL0wlIoFL9pCJ0llCRSHtS4cWN0Oh0nTpwwDd+7c+cOycnJBAYGmtr5+PgQERFBREQEs2fP5oMPPmDixImmiqMH53fy8/NDpVLx7bffmhJJ2dnZpKSklBou9mvNmzfn3LlzpeIsj0KhoFGjRhw7dgyA119/ncjISGJiYoiJiTFr+/7775Ofn8/w4cMrvK6TkxNOTk6PFIPBYKCoqMi0nZ6eTnBwsGlFuwerloAy+5efn19qyJuVlXFEjRACOzu7cp+Lg4MDDg4O3L17l71797Js2TLAuGKhVqstFYOVlZVpDuSyCCEQQpj61a5dOxYtWsStW7fw8PAAICEhAWdnZwIDA1GpVJw9e9bsGv/85z85ePAgO3bsoF69ejg4ODzyM31eyKSUVKnp9XoUCiUGSv6RVmJQCIa8MYTY87H8/Zu/I/RqYB4ANpVtTild0S9JKaUctic9uk9PpfPhwX3MbKVDq7emQNSkgVczHB0aWTo0SZIkSZKkF4a/vz/h4eGMHTuW9evX4+TkxKxZs/D29iY8PByAKVOm0KtXLxo2bMjdu3f58ssvady4MQC+vr4oFAri4+Pp3bs3dnZ2ODk5MWLECGbMmIGbmxseHh5ERUWhVCpRVDDVR2RkJG3btmXChAmMGTMGBwcHzp07R0JCAmvWrOH06dNERUUxbNgwAgMDsbGx4fDhw3z00UdERkYCxoqqZcuW8fbbb6NWqxk2bBgqlYrPPvuMOXPmsHDhQl566SWz+yYnJ5eKpUmTJqhUKrN9eXl5LFq0iH79+uHl5UVmZiZr164lPT2dAQMGAMaE1CuvvIKvry/R0dHcvn3bdL6np+dD+x4WFsbYsWNZt24dISEhZGRkMGXKFFq3bl3mfFwl9u7dixCCgIAALl68yIwZM2jUqBGjRo0CjJVYXbp0YcaMGdjZ2eHr68vhw4f517/+xfLlywHjkMtt27bRs2dPatSowbVr1/j73/+OnZ2daaL1nj17EhgYyLBhw1i2bBk3btzgr3/9K+PHj8e2eGLYXz9XDw8P1Gp1qf2/lpWVxZUrV7h+/Trwy/fD09Oz3Gf2LMiklFSplUx0bhDFSSmFFQoV2Duq+S4jCW1OUwyaX1ZhsK5EiR0hBGk6K1LtjCWXtspKllCTLCr1Th6ONnkA3NPVp9FLW2jq42rZoCRJkiRJkl5AGzduZPLkyfTt2xeNRkPnzp3Zs2ePKSGj1+sZP348165dw9nZmdDQUFasWAEYh1/Nnz+fWbNmMWrUKIYPH86mTZtYvnw5ERER9O3bF2dnZ2bOnMnVq1dLrRL3a82aNePw4cO88847dOrUCSEE9evXZ9CgQQDUrl2bunXrMn/+fNLS0lAoFKbtqVOnmq4zdepU/Pz8iImJYeXKleTlGd93bt26lcGDB5e6b1n7rl69Su3atc32WVlZceHCBTZv3kxmZibu7u60atWKxMREmjRpAhirhy5evMjFixdLnV/eiokjR47k/v37rFmzhunTp+Pq6krXrl1ZunRpuc8sOzub2bNnc+3aNdzc3Ojfvz+LFi0yS6h9/PHHzJ49m6FDh5KVlYWvry+LFi0yzVelVqtJTEzkH//4B3fv3qVmzZp07tyZY8eOmaqirKysiI+P589//jPt2rXDwcGBESNGsGDBgnLjexRxcXGmJBr88v2Iiopi3rx5T3z9J6EQT7rOZSWWk5ODi4sL2dnZpnGmUuVw7cKP/HAwgVtplyi4egcHJ29uZp9Hae1Djsdtolbs4PWtC/nu+5dN59jbWHFuQagFo3480ak3iE67YdoOdnNia1B9C0YkVRZ5eZf4/OhkhO46bupsqlfvTlCz9ZYOS5IqLfl+wZx8HpIkPS2FhYWkpqZSr169CpMrkrm8vDy8vb2JiYlh9OjRz/z+WVlZdOvWDWdnZz7//HPsK8mQS+nJlPeafdT3C7JSSqqUjmzdTPqFcwC0u3yNfOufuFmnJqBEWBnzrPmFxsy1q4Ogg18tujX2sFS4v8nZ3HwAHHT5OFsreb1mnQrOkCRYd+gSObffp6X7edO/8I4OZa/OIUmSJEmSJFVOSUlJXLhwgdatW5OdnW2qpikZEvisubm5sX//ftauXcvx48fp1q2bReKQKh+ZlJIqJU3xsplNWrWn2vf/JteteMlRhRL7AOMqCDqDMTnVwEvB2qHNLRLnb/b9xxTccQOFB8t+iqF/s47g2dbSUUnPOY3OwLK9FxjU8A64w9cZLegY9Bb16r1i6dAkSZIkSZKk31l0dDTJycnY2NjQokULEhMTqV69usXicXd3Z+7cuRa7v1Q5yaSUVCmJ4tUn6np6IwBByVxRSt5sZxwrq9Mbk1Iqq8ozjxQAdy7Bp+Mo/MNqcPFAbSgCu2qWjkqqBO4XahEC7K0LAOgc2I6OTbpVOOGlJEmSJEmSVLm8/PLLnDx50tJhSNITk0kpqVIyFCelbHLuUgQYTJ+5rVAWL+upK577XGVVySYIzzOuHlFg7QCA+qXX4KX+loxIqgT0+iIu/hTJjJbnqe1onIvMz8NTJqQkSZIkSZIkSXpuyaSUVCkZDHpauodQLe0sNwBR8sFboUTp6AqAvnj4nk1lS0ppjXNJFRYnpeyCBoKtoyUjkp5zxy5lcvD0Z7Sr9j8a/bLYJHZ2vpYLSpIkSZIkSZIkqQIyKSVVSga9AVdbD77Juktys2boFDqgCFCitDPO7K8zGNtWtkqprKIivq/WirtWxZVSlW34ofTMLf38Avb6K7SrBldyvEnO/SORfTrg6trK0qFJkiRJkiRJkiQ9lExKSZWSwaAHoeCH+wXwQM7GytoVtaNx1T19cVLKpng4X2XxaqYbKc2iTdv2lSypJj1ben0hHqqj1K12HoDq1QLo3nkc1arJZXglSZIkSZIkSXq+yaSUVCkJvf7BXBQOqmAu+Fyif4+u2KiNP9bF005hq6pESSlNPql6Y1ItQHubprUb0tBebeGgpOdVgUbPuZR1DPbfYNoX4FUHHzeZkJIkSZIkSZIk6fknSzCkSsmg1yMe2FYbnLnpcRd7FxWrTq1iypdTKNBqAVBVlkqpy4cwLK2LtvhluTPnE9YE+qKUE1VLZdDoDHSNOUR80rcAXM+tSTW3ULy9h1o4MkmSJEmSJEmSpEcjk1JSpWQwmFdKKYRAIRTcLrzNB2c/4MCVA6aJzl1sHSwT5OO6coIi8UuqTV2/iwWDkZ53N3MKycguxEGVZ9zWh/Ny0BocHPwsHJkkSZIkSdKLZ+TIkSgUChQKBTY2NjRo0IAFCxag0+me6LqHDh1CoVBw79693yfQR5CamsqQIUOoVasWarWa2rVrEx4ezoULF8zaxcfH06VLF5ycnLC3t6dVq1Zs2rTJrE1aWhoKhYLTp08/8v3nzZtHo0aNcHBwoFq1anTv3p0TJ06YXXP06NHUq1cPOzs76tevT1RUFBqNpsJrx8bGEhQUhL29PV5eXrz55pvcuXOn3HO++uorwsLCqFWrFgqFgl27dpVqs3PnTnr27Im7u3uF/RVC0KtXr4dea9OmTTRr1gy1Wo2Hhwfjx483O753717atm2Lk5MTNWrUoH///qSlpT2Tfj4NMiklVUoGvQG9oiSBo0CBAQUKhLWg6HYP8i/NQpHXEoBqamfLBfo4dIUUKW1Mm7ZBgy0YjPS8u35tDVOaryOgWioAwzo0RSGr6iRJkiRJkiwmNDSUjIwMfvrpJ6ZPn868efN47733LB2WyaMkbbRaLT169CA7O5udO3eSnJzMtm3baNq0qVlibPXq1YSHh9OhQwdOnDjBmTNnGDx4MBEREbz99ttPFGfDhg1Zs2YNZ8+e5ciRI9StW5eePXty+/ZtAC5cuIDBYGD9+vX8+OOPrFixgvfff585c+aUe92jR48yfPhwRo8ezY8//sj27dv55ptvGDt2bLnn5eXlERQUxNq1a8tt07FjR5YuXVph//7xj3889H378uXLeeedd5g1axY//vgj+/fvJyQkxHQ8NTWV8PBwunbtyunTp9m7dy+ZmZm89tprz6SfT4V4gWVnZwtAZGdnWzoU6TH9Y+gfxcnJW0X0wD4iemA/sXnwGrEgboE4ce2E8J29XfhGxpu+Dp6/aelwH83ns8WNRXVFzYNJotaXSZaORnpOaXV6cf7qJbH/gJ/ZV07OD5YOTZKqLPl+wZx8HpIkPS0FBQXi3LlzoqCgwNKhPLYRI0aI8PBws309evQQbdu2FVlZWWLYsGHC1dVV2NnZidDQUJGSkmJql5aWJvr27StcXV2Fvb29CAwMFLt37xapqakCMPsaMWKEEEKInJwcMWTIEGFvby88PT3F8uXLRZcuXcTkyZNN1/X19RULFiwQw4YNE05OTqZzExMTRceOHYVarRa1a9cWEydOFLm5uUIIIZKSkgQg0tLSHtrXK1euCJVKJaZNm1bq2KpVqwQgvv76ayGEMPUhKSnp8R9qsZLfO/v3739om2XLlol69eqVe5333ntP+Pn5lYrX29v7kWMBxKeffvrQ4xX1NykpSXh7e4uMjIxS18rKyhJ2dnbl9nP79u3C2tpa6PV60764uDihUCiERqMRQjybfpYo7zX7qO8XZKWUVCkZDHoMFC+vhxLQ0yigEQalAYRxovMNw1pw6O1XCG7kYbE4H4uukMLiSilbpXxpSmUb86/vGL3pAAD5WjX7r79F85djcXJqYuHIJEmSJEmSpAfZ2dmh0WgYOXIk3333HXFxcRw/fhwhBL1790ZbPAfu+PHjKSoq4quvvuLs2bMsXboUR0dHfHx8+OSTTwBITk4mIyODlStXAjBt2jSOHj1KXFwcCQkJJCYmcurUqVIxREdHExQURFJSEu+++y6XLl0iNDSU/v37c+bMGbZt28aRI0eYMGECADVq1ECpVLJjxw70JStH/cqOHTvQarVlVkSNGzcOR0dHtm7d+rs8Q41Gw4YNG3BxcSEoKOih7bKzs3Fzcyv3Wu3atePq1avs2bMHIQQ3b95kx44d9O7d+3eJtSL5+fkMGTKEtWvX4unpWep4QkICBoOB9PR0GjduTO3atRk4cCBXr141tWnRogVKpZKNGzei1+vJzs7m3//+N927d0elUj0X/XxccvU9qdIRQhgnOi+peFQoQeixVlijM+hAGCc2D/JxpaZz5Vm57r7OwB1VNQDUSjkMSyrb6av3qG5TAEC+zpmm/m9QrVodC0clSZIkSZL0dAgh0GkMFTd8CqxtlL9pegQhBAcOHGDv3r306tWLXbt2cfToUdq3bw8Y5/vx8fFh165dDBgwgCtXrtC/f3+aNm0KgJ/fL3OEliRaPDw8cHV1BeD+/fts3ryZLVu20K1bNwA2btxIrVq1SsXStWtXpk+fbtoeM2YMQ4cOZcqUKQD4+/uzatUqunTpwrp16/D29mbVqlXMnDmT+fPn07JlS4KDgxk6dKgprpSUFFxcXPDy8ip1PxsbG/z8/EhJSXns5/ag+Ph4Bg8eTH5+Pl5eXiQkJFC9evUy2168eJHVq1cTHR1d7jU7dOhAbGwsgwYNorCwEJ1OR1hY2DMbrjZ16lTat29PeHh4mccvX76MwWBg8eLFrFy5EhcXF/7617/So0cPzpw5g42NDfXq1WPfvn0MHDiQcePGodfradeuHXv27Hlu+vm4ZFJKqnSEMP5SylcUFO+xAvRYK60p0moomSpNZVV5qo3eS80gxmUkNB8JgI2i8sQuPTuZd47Tu85W3NVZANTzqEnrVjIhJUmSJElS1aXTGNgw+bBF7v3Wyi6obB99Je/4+HgcHR3RarUYDAaGDBnCa6+9Rnx8PG3atDG1c3d3JyAggPPnzwMwadIk/vznP7Nv3z66d+9O//79adas2UPvc/nyZbRaLa1btzbtc3FxISAgoFTbli1bmm1///33nDlzhtjYWNM+IQQGg4HU1FQaN27M+PHjGT58OIcOHeLrr79m+/btLF68mLi4OHr06PFIz8LGxqbCNrGxsYwbN860/fnnn9OpUycAgoODOX36NJmZmXzwwQcMHDiQEydO4OFhPgomPT2d0NBQBgwYYDZnkqOjo+n///SnP/H+++9z7tw5Jk+ezNy5cwkJCSEjI4MZM2YQERHBhx9+SGJiIr169TKdt379eoYO/X1Wto6Li+PgwYMkJSU9tI3BYECr1bJq1Sp69uwJwNatW/H09OTLL78kJCSEGzduMHbsWEaMGMEbb7zB/fv3mTt3Lq+//joJCQkoFAqL9vO3kEkpqVJJTfqO9OTz+NzJRPXTKvD3oWT4npXCikKd1tTW2qryVBsl3s012+5ZvZJMzi49EwaDYOYnZ2jnNJVudW6b9tva1rRgVJIkSZIkSdKDgoODWbduHTY2NtSqVQtra2vi4uIqPG/MmDGEhISwe/du9u3bx5IlS4iJiWHixIlPHJODg/lK5Lm5uYwbN45JkyaValunzi9/7HRyciIsLIywsDAWLlxISEgICxcupEePHvj7+5Odnc3169dLVWdpNBouXbpkNjn3w/Tr188sWeft7W0Wd4MGDWjQoAFt27bF39+fDz/8kNmzZ5vaXL9+neDgYNq3b8+GDRvMrv3g6nfOzsbPVkuWLKFDhw7MmDEDgGbNmuHg4ECnTp1YuHAhLVu2NDuvZs3f7732wYMHuXTpkqnarUT//v3p1KkThw4dMlWeBQYGmo7XqFGD6tWrc+XKFQDWrl2Li4sLy5YtM7X5z3/+g4+PDydOnKBt27YW7edvIZNSUqWhKSxg13sLMeh1tMnJQ4HxrxYKhZJ8O2heszlHr540tbepDJVS+Vnwf90prDcLHBuy+YfZdO04DFXAEEtHJj1HfrqVy46T1+jW7R4A39zqzqA2L+FZs59lA5MkSZIkSXrKrG2UvLWyi8Xu/ThKEikPaty4MTqdjhMnTpiG7925c4fk5GSz5IOPjw8RERFEREQwe/ZsPvjgAyZOnGiqOHpwfic/Pz9UKhXffvutKZGUnZ1NSkoKnTt3LjfG5s2bc+7cuVJxlkehUNCoUSOOHTsGwOuvv05kZCQxMTHExMSYtX3//ffJz89n+PDhFV7XyckJJyenR4rBYDBQVFRk2k5PTyc4OJgWLVqwceNGlL+ak7es/uXn52NtbZ4CsbIyfqYUQmBnZ/dYz+VxzJo1izFjxpjta9q0KStWrCAsLAwwDrsD4/xhtWvXBiArK4vMzEx8fX1Nffh1X0v6YDAYTG0s1c/fQialpEpDW1iIwgAt3Hvi8PN6stQlpZtKApq/jKeDJ0U6HSU/1taVYV6m9JOQdYlCP+OkdA5Ch8rr4aW60ovpXr4GlVKDjZWxEnB0r8V4uLhbOCpJkiRJkqSnT6FQPNYQuueNv78/4eHhjB07lvXr1+Pk5MSsWbPw9vY2zS00ZcoUevXqRcOGDbl79y5ffvkljRs3BsDX1xeFQkF8fDy9e/fGzs4OJycnRowYwYwZM3Bzc8PDw4OoqCiUyornwIqMjKRt27ZMmDCBMWPG4ODgwLlz50hISGDNmjWcPn2aqKgohg0bRmBgIDY2Nhw+fJiPPvqIyMhIwFhRtWzZMt5++23UajXDhg1DpVLx2WefMWfOHBYuXMhLL71kdt/k5ORSsTRp0sQ0OXeJvLw8Fi1aRL9+/fDy8iIzM5O1a9eSnp7OgAEDAGNC6pVXXsHX15fo6Ghu3/5lJEFZE4iXCAsLY+zYsaxbt840rG3KlCm0bt26zPm4SuTm5nLx4kXTdmpqKqdPn8bNzc2UFMzKyuLKlStcv37drL+enp5mX79Wp04d6tWrB0DDhg0JDw9n8uTJbNiwAWdnZ2bPnk2jRo0IDg4GoE+fPqxYsYIFCxaYhu/NmTMHX19fXn755afez6dBJqWkSsOg1+Oh9qWeU1P21mlHrsoKdOmAFUpXY6mncfieNSCwqgxJKV0hAIU2xr8Q2A3ZAtVrWDIi6TmTn5/K/Wt/YXHHmwAoFFbUcC5/ZRFJkiRJkiTp+bFx40YmT55M37590Wg0dO7cmT179pgSMnq9nvHjx3Pt2jWcnZ0JDQ1lxYoVgHFI2/z585k1axajRo1i+PDhbNq0ieXLlxMREUHfvn1xdnZm5syZXL16FbW6/IWemjVrxuHDh3nnnXfo1KkTQgjq16/PoEGDAKhduzZ169Zl/vz5pKWloVAoTNtTp041XWfq1Kn4+fkRExPDypUrycvLA4xzIA0ePLjUfcvad/XqVVNFUAkrKysuXLjA5s2byczMxN3dnVatWpGYmEiTJsbVphMSErh48SIXL178f/buOz6qKn38+OfOJJOZdBISUgghgdB7b4qRkiAi7ipFEMEFBJciRUVUpIgNARfEBfGL4P4WEEVFlqIGFAlVWqSHlkgLNZCeyWTm/P4YGBgDAZRkgjzv12te5N45957n3kzIzJPnnFPkeKXUTa+9X79+ZGVlMWvWLEaPHo2/vz8PP/ww7733XrH3bPv27Y6kENhXPgTo27cvCxYsAOxzRj377LNFrnf8+PFMmDCh2PNf7z//+Q8jR46kc+fO6HQ62rZty3fffed4rTz88MMsWrSIKVOmMGXKFDw9PWnZsiXfffcdJpOpxK+zJGiquO/aX1xmZiZ+fn5kZGQ4xpmKsivj3Fm+f+V9orzrsv7sl479mns4nce8zlGvPfxwdBvL1jZBp7Ny7O17YGjTnqXwVX/qtVnBOb0Pa5pUo46Pp6ujEmXE2gNn+XnnDNqGLnHs8/GpQ7Om37owKiHuP/J+wZncDyFEScnPzyclJYWoqKhbJleEs5ycHMLDw5k2bRr9+/cv9f7T09Np164dvr6+rF69Gk9P+UxzPyjuZ/Z23y/cA5PuCGFnsxai0/QUKvsQJk3nx+UgE6p2JAsu/5sxiWNISP0RgHuhSAoAi30FwXzNnvk23gvzYIlS89nm38jKuwTA1rRG7M6fTuNGS25xlBBCCCGE+KvbtWsXixcv5ujRo+zcudOxetrVIYGlLSAggDVr1tCuXTs2b97skhjEvUmG74l7hs1qQ4cOpewTuGk6H7L9MgkwenI21z72tbJPVfYBpt+NTS6LrErxSZ4fp6oMJUezT2DooZOklLgmI7eACO9cAB6o2YgW9bugl8SlEEIIIYQApk6dSnJyMgaDgcaNG5OYmEj58uVdFk9gYCBvvPGGy/oX9yZJSol7hs1mRafpsXJ15Qk9Vr1Cr9Nx8ZIv2YfGsd9mX/LUw63sJ6W2Xs5hQkElqGifNE6vgZ/bvTuJo7h7Cq029u4byZAaq9Hr7K/3yPIVcJeElBBCCCGEABo2bMiOHTtu3VCIMk4+4Yh7hq2wEJ2m44DuxJU9OmyaQq93Iz09CGX14uoMaU0rl3NZnLfFWkj6OXt1V1j+OYabk5hXOwpfSUrd99JzCmj5zhrOn1/pSEihuePn18ClcQkhhBBCCCHE3SZJKXHPsNms6NCTg33FOjQdVp1Go0aNKLSP6KNtTQO/vNaOf/du5LpAb8fXA8lfOxmAqnnHedW2j/ggPxcHJcqCvacyyMnPQKfZM6xzDrxHi5Zb8fMr469pIYQQQgghhLhDkpQS9wyb1YZO06PU1eF7OioEladlqxZYrfaZzX2MeoJ9jGhaGZ/p/Nx+8nUeABj1blD7by4OSJQVGTnnCfY8D4BOZ+SLfz6Bl1ESlkIIIYQQQoi/HplTStwzlNWKITcT3+zzZACgw93bPkH41Uopg9s9kme15JJvuJKUqvoQRFZ2aTjC9cyFVvbsfxvPSwsY18K+z93Nr+wnWIUQQgghhBDiD7pHPsELAYW5uYTuWk3oiWP2HZoOzcOeV7XZ7B/cDfp7ZE4mSx55OntCzaiTpMP9zmZTdJqRyO5jaxz7lNIIrvCIC6MSQgghhBBCiJIlSSlxz1CXM9FZC7FdqRzR0KGZ7NVG1qtJqXtgovCT+QV8FhDLVr96ABh18mN4v8vIs3DsfA7e7jkAfLR7LPrwTVSLed3FkQkhhBBCCCFEyZHhe+KekLPrHLr/2QftWR2VRXr8rsy1Y7syfM/Drey/pIcfOM6m6CGObVlxT5w8/S2vNf835YyXAVg4KA6TKdi1QQkhhBBCCCFECZMSDVHmnUs9xok1OzCyF4DCq0kpTcffox8FwGazv5Q9ynqCJ203ZzIvAtDq8i66l/eiT1igi4MSrnIx28y/1x3hSMpcov2Oo9MUbm5+GAySkBJCCCGEuJf069cPTdPQNA2DwUDVqlWZNGkShYWFf+q869atQ9M0Ll++fHcCvQ0pKSn06tWLsLAwjEYjFStWpGvXrhw8eNCp3YoVK2jbti0+Pj54enrStGlTFixY4NQmNTUVTdNISkq67f4nTJhAjRo18PLyoly5crRv356tW7c6nbN///5ERUVhMpmoUqUK48ePp6Cg4JbnXrhwIfXr18fT05PQ0FD+8Y9/cPHixWKPWb9+PV26dCEsLAxN01i2bNkdxwzw1ltv0apVKzw9PfH3979hX8ePH6dz5854enoSHBzMSy+95PQauv51dv2jdu3ajjbvvPMOTZs2xcfHh+DgYB5//HGSk5NveW9uJ76SIEkpUeZ99+8POJ+aQn5hLjtrduZMUM0rz+hIyT/Fj8d/dEx0XqaTUuZsmNcRc+5lAN44NoeZNSsReWUIorj//N+GFKZ8l4zFcgmA9WefpnmzFej18poQQgghhLjXxMfHk5aWxuHDhxk9ejQTJkzg/fffd3VYDreTtLFYLHTo0IGMjAy+/vprkpOTWbJkCXXr1nVKjH344Yd07dqV1q1bs3XrVnbv3k3Pnj0ZPHgwL7744p+Ks1q1asyaNYs9e/awYcMGKleuTMeOHTl/3r5C9cGDB7HZbHz88cfs27ePDz74gDlz5vDqq68We96NGzfyzDPP0L9/f/bt28eXX37JL7/8wsCBA4s9Licnh/r16/PRRx/94ZjBfv+7devG888/f8NzWK1WOnfuTEFBAZs2beKzzz5jwYIFvPHGG442M2bMIC0tzfE4ceIEAQEBdOvWzdHm559/ZsiQIWzZsoWEhAQsFgsdO3YkJyen2Ou8VXwlRt3HMjIyFKAyMjJcHYooxpzn+6rEIbPVp72fVlO7d3Y8Zjz9umo8p4Gq8e/OKmrCRypyzAr1yYZ9rg735i79ptR4X1Xrux9VhR93qf0b57s6IuFiwxfvVJFjVqhVP9RSa9ZGqx1Hf3V1SEKIG5D3C87kfgghSkpeXp7av3+/ysvLc3Uod6xv376qa9euTvs6dOigWrRoodLT01WfPn2Uv7+/MplMKj4+Xh06dMjRLjU1VT366KPK399feXp6qlq1aqmVK1eqlJQUBTg9+vbtq5RSKjMzU/Xq1Ut5enqqkJAQNX36dNW2bVv1wgsvOM4bGRmpJk2apPr06aN8fHwcxyYmJqo2bdooo9GoKlasqIYNG6ays7OVUkrt2rVLASo1NfWm13r8+HHl7u6uRo0aVeS5mTNnKkBt2bJFKaUc17Br1647v6lXXP29s2bNmpu2mTJlioqKiir2PO+//76Kjo4uEm94ePhtxwKob7755pbtiot5/vz5ys/Pr8j+VatWKZ1Op86cOePYN3v2bOXr66vMZvMN+/nmm2+UpmnFfr/OnTunAPXzzz/fMu7i4ruR4n5mb/f9glRKiTJPWa3o0JFnzQdAp3ljNnlR5VwSGRf/Rt5vz2PLiwSgvKefK0MtnsUev/lKFYyxwVOujEa4WOrJ74gv/zRz24/AoLe/NupUrOjiqIQQQgghxN1iMpkoKCigX79+bN++neXLl7N582aUUjzyyCNYLBYAhgwZgtlsZv369ezZs4f33nsPb29vIiIi+OqrrwBITk4mLS2NGTNmADBq1Cg2btzI8uXLSUhIIDExkZ07dxaJYerUqdSvX59du3Yxbtw4jh49Snx8PE888QS7d+9myZIlbNiwgaFDhwIQFBSETqdj6dKlWK3WG17X0qVLsVgsN6yIGjRoEN7e3ixevPiu3MOCggLmzp2Ln58f9evXv2m7jIwMAgICij1Xy5YtOXHiBKtWrUIpxdmzZ1m6dCmPPHJ3V7y+3Zh/b/PmzdStW5cKFSo49sXFxZGZmcm+fftueMy8efNo3749kZGRNz1vRoZ9buZb3R9XKfuzQov7ns1qRTPoUNjH6PlQhx31DmJ8siHWHeUBCPUzUjnQizYx5V0ZavEKrySlNAMAHo4J28X95uWlv+KV9x/ahOc79nl718Dd3d91QQkhhBBClEFKKQrNZpf07ebhgabd+Xt2pRRr167l+++/p1OnTixbtoyNGzfSqlUrwD6vUUREBMuWLaNbt24cP36cJ554grp16wIQHR3tONfVREJwcLBjnp+srCw+++wzFi1aRLt27QCYP38+YWFhRWJ5+OGHGT16tGN7wIAB9O7dmxEjRgAQExPDzJkzadu2LbNnzyY8PJyZM2fy8ssvM3HiRJo0aUJsbCy9e/d2xHXo0CH8/PwIDQ0t0p/BYCA6OppDhw7d8X273ooVK+jZsye5ubmEhoaSkJBA+fI3/qx35MgRPvzwQ6ZOnVrsOVu3bs3ChQvp0aMH+fn5FBYW0qVLl2KH5ZVUzDdy5swZp4QU4Ng+c+ZMkfanT59m9erVLFq06KbntNlsjBgxgtatW1OnTp3bjqU0SVJKlHk2m71SyqYce9CURravGyj7HFJv/60usTXK+OTQhflY0WHR2X/sPHRSqHi/Wn/oAk9G5wLw3fEnGPXYcCr4h6Bp8poQQgghhLheodnMzL5PuqTv4Z8txd1ovO32K1aswNvbG4vFgs1mo1evXvz9739nxYoVNG/e3NEuMDCQ6tWrc+DAAXs/w4fz/PPP88MPP9C+fXueeOIJ6tWrd9N+jh07hsVioVmzZo59fn5+VK9evUjbJk2aOG3/+uuv7N69m4ULFzr2KaWw2WykpKRQs2ZNhgwZwjPPPMO6devYsmULX375JW+//TbLly+nQ4cOt3UvDAbDLdssXLiQQYMGObZXr17NAw88AEBsbCxJSUlcuHCBTz75hO7du7N161aCg50/8506dYr4+Hi6devmNDeUt7e34+unn36aOXPmsH//fl544QXeeOMN4uLiSEtL46WXXmLw4MHMmzePxMREOnXq5Dju448/pnfv3rd1vXcS893y2Wef4e/vz+OPP37TNkOGDGHv3r1s2LDBsW/w4MH897//dWxnZ2eXSHy3S5JSosyzFVqxamDDXj6qodCho5BCR1LKTV+2q45yrTZ+zigks8K1/8SNZTxmUTLy89Oo5ruBCp7nAHixU1sqBMiwPSGEEEKIe11sbCyzZ8/GYDAQFhaGm5sby5cvv+VxAwYMIC4ujpUrV/LDDz/wzjvvMG3aNIYNG/anY/Ly8nLazs7OZtCgQQwfPrxI20qVKjm+9vHxoUuXLnTp0oXJkycTFxfH5MmT6dChAzExMWRkZHD69Oki1VkFBQUcPXqUuLi4W8b22GOPOSXrwsPDneKuWrUqVatWpUWLFsTExDBv3jzGjh3raHP69GliY2Np1aoVc+fOdTr39av9+fr6AvZV6Vq3bs1LL70EQL169fDy8uKBBx5g8uTJNGnSxOm431ct3crtxFyckJAQfvnlF6d9Z8+edTx3PaUUn376KX369LlpAnDo0KGsWLGC9evXU/G6aUImTZr0pyejv5skKSXKPJvNygX3fGw4SqVw17ljweJISrnry3aFyb9SzzDzvCfUsK8IoQM8pCrmvnMiPZejBwbRt9a1MeEGQ6ALIxJCCCGEKNvcPDwY/tlSl/V9J64mJa5Xs2ZNCgsL2bp1q2P43sWLF0lOTqZWrVqOdhEREQwePJjBgwczduxYPvnkE4YNG+ZIOFw/v1N0dDTu7u5s27bNkUjKyMjg0KFDPPjgg8XG2KhRI/bv318kzuJomkaNGjXYtGkTAE8++SRjxoxh2rRpTJs2zantnDlzyM3N5ZlnnrnleX18fPDx8bmtGGw2G+brhnGeOnWK2NhYGjduzPz589H9bhTKja4vNzcXNzfnFIheb/88qZTCZDLd0X2505hvpWXLlrz11lucO3fOUV2VkJCAr6+v02sF7CvsHTlyhP79+xc5j1KKYcOG8c0337Bu3TqioqKcng8ODi6x6q0/QpJSosyzWa3YdIAjKWWjQY1mpKpDXJ2r370sVx2d3ceJw/vAoxrRuScIJ592ddviJnNK3Vc2H73IU59sYcZDKXgb4NClKjxUuzl+fk1ufbAQQgghxH1K07Q7GkJX1sTExNC1a1cGDhzIxx9/jI+PD6+88grh4eF07doVgBEjRtCpUyeqVavGpUuX+Omnn6hZsyYAkZGRaJrGihUreOSRRzCZTPj4+NC3b19eeuklAgICCA4OZvz48eh0ulvOgTVmzBhatGjB0KFDGTBgAF5eXuzfv5+EhARmzZpFUlIS48ePp0+fPtSqVQuDwcDPP//Mp59+ypgxYwB7RdWUKVN48cUXMRqN9OnTB3d3d7799lteffVVJk+eXGT+ouTk5CKx1K5dG3d3d6d9OTk5vPXWWzz22GOEhoZy4cIFPvroI06dOkW3bt0Ae0LqoYceIjIykqlTp3L+/HnH8b+vKLpely5dGDhwILNnz3YM3xsxYgTNmjW74XxcV2VnZ3PkyBHHdkpKCklJSQQEBFCpUqXbihng+PHjpKenc/z4caxWq6Mqq2rVqnh7e9OxY0dq1apFnz59mDJlCmfOnOH1119nyJAhePwuQTpv3jyaN29+w3mihgwZwqJFi/j222/x8fFxzEfl5+eHyWS66XXeKr6SIkkpUaYppVA2e42UchRKKfy8/e2rVSj7S7hMV0pt+Tf5BTXAoxqDTn5B33I6qNTt1seJv5R9pzPQsOHpngdAhnEcNWs84OKohBBCCCFESZs/fz4vvPACjz76KAUFBTz44IOsWrXKkZCxWq0MGTKEkydP4uvrS3x8PB988AFgH9I2ceJEXnnlFZ599lmeeeYZFixYwPTp0xk8eDCPPvoovr6+vPzyy5w4cQLjLRJ49erV4+eff+a1117jgQceQClFlSpV6NGjBwAVK1akcuXKTJw4kdTUVDRNc2yPHDnScZ6RI0cSHR3NtGnTmDFjBjk5OQAsXryYnj17Fun3RvtOnDjhNKwM7JVLBw8e5LPPPuPChQsEBgbStGlTEhMTqV27NmCvHjpy5AhHjhwpcry69qGxiH79+pGVlcWsWbMYPXo0/v7+PPzww7z33nvF3rPt27cTGxvr2B41ahQAffv2ZcGCBbcVM8Abb7zBZ5995thu2LAhAD/99BMPPfQQer2eFStW8Pzzz9OyZUu8vLzo27cvkyZNcoonIyODr776yrES4+/Nnj0bgIceeshp//z58+nXr99Nr/NW8ZUUTRX3XfuLy8zMxM/Pj4yMDMc4U1G2WAsLWfxoe6rle7EhWIfSFH5aQ3xHNmFd1ves/ukBlNWXVcMfoFZYGf0efvEMT+lb81NAc2YYf6NH3ZbgXXbKJUXJM5vP8sX6T9iRepouVb4H4KG2+9Dr792/+glxP5H3C87kfgghSkp+fj4pKSlERUXdMrkinOXk5BAeHs60adNuOKSrpKWnp9OuXTt8fX1ZvXo1np6epR6DKH3F/cze7vuFMlxeIoR9Pqkap9PxOXMMdWX4nsVNUT7EhwJbAQr7GGCDWxkeCldoJk9nL7c0VnlQElL3mbUHzvL5j+MI0893JKT0em9JSAkhhBBCiD9s165dLF68mKNHj7Jz507HKnFXhwSWtoCAANasWUO7du3YvHmzS2IQ9yYZvifKNGW1or8yfI8reafkcBsb933Kb5m/gbIv2emmK8P5VUse+V72pJSpLMcpSsSYr3bzTPWTVPSA/RerEVWhOs1rdXF1WEIIIYQQ4h43depUkpOTMRgMNG7cmMTERMqXL++yeAIDA3njjTdc1r+4N93xJ+T169fTpUsXwsLC0DSNZcuWOZ6Zrdi8AAEAAElEQVSzWCyMGTOGunXr4uXlRVhYGM888wynT592OkflypXRNM3p8e677zq12b17Nw888ABGo5GIiAimTJlSJJYvv/ySGjVqYDQaqVu3LqtWrbrTyxFlnM1qA5xHmJo94Nfzv3LZfPna6ntuZTPZY7EpDmj+ZLrZJ4YzSlLqvmKzKS7mFODlbh9jHxLWj/YtpxFUvp2LIxNCCCGEEPeyhg0bsmPHDrKzs0lPTychIYG6deu6Oiwh7tgdf0LOycmhfv36fPTRR0Wey83NZefOnYwbN46dO3fy9ddfk5yczGOPPVak7aRJk0hLS3M8hg0b5nguMzOTjh07EhkZyY4dO3j//feZMGECc+fOdbTZtGkTTz31FP3792fXrl08/vjjPP744+zdu/dOL0mUUTZzIdlrTqDXadiuW0XCptmwmoN40H8IGvbJAd3L6Ep2vXYfJTZiFMc8IwAwltE4xd1ns1nYtft5JrZ8h3DvNAA61onB6K53cWRCCCGEEEIIUTbc8fC9Tp060alTpxs+5+fnR0JCgtO+WbNm0axZM44fP06lSpUc+318fG66XOPChQspKCjg008/xWAwULt2bZKSkpg+fTrPPfccADNmzCA+Pp6XXnoJgDfffNOxjOWcOXPu9LJEGXRhwxEKtlwAINMnwrG/do6O74+NZuWxa2093MrmB/29WfaV1gIsl4nx9qauj0z4dz84n2Xm059W0MQ7gfArq6fqdAZMpkjXBiaEEEIIIYQQZUiJjyXKyMhA0zT8/f2d9r/77rsEBgbSsGFD3n//fQoLCx3Pbd68mQcffBCDweDYFxcXR3JyMpcuXXK0ad++vdM54+Liip1UzWw2k5mZ6fQQZVNedhZbvlgMwL4ag9jZ4AXHc6dVIAAmd40GEf4MahuNn6e7S+K8qawz8MUz5BfYk1Lf7RjEtxE2THoZvnc/+HrnSRKT7VnTMzlBLDzyEi1brMVgCHRxZEIIIYQQZd99vEC8EPeUu/GzWqITnefn5zNmzBieeuoppyUAhw8fTqNGjQgICGDTpk2MHTuWtLQ0pk+fDsCZM2eIiopyOleFChUcz5UrV44zZ8449l3f5syZMzeN55133mHixIl36/JECcq9fAlskFlwgfNux7DmXiuLOu6ZBpYaVA3xYNmQ1i6MshgH/ofa/y15bUcBYLIVgG+Yi4MSpeViTgGe7vaEpL93GK8+/jRGo7eLoxJCCCGEKNvc3e1/aM7NzcVkMrk4GiHEreTm5gLXfnb/iBJLSlksFrp3745SitmzZzs9N2rUKMfX9erVw2AwMGjQIN555x08PDxKKiTGjh3r1HdmZiYRERHFHCFcxWa1okPPwYxtWKyHwWrfr9O7cTgkG06U8RX3zFnk665V+hmf+Qb8KrowIFFaTp36nMq65YRWPglARGAwVYMlISWEEEIIcSt6vR5/f3/OnTsHgKenJ5omc7IKUdYopcjNzeXcuXP4+/uj1//x6XRKJCl1NSH122+/8eOPPzpVSd1I8+bNKSwsJDU1lerVqxMSEsLZs2ed2lzdvjoP1c3a3GyeKgAPD48STXqJu8dms6FpGoU2MwA696qcCjpO2xZPYjm/HgD3sjwUrjCffN2115oxvL4LgxGlwWK1MWH5bh7yfYMKBitcyUkaTZKMFEIIIYS4XVc/z11NTAkhyi5/f/9iczC3464npa4mpA4fPsxPP/1EYOCt51BJSkpCp9MRHBwMQMuWLXnttdewWCyOMrCEhASqV69OuXLlHG3Wrl3LiBEjHOdJSEigZcuWd/uShAsoqxWdpicHezmgzj2SCyFp+FQIw3rOPm61LCelLlkspFxJRrhpZXd1QHH3bD2Wzrc7k3k41l7W95/93enXujrRUU+4ODIhhBBCiHuHpmmEhoYSHByMxWJxdThCiJtwd3f/UxVSV91xUio7O5sjR444tlNSUkhKSiIgIIDQ0FCefPJJdu7cyYoVK7BarY45ngICAjAYDGzevJmtW7cSGxuLj48PmzdvZuTIkTz99NOOhFOvXr2YOHEi/fv3Z8yYMezdu5cZM2bwwQcfOPp94YUXaNu2LdOmTaNz5858/vnnbN++nblz5/7ZeyLKAJvNhg4dOSrvyh4dVk2jQoUKWH+17ymrSakNl7Lo4dYFa6OuABjL8jBDcddcyEon3Ps0AAovnu0wkgdjgtBJQlIIIYQQ4o7p9fq78oFXCFG23XFSavv27cTGxjq2r87R1LdvXyZMmMDy5csBaNCggdNxP/30Ew899BAeHh58/vnnTJgwAbPZTFRUFCNHjnSa68nPz48ffviBIUOG0LhxY8qXL88bb7zBc88952jTqlUrFi1axOuvv86rr75KTEwMy5Yto06dOnd6SaIMstmsaJoOlL3qRENP+YBwatSogfU7extDGf0llZSZi1XToVNWPDR4ooKsuPZXlldgZc3eJEyXnublpgUAmIzlaF092MWRCSGEEEIIIUTZdsdJqYceeqjYZf9utSRgo0aN2LJlyy37qVevHomJicW26datG926dbvlucS9x2ax4Hn+OO76bMwaoOkweXpRqApB2ZNRZbJS6sD/MKeeBWMTnk5bwZTo8lB9iKujEiVo/qYU1uz8niENCrApDRtGQkP+5uqwhBBCCCGEEKLMK4Of6oUAy+atBO5bi3tO5pU9OtJNZ5mxYwZK2V+2BrcyWCm1bAjmcwcB8LAVgHcFFwckStqJ9Fy83HMAOFfQiKr1thAdPcK1QQkhhBBCCCHEPaBEVt8T4s9S6ekAWB1D9PTsuLiTjZmbQD0MgIe+jL18bTYwZ2DW2Zdd84huCzXbujgoUZJyc1OooPuKoOA9ADSIrESVIG8XRyWEEEIIIYQQ94Yy9qleCDtVWAhAobs9wYOmw6rZCPcOx1s1ZPuFMlgpVZgPQJ7OAwBjWD1w83BlRKIEHT6bRUrySOr67nHsMxjKuzAiIYQQQgghhLi3yPA9USapAvuE0cqxcJkeq6ao7FWT+uWbAeBW1la1u5KUclRKyaprf1k55kK6frSRjOzjAOw6Vxe8uhFR8RkXRyaEEEIIIYQQ9w6plBJlTvbm0xj37iMHyNdbAHc0dJgvN+W7Q+2BFADc9WUr6ZNjziPZpwZnPezVMsayljQTd82ZjBywZeHtngvAZbd/0rpRO4zuZax6TwghhBBCCCHKMElKiTIn//BlzmnnOVoxCMWVD/maDkt2DUcbo7uOFlUCXRThjXU6cJFDjT52bBvLWNJM3B02WwHHk//Ohw+nOvZNeLwlbmVtOKkQQgghhBBClHGSlBJlj02xTe9NbuD1H/KNWHOroddZOTDpUXQauOnLTiWS7dxBDpltAISbzxNcPpKHAnxdHJW4234+dJ6Z3//IP2unOvYFlGuDXi+TmwshhBBCCCHEnSo7n+qFuEopCq5USOk9GuHu1QWd3p7g0enA4KYrUwkpLh4lf86Djs31h8ayukk1IowGFwYlSsJXO05yMesiAOn5/qy59CUNGixA06QqTgghhBBCCCHuVBn6ZC+EnbIpbFc+5OsNNSjwCkK5HQZAp1OuDO3GLqWSr7u2yp6x5RAXBiNKis1mxlPtoE75AwAE+wUz+W8NJSElhBBCCCGEEH+QDN8TZY9NcTX1ZFFH2Rt5lNCwBrAb9FoZTEoVmh1JKXdNQ9/0WRcHJO42q02RfHg6HUL+z7HPxzMQvaywKIQQQgghhBB/mFRKiTLlxL7dXE5LgytpKaUpNDQK3Owf/svkgnaF+eTr7UP1PCRJ8ZeTW1DIQ1N/YvWuLQCcyw1E51GfShH9XRyZEEIIIYQQQtzbyuJHfHEfW/nhVLIuXnBUSilNoVM6CpV9T1maSsrhukopY5nMmok/48i5bE6k5+HlngvAj6e60bjxEsqXj3VxZEIIIYQQQghxb5NP0KJMyc/KQrMWOrZtVyqltqRtA8peUmrr5WwaXa7Cow0/AsCol0qpv5r0cwt5uuYSKvqcBeDdJ1vja3R3cVRCCCGEEEIIce+TOaVEmVL/yAncM9+FelWAK0kppVF4JdfjafAo5ujSl3Axk9PKAFeG7zXw8XRxROJuySuwsjl5B+rydGIjru03mUJdF5QQQgghhBBC/IWUsboTcT9TNhtBmbnAtWqjy15wyvMU7ap1AMDPw9tF0d2AOYu8zHMA9D21jM2Zi5lbu7JrYxJ3zaQV+3l31SYAMgu82ZvZnTq1Z+LpGeXiyIQQQgghhBDir0GSUqLMsFqt6FDYrhsBl+mlOOFzApObPRnlVlbG79ms8O9W5B9YAUBIwQWidGZ0mgzf+6s4ej4bL7c8APKsITSr+yIVKnR2cVRCCCGEEEII8dchw/dEmWEtMKMpUNetYGfTga3Qi8wc+0vVvaysbmfOhIzj5Ifah+0ZjT5Q5xEXByXulgsXfqJpuc/xKHcCgFrhYTSoEujiqIQQQgghhBDir0WSUqLMsOblA6CuqzayaTbyT/Xkm8P2iaXdyspE4hZ7BU2+zgiAse1oCC/vyojEXZKVb2HP3hdoVD7Hsc/DI8SFEQkhhBBCCCHEX1MZGQslBNjMV5JSjj0aSqcAHe56RYCXgcfqh7sout+5kpTKc7NPbG4sKxVc4k/56eA5Wry1ApvNnpBaldIev+B/EhU13MWRCSGEEEIIIcRfj1RKiTKjMC8XuL5SSocNGyg9T7TU8e6jHVwX3O98ei6HTbUm8qt3DAAmneR3/wq2pFzEQ58NgMWmJzm3N/VqtMHgJt9fIYQQQgghhLjbJCklygxbrj0ZYK+OAtChNBtKaRjd9K4L7HeyC628dsaKCnrIsS/Ew911AYm7wmLJoJbbYN5ufQYAL2MgK4Y96OKohBBCCCGEEOKvS/78L8qMnM0byXfTk2O6kuDR7EkplA5DWUlKKUVO2l4UGpqy8XbaIubXqUxzPy9XRyb+hNQLOfyQtAZv/Unc9YUA+Ps3cXFUQghh99FHH1G5cmWMRiPNmzfnl19+Kbb9l19+SY0aNTAajdStW5dVq1Y5Pa+U4o033iA0NBSTyUT79u05fPhwSV6CEEIIIcQNSVJKlBnH1v3Ij7Ui2RZ5dd4oDZtmA3RlZ/jUqR3kL+wBgMmWzz+yf6FTkD+aJnNK3assVhuP/3sj/9m4B4DDl6LJ9V9KndozXRyZEELAkiVLGDVqFOPHj2fnzp3Ur1+fuLg4zp07d8P2mzZt4qmnnqJ///7s2rWLxx9/nMcff5y9e/c62kyZMoWZM2cyZ84ctm7dipeXF3FxceTn55fWZQkhhBBCAJKUEmWA1ZzPzr/9nYzzl0HT0JTCqnNDb6iDzeaBzRyE0a2MjDRNP0aezgMAIzZoNczFAYk/Kz0nF1V4gUDTJQC8TME8VKuOJBqFEGXC9OnTGThwIM8++yy1atVizpw5eHp68umnn96w/YwZM4iPj+ell16iZs2avPnmmzRq1IhZs2YB9iqpf/3rX7z++ut07dqVevXq8Z///IfTp0+zbNmyUrwyIYQQQgiZU0qUAae++w7TgQNowf6AFz75WRyo24UqFxtjzbwEegMGfRkZvleYT/6VpJTJsxzUaePigMSfoZSV5D1PMP2hI459TaIq4WOUOcKEEK5XUFDAjh07GDt2rGOfTqejffv2bN68+YbHbN68mVGjRjnti4uLcyScUlJSOHPmDO3bt3c87+fnR/Pmzdm8eTM9e/a8+xdyBzb/9B1bvvjSpTGIMk5TaJrC6qnjYBUD+Xqj09M2D3eMHoF4aCU/tUKgdz5Gg7XI/iB9OfRaGXnvWsrM3hVROvtHTD+djUpuhS6OSIj7m0GvUa2CT7FtfHzq4u7uW0oRFSVJKeFyluwsAJS7/U3FrmgNT2X/RX7115jRvYy8VC355OvtSSkPWXHvnnbkXBb//nEbnYPtCSmb0uHu5kn58u1cHJkQQthduHABq9VKhQoVnPZXqFCBgwcP3vCYM2fO3LD9mTNnHM9f3XezNr9nNpsxm82O7czMzDu7kDuQtG4NtvSzJXZ+8ddhcm/NljqLij6hID/l71gu1ynxGAoaBWILMt74SXXj3X95Wde+bKXWM4QZrotFCIEF2JVWfJvGjb/A369xqcRzI2Xkk764n2VlFHKoVn8uGU6DOkRYdh2MhVUAsNrcQA8+Hjf5hV+KbErxU4GJxMDWABh1MrzrXvb/Nv/G5sMpdA6GHIsnS0/N4z//aObqsIQQosx55513mDhxYqn05ebhgU7zK5W+xD1Oy8ajwJ88PIo+525E513yWaEA3VncbUX3u8F9m5Qq1K5Vm5usZs5bwotpLYQoae56HeHlTMW20euKf76kSVJKuFzaOSPngxthycuFfPAuCMDdzV5imKUMgI2q5SJdGySw6XI2vQvrQkRdAHzKyoqA4o4pZcXT+gMPR/wKgNGjHFO71XNxVEII4ax8+fLo9XrOnnWuHDp79iwhISE3PCYkJKTY9lf/PXv2LKGhoU5tGjRocMNzjh071mlIYGZmJhEREXd8Pbdj4Ktvlch5xV/TP10dgLiFR4CXXB2EEKKMk/FHwuUseRYAjOZ0AI77HySh0iq+9DLjVsmLbo0rUivM9X81PZVvjzOw4BLx1pOMrnzjDwSibDuXlc+q7ctp4v8RD1faAECATwjBPq6vxhNCiOsZDAYaN27M2rVrHftsNhtr166lZcuWNzymZcuWTu0BEhISHO2joqIICQlxapOZmcnWrVtvek4PDw98fX2dHkIIIYQQd4NUSgmXs6SdBs+KGKwZ5Ogg3esMh/wLyM2M5ec+jYkMLPmJKm9p4wzMR49CxD9olrmX+eUuQsCjro5K/AH//O9OPAu307c2XMgLILj8A8RU7ePqsIQQ4oZGjRpF3759adKkCc2aNeNf//oXOTk5PPvsswA888wzhIeH88477wDwwgsv0LZtW6ZNm0bnzp35/PPP2b59O3PnzgVA0zRGjBjB5MmTiYmJISoqinHjxhEWFsbjjz/uqssUQgghxH1KklLCZX75dimpSTvQYx97rl2Z1tymgVL2l6a+rMzb9Mv/YfZuCoCHrQCCa7k4IPFHpVzIoUlQHgBmrR6tG0/F4CZFo0KIsqlHjx6cP3+eN954gzNnztCgQQO+++47x0Tlx48fR3fdwhutWrVi0aJFvP7667z66qvExMSwbNky6tS5Nunzyy+/TE5ODs899xyXL1+mTZs2fPfddxiNUjEqhBBCiNIlSSnhEtZCC4mLPwOlqOTR5Mpe+4yQSlNwJSnlri8jyYLCPPJ1BgA8qsdBvZJf0UXcfemXttIwcA01Aw4B0LxqpCSkhBBl3tChQxk6dOgNn1u3bl2Rfd26daNbt243PZ+maUyaNIlJkybdrRCFEEIIIf4QSUoJl7AWFoKyJ6EMV16G2Tr78iXXV0q5lZVKqUIz5itJKaPJ9fNbiTuTkWth2vdbecD3HzxVw+rYb3Av58KohBBCCCGEEOL+JiUCwiWshYWOrzXsq9jZsCellKaw5tpX23MrM5VS+deSUroyEpO4bav3prFu/150mhWz1cCvFxoTFtqd0LCbVxIIIYQQQgghhChZUiklXMJWWIgOHY3KdyQ990qCSlOgoGq5mmw61xoAd73rK6USL2awP6Qr231rA+BRVqq3xG1Lzy3Ayz0XAJ1bGI+2nUe1Cj4ujkoIIYQQQggh7m+SlBIuYbNa8fIOYVzDz+my/e94AupKpZT1upyPm4urks4XWOixOwVb1Wtzefi46V0YkbhTFy8mUrHwLfrVvghAkG+QJKSEEEIIIYQQogyQpJRwCZu1kFxDFi2SLuGbp6fQBNqVic6TLx9xtHN1pdSFgkJsgIfNzKPnf8anQU96hAS4NCZx+z7blIpH1hyC3A/jZbLv8/KOcW1QQgghhBBCCCEAmVNKuIjFbKHChZo0SfsHOr19/ihPq70CSWFPROk0+wpBLrNnKfkLugBQvuAyHyW/y7s1KhHs4e66mMRtO3w2i/HL93Ex6wIAy4/Gcdn0L6rFjHNxZEIIIYQQQgghQJJSwkXOHM3gvG8lzvj5ksd5rAVHsbjbK6U6RHUCwN3Vk5zvX0a+xQyAyZYPFZu4Nh5xR85l2b93vh75ALSo8RCPNH4E3ZUJ64UQQgghhBBCuJYM3xOlzppp5ugXa7Bkr3Hab7nyr07nAYCbqycUt+STpzMCYAyIgvhVro1H3La8vOPkpL3E683PUcF0BoBH6lXDZJD5wIQQQgghhBCirJCklCh1BaeyyTNfBkCHB2aPDCrpCrhgDSbZLYS1e8JBD26urpQqzCf/SoLMZDCBXn5c7gVfbDvBtr0ziI/cTpSffZ+mGTCZKro2MCGEEEIIIYQQTuRTtih9NoVN2Vfa86Qi5yOS6eV+gun5/2Al7R3NWlUJdFWE5FitfOrdkq3e5QAwunjCdXH7lu48SZT7ZQC2nWlASMgTdG/eEoOhvGsDE0IIIYQQQgjhRJJSolQppTifmspFLQMAzYZjZrNMUxbkwXPtvPhn61b4mVw3ofjyc5d5K7CzYzvAXX5U7gWFhVkEuW0lwvcUAPENH6J+jadcO2G+EEIIIYQQQogbkk/aolSdOXKITV8vIV8VoAM0NHSafYJzs2af78fP5Ia/p2sno75ksQJQPecYj4RXpEd0qEvjEbeWlW/hwP5X+XvUtbm/gv1CJCElhBBCCCGEEGWUrL4nSlV2+kU0NLgyfE9TCk+dfZU0i7LnSD3cXJwr/eUTCg6uBqBJ5n7GBOmpbPJwbUyiWKcu59HsrbXs+W2PfTs7FG+/DpQv387FkQkhhBBCCCGEuBlJSolSZbPZQKdDw56U0illT1KVi2KbqgKA0ZVJqfPJsOpFzKeTAPCwFYCX6+a2Erdnz8kM8ixWPN1zAdiZMZAmDWdjMAS4ODIhhBBCCCGEEDcjSSlRqmw2Kxo6NGUfsqcpBdXawwtJnMY+EbVLK6Vy0wHIN/gCYKgaC+Uquy4ecUtKKXIzf+ahiomUM+YAMPnvrdDrZNieEEIIIYQQQpRlMqeUKFXKZgNN5xi+p1Og97APjbPZ7DlSD1dOKl6YB4DZeGXVveAarotF3NKhs1l8snYF8SGv06fWtf0G93KuC0oIIYQQQgghxG2RSilRqvJzbORoVdCs9sST3mYjOeMII34agc1mr2xx6fA9Sz4AZp0RAA+ptinTlmw7wW/nDgOQYfYhkzbEVH0Vg6G8iyMTQgghhBBCCHErUiklStXJZEWuFommtqIAvc3C0exULh7/DVQLAAJMvi6L74y5gJO+tTl9ZS4iD53kbcuyS7kFeLnbh+z5+TWmTbO5eLjpXRyVEEIIIYQQQojbIUkpUarOHEvEnJmGzXYODSh/cR+Fyh1vSyPMmjcFQDkXJaXOmi00Ta+EpeG/HfukUqrsOnPmW5r7zEbnfR6AsHLBkpASQgghhBBCiHuIJKVEqcnPySbrzA4ArqZ6fPKyyT75PJf1EY52Br0LqpMKzaTuX4uFMNxshYTbsgkoF0b7QNdVbYkbyzYXMnH5Plr4TKO8xynHfi+vqi6MSgghhBBCCCHEnZKxSaLUWC0Wx9cRWRVodegkfnkFFFoDAahewYeeTSOoWM5U+sElLSJ//TQAquWmsjV7CaubVCPS5FH6sYhirT1wli93nETPZQD+e+BJ/Ct+TMWKfV0bmBBCCCGEEEKIOyKVUqLU2ArMV77S41vggX9+PsbyFrLd7Umopc+3xMfo7prgMk+TrzMA4OHhDU2HuCYOcUtZmXtpHbYFL3f7SokD2vWjcbWaLo5KCCGEEEIIIcSdkqSUKB02G7bjW65saOyLshHfJo3TqcGg2Qfzubti2N5Vhfnk6+xVUcagKhAS47pYxA1ZbYqk304SbHmBf9S5WnWno2W1aJfGJYQQQgghhBDij5Hhe6J0fPUPrF8Ntn+t6bEC0ywjSfmtoqOJmysnFS80OyqljLLiXpk0Y+1hhv73e/SaBYtNT6atKdWqjUOnkyGWQgghhBBCCHEvkkopUSrUqSSUY3pzDZtmRWfTKHS79hLUuzQplXetUkqSUmVS8plMvNxzAcgpLE/dhp8QUcHHxVHdmtVqxXLdfGpCiLJHr9fj5uaGpsmKq0IIIYQQpUmSUqJ02Aqxqqtv9vUozYbNYqZAZ38JaprNZR8GEtOz+NijHb+F2/s3ujI5Jm4oJ+cYdbzmUjv6JACVAitQ7R5ISGVnZ3Py5EmUUq4ORQhxC56enoSGhmIwGFwdihBCCCHEfUOSUqJ0WC3YHEkpHTbNhptSFOr19j06131on/HbWTYYKsOVzyHhRvlAUpas3J1G7rn3qOW/1rHPwxjmwohuj9Vq5eTJk3h6ehIUFCQVGEKUUUopCgoKOH/+PCkpKcTExKCTilkhhBBCiFIhSSlROmyF2K4M39M0HUqzobs+KaW5ICmlFPz6OVmXwwA/Bp1YQpPqLXi4ct3Sj0Xc0In0XIYs2skLDU8TEATbzjSgXf2HqVblb64O7ZYsFgtKKYKCgjCZTK4ORwhRDJPJhLu7O7/99hsFBQUYjUZXhySEEEIIcV+QPwWK0mErxHx9pRQ2QtIuk210YaXUye2wbDDm7IsAtE/fQhcfDa8riTLhemkZ+QD4GOz/RlbsSpNa/8R4D1RKXSUVUkLcG6Q6SgghhBCi9EmllChxNpvi8zOvcD7bA/ga0IEq5KRnOt/HZMFl0LuiUirnHAD5bp4AGOt3h5iOpR+HuCGbzczly5upE7ifAFMmAHF1qkiSRwghhBBCCCH+IiQpJUpcboaZS+bqaKQCoAGeefmsbmrG7B0El8HT4IKhEpY84LqkVJO+4C5DNsqCNfvPsnv/OOoHrGVk42v73dx8XReUEEIIIYQQQoi7SmrVRYmzWe1VUFYKAPDOPk2hxcaJ3Bo0Mb4IgJcrklKF9iFh+Tp3ADxk6EaZ8dnmVIxXkpjncwPJsUVTocJj+PjUcm1g94l+/fqhaRqapmEwGKhatSqTJk2isLDwT5133bp1aJrG5cuX706gtyElJYVevXoRFhaG0WikYsWKdO3alYMHDzq1W7FiBW3btsXHxwdPT0+aNm3KggULnNqkpqaiaRpJSUm33f+ECROoUaMGXl5elCtXjvbt27N161anc/bv35+oqChMJhNVqlRh/PjxFBQUFHvetLQ0evXqRbVq1dDpdIwYMeK24lm/fj1dunQhLCwMTdNYtmzZDdsdOHCAxx57DD8/P7y8vGjatCnHjx93PD9o0CCqVKmCyWQiKCjohvd027ZttGvXDn9/f8qVK0dcXBy//vrrDfs7cuQIPj4++Pv737VrEEIIIYQQZZ98ChclLjVpGwXZ/8OWvw0AnVIcc69IQXos3yalAeBnci/1uLbl61kWFEuuZu/bqJNhYWVFdn4OPoZsACpFT6JT7PfUqf0BmibzfZWW+Ph40tLSOHz4MKNHj2bChAm8//77rg7L4VZJG7BPNt+hQwcyMjL4+uuvSU5OZsmSJdStW9cpMfbhhx/StWtXWrduzdatW9m9ezc9e/Zk8ODBvPjii38qzmrVqjFr1iz27NnDhg0bqFy5Mh07duT8+fMAHDx4EJvNxscff8y+ffv44IMPmDNnDq+++mqx5zWbzQQFBfH6669Tv379244nJyeH+vXr89FHH920zdGjR2nTpg01atRg3bp17N69m3HjxjlN/t24cWPmz5/PgQMH+P7771FK0bFjR6xWKwDZ2dnEx8dTqVIltm7dyoYNG/Dx8SEuLg6LxeLUn8Vi4amnnuKBBx64a9cghBBCCCHuEeo+lpGRoQCVkZHh6lD+0j4ZOkBN7d7Z8fh/cW1Vv2dGq8gxK9Tg/7ddvb1yv/r1xKVSjWl3Zo6q8OMup8cFs6VUYxA3lpLyb7VmbbTjkZl1wNUh/SF5eXlq//79Ki8vz9Wh3LG+ffuqrl27Ou3r0KGDatGihUpPT1d9+vRR/v7+ymQyqfj4eHXo0CFHu9TUVPXoo48qf39/5enpqWrVqqVWrlypUlJSFOD06Nu3r1JKqczMTNWrVy/l6empQkJC1PTp01Xbtm3VCy+84DhvZGSkmjRpkurTp4/y8fFxHJuYmKjatGmjjEajqlixoho2bJjKzs5WSim1a9cuBajU1NSbXuvx48eVu7u7GjVqVJHnZs6cqQC1ZcsWpZRyXMOuXbvu/KZecfX3zpo1a27aZsqUKSoqKuq2z/n7e3W7APXNN98U2d+jRw/19NNP39G5fv31VwWoI0eOKKWU2rZtmwLU8ePHHW12796tAHX48GGnY19++WX19NNPq/nz5ys/P7+7cg1/RHE/s/J+wZncDyGEEELcyu2+X5BKKVHiLPn2YXLKsz6hmZeoffIChZp9OrM+LSMZ+0hN6lX0L72AzFmc2J8AgE9hNq0K0xgZWYFAg0yx5kq5BYU8NXcLP/66zLHPzRCFpynKdUHdRUopcgsKXfJQ6s8vJGAymSgoKKBfv35s376d5cuXs3nzZpRSPPLII47qlyFDhmA2m1m/fj179uzhvffew9vbm4iICL766isAkpOTSUtLY8aMGQCMGjWKjRs3snz5chISEkhMTGTnzp1FYpg6dSr169dn165djBs3jqNHjxIfH88TTzzB7t27WbJkCRs2bGDo0KEABAUFodPpWLp0qaOC5/eWLl2KxWK5YUXUoEGD8Pb2ZvHixX/6/oG9umvu3Ln4+fkVW92UkZFBQEDAXenzTtlsNlauXEm1atWIi4sjODiY5s2bFztELicnh/nz5xMVFUVERAQA1atXJzAwkHnz5lFQUEBeXh7z5s2jZs2aVK5c2XHsjz/+yJdffilVT0IIIYQQ9yn5FC5KnM1qn4fGaooiMHclxkIrhTr7S89d74K86JY55O/bAjXH0SDrIF96/wbRnUo/DuFkx2+X2HzsIp1CcgD4eM8/+XTQMPR6g4sjuzvyLFZqvfG9S/rePykOzz+YdFVKsXbtWr7//ns6derEsmXL2LhxI61atQJg4cKFREREsGzZMrp168bx48d54oknqFu3LgDR0dGOc11NtAQHBzvmDsrKyuKzzz5j0aJFtGvXDoD58+cTFhZWJJaHH36Y0aNHO7YHDBhA7969HfMpxcTEMHPmTNq2bcvs2bMJDw9n5syZvPzyy0ycOJEmTZoQGxtL7969HXEdOnQIPz8/QkNDi/RnMBiIjo7m0KFDf+jeXbVixQp69uxJbm4uoaGhJCQkUL58+Ru2PXLkCB9++CFTp079U33+UefOnSM7O5t3332XyZMn89577/Hdd9/x97//nZ9++om2bds62v773//m5ZdfJicnh+rVq5OQkIDBYP959fHxYd26dTz++OO8+eabgP378/333+PmZn8tXrx4kX79+vHf//4XX19ZxEAIIYQQ4n4klVKixFmvTI7slQ9Bl+3VFFcrpVySlMo6Tb7O/sHJ6B0ETfuXfgyiiMyMJJpU2EmAMROAD55qh7fxr5GQuhetWLECb29vjEYjnTp1okePHvTr1w83NzeaN2/uaBcYGEj16tU5cOAAAMOHD2fy5Mm0bt2a8ePHs3v37mL7OXbsGBaLhWbNmjn2+fn5Ub169SJtmzRp4rT966+/smDBAry9vR2PuLg4bDYbKSkpgL1y68yZMyxcuJCWLVvy5ZdfUrt2bRISEm77XlxNtBRn4cKFTnEkJiY6nouNjSUpKYlNmzYRHx9P9+7dOXfuXJFznDp1ivj4eLp168bAgQMd+68/7+DBg28r5sTERKfjFi5ceFvH2Ww2ALp27crIkSNp0KABr7zyCo8++ihz5sxxatu7d2927drFzz//TLVq1ejevTv5Vypj8/Ly6N+/P61bt2bLli1s3LiROnXq0LlzZ/Ly7CufDhw4kF69evHggw/e1WsQQgghhBD3DqmUEiVn4wzUzv9gK7BXIHhYwGS2f+C55OEHgLveBZOLW/LJ03nYYwqrB+Uql34MwsFmUySfSsKYOZjnrxvRFOgb7LqgSoDJXc/+SXEu6/tOxcbGMnv2bAwGA2FhYbi5ubF8+fJbHjdgwADi4uJYuXIlP/zwA++88w7Tpk1j2LBhfyR0J15eXk7b2dnZDBo0iOHDhxdpW6lSJcfXPj4+dOnShS5dujB58mTi4uKYPHkyHTp0ICYmhoyMDE6fPl2kOqugoICjR48SF3fr79tjjz3mlKwLDw93irtq1apUrVqVFi1aEBMTw7x58xg7dqyjzenTp4mNjaVVq1bMnTvX6dzXr/Z3uxVFTZo0cTquQoUKt3Vc+fLlcXNzo1Yt55Uua9asyYYNG5z2+fn54efnR0xMDC1atKBcuXJ88803PPXUUyxatIjU1FQ2b96M7srKposWLaJcuXJ8++239OzZkx9//JHly5c7qsKUUthsNtzc3Jg7dy5PPfXUH7oGIYQQQghx75CklCg5W2ajZaVhUyGAhobi2wdDaLXPwjH/MLC5qFKqMA/z1UopnRQLutorX+/m8PHVDG0AuRYT+VShYZVWGI1Fh2/dyzRN+8ND6FzhaiLlejVr1qSwsJCtW7c6hu9dvHiR5ORkpyRGREQEgwcPZvDgwYwdO5ZPPvmEYcOGOSqOrp/fKTo6Gnd3d7Zt2+ZIJGVkZHDo0KGbVtBc1ahRI/bv318kzuJomkaNGjXYtGkTAE8++SRjxoxh2rRpTJs2zantnDlzyM3N5ZlnnrnleX18fPDx8bmtGGw2G2az2bF96tQpYmNjHSva6X73/9KdXN9VJpPpDx1nMBho2rQpycnJTvsPHTpEZGTkTY9TSqGUclxXbm4uOp0OTbv2h4er21ersTZv3uz0Wvj2229577332LRpE+Hh4X/4GoQQQgghxL3j3vmEJO45NmsBo4LKE3Hg6ocSjR21ytPkSDpKuXD4niWffJ39w6PJFf0LJ7+eyCDILReAkzlVqV3nE6pWDXJxVOJGYmJi6Nq1KwMHDuTjjz/Gx8eHV155hfDwcLp27QrAiBEj6NSpE9WqVePSpUv89NNP1KxZE4DIyEg0TWPFihU88sgjmEwmfHx86Nu3Ly+99BIBAQEEBwczfvz4IgmNGxkzZgwtWrRg6NChDBgwAC8vL/bv309CQgKzZs0iKSmJ8ePH06dPH2rVqoXBYODnn3/m008/ZcyYMYC9omrKlCm8+OKLGI1G+vTpg7u7O99++y2vvvoqkydPpk6dOk79/j5hA1C7dm3c3d2d9uXk5PDWW2/x2GOPERoayoULF/joo484deoU3bp1A+wJqYceeojIyEimTp3K+fPnHceHhIQUe/1Xq4iys7M5f/48SUlJGAyGIlVO18vOzubIkSOO7ZSUFJKSkggICHAkBV966SV69OjBgw8+SGxsLN999x3/+9//WLduHWAfcrlkyRI6duxIUFAQJ0+e5N1338VkMvHII48A0KFDB1566SWGDBnCsGHDsNlsvPvuu7i5uREbGwvgeF1ctX37dnQ6XZH7/UeuQQghhBBC3BskKSVKzCmsrDP50ufKtqYUvhZfdLYLKOzDiUp7+N77KWn8u8IozJq9f6POBcMHhcOlS79Qr9z/CDHaJ5J+oHoUdapJQqosmz9/Pi+88AKPPvooBQUFPPjgg6xatcqRkLFarQwZMoSTJ0/i6+tLfHw8H3zwAWAf0jZx4kReeeUVnn32WZ555hkWLFjA9OnTGTx4MI8++ii+vr68/PLLnDhxAqPRWGws9erV4+eff+a1117jgQceQClFlSpV6NGjBwAVK1akcuXKTJw4kdTUVDRNc2yPHDnScZ6RI0cSHR3NtGnTmDFjBjk59sn2Fy9eTM+ePYv0e6N9J06coGLFik779Ho9Bw8e5LPPPuPChQsEBgbStGlTEhMTqV27NgAJCQkcOXKEI0eOFDn+VqsmNmzY0PH1jh07WLRoEZGRkaSmpt70mO3btzuSQmBf+RCgb9++LFiwAIC//e1vzJkzh3feeYfhw4dTvXp1vvrqK9q0aQOA0WgkMTGRf/3rX1y6dIkKFSrw4IMPsmnTJoKD7cNua9Sowf/+9z8mTpxIy5Yt0el0NGzYkO++++6Gk8rfidu5BiGEEEIIcW/Q1N1YK/welZmZiZ+fHxkZGbLyz12Wnp7O+dm1eKpCML0T7H+5Luf+N45XPUHLxHUMajoa0LH11XZU8C3+g+ddU5BDm21HOFJgf8lrKP5dqzJ/q1CudPoXTqzWPNYnNsZmuzaMKSLiH1SLec2FUd09+fn5pKSkEBUVdcvkinCWk5NDeHg406ZNo3//0l+IID09nXbt2uHr68vq1avx9PQs9RhE6SvuZ1beLziT+yGEEEKIW7nd9wsydkmUiKNHj2JTNtyt115imrLPJbK/W2uuvvRKbfheoRk+bExeZhoA/9nzCvtCLkhCykU2Hb3A32etxGYzU2jTseFUcwKDexFRsZ+rQxMusGvXLhYvXszRo0fZuXMnvXv3BnAMCSxtAQEBrFmzhnbt2rF582aXxCCEEEIIIcT9QIbviRJhMZv5+VA9uu+5+tdmHTqsLCQaa+q14VlupTV8L/scZKWRf2XVvQhvXwIqNy2dvkURy5NOcyn7AgDZBd78cGoAr/V6CDeZ4+u+NXXqVJKTkzEYDDRu3JjExETKly/vsngCAwN54403XNa/EEIIIYQQ9wNJSokSkXPxPDnma8MfdG6VQLNiLbCvqOau12hdtTw+HqX0ErQWAJCnt8dkeur/gcmjdPoWTjIykmjg+Rp166UDUN63PD+MfFASUvexhg0bsmPHDleHIYQQQgghhChlkpQSd92ltFOcPXrQvqF5EqjrgHuhBXf9NiACDcXhtzqXblCF+SggX2dfkt6okwSIK/yUfI70U58Q5HEQruQEA/yq41VayUkhhBBCCCGEEGWGfDIXd903U94k7eBe+4amxy3vC5pWzGZjJ/vqXC7JBxWasWhu2GTVPZe5mG2m/4JtHDt7GoA1vz2IZ8iH1Ko1xcWRCSGEEEIIIYRwBUlKibsu91I6Xnl5AGjo2VfViFuHblzwvZKU0ko3IXTWbOHx44qHmixw7JNKqdKXlpFFmNcpAk2XAagR2YbmNTqh18vKZkIIIYQQQghxP5IxM+Kuq34iHWNGOr9UCQP05BtB56bDkmsFSr9Sal16Flvy9eAZAUCE0YCHVEqVuvO/vcDEVlsc2482qI5Ovg9CCCGEEEIIcd+SchFx15Uza9iuVkNpes6W9wBfDwqtNgBKez7rPJu935aXd7HsxIesaVINrZSrte5nR85l0+a9H8nM3ANAXqEPfn6N8Pdr5OLIhBBCCCGEEEK4klRKibtOZwObTn91i0so1l/axIX8S/Y9pZkQ2vAv8i/rwesBwsznaVF4CtzlZV+aNhw+z8lLuRjd7EM6D9k+5NHGD7g4KiGEEEIIIYQQriaVUuLuUgov/UUKryalND0KWJj8/7iQmw6AW2kN2bp8HNaMx3zOvhKg0VYA3hVKp2/hkJFXiEFnwU1nr1gb3r6hiyMSQgghhBBCCFEW3HFSav369XTp0oWwsDA0TWPZsmVOzyuleOONNwgNDcVkMtG+fXsOHz7s1CY9PZ3evXvj6+uLv78//fv3Jzs726nN7t27eeCBBzAajURERDBlStEVur788ktq1KiB0Wikbt26rFq16k4vR9xFhZfyyV6xDqN22VEppXHlXx20CG0JgIebe+kElJ9h/8fdx95vRFPo9F7p9C0AOHjwdWppj/Lhw2Ou7NGh13u5NCZxa/369UPTNDRNw2AwULVqVSZNmkRhYeGfOu+6devQNI3Lly/fnUBvQ0pKCr169SIsLAyj0UjFihXp2rUrBw8edGq3YsUK2rZti4+PD56enjRt2pQFCxY4tUlNTUXTNJKSkm67/wkTJlCjRg28vLwoV64c7du3Z+vWrU7n7N+/P1FRUZhMJqpUqcL48eMpKCgo9rxpaWn06tWLatWqodPpGDFixG3FM3v2bOrVq4evry++vr60bNmS1atXO55PT09n2LBhVK9eHZPJRKVKlRg+fDgZGRmONgsWLHC8Pn7/OHfunKOd2WzmtddeIzIyEg8PDypXrsynn37qFM+//vUvR18RERGMHDmS/Pz8Yq/h66+/pmPHjgQGBt7x90MIIYQQQpQtd5yUysnJoX79+nz00Uc3fH7KlCnMnDmTOXPmsHXrVry8vIiLi3N6k9m7d2/27dtHQkICK1asYP369Tz33HOO5zMzM+nYsSORkZHs2LGD999/nwkTJjB37lxHm02bNvHUU0/Rv39/du3axeOPP87jjz/O3r177/SSxF2S8X0qaet2k+RTgVPl7CuqKXTo0GFwM/BCw1EAuJXWTOcW+2su32BPShlD64JPSOn0fZ/Lt1h5cvYmUk4sRacV4qazT3Lv799U5vO6R8THx5OWlsbhw4cZPXo0EyZM4P3333d1WA63StoAWCwWOnToQEZGBl9//TXJycksWbKEunXrOiXGPvzwQ7p27Urr1q3ZunUru3fvpmfPngwePJgXX3zxT8VZrVo1Zs2axZ49e9iwYQOVK1emY8eOnD9/HoCDBw9is9n4+OOP2bdvHx988AFz5szh1VdfLfa8ZrOZoKAgXn/9derXr3/b8VSsWJF3332XHTt2sH37dh5++GG6du3Kvn37ADh9+jSnT59m6tSp7N27lwULFvDdd9/Rv39/xzl69OhBWlqa0yMuLo62bdsSHBzsaNe9e3fWrl3LvHnzSE5OZvHixVSvXt3x/KJFi3jllVcYP348Bw4cYN68eSxZsuSW156Tk0ObNm147z35I4MQQgghxD1P/QmA+uabbxzbNptNhYSEqPfff9+x7/Lly8rDw0MtXrxYKaXU/v37FaC2bdvmaLN69WqlaZo6deqUUkqpf//736pcuXLKbDY72owZM0ZVr17dsd29e3fVuXNnp3iaN2+uBg0adNvxZ2RkKEBlZGTc9jHi5s7N26P+84++amr3zo7HtKdHqc7Te6pH/+8JtT01XUWOWaEeeO/HUonn0uH1au2/2qtnls1XFX7cpd49erpU+hVKbU9NVzFjv1Zr1karNWujVYtJ89TP+/cqm83q6tBKTV5entq/f7/Ky8tzdSh3rG/fvqpr165O+zp06KBatGih0tPTVZ8+fZS/v78ymUwqPj5eHTp0yNEuNTVVPfroo8rf3195enqqWrVqqZUrV6qUlBQFOD369u2rlFIqMzNT9erVS3l6eqqQkBA1ffp01bZtW/XCCy84zhsZGakmTZqk+vTpo3x8fBzHJiYmqjZt2iij0agqVqyohg0bprKzs5VSSu3atUsBKjU19abXevz4ceXu7q5GjRpV5LmZM2cqQG3ZskUppRzXsGvXrju/qVdc/b2zZs2am7aZMmWKioqKuu1z/v5e3aly5cqp//u//7vp81988YUyGAzKYrHc8Plz584pd3d39Z///Mexb/Xq1crPz09dvHjxpucdMmSIevjhh532jRo1SrVu3fq24r4b34/rFfczK+8XnMn9EEIIIcSt3O77hbtaspKSksKZM2do3769Y5+fnx/Nmzdn8+bNAGzevBl/f3+aNGniaNO+fXt0Op1jSMPmzZt58MEHMRgMjjZxcXEkJydz6dIlR5vr+7na5mo/wgWsNi4r+2TWOvdo3IytUF6NcbNq5HpfwmpTQOnNKdXzjJFe9d7ne98GAHiW9rJ/97FLFxPoV3vRlS03lg1/igdr1kbT7uPvgVJQkOOah1J/OnyTyURBQQH9+vVj+/btLF++nM2bN6OU4pFHHsFisQAwZMgQzGYz69evZ8+ePbz33nt4e3sTERHBV199BUBycjJpaWnMmDEDgFGjRrFx40aWL19OQkICiYmJ7Ny5s0gMU6dOpX79+uzatYtx48Zx9OhR4uPjeeKJJ9i9ezdLlixhw4YNDB06FICgoCB0Oh1Lly7FarXe8LqWLl2KxWK5YUXUoEGD8Pb2ZvHixX/6/oG9umvu3Ln4+fkVW92UkZFBQEDAXemzOFarlc8//5ycnBxatmxZbDy+vr64ud14kYj//Oc/eHp68uSTTzr2LV++nCZNmjBlyhTCw8OpVq0aL774Inl5eY42rVq1YseOHfzyyy8AHDt2jFWrVvHII4/cpSsUQgghhBBl3V1dhuzMmTMAVKjgPJl0hQoVHM+dOXPGqbwfwM3NjYCAAKc2UVFRRc5x9bly5cpx5syZYvu5EbPZjNlsdmxnZmbeyeWJW1A2hbLPZY2bPhpl8KDRvhX8p/luKujDHEkpXSklpVIL7QmQagVnqVChCl2C/Uul3/tZZr6F/7f5N6Ktb9I8NBcAkymcCn4mF0dWBlhy4e0w1/T96mkw/LG5vJRSrF27lu+//55OnTqxbNkyNm7cSKtWrQBYuHAhERERLFu2jG7dunH8+HGeeOIJ6tatC0B0dLTjXFcTLcHBwfj7+wOQlZXFZ599xqJFi2jXrh0A8+fPJyys6L16+OGHGT16tGN7wIAB9O7d2zGfUkxMDDNnzqRt27bMnj2b8PBwZs6cycsvv8zEiRNp0qQJsbGx9O7d2xHXoUOH8PPzIzQ0tEh/BoOB6OhoDh069Ifu3VUrVqygZ8+e5ObmEhoaSkJCAuXLl79h2yNHjvDhhx8yderUP9Vncfbs2UPLli3Jz8/H29ubb775hlq1at2w7YULF3jzzTedhtj/3rx58+jVqxcm07Wf82PHjrFhwwaMRiPffPMNFy5c4J///CcXL15k/vz5APTq1YsLFy7Qpk0blFIUFhYyePDgWw7fE0IIIYQQfx33VdnCO++8g5+fn+MRERHh6pD+WmzXvnSz5uOWnUDI+V3YNHDTuZVepZRScGYP5iv9/ffCIr5sUJXKJo+S7VfwxbYT/CthDwadPSF1JO8p6ta58fxzomxbsWIF3t7eGI1GOnXqRI8ePejXrx9ubm40b97c0S4wMJDq1atz4MABAIYPH87kyZNp3bo148ePZ/fu3cX2c+zYMSwWC82aNXPs8/Pzc5p76KrrK2wBfv31VxYsWIC3t7fjERcXh81mIyUlBbBXbp05c4aFCxfSsmVLvvzyS2rXrk1CQsJt34vrq3ZvZuHChU5xJCYmOp6LjY0lKSmJTZs2ER8fT/fu3Z0mBL/q1KlTxMfH061bNwYOHOjYf/15Bw8efFsxJyYmOh23cOFCx3PVq1cnKSmJrVu38vzzz9O3b1/2799f5ByZmZl07tyZWrVqMWHChBv2s3nzZg4cOOA05xSAzWZD0zQWLlxIs2bNeOSRR5g+fTqfffaZo1pq3bp1vP322/z73/9m586dfP3116xcuZI333zzlvdUCCGEEEL8NdzVSqmQEPsk0mfPnnX6q/PZs2dp0KCBo83v34wXFhaSnp7uOD4kJISzZ886tbm6fas2V5+/kbFjxzJq1CjHdmZmpiSm7iJltTmGCWlKoSkNpdNA03DTuVFos2et9CWdlEpejfr8KfLa/gyAsbRW+xOcz8omwGgfYquUjs6tXsXHx9PFUZUR7p72iiVX9X2HYmNjmT17NgaDgbCwMNzc3Fi+fPktjxswYABxcXGsXLmSH374gXfeeYdp06YxbNiwPxK5Ey8v52qv7OxsBg0axPDhw4u0rVSpkuNrHx8funTpQpcuXZg8eTJxcXFMnjyZDh06EBMTQ0ZGBqdPny5SnVVQUMDRo0eJi4u7ZWyPPfaYU7IuPDzcKe6qVatStWpVWrRoQUxMDPPmzWPs2LGONqdPnyY2NpZWrVo5LeoBOK0u5+vre8tYwJ7Au/646yuLr66oCNC4cWO2bdvGjBkz+Pjjjx1tsrKyiI+Px8fHh2+++QZ39xv/P/p///d/NGjQgMaNGzvtDw0NJTw8HD8/P8e+mjVropTi5MmTxMTEMG7cOPr06cOAAQMAqFu3Ljk5OTz33HO89tprxd5TIYQQQgjx13BXK6WioqIICQlh7dq1jn2ZmZls3brVMV9Fy5YtuXz5Mjt27HC0+fHHH7HZbI43ny1btmT9+vWOOUoAEhISqF69OuXKlXO0ub6fq22KmxfDw8PDsQz21Ye4e5TVhn3+YtAAnQ3Q6wF7pZTtSsKqxJNSFw9ToF37AGWs36Nk+xMAXEzfQGOP7rzd5i0ADAZ/KpaThJSDptmH0Lni8QdWPLyaSKlUqZJjLqGaNWtSWFjomP8P4OLFiyQnJzsN/4qIiGDw4MF8/fXXjB49mk8++QS4VnF0/fxO0dHRuLu7s23bNse+jIyM2xoy16hRI/bv3+9I+Fz/uFl1k6Zp1KhRg5ycHACefPJJ3NzcmDZtWpG2c+bMITc3l2eeeeaWsfj4+Dj1f/1Qtt+z2WxOQ8lPnTrFQw89ROPGjZk/fz66361Qev15fz/8/WZMJpPTcT4+Prcdz9UVcA0GA8uXL8doNN7wuOzsbL744osiVVIArVu35vTp02RnZzv2HTp0CJ1OR8WKFQHIzc0tcq36K78zlFJ3dE+FEEIIIcS96Y4rpbKzszly5IhjOyUlhaSkJAICAqhUqRIjRoxg8uTJxMTEEBUVxbhx4wgLC+Pxxx8H7B9q4uPjGThwIHPmzMFisTB06FB69uzp+Ct1r169mDhxIv3792fMmDHs3buXGTNm8MEHHzj6feGFF2jbti3Tpk2jc+fOfP7552zfvr3IX5hF6bFZ1XWVUqBTCnQ6rHmhXLLUYD0XgFJISlnyMeuufSD1qNauZPsTfL/vDGknlhNhuJZIDirfvpgjxL0oJiaGrl27MnDgQD7++GN8fHx45ZVXCA8Pp2vXrgCMGDGCTp06Ua1aNS5dusRPP/1EzZo1AYiMjETTNFasWMEjjzyCyWTCx8eHvn378tJLLxEQEEBwcDDjx49Hp9Oh3SKZNmbMGFq0aMHQoUMZMGAAXl5e7N+/n4SEBGbNmkVSUhLjx4+nT58+1KpVC4PBwM8//8ynn37KmDFjAHtF1ZQpU3jxxRcxGo306dMHd3d3vv32W1599VUmT55MnTp1nPpNTk4uEkvt2rWLVBPl5OTw1ltv8dhjjxEaGsqFCxf46KOPOHXqFN26dQOuJaQiIyOZOnUq58+fdxxfXOUvXKugys7O5vz58yQlJWEwGG46PxTYK4Y7depEpUqVyMrKYtGiRaxbt47vv/8euJaQys3N5b///S+ZmZmO+ReDgoIcSSOAJUuWUFhYyNNPP12kn169evHmm2/y7LPPMnHiRC5cuMBLL73EP/7xD0dyqUuXLkyfPp2GDRvSvHlzjhw5wrhx4+jSpYtTP7+Xnp7O8ePHOX3aXnl49fsREhJyy3smhBBCCCHKmDtd1u+nn34qsqw31y3tbbPZ1Lhx41SFChWUh4eHateunUpOTnY6x8WLF9VTTz2lvL29la+vr3r22WdVVlaWU5tff/1VtWnTRnl4eKjw8HD17rvvFonliy++UNWqVVMGg0HVrl1brVy58o6uRZY0vnusZrNKGfwv9WGPx9XU7p3V3J5vqXl/f1xtbdpcRb6yTEWOWeF49Px4c8kG88Mb6tzkSFXhx10q5MddymazlWx/97mCQquKeW2Vem3BM2rN2mg14pPB6rs9v7k6LJcrbnn5sq5v376qa9euN3wuPT1d9enTR/n5+SmTyaTi4uLUoUOHHM8PHTpUValSRXl4eKigoCDVp08fdeHCBcfzkyZNUiEhIUrTNMfvjczMTNWrVy/l6empQkJC1PTp01WzZs3UK6+84jguMjJSffDBB0Xi+eWXX1SHDh2Ut7e38vLyUvXq1VNvvfWWUkqp8+fPq+HDh6s6deoob29v5ePjo+rWraumTp2qrFar03mWLVumHnjgAeXl5eX4vbZ48WKnNikpKTf8/QeoEydOFIktLy9P/e1vf1NhYWHKYDCo0NBQ9dhjj6lffvnF0Wb+/Pk3Peet3OiYyMjIYo/5xz/+oSIjI5XBYFBBQUGqXbt26ocffnA8f7Pf8YBKSUlxOlfLli1Vr169btrXgQMHVPv27ZXJZFIVK1ZUo0aNUrm5uY7nLRaLmjBhgqpSpYoyGo0qIiJC/fOf/1SXLl0q9hpuds/Gjx9f7HG3UtzPrLxfcCb3QwghhBC3crvvFzSl7sJa4feozMxM/Pz8HMtdiz8u/YulnH1jHOtqxpBrsOGna4mbeSchbu4Mju4D2Hi4Rgh6ncazrSrTquqNV576syw2xZqEDzl2Yh9vVnkek04jpe3Nl14Xf97FbDONJ69hYN3PaBG6g8tuz/NY61G46++rdRSKyM/PJyUlhaioqJsOfxI3lpOTQ3h4ONOmTbvh0LCSlp6eTrt27fD19WX16tV4esow1PtBcT+z8n7BmdwPIYQQQtzK7b5fuKsTnYv718lfduIOqCt5iCwTVHuqB2dCPOFrcHMr5NN+TUs8jm/PXWKo4UGo8iAAnsUMARF/XmFhFsn7n+fNVscIMF4GoGXVyPs+ISXuzK5duzh48CDNmjUjIyODSZMmATiGBJa2gIAA1qxZw0cffcTmzZtp106GAAshhBBCCFESJCkl7orsYzspB3AlB3TJC2ZZ5pN10Bd4Bp1mK/kgTu3k1JFUIJrw/DPU8jTQtWqDku/3PrX3VAbrd39FdY/NhHlf2+/lFeO6oMQ9a+rUqSQnJ2MwGGjcuDGJiYmUL18yFZW3IzAwkDfeeMNl/QshhBBCCHE/kKSUuCuC1QksgOXKvMRKpziZfRJrnn3yerfSqJxZ1IO8oC4QGU38hY28VacGhDxc8v3ep8Z9uxfPwhSq14Gjlyvza0Yv3u/xMJ6eUa4OTdxjGjZs6LQiqxBCCCGEEOL+IGNsxF2hw14JVXhltSyl2acqG1RvCAABphKec0IpyDlHnt4+D4gprA7U7FKyfd7HlLJiKzhGqNdZAPx9KjM0vpskpIQQQgghhBBC3DaplBJ/iiq0cW7hAQzKgJmCa/t19uRUtG8McAxDSc/tVJgPQJ7OAwBTdFswyuSrJWXvvhEMr7fKsV0/MoLqoXK/hRBCCCGEEELcPqmUEn/KpX0XsBxIR0Mj1xQEOFdKWa9MJeWm10o2kN8lpYwy0XaJSMvII+6D9Rw4/gsAORZPPDwiCA7u7OLIhBBCCCGEEELca+STu/hTctPtyaC93p3Z0nwCYE8KWa9MbK6uLMdX0qux/Xwxg+71pvFjQHMATLoSToLdpxIPXyD5bBZGfS4A/zn0Kq1a/kQ5/5JfWVEIIYQQQgghxF+LDN8Tf4qtUKEDLruFX90DwAn/g/Ytmz05VNITnc9Oy2J9uSaO7UomjxLt736klCIrO5Vw79OY3PIA+PQfsegkASiEEEIIIYQQ4g+QpJT4U2xWe1LKioZSBSiVjwYc908Grg3fcy/hxEWuzd7R82nL6NDpRVr4e5Vof/ebU5fzWLvtAyrr5zGp1bX9XkZ/l8UkhBBCCCGEEOLeJsP3xJ+iCm3sN+8jLe87zJdnoWGfS0ppCpvFjwtZhUAJDt/LTYd/1SP/7AEAWuceolU5b3SaVO/cTbN+PEzahe0A5Bd6YMWf0NBu6K+sdiiEEEIIIYQQQtwpSUqJP8VWqEjO3w9YHfs0Ty8u5rYm58hYpnyXApTgROdpSXD5N8w6AwDG4Bol08997kxGPt7uOQBcdBtFi1ZbqFXzXRdHJUpKv3790DQNTdMwGAxUrVqVSZMmUVhY+KfOu27dOjRN4/Lly3cn0NuQkpJCr169CAsLw2g0UrFiRbp27crBgwed2q1YsYK2bdvi4+ODp6cnTZs2ZcGCBU5tUlNT0TSNpKSk2+5/woQJ1KhRAy8vL8qVK0f79u3ZunWr0zn79+9PVFQUJpOJKlWqMH78eAoKCoo5K6SlpdGrVy+qVauGTqdjxIgRtx3TVe+++y6aphU59ujRo/ztb38jKCgIX19funfvztmzZ53avPXWW7Rq1QpPT0/8/f1veP6rr6HrH59//rnj+a+//poOHTo4+mnZsiXff//9LeP++uuv6dixI4GBgXf8/RBCCCGEEGWLJKXEn6KsNmzK/kFV79GQfF8DPd+bjiU/GgCju45ynu50qRdWMgEUmgEocPcGwOPBUSXTz33s3Lnv6Ro2hBj/YwA82qAmvkZ3F0clSlp8fDxpaWkcPnyY0aNHM2HCBN5//31Xh+Vwq6QNgMVioUOHDmRkZPD111+TnJzMkiVLqFu3rlNi7MMPP6Rr1660bt2arVu3snv3bnr27MngwYN58cUX/1Sc1apVY9asWezZs4cNGzZQuXJlOnbsyPnz5wE4ePAgNpuNjz/+mH379vHBBx8wZ84cXn311WLPazabCQoK4vXXX6d+/fp3HNe2bdv4+OOPqVevntP+nJwcOnbsiKZp/Pjjj2zcuJGCggK6dOmC7cowabDf/27duvH8888X28/8+fNJS0tzPB5//HHHc+vXr6dDhw6sWrWKHTt2EBsbS5cuXdi1a1ex58zJyaFNmza89957d3zdQgghhBCijFH3sYyMDAWojIwMV4dyz0peclBNf+45NbV7Z/XBM5PUpOceV+99t0dVfm2hihyzQv2w/2TJBrDnK6XG+6qGP/ykKvy4S/2amVOy/d1HLIVW9dx/tqkPlz6p1qyNtj9+rKny88+5OrR7Ql5entq/f7/Ky8tzdSh3rG/fvqpr165O+zp06KBatGih0tPTVZ8+fZS/v78ymUwqPj5eHTp0yNEuNTVVPfroo8rf3195enqqWrVqqZUrV6qUlBQFOD369u2rlFIqMzNT9erVS3l6eqqQkBA1ffp01bZtW/XCCy84zhsZGakmTZqk+vTpo3x8fBzHJiYmqjZt2iij0agqVqyohg0bprKzs5VSSu3atUsBKjU19abXevz4ceXu7q5GjRpV5LmZM2cqQG3ZskUppRzXsGvXrju/qVdc/b2zZs2am7aZMmWKioqKuu1z/v5e3UpWVpaKiYlRCQkJRY79/vvvlU6nc/q9ePnyZaVpmkpISChyrvnz5ys/P78b9gOob7755rbjUkqpWrVqqYkTJ95W27vx/bhecT+z8n7BmdwPIYQQQtzK7b5fkEop8acoq0LZ7JVSmuaOTbPy759+QxX6ARBRroQnHL9SKZWv2St3DLIS3F1z8EwW3+87i6YyAVh6+G/UavATHh5BLo7s3qSUIteS65KHUupPx28ymSgoKKBfv35s376d5cuXs3nzZpRSPPLII1gsFgCGDBmC2Wxm/fr17Nmzh/feew9vb28iIiL46quvAEhOTiYtLY0ZM2YAMGrUKDZu3Mjy5ctJSEggMTGRnTt3Folh6tSp1K9fn127djFu3DiOHj1KfHw8TzzxBLt372bJkiVs2LCBoUOHAhAUFIROp2Pp0qVYrdYi5wNYunQpFovlhhVRgwYNwtvbm8WLF//p+wf26qK5c+fi5+dXbHVTRkYGAQEBd6XPGxkyZAidO3emffv2RZ4zm81omoaHx7UVTI1GIzqdjg0bNvyhvsqXL0+zZs349NNPi30t2mw2srKySvTahRBCCCFE2SKr74k/RVkVSl39sOeODfvwDjffXehNx6le4ZES6zvfamNNngdZFTqRe3VOKZ3kWe+WjOyTxPgfJcjTnpQa/UgnQstVcHFU9668wjyaL2rukr639tqKp7vnHzpWKcXatWv5/vvv6dSpE8uWLWPjxo20amVfhnHhwoVERESwbNkyunXrxvHjx3niiSeoW7cuANHR0Y5zXU02BAcHO+YhysrK4rPPPmPRokW0a9cOsA/5CgsrOuT34YcfZvTo0Y7tAQMG0Lt3b8ecSDExMcycOZO2bdsye/ZswsPDmTlzJi+//DITJ06kSZMmxMbG0rt3b0dchw4dws/Pj9DQ0CL9GQwGoqOjOXTo0B+6d1etWLGCnj17kpubS2hoKAkJCZQvX/6GbY8cOcKHH37I1KlT/1SfN/P555+zc+dOtm3bdsPnW7RogZeXF2PGjOHtt99GKcUrr7yC1WolLS3tjvqaNGkSDz/8MJ6envzwww/885//JDs7m+HDh9+w/dSpU8nOzqZ79+53fF1CCCGEEOLeJJ/gxR9y+Uwa//vgXX7Z8n+o3Az7Ts0Nm2ZPSnkEf4cxcCtaCa6C95/TFxiQH83IGq84KqW8SmqVv/uMueACeaee4JVmMwg0ngMg2E8qpO4nK1aswNvbG6PRSKdOnejRowf9+vXDzc2N5s2vJdcCAwOpXr06Bw7YV8AcPnw4kydPpnXr1owfP57du3cX28+xY8ewWCw0a9bMsc/Pz4/q1asXadukSROn7V9//ZUFCxbg7e3teMTFxWGz2UhJsS+yMGTIEM6cOcPChQtp2bIlX375JbVr1yYhIeG274XBYLhlm4ULFzrFkZiY6HguNjaWpKQkNm3aRHx8PN27d+fcuXNFznHq1Cni4+Pp1q0bAwcOdOy//ryDBw++rZgTExOdjlu4cCEnTpzghRdeYOHChRiNN145MygoiC+//JL//e9/eHt74+fnx+XLl2nUqBG6O0z6jxs3jtatW9OwYUPGjBnDyy+/fNN5yRYtWsTEiRP54osvCA4OBoq/p0IIIYQQ4q9BKqXEH7Lzu9Uc2mIfynE17aTpfLFpV4ZmaFb0mr7kArh4lFOnTgD+VM47SVU3G42rNSPIIBNw/1mfbkgh6eg6ukZYKLTpybUGUyW0Dt7etVwd2j3N5GZia6+tt25YQn3fqdjYWGbPno3BYCAsLAw3NzeWL19+y+MGDBhAXFwcK1eu5IcffuCdd95h2rRpDBs27I+E7sTLy3k4cHZ2NoMGDbph5U2lSpUcX/v4+NClSxe6dOnC5MmTiYuLY/LkyXTo0IGYmBgyMjI4ffp0keqsgoICjh49Slxc3C1je+yxx5ySdeHh4U5xV61alapVq9KiRQtiYmKYN28eY8eOdbQ5ffo0sbGxtGrVirlz5zqd+/rV5Xx9fW8ZC9gTeNcfV6FCBdauXcu5c+do1KiRY7/VamX9+vXMmjULs9mMXq+nY8eOHD16lAsXLuDm5oa/vz8hISFOVW9/RPPmzXnzzTcxm81OwwM///xzBgwYwJdffuk0pLC4eyqEEEIIIf4aJCkl/pBjSScA8PGI4WKAFd+M6ii3So5KKbCVXFLKaoFPHsZcsR+E/42/n13DyxXcofJjJdPffUQpxbvfHaRmubMQAcezwjntNou/1avt6tDueZqm/eEhdK5wNZFyvZo1a1JYWMjWrVsdw/cuXrxIcnIytWpdS1pGREQwePBgBg8ezNixY/nkk08YNmyYo+Lo+vmdoqOjcXd3Z9u2bY5EUkZGBocOHeLBBx8sNsZGjRqxf//+InEWR9M0atSowaZNmwB48sknGTNmDNOmTWPatGlObefMmUNubi7PPPPMLc/r4+ODj4/PbcVgs9kwm82O7VOnThEbG0vjxo2ZP39+kYqkO7m+q0wmU5Hj2rVrx549e5z2Pfvss9SoUYMxY8ag1zv/n311iOGPP/7IuXPneOyxP/d/bFJSEuXKlXNKSC1evJh//OMffP7553Tu3Nmp/Z3cUyGEEEIIcW+SpJS4Y+fXLcDz8k9k4E2E/3ba+OWyPjcOq6Y5klKaZkWvK6GXlzkL8i9jvjqPVEAkNOpQMn3dZy5np9Eq5Geq+KcCEBUUytPNarg2KFFmxMTE0LVrVwYOHMjHH3+Mj48Pr7zyCuHh4XTt2hWAESNG0KlTJ6pVq8alS5f46aefqFmzJgCRkZFomsaKFSt45JFHMJlM+Pj40LdvX1566SUCAgIIDg5m/Pjx6HS6Ww7/HTNmDC1atGDo0KEMGDAALy8v9u/fT0JCArNmzSIpKYnx48fTp08fatWqhcFg4Oeff+bTTz9lzJgxgL2iasqUKbz44osYjUb69OmDu7s73377La+++iqTJ0+mTp06Tv0mJycXiaV27dq4uztXaubk5PDWW2/x2GOPERoayoULF/joo484deoU3bp1A+wJqYceeojIyEimTp3K+fPnHceHhIQUe/1XK6Gys7M5f/48SUlJGAwGpwTh9Xx8fIpci5eXF4GBgU7758+fT82aNQkKCmLz5s288MILjBw50mlI5fHjx0lPT+f48eNYrVZHLFWrVsXb25v//e9/nD17lhYtWmA0GklISODtt992mlB+0aJF9O3blxkzZtC8eXPOnDkD2BNqfn5+N73uq/2ePn0auPb9CAkJueU9E0IIIYQQZYskpcQdKcjPI3HxZ6Sb7X/pPpzVnWMFtR2zkxU6hu/Z0GklNL9TYT4A+Xr7nCjGRr0hJLhk+rrPHD48mT61vndshwaEYjKU4DBMcc+ZP38+L7zwAo8++igFBQU8+OCDrFq1ypGQsVqtDBkyhJMnT+Lr60t8fDwffPABYB9+NXHiRF555RWeffZZnnnmGRYsWMD06dMZPHgwjz76KL6+vrz88sucOHHipvMeXVWvXj1+/vlnXnvtNR544AGUUlSpUoUePXoAULFiRSpXrszEiRNJTU1F0zTH9siRIx3nGTlyJNHR0UybNo0ZM2aQk5MD2Kt4evbsWaTfG+07ceIEFStWdNqn1+s5ePAgn332GRcuXCAwMJCmTZuSmJhI7dr26sOEhASOHDnCkSNHihx/q1UTGzZs6Ph6x44dLFq0iMjISFJTU4s97laSk5MZO3Ys6enpVK5cmddee83pfgG88cYbfPbZZ0Vi+emnn3jooYdwd3fno48+YuTIkSilqFq1KtOnT3eaK2vu3LkUFhYyZMgQhgwZ4tjft29fFixYcNP4li9fzrPPPuvYvvr9GD9+PBMmTPgzly6EEEIIIUqZpu7GWuH3qMzMTPz8/MjIyLjteTrud0e3b2XZ+286tg0+vdC52f8ybco9yw6fuaz0eRHvGq9RxT+Sbx//9u4HcfEofNiIf9R5h1WBrXivWkX6ht94JStxe5LPZPHaN3voWnEcYV6pHMuIoXX1ulSqNABv76ITTotby8/PJyUlhaioqFsmV4SznJwcwsPDmTZtGv379y/1/tPT02nXrh2+vr6sXr0aT897Z9il+OOK+5mV9wvO5H4IIYQQ4lZu9/2CVEqJO2LOtc+DoukCcPeKx6B8aL7pVXS2QvTWPNY1ewJ8YHzLcbQIbXaLs/1BhfYYHJVSd7gilChqWdIptv92iScisgDYk/kUA2v1dXFU4n6xa9cuDh48SLNmzcjIyGDSpEkAjiGBpS0gIIA1a9bw0UcfsXnzZtq1a+eSOIQQQgghhPirk6SUuCMHNtmXd9d0XtTd/zHHgws4WdmEp9XErqALbC3fAA3oVv2JEunfYlPMPJvPmZjR7PesDICHrvh5Z0TxCguzidbG8E6bNIJMlwAY91gLF0cl7jdTp04lOTkZg8FA48aNSUxMdEy07QqBgYG88cYbLutfCCGEEEKI+4EkpcRts5kLOXH6xJUtHee9zmGrO5QGlnosDlxNZtPymL/zwKAvucql9ZeyeP+iDsKurQJV3iAv4z/qRHouG/auJNh9L1yZo9nNzY8A30quDUzcVxo2bMiOHTtcHYYQQgghhBCilMm4J3HbVIEN23VTkNn0OhrtPsn5tG9YGpiAXmfPauhLqnLp7H4uJ84EoHLeScac/x8f1Iiglb93yfR3Hxj79R6W7TwAwLGMShSW+5hWLdei15tcHJkQQgghhBBCiL86KTERt01ZbXAlKaWhYdVBwYktZLtBrj4fPQYA3PQllJTaMZ/8M6fA71Gq5fzGyMJ9EBpYMn3dJ05eyiXaMw8AP+8I2taJxd1dVtsTQgghhBBCCFHyJCklbl+hQinrlQ0Nq06HpmxYr0w0rteuJKVKqlLKnE2ezgMAY1g9aFB0WXZx+1JSZjGmwSz0mv17WrdiOEZJSAkhhBBCCCGEKCWSlBK3TV1KxVe7QCZXKqX0OjRl5ZzBn7yTcaw6Xw4At5KaU6ownzz9laRUQCXwkiqpPyIz38KLX/xKh6AlBHhYHPv9/Zu6MCohhBBCCCGEEPcbmVNK3B5LPj/+7xG2+pwDQFMaVp2Gpqxs9a5OYVZdTl6wzykV6mcsmRgKzeRfqZQy6eSl+0f9nHyeH/afRaeyAfi/fcNo2WoroaF/d3FkQgghhBBCCCHuJ1IpJW5P/mW2uStQV5NBGkaLL5oyk6+zD/mKCbUytG1jWkbf/Qqm1Dwzs71j2eptP7exBFf4+6vLyLmEt3sW3gb7XFJvd38UT2N5F0clhBBCCCGEEOJ+I0kpcXusFiIO6PFOByugAeVzwtHZDpNVaE9uhJTT6NogvES6n3viPJ95XxteFmxwL5F+/upOn15KSP4rzIi9topiRGAFF0YkhBBCCCGEEOJ+JeUm4rbknU2jyU/uhKXbXzKa0ihw80RThY6JzoM8S26Op8xC+2Tc7S9u4j2/DPqGyXxSd2rGmsP8d/3XaFxLSAUEPIBe7+3CqERZ1K9fPzRNQ9M0DAYDVatWZdKkSRQWFv6p865btw5N07h8+fLdCfQ2pKSk0KtXL8LCwjAajVSsWJGuXbty8OBBp3YrVqygbdu2+Pj44OnpSdOmTVmwYIFTm9TUVDRNIykp6bb7nzBhAjVq1MDLy4ty5crRvn17tm7d6nTO/v37ExUVhclkokqVKowfP56CgoJiz5uWlkavXr2oVq0aOp2OESNG3HZMp06d4umnnyYwMBCTyUTdunXZvn274/nrv/9XH/Hx8U7nqFy5cpE27777ruP55ORkYmNjqVChAkajkejoaF5//XUsFovTeS5fvsyQIUMIDQ3Fw8ODatWqsWrVqmLj//rrr+nYsSOBgYF3/P0QQgghhBBli1RKiduStu9XdErDdmVhPatOx9Ewf6qeMFO5XAxbgACj/93v2FoI/3mMPO9OUP4BHk7fSt+GNcFNVom7U4t++Y2eVbIAmL/vKbo/+E/a1Q9zcVSirIqPj2f+/PmYzWZWrVrFkCFDcHd3Z+zYsa4ODYCCggIMBkOxbSwWCx06dKB69ep8/fXXhIaGcvLkSVavXu2UGPvwww8ZMWIEY8aMYfbs2RgMBr799lsGDx7M3r17mTp16h+Os1q1asyaNYvo6Gjy8vL44IMP6NixI0eOHCEoKIiDBw9is9n4+OOPqVq1Knv37mXgwIHk5OQU26/ZbCYoKIjXX3+dDz744LbjuXTpEq1btyY2NpbVq1cTFBTE4cOHKVeunFO7q9//qzw8PIqca9KkSQwcONCx7ePj4/ja3d2dZ555hkaNGuHv78+vv/7KwIEDsdlsvP3224D9e9ihQweCg4NZunQp4eHh/Pbbb/j7+xd7DTk5ObRp04bu3bs79S+EEEIIIe49kpQSt5TxfSoeiWby4UpVlA29gnZbr/w1280AhaDXa3e/88u/wW8bya/TBQCjpkFwzbvfz19cdvYhKnv9QnnTRQBef7QZNaIkISVuzsPDg5CQEACef/55vvnmG5YvX87gwYN54YUX+N///ofZbKZt27bMnDmTmJgYAH777TeGDh3Khg0bKCgooHLlyrz//vvUqlWL2NhYAEcCpG/fvixYsICsrCwGDx7MsmXL8PX15eWXX+bbb7+lQYMG/Otf/wLslTn9+/fn8OHDLFu2jL///e8sWLCADRs2MHbsWLZv30758uX529/+xjvvvIOXlxf79u3j6NGjrF27lsjISAAiIyNp3bq14zpPnDjB6NGjGTFihCNZAjB69GgMBgPDhw+nW7duNG/e/A/dx169ejltT58+nXnz5rF7927atWtHfHy8UxVSdHQ0ycnJzJ49u9ikVOXKlZkxYwYAn3766W3H89577xEREeGUcIqKiirS7vrv/834+PjctE10dDTR0dGO7cjISNatW0diYqJj36effkp6ejqbNm3C3d3dcV230qdPH8BeZSaEEEIIIe5tMnxP3FJ20lm+O7eF1fWrcMbXBoB2ZQRYoQ70FewfSvRaCSSlLPb5qszuXgCYOr0DPsV/UBLXWKw2vtmxny2/PMZzdecR5n0WgAr+Mo9UaVNKYcvNdclDKXXrAG/BZDJRUFBAv3792L59O8uXL2fz5s0opXjkkUccw7KGDBmC2Wxm/fr17Nmzh/feew9vb28iIiL46quvAPvQrrS0NEdSZdSoUWzcuJHly5eTkJBAYmIiO3fuLBLD1KlTqV+/Prt27WLcuHEcPXqU+Ph4nnjiCXbv3s2SJUvYsGEDQ4cOBSAoKAidTsfSpUuxWq03vK6lS5disVh48cUXizw3aNAgvL29Wbx48Z++f2CvDJo7dy5+fn7Ur1//pu0yMjIICAi4K33+3vLly2nSpAndunUjODiYhg0b8sknnxRpt27dOoKDg6levTrPP/88Fy9eLNLm3XffJTAwkIYNG/L+++8XO7zzyJEjfPfdd7Rt29YplpYtWzJkyBAqVKhAnTp1ePvtt2/6vRJCCCGEEH89UiklbinfnMXlwsvX7dHhHRJN31F6NDd34gIj4dRvuOlKLimVrzcB4OFhuvt9/IWt3nuGD75bz/iWFiw2PamZUTxQoz5+fo1cHdp9R+XlkdyosUv6rr5zB5qn5x86VinF2rVr+f777+nUqRPLli1j48aNtGrVCoCFCxcSERHBsmXL6NatG8ePH+eJJ56gbt26AE7VMlcTLcHBwY4hWllZWXz22WcsWrSIdu3aATB//nzCwopW8j388MOMHj3asT1gwAB69+7tmE8pJiaGmTNn0rZtW2bPnk14eDgzZ87k5ZdfZuLEiTRp0oTY2Fh69+7tiOvQoUP4+fkRGhpapD+DwUB0dDSHDh36Q/fuqhUrVtCzZ09yc3MJDQ0lISGB8uVvvOLlkSNH+PDDD//UkMHiHDt2jNmzZzNq1CheffVVtm3bxvDhwzEYDPTt2xewD937+9//TlRUFEePHuXVV1+lU6dObN68Gb3ePnR6+PDhNGrUiICAADZt2sTYsWNJS0tj+vTpTv21atWKnTt3Yjabee6555g0aZJTLD/++CO9e/dm1apVHDlyhH/+859YLBbGjx9fItcvhBBCCCHKFqmUErekbFf/aq0n1NqKU9Xq0mxkB/I8NJSHO1abvQpDVwJJKXNBLqcNQWTp7R+ojTp5yd6JU5fy8HS3J/bybKGEVZlP7VpT0Olk9UJRvBUrVuDt7Y3RaKRTp0706NGDfv364ebm5jSULTAwkOrVq3PgwAHAnqyYPHkyrVu3Zvz48ezevbvYfo4dO4bFYqFZs2aOfX5+flSvXr1I2yZNmjht//rrryxYsABvb2/HIy4uDpvNRkpKCmCv3Dpz5gwLFy6kZcuWfPnll9SuXZuEhITbvhe3mrsK7Mm56+O4fphabGwsSUlJbNq0ifj4eLp37865c+eKnOPUqVPEx8fTrVs3p7mSrj/v4MGDbyvmxMREp+MWLlwIgM1mo1GjRrz99ts0bNiQ5557joEDBzJnzhzHsT179uSxxx6jbt26PP7446xYsYJt27axbt06R5tRo0bx0EMPUa9ePQYPHsy0adP48MMPMZvNTnEsWbKEnTt3smjRIlauXOmUbLPZbAQHBzN37lwaN25Mjx49eO211xyxFHdPhRBCCCHEX4NUSolbsjqSUjq8c85wyS8LN097AspN5+ZISt3tSqlcq43WJ71Ja7nUsU+SUrcvPz8Nz4KFPBC+F4CIwGCayMTmLqOZTFTfucNlfd+p2NhYx6TfYWFhuLm5sXz58lseN2DAAOLi4li5ciU//PAD77zzDtOmTWPYsGF/JHQnXl5eTtvZ2dkMGjSI4cOHF2lbqVIlx9c+Pj506dKFLl26MHnyZOLi4pg8eTIdOnQgJiaGjIwMTp8+XaQ6q6CggKNHjxIXF3fL2B577DGnZF14eLhT3FWrVqVq1aq0aNGCmJgY5s2b5zRp/OnTp4mNjaVVq1bMnTvX6dzXry7n6+t7y1jAnsC7/rgKFexDdkNDQ6lVq5ZT25o1azqGVt5IdHQ05cuX58iRI45qtt9r3rw5hYWFpKamOiUUIyIiAKhVqxZWq5XnnnuO0aNH/3/27jwu6mp//PhrBhiGZQBBkEVEUFxTK5fcDU3BlXuvuaRfxVKT+3PX3NpQ00oDTc00u6Z2Q683S/NiZWhpuGSmoOYCLhAuuKIg+zLn98fo5IQCKoXL+/l4zOPB53zO53ze58OAw9uzYGVlhZeXFzY2NubRVzdjOX/+PAUFBaU+UyGEEEII8WiQpJQo0+XiDNMXGtMi5xqloQjT2iE22j9ppFRxIWcOfUua0fQHjY0qoqaDA40MMn2vPA6dyeDsb7Oobv0t1W/MStLp3Cs3qMecRqO55yl0leFmIuVW9evXp6ioiD179pin7125coXExESLRIevry/h4eGEh4czbdo0Pv74Y0aPHm0ecXTrmkEBAQHY2Niwd+9ecyIpIyODpKQk2rdvX2qMTz/9NEeOHCkRZ2k0Gg316tVj165dADz//PNMmTKFqKgooqKiLOouXbqUnJwcBg8eXGa7BoPBYve50hiNRosRRWfPniUoKIimTZuyYsUKtH9Ivt9N/26ys7O77XVt2rQhMTHRoiwpKcm8EPztnDlzhitXrtx2iuNNCQkJaLVaPDw87ljHaDRSWFiI0WjEysqKNm3asHr1aoxGo7nPSUlJeHl5odPp0Ol05X6mQgghhBDi4SRJKVGmzOKsG19pURip6uiD0twcHfUnjZQ6+j9yt7wDTT/GK/8i8VdXwAsVs9jwo+7stVx6Ld7BK01PUM8Vfr1cD79q9XkmYERlhyYecoGBgYSGhjJ8+HA++ugjDAYDU6dOxcfHh9DQUADGjRtH165dqVOnDlevXuWHH36gfn3Tjpl+fn5oNBpiYmLo1q0bdnZ2GAwGwsLCmDRpEq6urnh4eBAREYFWq0VTxuYJU6ZMoWXLlowaNYphw4bh4ODAkSNHiI2N5YMPPiAhIYGIiAgGDRpEgwYN0Ol0bN++nU8++YQpU6YAphFVc+fO5ZVXXkGv1zNo0CBsbGz46quvePXVV5k1axZPPPGExX3/mNQBaNiwoXkHuZuys7OZPXs2vXr1wsvLi8uXL7N48WLOnj1Lnz59AFNC6tlnn8XPz4/IyEguXbpkvr6s3e9ujoTKysri0qVLJCQkoNPpSoyEutX48eNp3bo1b7/9Nn379uXnn39m2bJl5tFZWVlZzJgxg969e+Pp6cnJkyeZPHkytWvXNo8Y2717N3v27CEoKAiDwcDu3bsZP348//d//2feWTE6OhobGxsaNWqEra0tv/zyC9OmTaNfv37m5/TPf/6TDz74gLFjxzJ69GiOHz/O22+/fduRb7dKT08nNTWVc+fOAb9/Pzw9Pct8ZkIIIYQQ4sEiSSlRqgNbT6MpvHzjSAsoalStQ5HxlpFSxTdGSlXk7nvX08jT2gJgZ62DdiV3xhK399uldHwdT+OqN41wu6rpwwtP9cfRQV/JkYlHwYoVKxg7diw9evSgoKCA9u3b8/XXX5sTDcXFxYwcOZIzZ87g5ORESEgI8+fPB0zTr2bMmMHUqVN58cUXGTx4MCtXrmTevHmEh4fTo0cPnJycmDx5MqdPn0avL/0927hxY7Zv385rr71Gu3btUEpRq1Yt+vXrB0D16tWpWbMmM2bMICUlBY1GYz4eP368uZ3x48cTEBBAVFQUCxYsIDs7G4A1a9bQv3//Eve9Xdnp06epXr26RZmVlRXHjh1j1apVXL58GTc3N5o3b05cXBwNGzYEIDY2lhMnTnDixIkS15e1a+JTTz1l/nrfvn2sXr0aPz8/UlJS7nhN8+bNWb9+PdOmTWPmzJn4+/vz/vvvM3DgQHPMBw8eZNWqVVy7dg1vb2+6dOnCW2+9ha2t6Xeyra0t//nPf5g+fTr5+fn4+/szfvx4JkyYYL6PtbU1c+bMISkpCaUUfn5+jBo1yuK5+/r6snnzZsaPH0/jxo3x8fFh7Nix5oThnWzcuJEXX3zRfHzz+xEREcH06dNLvVYIIYQQQjxYNKoi9gp/SGVmZuLs7ExGRka51+l4nBiLjRyd9wZul1cSnfIUaAzUzjBQNL0nNWt6M+TbIfg5+eGXO5NNB9OY3rMBQ9r4V8zN46LYtv9r+jeOoqGjnq3N61VMu4+BLT92RVP0+25hLZpvxGBoWIkRPZ7y8vJITk7G39+/zOSKsJSdnY2Pjw9RUVEMHTr0L79/eno6nTp1wsnJiW+++Qb7h2japbh3pf3MyucFS/I8hBBCCFGW8n5ekJFS4rYun8lifdR+2ul+xahMI6A0GtNIqTUXVqG9aFr/w0Zrg/HG9D2ripy+V5hnHikli5uXz6Xr+Ww9cg73GwmpnCIXfD0a4+BQchczIR4k8fHxHDt2jBYtWpCRkcHMmTMBzFMC/2qurq5s2bKFxYsXs3v37jsu7i2EEEIIIYS4P5KUErd1/lQGBblFYH2FZPM6KaY1pRKv/r6eSjX7ahRl3ExKVUzySCnFvmI7fnZuBICdJKXKZfrGw2w7eoKFHU3H264tJapL88oNSohyioyMJDExEZ1OR9OmTYmLi6Nq1aqVFo+bmxtvvvlmpd1fCCGEEEKIx4EkpcRtGW+sE1Woy2FWFTeeOwmgRWmMALzb7l20Gi3PeD3DpP+cBMCqgnJH317O4EXrjmDaeA/7imr4EaZUMUV5+3i6WgoARcqW4e1lhJR4ODz11FPs27evssMQQgghhBBC/MUkKSVuS92YkpdlVUwxVqZCjRarIiO2Wlu6B3Q31y0yngAqbqHzlNwCAFwLr1HbBoZWr1Uh7T7Kzp37nL7+75qPHfSu1POUdT6EEEIIIYQQQjy4JCklbuvmOlFFFKM1L4WvxbpYcfX4GFrM3mKuey2nEABrqwpISn07jfxLxVB9AF0v7yCqpgu4Pnv/7T6isvOL+Gf0furZ/8gzHnA1zxnPKn74+5XcHUwIIYQQQgghhHiQyLwocVs3R0oZNcVo1c1kk4ZCjRXFBW5cvJ5vfhUUG9FqoLa74f5vvG8l+cWmJJetsQA8n7j/Nh9hP526wo9JlygoyABgV1oHmjZdh493v0qOTAghhBBCCCGEKJ2MlBIlFBcV8svG98i7epqiqgVobhkppSgCIKyVH/2a1zBf4+aoo5rTfW57rxQU5ZGn1QFg+/T/QUCd+2vzEZeReZRGVQ9Ty/UKAMOfbYydzqqSoxJCCCGEEEIIIcomSSlRwrXzaVy/nALA6UvVeOKSAwAajZab+SlfV3saeFfwmkXGIlBG8rW2AOj1FTDy6hGVkVPIV79sw6conHFP/15excGt8oISQgghhBBCCCHugkzfEyUYjcYbX1lz5ZorHtdMSSI0DqgbaSlbmz9hNE5RPgD5N0dKaStm4fRH0fIdp9i0fxcAOYV6soyBVK3aCTe3DpUcmRBCCCGEEEIIUT4yUkqUkJ+Xh9JaUeTogk3mZS665ONe1Bobq2YovgTA7k9ISiVnZfFblWak6j0BsNVKzvROzl7Lw8EmG4AcTVM6NF+Gp/N9Tp8UQgghhBBCCCH+QvJXv7Cwa9sO/vXvz8ipWY+b65tfcslHY1sbjdaBm2Oo9DYV+9Y5l1dAm4Pn6d84irgqzUz3sJK35+1cvfoTbZ1H8o/AGACa1KghCSlRoYYMGYJGo0Gj0aDT6ahduzYzZ86kqKjovtrdtm0bGo2Ga9euVUyg5ZCcnMyAAQPw9vZGr9dTvXp1QkNDOXbsmEW9mJgYOnTogMFgwN7enubNm7Ny5UqLOikpKWg0GhISEsp9/+nTp1OvXj0cHByoUqUKzz33HHv27LFoc+jQofj7+2NnZ0etWrWIiIigoKCg1HbT0tIYMGAAderUQavVMm7cuHLFU1xczBtvvGFxv7feegulzIsH8uWXX9KlSxfc3Nzu2N+TJ0/y97//HXd3d5ycnOjbty8XLly4634dPHiQdu3aodfr8fX1Ze7cuWX24ccff6Rnz554e3uj0WjYsGFDufouhBBCCCEePPJXv7BwdPt+HE8cwuHUYXQZlwGoklcTa2VaP6pQYxpcp7eu2JFSv+UVYARsjfk0zD5JuyqOBLtV8JpVj4Cl20/y+Y5PcLJJw87aNN3R4NSokqMSj6KQkBDS0tI4fvw4EydOZPr06bz33nuVHZZZWUkbgMLCQjp37kxGRgZffvkliYmJrF27lkaNGlkkxhYtWkRoaCht2rRhz549HDx4kP79+xMeHs4rr7xyX3HWqVOHDz74gEOHDrFjxw5q1qxJly5duHTpEgDHjh3DaDTy0UcfcfjwYebPn8/SpUt59dVXS203Pz8fd3d3Xn/9dZo0aVLueObMmcOSJUv44IMPOHr0KHPmzGHu3LksWrTIXCc7O5u2bdsyZ86c27aRnZ1Nly5d0Gg0fP/99+zcuZOCggJ69uxpnv5dnn5lZmbSpUsX/Pz82LdvH++99x7Tp09n2bJlpfYhOzubJk2asHjx4nL3WwghhBBCPKDUYywjI0MBKiMjo7JDeWAsnTxLRfbtbnr1e15F9f8/tXDYf9QHI7aqD0ZsVdGdXlR+U2LU8QuZFXfTa2fU9/HfqWrfx6uOG/+r1Ls1K67tR8iFzFzlNyVGvR3dW23ZGqAm/mu42n/yQGWHJe4gNzdXHTlyROXm5lZ2KHctLCxMhYaGWpR17txZtWzZUqWnp6tBgwYpFxcXZWdnp0JCQlRSUpK5XkpKiurRo4dycXFR9vb2qkGDBmrTpk0qOTlZARavsLAwpZRSmZmZasCAAcre3l55enqqefPmqQ4dOqixY8ea2/Xz81MzZ85UgwYNUgaDwXxtXFycatu2rdLr9ap69epq9OjRKisrSymlVHx8vAJUSkrKHfuampqqbGxs1IQJE0qcW7hwoQLUTz/9pJRS5j7Ex8ff/UO94ea/O1u2bLljnblz5yp/f/9yt/nHZ1Wa7t27q5deesmi7B//+IcaOHBgibp36u/mzZuVVqu1+Lfz2rVrSqPRqNjY2Dve+4/9+vDDD1WVKlVUfn6+uWzKlCmqbt265eqLUkoBav369eWuX5rSfmbl84IleR5CCCGEKEt5Py/ISClhppTCaCwGQKN1wrewJX659fG+dBLP8z/hn7yJBlXy2DKhPbU9KmhnPKVgeWfy4t4HQG8sABv7imn7EZOebRoZYtDlAdDt6TY8FdC4MkMSd0EpRWF+caW81C1Ts+6VnZ0dBQUFDBkyhF9++YWNGzeye/dulFJ069aNwsJCAEaOHEl+fj4//vgjhw4dYs6cOTg6OuLr68sXX3wBQGJiImlpaSxYsACACRMmsHPnTjZu3EhsbCxxcXHs37+/RAyRkZE0adKE+Ph43njjDU6ePElISAi9e/fm4MGDrF27lh07djBq1CgA3N3d0Wq1rFu3juLi4tv2a926dRQWFt52RNSIESNwdHRkzZo19/38wDS6a9myZTg7O5c6uikjIwNXV9cKuecftW7dmq1bt5KUlATAgQMH2LFjB127di13G/n5+Wg0Gmxtbc1ler0erVbLjh077njdH/u1e/du2rdvj06nM5cFBweTmJjI1atX76ZbQgghhBDiISULnQuz366m8L3bj7RM1QNWBJz8L5edMynWgLbYhvyiagS8MhmnikpIARQXQOZZ8tzrAaC3sYVnp1Rc+4+I/ILLnD81hoiWZ/B0ME37aeRbvZKjEnejqMDIsrHbK+XeLy/ogI3tvU25VUqxdetWNm/eTNeuXdmwYQM7d+6kdevWAERHR+Pr68uGDRvo06cPqamp9O7dm0aNTNNKAwICzG3dTEh4eHjg4uICwPXr11m1ahWrV6+mU6dOAKxYsQJvb+8SsXTs2JGJEyeaj4cNG8bAgQPN6ykFBgaycOFCOnTowJIlS/Dx8WHhwoVMnjyZGTNm0KxZM4KCghg4cKA5rqSkJJydnfHy8ipxP51OR0BAgDmBc69iYmLo378/OTk5eHl5ERsbS9WqVW9b98SJEyxatIjIyMj7uuedTJ06lczMTOrVq4eVlRXFxcXMnj2bgQMHlruNli1b4uDgwJQpU3j77bdRSjF16lSKi4tJS0u77TW369f58+fx9/e3qFetWjXzuSpVqtxDD4UQQgghxMNERkoJs22nt5Fpff3GkZZLTgVMesmaqS9a83bvukzt/P9w6ty5Ym9amANArpXpf9z1Pk/D04Mr9h4PuYTT13hvw3KK8/ZQw+ksOivTiCkH+4AyrhTi3sXExODo6Iher6dr167069ePIUOGYG1tzTPPPGOu5+bmRt26dTl69CgAY8aMYdasWbRp04aIiAgOHjxY6n1OnTpFYWEhLVq0MJc5OztTt27dEnWbNWtmcXzgwAFWrlyJo6Oj+RUcHIzRaCQ5ORkwjdw6f/480dHRtGrVis8//5yGDRsSGxtb7mdx60ieO4mOjraIIy4uznwuKCiIhIQEdu3aRUhICH379uXixYsl2jh79iwhISH06dOH4cOHm8tvbTc8PLxcMcfFxVlcFx0dDcB///tfoqOjWb16Nfv372fVqlVERkayatWqcrULphFon3/+Of/73/9wdHTE2dmZa9eu8fTTT6O9za6pd+rXvfZBCCGEEEI8OmSklDArSP0JmyIb04HGCg9jASvOXMFWU8yb14dwxbb06+/tpjkUoyXXyg4AvZXmT7jJw23lzmRyr12gVVU4fLkumVZ9GR/SHnt7/7IvFg8Ma52Wlxd0qLR7362goCCWLFmCTqfD29sba2trNm7cWOZ1w4YNIzg4mE2bNvHdd9/xzjvvEBUVxejRo+8ldAsODg4Wx1lZWYwYMYIxY8aUqFujRg3z1waDgZ49e9KzZ09mzZpFcHAws2bNonPnzgQGBpKRkcG5c+dKjM4qKCjg5MmTBAcHlxlbr169LJJ1Pj4+FnHXrl2b2rVr07JlSwIDA1m+fDnTpk0z1zl37hxBQUG0bt26xELft+5+5+RUvg0gmjVrZnHdzRFIkyZNYurUqfTv3x+ARo0a8dtvv/HOO+8QFhZWrrYBunTpwsmTJ7l8+TLW1ta4uLjg6elpMTKurH55enpa7NgHmI89PT2pWbPmbfsghBBCCCEeHZKUEmZO277nhSOenHcC0FLVJge/wlwALuGGtdX9r0vzR4vOXuOd9lswakxTi+xu87/sjzOlFFm5GbjqMgGo69uIVk8NxEFvU8mRibul0WjueQpdZbiZSLlV/fr1KSoqYs+ePebpe1euXCExMZEGDRqY6/n6+hIeHk54eDjTpk3j448/ZvTo0eYRR7eu7xQQEICNjQ179+41J5IyMjJISkqiffv2pcb49NNPc+TIkRJxlkaj0VCvXj127doFwPPPP8+UKVOIiooiKirKou7SpUvJyclh8OCyR28aDAYMhvJNbTYajeTn55uPz549S1BQEE2bNmXFihUlRhvdTf9usrOzu+11OTk5Jdq3srIy75p3t25OQ/z++++5ePEivXr1Mp8rq1+tWrXitddeo7CwEBsb0++02NhY6tata566dy99F0IIIYQQDw9JSgkAchPTcU30It2qDnAeDVouWVfB6ifFjiatOKNxp4o2r2JvWpTPd+lZGDWmIVhaoLWLY8Xe4yH36+GxvOC3yXwc6OmDkySkRCUJDAwkNDSU4cOH89FHH2EwGJg6dSo+Pj6EhoYCMG7cOLp27UqdOnW4evUqP/zwA/Xr1wfAz88PjUZDTEwM3bp1w87ODoPBQFhYGJMmTcLV1RUPDw8iIiLQarVoNKWPnJwyZQotW7Zk1KhRDBs2DAcHB44cOUJsbCwffPABCQkJREREMGjQIBo0aIBOp2P79u188sknTJliWruuRo0azJ07l1deeQW9Xs+gQYOwsbHhq6++4tVXX2XWrFk88cQTFvdNTEwsEUvDhg3NiZWbsrOzmT17Nr169cLLy4vLly+zePFizp49S58+fQBT4ubZZ5/Fz8+PyMhILl26ZL7e09Oz1P7fHEWUlZXFpUuXSEhIQKfTWSQI/6hnz57Mnj2bGjVq0LBhQ+Lj45k3bx4vvfSSuU56ejqpqamcO3fOor+enp7mmFasWEH9+vVxd3dn9+7djB07lvHjx5unXZanXwMGDGDGjBkMHTqUKVOm8Ouvv7JgwQLmz59far+zsrI4ceKE+Tg5OZmEhARcXV0tRsgJIYQQQoiHwJ+9DeCDTLY0Nim4mK1OT9mmPnpprVow5AMV2be7mvfCy2rV4L7qSN166t1J45TflBjV9O11FXdTo1GpRc3Vc1+tVdW+j1dfrRimsgqLKq79h9y17AI1K+aw+ja2odqyNcD0+v4JdfXq3soOTZRTadvLP+jCwsJUaGjobc+lp6erQYMGKWdnZ2VnZ6eCg4NVUlKS+fyoUaNUrVq1lK2trXJ3d1eDBg1Sly9fNp+fOXOm8vT0VBqNRoWFhSmllMrMzFQDBgxQ9vb2ytPTU82bN0+1aNFCTZ061Xydn5+fmj9/fol4fv75Z9W5c2fl6OioHBwcVOPGjdXs2bOVUkpdunRJjRkzRj3xxBPK0dFRGQwG1ahRIxUZGamKi4st2tmwYYNq166dcnBwUIAC1Jo1ayzqJCcnm8/98XX69OkSseXm5qq///3vytvbW+l0OuXl5aV69eqlfv75Z3OdFStW3LHNstzuGj8/v1KvyczMVGPHjlU1atRQer1eBQQEqNdee03l5+eXGVNERIS5zpQpU1S1atWUjY2NCgwMVFFRUcpoNN51vw4cOKDatm2rbG1tlY+Pj3r33XfL7PcPP/xw23Zvvp/uVWk/s/J5wZI8DyGEEEKUpbyfFzRKVcBe4Q+pzMxMnJ2dycjIKPc6HY+i/JQMLi3dx8b0AgoLkyjK+Q60BtxtFc1/OsCaXp35VBuMp2seP03uXTE3LciGt71p12wVxx1q8oX2F9p0GFYxbT8C/r07hYiNB/m483gAJm5/i/WjeuDv/vi+Tx82eXl5JCcn4+/vj16vr+xwHirZ2dn4+PgQFRXF0KFD//L7p6en06lTJ5ycnPjmm2+wt7f/y2MQf73Sfmbl84IleR5CCCGEKEt5Py/IAj4CVazILbpKYX4CxsJTpjKyyc1MJ9nJi4R809vEWluBi5AXmdZTydOapu7ZPflCxbX9kFPKSM71fTSvFm8um9OnvSSkxCMrPj6eNWvWcPLkSfbv38/AgQMBzFMC/2qurq5s2bKFTp06sXv37kqJQQgwJUgHDhyIk5MTLi4uDB06lKysrFKvycvLY+TIkbi5ueHo6Ejv3r0tFpQ/cOAAL7zwAr6+vtjZ2VG/fn0WLFjwZ3dFCCGEEOK2ZE0pAUbF7qtbKcpLNRcp4KyVF+907Gsuq2rvXHH3vLGAer6VaeFjWyvJj4JpYfMz5/5HbevJ1G5sKrO2dqLTE9UrNzAh/mSRkZEkJiai0+lo2rQpcXFx5kW0K4Obmxtvvvlmpd1fCICBAweSlpZGbGwshYWFvPjii7z88susXr36jteMHz+eTZs28fnnn+Ps7MyoUaP4xz/+wc6dOwHYt28fHh4efPbZZ/j6+rJr1y5efvllrKysGDVq1F/VNSGEEEIIQJJSAsCoyCjOAEBjXZ18m3PY5MFZZ9PuRw46Df7uBsLbB1bcPYtMi6bn3xgpZVuRo7AeYkNX/YKh8Dt61YJr+U7o9T409u9T2WEJ8ad66qmn2LdvX2WHIcQD5ejRo3z77bfs3buXZs2aAbBo0SK6detGZGQk3t7eJa7JyMhg+fLlrF69mo4dOwK/L0r/008/0bJlS4tF7cG0A+bu3bv58ssvJSklhBBCiL+cDE8RKKNCYdoO3Nr2SbQGJzTKyBWDafv65gFOxIxuR8gTpe8EdTeOZOUS69qS3BtJKb1W3oqFxUa+P3YRB5scAPacb4NfnWh8fcMqOTIhhBB/td27d+Pi4mJOSAE899xzaLVa9uzZc9tr9u3bR2FhIc8995y5rF69etSoUaPUqagZGRm4urpWXPBCCCGEEOUkI6UEGAFlvHGgRXtj1FLRjZylrbVVhd7uSFYuHU8VQaM55jI7SUqRem4rk5stwMvRtPbHPzs+hb9PBU6ZFEII8dA4f/48Hh4eFmXW1ta4urpy/vz5O16j0+lwcXGxKK9Wrdodr9m1axdr165l06ZNd4wlPz+f/Px883FmZmY5eyGEEEIIUTrJBDzmigoK2LfuYzSq0FSg0ZKXlQZAscb09tBZVWBSqqiA5FN7AXAoyuHJnFOM8HXHTff45kcLioxMWXeQHQkLqOt6EiedaRFbg2OtSo5MCCFERZs6dSoajabU17Fjx/6SWH799VdCQ0OJiIigS5cud6z3zjvv4OzsbH75+vr+JfEJIYQQ4tH3+GYCBABnFr/MCcMWLtg0pEq+DWCF0VgA6Mk1rUGOrU0Fvk1++pDcgzug/us0yzzM2kufQve4imv/IfRLSjprfznN9Famdb32XPoH/y+4H87OTSs5MiGEEBVt4sSJDBkypNQ6AQEBeHp6cvHiRYvyoqIi0tPT8fS8/XR6T09PCgoKuHbtmsVoqQsXLpS45siRI3Tq1ImXX36Z119/vdR4pk2bxoQJE8zHmZmZkpgSQgghRIWQpNRjqrjIyI9rEqlz4QA7atrhrUxT9jRoaRzYjcb/COaj//0broDeqgLfJtdSybu5jpTeEdq/UnFtP6TSs6/hpk+nij4bgIEd+uPiIgkpIYR4FLm7u+Pu7l5mvVatWnHt2jX27dtH06amfxO+//57jEYjzzzzzG2vadq0KTY2NmzdupXevXsDkJiYSGpqKq1atTLXO3z4MB07diQsLIzZs2eXGYutrS22trbl6Z4QQgghxF2RpNRjKu3ENY7sTKNulWKKAa3xxu53Giu6hISQ5+fLzdmduopcU6oonzyrG0mpmq2gQc2Ka/shlJd3Dv2VUOa2zzOXeTiX/ceKEEKIR1v9+vUJCQlh+PDhLF26lMLCQkaNGkX//v3NO++dPXuWTp068emnn9KiRQucnZ0ZOnQoEyZMwNXVFScnJ0aPHk2rVq1o2bIlYJqy17FjR4KDg5kwYYJ5rSkrK6tyJcuEEEIIISqSJKUeU0UFpoXNtRRTrAGtunlGS2ruWQ7+lohSpreHjXUFLj1WlCc77t3wVcJZtiV8QY8aeRiVBoUNVas8jV7vU9mhCSGEeABER0czatQoOnXqhFarpXfv3ixcuNB8vrCwkMTERHJycsxl8+fPN9fNz88nODiYDz/80Hx+3bp1XLp0ic8++4zPPvvMXO7n50dKSspf0i8hhBBCiJse76zAY6y42JSUstYWUYzm95FSWDFl1zRm7ZkF6uZC5xXzNikyKnZq3DnqEACAXqsp44pH27IfT3Eh8zIAh6/U5YTV/3j66Wg0mord7VCIuzVkyBDzgss6nY7atWszc+ZMioqK7qvdbdu2odFouHbtWsUEWg7JyckMGDAAb29v9Ho91atXJzQ0tMRC0jExMXTo0AGDwYC9vT3Nmzdn5cqVFnVSUlLQaDQkJCSU+/7Tp0+nXr16ODg4UKVKFZ577jn27Nlj0ebQoUPx9/fHzs6OWrVqERERQUFBQantpqWlMWDAAOrUqYNWq2XcuHHliuf69euMGzcOPz8/7OzsaN26NXv37rWok5WVxahRo6hevTp2dnY0aNCApUuXWtQZMWIEtWrVws7ODnd399s+09TUVLp37469vT0eHh5MmjTpju+hnTt3Ym1tzZNPPllmH7788ku6dOmCm5vbXX8/Hjaurq6sXr2a69evk5GRwSeffIKjo6P5fM2aNVFK8eyzz5rL9Ho9ixcvJj09nezsbL788kuL9aSmT5+OUqrESxJSQgghhKgMkpR6TJ1LSqDg+hcoY7ZppJQpR4UGRaHGiI3WBg87LwCsK2hE05LTF+nt2p8vq3UGwL6Ckl0PI6WM5OVfw1ln2lb7yRq+vNwuoJKjEuJ3ISEhpKWlcfz4cSZOnMj06dN57733Kjsss7KSNmAaRdK5c2cyMjL48ssvSUxMZO3atTRq1MgiMbZo0SJCQ0Np06YNe/bs4eDBg/Tv35/w8HBeeeX+1r2rU6cOH3zwAYcOHWLHjh3UrFmTLl26cOnSJQCOHTuG0Wjko48+4vDhw8yfP5+lS5fy6quvltpufn4+7u7uvP766zRp0qTc8QwbNozY2Fj+/e9/c+jQIbp06cJzzz3H2bNnzXUmTJjAt99+y2effcbRo0cZN24co0aNYuPGjeY6TZs2ZcWKFRw9epTNmzejlKJLly4UFxcDUFxcTPfu3SkoKGDXrl2sWrWKlStX8uabb5aI6dq1awwePJhOnTqVqw/Z2dm0bduWOXPmlLvfQgghhBDiAaUeYxkZGQpQGRkZlR3KX275uLEqsm93FT+qjpr9Umv1Xt9uKrJvd7Xopf+oZyNeUE2i3ladorYpvykxavEPxyvknhOPpqpq38erJ7/ZrHrH7VRHrudUSLsPG6OxSP20p4fasjXA/Dp67PXKDktUsNzcXHXkyBGVm5tb2aHctbCwMBUaGmpR1rlzZ9WyZUuVnp6uBg0apFxcXJSdnZ0KCQlRSUlJ5nopKSmqR48eysXFRdnb26sGDRqoTZs2qeTkZAVYvMLCwpRSSmVmZqoBAwYoe3t75enpqebNm6c6dOigxo4da27Xz89PzZw5Uw0aNEgZDAbztXFxcapt27ZKr9er6tWrq9GjR6usrCyllFLx8fEKUCkpKXfsa2pqqrKxsVETJkwocW7hwoUKUD/99JNSSpn7EB8ff/cP9Yab/+5s2bLljnXmzp2r/P39y93mH5/VneTk5CgrKysVExNjUf7000+r1157zXzcsGFDNXPmzFLr/NGBAwcUoE6cOKGUUurrr79WWq1WnT9/3lxnyZIlysnJSeXn51tc269fP/X666+riIgI1aRJkzL7cVNFfD9uVdrP7OP8eeF25HkIIYQQoizl/bzw+A5VecwVFxUCsP1iLWyzqqDBNJVOi46s9G5cu9iYExezAKhir7v/G+Zlkpdvam/4mXWsc0unvqPd/bf7kNn3WzoDPvqarKwj5jKNxhY31/aVGJX4KyilKMzLq5SXUqrsAMtgZ2dHQUEBQ4YM4ZdffmHjxo3s3r0bpRTdunWjsND0O2XkyJHk5+fz448/cujQIebMmYOjoyO+vr588cUXgGk3sLS0NBYsWACYRubs3LmTjRs3EhsbS1xcHPv37y8RQ2RkJE2aNCE+Pp433niDkydPEhISQu/evTl48CBr165lx44djBo1CjDtcqbValm3bp15BM8frVu3jsLCwtuOiBoxYgSOjo6sWbPmvp8fmEZ3LVu2DGdn51JHN2VkZODq6loh97xVUVERxcXF6PV6i3I7Ozt27NhhPm7dujUbN27k7NmzKKX44YcfSEpKokuXLrdtNzs7mxUrVuDv74+vry8Au3fvplGjRlSrVs1cLzg4mMzMTA4fPmwuW7FiBadOnSIiIqIiuyqEEEIIIR4SstD5Y0oZjdR0fIKUrF8BcMvKJ7PaP8DGgUv2OrRWBYx+tiEu9jaEPul9fzc7/yt83JGCOlPBoyO2xgKwfjy3lv78lzOkXj4PdeB6gQPv7HuPHVM6YmNtU9mhiT9ZUX4+C8Oer5R7j1m1Dps/JCLKSynF1q1b2bx5M127dmXDhg3s3LmT1q1bA6aFmH19fdmwYQN9+vQhNTWV3r1706hRIwACAn6flnoz0eLh4YGLiwtgWuNo1apVrF692jx9a8WKFebdxW7VsWNHJk6caD4eNmwYAwcONK+nFBgYyMKFC+nQoQNLlizBx8eHhQsXMnnyZGbMmEGzZs0ICgpi4MCB5riSkpJwdnbGy8urxP10Oh0BAQEkJSXd07O7KSYmhv79+5OTk4OXlxexsbFUrVr1tnVPnDjBokWLiIyMvK973o7BYKBVq1a89dZb1K9fn2rVqrFmzRp2795N7dq1zfUWLVrEyy+/TPXq1bG2tkar1fLxxx/Tvr1l8vzDDz9k8uTJZGdnU7duXWJjY9HpTP+Jcf78eYuEFGA+vrnb2/Hjx5k6dSpxcXFYW8vHESGEEEKIx5GMlHpcGY00qtLO9LVSnKlWiJWuLsrGtMi2jU0e4zvX4cU2/tjr7vOPhbQEKM4nX2v6Y0Vv5ww+Te+vzYdQUVEWBrWVll6/AOBk78Y344IkISUeSDExMTg6OqLX6+natSv9+vVjyJAhWFtb88wzz5jrubm5UbduXY4ePQrAmDFjmDVrFm3atCEiIoKDBw+Wep9Tp05RWFhIixYtzGXOzs7UrVu3RN1mzZpZHB84cICVK1fi6OhofgUHB2M0GklOTgZMI7fOnz9PdHQ0rVq14vPPP6dhw4bExsaW+1ncTLSUJjo62iKOuLg487mgoCASEhLYtWsXISEh9O3bl4sXL5Zo4+zZs4SEhNCnTx+GDx9uLr+13fDw8HLFHBcXZ3FddHQ0AP/+979RSuHj44OtrS0LFy7khRdeQHvL2oGLFi3ip59+YuPGjezbt4+oqChGjhzJli1bLO4xcOBA4uPj2b59O3Xq1KFv377k5eWVK77i4mIGDBjAjBkzqFOnzm3rlPZMhRBCCCHEo0H+a/IxtGfPHtKdq/At8QBYGRUFtlagQN3YEE+rvf/pPmaFuQDkG6oDoOscAfYVPzXlQXY9r5B9h6Jo6fop3Oi6k4M7rg4VMDVSPBSsbW0Zs2pdpd37bgUFBbFkyRJ0Oh3e3t5YW1tbLHR9J8OGDSM4OJhNmzbx3Xff8c477xAVFcXo0aPvJXQLDg4OFsdZWVmMGDGCMWPGlKhbo0YN89cGg4GePXvSs2dPZs2aRXBwMLNmzaJz584EBgaSkZHBuXPnSozOKigo4OTJkwQHB5cZW69evSySdT4+PhZx165dm9q1a9OyZUsCAwNZvnw506ZNM9c5d+4cQUFBtG7dmmXLllm0fevuck5OTmXGAqYE3q3X3RylVKtWLbZv3052djaZmZl4eXnRr18/88ix3NxcXn31VdavX0/37t0BaNy4MQkJCURGRvLcc8+Z23R2dsbZ2ZnAwEBatmxJlSpVWL9+PS+88AKenp78/PPPFjFduHABAE9PT65fv84vv/xCfHy8ebql0WhEKYW1tTXfffddqc9UCCGEEEI8GiQp9ZjJvp7Lt5s24ZCTg+3V0xQC1kYj+TYaKIAbS0th9SckpfK0phFBthW0m9/DZOiqX3jacJDmnnD6ujd+HnUI8B9a2WGJv5BGo7nnKXSV4WYi5Vb169enqKiIPXv2mKfvXblyhcTERBo0aGCu5+vrS3h4OOHh4UybNo2PP/6Y0aNHm0cc3bq+U0BAADY2Nuzdu9ecSMrIyCApKanEdLE/evrppzly5EiJOEuj0WioV68eu3btAuD5559nypQpREVFERUVZVF36dKl5OTkMHjw4DLbNRgMGAyGcsVgNBrJz883H589e5agoCDzjnbaP/yOvJv+3WRnZ1fqdQ4ODjg4OHD16lU2b97M3LlzAdOOhYWFhSVisLKywmg03rE9pRRKKXO/WrVqxezZs7l48SIeHh4AxMbG4uTkRIMGDbCxseHQoUMWbXz44Yd8//33rFu3Dn9/fxwcHMr9TIUQQgghxMNJklKPmZ//F49DUgIaZSTrRpmV0UiuTgsFoDSmZJSV9s5/fNy1ItN0joIbSSm9VlNxbT8kki5cp62rKTl3tvDv9G82Fv2NqZJCPCwCAwMJDQ1l+PDhfPTRRxgMBqZOnYqPjw+hoaEAjBs3jq5du1KnTh2uXr3KDz/8QP369QHw8/NDo9EQExNDt27dsLOzw2AwEBYWxqRJk3B1dcXDw4OIiAi0Wi0aTem/K6ZMmULLli0ZNWoUw4YNw8HBgSNHjhAbG8sHH3xAQkICERERDBo0iAYNGqDT6di+fTuffPIJU6ZMAUwjqubOncsrr7yCXq9n0KBB2NjY8NVXX/Hqq68ya9YsnnjiCYv7JiYmloilYcOG2NhYTsXNzs5m9uzZ9OrVCy8vLy5fvszixYs5e/Ysffr0AUwJqWeffRY/Pz8iIyO5dOmS+XpPT89S+39zJFRWVhaXLl0iISEBnU5nkSD8o82bN6OUom7dupw4cYJJkyZRr149XnzxRcA0EqtDhw5MmjQJOzs7/Pz82L59O59++inz5s0DTFMu165dS5cuXXB3d+fMmTO8++672NnZ0a1bNwC6dOlCgwYNGDRoEHPnzuX8+fO8/vrrjBw5EtsbI/f++Fw9PDzQ6/Ulyv8oPT2d1NRUzp07B/z+/fD09CzzmQkhhBBCiAeLJKUeM1fOpKBRRtOG7BpTUqTA0Jwaeab1XG6Oj7KqoMFMKbn5PF/clsttvyPPyvSHyOM2Uir19KeE1vwOX8NZAEY8+6QkpMRDa8WKFYwdO5YePXpQUFBA+/bt+frrr80JmeLiYkaOHMmZM2dwcnIiJCSE+fPnA6bpVzNmzGDq1Km8+OKLDB48mJUrVzJv3jzCw8Pp0aMHTk5OTJ48mdOnT5fYJe6PGjduzPbt23nttddo164dSilq1apFv379AKhevTo1a9ZkxowZpKSkoNFozMfjx483tzN+/HgCAgKIiopiwYIFZGdnA7BmzRr69+9f4r63Kzt9+jTVq1e3KLOysuLYsWOsWrWKy5cv4+bmRvPmzYmLi6Nhw4aAafTQiRMnOHHiRInry9o18amnnjJ/vW/fPlavXo2fnx8pKSl3vCYjI4Np06Zx5swZXF1d6d27N7Nnz7ZIqP3nP/9h2rRpDBw4kPT0dPz8/Jg9e7Z5PSu9Xk9cXBzvv/8+V69epVq1arRv355du3aZR0VZWVkRExPDP//5T1q1aoWDgwNhYWHMnDmz1D6Vx8aNG81JNPj9+xEREcH06dPvu30hhBBCCPHX0aiK2Cv8IZWZmYmzszMZGRnlXqfjYbfmreWc+3U9Wuua6Az/KHH+vNMl/q11xN3tCnsnlT1lpVRKsTrxIBPSfn+LOVhp2flMfTxtH/3FvbPyi1i+bRdP2LxoUd6ieQwGQ/1Kikr8VfLy8khOTsbf37/M5IqwlJ2djY+PD1FRUQwd+tdPc01PT6dTp044OTnxzTffYG9v/5fHIP56pf3MPo6fF0ojz0MIIYQQZSnv54UKH7JSs2ZNNBpNidfIkSMBePbZZ0uc++NuQqmpqXTv3h17e3s8PDyYNGkSRUVFFnW2bdvG008/ja2tLbVr12blypUV3ZVHjiouxjr5xk5YGhu0xkL6uE7k64Zz+LzxXD5vPJcvvL8FQF8RO8Jtn0POj+8D8NyVXezV/MjB1g0fi4QUwKaD59i43/S8swrs+fa3XjRs+L4kpIT4g/j4eNasWcPJkyfZv38/AwcOBDBPCfyrubq6smXLFjp16sTu3bsrJQYhhBBCCCEeBxU+fW/v3r0Wi9j++uuvdO7c2bx+BsDw4cMthvDf+r/QxcXFdO/eHU9PT3bt2kVaWhqDBw/GxsaGt99+G4Dk5GS6d+9OeHg40dHRbN26lWHDhuHl5VWuXZIeV9d2/kzhhQvgCGhs0BVdx0N3isuOBeRoteRf7IyLakEOUMfV//5vePEouVZ2ALhZa/Gt/xxYPz7T1q5eP0MNp9MAaG186N/xTTyrVankqIR4MEVGRpKYmIhOp6Np06bExcVRtWrVSovHzc2NN998s9LuL4QQQgghxOOgwpNS7u7uFsfvvvsutWrVokOHDuYye3v7Oy5G+t1333HkyBG2bNlCtWrVePLJJ3nrrbeYMmUK06dPR6fTsXTpUvz9/c07JdWvX58dO3Ywf/58SUrdQXFRId99tYXzzg5QnIVGY4NGn8n/bJ+kgCsAFGY8zcUi005HHgaH0porn6I88rQuANg16AHVqpde/xFyJX0HgYQReGNQVHU3T57yk4SUELfz1FNPsW/fvsoOQwghhBBCCPEX+1NXnC4oKOCzzz7jpZdesthFKTo6mqpVq/LEE08wbdo0cnJyzOd2795No0aNqFatmrksODiYzMxMDh8+bK7z3HPPWdwrODhYplmU4tT+/Zw5swdVfAGAK47XWFvvf7zqnU7Rzd3wlDUtalvxevf6jO8ceP83Lcoj18q0LsfjsuOeUoqPtp/kv7u2AJBfbEOB8sDLq3clRyaEEEIIIYQQQjxY/tTd9zZs2MC1a9cYMmSIuWzAgAH4+fnh7e3NwYMHmTJlComJiXz55ZcAnD9/3iIhBZiPz58/X2qdzMxMcnNzsbOzu208+fn55Ofnm48zMzPvu48Pg+IiI9tXJQCg0TqjU9Z8/+SPaDWKwDQrrAuLOe74NKrYwDO1dQxrF3Df98wtNhJn489Rnaktu8dkx72jadd555tj/KP2eeoEQNyZ1jRtPBPPx2iUmBBCCCGEEEIIUR5/alJq+fLldO3aFW9vb3PZyy+/bP66UaNGeHl50alTJ06ePEmtWrX+zHB45513mDFjxp96jwdRXlYh3sXFZAAarQvORg1rzxawLcWTBvvTsSssZmCf9gDorCpmzad3T6XxkecQ87GD1eORlLpwPQ8AN/tCAFrWrkFwY6/KDEkIIYQQQgghhHgg/WmZgt9++40tW7YwbNiwUus988wzAJw4cQIAT09PLly4YFHn5vHNdajuVMfJyemOo6QApk2bRkZGhvl1+vTpu+vUQ8poVNhojKYDjZYCjZblRb25kGfAc3oEftGfkWtjSkbpKmgh8tN5BQAE5JwmxK6Q0Mdgge8TZ38l6+xQZrZ+m6fcfwbgSb/q6G0en8XdhRBCCCGEEEKI8vrTklIrVqzAw8OD7t27l1ovISEBAC8v02iSVq1acejQIS5evGiuExsbi5OTEw0aNDDX2bp1q0U7sbGxtGrVqtR72dra4uTkZPF6HBiLFYobSSm0GDVGUAoAp44dsW/aFKMyvRVsre9z8FxOOnw7jfy0gwCMSf2MlT4KX73u/tp9wG06mMaCTUux5wg+juextTKtk+bgULuSIxNCCCGEEEIIIR5Mf0pSymg0smLFCsLCwrC+Jclx8uRJ3nrrLfbt20dKSgobN25k8ODBtG/fnsaNGwPQpUsXGjRowKBBgzhw4ACbN2/m9ddfZ+TIkdja2gIQHh7OqVOnmDx5MseOHePDDz/kv//9L+PHj/8zuvPQMxYbLZJS6paklPbGdD1zUsrqPpNSh9fDTx+Sn3UZAL2xABzcy7jo4XfobAYGXTYAB660BLdFPNPia6q6PVu5gQkhhBBCCCGEEA+oP2VNqS1btpCamspLL71kUa7T6diyZQvvv/8+2dnZ+Pr60rt3b15//XVzHSsrK2JiYvjnP/9Jq1atcHBwICwsjJkzZ5rr+Pv7s2nTJsaPH8+CBQuoXr06//rXvwgODv4zuvPQK7x8CePFX298t7UYtQoNpqSU5sYC5EqZdseztbnPt0ReBgD5elcAdG3GgKv//bX5gMvOPkFVtQJv1+MAPP9MJ2rU6FbJUQkhhBBCCCGEEA+2P2WkVJcuXVBKUadOHYtyX19ftm/fzpUrV8jLy+P48ePMnTu3xDQ6Pz8/vv76a3Jycrh06RKRkZEWI64Ann32WeLj48nPz+fkyZMWO/wJSzlro01JKQCNlkJrBUpho7fDxlYPgDJW0PS9ItPuhvk6g6k936b3194DLj27gJ8PROCvX4ePYxoAtnrPSo5KiPszZMgQNBoNGo0GnU5H7dq1mTlzJkVFRffV7rZt29BoNFy7dq1iAi2H5ORkBgwYgLe3N3q9nurVqxMaGsqxY8cs6sXExNChQwcMBgP29vY0b96clStXWtRJSUlBo9GYp52Xx/Tp06lXrx4ODg5UqVKF5557jj179li0OXToUPz9/bGzs6NWrVpERERQUFBQartpaWkMGDCAOnXqoNVqGTduXLni+fHHH+nZsyfe3t5oNBo2bNhQos6XX35Jly5dcHNzK7O/Sim6du16x7ZWrlxJ48aN0ev1eHh4MHLkSIvzmzdvpmXLlhgMBtzd3enduzcpKSkWdaKjo2nSpAn29vZ4eXnx0ksvceXKlfvupxBCCCGEqHyPx5Zoj7miq+kYNaaRUBq0nPSxw+BWlR6vvc6qY5+yYP8C8/Q9vbXNfd4sF4B8jakdW63m/tp7gBUbFV0X/Mhvl1IB+Pn8U+Tqw3Gv2qmSIxPi/oWEhJCWlsbx48eZOHEi06dP57333qvssMzKStoAFBYW0rlzZzIyMvjyyy9JTExk7dq1NGrUyCIxtmjRIkJDQ2nTpg179uzh4MGD9O/fn/DwcF555ZX7irNOnTp88MEHHDp0iB07dlCzZk26dOnCpUuXADh27BhGo5GPPvqIw4cPM3/+fJYuXcqrr75aarv5+fm4u7vz+uuv06RJk3LHk52dTZMmTVi8eHGpddq2bcucOXPKbO/9999Ho7n97/l58+bx2muvMXXqVA4fPsyWLVssRjQnJycTGhpKx44dSUhIYPPmzVy+fJl//OMf5jo7d+5k8ODBDB06lMOHD/P555/z888/M3z48PvupxBCCCGEeACox1hGRoYCVEZGRmWH8qf6IfhJ9VW7Viqyb3c1//+mqvCZ49Unn3yiPjn0iXpi5RPqiZVPqJqvrlV+U2LUnpTU+7vZ15OVinBSLbfGqWrfx6ufr2VVTCceQFey8pXflBi1Nqap2rI1QI1eFa0uX8+r7LDEAyI3N1cdOXJE5ebmVnYody0sLEyFhoZalHXu3Fm1bNlSpaenq0GDBikXFxdlZ2enQkJCVFJSkrleSkqK6tGjh3JxcVH29vaqQYMGatOmTSo5OVkBFq+wsDCllFKZmZlqwIAByt7eXnl6eqp58+apDh06qLFjx5rb9fPzUzNnzlSDBg1SBoPBfG1cXJxq27at0uv1qnr16mr06NEqK8v0eyc+Pl4BKiUl5Y59TU1NVTY2NmrChAklzi1cuFAB6qefflJKKXMf4uPj7/6h3nDz350tW7bcsc7cuXOVv79/udv847MqL0CtX7/+jufL6m98fLzy8fFRaWlpJdpKT09XdnZ2pfbz888/V9bW1qq4uNhctnHjRqXRaFRBQYFSSqn33ntPBQQEWFy3cOFC5ePjU3YHbyirnzeV9jP7uHxeKC95HkIIIYQoS3k/L8hIqUdc8YXfyNVlo27+R7ZGS82q/gQHB5Oem0FRVh08irtihR0A7g6u93yvLVcyCbF5juee/hdnNPYA6B7RkVJKFZPy2zJeqPsFTrbXAXj3+da4OdpWcmTiQaWUwlhQXCkvdWNjg/thZ2dHQUEBQ4YM4ZdffmHjxo3s3r0bpRTdunWjsLAQgJEjR5Kfn8+PP/7IoUOHmDNnDo6Ojvj6+vLFF18AkJiYSFpaGgsWLABgwoQJ7Ny5k40bNxIbG0tcXBz79+8vEUNkZCRNmjQhPj6eN954g5MnTxISEkLv3r05ePAga9euZceOHYwaNQoAd3d3tFot69ato7i4+Lb9WrduHYWFhbcdETVixAgcHR1Zs2bNfT8/MI3uWrZsGc7OzqWObsrIyMDV9d5/F/8VcnJyGDBgAIsXL8bTs+SU5djYWIxGI2fPnqV+/fpUr16dvn37cvr0aXOdpk2botVqWbFiBcXFxWRkZPDvf/+b5557Dhsb02jbVq1acfr0ab7++muUUly4cIF169bRrZus2yeEEEII8Sj4UxY6Fw+O4qsXSHMdS5bzBSjYD2h5of0AvL3dOPijI7mnX+LkLfX1Nveep1xx5jIJVu5gMO22Z6PR4G17n9MBH0BH0zJZ+cN/6eI5n+f8TGUajTU6nVvlBiYeaKrQyLk3d1XKvb1ntkajs7qna5VSbN26lc2bN9O1a1c2bNjAzp07ad26NWBa78fX15cNGzbQp08fUlNT6d27N40aNQIgICDA3NbNRIuHhwcuLi4AXL9+nVWrVrF69Wo6dTJNfV2xYgXe3t4lYunYsSMTJ040Hw8bNoyBAwea11MKDAxk4cKFdOjQgSVLluDj48PChQuZPHkyM2bMoFmzZgQFBTFw4EBzXElJSTg7O+Pl5VXifjqdjoCAAJKSku7p2d0UExND//79ycnJwcvLi9jYWKpWrXrbuidOnGDRokVERkbe1z3/bOPHj6d169aEhobe9vypU6cwGo28/fbbLFiwAGdnZ15//XU6d+7MwYMH0el0+Pv7891339G3b19GjBhBcXExrVq14uuvvza306ZNG6Kjo+nXrx95eXkUFRXRs2dPmZYnhBBCCPGIkJFSj7isjAJy9fV/X1NKq6WKlwMAGTmmb7+jXRGtAtwY0SEAL2e7e7vR9rnknNkHwNjf/s0a20R2PFMPd92jl5Rau/c0py+b1pG6kO3OoYy/0ajRh1hbGyo5MiEqTkxMDI6Ojuj1erp27Uq/fv0YMmQI1tbWPPPMM+Z6bm5u1K1bl6NHjwIwZswYZs2aRZs2bYiIiODgwYOl3ufUqVMUFhbSokULc5mzszN169YtUbdZs2YWxwcOHGDlypU4OjqaX8HBwRiNRpKTkwHTyK3z588THR1Nq1at+Pzzz2nYsCGxsbHlfhY6na7MOtHR0RZxxMXFmc8FBQWRkJDArl27CAkJoW/fvly8eLFEG2fPniUkJIQ+ffpYrJl0a7vh4eHlijkuLs7iuujo6HJdVx4bN27k+++/5/33379jHaPRSGFhIQsXLiQ4OJiWLVuyZs0ajh8/zg8//ADA+fPnGT58OGFhYezdu5ft27ej0+l4/vnnzaP7jhw5wtixY3nzzTfZt28f3377LSkpKebn8Gf2UwghhBBC/PlkpNQjrjArG2PhBSi+BoBnfTsMrqYd9wpvzGZpWDOHNWEt7+9G2+eS22QRAE2vHyHIvSvYPZpT2TJzruGqvwqAu+uTdH/qXZztH73km6hYGhst3jNbV9q971ZQUBBLlixBp9Ph7e2NtbU1GzduLPO6YcOGERwczKZNm/juu+945513iIqKYvTo0fcSugUHBweL46ysLEaMGMGYMWNK1K1Ro4b5a4PBQM+ePenZsyezZs0iODiYWbNm0blzZwIDA8nIyODcuXMlRmcVFBRw8uRJi8W576RXr14WyTofHx+LuGvXrk3t2rVp2bIlgYGBLF++nGnTppnrnDt3jqCgIFq3bs2yZcss2r5197s/7lZ7J82aNbO4rlq1auW6rjy+//57Tp48aR7tdlPv3r1p164d27ZtM488a9Cggfm8u7s7VatWJTXVlNRfvHgxzs7OzJ0711zns88+w9fXlz179tCyZUveeecd2rRpw6RJkwBo3LgxDg4OtGvXjlmzZv2p/RRCCCGEEH8+SUo94rZsWk9B1hnzsc7u9//xLyo2/U+0jdV9rvtUXAjGQvK0piSUvus7UKv8u0E9TNLS1tPVfRJaD9Ozq+HuKQkpUS4ajeaep9BVhpuJlFvVr1+foqIi9uzZY56+d+XKFRITEy2SD76+voSHhxMeHs60adP4+OOPGT16tHnE0a3rOwUEBGBjY8PevXvNiaSMjAySkpJo3759qTE+/fTTHDlypEScpdFoNNSrV49du0xTKZ9//nmmTJlCVFQUUVFRFnWXLl1KTk4OgwcPLrNdg8GAwVC+0ZJGo5H8/Hzz8dmzZwkKCqJp06asWLECrdYyiXg3/bvJzs7unq4rj6lTpzJs2DCLskaNGjF//nx69uwJmKbdgWn9sOrVqwOQnp7O5cuX8fMzzXvOyckp0VcrK9PPiNFoNNextra+bR2l1J/aTyGEEEII8eeTpNQjrKiwmIx004gejcaAUZuJzxNP/n7+xt+FOqv7nMVZmAtAnpXpD04790C4wxbhD6tio6L/st00dvyc1t6mhJTS2FHVLaiSIxPirxMYGEhoaCjDhw/no48+wmAwMHXqVHx8fMxrC40bN46uXbtSp04drl69yg8//ED9+vUB8PPzQ6PREBMTQ7du3bCzs8NgMBAWFsakSZNwdXXFw8ODiIgItFotmjJ+j0yZMoWWLVsyatQohg0bhoODA0eOHCE2NpYPPviAhIQEIiIiGDRoEA0aNECn07F9+3Y++eQTpkyZAphGVM2dO5dXXnkFvV7PoEGDsLGx4auvvuLVV19l1qxZPPHEExb3TUxMLBFLw4YNzYtz35Sdnc3s2bPp1asXXl5eXL58mcWLF3P27Fn69OkDmBJSzz77LH5+fkRGRnLp0iXz9bdbQPxWN0cIZWVlcenSJRISEtDpdBYJwj/KysrixIkT5uPk5GQSEhJwdXU1JwXT09NJTU3l3LlzFv319PS0eP1RjRo18Pf3B6BOnTqEhoYyduxYli1bhpOTE9OmTaNevXoEBZl+b3bv3p358+czc+ZMXnjhBa5fv86rr76Kn58fTz31FAA9e/Zk+PDhLFmyhODgYNLS0hg3bhwtWrS47bpjd9NPIYQQQgjxAPiztwF8kD3qWxp/8d5PKqr/31Vk3+7qw8H/UnNf7q6OJ/6+dXv7hR8rvykx6uX/fn5/N8o8r1SEk2r8Tayq9n28OpiZfZ+RP3hSr2Qrvykx6r01vdSWrQFq+JLX1Nmrj14/RcUpbXv5B11YWJgKDQ297bn09HQ1aNAg5ezsrOzs7FRwcLBKSvr998qoUaNUrVq1lK2trXJ3d1eDBg1Sly9fNp+fOXOm8vT0VBqNRoWFhSmllMrMzFQDBgxQ9vb2ytPTU82bN0+1aNFCTZ061Xydn5+fmj9/fol4fv75Z9W5c2fl6OioHBwcVOPGjdXs2bOVUkpdunRJjRkzRj3xxBPK0dFRGQwG1ahRIxUZGamKi4st2tmwYYNq166dcnBwUIAC1Jo1ayzqJCcnm8/98XX69OkSseXm5qq///3vytvbW+l0OuXl5aV69eqlfv75Z3OdFStW3LHNstzuGj8/v1Kv+eGHH2573c3vRWkxRURElBrL+vXrLcoyMjLUSy+9pFxcXJSrq6v6+9//rlJTUy3qrFmzRj311FPKwcFBubu7q169eqmjR49a1Fm4cKFq0KCBsrOzU15eXmrgwIHqzJkz993PPyrtZ/ZR/7xwt+R5CCGEEKIs5f28oFGqAvYKf0hlZmbi7OxMRkZGudfpeFhcOHWC/7w2jWJNAaq4GAf937hu9z9efvdTnF2cAWjz/nLOnvekV4t8Fv7jH/d8r4hfj/J1agpn9NVQGi07nqlHbXt9RXXlgbAv6Vv+9f23BNXYjZv+MnXqLcTXu3tlhyUeYHl5eSQnJ+Pv749e/2j9PPzZsrOz8fHxISoqiqFDh/7l909PT6dTp044OTnxzTffYG9v/5fHIP56pf3MPsqfF+6FPA8hhBBClKW8nxdk971H1IVTJ/C2q2n6v2FAozTU19YwJ6QAik1LdqCzvvd1bpRSLLuUz2k7L5RGi8FKi9cjtuNeQUE6186M4fk6/8NNfxkAR3uPSo5KiEdHfHw8a9as4eTJk+zfv5+BAwcCmKcE/tVcXV3ZsmULnTp1Yvfu3ZUSgxBCCCGEEI8DWVPqEWU0GrHS2HAzK6VRCsOTlutvmNeUsr7H3GRhLgVfjEBVmwDAuuOzaPDif3C4jyTXg+bjH09x5uJB2rsWk19sw8nrLen+VFNcnJtWdmhCPFIiIyNJTExEp9PRtGlT4uLiqFq1aqXF4+bmxptvvllp9xdCCCGEEOJxIEmpR5SxuBitRsPN2ZkawMbFAaUUY7a8QtzJc2RmmxabtbW6xyTS6Z/JO74VbiSlWugK0dk8Om+plMvZzP76KHWqpNDeFdLzqnA0dzSj/SUhJURFeuqpp9i3b19lhyGEEEIIIYT4iz06GQRhQRmL0aA1T9/TKtBaW5NTlMM3P7tTdL2jua6vs9e93aQwh3ytacc9DQqb/v++37AfKGcv7KR/3S/wNph2MHR1dOPN9g0rOSohhBBCCCGEEOLRIEmpR5SxuPjGduo3R0oprKxsKCwuxFjgCoBPFR213B3p3fiJUloqRVEeeTeSUnqtFo3+0VnsdNPBNIwX3qCz32VzWfWqfng6y4LVQgghhBBCCCFERZCk1COquKiI72ocxv9X07FGgZWNjkJjIWCarvde76doXfs+1mwpyjePlLLVPjpr5v92JZuRq/fx0XOmEVInsrvSuWFtPD3/XsmRCSGEEEIIIYQQjw5JSj2irqafJmj7EVLcagGmhc5d7N0oNBailCkpZXOvC5zfVJh7S1JKc39tPUDOXcvDRluItda0EnxQszcI8KpWyVEJIYQQQgghhBCPFklKPaL0x45S/ZyGFDfTsVYpfOs25ZyxAG4kpazvI5G06dI1PsquRWa914BHZ6RUQUE6mekbCPI9cqNES6CnR6XGJIQQQgghhBBCPIokKfWIcjjzM4rfk062TgobLy8Kr54wJ6VsrO4xkVRcyOJTZ9hvdAJH0zpSNfS6+465su04fpnDRyZS27CDfnVNZTY2LjfW5hJCCCGEEEIIIURFejSGtwgLly5dolBjRN2SS9E4mNaOKjQW3l9SymiEpW3JvpQEwJTkf/Fp3laWP1HzfsOudB/9eBJVdBaAk9f8uFLUkjqBb1RyVEIIIYQQQgghxKNJklKPoB07dnBN14hjdfqby3S+prWlbl1TytrqHkYA5V2DS8fI09oC0C73OF1qNcLZ5uEfdHc1pwAHmxwA/P0n0fPZT/H07FXJUQnx1xsyZAgajQaNRoNOp6N27drMnDmToqKi+2p327ZtaDQarl27VjGBlkNycjIDBgzA29sbvV5P9erVCQ0N5dixYxb1YmJi6NChAwaDAXt7e5o3b87KlSst6qSkpKDRaEhISCj3/adPn069evVwcHCgSpUqPPfcc+zZs8eizaFDh+Lv74+dnR21atUiIiKCgoKCUttNS0tjwIAB1KlTB61Wy7hx48oVz48//kjPnj3x9vZGo9GwYcOGu44ZYPbs2bRu3Rp7e3tcXFxue6/U1FS6d++Ovb09Hh4eTJo0yeI9dOv77NZXw4YNzXXeeecdmjdvjsFgwMPDg7/97W8kJiaW2c/yxCeEEEIIISqfJKUeQfn5+Zw0+nHW/syNEi12BhvAcqSU7l5GShXlAZBrpQdAP3g91Oly3zFXtuPH3yas1iSq2V8CoFVgAHY6q0qOSojKExISQlpaGsePH2fixIlMnz6d9957r7LDMisraQNQWFhI586dycjI4MsvvyQxMZG1a9fSqFEji8TYokWLCA0NpU2bNuzZs4eDBw/Sv39/wsPDeeWVV+4rzjp16vDBBx9w6NAhduzYQc2aNenSpQuXLpl+1xw7dgyj0chHH33E4cOHmT9/PkuXLuXVV18ttd38/Hzc3d15/fXXadKkSbnjyc7OpkmTJixevPieYwbT8+/Tpw///Oc/b9tGcXEx3bt3p6CggF27drFq1SpWrlzJm2++aa6zYMEC0tLSzK/Tp0/j6upKnz59zHW2b9/OyJEj+emnn4iNjaWwsJAuXbqQnZ1daj/Lik8IIYQQQjwg1GMsIyNDASojI6OyQ6lQn378kYrs2938WjRooMq6lqeu519X36V8p/ymbFB+U2LUuWs5d9/4lZNKRTipwO/iVLXv49WJ7NyK78BfKCe/SA1buUtt2Rpgfm39obEqLLxe2aGJh1xubq46cuSIys19+H5GwsLCVGhoqEVZ586dVcuWLVV6eroaNGiQcnFxUXZ2diokJEQlJSWZ66WkpKgePXooFxcXZW9vrxo0aKA2bdqkkpOTFWDxCgsLU0oplZmZqQYMGKDs7e2Vp6enmjdvnurQoYMaO3asuV0/Pz81c+ZMNWjQIGUwGMzXxsXFqbZt2yq9Xq+qV6+uRo8erbKyspRSSsXHxytApaSk3LGvqampysbGRk2YMKHEuYULFypA/fTTT0opZe5DfHz83T/UG27+u7Nly5Y71pk7d67y9/cvd5t/fFblBaj169eXWa+0mFesWKGcnZ1LlH/99ddKq9Wq8+fPm8uWLFminJycVH5+/m3vs379eqXRaEr9fl28eFEBavv27WXGXVp8t1Paz+yj+nnhXsnzEEIIIURZyvt5QUZKPYKM5ukROuwoILTbWL6//B1t/tOG8T9M4Ob69ve0plThjZFSN6bv2T3ku+7tTUnnp5O/AWBUGubvn8jTzWKxtnas5MjEo0YpRUFBQaW8lFL3Hb+dnR0FBQUMGTKEX375hY0bN7J7926UUnTr1o3CwkIARo4cSX5+Pj/++COHDh1izpw5ODo64uvryxdffAFAYmIiaWlpLFiwAIAJEyawc+dONm7cSGxsLHFxcezfv79EDJGRkTRp0oT4+HjeeOMNTp48SUhICL179+bgwYOsXbuWHTt2MGrUKADc3d3RarWsW7eO4uLi2/Zr3bp1FBYW3nZE1IgRI3B0dGTNmjX3/fzANHpn2bJlODs7lzq6KSMjA1dX1wq55/0qb8x/tHv3bho1akS1atXMZcHBwWRmZnL48OHbXrN8+XKee+45/Pz87thuRkYGwAPzfIQQQgghxP15+BcCEiXkZpoSR2hssNEaMTi5se/CN+RffRJjkbO5ns1dJpSUUvzfb/nsavsthVrTdED9ve7g94DIzNxHK6+9AGitDPxr+Eu4OOorOSrxKCosLOTtt9+ulHu/+uqr6HT3tkOmUoqtW7eyefNmunbtyoYNG9i5cyetW7cGIDo6Gl9fXzZs2ECfPn1ITU2ld+/eNGrUCICAgABzWzcTCR4eHuZ1fq5fv86qVatYvXo1nTp1AmDFihV4e3uXiKVjx45MnDjRfDxs2DAGDhxoXk8pMDCQhQsX0qFDB5YsWYKPjw8LFy5k8uTJzJgxg2bNmhEUFMTAgQPNcSUlJeHs7IyXl1eJ++l0OgICAkhKSrqnZ3dTTEwM/fv3JycnBy8vL2JjY6latept6544cYJFixYRGRl5X/e8X3cT8+2cP3/eIiEFmI/Pnz9fov65c+f45ptvWL169R3bNBqNjBs3jjZt2vDEE0+UOxYhhBBCCPHgergzCqKErKv5pKddNx1orACFRqPh9AU78tL6UnApGABrrQZbm7v79qcXFrM1W0OulR0Ate1tcbZ+eNddun79KHaZI+lXdwMAdraueDpLQkoIMCUlHB0d0ev1dO3alX79+jFkyBCsra155plnzPXc3NyoW7cuR48eBWDMmDHMmjWLNm3aEBERwcGDB0u9z6lTpygsLKRFixbmMmdnZ+rWrVuibrNmzSyODxw4wMqVK3F0dDS/goODMRqNJCcnA6aRW+fPnyc6OppWrVrx+eef07BhQ2JjY8v9LMqT0IuOjraIIy4uznwuKCiIhIQEdu3aRUhICH379uXixYsl2jh79iwhISH06dOH4cOHm8tvbTc8PLxcMcfFxVlcFx0dXa7r7jbmirJq1SpcXFz429/+dsc6I0eO5Ndff+U///mPuSw8PNyin0IIIYQQ4uEiI6UeMSkHD4AxEwANGtAaQashO9+0057BzkjXhjVoGeCG3uYuEkoZZ8n7+VOw7oqNsZCdyW/h+dIGrDT3sINfJVNKMWpNPFnXvmNwPcgutCOXQJ5tOKyyQxOPMBsbmzIXr/4z7323goKCWLJkCTqdDm9vb6ytrdm4cWOZ1w0bNozg4GA2bdrEd999xzvvvENUVBSjR4++l9AtODg4WBxnZWUxYsQIxowZU6JujRo1zF8bDAZ69uxJz549mTVrFsHBwcyaNYvOnTsTGBhIRkYG586dKzE6q6CggJMnTxIcHFxmbL169bJI1vn4+FjEXbt2bWrXrk3Lli0JDAxk+fLlTJs2zVzn3LlzBAUF0bp1a5YtW2bR9q27/Tk5OZUZC5gSeLde98dRS2UpT8yl8fT05Oeff7You3DhgvncrZRSfPLJJwwaNOiOCcBRo0YRExPDjz/+SPXq1c3lM2fOvO/F6IUQQgghROWRpNQjJm71YpTO/saRFUqjQKuhsNgIgLerkbnPl39dELOfPiQ/YT206IremE8NnQYe0vWkruYUsulgGu18TCPKjl+tRbWa71Ot2p3XMRHifmk0mnueQlcZbiYlblW/fn2KiorYs2ePefrelStXSExMpEGDBuZ6vr6+hIeHEx4ezrRp0/j4448ZPXq0uf+3ru8UEBCAjY0Ne/fuNSeSMjIySEpKon379qXG+PTTT3PkyJEScZZGo9FQr149du3aBcDzzz/PlClTiIqKIioqyqLu0qVLycnJYfDgwWW2azAYMBgM5YrBaDSSn59vPj579ixBQUE0bdqUFStWoP3D79a76d9NdnZ293Tdnfwx5rK0atWK2bNnc/HiRTw8PACIjY3FycnJ4r0Cph32Tpw4wdChQ0u0o5Ri9OjRrF+/nm3btuHv729x3sPDw9y+EEIIIYR4+EhS6hFTmJcDOrsbRxqUBjQaKCwyLXRsbXWPI5tyr5J/Y3FzW2sb6PrgbA1/ty5cOUhbn900djetE9Ourj8tnpKElBBlCQwMJDQ0lOHDh/PRRx9hMBiYOnUqPj4+hIaGAjBu3Di6du1KnTp1uHr1Kj/88AP169cHwM/PD41GQ0xMDN26dcPOzg6DwUBYWBiTJk3C1dUVDw8PIiIi0Gq1aMoYiTllyhRatmzJqFGjGDZsGA4ODhw5coTY2Fg++OADEhISiIiIYNCgQTRo0ACdTsf27dv55JNPmDJlCmAaUTV37lxeeeUV9Ho9gwYNwsbGhq+++opXX32VWbNmlVi/KDExsUQsDRs2LDEiLTs7m9mzZ9OrVy+8vLy4fPkyixcv5uzZs/Tp0wcwJaSeffZZ/Pz8iIyM5NKlS+br/zii6I9ujoTKysri0qVLJCQkoNPpSiR9bpWVlcWJEyfMx8nJySQkJODq6kqNGjXKFTNAamoq6enppKamUlxcbI6ldu3aODo60qVLFxo0aMCgQYOYO3cu58+f5/XXX2fkyJHY2tpaxLR8+XKeeeaZ264TNXLkSFavXs1XX32FwWAwr0fl7OyMnZ1difrljU8IIYQQQjwYJCn1iFFGI3DjDzmNFswjpUxJKd29LkxelEeu1jTKQa93BPc6FRDtX6ugyMiek+fIOxvGiw3zzOUuju6VGJUQD5cVK1YwduxYevToQUFBAe3bt+frr782J2SKi4sZOXIkZ86cwcnJiZCQEObPnw+YprTNmDGDqVOn8uKLLzJ48GBWrlzJvHnzCA8Pp0ePHjg5OTF58mROnz6NXl/6Gm+NGzdm+/btvPbaa7Rr1w6lFLVq1aJfv34AVK9enZo1azJjxgxSUlLQaDTm4/Hjx5vbGT9+PAEBAURFRbFgwQKys7MBWLNmDf379y9x39uVnT592mJaGYCVlRXHjh1j1apVXL58GTc3N5o3b05cXBwNGzYETKOHTpw4wYkTJ0pcX9auiU899ZT563379rF69Wr8/PxISUm54zW//PILQUFB5uMJEyYAEBYWxsqVK8sVM8Cbb77JqlWrSsTyww8/8Oyzz2JlZUVMTAz//Oc/adWqFQ4ODoSFhTFz5kyLeDIyMvjiiy/MOzH+0ZIlSwB49tlnLcpXrFjBkCFD7tjPsuITQgghhBAPBo2qiL3CH1KZmZk4OzuTkZFR7nU6HnTzB/6dfNfq2FxMRmNVDXvb4wwIi+Yfxz/jxMnGtKit4b/Dut19w2sGsPv8af7+5CJq29uy45n6FR/8n2zh1uN8umMXc9rNpMioJTW7Ma1qVScgYBz29v5lNyDEXcjLyyM5ORl/f/8ykyvCUnZ2Nj4+PkRFRd12StefLT09nU6dOuHk5MQ333yDvb192ReJh15pP7OP4ueF+yHPQwghhBBlKe/nhYdzUSBxR/naLDILD9040oIGtLZWFN0YKWVjffffcqUURzFwxKEWAPqHdC2pk5eycLQxjYDIK3ahesAHPPHEAklICVHJ4uPjWbNmDSdPnmT//v0MHDgQwDwl8K/m6urKli1b6NSpE7t3766UGIQQQgghhHgcyPS9R0ybY2nk2Thz0BfQaHFzrIJ9E3eK4u99+t6S05eY6flPuLG8ia324dtxLy//PG1dJtKpqWm9Fs8q1XimkVclRyWEuCkyMpLExER0Oh1NmzYlLi6OqlWrVlo8bm5uvPnmm5V2fyGEEEIIIR4HkpR6hCilMOQaydGZEk8atDh3bEDv2L5cyQkEQHcPI6WOZucC4Fx4HWe9HQO93Sou6L/At7+eJz7x37So8pu5zMnQqBIjEkLc6qmnnmLfvn2VHYYQQgghhBDiL/ZwzsMSt6WMRrRKYdTc/LZq+N/1OE5cO0GR0VRSRV++LcvNts0hP9m0dfqklE/42SeTAV4PV1Jq1qYjnLpwAYCDlxrgWesL6tWbXclRCSGEEEIIIYQQjzdJSj1CjEYjSgNFN6boaTQaLmX4kpM6BMeCdgC42jmXv8Frp2Hb2+RlpwOgNxaAk0+Fx/1nUkpxLScXB5scAJ70r09DvyfRaOStL4QQQgghhBBCVCaZvvcI2bdpAzsa1vq9QGn55VJXivPduHqjyNP5LnYBy78OQJ61aecpfeuR4F63gqL98xmN+ez5OZQFHY6by2q4VavEiIQQQgghhBBCCHGTJKUeISkJB2450mJt5YPRaAPAi+08aFnTl6C6HuVvsMi0llT+zaSUZ4OKCvVPd+ZqDrM2/I8+fr8npDQaG1yqPFOJUQkhhBBCCCGEEOImmcP0iFBKkX09CwCdPoiMGh0IvJqCMloB0LG+K8ENPe9uofNCU1Iq18oWAP097NxXWb47fIHki2kAXMh2Z/6hRXRon4Cba9tKjkwIIYQQQgghhBAgI6UeGYcPH+bK5ctoAeviQk55xvG3VAMoUyJJb2Nz122+d1nLrw1nc0pnmvKm12oqMuQ/jdGYT2HuHuq5JgHg5epJ9HOdsbK6+2cghBBCCCGEEEKIP4ckpR4R165dA6UA0ChwVo40/PADVGQcAHbWd5eQ+S03n6jr9lD195FFXrYPflIn+XI2h49GUNtqPbVvLK/l6uiOs92DH7sQQgghhBBCCPE4eXjmY4lSGY1GNDeTUii8qYbGxQmUafreXY2USk/m+tqXAHAquk5U+lese7IWtezvYpH0SvJ//9pDyvnDAFzMcSNf24Dq1QdXclRCPFyGDBmCRqNBo9Gg0+moXbs2M2fOpKio6L7a3bZtGxqNxpRE/4skJyczYMAAvL290ev1VK9endDQUI4dO2ZRLyYmhg4dOmAwGLC3t6d58+asXLnSok5KSgoajYaEhIRy33/69OnUq1cPBwcHqlSpwnPPPceePXss2hw6dCj+/v7Y2dlRq1YtIiIiKCgoKLPt6OhomjRpgr29PV5eXrz00ktcuXKl1Gt+/PFHevbsibe3NxqNhg0bNty23tGjR+nVqxfOzs44ODjQvHlzUlNTzedHjBhBrVq1sLOzw93d/bbPdO/evXTq1AkXFxeqVKlCcHAwBw4c+OOtADhx4gQGgwEXF5cy+13ePgghhBBCiAefJKUeERZJKQVajTUFxQWAKSllZ60rf2PHY8lLTwbApfA6A+1zaVvFUNEhV7hio+LstVzsbXIA+K3wnzzTbB1ubu0qOTIhHj4hISGkpaVx/PhxJk6cyPTp03nvvfcqOyyz8iRtCgsL6dy5MxkZGXz55ZckJiaydu1aGjVqZJEYW7RoEaGhobRp04Y9e/Zw8OBB+vfvT3h4OK+88sp9xVmnTh0++OADDh06xI4dO6hZsyZdunTh0qVLABw7dgyj0chHH33E4cOHmT9/PkuXLuXVV18ttd2dO3cyePBghg4dyuHDh/n888/5+eefGT58eKnXZWdn06RJExYvXnzHOidPnqRt27bUq1ePbdu2cfDgQd544w30+t//Y6Jp06asWLGCo0ePsnnzZpRSdOnSheLiYgCysrIICQmhRo0a7Nmzhx07dmAwGAgODqawsNDifoWFhbzwwgu0a1e+39Xl6YMQQgghhHhIqMdYRkaGAlRGRkZlh3LfvvvftypyYD8V2be7WtZ/tprz3iR18foV5TclRvlNiVHpWbnlb2zH+ypufgdV7ft41X5HvFLFxX9a3BXFaDSqo0kL1fRPX1D/21xfbdkaoK5di6/ssMRjLDc3Vx05ckTl5t7Fz94DIiwsTIWGhlqUde7cWbVs2VKlp6erQYMGKRcXF2VnZ6dCQkJUUlKSuV5KSorq0aOHcnFxUfb29qpBgwZq06ZNKjk5WQEWr7CwMKWUUpmZmWrAgAHK3t5eeXp6qnnz5qkOHTqosWPHmtv18/NTM2fOVIMGDVIGg8F8bVxcnGrbtq3S6/WqevXqavTo0SorK0sppVR8fLwCVEpKyh37mpqaqmxsbNSECRNKnFu4cKEC1E8//aSUUuY+xMfH3/1DveHmvztbtmy5Y525c+cqf3//Utt57733VEBAQIl4fXx8yh0LoNavX1+ivF+/fur//u//yt2OUkodOHBAAerEiRNKKaX27t2rAJWammquc/DgQQWo48ePW1w7efJk9X//939qxYoVytnZ+a7ue6c+3IvSfmYfpc8LFUGehxBCCCHKUt7PCzJS6hGRdfTK72tKAQortqZuN5+3tbmL5cMK88jV3thxz9YOtA/226So2Mi+E7s5e/p92vrswc46H9Bgq/es7NCEMFNKUVycUykvdeN3w/2ws7OjoKCAIUOG8Msvv7Bx40Z2796NUopu3bqZR7+MHDmS/Px8fvzxRw4dOsScOXNwdHTE19eXL774AoDExETS0tJYsGABABMmTGDnzp1s3LiR2NhY4uLi2L9/f4kYIiMjadKkCfHx8bzxxhucPHmSkJAQevfuzcGDB1m7di07duxg1KhRALi7u6PValm3bp15BM8frVu3jsLCwtuOiBoxYgSOjo6sWbPmvp8fmEZ3LVu2DGdnZ5o0aXLHehkZGbi6upbaVqtWrTh9+jRff/01SikuXLjAunXr6Nat233FaDQa2bRpE3Xq1CE4OBgPDw+eeeaZUqfIZWdns2LFCvz9/fH19QWgbt26uLm5sXz5cgoKCsjNzWX58uXUr1+fmjVrmq/9/vvv+fzzz2XUkxBCCCHEY0oWOn9EZF/LQ4PC9Ken4giX+PdP7wARANhY3UViqSiPvBtJKbsHPCEF8PqGXzmSHMfYp+FKbhV+vvgsU3t2R28rSSnx4DAac9m2vVGl3PvZDoewsrK/p2uVUmzdupXNmzfTtWtXNmzYwM6dO2ndujVgWtfI19eXDRs20KdPH1JTU+nduzeNGpn6GhAQYG7rZqLFw8PDvHbQ9evXWbVqFatXr6ZTp04ArFixAm9v7xKxdOzYkYkTJ5qPhw0bxsCBAxk3bhwAgYGBLFy4kA4dOrBkyRJ8fHxYuHAhkydPZsaMGTRr1oygoCAGDhxojispKQlnZ2e8vLxK3E+n0xEQEEBSUtI9PbubYmJi6N+/Pzk5OXh5eREbG0vVqlVvW/fEiRMsWrSIyMjIUtts06YN0dHR9OvXj7y8PIqKiujZs+d9J3cuXrxIVlYW7777LrNmzWLOnDl8++23/OMf/+CHH36gQ4cO5roffvghkydPJjs7m7p16xIbG4tOZ5oqbjAY2LZtG3/729946623ANP3Z/PmzVhbmz56XLlyhSFDhvDZZ5/h5OR0X3ELIYQQQoiH04OfcRDlosnPQWM0mg6U4rDzQbzsq5vPW2s15WrnaFYuE3mCf1V/HgD9Q5CUOpKWicONdaSuFXoRGPBPqlYNquSohHi4xcTE4OjoiF6vp2vXrvTr148hQ4ZgbW3NM888Y67n5uZG3bp1OXr0KABjxoxh1qxZtGnThoiICA4ePFjqfU6dOkVhYSEtWrQwlzk7O1O3bt0SdZs1a2ZxfODAAVauXImjo6P5FRwcjNFoJDnZtC7eyJEjOX/+PNHR0bRq1YrPP/+chg0bEhsbW+5ncTPRUpro6GiLOOLi4szngoKCSEhIYNeuXYSEhNC3b18uXrxYoo2zZ88SEhJCnz59LNaGurXd8PBwAI4cOcLYsWN588032bdvH99++y0pKSnm83FxcRbXRUdHl6uvxhv/joSGhjJ+/HiefPJJpk6dSo8ePVi6dKlF3YEDBxIfH8/27dupU6cOffv2JS8vD4Dc3FyGDh1KmzZt+Omnn9i5cydPPPEE3bt3Jzc3F4Dhw4czYMAA2rdvf9tY7rUPQgghhBDi4SEjpR4Bv+38kcbfLGVbvQAKrEGLIjPzGXLOBANgY2XaRas83v/tAl9Z1QJn07GH7YP9Fjl7dg0v1o7CRmtKSrWq7U+jJ2pVclRClKTV2vFsh0OVdu+7FRQUxJIlS9DpdHh7e2Ntbc3GjRvLvG7YsGEEBwezadMmvvvuO9555x2ioqIYPXr0vYRuwcHBweI4KyuLESNGMGbMmBJ1a9SoYf7aYDDQs2dPevbsyaxZswgODmbWrFl07tyZwMBAMjIyOHfuXInRWQUFBZw8eZLg4OAyY+vVq5dFss7Hx8ci7tq1a1O7dm1atmxJYGAgy5cvZ9q0aeY6586dIygoiNatW7Ns2TKLtm/d7e/miKJ33nmHNm3aMGnSJAAaN26Mg4MD7dq1Y9asWTRr1sziumrVqpXZB4CqVatibW1NgwYNLMrr16/Pjh07LMqcnZ1xdnYmMDCQli1bUqVKFdavX88LL7zA6tWrSUlJYffu3Whv/OfG6tWrqVKlCl999RX9+/fn+++/Z+PGjeZRYUopjEYj1tbWLFu2jBdeeOGe+iCEEEIIIR4eD3bGQZTLhZ/3YCguRt3IO12zVxjzPcnJNxXU8yzntIjMc2RcvwJY8beLW2nmWYNeAX/7U2K+X0op1sefRXft3zjprprLnZwqZ3qUEGXRaDT3PIWuMtxMpNyqfv36FBUVsWfPHvP0vStXrpCYmGiRxPD19SU8PJzw8HCmTZvGxx9/zOjRo80jjm5d3ykgIAAbGxv27t1rTiRlZGSQlJR0xxE0Nz399NMcOXKkRJyl0Wg01KtXj127dgHw/PPPM2XKFKKiooiKirKou3TpUnJychg8eHCZ7RoMBgyG8u1SajQayc/PNx+fPXuWoKAg84522j+MUL1d/3JycszT4G6ysjLttqqUws7O7q6ey006nY7mzZuTmJhoUZ6UlISfn98dr1NKoZQy9ysnJwetVmvxHyI3j2+Oxtq9e7fFe+Grr75izpw57Nq1Cx8fn3vugxBCCCGEeHhIUuoRkJeUhAEw3vjsb+dQRNH1JjT0haje7fCv6lDq9QBcPw/vNyavURS4NKHbpR/pVbMb2Nr8qbHfq19+u8qE/x5gdpur2DnAJ78O5L2B/4eXa2BlhybEIyswMJDQ0FCGDx/ORx99hMFgYOrUqfj4+BAaGgrAuHHj6Nq1K3Xq1OHq1av88MMP1K9fHwA/Pz80Gg0xMTF069YNOzs7DAYDYWFhTJo0CVdXVzw8PIiIiCiR0LidKVOm0LJlS0aNGsWwYcNwcHDgyJEjxMbG8sEHH5CQkEBERASDBg2iQYMG6HQ6tm/fzieffMKUKVMA04iquXPn8sorr6DX6xk0aBA2NjZ89dVXvPrqq8yaNYsnnnjC4r5/TNgANGzYEBsby9+X2dnZzJ49m169euHl5cXly5dZvHgxZ8+epU+fPoApIfXss8/i5+dHZGQkly5dMl/v6XnndfF69uzJ8OHDWbJkCcHBwaSlpTFu3DhatGhx2/W4bsrKyuLEiRPm4+TkZBISEnB1dTUnBSdNmkS/fv1o3749QUFBfPvtt/zvf/9j27ZtgGnK5dq1a+nSpQvu7u6cOXOGd999Fzs7O/NC6507d2bSpEmMHDmS0aNHYzQaeffdd7G2tiYoyDS9+ub74qZffvkFrVZb4nnfSx+EEEIIIcTDQZJSj4ArJzO50GAoRu1PQB4exUWgrHG215R/lFR6MhgLybXSA6B39YM6ZU9ZqSxnrpqm6znqTGuT/L1FR7zd6lRmSEI8FlasWMHYsWPp0aMHBQUFtG/fnq+//tqckCkuLmbkyJGcOXMGJycnQkJCmD9/PmCa0jZjxgymTp3Kiy++yODBg1m5ciXz5s0jPDycHj164OTkxOTJkzl9+jR6vb7UWBo3bsz27dt57bXXaNeuHUopatWqRb9+/QCoXr06NWvWZMaMGaSkpKDRaMzH48ePN7czfvx4AgICiIqKYsGCBWRnZwOwZs0a+vfvX+K+tys7ffo01atXtyizsrLi2LFjrFq1isuXL+Pm5kbz5s2Ji4ujYcOGAMTGxnLixAlOnDhR4vrSdk0cMmQI169f54MPPmDixIm4uLjQsWNH5syZU+oz++WXX8xJITDtfAgQFhbGypUrAfj73//O0qVLeeeddxgzZgx169bliy++oG3btgDo9Xri4uJ4//33uXr1KtWqVaN9+/bs2rULDw8PAOrVq8f//vc/ZsyYQatWrdBqtTz11FN8++23t11U/m6Upw9CCCGEEOLhoFEVsVf4QyozMxNnZ2cyMjIe6p1/lr+wkFxDTfIzV4HKp65HLUY5dKFDAytWDQ4pXyMnv4d//50Oz6whUe/N501q0c61fFNR/mq/XTrHgQNDKSi4QBV9BgBtWseh1995dIAQf7W8vDySk5Px9/cvM7kiLGVnZ+Pj40NUVBRDhw79y++fnp5Op06dcHJy4ptvvsHe/uGZdinuXWk/s4/K54WKIs9DCCGEEGUp7+eFB39rNVGqnGvXyDD+QH7GMlCmtTzqOH4HgI3VXXx7C007JuVZmdZ80d/NtX+h1XtSmfDZJzhok8wJKVtdNXS622+vLoR48MXHx7NmzRpOnjzJ/v37GThwIIB5SuBfzdXVlS1bttCpUyd2795dKTEIIYQQQgjxOJDpew+5K6d/Q1FoOlDgbnedZEdnuA46a6tyt3Mir4ifPHtwTWtaf0qvLd9ufX+1hNNXcbQxTd07lVmXBnXf4JnARmi1ZW/ZLoR4cEVGRpKYmIhOp6Np06bExcVRtWrlJZvd3Nx48803K+3+QgghhBBCPA4kKfWQu55pGi2k0brhmZ2H/+B/Mvr4AVNS6i5GO/W95sW5upPMx4a7SGj9VQoLM3DXxuDlfgiANnUb06B+q0qOSghxv5566in27dtX2WEIIYQQQggh/mKSlHrI7d37i+kLjQalMWJj70axMo1ysi1nYkkZjZxTpkWKg/JP8XTdVvjpH6yRRwmnr5GaEsXTLqvNZbYyZU8IIYQQQgghhHhoPZgLB4lyST93lowrl28caVEYqRdQh2KjKSlVrul7KTvJn1PLfPhRzhYm+XuVuRX7Xykjt5C+S3dzKNW0DfupjBpYOT6Pj8/ASo5MCCGEEEIIIYQQ90pGSj2klFL8J2Iy120NmPYI0oCmmBe+nkhOXn0AbK3KkZRK3k5ecYH5UF/jmT8l3vtx6XoeBcVGHG1yASiy/Rttmo6+u4XchRBCCCGEEEII8UCRpNRDylhcTG5mBngYbpRoKdYoDqU+b67jZu9SdkNFeeRpbW+0ADZNB1d4rPejuDiPC+eW0b/uYWo4nQPg+eb1JSElhBBCCCGEEEI85CQp9ZAyGostCzRajJjKDHor3B1t6Vy/etkNFeWbk1J6K+0DNW2voMjIoRNfkZf+IZ39fi+3tfWsvKCEEEIIIYQQQghRISQp9ZBSxcVYa2zQWzkAoMG00DnAd+M74OVsV752ivLItTJNANRrH5yEFEDYJz/jVLyHvnXh9HVvLhc244XWLTEYGlV2aEIIIYQQQgghhLhPMgfqIWUsNuJq64WGm4kkLUqjAMo9tW3H1evUdhhIULMVANhpH6y3w5FzF3G2vQ7Amex6+PtPxMe73wM1mksIIYQQQgghhBD35sHKQohyMxqLKbKCc/q0GyUajDdGStmUM7kUdzWLbI3OfNymimNFh3nPkn9bRWS7CQTX/B6AAa0a07tpOaYjCiHu25AhQ9BoNGg0GnQ6HbVr12bmzJkUFRXdV7vbtm1Do9Fw7dq1igm0HJKTkxkwYADe3t7o9XqqV69OaGgox44ds6gXExNDhw4dMBgM2Nvb07x5c1auXGlRJyUlBY1GQ0JCQrnvP336dOrVq4eDgwNVqlThueeeY8+ePRZtDh06FH9/f+zs7KhVqxYREREUFBSU0qpJdHQ0TZo0wd7eHi8vL1566SWuXLlS6jVLliyhcePGODk54eTkRKtWrfjmm2/M59PT0xk9ejR169bFzs6OGjVqMGbMGDIyMsx1Vq5caX5//PF18eJFc738/Hxee+01/Pz8sLW1pWbNmnzyyScW8bz//vvme/n6+jJ+/Hjy8vJK7cOXX35Jly5dcHNzu+vvhxBCCCGEeLBIUuohZSwq4ki1NK6qkzdKtBhvfGVjXb6RRHlG0xXDzqzjqONBFtb3K+OKP19eYTG9l+xi489for0x8svKygHXKq0qOTIhHi8hISGkpaVx/PhxJk6cyPTp03nvvfcqOyyz8iRtCgsL6dy5MxkZGXz55ZckJiaydu1aGjVqZJEYW7RoEaGhobRp04Y9e/Zw8OBB+vfvT3h4OK+88sp9xVmnTh0++OADDh06xI4dO6hZsyZdunTh0qVLABw7dgyj0chHH33E4cOHmT9/PkuXLuXVV18ttd2dO3cyePBghg4dyuHDh/n888/5+eefGT58eKnXVa9enXfffZd9+/bxyy+/0LFjR0JDQzl8+DAA586d49y5c0RGRvLrr7+ycuVKvv32W4YOHWpuo1+/fqSlpVm8goOD6dChAx4eHuZ6ffv2ZevWrSxfvpzExETWrFlD3bp1zedXr17N1KlTiYiI4OjRoyxfvpy1a9eW2ffs7Gzatm3LnDlzSq0nhBBCCCEeAuoxlpGRoQCVkZFR2aHctWsXz6u45o3V5lbNVWTf7mrewDHqo579ld+UGJVfWFz6xfnZSv03TE1ev1hV+z5ezf1kjFLxq/+awMuw/7d05TclRi1Z10lt2Rqgpn4WpYqLCys7LCHuWm5urjpy5IjKzc2t7FDuWlhYmAoNDbUo69y5s2rZsqVKT09XgwYNUi4uLsrOzk6FhISopKQkc72UlBTVo0cP5eLiouzt7VWDBg3Upk2bVHJysgIsXmFhYUoppTIzM9WAAQOUvb298vT0VPPmzVMdOnRQY8eONbfr5+enZs6cqQYNGqQMBoP52ri4ONW2bVul1+tV9erV1ejRo1VWVpZSSqn4+HgFqJSUlDv2NTU1VdnY2KgJEyaUOLdw4UIFqJ9++kkppcx9iI+Pv/uHesPNf3e2bNlyxzpz585V/v7+pbbz3nvvqYCAgBLx+vj43HVMVapUUf/617/ueP6///2v0ul0qrDw9r+LL168qGxsbNSnn35qLvvmm2+Us7OzunLlyh3bHTlypOrYsaNF2YQJE1SbNm3KFXdFfD9uVdrP7MP8eeHPIM9DCCGEEGUp7+cFGSn1kCrKL8QlS5Fr63KjRMMRtwYA2FiVMVIqdRccXk9+zjUA9MYCqFL5o6QArmUk0NJrL9UcrgEwIbglWq2sxy8efkopsouLK+WllLrv+O3s7CgoKGDIkCH88ssvbNy4kd27d6OUolu3bhQWFgIwcuRI8vPz+fHHHzl06BBz5szB0dERX19fvvjiCwASExNJS0tjwYIFAEyYMIGdO3eyceNGYmNjiYuLY//+/SViiIyMpEmTJsTHx/PGG29w8uRJQkJC6N27NwcPHmTt2rXs2LGDUaNGAeDu7o5Wq2XdunUUFxeXaA9g3bp1FBYW3nZE1IgRI3B0dGTNmjX3/fzANLpr2bJlODs706RJkzvWy8jIwNXVtdS2WrVqxenTp/n6669RSnHhwgXWrVtHt27dyh1PcXEx//nPf8jOzqZVqzuPRs3IyMDJyQlr69v/Lv7000+xt7fn+eefN5dt3LiRZs2aMXfuXHx8fKhTpw6vvPIKubm55jqtW7dm3759/PzzzwCcOnWKr7/++q76IIQQQgghHm7y1/5DqiArm71Np5JpdR5yvwe0HPGoiVajyl4IvCAbgHz7qgDonxkONZ76kyMundGoOHomkeJLwxne6Pc/oO30bpUYlRAVJ8dopNaPhyrl3ifbN8LByuqerlVKsXXrVjZv3kzXrl3ZsGEDO3fupHXr1oBpXSNfX182bNhAnz59SE1NpXfv3jRqZNolMyAgwNzWzUSLh4cHLi4uAFy/fp1Vq1axevVqOnXqBMCKFSvw9vYuEUvHjh2ZOHGi+XjYsGEMHDiQcePGARAYGMjChQvp0KEDS5YswcfHh4ULFzJ58mRmzJhBs2bNCAoKYuDAgea4kpKScHZ2xsvLq8T9dDodAQEBJCUl3dOzuykmJob+/fuTk5ODl5cXsbGxVK1a9bZ1T5w4waJFi4iMjCy1zTZt2hAdHU2/fv3Iy8ujqKiInj17snjx4jLjOXToEK1atSIvLw9HR0fWr19PgwYNblv38uXLvPXWW7z88st3bG/58uUMGDAAO7vfd309deoUO3bsQK/Xs379ei5fvsz/+3//jytXrrBihWlzjQEDBnD58mXatm2LUoqioiLCw8PLnL4nhBBCCCEeHTJS6iF1/dP55Dh4wo2VpByt0rmIDeXaeK/QtIhsno0BANsqNaCSd7SbGXOECWu+QYMir8iW83lN8PV9CQeHOpUalxCPq5iYGBwdHdHr9XTt2pV+/foxZMgQrK2teeaZZ8z13NzcqFu3LkePHgVgzJgxzJo1izZt2hAREcHBgwdLvc+pU6coLCykRYsW5jJnZ2eLtYduatasmcXxgQMHWLlyJY6OjuZXcHAwRqOR5ORkwDRy6/z580RHR9OqVSs+//xzGjZsSGxsbLmfhU6nK7NOdHS0RRxxcXHmc0FBQSQkJLBr1y5CQkLo27evxYLgN509e5aQkBD69OljsTbUre2Gh4cDcOTIEcaOHcubb77Jvn37+Pbbb0lJSTGfj4uLs7guOjra3F7dunVJSEhgz549/POf/yQsLIwjR46UiCczM5Pu3bvToEEDpk+fftt+7969m6NHj1qsOQVgNBrRaDRER0fTokULunXrxrx581i1apV5tNS2bdt4++23+fDDD9m/fz9ffvklmzZt4q233irzmQohhBBCiEeDjJR6SGWePwM6uJmUylenuaYxYF+OwRBpBUVccKzLJWsnAGzLuVvfn+nXsxnYW5uSZZfyqlO99hLqBFar5KiEqDj2Wi0n2zeqtHvfraCgIJYsWYJOp8Pb2xtra2s2btxY5nXDhg0jODiYTZs28d133/HOO+8QFRXF6NGj7yV0Cw4ODhbHWVlZjBgxgjFjxpSoW6NGDfPXBoOBnj170rNnT2bNmkVwcDCzZs2ic+fOBAYGkpGRwblz50qMziooKODkyZMEBweXGVuvXr0sknU+Pj4WcdeuXZvatWvTsmVLAgMDWb58OdOmTTPXOXfuHEFBQbRu3Zply5ZZtH3r7nJOTqbf2++88w5t2rRh0qRJADRu3BgHBwfatWvHrFmzaNasmcV11ar9/vv05o6KAE2bNmXv3r0sWLCAjz76yFzn+vXrhISEYDAYWL9+PTY2Nrft97/+9S+efPJJmjZtalHu5eWFj48Pzs7O5rL69eujlOLMmTMEBgbyxhtvMGjQIIYNGwZAo0aNyM7O5uWXX+a1114r9ZkKIYQQQohHgySlHkJGo5ETbi6ojGyUygcg3ac2KNDblP4/+sez8+iQ1QBj09//6LHVVu4oqeLiHOw0x6liOAvAkzV8eLKBJKTEo0Wj0dzzFLrKcDORcqv69etTVFTEnj17zNP3rly5QmJiosX0L19fX8LDwwkPD2fatGl8/PHHjB492jzi6Nb1nQICArCxsWHv3r3mRFJGRgZJSUm0b9++1Biffvrp/8/encdVVa2PH/+cAxw4zIIgg4igOOCUQ84TOYAacssc0otY6pW+zpqhVqKmeVXQm8N16Fva73vVulqZFy3DMZxNMU0S0uBizoqCzHDO+v1BnjyhgKWg+bxfr/PSvffaaz1rH/Bsn7P2WiQlJZWKsywajYYGDRpw4MABAF566SWioqKIjY0lNjbWrOzKlSvJzc1l6NCh5dbr4OCAg4NDhWIwGo0UFBSYti9cuEBQUBAtW7ZkzZo1aH+TRLxX/3Jzc0vN8WTxy8+XUgq9Xl/h6/LbeLKysggODsba2potW7ZgY2Nzz/Oys7P597//zbx580od69ChAxs3biQ7Oxt7e3ug5FFJrVZLzZo1TX34bV/v7sODXFMhhBBCCPFkkqTUEyjnpwyuXr5NUeGv32qnXXUAN7AsJ8H0Y24+RjTojIW4UUgNZ3c6VLN/1CHfV15hMce/7cuweqmmfZa/jOASQjxeAgICCAsLY+TIkaxatQoHBwemTp2Kt7c3YWFhAEyYMIFevXpRr149bt68ye7du2nYsCEAvr6+aDQa4uLi6N27N3q9HgcHByIiIpgyZQouLi64u7sTHR2NVqstd368qKgo2rZty5gxYxgxYgR2dnYkJSURHx/PsmXLOHHiBNHR0YSHhxMYGIhOp2Pv3r18+OGHREVFASUjqhYsWMDrr7+OjY0N4eHhWFlZ8cUXXzB9+nTmzJlD48aNzdpNTk4uFUujRo1KjSbKyclh7ty59O3bF09PT65fv87y5cu5cOEC/fv3B0oSUl27dsXX15eYmBiuXbtmOt/Dw+O+fQ8NDWXkyJGsWLGC4OBgLl26xIQJE2jduvU95+O6Y9q0afTq1YtatWpx+/Zt1q9fz549e9i+fTtQkpDq2bMnubm5/Otf/yIrK4usrCygZOJ4i7sSq5988gnFxcX89a9/LdXO4MGDeeedd3jllVeYNWsW169fZ8qUKbz66qumuadCQ0NZtGgRzZs3p02bNpw9e5a3336b0NBQs3Z+KyMjg/T0dC5evAj8+n54eHiUec2EEEIIIcTjR5JST6Cr/0mhqPDXkQaFWi3/tfXFUquhd5PSk/WaXP6egqQjoGlBm8yTbNQlQbdFlRDxve384QrjNxzgva4lCamMfGdqODrh4flClcUkhCjbmjVrGD9+PM8//zyFhYV07tyZbdu2mRIyBoOB0aNH8/PPP+Po6EhISAiLFy8GSh6/mjVrFlOnTuWVV15h6NChrF27lkWLFhEZGcnzzz+Po6Mjb7zxBufPn7/vCJ07mjZtyt69e3nzzTfp1KkTSinq1KnDwIEDAahZsya1a9dm1qxZpKWlodFoTNsTJ0401TNx4kT8/f2JjY3lvffeIyenZDGIDRs2MGjQoFLt3mvf+fPnTSOA7rCwsODMmTN89NFHXL9+HVdXV5599lkSEhJo1KgRAPHx8Zw9e5azZ8+WOr+sVROHDRvG7du3WbZsGZMnT8bZ2ZnnnnuO+fPnl3nNrl69ytChQ7l06RJOTk40bdqU7du306NHDwCOHz/O4cOHgdIjtFJTU6ldu7Zp+4MPPuDFF180TVp/N3t7e+Lj4xk7diytWrXC1dWVAQMGMGfOHFOZt956C41Gw1tvvcWFCxdwc3MjNDSUuXPnltmHLVu28Morr5i277wf0dHR9537SgghhBBCPJ406mGsFf6EysrKwsnJybTc9ZPgQvJFfl55kH0XS1YvsnYaw3t19tLDtwf/HPRc2Sf/bw/WF1dnUv0out84wL+q3YBub1dC1Pc2+z9JfHHsWxZ0nkWRwZKlP7zP5tEdsarQbO1CPN7y8/NJTU3Fz8+v3OSKMJeTk4O3tzexsbGlJtCuDBkZGXTr1g1HR0e+/PJLbG1tKz0GUfnK+p19Eu8XHiW5HkIIIYQoT0XvF+R//0+Y7+K3osgxbWuUEdCis6zAW5l7nQJtyZwu1i61oc2oRxNkBRQX36aB7g2mty4ZQWGndyVubCdJSAnxFEpMTGTDhg2cO3eO48ePM2TIEADTI4GVzcXFhR07dtCtWzcOHjxYJTEIIYQQQgjxNJDH954wBbk5GNWvk5lrFKAssLaswFtZlEeBbcm5Nh6NwN79EUVZtqSLWew99Tn1rH6AX6ZgcXRsXO78MUKIP6+YmBiSk5PR6XS0bNmShIQEqlevXmXxuLq6MmPGjCprXwghhBBCiKeBJKWeMEZDMZhyNxq0KFBarC0rsKpXUe6vI6WqcMW9GV98j1XhT9RrAudu1SYgIJomjdpWWTxCiKrVvHlzjh07VtVhCCGEEEIIISqZPCv1hDEUF2M0TQOmBWVAUX5Sqsio+F7nxXnrkpWJrLVV99ZfyszH1ioPgBrVatMpsCNara6cs4QQQgghhBBCCPFnIiOlnjBGg4ECbeEvWxo0GH8ZKVX2WznqdCrbmq80bVfFSCmlFKdOvUZU8wNY/tKH+p6eWMo8UkIIIYQQQgghxFNHsgFPGIOhmMW+637Z0pZMdK4ssCkrKbVnPkmX0wBwLbxJgN6KUDfnRx2qmStZ+fT/ZxzXrsdjZ5WDtUURAI6OzSo1DiGEEEIIIYQQQjweJCn1hMk35nPLMqtkQ6MFZcSQ64edzvreJ9y+AnveJc9gBOCTlHdIaN2Qlk52lRRxif1nr3Mh4woAOUV6ln//Du3afoOXV/9KjUMIIYQQQgghhBCPB3l87wljMBajMd559E6LhTKiDA442dwnyVSYDUC+RUnSyuaFf0IVzCeVlZuPg64kFkfb6qyLHIheV4HJ2YUQQgghhBBCCPGnJEmpJ0yRoQibIv0vWxrAiJWFhgYejvc5oWRC8XztL0mp6v6PPsjfuHz5C7wL3iDq2WIAbG2cJCElhBBCCCGEEEI85SQp9QRRRoXK7kTfpNYUsh40Flhg5Ns3e+Bka3Xvk4rzMaCl4JfV7WwqcZSUUoqoT09SS/tvGjoXm/a7unSutBiEEEIIIYQQQgjxeJI5pZ4gR/cfQWOsBpTMD6VBg9vtpPsnpID/5uZz2KmJaVtvUXmr7qVez+Hf3/5MUVHJHFj/+qE/Nxy2UafO5EqLQQjx4IYNG4ZGo0Gj0aDT6ahbty6zZ8+muLi4/JPLsGfPHjQaDbdu3Xo4gVZAamoqgwcPxsvLCxsbG2rWrElYWBhnzpwxKxcXF0eXLl1wcHDA1taWZ599lrVr15qVSUtLQ6PRcOLEiQq3P3PmTBo0aICdnR3VqlWje/fuHD582KzO4cOH4+fnh16vp06dOkRHR1NYWFhGrSXWrVtHs2bNsLW1xdPTk1dffZUbN25UOLa///3vaDQaJkyYYLb/3LlzvPDCC7i5ueHo6MiAAQO4cuWKWZm5c+fSvn17bG1tcXZ2vmf9d36G7n59/PHHpuOfffYZPXr0MLXTrl07tm/fXm7cn332GT179sTV1fWB3w8hhBBCCPF4kaTUE+TIrt0lf1ElSSm7gqs0qZd03/KHb2XT5oI9Lz6zxLSvMkdKZWRnUNP+AtVtS5JSo4La0L9VvUprXwjx+4WEhHDp0iV+/PFHJk+ezMyZM1m4cGFVh2VSkaRNUVERPXr0IDMzk88++4zk5GQ++eQTmjRpYpYYW7p0KWFhYXTo0IHDhw9z8uRJBg0aRGRkJK+//vofirNevXosW7aMU6dOsW/fPmrXrk3Pnj25du0aAGfOnMFoNLJq1SpOnz7N4sWLWblyJdOnTy+z3v379zN06FCGDx/O6dOn2bhxI0eOHGHkyJEViuvo0aOsWrWKpk2bmu3PycmhZ8+eaDQadu3axf79+yksLCQ0NBSj0WgqV1hYSP/+/XnttdfKbGfNmjVcunTJ9PrLX/5iOvbNN9/Qo0cPtm3bxrFjxwgKCiI0NJTExMQy68zJyaFjx47Mnz+/Qn0VQgghhBCPMfWQRUdHK8DsVb9+fdPxvLw89T//8z/KxcVF2dnZqRdffFFdvnzZrI7//ve/qnfv3kqv1ys3Nzf1+uuvq6KiIrMyu3fvVs2bN1c6nU7VqVNHrVmz5oFjzczMVIDKzMz8XX2tLEajUW16d4aaEzVTLRmxSb0XEatiBvRRH/w1SJ1N+Pe9TyrKV/8v8RtVY1eiqh1/QD27fYd6O+XnSou5qChL7djVVO3Y6W96ZWQcqrT2hahqeXl5KikpSeXl5VV1KA8sIiJChYWFme3r0aOHatu2rcrIyFDh4eHK2dlZ6fV6FRISolJSUkzl0tLS1PPPP6+cnZ2Vra2tCgwMVFu3blWpqamlPhsiIiKUUkplZWWpwYMHK1tbW+Xh4aEWLVqkunTposaPH2+q19fXV82ePVuFh4crBwcH07kJCQmqY8eOysbGRtWsWVONHTtWZWdnK6WUSkxMVIBKS0u7b1/T09OVlZWVmjRpUqljS5YsUYA6dKjk3647fUhMTHzwi/qLO587O3bsuG+ZBQsWKD8/vzLrWbhwofL39y8Vr7e3d7kx3L59WwUEBKj4+PhS13n79u1Kq9WafS7eunVLaTQaFR8fX6quNWvWKCcnp3u2A6jPP/+83HjuFhgYqGbNmlWhsg/j/bhbWb+zT8r9QmWR6yGEEEKI8lT0fuGRDJtp1KiR2Tej+/btMx2bOHEi//nPf9i4cSN79+7l4sWLvPjii6bjBoOBPn36UFhYyIEDB/joo49Yu3YtM2bMMJVJTU2lT58+BAUFceLECSZMmMCIESMqNOz/SZSbeYvMpAvYZGdRmLWGorxdAKTgQ55fz3uftHsu+UfXABB84wBHLi9ldoB3pcT7ydF0QmLXg8rGqDTkFDvj7PQsjo5Nyz9ZiD8ppRS5hcVV8lJK/eH49Xo9hYWFDBs2jG+//ZYtW7Zw8OBBlFL07t2boqIiAEaPHk1BQQHffPMNp06dYv78+djb2+Pj48Onn34KQHJyMpcuXeK9994DYNKkSezfv58tW7YQHx9PQkICx48fLxVDTEwMzZo1IzExkbfffptz584REhJCv379OHnyJJ988gn79u1jzJgxALi5uaHVatm0aRMGg+Ge/dq0aRNFRUX3HBE1atQo7O3t2bBhwx++flAyumj16tU4OTnRrFmz+5bLzMzExcWlzLratWvH+fPn2bZtG0oprly5wqZNm+jdu3e5cYwePZo+ffrQvXv3UscKCgrQaDRYW1ub9tnY2KDVas0+yytq9OjRVK9endatW/Phhx+W+bNoNBq5fft2uX0XQgghhBB/Ho9konNLS0s8PDxK7c/MzOSDDz5g/fr1PPfcc0DJ0P6GDRty6NAh2rZty9dff01SUhI7duygRo0aPPPMM7zzzjtERUUxc+ZMdDodK1euxM/Pj9jYWAAaNmzIvn37WLx4McHBwY+iS1XKaDBgb1WNm4W3f9ljhUGTR5JDQ6ws7pNXvJlGvtYOABu9E7QYXTnBAl9+fxlrbUmsP9/2IsfxA/q2DKi09oV4HOUVGQicUTWJ86TZwdjqft8/90opdu7cyfbt2+nVqxebN29m//79tG/fHiiZ18jHx4fNmzfTv39/0tPT6devH02alMxl5+//64qfd5IN7u7upnmIbt++zUcffcT69evp1q0bUPK54OXlVSqW5557jsmTf52TbsSIEQwZMsQ0J1JAQABLliyhS5curFixAm9vb5YsWcIbb7zBrFmzaNWqFUFBQQwZMsQUV0pKCk5OTnh6epZqT6fT4e/vT0pKyu+6dnfExcUxaNAgcnNz8fT0JD4+nurVq9+z7NmzZ1m6dCkxMTFl1tmhQwfWrVvHwIEDyc/Pp7i4mNDQUJYvX17meR9//DHHjx/n6NGj9zzetm1b7OzsiIqK4t1330UpxdSpUzEYDFy6dKliHf7F7Nmzee6557C1teXrr7/mf/7nf8jOzmbcuHH3LB8TE0N2djYDBgx4oHaEEEIIIcST65GMlPrxxx/x8vLC39+fIUOGkJ6eDsCxY8coKioy+3a2QYMG1KpVi4MHDwJw8OBBmjRpQo0aNUxlgoODycrK4vTp06Yyv/2GNzg42FTH/RQUFJCVlWX2ehIYDQYsNBamb5h1uqZcd7nCSccmWN1v4vLiQvK0Jd902zQIgYAelRJrds6PPO8xkdeafQhAo5o+jHlOElJCPGni4uKwt7fHxsaGXr16MXDgQIYNG4alpSVt2rQxlXN1daV+/fr88MMPAIwbN445c+bQoUMHoqOjOXnyZJnt/PTTTxQVFdG6dWvTPicnJ+rXr1+qbKtWrcy2v/vuO9auXYu9vb3pFRwcjNFoJDU1FSgZqXP58mXWrVtHu3bt2LhxI40aNSI+Pr7C10Kn05VbZt26dWZxJCQkmI7dGdV74MABQkJCGDBgAFevXi1Vx4ULFwgJCaF///5mc0PdXW9kZCQASUlJjB8/nhkzZnDs2DG++uor0tLSTMcTEhLMzlu3bh3nz59n/PjxrFu3Dhsbm3v2w83NjY0bN/Kf//wHe3t7nJycuHXrFi1atED7gHMSvv3223To0IHmzZsTFRXFG2+8cd95ydavX8+sWbP497//jbu7e7nXVAghhBBC/Dk89JFSbdq0Ye3atdSvX59Lly4xa9YsOnXqxPfff8/ly5fR6XSlVuqpUaMGly9fBuDy5ctmCak7x+8cK6tMVlYWeXl56PX6e8Y2b948Zs2a9TC6WamMRgPaX5JSGgAFxb+MkLrvSKnifPItSpJS1trKWXFvd/JVfjy3gTo2l037XKu1qJS2hXjc6a0sSJpdNSM59VYWD3xOUFAQK1asQKfT4eXlhaWlJVu2bCn3vBEjRhAcHMzWrVv5+uuvmTdvHrGxsYwdO/b3hG7Gzs7ObDs7O5tRo0bdc+RNrVq1TH93cHAgNDSU0NBQ5syZQ3BwMHPmzKFHjx4EBASQmZnJxYsXS43OKiws5Ny5cxUagdu3b1+zZJ2396+PS9vZ2VG3bl3q1q1L27ZtCQgI4IMPPmDatGmmMhcvXiQoKIj27duzevVqs7rvXl3O0dERKPk869ChA1OmTAGgadOm2NnZ0alTJ+bMmUOrVq3MzqtRowY7d+7k6tWrtGjx67/LBoOBb775hmXLllFQUICFhQU9e/bk3LlzXL9+HUtLS5ydnfHw8DAb9fZ7tGnThnfeeYeCggKzxwM//vhjRowYwcaNG82+cCrrmgohhBBCiD+Hh56U6tWrl+nvTZs2pU2bNvj6+vLvf//7vsmiyjJt2jQmTZpk2s7KysLHx6cKI6qYOyOl+GWklBYNxb98Y62zvF9SqoB8XclNv76SVtyb8PEJnvO+RB1/OHixFYO7z8KvRunRDkI8jTQaze9+hK4q3Emk3K1hw4YUFxdz+PBh0+N7N27cIDk5mcDAQFM5Hx8fIiMjiYyMZNq0abz//vuMHTvWNOLo7vmd/P39sbKy4ujRo6ZEUmZmJikpKXTu3LnMGFu0aEFSUlKpOMui0Who0KABBw4cAOCll14iKiqK2NhY0yPhd6xcuZLc3FyGDh1abr0ODg44ODhUKAaj0UhBQYFp+8KFCwQFBdGyZUvWrFlTakTSvfqXm5uLpaX5z5OFRUnyUSmFXq8vdV63bt04deqU2b5XXnmFBg0aEBUVZTr/jjuPGO7atYurV6/St2/fCvXvfk6cOEG1atXMElIbNmzg1Vdf5eOPP6ZPnz5m5R/kmgohhBBCiCfTI/8fkrOzM/Xq1ePs2bP06NGDwsJCbt26ZTZa6sqVK6Y5qDw8PDhy5IhZHVeuXDEdu/PnnX13l3F0dCwz8WVtbW12M/ykMBoMaLHAqFTJ85YKCssYKbX5yk3e8plOprbk8QybShgpVVBsIDOvCL1lHgDP1mmEv0eDR96uEKLyBAQEEBYWxsiRI1m1ahUODg5MnToVb29vwsLCAJgwYQK9evWiXr163Lx5k927d9OwYUMAfH190Wg0xMXF0bt3b/R6PQ4ODkRERDBlyhRcXFxwd3cnOjoarVaLRlP2v11RUVG0bduWMWPGMGLECOzsRpjudQABAABJREFU7EhKSiI+Pp5ly5Zx4sQJoqOjCQ8PJzAwEJ1Ox969e/nwww+JiooCSkZULViwgNdffx0bGxvCw8OxsrLiiy++YPr06cyZM4fGjRubtZucnFwqlkaNGmFlZWW2Lycnh7lz59K3b188PT25fv06y5cv58KFC/Tv3x8oSUh17doVX19fYmJiuHbtmun8e83NeEdoaCgjR45kxYoVBAcHc+nSJSZMmEDr1q3vOR8XlCR5ftsXOzs7XF1dzfbfmevRzc2NgwcPMn78eCZOnGj2SGV6ejoZGRmkp6djMBhMo7Lq1q2Lvb09//nPf7hy5Qpt27bFxsaG+Ph43n33XbMJ5devX09ERATvvfcebdq0MY2G1uv1ODk53bfvd9q9ePEi8Ov74eHhUeY1E0IIIYQQj59HnpTKzs7m3LlzhIeH07JlS6ysrNi5cyf9+vUDSm4m09PTadeuHVCyotDcuXO5evWqaV6J+Ph4HB0dTd/Et2vXjm3btpm1Ex8fb6rjz8ZYVIRWY0GBKnnDNAqKtRY42FhiZ136sZz/XLvFdcuSb5c1KJo62D7S+JQycCZ5DmObH6OWwwUAGniXnjRYCPHkW7NmDePHj+f555+nsLCQzp07s23bNlNCxmAwMHr0aH7++WccHR0JCQlh8eLFQMnjV7NmzWLq1Km88sorDB06lLVr17Jo0SIiIyN5/vnncXR05I033uD8+fP3nffojqZNm7J3717efPNNOnXqhFKKOnXqMHDgQABq1qxJ7dq1mTVrFmlpaWg0GtP2xIkTTfVMnDgRf39/YmNjee+998jJyQFKRvEMGjSoVLv32nf+/Hlq1qxpts/CwoIzZ87w0Ucfcf36dVxdXXn22WdJSEigUaNGQMln19mzZzl79myp88taqW7YsGHcvn2bZcuWMXnyZJydnXnuueeYP39+mdesIpKTk5k2bRoZGRnUrl2bN9980+x6AcyYMYOPPvrItN28eXMAdu/eTdeuXbGysmL58uVMnDgRpRR169Zl0aJFZnNlrV69muLiYkaPHs3o0b8uxhEREcHatWvvG9+WLVt45ZVXTNt33o/o6Ghmzpz5R7ouhBBCCCEqmUY9jLXC7/L6668TGhqKr68vFy9eJDo6mhMnTpCUlISbmxuvvfYa27ZtY+3atTg6OprmGbnzKIXBYOCZZ57By8uLBQsWcPnyZcLDwxkxYgTvvvsuAKmpqTRu3JjRo0fz6quvsmvXLsaNG8fWrVsfaPW9rKwsnJycyMzMNM3T8Tg6M2c2Wds2ccKtFrdtwNaiFWcbJDD6tS/wd7MvVX7wd+fYlXGbN39axaCgcNz82z+y2L6/kMlXx7+mud1Us/1NGv8Td/c/30qIQlRUfn4+qamp+Pn5lZtcEeZycnLw9vYmNjaW4cOHV3r7GRkZdOvWDUdHR7788ktsbR9tYl88Hsr6nX1S7hcqi1wPIYQQQpSnovcLD32yoZ9//pmXX36Z+vXrM2DAAFxdXTl06BBubm4ALF68mOeff55+/frRuXNnPDw8+Oyzz0znW1hYEBcXh4WFBe3ateOvf/0rQ4cOZfbs2aYyfn5+bN26lfj4eJo1a0ZsbCz/+7//+0AJqSeJIekkDhlFWBpLHmXRoGj6bPfSCanMn2H9QAouJALgk38ZN92jfVxx/ldn2P/jjwBcznFj2/lXaNpkFW5u3cs5UwghSiQmJrJhwwbOnTvH8ePHGTJkCIDpkcDK5uLiwo4dO+jWrVu5q7oKIYQQQgghfr+H/vjexx9/XOZxGxsbli9fzvLly+9bxtfXt9Tjeb/VtWtXEhMTf1eMT5LcE1exVj5cdlFk21oDWeTaORDZ6/XShX/4D6R8RX7zvqAHG1UETo9utSKDIQ93ix00qPEdAHa2dRjechxubvKtqRDiwcTExJCcnIxOp6Nly5YkJCSYJtquCq6ursyYMaPK2hdCCCGEEOJp8OQsBfWUytqRzi1LT75rGorh9qdQnEWR5X0eBSrMBiDfxhUAm97zweHRTfr684V19K71oWm7vndtGnpJQkoI8WCaN2/OsWPHqjoMIYQQQgghRCWTpNRjrriwiKuawpINVfLnzer3eduK8gHItyyZ/8TaxfeRxKSUYuT/O4YHBwjygQvZnjSs1YZaPpU/94sQQgghhBBCCCGeTA99TinxcKUbrnFTUzICClWSdCp21JUqp5TiQ6M30+uO54pGD4CN9tG8vVl5xez44QrWFrkAJN3sQLPGC7Gz838k7QkhhBBCCCGEEOLPR0ZKPeYKjYV3ZQ6NAFhaWpUq92NuAdMtW4B3C9M+VyuLhx6PUoqLV7+hnecRajpcBuC1555BZyn5TSGEEEIIIYQQQlScJKUeY5lXL1NYUARGUMY8lDIAYGVZ+m27WVQMQLWiTIZZ36R+gy7U0j/clfey8ov46vgOXPPHMKLJr/v11i4PtR0hhBBCCCGEEEL8+UlS6jF2dMtnKOXEreILFGSuMO0vNVLq3G4KfvoeLDvhWXCNKMfrUKPaQ4/n/W9+4ugPhxnZBG4X2nGj0J92AQ1wde300NsSQgghhBBCCCHEn5skpR5jhXm5WGicyDfmmvbdtrLCyt3HvODGCPLtGkHjTlgbC8HW9ZHE8/PNPGwtS2K5rZrSuPF7BPo/mraEEEIIIYQQQgjx5yZJqceYwWDAAg0KBYClTVP+Vd+KBX7evxYyGiA/k3z7ksnPbZy8oGGbhx5LdnYyPlaf4O9+CoBWfr40lISUEEIIIYQQQgghfieZnfoxpooNoDFyZ4JzNDCtdyAvtqj5a6GiPADyLUrmj7Kp5gNW+ocax/8dTOPrA2Np5vxvAl1TANDpqj/UNoQQj49hw4ah0WjQaDTodDrq1q3L7NmzKS4u/kP17tmzB41Gw61btx5OoBWQmprK4MGD8fLywsbGhpo1axIWFsaZM2fMysXFxdGlSxccHBywtbXl2WefZe3atWZl0tLS0Gg0nDhxosLtz5w5kwYNGmBnZ0e1atXo3r07hw8fNqtz+PDh+Pn5odfrqVOnDtHR0RQWFpZb97p162jWrBm2trZ4enry6quvcuPGjXLPu3DhAn/9619xdXVFr9fTpEkTvv32W9Pxu9//O6+QkBCzOmrXrl2qzN///nfT8eTkZIKCgqhRowY2Njb4+/vz1ltvUVRUZFbPrVu3GD16NJ6enlhbW1OvXj22bdtWZvyfffYZPXv2xNXV9YHfDyGEEEII8XiRpNRjzKvwe7pbjkdDyQTnSgM1HO3MCxUXAFCg/WWklPbhvqVXs/J5+4vTYLgKwJFLLdBXG0pN778+1HaEEI+XkJAQLl26xI8//sjkyZOZOXMmCxcurOqwTCqStCkqKqJHjx5kZmby2WefkZyczCeffEKTJk3MEmNLly4lLCyMDh06cPjwYU6ePMmgQYOIjIzk9ddf/0Nx1qtXj2XLlnHq1Cn27dtH7dq16dmzJ9euXQPgzJkzGI1GVq1axenTp1m8eDErV65k+vTpZda7f/9+hg4dyvDhwzl9+jQbN27kyJEjjBw5sszzbt68SYcOHbCysuLLL78kKSmJ2NhYqlUzn4fwzvt/57Vhw4ZSdc2ePduszNixY03HrKysGDp0KF9//TXJycn84x//4P333yc6OtpUprCwkB49epCWlsamTZtITk7m/fffx9vbu1Rbd8vJyaFjx47Mnz+/zHJ/BhkZGQwZMgRHR0ecnZ0ZPnw42dnZZZ6Tn5/P6NGjcXV1xd7enn79+nHlypV7lr1x4wY1a9as9GSxEEIIIYSJeoplZmYqQGVmZlZ1KPf031ltlIp2VLED+qiYAX1U7CtT1baftpmVWZGcorx2HlU1diWqGrsS1ajvUx9qDN9fuKV8o/6jtsfXVTt2+qv/HEtURqPxobYhxJ9RXl6eSkpKUnl5eVUdygOLiIhQYWFhZvt69Oih2rZtqzIyMlR4eLhydnZWer1ehYSEqJSUFFO5tLQ09fzzzytnZ2dla2urAgMD1datW1VqaqoCzF4RERFKKaWysrLU4MGDla2trfLw8FCLFi1SXbp0UePHjzfV6+vrq2bPnq3Cw8OVg4OD6dyEhATVsWNHZWNjo2rWrKnGjh2rsrOzlVJKJSYmKkClpaXdt6/p6enKyspKTZo0qdSxJUuWKEAdOnRIKaVMfUhMTHzwi/qLO587O3bsuG+ZBQsWKD8/vzLrWbhwofL39y8Vr7e3d5nnRUVFqY4dO5ZZ5l7v/2/5+vqqxYsXl1nmtyZOnGjW9ooVK5S/v78qLCx8oHrueBjvx93K+p2tqvuFkJAQ1axZM3Xo0CGVkJCg6tatq15++eUyz4mMjFQ+Pj5q586d6ttvv1Vt27ZV7du3v2fZsLAw1atXLwWomzdvVjiux/3+SQghhBBVr6L3CzJS6jGmVQaU4pcZpUBhRKsxf8u+upWHQVMyNZgGaOts/9DaLyi4wtXUEbzT/l0stCWPEPZqVg+NRvPQ2hDiqaEUFOZUzUup8uMrh16vp7CwkGHDhvHtt9+yZcsWDh48iFKK3r17mx7LGj16NAUFBXzzzTecOnWK+fPnY29vj4+PD59++ilQ8mjXpUuXeO+99wCYNGkS+/fvZ8uWLcTHx5OQkMDx48dLxRATE0OzZs1ITEzk7bff5ty5c4SEhNCvXz9OnjzJJ598wr59+xgzZgwAbm5uaLVaNm3ahMFguGe/Nm3aRFFR0T1HRI0aNQp7e/t7jhL6PQoLC1m9ejVOTk40a9bsvuUyMzNxcXEps6527dpx/vx5tm3bhlKKK1eusGnTJnr37l3meVu2bKFVq1b0798fd3d3mjdvzvvvv1+q3J49e3B3d6d+/fq89tpr93ws8O9//zuurq40b96chQsXlvl459mzZ/nqq6/o0qWLWSzt2rVj9OjR1KhRg8aNG/Puu+/e97162vzwww989dVX/O///i9t2rShY8eOLF26lI8//piLFy/e85zMzEw++OADFi1axHPPPUfLli1Zs2YNBw4c4NChQ2ZlV6xYwa1bt/7waEAhhBBCiD9CJjp/jBVfyOHSFSewKdlWWrDU3PWW3b5CQWE+oGNp6lJ6hq/CyerhvKXfpFxj66HV9Kx5HK9f8lw2NjXRah/ufFVCPDWKcuFdr6ppe/pF0NmVX+4elFLs3LmT7du306tXLzZv3sz+/ftp3749UDKvkY+PD5s3b6Z///6kp6fTr18/mjRpAoC/v7+prjuJFnd3d5ydnQG4ffs2H330EevXr6dbt24ArFmzBi+v0tfqueeeY/LkyabtESNGMGTIECZMmABAQEAAS5YsoUuXLqxYsQJvb2+WLFnCG2+8waxZs2jVqhVBQUEMGTLEFFdKSgpOTk54enqWak+n0+Hv709KSsrvunZ3xMXFMWjQIHJzc/H09CQ+Pp7q1e89L9/Zs2dZunQpMTExZdbZoUMH1q1bx8CBA8nPz6e4uJjQ0FCWL19e5nk//fQTK1asYNKkSUyfPp2jR48ybtw4dDodERERQMmjey+++CJ+fn6cO3eO6dOn06tXLw4ePIiFhQUA48aNo0WLFri4uHDgwAGmTZvGpUuXWLRokVl77du35/jx4xQUFPC3v/2N2bNnm8Wya9cuhgwZwrZt2zh79iz/8z//Q1FRkdljfk+rgwcP4uzsTKtWrUz7unfvjlar5fDhw7zwwgulzjl27BhFRUV0797dtK9BgwbUqlWLgwcP0rZtWwCSkpKYPXs2hw8f5qeffnr0nRFCCCGEuA8ZKfWYUkpRcNzI9R9/HflUZKl+HSl1+nOIrUfBzXQA3I25Dy0hBfDx0XRu510H4OS1QI5lv0PrZ7+QUVJCPCXi4uKwt7fHxsaGXr16MXDgQIYNG4alpSVt2vy6wqerqyv169fnhx9+AEqSFXPmzKFDhw5ER0dz8uTJMtv56aefKCoqonXr1qZ9Tk5O1K9fv1TZu/9zDvDdd9+xdu1a7O3tTa/g4GCMRiOpqalAycity5cvs27dOtq1a8fGjRtp1KgR8fHxFb4WOp2u3DLr1q0ziyMhIcF0LCgoiBMnTnDgwAFCQkIYMGAAV69eLVXHhQsXCAkJoX///mZzQ91db2RkJFCSVBg/fjwzZszg2LFjfPXVV6SlpZmOJyQkmJ23bt06AIxGIy1atODdd9+lefPm/O1vf2PkyJGsXLnS1N6gQYPo27cvTZo04S9/+QtxcXEcPXqUPXv2mMpMmjSJrl270rRpUyIjI4mNjWXp0qUUFBSY9emTTz7h+PHjrF+/nq1bt5ol24xGI+7u7qxevZqWLVsycOBA3nzzTVMsZV3Tp8Hly5dxd3c322dpaYmLiwuXL1++7zk6nc6U9L2jRo0apnMKCgp4+eWXWbhwIbVq1apQLAUFBWRlZZm9hBBCCCEeBhkp9RhSxUZOv/sfDnvXJd/KDsgBILWGooO25FtqLiYCUKAtWXXPuk6Xe1X1+9pXRooLL1LD5iYAz9Z9hjbPDMLKQnKYQvxuVrYlI5aqqu0HFBQUxIoVK9DpdHh5eWFpacmWLVvKPW/EiBEEBwezdetWvv76a+bNm0dsbKzZJNi/l52d+Wiv7OxsRo0axbhx40qVvfs/2w4ODoSGhhIaGsqcOXMIDg5mzpw59OjRg4CAADIzM7l48WKp0VmFhYWcO3eO4ODgcmPr27evWbLu7sm67ezsqFu3LnXr1qVt27YEBATwwQcfMG3aNFOZixcvEhQURPv27Vm9erVZ3XevLufo6AjAvHnz6NChA1OmTAGgadOm2NnZ0alTJ+bMmUOrVq3MzqtRowYAnp6eBAYGmtXfsGFD06OV9+Lv70/16tU5e/asaTTbb7Vp04bi4mLS0tLMEoo+Pj4ABAYGYjAY+Nvf/sbkyZOxsLDA09MTKysr0+irO7FcvnyZwsLCMq/pk2zq1KnlTtJ+J8n7KEybNo2GDRvy179WfMGSefPmMWvWrEcWkxBCCCGeXpKUegwVZ+ST/N+D3LKBOwkpNPZk6/Ow0Pxy8/7Lqnv5elcArFsOfWjtn/juVQb6/vqNtLdLDUlICfFHaTS/+xG6qnAnkXK3hg0bUlxczOHDh02P7924cYPk5GSzRIePjw+RkZFERkYybdo03n//fcaOHWsacXT3nEH+/v5YWVlx9OhRUyIpMzOTlJQUOnfuXGaMLVq0ICkpqVScZdFoNDRo0IADBw4A8NJLLxEVFUVsbCyxsbFmZVeuXElubi5Dh5b/76uDgwMODg4VisFoNJqNKLpw4QJBQUGm+X+0v1lF9V79y83NxdLS/CP8TnJHKYVer7/neR06dCA5OdlsX0pKCr6+vveN9+eff+bGjRv3fMTxjhMnTqDVakuN7Lmb0WikqKgIo9GIhYUFHTp0YP369RiNRlOfU1JS8PT0RKfTodPpKnxNnySTJ09m2LBhZZbx9/fHw8Oj1Ii64uJiMjIy8PDwuOd5Hh4eFBYWcuvWLbPRUleuXDGds2vXLk6dOsWmTZuAkp8XgOrVq/Pmm2/eM/k0bdo0Jk2aZNrOysoyJRyFEEIIIf4ISUo9jowKgyqZMNZC14hMeyOpNXI5434IrWZISZmiPADyf5ljykb7xx+ryys00HfZPiY2OYS1BRQarLDWVcO1etc/XLcQ4skXEBBAWFgYI0eOZNWqVTg4ODB16lS8vb0JCwsDYMKECfTq1Yt69epx8+ZNdu/eTcOGDQHw9fVFo9EQFxdH79690ev1ODg4EBERwZQpU3BxccHd3Z3o6Gi0Wm25jwtHRUXRtm1bxowZw4gRI7CzsyMpKYn4+HiWLVvGiRMniI6OJjw8nMDAQHQ6HXv37uXDDz8kKioKKBlRtWDBAl5//XVsbGwIDw/HysqKL774gunTpzNnzhwaN25s1u5vkzoAjRo1wsrKymxfTk4Oc+fOpW/fvnh6enL9+nWWL1/OhQsX6N+/P1CSkOratSu+vr7ExMRw7do10/n3SzwAhIaGMnLkSFasWEFwcDCXLl1iwoQJtG7d+p7zcd0xceJE2rdvz7vvvsuAAQM4cuQIq1evNo3Oys7OZtasWfTr1w8PDw/OnTvHG2+8Qd26dU0jxg4ePMjhw4cJCgrCwcGBgwcPMnHiRP76179SrVo1oOTROysrK5o0aYK1tTXffvst06ZNY+DAgabr9Nprr7Fs2TLGjx/P2LFj+fHHH3n33XfvOfLtbhkZGaSnp5sm+77zfnh4eJR5zR4Xbm5uuLm5lVuuXbt23Lp1i2PHjtGyZUugJKFkNBrNRpDdrWXLllhZWbFz50769esHlFyf9PR02rVrB8Cnn35KXl6e6ZyjR4/y6quvkpCQQJ06de5Zr7W1NdbW1g/UTyGEEEKICnnk6wA+xh7XJY0LLtxWG4ZNVDED+qh/DFukQhd0VY3XNlaN1zZWyRnJSimlcj99Td2a7aX8dx1VNXYlqp9y8v9wu9+mZai60z5TO3b6qx07/VWHd7eozLzft1S3EE+7spaXf9xFRESosLCwex7LyMhQ4eHhysnJSen1ehUcHKxSUlJMx8eMGaPq1KmjrK2tlZubmwoPD1fXr183HZ89e7by8PBQGo1GRUREKKWUysrKUoMHD1a2trbKw8NDLVq0SLVu3VpNnTrVdJ6vr69avHhxqXiOHDmievTooezt7ZWdnZ1q2rSpmjt3rlJKqWvXrqlx48apxo0bK3t7e+Xg4KCaNGmiYmJilMFgMKtn8+bNqlOnTsrOzk5Rsuip2rBhg1mZ1NRU07Hfvs6fP18qtry8PPXCCy8oLy8vpdPplKenp+rbt686cuSIqcyaNWvuW2d5lixZogIDA5Ver1eenp5qyJAh6ueffy73vP/85z+qcePGytraWjVo0ECtXr3adCw3N1f17NlTubm5KSsrK+Xr66tGjhypLl++bCpz7Ngx1aZNG+Xk5KRsbGxUw4YN1bvvvqvy83/9HPr4449VixYtTO9LYGCgevfdd0v9Phw4cEC1adNGWVtbK39/fzV37lxVXFxcZvz3u2bR0dHl9r0sZf3OVtX9QkhIiGrevLk6fPiw2rdvnwoICFAvv/yy6fjPP/+s6tevrw4fPmzaFxkZqWrVqqV27dqlvv32W9WuXTvVrl27+7axe/duBaibN29WOK7H9f5JCCGEEI+Pit4vaJR6CGuFP6GysrJwcnIiMzPTNE/H46Dw/G3+34y3yMw9h6VtD476HOOwXS0+GNyTzj6d2X49kxEnz1Kk+XUejuPtAvGyKX8y3vsxGArY+916PjuayAsBWwELOnRKwuYhTp4uxNMkPz+f1NRU/Pz8sLGxqepwnig5OTl4e3sTGxvL8OHDK739jIwMunXrhqOjI19++SW2tg8+J5d48pT1O1tV9wsZGRmMGTOG//znP2i1Wvr168eSJUuwty9ZBCUtLQ0/Pz92795N165dTf2YPHkyGzZsoKCggODgYP75z3/edxTZnj17CAoK4ubNm6UmSL+fx/X+SQghhBCPj4reL0jG4TGTdf0q+95fw0VjEXaABi12ObXQ047OPiXzqxy4lW2WkGrmoKeGtdV9aiyf0aj4Me3fqFtzeCGgZJ9O5yIJKSFEpUhMTOTMmTO0bt2azMxMZs+eDWB6JLCyubi4sGPHDpYvX87BgwfvO7m3EI+ai4sL69evv+/x2rVr89vvFm1sbFi+fDnLly+vUBtdu3YtVYcQQgghRGWRrMNj5qfj33Il7ScM2sJf9mipZZFF+xa/JJ2yLpKfkQ7omfjfj5jUvB2WTfuXO/dKWQatPkRNy/308YeL2TUo1tbl+SYVX5VHCCH+qJiYGJKTk9HpdLRs2ZKEhASqV69eZfG4uroyY8aMKmtfCCGEEEKIp4EkpR4zRZmZxLX4jro/OOKYpwONFk/LbHwcLcFQBCs7kuczEjx6YWvIw0qnL1nV63fKLzJwJC2D+g1LVvk7fq0VnZq/gZtbzYfVJSGEKFPz5s05duxYVYchhBBCCCGEqGSSlHrM6H/YRrY76Ip/mR9KaSjWWpaMhMrPhNwb5GtLVsDRu9YBv7KXTC/Pf3/+gtntF+FicxOAScGt8KkpCSkhhBBCCCGEEEI8WtqqDkCYy82zJfTEHKrllUxIqlGKy9oaJUmpolwA8i30ANi0fhVsnH5XO/lFBsZtSOTw96vxtr+E3jIfAHu7eg+hF0IIIYQQQgghhBBlk6TUY+Z2UXU0aFEYAHC9eQaj1gJLS0soyqcYC/IsS1aC0mt//2N7R1Iz2PLdRTQqC4D9V4fStk081aq1/eOdEEIIIYQQQgghhCiHJKUeM0bDLyvgqJI5nrwv7qdhw4Y0btyYORdzqdllFwlOzQCwsfj9b9/NnNs46G7jZJ0HwIhuf8HOzv+PBS+EEEIIIYQQQghRQTKn1GPkwoULZGcpsAKrYkWRFjQ2NgwcOBCAr783cieP6GRpQVMH29/VTn7+RWxv/oV/dM0x7atmX3WrXAkhhBBCCCGEEOLpIyOlHiMpP6WAoeSRPKPGCEDei4NLJjg/tpaCgpIk0sfpSznVoRE+NroHbuPjI+lM/NcGtPyakHJyaoGNjcdD6IEQQgghhBBCCCFExUhS6jHyw/UfKDQUUJyfiEFTXLLzmVaw7x/wn/EUFpU8audqodBpf99bt2Z/GrdzS1ba++5aI/6r20GrlhvRaCweRheEEH8Cw4YNQ6PRoNFo0Ol01K1bl9mzZ1NcXPyH6t2zZw8ajYZbt249nEArIDU1lcGDB+Pl5YWNjQ01a9YkLCyMM2fOmJWLi4ujS5cuODg4YGtry7PPPsvatWvNyqSlpaHRaDhx4kSF2585cyYNGjTAzs6OatWq0b17dw4fPmxW5/Dhw/Hz80Ov11OnTh2io6MpLCwst+5169bRrFkzbG1t8fT05NVXX+XGjRtlnmMwGHj77bfN2nvnnXdQSpnKfPbZZ/Ts2RNXV9f79vfcuXO88MILuLm54ejoyIABA7hy5coD9+vkyZN06tQJGxsbfHx8WLBgQbn9/uabbwgNDcXLywuNRsPmzZvLPUcIIYQQQjyeJCn1GLG+ouFKURrFebvhl4nOdXobyC650S+wKHlcz7rNyN9Vv9FYgIW6hJttyX9a2vjX4pUOtf9w3EKIP5+QkBAuXbrEjz/+yOTJk5k5cyYLFy6s6rBMKpK0KSoqokePHmRmZvLZZ5+RnJzMJ598QpMmTcwSY0uXLiUsLIwOHTpw+PBhTp48yaBBg4iMjOT111//Q3HWq1ePZcuWcerUKfbt20ft2rXp2bMn165dA+DMmTMYjUZWrVrF6dOnWbx4MStXrmT69Oll1rt//36GDh3K8OHDOX36NBs3buTIkSOMHFn258P8+fNZsWIFy5Yt44cffmD+/PksWLCApUuXmsrk5OTQsWNH5s+ff886cnJy6NmzJxqNhl27drF//34KCwsJDQ3FaDRWuF9ZWVn07NkTX19fjh07xsKFC5k5cyarV68usw85OTk0a9aM5cuXl1lOCCGEEEI8AdRTLDMzUwEqMzOzqkNRSin1r7+vUrEDQlXMgD4q9uVBasCoqerbtBtKbXxFqWhH5bfrW1VjV6JKy81/4LoNhkK1f39XtWOnv+l15kz0w++EEEIppVReXp5KSkpSeXl5VR3KA4uIiFBhYWFm+3r06KHatm2rMjIyVHh4uHJ2dlZ6vV6FhISolJQUU7m0tDT1/PPPK2dnZ2Vra6sCAwPV1q1bVWpqqgLMXhEREUoppbKystTgwYOVra2t8vDwUIsWLVJdunRR48ePN9Xr6+urZs+ercLDw5WDg4Pp3ISEBNWxY0dlY2OjatasqcaOHauys7OVUkolJiYqQKWlpd23r+np6crKykpNmjSp1LElS5YoQB06dEgppUx9SExMfPCL+os7nzs7duy4b5kFCxYoPz+/MutZuHCh8vf3LxWvt7d3mef16dNHvfrqq2b7XnzxRTVkyJBSZe/X3+3btyutVmv22Xnr1i2l0WhUfHz8fdv+bb/++c9/qmrVqqmCggLTvqioKFW/fv0y+3A3QH3++ecVLl+Wsn5nH7f7haom10MIIYQQ5ano/YKMlHqMZN+2RPHLIxTWnhxxfQZrSwsoLgCg4JeBbTYP+Oje8fSbvPrBl+TlpwOQX6zD0qo6bm49Hl7wQog/Nb1eT2FhIcOGDePbb79ly5YtHDx4EKUUvXv3pqioCIDRo0dTUFDAN998w6lTp5g/fz729vb4+Pjw6aefApCcnMylS5d47733AJg0aRL79+9ny5YtxMfHk5CQwPHjx0vFEBMTQ7NmzUhMTOTtt9/m3LlzhISE0K9fP06ePMknn3zCvn37GDNmDABubm5otVo2bdqEwWC4Z782bdpEUVHRPUdEjRo1Cnt7ezZs2PBQrmFhYSGrV6/GycmJZs2a3bdcZmYmLi4uZdbVrl07zp8/z7Zt21BKceXKFTZt2kTv3r3LPK99+/bs3LmTlJQUAL777jv27dtHr169KtyPgoICNBoN1tbWpn02NjZotVr27dtX4X4dPHiQzp07o9P9Oj9icHAwycnJ3Lx5s8LxCCGEEEKIJ5esvvcYuWWwwPKXpJTSGOnq70YDDwcoLqAYCwyUTIKu02oeqN4Nh9M5d/US1IFbBY7MO7aQw9O7YfGA9Qghfj+lFHnFeVXStt5Sj0bz+37flVLs3LmT7du306tXLzZv3sz+/ftp3749UDKvkY+PD5s3b6Z///6kp6fTr18/mjRpAoC/v7+prjsJCXd3d5ydnQG4ffs2H330EevXr6dbt24ArFmzBi8vr1KxPPfcc0yePNm0PWLECIYMGcKECRMACAgIYMmSJXTp0oUVK1bg7e3NkiVLeOONN5g1axatWrUiKCiIIUOGmOJKSUnByckJT0/PUu3pdDr8/f1NCZzfKy4ujkGDBpGbm4unpyfx8fFUr37vFU/Pnj3L0qVLiYmJKbPODh06sG7dOgYOHEh+fj7FxcWEhoaW+0jb1KlTycrKokGDBlhYWGAwGJg7dy5DhgypcH/atm2LnZ0dUVFRvPvuuyilmDp1KgaDgUuXLlW4X5cvX8bPz8+sXI0aNUzHqlWrVuGYhBBCCCHEk0mSUo8JpRTFymh6Q4waxZLwZzmRnccs13BynQaaylo/wEipoqIsqvEVHb2SAXC2c2HbuI6SkBKikuUV59FmfZsqafvw4MPYWtk+0DlxcXHY29tTVFSE0Whk8ODBvPjii8TFxdGmza/9cHV1pX79+vzwww8AjBs3jtdee42vv/6a7t27069fP5o2bXrfdn766SeKiopo3bq1aZ+TkxP169cvVbZVq1Zm29999x0nT55k3bp1pn1KKYxGI6mpqTRs2JDRo0czdOhQ9uzZw6FDh9i4cSPvvvsuW7ZsoUePio0WvXskz/2sW7eOUaNGmba//PJLOnXqBEBQUBAnTpzg+vXrvP/++wwYMIDDhw/j7u5uVseFCxcICQmhf//+ZnND2dvbm/7+17/+lZUrV5KUlMT48eOZMWMGwcHBXLp0iSlTphAZGckHH3xAQkKC2einVatWMWTIEP7973+zbt061q9fT6NGjThx4gQTJkzAy8uLiIiICl0PNzc3Nm7cyGuvvcaSJUvQarW8/PLLtGjRAu09Pp/u16/y3K8PQgghhBDiz0OSUo8Jo1Fh0Py6+pFBq9BqtKy7dIOjNr6m/R46K2wqmFA6cO46KSnv0sb1C3At2edsXwN3R5uHGrsQ4s8nKCiIFStWoNPp8PLywtLSki1btpR73ogRIwgODmbr1q18/fXXzJs3j9jYWMaOHfuHY7KzszPbzs7OZtSoUYwbN65U2Vq1apn+7uDgQGhoKKGhocyZM4fg4GDmzJlDjx49CAgIIDMzk4sXL5YanVVYWMi5c+cIDg4uN7a+ffuaJeu8vb3N4q5bty5169albdu2BAQE8MEHHzBt2jRTmYsXLxIUFET79u1LTfR99+p3jo6OAMybN48OHTowZcoUAJo2bYqdnR2dOnVizpw5tGrVyuy8OyOQpkyZwtSpUxk0aBAATZo04b///S/z5s2rcFIKoGfPnpw7d47r169jaWmJs7MzHh4eZiPjyuuXh4eH2Yp9gGnbw8OD2rVr37MPQgghhBDiz0OSUo8JQ5ERgzKato1aI9qsS+RmZwMw9OIXhDTtSpP67dFW8DGcaZ+dok/NVHxqwE+ZtQis2Yg6/sMeRfhCiHLoLfUcHny4ytp+UHcSKXdr2LAhxcXFHD582PT43o0bN0hOTiYwMNBUzsfHh8jISCIjI5k2bRrvv/8+Y8eONY04unt+J39/f6ysrDh69KgpkZSZmUlKSgqdO3cuM8YWLVqQlJRUKs6yaDQaGjRowIEDBwB46aWXiIqKIjY2ltjYWLOyK1euJDc3l6FDh5Zbr4ODAw4ODhWKwWg0UlBQYNq+cOECQUFBtGzZkjVr1pQabXSv/uXm5mJpaf4RbmFhAZSMFtPr9fc977f1W1hYmFbNe1B3HkPctWsXV69epW/fvhXuV7t27XjzzTcpKirCysoKgPj4eOrXr296dO9B3lshhBBCCPHkkaTUYyJr/0FaH9vBmV/mgDVojWiXtSQ/cC5U70iT7B95zqEb6KwqXOfVrALsrXIA8PB6hfatwn/3vDJCiD9Go9E88CN0j5uAgADCwsIYOXIkq1atwsHBgalTp+Lt7U1YWBgAEyZMoFevXtSrV4+bN2+ye/duGjZsCICvry8ajYa4uDh69+6NXq/HwcGBiIgIpkyZgouLC+7u7kRHR6PVasv99yoqKoq2bdsyZswYRowYgZ2dHUlJScTHx7Ns2TJOnDhBdHQ04eHhBAYGotPp2Lt3Lx9++CFRUVFAyYiqBQsW8Prrr2NjY0N4eDhWVlZ88cUXTJ8+nTlz5tC4cWOzdpOTk0vF0qhRI1Ni5Y6cnBzmzp1L37598fT05Pr16yxfvpwLFy7Qv39/oCRx07VrV3x9fYmJieHatWum8z08PO7b99DQUEaOHMmKFStMj+9NmDCB1q1b33M+rrvPmzt3LrVq1aJRo0YkJiayaNEiXn31VVOZjIwM0tPTuXjxoll/PTw8TDGtWbOGhg0b4ubmxsGDBxk/fjwTJ040PXZZkX4NHjyYWbNmMXz4cKKiovj+++957733WLx48X3jh5IRcmfPnjVtp6amcuLECVxcXMxGyAkhhBBCiCfAI14F8LH2OC1pvG7kerV05H9UzIA+KmZAH/XGhFGqMNpRDfj0f1WNXYlq48dTlSrIqXB9ySkL1afbmqnt8XXVjp3+6saNfY8weiHEb5W1vPzjLiIiQoWFhd3zWEZGhgoPD1dOTk5Kr9er4OBglZKSYjo+ZswYVadOHWVtba3c3NxUeHi4un79uun47NmzlYeHh9JoNCoiIkIppVRWVpYaPHiwsrW1VR4eHmrRokWqdevWaurUqabzfH191eLFi0vFc+TIEdWjRw9lb2+v7OzsVNOmTdXcuXOVUkpdu3ZNjRs3TjVu3FjZ29srBwcH1aRJExUTE6MMBoNZPZs3b1adOnVSdnZ2ClCA2rBhg1mZ1NRU07Hfvs6fP18qtry8PPXCCy8oLy8vpdPplKenp+rbt686cuSIqcyaNWvuW2d5lixZogIDA5Ver1eenp5qyJAh6ueffy7znKysLDV+/HhVq1YtZWNjo/z9/dWbb76pCgoKyo0pOjraVCYqKkrVqFFDWVlZqYCAABUbG6uMRuMD9+u7775THTt2VNbW1srb21v9/e9/L7ffu3fvvme9d36efq+yfmcfp/uFx4FcDyGEEEKUp6L3Cxql1K8TGT1lsrKycHJyIjMz0zRPR2UrzM/j/5bMpvBsVwzkU5D5PgoNW7rmsOfKMf7S4WOOWHryv41q87y7c7n1XbiVxxubvuPlWn9Db1kySkqrtaF9uz1YW7s94t4IIe7Iz88nNTUVPz8/bGxkHrcHkZOTg7e3N7GxsQwfPrzS28/IyKBbt244Ojry5ZdfYmv7ZI9wExVT1u/s43C/8DiR6yGEEEKI8lT0fqHiy7iJhy7n1k1W/m0o5FzDqLFA/TKnlEFr4KbtNTRAvqbkcRAbi4q9VV99f5n9Z69jbZELwLqzb9Cxw35JSAkhHluJiYls2LCBc+fOcfz4cdMKa3ceCaxsLi4u7Nixg27dunHw4MEqiUEIIYQQQoingcwpVYUyLpzHUFiEBkCjBUqSUkYtoDT0a/YPftQ6A1R4xb3MvHzsrXLQ/rKSX8zgl7Gykm8xhRCPt5iYGJKTk9HpdLRs2ZKEhATTJNpVwdXVlRkzZlRZ+0IIIYQQQjwNJClVhYwGI9V0NTAU5FOQtQ5lLHnczqhRKI2WA87NTWV9bHTl1peZeYJG2r/yXlAeAFqtDhd7SUgJIR5vzZs359ixY1UdhhBCCCGEEKKSSVKqChmNBrRaS3JvF6IMN0z7M+2LAC1ORbeZr0uldouX8NVbl1nXovgUMq6sJ8grz7TP1bXrI4pcCCGEEEIIIYQQ4o+ROaWqkNFgQKux4LLBHgCtVR1O2Dfi69ZXQaPBqfg2f3HU8Ixj2ZPsKqX45+6z5BVkArArvSMazx00afzPR94HIYQQQgghhBBCiN9DRkpVIaPRgEZrWbKYNaDR2mNXkI3BQqHQYmPnAk2eK7ee2wXFFBsVesuSUVJ/admYZxv6PcrQhRBCCCGEEEIIIf4QSUpVIWUwgMYCrfolK4WGMV7p7AdAi41dNbC6/1LyxQYjB84cIvfq2yzsfAt7q5I5qWo4V93kwEIIIYQQQgghhBAVIY/vVSGjwcD3ble5Zn8BAI3SsNAtveSgRoONtuy359/f/synB/6FlUrDxeYWOosiABzsGz7SuIUQQgghhBBCCCH+KElKVaGsXbs46XEehREADRquaQoAMFh6YqPVlHn+T9eycdCVjI5KuhVEpt1qOrRPoFq1to82cCGEEEIIIYQQQog/SB7fq0K5Sadp7ZiDbbYzUJKUuuE+hpvu1Sm2qlXmSKmCgis4qTg8HEtGVv3l2Y74+HSrjLCFEEIIIYQQQggh/jAZKVVFsvacp7ZjKGEHwT2zZN4ojdKQ5dQAawsvPLSKF2tUu+e5SimSfniTQLtV+DmVJKV0OplHSgjxcAwbNgyNRoNGo0Gn01G3bl1mz55NcXHxH6p3z549aDQabt269XACrYDU1FQGDx6Ml5cXNjY21KxZk7CwMM6cOWNWLi4uji5duuDg4ICtrS3PPvssa9euNSuTlpaGRqPhxIkTFW5/5syZNGjQADs7O6pVq0b37t05fPiwWZ3Dhw/Hz88PvV5PnTp1iI6OprCwsNy6161bR7NmzbC1tcXT05NXX32VGzdulHnO7du3mTBhAr6+vuj1etq3b8/Ro0fNymRnZzNmzBhq1qyJXq8nMDCQlStXmpUZNWoUderUQa/X4+bmds9rmp6eTp8+fbC1tcXd3Z0pU6bc92do//79WFpa8swzz5Tb788++4yePXvi6ur6wO+HEEIIIYR4vEhSqorcPHWBa8Zb7G8/j4xq9QBQllpuOjoTkxLDCdsT/OUeSamrWfm0eXcnp9JLbv7PZNSlQPcC1auXv0qfEEJUVEhICJcuXeLHH39k8uTJzJw5k4ULF1Z1WCYVSdoUFRXRo0cPMjMz+eyzz0hOTuaTTz6hSZMmZomxpUuXEhYWRocOHTh8+DAnT55k0KBBREZG8vrrr/+hOOvVq8eyZcs4deoU+/bto3bt2vTs2ZNr164BcObMGYxGI6tWreL06dMsXryYlStXMn369DLr3b9/P0OHDmX48OGcPn2ajRs3cuTIEUaOHFnmeSNGjCA+Pp7/+7//49SpU/Ts2ZPu3btz4cIFU5lJkybx1Vdf8a9//YsffviBCRMmMGbMGLZs2WIq07JlS9asWcMPP/zA9u3bUUrRs2dPDAYDAAaDgT59+lBYWMiBAwf46KOPWLt2LTNmzCgV061btxg6dCjdulVstG9OTg4dO3Zk/vz5FSovhBBCCCEeY+oplpmZqQCVmZlZ6W2fXfSNih+xSi0btVMtGjJBxQzoo2ZMmqVq7EpU2/5fpFLXz97zvK0nLyrfqDj1763N1Y6d/ip4wWp17urtSo5eCFGevLw8lZSUpPLy8qo6lAcWERGhwsLCzPb16NFDtW3bVmVkZKjw8HDl7Oys9Hq9CgkJUSkpKaZyaWlp6vnnn1fOzs7K1tZWBQYGqq1bt6rU1FQFmL0iIiKUUkplZWWpwYMHK1tbW+Xh4aEWLVqkunTposaPH2+q19fXV82ePVuFh4crBwcH07kJCQmqY8eOysbGRtWsWVONHTtWZWdnK6WUSkxMVIBKS0u7b1/T09OVlZWVmjRpUqljS5YsUYA6dOiQUkqZ+pCYmPjgF/UXdz53duzYcd8yCxYsUH5+fmXWs3DhQuXv718qXm9v7/uek5ubqywsLFRcXJzZ/hYtWqg333zTtN2oUSM1e/bsMsv81nfffacAdfZsyWfXtm3blFarVZcvXzaVWbFihXJ0dFQFBQVm5w4cOFC99dZbKjo6WjVr1uy+bfzWw3g/7lbW72xV3i88juR6CCGEEKI8Fb1fkJFSVSSnOJ9blExSbll4FYDzHiUTm9v0ng+udUqdYzDkkp/1JZ29D+CoywVgw6ju+LvZV1LUQoinlV6vp7CwkGHDhvHtt9+yZcsWDh48iFKK3r17U1RUsvrn6NGjKSgo4JtvvuHUqVPMnz8fe3t7fHx8+PTTTwFITk7m0qVLvPfee0DJyJz9+/ezZcsW4uPjSUhI4Pjx46ViiImJoVmzZiQmJvL2229z7tw5QkJC6NevHydPnuSTTz5h3759jBkzBgA3Nze0Wi2bNm0yjeD5rU2bNlFUVHTPEVGjRo3C3t6eDRs2PJRrWFhYyOrVq3FycqJZs2b3LZeZmYmLi0uZdbVr147z58+zbds2lFJcuXKFTZs20bt37/ueU1xcjMFgwMbGxmy/Xq9n3759pu327duzZcsWLly4gFKK3bt3k5KSQs+ePe9Zb05ODmvWrMHPzw8fHx8ADh48SJMmTahRo4apXHBwMFlZWZw+fdq0b82aNfz0009ER0eX2V8hhBBCCPHnJBOdV4HcrEJSbl3kujKgjNkoTcl/lgotrQCwsSidK0y9nsOx7xdRzbiWiEa/7rfXl/0fFyHE40EphcrLq5K2NXo9Gk3Zq3nej1KKnTt3sn37dnr16sXmzZvZv38/7du3B0rmNfLx8WHz5s3079+f9PR0+vXrR5MmTQDw9/c31XUn0eLu7o6zszNQMsfRRx99xPr1602Pb61ZswYvL69SsTz33HNMnjzZtD1ixAiGDBnChAkTAAgICGDJkiV06dKFFStW4O3tzZIlS3jjjTeYNWsWrVq1IigoiCFDhpjiSklJwcnJCU9Pz1Lt6XQ6/P39SUlJ+V3X7o64uDgGDRpEbm4unp6exMfHU736vecBPHv2LEuXLiUmJqbMOjt06MC6desYOHAg+fn5FBcXExoayvLly+97joODA+3ateOdd96hYcOG1KhRgw0bNnDw4EHq1q1rKrd06VL+9re/UbNmTSwtLdFqtbz//vt07tzZrL5//vOfvPHGG+Tk5FC/fn3i4+PR6XQAXL582SwhBZi2L1++DMCPP/7I1KlTSUhIwNJSbkeEEEIIIZ5GchdYBdKTzpNbmEXO7X3AHtP+AouSm3lrben/PE7+9wmaOfxAR2+4kO2Jra0vres9h5WVUyVFLYT4I1ReHsktWlZJ2/WPH0Nja/tA58TFxWFvb09RURFGo5HBgwfz4osvEhcXR5s2bUzlXF1dqV+/Pj/88AMA48aN47XXXuPrr7+me/fu9OvXj6ZNm963nZ9++omioiJat25t2ufk5ET9+vVLlW3VqpXZ9nfffcfJkydZt26daZ9SCqPRSGpqKg0bNmT06NEMHTqUPXv2cOjQITZu3Mi7777Lli1b6NGjR4WuxZ1ES1nWrVvHqFGjTNtffvklnTp1AiAoKIgTJ05w/fp13n//fQYMGMDhw4dxd3c3q+PChQuEhITQv39/s7mh7O1/HQ3717/+lZUrV5KUlMT48eOZMWMGwcHBXLp0iSlTphAZGckHH3xAQkICvXr1Mp23atUqhgwZwv/93//x6quv4u3tjYWFBS1atODll1/m2LFjprJLly7l0KFDbNmyBV9fX7755htGjx6Nl5cX3bt3N5UbMmQIPXr04NKlS8TExDBgwAD2799faiTWvRgMBgYPHsysWbOoV6/eA19TIYQQQgjx5yBJqUpmNBrYsfptrB3qAb+uQlRgY0VyzYYA6LWlR0r9fDOP9i4lj/vdtvgL3VuNxstZXykxCyGePkFBQaxYsQKdToeXlxeWlpZmE13fz4gRIwgODmbr1q18/fXXzJs3j9jYWMaOHfuHY7KzszPbzs7OZtSoUYwbN65U2Vq1apn+7uDgQGhoKKGhocyZM4fg4GDmzJlDjx49CAgIIDMzk4sXL5YanVVYWMi5c+cIDg4uN7a+ffuaJeu8vb3N4q5bty5169albdu2BAQE8MEHHzBt2jRTmYsXLxIUFET79u1ZvXq1Wd13ry7n6OgIwLx58+jQoQNTpkwBoGnTptjZ2dGpUyfmzJlDq1atzM67M0qpTp067N27l5ycHLKysvD09GTgwIGmkWN5eXlMnz6dzz//nD59+pjqPnHiBDExMWZJKScnJ5ycnAgICKBt27ZUq1aNzz//nJdffhkPDw+OHDli1o8rV64A4OHhwe3bt/n2229JTEw0PW5pNBpRSmFpacnXX39d5jUVQgghhBB/DpKUqmRF+QUU5GRh6VCyrbFwx9nozNuDu2DQeWKhgeo687flytWvGBKwnNqOaQC89GwgNSQhJcQTRaPXU//4sfILPqK2H9SdRMrdGjZsSHFxMYcPHzY9vnfjxg2Sk5MJDAw0lfPx8SEyMpLIyEimTZvG+++/z9ixY00jju6e38nf3x8rKyuOHj1qSiRlZmaSkpJS6nGx32rRogVJSUml4iyLRqOhQYMGHDhwAICXXnqJqKgoYmNjiY2NNSu7cuVKcnNzGTp0aLn1Ojg44ODgUKEYjEYjBQUFpu0LFy4QFBRkWtFO+5svJu7Vv9zc3FKPvFlYWAAlo8X0en2Z18XOzg47Oztu3rzJ9u3bWbBgAVCyYmFRUVGpGCwsLDAajfetTymFUsrUr3bt2jF37lyuXr1qGhEWHx+Po6MjgYGBWFlZcerUKbM6/vnPf7Jr1y42bdqEn58fdnZ2Fb6mQgghhBDiySRJqUpmKC6ZDNiA+mWPFiNGqhdlMeHiKhq8sBA3XcncUsUGIy+/f4gXvGfRuPpVUx22et/KDlsI8QdpNJoHfoTucRMQEEBYWBgjR45k1apVODg4MHXqVLy9vQkLCwNgwoQJ9OrVi3r16nHz5k12795Nw4Ylo0B9fX3RaDTExcXRu3dv9Ho9Dg4OREREMGXKFFxcXHB3dyc6OhqtVlvuPFhRUVG0bduWMWPGMGLECOzs7EhKSiI+Pp5ly5Zx4sQJoqOjCQ8PJzAwEJ1Ox969e/nwww+JiooCSkZULViwgNdffx0bGxvCw8OxsrLiiy++YPr06cyZM4fGjRubtZucnFwqlkaNGmFlZWW2Lycnh7lz59K3b188PT25fv06y5cv58KFC/Tv3x8oSUh17doVX19fYmJiuHbtmul8Dw+P+/Y9NDSUkSNHsmLFCtPjexMmTKB169b3nI/rju3bt6OUon79+pw9e5YpU6bQoEEDXnnlFaBkJFaXLl2YMmUKer0eX19f9u7dy//7f/+PRYsWASWPXH7yySf07NkTNzc3fv75Z/7+97+j1+tNE6337NmTwMBAwsPDWbBgAZcvX+att95i9OjRWFtbA5S6ru7u7tjY2JTa/1sZGRmkp6dz8eJF4Nf3w8PDo8xrJoQQQgghHj+SlKpkpqSUuvONsxalMVC9MItXMvaA869zh5y/mcfRtJsM9bsNQMLlAYwLCcXBoRFCCFEV1qxZw/jx43n++ecpLCykc+fObNu2zZSQMRgMjB49mp9//hlHR0dCQkJYvHgxUPL41axZs5g6dSqvvPIKQ4cOZe3atSxatIjIyEief/55HB0deeONNzh//ny5cxM1bdqUvXv38uabb9KpUyeUUtSpU4eBAwcCULNmTWrXrs2sWbNIS0tDo9GYtidOnGiqZ+LEifj7+xMbG8t7771HTk7Jo9IbNmxg0KBBpdq9177z589Ts2ZNs30WFhacOXOGjz76iOvXr+Pq6sqzzz5LQkICjRqV/DseHx/P2bNnOXv2bKnzlVLcz7Bhw7h9+zbLli1j8uTJODs789xzzzF//vwyr1lmZibTpk3j559/xsXFhX79+jF37lyzhNrHH3/MtGnTGDJkCBkZGfj6+jJ37lwiIyMBsLGxISEhgX/84x/cvHmTGjVq0LlzZw4cOGAaFWVhYUFcXByvvfYa7dq1w87OjoiICGbPnl1mfBWxZcsWUxINfn0/oqOjmTlz5h+uXwghhBBCVB6NKuuu908uKysLJycnMjMzTfN0PGoZ535kzfSJWNR4BsOVE2gsa2KvtHzRrz5bbdKhz6+PjxxN3sHKnV8zuEHJMurt2x9Bb+NaKXEKIf6Y/Px8UlNT8fPzq9DEz+JXOTk5eHt7Exsby/Dhwyu9/YyMDLp164ajoyNffvkltk/4CDdRMWX9zlbF/cLjTK6HEEIIIcpT0fuF0jNqi0cq+7uTXHLJJ8F9LwAatBg1RqxrtjZLSOXmXSPrwv+YElIajQ4ba+eqCFkIIR6pxMRENmzYwLlz5zh+/DhDhgwBMD0SWNlcXFzYsWMH3bp14+DBg1USgxBCCCGEEE8DeXyvEimlWH/yIy645WHU3JnoV4uWImytXUzlXt/4HUdSDhLdzkCBQcfPuS0Ibd0PjcaiagIXQohHLCYmhuTkZHQ6HS1btiQhIYHq1atXWTyurq7MmDGjytoXQgghhBDiaSBJqUqUXZTN5azr6Ox1+J4vLtmp0eJhtEJvaW0q99X3l/GxywXgep4LRY6z8PSs+OpSQgjxJGnevDnHjlXNyoRCCCGEEEKIqiNJqUpUZCzCzuYZ2h0/h7bYjXSnPEALFhqstSWrTN3MTOYF/3XUsC1Zgam+pxdtnpWElBBCCCGEEEIIIf5cJClVSQzFxSR+8TlWyo6bHqMpKE6BvD2Altu19HhbW7H6m3PYZM+lq89+03l2tt5VFrMQQgghhBBCCCHEoyITnVeS9O+/49Tn/8FO44DB0h4oWfTQ0eI6rQLz6aW3491tZ8jKKRkh9d311gTUnU7dulOrMGohhBBCCCGEEEKIR0OSUpWkMC8Xd5taWP3ymB6UTHReZHWD+kEjyc4pAsDROg+ALs3CqVVrODbWHlURrhBCCCGEEEIIIcQjJUmpSmIsLsZSa823xe4lO5QRgB8sG1Dk5kf29X/ycv1NVNffAKCuhySjhBBCCCGEEEII8eclc0pVEqPRiKXGEuebP5F/aztQsvqeq7MTczctpFON9XT3/bW8TlejagIVQgghhBBCCCGEqASSlKokhuJiLDSWuOf8BBSa9l+1cccm9zgAZ2/Vxta+LT2btUOvlwnOhRBCCCGEEEII8eclj+9VEmU0oNVYoP1lLikb6yB29mjNeVc/nKyzAKjv24sBz82mRo3nqzJUIcRTbtiwYWg0GjQaDTqdjrp16zJ79myKi4v/UL179uxBo9Fw69athxNoBaSmpjJ48GC8vLywsbGhZs2ahIWFcebMGbNycXFxdOnSBQcHB2xtbXn22WdZu3atWZm0tDQ0Gg0nTpyocPszZ86kQYMG2NnZUa1aNbp3787hw4fN6hw+fDh+fn7o9Xrq1KlDdHQ0hYWFZdRaYt26dTRr1gxbW1s8PT159dVXuXHjRpnnfPPNN4SGhuLl5YVGo2Hz5s2lynz22Wf07NkTV1fXcvurlKJXr173rWvt2rU0bdoUGxsb3N3dGT16tNnx7du307ZtWxwcHHBzc6Nfv36kpaVVSj+FEEIIIUTVk6RUJTh37hxfHjxKoqdCo0r+U6fFjlw9jGv0P7T3OgpAXQ8vrC0tqjJUIYQAICQkhEuXLvHjjz8yefJkZs6cycKFC6s6LJOKJG2Kioro0aMHmZmZfPbZZyQnJ/PJJ5/QpEkTs8TY0qVLCQsLo0OHDhw+fJiTJ08yaNAgIiMjef311/9QnPXq1WPZsmWcOnWKffv2Ubt2bXr27Mm1ayUrrZ45cwaj0ciqVas4ffo0ixcvZuXKlUyfPr3Mevfv38/QoUMZPnw4p0+fZuPGjRw5coSRI0eWeV5OTg7NmjVj+fLlZZbp2LEj8+fPL7d///jHP9BoNPc8tmjRIt58802mTp3K6dOn2bFjB8HBwabjqamphIWF8dxzz3HixAm2b9/O9evXefHFFyuln0IIIYQQ4jGgnmKZmZkKUJmZmY+0nc3rN6ro6Gg1ZE4vNX9QbxUzoI9a+dd/qo4botWOnf5qx05/tWtPc3U7O+WRxiGEqDx5eXkqKSlJ5eXlVXUoDywiIkKFhYWZ7evRo4dq27atysjIUOHh4crZ2Vnp9XoVEhKiUlJ+/bcrLS1NPf/888rZ2VnZ2tqqwMBAtXXrVpWamqoAs1dERIRSSqmsrCw1ePBgZWtrqzw8PNSiRYtUly5d1Pjx4031+vr6qtmzZ6vw8HDl4OBgOjchIUF17NhR2djYqJo1a6qxY8eq7OxspZRSiYmJClBpaWn37Wt6erqysrJSkyZNKnVsyZIlClCHDh1SSilTHxITEx/8ov7izufOjh077ltmwYIFys/Pr8x6Fi5cqPz9/UvF6+3tXeFYAPX555/f93h5/U1MTFTe3t7q0qVLperKyMhQer2+zH5u3LhRWVpaKoPBYNq3ZcsWpdFoVGFhoVKqcvp5R1m/s5V1v/CkkOshhBBCiPJU9H5BRko9YsZCA9k/XEdrMDDpkzSsi0q+UdYqcLazp9howaRv3uPZNgextwuo4miFEI+KUoqiAkOVvJRSfzh+vV5PYWEhw4YN49tvv2XLli0cPHgQpRS9e/emqKgIgNGjR1NQUMA333zDqVOnmD9/Pvb29vj4+PDpp58CkJyczKVLl3jvvfcAmDRpEvv372fLli3Ex8eTkJDA8ePHS8UQExNDs2bNSExM5O233+bcuXOEhITQr18/Tp48ySeffMK+ffsYM2YMAG5ubmi1WjZt2oTBYLhnvzZt2kRRUdE9R0SNGjUKe3t7NmzY8IevH5SM7lq9ejVOTk40a9bsvuUyMzNxcXEps6527dpx/vx5tm3bhlKKK1eusGnTJnr37v1QYi1Pbm4ugwcPZvny5XjcY7XY+Ph4jEYjFy5coGHDhtSsWZMBAwZw/vx5U5mWLVui1WpZs2YNBoOBzMxM/u///o/u3btjZWX1WPRTCCGEEEI8WjLR+SNmyCnEqBS2BcVc9gzGoP0JMGBhrYi0W4Ol1omt45/D3sa6qkMVQjxCxYVGVo/fWyVt/+29LlhZ/75Hg5VS7Ny5k+3bt9OrVy82b97M/v37ad++PVAy34+Pjw+bN2+mf//+pKen069fP5o0aQKAv7+/qa47iRZ3d3ecnZ0BuH37Nh999BHr16+nW7duAKxZswYvL69SsTz33HNMnjzZtD1ixAiGDBnChAkTAAgICGDJkiV06dKFFStW4O3tzZIlS3jjjTeYNWsWrVq1IigoiCFDhpjiSklJwcnJCU9Pz1Lt6XQ6/P39SUlJ+V3X7o64uDgGDRpEbm4unp6exMfHU7169XuWPXv2LEuXLiUmJqbMOjt06MC6desYOHAg+fn5FBcXExoaWmmPq02cOJH27dsTFhZ2z+M//fQTRqORd999l/feew8nJyfeeustevTowcmTJ9HpdPj5+fH1118zYMAARo0ahcFgoF27dmzbtu2x6acQQgghhHi0ZKTUI3blx0yMKHzy7Uj1C0VpSkYs2NjmYkM+9rY1qFnNtoqjFEIIc3Fxcdjb22NjY0OvXr0YOHAgw4YNw9LSkjZt2pjKubq6Ur9+fX744QcAxo0bx5w5c+jQoQPR0dGcPHmyzHZ++uknioqKaN26tWmfk5MT9evXL1W2VatWZtvfffcda9euxd7e3vQKDg7GaDSSmpoKlIzcunz5MuvWraNdu3Zs3LiRRo0aER8fX+FrodPpyi2zbt06szgSEhJMx4KCgjhx4gQHDhwgJCSEAQMGcPXq1VJ1XLhwgZCQEPr37282Z9Ld9UZGRgKQlJTE+PHjmTFjBseOHeOrr74iLS3NdDwhIcHsvHXr1lW4v+XZsmULu3bt4h//+Md9yxiNRoqKiliyZAnBwcG0bduWDRs28OOPP7J7924ALl++zMiRI4mIiODo0aPs3bsXnU7HSy+9ZBrdV5X9FEIIIYQQj56MlHrEcjLyKFZGjAbrX26yjQDY1t1JkfXz1AsYUrUBCiEqhaVOy9/e61JlbT+ooKAgVqxYgU6nw8vLC0tLS7Zs2VLueSNGjCA4OJitW7fy9ddfM2/ePGJjYxk7duzvCd2MnZ2d2XZ2djajRo1i3LhxpcrWqlXL9HcHBwdCQ0MJDQ1lzpw5BAcHM2fOHHr06EFAQACZmZlcvHix1OiswsJCzp07ZzY59/307dvXLFnn7e1tFnfdunWpW7cubdu2JSAggA8++IBp06aZyly8eJGgoCDat2/P6tWrzeq+e/U7R0dHAObNm0eHDh2YMmUKAE2bNsXOzo5OnToxZ84cWrVqZXZejRo1yu1DRe3atYtz586ZRrvd0a9fPzp16sSePXtMI88CAwNNx93c3KhevTrp6ekALF++HCcnJxYsWGAq869//QsfHx8OHz5M27Ztq7SfQgghhBDi0ZOk1CNmKDCSXliM042DKPXrozs/ONvxUt05VKvmUIXRCSEqi0aj+d2P0FWFO4mUuzVs2JDi4mIOHz5senzvxo0bJCcnmyUffHx8iIyMJDIykmnTpvH+++8zduxY04iju+d38vf3x8rKiqNHj5oSSZmZmaSkpNC5c+cyY2zRogVJSUml4iyLRqOhQYMGHDhwAICXXnqJqKgoYmNjiY2NNSu7cuVKcnNzGTp0aLn1Ojg44OBQsX/PjUYjBQUFpu0LFy4QFBREy5YtWbNmDVqteRLxXv3Lzc3F0tL8I9zCouTnSymFXq9/oOvyIKZOncqIESPM9jVp0oTFixcTGhoKlDx2ByXzh9WsWROAjIwMrl+/jq+vr6kPv+3rnT4YjUZTmarqpxBCCCGEePQkKfWIGQoM5OfdwlH9unz5bUc9fZvXJqCGJKSEEE+OgIAAwsLCGDlyJKtWrcLBwYGpU6fi7e1tmltowoQJ9OrVi3r16nHz5k12795Nw4YNAfD19UWj0RAXF0fv3r3R6/U4ODgQERHBlClTcHFxwd3dnejoaLRaLRqNpsx4oqKiaNu2LWPGjGHEiBHY2dmRlJREfHw8y5Yt48SJE0RHRxMeHk5gYCA6nY69e/fy4YcfEhUVBZSMqFqwYAGvv/46NjY2hIeHY2VlxRdffMH06dOZM2cOjRs3Nms3OTm5VCyNGjUyTc59R05ODnPnzqVv3754enpy/fp1li9fzoULF+jfvz9QkpDq2rUrvr6+xMTEcO3aNdP595pA/I7Q0FBGjhzJihUrCA4O5tKlS0yYMIHWrVvfcz6uO7Kzszl79qxpOzU1lRMnTuDi4mJKCmZkZJCens7FixfN+uvh4WH2+q1atWrh5+cHQL169QgLC2P8+PGsXr0aR0dHpk2bRoMGDQgKCgKgT58+LF68mNmzZ/Pyyy9z+/Ztpk+fjq+vL82bN3/k/RRCCCGEEI+BR7oG4GPuUS9pbDAUq88nLlAjJ85SMQP6qEVDxqp/9/6rmrH9RXXu3D8eSZtCiMdDWcvLP+4iIiJUWFjYPY9lZGSo8PBw5eTkpPR6vQoODlYpKSmm42PGjFF16tRR1tbWys3NTYWHh6vr16+bjs+ePVt5eHgojUajIiIilFJKZWVlqcGDBytbW1vl4eGhFi1apFq3bq2mTp1qOs/X11ctXry4VDxHjhxRPXr0UPb29srOzk41bdpUzZ07Vyml1LVr19S4ceNU48aNlb29vXJwcFBNmjRRMTExymAwmNWzefNm1alTJ2VnZ6cABagNGzaYlUlNTTUd++3r/PnzpWLLy8tTL7zwgvLy8lI6nU55enqqvn37qiNHjpjKrFmz5r51lmfJkiUqMDBQ6fV65enpqYYMGaJ+/vnnMs/ZvXv3Pdu6816UFVN0dPR96wXU559/brYvMzNTvfrqq8rZ2Vm5uLioF154QaWnp5uV2bBhg2revLmys7NTbm5uqm/fvuqHH36olH7+Vlm/s4/6fuFJI9dDCCGEEOWp6P2CRqmHsFb4EyorKwsnJycyMzNN83Q8TNd+TOaz2A/Y7uJKh3MJWOgaUTPjPEXzn+Ol+i9hZeX80NsUQjwe8vPzSU1Nxc/PDxsbm6oO54mSk5ODt7c3sbGxDB8+vNLbz8jIoFu3bjg6OvLll19iayuLUTwNyvqdfdT3C08auR5CCCGEKE9F7xfk8b1H5L1XXkVTABqlofPN/2IA0FhjpJDQei9jZWVXXhVCCPFUSExM5MyZM7Ru3ZrMzExmz54NYHoksLK5uLiwY8cOli9fzsGDB+nWrVuVxCGEEEIIIcSfnSSlHhFNPhQZzZf81mgdyLHNwsbSuoqiEkKIx1NMTAzJycnodDpatmxJQkIC1atXr7J4XF1dmTFjRpW1L4QQQgghxNNAklKPiNFRYZXrBhqFwQI0Fgqn6qd5ZmQ0llq57EIIcUfz5s05duxYVYchhBBCCCGEqGTa8os8mHnz5vHss8/i4OCAu7s7f/nLX0qtVNS1a1c0Go3ZKzIy0qxMeno6ffr0wdbWFnd3d6ZMmUJxcbFZmT179tCiRQusra2pW7cua9eufdjd+d0mrFrDuP9bw7j/t5aJa9Yy4X8/Ytjf1/JMnQ5VHZoQQgghhBBCCCFElXvoSam9e/cyevRoDh06RHx8PEVFRfTs2ZOcnByzciNHjuTSpUum14IFC0zHDAYDffr0obCwkAMHDvDRRx+xdu1as0cpUlNT6dOnD0FBQZw4cYIJEyYwYsQItm/f/rC7JIQQQgghhBBCCCEesof+HNlXX31ltr127Vrc3d05duwYnTt3Nu23tbXFw8PjnnV8/fXXJCUlsWPHDmrUqMEzzzzDO++8Q1RUFDNnzkSn07Fy5Ur8/PyIjY0FoGHDhuzbt4/FixcTHBz8sLslhBBCCCGEEEIIIR6ihz5S6rcyMzOBktWM7rZu3TqqV69O48aNmTZtGrm5uaZjBw8epEmTJtSoUcO0Lzg4mKysLE6fPm0q0717d7M6g4ODOXjw4KPqihBCCCGEEEIIIYR4SB7pjNtGo5EJEybQoUMHGjdubNo/ePBgfH198fLy4uTJk0RFRZGcnMxnn30GwOXLl80SUoBp+/Lly2WWycrKIi8vD71eXyqegoICCgoKTNtZWVkPp6NCCCGEEEIIIYQQ4oE80qTU6NGj+f7779m3b5/Z/r/97W+mvzdp0gRPT0+6devGuXPnqFOnziOLZ968ecyaNeuR1S+EEEIIIYQQQgghKuaRPb43ZswY4uLi2L17NzVr1iyzbJs2bQA4e/YsAB4eHly5csWszJ3tO/NQ3a+Mo6PjPUdJAUybNo3MzEzT6/z58w/eMSGEEEIIIYQQQgjxhz30pJRSijFjxvD555+za9cu/Pz8yj3nxIkTAHh6egLQrl07Tp06xdWrV01l4uPjcXR0JDAw0FRm586dZvXEx8fTrl27+7ZjbW2No6Oj2UsIIYS5YcOGodFo0Gg06HQ66taty+zZsykuLv5D9e7ZsweNRsOtW7ceTqAVkJqayuDBg/Hy8sLGxoaaNWsSFhbGmTNnzMrFxcXRpUsXHBwcsLW15dlnn2Xt2rVmZdLS0tBoNKbPrIqYOXMmDRo0wM7OjmrVqtG9e3cOHz5sVufw4cPx8/NDr9dTp04doqOjKSwsLLfudevW0axZM2xtbfH09OTVV1/lxo0bZZ7zzTffEBoaipeXFxqNhs2bNz9wzABz586lffv22Nra4uzsfM+20tPT6dOnD7a2tri7uzNlyhSzn6G7f87ufjVq1MhUZt68eTz77LM4ODjg7u7OX/7yF5KTk8u9NhWJTwghhBBCVL2HnpQaPXo0//rXv1i/fj0ODg5cvnyZy5cvk5eXB8C5c+d45513OHbsGGlpaWzZsoWhQ4fSuXNnmjZtCkDPnj0JDAwkPDyc7777ju3bt/PWW28xevRorK2tAYiMjOSnn37ijTfe4MyZM/zzn//k3//+NxMnTnzYXRJCiKdOSEgIly5d4scff2Ty5MnMnDmThQsXVnVYJhVJ2hQVFdGjRw8yMzP57LPPSE5O5pNPPqFJkyZmibGlS5cSFhZGhw4dOHz4MCdPnmTQoEFERkby+uuv/6E469Wrx7Jlyzh16hT79u2jdu3a9OzZk2vXrgFw5swZjEYjq1at4vTp0yxevJiVK1cyffr0Muvdv38/Q4cOZfjw4Zw+fZqNGzdy5MgRRo4cWeZ5OTk5NGvWjOXLl//umKHk+vfv35/XXnvtnnUYDAb69OlDYWEhBw4c4KOPPmLt2rXMmDHDVOa9997j0qVLptf58+dxcXGhf//+pjJ79+5l9OjRHDp0iPj4eIqKiujZsyc5OTll9rO8+IQQQgghxGNCPWTAPV9r1qxRSimVnp6uOnfurFxcXJS1tbWqW7eumjJlisrMzDSrJy0tTfXq1Uvp9XpVvXp1NXnyZFVUVGRWZvfu3eqZZ55ROp1O+fv7m9qoqMzMTAWUalsIIf6ovLw8lZSUpPLy8qo6lAcWERGhwsLCzPb16NFDtW3bVmVkZKjw8HDl7Oys9Hq9CgkJUSkpKaZyaWlp6vnnn1fOzs7K1tZWBQYGqq1bt6rU1NRSnwsRERFKKaWysrLU4MGDla2trfLw8FCLFi1SXbp0UePHjzfV6+vrq2bPnq3Cw8OVg4OD6dyEhATVsWNHZWNjo2rWrKnGjh2rsrOzlVJKJSYmKkClpaXdt6/p6enKyspKTZo0qdSxJUuWKEAdOnRIKaVMfUhMTHzwi/qLO587O3bsuG+ZBQsWKD8/vzLrWbhwofL39y8Vr7e3d4VjAdTnn39ebrmyYl6zZo1ycnIqtX/btm1Kq9Wqy5cvm/atWLFCOTo6qoKCgnu28/nnnyuNRlPm+3X16lUFqL1795Ybd1nx3UtZv7Nyv2BOrocQQgghylPR+4VH8vjevV7Dhg0DwMfHh71793Ljxg3y8/P58ccfWbBgQalH6Xx9fdm2bRu5ublcu3aNmJgYLC3N52Xv2rUriYmJFBQUcO7cOVMbQgjxuFFKUZSfXyUvpdQfjl+v11NYWMiwYcP49ttv2bJlCwcPHkQpRe/evSkqKgJKRssWFBTwzTffcOrUKebPn4+9vT0+Pj58+umnACQnJ3Pp0iXee+89ACZNmsT+/fvZsmUL8fHxJCQkcPz48VIxxMTE0KxZMxITE3n77bc5d+4cISEh9OvXj5MnT/LJJ5+wb98+xowZA4CbmxtarZZNmzZhMBju2a9NmzZRVFR0zxFRo0aNwt7eng0bNvzh6wclo3dWr16Nk5MTzZo1u2+5zMxMXFxcyqyrXbt2nD9/nm3btqGU4sqVK2zatInevXs/lFgfNObfOnjwIE2aNDFbJTc4OJisrCxOnz59z3M++OADunfvjq+v733rzczMBCj3+gghhBBCiCfDI119TwghRIniggKWRLxUJW2P+2gTVjY2v+tcpRQ7d+5k+/bt9OrVi82bN7N//37at28PlMxr5OPjw+bNm+nfvz/p6en069ePJk2aAODv72+q604iwd3d3TTPz+3bt/noo49Yv3493bp1A2DNmjV4eXmViuW5555j8uTJpu0RI0YwZMgQJkyYAEBAQABLliyhS5curFixAm9vb5YsWcIbb7zBrFmzaNWqFUFBQQwZMsQUV0pKCk5OTqY5De+m0+nw9/cnJSXld127O+Li4hg0aBC5ubl4enoSHx9P9erV71n27NmzLF26lJiYmDLr7NChA+vWrWPgwIHk5+dTXFxMaGhomY/lPaqY7+Xy5ctmCSnAtH358uVS5S9evMiXX37J+vXr71un0WhkwoQJdOjQgcaNG1c4FiGEEEII8fh6ZKvvCSGEeHLFxcVhb2+PjY0NvXr1YuDAgQwbNgxLS0vTiqkArq6u1K9fnx9++AGAcePGMWfOHDp06EB0dDQnT54ss52ffvqJoqIiWrdubdrn5ORE/fr1S5Vt1aqV2fZ3333H2rVrsbe3N72Cg4MxGo2kpqYCJSO3Ll++zLp162jXrh0bN26kUaNGxMfHV/ha6HS6csusW7fOLI6EhATTsaCgIE6cOMGBAwcICQlhwIABZgt53HHhwgVCQkLo37+/2dxQd9cbGRkJQFJSEuPHj2fGjBkcO3aMr776irS0NNPxhIQEs/PWrVtX4f4+SMwPy0cffYSzszN/+ctf7ltm9OjRfP/993z88cemfZGRkWb9FEIIIYQQTxYZKSWEEJXA0tqacR9tqrK2H1RQUBArVqxAp9Ph5eWFpaUlW7ZsKfe8ESNGEBwczNatW/n666+ZN28esbGxjB079veEbsbOzs5sOzs7m1GjRjFu3LhSZWvVqmX6u4ODA6GhoYSGhjJnzhyCg4OZM2cOPXr0ICAggMzMTC5evFhqdFZhYSHnzp0jODi43Nj69u1rlqzz9vY2i7tu3brUrVuXtm3bEhAQwAcffMC0adNMZS5evEhQUBDt27dn9erVZnXfvdrfnUfd582bR4cOHZgyZQoATZs2xc7Ojk6dOjFnzhxatWpldt5vRy2VpyIxl8XDw4MjR46Y7bty5Yrp2N2UUnz44YeEh4ffNwE4ZswY4uLi+Oabb6hZs6Zp/+zZs//wZPRCCCGEEKLqSFJKCCEqgUaj+d2P0FWFO0mJuzVs2JDi4mIOHz5senzvxo0bJCcnExgYaCrn4+NDZGQkkZGRTJs2jffff5+xY8eaEg53z+/k7++PlZUVR48eNSWSMjMzSUlJoXPnzmXG2KJFC5KSkkrFWRaNRkODBg04cOAAAC+99BJRUVHExsYSGxtrVnblypXk5uYydOjQcut1cHDAwcGhQjEYjUYKCgpM2xcuXCAoKIiWLVuyZs0atFrzQcz36l9ubm6peRYtLCyAkiSPXq9/oOvyoDGXp127dsydO5erV6/i7u4OQHx8PI6OjmY/K1Cywt7Zs2cZPnx4qXqUUowdO5bPP/+cPXv24OfnZ3bc3d3dVL8QQgghhHjySFJKCCFEhQQEBBAWFsbIkSNZtWoVDg4OTJ06FW9vb8LCwgCYMGECvXr1ol69ety8eZPdu3fTsGFDoGQBC41GQ1xcHL1790av1+Pg4EBERARTpkzBxcUFd3d3oqOj0Wq1aDSaMuOJioqibdu2jBkzhhEjRmBnZ0dSUhLx8fEsW7aMEydOEB0dTXh4OIGBgeh0Ovbu3cuHH35IVFQUUDKiasGCBbz++uvY2NgQHh6OlZUVX3zxBdOnT2fOnDml5i9KTk4uFUujRo2wsrIy25eTk8PcuXPp27cvnp6eXL9+neXLl3PhwgX69+8PlCSkunbtiq+vLzExMVy7ds10/m9HFN0tNDSUkSNHsmLFCoKDg7l06RITJkygdevW95yP647s7GzOnj1r2k5NTeXEiRO4uLhQq1atCsUMkJ6eTkZGBunp6RgMBtOorLp162Jvb0/Pnj0JDAwkPDycBQsWcPnyZd566y1Gjx6N9W9G7n3wwQe0adPmnvNEjR49mvXr1/PFF1/g4OBgmo/KyckJvV5/336WF58QQgghhHhMPLL1/54AsqSxEOJRKWt5+cddRESECgsLu+exjIwMFR4erpycnJRer1fBwcEqJSXFdHzMmDGqTp06ytraWrm5uanw8HB1/fp10/HZs2crDw8PpdFoVEREhFJKqaysLDV48GBla2urPDw81KJFi1Tr1q3V1KlTTef5+vqqxYsXl4rnyJEjqkePHsre3l7Z2dmppk2bqrlz5yqllLp27ZoaN26caty4sbK3t1cODg6qSZMmKiYmRhkMBrN6Nm/erDp16qTs7OwUoAC1YcMGszKpqammY799nT9/vlRseXl56oUXXlBeXl5Kp9MpT09P1bdvX3XkyBFTmTVr1ty3zvIsWbJEBQYGKr1erzw9PdWQIUPUzz//XOY5u3fvvmdbd96LisSsVMnPyL3q2b17t6lMWlqa6tWrl9Lr9ap69epq8uTJqqioyKyeW7duKb1er1avXn3PeO93bdasWVNmPysS32+V9Tsr9wvm5HoIIYQQojwVvV/QKPUQ1gp/QmVlZeHk5ERmZqZpng4hhHgY8vPzSU1Nxc/PD5sn6LG9x0FOTg7e3t7Exsbe85GuRy0jI4Nu3brh6OjIl19+ia2tbaXHICpfWb+zcr9gTq6HEEIIIcpT0fsFWX1PCCFElUpMTGTDhg2cO3eO48ePM2TIEADTI4GVzcXFhR07dtCtWzcOHjxYJTEIIYQQQgjxNJA5pYQQQlS5mJgYkpOT0el0tGzZkoSEBKpXr15l8bi6ujJjxowqa18IIYQQQoingSSlhBBCVKnmzZtz7Nixqg5DCCGEEEIIUcnk8T0hhBBCCCGEEEIIUekkKSWEEEIIIYQQQgghKp0kpYQQ4hF6ihc4FeKJIr+rQgghhBCVT5JSQgjxCFhYWABQWFhYxZEIISoiNzcXACsrqyqORAghhBDi6SETnQshxCNgaWmJra0t165dw8rKCq1WvgMQ4nGklCI3N5erV6/i7OxsSigLIYQQQohHT5JSQgjxCGg0Gjw9PUlNTeW///1vVYcjhCiHs7MzHh4eVR2GEEIIIcRTRZJSQgjxiOh0OgICAuQRPiEec1ZWVjJCSgghhBCiCkhSSgghHiGtVouNjU1VhyGEEEIIIYQQjx2Z5EQIIYQQQgghhBBCVDpJSgkhhBBCCCGEEEKISidJKSGEEEIIIYQQQghR6Z7qOaWUUgBkZWVVcSRCCCGEeFzduU+4c9/wtJP7JyGEEEKUp6L3T091Uur27dsA+Pj4VHEkQgghhHjc3b59Gycnp6oOo8rJ/ZMQQgghKqq8+yeNeoq/9jMajVy8eBEHBwc0Gs1DrTsrKwsfHx/Onz+Po6PjQ637SfA09/9p7js83f1/mvsOT3f/n+a+w5+//0opbt++jZeXF1qtzHzwKO+f4M//81SWp7nv8HT3/2nuOzzd/X+a+w5Pd///7H2v6P3TUz1SSqvVUrNmzUfahqOj45/yB6yinub+P819h6e7/09z3+Hp7v/T3Hf4c/dfRkj9qjLun+DP/fNUnqe57/B09/9p7js83f1/mvsOT3f//8x9r8j9k3zdJ4QQQgghhBBCCCEqnSSlhBBCCCGEEEIIIUSlk6TUI2JtbU10dDTW1tZVHUqVeJr7/zT3HZ7u/j/NfYenu/9Pc99B+i8erqf55+lp7js83f1/mvsOT3f/n+a+w9Pd/6e573d7qic6F0IIIYQQQgghhBBVQ0ZKCSGEEEIIIYQQQohKJ0kpIf4/e3ceVlW1/w/8fRAOHOAIoiCDiCCDoOh1SHFEUiYNqEwzDLHEpJ9jDqGWoYSaBprTdbqKfu9FM82Ui3kVywEVcQI1B1CCLMAUzUMgAnLW7w8v+3pkRoXQ9+t5zvN49ll77c/aaLxbe5+9iIiIiIiIiKjBcVKKiIiIiIiIiIgaHCeliIiIiIiIiIiowXFSioiIiIiIiIiIGhwnpYiIiIiIiIiIqMFxUoqIiIiIiIiIiBocJ6WIiIiIiIiIiKjBcVKKiIiIiIiIiIgaHCeliIiIiIiIiIiowXFSioiIiIiIiIiIGhwnpYiIiIiIiIiIqMFxUoqIiIiIiIiIiBocJ6WIqEnKysqCTCbD5s2b67Tf77//jrfeegstW7aETCbDV1999VzqexbGjBmDdu3aNXYZRERE9IKob3560R0+fBgymQyHDx+WtjGHETUMTkoRUb2cOHEC8+bNw7179+q1/9///vdGCUQfffQR9u/fj9mzZ+Of//wnfHx8GryG+rp//z7mzZunEZiIiIio6Wiq+elFwfNH9NfDSSkiqpcTJ05g/vz5TS5U/fjjjwgICMCMGTPw7rvvokOHDg1eQ21t2LABaWlp0vv79+9j/vz5nJQiIiJqoppqfnpRVHX+BgwYgKKiIgwYMKDhiyJ6yXFSioheKrdu3YKxsXFjl1GtwsJCAICOjg50dXUbuRoiIiKiF5uWlhb09PSgpcX/PSZqaPxXR0R1Nm/ePMycORMAYGtrC5lMBplMhqysLDx8+BCff/452rdvD11dXbRr1w5z5sxBcXGxtH+7du1w6dIlHDlyRNp34MCBAIC7d+9ixowZcHV1haGhIZo3bw5fX1+cP3/+qWrevHkzZDIZhBBYvXq1dFwAKC0txfz58+Hg4AA9PT20bNkS/fr1Q0JCQq36FkKgVatWmDZtmrRNrVbD2NgYzZo107gaunjxYmhra6OgoADAo+cVGBoaIiMjA0OGDIFSqcSoUaOkz8qfZZCVlQVTU1MAwPz586X6582bJ/V99epVvPXWWzAxMYGenh569OiBuLi4+p4yIiIieoaaYn4q98svv8Df3x8GBgYwMzOTHofw5HOYBg4ciE6dOuHs2bPo06cPFAoFbG1tsXbtWo3+ynNZVlaWxvbKnu1Uk3nz5kmZrrpjVHf+6nNcIno2tBu7ACJqet58802kp6dj27ZtWLZsGVq1agUAMDU1RUhICLZs2YK33noL06dPR3JyMhYtWoQrV67gu+++AwB89dVXmDRpEgwNDfHJJ58AAFq3bg0A+Pnnn7F7924MHz4ctra2+P3337Fu3Tq4u7vj8uXLsLS0rFfNAwYMwD//+U8EBQXB09MTo0ePlj6bN28eFi1ahJCQEPTs2RP5+fk4c+YMzp07B09Pzxr7lslk6Nu3L44ePSptu3DhAlQqFbS0tHD8+HEMHToUAJCYmIiuXbvC0NBQavvw4UN4e3ujX79+iIqKgr6+foVjmJqaYs2aNfjwww/xxhtv4M033wQAdO7cGQBw6dIl9O3bF1ZWVpg1axYMDAzwzTff4PXXX8e3336LN954o17njYiIiJ6NppifgEd3cL/66qvIzc3FlClTYG5ujq1bt+LQoUOVtv/jjz8wZMgQjBgxAu+88w6++eYbfPjhh5DL5Xj//ffrXcfTqu78EVEjEkRE9fDll18KACIzM1PalpqaKgCIkJAQjbYzZswQAMSPP/4obevYsaNwd3ev0O+DBw9EWVmZxrbMzEyhq6srIiIiNLYBEDExMXWqG4CYMGGCxrYuXbqIoUOH1qmfJ3355ZeiWbNmIj8/XwghxIoVK4SNjY3o2bOnCAsLE0IIUVZWJoyNjcVHH30k7RccHCwAiFmzZlXoMzg4WNjY2Ejvb9++LQCI8PDwCm0HDRokXF1dxYMHD6RtarVa9OnTRzg4ODzV2IiIiOjZaIr5KTo6WgAQu3fvlrYVFRWJDh06CADi0KFD0nZ3d3cBQERHR0vbiouLxd/+9jdhZmYmSkpKhBBCxMTEVDgPQghx6NChCn3WJDw8XFT2v7WVHaOq81fZcZ/MYUT0fPDre0T0zHz//fcAoPE1NgCYPn06AGDv3r019qGrqyt9n7+srAx37tyBoaEhnJyccO7cuWdc8SPGxsa4dOkSrl27Vu8++vfvj7KyMpw4cQLAozui+vfvj/79+yMxMREA8NNPP+HevXvo379/hf0//PDDeh/77t27+PHHHzFixAj8+eefyMvLQ15eHu7cuQNvb29cu3YN2dnZ9e6fiIiInp+/en76z3/+AysrK/j7+0vb9PT0MG7cuErba2trY/z48dJ7uVyO8ePH49atWzh79uxT1UJELx5OShHRM/PLL79AS0sL9vb2GtvNzc1hbGyMX375pcY+1Go1li1bBgcHB+jq6qJVq1YwNTWVvg73PERERODevXtwdHSEq6srZs6ciQsXLtSpj27dukFfX1+agCqflBowYADOnDmDBw8eSJ/169dPY19tbW20adOm3vVfv34dQgjMnTsXpqamGq/w8HAAjx7wTkRERH89f/X89Msvv6B9+/YVntv0ZL3lLC0tYWBgoLHN0dERACo8Q4qIiM+UIqJnrrKHTdbWwoULMXfuXLz//vv4/PPPYWJiAi0tLUydOhVqtfoZVvk/AwYMQEZGBvbs2YMDBw7gH//4B5YtW4a1a9ciJCSkVn3o6OigV69eOHr0KK5fv46bN2+if//+aN26NUpLS5GcnIzExER06NBBemB5ucevbtZH+XmZMWMGvL29K21TVXAkIiKiv4amlp+eRlVjLSsra9S+iKjhcVKKiOqlsgBgY2MDtVqNa9euwdnZWdr++++/4969e7Cxsal2fwDYuXMnPDw8sHHjRo3t9+7dkx4I+jyYmJjgvffew3vvvYeCggIMGDAA8+bNq/WkFPDoK3yLFy/GwYMH0apVK3To0AEymQwdO3ZEYmIiEhMT8dprr9W7xqrOmZ2dHYBHE2ODBw+ud/9ERET0fDXF/GRjY4PLly9DCKFx/OvXr1faPicnB4WFhRp3S6WnpwOAtKpwixYtpPoeV5u7wp70eF/GxsbV9vU0E39E9Hzw63tEVC/lQePxMDFkyBAAj1Y3edzSpUsBQFqBrnz/J4MIADRr1gxCCI1tO3bseK7PRLpz547Ge0NDQ9jb22ssw1wb/fv3R3FxMb766iv069dPCj79+/fHP//5T+Tk5FT6PKnaKl+V78nzZmZmhoEDB2LdunXIzc2tsN/t27frfUwiIiJ6dppifvL29kZ2djbi4uKkbQ8ePMCGDRsqbf/w4UOsW7dOel9SUoJ169bB1NQU3bt3BwC0b98eADRWLi4rK8P69evrXF9lfRUWFmLLli0V2lZ1/oio8fBOKSKql/JQ8cknn2DkyJHQ0dGBn58fgoODsX79ety7dw/u7u44deoUtmzZgtdffx0eHh4a+69ZswaRkZGwt7eHmZkZXn31Vbz22muIiIjAe++9hz59+uDixYuIjY2V7gZ6HlxcXDBw4EB0794dJiYmOHPmDHbu3ImJEyfWqZ/evXtDW1sbaWlp+OCDD6TtAwYMwJo1awDgqSalFAoFXFxcsH37djg6OsLExASdOnVCp06dsHr1avTr1w+urq4YN24c7Ozs8PvvvyMpKQm//fYbzp8/X+/jEhER0bPRFPPT+PHjsWrVKrzzzjuYMmUKLCwsEBsbCz09PQAV7z6ytLTE4sWLkZWVBUdHR2zfvh2pqalYv349dHR0AAAdO3aEm5sbZs+ejbt378LExARff/01Hj58WOf6vLy80LZtW4wdOxYzZ85Es2bNsGnTJpiamuLGjRsabas6f0TUiBp38T8iaso+//xzYWVlJbS0tKQld0tLS8X8+fOFra2t0NHREdbW1mL27NniwYMHGvvevHlTDB06VCiVSgFAWp73wYMHYvr06cLCwkIoFArRt29fkZSUJNzd3TWW8K3PksZCCAFATJgwQWNbZGSk6NmzpzA2NhYKhUJ06NBBLFiwQFq2uC5eeeUVAUAkJydL23777TcBQFhbW1doHxwcLAwMDCrtq7KliE+cOCG6d+8u5HK5ACDCw8OlzzIyMsTo0aOFubm50NHREVZWVuK1114TO3furPM4iIiI6Ploivnp559/FkOHDhUKhUKYmpqK6dOni2+//VYAECdPnpTaubu7i44dO4ozZ86I3r17Cz09PWFjYyNWrVpVoc+MjAwxePBgoaurK1q3bi3mzJkjEhISBABx6NChOtV39uxZ0atXLyGXy0Xbtm3F0qVLRUxMjHR+y1V1/g4dOlThuJXlMCJ69mRCPHGfJxEREREREVE1vvrqK3z00Uf47bffYGVlBQAYOHAg8vLy8NNPPzVydUTUVPCZUkRERERERFSloqIijfcPHjzAunXr4ODgIE1IERHVB58pRURNXklJCe7evVttGyMjIygUir9U30RERESNpS4Z580330Tbtm3xt7/9DSqVCv/6179w9epVxMbGPrf6ioqKoFKpqm1jYmICuVz+3GogouePk1JE1OSdOHFC4yGglYmJicGYMWP+Un0TERERNZa6ZBxvb2/84x//QGxsLMrKyuDi4oKvv/4ab7/99nOrb/v27XjvvfeqbXPo0CEMHDjwudVARM8fnylFRE3eH3/8gbNnz1bbpmPHjrCwsPhL9U1ERETUWP7qGSc3NxeXLl2qtk337t3RokWLBqqIiJ4HTkoREREREREREVGD44POiYiIiIiIiIiowb3Uz5RSq9XIycmBUqmETCZr7HKIiIjoL0gIgT///BOWlpbQ0uL1POYnIiIiqklt89NLPSmVk5MDa2vrxi6DiIiImoBff/0Vbdq0aewyGh3zExEREdVWTfnppZ6UUiqVAB6dpObNmzdyNURERPRXlJ+fD2trayk3vOyYn4iIiKgmtc1PL/WkVPkt582bN2eoIiIiomrxq2qPMD8RERFRbdWUn/hgBCIiIiIiIiIianCclCIiIiIiIiIiogbHSSkiIiIiIiIiImpwL/UzpYiInje1Wo2SkpLGLoOIqqGjo4NmzZo1dhlERPSYsrIylJaWNnYZRFSFZ5WfOClFRPSclJSUIDMzE2q1urFLIaIaGBsbw9zcnA8zJyJqZEII3Lx5E/fu3WvsUoioBs8iP3FSiojoORBCIDc3F82aNYO1tTW0tPhtaaK/IiEE7t+/j1u3bgEALCwsGrkiIqKXW/mElJmZGfT19XmxgOgv6FnmJ05KERE9Bw8fPsT9+/dhaWkJfX39xi6HiKqhUCgAALdu3YKZmRm/ykdE1EjKysqkCamWLVs2djlEVI1nlZ946Z6I6DkoKysDAMjl8kauhIhqo3zymM8vISJqPOX/DeYFPaKm4VnkJ05KERE9R7zlnKhp4L9VIqK/Dv43mahpeBb/VjkpRUREREREREREDY6TUkREpGHMmDGQyWSQyWSQy+Wwt7dHREQEHj58+FT9Hj58GDKZrEFX08nMzERgYCAsLS2hp6eHNm3aICAgAFevXtVoFx8fD3d3dyiVSujr6+OVV17B5s2bNdpkZWVBJpMhNTW11sefN28eOnToAAMDA7Ro0QKDBw9GcnKyRp9jx46Fra0tFAoF2rdvj/DwcJSUlFTbb25uLgIDA+Ho6AgtLS1MnTq1VvUcPXoUfn5+sLS0hEwmw+7duyttd+XKFfj7+8PIyAgGBgZ45ZVXcOPGDenz8ePHo3379lAoFDA1Na30nJ4+fRqDBg2CsbExWrRoAW9vb5w/f77S412/fh1KpRLGxsbPbAxEREQNifmJ+Yn5qX44KUVERBX4+PggNzcX165dw/Tp0zFv3jx8+eWXjV2WpKbQATz6brunpydUKhV27dqFtLQ0bN++Ha6urhrBbuXKlQgICEDfvn2RnJyMCxcuYOTIkQgNDcWMGTOeqk5HR0esWrUKFy9exLFjx9CuXTt4eXnh9u3bAICrV69CrVZj3bp1uHTpEpYtW4a1a9dizpw51fZbXFwMU1NTfPrpp+jSpUut6yksLESXLl2wevXqKttkZGSgX79+6NChAw4fPowLFy5g7ty50NPTk9p0794dMTExuHLlCvbv3w8hBLy8vKRnqRUUFMDHxwdt27ZFcnIyjh07BqVSCW9v7wrPHCgtLcU777yD/v37P7MxEBERNQbmJ+Yn5qd6EC8xlUolAAiVStXYpRDRC6aoqEhcvnxZFBUVNXYpdRYcHCwCAgI0tnl6ego3Nzdx9+5dERQUJIyNjYVCoRA+Pj4iPT1dapeVlSVee+01YWxsLPT19YWLi4vYu3evyMzMFAA0XsHBwUIIIfLz80VgYKDQ19cX5ubmYunSpcLd3V1MmTJF6tfGxkZERESIoKAgoVQqpX0TExNFv379hJ6enmjTpo2YNGmSKCgoEEIIkZKSIgCIrKysKsd648YNoaOjI6ZNm1bhsxUrVggA4uTJk0IIIY0hJSWl7if1v8p/7xw8eLDKNkuWLBG2tra17vPJc1VbAMR3331XYfvbb78t3n333Tr1df78eQFAXL9+XQghxOnTpwUAcePGDanNhQsXBABx7do1jX0//vhj8e6774qYmBhhZGT0TMZQH9X9m2Ve0MTzQUTPC/MT81NlmJ9e7PzEO6WIiKhGCoUCJSUlGDNmDM6cOYO4uDgkJSVBCIEhQ4ZIV28mTJiA4uJiHD16FBcvXsTixYthaGgIa2trfPvttwCAtLQ05ObmYvny5QCAadOm4fjx44iLi0NCQgISExNx7ty5CjVERUWhS5cuSElJwdy5c5GRkQEfHx8MGzYMFy5cwPbt23Hs2DFMnDgRAGBqagotLS3s3LlTugL1pJ07d6K0tLTSK3rjx4+HoaEhtm3b9kzOYUlJCdavXw8jI6Nqr86pVCqYmJg8k2PWlVqtxt69e+Ho6Ahvb2+YmZmhV69e1d7iXVhYiJiYGNja2sLa2hoA4OTkhJYtW2Ljxo0oKSlBUVERNm7cCGdnZ7Rr107a98cff8SOHTv+mlftiIiInhLz09NjfnoJ8tMzmR5ronilj4ielyevGqjValFYXNooL7VaXafaH7/Sp1arRUJCgtDV1RWvv/66ACCOHz8utc3LyxMKhUJ88803QgghXF1dxbx58yrt99ChQwKA+OOPP6Rt+fn5QkdHR+zYsUPadu/ePaGvr1/hSt/rr7+u0d/YsWPFBx98oLEtMTFRaGlpSed91apVQl9fXyiVSuHh4SEiIiJERkaG1D40NLTaq0udO3cWvr6+Qoj6X+n797//LQwMDIRMJhOWlpbi1KlTVba9du2aaN68uVi/fn2t+3+WV/pyc3MFAKGvry+WLl0qUlJSxKJFi4RMJhOHDx/WaLt69WphYGAgAAgnJyfpKl+5ixcvivbt2wstLS2hpaUlnJycNK665uXlCWtra3HkyBEhhHghrvS9LHg+iOh5qey/xU0lQzE//Q/zE/OTELXPC9oNPQlGRPQyKiotg8tn+xvl2JcjvKEvr9t/7uPj42FoaIjS0lKo1WoEBgbizTffRHx8PHr16iW1a9myJZycnHDlyhUAwOTJk/Hhhx/iwIEDGDx4MIYNG4bOnTtXeZyff/4ZpaWl6Nmzp7TNyMgITk5OFdr26NFD4/358+dx4cIFxMbGStuEEFCr1cjMzISzszMmTJiA0aNH4/Dhwzh58iR27NiBhQsXIi4uDp6enrU6F3K5vMY2sbGxGD9+vPR+37590nf8PTw8kJqairy8PGzYsAEjRoxAcnIyzMzMNPrIzs6Gj48Phg8fjnHjxknbDQ0NpT+/++67WLt2bY31JCYmwtfXV3q/bt06jBo1qsb91Go1ACAgIAAfffQRAOBvf/sbTpw4gbVr18Ld3V1qO2rUKHh6eiI3NxdRUVEYMWIEjh8/Dj09PRQVFWHs2LHo27cvtm3bhrKyMkRFRWHo0KE4ffo0FAoFxo0bh8DAQAwYMOCZjoGIiF4sTSlDMT/9D/MT81NtcVKKiIgq8PDwwJo1ayCXy2FpaQltbW3ExcXVuF9ISAi8vb2xd+9eHDhwAIsWLUJ0dDQmTZr01DUZGBhovC8oKMD48eMxefLkCm3btm0r/VmpVMLPzw9+fn6IjIyEt7c3IiMj4enpCQcHB6hUKuTk5MDS0lKjj5KSEmRkZMDb27vG2vz9/TXCppWVlUbd9vb2sLe3h5ubGxwcHLBx40bMnj1bapOTkwMPDw/06dMH69ev1+j78dVqmjdvXmMtwKMA+vh+rVu3rtV+rVq1gra2NlxcXDS2Ozs749ixYxrbjIyMYGRkBAcHB7i5uaFFixb47rvv8M4772Dr1q3IyspCUlIStLQePSlg69ataNGiBfbs2YORI0fixx9/RFxcHKKiogD8LxBra2tj/fr1eOedd+o1BiIiosbC/MT89Djmp9rhpBQRUQNQ6DTD5Yiafzk/r2PXVXkQeJyzszMePnyI5ORk9OnTBwBw584dpKWlafwStra2RmhoKEJDQzF79mxs2LABkyZNkq6YPf58Ajs7O+jo6OD06dNSEFKpVEhPT6/yClC5bt264fLlyxXqrI5MJkOHDh1w4sQJAMBbb72FsLAwREdHIzo6WqPt2rVrcf/+fYwePbrGfpVKJZRKZa1qUKvVKC4ult5nZ2fDw8NDWpGlPISUq8v4yikUinrtJ5fL8corryAtLU1je3p6OmxsbKrcTwgBIYQ0rvv370NLSwsymUxqU/6+/GpiUlKSxt+FPXv2YPHixThx4gSsrKzqPQYiInqxNKUMxfzE/PQ45qfa4aQUEVEDkMlkdf4K3V+Ng4MDAgICMG7cOKxbtw5KpRKzZs2ClZUVAgICAABTp06Fr68vHB0d8ccff+DQoUNwdnYGANjY2EAmkyE+Ph5DhgyBQqGAUqlEcHAwZs6cCRMTE5iZmSE8PLzCL+TKhIWFwc3NDRMnTkRISAgMDAxw+fJlJCQkYNWqVUhNTUV4eDiCgoLg4uICuVyOI0eOYNOmTQgLCwPw6IrgkiVLMGPGDOjp6SEoKAg6OjrYs2cP5syZg8jISHTq1EnjuE8GDgDo2LEjdHR0NLYVFhZiwYIF8Pf3h4WFBfLy8rB69WpkZ2dj+PDhAB4FqoEDB8LGxgZRUVHSUscAYG5uXu34y6+CFRQU4Pbt20hNTYVcLq9wle5xBQUFuH79uvQ+MzMTqampMDExkULtzJkz8fbbb2PAgAHw8PDAf/7zH/z73//G4cOHATz6ysD27dvh5eUFU1NT/Pbbb/jiiy+gUCgwZMgQAICnpydmzpyJCRMmYNKkSVCr1fjiiy+gra0NDw8PAJD+XpQ7c+YMtLS0Kpzv+oyBiIheHE09QzE/PcL8xPxUpWfydKsmig/qJKLn5UVb0rhc+ZLGRkZGQqFQCG9vb40ljSdOnCjat28vdHV1hampqQgKChJ5eXnS5xEREcLc3FzIZLJqlzTu2bOnmDVrlrSfjY2NWLZsWYV6Tp06JTw9PYWhoaEwMDAQnTt3FgsWLBBCCHH79m0xefJk0alTJ2FoaCiUSqVwdXUVUVFRoqysTKOf3bt3i/79+0sPngQgtm3bptGmsmWZy1+//vprhdqKiorEG2+8ISwtLYVcLhcWFhbC399f40GdMTExVfZZk8r2sbGxqXaf8oelPvkq/1mU27hxo7C3txd6enqiS5cuYvfu3dJn2dnZwtfXV5iZmQkdHR3Rpk0bERgYKK5evarRx4EDB0Tfvn2FkZGRaNGihXj11VdFUlJSlbXV9kGdtR1DXfFB57XH80FEzwvzE/MT89PLl59kQgjxLCa3mqL8/HwYGRlBpVLV+numRES18eDBA2RmZsLW1hZ6enqNXU6TUlhYCCsrK0RHR2Ps2LENfvy7d+9i0KBBaN68Ofbt2wd9ff0Gr4EaXnX/ZpkXNPF8ENHzwvxUf8xP1BieRX7SqvITIiKiBpCSkoJt27YhIyMD586dk1YIKb+lvaGZmJjg4MGDGDRoEJKSkhqlBiIiIqLqMD/Ri6LpfjmXiIheGFFRUUhLS4NcLkf37t2RmJiIVq1aNVo9LVu2xGeffdZoxyciIiKqCfMTvQg4KUVERI2qa9euOHv2bGOXQURERNRkMD/Ri4Jf3yMiIiIiIiIiogbHSSkiIiIiIiIiImpwnJQiIiIiIiIiIqIGx0kpIiIiIiIiIiJqcJyUIiIiIiIiIiKiBsdJKSIiIiIiIiIianCclCIiIiIiIiIiogbHSSkiItIwZswYyGQyyGQyyOVy2NvbIyIiAg8fPnyqfg8fPgyZTIZ79+49m0JrITMzE4GBgbC0tISenh7atGmDgIAAXL16VaNdfHw83N3doVQqoa+vj1deeQWbN2/WaJOVlQWZTIbU1NRaH3/evHno0KEDDAwM0KJFCwwePBjJyckafY4dOxa2trZQKBRo3749wsPDUVJSUm2/ubm5CAwMhKOjI7S0tDB16tRa1bNmzRp07twZzZs3R/PmzdG7d2/s27dP+vzu3buYNGkSnJycoFAo0LZtW0yePBkqlUpqs3nzZunvx5OvW7duSe2Ki4vxySefwMbGBrq6umjXrh02bdqkUc9XX30lHcva2hofffQRHjx4UO0Ydu3aBS8vL7Rs2bLOPw8iIqLnhfmJ+Yn5qX60G7sAIiL66/Hx8UFMTAyKi4vx/fffY8KECdDR0cHs2bMbuzQAQElJCeRyebVtSktL4enpCScnJ+zatQsWFhb47bffsG/fPo1gt3LlSkydOhVhYWFYs2YN5HI59uzZg9DQUPz000+Iioqqd52Ojo5YtWoV7OzsUFRUhGXLlsHLywvXr1+Hqakprl69CrVajXXr1sHe3h4//fQTxo0bh8LCwmqPW1xcDFNTU3z66adYtmxZretp06YNvvjiCzg4OEAIgS1btiAgIAApKSno2LEjcnJykJOTg6ioKLi4uOCXX35BaGgocnJysHPnTgDA22+/DR8fH41+x4wZgwcPHsDMzEzaNmLECPz+++/YuHEj7O3tkZubC7VaLX2+detWzJo1C5s2bUKfPn2Qnp4uBfqlS5dWOYbCwkL069cPI0aMwLhx42o9diIioueN+Yn5ifmpHsRLTKVSCQBCpVI1dilE9IIpKioSly9fFkVFRY1dSp0FBweLgIAAjW2enp7Czc1N3L17VwQFBQljY2OhUCiEj4+PSE9Pl9plZWWJ1157TRgbGwt9fX3h4uIi9u7dKzIzMwUAjVdwcLAQQoj8/HwRGBgo9PX1hbm5uVi6dKlwd3cXU6ZMkfq1sbERERERIigoSCiVSmnfxMRE0a9fP6GnpyfatGkjJk2aJAoKCoQQQqSkpAgAIisrq8qx3rhxQ+jo6Ihp06ZV+GzFihUCgDh58qQQQkhjSElJqftJ/a/y3zsHDx6sss2SJUuEra1trft88lzVVYsWLcQ//vGPKj//5ptvhFwuF6WlpZV+fuvWLaGjoyP+7//+T9q2b98+YWRkJO7cuVNlvxMmTBCvvvqqxrZp06aJvn371qruZ/HzeFx1/2aZFzTxfBDR88L8xPxUGean/3kR8xO/vkdERDVSKBQoKSnBmDFjcObMGcTFxSEpKQlCCAwZMgSlpaUAgAkTJqC4uBhHjx7FxYsXsXjxYhgaGsLa2hrffvstACAtLQ25ublYvnw5AGDatGk4fvw44uLikJCQgMTERJw7d65CDVFRUejSpQtSUlIwd+5cZGRkwMfHB8OGDcOFCxewfft2HDt2DBMnTgQAmJqaQktLCzt37kRZWVml49q5cydKS0sxY8aMCp+NHz8ehoaG2LZt2zM5hyUlJVi/fj2MjIzQpUuXKtupVCqYmJg8k2NWp6ysDF9//TUKCwvRu3fvautp3rw5tLUrv7n6//7v/6Cvr4+33npL2hYXF4cePXpgyZIlsLKygqOjI2bMmIGioiKpTZ8+fXD27FmcOnUKAPDzzz/j+++/x5AhQ57RCImIiBoX89PTY356CfLTM5kea6J4pY+InpcKVw3UaiGKCxrnpVbXqfbHr/Sp1WqRkJAgdHV1xeuvvy4AiOPHj0tt8/LyhEKhEN98840QQghXV1cxb968Svs9dOiQACD++OMPaVt+fr7Q0dERO3bskLbdu3dP6OvrV7jS9/rrr2v0N3bsWPHBBx9obEtMTBRaWlrSeV+1apXQ19cXSqVSeHh4iIiICJGRkSG1Dw0NFUZGRlWei86dOwtfX18hRP2vLP373/8WBgYGQiaTCUtLS3Hq1Kkq2167dk00b95crF+/vtb91/VK34ULF4SBgYFo1qyZMDIyEnv37q2y7e3bt0Xbtm3FnDlzqmzj7OwsPvzwQ41t3t7eQldXVwwdOlQkJyeLvXv3ChsbGzFmzBiNdsuXLxc6OjpCW1tbABChoaG1Hsdf8Urfy4Lng4iel0r/W9xEMhTz0/8wPzE/CVH7vMBnShERNYTS+8BCy8Y59pwcQG5Qp13i4+NhaGiI0tJSqNVqBAYG4s0330R8fDx69eoltWvZsiWcnJxw5coVAMDkyZPx4Ycf4sCBAxg8eDCGDRuGzp07V3mcn3/+GaWlpejZs6e0zcjICE5OThXa9ujRQ+P9+fPnceHCBcTGxkrbhBBQq9XIzMyEs7MzJkyYgNGjR+Pw4cM4efIkduzYgYULFyIuLg6enp61Ohc1PXsBAGJjYzF+/Hjp/b59+9C/f38AgIeHB1JTU5GXl4cNGzZgxIgRSE5O1nh+AABkZ2fDx8cHw4cP1/iuv6GhofTnd999F2vXrq2xnsTERPj6+krv161bh1GjRgEAnJyckJqaCpVKhZ07dyI4OBhHjhyBi4uLRh/5+fkYOnQoXFxcMG/evEqPk5SUhCtXruCf//ynxna1Wg2ZTIbY2FgYGRkBAJYuXYq33noLf//736FQKHD48GEsXLgQf//739GrVy9cv34dU6ZMweeff465c+dWe06JiOgl0oQyFPPT/zA/MT/VFieliIioAg8PD+mhlZaWltDW1kZcXFyN+4WEhMDb2xt79+7FgQMHsGjRIkRHR2PSpElPXZOBgWYoLCgowPjx4zF58uQKbdu2bSv9WalUws/PD35+foiMjIS3tzciIyPh6ekJBwcHqFQq5OTkwNJSM/CWlJQgIyMD3t7eNdbm7++vETatrKw06ra3t4e9vT3c3Nzg4OCAjRs3ajz0NCcnBx4eHujTpw/Wr1+v0ffjq6M0b968xlqARwH08f1at24t/bl8RSAA6N69O06fPo3ly5dj3bp1Ups///wTPj4+UCqV+O6776Cjo1Ppcf7xj3/gb3/7G7p3766x3cLCAlZWVlKgAgBnZ2cIIfDbb7/BwcEBc+fORVBQEEJCQgAArq6uKCwsxAcffIBPPvmk2nNKRET0V8T8xPzE/FR3nJQiImoIOvqPrrY11rHrqDwIPM7Z2RkPHz5EcnIy+vTpAwC4c+cO0tLSNK4SWVtbIzQ0FKGhoZg9ezY2bNiASZMmSVfMHn8+gZ2dHXR0dHD69GkpCKlUKqSnp2PAgAHV1titWzdcvny5Qp3Vkclk6NChA06cOAEAeOuttxAWFobo6GhER0drtF27di3u37+P0aNH19ivUqmEUqmsVQ1qtRrFxcXS++zsbHh4eKB79+6IiYmBlpbm4x7rMr5yCoWi1vs9WU9+fj68vb2hq6uLuLg46OnpVbpfQUEBvvnmGyxatKjCZ3379sWOHTtQUFAgXalMT0+HlpYW2rRpAwC4f/9+hbE2a9YMwKMrtnU5p0RE9AJrQhmK+Yn5ifmp7jgpRUTUEGSyOn+F7q/GwcEBAQEBGDduHNatWwelUolZs2bBysoKAQEBAICpU6fC19cXjo6O+OOPP3Do0CE4OzsDAGxsbCCTyRAfH48hQ4ZAoVBAqVQiODgYM2fOhImJCczMzBAeHg4tLS3IZLJq6wkLC4ObmxsmTpyIkJAQGBgY4PLly0hISMCqVauQmpqK8PBwBAUFwcXFBXK5HEeOHMGmTZsQFhYG4NEVwSVLlmDGjBnQ09NDUFAQdHR0sGfPHsyZMweRkZHo1KmTxnHT0tIq1NKxY8cKV8MKCwuxYMEC+Pv7w8LCAnl5eVi9ejWys7MxfPhwAI8C1cCBA2FjY4OoqCjcvn1b2t/c3Lza8ZdfySsoKMDt27eRmpoKuVxe4Tbyx82ePRu+vr5o27Yt/vzzT2zduhWHDx/G/v37ATwKVF5eXrh//z7+9a9/IT8/H/n5+QAePfi0PPQAwPbt2/Hw4UO8++67FY4TGBiIzz//HO+99x7mz5+PvLw8zJw5E++//z4UCgUAwM/PD0uXLkXXrl2l28/nzp0LPz8/jeM86e7du7hx4wZych79D0r5z8Pc3LzGc0ZERE1QE89QzE+PMD89wvxUiWfydKsmig/qJKLn5UVb0rhc+ZLGRkZGQqFQCG9vb40ljSdOnCjat28vdHV1hampqQgKChJ5eXnS5xEREcLc3FzIZLJqlzTu2bOnmDVrlrSfjY2NWLZsWYV6Tp06JTw9PYWhoaEwMDAQnTt3FgsWLBBCPHrI5OTJk0WnTp2EoaGhUCqVwtXVVURFRYmysjKNfnbv3i369+8vDAwMpCWXt23bptGmsmWZy1+//vprhdqKiorEG2+8ISwtLYVcLhcWFhbC399f40GdMTExVfZZk8r2sbGxqXaf999/X9jY2Ai5XC5MTU3FoEGDxIEDB6TPyx+mWtkrMzNTo6/evXuLwMDAKo915coVMXjwYKFQKESbNm3EtGnTxP3796XPS0tLxbx580T79u2Fnp6esLa2Fv/v//0/jQe5VqaqcxYeHl7tfjXhg85rj+eDiJ4X5ifmJ+anly8/yYQQ4umntpqm/Px8GBkZScs1EhE9Kw8ePEBmZiZsbW2rvH2XKldYWAgrKytER0dj7NixDX78u3fvYtCgQWjevDn27dsHff26f/2Rmp7q/s0yL2ji+SCi54X5qf6Yn6gxPIv8pFXlJ0RERA0gJSUF27ZtQ0ZGBs6dOyetclJ+S3tDMzExwcGDBzFo0CAkJSU1Sg1ERERE1WF+ohcFnylFRESNLioqCmlpaZDL5ejevTsSExPRqlWrRqunZcuW+Oyzzxrt+EREREQ1YX6iFwEnpYiIqFF17doVZ8+ebewyiIiIiJoM5id6UfDre0RERERERERE1OA4KUVERERERERERA2Ok1JERERERERERNTgOClFREREREREREQNjpNSRERERERERETU4DgpRUREREREREREDY6TUkRERERERERE1OA4KUVERBrGjBkDmUwGmUwGuVwOe3t7RERE4OHDh0/V7+HDhyGTyXDv3r1nU2gtZGZmIjAwEJaWltDT00ObNm0QEBCAq1evarSLj4+Hu7s7lEol9PX18corr2Dz5s0abbKysiCTyZCamlrr48+bNw8dOnSAgYEBWrRogcGDByM5OVmjz7Fjx8LW1hYKhQLt27dHeHg4SkpKqu03NzcXgYGBcHR0hJaWFqZOnVrrmsp98cUXkMlkFfbNyMjAG2+8AVNTUzRv3hwjRozA77//rtFmwYIF6NOnD/T19WFsbFxp/+V/hx5/ff3119Lnu3btgqenp3Sc3r17Y//+/TXWvWvXLnh5eaFly5Z1/nkQERE9L8xPzE/MT/XDSSkiIqrAx8cHubm5uHbtGqZPn4558+bhyy+/bOyyJDWFDgAoLS2Fp6cnVCoVdu3ahbS0NGzfvh2urq4awW7lypUICAhA3759kZycjAsXLmDkyJEIDQ3FjBkznqpOR0dHrFq1ChcvXsSxY8fQrl07eHl54fbt2wCAq1evQq1WY926dbh06RKWLVuGtWvXYs6cOdX2W1xcDFNTU3z66afo0qVLnes6ffo01q1bh86dO2tsLywshJeXF2QyGX788UccP34cJSUl8PPzg1qtltqVlJRg+PDh+PDDD6s9TkxMDHJzc6XX66+/Ln129OhReHp64vvvv8fZs2fh4eEBPz8/pKSkVNtnYWEh+vXrh8WLF9d53ERERM8T8xPzE/NTPYiXmEqlEgCESqVq7FKI6AVTVFQkLl++LIqKihq7lDoLDg4WAQEBGts8PT2Fm5ubuHv3rggKChLGxsZCoVAIHx8fkZ6eLrXLysoSr732mjA2Nhb6+vrCxcVF7N27V2RmZgoAGq/g4GAhhBD5+fkiMDBQ6OvrC3Nzc7F06VLh7u4upkyZIvVrY2MjIiIiRFBQkFAqldK+iYmJol+/fkJPT0+0adNGTJo0SRQUFAghhEhJSREARFZWVpVjvXHjhtDR0RHTpk2r8NmKFSsEAHHy5EkhhJDGkJKSUveT+l/lv3cOHjxYZZslS5YIW1vbWvf55LmqyZ9//ikcHBxEQkJChX33798vtLS0NH4v3rt3T8hkMpGQkFChr5iYGGFkZFTpcQCI7777rtZ1CSGEi4uLmD9/fq3aPoufx+Oq+zfLvKCJ54OInhfmJ+anyjA/Va+p5yfeKUVERDVSKBQoKSnBmDFjcObMGcTFxSEpKQlCCAwZMgSlpaUAgAkTJqC4uBhHjx7FxYsXsXjxYhgaGsLa2hrffvstACAtLQ25ublYvnw5AGDatGk4fvw44uLikJCQgMTERJw7d65CDVFRUejSpQtSUlIwd+5cZGRkwMfHB8OGDcOFCxewfft2HDt2DBMnTgQAmJqaQktLCzt37kRZWVml49q5cydKS0srvaI3fvx4GBoaYtu2bc/kHJaUlGD9+vUwMjKq9uqcSqWCiYnJMzlmZSZMmIChQ4di8ODBFT4rLi6GTCaDrq6utE1PTw9aWlo4duxYvY7VqlUr9OzZE5s2bYIQosq2arUaf/7553MdOxERUUNifnp6zE8vfn7SbuwCiIheBkIIFD0sapRjK7QVkMlk9dpXCIEffvgB+/fvh6+vL3bv3o3jx4+jT58+AIDY2FhYW1tj9+7dGD58OG7cuIFhw4bB1dUVAGBnZyf1Vf7L0szMTPoe/Z9//oktW7Zg69atGDRoEIBHtyxbWlpWqOXVV1/F9OnTpfchISEYNWqU9J1+BwcHrFixAu7u7lizZg2srKywYsUKfPzxx5g/fz569OgBDw8PjBo1SqorPT0dRkZGsLCwqHA8uVwOOzs7pKen1+vclYuPj8fIkSNx//59WFhYICEhAa1ataq07fXr17Fy5UpERUU91TGr8vXXX+PcuXM4ffp0pZ+7ubnBwMAAYWFhWLhwIYQQmDVrFsrKypCbm1unY0VERODVV1+Fvr4+Dhw4gP/3//4fCgoKMHny5ErbR0VFoaCgACNGjKjzuIiI6MXVFDMU8xPzE/NT7XFSioioARQ9LEKvrb0a5djJgcnQ19Gv0z7x8fEwNDREaWkp1Go1AgMD8eabbyI+Ph69ev1vHC1btoSTkxOuXLkCAJg8eTI+/PBDHDhwAIMHD8awYcMqfO/+cT///DNKS0vRs2dPaZuRkRGcnJwqtO3Ro4fG+/Pnz+PChQuIjY2VtgkhoFarkZmZCWdnZ0yYMAGjR4/G4cOHcfLkSezYsQMLFy5EXFwcPD09a3Uu5HJ5jW1iY2Mxfvx46f2+ffvQv39/AICHhwdSU1ORl5eHDRs2YMSIEUhOToaZmZlGH9nZ2fDx8cHw4cMxbtw4abuhoaH053fffRdr166tsZ7ExET4+vpK79etW4cBAwZgypQpSEhIgJ6eXqX7mZqaYseOHfjwww+xYsUKaGlp4Z133kG3bt2gpVW3m6vnzp0r/blr164oLCzEl19+WWmo2rp1K+bPn489e/ZI56W6c0pERC+PppShmJ/+h/mJ+am2OClFREQVeHh4YM2aNZDL5bC0tIS2tjbi4uJq3C8kJATe3t7Yu3cvDhw4gEWLFiE6OhqTJk166poMDAw03hcUFGD8+PGV/pJu27at9GelUgk/Pz/4+fkhMjIS3t7eiIyMhKenJxwcHKBSqZCTk1Ph6mJJSQkyMjLg7e1dY23+/v4aYdPKykqjbnt7e9jb28PNzQ0ODg7YuHEjZs+eLbXJycmBh4cH+vTpg/Xr12v0/fjqKM2bN6+xFuBRAH18v9atW+OHH37ArVu30K1bN2l7WVkZjh49ilWrVqG4uBjNmjWDl5cXMjIykJeXB21tbRgbG8Pc3Fzjqm199OrVC59//jmKi4s1bm//+uuvERISgh07dmjcEl/dOSUiIvorYn5ifmJ+qjtOShERNQCFtgLJgck1N3xOx66r8iDwOGdnZzx8+BDJycnS7ed37txBWloaXFxcpHbW1tYIDQ1FaGgoZs+ejQ0bNmDSpEnSFbPHn09gZ2cHHR0dnD59WgpCKpUK6enpGDBgQLU1duvWDZcvX65QZ3VkMhk6dOiAEydOAADeeusthIWFITo6GtHR0Rpt165di/v372P06NE19qtUKqFUKmtVg1qtRnFxsfQ+OzsbHh4e6N69O2JiYipcUavL+MopFIoK+w0aNAgXL17U2Pbee++hQ4cOCAsLQ7NmzTQ+K79F/scff8StW7fg7+9f5zoel5qaihYtWmgEqm3btuH999/H119/jaFDh2q0r8s5JSKiF1dTylDMT8xPzE91x0kpIqIGIJPJ6vwVur8aBwcHBAQEYNy4cVi3bh2USiVmzZoFKysrBAQEAACmTp0KX19fODo64o8//sChQ4fg7OwMALCxsYFMJkN8fDyGDBkChUIBpVKJ4OBgzJw5EyYmJjAzM0N4eDi0tLRqfIZDWFgY3NzcMHHiRISEhMDAwACXL19GQkICVq1ahdTUVISHhyMoKAguLi6Qy+U4cuQINm3ahLCwMACPrgguWbIEM2bMgJ6eHoKCgqCjo4M9e/Zgzpw5iIyMRKdOnTSOm5aWVqGWjh07QkdHR2NbYWEhFixYAH9/f1hYWCAvLw+rV69GdnY2hg8fDuBRoBo4cCBsbGwQFRUlLXUMAObm5tWOv/xKXkFBAW7fvo3U1FTI5XKNgPs4pVJZYSwGBgZo2bKlxvaYmBg4OzvD1NQUSUlJmDJlCj766CONrwTcuHEDd+/exY0bN1BWVibVYm9vD0NDQ/z73//G77//Djc3N+jp6SEhIQELFy7UeCDq1q1bERwcjOXLl6NXr164efMmgEeB0MjIqMpxlx83JycHwP9+Hubm5jWeMyIianqaeoZifnqE+Yn5qUrPZB3AJopLGhPR8/KiLWlcrnxJYyMjI6FQKIS3t7fGksYTJ04U7du3F7q6usLU1FQEBQWJvLw86fOIiAhhbm4uZDJZtUsa9+zZU8yaNUvaz8bGRixbtqxCPadOnRKenp7C0NBQGBgYiM6dO4sFCxYIIYS4ffu2mDx5sujUqZMwNDQUSqVSuLq6iqioKFFWVqbRz+7du0X//v2FgYGBtOTytm3bNNpUtixz+evXX3+tUFtRUZF44403hKWlpZDL5cLCwkL4+/uLU6dOSW1iYmKq7LMmle1jY2NT436Pq2w55LCwMNG6dWuho6MjHBwcRHR0tFCr1RptgoODKz3+oUOHhBBC7Nu3T/ztb3+Tfi5dunQRa9eu1Tjv7u7ulfZR/veiKlWds/Dw8DqN/UnPYknjlwXPBxE9L8xPzE/MTy9ffpIJUc36gi+4/Px8GBkZQaVS1fp7pkREtfHgwQNkZmbC1ta2yociUuUKCwthZWWF6OhojB07tsGPf/fuXQwaNAjNmzfHvn37oK/fdK/OUu1V92+WeUETzwcRPS/MT/XH/ESN4Vnkp7o9Cp6IiOgZS0lJwbZt25CRkYFz585h1KhRACDd0t7QTExMcPDgQQwaNAhJSUmNUgMRERFRdZif6EXBZ0oREVGji4qKQlpaGuRyObp3747ExETpQZGNoWXLlvjss88a7fhERERENWF+ohcBJ6WIiKhRde3aFWfPnm3sMoiIiIiaDOYnelHw63tERERERERERNTgOClFREREREREREQNjpNSRERERERERETU4DgpRUREREREREREDY6TUkRERERERERE1OA4KUVERERERERERA2Ok1JERERERERERNTgOClFREQaxowZA5lMBplMBrlcDnt7e0RERODhw4dP1e/hw4chk8lw7969Z1NoLWRmZiIwMBCWlpbQ09NDmzZtEBAQgKtXr2q0i4+Ph7u7O5RKJfT19fHKK69g8+bNGm2ysrIgk8mQmppa6+PPmzcPHTp0gIGBAVq0aIHBgwcjOTlZo8+xY8fC1tYWCoUC7du3R3h4OEpKSqrtNzc3F4GBgXB0dISWlhamTp1a65qys7Px7rvvomXLllAoFHB1dcWZM2ekzx//+Ze/fHx8NPpo165dhTZffPGF9HlaWho8PDzQunVr6Onpwc7ODp9++ilKS0s1+rl37x4mTJgACwsL6OrqwtHREd9//3219e/atQteXl5o2bJlnX8eREREzwvzE/MT81P9aDd2AURE9Nfj4+ODmJgYFBcX4/vvv8eECROgo6OD2bNnN3ZpAICSkhLI5fJq25SWlsLT0xNOTk7YtWsXLCws8Ntvv2Hfvn0awW7lypWYOnUqwsLCsGbNGsjlcuzZswehoaH46aefEBUVVe86HR0dsWrVKtjZ2aGoqAjLli2Dl5cXrl+/DlNTU1y9ehVqtRrr1q2Dvb09fvrpJ4wbNw6FhYXVHre4uBimpqb49NNPsWzZslrX88cff6Bv377w8PDAvn37YGpqimvXrqFFixYa7cp//uV0dXUr9BUREYFx48ZJ75VKpfRnHR0djB49Gt26dYOxsTHOnz+PcePGQa1WY+HChQAe/Qw9PT1hZmaGnTt3wsrKCr/88guMjY2rHUNhYSH69euHESNGaByfiIiosTE/MT8xP9WDeImpVCoBQKhUqsYuhYheMEVFReLy5cuiqKiosUups+DgYBEQEKCxzdPTU7i5uYm7d++KoKAgYWxsLBQKhfDx8RHp6elSu6ysLPHaa68JY2Njoa+vL1xcXMTevXtFZmamAKDxCg4OFkIIkZ+fLwIDA4W+vr4wNzcXS5cuFe7u7mLKlClSvzY2NiIiIkIEBQUJpVIp7ZuYmCj69esn9PT0RJs2bcSkSZNEQUGBEEKIlJQUAUBkZWVVOdYbN24IHR0dMW3atAqfrVixQgAQJ0+eFEIIaQwpKSl1P6n/Vf575+DBg1W2WbJkibC1ta11n0+eq+qEhYWJfv36Vdumsp//k2xsbMSyZctqV+B/ffTRRxrHXrNmjbCzsxMlJSV16qfcs/h5PK66f7PMC5p4PojoeWF+Yn6qDPPTi52f+PU9IqIGIISA+v79RnkJIZ66foVCgZKSEowZMwZnzpxBXFwckpKSIITAkCFDpNuKJ0yYgOLiYhw9ehQXL17E4sWLYWhoCGtra3z77bcAHt2anJubi+XLlwMApk2bhuPHjyMuLg4JCQlITEzEuXPnKtQQFRWFLl26ICUlBXPnzkVGRgZ8fHwwbNgwXLhwAdu3b8exY8cwceJEAICpqSm0tLSwc+dOlJWVVTqunTt3orS0FDNmzKjw2fjx42FoaIht27Y99fkDHl3ZWr9+PYyMjNClS5cq26lUKpiYmDyTYz4pLi4OPXr0wPDhw2FmZoauXbtiw4YNFdodPnwYZmZmcHJywocffog7d+5UaPPFF1+gZcuW6Nq1K7788stqv55w/fp1/Oc//4G7u7tGLb1798aECRPQunVrdOrUCQsXLqzyZ0VERC+nppyhmJ+eHvPTi5+f+PU9IqIGIIqKkNate6Mc2+ncWcj09eu1rxACP/zwA/bv3w9fX1/s3r0bx48fR58+fQAAsbGxsLa2xu7duzF8+HDcuHEDw4YNg6urKwDAzs5O6qs8KJiZmUm3GP/555/YsmULtm7dikGDBgEAYmJiYGlpWaGWV199FdOnT5feh4SEYNSoUdLzABwcHLBixQq4u7tjzZo1sLKywooVK/Dxxx9j/vz56NGjBzw8PDBq1CiprvT0dBgZGcHCwqLC8eRyOezs7JCenl6vc1cuPj4eI0eOxP3792FhYYGEhAS0atWq0rbXr1/HypUrn+qW9+r8/PPPWLNmDaZNm4Y5c+bg9OnTmDx5MuRyOYKDgwE8uvX8zTffhK2tLTIyMjBnzhz4+voiKSkJzZo1AwBMnjwZ3bp1g4mJCU6cOIHZs2cjNzcXS5cu1Thenz59cO7cORQXF+ODDz5ARESERi0//vgjRo0ahe+//x7Xr1/H//t//w+lpaUIDw9/LuMnIqKmpylmKOYn5ifmp9rjnVJERFRBfHw8DA0NoaenB19fX7z99tsYM2YMtLW10atXL6ldy5Yt4eTkhCtXrgB49Ms2MjISffv2RXh4OC5cuFDtcX7++WeUlpaiZ8+e0jYjIyM4OTlVaNujRw+N9+fPn8fmzZthaGgovby9vaFWq5GZmQng0ZXHmzdvIjY2Fr1798aOHTvQsWNHJCQk1Ppc1PTsBeBRuHy8jsTEROkzDw8PpKam4sSJE/Dx8cGIESNw69atCn1kZ2fDx8cHw4cP1/iu/+P9hoaG1qrmxMREjf1iY2MBAGq1Gt26dcPChQvRtWtXfPDBBxg3bhzWrl0r7Tty5Ej4+/vD1dUVr7/+OuLj43H69GkcPnxYajNt2jQMHDgQnTt3RmhoKKKjo7Fy5UoUFxdr1LF9+3acO3cOW7duxd69ezXColqthpmZGdavX4/u3bvj7bffxieffCLVUt05JSIi+itifvof5ifmp9rinVJERA1AplDA6dzZRjt2XXl4eEgPrbS0tIS2tjbi4uJq3C8kJATe3t7Yu3cvDhw4gEWLFiE6OhqTJk2qT+kaDAwMNN4XFBRg/PjxmDx5coW2bdu2lf6sVCrh5+cHPz8/REZGwtvbG5GRkfD09ISDgwNUKhVycnIqXF0sKSlBRkYGvL29a6zN399fI2xaWVlp1G1vbw97e3u4ubnBwcEBGzdu1HjoaU5ODjw8PNCnTx+sX79eo+/HV0dp3rx5jbUAjwLo4/u1bt0aAGBhYQEXFxeNts7OztJXAypjZ2eHVq1a4fr169LV2Cf16tULDx8+RFZWlkYgtra2BgC4uLigrKwMH3zwAaZPn45mzZrBwsICOjo60tXD8lpu3ryJkpKSas8pERG9PJpShmJ+Yn4qx/xUe5yUIiJqADKZrN5foWsM5UHgcc7Oznj48CGSk5Ol28/v3LmDtLQ0jV/U1tbWCA0NRWhoKGbPno0NGzZg0qRJ0hWzx7/zbmdnBx0dHZw+fVoKQiqVCunp6RgwYEC1NXbr1g2XL1+uUGd1ZDIZOnTogBMnTgAA3nrrLYSFhSE6OhrR0dEabdeuXYv79+9j9OjRNfarVCo1Vk+pjlqt1rgilp2dDQ8PD3Tv3h0xMTHQ0tK8ibku4yunUCgq3a9v375IS0vT2Jaeng4bG5sq+/rtt99w586dSm/RL5eamgotLS2YmZlV2UatVqO0tBRqtRrNmjVD3759sXXrVqjVamnM6enpsLCwgFwuh1wur/U5JSKiF1dTylDMT8xP5Zifao+TUkREVCsODg4ICAjAuHHjsG7dOiiVSsyaNQtWVlYICAgAAEydOhW+vr5wdHTEH3/8gUOHDsHZ2RkAYGNjA5lMhvj4eAwZMgQKhQJKpRLBwcGYOXMmTExMYGZmhvDwcGhpaUEmk1VbT1hYGNzc3DBx4kSEhITAwMAAly9fRkJCAlatWoXU1FSEh4cjKCgILi4ukMvlOHLkCDZt2oSwsDAAj64ILlmyBDNmzICenh6CgoKgo6ODPXv2YM6cOYiMjESnTp00jvtkKAGAjh07QkdHR2NbYWEhFixYAH9/f1hYWCAvLw+rV69GdnY2hg8fDuBRoBo4cCBsbGwQFRWF27dvS/ubm5tXO/7yK3kFBQW4ffs2UlNTIZfLK1zJe9xHH32EPn36YOHChRgxYgROnTqF9evXS1cXCwoKMH/+fAwbNgzm5ubIyMjAxx9/DHt7e+mKZ1JSEpKTk+Hh4QGlUomkpCR89NFHePfdd6WlkWNjY6GjowNXV1fo6urizJkzmD17Nt5++23pPH344YdYtWoVpkyZgkmTJuHatWtYuHBhpVduH3f37l3cuHEDOTk5AP738zA3N6/xnBERETU05qdHmJ+Yn6r0TNYBbKK4pDERPS8v2pLG5cqXNDYyMhIKhUJ4e3trLGk8ceJE0b59e6GrqytMTU1FUFCQyMvLkz6PiIgQ5ubmQiaTVbukcc+ePcWsWbOk/apaQvfUqVPC09NTGBoaCgMDA9G5c2exYMECIYQQt2/fFpMnTxadOnUShoaGQqlUCldXVxEVFSXKyso0+tm9e7fo37+/MDAwkJZc3rZtm0abypZlLn/9+uuvFWorKioSb7zxhrC0tBRyuVxYWFgIf39/cerUKalNTExMlX3WpLJ9bGxsatzv3//+t+jUqZPQ1dUVHTp0EOvXr5c+u3//vvDy8hKmpqZCR0dH2NjYiHHjxombN29Kbc6ePSt69eoljIyMhJ6ennB2dhYLFy4UDx48kNp8/fXXolu3btLPxcXFRSxcuLDCv4cTJ06IXr16CV1dXWFnZycWLFggHj58WG39VZ2z8PDwGsdenWexpPHLgueDiJ4X5ifmJ+anly8/yYR4BmuFN1H5+fkwMjKCSqWq9fdMiYhq48GDB8jMzIStrS309PQau5wmpbCwEFZWVoiOjsbYsWMb/Ph3797FoEGD0Lx5c+zbtw/6TeQrA/R0qvs3y7ygieeDiJ4X5qf6Y36ixvAs8hNX3yMiokaVkpKCbdu2ISMjA+fOncOoUaMAQLqlvaGZmJjg4MGDGDRoEJKSkhqlBiIiIqLqMD/Ri4LPlCIiokYXFRWFtLQ0yOVydO/eHYmJiWjVqlWj1dOyZUt89tlnjXZ8IiIiopowP9GLgJNSRETUqLp27YqzZxtnqWciIiKipoj5iV4U/PoeERERERERERE1OE5KERERERERERFRg+OkFBERERERERERNThOShERERERERERUYPjpBQRERERERERETU4TkoREREREREREVGD46QUERERERERERE1OE5KERGRhjFjxkAmk0Emk0Eul8Pe3h4RERF4+PDhU/V7+PBhyGQy3Lt379kUWguZmZkIDAyEpaUl9PT00KZNGwQEBODq1asa7eLj4+Hu7g6lUgl9fX288sor2Lx5s0abrKwsyGQypKam1vr48+bNQ4cOHWBgYIAWLVpg8ODBSE5O1uhz7NixsLW1hUKhQPv27REeHo6SkpJq+83NzUVgYCAcHR2hpaWFqVOn1qqesrIyzJ07V+N4n3/+OYQQUptdu3bBy8sLLVu2rHK8GRkZeOONN2BqaormzZtjxIgR+P333+s8rgsXLqB///7Q09ODtbU1lixZUuMYjh49Cj8/P1haWkImk2H37t21GjsREdHzxPzE/MT8VD8NNim1evVqtGvXDnp6eujVqxdOnTpVbfsdO3agQ4cO0NPTg6urK77//vsq24aGhkImk+Grr756xlUTEb2cfHx8kJubi2vXrmH69OmYN28evvzyy8YuS1JT6ACA0tJSeHp6QqVSYdeuXUhLS8P27dvh6uqqEexWrlyJgIAA9O3bF8nJybhw4QJGjhyJ0NBQzJgx46nqdHR0xKpVq3Dx4kUcO3YM7dq1g5eXF27fvg0AuHr1KtRqNdatW4dLly5h2bJlWLt2LebMmVNtv8XFxTA1NcWnn36KLl261LqexYsXY82aNVi1ahWuXLmCxYsXY8mSJVi5cqXUprCwEP369cPixYsr7aOwsBBeXl6QyWT48ccfcfz4cZSUlMDPzw9qtbrW48rPz4eXlxdsbGxw9uxZfPnll5g3bx7Wr19f7RgKCwvRpUsXrF69utbjbuqYoYiImgbmJ+Yn5qd6EA3g66+/FnK5XGzatElcunRJjBs3ThgbG4vff/+90vbHjx8XzZo1E0uWLBGXL18Wn376qdDR0REXL16s0HbXrl2iS5cuwtLSUixbtqxOdalUKgFAqFSq+gyLiKhKRUVF4vLly6KoqKixS6mz4OBgERAQoLHN09NTuLm5ibt374qgoCBhbGwsFAqF8PHxEenp6VK7rKws8dprrwljY2Ohr68vXFxcxN69e0VmZqYAoPEKDg4WQgiRn58vAgMDhb6+vjA3NxdLly4V7u7uYsqUKVK/NjY2IiIiQgQFBQmlUintm5iYKPr16yf09PREmzZtxKRJk0RBQYEQQoiUlBQBQGRlZVU51hs3bggdHR0xbdq0Cp+tWLFCABAnT54UQghpDCkpKXU/qf9V/nvn4MGDVbZZsmSJsLW1rXWfT56r6gwdOlS8//77GtvefPNNMWrUqAptqxrv/v37hZaWlsbvznv37gmZTCYSEhKqPPaT4/r73/8uWrRoIYqLi6VtYWFhwsnJqVZjEUIIAOK7776rdfvqVPdvtjHzwl8xQzE/EdHzwvzE/FQZ5qcXOz81yJ1SS5cuxbhx4/Dee+/BxcUFa9euhb6+PjZt2lRp++XLl8PHxwczZ86Es7MzPv/8c3Tr1g2rVq3SaJednY1JkyYhNjYWOjo6DTEUIqJ6EUKgtLisUV7isVuL60uhUKCkpARjxozBmTNnEBcXh6SkJAghMGTIEJSWlgIAJkyYgOLiYhw9ehQXL17E4sWLYWhoCGtra3z77bcAgLS0NOTm5mL58uUAgGnTpuH48eOIi4tDQkICEhMTce7cuQo1REVFoUuXLkhJScHcuXORkZEBHx8fDBs2DBcuXMD27dtx7NgxTJw4EQBgamoKLS0t7Ny5E2VlZZWOa+fOnSgtLa30it748eNhaGiIbdu2PfX5Ax5dnVy/fj2MjIyqvTqnUqlgYmLyTI75pD59+uCHH35Aeno6AOD8+fM4duwYfH19a91HcXExZDIZdHV1pW16enrQ0tLCsWPHqtzvyXElJSVhwIABkMvl0jZvb2+kpaXhjz/+qMuwXmjMUET0smvKGYr56ekxP734+Un7eR+gpKQEZ8+exezZs6VtWlpaGDx4MJKSkirdJykpCdOmTdPY5u3trfG9R7VajaCgIMycORMdO3Z8LrUTET0rD0vUWD/lSKMc+4Pl7tDRbVavfYUQ+OGHH7B//374+vpi9+7dOH78OPr06QMAiI2NhbW1NXbv3o3hw4fjxo0bGDZsGFxdXQEAdnZ2Ul/lv1DNzMxgbGwMAPjzzz+xZcsWbN26FYMGDQIAxMTEwNLSskItr776KqZPny69DwkJwahRo6TnATg4OGDFihVwd3fHmjVrYGVlhRUrVuDjjz/G/Pnz0aNHD3h4eGDUqFFSXenp6TAyMoKFhUWF48nlctjZ2UkBpL7i4+MxcuRI3L9/HxYWFkhISECrVq0qbXv9+nWsXLkSUVFRT3XMqsyaNQv5+fno0KEDmjVrhrKyMixYsACjRo2qdR9ubm4wMDBAWFgYFi5cCCEEZs2ahbKyMuTm5la6T2XjunnzJmxtbTXatW7dWvqsRYsW9Rjhi4UZioioaWYo5ifmpycxP1Xtud8plZeXh7KyMulElWvdujVu3rxZ6T43b96ssf3ixYuhra2NyZMn17qW4uJi5Ofna7yIiKii+Ph4GBoaQk9PD76+vnj77bcxZswYaGtro1evXlK7li1bwsnJCVeuXAEATJ48GZGRkejbty/Cw8Nx4cKFao/z888/o7S0FD179pS2GRkZwcnJqULbHj16aLw/f/48Nm/eDENDQ+nl7e0NtVqNzMxMAI+uPN68eROxsbHo3bs3duzYgY4dOyIhIaHW5+LxK1FViY2N1agjMTFR+szDwwOpqak4ceIEfHx8MGLECNy6datCH9nZ2fDx8cHw4cMxbtw4afvj/YaGhtaq5sTERI39YmNjAQDffPMNYmNjsXXrVpw7dw5btmxBVFQUtmzZUqt+gUdXUHfs2IF///vfMDQ0hJGREe7du4du3bpBS6tirKhqXPUdw8vkr5KhmJ+IiGqH+el/mJ80MT9V7bnfKfU8nD17FsuXL8e5c+cgk8lqvd+iRYswf/7851gZEVHltOVa+GC5e6Mdu648PDywZs0ayOVyWFpaQltbG3FxcTXuFxISAm9vb+zduxcHDhzAokWLEB0djUmTJtWndA0GBgYa7wsKCjB+/PhK/8e6bdu20p+VSiX8/Pzg5+eHyMhIeHt7IzIyEp6ennBwcIBKpUJOTk6Fq4slJSXIyMiAt7d3jbX5+/trhE0rKyuNuu3t7WFvbw83Nzc4ODhg48aNGne/5OTkwMPDA3369KnwoMrHV29p3rx5jbUAjwLo4/uVT1LMnDkTs2bNwsiRIwEArq6u+OWXX7Bo0SIEBwfXqm8A8PLyQkZGBvLy8qCtrQ1jY2OYm5trXNmtaVzm5uYaK84AkN6bm5ujXbt2lY6Bnk59MhTzExE1pqaUoZifmJ+qw/xUued+p1SrVq3QrFmzSk+cubl5pftUdaLL2ycmJuLWrVto27YttLW1oa2tjV9++QXTp09Hu3btqqxl9uzZUKlU0uvXX399usEREdWSTCaDjm6zRnnVZfK+XHkQKP/vLAA4Ozvj4cOHGkvy3rlzB2lpaXBxcZG2WVtbIzQ0FLt27cL06dOxYcMGAP+7Yvb48wns7Oygo6OD06dPS9tUKlWtbvnu1q0bLl++LAWWx19VXZ2TyWTo0KEDCgsLAQBvvfUWtLW1ER0dXaHt2rVrcf/+fYwePbrGWpRKpcbxFQpFlW3VajWKi4ul99nZ2Rg4cCC6d++OmJiYClfLHu/XzMysxlqAR8+weHw/pVIJALh//36F/ps1ayat+lJXrVq1grGxMX788UfcunUL/v7+tR5X7969cfToUel5GgCQkJAAJycntGjRosoxvEz+KhmK+YmIGlNTylDMT8xPtcH8pOm53ykll8vRvXt3/PDDD3j99dcBPPoL9cMPP0gPU3tS79698cMPP0jfcwUenejevXsDAIKCgjB48GCNfby9vREUFIT33nuvylp0dXU1HixGRES15+DggICAAIwbNw7r1q2DUqnErFmzYGVlhYCAAADA1KlT4evrC0dHR/zxxx84dOgQnJ2dAQA2NjaQyWSIj4/HkCFDoFAooFQqERwcjJkzZ8LExARmZmYIDw+HlpZWjUEwLCwMbm5umDhxIkJCQmBgYIDLly8jISEBq1atQmpqKsLDwxEUFAQXFxfI5XIcOXIEmzZtQlhYGIBHVwSXLFmCGTNmQE9PD0FBQdDR0cGePXswZ84cREZGolOnThrHTUtLq1BLx44dKzwsurCwEAsWLIC/vz8sLCyQl5eH1atXIzs7G8OHDwfwv+BhY2ODqKgoaaljAFVOOpQrvwpWUFCA27dvIzU1FXK5XCPgPsnPzw8LFixA27Zt0bFjR6SkpGDp0qV4//33pTZ3797FjRs3kJOTozFec3NzqaaYmBg4OzvD1NQUSUlJmDJlCj766CPpawO1GVdgYCDmz5+PsWPHIiwsDD/99BOWL1+OZcuWVTvugoICXL9+XXqfmZmJ1NRUmJiYaFzhfRH8VTIU8xMRUf0xPz3C/MT8VKVnsg5gDb7++muhq6srNm/eLC5fviw++OADYWxsLG7evCmEECIoKEjMmjVLan/8+HGhra0toqKixJUrV0R4eHiVyxmXs7GxqdNyxkJwSWMien5etCWNy5UvaWxkZCQUCoXw9vbWWNJ44sSJon379kJXV1eYmpqKoKAgkZeXJ30eEREhzM3NhUwmq3ZJ4549e2r8Xqjqv/GnTp0Snp6ewtDQUBgYGIjOnTuLBQsWCCGEuH37tpg8ebLo1KmTMDQ0FEqlUri6uoqoqChRVlam0c/u3btF//79hYGBgbTk8rZt2zTaVLYsc/nr119/rVBbUVGReOONN4SlpaWQy+XCwsJC+Pv7i1OnTkltYmJiquyzJpXtY2NjU+0++fn5YsqUKaJt27ZCT09P2NnZiU8++URjWeGqagoPD5fahIWFidatWwsdHR3h4OAgoqOjhVqtrvO4zp8/L/r16yd0dXWFlZWV+OKLL2oc96FDhyrtt/zvU309iyWNn4e/YoZifiKi54X5ifmJ+enly08NMiklhBArV64Ubdu2FXK5XPTs2VOcPHlS+szd3b3Cyfjmm2+Eo6OjkMvlomPHjmLv3r3V9s9JKSL6K2nKoaqxFRQUCCMjI/GPf/yjUY5/584d8be//U0MGDBAFBYWNkoN1PD+qpNSQvz1MlRjnw8ienExP9Uf8xM1hmeRn2RCCFGfO6xeBPn5+TAyMoJKpar1w8+IiGrjwYMHyMzMhK2tLfT09Bq7nL+0lJQUXL16FT179oRKpUJERAQOHz6M69evV7n07/N2584drF69Gn379pWWWqYXW3X/ZpkXNPF8ENHzwvxUe8xP9FfwLPJTk1x9j4iIXixRUVFIS0uTnqGTmJjYaIEKeLRU82effdZoxyciIiKqCfMTvQg4KUVERI2qa9euOHv2bGOXQURERNRkMD/Ri0Kr5iZERERERERERETPFieliIiIiIiIiIiowXFSioiIiIiIiIiIGhwnpYiIiIiIiIiIqMFxUoqIiIiIiIiIiBocJ6WIiIiIiIiIiKjBcVKKiIiIiIiIiIgaHCeliIhIw5gxYyCTySCTySCXy2Fvb4+IiAg8fPjwqfo9fPgwZDIZ7t2792wKrYXMzEwEBgbC0tISenp6aNOmDQICAnD16lWNdvHx8XB3d4dSqYS+vj5eeeUVbN68WaNNVlYWZDIZUlNTa338efPmoUOHDjAwMECLFi0wePBgJCcna/Q5duxY2NraQqFQoH379ggPD0dJSUm1/ebm5iIwMBCOjo7Q0tLC1KlTa1XPn3/+ialTp8LGxgYKhQJ9+vTB6dOnNdoUFBRg4sSJaNOmDRQKBVxcXLB27VqNNuPHj0f79u2hUChgampa6Tm9ceMGhg4dCn19fZiZmWHmzJlV/h06fvw4tLW18be//a3GMezatQteXl5o2bJlnX8eREREzwvzE/MT81P9cFKKiIgq8PHxQW5uLq5du4bp06dj3rx5+PLLLxu7LElNoQMASktL4enpCZVKhV27diEtLQ3bt2+Hq6urRrBbuXIlAgIC0LdvXyQnJ+PChQsYOXIkQkNDMWPGjKeq09HREatWrcLFixdx7NgxtGvXDl5eXrh9+zYA4OrVq1Cr1Vi3bh0uXbqEZcuWYe3atZgzZ061/RYXF8PU1BSffvopunTpUut6QkJCkJCQgH/+85+4ePEivLy8MHjwYGRnZ0ttpk2bhv/85z/417/+hStXrmDq1KmYOHEi4uLipDbdu3dHTEwMrly5gv3790MIAS8vL5SVlQEAysrKMHToUJSUlODEiRPYsmULNm/ejM8++6xCTffu3cPo0aMxaNCgWo2hsLAQ/fr1w+LFi2s9biIioobA/MT8xPxUD+IlplKpBAChUqkauxQiesEUFRWJy5cvi6KiosYupc6Cg4NFQECAxjZPT0/h5uYm7t69K4KCgoSxsbFQKBTCx8dHpKenS+2ysrLEa6+9JoyNjYW+vr5wcXERe/fuFZmZmQKAxis4OFgIIUR+fr4IDAwU+vr6wtzcXCxdulS4u7uLKVOmSP3a2NiIiIgIERQUJJRKpbRvYmKi6Nevn9DT0xNt2rQRkyZNEgUFBUIIIVJSUgQAkZWVVeVYb9y4IXR0dMS0adMqfLZixQoBQJw8eVIIIaQxpKSk1P2k/lf5752DBw9W2WbJkiXC1ta21n0+ea6qcv/+fdGsWTMRHx+vsb1bt27ik08+kd537NhRREREVNvmSefPnxcAxPXr14UQQnz//fdCS0tL3Lx5U2qzZs0a0bx5c1FcXKyx79tvvy0+/fRTER4eLrp06VLjOMo9i5/H46r7N8u8oInng4ieF+Yn5qfKMD+92PmJd0oRETUAIQRKHzxolJcQ4qnrVygUKCkpwZgxY3DmzBnExcUhKSkJQggMGTIEpaWlAIAJEyaguLgYR48excWLF7F48WIYGhrC2toa3377LQAgLS0Nubm5WL58OYBHV5aOHz+OuLg4JCQkIDExEefOnatQQ1RUFLp06YKUlBTMnTsXGRkZ8PHxwbBhw3DhwgVs374dx44dw8SJEwEApqam0NLSws6dO6UrUE/auXMnSktLK72iN378eBgaGmLbtm1Pff6AR1cn169fDyMjo2qvzqlUKpiYmDyTYz7u4cOHKCsrg56ensZ2hUKBY8eOSe/79OmDuLg4ZGdnQwiBQ4cOIT09HV5eXpX2W1hYiJiYGNja2sLa2hoAkJSUBFdXV7Ru3Vpq5+3tjfz8fFy6dEnaFhMTg59//hnh4eHPcqhERPQCacoZivnp6TE/vfj5SbuxCyAiehk8LC7GiuC3GuXYk7fshM4Tv0hrSwiBH374Afv374evry92796N48ePo0+fPgCA2NhYWFtbY/fu3Rg+fDhu3LiBYcOGwdXVFQBgZ2cn9VUeFMzMzGBsbAzg0Xf0t2zZgq1bt0q3H8fExMDS0rJCLa+++iqmT58uvQ8JCcGoUaOk5wE4ODhgxYoVcHd3x5o1a2BlZYUVK1bg448/xvz589GjRw94eHhg1KhRUl3p6ekwMjKChYVFhePJ5XLY2dkhPT29XueuXHx8PEaOHIn79+/DwsICCQkJaNWqVaVtr1+/jpUrVyIqKuqpjlkZpVKJ3r174/PPP4ezszNat26Nbdu2ISkpCfb29lK7lStX4oMPPkCbNm2gra0NLS0tbNiwAQMGDNDo7+9//zs+/vhjFBYWwsnJCQkJCZDL5QCAmzdvagQqANL7mzdvAgCuXbuGWbNmITExEdrajCNERFS5ppihmJ+Yn5ifao93ShERUQXx8fEwNDSEnp4efH198fbbb2PMmDHQ1tZGr169pHYtW7aEk5MTrly5AgCYPHkyIiMj0bdvX4SHh+PChQvVHufnn39GaWkpevbsKW0zMjKCk5NThbY9evTQeH/+/Hls3rwZhoaG0svb2xtqtRqZmZkAHl15vHnzJmJjY9G7d2/s2LEDHTt2REJCQq3PRXlQqE5sbKxGHYmJidJnHh4eSE1NxYkTJ+Dj44MRI0bg1q1bFfrIzs6Gj48Phg8fjnHjxknbH+83NDS0VjUnJiZq7BcbGwsA+Oc//wkhBKysrKCrq4sVK1bgnXfegZbW/+LAypUrcfLkScTFxeHs2bOIjo7GhAkTcPDgQY1jjBo1CikpKThy5AgcHR0xYsQIPHjwoFb1lZWVITAwEPPnz4ejo2Olbao7p0RERH9FzE//w/zE/FRbL8bUGhHRX5y2ri4mb9nZaMeuKw8PD6xZswZyuRyWlpbQ1tbWeFBjVUJCQuDt7Y29e/fiwIEDWLRoEaKjozFp0qT6lK7BwMBA431BQQHGjx+PyZMnV2jbtm1b6c9KpRJ+fn7w8/NDZGQkvL29ERkZCU9PTzg4OEClUiEnJ6fC1cWSkhJkZGTA29u7xtr8/f01wqaVlZVG3fb29rC3t4ebmxscHBywceNGzJ49W2qTk5MDDw8P9OnTB+vXr9fo+/HVUZo3b15jLcCjAPr4fuVX2dq3b48jR46gsLAQ+fn5sLCwwNtvvy1d+SwqKsKcOXPw3XffYejQoQCAzp07IzU1FVFRURg8eLDUp5GREYyMjODg4AA3Nze0aNEC3333Hd555x2Ym5vj1KlTGjX9/vvvAABzc3P8+eefOHPmDFJSUqSvC6jVagghoK2tjQMHDlR7TomI6OXRlDIU8xPzE/NT3XFSioioAchksnp/ha4xlAeBxzk7O+Phw4dITk6Wbj+/c+cO0tLS4OLiIrWztrZGaGgoQkNDMXv2bGzYsAGTJk2Srpg9/nwCOzs76Ojo4PTp01IQUqlUSE9Pr3C785O6deuGy5cvV6izOjKZDB06dMCJEycAAG+99RbCwsIQHR2N6OhojbZr167F/fv3MXr06Br7VSqVUCqVtapBrVajuLhYep+dnQ0PDw9pRZbHr7oBqNP4yikUimr3MzAwgIGBAf744w/s378fS5YsAfBoxZ3S0tIKNTRr1gxqtbrK/oQQEEJI4+rduzcWLFiAW7duwczMDACQkJCA5s2bw8XFBTo6Orh48aJGH3//+9/x448/YufOnbC1tYWBgUGtzykREb24mlKGYn5ifnoc81PtcFKKiIhqxcHBAQEBARg3bhzWrVsHpVKJWbNmwcrKCgEBAQCAqVOnwtfXF46Ojvjjjz9w6NAhODs7AwBsbGwgk8kQHx+PIUOGQKFQQKlUIjg4GDNnzoSJiQnMzMwQHh4OLS0tyGSyausJCwuDm5sbJk6ciJCQEBgYGODy5ctISEjAqlWrkJqaivDwcAQFBcHFxQVyuRxHjhzBpk2bEBYWBuDRFcElS5ZgxowZ0NPTQ1BQEHR0dLBnzx7MmTMHkZGR6NSpk8Zx09LSKtTSsWNH6OjoaGwrLCzEggUL4O/vDwsLC+Tl5WH16tXIzs7G8OHDATwKVAMHDoSNjQ2ioqKkpY6BR1fEqlN+Ja+goAC3b99Gamoq5HK5RsB9Uvnyw05OTrh+/TpmzpyJDh064L333gPw6Eqiu7s7Zs6cCYVCARsbGxw5cgT/93//h6VLlwJ49JWB7du3w8vLC6ampvjtt9/wxRdfQKFQYMiQIQAALy8vuLi4ICgoCEuWLMHNmzfx6aefYsKECdD971XnJ8+rmZkZ9PT0Kmx/0t27d3Hjxg3k5OQA+N/Pw9zcvMZzRkRE1NCYnx5hfmJ+qtKzWAawqeKSxkT0vLxoSxqXK1/S2MjISCgUCuHt7a2xpPHEiRNF+/btha6urjA1NRVBQUEiLy9P+jwiIkKYm5sLmUxW7ZLGPXv2FLNmzZL2s7GxEcuWLatQz6lTp4Snp6cwNDQUBgYGonPnzmLBggVCCCFu374tJk+eLDp16iQMDQ2FUqkUrq6uIioqSpSVlWn0s3v3btG/f39hYGAgLbm8bds2jTaVLctc/vr1118r1FZUVCTeeOMNYWlpKeRyubCwsBD+/v7i1KlTUpuYmJgq+6xJZfvY2NhUu8/27duFnZ2dkMvlwtzcXEyYMEHcu3dPo01ubq4YM2aMsLS0FHp6esLJyUlER0cLtVothBAiOztb+Pr6CjMzM6GjoyPatGkjAgMDxdWrVzX6ycrKEr6+vkKhUIhWrVqJ6dOni9LS0iprq+2SxlWds/Dw8Br3rc6zWNL4ZcHzQUTPC/MT8xPz08uXn2RCPIO1wpuo/Px8GBkZQaVS1fp7pkREtfHgwQNkZmbC1ta2whKyVL3CwkJYWVkhOjoaY8eObfDj3717F4MGDULz5s2xb98+6OvrN3gN1PCq+zfLvKCJ54OInhfmp/pjfqLG8CzyE1ffIyKiRpWSkoJt27YhIyMD586dw6hRowBAuqW9oZmYmODgwYMYNGgQkpKSGqUGIiIiouowP9GLgs+UIiKiRhcVFYW0tDTI5XJ0794diYmJaNWqVaPV07JlS3z22WeNdnwiIiKimjA/0YuAk1JERNSounbtirNnzzZ2GURERERNBvMTvSj49T0iIiIiIiIiImpwnJQiIiIiIiIiIqIGx0kpIiIiIiIiIiJqcJyUIiIiIiIiIiKiBsdJKSIiIiIiIiIianCclCIiIiIiIiIiogbHSSkiIiIiIiIiImpwnJQiIiINY8aMgUwmg0wmg1wuh729PSIiIvDw4cOn6vfw4cOQyWS4d+/esym0FjIzMxEYGAhLS0vo6emhTZs2CAgIwNWrVzXaxcfHw93dHUqlEvr6+njllVewefNmjTZZWVmQyWRITU2t9fHnzZuHDh06wMDAAC1atMDgwYORnJys0efYsWNha2sLhUKB9u3bIzw8HCUlJdX2m5ubi8DAQDg6OkJLSwtTp06tVT1Hjx6Fn58fLC0tIZPJsHv37gptdu3aBS8vL7Rs2bLG8Qoh4OvrW2VfmzdvRufOnaGnpwczMzNMmDBB4/P9+/fDzc0NSqUSpqamGDZsGLKysjTaxMbGokuXLtDX14eFhQXef/993Llz56nHSURE9CwxPzE/MT/VDyeliIioAh8fH+Tm5uLatWuYPn065s2bhy+//LKxy5LUFDoAoLS0FJ6enlCpVNi1axfS0tKwfft2uLq6agS7lStXIiAgAH379kVycjIuXLiAkSNHIjQ0FDNmzHiqOh0dHbFq1SpcvHgRx44dQ7t27eDl5YXbt28DAK5evQq1Wo1169bh0qVLWLZsGdauXYs5c+ZU229xcTFMTU3x6aefokuXLrWup7CwEF26dMHq1aurbdOvXz8sXry4xv6++uoryGSySj9bunQpPvnkE8yaNQuXLl3CwYMH4e3tLX2emZmJgIAAvPrqq0hNTcX+/fuRl5eHN998U2pz/PhxjB49GmPHjsWlS5ewY8cOnDp1CuPGjXvqcRIRET1rzE/MT8xP9SBeYiqVSgAQKpWqsUshohdMUVGRuHz5sigqKmrsUuosODhYBAQEaGzz9PQUbm5u4u7duyIoKEgYGxsLhUIhfHx8RHp6utQuKytLvPbaa8LY2Fjo6+sLFxcXsXfvXpGZmSkAaLyCg4OFEELk5+eLwMBAoa+vL8zNzcXSpUuFu7u7mDJlitSvjY2NiIiIEEFBQUKpVEr7JiYmin79+gk9PT3Rpk0bMWnSJFFQUCCEECIlJUUAEFlZWVWO9caNG0JHR0dMmzatwmcrVqwQAMTJkyeFEEIaQ0pKSt1P6n+V/945ePBglW2WLFkibG1ta93nk+eqtgCI7777rsrPaxpvSkqKsLKyErm5uRX6unv3rlAoFNWOc8eOHUJbW1uUlZVJ2+Li4oRMJhMlJSVCCCG+/PJLYWdnp7HfihUrhJWVVc0D/K+axlmuun+zzAuaeD6I6HlhfmJ+qgzz0/+8iPmJd0oRETUAIQTUJWWN8nr0e+XpKBQKlJSUYMyYMThz5gzi4uKQlJQEIQSGDBmC0tJSAMCECRNQXFyMo0eP4uLFi1i8eDEMDQ1hbW2Nb7/9FgCQlpaG3NxcLF++HAAwbdo0HD9+HHFxcUhISEBiYiLOnTtXoYaoqCh06dIFKSkpmDt3LjIyMuDj44Nhw4bhwoUL2L59O44dO4aJEycCAExNTaGlpYWdO3eirKys0nHt3LkTpaWllV7RGz9+PAwNDbFt27anPn/Ao6uT69evh5GRUbVX51QqFUxMTJ7JMZ+X+/fvIzAwEKtXr4a5uXmFzxMSEqBWq5GdnQ1nZ2e0adMGI0aMwK+//iq16d69O7S0tBATE4OysjKoVCr885//xODBg6GjowMA6N27N3799Vd8//33EELg999/x86dOzFkyJAGGysRETWuppyhmJ+eHvPTi5+ftBu7ACKil4EoVSPnsxONcmzLiD6QyZvVa18hBH744Qfs378fvr6+2L17N44fP44+ffoAePR9dWtra+zevRvDhw/HjRs3MGzYMLi6ugIA7OzspL7Kg4KZmRmMjY0BAH/++Se2bNmCrVu3YtCgQQCAmJgYWFpaVqjl1VdfxfTp06X3ISEhGDVqlPQ8AAcHB6xYsQLu7u5Ys2YNrKyssGLFCnz88ceYP38+evToAQ8PD4waNUqqKz09HUZGRrCwsKhwPLlcDjs7O6Snp9fr3JWLj4/HyJEjcf/+fVhYWCAhIQGtWrWqtO3169excuVKREVFPdUxn7ePPvoIffr0QUBAQKWf//zzz1Cr1Vi4cCGWL18OIyMjfPrpp/D09MSFCxcgl8tha2uLAwcOYMSIERg/fjzKysrQu3dvfP/991I/ffv2RWxsLN5++208ePAADx8+hJ+fH7+WR0T0EmmKGYr5ifmpMsxPleOdUkREVEF8fDwMDQ2hp6cHX19fvP322xgzZgy0tbXRq1cvqV3Lli3h5OSEK1euAAAmT56MyMhI9O3bF+Hh4bhw4UK1x/n5559RWlqKnj17StuMjIzg5ORUoW2PHj003p8/fx6bN2+GoaGh9PL29oZarUZmZiaAR1ceb968idjYWPTu3Rs7duxAx44dkZCQUOtzIZfLa2wTGxurUUdiYqL0mYeHB1JTU3HixAn4+PhgxIgRuHXrVoU+srOz4ePjg+HDh2t85//xfkNDQ2tVc2JiosZ+sbGxtdqvNuLi4vDjjz/iq6++qrKNWq1GaWkpVqxYAW9vb7i5uWHbtm24du0aDh06BAC4efMmxo0bh+DgYJw+fRpHjhyBXC7HW2+9JV2Zvnz5MqZMmYLPPvsMZ8+exX/+8x9kZWVJ5+F5jpOIiKiumJ/+h/lJE/NT1XinFBFRA5DpaMEyok+jHbuuPDw8sGbNGsjlclhaWkJbWxtxcXE17hcSEgJvb2/s3bsXBw4cwKJFixAdHY1JkybVp3QNBgYGGu8LCgowfvx4TJ48uULbtm3bSn9WKpXw8/ODn58fIiMj4e3tjcjISHh6esLBwQEqlQo5OTkVri6WlJQgIyND4+GSVfH399cIm1ZWVhp129vbw97eHm5ubnBwcMDGjRsxe/ZsqU1OTg48PDzQp08frF+/XqPvx1dvad68eY21AI8C6OP7tW7dulb71caPP/6IjIwM6WptuWHDhqF///44fPiwdOXUxcVF+tzU1BStWrXCjRs3AACrV6+GkZERlixZIrX517/+BWtrayQnJ8PNzQ2LFi1C3759MXPmTABA586dYWBggP79+yMyMvK5jpOIiP4amlKGYn5ifqoK81PVOClFRNQAZDJZvb9C1xjKg8DjnJ2d8fDhQyQnJ0u3n9+5cwdpaWkavzytra0RGhqK0NBQzJ49Gxs2bMCkSZOkK2aPP5/Azs4OOjo6OH36tBSEVCoV0tPTMWDAgGpr7NatGy5fvlyhzurIZDJ06NABJ048+hrAW2+9hbCwMERHRyM6Olqj7dq1a3H//n2MHj26xn6VSiWUSmWtalCr1SguLpbeZ2dnw8PDA927d0dMTAy0tDQDcF3GV06hUNRrv9qYNWsWQkJCNLa5urpi2bJl8PPzA/DotnHg0fMv2rRpAwC4e/cu8vLyYGNjA+DRcxWeHGuzZo/+jajVaqmNtrZ2pW2EEM91nERE9NfQlDIU8xPzU1WYn6rGSSkiIqoVBwcHBAQEYNy4cVi3bh2USiVmzZoFKysr6bvxU6dOha+vLxwdHfHHH3/g0KFDcHZ2BgDY2NhAJpMhPj4eQ4YMgUKhgFKpRHBwMGbOnAkTExOYmZkhPDwcWlpaVS6VWy4sLAxubm6YOHEiQkJCYGBggMuXLyMhIQGrVq1CamoqwsPDERQUBBcXF8jlchw5cgSbNm1CWFgYgEdXBJcsWYIZM2ZAT08PQUFB0NHRwZ49ezBnzhxERkaiU6dOGsdNS0urUEvHjh2lh0uWKywsxIIFC+Dv7w8LCwvk5eVh9erVyM7OxvDhwwE8ClQDBw6EjY0NoqKipKWOAVT6AMzHlV/hKigowO3bt5Gamgq5XK4RcJ9UUFCA69evS+8zMzORmpoKExMTKdTevXsXN27cQE5OjsZ4zc3NNV5Patu2LWxtbQE8Wso5ICAAU6ZMwfr169G8eXPMnj0bHTp0gIeHBwBg6NChWLZsGSIiIvDOO+/gzz//xJw5c2BjY4OuXbsCAPz8/DBu3DisWbMG3t7eyM3NxdSpU9GzZ89Kn5tRl3ESERE1BOanR5ifmJ+qVOs1AV9AXNKYiJ6XF21J43LlSxobGRkJhUIhvL29NZY0njhxomjfvr3Q1dUVpqamIigoSOTl5UmfR0RECHNzcyGTyapd0rhnz55i1qxZ0n42NjZi2bJlFeo5deqU8PT0FIaGhsLAwEB07txZLFiwQAghxO3bt8XkyZNFp06dhKGhoVAqlcLV1VVERUVpLKMrhBC7d+8W/fv3FwYGBtKSy9u2bdNoU9myzOWvX3/9tUJtRUVF4o033hCWlpZCLpcLCwsL4e/vL06dOiW1iYmJqbLPmlS2j42NTbX7HDp0qNL9yn8W1dUUHh5ebS1PLhusUqnE+++/L4yNjYWJiYl44403xI0bNzTabNu2TXTt2lUYGBgIU1NT4e/vL65cuaLRZsWKFcLFxUUoFAphYWEhRo0aJX777benHueTnsWSxi8Lng8iel6Yn5ifmJ9evvwkE+IZrBXeROXn58PIyAgqlarW3zMlIqqNBw8eIDMzE7a2ttDT02vscpqUwsJCWFlZITo6GmPHjm3w49+9exeDBg1C8+bNsW/fPujr6zd4DdTwqvs3y7ygieeDiJ4X5qf6Y36ixvAs8hNX3yMiokaVkpKCbdu2ISMjA+fOncOoUaMAoMrlcp83ExMTHDx4EIMGDUJSUlKj1EBERERUHeYnelHwmVJERNTooqKikJaWBrlcju7duyMxMRGtWrVqtHpatmyJzz77rNGOT0RERFQT5id6EXBSioiIGlXXrl1x9uzZxi6DiIiIqMlgfqIXBb++R0REREREREREDY6TUkRERERERERE1OA4KUVERERERERERA2Ok1JERERERERERNTgOClFREREREREREQNjpNSRERERERERETU4DgpRUREREREREREDY6TUkREpGHMmDGQyWSQyWSQy+Wwt7dHREQEHj58+FT9Hj58GDKZDPfu3Xs2hdZCZmYmAgMDYWlpCT09PbRp0wYBAQG4evWqRrv4+Hi4u7tDqVRCX18fr7zyCjZv3qzRJisrCzKZDKmpqbU+/rx589ChQwcYGBigRYsWGDx4MJKTkzX6HDt2LGxtbaFQKNC+fXuEh4ejpKSk2n5zc3MRGBgIR0dHaGlpYerUqbWq5+jRo/Dz84OlpSVkMhl2795d55oBYMGCBejTpw/09fVhbGxc6bFu3LiBoUOHQl9fH2ZmZpg5c6bG36HH/549/urYsaPUZtGiRXjllVegVCphZmaG119/HWlpaTWOszb1ERERPUvMT8xPzE/1w0kpIiKqwMfHB7m5ubh27RqmT5+OefPm4csvv2zssiQ1hQ4AKC0thaenJ1QqFXbt2oW0tDRs374drq6uGsFu5cqVCAgIQN++fZGcnIwLFy5g5MiRCA0NxYwZM56qTkdHR6xatQoXL17EsWPH0K5dO3h5eeH27dsAgKtXr0KtVmPdunW4dOkSli1bhrVr12LOnDnV9ltcXAxTU1N8+umn6NKlS63rKSwsRJcuXbB69ep61ww8Ov/Dhw/Hhx9+WGkfZWVlGDp0KEpKSnDixAls2bIFmzdvxmeffSa1Wb58OXJzc6XXr7/+ChMTEwwfPlxqc+TIEUyYMAEnT55EQkICSktL4eXlhcLCwmrHWVN9REREzwPzE/MT81M9iJeYSqUSAIRKpWrsUojoBVNUVCQuX74sioqKGruUOgsODhYBAQEa2zw9PYWbm5u4e/euCAoKEsbGxkKhUAgfHx+Rnp4utcvKyhKvvfaaMDY2Fvr6+sLFxUXs3btXZGZmCgAar+DgYCGEEPn5+SIwMFDo6+sLc3NzsXTpUuHu7i6mTJki9WtjYyMiIiJEUFCQUCqV0r6JiYmiX79+Qk9PT7Rp00ZMmjRJFBQUCCGESElJEQBEVlZWlWO9ceOG0NHREdOmTavw2YoVKwQAcfLkSSGEkMaQkpJS95P6X+W/dw4ePFhlmyVLlghbW9ta9/nkuaotAOK7776rsV11NcfExAgjI6MK27///nuhpaUlbt68KW1bs2aNaN68uSguLq70ON99952QyWTV/rxu3bolAIgjR47UWHd19VWmun+zzAuaeD6I6HlhfmJ+qgzz04udn3inFBFRAxBCoKSkpFFeQoinrl+hUKCkpARjxozBmTNnEBcXh6SkJAghMGTIEJSWlgIAJkyYgOLiYhw9ehQXL17E4sWLYWhoCGtra3z77bcAgLS0NOTm5mL58uUAgGnTpuH48eOIi4tDQkICEhMTce7cuQo1REVFoUuXLkhJScHcuXORkZEBHx8fDBs2DBcuXMD27dtx7NgxTJw4EQBgamoKLS0t7Ny5E2VlZZWOa+fOnSgtLa30it748eNhaGiIbdu2PfX5Ax5dfVq/fj2MjIyqvTqnUqlgYmLyTI75tGpb85OSkpLg6uqK1q1bS9u8vb2Rn5+PS5cuVbrPxo0bMXjwYNjY2FTZr0qlAoC/zPkhIqLnrylnKOanp8f89OLnJ+3GLoCI6GVQWlqKhQsXNsqx58yZA7lcXq99hRD44YcfsH//fvj6+mL37t04fvw4+vTpAwCIjY2FtbU1du/ejeHDh+PGjRsYNmwYXF1dAQB2dnZSX+W/CM3MzKTvqf/555/YsmULtm7dikGDBgEAYmJiYGlpWaGWV199FdOnT5feh4SEYNSoUdLzABwcHLBixQq4u7tjzZo1sLKywooVK/Dxxx9j/vz56NGjBzw8PDBq1CiprvT0dBgZGcHCwqLC8eRyOezs7JCenl6vc1cuPj4eI0eOxP3792FhYYGEhAS0atWq0rbXr1/HypUrERUV9VTHfFp1qbkyN2/e1AhUAKT3N2/erNA+JycH+/btw9atW6vsU61WY+rUqejbty86depU61qIiKhpa4oZivmJ+Yn5qfZ4pxQREVUQHx8PQ0ND6OnpwdfXF2+//TbGjBkDbW1t9OrVS2rXsmVLODk54cqVKwCAyZMnIzIyEn379kV4eDguXLhQ7XF+/vlnlJaWomfPntI2IyMjODk5VWjbo0cPjffnz5/H5s2bYWhoKL28vb2hVquRmZkJ4NGVx5s3byI2Nha9e/fGjh070LFjRyQkJNT6XNQmjMbGxmrUkZiYKH3m4eGB1NRUnDhxAj4+PhgxYgRu3bpVoY/s7Gz4+Phg+PDhGDdunLT98X5DQ0NrVXNiYqLGfrGxsbXar641PytbtmyBsbExXn/99SrbTJgwAT/99BO+/vpraVtoaKjGOImIiBoT89P/MD8xP9UW75QiImoAOjo6NT588Xkeu648PDywZs0ayOVyWFpaQltbG3FxcTXuFxISAm9vb+zduxcHDhzAokWLEB0djUmTJtWndA0GBgYa7wsKCjB+/HhMnjy5Qtu2bdtKf1YqlfDz84Ofnx8iIyPh7e2NyMhIeHp6wsHBASqVCjk5ORWuLpaUlCAjIwPe3t411ubv768RNq2srDTqtre3h729Pdzc3ODg4ICNGzdi9uzZUpucnBx4eHigT58+WL9+vUbfj69W07x58xprAR4F0Mf3e/KqW01qU3N1zM3NcerUKY1tv//+u/TZ44QQ2LRpE4KCgqoMsBMnTkR8fDyOHj2KNm3aSNsjIiKe+mGqRET019aUMhTzE/MT81PdcVKKiKgBlC8P3FSU/1J9nLOzMx4+fIjk5GTp9vM7d+4gLS0NLi4uUjtra2uEhoYiNDQUs2fPxoYNGzBp0iRp/I8/n8DOzg46Ojo4ffq0FIRUKhXS09MxYMCAamvs1q0bLl++XKHO6shkMnTo0AEnTpwAALz11lsICwtDdHQ0oqOjNdquXbsW9+/fx+jRo2vsV6lUQqlU1qoGtVqN4uJi6X12djY8PDzQvXt3xMTEQEtL8ybmuoyvnEKhqNd+VXmy5pr07t0bCxYswK1bt2BmZgYASEhIQPPmzTX+rgCPVoi5fv06xo4dW6EfIQQmTZqE7777DocPH4atra3G52ZmZlL/RET0YmpKGYr5ifnpccxPtcNJKSIiqhUHBwcEBARg3LhxWLduHZRKJWbNmgUrKysEBAQAAKZOnQpfX184Ojrijz/+wKFDh+Ds7AwAsLGxgUwmQ3x8PIYMGQKFQgGlUong4GDMnDkTJiYmMDMzQ3h4OLS0tCCTyaqtJywsDG5ubpg4cSJCQkJgYGCAy5cvIyEhAatWrUJqairCw8MRFBQEFxcXyOVyHDlyBJs2bUJYWBiAR1cElyxZghkzZkBPTw9BQUHQ0dHBnj17MGfOHERGRlb4/n1aWlqFWjp27FjhamphYSEWLFgAf39/WFhYIC8vD6tXr0Z2dra0bG92djYGDhwIGxsbREVFaSwb/OQVsSeVX8krKCjA7du3kZqaCrlcXiG0PK6goADXr1+X3mdmZiI1NRUmJiZo27ZtrWoGgBs3buDu3bu4ceMGysrKpFrs7e1haGgILy8vuLi4ICgoCEuWLMHNmzfx6aefYsKECdDV1dWoaePGjejVq1elzzmYMGECtm7dij179kCpVErPUzAyMoJCoahynDXVR0RE1FCYnx5hfmJ+qlKt1vl7QXFJYyJ6Xl60JY3LlS9pbGRkJBQKhfD29tZY0njixImiffv2QldXV5iamoqgoCCRl5cnfR4RESHMzc2FTCardknjnj17ilmzZkn72djYiGXLllWo59SpU8LT01MYGhoKAwMD0blzZ7FgwQIhhBC3b98WkydPFp06dRKGhoZCqVQKV1dXERUVJcrKyjT62b17t+jfv78wMDCQllzetm2bRpvKlmUuf/36668VaisqKhJvvPGGsLS0FHK5XFhYWAh/f39x6tQpqU1MTEyVfdaksn1sbGyq3efQoUOV7lf+s6hNzUI8+jtSWT+HDh2S2mRlZQlfX1+hUChEq1atxPTp00VpaalGP/fu3RMKhUKsX7++1mMEIGJiYqodZ23qe9KzWNL4ZcHzQUTPC/MT8xPz08uXn2T/LfqllJ+fDyMjI6hUqlp/z5SIqDYePHiAzMxM2NraQk9Pr7HLaVIKCwthZWWF6OjoSm9Jft7u3r2LQYMGoXnz/8/enYdFdd7tA78HYZwBhkEUZEAkILigSFyiIBpCFAdMkKTGJVLERqm0bsQlqG3EUIxRQRvUouZn0PctGqsxhOIWTFxQiRqFaEQhEiiKuMchArI+vz94OXXC6gYR7891zVXnnOc85/scNNw922OGvXv3wtjYuMVroJbX2L9Z5gV9PB5E9LQwPz065idqDU8iP3H2PSIialXp6enYtm0bcnJycObMGQQGBgKAdEt7S7OwsMCBAwcwfPhwpKWltUoNRERERI1hfqK2gu+UIiKiVhcdHY2srCzI5XIMGDAAqamp6NSpU6vV07FjRyxevLjV9k9ERETUFOYnagt4UoqIiFpVv379cPr06dYug4iIiOiZwfxEbQUf3yMiIiIiIiIiohbHk1JERERERERERNTieFKKiIiIiIiIiIhaHE9KERERERERERFRi+NJKSIiIiIiIiIianE8KUVERERERERERC2OJ6WIiIiIiIiIiKjF8aQUERHpmTx5MmQyGWQyGeRyOZycnBAZGYnKysrH6vfQoUOQyWS4e/fukym0GXJzczFx4kTY2NhAoVCgS5cuCAgIwMWLF/XaJScnw8vLCyqVCsbGxnjppZewefNmvTZ5eXmQyWTIyMho9v6XLFmCnj17wsTEBB06dMCIESNw4sQJvT6nTJkCBwcHKJVKdOvWDRERESgvL2+y74SEBLi5ucHY2BgajQbvvPMObt++3eg2R44cgb+/P2xsbCCTyZCYmFhvuwsXLmD06NFQq9UwMTHBSy+9hPz8fGn9tGnT0K1bNyiVSlhaWtZ7TE+dOoXhw4fD3NwcHTp0gFarxffff1/v/i5dugSVSgVzc/Mmx93cMRAREbUk5ifmJ+anR8OTUkREVIevry8KCwvx448/Yu7cuViyZAlWrlzZ2mVJmhM6Kioq4OPjA51Oh127diErKwvbt2+Hq6urXrBbs2YNAgIC4OnpiRMnTuDs2bOYMGECQkNDMW/evMeqs3v37li7di3OnTuHo0eP4oUXXsDIkSNx8+ZNAMDFixdRXV2NDRs24Pz581i9ejXWr1+PRYsWNdrvsWPHMGnSJEyZMgXnz5/Hjh07cPLkSYSEhDS6XXFxMdzc3LBu3boG2+Tk5GDo0KHo2bMnDh06hLNnz+L999+HQqGQ2gwYMADx8fG4cOEC9u/fDyEERo4ciaqqKgDAvXv34Ovri65du+LEiRM4evQoVCoVtFotKioq9PZXUVGBt99+G8OGDWu09ocZAxERUWtgfmJ+Yn56BOI5ptPpBACh0+lauxQiamNKS0tFZmamKC0tbe1SHlpwcLAICAjQW+bj4yPc3d3FnTt3RFBQkDA3NxdKpVL4+vqK7OxsqV1eXp54/fXXhbm5uTA2NhYuLi5i9+7dIjc3VwDQ+wQHBwshhCgqKhITJ04UxsbGwtraWqxatUp4eXmJ2bNnS/3a29uLyMhIERQUJFQqlbRtamqqGDp0qFAoFKJLly5i5syZ4t69e0IIIdLT0wUAkZeX1+BY8/PzhZGRkZgzZ06ddbGxsQKA+Pbbb4UQQhpDenr6wx/U/1P7e+fAgQMNtlmxYoVwcHBotJ+VK1cKR0fHOvXa2to2uxYA4osvvqizfPz48eL3v/99s/sRQojvv/9eABCXLl0SQghx6tQpAUDk5+dLbc6ePSsAiB9//FFv2/fee0/8/ve/F/Hx8UKtVj/Ufhsaw6No7N8s84I+Hg8ielqYn5if6sP81LbzE++UIiJqAUIIVFWVtMqn5nfP41EqlSgvL8fkyZPx3XffISkpCWlpaRBCYNSoUdLVm+nTp6OsrAxHjhzBuXPnsHz5cpiamsLOzg6ff/45ACArKwuFhYX4+OOPAQBz5szBsWPHkJSUhJSUFKSmpuLMmTN1aoiOjoabmxvS09Px/vvvIycnB76+vhgzZgzOnj2L7du34+jRo5gxYwYAwNLSEgYGBti5c6d0BerXdu7ciYqKinqv6E2bNg2mpqbYtm3bYx8/oObq5MaNG6FWq+Hm5tZgO51OBwsLi0b78vDwwOXLl7Fnzx4IIXD9+nXs3LkTo0aNeqwaq6ursXv3bnTv3h1arRZWVlYYPHhwo7d4FxcXIz4+Hg4ODrCzswMA9OjRAx07dsSmTZtQXl6O0tJSbNq0Cb169cILL7wgbfvNN99gx44dv82rdkRE9JvwLGco5qfHx/zU9vOTYWsXQET0PKiuLsWhw66tsu9XvM6hXTvjR9pWCIGvv/4a+/fvh5+fHxITE3Hs2DEMGTIEQM1z+XZ2dkhMTMTYsWORn5+PMWPGwNW1ZqyOjo5SX7VBwcrKSnr2/ZdffsGWLVuwdetWDB8+HAAQHx8PGxubOrW8+uqrmDt3rvR96tSpCAwMRFhYGADA2dkZsbGx8PLyQlxcHGxtbREbG4v33nsPH3zwAQYOHAhvb28EBgZKdWVnZ0OtVkOj0dTZn1wuh6OjI7Kzsx/p2NVKTk7GhAkTUFJSAo1Gg5SUFHTq1KnetpcuXcKaNWsQHR3daJ+enp5ISEjA+PHjcf/+fVRWVsLf3/+xw8mNGzdw7949fPTRR4iKisLy5cuxb98+/O53v8PBgwfh5eUltf3HP/6B9957D8XFxejRowdSUlIgl8sBACqVCocOHcIbb7yBv/3tbwBqfj779++HoWFN9Lh9+zYmT56Mf/7znzAzM3usuomIqO16FjMU8xPzE/NT8/FOKSIiqiM5ORmmpqZQKBTw8/PD+PHjMXnyZBgaGmLw4MFSu44dO6JHjx64cOECAGDWrFmIioqCp6cnIiIicPbs2Ub389NPP6GiogKDBg2SlqnVavTo0aNO24EDB+p9//7777F582aYmppKH61Wi+rqauTm5gKoufJ47do1JCQkwMPDAzt27EDv3r2RkpLS7GNRGxQak5CQoFdHamqqtM7b2xsZGRk4fvw4fH19MW7cONy4caNOHwUFBfD19cXYsWP13m3wYL+hoaEAgMzMTMyePRuLFy/G6dOnsW/fPuTl5UnrU1NT9bZLSEho1lirq6sBAAEBAXj33Xfx4osvYsGCBXj99dexfv16vbaBgYFIT0/H4cOH0b17d4wbNw73798HAJSWlmLKlCnw9PTEt99+i2PHjqFPnz547bXXUFpaCgAICQnBxIkT8fLLL9dby6OOgYiIqLUwP/0X8xPzU3PxTikiohZgYKDEK17nWm3fD8vb2xtxcXGQy+WwsbGBoaEhkpKSmtxu6tSp0Gq12L17N7766issW7YMMTExmDlz5qOUrsfExETv+7179zBt2jTMmjWrTtuuXbtKf1apVPD394e/vz+ioqKg1WoRFRUFHx8fODs7Q6fT4erVq3WuLpaXlyMnJwdarbbJ2kaPHq0XNm1tbfXqdnJygpOTE9zd3eHs7IxNmzZh4cKFUpurV6/C29sbQ4YMwcaNG/X6fnC2mtorYsuWLYOnpyfmz58PAOjbty9MTEwwbNgwREVFYeDAgXrbde7cuckxAECnTp1gaGgIFxcXveW9evXC0aNH9Zap1Wqo1Wo4OzvD3d0dHTp0wBdffIG3334bW7duRV5eHtLS0mBgUHP9a+vWrejQoQO+/PJLTJgwAd988w2SkpKkq5pCCFRXV8PQ0BAbN27E22+//UhjICKituVZylDMT8xPD2J+ah6elCIiagEymeyRH6FrDbVB4EG9evVCZWUlTpw4Id1+fvv2bWRlZen9Erazs0NoaChCQ0OxcOFCfPLJJ5g5c6Z0xezB9xM4OjrCyMgIp06dkoKQTqdDdnZ2g1eAavXv3x+ZmZl16myMTCZDz549cfz4cQDAW2+9hfDwcMTExCAmJkav7fr161FSUoJJkyY12a9KpYJKpWpWDdXV1SgrK5O+FxQUwNvbW5qRpTaE1KpvfCUlJdJt3LXatWsHoCacKJXKhzouteRyOV566SVkZWXpLc/Ozoa9vX2D2wkhIISQxlVSUgIDAwPIZDKpTe332quJaWlpen8XvvzySyxfvhzHjx+Hra3tI4+BiIjalmcpQzE/MT89iPmpeXhSioiImsXZ2RkBAQEICQnBhg0boFKpsGDBAtja2iIgIAAAEBYWBj8/P3Tv3h0///wzDh48iF69egEA7O3tIZPJkJycjFGjRkGpVEKlUiE4OBjz58+HhYUFrKysEBERUecXcn3Cw8Ph7u6OGTNmYOrUqTAxMUFmZiZSUlKwdu1aZGRkICIiAkFBQXBxcYFcLsfhw4fx6aefIjw8HEDNFcEVK1Zg3rx5UCgUCAoKgpGREb788kssWrQIUVFR6NOnj95+fx04AKB3794wMjLSW1ZcXIylS5di9OjR0Gg0uHXrFtatW4eCggKMHTsWQE2geuWVV2Bvb4/o6GhpqmMAsLa2bnDs/v7+CAkJQVxcHLRaLQoLCxEWFoZBgwbV+z6JWvfu3cOlS5ek77m5ucjIyICFhYUUaufPn4/x48fj5Zdfhre3N/bt24d///vfOHToEICaRwa2b9+OkSNHwtLSEleuXMFHH30EpVIpvSjUx8cH8+fPx/Tp0zFz5kxUV1fjo48+gqGhIby9vQFA+ntR67vvvoOBgUGd4/0oYyAiIvqtYH6qwfzE/NSgJzIP4DOKUxoT0dPS1qY0rlU7pbFarRZKpVJotVq9KY1nzJghunXrJtq3by8sLS1FUFCQuHXrlrQ+MjJSWFtbC5lM1uiUxoMGDRILFiyQtrO3txerV6+uU8/JkyeFj4+PMDU1FSYmJqJv375i6dKlQgghbt68KWbNmiX69OkjTE1NhUqlEq6uriI6OlpUVVXp9ZOYmCiGDRsmTExMpCmXt23bptemvmmZaz+XL1+uU1tpaal48803hY2NjZDL5UKj0YjRo0eLkydPSm3i4+Mb7LMpsbGxwsXFRSiVSqHRaERgYKC4cuVKo9scPHiw3n3V/ixqbdq0STg5OQmFQiHc3NxEYmKitK6goED4+fkJKysrYWRkJLp06SImTpwoLl68qNfHV199JTw9PYVarRYdOnQQr776qkhLS2uwtuZOadzcMTysJzGl8fOCx4OInhbmJ+Yn5qfnLz/JhHgCc4U/o4qKiqBWq6HT6drMm+uJ6Lfh/v37yM3NhYODAxQKRWuX80wpLi6Gra0tYmJiMGXKlBbf/507dzB8+HCYmZlh7969MDZ+Nh4ZoMfT2L9Z5gV9PB5E9LQwPz065idqDU8iP3H2PSIialXp6enYtm0bcnJycObMGQQGBgKAdEt7S7OwsMCBAwcwfPhwpKWltUoNRERERI1hfqK2gu+UIiKiVhcdHY2srCzI5XIMGDAAqamp6NSpU6vV07FjRyxevLjV9k9ERETUFOYnagt4UoqIiFpVv379cPr06dYug4iIiOiZwfxEbQUf3yMiIiIiIiIiohbHk1JERERERERERNTieFKKiIiIiIiIiIhaHE9KERERERERERFRi+NJKSIiIiIiIiIianE8KUVERERERERERC2OJ6WIiIiIiIiIiKjF8aQUERHpmTx5MmQyGWQyGeRyOZycnBAZGYnKysrH6vfQoUOQyWS4e/fukym0GXJzczFx4kTY2NhAoVCgS5cuCAgIwMWLF/XaJScnw8vLCyqVCsbGxnjppZewefNmvTZ5eXmQyWTIyMho9v6XLFmCnj17wsTEBB06dMCIESNw4sQJvT6nTJkCBwcHKJVKdOvWDRERESgvL2+y74SEBLi5ucHY2BgajQbvvPMObt++3eg2cXFx6Nu3L8zMzGBmZgYPDw/s3btXWn/nzh3MnDkTPXr0gFKpRNeuXTFr1izodDqpzebNm6W/H7/+3LhxQ2pXVlaGv/zlL7C3t0f79u3xwgsv4NNPP9Wr5+9//7u0Lzs7O7z77ru4f/9+o2PYtWsXRo4ciY4dOz70z4OIiOhpYX5ifmJ+ejSGrV0AERH99vj6+iI+Ph5lZWXYs2cPpk+fDiMjIyxcuLC1SwMAlJeXQy6XN9qmoqICPj4+6NGjB3bt2gWNRoMrV65g7969esFuzZo1CAsLQ3h4OOLi4iCXy/Hll18iNDQUP/zwA6Kjox+5zu7du2Pt2rVwdHREaWkpVq9ejZEjR+LSpUuwtLTExYsXUV1djQ0bNsDJyQk//PADQkJCUFxc3Oh+jx07hkmTJmH16tXw9/dHQUEBQkNDERISgl27djW4XZcuXfDRRx/B2dkZQghs2bIFAQEBSE9PR+/evXH16lVcvXoV0dHRcHFxwX/+8x+Ehobi6tWr2LlzJwBg/Pjx8PX11et38uTJuH//PqysrKRl48aNw/Xr17Fp0yY4OTmhsLAQ1dXV0vqtW7diwYIF+PTTTzFkyBBkZ2dLgX7VqlUNjqG4uBhDhw7FuHHjEBIS0uTPgIiIqKUwPzE/MT89AvEc0+l0AoDQ6XStXQoRtTGlpaUiMzNTlJaWtnYpDy04OFgEBAToLfPx8RHu7u7izp07IigoSJibmwulUil8fX1Fdna21C4vL0+8/vrrwtzcXBgbGwsXFxexe/dukZubKwDofYKDg4UQQhQVFYmJEycKY2NjYW1tLVatWiW8vLzE7NmzpX7t7e1FZGSkCAoKEiqVSto2NTVVDB06VCgUCtGlSxcxc+ZMce/ePSGEEOnp6QKAyMvLa3Cs+fn5wsjISMyZM6fOutjYWAFAfPvtt0IIIY0hPT394Q/q/6n9vXPgwIEG26xYsUI4ODg02s/KlSuFo6NjnXptbW0fuqYOHTqI//f//l+D6//1r38JuVwuKioq6l1/48YNYWRkJP7nf/5HWrZ3716hVqvF7du3G+x3+vTp4tVXX9VbNmfOHOHp6dmsup/Ez+NBjf2bZV7Qx+NBRE8L8xPzU32Yn/6rLeYnPr5HRNQChBAorqpqlY8Q4rHrVyqVKC8vx+TJk/Hdd98hKSkJaWlpEEJg1KhRqKioAABMnz4dZWVlOHLkCM6dO4fly5fD1NQUdnZ2+PzzzwEAWVlZKCwsxMcffwwAmDNnDo4dO4akpCSkpKQgNTUVZ86cqVNDdHQ03NzckJ6ejvfffx85OTnw9fXFmDFjcPbsWWzfvh1Hjx7FjBkzAACWlpYwMDDAzp07UVVVVe+4du7ciYqKCsybN6/OumnTpsHU1BTbtm177OMH1Fyd3LhxI9RqNdzc3Bpsp9PpYGFh0WhfHh4euHz5Mvbs2QMhBK5fv46dO3di1KhRza6nqqoKn332GYqLi+Hh4dFoPWZmZjA0rP/m6v/5n/+BsbEx3nrrLWlZUlISBg4ciBUrVsDW1hbdu3fHvHnzUFpaKrUZMpnwUqQAAQAASURBVGQITp8+jZMnTwIAfvrpJ+zZs+ehxkBERG3fs5yhmJ8eH/NT289PfHyPiKgFlFRXo9uRc62y75yXXWHSrt0jbSuEwNdff439+/fDz88PiYmJOHbsGIYMGQKg5rl8Ozs7JCYmYuzYscjPz8eYMWPg6uoKAHB0dJT6qg0KVlZWMDc3BwD88ssv2LJlC7Zu3Yrhw4cDAOLj42FjY1OnlldffRVz586Vvk+dOhWBgYEICwsDADg7OyM2NhZeXl6Ii4uDra0tYmNj8d577+GDDz7AwIED4e3tjcDAQKmu7OxsqNVqaDSaOvuTy+VwdHREdnb2Ix27WsnJyZgwYQJKSkqg0WiQkpKCTp061dv20qVLWLNmTZO3vHt6eiIhIQHjx4/H/fv3UVlZCX9/f6xbt67Jes6dOwcPDw/cv38fpqam+OKLL+Di4lJv21u3buFvf/sb/vjHPzbY36ZNmzBx4kQolUpp2U8//YSjR49CoVDgiy++wK1bt/DnP/8Zt2/fRnx8PABg4sSJuHXrFoYOHQohBCorKxEaGopFixY1OQYiInp+PIsZivmJ+Yn5qfl4pxQREdWRnJwMU1NTKBQK+Pn5Yfz48Zg8eTIMDQ0xePBgqV3Hjh3Ro0cPXLhwAQAwa9YsREVFwdPTExERETh79myj+/npp59QUVGBQYMGScvUajV69OhRp+3AgQP1vn///ffYvHkzTE1NpY9Wq0V1dTVyc3MB1Fx5vHbtGhISEuDh4YEdO3agd+/eSElJafaxaOrdC0BNuHywjtTUVGmdt7c3MjIycPz4cfj6+mLcuHF6L7SsVVBQAF9fX4wdO1bvWf8H+w0NDQUAZGZmYvbs2Vi8eDFOnz6Nffv2IS8vT1qfmpqqt11CQoLUX48ePZCRkYETJ07gT3/6E4KDg5GZmVmnnqKiIrz22mtwcXHBkiVL6h13WloaLly4gClTpugtr66uhkwmQ0JCAgYNGoRRo0Zh1apV2LJli3S179ChQ/jwww/xj3/8A2fOnMGuXbuwe/du/O1vf2vymBIREf0WMT/9F/MT81Nz8U4pIqIWYGxggJyXXVtt3w/L29tbemmljY0NDA0NkZSU1OR2U6dOhVarxe7du/HVV19h2bJliImJwcyZMx+ldD0mJiZ63+/du4dp06Zh1qxZddp27dpV+rNKpYK/vz/8/f0RFRUFrVaLqKgo+Pj4wNnZGTqdDlevXq1zdbG8vBw5OTnQarVN1jZ69Gi9sGlra6tXt5OTE5ycnODu7g5nZ2ds2rRJ76WnV69ehbe3N4YMGYKNGzfq9f3g7ChmZmYAgGXLlsHT0xPz588HAPTt2xcmJiYYNmwYoqKiMHDgQL3tOnfuLP25dkYgABgwYABOnTqFjz/+GBs2bJDa/PLLL/D19YVKpcIXX3wBIyOjesf9//7f/8OLL76IAQMG6C3XaDSwtbWFWq2WlvXq1QtCCFy5cgXOzs54//33ERQUhKlTpwIAXF1dUVxcjD/+8Y/4y1/+0ugxJSKi58ezlKGYn5ifmJ8eHk9KERG1AJlM9siP0LWG2iDwoF69eqGyshInTpyQbj+/ffs2srKy9G5ftrOzQ2hoKEJDQ7Fw4UJ88sknmDlzpnTF7MH3Ezg6OsLIyAinTp2SgpBOp0N2djZefvnlRmvs378/MjMz69TZGJlMhp49e+L48eMAgLfeegvh4eGIiYlBTEyMXtv169ejpKQEkyZNarJflUoFlUrVrBqqq6tRVlYmfS8oKIC3tzcGDBiA+Ph4GPwqANc3vpKSkjrvKGj3f3+/hBBQKpXNPi6/rqeoqAharRbt27dHUlISFApFvdvdu3cP//rXv7Bs2bI66zw9PbFjxw7cu3cPpqamAGpu9TcwMECXLl2kMfx6rA+O4WGOKRERtV3PUoZifmJ+Yn56eDwpRUREzeLs7IyAgACEhIRgw4YNUKlUWLBgAWxtbREQEAAACAsLg5+fH7p3746ff/4ZBw8eRK9evQAA9vb2kMlkSE5OxqhRo6BUKqFSqRAcHIz58+fDwsICVlZWiIiIgIGBAWQyWaP1hIeHw93dHTNmzMDUqVNhYmKCzMxMpKSkYO3atcjIyEBERASCgoLg4uICuVyOw4cP49NPP0V4eDiAmiuCK1aswLx586BQKBAUFAQjIyN8+eWXWLRoEaKiotCnTx+9/WZlZdWppXfv3nWuhhUXF2Pp0qUYPXo0NBoNbt26hXXr1qGgoABjx44FUBOoXnnlFdjb2yM6Oho3b96Utre2tm5w7P7+/ggJCUFcXBy0Wi0KCwsRFhaGQYMG1fs+iVoLFy6En58funbtil9++QVbt27FoUOHsH//fgA1gWrkyJEoKSnBP//5TxQVFaGoqAhAzYtP2z3wfwq2b9+OyspK/P73v6+zn4kTJ+Jvf/sb/vCHP+CDDz7ArVu3MH/+fLzzzjvSuxP8/f2xatUq9OvXD4MHD8alS5fw/vvvw9/fX28/v3bnzh3k5+fj6tWrAP7787C2tm70mBEREbUG5qcazE81mJ/q8UTmAXxGcUpjInpa2tqUxrVqpzRWq9VCqVQKrVarN6XxjBkzRLdu3UT79u2FpaWlCAoKErdu3ZLWR0ZGCmtrayGTyRqd0njQoEFiwYIF0nb29vZi9erVdeo5efKk8PHxEaampsLExET07dtXLF26VAghxM2bN8WsWbNEnz59hKmpqVCpVMLV1VVER0eLqqoqvX4SExPFsGHDhImJiTTl8rZt2/Ta1Dctc+3n8uXLdWorLS0Vb775prCxsRFyuVxoNBoxevRocfLkSalNfHx8g302JTY2Vri4uAilUik0Go0IDAwUV65caXSbd955R9jb2wu5XC4sLS3F8OHDxVdffSWtP3jwYIP15Obm6vXl4eEhJk6c2OC+Lly4IEaMGCGUSqXo0qWLmDNnjigpKZHWV1RUiCVLlohu3boJhUIh7OzsxJ///Gfx888/NzqGho5ZREREo9s15UlMafy84PEgoqeF+Yn5ifnp+ctPMiGewFzhz6iioiKo1WppukYioifl/v37yM3NhYODQ4O371L9iouLYWtri5iYmDovgGwJd+7cwfDhw2FmZoa9e/fC2Ni4xWugltfYv1nmBX08HkT0tDA/PTrmJ2oNTyI/cfY9IiJqVenp6di2bRtycnJw5swZBAYGAoB0S3tLs7CwwIEDBzB8+HCkpaW1Sg1EREREjWF+oraC75QiIqJWFx0djaysLMjlcgwYMACpqano1KlTq9XTsWNHLF68uNX2T0RERNQU5idqC3hSioiIWlW/fv1w+vTp1i6DiIiI6JnB/ERtBR/fIyIiIiIiIiKiFseTUkRERERERERE1OJ4UoqIiIiIiIiIiFocT0oREREREREREVGL40kpIiIiIiIiIiJqcTwpRURERERERERELY4npYiIiIiIiIiIqMXxpBQREemZPHkyZDIZZDIZ5HI5nJycEBkZicrKysfq99ChQ5DJZLh79+6TKbQZcnNzMXHiRNjY2EChUKBLly4ICAjAxYsX9dolJyfDy8sLKpUKxsbGeOmll7B582a9Nnl5eZDJZMjIyGj2/pcsWYKePXvCxMQEHTp0wIgRI3DixAm9PqdMmQIHBwcolUp069YNERERKC8vb7LvhIQEuLm5wdjYGBqNBu+88w5u377d7No++ugjyGQyhIWF6S3PycnBm2++CUtLS5iZmWHcuHG4fv26XpulS5diyJAhMDY2hrm5eb391/4devDz2WefSet37doFHx8faT8eHh7Yv39/k3Xv2rULI0eORMeOHR/650FERPS0MD8xPzE/PRqelCIiojp8fX1RWFiIH3/8EXPnzsWSJUuwcuXK1i5L0pzQUVFRAR8fH+h0OuzatQtZWVnYvn07XF1d9YLdmjVrEBAQAE9PT5w4cQJnz57FhAkTEBoainnz5j1Wnd27d8fatWtx7tw5HD16FC+88AJGjhyJmzdvAgAuXryI6upqbNiwAefPn8fq1auxfv16LFq0qNF+jx07hkmTJmHKlCk4f/48duzYgZMnTyIkJKRZdZ06dQobNmxA37599ZYXFxdj5MiRkMlk+Oabb3Ds2DGUl5fD398f1dXVUrvy8nKMHTsWf/rTnxrdT3x8PAoLC6XPG2+8Ia07cuQIfHx8sGfPHpw+fRre3t7w9/dHenp6o30WFxdj6NChWL58ebPGSkRE1FKYn5ifmJ8egXiO6XQ6AUDodLrWLoWI2pjS0lKRmZkpSktLW7uUhxYcHCwCAgL0lvn4+Ah3d3dx584dERQUJMzNzYVSqRS+vr4iOztbapeXlydef/11YW5uLoyNjYWLi4vYvXu3yM3NFQD0PsHBwUIIIYqKisTEiROFsbGxsLa2FqtWrRJeXl5i9uzZUr/29vYiMjJSBAUFCZVKJW2bmpoqhg4dKhQKhejSpYuYOXOmuHfvnhBCiPT0dAFA5OXlNTjW/Px8YWRkJObMmVNnXWxsrAAgvv32WyGEkMaQnp7+8Af1/9T+3jlw4ECDbVasWCEcHBwa7WflypXC0dGxTr22trZN1vDLL78IZ2dnkZKSUuc479+/XxgYGOj9Xrx7966QyWQiJSWlTl/x8fFCrVbXux8A4osvvmiynge5uLiIDz74oFltn8TP40GN/ZtlXtDH40FETwvzE/NTfZifGves5yfeKUVE1AKEECgpr2yVjxDisetXKpUoLy/H5MmT8d133yEpKQlpaWkQQmDUqFGoqKgAAEyfPh1lZWU4cuQIzp07h+XLl8PU1BR2dnb4/PPPAQBZWVkoLCzExx9/DACYM2cOjh07hqSkJKSkpCA1NRVnzpypU0N0dDTc3NyQnp6O999/Hzk5OfD19cWYMWNw9uxZbN++HUePHsWMGTMAAJaWljAwMMDOnTtRVVVV77h27tyJioqKeq/oTZs2Daampti2bdtjHz+g5urYxo0boVar4ebm1mA7nU4HCwuLRvvy8PDA5cuXsWfPHgghcP36dezcuROjRo1qso7p06fjtddew4gRI+qsKysrg0wmQ/v27aVlCoUCBgYGOHr0aJN917evTp06YdCgQfj0008b/btYXV2NX375pcmxExHR8+VZzlDMT4+P+ant5yfD1i6AiOh5UFpRBZfFTT/v/TRkRmphLH+0/9wLIfD1119j//798PPzQ2JiIo4dO4YhQ4YAqHku387ODomJiRg7dizy8/MxZswYuLq6AgAcHR2lvmp/WVpZWUnP0f/yyy/YsmULtm7diuHDhwOouWXZxsamTi2vvvoq5s6dK32fOnUqAgMDpWf6nZ2dERsbCy8vL8TFxcHW1haxsbF477338MEHH2DgwIHw9vZGYGCgVFd2djbUajU0Gk2d/cnlcjg6OiI7O/uRjl2t5ORkTJgwASUlJdBoNEhJSUGnTp3qbXvp0iWsWbMG0dHRjfbp6emJhIQEjB8/Hvfv30dlZSX8/f2xbt26Rrf77LPPcObMGZw6dare9e7u7jAxMUF4eDg+/PBDCCGwYMECVFVVobCwsHkD/j+RkZF49dVXYWxsjK+++gp//vOfce/ePcyaNave9tHR0bh37x7GjRv3UPshIqK27VnMUMxPzE/MT83HO6WIiKiO5ORkmJqaQqFQwM/PD+PHj8fkyZNhaGiIwYMHS+06duyIHj164MKFCwCAWbNmISoqCp6enoiIiMDZs2cb3c9PP/2EiooKDBo0SFqmVqvRo0ePOm0HDhyo9/3777/H5s2bYWpqKn20Wi2qq6uRm5sLoOZK07Vr15CQkAAPDw/s2LEDvXv3RkpKSrOPhVwub7JNQkKCXh2pqanSOm9vb2RkZOD48ePw9fXFuHHjcOPGjTp9FBQUwNfXF2PHjtV7t8GD/YaGhgIAMjMzMXv2bCxevBinT5/Gvn37kJeXJ61PTU3V2y4hIQGXL1/G7NmzkZCQAIVCUe84LC0tsWPHDvz73/+Gqakp1Go17t69i/79+8PA4OEiw/vvvw9PT0/069cP4eHheO+99xp8r8bWrVvxwQcf4F//+hesrKyaPKZERES/RcxP/8X8xPzUXLxTioioBSiN2iEzUttq+35Y3t7eiIuLg1wuh42NDQwNDZGUlNTkdlOnToVWq8Xu3bvx1VdfYdmyZYiJicHMmTMfpXQ9JiYmet/v3buHadOm1XvlqGvXrtKfVSoV/P394e/vj6ioKGi1WkRFRcHHxwfOzs7Q6XS4evVqnauL5eXlyMnJgVbb9M9t9OjRemHT1tZWr24nJyc4OTnB3d0dzs7O2LRpExYuXCi1uXr1Kry9vTFkyBBs3LhRr+8HZ0cxMzMDACxbtgyenp6YP38+AKBv374wMTHBsGHDEBUVhYEDB+pt17lzZ3z99de4ceMG+vfvLy2vqqrCkSNHsHbtWpSVlaFdu3YYOXIkcnJycOvWLRgaGsLc3BzW1tZ6V20fxeDBg/G3v/0NZWVlere3f/bZZ5g6dSp27Nihd0t8Y8eUiIieH89ShmJ+Yn5ifnp4PClFRNQCZDLZIz9C1xpqg8CDevXqhcrKSpw4cUK6/fz27dvIysqCi4uL1M7Ozg6hoaEIDQ3FwoUL8cknn2DmzJnSFbMH30/g6OgIIyMjnDp1SgpCOp0O2dnZePnllxutsX///sjMzKxTZ2NkMhl69uyJ48ePAwDeeusthIeHIyYmBjExMXpt169fj5KSEkyaNKnJflUqFVQqVbNqqK6uRllZmfS9oKAA3t7eGDBgAOLj4+tcUatvfCUlJTA01P/71K5dTXAWQkCpVNbZbvjw4Th37pzesj/84Q/o2bMnwsPDpe1r1d4i/8033+DGjRsYPXp0s8bXkIyMDHTo0EEvUG3btg3vvPMOPvvsM7z22mt67R/mmBIRUdv1LGUo5ifmJ+anh/ds/OsmIqJW5+zsjICAAISEhGDDhg1QqVRYsGABbG1tERAQAAAICwuDn58funfvjp9//hkHDx5Er169AAD29vaQyWRITk7GqFGjoFQqoVKpEBwcjPnz58PCwgJWVlaIiIiAgYEBZDJZo/WEh4fD3d0dM2bMwNSpU2FiYoLMzEykpKRg7dq1yMjIQEREBIKCguDi4gK5XI7Dhw/j008/RXh4OICaK4IrVqzAvHnzoFAoEBQUBCMjI3z55ZdYtGgRoqKi0KdPH739ZmVl1amld+/eMDIy0ltWXFyMpUuXYvTo0dBoNLh16xbWrVuHgoICjB07FkBNoHrllVdgb2+P6OhoaapjALC2tm5w7P7+/ggJCUFcXBy0Wi0KCwsRFhaGQYMG1fs+CaAmpPx6LCYmJujYsaPe8vj4ePTq1QuWlpZIS0vD7Nmz8e677+o9EpCfn487d+4gPz8fVVVV0lVFJycnmJqa4t///jeuX78Od3d3KBQKpKSk4MMPP9R7IerWrVsRHByMjz/+GIMHD8a1a9cA1LwUVq1WNzj22v1evXoVwH9/HtbW1o0eMyIiotbA/FSD+Yn5qUFPZB7AZxSnNCaip6WtTWlcq3ZKY7VaLZRKpdBqtXpTGs+YMUN069ZNtG/fXlhaWoqgoCBx69YtaX1kZKSwtrYWMpms0SmNBw0aJBYsWCBtZ29vL1avXl2nnpMnTwofHx9hamoqTExMRN++fcXSpUuFEELcvHlTzJo1S/Tp00eYmpoKlUolXF1dRXR0tKiqqtLrJzExUQwbNkyYmJhIUy5v27ZNr0190zLXfi5fvlynttLSUvHmm28KGxsbIZfLhUajEaNHjxYnT56U2sTHxzfYZ1NiY2OFi4uLUCqVQqPRiMDAQHHlypUmt3vQr6c0FkKI8PBw0blzZ2FkZCScnZ1FTEyMqK6u1msTHBxcb80HDx4UQgixd+9e8eKLL0o/Fzc3N7F+/Xq94+7l5VVvH7V/LxrS0DGLiIh4qLH/2pOY0vh5weNBRE8L8xPzE/PT85efZEI8gbnCn1FFRUVQq9XQ6XTSc6ZERE/C/fv3kZubCwcHhwZfikj1Ky4uhq2tLWJiYjBlypQW3/+dO3cwfPhwmJmZYe/evTA2Nm7xGqjlNfZvlnlBH48HET0tzE+PjvmJWsOTyE+cfY+IiFpVeno6tm3bhpycHJw5cwaBgYEAIN3S3tIsLCxw4MABDB8+HGlpaa1SAxEREVFjmJ+orWixk1Lr1q3DCy+8AIVCgcGDB+PkyZONtt+xYwd69uwJhUIBV1dX7NmzR1pXUVGB8PBwuLq6wsTEBDY2Npg0aZL0fCQRET1boqOj4ebmhhEjRqC4uBipqanSiyJbQ8eOHbF48WIMHz681WogqsUMRURE9WF+oragRU5Kbd++HXPmzEFERATOnDkDNzc3aLVa3Lhxo972x48fx9tvv40pU6YgPT0db7zxBt544w388MMPAGremn/mzBm8//77OHPmDHbt2oWsrKzHfrM9ERG1vH79+uH06dO4d+8e7ty5g5SUFLi6urZ2WUS/CcxQRERUH+Ynaita5J1SgwcPxksvvYS1a9cCqJnO0c7ODjNnzsSCBQvqtB8/fjyKi4uRnJwsLXN3d8eLL76I9evX17uPU6dOYdCgQfjPf/4jTYvZFL4TgYieFr4TgejZ8lt9p9RvMUMxPxHR08L8RPRseSbeKVVeXo7Tp09jxIgR/92pgQFGjBjR4LOmaWlpeu0BQKvVNvpsqk6ng0wmg7m5+ROpm4iIiKg1MUMRERFRW2f4tHdw69YtVFVVoXPnznrLO3fujIsXL9a7zbVr1+ptf+3atXrb379/H+Hh4Xj77bcbPQNXVlaGsrIy6XtRUVFzh0FERETUon4rGYr5iYiIiJ6WZ372vYqKCowbNw5CCMTFxTXadtmyZVCr1dLHzs6uhaokIiIi+m1pboZifiIiIqKn5amflOrUqRPatWuH69ev6y2/fv06rK2t693G2tq6We1rw9R//vMfpKSkNPleg4ULF0Kn00mfy5cvP8KIiIiIiJ6+30qGYn4iIiKip+Wpn5SSy+UYMGAAvv76a2lZdXU1vv76a3h4eNS7jYeHh157AEhJSdFrXxumfvzxRxw4cAAdO3Zsspb27dvDzMxM70NERET0W/RbyVDMT0RERPS0PPV3SgHAnDlzEBwcjIEDB2LQoEH4+9//juLiYvzhD38AAEyaNAm2trZYtmwZAGD27Nnw8vJCTEwMXnvtNXz22Wf47rvvsHHjRgA1Yeqtt97CmTNnkJycjKqqKuldCRYWFpDL5S0xLCIiIqKnihmKiIiI2rIWeafU+PHjER0djcWLF+PFF19ERkYG9u3bJ72IMz8/H4WFhVL7IUOGYOvWrdi4cSPc3Nywc+dOJCYmok+fPgCAgoICJCUl4cqVK3jxxReh0Wikz/Hjx1tiSEREbdbkyZMhk8kgk8kgl8vh5OSEyMhIVFZWPla/hw4dgkwmw927d59Moc2Qm5uLiRMnwsbGBgqFAl26dEFAQECdl0QnJyfDy8sLKpUKxsbGeOmll7B582a9Nnl5eZDJZMjIyGj2/pcsWYKePXvCxMQEHTp0wIgRI3DixAm9PqdMmQIHBwcolUp069YNERERKC8vb7LvhIQEuLm5wdjYGBqNBu+88w5u377d5HYFBQX4/e9/j44dO0KpVMLV1RXfffedtP7Bn3/tx9fXV6+PF154oU6bjz76SFqflZUFb29vdO7cGQqFAo6OjvjrX/+KiooKvX7u3r2L6dOnQ6PRoH379ujevTv27NnTaP27du3CyJEj0bFjx4f+eTyLmKGIiJ4NzE/MT8xPj6ZF7pQCgBkzZmDGjBn1rjt06FCdZWPHjsXYsWPrbf/CCy9ACPEkyyMiogf4+voiPj4eZWVl2LNnD6ZPnw4jIyMsXLiwtUsDAJSXlzd5R0dFRQV8fHzQo0cP7Nq1CxqNBleuXMHevXv1gt2aNWsQFhaG8PBwxMXFQS6X48svv0RoaCh++OEHREdHP3Kd3bt3x9q1a+Ho6IjS0lKsXr0aI0eOxKVLl2BpaYmLFy+iuroaGzZsgJOTE3744QeEhISguLi40f0eO3YMkyZNwurVq+Hv74+CggKEhoYiJCQEu3btanC7n3/+GZ6envD29sbevXthaWmJH3/8ER06dNBrV/vzr9W+ffs6fUVGRiIkJET6rlKppD8bGRlh0qRJ6N+/P8zNzfH9998jJCQE1dXV+PDDDwHU/Ax9fHxgZWWFnTt3wtbWFv/5z39gbm7e6DEtLi7G0KFDMW7cOL39t2XMUEREzwbmJ+Yn5qdHIJ5jOp1OABA6na61SyGiNqa0tFRkZmaK0tLS1i7loQUHB4uAgAC9ZT4+PsLd3V3cuXNHBAUFCXNzc6FUKoWvr6/Izs6W2uXl5YnXX39dmJubC2NjY+Hi4iJ2794tcnNzBQC9T3BwsBBCiKKiIjFx4kRhbGwsrK2txapVq4SXl5eYPXu21K+9vb2IjIwUQUFBQqVSSdumpqaKoUOHCoVCIbp06SJmzpwp7t27J4QQIj09XQAQeXl5DY41Pz9fGBkZiTlz5tRZFxsbKwCIb7/9VgghpDGkp6c//EH9P7W/dw4cONBgmxUrVggHB4dG+1m5cqVwdHSsU6+trW2j24WHh4uhQ4c22qa+n/+v2dvbi9WrVzfa5tfeffddvX3HxcUJR0dHUV5e/lD91HoSP48HNfZvlnlBH48HET0tzE/MT/Vhfmrb+alFHt8jInruCQGUF7fO5wncFaFUKlFeXo7Jkyfju+++Q1JSEtLS0iCEwKhRo6TbiqdPn46ysjIcOXIE586dw/Lly2Fqago7Ozt8/vnnAGpuTS4sLMTHH38MoOadOceOHUNSUhJSUlKQmpqKM2fO1KkhOjoabm5uSE9Px/vvv4+cnBz4+vpizJgxOHv2LLZv346jR49Kd5RYWlrCwMAAO3fuRFVVVb3j2rlzJyoqKjBv3rw666ZNmwZTU1Ns27btsY8fUHNla+PGjVCr1XBzc2uwnU6ng4WFRaN9eXh44PLly9izZw+EELh+/Tp27tyJUaNGNbpdUlISBg4ciLFjx8LKygr9+vXDJ598UqfdoUOHYGVlhR49euBPf/pTvbe1f/TRR+jYsSP69euHlStXNvp4wqVLl7Bv3z54eXnp1eLh4YHp06ejc+fO6NOnDz788MMGf1ZERPSceoYzFPPT42N+avv5qcUe3yMieq5VlAAf2rTOvhddBeQmj7SpEAJff/019u/fDz8/PyQmJuLYsWMYMmQIgJrn8u3s7JCYmIixY8ciPz8fY8aMgaurKwDA0dFR6qs2KFhZWUm3GP/yyy/YsmULtm7diuHDhwMA4uPjYWNT91i9+uqrmDt3rvR96tSpCAwMRFhYGADA2dkZsbGx8PLyQlxcHGxtbREbG4v33nsPH3zwAQYOHAhvb28EBgZKdWVnZ0OtVkOj0dTZn1wuh6OjI7Kzsx/p2NVKTk7GhAkTUFJSAo1Gg5SUFHTq1KnetpcuXcKaNWuavOXd09MTCQkJGD9+PO7fv4/Kykr4+/tj3bp1jW73008/IS4uDnPmzMGiRYtw6tQpzJo1C3K5HMHBwQBqbj3/3e9+BwcHB+Tk5GDRokXw8/NDWloa2rVrBwCYNWsW+vfvDwsLCxw/fhwLFy5EYWEhVq1apbe/IUOG4MyZMygrK8Mf//hHREZG6tXyzTffIDAwEHv27MGlS5fw5z//GRUVFYiIiGjyuBIR0XPiGcxQzE/MT8xPzcc7pYiIqI7k5GSYmppCoVDAz88P48ePx+TJk2FoaIjBgwdL7Tp27IgePXrgwoULAGp+2UZFRcHT0xMRERE4e/Zso/v56aefUFFRgUGDBknL1Go1evToUaftwIED9b5///332Lx5M0xNTaWPVqtFdXU1cnNzAdRcebx27RoSEhLg4eGBHTt2oHfv3khJSWn2sWjObGQJCQl6daSmpkrrvL29kZGRgePHj8PX1xfjxo3DjRs36vRRUFAAX19fjB07Vu9Z/wf7DQ0NBQBkZmZi9uzZWLx4MU6fPo19+/YhLy9PWp+amqq3XUJCAgCguroa/fv3x4cffoh+/frhj3/8I0JCQrB+/XppfxMmTMDo0aPh6uqKN954A8nJyTh16pTeu4vmzJmDV155BX379kVoaChiYmKwZs0alJWV6Y1p+/btOHPmDLZu3Yrdu3frhcXq6mpYWVlh48aNGDBgAMaPH4+//OUvUi2NHVMiIqLfIuan/2J+Yn5qLt4pRUTUEoyMa662tda+H5K3t7f00kobGxsYGhoiKSmpye2mTp0KrVaL3bt346uvvsKyZcsQExODmTNnPkrlekxM9K9U3rt3D9OmTcOsWbPqtO3atav0Z5VKBX9/f/j7+yMqKgparRZRUVHw8fGBs7MzdDodrl69WufqYnl5OXJycqDVapusbfTo0Xph09bWVq9uJycnODk5wd3dHc7Ozti0aZPeS0+vXr0Kb29vDBkyBBs3btTr+8HZUczMzAAAy5Ytg6enJ+bPnw8A6Nu3L0xMTDBs2DBERUVh4MCBetvVztSm0Wjg4uKi13+vXr2kRwPq4+joiE6dOuHSpUvS1dhfGzx4MCorK5GXl6cXiO3s7AAALi4uqKqqwh//+EfMnTsX7dq1g0ajgZGRkXT1sLaWa9euoby8vNFjSkREz5FnKEMxPzE/1WJ+aj6elCIiagky2SM/QtcaaoPAg3r16oXKykqcOHFCuv389u3byMrK0vtFbWdnh9DQUISGhmLhwoX45JNPMHPmTOmK2YPPvDs6OsLIyAinTp2SgpBOp0N2djZefvnlRmvs378/MjMz69TZGJlMhp49e+L48eMAgLfeegvh4eGIiYlBTEyMXtv169ejpKQEkyZNarJflUqlN3tKY6qrq/WuiBUUFMDb2xsDBgxAfHw8DAz0b2Kub3wlJSUwNNT/FV4bToQQUCqV9W7n6emJrKwsvWXZ2dmwt7dvsN4rV67g9u3b9d6iXysjIwMGBgawsrJqsE11dTUqKipQXV2Ndu3awdPTE1u3bkV1dbU05uzsbGg0Gsjlcsjl8mYfUyIiasOeoQzF/MT8VIv5qfl4UoqIiJrF2dkZAQEBCAkJwYYNG6BSqbBgwQLY2toiICAAABAWFgY/Pz90794dP//8Mw4ePIhevXoBAOzt7SGTyZCcnIxRo0ZBqVRCpVIhODgY8+fPh4WFBaysrBAREQEDAwPIZLJG6wkPD4e7uztmzJiBqVOnwsTEBJmZmUhJScHatWuRkZGBiIgIBAUFwcXFBXK5HIcPH8ann36K8PBwADVXBFesWIF58+ZBoVAgKCgIRkZG+PLLL7Fo0SJERUWhT58+evv9dSgBgN69e8PIyEhvWXFxMZYuXYrRo0dDo9Hg1q1bWLduHQoKCjB27FgANYHqlVdegb29PaKjo3Hz5k1pe2tr6wbH7u/vj5CQEMTFxUGr1aKwsBBhYWEYNGhQve+TqPXuu+9iyJAh+PDDDzFu3DicPHkSGzdulK4u3rt3Dx988AHGjBkDa2tr5OTk4L333oOTk5N0xTMtLQ0nTpyAt7c3VCoV0tLS8O677+L3v/+9NDVyQkICjIyM4Orqivbt2+O7777DwoULMX78eOk4/elPf8LatWsxe/ZszJw5Ez/++CM+/PDDeq/cPujOnTvIz8/H1atX9X4e1tbWjR4zIiKi1sD8VIP5ifmpQU9kHsBnFKc0JqKnpa1NaVyrdkpjtVotlEql0Gq1elMaz5gxQ3Tr1k20b99eWFpaiqCgIHHr1i1pfWRkpLC2thYymazRKY0HDRokFixYIG3X0BS6J0+eFD4+PsLU1FSYmJiIvn37iqVLlwohhLh586aYNWuW6NOnjzA1NRUqlUq4urqK6OhoUVVVpddPYmKiGDZsmDAxMZGmXN62bZtem/qmZa79XL58uU5tpaWl4s033xQ2NjZCLpcLjUYjRo8eLU6ePCm1iY+Pb7DPpsTGxgoXFxehVCqFRqMRgYGB4sqVK01u9+9//1v06dNHtG/fXvTs2VNs3LhRWldSUiJGjhwpLC0thZGRkbC3txchISHi2rVrUpvTp0+LwYMHC7VaLRQKhejVq5f48MMPxf3796U2n332mejfv7/0c3FxcREffvhhnX8Px48fF4MHDxbt27cXjo6OYunSpaKysrLR+hs6ZhEREU2OvTFPYkrj5wWPBxE9LcxPzE/MT89ffpIJ8QTmCn9GFRUVQa1WQ6fTSc+ZEhE9Cffv30dubi4cHBygUChau5xnSnFxMWxtbRETE4MpU6a0+P7v3LmD4cOHw8zMDHv37oWx8cO/k4uePY39m2Ve0MfjQURPC/PTo2N+otbwJPITZ98jIqJWlZ6ejm3btiEnJwdnzpxBYGAgAEi3tLc0CwsLHDhwAMOHD0daWlqr1EBERETUGOYnaiv4TikiImp10dHRyMrKglwux4ABA5CamopOnTq1Wj0dO3bE4sWLW23/RERERE1hfqK2gCeliIioVfXr1w+nT59u7TKIiIiInhnMT9RW8PE9IiIiIiIiIiJqcTwpRURERERERERELY4npYiIiIiIiIiIqMXxpBQREREREREREbU4npQiIiIiIiIiIqIWx5NSRERERERERETU4nhSioiIiIiIiIiIWhxPShERkZ7JkydDJpNBJpNBLpfDyckJkZGRqKysfKx+Dx06BJlMhrt37z6ZQpshNzcXEydOhI2NDRQKBbp06YKAgABcvHhRr11ycjK8vLygUqlgbGyMl156CZs3b9Zrk5eXB5lMhoyMjGbvf8mSJejZsydMTEzQoUMHjBgxAidOnNDrc8qUKXBwcIBSqUS3bt0QERGB8vLyJvtOSEiAm5sbjI2NodFo8M477+D27duNblNVVYX3339fb39/+9vfIISQ2uzatQsjR45Ex44dGxxvTk4O3nzzTVhaWsLMzAzjxo3D9evXH3pcZ8+exbBhw6BQKGBnZ4cVK1Y0Oe4jR47A398fNjY2kMlkSExMbHIbIiKip435ifmJ+enR8KQUERHV4evri8LCQvz444+YO3culixZgpUrV7Z2WZLmhI6Kigr4+PhAp9Nh165dyMrKwvbt2+Hq6qoX7NasWYOAgAB4enrixIkTOHv2LCZMmIDQ0FDMmzfvsers3r071q5di3PnzuHo0aN44YUXMHLkSNy8eRMAcPHiRVRXV2PDhg04f/48Vq9ejfXr12PRokWN9nvs2DFMmjQJU6ZMwfnz57Fjxw6cPHkSISEhjW63fPlyxMXFYe3atbhw4QKWL1+OFStWYM2aNVKb4uJiDB06FMuXL6+3j+LiYowcORIymQzffPMNjh07hvLycvj7+6O6urrZ4yoqKsLIkSNhb2+P06dPY+XKlViyZAk2btzY6BiKi4vh5uaGdevWNdqOiIiopTE/MT8xPz0C8RzT6XQCgNDpdK1dChG1MaWlpSIzM1OUlpa2dikPLTg4WAQEBOgt8/HxEe7u7uLOnTsiKChImJubC6VSKXx9fUV2drbULi8vT7z++uvC3NxcGBsbCxcXF7F7926Rm5srAOh9goODhRBCFBUViYkTJwpjY2NhbW0tVq1aJby8vMTs2bOlfu3t7UVkZKQICgoSKpVK2jY1NVUMHTpUKBQK0aVLFzFz5kxx7949IYQQ6enpAoDIy8trcKz5+fnCyMhIzJkzp8662NhYAUB8++23QgghjSE9Pf3hD+r/qf29c+DAgQbbrFixQjg4ODTaz8qVK4Wjo2Odem1tbRvd7rXXXhPvvPOO3rLf/e53IjAwsE7bhsa7f/9+YWBgoPe78+7du0Imk4mUlJQG9/3rcf3jH/8QHTp0EGVlZdKy8PBw0aNHj0bH8CAA4osvvmh2+8Y09m+WeUEfjwcRPS3MT8xP9WF+atv5iXdKERG1ACEESipKWuUjHri1+FEplUqUl5dj8uTJ+O6775CUlIS0tDQIITBq1ChUVFQAAKZPn46ysjIcOXIE586dw/Lly2Fqago7Ozt8/vnnAICsrCwUFhbi448/BgDMmTMHx44dQ1JSElJSUpCamoozZ87UqSE6Ohpubm5IT0/H+++/j5ycHPj6+mLMmDE4e/Ystm/fjqNHj2LGjBkAAEtLSxgYGGDnzp2oqqqqd1w7d+5ERUVFvVf0pk2bBlNTU2zbtu2xjx9Qc3Vy48aNUKvVcHNza7CdTqeDhYVFo315eHjg8uXL2LNnD4QQuH79Onbu3IlRo0Y1ut2QIUPw9ddfIzs7GwDw/fff4+jRo/Dz82v2OMrKyiCTydC+fXtpmUKhgIGBAY4ePdrscaWlpeHll1+GXC6Xlmm1WmRlZeHnn39udj1ERNS2PcsZivnp8TE/tf38ZNjaBRARPQ9KK0sxeOvgVtn3iYknYGxk/EjbCiHw9ddfY//+/fDz80NiYiKOHTuGIUOGAKh5Lt/Ozg6JiYkYO3Ys8vPzMWbMGLi6ugIAHB0dpb5qf6FaWVnB3NwcAPDLL79gy5Yt2Lp1K4YPHw4AiI+Ph42NTZ1aXn31VcydO1f6PnXqVAQGBiIsLAwA4OzsjNjYWHh5eSEuLg62traIjY3Fe++9hw8++AADBw6Et7c3AgMDpbqys7OhVquh0Wjq7E8ul8PR0VEKII8qOTkZEyZMQElJCTQaDVJSUtCpU6d62166dAlr1qxBdHR0o316enoiISEB48ePx/3791FZWQl/f/8mb8lesGABioqK0LNnT7Rr1w5VVVVYunQpAgMDmz0ed3d3mJiYIDw8HB9++CGEEFiwYAGqqqpQWFjY7HFdu3YNDg4Oeu06d+4srevQoUOzayIiorbrWcxQzE/MT7/G/NQw3ilFRER1JCcnw9TUFAqFAn5+fhg/fjwmT54MQ0NDDB7832DYsWNH9OjRAxcuXAAAzJo1C1FRUfD09ERERATOnj3b6H5++uknVFRUYNCgQdIytVqNHj161Gk7cOBAve/ff/89Nm/eDFNTU+mj1WpRXV2N3NxcADVXHq9du4aEhAR4eHhgx44d6N27N1JSUpp9LB68EtWQhIQEvTpSU1Oldd7e3sjIyMDx48fh6+uLcePG4caNG3X6KCgogK+vL8aOHav3boMH+w0NDQUAZGZmYvbs2Vi8eDFOnz6Nffv2IS8vT1qfmpqqt11CQgIA4F//+hcSEhKwdetWnDlzBlu2bEF0dDS2bNnS7ONhaWmJHTt24N///jdMTU2hVqtx9+5d9O/fHwYGdWNFQ+NqSkNjICIi+q1ifvov5id9zE8N451SREQtQGmoxImJJ5pu+JT2/bC8vb0RFxcHuVwOGxsbGBoaIikpqcntpk6dCq1Wi927d+Orr77CsmXLEBMTg5kzZz5K6XpMTEz0vt+7dw/Tpk3DrFmz6rTt2rWr9GeVSgV/f3/4+/sjKioKWq0WUVFR8PHxgbOzM3Q6Ha5evVrn6mJ5eTlycnKg1WqbrG306NF6YdPW1lavbicnJzg5OcHd3R3Ozs7YtGkTFi5cKLW5evUqvL29MWTIkDovqnxw9hYzMzMAwLJly+Dp6Yn58+cDAPr27QsTExMMGzYMUVFRGDhwoN52tVfQ5s+fjwULFmDChAkAAFdXV/znP//BsmXLEBwc3OQ4a40cORI5OTm4desWDA0NYW5uDmtra70ru02Ny9raWm/GGQDSd2tra7zwwgv1joGIiJ4vz1KGYn5ifmoM81P9eFKKiKgFyGSyR36ErjXUBoEH9erVC5WVlThx4oR0+/nt27eRlZUFFxcXqZ2dnR1CQ0MRGhqKhQsX4pNPPsHMmTOlK2YPvp/A0dERRkZGOHXqlBSEdDodsrOz8fLLLzdaY//+/ZGZmVmnzsbIZDL07NkTx48fBwC89dZbCA8PR0xMDGJiYvTarl+/HiUlJZg0aVKT/apUKqhUqmbVUF1djbKyMul7QUEBvL29MWDAAMTHx9e5Wlbf+EpKSmBoqP8rvF27dgBqHhlQKpUNbvfr/tu1ayfN+vKwam+j/+abb3Djxg2MHj262ePy8PDAX/7yF1RUVMDIyAgAkJKSgh49eki3nj/Mz5aIiNqmZylDMT8xPzUH85M+npQiIqJmcXZ2RkBAAEJCQrBhwwaoVCosWLAAtra2CAgIAACEhYXBz88P3bt3x88//4yDBw+iV69eAAB7e3vIZDIkJydj1KhRUCqVUKlUCA4Oxvz582FhYQErKytERETAwMAAMpms0XrCw8Ph7u6OGTNmYOrUqTAxMUFmZiZSUlKwdu1aZGRkICIiAkFBQXBxcYFcLsfhw4fx6aefIjw8HEDNFcEVK1Zg3rx5UCgUCAoKgpGREb788kssWrQIUVFR6NOnj95+s7Ky6tTSu3dvKRjUKi4uxtKlSzF69GhoNBrcunUL69atQ0FBAcaOHQugJni88sorsLe3R3R0tDTVMVBztash/v7+CAkJQVxcHLRaLQoLCxEWFoZBgwbV+z6JB7dbunQpunbtit69eyM9PR2rVq3CO++8I7W5c+cO8vPzcfXqVb3xWltbSzXFx8ejV69esLS0RFpaGmbPno13331XemygOeOaOHEiPvjgA0yZMgXh4eH44Ycf8PHHH2P16tUN1g/UXOG9dOmS9D03NxcZGRmwsLDQu8JLRET0W8D8VIP5ifmpQU9kHsBnFKc0JqKnpa1NaVyrdkpjtVotlEql0Gq1elMaz5gxQ3Tr1k20b99eWFpaiqCgIHHr1i1pfWRkpLC2thYymazRKY0HDRokFixYIG1nb28vVq9eXaeekydPCh8fH2FqaipMTExE3759xdKlS4UQQty8eVPMmjVL9OnTR5iamgqVSiVcXV1FdHS0qKqq0usnMTFRDBs2TJiYmEhTLm/btk2vTX3TMtd+Ll++XKe20tJS8eabbwobGxshl8uFRqMRo0ePFidPnpTaxMfHN9hnU2JjY4WLi4tQKpVCo9GIwMBAceXKlUa3KSoqErNnzxZdu3YVCoVCODo6ir/85S960wo3VFNERITUJjw8XHTu3FkYGRkJZ2dnERMTI6qrqx96XN9//70YOnSoaN++vbC1tRUfffRRk+M+ePBgvf3W/n16VE9iSuPnBY8HET0tzE/MT8xPz19+kgnxBOYKf0YVFRVBrVZDp9NJz5kSET0J9+/fR25uLhwcHKBQKFq7nGdKcXExbG1tERMTgylTprT4/u/cuYPhw4fDzMwMe/fuhbHxs/HIAD2exv7NMi/o4/EgoqeF+enRMT9Ra3gS+Ymz7xERUatKT0/Htm3bkJOTgzNnzkjT69be0t7SLCwscODAAQwfPhxpaWmtUgMRERFRY5ifqK3gO6WIiKjVRUdHIysrC3K5HAMGDEBqaqr0EsjW0LFjRyxevLjV9k9ERETUFOYnagt4UoqIiFpVv379cPr06dYug4iIiOiZwfxEbQUf3yMiIiIiIiIiohbHk1JERERERERERNTieFKKiIiIiIiIiIhaHE9KERERERERERFRi+NJKSIiIiIiIiIianE8KUVERERERERERC2OJ6WIiIiIiIiIiKjF8aQUERHpmTx5MmQyGWQyGeRyOZycnBAZGYnKysrH6vfQoUOQyWS4e/fukym0GXJzczFx4kTY2NhAoVCgS5cuCAgIwMWLF/XaJScnw8vLCyqVCsbGxnjppZewefNmvTZ5eXmQyWTIyMho9v6XLFmCnj17wsTEBB06dMCIESNw4sQJvT6nTJkCBwcHKJVKdOvWDRERESgvL2+y74SEBLi5ucHY2BgajQbvvPMObt++3eg2v/zyC8LCwmBvbw+lUokhQ4bg1KlTem3u3buHGTNmoEuXLlAqlXBxccH69ev12kybNg3dunWDUqmEpaVlvcc0Pz8fr732GoyNjWFlZYX58+c3+Hfo2LFjMDQ0xIsvvtjkuHft2oWRI0eiY8eOD/3zICIielqYn5ifmJ8eDU9KERFRHb6+vigsLMSPP/6IuXPnYsmSJVi5cmVrlyVpTuioqKiAj48PdDoddu3ahaysLGzfvh2urq56wW7NmjUICAiAp6cnTpw4gbNnz2LChAkIDQ3FvHnzHqvO7t27Y+3atTh37hyOHj2KF154ASNHjsTNmzcBABcvXkR1dTU2bNiA8+fPY/Xq1Vi/fj0WLVrUaL/Hjh3DpEmTMGXKFJw/fx47duzAyZMnERIS0uh2U6dORUpKCv73f/8X586dw8iRIzFixAgUFBRIbebMmYN9+/bhn//8Jy5cuICwsDDMmDEDSUlJUpsBAwYgPj4eFy5cwP79+yGEwMiRI1FVVQUAqKqqwmuvvYby8nIcP34cW7ZswebNm7F48eI6Nd29exeTJk3C8OHDm3VMi4uLMXToUCxfvrxZ7YmIiFoK8xPzE/PTIxDPMZ1OJwAInU7X2qUQURtTWloqMjMzRWlpaWuX8tCCg4NFQECA3jIfHx/h7u4u7ty5I4KCgoS5ublQKpXC19dXZGdnS+3y8vLE66+/LszNzYWxsbFwcXERu3fvFrm5uQKA3ic4OFgIIURRUZGYOHGiMDY2FtbW1mLVqlXCy8tLzJ49W+rX3t5eREZGiqCgIKFSqaRtU1NTxdChQ4VCoRBdunQRM2fOFPfu3RNCCJGeni4AiLy8vAbHmp+fL4yMjMScOXPqrIuNjRUAxLfffiuEENIY0tPTH/6g/p/a3zsHDhxosM2KFSuEg4NDo/2sXLlSODo61qnX1ta2wW1KSkpEu3btRHJyst7y/v37i7/85S/S9969e4vIyMhG2/za999/LwCIS5cuCSGE2LNnjzAwMBDXrl2T2sTFxQkzMzNRVlamt+348ePFX//6VxERESHc3Nwa3MevPYmfx4Ma+zfLvKCPx4OInhbmJ+an+jA/te38xDuliIhagBAC1SUlrfIRQjx2/UqlEuXl5Zg8eTK+++47JCUlIS0tDUIIjBo1ChUVFQCA6dOno6ysDEeOHMG5c+ewfPlymJqaws7ODp9//jkAICsrC4WFhfj4448B1FxZOnbsGJKSkpCSkoLU1FScOXOmTg3R0dFwc3NDeno63n//feTk5MDX1xdjxozB2bNnsX37dhw9ehQzZswAAFhaWsLAwAA7d+6UrkD92s6dO1FRUVHvFb1p06bB1NQU27Zte+zjB9Rcndy4cSPUajXc3NwabKfT6WBhYdFoXx4eHrh8+TL27NkDIQSuX7+OnTt3YtSoUQ1uU1lZiaqqKigUCr3lSqUSR48elb4PGTIESUlJKCgogBACBw8eRHZ2NkaOHFlvv8XFxYiPj4eDgwPs7OwAAGlpaXB1dUXnzp2ldlqtFkVFRTh//ry0LD4+Hj/99BMiIiIaHS8RET2/nuUMxfz0+Jif2n5+MmztAoiIngeitBRZ/Qe0yr57nDkNmbHxI20rhMDXX3+N/fv3w8/PD4mJiTh27BiGDBkCoOa5fDs7OyQmJmLs2LHIz8/HmDFj4OrqCgBwdHSU+qoNClZWVjA3NwdQ84z+li1bsHXrVun24/j4eNjY2NSp5dVXX8XcuXOl71OnTkVgYCDCwsIAAM7OzoiNjYWXlxfi4uJga2uL2NhYvPfee/jggw8wcOBAeHt7IzAwUKorOzsbarUaGo2mzv7kcjkcHR2RnZ39SMeuVnJyMiZMmICSkhJoNBqkpKSgU6dO9ba9dOkS1qxZg+jo6Eb79PT0REJCAsaPH4/79++jsrIS/v7+WLduXYPbqFQqeHh44G9/+xt69eqFzp07Y9u2bUhLS4OTk5PUbs2aNfjjH/+ILl26wNDQEAYGBvjkk0/w8ssv6/X3j3/8A++99x6Ki4vRo0cPpKSkQC6XAwCuXbumF6gASN+vXbsGAPjxxx+xYMECpKamwtCQcYSIiOr3LGYo5ifmJ+an5uOdUkREVEdycjJMTU2hUCjg5+eH8ePHY/LkyTA0NMTgwYOldh07dkSPHj1w4cIFAMCsWbMQFRUFT09PRERE4OzZs43u56effkJFRQUGDRokLVOr1ejRo0edtgMHDtT7/v3332Pz5s0wNTWVPlqtFtXV1cjNzQVQc+Xx2rVrSEhIgIeHB3bs2IHevXsjJSWl2ceiNig0JiEhQa+O1NRUaZ23tzcyMjJw/Phx+Pr6Yty4cbhx40adPgoKCuDr64uxY8fqvdvgwX5DQ0MBAJmZmZg9ezYWL16M06dPY9++fcjLy5PWp6am6m2XkJAAAPjf//1fCCFga2uL9u3bIzY2Fm+//TYMDP4bB9asWYNvv/0WSUlJOH36NGJiYjB9+nQcOHBAr97AwECkp6fj8OHD6N69O8aNG4f79+8365hWVVVh4sSJ+OCDD9C9e/eHPqZERES/RcxP/8X8xPzUXG3j1BoR0W+cTKlEjzOnW23fD8vb2xtxcXGQy+WwsbGBoaGh3osaGzJ16lRotVrs3r0bX331FZYtW4aYmBjMnDnzUUrXY2Jiovf93r17mDZtGmbNmlWnbdeuXaU/q1Qq+Pv7w9/fH1FRUdBqtYiKioKPjw+cnZ2h0+lw9erVOlcXy8vLkZOTA61W22Rto0eP1gubtra2enU7OTnByckJ7u7ucHZ2xqZNm7Bw4UKpzdWrV+Ht7Y0hQ4Zg48aNen0/ODuKmZkZAGDZsmXw9PTE/PnzAQB9+/aFiYkJhg0bhqioKAwcOFBvu9qrbN26dcPhw4dRXFyMoqIiaDQajB8/XrryWVpaikWLFuGLL77Aa6+9JvWdkZGB6OhojBgxQupTrVZDrVbD2dkZ7u7u6NChA7744gu8/fbbsLa2xsmTJ/XGcf36dQCAtbU1fvnlF3z33XdIT0+XHheorq6GEAKGhob46quvGj2mRET0/HiWMhTzE/MT89PD40kpIqIWIJPJHvkRutZQGwQe1KtXL1RWVuLEiRPS7ee3b99GVlYWXFxcpHZ2dnYIDQ1FaGgoFi5ciE8++QQzZ86Urpg9+H4CR0dHGBkZ4dSpU1IQ0ul0yM7OrnO786/1798fmZmZdepsjEwmQ8+ePXH8+HEAwFtvvYXw8HDExMQgJiZGr+369etRUlKCSZMmNdmvSqWCSqVqVg3V1dUoKyuTvhcUFMDb21uakeXBq24A6h1fSUlJnVu227VrB6DmkQGlUtnocTExMYGJiQl+/vln7N+/HytWrABQM+NORUVFnRratWuH6urqBvsTQkAIIY3Lw8MDS5cuxY0bN2BlZQUASElJgZmZGVxcXGBkZIRz587p9fGPf/wD33zzDXbu3AkHBweYmJg0+5gSEVHb9SxlKOYn5qdf98381DSelCIiomZxdnZGQEAAQkJCsGHDBqhUKixYsAC2trYICAgAAISFhcHPzw/du3fHzz//jIMHD6JXr14AAHt7e8hkMiQnJ2PUqFFQKpVQqVQIDg7G/PnzYWFhASsrK0RERMDAwAAymazResLDw+Hu7o4ZM2Zg6tSpMDExQWZmJlJSUrB27VpkZGQgIiICQUFBcHFxgVwux+HDh/Hpp58iPDwcQM0VwRUrVmDevHlQKBQICgqCkZERvvzySyxatAhRUVHo06eP3n6zsrLq1NK7d28YGRnpLSsuLsbSpUsxevRoaDQa3Lp1C+vWrUNBQQHGjh0LoCZQvfLKK7C3t0d0dLQ01TFQc0WsIf7+/ggJCUFcXBy0Wi0KCwsRFhaGQYMG1fs+iVq10w/36NEDly5dwvz589GzZ0/84Q9/AFBzJdHLywvz58+HUqmEvb09Dh8+jP/5n//BqlWrANQ8MrB9+3aMHDkSlpaWuHLlCj766CMolUrpRaEjR46Ei4sLgoKCsGLFCly7dg1//etfMX36dLRv3x4A6hxXKysrKBSKOst/7c6dO8jPz8fVq1cB/PfnYW1t3egxIyIiag3MTzWYn5ifGvS4UwA+yzilMRE9LW1tSuNatVMaq9VqoVQqhVar1ZvSeMaMGaJbt26iffv2wtLSUgQFBYlbt25J6yMjI4W1tbWQyWSNTmk8aNAgsWDBAmk7e3t7sXr16jr1nDx5Uvj4+AhTU1NhYmIi+vbtK5YuXSqEEOLmzZti1qxZok+fPsLU1FSoVCrh6uoqoqOjRVVVlV4/iYmJYtiwYcLExESacnnbtm16beqblrn2c/ny5Tq1lZaWijfffFPY2NgIuVwuNBqNGD16tDh58qTUJj4+vsE+mxIbGytcXFyEUqkUGo1GBAYGiitXrjS6zfbt24Wjo6OQy+XC2tpaTJ8+Xdy9e1evTWFhoZg8ebKwsbERCoVC9OjRQ8TExIjq6mohhBAFBQXCz89PWFlZCSMjI9GlSxcxceJEcfHiRb1+8vLyhJ+fn1AqlaJTp05i7ty5oqKiosHamjulcUPHLCIiosltG/MkpjR+XvB4ENHTwvzE/MT89PzlJ5kQT2Cu8GdUUVER1Go1dDqd9JwpEdGTcP/+feTm5sLBwaHOFLLUuOLiYtja2iImJgZTpkxp8f3fuXMHw4cPh5mZGfbu3QvjZ+SRAXo8jf2bZV7Qx+NBRE8L89OjY36i1vAk8hNn3yMiolaVnp6Obdu2IScnB2fOnEFgYCAASLe0tzQLCwscOHAAw4cPR1paWqvUQERERNQY5idqK/hOKSIianXR0dHIysqCXC7HgAEDkJqaik6dOrVaPR07dsTixYtbbf9ERERETWF+oraAJ6WIiKhV9evXD6dPt85Uz0RERETPIuYnaiv4+B4REREREREREbU4npQiIiIiIiIiIqIWx5NSRERERERERETU4nhSioiIiIiIiIiIWhxPShERERERERERUYvjSSkiIiIiIiIiImpxPClFREREREREREQtjieliIhIz+TJkyGTySCTySCXy+Hk5ITIyEhUVlY+Vr+HDh2CTCbD3bt3n0yhzZCbm4uJEyfCxsYGCoUCXbp0QUBAAC5evKjXLjk5GV5eXlCpVDA2NsZLL72EzZs367XJy8uDTCZDRkZGs/e/ZMkS9OzZEyYmJujQoQNGjBiBEydO6PU5ZcoUODg4QKlUolu3boiIiEB5eXmTfSckJMDNzQ3GxsbQaDR45513cPv27Ua3OXLkCPz9/WFjYwOZTIbExMQ6bXbt2oWRI0eiY8eOTY5XCAE/P78G+9q8eTP69u0LhUIBKysrTJ8+XW/9/v374e7uDpVKBUtLS4wZMwZ5eXktMk4iIqInifmJ+Yn56dHwpBQREdXh6+uLwsJC/Pjjj5g7dy6WLFmClStXtnZZkuaEjoqKCvj4+ECn02HXrl3IysrC9u3b4erqqhfs1qxZg4CAAHh6euLEiRM4e/YsJkyYgNDQUMybN++x6uzevTvWrl2Lc+fO4ejRo3jhhRcwcuRI3Lx5EwBw8eJFVFdXY8OGDTh//jxWr16N9evXY9GiRY32e+zYMUyaNAlTpkzB+fPnsWPHDpw8eRIhISGNbldcXAw3NzesW7eu0TZDhw7F8uXLmxzf3//+d8hksnrXrVq1Cn/5y1+wYMECnD9/HgcOHIBWq5XW5+bmIiAgAK+++ioyMjKwf/9+3Lp1C7/73e9aZJxERERPGvMT8xPz0yMQzzGdTicACJ1O19qlEFEbU1paKjIzM0VpaWlrl/LQgoODRUBAgN4yHx8f4e7uLu7cuSOCgoKEubm5UCqVwtfXV2RnZ0vt8vLyxOuvvy7Mzc2FsbGxcHFxEbt37xa5ubkCgN4nODhYCCFEUVGRmDhxojA2NhbW1tZi1apVwsvLS8yePVvq197eXkRGRoqgoCChUqmkbVNTU8XQoUOFQqEQXbp0ETNnzhT37t0TQgiRnp4uAIi8vLwGx5qfny+MjIzEnDlz6qyLjY0VAMS3334rhBDSGNLT0x/+oP6f2t87Bw4caLDNihUrhIODQ6P9rFy5Ujg6Otap19bWttm1ABBffPFFg+ubGm96erqwtbUVhYWFdfq6c+eOUCqVjY5zx44dwtDQUFRVVUnLkpKShEwmE+Xl5UKIlhlnrcb+zTIv6OPxIKKnhfmJ+ak+zE//1RbzE++UIiJqAUIIVJRVtcqn5vfK41EqlSgvL8fkyZPx3XffISkpCWlpaRBCYNSoUaioqAAATJ8+HWVlZThy5AjOnTuH5cuXw9TUFHZ2dvj8888BAFlZWSgsLMTHH38MAJgzZw6OHTuGpKQkpKSkIDU1FWfOnKlTQ3R0NNzc3JCeno73338fOTk58PX1xZgxY3D27Fls374dR48exYwZMwAAlpaWMDAwwM6dO1FVVVXvuHbu3ImKiop6r+hNmzYNpqam2LZt22MfP6Dm6uTGjRuhVqvh5ubWYDudTgcLC4tG+/Lw8MDly5exZ88eCCFw/fp17Ny5E6NGjXoitTalpKQEEydOxLp162BtbV1nfUpKCqqrq1FQUIBevXqhS5cuGDduHC5fviy1GTBgAAwMDBAfH4+qqirodDr87//+L0aMGAEjI6PfxDiJiKj1PcsZivnp8TE/tf38ZNjaBRARPQ8qy6uxcfbhVtn3Hz/2glH7do+0rRACX3/9Nfbv3w8/Pz8kJibi2LFjGDJkCICa59Xt7OyQmJiIsWPHIj8/H2PGjIGrqysAwNHRUeqrNihYWVnB3NwcAPDLL79gy5Yt2Lp1K4YPHw4AiI+Ph42NTZ1aXn31VcydO1f6PnXqVAQGBiIsLAwA4OzsjNjYWHh5eSEuLg62traIjY3Fe++9hw8++AADBw6Et7c3AgMDpbqys7OhVquh0Wjq7E8ul8PR0RHZ2dmPdOxqJScnY8KECSgpKYFGo0FKSgo6depUb9tLly5hzZo1iI6ObrRPT09PJCQkYPz48bh//z4qKyvh7+/fYrdbv/vuuxgyZAgCAgLqXf/TTz+huroaH374IT7++GOo1Wr89a9/hY+PD86ePQu5XA4HBwd89dVXGDduHKZNm4aqqip4eHhgz549v5lxEhFR63sWMxTzE/NTfZif6sc7pYiIqI7k5GSYmppCoVDAz88P48ePx+TJk2FoaIjBgwdL7Tp27IgePXrgwoULAIBZs2YhKioKnp6eiIiIwNmzZxvdz08//YSKigoMGjRIWqZWq9GjR486bQcOHKj3/fvvv8fmzZthamoqfbRaLaqrq5Gbmwug5srjtWvXkJCQAA8PD+zYsQO9e/dGSkpKs4+FXC5vsk1CQoJeHampqdI6b29vZGRk4Pjx4/D19cW4ceNw48aNOn0UFBTA19cXY8eO1Xvm/8F+Q0NDAQCZmZmYPXs2Fi9ejNOnT2Pfvn3Iy8uT1qempuptl5CQ0OzxNiUpKQnffPMN/v73vzfYprq6GhUVFYiNjYVWq4W7uzu2bduGH3/8EQcPHgQAXLt2DSEhIQgODsapU6dw+PBhyOVyvPXWW9KV6dYcJxER0cNifvov5id9zE8N451SREQtwFBugD9+7NVq+35Y3t7eiIuLg1wuh42NDQwNDZGUlNTkdlOnToVWq8Xu3bvx1VdfYdmyZYiJicHMmTMfpXQ9JiYmet/v3buHadOmYdasWXXadu3aVfqzSqWCv78//P39ERUVBa1Wi6ioKPj4+MDZ2Rk6nQ5Xr16tc3WxvLwcOTk5ei+XbMjo0aP1wqatra1e3U5OTnBycoK7uzucnZ2xadMmLFy4UGpz9epVeHt7Y8iQIdi4caNe3w/O3mJmZgYAWLZsGTw9PTF//nwAQN++fWFiYoJhw4YhKioKAwcO1Nuuc+fOTY6hub755hvk5ORIV2trjRkzBsOGDcOhQ4ekK6cuLi7SektLS3Tq1An5+fkAgHXr1kGtVmPFihVSm3/+85+ws7PDiRMn4O7u3qrjJCKi34ZnKUMxPzE/NYT5qWE8KUVE1AJkMtkjP0LXGmqDwIN69eqFyspKnDhxQrr9/Pbt28jKytL75WlnZ4fQ0FCEhoZi4cKF+OSTTzBz5kzpitmD7ydwdHSEkZERTp06JQUhnU6H7OxsvPzyy43W2L9/f2RmZtapszEymQw9e/bE8ePHAQBvvfUWwsPDERMTg5iYGL2269evR0lJCSZNmtRkvyqVCiqVqlk1VFdXo6ysTPpeUFAAb29vDBgwAPHx8TAw0A/A9Y2vpKQEhob6v8Lbtav5+yWEgFKpfKjj8jAWLFiAqVOn6i1zdXXF6tWr4e/vD6DmtnGg5v0XXbp0AQDcuXMHt27dgr29vTSGX4+1dgzV1dVSm9YaJxER/TY8SxmK+Yn5qSHMTw3jSSkiImoWZ2dnBAQEICQkBBs2bIBKpcKCBQtga2srPRsfFhYGPz8/dO/eHT///DMOHjyIXr16AQDs7e0hk8mQnJyMUaNGQalUQqVSITg4GPPnz4eFhQWsrKwQEREBAwODBqfKrRUeHg53d3fMmDEDU6dOhYmJCTIzM5GSkoK1a9ciIyMDERERCAoKgouLC+RyOQ4fPoxPP/0U4eHhAGquCK5YsQLz5s2DQqFAUFAQjIyM8OWXX2LRokWIiopCnz599PablZVVp5bevXtLL5esVVxcjKVLl2L06NHQaDS4desW1q1bh4KCAowdOxZATaB65ZVXYG9vj+joaGmqYwD1vgCzlr+/P0JCQhAXFwetVovCwkKEhYVh0KBB9b5Pota9e/dw6dIl6Xtubi4yMjJgYWEhhdo7d+4gPz8fV69e1RuvtbW13ufXunbtCgcHBwA1UzkHBARg9uzZ2LhxI8zMzLBw4UL07NkT3t7eAIDXXnsNq1evRmRkJN5++2388ssvWLRoEezt7dGvX7+nPk4iIqKWwPxUg/mJ+alBzZsQsG3ilMZE9LS0tSmNa9VOaaxWq4VSqRRarVZvSuMZM2aIbt26ifbt2wtLS0sRFBQkbt26Ja2PjIwU1tbWQiaTNTql8aBBg8SCBQuk7ezt7cXq1avr1HPy5Enh4+MjTE1NhYmJiejbt69YunSpEEKImzdvilmzZok+ffoIU1NToVKphKurq4iOjtabRlcIIRITE8WwYcOEiYmJNOXytm3b9NrUNy1z7efy5ct1aistLRVvvvmmsLGxEXK5XGg0GjF69Ghx8uRJqU18fHyDfTYlNjZWuLi4CKVSKTQajQgMDBRXrlxpdJuDBw/Wu6/an0VjNUVERDTYL+qZNlin04l33nlHmJubCwsLC/Hmm2+K/Px8vTbbtm0T/fr1EyYmJsLS0lKMHj1aXLhwoUXG+WtPYkrj5wWPBxE9LcxPzE/MT89ffpIJ8QTmCn9GFRUVQa1WQ6fTSc+ZEhE9Cffv30dubi4cHBygUChau5xnSnFxMWxtbRETE4MpU6a0+P7v3LmD4cOHw8zMDHv37oWxsXGL10Atr7F/s8wL+ng8iOhpYX56dMxP1BqeRH7i7HtERNSq0tPTsW3bNuTk5ODMmTMIDAwEgAany33aLCwscODAAQwfPhxpaWmtUgMRERFRY5ifqK3gO6WIiKjVRUdHIysrC3K5HAMGDEBqaio6derUavV07NgRixcvbrX9ExERETWF+YnaAp6UIiKiVtWvXz+cPn26tcsgIiIiemYwP1Fbwcf3iIiIiIiIiIioxfGkFBERERERERERtTielCIiIiIiIiIiohbHk1JERERERERERNTieFKKiIiIiIiIiIhaHE9KERERERERERFRi+NJKSIiIiIiIiIianE8KUVERHomT54MmUwGmUwGuVwOJycnREZGorKy8rH6PXToEGQyGe7evftkCm2G3NxcTJw4ETY2NlAoFOjSpQsCAgJw8eJFvXbJycnw8vKCSqWCsbExXnrpJWzevFmvTV5eHmQyGTIyMpq9/yVLlqBnz54wMTFBhw4dMGLECJw4cUKvzylTpsDBwQFKpRLdunVDREQEysvLm+w7ISEBbm5uMDY2hkajwTvvvIPbt283us2RI0fg7+8PGxsbyGQyJCYmPnTNALB06VIMGTIExsbGMDc3r3df+fn5eO2112BsbAwrKyvMnz9f7+/Qg3/PHvz07t1barNs2TK89NJLUKlUsLKywhtvvIGsrKwmj01z6iMiInqSmJ+Yn5ifHg1PShERUR2+vr4oLCzEjz/+iLlz52LJkiVYuXJla5claU7oqKiogI+PD3Q6HXbt2oWsrCxs374drq6uesFuzZo1CAgIgKenJ06cOIGzZ89iwoQJCA0Nxbx58x6rzu7du2Pt2rU4d+4cjh49ihdeeAEjR47EzZs3AQAXL15EdXU1NmzYgPPnz2P16tVYv349Fi1a1Gi/x44dw6RJkzBlyhScP38eO3bswMmTJxESEtLodsXFxXBzc8O6deseuWag5viPHTsWf/rTn+rto6qqCq+99hrKy8tx/PhxbNmyBZs3b8bixYulNh9//DEKCwulz+XLl2FhYYGxY8dKbQ4fPozp06fj22+/RUpKCioqKjBy5EgUFxc3Os6m6iMiInoamJ+Yn5ifHoF4jul0OgFA6HS61i6FiNqY0tJSkZmZKUpLS1u7lIcWHBwsAgIC9Jb5+PgId3d3cefOHREUFCTMzc2FUqkUvr6+Ijs7W2qXl5cnXn/9dWFubi6MjY2Fi4uL2L17t8jNzRUA9D7BwcFCCCGKiorExIkThbGxsbC2tharVq0SXl5eYvbs2VK/9vb2IjIyUgQFBQmVSiVtm5qaKoYOHSoUCoXo0qWLmDlzprh3754QQoj09HQBQOTl5TU41vz8fGFkZCTmzJlTZ11sbKwAIL799lshhJDGkJ6e/vAH9f/U/t45cOBAg21WrFghHBwcGu1n5cqVwtHRsU69tra2za4FgPjiiy+abNdYzfHx8UKtVtdZvmfPHmFgYCCuXbsmLYuLixNmZmairKys3v188cUXQiaTNfrzunHjhgAgDh8+3GTdjdVXn8b+zTIv6OPxIKKnhfmJ+ak+zE9tOz/xTikiohYghEDF/fut8hFCPHb9SqUS5eXlmDx5Mr777jskJSUhLS0NQgiMGjUKFRUVAIDp06ejrKwMR44cwblz57B8+XKYmprCzs4On3/+OQAgKysLhYWF+PjjjwEAc+bMwbFjx5CUlISUlBSkpqbizJkzdWqIjo6Gm5sb0tPT8f777yMnJwe+vr4YM2YMzp49i+3bt+Po0aOYMWMGAMDS0hIGBgbYuXMnqqqq6h3Xzp07UVFRUe8VvWnTpsHU1BTbtm177OMH1Fx92rhxI9RqNdzc3Bpsp9PpYGFh0WhfHh4euHz5Mvbs2QMhBK5fv46dO3di1KhRT6TWh63519LS0uDq6orOnTtLy7RaLYqKinD+/Pl6t9m0aRNGjBgBe3v7BvvV6XQA0OTxISKituNZzlDMT4+P+ant5yfD1i6AiOh5UFlWhtjgt1pl37O27ISRQvFI2woh8PXXX2P//v3w8/NDYmIijh07hiFDhgCoeS7fzs4OiYmJGDt2LPLz8zFmzBi4uroCABwdHaW+an8RWllZSc+p//LLL9iyZQu2bt2K4cOHAwDi4+NhY2NTp5ZXX30Vc+fOlb5PnToVgYGBCAsLAwA4OzsjNjYWXl5eiIuLg62tLWJjY/Hee+/hgw8+wMCBA+Ht7Y3AwECpruzsbKjVamg0mjr7k8vlcHR0RHZ29iMdu1rJycmYMGECSkpKoNFokJKSgk6dOtXb9tKlS1izZg2io6Mb7dPT0xMJCQkYP3487t+/j8rKSvj7+zd6W/nTqrk+165d0wtUAKTv165dq9P+6tWr2Lt3L7Zu3dpgn9XV1QgLC4Onpyf69OnT7FqIiOjZ9ixmKOYn5ifmp+bjnVJERFRHcnIyTE1NoVAo4Ofnh/Hjx2Py5MkwNDTE4MGDpXYdO3ZEjx49cOHCBQDArFmzEBUVBU9PT0RERODs2bON7uenn35CRUUFBg0aJC1Tq9Xo0aNHnbYDBw7U+/79999j8+bNMDU1lT5arRbV1dXIzc0FUHPl8dq1a0hISICHhwd27NiB3r17IyUlpdnHQi6XN9kmISFBr47U1FRpnbe3NzIyMnD8+HH4+vpi3LhxuHHjRp0+CgoK4Ovri7Fjx+q92+DBfkNDQwEAmZmZmD17NhYvXozTp09j3759yMvLk9anpqbqbZeQkNDs8T5MzU/Kli1bYG5ujjfeeKPBNtOnT8cPP/yAzz77TFoWGhqqN04iIqLWxPz0X8xPzE/NxTuliIhagGH79pi1ZWer7ftheXt7Iy4uDnK5HDY2NjA0NERSUlKT202dOhVarRa7d+/GV199hWXLliEmJgYzZ858lNL1mJiY6H2/d+8epk2bhlmzZtVp27VrV+nPKpUK/v7+8Pf3R1RUFLRaLaKiouDj4wNnZ2fodDpcvXq1ztXF8vJy5OTkQKvVNlnb6NGj9cKmra2tXt1OTk5wcnKCu7s7nJ2dsWnTJixcuFBqc/XqVXh7e2PIkCHYuHGjXt8PzlZjZmYGoGZWFU9PT8yfPx8A0LdvX5iYmGDYsGGIiorCwIED9bb79VW3pjSn5sZYW1vj5MmTesuuX78urXuQEAKffvopgoKCGgywM2bMQHJyMo4cOYIuXbpIyyMjIx/7ZapERPTb9ixlKOYn5ifmp4fHk1JERC1AJpM98iN0raH2l+qDevXqhcrKSpw4cUK6/fz27dvIysqCi4uL1M7Ozg6hoaEIDQ3FwoUL8cknn2DmzJnSL8wH30/g6OgIIyMjnDp1SgpCOp0O2dnZePnllxutsX///sjMzKxTZ2NkMhl69uyJ48ePAwDeeusthIeHIyYmBjExMXpt169fj5KSEkyaNKnJflUqFVQqVbNqqK6uRllZmfS9oKAA3t7eGDBgAOLj42FgoH8Tc33jKykpgaGh/q/wdu3aAagJKUql8qGOy8PW3BQPDw8sXboUN27cgJWVFQAgJSUFZmZmen9XgJoZYi5duoQpU6bU6UcIgZkzZ+KLL77AoUOH4ODgoLfeyspK6p+IiNqmZylDMT8xPzVWc1Oe1/zEk1JERNQszs7OCAgIQEhICDZs2ACVSoUFCxbA1tYWAQEBAICwsDD4+fmhe/fu+Pnnn3Hw4EH06tULAGBvbw+ZTIbk5GSMGjUKSqUSKpUKwcHBmD9/PiwsLGBlZYWIiAgYGBhAJpM1Wk94eDjc3d0xY8YMTJ06FSYmJsjMzERKSgrWrl2LjIwMREREICgoCC4uLpDL5Th8+DA+/fRThIeHA6i5IrhixQrMmzcPCoUCQUFBMDIywpdffolFixYhKiqqzvP3WVlZdWrp3bs3jIyM9JYVFxdj6dKlGD16NDQaDW7duoV169ahoKBAmra3oKAAr7zyCuzt7REdHa03bfCvr4g9yN/fHyEhIYiLi4NWq0VhYSHCwsIwaNCget8nUevevXu4dOmS9D03NxcZGRmwsLBA165dm1UzAOTn5+POnTvIz89HVVWVdFXRyckJpqamGDlyJFxcXBAUFIQVK1bg2rVr+Otf/4rp06ej/a+uOm/atAmDBw+u9z0H06dPx9atW/Hll19CpVJJ71NQq9VQKpUNjrOp+oiIiFoK81MN5ifmpwY1a56/NopTGhPR09LWpjSuVTulsVqtFkqlUmi1Wr0pjWfMmCG6desm2rdvLywtLUVQUJC4deuWtD4yMlJYW1sLmUzW6JTGgwYNEgsWLJC2s7e3F6tXr65Tz8mTJ4WPj48wNTUVJiYmom/fvmLp0qVCCCFu3rwpZs2aJfr06SNMTU2FSqUSrq6uIjo6WlRVVen1k5iYKIYNGyZMTEykKZe3bdum16a+aZlrP5cvX65TW2lpqXjzzTeFjY2NkMvlQqPRiNGjR4uTJ09KbeLj4xvssymxsbHCxcVFKJVKodFoRGBgoLhy5Uqj2xw8eLDefdX+LJpTsxA1f0fq6+fgwYNSm7y8POHn5yeUSqXo1KmTmDt3rqioqNDr5+7du0KpVIqNGzfWW29DxyY+Pr7RcTanvl97ElMaPy94PIjoaWF+Yn5ifnr+8pPs/4p+LhUVFUGtVkOn00nPmRIRPQn3799Hbm4uHBwcoHhGbjn/rSguLoatrS1iYmLqvSX5abtz5w6GDx8OMzMz7N27F8bGxi1eA7W8xv7NMi/o4/EgoqeF+enRMT9Ra3gS+Ymz7xERUatKT0/Htm3bkJOTgzNnziAwMBAApFvaW5qFhQUOHDiA4cOHIy0trVVqICIiImoM8xO1FXynFBERtbro6GhkZWVBLpdjwIABSE1NRadOnVqtno4dO2Lx4sWttn8iIiKipjA/UVvAk1JERNSq+vXrh9OnT7d2GURERETPDOYnaiv4+B4REREREREREbU4npQiInqKnuO5JIieKfy3SkT028H/JhM9G57Ev1WelCIiegratWsHACgvL2/lSoioOUpKSgAARkZGrVwJEdHzq/a/wbX/TSai37YnkZ/4TikioqfA0NAQxsbGuHnzJoyMjGBgwGsARL9FQgiUlJTgxo0bMDc3l04oExFRy2vXrh3Mzc1x48YNAICxsTFkMlkrV0VEv/Yk8xNPShERPQUymQwajQa5ubn4z3/+09rlEFETzM3NYW1t3dplEBE992r/W1x7YoqIfrueRH7iSSkioqdELpfD2dmZj/AR/cYZGRnxDikiot+I2gt7VlZWqKioaO1yiKgBTyo/8aQUEdFTZGBgAIVC0dplEBERET1T2rVrxwsGRM8BvuSEiIiIiIiIiIhaHE9KERERERERERFRi+NJKSIiIiIiIiIianE8KUVERERERERERC2OJ6WIiIiIiIiIiKjF8aQUERERERERERG1OJ6UIiIiIiIiIiKiFseTUkRERERERERE1OJ4UoqIiIiIiIiIiFocT0oREREREREREVGL40kpIiIiIiIiIiJqcTwpRURERERERERELY4npYiIiIiIiIiIqMXxpBQREREREREREbU4npQiIiIiIiIiIqIWx5NSRERERERERETU4nhSioiIiIiIiIiIWhxPShERERERERERUYvjSSkiIiIiIiIiImpxPClFREREREREREQtjieliIiIiIiIiIioxfGkFBERERERERERtTielCIiIiIiIiIiohbHk1JERERERERERNTiWuyk1Lp16/DCCy9AoVBg8ODBOHnyZKPtd+zYgZ49e0KhUMDV1RV79uzRWy+EwOLFi6HRaKBUKjFixAj8+OOPT3MIRERERC2OGYqIiIjaqhY5KbV9+3bMmTMHEREROHPmDNzc3KDVanHjxo162x8/fhxvv/02pkyZgvT0dLzxxht444038MMPP0htVqxYgdjYWKxfvx4nTpyAiYkJtFot7t+/3xJDIiIiInrqmKGIiIioLZMJIcTT3sngwYPx0ksvYe3atQCA6upq2NnZYebMmViwYEGd9uPHj0dxcTGSk5OlZe7u7njxxRexfv16CCFgY2ODuXPnYt68eQAAnU6Hzp07Y/PmzZgwYUKz6ioqKoJarYZOp4OZmdkTGOl/5f54AcW//PJE+6Q2RAbI5YZoZ2SIdor2MJAr6jYxMoKRgVGLlGPUru75aZlMBkODdi2y/98cmQFgYCh9NZLVHA8iaj3tDGRoZ9DYv0MZDJ7SfzOfZl5oym8xQz3N41F09y7yf8p+on1S22JoJIORXA5Zu3YwNDGp+Z39IAMDtDM0QjvZ088w7QxkMKgnHxgaGOK5jQ0GRqgdvIEMMHxuDwTRb4fcsPF7kWQyQ8h+/d/SJ6C5ecGwwTVPSHl5OU6fPo2FCxdKywwMDDBixAikpaXVu01aWhrmzJmjt0yr1SIxMREAkJubi2vXrmHEiBHSerVajcGDByMtLa3BQFVWVoaysjLpe1FR0aMOq0n/XrwSFdX1X8UkqiVrZ428LkU42PtCnXXVFWYovrToqddQbWaEcg+rp76fZ1mMmAFrFLZ2GUTUCIsOQ9Gv35bWLuOJ+q1kqJbMTwmro1By8eJT65/aDqWRJ+J8tta77n7h71Bxd9BTr6G8f0dUW9a9sEg1hogjmI6PW7sMImrCgAH/grl6QKvt/6k/vnfr1i1UVVWhc+fOess7d+6Ma9eu1bvNtWvXGm1f+78P0ycALFu2DGq1WvrY2dk99HiIiIiIWsJvJUMxPxEREdHT8tTvlPotWbhwod7Vw6KioqcWrPpN/h3u3mr4BBk952QyKE3bo53cEAPVJhhjbPqr9YCBQgnlq8ZPvRQDGaCU1z0/3U5miPaGz+nVP4N2gKFS+mrc7ku04+3nRK1KYdiu0dvPZS3wqM7zqiXz07g/z8XxA7ufSt/UNhgpDCE3bg+Z3AjrOq6G+PW/fUMjtG9vDEODp/9/c9obymDYrm4+UBoaP5VHYZ4JRsbSI5WGsolQtvt9KxdE9HwzkMlg2r7x/x4aGCgbXf+0PfX/Wnfq1Ant2rXD9evX9ZZfv34d1tbW9W5jbW3daPva/71+/To0Go1emxdffLHBWtq3b4/27ds/yjAe2jDt6y2yHyIiImqbfisZqiXzU8fOGvgHTm2RfREREVHre+qn8OVyOQYMGICvv/5aWlZdXY2vv/4aHh4e9W7j4eGh1x4AUlJSpPYODg6wtrbWa1NUVIQTJ0402CcRERHRs4QZioiIiNq6Fnl8b86cOQgODsbAgQMxaNAg/P3vf0dxcTH+8Ic/AAAmTZoEW1tbLFu2DAAwe/ZseHl5ISYmBq+99ho+++wzfPfdd9i4cSOAmlmwwsLCEBUVBWdnZzg4OOD999+HjY0N3njjjZYYEhEREdFTxwxFREREbVmLnJQaP348bt68icWLF+PatWt48cUXsW/fPuklm/n5+TAw+O9NW0OGDMHWrVvx17/+FYsWLYKzszMSExPRp08fqc17772H4uJi/PGPf8Tdu3cxdOhQ7Nu3DwrFc/oOHCIiImpzmKGIiIioLZMJIURrF9FaioqKoFarodPpYGZm1trlEBER0W8Q84I+Hg8iIiJqSnPzwnM6LQQREREREREREbUmnpQiIiIiIiIiIqIWx5NSRERERERERETU4nhSioiIiIiIiIiIWhxPShERERERERERUYvjSSkiIiIiIiIiImpxPClFREREREREREQtjieliIiIiIiIiIioxfGkFBERERERERERtTielCIiIvr/7N15WFZ1/v/x141ysy8uIKBILribpeZeRi6gpcyMaaaRlpo2LplaLi2oqaVhllouTWnzGzRHMzOtjBYLlcwU0lIxDbNccksURUD4/P7wyz3egYgmB5fn47ru6+o+9+ec8/4cZHjP65z7HAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWK/FQ6vjx4+rdu7d8fX3l7++vfv36KSMjo8h1zp49q8GDB6tChQry9vZWt27d9Pvvvzs+//777/Xggw8qNDRUHh4eqlu3rl577bWSngoAAIBl6KEAAMCNrsRDqd69e+vHH39UQkKCVq1apa+//lqPPfZYkes8+eST+vDDD7V06VJ99dVXOnDggP7xj384Pt+8ebMCAwP1n//8Rz/++KOeeeYZjR07VrNnzy7p6QAAAFiCHgoAANzobMYYU1Ib37Fjh+rVq6dNmzapadOmkqRPPvlEnTt31m+//aaQkJAC66SnpysgIECLFi3S/fffL0nauXOn6tatq6SkJLVo0aLQfQ0ePFg7duzQF198Uez6Tp48KT8/P6Wnp8vX1/cKZggAAG50pdEvXMs9FP0TAAC4lOL2CyV6pVRSUpL8/f0dzZQktW/fXi4uLtq4cWOh62zevFk5OTlq3769Y1mdOnVUtWpVJSUlXXRf6enpKl++fJH1ZGVl6eTJk04vAACAa8211EPRPwEAgJJSoqHUoUOHFBgY6LSsbNmyKl++vA4dOnTRdex2u/z9/Z2WV6pU6aLrbNiwQUuWLLnkJe0vvvii/Pz8HK/Q0NDiTwYAAMAi11IPRf8EAABKyhWFUmPGjJHNZivytXPnzqtda6F++OEHRUdHKzY2Vh07dixy7NixY5Wenu54/frrr5bUCAAAIF2fPRT9EwAAKCllr2SlkSNHqm/fvkWOqV69uoKCgnT48GGn5efOndPx48cVFBRU6HpBQUHKzs7WiRMnnM70/f777wXW2b59u9q1a6fHHntMzz777CXrdnNzk5ub2yXHAQAAlITrsYeifwIAACXlikKpgIAABQQEXHJcy5YtdeLECW3evFlNmjSRJH3xxRfKy8tT8+bNC12nSZMmcnV11eeff65u3bpJklJTU7Vv3z61bNnSMe7HH3/UPffcoz59+mjy5MlXMg0AAABL0UMBAAD8T4k+fU+SOnXqpN9//11z585VTk6OHnnkETVt2lSLFi2SJO3fv1/t2rXTv//9bzVr1kyS9Pjjj+ujjz7SwoUL5evrq6FDh0o6f98D6fzl5vfcc48iIyP18ssvO/ZVpkyZYjV6+Xh6DAAAuJTS6heu1R6K/gkAAFxKcfuFK7pS6nLEx8dryJAhateunVxcXNStWzfNnDnT8XlOTo5SU1N15swZx7IZM2Y4xmZlZSkyMlJvvPGG4/Nly5bpyJEj+s9//qP//Oc/juVhYWHau3dvSU8JAACgxNFDAQCAG12JXyl1LeNMHwAAuBT6BWccDwAAcCnF7Reu6Ol7AAAAAAAAwF9BKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLlXgodfz4cfXu3Vu+vr7y9/dXv379lJGRUeQ6Z8+e1eDBg1WhQgV5e3urW7du+v333wsde+zYMVWpUkU2m00nTpwogRkAAABYjx4KAADc6Eo8lOrdu7d+/PFHJSQkaNWqVfr666/12GOPFbnOk08+qQ8//FBLly7VV199pQMHDugf//hHoWP79eunW2+9tSRKBwAAKDX0UAAA4EZnM8aYktr4jh07VK9ePW3atElNmzaVJH3yySfq3LmzfvvtN4WEhBRYJz09XQEBAVq0aJHuv/9+SdLOnTtVt25dJSUlqUWLFo6xc+bM0ZIlS/T888+rXbt2+uOPP+Tv71/s+k6ePCk/Pz+lp6fL19f3r00WAADckEqjX7iWeyj6JwAAcCnF7RdK9EqppKQk+fv7O5opSWrfvr1cXFy0cePGQtfZvHmzcnJy1L59e8eyOnXqqGrVqkpKSnIs2759uyZOnKh///vfcnEp3jSysrJ08uRJpxcAAMC15lrqoeifAABASSnRUOrQoUMKDAx0Wla2bFmVL19ehw4duug6dru9wNm6SpUqOdbJysrSgw8+qJdffllVq1Ytdj0vvvii/Pz8HK/Q0NDLmxAAAIAFrqUeiv4JAACUlCsKpcaMGSObzVbka+fOnVe7VoexY8eqbt26euihhy57vfT0dMfr119/LaEKAQAACroeeyj6JwAAUFLKXslKI0eOVN++fYscU716dQUFBenw4cNOy8+dO6fjx48rKCio0PWCgoKUnZ2tEydOOJ3p+/333x3rfPHFF9q2bZuWLVsmScq/LVbFihX1zDPPaMKECYVu283NTW5ubsWZIgAAwFV3PfZQ9E8AAKCkXFEoFRAQoICAgEuOa9mypU6cOKHNmzerSZMmks43Q3l5eWrevHmh6zRp0kSurq76/PPP1a1bN0lSamqq9u3bp5YtW0qS3nvvPWVmZjrW2bRpkx599FElJiaqRo0aVzIlAACAEkcPBQAA8D9XFEoVV926dRUVFaUBAwZo7ty5ysnJ0ZAhQ9SzZ0/HU2P279+vdu3a6d///reaNWsmPz8/9evXTyNGjFD58uXl6+uroUOHqmXLlo6nxvy5aTp69Khjf5fz9D0AAIBrET0UAAC4GZRoKCVJ8fHxGjJkiNq1aycXFxd169ZNM2fOdHyek5Oj1NRUnTlzxrFsxowZjrFZWVmKjIzUG2+8UdKlAgAAXDPooQAAwI3OZvJvJnATOnnypPz8/JSeni5fX9/SLgcAAFyD6BeccTwAAMClFLdfuKKn7wEAAAAAAAB/BaEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMuVLe0CSpMxRpJ08uTJUq4EAABcq/L7hPy+4WZH/wQAAC6luP3TTR1KnTp1SpIUGhpaypUAAIBr3alTp+Tn51faZZQ6+icAAFBcl+qfbOYmPu2Xl5enAwcOyMfHRzab7apu++TJkwoNDdWvv/4qX1/fq7rt68HNPP+bee7SzT3/m3nu0s09/5t57tKNP39jjE6dOqWQkBC5uHDng5Lsn6Qb/99TUW7muUs39/xv5rlLN/f8b+a5Szf3/G/0uRe3f7qpr5RycXFRlSpVSnQfvr6+N+Q/sOK6med/M89durnnfzPPXbq5538zz126sefPFVL/Y0X/JN3Y/54u5Waeu3Rzz/9mnrt0c8//Zp67dHPP/0aee3H6J073AQAAAAAAwHKEUgAAAAAAALAcoVQJcXNzU2xsrNzc3Eq7lFJxM8//Zp67dHPP/2aeu3Rzz/9mnrvE/HF13cz/nm7muUs39/xv5rlLN/f8b+a5Szf3/G/muV/opr7ROQAAAAAAAEoHV0oBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAErd3r17ZbPZtHDhwtIuBQAA4JpAfwTgZkAoBUAbNmzQ+PHjdeLEiSta/4033qBhAgAANxT6IwAoeYRSALRhwwZNmDCBpgsAAOD/0B8BQMkjlAIAFMoYo8zMzNIuAwAA4Lpy+vTp0i4BuG4QSgE3ufHjx+upp56SJFWrVk02m002m0179+7VuXPn9MILL6hGjRpyc3PTLbfconHjxikrK8ux/i233KIff/xRX331lWPdu+++W5J0/PhxjRo1Sg0bNpS3t7d8fX3VqVMnff/991el9l9++UVdu3aVl5eXAgMD9eSTT2rNmjWy2Wxau3atY9zdd9+tBg0aaPPmzWrVqpU8PDxUrVo1zZ0712l7CxcudMz9QmvXri2wzUvJ39bXX3+tgQMHqkKFCvL19dXDDz+sP/74o8D4N954Q/Xr15ebm5tCQkI0ePBgpzOzM2fOVJkyZZyWTZ8+XTabTSNGjHAsy83NlY+Pj0aPHu1YlpeXp1dffVX169eXu7u7KlWqpIEDBxao45ZbbtF9992nNWvWqGnTpvLw8NC8efOKPWcAAG4U9Ef/UxL90bp16zRs2DAFBATI399fAwcOVHZ2tk6cOKGHH35Y5cqVU7ly5fT000/LGOO0jcvta9auXevoaxo2bOiod/ny5WrYsKHc3d3VpEkTJScnF6j3iy++0J133ikvLy/5+/srOjpaO3bscBozfvx42Ww2bd++Xb169VK5cuXUpk0bLViwQDabrdDtTpkyRWXKlNH+/fuLfeyAG1XZ0i4AQOn6xz/+oV27dmnx4sWaMWOGKlasKEkKCAhQ//799c477+j+++/XyJEjtXHjRr344ovasWOH3n//fUnSq6++qqFDh8rb21vPPPOMJKlSpUqSpJ9//lkrVqxQ9+7dVa1aNf3++++aN2+e2rZtq+3btyskJOSK6z59+rTuueceHTx4UE888YSCgoK0aNEiffnll4WO/+OPP9S5c2f16NFDDz74oP773//q8ccfl91u16OPPnrFdVzKkCFD5O/vr/Hjxys1NVVz5szRL7/84mjkpPPNzIQJE9S+fXs9/vjjjnGbNm3S+vXr5erqqjvvvFN5eXlat26d7rvvPklSYmKiXFxclJiY6NhfcnKyMjIydNdddzmWDRw4UAsXLtQjjzyiYcOGKS0tTbNnz1ZycrJj+/lSU1P14IMPauDAgRowYIBq165dYscGAIBrFf1RyfZHQ4cOVVBQkCZMmKBvvvlG8+fPl7+/vzZs2KCqVatqypQp+uijj/Tyyy+rQYMGevjhhx3rXk5fs3v3bvXq1UsDBw7UQw89pLi4OHXp0kVz587VuHHj9M9//lOS9OKLL6pHjx5KTU2Vi8v56zY+++wzderUSdWrV9f48eOVmZmpWbNmqXXr1tqyZYtuueUWpzl1795d4eHhmjJliowxuv/++zV48GDFx8fr9ttvdxobHx+vu+++W5UrVy6hIwxcRwyAm97LL79sJJm0tDTHspSUFCPJ9O/f32nsqFGjjCTzxRdfOJbVr1/ftG3btsB2z549a3Jzc52WpaWlGTc3NzNx4kSnZZLMggULil3z9OnTjSSzYsUKx7LMzExTp04dI8l8+eWXjuVt27Y1ksz06dMdy7Kyssxtt91mAgMDTXZ2tjHGmAULFhQ4DsYY8+WXXxbY5qXkb6tJkyaO7RtjzLRp04wk88EHHxhjjDl8+LCx2+2mY8eOTsdq9uzZRpJ5++23jTHG5ObmGl9fX/P0008bY4zJy8szFSpUMN27dzdlypQxp06dMsYY88orrxgXFxfzxx9/GGOMSUxMNJJMfHy8U32ffPJJgeVhYWFGkvnkk0+KPU8AAG5U9Ecl1x9FRkaavLw8x/KWLVsam81mBg0a5Fh27tw5U6VKFadjeCV9zYYNGxzL1qxZYyQZDw8P88svvziWz5s3r8Bc8o/DsWPHHMu+//574+LiYh5++GHHstjYWCPJPPjggwXm++CDD5qQkBCnn/eWLVsu++cK3Mj4+h6AQn300UeS5PTVMEkaOXKkJGn16tWX3Iabm5vjbFNubq6OHTsmb29v1a5dW1u2bPlL9X3yySeqXLmyunbt6ljm7u6uAQMGFDq+bNmyGjhwoOO93W7XwIEDdfjwYW3evPkv1VKUxx57zOmM3eOPP66yZcs6ju9nn32m7OxsDR8+3HGsJGnAgAHy9fV1HGcXFxe1atVKX3/9tSRpx44dOnbsmMaMGSNjjJKSkiSdv3qqQYMG8vf3lyQtXbpUfn5+6tChg44ePep4NWnSRN7e3gXOnFarVk2RkZEldjwAALie0R9dHf369XNcMS5JzZs3lzFG/fr1cywrU6aMmjZtqp9//tmx7HL7mnr16qlly5ZO+5Gke+65R1WrVi2wPH9fBw8eVEpKivr27avy5cs7xt16663q0KGD49/BhQYNGlRg2cMPP6wDBw441RUfHy8PDw9169btEkcJuDkQSgEo1C+//CIXFxfVrFnTaXlQUJD8/f31yy+/XHIbeXl5mjFjhsLDw+Xm5qaKFSsqICBAW7duVXp6+l+ur0aNGk4NjaQC9eYLCQmRl5eX07JatWpJUoF7JFxN4eHhTu+9vb0VHBzs2Gf+cfzz1+TsdruqV6/udJzvvPNObd68WZmZmUpMTFRwcLAaN26sRo0aOb7Ct27dOt15552OdX766Selp6crMDBQAQEBTq+MjAwdPnzYab/VqlW7anMHAOBGQ390dVwYCEmSn5+fJCk0NLTA8gvvFXW5fc3l7EeSY18X688kqW7dujp69GiBm5kX1kN16NBBwcHBio+Pl3T+Z7948WJFR0fLx8enwHjgZsQ9pQAU6c9NzeWYMmWKnnvuOT366KN64YUXVL58ebm4uGj48OHKy8u7ilVeHReba25ursWVFK5NmzbKyclRUlKSEhMTHeHTnXfeqcTERO3cuVNHjhxxCqXy8vIUGBjoaIb+LCAgwOm9h4dHyU0AAIAbBP3RX+uPypQpU+zl5oIbnV9uX3M5+/nzvi5XYT1UmTJl1KtXL7355pt64403tH79eh04cEAPPfTQFe8HuNEQSgEotNkICwtTXl6efvrpJ9WtW9ex/Pfff9eJEycUFhZW5PqStGzZMkVEROitt95yWn7ixAnHDUOvVFhYmLZv3y5jjNP+d+/eXej4AwcO6PTp005nA3ft2iVJjhtVlitXzlHfhYpz1vNifvrpJ0VERDjeZ2Rk6ODBg+rcubNjHtL5G4xXr17dMS47O1tpaWlq3769Y1mzZs1kt9uVmJioxMREx1OB7rrrLr355pv6/PPPHe/z1ahRQ5999plat25N4AQAwGWgP7pFUsn0R1fKqr7mwv7sz3bu3KmKFSsWuMLsYh5++GFNnz5dH374oT7++GMFBARwqwTgAnx9D4Djj+qFzUZ+aPLqq686jX3llVckSffee6/T+n9uVKTzZ4f+fMZp6dKlV+Xxt5GRkdq/f79WrlzpWHb27Fm9+eabhY4/d+6c5s2b53ifnZ2tefPmKSAgQE2aNJF0vtGR5Lhvk3T+LOD8+fOvuM758+crJyfH8X7OnDk6d+6cOnXqJElq37697Ha7Zs6c6XSs3nrrLaWnpzsdZ3d3d91xxx1avHix9u3b53SlVGZmpmbOnKkaNWooODjYsU6PHj2Um5urF154odBjUtjPDQAA0B+VZH90pazqa4KDg3XbbbfpnXfecdrmDz/8oE8//dTx76A4br31Vt16663617/+pffee089e/ZU2bJcGwLk47cBgKPpeOaZZ9SzZ0+5urqqS5cu6tOnj+bPn68TJ06obdu2+vbbb/XOO+/ob3/7m9PVP02aNNGcOXM0adIk1axZU4GBgbrnnnt03333aeLEiXrkkUfUqlUrbdu2TfHx8U5XBF2pgQMHavbs2XrwwQf1xBNPOL6v7+7uLqng2cmQkBBNnTpVe/fuVa1atbRkyRKlpKRo/vz5jhuR169fXy1atNDYsWN1/PhxlS9fXu+++67OnTt3xXVmZ2erXbt2jscMv/HGG2rTpo3jBqQBAQEaO3asJkyYoKioKHXt2tUx7o477ihwefedd96pl156SX5+fmrYsKEkKTAwULVr11Zqaqr69u3rNL5t27YaOHCgXnzxRaWkpKhjx45ydXXVTz/9pKVLl+q1117T/ffff8XzAwDgRkV/VHL90ZWysq95+eWX1alTJ7Vs2VL9+vVTZmamZs2aJT8/P40fP/6ytvXwww9r1KhRksRX94A/K7Xn/gG4przwwgumcuXKxsXFxfHY35ycHDNhwgRTrVo14+rqakJDQ83YsWPN2bNnndY9dOiQuffee42Pj4+R5Hh079mzZ83IkSNNcHCw8fDwMK1btzZJSUmmbdu2To/3vZJHHhtjzM8//2zuvfde4+HhYQICAszIkSPNe++9ZySZb775xjGubdu2pn79+ua7774zLVu2NO7u7iYsLMzMnj27wDb37Nlj2rdvb9zc3EylSpXMuHHjTEJCwhU/8virr74yjz32mClXrpzx9vY2vXv3dnq0cL7Zs2ebOnXqGFdXV1OpUiXz+OOPmz/++KPAuNWrVxtJplOnTk7L+/fvbySZt956q9B65s+fb5o0aWI8PDyMj4+PadiwoXn66afNgQMHHGPCwsLMvffeW+w5AgBwo6M/Ou9q90ebNm1yWh4bG2skmSNHjjgt79Onj/Hy8iqwnb/S10gygwcPdlqWf6xffvllp+WfffaZad26tfHw8DC+vr6mS5cuZvv27cWq/UIHDx40ZcqUMbVq1broGOBmZTPmL9zNDQCuMa+++qqefPJJ/fbbb6pcubIk6e6779bRo0f1ww8/WFbHwoUL9cgjj2jTpk1q2rSpZfsFAAD4s2ulP7pZHT16VMHBwXr++ef13HPPlXY5wDWFe0oBuG5lZmY6vT979qzmzZun8PBwR8MFAABwM6E/uvYsXLhQubm5iomJKe1SgGsO95QCcE3Jzs7W8ePHixzj5+cnDw8P/eMf/1DVqlV12223KT09Xf/5z3+0c+fOiz4m+GrIzMxUenp6kWPKly9fYvsHAAA3nxulP7Lb7SVWw7Xoiy++0Pbt2zV58mT97W9/czzREMD/EEoBuKZs2LDB6SahhVmwYIH69u2ryMhI/etf/1J8fLxyc3NVr149vfvuu3rggQdKrL4lS5bokUceKXLMl19+WWL7BwAAN58bpT+6++67S6yGa9HEiRO1YcMGtW7dWrNmzSrtcoBrEveUAnBN+eOPP7R58+Yix9SvX1/BwcEWVeTs4MGD+vHHH4sc06RJE5UrV86iigAAwI2O/gjAjYpQCgAAAAAAAJbjRucAAAAAAACw3E19T6m8vDwdOHBAPj4+stlspV0OAAC4BhljdOrUKYWEhMjFhfN59E8AAOBSits/3dSh1IEDBxQaGlraZQAAgOvAr7/+qipVqpR2GaWO/gkAABTXpfqnmzqU8vHxkXT+IPn6+pZyNQAA4Fp08uRJhYaGOvqGmx39EwAAuJTi9k83dSiVf8m5r68vTRUAACgSX1U7j/4JAAAU16X6J26MAAAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACw3E19TykAKGl5eXnKzs4u7TIAFMHV1VVlypQp7TIAABfIzc1VTk5OaZcB4CKuVv9EKAUAJSQ7O1tpaWnKy8sr7VIAXIK/v7+CgoK4mTkAlDJjjA4dOqQTJ06UdikALuFq9E+EUgBQAowxOnjwoMqUKaPQ0FC5uPBtaeBaZIzRmTNndPjwYUlScHBwKVcEADe3/EAqMDBQnp6enCwArkFXs38ilAKAEnDu3DmdOXNGISEh8vT0LO1yABTBw8NDknT48GEFBgbyVT4AKCW5ubmOQKpChQqlXQ6AIlyt/olT9wBQAnJzcyVJdru9lCsBUBz54TH3LwGA0pP/v8Gc0AOuD1ejfyKUAoASxCXnwPWB31UAuHbwv8nA9eFq/K4SSgEAAAAAAMByhFIAAAAAAACwHKEUAMBJ3759ZbPZZLPZZLfbVbNmTU2cOFHnzp37S9tdu3atbDabpY94TktLU69evRQSEiJ3d3dVqVJF0dHR2rlzp9O4VatWqW3btvLx8ZGnp6fuuOMOLVy40GnM3r17ZbPZlJKSUuz9jx8/XnXq1JGXl5fKlSun9u3ba+PGjU7b7Nevn6pVqyYPDw/VqFFDsbGxys7OLnK7Bw8eVK9evVSrVi25uLho+PDhxarn66+/VpcuXRQSEiKbzaYVK1YUOm7Hjh3q2rWr/Pz85OXlpTvuuEP79u1zfD5w4EDVqFFDHh4eCggIKPSYbtq0Se3atZO/v7/KlSunyMhIff/994Xub/fu3fLx8ZG/v/9VmwMAAFaif6J/on+6MoRSAIACoqKidPDgQf30008aOXKkxo8fr5dffrm0y3K4VNMhnb/hYocOHZSenq7ly5crNTVVS5YsUcOGDZ0au1mzZik6OlqtW7fWxo0btXXrVvXs2VODBg3SqFGj/lKdtWrV0uzZs7Vt2zatW7dOt9xyizp27KgjR45Iknbu3Km8vDzNmzdPP/74o2bMmKG5c+dq3LhxRW43KytLAQEBevbZZ9WoUaNi13P69Gk1atRIr7/++kXH7NmzR23atFGdOnW0du1abd26Vc8995zc3d0dY5o0aaIFCxZox44dWrNmjYwx6tixo+MG/xkZGYqKilLVqlW1ceNGrVu3Tj4+PoqMjCxwI8ycnBw9+OCDuvPOO6/aHAAAKA30T/RP9E9XwNzE0tPTjSSTnp5e2qUAuMFkZmaa7du3m8zMzNIu5bL16dPHREdHOy3r0KGDadGihTl+/LiJiYkx/v7+xsPDw0RFRZldu3Y5xu3du9fcd999xt/f33h6epp69eqZ1atXm7S0NCPJ6dWnTx9jjDEnT540vXr1Mp6eniYoKMi88sorpm3btuaJJ55wbDcsLMxMnDjRxMTEGB8fH8e6iYmJpk2bNsbd3d1UqVLFDB061GRkZBhjjElOTjaSzN69ey8613379hlXV1czYsSIAp/NnDnTSDLffPONMcY45pCcnHz5B/X/5P/d+eyzzy46Ztq0aaZatWrF3uafj1VxSTLvv/9+geUPPPCAeeihhy5rW99//72RZHbv3m2MMWbTpk1Gktm3b59jzNatW40k89NPPzmt+/TTT5uHHnrILFiwwPj5+V2VOVyJon5n6ReccTwAlBT6J/qnwtA/3dj9E1dKAYAFjDE6k32uVF7n//b8NR4eHsrOzlbfvn313XffaeXKlUpKSpIxRp07d3acvRk8eLCysrL09ddfa9u2bZo6daq8vb0VGhqq9957T5KUmpqqgwcP6rXXXpMkjRgxQuvXr9fKlSuVkJCgxMREbdmypUANcXFxatSokZKTk/Xcc89pz549ioqKUrdu3bR161YtWbJE69at05AhQyRJAQEBcnFx0bJlyxxnoP5s2bJlysnJKfSM3sCBA+Xt7a3Fixf/5eMnnT87OX/+fPn5+RV5di49PV3ly5e/Kvu8XHl5eVq9erVq1aqlyMhIBQYGqnnz5kVe4n369GktWLBA1apVU2hoqCSpdu3aqlChgt566y1lZ2crMzNTb731lurWratbbrnFse4XX3yhpUuXXptn7QAA14TruYeif/rr6J9u/P6pbGkXAAA3g8ycXNV7fk2p7Hv7xEh52q/sf+6NMfr888+1Zs0aderUSStWrND69evVqlUrSVJ8fLxCQ0O1YsUKde/eXfv27VO3bt3UsGFDSVL16tUd28pvFAIDAx3ffT916pTeeecdLVq0SO3atZMkLViwQCEhIQVqueeeezRy5EjH+/79+6t3796O+wGEh4dr5syZatu2rebMmaPKlStr5syZevrppzVhwgQ1bdpUERER6t27t6OuXbt2yc/PT8HBwQX2Z7fbVb16de3ateuKjl2+VatWqWfPnjpz5oyCg4OVkJCgihUrFjp29+7dmjVrluLi4v7SPq/U4cOHlZGRoZdeekmTJk3S1KlT9cknn+gf//iHvvzyS7Vt29Yx9o033tDTTz+t06dPq3bt2kpISJDdbpck+fj4aO3atfrb3/6mF154QdL5n8+aNWtUtuz5f4vHjh1T37599Z///Ee+vr7WTxYAcF24Hnso+if6J/qn4uNKKQBAAatWrZK3t7fc3d3VqVMnPfDAA+rbt6/Kli2r5s2bO8ZVqFBBtWvX1o4dOyRJw4YN06RJk9S6dWvFxsZq69atRe7n559/Vk5Ojpo1a+ZY5ufnp9q1axcY27RpU6f333//vRYuXChvb2/HKzIyUnl5eUpLS5N0/szjoUOHFB8fr5YtW2rp0qWqX7++EhISin0s8huFosTHxzvVkZiY6PgsIiJCKSkp2rBhg6KiotSjRw8dPny4wDb279+vqKgode/eXQMGDHAsv3C7gwYNKlbNiYmJTuvFx8cXa728vDxJUnR0tJ588knddtttGjNmjO677z7NnTvXaWzv3r2VnJysr776SrVq1VKPHj109uxZSVJmZqb69eun1q1b65tvvtH69evVoEED3XvvvcrMzJQkDRgwQL169dJdd911VecAAEBpoX/6H/on+qfi4kopALCAh2sZbZ8YWWr7vlwRERGaM2eO7Ha7QkJCVLZsWa1cufKS6/Xv31+RkZFavXq1Pv30U7344ouaPn26hg4deiWlO/Hy8nJ6n5GRoYEDB2rYsGEFxlatWtXx3z4+PurSpYu6dOmiSZMmKTIyUpMmTVKHDh0UHh6u9PR0HThwoMDZxezsbO3Zs0eRkZf+uXXt2tWp2axcubJT3TVr1lTNmjXVokULhYeH66233tLYsWMdYw4cOKCIiAi1atVK8+fPd9r2hU+rKe4ZsaZNmzqtV6lSpWKtV7FiRZUtW1b16tVzWl63bl2tW7fOaZmfn5/8/PwUHh6uFi1aqFy5cnr//ff14IMPatGiRdq7d6+SkpLk4nL+/NeiRYtUrlw5ffDBB+rZs6e++OILrVy50nFW0xijvLw8lS1bVvPnz9eDDz54RXMAANxYrqceiv6J/ulC9E/FQygFABaw2WxX/BW60pDfCFyobt26OnfunDZu3Oi4/PzYsWNKTU11+iMcGhqqQYMGadCgQRo7dqzefPNNDR061HHG7ML7E1SvXl2urq7atGmToxFKT0/Xrl27LnoGKF/jxo21ffv2AnUWxWazqU6dOtqwYYMk6f7779fo0aM1ffp0TZ8+3Wns3LlzdebMGT388MOX3K6Pj498fHyKVUNeXp6ysrIc7/fv36+IiAjHE1nym5B8lzO/fB4eHle0nt1u1x133KHU1FSn5bt27VJYWNhF1zPGyBjjmNeZM2fk4uIim83mGJP/Pv9sYlJSktO/hQ8++EBTp07Vhg0bVLly5SueAwDgxnI99VD0T/RPF6J/Kp7r47cbAFDqwsPDFR0drQEDBmjevHny8fHRmDFjVLlyZUVHR0uShg8frk6dOqlWrVr6448/9OWXX6pu3bqSpLCwMNlsNq1atUqdO3eWh4eHfHx81KdPHz311FMqX768AgMDFRsbW+APcmFGjx6tFi1aaMiQIerfv7+8vLy0fft2JSQkaPbs2UpJSVFsbKxiYmJUr1492e12ffXVV3r77bc1evRoSefPCE6bNk2jRo2Su7u7YmJi5Orqqg8++EDjxo3TpEmT1KBBA6f9/rnhkKT69evL1dXVadnp06c1efJkde3aVcHBwTp69Khef/117d+/X927d5d0vqG6++67FRYWpri4OMejjiUpKCioyPnnnwXLyMjQkSNHlJKSIrvdXuAs3YUyMjK0e/dux/u0tDSlpKSofPnyjqb2qaee0gMPPKC77rpLERER+uSTT/Thhx9q7dq1ks5/ZWDJkiXq2LGjAgIC9Ntvv+mll16Sh4eHOnfuLEnq0KGDnnrqKQ0ePFhDhw5VXl6eXnrpJZUtW1YRERGS5Ph3ke+7776Ti4tLgeN9JXMAAOBaQf90Hv0T/dNFXZXnAF6neKQxgJJyoz3SOF/+I439/PyMh4eHiYyMdHqk8ZAhQ0yNGjWMm5ubCQgIMDExMebo0aOOzydOnGiCgoKMzWYr8pHGzZo1M2PGjHGsFxYWZmbMmFGgnm+//dZ06NDBeHt7Gy8vL3PrrbeayZMnG2OMOXLkiBk2bJhp0KCB8fb2Nj4+PqZhw4YmLi7O5ObmOm1nxYoV5s477zReXl6ORy4vXrzYaUxhj2XOf/36668FasvMzDR///vfTUhIiLHb7SY4ONh07drVfPvtt44xCxYsuOg2L6WwdcLCwopc58svvyx0vfyfRb633nrL1KxZ07i7u5tGjRqZFStWOD7bv3+/6dSpkwkMDDSurq6mSpUqplevXmbnzp1O2/j0009N69atjZ+fnylXrpy55557TFJS0kVrK+4jjYs7h8t1NR5pfLPgeAAoKfRP9E/0Tzdf/2Qz5io8K/w6dfLkSfn5+Sk9Pf2GuXM9gGvD2bNnlZaWpmrVqsnd3b20y7munD59WpUrV9b06dPVr18/y/d//PhxtWvXTr6+vvr444/l6elpeQ2wXlG/s/QLzjgeAEoK/dOVo39Cabga/RNP3wMAlKrk5GQtXrxYe/bs0ZYtW9S7d29JclzSbrXy5cvrs88+U7t27ZSUlFQqNQAAABSF/gk3Cu4pBQAodXFxcUpNTZXdbleTJk2UmJioihUrllo9FSpU0PPPP19q+wcAALgU+ifcCAilAACl6vbbb9fmzZtLuwwAAIDrBv0TbhR8fQ8AAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQCAk759+8pms8lms8lut6tmzZqaOHGizp0795e2u3btWtlsNp04ceLqFFoMaWlp6tWrl0JCQuTu7q4qVaooOjpaO3fudBq3atUqtW3bVj4+PvL09NQdd9yhhQsXOo3Zu3evbDabUlJSir3/8ePHq06dOvLy8lK5cuXUvn17bdy40Wmb/fr1U7Vq1eTh4aEaNWooNjZW2dnZRW734MGD6tWrl2rVqiUXFxcNHz68WPXMmTNHt956q3x9feXr66uWLVvq448/dnx+/PhxDR06VLVr15aHh4eqVq2qYcOGKT093TFm4cKFjn8ff34dPnzYMS4rK0vPPPOMwsLC5ObmpltuuUVvv/22Uz2vvvqqY1+hoaF68skndfbs2SLnsHz5cnXs2FEVKlS47J8HAAAlhf6J/on+6cqULe0CAADXnqioKC1YsEBZWVn66KOPNHjwYLm6umrs2LGlXZokKTs7W3a7vcgxOTk56tChg2rXrq3ly5crODhYv/32mz7++GOnxm7WrFkaPny4Ro8erTlz5shut+uDDz7QoEGD9MMPPyguLu6K66xVq5Zmz56t6tWrKzMzUzNmzFDHjh21e/duBQQEaOfOncrLy9O8efNUs2ZN/fDDDxowYIBOnz5d5H6zsrIUEBCgZ599VjNmzCh2PVWqVNFLL72k8PBwGWP0zjvvKDo6WsnJyapfv74OHDigAwcOKC4uTvXq1dMvv/yiQYMG6cCBA1q2bJkk6YEHHlBUVJTTdvv27auzZ88qMDDQsaxHjx76/fff9dZbb6lmzZo6ePCg8vLyHJ8vWrRIY8aM0dtvv61WrVpp165djob+lVdeuegcTp8+rTZt2qhHjx4aMGBAsecOAEBJo3+if6J/ugLmJpaenm4kmfT09NIuBcANJjMz02zfvt1kZmaWdimXrU+fPiY6OtppWYcOHUyLFi3M8ePHTUxMjPH39zceHh4mKirK7Nq1yzFu79695r777jP+/v7G09PT1KtXz6xevdqkpaUZSU6vPn36GGOMOXnypOnVq5fx9PQ0QUFB5pVXXjFt27Y1TzzxhGO7YWFhZuLEiSYmJsb4+Pg41k1MTDRt2rQx7u7upkqVKmbo0KEmIyPDGGNMcnKykWT27t170bnu27fPuLq6mhEjRhT4bObMmUaS+eabb4wxxjGH5OTkyz+o/yf/785nn3120THTpk0z1apVK/Y2/3ysLle5cuXMv/71r4t+/t///tfY7XaTk5NT6OeHDx82rq6u5t///rdj2ccff2z8/PzMsWPHLrrdwYMHm3vuucdp2YgRI0zr1q2LVffV+HlcqKjfWfoFZxwPACWF/on+qTD0T/9zI/ZPfH0PAKxgjJR9unRexvzl8j08PJSdna2+ffvqu+++08qVK5WUlCRjjDp37qycnBxJ0uDBg5WVlaWvv/5a27Zt09SpU+Xt7a3Q0FC99957kqTU1FQdPHhQr732miRpxIgRWr9+vVauXKmEhAQlJiZqy5YtBWqIi4tTo0aNlJycrOeee0579uxRVFSUunXrpq1bt2rJkiVat26dhgwZIkkKCAiQi4uLli1bptzc3ELntWzZMuXk5GjUqFEFPhs4cKC8vb21ePHiv3z8pPNnJ+fPny8/Pz81atToouPS09NVvnz5q7LPouTm5urdd9/V6dOn1bJlyyLr8fX1VdmyhV9c/e9//1uenp66//77HctWrlyppk2batq0aapcubJq1aqlUaNGKTMz0zGmVatW2rx5s7799ltJ0s8//6yPPvpInTt3vkozBADcEK7jHor+6a+jf7rx+ye+vgcAVsg5I00JKZ19jzsg2b2uaFVjjD7//HOtWbNGnTp10ooVK7R+/Xq1atVKkhQfH6/Q0FCtWLFC3bt31759+9StWzc1bNhQklS9enXHtvIbhcDAQPn7+0uSTp06pXfeeUeLFi1Su3btJEkLFixQSEjBY3XPPfdo5MiRjvf9+/dX7969HfcDCA8P18yZM9W2bVvNmTNHlStX1syZM/X0009rwoQJatq0qSIiItS7d29HXbt27ZKfn5+Cg4ML7M9ut6t69eratWvXFR27fKtWrVLPnj115swZBQcHKyEhQRUrVix07O7duzVr1qy/dMn7pWzbtk0tW7bU2bNn5e3trffff1/16tUrdOzRo0f1wgsv6LHHHrvo9t566y316tVLHh4ejmU///yz1q1bJ3d3d73//vs6evSo/vnPf+rYsWNasGCBJKlXr146evSo2rRpI2OMzp07p0GDBmncuHFXd8IAgOvbddhD0T/RP9E/FR9XSgEACli1apW8vb3l7u6uTp066YEHHlDfvn1VtmxZNW/e3DGuQoUKql27tnbs2CFJGjZsmCZNmqTWrVsrNjZWW7duLXI/P//8s3JyctSsWTPHMj8/P9WuXbvA2KZNmzq9//7777Vw4UJ5e3s7XpGRkcrLy1NaWpqk82ceDx06pPj4eLVs2VJLly5V/fr1lZCQUOxjcal7L0jnm8sL60hMTHR8FhERoZSUFG3YsEFRUVHq0aOH0w0t8+3fv19RUVHq3r2703f9L9zuoEGDilVzYmKi03rx8fGOz2rXrq2UlBRt3LhRjz/+uPr06aPt27cX2MbJkyd17733ql69eho/fnyh+0lKStKOHTvUr18/p+V5eXmy2WyKj49Xs2bN1LlzZ73yyit65513HGf71q5dqylTpuiNN97Qli1btHz5cq1evVovvPDCJY8pAADXIvqn/6F/on8qLq6UAgAruHqeP9tWWvu+TBEREY6bVoaEhKhs2bJauXLlJdfr37+/IiMjtXr1an366ad68cUXNX36dA0dOvRKKnfi5eV8pjIjI0MDBw7UsGHDCoytWrWq4799fHzUpUsXdenSRZMmTVJkZKQmTZqkDh06KDw8XOnp6Tpw4ECBs4vZ2dnas2ePIiMjL1lb165dnZrNypUrO9Vds2ZN1axZUy1atFB4eLjeeustp5ueHjhwQBEREWrVqpXmz5/vtO0Ln47i6+t7yVqk8w3ohetVqlTJ8d/5TwSSpCZNmmjTpk167bXXNG/ePMeYU6dOKSoqSj4+Pnr//ffl6upa6H7+9a9/6bbbblOTJk2clgcHB6ty5cry8/NzLKtbt66MMfrtt98UHh6u5557TjExMerfv78kqWHDhjp9+rQee+wxPfPMM0UeUwDATeQ66qHon+if6J8uH6EUAFjBZrvir9CVhvxG4EJ169bVuXPntHHjRsfl58eOHVNqaqrT5cuhoaEaNGiQBg0apLFjx+rNN9/U0KFDHWfMLrw/QfXq1eXq6qpNmzY5GqH09HTt2rVLd911V5E1Nm7cWNu3by9QZ1FsNpvq1KmjDRs2SJLuv/9+jR49WtOnT9f06dOdxs6dO1dnzpzRww8/fMnt+vj4yMfHp1g15OXlKSsry/F+//79ioiIUJMmTbRgwQK5uDhfxHw588vn4eFR7PX+XM/JkycVGRkpNzc3rVy5Uu7u7oWul5GRof/+97968cUXC3zWunVrLV26VBkZGfL29pZ0/lJ/FxcXValSRZJ05syZAnMtU6aMpPNfe7icYwoAuIFdRz0U/RP9E/3T5SOUAgAUS3h4uKKjozVgwADNmzdPPj4+GjNmjCpXrqzo6GhJ0vDhw9WpUyfVqlVLf/zxh7788kvVrVtXkhQWFiabzaZVq1apc+fO8vDwkI+Pj/r06aOnnnpK5cuXV2BgoGJjY+Xi4iKbzVZkPaNHj1aLFi00ZMgQ9e/fX15eXtq+fbsSEhI0e/ZspaSkKDY2VjExMapXr57sdru++uorvf322xo9erSk82cEp02bplGjRsnd3V0xMTFydXXVBx98oHHjxmnSpElq0KCB035TU1ML1FK/fv0CZ8NOnz6tyZMnq2vXrgoODtbRo0f1+uuva//+/erevbuk8w3V3XffrbCwMMXFxenIkSOO9YOCgoqcf/6ZvIyMDB05ckQpKSmy2+0Xvb+BJI0dO1adOnVS1apVderUKS1atEhr167VmjVrJJ1vqDp27KgzZ87oP//5j06ePKmTJ09KOn/j0/ymR5KWLFmic+fO6aGHHiqwn169eumFF17QI488ogkTJujo0aN66qmn9OijjzrundClSxe98soruv3229W8eXPt3r1bzz33nLp06eK0nz87fvy49u3bpwMHzp81z/95BAUFXfKYAQBgNfqn8+ifzqN/KsRVeQ7gdYpHGgMoKTfaI43z5T/S2M/Pz3h4eJjIyEinRxoPGTLE1KhRw7i5uZmAgAATExNjjh496vh84sSJJigoyNhstiIfadysWTMzZswYx3phYWFmxowZBer59ttvTYcOHYy3t7fx8vIyt956q5k8ebIxxpgjR46YYcOGmQYNGhhvb2/j4+NjGjZsaOLi4kxubq7TdlasWGHuvPNO4+Xl5Xjk8uLFi53GFPZY5vzXr7/+WqC2zMxM8/e//92EhIQYu91ugoODTdeuXc23337rGLNgwYKLbvNSClsnLCysyHUeffRRExYWZux2uwkICDDt2rUzn376qePzL7/88qL1pKWlOW2rZcuWplevXhfd144dO0z79u2Nh4eHqVKlihkxYoQ5c+aM4/OcnBwzfvx4U6NGDePu7m5CQ0PNP//5T/PHH38UOYeLHbPY2Ngi17uUq/FI45sFxwNASaF/on+if7r5+iebMVfhWeHXqZMnT8rPz8/xuEYAuFrOnj2rtLQ0VatW7aKX76Jwp0+fVuXKlTV9+vQCN4C0wvHjx9WuXTv5+vrq448/lqfn5d+TC9efon5n6ReccTwAlBT6pytH/4TScDX6J56+BwAoVcnJyVq8eLH27NmjLVu2qHfv3pLkuKTdauXLl9dnn32mdu3aKSkpqVRqAAAAKAr9E24U3FMKAFDq4uLilJqaKrvdriZNmigxMVEVK1YstXoqVKig559/vtT2DwAAcCn0T7gREEoBAErV7bffrs2bN5d2GQAAANcN+ifcKPj6HgAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAnffv2lc1mk81mk91uV82aNTVx4kSdO3fuL2137dq1stlsOnHixNUptBjS0tLUq1cvhYSEyN3dXVWqVFF0dLR27tzpNG7VqlVq27atfHx85OnpqTvuuEMLFy50GrN3717ZbDalpKQUe//jx49XnTp15OXlpXLlyql9+/bauHGj0zb79eunatWqycPDQzVq1FBsbKyys7OL3O7BgwfVq1cv1apVSy4uLho+fHixa8r30ksvyWazFVh3z549+vvf/66AgAD5+vqqR48e+v33353GTJ48Wa1atZKnp6f8/f0L3X7+v6ELX++++67j8+XLl6tDhw6O/bRs2VJr1qy5ZN3Lly9Xx44dVaFChcv+eQAAUFLon+if6J+uDKEUAKCAqKgoHTx4UD/99JNGjhyp8ePH6+WXXy7tshwu1XRIUk5Ojjp06KD09HQtX75cqampWrJkiRo2bOjU2M2aNUvR0dFq3bq1Nm7cqK1bt6pnz54aNGiQRo0a9ZfqrFWrlmbPnq1t27Zp3bp1uuWWW9SxY0cdOXJEkrRz507l5eVp3rx5+vHHHzVjxgzNnTtX48aNK3K7WVlZCggI0LPPPqtGjRpddl2bNm3SvHnzdOuttzotP336tDp27CibzaYvvvhC69evV3Z2trp06aK8vDzHuOzsbHXv3l2PP/54kftZsGCBDh486Hj97W9/c3z29ddfq0OHDvroo4+0efNmRUREqEuXLkpOTi5ym6dPn1abNm00derUy543AAAlif6J/on+6QqYm1h6erqRZNLT00u7FAA3mMzMTLN9+3aTmZlZ2qVctj59+pjo6GinZR06dDAtWrQwx48fNzExMcbf3994eHiYqKgos2vXLse4vXv3mvvuu8/4+/sbT09PU69ePbN69WqTlpZmJDm9+vTpY4wx5uTJk6ZXr17G09PTBAUFmVdeecW0bdvWPPHEE47thoWFmYkTJ5qYmBjj4+PjWDcxMdG0adPGuLu7mypVqpihQ4eajIwMY4wxycnJRpLZu3fvRee6b98+4+rqakaMGFHgs5kzZxpJ5ptvvjHGGMcckpOTL/+g/p/8vzufffbZRcdMmzbNVKtWrdjb/POxupRTp06Z8PBwk5CQUGDdNWvWGBcXF6e/iydOnDA2m80kJCQU2NaCBQuMn59fofuRZN5///1i12WMMfXq1TMTJkwo1tir8fO4UFG/s/QLzjgeAEoK/RP9U2Hon4p2vfdPXCkFABYwxuhMzplSeRlj/nL9Hh4eys7OVt++ffXdd99p5cqVSkpKkjFGnTt3Vk5OjiRp8ODBysrK0tdff61t27Zp6tSp8vb2VmhoqN577z1JUmpqqg4ePKjXXntNkjRixAitX79eK1euVEJCghITE7Vly5YCNcTFxalRo0ZKTk7Wc889pz179igqKkrdunXT1q1btWTJEq1bt05DhgyRJAUEBMjFxUXLli1Tbm5uofNatmyZcnJyCj2jN3DgQHl7e2vx4sV/+fhJ58+OzZ8/X35+fkWenUtPT1f58uWvyj4LM3jwYN17771q3759gc+ysrJks9nk5ubmWObu7i4XFxetW7fuivZVsWJFNWvWTG+//XaR/xbz8vJ06tSpEp07AOD6cz33UPRPfx39043fP5Ut7QIA4GaQeS5TzRc1L5V9b+y1UZ6unle0rjFGn3/+udasWaNOnTppxYoVWr9+vVq1aiVJio+PV2hoqFasWKHu3btr37596tatmxo2bChJql69umNb+X8sAwMDHd+jP3XqlN555x0tWrRI7dq1k3T+kuWQkJACtdxzzz0aOXKk433//v3Vu3dvx3f6w8PDNXPmTLVt21Zz5sxR5cqVNXPmTD399NOaMGGCmjZtqoiICPXu3dtR165du+Tn56fg4OAC+7Pb7apevbp27dp1Rccu36pVq9SzZ0+dOXNGwcHBSkhIUMWKFQsdu3v3bs2aNUtxcXF/aZ8X8+6772rLli3atGlToZ+3aNFCXl5eGj16tKZMmSJjjMaMGaPc3FwdPHjwsvY1ceJE3XPPPfL09NSnn36qf/7zn8rIyNCwYcMKHR8XF6eMjAz16NHjsucFALhxXY89FP0T/RP9U/FxpRQAoIBVq1bJ29tb7u7u6tSpkx544AH17dtXZcuWVfPm/2sMK1SooNq1a2vHjh2SpGHDhmnSpElq3bq1YmNjtXXr1iL38/PPPysnJ0fNmjVzLPPz81Pt2rULjG3atKnT+++//14LFy6Ut7e34xUZGam8vDylpaVJOn+m6dChQ4qPj1fLli21dOlS1a9fXwkJCcU+Fna7/ZJj4uPjnepITEx0fBYREaGUlBRt2LBBUVFR6tGjhw4fPlxgG/v371dUVJS6d++uAQMGOJZfuN1BgwYVq+bExESn9eLj4/Xrr7/qiSeeUHx8vNzd3QtdLyAgQEuXLtWHH34ob29v+fn56cSJE2rcuLFcXC6vZXjuuefUunVr3X777Ro9erSefvrpi95XY9GiRZowYYL++9//KjAwUFLRxxQAgGsR/dP/0D/RPxUXV0oBgAU8ynpoY6+Nlx5YQvu+XBEREZozZ47sdrtCQkJUtmxZrVy58pLr9e/fX5GRkVq9erU+/fRTvfjii5o+fbqGDh16JaU78fLycnqfkZGhgQMHFnrmqGrVqo7/9vHxUZcuXdSlSxdNmjRJkZGRmjRpkjp06KDw8HClp6frwIEDBc4uZmdna8+ePYqMjLxkbV27dnVqNitXruxUd82aNVWzZk21aNFC4eHheuuttzR27FjHmAMHDigiIkKtWrXS/PnznbZ94dNRfH19L1mLdL4BvXC9SpUq6fPPP9fhw4fVuHFjx/Lc3Fx9/fXXmj17trKyslSmTBl17NhRe/bs0dGjR1W2bFn5+/srKCjI6aztlWjevLleeOEFZWVlOV3e/u6776p///5aunSp0yXxRR1TAMDN43rqoeif6J/ony4foRQAWMBms13xV+hKQ34jcKG6devq3Llz2rhxo+Py82PHjik1NVX16tVzjAsNDdWgQYM0aNAgjR07Vm+++aaGDh3qOGN24f0JqlevLldXV23atMnRCKWnp2vXrl266667iqyxcePG2r59e4E6i2Kz2VSnTh1t2LBBknT//fdr9OjRmj59uqZPn+40du7cuTpz5owefvjhS27Xx8dHPj4+xaohLy9PWVlZjvf79+9XRESEmjRpogULFhQ4o3Y588vn4eFRYL127dpp27ZtTsseeeQR1alTR6NHj1aZMmWcPsu/RP6LL77Q4cOH1bVr18uu40IpKSkqV66cU0O1ePFiPfroo3r33Xd17733Oo2/nGMKALhxXU89FP0T/RP90+UjlAIAFEt4eLiio6M1YMAAzZs3Tz4+PhozZowqV66s6OhoSdLw4cPVqVMn1apVS3/88Ye+/PJL1a1bV5IUFhYmm82mVatWqXPnzvLw8JCPj4/69Omjp556SuXLl1dgYKBiY2Pl4uIim81WZD2jR49WixYtNGTIEPXv319eXl7avn27EhISNHv2bKWkpCg2NlYxMTGqV6+e7Ha7vvrqK7399tsaPXq0pPNnBKdNm6ZRo0bJ3d1dMTExcnV11QcffKBx48Zp0qRJatCggdN+U1NTC9RSv359ubq6Oi07ffq0Jk+erK5duyo4OFhHjx7V66+/rv3796t79+6SzjdUd999t8LCwhQXF+d41LEkBQUFFTn//DN5GRkZOnLkiFJSUmS3250a3Av5+PgUmIuXl5cqVKjgtHzBggWqW7euAgIClJSUpCeeeEJPPvmk01cC9u3bp+PHj2vfvn3Kzc111FKzZk15e3vrww8/1O+//64WLVrI3d1dCQkJmjJlitMNURctWqQ+ffrotddeU/PmzXXo0CFJ5xtCPz+/i847f78HDhyQ9L+fR1BQ0CWPGQAAVqN/Oo/+if7poq7KcwCvUzzSGEBJudEeaZwv/5HGfn5+xsPDw0RGRjo90njIkCGmRo0axs3NzQQEBJiYmBhz9OhRx+cTJ040QUFBxmazFflI42bNmpkxY8Y41gsLCzMzZswoUM+3335rOnToYLy9vY2Xl5e59dZbzeTJk40xxhw5csQMGzbMNGjQwHh7exsfHx/TsGFDExcXZ3Jzc522s2LFCnPnnXcaLy8vxyOXFy9e7DSmsMcy579+/fXXArVlZmaav//97yYkJMTY7XYTHBxsunbtar799lvHmAULFlx0m5dS2DphYWGXXO9ChT0OefTo0aZSpUrG1dXVhIeHm+nTp5u8vDynMX369Cl0/19++aUxxpiPP/7Y3HbbbY6fS6NGjczcuXOdjnvbtm0L3Ub+v4uLudgxi42Nvay5/9nVeKTxzYLjAaCk0D/RP9E/3Xz9k82Yq/Cs8OvUyZMn5efnp/T09GJ/zxQAiuPs2bNKS0tTtWrVLnpTRBTu9OnTqly5sqZPn65+/fpZvv/jx4+rXbt28vX11ccffyxPz+vjKwP4a4r6naVfcMbxAFBS6J+uHP0TSsPV6J94+h4AoFQlJydr8eLF2rNnj7Zs2aLevXtLkuOSdquVL19en332mdq1a6ekpKRSqQEAAKAo9E+4UXBPKQBAqYuLi1NqaqrsdruaNGmixMREx40iS0OFChX0/PPPl9r+AQAALoX+CTcCQikAQKm6/fbbtXnz5tIuAwAA4LpB/4QbBV/fAwAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAOCkb9++stlsstlsstvtqlmzpiZOnKhz5879pe2uXbtWNptNJ06cuDqFFkNaWpp69eqlkJAQubu7q0qVKoqOjtbOnTudxq1atUpt27aVj4+PPD09dccdd2jhwoVOY/bu3SubzaaUlJRi73/8+PGqU6eOvLy8VK5cObVv314bN2502ma/fv1UrVo1eXh4qEaNGoqNjVV2dnaR2z148KB69eqlWrVqycXFRcOHDy92Tfv379dDDz2kChUqyMPDQw0bNtR3333n+PzCn3/+Kyoqymkbt9xyS4ExL730kuPz1NRURUREqFKlSnJ3d1f16tX17LPPKicnx2k7J06c0ODBgxUcHCw3NzfVqlVLH330UZH1L1++XB07dlSFChUu++cBAEBJoX+if6J/ujJlS7sAAMC1JyoqSgsWLFBWVpY++ugjDR48WK6urho7dmxplyZJys7Olt1uL3JMTk6OOnTooNq1a2v58uUKDg7Wb7/9po8//tipsZs1a5aGDx+u0aNHa86cObLb7frggw80aNAg/fDDD4qLi7viOmvVqqXZs2erevXqyszM1IwZM9SxY0ft3r1bAQEB2rlzp/Ly8jRv3jzVrFlTP/zwgwYMGKDTp08Xud+srCwFBATo2Wef1YwZM4pdzx9//KHWrVsrIiJCH3/8sQICAvTTTz+pXLlyTuPyf/753NzcCmxr4sSJGjBggOO9j4+P479dXV318MMPq3HjxvL399f333+vAQMGKC8vT1OmTJF0/mfYoUMHBQYGatmyZapcubJ++eUX+fv7FzmH06dPq02bNurRo4fT/gEAKG30T/RP9E9XwNzE0tPTjSSTnp5e2qUAuMFkZmaa7du3m8zMzNIu5bL16dPHREdHOy3r0KGDadGihTl+/LiJiYkx/v7+xsPDw0RFRZldu3Y5xu3du9fcd999xt/f33h6epp69eqZ1atXm7S0NCPJ6dWnTx9jjDEnT540vXr1Mp6eniYoKMi88sorpm3btuaJJ55wbDcsLMxMnDjRxMTEGB8fH8e6iYmJpk2bNsbd3d1UqVLFDB061GRkZBhjjElOTjaSzN69ey8613379hlXV1czYsSIAp/NnDnTSDLffPONMcY45pCcnHz5B/X/5P/d+eyzzy46Ztq0aaZatWrF3uafj1VRRo8ebdq0aVPkmMJ+/n8WFhZmZsyYUbwC/8+TTz7ptO85c+aY6tWrm+zs7MvaTr6r8fO4UFG/s/QLzjgeAEoK/RP9U2Hon27s/omv7wGABYwxyjtzplRexpi/XL+Hh4eys7PVt29ffffdd1q5cqWSkpJkjFHnzp0dlxUPHjxYWVlZ+vrrr7Vt2zZNnTpV3t7eCg0N1XvvvSfp/KXJBw8e1GuvvSZJGjFihNavX6+VK1cqISFBiYmJ2rJlS4Ea4uLi1KhRIyUnJ+u5557Tnj17FBUVpW7dumnr1q1asmSJ1q1bpyFDhkiSAgIC5OLiomXLlik3N7fQeS1btkw5OTkaNWpUgc8GDhwob29vLV68+C8fP+n8ma358+fLz89PjRo1uui49PR0lS9f/qrs889Wrlyppk2bqnv37goMDNTtt9+uN998s8C4tWvXKjAwULVr19bjjz+uY8eOFRjz0ksvqUKFCrr99tv18ssvF/n1hN27d+uTTz5R27ZtnWpp2bKlBg8erEqVKqlBgwaaMmXKRX9WAICb0/XcQ9E//XX0Tzd+/8TX9wDAAiYzU6mNm5TKvmtv2Sybp+cVrWuM0eeff641a9aoU6dOWrFihdavX69WrVpJkuLj4xUaGqoVK1aoe/fu2rdvn7p166aGDRtKkqpXr+7YVn6jEBgY6LjE+NSpU3rnnXe0aNEitWvXTpK0YMEChYSEFKjlnnvu0ciRIx3v+/fvr969ezvuBxAeHq6ZM2eqbdu2mjNnjipXrqyZM2fq6aef1oQJE9S0aVNFRESod+/ejrp27dolPz8/BQcHF9if3W5X9erVtWvXris6dvlWrVqlnj176syZMwoODlZCQoIqVqxY6Njdu3dr1qxZf+mS96L8/PPPmjNnjkaMGKFx48Zp06ZNGjZsmOx2u/r06SPp/KXn//jHP1StWjXt2bNH48aNU6dOnZSUlKQyZcpIkoYNG6bGjRurfPny2rBhg8aOHauDBw/qlVdecdpfq1attGXLFmVlZemxxx7TxIkTnWr54osv1Lt3b3300UfavXu3/vnPfyonJ0exsbElMn8AwPXneuyh6J/on+ifio8rpQAABaxatUre3t5yd3dXp06d9MADD6hv374qW7asmjdv7hhXoUIF1a5dWzt27JB0/o/tpEmT1Lp1a8XGxmrr1q1F7ufnn39WTk6OmjVr5ljm5+en2rVrFxjbtGlTp/fff/+9Fi5cKG9vb8crMjJSeXl5SktLk3T+zOOhQ4cUHx+vli1baunSpapfv74SEhKKfSwude8F6XxzeWEdiYmJjs8iIiKUkpKiDRs2KCoqSj169NDhw4cLbGP//v2KiopS9+7dnb7rf+F2Bw0aVKyaExMTndaLj4+XJOXl5alx48aaMmWKbr/9dj322GMaMGCA5s6d61i3Z8+e6tq1qxo2bKi//e1vWrVqlTZt2qS1a9c6xowYMUJ33323br31Vg0aNEjTp0/XrFmzlJWV5VTHkiVLtGXLFi1atEirV692ahbz8vIUGBio+fPnq0mTJnrggQf0zDPPOGop6pgCAHAton/6H/on+qfi4kopALCAzcNDtbdsLrV9X66IiAjHTStDQkJUtmxZrVy58pLr9e/fX5GRkVq9erU+/fRTvfjii5o+fbqGDh16JaU78fLycnqfkZGhgQMHatiwYQXGVq1a1fHfPj4+6tKli7p06aJJkyYpMjJSkyZNUocOHRQeHq709HQdOHCgwNnF7Oxs7dmzR5GRkZesrWvXrk7NZuXKlZ3qrlmzpmrWrKkWLVooPDxcb731ltNNTw8cOKCIiAi1atVK8+fPd9r2hU9H8fX1vWQt0vkG9ML1KlWqJEkKDg5WvXr1nMbWrVvX8dWAwlSvXl0VK1bU7t27HWdj/6x58+Y6d+6c9u7d69QQh4aGSpLq1aun3NxcPfbYYxo5cqTKlCmj4OBgubq6Os4e5tdy6NAhZWdnF3lMAQA3j+uph6J/on/KR/9UfIRSAGABm812xV+hKw35jcCF6tatq3Pnzmnjxo2Oy8+PHTum1NRUpz/UoaGhGjRokAYNGqSxY8fqzTff1NChQx1nzC78znv16tXl6uqqTZs2ORqh9PR07dq1S3fddVeRNTZu3Fjbt28vUGdRbDab6tSpow0bNkiS7r//fo0ePVrTp0/X9OnTncbOnTtXZ86c0cMPP3zJ7fr4+Dg9PaUoeXl5TmfE9u/fr4iICDVp0kQLFiyQi4vzRcyXM798Hh4eha7XunVrpaamOi3btWuXwsLCLrqt3377TceOHSv0Ev18KSkpcnFxUWBg4EXH5OXlKScnR3l5eSpTpoxat26tRYsWKS8vzzHnXbt2KTg4WHa7XXa7vdjHFABw47qeeij6J/qnfPRPxUcoBQAolvDwcEVHR2vAgAGaN2+efHx8NGbMGFWuXFnR0dGSpOHDh6tTp06qVauW/vjjD3355ZeqW7euJCksLEw2m02rVq1S586d5eHhIR8fH/Xp00dPPfWUypcvr8DAQMXGxsrFxUU2m63IekaPHq0WLVpoyJAh6t+/v7y8vLR9+3YlJCRo9uzZSklJUWxsrGJiYlSvXj3Z7XZ99dVXevvttzV69GhJ588ITps2TaNGjZK7u7tiYmLk6uqqDz74QOPGjdOkSZPUoEEDp/3+uSmRpPr168vV1dVp2enTpzV58mR17dpVwcHBOnr0qF5//XXt379f3bt3l3S+obr77rsVFhamuLg4HTlyxLF+UFBQkfPPP5OXkZGhI0eOKCUlRXa7vcCZvAs9+eSTatWqlaZMmaIePXro22+/1fz58x1nFzMyMjRhwgR169ZNQUFB2rNnj55++mnVrFnTccYzKSlJGzduVEREhHx8fJSUlKQnn3xSDz30kOPRyPHx8XJ1dVXDhg3l5uam7777TmPHjtUDDzzgOE6PP/64Zs+erSeeeEJDhw7VTz/9pClTphR65vZCx48f1759+3TgwAFJ//t5BAUFXfKYAQBgNfqn8+if6J8u6qo8B/A6xSONAZSUG+2RxvnyH2ns5+dnPDw8TGRkpNMjjYcMGWJq1Khh3NzcTEBAgImJiTFHjx51fD5x4kQTFBRkbDZbkY80btasmRkzZoxjvYs9Qvfbb781HTp0MN7e3sbLy8vceuutZvLkycYYY44cOWKGDRtmGjRoYLy9vY2Pj49p2LChiYuLM7m5uU7bWbFihbnzzjuNl5eX45HLixcvdhpT2GOZ81+//vprgdoyMzPN3//+dxMSEmLsdrsJDg42Xbt2Nd9++61jzIIFCy66zUspbJ2wsLBLrvfhhx+aBg0aGDc3N1OnTh0zf/58x2dnzpwxHTt2NAEBAcbV1dWEhYWZAQMGmEOHDjnGbN682TRv3tz4+fkZd3d3U7duXTNlyhRz9uxZx5h3333XNG7c2PFzqVevnpkyZUqB34cNGzaY5s2bGzc3N1O9enUzefJkc+7cuSLrv9gxi42NveTci3I1Hml8s+B4ACgp9E/0T/RPN1//ZDPmKjwr/Dp18uRJ+fn5KT09vdjfMwWA4jh79qzS0tJUrVo1ubu7l3Y515XTp0+rcuXKmj59uvr162f5/o8fP6527drJ19dXH3/8sTyvk68M4K8p6neWfsEZxwNASaF/unL0TygNV6N/4ul7AIBSlZycrMWLF2vPnj3asmWLevfuLUmOS9qtVr58eX322Wdq166dkpKSSqUGAACAotA/4UbBPaUAAKUuLi5OqampstvtatKkiRITE1WxYsVSq6dChQp6/vnnS23/AAAAl0L/hBsBoRQAoFTdfvvt2ry5dB71DAAAcD2if8KNgq/vAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAHDSt29f2Ww22Ww22e121axZUxMnTtS5c+f+0nbXrl0rm82mEydOXJ1CiyEtLU29evVSSEiI3N3dVaVKFUVHR2vnzp1O41atWqW2bdvKx8dHnp6euuOOO7Rw4UKnMXv37pXNZlNKSkqx9z9+/HjVqVNHXl5eKleunNq3b6+NGzc6bbNfv36qVq2aPDw8VKNGDcXGxio7O7vI7R48eFC9evVSrVq15OLiouHDhxerntzcXD333HNO+3vhhRdkjHGMWb58uTp27KgKFSpcdL579uzR3//+dwUEBMjX11c9evTQ77//ftnz2rp1q+688065u7srNDRU06ZNu+Qcvv76a3Xp0kUhISGy2WxasWJFseYOAEBJon+if6J/ujKWhVKvv/66brnlFrm7u6t58+b69ttvixy/dOlS1alTR+7u7mrYsKE++uiji44dNGiQbDabXn311atcNQDcnKKionTw4EH99NNPGjlypMaPH6+XX365tMtyuFTTIUk5OTnq0KGD0tPTtXz5cqWmpmrJkiVq2LChU2M3a9YsRUdHq3Xr1tq4caO2bt2qnj17atCgQRo1atRfqrNWrVqaPXu2tm3bpnXr1umWW25Rx44ddeTIEUnSzp07lZeXp3nz5unHH3/UjBkzNHfuXI0bN67I7WZlZSkgIEDPPvusGjVqVOx6pk6dqjlz5mj27NnasWOHpk6dqmnTpmnWrFmOMadPn1abNm00derUQrdx+vRpdezYUTabTV988YXWr1+v7OxsdenSRXl5ecWe18mTJ9WxY0eFhYVp8+bNevnllzV+/HjNnz+/yDmcPn1ajRo10uuvv17seV/v6KEA4PpA/0T/RP90BYwF3n33XWO3283bb79tfvzxRzNgwADj7+9vfv/990LHr1+/3pQpU8ZMmzbNbN++3Tz77LPG1dXVbNu2rcDY5cuXm0aNGpmQkBAzY8aMy6orPT3dSDLp6elXMi0AuKjMzEyzfft2k5mZWdqlXLY+ffqY6Ohop2UdOnQwLVq0MMePHzcxMTHG39/feHh4mKioKLNr1y7HuL1795r77rvP+Pv7G09PT1OvXj2zevVqk5aWZiQ5vfr06WOMMebkyZOmV69extPT0wQFBZlXXnnFtG3b1jzxxBOO7YaFhZmJEyeamJgY4+Pj41g3MTHRtGnTxri7u5sqVaqYoUOHmoyMDGOMMcnJyUaS2bt370Xnum/fPuPq6mpGjBhR4LOZM2caSeabb74xxhjHHJKTky//oP6f/L87n3322UXHTJs2zVSrVq3Y2/zzsSrKvffeax599FGnZf/4xz9M7969C4y92HzXrFljXFxcnP52njhxwthsNpOQkHDRff95Xm+88YYpV66cycrKciwbPXq0qV27drHmYowxksz7779f7PFFKep3tjT7hWuxh6J/AlBS6J/onwpD/3Rj90+WXCn1yiuvaMCAAXrkkUdUr149zZ07V56ennr77bcLHf/aa68pKipKTz31lOrWrasXXnhBjRs31uzZs53G7d+/X0OHDlV8fLxcXV2tmAoAXBFjjHKyckvlZS64tPhKeXh4KDs7W3379tV3332nlStXKikpScYYde7cWTk5OZKkwYMHKysrS19//bW2bdumqVOnytvbW6GhoXrvvfckSampqTp48KBee+01SdKIESO0fv16rVy5UgkJCUpMTNSWLVsK1BAXF6dGjRopOTlZzz33nPbs2aOoqCh169ZNW7du1ZIlS7Ru3ToNGTJEkhQQECAXFxctW7ZMubm5hc5r2bJlysnJKfSM3sCBA+Xt7a3Fixf/5eMnnT87OX/+fPn5+RV5di49PV3ly5e/Kvv8s1atWunzzz/Xrl27JEnff/+91q1bp06dOhV7G1lZWbLZbHJzc3Msc3d3l4uLi9atW3fR9f48r6SkJN11112y2+2OZZGRkUpNTdUff/xxOdO6odFDAbjZXc89FP3TX0f/dOP3T2VLegfZ2dnavHmzxo4d61jm4uKi9u3bKykpqdB1kpKSNGLECKdlkZGRTt97zMvLU0xMjJ566inVr1+/WLVkZWUpKyvL8f7kyZOXMRMAuHLnsvM0/4mvSmXfj73WVq5uZa5oXWOMPv/8c61Zs0adOnXSihUrtH79erVq1UqSFB8fr9DQUK1YsULdu3fXvn371K1bNzVs2FCSVL16dce28v+gBgYGyt/fX5J06tQpvfPOO1q0aJHatWsnSVqwYIFCQkIK1HLPPfdo5MiRjvf9+/dX7969HfcDCA8P18yZM9W2bVvNmTNHlStX1syZM/X0009rwoQJatq0qSIiItS7d29HXbt27ZKfn5+Cg4ML7M9ut6t69eqOBuRKrVq1Sj179tSZM2cUHByshIQEVaxYsdCxu3fv1qxZsxQXF/eX9nkxY8aM0cmTJ1WnTh2VKVNGubm5mjx5snr37l3sbbRo0UJeXl4aPXq0pkyZImOMxowZo9zcXB08eLDQdQqb16FDh1StWjWncZUqVXJ8Vq5cuSuY4Y3lWumh6J8AlKbrsYeif6J/+jP6p4sr8Suljh49qtzcXMeBylepUiUdOnSo0HUOHTp0yfFTp05V2bJlNWzYsGLX8uKLL8rPz8/xCg0NvYyZAMDNY9WqVfL29pa7u7s6deqkBx54QH379lXZsmXVvHlzx7gKFSqodu3a2rFjhyRp2LBhmjRpklq3bq3Y2Fht3bq1yP38/PPPysnJUbNmzRzL/Pz8VLt27QJjmzZt6vT++++/18KFC+Xt7e14RUZGKi8vT2lpaZLOn3k8dOiQ4uPj1bJlSy1dulT169dXQkJCsY/FhWeiLiY+Pt6pjsTERMdnERERSklJ0YYNGxQVFaUePXro8OHDBbaxf/9+RUVFqXv37howYIBj+YXbHTRoULFqTkxMdFovPj5ekvTf//5X8fHxWrRokbZs2aJ33nlHcXFxeuedd4q1Xen8GdSlS5fqww8/lLe3t/z8/HTixAk1btxYLi4F24qLzetK53AzuVZ6KPonACge+qf/oX9yRv90cSV+pVRJ2Lx5s1577TVt2bJFNput2OuNHTvW6ezhyZMnaawAWKKs3UWPvda21PZ9uSIiIjRnzhzZ7XaFhISobNmyWrly5SXX69+/vyIjI7V69Wp9+umnevHFFzV9+nQNHTr0Skp34uXl5fQ+IyNDAwcOLPT/WFetWtXx3z4+PurSpYu6dOmiSZMmKTIyUpMmTVKHDh0UHh6u9PR0HThwoMDZxezsbO3Zs0eRkZGXrK1r165OzWblypWd6q5Zs6Zq1qypFi1aKDw8XG+99ZbT1S8HDhxQRESEWrVqVeBGlRc+vcXX1/eStUjnG9AL18sPKZ566imNGTNGPXv2lCQ1bNhQv/zyi1588UX16dOnWNuWpI4dO2rPnj06evSoypYtK39/fwUFBTmd2b3UvIKCgpyeOCPJ8T4oKEi33HJLoXPAX3MlPRT9E4DSdD31UPRP9E9FoX8qXImHUhUrVlSZMmUKPXBBQUGFrnOxA50/PjExUYcPH3b6pcnNzdXIkSP16quvau/evYVu183Nzek7nABgFZvNdsVfoSsN+Y3AherWratz585p48aNjsvPjx07ptTUVNWrV88xLjQ0VIMGDdKgQYM0duxYvfnmmxo6dKjjjNmF9yeoXr26XF1dtWnTJsf/pqenp2vXrl266667iqyxcePG2r59e4E6i2Kz2VSnTh1t2LBBknT//fdr9OjRmj59uqZPn+40du7cuTpz5owefvjhS27Xx8dHPj4+xaohLy/P6atQ+/fvV0REhJo0aaIFCxYUOFt2OfPL5+HhUeh6Z86cKbD9MmXKOJ76crnyL6P/4osvdPjwYXXt2tXx2aXm1bJlSz3zzDPKyclx3NMoISFBtWvXdlx6fiVzv5FcKz0U/ROA0nQ99VD0T/RPxUH/5KzEQym73a4mTZro888/19/+9jdJ5/9Bff75546bqf1Zy5Yt9fnnnzu+5yqdP9AtW7aUJMXExKh9+/ZO60RGRiomJkaPPPJIicwDAG524eHhio6O1oABAzRv3jz5+PhozJgxqly5sqKjoyVJw4cPV6dOnVSrVi398ccf+vLLL1W3bl1JUlhYmGw2m1atWqXOnTvLw8NDPj4+6tOnj5566imVL19egYGBio2NlYuLyyWv4hg9erRatGihIUOGqH///vLy8tL27duVkJCg2bNnKyUlRbGxsYqJiVG9evVkt9v11Vdf6e2339bo0aMlnT8jOG3aNI0aNUru7u6KiYmRq6urPvjgA40bN06TJk1SgwYNnPabmppaoJb69esXuFn06dOnNXnyZHXt2lXBwcE6evSoXn/9de3fv1/du3eXdL7xuPvuuxUWFqa4uDjHo44lXTR0yJd/FiwjI0NHjhxRSkqK7Ha7U4P7Z126dNHkyZNVtWpV1a9fX8nJyXrllVf06KOPOsYcP35c+/bt04EDB5zmGxQU5KhpwYIFqlu3rgICApSUlKQnnnhCTz75pONrA8WZV69evTRhwgT169dPo0eP1g8//KDXXntNM2bMKHLeGRkZ2r17t+N9WlqaUlJSVL58eaeg5UZADwUA1z/6p/Pon+ifLuqqPAfwEt59913j5uZmFi5caLZv324ee+wx4+/vbw4dOmSMMSYmJsaMGTPGMX79+vWmbNmyJi4uzuzYscPExsZe9HHG+cLCwi7rccbG8EhjACXnRnukcb78Rxr7+fkZDw8PExkZ6fRI4yFDhpgaNWoYNzc3ExAQYGJiYszRo0cdn0+cONEEBQUZm81W5CONmzVr5vR34WL/G//tt9+aDh06GG9vb+Pl5WVuvfVWM3nyZGOMMUeOHDHDhg0zDRo0MN7e3sbHx8c0bNjQxMXFmdzcXKftrFixwtx5553Gy8vL8cjlxYsXO40p7LHM+a9ff/21QG2ZmZnm73//uwkJCTF2u90EBwebrl27mm+//dYxZsGCBRfd5qUUtk5YWFiR65w8edI88cQTpmrVqsbd3d1Ur17dPPPMM06PFb5YTbGxsY4xo0ePNpUqVTKurq4mPDzcTJ8+3eTl5V32vL7//nvTpk0b4+bmZipXrmxeeumlS877yy+/LHS7+f+ertTVeKRxSbgWeyj6JwAlhf6J/on+6ebrnywJpYwxZtasWaZq1arGbrebZs2amW+++cbxWdu2bQscjP/+97+mVq1axm63m/r165vVq1cXuX1CKQDXkuu5qSptGRkZxs/Pz/zrX/8qlf0fO3bM3Hbbbeauu+4yp0+fLpUaYL1rNZQy5trroUr7eAC4cdE/XTn6J5SGq9E/2Ywx5kqusLoRnDx5Un5+fkpPTy/2zc8AoDjOnj2rtLQ0VatWTe7u7qVdzjUtOTlZO3fuVLNmzZSenq6JEydq7dq12r1790Uf/VvSjh07ptdff12tW7d2PGoZN7aifmfpF5xxPACUFPqn4qN/wrXgavRP1+XT9wAAN5a4uDilpqY67qGTmJhYag2VdP5Rzc8//3yp7R8AAOBS6J9wIyCUAgCUqttvv12bN28u7TIAAACuG/RPuFG4XHoIAAAAAAAAcHURSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAACd9+/aVzWaTzWaT3W5XzZo1NXHiRJ07d+4vbXft2rWy2Ww6ceLE1Sm0GNLS0tSrVy+FhITI3d1dVapUUXR0tHbu3Ok0btWqVWrbtq18fHzk6empO+64QwsXLnQas3fvXtlsNqWkpBR7/+PHj1edOnXk5eWlcuXKqX379tq4caPTNvv166dq1arJw8NDNWrUUGxsrLKzs4vc7sGDB9WrVy/VqlVLLi4uGj58eLHqOXXqlIYPH66wsDB5eHioVatW2rRpk9OYjIwMDRkyRFWqVJGHh4fq1aunuXPnOo0ZOHCgatSoIQ8PDwUEBBR6TPft26d7771Xnp6eCgwM1FNPPXXRf0Pr169X2bJlddttt11yDsuXL1fHjh1VoUKFy/55AABQUuif6J/on64MoRQAoICoqCgdPHhQP/30k0aOHKnx48fr5ZdfLu2yHC7VdEhSTk6OOnTooPT0dC1fvlypqalasmSJGjZs6NTYzZo1S9HR0WrdurU2btyorVu3qmfPnho0aJBGjRr1l+qsVauWZs+erW3btmndunW65ZZb1LFjRx05ckSStHPnTuXl5WnevHn68ccfNWPGDM2dO1fjxo0rcrtZWVkKCAjQs88+q0aNGhW7nv79+yshIUH/7//9P23btk0dO3ZU+/bttX//fseYESNG6JNPPtF//vMf7dixQ8OHD9eQIUO0cuVKx5gmTZpowYIF2rFjh9asWSNjjDp27Kjc3FxJUm5uru69915lZ2drw4YNeuedd7Rw4UI9//zzBWo6ceKEHn74YbVr165Yczh9+rTatGmjqVOnFnveAABYgf6J/on+6QqYm1h6erqRZNLT00u7FAA3mMzMTLN9+3aTmZlZ2qVctj59+pjo6GinZR06dDAtWrQwx48fNzExMcbf3994eHiYqKgos2vXLse4vXv3mvvuu8/4+/sbT09PU69ePbN69WqTlpZmJDm9+vTpY4wx5uTJk6ZXr17G09PTBAUFmVdeecW0bdvWPPHEE47thoWFmYkTJ5qYmBjj4+PjWDcxMdG0adPGuLu7mypVqpihQ4eajIwMY4wxycnJRpLZu3fvRee6b98+4+rqakaMGFHgs5kzZxpJ5ptvvjHGGMcckpOTL/+g/p/8vzufffbZRcdMmzbNVKtWrdjb/POxupgzZ86YMmXKmFWrVjktb9y4sXnmmWcc7+vXr28mTpxY5Jg/+/77740ks3v3bmOMMR999JFxcXExhw4dcoyZM2eO8fX1NVlZWU7rPvDAA+bZZ581sbGxplGjRpecR76r8fO4UFG/s/QLzjgeAEoK/RP9U2Hon27s/okrpQAAl+Th4aHs7Gz17dtX3333nVauXKmkpCQZY9S5c2fl5ORIkgYPHqysrCx9/fXX2rZtm6ZOnSpvb2+FhobqvffekySlpqbq4MGDeu211ySdP7O0fv16rVy5UgkJCUpMTNSWLVsK1BAXF6dGjRopOTlZzz33nPbs2aOoqCh169ZNW7du1ZIlS7Ru3ToNGTJEkhQQECAXFxctW7bMcQbqz5YtW6acnJxCz+gNHDhQ3t7eWrx48VU5hv+fvTsPi+o8/wb+HYRxhplhEAVZRAKCKIrUJYqgIURhwARIalwCRWyUSKqgdQlqEzEUY1TQX1CLmtegbZFajRqKGsXEBZXgBmpFIRIoBnDBZQiLbHO/f1BOHYEBN4h6f65rrss585zn3M8ZCN+c7amtrcWmTZugVCp1np1Tq9UwMTF5Ktt8UH19PRoaGiCRSLSWS6VSHD9+XHjv5uaGlJQUFBcXg4hw+PBh5OXlwdvbu8V+KysrkZiYCFtbW1hbWwMAMjIy4OzsjJ49ewrtVCoVysvLcenSJWFZYmIifvrpJ0RFRT3NoTLGGGO/Cpyfnhznp5cgPz2Vw2PPKT7Txxh7Vh4+a6DRaKi2urpTXhqN5pFqf/BMn0ajobS0NOratSu9/fbbBIBOnDghtC0rKyOpVEr//Oc/iYjI2dmZli5d2mK/hw8fJgB09+5dYVl5eTkZGBjQjh07hGX37t0jQ0PDZmf63n77ba3+pk2bRh988IHWsvT0dNLT0xP2+7p168jQ0JAUCgV5enpSdHQ05efnC+3DwsJIqVS2ui8GDRpEvr6+RPT4Z5b+9a9/kUwmI5FIRJaWlnTq1KlW2/74449kZGREmzZtanf/7T3TR0Q0cuRI8vDwoOLiYqqvr6e//e1vpKenR3379hXa3L9/n6ZMmUIASF9fn8RiMW3durVZX+vXryeZTEYAyNHRUTjLR0QUGhpK3t7eWu0rKysJAO3bt4+IiPLy8sjMzIxyc3OJiF6IM30vC94fjLFnpaX/Fj8vGYrz0/9wfuL8RNT+vKDf0QfBGGPsZVRfU4P4kHc7ZdsRW3fC4KGzO21JTU2FXC5HXV0dNBoNAgMD8dvf/hapqakYMWKE0K579+5wdHTE5cuXG7cVEYEPP/wQBw8exNixYzF+/HgMGjSo1e389NNPqKurw/Dhw4VlSqUSjo6OzdoOGzZM6/358+dx4cIFJCUlCcuICBqNBgUFBejfvz9mzpyJKVOm4MiRI/jhhx+wY8cOfPbZZ0hJSYGXl1e79oVYLG6zTVJSEmbMmCG8379/P0aPHg0A8PT0RHZ2NsrKyvDll19i4sSJyMzMhJmZmVYfxcXF8PHxwYQJExAaGiosl8vlwr9/97vfNXtoZkvS09Ph6+srvN+4cSOCgoLwt7/9De+//z6srKzQpUsXDBkyBO+99x7Onj0rtF27di1++OEHpKSkwMbGBseOHcPMmTNhaWmJsWPHCu2CgoLg5eWF0tJSxMbGYuLEiThx4kSzM4ktaWhoQGBgID799FP07du3xTa69iljjLGXx/OUoTg//Q/nJ85P7cUHpRhjjDXj6emJhIQEiMViWFpaQl9fX+tBja2ZPn06VCoV9u7di4MHD2L58uWIi4tDeHj4E9ckk8m03ldUVGDGjBmIiIho1rZ3797CvxUKBfz8/ODn54eYmBioVCrExMTAy8sLDg4OUKvVKCkpgaWlpVYftbW1yM/Ph0qlarM2f39/rbBpZWWlVbe9vT3s7e3h6uoKBwcHbN68GYsWLRLalJSUwNPTE25ubti0aZNW3w/OjmJkZNRmLUBjAH1wvabLwPv06YOjR4+isrIS5eXlsLCwwKRJk2BnZwcAqK6uxuLFi7F79268+eabAIBBgwYhOzsbsbGxWqFKqVRCqVTCwcEBrq6u6NatG3bv3o333nsP5ubmOHXqlFZNN27cAACYm5vjl19+wZkzZ5CVlSXcLqDRaEBE0NfXx8GDB3XuU8YYY+zXiPMT5yfOT4+OD0oxxlgH0O/aFRFbd3bath9VUxB4UP/+/VFfX4/MzEy4ubkBAG7fvo3c3Fw4OTkJ7aytrREWFoawsDAsWrQIX375JcLDw4UzZg8+n8DOzg4GBgY4ffq0EITUajXy8vLw2muv6axxyJAhyMnJaVanLiKRCP369cPJkycBAO+++y4iIyMRFxeHuLg4rbYbNmxAVVUVpkyZ0ma/CoUCCoWiXTVoNBrU1NQI74uLi+Hp6SnMyKKnp/24x0cZXxOpVKpzPZlMBplMhrt37+LAgQNYuXIlgMYZd+rq6prV0KVLF2g0mlb7IyIQkTCukSNHYtmyZbh586ZwRjMtLQ1GRkZwcnKCgYEBLl68qNXHX/7yF3z//ffYuXMnbG1tIZPJ2r1PGWOMvbiepwzF+Ynz04M4P7UPH5RijLEOIBKJHvkWul8bBwcHBAQEIDQ0FBs3boRCocDChQthZWWFgIAAAMCcOXPg6+uLvn374u7duzh8+DD69+8PALCxsYFIJEJqairGjRsHqVQKhUKBkJAQLFiwACYmJjAzM0NUVBT09PQgEol01hMZGQlXV1fMmjUL06dPh0wmQ05ODtLS0rBu3TpkZ2cjKioKwcHBcHJyglgsxtGjR/HVV18hMjISQOMZwZUrV2L+/PmQSCQIDg6GgYEBvvnmGyxevBgxMTEYOHCg1nZzc3Ob1TJgwAAYGBhoLausrMSyZcvg7+8PCwsLlJWVYf369SguLsaECRMANAaq119/HTY2NoiNjRWmOgYaz4jp0nQmr6KiArdu3UJ2djbEYrFWwH1Y0/TDjo6OuHr1KhYsWIB+/frh97//PYDGM4keHh5YsGABpFIpbGxscPToUfz1r3/F6tWrATTeMrB9+3Z4e3vD1NQUP//8Mz7//HNIpVKMGzcOAODt7Q0nJycEBwdj5cqVuH79Oj7++GPMnDkTXf8b8B/er2ZmZpBIJM2WP+zOnTsoKipCSUkJgP99H+bm5m3uM8YYY8+f5z1DcX5qxPmJ81OrnsrTrZ5T/KBOxtiz8qJNadykaUpjpVJJUqmUVCqV1pTGs2bNoj59+lDXrl3J1NSUgoODqaysTPg8OjqazM3NSSQS6ZzSePjw4bRw4UJhPRsbG1qzZk2zek6dOkVeXl4kl8tJJpPRoEGDaNmyZUREdOvWLYqIiKCBAweSXC4nhUJBzs7OFBsbSw0NDVr97Nmzh0aPHi08eBIAJScna7VpaVrmpte1a9ea1VZdXU3vvPMOWVpaklgsJgsLC/L399d6UGdiYmKrfbalpXVsbGx0rrN9+3ays7MjsVhM5ubmNHPmTLp3755Wm9LSUpo6dSpZWlqSRCIhR0dHiouLEx72WlxcTL6+vmRmZkYGBgbUq1cvCgwMpCtXrmj1U1hYSL6+viSVSqlHjx40b948qqura7W29j6os7V9FhUV1ea6uvCDztuP9wdj7Fnh/MT5ifPTy5efRERET/cw1/OjvLwcSqUSarW63feZMsZYe9y/fx8FBQWwtbVt14ML2f9UVlbCysoKcXFxmDZtWodv/86dOxgzZgyMjIywf/9+GBoadngNrOPp+p3lvKCN9wdj7Fnh/PT4OD+xzvA08pNeq58wxhhjHSArKwvJycnIz8/HuXPnEBQUBADCJe0dzcTEBIcOHcKYMWOQkZHRKTUwxhhjjOnC+Ym9KPiZUowxxjpdbGwscnNzIRaLMXToUKSnp6NHjx6dVk/37t2xZMmSTts+Y4wxxlhbOD+xFwEflGKMMdapBg8ejLNnz3Z2GYwxxhhjzw3OT+xFwbfvMcYYY4wxxhhjjLEOxwelGGOMMcYYY4wxxliH44NSjDHGGGOMMcYYY6zD8UEpxhhjjDHGGGOMMdbh+KAUY4wxxhhjjDHGGOtwfFCKMcYYY4wxxhhjjHU4PijFGGOMMcYYY4wxxjocH5RijDGmZerUqRCJRBCJRBCLxbC3t0d0dDTq6+ufqN8jR45AJBLh3r17T6fQdigoKEBgYCAsLS0hkUjQq1cvBAQE4MqVK1rtUlNT4eHhAYVCAUNDQ7z66qvYsmWLVpvCwkKIRCJkZ2e3e/tLly5Fv379IJPJ0K1bN4wdOxaZmZlafU6bNg22traQSqXo06cPoqKiUFtbq7Pf0tJSBAYGom/fvtDT08OcOXPaVc+xY8fg5+cHS0tLiEQi7Nmzp1mbXbt2wdvbG927d29zvEQEX1/fVvvasmULBg0aBIlEAjMzM8ycOVPr8wMHDsDV1RUKhQKmpqYYP348CgsLtdokJSXBxcUFhoaGsLCwwPvvv4/bt28/8TgZY4yxp4nzE+cnzk+Phw9KMcYYa8bHxwelpaX48ccfMW/ePCxduhSrVq3q7LIEbYUOAKirq4OXlxfUajV27dqF3NxcbN++Hc7OzlrBbu3atQgICIC7uzsyMzNx4cIFTJ48GWFhYZg/f/4T1dm3b1+sW7cOFy9exPHjx/HKK6/A29sbt27dAgBcuXIFGo0GGzduxKVLl7BmzRps2LABixcv1tlvTU0NTE1N8fHHH8PFxaXd9VRWVsLFxQXr16/X2WbUqFFYsWJFm/393//9H0QiUYufrV69Gn/605+wcOFCXLp0CYcOHYJKpRI+LygoQEBAAN544w1kZ2fjwIEDKCsrw29/+1uhzYkTJzBlyhRMmzYNly5dwo4dO3Dq1CmEhoY+8TgZY4yxp43zE+cnzk+PgV5iarWaAJBare7sUhhjL5jq6mrKycmh6urqzi7lkYWEhFBAQIDWMi8vL3J1daU7d+5QcHAwGRsbk1QqJR8fH8rLyxPaFRYW0ltvvUXGxsZkaGhITk5OtHfvXiooKCAAWq+QkBAiIiovL6fAwEAyNDQkc3NzWr16NXl4eNDs2bOFfm1sbCg6OpqCg4NJoVAI66anp9OoUaNIIpFQr169KDw8nCoqKoiIKCsriwBQYWFhq2MtKioiAwMDmjt3brPP4uPjCQD98MMPRETCGLKysh59p/5X09+dQ4cOtdpm5cqVZGtr2+4+H95X7QWAdu/e3ernbY03KyuLrKysqLS0tFlfd+7cIalUqnOcO3bsIH19fWpoaBCWpaSkkEgkotraWiIiWrVqFdnZ2WmtFx8fT1ZWVm0P8L/aGmcTXb+znBe08f5gjD0rnJ84P7WE89P/vIj5ia+UYowx1iapVIra2lpMnToVZ86cQUpKCjIyMkBEGDduHOrq6gAAM2fORE1NDY4dO4aLFy9ixYoVkMvlsLa2xtdffw0AyM3NRWlpKb744gsAwNy5c3HixAmkpKQgLS0N6enpOHfuXLMaYmNj4eLigqysLHzyySfIz8+Hj48Pxo8fjwsXLmD79u04fvw4Zs2aBQAwNTWFnp4edu7ciYaGhhbHtXPnTtTV1bV4Rm/GjBmQy+VITk5+KvuwtrYWmzZtglKp1Hl2Tq1Ww8TE5Kls81mpqqpCYGAg1q9fD3Nz82afp6WlQaPRoLi4GP3790evXr0wceJEXLt2TWgzdOhQ6OnpITExEQ0NDVCr1fjb3/6GsWPHwsDAAAAwcuRIXLt2Dfv27QMR4caNG9i5cyfGjRvXYWNljDHGHhfnpyfH+eklyE/tPlT2AuIzfYyxZ+XhswYajYYaauo75aXRaB6p9gfP9Gk0GkpLS6OuXbvS22+/TQDoxIkTQtuysjKSSqX0z3/+k4iInJ2daenSpS32e/jwYQJAd+/eFZaVl5eTgYEB7dixQ1h27949MjQ0bHam7+2339bqb9q0afTBBx9oLUtPTyc9PT1hv69bt44MDQ1JoVCQp6cnRUdHU35+vtA+LCyMlEplq/ti0KBB5OvrS0SPf6bvX//6F8lkMhKJRGRpaUmnTp1qte2PP/5IRkZGtGnTpnb33xln+j744AOaNm1aq30tX76cDAwMyNHRkb799lvKyMigMWPGkKOjI9XU1Ajtjhw5QmZmZtSlSxcCQCNHjtT6+SAi+uc//0lyuZz09fUJAPn5+QlnAp/GOJvwlVLtx/uDMfastPTf4uclQ3F++h/OT5yfiNqfF/Q78gAYY4y9rKhOg5IlJztl25bRbhCJuzzSOqmpqZDL5airq4NGo0FgYCB++9vfIjU1FSNGjBDade/eHY6Ojrh8+TIAICIiAh9++CEOHjyIsWPHYvz48Rg0aFCr2/npp59QV1eH4cOHC8uUSiUcHR2btR02bJjW+/Pnz+PChQtISkoSlhERNBoNCgoK0L9/f8ycORNTpkzBkSNH8MMPP2DHjh347LPPkJKSAi8vr3btC7FY3GabpKQkzJgxQ3i/f/9+jB49GgDg6emJ7OxslJWV4csvv8TEiRORmZkJMzMzrT6Ki4vh4+ODCRMmaN3zL5fLhX//7ne/w4YNG9qsJz09Hb6+vsL7jRs3IigoqM312iMlJQXff/89srKyWm2j0WhQV1eH+Ph4eHt7AwCSk5Nhbm6Ow4cPQ6VS4fr16wgNDUVISAjee+89/PLLL1iyZAneffddpKWlQSQSIScnB7Nnz8aSJUugUqlQWlqKBQsWICwsDJs3b36m42SMMfbr8DxlKM5P/8P5SRvnp9bxQSnGGGPNeHp6IiEhAWKxGJaWltDX10dKSkqb602fPh0qlQp79+7FwYMHsXz5csTFxSE8PPyJa5LJZFrvKyoqMGPGDERERDRr27t3b+HfCoUCfn5+8PPzQ0xMDFQqFWJiYuDl5QUHBweo1WqUlJTA0tJSq4/a2lrk5+drPVyyNf7+/lph08rKSqtue3t72Nvbw9XVFQ4ODti8eTMWLVoktCkpKYGnpyfc3NywadMmrb4fnL3FyMiozVqAxgD64Ho9e/Zs13rt8f333yM/Px/GxsZay8ePH4/Ro0fjyJEjsLCwAAA4OTkJn5uamqJHjx4oKioCAKxfvx5KpRIrV64U2vz973+HtbU1MjMz4erqiuXLl8Pd3R0LFiwAAAwaNAgymQyjR49GTEzMMx0nY4wx9qg4P3F+ag3np9bxQSnGGOsAIgM9WEa7ddq2H1VTEHhQ//79UV9fj8zMTLi5NY7l9u3byM3N1frjaW1tjbCwMISFhWHRokX48ssvER4eLpwxe/D5BHZ2djAwMMDp06eFIKRWq5GXl4fXXntNZ41DhgxBTk5Oszp1EYlE6NevH06ebDzj+u677yIyMhJxcXGIi4vTarthwwZUVVVhypQpbfarUCigUCjaVYNGo0FNTY3wvri4GJ6enhg6dCgSExOhp6f9fT3K+JpIpdLHWq89Fi5ciOnTp2stc3Z2xpo1a+Dn5wcAcHd3B9D4/ItevXoBAO7cuYOysjLY2NgAaHyuwsNj7dKl8Wy0RqMR2ujr67fYhoie6TgZY4z9OjxPGYrzE+en1nB+ah0flGKMsQ4gEoke+Ra6XxsHBwcEBAQgNDQUGzduhEKhwMKFC2FlZYWAgAAAwJw5c+Dr64u+ffvi7t27OHz4MPr37w8AsLGxgUgkQmpqKsaNGwepVAqFQoGQkBAsWLAAJiYmMDMzQ1RUFPT09FqdKrdJZGQkXF1dMWvWLEyfPh0ymQw5OTlIS0vDunXrkJ2djaioKAQHB8PJyQlisRhHjx7FV199hcjISACNZwRXrlyJ+fPnQyKRIDg4GAYGBvjmm2+wePFixMTEYODAgVrbzc3NbVbLgAEDhIdLNqmsrMSyZcvg7+8PCwsLlJWVYf369SguLsaECRMANAaq119/HTY2NoiNjRWmOgbQ4gMwH9R0hquiogK3bt1CdnY2xGKxVsB9WEVFBa5evSq8LygoQHZ2NkxMTIRQe+fOHRQVFaGkpERrvObm5lqvh/Xu3Ru2trYAGqdyDggIwOzZs7Fp0yYYGRlh0aJF6NevHzw9PQEAb775JtasWYPo6Gjh8vPFixfDxsYGgwcPBgD4+fkhNDQUCQkJwuXnc+bMwfDhw5udmX3UcTLGGHs+PO8ZivNTI85PnJ9a1e4nXb2A+EGdjLFn5UWb0rhJ05TGSqWSpFIpqVQqrSmNZ82aRX369KGuXbuSqakpBQcHU1lZmfB5dHQ0mZubk0gk0jml8fDhw2nhwoXCejY2NrRmzZpm9Zw6dYq8vLxILpeTTCajQYMG0bJly4iI6NatWxQREUEDBw4kuVxOCoWCnJ2dKTY2VmsaXSKiPXv20OjRo0kmkwlTLicnJ2u1aWla5qbXtWvXmtVWXV1N77zzDllaWpJYLCYLCwvy9/fXelBnYmJiq322paV1bGxsdK7T9LDUh19N34WumqKionTW8vDDMNVqNb3//vtkbGxMJiYm9M4771BRUZFWm+TkZBo8eDDJZDIyNTUlf39/unz5slab+Ph4cnJyIqlUShYWFhQUFEQ///zzE4/zYfyg8/bj/cEYe1Y4P3F+4vz08uUnERHR4x7Qet6Vl5dDqVRCrVa3+z5Txhhrj/v376OgoAC2traQSCSdXc5zpbKyElZWVoiLi8O0adM6fPt37tzBmDFjYGRkhP3798PQ0LDDa2AdT9fvLOcFbbw/GGPPCuenx8f5iXWGp5GfHv1BI4wxxthTlJWVheTkZOTn5+PcuXPC7B9Nl7R3NBMTExw6dAhjxoxBRkZGp9TAGGOMMaYL5yf2ouBnSjHGGOt0sbGxyM3NhVgsxtChQ5Geno4ePXp0Wj3du3fHkiVLOm37jDHGGGNt4fzEXgR8UIoxxlinGjx4MM6ePdvZZTDGGGOMPTc4P7EXBd++xxhjjDHGGGOMMcY6HB+UYowxxhhjjDHGGGMdjg9KMcYYY4wxxhhjjLEOxwelGGOMMcYYY4wxxliH44NSjDHGGGOMMcYYY6zD8UEpxhhjjDHGGGOMMdbh+KAUY4wxxhhjjDHGGOtwfFCKMcaYlqlTp0IkEkEkEkEsFsPe3h7R0dGor69/on6PHDkCkUiEe/fuPZ1C26GgoACBgYGwtLSERCJBr169EBAQgCtXrmi1S01NhYeHBxQKBQwNDfHqq69iy5YtWm0KCwshEomQnZ3d7u0vXboU/fr1g0wmQ7du3TB27FhkZmZq9Tlt2jTY2tpCKpWiT58+iIqKQm1trc5+S0tLERgYiL59+0JPTw9z5sxpVz3Hjh2Dn58fLC0tIRKJsGfPnkeuGQCWLVsGNzc3GBoawtjYuMVtFRUV4c0334ShoSHMzMywYMECrZ+hB3/OHnwNGDBAaLN8+XK8+uqrUCgUMDMzw9tvv43c3Nw2x9me+hhjjLGnifMT5yfOT4+HD0oxxhhrxsfHB6Wlpfjxxx8xb948LF26FKtWrerssgRthQ4AqKurg5eXF9RqNXbt2oXc3Fxs374dzs7OWsFu7dq1CAgIgLu7OzIzM3HhwgVMnjwZYWFhmD9//hPV2bdvX6xbtw4XL17E8ePH8corr8Db2xu3bt0CAFy5cgUajQYbN27EpUuXsGbNGmzYsAGLFy/W2W9NTQ1MTU3x8ccfw8XFpd31VFZWwsXFBevXr3/smoHG/T9hwgR8+OGHLfbR0NCAN998E7W1tTh58iS2bt2KLVu2YMmSJUKbL774AqWlpcLr2rVrMDExwYQJE4Q2R48excyZM/HDDz8gLS0NdXV18Pb2RmVlpc5xtlUfY4wx9ixwfuL8xPnpMdBLTK1WEwBSq9WdXQpj7AVTXV1NOTk5VF1d3dmlPLKQkBAKCAjQWubl5UWurq50584dCg4OJmNjY5JKpeTj40N5eXlCu8LCQnrrrbfI2NiYDA0NycnJifbu3UsFBQUEQOsVEhJCRETl5eUUGBhIhoaGZG5uTqtXryYPDw+aPXu20K+NjQ1FR0dTcHAwKRQKYd309HQaNWoUSSQS6tWrF4WHh1NFRQUREWVlZREAKiwsbHWsRUVFZGBgQHPnzm32WXx8PAGgH374gYhIGENWVtaj79T/avq7c+jQoVbbrFy5kmxtbdvd58P7qr0A0O7du9tsp6vmxMREUiqVzZbv27eP9PT06Pr168KyhIQEMjIyopqamha3s3v3bhKJRDq/r5s3bxIAOnr0aJt166qvJbp+ZzkvaOP9wRh4HfmNAACsVklEQVR7Vjg/cX5qCeenFzs/8ZVSjDHWAYgItbW1nfIioieuXyqVora2FlOnTsWZM2eQkpKCjIwMEBHGjRuHuro6AMDMmTNRU1ODY8eO4eLFi1ixYgXkcjmsra3x9ddfAwByc3NRWlqKL774AgAwd+5cnDhxAikpKUhLS0N6ejrOnTvXrIbY2Fi4uLggKysLn3zyCfLz8+Hj44Px48fjwoUL2L59O44fP45Zs2YBAExNTaGnp4edO3eioaGhxXHt3LkTdXV1LZ7RmzFjBuRyOZKTk594/wGNZ582bdoEpVKp8+ycWq2GiYnJU9nmk2pvzQ/LyMiAs7MzevbsKSxTqVQoLy/HpUuXWlxn8+bNGDt2LGxsbFrtV61WA8CvZv8wxhh79p7nDMX56clxfnrx85N+ZxfAGGMvg7q6Onz22Wedsu3FixdDLBY/1rpEhO+++w4HDhyAr68v9uzZgxMnTsDNzQ0AkJSUBGtra+zZswcTJkxAUVERxo8fD2dnZwCAnZ2d0FfTH0IzMzPhPvVffvkFW7duxbZt2zBmzBgAQGJiIiwtLZvV8sYbb2DevHnC++nTpyMoKEh4HoCDgwPi4+Ph4eGBhIQEWFlZIT4+Hh999BE+/fRTDBs2DJ6enggKChLqysvLg1KphIWFRbPticVi2NnZIS8v77H2XZPU1FRMnjwZVVVVsLCwQFpaGnr06NFi26tXr2Lt2rWIjY19om0+qUepuSXXr1/XClQAhPfXr19v1r6kpAT79+/Htm3bWu1To9Fgzpw5cHd3x8CBA9tdC2OMsefb85ihOD9xfuL81H58pRRjjLFmUlNTIZfLIZFI4Ovri0mTJmHq1KnQ19fHiBEjhHbdu3eHo6MjLl++DACIiIhATEwM3N3dERUVhQsXLujczk8//YS6ujoMHz5cWKZUKuHo6Nis7bBhw7Tenz9/Hlu2bIFcLhdeKpUKGo0GBQUFABrPPF6/fh1JSUkYOXIkduzYgQEDBiAtLa3d+6I9YTQpKUmrjvT0dOEzT09PZGdn4+TJk/Dx8cHEiRNx8+bNZn0UFxfDx8cHEyZMQGhoqLD8wX7DwsLaVXN6errWeklJSe1a71Frflq2bt0KY2NjvP322622mTlzJv7973/jH//4h7AsLCxMa5yMMcZYZ+L89D+cnzg/tRdfKcUYYx3AwMCgzYcvPsttPypPT08kJCRALBbD0tIS+vr6SElJaXO96dOnQ6VSYe/evTh48CCWL1+OuLg4hIeHP07pWmQymdb7iooKzJgxAxEREc3a9u7dW/i3QqGAn58f/Pz8EBMTA5VKhZiYGHh5ecHBwQFqtRolJSXNzi7W1tYiPz8fKpWqzdr8/f21wqaVlZVW3fb29rC3t4erqyscHBywefNmLFq0SGhTUlICT09PuLm5YdOmTVp9PzhbjZGRUZu1AI0B9MH1Hj7r1pb21KyLubk5Tp06pbXsxo0bwmcPIiJ89dVXCA4ObjXAzpo1C6mpqTh27Bh69eolLI+Ojn7ih6kyxhj7dXueMhTnJ85PnJ8eHR+UYoyxDtA0PfDzoumP6oP69++P+vp6ZGZmCpef3759G7m5uXBychLaWVtbIywsDGFhYVi0aBG+/PJLhIeHC+N/8PkEdnZ2MDAwwOnTp4UgpFarkZeXh9dee01njUOGDEFOTk6zOnURiUTo168fTp48CQB49913ERkZibi4OMTFxWm13bBhA6qqqjBlypQ2+1UoFFAoFO2qQaPRoKamRnhfXFwMT09PDB06FImJidDT076I+VHG10QqlT7Weq15uOa2jBw5EsuWLcPNmzdhZmYGAEhLS4ORkZHWzwrQOEPM1atXMW3atGb9EBHCw8Oxe/duHDlyBLa2tlqfm5mZCf0zxhh7MT1PGYrzE+enB3F+ah8+KMUYY6xdHBwcEBAQgNDQUGzcuBEKhQILFy6ElZUVAgICAABz5syBr68v+vbti7t37+Lw4cPo378/AMDGxgYikQipqakYN24cpFIpFAoFQkJCsGDBApiYmMDMzAxRUVHQ09ODSCTSWU9kZCRcXV0xa9YsTJ8+HTKZDDk5OUhLS8O6deuQnZ2NqKgoBAcHw8nJCWKxGEePHsVXX32FyMhIAI1nBFeuXIn58+dDIpEgODgYBgYG+Oabb7B48WLExMQ0u/8+Nze3WS0DBgxodja1srISy5Ytg7+/PywsLFBWVob169ejuLhYmLa3uLgYr7/+OmxsbBAbG6s1bfDDZ8Qe1nQmr6KiArdu3UJ2djbEYnGz0PKgiooKXL16VXhfUFCA7OxsmJiYoHfv3u2qGQCKiopw584dFBUVoaGhQajF3t4ecrkc3t7ecHJyQnBwMFauXInr16/j448/xsyZM9G1a1etmjZv3owRI0a0+JyDmTNnYtu2bfjmm2+gUCiE5ykolUpIpdJWx9lWfYwxxlhH4fzUiPMT56dWtWuevxcUT2nMGHtWXrQpjZs0TWmsVCpJKpWSSqXSmtJ41qxZ1KdPH+ratSuZmppScHAwlZWVCZ9HR0eTubk5iUQinVMaDx8+nBYuXCisZ2NjQ2vWrGlWz6lTp8jLy4vkcjnJZDIaNGgQLVu2jIiIbt26RRERETRw4ECSy+WkUCjI2dmZYmNjqaGhQaufPXv20OjRo0kmkwlTLicnJ2u1aWla5qbXtWvXmtVWXV1N77zzDllaWpJYLCYLCwvy9/enU6dOCW0SExNb7bMtLa1jY2Ojc53Dhw+3uF7Td9Gemokaf0Za6ufw4cNCm8LCQvL19SWpVEo9evSgefPmUV1dnVY/9+7dI6lUSps2bWr3GAFQYmKiznG2p76HPY0pjV8WvD8YY88K5yfOT5yfXr78JPpv0S+l8vJyKJVKqNXqdt9nyhhj7XH//n0UFBTA1tYWEomks8t5rlRWVsLKygpxcXEtXpL8rN25cwdjxoyBkZER9u/fD0NDww6vgXU8Xb+znBe08f5gjD0rnJ8eH+cn1hmeRn7i2fcYY4x1qqysLCQnJyM/Px/nzp1DUFAQAAiXtHc0ExMTHDp0CGPGjEFGRkan1MAYY4wxpgvnJ/ai4GdKMcYY63SxsbHIzc2FWCzG0KFDkZ6ejh49enRaPd27d8eSJUs6bfuMMcYYY23h/MReBHxQijHGWKcaPHgwzp4929llMMYYY4w9Nzg/sRcF377HGGOMMcYYY4wxxjocH5RijDHGGGOMMcYYYx2OD0oxxhhjjDHGGGOMsQ7HB6UYY4wxxhhjjDHGWIfjg1KMMcYYY4wxxhhjrMPxQSnGGGOMMcYYY4wx1uH4oBRjjDHGGGOMMcYY63B8UIoxxpiWqVOnQiQSQSQSQSwWw97eHtHR0aivr3+ifo8cOQKRSIR79+49nULboaCgAIGBgbC0tIREIkGvXr0QEBCAK1euaLVLTU2Fh4cHFAoFDA0N8eqrr2LLli1abQoLCyESiZCdnd3u7S9duhT9+vWDTCZDt27dMHbsWGRmZmr1OW3aNNja2kIqlaJPnz6IiopCbW1tm30nJSXBxcUFhoaGsLCwwPvvv4/bt2/rXOfYsWPw8/ODpaUlRCIR9uzZ02K7y5cvw9/fH0qlEjKZDK+++iqKioqEz2fMmIE+ffpAKpXC1NS0xX16+vRpjBkzBsbGxujWrRtUKhXOnz/f4vauXr0KhUIBY2PjNsfd3jEwxhhjHYnzE+cnzk+Phw9KMcYYa8bHxwelpaX48ccfMW/ePCxduhSrVq3q7LIE7QkddXV18PLyglqtxq5du5Cbm4vt27fD2dlZK9itXbsWAQEBcHd3R2ZmJi5cuIDJkycjLCwM8+fPf6I6+/bti3Xr1uHixYs4fvw4XnnlFXh7e+PWrVsAgCtXrkCj0WDjxo24dOkS1qxZgw0bNmDx4sU6+z1x4gSmTJmCadOm4dKlS9ixYwdOnTqF0NBQnetVVlbCxcUF69evb7VNfn4+Ro0ahX79+uHIkSO4cOECPvnkE0gkEqHN0KFDkZiYiMuXL+PAgQMgInh7e6OhoQEAUFFRAR8fH/Tu3RuZmZk4fvw4FAoFVCoV6urqtLZXV1eH9957D6NHj9ZZ+6OMgTHGGOsMnJ84P3F+egz0ElOr1QSA1Gp1Z5fCGHvBVFdXU05ODlVXV3d2KY8sJCSEAgICtJZ5eXmRq6sr3blzh4KDg8nY2JikUin5+PhQXl6e0K6wsJDeeustMjY2JkNDQ3JycqK9e/dSQUEBAdB6hYSEEBFReXk5BQYGkqGhIZmbm9Pq1avJw8ODZs+eLfRrY2ND0dHRFBwcTAqFQlg3PT2dRo0aRRKJhHr16kXh4eFUUVFBRERZWVkEgAoLC1sda1FRERkYGNDcuXObfRYfH08A6IcffiAiEsaQlZX16Dv1v5r+7hw6dKjVNitXriRbW1ud/axatYrs7Oya1WtlZdXuWgDQ7t27my2fNGkS/e53v2t3P0RE58+fJwB09epVIiI6ffo0AaCioiKhzYULFwgA/fjjj1rrfvTRR/S73/2OEhMTSalUPtJ2WxvD49D1O8t5QRvvD8bYs8L5ifNTSzg/vdj5ia+UYoyxDkBEaGio6pRX49+eJyOVSlFbW4upU6fizJkzSElJQUZGBogI48aNE87ezJw5EzU1NTh27BguXryIFStWQC6Xw9raGl9//TUAIDc3F6Wlpfjiiy8AAHPnzsWJEyeQkpKCtLQ0pKen49y5c81qiI2NhYuLC7KysvDJJ58gPz8fPj4+GD9+PC5cuIDt27fj+PHjmDVrFgDA1NQUenp62Llzp3AG6mE7d+5EXV1di2f0ZsyYAblcjuTk5Cfef0Dj2clNmzZBqVTCxcWl1XZqtRomJiY6+xo5ciSuXbuGffv2gYhw48YN7Ny5E+PGjXuiGjUaDfbu3Yu+fftCpVLBzMwMI0aM0HmJd2VlJRITE2Frawtra2sAgKOjI7p3747NmzejtrYW1dXV2Lx5M/r3749XXnlFWPf777/Hjh07fp1n7RhjjP0qPM8ZivPTk+P89OLnJ/3OLoAxxl4GGk01jhx17pRtv+5xEV26GD7WukSE7777DgcOHICvry/27NmDEydOwM3NDUDjffnW1tbYs2cPJkyYgKKiIowfPx7Ozo1jtbOzE/pqCgpmZmbCve+//PILtm7dim3btmHMmDEAgMTERFhaWjar5Y033sC8efOE99OnT0dQUBDmzJkDAHBwcEB8fDw8PDyQkJAAKysrxMfH46OPPsKnn36KYcOGwdPTE0FBQUJdeXl5UCqVsLCwaLY9sVgMOzs75OXlPda+a5KamorJkyejqqoKFhYWSEtLQ48ePVpse/XqVaxduxaxsbE6+3R3d0dSUhImTZqE+/fvo76+Hn5+fk8cTm7evImKigp8/vnniImJwYoVK/Dtt9/it7/9LQ4fPgwPDw+h7V/+8hd89NFHqKyshKOjI9LS0iAWiwEACoUCR44cwdtvv40///nPABq/nwMHDkBfvzF63L59G1OnTsXf//53GBkZPVHdjDHGXlzPY4bi/MT5ifNT+/GVUowxxppJTU2FXC6HRCKBr68vJk2ahKlTp0JfXx8jRowQ2nXv3h2Ojo64fPkyACAiIgIxMTFwd3dHVFQULly4oHM7P/30E+rq6jB8+HBhmVKphKOjY7O2w4YN03p//vx5bNmyBXK5XHipVCpoNBoUFBQAaDzzeP36dSQlJWHkyJHYsWMHBgwYgLS0tHbvi6agoEtSUpJWHenp6cJnnp6eyM7OxsmTJ+Hj44OJEyfi5s2bzfooLi6Gj48PJkyYoPVsgwf7DQsLAwDk5ORg9uzZWLJkCc6ePYtvv/0WhYWFwufp6ela6yUlJbVrrBqNBgAQEBCAP/7xj/jNb36DhQsX4q233sKGDRu02gYFBSErKwtHjx5F3759MXHiRNy/fx8AUF1djWnTpsHd3R0//PADTpw4gYEDB+LNN99EdXU1ACA0NBSBgYF47bXXWqzlccfAGGOMdRbOT//D+YnzU3vxlVKMMdYB9PSkeN3jYqdt+1F5enoiISEBYrEYlpaW0NfXR0pKSpvrTZ8+HSqVCnv37sXBgwexfPlyxMXFITw8/HFK1yKTybTeV1RUYMaMGYiIiGjWtnfv3sK/FQoF/Pz84Ofnh5iYGKhUKsTExMDLywsODg5Qq9UoKSlpdnaxtrYW+fn5UKlUbdbm7++vFTatrKy06ra3t4e9vT1cXV3h4OCAzZs3Y9GiRUKbkpISeHp6ws3NDZs2bdLq+8HZaprOiC1fvhzu7u5YsGABAGDQoEGQyWQYPXo0YmJiMGzYMK31evbs2eYYAKBHjx7Q19eHk5OT1vL+/fvj+PHjWsuUSiWUSiUcHBzg6uqKbt26Yffu3Xjvvfewbds2FBYWIiMjA3p6jee/tm3bhm7duuGbb77B5MmT8f333yMlJUU4q0lE0Gg00NfXx6ZNm/Dee+891hgYY4y9WJ6nDMX5ifPTgzg/tQ8flGKMsQ4gEoke+xa6ztAUBB7Uv39/1NfXIzMzU7j8/Pbt28jNzdX6I2xtbY2wsDCEhYVh0aJF+PLLLxEeHi6cMXvw+QR2dnYwMDDA6dOnhSCkVquRl5fX6hmgJkOGDEFOTk6zOnURiUTo168fTp48CQB49913ERkZibi4OMTFxWm13bBhA6qqqjBlypQ2+1UoFFAoFO2qQaPRoKamRnhfXFwMT09PYUaWphDSpKXxVVVVCZdxN+nSpQuAxnAilUofab80EYvFePXVV5Gbm6u1PC8vDzY2Nq2uR0QgImFcVVVV0NPTg0gkEto0vW86m5iRkaH1s/DNN99gxYoVOHnyJKysrB57DIwxxl4sz1OG4vzE+elBnJ/ahw9KMcYYaxcHBwcEBAQgNDQUGzduhEKhwMKFC2FlZYWAgAAAwJw5c+Dr64u+ffvi7t27OHz4MPr37w8AsLGxgUgkQmpqKsaNGwepVAqFQoGQkBAsWLAAJiYmMDMzQ1RUVLM/yC2JjIyEq6srZs2ahenTp0MmkyEnJwdpaWlYt24dsrOzERUVheDgYDg5OUEsFuPo0aP46quvEBkZCaDxjODKlSsxf/58SCQSBAcHw8DAAN988w0WL16MmJgYDBw4UGu7DwcOABgwYAAMDAy0llVWVmLZsmXw9/eHhYUFysrKsH79ehQXF2PChAkAGgPV66+/DhsbG8TGxgpTHQOAubl5q2P38/NDaGgoEhISoFKpUFpaijlz5mD48OEtPk+iSUVFBa5evSq8LygoQHZ2NkxMTIRQu2DBAkyaNAmvvfYaPD098e233+Jf//oXjhw5AqDxloHt27fD29sbpqam+Pnnn/H5559DKpUKDwr18vLCggULMHPmTISHh0Oj0eDzzz+Hvr4+PD09AUD4uWhy5swZ6OnpNdvfjzMGxhhj7NeC81Mjzk+cn1r1VOYBfE7xlMaMsWflRZvSuEnTlMZKpZKkUimpVCqtKY1nzZpFffr0oa5du5KpqSkFBwdTWVmZ8Hl0dDSZm5uTSCTSOaXx8OHDaeHChcJ6NjY2tGbNmmb1nDp1iry8vEgul5NMJqNBgwbRsmXLiIjo1q1bFBERQQMHDiS5XE4KhYKcnZ0pNjaWGhoatPrZs2cPjR49mmQymTDlcnJyslablqZlbnpdu3atWW3V1dX0zjvvkKWlJYnFYrKwsCB/f386deqU0CYxMbHVPtsSHx9PTk5OJJVKycLCgoKCgujnn3/Wuc7hw4db3FbTd9Fk8+bNZG9vTxKJhFxcXGjPnj3CZ8XFxeTr60tmZmZkYGBAvXr1osDAQLpy5YpWHwcPHiR3d3dSKpXUrVs3euONNygjI6PV2to7pXF7x/ConsaUxi8L3h+MsWeF8xPnJ85PL19+EhE9hbnCn1Pl5eVQKpVQq9UvzJPrGWO/Dvfv30dBQQFsbW0hkUg6u5znSmVlJaysrBAXF4dp06Z1+Pbv3LmDMWPGwMjICPv374eh4fNxywB7Mrp+ZzkvaOP9wRh7Vjg/PT7OT6wzPI38xLPvMcYY61RZWVlITk5Gfn4+zp07h6CgIAAQLmnvaCYmJjh06BDGjBmDjIyMTqmBMcYYY0wXzk/sRcHPlGKMMdbpYmNjkZubC7FYjKFDhyI9PR09evTotHq6d++OJUuWdNr2GWOMMcbawvmJvQj4oBRjjLFONXjwYJw9e7azy2CMMcYYe25wfmIvCr59jzHGGGOMMcYYY4x1OD4oxRhjjDHGGGOMMcY6HB+UYowxxhhjjDHGGGMdjg9KMcYYY4wxxhhjjLEOxwelGGOMMcYYY4wxxliH44NSjDHGGGOMMcYYY6zD8UEpxhhjjDHGGGOMMdbh+KAUY4wxLVOnToVIJIJIJIJYLIa9vT2io6NRX1//RP0eOXIEIpEI9+7dezqFtkNBQQECAwNhaWkJiUSCXr16ISAgAFeuXNFql5qaCg8PDygUChgaGuLVV1/Fli1btNoUFhZCJBIhOzu73dtfunQp+vXrB5lMhm7dumHs2LHIzMzU6nPatGmwtbWFVCpFnz59EBUVhdra2jb7TkpKgouLCwwNDWFhYYH3338ft2/f1rlOQkICBg0aBCMjIxgZGWHkyJHYv3+/8PmdO3cQHh4OR0dHSKVS9O7dGxEREVCr1UKbLVu2CD8fD79u3rwptKupqcGf/vQn2NjYoGvXrnjllVfw1VdfadXzf//3f8K2rK2t8cc//hH379/XOYZdu3bB29sb3bt3f+TvgzHGGHtWOD9xfuL89Hj0O7sAxhhjvz4+Pj5ITExETU0N9u3bh5kzZ8LAwACLFi3q7NIAALW1tRCLxTrb1NXVwcvLC46Ojti1axcsLCzw888/Y//+/VrBbu3atZgzZw4iIyORkJAAsViMb775BmFhYfj3v/+N2NjYx66zb9++WLduHezs7FBdXY01a9bA29sbV69ehampKa5cuQKNRoONGzfC3t4e//73vxEaGorKykqd2z1x4gSmTJmCNWvWwM/PD8XFxQgLC0NoaCh27drV6nq9evXC559/DgcHBxARtm7dioCAAGRlZWHAgAEoKSlBSUkJYmNj4eTkhP/85z8ICwtDSUkJdu7cCQCYNGkSfHx8tPqdOnUq7t+/DzMzM2HZxIkTcePGDWzevBn29vYoLS2FRqMRPt+2bRsWLlyIr776Cm5ubsjLyxMC/erVq1sdQ2VlJUaNGoWJEyciNDS0ze+AMcYY6yicnzg/cX56DPQSU6vVBIDUanVnl8IYe8FUV1dTTk4OVVdXd3YpjywkJIQCAgK0lnl5eZGrqyvduXOHgoODydjYmKRSKfn4+FBeXp7QrrCwkN566y0yNjYmQ0NDcnJyor1791JBQQEB0HqFhIQQEVF5eTkFBgaSoaEhmZub0+rVq8nDw4Nmz54t9GtjY0PR0dEUHBxMCoVCWDc9PZ1GjRpFEomEevXqReHh4VRRUUFERFlZWQSACgsLWx1rUVERGRgY0Ny5c5t9Fh8fTwDohx9+ICISxpCVlfXoO/W/mv7uHDp0qNU2K1euJFtbW539rFq1iuzs7JrVa2Vl9cg1devWjf7f//t/rX7+z3/+k8RiMdXV1bX4+c2bN8nAwID++te/Csv2799PSqWSbt++3Wq/M2fOpDfeeENr2dy5c8nd3b1ddT+N7+NBun5nOS9o4/3BGHtWOD9xfmoJ56f/eRHzE9++xxhjHYCIUNnQ0CkvInri+qVSKWprazF16lScOXMGKSkpyMjIABFh3LhxqKurAwDMnDkTNTU1OHbsGC5evIgVK1ZALpfD2toaX3/9NQAgNzcXpaWl+OKLLwAAc+fOxYkTJ5CSkoK0tDSkp6fj3LlzzWqIjY2Fi4sLsrKy8MknnyA/Px8+Pj4YP348Lly4gO3bt+P48eOYNWsWAMDU1BR6enrYuXMnGhoaWhzXzp07UVdXh/nz5zf7bMaMGZDL5UhOTn7i/Qc0np3ctGkTlEolXFxcWm2nVqthYmKis6+RI0fi2rVr2LdvH4gIN27cwM6dOzFu3Lh219PQ0IB//OMfqKysxMiRI3XWY2RkBH39li+u/utf/wpDQ0O8++67wrKUlBQMGzYMK1euhJWVFfr27Yv58+ejurpaaOPm5oazZ8/i1KlTAICffvoJ+/bte6QxMMYYe/E9zxmK89OT4/z04ucnvn2PMcY6QJVGgz7HLnbKtvNfc4asS5fHWpeI8N133+HAgQPw9fXFnj17cOLECbi5uQFovC/f2toae/bswYQJE1BUVITx48fD2dkZAGBnZyf01RQUzMzMYGxsDAD45ZdfsHXrVmzbtg1jxowBACQmJsLS0rJZLW+88QbmzZsnvJ8+fTqCgoIwZ84cAICDgwPi4+Ph4eGBhIQEWFlZIT4+Hh999BE+/fRTDBs2DJ6enggKChLqysvLg1KphIWFRbPticVi2NnZIS8v77H2XZPU1FRMnjwZVVVVsLCwQFpaGnr06NFi26tXr2Lt2rVtXvLu7u6OpKQkTJo0Cffv30d9fT38/Pywfv36Nuu5ePEiRo4cifv370Mul2P37t1wcnJqsW1ZWRn+/Oc/44MPPmi1v82bNyMwMBBSqVRY9tNPP+H48eOQSCTYvXs3ysrK8Ic//AG3b99GYmIiACAwMBBlZWUYNWoUiAj19fUICwvD4sWL2xwDY4yxl8fzmKE4P3F+4vzUfnylFGOMsWZSU1Mhl8shkUjg6+uLSZMmYerUqdDX18eIESOEdt27d4ejoyMuX74MAIiIiEBMTAzc3d0RFRWFCxcu6NzOTz/9hLq6OgwfPlxYplQq4ejo2KztsGHDtN6fP38eW7ZsgVwuF14qlQoajQYFBQUAGs88Xr9+HUlJSRg5ciR27NiBAQMGIC0trd37oq1nLwCN4fLBOtLT04XPPD09kZ2djZMnT8LHxwcTJ07UeqBlk+LiYvj4+GDChAla9/o/2G9YWBgAICcnB7Nnz8aSJUtw9uxZfPvttygsLBQ+T09P11ovKSlJ6M/R0RHZ2dnIzMzEhx9+iJCQEOTk5DSrp7y8HG+++SacnJywdOnSFsedkZGBy5cvY9q0aVrLNRoNRCIRkpKSMHz4cIwbNw6rV6/G1q1bhbN9R44cwWeffYa//OUvOHfuHHbt2oW9e/fiz3/+c5v7lDHGGPs14vz0P5yfOD+1F18pxRhjHcBQTw/5rzl32rYflaenp/DQSktLS+jr6yMlJaXN9aZPnw6VSoW9e/fi4MGDWL58OeLi4hAeHv44pWuRyWRa7ysqKjBjxgxEREQ0a9u7d2/h3wqFAn5+fvDz80NMTAxUKhViYmLg5eUFBwcHqNVqlJSUNDu7WFtbi/z8fKhUqjZr8/f31wqbVlZWWnXb29vD3t4erq6ucHBwwObNm7UeelpSUgJPT0+4ublh06ZNWn0/ODuKkZERAGD58uVwd3fHggULAACDBg2CTCbD6NGjERMTg2HDhmmt17NnT+HfTTMCAcDQoUNx+vRpfPHFF9i4caPQ5pdffoGPjw8UCgV2794NAwODFsf9//7f/8NvfvMbDB06VGu5hYUFrKysoFQqhWX9+/cHEeHnn3+Gg4MDPvnkEwQHB2P69OkAAGdnZ1RWVuKDDz7An/70J537lDHG2MvjecpQnJ84P3F+enR8UIoxxjqASCR67FvoOkNTEHhQ//79UV9fj8zMTOHy89u3byM3N1fr8mVra2uEhYUhLCwMixYtwpdffonw8HDhjNmDzyews7ODgYEBTp8+LQQhtVqNvLw8vPbaazprHDJkCHJycprVqYtIJEK/fv1w8uRJAMC7776LyMhIxMXFIS4uTqvthg0bUFVVhSlTprTZr0KhgEKhaFcNGo0GNTU1wvvi4mJ4enpi6NChSExMhN5DAbil8VVVVTV7RkGX//58ERGkUmm798vD9ZSXl0OlUqFr165ISUmBRCJpcb2Kigr885//xPLly5t95u7ujh07dqCiogJyuRxA46X+enp66NWrlzCGh8f64BgeZZ8yxhh7cT1PGYrzE+cnzk+Pjg9KMcYYaxcHBwcEBAQgNDQUGzduhEKhwMKFC2FlZYWAgAAAwJw5c+Dr64u+ffvi7t27OHz4MPr37w8AsLGxgUgkQmpqKsaNGwepVAqFQoGQkBAsWLAAJiYmMDMzQ1RUFPT09CASiXTWExkZCVdXV8yaNQvTp0+HTCZDTk4O0tLSsG7dOmRnZyMqKgrBwcFwcnKCWCzG0aNH8dVXXyEyMhJA4xnBlStXYv78+ZBIJAgODoaBgQG++eYbLF68GDExMRg4cKDWdnNzc5vVMmDAgGZnwyorK7Fs2TL4+/vDwsICZWVlWL9+PYqLizFhwgQAjYHq9ddfh42NDWJjY3Hr1i1hfXNz81bH7ufnh9DQUCQkJEClUqG0tBRz5szB8OHDW3yeRJNFixbB19cXvXv3xi+//IJt27bhyJEjOHDgAIDGQOXt7Y2qqir8/e9/R3l5OcrLywE0Pvi0ywP/U7B9+3bU19fjd7/7XbPtBAYG4s9//jN+//vf49NPP0VZWRkWLFiA999/X3h2gp+fH1avXo3BgwdjxIgRuHr1Kj755BP4+flpbedhd+7cQVFREUpKSgD87/swNzfXuc8YY4yxzsD5qRHnp0acn1rwVOYBfE7xlMaMsWflRZvSuEnTlMZKpZKkUimpVCqtKY1nzZpFffr0oa5du5KpqSkFBwdTWVmZ8Hl0dDSZm5uTSCTSOaXx8OHDaeHChcJ6NjY2tGbNmmb1nDp1iry8vEgul5NMJqNBgwbRsmXLiIjo1q1bFBERQQMHDiS5XE4KhYKcnZ0pNjaWGhoatPrZs2cPjR49mmQymTDlcnJyslablqZlbnpdu3atWW3V1dX0zjvvkKWlJYnFYrKwsCB/f386deqU0CYxMbHVPtsSHx9PTk5OJJVKycLCgoKCgujnn3/Wuc77779PNjY2JBaLydTUlMaMGUMHDx4UPj98+HCr9RQUFGj1NXLkSAoMDGx1W5cvX6axY8eSVCqlXr160dy5c6mqqkr4vK6ujpYuXUp9+vQhiURC1tbW9Ic//IHu3r2rcwyt7bOoqCid67XlaUxp/LLg/cEYe1Y4P3F+4vz08uUnEdFTmCv8OVVeXg6lUilM18gYY0/L/fv3UVBQAFtb21Yv32Utq6yshJWVFeLi4po9ALIj3LlzB2PGjIGRkRH2798PQ0PDDq+BdTxdv7OcF7Tx/mCMPSucnx4f5yfWGZ5GfuLZ9xhjjHWqrKwsJCcnIz8/H+fOnUNQUBAACJe0dzQTExMcOnQIY8aMQUZGRqfUwBhjjDGmC+cn9qLgZ0oxxhjrdLGxscjNzYVYLMbQoUORnp6OHj16dFo93bt3x5IlSzpt+4wxxhhjbeH8xF4EfFCKMcZYpxo8eDDOnj3b2WUwxhhjjD03OD+xFwXfvscYY4wxxhhjjDHGOhwflGKMMcYYY4wxxhhjHY4PSjHGGGOMMcYYY4yxDscHpRhjjDHGGGOMMcZYh+ODUowxxhhjjDHGGGOsw/FBKcYYY4wxxhhjjDHW4figFGOMMcYYY4wxxhjrcHxQijHGmJapU6dCJBJBJBJBLBbD3t4e0dHRqK+vf6J+jxw5ApFIhHv37j2dQtuhoKAAgYGBsLS0hEQiQa9evRAQEIArV65otUtNTYWHhwcUCgUMDQ3x6quvYsuWLVptCgsLIRKJkJ2d3e7tL126FP369YNMJkO3bt0wduxYZGZmavU5bdo02NraQiqVok+fPoiKikJtbW2bfSclJcHFxQWGhoawsLDA+++/j9u3b7e7ts8//xwikQhz5szRWp6fn4933nkHpqamMDIywsSJE3Hjxg2tNsuWLYObmxsMDQ1hbGzcYv9NP0MPvv7xj38In+/atQteXl7CdkaOHIkDBw60WfeuXbvg7e2N7t27P/L3wRhjjD0rnJ84P3F+ejx8UIoxxlgzPj4+KC0txY8//oh58+Zh6dKlWLVqVWeXJWhP6Kirq4OXlxfUajV27dqF3NxcbN++Hc7OzlrBbu3atQgICIC7uzsyMzNx4cIFTJ48GWFhYZg/f/4T1dm3b1+sW7cOFy9exPHjx/HKK6/A29sbt27dAgBcuXIFGo0GGzduxKVLl7BmzRps2LABixcv1tnviRMnMGXKFEybNg2XLl3Cjh07cOrUKYSGhrarrtOnT2Pjxo0YNGiQ1vLKykp4e3tDJBLh+++/x4kTJ1BbWws/Pz9oNBqhXW1tLSZMmIAPP/xQ53YSExNRWloqvN5++23hs2PHjsHLywv79u3D2bNn4enpCT8/P2RlZenss7KyEqNGjcKKFSvaNVbGGGOso3B+4vzE+ekx0EtMrVYTAFKr1Z1dCmPsBVNdXU05OTlUXV3d2aU8spCQEAoICNBa5uXlRa6urnTnzh0KDg4mY2Njkkql5OPjQ3l5eUK7wsJCeuutt8jY2JgMDQ3JycmJ9u7dSwUFBQRA6xUSEkJEROXl5RQYGEiGhoZkbm5Oq1evJg8PD5o9e7bQr42NDUVHR1NwcDApFAph3fT0dBo1ahRJJBLq1asXhYeHU0VFBRERZWVlEQAqLCxsdaxFRUVkYGBAc+fObfZZfHw8AaAffviBiEgYQ1ZW1qPv1P9q+rtz6NChVtusXLmSbG1tdfazatUqsrOza1avlZVVmzX88ssv5ODgQGlpac3284EDB0hPT0/r7+K9e/dIJBJRWlpas74SExNJqVS2uB0AtHv37jbreZCTkxN9+umn7Wr7NL6PB+n6neW8oI33B2PsWeH8xPmpJZyfdHve8xNfKcUYYx2AiFBVW98pLyJ64vqlUilqa2sxdepUnDlzBikpKcjIyAARYdy4cairqwMAzJw5EzU1NTh27BguXryIFStWQC6Xw9raGl9//TUAIDc3F6Wlpfjiiy8AAHPnzsWJEyeQkpKCtLQ0pKen49y5c81qiI2NhYuLC7KysvDJJ58gPz8fPj4+GD9+PC5cuIDt27fj+PHjmDVrFgDA1NQUenp62LlzJxoaGloc186dO1FXV9fiGb0ZM2ZALpcjOTn5ifcf0Hh2bNOmTVAqlXBxcWm1nVqthomJic6+Ro4ciWvXrmHfvn0gIty4cQM7d+7EuHHj2qxj5syZePPNNzF27Nhmn9XU1EAkEqFr167CMolEAj09PRw/frzNvlvaVo8ePTB8+HB89dVXOn8WNRoNfvnllzbHzhhj7OXyPGcozk9PjvPTi5+f9Du7AMYYexlU1zXAaUnb93s/CznRKhiKH+8/90SE7777DgcOHICvry/27NmDEydOwM3NDUDjffnW1tbYs2cPJkyYgKKiIowfPx7Ozs4AADs7O6Gvpj+WZmZmwn30v/zyC7Zu3Ypt27ZhzJgxABovWba0tGxWyxtvvIF58+YJ76dPn46goCDhnn4HBwfEx8fDw8MDCQkJsLKyQnx8PD766CN8+umnGDZsGDw9PREUFCTUlZeXB6VSCQsLi2bbE4vFsLOzQ15e3mPtuyapqamYPHkyqqqqYGFhgbS0NPTo0aPFtlevXsXatWsRGxurs093d3ckJSVh0qRJuH//Purr6+Hn54f169frXO8f//gHzp07h9OnT7f4uaurK2QyGSIjI/HZZ5+BiLBw4UI0NDSgtLS0fQP+r+joaLzxxhswNDTEwYMH8Yc//AEVFRWIiIhosX1sbCwqKiowceLER9oOY4yxF9vzmKE4P3F+4vzUfnylFGOMsWZSU1Mhl8shkUjg6+uLSZMmYerUqdDX18eIESOEdt27d4ejoyMuX74MAIiIiEBMTAzc3d0RFRWFCxcu6NzOTz/9hLq6OgwfPlxYplQq4ejo2KztsGHDtN6fP38eW7ZsgVwuF14qlQoajQYFBQUAGs80Xb9+HUlJSRg5ciR27NiBAQMGIC0trd37QiwWt9kmKSlJq4709HThM09PT2RnZ+PkyZPw8fHBxIkTcfPmzWZ9FBcXw8fHBxMmTNB6tsGD/YaFhQEAcnJyMHv2bCxZsgRnz57Ft99+i8LCQuHz9PR0rfWSkpJw7do1zJ49G0lJSZBIJC2Ow9TUFDt27MC//vUvyOVyKJVK3Lt3D0OGDIGe3qNFhk8++QTu7u4YPHgwIiMj8dFHH7X6XI1t27bh008/xT//+U+YmZm1uU8ZY4yxXyPOT//D+YnzU3vxlVKMMdYBpAZdkBOt6rRtPypPT08kJCRALBbD0tIS+vr6SElJaXO96dOnQ6VSYe/evTh48CCWL1+OuLg4hIeHP07pWmQymdb7iooKzJgxo8UzR7179xb+rVAo4OfnBz8/P8TExEClUiEmJgZeXl5wcHCAWq1GSUlJs7OLtbW1yM/Ph0rV9vfm7++vFTatrKy06ra3t4e9vT1cXV3h4OCAzZs3Y9GiRUKbkpISeHp6ws3NDZs2bdLq+8HZUYyMjAAAy5cvh7u7OxYsWAAAGDRoEGQyGUaPHo2YmBgMGzZMa72ePXviu+++w82bNzFkyBBheUNDA44dO4Z169ahpqYGXbp0gbe3N/Lz81FWVgZ9fX0YGxvD3Nxc66zt4xgxYgT+/Oc/o6amRuvy9n/84x+YPn06duzYoXVJvK59yhhj7OXxPGUozk+cnzg/PTo+KMUYYx1AJBI99i10naEpCDyof//+qK+vR2ZmpnD5+e3bt5GbmwsnJyehnbW1NcLCwhAWFoZFixbhyy+/RHh4uHDG7MHnE9jZ2cHAwACnT58WgpBarUZeXh5ee+01nTUOGTIEOTk5zerURSQSoV+/fjh58iQA4N1330VkZCTi4uIQFxen1XbDhg2oqqrClClT2uxXoVBAoVC0qwaNRoOamhrhfXFxMTw9PTF06FAkJiY2O6PW0viqqqqgr6/989SlS2NwJiJIpdJm640ZMwYXL17UWvb73/8e/fr1Q2RkpLB+k6ZL5L///nvcvHkT/v7+7Rpfa7Kzs9GtWzetQJWcnIz3338f//jHP/Dmm29qtX+UfcoYY+zF9TxlKM5PnJ84Pz265+O3mzHGWKdzcHBAQEAAQkNDsXHjRigUCixcuBBWVlYICAgAAMyZMwe+vr7o27cv7t69i8OHD6N///4AABsbG4hEIqSmpmLcuHGQSqVQKBQICQnBggULYGJiAjMzM0RFRUFPTw8ikUhnPZGRkXB1dcWsWbMwffp0yGQy5OTkIC0tDevWrUN2djaioqIQHBwMJycniMViHD16FF999RUiIyMBNJ4RXLlyJebPnw+JRILg4GAYGBjgm2++weLFixETE4OBAwdqbTc3N7dZLQMGDICBgYHWssrKSixbtgz+/v6wsLBAWVkZ1q9fj+LiYkyYMAFAY6B6/fXXYWNjg9jYWGGqYwAwNzdvdex+fn4IDQ1FQkICVCoVSktLMWfOHAwfPrzF50kAjSHl4bHIZDJ0795da3liYiL69+8PU1NTZGRkYPbs2fjjH/+odUtAUVER7ty5g6KiIjQ0NAhnFe3t7SGXy/Gvf/0LN27cgKurKyQSCdLS0vDZZ59pPRB127ZtCAkJwRdffIERI0bg+vXrABofCqtUKlsde9N2S0pKAPzv+zA3N9e5zxhjjLHOwPmpEecnzk+teirzAD6neEpjxtiz8qJNadykaUpjpVJJUqmUVCqV1pTGs2bNoj59+lDXrl3J1NSUgoODqaysTPg8OjqazM3NSSQS6ZzSePjw4bRw4UJhPRsbG1qzZk2zek6dOkVeXl4kl8tJJpPRoEGDaNmyZUREdOvWLYqIiKCBAweSXC4nhUJBzs7OFBsbSw0NDVr97Nmzh0aPHk0ymUyYcjk5OVmrTUvTMje9rl271qy26upqeuedd8jS0pLEYjFZWFiQv78/nTp1SmiTmJjYap9tiY+PJycnJ5JKpWRhYUFBQUH0888/t7negx6e0piIKDIyknr27EkGBgbk4OBAcXFxpNFotNqEhIS0WPPhw4eJiGj//v30m9/8RvheXFxcaMOGDVr73cPDo8U+mn4uWtPaPouKinqksT/saUxp/LLg/cEYe1Y4P3F+4vz08uUnEdFTmCv8OVVeXg6lUgm1Wi3cZ8oYY0/D/fv3UVBQAFtb21YfishaVllZCSsrK8TFxWHatGkdvv07d+5gzJgxMDIywv79+2FoaNjhNbCOp+t3lvOCNt4fjLFnhfPT4+P8xDrD08hPPPseY4yxTpWVlYXk5GTk5+fj3LlzCAoKAgDhkvaOZmJigkOHDmHMmDHIyMjolBoYY4wxxnTh/MReFPxMKcYYY50uNjYWubm5EIvFGDp0KNLT04UHRXaG7t27Y8mSJZ22fcYYY4yxtnB+Yi+CDrtSav369XjllVcgkUgwYsQInDp1Smf7HTt2oF+/fpBIJHB2dsa+ffuEz+rq6hAZGQlnZ2fIZDJYWlpiypQpwkO7GGOMPT8GDx6Ms2fPoqKiAnfu3EFaWhqcnZ07uyzGfjU4QzHGGHsY5yf2ouiQg1Lbt2/H3LlzERUVhXPnzsHFxQUqlQo3b95ssf3Jkyfx3nvvYdq0acjKysLbb7+Nt99+G//+978BNE7leO7cOXzyySc4d+4cdu3ahdzc3CeebpExxhhj7NeEMxRjjDHGXmQd8qDzESNG4NVXX8W6desAABqNBtbW1ggPD8fChQubtZ80aRIqKyuRmpoqLHN1dcVvfvMbbNiwocVtnD59GsOHD8d//vMf9O7du1118YM6GWPPCj+ok7Hny6/1Qee/xgzF+Ykx9qxwfmLs+fJcPOi8trYWZ8+exdixY/+3UT09jB07ttUHoGVkZGi1BwCVSqXzgWlqtRoikQjGxsattqmpqUF5ebnWizHGGGPs1+jXkqE4PzHGGGPsWXnmB6XKysrQ0NCAnj17ai3v2bMnrl+/3uI6169ff6T29+/fR2RkJN577z2dR+CWL18OpVIpvKytrR9xNIwxxhhjHePXkqE4PzHGGGPsWemwB50/K3V1dZg4cSKICAkJCTrbLlq0CGq1Wnhdu3atg6pkjDHGGPt1aW+G4vzEGGOMsWdF/1lvoEePHujSpQtu3LihtfzGjRswNzdvcR1zc/N2tW8KU//5z3/w/ffft/lcg65du6Jr166PMQrGGGOMsY71a8lQnJ8YY4wx9qw88yulxGIxhg4diu+++05YptFo8N1332HkyJEtrjNy5Eit9gCQlpam1b4pTP344484dOgQunfv/mwGwBhjjDHWCThDMcYYY+xF1yG3782dOxdffvkltm7disuXL+PDDz9EZWUlfv/73wMApkyZgkWLFgntZ8+ejW+//RZxcXG4cuUKli5dijNnzmDWrFkAGsPUu+++izNnziApKQkNDQ24fv06rl+/jtra2o4YEmOMvbCmTp0KkUgEkUgEsVgMe3t7REdHo76+/on6PXLkCEQiEe7du/d0Cm2HgoICBAYGwtLSEhKJBL169UJAQACuXLmi1S41NRUeHh5QKBQwNDTEq6++ii1btmi1KSwshEgkQnZ2dru3v3TpUvTr1w8ymQzdunXD2LFjkZmZqdXntGnTYGtrC6lUij59+iAqKqpdf8uSkpLg4uICQ0NDWFhY4P3338ft27fbXK+4uBi/+93v0L17d0ilUjg7O+PMmTPC5w9+/00vHx8frT5eeeWVZm0+//xz4fPc3Fx4enqiZ8+ekEgksLOzw8cff4y6ujqtfu7du4eZM2fCwsICXbt2Rd++fbFv3z6d9e/atQve3t7o3r37I38fzyPOUIwx9nzg/MT5ifPT43nmt+8BjdMT37p1C0uWLMH169fxm9/8Bt9++63wIM6ioiLo6f3v+Jibmxu2bduGjz/+GIsXL4aDgwP27NmDgQMHAmj8gUhJSQEA/OY3v9Ha1uHDh/H66693xLAYY+yF5ePjg8TERNTU1GDfvn2YOXMmDAwMtP7ntzPV1tZCLBbrbFNXVwcvLy84Ojpi165dsLCwwM8//4z9+/drBbu1a9dizpw5iIyMREJCAsRiMb755huEhYXh3//+N2JjYx+7zr59+2LdunWws7NDdXU11qxZA29vb1y9ehWmpqa4cuUKNBoNNm7cCHt7e/z73/9GaGgoKisrdW73xIkTmDJlCtasWQM/Pz8UFxcjLCwMoaGh2LVrV6vr3b17F+7u7vD09MT+/fthamqKH3/8Ed26ddNq1/T9N2np1q3o6GiEhoYK7xUKhfBvAwMDTJkyBUOGDIGxsTHOnz+P0NBQaDQafPbZZwAav0MvLy+YmZlh586dsLKywn/+8x+ds+gCQGVlJUaNGoWJEydqbf9FxRmKMcaeH5yfOD9xfnoM9BJTq9UEgNRqdWeXwhh7wVRXV1NOTg5VV1d3dimPLCQkhAICArSWeXl5kaurK925c4eCg4PJ2NiYpFIp+fj4UF5entCusLCQ3nrrLTI2NiZDQ0NycnKivXv3UkFBAQHQeoWEhBARUXl5OQUGBpKhoSGZm5vT6tWrycPDg2bPni30a2NjQ9HR0RQcHEwKhUJYNz09nUaNGkUSiYR69epF4eHhVFFRQUREWVlZBIAKCwtbHWtRUREZGBjQ3Llzm30WHx9PAOiHH34gIhLGkJWV9eg79b+a/u4cOnSo1TYrV64kW1tbnf2sWrWK7OzsmtVrZWWlc73IyEgaNWqUzjYtff8Ps7GxoTVr1uhs87A//vGPWttOSEggOzs7qq2tfaR+mjyN7+NBun5nOS9o4/3BGHtWOD9xfmoJ56cXOz8997PvMcbYc4EIqK3snBfRE5cvlUpRW1uLqVOn4syZM0hJSUFGRgaICOPGjRMuK545cyZqampw7NgxXLx4EStWrIBcLoe1tTW+/vprAI2XJpeWluKLL74A0Hh70okTJ5CSkoK0tDSkp6fj3LlzzWqIjY2Fi4sLsrKy8MknnyA/Px8+Pj4YP348Lly4gO3bt+P48ePCbUqmpqbQ09PDzp070dDQ0OK4du7cibq6OsyfP7/ZZzNmzIBcLkdycvIT7z+g8czWpk2boFQq4eLi0mo7tVoNExMTnX2NHDkS165dw759+0BEuHHjBnbu3Ilx48bpXC8lJQXDhg3DhAkTYGZmhsGDB+PLL79s1u7IkSMwMzODo6MjPvzwwxYva//888/RvXt3DB48GKtWrdJ5e8LVq1fx7bffwsPDQ6uWkSNHYubMmejZsycGDhyIzz77rNXvijHG2EvqOc5QnJ+eHOenFz8/dcjte4wx9tKrqwI+s+ycbS8uAcSyx1qViPDdd9/hwIED8PX1xZ49e3DixAm4ubkBaLwv39raGnv27MGECRNQVFSE8ePHw9nZGQBgZ2cn9NUUFMzMzIRLjH/55Rds3boV27Ztw5gxYwAAiYmJsLRsvq/eeOMNzJs3T3g/ffp0BAUFYc6cOQAABwcHxMfHw8PDAwkJCbCyskJ8fDw++ugjfPrppxg2bBg8PT0RFBQk1JWXlwelUgkLC4tm2xOLxbCzs0NeXt5j7bsmqampmDx5MqqqqmBhYYG0tDT06NGjxbZXr17F2rVr27zk3d3dHUlJSZg0aRLu37+P+vp6+Pn5Yf369TrX++mnn5CQkIC5c+di8eLFOH36NCIiIiAWixESEgKg8dLz3/72t7C1tUV+fj4WL14MX19fZGRkoEuXLgCAiIgIDBkyBCYmJjh58iQWLVqE0tJSrF69Wmt7bm5uOHfuHGpqavDBBx8gOjpaq5bvv/8eQUFB2LdvH65evYo//OEPqKurQ1RUVJv7lTHG2EviOcxQnJ84P3F+aj++UooxxlgzqampkMvlkEgk8PX1xaRJkzB16lTo6+tjxIgRQrvu3bvD0dERly9fBtD4xzYmJgbu7u6IiorChQsXdG7np59+Ql1dHYYPHy4sUyqVcHR0bNZ22LBhWu/Pnz+PLVu2QC6XCy+VSgWNRoOCggIAjWcer1+/jqSkJIwcORI7duzAgAEDkJaW1u590dazF4DGcPlgHenp6cJnnp6eyM7OxsmTJ+Hj44OJEyfi5s2bzfooLi6Gj48PJkyYoHWv/4P9hoWFAQBycnIwe/ZsLFmyBGfPnsW3336LwsJC4fP09HSt9ZKSkgA0ztw2ZMgQfPbZZxg8eDA++OADhIaGYsOGDcL2Jk+eDH9/fzg7O+Ptt99GamoqTp8+jSNHjght5s6di9dffx2DBg1CWFgY4uLisHbtWtTU1GiNafv27Th37hy2bduGvXv3aoVFjUYDMzMzbNq0CUOHDsWkSZPwpz/9SahF1z5ljDHGfo04P/0P5yfOT+3FV0oxxlhHMDBsPNvWWdt+RJ6ensJDKy0tLaGvry88HFmX6dOnQ6VSYe/evTh48CCWL1+OuLg4hIeHP07lWmQy7TOVFRUVmDFjBiIiIpq17d27t/BvhUIBPz8/+Pn5ISYmBiqVCjExMfDy8oKDgwPUajVKSkqanV2sra1Ffn4+VCpVm7X5+/trhU0rKyutuu3t7WFvbw9XV1c4ODhg8+bNWg89LSkpgaenJ9zc3LBp0yatvh+cHcXIyAgAsHz5cri7u2PBggUAgEGDBkEmk2H06NGIiYnBsGHDtNZreii2hYUFnJyctPrv37+/cGtAS+zs7NCjRw9cvXpVOBv7sBEjRqC+vh6FhYVagdja2hoA4OTkhIaGBnzwwQeYN28eunTpAgsLCxgYGAhnD5tqaZoFTtc+ZYwx9hJ5jjIU5yfOT004P7UfH5RijLGOIBI99i10naEpCDyof//+qK+vR2ZmpnD5+e3bt5Gbm6v1h9ra2hphYWEICwvDokWL8OWXXyI8PFw4Y/bgPe92dnYwMDDA6dOnhSCkVquRl5eH1157TWeNQ4YMQU5OTrM6dRGJROjXrx9OnjwJAHj33XcRGRmJuLg4xMXFabXdsGEDqqqqMGXKlDb7VSgUWrOn6KLRaLTOiBUXF8PT0xNDhw5FYmKi1kxqAFocX1VVFfT1tf+EN4UTIoJUKm1xPXd3d+Tm5moty8vLg42NTav1/vzzz7h9+3aLl+g3yc7Ohp6eHszMzFpto9FoUFdXB41Ggy5dusDd3R3btm2DRqMRxpyXlwcLCwuIxWKIxeJ271PGGGMvsOcoQ3F+4vzUhPNT+/FBKcYYY+3i4OCAgIAAhIaGYuPGjVAoFFi4cCGsrKwQEBAAAJgzZw58fX3Rt29f3L17F4cPH0b//v0BADY2NhCJREhNTcW4ceMglUqhUCgQEhKCBQsWwMTEBGZmZoiKioKenh5EIpHOeiIjI+Hq6opZs2Zh+vTpkMlkyMnJQVpaGtatW4fs7GxERUUhODgYTk5OEIvFOHr0KL766itERkYCaDwjuHLlSsyfPx8SiQTBwcEwMDDAN998g8WLFyMmJgYDBw7U2u7DoQQABgwYAAMDA61llZWVWLZsGfz9/WFhYYGysjKsX78excXFmDBhAoDGQPX666/DxsYGsbGxuHXrlrC+ubl5q2P38/NDaGgoEhISoFKpUFpaijlz5mD48OEtPk+iyR//+Ee4ubnhs88+w8SJE3Hq1Cls2rRJOLtYUVGBTz/9FOPHj4e5uTny8/Px0Ucfwd7eXjjjmZGRgczMTHh6ekKhUCAjIwN//OMf8bvf/U6YGjkpKQkGBgZwdnZG165dcebMGSxatAiTJk0S9tOHH36IdevWYfbs2QgPD8ePP/6Izz77rMUztw+6c+cOioqKUFJSovV9mJub69xnjDHGWGfg/NSI8xPnp1Y9lXkAn1M8pTFj7Fl50aY0btI0pbFSqSSpVEoqlUprSuNZs2ZRnz59qGvXrmRqakrBwcFUVlYmfB4dHU3m5uYkEol0Tmk8fPhwWrhwobBea1Ponjp1iry8vEgul5NMJqNBgwbRsmXLiIjo1q1bFBERQQMHDiS5XE4KhYKcnZ0pNjaWGhoatPrZs2cPjR49mmQymTDlcnJyslablqZlbnpdu3atWW3V1dX0zjvvkKWlJYnFYrKwsCB/f386deqU0CYxMbHVPtsSHx9PTk5OJJVKycLCgoKCgujnn39uc71//etfNHDgQOratSv169ePNm3aJHxWVVVF3t7eZGpqSgYGBmRjY0OhoaF0/fp1oc3Zs2dpxIgRpFQqSSKRUP/+/emzzz6j+/fvC23+8Y9/0JAhQ4TvxcnJiT777LNmvw8nT56kESNGUNeuXcnOzo6WLVtG9fX1OutvbZ9FRUW1OXZdnsaUxi8L3h+MsWeF8xPnJ85PL19+EhE9hbnCn1Pl5eVQKpVQq9XCfaaMMfY03L9/HwUFBbC1tYVEIunscp4rlZWVsLKyQlxcHKZNm9bh279z5w7GjBkDIyMj7N+/H4aGj/5MLvb80fU7y3lBG+8Pxtizwvnp8XF+Yp3haeQnnn2PMcZYp8rKykJycjLy8/Nx7tw5BAUFAYBwSXtHMzExwaFDhzBmzBhkZGR0Sg2MMcYYY7pwfmIvCn6mFGOMsU4XGxuL3NxciMViDB06FOnp6ejRo0en1dO9e3csWbKk07bPGGOMMdYWzk/sRcAHpRhjjHWqwYMH4+zZs51dBmOMMcbYc4PzE3tR8O17jDHGGGOMMcYYY6zD8UEpxhhjjDHGGGOMMdbh+KAUY4wxxhhjjDHGGOtwfFCKMcYYY4wxxhhjjHU4PijFGGOMMcYYY4wxxjocH5RijDHGGGOMMcYYYx2OD0oxxhhjjDHGGGOMsQ7HB6UYY4xpmTp1KkQiEUQiEcRiMezt7REdHY36+von6vfIkSMQiUS4d+/e0ym0HQoKChAYGAhLS0tIJBL06tULAQEBuHLlila71NRUeHh4QKFQwNDQEK+++iq2bNmi1aawsBAikQjZ2dnt3v7SpUvRr18/yGQydOvWDWPHjkVmZqZWn9OmTYOtrS2kUin69OmDqKgo1NbWttl3UlISXFxcYGhoCAsLC7z//vu4ffu2znUaGhrwySefaG3vz3/+M4hIaLNr1y54e3uje/furY43Pz8f77zzDkxNTWFkZISJEyfixo0bjzyuCxcuYPTo0ZBIJLC2tsbKlSvbHPexY8fg5+cHS0tLiEQi7Nmzp811GGOMsWeN8xPnJ85Pj4cPSjHGGGvGx8cHpaWl+PHHHzFv3jwsXboUq1at6uyyBO0JHXV1dfDy8oJarcauXbuQm5uL7du3w9nZWSvYrV27FgEBAXB3d0dmZiYuXLiAyZMnIywsDPPnz3+iOvv27Yt169bh4sWLOH78OF555RV4e3vj1q1bAIArV65Ao9Fg48aNuHTpEtasWYMNGzZg8eLFOvs9ceIEpkyZgmnTpuHSpUvYsWMHTp06hdDQUJ3rrVixAgkJCVi3bh0uX76MFStWYOXKlVi7dq3QprKyEqNGjcKKFSta7KOyshLe3t4QiUT4/vvvceLECdTW1sLPzw8ajabd4yovL4e3tzdsbGxw9uxZrFq1CkuXLsWmTZt0jqGyshIuLi5Yv369znaMMcZYR+P8xPmJ89NjoJeYWq0mAKRWqzu7FMbYC6a6uppycnKourq6s0t5ZCEhIRQQEKC1zMvLi1xdXenOnTsUHBxMxsbGJJVKycfHh/Ly8oR2hYWF9NZbb5GxsTEZGhqSk5MT7d27lwoKCgiA1iskJISIiMrLyykwMJAMDQ3J3NycVq9eTR4eHjR79myhXxsbG4qOjqbg4GBSKBTCuunp6TRq1CiSSCTUq1cvCg8Pp4qKCiIiysrKIgBUWFjY6liLiorIwMCA5s6d2+yz+Ph4AkA//PADEZEwhqysrEffqf/V9Hfn0KFDrbZZuXIl2dra6uxn1apVZGdn16xeKysrneu9+eab9P7772st++1vf0tBQUHN2rY23gMHDpCenp7W38579+6RSCSitLS0Vrf98Lj+8pe/ULdu3aimpkZYFhkZSY6OjjrH8CAAtHv37na310XX7yznBW28PxhjzwrnJ85PLeH89GLnJ75SijHGOgARoaquqlNe9MClxY9LKpWitrYWU6dOxZkzZ5CSkoKMjAwQEcaNG4e6ujoAwMyZM1FTU4Njx47h4sWLWLFiBeRyOaytrfH1118DAHJzc1FaWoovvvgCADB37lycOHECKSkpSEtLQ3p6Os6dO9eshtjYWLi4uCArKwuffPIJ8vPz4ePjg/Hjx+PChQvYvn07jh8/jlmzZgEATE1Noaenh507d6KhoaHFce3cuRN1dXUtntGbMWMG5HI5kpOTn3j/AY1nJzdt2gSlUgkXF5dW26nVapiYmOjsa+TIkbh27Rr27dsHIsKNGzewc+dOjBs3Tud6bm5u+O6775CXlwcAOH/+PI4fPw5fX992j6OmpgYikQhdu3YVlkkkEujp6eH48ePtHldGRgZee+01iMViYZlKpUJubi7u3r3b7noYY4y92J7nDMX56clxfnrx85N+ZxfAGGMvg+r6aozYNqJTtp0ZmAlDA8PHWpeI8N133+HAgQPw9fXFnj17cOLECbi5uQFovC/f2toae/bswYQJE1BUVITx48fD2dkZAGBnZyf01fQH1czMDMbGxgCAX375BVu3bsW2bdswZswYAEBiYiIsLS2b1fLGG29g3rx5wvvp06cjKCgIc+bMAQA4ODggPj4eHh4eSEhIgJWVFeLj4/HRRx/h008/xbBhw+Dp6YmgoCChrry8PCiVSlhYWDTbnlgshp2dnRBAHldqaiomT56MqqoqWFhYIC0tDT169Gix7dWrV7F27VrExsbq7NPd3R1JSUmYNGkS7t+/j/r6evj5+bV5SfbChQtRXl6Ofv36oUuXLmhoaMCyZcsQFBTU7vG4urpCJpMhMjISn332GYgICxcuRENDA0pLS9s9ruvXr8PW1larXc+ePYXPunXr1u6aGGOMvbiexwzF+Ynz08M4P7WOr5RijDHWTGpqKuRyOSQSCXx9fTFp0iRMnToV+vr6GDHif8Gwe/fucHR0xOXLlwEAERERiImJgbu7O6KionDhwgWd2/npp59QV1eH4cOHC8uUSiUcHR2btR02bJjW+/Pnz2PLli2Qy+XCS6VSQaPRoKCgAEDjmcfr168jKSkJI0eOxI4dOzBgwACkpaW1e188eCaqNUlJSVp1pKenC595enoiOzsbJ0+ehI+PDyZOnIibN28266O4uBg+Pj6YMGGC1rMNHuw3LCwMAJCTk4PZs2djyZIlOHv2LL799lsUFhYKn6enp2utl5SUBAD45z//iaSkJGzbtg3nzp3D1q1bERsbi61bt7Z7f5iammLHjh3417/+BblcDqVSiXv37mHIkCHQ02seK1obV1taGwNjjDH2a8X56X84P2nj/NQ6vlKKMcY6gFRfiszAzLYbPqNtPypPT08kJCRALBbD0tIS+vr6SElJaXO96dOnQ6VSYe/evTh48CCWL1+OuLg4hIeHP07pWmQymdb7iooKzJgxAxEREc3a9u7dW/i3QqGAn58f/Pz8EBMTA5VKhZiYGHh5ecHBwQFqtRolJSXNzi7W1tYiPz8fKpWqzdr8/f21wqaVlZVW3fb29rC3t4erqyscHBywefNmLFq0SGhTUlICT09PuLm5NXtQ5YOztxgZGQEAli9fDnd3dyxYsAAAMGjQIMhkMowePRoxMTEYNmyY1npNZ9AWLFiAhQsXYvLkyQAAZ2dn/Oc//8Hy5csREhLS5jibeHt7Iz8/H2VlZdDX14exsTHMzc21zuy2NS5zc3OtGWcACO/Nzc3xyiuvtDgGxhhjL5fnKUNxfuL8pAvnp5bxQSnGGOsAIpHosW+h6wxNQeBB/fv3R319PTIzM4XLz2/fvo3c3Fw4OTkJ7aytrREWFoawsDAsWrQIX375JcLDw4UzZg8+n8DOzg4GBgY4ffq0EITUajXy8vLw2muv6axxyJAhyMnJaVanLiKRCP369cPJkycBAO+++y4iIyMRFxeHuLg4rbYbNmxAVVUVpkyZ0ma/CoUCCoWiXTVoNBrU1NQI74uLi+Hp6YmhQ4ciMTGx2dmylsZXVVUFfX3tP+FdunQB0HjLgFQqbXW9h/vv0qWLMOvLo2q6jP7777/HzZs34e/v3+5xjRw5En/6059QV1cHAwMDAEBaWhocHR2FS88f5btljDH2YnqeMhTnJ85P7cH5SRsflGKMMdYuDg4OCAgIQGhoKDZu3AiFQoGFCxfCysoKAQEBAIA5c+bA19cXffv2xd27d3H48GH0798fAGBjYwORSITU1FSMGzcOUqkUCoUCISEhWLBgAUxMTGBmZoaoqCjo6elBJBLprCcyMhKurq6YNWsWpk+fDplMhpycHKSlpWHdunXIzs5GVFQUgoOD4eTkBLFYjKNHj+Krr75CZGQkgMYzgitXrsT8+fMhkUgQHBwMAwMDfPPNN1i8eDFiYmIwcOBAre3m5uY2q2XAgAFCMGhSWVmJZcuWwd/fHxYWFigrK8P69etRXFyMCRMmAGgMHq+//jpsbGwQGxsrTHUMNJ7tao2fnx9CQ0ORkJAAlUqF0tJSzJkzB8OHD2/xeRIPrrds2TL07t0bAwYMQFZWFlavXo33339faHPnzh0UFRWhpKREa7zm5uZCTYmJiejfvz9MTU2RkZGB2bNn449//KNw20B7xhUYGIhPP/0U06ZNQ2RkJP7973/jiy++wJo1a1qtH2g8w3v16lXhfUFBAbKzs2FiYqJ1hpcxxhj7NeD81IjzE+enVj2VeQCfUzylMWPsWXnRpjRu0jSlsVKpJKlUSiqVSmtK41mzZlGfPn2oa9euZGpqSsHBwVRWViZ8Hh0dTebm5iQSiXROaTx8+HBauHChsJ6NjQ2tWbOmWT2nTp0iLy8vksvlJJPJaNCgQbRs2TIiIrp16xZFRETQwIEDSS6Xk0KhIGdnZ4qNjaWGhgatfvbs2UOjR48mmUwmTLmcnJys1aalaZmbXteuXWtWW3V1Nb3zzjtkaWlJYrGYLCwsyN/fn06dOiW0SUxMbLXPtsTHx5OTkxNJpVKysLCgoKAg+vnnn3WuU15eTrNnz6bevXuTRCIhOzs7+tOf/qQ1rXBrNUVFRQltIiMjqWfPnmRgYEAODg4UFxdHGo3mkcd1/vx5GjVqFHXt2pWsrKzo888/b3Pchw8fbrHfpp+nx/U0pjR+WfD+YIw9K5yfOD9xfnr58pOI6CnMFf6cKi8vh1KphFqtFu4zZYyxp+H+/fsoKCiAra0tJBJJZ5fzXKmsrISVlRXi4uIwbdq0Dt/+nTt3MGbMGBgZGWH//v0wNHw+bhlgT0bX7yznBW28Pxhjzwrnp8fH+Yl1hqeRn3j2PcYYY50qKysLycnJyM/Px7lz54TpdZsuae9oJiYmOHToEMaMGYOMjIxOqYExxhhjTBfOT+xFwc+UYowx1uliY2ORm5sLsViMoUOHIj09XXgIZGfo3r07lixZ0mnbZ4wxxhhrC+cn9iLgg1KMMcY61eDBg3H27NnOLoMxxhhj7LnB+Ym9KPj2PcYYY4wxxhhjjDHW4figFGOMMcYYY4wxxhjrcHxQijHGGGOMMcYYY4x1OD4oxRhjjDHGGGOMMcY6HB+UYowxxhhjjDHGGGMdjg9KMcYYY4wxxhhjjLEOxwelGGOMMcYYY4wxxliH44NSjDHGtEydOhUikQgikQhisRj29vaIjo5GfX39E/V75MgRiEQi3Lt37+kU2g4FBQUIDAyEpaUlJBIJevXqhYCAAFy5ckWrXWpqKjw8PKBQKGBoaIhXX30VW7Zs0WpTWFgIkUiE7Ozsdm9/6dKl6NevH2QyGbp164axY8ciMzNTq89p06bB1tYWUqkUffr0QVRUFGpra9vsOykpCS4uLjA0NISFhQXef/993L59W+c6v/zyC+bMmQMbGxtIpVK4ubnh9OnTWm0qKiowa9Ys9OrVC1KpFE5OTtiwYYNWmxkzZqBPnz6QSqUwNTVtcZ8WFRXhzTffhKGhIczMzLBgwYJWf4ZOnDgBfX19/OY3v2lz3Lt27YK3tze6d+/+yN8HY4wx9qxwfuL8xPnp8fBBKcYYY834+PigtLQUP/74I+bNm4elS5di1apVnV2WoD2ho66uDl5eXlCr1di1axdyc3Oxfft2ODs7awW7tWvXIiAgAO7u7sjMzMSFCxcwefJkhIWFYf78+U9UZ9++fbFu3TpcvHgRx48fxyuvvAJvb2/cunULAHDlyhVoNBps3LgRly5dwpo1a7BhwwYsXrxYZ78nTpzAlClTMG3aNFy6dAk7duzAqVOnEBoaqnO96dOnIy0tDX/7299w8eJFeHt7Y+zYsSguLhbazJ07F99++y3+/ve/4/Lly5gzZw5mzZqFlJQUoc3QoUORmJiIy5cv48CBAyAieHt7o6GhAQDQ0NCAN998E7W1tTh58iS2bt2KLVu2YMmSJc1qunfvHqZMmYIxY8a0a59WVlZi1KhRWLFiRbvaM8YYYx2F8xPnJ85Pj4FeYmq1mgCQWq3u7FIYYy+Y6upqysnJoerq6s4u5ZGFhIRQQECA1jIvLy9ydXWlO3fuUHBwMBkbG5NUKiUfHx/Ky8sT2hUWFtJbb71FxsbGZGhoSE5OTrR3714qKCggAFqvkJAQIiIqLy+nwMBAMjQ0JHNzc1q9ejV5eHjQ7NmzhX5tbGwoOjqagoODSaFQCOump6fTqFGjSCKRUK9evSg8PJwqKiqIiCgrK4sAUGFhYatjLSoqIgMDA5o7d26zz+Lj4wkA/fDDD0REwhiysrIefaf+V9PfnUOHDrXaZuXKlWRra6uzn1WrVpGdnV2zeq2srFpdp6qqirp06UKpqalay4cMGUJ/+tOfhPcDBgyg6OhonW0edv78eQJAV69eJSKiffv2kZ6eHl2/fl1ok5CQQEZGRlRTU6O17qRJk+jjjz+mqKgocnFxaXUbD3sa38eDdP3Ocl7QxvuDMfascH7i/NQSzk8vdn7iK6UYY6wDEBE0VVWd8iKiJ65fKpWitrYWU6dOxZkzZ5CSkoKMjAwQEcaNG4e6ujoAwMyZM1FTU4Njx47h4sWLWLFiBeRyOaytrfH1118DAHJzc1FaWoovvvgCQOOZpRMnTiAlJQVpaWlIT0/HuXPnmtUQGxsLFxcXZGVl4ZNPPkF+fj58fHwwfvx4XLhwAdu3b8fx48cxa9YsAICpqSn09PSwc+dO4QzUw3bu3Im6uroWz+jNmDEDcrkcycnJT7z/gMazk5s2bYJSqYSLi0ur7dRqNUxMTHT2NXLkSFy7dg379u0DEeHGjRvYuXMnxo0b1+o69fX1aGhogEQi0VoulUpx/Phx4b2bmxtSUlJQXFwMIsLhw4eRl5cHb2/vFvutrKxEYmIibG1tYW1tDQDIyMiAs7MzevbsKbRTqVQoLy/HpUuXhGWJiYn46aefEBUVpXO8jDHGXl7Pc4bi/PTkOD+9+PlJv7MLYIyxlwFVVyN3yNBO2bbjubMQGRo+1rpEhO+++w4HDhyAr68v9uzZgxMnTsDNzQ1A43351tbW2LNnDyZMmICioiKMHz8ezs7OAAA7Ozuhr6agYGZmBmNjYwCN9+hv3boV27ZtEy4/TkxMhKWlZbNa3njjDcybN094P336dAQFBWHOnDkAAAcHB8THx8PDwwMJCQmwsrJCfHw8PvroI3z66acYNmwYPD09ERQUJNSVl5cHpVIJCwuLZtsTi8Wws7NDXl7eY+27JqmpqZg8eTKqqqpgYWGBtLQ09OjRo8W2V69exdq1axEbG6uzT3d3dyQlJWHSpEm4f/8+6uvr4efnh/Xr17e6jkKhwMiRI/HnP/8Z/fv3R8+ePZGcnIyMjAzY29sL7dauXYsPPvgAvXr1gr6+PvT09PDll1/itdde0+rvL3/5Cz766CNUVlbC0dERaWlpEIvFAIDr169rBSoAwvvr168DAH788UcsXLgQ6enp0NfnOMIYY6xlz2OG4vzE+YnzU/vxlVKMMcaaSU1NhVwuh0Qiga+vLyZNmoSpU6dCX18fI0aMENp1794djo6OuHz5MgAgIiICMTExcHd3R1RUFC5cuKBzOz/99BPq6uowfPhwYZlSqYSjo2OztsOGDdN6f/78eWzZsgVyuVx4qVQqaDQaFBQUAGg883j9+nUkJSVh5MiR2LFjBwYMGIC0tLR274umoKBLUlKSVh3p6enCZ56ensjOzsbJkyfh4+ODiRMn4ubNm836KC4uho+PDyZMmKD1bIMH+w0LCwMA5OTkYPbs2ViyZAnOnj2Lb7/9FoWFhcLn6enpWuslJSUBAP72t7+BiGBlZYWuXbsiPj4e7733HvT0/hcH1q5dix9++AEpKSk4e/Ys4uLiMHPmTBw6dEir3qCgIGRlZeHo0aPo27cvJk6ciPv377drnzY0NCAwMBCffvop+vbt+8j7lDHGGPs14vz0P5yfOD+114txaI0xxn7lRFIpHM+d7bRtPypPT08kJCRALBbD0tIS+vr6Wg9qbM306dOhUqmwd+9eHDx4EMuXL0dcXBzCw8Mfp3QtMplM631FRQVmzJiBiIiIZm179+4t/FuhUMDPzw9+fn6IiYmBSqVCTEwMvLy84ODgALVajZKSkmZnF2tra5Gfnw+VStVmbf7+/lph08rKSqtue3t72Nvbw9XVFQ4ODti8eTMWLVoktCkpKYGnpyfc3NywadMmrb4fnB3FyMgIALB8+XK4u7tjwYIFAIBBgwZBJpNh9OjRiImJwbBhw7TWazrL1qdPHxw9ehSVlZUoLy+HhYUFJk2aJJz5rK6uxuLFi7F79268+eabQt/Z2dmIjY3F2LFjhT6VSiWUSiUcHBzg6uqKbt26Yffu3Xjvvfdgbm6OU6dOaY3jxo0bAABzc3P88ssvOHPmDLKysoTbBTQaDYgI+vr6OHjwoM59yhhj7OXxPGUozk+cnzg/PTo+KMUYYx1AJBI99i10naEpCDyof//+qK+vR2ZmpnD5+e3bt5GbmwsnJyehnbW1NcLCwhAWFoZFixbhyy+/RHh4uHDG7MHnE9jZ2cHAwACnT58WgpBarUZeXl6zy50fNmTIEOTk5DSrUxeRSIR+/frh5MmTAIB3330XkZGRiIuLQ1xcnFbbDRs2oKqqClOmTGmzX4VCAYVC0a4aNBoNampqhPfFxcXw9PQUZmR58KwbgBbHV1VV1eyS7S5dugBovGVAKpXq3C8ymQwymQx3797FgQMHsHLlSgCNM+7U1dU1q6FLly7QaDSt9kdEICJhXCNHjsSyZctw8+ZNmJmZAQDS0tJgZGQEJycnGBgY4OLFi1p9/OUvf8H333+PnTt3wtbWFjKZrN37lDHG2IvrecpQnJ84Pz3cN+entvFBKcYYY+3i4OCAgIAAhIaGYuPGjVAoFFi4cCGsrKwQEBAAAJgzZw58fX3Rt29f3L17F4cPH0b//v0BADY2NhCJREhNTcW4ceMglUqhUCgQEhKCBQsWwMTEBGZmZoiKioKenh5EIpHOeiIjI+Hq6opZs2Zh+vTpkMlkyMnJQVpaGtatW4fs7GxERUUhODgYTk5OEIvFOHr0KL766itERkYCaDwjuHLlSsyfPx8SiQTBwcEwMDDAN998g8WLFyMmJgYDBw7U2m5ubm6zWgYMGAADAwOtZZWVlVi2bBn8/f1hYWGBsrIyrF+/HsXFxZgwYQKAxkD1+uuvw8bGBrGxscJUx0DjGbHW+Pn5ITQ0FAkJCVCpVCgtLcWcOXMwfPjwFp8n0aRp+mFHR0dcvXoVCxYsQL9+/fD73/8eQOOZRA8PDyxYsABSqRQ2NjY4evQo/vrXv2L16tUAGm8Z2L59O7y9vWFqaoqff/4Zn3/+OaRSqfCgUG9vbzg5OSE4OBgrV67E9evX8fHHH2PmzJno2rUrADTbr2ZmZpBIJM2WP+zOnTsoKipCSUkJgP99H+bm5jr3GWOMMdYZOD814vzE+alVTzoF4POMpzRmjD0rL9qUxk2apjRWKpUklUpJpVJpTWk8a9Ys6tOnD3Xt2pVMTU0pODiYysrKhM+jo6PJ3NycRCKRzimNhw8fTgsXLhTWs7GxoTVr1jSr59SpU+Tl5UVyuZxkMhkNGjSIli1bRkREt27dooiICBo4cCDJ5XJSKBTk7OxMsbGx1NDQoNXPnj17aPTo0SSTyYQpl5OTk7XatDQtc9Pr2rVrzWqrrq6md955hywtLUksFpOFhQX5+/vTqVOnhDaJiYmt9tmW+Ph4cnJyIqlUShYWFhQUFEQ///yzznW2b99OdnZ2JBaLydzcnGbOnEn37t3TalNaWkpTp04lS0tLkkgk5OjoSHFxcaTRaIiIqLi4mHx9fcnMzIwMDAyoV69eFBgYSFeuXNHqp7CwkHx9fUkqlVKPHj1o3rx5VFdX12pt7Z3SuLV9FhUV1ea6ujyNKY1fFrw/GGPPCucnzk+cn16+/CQiegpzhT+nysvLoVQqoVarhftMGWPsabh//z4KCgpga2vbbApZpltlZSWsrKwQFxeHadOmdfj279y5gzFjxsDIyAj79++H4XNyywB7Mrp+ZzkvaOP9wRh7Vjg/PT7OT6wzPI38xLPvMcYY61RZWVlITk5Gfn4+zp07h6CgIAAQLmnvaCYmJjh06BDGjBmDjIyMTqmBMcYYY0wXzk/sRcHPlGKMMdbpYmNjkZubC7FYjKFDhyI9PR09evTotHq6d++OJUuWdNr2GWOMMcbawvmJvQj4oBRjjLFONXjwYJw92zlTPTPGGGOMPY84P7EXBd++xxhjjDHGGGOMMcY6HB+UYowxxhhjjDHGGGMdjg9KMcYYY4wxxhhjjLEOxwelGGOMMcYYY4wxxliH44NS7P+3d+9hVtVl38DvGWBggJlB5DCcAyUVRTKMg2aGoAP6IBaZB17UwlMveMhDipWUlz6Wh0zSPDyXYr2i+WpJPmQWnlEJlSAVFJUgVA4eiEFBYWB+7x++7MctMCAya2Dm87mufcms9Vtr/e69Bvbtd6+9FwAAAEDmhFIAAAAAZE4oBQAAAEDmhFIA5DnllFOioKAgCgoKoqioKPbcc8+47LLLYv369Z9rv48//ngUFBTEypUrd8xEt8HChQvjxBNPjI4dO0azZs2ic+fOMWLEiHjllVfyxk2dOjUOPfTQKCkpiebNm8dXvvKVuOOOO/LGLFq0KAoKCmLOnDnbfPyf/OQnsffee0eLFi1it912iyFDhsTMmTPz9jlmzJjo3r17FBcXxx577BETJkyIdevWbXXfkydPjj59+kTz5s2jQ4cO8d3vfjfee++9Grd58sknY/jw4dGxY8coKCiIKVOmbDLmD3/4QxxxxBGx++67b7XelFIMGzZsi/u64447Yv/9949mzZpFu3btYuzYsXnr//KXv8SAAQOipKQk2rZtGyNHjoxFixZlUicA7Ej6J/2T/mn7CKUA2MTQoUNj6dKl8dprr8X5558fP/nJT+Lqq6+u62nlbEvTUVVVFYcffnhUVlbGH/7wh5g/f37cc8890bt377zG7le/+lWMGDEiDj744Jg5c2a88MILcfzxx8eZZ54ZF1xwweea5xe/+MW44YYb4sUXX4ynnnoqvvCFL8QRRxwR77zzTkREvPLKK1FdXR233HJLzJ07N6677rq4+eab45JLLqlxv08//XScdNJJMWbMmJg7d27ce++98eyzz8Zpp51W43arV6+OPn36xI033ljjmK9+9avx85//fKv1/fKXv4yCgoLNrvvFL34RP/zhD+Piiy+OuXPnxsMPPxwVFRW59QsXLowRI0bEYYcdFnPmzIm//OUv8e6778Y3v/nNTOoEgB1N/6R/0j9th9SAVVZWpohIlZWVdT0VoJ758MMP07x589KHH35Y11P5zE4++eQ0YsSIvGWHH354GjBgQFqxYkUaPXp0atWqVSouLk5Dhw5Nr776am7cokWL0n/8x3+kVq1apebNm6devXqlP/3pT2nhwoUpIvIeJ598ckoppVWrVqUTTzwxNW/ePJWXl6df/OIX6dBDD03nnHNObr/dunVLl112WRo9enQqKSnJbTt9+vT01a9+NTVr1ix17tw5nXXWWemDDz5IKaU0e/bsFBFp0aJFW6x18eLFqUmTJum8887bZN3EiRNTRKS//e1vKaWUq2H27Nmf/Un9/za+7jz88MNbHHPVVVel7t2717ifq6++OvXo0WOT+Xbq1Gmb5xIR6f7779/i+q3VO3v27NSpU6e0dOnSTfa1YsWKVFxcXGOd9957b2rcuHHasGFDbtkDDzyQCgoK0rp161JK2dS5UU1/Z/UL+TwfQG3RP+mfNkf/9D/qY//kSimADKSUomrthjp5fPy68vkUFxfHunXr4pRTTonnn38+HnjggZgxY0aklOLII4+MqqqqiIgYO3ZsrF27Np588sl48cUX4+c//3m0bNkyunTpEr///e8jImL+/PmxdOnSuP766yMi4rzzzounn346HnjggZg2bVpMnz49/v73v28yh2uuuSb69OkTs2fPjh//+MexYMGCGDp0aIwcOTJeeOGFuOeee+Kpp56KcePGRURE27Zto7CwMO67777YsGHDZuu67777oqqqarPv6J1xxhnRsmXLuPvuuz/38xfx8buTt956a5SVlUWfPn22OK6ysjJat25d474GDhwYb7zxRjz44IORUorly5fHfffdF0ceeeQOmevWrFmzJk488cS48cYbo7y8fJP106ZNi+rq6njrrbdin332ic6dO8e3v/3teOONN3Jj+vbtG4WFhTFp0qTYsGFDVFZWxv/5P/8nhgwZEk2aNNkp6gSg7u3KPZT+6fPTP9X//qlxXU8AoCFYv646bj3niTo59unXHxpNmjbarm1TSvHII4/EX/7ylxg2bFhMmTIlnn766TjooIMi4uPPq3fp0iWmTJkSxx57bCxevDhGjhwZvXv3joiIHj165Pa1sVFo165dtGrVKiIi3n///fjNb34Td911VwwePDgiIiZNmhQdO3bcZC6HHXZYnH/++bmfTz311Bg1alSce+65ERHRs2fPmDhxYhx66KFx0003RadOnWLixInxgx/8IH7605/GgQceGIMGDYpRo0bl5vXqq69GWVlZdOjQYZPjFRUVRY8ePeLVV1/druduo6lTp8bxxx8fa9asiQ4dOsS0adOiTZs2mx37+uuvx69+9au45ppratznwQcfHJMnT47jjjsuPvroo1i/fn0MHz48s8utv//978dBBx0UI0aM2Oz6f/7zn1FdXR3/+Z//Gddff32UlZXFj370ozj88MPjhRdeiKKioujevXv89a9/jW9/+9txxhlnxIYNG2LgwIHx4IMP7jR1AlD3dsUeSv+kf9oc/dPmuVIKgE1MnTo1WrZsGc2aNYthw4bFcccdF6eccko0btw4+vfvnxu3++67x1577RUvv/xyREScffbZcfnll8fBBx8cEyZMiBdeeKHG4/zzn/+Mqqqq6NevX25ZWVlZ7LXXXpuMPfDAA/N+/sc//hF33HFHtGzZMveoqKiI6urqWLhwYUR8/M7jsmXLYvLkyTFw4MC49957Y999941p06Zt83NRVFS01TGTJ0/Om8f06dNz6wYNGhRz5syJZ555JoYOHRrf/va34+23395kH2+99VYMHTo0jj322LzP/H9yv2eeeWZERMybNy/OOeecuPTSS2PWrFnx0EMPxaJFi3Lrp0+fnrfd5MmTt7nerXnggQfi0UcfjV/+8pdbHFNdXR1VVVUxceLEqKioiAEDBsTdd98dr732Wjz22GMREbFs2bI47bTT4uSTT47nnnsunnjiiSgqKopvfetbuXem67JOAPis9E//Q/+UT/+0Za6UAshA46LCOP36Q+vs2J/VoEGD4qabboqioqLo2LFjNG7cOB544IGtbnfqqadGRUVF/OlPf4q//vWvceWVV8a1114bZ5111vZMPU+LFi3yfv7ggw/ijDPOiLPPPnuTsV27ds39uaSkJIYPHx7Dhw+Pyy+/PCoqKuLyyy+Pww8/PHr27BmVlZWxZMmSTd5dXLduXSxYsCDvyyW35Oijj85rNjt16pQ37z333DP23HPPGDBgQPTs2TNuu+22GD9+fG7MkiVLYtCgQXHQQQfFrbfemrfvT969pbS0NCIirrzyyjj44IPjwgsvjIiI/fffP1q0aBGHHHJIXH755XHggQfmbde+ffut1rCtHn300ViwYEHu3dqNRo4cGYccckg8/vjjuXdOe/XqlVvftm3baNOmTSxevDgiIm688cYoKyuLq666KjfmzjvvjC5dusTMmTNjwIABdVonADuHXamH0j/pn7ZE/7RlQimADBQUFGz3R+jqwsZG4JP22WefWL9+fcycOTN3+fl7770X8+fPz3vx7NKlS5x55plx5plnxvjx4+O//uu/4qyzzsq9Y/bJ7yfo0aNHNGnSJJ577rlcI1RZWRmvvvpqfO1rX6txjl/+8pdj3rx5m8yzJgUFBbH33nvHM888ExER3/rWt+Kiiy6Ka6+9Nq699tq8sTfffHOsWbMmTjrppK3ut6SkJEpKSrZpDtXV1bF27drcz2+99VYMGjQo+vbtG5MmTYrCwvwGeHP1rVmzJho3zn8Jb9To49+vlFIUFxd/pufls7j44ovj1FNPzVvWu3fvuO6662L48OER8fFl4xEff/9F586dIyJixYoV8e6770a3bt1yNXy61o01VFdX58bUVZ0A7Bx2pR5K/6R/2hL905YJpQDYJj179owRI0bEaaedFrfcckuUlJTExRdfHJ06dcp9Nv7cc8+NYcOGxRe/+MX497//HY899ljss88+ERHRrVu3KCgoiKlTp8aRRx4ZxcXFUVJSEieffHJceOGF0bp162jXrl1MmDAhCgsLt3ir3I0uuuiiGDBgQIwbNy5OPfXUaNGiRcybNy+mTZsWN9xwQ8yZMycmTJgQo0ePjl69ekVRUVE88cQTcfvtt8dFF10UER+/I3jVVVfFBRdcEM2aNYvRo0dHkyZN4o9//GNccsklcfnll8d+++2Xd9z58+dvMpd999039+WSG61evTquuOKKOProo6NDhw7x7rvvxo033hhvvfVWHHvssRHxcUP19a9/Pbp16xbXXHNN7lbHEbHZL8DcaPjw4XHaaafFTTfdFBUVFbF06dI499xzo1+/fpv9PomNPvjgg3j99ddzPy9cuDDmzJkTrVu3zjW1K1asiMWLF8eSJUvy6i0vL897fFrXrl2je/fuEfHxrZxHjBgR55xzTtx6661RWloa48ePj7333jsGDRoUERFHHXVUXHfddXHZZZfFCSecEO+//35ccskl0a1btzjggANqvU4AyIL+6WP6J/3TFm3bDQHrJ7c0BmpLfbul8UYbb2lcVlaWiouLU0VFRd4tjceNG5f22GOP1LRp09S2bds0evTo9O677+bWX3bZZam8vDwVFBTUeEvjfv36pYsvvji3Xbdu3dJ11123yXyeffbZdPjhh6eWLVumFi1apP333z9dccUVKaWU3nnnnXT22Wen/fbbL7Vs2TKVlJSk3r17p2uuuSbvNroppTRlypR0yCGHpBYtWuRuuXz33XfnjdncbZk3Pt54441N5vbhhx+mb3zjG6ljx46pqKgodejQIR199NHp2WefzY2ZNGnSFve5NRMnTky9evVKxcXFqUOHDmnUqFHpzTffrHGbxx57bLPH2nguaprThAkTtrjf2MxtgysrK9N3v/vd1KpVq9S6dev0jW98Iy1evDhvzN13350OOOCA1KJFi9S2bdt09NFHp5dffjmTOj9tR9zSuKHwfAC1Rf+kf9I/Nbz+qSClHXCv8F3UqlWroqysLCorK3OfMwXYET766KNYuHBhdO/ePZo1a1bX09mlrF69Ojp16hTXXnttjBkzJvPjr1ixIgYPHhylpaXx5z//OZo3b575HMheTX9n9Qv5PB9AbdE/bT/9E3VhR/RP7r4HQJ2aPXt23H333bFgwYL4+9//HqNGjYqI2OLtcmtb69at4+GHH47BgwfHjBkz6mQOAAA10T9RX/hOKQDq3DXXXBPz58+PoqKi6Nu3b0yfPj3atGlTZ/PZfffd49JLL62z4wMAbI3+ifpAKAVAnTrggANi1qxZdT0NAIBdhv6J+sLH9wAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKgDynnHJKFBQUREFBQRQVFcWee+4Zl112Waxfv/5z7ffxxx+PgoKCWLly5Y6Z6DZYuHBhnHjiidGxY8do1qxZdO7cOUaMGBGvvPJK3ripU6fGoYceGiUlJdG8efP4yle+EnfccUfemEWLFkVBQUHMmTNnm4//k5/8JPbee+9o0aJF7LbbbjFkyJCYOXNm3j7HjBkT3bt3j+Li4thjjz1iwoQJsW7duq3ue/LkydGnT59o3rx5dOjQIb773e/Ge++9V+M2Tz75ZAwfPjw6duwYBQUFMWXKlM8854iIK664Ig466KBo3rx5tGrVarPHWrx4cRx11FHRvHnzaNeuXVx44YV5v0Of/D375GPffffNjbnyyivjK1/5SpSUlES7du3imGOOifnz52/1udmW+QHAjqR/0j/pn7aPUAqATQwdOjSWLl0ar732Wpx//vnxk5/8JK6++uq6nlbOtjQdVVVVcfjhh0dlZWX84Q9/iPnz58c999wTvXv3zmvsfvWrX8WIESPi4IMPjpkzZ8YLL7wQxx9/fJx55plxwQUXfK55fvGLX4wbbrghXnzxxXjqqafiC1/4QhxxxBHxzjvvRETEK6+8EtXV1XHLLbfE3Llz47rrroubb745Lrnkkhr3+/TTT8dJJ50UY8aMiblz58a9994bzz77bJx22mk1brd69ero06dP3Hjjjds954iPn/9jjz02vve97212Hxs2bIijjjoq1q1bF88880z85je/iTvuuCMuvfTS3Jjrr78+li5dmnu88cYb0bp16zj22GNzY5544okYO3Zs/O1vf4tp06ZFVVVVHHHEEbF69eoa69za/ACgNuif9E/6p+2QGrDKysoUEamysrKupwLUMx9++GGaN29e+vDDD+t6Kp/ZySefnEaMGJG37PDDD08DBgxIK1asSKNHj06tWrVKxcXFaejQoenVV1/NjVu0aFH6j//4j9SqVavUvHnz1KtXr/SnP/0pLVy4MEVE3uPkk09OKaW0atWqdOKJJ6bmzZun8vLy9Itf/CIdeuih6Zxzzsntt1u3bumyyy5Lo0ePTiUlJbltp0+fnr761a+mZs2apc6dO6ezzjorffDBBymllGbPnp0iIi1atGiLtS5evDg1adIknXfeeZusmzhxYoqI9Le//S2llHI1zJ49+7M/qf/fxtedhx9+eItjrrrqqtS9e/ca93P11VenHj16bDLfTp06bfNcIiLdf//9Wx1X05wnTZqUysrKNln+4IMPpsLCwrRs2bLcsptuuimVlpamtWvXbvY4999/fyooKKjxfL399tspItITTzyx1XnXNL/NqenvrH4hn+cDqC36J/3T5uif6nf/5EopgAyklKLqo4/q5JFS+tzzLy4ujnXr1sUpp5wSzz//fDzwwAMxY8aMSCnFkUceGVVVVRERMXbs2Fi7dm08+eST8eKLL8bPf/7zaNmyZXTp0iV+//vfR0TE/PnzY+nSpXH99ddHRMR5550XTz/9dDzwwAMxbdq0mD59evz973/fZA7XXHNN9OnTJ2bPnh0//vGPY8GCBTF06NAYOXJkvPDCC3HPPffEU089FePGjYuIiLZt20ZhYWHcd999sWHDhs3Wdd9990VVVdVm39E744wzomXLlnH33Xd/7ucv4uN3n2699dYoKyuLPn36bHFcZWVltG7dusZ9DRw4MN5444148MEHI6UUy5cvj/vuuy+OPPLIHTLXzzrnT5sxY0b07t072rdvn1tWUVERq1atirlz5252m9tuuy2GDBkS3bp12+J+KysrIyK2+vwAUH/syj2U/unz0z/V//6pcV1PAKAhWL92bUw8+Vt1cuyzf3NfNGnWbLu2TSnFI488En/5y19i2LBhMWXKlHj66afjoIMOioiPP5ffpUuXmDJlShx77LGxePHiGDlyZPTu3TsiInr06JHb18YXwnbt2uU+p/7+++/Hb37zm7jrrrti8ODBERExadKk6Nix4yZzOeyww+L888/P/XzqqafGqFGj4txzz42IiJ49e8bEiRPj0EMPjZtuuik6deoUEydOjB/84Afx05/+NA488MAYNGhQjBo1KjevV199NcrKyqJDhw6bHK+oqCh69OgRr7766nY9dxtNnTo1jj/++FizZk106NAhpk2bFm3atNns2Ndffz1+9atfxTXXXFPjPg8++OCYPHlyHHfccfHRRx/F+vXrY/jw4TVeVl5bc96cZcuW5TVUEZH7edmyZZuMX7JkSfz5z3+Ou+66a4v7rK6ujnPPPTcOPvjg2G+//bZ5LgDs2nbFHkr/pH/SP207V0oBsImpU6dGy5Yto1mzZjFs2LA47rjj4pRTTonGjRtH//79c+N233332GuvveLll1+OiIizzz47Lr/88jj44INjwoQJ8cILL9R4nH/+859RVVUV/fr1yy0rKyuLvfbaa5OxBx54YN7P//jHP+KOO+6Ili1b5h4VFRVRXV0dCxcujIiP33lctmxZTJ48OQYOHBj33ntv7LvvvjFt2rRtfi6Kioq2Omby5Ml585g+fXpu3aBBg2LOnDnxzDPPxNChQ+Pb3/52vP3225vs46233oqhQ4fGsccem/fdBp/c75lnnhkREfPmzYtzzjknLr300pg1a1Y89NBDsWjRotz66dOn5203efLkba73s8x5R/nNb34TrVq1imOOOWaLY8aOHRsvvfRS/O53v8stO/PMM/PqBIC6pH/6H/on/dO2cqUUQAYaN20aZ//mvjo79mc1aNCguOmmm6KoqCg6duwYjRs3jgceeGCr25166qlRUVERf/rTn+Kvf/1rXHnllXHttdfGWWedtT1Tz9OiRYu8nz/44IM444wz4uyzz95kbNeuXXN/LikpieHDh8fw4cPj8ssvj4qKirj88svj8MMPj549e0ZlZWUsWbJkk3cX161bFwsWLIiKioqtzu3oo4/OazY7deqUN+8999wz9txzzxgwYED07Nkzbrvtthg/fnxuzJIlS2LQoEFx0EEHxa233pq370/eraa0tDQiPr6rysEHHxwXXnhhRETsv//+0aJFizjkkEPi8ssvjwMPPDBvu0+/67Y12zLnmpSXl8ezzz6bt2z58uW5dZ+UUorbb789Ro8evcUGdty4cTF16tR48skno3Pnzrnll1122ef+MlUAdm67Ug+lf9I/6Z8+O6EUQAYKCgq2+yN0dWHji+on7bPPPrF+/fqYOXNm7vLz9957L+bPnx+9evXKjevSpUuceeaZceaZZ8b48ePjv/7rv+Kss87KvWB+8vsJevToEU2aNInnnnsu1whVVlbGq6++Gl/72tdqnOOXv/zlmDdv3ibzrElBQUHsvffe8cwzz0RExLe+9a246KKL4tprr41rr702b+zNN98ca9asiZNOOmmr+y0pKYmSkpJtmkN1dXWsXbs29/Nbb70VgwYNir59+8akSZOisDD/IubN1bdmzZpo3Dj/JbxRo0YR8XGTUlxc/Jmel886560ZOHBgXHHFFfH2229Hu3btIiJi2rRpUVpamve7EvHxHWJef/31GDNmzCb7SSnFWWedFffff388/vjj0b1797z17dq1y+0fgPppV+qh9E/6p5rmvDUNtX8SSgGwTXr27BkjRoyI0047LW655ZYoKSmJiy++ODp16hQjRoyIiIhzzz03hg0bFl/84hfj3//+dzz22GOxzz77REREt27doqCgIKZOnRpHHnlkFBcXR0lJSZx88slx4YUXRuvWraNdu3YxYcKEKCwsjIKCghrnc9FFF8WAAQNi3Lhxceqpp0aLFi1i3rx5MW3atLjhhhtizpw5MWHChBg9enT06tUrioqK4oknnojbb789Lrroooj4+B3Bq666Ki644IJo1qxZjB49Opo0aRJ//OMf45JLLonLL798k8/fz58/f5O57LvvvtGkSZO8ZatXr44rrrgijj766OjQoUO8++67ceONN8Zbb72Vu23vW2+9FV//+tejW7ducc011+TdNvjT74h90vDhw+O0006Lm266KSoqKmLp0qVx7rnnRr9+/Tb7fRIbffDBB/H666/nfl64cGHMmTMnWrduHV27dt2mOUdELF68OFasWBGLFy+ODRs25N5V3HPPPaNly5ZxxBFHRK9evWL06NFx1VVXxbJly+JHP/pRjB07Npp+6l3n2267Lfr377/Z7zkYO3Zs3HXXXfHHP/4xSkpKct+nUFZWFsXFxVusc2vzA4Cs6J8+pn/SP23RNt3nr55yS2OgttS3WxpvtPGWxmVlZam4uDhVVFTk3dJ43LhxaY899khNmzZNbdu2TaNHj07vvvtubv1ll12WysvLU0FBQY23NO7Xr1+6+OKLc9t169YtXXfddZvM59lnn02HH354atmyZWrRokXaf//90xVXXJFSSumdd95JZ599dtpvv/1Sy5YtU0lJSerdu3e65ppr0oYNG/L2M2XKlHTIIYekFi1a5G65fPfdd+eN2dxtmTc+3njjjU3m9uGHH6ZvfOMbqWPHjqmoqCh16NAhHX300enZZ5/NjZk0adIW97k1EydOTL169UrFxcWpQ4cOadSoUenNN9+scZvHHntss8faeC62Zc4pffw7srn9PPbYY7kxixYtSsOGDUvFxcWpTZs26fzzz09VVVV5+1m5cmUqLi5Ot95662bnu6XnZtKkSTXWuS3z+7QdcUvjhsLzAdQW/ZP+Sf/U8Pqngv8/6QZp1apVUVZWFpWVlbnPmQLsCB999FEsXLgwunfvHs12kUvOdxarV6+OTp06xbXXXrvZS5Jr24oVK2Lw4MFRWloaf/7zn6N58+aZz4Hs1fR3Vr+Qz/MB1Bb90/bTP1EXdkT/5O57ANSp2bNnx9133x0LFiyIv//97zFq1KiIiNwl7Vlr3bp1PPzwwzF48OCYMWNGncwBAKAm+ifqC98pBUCdu+aaa2L+/PlRVFQUffv2jenTp0ebNm3qbD677757XHrppXV2fACArdE/UR8IpQCoUwcccEDMmjWrrqcBALDL0D9RX/j4HgAAAACZE0oBAAAAkDmhFEAtasA3OIVdSnV1dV1PAYD/z7/JsGvYEX9XfacUQC1o0qRJFBQUxDvvvBNt27aNgoKCup4SsBkppVi3bl288847UVhYGEVFRXU9JYAGq6ioKAoLC2PJkiXRtm3bKCoq0kPBTmhH9k9CKYBa0KhRo+jcuXO8+eabsWjRorqeDrAVzZs3j65du0ZhoYvIAepKYWFhdO/ePZYuXRpLliyp6+kAW7Ej+iehFEAtadmyZfTs2TOqqqrqeipADRo1ahSNGzf2bjzATqCoqCi6du0a69evjw0bNtT1dIAt2FH9k1AKoBY1atQoGjVqVNfTAADYZRQUFESTJk2iSZMmdT0VoJa5Rh0AAACAzAmlAAAAAMicUAoAAACAzAmlAAAAAMicUAoAAACAzAmlAAAAAMicUAoAAACAzAmlAAAAAMicUAoAAACAzAmlAAAAAMicUAoAAACAzAmlAAAAAMicUAoAAACAzAmlAAAAAMicUAoAAACAzAmlAAAAAMicUAoAAACAzAmlAAAAAMicUAoAAACAzAmlAAAAAMicUAoAAACAzAmlAAAAAMicUAoAAACAzAmlAAAAAMhcZqHUjTfeGF/4wheiWbNm0b9//3j22WdrHH/vvffG3nvvHc2aNYvevXvHgw8+mLc+pRSXXnppdOjQIYqLi2PIkCHx2muv1WYJAACZ00MBAPVVJqHUPffcE+edd15MmDAh/v73v0efPn2ioqIi3n777c2Of+aZZ+KEE06IMWPGxOzZs+OYY46JY445Jl566aXcmKuuuiomTpwYN998c8ycOTNatGgRFRUV8dFHH2VREgBArdNDAQD1WUFKKdX2Qfr37x9f+cpX4oYbboiIiOrq6ujSpUucddZZcfHFF28y/rjjjovVq1fH1KlTc8sGDBgQX/rSl+Lmm2+OlFJ07Ngxzj///LjgggsiIqKysjLat28fd9xxRxx//PHbNK9Vq1ZFWVlZVFZWRmlp6Q6oFACob+qyX9gZeyj9EwCwNdvaLzSu7YmsW7cuZs2aFePHj88tKywsjCFDhsSMGTM2u82MGTPivPPOy1tWUVERU6ZMiYiIhQsXxrJly2LIkCG59WVlZdG/f/+YMWPGFhuqtWvXxtq1a3M/r1q1anvL2qpf/a/vxob1VbW2f+qHwsLS+Fe3t+KhHms3WZeqW8S6906q9Tk0bpmidN91m84tZfAPxE6qOhrF+k9Uf9K6/xO7pZV1NyEgykubRWlxky2uLy3dP/b64k+ym1AGdpYeKsv+6farJsSqv/+z1vZP/dG0SaeYdMjMWF3QbJN1Ve8fGtUf9ar1ObTcqyqKWlVvsrxJiiio9aPvnNZFUWysfq/q+TG06q91OyFo4IoaFcYX2rSocczee/9nlLTcO6MZbarW/5/z3XffjQ0bNkT79u3zlrdv3z5eeeWVzW6zbNmyzY5ftmxZbv3GZVsaszlXXnll/PSnP/3MNWyPtCFiQ/p3Jsdi11UdTaNqQ1EUFi3YdF1Vaaxf1ajW57AumsTKwm61fpxd2W7NlkZ5LK3raUDDVhWxqob3eho3KsluLhnZWXqoLPuntatX65/YJin1ig+bvrvZ7yJJ6z7MpId6e0O7qC7cNBTjY50LF0V5YyEz1LWtvZe0YcPqbCayBQ3qQojx48fnvXu4atWq6NKlS60cq7pDURSublcr+6a+qI6CwuposVvT2PujQXlrUkFEdXFxlO5X+y/kRY03RLu1z22yvLiwKFo1alnrx98ZVTUpiapmbXI/t2p8fkRBrX/SGahB19bNY7cWRVtc36TJbhnOpmHJsn/a76Cvx/PLVtTKvqkvUhRExIctXo0D1gyIDwuL89ZuKGoUzTo1i6LOtd9DtWn2UjRbu36T5W0bt4rGBQ3zJudrWnSJKPz4fzFbF/SIaHx1Hc8IGraixoWxT4eaP2rfovkeGc1m82o9lGrTpk00atQoli9fnrd8+fLlUV5evtltysvLaxy/8b/Lly+PDh065I350pe+tMW5NG3aNJo2bbo9ZXxm5/7i5kyOAwDUTztLD5Vl/3RIxX/EIRX/kcmxAIC6V+sRflFRUfTt2zceeeSR3LLq6up45JFHYuDAgZvdZuDAgXnjIyKmTZuWG9+9e/coLy/PG7Nq1aqYOXPmFvcJALAr0UMBAPVdJh/fO++88+Lkk0+OAw88MPr16xe//OUvY/Xq1fGd73wnIiJOOumk6NSpU1x55ZUREXHOOefEoYceGtdee20cddRR8bvf/S6ef/75uPXWWyMioqCgIM4999y4/PLLo2fPntG9e/f48Y9/HB07doxjjjkmi5IAAGqdHgoAqM8yCaWOO+64eOedd+LSSy+NZcuWxZe+9KV46KGHcl+yuXjx4igs/J+Ltg466KC466674kc/+lFccskl0bNnz5gyZUrst99+uTE/+MEPYvXq1XH66afHypUr46tf/Wo89NBD0ayZLxsEAOoHPRQAUJ8VpJQa7Lf3rlq1KsrKyqKysjJKS2v+8i8AoGHSL+TzfAAAW7Ot/ULDvC0EAAAAAHVKKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5mo9lFqxYkWMGjUqSktLo1WrVjFmzJj44IMPatzmo48+irFjx8buu+8eLVu2jJEjR8by5ctz6//xj3/ECSecEF26dIni4uLYZ5994vrrr6/tUgAAMqOHAgDqu1oPpUaNGhVz586NadOmxdSpU+PJJ5+M008/vcZtvv/978d///d/x7333htPPPFELFmyJL75zW/m1s+aNSvatWsXd955Z8ydOzd++MMfxvjx4+OGG26o7XIAADKhhwIA6ruClFKqrZ2//PLL0atXr3juuefiwAMPjIiIhx56KI488sh48803o2PHjptsU1lZGW3bto277rorvvWtb0VExCuvvBL77LNPzJgxIwYMGLDZY40dOzZefvnlePTRR7d5fqtWrYqysrKorKyM0tLS7agQAKjv6qJf2Jl7KP0TALA129ov1OqVUjNmzIhWrVrlmqmIiCFDhkRhYWHMnDlzs9vMmjUrqqqqYsiQIblle++9d3Tt2jVmzJixxWNVVlZG69ata5zP2rVrY9WqVXkPAICdzc7UQ+mfAIDaUquh1LJly6Jdu3Z5yxo3bhytW7eOZcuWbXGboqKiaNWqVd7y9u3bb3GbZ555Ju65556tXtJ+5ZVXRllZWe7RpUuXbS8GACAjO1MPpX8CAGrLdoVSF198cRQUFNT4eOWVV3b0XDfrpZdeihEjRsSECRPiiCOOqHHs+PHjo7KyMvd44403MpkjAEDErtlD6Z8AgNrSeHs2Ov/88+OUU06pcUyPHj2ivLw83n777bzl69evjxUrVkR5eflmtysvL49169bFypUr897pW758+SbbzJs3LwYPHhynn356/OhHP9rqvJs2bRpNmzbd6jgAgNqwK/ZQ+icAoLZsVyjVtm3baNu27VbHDRw4MFauXBmzZs2Kvn37RkTEo48+GtXV1dG/f//NbtO3b99o0qRJPPLIIzFy5MiIiJg/f34sXrw4Bg4cmBs3d+7cOOyww+Lkk0+OK664YnvKAADIlB4KAOB/1Ord9yIihg0bFsuXL4+bb745qqqq4jvf+U4ceOCBcdddd0VExFtvvRWDBw+O3/72t9GvX7+IiPje974XDz74YNxxxx1RWloaZ511VkR8/L0HER9fbn7YYYdFRUVFXH311bljNWrUaJsavY3cPQYA2Jq66hd21h5K/wQAbM229gvbdaXUZzF58uQYN25cDB48OAoLC2PkyJExceLE3PqqqqqYP39+rFmzJrfsuuuuy41du3ZtVFRUxK9//evc+vvuuy/eeeeduPPOO+POO+/MLe/WrVssWrSotksCAKh1eigAoL6r9Suldmbe6QMAtka/kM/zAQBszbb2C9t19z0AAAAA+DyEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkrtZDqRUrVsSoUaOitLQ0WrVqFWPGjIkPPvigxm0++uijGDt2bOy+++7RsmXLGDlyZCxfvnyzY997773o3LlzFBQUxMqVK2uhAgCA7OmhAID6rtZDqVGjRsXcuXNj2rRpMXXq1HjyySfj9NNPr3Gb73//+/Hf//3fce+998YTTzwRS5YsiW9+85ubHTtmzJjYf//9a2PqAAB1Rg8FANR3BSmlVFs7f/nll6NXr17x3HPPxYEHHhgREQ899FAceeSR8eabb0bHjh032aaysjLatm0bd911V3zrW9+KiIhXXnkl9tlnn5gxY0YMGDAgN/amm26Ke+65Jy699NIYPHhw/Pvf/45WrVpt8/xWrVoVZWVlUVlZGaWlpZ+vWACgXqqLfmFn7qH0TwDA1mxrv1CrV0rNmDEjWrVqlWumIiKGDBkShYWFMXPmzM1uM2vWrKiqqoohQ4bklu29997RtWvXmDFjRm7ZvHnz4rLLLovf/va3UVi4bWWsXbs2Vq1alfcAANjZ7Ew9lP4JAKgttRpKLVu2LNq1a5e3rHHjxtG6detYtmzZFrcpKira5N269u3b57ZZu3ZtnHDCCXH11VdH165dt3k+V155ZZSVleUeXbp0+WwFAQBkYGfqofRPAEBt2a5Q6uKLL46CgoIaH6+88sqOnmvO+PHjY5999on/9b/+12ferrKyMvd44403ammGAACb2hV7KP0TAFBbGm/PRueff36ccsopNY7p0aNHlJeXx9tvv523fP369bFixYooLy/f7Hbl5eWxbt26WLlyZd47fcuXL89t8+ijj8aLL74Y9913X0REbPxarDZt2sQPf/jD+OlPf7rZfTdt2jSaNm26LSUCAOxwu2IPpX8CAGrLdoVSbdu2jbZt22513MCBA2PlypUxa9as6Nu3b0R83AxVV1dH//79N7tN3759o0mTJvHII4/EyJEjIyJi/vz5sXjx4hg4cGBERPz+97+PDz/8MLfNc889F9/97ndj+vTpsccee2xPSQAAtU4PBQDwP7YrlNpW++yzTwwdOjROO+20uPnmm6OqqirGjRsXxx9/fO6uMW+99VYMHjw4fvvb30a/fv2irKwsxowZE+edd160bt06SktL46yzzoqBAwfm7hrz6abp3XffzR3vs9x9DwBgZ6SHAgAagloNpSIiJk+eHOPGjYvBgwdHYWFhjBw5MiZOnJhbX1VVFfPnz481a9bkll133XW5sWvXro2Kior49a9/XdtTBQDYaeihAID6riBt/DKBBmjVqlVRVlYWlZWVUVpaWtfTAQB2QvqFfJ4PAGBrtrVf2K677wEAAADA5yGUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMte4ridQl1JKERGxatWqOp4JALCz2tgnbOwbGjr9EwCwNdvaPzXoUOr999+PiIguXbrU8UwAgJ3d+++/H2VlZXU9jTqnfwIAttXW+qeC1IDf9quuro4lS5ZESUlJFBQU7NB9r1q1Krp06RJvvPFGlJaW7tB97woacv0NufaIhl1/Q649omHX35Brj6j/9aeU4v3334+OHTtGYaFvPqjN/imi/v8+1aQh1x7RsOtvyLVHNOz6G3LtEQ27/vpe+7b2Tw36SqnCwsLo3LlzrR6jtLS0Xv6CbauGXH9Drj2iYdffkGuPaNj1N+TaI+p3/a6Q+h9Z9E8R9fv3aWsacu0RDbv+hlx7RMOuvyHXHtGw66/PtW9L/+TtPgAAAAAyJ5QCAAAAIHNCqVrStGnTmDBhQjRt2rSup1InGnL9Dbn2iIZdf0OuPaJh19+Qa49QPztWQ/59asi1RzTs+hty7RENu/6GXHtEw66/Idf+SQ36i84BAAAAqBuulAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlKolN954Y3zhC1+IZs2aRf/+/ePZZ5+t6yl9bldeeWV85StfiZKSkmjXrl0cc8wxMX/+/LwxX//616OgoCDvceaZZ+aNWbx4cRx11FHRvHnzaNeuXVx44YWxfv36LEv5zH7yk59sUtfee++dW//RRx/F2LFjY/fdd4+WLVvGyJEjY/ny5Xn72BXr3ugLX/jCJvUXFBTE2LFjI6J+nfcnn3wyhg8fHh07doyCgoKYMmVK3vqUUlx66aXRoUOHKC4ujiFDhsRrr72WN2bFihUxatSoKC0tjVatWsWYMWPigw8+yBvzwgsvxCGHHBLNmjWLLl26xFVXXVXbpW2TmuqvqqqKiy66KHr37h0tWrSIjh07xkknnRRLlizJ28fmfl9+9rOf5Y3ZGevf2rk/5ZRTNqlr6NCheWPq67mPiM3+G1BQUBBXX311bsyueu7Zeeifdv3X0U9ryD1UQ+qfIhp2D9WQ+6eIht1D6Z92gMQO97vf/S4VFRWl22+/Pc2dOzeddtppqVWrVmn58uV1PbXPpaKiIk2aNCm99NJLac6cOenII49MXbt2TR988EFuzKGHHppOO+20tHTp0tyjsrIyt379+vVpv/32S0OGDEmzZ89ODz74YGrTpk0aP358XZS0zSZMmJD23XffvLreeeed3PozzzwzdenSJT3yyCPp+eefTwMGDEgHHXRQbv2uWvdGb7/9dl7t06ZNSxGRHnvssZRS/TrvDz74YPrhD3+Y/vCHP6SISPfff3/e+p/97GeprKwsTZkyJf3jH/9IRx99dOrevXv68MMPc2OGDh2a+vTpk/72t7+l6dOnpz333DOdcMIJufWVlZWpffv2adSoUemll15Kd999dyouLk633HJLVmVuUU31r1y5Mg0ZMiTdc8896ZVXXkkzZsxI/fr1S3379s3bR7du3dJll12W9/vwyX8ndtb6t3buTz755DR06NC8ulasWJE3pr6e+5RSXt1Lly5Nt99+eyooKEgLFizIjdlVzz07B/1T/Xgd/bSG3EM1pP4ppYbdQzXk/imlht1D6Z8+P6FULejXr18aO3Zs7ucNGzakjh07piuvvLIOZ7Xjvf322yki0hNPPJFbduihh6Zzzjlni9s8+OCDqbCwMC1btiy37KabbkqlpaVp7dq1tTndz2XChAmpT58+m123cuXK1KRJk3Tvvffmlr388sspItKMGTNSSrtu3VtyzjnnpD322CNVV1enlOrvef/0C0t1dXUqLy9PV199dW7ZypUrU9OmTdPdd9+dUkpp3rx5KSLSc889lxvz5z//ORUUFKS33norpZTSr3/967Tbbrvl1X7RRRelvfbaq5Yr+mw298L6ac8++2yKiPSvf/0rt6xbt27puuuu2+I2u0L9W2qoRowYscVtGtq5HzFiRDrssMPyltWHc0/d0T+ds8VtdtXX0ZT0UJ/UUPqnlBp2D9WQ+6eUGnYPpX/aPj6+t4OtW7cuZs2aFUOGDMktKywsjCFDhsSMGTPqcGY7XmVlZUREtG7dOm/55MmTo02bNrHffvvF+PHjY82aNbl1M2bMiN69e0f79u1zyyoqKmLVqlUxd+7cbCa+nV577bXo2LFj9OjRI0aNGhWLFy+OiIhZs2ZFVVVV3jnfe++9o2vXrrlzvivX/Wnr1q2LO++8M7773e9GQUFBbnl9Pe+ftHDhwli2bFneuS4rK4v+/fvnnetWrVrFgQcemBszZMiQKCwsjJkzZ+bGfO1rX4uioqLcmIqKipg/f378+9//zqiaHaOysjIKCgqiVatWect/9rOfxe677x4HHHBAXH311XkfNdiV63/88cejXbt2sddee8X3vve9eO+993LrGtK5X758efzpT3+KMWPGbLKuvp57apf+qX6/juqhGnb/FKGH+rSG1j9F6KEi9E9b0riuJ1DfvPvuu7Fhw4a8F4+IiPbt28crr7xSR7Pa8aqrq+Pcc8+Ngw8+OPbbb7/c8hNPPDG6desWHTt2jBdeeCEuuuiimD9/fvzhD3+IiIhly5Zt9rnZuG5n1b9//7jjjjtir732iqVLl8ZPf/rTOOSQQ+Kll16KZcuWRVFR0SYvKu3bt8/VtKvWvTlTpkyJlStXximnnJJbVl/P+6dtnOvmavnkuW7Xrl3e+saNG0fr1q3zxnTv3n2TfWxct9tuu9XK/He0jz76KC666KI44YQTorS0NLf87LPPji9/+cvRunXreOaZZ2L8+PGxdOnS+MUvfhERu279Q4cOjW9+85vRvXv3WLBgQVxyySUxbNiwmDFjRjRq1KhBnfvf/OY3UVJSEt/85jfzltfXc0/t0z/V39dRPdTHGnL/FKGH+qSG1j9F6KE20j9tnlCK7TJ27Nh46aWX4qmnnspbfvrpp+f+3Lt37+jQoUMMHjw4FixYEHvssUfW09xhhg0blvvz/vvvH/37949u3brF//2//zeKi4vrcGbZu+2222LYsGHRsWPH3LL6et7Zsqqqqvj2t78dKaW46aab8tadd955uT/vv//+UVRUFGeccUZceeWV0bRp06ynusMcf/zxuT/37t079t9//9hjjz3i8ccfj8GDB9fhzLJ3++23x6hRo6JZs2Z5y+vruYcdpaH1TxF6qI30T0Q0zP4pQg+1kf5p83x8bwdr06ZNNGrUaJO7hixfvjzKy8vraFY71rhx42Lq1Knx2GOPRefOnWsc279//4iIeP311yMiory8fLPPzcZ1u4pWrVrFF7/4xXj99dejvLw81q1bFytXrswb88lzXl/q/te//hUPP/xwnHrqqTWOq6/nfeNca/r7XV5eHm+//Xbe+vXr18eKFSvqze/DxobqX//6V0ybNi3vXb7N6d+/f6xfvz4WLVoUEbt+/Rv16NEj2rRpk/d7Xt/PfUTE9OnTY/78+Vv9dyCi/p57djz9U776+joa0TB7qIbeP0XooSL0T5/UEHso/dOWCaV2sKKioujbt2888sgjuWXV1dXxyCOPxMCBA+twZp9fSinGjRsX999/fzz66KObXEK4OXPmzImIiA4dOkRExMCBA+PFF1/M+0dn4z/KvXr1qpV514YPPvggFixYEB06dIi+fftGkyZN8s75/PnzY/HixblzXl/qnjRpUrRr1y6OOuqoGsfV1/PevXv3KC8vzzvXq1atipkzZ+ad65UrV8asWbNyYx599NGorq7ONZsDBw6MJ598MqqqqnJjpk2bFnvttddOf/ntxobqtddei4cffjh23333rW4zZ86cKCwszF2WvSvX/0lvvvlmvPfee3m/5/X53G902223Rd++faNPnz5bHVtfzz07nv4pX319HY1omD1UQ++fIvRQ+qd8DbGH0j/VoG6/Z71++t3vfpeaNm2a7rjjjjRv3rx0+umnp1atWuXdOWNX9L3vfS+VlZWlxx9/PO92lWvWrEkppfT666+nyy67LD3//PNp4cKF6Y9//GPq0aNH+trXvpbbx8Zb2x5xxBFpzpw56aGHHkpt27bdaW9tu9H555+fHn/88bRw4cL09NNPpyFDhqQ2bdqkt99+O6X08e2Mu3btmh599NH0/PPPp4EDB6aBAwfmtt9V6/6kDRs2pK5du6aLLroob3l9O+/vv/9+mj17dpo9e3aKiPSLX/wizZ49O3d3lJ/97GepVatW6Y9//GN64YUX0ogRIzZ7O+MDDjggzZw5Mz311FOpZ8+eebe0XblyZWrfvn0aPXp0eumll9Lvfve71Lx5853itq411b9u3bp09NFHp86dO6c5c+bk/Tuw8W4gzzzzTLruuuvSnDlz0oIFC9Kdd96Z2rZtm0466aTcMXbW+muq/f33308XXHBBmjFjRlq4cGF6+OGH05e//OXUs2fP9NFHH+X2UV/P/UaVlZWpefPm6aabbtpk+1353LNz0D/Vj9fRT2voPVRD6Z9Satg9VEPun1Jq2D2U/unzE0rVkl/96lepa9euqaioKPXr1y/97W9/q+spfW4RsdnHpEmTUkopLV68OH3ta19LrVu3Tk2bNk177rlnuvDCC1NlZWXefhYtWpSGDRuWiouLU5s2bdL555+fqqqq6qCibXfcccelDh06pKKiotSpU6d03HHHpddffz23/sMPP0z/+3//77Tbbrul5s2bp2984xtp6dKlefvYFev+pL/85S8pItL8+fPzlte38/7YY49t9vf85JNPTil9fEvjH//4x6l9+/apadOmafDgwZs8J++991464YQTUsuWLVNpaWn6zne+k95///28Mf/4xz/SV7/61dS0adPUqVOn9LOf/SyrEmtUU/0LFy7c4r8Djz32WEoppVmzZqX+/funsrKy1KxZs7TPPvuk//zP/8xrOlLaOeuvqfY1a9akI444IrVt2zY1adIkdevWLZ122mmb/M9yfT33G91yyy2puLg4rVy5cpPtd+Vzz85D/7Trv45+WkPvoRpK/5RSw+6hGnL/lFLD7qH0T59fQUopbe9VVgAAAACwPXynFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkLn/B5tL44Gic8wAAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "list_metrics = evaluation.get_monitoring_metrics()\n",
+ "row=0\n",
+ "col=0\n",
+ "rows = (len(list_metrics)+1)//2\n",
+ "\n",
+ "fig, axes = plt.subplots(nrows=rows, ncols=2, sharex=True, squeeze=False, figsize=(12,8*rows))\n",
+ "for metric in list_metrics:\n",
+ " df = evaluation.get_monitoring_metric(metric, component='benchmarker')\n",
+ " #if df.sum().sum() > 0:\n",
+ " ax = df.plot(ax=axes[row,col], kind='line', title=metric, layout=(rows,2))\n",
+ " col = col + 1\n",
+ " if col > 1:\n",
+ " row = row + 1\n",
+ " col = 0\n",
+ "plt.legend(loc='best')\n",
+ "plt.tight_layout()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Plot some Aggregations\n",
+ "\n",
+ "#### Compute Time"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 85,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAANsAAADsCAYAAAD9/NNVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwJklEQVR4nO2deVxU1f//X8MwCwMOwyIM8EEWFRTFXRB3kwTzY/rR0oiMrLTcyq/Lx/ylQovhUmqZS/VJyc+n3D6pfcpdlChFRMQNEJVwqRxIcBiGZYCZ9++PgSsjoCzDDAzn+fA+5p5z3vfc973eF+eec8/CIyICg8FocazM7QCD0V5gYmMwTAQTG4NhIpjYGAwTwcTGYJgIJjYGw0QwsTEYJoKJjcEwEUxsDIaJYGJjmAVvb29s2LDB3G6YFCY2I6JQKDBv3jz4+vpCJBLB09MT48ePR3x8vLldaxBxcXGQyWTNyiMhIQE8Hu+xW0JCAlJSUjBz5kzjON5GsDa3A5bCrVu3MGTIEMhkMqxduxaBgYGoqKjA0aNHMWfOHFy7ds3cLpqEwYMH4969e1z47bffhkqlwvbt27k4R0dHCIVCc7hnXohhFMaOHUseHh6kVqtrpT148IDbv337Nj377LNka2tLHTp0oOeff54UCgWXHh0dTb1796avv/6aPD09ydbWlmbNmkWVlZW0evVqcnV1pY4dO9KHH35ocA4AtHnzZgoPDyexWEw+Pj60d+9eLv3UqVMEwMCXtLQ0AkA5OTlces0tOjqaiIjKyspo4cKF5O7uThKJhIKCgujUqVMNui9RUVE0YcKEWvFeXl60fv16A/+3bt1K48aNIxsbG+rWrRudOXOGbty4QSNGjCCJREIhISF08+ZNg3wOHDhAffv2JZFIRD4+PhQTE0MVFRUN8s3UMLEZgfz8fOLxePTRRx891k6r1VKfPn1o6NChdP78eTp79iz179+fRowYwdlER0eTnZ0dPffcc5Senk7/+9//SCgUUlhYGM2bN4+uXbtG27ZtIwB09uxZ7jgA5OTkRF999RVlZWXRsmXLiM/nU0ZGBhE9WWwajYY2bNhAUqmU7t27R/fu3aOioiIiInr99ddp8ODBlJiYSDdv3qS1a9eSSCSi69evP/HeNEZsHh4etHv3bsrKyqKJEyeSt7c3PfXUU3TkyBHKyMigQYMGUXh4OHdMYmIiSaVSiouLo+zsbDp27Bh5e3tTTEzME/0yB0xsRiA5OZkA0L59+x5rd+zYMeLz+XTnzh0uLj09nQDQuXPniEgvNolEQiqVirMJCwsjb29v0mq1XJy/vz/FxsZyYQD05ptvGpwvODiYZs2aRURPFhsR0fbt28ne3t4gj9u3bxOfz6c//vjDIH706NG0dOnSx14vUePEtmzZMi6clJREAOjrr7/m4nbu3ElisdjAh0f/wP373/8mNze3J/plDlidzQhQA4cEZmZmwtPTE56enlxcQEAAZDIZMjMzMXDgQAD6lroOHTpwNq6uruDz+bCysjKIy8vLM8g/JCSkVvjixYuNvRwDrly5Aq1WCz8/P4N4jUYDJyenZuX9KL169eL2XV1dAQCBgYEGcWVlZVCpVJBKpbh06RJOnz6NlStXcjZarRZlZWUoKSmBRCIxqn/NhYnNCHTt2hU8Hs9ojSACgcAgzOPx6ozT6XQNzrNaqDX/MFRUVDzxOLVaDT6fj9TUVPD5fIM0Ozu7Bp+/IdS8Rh6PV29c9XWr1Wq89957mDRpUq28xGKxUX0zBqzp3wg4OjoiLCwMmzZtQnFxca10pVIJAOjevTvu3r2Lu3fvcmkZGRlQKpUICAhoth9nz56tFe7evTsAoGPHjgBg0FL4aKknFAqh1WoN4vr27QutVou8vDx06dLFYJPL5c32uTn069cPWVlZtfzq0qWLwVtAa6H1edRG2bRpE7RaLYKCgvD999/jxo0byMzMxGeffca93oWGhiIwMBCRkZG4cOECzp07h5dffhkjRozAgAEDmu3D3r17sW3bNly/fh3R0dE4d+4c5s6dCwDo0qULPD09ERMTgxs3buDgwYP45JNPDI739vaGWq1GfHw87t+/j5KSEvj5+SEyMhIvv/wy9u3bh5ycHJw7dw6xsbE4ePBgs31uDitWrMCOHTvw3nvvIT09HZmZmdi1axeWLVtmVr/qg4nNSPj6+uLChQsYNWoUFi5ciJ49e+Lpp59GfHw8tmzZAkD/GvTDDz/AwcEBw4cPR2hoKHx9fbF7926j+PDee+9h165d6NWrF3bs2IGdO3dyJaZAIMDOnTtx7do19OrVC6tXr8aHH35ocPzgwYPx5ptvYurUqejYsSPWrFkDANi+fTtefvllLFy4EP7+/pg4cSJSUlLQqVMno/jdVMLCwvDTTz/h2LFjGDhwIAYNGoT169fDy8vLrH7VB48aWrtntGp4PB7279+PiRMnmtsVRj2wko3BMBFMbAyGiWBN/xYCqw20fljJxmCYCCY2BsNEMLExGCbCYutsOp0Of/75Jzp06MB182EwWgIiQlFREdzd3R/bc8Vixfbnn38adPhlMFqau3fv4m9/+1u96RYrtupe83fv3oVUKjWzNwxLRqVSwdPT02CkRl1YrNiqXx2lUmm7FptWq8Uvv/wCABg2bFitnvsM4/Gk6orFio2hp6ysDKNGjQKgH5Jia2trZo/aL6w1ksEwEUxsDIaJYK+RzSU/G/j+daAkH+gxEej5HCAPBNjnBsYjMLE1h+vHgH2vA2WF+vDpT/Wbsx8Q+DzQczLg1Nm8PjJaDew1sinodMDPa4DvpuiF9rcgYNK/gO7PAnwRcP86cGolsLEf8OUoIGkToLr35HwZFg0r2RpLWSGwfxaQVTUlwIBXgfDVgLUQ6PW8Pv3aQeDKXuC3BODPC/rt6LuA91B9iRfwLGDjYNbLYJgeJrbG8FcWsOtFIP+mvgQb9wnQb5qhjdge6POiflPnAekHgKv/Be4mA7d+0W8HFwJdQoHA5wD/sYCw5ZrjBQIBN73BozN0MUyLxU6LoFKpYG9vj8LCQuN81M74H3BgFlCuBqR/A6buADz6N/z4B7eBq98DV/4L5KU/jBfYAt2e0TesdH5KX0Iy2hQNfdaY2J6ETguc/BD4dZ0+7D0MeG47YNex6XnmZuhLuyv/BZS3H8bbOAABE/TC8xoCtMLp2Bi1aeiz1uj/zcTERIwfPx7u7u7g8Xg4cOCAQforr7xSa4mg8PBwA5uCggJERkZCKpVCJpPhtddeg1qtNrC5fPkyhg0bBrFYDE9PT+5VyKSUFADfPv9QaCFzgWkHmic0AHANAEavAN6+BLweDwS/Cdi6AKUPgNQ44Ju/A5uCgMLfm3sF0Gq1SElJQUpKSq05IRmmpdFiKy4uRu/evbFp06Z6bcLDw3Hv3j1u27lzp0F6ZGQk0tPTcfz4cfz0009ITEw0WKtLpVJhzJgx8PLyQmpqKtauXYuYmBh8+eWXjXW36SiuAF+OBLLjAWsbYPLXQNhKgG/Eai6PB/xtADB2NbDwml7IfV8CRPZA/g1gVyRQUdqsU5SVlSEoKAhBQUEoKyszjt+MptGchQIA0P79+w3i6ltIoZqMjAwCQCkpKVzc4cOHicfjcYs3bN68mRwcHEij0XA2S5YsIX9//wb7VlhYSACosLCwwcdwXNpN9IErUbSUaEMvontXGp9HcyjIIVrlrT//9zOJdLomZ6VWq7kloOpazorRfBr6rLVIpSAhIQEuLi7w9/fHrFmzkJ+fz6UlJSVBJpMZzAAcGhoKKysrJCcnczbDhw83WDAvLCwMWVlZePDgQZ3n1Gg0UKlUBluj0VYAh98B9s0AKkv1LYYzTgHyno3Pqzk4eAPPbwd4fODyLuDsFtOen9EiGF1s4eHh2LFjB+Lj47F69Wr8/PPPGDt2LFdfUCgUcHFxMTjG2toajo6OUCgUnE31KibVVIerbR4lNjYW9vb23NbogaPqPGDHRCC56sEetgh4cQ8gcWxcPsbCdyQwpmrG4mPL9N/sGG0ao39ne+GFF7j9wMBA9OrVC507d0ZCQgJGjx5t7NNxLF26FAsWLODC1QP6GsTvqcDul4CiPwFhB+AfW4Huf28hTxvBoFn6uuOl74C9rwAzE/SlHqNN0uJty76+vnB2dsbNmzcBAHK5vNa6YpWVlSgoKOBWRZHL5cjNzTWwqQ7Xt3KKSCTiBoo2asBo6jfA9nC90Jz9gBknW4fQAH0Dyt/XA+799C2VuyKB8tqr5DDaBi0utt9//x35+flwc3MDoF+gT6lUIjU1lbM5efIkdDodgoODOZvExESD9cOOHz8Of39/ODgYqZtTpQb48W3gx7cAbTnQ7e/6ZviOfk8+1pQIxMDU/+g/DeReBQ7MBizz06jl09iWl6KiIkpLS+OWiF23bh2lpaXR7du3qaioiBYtWkRJSUmUk5NDJ06coH79+lHXrl2prKyMyyM8PJz69u1LycnJ9Ouvv1LXrl0pIiKCS1cqleTq6krTpk2jq1ev0q5du0gikdAXX3xhnBaiwj+Ivhqtb+2Ltif6eS1RjSV0WyW3k4jec9L7nPhxgw/TaDQUHR1N0dHRBq27DOPR0NbIRoutem3mR7eoqCgqKSmhMWPGUMeOHUkgEJCXlxfNmDGDFAqFQR75+fkUERFBdnZ2JJVKafr06dxi6dVcunSJhg4dSiKRiDw8PGjVqlWN8rPeG3D3PNGaLvqHNrYT0fXjjb0F5iNl28M/EFlHzO0No4qGiq39ddd6cBv4cgQg9dC/njn6mM/JpvDjfCB1OyCS6uuXzl3N7VG7p8W6a7V5HLyAl38AXjvW9oQGAGPXAJ6DAI1KPwKh7PHfE3U6HdLT05Gent6oNbgZxqf9iQ0A3Hq36LCWFsVaCEzZAXRw1w9S3TdTP5i1HkpLS9GzZ0/07NkTpaXN6/rFaB7tU2xtnQ6uwAvf6sfUXT8MJMSa2yNGA2Bia6t49APGf6rfT1yjH2/HaNUwsbVl+kQAg2br9/e/qR8nx2i1MLG1dZ7+APAZAVQUA7si9GPwGK0SJra2Dt8aeD4OkHUCHtwC/vsqoK00t1eMOmBiswQkjsALOwGBBPjtFBAfY26PGHXAZteyFOQ9gYmb9aMDzmwE5L2AXlMgEAiwaNEiAGx2LXPT/nqQWDon3tPPmWItBl49Crj3MbdHFg/rQdJeeWoZ0HUMUFmmH5Kj/svcHjGqYGKzNKz4wKSvAKcugOp36Ha/jFvZN3Dr1i3WXcvMsDqbJWIjA174DvhqNEqzT8Pndf0YPaMthlipASpKACtrwEoA8IWte45LnVbvc2WZfuxiZRlQWf2rAbSaeuJqbmX6eT0Hz22yG0xslkpHf2DyV8A3D6epQPF9QJMHaIr0Mztrih7Zr/otL3ok/Iittrz2+XhWVaIT6D9HNGpfoBcu6QBd5cNfnRYgrf5Xp61Kq/rV6R4Ja2vYV4WrhaUz0qcQp65MbIx68B8LDP8nELtMH94QCAhbaN040ukfbLTyuSl5VvrGI2uRvm+pdc1NXE+cUP/bwfXJ+T8GJjZLZ8hbAJY9DAskgKgDILTT/1ZvXLjqV9jh8WGBRF9iaCuqfsv1+9pyw7BBWgWgq3hkv4Ydj69/HbWyrtq31tdBrfiPhK31ojEI8x/uV9tbV4mkpmCMOcluI2Fis3Rq1qXeuQtI7Y2XN18ACGyMl5+F04prtQyjY8a/6gwmNgbDZLA/dRaOtbU1Zs+eze0zzAe7+xaOSCR67IpDDNPBXiMZDBPBSjYLh4hw//59AICzszN4vBb6zsZ4IkxsFk5JSQm3apDRumsxmgR7jWQwTAQr2ZrIH8pSJGXnIyk7H2d/y4eqtAIOtkI42ArhZCuEg0QIR1sBHG1FtX8lQnQQW8PKir3StSeY2BpIXlEZJ66k3/JxO7+klk2RphJ3CmrH1wXfildDkEI4VgnUqUqwPT3sMdDbTAsxMloEJrZ6KCgux9nf9OI6k30f2X8ZrotmxQN6/U2GkM5OCPF1goeDDZQl5SgorkBBsab2b4n+90FxBdSaSmh1hPtqDe6rNfX68M7YbnhzROeWvlSGiWBiq6KwtALncgpwJvs+krLzcU1RZJDO4wEBblKE+DphcBcnDPR2RAdx0+b00FRq8aC4AgXF5fqtpBwFar0gHxSX4+6DEiRk/YVVh6+BCJg1kgnOEmi3YlNrKpFyqwBns/NxJjsf6X8WQvfIbCz+rh0Q0tkJg3ydMMjXETKJ0CjnFlnzIbfnQ24vrtfm0xM3sP7Edaw+cg0EwuyRXYxybob5aHdiS/+zEMsPXMXl3wtR+Yi6fJ1tMaizEwZXCczZTmQmL4G3Q7uCxwPWHb+ONUeyQATMGdV4wVlbWyMqKorbZ5iPdnf3HSRCXLijBAB4OtogxNepqt7l/NiSxhy8NboreAA+OX4da49mAWi84EQiEeLi4ozvHKPRtDuxuctssDGiL/p4yuDpKDG3O09k3mh9CffxMb3giAhzn2ILILZF2p3YAGB8b3dzu9Ao5j7VFTweD2uPZuHjY9ehI32p1xCICCUl+s8REomEddcyI6wHSRthzqguWBzmD0Bfj/v0xI0GHVdSUgI7OzvY2dlxomOYh0aLLTExEePHj4e7uzt4PB4OHDhgkE5EWLFiBdzc3GBjY4PQ0FDcuGH4YBQUFCAyMhJSqRQymQyvvfYa1Gq1gc3ly5cxbNgwiMVieHp6Ys2aNY2/OgtjzqguWBLeDQCw/sR1bDhx3cweMRpDo8VWXFyM3r171ztGas2aNfjss8+wdetWJCcnw9bWFmFhYSgrezjrUmRkJNLT03H8+HH89NNPSExMxMyZM7l0lUqFMWPGwMvLC6mpqVi7di1iYmLw5ZdfNuESLYtZIzvjnbF6wW04cQPrjzPBtRmoGQCg/fv3c2GdTkdyuZzWrl3LxSmVShKJRLRz504iIsrIyCAAlJKSwtkcPnyYeDwe/fHHH0REtHnzZnJwcCCNRsPZLFmyhPz9/RvsW2FhIQGgwsLCpl5eq2Zrwk3yWvITeS35idYdy6rXTq1WEwACQGq12oQeth8a+qwZtc6Wk5MDhUKB0NBQLs7e3h7BwcFISkoCACQlJUEmk2HAgAGcTWhoKKysrJCcnMzZDB8+HELhw4/IYWFhyMrKwoMHD+o8t0ajgUqlMtgsmTdGdMb/e0Zfwn0afwPrjl8HWeYaKRaDUcWmUCgAAK6uhpNZurq6cmkKhYIbX1WNtbU1HB0dDWzqyqPmOR4lNjYW9vb23Obp6dn8C2rlzBzeGe8+0x0A8BkTXKvHYlojly5disLCQm67e/euuV0yCTOG+2LZOL3gNp68iU+OMcG1Voz6nU0ulwMAcnNz4ebmxsXn5uaiT58+nE1eXp7BcZWVlSgoKOCOl8vlyM3NNbCpDlfbPIpIJIJIZL7uVebk9WG+AIAPD2bi81M3QSAsGuMPHo8HPp+P5557DgDA5/PN6Wa7x6glm4+PD+RyOeLj47k4lUqF5ORkhISEAABCQkKgVCqRmprK2Zw8eRI6nQ7BwcGcTWJiIioqKjib48ePw9/fHw4ODsZ02WJ4fdjDEm7TqWyut4lYLMbevXuxd+9eiMWtqztau6OxLS9FRUWUlpZGaWlpBIDWrVtHaWlpdPv2bSIiWrVqFclkMvrhhx/o8uXLNGHCBPLx8aHS0lIuj/DwcOrbty8lJyfTr7/+Sl27dqWIiAguXalUkqurK02bNo2uXr1Ku3btIolEQl988UWD/bT01sj6+PqX37hWylWHM0mn05nbJYunoc9ao8V26tQprim55hYVFUVE+ub/5cuXk6urK4lEIho9ejRlZRk2Tefn51NERATZ2dmRVCql6dOnU1FRkYHNpUuXaOjQoSQSicjDw4NWrVrVKD/bq9iIiLb9+lBwsYeY4Fqahj5rbE1tCyXudA5ifsyArrwMd9fr62ztYXYtIkJxuRaFpRWo1OpApC8NdETQP+n6Xx0BVLVP9ezriPQlSdVxIms+enrUXpikoc9au+yI3B54ZYgPeDwelv/3Yd345+t5cLSXQizgw6ZqEwusIBbq9wX81tU4XVahhbKkAsrScjworoCypBzK0go8KClHYYn+90FJBbevLNXbVGhbpvzw7WiLkwtHNvl4JjYLJmqwN8rLSjBzvT785r8vwEpYfyMJ34pXJUC9CG0EfNgIq8N82FTFiQV8iKz1wqxZalSXAsSFDUsRUF32+n2tjqAqq8CDkipRlVSgtELb5GsX8HkQ8K3AA2DF4wH6f7Cy4oEHgMer8VuVxuPpbQ3ieQAP+n0PWfOWx2Jis3BeDPZCda/TAPcOqOAJUVahQ1mFFqVVW3VFQqsjqDWVUGuMtCyuEeBb8SCzEcBeIoCDRAgHiQD2NvpfmUQAmUQIWVVaddhBIoCNgN/qhhMxsbUjvp81pFadjYhQrtWhrFyH0gqtgQjLyrUoq9SitEZaWYUWpeVaaCp1XImAqtLAqkYpUT0nZnXJYPVIKfGwZNEfZ8UDpDZV4rGpEo+tAHZCy5lfk4mtncPj8SCy5kNkzYc9mjZbGKNhtK4aMYNhwbCSzcLh8/l45plnuH2G+WBis3DEYjEOHjxobjcYYK+RDIbJYCVbO0Sr1Rp08mY8HoFAYJRXcCY2C6e4uJgbrJubm4uioiIolUrzOtUGkclkkMvlzfp2x8TWDqiewi4/P59biZTNIdkwqGrezeoxmDXHaTYWJrZ2gq2tLdRqNeRyOZycnMztTpvCxkbfTSsvLw8uLi5NfqVkDSTthGqBSSStf8r11kj1fWtOXZeJrZ1Q/crIXh2bhjHuGxMbg2EimNgY7Yq6psw3FayBxMKxsrLCiBEj4OLiwl4hzQwTm4VjY2ODhIQElJWVIScnx9zutGvYayQDADBy5Ei89dZb+Oc//wlHR0fI5XLExMRw6bdu3QKPx8PFixe5OKVSCR6Ph4SEBABAQkICeDwejh49ir59+8LGxgZPPfUU8vLycPjwYXTv3h1SqRQvvvjiY5eviouLg0wmw4EDB9C1a1eIxWKEhYXVmnh3y5Yt6Ny5M4RCIfz9/fHvf//bIP3GjRsYPnw4xGIxAgICcPz4cYP08vJyzJ07F25ubhCLxfDy8kJsbGzTbmADYGJjcHzzzTewtbVFcnIy1qxZg/fff7/WA9oQYmJi8Pnnn+PMmTO4e/cupkyZgg0bNuC7777DwYMHcezYMWzcuPGxeZSUlGDlypXYsWMHTp8+DaVSiRdeeIFL379/P95++20sXLgQV69exRtvvIHp06fj1KlTAACdTodJkyZBKBQiOTkZW7duxZIlSwzO8dlnn+F///sf9uzZg6ysLHz77bfw9vZu9PU2mJae5stctOep7GqiVqvJ2dmZ+vTpQ1evXjWYv7MmI0aMoKFDhxrEDRw4kJYsWUJERDk5OQSA0tLSuPQHDx4QADp16hQRPZzm8MSJE5xNbGwsAaDs7Gwu7o033qCwsLB6fd6+fTsBoLNnz3JxmZmZBICSk5OJiGjw4ME0Y8YMg+Oef/55euaZZ4iI6OjRo2Rtbc2tjESkXy0JNVZemjdvHj311FMNmuqvtLSUMjIy6rx/ZlnFhtE6uX//fr2r/9SkV69eBmE3N7daU8U3hJr5uLq6QiKRwNfX1yDuSflaW1tj4MCBXLhbt26QyWTIzMwEAGRmZmLIkCEGxwwZMsQg3dPTE+7uD5d0rp6Vu5pXXnkFFy9ehL+/P9566y0cO3askVfaOJjYGBwCgeG0CDweDzqdDoC+VROAwaId9fWmqJkPj8d7bL7mpF+/fsjJycEHH3yA0tJSTJkyhVsXoSVgYmM0iI4dOwIA7t27x8XVbCwxNpWVlTh//jwXzsrKglKpRPfu+vUMunfvjtOnTxscc/r0aQQEBHDpd+/eNfD37Nmztc4jlUoxdepUfPXVV9i9eze+//57FBQUtMQlsaZ/RsOwsbHBoEGDsGrVKvj4+CAvLw/Lli1rsfMJBALMmzcPn332GaytrTF37lwMGjQIQUFBAIDFixdjypQp6Nu3L0JDQ/Hjjz9i3759OHHiBAD9Apt+fn6IiorC2rVroVKp8O677xqcY926dXBzc0Pfvn1hZWWFvXv3Qi6XQyaTtcg1sZKN0WC2bduGyspK9O/fH/Pnz8eHH37YYueSSCRYsmQJXnzxRQwZMgR2dnbYvXs3lz5x4kR8+umn+Pjjj9GjRw988cUX2L59O0aOHAlA/9q7f/9+lJaWIigoCK+//jpWrlxpcI4OHTpgzZo1GDBgAAYOHIhbt27h0KFD3CuzsWFz/Vs4xcXFsLOzg5eXFw4ePIjOnTu3+qWj4uLiMH/+/FY1yLW6U4CPj0+t+8fm+mcA0P+FHzBgAFxdXVl3LTPDxGbh2NjYICUlhXXXagWwOhuj1fHKK6+0qldIY8HExmCYCCY2C6ekpATe3t4YPXp0q/iQ3J5hdTYLh4hw+/Ztc7vBQAuUbDExMVULyT3cunXrxqWXlZVhzpw5cHJygp2dHSZPnozc3FyDPO7cuYNx48ZBIpHAxcUFixcvRmVl61kzjMFoCi1SsvXo0YP7kg/oO5VW83//9384ePAg9u7dC3t7e8ydOxeTJk3iut5otVqMGzcOcrkcZ86cwb179/Dyyy9DIBDgo48+agl3GQzT8MSxBY0kOjqaevfuXWeaUqkkgUBAe/fu5eKqh04kJSUREdGhQ4fIysqKFAoFZ7NlyxaSSqWk0Wga7AcbYqNHrVYTAPLy8nrsEBvG42m1Q2xu3LgBd3d3+Pr6IjIyEnfu3AEApKamoqKiAqGhoZxtt27d0KlTJyQlJQEAkpKSEBgYCFdXV84mLCwMKpUK6enp9Z5To9FApVIZbAxGa8LoYgsODkZcXByOHDmCLVu2ICcnB8OGDUNRUREUCgWEQmGtjp6urq5QKBQAAIVCYSC06vTqtPqIjY2Fvb09t3l6ehr3whhtgsTERIwfPx7u7u5mnUmrLoxeZxs7diy336tXLwQHB8PLywt79uzhpnFuCZYuXYoFCxZwYZVKxQQH/dixgICAZs1R35YoLi5G79698eqrr2LSpEnmdseAFm/6l8lk8PPzw82bN/H000+jvLwcSqXSoHTLzc2FXC4HAMjlcpw7d84gj+rWymqbuhCJRBCJRMa/gDaORCJBenp6s7prERFKK7RG9qxh2Aj4jerTOXbsWIM/+K2JFhebWq1GdnY2pk2bhv79+0MgECA+Ph6TJ08GoB8UeOfOHW7IekhICFauXMktYgAAx48fh1Qq5QYGMkxLaYUWASuOmuXcGe+HQSK0jM/BRr+KRYsWYfz48fDy8sKff/6J6Oho8Pl8REREwN7eHq+99hoWLFgAR0dHSKVSzJs3DyEhIRg0aBAAYMyYMQgICMC0adOwZs0aKBQKLFu2DHPmzGElF6NNY3Sx/f7774iIiEB+fj46duyIoUOH4uzZs9yw+vXr18PKygqTJ0+GRqNBWFgYNm/ezB3P5/Px008/YdasWQgJCYGtrS2ioqLw/vvvG9vVdkFJSQkGDhwINzc3fPrpp03Kw0bAR8b7YUb2rOHnthSMLrZdu3Y9Nl0sFmPTpk3YtGlTvTZeXl44dOiQsV1rlxARMjIyUFxc3OQ8eDyexbzKmRPWEZnBMBHszxXDolCr1bh58yYXzsnJwcWLF+Ho6IhOnTqZ0TMmNoaFcf78eYwaNYoLV397jYqKQlxcnJm80sPExrAoRo4caTCRbGuC1dkYDBPBxGbh8Hg8eHl5wcPDw9yutHvYa6SFI5FIcOvWLTa7ViuAlWwMholgYmMwTAQTm4VTWlqKgQMH4rnnnmu1rXTtBVZns3B0Oh3Onz8PLy8vJjYzw0o2BsNEMLExGCaCiY3BMBFMbAyLQavVYvny5fDx8YGNjQ06d+6MDz74oNXUVVkDCcNiWL16NbZs2YJvvvkGPXr0wPnz5zF9+nTY29vjrbfeMrd7TGztAWdnZzg4ODQ9AyKgosR4DjUGgQRo4IQ/Z86cwYQJEzBu3DgAgLe3N3bu3FlrAilzwcRm4dja2uKvv/5qXnetihLgI3fjOtZQ/t+fgNC2QaaDBw/Gl19+ievXr8PPzw+XLl3Cr7/+inXr1rWwkw2DiY1hMbzzzjtQqVTo1q0b+Hw+tFotVq5cicjISHO7BoCJjdEQBBJ9CWOuczeQPXv24Ntvv8V3332HHj164OLFi5g/fz7c3d0RFRXVgk42DCY2C6e0tBRjx46Fi4sLYmJimpYJj9fgVzlzsnjxYrzzzjt44YUXAACBgYG4ffs2YmNjmdgYLY9Op8PPP//cLrprlZSUwMrK8GsWn89vNSuuMrExLIbx48dj5cqV6NSpE3r06IG0tDSsW7cOr776qrldA8DExrAgNm7ciOXLl2P27NnIy8uDu7s73njjDaxYscLcrgFgYmNYEB06dMCGDRuwYcMGc7tSJ6y7FoNhIpjYGAwTwcTWDpBIJC26ECWjYbA6m4Vja2uL4uJiNrtWK4CVbO0MS//W1lIY474xsbUTBAIBAP2HX0bjqb5v1fexKbDXSAunrKyMW1J569atyMvLA6CvxzVmrer2ChGhpKQEeXl5kMlk4PObvjgjE5uFo9VquYUlHRwcYG1tzQmO0XBkMhnkcnmz8mBia0fweDy4ubnBxcUFFRUV5nanzSAQCJpVolXDxNYO4fP5Rnl4GI2jVTeQbNq0Cd7e3hCLxQgODm41w9sZjKbQasW2e/duLFiwANHR0bhw4QJ69+6NsLAwVt9gtFlardjWrVuHGTNmYPr06QgICMDWrVshkUiwbds2c7vGYDSJVllnKy8vR2pqKpYuXcrFWVlZITQ0FElJSXUeo9FooNFouHBhYSEAQKVStayzrZzi4mJuX6VSQavVmtEby6T6GXvSh+9WKbb79+9Dq9XC1dXVIN7V1RXXrl2r85jY2Fi89957teI9PT1bxMe2iLu7mWbIaicUFRXB3t6+3vRWKbamsHTpUixYsIAL63Q6FBQUwMnJqU1+vFWpVPD09MTdu3chlUrN7Y7JaIvXTUQoKip64h+zVik2Z2dn8Pl85ObmGsTn5ubW+2FRJBJBJBIZxMlkspZy0WRIpdI289AZk7Z23Y8r0applQ0kQqEQ/fv3R3x8PBen0+kQHx+PkJAQM3rGYDSdVlmyAcCCBQsQFRWFAQMGICgoCBs2bEBxcTGmT59ubtcYjCbRasU2depU/PXXX1ixYgUUCgX69OmDI0eO1Go0sVREIhGio6NrvRpbOpZ83TxiA5wYDJPQKutsDIYlwsTGYJgIJjYGw0QwsTEYJoKJzUjExMSAx+MZbN26dePSy8rKMGfOHDg5OcHOzg6TJ0+u9dH+zp07GDduHCQSCVxcXLB48WJUVlYa2CQkJKBfv34QiUTo0qUL4uLiavnSkkOTEhMTMX78eLi7u4PH4+HAgQMG6USEFStWwM3NDTY2NggNDcWNGzcMbAoKChAZGQmpVAqZTIbXXnsNarXawOby5csYNmwYxGIxPD09sWbNmlq+7N27F926dYNYLEZgYCA3Ir0xvpgUYhiF6Oho6tGjB927d4/b/vrrLy79zTffJE9PT4qPj6fz58/ToEGDaPDgwVx6ZWUl9ezZk0JDQyktLY0OHTpEzs7OtHTpUs7mt99+I4lEQgsWLKCMjAzauHEj8fl8OnLkCGeza9cuEgqFtG3bNkpPT6cZM2aQTCaj3Nxco1znoUOH6N1336V9+/YRANq/f79B+qpVq8je3p4OHDhAly5domeffZZ8fHyotLSUswkPD6fevXvT2bNn6ZdffqEuXbpQREQEl15YWEiurq4UGRlJV69epZ07d5KNjQ198cUXnM3p06eJz+fTmjVrKCMjg5YtW0YCgYCuXLnSKF9MCRObkYiOjqbevXvXmaZUKkkgENDevXu5uMzMTAJASUlJRKR/iK2srEihUHA2W7ZsIalUShqNhoiI/vnPf1KPHj0M8p46dSqFhYVx4aCgIJozZw4X1mq15O7uTrGxsc2+xkd5VGw6nY7kcjmtXbuWi1MqlSQSiWjnzp1ERJSRkUEAKCUlhbM5fPgw8Xg8+uOPP4iIaPPmzeTg4MBdNxHRkiVLyN/fnwtPmTKFxo0bZ+BPcHAwvfHGGw32xdSw10gjcuPGDbi7u8PX1xeRkZG4c+cOACA1NRUVFRUIDQ3lbLt164ZOnTpxQ4aSkpIQGBho8NE+LCwMKpUK6enpnE3NPKptqvOoHppU0+ZJQ5OMSU5ODhQKhcH57e3tERwcbHCdMpkMAwYM4GxCQ0NhZWWF5ORkzmb48OEQCoWcTVhYGLKysvDgwQPO5nH3oiG+mBomNiMRHByMuLg4HDlyBFu2bEFOTg6GDRuGoqIiKBQKCIXCWh2jXV1doVAoAAAKhaLOIUXVaY+zUalUKC0tfezQpOo8WpLqczzu/AqFAi4uLgbp1tbWcHR0NMq9qJn+JF9MTavtrtXWGDt2LLffq1cvBAcHw8vLC3v27GHz7DMAsJKtxZDJZPDz88PNmzchl8tRXl4OpVJpYFNzyJBcLq9zSFF12uNspFIpbGxsmjQ0yZhUn+Nx55fL5bXmkamsrERBQYFR7kXN9Cf5YmqY2FoItVqN7OxsuLm5oX///hAIBAZDhrKysnDnzh1uyFBISAiuXLli8CAeP34cUqkUAQEBnE3NPKptqvMw99AkHx8fyOVyg/OrVCokJycbXKdSqURqaipnc/LkSeh0OgQHB3M2iYmJBnNbHj9+HP7+/nBwcOBsHncvGuKLyTFLs4wFsnDhQkpISKCcnBw6ffo0hYaGkrOzM+Xl5RGRvum/U6dOdPLkSTp//jyFhIRQSEgId3x10/+YMWPo4sWLdOTIEerYsWOdTf+LFy+mzMxM2rRpU51N/yKRiOLi4igjI4NmzpxJMpnMoJWzORQVFVFaWhqlpaURAFq3bh2lpaXR7du3iUjf3C6TyeiHH36gy5cv04QJE+ps+u/bty8lJyfTr7/+Sl27djVo+lcqleTq6krTpk2jq1ev0q5du0gikdRq+re2tqaPP/6YMjMzKTo6us6m/yf5YkqY2IzE1KlTyc3NjYRCIXl4eNDUqVPp5s2bXHppaSnNnj2bHBwcSCKR0D/+8Q+6d++eQR63bt2isWPHko2NDTk7O9PChQupoqLCwObUqVPUp08fEgqF5OvrS9u3b6/ly8aNG6lTp04kFAopKCiIzp49a7TrPHXqFAGotUVFRRGRvsl9+fLl5OrqSiKRiEaPHk1ZWVkGeeTn51NERATZ2dmRVCql6dOnU1FRkYHNpUuXaOjQoSQSicjDw4NWrVpVy5c9e/aQn58fCYVC6tGjBx08eNAgvSG+mBI2xIbBMBGszsZgmAgmNgbDRDCxMRgmgomNwTARTGwMholgYmMwTAQTG4NhIpjYGAwTwcTGYJgIJrY2zsiRIzF//nxzu8HR2vxpTTCxMVBeXm5uF9oHZuuVyWg2UVFRtToE37x5k1599VXy9vYmsVhMfn5+tGHDhlrHTZgwgT788ENyc3Mjb29vItL3pO/duzeJRCLq378/7d+/nwBQWload+yVK1coPDycbG1tycXFhV566SVuYqO6/MnJyTHV7Wj1MLG1YZRKJYWEhNCMGTO4Gb3KyspoxYoVlJKSQr/99hv95z//IYlEQrt37+aOi4qKIjs7O24Iy9WrV6mwsJAcHR3ppZdeovT0dDp06BD5+fkZiO3BgwfcsJ/MzEy6cOECPf300zRq1Kh6/amsrDTHrWmVsGkR2jD29vYQCoWQSCQGo49rLnfs4+ODpKQk7NmzB1OmTOHibW1t8a9//YubVGfr1q3g8Xj46quvIBaLERAQgD/++AMzZszgjvn888/Rt29ffPTRR1zctm3b4OnpievXr8PPz69Ofxh6mNgskE2bNmHbtm24c+cOSktLUV5ejj59+hjYBAYGGsxelZWVhV69ekEsFnNxQUFBBsdcunQJp06dgp2dXa1zZmdnw8/Pz7gXYmEwsVkYu3btwqJFi/DJJ58gJCQEHTp0wNq1a7lp4qqxtbVtdN5qtRrjx4/H6tWra6W5ubk12ef2AhNbG0coFEKr1XLh06dPY/DgwZg9ezYXl52d/cR8/P398Z///AcajYZbiDAlJcXApl+/fvj+++/h7e0Na+u6H51H/WE8hDX9t3G8vb2RnJyMW7du4f79++jatSvOnz+Po0eP4vr161i+fHkt0dTFiy++CJ1Oh5kzZyIzMxNHjx7Fxx9/DADg8XgAgDlz5qCgoAARERFISUlBdnY2jh49iunTp3MCe9QfnU7XchffxmBia+MsWrQIfD4fAQEB6NixI8LCwjBp0iRMnToVwcHByM/PNyjl6kMqleLHH3/ExYsX0adPH7z77rtYsWIFAHD1OHd3d5w+fRparRZjxoxBYGAg5s+fD5lMBisrqzr9qZ4VmsGW+WU8hm+//RbTp09HYWEhm2jWCLA6G4Njx44d8PX1hYeHBy5duoQlS5ZgypQpTGhGgomNwaFQKLBixQooFAq4ubnh+eefx8qVK83tlsXAXiMZDBPBGkgYDBPBxMZgmAgmNgbDRDCxMRgmgomNwTARTGwMholgYmMwTAQTG4NhIv4/sIm/01ehFDEAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_monitoring_metric('total_cpu_util_s', component='benchmarker').max() - evaluation.get_monitoring_metric('total_cpu_util_s', component='benchmarker').min()\n",
+ "plot_metric(df, \"Compute Time\", peak_benchmark)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 86,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAN0AAADsCAYAAADw4qMSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzz0lEQVR4nO2deVxU1f//X7MzAwwDsgwYAi6gmOKOmJolCWqmaS5Ehlbqp8wytchfKmYZpn1MK3Pp8zWzj+aSS5a4IG5FyEcNNyRUwqVyIIFhX2fevz+GuXJlkdFhBobzfHAfc+8573vu+17mNeeeXUBEBAaDYTGE1naAwWhtMNExGBaGiY7BsDBMdAyGhWGiYzAsDBMdg2FhmOgYDAvDRMdgWBgmOgbDwjDR1cPx48chEAig1Wqt7UqrxdfXFwKBoFn/Hx7ER5sV3ZQpU7iHIZFI4OHhgaeeegobN26EXq+/7/kDBgzA7du34eTkZAFvbQdz/1gtWbKk1v+BiLBhwwYEBwfDwcEBKpUKffr0wapVq1BSUgIAWLx4Mff/F4vF8PX1xVtvvYWioqL7+unr64tVq1Y1yr/Tp09j165dJt2TzYoOAMLDw3H79m1cv34dBw4cwBNPPIE333wTTz/9NKqqquo9r7KyElKpFGq1GgKBoMn8q6ioaLK0bQVHR8da/4fJkydj9uzZGD16NI4dO4Zz585h4cKF+OGHH3D48GHOrmvXrtz//+OPP8aGDRswd+5cs/rn5uYGFxcX004iGyUqKopGjx5dKzwhIYEA0FdffcWFAaAvv/ySRo0aRQqFgmJiYujYsWMEgPLy8ig/P5/s7OwoLi6Ol9bu3bvJwcGBiouLiYjo5s2bNH78eHJyciJnZ2d65plnKDMzs5ZPH374IXl6epKvr2+9/u/bt4/69OlDMpmM2rRpQ2PGjOHicnNzafLkyaRSqUgul1N4eDhduXKFi//666/JycmJfvzxR/L39ye5XE7jxo2j4uJi2rRpE/n4+JBKpaJZs2ZRVVUVd56Pjw8tWbKEJk2aRAqFgry8vOiLL77g4jMzMwkApaSkcGF5eXkEgI4dO8bF19yioqKIiEin09FHH31Evr6+ZGdnR927d6edO3fWe/9Gfz799FNe2Pbt2wkA7d27t5a9Xq8nrVZLREQxMTEUFBTEi582bRqp1WoiIt7/t6HrlpeX08yZM0mtVpNMJqN27drRRx99xLNvKK26sOmcri6efPJJBAUFYffu3bzwxYsX49lnn8XFixfx0ksv8eKUSiWefvppbN26lRe+ZcsWjBkzBgqFApWVlQgLC4OjoyN+/vlnJCYmwsHBAeHh4bwcLSEhAenp6YiPj8dPP/1Up4/79+/Hs88+ixEjRiAlJQUJCQno168fFz9lyhScOXMG+/btQ1JSEogII0aMQGVlJWdTUlKCzz77DNu2bcPBgwdx/PhxPPvss4iLi0NcXBy+/fZbrF+/Ht9//z3v2itWrEBQUBBSUlLw7rvv4s0330R8fHyjnq23tzf3qpWeno7bt29j9erVAIDY2Fhs3rwZ69atQ2pqKt566y288MILOHHiRKPSNrJlyxYEBARg9OjRteIEAkGDxQG5XG7y28Vnn32Gffv2YceOHUhPT8eWLVvg6+trUhq1aJQ0WyD15XRERBMnTqQuXbpwxwBo9uzZPJt7f7327NnDy9WMud+BAweIiOjbb7+lgIAA0uv1XBrl5eUkl8vp0KFDnE8eHh5UXl7eoO8hISEUGRlZZ9yVK1cIACUmJnJhd+7cIblcTjt27CAiQ04HgK5du8bZzJgxgxQKBRUWFnJhYWFhNGPGDO7Yx8eHwsPDaz2r4cOHE9H9c7q6nhsRUVlZGSkUCvr11195ab/88ssUERFR73OoK6fr0qULPfPMM/WeY+TenO7MmTPk6upKzz33XL1+1nXdWbNm0ZNPPsn7v94Ly+kaARHVKqv16dOnwXNGjBgBiUSCffv2AQB27doFpVKJ0NBQAMD58+dx7do1ODo6wsHBAQ4ODnBxcUFZWRkyMjK4dLp16wapVNrgtc6dO4ehQ4fWGZeWlgaxWIzg4GAurE2bNggICEBaWhoXplAo0KFDB+7Yw8MDvr6+cHBw4IVlZ2fz0g8JCal1XDPdB+HatWsoKSnBU089xT0bBwcHbN68mfdsGgOZMPzz4sWLcHBwgFwuR79+/RASEoIvvvjCpOtNmTIF586dQ0BAAN544w1emfFBET90Ci2QtLQ0+Pn58cLs7e0bPEcqleK5557D1q1bMWnSJGzduhUTJ06EWGx4hEVFRejduze2bNlS61w3N7dGXwcwvAY9LBKJhHdsrMW9N6wxNblGhELDb3TNL37NV9r6MNYY7t+/H23btuXFyWSyRl8fAPz9/fH77783yjYgIAD79u2DWCyGl5cX78dOqVQCAPLz86FSqXjnabVa7jW1V69eyMzMxIEDB3DkyBFMmDABoaGhtV7LTaHV5XRHjx7FxYsXMW7cOJPPjYyMxMGDB5GamoqjR48iMjKSi+vVqxeuXr0Kd3d3dOzYkbeZ2uzQvXt3JCQk1BnXpUsXVFVVITk5mQvLyclBeno6AgMDTb6nezl16lSt4y5dugC4++Nx+/ZtLv7cuXM8e+MXW6fTcWGBgYGQyWS4efNmrWfj7e1tkn/PP/88rly5gh9++KFWHBEhPz+f50vHjh3h6+tb6+2iU6dOEAqFOHv2LC/8jz/+QH5+Pvz9/bkwpVKJiRMn4quvvsL27duxa9cu5ObmmuR3TWw6pysvL4dGo4FOp0NWVhYOHjyI2NhYPP3003jxxRdNTm/w4MFQq9WIjIyEn58f7xUvMjISK1aswOjRo7FkyRI88sgjuHHjBnbv3o133nkHjzzySKOvExMTg6FDh6JDhw6YNGkSqqqqEBcXh+joaHTq1AmjR4/GtGnTsH79ejg6OuLdd99F27Zt66xcMJXExEQsX74cY8aMQXx8PHbu3In9+/cDMOTA/fv3x7Jly+Dn54fs7GwsWLCAd76Pjw8EAgF++uknjBgxAnK5HI6Ojpg3bx7eeust6PV6DBw4EPn5+UhMTIRSqURUVFSj/ZswYQL27NmDiIgILFiwAMOGDYObmxsuXryITz/9FLNmzcKYMWPum46joyNeeeUVzJ07F2KxGN26dcOtW7cQHR2N/v37Y8CAAQCAlStXwtPTEz179oRQKMTOnTuhVqtr5Y4m0aiSXwskKiqKq7YWi8Xk5uZGoaGhtHHjRtLpdDxbALRnzx5eWH2F43feeYcA0KJFi2pd8/bt2/Tiiy+Sq6sryWQyat++PU2bNo3y8/M5n+qr3LmXXbt2UY8ePUgqlZKrqyuNHTuWizM2GTg5OZFcLqewsLA6mwxqUlcV+r3++Pj40Pvvv0/jx48nhUJBarWaVq9ezTvn8uXLFBISQnK5nHr06EGHDx/mVaQQES1ZsoTUajUJBAKuyUCv19OqVasoICCAJBIJubm5UVhYGJ04caLeZ1BXRQqRoflh7dq11LdvX1IoFKRUKql37960evVqKikpqfd+76W0tJRiYmKoc+fOJJfLyc/Pj6ZPn07//PMPZ7Nhwwbq0aMH2dvbk1KppKFDh9Jvv/3GS8fUihSbFR3DdOr7kluL5uZPfbDaS4ZNER0dDQcHB15ZrTnRtWtXDB8+3KRzbLpMx2jZnDhxgqsddXR0tLI3dRMXF8f5aKwRvR8CIjbvJYNhSdjrJYNhYZjoGAwLw0THYFgYm61I0ev1+Pvvv+Ho6NikY+IYDCJCYWEhvLy8uK5yDWGzovv7779N7mLEYDwMt27dalTPI5sVnbGK+datW42uymUwHoSCggJ4e3s3ulnDZkVnfKVUKpWtWnQ6nQ4///wzAGDQoEEQiURW9sh2aWwxxmZFxzBQVlaGJ554AoBhiE1jhhYxmhZWe8lgWBgmOgbDwrDXy4clJwPY9QpQkgN0HQM8+hyg7gawZgpGPTDRPQxXDgO7XwHKqnvAJ642bK7+QLfxwKPjgDYdGk6D0epgr5cPgl4PnFgObJ1gENwj/YCx/wG6PAOIZMCdK8CxpcDnvYANTwBJa4CC2/dPl9EqYDmdqZTlA3teBdINUxigz0tA+MeAWAp0H2+I/30/cHEn8Mdx4O/fDNuh9wDfgYYcMPAZQO5s1dtgWA8mOlP4Jx3Y9jyQc82Qo438N9BrMt/Gzgno8bxhK8oGUvcCl74HbiUD1382bPvnAh1DgW7PAQHDAWnTVeNLJBIsX76c22dYH5sdT1dQUAAnJyfk5+ebp3H88j5g76tARRGgfASYuBlo27vx5+fdAC7tAi5+D2Sn3g2X2AOdRxgqYDo8acgxGS0KU79rTHT3Q68Djn4I/LLScOw7CHjua8DBreHzGiLrsiH3u/g9oL1xN1zuDASONgjQ5zGgEZ1nGdbH1O+ayf/VkydPYtSoUfDy8oJAIMDevXt58TWXqDJu4eHhPJvc3FxERkZCqVRCpVLh5Zdf5iYkNXLhwgUMGjQIdnZ28Pb25l6RLEpJLrBl/F3BhbwOTN77cIIDAI9AYOgi4M3zwCsJQPC/AHt3oDQPOLsJ+OZpYE0/IP/Ph70D6HQ6nD59GqdPn+bNRcmwHiaLrri4GEFBQVizZk29NsYlqozbd999x4uPjIxEamoqt4jGyZMnMX36dC6+oKAAw4YNg4+PD86ePYsVK1Zg8eLF2LBhg6nuPjiai8CGIUBGAiCWA+P+DwhbCojMWAwWCIBH+gDDPwbm/m4QdM8XAJkTkHMV2BYJVJY+1CXKysrQr18/9OvXD2VlZebxm/FwPMzUY6hjvsj7ze14+fJlAkCnT5/mwg4cOEACgYD++usvIiL68ssvydnZmbfQRnR0NAUEBDTat/z8fALAzTlpEue3E33gQRSjJFrVnej2RdPTeBhyM4mW+Rquv2s6UQOLV9yPoqIibv7PoqIi8/nI4DD1u9YkhYbjx4/D3d0dAQEBePXVV5GTk8PFJSUlcStnGgkNDYVQKOSmCk9KSsLgwYN5U2GHhYUhPT0deXl5dV6zvLwcBQUFvM1kdJXAgXeB3dOAqlJDDeO0Y4D6UdPTehicfYHxXwMCEXBhG3BqrWWvz2hSzC668PBwbN68GQkJCfj4449x4sQJDB8+nCtPaDQauLu7884Ri8VwcXGBRqPhbDw8PHg2xmOjzb3ExsbCycmJ20wewFqUDWweAyRXf8EHzQOe3wEoTFxl01y0HwIM+9Cwf3iBoc2PYROYvZ1u0qRJ3H63bt3QvXt3dOjQAcePH693+SdzMH/+fMyZM4c7Ng4sbBR/ngW2vwAU/g1IHYFn1wFdnm4iT02g/6uGsuX5rcDOKcD044ZckNGiafI66fbt28PV1RXXrl0DAKjV6lprolVVVSE3NxdqtZqzycrK4tkYj4029yKTybgBqyYNXD37DfB1uEFwrv7AtKPNQ3CAoaLl6U8Br16Gms1tkUBFsbW9YjwkTS66P//8Ezk5OfD09ARgWGRQq9Xylig6evQo9Ho9twpOSEgITp48yVv7LD4+HgEBAXB2NlP3qapy4Mc3gR/fAHQVQOenDdX3bv73P9eSSOyAif81NClkXQL2vgbYZtNq68HUmprCwkJKSUmhlJQUAkArV66klJQUunHjBhUWFtK8efMoKSmJMjMz6ciRI9SrVy/q1KkTlZWVcWmEh4dTz549KTk5mX755Rfq1KkTbxlcrVZLHh4eNHnyZLp06RJt27aNFAoFrV+/vtF+NlijlP8X0VdDDbWDMU5EJ1YQ3bOST7PjRhLR+20MPp/8pNGnlZeXU0xMDMXExNx32WXGg2Fq7aXJojOuUHLvFhUVRSUlJTRs2DByc3MjiURCPj4+NG3aNNJoNLw0cnJyKCIighwcHEipVNLUqVN5a2ETEZ0/f54GDhxIMpmM2rZtS8uWLTPJz3ofxK0zRMs7Gr68se2IrsSb+gisx+mNd38o0g9a2xtGNaaKrvV1A8u7AWx4HFC2Nby2ufjVn0hz5MfZwNmvAZnSUP507WRtj1o9Td4NrMXj7AO8+APw8uGWJzgAGL4c8O4PlBcYRjyUNdweqdfrkZqaitTUVJPWF2c0Ha1PdADgGdSkw2maFLEUmLAZcPQyDJbdPd0wqLYeSktL8eijj+LRRx9FaenDdSljmIfWKbqWjqMHMGmLYUzflQPA8Vhre8QwASa6lkrbXsCo1Yb9k8sN4/0YLQImupZMjwig/2uG/T3/MozTYzR7mOhaOk99APg9DlQWA9siDGMAGc0aJrqWjkgMjN8EqNoBedeB718CdFXW9orRAEx0toDCBZj0HSBRAH8cAxIWW9sjRgOw2cBsBfWjwJgvDaMRfv0cUHcHuk+ARCLBvHnzALDZwJoLra9Hiq1z5H3DnC5iO+ClQ4BXD2t7ZPOwHimtnScXAJ2GAVVlhqFARf9Y2yPGPTDR2RpCETD2K6BNR6DgT+i3v4jrGVdx/fp11g2smcDKdLaIXAVM2gp8NRSlGYnwe8UwRtBsi0JWlQOVJYBQDAglgEjavOfo1OsMPleVGcZOVpUBVcbPckBXXk9Yza3MMC/pgNcf2h0mOlvFLQAY9xXwzd3pM1B8ByjPBsoLDTNVlxfes1/9WVF4z/E9trqK2tcTCKvFJzE0Y5i0LzEImPSAvurup14HkM7wqddVx1V/6vX3HOtq2FcfGwWmN1MTSptOTHSM+xAwHBj8DhC7wHC8qhsgbaJ180hv+IKjmc+tKRAaKpnEMkPfVXHNza6eMKnh09Hj/uk3AiY6W+exNwAsuHssUQAyR0DqYPg0btxx9afUseFjicKQg+gqqz8rDPu6Cv4xL64S0Ffes1/DTiAyvKYKxdX7YkMZVSi651hsEA/vWHR332gvrhZLTeGYc7LgB8T6HjCalpplrXdvAUon86UtkgASufnSayU049Ivw+w0g195BhMdg2Fx2E+fjSMWi/Haa69x+wzrw/4LNo5MJmtwhSWG5WGvlwyGhWE5nY1DRLhz5w4AwNXVFQJBE7XTMRoNE52NU1JSwq2SZLZuYIyHgr1eMhgWhuV0D8hf2lIkZeQgKSMHp/7IQUFpJZztpXC2l6KNvRTOCilc7CVwsZfV/lRI4WgnhlDIXvVaI0x0jSS7sIwTWdIfObiRU1LLprC8Cjdza4fXhUgoqCFMKVyqhdqmWriPtnVCX18rLUjJaFKY6Ooht7gCp/4wiOzXjDvI+Ie/LpxQAHR/RIWQDm0Q0r4N2jrLoS2pQG5xJXKLy2t/lhg+84orUVReBZ2ecKeoHHeKyuv14d3hnfGvxzs09a0yLAwTXTX5pZX4X2Yufs24g6SMHPyuKeTFCwRAoKcSIe3bYEDHNujr6wJHuwebc6S8Soe84krkFlcYtpIK5BYZhJlXXIFbeSU4nv4Plh34HUTAq0OY8GyJViu6ovIqnL6ei1MZOfg1Iwepf+dDf89sMQEejgjp0Ab927dB//YuUCmkZrm2TCyC2kkEtZNdvTarj1zFp0eu4OODv4NAeG1IR7Ncm2F9Wp3oUv/Ox8K9l3Dhz3xU3aOy9q726N+hDQZUC83VQWYlL4E3QztBIABWxl/B8oPpIAJmPmG68MRiMaKiorh9hvVpdf8FZ4UUv93UAgC8XeQIad+mulzm2mDOYw3eGNoJAgD/jr+CFYfSAZguPJlMhk2bNpnfOcYD0+pE56WS4/OInujhrYK3i8La7tyXWUMNOd4nhw3CIyK8/iRbCLIl0+pEBwCjgrys7YJJvP5kJwgEAqw4lI5PDl+Bngy5YGMgIpSUGJoxFAoF6wbWDGA9UloIM5/oiLfDAgAYynmrj1xt1HklJSVwcHCAg4MDJz6GdTFZdCdPnsSoUaPg5eUFgUCAvXv38uKJCIsWLYKnpyfkcjlCQ0Nx9Sr/C5Kbm4vIyEgolUqoVCq8/PLLKCoq4tlcuHABgwYNgp2dHby9vbF8+XLT787GmPlER0SHdwYAfHrkClYduWJljxgPgsmiKy4uRlBQUL1jtJYvX47PPvsM69atQ3JyMuzt7REWFoaysruzREVGRiI1NRXx8fH46aefcPLkSUyfPp2LLygowLBhw+Dj44OzZ89ixYoVWLx4MTZs2PAAt2hbvDqkA94dbhDeqiNX8Wk8E16Lgx4CALRnzx7uWK/Xk1qtphUrVnBhWq2WZDIZfffdd0REdPnyZQJAp0+f5mwOHDhAAoGA/vrrLyIi+vLLL8nZ2ZnKy8s5m+joaAoICGi0b/n5+QSA8vPzH/T2mjXrjl8jn+ifyCf6J1p5OL1eu6KiIgJAAKioqMiCHrYeTP2umbVMl5mZCY1Gg9DQUC7MyckJwcHBSEpKAgAkJSVBpVKhT58+nE1oaCiEQiGSk5M5m8GDB0MqvdsYHRYWhvT0dOTl5dV57fLychQUFPA2W2bG4x3w/0YYcrzVCVexMv4KyDbXgrE5zCo6jUYDAPDw4E/K6eHhwcVpNBpufJcRsVgMFxcXnk1dadS8xr3ExsbCycmJ27y9vR/+hpo50wd3wHsjugAAPmPCazHYTO3l/PnzkZ+fz223bt2ytksWYdrg9lgw0iC8z49ew78PM+E1d8zaTqdWqwEAWVlZ8PT05MKzsrLQo0cPziY7O5t3XlVVFXJzc7nz1Wo1srKyeDbGY6PNvchkMshk1uu2ZU1eGdQeAPDh/jR8cewaCIR5wwIgEAggEonw3HPPAQBEIpE13WRUY9aczs/PD2q1GgkJCVxYQUEBkpOTERISAgAICQmBVqvF2bNnOZujR49Cr9cjODiYszl58iQqKys5m/j4eAQEBMDZ2dmcLtsMrwy6m+OtOZbB9V6xs7PDzp07sXPnTtjZNa9ubq0WU2tqCgsLKSUlhVJSUggArVy5klJSUujGjRtERLRs2TJSqVT0ww8/0IULF2j06NHk5+dHpaWlXBrh4eHUs2dPSk5Opl9++YU6depEERERXLxWqyUPDw+aPHkyXbp0ibZt20YKhYLWr1/faD9tvfayPv7v5z+4Ws1lB9JIr9db2yWbx9TvmsmiO3bsGFcFXXOLiooiIkOzwcKFC8nDw4NkMhkNHTqU0tP5Vdo5OTkUERFBDg4OpFQqaerUqVRYWMizOX/+PA0cOJBkMhm1bduWli1bZpKfrVV0REQbf7krvNg4JrymxtTvGltz3EbZlJiJxT9ehr6iDLc+NZTpWsNsYESE4god8ksrUaXTg8iQK+iJYPimGz71BFD1PtWzrycy5CjV58nEIjzatvYCLKZ+11plh+fWwJTH/CAQCLDw+7tl5xNXsuHipISdRAR59WYnEcJOatiXiJpXZXZZpQ7akkpoSyuQV1wJbUkFtKWVyCupQH6J4TOvpJLb15YabCp1TZOPtHezx9G5Qx46HSY6GyZqgC8qykow/VPD8b++/Q1Caf2VKSKhoFqIBjHKJSLIpcZjEeTVYXYSEWRig0Br5iLGXIG4Y36uAqrL3rCv0xMKyiqRV1ItrpJKlFbqHvjeJSIBJCIhBACEAgFg+INQKIAAgEBQ47M6TiAw2PLCBYAAhv22KvMsC8ZEZ+M8H+wDY6/WQC9HVAqkKKvUo6xSh9LqzVjA0OkJReVVKCo303LBZkAkFEAll8BJIYGzQgpnhQROcsOnSiGBSiGFqjrOeOyskEAuETXbYUxMdK2IXa8+VqtMR0So0OlRVqFHaaWOJ8ayCh3KqnQorRFXVqlDaYUO5VV6LodAde4grJFrGOf0NOYUwntyjbs5jeE8oQBQyqtFJK8Wkb0EDlLbmx+Uia6VIxAIIBOLIBOL4IQHm92MYRrNq+TMYLQCWE5n44hEIowYMYLbZ1gfJjobx87ODvv377e2G4wasNdLBsPCsJyuFaLT6XidyRkNI5FIzPpqzkRn4xQXF3ODhrOyslBYWAitVmtdp1ogKpUKarXaLG1/THStAOPUezk5OdzKrGwOzMZB1fOGGseA1hwn+qAw0bUS7O3tUVRUBLVajTZt2ljbnRaFXG7o/pWdnQ13d/eHftVkFSmtBKPQFIrmP5V8c8T43MxRFmaiayUYXyXZK+WDYc7nxkTHYFgYJjpGq6KupQAsDatIsXGEQiEef/xxuLu7s1fLZgITnY0jl8tx/PhxlJWVITMz09ruMMBeLxnVDBkyBG+88QbeeecduLi4QK1WY/HixVz89evXIRAIcO7cOS5Mq9VCIBDg+PHjAIDjx49DIBDg0KFD6NmzJ+RyOZ588klkZ2fjwIED6NKlC5RKJZ5//vkGl+3atGkTVCoV9u7di06dOsHOzg5hYWG1JhBeu3YtOnToAKlUioCAAHz77be8+KtXr2Lw4MGws7NDYGAg4uPjefEVFRV4/fXX4enpCTs7O/j4+CA2NvbBHqAJMNExOL755hvY29sjOTkZy5cvx5IlS2p9URvD4sWL8cUXX+DXX3/FrVu3MGHCBKxatQpbt27F/v37cfjwYXz++ecNplFSUoKlS5di8+bNSExMhFarxaRJk7j4PXv24M0338TcuXNx6dIlzJgxA1OnTsWxY8cAAHq9HmPHjoVUKkVycjLWrVuH6Oho3jU+++wz7Nu3Dzt27EB6ejq2bNkCX19fk+/XZJpqWjJr05qn4KtJUVERubq6Uo8ePejSpUu8+Udr8vjjj9PAgQN5YX379qXo6GgiIsrMzCQAlJKSwsXn5eURADp27BgR3Z2e8ciRI5xNbGwsAaCMjAwubMaMGRQWFlavz19//TUBoFOnTnFhaWlpBICSk5OJiGjAgAE0bdo03nnjx4+nESNGEBHRoUOHSCwWcytBERlWh0KNlaZmzZpFTz75ZKOmKCwtLaXLly/X+fysumoPo3ly586delc7qkn37t15x56enrWmwG8MNdPx8PCAQqFA+/bteWH3S1csFqNv377ccefOnaFSqZCWlgYASEtLw2OPPcY757HHHuPFe3t7w8vr7lLXxlnGjUyZMgXnzp1DQEAA3njjDRw+fNjEO30wmOgYHBIJf7oGgUAAvV4PwFALCoC3OEl9vTNqpiMQCBpM15r06tULmZmZ+OCDD1BaWooJEyZw6z40JUx0jEbh5uYGALh9+zYXVrNSxdxUVVXhzJkz3HF6ejq0Wi26dDGs19ClSxckJibyzklMTERgYCAXf+vWLZ6/p06dqnUdpVKJiRMn4quvvsL27duxa9cu5ObmNsUtcbAmA0ajkMvl6N+/P5YtWwY/Pz9kZ2djwYIFTXY9iUSCWbNm4bPPPoNYLMbrr7+O/v37o1+/fgCAt99+GxMmTEDPnj0RGhqKH3/8Ebt378aRI0cAGBYa9ff3R1RUFFasWIGCggK89957vGusXLkSnp6e6NmzJ4RCIXbu3Am1Wg2VStVk9wWwnI5hAhs3bkRVVRV69+6N2bNn48MPP2yyaykUCkRHR+P555/HY489BgcHB2zfvp2LHzNmDFavXo1PPvkEXbt2xfr16/H1119jyJAhAAyvw3v27EFpaSn69euHV155BUuXLuVdw9HREcuXL0efPn3Qt29fXL9+HXFxcdyrdFPB1jKwcYqLi+Hg4AAfHx/s378fHTp0aPZLZm3atAmzZ89uVoNtjZ0L/Pz8aj0/tpYBg4dQKESfPn3g4eHBuoE1E5jobBy5XI7Tp0+zbmDNCFamYzQ7pkyZ0qxeLc0NEx2DYWGY6GyckpIS+Pr6YujQoc2iQZrBynQ2DxHhxo0b1naDUQOz53SLFy+uXlDv7ta5c2cuvqysDDNnzkSbNm3g4OCAcePGISsri5fGzZs3MXLkSCgUCri7u+Ptt99GVVXzWTONwXgYmiSn69q1K9czADB0XjXy1ltvYf/+/di5cyecnJzw+uuvY+zYsVyXHp1Oh5EjR0KtVuPXX3/F7du38eKLL0IikeCjjz5qCncZDMvSqLEIJhATE0NBQUF1xmm1WpJIJLRz504uzDhkIykpiYiI4uLiSCgUkkaj4WzWrl1LSqWSysvLG+0HG9pjoKioiACQj49Pg0N7GA3T7If2XL16FV5eXmjfvj0iIyNx8+ZNAMDZs2dRWVmJ0NBQzrZz585o164dkpKSAABJSUno1q0bPDw8OJuwsDAUFBQgNTW13muWl5ejoKCAtzEYzRGziy44OBibNm3CwYMHsXbtWmRmZmLQoEEoLCyERqOBVCqt1aHUw8MDGo0GAKDRaHiCM8Yb4+ojNjYWTk5O3Obt7W3eG2O0CE6ePIlRo0bBy8urWcz8VRdmL9MNHz6c2+/evTuCg4Ph4+ODHTt2cNNTNwXz58/HnDlzuOOCggImPBjGrgUGBpplDv6WQHFxMYKCgvDSSy9h7Nix1nanTpq8yUClUsHf3x/Xrl3DU089hYqKCmi1Wl5ul5WVBbVaDQBQq9X43//+x0vDWLtptKkLmUwGmUxm/hto4SgUCqSmpj5UNzAiQmmlzsyeNQ65RGRSn9Hhw4fzfvibI00uuqKiImRkZGDy5Mno3bs3JBIJEhISMG7cOACGwYk3b97khtKHhIRg6dKl3GINABAfHw+lUskNUGRYltJKHQIXHbLKtS8vCYNCalvNyWa/m3nz5mHUqFHw8fHB33//jZiYGIhEIkRERMDJyQkvv/wy5syZAxcXFyiVSsyaNQshISHo378/AGDYsGEIDAzE5MmTsXz5cmg0GixYsAAzZ85kORnDJjC76P78809EREQgJycHbm5uGDhwIE6dOsUN9//0008hFAoxbtw4lJeXIywsDF9++SV3vkgkwk8//YRXX30VISEhsLe3R1RUFJYsWWJuV1sFJSUl6Nu3Lzw9PbF69eoHSkMuEeHykjAze9b4a9saZhfdtm3bGoy3s7PDmjVrsGbNmnptfHx8EBcXZ27XWiVEhMuXL6O4uPiB0xAIBDb3imdNWIdnBsPCsJ8vhk1RVFSEa9eucceZmZk4d+4cXFxc0K5dOyt6dhcmOoZNcebMGTzxxBPcsbHtNioqCps2bbKSV3yY6Bg2xZAhQ3gT4jZHWJmOwbAwTHQ2jkAggI+PD9q2bWttVxjVsNdLG0ehUOD69etsNrBmBMvpGAwLw0THYFgYJjobp7S0FH379sVzzz3X7Gv1WgusTGfj6PV6nDlzBj4+Pkx0zQSW0zEYFoaJjsGwMEx0DIaFYaJj2Aw6nQ4LFy6En58f5HI5OnTogA8++KDZlWVZRQrDZvj444+xdu1afPPNN+jatSvOnDmDqVOnwsnJCW+88Ya13eNgomsFuLq6wtnZ+cETIAIqS8znkClIFEAjJyb69ddfMXr0aIwcORIA4Ovri++++67WRFfWhonOxrG3t8c///zzcN3AKkuAj7zM61hj+X9/A1L7RpkOGDAAGzZswJUrV+Dv74/z58/jl19+wcqVK5vYSdNgomPYDO+++y4KCgrQuXNniEQi6HQ6LF26FJGRkdZ2jQcTHeP+SBSGHMda124kO3bswJYtW7B161Z07doV586dw+zZs+Hl5YWoqKgmdNI0mOhsnNLSUgwfPhzu7u5YvHjxgyUiEDT6Fc+avP3223j33XcxadIkAEC3bt1w48YNxMbGMtExLIder8eJEydaRTewkpISCIX8VjCRSNTsVqBlomPYDKNGjcLSpUvRrl07dO3aFSkpKVi5ciVeeukla7vGg4mOYTN8/vnnWLhwIV577TVkZ2fDy8sLM2bMwKJFi6ztGg8mOobN4OjoiFWrVmHVqlXWdqVBWDcwBsPCMNExGBaGia4VoFAomnRBToZpsDKdjWNvb4/i4mI2G1gzguV0rQxbb6trKsz53JjoWgkSiQSAoQGZYTrG52Z8jg8De720ccrKyrilptetW4fs7GwAhnKeKWt5t1aICCUlJcjOzoZKpYJI9PCLVDLR2Tg6nY5bYNPZ2RlisZgTHqPxqFQqqNVqs6TFRNeKEAgE8PT0hLu7OyorK63tTotBIpGYJYczwkTXChGJRGb9EjFMo1lXpKxZswa+vr6ws7NDcHBwsxt2z2A8CM1WdNu3b8ecOXMQExOD3377DUFBQQgLC2PlEUaLp9mKbuXKlZg2bRqmTp2KwMBArFu3DgqFAhs3brS2awzGQ9Esy3QVFRU4e/Ys5s+fz4UJhUKEhoYiKSmpznPKy8tRXl7OHefn5wMACgoKmtbZZk5xcTG3X1BQAJ1OZ0VvbBPjd6yxDejNUnR37tyBTqeDh4cHL9zDwwO///57nefExsbi/fffrxXu7e3dJD62RLy8rDSjVyuhsLAQTk5O97VrlqJ7EObPn485c+Zwx3q9Hrm5uWjTpk2LbAQuKCiAt7c3bt26BaVSaW13LEZLvG8iQmFhYaN/1Jql6FxdXSESiZCVlcULz8rKqreBUiaTQSaT8cJUKlVTuWgxlEpli/nymZOWdt+NyeGMNMuKFKlUit69eyMhIYEL0+v1SEhIQEhIiBU9YzAenmaZ0wHAnDlzEBUVhT59+qBfv35YtWoViouLMXXqVGu7xmA8FM1WdBMnTsQ///yDRYsWQaPRoEePHjh48GCtyhVbRSaTISYmptYrs63TGu5bQGyAFYNhUZplmY7BsGWY6BgMC8NEx2BYGCY6BsPCMNGZicWLF0MgEPC2zp07c/FlZWWYOXMm2rRpAwcHB4wbN65W4//NmzcxcuRIKBQKuLu74+2330ZVVRXP5vjx4+jVqxdkMhk6duyITZs21fKlKYdEnTx5EqNGjYKXlxcEAgH27t3LiyciLFq0CJ6enpDL5QgNDcXVq1d5Nrm5uYiMjIRSqYRKpcLLL7+MoqIins2FCxcwaNAg2NnZwdvbG8uXL6/ly86dO9G5c2fY2dmhW7du3Ah5U3yxCsQwCzExMdS1a1e6ffs2t/3zzz9c/L/+9S/y9vamhIQEOnPmDPXv358GDBjAxVdVVdGjjz5KoaGhlJKSQnFxceTq6krz58/nbP744w9SKBQ0Z84cunz5Mn3++eckEono4MGDnM22bdtIKpXSxo0bKTU1laZNm0YqlYqysrLMcp9xcXH03nvv0e7duwkA7dmzhxe/bNkycnJyor1799L58+fpmWeeIT8/PyotLeVswsPDKSgoiE6dOkU///wzdezYkSIiIrj4/Px88vDwoMjISLp06RJ99913JJfLaf369ZxNYmIiiUQiWr58OV2+fJkWLFhAEomELl68aJIv1oCJzkzExMRQUFBQnXFarZYkEgnt3LmTC0tLSyMAlJSURESGL7NQKCSNRsPZrF27lpRKJZWXlxMR0TvvvENdu3blpT1x4kQKCwvjjvv160czZ87kjnU6HXl5eVFsbOxD3+O93Cs6vV5ParWaVqxYwYVptVqSyWT03XffERHR5cuXCQCdPn2aszlw4AAJBAL666+/iIjoyy+/JGdnZ+6+iYiio6MpICCAO54wYQKNHDmS509wcDDNmDGj0b5YC/Z6aUauXr0KLy8vtG/fHpGRkbh58yYA4OzZs6isrERoaChn27lzZ7Rr144bqpSUlIRu3brxGv/DwsJQUFCA1NRUzqZmGkYbYxrGIVE1be43JMqcZGZmQqPR8K7v5OSE4OBg3n2qVCr06dOHswkNDYVQKERycjJnM3jwYEilUs4mLCwM6enpyMvL42waehaN8cVaMNGZieDgYGzatAkHDx7E2rVrkZmZiUGDBqGwsBAajQZSqbRWB2wPDw9oNBoAgEajqXMokzGuIZuCggKUlpY2OCTKmEZTYrxGQ9fXaDRwd3fnxYvFYri4uJjlWdSMv58v1qLZdgNraQwfPpzb7969O4KDg+Hj44MdO3awdQQYPFhO10SoVCr4+/vj2rVrUKvVqKiogFar5dnUHKqkVqvrHMpkjGvIRqlUQi6XP9CQKHNivEZD11er1bXmuamqqkJubq5ZnkXN+Pv5Yi2Y6JqIoqIiZGRkwNPTE71794ZEIuENVUpPT8fNmze5oUohISG4ePEi7wsZHx8PpVKJwMBAzqZmGkYbYxrWHhLl5+cHtVrNu35BQQGSk5N596nVanH27FnO5ujRo9Dr9QgODuZsTp48yZubMz4+HgEBAXB2duZsGnoWjfHFali1GseGmDt3Lh0/fpwyMzMpMTGRQkNDydXVlbKzs4nI0GTQrl07Onr0KJ05c4ZCQkIoJCSEO9/YZDBs2DA6d+4cHTx4kNzc3OpsMnj77bcpLS2N1qxZU2eTgUwmo02bNtHly5dp+vTppFKpeLWiD0NhYSGlpKRQSkoKAaCVK1dSSkoK3bhxg4gM1fQqlYp++OEHunDhAo0ePbrOJoOePXtScnIy/fLLL9SpUydek4FWqyUPDw+aPHkyXbp0ibZt20YKhaJWk4FYLKZPPvmE0tLSKCYmps4mg/v5Yg2Y6MzExIkTydPTk6RSKbVt25YmTpxI165d4+JLS0vptddeI2dnZ1IoFPTss8/S7du3eWlcv36dhg8fTnK5nFxdXWnu3LlUWVnJszl27Bj16NGDpFIptW/fnr7++utavnz++efUrl07kkql1K9fPzp16pTZ7vPYsWMEoNYWFRVFRIaq+oULF5KHhwfJZDIaOnQopaen89LIycmhiIgIcnBwIKVSSVOnTqXCwkKezfnz52ngwIEkk8mobdu2tGzZslq+7Nixg/z9/UkqlVLXrl1p//79vPjG+GIN2NAeBsPCsDIdg2FhmOgYDAvDRMdgWBgmOgbDwjDRMRgWhomOwbAwTHQMhoVhomMwLAwTHYNhYZjoWjhDhgzB7Nmzre0GR3PzpznCRMdARUWFtV1oXVi78yfjwYmKiqrV8fjatWv00ksvka+vL9nZ2ZG/vz+tWrWq1nmjR4+mDz/8kDw9PcnX15eIDD33g4KCSCaTUe/evWnPnj0EgFJSUrhzL168SOHh4WRvb0/u7u70wgsvcBMw1eVPZmampR5Hi4GJrgWj1WopJCSEpk2bxs1AVlZWRosWLaLTp0/TH3/8Qf/9739JoVDQ9u3bufOioqLIwcGBGzpz6dIlys/PJxcXF3rhhRcoNTWV4uLiyN/fnye6vLw8brhRWloa/fbbb/TUU0/RE088Ua8/VVVV1ng0zRo2XUMLxsnJCVKpFAqFgjcauuYy0H5+fkhKSsKOHTswYcIELtze3h7/+c9/uMl/1q1bB4FAgK+++gp2dnYIDAzEX3/9hWnTpnHnfPHFF+jZsyc++ugjLmzjxo3w9vbGlStX4O/vX6c/DD5MdDbImjVrsHHjRty8eROlpaWoqKhAjx49eDbdunXjzbaVnp6O7t27w87Ojgvr168f75zz58/j2LFjcHBwqHXNjIwM+Pv7m/dGbBQmOhtj27ZtmDdvHv79738jJCQEjo6OWLFiBTe9nRF7e3uT0y4qKsKoUaPw8ccf14rz9PR8YJ9bG0x0LRypVAqdTscdJyYmYsCAAXjttde4sIyMjPumExAQgP/+978oLy/nFmQ8ffo0z6ZXr17YtWsXfH19IRbX/dW51x9GbViTQQvH19cXycnJuH79Ou7cuYNOnTrhzJkzOHToEK5cuYKFCxfWEk9dPP/889Dr9Zg+fTrS0tJw6NAhfPLJJwAAgUAAAJg5cyZyc3MRERGB06dPIyMjA4cOHcLUqVM5od3rj16vb7qbb6Ew0bVw5s2bB5FIhMDAQLi5uSEsLAxjx47FxIkTERwcjJycHF6uVx9KpRI//vgjzp07hx49euC9997DokWLAIAr53l5eSExMRE6nQ7Dhg1Dt27dMHv2bKhUKgiFwjr9Mc5yzbgLmyOFUS9btmzB1KlTkZ+fzybMNSOsTMfg2Lx5M9q3b4+2bdvi/PnziI6OxoQJE5jgzAwTHYNDo9Fg0aJF0Gg08PT0xPjx47F06VJru2VzsNdLBsPCsIoUBsPCMNExGBaGiY7BsDBMdAyGhWGiYzAsDBMdg2FhmOgYDAvDRMdgWJj/D4N4BKerkggjAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_monitoring_metric('total_cpu_util_s', component='benchmarker').max() - evaluation.get_monitoring_metric('total_cpu_util_s', component='benchmarker').min()\n",
+ "plot_metric(df, \"Driver compute [CPUs]\", peak_benchmark)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Maximum CPU Util"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 87,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMEAAADsCAYAAADNcMJ0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwNElEQVR4nO2deVgT1/rHvyEkQIAQFtmUVQQBERUVcbel4obaTWxpi9Zrva21el1q/bl2sbhUr9Va7W3r0latepW2WoVaFRdUriAiIuLGpoCoQNghJO/vj8hIZBEke+bzPHlI5pw5884w3znLvOc9HCIisLAYMEaaNoCFRdOwImAxeFgRsBg8rAhYDB5WBCwGDysCFoOHFQGLwcOKgMXgYUXAYvCwIniK+Ph4cDgclJaWatoUFjWhdyKYMmUKOBwOOBwOeDweHBwc8NJLL2Hbtm2QyWTP3H/gwIEoKCiAlZWVGqzVbgoLCzFr1ix4enrCxMQELi4uCA8Px/Hjx5k87u7uzPU2NzdHnz59sH//fiZ9ypQpmDhxYpOytelho3ciAIBRo0ahoKAA2dnZOHr0KEaMGIHZs2dj3LhxqK+vb3E/iUQCPp8PR0dHcDgcldlXV1ensrKVRXZ2NoKCgnDixAmsXbsWaWlpiI2NxYgRIzBz5kyFvJ999hkKCgqQkpKCfv36ISIiAufOndOQ5c8B6RlRUVE0YcKEJtuPHz9OAOj7779ntgGgb7/9lsLDw0kgENDy5cvp5MmTBIBKSkpILBaTqakpHTlyRKGsgwcPkoWFBVVWVhIRUW5uLr3++utkZWVF1tbWNH78eMrKympi0xdffEFOTk7k7u7erO3Lly+nwMBA+vHHH8nFxYXMzc3p/fffp/r6elq9ejU5ODhQp06d6IsvvlDYb926ddSjRw8SCATUpUsXev/996m8vJxJnzp1KgUEBFBNTQ0REdXW1lKvXr3o7bffbvE6jh49mjp37kwVFRVN0kpKSpjvbm5u9O9//5v5LZFISCAQ0CeffKJw7k/T+DprGr2sCZrjhRdeQGBgIA4ePKiwfcWKFXj55ZeRlpaGd999VyFNKBRi3Lhx2L17t8L2Xbt2YeLEiRAIBJBIJAgLC4OlpSXOnDmDhIQEWFhYYNSoUQpP/OPHjyMzMxPHjh3D4cOHW7Tz9u3bOHr0KGJjY7Fnzx78+OOPGDt2LO7evYtTp05h9erVWLJkCRITE5l9jIyMsHHjRqSnp2Pnzp04ceIEPv74YyZ948aNqKysxCeffAIAWLx4MUpLS/HNN980a0NxcTFiY2Mxc+ZMmJubN0kXiUQt2m9sbAwej6cTtR2DplWobFp68hARRUREkK+vL/MbAM2ZM0chz9NPqJiYGIWnfkPtcPToUSIi+vnnn8nHx4dkMhlTRm1tLZmZmVFcXBxjk4ODA9XW1rZq+/Lly0kgEFBZWRmzLSwsjNzd3UkqlTLbfHx8KDo6usVy9u/fT7a2tgrbzp07Rzwej5YuXUrGxsZ05syZFvdPTEwkAHTw4MFW7SVSrAlqa2vpyy+/JAB0+PBhItKNmsBYowpUM0TUpK3ft2/fVvcZM2YMeDwe/vjjD0yePBkHDhyAUChEaGgoACA1NRW3bt2CpaWlwn41NTW4ffs28zsgIAB8Pv+ZNrq7uyuU5eDgAC6XCyMjI4VtRUVFzO+///4b0dHRuH79OsrKylBfX4+amhpUVVVBIBAAAEJCQjB//nx8/vnnWLhwIQYPHtyiDdTOKSYLFy7EkiVLUFNTAwsLC6xatQpjx45tVxmaxKBEkJGRAQ8PD4VtzVX3jeHz+Xjttdewe/duTJ48Gbt370ZERASMjeWXrqKiAkFBQdi1a1eTfTt16tTm4zTA4/EUfjeMcj29rWGkKzs7G+PGjcP777+PlStXwsbGBmfPnsW0adNQV1fHiEAmkyEhIQFcLhe3bt1q1YZu3bqBw+Hg+vXrbbJ5wYIFmDJlCiwsLODg4KDwoBEKhcjJyWmyT2lpKbhcbpuviyoxmD7BiRMnkJaWhldffbXd+0ZGRiI2Nhbp6ek4ceIEIiMjmbQ+ffrg5s2bsLe3h5eXl8JHHcOsycnJkMlkWLduHQYMGABvb2/k5+c3ybd27Vpcv34dp06dQmxsLLZv395imTY2NggLC8PmzZtRWVnZJP3pYU07Ozt4eXk1O6rm4+OD9PR01NbWKmy/dOkSPDw8mghcE+ilCGpra1FYWIh79+7h0qVL+PLLLzFhwgSMGzcO77zzTrvLGzp0KBwdHREZGQkPDw8EBwczaZGRkbCzs8OECRNw5swZZGVlIT4+Hh999BHu3r2rzNNqFi8vL0gkEmzatAl37tzBzz//jK1btyrkSUlJwbJly/DDDz9g0KBBWL9+PWbPno07d+60WO7mzZshlUrRv39/HDhwADdv3kRGRgY2btyIkJCQNtsXGRkJDoeDd955B8nJybh16xa2bduGDRs2YN68ec993spEL0UQGxsLJycnuLu7Y9SoUTh58iQ2btyI33//HVwut93lcTgcvPHGG0hNTVWoBQBAIBDg9OnTcHV1xSuvvAJfX19MmzYNNTU1EAqFyjqlFgkMDMT69euxevVq9OjRA7t27UJ0dDSTXlNTg7feegtTpkxBeHg4AOC9997DiBEj8Pbbb0MqlTZbrqenJy5duoQRI0Zg3rx56NGjB1566SUcP34cW7ZsabN9IpEIZ86cgUQiwfjx49GrVy9s3LgR69evx4wZMzp28kqCQ+3tBbGw6Bl6WROwsLQHVgQsBg8rAhaDhxUBi8HDioDF4GFFwGLwqN1tQiaTIT8/H5aWlir12WdhISKUl5fD2dlZwffqadQugvz8fLi4uKj7sCwGTF5eHrp06dJiutpF0OAhmZeXp5Y3qiyGS1lZGVxcXJp4+D6N2kXQ0AQSCoUGLQKpVIozZ84AAIYMGfJc7hwsbeNZzW6DcqXWJmpqajBixAgAcndsbXApNlTY0SEWg4cVAYvBwzaH9IWi60DsQuBuMmDpAFg6AcLOgND58aczIHy8TWAHtDJkaGiwItB1JNXAmXXA2Q2ATCLf9qgceNTKFEoj3hNBCJ2fEszjvxYOANcwbg/DOEt95fZJ4M+5QPHjGWLeo4BhCwFJFVCWD5Tde/y30afivlwspbnyT0twjORCELkCnfsCrsGAywB5LaNnsCLQRSoeAH8tBq7slf+2dAJGrwF8w4FnvYWXSoDywiciKS9oKpjyAkBWL/9bXgDkJQIXNsv3F7kBrgMAl2D5x94XMNLt4V1WBBqCx+NhzZo1zPc2IZMBl38B/loK1JQC4AD93wNeWAKYtvGdC5cHiFzknxaPIwUqH8gF8fCGXAS5iUDRNaA0R/5pEKCJEOjSTy4I12B5rWFi0TZbtAS1T68sKyuDlZUVxGKxQb8sazdF14HD/wJyH8f4dAwAxn0NdAlSnw01YuDuRSDvf0DuBeBuEiB5KhoFhws49nhSU7gOAKxadllQJW2911gRaDtPd3x5AmDEYiD4n5rvuErrgaJ0eS2R9/gjzmuaT9j5iSi69AXM7eQ1iIlQpefAikDLkUqluHTpEgB57KJm3Saa6/iOWSvvrGor4ntPBJGXCBRcAaj5iBYAAL6FXAymwhb+Wsk/LaWZWLbYJ2FFoOVUVlbCwkLedm7iNtGRjq+2UVcJ3LsE5F2Q1xj3rwLVpUB9tfKOETQFCP+6yea23mv62zEmAi7tlA8DSiXy0Q6pRN6kkNY//lvXSpqk0bZGeczt5CMi9n7yj4MfYOWinJtTGR1fbYNvDngMkX8aU18H1JbJ+xm1ZUBN2ZO/CtvEjdLEivmkj6PacU06ZKL+iuBGLHBotvLLrSiUP80aw7d8LAxfwMH/8Xd/wNy27eVqQ8dXnRjzAWM7+UPleamvlYuhg0O0+iuCa7/L/7oEy4fwuDz5m1IuDzAybvTbGODyW05jtvPkF7u8QD5UeP8aUJQhH0KsKwfu/k/+aYy5vbymsG/86S5/OjYmfjWQ/K32dXy1HWMTwKLTs/M9qxglmKJ9SCVA5hH599AVgNtAJRbeC/AZ/eRnfR1QfBu4ny4XRdE1+ackG6gsAu4UAXfiG+3PAazdAKHPk00JGwA+Rzc6vnqIfoog+4y8/WjeSV4TqBJj/pOmUGNqK4AHmfIhxKKMJyKpLJIL5H7Wk7wWjsDEr3Sz46sH6KcIMg7J/3Yfq7lX+iYW8vb80236yofymiLnMhD9uM8y4xRg66R2E1nk6J8IZFIg4/GaYL7hmrWlOcztAI+h4HUegOXLiwEAPMt2dKBZlI7+ieDuRXmTw8QKcB+qaWtahM/nY8WKFZo2gwX6OLOsoSnkM0reXmdheQb6VRMQARl/yL9rY1OoETKZDBkZGQAAX1/fVoNDsagW/RJB4RX5G2JjM6Dri5q2plWqq6vRo0cPAGy0CU2jX4+fhqaQ14sAX6BZW1h0Bv0Uge94zdrBolPojwge3gQeXJe7PXiHadoaFh1Cf0TQUAt4DAPMRBo1hUW30D8RaPmoEIv2oR8iKM0D8i8B4MhdJVgMhqv3xKirl3WojHaJYMuWLejZsycTUTokJARHjx7tkAFK4fqf8r+uIYCFvWZtaSM8Hg/z58/H/Pnz2x5tgoWhtKoOi2PSEP7NWfx4NuvZO7RCu94TdOnSBatWrUK3bt1ARNi5cycmTJiAlJQU+Pv7d8iQDqGDTSE+n4+1a9dq2gydQyYj7E/Ow6qj11FSJY+4l1tc1aEyOzzH2MbGBmvXrsW0adPalF/pc4wrHgDrvAGSAXPSWF98PebqPTGW/n4VKbmlAABvBwt8NqEHBng274Co8jnGUqkU+/fvR2VlJUJCQlrMV1tbi9raWgXDlErmEbkAnHrplABkMhlyc+VhEF1dXVm3iVYQV0mw7lgmfrmQAxkB5nwu/vWSN6IGuoPH7fh1a7cI0tLSEBISgpqaGlhYWCAmJgZ+fn4t5o+Ojsann37aISNbRQebQoDcbcLDwwMA6zbREjIZ4cClu1h19DoeVdYBAMYHOmPxWF84CE2Vdpx2N4fq6uqQm5sLsViM//73v/jhhx9w6tSpFoXQXE3g4uKinOZQjRhY01U+N3fmRaCTd8fKUyOthlxhwbX8Miz7/SqSckoAAF72FvhsvD8GerV9Yr7KmkN8Ph9eXl4AgKCgIFy8eBFff/01vvvuu2bzm5iYwMSkYyExWuTGX3IB2PnolABYWqasRoL1f93AT+ezISNAwOdi9ovdMHWQB/jGqmkydtiLVCaTKTzp1YqOuE2zPBsiQkzKPXx55DoeVsjvp7EBTlgyzhdOVmYqPXa7RLBo0SKMHj0arq6uKC8vx+7duxEfH4+4uDhV2dcydVXArb/l333Hqf/4WkaNRIq0e2JIpDIEe9iCa6Q7E/avF5Zh2W/p+F+2fLqpp505Pp3gjyHdOh5OpS20SwRFRUV45513UFBQACsrK/Ts2RNxcXF46aWXVGVfy9w+IV+MwspFPjJkYBSV1SA5pwRJOSVIzilBer4YEqm8e9dZZIY3g10xuZ8LbC1U1BRVAuU1Emz4+yZ2nMuGVEYw5Rlh1gvd8I8hHjAxVl+AhHaJ4Mcff1SVHe3neqPJ9HoepkQqI1wvLMOlxzd8Uk4J7pY0jeVpZ2GCepkM90qrsTYuE1//fRNjezrhrQFu6OMqeuZ6vuqCiPBHaj5W/pmBonJ502eUvyOWhvuhs0i1TZ/m0M2ZZY2Da+lof8DY2BgffPAB870xZTUSpOSWIjmnBJdySpCSW4LKOsXIzkYcwMdRiCA3Efq62SDIzRpdrM1QWy/D4SsF+PlCDlLzShGTcg8xKffg7yzEOyFuGB/YGWZ8za0sc/N+OZb+fhUX7sibPu62AqwY74/hPppzd9HNqNS3TwA/vywPrjUvU6eXCyIi5BZXMU/4SzklyLxfjqf/KxYmxujtKkKQmzX6utkg0MUKlqat+xxduVuKn87n4FBqPmofO5kJTY3xel8XvDXADR52qh+Wra2X4spdMRLvPEJiVjHO336EehnBxNgIH47wwvShnjDlqeb/p9+h2Q//C0ja1mJIbm2ntl6KU5kPcPhKAc7dfsSMhjTGzVaAIFdr9HGzRpCbNbwdLJ+7s1tSWYf9yXn45UKugp/NkG52eCfEHS90t1daR7pGIsWl3BIk3ilGYtYjpOSWMgJs4CU/Bywb5wcXG9VOgdVfEcikwLru8thCbx0AvEKVb6QKqJfKcO72I/yRmo+49EKUVUsgq5a7kJhaiBDQxQp93W3Qx9UafdxEsLdU3hvRBmQywqkbD/DzhRyczCxiapuOdKSr6uqRnPPkpk/NE6NOqnjT25rzEexpg/7uNgjpagcfR0tlnVKr6K8Ici8A28LkwbUW3NLq2EIyGSEppwSHUvNxJK2AefUPAJ1MCUmfyvszD0vEsBWpd/2B3EdV2JWYg71JeSh97I3J5xphbE8nvB3iht4uzXeky2skSGp006fdFaNepngL2VuaINjTFsEeNhjgaYOunSw00inXXxHELQbOfwP0jABe+Y/yDewgRIS0e2IcSs3H4SsFKBDXMGk25nyMCXBEeE9n+HUygVAofyJq0m2iRiKVd6TPZyP1rpjZ3tCRHuFjL2/TZ8nb9FfvifHUPQ9nK1Pmpg/2tIW7rUArRqL0c6UaLQ6udfN+Of5Izceh1HxkP3rS7rY0MUZYD0eEBzpjYFdbxuuxsrKypaLUiimPi9eCuuC1oC5IzSvFzxdy8EdqPtLzy7DwQFqz+7jYmCHYo+FJb4su1mZacdM/L7olAi0LrpX7qAqHrshv/OuF5cx2U54RXvR1wPhAZwzz7qSy0Q9lE+giQqCLCIvH+GJfUh5+ScxBXnE1PO3MEexpg2APW/T3sIGzBsbyVYluiaDBbbpbqMaCa90vq8HhKwX4IzUfqXmlzHYel4Nh3p0QHuiMUF8HmJvo1qVtjLU5HzOGdcX0IZ6okkhhocPn0hZ06+w0GFyrrl6Gufsu48+0AmZUxYgDDOxqh/BAJ4zyd4KVQL/mChsZcfReAIAuieDBjcfBtXhAt5FqP/xvl+/h8JUCAEBfN2uEBzpjTIATOllqr28OS9vQHRFcbwiuNVTtwbVkMsJ3p24DAD4Z3R3/HNa1w2UaGxsjKiqK+c6iOXTn6mtwGuXx60W4/aASlqbGiAxWzjxmExMT7NixQyllsXQM3ZjdXZoH5KdAU8G1tj6uBd4a4PZMfx0W3UM3agINBtdKyi5Gck4J+FwjTB3orrRyiQhVVfL3CQKBdrxcMlR0oybQYFOooRZ4Nagz7JUY4aCqqgoWFhawsLBgxMCiGbRfBBUPgNxz8u9qnkZ58345/s4oAocDTB/iqdZjs6gP7ReBBoNrfXf6DgAgzM8Rnp0s1HpsFvWh/SLQUFOoQFyN3y/fAwDMGMbWAvqMdougRgzciZd/V/Nb4m1nsyCREoI9bNDb1Vqtx2ZRL9otAg0F1xJXS7A7UR4nVBkvxli0G+0WgYbcpn+5kIPKOil8HCwx3Ec9sW9YNIf2vidQCK6lPhHUSKTYnpANQN4XUNX4PZfLxWuvvcZ8Z9Ec2isCJriWK+AUqLbDHrx0Dw8ratFZZIbwQGeVHcfU1BT79+9XWfksbUd7m0ONR4XU9DZVKiP857T85di0wR5KiX3Pov1o53+5vg648XgtNDW+IPsrvRDZj6pgZcZDRD8XtR2XRbNopwiyz8iHR807AS7BajkkETEuElEhbiqfGVZZWQkOhwMOh6M1840NFe0UQUNTqPtYtUWXu3CnGKl3xTAxNsI7SnSUY9F+2iWC6Oho9OvXD5aWlrC3t8fEiRORmZmpXItk0ideo2ocFWqoBSb1dYGdFkdyZlE+7RLBqVOnMHPmTFy4cAHHjh2DRCLByJEjlVud370ojy5nYgW4D1Veua2QUVCGUzcewIh1lDNI2tXwjY2NVfi9Y8cO2NvbIzk5GUOHKumGbWgK+YxSW3S5hqmTYwKc4GqrmSgWLJqjQ70/sVgesczGxqbFPO1awlUDwbXullTh0OMJ9KyLhGHy3B1jmUyGOXPmYNCgQejRo0eL+aKjo2FlZcV8XFxaGXrUQHCtH85kQSojDPayQ4/OVmo5Jot28dw1wcyZM3H16lWcPXu21XyLFi3C3Llzmd8NS7g2i5qDa5VU1mHvxTwA6neX5nK5GDNmDPOdRXM8lwg+/PBDHD58GKdPn0aXLl1azduuJVzVHFzrp/M5qJZI4e8sxOB2rI+rDExNTfHnn3+q9ZgszdMuERARZs2ahZiYGMTHxzMrsisFNQfXqq6TYuf5bADAjGFd2YnuBky7RDBz5kzs3r0bv//+OywtLVFYWAgAsLKygplZB4O0NgTX8hymluBa+5PzUFxZBxcbM4zp4ajy47UFqVQKiUSiaTN0Bh6Pp5SmZLtEsGXLFgDA8OHDFbZv374dU6ZM6ZglvhMAaT3g4N+xctpAvVSG/zyeP/zeEE8Ya8BRrrKyEvb28vAx9+/fR3l5OUpLS9Vuh64jEong6OjYoZq83c0hlWHnBQxfqLryG3HkaiHullTDxpyP14I05yjXEGrl0aNHqKqqgr29PRuDqI00xG0qKioCADg5OT13Wdo7n0BFEBG2xstfjk0Z6K7R5UwBwNzcHBUVFXB0dIStra1GbdE1GprgRUVFsLe3f+6mkXY60KmQs7ce4lpBGcx4XLw9wE3T5jA3vkDAvql+HhquW0f6UgYnggZHucn9XWBtrvlF/xqaPmwT6PlQxnUzKBGk3RUj4dYjcI04mDZYicO7LDqNQYlg6+Opk+MDndHFmm1+aAscDge//fabxo5vMB3jnEeVOJomd5R7b6jm3aWNjIwwbNgw2Nvbs00hDWMwIvj+zB3ICBju0wm+TupdOLs5zMzMEB8fj5qaGmRlZWnaHIPGIJpDDytqsT/pLgBgxlDdcZcePnw4PvroI3z88cewsbGBo6MjVqxYwaRnZ2eDw+Hg8uXLzLbS0lJwOBzEx8cDAOLj48HhcBAXF4fevXvDzMwML7zwAoqKinD06FH4+vpCKBTizTffbDVE/I4dOyASifDbb7+hW7duMDU1RVhYGPLy8hTybdmyBV27dgWfz4ePjw9+/vlnhfSbN29i6NChMDU1hZ+fH44dO6aQXldXhw8//BBOTk4wNTWFm5sboqOjn+8CthGDEMHOc9morZch0EWEAZ4tz33QRnbu3Alzc3MkJiZizZo1+Oyzz5rcOG1hxYoV+Oabb3Du3Dnk5eVh0qRJ2LBhA3bv3o0///wTf/31FzZt2tRqGVVVVVi5ciV++uknJCQkoLS0FJMnT2bSY2JiMHv2bMybNw9Xr17FjBkzMHXqVJw8eRKA3P3+lVdeAZ/PR2JiIrZu3YqFCxVfkG7cuBF//PEH9u3bh8zMTOzatQvu7u7tPt92QWpGLBYTABKLxWo5XkWNhHquiCO3hYfpyJV8tRyzLVRUVJCdnR316tWLrl69StXV1U3yDBs2jAYPHqywrV+/frRw4UIiIsrKyiIAlJKSwqSXlJQQADp58iQREZ08eZIA0N9//83kiY6OJgB0+/ZtZtuMGTMoLCysRXu3b99OAOjChQvMtoyMDAJAiYmJREQ0cOBAmj59usJ+r7/+Oo0ZM4aIiOLi4sjY2Jju3bvHpB89epQAUExMDBERzZo1i1544QWSyWQt2tKY6upqunbtWrPXr633mt7XBL9ezIO4WgIPO3OM9NcOR7kGHj58iJKSklbz9OzZU+G3k5MT4yrQHhqX4+DgAIFAAE9PT4VtzyrX2NgY/fr1Y353794dIpEIGRkZAICMjAwMGjRIYZ9BgwYppLu4uMDZ+Ulkv5CQEIX8U6ZMweXLl+Hj44OPPvoIf/31VzvPtP3otQgkUhl+PPPYUW6oJ7hGujcKw+MpLhTI4XAgk8kAyEeYAEWfrpbenDYuh8PhtFquJunTpw+ysrLw+eefo7q6GpMmTWJitqoKvRbBodR85ItrYGdhgpd7d9a0OUqnUyd5xOyCggJmW+NOsrKpr69HUlIS8zszMxOlpaXw9fUFAPj6+iIhIUFhn4SEBPj5+THpeXl5CvZeuHChyXGEQiEiIiLw/fffY+/evThw4ACKi4tVcUoA9HiIlIjw3Sl5LfDuYHeY8vRvCqOZmRkGDBiAVatWwcPDA0VFRViyZInKjsfj8TBr1ixs3LgRxsbG+PDDDzFgwAD0798fALBgwQJMmjQJvXv3RmhoKA4dOoSDBw/i77/l0cVDQ0Ph7e2NqKgorF27FmVlZVi8eLHCMdavXw8nJyf07t0bRkZG2L9/PxwdHSESiVR2XnpbE+xPuovM++WwMDFGZLDmHeVUxbZt21BfX4+goCDMmTMHX3zxhcqOJRAIsHDhQrz55psYNGgQLCwssHfvXiZ94sSJ+Prrr/HVV1/B398f3333HbZv387MPzEyMkJMTAyqq6vRv39//OMf/8DKlSsVjmFpaYk1a9agb9++6NevH7Kzs3HkyBGm6acS2tQFVyLqGB26VVRO3ZccJbeFh+nbk7dUdpyOUFFRQQDIzc2txdEhbWL79u1kZWWlaTOaoIzRIb1rDtXWS/HRnhRUS6QY2NUWM7TARaI5jIyM0LdvXzg4OLBuExpG70SwNjYT6fllsBbw8O+IXjDS0hEhMzMzXLx4kXWb0AL0qk8Qn1mEH87Kb6i1rwXCQYkr0Bs6U6ZM0ds50HojggfltZi/PxUA8E6IG0L9HDRsEYuuoBcikMkI8/an4mFFHbo7WuL/xvhq2qRnUlVVBXd3d7z44ota8ZLKkNGLPsG2hCycvvEAJsZG2PRGb514J0BEyMnJ0bQZLNCDmuDqPTFWx14HACwd54duDpYatohF19BpEVTW1uOjPSmQSAkj/RwQGeyqaZNYdBCdFsGnh9Jx52ElHIWmWP1qT3a8neW50FkRHErNx76ku+BwgH9H9NKK8CksuolOiiCvuAr/dzANAPDhCC+EdGUjt2kzp0+fRnh4OJydnTUeWaI5dE4E9VIZZv+agvLaevRxFWH2i900bdJzweFw4OfnBy8vL02bonIqKysRGBiIzZs3a9qUZtG5IdKNx2/iUm4pLE2M8fXk3hqJKK0MBAIB0tPTO+Q2QUSolkiVbFnbMONx29wHGz16NEaPHq1ii56fdovg9OnTWLt2LZKTk1FQUICYmBhMnDhRBaY1JfHOI3xz8hYAYOUrAXCxMewAWtUSKfyWxWnk2Nc+C4OAr3PP0GZp92NUU1VbaVUd5uy9DBkBrwV1wfhA52fvxMLSBtot5fZWbe1awrUFiAgLD1xBgbgGHnbm+HS86hfyUDVVVVXo168fnJyc8PXXXz9XGWY8Lq59FqZky9p+bH1B5fVZdHQ0Pv300w6Vsft/uYhLvw8el4ONk3vD3ET3q2EiwrVr11BZWfncZXA4HL1pkmgSlfcqFy1aBLFYzHyejlj2LG7eL8fnh68BAD4O646ALuxawyzKReWPkXYt4foUNRIpZu1JQY1EhiHd7Nhw6jpKRUUFbt26xfzOysrC5cuXYWNjA1dXzbu6aHVduurodVwvLIedBR/rJgVq7SwxltZJSkrCiBEjmN8Ni7tHRUVhx44dGrLqCVorgr+v3ceOc9kAgLWvB8Lekp0lpqsMHz5ctYs+dpB2i0AdVdv9shos+K98lti0wR4Y4WOvlHJZWJqj3SJQddUmkxHm7ruMkioJ/J2F+HiUT4fL1EY4HA7c3NzQubP+RcbTNdotAlVXbd+dvoOEW49gxuNi4xu9YWKsP+PRjREIBMjOzmajTWgBWuV4czmvFOv+ygQArBjvh66dLDRsEYshoDUiKK+RYPavKaiXEcYGOGFSX82tNM9iWGiNCNb9dQM5j6rQWWSGL18J0PtZYtXV1ejXrx9ee+01rR45MQS0Zoh01gteyC+txntDPWFlxnv2DjqOTCZDUlIS3NzcWBFoGK0Rga2FCf7zTl9Nm8FigGhNc4iFRVOwImAxeFgRsKgcqVSKpUuXwsPDA2ZmZujatSs+//xzrekLaU2fgEV/Wb16NbZs2YKdO3fC398fSUlJmDp1KqysrPDRRx9p2jxWBJrEzs4O1tbWz18AESBpeRV6lcITAG0cxj537hwmTJiAsWPHAgDc3d2xZ88e/O9//1OlhW2GFYGGMDc3x4MHDzrmNiGpAr7U0Fzr/8sH+OZtyjpw4ED85z//wY0bN+Dt7Y3U1FScPXsW69evV7GRbYMVAYvK+eSTT1BWVobu3buDy+VCKpVi5cqViIyM1LRpAFgR6DY8gfyJrKljt5F9+/Zh165d2L17N/z9/XH58mXMmTMHzs7OiIqKUqGRbYMVgYaorq7G6NGjYW9vjxUrVjxfIRxOm5skmmTBggX45JNPMHnyZABAQEAAcnJyEB0dzYrAkJHJZDh16pRBuE1UVVU1WYeYy+VqzQo9rAhYVE54eDhWrlwJV1dX+Pv7IyUlBevXr8e7776radMAsCJgUQObNm3C0qVL8cEHH6CoqAjOzs6YMWMGli1bpmnTALAiYFEDlpaW2LBhAzZs2KBpU5qFdZtgMXhYEbAYPKwINIhAIICZmZmmzTB42D6BhjA3N0dlZSUbbUILYGsCLUHf3xWoCmVcN1YEGobHk8+nrqrSkDeojtNw3Rqu4/PANoc0RE1NDV599VUAwNatW1FUVARA3k/Q90gbyoCIUFVVhaKiIohEInC5zx+kjRWBhpBKpThy5AgAwNraGsbGxowQWNqOSCSCo6Njh8pgRaAFcDgcODk5wd7eHhKJRNPm6Aw8Hq9DNUADrAi0CC6Xq5R/Kkv7eK6O8ebNm+Hu7g5TU1MEBwdrzTQ5Fpbnod0i2Lt3L+bOnYvly5fj0qVLCAwMRFhYGNueZdFZ2i2C9evXY/r06Zg6dSr8/PywdetWCAQCbNu2TRX2sbConHb1Cerq6pCcnIxFixYx24yMjBAaGorz5883u8/T6xiLxWIAz7eesT7ReOnWsrIySKVSDVqjnzTcY896odYuETx8+BBSqRQODg4K2x0cHHD9+vVm92lpHWMXFzb0egPOzhqKGGEglJeXw8qq5aV/VT46tGjRImZJJ0A+rbC4uBi2trY6+VKorKwMLi4uyMvLg1Ao1LQ5akFXz5mIUF5e/syHTLtEYGdnBy6Xi/v37ytsv3//fosvLJpbx1gkErXnsFqJUCjUqRtCGejiObdWAzTQro4xn89HUFAQjh8/zmyTyWQ4fvw4QkJC2m8hC4sW0O7m0Ny5cxEVFYW+ffuif//+2LBhAyorKzF16lRV2MfConLaLYKIiAg8ePAAy5YtQ2FhIXr16oXY2NgmnWV9xcTEBMuXL2/SxNNn9P2cOcQ6srMYOOx8AhaDhxUBi8HDioDF4GFFwGLw6L0IVqxYAQ6Ho/Dp3r07k15TU4OZM2fC1tYWFhYWePXVV5u8DMzNzcXYsWMhEAhgb2+PBQsWoL6+XiFPfHw8+vTpAxMTE3h5eWHHjh1NbFGlC/rp06cRHh4OZ2dncDgc/PbbbwrpRIRly5bByckJZmZmCA0Nxc2bNxXyFBcXIzIyEkKhECKRCNOmTUNFRYVCnitXrmDIkCEwNTWFi4sL1qxZ08SW/fv3o3v37jA1NUVAQAAzg649tqgV0nOWL19O/v7+VFBQwHwePHjApP/zn/8kFxcXOn78OCUlJdGAAQNo4MCBTHp9fT316NGDQkNDKSUlhY4cOUJ2dna0aNEiJs+dO3dIIBDQ3Llz6dq1a7Rp0ybicrkUGxvL5Pn111+Jz+fTtm3bKD09naZPn04ikYju37+vlPM8cuQILV68mA4ePEgAKCYmRiF91apVZGVlRb/99hulpqbS+PHjycPDg6qrq5k8o0aNosDAQLpw4QKdOXOGvLy86I033mDSxWIxOTg4UGRkJF29epX27NlDZmZm9N133zF5EhISiMvl0po1a+jatWu0ZMkS4vF4lJaW1i5b1IlBiCAwMLDZtNLSUuLxeLR//35mW0ZGBgGg8+fPE5H85jIyMqLCwkImz5YtW0goFFJtbS0REX388cfk7++vUHZERASFhYUxv/v3708zZ85kfkulUnJ2dqbo6OgOn+PTPC0CmUxGjo6OtHbtWmZbaWkpmZiY0J49e4iI6Nq1awSALl68yOQ5evQocTgcunfvHhERffvtt2Rtbc2cNxHRwoULycfHh/k9adIkGjt2rII9wcHBNGPGjDbbom70vjkEADdv3oSzszM8PT0RGRmJ3NxcAEBycjIkEglCQ0OZvN27d4erqyvjGn7+/HkEBAQovAwMCwtDWVkZ0tPTmTyNy2jI01BGgwt64zzPckFXJllZWSgsLFQ4vpWVFYKDgxXOUyQSoW/fvkye0NBQGBkZITExkckzdOhQ8Pl8Jk9YWBgyMzNRUlLC5GntWrTFFnWj9yIIDg7Gjh07EBsbiy1btiArKwtDhgxBeXk5CgsLwefzmzj0OTg4oLCwEABQWFjYrOt4Q1precrKylBdXd2qC3pDGaqk4RitHb+wsBD29vYK6cbGxrCxsVHKtWic/ixb1I3eT7QfPXo0871nz54IDg6Gm5sb9u3bx8YBZQFgADXB04hEInh7e+PWrVtwdHREXV0dSktLFfI0dg13dHRs1nW8Ia21PEKhEGZmZs/lgq5MGo7R2vEdHR2bzBOvr69HcXGxUq5F4/Rn2aJuDE4EFRUVuH37NpycnBAUFAQej6fgGp6ZmYnc3FzGNTwkJARpaWkKN8ixY8cgFArh5+fH5GlcRkOehjI07YLu4eEBR0dHheOXlZUhMTFR4TxLS0uRnJzM5Dlx4gRkMhmCg4OZPKdPn1aIjXTs2DH4+Pgwi5I/61q0xRa1o5HuuBqZN28excfHU1ZWFiUkJFBoaCjZ2dlRUVEREcmHSF1dXenEiROUlJREISEhFBISwuzfMEQ6cuRIunz5MsXGxlKnTp2aHSJdsGABZWRk0ObNm5sdIjUxMaEdO3bQtWvX6L333iORSKQw6tQRysvLKSUlhVJSUggArV+/nlJSUignJ4eI5MOSIpGIfv/9d7py5QpNmDCh2SHS3r17U2JiIp09e5a6deumMERaWlpKDg4O9Pbbb9PVq1fp119/JYFA0GSI1NjYmL766ivKyMig5cuXNztE+ixb1IneiyAiIoKcnJyIz+dT586dKSIigm7dusWkV1dX0wcffEDW1tYkEAjo5ZdfpoKCAoUysrOzafTo0WRmZkZ2dnY0b948kkgkCnlOnjxJvXr1Ij6fT56enrR9+/YmtmzatIlcXV2Jz+dT//796cKFC0o7z5MnTxKAJp+oqCgikg9NLl26lBwcHMjExIRefPFFyszMVCjj0aNH9MYbb5CFhQUJhUKaOnUqlZeXK+RJTU2lwYMHk4mJCXXu3JlWrVrVxJZ9+/aRt7c38fl88vf3pz///FMhvS22qBPWlZrF4DG4PgELy9OwImAxeFgRsBg8rAhYDB5WBCwGDysCFoOHFQGLwcOKgMXgYUXAYvCwIlARw4cPx5w5czRtBoO22aNNsCLQYurq6jRtgmGgMa8lPSYqKqqJI9utW7fo3XffJXd3dzI1NSVvb2/asGFDk/0mTJhAX3zxBTk5OZG7uzsRyT0zAwMDycTEhIKCgigmJoYAUEpKCrNvWloajRo1iszNzcne3p7eeustJqBAc/ZkZWWp63JoPawIVEBpaSmFhITQ9OnTmQgXNTU1tGzZMrp48SLduXOHfvnlFxIIBLR3715mv6ioKLKwsGBcla9evUpisZhsbGzorbfeovT0dDpy5Ah5e3sriKCkpIRx787IyKBLly7RSy+9RCNGjGjRnvr6ek1cGq2EFYGKGDZsGM2ePbvVPDNnzqRXX32V+R0VFUUODg4K0Ry2bNlCtra2Cr7233//vYIIPv/8cxo5cqRC2Xl5eQSAcVFuiz2Git7PMdYmNm/ejG3btiE3NxfV1dWoq6tDr169FPIEBAQoRHPIzMxEz549YWpqymzr37+/wj6pqak4efIkLCwsmhzz9u3b8Pb2Vu6J6BmsCNTEr7/+ivnz52PdunUICQmBpaUl1q5dy4QzacDc3LzdZVdUVCA8PByrV69ukubk5PTcNhsKrAhUBJ/PV1iWNSEhAQMHDsQHH3zAbLt9+/Yzy/Hx8cEvv/yC2tpaZpGMixcvKuTp06cPDhw4AHd3dxgbN/8vfdoeliewQ6Qqwt3dHYmJicjOzsbDhw/RrVs3JCUlIS4uDjdu3MDSpUub3MzN8eabb0Imk+G9995DRkYG4uLi8NVXXwEAs/rnzJkzUVxcjDfeeAMXL17E7du3ERcXh6lTpzI3/tP2yGQy1Z28jsGKQEXMnz8fXC4Xfn5+6NSpE8LCwvDKK68gIiICwcHBePTokUKt0BJCoRCHDh3C5cuX0atXLyxevBjLli0DAKaf4OzsjISEBEilUowcORIBAQGYM2cORCIRjIyMmrWnIQofC7tck06ya9cuTJ06FWKxmA0gpgTYPoEO8NNPP8HT0xOdO3dGamoqFi5ciEmTJrECUBKsCHSAwsJCZrVQJycnvP7661i5cqWmzdIb2OYQi8HDdoxZDB5WBCwGDysCFoOHFQGLwcOKgMXgYUXAYvCwImAxeFgRsBg8/w8+xTZ37NHa0wAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_monitoring_metric('total_cpu_util', component='benchmarker').max()\n",
+ "plot_metric(df, \"Driver max CPU\", peak_benchmark)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Maximum Util of a CPU Core"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 88,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 88,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAANMAAADsCAYAAADuK5OhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7HUlEQVR4nO2dd1wUx/vHP8dxlaN3FAFFELE31MSOoiaWaNQoiaiJSX6aYo0xsaUYjRpjokbTlCSWqN+oiT32QhAriIAoCIJKUZFylIO7e35/rKyedLjjKPN+vfYlOzM7++y6n5vZZ2eeERARgcFg1BgTYxvAYDQUmJgYDD3BxMRg6AkmJgZDTzAxMRh6gomJwdATTEwMhp5gYmIw9AQTE4OhJ5iYyuDUqVMQCATIzMw0tikMPP3/EAgEGDlyZI3qWrJkCV/XmjVr9GIf0IDFNGnSJP6GiUQiODo6YuDAgdi0aRO0Wm2Fx/fs2RMpKSmwtLSsBWsZlSU2NhbBwcH8/tatW+Hq6gpra2vMmjVLp2xiYiK8vLyQnZ2tkz5nzhykpKSgadOmerWtwYoJAAYPHoyUlBQkJibi0KFD6NevHz788EO8/PLLUKvVZR5XVFQEsVgMJycnCAQCg9lXWFhosLqfRaPRVOoHpD7g4OAAKysrAMDDhw/x1ltvYdWqVfj333+xZcsW7N+/ny87bdo0LF++HBYWFjp1KBQKODk5QSgU6tW2Bi0miUQCJycnNGnSBJ06dcInn3yCv//+G4cOHdL5dRMIBNiwYQOGDx8OMzMzLF26VKebl52dDZlMhkOHDunUv2fPHpibmyMvLw8AkJycjLFjx8LKygo2NjYYMWIEEhMT+fKTJk3CyJEjsXTpUri4uMDb27tM2/ft24euXbtCKpXCzs4Or7zyCp/3+PFjTJw4EdbW1pDL5RgyZAhu3brF5wcHB8PKygr//PMPWrduDYlEgqSkJKhUKsyZMwdNmjSBmZkZ/Pz8cOrUqXLvoUAgwI8//oiXX34ZcrkcPj4+CA0NRVxcHPr27QszMzP07NkT8fHx/DHx8fEYMWIEHB0doVAo0LVrVxw7dozPv3HjBuRyObZt28an7dy5EzKZDNHR0eXa8yy3b9+GpaUlxo0bh65du6Jfv36IiYkBAGzfvh0ikQijRo2qdH01hhooQUFBNGLEiFLz2rdvT0OGDOH3AZCDgwNt2rSJ4uPj6c6dO3Ty5EkCQI8fPyYioldffZVef/11nXpGjx7NpxUWFpKPjw9NmTKFrl27RtHR0TRhwgTy9vYmlUrF26RQKOiNN96g69ev0/Xr10u1b//+/SQUCmnRokUUHR1N4eHh9NVXX/H5w4cPJx8fHzpz5gyFh4dTQEAAeXp6UmFhIRERbd68mUQiEfXs2ZNCQkLoxo0blJubS2+99Rb17NmTzpw5Q3FxcbRy5UqSSCR08+bNMu8jAGrSpAnt2LGDYmNjaeTIkeTu7k79+/enw4cPU3R0NHXv3p0GDx7MHxMeHk4bN26kyMhIunnzJi1YsICkUinduXOHL7N+/XqytLSkO3fuUHJyMllbW9N3331Xph3P/38QEWVkZJC5uTlduXKFHj16RB4eHnT48GHKyMigFi1aUFJSUpn1ERG5ubnRt99+W26ZqtAoxTRu3Djy8fHh9wHQjBkzdMo8/5+3Z88eUigUlJubS0REWVlZJJVK6dChQ0RE9Mcff5C3tzdptVq+DpVKRTKZjI4cOcLb5OjoyIurLHr06EGBgYGl5t28eZMAUEhICJ/28OFDkslktHPnTiLixASAwsPD+TJ37twhoVBI9+7d06lvwIABNH/+/DJtAUALFizg90NDQwkA/frrr3za9u3bSSqVlntNvr6+tHbtWp20l156iXr16kUDBgygQYMG6dy75ylNTEREu3fvpjZt2lCLFi1o8eLFREQ0ZcoU+vbbb+n06dPUoUMH8vX1pV27dpWoU99iMq29NrDuQEQl3oW6dOlS7jFDhw6FSCTCP//8g9deew1//fUXLCws4O/vDwCIiIhAXFwczM3NdY4rKCjQ6QK1bdsWYrG43HOFh4dj6tSppebFxMTA1NQUfn5+fJqtrS28vb35Lg4AiMVitGvXjt+PjIyERqOBl5eXTn0qlQq2trbl2vNsPY6Ojvx1PJtWUFCA7OxsWFhYQKlUYsmSJThw4ABSUlKgVquRn5+PpKQknXo3bdoELy8vmJiYICoqqlrvp6+88opOF/j06dO4du0a1q5dC09PT2zfvh1OTk7o1q0bevfuDQcHhyqfo7I0SjHFxMTAw8NDJ83MzKzcY8RiMV599VVs27YNr732GrZt24Zx48bB1JS7hUqlEp07d8bWrVtLHGtvb1/p8wCATCarzGVUWMezD6dSqYRQKMTly5dLvHgrFIpy6xKJRPzfxXWWllbs5JgzZw6OHj2KVatWwdPTEzKZDK+++moJh0tERARyc3NhYmKClJQUODs7V+NKn6JSqTBt2jT88ccfiIuLg1qtRp8+fQAAXl5eCAsLw7Bhw2p0jvJodGI6ceIEIiMjMXPmzCofGxgYiIEDByIqKgonTpzAl19+yed16tQJO3bsgIODQwnvUVVp164djh8/jsmTJ5fI8/HxgVqtRlhYGHr27AkAePToEWJjY9G6desy6+zYsSM0Gg3S09PRq1evGtlXESEhIZg0aRLfYiiVSh1HDABkZGRg0qRJ+PTTT5GSkoLAwEBcuXKlRj8kX375JQYPHoxOnTrh6tWrOh7boqIiaDSaatddGRq0N0+lUiE1NRX37t3DlStX8NVXX2HEiBF4+eWXMXHixCrX17t3bzg5OSEwMBAeHh46Xa3AwEDY2dlhxIgROHv2LBISEnDq1Cl88MEHuHv3bpXOs3jxYmzfvh2LFy9GTEwMIiMj8fXXXwMAWrZsiREjRmDq1Kk4d+4cIiIi8Prrr6NJkyYYMWJEmXV6eXkhMDAQEydOxO7du5GQkIALFy5g2bJlOHDgQJXvRXm0bNkSu3fvRnh4OCIiIjBhwoQSrvl3330Xrq6uWLBgAVavXg2NRoM5c+ZU+5zR0dHYsWMHPv/8cwBAq1atYGJigl9//RUHDhzAjRs30LVr1xpdV4Xo7e2rjhEUFEQACACZmpqSvb09+fv706ZNm0ij0eiUBUB79uzRSSvrhfejjz4iALRo0aIS50xJSaGJEyeSnZ0dSSQSat68OU2dOpWysrJ4m8pyijzPX3/9RR06dCCxWEx2dnY0atQoPi8jI4PeeOMNsrS0JJlMRgEBAToeuc2bN5OlpWWJOgsLC2nRokXk7u5OIpGInJ2d6ZVXXqFr166Vacfz9yYhIYEA0NWrV/m05+9VQkIC9evXj2QyGbm6utK6deuoT58+9OGHHxIR0W+//UZmZmY6NoeFhZFIJKKDBw+WakdZ/x9ERFqtll544QXat2+fTvq+ffuoWbNm5OjoSD///HOJ4/TtgBAQsYAqjLrPqVOn0K9fPzx+/Jj/aFtT3N3dMWPGDMyYMUMv9TXobh6j4dG0aVOMHz++RnV89dVXUCgUJbyLNYW1TIx6QX5+Pu7duwfg6XCg6pKRkYGMjAwAnKdVX+MvmZgYDD3BunkMhp5gYmIw9AQTE4OhJ+rlCAitVov79+/D3NzcoPONGAwiQk5ODlxcXGBiUn7bUy/FdP/+fbi6uhrbDEYjIjk5ucKZufVSTMUjs5OTk2s8Do7BKI/s7Gy4urqWmA1QGvVSTMVdOwsLi0YvJo1Gg7NnzwIAevXqpfep2AyOyrxO1EsxMZ5SUFCAfv36AeBGZ1dmigfDMDBvHoOhJ6ospjNnzmDYsGFwcXGBQCDA3r17dfKJCIsWLYKzszNkMhn8/f11gn0A3HCOwMBAWFhYwMrKCm+++SaUSmWNLoTBMDZVFlNubi7at2+P9evXl5q/YsUKfP/999i4cSPCwsJgZmaGgIAAFBQU8GUCAwMRFRWFo0ePYv/+/Thz5gzefvvt6l8Fo9GgVKkxYt05TAm+CLWmjoUvq8n8DTw310Wr1ZKTkxOtXLmST8vMzCSJRELbt28nIqLo6GgCQBcvXuTLHDp0iAQCQYlgH2WRlZVFAPh5Qo0ZpVLJz9tSKpXGNsfgfH/sJrnN209u8/bT2uNlR1XSF1V51vT6zpSQkIDU1FQ+yAgAWFpaws/PD6GhoQCA0NBQWFlZ6QQw8ff3h4mJCcLCwkqtV6VSITs7W2djND6y8orw09nb/P53x28h+n7deRb0KqbU1FQATyPYFOPo6MjnpaamlogQY2pqChsbG77M8yxbtgyWlpb8xj7YNk5+PnsbOQVqeDuaY1BrRxRpCLN2hqNQXTe6e/XCmzd//nxkZWXxW3JysrFNqjOIRCKsWLECK1as0IkY1NB4pFRhU0gCAGDWIC8sfaUtbMzEuJGag++P36rg6NpBr9+ZiidspaWl6YRtSktLQ4cOHfgy6enpOsep1WpkZGSUOeFLIpFAIpHo09QGg1gsxty5c41thsHZeDoeeYUatG1iiUGtHSEQCPDlyDaYtvUKNpyOh39rR3RwtTKqjXptmTw8PODk5ITjx4/zadnZ2QgLC0OPHj0AAD169EBmZiYuX77Mlzlx4gS0Wq1OtB8Go5i07AL8HnoHADB7kBc/GmFoW2cMb+8CjZYwe2c4CooMG8qrIqosJqVSifDwcISHhwPgnA7h4eFISkqCQCDAjBkz8OWXX+Kff/5BZGQkJk6cCBcXF35NHR8fHwwePBhTp07FhQsXEBISgvfeew+vvfYaXFxc9HltjQKNRoOLFy/i4sWLBo8LZyzWnYiDSq1FV3dr9PGy18n7fIQv7M0liH+Qi1VHYo1k4ROq6iosDrn0/BYUFEREnHt84cKF5OjoSBKJhAYMGECxsbE6dTx69IjGjx9PCoWCLCwsaPLkyZSTk1NpG5hr/CkN3TWe9CiXPD85QG7z9lNo/MNSyxyPSSW3efvJ/eP9FHb7kV7PX5VnrV7GgMjOzoalpSWysrIa/UDX3NxcPrxxQxyb99H/IrDz0l286GmHLW+V/RpQXK6ZjRyHPuwFM4l+3AFVedbqhTeP0Ti5/UCJv65wEYlmDfIqt+yCl1vDxVKKpIw8LD90ozbMKwETE6POsubYLWi0hAGtHNCpmXW5ZS2kIqx4tT0A4I/zd3Du1sPaMFEHJiZGneRGajb2XbsPoOJWqZgXW9phYg83AFy3L7ugyGD2lQYTE6NO8u3RmyACXmrrDF+XygeJ/HhIK7jZynE/qwBf7Kv8kp76gImJUee4djcTR6LSYCIAZg5sWaVj5WJTrBrTHgIBsOvyXRyPSTOQlSVhYqrniEQiLF68GIsXL24ww4m++fcmAGBkhybwdKg49sLzdHW3wVsvcovZfbw7Eo9za2dVe+YaZ9QpLiZmYMzGUJiaCHB8dh+42VbP1V9QpMHLa88hLl2JYe1dsHZ8x2rVw1zjjHoJEfGjGMZ0ca22kABAKhLimzHtITQRYF/EfRy4lqIvM8uEiameo9VqERUVhaioqBKr89U3/ot/hLCEDIiFJni/v2eN62vvaoVpfVsAABbsjcSDHFWN6ywPJqZ6Tn5+Ptq0aYM2bdogPz/f2OZUGyLCyiet0gS/ZnCxqvki2QDwfv+W8HG2wOO8Iny6JxKGfKthYmLUCU7cSEd4ciakIhNM69dCb/WKTU2wemx7iIQC/Budhj1X7+mt7udhYmIYHa2WeA/epJ4ecDCX6rV+H2cLzPDnPvwu/icKKVmGacGZmOo56TkFFReq4xyOSkV0SjYUElO807u5Qc7xTu/maO9qhZwCNeb9ZZjuHhNTPUajJcz8M5zf//74zToTD6GyaLSE1Ue5VunNFz1gbSY2yHlMhSb4Zkx7SExNcObmA2y/oP/QB0xM9Zgfz8TjSlImv7/h1G0MX3cOkXezjGdUFfk7/B7i0pWwlInwZi8Pg57L00GBuQHeAIClB6KRnJGn1/qZmOopUfez8O2TX/RirM1EuJGag5E/hGDF4RtQqev2zNsijRZrjnHBUN7t0wIWUsOP4Jj8gge6udsgt1CDObsioNXqr7vHxFQPKSjSYNaOCBRpCAPbuGD27NmYM2cODs/sh5fbOUOjJfxwKh4vf38O4cmZxja3TP53+S6SMvJgpxAjqKdbrZxTaCLAyjHtIBMJEZaQgeD/EvVWNxtOVA/56mAMfjpzG3YKMY7M6A1bhW7kpsPXU7Bg73U8VBbCRABM7dUcMwd6QSqqO8vNFBRp0G/VKaRkFWDRy60x5UXDdvGe54/zd7Bw73VITE1w8MNeaGGvKLUcG07UgDl/+xF+fhLVdPmodiWEBACD2zjj6Mw+GNnBBVoCfjxzG0O/P4vLdzJq29wy2X4hCSlZBXCykGKCX7NaP//rfs3Qq6UdVGot5uyKgEYP3T0mpnpETkERZu+MABEwrosr/Fs7QqvVIjExEYmJiTrDiazNxFjzWkf8MrELHMwluP0gF69uDMUX+6ORX2jcd6m8QjXWn4wHALw/wNMoLaZAIMDXo9vBXGKKq0mZ+OnM7YoPqgAmpnrE5/uicS8zH642Miwc1hoAN5zIw8MDHh4epQ4n8m/tiKMz++DVzk1BBPx6LgFDvjuDsNuPatt8nt9D7+ChUoVmNnKM7WK8UNcuVjIsenIfvz16E7GpOTWqj4mpnvBvVCp2Xb4LgQD4ZkwHKKoQfcdSLsKqMe2xeXJXOFlIkfgoD+N+Oo8l/0Qhr1BtQKtLklNQhI2nuVbpwwEtIRIa9xF8tXNTDGjlgF4t7WAtr5k3kYmpHvBQqcL83ZEAgLd7N0c3D5tq1dPP2wH/zuqN17pyrUHwf4kIWHMG/8XXXvCRX88lIDOvCC3szTCyY5NaO29ZCAQCrJvQCb8EdYGDRc2GMTEx1XGICB//FYlHuYVo5WSOWQMrF1ykLCykIiwf3Q6/T+mGJlYyJGfkY8LPYViwNxJKlWFbqce5hfj1LBd8f+ZALwhNKl50uTaQiYWVWgC6IpiY6ji7Lt3FsZg0iIUm+HZcB0hM9fOy3tvLHodn9ELgE0/alvNJCPj2DM7eeqCX+kvjp7O3kaNSw8fZAkPbOFd8QD1D72Jyd3eHQCAosU2fPh0A0Ldv3xJ57777rr7NaBAkZ+Ths31RALhwVz7O+v2mZi4VYekrbbHtLT+42shwLzMfb/x6AR//dQ0303L0Os7vQY4KwSGJAIDZA71gUkdaJX2i1yVlAJQIIH/9+nUMHDgQY8aM4dOmTp2Kzz//nN+Xy+X6NqPew63sEIHcQg26udtgai/DjKYGgJ6edjj8YW+sOHwDv4XewZ8Xk/HnxWQITQRws5WjpYMCng4KtHQwh6eDAi3sFZCJq9ZC/nAqDvlFGrR3tcIAH4eKD6iH6F1M9va6qxQsX74cLVq0QJ8+ffg0uVxe5lpMDI5fzt7GhcQMmImF+GZs+zLfL0xNTTFt2jT+7+piJjHFZyPaYGhbZ3xz9Cai72dDqVLj9oNc3H6QiyNRT0NmCQRAU2sZPO0VaOloDk97BTwdOcGVNr7ufmY+tp5PAgDMeWZJmIaGQYcTFRYWwsXFBbNmzcInn3wCgOvmRUVFgYjg5OSEYcOGYeHCheW2TiqVCirV0/n72dnZcHV1bbDDiWJSsjFiXQgKNVp8PbotxnWt/RECRIS0bBVupecgLl2JW+lK7t+0HDzOKztSqqOFhG/BuNZMgV2X7+J/l++im4cNdrzdvV6JqSrDifTeMj3L3r17kZmZiUmTJvFpEyZMgJubG1xcXHDt2jXMmzcPsbGx2L17d5n1LFu2DJ999pkhTa0zqNQazNwRjkKNFv4+Dkb7qCkQCOBkKYWTpRS9Wur2Nh4pVToC4/7OQVq2it/OxZV0t88Z5F2vhFRVDNoyBQQEQCwWY9++fWWWOXHiBAYMGIC4uDi0aFH63P/G1DItP3QDG0/Hw9ZMjMMzesPevPzlR4kIDx9yD66dnZ1RH9bsgiJeXMWtWNwDJe4+zsdLbZ2xbkIno9lWXepEy3Tnzh0cO3as3BYHAL/0Znliaixr2l5MzMCPZ7jRAV+NaluhkAAgLy+PX73e2OszWUhF6NTMusSKFUUardFHOtQGBrvCzZs3w8HBAS+99FK55YqX83x2QenGiFKlxqyd4SDihrgE+DYcB01jEBJgoJZJq9Vi8+bNCAoK0vEwxcfHY9u2bRg6dChsbW1x7do1zJw5E71790a7du0MYUq94cv90UjOyEcTKxkWPxl8yahfGERMx44dQ1JSEqZMmaKTLhaLcezYMaxZswa5ublwdXXF6NGjsWDBAkOYUW84Fp2GPy8mc4NYx7aHeS1M32boH4OIadCgQaWGUnJ1dcXp06cNccp6yyOlCh/vvgYAeOtFD3RvbmtkixjVpXF0ZusoRIRP9kTiobIQ3o7mmD3I29gmMWoAE5MR+evKPRyJSoNIKMDqce3rVIwGRtUx6EdbRtncfZyHJf9wg1hn+HtVaanJZzE1NUVQUBD/N8N4sLtvBLRawpxdEVCq1OjsZo13+1Q/UL1EIkFwcLD+jGNUG9bNMwKbQhJw/nYG5GIhVpcziJVRv2AtUy1zMy0HK56sQ7TgpdY1Wh0P4JwYeXlcmF+5XN6gx77VdVjLVIsQERbsuY5CtRb9WzlgfLeaD2LNy8uDQqGAQqHgRcUwDkxMtciJG+m4kJgBsakJvhzZhrUiDQwmplpCoyV8ffgGAGDyC+56W2aSUXdgYqoldl+5i5tpSlhITTGtT80XP2bUPZiYaoGCIg2/oNf0fp6wrGGwQ0bdhImpFvjtv0SkZBXAxVKKoJ7uxjaHYSCYmAxMVl4R1p+MA4A6t6wLQ7+w70wG5ofTccguUMPLUYFRnZrqvX6hUIhXX32V/5thPJiYDMj9zHxsfhJ4cd7gVgYZ6SCVSrFr1y6918uoOqybZ0C+Pcqtft7Nwwb9WzXMwIuMpzAxGYjY1Bz8deUuAODjIa3YB9pGABOTgVh55Aa0BAz2dSoRrUef5Obm8jHbc3NzDXYeRsUwMRmACwkZOBaTDqGJAHMHs9mzjQUmJj1DRFh2KAYAMK6ra5mreDMaHkxMeuZIVBquJmVCJhJixoCWxjaHUYswMekRtUaLFUe4waxv9fKo8bKOjPoFE5Me2XnpLm4/yIW1XIS3extuPSVG3YSJSU/kFaqx5hg3mPX9/i1ZIMlGCBsBoSc2hyQiPUeFptYyBHavvfWUhEIhhg4dyv/NMB56b5mWLFlSYs3aVq1a8fkFBQWYPn06bG1toVAoMHr0aKSlpZVTY90nI7cQG09xq1fMDfDW2yLOlUEqleLAgQM4cOAApFL2jmZMDNLN8/X1RUpKCr+dO3eOz5s5cyb27duHXbt24fTp07h//z5GjRplCDNqjfUn45CjUqO1swWGtXMxtjkMI2GQbp6pqWmpa9ZmZWXh119/xbZt29C/f38A3NIzPj4+OH/+PLp3724IcwxKckYe/gi9A4AbNmTsVcQ1Gg2KispeJpOhi0gk0lv32CBiunXrFlxcXCCVStGjRw8sW7YMzZo1w+XLl1FUVAR/f3++bKtWrdCsWTOEhoaWKabSVg6sK6w+ehOFGi1e9LRDby/7ig/QM7m5uXBwcIBAIEBUVBSLUFQNrKys4OTkVOPxk3oXk5+fH4KDg+Ht7Y2UlBR89tln6NWrF65fv47U1FSIxWJYWVnpHOPo6IjU1NQy66yra9pG3c/C3vB7ALgpFsYiLy8PU6ZMQW5uLhwdHVn8vEpSHHMwPT0dQM0X3NO7mIYMGcL/3a5dO/j5+cHNzQ07d+6ETFa9iDzz58/HrFmz+P3iNW2NzYrDsSAChrV3Qdum1YsVrg/MzMwwfPhw2Nvbw9aWLUlTFYqfyfT0dDg4ONSoy2fw70xWVlbw8vJCXFwcnJycUFhYiMzMTJ0yaWlppb5jFSORSGBhYaGzGZv/4h7i9M0HEAkFmDPIy6i22NraQiwWV/vHqrEjl8sBoMbvmgYXk1KpRHx8PJydndG5c2eIRCIcP36cz4+NjUVSUhJ69OhhaFP0hlZLWHaIGzYU6OdW4xDHNeXZzxCMqqOv+6b3bt6cOXMwbNgwuLm54f79+1i8eDGEQiHGjx8PS0tLvPnmm5g1axZsbGxgYWGB999/Hz169KhXnryD11MQeS8LZmIh3uvPYuAxOPQuprt372L8+PF49OgR7O3t8eKLL+L8+fOwt+c8Xd9++y1MTEwwevRoqFQqBAQE4IcfftC3GQajSKPFyieB99/u3QJ2ComRLWIUIxAIsGfPHowcOdIo59e7mP78889y86VSKdavX4/169fr+9S1wvYLSbjzKA92Cgne6uVhbHNgYmKCbt26QSKRsG6ekWEDXauAUqXG98dvAQA+9G8JM4nxhzbKZDL8/vvvcHJygokJ++80JuzuV4Ffzt7GQ2Uh3G3leK2r8V3zlaVv37744IMP8NFHH8HGxgZOTk5YsmQJn5+YmAiBQIDw8HA+LTMzEwKBAKdOnQIAnDp1CgKBAEeOHEHHjh0hk8nQv39/pKen49ChQ/Dx8YGFhQUmTJhQ7ofj4OBgWFlZYe/evWjZsiWkUikCAgKQnJysU27Dhg1o0aIFxGIxvL298ccff+jk37p1C71794ZUKkXr1q1x9OhRnfzCwkK89957cHZ2hlQqhZubG5YtW1a9G1hJmJgqyYMcFX4+cxsAMDegFUTC+nXrfvvtN5iZmSEsLAwrVqzA559/XuIBrAxLlizBunXr8N9//yE5ORljx47FmjVrsG3bNhw4cAD//vsv1q5dW24deXl5WLp0KX7//XeEhIQgMzMTr732Gp+/Z88efPjhh5g9ezauX7+Od955B5MnT8bJkycBAFqtFqNGjYJYLEZYWBg2btyIefPm6Zzj+++/xz///IOdO3ciNjYWW7duhbu7e5Wvt0pQPSQrK4sAUFZWVq2dc+HeSHKbt5+GrztHWq221s5bEUqlkjp06EBHjhwhpVJZapk+ffrQiy++qJPWtWtXmjdvHhERJSQkEAC6evUqn//48WMCQCdPniQiopMnTxIAOnbsGF9m2bJlBIDi4+P5tHfeeYcCAgLKtHfz5s0EgM6fP8+nxcTEEAAKCwsjIqKePXvS1KlTdY4bM2YMDR06lIiIjhw5QqampnTv3j0+/9ChQwSA9uzZQ0RE77//PvXv379S/1f5+fkUHR1N+fn5JfKq8qzVr59XI5H4MBfbwpIAAB8Prnsx8B4/fgytVltumXbt2unsOzs788NoqsKz9RQPXWrevLlOWkX1mpqaomvXrvx+q1atYGVlhZgYLhBNTEwMXnjhBZ1jXnjhBZ18V1dXuLg8HaH//HfKSZMmITw8HN7e3vjggw/w77//VvFKqw4TUyVY9W8s1FpCX2979GhRP4friES6M38FAgEvwGLHBRHx+WWNBni2HoFAUG69xqRTp05ISEjAF198gfz8fIwdO5aPyW4omJgq4NrdTOy/lgKBwLiDWQ1J8TfAlJQUPu1ZZ4S+UavVuHTpEr8fGxuLzMxM+Pj4AAB8fHwQEhKic0xISAhat27N5ycnJ+vYe/78+RLnsbCwwLhx4/Dzzz9jx44d+Ouvv5CRkWGISwLApq2XS05BEebvjgQAvNKxCXycjT8m0BDIZDJ0794dy5cvh4eHB9LT07FgwQKDnU8kEuH999/H999/D1NTU7z33nvo3r07unXrBgCYO3cuxo4di44dO8Lf3x/79u3D7t27cezYMQCAv78/vLy8EBQUhJUrVyI7OxuffvqpzjlWr14NZ2dndOzYESYmJti1axecnJxKzFjQJ6xlKoOCIg3e/O0Sou5nw9ZMjDmDGnZk1k2bNkGtVqNz586YMWMGvvzyS4OdSy6XY968eZgwYQJeeOEFKBQK7Nixg88fOXIkvvvuO6xatQq+vr748ccfsXnzZvTt2xcA1y3ds2cP8vPz0a1bN7z11ltYunSpzjnMzc2xYsUKdOnSBV27dkViYiIOHjxo2G9xFboo6iCG9uYVqjU0efMFcpu3n9osOkyRdzMNch59oFQqyc3NjQ4dOlSmN8+oaIqIslOIch8RaTW0efNmsrS0NLZVOujLm8e6ec+h0RJm7YzAiRvpkIpM8OukrmjTxHhzlSrCxMQEbdq0gVgsrlteRiIg/zGQfQ/Qqrm0nBRAlWNcuwwI6+Y9AxFh4d/XsS/iPkxNBNjwemd087AxtlnlIpPJ8L///Q/Ozs51ZzhRUQHwKA7IvMMJSSgBTEwBTSGQlwGQFshJfSqyBgJrmZ5hxZFYbAtLgkAArHmtA/p5swXKqoRWC+SmATlpAAiAADB3AhQO3G7+I0ya8ComjRvOtVLKNMDMDjBzAIT1P2gnE9MTNpyKx4Ynse++eqUtXmYhu6qGKgfITAY0TwLfSMwBS1fA9MkUFQEAM3tAbgvkZ3JCUhcAynRA+YBLVzg8LV8PqSP9AuOyNewOvj7MzZz9ZGgrjO9WexFZa0peXh4GDBiAu3fvQqPR1L4BmiLgcSLXrdOouO6ctTtg06J0YQhMALkNYN8KsGkOiMwAEJD3EEiP5uoqyq/da9ATjb5l+jv8HhbsvQ4AmN6vBd7u3cLIFlUNIsK9e/dqX0hEQN4jIPs+QE/ObWYHmDtzgqoIgQCQWgISC6BQybVUqhzOaZH/mEtXOAKS+rO+VaMW04kbaZi9MwJEwBvd3Rr8tyS9UZTPdemKniz7aSoDrFwBcTViYQgEXJdQYg4U5nGiKsgEVNncJjYDFE5cfl3yVpZCoxXT+duP8H9brkCtJYzs4ILPhvvWLddyXUSr4bxwuU8GsgpMuJbIzF4/D7pYDth4PH2XyssACnOBjHhOsAoHQGZdZ0XVKMUUeTcLb/12CSq1Fv4+Dlg5pr3RwxrXeQqygKy7nHsb4LpoFk0BU7H+z2UqBayacZ5A5QPufUqdz7nac1K47p/MBqgrnwKe0OjEFJeeg6DNF6BUqdG9uQ3WTehU7yb61SrqQiD7LicmABCKAcumnJgMjVAMWDbhxJP3gBOWphDISuY+BovNuO6f2BwQyYzeYjWqpyg5Iw+v/3IBGbmFaN/UEr8EdYVUxNY0KhUirqv1IOaJkARcN8u+Ve0I6VmEpoC5M87EPsKwN+fBpVMABC4dsPfvfzgHyMNYIDUSyLgN5D7gPho/M52ktmg0LVN6TgHe+DUMqdkFaOmgQPDkblDUgYAoNUUgEMDT07PEvKIaUZjLORjUT1zUIjPOwSAybsTY3PwCtO/cDVOmvotRo0dzXb1ibyBpONEXt6AmoieODQXXchmiO/oc9f9pqgRZeUWY+OsFJD7Kg6uNDH+86QdrM8Pf3NpALpdj//79SEhIqFacbCJCftET17a6kHMwFDzm9gVCzsEgtwFIABTqd/iPTCSsktNnyJAhOrHsIbMCbFtww5OK8jnXuiqH+zHQFgH5GdwGcEOanhWXUP+PfoMXU65KjcnBF3AjNQf25hJsedMPTpZshb1i8os0aL3oSDkl7hns3NGfB0Au1sMjKDDh3p/EZpzTQqvlWqtCJSeuojzug3KeinNmAJx3sNglr63D6zPVFVRqDd7dchlXkjJhKRNhy5t+xo0LrlICyWFAZhLg6c91nYyJVg1kp1Rcrr5hYgJILbgN4K5TlQsUPmm51AVcF1adz7n51QCUWcBjAeBc/dnUDVZMao0WH24Px9lbDyEXCxE8uSu8ncxr1whVDpAUBtw5BySeA+5ffWaktABoORDoPBloOaja3Y68vDwMHz4c8+fPR7NmlRwGpdVy3rGcNMi0akT/nxMgknNduloccSCrLeePiSkgs+Q2gBsCpcp52nKpVVwXV1azGQJ6F9OyZcuwe/du3LhxAzKZDD179sTXX38Nb++nowv69u2L06dP6xz3zjvvYOPGjXqxQaslfLw7EoejUiE2NcEvE7ugYzNrvdRdLgXZQNJ5IPEscCcEuB/+dKhNMZbNAHNH4O5F4Na/3GbuDHR8A+j0Bvd9pQoQEeLi4iq3HErxEKCcVO6dAoBAJIPcxpnz0NXRj6F6Ryji3gPlT8SjzAYy6WlLVk30LqbTp09j+vTp6Nq1K9RqNT755BMMGjQI0dHRMDN72sWaOnUqPv/8c36/eI2cmkJE+OJANP53+S6EJgKsG98RPT3t9FJ3CfIzgaRQrtW5EwKkRHAvw89i5Qa49wLcXwDcXgCs3bj0h3HAld+A8K3ch8gzK4AzK7nuX5fJQMsA/b0kE3FDdLJTno7qFoq59wuZTeMRUVmYirmWuabV6MEUHQ4fPqyzHxwcDAcHB1y+fBm9e/fm0+VyebkLnD1LVda0/e74LWwOSQQArBjdDoN8K3eOSpGX8UQ8IVzrkxoJbqLOM1h7AO4vcpvbC2W/F9l5AoO+APovAG4cAC4HAwmngbij3KZw4lqqjm88FWB1KMgGcu4/HYltYsp9BJXb1bkRBBWhVCoRFxfH7yckJCA8PBw2NjaV7+IaEIO/M2VlcX5/Gxvd/ujWrVuxZcsWODk5YdiwYVi4cGGZrVNl17RNycrHT09CGC8Z1hqjOzetvKFaLaDK4gSTn/l09HJ+BvcxMDEESLuOEuKx9eREU9z6WFRxHpSpBGgzitsexXOt1dWtgDKVa6nOrAI8B3DvVl4BlZ9EV5jLfdAsVHL7AhNuEp7CATCpnx+qL126hH79+vH7xUuzBgUFITg42EhWPUVAZLhPxVqtFsOHD0dmZibOnTvHp//0009wc3ODi4sLrl27hnnz5qFbt27YvXt3qfWU1jK5uroiKyurxJKcVxIfIjI+CUEdLJ8RxOMnInn83PZsWiZKCKU07LyetjruL3JdJX2jLgRin7RWt089TVc4AR1fBzpN5Fur3Nxc+Pr6YuPGjejVqxfMxEKuJSr+eAkBNzVC4dggZrMagoKCAiQkJMDDwwNSqe5nk+zsbFhaWpb6rD2PQVum6dOn4/r16zpCAoC3336b/7tt27ZwdnbGgAEDEB8fjxYtSs4nkkgkkEgqNwOz05+d0akgEzhbTaPFCm5k8rObuRPg6scJyNyxmhVXAVMx4PsKt2XcBi4/ebdSpgJnVwFnvwFa9Ac6TwKaPu06c46FZ7rAMhvO9no8e7U+YTAxvffee9i/fz/OnDmDpk3L7275+fkBAOLi4koVU5WQWnAv22LzJ2Kw4v6V2zwnkuf25TaA1KpWhp1UCZvmwMDPgH6fArEHn7RWJ4H440D8cQjE9mhiYwahCQBVJiAy4Txz5s5GH/7T2NC7mIgI77//Pvbs2YNTp07Bw6Pi1fWKQ/E6OzvX3IC3T3NftRtal8ZUDPiO5LaM28CV34GrWyDPfYDjE1yRYC6AUGwG2FZzkh6jxuhdTNOnT8e2bdvw999/w9zcHKmpqQAAS0tLyGQyxMfHY9u2bRg6dChsbW1x7do1zJw5E7179y6xUkO1kNfsw1u9wKY54L8E6PsJcPMQcC+Kcy5YuQFi1hoZDX1GxnzizCh127x5MxERJSUlUe/evcnGxoYkEgl5enrS3LlzqxSd1RjrM9VlyotIyqiYOhvRlSpwDrq6upYY/cCoPvn5+RgzZgxmzZoFN7cafI9i1Jj69dWOUQKtVovr16+jsLCwwh8yhmFhYmIw9AQTE4OhJ5iYGAw9wcTEqBdoNBosXLgQHh4ekMlkaNGiBb744os69Z7YYCcHMhoWX3/9NTZs2IDffvsNvr6+uHTpEiZPngxLS0t88MEHxjYPABNTg8Da2rr6azMRcTESjIFIXum5VP/99x9GjBiBl156CQDg7u6O7du348KFC4a0sEowMdVzzMzMEBoaWu3oRCjKA74y0vI5n9yv9NCnnj174qeffsLNmzfh5eWFiIgInDt3DqtXrzawkZWHiYlRL/j444+RnZ2NVq1aQSgUQqPRYOnSpQgMDDS2aTxMTI0dkZxrIYx17kqyc+dObN26Fdu2bYOvry/Cw8MxY8YMuLi4ICgoyIBGVgG9D3SqBdjYvKfk5eXRmDFj6MSJE5Sbm2tscwxG06ZNad26dTppX3zxBXl7e9e4bn2NzWOu8XqOVqvFhQsXoFKp6pSbWN/k5eWVcLIIhUJotdoyjqh9WDePUS8YNmwYli5dimbNmsHX1xdXr17F6tWrMWXKFGObxsPExKgXrF27FgsXLsS0adOQnp4OFxcXvPPOO1i0aJGxTeNhYmLUC8zNzbFmzRqsWbPG2KaUCXtnYjD0BBMTg6EnmJgaADKZjC1uXQdgYqrnmJmZ4erVq2jWrFn1hhMx9AYTUwOiIX9nMiT6um9MTA2A4vVs8/KMNPq7nlN832q6LjBzjddzCgoKMHr0aPTp0wcvv/wyAG6FEfYOVTFEhLy8PKSnp8PKyqrG3WSDBu43FFUJpt7Qyc3NhUKhgEAgQEJCAmudqoGVlRWcnJxK/QGqM4H7GbUHEcHOzg5SqbRyqwgyAHBdO305bpiYGhhCoZB59YyE0RwQ69evh7u7O6RSKfz8/OrU9GMGozoYRUw7duzArFmzsHjxYly5cgXt27dHQEAA0tPTjWEOg6EXjCKm1atXY+rUqZg8eTJat26NjRs3Qi6XY9OmTcYwh8HQC7X+zlRYWIjLly9j/vz5fJqJiQn8/f0RGhpa6jHPL8NZvE5ueQtFNxZyc3P5v7Ozs6HRaIxoTcOj+BmrjNO71sX08OFDaDQaODrqLmfp6OiIGzdulHpMWQtEu7qWsZJ5I8XFxUhRhhoBOTk5sLS0LLdMvfDmzZ8/n19ZG+CmamdkZMDW1rZefpwsXuA6OTm5UX0nq4/XTUTIycmp1A9VrYvJzs4OQqEQaWlpOulpaWlwcip95fLSFoi2srIylIm1hoWFRb15qPRJfbvuilqkYmrdASEWi9G5c2ccP36cT9NqtTh+/Dh69OhR2+YwGHrDKN28WbNmISgoCF26dEG3bt2wZs0a5ObmYvLkycYwh8HQC0YR07hx4/DgwQMsWrQIqamp6NChAw4fPlzCKdFQkUgkWLx4cYmua0OnoV93vRzoymDURdh8JgZDTzAxMRh6gomJwdATTEwMhp5gYqokS5YsgUAg0NlatWrF5xcUFGD69OmwtbWFQqHA6NGjS3yYTkpKwksvvQS5XA4HBwfMnTsXarVap8ypU6fQqVMnSCQSeHp6Ijg4uIQthpq+cubMGQwbNgwuLi4QCATYu3evTj4RYdGiRXB2doZMJoO/vz9u3bqlUyYjIwOBgYGwsLCAlZUV3nzzTSiVSp0y165dQ69evSCVSuHq6ooVK1aUsGXXrl1o1aoVpFIp2rZti4MHD1bZllqnxutxNBIWL15Mvr6+lJKSwm8PHjzg8999911ydXWl48eP06VLl6h79+7Us2dPPl+tVlObNm3I39+frl69SgcPHiQ7OzuaP38+X+b27dskl8tp1qxZFB0dTWvXriWhUEiHDx/my/z5558kFotp06ZNFBUVRVOnTiUrKytKS0ur8TUePHiQPv30U9q9ezcBoD179ujkL1++nCwtLWnv3r0UERFBw4cPJw8PD52lWAYPHkzt27en8+fP09mzZ8nT05PGjx/P52dlZZGjoyMFBgbS9evXafv27SSTyejHH3/ky4SEhJBQKKQVK1ZQdHQ0LViwgEQiEUVGRlbJltqGiamSLF68mNq3b19qXmZmJolEItq1axefFhMTQwAoNDSUiLgH1cTEhFJTU/kyGzZsIAsLC1KpVERE9NFHH5Gvr69O3ePGjaOAgAB+v1u3bjR9+nR+X6PRkIuLCy1btqzG1/gsz4tJq9WSk5MTrVy5kk/LzMwkiURC27dvJyKi6OhoAkAXL17kyxw6dIgEAgHdu3ePiIh++OEHsra25q+ZiGjevHk66yyNHTuWXnrpJR17/Pz86J133qm0LcaAdfOqwK1bt+Di4oLmzZsjMDAQSUlJAIDLly+jqKgI/v7+fNlWrVqhWbNm/LSS0NBQtG3bVufDdEBAALKzsxEVFcWXebaO4jLFdRRPX3m2TEXTV/RFQkICUlNTdc5taWkJPz8/nWu0srJCly5d+DL+/v4wMTFBWFgYX6Z3794Qi8U61xgbG4vHjx/zZcq7D5WxxRgwMVUSPz8/BAcH4/Dhw9iwYQMSEhLQq1cv5OTkIDU1FWKxuMTgW0dHR6SmpgIAUlNTS512UpxXXpns7Gzk5+eXO32luA5DUVx/eedOTU2Fg4ODTr6pqSlsbGz0ch+eza/IFmNQL6Zg1AWGDBnC/92uXTv4+fnBzc0NO3fuhEwmM6JljLoCa5mqiZWVFby8vBAXFwcnJycUFhYiMzNTp8yz00qcnJxKnXZSnFdeGQsLC8hksmpNX9EXxfWXd24nJ6cScTzUajUyMjL0ch+eza/IFmPAxFRNlEol4uPj4ezsjM6dO0MkEulMK4mNjUVSUhI/raRHjx6IjIzUediOHj0KCwsLtG7dmi/zbB3FZYrrMOb0FQ8PDzg5OemcOzs7G2FhYTrXmJmZicuXL/NlTpw4Aa1WCz8/P77MmTNndGL7HT16FN7e3rC2tubLlHcfKmOLUTCa66OeMXv2bDp16hQlJCRQSEgI+fv7k52dHaWnpxMR5xpv1qwZnThxgi5dukQ9evSgHj168McXu8YHDRpE4eHhdPjwYbK3ty/VNT537lyKiYmh9evXl+oal0gkFBwcTNHR0fT222+TlZWVjpewuuTk5NDVq1fp6tWrBIBWr15NV69epTt37hAR5462srKiv//+m65du0YjRowo1TXesWNHCgsLo3PnzlHLli11XOOZmZnk6OhIb7zxBl2/fp3+/PNPksvlJVzjpqamtGrVKoqJiaHFixeX6hqvyJbahompkowbN46cnZ1JLBZTkyZNaNy4cRQXF8fn5+fn07Rp08ja2prkcjm98sorlJKSolNHYmIiDRkyhGQyGdnZ2dHs2bOpqKhIp8zJkyepQ4cOJBaLqXnz5rR58+YStqxdu5aaNWtGYrGYunXrRufPn9fLNZ48eZIAlNiCgoKIiHNJL1y4kBwdHUkikdCAAQMoNjZWp45Hjx7R+PHjSaFQkIWFBU2ePJlycnJ0ykRERNCLL75IEomEmjRpQsuXLy9hy86dO8nLy4vEYjH5+vrSgQMHdPIrY0ttw6ZgMBh6gr0zMRh6gomJwdATTEwMhp5gYmIw9AQTE4OhJ5iYGAw9wcTEYOgJJiYGQ08wMTEYeoKJqY7Tt29fzJgxw9hm8NQ1e+oSTEyNgMLCQmOb0Dgw6shARrkEBQWVGHQaFxdHU6ZMIXd3d5JKpeTl5UVr1qwpcdyIESPoyy+/JGdnZ3J3dycibjR2+/btSSKRUOfOnWnPnj0EgK5evcofGxkZSYMHDyYzMzNycHCg119/nQ8cU5o9CQkJtXU76jxMTHWYzMxM6tGjB02dOpWPiFRQUECLFi2iixcv0u3bt2nLli0kl8tpx44d/HFBQUGkUCj4aQ7Xr1+nrKwssrGxoddff52ioqLo4MGD5OXlpSOmx48f89NCYmJi6MqVKzRw4EDq169fmfao1Wpj3Jo6CZu2XoextLSEWCyGXC7XmUH67JKkHh4eCA0Nxc6dOzF27Fg+3czMDL/88gsfuGTjxo0QCAT4+eefIZVK0bp1a9y7dw9Tp07lj1m3bh06duyIr776ik/btGkTXF1dcfPmTXh5eZVqD4ODiakesn79emzatAlJSUnIz89HYWEhOnTooFOmbdu2OhGAYmNj0a5dO0ilUj6tW7duOsdERETg5MmTUCgUJc4ZHx8PLy8v/V5IA4OJqZ7x559/Ys6cOfjmm2/Qo0cPmJubY+XKlXworWLMzMyqXLdSqcSwYcPw9ddfl8hzdnauts2NBSamOo5YLIZGo+H3Q0JC0LNnT0ybNo1Pi4+Pr7Aeb29vbNmyBSqVil9s7OLFizplOnXqhL/++gvu7u4wNS390XjeHsZTmGu8juPu7o6wsDAkJibi4cOHaNmyJS5duoQjR47g5s2bWLhwYQlRlMaECROg1Wrx9ttvIyYmBkeOHMGqVasAgF+xfvr06cjIyMD48eNx8eJFxMfH48iRI5g8eTIvoOft0Wq1hrv4egYTUx1nzpw5EAqFaN26Nezt7REQEIBRo0Zh3Lhx8PPzw6NHj3RaqbKwsLDAvn37EB4ejg4dOuDTTz/FokWLAIB/j3JxcUFISAg0Gg0GDRqEtm3bYsaMGbCysoKJiUmp9hRHtWWwZTgbNVu3bsXkyZORlZXFAmnqAfbO1Ij4/fff0bx5czRp0gQRERGYN28exo4dy4SkJ5iYGhGpqan8CvfOzs4YM2YMli5damyzGgysm8dg6AnmgGAw9AQTE4OhJ5iYGAw9wcTEYOgJJiYGQ08wMTEYeoKJicHQE0xMDIae+H8rnoJq7i3sTAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_monitoring_metric('total_cpu_util_max', component='benchmarker').max()*100\n",
+ "plot_metric(df, \"Driver core max [%]\", peak_benchmark)\n",
+ "plt.legend(loc='lower right', title='num pods')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Maximum RAM"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 89,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAM4AAADsCAYAAAA8e5n5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAl60lEQVR4nO3de1wU9f4/8NfssruwLgsqAoutt1REvOENoYtWJBlZWiZ5Cy9ZHS0rytRfhp7MsEyP5/QwswtiZaGexB4evGSkmXhFxVQIzVD8Gog37stt9/37AxhZWWB3BJeF9/PhPpj9fD4z855x3zuzn/3MrEBEBMaYTWT2DoAxR8SJw5gEnDiMScCJw5gEnDiMScCJw5gEnDiMScCJw5gEnDiMScCJw6y2ePFiCIIAQRCwatUqm+ffu3cvBEFAbm5ug20EQcCYMWMkx9rUOHHqMXXqVAiCgJdffrlW3ezZsyEIAqZOndqkMcTGxoovJJlMBp1Oh/DwcGRmZlps36tXL6hUKmRnZ9eqGzFiBARBwLJly2rVhYWFQRAELF68uN54/P39kZWVhRdffNGs/MSJEwgPD4dOp4NKpULnzp3xxBNPYNu2bbBlVFdwcDCysrIwfvx4q+exB06cBuj1esTFxcFgMIhlJSUl+O6779CpU6e7EoNWq0VWVhYuX76MH374Aenp6Xj22Wdrtdu/fz8MBgPGjRuH9evXW1yWXq9HbGysWdnly5eRmJgInU7XYCxOTk7w9vaGWq0Wy3788UcMGzYMhYWFWL9+PdLS0rBz506MHTsWCxcuRF5entXbqlQq4e3tDRcXF6vnsQdOnAYMHDgQer0eW7ZsEcu2bNmCTp06ISAgwKztzp07cf/998Pd3R3t27fHE088gfPnz4v1X3/9NTQaDc6dOyeWzZo1C7169UJxcXGdMQiCAG9vb+h0OgQHB2PGjBk4cuQI8vPzzdp99dVXmDhxIqZMmYKYmBiLy3riiSdw7do1JCUliWXr16/HyJEj4enpad1OqaGoqAgzZsxAWFgYEhISMHLkSHTr1g1+fn6YMWMGTp48CTc3N7N5kpKS0K9fPzg7O2PYsGE4ffq0zeu1N04cK0yfPh3r1q0Tn8fExGDatGm12hUVFSEyMhLJyclITEyETCbD2LFjYTKZAADPP/88Hn/8cUyaNAkVFRVISEjAl19+iQ0bNpi9g9cnJycH8fHxkMvlkMvlYnlBQQE2b96MyZMn49FHH0VeXh5+++23WvMrlUpMmjTJbHtiY2Mxffp0q/dHTT/99BOuX7+Ot99+u842giCYPZ87dy5WrFiBo0ePokOHDhg9ejTKy8slrd9eOHGsMHnyZOzfvx8XL17ExYsXkZSUhMmTJ9dq98wzz+Dpp59G9+7dMWDAAMTExODUqVNITU0V26xduxZZWVmYM2cOZsyYgcWLF2PQoEH1rj8vLw8ajQZt2rSBl5cX9uzZg9mzZ6NNmzZim7i4OPTo0QP+/v6Qy+V47rnn8NVXX1lc3vTp07Fp0yYUFRVh3759yMvLwxNPPCFp35w9exYA4OvrK5YdPXoUGo1GfPzvf/8zm2fRokV49NFH0bdvX6xfvx5XrlxBfHy8pPXbi5O9A3AEHTp0QFhYGGJjY0FECAsLg4eHR612586dQ1RUFA4fPoxr166JR5rMzEz06dMHANC2bVt89dVXCA0NRXBwMObPn9/g+l1dXXH8+HGUl5djx44d2LBhA5YuXWrWJiYmxiyZJ0+ejOHDh+OTTz6Bq6urWdv+/fujR48e+O9//4s9e/ZgypQpcHJqvJdCv379kJKSAgDo0aMHKioqzOqDgoLE6Xbt2sHX1xdpaWmNtv67gRPHStOnT8crr7wCAFi9erXFNqNHj0bnzp3xxRdfwMfHByaTCX369EFZWZlZu3379kEulyMrKwtFRUW1Xti3k8lk6N69OwDAz88P58+fxz/+8Q988803AIDU1FQcOnQIR44cwbx588T5jEYj4uLiMHPmTIvbs3r1aqSmpuLIkSPW74jb9OjRAwCQnp6OYcOGAQBUKpUYb0vFp2pWeuyxx1BWVoby8nKEhobWqr9+/TrS09OxcOFCPPLII/Dz88PNmzdrtTtw4AA+/PBDbNu2DRqNRkxGW8yfPx8bN27E8ePHAVR2Cjz44IM4efIkUlJSxEdkZGSdp2sTJ07EqVOn0KdPH/Tu3dvmGKqNHDkS7dq1w4cffmj1PIcOHRKnb968ibNnz8LPz09yDPbARxwryeVy8XSi5ofyam3btkX79u3x+eefQ6fTITMzs9ZpWEFBAaZMmYI5c+Zg1KhRuOeeezBkyBCMHj0a48aNszoWvV6PsWPHIioqCvHx8fjmm2/w3nvviaeD1V544QWsXLkSZ86cgb+/f614s7KyoFAorF6vJRqNBl9++SXCw8MRFhaGOXPmoEePHigsLMTOnTsB1N5f7733Htq3bw8vLy+888478PDwaNZfdlrCRxwbaLVaaLVai3UymQxxcXE4duwY+vTpgzfeeAPLly83a/Paa6+hTZs2+OCDDwAAffv2xQcffICXXnoJly9ftimWN954AwkJCVi5ciWuX7+OsWPH1mrj5+cHPz+/Oo867u7uZh0MUo0dOxYHDhyAWq3G888/D19fXzz88MP45ZdfEBcXV6vjYdmyZXjttdcwaNAgZGdnY9u2bVAqlXccx90k8M06mLUWL16MrVu3ih/8m9LUqVORm5uLrVu3Nvm6pOAjDrPJqVOnoNFo8OmnnzbJ8n/77TdoNBps2LChSZbfWPiIw6x248YN3LhxA0BlF/3tIwIag8FgEE9bNRoNvL29G30djYEThzEJ+FSNMQk4cRiTgBOHMQkc4gtQk8mEv//+G66urrVG2jLWmIgIBQUF8PHxgUxW93HFIRLn77//hl6vt3cYrBW5dOkS7rnnnjrrHSJxqgdBXrp0qc5v7hlrDPn5+dDr9Q0OvHWIxKk+PatvyEtrYDQaxYvTHnjgAYtj5ljjaOgjgUMkDqtUUlKChx56CABQWFjYKOPMmDTcq8aYBJw4rHW6wwEzjn2qdiMDOLUZgAAIVQ/U/CszLxNkt9XXMQ8ZAWMFYKoATOWAsbxy2lhe+dxkvDVdXSfWV9xWZwTIVPc21HsufVtdaY1LkL8ZC6ga67+vavtl8qp9JgOEGtMyS2U121ooa3A/1/VXVrsMqNqfZUBFWeVfY2nl/q0orXpeVk99edXzGvXdQ4BJmyTvMQdPnPPAnqUNt2spymq8S2YeApT8nZZkxtI7mt2xE0fbERgYAYCqDr1Vf2tOi2WmBspwq0wmB2ROgFxR+VecVlgoq1EncwLkTubt5Iqqd+DbWDxVsFBWs11xCRA9oXJ67FpA7Sx9392+DjJV/a06QpLp1tGSjJV1php11e1MRvP5xCOspX0NWPy/seb/Sq4EnFSV+1OuqnqurPxb/XBS1ZiuLq+ap2adXAkorbsdV10cO3E8/YAn/2PvKO6eoqJb072fBLhXzW4cO3FaGYVCgY8++kicZvbjENfj5Ofnw83NDXl5ea36C1DW9Kx9rXF3NGMS8KmaAzEajeK91AYOHMhDbuyIE8eBlJSUYOjQoQB4yI298akaYxJw4jAmAScOYxJw4jAmAScOYxJw4jAmAXdHOxCFQoFFixaJ08x+eMgNYzXwkBvGmhCfqjkQk8kk/iqcn59fvTfMY02LE8eBGAwG8ecKeciNffFbFmMScOIwJgEnDmMScOIwJgEnDmMScOIwJgF3RzsQhUKBt956S5xm9sNDbhirgYfcMNaE+FTNgZhMJmRmZgIAOnXqxENu7IgTx4EYDAZ07doVAA+5sTd+y2JMAk4cxiTgxGFMAk4cxiTgxGFMAu5Vc3BGoxHl5eX2DsNhKBSKRrlZvc2Js2/fPixfvhzHjh1DVlYW4uPjMWbMmHrn2bt3LyIjI3HmzBno9XosXLgQU6dOlRhy6+Xk5IRZs2YBAORyObKyspCbm2vfoByQu7s7vL29IdT7w8X1szlxioqK0L9/f0yfPh1PP/10g+0zMjIQFhaGl19+GRs2bEBiYiJeeOEF6HQ6hIaGSgq6tVKpVFi9ejUAiEnj6ekJtVp9Ry+C1oKIUFxcjJycHACATqeTvCybE2fUqFEYNWqU1e0/++wzdO3aFStWrABQeZOJ/fv341//+hcnjkRGo1FMmvbt29s7HIfi4uICAMjJyYGnp6fk07Ym7xw4ePAgQkJCzMpCQ0Nx8ODBOucpLS1Ffn6+2YNVvmNevXoVV65cAQCo1Xf2y8mtVfV+u5PPhk2eONnZ2fDy8jIr8/LyQn5+PgwGg8V5oqOj4ebmJj70en1Th+kQiouL4enpieDgYJhMJj49k6gx9luz7I5esGAB8vLyxMelS5fsHRJjZpo8cby9vcVTi2pXrlyBVqsVzzdvp1KpoNVqzR6M1SQIArZu3Wq39Td54gQFBSExMdGsbPfu3QgKCmrqVTPWZGxOnMLCQqSkpCAlJQVAZXdzSkqKeJ3IggUL8Pzzz4vtX375Zfz11194++238ccff+DTTz/Fpk2b8MYbbzTOFjBmBzYnTnJyMgICAhAQEAAAiIyMREBAAKKiogBUfr9QnUQA0LVrVyQkJGD37t3o378/VqxYgS+//JK7opvIiBEjMGfOHLz99tto164dvL29sXjxYrH+woULEARBfOMDgNzcXAiCgL179wKo/MJaEATs2rULAQEBcHFxwcMPP4ycnBzs2LEDfn5+0Gq1mDhxIoqLi+uMJTY2Fu7u7ti6dSt69OgBZ2dnhIaG1vrMumbNGtx7771QKpXw9fXFN998Y1Z/7tw5PPjgg3B2dkbv3r2xe/dus/qysjK88sor0Ol0cHZ2RufOnREdHS1tB1qLHEBeXh4BoLy8PHuHYleFhYUEgDp37kynT58mg8FQq83w4cNJq9XS4sWL6ezZs7R+/XoSBIF++uknIiLKyMggAHTixAlxnps3bxIA2rNnDxER7dmzhwDQsGHDaP/+/XT8+HHq3r07DR8+nEaOHEnHjx+nffv2Ufv27WnZsmV1xrtu3TpSKBQ0ePBgOnDgACUnJ9PQoUMpODhYbLNlyxZSKBS0evVqSk9PpxUrVpBcLqdffvmFiIiMRiP16dOHHnnkEUpJSaFff/2VAgICCADFx8cTEdHy5ctJr9fTvn376MKFC/Tbb7/Rd999V2dcBoOBUlNTLe4/a19rnDgOpKSkhCIiIuj111+nM2fO1Jk4999/v1nZkCFDaN68eURkW+L8/PPPYpvo6GgCQOfPnxfLXnrpJQoNDa0z3nXr1hEAOnTokFiWlpZGAOjw4cNERBQcHEwzZ840m+/ZZ5+lxx9/nIiIdu3aRU5OTnT58mWxfseOHWaJ8+qrr9LDDz9MJpOpzlhqaozEaZbd0cwylUqF2NhYREdH1/tdRL9+/cye63Q6cZiJLWoux8vLC2q1Gt26dTMra2i5Tk5OGDJkiPi8V69ecHd3F3+uJC0tDffdd5/ZPPfdd59ZvV6vh4+Pj1h/e8fS1KlTkZKSAl9fX8yZMwc//fSTjVtqO06cFuj2e64JggCTyQQA4g0+qMZdwer6Br3mcgRBqHe59jRw4EBkZGRgyZIlMBgMGD9+PMaNG9ek6+TEcSBEhKKiono/kDekQ4cOACo7carV7ChobBUVFUhOThafp6enIzc3F35+fgAqxy4mJSWZzZOUlITevXuL9ZcuXTKL99ChQ7XWo9VqER4eji+++AIbN27EDz/8gBs3bjTFJgHg63EcSnFxMTQaDTp37oyEhARJy3BxccGwYcOwbNkydO3aFTk5OVi4cGEjR3qLQqHAq6++iv/85z9wcnLCK6+8gmHDhmHo0KEAgLlz52L8+PEICAhASEgItm3bhi1btuDnn38GAISEhKBnz56IiIjA8uXLkZ+fj3feecdsHStXroROp0NAQABkMhk2b94Mb29vuLu7N9l28RGnFYqJiUFFRQUGDRqE119/He+//36TrUutVmPevHmYOHEi7rvvPmg0GmzcuFGsHzNmDP7973/j448/hr+/P9auXYt169ZhxIgRACpPLePj42EwGDB06FC88MILWLp0qdk6XF1d8dFHH2Hw4MEYMmQILly4gO3btzftfees6oawM+5Vq2RNd3Rzsm7dOnJzc7N3GLVwrxpjdsKJw5gEnDisyUydOrXF3hOBE4cxCbg72oHI5XKMGzcO7dq146s/7YwTx4E4Oztj8+bNKCkpQUZGhr3DadX4VI0xCThxGJOAE8eBFBUVQRAE9OrVq1kMrmzNOHEYk4AThzVL+/btw+jRo+Hj42P3O9pYwonDmqXqe5RX3yu7ueHuaNYs2XqP8ruNE6eVISIYyo12WbeLQt5ivrjlxGllDOVG9I7aZZd1p74XCrWyZbzkWsZWtBJyuRyPP/44PDw8Wsw7t6PixHEgzs7OSEhIuKMhNy4KOVLfs8/NIF0Ud/4Tgs0FJ04rIwhCizldsifeg6xZKiwsxJ9//ik+r75Hebt27dCpUyc7RlaJv8dxIEVFRWjTpg0CAgJa/JCbhu5Rbm98xHEwxcXFdf6SXUsyYsQIs5smNjd8xGFMAk4cxiTgxGFMAk4cxiTgxGFMAu5VcyAymQzDhw+Hp6cnD7mxM04cB+Li4oK9e/fyXW6aAT5VY0wCThzGJODEcSBFRUXo0KEDgoKCWvyQm+aOE8fBXLt2DTdv3rR3GE3OaDTi3XffRdeuXeHi4oJ7770XS5YsaTbDcLhzgDVLH374IdasWYP169fD398fycnJmDZtGtzc3DBnzhx7h8eJw5qnAwcO4KmnnkJYWBgAoEuXLvj+++9x5MgRO0dWiROntSECyqX/avUdUagBK79/Cg4Oxueff46zZ8+iZ8+eOHnyJPbv34+VK1c2cZDW4cRpbcqLgQ987LPu//c3oGxjVdP58+cjPz8fvXr1glwuh9FoxNKlSzFp0qQmDtI6kjoHVq9ejS5dusDZ2RmBgYH1Hj5jY2MhCILZw9nZWXLArHXYtGkTNmzYgO+++w7Hjx/H+vXr8fHHH2P9+vX2Dg2AhCPOxo0bERkZic8++wyBgYFYtWoVQkNDkZ6eDk9PT4vzaLVapKeni895uIg0MpkMgwcPhpeXl/R9qFBXvvPbg0JtddO5c+di/vz5eO655wAAffv2xcWLFxEdHY2IiIimitBqNifOypUrMXPmTEybNg0A8NlnnyEhIQExMTGYP3++xXkEQYC3t7fV6ygtLUVpaan4PD8/39YwWyQXFxccPXr0zobcCILVp0v2VFxcDJnM/IRILpc3m++vbDpVKysrw7FjxxASEnJrATIZQkJCcPDgwTrnKywsROfOnaHX6/HUU0/hzJkz9a4nOjoabm5u4kOv19sSJmsBRo8ejaVLlyIhIQEXLlxAfHw8Vq5cibFjx9o7NAA2Js61a9dgNBrh5eVlVu7l5YXs7GyL8/j6+iImJgY//vgjvv32W5hMJgQHB+P//u//6lzPggULkJeXJz4uXbpkS5isBfjkk08wbtw4zJo1C35+fnjrrbfw0ksvYcmSJfYODcBd6FULCgpCUFCQ+Dw4OBh+fn5Yu3ZtnTtBpVJBpVI1dWgOp7i4GL1790bHjh3x+eef2zucJuXq6opVq1Zh1apV9g7FIpsSx8PDA3K5HFeuXDErv3LlitWfYRQKBQICAszumcWsQ0S4ePGivcNgsPFUTalUYtCgQUhMTBTLTCYTEhMTzY4q9TEajTh16hR0Op1tkTLWjNh8qhYZGYmIiAgMHjwYQ4cOxapVq1BUVCT2sj3//PPo2LEjoqOjAQDvvfcehg0bhu7duyM3NxfLly/HxYsX8cILLzTuljB2F9mcOOHh4bh69SqioqKQnZ2NAQMGYOfOnWKHQWZmplk34s2bNzFz5kxkZ2ejbdu2GDRoEA4cOIDevXs33lYwdpcJ1FzGadcjPz8fbm5uyMvLg1artXc4dlNUVASNRoNOnTph+/bt6NatG1xcXOwdlsMxGAy4cOECunbtWmsUi7WvNb4exwFdv34dQGUvG7Nd9X5TKBSSl8GDPB2IIAjiKa6rqytycnIAAGq1mocxWYGIUFxcjJycHLi7u0Mul/57PZw4DkStVoujLogI2dnZYvIw67m7u9s0BMwSThwHJQgCdDodPD09UV5ebu9wHIZCobijI001ThwHJ5fLG+WFwGzDnQMOpLi4GP7+/vD39+eOATvjI44DISKkpqaK08x++IjDmAScOIxJwInDmAScOIxJwInDmATcq+ZABEFA586dxWlmP5w4DkStVuPChQv2DoOBT9UYk4QThzEJOHEciMFgwJAhQzBkyBAYDAZ7h9Oq8WccB2IymZCcnCxOM/vhIw5jEnDiMCYBJw5jEnDiMCYBJw5jEnCvWiMgIuQWl+NqYSmuFlQ+cgpKxOniMiOAyp+mESBU/q2arvonDqERxHaVZUJVoQABFaUGuLi2BQAsjD8FlYu6allCjfkqly+rXl5Vmax6nWJbocZ6bt+e257X2t7b66VfVFe1hQ23E1BrG4WqCkvl1duKOur0bdUY1Vf6bZg5cepRUm6sSoKqhKiRGFdrJMbVwlKUG+/OFZmes74BAMSfvg7g+l1ZZ0v0YM8OrTdxTl7KxbIdf4jveDXfCem2idvbVNdXX4J86zlQUFKOnIJSFJRU2BSPm4sCHVxV8HRVoYOrCh00lX/bqJxurYMqIyGqXHf1dHW9GA9Vxlz5t2YbujVvjTqz8tvKTFXToFvrMJF5G0tjRi0dDSy3k8bat5qacVY+N9/GW22q91P1vqi9D6v3g6+3q8SoKzl04uQaynHwr6Z911XKZZVJUONxe2J4ap3hoVFC5cR3m2ktHDpx/Lxd8Z8JAQBuvevVfEesfsesLqvdxnK9xtmpMjk0ztC6ODWbIfwGgwGjRo0CAOzYsYPvG21HDp04nlpnPNnfx95h3DUmkwm//vqrOM3sh7ujGZOAE4cxCThxGJOAE4cxCThxGJPAoXvVWiO1Wm3vEBg4cRxKmzZtUFRUZO8wGPhUjTFJOHEYk4ATx4GUlJQgLCwMYWFhKCkpsXc4rRp/xnEgRqMR27dvF6eZ/fARhzEJOHEYk0BS4qxevRpdunSBs7MzAgMDceTIkXrbb968Gb169YKzszP69u0rnm4w5qhsTpyNGzciMjISixYtwvHjx9G/f3+EhoYiJyfHYvsDBw5gwoQJmDFjBk6cOIExY8ZgzJgxOH369B0Hz5jdkI2GDh1Ks2fPFp8bjUby8fGh6Ohoi+3Hjx9PYWFhZmWBgYH00ksvWb3OvLw8AkB5eXm2htuiFBYWEqquAi4sLLR3OC2Sta81m3rVysrKcOzYMSxYsEAsk8lkCAkJwcGDBy3Oc/DgQURGRpqVhYaGYuvWrXWup7S0FKWlpeLzvLw8AEB+fr4t4bY4NUcN5Ofnc89aE6h+jdHtt/K5jU2Jc+3aNRiNRnh5eZmVe3l54Y8//rA4T3Z2tsX22dnZda4nOjoa//znP2uV6/V6W8Jt0Xx8Ws+Vr/ZQUFAANze3Ouub5fc4CxYsMDtKmUwm3LhxA+3bt2821//bIj8/H3q9HpcuXYJWq7V3OHeNI243EaGgoKDBNyabEsfDwwNyuRxXrlwxK79y5Qq8vb0tzuPt7W1TewBQqVRQqVRmZe7u7raE2ixptVqHeQE1Jkfb7vqONNVs6lVTKpUYNGgQEhMTxTKTyYTExEQEBQVZnCcoKMisPQDs3r27zvaMOQRbex3i4uJIpVJRbGwspaam0osvvkju7u6UnZ1NRERTpkyh+fPni+2TkpLIycmJPv74Y0pLS6NFixaRQqGgU6dO2bpqh9VaewVb8nbbnDhERJ988gl16tSJlEolDR06lA4dOiTWDR8+nCIiIszab9q0iXr27ElKpZL8/f0pISHhjoJ2NCUlJbRo0SIqKSmxdyh3VUveboGogX43xlgtPFaNMQk4cRiTgBOHMQk4cRiTgBPHgsWLF1f9YtmtR69evcT6kpISzJ49G+3bt4dGo8EzzzxT60vezMxMhIWFQa1Ww9PTE3PnzkVFhfnv7ezduxcDBw6ESqVC9+7dERsbWysWWy/hsMW+ffswevRo+Pj4QBCEWuMHiQhRUVHQ6XRwcXFBSEgIzp07Z9bmxo0bmDRpErRaLdzd3TFjxgwUFhaatfn999/xwAMPwNnZGXq9Hh999FGtWBq69MSaWO4q+3bqNU+LFi0if39/ysrKEh9Xr14V619++WXS6/WUmJhIycnJNGzYMAoODhbrKyoqqE+fPhQSEkInTpyg7du3k4eHBy1YsEBs89dff5FarabIyEhKTU2lTz75hORyOe3cuVNsExcXR0qlkmJiYujMmTM0c+ZMcnd3pytXrjTKdm7fvp3eeecd2rJlCwGg+Ph4s/ply5aRm5sbbd26lU6ePElPPvkkde3alQwGg9jmscceo/79+9OhQ4fot99+o+7du9OECRPE+ry8PPLy8qJJkybR6dOn6fvvvycXFxdau3at2CYpKYnkcjl99NFHlJqaSgsXLqz1XZ81sdxNnDgWLFq0iPr372+xLjc3lxQKBW3evFksS0tLIwB08OBBIqp8QcpkMvFLYSKiNWvWkFarpdLSUiIievvtt8nf399s2eHh4RQaGio+t/USjjtxe+KYTCby9vam5cuXi2W5ubmkUqno+++/JyKi1NRUAkBHjx4V2+zYsYMEQaDLly8TEdGnn35Kbdu2FbebiGjevHnk6+srPm/o0hNrYrnb+FStDufOnYOPjw+6deuGSZMmITMzEwBw7NgxlJeXIyQkRGzbq1cvdOrUSby04uDBg+jbt6/ZqPDQ0FDk5+fjzJkzYpuay6huU72M6ks4arZp6BKOxpSRkYHs7Gyz9bu5uSEwMNBsO93d3TF48GCxTUhICGQyGQ4fPiy2efDBB6FUKsU2oaGhSE9Px82bN8U29e0La2K52zhxLAgMDERsbCx27tyJNWvWICMjAw888AAKCgqQnZ0NpVJZa9BpzUsl6rqUorquvjb5+fkwGAz1XsJR3yUZjaV6HfWtPzs7G56enmb1Tk5OaNeuXaPsi5r1DcVytzXLywrsrfrnAgGgX79+CAwMROfOnbFp0yb++UAGgI84VnF3d0fPnj3x559/wtvbG2VlZcjNzTVrU/NSiboupaiuq6+NVquFi4uLpEs4GlP1Oupbv7e3d617TVRUVODGjRuNsi9q1jcUy93GiWOFwsJCnD9/HjqdDoMGDYJCoTC7VCI9PR2ZmZnipRJBQUE4deqU2Ytq9+7d0Gq16N27t9imvsstpFzC0Zi6du0Kb29vs/Xn5+fj8OHDZtuZm5uLY8eOiW1++eUXmEwmBAYGim327duH8vJysc3u3bvh6+uLtm3bim3q2xfWxHLX2aVLopl78803ae/evZSRkUFJSUkUEhJCHh4elJOTQ0SV3dGdOnWiX375hZKTkykoKIiCgoLE+au7o0eOHEkpKSm0c+dO6tChg8Xu6Llz51JaWhqtXr3aYnd0fZdw3KmCggI6ceIEnThxggDQypUr6cSJE3Tx4kUiquwCdnd3px9//JF+//13euqppyx2RwcEBNDhw4dp//791KNHD7Pu6NzcXPLy8qIpU6bQ6dOnKS4ujtRqda3u6IYuPbEmlruJE8eC8PBw0ul0pFQqqWPHjhQeHk5//vmnWG8wGGjWrFnUtm1bUqvVNHbsWMrKyjJbxoULF2jUqFHk4uJCHh4e9Oabb1J5eblZmz179tCAAQNIqVRSt27daN26dbViqe8Sjju1Z88e8a45NR/Vl4WYTCZ69913ycvLi1QqFT3yyCOUnp5utozr16/ThAkTSKPRkFarpWnTplFBQYFZm5MnT9L9999PKpWKOnbsSMuWLasVS0OXnlgTy93ElxUwJgF/xmFMAk4cxiTgxGFMAk4cxiTgxGFMAk4cxiTgxGFMAk4cxiTgxGFMAk6cZmTEiBF4/fXX7R2GqLnF05xw4rQwZWVl9g6hdbDbKDlmJiIiotZgyz///JOmT59OXbp0IWdnZ+rZsyetWrWq1nxPPfUUvf/++6TT6ahLly5EVDniuH///qRSqWjQoEEUHx9PAOjEiRPivKdOnaLHHnuM2rRpQ56enjR58mTxpiSW4snIyLhbu6PZ48RpJnJzcykoKIhmzpwp3lmnpKSEoqKi6OjRo/TXX3/Rt99+S2q1mjZu3CjOFxERQRqNRhy2f/r0acrLy6N27drR5MmT6cyZM7R9+3bq2bOnWeLcvHlTvNQhLS2Njh8/To8++ig99NBDdcZTUVFhj13TLHHiNCPDhw+n1157rd42s2fPpmeeeUZ8HhERQV5eXmZ3kVmzZg21b9/e7FqVL774wixxlixZQiNHjjRb9qVLlwiAOFzfmnhaK77nQDO3evVqxMTEIDMzEwaDAWVlZRgwYIBZm759+5rdRSY9PR39+vWDs7OzWDZ06FCzeU6ePIk9e/ZAo9HUWuf58+fRs2fPxt2QFoYTpxmLi4vDW2+9hRUrViAoKAiurq5Yvny5eOulam3atLF52YWFhRg9ejQ+/PDDWnU6nU5yzK0FJ04zolQqzX6CPSkpCcHBwZg1a5ZYdv78+QaX4+vri2+//RalpaXib6kePXrUrM3AgQPxww8/oEuXLnBysvwyuD0edgt3RzcjXbp0weHDh3HhwgVcu3YNPXr0QHJyMnbt2oWzZ8/i3XffrZUAlkycOBEmkwkvvvgi0tLSsGvXLnz88ccAIP5q9+zZs3Hjxg1MmDABR48exfnz57Fr1y5MmzZNTJbb4zGZTE238Q6GE6cZeeuttyCXy9G7d2906NABoaGhePrppxEeHo7AwEBcv37d7OhTF61Wi23btiElJQUDBgzAO++8g6ioKAAQP/f4+PggKSkJRqMRI0eORN++ffH666/D3d0dMpnMYjzVdzNlAN9zoJXYsGEDpk2bhry8PL6pYiPgzzgt1Ndff41u3bqhY8eOOHnyJObNm4fx48dz0jQSTpwWKjs7G1FRUcjOzoZOp8Ozzz6LpUuX2jusFoNP1RiTgDsHGJOAE4cxCThxGJOAE4cxCThxGJOAE4cxCThxGJOAE4cxCf4/RfjgyUUI17oAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_monitoring_metric('total_cpu_memory', component='benchmarker').max()/1000\n",
+ "plot_metric(df, \"Max RAM [Gb]\", peak_benchmark)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Maximum Cache"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 90,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAANsAAADsCAYAAAD9/NNVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAApbUlEQVR4nO3de1xUdf4/8NcwMMPMwDAilwFDkBIQUiQviJcuKxsma7bVqmhF5Fdr1czIdP1VYJbhpS3LTKtdJXfNW6tueU3NS4tIYmIKREogViIqch+u8/79MXLkcBGQ4QwO7+fjMc6c8/mc83mf8bw553zmXGRERGCMdTobSwfAWHfBycaYRDjZGJMIJxtjEuFkY0winGyMSYSTjTGJcLIxJhFONsYkwsnGWrVw4UIMHDjQ7PP18fGBTCaDTCZDUVFRu6d/9tln8dhjj7Vap76NHTt23Fac5sLJdpvq/xNfeOGFJmUzZ86ETCbDs88+2+lxVFdXY9myZQgODoZarYaLiwtGjBiBdevWoaamptPb76hFixbh0qVLcHJyEsYRET777DOEhYVBq9XCwcEBQUFBeOmll3D+/Pl2zf+DDz7ApUuXzB32beFk6wAvLy9s2rQJBoNBGFdZWYkvvvgCvXv37vT2q6urERERgSVLlmD69Ok4duwYvv/+e8ycORMrV65Eenp6p8fQUY6OjtDr9ZDJZABMiTZ58mTMnj0bY8eOxTfffIOMjAz885//hL29Pd5+++12zd/JyQl6vb4zQm83TrYOuO++++Dl5YVt27YJ47Zt24bevXsjJCREVHfv3r0YOXIkdDodevbsiT/96U/Izs4WytevXw8HBwecO3dOGDdjxgwEBASgoqKi2fZXrFiBo0eP4uDBg5g5cyYGDhwIX19fTJ48GSkpKejbt2+b2gaAX3/9FVFRUXB2doZGo8HgwYORkpIiqvOvf/0LPj4+cHJywqRJk1BaWiqUGY1GJCQkoE+fPlCpVAgODsaXX37Zzm8U2Lx5MzZt2oTNmzfjjTfewLBhw9C7d28MGzYMS5cuxbp165pM8+abb8LV1RVarRYvvPACqqur292uFDjZOui5554TrQBr165FTExMk3rl5eWIjY1FamoqDh48CBsbG/z5z3+G0WgEADzzzDMYO3YspkyZgtraWuzatQv/+Mc/sGHDBqjV6mbb3rBhA8LDw5skNgDY2dlBo9G0qe2ysjI88MAD+O233/DVV1/h9OnTmDdvnlAOANnZ2dixYwd27tyJnTt34siRI1iyZIlQnpCQgPXr12PNmjVIT0/Hyy+/jKeeegpHjhxp1/e5ceNG+Pv749FHH222vH4LWO/gwYPIzMzE4cOHsXHjRmzbtg1vvvlmu9qUDLHbEh0dTePHj6eCggJSKpWUm5tLubm5ZG9vT1euXKHx48dTdHR0i9NfuXKFANCZM2eEcYWFhXTXXXfRX//6V3J3d6fFixffMgaVSkWzZ89ud+yN2/7kk0/I0dGRrl271mz9+Ph4UqvVVFJSIox79dVXKTQ0lIiIKisrSa1W07Fjx0TTTZ06laKiolqMw9vbm95//33RuICAAHr00UdF41566SXSaDSk0WioV69ewvjo6Ghydnam8vJyYdzq1avJwcGB6urqRPMAQNu3b28xFinwlq2DXF1dERkZicTERKxbtw6RkZFwcXFpUu/cuXOIioqCr68vtFotfHx8AAB5eXlCnR49euCf//wnVq9ejbvvvht/+9vfbtk2tfFSxNbaTktLQ0hICJydnVuch4+PDxwdHYVhDw8PFBQUAADOnz+PiooK/PGPf4SDg4PwWr9+fZPd1dvx2muvIS0tDXFxcSgrKxOV1XcM1QsLC0NZWRkuXrzY4XbNzdbSAViD5557DrNmzQIArFq1qtk648aNg7e3Nz777DN4enrCaDTi3nvvbXJ8cfToUcjlcly6dAnl5eWiFbwxPz8//PTTT63G11rbKpWq1XnY2dmJhmUymWg3FAB27dqFXr16ieoplcpW591Q3759kZWVJRrn6uoKV1dXuLm5tWteXQ1v2cxgzJgxqK6uRk1NDSIiIpqUX7t2DVlZWXj99dcxevRo9OvXD9evX29S79ixY1i6dCm+/vprODg4CAncksmTJ+PAgQM4depUk7KamhqUl5e3qe0BAwYgLS0NhYWF7Vxyk8DAQCiVSuTl5eGee+4Rvby8vNo1r6ioKGRlZeG///1vm+qfPn1a1Bt8/PhxODg4tLtdKXCymYFcLkdmZiYyMjIgl8ublPfo0QM9e/bEp59+ivPnz+Pbb79FbGysqE5paSmefvppzJ49G4888gg2bNiAzZs337JHb86cORgxYgRGjx6NVatW4fTp0/jll1+wZcsWDBs2DOfOnWtT21FRUdDr9XjssceQlJSEX375Bf/5z3+QnJzcpuV3dHTE3Llz8fLLL+Pzzz9HdnY2fvjhB6xcuRKff/55m+ZRb9KkSXjyyScxadIkLFq0CCkpKcjNzcWRI0ewefPmJt9vdXU1pk6dioyMDOzevRvx8fGYNWsWbGy64Kpt0SPGO1h9B0lLGneQ7N+/n/r160dKpZIGDBhAhw8fFh20x8TEUP/+/amyslKY5u9//zs5OzvTr7/+2mI7lZWVlJCQQP379yd7e3tydnamESNGUGJiItXU1LSpbSKi3NxceuKJJ0ir1ZJarabBgwdTSkoKEZk6SIKDg0Xtvv/+++Tt7S0MG41GWrFiBfn7+5OdnR25urpSREQEHTlypMXYm+sgISKqq6ujNWvWUGhoKGk0GlIoFOTr60vTpk2jjIwMoV79/0FcXBz17NmTHBwcaNq0aaLvsF7j5bUE2Y1AGJOcj48P5syZgzlz5nR6WzKZDNu3b2/19K7O1AW3taw7mT9/PhwcHFBcXNwp83/hhRfg4ODQKfNuL96yMYu5cOGCcP6mr69vpxxnFRQUoKSkBIDp54r6H/otgZONMYnwbiRjEuFkY0winGyMScRqT9cyGo34/fff4ejo2ORMccbMiYhQWloKT0/PW3byWG2y/f77713ylB1mvS5evIi77rqrxXKrTbb6E3gvXrwIrVZr4WiYNSspKYGXl9ctTxoHrDjZ6ncdtVptt062uro6fPfddwCAUaNGNXvuJjOP1g5XrDbZmEllZSUeeughAKZLYSz5o253x72RjEmEk40xifBupKUZioArWcCVTKDgJ9P7lSyguhxw9gVc+gI972nwuhtQ3vpAnHVNnGxSaZhUV7KAgkzgyk9A6S1uIHopzfRqzNFDnID1CanzBuRd/L+UCKguAwzXgYpC07uhEKgqBVQ9AAd3wMHN9K6wruPLLv4/cweqLBYnU8GN5Cr9veVptL0A1wDArR/g6g+49jNtvQqzgavngGvnb77Kr5gStPQSkPudeD42tkCPPjcS8EYiqlr+3afDagxNk6bhZ8N1oOJ6o+FCwNjGOzUrHG4mnsb1RiI2SMaGZbaKzltOM+l+yVZ+Dfj+E9NfWDICuPFOxgbjIB4W1Ws83Y26Zfmm3cC2JJVrAOAWYEoqVz/A3qn5+m4BTccZrgPXsk2JJ0rEbKDWAFw7Z3r9fKN+dYOLOpb6AooWuqdb7LZuYTzVAbWVLUzTBnIFoHIG1M6mLZrS0bRsZZeB0sumZakuAwrLgMJfWp+fyrlpAspkQF0NUFdtSvD6z3WNPhsbjm9cXg0Ya03vPe8BZrTtVhHN6X7JZigEjizt3DYcPW8mk9uN5HL1bzmp2kPVA7hrsOnVkNEIlPwm3gpePQe7yz9jWXg2AIIdGYBaM5+6ZmNriknVw7TCq3rcTKD6l9q5aZmduuUEr9/VLCswJV9ZQYPPl8XjywtMyWAoNL2uZJp3+RqqrerQ5FZ7PVtJSQmcnJxQXFws/lG77ApwZAkgswEgM73LbEz/8TJZg3GyFurUj5OJh1U9bu4GmiOpzKmm0rRStqTFVeAWq4bMBrDXmbZIljz31Gi8uUVsmIjlBQBkpi2oXGE6lhU+2wE2djc/C+92N+vYNKovVwC29oCmZ5MQWlzXGul+ycaYmbV1Xet+u5HdTF1dHX744QcApgeB8OlalsPJZuUqKysxdOhQAHy6lqXxGSSMSYSTjTGJcLIxJhFONsYkwsnGmEQ42RiTCHf9Wzk7OzvEx8cLn5nl8BkkjHVQW9c13o1kTCK8G2nljEYjMjNNZ8L369evaz6Rs5vgZLNyBoMB9957LwA+XcvS+M8cYxLhZGNMIpxsjEmEk40xiXCyMSYRTjbGJMJd/1bOzs4Oc+fOFT4zy+HTtRjrID5di7EuhncjrZzRaEReXh4AoHfv3ny6lgVxslk5g8GAPn36AODTtSyN/8wxJhFONsYkwsnGmEQ42RiTCCcbYxLh3shuqK6uDjU1bXz6J4OdnZ1ZHkjCyWblbG1tMWPGDACAXC7HpUuXUFRUZNmg7kA6nQ56vR6yDjyLjpPNyimVSqxatQoAhERzc3ODWq3u0IrTXRARKioqUFBgepikh4fHbc+Lk62bqKurExKtZ8+mT89kLVOpVACAgoICuLm53fYuJSeblSMiXL16VThGU6vVFo7ozlT/vdXU1Nx2srW7N/Lo0aMYN24cPD09IZPJsGPHDlE5ESEuLg4eHh5QqVQIDw/HuXPnRHUKCwsxZcoUaLVa6HQ6TJ06FWVlZaI6P/74I0aNGgV7e3t4eXlh2bJl7V86hoqKCri5uWH48OEwGo2863ibzPG9tTvZysvLERwcLBwHNLZs2TJ8+OGHWLNmDVJSUqDRaBAREYHKykqhzpQpU5Ceno79+/dj586dOHr0KKZPny6Ul5SU4OGHH4a3tzdOnjyJ5cuXY+HChfj0009vYxEZ6yKoAwDQ9u3bhWGj0Uh6vZ6WL18ujCsqKiKlUkkbN24kIqKMjAwCQCdOnBDq7Nmzh2QyGf32229ERPTxxx9Tjx49qKqqSqgzf/588vf3b3NsxcXFBICKi4tvd/GsQllZGQEgb29vOnv2LBkMBkuHZFGN19m2MhgMlJGR0ez319Z1zaw/aufk5CA/Px/h4eHCOCcnJ4SGhiI5ORkAkJycDJ1Oh8GDBwt1wsPDYWNjg5SUFKHO/fffD4VCIdSJiIhAVlYWrl+/3mzbVVVVKCkpEb0Y60rMmmz5+fkAAHd3d9F4d3d3oSw/Px9ubm6icltbWzg7O4vqNDePhm00lpCQACcnJ+Hl5eXV8QVizIys5nStBQsWoLi4WHhdvHjR0iHdUR588EHMnj0b8+bNg7OzM/R6PRYuXCiU5+bmQiaTIS0tTRhXVFQEmUyGw4cPAwAOHz4MmUyGffv2ISQkBCqVCn/4wx9QUFCAPXv2oF+/ftBqtZg8eTIqKipajCUxMRE6nQ47duxA3759YW9vj4iIiCb/p6tXr8bdd98NhUIBf39//Otf/xKVnzt3Dvfffz/s7e0RGBiI/fv3i8qrq6sxa9YseHh4wN7eHt7e3khISLi9L7ANzJpser0eAHD58mXR+MuXLwtler1e+IGwXm1tLQoLC0V1mptHwzYaUyqV0Gq1ohdrn88//xwajQYpKSlYtmwZFi1a1GQFbYuFCxfio48+wrFjx3Dx4kVMmDABK1aswBdffIFdu3bhm2++wcqVK285j4qKCixevBjr169HUlISioqKMGnSJKF8+/bteOmll/DKK6/g7NmzeP755xETE4NDhw4BMF2h/vjjj0OhUCAlJQVr1qzB/PnzRW18+OGH+Oqrr7BlyxZkZWVhw4YN8PHxaffytlm7jxQbQAsdJO+++67o4LG5DpLU1FShzr59+5rtIKmurhbqLFiwgDtIbkNlZSVFR0fTnDlzKD09vcUOkgceeIBGjhwpGjdkyBCaP38+ERHl5OQQADp16pRQfv36dQJAhw4dIiKiQ4cOEQA6cOCAUCchIYEAUHZ2tjDu+eefp4iIiBZjXrduHQGg48ePC+MyMzMJAKWkpBAR0fDhw2natGmi6f7yl7/Q2LFjici0Ttna2grrFJGpI67hOvviiy/SH/7wBzIajS3GUs8iHSRlZWVIS0sTdidycnKQlpaGvLw8yGQyzJkzB2+//Ta++uornDlzBs888ww8PT3x2GOPATA9tmjMmDGYNm0avv/+eyQlJWHWrFmYNGkSPD09AQCTJ0+GQqHA1KlTkZ6ejs2bN+ODDz5AbGxsx/6ydENKpRKJiYlISEho9beiAQMGiIY9PDya7IW0RcP5uLu7Q61Ww9fXVzSutfna2tpiyJAhwnBAQAB0Op3w+KvMzEyMGDFCNM2IESNE5V5eXsI6BQBhYWGi+s8++yzS0tLg7++P2bNn45tvvmnnkrZPu88gSU1NxUMPPSQM1ydAdHQ0EhMTMW/ePJSXl2P69OkoKirCyJEjsXfvXtjb2wvTbNiwAbNmzcLo0aNhY2ODJ554Ah9++KFQ7uTkhG+++QYzZ87EoEGD4OLigri4ONFvccz8Gt9XUiaTwWg0AoBwoyBqcOfDlq4caDgfmUx2y/la0n333YecnBzs2bMHBw4cwIQJExAeHo4vv/yyU9prd7I9+OCDoi+8MZlMhkWLFmHRokUt1nF2dsYXX3xxy3YGDBiA7777rr3hsUboxom0VVVVHZqPq6srANPJzCEhIQAg6iwxt9raWqSmpmLo0KEAgKysLBQVFaFfv34ATHtISUlJiI6OFqZJSkpCYGCgUH7x4kVcunRJOHn4+PHjTdrRarWYOHEiJk6ciCeffBJjxoxBYWEhnJ2dzb5MfG6klauoqICDgwO8vb2xa9eu256PSqXCsGHDsGTJEvTp0wcFBQV4/fXXzRipmJ2dHV588UV8+OGHsLW1xaxZszBs2DAh+V599VVMmDABISEhCA8Px9dff41t27bhwIEDAEy/3fr5+SE6OhrLly9HSUkJXnvtNVEb7733Hjw8PBASEgIbGxts3boVer0eOp2uU5bJarr+Wedbu3YtamtrMWjQIOHYvLOo1WrMnz8fkydPxogRI+Dg4IDNmzcL5Y899hg++OADvPvuuwgKCsInn3yCdevW4cEHHwRg2u3dvn07DAYDhg4div/7v//D4sWLRW04Ojpi2bJlGDx4MIYMGYLc3Fzs3r270+6tybcft3Ll5eWiLdvdd98tOn7uihITEzFnzpwudZFrZWUlcnJy0KdPnybfH99+nLEuhpONMYlwsrEu59lnn+1Su5DmwsnGmES469/KyeVyPPnkk3B2duartC2Mk83K2dvbY+vWrUJvGrMc3o1kTCKcbIxJhJPNypWXl0MmkyEgIKBLnPzbnXGyMSYRTjZmVVq7r6klcbIxq9LafU0tibv+mVV55JFH8Mgjj1g6jGZxsrFWEREMNXUWaVtlJ7eaH+M52VirDDV1CIzbZ5G2MxZFQK2wjtXUOpaCtUgul2Ps2LFwcXGxmi3EnYqTzcrZ29tj165dHTpdS2UnR8aiCDNH1va2rQUnG2uVTCazml05S+JvkFmVsrIynD9/Xhiuv6+ps7MzevfubcHI+Hc2q1deXg6NRoOQkJBucbpWamoqQkJChNvtxcbGIiQkBHFxcRaOjLds3UJFRQUMBoOlw5BEa/c1tSTesjEmEU42xiTCycaYRDjZGJMIJxtjEuHeSCtnY2ODBx54AG5ubny6loVxslk5lUqFw4cP8921ugDejWRMIpxsjEmEk83KlZeXw9XVFWFhYd3idK2ujJOtG7h69SquX79u6TA6XV1dHd544w306dMHKpUKd999N956660uc/oWd5Awq7F06VKsXr0an3/+OYKCgpCamoqYmBg4OTlh9uzZlg6Pk41Zj2PHjmH8+PGIjIwEAPj4+GDjxo34/vvvLRyZCScbax0RUFNhmbbt1EAbfx8cPnw4Pv30U/z888/w8/PD6dOn8b///Q/vvfdeJwfZNpxsrHU1FcA7npZp+//9Dig0bar6t7/9DSUlJQgICIBcLkddXR0WL16MKVOmdHKQbcPJxqzGli1bsGHDBnzxxRcICgpCWloa5syZA09PT0RHR1s6PIDMLD4+ngCIXv7+/kK5wWCgGTNmkLOzM2k0Gnr88ccpPz9fNI8LFy7Q2LFjSaVSkaurK82dO5dqamraFUdxcTEBoOLiYrMs152qoqKCBg8eTJGRkZSenk4Gg6H9MzEaiarKLPMyGtsc5l133UUfffSRaNxbb70lWv9ul8FgoIyMjGa/v7aua52yZQsKCsKBAweEYVvbm828/PLL2LVrF7Zu3QonJyfMmjULjz/+OJKSkgCYum8jIyOh1+tx7NgxXLp0Cc888wzs7OzwzjvvdEa4Vk2lUuHEiRMdO11LJmvzrpwlVVRUwMZG/GuWXC7vOr8vdjjlG4mPj6fg4OBmy4qKisjOzo62bt0qjMvMzCQAlJycTEREu3fvJhsbG9HWbvXq1aTVaqmqqqrNcfCWTexWf5mtRXR0NPXq1Yt27txJOTk5tG3bNnJxcaF58+Z1eN7m2LJ1yo/a586dg6enJ3x9fTFlyhTk5eUBAE6ePImamhqEh4cLdQMCAtC7d28kJycDAJKTk9G/f3+4u7sLdSIiIlBSUoL09PQW26yqqkJJSYnoxbqXlStX4sknn8SMGTPQr18/zJ07F88//zzeeustS4cGoBPOIAkNDUViYiL27t2L1atXIycnB6NGjUJpaSny8/OhUCig0+lE07i7uyM/Px8AkJ+fL0q0+vL6spYkJCTAyclJeHl5eZl3we5QFRUV8PHxwejRo7vO7lQncXR0xIoVK3DhwgUYDAZkZ2fj7bffhkKhsHRoADqhN7LhE0QGDBiA0NBQeHt7Y8uWLVCpVOZuTrBgwQLExsYKwyUlJZxwMD0U48KFC5YOg0GCcyN1Oh38/Pxw/vx56PV6VFdXo6ioSFTn8uXL0Ov1AAC9Xo/Lly83Ka8va4lSqYRWqxW9GOtKOj3ZysrKkJ2dDQ8PDwwaNAh2dnY4ePCgUJ6VlYW8vDyEhYUBAMLCwnDmzBkUFBQIdfbv3w+tVovAwMDODpexTmP23ci5c+di3Lhx8Pb2xu+//474+HjI5XJERUXByckJU6dORWxsLJydnaHVavHiiy8iLCwMw4YNAwA8/PDDCAwMxNNPP41ly5YhPz8fr7/+OmbOnAmlUmnucBmTjNmT7ddff0VUVBSuXbsGV1dXjBw5EsePH4erqysA4P3334eNjQ2eeOIJVFVVISIiAh9//LEwvVwux86dO/HXv/4VYWFh0Gg0iI6OxqJFi8wdardCNy4zoS5yucmdxhzfm4ys9NsvKSmBk5MTiouLu/XxW3l5ORwcHKDRaJCSkgK9Xo+ePXtaOqw7zrVr11BQUAA/Pz/I5eLHWLV1XeNzI62cTCYTjnUdHR2FY2G1Ws1322oDIkJFRQUKCgqg0+maJFp7cLJZObVaLZwMQETIz88XdT6xttHpdLfsDW8LTrZuRCaTwcPDA25ubqipqbF0OHcMOzu7Dm3R6nGydUNyudwsKw9rH77hj5WrqKhAUFAQgoKCUFFhoautGQDeslk9IkJGRobwmVkOb9kYkwgnG2MS4WRjTCKcbIxJhJONMYlwb6SVk8lk8Pb2Fj4zy+Fks3JqtRq5ubmWDoOBdyMZkwwnG2MS4WSzcgaDAUOGDMGQIUNgMBgsHU63xsdsVs5oNCI1NVX4zCyHt2yMSYSTjTGJcLIxJhFONsYkwsnGmES4N7KLISKUVNairKpWGDa9N1f3xjuo0fBN5WVlcL5x67qcK2XQGAAZTI9ck0EmPK5aJjOdztW4TAYAjYbr6zVuS4j1FjE2rtCwbsO2bG7EY1Pfto2p3EYmE8cnuzGuYVkXPS2N7xspgcqaOlwrr8a1sipcK6vG1bIq8XCDz9fKq1BTZ5X/JZIS/lC0uX7rtX1dNNgf+0CT8XzfyBaUVNZg39mWHz3VUJtXeQIqqmtxrbwaV8tuJE6DBCq9sZVqD4XcRlhb6lcDYSt0Y4ysSblMNNx4errxD8G0FTK9m7Y6RA3Lbw43rNcRDddlmWj8zSEigtFMf2eE5WnPBK2o6+CX0O2S7WppFV798kfJ27WTy9BTo0RPBwV6OijholEIn3tqFHBxUIqG7e265t2viG4mojhpGn7u+G5cfeIJ7/V/AAgwCn8AbiRng3HG+vjakRhtrWnTweXqdsmmVtjiIX9Xs8/X3k4uShhTMpmGXTRKaFW2FjmWMBgMwjPz9uzZ0+Fn5MlkMkixGDKZDPL6gzgrwcdsVq7+Xv+A6fFdGk3XfxD9naat6xp3/TMmEU42xiTCycaYRDjZGJMIJxtjEul2Xf/dkVqttnQIDJxsVk+j0aC8vNzSYTDwbiRjkuFkY0winGxWrrKyEpGRkYiMjERlZaWlw+nW+JjNytXV1WH37t3CZ2Y5vGVjTCKcbIxJpEsn26pVq+Dj4wN7e3uEhobi+++/t3RIjN22LptsmzdvRmxsLOLj4/HDDz8gODgYERERKCgosHRojN2WLpts7733HqZNm4aYmBgEBgZizZo1UKvVWLt2raVDY+y2dMneyOrqapw8eRILFiwQxtnY2CA8PBzJycnNTlNVVYWqqiphuLi4GIDpwr7urOHZIyUlJdwj2Qnq17HWrsPuksl29epV1NXVwd3dXTTe3d0dP/30U7PTJCQk4M0332wy3svLq1NivBN5enpaOgSrVlpaCicnpxbLu2Sy3Y4FCxYgNjZWGDYajSgsLETPnj277H0Eb6WkpAReXl64ePFit7qtw5243ESE0tLSVv+Ydclkc3FxgVwux+XLl0XjL1++DL1e3+w0SqUSSqVSNE6n03VWiJLRarV3zEpnTnfact9qi1avS3aQKBQKDBo0CAcPHhTGGY1GHDx4EGFhYRaMjLHb1yW3bAAQGxuL6OhoDB48GEOHDsWKFStQXl6OmJgYS4fG2G3pssk2ceJEXLlyBXFxccjPz8fAgQOxd+/eJp0m1kqpVCI+Pr7JrrG1s+blttr7RjLW1XTJYzbGrBEnG2MS4WRjTCKcbIxJhJPNTBYuXHjjCS83XwEBAUJ5ZWUlZs6ciZ49e8LBwQFPPPFEkx/t8/LyEBkZCbVaDTc3N7z66quorRU/2+3w4cO47777oFQqcc899yAxMbFJLJ15adLRo0cxbtw4eHp6QiaTYceOHaJyIkJcXBw8PDygUqkQHh6Oc+fOieoUFhZiypQp0Gq10Ol0mDp1KsrKykR1fvzxR4waNQr29vbw8vLCsmXLmsSydetWBAQEwN7eHv379xeuSG9PLJIiZhbx8fEUFBREly5dEl5XrlwRyl944QXy8vKigwcPUmpqKg0bNoyGDx8ulNfW1tK9995L4eHhdOrUKdq9eze5uLjQggULhDq//PILqdVqio2NpYyMDFq5ciXJ5XLau3evUGfTpk2kUCho7dq1lJ6eTtOmTSOdTkeXL182y3Lu3r2bXnvtNdq2bRsBoO3bt4vKlyxZQk5OTrRjxw46ffo0Pfroo9SnTx8yGAxCnTFjxlBwcDAdP36cvvvuO7rnnnsoKipKKC8uLiZ3d3eaMmUKnT17ljZu3EgqlYo++eQToU5SUhLJ5XJatmwZZWRk0Ouvv052dnZ05syZdsUiJU42M4mPj6fg4OBmy4qKisjOzo62bt0qjMvMzCQAlJycTESmldjGxoby8/OFOqtXryatVktVVVVERDRv3jwKCgoSzXvixIkUEREhDA8dOpRmzpwpDNfV1ZGnpyclJCR0eBkba5xsRqOR9Ho9LV++XBhXVFRESqWSNm7cSEREGRkZBIBOnDgh1NmzZw/JZDL67bffiIjo448/ph49egjLTUQ0f/588vf3F4YnTJhAkZGRonhCQ0Pp+eefb3MsUuPdSDM6d+4cPD094evriylTpiAvLw8AcPLkSdTU1CA8PFyoGxAQgN69ewuXDCUnJ6N///6iH+0jIiJQUlKC9PR0oU7DedTXqZ9H/aVJDeu0dmmSOeXk5CA/P1/UvpOTE0JDQ0XLqdPpMHjwYKFOeHg4bGxskJKSItS5//77oVAohDoRERHIysrC9evXhTq3+i7aEovUONnMJDQ0FImJidi7dy9Wr16NnJwcjBo1CqWlpcjPz4dCoWhyYrS7uzvy803P987Pz2/2kqL6slvVKSkpgcFguOWlSfXz6Ez1bdyq/fz8fLi5uYnKbW1t4ezsbJbvomF5a7FIrcuernWnqX+ULgAMGDAAoaGh8Pb2xpYtWzr8aF1mHXjL1kl0Oh38/Pxw/vx56PV6VFdXo6ioSFSn4SVDer2+2UuK6stuVUer1UKlUt3WpUnmVN/GrdrX6/VN7iNTW1uLwsJCs3wXDctbi0VqnGydpKysDNnZ2fDw8MCgQYNgZ2cnumQoKysLeXl5wiVDYWFhOHPmjGhF3L9/P7RaLQIDA4U6DedRX6d+Hpa+NKlPnz7Q6/Wi9ktKSpCSkiJazqKiIpw8eVKo8+2338JoNCI0NFSoc/ToUdTU1Ah19u/fD39/f/To0UOoc6vvoi2xSM4i3TJW6JVXXqHDhw9TTk4OJSUlUXh4OLm4uFBBQQERmbr+e/fuTd9++y2lpqZSWFgYhYWFCdPXd/0//PDDlJaWRnv37iVXV9dmu/5fffVVyszMpFWrVjXb9a9UKikxMZEyMjJo+vTppNPpRL2cHVFaWkqnTp2iU6dOEQB677336NSpU3ThwgUiMnW363Q6+u9//0s//vgjjR8/vtmu/5CQEEpJSaH//e9/1LdvX1HXf1FREbm7u9PTTz9NZ8+epU2bNpFarW7S9W9ra0vvvvsuZWZmUnx8fLNd/63FIiVONjOZOHEieXh4kEKhoF69etHEiRPp/PnzQrnBYKAZM2ZQjx49SK1W05///Ge6dOmSaB65ubn0yCOPkEqlIhcXF3rllVeopqZGVOfQoUM0cOBAUigU5OvrS+vWrWsSy8qVK6l3796kUCho6NChdPz4cbMt56FDhwhAk1d0dDQRmbrc33jjDXJ3dyelUkmjR4+mrKws0TyuXbtGUVFR5ODgQFqtlmJiYqi0tFRU5/Tp0zRy5EhSKpXUq1cvWrJkSZNYtmzZQn5+fqRQKCgoKIh27dolKm9LLFLiS2wYkwgfszEmEU42xiTCycaYRDjZGJMIJxtjEuFkY0winGyMSYSTjTGJcLIxJhFOtjvcgw8+iDlz5lg6DEFXi6cr4WRjqK6utnQI3YPFzspkHRYdHd3khODz58/Tc889Rz4+PmRvb09+fn60YsWKJtONHz+e3n77bfLw8CAfHx8iMp1JHxwcTEqlkgYNGkTbt28nAHTq1Clh2jNnztCYMWNIo9GQm5sbPfXUU8KNjZqLJycnR6qvo8vjZLuDFRUVUVhYGE2bNk24o1dlZSXFxcXRiRMn6JdffqF///vfpFarafPmzcJ00dHR5ODgIFzCcvbsWSouLiZnZ2d66qmnKD09nXbv3k1+fn6iZLt+/bpw2U9mZib98MMP9Mc//pEeeuihFuOpra21xFfTJfFtEe5gTk5OUCgUUKvVoquPGz7uuE+fPkhOTsaWLVswYcIEYbxGo8E//vEP4aY6a9asgUwmw2effQZ7e3sEBgbit99+w7Rp04RpPvroI4SEhOCdd94Rxq1duxZeXl74+eef4efn12w8zISTzQqtWrUKa9euRV5eHgwGA6qrqzFw4EBRnf79+4vuXpWVlYUBAwbA3t5eGDd06FDRNKdPn8ahQ4fg4ODQpM3s7Gz4+fmZd0GsDCebldm0aRPmzp2Lv//97wgLC4OjoyOWL18u3Caunkajafe8y8rKMG7cOCxdurRJmYeHx23H3F1wst3hFAoF6urqhOGkpCQMHz4cM2bMEMZlZ2e3Oh9/f3/8+9//RlVVlfAgwhMnTojq3HffffjPf/4DHx8f2No2v+o0jofdxF3/dzgfHx+kpKQgNzcXV69eRd++fZGamop9+/bh559/xhtvvNEkaZozefJkGI1GTJ8+HZmZmdi3bx/effddAIBMJgMAzJw5E4WFhYiKisKJEyeQnZ2Nffv2ISYmRkiwxvEYjcbOW/g7DCfbHW7u3LmQy+UIDAyEq6srIiIi8Pjjj2PixIkIDQ3FtWvXRFu5lmi1Wnz99ddIS0vDwIED8dprryEuLg4AhOM4T09PJCUloa6uDg8//DD69++POXPmQKfTwcbGptl46u8Kzfgxv+wWNmzYgJiYGBQXF/ONZs2Aj9mYYP369fD19UWvXr1w+vRpzJ8/HxMmTOBEMxNONibIz89HXFwc8vPz4eHhgb/85S9YvHixpcOyGrwbyZhEuIOEMYlwsjEmEU42xiTCycaYRDjZGJMIJxtjEuFkY0winGyMSeT/AxF1qPXLjKLNAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df = evaluation.get_monitoring_metric('total_cpu_memory_cached', component='benchmarker').max()\n",
+ "plot_metric(df, \"Max Cache [Gb]\", peak_benchmark)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "benchmarking",
+ "language": "python",
+ "name": "benchmarking"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.15"
+ },
+ "toc": {
+ "base_numbering": 1,
+ "nav_menu": {},
+ "number_sections": true,
+ "sideBar": true,
+ "skip_h1_title": false,
+ "title_cell": "Table of Contents",
+ "title_sidebar": "Contents",
+ "toc_cell": false,
+ "toc_position": {
+ "height": "calc(100% - 180px)",
+ "left": "10px",
+ "top": "150px",
+ "width": "511.984px"
+ },
+ "toc_section_display": true,
+ "toc_window_display": true
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/images/evaluator_dbmsbenchmarker/notebooks/evaluator.py b/images/evaluator_dbmsbenchmarker/notebooks/evaluator.py
new file mode 100644
index 00000000..fde94a22
--- /dev/null
+++ b/images/evaluator_dbmsbenchmarker/notebooks/evaluator.py
@@ -0,0 +1,1173 @@
+"""
+:Date: 2023-01-05
+:Version: 0.6.1
+:Authors: Patrick K. Erdelt
+
+ Module to evaluate results obtained using bexhoma.
+
+ Copyright (C) 2020 Patrick K. Erdelt
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU Affero General Public License as
+ published by the Free Software Foundation, either version 3 of the
+ License, or (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU Affero General Public License for more details.
+
+ You should have received a copy of the GNU Affero General Public License
+ along with this program. If not, see .
+"""
+import pandas as pd
+import os
+import re
+import matplotlib.pyplot as plt
+pd.set_option("display.max_rows", None)
+pd.set_option('display.max_colwidth', None)
+# Some nice output
+from IPython.display import display, Markdown
+import pickle
+import json
+import traceback
+import ast
+from colour import Color
+
+from dbmsbenchmarker import monitor
+
+color_ranges = [
+ ["#ff0000", "#ffcccc"],
+ ["#006600", "#ccffcc"],
+ ["#000066", "#ccccff"],
+ ["#666600", "#ffffcc"],
+ ["#660066", "#ffccff"],
+ ["#006666", "#ccffff"],
+ ["#000000", "#ffffff"],
+ ["#666666", "#cccccc"],
+ ["#2288aa", "#aaccff"],
+ ["#ff0000", "#ffcccc"],
+ ["#006600", "#ccffcc"],
+ ["#000066", "#ccccff"],
+ ["#666600", "#ffffcc"],
+ ["#660066", "#ffccff"],
+ ["#006666", "#ccffff"],
+ ["#000000", "#ffffff"],
+ ["#666666", "#cccccc"],
+ ["#2288aa", "#aaccff"],
+]
+
+import re
+
+def natural_sort(l):
+ convert = lambda text: int(text) if text.isdigit() else text.lower()
+ alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
+ return sorted(l, key=alphanum_key)
+
+
+class evaluator:
+ """
+ Basis class for evaluating an experiment.
+ Constructor sets
+
+ 1. `path`: path to result folders
+ 1. `code`: Id of the experiment (name of result folder)
+ """
+ def __init__(self, code, path, include_loading=False, include_benchmarking=True, styles=[]):
+ """
+ Initializes object by setting code and path to result folder.
+
+ :param path: path to result folders
+ :param code: Id of the experiment (name of result folder)
+ :param include_loading: Are there results about the loading phase?
+ :param include_benchmarking: Are there results about the benchmarking phase?
+ :param styles: List of styles for line plots
+ """
+ self.path = path+"/"+code
+ self.code = code
+ self.include_loading = include_loading
+ self.include_benchmarking = include_benchmarking
+ self.styles = styles
+ def transform_monitoring_results(self, component="loading"):
+ """
+ Creates combined metrics.csv.
+ For example
+ query_datagenerator_metric_total_cpu_util_MonetDB-NIL-1-1.csv
+ query_datagenerator_metric_total_cpu_util_MonetDB-NIL-1-2.csv
+ are combined to
+ query_datagenerator_metric_total_cpu_util.csv
+ """
+ connections_sorted = self.get_connection_config()
+ list_metrics = self.get_monitoring_metrics()
+ #print(c['name'], list_metrics)
+ for m in list_metrics:
+ df_all = None
+ for connection in connections_sorted:
+ if 'orig_name' in connection:
+ connectionname = connection['orig_name']
+ else:
+ connectionname = connection['name']
+ filename = "query_{component}_metric_{metric}_{connection}.csv".format(component=component, metric=m, connection=connectionname)
+ #print(self.path++"/"+filename)
+ df = monitor.metrics.loadMetricsDataframe(self.path+"/"+filename)
+ if df is None:
+ continue
+ #print(df)
+ df.columns=[connectionname]
+ if df_all is None:
+ df_all = df
+ else:
+ df_all = df_all.merge(df, how='outer', left_index=True,right_index=True)
+ #print(df_all)
+ filename = '/query_{component}_metric_{metric}.csv'.format(component=component, metric=m)
+ #print(self.path+filename)
+ monitor.metrics.saveMetricsDataframe(self.path+"/"+filename, df_all)
+ def get_monitoring_metric(self, metric, component="loading"):
+ """
+ Returns list of names of metrics using during monitoring.
+
+ :return: List of monitoring metrics
+ """
+ filename = '/query_{component}_metric_{metric}.csv'.format(component=component, metric=metric)
+ if os.path.isfile(self.path+"/"+filename):
+ df = pd.read_csv(self.path+"/"+filename).T
+ #print(df)
+ df = df.reindex(index=natural_sort(df.index))
+ return df.T
+ else:
+ return pd.DataFrame()
+ def get_monitoring_metrics(self):
+ """
+ Returns list of names of metrics using during monitoring.
+
+ :return: List of monitoring metrics
+ """
+ connections_sorted = self.get_connection_config()
+ for c in connections_sorted:
+ if 'monitoring' in c and 'metrics' in c['monitoring']:
+ list_metrics = list(c['monitoring']['metrics'].keys())
+ else:
+ list_metrics = []
+ break
+ return list_metrics
+ def get_connection_config(self):
+ """
+ Returns connection.config as Python dict.
+ Items are sorted by connection name.
+
+ :return: Python dict of all connection informations
+ """
+ with open(self.path+"/connections.config",'r') as inf:
+ connections = ast.literal_eval(inf.read())
+ connections_sorted = sorted(connections, key=lambda c: c['name'])
+ return connections_sorted
+ def end_benchmarking(self, jobname):
+ """
+ Ends a benchmarker job.
+ This is for storing or cleaning measures.
+ The results are stored in a pandas DataFrame.
+
+ :param jobname: Name of the job to clean
+ """
+ path = self.path
+ directory = os.fsencode(path)
+ for file in os.listdir(directory):
+ filename = os.fsdecode(file)
+ if filename.startswith("bexhoma-benchmarker-"+jobname) and filename.endswith(".log"):
+ #print(filename)
+ df = self.log_to_df(path+"/"+filename)
+ #print(df)
+ if df.empty:
+ print("Error in "+filename)
+ else:
+ filename_df = path+"/"+filename+".df.pickle"
+ f = open(filename_df, "wb")
+ pickle.dump(df, f)
+ f.close()
+ def end_loading(self, jobname):
+ """
+ Ends a loading job.
+ This is for storing or cleaning measures.
+ The results are stored in a pandas DataFrame.
+
+ :param jobname: Name of the job to clean
+ """
+ path = self.path
+ directory = os.fsencode(path)
+ for file in os.listdir(directory):
+ filename = os.fsdecode(file)
+ if filename.startswith("bexhoma-loading-"+jobname) and filename.endswith(".sensor.log"):
+ #print(filename)
+ df = self.log_to_df(path+"/"+filename)
+ #print(df)
+ if df.empty:
+ print("Error in "+filename)
+ else:
+ filename_df = path+"/"+filename+".df.pickle"
+ f = open(filename_df, "wb")
+ pickle.dump(df, f)
+ f.close()
+ def _collect_dfs(self, filename_result='', filename_source_start='', filename_source_end=''):
+ """
+ Collects all pandas DataFrames from the same phase (loading or benchmarking) and combines them into a single DataFrame.
+ This DataFrame is stored as a pickled file.
+ Source files are identifies by a pattern "filename_source_start*filename_source_end"
+
+ :param filename_result: Name of the pickled result file
+ :param filename_source_start: Begin of name pattern for source files
+ :param filename_source_end: End of name pattern for source files
+ """
+ df_collected = None
+ path = self.path
+ directory = os.fsencode(path)
+ for file in os.listdir(directory):
+ filename = os.fsdecode(file)
+ if filename.startswith(filename_source_start) and filename.endswith(filename_source_end):
+ #print(filename)
+ try:
+ df = pd.read_pickle(path+"/"+filename)
+ except Exception as e:
+ print(filename)
+ print(e)
+ df = pd.DataFrame()
+ if not df.empty:
+ #df['configuration'] = df.index.name
+ if df_collected is not None:
+ df_collected = pd.concat([df_collected, df])
+ else:
+ df_collected = df.copy()
+ if not df_collected is None and not df_collected.empty:
+ df_collected['index'] = df_collected.groupby('connection')['connection'].cumcount() + 1#df_collected.index.map(str)
+ df_collected['connection_pod'] = df_collected['connection']+"-"+df_collected['index'].astype(str)
+ #df_collected['connection_pod'] = df_collected.groupby('connection')['connection'].cumcount() + 1#.transform('count')
+ #print(df_collected)
+ df_collected.drop('index', axis=1, inplace=True)
+ df_collected.set_index('connection_pod', inplace=True)
+ #print(df_collected)
+ filename_df = path+"/"+filename_result
+ f = open(filename_df, "wb")
+ pickle.dump(df_collected, f)
+ f.close()
+ #self.cluster.logger.debug(df_collected)
+ def evaluate_results(self, pod_dashboard=''):
+ """
+ Collects all pandas DataFrames from the same phase (loading or benchmarking) and combines them into a single DataFrame.
+ This DataFrame is stored as a pickled file.
+ """
+ if self.include_benchmarking:
+ self._collect_dfs(filename_result="bexhoma-benchmarker.all.df.pickle" , filename_source_start="bexhoma-benchmarker", filename_source_end=".log.df.pickle")
+ if self.include_loading:
+ self._collect_dfs(filename_result="bexhoma-loading.all.df.pickle" , filename_source_start="bexhoma-loading", filename_source_end=".log.df.pickle")
+ def get_df_benchmarking(self):
+ """
+ Returns the DataFrame that containts all information about the benchmarking phase.
+
+ :return: DataFrame of benchmarking results
+ """
+ filename = "bexhoma-benchmarker.all.df.pickle"
+ df = pd.read_pickle(self.path+"/"+filename)
+ #df#.sort_values(["configuration", "pod"])
+ return df
+ def get_df_loading(self):
+ """
+ Returns the DataFrame that containts all information about the loading phase.
+
+ :return: DataFrame of loading results
+ """
+ filename = "bexhoma-loading.all.df.pickle"
+ df = pd.read_pickle(self.path+"/"+filename)
+ #df#.sort_values(["configuration", "pod"])
+ return df
+ @staticmethod
+ def get_experiment_list_connection_colors(list_connections):
+ #list_connections_dbms = self.get_experiment_list_connections_by_dbms()
+ dbms_colors={}
+ list_colors = []
+ num_colorset = 0
+ for i,j in list_connections.items():
+ list_colors.append(list(Color(color_ranges[num_colorset][0]).range_to(Color(color_ranges[num_colorset][1]), len(j))))
+ for k,c in enumerate(j):
+ dbms_colors[c] = '#%02x%02x%02x' % (int(255*list_colors[num_colorset][k].red), int(255*list_colors[num_colorset][k].green), int(255*list_colors[num_colorset][k].blue))
+ num_colorset = num_colorset + 1
+ return dbms_colors
+ def get_dict_color_by_connection_property(self, connection_property):
+ """
+ Returns the DataFrame that containts all information about the loading phase.
+
+ :return: DataFrame of loading results
+ """
+ connections = self.get_connection_config()
+ connections_by_filter_sorted = {con[connection_property]: [c['name'] for c in connections if c[connection_property] == con[connection_property]] for con in connections}
+ dict_colors = evaluator.get_experiment_list_connection_colors(connections_by_filter_sorted)
+ return dict_colors
+ def plot_all_metrics(self, component='loading', dict_colors=None):
+ #dict_colors = evaluation.get_dict_color_by_connection_property('docker')
+ list_metrics = self.get_monitoring_metrics()
+ row=0
+ col=0
+ rows = (len(list_metrics)+1)//2
+ fig, axes = plt.subplots(nrows=rows, ncols=2, sharex=True, squeeze=False, figsize=(12,8*rows))
+ for metric in list_metrics:
+ df = self.get_monitoring_metric(metric=metric, component=component)
+ #if df.sum().sum() > 0:
+ if df.empty:
+ continue
+ ax = df.plot(ax=axes[row,col], kind='line', title=metric, layout=(rows,2), color=dict_colors)
+ col = col + 1
+ if col > 1:
+ row = row + 1
+ col = 0
+ plt.legend(loc='best')
+ plt.tight_layout()
+ plt.show()
+ def plot(self, df, column, x, y, plot_by=None, kind='line', dict_colors=None, figsize=(12,8)):
+ #styles=['s-', 'o-', '^-', 'x-']
+ i = 0
+ if plot_by is None:
+ fig, ax = plt.subplots()
+ for key, grp in df.groupby(column):
+ labels = "{}".format(key)
+ #labels = "{} {}".format(key, column)
+ if len(self.styles):
+ style = self.styles[i%len(self.styles)]
+ else:
+ style = []
+ ax = grp.plot(ax=ax, kind=kind, x=x, y=y, title=y, label=labels, figsize=figsize, style=style)
+ ax.set_ylim(0,df[y].max()*1.05)
+ i = i +1
+ plt.legend(loc='best')
+ #plt.show()
+ return ax
+ else:
+ row=0
+ col=0
+ groups = df.groupby(plot_by)
+ #print(len(groups))
+ rows = (len(groups)+1)//2
+ #print(rows, "rows")
+ fig, axes = plt.subplots(nrows=rows, ncols=2, sharex=True, squeeze=False, figsize=(figsize[0],figsize[1]*rows))
+ #print(axes)
+ for key1, grp in groups:#df3.groupby(col1):
+ #print(len(axs))
+ for key2, grp2 in grp.groupby(column):
+ #print(grp2)
+ labels = "{} {}, {} {}".format(key1, plot_by, key2, column)
+ #print(row,col)
+ if not dict_colors is None and len(dict_colors):
+ ax = grp2.plot(ax=axes[row,col], kind=kind, x=x, y=y, label=labels, title=y, figsize=figsize, layout=(rows,2), color=dict_colors)
+ else:
+ ax = grp2.plot(ax=axes[row,col], kind=kind, x=x, y=y, label=labels, title=y, figsize=figsize, layout=(rows,2))
+ ax.set_ylim(0, df[y].max()*1.05)
+ col = col + 1
+ if col > 1:
+ row = row + 1
+ col = 0
+ plt.legend(loc='best')
+ plt.tight_layout()
+ plt.show()
+ def reconstruct_workflow(self, df):
+ """
+ Constructs the workflow out of the results (reverse engineer workflow).
+ This for example looks like this:
+ {'MySQL-24-4-1024': [[1, 2], [1, 2]], 'MySQL-24-4-2048': [[1, 2], [1, 2]], 'PostgreSQL-24-4-1024': [[1, 2], [1, 2]], 'PostgreSQL-24-4-2048': [[1, 2], [1, 2]]}
+
+ * 4 configurations
+ * each 2 experiment runs
+ * consisting of [1,2] benchmarker (first 1 pod, then 2 pods in parallel)
+
+ :param df: DataFrame of benchmarking results
+ :return: Dict of connections
+ """
+ # Tree of elements of the workflow
+ configs = dict()
+ for index, row in df.iterrows():
+ #print(row['experiment_run'], row['configuration'])
+ if row['configuration'] not in configs:
+ configs[row['configuration']] = dict()
+ #configs[row['configuration']]
+ if row['experiment_run'] not in configs[row['configuration']]:
+ configs[row['configuration']][row['experiment_run']] = dict()
+ if row['client'] not in configs[row['configuration']][row['experiment_run']]:
+ configs[row['configuration']][row['experiment_run']][row['client']] = dict()
+ configs[row['configuration']][row['experiment_run']][row['client']]['pods'] = dict()
+ configs[row['configuration']][row['experiment_run']][row['client']]['result_count'] = 0
+ #configs[row['configuration']][row['experiment_run']][row['client']]['run'] = dict()
+ configs[row['configuration']][row['experiment_run']][row['client']]['pods'][row['pod']] = True
+ configs[row['configuration']][row['experiment_run']][row['client']]['result_count'] = configs[row['configuration']][row['experiment_run']][row['client']]['result_count'] + 1
+ #configs[row['configuration']][row['experiment_run']][row['client']]['run'][row['run']] = dict()
+ #configs[row['configuration']][row['experiment_run']][row['client']]['run'][row['run']]['vusers'] = row['vusers']
+ #print(configs)
+ #pretty_configs = json.dumps(configs, indent=2)
+ #print(pretty_configs)
+ # Flat version of workflow
+ workflow = dict()
+ for index, row in configs.items():
+ workflow[index] = []
+ for i, v in row.items():
+ l = []
+ for j, w in v.items():
+ l.append(len(w['pods']))
+ workflow[index].append(l)
+ #print(workflow)
+ #pretty_workflow = json.dumps(workflow, indent=2)
+ #print(pretty_workflow)
+ return workflow
+
+
+class ycsb(evaluator):
+ """
+ Class for evaluating an YCSB experiment.
+ Constructor sets
+
+ 1. `path`: path to result folders
+ 1. `code`: Id of the experiment (name of result folder)
+ """
+ def __init__(self, code, path, include_loading=False, include_benchmarking=True):
+ super().__init__(code, path, True, True)
+ def log_to_df(self, filename):
+ """
+ Transforms a log file in text format into a pandas DataFrame.
+
+ :param filename: Name of the log file
+ :return: DataFrame of results
+ """
+ try:
+ with open(filename) as f:
+ lines = f.readlines()
+ stdout = "".join(lines)
+ pod_name = filename[filename.rindex("-")+1:-len(".log")]
+ connection_name = re.findall('BEXHOMA_CONNECTION:(.+?)\n', stdout)[0]
+ configuration_name = re.findall('BEXHOMA_CONFIGURATION:(.+?)\n', stdout)[0]
+ sf = re.findall('SF (.+?)\n', stdout)[0]
+ experiment_run = re.findall('BEXHOMA_EXPERIMENT_RUN:(.+?)\n', stdout)[0]
+ client = re.findall('BEXHOMA_CLIENT:(.+?)\n', stdout)[0]
+ target = re.findall('YCSB_TARGET (.+?)\n', stdout)[0]
+ threads = re.findall('YCSB_THREADCOUNT (.+?)\n', stdout)[0]
+ workload = re.findall('YCSB_WORKLOAD (.+?)\n', stdout)[0]
+ operations = re.findall('YCSB_OPERATIONS (.+?)\n', stdout)[0]
+ batchsize = re.findall('YCSB_BATCHSIZE:(.+?)\n', stdout)
+ if len(batchsize)>0:
+ # information found
+ batchsize = int(batchsize[0])
+ else:
+ batchsize = -1
+ #workload = "A"
+ pod_count = re.findall('NUM_PODS (.+?)\n', stdout)[0]
+ result = []
+ #for line in s.split("\n"):
+ for line in lines:
+ line = line.strip('\n')
+ cells = line.split(", ")
+ #print(cells)
+ if len(cells[0]) and cells[0][0] == "[":
+ result.append(line.split(", "))
+ #print(result)
+ #return
+ list_columns = [value[0]+"."+value[1] for value in result]
+ list_values = [connection_name, configuration_name, experiment_run, client, pod_name, pod_count, threads, target, sf, workload, operations, batchsize]
+ list_measures = [value[2] for value in result]
+ #list_values = [connection_name, configuration_name, experiment_run, pod_name].append([value[2] for value in result])
+ #print(list_columns)
+ #print(list_values)
+ #print(list_measures)
+ #exit()
+ list_values.extend(list_measures)
+ #print(list_values)
+ df = pd.DataFrame(list_values)
+ df = df.T
+ columns = ['connection', 'configuration', 'experiment_run', 'client', 'pod', 'pod_count', 'threads', 'target', 'sf', 'workload', 'operations', 'batchsize']
+ columns.extend(list_columns)
+ #print(columns)
+ df.columns = columns
+ df.index.name = connection_name
+ return df
+ except Exception as e:
+ print(e)
+ return pd.DataFrame()
+ def benchmarking_set_datatypes(self, df):
+ """
+ Transforms a pandas DataFrame collection of benchmarking results to suitable data types.
+
+ :param df: DataFrame of results
+ :return: DataFrame of results
+ """
+ df_typed = df.astype({
+ 'connection':'str',
+ 'configuration':'str',
+ 'experiment_run':'int',
+ 'client':'int',
+ 'pod':'str',
+ 'pod_count':'int',
+ 'threads':'int',
+ 'target':'int',
+ 'sf':'int',
+ 'workload':'str',
+ 'operations':'int',
+ 'batchsize':'int',
+ '[OVERALL].RunTime(ms)':'float',
+ '[OVERALL].Throughput(ops/sec)':'float',
+ #'[TOTAL_GCS_PS_Scavenge].Count':'int',
+ #'[TOTAL_GC_TIME_PS_Scavenge].Time(ms)':'float',
+ #'[TOTAL_GC_TIME_%_PS_Scavenge].Time(%)':'float',
+ #'[TOTAL_GCS_PS_MarkSweep].Count':'int',
+ #'[TOTAL_GC_TIME_PS_MarkSweep].Time(ms)':'float',
+ #'[TOTAL_GC_TIME_%_PS_MarkSweep].Time(%)':'float',
+ #'[TOTAL_GCs].Count':'int',
+ #'[TOTAL_GC_TIME].Time(ms)':'float',
+ #'[TOTAL_GC_TIME_%].Time(%)':'float',
+ '[CLEANUP].Operations':'int',
+ '[CLEANUP].AverageLatency(us)':'float',
+ '[CLEANUP].MinLatency(us)':'float',
+ '[CLEANUP].MaxLatency(us)':'float',
+ '[CLEANUP].95thPercentileLatency(us)':'float',
+ '[CLEANUP].99thPercentileLatency(us)':'float',
+ })
+ if '[READ].Operations'in df_typed.columns:
+ df_typed = df_typed.astype({
+ '[READ].Operations':'int',
+ '[READ].AverageLatency(us)':'float',
+ '[READ].MinLatency(us)':'float',
+ '[READ].MaxLatency(us)':'float',
+ '[READ].95thPercentileLatency(us)':'float',
+ '[READ].99thPercentileLatency(us)':'float',
+ '[READ].Return=OK':'int',
+ })
+ if '[UPDATE].Operations'in df_typed.columns:
+ df_typed = df_typed.astype({
+ '[UPDATE].Operations':'int',
+ '[UPDATE].AverageLatency(us)':'float',
+ '[UPDATE].MinLatency(us)':'float',
+ '[UPDATE].MaxLatency(us)':'float',
+ '[UPDATE].95thPercentileLatency(us)':'float',
+ '[UPDATE].99thPercentileLatency(us)':'float',
+ '[UPDATE].Return=OK': 'int',
+ })
+ if '[INSERT].Operations'in df_typed.columns:
+ df_typed = df_typed.astype({
+ '[INSERT].Operations':'int',
+ '[INSERT].AverageLatency(us)':'float',
+ '[INSERT].MinLatency(us)':'float',
+ '[INSERT].MaxLatency(us)':'float',
+ '[INSERT].95thPercentileLatency(us)':'float',
+ '[INSERT].99thPercentileLatency(us)':'float',
+ '[INSERT].Return=OK': 'int',
+ })
+ if '[SCAN].Operations'in df_typed.columns:
+ df_typed = df_typed.astype({
+ '[SCAN].Operations':'int',
+ '[SCAN].AverageLatency(us)':'float',
+ '[SCAN].MinLatency(us)':'float',
+ '[SCAN].MaxLatency(us)':'float',
+ '[SCAN].95thPercentileLatency(us)':'float',
+ '[SCAN].99thPercentileLatency(us)':'float',
+ '[SCAN].Return=OK':'int',
+ })
+ return df_typed
+ def benchmarking_aggregate_by_parallel_pods(self, df):
+ """
+ Transforms a pandas DataFrame collection of benchmarking results to a new DataFrame.
+ All result lines belonging to pods being run in parallel will be aggregated.
+
+ :param df: DataFrame of results
+ :return: DataFrame of results
+ """
+ column = ["connection","experiment_run"]
+ df_aggregated = pd.DataFrame()
+ for key, grp in df.groupby(column):
+ #print(key, len(grp.index))
+ #print(grp)
+ aggregate = {
+ 'client':'max',
+ 'pod':'sum',
+ 'pod_count':'count',
+ 'threads':'sum',
+ 'target':'sum',
+ 'sf':'max',
+ 'workload':'max',
+ 'operations':'sum',
+ 'batchsize':'mean',
+ '[OVERALL].RunTime(ms)':'max',
+ '[OVERALL].Throughput(ops/sec)':'sum',
+ #'[TOTAL_GCS_PS_Scavenge].Count':'sum',
+ #'[TOTAL_GC_TIME_PS_Scavenge].Time(ms)':'max',
+ #'[TOTAL_GC_TIME_%_PS_Scavenge].Time(%)':'max',
+ #'[TOTAL_GCS_PS_MarkSweep].Count':'sum',
+ #'[TOTAL_GC_TIME_PS_MarkSweep].Time(ms)':'max',
+ #'[TOTAL_GC_TIME_%_PS_MarkSweep].Time(%)':'max',
+ #'[TOTAL_GCs].Count':'sum',
+ #'[TOTAL_GC_TIME].Time(ms)':'max',
+ #'[TOTAL_GC_TIME_%].Time(%)':'max',
+ '[CLEANUP].Operations':'sum',
+ '[CLEANUP].AverageLatency(us)':'mean',
+ '[CLEANUP].MinLatency(us)':'min',
+ '[CLEANUP].MaxLatency(us)':'max',
+ '[CLEANUP].95thPercentileLatency(us)':'max',
+ '[CLEANUP].99thPercentileLatency(us)':'max',
+ }
+ if '[READ].Operations' in grp.columns:
+ aggregate = {**aggregate, **{
+ '[READ].Operations':'sum',
+ '[READ].AverageLatency(us)':'mean',
+ '[READ].MinLatency(us)':'min',
+ '[READ].MaxLatency(us)':'max',
+ '[READ].95thPercentileLatency(us)':'max',
+ '[READ].99thPercentileLatency(us)':'max',
+ '[READ].Return=OK': 'sum',
+ }}
+ if '[INSERT].Operations' in grp.columns:
+ aggregate = {**aggregate, **{
+ '[INSERT].Operations':'sum',
+ '[INSERT].AverageLatency(us)':'mean',
+ '[INSERT].MinLatency(us)':'min',
+ '[INSERT].MaxLatency(us)':'max',
+ '[INSERT].95thPercentileLatency(us)':'max',
+ '[INSERT].99thPercentileLatency(us)':'max',
+ '[INSERT].Return=OK': 'sum',
+ }}
+ if '[UPDATE].Operations' in grp.columns:
+ aggregate = {**aggregate, **{
+ '[UPDATE].Operations':'sum',
+ '[UPDATE].AverageLatency(us)':'mean',
+ '[UPDATE].MinLatency(us)':'min',
+ '[UPDATE].MaxLatency(us)':'max',
+ '[UPDATE].95thPercentileLatency(us)':'max',
+ '[UPDATE].99thPercentileLatency(us)':'max',
+ '[UPDATE].Return=OK': 'sum',
+ }}
+ if '[SCAN].Operations' in grp.columns:
+ aggregate = {**aggregate, **{
+ '[SCAN].Operations':'sum',
+ '[SCAN].AverageLatency(us)':'mean',
+ '[SCAN].MinLatency(us)':'min',
+ '[SCAN].MaxLatency(us)':'max',
+ '[SCAN].95thPercentileLatency(us)':'max',
+ '[SCAN].99thPercentileLatency(us)':'max',
+ '[SCAN].Return=OK':'sum',
+ }}
+ #print(grp.agg(aggregate))
+ dict_grp = dict()
+ dict_grp['connection'] = key[0]
+ dict_grp['configuration'] = grp['configuration'].iloc[0]
+ dict_grp['experiment_run'] = grp['experiment_run'].iloc[0]
+ #dict_grp['client'] = grp['client'][0]
+ #dict_grp['pod'] = grp['pod'][0]
+ dict_grp = {**dict_grp, **grp.agg(aggregate)}
+ df_grp = pd.DataFrame(dict_grp, index=[key[0]])#columns=list(dict_grp.keys()))
+ #df_grp = df_grp.T
+ #df_grp.set_index('connection', inplace=True)
+ #print(df_grp)
+ df_aggregated = pd.concat([df_aggregated, df_grp])
+ return df_aggregated
+ def loading_set_datatypes(self, df):
+ """
+ Transforms a pandas DataFrame collection of loading results to suitable data types.
+
+ :param df: DataFrame of results
+ :return: DataFrame of results
+ """
+ #df = evaluation.get_df_loading()
+ df_typed = df.astype({
+ 'connection':'str',
+ 'configuration':'str',
+ 'experiment_run':'int',
+ 'client':'int',
+ 'pod':'str',
+ 'pod_count':'int',
+ 'threads':'int',
+ 'target':'int',
+ 'sf':'int',
+ 'workload':'str',
+ 'operations':'int',
+ 'batchsize':'int',
+ '[OVERALL].RunTime(ms)':'float',
+ '[OVERALL].Throughput(ops/sec)':'float',
+ #'[TOTAL_GCS_PS_Scavenge].Count':'int',
+ #'[TOTAL_GC_TIME_PS_Scavenge].Time(ms)':'float',
+ #'[TOTAL_GC_TIME_%_PS_Scavenge].Time(%)':'float',
+ #'[TOTAL_GCS_PS_MarkSweep].Count':'float',
+ #'[TOTAL_GC_TIME_PS_MarkSweep].Time(ms)':'float',
+ #'[TOTAL_GC_TIME_%_PS_MarkSweep].Time(%)':'float',
+ #'[TOTAL_GCs].Count':'int',
+ #'[TOTAL_GC_TIME].Time(ms)':'float',
+ #'[TOTAL_GC_TIME_%].Time(%)':'float',
+ '[CLEANUP].Operations':'int',
+ '[CLEANUP].AverageLatency(us)':'float',
+ '[CLEANUP].MinLatency(us)':'float',
+ '[CLEANUP].MaxLatency(us)':'float',
+ '[CLEANUP].95thPercentileLatency(us)':'float',
+ '[CLEANUP].99thPercentileLatency(us)':'float',
+ '[INSERT].Operations':'int',
+ '[INSERT].AverageLatency(us)':'float',
+ '[INSERT].MinLatency(us)':'float',
+ '[INSERT].MaxLatency(us)':'float',
+ '[INSERT].95thPercentileLatency(us)':'float',
+ '[INSERT].99thPercentileLatency(us)':'float',
+ '[INSERT].Return=OK':'int',
+ })
+ return df_typed
+ def loading_aggregate_by_parallel_pods(self, df):
+ """
+ Transforms a pandas DataFrame collection of loading results to a new DataFrame.
+ All result lines belonging to pods being run in parallel will be aggregated.
+
+ :param df: DataFrame of results
+ :return: DataFrame of results
+ """
+ column = ["connection","experiment_run"]
+ df_aggregated = pd.DataFrame()
+ for key, grp in df.groupby(column):
+ #print(key, len(grp.index))
+ #print(grp)
+ aggregate = {
+ 'client':'max',
+ 'pod':'sum',
+ 'pod_count':'count',
+ 'threads':'sum',
+ 'target':'sum',
+ 'sf':'max',
+ 'workload':'max',
+ 'operations':'sum',
+ 'batchsize':'mean',
+ '[OVERALL].RunTime(ms)':'max',
+ '[OVERALL].Throughput(ops/sec)':'sum',
+ #'[TOTAL_GCS_PS_Scavenge].Count':'sum',
+ #'[TOTAL_GC_TIME_PS_Scavenge].Time(ms)':'max',
+ #'[TOTAL_GC_TIME_%_PS_Scavenge].Time(%)':'max',
+ #'[TOTAL_GCS_PS_MarkSweep].Count':'sum',
+ #'[TOTAL_GC_TIME_PS_MarkSweep].Time(ms)':'max',
+ #'[TOTAL_GC_TIME_%_PS_MarkSweep].Time(%)':'max',
+ #'[TOTAL_GCs].Count':'sum',
+ #'[TOTAL_GC_TIME].Time(ms)':'max',
+ #'[TOTAL_GC_TIME_%].Time(%)':'max',
+ '[CLEANUP].Operations':'sum',
+ '[CLEANUP].AverageLatency(us)':'mean',
+ '[CLEANUP].MinLatency(us)':'min',
+ '[CLEANUP].MaxLatency(us)':'max',
+ '[CLEANUP].95thPercentileLatency(us)':'max',
+ '[CLEANUP].99thPercentileLatency(us)':'max',
+ '[INSERT].Operations':'sum',
+ '[INSERT].AverageLatency(us)':'mean',
+ '[INSERT].MinLatency(us)':'min',
+ '[INSERT].MaxLatency(us)':'max',
+ '[INSERT].95thPercentileLatency(us)':'max',
+ '[INSERT].99thPercentileLatency(us)':'max',
+ '[INSERT].Return=OK':'sum',
+ }
+ #print(grp.agg(aggregate))
+ dict_grp = dict()
+ dict_grp['connection'] = key[0]
+ dict_grp['configuration'] = grp['configuration'].iloc[0]
+ dict_grp['experiment_run'] = grp['experiment_run'].iloc[0]
+ #dict_grp['client'] = grp['client'][0]
+ #dict_grp['pod'] = grp['pod'][0]
+ #dict_grp['pod_count'] = grp['pod_count'][0]
+ dict_grp = {**dict_grp, **grp.agg(aggregate)}
+ #print(dict_grp)
+ df_grp = pd.DataFrame(dict_grp, index=[key[0]])#columns=list(dict_grp.keys()))
+ #print(df_grp)
+ #df_grp = df_grp.T
+ #df_grp.set_index('connection', inplace=True)
+ #print(df_grp)
+ df_aggregated = pd.concat([df_aggregated, df_grp])
+ return df_aggregated
+
+
+
+
+class benchbase(evaluator):
+ """
+ Class for evaluating a Benchbase experiment.
+ Constructor sets
+
+ 1. `path`: path to result folders
+ 1. `code`: Id of the experiment (name of result folder)
+ """
+ def log_to_df(self, filename):
+ """
+ Transforms a log file in text format into a pandas DataFrame.
+
+ :param filename: Name of the log file
+ :return: DataFrame of results
+ """
+ stdout = ""
+ df_header = pd.DataFrame()
+ try:
+ with open(filename) as f:
+ lines = f.readlines()
+ stdout = "".join(lines)
+ terminals = 0 # default value
+ pod_name = filename[filename.rindex("-")+1:-len(".log")]
+ connection_name = re.findall('BEXHOMA_CONNECTION:(.+?)\n', stdout)[0]
+ duration = re.findall('BEXHOMA_DURATION:(.+?)\n', stdout)[0]
+ configuration_name = re.findall('BEXHOMA_CONFIGURATION:(.+?)\n', stdout)[0]
+ experiment_run = re.findall('BEXHOMA_EXPERIMENT_RUN:(.+?)\n', stdout)[0]
+ client = re.findall('BEXHOMA_CLIENT:(.+?)\n', stdout)[0]
+ error_timesynch = re.findall('start time has already passed', stdout)
+ if len(error_timesynch) > 0:
+ # log is incomplete
+ return pd.DataFrame()
+ pod_count = re.findall('NUM_PODS (.+?)\n', stdout)[0]
+ bench = re.findall('BENCHBASE_BENCH (.+?)\n', stdout)[0]
+ profile = re.findall('BENCHBASE_PROFILE (.+?)\n', stdout)[0]
+ target = re.findall('BENCHBASE_TARGET (.+?)\n', stdout)[0]
+ time = re.findall('BENCHBASE_TIME (.+?)\n', stdout)[0]
+ terminals = re.findall('BENCHBASE_TERMINALS (.+?)\n', stdout)[0]
+ batchsize = re.findall('BENCHBASE_BATCHSIZE (.+?)\n', stdout)[0]
+ sf = re.findall('SF (.+?)\n', stdout)[0]
+ errors = re.findall('Exception in thread ', stdout)
+ num_errors = len(errors)
+ errors = re.findall('SQLException occurred', stdout)
+ num_errors = num_errors + len(errors)
+ errors = re.findall('ERROR: ', stdout)
+ num_errors = num_errors + len(errors)
+ deadlocks = re.findall('deadlock', stdout)
+ num_deadlocks = len(deadlocks)
+ deadlocks = re.findall('Deadlock', stdout)
+ num_deadlocks = num_deadlocks + len(deadlocks)
+ threadpool = re.findall('Creating a Thread Pool with a size of (.+?) to run', stdout)
+ if len(threadpool) > 0:
+ num_threadpool = int(threadpool[0])
+ else:
+ num_threadpool = 0
+ header = {
+ 'connection': connection_name,
+ 'configuration': configuration_name,
+ 'experiment_run': experiment_run,
+ 'client': client,
+ 'pod': pod_name,
+ 'pod_count': pod_count,
+ 'bench': bench,
+ 'profile': profile,
+ 'target': target,
+ 'time': time,
+ #'terminals': terminals,
+ 'batchsize': batchsize,
+ 'sf': sf,
+ 'num_errors': num_errors,
+ 'num_deadlocks': num_deadlocks,
+ 'duration': duration,
+ 'threadpool': num_threadpool,
+ }
+ df_header = pd.DataFrame(header, index=[0])
+ #print(df_header)
+ #if num_errors == 0:
+ log = re.findall('####BEXHOMA####(.+?)####BEXHOMA####', stdout, re.DOTALL)
+ if len(log) > 0:
+ result = json.loads(log[0])
+ df = pd.json_normalize(result)
+ #self.cluster.logger.debug(df)
+ df = pd.concat([df_header, df], axis=1)
+ df.index.name = connection_name
+ #print(df)
+ return df
+ else:
+ print("no results found in log file {}".format(filename))
+ df_header['terminals'] = terminals
+ return df_header#pd.DataFrame()
+ #else:
+ # return pd.DataFrame()
+ except Exception as e:
+ #print(e)
+ #print(traceback.format_exc())
+ #print(stdout)
+ df_header['terminals'] = terminals
+ return df_header#pd.DataFrame()
+ def loading_set_datatypes(self, df):
+ """
+ Transforms a pandas DataFrame collection of benchmarking results to suitable data types.
+
+ :param df: DataFrame of results
+ :return: DataFrame of results
+ """
+ df_typed = df.astype({
+ 'connection':'str',
+ 'configuration':'str',
+ 'experiment_run':'int',
+ 'client':'int',
+ 'pod':'str',
+ 'pod_count':'int',
+ 'bench':'str',
+ 'profile':'str',
+ 'target':'int',
+ 'time':'float',
+ #'terminals':'int',
+ 'batchsize':'int',
+ 'sf':'int',
+ 'num_errors':'int',
+ 'num_deadlocks':'int',
+ 'duration':'int',
+ 'threadpool':'int',
+ })
+ return df_typed
+ def benchmarking_set_datatypes(self, df):
+ """
+ Transforms a pandas DataFrame collection of benchmarking results to suitable data types.
+
+ :param df: DataFrame of results
+ :return: DataFrame of results
+ """
+ df_typed = df.astype({
+ 'connection':'str',
+ 'configuration':'str',
+ 'experiment_run':'int',
+ 'client':'int',
+ 'pod':'str',
+ 'pod_count':'int',
+ 'bench':'str',
+ 'profile':'str',
+ 'target':'int',
+ 'time':'float',
+ #'terminals':'int',
+ 'batchsize':'int',
+ 'sf':'int',
+ 'num_errors':'int',
+ 'num_deadlocks':'int',
+ 'duration':'int',
+ 'threadpool':'int',
+ 'scalefactor':'int',
+ 'Current Timestamp (milliseconds)':'str',
+ 'Benchmark Type':'str',
+ 'isolation':'str',
+ 'DBMS Version':'str',
+ 'Goodput (requests/second)':'float',
+ 'terminals':'int',
+ 'DBMS Type':'str',
+ 'Throughput (requests/second)':'float',
+ 'Latency Distribution.95th Percentile Latency (microseconds)':'float',
+ 'Latency Distribution.Maximum Latency (microseconds)':'float',
+ 'Latency Distribution.Median Latency (microseconds)':'float',
+ 'Latency Distribution.Minimum Latency (microseconds)':'float',
+ 'Latency Distribution.25th Percentile Latency (microseconds)':'float',
+ 'Latency Distribution.90th Percentile Latency (microseconds)':'float',
+ 'Latency Distribution.99th Percentile Latency (microseconds)':'float',
+ 'Latency Distribution.75th Percentile Latency (microseconds)':'float',
+ 'Latency Distribution.Average Latency (microseconds)':'float',
+ })
+ return df_typed
+ def benchmarking_aggregate_by_parallel_pods(self, df):
+ """
+ Transforms a pandas DataFrame collection of benchmarking results to a new DataFrame.
+ All result lines belonging to pods being run in parallel will be aggregated.
+
+ :param df: DataFrame of results
+ :return: DataFrame of results
+ """
+ column = "connection"
+ df_aggregated = pd.DataFrame()
+ for key, grp in df.groupby(column):
+ #print(key, len(grp.index))
+ #print(grp.columns)
+ aggregate = {
+ 'client':'max',
+ 'pod':'sum',
+ 'pod_count':'count',
+ 'bench':'max',
+ 'profile':'max',
+ 'target':'sum',
+ 'time':'max',
+ #'terminals':'sum',
+ 'batchsize':'mean',
+ 'sf':'max',
+ 'num_errors':'sum',
+ 'num_deadlocks':'sum',
+ 'duration':'max',
+ 'threadpool':'sum',
+ 'scalefactor':'max',
+ 'Current Timestamp (milliseconds)':'max',
+ 'Benchmark Type':'max',
+ 'isolation':'max',
+ 'DBMS Version':'max',
+ 'Goodput (requests/second)':'sum',
+ 'terminals':'sum',
+ 'DBMS Type':'max',
+ 'Throughput (requests/second)':'sum',
+ 'Latency Distribution.95th Percentile Latency (microseconds)':'max',
+ 'Latency Distribution.Maximum Latency (microseconds)':'max',
+ 'Latency Distribution.Median Latency (microseconds)':'max',
+ 'Latency Distribution.Minimum Latency (microseconds)':'min',
+ 'Latency Distribution.25th Percentile Latency (microseconds)':'max',
+ 'Latency Distribution.90th Percentile Latency (microseconds)':'max',
+ 'Latency Distribution.99th Percentile Latency (microseconds)':'max',
+ 'Latency Distribution.75th Percentile Latency (microseconds)':'max',
+ 'Latency Distribution.Average Latency (microseconds)':'mean',
+ }
+ #print(grp.agg(aggregate))
+ dict_grp = dict()
+ dict_grp['connection'] = key
+ dict_grp['configuration'] = grp['configuration'][0]
+ dict_grp['experiment_run'] = grp['experiment_run'][0]
+ #dict_grp['client'] = grp['client'][0]
+ #dict_grp['pod'] = grp['pod'][0]
+ #print(dict_grp)
+ dict_grp = {**dict_grp, **grp.agg(aggregate)}
+ df_grp = pd.DataFrame(dict_grp, index=[key])#columns=list(dict_grp.keys()))
+ #df_grp = df_grp.T
+ #df_grp.set_index('connection', inplace=True)
+ #print(df_grp)
+ df_aggregated = pd.concat([df_aggregated, df_grp])
+ return df_aggregated
+
+
+
+
+
+class tpcc(evaluator):
+ """
+ Class for evaluating an TPC-C experiment (in the HammerDB version).
+ Constructor sets
+
+ 1. `path`: path to result folders
+ 1. `code`: Id of the experiment (name of result folder)
+ """
+ def log_to_df(self, filename):
+ """
+ Transforms a log file in text format into a pandas DataFrame.
+
+ :param filename: Name of the log file
+ :return: DataFrame of results
+ """
+ try:
+ with open(filename) as f:
+ lines = f.readlines()
+ stdout = "".join(lines)
+ # extract "wz4bp" from "./1672716717/bexhoma-benchmarker-mariadb-bht-10-9-4-1672716717-1-1-wz4bp.log"
+ #print(filename, filename.rindex("-"))
+ pod_name = filename[filename.rindex("-")+1:-len(".log")]
+ #print("pod_name:", pod_name)
+ connection_name = re.findall('BEXHOMA_CONNECTION:(.+?)\n', stdout)[0]
+ configuration_name = re.findall('BEXHOMA_CONFIGURATION:(.+?)\n', stdout)[0]
+ experiment_run = re.findall('BEXHOMA_EXPERIMENT_RUN:(.+?)\n', stdout)[0]
+ iterations = re.findall('HAMMERDB_ITERATIONS (.+?)\n', stdout)[0]
+ duration = re.findall('HAMMERDB_DURATION (.+?)\n', stdout)[0]
+ rampup = re.findall('HAMMERDB_RAMPUP (.+?)\n', stdout)[0]
+ sf = re.findall('SF (.+?)\n', stdout)[0]
+ vusers_loading = re.findall('PARALLEL (.+?)\n', stdout)[0]
+ client = re.findall('BEXHOMA_CLIENT:(.+?)\n', stdout)[0]
+ #client = "1"
+ error_timesynch = re.findall('start time has already passed', stdout)
+ if len(error_timesynch) > 0:
+ # log is incomplete
+ print(filename, "log is incomplete")
+ return pd.DataFrame()
+ pod_count = re.findall('NUM_PODS (.+?)\n', stdout)[0]
+ errors = re.findall('Error ', stdout)
+ if len(errors) > 0:
+ # something went wrong
+ print(filename, "something went wrong")
+ num_errors = len(errors)
+ #print("connection_name:", connection_name)
+ results = re.findall("Vuser 1:TEST RESULT : System achieved (.+?) NOPM from (.+?) (.+?) TPM", stdout)
+ #print(results)
+ vusers = re.findall("Vuser 1:(.+?) Active", stdout)
+ #print(vusers)
+ result_tupels = list(zip(results, vusers))
+ #for (result, vuser) in result_tupels:
+ # print(result, vuser)
+ #print(result)
+ result_list = [(connection_name, configuration_name, experiment_run, client, pod_name, pod_count, iterations, duration, rampup, sf, i, num_errors, vusers_loading, vuser, result[0], result[1], result[2]) for i, (result, vuser) in enumerate(result_tupels)]
+ df = pd.DataFrame(result_list)
+ df.columns = ['connection', 'configuration', 'experiment_run', 'client', 'pod', 'pod_count', 'iterations', 'duration', 'rampup', 'sf', 'run', 'errors', 'vusers_loading', 'vusers', 'NOPM', 'TPM', 'dbms']
+ df.index.name = connection_name
+ return df
+ except Exception as e:
+ print(e)
+ print(traceback.format_exc())
+ return pd.DataFrame()
+ def test_results(self):
+ """
+ Run test script locally.
+ Extract exit code.
+
+ :return: exit code of test script
+ """
+ try:
+ path = self.cluster.config['benchmarker']['resultfolder'].replace("\\", "/").replace("C:", "")+'/{}'.format(self.code)
+ #path = '../benchmarks/1669163583'
+ directory = os.fsencode(path)
+ for file in os.listdir(directory):
+ filename = os.fsdecode(file)
+ if filename.endswith(".pickle"):
+ df = pd.read_pickle(path+"/"+filename)
+ print(df)
+ print(df.index.name)
+ print(list(df['VUSERS']))
+ print(" ".join(l))
+ return 0
+ except Exception as e:
+ return 1
+ def benchmarking_set_datatypes(self, df):
+ """
+ Transforms a pandas DataFrame collection of benchmarking results to suitable data types.
+
+ :param df: DataFrame of results
+ :return: DataFrame of results
+ """
+ df_typed = df.astype({
+ 'connection':'str',
+ 'configuration':'str',
+ 'experiment_run':'int',
+ 'client':'int',
+ 'pod':'str',
+ 'pod_count':'int',
+ 'iterations':'int',
+ 'duration':'int',
+ 'rampup':'int',
+ 'sf':'int',
+ 'run':'int',
+ 'errors':'int',
+ 'vusers_loading':'int',
+ 'vusers':'int',
+ 'NOPM':'int',
+ 'TPM':'int',
+ 'dbms':'str',
+ })
+ return df_typed
+ def benchmarking_aggregate_by_parallel_pods(self, df):
+ """
+ Transforms a pandas DataFrame collection of benchmarking results to a new DataFrame.
+ All result lines belonging to pods being run in parallel will be aggregated.
+
+ :param df: DataFrame of results
+ :return: DataFrame of results
+ """
+ column = ["connection","run"]
+ df_aggregated = pd.DataFrame()
+ for key, grp in df.groupby(column):
+ #print(key, len(grp.index))
+ #print(grp)
+ aggregate = {
+ 'client':'max',
+ 'pod':'sum',
+ 'pod_count':'count',
+ 'iterations':'max',
+ 'duration':'max',
+ 'sf':'max',
+ 'run':'max',
+ 'errors':'max',
+ 'vusers_loading':'max',
+ 'vusers':'sum',
+ #'vusers':'max',
+ #'NOPM':'sum',
+ 'NOPM':'mean',
+ #'TPM':'sum',
+ 'TPM':'mean',
+ 'dbms':'max',
+ }
+ #print(grp.agg(aggregate))
+ dict_grp = dict()
+ dict_grp['connection'] = key[0]
+ dict_grp['configuration'] = grp['configuration'][0]
+ dict_grp['experiment_run'] = grp['experiment_run'][0]
+ #dict_grp['client'] = grp['client'][0]
+ #dict_grp['pod'] = grp['pod'][0]
+ dict_grp = {**dict_grp, **grp.agg(aggregate)}
+ df_grp = pd.DataFrame(dict_grp, index=[key[0]])#columns=list(dict_grp.keys()))
+ #df_grp = df_grp.T
+ #df_grp.set_index('connection', inplace=True)
+ #print(df_grp)
+ df_aggregated = pd.concat([df_aggregated, df_grp])
+ return df_aggregated
+
+
+
+# grep "start time has already passed" ../benchmarks/1672653866/*
diff --git a/images/tpch/generator/generator.sh b/images/tpch/generator/generator.sh
index 626d1acd..3398ca32 100644
--- a/images/tpch/generator/generator.sh
+++ b/images/tpch/generator/generator.sh
@@ -4,6 +4,7 @@
DATEANDTIME=$(date '+%d.%m.%Y %H:%M:%S');
echo "NOW: $DATEANDTIME"
SECONDS_START_SCRIPT=$SECONDS
+bexhoma_start_epoch=$(date -u +%s)
######################## Show general parameters ########################
echo "BEXHOMA_CONNECTION:$BEXHOMA_CONNECTION"
@@ -26,6 +27,32 @@ echo "NUM_PODS $NUM_PODS"
echo "SF $SF"
echo "$CHILD" > /tmp/tpch/CHILD
+######################## Wait until all pods of job are ready ########################
+if test $BEXHOMA_SYNCH_GENERATE -gt 0
+then
+ echo "Querying counter bexhoma-generator-podcount-$BEXHOMA_CONNECTION-$BEXHOMA_EXPERIMENT"
+ # add this pod to counter
+ redis-cli -h 'bexhoma-messagequeue' incr "bexhoma-generator-podcount-$BEXHOMA_CONNECTION-$BEXHOMA_EXPERIMENT"
+ # wait for number of pods to be as expected
+ while : ; do
+ PODS_RUNNING="$(redis-cli -h 'bexhoma-messagequeue' get bexhoma-generator-podcount-$BEXHOMA_CONNECTION-$BEXHOMA_EXPERIMENT)"
+ echo "Found $PODS_RUNNING / $NUM_PODS running pods"
+ if test "$PODS_RUNNING" == $NUM_PODS
+ then
+ echo "OK"
+ break
+ else
+ echo "We have to wait"
+ sleep 1
+ fi
+ done
+fi
+
+######################## Start measurement of time ########################
+bexhoma_start_epoch=$(date -u +%s)
+SECONDS_START=$SECONDS
+echo "Start $SECONDS_START seconds"
+
######################## Destination of raw data ########################
if test $STORE_RAW_DATA -gt 0
then
@@ -73,32 +100,6 @@ cd $destination_raw
cp /tmp/dists.dss ./dists.dss
cp /tmp/dbgen ./dbgen
-######################## Wait until all pods of job are ready ########################
-if test $BEXHOMA_SYNCH_GENERATE -gt 0
-then
- echo "Querying counter bexhoma-generator-podcount-$BEXHOMA_CONNECTION-$BEXHOMA_EXPERIMENT"
- # add this pod to counter
- redis-cli -h 'bexhoma-messagequeue' incr "bexhoma-generator-podcount-$BEXHOMA_CONNECTION-$BEXHOMA_EXPERIMENT"
- # wait for number of pods to be as expected
- while : ; do
- PODS_RUNNING="$(redis-cli -h 'bexhoma-messagequeue' get bexhoma-generator-podcount-$BEXHOMA_CONNECTION-$BEXHOMA_EXPERIMENT)"
- echo "Found $PODS_RUNNING / $NUM_PODS running pods"
- if test "$PODS_RUNNING" == $NUM_PODS
- then
- echo "OK"
- break
- else
- echo "We have to wait"
- sleep 1
- fi
- done
-fi
-
-######################## Start measurement of time ########################
-bexhoma_start_epoch=$(date -u +%s)
-SECONDS_START=$SECONDS
-echo "Start $SECONDS_START seconds"
-
######################## Execute workload ###################
############ Differ between single-pod and multi-pod setting ############
if test $NUM_PODS -gt 1
diff --git a/images/tpch/loader_monetdb/Dockerfile b/images/tpch/loader_monetdb/Dockerfile
new file mode 100644
index 00000000..0ff91a69
--- /dev/null
+++ b/images/tpch/loader_monetdb/Dockerfile
@@ -0,0 +1,32 @@
+FROM monetdb/monetdb:Sep2022
+#FROM centos:centos7
+
+RUN yum -y update && yum clean all
+#RUN yum install -y https://dev.monetdb.org/downloads/epel/MonetDB-release-epel.noarch.rpm
+#RUN yum install -y MonetDB-client
+
+RUN yum install -y gcc
+RUN yum install -y wget
+RUN wget http://download.redis.io/redis-stable.tar.gz && tar xvzf redis-stable.tar.gz && cd redis-stable && make && sudo cp src/redis-cli /usr/local/bin/ && sudo chmod 755 /usr/local/bin/redis-cli
+
+ENV NUM_PODS=4
+ENV CHILD=1
+ENV BEXHOMA_HOST="www.example.com"
+ENV BEXHOMA_PORT 50000
+ENV BEXHOMA_CONNECTION="monetdb"
+ENV BEXHOMA_EXPERIMENT="12345"
+ENV DATABASE demo
+ENV STORE_RAW_DATA=0
+ENV BEXHOMA_SYNCH_LOAD 0
+
+WORKDIR /tmp
+
+RUN mkdir -p /tmp/tpch
+
+#COPY ./*.dat /tmp/
+
+COPY ./loader.sh /tmp/loader.sh
+RUN ["chmod", "+x", "/tmp/loader.sh"]
+
+
+CMD ["/bin/bash", "-c", "/tmp/loader.sh"]
diff --git a/images/tpch/loader_monetdb/README.md b/images/tpch/loader_monetdb/README.md
new file mode 100644
index 00000000..aab81b15
--- /dev/null
+++ b/images/tpch/loader_monetdb/README.md
@@ -0,0 +1,16 @@
+# Loader for TPC-H data into MonetDB
+
+The following parameter (ENV) have been added:
+
+* `NUM_PODS`:
+* `CHILD`:
+* `BEXHOMA_HOST`:
+* `BEXHOMA_PORT`:
+* `BEXHOMA_CONNECTION`:
+* `BEXHOMA_EXPERIMENT`:
+* `DATABASE`:
+* `STORE_RAW_DATA`:
+* `BEXHOMA_SYNCH_LOAD`:
+* `BEXHOMA_USER`:
+
+This folder contains the Dockerfile for a loader, that loads data into MonetDB via `mclient COPY`.
diff --git a/images/tpch/loader_monetdb/loader.sh b/images/tpch/loader_monetdb/loader.sh
new file mode 100644
index 00000000..e7eb00a6
--- /dev/null
+++ b/images/tpch/loader_monetdb/loader.sh
@@ -0,0 +1,174 @@
+#!/bin/bash
+
+######################## Start timing ########################
+DATEANDTIME=$(date '+%d.%m.%Y %H:%M:%S');
+echo "NOW: $DATEANDTIME"
+SECONDS_START_SCRIPT=$SECONDS
+
+######################## Show general parameters ########################
+echo "BEXHOMA_CONNECTION:$BEXHOMA_CONNECTION"
+echo "BEXHOMA_EXPERIMENT_RUN:$BEXHOMA_EXPERIMENT_RUN"
+echo "BEXHOMA_CONFIGURATION:$BEXHOMA_CONFIGURATION"
+echo "BEXHOMA_CLIENT:$BEXHOMA_CLIENT"
+
+######################## Show more parameters ########################
+CHILD=$(cat /tmp/tpch/CHILD )
+echo "CHILD $CHILD"
+echo "NUM_PODS $NUM_PODS"
+echo "SF $SF"
+
+######################## Destination of raw data ########################
+if test $STORE_RAW_DATA -gt 0
+then
+ # store in (distributed) file system
+ if test $NUM_PODS -gt 1
+ then
+ destination_raw=/data/tpch/SF$SF/$NUM_PODS/$CHILD
+ else
+ destination_raw=/data/tpch/SF$SF
+ fi
+else
+ # only store locally
+ destination_raw=/tmp/tpch/SF$SF/$NUM_PODS/$CHILD
+fi
+echo "destination_raw $destination_raw"
+cd $destination_raw
+
+######################## Show generated files ########################
+echo "Found these files:"
+ls $destination_raw/*tbl* -lh
+
+######################## Add login parameters for MonetDB ########################
+#cd /tmp/tpch/
+echo "user=monetdb
+password=monetdb" > .monetdb
+
+######################## Wait until all pods of job are ready ########################
+if test $BEXHOMA_SYNCH_LOAD -gt 0
+then
+ echo "Querying counter bexhoma-loader-podcount-$BEXHOMA_CONNECTION-$BEXHOMA_EXPERIMENT"
+ # add this pod to counter
+ redis-cli -h 'bexhoma-messagequeue' incr "bexhoma-loader-podcount-$BEXHOMA_CONNECTION-$BEXHOMA_EXPERIMENT"
+ # wait for number of pods to be as expected
+ while : ; do
+ PODS_RUNNING="$(redis-cli -h 'bexhoma-messagequeue' get bexhoma-loader-podcount-$BEXHOMA_CONNECTION-$BEXHOMA_EXPERIMENT)"
+ echo "Found $PODS_RUNNING / $NUM_PODS running pods"
+ if test "$PODS_RUNNING" == $NUM_PODS
+ then
+ echo "OK"
+ break
+ elif test "$PODS_RUNNING" -gt $NUM_PODS
+ then
+ echo "Too many pods! Restart occured?"
+ exit 0
+ else
+ echo "We have to wait"
+ sleep 1
+ fi
+ done
+fi
+
+######################## Start measurement of time ########################
+bexhoma_start_epoch=$(date -u +%s)
+SECONDS_START=$SECONDS
+echo "Start $SECONDS_START seconds"
+
+######################## Execute loading ###################
+# shuffled
+#for i in `ls *tbl* | shuf`; do
+# ordered
+for i in *tbl*; do
+ basename=${i%.tbl*}
+ wordcount=($(wc -l $i))
+ lines=${wordcount[0]}
+ # skip table if limit to other table is set
+ if [ -z "${TPCH_TABLE}" ]
+ then
+ echo "table limit not set"
+ elif [ "${TPCH_TABLE}" == "$basename" ]
+ then
+ echo "limit import to this table $TPCH_TABLE"
+ else
+ echo "limit import to other table $TPCH_TABLE"
+ continue
+ fi
+ if [[ $basename == "nation" ]]
+ then
+ if test $CHILD -gt 1
+ then
+ continue
+ fi
+ fi
+ if [[ $basename == "region" ]]
+ then
+ if test $CHILD -gt 1
+ then
+ continue
+ fi
+ fi
+ #COMMAND="COPY $lines RECORDS INTO $basename FROM STDIN USING DELIMITERS '|','\\n','\"' NULL AS ''"
+ COMMAND="COPY $lines RECORDS INTO $basename FROM STDIN USING DELIMITERS '|' NULL AS ''"
+ echo "============================"
+ echo "$COMMAND"
+ #OUTPUT="$(mclient --host $BEXHOMA_HOST --database $DATABASE --port $BEXHOMA_PORT -s \"COPY $lines RECORDS INTO $basename FROM STDIN USING DELIMITERS '|' NULL AS ''\" - < $i)"
+
+ #FAILED=0 # everything ok
+ #FAILED=1 # known error
+ #FAILED=2 # unknown error
+ FAILED=1
+ while [ $FAILED == 1 ]
+ do
+ FAILED=2
+ SECONDS_START=$SECONDS
+ echo "=========="
+ time mclient --host $BEXHOMA_HOST --database $DATABASE --port $BEXHOMA_PORT -E UTF-8 -s "$COMMAND" - < $i &> /tmp/OUTPUT.txt
+ echo "Start $SECONDS_START seconds"
+ SECONDS_END=$SECONDS
+ echo "End $SECONDS_END seconds"
+ DURATION=$((SECONDS_END-SECONDS_START))
+ echo "Duration $DURATION seconds"
+ #mclient --host $BEXHOMA_HOST --database $DATABASE --port $BEXHOMA_PORT -E UTF-8 -L import.log -s "$COMMAND" - < $i &>OUTPUT.txt
+ #mclient --host $BEXHOMA_HOST --database $DATABASE --port $BEXHOMA_PORT -s "COPY $lines RECORDS INTO $basename FROM STDIN USING DELIMITERS '|','\\n','\"' NULL AS ''" - < $i &>OUTPUT.txt
+ #cat import.log
+ OUTPUT=$(cat /tmp/OUTPUT.txt )
+ echo "$OUTPUT"
+ # everything worked well ("row" and "rows" string checked)
+ if [[ $OUTPUT == *"$lines affected row"* ]]; then echo "Import ok"; FAILED=0; fi
+ # rollback, we have to do it again (?)
+ if [[ $OUTPUT == *"ROLLBACK"* ]]; then echo "ROLLBACK occured"; FAILED=1; fi
+ # no thread left, we have to do it again (?)
+ if [[ $OUTPUT == *"failed to start worker thread"* ]]; then echo "No worker thread"; FAILED=1; fi
+ if [[ $OUTPUT == *"failed to start producer thread"* ]]; then echo "No producer thread"; FAILED=1; fi
+ if [[ $OUTPUT == *"Challenge string is not valid, it is empty"* ]]; then echo "No Login possible"; FAILED=1; fi
+ # something else - what?
+ if [[ $OUTPUT == 2 ]]; then echo "Something unexpected happend"; fi
+ echo "FAILED = $FAILED at $basename"
+ if [[ $FAILED != 0 ]]; then echo "Wait 1s before retrying"; sleep 1; fi
+ done
+ #echo "COPY $lines RECORDS INTO $basename FROM '/tmp/$i' ON CLIENT DELIMITERS '|' NULL AS '';" >> load.sql
+done
+
+######################## End measurement of time ########################
+bexhoma_end_epoch=$(date -u +%s)
+SECONDS_END=$SECONDS
+echo "End $SECONDS_END seconds"
+
+DURATION=$((SECONDS_END-SECONDS_START))
+echo "Duration $DURATION seconds"
+
+######################## Show timing information ###################
+echo "Loading done"
+
+DATEANDTIME=$(date '+%d.%m.%Y %H:%M:%S');
+echo "NOW: $DATEANDTIME"
+
+SECONDS_END_SCRIPT=$SECONDS
+DURATION_SCRIPT=$((SECONDS_END_SCRIPT-SECONDS_START_SCRIPT))
+echo "Duration $DURATION_SCRIPT seconds (script total)"
+echo "BEXHOMA_DURATION:$DURATION_SCRIPT"
+echo "BEXHOMA_START:$bexhoma_start_epoch"
+echo "BEXHOMA_END:$bexhoma_end_epoch"
+
+######################## Exit successfully ###################
+# while true; do sleep 2; done
+exit 0
diff --git a/images/tpch/loader_mysql/Dockerfile b/images/tpch/loader_mysql/Dockerfile
new file mode 100644
index 00000000..fbc97129
--- /dev/null
+++ b/images/tpch/loader_mysql/Dockerfile
@@ -0,0 +1,59 @@
+FROM debian:stable-20240110-slim
+
+RUN apt-get -y update && apt-get dist-upgrade && apt-get clean all
+
+RUN apt-get install -y build-essential
+RUN apt-get install -y wget
+RUN wget http://download.redis.io/redis-stable.tar.gz && tar xvzf redis-stable.tar.gz && cd redis-stable && make && cp src/redis-cli /usr/local/bin/ && chmod 755 /usr/local/bin/redis-cli
+
+#&& apt-get install -y mysql-apt-config && apt-get install -y mysql-shell
+
+RUN apt --fix-missing --fix-broken -y install
+RUN apt-get install --fix-missing -y libcurl4
+RUN apt-get install -y libssh-4
+RUN wget https://cdn.mysql.com//Downloads/MySQL-Shell/mysql-shell_8.0.36-1debian12_amd64.deb
+RUN dpkg -i mysql-shell_8.0.36-1debian12_amd64.deb
+#RUN wget https://dev.mysql.com/get/Downloads/MySQL-Shell/mysql-shell_8.3.0-1debian12_amd64.deb
+#RUN dpkg -i mysql-shell_8.3.0-1debian12_amd64.deb
+RUN apt-get install mysql-shell -y
+RUN apt-get update
+
+RUN apt-get install -y locales && rm -rf /var/lib/apt/lists/* \
+ && localedef -i en_US -c -f UTF-8 -A /usr/share/locale/locale.alias en_US.UTF-8
+ENV LANG en_US.utf8
+
+#RUN apt-get install -y locales
+#RUN dpkg-reconfigure locales
+#RUN echo "LC_ALL=en_US.UTF-8" >> /etc/environment
+#RUN echo "en_US.UTF-8 UTF-8" >> /etc/locale.gen
+#RUN echo "LANG=en_US.UTF-8" > /etc/locale.conf
+#RUN locale-gen
+ENV LC_ALL="en_US.UTF-8"
+#ENV LANG="en_US.utf8"
+
+ENV NUM_PODS=4
+ENV CHILD=1
+ENV BEXHOMA_HOST="www.example.com"
+ENV BEXHOMA_PORT 50000
+ENV BEXHOMA_CONNECTION="monetdb"
+ENV BEXHOMA_EXPERIMENT="12345"
+ENV DATABASE tpch
+ENV STORE_RAW_DATA=0
+ENV BEXHOMA_SYNCH_LOAD 0
+ENV MYSQL_LOADING_THREADS 8
+ENV MYSQL_LOADING_PARALLEL 1
+ENV MYSQL_LOADING_FROM "LOCAL"
+
+WORKDIR /tmp
+
+RUN mkdir -p /tmp/tpch
+
+#COPY ./loader-parallel.sh /tmp/loader.sh
+COPY ./loader.sh /tmp/loader.sh
+RUN ["chmod", "+x", "/tmp/loader.sh"]
+
+
+CMD ["/bin/bash", "-c", "/tmp/loader.sh"]
+#CMD ["/bin/bash", "-c", "while true; do sleep 2; done"]
+
+
diff --git a/images/tpch/loader_mysql/README.md b/images/tpch/loader_mysql/README.md
new file mode 100644
index 00000000..bde34219
--- /dev/null
+++ b/images/tpch/loader_mysql/README.md
@@ -0,0 +1,16 @@
+# Loader for TPC-H data into MySQL
+
+The following parameter (ENV) have been added:
+
+* `NUM_PODS`:
+* `CHILD`:
+* `BEXHOMA_HOST`:
+* `BEXHOMA_PORT`:
+* `BEXHOMA_CONNECTION`:
+* `BEXHOMA_EXPERIMENT`:
+* `DATABASE`:
+* `STORE_RAW_DATA`:
+* `BEXHOMA_SYNCH_LOAD`:
+* `BEXHOMA_USER`:
+
+This folder contains the Dockerfile for a loader, that loads data into MySQL via `util.import_table`.
diff --git a/images/tpch/loader_mysql/loader-parallel.sh b/images/tpch/loader_mysql/loader-parallel.sh
new file mode 100644
index 00000000..fe52d280
--- /dev/null
+++ b/images/tpch/loader_mysql/loader-parallel.sh
@@ -0,0 +1,202 @@
+#!/bin/bash
+
+######################## Fix missing locale ########################
+export LC_ALL="en_US.UTF-8"
+
+######################## Start timing ########################
+DATEANDTIME=$(date '+%d.%m.%Y %H:%M:%S');
+echo "NOW: $DATEANDTIME"
+SECONDS_START_SCRIPT=$SECONDS
+
+######################## Show general parameters ########################
+echo "BEXHOMA_CONNECTION:$BEXHOMA_CONNECTION"
+echo "BEXHOMA_EXPERIMENT_RUN:$BEXHOMA_EXPERIMENT_RUN"
+echo "BEXHOMA_CONFIGURATION:$BEXHOMA_CONFIGURATION"
+echo "BEXHOMA_CLIENT:$BEXHOMA_CLIENT"
+
+######################## Show more parameters ########################
+CHILD=$(cat /tmp/tpch/CHILD )
+echo "CHILD $CHILD"
+echo "NUM_PODS $NUM_PODS"
+echo "SF $SF"
+
+######################## Destination of raw data ########################
+if test $STORE_RAW_DATA -gt 0
+then
+ # store in (distributed) file system
+ if test $NUM_PODS -gt 1
+ then
+ destination_raw=/data/tpch/SF$SF/$NUM_PODS/$CHILD
+ else
+ destination_raw=/data/tpch/SF$SF
+ fi
+else
+ # only store locally
+ destination_raw=/tmp/tpch/SF$SF/$NUM_PODS/$CHILD
+ mkdir -p $destination_raw
+fi
+echo "destination_raw $destination_raw"
+cd $destination_raw
+
+######################## Show generated files ########################
+echo "Found these files:"
+ls $destination_raw/*tbl* -lh
+
+######################## Wait until all pods of job are ready ########################
+if test $BEXHOMA_SYNCH_LOAD -gt 0
+then
+ echo "Querying counter bexhoma-loader-podcount-$BEXHOMA_CONNECTION-$BEXHOMA_EXPERIMENT"
+ # add this pod to counter
+ redis-cli -h 'bexhoma-messagequeue' incr "bexhoma-loader-podcount-$BEXHOMA_CONNECTION-$BEXHOMA_EXPERIMENT"
+ # wait for number of pods to be as expected
+ while : ; do
+ PODS_RUNNING="$(redis-cli -h 'bexhoma-messagequeue' get bexhoma-loader-podcount-$BEXHOMA_CONNECTION-$BEXHOMA_EXPERIMENT)"
+ echo "Found $PODS_RUNNING / $NUM_PODS running pods"
+ if test "$PODS_RUNNING" == $NUM_PODS
+ then
+ echo "OK"
+ break
+ else
+ echo "We have to wait"
+ sleep 1
+ fi
+ done
+fi
+
+######################## Start measurement of time ########################
+bexhoma_start_epoch=$(date -u +%s)
+SECONDS_START=$SECONDS
+echo "Start $SECONDS_START seconds"
+
+######################## Only first loader pod should be active ########################
+# this holds for parallel loading, i.e. one client writes all files to host
+if test $MYSQL_LOADING_PARALLEL -gt 0
+then
+ if test $CHILD -gt 1
+ then
+ echo "Only first loader pod should be active"
+ bexhoma_end_epoch=$(date -u +%s)
+ SECONDS_END=$SECONDS
+ echo "End $SECONDS_END seconds"
+
+ DURATION=$((SECONDS_END-SECONDS_START))
+ echo "Duration $DURATION seconds"
+
+ ######################## Show timing information ###################
+ echo "Loading done"
+
+ DATEANDTIME=$(date '+%d.%m.%Y %H:%M:%S');
+ echo "NOW: $DATEANDTIME"
+
+ SECONDS_END_SCRIPT=$SECONDS
+ DURATION_SCRIPT=$((SECONDS_END_SCRIPT-SECONDS_START_SCRIPT))
+ echo "Duration $DURATION_SCRIPT seconds (script total)"
+ echo "BEXHOMA_DURATION:$DURATION_SCRIPT"
+ echo "BEXHOMA_START:$bexhoma_start_epoch"
+ echo "BEXHOMA_END:$bexhoma_end_epoch"
+ exit 0
+ fi
+fi
+
+######################## Execute loading ###################
+# ordered
+#for i in *tbl*; do
+# shuffled
+for i in `ls *tbl* | shuf`; do
+ basename=${i%.tbl*}
+ wordcount=($(wc -l $i))
+ lines=${wordcount[0]}
+ if [[ $basename == "nation" ]]
+ then
+ COMMAND="util.import_table('$destination_raw/$i', {'schema': 'tpch', 'table': '$basename', 'dialect': 'csv-unix', 'skipRows': 0, 'showProgress': True, 'fieldsTerminatedBy': '|', 'threads': $THREADS})"
+ #if test $CHILD -gt 1
+ #then
+ # continue
+ #fi
+ elif [[ $basename == "region" ]]
+ then
+ COMMAND="util.import_table('$destination_raw/$i', {'schema': 'tpch', 'table': '$basename', 'dialect': 'csv-unix', 'skipRows': 0, 'showProgress': True, 'fieldsTerminatedBy': '|', 'threads': $THREADS})"
+ #if test $CHILD -gt 1
+ #then
+ # continue
+ #fi
+ else
+ COMMAND="util.import_table(["
+ for ((j=1;j<=$NUM_PODS;j++));
+ do
+ #echo $j
+ file="'$destination_raw/../$j/$basename.tbl.$j',"
+ COMMAND=$COMMAND$file
+ done
+ COMMAND_END="], {'schema': 'tpch', 'table': '$basename', 'dialect': 'csv-unix', 'skipRows': 0, 'showProgress': True, 'fieldsTerminatedBy': '|', 'threads': $MYSQL_LOADING_THREADS})"
+ COMMAND=${COMMAND::-1}$COMMAND_END
+ fi
+ #COMMAND="COPY $lines RECORDS INTO $basename FROM STDIN USING DELIMITERS '|','\\n','\"' NULL AS ''"
+ #COMMAND="COPY $lines RECORDS INTO $basename FROM STDIN USING DELIMITERS '|' NULL AS ''"
+ echo "============================"
+ #COMMAND="util.import_table('$destination_raw/$i', {'schema': 'tpch', 'table': '$basename', 'dialect': 'csv-unix', 'skipRows': 0, 'showProgress': True, 'fieldsTerminatedBy': '|', 'threads': $THREADS})"
+ echo "$COMMAND"
+ #OUTPUT="$(mclient --host $BEXHOMA_HOST --database $DATABASE --port $BEXHOMA_PORT -s \"COPY $lines RECORDS INTO $basename FROM STDIN USING DELIMITERS '|' NULL AS ''\" - < $i)"
+
+ #FAILED=0 # everything ok
+ #FAILED=1 # known error
+ #FAILED=2 # unknown error
+ FAILED=1
+ while [ $FAILED == 1 ]
+ do
+ FAILED=2
+ SECONDS_START=$SECONDS
+ echo "=========="
+ #time mysqlsh --sql --password=root --host $BEXHOMA_HOST --database $DATABASE --port $BEXHOMA_PORT -e "$COMMAND" &>OUTPUT.txt
+ time mysqlsh --python --password=root --host $BEXHOMA_HOST --database $DATABASE --port $BEXHOMA_PORT -e "$COMMAND" &>OUTPUT.txt
+ echo "Start $SECONDS_START seconds"
+ SECONDS_END=$SECONDS
+ echo "End $SECONDS_END seconds"
+ DURATION=$((SECONDS_END-SECONDS_START))
+ echo "Duration $DURATION seconds"
+ #mclient --host $BEXHOMA_HOST --database $DATABASE --port $BEXHOMA_PORT -E UTF-8 -L import.log -s "$COMMAND" - < $i &>OUTPUT.txt
+ #mclient --host $BEXHOMA_HOST --database $DATABASE --port $BEXHOMA_PORT -s "COPY $lines RECORDS INTO $basename FROM STDIN USING DELIMITERS '|','\\n','\"' NULL AS ''" - < $i &>OUTPUT.txt
+ #cat import.log
+ OUTPUT=$(cat OUTPUT.txt )
+ echo "$OUTPUT"
+ FAILED=0
+ # everything worked well ("row" and "rows" string checked)
+ if [[ $OUTPUT == *"$lines affected row"* ]]; then echo "Import ok"; FAILED=0; fi
+ # rollback, we have to do it again (?)
+ if [[ $OUTPUT == *"ROLLBACK"* ]]; then echo "ROLLBACK occured"; FAILED=1; fi
+ # no thread left, we have to do it again (?)
+ #if [[ $OUTPUT == *"failed to start worker thread"* ]]; then echo "No worker thread"; FAILED=1; fi
+ #if [[ $OUTPUT == *"failed to start producer thread"* ]]; then echo "No producer thread"; FAILED=1; fi
+ #if [[ $OUTPUT == *"Challenge string is not valid, it is empty"* ]]; then echo "No Login possible"; FAILED=1; fi
+ # something else - what?
+ if [[ $OUTPUT == 2 ]]; then echo "Something unexpected happend"; fi
+ echo "FAILED = $FAILED at $basename"
+ if [[ $FAILED != 0 ]]; then echo "Wait 1s before retrying"; sleep 1; fi
+ done
+ #echo "COPY $lines RECORDS INTO $basename FROM '/tmp/$i' ON CLIENT DELIMITERS '|' NULL AS '';" >> load.sql
+done
+
+######################## End measurement of time ########################
+bexhoma_end_epoch=$(date -u +%s)
+SECONDS_END=$SECONDS
+echo "End $SECONDS_END seconds"
+
+DURATION=$((SECONDS_END-SECONDS_START))
+echo "Duration $DURATION seconds"
+
+######################## Show timing information ###################
+echo "Loading done"
+
+DATEANDTIME=$(date '+%d.%m.%Y %H:%M:%S');
+echo "NOW: $DATEANDTIME"
+
+SECONDS_END_SCRIPT=$SECONDS
+DURATION_SCRIPT=$((SECONDS_END_SCRIPT-SECONDS_START_SCRIPT))
+echo "Duration $DURATION_SCRIPT seconds (script total)"
+echo "BEXHOMA_DURATION:$DURATION_SCRIPT"
+echo "BEXHOMA_START:$bexhoma_start_epoch"
+echo "BEXHOMA_END:$bexhoma_end_epoch"
+
+######################## Exit successfully ###################
+# while true; do sleep 2; done
+exit 0
diff --git a/images/tpch/loader_mysql/loader.sh b/images/tpch/loader_mysql/loader.sh
new file mode 100644
index 00000000..d50f9aab
--- /dev/null
+++ b/images/tpch/loader_mysql/loader.sh
@@ -0,0 +1,251 @@
+#!/bin/bash
+
+# Reference for tool
+# https://dev.mysql.com/doc/mysql-shell/8.3/en/mysql-shell-utilities-parallel-table.html
+# , 'bytesPerChunk': '50M' # Util.import_table: The 'bytesPerChunk' option cannot be used when loading from multiple files.
+
+
+######################## Start timing ########################
+DATEANDTIME=$(date '+%d.%m.%Y %H:%M:%S');
+echo "NOW: $DATEANDTIME"
+SECONDS_START_SCRIPT=$SECONDS
+
+######################## Show general parameters ########################
+echo "BEXHOMA_CONNECTION:$BEXHOMA_CONNECTION"
+echo "BEXHOMA_EXPERIMENT_RUN:$BEXHOMA_EXPERIMENT_RUN"
+echo "BEXHOMA_CONFIGURATION:$BEXHOMA_CONFIGURATION"
+echo "BEXHOMA_CLIENT:$BEXHOMA_CLIENT"
+
+######################## Show more parameters ########################
+CHILD=$(cat /tmp/tpch/CHILD )
+echo "CHILD $CHILD"
+echo "NUM_PODS $NUM_PODS"
+echo "SF $SF"
+
+######################## Destination of raw data ########################
+if test $STORE_RAW_DATA -gt 0
+then
+ # store in (distributed) file system
+ if test $NUM_PODS -gt 1
+ then
+ destination_raw=/data/tpch/SF$SF/$NUM_PODS/$CHILD
+ else
+ destination_raw=/data/tpch/SF$SF
+ fi
+else
+ # only store locally
+ destination_raw=/tmp/tpch/SF$SF/$NUM_PODS/$CHILD
+fi
+echo "destination_raw $destination_raw"
+cd $destination_raw
+
+######################## Show generated files ########################
+echo "Found these files:"
+ls $destination_raw/*tbl* -lh
+
+######################## Wait until all pods of job are ready ########################
+if test $BEXHOMA_SYNCH_LOAD -gt 0
+then
+ echo "Querying counter bexhoma-loader-podcount-$BEXHOMA_CONNECTION-$BEXHOMA_EXPERIMENT"
+ # add this pod to counter
+ redis-cli -h 'bexhoma-messagequeue' incr "bexhoma-loader-podcount-$BEXHOMA_CONNECTION-$BEXHOMA_EXPERIMENT"
+ # wait for number of pods to be as expected
+ while : ; do
+ PODS_RUNNING="$(redis-cli -h 'bexhoma-messagequeue' get bexhoma-loader-podcount-$BEXHOMA_CONNECTION-$BEXHOMA_EXPERIMENT)"
+ echo "Found $PODS_RUNNING / $NUM_PODS running pods"
+ if test "$PODS_RUNNING" == $NUM_PODS
+ then
+ echo "OK"
+ break
+ elif test "$PODS_RUNNING" -gt $NUM_PODS
+ then
+ echo "Too many pods! Restart occured?"
+ exit 0
+ else
+ echo "We have to wait"
+ sleep 1
+ fi
+ done
+fi
+
+######################## Start measurement of time ########################
+bexhoma_start_epoch=$(date -u +%s)
+SECONDS_START=$SECONDS
+echo "Start $SECONDS_START seconds"
+
+######################## Fix missing locale - in Dockerfile ########################
+#export LC_ALL="en_US.UTF-8"
+#export LANG="en_US.utf8"
+
+######################## Parallel loading (several scripts at once) only makes sense for more than 1 pod ########################
+if test $NUM_PODS -gt 1
+then
+ echo "MYSQL_LOADING_PARALLEL:$MYSQL_LOADING_PARALLEL"
+else
+ MYSQL_LOADING_PARALLEL=0
+ echo "MYSQL_LOADING_PARALLEL:$MYSQL_LOADING_PARALLEL"
+fi
+
+######################## Only first loader pod should be active ########################
+# this holds for parallel loading, i.e. one client writes all files to host
+if test $MYSQL_LOADING_PARALLEL -gt 0
+then
+ if test $CHILD -gt 1
+ then
+ echo "Only first loader pod should be active"
+ bexhoma_end_epoch=$(date -u +%s)
+ SECONDS_END=$SECONDS
+ echo "End $SECONDS_END seconds"
+
+ DURATION=$((SECONDS_END-SECONDS_START))
+ echo "Duration $DURATION seconds"
+
+ ######################## Show timing information ###################
+ echo "Loading done"
+
+ DATEANDTIME=$(date '+%d.%m.%Y %H:%M:%S');
+ echo "NOW: $DATEANDTIME"
+
+ SECONDS_END_SCRIPT=$SECONDS
+ DURATION_SCRIPT=$((SECONDS_END_SCRIPT-SECONDS_START_SCRIPT))
+ echo "Duration $DURATION_SCRIPT seconds (script total)"
+ echo "BEXHOMA_DURATION:$DURATION_SCRIPT"
+ echo "BEXHOMA_START:$bexhoma_start_epoch"
+ echo "BEXHOMA_END:$bexhoma_end_epoch"
+ exit 0
+ fi
+fi
+
+######################## Execute loading ###################
+# shuffled
+#for i in `ls *tbl* | shuf`; do
+# ordered
+for i in *tbl*; do
+ basename=${i%.tbl*}
+ wordcount=($(wc -l $i))
+ lines=${wordcount[0]}
+ # skip table if limit to other table is set
+ if [ -z "${TPCH_TABLE}" ]
+ then
+ echo "table limit not set"
+ elif [ "${TPCH_TABLE}" == "$basename" ]
+ then
+ echo "limit import to this table $TPCH_TABLE"
+ else
+ echo "skipping $basename, import is limited to other table ($TPCH_TABLE)"
+ continue
+ fi
+ if test $MYSQL_LOADING_PARALLEL -gt 0
+ then
+ # first pod: table nation or region will be imported olny one, others: we will import all parts at once
+ if [[ $basename == "nation" ]]
+ then
+ COMMAND="util.import_table('$destination_raw/$i', {'schema': 'tpch', 'table': '$basename', 'dialect': 'csv-unix', 'skipRows': 0, 'showProgress': True, 'fieldsTerminatedBy': '|', 'threads': $MYSQL_LOADING_THREADS})"
+ #if test $CHILD -gt 1
+ #then
+ # continue
+ #fi
+ elif [[ $basename == "region" ]]
+ then
+ COMMAND="util.import_table('$destination_raw/$i', {'schema': 'tpch', 'table': '$basename', 'dialect': 'csv-unix', 'skipRows': 0, 'showProgress': True, 'fieldsTerminatedBy': '|', 'threads': $MYSQL_LOADING_THREADS})"
+ #if test $CHILD -gt 1
+ #then
+ # continue
+ #fi
+ else
+ COMMAND="util.import_table(["
+ for ((j=1;j<=$NUM_PODS;j++));
+ do
+ #echo $j
+ file="'$destination_raw/../$j/$basename.tbl.$j',"
+ COMMAND=$COMMAND$file
+ done
+ COMMAND_END="], {'schema': 'tpch', 'table': '$basename', 'dialect': 'csv-unix', 'skipRows': 0, 'showProgress': True, 'fieldsTerminatedBy': '|', 'threads': $MYSQL_LOADING_THREADS})"
+ COMMAND=${COMMAND::-1}$COMMAND_END
+ fi
+ else
+ # first pod or not table nation or region: we will import single part
+ if [[ $basename == "nation" ]]
+ then
+ if test $CHILD -gt 1
+ then
+ continue
+ fi
+ fi
+ if [[ $basename == "region" ]]
+ then
+ if test $CHILD -gt 1
+ then
+ continue
+ fi
+ fi
+ COMMAND="util.import_table('$destination_raw/$i', {'schema': 'tpch', 'table': '$basename', 'dialect': 'csv-unix', 'skipRows': 0, 'showProgress': True, 'fieldsTerminatedBy': '|', 'threads': $MYSQL_LOADING_THREADS})"
+ fi
+ #COMMAND="COPY $lines RECORDS INTO $basename FROM STDIN USING DELIMITERS '|','\\n','\"' NULL AS ''"
+ #COMMAND="COPY $lines RECORDS INTO $basename FROM STDIN USING DELIMITERS '|' NULL AS ''"
+ echo "============================"
+ echo "$COMMAND"
+ #OUTPUT="$(mclient --host $BEXHOMA_HOST --database $DATABASE --port $BEXHOMA_PORT -s \"COPY $lines RECORDS INTO $basename FROM STDIN USING DELIMITERS '|' NULL AS ''\" - < $i)"
+
+ #FAILED=0 # everything ok
+ #FAILED=1 # known error
+ #FAILED=2 # unknown error
+ FAILED=1
+ while [ $FAILED == 1 ]
+ do
+ FAILED=2
+ SECONDS_START=$SECONDS
+ echo "=========="
+ #time mysqlsh --sql --password=root --host $BEXHOMA_HOST --database $DATABASE --port $BEXHOMA_PORT -e "$COMMAND" &>OUTPUT.txt
+ time mysqlsh --python --password=root --host $BEXHOMA_HOST --database $DATABASE --port $BEXHOMA_PORT -e "$COMMAND" &> /tmp/OUTPUT.txt
+ echo "Start $SECONDS_START seconds"
+ SECONDS_END=$SECONDS
+ echo "End $SECONDS_END seconds"
+ DURATION=$((SECONDS_END-SECONDS_START))
+ echo "Duration $DURATION seconds"
+ #mclient --host $BEXHOMA_HOST --database $DATABASE --port $BEXHOMA_PORT -E UTF-8 -L import.log -s "$COMMAND" - < $i &>OUTPUT.txt
+ #mclient --host $BEXHOMA_HOST --database $DATABASE --port $BEXHOMA_PORT -s "COPY $lines RECORDS INTO $basename FROM STDIN USING DELIMITERS '|','\\n','\"' NULL AS ''" - < $i &>OUTPUT.txt
+ #cat import.log
+ OUTPUT=$(cat /tmp/OUTPUT.txt )
+ echo "$OUTPUT"
+ FAILED=0
+ # everything worked well ("row" and "rows" string checked)
+ if [[ $OUTPUT == *"Total rows affected in tpch.$basename: Records: $lines"* ]]; then echo "Import ok"; FAILED=0; fi
+ # rollback, we have to do it again (?)
+ if [[ $OUTPUT == *"ROLLBACK"* ]]; then echo "ROLLBACK occured"; FAILED=1; fi
+ # no thread left, we have to do it again (?)
+ #if [[ $OUTPUT == *"failed to start worker thread"* ]]; then echo "No worker thread"; FAILED=1; fi
+ #if [[ $OUTPUT == *"failed to start producer thread"* ]]; then echo "No producer thread"; FAILED=1; fi
+ #if [[ $OUTPUT == *"Challenge string is not valid, it is empty"* ]]; then echo "No Login possible"; FAILED=1; fi
+ # something else - what?
+ if [[ $OUTPUT == 2 ]]; then echo "Something unexpected happend"; fi
+ echo "FAILED = $FAILED at $basename"
+ if [[ $FAILED != 0 ]]; then echo "Wait 1s before retrying"; sleep 1; fi
+ done
+ #echo "COPY $lines RECORDS INTO $basename FROM '/tmp/$i' ON CLIENT DELIMITERS '|' NULL AS '';" >> load.sql
+done
+
+######################## End measurement of time ########################
+bexhoma_end_epoch=$(date -u +%s)
+SECONDS_END=$SECONDS
+echo "End $SECONDS_END seconds"
+
+DURATION=$((SECONDS_END-SECONDS_START))
+echo "Duration $DURATION seconds"
+
+######################## Show timing information ###################
+echo "Loading done"
+
+DATEANDTIME=$(date '+%d.%m.%Y %H:%M:%S');
+echo "NOW: $DATEANDTIME"
+
+SECONDS_END_SCRIPT=$SECONDS
+DURATION_SCRIPT=$((SECONDS_END_SCRIPT-SECONDS_START_SCRIPT))
+echo "Duration $DURATION_SCRIPT seconds (script total)"
+echo "BEXHOMA_DURATION:$DURATION_SCRIPT"
+echo "BEXHOMA_START:$bexhoma_start_epoch"
+echo "BEXHOMA_END:$bexhoma_end_epoch"
+
+######################## Exit successfully ###################
+# while true; do sleep 2; done
+exit 0
diff --git a/images/ycsb/benchmarker/README.md b/images/ycsb/benchmarker/README.md
index fd333680..638623de 100644
--- a/images/ycsb/benchmarker/README.md
+++ b/images/ycsb/benchmarker/README.md
@@ -2,9 +2,6 @@
The image is based on https://github.com/brianfrankcooper/YCSB
-Currently, TPC-C is adapted for PostgreSQL, MySQL, MariaDB, SingleStore, Kinetica and YugabyteDB here.
-It requires the JDBC driver to be included.
-
The following parameter (ENV) have been added:
* `SF`:
@@ -31,5 +28,7 @@ The following parameter (ENV) have been added:
* `YCSB_STATUS`:
* `YCSB_WORKLOAD`:
* `YCSB_BATCHSIZE`:
+* `YCSB_ROWS`:
+* `YCSB_OPERATIONS`:
This folder contains the Dockerfile for a benchmarker, that runs the workload against a loaded DBMS.
diff --git a/images/ycsb/benchmarker/benchmarker.sh b/images/ycsb/benchmarker/benchmarker.sh
index 223968e0..1632c489 100644
--- a/images/ycsb/benchmarker/benchmarker.sh
+++ b/images/ycsb/benchmarker/benchmarker.sh
@@ -51,43 +51,46 @@ echo "Querying message queue bexhoma-benchmarker-$BEXHOMA_CONNECTION-$BEXHOMA_EX
CHILD="$(redis-cli -h 'bexhoma-messagequeue' lpop bexhoma-benchmarker-$BEXHOMA_CONNECTION-$BEXHOMA_EXPERIMENT)"
if [ -z "$CHILD" ]
then
+ echo "No entry found in message queue. I assume this is the first child."
CHILD=1
+else
+ echo "Found entry number $CHILD in message queue."
fi
-if [ -z "$ROWS" ]
+if [ -z "$YCSB_ROWS" ]
then
- ROWS=$((SF*100000))
+ YCSB_ROWS=$((SF*100000))
fi
-if [ -z "$OPERATIONS" ]
+if [ -z "$YCSB_OPERATIONS" ]
then
- OPERATIONS=$((SF*100000))
+ YCSB_OPERATIONS=$((SF*100000))
fi
######################## Generate workflow ########################
# for parallel benchmarking pods
-OPERATIONS_TOTAL=$(($OPERATIONS*$NUM_PODS))
+OPERATIONS_TOTAL=$(($YCSB_OPERATIONS*$NUM_PODS))
# for loading phase
-ROW_PART=$(($ROWS/$NUM_PODS))
-ROW_START=$(($ROWS/$NUM_PODS*($CHILD-1)))
+ROW_PART=$(($YCSB_ROWS/$NUM_PODS))
+ROW_START=$(($YCSB_ROWS/$NUM_PODS*($CHILD-1)))
# for benchmarking phase - workload E, we again insert 5% new rows
#ROWS_TO_INSERT=$(awk "BEGIN {print 0.05*$OPERATIONS_TOTAL}")
# assume 100% of operations are INSERTs
ROWS_TO_INSERT=$OPERATIONS_TOTAL
ROW_PART_AFTER_LOADING=$(($ROWS_TO_INSERT/$NUM_PODS))
-ROW_START_AFTER_LOADING=$(($ROWS_TO_INSERT/$NUM_PODS*($CHILD-1)+$ROWS))
+ROW_START_AFTER_LOADING=$(($ROWS_TO_INSERT/$NUM_PODS*($CHILD-1)+$YCSB_ROWS))
# if new rows are to be inserted in benchmark, too
ROWS_AFTER_BENCHMARK=$((ROW_START_AFTER_LOADING+ROW_PART_AFTER_LOADING))
#### execution of workload known complete key range from 0 to (all) rows
-ROW_PART=$ROWS
+ROW_PART=$YCSB_ROWS
ROW_START=0
######################## Show more parameters ########################
echo "CHILD $CHILD"
echo "NUM_PODS $NUM_PODS"
echo "SF $SF"
-echo "ROWS $ROWS"
+echo "YCSB_ROWS $YCSB_ROWS"
echo "ROW_PART $ROW_PART"
echo "ROW_START $ROW_START"
echo "ROWS_TO_INSERT $ROWS_TO_INSERT"
@@ -95,7 +98,7 @@ echo "ROWS_AFTER_BENCHMARK $ROWS_AFTER_BENCHMARK"
echo "ROW_PART_AFTER_LOADING $ROW_PART_AFTER_LOADING"
echo "ROW_START_AFTER_LOADING $ROW_START_AFTER_LOADING"
echo "OPERATIONS_TOTAL $OPERATIONS_TOTAL"
-echo "OPERATIONS $OPERATIONS"
+echo "YCSB_OPERATIONS $YCSB_OPERATIONS"
echo "YCSB_THREADCOUNT $YCSB_THREADCOUNT"
echo "YCSB_TARGET $YCSB_TARGET"
echo "YCSB_WORKLOAD $YCSB_WORKLOAD"
@@ -154,9 +157,9 @@ echo "FILENAME_TEMPLATE $FILENAME_TEMPLATE"
sed -i "s/ROWS_AFTER_BENCHMARK/$ROWS_AFTER_BENCHMARK/" $FILENAME
sed -i "s/ROW_START_AFTER_LOADING/$ROW_START_AFTER_LOADING/" $FILENAME
sed -i "s/ROW_PART_AFTER_LOADING/$ROW_PART_AFTER_LOADING/" $FILENAME
-sed -i "s/ROWS/$ROWS/" $FILENAME
+sed -i "s/YCSB_ROWS/$YCSB_ROWS/" $FILENAME
sed -i "s/OPERATIONS_TOTAL/$OPERATIONS_TOTAL/" $FILENAME
-sed -i "s/OPERATIONS/$OPERATIONS/" $FILENAME
+sed -i "s/YCSB_OPERATIONS/$YCSB_OPERATIONS/" $FILENAME
sed -i "s/ROW_START/$ROW_START/" $FILENAME
sed -i "s/ROW_PART/$ROW_PART/" $FILENAME
sed -i "s/YCSB_THREADCOUNT/$YCSB_THREADCOUNT/" $FILENAME
@@ -169,8 +172,8 @@ echo "# Yahoo! Cloud System Benchmark
# Read/update ratio: 50/50
# Request distribution: zipfian
-recordcount=$ROWS
-operationcount=$OPERATIONS
+recordcount=$YCSB_ROWS
+operationcount=$YCSB_OPERATIONS
workload=site.ycsb.workloads.CoreWorkload
readallfields=true
diff --git a/images/ycsb/benchmarker/workloads/workloada b/images/ycsb/benchmarker/workloads/workloada
index d429c629..53f1b3d7 100644
--- a/images/ycsb/benchmarker/workloads/workloada
+++ b/images/ycsb/benchmarker/workloads/workloada
@@ -22,8 +22,8 @@
# Default data size: 1 KB records (10 fields, 100 bytes each, plus key)
# Request distribution: zipfian
-recordcount=ROWS
-operationcount=OPERATIONS
+recordcount=YCSB_ROWS
+operationcount=YCSB_OPERATIONS
workload=site.ycsb.workloads.CoreWorkload
readallfields=true
diff --git a/images/ycsb/benchmarker/workloads/workloadb b/images/ycsb/benchmarker/workloads/workloadb
index 434fb12b..709963a0 100644
--- a/images/ycsb/benchmarker/workloads/workloadb
+++ b/images/ycsb/benchmarker/workloads/workloadb
@@ -21,8 +21,8 @@
# Default data size: 1 KB records (10 fields, 100 bytes each, plus key)
# Request distribution: zipfian
-recordcount=ROWS
-operationcount=OPERATIONS
+recordcount=YCSB_ROWS
+operationcount=YCSB_OPERATIONS
workload=site.ycsb.workloads.CoreWorkload
readallfields=true
diff --git a/images/ycsb/benchmarker/workloads/workloadc b/images/ycsb/benchmarker/workloads/workloadc
index 9e09ee8d..07f844f6 100644
--- a/images/ycsb/benchmarker/workloads/workloadc
+++ b/images/ycsb/benchmarker/workloads/workloadc
@@ -21,8 +21,8 @@
# Default data size: 1 KB records (10 fields, 100 bytes each, plus key)
# Request distribution: zipfian
-recordcount=ROWS
-operationcount=OPERATIONS
+recordcount=YCSB_ROWS
+operationcount=YCSB_OPERATIONS
workload=site.ycsb.workloads.CoreWorkload
readallfields=true
diff --git a/images/ycsb/benchmarker/workloads/workloadd b/images/ycsb/benchmarker/workloads/workloadd
index 9e2e379e..15a53722 100644
--- a/images/ycsb/benchmarker/workloads/workloadd
+++ b/images/ycsb/benchmarker/workloads/workloadd
@@ -27,7 +27,7 @@
# workload here (which we believe is more typical of how people build systems.)
recordcount=ROWS_AFTER_BENCHMARK
-operationcount=OPERATIONS
+operationcount=YCSB_OPERATIONS
workload=site.ycsb.workloads.CoreWorkload
readallfields=true
diff --git a/images/ycsb/benchmarker/workloads/workloade b/images/ycsb/benchmarker/workloads/workloade
index ac98987f..b1349313 100644
--- a/images/ycsb/benchmarker/workloads/workloade
+++ b/images/ycsb/benchmarker/workloads/workloade
@@ -27,7 +27,7 @@
# key, and then request a number of records; this works fine even for hashed insertion.
recordcount=ROWS_AFTER_BENCHMARK
-operationcount=OPERATIONS
+operationcount=YCSB_OPERATIONS
workload=site.ycsb.workloads.CoreWorkload
readallfields=true
diff --git a/images/ycsb/benchmarker/workloads/workloadf b/images/ycsb/benchmarker/workloads/workloadf
index 2f0182b6..61305667 100644
--- a/images/ycsb/benchmarker/workloads/workloadf
+++ b/images/ycsb/benchmarker/workloads/workloadf
@@ -22,7 +22,7 @@
# Request distribution: zipfian
recordcount=ROWS_AFTER_BENCHMARK
-operationcount=OPERATIONS
+operationcount=YCSB_OPERATIONS
workload=site.ycsb.workloads.CoreWorkload
readallfields=true
diff --git a/images/ycsb/generator/README.md b/images/ycsb/generator/README.md
index 7bfb0e38..7f0041e4 100644
--- a/images/ycsb/generator/README.md
+++ b/images/ycsb/generator/README.md
@@ -2,9 +2,6 @@
The image is based on https://github.com/brianfrankcooper/YCSB
-Currently, TPC-C is adapted for PostgreSQL, MySQL, MariaDB, SingleStore, Kinetica and YugabyteDB here.
-It requires the JDBC driver to be included.
-
The following parameter (ENV) have been added:
* `SF`:
@@ -31,5 +28,7 @@ The following parameter (ENV) have been added:
* `YCSB_STATUS`:
* `YCSB_WORKLOAD`:
* `YCSB_BATCHSIZE`:
+* `YCSB_ROWS`:
+* `YCSB_OPERATIONS`:
This folder contains the Dockerfile for a data generator, that loads data into a DBMS.
diff --git a/images/ycsb/generator/generator.sh b/images/ycsb/generator/generator.sh
index 41e23475..bb916f76 100644
--- a/images/ycsb/generator/generator.sh
+++ b/images/ycsb/generator/generator.sh
@@ -52,28 +52,28 @@ then
CHILD=1
fi
-if [ -z "$ROWS" ]
+if [ -z "$YCSB_ROWS" ]
then
- ROWS=$((SF*100000))
+ YCSB_ROWS=$((SF*100000))
fi
-if [ -z "$OPERATIONS" ]
+if [ -z "$YCSB_OPERATIONS" ]
then
- OPERATIONS=$((SF*100000))
+ YCSB_OPERATIONS=$((SF*100000))
fi
######################## Generate workflow ########################
# for parallel benchmarking pods
-OPERATIONS_TOTAL=$(($OPERATIONS*$NUM_PODS))
+OPERATIONS_TOTAL=$(($YCSB_OPERATIONS*$NUM_PODS))
# for loading phase
-ROW_PART=$(($ROWS/$NUM_PODS))
-ROW_START=$(($ROWS/$NUM_PODS*($CHILD-1)))
+ROW_PART=$(($YCSB_ROWS/$NUM_PODS))
+ROW_START=$(($YCSB_ROWS/$NUM_PODS*($CHILD-1)))
# for benchmarking phase - workload E, we again insert 5% new rows
#ROWS_TO_INSERT=$(awk "BEGIN {print 0.05*$OPERATIONS_TOTAL}")
# assume 100% of operations are INSERTs
ROWS_TO_INSERT=$OPERATIONS_TOTAL
ROW_PART_AFTER_LOADING=$(($ROWS_TO_INSERT/$NUM_PODS))
-ROW_START_AFTER_LOADING=$(($ROWS_TO_INSERT/$NUM_PODS*($CHILD-1)+$ROWS))
+ROW_START_AFTER_LOADING=$(($ROWS_TO_INSERT/$NUM_PODS*($CHILD-1)+$YCSB_ROWS))
# if new rows are to be inserted in benchmark, too
ROWS_AFTER_BENCHMARK=$((ROW_START_AFTER_LOADING+ROW_PART_AFTER_LOADING))
@@ -81,7 +81,7 @@ ROWS_AFTER_BENCHMARK=$((ROW_START_AFTER_LOADING+ROW_PART_AFTER_LOADING))
echo "CHILD $CHILD"
echo "NUM_PODS $NUM_PODS"
echo "SF $SF"
-echo "ROWS $ROWS"
+echo "YCSB_ROWS $YCSB_ROWS"
echo "ROW_PART $ROW_PART"
echo "ROW_START $ROW_START"
echo "ROWS_TO_INSERT $ROWS_TO_INSERT"
@@ -89,7 +89,7 @@ echo "ROWS_AFTER_BENCHMARK $ROWS_AFTER_BENCHMARK"
echo "ROW_PART_AFTER_LOADING $ROW_PART_AFTER_LOADING"
echo "ROW_START_AFTER_LOADING $ROW_START_AFTER_LOADING"
echo "OPERATIONS_TOTAL $OPERATIONS_TOTAL"
-echo "OPERATIONS $OPERATIONS"
+echo "YCSB_OPERATIONS $YCSB_OPERATIONS"
echo "YCSB_THREADCOUNT $YCSB_THREADCOUNT"
echo "YCSB_TARGET $YCSB_TARGET"
echo "YCSB_WORKLOAD $YCSB_WORKLOAD"
@@ -149,9 +149,9 @@ echo "FILENAME_TEMPLATE $FILENAME_TEMPLATE"
sed -i "s/ROWS_AFTER_BENCHMARK/$ROWS_AFTER_BENCHMARK/" $FILENAME
sed -i "s/ROW_START_AFTER_LOADING/$ROW_START_AFTER_LOADING/" $FILENAME
sed -i "s/ROW_PART_AFTER_LOADING/$ROW_PART_AFTER_LOADING/" $FILENAME
-sed -i "s/ROWS/$ROWS/" $FILENAME
+sed -i "s/YCSB_ROWS/$YCSB_ROWS/" $FILENAME
sed -i "s/OPERATIONS_TOTAL/$OPERATIONS_TOTAL/" $FILENAME
-sed -i "s/OPERATIONS/$OPERATIONS/" $FILENAME
+sed -i "s/YCSB_OPERATIONS/$YCSB_OPERATIONS/" $FILENAME
sed -i "s/ROW_START/$ROW_START/" $FILENAME
sed -i "s/ROW_PART/$ROW_PART/" $FILENAME
sed -i "s/YCSB_THREADCOUNT/$YCSB_THREADCOUNT/" $FILENAME
@@ -164,8 +164,8 @@ echo "# Yahoo! Cloud System Benchmark
# Read/update ratio: 50/50
# Request distribution: zipfian
-recordcount=$ROWS
-operationcount=$OPERATIONS
+recordcount=$YCSB_ROWS
+operationcount=$YCSB_OPERATIONS
workload=site.ycsb.workloads.CoreWorkload
readallfields=true
diff --git a/images/ycsb/generator/workloads/workloada b/images/ycsb/generator/workloads/workloada
index d429c629..53f1b3d7 100644
--- a/images/ycsb/generator/workloads/workloada
+++ b/images/ycsb/generator/workloads/workloada
@@ -22,8 +22,8 @@
# Default data size: 1 KB records (10 fields, 100 bytes each, plus key)
# Request distribution: zipfian
-recordcount=ROWS
-operationcount=OPERATIONS
+recordcount=YCSB_ROWS
+operationcount=YCSB_OPERATIONS
workload=site.ycsb.workloads.CoreWorkload
readallfields=true
diff --git a/images/ycsb/generator/workloads/workloadb b/images/ycsb/generator/workloads/workloadb
index 434fb12b..709963a0 100644
--- a/images/ycsb/generator/workloads/workloadb
+++ b/images/ycsb/generator/workloads/workloadb
@@ -21,8 +21,8 @@
# Default data size: 1 KB records (10 fields, 100 bytes each, plus key)
# Request distribution: zipfian
-recordcount=ROWS
-operationcount=OPERATIONS
+recordcount=YCSB_ROWS
+operationcount=YCSB_OPERATIONS
workload=site.ycsb.workloads.CoreWorkload
readallfields=true
diff --git a/images/ycsb/generator/workloads/workloadc b/images/ycsb/generator/workloads/workloadc
index 9e09ee8d..07f844f6 100644
--- a/images/ycsb/generator/workloads/workloadc
+++ b/images/ycsb/generator/workloads/workloadc
@@ -21,8 +21,8 @@
# Default data size: 1 KB records (10 fields, 100 bytes each, plus key)
# Request distribution: zipfian
-recordcount=ROWS
-operationcount=OPERATIONS
+recordcount=YCSB_ROWS
+operationcount=YCSB_OPERATIONS
workload=site.ycsb.workloads.CoreWorkload
readallfields=true
diff --git a/images/ycsb/generator/workloads/workloadd b/images/ycsb/generator/workloads/workloadd
index bb682ab6..5eb78e66 100644
--- a/images/ycsb/generator/workloads/workloadd
+++ b/images/ycsb/generator/workloads/workloadd
@@ -26,8 +26,8 @@
# which orders items purely by time, and demands the latest, is very different than
# workload here (which we believe is more typical of how people build systems.)
-recordcount=ROWS
-operationcount=OPERATIONS
+recordcount=YCSB_ROWS
+operationcount=YCSB_OPERATIONS
workload=site.ycsb.workloads.CoreWorkload
readallfields=true
diff --git a/images/ycsb/generator/workloads/workloade b/images/ycsb/generator/workloads/workloade
index 7986ab28..d5e9e634 100644
--- a/images/ycsb/generator/workloads/workloade
+++ b/images/ycsb/generator/workloads/workloade
@@ -26,8 +26,8 @@
# instead interspersed with posts from lots of other threads. The way the YCSB client works is that it will pick a start
# key, and then request a number of records; this works fine even for hashed insertion.
-recordcount=ROWS
-operationcount=OPERATIONS
+recordcount=YCSB_ROWS
+operationcount=YCSB_OPERATIONS
workload=site.ycsb.workloads.CoreWorkload
readallfields=true
diff --git a/images/ycsb/generator/workloads/workloadf b/images/ycsb/generator/workloads/workloadf
index a9284fa1..77922437 100644
--- a/images/ycsb/generator/workloads/workloadf
+++ b/images/ycsb/generator/workloads/workloadf
@@ -21,8 +21,8 @@
# Default data size: 1 KB records (10 fields, 100 bytes each, plus key)
# Request distribution: zipfian
-recordcount=ROWS
-operationcount=OPERATIONS
+recordcount=YCSB_ROWS
+operationcount=YCSB_OPERATIONS
workload=site.ycsb.workloads.CoreWorkload
readallfields=true
diff --git a/k8s-cluster.config b/k8s-cluster.config
index 7b284fe3..9c756825 100644
--- a/k8s-cluster.config
+++ b/k8s-cluster.config
@@ -204,6 +204,24 @@
'tpch': {
'id': '2',
'initscripts': {
+ 'Schema': [
+ 'initschema-tpch.sql',
+ ],
+ 'Schema_dummy': [
+ 'initschemadummy-tpch.sql',
+ ],
+ 'Index': [
+ 'initindexes-tpch.sql',
+ ],
+ 'Index_and_Constraints': [
+ 'initindexes-tpch.sql',
+ 'initconstraints-tpch.sql',
+ ],
+ 'Index_and_Constraints_and_Statistics': [
+ 'initindexes-tpch.sql',
+ 'initconstraints-tpch.sql',
+ 'initstatistics-tpch.sql',
+ ],
'SF1': [
'initschema-tpch.sql',
'initdata-tpch-SF1.sql',
@@ -293,6 +311,7 @@
'dockers': {
'PostgreSQL': {
'loadData': 'psql -U postgres < {scriptname}',
+ 'delay_prepare': 300,
'template': {
'version': 'v11.4',
'alias': 'General-B',
@@ -308,5 +327,41 @@
'datadir': '/var/lib/postgresql/data/',
'priceperhourdollar': 0.0,
},
+ 'MySQL': {
+ 'loadData': 'mysql --local-infile < {scriptname}',
+ 'delay_prepare': 300,
+ 'template': {
+ 'version': 'CE 8.0.36',
+ 'alias': 'General-C',
+ 'docker_alias': 'GP-C',
+ 'dialect': 'MySQL',
+ 'JDBC': {
+ 'driver': "com.mysql.cj.jdbc.Driver",
+ 'auth': ["root", "root"],
+ 'url': 'jdbc:mysql://{serverip}:9091/{dbname}?rewriteBatchedStatements=true',
+ 'jar': ['mysql-connector-j-8.0.31.jar', 'slf4j-simple-1.7.21.jar']
+ }
+ },
+ 'logfile': '/var/log/mysqld.log',
+ 'datadir': '/var/lib/mysql/',
+ 'priceperhourdollar': 0.0,
+ },
+ 'MonetDB': {
+ 'loadData': 'cd /home/monetdb;echo "user=monetdb\npassword=monetdb" > .monetdb;mclient demo < {scriptname}',
+ 'template': {
+ 'version': '11.37.11',
+ 'alias': 'Columnwise',
+ 'docker_alias': 'Columnwise',
+ 'JDBC': {
+ 'auth': ['monetdb', 'monetdb'],
+ 'driver': 'nl.cwi.monetdb.jdbc.MonetDriver',
+ 'jar': 'monetdb-jdbc-3.2.jre8.jar',
+ 'url': 'jdbc:monetdb://{serverip}:9091/demo?so_timeout=0'#?autocommit=true&so_timeout=0'
+ }
+ },
+ 'logfile': '/var/monetdb5/dbfarm/merovingian.log',
+ 'datadir': '/var/monetdb5/',
+ 'priceperhourdollar': 0.0,
+ },
},
}
diff --git a/k8s/deploymenttemplate-Dummy.yml b/k8s/deploymenttemplate-Dummy.yml
index b9ea5dbd..596e22da 100644
--- a/k8s/deploymenttemplate-Dummy.yml
+++ b/k8s/deploymenttemplate-Dummy.yml
@@ -27,8 +27,8 @@ spec:
- {name: dockerhub}
nodeSelector:
tolerations:
- - key: "nvidia.com/gpu"
- effect: "NoSchedule"
+ #- key: "nvidia.com/gpu"
+ # effect: "NoSchedule"
containers:
- name: dbms
image: busybox
diff --git a/k8s/deploymenttemplate-MonetDB.yml b/k8s/deploymenttemplate-MonetDB.yml
index 893364c9..014f4605 100644
--- a/k8s/deploymenttemplate-MonetDB.yml
+++ b/k8s/deploymenttemplate-MonetDB.yml
@@ -40,11 +40,11 @@ spec:
- {name: dockerhub}
nodeSelector:
tolerations:
- - key: "nvidia.com/gpu"
- effect: "NoSchedule"
+ #- key: "nvidia.com/gpu"
+ # effect: "NoSchedule"
containers:
- name: dbms
- image: monetdb/monetdb:Sep2022-SP2
+ image: monetdb/monetdb:Dec2023
env:
- {name: MDB_DB_ADMIN_PASS, value: 'monetdb'}
- {name: MDB_CREATE_DBS, value: 'demo'}
@@ -52,7 +52,7 @@ spec:
- {containerPort: 50000}
resources:
limits: {cpu: 16000m, memory: 128Gi}
- requests: {cpu: 16000m, memory: 128Gi}
+ requests: {cpu: 1000m, memory: 1Gi}
#, ephemeral-storage: "1536Gi"}
volumeMounts:
- {mountPath: /data, name: benchmark-data-volume}
diff --git a/k8s/deploymenttemplate-MySQL.yml b/k8s/deploymenttemplate-MySQL.yml
index bc206f18..c50d3765 100644
--- a/k8s/deploymenttemplate-MySQL.yml
+++ b/k8s/deploymenttemplate-MySQL.yml
@@ -40,14 +40,50 @@ spec:
- {name: dockerhub}
nodeSelector:
tolerations:
- - key: "nvidia.com/gpu"
- effect: "NoSchedule"
+ #- key: "nvidia.com/gpu"
+ # effect: "NoSchedule"
containers:
- name: dbms
- image: mysql/mysql-server:8.0.31
- args: ["--innodb-write-io-threads", "16"]
- #args: ["--innodb-write-io-threads", "16", "--innodb-log-file-size", "4294967296"]
- #args: ["--secure-file-priv", "/data/", "--innodb-write-io-threads", "16", "--innodb-log-file-size", "4294967296"]
+ image: mysql:8.0.36 # latest bug fixes
+ #image: mysql:8.1.0 # no docs
+ #image: mysql:8.2.0 # no docs
+ #image: mysql:8.3.0 # current, but slow import (?)
+ args: [
+ # Some of these need restart
+ # The comments come from 8.3 docs
+ # https://dev.mysql.com/doc/refman/8.3/en/optimizing-innodb-logging.html
+ # https://dev.mysql.com/doc/refman/8.3/en/innodb-performance-multiple_io_threads.html
+ "--innodb-write-io-threads=64", # https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_write_io_threads
+ "--innodb-read-io-threads=64", # https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_read_io_threads
+ # https://dev.mysql.com/doc/refman/8.3/en/innodb-linux-native-aio.html
+ "--innodb-use-native-aio=0", # https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_use_native_aio
+ # https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_page_size
+ # "--innodb-page-size=4K", # Small for OLTP or similar to filesystem page size
+ # https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_buffer_pool_chunk_size
+ # To avoid potential performance issues, the number of chunks (innodb_buffer_pool_size / innodb_buffer_pool_chunk_size) should not exceed 1000.
+ "--innodb-buffer-pool-chunk-size=500M", # Small when size of pool changes often
+ # https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_buffer_pool_instances
+ # https://releem.com/docs/mysql-performance-tuning/innodb_buffer_pool_size
+ "--innodb-buffer-pool-instances=64", # Parallelizes reads, but may lock writes
+ "--innodb-buffer-pool-size=32G", # Buffer pool size must always be equal to or a multiple of innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances.
+ # https://dev.mysql.com/doc/refman/8.3/en/innodb-configuring-io-capacity.html
+ "--innodb-io-capacity=1000", # Faster SSD assumed
+ # https://dev.mysql.com/doc/refman/8.0/en/innodb-redo-log-buffer.html
+ "--innodb-log-buffer-size=32G", # The size in bytes of the buffer that InnoDB uses to write to the log files on disk
+ "--innodb-redo-log-capacity=8G", # Defines the amount of disk space occupied by redo log files
+ "--innodb-flush-log-at-trx-commit=0", # The default setting of 1 is required for full ACID compliance. With a setting of 0, logs are written and flushed to disk once per second.
+ # https://dev.mysql.com/doc/refman/8.3/en/online-ddl-parallel-thread-configuration.html
+ "--innodb-parallel-read-threads=64", # https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_parallel_read_threads
+ "--innodb-ddl-threads=64", # https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_ddl_threads
+ "--innodb-ddl-buffer-size=128M", # https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_ddl_buffer_size
+ # https://dev.mysql.com/doc/refman/8.3/en/server-system-variables.html#sysvar_tmp_table_size
+ "--tmp-table-size=1GB", # Defines the maximum size of internal in-memory temporary tables
+ "--max-heap-table-size=1GB", # Maximum size to which user-created MEMORY tables are permitted to grow
+ # https://dev.mysql.com/doc/refman/8.3/en/innodb-doublewrite-buffer.html
+ "--innodb-doublewrite=0",
+ "--innodb-change-buffer-max-size=50", # You might increase this value for a MySQL server with heavy insert, update, and delete activity
+ ]
+
env:
- {name: MYSQL_ALLOW_EMPTY_PASSWORD, value: 'yes'}
- {name: MYSQL_ROOT_HOST, value: '%'}
@@ -55,7 +91,7 @@ spec:
- {containerPort: 3306}
resources:
limits: {cpu: 16000m, memory: 128Gi}
- requests: {cpu: 16000m, memory: 128Gi}
+ requests: {cpu: 1000m, memory: 1Gi}
#, ephemeral-storage: "1536Gi"}
volumeMounts:
- {mountPath: /data, name: benchmark-data-volume}
diff --git a/k8s/deploymenttemplate-PostgreSQL.yml b/k8s/deploymenttemplate-PostgreSQL.yml
index 9f605c3c..22f48cb8 100644
--- a/k8s/deploymenttemplate-PostgreSQL.yml
+++ b/k8s/deploymenttemplate-PostgreSQL.yml
@@ -40,21 +40,35 @@ spec:
- {name: dockerhub}
nodeSelector:
tolerations:
- - key: "nvidia.com/gpu"
- effect: "NoSchedule"
+ #- key: "nvidia.com/gpu"
+ # effect: "NoSchedule"
+ terminationGracePeriodSeconds: 60
containers:
- name: dbms
- image: postgres:15.0
+ image: postgres:16.1
env:
- name: POSTGRES_HOST_AUTH_METHOD
value: trust
- name: PGDATA
value: /var/lib/postgresql/data/pgdata
+ lifecycle:
+ preStop:
+ exec:
+ command: ["/bin/sh", "-c", "pg_ctl stop -D /var/lib/postgresql/data -m fast"]
ports:
- {containerPort: 5432}
+ securityContext:
+ allowPrivilegeEscalation: false
+ #runAsNonRoot: true
+ #runAsUser: 1000
+ #runAsGroup: 1000
+ #capabilities:
+ # drop:
+ # - ALL
+ #readOnlyRootFilesystem: true #could not create lock file "/var/run/postgresql/.s.PGSQL.5432.lock": Read-only file system
resources:
limits: {cpu: 16000m, memory: 128Gi}
- requests: {cpu: 16000m, memory: 128Gi}
+ requests: {cpu: 1000m, memory: 1Gi}
#, ephemeral-storage: "1536Gi"}
volumeMounts:
- {mountPath: /data, name: benchmark-data-volume}
@@ -107,10 +121,18 @@ spec:
#hostPort: 9300
name: http
protocol: TCP
+ securityContext:
+ allowPrivilegeEscalation: false
+ #runAsNonRoot: true
+ #runAsUser: 1000
+ #runAsGroup: 1000
+ #capabilities:
+ # drop:
+ # - ALL
+ readOnlyRootFilesystem: true
resources:
- requests:
- cpu: 150m
- memory: 200Mi
+ requests: {cpu: 150m, memory: 200Mi}
+ limits: {cpu: 16000m, memory: 128Gi}
volumeMounts:
- name: rootfs
mountPath: /rootfs
diff --git a/k8s/deploymenttemplate-bexhoma-dashboard.yml b/k8s/deploymenttemplate-bexhoma-dashboard.yml
index c370ff82..1a3249d4 100644
--- a/k8s/deploymenttemplate-bexhoma-dashboard.yml
+++ b/k8s/deploymenttemplate-bexhoma-dashboard.yml
@@ -36,29 +36,49 @@ spec:
image: bexhoma/evaluator_dbmsbenchmarker:v0.13.6
imagePullPolicy: IfNotPresent
#imagePullPolicy: Always
+ env:
+ - {name: MPLCONFIGDIR, value: '/tmp/'} # matplotlib
ports:
- containerPort: 8050 # Web
- containerPort: 8888 # Jupyter
resources:
- #limits: {cpu: 4000m, memory: 32Gi}
- #requests: {cpu: 4000m, memory: 32Gi}
+ requests: {cpu: 1000m, memory: 1Gi}
+ limits: {cpu: 16000m, memory: 128Gi}
securityContext:
+ #allowPrivilegeEscalation: false #tar - Cannot change ownership to uid 1001, gid 1001: Operation not permitted
+ #runAsNonRoot: true # Permission denied: '/.local'
+ #runAsUser: 1000
+ #runAsGroup: 1000
+ #capabilities: #tar - Cannot change ownership to uid 1001, gid 1001: Operation not permitted
+ # drop:
+ # - ALL
+ #readOnlyRootFilesystem: true #Matplotlib requires access to a writable cache directory, but the default path (/.config/matplotlib) is not a writable directory
volumeMounts:
- name: bexhoma-results
mountPath: /results
- name: jupyter
image: bexhoma/evaluator_dbmsbenchmarker:v0.13.6
imagePullPolicy: IfNotPresent
+ env:
+ - {name: MPLCONFIGDIR, value: '/tmp/'}
#imagePullPolicy: Always
#command: ["jupyter","notebook","--no-browser", "--NotebookApp.password=\"$(echo 'admin' | python -c 'from notebook.auth import passwd;print(passwd(input()))')\"", "--allow-root"]
- command: ["jupyter","notebook","--no-browser", "--NotebookApp.ip='0.0.0.0'", "--NotebookApp.allow_origin='*'", "--NotebookApp.password=\"argon2:$argon2id$v=19$m=10240,t=10,p=8$s7W4uEDFJby2YDWK2UiS1Q$sGz9qoU/LRoUtzGkbQCcLQ\"", "--allow-root"]
+ command: ["jupyter","notebook","--notebook-dir", "/usr/src/app/DBMS-Benchmarker/notebooks", "--no-browser", "--NotebookApp.ip='0.0.0.0'", "--NotebookApp.allow_origin='*'", "--NotebookApp.password=\"argon2:$argon2id$v=19$m=10240,t=10,p=8$s7W4uEDFJby2YDWK2UiS1Q$sGz9qoU/LRoUtzGkbQCcLQ\"", "--allow-root"]
ports:
- containerPort: 8050 # Web
- containerPort: 8888 # Jupyter
resources:
- #limits: {cpu: 4000m, memory: 32Gi}
- #requests: {cpu: 4000m, memory: 32Gi}
+ requests: {cpu: 1000m, memory: 1Gi}
+ limits: {cpu: 16000m, memory: 128Gi}
securityContext:
+ #allowPrivilegeEscalation: false #tar - Cannot change ownership to uid 1001, gid 1001: Operation not permitted
+ #runAsNonRoot: true # Permission denied: '/.local'
+ #runAsUser: 1000
+ #runAsGroup: 1000
+ #capabilities: #tar - Cannot change ownership to uid 1001, gid 1001: Operation not permitted
+ # drop:
+ # - ALL
+ #readOnlyRootFilesystem: true #Matplotlib requires access to a writable cache directory, but the default path (/.config/matplotlib) is not a writable directory
volumeMounts:
- name: bexhoma-results
mountPath: /results
diff --git a/k8s/deploymenttemplate-bexhoma-messagequeue.yml b/k8s/deploymenttemplate-bexhoma-messagequeue.yml
index 2a9c2d1f..9cc7284c 100644
--- a/k8s/deploymenttemplate-bexhoma-messagequeue.yml
+++ b/k8s/deploymenttemplate-bexhoma-messagequeue.yml
@@ -29,3 +29,12 @@ spec:
value: "true"
ports:
- containerPort: 6379
+ securityContext:
+ allowPrivilegeEscalation: false
+ #runAsNonRoot: true
+ #runAsUser: 1000
+ #runAsGroup: 1000
+ #capabilities:
+ # drop:
+ # - ALL
+ readOnlyRootFilesystem: false
diff --git a/k8s/deploymenttemplate-bexhoma-prometheus.yml b/k8s/deploymenttemplate-bexhoma-prometheus.yml
index 508fdb6a..dcc3e7c2 100644
--- a/k8s/deploymenttemplate-bexhoma-prometheus.yml
+++ b/k8s/deploymenttemplate-bexhoma-prometheus.yml
@@ -26,8 +26,8 @@ spec:
- {name: dockerhub}
nodeSelector:
tolerations:
- - key: "nvidia.com/gpu"
- effect: "NoSchedule"
+ #- key: "nvidia.com/gpu"
+ # effect: "NoSchedule"
containers:
- name: bexhoma-prometheus
image: bexhoma/monitoring:latest
@@ -41,3 +41,12 @@ spec:
requests: {cpu: 2000m, memory: 16Gi}
ports:
- containerPort: 9090
+ securityContext: # can't create /etc/prometheus/prometheus-bexhoma.yml: Read-only file system
+ #allowPrivilegeEscalation: false
+ #runAsNonRoot: true
+ #runAsUser: 1000
+ #runAsGroup: 1000
+ #capabilities:
+ # drop:
+ # - ALL
+ #readOnlyRootFilesystem: true
diff --git a/k8s/jobtemplate-benchmarking-benchbase.yml b/k8s/jobtemplate-benchmarking-benchbase.yml
index a06004af..33f76eca 100644
--- a/k8s/jobtemplate-benchmarking-benchbase.yml
+++ b/k8s/jobtemplate-benchmarking-benchbase.yml
@@ -43,6 +43,14 @@ spec:
#limits: {cpu: 1000m, memory: 16Gi}
#requests: {cpu: 1000m, memory: 16Gi}
securityContext:
+ allowPrivilegeEscalation: false
+ runAsNonRoot: true
+ runAsUser: 1000
+ runAsGroup: 1000
+ capabilities:
+ drop:
+ - ALL
+ readOnlyRootFilesystem: true
volumeMounts:
restartPolicy: Never
volumes:
diff --git a/k8s/jobtemplate-benchmarking-dbmsbenchmarker.yml b/k8s/jobtemplate-benchmarking-dbmsbenchmarker.yml
index 49361656..f8e2cc3b 100644
--- a/k8s/jobtemplate-benchmarking-dbmsbenchmarker.yml
+++ b/k8s/jobtemplate-benchmarking-dbmsbenchmarker.yml
@@ -16,12 +16,15 @@ spec:
- name: dockerhub
nodeSelector:
tolerations:
+ - key: "nvidia.com/gpu"
+ effect: "NoSchedule"
containers:
- name: dbmsbenchmarker
image: bexhoma/benchmarker_dbmsbenchmarker:v0.13.6
imagePullPolicy: Always
#imagePullPolicy: IfNotPresent
env:
+ - {name: MPLCONFIGDIR, value: '/tmp/'} # matplotlib
- {name: DBMSBENCHMARKER_CLIENT, value: '1'}
- {name: DBMSBENCHMARKER_CODE, value: '1611607321'}
- {name: DBMSBENCHMARKER_SLEEP, value: '60'}
@@ -29,9 +32,17 @@ spec:
- {name: DBMSBENCHMARKER_ALIAS, value: 'DBMS-A'}
- {name: DBMSBENCHMARKER_DEV, value: '0'}
resources:
- #limits: {cpu: 1000m, memory: 16Gi}
- #requests: {cpu: 1000m, memory: 16Gi}
+ requests: {cpu: 1000m, memory: 1Gi}
+ limits: {cpu: 16000m, memory: 128Gi}
securityContext:
+ allowPrivilegeEscalation: false
+ #runAsNonRoot: true
+ #runAsUser: 1000
+ #runAsGroup: 1000
+ #capabilities:
+ # drop:
+ # - ALL
+ #readOnlyRootFilesystem: true #Matplotlib requires access to a writable cache directory, but the default path (/.config/matplotlib) is not a writable directory
volumeMounts:
- name: bexhoma-results
mountPath: /results
diff --git a/k8s/jobtemplate-benchmarking-hammerdb.yml b/k8s/jobtemplate-benchmarking-hammerdb.yml
index 2967152c..a5e77431 100644
--- a/k8s/jobtemplate-benchmarking-hammerdb.yml
+++ b/k8s/jobtemplate-benchmarking-hammerdb.yml
@@ -44,6 +44,14 @@ spec:
#limits: {cpu: 8000m, memory: 16Gi}
#requests: {cpu: 8000m, memory: 16Gi}
securityContext:
+ allowPrivilegeEscalation: false
+ runAsNonRoot: true
+ runAsUser: 1000
+ runAsGroup: 1000
+ capabilities:
+ drop:
+ - ALL
+ readOnlyRootFilesystem: true
volumeMounts:
restartPolicy: Never
volumes:
diff --git a/k8s/jobtemplate-benchmarking-ycsb.yml b/k8s/jobtemplate-benchmarking-ycsb.yml
index 0129ef73..5acc1d1f 100644
--- a/k8s/jobtemplate-benchmarking-ycsb.yml
+++ b/k8s/jobtemplate-benchmarking-ycsb.yml
@@ -16,6 +16,8 @@ spec:
- name: dockerhub
nodeSelector:
tolerations:
+ - key: "nvidia.com/gpu"
+ effect: "NoSchedule"
containers:
- name: dbmsbenchmarker
image: bexhoma/benchmarker_ycsb:0.17.0
@@ -44,7 +46,15 @@ spec:
resources:
#limits: {cpu: 8000m, memory: 16Gi}
#requests: {cpu: 8000m, memory: 16Gi}
- securityContext:
+ #securityContext: # workload_test: Read-only file system
+ # allowPrivilegeEscalation: false
+ # runAsNonRoot: true
+ # runAsUser: 1000
+ # runAsGroup: 1000
+ # capabilities:
+ # drop:
+ # - ALL
+ # readOnlyRootFilesystem: true
volumeMounts:
restartPolicy: Never
volumes:
diff --git a/k8s/jobtemplate-loading-benchbase.yml b/k8s/jobtemplate-loading-benchbase.yml
index c3050afc..9165baa8 100644
--- a/k8s/jobtemplate-loading-benchbase.yml
+++ b/k8s/jobtemplate-loading-benchbase.yml
@@ -40,6 +40,14 @@ spec:
#limits: {cpu: 1000m, memory: 16Gi}
#requests: {cpu: 1000m, memory: 16Gi}
securityContext:
+ allowPrivilegeEscalation: false
+ runAsNonRoot: true
+ runAsUser: 1000
+ runAsGroup: 1000
+ capabilities:
+ drop:
+ - ALL
+ readOnlyRootFilesystem: true
volumeMounts:
- name: datadir
mountPath: "/tmp/benchbase/"
diff --git a/k8s/jobtemplate-loading-hammerdb.yml b/k8s/jobtemplate-loading-hammerdb.yml
index 4adf4906..7a4d013b 100644
--- a/k8s/jobtemplate-loading-hammerdb.yml
+++ b/k8s/jobtemplate-loading-hammerdb.yml
@@ -35,6 +35,14 @@ spec:
#limits: {cpu: 1000m, memory: 16Gi}
#requests: {cpu: 1000m, memory: 16Gi}
securityContext:
+ allowPrivilegeEscalation: false
+ runAsNonRoot: true
+ runAsUser: 1000
+ runAsGroup: 1000
+ capabilities:
+ drop:
+ - ALL
+ readOnlyRootFilesystem: true
volumeMounts:
- name: datadir
mountPath: "/tmp/tpcc/"
diff --git a/k8s/jobtemplate-loading-tpch-MonetDB.yml b/k8s/jobtemplate-loading-tpch-MonetDB.yml
new file mode 100644
index 00000000..eaa61af8
--- /dev/null
+++ b/k8s/jobtemplate-loading-tpch-MonetDB.yml
@@ -0,0 +1,88 @@
+apiVersion: batch/v1
+kind: Job
+metadata:
+ labels: {app: bexhoma, component: loading, configuration: default, experiment: default, client: default}
+ name: bexhoma-sensor
+spec:
+ backoffLimit: 4
+ completions: 4
+ parallelism: 4
+ template:
+ metadata:
+ labels: {app: bexhoma, component: loading, configuration: default, experiment: default, client: default}
+ spec:
+ automountServiceAccountToken: false
+ imagePullSecrets:
+ - name: dockerhub
+ nodeSelector:
+ tolerations:
+ - key: "nvidia.com/gpu"
+ effect: "NoSchedule"
+ initContainers:
+ - name: datagenerator
+ image: bexhoma/generator_tpch:latest
+ imagePullPolicy: Always
+ #imagePullPolicy: IfNotPresent
+ #securityContext:
+ # allowPrivilegeEscalation: false
+ # runAsNonRoot: true
+ # runAsUser: 1000
+ # runAsGroup: 1000
+ # capabilities:
+ # drop:
+ # - ALL
+ # readOnlyRootFilesystem: true
+ env:
+ - {name: BEXHOMA_HOST, value: 'bexhoma-sut-monetdb-aws-1658676533'}
+ - {name: BEXHOMA_PORT, value: '9091'}
+ - {name: BEXHOMA_CONNECTION, value: 'monetdb'}
+ - {name: BEXHOMA_EXPERIMENT, value: '1234'}
+ - {name: PARALLEL, value: '24'}
+ - {name: CHILD, value: '1'}
+ - {name: SF, value: '500'}
+ - {name: RNGSEED, value: '123'}
+ resources:
+ #limits: {cpu: 1000m, memory: 16Gi}
+ #requests: {cpu: 1000m, memory: 16Gi}
+ volumeMounts:
+ - name: datadir
+ mountPath: "/tmp/tpch/"
+ - {mountPath: /data, name: benchmark-data-volume}
+ containers:
+ - name: sensor
+ image: bexhoma/loader_tpch_monetdb:latest
+ imagePullPolicy: Always
+ #imagePullPolicy: IfNotPresent
+ #securityContext:
+ # allowPrivilegeEscalation: false
+ # runAsNonRoot: true
+ # runAsUser: 1000
+ # runAsGroup: 1000
+ # capabilities:
+ # drop:
+ # - ALL
+ # readOnlyRootFilesystem: true
+ env:
+ - {name: BEXHOMA_HOST, value: 'bexhoma-sut-monetdb-aws-1658676533'}
+ - {name: BEXHOMA_PORT, value: '9091'}
+ - {name: BEXHOMA_CONNECTION, value: 'monetdb'}
+ - {name: BEXHOMA_EXPERIMENT, value: '1234'}
+ - {name: PARALLEL, value: '24'}
+ - {name: CHILD, value: '1'}
+ - {name: SF, value: '500'}
+ - {name: RNGSEED, value: '123'}
+ resources:
+ #limits: {cpu: 1000m, memory: 16Gi}
+ #requests: {cpu: 1000m, memory: 16Gi}
+ volumeMounts:
+ - name: datadir
+ mountPath: "/tmp/tpch/"
+ - {mountPath: /data, name: benchmark-data-volume}
+ restartPolicy: Never
+ volumes:
+ - name: datadir
+ emptyDir:
+ medium: Memory
+ #sizeLimit: 10Gi
+ - name: benchmark-data-volume
+ persistentVolumeClaim: {claimName: bexhoma-data}
diff --git a/k8s/jobtemplate-loading-tpch-MySQL.yml b/k8s/jobtemplate-loading-tpch-MySQL.yml
new file mode 100644
index 00000000..16d1e227
--- /dev/null
+++ b/k8s/jobtemplate-loading-tpch-MySQL.yml
@@ -0,0 +1,88 @@
+apiVersion: batch/v1
+kind: Job
+metadata:
+ labels: {app: bexhoma, component: loading, configuration: default, experiment: default, client: default}
+ name: bexhoma-sensor
+spec:
+ backoffLimit: 4
+ completions: 4
+ parallelism: 4
+ template:
+ metadata:
+ labels: {app: bexhoma, component: loading, configuration: default, experiment: default, client: default}
+ spec:
+ automountServiceAccountToken: false
+ imagePullSecrets:
+ - name: dockerhub
+ nodeSelector:
+ tolerations:
+ - key: "nvidia.com/gpu"
+ effect: "NoSchedule"
+ initContainers:
+ - name: datagenerator
+ image: bexhoma/generator_tpch:latest
+ imagePullPolicy: Always
+ #imagePullPolicy: IfNotPresent
+ #securityContext:
+ # allowPrivilegeEscalation: false
+ # runAsNonRoot: true
+ # runAsUser: 1000
+ # runAsGroup: 1000
+ # capabilities:
+ # drop:
+ # - ALL
+ # readOnlyRootFilesystem: true
+ env:
+ - {name: BEXHOMA_HOST, value: 'bexhoma-sut-mysql-aws-1234567890'}
+ - {name: BEXHOMA_PORT, value: '9091'}
+ - {name: BEXHOMA_CONNECTION, value: 'mysql'}
+ - {name: BEXHOMA_EXPERIMENT, value: '1234567890'}
+ - {name: PARALLEL, value: '24'}
+ - {name: CHILD, value: '1'}
+ - {name: SF, value: '500'}
+ - {name: RNGSEED, value: '123'}
+ resources:
+ #limits: {cpu: 1000m, memory: 16Gi}
+ #requests: {cpu: 1000m, memory: 16Gi}
+ volumeMounts:
+ - name: datadir
+ mountPath: "/tmp/tpch/"
+ - {mountPath: /data, name: benchmark-data-volume}
+ containers:
+ - name: sensor
+ image: bexhoma/loader_tpch_mysql:latest
+ imagePullPolicy: Always
+ #imagePullPolicy: IfNotPresent
+ #securityContext:
+ # allowPrivilegeEscalation: false
+ # runAsNonRoot: true
+ # runAsUser: 1000
+ # runAsGroup: 1000
+ # capabilities:
+ # drop:
+ # - ALL
+ # readOnlyRootFilesystem: true
+ env:
+ - {name: BEXHOMA_HOST, value: 'bexhoma-sut-mysql-aws-1658676533'}
+ - {name: BEXHOMA_PORT, value: '9091'}
+ - {name: BEXHOMA_CONNECTION, value: 'mysql'}
+ - {name: BEXHOMA_EXPERIMENT, value: '1234'}
+ - {name: PARALLEL, value: '24'}
+ - {name: CHILD, value: '1'}
+ - {name: SF, value: '500'}
+ - {name: RNGSEED, value: '123'}
+ resources:
+ #limits: {cpu: 1000m, memory: 16Gi}
+ #requests: {cpu: 1000m, memory: 16Gi}
+ volumeMounts:
+ - name: datadir
+ mountPath: "/tmp/tpch/"
+ - {mountPath: /data, name: benchmark-data-volume}
+ restartPolicy: Never
+ volumes:
+ - name: datadir
+ emptyDir:
+ medium: Memory
+ #sizeLimit: 10Gi
+ - name: benchmark-data-volume
+ persistentVolumeClaim: {claimName: bexhoma-data}
diff --git a/k8s/jobtemplate-loading-tpch-NIL.yml b/k8s/jobtemplate-loading-tpch-NIL.yml
index 7e378cbc..bba6dc8b 100644
--- a/k8s/jobtemplate-loading-tpch-NIL.yml
+++ b/k8s/jobtemplate-loading-tpch-NIL.yml
@@ -16,11 +16,22 @@ spec:
- name: dockerhub
nodeSelector:
tolerations:
+ - key: "nvidia.com/gpu"
+ effect: "NoSchedule"
containers:
- name: datagenerator
image: bexhoma/generator_tpch:latest
imagePullPolicy: Always
#imagePullPolicy: IfNotPresent
+ #securityContext:
+ # allowPrivilegeEscalation: false
+ # runAsNonRoot: true
+ # runAsUser: 1000
+ # runAsGroup: 1000
+ # capabilities:
+ # drop:
+ # - ALL
+ # readOnlyRootFilesystem: true
env:
- {name: BEXHOMA_HOST, value: 'bexhoma-sut-nil-aws-1658676533'}
- {name: BEXHOMA_PORT, value: '9091'}
@@ -33,7 +44,6 @@ spec:
resources:
#limits: {cpu: 1000m, memory: 16Gi}
#requests: {cpu: 1000m, memory: 16Gi}
- securityContext:
volumeMounts:
- name: datadir
mountPath: "/tmp/tpch/"
diff --git a/k8s/jobtemplate-loading-tpch-PostgreSQL.yml b/k8s/jobtemplate-loading-tpch-PostgreSQL.yml
index a341eed8..5e391085 100644
--- a/k8s/jobtemplate-loading-tpch-PostgreSQL.yml
+++ b/k8s/jobtemplate-loading-tpch-PostgreSQL.yml
@@ -16,11 +16,22 @@ spec:
- name: dockerhub
nodeSelector:
tolerations:
+ - key: "nvidia.com/gpu"
+ effect: "NoSchedule"
initContainers:
- name: datagenerator
image: bexhoma/generator_tpch:latest
imagePullPolicy: Always
#imagePullPolicy: IfNotPresent
+ #securityContext:
+ # allowPrivilegeEscalation: false
+ # runAsNonRoot: true
+ # runAsUser: 1000
+ # runAsGroup: 1000
+ # capabilities:
+ # drop:
+ # - ALL
+ # readOnlyRootFilesystem: true
env:
- {name: BEXHOMA_HOST, value: 'bexhoma-sut-postgresql-aws-1234567890'}
- {name: BEXHOMA_PORT, value: '9091'}
@@ -33,7 +44,6 @@ spec:
resources:
#limits: {cpu: 1000m, memory: 16Gi}
#requests: {cpu: 1000m, memory: 16Gi}
- securityContext:
volumeMounts:
- name: datadir
mountPath: "/tmp/tpch/"
@@ -43,6 +53,15 @@ spec:
image: bexhoma/loader_tpch_postgresql:latest
imagePullPolicy: Always
#imagePullPolicy: IfNotPresent
+ #securityContext:
+ # allowPrivilegeEscalation: false
+ # runAsNonRoot: true
+ # runAsUser: 1000
+ # runAsGroup: 1000
+ # capabilities:
+ # drop:
+ # - ALL
+ # readOnlyRootFilesystem: true
env:
- {name: BEXHOMA_HOST, value: 'bexhoma-sut-postgresql-aws-1658676533'}
- {name: BEXHOMA_PORT, value: '9091'}
@@ -55,7 +74,6 @@ spec:
resources:
#limits: {cpu: 1000m, memory: 16Gi}
#requests: {cpu: 1000m, memory: 16Gi}
- securityContext:
volumeMounts:
- name: datadir
mountPath: "/tmp/tpch/"
diff --git a/k8s/jobtemplate-loading-tpch-YugabyteDB.yml b/k8s/jobtemplate-loading-tpch-YugabyteDB.yml
index 7b41993b..3e97850f 100644
--- a/k8s/jobtemplate-loading-tpch-YugabyteDB.yml
+++ b/k8s/jobtemplate-loading-tpch-YugabyteDB.yml
@@ -21,6 +21,15 @@ spec:
image: bexhoma/generator_tpch:latest
imagePullPolicy: Always
#imagePullPolicy: IfNotPresent
+ #securityContext:
+ # allowPrivilegeEscalation: false
+ # runAsNonRoot: true
+ # runAsUser: 1000
+ # runAsGroup: 1000
+ # capabilities:
+ # drop:
+ # - ALL
+ # readOnlyRootFilesystem: true
env:
- {name: BEXHOMA_HOST, value: 'bexhoma-sut-yugabytedb-aws-1234567890'}
- {name: BEXHOMA_PORT, value: '9091'}
@@ -43,6 +52,15 @@ spec:
image: bexhoma/loader_tpch_yugabytedb:latest
imagePullPolicy: Always
#imagePullPolicy: IfNotPresent
+ #securityContext:
+ # allowPrivilegeEscalation: false
+ # runAsNonRoot: true
+ # runAsUser: 1000
+ # runAsGroup: 1000
+ # capabilities:
+ # drop:
+ # - ALL
+ # readOnlyRootFilesystem: true
env:
- {name: BEXHOMA_HOST, value: 'bexhoma-sut-yugabytedb-aws-1658676533'}
- {name: BEXHOMA_PORT, value: '9091'}
@@ -56,6 +74,14 @@ spec:
#limits: {cpu: 1000m, memory: 16Gi}
#requests: {cpu: 1000m, memory: 16Gi}
securityContext:
+ allowPrivilegeEscalation: false
+ runAsNonRoot: true
+ runAsUser: 1000
+ runAsGroup: 1000
+ capabilities:
+ drop:
+ - ALL
+ readOnlyRootFilesystem: true
volumeMounts:
- name: datadir
mountPath: "/tmp/tpch/"
diff --git a/k8s/jobtemplate-loading-ycsb.yml b/k8s/jobtemplate-loading-ycsb.yml
index a8eebf87..6717cc90 100644
--- a/k8s/jobtemplate-loading-ycsb.yml
+++ b/k8s/jobtemplate-loading-ycsb.yml
@@ -16,6 +16,8 @@ spec:
- name: dockerhub
nodeSelector:
tolerations:
+ - key: "nvidia.com/gpu"
+ effect: "NoSchedule"
containers:
- name: sensor
image: bexhoma/generator_ycsb:0.17.0
@@ -39,7 +41,15 @@ spec:
resources:
#limits: {cpu: 1000m, memory: 16Gi}
#requests: {cpu: 1000m, memory: 16Gi}
- securityContext:
+ #securityContext: # workload_test: Read-only file system
+ #allowPrivilegeEscalation: false
+ #runAsNonRoot: true
+ #runAsUser: 1000
+ #runAsGroup: 1000
+ #capabilities:
+ # drop:
+ # - ALL
+ #readOnlyRootFilesystem: true
volumeMounts:
- name: datadir
mountPath: "/tmp/ycsb/"
diff --git a/k8s/pvc-bexhoma-data.yml b/k8s/pvc-bexhoma-data.yml
new file mode 100644
index 00000000..f73f8f77
--- /dev/null
+++ b/k8s/pvc-bexhoma-data.yml
@@ -0,0 +1,12 @@
+apiVersion: v1
+kind: PersistentVolumeClaim
+metadata:
+ name: bexhoma-data
+ labels: {app: bexhoma, component: data-source, configuration: default, experiment: default}
+spec:
+ accessModes:
+ - ReadWriteMany
+ resources:
+ requests:
+ storage: 1000Gi
+ storageClassName: shared
diff --git a/k8s/pvc-bexhoma-results.yml b/k8s/pvc-bexhoma-results.yml
index 57b7669c..61a45a8e 100644
--- a/k8s/pvc-bexhoma-results.yml
+++ b/k8s/pvc-bexhoma-results.yml
@@ -8,5 +8,5 @@ spec:
- ReadWriteMany
resources:
requests:
- storage: 50Gi
- #storageClassName: shared
+ storage: 100Gi
+ storageClassName: shared
diff --git a/requirements.txt b/requirements.txt
index e71ab9be..d03e278c 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,18 +1,20 @@
-paramiko>=2.4.2
+#paramiko>=2.4.2
urllib3>=1.24.1
-boto3>=1.9.104
-requests>=2.21.0
-scp>=0.13.2
+#boto3>=1.9.104
+#requests>=2.21.0
+#scp>=0.13.2
kubernetes==22.6.0
psutil>=5.6.1
-dbmsbenchmarker>=0.13.5
+dbmsbenchmarker>=0.13.6
#nbconvert==7.8.0
myst_parser
HiYaPyCo==0.5.1
-redis
+#redis
mistune>=2.0.3 # not directly required, pinned by Snyk to avoid a vulnerability
numpy>=1.22.2 # not directly required, pinned by Snyk to avoid a vulnerability
setuptools>=65.5.1 # not directly required, pinned by Snyk to avoid a vulnerability
-pillow>=10.0.1 # not directly required, pinned by Snyk to avoid a vulnerability
+pillow>=10.2.0 # not directly required, pinned by Snyk to avoid a vulnerability
Werkzeug>=3.0.1
fonttools>=4.43.0 # not directly required, pinned by Snyk to avoid a vulnerability
+dash>=2.15.0 # not directly required, pinned by Snyk to avoid a vulnerability
+pyarrow>=14.0.2
diff --git a/simple_tpch.py b/simple_tpch.py
new file mode 100644
index 00000000..7a38c788
--- /dev/null
+++ b/simple_tpch.py
@@ -0,0 +1,192 @@
+"""
+:Date: 2021-02-12
+:Version: 0.1
+:Authors: Patrick Erdelt
+
+Perform TPC-H inspired benchmarks in a Kubernetes cluster.
+This either profiles the imported data in several DBMS and compares some statistics, or runs the TPC-H queries.
+Optionally monitoring is actived.
+User can choose to detach the componenten of the benchmarking system, so that as much as possible is run inside a Kubernetes (K8s) cluster.
+User can also choose some parameters like number of runs per query and configuration and request some resources.
+"""
+from bexhoma import *
+from dbmsbenchmarker import *
+import logging
+import urllib3
+import logging
+import argparse
+import time
+from timeit import default_timer
+import datetime
+
+
+urllib3.disable_warnings()
+logging.basicConfig(level=logging.ERROR)
+
+if __name__ == '__main__':
+ description = """Perform TPC-H inspired benchmarks in a Kubernetes cluster.
+ This either profiles the imported data in several DBMS and compares some statistics, or runs the TPC-H queries.
+ Optionally monitoring is actived.
+ User can choose to detach the componenten of the benchmarking system, so that as much as possible is run inside a Kubernetes (K8s) cluster.
+ User can also choose some parameters like number of runs per query and configuration and request some resources.
+ """
+ # argparse
+ parser = argparse.ArgumentParser(description=description)
+ parser.add_argument('mode', help='profile the import of TPC-H data, or run the TPC-H queries, or start DBMS and load data, or just start the DBMS', choices=['profiling', 'run', 'start', 'load'])
+ parser.add_argument('-db', '--debug', help='dump debug informations', action='store_true')
+ parser.add_argument('-c', '--connection', help='name of DBMS', default=None)
+ parser.add_argument('-cx', '--context', help='context of Kubernetes (for a multi cluster environment), default is current context', default=None)
+ parser.add_argument('-e', '--experiment', help='sets experiment code for continuing started experiment', default=None)
+ parser.add_argument('-d', '--detached', help='puts most of the experiment workflow inside the cluster', action='store_true')
+ parser.add_argument('-m', '--monitoring', help='activates monitoring', action='store_true')
+ parser.add_argument('-ms', '--max-sut', help='maximum number of parallel DBMS configurations, default is no limit', default=None)
+ parser.add_argument('-dt', '--datatransfer', help='activates datatransfer', action='store_true', default=False)
+ parser.add_argument('-md', '--monitoring-delay', help='time to wait [s] before execution of the runs of a query', default=10)
+ parser.add_argument('-nr', '--num-run', help='number of runs per query', default=1)
+ parser.add_argument('-nc', '--num-config', help='number of runs per configuration', default=1)
+ parser.add_argument('-ne', '--num-query-executors', help='comma separated list of number of parallel clients', default="1")
+ parser.add_argument('-sf', '--scaling-factor', help='scaling factor (SF)', default=1)
+ parser.add_argument('-t', '--timeout', help='timeout for a run of a query', default=180)
+ parser.add_argument('-rr', '--request-ram', help='request ram', default='16Gi')
+ parser.add_argument('-rc', '--request-cpu', help='request cpus', default='4')
+ parser.add_argument('-rct', '--request-cpu-type', help='request node having node label cpu=', default='')
+ parser.add_argument('-rg', '--request-gpu', help='request number of gpus', default=1)
+ parser.add_argument('-rgt', '--request-gpu-type', help='request node having node label gpu=', default='a100')
+ parser.add_argument('-rst', '--request-storage-type', help='request persistent storage of certain type', default=None, choices=[None, '', 'local-hdd', 'shared'])
+ parser.add_argument('-rss', '--request-storage-size', help='request persistent storage of certain size', default='10Gi')
+ parser.add_argument('-rnn', '--request-node-name', help='request a specific node', default=None)
+ # evaluate args
+ logger = logging.getLogger('bexhoma')
+ args = parser.parse_args()
+ # evaluate args
+ if args.debug:
+ logging.basicConfig(level=logging.DEBUG)
+ logging.basicConfig(level=logging.DEBUG)
+ # set parameter
+ monitoring = args.monitoring
+ connection = args.connection
+ mode = str(args.mode)
+ SF = str(args.scaling_factor)
+ timeout = int(args.timeout)
+ numRun = int(args.num_run)
+ num_experiment_to_apply = int(args.num_config)
+ cpu = str(args.request_cpu)
+ memory = str(args.request_ram)
+ cpu_type = str(args.request_cpu_type)
+ gpu_type = str(args.request_gpu_type)
+ gpus = str(args.request_gpu)
+ request_storage_type = args.request_storage_type
+ request_storage_size = args.request_storage_size
+ request_node_name = args.request_node_name
+ datatransfer = args.datatransfer
+ code = args.experiment
+ # set cluster
+ cluster = clusters.kubernetes(context=args.context)
+ cluster_name = cluster.contextdata['clustername']
+ if args.max_sut is not None:
+ cluster.max_sut = int(args.max_sut)
+ # set experiment
+ if code is None:
+ code = cluster.code
+ experiment = experiments.tpch(cluster=cluster, SF=SF, timeout=timeout, code=code, num_experiment_to_apply=num_experiment_to_apply)
+ if mode == 'run':
+ # we want all TPC-H queries
+ experiment.set_queries_full()
+ experiment.set_workload(
+ name = 'TPC-H Queries SF='+str(SF),
+ info = 'This experiment compares run time and resource consumption of TPC-H queries in different DBMS.'
+ )
+ else:
+ # we want to profile the import
+ experiment.set_queries_profiling()
+ experiment.set_workload(
+ name = 'TPC-H Data Profiling SF='+str(SF),
+ info = 'This experiment compares imported TPC-H data sets in different DBMS.'
+ )
+ if monitoring:
+ # we want to monitor resource consumption
+ experiment.set_querymanagement_monitoring(numRun=numRun, delay=10, datatransfer=datatransfer)
+ else:
+ # we want to just run the queries
+ experiment.set_querymanagement_quicktest(numRun=numRun, datatransfer=datatransfer)
+ # set resources for dbms
+ experiment.set_resources(
+ requests = {
+ 'cpu': cpu,
+ 'memory': memory,
+ 'gpu': 0
+ },
+ limits = {
+ 'cpu': 0,
+ 'memory': 0
+ },
+ nodeSelector = {
+ 'cpu': cpu_type,
+ 'gpu': '',
+ })
+ if request_node_name is not None:
+ experiment.set_resources(
+ nodeSelector = {
+ 'cpu': cpu_type,
+ 'gpu': '',
+ 'kubernetes.io/hostname': request_node_name
+ })
+ # persistent storage
+ #print(request_storage_type)
+ experiment.set_storage(
+ storageClassName = request_storage_type,
+ storageSize = request_storage_size,#'100Gi',
+ keep = False
+ )
+ cluster.start_dashboard()
+ # add configs
+ config = configurations.default(experiment=experiment, docker='MonetDB', configuration='MonetDB-{}'.format(cluster_name), alias='DBMS A')
+ config = configurations.default(experiment=experiment, docker='PostgreSQL', configuration='PostgreSQL-{}'.format(cluster_name), alias='DBMS D')
+ if connection is not None:
+ for c in reversed(range(len(experiment.configurations))):
+ if c.docker != connection:
+ del experiment.configurations
+ if args.mode == 'start':
+ experiment.start_sut()
+ elif args.mode == 'load':
+ # start all DBMS
+ experiment.start_sut()
+ # configure number of clients per config = 0
+ list_clients = []
+ # total time of experiment
+ experiment.add_benchmark_list(list_clients)
+ start = default_timer()
+ start_datetime = str(datetime.datetime.now())
+ print("Experiment starts at {} ({})".format(start_datetime, start))
+ # run workflow
+ experiment.work_benchmark_list()
+ # total time of experiment
+ end = default_timer()
+ end_datetime = str(datetime.datetime.now())
+ duration_experiment = end - start
+ print("Experiment ends at {} ({}): {}s total".format(end_datetime, end, duration_experiment))
+ else:
+ # configure number of clients per config
+ list_clients = args.num_query_executors.split(",")
+ if len(list_clients) > 0:
+ list_clients = [int(x) for x in list_clients]
+ experiment.add_benchmark_list(list_clients)
+ # total time of experiment
+ start = default_timer()
+ start_datetime = str(datetime.datetime.now())
+ print("Experiment starts at {} ({})".format(start_datetime, start))
+ # run workflow
+ experiment.work_benchmark_list()
+ # total time of experiment
+ end = default_timer()
+ end_datetime = str(datetime.datetime.now())
+ duration_experiment = end - start
+ print("Experiment ends at {} ({}): {}s total".format(end_datetime, end, duration_experiment))
+ ##################
+ experiment.evaluate_results()
+ experiment.stop_benchmarker()
+ experiment.stop_sut()
+ cluster.restart_dashboard()
+ # OOM? exit code 137
+ #experiment.zip()
+ exit()
\ No newline at end of file
diff --git a/test.sh b/test.sh
new file mode 100644
index 00000000..a606b892
--- /dev/null
+++ b/test.sh
@@ -0,0 +1,109 @@
+#!/bin/bash
+
+mkdir -p ./logs/
+
+BEXHOMA_NODE_SUT="cl-worker11"
+BEXHOMA_NODE_LOAD="cl-worker19"
+BEXHOMA_NODE_BENCHMARK="cl-worker19"
+
+
+
+
+#### YCSB Loader Test for docs
+# SF = 1
+# PostgreSQL 1 and 8 loader
+# [1,2,3,4,5,6,7,8] times 16384 = target
+nohup python ycsb.py -ms 1 -m -workload a -tr \
+ -dbms PostgreSQL \
+ -rnn $BEXHOMA_NODE_SUT -rnl $BEXHOMA_NODE_LOAD -rnb $BEXHOMA_NODE_BENCHMARK \
+ run &>logs/test_ycsb_1.log &
+
+# watch -n 30 tail -n 50 logs/test_ycsb_1.log
+
+
+#### Wait so that experiments receive different codes
+sleep 5
+
+
+#### YCSB Loader Test for persistency
+# SF = 1
+# PostgreSQL 8 loader
+# 16384 = target
+# run twice
+# [1,2] execute
+# persistent storage of class shared
+nohup python ycsb.py -ms 1 -m -workload a -tr \
+ -nlp 8 \
+ -dbms PostgreSQL \
+ -rnn $BEXHOMA_NODE_SUT -rnl $BEXHOMA_NODE_LOAD -rnb $BEXHOMA_NODE_BENCHMARK \
+ -ne 1,2 \
+ -nc 2 \
+ -ltf 1 \
+ -rst shared -rss 100Gi \
+ run &>logs/test_ycsb_2.log &
+
+# watch -n 30 tail -n 50 logs/test_ycsb_2.log
+
+
+#### Wait so that experiments receive different codes
+sleep 5
+
+
+#### YCSB Execution Test
+# SF = 1
+# PostgreSQL 1 loader
+# 2x(1,2) benchmarker
+# persistent storage of class shared
+nohup python ycsb.py -ms 1 -m -workload a -tr \
+ -nlp 1 \
+ -dbms PostgreSQL \
+ -rnn $BEXHOMA_NODE_SUT -rnl $BEXHOMA_NODE_LOAD -rnb $BEXHOMA_NODE_BENCHMARK \
+ -ne 1,2 \
+ -nc 2 \
+ -ltf 2 \
+ -rst shared -rss 100Gi \
+ run &>logs/test_ycsb_3.log &
+
+# watch -n 30 tail -n 50 logs/test_ycsb_3.log
+
+
+#### Wait so that experiments receive different codes
+sleep 5
+
+
+#### TPC-H Power Test
+# SF = 1
+# PostgreSQL 8 loader
+# MonetDB 8 loader
+# MySQL 8 loader threads
+# 1x(1) benchmarker
+# no persistent storage
+nohup python tpch.py -ms 1 -m -dt -sf 1 -ii -ic -is \
+ -nlp 8 -nlt 8 \
+ -nc 1 -ne 1 \
+ -rnn $BEXHOMA_NODE_SUT -rnl $BEXHOMA_NODE_LOAD -rnb $BEXHOMA_NODE_BENCHMARK \
+ -t 1200 \
+ run &>logs/test_tpch_1.log &
+
+# watch -n 30 tail -n 50 logs/test_tpch_1.log
+
+
+#### Wait so that experiments receive different codes
+sleep 5
+
+
+#### TPC-H Throughput Test
+# SF = 1
+# PostgreSQL 8 loader
+# 2x(1,2) benchmarker
+# persistent storage of class shared
+nohup python tpch.py -ms 1 -m -dt -sf 1 -ii -ic -is \
+ -nlp 8 -nlt 8 \
+ -nc 2 -ne 1,2 \
+ -rnn $BEXHOMA_NODE_SUT -rnl $BEXHOMA_NODE_LOAD -rnb $BEXHOMA_NODE_BENCHMARK \
+ -dbms PostgreSQL -t 1200 \
+ -rst shared -rss 100Gi \
+ run &>logs/test_tpch_2.log &
+
+# watch -n 30 tail -n 50 logs/test_tpch_2.log
+
diff --git a/tpch.py b/tpch.py
index 5a133011..059dbaae 100644
--- a/tpch.py
+++ b/tpch.py
@@ -1,13 +1,18 @@
"""
-:Date: 2021-02-12
-:Version: 0.1
-:Authors: Patrick Erdelt
+:Date: 2023-01-25
+:Version: 1.0
+:Authors: Patrick K. Erdelt
-Perform TPC-H inspired benchmarks in a Kubernetes cluster.
-This either profiles the imported data in several DBMS and compares some statistics, or runs the TPC-H queries.
-Optionally monitoring is actived.
-User can choose to detach the componenten of the benchmarking system, so that as much as possible is run inside a Kubernetes (K8s) cluster.
-User can also choose some parameters like number of runs per query and configuration and request some resources.
+Performs a TPC-H experiment.
+Data is generated and stored in a distributed filesystem (Ceph).
+Last character in each line of generated data is removed.
+Data is then loaded from filesystem.
+Loading pods are synched.
+Different numbers of parallel loaders can be compared.
+It can verified that all databases contain the same data, using short profiling (only keys).
+Monitoring is activated.
+Optionally we set some indexes and constraints after import.
+Nodes can be fixed.
"""
from bexhoma import *
from dbmsbenchmarker import *
@@ -18,176 +23,398 @@
import time
from timeit import default_timer
import datetime
-
+# queue
+#import redis
+import subprocess
+import psutil
urllib3.disable_warnings()
logging.basicConfig(level=logging.ERROR)
if __name__ == '__main__':
- description = """Perform TPC-H inspired benchmarks in a Kubernetes cluster.
- This either profiles the imported data in several DBMS and compares some statistics, or runs the TPC-H queries.
- Optionally monitoring is actived.
- User can choose to detach the componenten of the benchmarking system, so that as much as possible is run inside a Kubernetes (K8s) cluster.
- User can also choose some parameters like number of runs per query and configuration and request some resources.
- """
- # argparse
- parser = argparse.ArgumentParser(description=description)
- parser.add_argument('mode', help='profile the import of TPC-H data, or run the TPC-H queries, or start DBMS and load data, or just start the DBMS', choices=['profiling', 'run', 'start', 'load'])
- parser.add_argument('-db', '--debug', help='dump debug informations', action='store_true')
- parser.add_argument('-c', '--connection', help='name of DBMS', default=None)
- parser.add_argument('-cx', '--context', help='context of Kubernetes (for a multi cluster environment), default is current context', default=None)
- parser.add_argument('-e', '--experiment', help='sets experiment code for continuing started experiment', default=None)
- parser.add_argument('-d', '--detached', help='puts most of the experiment workflow inside the cluster', action='store_true')
- parser.add_argument('-m', '--monitoring', help='activates monitoring', action='store_true')
- parser.add_argument('-ms', '--max-sut', help='maximum number of parallel DBMS configurations, default is no limit', default=None)
- parser.add_argument('-dt', '--datatransfer', help='activates datatransfer', action='store_true', default=False)
- parser.add_argument('-md', '--monitoring-delay', help='time to wait [s] before execution of the runs of a query', default=10)
- parser.add_argument('-nr', '--num-run', help='number of runs per query', default=1)
- parser.add_argument('-nc', '--num-config', help='number of runs per configuration', default=1)
- parser.add_argument('-ne', '--num-query-executors', help='comma separated list of number of parallel clients', default="1")
- parser.add_argument('-sf', '--scaling-factor', help='scaling factor (SF)', default=1)
- parser.add_argument('-t', '--timeout', help='timeout for a run of a query', default=180)
- parser.add_argument('-rr', '--request-ram', help='request ram', default='16Gi')
- parser.add_argument('-rc', '--request-cpu', help='request cpus', default='4')
- parser.add_argument('-rct', '--request-cpu-type', help='request node having node label cpu=', default='')
- parser.add_argument('-rg', '--request-gpu', help='request number of gpus', default=1)
- parser.add_argument('-rgt', '--request-gpu-type', help='request node having node label gpu=', default='a100')
- parser.add_argument('-rst', '--request-storage-type', help='request persistent storage of certain type', default=None, choices=[None, '', 'local-hdd', 'shared'])
- parser.add_argument('-rss', '--request-storage-size', help='request persistent storage of certain size', default='10Gi')
- parser.add_argument('-rnn', '--request-node-name', help='request a specific node', default=None)
- # evaluate args
- logger = logging.getLogger('bexhoma')
- args = parser.parse_args()
- # evaluate args
- if args.debug:
- logging.basicConfig(level=logging.DEBUG)
- logging.basicConfig(level=logging.DEBUG)
- # set parameter
- monitoring = args.monitoring
- connection = args.connection
- mode = str(args.mode)
- SF = str(args.scaling_factor)
- timeout = int(args.timeout)
- numRun = int(args.num_run)
- num_experiment_to_apply = int(args.num_config)
- cpu = str(args.request_cpu)
- memory = str(args.request_ram)
- cpu_type = str(args.request_cpu_type)
- gpu_type = str(args.request_gpu_type)
- gpus = str(args.request_gpu)
- request_storage_type = args.request_storage_type
- request_storage_size = args.request_storage_size
- request_node_name = args.request_node_name
- datatransfer = args.datatransfer
- code = args.experiment
- # set cluster
- cluster = clusters.kubernetes(context=args.context)
- cluster_name = cluster.contextdata['clustername']
- if args.max_sut is not None:
- cluster.max_sut = int(args.max_sut)
- # set experiment
- if code is None:
- code = cluster.code
- experiment = experiments.tpch(cluster=cluster, SF=SF, timeout=timeout, code=code, num_experiment_to_apply=num_experiment_to_apply)
- if mode == 'run':
- # we want all TPC-H queries
- experiment.set_queries_full()
- experiment.set_workload(
- name = 'TPC-H Queries SF='+str(SF),
- info = 'This experiment compares run time and resource consumption of TPC-H queries in different DBMS.'
- )
- else:
- # we want to profile the import
- experiment.set_queries_profiling()
- experiment.set_workload(
- name = 'TPC-H Data Profiling SF='+str(SF),
- info = 'This experiment compares imported TPC-H data sets in different DBMS.'
- )
- if monitoring:
- # we want to monitor resource consumption
- experiment.set_querymanagement_monitoring(numRun=numRun, delay=10, datatransfer=datatransfer)
- else:
- # we want to just run the queries
- experiment.set_querymanagement_quicktest(numRun=numRun, datatransfer=datatransfer)
- # set resources for dbms
- experiment.set_resources(
- requests = {
- 'cpu': cpu,
- 'memory': memory,
- 'gpu': 0
- },
- limits = {
- 'cpu': 0,
- 'memory': 0
- },
- nodeSelector = {
- 'cpu': cpu_type,
- 'gpu': '',
- })
- if request_node_name is not None:
- experiment.set_resources(
- nodeSelector = {
- 'cpu': cpu_type,
- 'gpu': '',
- 'kubernetes.io/hostname': request_node_name
- })
- # persistent storage
- #print(request_storage_type)
- experiment.set_storage(
- storageClassName = request_storage_type,
- storageSize = request_storage_size,#'100Gi',
- keep = False
- )
- cluster.start_dashboard()
- # add configs
- config = configurations.default(experiment=experiment, docker='MonetDB', configuration='MonetDB-{}'.format(cluster_name), alias='DBMS A')
- config = configurations.default(experiment=experiment, docker='PostgreSQL', configuration='PostgreSQL-{}'.format(cluster_name), alias='DBMS D')
- if connection is not None:
- for c in reversed(range(len(experiment.configurations))):
- if c.docker != connection:
- del experiment.configurations
- if args.mode == 'start':
- experiment.start_sut()
- elif args.mode == 'load':
- # start all DBMS
- experiment.start_sut()
- # configure number of clients per config = 0
- list_clients = []
- # total time of experiment
- experiment.add_benchmark_list(list_clients)
- start = default_timer()
- start_datetime = str(datetime.datetime.now())
- print("Experiment starts at {} ({})".format(start_datetime, start))
- # run workflow
- experiment.work_benchmark_list()
- # total time of experiment
- end = default_timer()
- end_datetime = str(datetime.datetime.now())
- duration_experiment = end - start
- print("Experiment ends at {} ({}): {}s total".format(end_datetime, end, duration_experiment))
- else:
- # configure number of clients per config
- list_clients = args.num_query_executors.split(",")
- if len(list_clients) > 0:
- list_clients = [int(x) for x in list_clients]
- experiment.add_benchmark_list(list_clients)
- # total time of experiment
- start = default_timer()
- start_datetime = str(datetime.datetime.now())
- print("Experiment starts at {} ({})".format(start_datetime, start))
- # run workflow
- experiment.work_benchmark_list()
- # total time of experiment
- end = default_timer()
- end_datetime = str(datetime.datetime.now())
- duration_experiment = end - start
- print("Experiment ends at {} ({}): {}s total".format(end_datetime, end, duration_experiment))
- ##################
- experiment.evaluate_results()
- experiment.stop_benchmarker()
- experiment.stop_sut()
- cluster.stop_dashboard()
- cluster.start_dashboard()
- # OOM? exit code 137
- #experiment.zip()
- exit()
\ No newline at end of file
+ description = """Performs a TPC-H experiment. Data is generated and imported into a DBMS from a distributed filesystem (shared disk)."""
+ # argparse
+ parser = argparse.ArgumentParser(description=description)
+ parser.add_argument('mode', help='profile the import or run the TPC-H queries', choices=['profiling', 'run', 'start', 'load', 'empty', 'summary'])
+ parser.add_argument('-aws', '--aws', help='fix components to node groups at AWS', action='store_true', default=False)
+ parser.add_argument('-dbms', help='DBMS to load the data', choices=['PostgreSQL', 'MonetDB', 'MySQL'], default=[])
+ parser.add_argument('-lit', '--limit-import-table', help='limit import to one table, name of this table', default='')
+ parser.add_argument('-db', '--debug', help='dump debug informations', action='store_true')
+ parser.add_argument('-cx', '--context', help='context of Kubernetes (for a multi cluster environment), default is current context', default=None)
+ parser.add_argument('-e', '--experiment', help='sets experiment code for continuing started experiment', default=None)
+ parser.add_argument('-d', '--detached', help='puts most of the experiment workflow inside the cluster', action='store_true')
+ parser.add_argument('-m', '--monitoring', help='activates monitoring', action='store_true')
+ parser.add_argument('-mc', '--monitoring-cluster', help='activates monitoring for all nodes of cluster', action='store_true', default=False)
+ parser.add_argument('-ms', '--max-sut', help='maximum number of parallel DBMS configurations, default is no limit', default=None)
+ parser.add_argument('-dt', '--datatransfer', help='activates datatransfer', action='store_true', default=False)
+ parser.add_argument('-md', '--monitoring-delay', help='time to wait [s] before execution of the runs of a query', default=10)
+ parser.add_argument('-nr', '--num-run', help='number of runs per query', default=1)
+ parser.add_argument('-nc', '--num-config', help='number of runs per configuration', default=1)
+ parser.add_argument('-ne', '--num-query-executors', help='comma separated list of number of parallel clients', default="1")
+ parser.add_argument('-nls', '--num-loading-split', help='portion of loaders that should run in parallel', default="1")
+ parser.add_argument('-nlp', '--num-loading-pods', help='total number of loaders per configuration', default="1")
+ parser.add_argument('-nlt', '--num-loading-threads', help='total number of threads per loading process', default="1")
+ parser.add_argument('-sf', '--scaling-factor', help='scaling factor (SF)', default=1)
+ parser.add_argument('-t', '--timeout', help='timeout for a run of a query', default=600)
+ parser.add_argument('-rr', '--request-ram', help='request ram', default='16Gi')
+ parser.add_argument('-rc', '--request-cpu', help='request cpus', default='4')
+ parser.add_argument('-rct', '--request-cpu-type', help='request node having node label cpu=', default='')
+ parser.add_argument('-rg', '--request-gpu', help='request number of gpus', default=1)
+ parser.add_argument('-rgt', '--request-gpu-type', help='request node having node label gpu=', default='a100')
+ parser.add_argument('-rst', '--request-storage-type', help='request persistent storage of certain type', default=None, choices=[None, '', 'local-hdd', 'shared'])
+ parser.add_argument('-rss', '--request-storage-size', help='request persistent storage of certain size', default='10Gi')
+ parser.add_argument('-rnn', '--request-node-name', help='request a specific node', default=None)
+ parser.add_argument('-rnl', '--request-node-loading', help='request a specific node', default=None)
+ parser.add_argument('-rnb', '--request-node-benchmarking', help='request a specific node', default=None)
+ parser.add_argument('-tr', '--test-result', help='test if result fulfills some basic requirements', action='store_true', default=False)
+ parser.add_argument('-ii', '--init-indexes', help='adds indexes to tables after ingestion', action='store_true', default=False)
+ parser.add_argument('-ic', '--init-constraints', help='adds constraints to tables after ingestion', action='store_true', default=False)
+ parser.add_argument('-is', '--init-statistics', help='recomputes statistics of tables after ingestion', action='store_true', default=False)
+ parser.add_argument('-rcp', '--recreate-parameter', help='recreate parameter for randomized queries', action='store_true', default=False)
+ parser.add_argument('-shq', '--shuffle-queries', help='have different orderings per stream', action='store_true', default=False)
+ # evaluate args
+ args = parser.parse_args()
+ if args.debug:
+ logging.basicConfig(level=logging.DEBUG)
+ #logging.basicConfig(level=logging.DEBUG)
+ debugging = int(args.debug)
+ if args.debug:
+ logger_bexhoma = logging.getLogger('bexhoma')
+ logger_bexhoma.setLevel(logging.DEBUG)
+ logger_loader = logging.getLogger('load_data_asynch')
+ logger_loader.setLevel(logging.DEBUG)
+ # set parameter
+ monitoring = args.monitoring
+ monitoring_cluster = args.monitoring_cluster
+ mode = str(args.mode)
+ SF = str(args.scaling_factor)
+ timeout = int(args.timeout)
+ numRun = int(args.num_run)
+ num_experiment_to_apply = int(args.num_config)
+ #num_loading = int(args.num_loading)
+ num_loading_split = args.num_loading_split
+ if len(num_loading_split) > 0:
+ num_loading = num_loading_split.split(",")
+ list_loading_split = [int(x) for x in num_loading]
+ #num_loading_pods = int(args.num_loading_pods)
+ num_loading_pods = args.num_loading_pods
+ if len(num_loading_pods) > 0:
+ num_loading_pods = num_loading_pods.split(",")
+ list_loading_pods = [int(x) for x in num_loading_pods]
+ #num_loading_threads = int(args.num_loading_threads)
+ num_loading_threads = args.num_loading_threads
+ if len(num_loading_threads) > 0:
+ num_loading_threads = num_loading_threads.split(",")
+ list_loading_threads = [int(x) for x in num_loading_threads]
+ cpu = str(args.request_cpu)
+ memory = str(args.request_ram)
+ cpu_type = str(args.request_cpu_type)
+ gpu_type = str(args.request_gpu_type)
+ gpus = str(args.request_gpu)
+ request_storage_type = args.request_storage_type
+ request_storage_size = args.request_storage_size
+ request_node_name = args.request_node_name
+ request_node_loading = args.request_node_loading
+ request_node_benchmarking = args.request_node_benchmarking
+ datatransfer = args.datatransfer
+ test_result = args.test_result
+ recreate_parameter = args.recreate_parameter
+ shuffle_queries = args.shuffle_queries
+ # indexes
+ init_indexes = args.init_indexes
+ init_constraints = args.init_constraints
+ init_statistics = args.init_statistics
+ # limit to one table
+ limit_import_table = args.limit_import_table
+ # start with old experiment?
+ code = args.experiment
+ # set cluster
+ aws = args.aws
+ if aws:
+ cluster = clusters.aws(context=args.context)
+ # scale up
+ node_sizes = {
+ 'auxiliary': 1,
+ 'sut-mid': 1,
+ 'benchmarker': 1
+ }
+ #cluster.scale_nodegroups(node_sizes)
+ else:
+ cluster = clusters.kubernetes(context=args.context)
+ cluster_name = cluster.contextdata['clustername']
+ if args.max_sut is not None:
+ cluster.max_sut = int(args.max_sut)
+ # set experiment
+ if code is None:
+ code = cluster.code
+ experiment = experiments.tpch(cluster=cluster, SF=SF, timeout=timeout, code=code, num_experiment_to_apply=num_experiment_to_apply)
+ experiment.prometheus_interval = "30s"
+ experiment.prometheus_timeout = "30s"
+ # remove running dbms
+ #experiment.clean()
+ if mode == 'run':
+ # we want all TPC-H queries
+ experiment.set_queries_full()
+ experiment.set_workload(
+ name = 'TPC-H Queries SF='+str(SF),
+ info = 'This experiment compares run time and resource consumption of TPC-H queries in different DBMS.',
+ defaultParameters = {'SF': SF}
+ )
+ elif mode == 'empty':
+ # set benchmarking queries to dummy - SELECT 1
+ experiment.set_queryfile('queries-tpch-empty.config')
+ experiment.set_workload(
+ name = 'TPC-H Data Dummy SF='+str(SF),
+ info = 'This experiment is for testing loading. It just runs a SELECT 1 query.',
+ defaultParameters = {'SF': SF}
+ )
+ else:
+ # we want to profile the import
+ experiment.set_queries_profiling()
+ experiment.set_workload(
+ name = 'TPC-H Data Profiling SF='+str(SF),
+ info = 'This experiment compares imported TPC-H data sets in different DBMS.',
+ defaultParameters = {'SF': SF}
+ )
+ # patch: use short profiling (only keys)
+ experiment.set_queryfile('queries-tpch-profiling-keys.config')
+ if monitoring:
+ # we want to monitor resource consumption
+ experiment.set_querymanagement_monitoring(numRun=numRun, delay=10, datatransfer=datatransfer)
+ else:
+ # we want to just run the queries
+ experiment.set_querymanagement_quicktest(numRun=numRun, datatransfer=datatransfer)
+ if monitoring_cluster:
+ # monitor all nodes of cluster (for not missing any component)
+ cluster.start_monitoring_cluster()
+ # set resources for dbms
+ experiment.set_resources(
+ requests = {
+ 'cpu': cpu,
+ 'memory': memory,
+ 'gpu': 0
+ },
+ limits = {
+ 'cpu': 0,
+ 'memory': 0
+ },
+ nodeSelector = {
+ 'cpu': cpu_type,
+ 'gpu': '',
+ })
+ if request_node_name is not None:
+ experiment.set_resources(
+ nodeSelector = {
+ 'cpu': cpu_type,
+ 'gpu': '',
+ 'kubernetes.io/hostname': request_node_name
+ })
+ # persistent storage
+ experiment.set_storage(
+ storageClassName = request_storage_type,
+ storageSize = request_storage_size,#'100Gi',
+ keep = True
+ )
+ cluster.start_datadir()
+ cluster.start_resultdir()
+ cluster.start_dashboard()
+ cluster.start_messagequeue()
+ if aws:
+ # set node labes for components
+ experiment.set_nodes(
+ sut = 'sut',
+ loading = 'auxiliary',
+ monitoring = 'auxiliary',
+ benchmarking = 'auxiliary',
+ )
+ # new loading in cluster
+ experiment.loading_active = True
+ experiment.use_distributed_datasource = True
+ experiment.set_experiment(script='Schema')
+ # optionally set some indexes and constraints after import
+ if init_indexes or init_constraints or init_statistics:
+ experiment.set_experiment(indexing='Index')
+ if init_constraints:
+ experiment.set_experiment(indexing='Index_and_Constraints')
+ if init_statistics:
+ experiment.set_experiment(indexing='Index_and_Constraints_and_Statistics')
+ #experiment.set_experiment(script='Schema', indexing='Index')
+ # note more infos about experiment in workload description
+ experiment.workload['info'] = experiment.workload['info']+" TPC-H data is loaded from a filesystem using several processes."
+ if len(limit_import_table):
+ # import is limited to single table
+ experiment.workload['info'] = experiment.workload['info']+" Import is limited to table {}.".format(limit_import_table)
+ if len(args.dbms):
+ # import is limited to single DBMS
+ experiment.workload['info'] = experiment.workload['info']+" Import is limited to DBMS {}.".format(args.dbms)
+ if len(list_loading_split):
+ # import uses several processes in pods
+ experiment.workload['info'] = experiment.workload['info']+" Import is handled by {} processes.".format(num_loading_split)
+ # fix loading
+ if not request_node_loading is None:
+ experiment.patch_loading(patch="""
+ spec:
+ template:
+ spec:
+ nodeSelector:
+ kubernetes.io/hostname: {node}
+ """.format(node=request_node_loading))
+ experiment.workload['info'] = experiment.workload['info']+" Loading is fixed to {}.".format(request_node_loading)
+ # fix benchmarking
+ if not request_node_benchmarking is None:
+ experiment.patch_benchmarking(patch="""
+ spec:
+ template:
+ spec:
+ nodeSelector:
+ kubernetes.io/hostname: {node}
+ """.format(node=request_node_benchmarking))
+ experiment.workload['info'] = experiment.workload['info']+" Benchmarking is fixed to {}.".format(request_node_benchmarking)
+ # add labels about the use case
+ experiment.set_additional_labels(
+ usecase="tpc-h",
+ experiment_design="parallel-loading"
+ )
+ # add configs
+ for loading_pods_split in list_loading_split: # should be a number of splits, e.g. 4 for 1/4th of all pods
+ for loading_pods_total in list_loading_pods: # number of loading pods in total
+ # split number of loading pods into parallel potions
+ if loading_pods_total < loading_pods_split:
+ # thats not possible
+ continue
+ # how many in parallel?
+ split_portion = int(loading_pods_total/loading_pods_split)
+ if (args.dbms == "PostgreSQL" or len(args.dbms) == 0):
+ # PostgreSQL
+ name_format = 'PostgreSQL-{cluster}-{pods}'
+ config = configurations.default(experiment=experiment, docker='PostgreSQL', configuration=name_format.format(cluster=cluster_name, pods=loading_pods_total, split=split_portion), dialect='PostgreSQL', alias='DBMS A2')
+ config.set_storage(
+ storageConfiguration = 'postgresql'
+ )
+ config.jobtemplate_loading = "jobtemplate-loading-tpch-PostgreSQL.yml"
+ config.set_loading_parameters(
+ SF = SF,
+ PODS_TOTAL = str(loading_pods_total),
+ PODS_PARALLEL = str(split_portion),
+ STORE_RAW_DATA = 1,
+ STORE_RAW_DATA_RECREATE = 0,
+ BEXHOMA_SYNCH_LOAD = 1,
+ BEXHOMA_SYNCH_GENERATE = 1,
+ TRANSFORM_RAW_DATA = 1,
+ TPCH_TABLE = limit_import_table,
+ )
+ config.set_benchmarking_parameters(
+ SF = SF,
+ DBMSBENCHMARKER_RECREATE_PARAMETER = recreate_parameter,
+ DBMSBENCHMARKER_SHUFFLE_QUERIES = shuffle_queries,
+ DBMSBENCHMARKER_DEV = debugging,
+ )
+ config.set_loading(parallel=split_portion, num_pods=loading_pods_total)
+ if (args.dbms == "MonetDB" or len(args.dbms) == 0):
+ # MonetDB
+ name_format = 'MonetDB-{cluster}-{pods}'
+ config = configurations.default(experiment=experiment, docker='MonetDB', configuration=name_format.format(cluster=cluster_name, pods=loading_pods_total, split=split_portion), dialect='MonetDB', alias='DBMS A1')
+ config.set_storage(
+ storageConfiguration = 'monetdb'
+ )
+ config.jobtemplate_loading = "jobtemplate-loading-tpch-MonetDB.yml"
+ config.set_loading_parameters(
+ SF = SF,
+ PODS_TOTAL = str(loading_pods_total),
+ PODS_PARALLEL = str(split_portion),
+ STORE_RAW_DATA = 1,
+ STORE_RAW_DATA_RECREATE = 0,
+ BEXHOMA_SYNCH_LOAD = 1,
+ BEXHOMA_SYNCH_GENERATE = 1,
+ TRANSFORM_RAW_DATA = 1,
+ TPCH_TABLE = limit_import_table,
+ )
+ config.set_benchmarking_parameters(
+ SF = SF,
+ DBMSBENCHMARKER_RECREATE_PARAMETER = recreate_parameter,
+ DBMSBENCHMARKER_SHUFFLE_QUERIES = shuffle_queries,
+ DBMSBENCHMARKER_DEV = debugging,
+ )
+ config.set_loading(parallel=split_portion, num_pods=loading_pods_total)
+ if (args.dbms == "MySQL" or len(args.dbms) == 0):
+ # MySQL
+ for threads in list_loading_threads:
+ name_format = 'MySQL-{cluster}-{pods}-{threads}'
+ config = configurations.default(experiment=experiment, docker='MySQL', configuration=name_format.format(cluster=cluster_name, pods=loading_pods_total, split=split_portion, threads=threads), dialect='MySQL', alias='DBMS A1')
+ config.set_storage(
+ storageConfiguration = 'mysql'
+ )
+ config.jobtemplate_loading = "jobtemplate-loading-tpch-MySQL.yml"
+ config.set_loading_parameters(
+ SF = SF,
+ PODS_TOTAL = str(loading_pods_total),
+ PODS_PARALLEL = str(split_portion),
+ STORE_RAW_DATA = 1,
+ STORE_RAW_DATA_RECREATE = 0,
+ BEXHOMA_SYNCH_LOAD = 1,
+ BEXHOMA_SYNCH_GENERATE = 1,
+ TRANSFORM_RAW_DATA = 1,
+ MYSQL_LOADING_THREADS = int(threads),#int(num_loading_threads),#int(loading_pods_total),
+ MYSQL_LOADING_PARALLEL = 1, # not possible from RAM disk, only filesystem
+ TPCH_TABLE = limit_import_table,
+ )
+ config.set_benchmarking_parameters(
+ SF = SF,
+ DBMSBENCHMARKER_RECREATE_PARAMETER = recreate_parameter,
+ DBMSBENCHMARKER_SHUFFLE_QUERIES = shuffle_queries,
+ DBMSBENCHMARKER_DEV = debugging,
+ )
+ config.set_loading(parallel=split_portion, num_pods=loading_pods_total)
+ # wait for necessary nodegroups to have planned size
+ if aws:
+ #cluster.wait_for_nodegroups(node_sizes)
+ pass
+ # branch for workflows
+ if args.mode == 'start':
+ experiment.start_sut()
+ elif args.mode == 'load':
+ # start all DBMS
+ experiment.start_sut()
+ # configure number of clients per config = 0
+ list_clients = []
+ # total time of experiment
+ experiment.add_benchmark_list(list_clients)
+ start = default_timer()
+ start_datetime = str(datetime.datetime.now())
+ # run workflow
+ experiment.work_benchmark_list()
+ # total time of experiment
+ end = default_timer()
+ end_datetime = str(datetime.datetime.now())
+ duration_experiment = end - start
+ elif args.mode == 'summary':
+ experiment.show_summary()
+ else:
+ # configure number of clients per config
+ list_clients = args.num_query_executors.split(",")
+ if len(list_clients) > 0:
+ list_clients = [int(x) for x in list_clients]
+ experiment.add_benchmark_list(list_clients)
+ # total time of experiment
+ start = default_timer()
+ start_datetime = str(datetime.datetime.now())
+ print("{:30s}: starts at {} ({})".format("Experiment",start_datetime, start))
+ # run workflow
+ experiment.work_benchmark_list()
+ # total time of experiment
+ end = default_timer()
+ end_datetime = str(datetime.datetime.now())
+ duration_experiment = end - start
+ print("{:30s}: ends at {} ({}) - {:.2f}s total".format("Experiment",end_datetime, end, duration_experiment))
+ ##################
+ experiment.evaluate_results()
+ experiment.stop_benchmarker()
+ experiment.stop_sut()
+ #experiment.zip() # OOM? exit code 137
+ if test_result:
+ test_result_code = experiment.test_results()
+ if test_result_code == 0:
+ print("Test successful!")
+ cluster.restart_dashboard()
+ experiment.show_summary()
+exit()
diff --git a/ycsb.py b/ycsb.py
index f310f18a..adceb19b 100644
--- a/ycsb.py
+++ b/ycsb.py
@@ -13,21 +13,22 @@
import time
from timeit import default_timer
import datetime
-
+import pandas as pd
urllib3.disable_warnings()
logging.basicConfig(level=logging.ERROR)
if __name__ == '__main__':
description = """Perform YCSB benchmarks in a Kubernetes cluster.
- Number of rows and operations is SF*100,000.
+ Number of rows and operations is SF*1,000,000.
+ This installs a clean copy for each target and split of the driver.
Optionally monitoring is activated.
"""
# argparse
parser = argparse.ArgumentParser(description=description)
- parser.add_argument('mode', help='import YCSB data or run YCSB queries', choices=['run', 'start', 'load'], default='run')
+ parser.add_argument('mode', help='import YCSB data or run YCSB queries', choices=['run', 'start', 'load', 'summary'], default='run')
parser.add_argument('-aws', '--aws', help='fix components to node groups at AWS', action='store_true', default=False)
- parser.add_argument('-dbms', help='DBMS to load the data', choices=['PostgreSQL', 'MonetDB', 'SingleStore', 'CockroachDB', 'MySQL', 'MariaDB', 'YugabyteDB', 'Kinetica'], default='PostgreSQL')
+ parser.add_argument('-dbms', help='DBMS to load the data', choices=['PostgreSQL', 'MySQL'], default=[])
parser.add_argument('-workload', help='YCSB default workload', choices=['a', 'b', 'c', 'd', 'e', 'f'], default='a')
parser.add_argument('-db', '--debug', help='dump debug informations', action='store_true')
parser.add_argument('-cx', '--context', help='context of Kubernetes (for a multi cluster environment), default is current context', default=None)
@@ -40,7 +41,7 @@
parser.add_argument('-md', '--monitoring-delay', help='time to wait [s] before execution of the runs of a query', default=10)
parser.add_argument('-nr', '--num-run', help='number of runs per query', default=1)
parser.add_argument('-nc', '--num-config', help='number of runs per configuration', default=1)
- parser.add_argument('-ne', '--num-query-executors', help='comma separated list of number of parallel clients', default="1")
+ parser.add_argument('-ne', '--num-query-executors', help='comma separated list of number of parallel clients', default="")
parser.add_argument('-nl', '--num-loading', help='number of parallel loaders per configuration', default=1)
parser.add_argument('-nlp', '--num-loading-pods', help='total number of loaders per configuration', default="1,8")
parser.add_argument('-sf', '--scaling-factor', help='scaling factor (SF) = number of rows in millions', default=1)
@@ -129,8 +130,8 @@
if code is None:
code = cluster.code
experiment = experiments.ycsb(cluster=cluster, SF=SF, timeout=timeout, code=code, num_experiment_to_apply=num_experiment_to_apply)
- experiment.prometheus_interval = "10s"
- experiment.prometheus_timeout = "10s"
+ experiment.prometheus_interval = "30s"
+ experiment.prometheus_timeout = "30s"
# remove running dbms
#experiment.clean()
if mode == 'run':
@@ -149,6 +150,12 @@
info = 'This imports YCSB data sets.',
defaultParameters = {'SF': SF}
)
+ if monitoring:
+ # we want to monitor resource consumption
+ experiment.monitoring_active = True
+ else:
+ # we want to just run the queries
+ experiment.monitoring_active = False
if monitoring_cluster:
# monitor all nodes of cluster (for not missing any component)
cluster.start_monitoring_cluster()
@@ -184,7 +191,7 @@
storageClassName = request_storage_type,
storageSize = request_storage_size,#'100Gi',
keep = True,
- storageConfiguration = 'mysql-bht'
+ #storageConfiguration = 'mysql-bht'
)
# set node labes for components
"""
@@ -195,7 +202,10 @@
#benchmarking = 'benchmarker',
)
"""
+ cluster.start_datadir()
+ cluster.start_resultdir()
cluster.start_dashboard()
+ cluster.start_messagequeue()
if aws:
# set node labes for components
experiment.set_nodes(
@@ -246,8 +256,8 @@
experiment.workload['info'] = experiment.workload['info']+" Benchmarking is fixed to {}.".format(request_node_benchmarking)
# add labels about the use case
experiment.set_additional_labels(
- usecase="threads-split",
- experiment_design="1-2",
+ usecase="ycsb",
+ experiment_design="compare-scaleout",
ROWS=ycsb_rows,
OPERATIONS=ycsb_operations,
workload=args.workload,
@@ -255,8 +265,10 @@
# configure number of clients per config
list_clients = args.num_query_executors.split(",")
if len(list_clients) > 0:
- list_clients = [int(x) for x in list_clients]
- experiment.add_benchmark_list(list_clients)
+ list_clients = [int(x) for x in list_clients if len(x) > 0]
+ else:
+ list_clients = []
+ #experiment.add_benchmark_list(list_clients)
for threads in [SU]:#[8]:#[64]:
for pods in num_loading_pods:#[1,2]:#[1,8]:#range(2,5):
#pods = 2**p
@@ -266,83 +278,28 @@
threads_per_pod = int(threads/pods)
ycsb_operations_per_pod = int(ycsb_operations/pods)
target_per_pod = int(target/pods)
- if args.dbms == "PostgreSQL":
+ benchmarking_pods = [pods]
+ if len(list_clients) > 0:
+ # we want several benchmarking instances per installation
+ benchmarking_pods = list_clients
+ if (args.dbms == "PostgreSQL" or len(args.dbms) == 0):
# PostgreSQL
#name_format = 'PostgreSQL-{}-{}-{}-{}'.format(cluster_name, pods, worker, target)
name_format = 'PostgreSQL-{threads}-{pods}-{target}'
config = configurations.ycsb(experiment=experiment, docker='PostgreSQL', configuration=name_format.format(threads=threads, pods=pods, target=target), alias='DBMS D')
- config.set_loading_parameters(
- PARALLEL = str(pods),
- SF = SF,
- YCSB_THREADCOUNT = threads_per_pod,
- YCSB_TARGET = target_per_pod,
- YCSB_STATUS = 1,
- BEXHOMA_SYNCH_LOAD = 1,
- YCSB_WORKLOAD = args.workload,
- ROWS = ycsb_rows,
- OPERATIONS = ycsb_operations_per_pod,
- YCSB_BATCHSIZE = batchsize,
+ config.set_storage(
+ storageConfiguration = 'postgresql'
)
- config.set_loading(parallel=pods, num_pods=pods)
- #config.set_loading(parallel=num_loading, num_pods=num_loading_pods)
- config.set_benchmarking_parameters(
- #PARALLEL = str(pods),
- SF = SF,
- YCSB_THREADCOUNT = threads_per_pod,
- YCSB_TARGET = target_per_pod,
- YCSB_STATUS = 1,
- BEXHOMA_SYNCH_LOAD = 1,
- YCSB_WORKLOAD = args.workload,
- ROWS = ycsb_rows,
- OPERATIONS = ycsb_operations_per_pod,
- YCSB_BATCHSIZE = batchsize,
- )
- elif args.dbms == "MySQL":
- # MySQL
- #name_format = 'PostgreSQL-{}-{}-{}-{}'.format(cluster_name, pods, worker, target)
- name_format = 'MySQL-{threads}-{pods}-{target}'
- config = configurations.ycsb(experiment=experiment, docker='MySQL', configuration=name_format.format(threads=threads, pods=pods, target=target), alias='DBMS D')
config.set_loading_parameters(
PARALLEL = str(pods),
SF = SF,
- YCSB_THREADCOUNT = threads_per_pod,
- YCSB_TARGET = target_per_pod,
- YCSB_STATUS = 1,
BEXHOMA_SYNCH_LOAD = 1,
- YCSB_WORKLOAD = args.workload,
- ROWS = ycsb_rows,
- OPERATIONS = ycsb_operations_per_pod,
- YCSB_BATCHSIZE = batchsize,
- )
- config.set_loading(parallel=pods, num_pods=pods)
- #config.set_loading(parallel=num_loading, num_pods=num_loading_pods)
- config.set_benchmarking_parameters(
- #PARALLEL = str(pods),
- SF = SF,
- YCSB_THREADCOUNT = threads_per_pod,
- YCSB_TARGET = target_per_pod,
- YCSB_STATUS = 1,
- BEXHOMA_SYNCH_LOAD = 1,
- YCSB_WORKLOAD = args.workload,
- ROWS = ycsb_rows,
- OPERATIONS = ycsb_operations_per_pod,
- YCSB_BATCHSIZE = batchsize,
- )
- elif args.dbms == "MariaDB":
- # MariaDB
- #name_format = 'PostgreSQL-{}-{}-{}-{}'.format(cluster_name, pods, worker, target)
- name_format = 'MariaDB-{threads}-{pods}-{target}'
- config = configurations.ycsb(experiment=experiment, docker='MariaDB', configuration=name_format.format(threads=threads, pods=pods, target=target), alias='DBMS D')
- config.set_loading_parameters(
- PARALLEL = str(pods),
- SF = SF,
YCSB_THREADCOUNT = threads_per_pod,
YCSB_TARGET = target_per_pod,
YCSB_STATUS = 1,
- BEXHOMA_SYNCH_LOAD = 1,
YCSB_WORKLOAD = args.workload,
- ROWS = ycsb_rows,
- OPERATIONS = ycsb_operations_per_pod,
+ YCSB_ROWS = ycsb_rows,
+ YCSB_OPERATIONS = ycsb_operations_per_pod,
YCSB_BATCHSIZE = batchsize,
)
config.set_loading(parallel=pods, num_pods=pods)
@@ -350,125 +307,34 @@
config.set_benchmarking_parameters(
#PARALLEL = str(pods),
SF = SF,
- YCSB_THREADCOUNT = threads_per_pod,
- YCSB_TARGET = target_per_pod,
- YCSB_STATUS = 1,
- BEXHOMA_SYNCH_LOAD = 1,
- YCSB_WORKLOAD = args.workload,
- ROWS = ycsb_rows,
- OPERATIONS = ycsb_operations_per_pod,
- YCSB_BATCHSIZE = batchsize,
- )
- elif args.dbms == "MonetDB":
- # MonetDB
- #name_format = 'PostgreSQL-{}-{}-{}-{}'.format(cluster_name, pods, worker, target)
- name_format = 'MonetDB-{threads}-{pods}-{target}'
- config = configurations.ycsb(experiment=experiment, docker='MonetDB', configuration=name_format.format(threads=threads, pods=pods, target=target), alias='DBMS D')
- config.set_loading_parameters(
- PARALLEL = str(pods),
- SF = SF,
- YCSB_THREADCOUNT = threads_per_pod,
- YCSB_TARGET = target_per_pod,
- YCSB_STATUS = 1,
BEXHOMA_SYNCH_LOAD = 1,
- YCSB_WORKLOAD = args.workload,
- ROWS = ycsb_rows,
- OPERATIONS = ycsb_operations_per_pod,
- YCSB_BATCHSIZE = batchsize,
- )
- config.set_loading(parallel=pods, num_pods=pods)
- #config.set_loading(parallel=num_loading, num_pods=num_loading_pods)
- config.set_benchmarking_parameters(
- #PARALLEL = str(pods),
- SF = SF,
YCSB_THREADCOUNT = threads_per_pod,
YCSB_TARGET = target_per_pod,
YCSB_STATUS = 1,
- BEXHOMA_SYNCH_LOAD = 1,
YCSB_WORKLOAD = args.workload,
- ROWS = ycsb_rows,
- OPERATIONS = ycsb_operations_per_pod,
+ YCSB_ROWS = ycsb_rows,
+ YCSB_OPERATIONS = ycsb_operations_per_pod,
YCSB_BATCHSIZE = batchsize,
)
- elif args.dbms == "SingleStore":
- # SingleStore
+ config.add_benchmark_list(benchmarking_pods)
+ if (args.dbms == "MySQL" or len(args.dbms) == 0):
+ # MySQL
#name_format = 'PostgreSQL-{}-{}-{}-{}'.format(cluster_name, pods, worker, target)
- name_format = 'SingleStore-{threads}-{pods}-{target}'
- config = configurations.ycsb(experiment=experiment, docker='SingleStore', configuration=name_format.format(threads=threads, pods=pods, target=target), alias='DBMS D')
- config.set_loading_parameters(
- PARALLEL = str(pods),
- SF = SF,
- YCSB_THREADCOUNT = threads_per_pod,
- YCSB_TARGET = target_per_pod,
- YCSB_STATUS = 1,
- BEXHOMA_SYNCH_LOAD = 1,
- YCSB_WORKLOAD = args.workload,
- ROWS = ycsb_rows,
- OPERATIONS = ycsb_operations_per_pod,
- YCSB_BATCHSIZE = batchsize,
- )
- config.set_loading(parallel=pods, num_pods=pods)
- #config.set_loading(parallel=num_loading, num_pods=num_loading_pods)
- config.set_benchmarking_parameters(
- #PARALLEL = str(pods),
- SF = SF,
- YCSB_THREADCOUNT = threads_per_pod,
- YCSB_TARGET = target_per_pod,
- YCSB_STATUS = 1,
- BEXHOMA_SYNCH_LOAD = 1,
- YCSB_WORKLOAD = args.workload,
- ROWS = ycsb_rows,
- OPERATIONS = ycsb_operations_per_pod,
- YCSB_BATCHSIZE = batchsize,
+ name_format = 'MySQL-{threads}-{pods}-{target}'
+ config = configurations.ycsb(experiment=experiment, docker='MySQL', configuration=name_format.format(threads=threads, pods=pods, target=target), alias='DBMS D')
+ config.set_storage(
+ storageConfiguration = 'mysql'
)
- elif args.dbms == "Kinetica":
- # Kinetica
- #name_format = 'PostgreSQL-{}-{}-{}-{}'.format(cluster_name, pods, worker, target)
- name_format = 'Kinetica-{threads}-{pods}-{target}'
- config = configurations.ycsb(experiment=experiment, docker='Kinetica', configuration=name_format.format(threads=threads, pods=pods, target=target), alias='DBMS D')
config.set_loading_parameters(
PARALLEL = str(pods),
SF = SF,
- YCSB_THREADCOUNT = threads_per_pod,
- YCSB_TARGET = target_per_pod,
- YCSB_STATUS = 1,
BEXHOMA_SYNCH_LOAD = 1,
- #BEXHOMA_HOST = 'bexhoma-worker-0.kinetica-workers', # fixed for worker nodes
- YCSB_WORKLOAD = args.workload,
- ROWS = ycsb_rows,
- OPERATIONS = ycsb_operations_per_pod,
- YCSB_BATCHSIZE = batchsize,
- )
- config.set_loading(parallel=pods, num_pods=pods)
- #config.set_loading(parallel=num_loading, num_pods=num_loading_pods)
- config.set_benchmarking_parameters(
- #PARALLEL = str(pods),
- SF = SF,
- YCSB_THREADCOUNT = threads_per_pod,
- YCSB_TARGET = target_per_pod,
- YCSB_STATUS = 1,
- BEXHOMA_SYNCH_LOAD = 1,
- #BEXHOMA_HOST = 'bexhoma-worker-0.kinetica-workers', # fixed for worker nodes
- YCSB_WORKLOAD = args.workload,
- ROWS = ycsb_rows,
- OPERATIONS = ycsb_operations_per_pod,
- YCSB_BATCHSIZE = batchsize,
- )
- elif args.dbms == "YugabyteDB":
- # YugabyteDB
- #name_format = 'PostgreSQL-{}-{}-{}-{}'.format(cluster_name, pods, worker, target)
- name_format = 'YugabyteDB-{threads}-{pods}-{target}'
- config = configurations.ycsb(experiment=experiment, docker='YugabyteDB', configuration=name_format.format(threads=threads, pods=pods, target=target), alias='DBMS D')
- config.set_loading_parameters(
- PARALLEL = str(pods),
- SF = SF,
YCSB_THREADCOUNT = threads_per_pod,
YCSB_TARGET = target_per_pod,
YCSB_STATUS = 1,
- BEXHOMA_SYNCH_LOAD = 1,
YCSB_WORKLOAD = args.workload,
- ROWS = ycsb_rows,
- OPERATIONS = ycsb_operations_per_pod,
+ YCSB_ROWS = ycsb_rows,
+ YCSB_OPERATIONS = ycsb_operations_per_pod,
YCSB_BATCHSIZE = batchsize,
)
config.set_loading(parallel=pods, num_pods=pods)
@@ -476,51 +342,16 @@
config.set_benchmarking_parameters(
#PARALLEL = str(pods),
SF = SF,
- YCSB_THREADCOUNT = threads_per_pod,
- YCSB_TARGET = target_per_pod,
- YCSB_STATUS = 1,
- BEXHOMA_SYNCH_LOAD = 1,
- YCSB_WORKLOAD = args.workload,
- ROWS = ycsb_rows,
- OPERATIONS = ycsb_operations_per_pod,
- YCSB_BATCHSIZE = batchsize,
- )
- cluster.max_sut = 1 # can only run 1 in same cluster because of fixed service
- elif args.dbms == "CockroachDB":
- # CockroachDB
- num_worker = 3
- num_worker_replicas = 1
- #name_format = 'PostgreSQL-{}-{}-{}-{}'.format(cluster_name, pods, worker, target)
- name_format = 'CockroachDB-{threads}-{pods}-{target}'
- config = configurations.ycsb(experiment=experiment, docker='CockroachDB', configuration=name_format.format(threads=threads, pods=pods, target=target), alias='DBMS D', worker=num_worker)
- config.set_loading_parameters(
- PARALLEL = str(pods),
- SF = SF,
- YCSB_THREADCOUNT = threads_per_pod,
- YCSB_TARGET = target_per_pod,
- YCSB_STATUS = 1,
BEXHOMA_SYNCH_LOAD = 1,
- YCSB_WORKLOAD = args.workload,
- ROWS = ycsb_rows,
- OPERATIONS = ycsb_operations_per_pod,
- YCSB_BATCHSIZE = batchsize,
- )
- config.set_loading(parallel=pods, num_pods=pods)
- #config.set_loading(parallel=num_loading, num_pods=num_loading_pods)
- config.set_benchmarking_parameters(
- #PARALLEL = str(pods),
- SF = SF,
YCSB_THREADCOUNT = threads_per_pod,
YCSB_TARGET = target_per_pod,
YCSB_STATUS = 1,
- BEXHOMA_SYNCH_LOAD = 1,
YCSB_WORKLOAD = args.workload,
- ROWS = ycsb_rows,
- OPERATIONS = ycsb_operations_per_pod,
+ YCSB_ROWS = ycsb_rows,
+ YCSB_OPERATIONS = ycsb_operations_per_pod,
YCSB_BATCHSIZE = batchsize,
)
- config.set_ddl_parameters(num_replicas=str(num_worker_replicas))
- config.add_benchmark_list([pods])
+ config.add_benchmark_list(benchmarking_pods)
# wait for necessary nodegroups to have planned size
if aws:
#cluster.wait_for_nodegroups(node_sizes)
@@ -542,18 +373,22 @@
end = default_timer()
end_datetime = str(datetime.datetime.now())
duration_experiment = end - start
+ elif args.mode == 'summary':
+ experiment.show_summary()
else:
# total time of experiment
start = default_timer()
start_datetime = str(datetime.datetime.now())
- print("Experiment starts at {} ({})".format(start_datetime, start))
+ #print("Experiment starts at {} ({})".format(start_datetime, start))
+ print("{:30s}: starts at {} ({})".format("Experiment",start_datetime, start))
# run workflow
experiment.work_benchmark_list()
# total time of experiment
end = default_timer()
end_datetime = str(datetime.datetime.now())
duration_experiment = end - start
- print("Experiment ends at {} ({}): {}s total".format(end_datetime, end, duration_experiment))
+ #print("Experiment ends at {} ({}): {}s total".format(end_datetime, end, duration_experiment))
+ print("{:30s}: ends at {} ({}) - {:.2f}s total".format("Experiment",end_datetime, end, duration_experiment))
##################
experiment.evaluate_results()
experiment.stop_benchmarker()
@@ -563,7 +398,6 @@
test_result_code = experiment.test_results()
if test_result_code == 0:
print("Test successful!")
- cluster.restart_dashboard()
- #cluster.stop_dashboard()
- #cluster.start_dashboard()
+ #cluster.restart_dashboard() # only for dbmsbenchmarker because of dashboard. Jupyter server does not need to restart
+ experiment.show_summary()
exit()